

Counting Complexity of PureCircuit -1

CS907 Dissertation Project

Christos Demetriou 2018918

Supervisor: Dr. Christian Ikenmeyer

Department of Computer Science

University of Warwick

2024-2025

Abstract

When this thing gets up to 88 mph, you're gonna see some serious s· · · .

 $Keywords:\ Flux\ Capacitor,\ 1.21\ Gigawatts,\ Calvin\ Klein$

Acknowledgements

Always good to acknowledge people.

Abbreviations

Pure Circuit PC

Contents

\mathbf{A}	bstract	ii						
\mathbf{A}	cknowledgements	iii						
\mathbf{A}	bbreviations	iv						
Li	ist of Figures	vi						
m Li	ist of Tables	vi						
Li	ist of Algorithms	vi						
Li	ist of Symbols	vii						
1	1 Introduction							
2	Theoretical Preliminaries 2.1 Search problems	2 3 8 10 12 13						
3	Project Motivation and Objectives	14						
4	Current findings 4.1 PureCircuit and EndOfLine	15 15 18						
\mathbf{A}	ppendices	28						
\mathbf{A}	ppendices	28						
٨	The Flux Sketch	28						

List of Figures

2.1	Types of subgraphs in EndOfLine	3
2.2	Figure redrawn from [5]	5
2.3	Edge between points i, j of the original graph. Main observation is the fact that	
	each point comes with a pair of exponentially long lines, which we refer to as the	
	input output lines	5
2.4	K_3 graph construction. Combinations of colours indicate an edge between the two nodes. Solid dots indicate edges from 0, crossed lines indicate edges from 1 and stripped lines indicate edges from 2. We Add two coloured stripped circles on the 4 degree nodes to indicate the E_n^2 edges	6
2.5	Depiction of the edge removal. Main idea is that this we keep the number of sources or sinks as well as invertible (we can trace the source or sink from the	
0.0	original instance), despite losing a lot of graph information	7
2.6	Example on an 8 × 8 chessboard with a missing square. As we can observe, there	10
2.7	v 1	10 11
4.1	Example of reducing a 6x6 sudoku puzzle, into a graph colouring problem	15
4.1	Pure Circuit construction visualisation	$\frac{1}{17}$
4.2	Purification gadget. The red nodes denote the outputs of the purification gadget.	$\frac{17}{17}$
4.4		19
4.5		20
4.6	Snake Embedding technique between the folding dimension and the new dimension	
4.7	Snake Embedding technique between the folding dimension and the new dimension	
List o	of Tables	
2.1	Three-valued logic [20]	8
List o	of Algorithms	
4.1	Turing machine F with input $(p_1, p_2) \in B_{2^{2k+5}} \ldots \ldots \ldots \ldots \ldots$	20

List of Symbols

- $[n]_0$ Defined as $[n] \cup \{0\}$.
- [n] List of numbers 1, ..., n.
- \mathbb{N}_0 Natural numbers including 0.
- \mathbb{N} Set of natural numbers excluding 0.
- $\mathbb T$ Defines the set $\{0,1,\bot\}$ which depicts the kleene algebra..
- $n^{O(1)}$ Set of all functions $f: \mathbb{N} \to \mathbb{N}$, where $f \in O(n^c)$ for some $c \in \mathbb{N}$.
- $x_{-i}, x_{-i}(a)$ Given $x \in A^d$, we use x_{-i} to denote all members excluding index i. To show that we replace the index i with y, we say $x_{-i}(a)$.

1 Introduction

2 Theoretical Preliminaries

Our work lies in the intersection of the three core fields: counting complexity, total search problems and Kleene logic.

2.1 Search problems

We offer brief preliminaries to function problems and the different kinds that exist. First and foremost when

Definition 2.1: Search Problems

Search problems can be defined as relations $R \subseteq \mathbb{B}^* \times \mathbb{B}^*$, where given $x \in \mathbb{B}^*$, we want to find $y \in \mathbb{B}^*$ such that xRy.

Total Search problems are search problems such that for each input, there must exist at least one solution.

Like decision problems, we can define their search analogues using the definitions in 2.1. Moreover, we use the *Levin reductions* 2.1 to associate two problems.

