例1. 一个 555定时器构成的施密特触发器以及输入波形如下图所示. $V_{cc}=12$ V. V_{co} 悬空. 求: (1) V_{T+} , V_{T-} 及 ΔV 的值; (2) 根据 V_{i} 波形画出输出 V_{o} 波形; (3) 求出当 $V_{co}=10$ V时 V_{T+} , V_{T-} 及 ΔV 的值

解:

(1)
$$V_{T+} = \frac{2}{3}V_{cc} = \frac{2}{3} \times 12 \text{ V} = 8 \text{ V}$$

$$V_{T-} = \frac{1}{3}V_{cc} = \frac{1}{3} \times 12 \text{ V} = 4 \text{ V}$$

$$\Delta V = V_{T+} - V_{T-} = 8 - 4 = 4 \text{ V}$$

(3)
$$V_{co} = 10 \text{ V}$$

 $V_{T+} = V_{co} = 10 \text{ V}, \quad V_{T-} = \frac{1}{2} V_{co} = 5 \text{ V}$
 $\Delta V = 5 \text{ V}$

§7.2.2 门电路构成的施密特触发器

同相施密特触发器

(1)
$$\stackrel{\text{\tiny \sharp}}{=}_{\text{\tiny I}} = 0 \text{\tiny V}, \quad v_{\text{\tiny O}} \approx V_{\text{\tiny DD}}, \quad v_{\text{\tiny O}} \approx 0 \text{\tiny V}, \quad v_{\text{\tiny I}} \approx 0 \text{\tiny V};$$

(2) 当 ν_I 升高时, ν_I '也升高。当 ν_I '达到 $1/2V_{DD}$ 时, G_1 、 G_2 输出状态将发生翻转。此时对应的 ν_I 值称为

$$v_{\rm I}' = \frac{V_{\rm T+}}{R_1 + R_2} \cdot R_2 = \frac{1}{2} V_{\rm DD}$$
 $V_{\rm T+} = \frac{1}{2} V_{\rm DD} (1 + \frac{R_1}{R_2})$

(3) 当 v_I 大于 V_{T+} 时,电路转到另一稳态: $v_{O1} \approx 0$ V $v_O \approx V_{DD}$ 。

(4) 当 v_I 由高变低时, v_I '也由高变低。当 v_I ' $\leq 1/2 V_{DD}$ 时,电路又将发生转换。此时对应的 v_I 称为 V_{T-} 。

$$v_{\rm I}' = \frac{(V_{\rm DD} - V_{\rm T-}) \cdot R_1}{R_1 + R_2} + V_{\rm T-} = \frac{1}{2} V_{\rm DD}$$
 $V_{\rm T-} = \frac{1}{2} V_{\rm DD} (1 - \frac{R_1}{R_2})$

