modeller automodel

November 8, 2022

```
[11]: from modeller import *
      from modeller.automodel import *
      from Bio import SeqIO
      from Bio.SeqUtils import seq1
      import os
      #from modeller import soap_protein_od
      pdb_code = '4wkq'
      ligand_name_list = ['IRE-A','AAA-A']
      output_path = "/Users/rcheeter/Desktop/MODELLER-OUTPUT-GLY"
      pdb_file_path = "/users/rcheeter/Desktop/4wkq.pdb"
      # FIX GET OF PDB CODE -- MUST EITHER BE IN HEADER LINE OR FIND ANOTHER WAY TO
       →GET PDB CODE
      # CANNOT RELY ON HEADER LINE
      # ALSO FIX IN PGN PROGRAM (GET PDB AND GET LIGPLOT ESPECIALLY)
      def get_alignment_pir(pdb_code,pdb_file_path,ligand_name_list,output_path):
          print(f'\n[running get_alignment_pir for [{pdb_file_path}]]')
          # import PDB file
          try:
              with open(pdb_file_path,'r') as pdb_file:
                  pdb = pdb_file.readlines()
              n = len(pdb)
              if n==0:
                  raise Exception(f' ERROR: error opening PDB file; invalid PDB file⊔
       ⇔path')
          except:
              raise Exception(f' ERROR: error opening PDB file: [{pdb_file_path}];__
       →invalid PDB file path')
          if type(output_path)!=str or ' ' in output_path:
```

```
raise Exception(f' ERROR: error reading output path: [{output_path}];__
→must be a string without spaces')
  try:
      if not os.path.exists(output path):
          os.makedirs(output_path)
          print(f' NOTE: creating output path: [{output path}]')
      raise Exception(f' ERROR: error reading output path: [{output_path}]')
  # save original PDB file
  original_pdb_output_path = f'{output_path}/{pdb_code}_original'
  try:
      if not os.path.exists(original_pdb_output_path):
          os.makedirs(original_pdb_output_path)
          print(f' NOTE: creating original PDB output path:
→[{original_pdb_output_path}]')
  except:
      raise Exception(f' ERROR: error creating original PDB output path:
→[{original_pdb_output_path}]')
  original_pdb_file_path = f'{original_pdb_output_path}/{pdb_code}.pdb'
  open(original_pdb_file_path, 'w').write(''.join(pdb))
  print(f' NOTE: saving original PDB file to original PDB output path:
→[{original_pdb_file_path}]')
  # modify PDB file
  residue_name_list =__
⇔['ALA','VAL','ILE','LEU','MET','PHE','TYR','TRP','CYS','GLY',
ligand_name_pdb_set = []
  n = len(pdb)
  i = 0
  while i<n:
      line = pdb[i]
      if line[0:6].upper()=='HETATM':
          ligand_name = f"{line[17:20].replace(' ','').upper()}-{line[21].

upper()}
"
          ligand_name_pdb_set.append(ligand_name)
      if (line[0:6].upper() in ['ATOM', 'ANISOU']) and (line[17:20].replace('_

    ,'').upper() not in residue_name_list):
          atom_name = line[12:16].replace(' ','').upper()
          residue_number = int(line[22:26])
          residue_name = line[17:20].replace(' ','').upper()
```

```
chain_id = line[21].upper()
          # residue_name_1L = seq1(residue_name_3L)
          # removed_residues.
→append([residue_number, residue_name_3L, residue_name_1L])
          print(f' WARNING: unrecognized ATOM/ANISOU residue: atom,
→[{atom name}] in residue [{residue name}-{chain id} #{residue number}];
→removing atom')
          pdb.remove(line)
          i -= 1
          n = 1
      elif (line[0:6].upper()=='HETATM') and ((f"{line[17:20].replace(' ','').
Gupper()}-{line[21].upper()}") not in ligand_name_list):
          atom name = line[12:16].replace(' ','').upper()
          residue_number = int(line[22:26])
          residue_name = line[17:20].replace(' ','').upper()
          chain_id = line[21].upper()
          # residue_name_1L = seq1(residue_name_3L)
          # removed residues.
→append([residue_number, residue_name_3L, residue_name_1L])
          print(f' WARNING: unrecognized HETATM residue: atom [{atom_name}]__
→in residue [{residue_name}-{chain_id} #{residue_number}]; removing atom')
          pdb.remove(line)
          i -= 1
          n -= 1
      i += 1
  # removed residues = [list(residue) for residue in set(tuple(residue) for
→residue in removed residues)]
  # print(removed_residues)
  ligand name pdb set = list(set(ligand name pdb set))
  ligand_name_list = list(set(ligand_name_list))
  ligand_name_difference =
set(ligand_name_list)-set(ligand_name_pdb_set))
  if len(ligand_name_difference)!=0:
      ligand_name_difference = ', '.join(ligand_name_difference)
      print(f' WARNING: ligand name(s) not found in PDB:
→[{ligand_name_difference}]; removing from ligand_name_list')
```

```
ligand_name_list = [ligand_name for ligand_name in ligand_name_list ifu
⇒ligand_name not in ligand_name_difference]
  # save modified PDB file
  modified_pdb_output_path = f'{output_path}/{pdb_code}_modified'
  try:
      if not os.path.exists(modified pdb output path):
          os.makedirs(modified_pdb_output_path)
          print(f' NOTE: creating modified PDB output path:
→[{modified_pdb_output_path}]')
  except:
      raise Exception(f' ERROR: error creating modified PDB output path:
→[{modified_pdb_output_path}]')
  modified_pdb_file_path = f'{modified_pdb_output_path}/{pdb_code}_mod.pdb'
  open(modified_pdb_file_path,'w').write(''.join(pdb))
  print(f' NOTE: saving modified PDB file to modified PDB output path:⊔
→[{modified_pdb_file_path}]')
  # create template and target sequences from PDB file
  template sequence = ''
  with open(modified_pdb_file_path, 'r') as modified_pdb_file:
      for record in SeqIO.parse(modified_pdb_file,'pdb-atom'):
          template_sequence += ('/' + str(record.seq).replace('X','/').
→replace(' ',''))
      if pdb_code!=(record.id.split(':')[0].lower()):
          raise Exception(' ERROR: error parsing modified PDB file; PDB code⊔

does not mach original PDB code¹)
  template_sequence = list(template_sequence)[1:]
  for i in range(1,len(template_sequence)):
      if template_sequence[i] == '/' and (template_sequence[i-1] in ['/','-']):
          template_sequence[i] = '-'
  template_sequence = ''.join(template_sequence)
  for ligand_name in ligand_name_list:
      template sequence += '/.'
  template_sequence += '*'
  n = 75
  template_sequence = [template_sequence[i:i+n] for i in_
→range(0,len(template_sequence),n)]
  template_name = f'{pdb_code}_template'
  template_info = f'structure:{pdb_code}_mod.pdb
                                                  :FIRST:@: END: :::
```

```
template_text = [f'>P1;{template_name}',template_info]
   template_text.extend(template_sequence)
   template_text = '\n'.join(template_text)
   target_sequence = template_sequence
   target_name = f'{pdb_code}_target'
   target_text = [f'>P1;{target_name}',target_info]
   target_text.extend(target_sequence)
   target_text = '\n'.join(target_text)
   pir_text = template_text + '\n\n' + target_text + '\n'
   pir_file_path = f'{output_path}/alignment.ali'
   open(pir_file_path, 'w').write(pir_text)
   print(f' NOTE: saving PIR sequence alignment to output path:⊔
 →[{pir_file_path}]')
   return pir_file_path,modified_pdb_file_path,target_name,template_name
    # mutation = [startind, endind, newseq]
# def make_mutation(pir_file_path,mutation,target_name):
     return pir_file_path
def get modeller(pir file path, target name, template name, output path):
   os.chdir(output path)
   env = Environ()
   env.io.atom_files_directory = [f'{output_path}/4wkq_modified']
   env.io.hetatm = True
   a = AutoModel(env, alnfile=pir_file_path,
                 knowns=template_name, sequence=target_name,
                 assess methods=(assess.DOPE,
                                #soap_protein_od.Scorer(),
                                assess.GA341))
   a.starting_model = 1
   a.ending_model = 4
   a.make()
```

```
\# pir_file_path,modified_pdb_file_path,target_name,template_name =
 get alignment pir(pdb code, pdb file path, ligand name list, output path)
# make mutation
get_modeller(pir_file_path,target_name,template_name,output_path)
# PUT TEAM MEETING SLIDES IN FOLDER ON MICROSOFT TEAMS
          for i in range(1,len(sequence)):
                 if\ template\_sequence[i] == '/'\ and\ (template\_sequence[i-1]\ in_{\sqcup}
⇔['/','-']):
                      template_sequence[i] = '-'
             template_sequence = ''.join(template_sequence)
            # REMOVE / ON LAST CHAIN
            # FIX OUTPUT OF THIS TO BE PROPERLY FORMATTED
             ali\_text.append
             ali\_text.append(f'>P1;{record.id}\n')
             ali_text.append(f'
#
              ali\_text.append(template\_sequence + ' \n \n')
#
      n = 75
      ali_text = [ali_text[i:i+n] for i in range(0, len(ali_text),n)]
```

```
ali_text.insert(0,f'>P1;ABCD')
#
      ali_text.insert(1,f'asdfadsfadsfasdfasdfadsf')
#
      print(ali_text)
#
     print(type(ali_text))
      ali\_text = '\n'.join(ali\_text)
# hetatm_name_list = ['IRE-A']
# output_path = "/Users/rcheeter/Desktop/PGN_MODELLER_OUTPUT"
# pdb_file_path = f"{output_path}/4wkq.pdb"
\# pir\_file\_path = f"{output\_path}/zsample.ali"
# if not os.path.exists(output_path):
      os.makedirs(output_path)
      print(f' NOTE: creating output path directory: [{output path}]')
# with open(pdb_file_path, 'r') as pdb_file, open(pir_file_path, 'w') as pir_file:
          sequences = SeqIO.parse(pdb_file, 'pdb-atom')
          SeqIO.write(sequences,pir file,'pir')
# ali text = []
# with open(pdb_file_path, 'r') as pdb_file:
      for record in SeqIO.parse(pdb_file, 'pdb-atom'):
#
          ali_text.append(f'>P1;{record.id}\n')
#
          ali_text.append(str(record.seq))
          print('>' + record.id)
          print(record.seq)
# open(pir_file_path, 'w').write(''.join(ali_text)) # write PDB to a new file in_
 →output path
```

```
rdpdb___459W> Residue type IRE not recognized. 'AutoModel' model building will treat this residue as a rigid body.

To use real parameters, add the residue type to ${LIB}/restyp.lib, its topology to ${LIB}/top_*.lib, and suitable forcefield parameters to ${LIB}/par.lib.

fndatmi_285W> Only 296 residues out of 297 contain atoms of type CA (This is usually caused by non-standard residues, such as ligands, or by PDB files with missing atoms.)
```

