# **Full Notes**

### D. Zack Garza

# January 23, 2020

### **Contents**

| 1 | Wednesday January 8                                                                        | 1 |
|---|--------------------------------------------------------------------------------------------|---|
| 2 | Monday January 13         2.1 Logistics          2.2 Rings of Functions          2.3 Rings | 3 |
| 3 | Wednesday January 15th 3.1 Ideals and Quotients                                            | 5 |
| 4 | Friday January 17th                                                                        | 6 |
| 5 | Wednesday January 22nd 5.1 Pushing / Pulling                                               | 9 |

# 1 Wednesday January 8

Course text: http://math.uga.edu/~pete/integral2015.pdf

Summary: The study of commutative rings, ideals, and modules over them.

The chapters we'll cover:

- 1 (Intro),
- 2 (Modules, partial),
- 3 (Ideals, CRT),
- 7 (Localization),
- 8 (Noetherian Rings),
- 11 (Nullstellensatz),
- 12 (Hilbert-Jacobson rings),
- 13 (Spectrum),
- 14 (Integral extensions),
- 17 (Valuation rings),
- 18 (Normalization),
- 19 (Picard groups),
- 20 (Dedekind domains),

• 22 (1-dim Noetherian domains)

In number theory, arises in the study of  $\mathbb{Z}_k$ , the ring of integers over a number field k, along with localizations and orders (both preserve the fraction field?).

In algebraic geometry, consider  $R = k[t_1, \dots, t_n]/I$  where k is a field and I is an ideal.

Some preliminary results:

- 1. In  $\mathbb{Z}_k$ , ideals factor uniquely into primes (i.e. it is a Dedekind domain).
- 2.  $\mathbb{Z}_k$  has an integral basis (i.e. as a  $\mathbb{Z}$ -modules,  $\mathbb{Z}_k \cong \mathbb{Z}^{[k:\mathbb{Q}]}$ ).
- 3. The Nullstellansatz: there is a bijective correspondence

{Irreducible Zariski closed subsets of 
$$\mathbb{C}^n$$
}  $\iff$  {Prime ideals in  $\mathbb{C}[t_1, \cdots, t_n]$ }.

4. Noether normalization (a structure theorem for rings of the form R above).

All of these results concern particularly "nice" rings, e.g.  $\mathbb{Z}_k, \mathbb{C}[t_1, \cdots, t_n]$ . These rings are

- Domains
- Noetherian
- Finitely generated over other rings
- Finite Krull dimension (supremum of length of chains of prime ideals)
  - In particular, dim  $\mathbb{Z}_k = 1$  since nonzero prime ideals are maximal in a Dedekind domain
- Regular (nonsingularity condition, can be interpreted in scheme-theoretic language)

Note: schemes will have "local charts" given by commutative rings, analogous to building a manifold from Euclidean n-space. General philosophy (Grothendieck): Every commutative ring is the ring of functions on some space, so we should study the category of commutative rings as a whole (i.e. let the rings be arbitrary). This does not hold for non-commutative rings! I.e. we can't necessarily associate a geometric space to every non-commutative ring. A common interesting example: k[G], the group ring of an arbitrary group. Good references: Lam, 'Lectures on Modules and Rings'.

Example: Let X be a topological space and C(X) be the continuous functions  $f: X \to \mathbb{R}$ . This is a ring under pointwise addition/multiplication. (This generally holds for the hom set into any commutative ring.)

Example: Take X = [0, 1] and C(X) as a ring.

### Exercise:

- 1. Show that C(X) is a not a domain. > Hint: find two nonzero functions whose product is identically zero, e.g. bump functions. > Note that they are not analytic/holomorphic.
- 2. Show that it is not noetherian (i.e. there is an ideal that is *not* finitely generated).
- 3. Fix a point  $x \in [0,1]$  and show that the ideal  $\mathfrak{m}_x = \{f \mid f(x) = 0\}$  is maximal.
- 4. Are all maximal ideals of this form? > Hint: See textbook chapter 5, or Gilman and Jerison 'Rings of Continuous Functions'.

