Table of Fourier Transform Pairs of Energy Signals

Table of Fourier Transform Fairs of Ellergy Signals			
Function name	Time Domain x(t)	Frequency Domain X(ω)	
FT	x(t)	$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt = \mathbf{F} \{x(t)\}$	
IFT	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega = \mathbf{F}^{-1} \{X(\omega)\}$	$X(\omega)$	
Rectangle Pulse	$rect\left(\frac{t}{T}\right) = \prod \left(\frac{t}{T}\right) = \begin{cases} 1 & t \le \frac{T}{2} \\ 0 & elsewhen \end{cases}$	$T\operatorname{sinc}\left(\frac{T}{2\pi}\omega\right)$	
Triangle Pulse	$\Lambda\left(\frac{t}{W}\right) \equiv \begin{cases} 1 - \frac{ t }{W} & t \le W \\ 0 & elsewhen \end{cases}$	$W \operatorname{sinc}^2\left(\frac{W}{2\pi}\omega\right)$	
Sinc Pulse	$\operatorname{sinc}(Wt) \equiv \frac{\sin(\pi \cdot Wt)}{\pi \cdot Wt}$	$\frac{1}{W}rect\left(\frac{\omega}{2\pi W}\right)$	
Exponen- tial Pulse	$e^{-a t }$ $a>0$	$\frac{2a}{a^2 + \omega^2}$	
Gaussian Pulse	$\exp(-\frac{t^2}{2\sigma^2})$	$\left(\sigma\sqrt{2\pi}\right)\exp\left(-\frac{\sigma^2\omega^2}{2}\right)$	
Decaying Exponen- tial	$\exp(-at)u(t)$ $\operatorname{Re}\{a\} > 0$	$\frac{1}{a+j\omega}$	
Sinc ² Pulse	$\operatorname{sinc}^{2}\left(Bt\right)$	$rac{1}{B}\Lambdaigg(rac{\omega}{2\pi B}igg)$	

Table of Fourier Transform Pairs of Power Signals

Table of Fourier Transform Pairs of Power Signals			
Function name	Time Domain x(t)	Frequency Domain X(ω)	
FT	x(t)	$X(\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt = F \{x(t)\}$	
IFT	$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(\omega) e^{j\omega t} d\omega = \mathbf{F}^{-1} \{X(\omega)\}$	$X(\omega)$	
Impulse	$\mathcal{S}(t)$	1	
DC	1	$2\pi\delta(\omega)$	
Cosine	$\cos\left(\omega_0 t + heta ight)$	$\pi \Big[e^{j\theta} \delta(\omega - \omega_0) + e^{-j\theta} \delta(\omega + \omega_0) \Big]$	
Sine	$\sin(\omega_0 t + \theta)$	$-j\pi\Big[e^{j\theta}\delta(\omega-\omega_0)-e^{-j\theta}\delta(\omega+\omega_0)\Big]$	
Complex Exponential	$\exp(j\omega_0 t)$	$2\pi\delta(\omega-\omega_0)$	
Unit step	$u(t) \equiv \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$	$\pi\delta(\omega) + \frac{1}{j\omega}$	
Signum	$\operatorname{sgn}(t) \equiv \begin{cases} 1 & t \ge 0 \\ -1 & t < 0 \end{cases}$	$\frac{2}{j\omega}$	
Linear Decay	$\frac{1}{t}$	$-j\pi\operatorname{sgn}(\omega)$	
Impulse Train	$\sum_{n=-\infty}^{\infty} \delta(t-nT_s)$	$\frac{2\pi}{T_s} \sum_{k=-\infty}^{\infty} \delta \left(\omega - k \frac{2\pi}{T_s} \right)$	
Fourier Series	$\sum_{k=-\infty}^{\infty}a_ke^{jk\omega_0t}$, where $a_k=rac{1}{T_0}\int\limits_{T_0}x(t)e^{-jk\omega_0t}dt$	$2\pi\sum_{k=-\infty}^{\infty}a_k\delta(\omega-k\omega_0)$	

