Павленок Сергей

Группа 2.2 Лабораторная работа №1

Задание 1.

1) λxy.xz

Проведем β -редукцию со значением «at»: $\lambda xy.xz \rightarrow (\lambda x.\lambda y.xz)$ at $\rightarrow [x:=a] \rightarrow (\lambda y.az)$ t \rightarrow az

- а) $\lambda xz.xz \rightarrow (\lambda x.\lambda z.xz)$ at \rightarrow [x:=a] \rightarrow ($\lambda z.az$)t \rightarrow at => не альфа эквивалентное, тк результат β -редукции не совпал
- b) λ mn.mz -> (λ m. λ n.mz)at -> [m:=a] -> (λ n.az)t -> az => результат β -редукции совпал, альфа эквивалентное
- с) $\lambda z(\lambda x).xz \rightarrow (\lambda z.\lambda x.xz)at \rightarrow [z:=a] \rightarrow (\lambda x.xa)t \rightarrow [x:=t] \rightarrow ta => не альфа эквивалентное, тк результат <math>\beta$ -редукции не совпал
- 2) λxy.xxy

Проведем β -редукцию со значением «mt»: $\lambda xy.xxy \rightarrow (\lambda x.\lambda y.xxy)$ mt $\rightarrow [x:=m] \rightarrow (\lambda y.mmy)$ t \rightarrow mmt

- а) λ mn.mnp -> $(\lambda$ m. λ n.mnp)mt -> [m:=m] -> $(\lambda$ n.mnp)t -> mtp => не альфа эквивалентное
 - b) $\lambda x(\lambda y).xy -> (\lambda x.\lambda y.xy)mt -> (\lambda y.my)t -> mt => не альфа эквивалентное$
- c) $\lambda a(\lambda b).aab$ -> $(\lambda a.\lambda b.aab)mt$ -> $(\lambda b.mmb)t$ -> mmt => aльфа эквивалентное, результаты совпали
- 3) $\lambda xyz.zx$

Проведем β -редукцию со значением «xvm»: $\lambda xyz.zx \rightarrow (\lambda x.\lambda y.\lambda z.zx)xvm \rightarrow (\lambda y.\lambda z.zx)vm \rightarrow (\lambda z.zx)m \rightarrow mx$

- а) $\lambda x.(\lambda y).(\lambda z) =>$ не альфа эквивалентное
- b) λ tos.st -> (λ t. λ o. λ s.st)xvm -> (λ o. λ s.sx)vm -> (λ s.sx)m -> mx => альфа эквивалентное, результаты совпали
- c) λ mnp.mn -> (λ m. λ n. λ p.mn)xvm -> (λ n. λ p.xn)vm -> (λ p.xv)m -> xv => не альфа эквивалентное

Ответ: 1:b, 2:c, 3:b.

Задание 2

- 1) $\lambda x.xxx => Является комбинаторным выражением, т.к. отсутствуют свободные переменные$
- 2) λxy.zx => Не является комбинаторным выражением, т.к. имеется свободная переменная z

- 3) $\lambda xyz.xy(zx) => Является комбинаторным выражением, т.к. отсутствуют свободные переменные$
- 4) $\lambda xyz.xy(zxy) => Является комбинаторным выражением, т.к. отсутствуют свободные переменные$
- 5) $\lambda xy.xy(zxy) =>$ Не является комбинаторным выражением, т.к. имеется свободная переменная z

Задание 3

- 1) λx.xxx => уже в β-нормальной форме, потому что отсутствуют аргументы, к которым можно применить абстракцию
- 2) $(\lambda z.zz)(\lambda y.yy) -> [z := \lambda y.yy] -> (\lambda y.yy)(\lambda y.yy) -> [y := \lambda y.yy] -> (\lambda y.yy)(\lambda y.yy) ... => выражение расходится, потому что не имеет остановы.$
- 3) $(\lambda x.xxx)z -> [x := z] -> zzz$ выражение приведено к β -нормальной форме, т.к. не осталось головы ни одной из абстракций

Задание 4

- 1) $(\lambda abc.cba)zz(\lambda wv.w) -> [a := z] -> (\lambda b.\lambda c.cbz)z(\lambda w.\lambda v.w) -> [b := z] -> (\lambda c.czz)(\lambda w.\lambda v.w) -> [c := (\lambda w.\lambda v.w)] -> (\lambda w.\lambda v.w)zz -> [w := z] -> (\lambda v.z)z -> [v := z] -> z$
- 2) $(\lambda x.\lambda y. xyy)(\lambda a. a)b \rightarrow [x:= (\lambda a.a)] \rightarrow (\lambda y.(\lambda a.a)yy)b \rightarrow [y:=b] \rightarrow (\lambda a.a)bb \rightarrow [a:=b] \rightarrow bb$
- 3) $(\lambda y.y)(\lambda x.xx)(\lambda z.zq) -> [y := (\lambda x.xx)] -> (\lambda x.xx)(\lambda z.zq) -> [x := (\lambda z.zq)] -> (\lambda z.zq)(\lambda z.zq) -> [z := (\lambda z.zq)] -> (\lambda z.zq)q -> [z := q] -> qq$
- 4) $(\lambda z.z)(\lambda z.zz)(\lambda z.zy) -> [z := (\lambda z.zz)] -> (\lambda z.zz)(\lambda z.zy) -> [z := (\lambda z.zy)] -> (\lambda z.zy)(\lambda z.zy) -> [z := (\lambda z.zy)] -> (\lambda z.zy)y -> [z := y] -> yy$
- 5) $(\lambda x.\lambda y.xyy)(\lambda y.y)y <-> (\lambda x.\lambda y.xyy)(\lambda m.m)t -> [x := (\lambda m.m)] -> (\lambda y.(\lambda m.m)yy)t -> [y := t] -> (\lambda m.m)tt -> [m := t] -> tt$
- 6) $(\lambda a.aa)(\lambda b.ba)c <-> (\lambda m.mm)(\lambda b.ba)c -> [m := (\lambda b.ba)] -> (\lambda b.ba)(\lambda b.ba)c -> [b := (\lambda b.ba)] -> (\lambda b.ba)ac -> [b := a] -> aac$
- 7) $(\lambda xyz.xz(yz))(\lambda x.z)(\lambda x.a) -> (\lambda x.\lambda y.\lambda z.xz(yz))(\lambda x.z)(\lambda x.a) -> [x := (\lambda x.z)] -> (\lambda y.\lambda z.(\lambda x.z)z(yz) (\lambda x.a) -> [y := (\lambda x.a)] -> (\lambda z.(\lambda x.z)z((\lambda x.a)z) -> (\lambda z.(\lambda x.m)z((\lambda x.a)z) -> [x := z] -> \lambda z.(\lambda x.m)z$