Theorem of Swan: A theorem about topological vector bundles over C([0,1]), see textbook. There is a categorical equivalence between vector bundles on a compact space and f.g. projective modules over this ring. (So commutative algebra has something to say about other branches of Mathematics!)

**Definition:** A topological space is called *boolean* (or a *Stone space*) iff it is compact, hausdorff, and totally disconnected.

Example: A projective variety over p-adics with  $\mathbb{Q}_p$  points plugged in.

**Definition:** A ring is boolean if every element is idempotent, i.e.  $x \in R \implies x^2 = x$ .

Exercise: If R is a boolean domain, then it is isomorphic to the field with 2 elements.

**Lemma:** There is a categorical equivalence between Boolean spaces, Boolean rings, and so-called "Boolean algebras".

# 2 Monday January 13

### 2.1 Logistics

Some topics for final projects

- The cardinal Krull dimension of Hol(X).
- Galois connections
- Ordinal filtrations
- Lam-Reves prime ideal principal
- C(X)
- Hol(X)
- Semigroup rings
- Swan's Theorem
  - Vector bundles on a compact space
- Boolean rings and Stone duality
- More Nullstellansatz
  - Beyond Hilbert's usual one
- Hochster's Theorem
  - Characterizes  $\operatorname{Spec} R$  as a topological space, i.e. when is a topological space homeomorphic to the spectrum of some commutative ring.
- Invariant theory (quotients of rings under finite group actions, i.e.  $R^G$  for  $|G| < \infty$ )
  - For R = k a field, this is Galois theory
  - Easy case of geometric invariant theory, when G is infinite
- UFDs
  - What conditions does a ring need to have to ensure unique factorization?
- Euclidean rings
- Claborn (Leedham-Green-Clark): Every commutative group is (up to isomorphism) the class group of some Dedekind domain.
  - A type of inverse problem, class group measures deviation from being a UFD
  - Uses ordinal filtrations, transfinite induction
  - See proof in elliptic curves course

#### 2.2 Rings of Functions

Let k be a field, X a set of cardinality  $|X| \ge 2$ , and define  $k^X := \text{Maps}(X.k) = \{f : X \to K\}$  is a ring under pointwise addition and multiplication. As a ring, this is a (big!) cartesian product.

Some facts:

- $k^X$  is not a domain (exercise), and there are nontrivial idempotents ( $e^2 = e$ ) > Note: it could be worse and have nilpotents.
- $k^X$  is reduced, i.e. it has no nonzero nilpotents, where  $z \in R$  is nilpotent iff  $\exists n \geq 1$  such that  $z^n = 0$ .
  - Note: domains are reduced, cartesian products of reduced rings are reduced.
- Every subring of  $k^X$  is reduced. > Moral: should be viewing every ring as functions on some space, but this can't literally be true because of the above restrictions. > Nilpotent elements are "hard to view as functions".
- For X a topological space, C(X) the ring of continuous functionals to  $\mathbb{R}$ , then  $C(X) \subset \mathbb{R}^X$ .

Exercise: When is C(X) a domain? (Note that we can have products of nonzero functions being identically zero.)

 $\textit{Example:} \ \, \text{Let} \, R \text{ be the ring of holomorphic functions $\mathbb{C}\circlearrowleft, \text{i.e. } \mathrm{Hol}(\mathbb{C},\mathbb{C}) \coloneqq \Big\{ f:\mathbb{C} \to \mathbb{C} \,\,\Big|\,\, f \text{ is holomorphic } \Big\}.$ 

The set of zeros of such an f must be discrete, the example of bump functions doesn't go through holomorphically.

This is a domain, not Noetherian, not a PID, but every f.g. ideal is principal (thus this is a Bezout domain, a non-Noetherian analog of a PID).

