



# INSTITUTO TECNOLÓGICO DE ESTUDIOS SUPERIORES DE ZAMORA

# CCN4 Y CERTIFICACIÓN

**Unidad VIII** 

"Automatización de la red"

Actividad:

Laboratorio 13

Alumno:

Marco Alberto Chávez Fernández

Docente:

MTIE. Jorge Edgar Rojas Magdaleno

Carrera:

Ing. En Sistemas Computacionales

Semestre y Grupo:

8 "B"

# **VLSM**

| No | Alumno                         | LAN1 | LAN2 | LAN3 | WAN3         | POOL_NAT     |
|----|--------------------------------|------|------|------|--------------|--------------|
| 3  | CHAVEZ FERNANDEZ MARCO ALBERTO | 57   | 124  | 30   | 150.1.3.0/30 | 170.1.3.0/28 |

Tabla 1: Requerimientos de la maqueta del Laboratorio 13

#### 1. Calculo VLSM

|            | NO HOSTS | Multiplo | Prefijo | ID DE RED     | 1ER HOST      | ULT HOST      | BROADCAST     | MASCARA DE<br>SUBRED | WILCARD MASK |
|------------|----------|----------|---------|---------------|---------------|---------------|---------------|----------------------|--------------|
| LAN2       | 124      | 128      | 25      | 192.168.0.0   | 192.168.0.1   | 192.168.0.126 | 192.168.0.127 | 255.255.255.128      | 0.0.0.127    |
| LAN1       | 57       | 64       | 26      | 192.168.0.128 | 192.168.0.129 | 192.168.0.190 | 192.168.0.191 | 255.255.255.192      | 0.0.0.63     |
| LAN3       | 30       | 32       | 27      | 192.168.0.192 | 192.168.0.193 | 192.168.0.222 | 192.168.0.223 | 255.255.255.224      | 0.0.0.31     |
| WAN1       | 2        | 4        | 30      | 192.168.0.224 | 192.168.0.225 | 192.168.0.226 | 192.168.0.227 | 255.255.255.252      | 0.0.0.3      |
| WAN2       | 2        | 4        | 30      | 192.168.0.228 | 192.168.0.229 | 192.168.0.230 | 192.168.0.231 | 255.255.255.252      | 0.0.0.3      |
| TOTAL HOST | 215      |          |         |               |               |               |               |                      |              |
| CLASE      | С        |          |         |               |               |               |               |                      |              |

Tabla 2: VLSM del Laboratorio 13

## 2. Configuración de los Router

### a. Router CENTRAL

| CENTRAL#sh ip int br |               |     |        |                          |      |          |
|----------------------|---------------|-----|--------|--------------------------|------|----------|
| Interface            | IP-Address    | OK? | Method | Status                   |      | Protocol |
| GigabitEthernet0/0   | unassigned    | YES | NVRAM  | ${\tt administratively}$ | down | down     |
| GigabitEthernet0/1   | unassigned    | YES | NVRAM  | ${\tt administratively}$ | down | down     |
| Serial0/0/0          | 150.1.3.2     | YES | NVRAM  | up                       |      | up       |
| Serial0/0/1          | 192.168.0.229 | YES | NVRAM  | up                       |      | up       |
| Serial0/1/0          | 192.168.0.225 | YES | NVRAM  | up                       |      | up       |
| Serial0/1/1          | unassigned    | YES | NVRAM  | administratively         | down | down     |
| Vlanl                | unassigned    | YES | NVRAM  | ${\tt administratively}$ | down | down     |

Ilustración 1: Evidencia del comando show ip interface brief en Router CENTRAL

#### b. Router SUC1

| SUC1#sh ip int br  |               |                                |          |
|--------------------|---------------|--------------------------------|----------|
| Interface          | IP-Address    | OK? Method Status              | Protocol |
| GigabitEthernet0/0 | 192.168.0.126 | YES manual up                  | up       |
| GigabitEthernet0/1 | 192.168.0.190 | YES manual up                  | up       |
| Serial0/0/0        | 192.168.0.226 | YES manual up                  | up       |
| Serial0/0/1        | unassigned    | YES unset administratively dow | n down   |
| Serial0/1/0        | unassigned    | YES unset administratively dow | n down   |
| Serial0/1/1        | unassigned    | YES unset administratively dow | n down   |
| Vlanl              | unassigned    | YES unset administratively dow | n down   |

Ilustración 2: Evidencia del comando show ip interface brief en Router SUC1

#### c. Router SUC2

| sh ip int br<br>Interface<br>Protocol | IP-Address    | OK? Method Status                    |
|---------------------------------------|---------------|--------------------------------------|
| GigabitEthernet0/0                    | 192.168.0.222 | YES manual up up                     |
| GigabitEthernet0/1                    | unassigned    | YES unset administratively down down |
| Serial0/0/0                           | 192.168.0.230 | YES manual up up                     |
| Serial0/0/1                           | unassigned    | YES unset administratively down down |
| Serial0/1/0                           | unassigned    | YES unset administratively down down |
| Serial0/1/1                           | unassigned    | YES unset administratively down down |
| Vlanl                                 | unassigned    | YES unset administratively down down |