296 residues out of fndatmi_285W> Only 297 contain atoms of type CA (This is usually caused by non-standard residues, such as ligands, or by PDB files with missing atoms.) check ali > Checking the sequence-structure alignment. Implied intrachain target CA(i)-CA(i+1) distances longer than 8.0 angstroms: ALN_POS TMPL RID1 RID2 NAM1 NAM2 DIST END OF TABLE read_to_681_> topology.submodel read from topology file: fndatmi_285W> Only 296 residues out of 297 contain atoms of type CA (This is usually caused by non-standard residues, such as ligands, or by PDB files with missing atoms.) mdtrsr_446W> A potential that relies on one protein is used, yet you have at least one known structure available. MDT, not library, potential is used. iup2crm_280W> No topology library in memory or assigning a BLK residue. Default CHARMM atom type assigned: CAO --> CT2 This message is written only for the first such atom. 31 atoms in HETATM/BLK residues constrained to protein atoms within 2.30 angstroms and protein CA atoms within 10.00 angstroms 31 atoms in residues without defined topology constrained to be rigid bodies condens_443_> Restraints marked for deletion were removed. Total number of restraints before, now: 32379 30238 iupac_m_397W> Atoms were not swapped because of the uncertainty of how to handle the H atom. iupac_m_484W> Dihedral still outside +-90: -90.7454 iupac_m_397W> Atoms were not swapped because of the uncertainty of how to handle the H atom. >> Model assessment by DOPE potential iatmcls 286W> MODEL atom not classified: SER:OXT SER iatmcls_286W> MODEL atom not classified: GLU:OXT GLU iatmcls 286W> MODEL atom not classified: GLY:OXT GLY iatmcls_286W> MODEL atom not classified: ASP:OXT ASP iatmcls_286W> MODEL atom not classified: GLN:OXT GLN

>> ENERGY; Differences between the model's features and restraints:

Number of all residues in MODEL 297 Number of all, selected real atoms 2397 Number of all, selected pseudo atoms Number of all static, selected restraints : 30238 30238

COVALENT_CYS F

NONBONDED_SEL_ATOMS 1 2397

Number of non-bonded pairs (excluding 1-2,1-3,1-4): 475259

Dynamic pairs routine : 1, NATM x NATM double loop

Atomic shift for contacts update (UPDATE_DYNAMIC) : 0.390

LENNARD_JONES_SWITCH : 6.500 7.500
COULOMB_JONES_SWITCH : 6.500 7.500
RESIDUE_SPAN_RANGE : 1 9999

NLOGN_USE : 15 CONTACT_SHELL : 15.000

DYNAMIC_PAIRS,_SPHERE,_COULOMB,_LENNARD,_MODELLER : T F F

F T

SPHERE_STDV : 0.050
RADII_FACTOR : 0.820

Current energy : -34417.2500

<< end of ENERGY.

DOPE score : -34417.250000 >> Model assessment by GA341 potential

Surface library : /opt/anaconda3/lib/modeller-10.1/modlib/surf5.de Pair library : /opt/anaconda3/lib/modeller-10.1/modlib/pair9.de

Chain identifier : _

% sequence identity 99.663002 Sequence length 27 : Compactness 0.043058 Native energy (pair) 11.591245 Native energy (surface) : 3.848097 Native energy (combined) : 5.974587 Z score (pair) : 0.206631 Z score (surface) 0.356791 Z score (combined) : 0.383440 GA341 score 0.351118

>> ENERGY; Differences between the model's features and restraints:

Number of all residues in MODEL : 297

Number of all, selected real atoms : 2397 2397 Number of all, selected pseudo atoms : 0 0 Number of all static, selected restraints : 30238 30238

COVALENT_CYS : F
NONBONDED_SEL_ATOMS : 1
Number of non-bonded pairs (excluding 1-2,1-3,1-4): 5093

Dynamic pairs routine : 2, NATM x NATM cell sorting

Atomic shift for contacts update (UPDATE_DYNAMIC) : 0.390

LENNARD_JONES_SWITCH : 6.500 7.500

COULOMB_JONES_SWITCH 6.500 7.500 RESIDUE_SPAN_RANGE 0 99999 NLOGN_USE 15 CONTACT_SHELL 4.000

DYNAMIC_PAIRS,_SPHERE,_COULOMB,_LENNARD,_MODELLER: F Τ Т

SPHERE STDV 0.050 RADII_FACTOR 0.820

Current energy 1998.5022

Summary of the restraint violations:

NUM ... number of restraints.

