COL 783: Assignment 3

Pyramids and Wavelet

Ayush Verma 2016CS10374 & Kartik Kumar 2016CS10294

1.Image blending using pyramids

Step1. Construct the Laplacian pyramids of source and destination images and Gaussian pyramid of Mask.

Step2. Blend each level of pyramids as (Source*mask+destination*(1-mask))

Sample output 1-

Source image

destination image

Blended image

Sample output 2

source image

destination image

Blended Image

Sample output 3

Source image

destination image

Blended Image

2a. Haar wavelets

• Implementation of Haar wavelet transform for images, which recursively decomposes an image into approximation and detail coefficients with scaling the coefficients by $\sqrt{2}$ at each step.

Harr wavelet transform

2a. Denoising using Haar wavelets

IMAGE WITH GAUSSIAN NOISE	SOFT-DENOISING OF IMAGE	HARD-DENOISING OF IMAGE

3. image compression-

Source image

Harr transform of image

Compressed Image.

Portion rem (k)	PSNR
6	70.36
8	69.43
12	55.6

Reduced detailir Harr transform

Implementation detail

Step1. First implementation of Haar wavelet transform for image and take parameter k (compression parameter $k \in [0,100]$)

Step2. Remove proportionate non-detailing sections of Haar transform and make correspoding pixel value to 0.

Step3. Thus compressing the image which can be later decompressed by computing inverse wavelet transform of compressed file.

Compression of image with large region of constant color

Image denoising using laplacian pyramid

Using Laplacian denoising, we notice that the noise mostly remains unchanged, however, due to an effect similar to contrast stretching, we are able to resolve more details better than the original noisy image.

Resources -

- [1]. Stackoveflow
- [2]. Wikipedia https://en.wikipedia.org/wiki/Haar_wavelet https://en.wikipedia.org/wiki/Wavelet
- [3]. Github https://github.com/stheakanath/multiresolutionblend https://github.com/yiuwin/LaplacianPyramidBlending https://github.com/jocelynguo/Implement-of-Haar-Transform
- [4]. Research papers -

https://www.cns.nyu.edu/pub/eero/simoncelli96c.pdf http://persci.mit.edu/pub_pdfs/spline83.pdf