Multi-channel Weighted Nuclear Norm Minimization for Real Color Image Denoising

Anonymous ICCV submission

Paper ID 572

1. Proof of Theorem 1.

Proof. 1. Firstly, we proof that the sequence $\{\mathbf{A}_k\}$ generated by Algorithm 1 is upper bounded. Let $\mathbf{X}_{k+1} + \rho_k^{-1}\mathbf{A}_k = \mathbf{U}_k\mathbf{\Sigma}_k\mathbf{V}_k^{\top}$ be its SVD in the (k+1)-th iteration. According to Corollary 1 of [?], we can have the SVD of \mathbf{Z}_{k+1} as $\mathbf{Z}_{k+1} = \mathbf{U}_k\hat{\mathbf{\Sigma}}_k\mathbf{V}_k^{\top} = \mathbf{U}_k\mathcal{S}_{\frac{\boldsymbol{w}}{\rho_k}}(\mathbf{\Sigma}_k)\mathbf{V}_k^{\top}$. Then we have

$$\|\mathbf{A}_{k+1}\|_F = \|\mathbf{A}_k + \rho_k(\mathbf{X}_{k+1} - \mathbf{Z}_{k+1})\|_F$$
 (1)

$$= \rho_k \| \rho_k^{-1} \mathbf{A}_k + \mathbf{X}_{k+1} - \mathbf{Z}_{k+1} \|_F$$
 (2)

$$= \rho_k \| \mathbf{U}_k \mathbf{\Sigma}_k \mathbf{V}_k^{\top} - \mathbf{U}_k \mathbf{S}_{\frac{w}{\Omega_k}} (\mathbf{\Sigma}_k) \mathbf{V}_k^{\top} \|_F \quad (3)$$

$$= \rho_k \| \mathbf{\Sigma}_k - \mathcal{S}_{\frac{\mathbf{w}}{\alpha_k}}(\mathbf{\Sigma}_k) \|_F \tag{4}$$

$$= \rho_k \sqrt{\sum_i (\Sigma_k^{ii} - \mathcal{S}_{\frac{w_i}{\rho_k}}(\Sigma_k^{ii}))^2}$$
 (5)

$$\leq \rho_k \sqrt{\sum_i (\frac{w_i}{\rho_k})^2} = \sqrt{\sum_i w_i^2}.$$
 (6)

The inequality above can be proofed as follows: given the diagonal matrix Σ_k , we define Σ_k^{ii} as the i-th element of Σ_k^{ii} . If $\Sigma_k^{ii} \geq \frac{w_i}{\rho_k}$, we have $\mathcal{S}_{\frac{w_i}{\rho_k}}(\Sigma_k^{ii}) = \Sigma_k^{ii} - \frac{w_i}{\rho_k} \geq 0$. If $\Sigma_k^{ii} < \frac{w_i}{\rho_k}$, we have $\mathcal{S}_{\frac{w_i}{\rho_k}}(\Sigma_k^{ii}) = 0 < \Sigma_k^{ii} + \frac{w_i}{\rho_k}$. After all, we have $|\Sigma_k^{ii} - \mathcal{S}_{\frac{w_i}{\rho_k}}(\Sigma_k^{ii})| \leq \frac{w_i}{\rho_k}$ and hence the inequality holds true. Hence, the sequence $\{A_k\}$ is upper bounded.

2. Secondly, we proof that the sequence of Lagrangian function $\{\mathcal{L}(\mathbf{X}_{k+1},\mathbf{Z}_{k+1},\mathbf{A}_k,\rho_k)\}$ is also upper bounded. Since the global optimal solution of \mathbf{X} and \mathbf{Z} in corresponding subproblems, we always have $\mathcal{L}(\mathbf{X}_{k+1},\mathbf{Z}_{k+1},\mathbf{A}_k,\rho_k) \leq \mathcal{L}(\mathbf{X}_k,\mathbf{Z}_k,\mathbf{A}_k,\rho_k)$. Based on the updating rule that $\mathbf{A}_{k+1} = \mathbf{A}_k + \rho_k(\mathbf{X}_{k+1} - \mathbf{Z}_{k+1})$, we have $\mathcal{L}(\mathbf{X}_{k+1},\mathbf{Z}_{k+1},\mathbf{A}_{k+1},\rho_{k+1}) = \mathcal{L}(\mathbf{X}_{k+1},\mathbf{Z}_{k+1},\mathbf{A}_k,\rho_k) + \langle \mathbf{A}_{k+1} - \mathbf{A}_k, \mathbf{X}_{k+1} - \mathbf{Z}_{k+1} \rangle + \frac{\rho_{k+1} - \rho_k}{2\rho_k^2} \|\mathbf{X}_{k+1} - \mathbf{Z}_{k+1}\|_F^2 = \mathcal{L}(\mathbf{X}_{k+1},\mathbf{Z}_{k+1},\mathbf{A}_k,\rho_k) + \frac{\rho_{k+1} + \rho_k}{2\rho_k^2} \|\mathbf{A}_{k+1} - \mathbf{A}_k\|_F^2$. Since the sequence $\{\|\mathbf{A}_k\}$ is upper bounded, the sequence $\{\|\mathbf{A}_{k+1} - \mathbf{A}_k\|_F^2\}$ is also upper bounded. Denote

