An example on data analysis using Scikit-learn package

Van Le

Department of Mathematics
The University of Tennessee, Knoxville

May 1, 2024

- Main goal
- 2 Explore and visualize the data to gain insights
- 3 Create test and training sets
- Preparing data
 - Clean data
 - Missing data
 - Feature scaling
 - Encoding
 - Transformation pipeline
 - Numerical attributes
 - Numerical attributes with long-tail
 - Categorical attributes
- 5 Some classification models

Main goal

- Learn to use Scikit-Learn.
- Use some classification models to predict whether a patient is likely to get a stroke based on inputs such as gender, age, various diseases and smoking status.

Explore and visualize the data to gain insights

Downloading data

```
stroke_data = pd.read_csv(Path("healthcare-dataset-stroke-data.
 csv"))
stroke data.head(10)
```

Figure: Stroke prediction dataset¹

	id	gender	age	hypertension	heart_disease	ever_married	work_type	Residence_type	avg_glucose_level	bmi	smoking_status	stroke
0	9046	Male	67.0	0	1	Yes	Private	Urban	228.69	36.6	formerly smoked	1
1	51676	Female	61.0	0	0	Yes	Self-employed	Rural	202.21	NaN	never smoked	1
2	31112	Male	80.0	0	1	Yes	Private	Rural	105.92	32.5	never smoked	1
3	60182	Female	49.0	0	0	Yes	Private	Urban	171.23	34.4	smokes	1
4	1665	Female	79.0	1	0	Yes	Self-employed	Rural	174.12	24.0	never smoked	1
5	56669	Male	81.0	0	0	Yes	Private	Urban	186.21	29.0	formerly smoked	1
6	53882	Male	74.0	1	1	Yes	Private	Rural	70.09	27.4	never smoked	1
7	10434	Female	69.0	0	0	No	Private	Urban	94.39	22.8	never smoked	1
8	27419	Female	59.0	0	0	Yes	Private	Rural	76.15	NaN	Unknown	1
9	60491	Female	78.0	0	0	Yes	Private	Urban	58.57	24.2	Unknown	1

¹Source: https://www.kaggle.com/datasets/fedesoriano/stroke-prediction-dataset

Rang	<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 5110 entries, 0 to 5109 Data columns (total 12 columns): # Column Non—Null Count Dtype</class></pre>					
0	id	5110 non-null	int64			
1	gender	5110 non-null	object			
2	age	5110 non-null	float64			
3	hypertension	5110 non-null	int64			
4	heart_disease	5110 non-null	int64			
5	ever_married	5110 non-null	object			
6	work_type	5110 non-null	object			
7	Residence_type	5110 non-null	object			
8	avg_glucose_level	5110 non-null	float64			
9	bmi	4909 non-null	float64			
10	smoking_status	5110 non-null	object			
11	stroke	5110 non-null	int64			
<pre>dtypes: float64(3), int64(4), object(5) memory usage: 479.2+ KB</pre>						

A quick look at categorical attributes

```
stroke_data["NAME_OF_COLS"].value_counts(ascending = True)
3 >>> gender
4 Other
5 Male
            2115
6 Female
            2994
7 Name: count, dtype: int64
o >>>work_type
Never_worked
                     22
Govt_job
                    657
3 children
                    687
14 Self-employed
                    819
5 Private
                   2925
Name: count, dtype: int64
```

A quick look at categorical attributes

```
1 >>>ever married
      1757
2 No
3 Yes 3353
4 Name: count, dtype: int64
6 >>>Residence_type
7 Rural
           2514
8 Urban
           2596
9 Name: count, dtype: int64
>>>smoking_status
                       789
12 smokes
13 formerly smoked
                      885
4 Unknown
                     1544
15 never smoked
                     1892
Name: count, dtype: int64
```

A quick look at numerical attributes

stroke_data.hist(bins=50, figsize=(12, 8))

Figure: Histrogram of numerical attributes

Create test and training sets

Create training set and test set

We can split the data randomly or based on a certain category. I suspect that each age group has a certain risk, and hence I split the data based on age groups.

```
stroke_data["age_groups"] = pd.cut(stroke_data["age"],
bins=[0., 20, 30, 40, 50, 60, 70, np.inf],
labels=["0-20", "21-30", "31-40", "41-50", "51-60", "61-70", "
>70"])
stroke_data["age_groups"].value_counts().sort_index().plot.bar(
rot=0, grid=True)
```


1

4

5

Create test and training sets

```
from sklearn.model_selection import train_test_split
    x_train_set, x_test, y_train, y_test = train_test_split(
    stroke_data, stroke_data["stroke"], test_size=0.20, stratify=
    stroke_data['age_groups'], random_state=42)
    x_train = x_train_set.copy()
```

Let's see if this worked as expected. Let's look at the category proportions in the test set:

Preparing data

Preparing data

Figure: Histrogram of numerical attributes

After looking at the data, we decide to separate them into the 3 groups

Missing data

We have two options to deal with missing data:

- Get rid of the whole attribute.
- Set the missing values to some value (zero, the mean, the median, etc.). This is called imputation.