NUMVI ... number of restraints with RVIOL > VIOL_REPORT_CUT[i].

... relative difference from the best value. RVIOL

NUMVP ... number of restraints with -Ln(pdf) > VIOL_REPORT_CUT2[i].

... RMS(feature, minimally_violated_basis_restraint, NUMB). RMS 1

... RMS(feature, best value, NUMB). RMS 2

MOL.PDF ... scaled contribution to -Ln(Molecular pdf).

#		RESTRAINT_GRO	OUP	NUM	NUMVI	NUMVP	RMS_1	RMS_2
MOL.PDF	S_i							
		-						
1 Bond le	ngth potent:	ial	:	2414	0	0	0.006	0.006
21.624	1.000							
2 Bond an	gle potentia	al	:	3266	0	10	2.106	2.106
282.40	1.000							
3 Stereoc	hemical cos:	ine torsion po	ten:	1570	0	38	47.005	47.005
531.29	1.000							
4 Stereoc	hemical imp	roper torsion p	pot:	967	0	0	1.403	1.403
40.055	1.000							
5 Soft-sp	here overlaj	p restraints	:	5093	0	0	0.002	0.002
1.6673	1.000							
6 Lennard	-Jones 6-12	potential	:	0	0	0	0.000	0.000
0.0000	1.000							
7 Coulomb	point-point	t electrostatio	c p:	0	0	0	0.000	0.000
0.0000	1.000							
8 H-bondi	ng potentia	L	:	0	0	0	0.000	0.000
0.0000	1.000							
9 Distanc	e restraint:	s 1 (CA-CA)	:	5955	0	0	0.102	0.102
75.237	1.000							
10 Distance	e restraints	s 2 (N-O)	:	5904	2	13	0.194	0.194
214.09	1.000							

11 Mainchain Phi dihedral restraints	: 0	0	0	0.000	0.000
0.0000 1.000 12 Mainchain Psi dihedral restraints	: 0	0	0	0.000	0.000
0.0000 1.000 13 Mainchain Omega dihedral restraints	: 291	0	5	4.066	4.066
56.740 1.000 14 Sidechain Chi_1 dihedral restraints	: 259	0	11	64.754	64.754
81.326 1.000					
15 Sidechain Chi_2 dihedral restraints 91.981 1.000	: 206	0	6	67.985	67.985
16 Sidechain Chi_3 dihedral restraints 68.856 1.000	: 95	0	1	77.368	77.368
17 Sidechain Chi_4 dihedral restraints	: 36	0	0	80.572	80.572
23.357 1.000 18 Disulfide distance restraints	: 0	0	0	0.000	0.000
0.0000 1.000 19 Disulfide angle restraints	: 0	0	0	0.000	0.000
0.0000 1.000	. 0	O	U	0.000	0.000
20 Disulfide dihedral angle restraints 0.0000 1.000	: 0	0	0	0.000	0.000
21 Lower bound distance restraints	: 0	0	0	0.000	0.000
0.0000 1.000 22 Upper bound distance restraints	: 0	0	0	0.000	0.000
0.0000 1.000 23 Distance restraints 3 (SDCH-MNCH)	: 4676	0	0	0.447	0.447
179.72 1.000	. 4070	O	O	0.447	0.447
24 Sidechain Chi_5 dihedral restraints 0.0000 1.000	: 0	0	0	0.000	0.000
25 Phi/Psi pair of dihedral restraints	: 286	9	22	23.933	35.877
24.359 1.000 26 Distance restraints 4 (SDCH-SDCH)	: 2943	0	3	0.843	0.843
300.41 1.000	. 2010	Ŭ	Ü	0.010	0.010
27 Distance restraints 5 (X-Y) 5.3993 1.000	: 1370	0	0	0.021	0.021
	: 0	0	0	0.000	0.000
0.0000 1.000	•	•	•		
29 NMR distance restraints 7 (X-Y) 0.0000 1.000	: 0	0	0	0.000	0.000
	: 0	0	0	0.000	0.000
0.0000 1.000					
	: 0	0	0	0.000	0.000
0.0000 1.000 32 Atomic accessibility restraints	: 0	0	0	0.000	0.000
0.0000 1.000		_			
33 Atomic density restraints 0.0000 1.000	: 0	0	0	0.000	0.000
34 Absolute position restraints	: 0	0	0	0.000	0.000
0.0000 1.000					

35 Dihedral angle difference restra	int:	0	0	0	0.000	0.000
0.0000 1.000						
36 GBSA implicit solvent potential	:	0	0	0	0.000	0.000
0.0000 1.000						
37 EM density fitting potential	:	0	0	0	0.000	0.000
0.0000 1.000						
38 SAXS restraints	:	0	0	0	0.000	0.000
0.0000 1.000						
39 Symmetry restraints	:	0	0	0	0.000	0.000
0.0000 1.000						

- # Heavy relative violation of each residue is written to: 4wkq_target. V99990001
- # The profile is NOT normalized by the number of restraints.
- # The profiles are smoothed over a window of residues: 1
- # The sum of all numbers in the file: 28750.2832

List of the violated restraints:

A restraint is violated when the relative difference from the best value (RVIOL) is larger than CUTOFF.

ICSR ... index of a restraint in the current set.

RESNO ... residue numbers of the first two atoms.

ATM ... IUPAC atom names of the first two atoms.

FEAT ... the value of the feature in the model.

restr ... the mean of the basis restraint with the smallest difference from the model (local minimum).

viol ... difference from the local minimum.

rviol ... relative difference from the local minimum.

RESTR ... the best value (global minimum).

VIOL ... difference from the best value.

RVIOL ... relative difference from the best value.

