МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УЧРЕЖДЕНИЕ ОБРАЗОВАНИЯ **«БРЕСТСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»**Кафедра высшей математики

ЗАДАЧИ И УПРАЖНЕНИЯ

по курсу «Высшая математика»

для студентов факультета электронно-информационных систем

I семестр

УДК [512.64+514.12](076) ББК 22.11

Настоящее методическое пособие содержит задачи и упражнения по разделам «Элементы линейной алгебры», «Аналитическая геометрия». Представлены краткие теоретические сведения по темам и наборы заданий для аудиторных и индивидуальных работ. Пособие составлено в соответствии с действующей программой для студентов первого курса факультета электронно-информационных систем.

Составители: Каримова Т.И., доцент, к.ф.-м.н.

Лебедь С.Ф., доцент, к.ф.-м.н. **Журавель М.Г.**, ассистент **Гладкий И.И.**, доцент

Дворниченко А.В., старший преподаватель

Рецензент: Мирская Е.И., доцент кафедры математического моделирования учреждения образования «Брестский государственный университет им. А.С. Пушкина», к.ф.-м.н., доцент.

ЭЛЕМЕНТЫ ЛИНЕЙНОЙ АЛГЕБРЫ

1 Матрицы и операции над ними

Прямоугольная таблица, состоящая из $m \times n$ элементов произвольной природы, называется матрицей. Матрицы обозначают прописными буквами латинского алфавита: A, B, C и т.д. и записывают в виде

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \text{ или } A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix},$$

или сокращенно

$$A = (a_{ij}), i = \overline{1, m}, j = \overline{1, n}.$$

 a_{ij} называют элементами матрицы, где i — номер строки, j — номер столбца, в которых стоит элемент. Если элементы матрицы числа, то матрицу называют числовой.

Количество строк и столбцов матрицы определяют ее *размерность*, т.е. матрица, состоящая из m строк и n столбцов, имеет размерность m на n: $A_{m \times n}$.

Две *матрицы равны*, если равны их размерности и равны соответствующие элементы этих матриц.

Матрица, все элементы которой равны нулю, называется *нулевой* и обозначается *O*.

Матрица, у которой число строк равно числу столбцов, называется *квадратной* матрицей. Квадратную матрицу, у которой n строк, называют матрицей порядка n. Элементы a_{11} , a_{22} , a_{33} , ..., a_{nn} квадратной матрицы образуют главную диагональ, элементы a_{1n} , a_{2n-1} , ..., a_{n1} — побочную диагональ.

Квадратная матрица, у которой все элементы, кроме элементов, стоящих на главной диагонали, равны нулю, *называется диагональной*.

Диагональная матрица, у которой каждый элемент главной диагонали равен единице, называется *единичной матрицей* и обозначается *Е*.

Действия над матрицами:

Транспонирование.

Замена строк матрицы соответствующими столбцами называется *транспонированием*. Транспонированную матрицу обозначают A^{T} .

Сложение матриц.

Суммой матриц A и B называется матрица C, каждый элемент которой равен сумме соответствующих элементов матриц A и B, т.е.

$$c_{ij} = a_{ij} + b_{ij}, i = \overline{1, m}, j = \overline{1, n}.$$

Сложение может быть выполнено только для матриц с одинаковой размерностью.

Умножение матрицы на число.

Произведением матрицы A и действительного числа λ называется матрица B, каждый элемент которой равен произведению соответствующего элемента матрицы A на число λ , т.е.

$$b_{ij} = a_{ij} \cdot \lambda, \ i = \overline{1, m}, \ j = \overline{1, n}.$$

Произведение матриц.

Матрица A называется согласованной с матрицей B, если число столбцов матрицы A равно числу строк матрицы B. Например, матрица $A_{m \times n}$ согласована с матрицей $B_{n \times k}$.

Умножение матрицы *A* на матрицу *B* может быть выполнено только тогда, когда матрица *A* согласована с матрицей *B*.

Произведением матрицы $A_{m \times n}$ на матрицу $B_{n \times k}$ называется матрица $C_{m \times k}$, каждый элемент которой c_{ij} равен сумме произведений элементов i-й строки матрицы A на соответствующие элементы j-го столбца матри-

цы
$$B$$
, т.е. $c_{ij} = \sum_{s=1}^{n} a_{is} \cdot b_{sj}, \ i = \overline{1, m}, \ j = \overline{1, k}.$

$$\overline{s=1}$$
Пример 1. Найти произведение матриц $A = \begin{pmatrix} 1 & -1 \\ 0 & -3 \\ 3 & -2 \end{pmatrix}$ и $B = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$.

Решение. Матрица $A_{3\times 2}$ согласована с матрицей $B_{2\times 2}$.

$$A \cdot B = \begin{pmatrix} 1 & -1 \\ 0 & -3 \\ 3 & -2 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 1 \cdot 1 + (-1) \cdot 3 & 1 \cdot 2 + (-1) \cdot 4 \\ 0 \cdot 1 + (-3) \cdot 3 & 0 \cdot 2 + (-3) \cdot 4 \\ 3 \cdot 1 + (-2) \cdot 3 & 3 \cdot 2 + (-2) \cdot 4 \end{pmatrix} = \begin{pmatrix} -2 & -2 \\ -9 & -12 \\ -3 & -2 \end{pmatrix}.$$

Ответ.
$$\begin{pmatrix} -2 & -2 \\ -9 & -12 \\ -3 & -2 \end{pmatrix}$$
.

В общем случае $AB \neq BA$. Если AB = BA, то матрицы A и B называют перестановочными.

Задания для аудиторной работы

1. Найти матрицу, транспонированную матрице *A*. Указать размерности обеих матриц.

2. Вычислить
$$A+B$$
, если $A=\begin{pmatrix}2&-3&4\\7&6&-5\\-1&8&9\end{pmatrix}$, $B=\begin{pmatrix}-1&3&-4\\-7&-5&5\\1&-8&-8\end{pmatrix}$.

3. Вычислить
$$3A + 4B - 2C$$
, если $A = \begin{pmatrix} 1 & 0 \\ 3 & -4 \\ 2 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & -1 \\ 2 & 3 \\ 1 & -5 \end{pmatrix}$, $C = \begin{pmatrix} 3 & 4 \\ 1 & -3 \\ 8 & 6 \end{pmatrix}$.

4. Найти значения m и n, если известно, что: а) $A_{3\times 4}\cdot B_{4\times 5}=C_{m\times n}$;

$$\mathsf{G)} \ \ A_{2\times 3} \cdot B_{m\times n} = C_{2\times 6}.$$

5. Найти произведения АВ и ВА, если это возможно

a)
$$A = \begin{pmatrix} 1 & 0 & 2 \\ -3 & 2 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} -1 & 3 & 1 \\ 0 & 1 & 1 \\ -2 & 1 & 3 \end{pmatrix}$; 6) $A = \begin{pmatrix} 2 & 1 & -2 \\ 3 & -4 & 2 \\ 1 & 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 0 \\ 1 & 1 \\ 0 & -2 \end{pmatrix}$;

B)
$$A = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$$
, $B = \begin{pmatrix} 3 & 4 & 1 \end{pmatrix}$; $A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 2 & -1 & -3 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}$.

6. Вычислить: a)
$$\begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix}^2$$
; б) $\begin{pmatrix} 2 & 1 \\ 1 & 4 \end{pmatrix}^3$.

7. Найти
$$f(A)$$
, если $f(x) = x^2 - 2x$, $A = \begin{pmatrix} 4 & -3 \\ 9 & 1 \end{pmatrix}$.

Задания для индивидуальной работы

8. Вычислить
$$2A - 4B + 3E$$
, если $A = \begin{pmatrix} 1 & 1 & -8 \\ 1 & -4 & 0 \\ 2 & 3 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 2 & -2 & 0 \\ 3 & 1 & 4 \\ -1 & 0 & 0 \end{pmatrix}$.

9. Найти произведения АВ и ВА, если это возможно:

a)
$$A = \begin{pmatrix} 5 & 3 & 7 \\ -1 & 6 & -3 \\ 2 & -4 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 4 & -1 & 3 \\ 4 & -2 & -6 \\ 2 & 0 & 3 \end{pmatrix}$; 6) $A = \begin{pmatrix} 1 & 0 & 2 & -1 \\ 3 & 1 & 0 & 2 \end{pmatrix}$, $B = \begin{pmatrix} 2 & 1 \\ 1 & 0 \\ 3 & -2 \\ 4 & -1 \end{pmatrix}$.

10. Вычислить:
$$\begin{pmatrix} 1 & -1 & 1 \\ 2 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}^2 .$$

11. Проверить справедливость равенства $(A + B)^2 = A^2 + 2A \cdot B + B^2$ для матриц $A = \begin{pmatrix} 3 & -1 \\ 5 & -6 \end{pmatrix}, B = \begin{pmatrix} 2 & 4 \\ 8 & 3 \end{pmatrix}.$

12. Найти *f*(*A*), если:

a)
$$f(x) = x^2 - 2x$$
, $A = \begin{pmatrix} 4 & -3 \\ 5 & 1 \end{pmatrix}$; 6) $f(x) = 2x^2 - x + 5$, $A = \begin{pmatrix} 1 & -2 & 3 \\ 2 & -4 & 1 \\ 3 & -5 & 2 \end{pmatrix}$.

Ответы. 2. $E_{3\times 3}$. 3. $\begin{pmatrix} 1 & -12 \\ 15 & 6 \\ -6 & -29 \end{pmatrix}$. 5. a) $AB = \begin{pmatrix} -5 & 5 & 7 \\ 1 & -6 & 2 \\ -2 & 1 & 3 \end{pmatrix}$,

$$BA = \begin{pmatrix} -10 & 6 & 2 \\ -3 & 2 & 2 \\ -5 & 2 & 0 \end{pmatrix};$$
 6) $AB = \begin{pmatrix} 5 & 5 \\ 2 & -8 \\ 2 & 0 \end{pmatrix};$ B) $AB = \begin{pmatrix} 3 & 4 & 1 \\ -3 & -4 & -1 \\ 6 & 8 & 2 \end{pmatrix},$ $BA = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 6 \\ 8 \\ 1 \end{pmatrix};$ B) $AB = \begin{pmatrix} 3 & 4 & 1 \\ -3 & -4 & -1 \\ 6 & 8 & 2 \\ 2 & 0 \\ 3 & 4 & 1 \\ 6 & 8 & 2 \\ 6 & 8 & 2 \\ 6 & 8 & 2 \\ 6 & 8 & 2 \\ 6 & 8 & 2 \\ 7 & 1 & 1 & 1 \\ 6 & 8 & 2 \\ 7 & 1 & 1 & 1 \\ 6 & 8 & 2 \\ 7 & 1 & 1 & 1 \\ 6 & 8 & 2 \\ 7 & 1 & 1 & 1 \\ 6 & 8 & 2 \\ 7 & 1 & 1 & 1 \\ 7$

r)
$$AB = \begin{pmatrix} 12 \\ -1 \end{pmatrix}$$
. **6.** a) $\begin{pmatrix} 7 & 0 \\ 0 & 7 \end{pmatrix}$; б) $\begin{pmatrix} 16 & 29 \\ 29 & 74 \end{pmatrix}$. **7.** $\begin{pmatrix} -19 & -9 \\ 27 & -28 \end{pmatrix}$. **8.** $\begin{pmatrix} -5 & 10 & -16 \\ -10 & -11 & -16 \\ 8 & 6 & 3 \end{pmatrix}$

9. a)
$$AB = \begin{pmatrix} 18 & -11 & -24 \\ 14 & -11 & -48 \\ -6 & 6 & 33 \end{pmatrix}$$
, $BA = \begin{pmatrix} 27 & -6 & -22 \\ 10 & 24 & -28 \\ 16 & -6 & -11 \end{pmatrix}$; 6) $AB = \begin{pmatrix} 4 & -2 \\ 15 & 1 \end{pmatrix}$,

$$BA = \begin{pmatrix} 5 & 1 & 4 & 0 \\ 1 & 0 & 2 & -1 \\ -3 & -2 & 6 & -7 \\ 1 & -1 & 8 & -6 \end{pmatrix}.$$
 10.
$$\begin{pmatrix} -2 & 0 & 0 \\ 1 & -1 & 2 \\ 1 & 1 & 0 \end{pmatrix}.$$
 12. a)
$$\begin{pmatrix} -7 & -9 \\ 15 & -16 \end{pmatrix};$$

$$6) \begin{pmatrix} 16 & -16 & 11 \\ -8 & 23 & 7 \\ -5 & 13 & 19 \end{pmatrix}.$$

2 Определители

Основной числовой характеристикой квадратной матрицы является определитель (детерминант). Определитель квадратной матрицы A_{nxn} обозначают: Δ , det A, |A|.

Определитель первого порядка матрицы A_{1x1} равен ее элементу a_{11} : $\det A = a_{11}$.

Определитель второго порядка матрицы A_{2x2} записывают в виде $\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$ и вычисляют по правилу:

$$\det A = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} = a_{11}a_{22} - a_{12}a_{21}.$$

Определитель третьего порядка матрицы A_{3x3} записывают в виде

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
 и вычисляют по правилу:

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$
 и вычисляют по правилу:
$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{21}a_{32}a_{13} - a_{13}a_{21}a_{32}a_{33} + a_{12}a_{23}a_{31} + a_{21}a_{32}a_{13} - a_{22}a_{33}a_{31} + a_{21}a_{32}a_{33} + a_{21}a_{32}a_{33} - a_{32}a_{33} + a_{22}a_{33}a_{33} + a_{22}a_{33}a_{33} + a_{23}a_{33}a_{33} - a_{33}a_{33}a_{33} - a_{33}a_{33}a_{33}a_{33} - a_{33}a_{33}a_{33}a_{33}a_{33}a_{33} - a_{33}a$$

$$-a_{13}a_{22}a_{31}-a_{12}a_{21}a_{33}-a_{32}a_{23}a_{11}.$$

 $\mathit{Muhopom}$ элемента a_{ij} определителя порядка n называется определитель порядка (n-1), полученный из данного вычеркиванием i-й строки и *і*-го столбца.

Минор элемента a_{ii} обозначают M_{ii} .

Алгебраическим дополнением элемента а_{іі} называется число

$$A_{ij} = \left(-1\right)^{i+j} \cdot M_{ij}.$$

Теорема Лапласа (теорема разложения). Значение определителя равно сумме произведений элементов некоторой строки (столбца) на их алгебраические дополнения.

Например, разложение определителя третьего порядка по элементам первой строки имеет вид:

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11} \cdot A_{11} + a_{12} \cdot A_{12} + a_{13} \cdot A_{13} =$$

$$= a_{11} \cdot \left(-1\right)^{1+1} \cdot \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + a_{12} \cdot \left(-1\right)^{1+1} \cdot \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13} \cdot \left(-1\right)^{1+1} \cdot \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}.$$

$$\mathbf{\Pi} \mathbf{P} \mathbf{U} \mathbf{M} \mathbf{e} \mathbf{p} \mathbf{2}. \text{ Вычислить определитель} \begin{vmatrix} -2 & 3 & -5 & 4 \\ 2 & 0 & 3 & -1 \\ -1 & 2 & 4 & 0 \\ 3 & 1 & 2 & -1 \end{vmatrix}.$$

Решение. Вычислим определитель двумя способами. *I способ.* Разложим определитель по элементам второй строки:

$$\Delta = 2 \cdot (-1)^{2+1} \begin{vmatrix} 3 & -5 & 4 \\ 2 & 4 & 0 \\ 1 & 2 & -1 \end{vmatrix} + 3 \cdot (-1)^{2+3} \begin{vmatrix} -2 & 3 & 4 \\ -1 & 2 & 0 \\ 3 & 1 & -1 \end{vmatrix} + (-1) \cdot (-1)^{2+4} \begin{vmatrix} -2 & 3 & -5 \\ -1 & 2 & 4 \\ 3 & 1 & 2 \end{vmatrix} =$$

$$= -2(-12 - 10) - 3(4 - 3 - 28) - (42 + 35) = 44 + 81 - 77 = 48.$$

II способ. Выполним следующие операции. Элементы четвертой строки умножим на (–3) и сложим с соответствующими элементами первой строки; затем элементы четвертой строки умножим на (–2) и сложим с элементами третьей строки. Получим определитель, равный данному, у которого во втором столбце все элементы, кроме четвертого, будут равны нулю.

$$\Delta = \begin{vmatrix} -2 & 3 & -5 & 4 \\ 2 & 0 & 3 & -1 \\ -1 & 2 & 4 & 0 \\ 3 & 1 & 2 & -1 \end{vmatrix} = \begin{vmatrix} -11 & 0 & -11 & 7 \\ 2 & 0 & 3 & -1 \\ -7 & 0 & 0 & 2 \\ 3 & 1 & 2 & -1 \end{vmatrix}.$$

Полученный определитель раскладываем по элементам второго столбца.

$$\Delta = 1 \cdot (-1)^{4+2} \begin{vmatrix} -11 & -11 & 7 \\ 2 & 3 & -1 \\ -7 & 0 & 2 \end{vmatrix} = \begin{vmatrix} 3 & 10 & 7 \\ 0 & 0 & -1 \\ -3 & 6 & 2 \end{vmatrix} = (-1)(-1)^{2+3} \begin{vmatrix} 3 & 10 \\ -3 & 6 \end{vmatrix} = 18 + 30 = 48.$$

Чтобы получить нули во второй строке, надо элементы третьего столбца умножить на 2 и сложить с элементами первого столбца, затем умножаем элементы третьего столбца на 3 и складываем с элементами второго столбца.

Ответ. 48.

Задания для аудиторной работы

13. Вычислить определители:

a)
$$\begin{vmatrix} -1 & 3 \\ 2 & 4 \end{vmatrix}$$
; б) $\begin{vmatrix} 1 & -3 \\ 2 & -4 \end{vmatrix}$; в) $\begin{vmatrix} 0 & 3 \\ 0 & 5 \end{vmatrix}$; г) $\begin{vmatrix} 1 & 3 \\ 0 & 0 \end{vmatrix}$; д) $\begin{vmatrix} \cos x & -\sin x \\ \sin x & \cos x \end{vmatrix}$.

14. Вычислить определители:a)
$$\begin{vmatrix} 1 & 2 & 3 \\ 2 & 2 & 4 \\ 3 & 1 & 2 \end{vmatrix}$$
; $\begin{vmatrix} -3 & 4 & -5 \\ 0 & 2 & 2 \\ 2 & -1 & 0 \end{vmatrix}$.

15. Для данного определителя
$$\begin{vmatrix} 1 & -2 & 1 \\ 3 & 1 & -5 \\ 4 & -2 & 5 \end{vmatrix}$$
 найти M_{11} ; M_{23} ; M_{32} ; A_{12} ; A_{22} ; A_{31} .

16. Вычислить определители, используя теорему разложения:

a)
$$\begin{vmatrix} 1 & 2 & 3 \\ 0 & 2 & 1 \\ 2 & -1 & 0 \end{vmatrix}$$
;

17. Вычислить определители, используя их свойства:

a)
$$\begin{vmatrix} x^2 + a^2 & ax & 1 \\ y^2 + a^2 & ay & 1 \\ z^2 + a^2 & az & 1 \end{vmatrix}$$
;

18. Вычислить определители методом приведения их к треугольному виду:

a)
$$\begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 2 & 5 & 9 \\ 0 & 0 & 3 & 7 \\ -2 & -4 & -6 & 0 \end{vmatrix}$$
;

19. Вычислить определители:

a)
$$\begin{vmatrix} 2 & 1 & 5 & 1 \\ 3 & 2 & 1 & 2 \\ 1 & 2 & 3 & -4 \\ 1 & 1 & 5 & 1 \end{vmatrix}$$
;

$$6) \begin{vmatrix} 2 & 1 & 1 & 8 \\ 1 & -3 & -6 & 9 \\ 0 & 2 & 2 & -5 \\ 1 & 4 & 6 & 0 \end{vmatrix}.$$

Задания для индивидуальной работы

20. Вычислить определители:

а)
$$\begin{vmatrix} 2 & -1 \\ 3 & 5 \end{vmatrix}$$
; б) $\begin{vmatrix} 2 & 9 \\ -6 & 2 \end{vmatrix}$; в) $\begin{vmatrix} 5 & 0 \\ 2 & -3 \end{vmatrix}$; г) $\begin{vmatrix} 0 & -8 \\ 3 & 4 \end{vmatrix}$; д) $\begin{vmatrix} 4 & 6 \\ 2 & 3 \end{vmatrix}$; е) $\begin{vmatrix} -3 & 6 \\ 4 & -8 \end{vmatrix}$.