It has infinite Krull dimension: recall that ideals are prime iff  $xy \in \mathfrak{p} \implies x \in \mathfrak{p}$  or  $y \in \mathfrak{p}$  iff  $R/\mathfrak{p}$  is a domain, and the Krull dimension is the supremum S of lengths of chains of prime ideals (only when S is finite).

If  $C \subset (X, \leq)$  is a finite-length chain in a totally ordered set, then the length  $\ell(C) = |C| - 1$  (1 less than the number of elements appearing). The *cardinal Krull dimension* of a ring R is the actual supremum.

Note: in Noetherian rings, there can still be finite but unbounded length chains.

Letting X be a complex manifold (i.e. covered by subsets of  $\mathbb{C}^n$  with holomorphic transition functions) and let  $\operatorname{Hol}(X)$  be the holomorphic functionals  $f: X \to \mathbb{C}$ . Then  $\operatorname{Hol}(X)$  is a domain iff X is connected.

Note that if X is disconnected, we can take a function that is constant on one component and zero on another, then switch, then multiply to get a zero function.

If X is a compact connected projective variety, then  $\operatorname{Hol}(X)$  is just constant functions by the open mapping functions. So  $\operatorname{Hol}(X) = \mathbb{C}$ , and  $\operatorname{carddim}\mathbb{C} = 0$  because for any field there are only two ideals, and here (0) is prime. Moreover,  $\operatorname{carddim}\operatorname{Hol}(\mathbb{C}) \geq \alpha_0$ .

Note that for complex manifolds, X is either compact or supports many holomorphic functions.

**Theorem:** If X is a connected complex manifold which has a nontrivial holomorphic function, i.e.  $\operatorname{Hol}(X) \supset \mathbb{C}$ , then there exists a chain of prime ideals in  $\operatorname{Hol}(X)$  of length  $|\mathbb{R}| > \aleph_0$ , i.e. it has at least the cardinality of the continuum.

Note: the cardinality could be even bigger!

Maximals are prime: equivalent to fields are integral domains.

### 2.3 Rings

Take all rings to be unital, i.e. containing 1. A ring without identity is referred to as an rng. In this course, all rings are commutative.

Example: This is a fairly special restriction. Take (A, +) a commutative group and define  $\operatorname{End}(A) = \{f : A \to A\}$  the ring of group homomorphisms under pointwise addition and composition. This is generally not commutative, i.e.  $\operatorname{End}(\mathbb{Z}/(2) \oplus \mathbb{Z}/(2)) = M_2(\mathbb{Z}/(2))$  the ring of matrices with  $\mathbb{Z}/(2)$  entries, which is not commutative.

Exercise: Given (A, +), show that  $\operatorname{End}(\bigoplus^n A) = M_n(\operatorname{End}(A))$ .

Generally, if R is a ring and M is as R-module, then  $\operatorname{End}_R(M) = \{f : M \to M\}$  of R-module homomorphisms is always a ring under pointwise addition and composition, and is (probably) non-commutative.

## 3 Wednesday January 15th

Cayley's theorem: For G a group, then there is a canonical injective group homomorphism  $\Phi: G \hookrightarrow \operatorname{Sym}(G) \cong S_n$  for n = |G|. The map is given by  $g \mapsto g \cdot$ , i.e. multiplying on the left. Is there an analog for rings?

Take a similar map:

$$R \to \operatorname{End}_{\mathbb{Z}}(R, +)$$
  
 $r \mapsto (x \mapsto rx).$ 

Unfortunately there is no specialization for commutative groups/rings –  $\operatorname{Sym}(G)$  for example is noncommutative when  $|G| \geq 2$ . Similarly, even if R is commutative,  $\operatorname{End}(R, +)$  is probably not. As per the Grothendieck philosophy, we find that all rings are a ring of functions on something – namely themselves, since this map is injective.