Feature 10 : Distance restraints 2 (N-O)

List of the RVIOL violations larger than : 4.5000

ICSR RESN01/2 ATM1/2 INDATM1/2 FEAT restr viol rviol RESTR VIOL RVIOL 1 17294 107I 280Q N 0 827 2240 9.49 6.93 2.56 4.78 6.93 2.56 4.78

Feature	25				: Ph	ni/Psi	pair	of	dihedra	l res	traints	
List of	the R	VIOL violat	tions la	arger '	than	:	6	5.50	000			
#	ICSR	RESNO1/2	ATM1/2	INDA'	TM1/2	2 FE	EAT	res	str v	iol	rviol	

#	ICSR RESNO1/2	ATM1/2	INDATM1/2	FEAT	restr	viol	rviol
	VIOL RVIOL	a 17	00 00	00.40	F0 70	40.00	4 00
	8222 5A 6P		30 32	-69.16	-58.70	13.23	1.06
	169.66 12.91						
1		N CA	32 33	-22.40	-30.50		
147.20							
2	8252 37P 38E	C N	288 290	12.39	-63.60	116.31	13.65
	116.31 13.65						
2	38E 38E	N CA	290 291	-128.36	-40.30		
-40.30							
3	8345 134R 135D	C N	1061 1063	-109.86	-63.30	65.38	7.41
-63.30	65.38 7.41						
3	135D 135D	N CA	1063 1064	5.91	-40.00		
-40.00							
4	8422 211K 212P	C N	1678 1680	-48.78	-58.70	44.70	2.97
-64.50	139.60 11.26						
4	212P 212P	N CA	1680 1681	-74.09	-30.50		
147.20							
5	8423 212P 213Y	C N	1685 1687	-107.14	-98.40	35.50	3.63
55.90	171.90 16.06						
5	213Y 213Y	N CA	1687 1688	93.99	128.40		
39.50							
6	8424 213Y 214D	C N	1697 1699	-57.85	-63.30	16.20	1.75
-70.90	155.00 8.29						
	214D 214D		1699 1700	-55.26	-40.00		
150.30							
	8425 214D 215G	C N	1705 1707	-72.75	-62.40	12.80	1.89
	160.59 12.01		2.00 2.0.		02110		
	215G 215G		1707 1708	-33 67	-41 20		
8.50	2100 2100	10 011	1101 1100	00.01	11.20		
	8490 279I 280Q	C N	2230 2232	-61 84	-63 80	23 01	3 28
	156.47 10.46		2200 2202	01.04	00.00	20.01	0.20
			2232 2233	-63 23	-40 30		
140.70	2004 2004	N CA	2232 2233	00.20	40.50		
	8491 280Q 281G	C N	2220 22/1	-61 71	-62 40	17 00	2 58
	147.57 10.90	O 11	2233 2241	-01.71	02.40	11.00	2.00
		NT CA	20//1 20//2	_0/ 10	_//1 00		
9	201G 201G	IN CA	2241 2242	-24.13	-41.20		
8.50							

report____> Distribution of short non-bonded contacts:

DISTANCE1: 0.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20

3.30 3.40

DISTANCE2: 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30

3.40 3.50

FREQUENCY: 0 0 0 0 11 21 101 168 225 216 282 303

385 389

<< end of ENERGY.

>> Model assessment by DOPE potential

iatmcls_286W> MODEL atom not classified: SER:OXT SER
iatmcls_286W> MODEL atom not classified: GLU:OXT GLU
iatmcls_286W> MODEL atom not classified: GLY:OXT GLY
iatmcls_286W> MODEL atom not classified: ASP:OXT ASP
iatmcls_286W> MODEL atom not classified: GLN:OXT GLN

>> ENERGY; Differences between the model's features and restraints:

Number of all residues in MODEL : 297

Number of all, selected real atoms : 2397 2397 Number of all, selected pseudo atoms : 0 0 Number of all static, selected restraints : 30238 30238

COVALENT_CYS : F
NONBONDED_SEL_ATOMS : 1
Number of non-bonded pairs (excluding 1-2,1-3,1-4): 475940

Dynamic pairs routine : 1, NATM x NATM double loop

Atomic shift for contacts update (UPDATE_DYNAMIC) : 0.390

 LENNARD_JONES_SWITCH
 : 6.500
 7.500

 COULOMB_JONES_SWITCH
 : 6.500
 7.500

 RESIDUE_SPAN_RANGE
 : 1
 9999

 NLOGN USE
 : 15

NLOGN_USE : 15 CONTACT_SHELL : 15.000

DYNAMIC_PAIRS,_SPHERE,_COULOMB,_LENNARD,_MODELLER: T F F

F T

SPHERE_STDV : 0.050
RADII_FACTOR : 0.820

Current energy : -34384.6250

<< end of ENERGY.

DOPE score : -34384.625000 >> Model assessment by GA341 potential

Surface library : /opt/anaconda3/lib/modeller-10.1/modlib/surf5.de Pair library : /opt/anaconda3/lib/modeller-10.1/modlib/pair9.de

Chain identifier : _

99.663002 % sequence identity Sequence length 27 : Compactness 0.042779 Native energy (pair) : 10.347894 Native energy (surface) : 2.188346 Native energy (combined) : 4.201102 Z score (pair) -0.029196 Z score (surface) -0.690697 : Z score (combined) : -0.488425 GA341 score 0.644417

>> ENERGY; Differences between the model's features and restraints:

Number of all residues in MODEL : 297

Number of all, selected real atoms : 2397 2397 Number of all, selected pseudo atoms : 0 0 Number of all static, selected restraints : 30238 30238

COVALENT_CYS : F
NONBONDED_SEL_ATOMS : 1
Number of non-bonded pairs (excluding 1-2,1-3,1-4): 5109

Dynamic pairs routine : 2, NATM x NATM cell sorting

Atomic shift for contacts update (UPDATE_DYNAMIC) : 0.390

LENNARD_JONES_SWITCH : 6.500 7.500 COULOMB_JONES_SWITCH : 6.500 7.500 RESIDUE_SPAN_RANGE : 0 99999

NLOGN_USE : 15 CONTACT SHELL : 4.000

DYNAMIC_PAIRS,_SPHERE,_COULOMB,_LENNARD,_MODELLER : T T F

F F

SPHERE_STDV : 0.050
RADII_FACTOR : 0.820

Current energy : 2077.9355

Summary of the restraint violations:

NUM ... number of restraints.

NUMVI ... number of restraints with RVIOL > VIOL_REPORT_CUT[i].

RVIOL ... relative difference from the best value.

NUMVP ... number of restraints with -Ln(pdf) > VIOL_REPORT_CUT2[i].

RMS_1 ... RMS(feature, minimally_violated_basis_restraint, NUMB).

RMS_2 ... RMS(feature, best_value, NUMB).

MOL.PDF ... scaled contribution to -Ln(Molecular pdf).

#	RESTRAINT_GROUP	NUM	NUMVI	NUMVP	RMS_1	RMS_2
MOL.PDF S_i						
1 Bond length potent 23.649 1.000	cial :	2414	0	1	0.006	0.006
2 Bond angle potent:	ial :	3266	2	8	2.150	2.150
296.68 1.000						
3 Stereochemical cos	sine torsion poten:	1570	0	39	47.222	47.222
535.37 1.000		0.00			0.454	0.454
4 Stereochemical imp 105.88 1.000	proper torsion pot:	967	1	1	2.451	2.451
5 Soft-sphere overla	ap restraints :	5109	0	2	0.005	0.005
13.123 1.000	-P	0200		_	0.000	
6 Lennard-Jones 6-12	2 potential :	0	0	0	0.000	0.000
0.0000 1.000						
7 Coulomb point-poin	nt electrostatic p:	0	0	0	0.000	0.000
0.0000 1.000	.1	0	0	0	0.000	0.000
8 H-bonding potentia 0.0000 1.000	al :	U	U	U	0.000	0.000
9 Distance restraint	ts 1 (CA-CA) :	5955	0	0	0.093	0.093
65.978 1.000						
10 Distance restraint	ts 2 (N-O) :	5904	0	10	0.164	0.164
170.73 1.000						
11 Mainchain Phi dihe 0.0000 1.000	edral restraints :	0	0	0	0.000	0.000
12 Mainchain Psi dihe	adral restraints :	0	0	0	0.000	0.000
0.0000 1.000		Ü	Ŭ	Ü	0.000	0.000
13 Mainchain Omega d	ihedral restraints:	291	1	3	4.267	4.267
62.475 1.000						
14 Sidechain Chi_1 d:	ihedral restraints:	259	0	13	58.896	58.896
58.589 1.000	ibodwol woatwointa.	206	0	6	61.224	61.224
15 Sidechain Chi_2 d: 75.400 1.000	inediai lestiaints.	200	U	O	01.224	01.224
16 Sidechain Chi_3 d:	ihedral restraints:	95	0	0	65.848	65.848
65.515 1.000						
17 Sidechain Chi_4 d	ihedral restraints:	36	0	0	97.201	97.201
22.955 1.000						
18 Disulfide distance 0.0000 1.000	e restraints :	0	0	0	0.000	0.000
0.0000 1.000 19 Disulfide angle re	estraints :	0	0	0	0.000	0.000
0.0000 1.000		v	Ū	Ů	0.000	0.000
20 Disulfide dihedra	l angle restraints:	0	0	0	0.000	0.000
0.0000 1.000						
21 Lower bound distan	nce restraints :	0	0	0	0.000	0.000
0.0000 1.000		^	^	^	0 000	0 000
22 Upper bound distar	nce restraints :	0	0	0	0.000	0.000