21. Объяснить данные равенства

a)
$$\begin{vmatrix} 2 & -1 & 3 \\ 0 & 0 & 0 \\ 3 & 4 & 1 \end{vmatrix} = 0$$

$$\begin{bmatrix}
1 & 4 & -1 \\
2 & 4 & 12 \\
3 & 1 & 4
\end{bmatrix} = 2 \begin{vmatrix}
1 & 4 & -1 \\
1 & 2 & 6 \\
3 & 1 & 4
\end{vmatrix};$$

a)
$$\begin{vmatrix} 2 & -1 & 3 \\ 0 & 0 & 0 \\ 3 & 4 & 1 \end{vmatrix} = 0;$$
 6) $\begin{vmatrix} 1 & 4 & -1 \\ 2 & 4 & 12 \\ 3 & 1 & 4 \end{vmatrix} = 2 \begin{vmatrix} 1 & 4 & -1 \\ 1 & 2 & 6 \\ 3 & 1 & 4 \end{vmatrix};$ B) $\begin{vmatrix} 1 & 1 & -3 \\ 2 & 2 & 5 \\ 1 & -2 & 4 \end{vmatrix} = \begin{vmatrix} 1 & 1 & -3 \\ 2 & 2 & 5 \\ 0 & -3 & 7 \end{vmatrix};$

r)
$$\begin{vmatrix} 1 & 5 & -2 \\ 2 & -1 & 4 \\ 3 & 0 & -2 \end{vmatrix} = \begin{vmatrix} 1 & 5 & -2 \\ 0 & -11 & 8 \\ 3 & 0 & -2 \end{vmatrix}$$
;

22. Вычислить определители:

a)
$$\begin{vmatrix} -1 & 2 & 0 \\ 3 & 1 & 4 \\ 2 & -3 & 5 \end{vmatrix}$$
;

б)
$$\begin{vmatrix} a^2 + 1 & ab & ac \\ ab & b^2 + 1 & bc \\ ac & bc & c^2 + 1 \end{vmatrix}$$
.

23. Решить уравнения:

a)
$$\begin{vmatrix} \sin 8x & \sin 5x \\ \cos 8x & \cos 5x \end{vmatrix} = 0$$
; 6) $\begin{vmatrix} 3 & x & -4 \\ 2 & -1 & 3 \\ x+10 & 1 & 1 \end{vmatrix} = 0$; B) $\begin{vmatrix} 2 & -1 & 2 \\ 3 & 5 & 3 \\ 1 & 6 & x+5 \end{vmatrix} = 0$.

24. Решить неравенства:

a)
$$\begin{vmatrix} 3 & -2 & 1 \\ 1 & x & -2 \\ -1 & 2 & -1 \end{vmatrix}$$
 < 1; 6) $\begin{vmatrix} 2 & x+2 & -1 \\ 1 & 1 & -2 \\ 5 & -3 & x \end{vmatrix}$ > 0.

25. Вычислить определитель третьего порядка а) разложив его по элементам *і*-й строки; б) получив предварительно нули в *і*-ом столбце.

a)
$$\begin{vmatrix} 1 & -2 & 3 \\ 2 & 6 & -5 \\ 2 & 8 & 4 \end{vmatrix}$$
, $i = 2$; 6) $\begin{vmatrix} 1 & 4 & 5 \\ 2 & 3 & 1 \\ 7 & 5 & 2 \end{vmatrix}$, $i = 3$; B) $\begin{vmatrix} -1 & 2 & 4 \\ 1 & 5 & 7 \\ -8 & 3 & 6 \end{vmatrix}$, $i = 1$.

26. Вычислить определители:

a)
$$\begin{vmatrix} 7 & 3 & 2 & 6 \\ 8 & -9 & 4 & 9 \\ 7 & -2 & 7 & 3 \\ 5 & -3 & 3 & 4 \end{vmatrix}$$
; b) $\begin{vmatrix} -3 & 2 & 1 & 0 \\ 2 & -2 & 1 & 4 \\ 4 & 0 & -1 & 2 \\ 3 & 1 & -1 & 4 \end{vmatrix}$; b) $\begin{vmatrix} 1 & 1 & -2 & 0 \\ 3 & 6 & -2 & 5 \\ 1 & 0 & 6 & 4 \\ 2 & 3 & 5 & -1 \end{vmatrix}$; r) $\begin{vmatrix} 2 & 1 & 5 & 1 \\ 3 & 2 & 1 & 2 \\ 1 & 2 & 3 & -4 \\ 1 & 1 & 5 & 1 \end{vmatrix}$; d) $\begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{vmatrix}$; e) $\begin{vmatrix} 2 & 1 & 1 & 8 \\ 1 & -3 & -6 & 9 \\ 0 & 2 & 2 & -5 \\ 1 & 4 & 6 & 0 \end{vmatrix}$.

Ответы. 14. a) 4; б) 30. **16.** a) -7; б) -8. **17.** a) a(x-y)(y-z)(x-z); б) -18. **18.** a) 48; б) 20. **19.** a) 54; б) -27. **22.** a) -31; б) $a^2 + b^2 + c^2 + 1$. **25.** a) 112; б) –42; в) 39. **26.** a) 150; б) 38; в) –205; г) 54; д) 16; е) 27.

3 Обратная матрица. Ранг матрицы

Квадратная матрица называется невырожденной, если ее определитель не равен нулю. Для нее существует обратная матрица A^{-1} . Справедливо равенство $A^{-1} \cdot A = A \cdot A^{-1} = E$, где E – единичная матрица.

Обратная матрица существует тогда и только тогда, когда матрица А невырожденная.

Обратную матрицу A^{-1} находят по формуле:

$$A^{-1} = \frac{1}{\det A} \cdot \tilde{A},\tag{1}$$

где матрица $ilde{A}$ называется *присоединенной* или *союзной* матрицей. $ilde{A}$ состоит из алгебраических дополнений элементов транспонированной

матрицы
$$A$$
. Например, если $A=\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$ и $\det A\neq 0$, то формула

для A^{-1} будет иметь вид:

$$A^{-1} = \frac{1}{\det A} \begin{pmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{pmatrix}.$$

Пример 3. Найти матрицу, обратную матрице $A = \begin{pmatrix} 2 & 1 & -1 \\ 3 & 1 & -2 \\ 1 & 0 & 1 \end{pmatrix}$.

Решение. Так как определитель матрицы $\det A = -2 \neq 0$ (проверьте самостоятельно), то матрица A^{-1} существует и единственна. Используя формулу (1), найдем матрицу A^{-1} .

$$A_{11} = (-1)^{1+1} \begin{vmatrix} 1-2 \\ 0+1 \end{vmatrix} = 1; \qquad A_{12} = (-1)^{1+2} \begin{vmatrix} 3 & -2 \\ 1 & 1 \end{vmatrix} = -5; \qquad A_{13} = (-1)^{1+3} \begin{vmatrix} 3 & 1 \\ 1 & 0 \end{vmatrix} = -1;$$

$$A_{21} = (-1)^{2+1} \begin{vmatrix} 1 & -1 \\ 0 & 1 \end{vmatrix} = -1; \qquad A_{22} = (-1)^{2+2} \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} = 3; \qquad A_{23} = (-1)^{2+3} \begin{vmatrix} 2 & 1 \\ 1 & 0 \end{vmatrix} = 1;$$

$$A_{31} = (-1)^{3+1} \begin{vmatrix} 1 & -1 \\ 1 & -2 \end{vmatrix} = -1; \qquad A_{32} = (-1)^{3+2} \begin{vmatrix} 2 & -1 \\ 3 & -2 \end{vmatrix} = 1; \qquad A_{33} = (-1)^{3+3} \begin{vmatrix} 2 & 1 \\ 3 & 1 \end{vmatrix} = -1.$$

Обратная матрица A^{-1} будет иметь вид: $A^{-1} = -\frac{1}{2} \cdot \begin{pmatrix} 1 & -1 & -1 \\ -5 & 3 & 1 \\ -1 & 1 & -1 \end{pmatrix}$.

Выполним проверку. По определению $A \cdot A^{-1} = A^{-1} \cdot A = E$. Найдем $A^{-1} \cdot A$

$$A^{-1} \cdot A = -\frac{1}{2} \cdot \begin{pmatrix} 1 & -1 & -1 \\ -5 & 3 & 1 \\ -1 & 1 & -1 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & -1 \\ 3 & 1 & -2 \\ 1 & 0 & 1 \end{pmatrix} = -\frac{1}{2} \cdot \begin{pmatrix} -2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -2 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = E.$$

Аналогично можно показать, что $A \cdot A^{-1} = E$.

Ответ.
$$A^{-1} = -\frac{1}{2} \cdot \begin{pmatrix} 1 & -1 & -1 \\ -5 & 3 & 1 \\ -1 & 1 & -1 \end{pmatrix}$$
.

Элементарными преобразованиями матрицы являются:

- 1) транспонирование матрицы;
- 2) перестановка двух строк (столбцов) матрицы;
- 3) умножение всех элементов какой-либо строки (какого-либо столбца) на число, отличное от нуля;
- 4) сложение элементов какой-либо строки (какого-либо столбца) с соответствующими элементами другой строки (столбца) умноженными на некоторое число.

Рангом матрицы называется наивысший порядок отличного от нуля минора.

Элементарные преобразования не изменяют ранг матрицы.

Задания для аудиторной работы

27. Найти матрицы, обратные данным:

28. Решить матричные уравнения:

a)
$$\begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix}$$
 \cdot $X = \begin{pmatrix} 2 & 0 \\ -1 & 3 \end{pmatrix}$; 6) $X \cdot \begin{pmatrix} -1 & 1 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ -1 & 3 \end{pmatrix}$;
B) $\begin{pmatrix} 1 & -2 & 3 \\ 2 & 3 & -1 \\ 0 & -2 & 1 \end{pmatrix}$ \cdot $X = \begin{pmatrix} 7 \\ 0 \\ 7 \end{pmatrix}$; $\Gamma \cdot \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ \cdot $X \cdot \begin{pmatrix} 3 & -2 \\ 5 & -4 \end{pmatrix} = \begin{pmatrix} 11 & -8 \\ 41 & -36 \end{pmatrix}$.

29. Найти ранг матриц методом окаймляющих миноров и указать один из базисных миноров:

a)
$$\begin{pmatrix} 3 & -1 & 2 \\ 4 & -3 & 3 \\ 1 & 3 & 0 \end{pmatrix}$$
; 6) $\begin{pmatrix} 3 & -1 & 2 \\ 4 & -3 & 3 \\ 1 & 3 & 2 \end{pmatrix}$.

30. Найти ранг матриц:

Задания для индивидуальной работы

31. Найти матрицы, обратные данным: a)
$$\begin{pmatrix} 12 & 1 \\ -3 & 5 \end{pmatrix}$$
; б) $\begin{pmatrix} 1 & 2 & -5 \\ 1 & -3 & 3 \\ 1 & 1 & -2 \end{pmatrix}$.

32. Решить матричные уравнения:

33. Решить матричное уравнение XA - 2B = E, если

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 2 & 9 & 0 \\ 3 & 4 & -1 \end{pmatrix}; B = \begin{pmatrix} 1 & 3 & -2 \\ -1 & 2 & 0 \\ 3 & -1 & -4 \end{pmatrix}.$$

34. Найти ранг матриц:

a)
$$\begin{pmatrix} 1 & -3 & 1 & -14 & 22 \\ -2 & 1 & 3 & 3 & -9 \\ -4 & -3 & 11 & -19 & 17 \end{pmatrix}$$
; $6 \begin{pmatrix} 2 & 1 & 3 & -1 \\ 3 & -1 & 2 & 0 \\ 1 & 3 & 4 & -2 \\ 4 & -3 & 1 & 1 \end{pmatrix}$; B) $\begin{pmatrix} 1 & 7 & 17 & 3 \\ 0 & 4 & 10 & 1 \\ 10 & 18 & 40 & 17 \\ 2 & 8 & 10 & 0 \end{pmatrix}$.

35. Найти ранг матрицы при различных значениях λ : $\begin{bmatrix} 1 & 2 & -1 & 0 \\ 3 & -1 & -2 & 2 \\ 2 & 3 & -1 & 0 \\ 1 & -1 & 0 & \lambda \end{bmatrix}$.

Ответы. 27. б) не существует; в)
$$\frac{1}{10}$$
 $\begin{pmatrix} 3 & 2 & -1 \\ -4 & -6 & 8 \\ 5 & 0 & -5 \end{pmatrix}$.

28. a)
$$\begin{pmatrix} -3 & 3 \\ -1 & 3 \end{pmatrix}$$
; б) $\begin{pmatrix} -2 & 2 \\ 1 & 2 \end{pmatrix}$; в) $\begin{pmatrix} 6 \\ -5 \\ -3 \end{pmatrix}$; г) $\begin{pmatrix} -12 & 11 \\ 7 & -5 \end{pmatrix}$. **29.** a) 2; б) 3.

31. a)
$$\frac{1}{63} \begin{pmatrix} 5 & -1 \\ 3 & 12 \end{pmatrix}$$
; б) $-\frac{1}{7} \begin{pmatrix} 3 & -1 & -9 \\ 5 & 3 & -8 \\ 4 & 1 & -5 \end{pmatrix}$ **30.** a) 3; б) 3.

31. a)
$$\frac{1}{63} \begin{pmatrix} 5 & 3 \\ -1 & 12 \end{pmatrix}$$
; 6) $-\frac{1}{27} \begin{pmatrix} -9 & -9 & -9 \\ 1 & 7 & -8 \\ 4 & 1 & -5 \end{pmatrix}$. **32.** a) $\frac{1}{10} \begin{pmatrix} 10 & 26 \\ -10 & -7 \end{pmatrix}$.

33.
$$A^{-1} = -\frac{1}{9} \begin{pmatrix} 9 & 0 & 0 \\ 2 & -1 & 0 \\ -19 & -4 & 9 \end{pmatrix}, X = -\frac{1}{9} \begin{pmatrix} 61 & 10 & -36 \\ 28 & -5 & 0 \\ 75 & 30 & -63 \end{pmatrix}.$$

35.
$$r = 3$$
 при $\lambda = 1$, $r = 4$ при $\lambda \neq 1$.

4 Системы линейных алгебраических уравнений. Метод Крамера. Метод обратной матрицы

Система вида:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1; \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2; \\ \vdots & \vdots & \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m. \end{cases}$$

называется системой линейных алгебраических уравнений (СЛАУ). Числа $a_{ij},\ i=\overline{1,m},\ j=\overline{1,n}$ называют коэффициентами системы, числа b_i свободными членами.

Рассмотрим систему:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1; \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2; \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3. \end{cases}$$
 (2)

Систему (2) можно записать в виде матричного уравнения:

$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$
 или $AX = B$.

Теорема. Система, состоящая из n уравнений и содержащая n неизвестных, имеет единственное решение тогда и только тогда, когда основная матрица системы является невырожденной, т.е det $A \neq 0$.

Если выполнены условия теоремы, то решение системы (2) можно найти по *формулам Крамера*:

$$x_1 = \frac{\Delta_1}{\Delta}; \ x_2 = \frac{\Delta_2}{\Delta}; \ x_3 = \frac{\Delta_3}{\Delta},$$

где $\Delta = \det A$; Δ_j , $j = \overline{1,3}$, получены из Δ заменой j-го столбца столбцом свободных членов.

Следствие. Если $\det A = 0$, то система либо несовместна, либо имеет бесконечно много решений.

Метод обратной матрицы.

Рассмотрим систему (2) как матричное уравнение

$$A \cdot X = B$$
.

Если матрица A невырожденная (det $A \neq 0$), то для нее существует обратная матрица A^{-1} . Умножив обе части уравнения $A \cdot X = B$ на матрицу A^{-1} слева, получим решение этого уравнения:

$$A^{-1}\cdot A\cdot X=A^{-1}\cdot B$$
 или $\left(A^{-1}\cdot A\right)\cdot X=A^{-1}\cdot B,$ $E\cdot X=A^{-1}\cdot B$ $X=A^{-1}B$

Пример 4. Решить методом обратной матрицы систему $\begin{cases} 2x + y - z = 0, \\ x + y + z = 3, \\ x - y = 1. \end{cases}$

Решение. Запишем систему в виде матричного уравнения AX = B, где

$$A = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & 0 \end{pmatrix}, X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}, B = \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix}.$$

Найдем определитель матрицы А.

$$\det A = \begin{vmatrix} 2 & 1 & -1 \\ 1 & 1 & 1 \\ 1 & -1 & 0 \end{vmatrix} = 2 \cdot \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} + (-1) \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = 2 + 1 + 2 = 5 \neq 0.$$

Т.к. $\det A \neq 0$, то для матрицы A существует обратная матрица A^{-1} . Найдем ее по формуле (1).

$$A_{11} = (-1)^{1+1} \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} = 1; \qquad A_{12} = (-1)^{1+2} \begin{vmatrix} 1 & 1 \\ 1 & 0 \end{vmatrix} = 1; \qquad A_{13} = (-1)^{1+3} \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -2;$$

$$A_{21} = (-1)^{2+1} \begin{vmatrix} 1 & -1 \\ -1 & 0 \end{vmatrix} = 1; \qquad A_{22} = (-1)^{2+2} \begin{vmatrix} 2 & 1 \\ 1 & 0 \end{vmatrix} = 1; \qquad A_{23} = (-1)^{2+3} \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} = 3;$$

$$A_{31} = (-1)^{3+1} \begin{vmatrix} 1 & -1 \\ 1 & 1 \end{vmatrix} = 2; \qquad A_{32} = (-1)^{3+2} \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} = -3; \qquad A_{33} = (-1)^{3+3} \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = 1;$$

$$A^{-1} = \frac{1}{5} \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & -3 \\ -2 & 3 & 1 \end{pmatrix}.$$

Решение системы найдем по формуле $X = A^{-1}B$, т.е.

$$X = \frac{1}{5} \cdot \begin{pmatrix} 1 & 1 & 2 \\ 1 & 1 & -3 \\ -2 & 3 & 1 \end{pmatrix} \cdot \begin{pmatrix} 0 \\ 3 \\ 1 \end{pmatrix} = \frac{1}{5} \cdot \begin{pmatrix} 0+3+2 \\ 0+3-3 \\ 0+9+1 \end{pmatrix} = \frac{1}{5} \cdot \begin{pmatrix} 5 \\ 0 \\ 10 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}.$$

Ответ. x = 1, y = 0, z = 2.

Задания для аудиторной работы

36. Решить системы по формулам Крамера:

a)
$$\begin{cases} x+y=1; \\ x-y=2. \end{cases}$$
 6) $\begin{cases} x-3y+z=2, \\ 2x+y+3z=3, \\ 2x-y-2z=8. \end{cases}$ B) $\begin{cases} 3x+y+2z=-4, \\ x-2y-z=-1, \\ 2x+3y+2z=0. \end{cases}$

37. Решить системы матричным методом:

Задания для индивидуальной работы

38. Решить системы 1) по формулам Крамера; 2) матричным методом:

$$\begin{cases} 2x+4y+z=4,\\ 3x+6y+2z=4,\\ 4x-y-3z=1. \end{cases} \qquad \qquad \begin{cases} x-2y+4z=-12;\\ 2x+2z=-2;\\ 4x-2y-z=9. \end{cases}$$

$$\begin{cases} 2x-y+z=3;\\ -x+3y+2z=-2;\\ 4x-2y-z=9. \end{cases} \qquad \qquad \\ \begin{cases} x+2y+3z=6;\\ 3x+5y+2z=10. \end{cases} \end{cases}$$

$$\begin{cases} x+2y+3z=6;\\ 4x+y+4z=9;\\ 3x+5y+2z=10. \end{cases}$$

$$\begin{cases} 3x_1+5x_2-3x_3+2x_4=2;\\ 4x_1-2x_2+5x_3+3x_4=12;\\ 7x_1+8x_2-x_3+5x_4=9;\\ 6x_1+4x_2+5x_3+3x_4=8. \end{cases}$$

Ответы. 36. a)
$$\left(\frac{3}{2}; -\frac{1}{2}\right)$$
; б) (3; 0; -1); в) (0; 2; -3). **37.** a) (1; 2; 3); б) (2; 0; -2). **38.** a) (-2; 3; -4); б) (2; 1; -3); в) (2,4; 0,8; -1); г) (1; 1; 1); д) (1; 1; 1); е) (1; -1; 0; 2).

5 Системы линейных алгебраических уравнений. Метод Гаусса. Однородные системы

Теорема (Кронекера-Капелли). Для того чтобы система линейных алгебраических уравнений была совместной, необходимо и достаточно, чтобы ранг основной матрицы системы был равен рангу расширенной матрицы.

Решение системы *методом Гаусса* (*методом последовательных ис-ключений*) состоит из двух этапов: прямой и обратный ход метода Гаусса.

Прямой ход метода Гаусса заключается в том, что с помощью элементарных преобразований строк или используя правило «прямоугольника» расширенная матрица системы приводится к ступенчатому виду.

На втором этапе (обратный ход) из системы уравнений, соответствующей ступенчатой матрице, последовательно, начиная с последнего уравнения, находят (если это возможно) решение системы.