All rings are commutative here, so take  $R^{\times} = \{x \in R \mid \exists y \text{s.t.} xy = 1\}$ . For R a group,  $R^{\times}$  is a commutative group, so this is an interesting invariant.

Another interesting invariant: the class group.

Notation: Let  $R^{\bullet} = R \setminus 0$ . An element  $x \in R$  is a zero divisor iff there exists  $y \in R^{\bullet}$  such that xy = 0. For  $x, y \in R$  we write  $x \mid y$  iff  $\exists z \in R$  such that xz = y.

R is a domain iff 0 is the only zero divisors, i.e.  $xy = 0 \implies x = 0$  or y = 0.  $(R^{\bullet}, \cdot)$  is a commutative monoid (group without inverses) iff R is a domain. Observe that R is a field iff  $R^{\bullet} = R^{\times}$ .

For rings R, S we have the usual definition of ring homomorphism, additionally requiring f(1) = 1. Note that f(0) = 0 follows from f(x+y) = f(x) + f(y), but f(1) = 1 does not. Rings have products  $R_1 \times R_2$  which is again a ring under coordinate-wise operations. Note that there are canonical projections  $\pi_i R_1 \times R_2 \to R_i$ . There is a dual inclusion  $\iota_1 : R_1 \to R_1 \times R_2$  given by  $x \mapsto (x,0)$ , but these are not ring homomorphisms (although everything is a group homomorphism). This is because  $\iota_1(1) = (1,0) \neq (1,1)$ , the identity of  $R_1 \times R_2$ . Note that 1 always has to map to an idempotent element, i.e.  $e^2 = e$ , and idempotents are always zero divisors. Also note that the map  $x \mapsto 0$  is not a ring homomorphism unless S = 0.

A ring homomorphism is a map  $f: R \to S$  is an isomorphism iff it has a two-sided inverse, i.e. there exists a morphism  $g: S \to R$  with  $g \circ f = \mathrm{id}_R$  and  $f \circ g = \mathrm{id}_S$ .

Exercise: Check that this is equivalent to f being a bijection.

*Exercise:* Check that the zero ring is the final object in the category of rings. Show that  $\mathbb{Z}$  is the initial object in this category?

R is a subring of S iff  $R \subset S$  and the inclusion  $R \hookrightarrow S$  is a morphism.

Adjoining elements: Suppose  $R \leq S$  is a subring and  $X \subset S$  is just a subset. Then there exists a ring R[X] such that

- Top-down description:  $R[X] \leq S$  is a subring containing R and X, and is minimal with respect to this property (obtained by intersecting all such subrings)
- Bottom-up description: things resembling  $\sum r_i x_i$

Exercise 1.6: Take  $R = \mathbb{Z}, S = \mathbb{Q}, P$  a arbitrary set of prime numbers. Let  $\mathbb{Z}_{\mathcal{P}} = \mathbb{Z}\left[\left\{\frac{1}{p} \mid p \in P\right\}\right]$ .

- a. When do we have  $\mathbb{Z}_{\mathcal{P}_1} \cong \mathbb{Z}_{\mathcal{P}_2}$ ? (Hint: take  $P_1 = \{3,7,11\}$ ,  $P_2 = \{5\}$ . Need  $P_1 = P_2$ !)
- b. Show that every subring T such that  $\mathbb{Z} \leq T \leq \mathbb{Q}$  is of the form  $\mathbb{Z}_{\mathcal{P}}$  for some unique set of primes P.

Note that if T is any intermediate ring between R and S, then R[T] = T.

#### 3.1 Ideals and Quotients

For  $f: R \to S$  a ring homomorphism, define  $I = \ker f = f^{-1}(\{0\})$ . Then I is a subgroup of (R, +), and for all  $i \in I$  and all  $r \in R$  we have  $ri \in I$ , since f(ri) = f(r)f(i) = f(r)0 = 0. In other words,  $RI \subseteq I$ .

