

3a Electrostatic field I

Electric charge

Two plastic rulers repulse

Two glass sticks are repulse

Plastic ruler and glass stick attract

Particles carring charges

Elementary charge

$$|q_{\rm e}| = |q_{\rm p}| = 1.6 \cdot 10^{-19} \, {\rm C}$$

$$[q] = C (Coulomb)$$

+ + + + + + + +

neutral

The algebraic sum of the charges equils zero

Charged body

negativ

pozitiv

Coulomb law

$$F = k \frac{q_1 q_2}{r^2}$$

$$k = \frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \text{ N} \cdot \text{m}^2/\text{C}^2$$

$$\varepsilon_0 = 8.86 \cdot 10^{-12} \text{ C}^2 / (\text{N} \cdot \text{m}^2)$$

the force of interaction between two stationary point charges is proportional to the magnitude of each of them and inversely proportional to the square of the distance between them.

Coulomb law

$$T = F_e = k \frac{q^2}{r^2} \quad T = mg \qquad mg = k \frac{q^2}{r^2} \qquad m = k \frac{q^2}{gr^2}$$

$$m = 9 \cdot 10^9 \frac{1}{9.8} \approx 10^9 \text{ kg} = 10^6 \text{ t!!!}$$

10 000 wagons

$$r = 1 \text{ m}$$

$$q = 1 \text{ C}$$

$$m = ?$$

Electric and gravitational forces

Electric force

$$F_{e} = k \frac{q_{1}q_{2}}{r^{2}}$$

$$q = 1.6 \cdot 10^{-19} \text{ C}$$

$$r = 5.3 \cdot 10^{-11} \text{ m}$$

$$k = 9 \cdot 10^{9} \text{ N} \cdot \text{m}^{2}/\text{C}^{2}$$

$$F_{\rm e} = 8.2 \cdot 10^{-8} \text{ N}$$

Gravitational force

$$F_{g} = G \frac{m_{1}m_{2}}{r^{2}}$$

$$m_{e} = 9.1 \cdot 10^{-31} \text{ kg}$$

$$m_{p} = 1.7 \cdot 10^{-27} \text{ kg}$$

$$r = 5.3 \cdot 10^{-11} \text{ m}$$

$$G = 6.67 \cdot 10^{-11} \text{ N} \cdot \text{m}^{2}/\text{kg}^{2}$$

$$F_{g} = 3.67 \cdot 10^{-47} \text{ N}$$

In the hidrogen atom the elecftric force is ≈10³⁹!!! times greater than the gravitational force

Electric field strength or intensity

$$F = k \frac{qq_0}{r^2} \qquad \frac{F}{q_0} = \text{const} \qquad E = \frac{F}{q_0} \qquad \qquad q$$

$$\vec{E} = \frac{F}{q_0}$$

Electrostatic field strength

point charge

Test charge

$$E = k \frac{qq_0}{q_0 r^2}$$

$$E = k \frac{q}{r^2}$$

 $E = k \frac{q}{r^2}$ Electrostatic field strength created by the point charge

Lines of force

Line of force is a straight of curved line whose tangent at each point coincides with the direction of the field strength vector.

Principle of electric field superposition

$$q_2 = \vec{E}_1 + \vec{E}_2$$

$$\vec{E} = \vec{E}_1 + \vec{E}_2 + \vec{E}_3 + \dots + \vec{E}_n$$

Principle of superposition

the field strength of a system of charges equals the vector sum of the field strengths that would be produced by each of the charges of the system separately

The application of principle of superposition

The field created by an infinitely long rectilinear wire charged with the linear density τ .

Linear density of charge:

$$\tau = \frac{dq}{dl}$$

$$\vec{E} = \int d\vec{E} = \int d\vec{E}_x + \int d\vec{E}_y$$

$$\int d\vec{E}_x = 0 \qquad \vec{E} = \int d\vec{E}_y$$

$$E = \int dE_y = \int d\vec{E} \cos \varphi$$

$$E = k \frac{q}{x^2}$$

The application of principle of superposition

$$E = \int k \frac{dq}{x^{2}} \cos \varphi = \int k \frac{\tau dl}{x^{2}} \cos \varphi \qquad \tau = \frac{dq}{dl}$$

$$dV = \frac{AB}{\cos \varphi} \qquad \frac{1}{2} AB = x \sin \frac{d\varphi}{2}$$

$$\frac{1}{2} AB = x \frac{d\varphi}{2} \qquad AB = x d\varphi$$

$$dl = \frac{x d\varphi}{\cos \varphi} \qquad E = \int k \frac{\tau x d\varphi}{\cos \varphi x^{2}} \cos \varphi \qquad x \qquad x$$