Definition 2.2: FNP and TFNP

FNP are search problems such that there exists poly-time TM $M: \mathbb{B}^* \to \mathbb{B}$ and a poly function $p: \mathbb{N} \to \mathbb{N}$ such that:

$$\forall x \in \mathbb{B}^*, y \in \mathbb{B}^{p(|x|)} : xRy \iff M(x,y) = 1$$

Lastly $\mathbf{TFNP} = \{ L \in \mathbf{FNP} \mid L \text{ is total} \}$

Definition 2.3: Levin Reductions

Given two search problems R, R', a pair of poly-time computable functions f, g where $f, g : \{0, 1\}^* \to \{0, 1\}^*$, is called a *Levin reduction*, if

$$S_R \triangleq \{x \mid \exists y : xRy\}$$

$$R(x) \triangleq \{y \in \{0,1\}^* \mid xRy\}$$

$$\forall x \in \{0,1\}^* : x \in S_R \implies f(x) \in S_{R'}$$

$$\forall x \in S_R, y' \in R'(f(x)) : (x,g(x,y)) \in R$$

Within the current project, we are mainly interested with the total search problems or at least a specific hierarchy, as shown in figure ??. These problems were introduced by various researchers as seen in , and all such classes the guarantee of an existence of a solution by using some combinatorial property of the nature of the problem but can be very difficult to find. In the current project we are mainly interested in PPAD, known as "Polynomial Parity of Augmented DiGraphs", created by Papadimitriou [24]. We will give a formal definition of the class as well as several cornerstone problems that we will refer to in the upcoming chapters.

We will first introduce the *EndOfLine* problem 2.1by Papadimtirou [24], which takes advantage of the combinatorial fact of directed graphs where a pair of odd-degree vertices come in pairs.

Types of Subgraphs in EOL

Figure 2.1: Types of subgraphs in EndOfLine

Definition 2.4: EndOfLine problem [24]

Given poly-sized circuits $S, P \in \mathbb{B}^n \to \mathbb{B}^n$, we define a digraph G = (V, E), such that $V = \mathbb{B}^n$ and E defined as:

$$E = \{(x, y) \in V^2 : S(x) = y \land P(y) = x\}$$

We define source nodes as $v \in V$: deg(v) = (0,1) and sink nodes as deg(v) = (1,0). We also syntactically ensure that the 0^n node is always a source, meaning $S(P(0^n)) \neq 0 \land P(S(0^n)) = 0^n$. A node $v \in V$ is a solution iff $in\text{-}deg(v) \neq out\text{-}deg(v)$.

An illustrative example of an ENDOFLINE instance can be seen in figure 2.1. From this problem, we define the PPAD complexity class 2.5.

Definition 2.5: PPAD complexity class [24]

PPAD is defined as the set of search problems that are *levin reducible* 2.1 to the ENDOFLINE problem 2.1.

2.1.1 EndOfLine variants and extensions

We want introduce a small number of the several key variants of the EndOfLine that have been created in the past. Alexandros et al. in the paper was able to demonstrate that for several modifications of the original problem such as adding k known sources, where k can be a polynomial function with respect to the number of sources. Moreover, people have experimented with changing the degrees of the graphs, as demonstrated by Ikenmeyer et al. [17], with the problems such as SourceOrexcess(k, 1) where k it the maximum in-degree for each node. All these problems remain **PPAD** complete. More interestingly, Papadimitriou et al. and Alexandros et al. were able to demonstrate that in the more general case of superpolynomial graphs, if we bound the in-degree and out-degree of each node to some polynomial of the input size, then problem remains **PPAD**. We will give the main definitions to the most relevant problems in the upcoming sections.

Definition 2.6: SOURCEOREXCESS problem [17]

We define as SourceOrExcess(k, 1) for $k \in \mathbb{N}_{\geq 2}$ the search problem as such: Given a polysized successor circuit $S : \mathbb{B}^n$ and a set of predecessor poly-sized circuits $\{P_i\}_{i \in [k]}$, we define the graph G = (V, E) such that, $V = \mathbb{B}^n$ and E as:

$$\forall x, y \in V : (x, y) \in E \iff (S(x) = y) \land \bigvee_{i \in [k]} P_i(y) = x$$

We ensure that 0^n is as source, meaning $deg(0^n) = (0,1)$. A valid solution is a vertex v such that $in\text{-}deg(v) \neq out\text{-}deg(v)$.

In addition to the aforementioned adjustments, researchers were able to give a topological interpretation to the EndOfline 2.1 problem, by creating embeddings of the graph into 2D or 3D spaces as demonstrated by several researchers delighas, chen, Alexandros. We will mainly look at two of these problems, known as RLEAFD and 2D-EOL created by Chen et al. and Alexandros respectively.