Пример 5. Решить систему методом Гаусса
$$\begin{cases} x-2y+z=3; \\ -2x+z=-1; \\ x+4y+3z=15. \end{cases}$$

Решение. Составим расширенную матрицу системы и с помощью элементарных преобразований строк приведем ее к ступенчатому виду:

$$\begin{pmatrix} 1 & -2 & 1 & 3 \\ -2 & 0 & 1 & -1 \\ 1 & 4 & 3 & 15 \end{pmatrix}^{(1)} \begin{pmatrix} 1 & -2 & 1 & 3 \\ 0 & -4 & 3 & 5 \\ 0 & 6 & 2 & 12 \end{pmatrix}^{(2)} \begin{pmatrix} 1 & -2 & 1 & 3 \\ 0 & -4 & 3 & 5 \\ 0 & 3 & 1 & 6 \end{pmatrix}^{(3)} \sim \begin{pmatrix} 1 & -2 & 1 & 3 \\ 0 & -4 & 3 & 5 \\ 0 & 0 & 13 & 39 \end{pmatrix}^{(4)} \begin{pmatrix} 1 & -2 & 1 & 3 \\ 0 & -4 & 3 & 5 \\ 0 & 0 & 1 & 3 \end{pmatrix} .$$

- (2): элементы первой и второй строки переписываем без изменений, а элементы третьей строки разделим на 2.
- (3): элементы первой строки переписываем без изменений, элементы второй строки (их переписываем в новую матрицу без изменений) умножаем на 3 и складываем с соответствующими элементами третьей строки, умноженными на 4 ($(-4) \cdot 3 + 3 \cdot 4 = 0$, $3 \cdot 3 + 1 \cdot 4 = 13$, $5 \cdot 3 + 6 \cdot 4 = 39$ получаем третью строку новой матрицы: 0; 0; 13; 39).
- (4): элементы первой и второй строки переписываем без изменений, а элементы третьей строки разделим на 13.

Полученной ступенчатой матрице соответствует система:

$$\begin{cases} x - 2y + z = 3; \\ -4y + 3z = 5; \\ z = 3. \end{cases}$$

Из последнего уравнения z=3. Подставим найденное значение z во второе уравнение: $-4y+3\cdot 3=5$, следовательно y=1. Полученные значения z и y подставим в первое уравнение: $x-2\cdot 1+1\cdot 3=3$. Отсюда x=2.

Ответ.
$$x = 2$$
, $y = 1$, $z = 3$.

Система линейных алгебраических уравнений называется *однородной*, если все свободные члены этой системы равны нулю.

Теорема. Однородная система, состоящая из n уравнений и содержащая n неизвестных, имеет ненулевое решение тогда и только тогда, когда основная матрица системы вырожденная, т.е. $\det A = 0$.

Пример 6. Решить систему уравнений
$$\begin{cases} 2x + 2y - z = 0, \\ 5x + 4y - 6z = 0, \\ 3x + 2y - 5z = 0. \end{cases}$$

Решение. Найдем определитель основной матрицы системы:

$$\begin{vmatrix} 2 & 2 & -1 \\ 5 & 4 & -6 \\ 3 & 2 & -5 \end{vmatrix} = 2 \cdot (4 \cdot (-5) - 2 \cdot (-6)) - 2 \cdot (5 \cdot (-5) - 3 \cdot (-6)) - 1 \cdot (5 \cdot 2 - 3 \cdot 4) = 0.$$

Т.к. определитель равен нулю, то система имеет ненулевое решение. Для решения системы воспользуемся методом Гаусса. Поскольку система однородная, то к ступенчатому виду будем приводить основную матрицу системы:

$$\begin{pmatrix} 2 & 2 & -1 \\ 5 & 4 & -6 \\ 3 & 2 & -5 \end{pmatrix} \sim \begin{pmatrix} 2 & 2 & -1 \\ 0 & -2 & -7 \\ 0 & -2 & -7 \end{pmatrix},$$

т.к. полученная матрица имеет две одинаковые строки (а, следовательно, соответствующая система имеет два одинаковых уравнения), то ее

можно записать в виде
$$\begin{pmatrix} 2 & 2 & -1 \\ 0 & -2 & -7 \end{pmatrix}$$
.

Полученной ступенчатой матрице будет соответствовать система уравнений:

$$\begin{cases} 2x + 2y - z = 0, \\ -2y - 7z = 0. \end{cases}$$

Система состоит из двух уравнений и содержит три переменные. Выразим переменные x и y через переменную z:

$$y = -\frac{7}{2}z$$
, $x = \frac{1}{2} \cdot (7z + z) = 4z$.

Обозначим z=2t , тогда $y=-7t, \ x=8t, \ t\in \mathbb{R}.$

Ответ: x = 8t, y = -7t, z = 2t, $t \in \mathbb{R}$.

Задания для аудиторной работы

39. Выяснить, совместна ли система уравнений, если она совместна, то найти ее решение:

a)
$$\begin{cases} x_1 + x_2 - x_3 = 1; \\ 2x_1 - x_2 + x_3 = 8; \\ x_1 + 4x_2 + 2x_3 = 1. \end{cases}$$
 6)
$$\begin{cases} x + 2y - z = 3; \\ 2x + 4y - 3z = 2; \\ 3x + 6y - 3z = -7. \end{cases}$$

B)
$$\begin{cases} x + y + z = 6; \\ 4x + y + 3z = 15; \\ 3x + 2y - z = 4; \\ 2x - y + z = 3. \end{cases}$$
$$\begin{cases} x_1 - x_2 + 2x_3 + 2x_4 = 0 \end{cases}$$

д)
$$\begin{cases} x_1 - x_2 + 2x_3 + 2x_4 = 2; \\ 3x_1 - 2x_2 - x_3 - x_4 = -1; \\ 5x_1 - 3x_2 - 4x_3 - 2x_4 = -4; \\ 7x_1 - 4x_2 - 7x_3 - 5x_4 = -7 \end{cases}$$

r)
$$\begin{cases} x_1 + x_2 + x_3 = 1; \\ x_1 + x_2 + 2x_3 = 1; \\ 2x_1 + 2x_2 + 4x_3 = 2. \end{cases}$$

40. Решить однородную систему линейных алгебраических уравнений:

a)
$$\begin{cases} x_1 + 7x_2 - 3x_3 = 0; \\ 3x_1 - 5x_2 + x_3 = 0; \\ 3x_1 + 4x_2 - 2x_3 = 0. \end{cases}$$
 B)
$$\begin{cases} x_1 + 3x_2 + 2x_3 = 0; \\ 2x_1 - x_2 + 3x_3 = 0; \\ 3x_1 - 5x_2 + 4x_3 = 5; \\ x_1 + 17x_2 + 4x_3 = 0. \end{cases}$$

$$\begin{cases} 2x_1 + 2x_2 - x_3 = 0; \\ 5x_1 + 4x_2 - 6x_3 = 0; \\ 3x_1 + 2x_2 - 5x_3 = 0. \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + 4x_3 - 3x_4 = 0; \\ 3x_1 + 5x_2 + 6x_3 - 4x_4 = 0; \\ 4x_1 + 5x_2 - 2x_3 + 3x_4 = 0; \\ x_1 + 8x_2 + 24x_3 - 19x_4 = 0. \end{cases}$$

Задания для индивидуальной работы

41. Выяснить, совместна ли система уравнений, если она совместна, то найти ее решение:

a)
$$\begin{cases} x_1 - 2x_2 - 3x_3 = -3; \\ 2x_1 + 6x_2 - 10x_3 = 0; \\ -3x_1 + 12x_2 + 3x_3 = 9. \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 = 1; \\ x_1 + x_2 + 2x_3 = 1; \\ x_1 + x_2 + 3x_3 = 2. \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 = 1; \\ x_1 + x_2 + 3x_3 = 2. \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 - 1 = 0; \\ x_1 + x_2 - x_3 - 7 = 0. \end{cases}$$

$$\begin{cases} x_1 + x_2 - x_3 - 7 = 0. \end{cases}$$

$$\begin{cases} x_1 + x_2 + 3x_3 + x_4 = 5; \\ x_1 + 3x_2 + 5x_3 - 2x_4 = 2; \\ x_1 + 5x_2 - 9x_3 + 8x_4 = 1; \\ 5x_1 + 18x_2 + 4x_3 + 5x_4 = 12. \end{cases}$$
 a)
$$\begin{cases} 3x_1 + 2x_2 + x_3 + 2x_4 + 3x_5 = 10; \\ 4x_1 + 2x_2 - 3x_3 + 2x_4 = 2; \\ 3x_1 + 2x_2 - 3x_3 + 4x_4 + 6x_5 = 2; \\ 4x_1 + 2x_2 + 3x_3 + 4x_4 + 6x_5 = 2; \\ 4x_1 + 2x_2 + 3x_3 + 4x_4 + 6x_5 = 2; \\ 4x_1 + 2x_2 + 2x_3 + 2x_4 + 2x_5 = 7. \end{cases}$$

$$\begin{cases} 4x_1 - 3x_2 + 2x_3 = 9; \\ 2x_1 + 5x_2 - 3x_3 = 4; \\ 5x_1 + 6x_2 - 2x_3 = 18. \end{cases}$$

$$\begin{cases} x_1 + x_2 + x_3 = 2; \\ 2x_1 - 3x_2 + 4x_3 = 3; \\ 4x_1 - 11x_2 + 10x_3 = 5. \end{cases}$$

$$\begin{cases} 4x_1 + 2x_2 - 3x_3 + 2x_4 = 3; \\ 2x_1 + 3x_2 - 2x_3 + 3x_4 = 2; \\ 3x_1 + 2x_2 - 3x_3 + 4x_4 = 1. \end{cases}$$

$$\begin{cases} 3x_1 + 2x_2 + x_3 + 4x_4 + 6x_5 = 2; \\ 4x_1 + x_2 + x_3 + 5x_4 + 7x_5 = 10; \\ x_1 + 9x_2 + 3x_3 + x_4 + x_5 = 7 \end{cases}$$

42. Решить однородную систему линейных алгебраических уравнений:

2. Решить однородную систему линейных алгебраических уравнени
$$\begin{cases} 5x_1 - 3x_2 + 4x_3 = 0; \\ 3x_1 + 2x_2 - x_3 = 0; \\ 8x_1 - x_2 + 3x_3 = 0. \end{cases}$$
 б)
$$\begin{cases} 3x_1 + 4x_2 - x_3 = 0; \\ x_1 - 3x_2 + 5x_3 = 0; \\ 4x_1 + x_2 + 4x_3 = 0. \end{cases}$$

$$\begin{cases} x_1 + 2x_2 + 2x_4 + x_5 = 0; \\ -x_1 - 2x_2 + x_3 + x_4 = 0; \\ x_1 + 2x_2 - 3x_3 - 7x_4 - 2x_5 = 0. \end{cases}$$
 г)
$$\begin{cases} x_1 + x_2 - x_3 - 2x_4 - 2x_5 = 0; \\ 2x_1 + 3x_2 - 2x_3 - 5x_4 - 4x_5 = 0; \\ x_1 - x_2 - x_3 - 2x_5 = 0; \\ x_1 - x_2 - x_3 - 2x_5 = 0. \end{cases}$$

Ответы. 39. а) (3; -1; 1); б) несовместна; в) (1; 2; 3); г) $(t; 1-t; 0), t \in \mathbb{R}$;

д)
$$(5t-5; 7t-7; t; 0), t \in \mathbb{R};$$

д)
$$(5t-5; 7t-7; t; 0), t \in \mathbb{R};$$
 e) $(2+t-m; 3-2t+m; t; m),$ $t, m \in \mathbb{R};$

40. B)
$$(-11t: -t: 7t)$$
, $t \in \mathbb{R}$:

40. B)
$$(-11t; -t; 7t), t \in \mathbb{R};$$
 Γ $(-7t + 8m; -6t + 5m; t; m), t, m \in \mathbb{R}.$

41. a) (2; 1; 1); в) несовм.; г)
$$\left(\frac{1}{5}(9-7t); \frac{1}{5}(1+2t); t\right)$$
, $t \in \mathbb{R}$; д) несовм.;

ж)
$$(6-26t+17m; -1+7t-5m; t; m), t, m \in \mathbb{R};$$

3)
$$(-5-8t-14m; -13-3t-9m; 43+10t+30m; 5t; 5m), t, m \in \mathbb{R}$$
.

42. a) (0; 0; 0); B)
$$(-2a-2b-c; a; -3b-c; b; c), a, b, c \in \mathbb{R}$$

6 Собственные значения и собственные векторы матрицы

Рассмотрим квадратную матрицу $A_{n \times n}$ и вектор-столбец $X_{n \times 1} \neq 0$.

Вектор X называется собственным вектором матрицы A, если существует такое действительное число $\lambda \neq 0$, что выполняется равенство

$$AX = \lambda X. (3)$$

Число λ называется собственным значением или собственным чис*пом* матрицы *A*.

Для нахождения собственных значений матрицы составляют характеристическое уравнение: $|A - \lambda E| = 0$.

Подставляя найденные значения в уравнение (3), находят собственные векторы матрицы А.

Пример 7. Найти собственные числа и собственные векторы матрицы

$$A = \begin{pmatrix} 8 & 5 & 3 \\ 0 & 2 & -6 \\ 0 & -1 & 1 \end{pmatrix}.$$

Решение. Запишем матрицу $A - \lambda E$.

$$A - \lambda E = \begin{pmatrix} 8 & 5 & 3 \\ 0 & 2 & -6 \\ 0 & -1 & 1 \end{pmatrix} - \lambda \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = \begin{pmatrix} 8 - \lambda & 5 & 3 \\ 0 & 2 - \lambda & -6 \\ 0 & -1 & 1 - \lambda \end{pmatrix}.$$

Составим характеристическое уравнение:

$$\begin{vmatrix} 8 - \lambda & 5 & 3 \\ 0 & 2 - \lambda & -6 \\ 0 & -1 & 1 - \lambda \end{vmatrix} = (8 - \lambda) \cdot ((2 - \lambda) \cdot (1 - \lambda) - 6) = (8 - \lambda) \cdot (\lambda^2 - 3\lambda - 4) = 0.$$

Решая полученное уравнение, получим $\lambda_1=8$, $\lambda_2=-1$, $\lambda_3=4$ — собственные значения матрицы А.

Для каждого из полученных собственных значений найдем собственные векторы матрицы *А*.

1) Если
$$\lambda = 8$$
, то $A - \lambda E = \begin{pmatrix} 8 - 8 & 5 & 3 \\ 0 & 2 - 8 & -6 \\ 0 & -1 & 1 - 8 \end{pmatrix} = \begin{pmatrix} 0 & 5 & 3 \\ 0 & -6 & -6 \\ 0 & -1 & -7 \end{pmatrix}$

и матричное уравнение выглядит:

$$\begin{pmatrix} 0 & 5 & 3 \\ 0 & -6 & -6 \\ 0 & -1 & -7 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}.$$

Этому уравнению соответствует однородная система линейных урав-

нений
$$\begin{cases} 5x_2 + 3x_3 = 0; \\ -6x_2 - 6x_3 = 0; \\ -x_2 - 7x_3 = 0. \end{cases}$$

Из второго уравнения $x_2 = -x_3$, тогда оставшиеся два уравнения будут

$$\begin{cases} -5x_3 + 3x_3 = 0; \\ x_3 - 7x_3 = 0; \end{cases} \Rightarrow \begin{cases} -2x_3 = 0; \\ -6x_3 = 0; \end{cases} \Rightarrow x_3 = 0, x_2 = 0, x_1 = m, m \in \mathbb{R}, m \neq 0.$$

меть вид:
$$\begin{cases} -5x_3 + 3x_3 = 0; \\ x_3 - 7x_3 = 0; \end{cases} \Rightarrow \begin{cases} -2x_3 = 0; \\ -6x_3 = 0; \end{cases} \Rightarrow x_3 = 0, x_2 = 0, x_1 = m, m \in \mathbb{R}, m \neq 0.$$
 Вектор $X_1 = \begin{pmatrix} m \\ 0 \\ 0 \end{pmatrix}, m \in \mathbb{R}, m \neq 0 - \text{собственный вектор матрицы } A.$

2) Если $\lambda = -1$, то получим однородную систему линейных уравнений:

$$\begin{cases} 9x_1 + 5x_2 + 3x_3 = 0; \\ 3x_2 - 6x_3 = 0; \Rightarrow \\ -x_2 + 2x_3 = 0; \end{cases} \Rightarrow \begin{cases} 9x_1 + 5x_2 + 3x_3 = 0; \\ -x_2 + 2x_3 = 0; \end{cases} \Rightarrow \begin{cases} x_1 = -\frac{13}{9}x_3; \\ x_2 = 2x_3; \end{cases}$$
$$\Rightarrow x_3 = 9k, x_2 = 18k, x_1 = -13k, k \in \mathbb{R}, k \neq 0.$$

Тогда вектор
$$X_2 = \begin{pmatrix} -13k \\ 18k \\ 9k \end{pmatrix}, \ k \in \mathbb{R}, \ k \neq 0 \ -$$
 собственный вектор матрицы A .

3) Если $\lambda = 4$, то получим однородную систему линейных уравнений:

$$\begin{cases} 4x_1 + 5x_2 + 3x_3 = 0; \\ -2x_2 - 6x_3 = 0; \\ -x_2 - 3x_3 = 0; \end{cases} \Rightarrow \begin{cases} 4x_1 + 5x_2 + 3x_3 = 0; \\ -x_2 - 3x_3 = 0; \end{cases} \Rightarrow \begin{cases} x_1 = 3x_3; \\ x_2 = -3x_3; \end{cases}$$
$$\Rightarrow x_3 = t, x_2 = -3t, x_1 = 3t, t \in \mathbb{R}, t \neq 0.$$

Тогда вектор $X_3=egin{pmatrix} 3t \\ -3t \\ t \end{pmatrix},\ t\in\mathbb{R},\ t\neq 0$ — собственный вектор матрицы A.

Otbet.
$$X_1 = \begin{pmatrix} m \\ 0 \\ 0 \end{pmatrix}, \ X_2 = \begin{pmatrix} -13k \\ 18k \\ 9k \end{pmatrix}, \ X_3 = \begin{pmatrix} 3t \\ -3t \\ t \end{pmatrix}, \ m, k, t \in \mathbb{R}, \ m \neq 0, k \neq 0, \ t \neq 0.$$

Задания для аудиторной работы

43. Для заданной матрицы A и векторов X_1 , X_2 , X_3 установить, какие из данных векторов являются собственными векторами матрицы A и найти их собственные значения, если:

a)
$$A = \begin{pmatrix} 1 & -2 \\ -2 & 3 \end{pmatrix}$$
, $X_1 = \begin{pmatrix} 2 \\ 2 \end{pmatrix}$, $X_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$, $X_3 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}$;

6)
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
, $X_1 = \begin{pmatrix} 3 \\ 3 \\ 3 \end{pmatrix}$, $X_2 = \begin{pmatrix} -1 \\ -1 \\ -1 \end{pmatrix}$, $X_3 = \begin{pmatrix} -1 \\ 3 \\ 2 \end{pmatrix}$.

44. Найти собственные числа и собственные векторы матрицы А

Задания для индивидуальной работы

45. Для заданной матрицы A и векторов X_1 , X_2 , X_3 установить, какие из данных векторов являются собственными векторами матрицы A и найти их собственные значения, если:

a)
$$A = \begin{pmatrix} 5 & -4 \\ 6 & -5 \end{pmatrix}$$
, $X_1 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$, $X_2 = \begin{pmatrix} 2 \\ 3 \end{pmatrix}$, $X_3 = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$;

6)
$$A = \begin{pmatrix} 3 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 3 \end{pmatrix}$$
, $X_1 = \begin{pmatrix} 1 \\ 0 \\ 2 \end{pmatrix}$, $X_2 = \begin{pmatrix} 2 \\ 2 \\ 0 \end{pmatrix}$, $X_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$.

46. Найти собственные числа и собственные векторы матрицы А:

a)
$$A = \begin{pmatrix} 5 & 2 \\ 2 & 8 \end{pmatrix}$$

$$\mathsf{G)} \ \ \mathsf{A} = \begin{pmatrix} 3 & -4 \\ 7 & 1 \end{pmatrix};$$

$$\Gamma) A = \begin{pmatrix} 0 & 3 \\ 3 & 8 \end{pmatrix};$$

$$A = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix};$$

г)
$$A = \begin{pmatrix} 0 & 3 \\ 3 & 8 \end{pmatrix}$$
; $A = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix}$; $A = \begin{pmatrix} 1 & 2 \\ -2 & 5 \end{pmatrix}$.

