Math 407A: Linear Optimization

Lecture 9
The Fundamental Theorem of Linear Programming
The Strong Duality Theorem
Complementary Slackness

Math Dept, University of Washington

2 The Fundamental Theorem of linear Programming

3 Duality Theory Revisited

4 Complementary Slackness

Phase I Formulate and solve the auxiliary problem. Two outcomes are possible:

- Phase I Formulate and solve the auxiliary problem. Two outcomes are possible:
 - (i) The optimal value in the auxiliary problem is positive. In this case the original problem is infeasible.

- Phase I Formulate and solve the auxiliary problem. Two outcomes are possible:
 - (i) The optimal value in the auxiliary problem is positive. In this case the original problem is infeasible.
 - (ii) The optimal value is zero and an initial feasible tableau for the original problem is obtained.

- Phase I Formulate and solve the auxiliary problem. Two outcomes are possible:
 - (i) The optimal value in the auxiliary problem is positive. In this case the original problem is infeasible.
 - (ii) The optimal value is zero and an initial feasible tableau for the original problem is obtained.
- Phase II If the original problem is feasible, apply the simplex algorithm to the initial feasible tableau obtained from Phase I above. Again, two outcomes are possible:

- Phase I Formulate and solve the auxiliary problem. Two outcomes are possible:
 - (i) The optimal value in the auxiliary problem is positive. In this case the original problem is infeasible.
 - (ii) The optimal value is zero and an initial feasible tableau for the original problem is obtained.
- Phase II If the original problem is feasible, apply the simplex algorithm to the initial feasible tableau obtained from Phase I above. Again, two outcomes are possible:
 - (i) The LP is determined to be unbounded.

- Phase I Formulate and solve the auxiliary problem. Two outcomes are possible:
 - (i) The optimal value in the auxiliary problem is positive. In this case the original problem is infeasible.
 - (ii) The optimal value is zero and an initial feasible tableau for the original problem is obtained.
- Phase II If the original problem is feasible, apply the simplex algorithm to the initial feasible tableau obtained from Phase I above. Again, two outcomes are possible:
 - (i) The LP is determined to be unbounded.
 - (ii) An optimal basic feasible solution is obtained.

Theorem:

Every LP has the following three properties:

Theorem:

Every LP has the following three properties:

(i) If it has no optimal solution, then it is either infeasible or unbounded.

Theorem:

Every LP has the following three properties:

- (i) If it has no optimal solution, then it is either infeasible or unbounded.
- (ii) If it has a feasible solution, then it has a basic feasible solution.

Theorem:

Every LP has the following three properties:

- (i) If it has no optimal solution, then it is either infeasible or unbounded.
- (ii) If it has a feasible solution, then it has a basic feasible solution.
- (iii) If it is feasible and bounded, then it has an optimal basic feasible solution.

Duality Theory

$$\mathcal{P} \quad \text{maximize} \quad \quad c^T x \\ \text{subject to} \quad \quad Ax \leq b, \ 0 \leq x$$

Duality Theory

$$\mathcal{P}$$
 maximize $c^T x$ subject to $Ax \le b, \ 0 \le x$

What is the dual to the dual?

minimize	$b^T y$	Standard
subject to	$A^T y \geq c$,	\Longrightarrow
	0 < v	form

$$\begin{array}{lll} \text{minimize} & b^T y & \text{Standard} & -\max \text{maximize} & (-b)^T y \\ \text{subject to} & A^T y \geq c, & \Longrightarrow & \text{subject to} & (-A^T) y \leq (-c), \\ & 0 \leq y & \text{form} & 0 \leq y. \end{array}$$

minimize
$$(-c)^T x$$

subject to $(-A^T)^T x \ge (-b)$,
 $0 \le x$

$$\begin{array}{lll} \text{minimize} & b^T y & \text{Standard} & -\max \text{maximize} & (-b)^T y \\ \text{subject to} & A^T y \geq c, & \Longrightarrow & \text{subject to} & (-A^T) y \leq (-c), \\ & 0 \leq y & \text{form} & 0 \leq y. \end{array}$$

minimize
$$(-c)^T x$$
 maximize $c^T x$ subject to $(-A^T)^T x \ge (-b)$, \Longrightarrow subject to $Ax \le b$, $0 \le x$.

minimize
$$(-c)^T x$$
 maximize $c^T x$ subject to $(-A^T)^T x \ge (-b)$, \Longrightarrow subject to $Ax \le b$, $0 \le x$.