Definition 2.7: 2D-EOL problem ____

Input: Two poly-sized circuits $P, S : \{0,1\}^{2n} \to \{0,1\}^{2n}$ where $P(0^n, 0^n) = (0^n, 0^n) \neq S(0^n, 0^n)$. **Output**: A point $x \in \{0,1\}^{2n}$ such that one of the following conditions are satisfied:

- 1. Sinks: $P(S(x)) \neq x$
- 2. Sources: $S(P(x)) \neq x \land x \neq 0^n$
- 3. Invalid successor: $x S(x) \notin \{(0,0), (0,1), (0,-1), (1,0), (-1,0)\}$
- 4. Invalid predecessor: $x P(x) \notin \{(0,0), (0,1), (0,-1), (1,0), (-1,0)\}$

The above description defines a superpolynomial such that an edge $(x,y) \in E$ if and only if $S(x) = y \land P(y) = x$ as well as the closeness constraint $||x - S(x)||_1 \le 1$. We will now refer to a special case of 2D-EOL known as RLEAFD by Chen et al. where they give a planar embedding of any graph G onto a 2D plane. We find this construction useful for our results and therefore will investigate this method further.

Planar Graph Embedding We define the graph embedding of a graph G = (V, E) as $G_n = (V_n, E_n)$ where |V| = n and V_n is defined as

$$\forall n \in \mathbb{N} : V_n \triangleq \left\{ \mathbf{u} \in \mathbb{N}_0^2 \mid \mathbf{u}_1 \leqslant 3(n^2 - 1), \mathbf{u}_2 \leqslant 6(n - 1) + 3 \right\}$$

G can have any in- and out-degree. For a vertex $i \in V$, we correspond it to the node (0,6i) in the embedded version. To define the edge set, we will first introduce the following notations.

Definition 2.8: $E(\mathbf{p}^1, \mathbf{p}^2)$

Given two points $\mathbf{p}^1, \mathbf{p}^2 \in V_n$ we define the set of edges $E(\mathbf{p}^1, \mathbf{p}^2)$ as:

$$E(\mathbf{p}^1, \mathbf{p}^2) \triangleq \begin{cases} \{(\alpha, k) \mid k \in \mathbb{N} : \min\{\mathbf{p}_2^1, \mathbf{p}_2^2\} \leqslant k \leqslant \max\{\mathbf{p}_2^1, \mathbf{p}_2^2\}\} & \text{if } \mathbf{p}_1^1 = \mathbf{p}_1^2 = \alpha \\ \{(k, \alpha) \mid k \in \mathbb{N} : \min\{\mathbf{p}_1^1, \mathbf{p}_1^2\} \leqslant k \leqslant \max\{\mathbf{p}_1^1, \mathbf{p}_1^2\}\} & \text{if } \mathbf{p}_2^1 = \mathbf{p}_2^2 = \alpha \\ \varnothing & \text{otherwise} \end{cases}$$

Definition 2.9: E_{ij}

Given an edge of the original graph $(i, j) \in E$, we define the set of edges E_{ij} as:

$$\mathbf{p}^{1} = (0,6i)$$

$$\mathbf{p}^{2} = (3(ni+j),6i)$$

$$\mathbf{p}^{3} = (3(ni+j),6j+3)$$

$$\mathbf{p}^{4} = (0,6j+3)$$

$$\mathbf{p}^{4} = (0,6j)$$

$$E_{ij} \triangleq E(\mathbf{p}^{1}\mathbf{p}^{2}) \cup \cdots \cup E(\mathbf{p}^{4}\mathbf{p}^{5})$$

To formally define E_n , we first split E_n into two disjoint sets E_n^1 and E_n^2 . We define E_n^1 as $\bigcup_{ij\in E} E_i j$. The graph generated by (V_n, E_n) has some special properties such as, $\forall v \in V_n$: in-deg(v) + out-deg(v) \leq 4 and $\forall v \in V_n$: deg(v) = 4 \Longrightarrow in-deg(v) = 2 = out-deg(v). For every 4-degree vertex, we add 4 additional edges as depicted in the figure 2.2 depicted in blue and add them to E_n^2 .

Figure 2.2: Figure redrawn from [5]

Given the above we have a full description of G_n . A visual explanation can be seen in figure 2.3 and an example of the K_3 complete graph in figure 2.4

Figure 2.3: Edge between points i, j of the original graph. Main observation is the fact that each point comes with a pair of exponentially long lines, which we refer to as the input output lines.

RLEAFD **problem** We denote C_n as the set of planar graphs $G_n = (V_n, E_n)$ such that $\forall \mathbf{u} \in V_n : in\text{-}deg(v) \leq 1 \land out\text{-}deg(v) \leq 1$. From that we define the class of problems RLEAFD as in

Figure 2.4: K_3 graph construction. Combinations of colours indicate an edge between the two nodes. Solid dots indicate edges from 0, crossed lines indicate edges from 1 and stripped lines indicate edges from 2. We Add two coloured stripped circles on the 4 degree nodes to indicate the E_n^2 edges.

definition 2.1.1.

