

Prof. Vinay Papanna

Department of Mechanical Engineering

Friction

Prof. Vinay Papanna

Department of Mechanical Engineering

Friction

Frictional Forces

Tangential forces generated between contacting surfaces

- Occur in the interaction between all *real surfaces*
- Always act in a direction *opposite to the direction of motion*

Frictional forces are Desired in some cases:

- Brakes, clutches, belt drives and wedges
- Walking depends on friction between the shoe and the ground

Frictional forces are Not Desired in some cases:

- Bearings, power screws, gears, flow of fluids in pipes, propulsion of aircraft and missiles through the atmosphere, etc
- Friction often results in a loss of energy, which is dissipated in the form of heat
- Friction causes Wear

Types of Friction

Idea case: Friction small enough to be neglected

Real Case: Friction must be taken into account

Occurs between unlubricated surfaces of two solids.

Fluid Friction:

Occurs when adjacent layers in a fluid (liquid or gas) move at a different velocities. Fluid friction also depends on viscosity of the fluid.

Internal Friction:

Occurs in all solid materials subjected to cyclic loading, especially in those materials, which have low limits of elasticity.

Mechanism of Dry Friction

- Block of weight W placed on horizontal surface. Forces acting on block are its weight and reaction of surface N.
- Small horizontal force P applied to block. For block to remain stationary, in equilibrium, a horizontal component F of the surface reaction is required. *F is a Static-Friction force*.
- As P increases, static-friction force F increases as well until it reaches a maximum value F_m .

$$F_m = \mu_s N$$

• Further increase in P causes the block to begin to move as F drops to a smaller Kinetic-Friction force F_k .

$$F_k = \mu_k N$$

Friction

Four possible situations for a rigid body in contact with a horizontal surface:

- (i) When P=0
- No friction
- Equations of equilibrium valid

$$F < \mu_s N$$

- (ii) When $P < F_m$
- No motion
- Equations of equilibrium valid

$$F_S = \mu_S N$$

- (iii) When $P = F_m$
- Impending motion
- Equations of equilibrium valid

$$F_k = \mu_k N$$

- (iv) When $P > F_m$
- Motion
- Equations of equilibrium not valid

Friction

PES UNIVERSITY

Four possible situations for a rigid body in contact with a horizontal surface:

(i) When
$$P=0$$

No friction

(ii) When
$$P < F_m$$

No motion

(iii) When
$$P = F_m$$
Impending motion

 $|\phi = \phi_s|$

$$\tan \phi_S = \frac{F_m}{N} = \mu_S$$

(iv) When $P > F_m$ Motion

$$\tan \phi_k = \frac{F_k}{N} = \mu_k$$

$$\phi_s$$
= angle of static friction,
 ϕ_k = angle of kinetic friction

Friction

6/1 The force P is applied to the 90-kg crate, which is stationary before the force is applied. Determine the magnitude and direction of the friction force F exerted by the horizontal surface on the crate if (a) P = 300 N, (b) P = 400 N, and (c) P = 500 N.

(a)
$$P = 300 \text{ N}$$
, $F = 300 \text{ N} < F_{\text{max}}$, OK

(c)
$$P = 500 \text{ N}$$
, $F = 500 \text{ N} > F_{\text{max}}$, motion
 $S_0 = \mu_k N = 0.4(883) = 353 \text{ N}$

Friction

6/2 The 50-kg block rests on the horizontal surface, and a force P = 200 N, whose direction can be varied, is applied to the block. (a) If the block begins to slip when θ is reduced to 30° , calculate the coefficient of static friction μ s. between the block and the surface. (b) If P is applied with $\theta = 45^{\circ}$, calculate the friction force F.

Friction

PES UNIVERSITY

6/3 The force P is applied to the 50-kg block when it is at rest. Determine the magnitude and direction of the friction force exerted by the surface on the block if (a) P = 0, (b) P = 200 N, and (c) P = 250 N. (d) What value of P is required to initiate motion up the incline? The coefficients of static and kinetic friction between the block and the incline are $\mu_s = 0.25$ and $\mu_k = 0.20$, respectively.

