Лекция 4 Линейные модели классификации.

Дубенюк Анна Антоновна anya.dubenyuk@yandex.ru @andu192

СПОСОБЫ КОДИРОВАНИЯ КАТЕГОРИАЛЬНЫХ ПРИЗНАКОВ

КОДИРОВАНИЕ КАТЕГОРИАЛЬНЫХ ПРИЗНАКОВ: ONE-HOT ENCODING

• Предположим, категориальный признак $f_j(x)$ принимает m различных значений: $C_1, C_2, ..., C_m$.

Пример: еда может быть *горькой, сладкой, солёной* или кислой (4 возможных значения признака).

КОДИРОВАНИЕ КАТЕГОРИАЛЬНЫХ ПРИЗНАКОВ: ONE-HOT ENCODING

• Предположим, категориальный признак $f_j(x)$ принимает m различных значений: $C_1, C_2, ..., C_m$.

Пример: еда может быть *горькой, сладкой, солёной* или кислой (4 возможных значения признака).

• Заменим категориальный признак на m бинарных признаков: $b_i(x) = [f_i(x) = C_i]$ (индикатор события).

Тогда One-Hot кодировка для нашего примера будет следующей:

горький =
$$(1,0,0,0)$$
, сладкий = $(0,1,0,0)$, солёный = $(0,0,1,0)$, кислый = $(0,0,0,1)$.

СЧЁТЧИКИ

Счётчик (mean target encoding) — это вероятность получить значение целевой переменной для данного значения категориального признака.

СЧЁТЧИКИ (ПРИМЕР)

	feature	target
0	Moscow	0
1	Moscow	1
2	Moscow	1
3	Moscow	0
4	Moscow	0
5	Tver	1
6	Tver	1
7	Tver	1
8	Tver	0
9	Klin	0
10	Klin	0
11	Tver	1

СЧЁТЧИКИ (ПРИМЕР)

	feature	target
0	Moscow	0
1	Moscow	1
2	Moscow	1
3	Moscow	0
4	Moscow	0
5	Tver	1
6	Tver	1
7	Tver	1
8	Tver	0
9	Klin	0
10	Klin	0
11	Tver	1

	feature	feature_mean	target
0	Moscow	0.4	0
1	Moscow	0.4	1
2	Moscow	0.4	1
3	Moscow	0.4	0
4	Moscow	0.4	0
5	Tver	0.8	1
6	Tver	0.8	1
7	Tver	0.8	1
8	Tver	0.8	0
9	Klin	0.0	0
10	Klin	0.0	0
11	Tver	0.8	1

» СЧЁТЧИКИ: ПРИМЕР

city	target	0	1	2
Moscow	1	1/4	1/2	1/4
London	0	1/2	0	1/2
London	2	1/2	0	1/2
Kiev	1	1/2	1/2	0
Moscow	1	1/4	1/2	1/4
Moscow	0	1/4	1/2	1/4
Kiev	0	1/2	1/2	0
Moscow	2	1/4	1/2	1/4

СЧЁТЧИКИ В ЗАДАЧЕ БИНАРНОЙ КЛАССИФИКАЦИИ

В случае бинарной классификации счётчики можно задать формулой:

$$Likelihood = \frac{Goods}{Goods + Bads} = mean(target),$$

где Goods – число единиц в столбце target,

Bads – число нулей в столбце target.