The dual of the dual is the primal.

The Weak Duality Theorem

Theorem:

If $x \in \mathbb{R}^n$ is feasible for \mathcal{P} and $y \in \mathbb{R}^m$ is feasible for \mathcal{D} , then

$$c^T x \leq y^T A x \leq b^T y$$
.

Thus, if $\mathcal P$ is unbounded, then $\mathcal D$ is necessarily infeasible, and if $\mathcal D$ is unbounded, then $\mathcal P$ is necessarily infeasible. Moreover, if $c^T\bar x=b^T\bar y$ with $\bar x$ feasible for $\mathcal P$ and $\bar y$ feasible for $\mathcal D$, then $\bar x$ must solve $\mathcal P$ and $\bar y$ must solve $\mathcal D$.

The Weak Duality Theorem

Theorem:

If $x \in \mathbb{R}^n$ is feasible for \mathcal{P} and $y \in \mathbb{R}^m$ is feasible for \mathcal{D} , then

$$c^T x \leq y^T A x \leq b^T y$$
.

Thus, if $\mathcal P$ is unbounded, then $\mathcal D$ is necessarily infeasible, and if $\mathcal D$ is unbounded, then $\mathcal P$ is necessarily infeasible. Moreover, if $\mathbf c^T \bar x = \mathbf b^T \bar y$ with $\bar x$ feasible for $\mathcal P$ and $\bar y$ feasible for $\mathcal D$, then $\bar x$ must solve $\mathcal P$ and $\bar y$ must solve $\mathcal D$.

We combine the Weak Duality Theorem with the Fundamental Theorem of Linear Programming to obtain the *Strong Duality Theorem*.

Theorem:

If either $\mathcal P$ or $\mathcal D$ has a finite optimal value, then so does the other, the optimal values coincide, and optimal solutions to both $\mathcal P$ and $\mathcal D$ exist.

Theorem:

If either $\mathcal P$ or $\mathcal D$ has a finite optimal value, then so does the other, the optimal values coincide, and optimal solutions to both $\mathcal P$ and $\mathcal D$ exist.

Remark: In general a finite optimal value does not imply the existence of a solution.

Theorem:

If either $\mathcal P$ or $\mathcal D$ has a finite optimal value, then so does the other, the optimal values coincide, and optimal solutions to both $\mathcal P$ and $\mathcal D$ exist.

Remark: In general a finite optimal value does not imply the existence of a solution.

$$\min f(x) = e^x$$

The optimal value is zero, but no solution exists.

Proof:

Since the dual of the dual is the primal, we may as well assume that the primal has a finite optimal value.

Proof:

Since the dual of the dual is the primal, we may as well assume that the primal has a finite optimal value.

The Fundamental Theorem of Linear Programming says that an optimal basic feasible solution exists.

Proof:

Since the dual of the dual is the primal, we may as well assume that the primal has a finite optimal value.

The Fundamental Theorem of Linear Programming says that an optimal basic feasible solution exists.

The optimal tableau is

$$\begin{bmatrix} RA & R & Rb \\ \hline c^T - y^T A & -y^T & -y^T b \end{bmatrix},$$

where we have already seen that y solves \mathcal{D} , and the optimal values coincide.

Proof:

Since the dual of the dual is the primal, we may as well assume that the primal has a finite optimal value.

The Fundamental Theorem of Linear Programming says that an optimal basic feasible solution exists.

The optimal tableau is

$$\begin{bmatrix} RA & R & Rb \\ \hline c^T - y^T A & -y^T & -y^T b \end{bmatrix},$$

where we have already seen that y solves \mathcal{D} , and the optimal values coincide.

This concludes the proof.

Theorem: [WDT]

If $x \in \mathbb{R}^n$ is feasible for \mathcal{P} and $y \in \mathbb{R}^m$ is feasible for \mathcal{D} , then

$$c^T x \leq y^T A x \leq b^T y$$
.

Thus, if $\mathcal P$ is unbounded, then $\mathcal D$ is necessarily infeasible, and if $\mathcal D$ is unbounded, then $\mathcal P$ is necessarily infeasible. Moreover, if $\mathbf c^T \bar x = \mathbf b^T \bar y$ with $\bar x$ feasible for $\mathcal P$ and $\bar y$ feasible for $\mathcal D$, then $\bar x$ must solve $\mathcal P$ and $\bar y$ must solve $\mathcal D$.