47. Найти собственные числа и собственные векторы матрицы *A*:

a)
$$A = \begin{pmatrix} 11 & -6 & 2 \\ -6 & 10 & -4 \\ 2 & -4 & 6 \end{pmatrix}$$
; 6) $A = \begin{pmatrix} 1 & 2 & -2 \\ 1 & 0 & 3 \\ 1 & 3 & 0 \end{pmatrix}$; B) $A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 5 & 3 & 2 \end{pmatrix}$;

; б)
$$A = \begin{pmatrix} 1 & 2 & -2 \\ 1 & 0 & 3 \\ 1 & 3 & 0 \end{pmatrix}$$
;

B)
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 5 & 3 & 2 \end{pmatrix}$$
;

r)
$$A = \begin{pmatrix} 1 & 4 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$
;

$$\mathbf{A} = \begin{pmatrix} 5 & 6 & 3 \\ -1 & 0 & 1 \\ 1 & 2 & -1 \end{pmatrix}$$

г)
$$A = \begin{pmatrix} 1 & 4 & 3 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{pmatrix}$$
; $A = \begin{pmatrix} 5 & 6 & 3 \\ -1 & 0 & 1 \\ 1 & 2 & -1 \end{pmatrix}$; $A = \begin{pmatrix} 3 & 1 & 0 \\ -4 & -1 & 0 \\ 4 & -8 & -2 \end{pmatrix}$.

Ответы. 46. a) $\lambda_1 = 4$, $\vec{x}_1 = \begin{pmatrix} -2 \\ 1 \end{pmatrix}$, $\lambda_2 = 9$, $\vec{x}_2 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$; б) \emptyset ;

$$\text{B)} \ \ \lambda_1 = 8, \ \vec{x}_1 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}, \ \ \lambda_2 = 18, \ \ \vec{x}_2 = \begin{pmatrix} 1 \\ 1 \end{pmatrix}; \ \Gamma) \ \ \lambda_1 = 9, \ \ \vec{x}_1 = \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \ \lambda_2 = -1, \ \ \vec{x}_2 = \begin{pmatrix} 3 \\ -1 \end{pmatrix}.$$

47. a)
$$\lambda_1 = 6$$
, $\vec{x}_1 = \begin{pmatrix} -2 \\ -1 \\ 2 \end{pmatrix}$, $\lambda_2 = 3$, $\vec{x}_2 = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$, $\lambda_3 = 18$, $\vec{x}_3 = \begin{pmatrix} 2 \\ -2 \\ 1 \end{pmatrix}$;

6)
$$\lambda_1 = 1$$
, $\vec{x}_1 = \begin{pmatrix} -2\\1\\1 \end{pmatrix}$, $\lambda_2 = 3$, $\vec{x}_2 = \begin{pmatrix} 0\\1\\1 \end{pmatrix}$, $\lambda_3 = -3$, $\vec{x}_3 = \begin{pmatrix} 6\\-7\\5 \end{pmatrix}$.

АНАЛИТИЧЕСКАЯ ГЕОМЕТРИЯ

7 Векторы в \mathbb{R}^2 и \mathbb{R}^3 . Линейная зависимость и независимость векторов. Скалярное произведение векторов

Вектором называют направленный отрезок или упорядоченную пару (тройку) чисел. Векторы, параллельные одной прямой или лежащие на прямой, называются коллинеарными. Векторы, лежащие в одной плоскости или параллельные одной и той же плоскости, называются компланарными.

Проекцией вектора AB на ось Ох называется длина отрезка CD этой оси, заключенного между основаниями перпендикуляров, проведенных из начальной и конечной точек вектора \overrightarrow{AB} , взятая со знаком плюс, если

направление отрезка *CD* совпадает с направлением оси проекции (рис. 1), и со знаком минус, если эти направления противоположны (рис. 2).

Проекция вектора на ось равна длине вектора, умноженной на косинус угла между вектором и осью:

$$\pi p_{Ox} \overrightarrow{AB} = |\overrightarrow{AB}| \cdot \cos \alpha.$$

Проекции вектора на координатные оси называются координатным вектора: $\vec{a}=(x;y;z); \ \overrightarrow{AB}=(x_B-x_A;y_B-y_A;z_B-z_A).$

Пинейными операциями над векторами называют сложение и вычитание векторов, умножение вектора на постоянное число.

Если векторы \vec{a} и \vec{b} заданы своими координатами $\vec{a}=(x_1;y_1;z_1),$ $\vec{b}=(x_2;y_2;z_2),$ то $\vec{a}\pm\vec{b}=(x_1\pm x_2;y_1\pm y_2;z_1\pm z_2).$

Если $\lambda \in \mathbb{R}$, $\lambda = const$, то $\vec{a} \cdot \lambda = \lambda \cdot \vec{a} = (\lambda x_1; \lambda y_1; \lambda z_1)$, т.е. при умножении вектора на число все его координаты умножаются на это число.

Рассмотрим отрезок AB, $A \neq B$. Говорят, что точка C делит отрезок AB в отношении $\lambda \in \mathbb{R}$, если $\overrightarrow{AC} = \lambda \overrightarrow{CB}$ (рис. 3). Число λ называют простым отноше-

нием трех точек и обозначают $\lambda = (AB, C)$. Координаты точки C, делящей отрезок AB в отношении λ , $\lambda \neq -1$ находят по формулам:

$$X_c = \frac{\lambda X_b + X_a}{1 + \lambda}$$
; $Y_c = \frac{\lambda Y_b + Y_a}{1 + \lambda}$; $Z_c = \frac{\lambda Z_b + Z_a}{1 + \lambda}$.

Система векторов \vec{a}_1 , \vec{a}_2 ,..., \vec{a}_m называется линейно зависимой, если существуют такие постоянные c_1 , c_2 , ..., c_m , одновременно неравные нулю, что имеет место равенство $c_1\vec{a}_1+c_2\vec{a}_2+...+c_m\vec{a}_m=\vec{0}$. В противном случае система векторов называется линейно независимой.

На плоскости два любых коллинеарных вектора линейно зависимы, и наоборот, два любых неколлинеарных вектора линейно независимы.

В пространстве три любых компланарных вектора являются линейно зависимыми. Три вектора, не лежащие в одной плоскости, будут линейно независимыми.

Базисом в \mathbb{R}^2 (\mathbb{R}^3) называют два неколлинеарных (три некомпланарных) вектора, взятых в определенном порядке. В качестве базиса будем рассматривать два (три) взаимно перпендикулярных вектора 24

единичной длины: $\vec{i}=(1;0),\ \vec{j}=(0;1)\left(\vec{i}=(1;0;0),\ \vec{j}=(0;1;0),\ \vec{k}=(0;0;1)\right).$ Тогда $\vec{a}\in\mathbb{R}^2,\ \vec{a}=(x;y)$ можно представить разложением по ортогональному базису в виде $\vec{a}=x\cdot\vec{i}+y\cdot\vec{j}$. Аналогично, если $\vec{a}\in\mathbb{R}^3,\ \vec{a}=(x;y;z),$ то $\vec{a}=x\cdot\vec{i}+y\cdot\vec{j}+z\cdot\vec{k}$.

Косинусы углов, которые вектор $\vec{a} = (x; y; z)$ образует с координатными осями, называются направляющими косинусами этого вектора:

$$\cos \alpha = \frac{x}{\sqrt{x^2 + y^2 + z^2}}, \cos \beta = \frac{y}{\sqrt{x^2 + y^2 + z^2}}, \cos \gamma = \frac{z}{\sqrt{x^2 + y^2 + z^2$$

Скалярным произведением двух векторов называется число, равное произведению длин этих векторов на косинус угла между ними:

$$\vec{a} \cdot \vec{b} = \mid \vec{a} \mid \cdot \mid \vec{b} \mid \cdot \cos \varphi; \qquad \vec{a} \cdot \vec{b} = \mid \vec{a} \mid \cdot \pi p_{\vec{a}} \vec{b} = \mid \vec{b} \mid \cdot \pi p_{\vec{b}} \vec{a}.$$

Отметим, что $\vec{a} \cdot \vec{b} = 0$ тогда и только тогда, когда векторы перпендикулярны или хотя бы один из них нуль-вектор.

Скалярное произведение векторов обладает свойствами коммутативности $(\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a})$, ассоциативности относительно скалярного множителя $(\lambda \vec{a} \vec{b} = \vec{a} \lambda \vec{b} = \lambda \vec{a} \vec{b})$; дистрибутивности $(\vec{a} (\vec{b} + \vec{c}) = \vec{a} \vec{b} + \vec{a} \vec{c})$. Скалярный квадрат вектора равен квадрату его длины $(\vec{a} \cdot \vec{a} = |\vec{a}|^2)$.

Если векторы \vec{a} и \vec{b} заданы своими координатами $\vec{a}=(x_1;y_1;z_1)$, $\vec{b}=(x_2;y_2;z_2)$, то их скалярное произведение равно сумме произведений одноименных координат: $\vec{a}\cdot\vec{b}=x_1x_2+y_1y_2+z_1z_2$.

Механический смысл скалярного произведения. Если материальная точка, на которую действует сила \vec{F} , совершает перемещение вдоль вектора \vec{s} , то работа A силы равна скалярному произведению вектора силы на вектор перемещения: $A = \vec{F} \cdot \vec{s}$.

Задания для аудиторной работы

- **48.** Задан правильный шестиугольник \overrightarrow{ABCDEF} , $\overrightarrow{AB} = \overrightarrow{p}$, $\overrightarrow{AE} = \overrightarrow{q}$. Найти вектора \overrightarrow{AC} , \overrightarrow{AD} , \overrightarrow{AF} , \overrightarrow{EF} .
- **49.** На векторах $\overrightarrow{OA} = (5; 10; 15)$ и $\overrightarrow{OB} = (0; 10; 5)$ построен треугольник *OAB*. Точка *M* делит сторону *AB* в отношении 2:3. Найти координаты и длину вектора \overrightarrow{OM} .

- **50.** Даны векторы $\vec{a} = (3; -2; 6)$ и $\vec{b} = (-2; 1; 0)$. Найти координаты векторов $2\vec{a} \frac{1}{3}\vec{b}$; $\frac{1}{2}\vec{a} + \vec{b}$; $2\vec{a} + 3\vec{b}$.
- **51.** При каких α и β векторы $\vec{a} = (-2;3;\beta)$ и $\vec{b} = (\alpha;-6;2)$ коллинеарны?
- **52.** Дана прямоугольная трапеция *ABCD*, длины оснований *AD* и *BC* которой соответственно равны 4 и 2, а $\angle D = 45^{\circ}$. Найти проекции векторов \overrightarrow{AD} , \overrightarrow{AB} , \overrightarrow{BC} , \overrightarrow{AC} на ось, определяемую вектором \overrightarrow{CD} .
- **53.** Показать, что векторы $\vec{x}_1 = (1; 2; 1; 2)$, $\vec{x}_2 = (-1; 3; 2; 1)$, $\vec{x}_3 = (-13; -1; 2; -11)$ линейно зависимы. Найти эту зависимость.
- **54.** Даны четыре вектора $\vec{a} = (4; 5; 2), \vec{b} = (3; 0; 1), \vec{c} = (-1; 4; 2)$ и $\vec{d} = (5; 7; 8)$ в некотором базисе. Показать, что векторы \vec{a}, \vec{b} и \vec{c} образуют базис, и разложить вектор \vec{d} по этому базису.
- **55.** Даны векторы $\vec{a} = \vec{e}_1 + \vec{e}_2 + \vec{e}_3$, $\vec{b} = 2\vec{e}_1 \vec{e}_2$, $\vec{c} = 3\vec{e}_3$ в базисе \vec{e}_1 , \vec{e}_2 , \vec{e}_3 . Показать, что векторы \vec{a} , \vec{b} и \vec{c} также образуют базис. Найти координаты вектора $\vec{d} = 6\vec{e}_1 3\vec{e}_2 + \vec{e}_3$ в базисе \vec{a} , \vec{b} , \vec{c} .
- **56.** Векторы \vec{a} и \vec{b} образуют угол $\varphi = \frac{2\pi}{3}$. Зная, что $|\vec{a}| = 3$ и $|\vec{b}| = 4$, вычислить $\vec{a} \cdot \vec{b}$, $\vec{a}^2 (\vec{a} \vec{b})^2$, $(3\vec{a} 2\vec{b})(\vec{a} + 2\vec{b})$.
- **57.** Даны векторы $\vec{a} = (4; -2; -4)$ и $\vec{b} = (6; -3; 2)$. Вычислить: a) $\vec{a} \cdot \vec{b}$; б) $\sqrt{\vec{a}^2}$; в) $(2\vec{a} 3\vec{b})(\vec{b} + 3\vec{a})$; г) $(\vec{a} \vec{b})^2$.
- **58.** Проверить, могут ли векторы $\vec{a} = 7\vec{i} + 6\vec{j} 6\vec{k}$, $\vec{b} = 6\vec{i} + 2\vec{j} + 9\vec{k}$ быть ребрами куба. Найти третье ребро куба.
- **59.** Пусть в треугольнике AOB: $\overrightarrow{OA} = \vec{a}$, $\overrightarrow{OB} = \vec{b}$, $|\vec{a}| = 2$, $|\vec{b}| = 4$, угол между векторами \vec{a} и \vec{b} $\varphi = \frac{\pi}{3}$. Найти угол между медианой OM и стороной OA.
- **60.** Определить работу силы \vec{F} , $|\vec{F}| = 15\,\mathrm{H}$, которая действует на тело, вызывая его перемещение на 4 м под углом $\frac{\pi}{3}$ к направлению действия силы.

Задания для индивидуальной работы

61. Найти линейную комбинацию $3\vec{a}_1+5\vec{a}_2-\vec{a}_3$ векторов $\vec{a}_1=(4;1;3;-2)$, $\vec{a}_2=(1;2;-3;2)$, $\vec{a}_3=(16;9;1;-3)$.

- **62.** Вектор \vec{a} составляет с координатными осями *Ox* и *Oy* углы $\alpha = 60^{\circ}$ и $\beta = 120^{\circ}$. Вычислить координаты вектора, если его длина равна 2.
- **63.** Отрезок AB разделен точками M_1, M_2, M_3, M_4 на пять равных частей. Найти координаты точек M_1 и M_3 , если A(-1;8;3), B(9;-7;-2).
- **64.** Найти координаты концов A и B отрезка, который точками C(2;0;2) и D(5;-2;0) разделен на три равные части.
- **65.** При каком α векторы $\vec{m} = (-1; 3)$ и $\vec{n} = (2; \alpha)$ линейно зависимы?
- **66.** Векторы заданы в ортонормированном базисе \vec{i} , \vec{j} , \vec{k} : $\vec{a} = (1;1;2)$, $\vec{e}_1 = (2;2;-1)$, $\vec{e}_2 = (0;4;8)$, $\vec{e}_3 = (-1;-1;3)$. Показать, что векторы \vec{e}_1 , \vec{e}_2 , \vec{e}_3 образуют базис, найти разложение вектора \vec{a} по этому базису.
- **67.** Даны три вектора \vec{p} , \vec{q} , \vec{r} . Найти разложение вектора \vec{a} по базису \vec{p} , \vec{q} , \vec{r} .
 - a) $\vec{p} = (4; 5; 1), \vec{q} = (3; 4; 1), r = (2; 3; 2), \vec{a} = (6; 3; 4);$
 - б) $\vec{p} = (-1, 4, 3), \vec{q} = (3, 2, -4), r = (-2, -7, 1), \vec{a} = (6, 20, -3);$
 - B) $\vec{p} = (5; 7; -2), \vec{q} = (-3; 1; 3), r = (1; -4; 6), \vec{a} = (14; 9; -1);$
 - r) $\vec{p} = (1; -3; 1), \ \vec{q} = (-2; -4; 3), \ r = (9; -2; 3), \ \vec{a} = (-8; -10; 13).$
- **68.** Пусть $\vec{a} = (1; -1; 2), \vec{b} = (2; -2; 1).$ Найти $\pi p_{\vec{b}} (3\vec{a} \vec{b}).$
- **69.** Даны векторы $\vec{a} = (1;2;3)$, $\vec{b} = (-2;3;-1)$. Найти: а) координаты вектора $2\vec{a} \frac{1}{3}\vec{b}$; б) угол между векторами \vec{a} и \vec{b} ; в) $\pi p_{\vec{b}}$ \vec{a} .
- **70.** Найти координаты вектора \vec{a} , если известно, что он направлен в противоположную сторону к вектору $\vec{b} = 5\vec{i} 4\vec{j} + 2\sqrt{2}\vec{k}$, и его модуль равен 5.
- **71.** Дано разложение вектора \vec{c} по базису \vec{i} , \vec{j} , \vec{k} : $\vec{c} = 16\vec{i} 15\vec{j} + 12\vec{k}$. Определить разложение по этому же базису вектора \vec{d} , параллельного вектору \vec{c} и противоположного с ним направления, при условии, что $|\vec{d}| = 75$.
- **72.** Даны точки A(-2; 3; -4), B(3; 2; 5), C(1; -1; 2), D(3; 2; -4). Вычислить проекцию вектора \overrightarrow{AB} на направление вектора \overrightarrow{CD} .
- **73.** Даны три вектора \vec{a} , \vec{b} , \vec{c} . Найти проекцию вектора $3\vec{a}-2\vec{b}$ на направление вектора \vec{c} , если:
 - a) $\vec{a} = 5\vec{i} 6\vec{j} 4\vec{k}$, $\vec{b} = 4\vec{i} + 8\vec{j} 7\vec{k}$, $\vec{c} = 3\vec{j} 4\vec{k}$;

6)
$$\vec{a} = -9\vec{i} + -4\vec{k}$$
, $\vec{b} = 2\vec{i} - 4\vec{j} + 6\vec{k}$, $\vec{c} = 3\vec{i} - 6\vec{j} + 9\vec{k}$;

B)
$$\vec{a} = 4\vec{i} - 5\vec{j} - 4\vec{k}$$
, $\vec{b} = 5\vec{i} - \vec{j}$, $\vec{c} = 4\vec{k} + 2\vec{j} - 3\vec{k}$;

r)
$$\vec{a} = 3\vec{i} - \vec{j} + 5\vec{k}$$
, $\vec{b} = 2\vec{i} - 4\vec{j} + 6\vec{k}$, $\vec{c} = \vec{i} - 2\vec{j} + 3\vec{k}$.

- **74.** Даны вершины треугольника A, B и C. Определить внешний угол при вершине B, если:
 - a) A(-2; -5; -1), B(-6; -7; 9), C(4; -5; 1);
 - б) *A*(5; 2; 7), *B*(7; –6; –9), *C*(–7; –6; 3);
 - B) A(7; -1; -2), B(1; 7; 8), C(3; 7; 9);
 - r) A(-7; -6; -5), B(5; 1; -3), C(8; -4; 0).
- **75.** Векторы \vec{a} и \vec{b} взаимно перпендикулярны, а вектор \vec{c} образует с ними углы, равные $\frac{\pi}{3}$. Зная, что $|\vec{a}|=3, |\vec{b}|=5, |\vec{c}|=8$, вычислить:
- a) $(3\vec{a} 2\vec{b})(\vec{b} + 3\vec{c})$; 6) $(3\vec{a} + 2\vec{b} 3\vec{c})^2$.
- **76.** При каких значениях α векторы $\vec{a} + \beta \vec{b}$ и $\vec{a} \beta \vec{b}$ перпендикулярны, если $|\vec{a}| = 3$, $|\vec{b}| = 5$.
- **77.** Для векторов $\vec{a} = (4; -2; -4)$, $\vec{b} = (6; -3; 2)$ найти: $\vec{a} \cdot \vec{b}$, \vec{a}^2 , \vec{b}^2 , $(\vec{a} + \vec{b})^2$, $(\vec{a} \vec{b})^2$, $(3\vec{a} 2\vec{b}) \cdot (\vec{a} + 2\vec{b})$.
- **78.** Найти $2\vec{a}^2 4\vec{a}\vec{b} + 5\vec{b}^2$, если $\vec{a} = (1; -2; 2)$, $\vec{b} = (2; -2; -1)$.
- **79.** Найти работу равнодействующей сил $\vec{F_1} = \vec{i} \vec{j} + \vec{k}$ и $\vec{F_2} = 2\vec{i} + \vec{j} + 3\vec{k}$ при перемещении ее точки приложения из начала координат в точку M(2; -1; -1).
- **80.** Даны три силы \vec{F}_1 , \vec{F}_2 , \vec{F}_3 , приложенные к одной точке. Вычислить работу равнодействующей этих сил, совершаемую при перемещении вдоль отрезка M_1M_2 , если:
- a) $\vec{F}_1 = (3; -4; 2), \vec{F}_2 = (2; 3; -5), \vec{F}_3 = (-3; -2; 4), M_1(5; 3; -7), M_2(4; -1; -4);$
- 6) $\vec{F}_1 = (3; -1; -3), \vec{F}_2 = (3; 2; 1), \vec{F}_3 = (-4; 1; 3), M_1(-1; 4; -2), M_2(2; 3; -1);$
- B) $\vec{F}_1 = (3; -2; 4), \vec{F}_2 = (-4; 4; -3), \vec{F}_3 = (3; 4; 2), M_1(1; -4; 3), M_2(4; 0; -2);$
- r) $\vec{F}_1 = (7; 3; -4), \ \vec{F}_2 = (3; -2; 2), \ \vec{F}_3 = (-5; 4; 3), \ M_1(-5; 0; 4), \ M_2(4; -3; 5);$
- д) $\vec{F}_1 = (4; -2; 3), \vec{F}_2 = (-2; 5; 6), \vec{F}_3 = (7; 3; -1), M_1(-3; -2; 5), M_2(9; -5; 4);$
- **81.** Известно, что $|\vec{a}|$ = 13, $|\vec{b}|$ = 19, $|\vec{a} + \vec{b}|$ = 24. Вычислить $|\vec{a} \vec{b}|$.
- **82.** Найти значение параметра m, при котором векторы $\vec{a} = m\vec{i} 3\vec{j} + 2\vec{k}$ и $\vec{b} = \vec{i} + 2\vec{j} m\vec{k}$ взаимно перпендикулярны.