СЧЁТЧИКИ (ОБЩАЯ ФОРМУЛА)

- Пусть целевая переменная y принимает значения от $1 \ \partial o \ K$.
- Закодируем категориальную переменную f(x) следующим способом:

$$counts(u, X) = \sum_{(x,y) \in X} [f(x) = u]$$

$$successes_k(u, X) = \sum_{(x,y)\in X} [f(x) = u][y = k], k = 1,..., K$$

Тогда кодировка:

$$mean_target_k(x, X) = \frac{successes_k(f(x), X)}{counts(f(x), X)} \approx p(y = k \mid f(x))$$

СЧЁТЧИКИ (ОБЩАЯ ФОРМУЛА)

$$counts(u, X) = \sum_{(x,y) \in X} [f(x) = u]$$

$$successes_k(u, X) = \sum_{(x,y)\in X} [f(x) = u][y = k], k = 1,..., K$$

Тогда кодировка:

$$mean_target_k(x, X) = \frac{successes_k(f(x), X)}{counts(f(x), X)}$$

Недостаток? Когда такой способ кодирования переобучит наш алгоритм?

СЧЁТЧИКИ (ОБЩАЯ ФОРМУЛА)

$$counts(u, X) = \sum_{(x,y)\in X} [f(x) = u]$$

$$successes_k(u, X) = \sum_{(x,y) \in X} [f(x) = u] [y = k], k = 1, \dots, K$$

Тогда кодировка:

$$mean_target_k(x, X) = \frac{successes_k(f(x), X)}{counts(f(x), X)}$$

Недостаток? Когда такой способ кодирования переобучит наш алгоритм?

Ответ: если в данных много редких категорий.

СЧЁТЧИКИ + СГЛАЖИВАНИЕ

Используем счётчики (mean target encoding) со сглаживанием:

$$\frac{mean(target) \cdot n_{rows} + global\ mean \cdot \alpha}{n_{rows} + \alpha}$$

 n_{rows} - количество строк в категории, lpha – параметр регуляризации.

СЧЁТЧИКИ: ОПАСНОСТЬ ПЕРЕОБУЧЕНИЯ

Вычисляя счётчики, мы закладываем в признаки информацию о целевой переменной и, тем самым, переобучаемся!

○ СЧЁТЧИКИ: КАК ВЫЧИСЛЯТЬ

• Можно вычислять счётчики так:

city	target	
Moscow	1	
London	0	Вычисляем счетчики по этой части
London	2	Jien idein
Kiev	1	
Moscow	1	
Moscow	0	Кодируем признак вычисленными счётчиками
Kiev	0	и обучаемся по этой части
Moscow	2	

○ СЧЁТЧИКИ: КАК ВЫЧИСЛЯТЬ

Более продвинутый способ (по кросс-валидации):

1) Разбиваем выборку

на m частей $X_1, ..., X_m$

2) На каждой части X_i

значения признаков

вычисляются по

оставшимся частям:

$$x \in X_i \Rightarrow g_k(x) = g_k(x, X \backslash X_i)$$

БОРЬБА С ПЕРЕОБУЧЕНИЕМ В СЧЁТЧИКАХ

- Вычисление счётчиков по кросс-валидации
- Сглаживание
- Добавление случайных шумов
- Expanding mean

https://necromuralist.github.io/kaggle-competitions/posts/mean-encoding/#org01e0376

ХЭШИРОВАНИЕ ПРИЗНАКОВ

- Если у категориального признака слишком много значений, скажем, миллион, то после применения one-hot кодировки мы получим миллион новых столбцов. С такой огромной матрицей тяжело работать.
- Хэширование развивает идею one-hot кодирования, но позволяет получать любое заранее заданное число новых числовых столбцов после кодировки.

АЛГОРИТМ ХЭШИРОВАНИЯ

- 1) Для каждого значения признака вычисляем значение некоторой функции хэш-функции (hash)
- 2) Задаем hash_bucket_size итоговое количество различных значений категориального признака.
- 3) Берем остаток: hash % hash_bucket_size тем самым кодируем каждое значение признака числом от 0 до hash_bucket_size-1.