0.0000 1.000						
23 Distance restraints 3 (SDCH-M	NCH) :	4676	0	1	0.471	0.471
200.71 1.000						
24 Sidechain Chi_5 dihedral rest:	raints:	0	0	0	0.000	0.000
0.0000 1.000						
25 Phi/Psi pair of dihedral rest	raints:	286	6	22	23.705	26.527
75.218 1.000						
26 Distance restraints 4 (SDCH-S)	DCH) :	2943	0	9	0.838	0.838
300.55 1.000						
27 Distance restraints 5 (X-Y)	:	1370	0	0	0.022	0.022
5.1001 1.000						
28 NMR distance restraints 6 (X-	Y) :	0	0	0	0.000	0.000
0.0000 1.000	\	•	•	•		
29 NMR distance restraints 7 (X-	Y) :	0	0	0	0.000	0.000
0.0000 1.000		0	0	0	0.000	0.000
30 Minimal distance restraints	:	0	0	0	0.000	0.000
0.0000 1.000 31 Non-bonded restraints		0	0	0	0.000	0.000
0.0000 1.000	:	U	U	U	0.000	0.000
32 Atomic accessibility restrain	ts :	0	0	0	0.000	0.000
0.0000 1.000	us .	U	U	U	0.000	0.000
33 Atomic density restraints	:	0	0	0	0.000	0.000
0.0000 1.000	•	O	O	U	0.000	0.000
34 Absolute position restraints	:	0	0	0	0.000	0.000
0.0000 1.000	•	ŭ	ŭ	Ŭ	0.000	0.000
35 Dihedral angle difference res	traint:	0	0	0	0.000	0.000
0.0000 1.000						
36 GBSA implicit solvent potentia	al :	0	0	0	0.000	0.000
0.0000 1.000						
37 EM density fitting potential	:	0	0	0	0.000	0.000
0.0000 1.000						
38 SAXS restraints	:	0	0	0	0.000	0.000
0.0000 1.000						
39 Symmetry restraints	:	0	0	0	0.000	0.000
0.0000 1.000						

List of the violated restraints:

A restraint is violated when the relative difference from the best value (RVIOL) is larger than CUTOFF.

[#] Heavy relative violation of each residue is written to: 4wkq_target.V99990002

[#] The profile is NOT normalized by the number of restraints.

[#] The profiles are smoothed over a window of residues: 1

[#] The sum of all numbers in the file: 27202.0742

ICSR ... index of a restraint in the current set.

RESNO ... residue numbers of the first two atoms.

ATM ... IUPAC atom names of the first two atoms.

FEAT ... the value of the feature in the model.

restr ... the mean of the basis restraint with the smallest difference from the model (local minimum).

viol ... difference from the local minimum.

rviol ... relative difference from the local minimum.

 ${\tt RESTR}$ $\ \mbox{...}$ the best value (global minimum).

VIOL ... difference from the best value.

RVIOL ... relative difference from the best value.

Feature 13 : Mainchain Omega dihedral restraints List of the RVIOL violations larger than : 4.5000

ICSR RESN01/2 ATM1/2 INDATM1/2 FEAT restr viol rviol
RESTR VIOL RVIOL

1 8547 45P 45P CA C 346 350 -156.82 -180.00 23.18 4.63 -180.00 23.18 4.63

Feature 25 : Phi/Psi pair of dihedral restraints List of the RVIOL violations larger than : 6.5000

#	ICSR RESI	NO1/2	ATM1/2	INDA	ΓM1/2	FEAT	restr	viol	rviol
RESTR	VIOL RV	/IOL							
1	8252 37P	38E	C N	288	290	7.77	-63.60	111.70	13.06
-63.60	111.70	13.06							
1	38E	38E	N CA	290	291	-126.23	-40.30		
-40.30									
2	8259 44I	45P	C N	343	345	-152.39	-64.50	88.58	9.42
-64.50	88.58	9.42							
2	45P	45P	N CA	345	346	136.21	147.20		
147.20									
3	8316 105D	106N	C N	817	819	-114.89	-63.20	87.56	9.46
-63.20	87.56	9.46							
3	106N	106N	N CA	819	820	29.57	-41.10		
-41.10									
4	8345 134R	135D	C N	1061	1063	-110.28	-63.30	65.49	7.44
-63.30	65.49	7.44							
4	135D	135D	N CA	1063	1064	5.62	-40.00		

```
-40.00
       8437 226E 227K C
                              1789 1791 -68.06 -62.90
                                                           61.69
                                                                    8.30
   5
                          N
-62.90
        61.69
                 8.30
            227K 227K N
                          CA 1791 1792 -102.27 -40.80
   5
-40.80
   6
       8438 227K 228G C
                               1798 1800 -115.97 -62.40
                                                          54.59
                                                                    9.27
82.20 166.51
                9.51
    6
            228G 228G N
                          CA 1800 1801 -30.70 -41.20
8.50
report____> Distribution of short non-bonded contacts:
DISTANCE1: 0.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20
3.30 3.40
DISTANCE2: 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30
3.40 3.50
FREQUENCY:
              0
                   0
                        0
                             0
                                  1
                                      12
                                           27 106 162 251 221 256 331
387 390
<< end of ENERGY.</pre>
iupac_m_397W> Atoms were not swapped because of the uncertainty of how to handle
the H atom.
>> Model assessment by DOPE potential
iatmcls_286W> MODEL atom not classified: SER:OXT SER
iatmcls_286W> MODEL atom not classified: GLU:OXT GLU
iatmcls_286W> MODEL atom not classified: GLY:OXT GLY
iatmcls_286W> MODEL atom not classified: ASP:OXT ASP
iatmcls_286W> MODEL atom not classified: GLN:OXT GLN
>> ENERGY; Differences between the model's features and restraints:
Number of all residues in MODEL
                                                        297
Number of all, selected real atoms
                                                       2397
                                                               2397
Number of all, selected pseudo atoms
                                                                  0
Number of all static, selected restraints
                                                      30238
                                                              30238
COVALENT_CYS
                                                          F
NONBONDED_SEL_ATOMS
                                                          1
Number of non-bonded pairs (excluding 1-2,1-3,1-4):
                                                     474622
Dynamic pairs routine
                                                 : 1, NATM x NATM double loop
Atomic shift for contacts update (UPDATE_DYNAMIC) :
                                                      0.390
                                                              7.500
LENNARD JONES SWITCH
                                                      6.500
```

6.500

15.000

1

15

7.500

9999

COULOMB_JONES_SWITCH

RESIDUE_SPAN_RANGE

NLOGN_USE

CONTACT_SHELL

DYNAMIC_PAIRS, SPHERE, COULOMB, LENNARD, MODELLER: T F F

F T

SPHERE_STDV : 0.050
RADII_FACTOR : 0.820

Current energy : -34578.4492

<< end of ENERGY.

