# Design and Modeling of Fluid Power Systems ME 597/ABE 591 Lecture 5

Dr. Monika Ivantysynova MAHA Professor Fluid Power Systems

MAHA Fluid Power Research Center Purdue University





# **Displacement Machines**





Study different design principles and learn about the following topics

Axial piston pump design solutions (swash plate and bent axis)

Radial piston pumps and motors – piston support

Gear Pumps – internal and external – axial and radial gap

Vane pumps – advantage and disadvantage of this design

Please study the appropriate chapters in

Ivantysyn, J. and Ivantysynova, M. (2001), Hydrostatic Pumps and Motors.

Akademia Books International. New Dehli. ISBN-81-85522-16-2

Aim: - To be able to select the right design for your system application!

- Knowledge about limitations of each basic design
- To apply models on system level for each design

# **Displacement Machines** Swash Plate Machines Axial Piston Machines **Piston Machines** Bent Axis machines In-line Piston Machines with external piston support Radial Piston Machines with internal piston support External Gear **Gear Machines** Internal Gear Annual Gear Vane Machines Screw Machines others Fixed displacement machines Variable displacement machines

Design and Modeling of Fluid Power Systems, ME 597/ABE 591

# Bent axis axial piston pumps





#### Synchronization of cylinder block



Using a universal joint

Using a bevel gear



# Bent axis axial piston pumps





Synchronization of cylinder block







Synchronization by piston rod





# Kinematics of bent axis pumps



Four link 3D mechanism





Piston (3)

Piston rod (5)

Piston rod (5)

Piston (3)

Z

Driving flange (2)

Assuming a fixed connection between link 2 and link 4, achieved by synchronization the mechanism has finally two degrees of freedom

Of freedom

Distances and link 4, achieved by the mechanism has finally three degrees of freedom

Piston can rotate about z<sub>3</sub>-axis

Piston can rotate about  $z_3$ -axis and piston rod can rotate about  $z_5$ -axis

Design and Modeling of Fluid Power Systems, ME 597/ABE 591

# **Piston Design**





Short piston with piston rod



Long piston with piston rod



Synchronization by universal joint or bevel gear

Synchronization by pistons or piston rods

Spherical piston with piston ring



Conical piston with piston rings



# **Design Examples**







# **Design Examples**







## **Radial Piston Pumps**





with external piston support

with internal piston support

Rotating cylinder body



Stationary cylinder body



Rotating cam or crankshaft



Displacement volume adjustable by changing eccentricity e

## **Radial Piston Pumps**





Multiple stroke radial piston pumps

with external piston support

ort with inte

with internal piston support

Rotating cylinder body



Stationary cylinder body



Rotating cam

Stationary stroke ring



Only fixed displacement pumps realizable!

#### Piston support on outer stroke ring







## Piston support on outer stroke ring







## Piston support on outer stroke ring







# **Stroke ring support**







Using a sliding carriage









Stroke ring mounted on a pivot

Change of eccentricity by pivoting the stroke ring about pivot axis

# **Design Example**







## **External gear pump**





#### **Basic principle**

Radial gaps between teeth addendum circle and housing



Axial gaps between housing and the gear pair must be very small to seal the displacement chamber

#### Two stage gear pump







or the pump can have two separate outlets



$$p_1 = p_3$$

 $\Delta p_1 \approx \Delta p_2$ 



the driving gear is pressure balanced!

#### **Internal gear pump**







Using teeth of standard involute design requires a combination where the pinion has two or more fewer teeth than the ring gear! Pinion and ring gear are then separated by a crescent shaped divider.



Longer duration of teeth meshing leads to better sealing function

# **Internal gear pump**











Many different tooth profiles have been applied in the recent past.

## **Annular gear pumps**





Applying specially generated tooth curves it can be achieved, that the inner rotor (the pinion) has only one tooth less than the ring gear, thus eliminating the crescent-shaped divider.



 $z_2 = z_1 + 1$ 

Each tooth of the pinion maintains continuous sliding contact with a tooth of the ring gear, providing fluid tight engagement.

Relative sliding velocity between pinion and ring gear is very small



quiet operation and long service life

$$n_2 = n_1 \cdot \frac{z_1}{z_2} = n_1 \cdot \left(1 - \frac{1}{z_2}\right) = n_1 \cdot \left(1 + \frac{1}{z_1}\right)^{-1}$$

Gerotor pump

## **Annular gear pump – Orbit principle**





 $z_2 = z_1 + 1$ 









Rotating pinion  $(z_1)$ 



Displacement volume is given by  $z_1$  times  $z_2$  tooth spaces



Multiple delivery of each tooth space

1 Suction port

## Pressure compensated axial gaps







#### Pressure compensated axial gaps







#### **Pressure compensated radial gaps**





Radial gap compensation



Bearing bushing



Small pressure zone achievable



Axial gap compensation

Pressurized area



Design and Modeling of Fluid Power Systems, ME 597/ABE 591

# **Gear pump – design example**







Bearing bushing performing a radial and axial gap compensation

#### Internal gear pump- design example





Internal gear pump with axial and radial gap compensation



Radial gap compensation

# **Screw Pumps**





#### With two meshing screws



# **Screw Pumps**







t...thread pitch

With three meshing screws



### **Vane Pumps**

#### Classification of vane pumps

Unbalanced vane pump



Fixed and variable pump design





#### Balanced vane pump



Only fixed displacement pump

#### Vane pumps- basic working principle

Single stroke vane pump – variable displacement volume

Overcentre pump – the direction of flow can be reversed by change of eccentricity, i.e. without changing the direction of rotation of the drive shaft

Relatively high friction between axial moveable vanes and rotor &

between vanes and stator

Large radial forces exerted on the rotor



Limitation of max. operating pressure (20 MPa)



# Vane pumps- classification





Multiple stroke vane pump





#### Fluid distribution





#### External fluid distribution

Internal fluid distribution



# Rigid vane pump



Stator ring



Rotor

vane

Displacement volume:

$$V_g = 2 \cdot \frac{\pi \cdot \Phi^2 - d^2}{4} \cdot \frac{180 - \alpha}{180} \cdot b - 2 \cdot \left(\frac{D}{2} - \frac{d}{2}\right) \cdot c \cdot b$$





Pulsation free flow