By definition, an ideal I of R is an additive subgroup of R that satisfies these properties. Is every ideal the kernel of a ring homomorphism? The answer is yes, namely the quotient  $\pi: R \to R/I$ .

**Theorem:** Let  $I \subset (R, +)$ , then TFAE:

- a. I is an ideal of R, written  $I \subseteq R$ .
- b. There exists a ring structure on the quotient group R/I such that the projection  $r\mapsto r+I$  is a ring morphism.

When these conditions hold, the ring structure on R/I is unique and we refer to this as the quotient ring.

# 4 Friday January 17th

For a  $R \subset T$  a subring of a ring, the set of intermediate rings is a large/interesting class of rings. Recall: uncountably many rings between  $\mathbb{Z}$  and  $\mathbb{Q}$ ! Taking R a PID and T its fraction field, a similar result will hold. Define  $I \subseteq R$  as the kernel of a ring morphism. This implies that  $I \subset (R, +)$  with the absorption property  $RI \subset I$ . Conversely, any I satisfying these two properties is the kernel of a ring morphism: namely  $R \to R/I$ . This makes sense as a group morphism.

Exercise: Define xy+I=(x+I)(y+I), need to check well-definedness. Write out  $(x+i_1)(y+i_2)=\cdots$ , need to check that  $i_1y+i_2x+i_1i_2\in I$ , but the absorption property does precisely this.

Note that if we were in a non-commutative setting, this would define a left ideal. These don't have to coincide with right ideals – there are rings where the former satisfy properties that the latter does not.

Example: The subrings of  $R = \mathbb{Z}$  are of the form  $n\mathbb{Z}$  for  $n \geq 0$ , with the usual quotient.

Definition: An ideal  $I \subseteq R$  is proper iff  $I \subseteq R$ .

Exercise: An ideal I is not proper iff I contains a unit.

Exercise: R is a field iff the only ideals are 0, R.

Definition: Let  $\mathcal{I}(R)$  be the set of all ideals in R. What structure does it have? It is partially ordered under inclusion. It is a complete lattice, i.e. every element has an infimum (GLB) and a supremum (LUB). Namely, for a family of ideals  $\{I_j\}$ , the infimum is the intersection and supremum is defined as  $\langle I_j \mid j \in J \rangle$ , the smallest ideal containing all of the  $I_j$ , i.e.  $\langle y \rangle =$ 

$$\left\{ \sum_{i=1}^{n} r_i y_i \mid n \in \mathbb{N}_{>0}, \ r_i \in R, \ y_i \in y \right\}.$$

Exercise: For  $I_1, I_2 \leq R$ , it is the case that  $I_1 + I_2 := \{i_1 + i_2\} = \langle I_1, I_2 \rangle$ .

Theorem: Let  $I \subseteq R$  and  $\phi: R \to R/I$ , and define  $\ell(I) = \{I \subset J \subseteq R\}$ . Then we can define maps

$$\Phi: \ell(R) \to \ell(R/I)$$
 
$$J \mapsto \frac{I+J}{I},$$

$$\Psi: \ell(R/I) \to \ell(R)$$
$$J \le R/I \mapsto \phi^{-1}(J).$$

We can check that  $\Psi \circ \Phi(J) = I + J$ , and  $\Phi \circ \Psi(J) = J$  (= J/I?) So  $\Psi$  has a left inverse and is thus injective. Its image is the collection of ideals that contain J, and  $\Psi : \ell(R/I) \to \ell_I(R)$  is a bijection and is in fact a lattice isomorphism with  $\ell_I(R) \subset \ell(R)$ .

Note that this gives us everything above (?) an ideal in the ideal lattice; the dual notion will come from localization.

Remarks:

The ideal lattice  $\ell(R)$  is

- A complete lattice under subset inclusion,
- A commutative monoid under addition

• A commutative monoid under *multiplication*, which we'll define.