Ilustración 3: Evidencia del comando show ip interface brief en Router SUC2

#### 3. Enrutamiento

#### a. Router CENTRAL

```
CENTRAL#SH IP ROUTE
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
       N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
       E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is 0.0.0.0 to network 0.0.0.0
     150.1.0.0/16 is variably subnetted, 2 subnets, 2 masks
C
       150.1.3.0/30 is directly connected, Serial0/0/0
L
        150.1.3.2/32 is directly connected, Serial0/0/0
    192.168.0.0/24 is variably subnetted, 7 subnets, 5 masks
0
       192.168.0.0/25 [110/65] via 192.168.0.226, 00:20:46, Serial0/1/0
       192.168.0.128/26 [110/65] via 192.168.0.226, 00:20:46, Serial0/1/0
0
0
       192.168.0.192/27 [110/65] via 192.168.0.230, 00:20:46, Serial0/0/1
C
       192.168.0.224/30 is directly connected, Serial0/1/0
       192.168.0.225/32 is directly connected, Serial0/1/0
L
        192.168.0.228/30 is directly connected, Serial0/0/1
       192.168.0.229/32 is directly connected, Serial0/0/1
    0.0.0.0/0 is directly connected, Serial0/0/0
```

Ilustración 4: Evidencia del comando show ip route en Router CENTRAL

#### b. Router SUC1

```
SUC1#SH IP ROUTE
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      {\tt N1} - OSPF NSSA external type 1, {\tt N2} - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
      i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is 192.168.0.225 to network 0.0.0.0
     192.168.0.0/24 is variably subnetted, 8 subnets, 5 masks
       192.168.0.0/25 is directly connected, GigabitEthernet0/0
       192.168.0.126/32 is directly connected, GigabitEthernet0/0
       192.168.0.128/26 is directly connected, GigabitEthernet0/1
        192.168.0.190/32 is directly connected, GigabitEthernet0/1
        192.168.0.192/27 [110/129] via 192.168.0.225, 00:21:43, Serial0/0/0
       192.168.0.224/30 is directly connected, Serial0/0/0
       192.168.0.226/32 is directly connected, Serial0/0/0
       192.168.0.228/30 [110/128] via 192.168.0.225, 00:21:43, Serial0/0/0
0*E2 0.0.0.0/0 [110/1] via 192.168.0.225, 00:21:43, Serial0/0/0
```

Ilustración 5: Evidencia del comando show ip route en Router SUC1

#### c. Router SUC2

```
SUC2#SH IP ROUTE
Codes: L - local, C - connected, S - static, R - RIP, M - mobile, B - BGP
       D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
      N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
      E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
       i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
       * - candidate default, U - per-user static route, o - ODR
       P - periodic downloaded static route
Gateway of last resort is 192.168.0.229 to network 0.0.0.0
     192.168.0.0/24 is variably subnetted, 7 subnets, 5 masks
0
        192.168.0.0/25 [110/129] via 192.168.0.229, 00:22:24, Serial0/0/0
0
        192.168.0.128/26 [110/129] via 192.168.0.229, 00:22:24, Serial0/0/0
        192.168.0.192/27 is directly connected, GigabitEthernet0/0
       192.168.0.222/32 is directly connected, GigabitEthernet0/0
       192.168.0.224/30 [110/128] via 192.168.0.229, 00:22:24, Serial0/0/0
        192.168.0.228/30 is directly connected, Serial0/0/0
        192.168.0.230/32 is directly connected, Serial0/0/0
O*E2 0.0.0.0/0 [110/1] via 192.168.0.229, 00:22:24, Serial0/0/0
```

Ilustración 6: Evidencia del comando show ip route en Router SUC2

#### 4. NAT

#### a. Router MATRIZ(NAT Dinámico)

| CENTRAL#show ip nat translations |               |                   |               |                |  |  |  |  |
|----------------------------------|---------------|-------------------|---------------|----------------|--|--|--|--|
| Pro                              | Inside global | Inside local      | Outside local | Outside global |  |  |  |  |
| icmp                             | 172.1.3.3:130 | 192.168.0.129:130 | 150.1.3.1:130 | 150.1.3.1:130  |  |  |  |  |
| icmp                             | 172.1.3.4:187 | 192.168.0.1:187   | 150.1.3.1:187 | 150.1.3.1:187  |  |  |  |  |
| icmp                             | 172.1.3.5:149 | 192.168.0.2:149   | 150.1.3.1:149 | 150.1.3.1:149  |  |  |  |  |
| icmp                             | 172.1.3.6:10  | 192.168.0.230:10  | 150.1.3.1:10  | 150.1.3.1:10   |  |  |  |  |
| icmp                             | 172.1.3.6:6   | 192.168.0.230:6   | 150.1.3.1:6   | 150.1.3.1:6    |  |  |  |  |
| icmp                             | 172.1.3.6:7   | 192.168.0.230:7   | 150.1.3.1:7   | 150.1.3.1:7    |  |  |  |  |
| icmp                             | 172.1.3.6:8   | 192.168.0.230:8   | 150.1.3.1:8   | 150.1.3.1:8    |  |  |  |  |
| icmp                             | 172.1.3.6:9   | 192.168.0.230:9   | 150.1.3.1:9   | 150.1.3.1:9    |  |  |  |  |

Ilustración 7: Evidencia del comando sh ip nat translations en el Router CENTRAL

#### b. ROUTER SUC1

```
SUCl#show ip nat translations
SUCl#show ip nat translations
SUCl#
```

Ilustración 8: Evidencia del comando sh ip nat translations en el Router SUC1

#### c. ROUTER SUC2

```
SUC2#show ip nat translations
SUC2#
```

Ilustración 9: Evidencia del comando sh ip nat translations en el Router SUC2

#### 5. SNMP

SUC1#show run | include snmp-server snmp-server community SNMPLAB13 RO SUC1#

Ilustración 10: Evidencia de cadena SNMP en router SUC1



Ilustración 11:Evidencia del MIB Browser en SNMPSERVER