83. Найти координаты вектора \vec{b} , коллинеарного вектору $\vec{a} = (2; 1; -1)$, при условии, что их скалярное произведение равно 3.

84. Найти вектор \vec{x} , зная, что он перпендикулярен векторам $\vec{a} = (2; 3; -1), \ \vec{b} = (1; -2; 3)$ и удовлетворяет условию $\vec{x} \cdot \left(2\vec{i} - \vec{j} + \vec{k}\right) = -6$.

85. Даны три вектора $\vec{a} = 2\vec{i} - \vec{j} + 3\vec{k}$, $\vec{b} = \vec{i} - 3\vec{j} + 2\vec{k}$, $\vec{c} = 3\vec{i} + 2\vec{j} - 4\vec{k}$. Найти вектор \vec{x} , удовлетворяющий условиям $\vec{x} \cdot \vec{a} = -5$, $\vec{x} \cdot \vec{b} = -11$, $\vec{x} \cdot \vec{c} = 20$.

86. Найдите единичный вектор, перпендикулярный к оси *Oy* и вектору $\vec{a}=(4;3;2)$.

87. Найдите вектор \vec{x} , коллинеарный вектору $\vec{a}=(1;2;-3)$ и удовлетворяющий условию $\vec{x}\cdot\vec{a}=28$.

Ответы. 48.
$$\overrightarrow{AC} = \frac{3\overrightarrow{p} + \overrightarrow{q}}{2}$$
, $\overrightarrow{AD} = \overrightarrow{p} + \overrightarrow{q}$, $\overrightarrow{AF} = \frac{\overrightarrow{q} - \overrightarrow{p}}{2}$, $\overrightarrow{EF} = -\frac{\overrightarrow{p} + \overrightarrow{q}}{2}$. 49. (3; 10; 11). 52. $\pi p_{\overrightarrow{CD}} \overrightarrow{AD} = 2\sqrt{2}$; $\pi p_{\overrightarrow{CD}} \overrightarrow{AB} = -\sqrt{2}$; $\pi p_{\overrightarrow{CD}} \overrightarrow{BC} = \sqrt{2}$; $\pi p_{\overrightarrow{CD}} \overrightarrow{AC} = 0$. 53. $8\overrightarrow{x}_1 - 5\overrightarrow{x}_2 + \overrightarrow{x}_3 = \overrightarrow{0}$. 54. (-1; 4; 3). 55. (0; 3; 1/3). 56. -6; 9; 37; -61. 58. $\overrightarrow{c} = \pm \left(6\overrightarrow{i} - 9\overrightarrow{j} - 2\overrightarrow{k}\right)$. 60. 30 Дж. 70. $\overrightarrow{a} = -\frac{25}{7}\overrightarrow{i} + \frac{20}{7}\overrightarrow{j} - \frac{10\sqrt{2}}{7}\overrightarrow{k}$. 79. 2 ед.раб. 86. $\overrightarrow{e} = \pm \left(\frac{1}{\sqrt{5}}; 0; -\frac{2}{\sqrt{5}}\right)$.

8 Векторное произведение векторов

Упорядоченная тройка некомпланарных векторов с общим началом называется *правой*, если при наблюдении из конца третьего вектора кратчайший поворот от первого вектора ко второму виден в направлении, противоположном направлению движения часовой стрелки. В противном случае тройка векторов называется *певой*.

Векторным произведением вектора \vec{a} на вектор \vec{b} называется вектор $\vec{a} \times \vec{b}$, длина которого численно равна площади параллелограмма, построенного на этих векторах $|\vec{a} \times \vec{b}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin \alpha$, который перпендикулярен плоскости векторов \vec{a} и \vec{b} и направлен так, чтобы тройка векторов \vec{a} , \vec{b} , $\vec{a} \times \vec{b}$ была правой.

Отметим, что $\vec{a} \times \vec{b} = \vec{0}$ тогда и только тогда, когда векторы коллинеарны или хотя бы один из них нуль-вектор.

Векторное произведение векторов обладает свойствами антикоммутативности $(\vec{a} \times \vec{b} = -\vec{b} \times \vec{a})$; ассоциативности относительно скалярного множителя $(\lambda \vec{a} \times \vec{b} = \vec{a} \times \lambda \vec{b} = \lambda (\vec{a} \times \vec{b}))$; дистрибутивность: $(\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c})$.

Если векторы \vec{a} и \vec{b} заданы своими координатами $\vec{a}=(x_1;y_1;z_1),$ $\vec{b}=(x_2;y_2;z_2),$ то их векторное произведение равно

$$\vec{a} \times \vec{b} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \end{vmatrix}.$$

Механический смысл векторного произведения. Пусть некоторое твердое тело неподвижно закреплено в точке A, а в точке B этого тела приложена сила \vec{F} . В этом случае возникает вращающий момент, численно равный произведению $|\overrightarrow{AB}| \cdot |\overrightarrow{F}| \cdot \sin \alpha$. В механике его принято называть моментом силы: $\vec{M} = \overrightarrow{AB} \times \vec{F}$.

Задания для аудиторной работы

- **88.** Векторы \vec{a} и \vec{b} образуют угол $\varphi = \frac{5\pi}{6}$. Зная, что $|\vec{a}| = 2$ и $|\vec{b}| = 6$, вычислить $\vec{a} \times \vec{b}$, $|(2\vec{a} + 3\vec{b}) \times (\vec{a} 4\vec{b})|$.
- **89.** Известно, что векторы \vec{a} и \vec{b} образуют угол $\varphi = \frac{\pi}{4}$ и $|\vec{a}| = |\vec{b}| = 5$. Вычислить площадь треугольника, построенного на векторах $\vec{a} 2\vec{b}$ и $3\vec{a} + 2\vec{b}$.
- **90.** Пусть $\vec{a} = (3; -1; -2)$, $\vec{b} = (1; 2; -1)$. Найти: a) $\vec{a} \times \vec{b}$; б) $(3\vec{a} \vec{b}) \times (\vec{a} 2\vec{b})$; в) $(2\vec{a} + \vec{b}) \times \vec{b}$.
- **91.** Найти площадь треугольника с вершинами A(1; 2; 0), B(3; 2; 1) и C(-2; 1; 2).
- **92.** Вычислить синус угла, образованного векторами $\vec{a} = (2; -2; 1)$ и $\vec{b} = (2; 3; 6)$.
- **93.** Даны вершины треугольника A(1; -1; 2), B(5; -6; 2) и C(1; 3; -1). Вычислить длину его высоты BD.
- **94.** Найти координаты вектора \vec{x} , перпендикулярного оси аппликат и вектору $\vec{a} = (8; -15; 3)$. Вектор \vec{x} образует острый угол с осью абсцисс; $|\vec{x}| = 51$.
- **95.** Твердое тело закреплено в точке A(2; 1; 3). В точке B(0; 1; 3) этого тела приложена сила $\vec{F} = (0; 4; 3)$. Найти момент силы относительно точки A и направляющие косинусы момента.

Задания для индивидуальной работы

96. Если вектор \vec{a} перпендикулярен вектору \vec{b} , $|\vec{a}| = 3$, $|\vec{b}| = 4$. Найти:

a)
$$|\vec{a} \times \vec{b}|$$
; 6) $|(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b})|$; 3) $|(3\vec{a} - \vec{b}) \times (\vec{a} - 2\vec{b})|$.

97. Векторы \vec{a} и \vec{b} образуют угол $\varphi = \frac{2\pi}{3}$. Зная, что $|\vec{a}| = 1$ и $|\vec{b}| = 2$, вы-

числить a)
$$\left(\vec{a} \times \vec{b}\right)^2$$
, б) $\left(\left(2\vec{a} + \vec{b}\right) \times \left(\vec{a} + 2\vec{b}\right)\right)^2$ в) $\left(\left(3\vec{a} - \vec{b}\right) \times \left(\vec{a} + 2\vec{b}\right)\right)^2$.

98. Даны векторы \vec{a} и \vec{b} . Найти координаты векторных произведений $(2\vec{a}+3\vec{b})\times(\vec{a}-4\vec{b})$ и $(\vec{a}-\vec{b})\times(3\vec{a}+\vec{b})$, если:

a)
$$\vec{a} = 2\vec{i} - 3\vec{j} + \vec{k}, \vec{b} = \vec{j} + 4\vec{k}$$
;

6)
$$\vec{a} = 3\vec{i} + 4\vec{j} + \vec{k}, \ \vec{b} = \vec{i} - 2\vec{j} + 7\vec{k};$$

B)
$$\vec{a} = 2\vec{i} - 4\vec{j} - 2\vec{k}$$
, $\vec{b} = 7\vec{i} + 3\vec{j} - 2\vec{k}$;

$$\Gamma) \vec{a} = -7\vec{i} + \vec{j} + 2\vec{k}, \vec{b} = 2\vec{i} - 6\vec{j} + 4\vec{k}.$$

99. Найти площадь треугольника, вершины которого находятся в точках A, B и C, если:

- a) A(2;3;4), B(4;7;3), C(2;-1;1);
- б) A(1; 2; 0), B(3; 0; 3), C(5; 2; 6);
- в) *A*(3; –1; 4), *B*(2; 4; 5), *C*(4; 4; 5);
- r) A(7; -1; -2), B(1; 7; 8), C(3; 7; 9).

100. Используя векторное произведение векторов, найдите угол A треугольника ABC, если A(1;2;3), B(2;2;2), C(1;2;4).

101. Вершины пирамиды находятся в точках A(2;3;4), B(4;7;3), C(2;-1;1), D(-2;0;-1). Найти: а) площадь грани ABC; б) площадь сечения, проходящего через середины ребер AB, AC и AD.

102. Сила $\vec{F} = (2; -4; 5)$ приложена к точке M(4; -2; 3). Определить момент этой силы относительно точки A(3; 2; -1).

103. Сила \vec{F} приложена в точке A .Вычислить величину и направляющие косинусы момента этой силы относительно точки B, если

a)
$$\vec{F} = (2; 2; 9), A(4; 2; -3), B(2; 4; 0);$$

б)
$$\vec{F} = (4; 2; 1), A(3; 2; 4), B(5; -1; 6);$$

B)
$$\vec{F} = (4; 2; -3), A(2; -3; 1), B(0; -1; 2);$$

r)
$$\vec{F} = (1; 2; -1), A(-1; 4; -2), B(2; 3; -1);$$

104. Даны длины двух векторов $|\vec{a}|=10$, $|\vec{b}|=2$ и их скалярное произведение $\vec{a} \cdot \vec{b} = 12$. Найти длину их векторного произведения $|\vec{a} \times \vec{b}|$.

105. Известно, что $|\vec{a}| = 3$, $|\vec{b}| = 26$ и $|\vec{a} \times \vec{b}| = 72$. Вычислить скалярное произведение векторов \vec{a} и \vec{b} .

106. Докажите, что точки A(3; -1; 2), B(1; 2; -1), C(-1; 1; -3), D(3; -5; 3) служат вершинами трапеции.

107. Даны три последовательные вершины параллелограмма A(1; -2; 3), B(3; 2; 1), C(6; 4; 4). Найти его четвертую вершину.

108. Угол между векторами \vec{a} и \vec{b} равен $\varphi = \frac{\pi}{6}$. Зная, что $|\vec{a}| = 6$, $|\vec{b}| = 5$ вычислить длину их векторного произведения.

Ответы. 88. $6\vec{e}$, где \vec{e} – орт направления $\vec{a} \times \vec{b}$; 66. 91. $\frac{3\sqrt{6}}{2}$.

92.
$$\frac{5\sqrt{17}}{2}$$
. **93.** 5. **94.** (45; 24; 0). **95.** $\vec{M} = 6\vec{j} - 8\vec{k}$; $\cos \alpha = 0$; $\cos \beta = 0.6$; $\cos \gamma = 0.8$.

9 Смешанное произведение трех векторов

Смешанным произведением трех векторов называется число, которое получится, если первые два вектора перемножить векторно и результат скалярно умножить на третий вектор: $(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \, \vec{b} \, \vec{c}$.

Отметим, что смешанное произведение векторов $\vec{a}\,\vec{b}\,\vec{c}=0$ тогда и только тогда, когда векторы компланарны или хотя бы один из них нуль-вектор.

Свойства смешанного произведения векторов:

- 1) смешанное произведение не меняется при перемене местами знаков векторного и скалярного умножения, т.е. $(\vec{a} \times \vec{b}) \cdot \vec{c} = \vec{a} \cdot (\vec{b} \times \vec{c});$
- 2) циклическая перестановка трех сомножителей смешанного произведения не меняет его значения; нециклическая перестановка сомножителей меняет знак произведения на противоположный:

$$\vec{a}\vec{b}\vec{c} = \vec{b}\vec{c}\vec{a} = \vec{c}\vec{a}\vec{b} = -\Big(\vec{b}\vec{a}\vec{c}\Big) = -\Big(\vec{a}\vec{c}\vec{b}\Big) = -\Big(\vec{c}\vec{b}\vec{a}\Big).$$

Смешанное произведение некомпланарных векторов \vec{a} , \vec{b} , \vec{c} по модулю численно равно объему параллелепипеда, построенного на векторах-сомножителях. Оно положительно, если тройка векторов правая, и отрицательно, если она левая.

Если векторы \vec{a} , \vec{b} и \vec{c} заданы своими координатами $\vec{a}=(x_1;y_1;z_1)$, $\vec{b}=(x_2;y_2;z_2)$, $\vec{c}=(x_3;y_3;z_3)$, то смешанное произведение равно определителю

$$\vec{a} \, \vec{b} \, \vec{c} = \begin{vmatrix} x_1 & y_1 & z_1 \\ x_2 & y_2 & z_2 \\ x_3 & y_3 & z_3 \end{vmatrix}.$$

Задания для аудиторной работы

- **109.** Пусть для векторов \vec{a} , \vec{b} , \vec{c} известно, что векторы \vec{a} и \vec{b} образуют угол $\varphi = \frac{\pi}{6}$ и $\vec{c} \perp \vec{a}$, $\vec{c} \perp \vec{b}$. Вычислить $\vec{a}\vec{b}\vec{c}$, если $|\vec{a}| = 6$, $|\vec{b}| = |\vec{c}| = 3$.
- **110.** Даны векторы $\vec{a}=(3;4;-1)$, $\vec{b}=(2;3;5)$, $\vec{c}=(1;0;1)$. Вычислить: a) $\vec{a}\vec{b}\vec{c}$; б) $(\vec{a}+\vec{b})\vec{b}\vec{c}$; в) $(2\vec{a}-3\vec{b})\vec{a}\vec{c}$.
- **111.** Проверить, будут ли точки A, B, C и D лежать в одной плоскости, если:
 - a) A(3; 5; 1), B(2; 4; 7), C(1; 5; 3) и D(4; 4; 5);
 - б) A(1; 2; -1), B(4; 1; 5), C(-1; 2; 1) и D(2; 1; 3)?
- **112.** Являются ли вектора $\vec{a} = (1;3;1)$, $\vec{b} = (-2;4;-1)$, $\vec{c} = (2;4;6)$ компланарными? Если нет, то какую тройку они образуют. Найти объем пирамиды, построенной на заданных векторах.
- **113.** Даны вершины пирамиды A(2; 0; 4), B(0; 3; 7), C(0; 0; 6) и S(4; 3; 5). Вычислить объем пирамиды и ее высоту, опущенную на грань ACS.
- **114.** Дана пирамида с вершинами A(1; 2; 3), B(-2; 4; 1), C(7; 6; 3) и S(4; -3; -1). Найдите: а) длины ребер AB, AC, AS; б) площадь грани ABC; в) угол между ребрами AS и BC; г) объем пирамиды; д) длину высоты, опущенной на грань ABC.

Задания для индивидуальной работы

115. Установить, являются ли векторы \vec{a} , \vec{b} и \vec{c} компланарными, если:

a)
$$\vec{a} = (2;3;-1), \vec{b} = (1;-1;3), \vec{c} = (1;9;-11);$$

б)
$$\vec{a} = (3; -2; 1), \ \vec{b} = (2; 1; 2), \ \vec{c} = (3; -1; 2);$$

B)
$$\vec{a} = (2; -1; 2), \ \vec{b} = (1; 2; -3), \ \vec{c} = (3; -4; 7);$$

$$\vec{a} = (-1; -2; 6), \vec{b} = (-2; -1; 2), \vec{c} = (1; -1; 4).$$

116. Выяснить, правой или левой будет тройка заданных векторов, если:

a)
$$\vec{a} = (3; 4; 0), \ \vec{b} = (0; -4; 1), \ \vec{c} = (0; 2; 5);$$

б)
$$\vec{a} = (1; 1; 0), \ \vec{b} = (1; -1; 0), \ \vec{c} = (0; 2; 0);$$

- B) $\vec{a} = (1; 1; 0), \ \vec{b} = (0; -3; 1), \ \vec{c} = (3; 2; 5);$
- r) $\vec{a} = (1; 1; 0), \ \vec{b} = (0; -4; -1), \ \vec{c} = (0; -2; -3).$
- **117.** Найти объем треугольной призмы, построенной на векторах $\vec{a}=(1;\,2;\,3),\; \vec{b}=(2;\,4;\,1),\; \vec{c}=(2;\,-1;\,0)$.
- **118.** Вычислить объем и высоту пирамиды, вершины которой находятся в точках *A*, *B*, *C* и *D*, если:
 - a) A(1; 3; 2), B(5; 2; -1), C(5; 5; 6), D(2; 2; 4);
 - б) A(-5; -4; 8), B(2; 3; 1), C(4; 1; -2), D(6; 3; 7);
 - B) A(2; -1; 1), B(5; 5; 4), C(3; 2; -1), D(4; 1; 3);
 - r) A(2; 0; 4), B(0; 3; 7), C(0; 0; 6), D(4; 3; 5).
- **119.** Объём треугольной пирамиды равен 9 куб. ед. Три его вершины находятся в точках A(4; -1; 2), B(5; 1; 4) и C(3; 2; -1). Найдите координаты четвёртой вершины, если она находится на оси Oz.
- **120.** Доказать тождество: $(\vec{a} + \vec{b})(\vec{b} + \vec{c})(\vec{c} + \vec{a}) = 2(\vec{a}\vec{b}\vec{c})$.
- **121.** Пусть $\vec{a} = (2; -1; 3)$, $\vec{b} = (1; -3; 2)$, $\vec{c} = (3; 2; -4)$. Найти вектор \vec{d} , удовлетворяющий следующим условиям: $\vec{a} \cdot \vec{d} = -5$, $\vec{d} \cdot \vec{b} = -11$, $\vec{d} \cdot \vec{c} = 20$.
- **122.** Найти координаты вектора \vec{c} , удовлетворяющего следующим условиям: \vec{c} перпендикулярен оси Oz; \vec{c} перпендикулярен вектору $\vec{a} = (8; -15; 3)$; \vec{c} образует острый угол с осью Ox; $|\vec{c}| = 51$.
- **123.** Убедившись, что векторы $\vec{a} = (1; -1; 2)$ b $\vec{b} = (2; -2; 1)$ можно рассматривать как ребра куба, найти третье ребро.
- **124.** Пусть $\vec{a} = (8;4;1)$, $\vec{b} = (2;-2;1)$, $\vec{c} = (4;0;3)$. Найти такой вектор \vec{d} , что упорядоченные тройки $\vec{a}, \vec{b}, \vec{c}$ и $\vec{a}, \vec{b}, \vec{d}$ имеют одинаковую ориентацию и $\vec{d} \perp \vec{a}, \ \vec{d} \perp \vec{b}$.
- **125.** Три последовательные вершины трапеции находятся в точках A(-3;-2;-1), B(1;2;3) и C(9;6;4). Найти четвертую вершину D, если длина основания AD равна 15.

Ответы. 109. 27. 110. a) 24; б) 24; в) 71. 111. a) лежат в одной пл.

113. 2;
$$\frac{2\sqrt{3}}{3}$$
. **114.** a) $\sqrt{17}$; б) $2\sqrt{13}$; в) $5\sqrt{2}$; г) 14; д) $\arccos\left(-\frac{1}{5\sqrt{26}}\right)$. **116.**

а) левая. **117.** $\frac{25}{6}$. **119.** (0; 0; 3) или (0; 0; -18,6).

