UNIVERSITATEA BABEȘ-BOLYAI CLUJ-NAPOCA FACULTATEA DE MATEMATICĂ ȘI INFORMATICĂ

Proba scrisă a examenului de licență, 5 setembrie 2017 Informatică Română VARIANTA 1

SUBIECTUL 1. Algoritmică și programare

Scrieți un program într-unul din limbajele de programare Python, C++, Java, C# care:

a) **Definește** clasele **Pizza** și **PizzaWithIngredients** pe baza următoarei diagrame UML:

- Description (descriere) trebuie să fie nenul și nevid, iar basePrice (pret baza) și ingredientsPrice (pret ingrediente) trebuie să fie strict pozitive. Constructorii trebuie să impună constrângerile.
- Metoda getDescription() din clasa Pizza returnează description, iar metoda getPrice() returnează basePrice.
 Metoda getDescription() din clasa PizzaWithIngredients adaugă textul "+ ingredients" la description din clasa de bază, iar metoda getPrice() din clasa PizzaWithIngredients returnează prețul din clasa de bază plus prețul ingredientelor.
- b) **Definește o funcție** care având ca parametri două liste conținând obiecte de tip **Pizza** ordonate descrescător după preț, returnează o nouă listă conținând toate obiectele din cele două liste parametru, ordonată descrescător după preț. Complexitatea *timp* a funcției trebuie să fie *liniară*.
- c) **Definește o funcție** care sortează, în ordine descrescătoare după pret, o listă conținând obiecte de tip **Pizza.** Sortarea se va face astfel: elementele listei sunt parcurse secvențial (de la poziția a doua până la ultima); se va insera elementul de pe poziția *i* în sublista (deja sortată) continând elementele de la prima poziție la poziția *i*-1.
- d) Definește o funcție care tipărește o listă cu obiecte de tip Pizza și suma prețurilor lor.
- e) Funcția principală a programului creează două liste cu obiecte de tip Pizza. În prima listă se adaugă trei obiecte (alegeți voi descrierea și prețul): două Pizza și o PizzaWithIngredients. În a doua listă se adaugă trei obiecte (alegeți voi descrierea și prețul): o Pizza și două PizzaWithIngredients. Sortați cele două liste, folosind funcția de la c), apoi formati din cele două liste o listă L folosind funcția de la b). La final, tipăriți lista L folosind funcția de la punctul d).
- f) Pentru tipul de date **Listă** utilizat în program, scrieți specificațiile operațiilor folosite.

Notă

- Se va indica limbajul de programare folosit.
- Nu se vor folosi containere sortate și operații de sortare predefinite.
- Nu se vor defini alte metode decât cele specificate în enunt.

Pentru tipurile de date puteți folosi biblioteci existente (Python, C++, Java, C#).

SUBIECTUL 2. Baze de date

- **a.** Creați o bază de date relațională, având toate tabelele în a treia formă normală, care va reține următoarele informații pentru Examenul de Licență 2017:
 - *comisii*: denumire comisie, specializare (unde o specializare are un cod și o denumire, exemple de denumire: *Informatică engleză, Informatică română, Matematică maghiară, Informatică germană* etc*);
 - **studenți**: nume, titlul lucrării de licență, cod profesor coordonator, nume profesor coordonator, o listă de cuvinte cheie asociate licenței (unde un cuvânt cheie are un cod și denumire, exemple de denumiri: *big data, data mining* etc) și evaluarea (comisia la care studentul susține lucrarea și notă finală acordată de comisie).

Justificati că baza de date creată este în a treia formă normală, identificând dependentele funcționale.

b. Pentru baza de date de la punctul a., scrieți următoarele interogări folosind SQL sau algebra relațională:

- Lista comisiilor (denumire si specializare) care au evaluat cel putin o lucrare cu tematica data mining si cel putin i. una cu tematica cloud computing.
- Numărul studentilor coordonati de profesorul Ion Popescu si care au primit notă de trecere (>= 6) din partea ii. comisiilor de la Informatică engleză.
- Lista profesorilor (cod si nume) cu cel mai mare număr de studenti cu note peste 8. iii.

SUBIECTUL 3. Sisteme de operare

3.1 Răspundeți la următoarele întrebări, considerând că toate instrucțiunile din fragmentul de cod de mai jos se execută cu succes.

```
int main (){
2
      int p1[2], p2[2], x, y, z, m1, m2;
3
      pipe(p1); pipe(p2);
      x=fork();
5
      if (x!=0) y=fork();
6
      if(x==0){
7
        z=getpid();
8
        close(p1[0]); close(p2[1]);
        write(p1[1], &z,sizeof(int)); close(p1[1]);
10
        read(p2[0], &m1, sizeof(int)); close(p2[0]);
11
        printf("x=%d: %d\n", x, m1);
12
        exit(0);
13
14
      if(y==0){
15
        z=getpid();
16
        close(p1[1]); close(p2[0]);
        write(p2[1], &z, sizeof(int)); close(p2[1]);
17
18
        read(p1[0], &m2, sizeof(int)); close(p1[0]);
19
        printf("y=%d: %d\n", y, m2);
20
        exit(0);
21
22
      printf("x=%d, y=%d\n", x, y);
23
      close(p1[0]); close(p1[1]); close(p2[0]); close(p2[1]);
24
      wait(NULL); wait(NULL);
25
      return 0:
26
```