Definition: For  $I, J \subseteq R$ , we define  $IJ = \langle ij \mid i \in I, j \in J \rangle$ . Note that we have to take the ideal generated by products here.

For  $\langle x \rangle = (x)$  a principal ideal and  $\langle y \rangle$  principal, we do have (x)(y) = (xy). Note that  $IJ \subset I \cap J$ , whereas the sum was larger than I, J.

Exercise: Note that  $(\ell(R), \cdot)$  has an absorbing element, namely (0)I = (0). For (M, +) a commutative monoid and  $M \hookrightarrow G$  a group, then multiplication by x is injective and so for all  $y \in M$ ,  $xz = yz \implies x = y$ , so M is cancellative.

Question: what if we consider  $\mathcal{I}^{\bullet}(R)$  the set of nonzero ideals of R. Does this help? We will see next time.

# 5 Wednesday January 22nd

Let R be a ring and let  $\mathcal{I}(R)$  be the set of ideals  $I \subseteq R$ . This algebraic structure is

- Partially ordered under inclusion
- Forms a complete lattice with sup the ideal generated by a family and inf the intersection.
- Forms a commutative monoid under I + J
- $\bullet$  Forms a commutative monoid under IJ

For any commutative monoid (M, +), there exists a group completion G(M) such that

- G(M) is a commutative group
- $g: M \to G(M)$  is a monoid homomorphism
- For any map  $\phi:(M,+)\to(G,+)$  into a commutative group, we have the following diagram



So  $\phi$  factors through M(G).

If this exists, it is unique up to unique isomorphism (as are all objects defined by universal properties). It remains to construct it.

**Exercise:** For (M, +) a commutative monoid, show that TFAE

- 1. There exists an injective  $\iota: M \hookrightarrow G$  monoid homomorphism for G some commutative group.
- 2. The map  $g: M \to G(M)$  is an injection.
- 3. M is cancellative, i.e.  $\forall x, y, z \in M$  we have  $x+z=y+z \implies x=y$ , i.e. the map  $p_z(x)=x+z$  is injective.

The content here is in  $3 \implies 1$ .

A commutative monoid is reduced iff  $M^{\times} = (0)$ , i.e. if " $\forall m \in M \exists n \text{ such that } m + n = 0$ "  $\Longrightarrow m = 0$ 

Example:  $(\mathbb{N}, +)$  and  $(\mathbb{Z}^+, \cdot)$  are cancellative and reduced.

Definition  $z \in M$  is a zero element iff z + x = z for all  $x \in M$ .

Remark: If M has a zero element, then  $G(M) = \{0\}.$ 

(0) is a zero element of  $(\mathcal{I}(R), \cdot)$ , so this is not cancellative. If we take  $\mathcal{I}^{\bullet}$  the set of nonzero ideals with multiplication, then this is a submonoid of  $\mathcal{I}(R)$  iff R is a domain.

For R a domain, let  $\mathcal{I}_1(R)$  be the set of nonzero principal ideals of R, then  $\mathcal{I}_1(R) = R^{\bullet}/R^{\times}$ , so this is reduced and cancellative.

What is the group completion? In this case, it will consist of fractional ideals.

If R is a PID, then  $\mathcal{I}_1^{\bullet}(R) = \mathcal{I}^{\bullet}(R)$  is reduced and cancellative.

Example:  $\mathcal{I}^{\bullet} \cong (\mathbb{Z}^+, \cdot)$ .

Warning: If R is not a PID, then  $\mathcal{I}^{\bullet}(R)$  need not be cancellative.

**Exercise:** Take  $R = \mathbb{Z}[\sqrt{-3}]$  and  $p_2 := \langle 1 + \sqrt{-3}, 1 - \sqrt{-3} \rangle$ . Show that  $|R/p_2| = 2$ , |R/(2)| = 4, and  $p_2^2 = p_2(2)$  and  $|R/p_2^2| = 8$ . Conclude that  $\mathcal{I}^{\bullet}(R)$  is not cancellative.