ЧТО ДЕЛАЕТ ХЭШ-ФУНКЦИЯ

<u>Идея:</u> хэш-функция группирует значения категориального признака:

- часто встречающиеся значения признака формируют отдельные группы
- редко встречающиеся значения попадают в одну группу при группировке

ХЭШИРОВАНИЕ ПРИЗНАКОВ: ПРИМЕР

ХЭШИРОВАНИЕ

- Хэширование это способ кодирования категориальных данных, принимающих множество различных значений, показывающий хорошие результаты на практике.
- Хэширование позволяет закодировать любое значение категориального признака (в том числе то, которого не было в тренировочной выборке).

Статья про хэширование:

https://arxiv.org/abs/1509.05472

ЛИНЕЙНЫЕ МОДЕЛИ КЛАССИФИКАЦИИ

ОБУЧЕНИЕ ЛИНЕЙНОЙ РЕГРЕССИИ (НАПОМИНАНИЕ)

Обучающая выборка:

пусть \boldsymbol{x} – объект ($x_1, x_2, ..., x_l$ - его признаки), а y – ответ на объекте (произвольное число), n – количество объектов.

Модель линейной регрессии:

$$a(\mathbf{x}, w) = \sum_{i=1}^{l} w_i x_j$$

• Метод обучения – метод наименьших квадратов (минимизируем разность между предсказанием и правильным ответом):

$$Q(w) = \sum_{i=1}^{n} \left(a(\mathbf{x}_i, w) - \mathbf{y}_i \right)^2 \to \min_{w}$$

» БИНАРНАЯ КЛАССИФИКАЦИЯ

 $y_1, y_2, ..., y_n$ - ответы (+1 или -1).

БИНАРНАЯ КЛАССИФИКАЦИЯ

 $y_1, y_2, ..., y_n$ - ОТВЕТЫ (+1 или -1).

Как выглядит модель линейного классификатора: q(x, w) = ?

БИНАРНАЯ КЛАССИФИКАЦИЯ

Модель линейного классификатора:

$$a(x, w) = \underset{i=1}{\operatorname{sign}} (\sum_{j=1}^{n} w_j x_j)$$

» БИНАРНАЯ КЛАССИФИКАЦИЯ

Модель линейного классификатора:

$$a(x, w) = \underset{i=1}{sign}(\sum_{j=1}^{l} w_{j} x_{j})$$

если
$$\sum_{j=1}^{r} w_j x_j > 0$$
, то $sign(\sum_{j=1}^{r} w_j x_j) = +1$, то есть объект

отнесён к положительному классу

если
$$\sum_{j=1}^{\infty} w_j x_j < 0$$
, то $sign(\sum_{j=1}^{\infty} w_j x_j) = -1$, то есть объект

отнесён к отрицательному классу

БИНАРНАЯ КЛАССИФИКАЦИЯ

Модель линейного классификатора:

$$a(x, w) = \underset{i=1}{\operatorname{sign}} (\sum_{j=1}^{l} w_{j} x_{j})$$

- если $\sum_{j=1}^t w_j x_j > 0$, то $sign(\sum_{j=1}^t w_j x_j) = +1$, то есть объект отнесён к положительному классу
- если $\sum_{j=1}^r w_j x_j < 0$, то $sign(\sum_{j=1}^r w_j x_j) = -1$, то есть объект отнесён к отрицательному классу
- значит, $\sum_{j=1}^{r} w_j x_j = 0$ уравнение разделяющей границы между классами. Это уравнение плоскости (или прямой в двумерном случае), поэтому классификатор является линейным.

БИНАРНАЯ КЛАССИФИКАЦИЯ

Модель линейного классификатора:

$$a(x, w) = sign(\sum_{j=1}^{l} w_j x_j)$$

Уравнение

$$\sum_{j=1}^{l} w_j x_j = 0$$

уравнение плоскост(или прямой).

ОБУЧЕНИЕ КЛАССИФИКАТОРА

Как обучить линейный классификатор?