Theorem: [WDT]

If $x \in \mathbb{R}^n$ is feasible for \mathcal{P} and $y \in \mathbb{R}^m$ is feasible for \mathcal{D} , then

$$c^T x \leq y^T A x \leq b^T y$$
.

Thus, if $\mathcal P$ is unbounded, then $\mathcal D$ is necessarily infeasible, and if $\mathcal D$ is unbounded, then $\mathcal P$ is necessarily infeasible. Moreover, if $c^T\bar x=b^T\bar y$ with $\bar x$ feasible for $\mathcal P$ and $\bar y$ feasible for $\mathcal D$, then $\bar x$ must solve $\mathcal P$ and $\bar y$ must solve $\mathcal D$.

The SDT implies that x solves \mathcal{P} and y solves \mathcal{D} if and only if (x,y) is a \mathcal{P} - \mathcal{D} feasible pair and

$$c^T x = y^T A x = b^T y.$$

Theorem: [WDT]

If $x \in \mathbb{R}^n$ is feasible for \mathcal{P} and $y \in \mathbb{R}^m$ is feasible for \mathcal{D} , then

$$c^T x \leq y^T A x \leq b^T y$$
.

Thus, if $\mathcal P$ is unbounded, then $\mathcal D$ is necessarily infeasible, and if $\mathcal D$ is unbounded, then $\mathcal P$ is necessarily infeasible. Moreover, if $\mathbf c^T \bar x = \mathbf b^T \bar y$ with $\bar x$ feasible for $\mathcal P$ and $\bar y$ feasible for $\mathcal D$, then $\bar x$ must solve $\mathcal P$ and $\bar y$ must solve $\mathcal D$.

The SDT implies that x solves \mathcal{P} and y solves \mathcal{D} if and only if (x,y) is a \mathcal{P} - \mathcal{D} feasible pair and

$$c^T x = y^T A x = b^T y.$$

We now examine the consequence of this equivalence.

The equation $c^T x = y^T A x$ implies that

$$0 = x^{T}(A^{T}y - c) = \sum_{j=1}^{n} x_{j} (\sum_{i=1}^{m} a_{ij}y_{i} - c_{j}).$$
 (4)

The equation $c^T x = y^T Ax$ implies that

$$0 = x^{T}(A^{T}y - c) = \sum_{i=1}^{n} x_{i}(\sum_{i=1}^{m} a_{ij}y_{i} - c_{j}).$$
 (4)

 \mathcal{P} - \mathcal{D} feasibility gives

$$0 \le x_j$$
 and $0 \le \sum_{i=1}^m a_{ij}y_i - c_j$ for $j = 1, \dots, n$.

The equation $c^T x = y^T A x$ implies that

$$0 = x^{T}(A^{T}y - c) = \sum_{j=1}^{n} x_{j} (\sum_{i=1}^{m} a_{ij}y_{i} - c_{j}).$$
 (4)

 \mathcal{P} - \mathcal{D} feasibility gives

$$0 \le x_j$$
 and $0 \le \sum_{i=1}^m a_{ij}y_i - c_j$ for $j = 1, \dots, n$.

Hence, (\clubsuit) can only hold if

$$x_j(\sum_{i=1}^m a_{ij}y_i-c_j)=0$$
 for $j=1,\ldots,n,$ or equivalently,

$$x_j = 0$$
 or $\sum_{i=1}^m a_{ij} y_i = c_j$ or both for $j = 1, \ldots, n$.

Similarly, the equation $y^T Ax = b^T y$ implies that

$$0 = y^{T}(b - Ax) = \sum_{i=1}^{m} y_{i}(b_{i} - \sum_{j=1}^{n} a_{ij}x_{j}).$$

Similarly, the equation $y^T A x = b^T y$ implies that

$$0 = y^{T}(b - Ax) = \sum_{i=1}^{m} y_{i}(b_{i} - \sum_{j=1}^{n} a_{ij}x_{j}). \quad \left(\begin{array}{c} 0 \leq y_{i} \\ 0 \leq b_{i} - \sum_{j=1}^{n} a_{ij}x_{j} \end{array}\right)$$

Similarly, the equation $y^T A x = b^T y$ implies that

$$0 = y^{T}(b - Ax) = \sum_{i=1}^{m} y_{i}(b_{i} - \sum_{j=1}^{n} a_{ij}x_{j}). \quad \left(\begin{array}{c} 0 \leq y_{i} \\ 0 \leq b_{i} - \sum_{j=1}^{n} a_{ij}x_{j} \end{array}\right)$$

Therefore, $y_i(b_i - \sum_{j=1}^n a_{ij}x_j) = 0$ i = 1, 2, ..., m.