(a)
$$P=0$$
 $\Sigma F_g = 0$: $N-491\cos 15^\circ = 0$, $N=474\ N$

Assume equilibrium:

 $\Sigma F_x = 0$: $F-491\sin 15^\circ = 0$, $F=127.0\ N$
 $F_{max} = \mu_s N = 0.25(474) = 118.4\ N < F_j$

assumption invalid and

 $F=F_k = \mu_k N = 0.2(474) = 94.8\ N$ up the incline

(b)
$$P = 200 \text{ N}$$
; assume equilibrium
 $\Sigma F_y = 0$: $N - 491 \cos 15^\circ + 200 \sin 20^\circ = 0$, $N = 405 \text{ N}$
 $\Sigma F_x = 0$: $200 \cos 20^\circ - 491 \sin 15^\circ - F = 0$, $F = 61.0 \text{ N}$
 $F_{max} = \mu_s N = 0.25 (405) = 101.3 \text{ N} > 61.0 \text{ N}$ so assumption $0K$

Friction

6/5 The 80 kg exerciser is repeated from Prob. 3/23. The tension T = 65 N is developed against an exercise machine (not shown) as he is about to begin a biceps curl. Determine the minimum coefficient of static friction which must exit between his shoes and the floor if he is not to slip.

$$\sum F_{\chi} = 0 : -\mu_{S}(N_{A} + N_{B}) + 65 \cos 20^{\circ} = 0$$

$$\sum F_{y} = 0 : N_{A} + N_{B} - 80(9.81) + 65 \sin 20^{\circ} = 0$$

$$\sum M_{B} = 0 : 80(9.81)(250) - N_{A}(500) - 65[1550 \cos 20^{\circ} - 350 \sin 20^{\circ}] = 0$$

$$50 |_{Y} = 0.0801$$

$$M_{S} = 0.0801$$

Friction

6/6 Determine the minimum coefficient of static friction μ , which will allow the drum with fixed inner hub to be rolled up the 150 inclined at a steady speed without slipping. What are the corresponding values of the force P and the friction force F?

$$ZF_{X} = 0$$
: $P\cos 15^{\circ} + F - mg \sin 15^{\circ} = 0$ (1)
 $ZF_{Y} = 0$: $P\sin 15^{\circ} - mg \cos 15^{\circ} + N = 0$ (2)
 $F_{Y}ZM_{G}=0$: $F_{Y} - P(\frac{r}{2}) = 0$ (3)
Also, for impending slip: $F = \mu_{S}N$ (4)
Algebraically solve Eqs. (1)-(4) to obtain
 $\mu_{S} = 0.0959$, $N = 0.920mg$, $F = 0.0883mg$, $P = 0.1746mg$

Friction

6/9 The uniform 7-m pole has a mass of 100 kg and is supported as shown. Calculate the force P required to move the pole if the coefficient of static friction for each contact location is 0.40.

$$\Sigma M_B = 0$$
: $981(\frac{4}{5}3.5) - 5N_A = 0$, $N_A = 549 \text{ N}$
 $\Sigma F_g = 0$: $N_B - 981 + \frac{4}{5}(549) - 0.4(549)\frac{3}{5} = 0$, $N_B = 673 \text{ N}$
 $\Sigma F_\chi = 0$: $-P + 0.4(673) + 549(\frac{3}{5}) + 0.4(549)\frac{4}{5} = 0$
 $P = 775 \text{ N}$

Friction

6/11 The 30-kg homogeneous cylinder of 400-mm diameter rests against the vertical and inclined surfaces as shown. If the coefficient of static friction between the cylinder and the surfaces is 0.30, calculate the applied clockwise couple M which would cause the cylinder to slip.

