SMT-RAT 22.06

June 17, 2022

SMT-RAT [2] is an open-source C++ toolbox for strategic and parallel SMT solving consisting of a collection of SMT compliant implementations of methods for solving quantifier-free first-order formulas with a focus on non-linear real and integer arithmetic. Further supported theories include linear real and integer arithmetic, difference logic, bit-vectors and pseudo-Boolean constraints. A more detailed description of SMT-RAT can be found at https://smtrat.github.io/.

SMT-RAT-MCSAT uses our implementation of the MCSAT framework [3]. We employ incomplete methods to handle simpler problem classes more efficiently. Thus, our implementation is equipped with multiple explanation backends based on Fourier-Motzkin variable elimination, interval constraint propagation, virtual substitution as in [7], a novel level-wise variant (currently under review) of the one-cell CAD [1] and NLSAT-style model-based CAD projections [6], which are called in this order. The general MCSAT framework is integrated in our adapted minisat [4] solver, but is not particularly optimized yet. Furthermore, our variable ordering is fully dynamic as suggested in [5].

Current authors Jasper Nalbach, Erika Ábrahám, Philip Kroll (Theory of Hybrid Systems Group, RWTH Aachen University).

Previous contributions by current and former group members Gereon Kremer (currently at Stanford University), Florian Corzilius, Rebecca Haehn, Sebastian Junges, Stefan Schupp (currently at TU Wien).

References

- [1] Christopher W Brown and Marek Košta. Constructing a single cell in cylindrical algebraic decomposition. Journal of Symbolic Computation, 70:14–48, 2015.
- [2] Florian Corzilius, Gereon Kremer, Sebastian Junges, Stefan Schupp, and Erika Ábrahám. SMT-RAT: an open source C++ toolbox for strategic and parallel SMT solving. In *Proceedings of SAT 2015*, pages 360–368.
- [3] Leonardo de Moura and Dejan Jovanović. A model-constructing satisfiability calculus. In *Proceedings of VMCAI 2013*, pages 1–12.
- [4] Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In Proceedings of SAT 2013, pages 502–518.
- [5] Dejan Jovanović, Clark Barrett, and Leonardo de Moura. The design and implementation of the model constructing satisfiability calculus. In *Proceedings of FMCAD 2013*, pages 173–180.
- [6] Dejan Jovanović and Leonardo De Moura. Solving non-linear arithmetic. In *International Joint Conference on Automated Reasoning*, pages 339–354. Springer, 2012.

[7] Erika Ábrahám, Jasper Nalbach, and Gereon Kremer. Embedding the virtual substitution method in the model constructing satisfiability calculus framework. In $Proceedings\ of\ SC^2\ 2017\ at\ ISSAC$, volume 1974 of $CEUR\ Workshop\ Proceedings$.