DOPE score : -34578.449219 >> Model assessment by GA341 potential

Surface library : /opt/anaconda3/lib/modeller-10.1/modlib/surf5.de Pair library : /opt/anaconda3/lib/modeller-10.1/modlib/pair9.de

Chain identifier :

% sequence identity 99.663002 Sequence length 27 Compactness 0.042669 Native energy (pair) 12.094317 Native energy (surface) : 2.556446 Native energy (combined) : 4.947094 Z score (pair) : 0.153613 Z score (surface) : -0.500128 Z score (combined) : -0.231451GA341 score 0.550490

>> ENERGY; Differences between the model's features and restraints:

Number of all residues in MODEL 297 Number of all, selected real atoms 2397 2397 Number of all, selected pseudo atoms 0 0 Number of all static, selected restraints 30238 30238 COVALENT CYS F NONBONDED SEL ATOMS 1 Number of non-bonded pairs (excluding 1-2,1-3,1-4): 5093 Dynamic pairs routine : 2, NATM x NATM cell sorting Atomic shift for contacts update (UPDATE_DYNAMIC) : 0.390 LENNARD_JONES_SWITCH 6.500 7.500 COULOMB_JONES_SWITCH 6.500 7.500 RESIDUE_SPAN_RANGE 99999 0 NLOGN_USE 15 4.000 CONTACT_SHELL DYNAMIC_PAIRS,_SPHERE,_COULOMB,_LENNARD,_MODELLER : Т F Τ

F F

SPHERE_STDV : 0.050
RADII_FACTOR : 0.820

Current energy : 1821.2335

Summary of the restraint violations:

NUM ... number of restraints.

NUMVI ... number of restraints with RVIOL > VIOL_REPORT_CUT[i].

RVIOL ... relative difference from the best value.

NUMVP ... number of restraints with -Ln(pdf) > VIOL_REPORT_CUT2[i].

RMS_1 ... RMS(feature, minimally_violated_basis_restraint, NUMB).

RMS_2 ... RMS(feature, best_value, NUMB).

 ${\tt MOL.PDF}$ … scaled contribution to ${\tt -Ln(Molecular\ pdf)}$.

#		RAINT_GROUP	NUM	NUMVI	NUMVP	RMS_1	RMS_2
MOL.PDF	S_i						
1 Bond le	ngth potential	:	2414	0	0	0.005	0.005
19.511	1.000						
2 Bond an	gle potential	:	3266	0	9	2.032	2.032
265.06	1.000						
3 Stereoc	hemical cosine to	rsion poten:	1570	0	39	47.486	47.486
535.45	1.000						
	hemical improper	torsion pot:	967	0	0	1.379	1.379
37.909	1.000						
-	here overlap rest	raints :	5093	0	0	0.001	0.001
1.2440	1.000				_		
	-Jones 6-12 poter	itial :	0	0	0	0.000	0.000
0.0000	1.000		0	0	0	0 000	0.000
	point-point elec	ctrostatic p:	0	0	0	0.000	0.000
0.0000	1.000		0	0	0	0 000	0 000
0.0000	ng potential 1.000	:	0	0	0	0.000	0.000
	e restraints 1 ((CA-CA) :	5955	0	0	0.090	0.090
61.019	1.000	,A-CA) .	5955	U	U	0.090	0.090
	e restraints 2 (N	1-0) :	5904	0	3	0.140	0.140
119.85	1.000		0001	V	O	0.110	0.110
	in Phi dihedral n	estraints :	0	0	0	0.000	0.000
0.0000	1.000		· ·	· ·			
	in Psi dihedral r	estraints :	0	0	0	0.000	0.000
	1.000						
13 Maincha	in Omega dihedral	restraints:	291	0	2	3.919	3.919
52.719	1.000						
14 Sidecha	in Chi_1 dihedral	restraints:	259	0	8	64.641	64.641
73.416	1.000						

15 Sidechain Chi_2 dihedral restraint	ts:	206	0	2	60.379	60.379
76.586 1.000 16 Sidechain Chi_3 dihedral restraint	ts:	95	0	1	80.638	80.638
75.979 1.000 17 Sidechain Chi_4 dihedral restraint	ts:	36	0	0	100.316	100.316
24.344 1.000 18 Disulfide distance restraints	:	0	0	0	0.000	0.000
0.0000 1.000 19 Disulfide angle restraints	:	0	0	0	0.000	0.000
0.0000 1.000 20 Disulfide dihedral angle restraint	ts:	0	0	0	0.000	0.000
0.0000 1.000 21 Lower bound distance restraints	:	0	0	0	0.000	0.000
0.0000 1.000 22 Upper bound distance restraints	:	0	0	0	0.000	0.000
0.0000 1.000 23 Distance restraints 3 (SDCH-MNCH)	:	4676	0	0	0.456	0.456
186.75 1.000 24 Sidechain Chi_5 dihedral restraint	ts:	0	0	0	0.000	0.000
0.0000 1.000 25 Phi/Psi pair of dihedral restraint	ts:	286	4	18	20.183	26.888
-20.780 1.000 26 Distance restraints 4 (SDCH-SDCH)	:	2943	0	5	0.850	0.850
307.84 1.000 27 Distance restraints 5 (X-Y)	:	1370	0	0	0.020	0.020
4.3427 1.000 28 NMR distance restraints 6 (X-Y)	:	0	0	0	0.000	0.000
0.0000 1.000 29 NMR distance restraints 7 (X-Y)	:	0	0	0	0.000	0.000
0.0000 1.000	•					
30 Minimal distance restraints 0.0000 1.000	:	0	0	0	0.000	0.000
31 Non-bonded restraints 0.0000 1.000	:	0	0	0	0.000	0.000
32 Atomic accessibility restraints 0.0000 1.000	:	0	0	0	0.000	0.000
33 Atomic density restraints 0.0000 1.000	:	0	0	0	0.000	0.000
34 Absolute position restraints 0.0000 1.000	:	0	0	0	0.000	0.000
35 Dihedral angle difference restrain 0.0000 1.000	nt:	0	0	0	0.000	0.000
36 GBSA implicit solvent potential 0.0000 1.000	:	0	0	0	0.000	0.000
37 EM density fitting potential 0.0000 1.000	:	0	0	0	0.000	0.000
38 SAXS restraints 0.0000 1.000	:	0	0	0	0.000	0.000

39 Symmetry restraints : 0 0 0 0.000 0.000 0.000

- # Heavy relative violation of each residue is written to: 4wkq_target. V99990003
- # The profile is NOT normalized by the number of restraints.
- # The profiles are smoothed over a window of residues: 1
- # The sum of all numbers in the file: 27548.9922

List of the violated restraints:

A restraint is violated when the relative difference from the best value (RVIOL) is larger than CUTOFF.