ОБУЧЕНИЕ КЛАССИФИКАТОРА

• Обучение - минимизация доли ошибок классификатора:

$$Q(a, X) = \frac{1}{n} \sum_{i=1}^{n} \left[a(\mathbf{x}_i) \neq \mathbf{y}_i \right] \to min,$$

где
$$\left[a(\boldsymbol{x_i}) \neq y_i\right] = 1$$
, если предсказание на объекте неверное, то есть $a(\boldsymbol{x_i}) \neq y_i$, и 0 иначе.

ОБУЧЕНИЕ КЛАССИФИКАТОРА

• Обучение - минимизация доли ошибок классификатора:

$$Q(a,X) = \frac{1}{n} \sum_{i=1}^{n} \left[a(\mathbf{x}_i) \neq \mathbf{y}_i \right] \to min(*),$$

где $\left[a(\pmb{x_i}) \neq y_i\right] = 1$, если предсказание на объекте неверное, то есть $a(\pmb{x_i}) \neq y_i$, и 0 иначе.

• Обозначим $M_i = y_i \cdot (w, x_i)$ - **отступ** на *i-м* объекте.

обучение классификатора

• Обучение - минимизация доли ошибок классификатора:

$$Q(a,X) = \frac{1}{n} \sum_{i=1}^{n} \left[a(\mathbf{x}_i) \neq \mathbf{y}_i \right] \to \min(*),$$

где $\left[a(\boldsymbol{x_i}) \neq y_i\right] = 1$, если предсказание на объекте неверное, то есть $a(\boldsymbol{x_i}) \neq y_i$, и 0 иначе.

• Обозначим $M_i = y_i \cdot (w, \mathbf{x_i})$ - **отступ** на *i-м* объекте.

Утверждение. Решение задачи (*) эквивалентно решению задачи

$$Q(a, X) = \frac{1}{n} \sum_{i=1}^{n} [\mathbf{M}_i < \mathbf{0}] \rightarrow min$$

одоказательство утверждения

• Обучение - минимизация доли ошибок классификатора:

$$Q(a,X) = \frac{1}{n} \sum_{i=1}^{n} \left[a(x_i) \neq y_i \right] = \frac{1}{n} \sum_{i=1}^{n} \left[sign(w, x_i) \neq y_i \right] \rightarrow min$$

Функционал Q можно переписать в виде:

$$Q(a, X) = \frac{1}{n} \sum_{i=1}^{n} \left[y_i \cdot (w, x_i) < 0 \right] = \frac{1}{n} \sum_{i=1}^{n} \left[M_i < 0 \right] \to min$$

$$ullet$$
 $M_i = y_i \cdot ig(w, x_iig)$ - отступ

OTCTУП (MARGIN)

Знак отступа $M = y \cdot (w, x)$ говорит о корректности классификации на объекте:

OTCTУП (MARGIN)

Знак отступа $M = y \cdot (w, x)$ говорит о корректности классификации на объекте:

Случаи неверной классификации (предсказание не совпадает с правильным ответом):

• Если (w, x) > 0 (то есть объект отнесён к классу +1), а y = -1, то $M = y \cdot (w, x) < 0$.

OTCTУП (MARGIN)

Знак отступа $M = y \cdot (w, x)$ говорит о корректности классификации на объекте:

Случаи неверной классификации (предсказание не совпадает с правильным ответом):

- Если (w, x) > 0 (то есть объект отнесён к классу +1), а y = -1, то $M = y \cdot (w, x) < 0$.
- Аналогично, если (w, x) < 0, а y = +1, то

$$M = \mathbf{y} \cdot (w, x) < \mathbf{0}.$$

OTCTYП (MARGIN)

Знак отступа $M = y \cdot (w, x)$ говорит о корректности классификации на объекте:

Случаи неверной классификации (предсказание не совпадает с правильным ответом):

- Если (w, x) > 0 (то есть объект отнесён к классу +1), а y = -1, то $M = y \cdot (w, x) < 0$.
- Аналогично, если (w, x) < 0, а y = +1, то

$$M = y \cdot (w, x) < 0$$
.

