Sistemas Digitais

1º Ano de Engenharia Informática

Tra	hali	ho	Prático	n	o	6
111	เทลเ	11()	PIAIICO			11

Codificadores e Descodificadores

Grupo		
Diogo António Costa Medeiros	n.° <u>70633</u>	
	n.°	
	n.°	

Turma __5___

Objectivos

- Verificar o funcionamento de um descodificador *n*-para-2ⁿ
- Verificar o funcionamento de um codificador 2^n -para-n
- Compreender a noção de prioridade
- Compreender as possibilidades de ligação em cascata de circuitos codificadores e descodificadores.
- Utilizar o descodificador como gerador de mintermos (ou maxtermos).

Referências

- TAUB, Herbert, "Circuitos Digitais e Microprocessadores", McGraw-Hill
- Texas Instruments online [http://www.ti.com/]

Material

- Placa RH21
- 74LS138 3–TO–8 LINE DECODERS/DEMULTIPLEXERS
- 74LS139A 2-TO-4 LINE DECODERS/DEMULTIPLEXERS
- $2 \times 74LS148 8$ -to-3 line priority encoder
- 74LS08 AND 2 entradas
- 74LS11 AND 3 entradas
- 74LS32 OR
- 74LS04 NOT

1. Descodificador *n*-para-2ⁿ

Um descodificador lógico é um dispositivo MSI de entradas múltiplas com capacidade de seleccionar uma única saída com base nos valores de entrada (figura 1).

Figura 1. Pin-out e tabela de verdade do 74LS139A

O 74LS139A é um descodificador dual, isto é, existem dois descodificadores independentes em cada integrado de 16 pinos. Cada descodificador tem três entradas (A, B e \overline{G}) e quatro saídas ($\overline{Y0}$, $\overline{Y1}$, $\overline{Y2}$ e $\overline{Y3}$).

¹ As saídas são **activas baixas**, pelo que a notação correcta deverá incluir uma barra, coisa que o fabricante, erradamente, não faz. Neste protocolo usaremos sempre a notação correcta, explicitando as entradas e as saídas activas baixas.

A entrada \overline{G} é a linha de *enable* do chip. Quando \overline{G} está no nível lógico 1, o chip está *disabled* (desabilitado, desactivado), e todas as saídas estão no nível lógico 1, independentemente das entradas 1A e 1B. Quando \overline{G} está no nível lógico 0, o chip está *enabled* (habilitado, activado) e executa a função para a qual foi destinado.

1.1 Ligue $1\overline{G}$ a V_{CC} e meça os valores lógicos em todos os pinos de saída.

$$1\overline{Y3} = \underline{1}$$
 $1\overline{Y2} = \underline{1}$ $1\overline{Y1} = \underline{1}$ $1\overline{Y0} = \underline{1}$

- **1.2** Verifique que, com $1\overline{G}$ ainda ligado a V_{CC} , as saídas não se alteram ainda que mude os níveis lógicos aplicados a 1A e 1B.
 - ${\bf 1.3}$ Ligue $1\overline{G}~$ a GND e preencha a tabela seguinte. Compare-a com a tabela da figura 1.

1 <i>B</i>	1 <i>A</i>	$1\overline{Y3}$	$1\overline{Y2}$	$1\overline{Y}1$	$1\overline{Y0}$
0	0	1	1	1	0
0	1	1	1	0	1
1	0	1	0	1	1
1	1	0	1	1	1

Por vezes há a necessidade de implementar descodificadores usando como bloco fundamental circuitos descodificadores menores (i. e, com menos bits de entrada e, consequentemente, menos linhas de saída).

1.4 Monte o circuito da figura ao lado, e preencha a tabela apresentada a seguir.

Figura 2. Um descodificador 3:8 implementado com descodificadores 2:4.

Verifique que o circuito resultante se comporta como um descodificador 3:8.

\overline{G}	C	В	\boldsymbol{A}	<u>77</u>	<u>76</u>	<u>75</u>	$\overline{Y4}$	<u>73</u>	$\overline{Y2}$	<u>71</u>	<u>70</u>
1	1	0	0	1	1	1	1	1	1	1	1
0	1	0	1	1	1	0	1	1	1	1	1
0	0	0	0	1	1	1	1	1	1	1	0
0	0	1	1	1	1	1	1	0	1	1	1
0	1	0	0	1	1	1	0	1	1	1	1
0	1	1	1	0	1	1	1	1	1	1	1

2. Codificador 2ⁿ-para-n com prioridades

Um codificador com prioridades é um dispositivo MSI de múltiplas entradas que tem a capacidade de **colocar à saída o valor binário correspondente à entrada activa de maior prioridade**. Um codificador de oito entradas tem assim três saídas, sendo um exemplo disto o 74LS148, cujo circuito lógico, *pin-out* e tabela de verdade se encontra na figura 3.