Similarly, the equation $y^T Ax = b^T y$ implies that

$$0 = y^{T}(b - Ax) = \sum_{i=1}^{m} y_{i}(b_{i} - \sum_{j=1}^{n} a_{ij}x_{j}). \quad \left(\begin{array}{c} 0 \leq y_{i} \\ 0 \leq b_{i} - \sum_{j=1}^{n} a_{ij}x_{j} \end{array}\right)$$

Therefore, $y_i(b_i - \sum_{j=1}^n a_{ij}x_j) = 0$ i = 1, 2, ..., m.

Hence,

$$y_i = 0$$
 or $\sum_{j=1}^n a_{ij}x_j = b_i$ or both for $i = 1, \dots, m$.

$$c^T x = y^T A x = b^T y$$

$$\iff$$

$$c^T x = y^T A x = b^T y$$

$$\iff$$

•
$$x_j = 0$$
 or $\sum_{i=1}^m a_{ij} y_i = c_j$ or both for $j = 1, \dots, n$.

$$c^T x = y^T A x = b^T y$$
 \iff

- $x_j = 0$ or $\sum_{i=1}^m a_{ij}y_i = c_j$ or both for $j = 1, \dots, n$.
- $y_i = 0$ or $\sum_{j=1}^n a_{ij} x_j = b_i$ or both for $i = 1, \dots, m$.

Complementary Slackness Theorem

Theorem:

The vector $x \in \mathbb{R}^n$ solves \mathcal{P} and the vector $y \in \mathbb{R}^m$ solves \mathcal{D} if and only if x is feasible for \mathcal{P} and y is feasible for \mathcal{D} and

- (i) either $0 = x_j$ or $\sum_{i=1}^m a_{ij}y_i = c_j$ or both for $j = 1, \ldots, n$, and
- (ii) either $0 = y_i$ or $\sum_{i=1}^n a_{ij}x_j = b_i$ or both for $i = 1, \dots, m$.

Corollary to the Complementary Slackness Theorem

Corollary:

The vector $x \in \mathbb{R}^n$ solves \mathcal{P} if and only if x is feasible for \mathcal{P} and there exists a vector $y \in \mathbb{R}^m$ feasible for \mathcal{D} and such that

- (i) if $\sum_{j=1}^{n} a_{ij}x_j < b$, then $y_i = 0$, for $i = 1, \ldots, m$ and
- (ii) if $0 < x_j$, then $\sum_{i=1}^m a_{ij}y_i = c_j$, for j = 1, ..., n.

Does

$$x = (x_1, x_2, x_3, x_4, x_5) = (0, \frac{4}{3}, \frac{2}{3}, \frac{5}{3}, 0)$$

solve the LP

maximize
$$7x_1 + 6x_2 + 5x_3 - 2x_4 + 3x_5$$

subject to $x_1 + 3x_2 + 5x_3 - 2x_4 + 2x_5 \le 4$
 $4x_1 + 2x_2 - 2x_3 + x_4 + x_5 \le 3$
 $2x_1 + 4x_2 + 4x_3 - 2x_4 + 5x_5 \le 5$
 $3x_1 + x_2 + 2x_3 - x_4 - 2x_5 \le 1$
 $0 \le x_1, x_2, x_3, x_4, x_5$

Does

$$x = (x_1, x_2, x_3, x_4, x_5) = (0, \frac{4}{3}, \frac{2}{3}, \frac{5}{3}, 0)$$

solve the LP

maximize
$$7x_1 + 6x_2 + 5x_3 - 2x_4 + 3x_5$$

subject to $x_1 + 3x_2 + 5x_3 - 2x_4 + 2x_5 \le 4$: y_1
 $4x_1 + 2x_2 - 2x_3 + x_4 + x_5 \le 3$: y_2
 $2x_1 + 4x_2 + 4x_3 - 2x_4 + 5x_5 \le 5$: y_3
 $3x_1 + x_2 + 2x_3 - x_4 - 2x_5 \le 1$: y_4
 $0 \le x_1, x_2, x_3, x_4, x_5$.

