Matlab

sign	segno	abs	valore assoluto
sqrt	radice quadrata	sin	seno
cos	coseno	tan	tangente
cotan	cotangente	asin	arcoseno
acos	arcocoseno	exp	esponenziale
log	logaritmo naturale	log10	logaritmo in base 10
log2	logaritmo in base 2	round	arrotondamento
floor	parte intera	ceil	parte intera + 1

+Inf	+ infinito (es. 5/0)	-Inf	- infinito (es5/0)
NaN	numero indefinito (es. 0/0)	eps	precisione di macchina
pi	pi greco	i	unità immaginaria

Comandi di base

- a = 0 → assegno ad a il valore 0
- clc → cancella il prompt dei comandi
- clear all → cancella prompt e variabili salvate
- disp(nome_var) → stampa nome variabile
- % → commento
- s = 'ciao'; → stringa ciao assegnata alla variabile s
- fprintf('testo', variabile); → stampa una stringa in output e una variabile dopo la virgola
- \n → a capo
- \t → tabulazione
- format long → permette di mostrare più cifre decimali rispetto alle impostazioni standard di matlab
- format short → meno cifre decimali rispetto allo standard

Operazioni sui vettori

- v = [1,3,4] → vettore riga
- v = [1;3;4] → vettore colonna
- v = [1,2,3; 4,5,6] → vettore 2 righe di 3 elementi

- u = v' → trasforma v da vettore riga a vettore colonna
- $x = 1:10 \rightarrow crea un vettore con step = 1 da 1 a 10$
- linespace(a,b,n) → crea un vettore di n elementi spaziati da a b tipo (0,10,10) → 0,1,2,3,4....
- linespace(a:s:b) → vettore che inizia con a, incrementa ogni volta di s, e termina quando il valore è ≤ di b
- u = [v,w] → concatena i vettori riga v e w
- u = [v;w] → concatena i vettori colonna v e w
- zeros(m,n) crea una matrice m × n di zeri
- ones(m,n) crea una matrice m × n di uni
- eye(n) crea una matrice identità n × n
- length(v = vettore) → restituisce la dimensione del vettore v
- size(a) → ritorna la dimensione di a
- size(a,n) → ritorna la dimensione di a se a è multidimensionale, n infatti serve per specificare la seconda dimensione del vettore
- v(i,j) → accede all'elemento i,j del vettore v

Operazioni su vettori con le stesse dimensioni

- v+w restituisce la somma dei due vettori
- v-w restituisce la differenza dei due vettori
- v.*w restituisce il prodotto puntuale dei vettori (infatti c'è il punto)
- v./w restituisce la divisione puntuale dei vettori (infatti c'è il punto)
- v. ∧w restituisce l'elevamento a potenza puntuale dei vettori

Funzioni personalizzate

nome variabile = @(Variabili) Funzione(Variabili)

$$f = @(x) (sin(x)).^2 + 2.*log(x.^2+1)$$

Plot

Permette di sovrapporre più grafici contemporaneamente

- plot(x,y,x,z); → permette di sovrapporre più grafici contemporaneamente
- figure → crea un grafico della funzione in una nuova finestra

