

ME 5374-ST

Machine Learning for Materials Science and Discovery

Fall 2025

Asst. Prof. Peter Schindler

Lecture 7 - Crystallography Crash Course and Pymatgen

- Lattices and Unit Cells
- 2D and 3D Bravais Lattices
- Symmetry in Crystals
- Crystallographic Point Groups and Space Groups
- Closed Packed and Other Common Crystal Structures
- Fractional/Cartesian Coordinates and the Metric Tensor

Order in Materials

Crystalline

3D long range order repeating *unit cell*

Polycrystalline

Medium range order Grains separated by GB

Soft matter

Liquid Crystal

Semi-Crystalline

> Quasi-Crystal

Nanocrystals

Amorphous

No order (only short range)

Si wafer

Diamond

Minerals

Gate electrode in transistor
Aluminum contacts
Metals

Gate oxide in transistor Glass Ceramics

Lattice and Unit Cells

Lattice = infinite arrangement of points in space; each point has *identical surroundings*

Unit cell

Volume that if repeated by lattice vectors covers the entire lattice (no gaps/holes)
-not unique

Primitive unit cell

Unit cell with only one lattice point (= smallest unit cell)
[not always used for visualization]
-not unique

Wigner-Seitz cell

Volume that's closer to a specific lattice point than to any other; is also a primitive unit cell -unique

Unique Lattices in 2D and 3D

In **2D** → **5** unique unit cell shapes called **Bravais** lattices:

In 3D -> 7 lattice systems and 4 centering types -> 14 Bravais lattices

Triclinic, Monoclinic, Orthorhombic, Tetragonal, Hexagonal, Rhombohedral and Cubic **P** Primitive

Body centered

F Face centered

C Base centered

Crystal = Lattice + Motif (also called 'basis')

7 lattice systems (define valid periodic tilings) \rightarrow 32 point groups

14 Bravais lattices (define valid translations) → 230 space groups

14 Bravais Lattices

Lattices in 3D:

Defined by unit cell vectors:

nit cell vectors:

$$\{\vec{e}_i\} = \{\vec{a}, \vec{b}, \vec{c}\}$$

or lattice parameters

$$\{a,b,c,\alpha,\beta,\gamma\}$$

Asst.	Prof.	Peter	Schindler	

		Cubic	Rhombohedral	Tetragonal	Hexagonal	Orthorhombic	Monoclinic	Triclinic
	P Primitive							
-	l Body centered							
	F Face centered							
	C Base centered							

Symmetry in Crystals

Rotational symmetry

2-fold (180°)

Pentagons *do not* tile the plane without **gaps**

Symmetry in Crystals

https://www.youtube.com/watch?v=48sCx-wBs34

https://csfulop.github.io/PenroseMoire/?x=212?y=0?r=0

Al₆Mn, D. Schechtman Chemistry Nobel prize 2011

L. Pauling: "There are no quasicrystals, only quasi-scientist"

Symmetry in Crystals

Rotational symmetry

2-fold (180°)

Mirror symmetry

Inversion symmetry

Crystallographic Point Groups

Notation: Hermann-Mauguin / Schönflies

Detailed diagrams: http://pd.chem.ucl.ac.uk/pdnn/symm2/pntgrp1.htm

Symmetry - So What?

1. Enables identification of materials using scattering techniques

Bragg's law

 $2d \sin\theta = n\lambda$

Symmetry - So What?

2. Enables prediction of certain material properties qualitatively

Non-centrosymmetric

Neumann's Principle

Symmetry of any *physical property* of a crystal must include the *symmetry elements* of its point group

Symmetry - So What?

List of allowed/forbidden properties based on point group symmetry:

Property	Centrosymmetric (with inversion)	Enantiomorphic (chiral, no inversion/mirror)	Polar (unique axis)	Polar + Enantiomorphic
Piezoelectricity	X Forbidden	✓ Allowed	✓ Allowed	✓ Allowed
Ferroelectricity	X Forbidden	× Forbidden	✓ Allowed	✓ Allowed
Pyroelectricity	X Forbidden	× Forbidden	✓ Allowed	✓ Allowed
Optical activity (chirality)	X Forbidden	✓ Allowed	× Forbidden	✓ Allowed
Second Harmonic Generation (SHG)	× Forbidden	✓ Allowed	✓ Allowed	✓ Allowed

Symmetry in Crystals - Statistics

Space Groups

Also considers allowed translations within the lattice (centering types of Bravais lattices)

Adds two symmetry operations:

Screw Axis

wikipedia.org and https://geo.libretexts.org/Bookshelves/Geology/Mineralogy_(Perkins_et_al.)/

Space Groups

Glide Plane

- 1. Reflection at a plane
- 2. Translation (either ½ or ¼)

Possible glide planes:

- $a \rightarrow \text{reflection } (a,b) + \frac{1}{2} \text{ transl. in } a \text{ direction}$
- $b \rightarrow \text{reflection } (b,c) + \frac{1}{2} \text{ transl. in } b \text{ direction}$
- $c \rightarrow reflection (b,c) + \frac{1}{2} transl. in c direction$
- $n \rightarrow \text{see video}^*$
- $d \rightarrow \text{see video}^*$
- $e \rightarrow \text{see video}^*$

Screw Axis

 n_m screw axis where m < n:

- 1. Rotation by 360°/n
- 2. Translation by m/n of the unit cell parallel to the screw axis

Possible screw axes:

 $2_1, 3_1, 4_1, 4_2, 6_1, 6_2$, and 6_3

Enantiomorphous ones: 3_2 , 4_3 , 6_4 , 6_5

→ 230 Space groups

Space Group Diagrams

Symmetry operation symbols:

Full explanation here: http://img.chem.ucl.ac.uk/sgp/mainmenu.htm

NaCl example:

Asst. Prof. Peter Schindler

$Fm\overline{3}m$	$F 4/m \overline{3} 2/m$	$m\overline{3}m$	No. 225
$\frac{1}{2}$ $\frac{1}{4}$		1 x, y, z 2 x, y, z 3 x, y, z 4 x, y, z 5 z, x, y 6 z, x, y 7 z, x, y	25 x, y, z 26 x, y, z 27 x, y, z 28 x, y, z 29 z, x, y 30 z, x, y 31 z, x, y
$b - \frac{1}{4}$		8 \(\bar{z}, \bar{y} \) 9 \(y, \bar{z}, \bar{x} \) 10 \(\bar{y}, \bar{z}, \bar{x} \) 11 \(\bar{y}, \bar{z}, \bar{x} \) 12 \(y, \bar{z}, \bar{x} \) 13 \(x, \bar{z}, \bar{y} \) 14 \(x, \bar{z}, \bar{y} \) 15 \(\bar{x}, \bar{z}, \bar{y} \)	32 z, x, y 33 y, z, x 34 y, z, x 35 y, z, x 36 y, z, x 37 x, z, y 38 x, z, y 39 x, z, y
0 14-6		16 \bar{x}, z, y 17 z, y, \bar{x} 18 \bar{z}, y, x 19 $\bar{z}, \bar{y}, \bar{x}$ 20 z, \bar{y}, \bar{x} 21 \bar{y}, x, z 22 y, \bar{x}, z 23 $\bar{y}, \bar{x}, \bar{z}$	40 x, \(\bar{z}\), \(\bar{y}\) 41 \(\bar{z}\), \(\bar{y}\), \(x\) 42 \(\bar{z}\), \(\bar{y}\), \(\bar{x}\) 43 \(\bar{z}\), \(y\), \(\bar{x}\) 44 \(\bar{z}\), \(y\), \(\bar{x}\), \(\bar{z}\) 46 \(\bar{y}\), \(x\), \(\bar{z}\) 47 \(y\), \(x\), \(\bar{z}\)
<u></u> <u>1</u>	$0 \qquad \underline{a} \Rightarrow \qquad \frac{1}{2}$	24 y, x, \overline{z} + $(0, \frac{1}{2}, \frac{1}{2})$	$ \begin{array}{c} 48 \ \overline{y}, \overline{x}, z \\ , (\frac{1}{2}, 0, \frac{1}{2}), (\frac{1}{2}, \frac{1}{2}, 0) \end{array} $

Crystal family	Crystal system	Required symmetries of the point group	Point groups	Space groups	Bravais lattices	Lattice system	
Triclinic	Triclinic	None	2	2	1	Triclinic	
Monoclinic	Monoclinic	1 twofold axis of rotation or 1 mirror plane	3	13	2	Monoclinic	
Orthorhombic	Orthorhombic	3 twofold axes of rotation or 1 twofold axis of rotation and 2 mirror planes		4	Orthorhombic		
Tetragonal	Tetragonal	1 fourfold axis of rotation	7	68	2	Tetragonal	
Trigonal Hexagonal		4 threefold avia of retation	5	7	1	Rhombohedral	
		1 threefold axis of rotation		18	1	Havegenel	
	Hexagonal	1 sixfold axis of rotation	7	27	'	Hexagonal	
Cubic	Cubic	4 threefold axes of rotation	5	36	3	Cubic	
6	7	Total	32	230	14	7	

Wyckoff Letters/Positions

Describe the sites in a space group with **distinct symmetries**

Of form: number letter (x, y, z) e.g., $3c(0,\frac{1}{2},\frac{1}{2})$

- Number is the multiplicity (how many sites are generated from the single Wyckoff site)
- Letters start from a and increase roughly from high to low symmetry (different for each space group)
- Fractional coordinate of the location in the cell

Can be looked up for each space group: https://www.cryst.ehu.es/cryst/get_wp.html