$$\sum M_{G} = 0: M - 0.3 (N_{A} + N_{B}) 0.2 = 0$$

$$\sum F_{X} = 0: N_{B} \sin 30^{\circ} + 0.3 N_{B} \cos 30^{\circ} - N_{A} = 0$$

$$\sum F_{Y} = 0: N_{B} \cos 30^{\circ} - 0.3 N_{B} \sin 30^{\circ} - 30(9.81)$$

$$+ 0.3 N_{A} = 0$$

$$Solution of Eqs. (1) - (3): \begin{cases} N_{B} = 312 N \\ N_{A} = 237 N \\ M = 32.9 N \cdot m \end{cases}$$

$$(3)$$

Friction

6/12 If the coefficient of static friction between block A and the incline is $\mu_s = 0.30$, determine the range of cylinder masses m_B for which the system will remain in equilibrium. Neglect all pulley friction

Friction

6/14 A uniform ladder is positioned as shown for the purpose of maintaining the light fixture suspended from the cathedral ceiling. Determine the minimum coefficient of static friction required at ends A and B to prevent slipping. Assume that the coefficient is the same at A and B.

$$\sum F_{x} = 0: \mu_{s} N_{A} - N_{B} \cos 36.9^{\circ} - \mu_{s} N_{B} \cos 53.1^{\circ} = 0$$

$$\sum F_{y} = 0: N_{A} - N_{B} \sin 36.9^{\circ} + \mu_{s} N_{B} \sin 53.1^{\circ} - m_{g} = 0$$

$$\sum M_{B} = 0: m_{g} = \cos 60^{\circ} + \mu_{s} N_{A} L \sin 60^{\circ}$$

$$- N_{A} L \cos 60^{\circ} = 0$$

$$Solve to obtain
$$N_{A} = 1.125 m_{g}$$

$$N_{B} = 0.364 m_{g}$$

$$M_{S} = 0.321$$$$

Friction

6/17 The 80 kg man with center of mass G supports the 34 kg drum as shown. Find the greatest distance x at which the man can position himself without slipping if the coefficient of static friction between his shoes and the ground is 0.4.

Friction

6/19 Determine the range of mass m_2 for which the system is in equilibrium. The coefficient of static friction between the block and the incline is μ_s = 0.25.Neglect friction associated with the pulley.

(a) Motion impends up the incline
$$\begin{aligned} & \sum F_{\chi} = 0: -\mu_{s}N - m_{j}g\sin 20^{\circ} - m_{z}g\sin 20^{\circ} \\ & + m_{z}g = 0 \end{aligned}$$

$$& \sum F_{\chi} = 0: N - m_{j}g\cos 20^{\circ} - m_{z}g\cos 20^{\circ} = 0$$

$$& \sum F_{\chi} = 0: N - m_{j}g\cos 20^{\circ} - m_{z}g\cos 20^{\circ} = 0$$

$$& \sum F_{\chi} = 0: N - m_{j}g\cos 20^{\circ} - m_{z}g\cos 20^{\circ} = 0$$

$$& \sum F_{\chi} = 0: N - m_{j}g\cos 20^{\circ} - m_{z}g\cos 20^{\circ} = 0$$

Friction

6/23 A 82-kg man pulls the 45-kg cart up the incline at steady speed. Determine the minimum coefficient µs of static friction for which the man's shoes will not slip. Also determine the distance s required for equilibrium of the man's body.

Friction

6/24 Determine the horizontal force P required to cause slippage to occur. The friction coefficients for the three pairs of mating surfaces are indicated. The top block is free to move vertically .

Friction

EF=0; P=0.6(981) + 0.3(981+490,5+196.2)=1089 N 1088 < 1/77 So case (6) occurs & P=1089 N

Friction

PES UNIVERSITY

6/33 Determine the distance s to which the 90 kg painter can climb without causing the 4 m ladder to slip at its lower end A. The top of the 15 kg ladder has a small roller, and at the ground the coefficient of static friction is 0.25. The mass center of the painter is directly above her feet.

THANK YOU

Prof. Vinay Papanna

Department of Mechanical Engineering

vinayp@pes.edu

+91 9980933582