(5) 当v_I小于V_T时,电路转到另一稳态: v_{O1}≈ V_{DD}, v_O

工作波形

$$V_{\text{T+}} = \frac{1}{2}V_{\text{DD}}(1 + \frac{R_1}{R_2})$$

$$V_{\text{T-}} = \frac{1}{2} V_{\text{DD}} (1 - \frac{R_1}{R_2})$$

§7.2.3 集成施密特触发器 **IC Schmitt Trigger**

TTL集成施密特触发器74LS132由4个独立的两输 入与非门构成

正向阈值

 $V_{T+} = 1.5 \sim 2.0 \text{ V}, \quad \Delta V = 0.8 \text{ V}$

反向阈值

 $V_{T} = 0.6 \sim 1.1 \text{ V}$

典型回差电压

管脚图

A 或 B 或二者 $< V_{T-}, Y = 1$ 只有当A和B都> V_{T+} ,Y=0

逻辑功能

$$Y = \overline{AB}$$

具有滞后特性

§7.2.4 Schmitt 触发器应用

Applications of Schmitt Trigger

1. 波形转换

将一周期性信号变换为矩形波,其输出脉冲宽度 $T_{\rm W}$ 可通过改变 ΔV 进行调节。

$$\Delta V = V_{\mathrm{T}^+} - V_{\mathrm{T}^-}$$

2. 信号整型 将不规则的信号波形整成矩形脉冲。

3. 幅度鉴别

Schmitt-FF的输出状态取决于输入信号的电压值, 因此可用作幅度鉴别。

输出信号的振荡幅度是门电路的高(3.6V), 低(0.1V) 电平, 与 V_{T+} , V_{T-} 无关

施密特触发器的应用——光控路灯开关

工作原理

天亮, R_L 小, V_i 大, $V_i > (2/3 V_{CC})$, Q=0继电器不吸合开关, 路灯不亮;

天暗, R_L 大, V_i 小, V_i <(1/3 V_{CC}), Q=1继电器吸合开关,路灯亮。

§7.3 单稳态触发器

One-Shots (Monostable Multivibrators)

单稳态触发器

- ① 一个稳定状态,一个不稳定状态(暂稳态)
- ② 单稳态触发器通常处于稳定状态,在触发时 变到不稳定状态
- ③ 不稳定状态持续 T_{W} 时间后,自动回到稳定状态

 $T_{
m W}$ 取决于定时元件

符号

1: 一次触发不可重复触发

§7.3.2 555 定时器构成的单稳态触发器

555 Timer Connected as an One-Shot

6,7 脚连在一起

2 脚触发端接输入 V_i ,

非触发时为高电平,下 降沿(低电平)触发

R, C 定时元件

电容隔直,使 V_{CO} 悬空,防止引入干扰,既不是1,也不是0

确定电路的稳定状态

设
$$Q=0$$
, $\overline{Q}=1$,

放电管 T 导通,7→地

7, 6
$$\to$$
 GND, $(V_6 < \frac{2}{3}V_{CC})$

$$V_i = 1$$
, $(V_2 > \frac{1}{3} V_{CC})$ Q (**4**持, $Q = 0$

设 Q=1, $\overline{Q}=0$, T 截止, $7\to$ 开路

$$V_{\rm CC}$$
 向 C 充电, $V_{\rm C}$ 升高, 当 $V_{\rm C} > \frac{2}{3}V_{\rm CC}$, $Q = 0$

$$\overline{Q}$$
=1, 放电管 T 导通(7地) $V_6 < \frac{2}{3}V_{CC}$, $V_2 > \frac{1}{3}V_{CC}$

$$Q=0$$
 保持

所以,稳定状态为: Q=0

单稳态触发器工作原理

触发前, Q = 0 (T导通, 6,7 地)

触发瞬间,
$$V_i < \frac{1}{3} V_{CC}$$
 $Q = 1$

$$\bar{Q}$$
 =0, T 截止 (断开), C 充电

充电路径: $V_{CC} \rightarrow R \rightarrow C \rightarrow$ 地

$$rac{4}{3}V_{\rm CC} (V_6 > \frac{2}{3}V_{\rm CC})$$

$$V_{\rm i}$$
早已回到 1 ($V_2 > \frac{1}{3}V_{\rm cc}$)

$$Q=0$$
, $\overline{Q}=1$, T导通(地),

C 放电, 路径: $C \rightarrow T \rightarrow \mathbb{D}$

放电时间常数 $\tau_2 = R_{on}C$,

Ron: T导通电阻

$$V_{
m C} \downarrow$$

暂稳态持续时间 $T_{ m w}$

电容C充电到 $\frac{2}{3}V_{CC}$ 所用时间

$$T_{w} = RC \ln \frac{V_{C}(\infty) - V_{C}(0^{+})}{V_{C}(\infty) - V_{C}(t)}$$

$$= RC \ln \frac{V_{CC} - 0}{V_{CC} - \frac{2}{3}V_{CC}} = 1.1RC$$

$T_{\rm W}$ 是重要参数

$$T_{\rm W} = 1.1RC$$

单稳态触发器的恢复时间

(Recovery Time):

