EECS240 - Spring 2010

Lecture 15: Common-Mode Feedback

Elad Alon Dept. of EECS

Sensing Scheme #2

$$V_{i*}$$
 V_{i*}
 V_{i*}
 V_{i*}
 V_{i*}
 V_{i*}
 V_{i*}
 V_{i*}
 V_{i*}
 V_{i*}

- Isolated CM sensing
 - Works reasonably well
 - But hard to use with wide swing amplifier output

EECS240 Lecture 15 4

Problem with Common-Mode

- What if $I_L < I_{tail}/2$?
 - Will capacitive feedback solve this?
- Typical solution:
 Common-mode feedback
 - Sense CM at output
 - Adjust some knob to alter

 CM

EECS240

Lecture 15

Capacitive Sensing

- Capacitive sensing avoids DC loading
 - (still creates AC load though)
- Needs to be reset to remove initial offset
 - Just like capacitive feedback

ECS240 Lecture 15 5

Common-Mode Sensing

- Simplest CM sensor: pair of resistors
- Resistors load the OTA (reduce gain)
 - If make R large, get slow V_{cm} tracking
 - · Is this a problem?

EECS240 Lecture 15

Adjusting Common-Mode

- · Really only two knobs:
- Knob A: adjust load current
- Knob B: adjust tail current

EECS240 Lecture 15 6

Example Common-Mode Feedback

- Secondary amplifier enforces $V_{cm} = V_{cm_ref}$
- Place dominant pole at V_{bp} , or V_{cm} ?

EECS240 Lecture 15

CMRR Fix

 What if two PMOS transistors aren't perfectly matched?

EECS240 Lecture 15 8

"Continuous" CMFB

Capacitive CMFB

- How to choose C_{cm}?
 - "Small": CM loop gain low
 - "Large": Loading on diff. output high

EECS240 Lecture 15