Definition 2.10: RLeafD problem [5]

Input: A tuple $(K, 0^k)$ such that $k \in \mathbb{N}$ and K is a poly-time TM which describes a graph in $G \in C_n$. More specifically, K is a function $V_{2^k} \to V_{2^k} \cup \{\bot\}$ such that

$$(a,b) \in E_n \iff K(a) = (\cdot,b) \land K(b) = (a,\cdot)$$

Output: $v \in V_{2^k} \setminus \{0^n\}$ such that $\exists a \in V_{2^k} : K(v) = (\cdot, a) \lor K(v) = (a, \cdot)$

Embedding Endtofline Chen et al. [5] demonstrated how every Endofline can be reduced to a RLEAFD problem. Key insight, is the observation that every planar embedding of a graph of an Endofline has the following property:

$$\forall v \in V_n : deg(v) \in \{(0,0), (1,1), (1,0), (0,1), (2,2)\}$$

Using as reference the figure 2.3, we remove all the edges of nodes with degree of (2,2). This in a way creates a different graph but the key insight is that the number of sources or sinks remain the same as we are essentially redirecting the lines as we can see from the figure 2.5. We will use these reductions in later sections to demonstrate reductions with excess problems as well.

The PureCircuit problem The definition of PureCircuit is based Kleene's three-valued strong logic of indeterminacy, which extends the traditional binary logic [20]. This problem was created by Deligkas et al. [10] to demonstrate the hardness of approximating PPAD problems and was shown to be PPAD-complete.

Figure 2.5: Depiction of the edge removal. Main idea is that this we keep the number of sources or sinks as well as invertible (we can trace the source or sink from the original instance), despite losing a lot of graph information.

Definition 2.11: PureCiruit Problem Definition [10]

An instance of PureCircuit is given by vertex set V = [n] and gate set G such that $\forall g \in G$: g = (T, u, v, w) where $u, v, w \in V$ and $T \in \{NOR, Purify\}$. Each gate is interpreted as:

- 1. NOR: Takes as input u, v and outputs w
- 2. Purify: Takes as input u and outputs v, w

And each vertex is ensured to have in-deg $(v) \leq 1$. A solution to input instance (V, G) is denoted as an assignment $\mathbf{x}: V \to \{0, \perp, 1\}$ such that for all gates g = (T, u, v, w) we have:

1. *NOR*:

$$\mathbf{x}[u] = \mathbf{x}[v] = 0 \implies \mathbf{x}[w] = 1$$

 $(\mathbf{x}[u] = 1 \lor \mathbf{x}[v] = 1) \implies \mathbf{x}[w] = 0$
otherwise $\implies \bot$

2. Purify:

$$\forall b \in \mathbb{B} : \mathbf{x}[u] = b \implies \mathbf{x}[v] = b \land \mathbf{x}[w] = b$$
$$\mathbf{x}[u] = \bot \implies \{\mathbf{x}[v] \cup \mathbf{x}[w]\} \cap \mathbb{B} \neq \emptyset$$

In addition to the gates above, we will make use of the standard set of gates $\{\lor,\land,\lnot\}$, whose behaviour is depicted in the tables 2.1. Moreover, we will make use of the Copy gate which we can define as $Copy(x) = \lnot(\lnot x)$. These gates are well defined based on the NOR gate as shown by Deligkas et al. [10] and do not directly affect the complexity of the problem. Furthermore, with respect to the Purify gate, Deligkas et al. [10] showed that the only Purify solutions essential for PPAD-COMPLETENESS are $\{(0,\bot),(\bot,1),(0,1)\}$, and the addition of more solutions does not affect its complexity. We will base our constructions around that limited set of solutions. We acknowledge that this simplified variant of the problem captures a subset of the original set of solutions, but one can observe that $\#PureCircuit-simplified \subseteq \#PureCircuit$, and therefore any proposition or argument of the sort: $\#A \subseteq \#PureCircuit-simplified \Longrightarrow \#A \subseteq \#PureCircuit$. All solution sets will be made explicit before analysing the counting complexity of the problem, and we will refer to all such simplified variants as #PureCircuit as they do not impact the overall reduction.

not		and	0	\perp	1	or	0	\perp	1
0	1	0	0	0	0	0	0	\perp	1
\perp	$\begin{array}{ c c c c }\hline \bot & & \\ \hline 0 & & & \\ \end{array}$	$_{1}^{\perp}$	0	\perp	\perp	\perp	上	$_{1}^{\perp}$	1
1	0	1	0	\perp	1	1	1	1	1
(a) not gate		(b)	(b) and gate			(c) or gate			

Table 2.1: Three-valued logic [20]

2.1.2 Topological problems

Below we will refer to the notion of Sperner problems, which uses the topology of a problem and a colouring scheme to ensure that a substructure is panchromatic. There are two variants of colouring scheme that are used: the first will be referred to as the **linear** colouring where for dimension d, assign d+1 distinct colours to each point [7, 5]. Subsequently, we will refer to **bipolar** colouring, which has been used in grid-like topologies of the Sperner property [6, 10, 8]. We note that these terms are not standard in literature; we adopt this naming convention for of clarity.