ICSR ... index of a restraint in the current set.

RESNO ... residue numbers of the first two atoms.

ATM $\,$... IUPAC atom names of the first two atoms.

FEAT ... the value of the feature in the model.

restr ... the mean of the basis restraint with the smallest difference from the model (local minimum).

viol ... difference from the local minimum.

rviol ... relative difference from the local minimum.

RESTR \dots the best value (global minimum).

VIOL ... difference from the best value.

RVIOL ... relative difference from the best value.

Feature 25 : Phi/Psi pair of dihedral restraints List of the RVIOL violations larger than : 6.5000

#	ICSR RES	NO1/2 AT	M1/2	INDA	ΓM1/2	FEAT	restr	viol	rviol
RESTR	VIOL R	VIOL							
1	8252 37P	38E C	N	288	290	-63.64	-69.30	11.69	0.70
-63.60	172.57	23.01							
1	38E	38E N	CA	290	291	132.27	142.50		
-40.30									
2	8253 38E	39G C	N	297	299	64.11	82.20	18.31	1.32
-167.20	-147.64	8.34							
2	39G	39G N	CA	299	300	5.68	8.50		
174.60									
3	8345 134R	135D C	N	1061	1063	-110.76	-63.30	66.92	7.57
-63.30	66.92	7.57							
3	135D	135D N	CA	1063	1064	7.18	-40.00		

```
-40.00
       8350 139R 140N C N 1098 1100 -98.52 -63.20 75.47
                                                                   8.13
   4
-63.20
        75.47
                 8.13
   4
            140N 140N N
                        CA 1100 1101 25.60 -41.10
-41.10
report____> Distribution of short non-bonded contacts:
DISTANCE1: 0.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20
3.30 3.40
DISTANCE2: 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30
3.40 3.50
                             0
                                  0
                                      14
                                           30 103 154 231 220 295 323
FREQUENCY:
              0
                        0
354 403
<< end of ENERGY.
>> Model assessment by DOPE potential
iatmcls 286W> MODEL atom not classified: SER:OXT SER
iatmcls 286W> MODEL atom not classified: GLU:OXT GLU
iatmcls_286W> MODEL atom not classified: GLY:OXT GLY
iatmcls_286W> MODEL atom not classified: ASP:OXT ASP
iatmcls_286W> MODEL atom not classified: GLN:OXT GLN
>> ENERGY; Differences between the model's features and restraints:
Number of all residues in MODEL
                                                        297
Number of all, selected real atoms
                                                      2397
                                                              2397
Number of all, selected pseudo atoms
                                                         0
Number of all static, selected restraints
                                                      30238
                                                             30238
COVALENT_CYS
                                                         F
NONBONDED SEL ATOMS
                                                          1
Number of non-bonded pairs (excluding 1-2,1-3,1-4): 475455
                                                 : 1, NATM x NATM double loop
Dynamic pairs routine
Atomic shift for contacts update (UPDATE DYNAMIC) :
                                                     0.390
LENNARD JONES SWITCH
                                                     6.500
                                                             7.500
COULOMB_JONES_SWITCH
                                                     6.500
                                                             7.500
RESIDUE SPAN RANGE
                                                              9999
                                                         1
NLOGN_USE
                                                         15
CONTACT SHELL
                                                    15.000
DYNAMIC_PAIRS, SPHERE, COULOMB, LENNARD, MODELLER:
                                                         Т
                                                                 F
                                                                         F
F
SPHERE_STDV
                                                     0.050
RADII FACTOR
                                                     0.820
Current energy
                                                        -34228.3789
```

<< end of ENERGY.

DOPE score : -34228.378906 >> Model assessment by GA341 potential

Surface library : /opt/anaconda3/lib/modeller-10.1/modlib/surf5.de Pair library : /opt/anaconda3/lib/modeller-10.1/modlib/pair9.de

Chain identifier : _

% sequence identity 99.663002 Sequence length 27 0.043085 Compactness Native energy (pair) 12.273322 Native energy (surface) 2.904532 Native energy (combined) : 5.443948 Z score (pair) 0.172798 Z score (surface) -0.337594Z score (combined) -0.111155 GA341 score 0.507988

>> ENERGY; Differences between the model's features and restraints:

Number of all residues in MODEL : 297

Number of all, selected real atoms : 2397 2397

Number of all, selected pseudo atoms : 0 0

Number of all static, selected restraints : 30238 30238

COVALENT CYS : F

COVALENT_CYS : F
NONBONDED_SEL_ATOMS : 1
Number of non-bonded pairs (excluding 1-2,1-3,1-4): 5227

Dynamic pairs routine : 2, NATM x NATM cell sorting

Atomic shift for contacts update (UPDATE_DYNAMIC) : 0.390

 LENNARD_JONES_SWITCH
 : 6.500
 7.500

 COULOMB_JONES_SWITCH
 : 6.500
 7.500

 RESIDUE_SPAN_RANGE
 : 0
 99999

NLOGN_USE : 15 CONTACT SHELL : 4.000

DYNAMIC_PAIRS,_SPHERE,_COULOMB,_LENNARD,_MODELLER: T T F

F F

SPHERE_STDV : 0.050
RADII_FACTOR : 0.820

Current energy : 1918.2188

Summary of the restraint violations:

NUM ... number of restraints.

NUMVI ... number of restraints with RVIOL > VIOL_REPORT_CUT[i].

RVIOL ... relative difference from the best value.

 $\label{eq:number} {\tt NUMVP} \quad \dots \; {\tt number} \; \; {\tt of} \; \; {\tt restraints} \; \; {\tt with} \; \; {\tt -Ln(pdf)} \; > \; {\tt VIOL_REPORT_CUT2[i]} \; .$

RMS_1 ... RMS(feature, minimally_violated_basis_restraint, NUMB).

RMS_2 ... RMS(feature, best_value, NUMB).

MOL.PDF ... scaled contribution to -Ln(Molecular pdf).

# R	ESTRAINT_GROUP	NUM	NUMVI	NUMVP	RMS_1	RMS_2
MOL.PDF S_i						
1 Bond length potential	:	2414	0	0	0.006	0.006
20.569 1.000	•	2111	v	V	0.000	0.000
2 Bond angle potential	:	3266	0	5	2.074	2.074
274.21 1.000						
3 Stereochemical cosine	torsion poten:	1570	0	41	47.809	47.809
541.92 1.000	-					
4 Stereochemical improp	er torsion pot:	967	0	0	1.510	1.510
44.840 1.000						
5 Soft-sphere overlap r	estraints :	5227	0	0	0.002	0.002
1.9608 1.000						
6 Lennard-Jones 6-12 po	tential :	0	0	0	0.000	0.000
0.0000 1.000						
7 Coulomb point-point e	lectrostatic p:	0	0	0	0.000	0.000
0.0000 1.000		_		_		
8 H-bonding potential	:	0	0	0	0.000	0.000
0.0000 1.000	(CA CA)	FOFF	0	0	0 000	0 000
9 Distance restraints 1 62.114 1.000	(CA-CA) :	5955	U	U	0.092	0.092
10 Distance restraints 2	(N-O) :	5904	0	0	0.138	0.138
118.37 1.000	(11 0)	0004	O	O	0.100	0.100
11 Mainchain Phi dihedra	l restraints :	0	0	0	0.000	0.000
0.0000 1.000		-	_	-		
12 Mainchain Psi dihedra	l restraints :	0	0	0	0.000	0.000
0.0000 1.000						
13 Mainchain Omega dihed	ral restraints:	291	0	1	4.022	4.022
55.502 1.000						
14 Sidechain Chi_1 dihed	ral restraints:	259	0	13	63.156	63.156
84.821 1.000						
15 Sidechain Chi_2 dihed	ral restraints:	206	0	5	62.658	62.658
94.798 1.000						
16 Sidechain Chi_3 dihed	ral restraints:	95	0	0	69.214	69.214
65.749 1.000			_	_	- :	
17 Sidechain Chi_4 dihed	ral restraints:	36	0	0	71.474	71.474
21.631 1.000						