The point

$$x = (x_1, x_2, x_3, x_4, x_5) = (0, \frac{4}{3}, \frac{2}{3}, \frac{5}{3}, 0)$$

must be feasible for the LP.

The point

$$x = (x_1, x_2, x_3, x_4, x_5) = (0, \frac{4}{3}, \frac{2}{3}, \frac{5}{3}, 0)$$

must be feasible for the LP.

Plugging into the constraints we get

The point

$$x = (x_1, x_2, x_3, x_4, x_5) = (0, \frac{4}{3}, \frac{2}{3}, \frac{5}{3}, 0)$$

must be feasible for the LP.

Plugging into the constraints we get

Can we use this information to construct a solution to the dual problem, (y_1, y_2, y_3, y_4) ?

Recall that

if
$$\sum_{j=1}^{n} a_{ij}x_j < b$$
, then $y_i = 0$, for $i = 1, \ldots, m$.

Recall that

if
$$\sum_{i=1}^{n} a_{ij}x_{j} < b$$
, then $y_{i} = 0$, for $i = 1, ..., m$.

We have just showed that

Recall that

if
$$\sum_{i=1}^{n} a_{ij}x_j < b$$
, then $y_i = 0$, for $i = 1, \dots, m$.

We have just showed that

Recall that

if
$$\sum_{i=1}^{n} a_{ij} x_j < b$$
, then $y_i = 0$, for $i = 1, ..., m$.

We have just showed that

Also recall that
$$\text{if } 0 < x_j, \text{ then } \sum_{i=1}^m a_{ij} y_i = c_j, \text{ for } j=1,\ldots,n.$$

$$3y_1 + 2y_2 + 4y_3 + y_4 = 6$$
 $\left(x_2 = \frac{4}{3} > 0\right)$

$$3y_1 + 2y_2 + 4y_3 + y_4 = 6$$
 $\left(x_2 = \frac{4}{3} > 0\right)$

$$5y_1 - 2y_2 + 4y_3 + 2y_4 = 5$$
 $\left(x_3 = \frac{2}{3} > 0\right)$

$$3y_1 + 2y_2 + 4y_3 + y_4 = 6$$
 $\left(x_2 = \frac{4}{3} > 0\right)$

$$5y_1 - 2y_2 + 4y_3 + 2y_4 = 5$$
 $(x_3 = \frac{2}{3} > 0)$

$$-2y_1 + y_2 - 2y_3 - y_4 = -2$$
 $\left(x_4 = \frac{5}{3} > 0\right)$

Combining these observations gives the system

$$\begin{bmatrix} 3 & 2 & 4 & 1 \\ 5 & -2 & 4 & 2 \\ -2 & 1 & -2 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \\ -2 \\ 0 \end{pmatrix},$$

which any dual solution must satisfy.

Combining these observations gives the system

$$\begin{bmatrix} 3 & 2 & 4 & 1 \\ 5 & -2 & 4 & 2 \\ -2 & 1 & -2 & -1 \\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} = \begin{pmatrix} 6 \\ 5 \\ -2 \\ 0 \end{pmatrix},$$

which any dual solution must satisfy.

This is a square system that we can try to solve for y.

	3	2	4	1	6
	5	-2	4	2	5
_	2	1	-2	-1	-2
	0	0	1	0	0
	3	2	0	1	6
	5	-2	0	2	5
_	2	1	0	-1	-2
	0	0	1	0	0
	1	3	0	0	4
	1	0	0	0	1
_	2	1	0	-1	-2
	0	0	1	0	0

$$r_1 - 4r_4$$

 $r_2 - 4r_4$
 $r_3 + 2r_4$
 $r_1 + r_3$
 $r_2 + 2r_3$

3	2	4	1	6
5	-2	4	2	5
-2	1	-2	-1	-2
0	0	1	0	0
3	2	0	1	6
5	-2	0	2	5
-2	1	0	-1	-2
0	0	1	0	0
1	3	0	0	4
1	0	0	0	1
-2	1	0	-1	-2
0	0	1	0	0

$$r_1 - 4r_4$$
 $r_2 - 4r_4$
 $r_3 + 2r_4$
 $r_1 + r_3$
 $r_2 + 2r_3$

1	3	0	0	4	$r_1 + r_3$
1	0	0	0	1	$r_2 + 2r_3$
-2	1	0	-1	-2	
0	0	1	0	0	
0	3	0	0	3	$r_1 - r_2$
1	0	0	0	1	
0	1	0	-1	0	$r_3 + 2r_2$
0	0	1	0	0	
1	0	0	0	1	r ₂
0	1	0	0	1	$\frac{1}{3} r_1$
0	0	1	0	0	r ₄
0	0	0	1	1	$-r_3 + \frac{1}{3}r_1$