10 Прямая на плоскости

Виды уравнений прямой L на плоскости:

- 1. Ax + By + C = 0 общее уравнение прямой, вектор $\vec{n} = (A; B)$ перпендикулярен прямой и называется ее *нормальным вектором*.
- 2. $A(x-x_0)+B(y-y_0)=0$ уравнение прямой с нормальным вектором (A; B), проходящей через точку $M_0(x_0;y_0)$.
- 3. $\frac{x}{a} + \frac{y}{b} = 1$ уравнение прямой «в отрезках», где a и b величины отрезков, отсекаемых прямой на осях Ox и Oy соответственно.
- 4. $y = k \cdot x + b$ уравнение прямой с угловым коэффициентом $k = tg\varphi$, где φ угол между прямой L и положительным направлением оси Ox.
- 5. $y y_0 = k(x x_0)$ уравнение прямой с угловым коэффициентом $k = tg\varphi$, проходящей через точку $M_0(x_0; y_0)$.
 - 6. $\begin{cases} x = x_0 + mt, \\ y = y_0 + nt, \end{cases}$ параметрические уравнения прямой L, где вектор

 $\vec{s}=(m;n)$ параллелен прямой L и называется направляющим вектором прямой, параметр $t\in\mathbb{R}$.

- 7. $\frac{x-x_0}{m} = \frac{y-y_0}{n}$ каноническое уравнение прямой или уравнение прямой с направляющим вектором $\vec{s} = (m; n)$, проходящей через точку $M_0(x_0; y_0)$.
- 8. $\frac{x-x_1}{x_2-x_1}=\frac{y-y_1}{y_2-y_1}$ уравнение прямой, проходящей через две заданные точки $M_1(x_1;y_1)$ и $M_2(x_2;y_2)$.

Угол между двумя прямыми равен углу между их нормальными векторами.

1) Пусть прямые L_1 и L_2 заданы общими уравнениями:

 $L_{\!\scriptscriptstyle 1}:A_{\!\scriptscriptstyle 1}x+B_{\!\scriptscriptstyle 1}y+C_{\!\scriptscriptstyle 1}=0\,,\;\;L_{\!\scriptscriptstyle 2}:A_{\!\scriptscriptstyle 2}x+B_{\!\scriptscriptstyle 2}y+C_{\!\scriptscriptstyle 2}=0\,,\;\;$ тогда угол между прямыми

определяется по формуле:
$$\cos \varphi = \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{|\overrightarrow{n_1}| \cdot |\overrightarrow{n_2}|} = \frac{A_1 A_2 + B_1 B_2}{\sqrt{A_1^2 + B_1^2} \cdot \sqrt{A_2^2 + B_2^2}}$$

Условие перпендикулярности этих прямых: $A_1A_2 + B_1B_2 = 0$.

Условие параллельности: $\frac{A_1}{A_2} = \frac{B_1}{B_2}$.

2) Пусть прямые L_1 и L_2 заданы уравнениями: L_1 : $y = k_1x + b_1$ и L_2 : $y = k_2x + b_2$, тогда угол между прямыми определяется по формуле:

$$tg\varphi = \frac{k_2 - k_1}{1 + k_1 k_2}.$$

Условие перпендикулярности этих прямых: $k_1 \cdot k_2 = -1$.

Условие параллельности: $k_1 = k_2$.

Расстояние от точки $M_1(x_1;y_1)$ до прямой Ax+By+C=0 определяется по формуле $d=\frac{\mid Ax_1+By_1+C\mid}{\sqrt{A^2+B^2}}$.

Задания для аудиторной работы

- **126.** Дано общее уравнение прямой. Записать уравнение с угловым коэффициентом и, если это возможно, уравнение прямой в отрезках. Построить данные прямые: a) 5x 3y + 15 = 0; б) 2x + y 6 = 0; в) y 3 = 0.
- 127. Составить уравнение прямой, проходящей
 - 1) через начало координат и точку A(-2; -3);
 - 2) через точку *М*(–3; 4) и параллельной оси *Ох*;
 - 3) через точку M(-3; 4) и параллельной оси Oy;
- 4) параллельной биссектрисе первого координатного угла и отсекающей на оси *Оу* отрезок, равный 4;
 - 5) через точку A(2; 5) и отсекающей на оси ординат отрезок b=7;
 - 6) через точку A(-2;3) и перпендикулярно прямой 2x-3y+8=0 ;
- 7) проходящей через точку M(4;-3) и образующей с осями координат треугольник площадью 3.
- **128.** Записать параметрическое уравнение прямой, проходящей через точки A(-1;3), B(4;5).
- **129.** Дана прямая x-2y+3=0. Составить уравнение прямой, проходящей через точку: $M_0(0;2)$ а) параллельно данной прямой; б) перпендикулярно к данной прямой; в) образующей с данной прямой угол 45^0 .
- **130.** Точка A(2;-5) вершина квадрата, одна из сторон которого лежит на прямой x-2y-7=0. Найти площадь квадрата.
- **131.** Выяснить, при каких значениях параметра *a* прямые ax 4y = 0 x ay = 3: a) пересекаются; б) параллельны; в) совпадают.
- **132.** Найти проекцию точки P(-8; 12) на прямую, проходящую через точки A(2; -3) и B(-5; 1).
- **133.** Найти точку Q, симметричную точке P(-3; 4) относительно прямой 4x y 1 = 0.
- 134. Определить угол между двумя прямыми:
 - a) 3x y + 5 = 0, 2x + y 7 = 0;
 - 6) y = 2x + 5, y = -3x + 1;
 - B) 4x-6y+7=0, 20x-30y-11=0;
 - r) $x\sqrt{2} y\sqrt{3} 5 = 0$, $(3 + \sqrt{2})x + (\sqrt{6} \sqrt{3})y + 7 = 0$.

135. Вычислить величину меньшего угла между прямыми 3x + 4y - 2 = 0 и 8x + 6y + 5 = 0. Доказать, что точка $A\left(\frac{13}{14};1\right)$ принадлежит биссектрисе этого угла.

Задания для индивидуальной работы

- **136.** Записать уравнения прямых, проходящих через точку A(3;-1) и параллельно: а) оси OX; б) биссектрисе первого координатного угла; в) оси OY; г) прямой y = 3x 9.
- **137.** Записать уравнение прямой, проходящей через точку O(0;0) и образующей угол 45° с прямой y = 2x + 5.
- **137.** Составить уравнение прямой, проходящей через точку P(2; 3) и отсекающей на координатных осях отрезки равной длины, считая каждый отрезок от начала координат.
- **139.** Дано уравнение стороны ромба x+3y-8=0 и уравнение его диагонали 2x+y+4=0. Записать уравнение остальных сторон ромба, зная, что M(-9;-1) лежит на стороне, параллельной данной.
- **140.** Даны вершины треугольника: A(-1; 1), B(-2; 1), C(3; 5). Составить уравнение перпендикуляра, опущенного из вершины A на медиану, проведённую из вершины B.
- **141.** Найти расстояние между параллельными прямыми в каждом из следующих случаев: a) x-2y+3=0; 2x-4y+7=0; б) 4x-3y+15=0; 8x-6y+25=0.
- **142.** Составить уравнение прямой, которая проходит через точку C(8; 6) и отсекает от координатных углов треугольник с площадью, равной 12 кв.ед.
- **143.** Луч света направлен по прямой x-2y+5=0. Дойдя до прямой 3x-2y+7=0, луч от неё отразился. Составить уравнение прямой, на которой лежит отражённый луч.
- **144.** Даны координаты вершин треугольника ABC. Найти: 1) уравнение стороны AB; 2) уравнение высоты CH; 3) уравнение медианы AM; 4) точку пересечения медианы AM и высоты CH; 5) уравнение прямой, проходящей через точку C параллельно стороне AB; 6) расстояние от точки C до прямой AB; 7) уравнение биссектрисы внутреннего угла B; 8) центр масс треугольника ABC; 9) площадь треугольника ABC.
 - a) A(2; 5), B(-3; 1), C(0; 4);
 - б) A(-5; 1), B(8; -2), C(1; 4);
 - в) A(1; -3), B(0; 7), C(-2; 4).
 - r) A(7; 0), B(1; 4), C(-8;-4).

- **145.** Даны две вершины A(3;-1) и B(5;7) треугольника ABC и точка N(4;-1) пересечения его высот. Составить уравнения сторон этого треугольника.
- **146.** Составить уравнения сторон треугольника, зная одну его вершину C(4;-1), а также уравнения высоты 2x-3y+12=0 и медианы 2x+3y=0, проведенных из одной вершины.
- **147.** Составить уравнения сторон треугольника, зная его вершину B(2;-1), а также уравнение высоты 3x-4y+27=0 и биссектрисы x+2y-5=0, проведенных из различных вершин.
- **148.** Составить уравнения биссектрис углов между прямыми: а) x-3y+5=0; 3x-y-2=0; б) 3x-y+5=0; y=-3x+4; в) x-y=0; x+y=0; г) 3x+4y-1=0; 4x-3y+5=0.
- **149.** Составить уравнение биссектрисы угла между прямыми x+2y-11=0 и 3x-6y-5=0, которому принадлежит точка A(1;-3).
- **150.** Точка A(5;-1) является вершиной квадрата, одна из сторон которого лежит на прямой 4x-3y-7=0. Составить уравнения прямых, на которых лежат остальные стороны этого квадрата.
- **151.** Зная уравнения сторон треугольника ABC: AB:2x+3y-6=0;
- AC: x + 2y 5 = 0 и внутренний угол при вершине B, равный $\frac{\pi}{4}$, записать уравнение высоты, опущенной из вершины A на сторону BC.
- **152.** Составить уравнение биссектрисы того угла между прямыми x-7y-1=0 и x+y+7=0, внутри которого лежит точка A(1;1).
- **153.** Составить уравнения сторон треугольника, зная одну из его вершин A(-4;2) и уравнения двух медиан: 3x 2y + 2 = 0 и 3x + 5y 12 = 0.
- **154.** Даны уравнения двух сторон параллелограмма: x-2y=0 и x-y-1=0 и точка пересечения его диагоналей M(3;-1). Найти уравнения двух других сторон.

Ответы. 129. в) 3x - y + 2; x + 3y - 6 = 0. **132.** (-12; 5). **140.** 3x + 2y + 1 = 0.

11 Кривые второго порядка

Уравнение $(x-x_0)^2+(y-y_0)^2=0$ определяет *окружность* радиуса R с центром в точке $C(x_0;y_0)$.

Эллипс с полуосями a и b (a > b), центром в начале координат и фокусами $F_1(-c;0)$ и $F_2(c;0)$, $b^2 = a^2 - c^2$, a > c определяется канониче-

ским уравнением вида $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Эксцентриситет эллипса $\varepsilon = \frac{c}{a}$ характеризует его вытянутость вдоль оси фокусов, $0 < \varepsilon < 1$. Если $\varepsilon = 1$, то a = b. Директрисы эллипса определяются уравнением $x = \pm \frac{a}{\varepsilon}$.

Уравнение эллипса с осями симметрии, параллельными координатным осям, с центром в точке $C(x_0; y_0)$ имеет вид $\frac{\left(x-x_0\right)^2}{a^2} + \frac{\left(y-y_0\right)^2}{b^2} = 1.$

Каноническое уравнение *виперболы* с действительной полуосью *а* и мнимой полуосью *b*, с центром в начале координат и фокусами в точках $F_1(-c;0)$ и $F_2(c;0)$ имеет вид $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, $b^2 = c^2 - a^2$, (c > a).

Эксцентриситет гиперболы $\varepsilon = \frac{c}{a} > 1$ характеризует вытянутость основного прямоугольника гиперболы. Директрисы гиперболы — прямые, перпендикулярные оси фокусов: $x = \pm \frac{a}{\varepsilon}$. Асимптоты гиперболы определяются уравнением: $y = \pm \frac{b}{a} x$.

Сопряженная гипербола, фокусы которой расположены на оси Oy, определяется уравнением $-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Уравнение гиперболы с осями симметрии, параллельными координатным осям, с центром в точке $C(x_0; y_0)$ имеет вид $\frac{\left(x-x_0\right)^2}{a^2} - \frac{\left(y-y_0\right)^2}{b^2} = 1.$

Парабола с вершиной в начале координат, симметричная относительно оси Ox, имеет каноническое уравнение $y^2 = 2px$, где параметр параболы p > 0 равен расстоянию от фокуса параболы $F\left(\frac{p}{2};0\right)$ до директрисы $x = -\frac{p}{2}$. Эксцентриситет параболы равен 1.

Если осью симметрии параболы служит ось Oy, то уравнение параболы имеет вид $x^2 = 2py$, (p > 0), $F\left(0; \frac{p}{2}\right)$, уравнение директрисы $y = -\frac{p}{2}$.

Уравнение параболы, вершина которой находится в точке $C(x_0; y_0)$ с осью симметрии, параллельной одной из координатных осей, имеет вид: $(y-y_0)^2=2p(x-x_0)$ или $(x-x_0)^2=2p(y-y_0)$.

Свойство кривых второго порядка: отношение расстояния от любой точки M кривой до фокуса к расстоянию от этой точки до соответствующей выбранному фокусу директрисы есть величина постоянная, равная эксцентриситету кривой, т. е. $\frac{r}{d} = \varepsilon$.

При $\varepsilon=0$ получаем окружность, при $0<\varepsilon<1$ — эллипс, при $\varepsilon=1$ — параболу, при $\varepsilon>1$ — гиперболу.

Задания для аудиторной работы

- 155. Составить уравнение окружности, если известно, что:
- а) окружность проходит через точку M(5;-2), а её центр совпадает с точкой C(3;-1);
- б) центр окружности совпадает с началом координат, а прямая 8x + 6y 20 = 0 является касательной к окружности.
- 156. Найти координаты центра и радиус окружности:

- **157.** Для эллипсов $25x^2 + 9y^2 = 225$ и $9x^2 + 25y^2 = 225$ найти: а) полуоси; б) фокусы; в) эксцентриситет; г) уравнения директрис.
- **158.** Показать, что уравнение $4x^2 + 3y^2 8x + 12y 32 = 0$ определяет эллипс. Найти его оси, координаты центра, эксцентриситет.
- **159.** Составить уравнение эллипса, фокусы которого лежат на оси абсцисс, симметрично относительно начала координат, зная, кроме того, что:
 - а) его большая ось равна 10, а расстояние между фокусами равно 8;
 - б) расстояние между фокусами равно 6, а эксцентриситет равен 0,6;
 - в) его малая ось равна 10, а эксцентриситет равен $\frac{12}{13}$;
- г) расстояние между его директрисами равно 5, а расстояние между фокусами равно 4;
 - д) эллипс проходит через точку M(2, -2), его большая полуось равна 4;
 - е) эллипс проходит через точки $M_1(4;-\sqrt{3})$ и $M_2(2\sqrt{2};3);$
- ж) эллипс проходит через точку M(1;1) и имеет эксцентриситет, равный 0,6.
- **160.** Даны гиперболы $\frac{x^2}{25} \frac{y^2}{144} = 1$ и $\frac{x^2}{225} \frac{y^2}{64} = 1$. Найти: а) полуоси a и b; б) фокусы; в) эксцентриситет; г) уравнения асимптот; д) уравнения директрис.

- 161. Составить уравнение гиперболы, фокусы которой принадлежат оси абсцисс и симметричны относительно начала координат, если:
 - a) 2c = 10; 2b = 8;
 - σ) 2a = 16; $ε = \frac{5}{4}$;
 - B) 2c = 12; $\varepsilon = \frac{6}{5}$;
- г) ее фокусы лежат на оси Оу, расстояние между ними равно 20, а действительная ось равна 16;
- д) уравнение асимптот $y=\pm\frac{3}{4}x$, расстояние между директрисами равно 12,8.
- 162. Установить, какие кривые задаются следующими уравнениями:
 - a) $16x^2 25y^2 + 32x 100y + 84 = 0$; 6) $5x^2 9y^2 30x + 18y 9 = 0$;
 - B) $x = 9 2\sqrt{v^2 + 4v + 8}$;
- Γ) $V = -3\sqrt{x^2 + 1}$.
- 163. Составить уравнение параболы, вершина которой находится в начале координат, зная, что:
- а) парабола расположена в правой полуплоскости, симметрично относительно оси Ox, и её параметр p=3;
- б) парабола расположена симметрично относительно оси Оу и проходит через точку A(4; -8);
- в) она симметрична относительно оси Ох и проходит через точку A(6; -2).
- 164. Составить уравнение параболы, вершина которой находится в точке A(1; -2), если парабола расположена:
- а) симметрично относительно прямой x-1=0 и проходит через точку B(2;0);
- б) симметрично относительно прямой y + 2 = 0 и проходит через точку B(2;0).
- 165. Установить, какая линия определяется уравнением, и изобразить эти линии на чертеже:

a)
$$y^2 + 10x + 2y = 0$$
;

6)
$$y = -\frac{1}{6}x^2 + 2x - 7$$
;

B)
$$2x^2 + 5y^2 + 8x - 10y - 17 = 0$$
;

$$\Gamma) x^2 - 8x + 2y + 18 = 0;$$

д)
$$x = -4 + 3\sqrt{y+5}$$
;

e)
$$y = 7 - \frac{3}{2}\sqrt{x^2 - 6x + 13}$$
;

$$x) x = 5 - \frac{3}{4} \sqrt{y^2 + 4y - 12};$$

3)
$$y = -5 + \sqrt{-3x - 21}$$
;

$$y = 1 - \frac{4}{3}\sqrt{-6x - x^2};$$

K)
$$x = -2 + \sqrt{-5 - 6y - y^2}$$

Задания для индивидуальной работы

- **166.** Найти уравнение окружности, если концы одного из ее диаметров находятся в точках A(3;9), B(7;3).
- **167.** Найти уравнения касательных, проведенных из точки M(0;3) к окружности $x^2 + y^2 6x + 4y 12 = 0$.

Omsem:
$$y = 3$$
; $y = \frac{15}{8}x + 3$.

- 168. Записать уравнение окружности, если:
- а) она проходит через правый фокус гиперболы $57x^2 64y^2 = 3648$ и ее центр в точке A(2; 8);
- б) она проходит через левый фокус эллипса $13x^2 + 49y^2 = 837$ и ее центр в точке A(1; 8);
- в) она проходит через точку B(3; 4) и ее центр в вершине параболы $y^2 = \frac{1}{4}(x+7);$
- г) она проходит через фокусы гиперболы $4x^2 5y^2 = 20$ и ее центр в точке A(0; -6).
- 169. Составить каноническое уравнение эллипса, если:
 - а) малая ось равна 24, расстояние между фокусами равно 10;
 - б) расстояние между фокусами равно 6, эксцентриситет равен $\frac{3}{5}$;
- в) расстояние между директрисами равно 32, эксцентриситет равен 0,5;
- г) малая полуось равна 7 и один из фокусов находится в точке F(13;0);
 - д) эллипс проходит через точки A(-3; 0), $B\left(1; \frac{\sqrt{40}}{3}\right)$;
 - e) эллипс проходит через точку $A\Big(0;-\sqrt{11}\Big)$ и $\varepsilon=\frac{5}{6};$
 - ж) большая ось равна 30 и $\varepsilon = \frac{15}{17}$.
- **170.** Составить уравнение эллипса, фокусы которого лежат на оси ординат, симметрично относительно начала координат, зная, кроме того, что:
 - а) его полуоси равны, соответственно, 7 и 2;
 - б) его малая ось равна 16, а эксцентриситет равен 0,6;
- в) расстояние между его директрисами равно $10\frac{2}{3}$, а эксцентриситет равен 0,6.

- **171.** Составить уравнение прямой, проходящей через левый фокус и нижнюю вершину эллипса $\frac{x^2}{25} + \frac{y^2}{16} = 1$.
- **172.** Составить уравнение эллипса, если известны его эксцентриситет $\varepsilon = 0.5$, фокус F(3;0) и уравнение соответствующей директрисы: x + y 1 = 0.
- **173.** На эллипсе найти точку, расстояние до которой от правого фокуса в четыре раза меньше расстояния до левого фокуса, если уравнение эллипса $16x^2 + 25y^2 = 400$.
- 174. Составить каноническое уравнение гиперболы, если:
 - а) действительная полуось a = 4, эксцентриситет $\varepsilon = 1,25$;
- б) ее асимптоты заданы уравнениями $y = \pm \frac{x}{2}$ и расстояние между фокусами равно 10;
- в) расстояние между вершинами равно 8, расстояние между фокусами равно 10;
- г) действительная полуось равна 5, вершины делят расстояние между фокусом и центром пополам;
- д) действительная ось равна 6, гипербола проходит через точку A(9;-4);
 - е) точки P(-5;2) и $Q(2\sqrt{5};1)$ принадлежат гиперболе;
- ж) мнимая полуось равна 4 и один из фокусов находится в точке F(-11;0);
 - 3) уравнения асимптот гиперболы $y = \pm x \sqrt{\frac{2}{3}}$ и $\varepsilon = \frac{\sqrt{15}}{3}$;
 - и) гипербола проходит через точки $A\!\!\left(\sqrt{\frac{32}{3}};1\right)$ и $B\!\!\left(\sqrt{8};0\right);$
 - к) уравнения асимптот гиперболы $y = \pm x \frac{\sqrt{17}}{8}$ и 2c = 18.
- 175. Составить уравнение гиперболы, зная, что:
- а) расстояние между вершинами равно 24, а фокусы находятся в точках $F_1(-10;2)$ и $F_2(16;2)$;
- б) эксцентриситет равен $\frac{5}{4}$, один из фокусов находится в точке F(5;0) и уравнение соответствующей директрисы 5x 16 = 0.
- **176.** Точка $M_1(1;-2)$ лежит на гиперболе, фокус которой находится в точке F(-2;2), а соответствующая директриса дана уравнением 2x-y-1=0. Составить уравнение этой гиперболы.