Programmazione varia

If - else

```
if condizione
  corpo
else
  corpo
end
```

for

```
for c = 1:10
corpo
end
```

Esercizi vari

```
%Scriviamo uno script che assegna il numero 2 alla variabile a ed il numero %3\pi alla variabile b e che calcola successivamente il seno del prodotto di %queste variabili, stampando poi a schermo il risultato. a = 2; \\ b = 3*(pi); \\ c = sin(a*b); \\ disp(c);
```

```
%{
Produrre uno script dove vengono definiti tre vettori u, v e w di dimensione
1 × 5. Si definisca v con componenti equispaziate in [0, 1] (gli altri possono
essere definiti a piacere). Si calcoli poi prima il prodotto scalare p tra u e v
e poi si definisca un nuovo vettore z ottenuto moltiplicando w per lo scalare
p trovato. Infine, data A=[0,2,-1,2,0;1,1,1,0,0] si calcoli e stampi a
schermo il prodotto matrice-vettore tra A e z.
}%
u = zeros(1,5);
w = ones(1,5);
v = linspace(0,1,5);
```

```
p = u*v';
z = p .*w;
A = [0,2,-1,2,0;1,1,1,0,0];

disp(A*z');
disp(p);
disp(z);
```

```
%{Sia f (x) = sin(x) nel dominio I = [0, 2\pi]. Consideriamo il polinomio di
Taylor di grado 3 p(x) = x - x
3/6. È noto che tale polinomio approssima
f in un intorno di 0. Vogliamo descrivere l'errore assoluto |f(x) - p(x)| per
x \in I. Rappresentiamo graficamente nel dominio I.
1) Le funzioni f e p, nello stesso grafico.
2) La funzione err(x) = |f(x) - p(x)|.
3) Ancora err(x) ma in scala semilogaritmica
}%
f = @(x) \sin(x);
p = @(x) x - (x .^3) ./6;
err = @(x) abs(f(x) - p(x));
x = linspace(0, 2*pi, 300);
y_1 = f(x);
y_2 = p(x);
y_3 = err(x);
plot(x,y_1,x,y_2);
plot(x,y_3);
semilpgy(x,y_3);
grid on
```

Laboratorio - comandi utili

Formulazione di successioni con formule a partire da n+1

 $x_2 = 2,$ $x_{n+1} = 2^{n-1/2} \sqrt{1 - \sqrt{1 - 4^{1-n} x_n^2}}, \ n = 2, 3, \dots$

$$x_{n+1} = \frac{\sqrt{2}x_n}{\sqrt{1 + \sqrt{1 - 4^{1-n}x_n^2}}}, \ n = 2, 3, \dots$$

Equazioni starane e dove trovarle

$$\frac{1}{\sqrt{\lambda}} = -2\log_{10}\left(\frac{e}{3.51 \cdot d} + \frac{2.52}{N_R\sqrt{\lambda}}\right)$$

```
% risolviamo x=-2*log10( (e/3.51*d) + 2.52*x/NR ) (per x ≥ 0) e poi
% poniamo x=1/sqrt(lambda) ovvero lambda=1/x 2.
phi=@(x) -2*log10( (e/3.51*d) + 2.52*x/NR );
[solF, xvF, stepF] = puntofisso (phi, x0, toll, maxit);
```

Plottare funzione senza @(x) in un intervallo e creare la relativa figura

```
f = x +1;
x = linspace(..);
figure(1)
plot(x,f);
```

plottare funzione con @(x)

```
x = linspace(..)
f = @(x) ....

err_rel = abs(f_esatta - f(x)) / abs(f_esatta)

figure(1)
plot(x, f(x))
```

Creare figura con leggenda e nomi assi

```
f = x +1;
x = linspace(..);

figure(1)
plot(x,f);
title('grafico f(x)');
xlabel('x');
ylabel('valore di f(x)');
```

Stampare risultati valutazioni con formati specifici

```
fprintf('.... %10.19f, ris) %floating 10 cifre mantissa, 19 parte frazionaria fprintf('.... %2.2e, ris) %esponenziale 2 cifre mantissa, 2 parte frazionaria
```

Ricerca zeri funzioni

Residuo non pesato bisezione

 $|f(xk-1)| \le toll \rightarrow il valore assoluto di f(x) dell'iterazione precedente deve essere <math>\le$ della tolleranza

Metodo di bisezione

Il metodo di bisezione genera una successione di intervalli $[a_k, b_k]$ con

- $f(a_0) \cdot f(b_0) < 0$
- $[a_k, b_k] \subset [a_{k+1}, b_{k+1}]$
- $|b_k a_k| = \frac{1}{2} |b_{k-1} a_{k-1}|.$

Figure: Bisezione di un intervallo.