Table of Fourier Transforms of Operations

Operation	FT Property Given $g(t) \Leftrightarrow G(\omega)$
Linearity	$af(t)+bg(t) \Leftrightarrow aF(\omega)+bG(\omega)$
Time Shifting	$g(t-t_0) \Leftrightarrow e^{-j\omega t_0} G(\omega)$
Time Scaling	$g(at) \Leftrightarrow \frac{1}{ a } G\left(\frac{\omega}{a}\right)$
Modulation (1)	$g(t)\cos(\omega_0 t) \Leftrightarrow \frac{1}{2} [G(\omega - \omega_0) + G(\omega + \omega_0)]$
Modulation (2)	$g(t)e^{j\omega_0 t} \Leftrightarrow G(\omega - \omega_0)$
Differentiation	If $f(t) = \frac{dg(t)}{dt}$, then $F(\omega) = j\omega \cdot G(\omega)$
Integration	If $f(t) = \int_{-\infty}^{t} g(\alpha) d\alpha$, then $F(\omega) = \frac{1}{j\omega} G(\omega) + \pi G(0) \delta(\omega)$
Convolution	$g(t)*f(t) \Leftrightarrow G(\omega) \cdot F(\omega)$, where $g(t)*f(t) \equiv \int_{-\infty}^{\infty} g(\alpha) f(t-\alpha) d\alpha$
Multiplication	$f(t) \cdot g(t) \Leftrightarrow \frac{1}{2\pi} F(\omega) * G(\omega)$
Duality	If $g(t) \Leftrightarrow z(\omega)$, then $z(t) \Leftrightarrow 2\pi g(-\omega)$
Hermitian Symmetry	If g(t) is real valued then $G(-\omega) = G^*(\omega)$ ($ G(-\omega) = G(\omega) $ and $\angle G(-\omega) = -\angle G(\omega)$)
Conjugation	$g^{*}(t) \Leftrightarrow G^{*}(-\omega)$
Parseval's Theorem	$P_{avg} = \int_{-\infty}^{\infty} g(t) ^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(\omega) ^2 d\omega$

Some Notes:

1. There are two similar functions used to describe the functional form $\sin(x)/x$. One is the sinc() function, and the other is the Sa() function. We will only use the sinc() notation in class. Note the role of π in the sinc() definition:

$$sinc(x) \equiv \frac{\sin(\pi x)}{\pi x}; \qquad Sa(x) \equiv \frac{\sin(x)}{x}$$

- 2. The impulse function, aka delta function, is defined by the following three relationships:
 - a. Singularity: $\delta(t-t_0)=0$ for all $t \neq t_0$
 - b. Unity area: $\int_{-\infty}^{\infty} \delta(t) dt = 1$
 - c. Sifting property: $\int_{t_a}^{t_b} f(t) \delta(t t_0) dt = f(t_0) \text{ for } t_a < t_0 < t_b.$
- 3. Many basic functions do not change under a reversal operation. Other change signs. Use this to help simplify your results.

a.
$$\delta(t) = \delta(-t)$$
 (in general, $\delta(at) \Leftrightarrow \frac{1}{|a|} \delta(t)$)

- b. rect(t) = rect(-t)
- $\mathbf{C.} \quad \Lambda(t) = \Lambda(-t)$
- d. $\operatorname{sinc}(t) = \operatorname{sinc}(-t)$
- $e. \quad \operatorname{sgn}(t) = -\operatorname{sgn}(-t)$
- 4. The duality property is quite useful but sometimes a bit hard to understand. Suppose a known FT pair $g(t) \Leftrightarrow z(\omega)$ is available in a table. Suppose a new time function z(t) is formed with the same shape as the spectrum $z(\omega)$ (i.e. the function z(t) in the time domain is the same as $z(\omega)$ in the frequency domain). Then the FT of z(t) will be found to be $z(t) \Leftrightarrow 2\pi g(-\omega)$, which says that the F.T. of z(t) is the same shape as g(t), with a multiplier of 2π and with $-\omega$ substituted for t.

An example is helpful. Given the F.T. pair $\operatorname{sgn}(t) \Leftrightarrow 2/j\omega$, what is the Fourier transform of x(t)=1/t? First, modify the given pair to $j/2\operatorname{sgn}(t) \Leftrightarrow 1/\omega$ by multiplying both sides by j/2. Then, use the duality function to show that $1/t \Leftrightarrow 2\pi j/2\operatorname{sgn}(-\omega) = j\pi\operatorname{sgn}(-\omega) = -j\pi\operatorname{sgn}(\omega)$.