18 Disulfide distance restraints 0.0000 1.000	:	0	0	0	0.000	0.000
19 Disulfide angle restraints	:	0	0	0	0.000	0.000
0.0000 1.000 20 Disulfide dihedral angle restraint		0	0	0	0.000	0.000
0.0000 1.000	,δ.	U	U	U	0.000	0.000
21 Lower bound distance restraints	:	0	0	0	0.000	0.000
0.0000 1.000						
22 Upper bound distance restraints	:	0	0	0	0.000	0.000
0.0000 1.000			_			
23 Distance restraints 3 (SDCH-MNCH)	:	4676	0	0	0.462	0.462
190.92 1.000		0	0	0	0.000	0.000
24 Sidechain Chi_5 dihedral restraint	s:	0	0	0	0.000	0.000
0.0000 1.000 25 Phi/Psi pair of dihedral restraint		286	5	21	24.745	28.634
16.507 1.000	, S .	200	5	21	24.740	20.034
26 Distance restraints 4 (SDCH-SDCH)	:	2943	0	3	0.867	0.867
318.30 1.000	•	2010	Ŭ	Ü	0.001	0.001
27 Distance restraints 5 (X-Y)	:	1370	0	0	0.023	0.023
6.0131 1.000						
28 NMR distance restraints 6 (X-Y)	:	0	0	0	0.000	0.000
0.0000 1.000						
29 NMR distance restraints 7 (X-Y)	:	0	0	0	0.000	0.000
0.0000 1.000						
30 Minimal distance restraints	:	0	0	0	0.000	0.000
0.0000 1.000						
31 Non-bonded restraints	:	0	0	0	0.000	0.000
0.0000 1.000						
32 Atomic accessibility restraints	:	0	0	0	0.000	0.000
0.0000 1.000		•		•		
33 Atomic density restraints	:	0	0	0	0.000	0.000
0.0000 1.000		^	0	0	0.000	0.000
34 Absolute position restraints 0.0000 1.000	•	0	U	0	0.000	0.000
35 Dihedral angle difference restrain	+ •	0	0	0	0.000	0.000
0.0000 1.000		O	V	V	0.000	0.000
36 GBSA implicit solvent potential	:	0	0	0	0.000	0.000
0.0000 1.000						
37 EM density fitting potential	:	0	0	0	0.000	0.000
0.0000 1.000						
38 SAXS restraints	:	0	0	0	0.000	0.000
0.0000 1.000						
39 Symmetry restraints	:	0	0	0	0.000	0.000
0.0000 1.000						

[#] Heavy relative violation of each residue is written to: $4wkq_target.V99990004$

- # The profile is NOT normalized by the number of restraints.
- # The profiles are smoothed over a window of residues: 1
- # The sum of all numbers in the file: 27290.0859

List of the violated restraints:

A restraint is violated when the relative difference from the best value (RVIOL) is larger than CUTOFF.

ICSR ... index of a restraint in the current set.

RESNO ... residue numbers of the first two atoms.

ATM ... IUPAC atom names of the first two atoms.

FEAT ... the value of the feature in the model.

restr \dots the mean of the basis restraint with the smallest difference from the model (local minimum).

viol ... difference from the local minimum.

rviol ... relative difference from the local minimum.

RESTR \dots the best value (global minimum).

VIOL ... difference from the best value.

RVIOL ... relative difference from the best value.

Feature 25 $\,$: Phi/Psi pair of dihedral restraints List of the RVIOL violations larger than $\,$: 6.5000

#	ICSR	RESN	01/2	ATI	M1/2	INDAT	ΓM1/2	FEAT	restr	viol	rviol
RESTR	VIOL				•		•				
1	8222			C	N	30	32	-67.85	-58.70	10.98	0.94
-64.50							-	0.700	001.0	20.00	0.02
1	1,1,0	_		M	CΔ	32	33	-24.42	-30 50		
147.20		01	01	14	On	02	00	21.12	00.00		
	8223	6D	7N	C	M	37	39	61 56	_71 20	144.36	0.10
_				-	IN	31	39	04.50	-/1.20	144.30	9.10
-119.90	-179.			_							
2		7N	7N	N	CA	39	40	93.72	142.80		
137.00											
3	8252	37P	38E	С	N	288	290	23.41	-69.30	125.08	11.49
-63.60	127.5	3 1	5.08								
3		38E	38E	N	CA	290	291	-133.53	142.50		
-40.30											
4	8316	105D	106N	С	N	817	819	-118.07	-63.20	94.11	10.16
-63.20						0	020		00.20	0 1 1 1 1	
				ът	C A	010	920	35.35	41 10		
=		1001/	1001	IN	CA	819	820	35.35	-41.10		
-41.10											
5	8345	134R	135D	C	N	1061	1063	-110.89	-63.30	66.91	7.58

```
-63.30
            66.91
                     7.58
                135D 135D N
                              CA 1063 1064 7.03 -40.00
       5
    -40.00
    report____> Distribution of short non-bonded contacts:
    DISTANCE1: 0.00 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20
    3.30 3.40
    DISTANCE2: 2.10 2.20 2.30 2.40 2.50 2.60 2.70 2.80 2.90 3.00 3.10 3.20 3.30
    3.40 3.50
                  0
                     0
                          0 0
                                      0
                                           9 28 116 163 278 209 290 324
    FREQUENCY:
    349 418
    << end of ENERGY.
    >> Summary of successfully produced models:
    Filename
                                     molpdf
                                                DOPE score
                                                             GA341 score
    4wkq target.B99990001.pdb
                                1998.50220 -34417.25000
                                                                 0.35112
    4wkq_target.B99990002.pdb
                                 2077.93555 -34384.62500
                                                                 0.64442
                                                                 0.55049
    4wkq_target.B99990003.pdb
                                 1821.23352
                                            -34578.44922
    4wkq_target.B99990004.pdb
                                 1918.21875 -34228.37891
                                                                 0.50799
[]:
[]:
[]: import re
    import numpy as np
    string = 'AMGEAPNQALLRILKETEFKKIKVLGSXXXGTVYKGLWIPEGEKVKIPVAIKEXXXXXSPK'
    print(str.find('X'))
    print(str[27])
    # missing_residue_indices = [i.start() for i in re.finditer('X', string)]
     # string = list(string)
     # string[missing_residue_indices] = '/'
     # string = ''.join(string)
    sequence = list(sequence.replace('X','/'))
    for i in range(1,len(string)):
        if sequence[i]=='/' and (sequence[i-1] in ['/','-']):
            sequence[i] = '-'
```

	<pre>sequence = ''.join(sequence)</pre>
	<pre># y = re.finditer('X',string) print(string)</pre>
[]:	
[]:	
[]:	