Dato $a_{k-1} < b_{k-1}$ e $x_{k-1} = \frac{a_{k-1} + b_{k-1}}{2}$, allora il nuovo intervallo $[a_k, b_k]$ è definito come

$$a_k = a_{k-1}, b_k = x_{k-1} \text{ se } f(a_{k-1}) \cdot f(x_{k-1}) < 0,$$

$$a_k = x_{k-1}, b_k = b_{k-1} \text{ se } f(x_{k-1}) \cdot f(b_{k-1}) < 0.$$

Utilizzeremo quindi il residuo non pesato come criterio di arresto

$$|f(x_{k-1})| \leq \text{tol}.$$

Per la convergenza ad una radice è necessario individuare un intervallo [a, b] della funzione f tale che

- $f(a) \cdot f(b) < 0$,
- f sia strettamente monotona in [a, b].

Calcolare errore relativo bisezione al variare delle iterate

```
[x_bis,xall,iter] = bisezione(f,0,1,toll,1000);

x_esatta = 0.4428544010023885;

err_rel = abs(xall-x_esatta) / abs(x_esatta);

figure(2)
semilogy(1:iter, err_rel);
```

Residuo non pesato bisezione

Residuo pesato bisezione

```
w = (b-a) / (f(b) - f(a));
while (abs(w*f(x))> tol) && (iter < max_iter
    w = (b-a) / (f(b) - f(a));</pre>
```

Trovare radice x* funzione con metodo del punto fisso

```
x = linspace(0,1,100);
f = @(x) sin(x) + x -1;

figure(1)
plot(x,f(x));
grid on;
title('grafico della funzione in corrispondenza dello zero');

x0 = 0.5; %lo vedo dal grafico
```

Trovare equazione g da f con il metodo del punto fisso

Devo isolare la x

es:

$$cos(x) - x = 0 \rightarrow -x = -cos(x) \rightarrow x = cos(x)$$

$$f(x) = \sin(x) + x - 1 \rightarrow -x = \sin(x) - 1 \rightarrow x = -\sin(x) + 1$$

Metodo Newton

Metodo di Newton

Il metodo di Newton è un metodo di punto fisso con funzione di iterazione

$$g(x) = x - \frac{f(x)}{f'(x)}$$

per la ricerca dello zero x^* di una funzione f

Ovvero, l'iterazione è

Figure: Interpretazione geometrica dell'iterazione di Newton.

La funzione g ha derivata

$$g'(x) = \frac{f(x)f''(x)}{f'(x)^2},$$

e essa si annulla nello zero x^* , infatti la convergenza di questo metodo è quadratica, ovvero ha ordine di convergenza p=2 (se $f'(x^*) \neq 0$, ovvero se x^* è uno zero semplice di f).

Iterata normale Newton

```
%Prima iterazione del metodo di Newton
dx = -f(x0)/Df(x0); % primo incremento
x = x0+dx;
                 % prima iterata
iter = 1;
xall(iter) = x;
x0 = x;
 if Df(x0) == 0
    break
 dx = -f(x0)/Df(x0);
                                           % nuovo incremento
 x = x0 + dx;
                                           % nuova iterazione
 iter = iter + 1;
                                           % nuovo numero di iterazione
 xall(iter) = x;
```

Iterata con molteplicità Newton

Iterata newton con rapporto incrementale(secante)

```
%Primo incremento
dx = -f(x1)*(x1-x0)/(f(x1)-f(x0));
x = x1+dx; %Prima iterazione
iter = 1;
xall(iter) = x;
while (abs(dx) > tol) && (iter < max_iter)</pre>
                                                   % ciclo iterativo
 x0 = x1;
 x1 = x;
 dx = -f(x1)*(x1-x0)/(f(x1)-f(x0));
                                                     % nuovo incremento
 x = x1 + dx;
                                                     % nuova iterazione
 iter = iter + 1;
                                                     % nuovo numero di iterazione
 xall(iter) = x;
end
```