- Desenați ierarhia proceselor create, incluzând și procesul părinte.
- b) Care dintre procese va executa linia 11? Ce reprezintă valoarea variabilei m1 afisată?
- Care dintre procese va executa linia 19? Ce reprezintă valoarea variabilei m2 afișată?
- Care dintre procese va executa linia 22? Ce reprezintă valorile variabilelor x și y afișate?
- e) Există vreo relație între valoarea variabilei m1 din linia 11 și valoarea variabilei x din linia 22? Justificați răspunsul.

3.2 Răspundeți la următoarele întrebări, considerând că scriptul Shell UNIX a. sh de mai jos, se află într-un director care mai conține doar fișierele specificate dedesubt.

```
for f in *.txt; do
       if file $f | grep -q "text"; then
           if grep -q "^[^$1]" $f; then
3
               echo "*"$f"*"
4
5
6
       elif echo $f | grep -q "^$1"; then
7
           echo $f
8
9
   done
```

abc.txt, fisier text cu continutul

abc abb

ubb.txt, fisier text cu conținutul

aaa

ab.txt, fișier ZIP, redenumit cu extensia txt

- Ce valori va lua variabila f?
- b) Ce va afișa rularea comenzii ./a.sh a
- c) Explicați expresiile regulare din liniile 3 și 6.
- Dați un nume și conținut de fișier text, cu trei rânduri, pentru care linia 4 se execută la rularea comenzii

./a.sh b

NOTĂ.

- Toate subiectele sunt obligatorii. La toate subiectele se cer rezolvări cu solutii complete.
- Nota minimă ce asigură promovarea este 5,00.
- Timpul efectiv de lucru este de 3 ore.

^{*} Pot exista mai multe comisii pe aceeași specializare, de exemplu, pentru specializarea Informatică engleză pot exista comisiile Comisia IE 1. Comisia IE 2 si Comisia IE 3.

BAREM INFORMATICĂ

```
Subject 1 (Algoritmică și Programare):
Oficiu – 1p
Definirea clasei Pizza– 0.75p din care
        atribute - 0.25
        constructor - 0.25
        metode - 0.25
Definirea clasei PizzaCuUnIngredient- 1.05p din care
        relatia de mostenire – 0.25
        constructor - 0.4
        metode - 0.4
Funcția de la punctul b) -2.2p din care
       signatura corectă - 0.1p
       algoritmul de combinare - 2p

    parcurgere simultană a listelor si adăugarea elementului maxim în lista rezultat – 1p

                 adăugarea în rezultat a elementelor rămase în prima listă – 0.5
                 adăugarea în rezultat a elementelor rămase în a doua listă – 0.5
       returnare rezultat - 0.1p
Funcția de la punctul c) -2p din care
       signatura corectă - 0.1p
       parcurgere listă – 0.2p
       inserarea elementului i în sublista (sortată) de pe pozițiile 0/1...i-1 - 1.7p
Funcția de la punctul d) -1p din care
       signatura corectă - 0.1p
       parcurgere listă – 0.4p
       accesare și tipărire element – 0.25p
       calcul și tipărire pret total – 0.25p
Funcția principală e) -0.5p
Specificațiile operațiilor folosite pentru tipul de dată Listă – 1.5p
Subject 2 (Baze de date)
1 punct oficiu
Problema a:
        2 puncte pentru tabelele în 3NF
        2 puncte pentru justificare:
                 1 punct definiții
                 1 punct explicații
Problema b:
        1.5 puncte pentru i
        1 punct pentru ii
        2.5 puncte pentru iii
Subject 3 (Sisteme de operare):
Oficiu – 1p
3.1 - 5p din care
        a) Diagrama ierarhiei - 1p
        b) Primul proces fiu – 0.5p
            PID-ul celui de-al doilea proces fiu – 0.5p
        c) Al doilea proces fiu – 0.5p
            PID-ul primului proces fiu – 0.5p
        d) Procesul părinte – 0.5p
            x este PID-ul primului proces fiu – 0.5p
            y este PID-ul celui de-al doilea proces fiu – 0.5p
        e) Sunt PID-urile celor două procese fiu (frați) – 0.5p
3.2 - 4p din care
        a) Numele fisierelor cu extensia txt - 0.75p
```

Valorile specifice: abc.txt, ubb.txt, ab.txt -0.25p

- b) Pe linii separate: ab.txt $\dot{s}i$ *ubb.txt* 1p
- c) Linia 3: orice linie care nu începe cu vreunul din caracterele primului argument -0.5p Linia 6: orice linie care începe primul argument -0.5p
- d) Fişier text cu extensia txt 0.5pConținut cu trei linii dintre care cel puțin una nu începe cu b - 0.5p