The application of principle of superposition

$$E = \int k \frac{\tau d\varphi}{x} = \int k \frac{\tau d\varphi}{r} \cos \varphi \qquad E = k \frac{\tau}{r} \int_{-\varphi_0}^{\varphi_0} \cos \varphi d\varphi$$

$$E = k \frac{\tau}{r} \left(\sin \varphi_0 - \sin(-\varphi_0) \right)$$

$$E = k \frac{\tau}{r} 2 \sin \varphi_0$$

For infinit wire $\varphi_0 = 90^\circ$

$$E = \frac{2k\tau}{r}$$

Vector flux of electrostatic field

$$\Phi = ES \cos \alpha$$

 \vec{n} – the unit vector of the normal

$$\vec{S} = S \cdot \vec{n}$$
 – surface vector

$$\vec{a} \cdot \vec{b} = ab \cos \alpha$$

$$\Phi = \vec{E} \cdot \vec{S}$$
 °

$$d\Phi = \vec{E} \cdot d\vec{S}$$

$$\Phi = \int_{S} \vec{E} \cdot d\vec{S}$$

Gauss theorem

The Gauss theorem allows us to calculate the flux of the intensity vector through a closed surface, called the Gaussian surface.

$$\Phi = \int_{S} \vec{E} \cdot d\vec{S} = \oint_{S} EdS \cos \alpha$$

$$\alpha = 0, \cos \alpha = 1 \quad \Phi = \oint_{S} EdS \Rightarrow ES$$

$$E = \frac{1}{4\pi\varepsilon_{0}} \cdot \frac{q}{r^{2}} \quad S = 4\pi r^{2} \quad \Phi = \frac{1}{4\pi\varepsilon_{0}} \cdot \frac{q}{r^{2}} \cdot 4\pi r^{2}$$

$$\Phi = \frac{q}{\varepsilon_{0}} \quad \Phi = \frac{\sum q}{\varepsilon_{0}} \quad \text{Gauss theorem}$$

15

Gauss's theorem in differential form

$$\Phi = \oint_{S} \vec{E} \cdot d\vec{S} = \frac{\sum q}{\mathcal{E}_{0}}$$

$$d\Phi = \vec{E} \cdot d\vec{S} = \vec{E}_{x} \cdot d\vec{S}_{x} + \vec{E}_{y} \cdot d\vec{S}_{y} + \vec{E}_{z} \cdot d\vec{S}_{z}$$

$$\vec{E}_{x} \cdot d\vec{S}_{x} = E_{x+dx} dS \cos 0^{0} - E_{x} dS \cos 180^{0}$$

$$\vec{E}_{x} \cdot d\vec{S}_{x} = (E_{x+dx} - E_{x}) dy dz$$

$$\vec{E}_{x} \cdot d\vec{S}_{x} = dE_{x} dy dz \qquad dE_{x} = k dx$$

$$k = \left(\frac{dE_{x}}{dx}\right)_{y \in S} = \frac{\partial E_{x}}{\partial x} dE_{x} = \frac{\partial E_{x}}{\partial x} dx$$

$$\rho = \frac{dq}{dV} \frac{y}{y} \frac{\vec{n}}{dx} \frac{\vec{n}}{dz}$$

$$Z \frac{\vec{E}_y}{\vec{E}_z} \frac{\vec{E}_x}{\vec{E}_z}$$

Gauss's theorem in differential form

$$\vec{E}_{x} \cdot d\vec{S}_{x} = \frac{\partial E_{x}}{\partial x} dV \quad \vec{E}_{y} \cdot d\vec{S}_{y} = \frac{\partial E_{y}}{\partial y} dV \quad \vec{E}_{z} \cdot d\vec{S}_{z} = \frac{\partial E_{z}}{\partial z} dV$$

$$d\Phi = \frac{\partial E_{x}}{\partial x} dV + \frac{\partial E_{y}}{\partial y} dV + \frac{\partial E_{z}}{\partial z} dV \quad d\Phi = \left(\frac{\partial E_{x}}{\partial x} + \frac{\partial E_{y}}{\partial y} + \frac{\partial E_{z}}{\partial z}\right) dV$$

$$\text{div}\vec{E}$$

$$d\Phi = \operatorname{div}\vec{E}dV$$

$$d\Phi = \frac{dq}{\varepsilon_0} = \frac{\rho dV}{\varepsilon_0}$$

$$d\operatorname{iv}\vec{E} = \frac{\rho}{\varepsilon_0}$$

Gauss's theorem in differential form