Samlefil for alle data til prøveeksamen

Filen 1A/Oppgave1AFigur_A.png

Figure 1: Figur fra filen 1A/Oppgave1AFigur_A.png

$Filen~1A/Oppgave1AFigur_B.png$

Figure 2: Figur fra filen 1A/Oppgave1AFigur_B.png

$Filen~1A/Oppgave1AFigur_C.png$

Figure 3: Figur fra filen 1A/Oppgave1AFigur_C.png

$Filen~1A/Oppgave1AFigur_D.png$

Figure 4: Figur fra filen 1A/Oppgave1AFigur_D.png

$Filen~1A/Oppgave1AFigur_E.png$

Figure 5: Figur fra filen 1A/Oppgave1AFigur_E.png Figur E

Filen 1B.txt Luminositeten øker med en faktor 5.80e+09.

Filen 1C.png

Figure 6: Figur fra filen 1C.png

Filen 1E.png

Figure 7: Figur fra filen 1E.png

Filen 1G.txt

STJERNE A) stjernas luminositet er halvparten av solas luminositet og det finnes noe helium i kjernen men ingen tyngre grunnstoffer

STJERNE B) det finnes karbon i et skall rundt kjernen

STJERNE C) massen til stjerna er 5 solmasser og den fusjonerer hydrogen i kjernen

STJERNE D) det finnes noe jern i kjernen

STJERNE E) Stjerna har en overflatetemperatur på 10000K. Radiusen er betydelig mindre enn solas radius

Filen 1H.png

Filen 1J.txt

Kjernen i stjerne A har massetet
thet 6.982e+06 kg/m3̂ og temperatur 18 millioner K.

Kjernen i stjerne B har massetet
thet 1.804e+06 kg/m3̂ og temperatur 15 millioner K.

Kjernen i stjerne C har massetet
thet 8.450e+06 kg/m3̂ og temperatur 37 millioner K.

Kjernen i stjerne D har massetet
thet 2.520e+06 kg/m3̂ og temperatur 22 millioner K.

Kjernen i stjerne E har massetet
thet 2.415e+06 kg/m3̂ og temperatur 20 millioner K.

Filen 1K/1K.txt

Påstand 1: denne har den minste tilsynelatende bolometriske størrelseklassen (altså den vanlige størrelseklassen tatt over alle bølgelengder, uten filter)

Påstand 2: den tilsynelatende størrelseklassen (magnitude) med UV filter er betydelig mindre enn den tilsynelatende størrelseklassen i blått filter

Påstand 3: den tilsynelatende størrelseklassen (magnitude) med blått filter er betydelig større enn den tilsynelatende størrelseklassen i rødt filter

Påstand 4: denne stjerna er lengst vekk

$Filen~1K/1K_Figur_A_.png$

Figure 9: Figur fra filen $1\mathrm{K}/1\mathrm{K}$ _Figur_A_.png

$Filen \ 1K/1K_Figur_B_.png$

Figure 10: Figur fra filen $1K/1K_Figur_B_pg$

$Filen \ 1K/1K_Figur_C_.png$

Figure 11: Figur fra filen $1K/1K_Figur_C_png$

$Filen~1K/1K_Figur_D_.png$

Figure 12: Figur fra filen 1K/1K-Figur-D_.png

$Filen \ 1L/1L_Figure_A.png$

Figure 13: Figur fra filen 1L/1L-Figure_A.png

Figur A tilsynelatende størrelseklasse 16.05

$Filen \ 1L/1L_Figure_B.png$

Figure 14: Figur fra filen 1L/1L-Figure-B.png

$Filen \ 1L/1L_Figure_C.png$

Figure 15: Figur fra filen 1L/1L-Figure_C.png

$Filen \ 1L/1L_Figure_D.png$

Figure 16: Figur fra filen 1L/1L-Figure_D.png

Filen 1L/1L_Figure_E.png

1.50 - 1.40 - 1.20 - 1.10 - 1.00 - 21.15 21.20 21.25 21.30 Bølgelgende (cm)

Figure 17: Figure fra filen 1L/1L-Figure-E.png

Filen 1N.txt

Kjernen i stjerne A har massetet
thet 3.992e+05 kg/m3̂ og temperatur 19.42 millioner K.

Kjernen i stjerne B har massetet
thet $3.516\mathrm{e}+05~\mathrm{kg/m}\hat{3}$ og temperatur 29.29 millioner K.

Kjernen i stjerne C har massetet
thet $3.208\mathrm{e}{+05~\mathrm{kg/m}}\hat{3}$ og temperatur 17.00

millioner K.

Kjernen i stjerne D har massetet
thet 1.676e+05 kg/m3̂ og temperatur 33.08 millioner K.

Kjernen i stjerne E har massetet
thet 1.104e+05 kg/m3̂ og temperatur 27.12 millioner K.

Filen~1O/1O.png

Figure 18: Figur fra filen 10/10.png

$Filen~1O/1O_Figur_0_.png$

Figure 19: Figur fra filen $1O/1O_Figur_O_png$

$Filen\ 1O/1O_Figur_1_.png$

Figure 20: Figur fra filen $1O/1O_Figur_1..png$

$Filen~1O/1O_Figur_2_.png$

Figure 21: Figur fra filen $1O/1O_F$ igur_2_.png

$Filen~1O/1O_Figur_3_.png$

Figure 22: Figur fra filen $1O/1O_F$ igur_3_.png

$Filen~1O/1O_Figur_4_.png$

Figure 23: Figur fra filen $1O/1O_F$ igur_4_.png

Filen 2A.png

Figure 24: Figur fra filen 2A.png

$Filen~2B/2B_Figur_1.png$

Figure 25: Figur fra filen 2B/2B_Figur_1.png

$Filen~2B/2B_Figur_2.png$

Figure 26: Figur fra filen 2B/2B-Figur-2.png

$Filen~2C/2C_Figur_1.png$

Figure 27: Figur fra filen $2C/2C_Figur_1.png$

Vinkelforflytning 2.69 buesekunder i løpet av et millisekund.

Filen 2C/2C_Figur_2.png

Figure 28: Figur fra filen 2C/2C_Figur_2.png

Vinkelforflytning 2.03 buesekunder i løpet av et millisekund. 41.87 37.22 y-posisjon (10⁻⁶ buesekunder) 32.57 27.91 23.26 18.61 13.96 9.30 4.65 0.00 13.96 18.61 23.26 27.91 32.57 37.22 41.87 4.65 9.30 0.00 x-posisjon (10⁻⁶ buesekunder)

Filen 3A.txt

Din destinasjon er Oslo som ligger i en avstand av 250 km fra Kristiansand. Du og toget som går i motsatt retning kjører begge med farta 97.30300 km/t.

Filen 3E.txt

Tog1 veier 88900.00000 kg og tog2 veier 25100.00000 kg.

Filen 4A.png

Figure 29: Figur fra filen 4A.png

Filen 4C.txt

Hastigheten til Helium-partikkelen i x-retning er 509 km/s.

Filen 4E.txt

Massen til gassklumpene er 1300000.00 kg.

Hastigheten til G1 i x-retning er 58800.00 km/s.

Hastigheten til G2 i x-retning er 61800.00 km/s.

Filen 4G.txt

Massen til stjerna er 16.75 solmasser og radien er 1.20 solradier.