Space Group Pm-3 (No. 200)

Multiplicity	Wyckoff letter	Site symmetry	Coordinates
24	I	1	(x,y,z) (-x,-y,z) (-x,y,-z) (x,-y,-z) (z,x,y) (z,-x,-y) (-z,-x,y) (-z,x,-y) (y,z,x) (-y,z,-x) (y,-z,-x) (-y,-z,x) (-x,-y,-z) (x,y,-z) (x,-y,z) (-x,y,z) (-z,-x,-y) (-z,x,y) (z,x,-y) (z,-x,y) (-y,-z,-x) (y,-z,x) (-y,z,x) (y,z,-x)
12	k	m	(1/2,y,z) (1/2,-y,z) (1/2,y,-z) (1/2,-y,-z) (z,1/2,y) (z,1/2,-y) (-z,1/2,y) (-z,1/2,-y) (y,z,1/2) (-y,z,1/2) (y,-z,1/2) (-y,-z,1/2)
12	j	m	(0,y,z) (0,-y,z) (0,y,-z) (0,-y,-z) (z,0,y) (z,0,-y) (-z,0,y) (-z,0,-y) (y,z,0) (-y,z,0) (y,-z,0) (-y,-z,0)
8	i	.3.	(x,x,x) (-x,-x,x) (-x,x,-x) (x,-x,-x) (-x,-x,-x) (x,x,-x) (x,-x,x) (-x,x,x)
6	h	mm2	(x,1/2,1/2) (-x,1/2,1/2) (1/2,x,1/2) (1/2,-x,1/2) (1/2,1/2,x) (1/2,1/2,-x)
6	g	mm2	(x,1/2,0) (-x,1/2,0) (0,x,1/2) (0,-x,1/2) (1/2,0,x) (1/2,0,-x)
6	f	mm2	(x,0,1/2) (-x,0,1/2) (1/2,x,0) (1/2,-x,0) (0,1/2,x) (0,1/2,-x)
6	е	mm2	(x,0,0) (-x,0,0) (0,x,0) (0,-x,0) (0,0,x) (0,0,-x)
3	d	mmm	(1/2,0,0) (0,1/2,0) (0,0,1/2)
3	С	mmm	(0,1/2,1/2) (1/2,0,1/2) (1/2,1/2,0)
1	b	m-3.	(1/2,1/2,1/2)
1	а	m-3.	(0,0,0)

Close-Packed Crystal Structures

Elemental metals (and nobel gases at low T) like to closely pack

Hexagonal Closed Packed (HCP)

Face-Centered Cubic (FCC)

Ceramic and Other Common Crystal Structures

There are a few common crystal structure prototypes for binary ceramics.

crystallography.app

Fractional Coordinates in Lattices

- qrs represent the coordinates at point P
- The fraction of the lattice parameter (distance) along each axis is given by qrs
- Written without any parentheses

Point coordinates:

Center of the unit cell: ½½½ One corner of the unit cell: 111

Invariance to translation:

Integer multiples of lattice constants

→ identical position in repeating unit cell

Metric Tensor and Distances in Lattices

Metric tensor for lattice with unit cell vectors $\{\vec{e}_i\} = \{\vec{a}, \vec{b}, \vec{c}\}$

$$g_{ij} = \vec{e}_i \cdot \vec{e}_j \qquad \qquad g = \begin{pmatrix} \vec{a}^2 & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b}^2 & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c}^2 \end{pmatrix}$$

Can be used to convert fractional to Cartesian coordinates (and vice versa with the inverse metric tensor, g^{-1})

$$m{X}_{\mathsf{cart}}^i = m{\mathcal{G}}_{ij} m{X}_{\mathsf{frac}}^j \qquad \qquad m{ec{X}}_{\mathsf{cart}} = m{\mathcal{G}} \cdot m{ec{X}}_{\mathsf{frac}}$$

Also used as a norm to get the distance in a lattice (e.g., distance between two atomic sites $\vec{v} = \vec{X}_1 - \vec{X}_2$):

$$d = g_{ij} V_{\text{frac}}^{i} V_{\text{frac}}^{j}$$
 $d = V_{\text{frac}} \cdot g \cdot V_{\text{frac}}$

Things we Didn't Cover

- Packing density calculations [cf. undergrad. MatSci course*]
- Coordination number, number of nearest neighbors [cf. undergrad. MatSci course*]
- Details on ceramic crystal structures [cf. undergrad. MatSci course*]
- Crystallographic directions [cf. undergrad. MatSci course*]
- Crystallographic planes (Miller indices) [cf. undergrad. MatSci course*]
- Reciprocal lattice and reciprocal metric tensor [will cover during DFT]
- Few more advanced concepts: Magnetic space groups, laue classes, ...

Lecture Feedback

Please, scan the QR code and take a minute to let me know how the lecture was and mention any **feedback/questions**

This form is anonymous!