177. Дан эллипс $\frac{x^2}{15} + \frac{y^2}{6} = 1$. Найти уравнение гиперболы, вершины ко-

торой находятся в фокусах, а фокусы в вершинах данного эллипса.

- 178. Составить каноническое уравнение параболы, если:
 - а) F(0;2) фокус, O(0;0) вершина параболы;
- б) она симметрична относительно оси Ох и проходит через точки O(0;0) и M(1;-4);
- в) она симметрична относительно оси Оу и проходит через точки O(0;0) и N(6;-2);
 - г) уравнение директрисы параболы x = 13;
 - д) уравнение директрисы параболы y = 4;
 - е) уравнение директрисы параболы y = -3;
- ж) она симметрична относительно оси Оу и проходит через точку A(4; -10).
- 179. Струя воды фонтана, имеющая форму параболы, достигает наибольшей высоты 4м на расстоянии 0,5м от вертикали, проходящей через точку О выхода струи. Найти высоту струи над горизонталью Ох на расстоянии *0,75м* от точки *O*.
- **180.** Составить уравнение параболы, если её вершина в точке A(2;1) и уравнение директрисы 2x - y + 2 = 0.
- 181. Осевое сечение зеркала-прожектора имеет форму параболы. Определить положение фокуса, если диаметр зеркала 80 см, а глубина 40 см.
- 182. Установить, какие линии определяются следующими уравнениями. Изобразить их на чертеже.

a)
$$x^2 + y^2 - 4x + 6y + 4 = 0$$
;

6)
$$2x^2 + 5y^2 + 8x - 10y - 17 = 0$$
;

$$\Gamma) x^2 - 8x + 2y + 18 = 0$$

д)
$$y = -1 + \frac{2}{3}\sqrt{x^2 - 4x - 5}$$
;

e)
$$x = 9 - 2\sqrt{y^2 + 4y + 8}$$
;

$$\mathbf{w}) \ \ y = -7 + \frac{2}{5} \sqrt{-x^2 + 6x + 16} \ ;$$

3)
$$x = -5 + \frac{2}{3}\sqrt{8 + 2y - y^2}$$
;

$$y = 3 - 4\sqrt{x - 1};$$

$$\kappa$$
) $x = 2 - \sqrt{6 - 2y}$;

л)
$$x = -5\sqrt{-y}$$
;

M)
$$y = \frac{2}{5}\sqrt{x^2 + 25}$$
.

- 183. Составить уравнение линии, каждая точка которой:
- а) отстоит от прямой x = -7 на расстоянии в три раза меньшем, чем от точки A(3; 1);
- б) отстоит от прямой x = 2 на расстоянии в пять раз большем, чем от точки A(4; -3);
- в) отстоит от прямой x = -1 на расстоянии в четыре раза большем, чем от точки A(1; 5).

г) отношение расстояний от точки M до точек A(3; -5) и B(4; 1) равно 0,25.

Ответы. 155. a)
$$(x-3)^2 + (y+1)^2 = 5$$
; б) $x^2 + y^2 = 4$.

156. a)
$$(x-2)^2 + (y+4)^2 = 36$$
; 6) $(x+\frac{7}{3})^2 + (y-3)^2 = 25$.

158.
$$\frac{(x-1)^2}{12} + \frac{(y+2)^2}{16} = 1.$$

159. a)
$$\frac{x^2}{25} + \frac{y^2}{9} = 1$$
; б) $\frac{x^2}{25} + \frac{y^2}{16} = 1$; в) $\frac{x^2}{169} + \frac{y^2}{25} = 1$; г) $\frac{x^2}{5} + \frac{y^2}{1} = 1$;

д)
$$\frac{x^2}{16} + \frac{y^2}{16/3} = 1$$
; e) $\frac{x^2}{20} + \frac{y^2}{15} = 1$; ж) $\frac{x^2}{41/16} + \frac{y^2}{41/25} = 1$.

161. а)
$$\frac{x^2}{9} - \frac{y^2}{16} = 1$$
; б) $\frac{x^2}{64} - \frac{y^2}{36} = 1$; в) $\frac{x^2}{25} - \frac{y^2}{11} = 1$; г) $-\frac{x^2}{36} + \frac{y^2}{64} = 1$; д) $\frac{x^2}{16/25} - \frac{y^2}{9/25} = 1$.

12 Плоскость

Общее уравнение плоскости имеет вид Ax + By + Cz + D = 0, где $\vec{n} = (A; B; C)$ называют нормальным вектором плоскости, причем выполняется условие $A^2 + B^2 + C^2 \neq 0$.

Существуют различные способы задания плоскости, выпишем соответствующие им уравнения:

- 1. $A(x-x_0)+B(y-y_0)+C(z-z_0)=0$ уравнение плоскости с известным нормальным вектором $\vec{n}=(A;B;C)$ и точкой $M_0(x_0;y_0;z_0)$, принадлежащей плоскости.
- 2. $\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$ уравнение плоскости в «отрезках», где a, b, c величины отрезков, отсекаемых плоскостью на осях координат, $a \neq 0$, $b \neq 0$, $c \neq 0$.

3.
$$\begin{vmatrix} x-x_1 & y-y_1 & z-z_1 \\ x_2-x_1 & y_2-y_1 & z_2-z_1 \\ x_3-x_1 & y_3-y_1 & z_3-z_1 \end{vmatrix} = 0$$
 — уравнение плоскости, проходящей че-

рез три заданные точки $M_i(x_i; y_i; z_i)$, (i = 1, 2, 3).

Рассмотрим плоскости α : $A_1x + B_1y + C_1z + D_1 = 0$ и β : $A_2x + B_2y + C_2z + D_2 = 0$.

Углом между двумя плоскостями α и β называется угол между их нормальными векторами:

$$\cos \varphi = \frac{\overrightarrow{n_1} \cdot \overrightarrow{n_2}}{\left| \overrightarrow{n_1} \right| \cdot \left| \overrightarrow{n_2} \right|} = \frac{A_1 A_2 + B_1 B_2 + C_1 C_2}{\sqrt{A_1^2 + B_1^2 + C_1^2} \cdot \sqrt{A_2^2 + B_2^2 + C_2^2}}.$$

Условие перпендикулярности плоскостей α и β :

$$\overrightarrow{n_1} \cdot \overrightarrow{n_2} = 0$$
 или $A_1 A_2 + B_1 B_2 + C_1 C_2 = 0$.

Условие параллельности плоскостей α и β :

$$\frac{A_1}{A_2} = \frac{B_1}{B_2} = \frac{C_1}{C_2} \neq \frac{D_1}{D_2}.$$

Расстояние от точки $M_1(x_1; y_1; z_1)$ до плоскости Ax + By + Cz + D = 0 вычисляется по формуле:

$$d = \frac{|Ax_1 + By_1 + Cz_1 + D|}{\sqrt{A^2 + B^2 + C^2}}.$$

Задания для аудиторной работы

184. Построить плоскости, заданные уравнениями:

a)
$$5x + 2y + 3z - 15 = 0$$
;

6)
$$3x + 2y - 6 = 0$$
;

B)
$$3x - 9 = 0$$
;

$$\Gamma$$
) $3x - z = 0$.

185. Составить общее уравнение плоскости, которая проходит через:

- а) точку C(1; 2; 2) параллельно плоскости xOz;
- б) точку $M_0(3;0;1)$ и ось Ox;
- в) точку $M_0(1;2;3)$ перпендикулярно к плоскостям x-y+z-7=0 и 3x+2y-12z+5=0;
 - г) точку $M_0(1;1;1)$ параллельно векторам $\vec{a}_1=(1;2;0),\ \vec{a}_2=(0;1;3);$
 - д) начало координат и точки $M_1(1;0;2)$, $M_2(0;0;3)$;
 - е) точки M_1 (1;0;1), M_2 (0;2;3), M_3 (0;2;1).
- **186.** Найти угол между плоскостями x-2y+2z-3=0 и 3x-4y+5=0.
- **187.** Вычислить расстояние между параллельными плоскостями 3x + 6y + 2z 15 = 0 и 3x + 6y + 2z + 13 = 0.
- **188.** Составить уравнение плоскости, проходящей через точку M(1;0;2), перпендикулярно к двум плоскостям: 2x y + 3z 1 = 0 и 3x + 6y + 3z 5 = 0.
- **189.** Установить, какие из следующих пар плоскостей пересекаются, параллельны или совпадают:
 - a) x-y+3z+1=0; 2x-y+5z-2=0;
 - 6) 2x + y + 2z + 4 = 0; 4x + 2y + 4z + 8 = 0;
- **190.** Найти координаты точки Q, симметричной точке P(-3;1;-9) относительно плоскости 4x-3y-z-7=0.

Задания для индивидуальной работы

- 191. Составить общее уравнение плоскости, которая проходит через:
 - а) точку M(7; -3; 5) и параллельна плоскости xOz;
 - б) точку M(-3;1;-2) и ось Oz;
 - в) точки $M_1(4;0;-2)$, $M_2(5;1;7)$ и параллельна оси Ox;
 - г) точку M(2;1;-1) и имеет нормальный вектор $\vec{n}=(1;-2;3);$
 - д) точку M(3;4;-5) и параллельно векторам $\vec{a}=(3;1;-1),\ \vec{b}=(1;-2;1);$
 - е) точки $M_1(3; -1; 4)$, $M_2(5; 2; 6)$, $M_3(2; 3; -3)$.
- 192. Составить общее уравнение плоскости, которая проходит через:
 - а) точку A(-3; 1; -2) и ось Ox;
 - б) точку *A*(-3; 1; -2) и ось *Oy*;
 - в) начало координат и точки M(2; 1; 2) и N(1; -2; 3);
 - г) точку M(2; -3; 5) параллельно плоскости 3x + y 4z + 1 = 0.
- д) точки $M_1(1; 1; 1)$ и $M_2(2; 3; 4)$, перпендикулярно плоскости 2x-7y+5z+9=0;
- е) точку M(7;-5;1) и отсекает на осях координат равные положительные отрезки;
 - ж) точки A(3;-1;2) и B(2;1;) параллельно вектору $\vec{a}=(5;-2;-1)$.
- **193.** Даны точки $M_1(3; 0; 4)$ и $M_2(5; 6; 9)$. Записать уравнение плоскости, проходящей через точку M_1 перпендикулярно к вектору $\overrightarrow{M_1M_2}$.
- **194.** Составить уравнение плоскости, которая проходит через две точки $M_1(1;-1;-2)$ и $M_2(3;1;1)$ перпендикулярно плоскости x-2y+3z-5=0.
- **195.** Составить уравнение плоскости, отсекающей на оси *Oz* отрезок c = -5 и перпендикулярной к вектору $\vec{n} = (-2;1;3)$.
- **196.** Составить уравнение плоскости, походящей через точку N (2; -1; 1) перпендикулярно к линии пересечения двух плоскостей: 3x y z + 1 = 0 и x + y + 2z + 1 = 0.
- 197. Найти косинусы углов между двумя плоскостями:
 - a) 2x + y 2z + 6 = 0; 2x 2y + z + 8 = 0;
 - 6) 2x-2y+z+2=0; x+y+z-5=0;
 - B) x-2y+2z-3=0; 3x-4y+5=0.
- **198.** Выяснить, при каком значении k следующие пары уравнений будут определять перпендикулярные плоскости:
 - a) 3x-5y+kz-3=0; x+3y+2z+5=0;
 - 6) 7x-2y-z=0; kx+y-3z-1=0;
 - B) x-4y+z-1=0; 2x+ky+10z-3=0.

199. Установить, какие из следующих пар плоскостей пересекаются, параллельны или совпадают:

a)
$$3x+2y-z+2=0$$
; $6x+4y-2z+1=0$;

6)
$$x-3z+2=0$$
; $2x-6z-7=0$;

B)
$$3x + y - 5z - 12 = 0$$
; $2x + 6z - 3 = 0$;

r)
$$2x-3y+z+8=0$$
; $4x-6y-3z-7=0$;

д)
$$5x+2y-3z-5=0$$
; $10x+4y-6z+5=0$;

e)
$$3x+7y+z+4=0$$
; $9x+21y+3z+12=0$.

200. Найти расстояние между параллельными плоскостями:

a)
$$x-2y-2z+7=0$$
; $2x-4y-4z+17=0$;

6)
$$6x+2y-4z+15=0$$
; $9x+3y-6z+10=0$;

B)
$$3x-6y+2z+35=0$$
; $3x-6y+2z-7=0$.

201. Вычислить объем куба, две грани которого лежат в плоскостях 4x-3y-12z-10=0 и 4x+3y-12z+3=0.

202. Составить уравнения плоскостей, делящих пополам двугранные углы, гранями которых служат плоскости:

a)
$$3x - y + 7z - 4 = 0$$
; $5x + 3y - 5z + 2 = 0$;

6)
$$2x - y + 5z + 3 = 0$$
; $2x - 10y + 4z - 2 = 0$;

B)
$$5x-2y+5z-3=0$$
; $2x+y-7z+2=0$.

Ответы. 185. a) y = 2; б) y = 0; в) 2x + 3y + z - 11 = 0; г) 2x + y - 2 = 0. **189.** a) пересек.; б) совп. **194.** 4x - y - 2z - 9 = 0. **195.** -2x + y + 3z + 15 = 0.

197. a) 0; б)
$$\frac{1}{3\sqrt{3}}$$
. **200.** a) $\frac{1}{2}$; б) $\frac{25}{2\sqrt{126}}$.

13 Прямая в пространстве. Прямая и плоскость

Существуют различные способы задания прямой в пространстве, выпишем соответствующие им уравнения:

1.
$$\begin{cases} A_1x + B_1y + C_1z + D_1 = 0, \\ A_2x + B_2y + C_2z + D_2 = 0 \end{cases}$$
 – общие уравнения прямой в пространстве:

прямая в пространстве определяется как линия пересечения двух плоскостей.

2.
$$\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$$
 — канонические уравнения прямой в про-

странстве с направляющим вектором $\vec{s} = (m, n, p)$ и точкой (x_0, y_0, z_0) , лежащей на прямой.

3.
$$\begin{cases} x = x_0 + mt, \\ y = y_0 + nt, - \text{параметрические уравнения прямой в пространстве,} \\ z = z_0 + pt, \end{cases}$$

где $\vec{s} = (m, n, p)$ – направляющий вектор, $t \in \mathbb{R}$ – параметр.

4.
$$\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} = \frac{z-z_1}{z_2-z_1}$$
 — уравнения прямой в пространстве, про-

ходящей через две заданные точки $M_1(x_1, y_1, z_1)$ и $M_2(x_2, y_2, z_2)$.

Пусть две прямые заданы каноническими уравнениями:

$$L_1: \frac{x-x_1}{m_1} = \frac{y-y_1}{n_1} = \frac{z-z_1}{p_1}; L_2: \frac{x-x_2}{m_2} = \frac{y-y_2}{n_2} = \frac{z-z_2}{p_2}.$$

Тогда величина угла между ними определяется как величина угла между их направляющими векторами и может быть найдена по формуле:

$$\cos \varphi = \cos(\overrightarrow{s_1}, \overrightarrow{s_2}) = \frac{\overrightarrow{s_1} \cdot \overrightarrow{s_2}}{\left|\overrightarrow{s_1}\right| \cdot \left|\overrightarrow{s_2}\right|} = \frac{m_1 m_2 + n_1 n_2 + p_1 p_2}{\sqrt{m_1^2 + n_1^2 + p_1^2} \cdot \sqrt{m_2^2 + n_2^2 + p_1^2}}.$$

Условие параллельности прямых L_1 и L_2 : $\frac{m_1}{m_2} = \frac{n_1}{n_2} = \frac{p_1}{p_2}$

Условие перпендикулярности прямых L_1 и L_2 : $m_1m_2 + n_1n_2 + p_1p_2 = 0$.

Угол между прямой
$$L: \frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$$
 и плоскостью

 α : Ax + By + Cz + D = 0 определяется по формуле:

$$\sin \varphi = \frac{|Am + Bn + Cp|}{\sqrt{A^2 + B^2 + C^2} \cdot \sqrt{m^2 + n^2 + p^2}}.$$

Условие параллельности прямой L и плоскости α : Am + Bn + Cp = 0.

Условие перпендикулярности прямой L и плоскости α : $\frac{A}{m} = \frac{B}{n} = \frac{C}{p}$.

Расстояние от точки M_1 до прямой $L: \frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$ находят

по формуле:
$$d = \frac{|\overrightarrow{M_0M_1} \times \overrightarrow{s}|}{|\overrightarrow{s}|}$$
, где $\overrightarrow{s} = (m, n, p)$.

Расстояние между скрещивающимися прямыми

$$L_1$$
: $\frac{x-x_1}{m_1} = \frac{y-y_1}{n_1} = \frac{z-z_1}{p_1}$ и L_2 : $\frac{x-x_2}{m_2} = \frac{y-y_2}{n_2} = \frac{z-z_2}{p_2}$ можно найти по

формуле:
$$d = \frac{\left|\left(\overrightarrow{M_1M_2}, \vec{s}_1, \vec{s}_2\right)\right|}{|\vec{s}_1 \times \vec{s}_2|}$$
, где $M_1 = (x_1, y_1, z_1), M_2(x_2; y_2; z_2)$.

Рассмотрим в пространстве плоскость $\alpha: Ax + By + Cz + D = 0$ и прямую L, заданную параметрическими уравнениями $L: \begin{cases} x = x_0 + mt; \\ y = y_0 + nt; \\ z = z_0 + pt. \end{cases}$

Чтобы определить взаимное расположение плоскости α и прямой L, рассмотрим уравнение: $A(x_0+mt)+B(y_0+nt)+C(z_0+pt)+D=0$. Отсюда:

$$t \cdot (Am + Bn + Cp) = -(Ax_0 + By_0 + Cz_0 + D).$$
 (4)

- 1. Если $Am+Bn+Cp\neq 0$, то уравнение (4) имеет единственное решение, а, значит, прямая пересекает плоскость в одной точке. При этом, $t=\frac{-\left(Ax_0+By_0+Cx_0+D\right)}{Am+Bn+Cp} \quad \text{и координаты точки пересечения}\\ \left(x_0+mt;\,y_0+nt;\,z_0+pt\right).$
- 2. Если Am + Bn + Cp = 0 и $Ax_0 + By_0 + Cz_0 + D = 0$, то уравнение (4) имеет бесконечно много решений, а следовательно, прямая лежит в плоскости.
- 3. Если Am + Bn + Cp = 0 и $Ax_0 + By_0 + Cz_0 + D \neq 0$, то уравнение (4) не имеет решений, а значит, прямая параллельна плоскости.

Задания для аудиторной работы

- 203. Составить канонические уравнения прямой, проходящей через:
 - а) точку $M_0(2;0;3)$ параллельно вектору $\vec{a} = (3;-2;-2);$
 - б) точку A(1;2;3) параллельно оси Ox;
 - в) точки $M_1(1;2;3)$ и $M_2(4;4;5)$.
- **204.** Привести к каноническому виду общее уравнение прямой $\begin{cases} x-2y+3z-4=0; \\ 3x+2y-5z-4=0. \end{cases}$
- **205.** Составить канонические уравнения прямой, проходящей через точку $M_1(2;3;-5)$ параллельно прямой $\begin{cases} 3x-y+2z+2=0; \\ x+3y-2z+3=0. \end{cases}$
- 206. Установить взаимное расположение двух прямых:

a)
$$\frac{x-2}{4} = \frac{y}{3} = \frac{z+1}{-2}$$
 u $\begin{cases} x = 5 - 8t; \\ y = 4 - 6t; \\ z = 3 + 4t; \end{cases}$

6)
$$\begin{cases} 2x - 3z + 2 = 0; \\ 2y - z - 6 = 0 \end{cases} \text{ if } \begin{cases} x - 12z + 49 = 0; \\ 4y - 37z + 148 = 0. \end{cases}$$

207. Составить уравнения прямой, которая проходит через точку
$$M_1(2; -3; 4)$$
 перпендикулярно прямым $\frac{x+2}{1} = \frac{y-3}{-1} = \frac{z+1}{1}$ и $\frac{x+4}{2} = \frac{y}{1} = \frac{z-4}{3}$.