Figura 3. Circuito lógico, *pin-out* e tabela de verdade do 74LS148.

As entradas do chip são $\overline{0}$, $\overline{1}$, $\overline{2}$, ..., $\overline{6}$, $\overline{7}$, com **prioridade** mais alta para a entrada $\overline{7}$ e mais baixa para a entrada $\overline{0}$. A saída \overline{GS} é o **sinal de grupo**, isto é, \overline{GS} fica ao nível baixo se em qualquer instante uma ou mais entradas são activadas, estando o \overline{EI} (*enable* **de entrada**) igualmente activado. A saída \overline{EO} é o *enable* **de saída** e fica baixo sempre que todas as entradas estejam altas (isto é, desactivadas), estando o \overline{EI} activado.

2.1 "O endereço de saída reflecte a entrada activa com maior prioridade."

Verifique esta afirmação registando as saídas obtidas quando as entradas são as indicadas na página seguinte (faça sempre $\overline{EI} = 0$).

			Entr	adas	,	Saídas	3	Corresponde			
$\bar{0}$	ī	$\overline{2}$	3	$\frac{\overline{4}}{4}$	<u>-</u> 5	<u>-</u> 6	$\overline{7}$	$\overline{A2}$	$\overline{A1}$	$\overline{A0}$	à entrada:
1	1	1	1	0	1	0	0	0	0	0	7
1	1	1	1	0	1	1	0	0	0	0	7
1	1	1	1	0	1	1	1	0	1	1	4
1	1	1	1	0	1	0	1	0	0	1	6

2.2 Monte o circuito em cascata como mostrado na figura 4 para formar um codificador16-para-4. Preencha a tabela 1 com as leituras efectuadas.

Figura 4. Codificador 16–para–4 com prioridades (dois codificadores 8–para–3 em cascata).

	Entradas														Saídas						
\overline{En}	<u>15</u>	14	13	<u>12</u>	1 1	10	<u>-</u>	$\bar{8}$	$\overline{7}$	- 6	<u>-</u> 5	$\overline{4}$	$\bar{3}$	$\overline{2}$	$\bar{1}$	$\bar{0}$	3	$\overline{2}$	$\bar{1}$	$\bar{0}$	\overline{PF}
1	1	0	1	1	0	1	1	1	0	1	1	1	1	1	1	0	1	1	1	1	1
0	1	0	1	1	0	1	1	1	0	1	1	1	1	1	1	0	0	0	0	1	0
0	1	1	1	1	0	1	1	1	0	1	1	1	1	1	1	0	0	1	0	0	0
0	1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	0	1	0	0	0	0
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	0
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

3. Descodificador: gerador de mintermos (ou de maxtermos)

Um descodificador binário $n:2^n$, ao activar apenas uma das suas linhas de saída de acordo com o código de entrada, pode ser interpretado como um gerador de mintermos ou de maxtermos. Para o primeiro caso, as saídas terão de ser activas-altas, pois nesta situação apenas uma linha de cada vez estará a '1' (o mintermo); a geração de maxtermos é feita com recurso a descodificadores com saídas activas-baixas.

Como qualquer função lógica pode ser expressa em termos de uma soma de mintermos ou um produto de maxtermos, é fácil de concluir que se pode implementar qualquer função recorrendo a um descodificador de dimensão apropriada e a alguma lógica discreta adicional.

3.1 Implemente o circuito do lado e preencha a seguinte tabela com as leituras efectuadas:

<i>X</i> 2	X1	X0	Y
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	0
1	1	1	1

3.2 Escreva a função obtida em termos de soma de mintermos e de produto de maxtermos:

$$Y = \Sigma \text{ m} (\underline{1, 3, 4, 5, 7})$$

$$Y = \Pi M (_{0, 2, 6})$$

3.3 Compare as respostas do ponto anterior com o circuito lógico apresentado em 3.1 e conclua.

Nesta situação, o descodificador funciona como um gerador de maxtermos para a função Y, dado que as saídas são ativas baixas e estão ligadas a uma porta AND, ou seja,

Y será igual ao produto dos M(0,2,6).

4. Conversor de códigos binários

Um descodificador binário $n:2^n$ e um codificador correspondente $(2^n:n)$ podem ser conjugados para implementarem um conversor entre códigos binários de n bits.

- **4.1** Implemente o circuito do lado.
- **4.2** Preencha a tabela apresentada a seguir, <u>tendo em atenção</u>
 <u>que as saídas do circuito são</u>
 <u>activas-baixas e as saídas</u>

indicadas na tabela são activas-altas.