What went wrong here? Take  $K = \mathbb{Q}[\sqrt{-3}]$ , then  $\mathbb{Z}_k[\frac{1+\sqrt{-3}}{2}]$  is the integral closure of  $\mathbb{Z}$  in K.  $\mathbb{Z}_k$  is a Dedekind domain, and there are inclusions

$$\mathbb{Z} \subset \mathbb{Z}[\sqrt{-3}] \subsetneq \mathbb{Z}[\frac{1+\sqrt{-3}}{2}] \subseteq K.$$

Here the problem is that  $\mathbb{Z}[\sqrt{-3}]$  is not a Dedekind domain. If R is a Dedekind domain, then  $\mathcal{I}^{\bullet}(R)$  is cancellative.

Exercise: Does the converse hold?

Things that are too small to be the full rings of integers, and things tend to wrong.

### 5.1 Pushing / Pulling

Let  $f: R \to S$  be a ring homomorphism.

We can define a pushforward on the set of ideals  $\mathcal{I}(R)$ :

$$f_*: \mathcal{I}_R \to \mathcal{I}(S)$$
  
 $I \mapsto \langle f(I) \rangle$ .

and a pullback

$$f^*: \mathcal{I}(S) \to \mathcal{I}(R)$$
  
 $J \mapsto f^{-1}(J).$ 

**Exercise:** Show that  $f^{-1}(J) \leq R$ .

For  $I \subseteq R$  and  $J \subseteq S$ , then

$$f^*f_*(I) \supseteq I$$
  
 $f_*f^*(J) \subseteq J$ .

**Exercise:** These are not equal in general, and give examples where equality does and does not hold.

If f is surjective,  $f_*f^*J = J$ .

Will also hold for localization, which is dual to taking a quotient.

Define  $\overline{I} := f^*f_*(I)$  and  $J^{\circ} := f_*f^*(J)$ , the closure and interior respectively. Show that these operations are idempotent.

Definition: An ideal  $\mathfrak{p}$  iff  $ab \in \mathfrak{p} \implies a \in \mathfrak{p}$  or  $b \in \mathfrak{p}$ .

**Exercise:** I is prime iff R/I is a domain.

Definition: Spec $(R) = \{ \mathfrak{p} \leq R \}$  the collection of prime ideals is the spectrum.

**Exercise:** Show that for  $I \subseteq R$ , if we define  $V(I) := \{ \mathfrak{p} \in \operatorname{Spec}(R) \mid p \supseteq I \} \subseteq \operatorname{Spec}(R)$ , then  $\{ V(I) \mid I \in \mathcal{I}(R) \}$  are the closed sets for a topology on  $\operatorname{Spec}(R)$  (the Zariski topology).

**Exercise:** If  $f: R \to S$  and  $J \in \operatorname{Spec}(S)$  then  $f^*(J) \in \operatorname{Spec}(R)$ . Show that  $f^*: \operatorname{Spec}(S) \to \operatorname{Spec}(R)$  is a continuous map. Conclude that  $\operatorname{Spec}(\cdot)$  is a functor.

Definition:  $I \leq R$  is maximal iff I is proper and is not contained in any other proper ideal.

**Exercise:** I is maximal iff R/I is a field.

**Exercise:** Show that maximal ideals are prime.

Definition: Let  $\operatorname{Spec}_{\max}(R)$  be the set of maximal ideals and define  $V(I) = \{\mathfrak{m} \in \operatorname{Spec}_{\max}(R) \mid \mathfrak{m} \supseteq I\}$ . Show that these form the closed sets for a topology, and that this is the subspace topology for the Zariski topology.

**Exercise:** Show that if  $f: R \to S$  and  $\mathfrak{m} \in \operatorname{Spec}_{\max}(S)$  that  $f^*(\mathfrak{m})$  is prime but need not be maximal.

If f is an integral extension, then maximals do pull back to maximals.