- **208.** Составить уравнение плоскости, проходящей через точку M(4; -3; 1) параллельно прямым $\frac{x}{6} = \frac{y}{2} = \frac{z}{-3}$ и $\frac{x+1}{5} = \frac{y-3}{4} = \frac{z-4}{2}$.
- **209.** Установить взаимное расположение прямой и плоскости. В случае пересечения найти координаты точки пересечения:

a)
$$\frac{x-1}{2} = \frac{y+3}{-1} = \frac{z+2}{5}$$
; $4x+3y-z+3=0$;

6)
$$\begin{cases} 2x - y + 3z + 4 = 0; \\ x - 2y + z + 3 = 0; \end{cases} 4x - 5y - z + 8 = 0;$$

B)
$$\begin{cases} 2x - 3y - 3z - 9 = 0; \\ x - 2y + z + 3 = 0; \end{cases}$$
; $x - 2y + z - 1 = 0$.

210. Доказать перпендикулярность прямых $\begin{cases} x = 2t + 1; \\ y = 3t - 2; \\ z = -6t + 1 \end{cases}$

$$\begin{cases} 2x + y - 4z + 2 = 0; \\ 4x - y - 5z + 4 = 0. \end{cases}$$

211. Найти угол между прямой и плоскостью:

a)
$$\begin{cases} x = 1 + 11t; \\ y = 2 - 7t; \ 7x - 8y + 2z - 10 = 0; \\ z = 5 - 8t; \end{cases}$$

6)
$$\frac{x-3}{2} = \frac{y-6}{-1} = \frac{z+2}{-1}$$
; $2x-4y+2z-9=0$;

B)
$$\begin{cases} x+4y-2z+7=0; \\ 3x+7y-2z=0; \end{cases} 3x+y-z+1=0.$$

Задания для индивидуальной работы

212. Записать канонические уравнения прямой, заданной общими уравнениями:

a)
$$\begin{cases} x - y + 2z + 4 = 0; \\ 3x + y - 5z - 8 = 0; \end{cases}$$
 6)
$$\begin{cases} x - 2y + 3z - 4 = 0; \\ 3x + 2y - 5z - 4 = 0. \end{cases}$$

- **213.** Записать канонические уравнения прямой, проходящей через точку M(2;0;-3), если она:
 - а) параллельна вектору $\vec{s} = (2; -3; 5);$
 - б) параллельна прямой $\begin{cases} 2x y + 3z 11 = 0, \\ 5x + 4y z + 8 = 0 \end{cases}$
- **214.** Составить уравнение плоскости, проходящей через точку A(1;2;-2) перпендикулярно прямой $\frac{x+3}{4} = \frac{y-6}{-3} = \frac{z-3}{2}$.
- **215.** Составить уравнение плоскости, проходящей через точку A(3; 4; 0) и прямую $\frac{x-2}{1} = \frac{y-3}{2} = \frac{z+1}{2}$.
- **216.** Составить уравнение плоскости, проходящей через две параллельные прямые $\frac{x-3}{2} = \frac{y}{1} = \frac{z-1}{2}$ и $\frac{x+1}{2} = \frac{y-1}{1} = \frac{z}{2}$.
- **217.** Установить взаимное расположение прямой и плоскости. Если они пересекаются, то найти координаты точки пересечения:

a)
$$\frac{x+1}{2} = \frac{y-3}{4} = \frac{z}{3}$$
 u $3x-3y+2z-5=0$;

6)
$$\frac{x-13}{8} = \frac{y-1}{2} = \frac{z-4}{3}$$
 u $x+2y-4z+1=0$;

B)
$$\frac{x-7}{5} = \frac{y-4}{1} = \frac{z-5}{4}$$
 u $3x-y+2z-5=0$;

r)
$$\frac{x-1}{2} = \frac{y+2}{1} = \frac{z-2}{1}$$
 u $3x-y+2z+5=0$;

Д)
$$\frac{x-2}{-2} = \frac{y-3}{3} = \frac{z-1}{2}$$
 и $4x+2y+z+24=0$;

e)
$$\frac{x-2}{-1} = \frac{y+1}{4} = \frac{z+5}{2}$$
 u $4x + y - z = 0$.

- **218.** Найти угол между прямой $\begin{cases} x-2y+3=0, \\ 3y+z-1=0 \end{cases}$ и плоскостью 2x+3y-z+1=0.
- **219.** Составить уравнение плоскости, проходящей через прямую $\frac{x-2}{5} = \frac{y-3}{1} = \frac{z+1}{2}$, перпендикулярно плоскости x+4y-3z+7=0.
- **220.** Найти расстояние от точки A(1; 3; 5) до прямой $\frac{x+30}{6} = \frac{y}{2} = \frac{z+2,5}{-1}$.
- 221. Найти расстояние между прямыми:

a)
$$\frac{x-2}{3} = \frac{y+1}{4} = \frac{z}{2} \text{ if } \frac{x-7}{3} = \frac{y-1}{4} = \frac{z-3}{2};$$

6)
$$\frac{x-2}{1} = \frac{y+2}{-3} = \frac{z+1}{-2}$$
 $\times \frac{x}{1} = \frac{y}{1} = \frac{z-1}{1}$.

222. Установить взаимное расположение прямых $\frac{x+2}{-1} = \frac{y-3}{2} = \frac{z-4}{3}$ и

$$\frac{x}{3} = \frac{y+4}{2} = \frac{z-3}{5}$$
.

223. Проверить, лежат ли в одной плоскости прямые:

a)
$$\begin{cases} 2x - 3z + 2 = 0; \\ 2y - z - 6 = 0; \end{cases}$$
 u
$$\begin{cases} x - 12z + 49 = 0; \\ 4y - 37z + 148 = 0; \end{cases}$$

6)
$$\begin{cases} x = 3z - 1; \\ y = -5z + 7 \end{cases}$$
 u $\begin{cases} y = 2x - 5; \\ z = 7x + 2. \end{cases}$

224. Доказать параллельность прямых $\frac{x-1}{6} = \frac{y+2}{2} = \frac{z}{-1}$ и

$$\begin{cases} x - 2y + 2z - 8 = 0; \\ x + 6z - 6 = 0. \end{cases}$$

225. Доказать перпендикулярность прямых $\frac{x-1}{2} = \frac{y+2}{3} = \frac{z-1}{6}$ и

$$\begin{cases} 2x + y - 4z + 2 = 0; \\ 4x - y - 5z + 4 = 0. \end{cases}$$

226. Даны четыре точки:

- a) $A_1(0; 4; 5)$, $A_2(3; -2; -1)$, $A_3(4; 5; 6)$, $A_4(3; 3; 2)$;
- 6) $A_1(2; -1; 7)$, $A_2(6; 3; 1)$, $A_3(3; 2; 8)$, $A_4(2; -3; 7)$;
- B) $A_1(2; 1; 7)$, $A_2(3; 3; 6)$, $A_3(2; -3; 9)$, $A_4(1; 2; 5)$;
- r) $A_1(2; 1; 6)$, $A_2(1; 4; 9)$, $A_3(2; -5; 8)$, $A_4(5; 4; 2)$.

Составить уравнения:

- 1) плоскости $A_1A_2A_3$;
- 2) прямой *A*₁*A*₂;
- 3) прямой A_4M , перпендикулярной плоскости $A_1A_2A_3$;
- 4) прямой A_3N , параллельной прямой A_1A_2 ;
- 5) плоскости, проходящей через точку A_4 перпендикулярно к прямой A_1A_2 .

Вычислить:

- 6) синус угла между прямой A_1A_4 и плоскостью $A_1A_2A_3$;
- 7) косинус угла между плоскостью xOy и плоскостью $A_1A_2A_3$.
- **227.** Найти координаты точки Q, симметричной точке P(2;-5;7) относительно прямой, проходящей через точки $M_1(5;4;6)$ и $M_2(-2;-17;-8)$.

228. Найти уравнение проекции:

а) прямой
$$\frac{x-2}{6} = \frac{y+1}{-5} = \frac{z-5}{4}$$
 на плоскость $x-3y+2z-7=0$;

б) прямой
$$\frac{x-1}{9} = \frac{y+1}{-4} = \frac{z}{-7}$$
 на плоскость $2x - y - 3z + 6 = 0$.

229. Даны точка P(6; -5; 5) и плоскость 2x - 3y + z - 4 = 0. Найти:

- а) расстояние от точки Р до плоскости;
- б) проекцию точки Р на плоскость;
- в) точку Q, симметричную точке P относительно плоскости.

230. Даны точка
$$P(2;-1;3)$$
 и прямая $\begin{cases} x=3t; \\ y=5t-7; \text{ Найти: a)} \end{cases}$ проекцию точки $z=2t+2.$

P на прямую; б) расстояние от точки P до прямой; в) точку Q, симметричную точке Р относительно прямой.

231. Составить уравнение проходящей через прямую плоскости, $\begin{cases} y = -3t + 2; \text{ и точку } M_1(2; -2; 1). \end{cases}$

$$\begin{cases} y = -3t + 2; \text{ и точку } M_1(2; -2; 1) \\ z = 2t - 3 \end{cases}$$

232. Доказать, что прямые
$$\frac{x-1}{2} = \frac{y+2}{-3} = \frac{z-5}{4}$$
 и $\begin{cases} x = 3t+7; \\ y = 2t+2; \\ z = -2t+1. \end{cases}$

ной плоскости, и составить уравнение этой плоскости.

Ответы. 203. a)
$$\frac{x-2}{3} = \frac{y}{-2} = \frac{z-3}{-2}$$
; б) $\frac{x-1}{1} = \frac{y-2}{0} = \frac{z-3}{0}$;

B)
$$\frac{x-1}{3} = \frac{y-2}{2} = \frac{z-3}{2}$$
. **204.** $\frac{x-2}{2} = \frac{y+1}{7} = \frac{z}{4}$. **205.** $\frac{x-2}{-2} = \frac{y-3}{4} = \frac{z-5}{5}$.

206. а) парал.; б) скрещ. **207.**
$$\frac{x-2}{-4} = \frac{y-3}{-1} = \frac{z-4}{3}$$
.

209. в) парал. **211.** а)
$$\frac{\pi}{4}$$
; б) $\frac{\pi}{6}$.

229. a)
$$2\sqrt{14}$$
; б) (2; 1; 3); в) (-2; 7; 0)

230. a)
$$(3; -2; 4); 6) \sqrt{3}; B) (4; -3; 5).$$

231.
$$4x + 6y + 5z - 1 = 0$$
.

14 Поверхности второго порядка

1. Цилиндрические поверхности.

Рассмотрим в пространстве связку прямых G, параллельных оси Oz. Обозначим L множество тех прямых множества G, которые пересекают линию γ : F(x; y) = 0.

Множество всех точек прямых из L называют цилиндрической поверхностью или цилиндром. При этом линия γ называется направляющей цилиндра, а прямые L — его образующими.

Рассмотрим в качестве направляющих линии второго порядка:

1) если направляющая задана уравнением:

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, то поверхность называют эллип-
тическим цилиндром (рис. 4). Если направляющая окружность $x^2 + y^2 = a^2$, то цилиндр называют круговым4

2) если направляющая задана уравнением:

$$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$
, то поверхность называют гиперболическим цилиндром (рис. 5).

3) если направляющая задана уравнением: $x^2 = 2pz$, то поверхность называют *параболиче*-

ским цилиндром (рис. 6). Все эти поверхности называют цилиндрами второго порядка.

2. Конические поверхности.

Рассмотрим в пространстве связку прямых G, проходящих через начало координат. Обозначим L множество тех прямых множества G, которые пересекают линию γ . Множество всех точек прямых из L называют конической поверхностью с вершиной O и направляющей γ . Все прямые множества L называют образующими конической поверхности.

Конусом второго порядка называется поверхность, заданная уравне-

нием:
$$\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$$
.

Если выполнять сечения конической поверхности плоскостью, которая не содержит вершину конической поверхности, то в сечении будет получаться одна из линий эллипс, гипербола или парабола. Поэтому линии называют линиями конического сечения.

Изобразим конические поверхности (рис. 7) (переменная, которая входит в каноническое уравнение со знаком минус, показывает ось симметрии).

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = 0$

Рисунок 7

3. Поверхности вращения.

Эллипсоидом (рис. 8) называется фигура, заданная в прямоугольной системе координат *Охуг* уравнением $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$. Величины a > 0, b > 0, c > 0 называются полуосями эллипсоида.

Эллипсоид с двумя равными полуосями называется эллипсоидом вращения. Если a = b = c, то эллипсоид есть сфера. Сфера радиуса R с точке центром В $(x_0; y_0; z_0)$ задаётся уравнением $(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=R^2$.

Однополостным гиперболоидом (рис. 9) называется фигура, заданная в прямоугольной системе координат уравнением $\frac{x^2}{s^2} + \frac{y^2}{s^2} - \frac{z^2}{s^2} = 1$.

Двуполостным гиперболоидом (рис. 10) называется фигура, заданная в прямоугольной системе координат уравнением $\frac{x^2}{c^2} + \frac{y^2}{b^2} - \frac{z^2}{c^2} = -1$.

Эллиптическим параболоидом (рис. 11) называется фигура, заданная системе координат уравнением $\frac{x^2}{r} + \frac{y^2}{r} = 2z$, прямоугольной p > 0, q > 0.

Гиперболическим параболоидом (рис. 12) называется фигура, заданпрямоугольной системе координат уравнением $\frac{x^2}{2} - \frac{y^2}{2} = 2z, \ p > 0, \ q > 0.$

Задания для аудиторной работы

233. Методом параллельных сечений исследовать форму поверхности и построить ее:

a)
$$x^2 + 2y^2 + 4z^2 = 2$$
;

B)
$$-2x^2 + 3y^2 + 4z^2 = 0$$
; r) $x^2 + y^2 - 9 = 0$.

r)
$$x^2 + y^2 - 9 = 0$$
.

234. Определить вид поверхности и построить ее:

6)
$$36x^2 + 16y^2 - 9z^2 + 18z = 9$$
;

B)
$$x^2 + y^2 + z^2 = 2z$$
;

r)
$$5x^2 + y^2 + 10x - 6y - 10z + 14 = 0$$
.

235. Построить тело, ограниченное поверхностями:

a)
$$x + y + z = 4$$
, $3x + y = 4$, $\frac{3}{2}x + y = 4$, $y = 0$, $z = 0$;

6)
$$x^2 + z^2 = 9$$
, $y = 0$, $z = 0$, $y = x$;

B)
$$z = x^2 + y^2$$
, $y = x^2$, $y = 1$, $z = 0$.

Задания для индивидуальной работы

236. Методом параллельных сечений исследовать форму поверхности и построить ее:

a)
$$y^2 = 8z$$
;

a)
$$y^2 = 8z$$
;
b) $2y^2 + z^2 = 2x$;
6) $x^2 + y^2 - (z-1)^2 = 0$;
7) $x^2 - y^2 = x$;

B)
$$2v^2 + z^2 = 2x$$
;

$$(x^2 - y^2 = x)$$

д)
$$y^2 - 6z = 0$$
.

237. Определить вид поверхности и построить ее:

a)
$$x^2 + 3z^2 - 8x + 18z + 34 = 0$$
;

6)
$$4x^2 - y^2 - 16z^2 + 16 = 0$$
;

B)
$$x^2 + 4z = 0$$
:

r)
$$2x^2 + 3y^2 - z^2 = 18$$
.

238. Построить тело, ограниченное поверхностями:

a)
$$4z = x^2 + y^2$$
, $x^2 + y^2 + z^2 = 12$;

6)
$$y = \sqrt{x}$$
, $y = 2\sqrt{x}$, $x + z = 6$, $z = 0$;

B)
$$z = x^2 - y^2$$
, $y = 0$, $z = 0$, $x = 1$.

239. Найти центр и полуоси эллипсоида

$$3x^2 + 4y^2 + 6z^2 - 6x + 16y - 36z + 49 = 0.$$

240. Установить, какая фигура задана системой уравнений:

a)
$$\begin{cases} \frac{x^2}{36} - \frac{y^2}{18} + \frac{z^2}{2} = 1; \\ y + 1 = 0; \end{cases}$$

6)
$$\begin{cases} \frac{x^2}{9} - \frac{y^2}{4} = 2z; \\ 2x + 3y - 6 = 0 \end{cases}$$

a) $\begin{cases} \frac{x^2}{36} - \frac{y^2}{18} + \frac{z^2}{2} = 1; \\ y+1=0; \end{cases}$ б) $\begin{cases} \frac{x^2}{9} - \frac{y^2}{4} = 2z; \\ 2x+3y-6=0. \end{cases}$ содержащего точки $M_1(3;1;2)$, $M_2(2;\sqrt{11};3)$, $M_3(6;2;\sqrt{15})$.

Литература

- 1. Беклемешев, Д.В. Курс аналитической геометрии и линейной алгебры. М.: Наука, 1980.
- 2. Бугров, Я.С. Элементы линейной алгебры и аналитической геометрии / Я.С. Бугров, С.М. Никольский. М.: НАУКА, 1980.
- 3. Бугров, Я.С. Дифференциальное и интегральное исчисления / Я.С. Бугров, С.М. Никольский. М.: Наука, 1980.
- 4. Гурский, Е.И. Основы линейной алгебры и аналитической геометрии. Мн., Выш. шк., 1982.
- 5. Жевняк Р.М. Высшая математика / Р.М. Жевняк, А.А. Карпук. Мн.: Выш. шк., 1992. В 5-ти ч. Ч 1.
- 6. Мантуров, О.В. Курс высшей математики: Линейная алгебра. Аналитическая геометрия. Дифференциальное исчисление функции одной переменной / О.В. Мантуров, Н.М. Матвеев. М.: Высш. шк., 1986.
- 7. Пискунов, Н.С. Дифференциальное и интегральное исчисления. М.: Наука, 1985. Том 1.
- 8. Русак, В.М. Курс вышэйшай матэматыкі. Алгебра і геаметрыя. Аналіз функцый адной зменнай / В.М. Русак, Л.І. Шлома [і інш.]. Мн.: Выш. шк., 1994.
- 9. Тузік, А.І. Курс Лінейнай алгебры і аналітычнай геаметрыі / А.І. Тузік, Т.А. Тузік. Брэст, БрПІ, 1994.
- 10. Тузік, А.І. Уводзіны у матэматычны аналіз. Дыферэнцыяльнае злічэнне функцый адной пераменнай / А.І. Тузік, Т.А. Тузік. Брэст: БрПІ, 1996.
- 11. Тузик, Т.А. Дифференциальное исчисление функции одной переменной: методические указания для студентов технических специальностей. Брест: БИСИ, 1988.
- 12. Гусак, А.А. Задачи и упражнения по высшей математике. Мн.: Выш. шк., 1988. Ч. 1.
- 13. Гурский, Е.И. Руководство к решению задач по высшей математике / Гурский, Е.И. [и др.].— Мн.: Выш. шк., 1989. Ч. 1.
- 15. Индивидуальные задания по высшей математике: в 3-х ч. / Под редакцией А.П. Рябушк. Мн.: Выш. шк., 2000. Ч. 1.
- 16. Сухая, Т.А. Задачи по высшей математике: в 2-х ч. / Т.А. Сухая, В.Ф. Бубнов. Мн.: Выш. шк., 1993. Ч. 1.
- 17. Гусак, А.А. Справочник по высшей математике / А.А. Гусак, Г.М. Гусак, Е.А. Бричикова. Мн.: Тетра Системс, 1999-2000.
- 18. Корн, Г. Справочник по высшей математике для научных работников и инженеров / Г. Корн, Т. Корн. М.: Наука, 1968.

Оглавление

Элементы линейной алгебры	3
1. Матрицы и операции над ними	3
2. Определители	6
3. Обратная матрица. Ранг матрицы	10
4. Системы линейных алгебраических уравнений. Метод Краме-	14
ра. Метод обратной матрицы	14
5. Системы линейных алгебраических уравнений. Метод Гаусса.	16
Однородные системы	10
6. Собственные значения и собственные векторы матрицы	20
Аналитическая геометрия	23
7. Векторы в \mathbb{R}^2 и \mathbb{R}^3 . Линейная зависимость и независимость	23
векторов. Скалярное произведение векторов	23
8. Векторное произведение векторов	29
9. Смешанное произведение векторов	32
10. Прямая на плоскости	35
11. Кривые второго порядка	38
12. Плоскость	45
13. Прямая в пространстве. Прямая и плоскость	48
14. Поверхности второго порядка	54
Питепатура	60

Учебное издание

Составители:

Каримова Татьяна Ивановна Лебедь Светлана Федоровна Журавель Мария Григорьевна Гладкий Иван Иванович Дворниченко Александр Валерьевич

ЗАДАЧИ И УПРАЖНЕНИЯ

по курсу «Высшая математика»

для студентов факультета электронно-информационных систем

I семестр

Ответственный за выпуск: Каримова Т.И. Редактор: Боровикова Е.А. Компьютерная верстка: Боровикова Е.А. Корректор: Никитчик Е.В.

Подписано к печати 17.12.2013 г. Формат 60х84 ¹/₁₆. Бумага «Снегурочка». Усл. п. л. 3,72. Уч.-изд. л. 4,0. Заказ № 1272. Тираж 75 экз. Отпечатано на ризографе Учреждения образования «Брестский государственный технический университет». 224017, г. Брест, ул. Московская, 267.