<i>X</i> 2	<i>X</i> 1	<i>X</i> 0	<i>Y</i> 2	<i>Y</i> 1	<i>Y</i> 0
0	0	0	0	0	0
0	0	1	0	0	1
0	1	0	0	1	1
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	1	1	1
1	1	0	1	0	1
1	1	1	1	0	0

4.3 Qual a conversão de códigos efectuada por este circuito?

Este circuito converte código binário para

código Gray. No entanto, dado que as saídas são

ativas-baixas, o código Gray é apresentado com

valores complementares.

Questionário:

- Construa a tabela de verdade completa do circuito implementado no ponto 2.2 do Procedimento e explique o funcionamento de tal circuito.
- 2. Apresente o diagrama de blocos de um descodificador 4:16 implementado usando como bloco fundamental o descodificador 2:4.
- 3. Apresente o circuito lógico que implementa a função $Y = \sum m(1,2,4,7)$, usando um **descodificador 3:8** com **saídas activas altas** e a lógica adicional indispensável. Indique uma possível utilização desta função.

Questionário

Exercício 1:

						Ent	rada	as										9	Saíd	as	
ĒΝ	<u>15</u>	<u>14</u>	13	<u>12</u>	<u>11</u>	<u>10</u>	9	8	7	<u>6</u>	15	$\bar{4}$	3	2	1	ō	3	2	1	ō	PF
1	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	1	1	1	1	1
0	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	0	0	0	0
0	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	0	0	1	0
0	1	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	0	1	0	0
0	1	1	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	0	1	1	0
0	1	1	1	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	1	0	0	0
0	1	1	1	1	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	1	0	1	0
0	1	1	1	1	1	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	1	1	0	0
0	1	1	1	1	1	1	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	Χ	0	1	1	1	0
0	1	1	1	1	1	1	1	1	0	Χ	Χ	Χ	Χ	Χ	Χ	Χ	1	0	0	0	0
0	1	1	1	1	1	1	1	1	1	0	Χ	Χ	Χ	Χ	Χ	Χ	1	0	0	1	0
0	1	1	1	1	1	1	1	1	1	1	0	Χ	Χ	Χ	Χ	Χ	1	0	1	0	0
0	1	1	1	1	1	1	1	1	1	1	1	0	Χ	Χ	Χ	Χ	1	0	1	1	0
0	1	1	1	1	1	1	1	1	1	1	1	1	0	Χ	Χ	Χ	1	1	0	0	0
0	1	1	1	1	1	1	1	1	1	1	1	1	1	0	Χ	Χ	1	1	0	1	0
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	Χ	1	1	1	0	0
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	0	1	1	1	1	0
0	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Este circuito é constituído por dois codificadores de prioridades de 8 para 3 (74LS148) com o intuito de funcionarem como um codificador de prioridades de 16 para 4. Caso o $\overline{\text{EN}}$ ($\overline{\text{EI}}$ do segundo codificador) esteja inativo-alto ($\overline{\text{EN}}=1$), quer as saídas $\overline{3}$ a $\overline{0}$, quer a Priority Flag, ficam inativas-altas, independentemente das entradas $\overline{15}$ a $\overline{0}$.

O circuito está em funcionamento quando \overline{EN} está ativo-baixo ($\overline{EN}=0$). Nesta situação, o circuito codifica a entrada mais prioritária (n) que se apresente como ativa-baixa, apresentando o correspondente código binário de n à saída. Tendo em conta que as saídas $\overline{3}$ a $\overline{0}$ são ativas-baixas, o codificador apresenta nas mesmas os valores complementares. Por exemplo, caso a entrada mais prioritária que se encontre ativa-baixa seja a entrada $\overline{5}$, o codificador deverá apresentar à saída o código 1010 (e não 0101).

Quanto à Priority Flag, ela apresenta-se como inativa-alta ($\overline{PF}=1$) em apenas duas situações: o circuito não está em funcionamento ($\overline{EN}=1$); o circuito está em funcionamento ($\overline{EN}=0$), no entanto todas as entradas apresentam-se inativas-altas, logo as saídas encontram-se com o mesmo estado lógico. Neste último caso, a \overline{PF} permite-nos distinguir a situação em que o circuito codifica a entrada $\overline{0}$ da situação ($\overline{PF}=0$) em que não codifica nenhuma entrada.

Exercício 2:

Exercício 3:

Este circuito encontra-se ativo quando a palavra binária tem um número ímpar de 1s (001, 010, 100, 111), ou seja, tem paridade ímpar. Por esta razão, a função lógica Y pode ser utilizada para determinar a paridade de uma palavra binária de 3 bits.