4 Operatoren in Hilberträumen

50. Adjungierte Operatoren.

Liefere die Details zu Bsp. 4.4 aus der Vorlesung nach. D.h. zeige die folgenden Punkte:

- (i) Sei $T \in L(l^2)$ bzgl. der Orthonormalbasis e_1, e_2, \ldots durch die Matrixelemente $a_{ij} = \langle Te_i | Te_j \rangle$ gegeben, dann seine Adjungierte durch die Matrixelemente $b_{ij} = \bar{a}_{ji}$.
- (ii) Für die Adjungierte des Multiplikationsoperators $T_{\varphi} \in L(L^2[a,b])$

$$T_{\varphi}f(x) := \varphi(x)f(x)$$
 mit $\varphi \in L^{\infty}[a, b]$, fix

gilt $T_{\varphi}^* f(x) = \bar{\varphi}(x) f(x)$.

(iii) Die Adjungierte des Hilbert-Schmidt Operators $T \in L(L^2[a,b])$ mit L^2 -Kern K, d.h. des Operators

$$Tf(x) = \int_a^b K(x, y) f(y) dy \qquad (K \in L^2([a, b]^2))$$

hat den Integralkern $\overline{K(y,x)}$.

51. Zweiseitige Shift-Operatoren. Der zweiseitige Rechts-Shift U auf

$$l^{2}(\mathbb{Z}) := \{(\dots, x_{-n}, x_{-n+1}, \dots, x_{-1}, x_{0}, x_{1}, \dots, x_{n-1}, x_{n}, \dots) : x_{k} \in \mathbb{K}, \sum_{-\infty}^{\infty} |x_{k}|^{2} < \infty \}$$

(vgl. Hinweis in Aufgabe 47) ist definiert durch $U(x_n)_n = (x_{n-1})_n$. Bestimme U^* sowie U^*U und UU^* . Ist U unitär? Vergleiche die Situation mit Bsp. 4.3 aus der Vorlesung.

52. Kern, Bild, Adjunktion.

Sei H ein Hilbertraum und $T \in L(H)$. Zeige die folgenden Punkte: (i) $\ker(T^*T) = \ker T$, (ii) $\ker T^* = (\operatorname{im} T)^{\perp}$, (iii) $\overline{\operatorname{im} T^*} = (\ker T)^{\perp}$

53. Operatornorm und Skalarprodukt.

Gibt es einen Operator T auf dem Hilbertraum (\mathbb{R}^2 , $\| \cdot \|_2$) für den

$$\sup_{\|x\|=1} |\langle Tx|x\rangle| < \|T\|$$

gilt? Warum ist das eine interessante Frage?

 $54.\ Kompakte\ Multiplikations operatoren\ auf\ l^2.$

Liefere die Details zu Bsp. 4.10(i) nach, d.h. zeige, dass $T \in L(l^2)$, mit $(Tx_n)_n = (\lambda_n x_n)_n$, $(\lambda_n) \in l^{\infty}$ genau dann kompakt ist, falls $(\lambda_n) \in c_0$ gilt.

55. Spektrum des Adjungierten Operators.

Sei H ein Hilbertraum und $T \in L(H)$. Zeige

$$\lambda \in \rho(T^*) \Leftrightarrow \bar{\lambda} \in \rho(T) \text{ und damit } \sigma(T^*) = \overline{\sigma(T)}.$$

56. Eigenwerte & Spektrum explizit.

Liefere die Details von Bsp. 4.21 nach bzw. zeige folgende Erweiterungen:

- (i) Der Rechts-Shift R = U auf l^2 , $x \mapsto (0, x_1, x_2, ...)$ hat keine Eigenwerte. Für den Links-Shift $L = U^*$ (vgl. Bsp. 4.3) gilt $\sigma_P(L) = B_1(0)$, der offene Einheitsball. Bestimme auch das Spektrum von L und von R.
- (ii) Sei der Operator $T \in L(l^2)$ definiert durch $T(x_1, x_2, x_3, \dots) = (x_1, \frac{1}{2}x_2, \frac{1}{3}x_3, \dots)$. Bestimme *alle* Eigenwerte und Eigenvektoren sowie das Spektrum von T.

- 57. Eigenwerte für Klassen von Operatoren. Beweise Prop. 4.26 aus der Vorlesung, d.h. zeige dass für einen Operator T im Hilbertraum H gilt, dass
 - (i) Ist T normal, dann gilt (a) $\ker T = \ker T^*$, (b) Falls λ Eigenwert von T ist, dann ist $\bar{\lambda}$ Eigenwert von T^* zum selben Eigenvektor, (c) Eigenvektoren zu verschiedenen Operatoren sind orthognal.
 - (ii) Ist T selbstadjunguiert, so sind alle Eigenwerte reell.
 - (iii) Ist T anti-selbstadjunguiert, so sind alle Eigenwerte rein imaginär.
 - (iv) Ist T unitär, so haben alle Eigenwerte Betrag 1.
 - (v) Ist T nicht-negativ, so sind auch alle Eigenwerte nicht-negativ.
- 58. Spektrum von Projektoren.

Sei P_M Projektion auf den abgeschlossenen Teilraum M eines Hilbertraumes H. Berechne das Spektrum von P_M . Tipp: Versuche $(\lambda 1 - P_m)^{-1}$ direkt hinzuschreiben, indem du $1 = P_m + P_{M^{\perp}}$ verwendest.

59. Rang-1-Operatoren.

Liefere die Details von 4.23(iv), (v) aus der Vorlesung nach, d.h. zeige die folgenden Punkte:

- (i) $(f \otimes e^*)^* = e \otimes f^*$
- (ii) Jeder symmetrische Operator T auf dem \mathbb{R}^n hat bzgl. einer Orthonormalbasis aus Eigenvektoren die Darstellung $T = \sum_{i=1}^n \lambda_i e_i \otimes e_i^*$, wobei die λ_i die Eigenwerte zu e_i sind.
- 60. Operatoren mit endlichdimensionalem Bild. Seien E und F normierte Vektorräume. Zeige
 - (i) Die Zuordnung

$$\sum_{i=1}^{n} y_i \otimes f_i: x \mapsto \sum_{i=1}^{n} f_i(x)y_i \qquad (x \in E),$$

wobei $y_i \in F$, $f_i \in E'$ sind, stellt einen stetigen linearen Operator von E nach F mit endlichdimensionalem Bild dar (vgl. Vorlesung 4.24).

- (ii) Die Operatoren aus (i) sind schon alle $T \in L(E, F)$ mit endlichdimensionalem Bild. Tipp: Betrachte dazu die Funktionale $x \mapsto \lambda_i(x)$, wobei $Tx = \sum_{i=1}^n \lambda_i y_i$ auf dem Bildraum $F_1 \subseteq F$ von T, wo $\{y_1, \ldots, y_n\}$ eine Basis ist.
- 61. Spektraldarstellung konkret.

Zeige, dass der lineare Operator $T: L^2[0,1] \to L^2[0,1]$ gegeben durch

$$Tf(x) = \int_0^1 (2xy - x - y + 1)f(y) dy$$

kompakt und selbstadjungiert ist und bestimme seine Spektraldarstellung.