

Basic key exchange

Merkle Puzzles

Key exchange without an online TTP?

Goal: Alice and Bob want shared key, unknown to eavesdropper

For now: security against eavesdropping only (no tampering)

Can this be done using generic symmetric crypto?

Merkle Puzzles (1974)

Answer: yes, but very inefficient

Main tool: puzzles

- Problems that can be solved with some effort
- Example: E(k,m) a symmetric cipher with $k \in \{0,1\}^{128}$
 - puzzle(P) = E(P, "message") where $P = 0^{96} \text{ II } b_1 \dots b_{32}$
 - Goal: find P by trying all 2³² possibilities

Merkle puzzles

Alice: prepare 2³² puzzles

- For i=1, ..., 2^{32} choose random $P_i \subseteq \{0,1\}^{32}$ and $x_i, k_i \subseteq \{0,1\}^{128}$ set puzzle; \leftarrow E(0^{96} II P_i , "Puzzle # x_i " II k_i)
- Send puzzle₁, ..., puzzle₂32 to Bob

<u>Bob</u>: choose a random puzzle_i and solve it. Obtain (x_i, k_i) .

Send x_i to Alice

<u>Alice</u>: lookup puzzle with number x_i . Use k_i as shared secret

In a figure

Alice's work: O(n) (prepare n puzzles)

Bob's work: O(n) (solve one puzzle)

Eavesdropper's work: O(n²) (e.g. 2⁶⁴ time)

Impossibility Result

Can we achieve a better gap using a general symmetric cipher?

Answer: unknown

But: roughly speaking,

quadratic gap is best possible if we treat cipher as

a black box oracle [IR'89, BM'09]

End of Segment