$$T_{\rm R} = (3\sim5)R_{\rm on}C = 4R_{\rm on}C$$

1. 触发信号最小周期:

$$T = T_{\rm w} + T_{\rm R} = 1.1RC + 4 R_{\rm on}C$$

T: resolution 分辨率

触发信号最大工作频率:

$$f = \frac{1}{T}$$

实际触发周期 $T_i: T_i \ge T$

§7.3.3 集成单稳态触发器74121

集成单稳态触发器根据电路及工作状态不同可分为 可重复触发和不可重复触发两种。

非重复触发单稳态触发器74121工作波形图

 $FF进入暂稳态后,不再接收新触发信号,直到<math>T_W$ 时间后结束。

74LS121的原理框图

控制电路用于产生窄脉冲。当输入满足以下条件时,控制电路产生窄脉冲:

- (2) 若B=1, A_1 、 A_2 中至少有一个由 $1 \nearrow 0$ 。

IEEE 符号

7 GND, 14 V_{CC}, 2, 8, 12, 13 空

输入 (触发):

 $\begin{cases} A_1, A_2$ 低有效"或" B 高有效,Schmitt

R_{int}: 内电阻 (不用时悬空)

 C_{ext} : 外接电容

 $R_{\rm ext}/C_{\rm ext}$: 共用

* 非数字信号, 接R, C

74121 功能表

В	A_2	$A_{\rm l}$	Q	$\overline{\varrho}$	功能
0 ×	× 1	× 1	0	1	保持(处于稳态)
†	× 0				用B正边沿触发
1	1	↓ 1	<u>Г</u>		用A负边沿触发
1	,	,		Ŭ.	

(1) 稳定状态 (Q=0)

- 3变量 (A_1, A_2, B)
 - **→8个组合**
- 8 个状态都是稳定状态
 - (2) 暂稳态
 - ① B = 1, A₁ 和 A₂ 至少有一个为下降沿,另一个为高电平.
 - ② $A_1 \cdot A_2 = 0$, *B*上升沿

(3) 定时元件接法

定时元件 R, C

外接 $\begin{cases} R: RX \sim V_{CC}$ 之间 $C: CX \sim RX$ 之间

内接 $R_{int}(RI)$: $R_{int} = 2 k\Omega$ $RI \sim V_{CC}$ (内接电阻) C: CX (外接电容)

74121暂稳态时间

 $T_{\rm w} = 0.7RC$

§7.3.4 单稳态触发器应用

1. 波形转换

把不符合要求的波形整形成 T_{w} , V_{m} 一定的脉冲

$$T_{\rm w} \sim R, C$$

555 定时器单稳态:

触发
$$\left\{ \begin{array}{l} \mathbf{ \mathring{O}}$$
 $\mathbf{ \mathring{O}}$ $\mathbf{ \mathring{$

脉冲展宽和变窄

2. 定时

例 2. 楼道照明灯控制电路

定时元件: R, C

TH: 双向晶闸管

灯亮时间: $T_{\text{W}} = 1.1RC$

工作原理

按 A之前, V_i = 1, Q = 0, 稳态, T_1 截止, V_e = 0, TH 开路,灯不亮;

按 $A, V_i = 0, Q = 1,$ T₁导通, $V_e > 0$, TH导通, 灯亮.

3. 延时 $T_{\rm W}$ 下降沿触发下一个电路

例:用基于555定时器的单稳态触发器实现花房自动控

制系统: 每次喷药2 s, 马上喷水15 s

分析:

第一个单稳态 $T'_{W} = 2s$ (喷药),

T'w 下降沿触发喷水开关

$$T''_{W} = 15 \text{ s} (7\text{K}).$$

两个单稳态触发器

555 定时器单稳态,在 $T'_{\rm w}$ 后 Q_1 不回到高电平,在两个单稳态触发器之间需要一个微分电路,形成一个窄脉冲来触发 $T''_{\rm w}$ 。

否则:A高

 $= 1.1R_{2}C_{2}$