Interpolazione

Comandi lagrange

```
repmat(x,1,n-1) \rightarrow copia il vettore x, dalla riga 1 alla colonna n-1 repmat(z([1:i-1,i+1:n],m,1) \rightarrow copia il vettore z (1, i-1, i+1,n) dalla riga m alla colonna 1 prod(z(i)-z([1:i-1,i+1:n]) \rightarrow fa il prodotto della differenza fra (z(i)-...)
```

polyfit(x,y,m) \rightarrow genera i coefficienti del polinomio interpolatore tramite i vettori di ascisse x e y in cui si associa il polinomio p n, m è la dimensione di x -1

a:h:b : genera n+1 punti equispaziati in [a,b] con passo h = b-a/n

polyval(coeff, s) \rightarrow valuta i coefficienti generati con polyfit sul vettore di ascisse s su cui valutare il polinomio interpolatore

generare nodi per interpolazione

```
%equispaziati
x = linspace(-1,1,n+1) %n = massimo grado del polinomio interpolante
%chebyshev-lobatto
x = -cos([0:n]*pi / n)
%dentro un ciclo

for i = 1:n
    %equispaziati
    x = linspace(-1,1,i+1) %n = massimo grado del polinomio interpolante
    %chebyshev-lobatto
x = -cos([0:i]*pi / i)
end
```

Generare vettore y i cui elementi sono f(xi)

```
y = f(x)
```

errore assoluto polinomio interpolante

```
s = linspace(-1,1,500)
x = linspace(-1,1,n+1)
x_cheb = -cos([0:n] * pi / n);

t = interpol....
%errori vari
abs(f - t(s)) / abs(f)

%valutare funzione esatta
plot(s,f(s))
%valutare polinomio interpolatore
plot(s,t)
```

Integrazione

Integrazione: trapezi e cavalieri-simpson normali

Integrazione numerica

Due tipiche regole per approssimare integrali definiti, del tipo

$$I = \int_a^b f(x) \mathrm{d}x$$

sono quelle dei trapezi e di Simpson

 Trapezi
 La formula dei trapezi, esatta per polinomi di grado al più 1, corrisponde ad approssimare l'integrale / con

$$S^T = \frac{b-a}{2}(f(a)+f(b)).$$

(Cavalieri-)Simpson o metodo della parabola
 La formula di Simpson, esatta per polinomi di grado al più 3, corrisponde ad approssimare l'integrale I con

$$S^{CV} = \frac{b-a}{6} \left(f(a) + 4f\left(\frac{a+b}{2}\right) + f(b) \right)$$

Trapezi composito

Metodo trapezi composito

È possibile applicare tali formule suddividendo l'intervallo [a, b] in N subintervalli aventi la stessa ampiezza e applicando le formule in ognuno di loro.

In tale modo l'integrale I è approssimabile attraverso la formula dei trapezi composta

$$S_N^T = \frac{h}{2}f(x_0) + hf(x_2) + \cdots + hf(x_{N-1}) + \frac{h}{2}f(x_N),$$

dove

•
$$x_k = a + k \cdot h, k = 0, ..., N$$
,

•
$$h = \frac{b-a}{N}$$
.

Per cui la formula è del tipo $\sum_{k=0}^{N} w_k f(x_k)$, e i valori w_k sono detti pesi e i punti x_K sono detti nodi.

In particolare i pesi sono

$$w_0 = w_N = \frac{h}{2}, \qquad w_i = h, i = 1, \dots, N-1$$

Integrale approssimato = somma(k= 0, n) wk*f(xk);

Simpson composito

Similmente anche per il metodo di Simpson si può suddividere l'intervallo in subintervalli dove applicare il metodo.

In tale modo l'integrale I è approssimabile attraverso la formula di Simpson (delle parabole) composta

$$S_N^{CS} = \frac{h}{3}f(x_0) + \sum_{s=1}^{N-1} \frac{2h}{3}f(x_{2s}) + \sum_{s=0}^{N-1} \frac{4h}{3}f(x_{2s+1}) + \frac{h}{3}f(x_{2N}),$$

dove

•
$$x_k = a + k \cdot h, k = 0, \dots, 2N$$
,

•
$$h = \frac{b-a}{2N}$$
.