		4	- 1				3	0	0	4	$r_1 + r_3$
3	2	4	1	6		1	0	0	0	1	$r_2 + 2r_3$
5	-2	4	2	5		-2^{-}	1	0	-1	-2	12 1 -13
-2	1	-2	-1	-2		0	0	1	0	0	
0	0	1	0	0			U	Т.			
3	2	0	1	6	$r_1 - 4r_4$	0	3	0	0	3	$r_1 - r_2$
-	_	-			=	1	0	0	0	1	
5	-2	0	2	5	$r_2 - 4r_4$	0	1	0	_1	0	"
-2	1	0	-1	-2	$r_3 + 2r_4$	•	-	-	_	_	$r_3 + 2r_2$
0	0	1	0	0	• •	0	0	1	0	0	
						1	0	0	0	1	r ₂
1	3	0	0	4	$r_1 + r_3$	0	1	0	0	1	$\frac{1}{3}r_{1}$
1	0	0	0	1	$r_2 + 2r_3$	-	_	-	-	_	
-2	1	0	-1	-2		0	0	1	0	0	<i>r</i> ₄
_	-	-	_	_		0	0	0	1	1	$-r_3 + \frac{1}{3}r_1$
0	0	1	0	0							3 -

This gives the solution $(y_1, y_2, y_3, y_4) = (1, 1, 0, 1)$.

							3	0	Λ	4	$r_1 + r_3$
3	2	4	1	6		1	•	-	0		
5	-2	4	2	5		1	0	0	0	1	$r_2 + 2r_3$
⁻²	1	_2	_1	_2		-2	1	0	-1	-2	
_	_	-	_	_		0	0	1	0	0	
0	0	1	0	0							
3	2	0	1	6	$r_1 - 4r_4$	0	3	0	0	3	$r_1 - r_2$
	_	·	_		-	1	0	0	0	1	
5	-2	0	2	5	$r_2 - 4r_4$	_	1	-	1	_	. 0
-2	1	0	-1	-2	$r_3 + 2r_4$	0	T	0	-1	0	$r_3 + 2r_2$
_	_	_			73 1 =74	0	0	1	0	0	
0	0	1	0	0		1	0	0	0	1	_
1	3	0	0	4	$r_1 + r_3$	1	U	U	U	1	r_2
-	0	0	-	1		0	1	0	0	1	$\frac{1}{3}r_1$
1	0	0	0	1	$r_2 + 2r_3$	0	0	1	0	0	-
-2	1	0	-1	-2		U	U	T	U	U	<i>r</i> ₄
_	_	-	_	_		0	0	0	1	1	$-r_3 + \frac{1}{3}r_1$
0	0	1	0	0							. 3 -

This gives the solution $(y_1, y_2, y_3, y_4) = (1, 1, 0, 1)$.

Is this dual feasible?

$$y = (y_1, y_2, y_3, y_4) = (1, 1, 0, 1)$$
minimize $4y_1 + 3y_2 + 5y_3 + y_4$
subject to $y_1 + 4y_2 + 2y_3 + 3y_4 \ge 7$
 $3y_1 + 2y_2 + 4y_3 + y_4 \ge 6$
 $5y_1 - 2y_2 + 4y_3 + 2y_4 \ge 5$
 $-2y_1 + y_2 - 2y_3 - y_4 \ge -2$
 $2y_1 + y_2 + 5y_3 - 2y_4 \ge 3$
 $0 < y_1, y_2, y_3, y_4.$

$$y = (y_1, y_2, y_3, y_4) = (1, 1, 0, 1)$$
minimize $4y_1 + 3y_2 + 5y_3 + y_4$
subject to $y_1 + 4y_2 + 2y_3 + 3y_4 \ge 7$
 $3y_1 + 2y_2 + 4y_3 + y_4 \ge 6$
 $5y_1 - 2y_2 + 4y_3 + 2y_4 \ge 5$
 $-2y_1 + y_2 - 2y_3 - y_4 \ge -2$
 $2y_1 + y_2 + 5y_3 - 2y_4 \ge 3$
 $0 < y_1, y_2, y_3, y_4.$