Случаи верной классификации:

• Если (w, x) > 0 и y = +1 или (w, x) < 0 и y = -1 получаем $M = y \cdot (w, x) > 0$.

OTCTYП (MARGIN)

Абсолютная величина отступа М обозначает степень уверенности классификатора в ответе (чем ближе М к нулю, тем меньше уверенность в

ответе)

。OTCTУП (MARGIN)

Ранжирование объектов по возрастанию отступа:

Ранее мы показали, что обучение классификатора – это минимизация *пороговой функции потерь*:

$$Q(a, X) = \frac{1}{n} \sum_{i=1}^{n} \left[\mathbf{M}_{i} < \mathbf{0} \right] \to min$$

Ранее мы показали, что обучение классификатора – это минимизация *пороговой функции потерь*:

$$Q(a, X) = \frac{1}{n} \sum_{i=1}^{n} \left[\mathbf{M}_{i} < \mathbf{0} \right] \to min$$

• Пороговая функция потерь *разрывна*, и этот факт сильно затрудняет процесс минимизации.

$$Q(a, X) = \frac{1}{n} \sum_{i=1}^{n} \left[\mathbf{M}_{i} < \mathbf{0} \right] \to min$$

• Пороговая функция потерь разрывна, и этот факт сильно затрудняет процесс минимизации.

• Для решения этои прообымы используют другие функции потерь – непрерывные или гладкие, как правило, являющиеся верхними оценками пороговой функции.

Ранее мы показали, что обучение классификатора – это минимизация *пороговой функции потерь*:

$$Q(a, X) = \frac{1}{n} \sum_{i=1}^{n} \left[\mathbf{M}_{i} < \mathbf{0} \right] \rightarrow min$$

- Пороговая функция потерь разрывна, и этот факт сильно затрудняет процесс минимизации.
- Для решения этой проблемы используют другие функции потерь непрерывные или гладкие, как правило, являющиеся верхними оценками пороговой функции.
- Задача минимизации некоторой функции потерь называется *минимизацией эмпирического риска* (сама функция потерь эмпирический риск).

ВЕРХНИЕ ОЦЕНКИ ЭМПИРИЧЕСКОГО РИСКА

• L ig(a, y ig) = L(M) = [M < 0] – разрывная функция потерь

Оценим

 $L(\pmb{M}) \leq \widetilde{L}(\pmb{M})$, где $\widetilde{L}(M)$ - непрерывная или гладкая функция потерь.

• Тогда

$$Q(a,X) = \frac{1}{n} \sum_{i=1}^{n} L(y_i \cdot (w, x_i)) \le \frac{1}{n} \sum_{i=1}^{n} \widetilde{L}(y_i \cdot (w, x_i)) \to \min$$

» ФУНКЦИИ ПОТЕРЬ

Минимизируя различные функции потерь, получаем разные результаты. Поэтому разные функции потерь определяют различные классификаторы.

- $L(M) = \log(1 + e^{-M})$ логистическая функция потерь
- $V(M) = (1 M)_{+} = \max(0, 1 M)$ кусочно-линейная функция потерь (метод опорных векторов)
- $H(M) = (-M)_{+} = \max(0, -M)$ кусочно-линейная функция потерь (персептрон)
- $E(M) = e^{-M}$ экспоненциальная функция потерь
- $S(M) = \frac{2}{1 + e^{-M}}$ сигмоидная функция потерь
- \bullet [M < 0] пороговая функция потерь

[©] ФУНКЦИИ ПОТЕРЬ

ОПТИМИЗАЦИЯ ФУНКЦИОНАЛА ПОТЕРЬ

• Нахождение минимума функции потерь *Q* происходит с помощью метода градиентного спуска:

$$\boldsymbol{w}^{(k)} = \boldsymbol{w}^{(k-1)} - \boldsymbol{\eta} \cdot \boldsymbol{\nabla} Q(\boldsymbol{w}^{(k-1)})$$