We suspect that "bmi" may affect the risk of getting strokes. Thus, we decide to imputate the data. We use the function SimpleImputer as below.

```
from sklearn.impute import SimpleImputer
```

There are several ways to impute the data. For example,

```
SimpleImputer(strategy='median')
SimpleImputer(strategy="most_frequent")
```

Feature scaling

One of the most important transformations is *scaling*. The models do not perform well then the input have very different scales.

For example, the age attribute is between 0 and 100 while avg_glucose_level is above 200. In Scikit-Learn, there are two basic transformers called MinMaxScaler and StandardScaler.

- MinMaxScaler: This is performed by subtracting the min value and dividing by the difference between the min and the max.
- StandardScaler: It subtracts the mean value and divides the result by the standard deviation.

Encoding

In categorical attribute, each text represents a category. We can choose a function to use from Scikit-Learn package. There are many encoders supported in the package such as OrdinalEncoder, OneHotEncoder.

- OrdinalEncoder: Label the groups as 0, 1, 2, 3...
- OneHotEncoder: Create a binary attribute, 1 for a category and 0 otherwise.

Transformation pipelines

Numerical attributes

Now we are ready to make a pipeline for numerical attributes.

```
from sklearn.pipeline import make_pipeline
num_pipeline = make_pipeline(SimpleImputer(strategy="median"),
StandardScaler())
```

Long-tail attributes


```
from sklearn.preprocessing import FunctionTransformer
log_pipeline = make_pipeline(
SimpleImputer(strategy="median"),
FunctionTransformer(np.log, feature_names_out="one-to-one"),
StandardScaler())
```

6

Categorical attributes

A pipeline for categorical attributes.

```
cat_pipeline = make_pipeline(SimpleImputer(strategy="most_frequent"
), OneHotEncoder(handle_unknown="ignore"))
```

Imbalanced data

Notice that we are dealing with imbalanced datasets. The models may have poor performance on the minority class (that had a stroke). We can use Synthetic Minority Over-sampling Technique (SMOTE) in Imbalanced-learn package.

- How does SMOTE work?
- Selecting examples that are close in the feature space, drawing a line between the examples in the feature space and drawing a new sample at a point along that line.
- Pros: Enhance generalization, reduce over-fitting
- Cons: Samples are created without considering the majority class, possibly resulting in ambiguous examples if there is a strong overlap for the classes.

```
from imblearn.over_sampling import SMOTE
sm = SMOTE(random_state=2)
x_train_smote, y_train_smote = sm.fit_resample(x_train, y_train.
ravel())
```

Classification models

Here are some models included in Scikit-learn

- LogisticRegression
- DecisionTreeRegressor
- RandomForestClassifier
- SVC
- SVM with Poly Kernel
- SVM with Gaussian RBF Kernel

Accuracy measure

- Accuracy score: Correct Predictions
 Total Predictions
- ullet Cross validation: divide the data into k-subsets, the model is trained and evaluated k-times. The result is the average of k validations.

```
from sklearn.metrics import accuracy_score
accuracy_score(y_test, y_pred)

from sklearn.model_selection import cross_val_score
cross_val_score(estimator = NAME_OF_MODELS, X = x_train_smote, y = y_train_smote, cv = 3)
```

Compare accuracy of models

Data is cleaned in the pipelines:

	Accuracy score	K-fold cross-validation
LogisticRegression	83.37%	82.41%
RandomForestClassifier	91.59%	93.82%
SVC	84.76%	87.91%
SVM with Poly Kernel	85.03%	88.41%
SVM with Gaussian RBF Kernel	86.59%	90.95%

Data is cleaned before and in the pipelines:

	Accuracy score	K-fold cross-validation
LogisticRegression	95.79%	96.20%
RandomForestClassifier	95.11%	96.92%
SVC	95.69%	94.99%
SVM with Poly Kernel	95.69%	96.50%
SVM with Gaussian RBF Kernel	91.88%	94.59%

Thank you for listening!