Per cui la formula è del tipo $\sum_{k=0}^{N} w_k f(x_k)$, e i pesi sono

$$w_0 = w_{2N} = \frac{h}{3}$$
, $w_i = \frac{2h}{3}$, i è pari $w_i = \frac{4h}{3}$, i è dispari

Integrale approssimato = somma(k= 0, n) wk*f(xk);

```
for i = 1:n
    [x_s,w_s] = simpson_composta(a,b,i);
    [x_t,w_t] = trapezi_composta(a,b,i);

Int_s(i) = f(x_s)'*w_s;
    Int_t(i) = f(x_t)' * w_t;
end
```

Punto medio composto

Partendo dalla funzione trapezi_composta si generi una funzione ptomed_composta che generi i punti e i pesi per la formula composita del metodo del punto medio per l'integrazione, ovvero il metodo che divide l'intervallo in N subintervalli e in ciascuno di essi approssima l'integrale con l'area del rettangolo costruito nel punto medio, cioè

$$\int_a^b f(x) dx \approx (b-a)f\left(\frac{a+b}{2}\right).$$

```
function [x,w] = ptomed_composta(a,b,N)
% Formula dei trapezi composta
% ---- input ----
% a,b : estremi di integrazione
% N : numero di subintervalli
% ---- output ----
% x : nodi di integrazione (vettore colonna)
% w : pesi di integrazione (vettore colonna)
% passo di integrazione
h = (b-a)/N;
% nodi di integrazione
x_ex = a:h:b;
x = (x_ex(1:end-1)+x_ex(2:end))/2;
x = x';
% pesi di integrazione
w = h*ones(N,1);
end
```

Calcolare numero intervalli e punti usati per l'approssimazione dell'integrale

```
int_trap = 2^(length(I1)-1); %I1 = vettore approssimazioni integrale
num_punti_trap = int_trap +1;
int_simpson = 2^(length(I2)-1);
num_punti_simps = 2*int_simpson -1;
```

Algebra e sistemi

controllare dimensioni vettore/matrice e controllare che se è vettore o matrice

```
[n1,n2] = size(V);
if(n1 == 1) || (n2 == 2) % allora è un vettore, altrimenti è una matrice
```

norma vettoriale/matriciale

```
norm(x,n); % x = matrice/vettore, n = 1,2,Inf
```

calcolare condizionamento matrice

```
k(A) = ||A|| * ||A'||
oppure
cond(A)
```

calcolare soluzione sistema

```
// sistema nella forma Ax = b
x = A\b;
```

errore relativo sistema perturbato

$$\frac{\|\delta x\|}{\|x\|} \leq \frac{\kappa(A)}{1-\kappa(A)\frac{\|\delta A\|}{\|A\|}} \left(\frac{\|\delta A\|}{\|A\|} + \frac{\|\delta b\|}{\|b\|}\right),$$

scomposizione pa=lu di un sistema

```
%serve in input (A,b)
[P,L,U] = lu(A);

y = L \ (P*b)
x = U \ y
```

minimi quadrati

```
% si usa su matrici A[m,n], con m > n
x = (A'*A) \ (A'*B)
```

soluzione esercizi con minimi quadrati

```
x = linspace(...);
y = .... % funzione data
s = linspace(a,b,100);
V = fliplr(vander(x));

A = V(:,[colonne]);

sol = (A'*A) \ (A'*B)
%generiamo la soluzione
y_approssimata = (sol(1) + sol(2)) * s;
```

decomposizione QR di un sistema

```
[Q,R] = qr(A);

d = 8; % d è un grado che viene fornito dal testoF
%per risolvere il sistema ci servono solo Q1 e E1
Q1 = Q(:,[1:d+1]);
R1 = R([1:d+1],[1:d+1]);

b = Q1' * y';
coeffs_qr = R1\b; % Calcolo i coefficienti con QR

rec_qr = polyval(coeffs_qr(end:-1:1),s); % Si veda sopra
```

generare matrice di vandermonde

```
V = flipr(vander(x));
```

generare polinomio interpolatore che approssima ai minimi quadrati

```
f = @(x) ....
d = numero
x = linspace(a,b,numero_nodi)
coeffs_poly = polyfit(x,f_esatta,d); % Calcolo i coefficienti attraverso la funzione polyfit
rec_poly = polyval(coeffs_poly,t); % Valuto il pol in 1000 punti su [-5,5]
```