Clearly, $0 \le y$ and by construction the 2nd, 3rd, and 4th of the linear inequality constraints are satisfied with equality.

$$y = (y_1, y_2, y_3, y_4) = (1, 1, 0, 1)$$
minimize $4y_1 + 3y_2 + 5y_3 + y_4$
subject to $y_1 + 4y_2 + 2y_3 + 3y_4 \ge 7$
 $3y_1 + 2y_2 + 4y_3 + y_4 \ge 6$
 $5y_1 - 2y_2 + 4y_3 + 2y_4 \ge 5$
 $-2y_1 + y_2 - 2y_3 - y_4 \ge -2$
 $2y_1 + y_2 + 5y_3 - 2y_4 \ge 3$
 $0 < y_1, y_2, y_3, y_4.$

Clearly, $0 \le y$ and by construction the 2nd, 3rd, and 4th of the linear inequality constraints are satisfied with equality.

We need to check the first and inequalities.

$$y = (y_1, y_2, y_3, y_4) = (1, 1, 0, 1)$$
minimize $4y_1 + 3y_2 + 5y_3 + y_4$
subject to $y_1 + 4y_2 + 2y_3 + 3y_4 \ge 7$
 $3y_1 + 2y_2 + 4y_3 + y_4 \ge 6$
 $5y_1 - 2y_2 + 4y_3 + 2y_4 \ge 5$
 $-2y_1 + y_2 - 2y_3 - y_4 \ge -2$
 $2y_1 + y_2 + 5y_3 - 2y_4 \ge 3$
 $0 < y_1, y_2, y_3, y_4.$

Clearly, $0 \le y$ and by construction the 2nd, 3rd, and 4th of the linear inequality constraints are satisfied with equality.

We need to check the first and inequalities.

First:
$$1+4+0+3=8>7$$

$$y = (y_1, y_2, y_3, y_4) = (1, 1, 0, 1)$$
minimize $4y_1 + 3y_2 + 5y_3 + y_4$
subject to $y_1 + 4y_2 + 2y_3 + 3y_4 \ge 7$
 $3y_1 + 2y_2 + 4y_3 + y_4 \ge 6$
 $5y_1 - 2y_2 + 4y_3 + 2y_4 \ge 5$
 $-2y_1 + y_2 - 2y_3 - y_4 \ge -2$
 $2y_1 + y_2 + 5y_3 - 2y_4 \ge 3$
 $0 < y_1, y_2, y_3, y_4.$

Clearly, $0 \le y$ and by construction the 2nd, 3rd, and 4th of the linear inequality constraints are satisfied with equality.

We need to check the first and inequalities.

First:
$$1+4+0+3=8>7$$

Fifth: $2+1+0-2=1 \ge 3$, the fifth dual inequality is violated.

$$y = (y_1, y_2, y_3, y_4) = (1, 1, 0, 1)$$
minimize $4y_1 + 3y_2 + 5y_3 + y_4$
subject to $y_1 + 4y_2 + 2y_3 + 3y_4 \ge 7$
 $3y_1 + 2y_2 + 4y_3 + y_4 \ge 6$
 $5y_1 - 2y_2 + 4y_3 + 2y_4 \ge 5$
 $-2y_1 + y_2 - 2y_3 - y_4 \ge -2$
 $2y_1 + y_2 + 5y_3 - 2y_4 \ge 3$
 $0 < y_1, y_2, y_3, y_4.$

Clearly, $0 \le y$ and by construction the 2nd, 3rd, and 4th of the linear inequality constraints are satisfied with equality.

We need to check the first and inequalities.

First:
$$1 + 4 + 0 + 3 = 8 > 7$$

Fifth: $2+1+0-2=1 \ge 3$, the fifth dual inequality is violated.

Hence, $x = (0, \frac{4}{3}, \frac{2}{3}, \frac{5}{3}, 0)$ cannot be optimal!

Does the point x = (1, 1, 1, 0) solve the following LP?

maximize
$$4x_1 + 2x_2 + 2x_3 + 4x_4$$

subject to $x_1 + 3x_2 + 2x_3 + x_4 \le 7$
 $x_1 + x_2 + x_3 + 2x_4 \le 3$
 $2x_1 + x_2 + x_3 + x_4 \le 3$
 $x_1 + x_2 + 2x_4 \le 2$
 $0 \le x_1, x_2, x_3, x_4$