by a the upper bound of $\{\|\mathbf{A}_{k+1} - \mathbf{A}_k\|_F\}$, we have $\mathcal{L}(\mathbf{X}_{k+1}, \mathbf{Z}_{k+1}, \mathbf{A}_{k+1}, \rho_{k+1}) \leq \mathcal{L}(\mathbf{X}_1, \mathbf{Z}_1, \mathbf{A}_0, \rho_0) + a \sum_{k=0}^{\infty} \frac{\rho_{k+1} + \rho_k}{2\rho_k^2} = \mathcal{L}(\mathbf{X}_1, \mathbf{Z}_1, \mathbf{A}_0, \rho_0) + a \sum_{k=0}^{\infty} \frac{\mu + 1}{2\mu^k \rho_0} \leq \mathcal{L}(\mathbf{X}_1, \mathbf{Z}_1, \mathbf{A}_0, \rho_0) + \frac{a}{\rho_0} \sum_{k=0}^{\infty} \frac{1}{\mu^{k-1}}.$ The last inequality holds since $\mu + 1 < 2\mu$. Since $\sum_{k=0}^{\infty} \frac{1}{\mu^{k-1}} < \infty$, the sequence of Lagrangian function $\mathcal{L}(\mathbf{X}_{k+1}, \mathbf{Z}_{k+1}, \mathbf{A}_{k+1}, \rho_{k+1})$ is upper bound.

- 3. Thirdly, we proof that the sequences of $\{\mathbf{X}_k\}$ and $\{\mathbf{Z}_k\}$ are upper bounded. Since $\|\mathbf{W}(\mathbf{Y}-\mathbf{X})\|_F^2 + \|\mathbf{Z}\|_{\mathbf{w},*} = \mathcal{L}(\mathbf{X}_k,\mathbf{Z}_k,\mathbf{A}_{k-1},\rho_{k-1}) \langle \mathbf{A}_k,\mathbf{X}_k \mathbf{Z}_k \rangle \frac{\rho_k}{2} \|\mathbf{X}_k \mathbf{Z}_k\|_F^2 = \mathcal{L}(\mathbf{X}_k,\mathbf{Z}_k,\mathbf{A}_{k-1},\rho_{k-1}) + \frac{1}{2\rho_k} (\|\mathbf{A}_{k-1}\|_F^2 \|\mathbf{A}_k\|_F^2)$. Thus $\{\mathbf{W}(\mathbf{Y}-\mathbf{X}_k)\}$ and $\{\mathbf{Z}_k\}$ are upper bounded, and hence the sequence $\{\mathbf{X}_k\}$ is bounded by Cauchy-Schwarz inequality and triangle inequality. We can obtain that $\lim_{k\to\infty} \|\mathbf{X}_{k+1} \mathbf{Z}_{k+1}\|_F = \lim_{k\to\infty} \rho_k^{-1} \|\mathbf{A}_{k+1} \mathbf{A}_k\|_F = 0$ and the equation (1) is proofed.
- 4. Then we can proof that $\lim_{k\to\infty} \|\mathbf{X}_{k+1} \mathbf{X}_k\|_F = \lim_{k\to\infty} \|(\mathbf{W}^\top \mathbf{W} + \frac{\rho_k}{2}\mathbf{I})^{-1}(\mathbf{W}^\top \mathbf{W} \mathbf{Y} \mathbf{W}^\top \mathbf{W} \mathbf{Z}_k \frac{1}{2}\mathbf{A}_k) \rho_k^{-1}(\mathbf{A}_k \mathbf{A}_{k-1})\|_F \leq \lim_{k\to\infty} \|(\mathbf{W}^\top \mathbf{W} + \frac{\rho_k}{2}\mathbf{I})^{-1}(\mathbf{W}^\top \mathbf{W} \mathbf{Y} \mathbf{W}^\top \mathbf{W} \mathbf{Z}_k \frac{1}{2}\mathbf{A}_k)\|_F + \rho_k^{-1}\|\mathbf{A}_k \mathbf{A}_{k-1}\|_F = 0$ and hence (2) is proofed.
- 5. Then (3) can be proofed by checking that $\lim_{k\to\infty} \|\mathbf{Z}_{k+1} \mathbf{Z}_k\|_F = \lim_{k\to\infty} \|\mathbf{X}_k + \rho_k^{-1} \mathbf{A}_{k-1} \mathbf{Z}_k + \mathbf{X}_{k+1} \mathbf{X}_k + \rho_k^{-1} \mathbf{A}_{k-1} + \rho_k^{-1} \mathbf{A}_k \rho_k^{-1} \mathbf{A}_{k+1}\|_F \leq \lim_{k\to\infty} \|\mathbf{\Sigma}_{k-1} \mathcal{S}_{\boldsymbol{w}/\rho_{k-1}}(\mathbf{\Sigma}_{k-1})\|_F + \|\mathbf{X}_{k+1} \mathbf{X}_k\|_F + \rho_k^{-1} \|\mathbf{A}_{k-1} + \mathbf{A}_{k+1} \mathbf{A}_k\|_F = 0$, where $\mathbf{U}_{k-1}\mathbf{\Sigma}_{k-1}\mathbf{V}_{k-1}^{\top}$ is the SVD of the matrix $\mathbf{X}_k + \rho_{k-1}\mathbf{A}_{k-1}$.