calcolare step metodo newton

```
|xn+1 - xn| = |f(xn)| / |f'(xn)|
```

calcolare autovettori matrice

$$||A||_2 = \sqrt{\max_{i=1,\ldots,n} |\lambda_i(A^t A)|},$$

```
e = eig(x' * x)
s = sqrt(max(abs(e)));
```

controllare che una matrice sia invertibile

```
t = det(A)
% se t == 1 allora è invertibile, se t == 0 allora non lo è
```

controllare che una matrice sia quadrata

```
if size(A,1) \sim= size(A,2) % matrice non quadrata
if size(A,1) == aize(A,2) % matrice è quadrata
```

soluzione del sistema con le equazioni normali

```
V = fliplr(vander(x)); \\ A = V(:,[1,2]); % prende tutte le righe e le prime due colonne della matrice di Vandermonde \\ sol = (A'*A) \setminus (A'*y);
```

ricostruzione funzione con varie cose

```
f = @(x) \sin(2.*x) - x.^2;
n = 100;
x = linspace(-5, 5, n);
s = linspace(-5, 5, 1000);
f_{dist} = @(x) f + 0.5*rand(size(f));
y = f(x);
f_{esatta} = f(s);
d = 8;
%metodo poltfit
coeffs_poly = polyfit(x,y,d); % Calcolo i coefficienti attraverso la funzione polyfit
rec_poly = polyval(coeffs_poly,s); % Valuto il pol in 1000 punti su [-5,5]
figure(1)
plot(x,y, 'ob');
hold on;
plot(s,f_esatta);
plot(s, rec_poly);
legend('Nodi', 'Funzione', 'Ricostruzione')
title('Interpolazione ai minimi quadrati: polyfit/polyval')
%metodo equazioni normali
V = fliplr(vander(x));
A = V(:,1:d+1);
sol = (A'*A) \setminus (A'*y');
s = linspace(0, 1, 100);
ricostruzione_eq_norm = polyval(sol(end:-1:1),s);
figure(2)
plot(x,y);
hold on;
plot(s,y, 'b');
plot(s,ricostruzione_eq_norm);
legend('Nodi', 'Funzione', 'Ricostruzione');
title('Interpolazione ai minimi quadrati: equazioni normali');
%scomposizione qr
V = fliplr(vander(x));
```

```
A = V(:,1:d+1);
[Q,R] = qr(A);
Q1 = Q(:,[1:d+1]);
R1 = R([1:d+1],[1:d+1]);
b = Q1' * y';
coeffs_qr = R1\b; % Calcolo i coefficienti con QR

rec_qr = polyval(coeffs_qr(end:-1:1),s); % Si veda sopra

figure(3)
plot(x,y,'ob')
hold on
plot(s,y,'-r','LineWidth',2)
plot(s,rec_qr,'-b','LineWidth',2)
legend('Nodi','Funzione','Ricostruzione')
title('Interpolazione ai minimi quadrati: scomposizione QR')
```

Varie

Sommatoria funzione

```
f = 1/(k^2) da 1 a n
symsum(1/(k^2), k, 1 ,n);
```

calcolare derivata n-esima funzione

```
//da fare su matlab online oppure avere symbolic math toolbox installato
syms x;
y = diff(funzione, x,grado_derivata); %x è la variabile rispetto a cui fare la derivata
```

grafico in scala semilogaritmica errore relativo in un dato intervallo [1:n]

```
semilogy(1:n, err_rel)
```

Calcolo derivata n-esima senza fare calcoli

```
g = ..... % funzione data
diff(g) %derivata prima
diff(g,2) %derivata seconda
...
```

- polyfit per calcolare il polinomio interpolante su un insieme di nodi noti
- **polyval** per valutare il polinomio su punti in cui non si conosce la f(x)

sapere il segno di una funzione

```
sign(funzione);
```

errore relativo iterate metodo bisezione

```
[x, xall, iter] = bisezione(f,a,b,toll,iterazioni_max);
semilogy(1:iter, err_rel);
```

colore grafici

```
plot(s,f(s), 'b'); %blu
plot(s,valutazioni,'r--'); %rosso tratteggiato
```