MSiA – [Client] Practicum

Sophie Du James Fan Michael Fedell Jonathan Lewyckyj Nora Xu An Optimized Pricing Tool for Commercial Contracts

Project Introduction

Context:

[Client] operates in a saturated and competitive environment with tight margins.

Objective:

Build more advanced analytical capabilities into the existing Bid Pricing workflow.

Resources:

Vast amount of time-series data on index prices, rack posters, and bid outcomes.

Overview

In Summary

Our team worked with the Planning and Optimization team to understand the current business process and to build out robust analytical tools in [Client]'s cloud environment that will scale into the future.

Survey of Market

Modeling Capabilities

Revamped Workflow

Survey of Market

- 1. Branded oil prices comparisons & similar competitor selections for each material type
- 2. Unbranded oil product recommendations referring to similar competitors' prices

Branded vs Unbranded

Branded

Displaying 8 rows

COMPETITOR_ID	count
	3759
	3759
	3759
	3759
	3759
	3754
	3750
	3270

Who reported both branded AND unbranded?

•

Unbranded

Displaying 16 rows

COMPETITOR	_ID	count
		3759
		3748
		3720
		3510
		2601
		2405
		2065
		1952
		1360
		1253
		1029
		643
		536
		531
		247
		89

Branded vs Unbranded

- Mainly focus on competitors who have both branded and unbranded oil prices reported
- Find competitors who have <u>similar branded</u> oil price trends or distributions to [Client] for each of the 3 materials
- Provide [Client] with recommendations for unbranded oil prices based on the <u>competitors' unbranded</u> oil prices for each of the 3 materials

(87 R9+ Regular E10)

(87 R9 + Regular E10)

(93 R9+ Premium E10)

(93 R9 + Premium E10)

(ULSD #2 Diesel)

(ULSD #2 Diesel)

Industry - Branded VS Unbranded

(87 R9 + Regular E10)

(93 R9 + Premium E10)

(ULSD #2 Diesel)

Recommendations

- [Client] should evaluate how to sell more <u>unbranded premium and diesel</u> oil during the period with high oil price based on
- Merchandise <u>unbranded regular and diesel</u> oil for more pricing benefits with regards to close prices for both rack types and additional packages and advertising costs on branded gas
- Consider clients' willingness to spend more on branded gasoline as an advantage of negotiating contracts

Predictive Modeling

- 1. Time Series Decomposition and Forecasting
- 2. Bid Outcome Predictions

Model: Seasonal Decomposition Model - Monthly Average Prices, OPIS Low

<u>Model: Holt-Winters Forecasting Model - Monthly Average Prices, OPIS Low</u>

Bid Outcomes Prediction

- Models
 - Logistic regression
 - Decision tree classifier
 - Random forest classifier
 - Gradient boosting classifier

- Variable used
 - Won_or_Lost
 - Customer type
 - SAP material
 - Existing Gallon Per Month
 - Existing KBD
 - Index summary
 - Gross/Net
 - Adder merged
 - Floor expected margin

Model Comparison

Logistic Classification: 0.714285714286 Decision Tree: 0.785714285714

Won - FN=1 FP=5

FN=1 TP=21

Predicted bid outcome

Random Forest: 0.857142857143

Gradient Boosting: 0.785714285714

TN: true negative TP: true positive FN: false negative

FP: true positive

Model Comparison

	Model	Classification	F1Score	Precision	Recall
1	RandomForest	0.8571428571428571	0.9130434782608695	0.9545454545454546	0.875
2	GradientBoosting	0.7857142857142857	0.8636363636363636	0.8636363636363636	0.8636363636363636
3	Logistic	0.7142857142857143	0.8095238095238095	0.7727272727272727	0.85
4	DecisionTree	0.7857142857142857	0.875	0.9545454545454546	0.8076923076923077

Classification:

Percentage of all correct decisions

• Precision:

- Percentage of predicted winning results actually won
- weigh on minimizing the number of classifying to win while actually lose

• Recall:

- Percentage of total winning results correctly classified
- weigh on minimizing the number of classifying to lose while actually win

• F1 Score:

Weighted average of Precision and Recall

Variable Importances in Random Forest & Gradient Boosting

Variable Coefficients in Logistic Regression

Benchmark of categorical variable:

- Customer Type
 - Reseller
- Material
 - o Regular
- Index
 - OPIS
- Gross/Net
 - Net

Summary

- Random forest classifier performs the best in terms of different metrics among all 4 classifiers
- Expected margin and adder are the top 2 important variables
 - However, counterintuitively, with expectation to have higher floor margin, probability of winning the bid contract will be higher under logistic regression
 - Increasing the amount of adder is more likely to result in winning
- [Client] is more likely to win the bid contract when bidding on Gross and dealing with reseller customer

Bringing It All Together

A new workflow for bid pricing

Current Process

Summary

Excel workbook stores snapshots of index data

Bid structure settings change calculations/lookups in complicated ways

Historical margin profile analyzed to judge bid viability

Limitations

- Slow
- Excel formulas opaque
- Data limitations
- Versioning
- External dependencies


```
=IF('Example Sum'!$B$7="Prior",IF(G9="","",H9-$$9*'Example Sum'!$D$30+L10),IF('Example Sum'!$B$7="Same",IF(G10="","",H10-$$10*'Example Sum'!$D$30+L10),"N/A"))
   =IF('Example Sum'!
   $B$7="Prior", IF(G9="", "", H9-$S9* 'Example
   Sum'!$D$30+L10), IF('Example
   Sum'!$B$7="Same", IF(G10="", "", H10-$S10*'Exampl
   e Sum'!$D$30+L10),"N/A"))
```

PySpark Advantage

Built on existing infrastructure in the cloud

Scales with large amounts of data

Allows for more complex modeling

More maintainable code

Workbook Demonstration

[Live demonstration in Palantir]

Q Palantir

Workbook Sample Images

Workbook Sample Images

Workbook Sample Images

Holt-Winter's Seasonal Smoothing of Margin Profiles

Workbook Sample Images

Seasonal Decomposition of Premium Margin

Revamped Process

Data flows through Palantir as available

Notebook provides graphical view of flow

Infused with Analytics and Machine Learning

Ultimately leads to more positive outcomes

What We Have Gained

"This project helped me to understand the difference between branded and unbranded gas, and to build visualizations in PySpark" -James "I've learned to build tables and graphs with hierarchy in PySpark and have better sense of the data both from a general sense and through comparisons" - Sophie "I've enjoyed being able to apply concepts related to time-series data to real world applications" -Jonathan

"I've learned a lot about Palantir functionalities with implementation of PySpark" - **Nora** "This project helped me to understand how enterprise cloud products can fit into existing business workflows" - Michael

Thank You!