Quiz 5-Solutions

Q1. If (x, y, z) is a Pythagorean triple, then prove that gcd(x, y) = gcd(x, z) = gcd(y, z).

Answer:

Given: (x, y, z) is a Pythagorean triple

$$\Rightarrow x^2 + y^2 = z^2$$

To prove: gcd(x, y) = gcd(x, z) = gcd(y, z)

Proof:

Let,
$$gcd(x, y) = d$$

$$\Rightarrow d \mid x \quad and \quad d \mid y$$

$$\Rightarrow d^{2} \mid x^{2} \quad and \quad d^{2} \mid y^{2}$$

$$\Rightarrow d^{2} \mid (x^{2} + y^{2})$$

$$\Rightarrow d^2 |z^2$$

$$\Rightarrow d \mid z$$

Now, $d \mid x$ and $d \mid z \Rightarrow gcd(x, z) = d.m$

 $\{ if \ a | b \ and \ a | c, \ then \ a | (b + c) \}$

{ Given:
$$x^2 + y^2 = z^2$$
}

where
$$m \in \{1, 2, \dots \}$$

-----(i)

Let,
$$gcd(x, z) = k$$

$$\Rightarrow k \mid x \quad and \quad k \mid z$$

$$\Rightarrow k^2 | x^2$$
 and $k^2 | z^2$

$$\Rightarrow k^2 | (z^2 - x^2)$$

$$\Rightarrow k^2 | y^2$$

$$\Rightarrow \; k \mid y$$

Now, $k \mid x$ and $k \mid y \Rightarrow gcd(x, y) = k.n$ $\Rightarrow d = k.n$

$$\{ if \ a|b \ and \ a|c, \ then \ a|(b-c) \}$$

{ Given:
$$x^2 + y^2 = z^2$$
}

where
$$n \in \{1, 2,\}$$

$$\{ gcd(x, y) = d \}$$

----- (ii)

Also,
$$gcd(x, z) = d.m$$

$$\Rightarrow k = d.m$$

{ Using (i)}
{
$$gcd(x, z) = k$$
}

By, putting the value of k in eq (ii), we get

$$d = d.m.n$$

$$\Rightarrow m.n = 1$$

Here, $m,n \in \{1, 2, \dots \}$, therefore m = 1 and n = 1

Putting n value in eq (ii), we get, d = k

Therefore,
$$gcd(x, y) = gcd(x, z)$$
 { $gcd(x, y) = d$ and $gcd(x, z) = k$ } Similarly, $gcd(x, y) = gcd(y, z)$

Therefore, gcd(x, y) = gcd(x, z) = gcd(y, z)

Q2. Prove that there are no solutions in positive integers to the equation.

$$x^n + y^n = z^n$$
 for $n \in \mathbb{N}$ and n is a multiple of 4.

Answer:

Given: $n \in N$ and n is a multiple of 4.

To prove: $x^n + y^n = z^n$ has no solutions in positive integers.

Proof:

Theorem: The equation $x^4 + y^4 = z^2$ has no solution in non-zero integers.

Here, $n \in N$ and n is a multiple of 4, therefore, n can be written as:

$$n = 4k \text{ s.t. } k \in N$$

Now,
$$x^{n} + y^{n} = z^{n}$$

 $\Rightarrow x^{4k} + y^{4k} = z^{4k}$
 $\Rightarrow (x^{k})^{4} + (y^{k})^{4} = (z^{2k})^{2}$

Let,
$$x' = x^k$$
, $y' = y^k$ and $z' = z^{2k}$

$$\Rightarrow (x')^4 + (y')^4 = (z')^2$$

Now, by the above-mentioned theorem, this equation has no solution in non-zero integers.

Therefore, $x^{4k} + y^{4k} = z^{4k}$ has no solution in non-zero integers.

Hence, $x^n + y^n = z^n$ has no solutions in positive integers for $n \in N$ a multiple of 4.