Definition 2.12: Bipolar colouring

Given a set S^d , where S is some arbitrary set, we refer to bipolar colouring C as:

$$\forall v \in S^d, j \in [d] : [C(v)]_i \in \{-1, 1\}$$

We say that a set of points $A \subseteq S^d$ cover all the labels if:

$$\forall i \in [d], \ell \in \{-1, +1\}, \exists x \in A : [\lambda(x)]_i = \ell$$

Deligkas et al. [10, 9] showed that $\forall A \subseteq S^d : |A| \ge d+1$ and satisfies the colouring, $\exists D \subseteq A : |D| \le d$ where D also satisfies the colouring condition.

Definition 2.13: STRONGSPERNER problem

Input: A boolean circuit that computes a bipolar labelling $\lambda : [M]^N \to \{-1,1\}^N$ 2.12 satisfying the following boundary conditions for every $i \in [N]$:

- if $x_i = 1 \implies [\lambda(x)]_i = +1$
- if $x_i = M \implies [\lambda(x)]_i = -1$

Output: A set of points $\{x^{(i)}\}_{i\in[N]}\subseteq[M]^N$, such that:

- Closeness condition: $\forall i, j \in [N] : ||x^{(i)} x^{(j)}||_{\infty} \leq 1$
- Covers all labels as defined in 2.12

The above is a generalised variant of the traditional Sperner problem to a grid of dimensions N with width of M. Throughout literature the same variants of the problem or specifications have been defined using the names Sperner or discrete Brouwer [6, 5, 7, 10]. For clarity, the subsequent analysis adopts STRONGSPERNER.

Definition 2.14: ND-STRONGSPERNER problem

Input: A tuple $(\lambda, 0^k)$ of a STRONGSPERNER instance but for only n dimensions, such that $\lambda : (\mathbb{B}^k)^n \to \{-1, +1\}^n$.

Output: A point $\alpha = (a_1, \dots, a_n) \in (\mathbb{B}^k \setminus \{1^k\})^n$ such that

 $\{\alpha + x \mid x \in \mathbb{B}^n\}$ covers all the labels 2.12

We assume dimensionality $n \ge 2$.

The authors refer to both colouring schemes interchangeably when discussing their reductions, so we can assume that all reductions (not necessarily counting reductions) work similarly for either colouring [6, 10, 7, 5].

Other than topological colouring, we will also give a small introduction, to a tiling problem known as mutilated chessboards. Tiling spaces has been used heavily throughout literature. We will use as reference the **PPAD**-complete 1-MC problem. The idea is as follows: assume we have a $2n \times 2n$ chessboard. If we are provided with 1×2 pieces, we can trivially tile the board by filling each row with n horizontal pieces. The idea is when we remove the bottom left corner, the board becomes impossible to tile. The argument can be thought of as such: each tile piece covers a bright square and an odd square, which implies that it has to be the case that one of the squares has to remain untilled. An example can be seen in the figure 2.6. More formally we use the following definition 2.1.2, and Hollender et al. [14] demonstrated that this problem

Definition 2.15: 1-MC [14]

Input: Given a circuit $C: 2^{2n} \to 2^{2n}$, such that C(0,0) = (0,0), such that tiling between two squares is indicated such that:

$$\forall x \in \{0,1\}^{2n} : C(C(x)) = x \land x - C(x) \in \{(0,1), (1,0), (0,-1), (-1,0)\}$$

Output: We want to find a point $x \in \{0,1\}^{2n} \setminus \{(0,0)\}$ such that we have no tiling.

Lastly, we will introduce TARSKI 2.17 which uses the Knaster-Tarski fixed point theorem 2.1 and belongs in PLS \cap PPAD, where PLS is a class of problems based on the idea of local search [19].

Definition 2.16: Monotone functions —

Given two partially ordered sets (L_1, \leq_{L_1}) and (L_2, \leq_{L_2}) , a function $f: L_1 \to L_2$ is **monotone** if and only if:

$$\forall x,y \in L_1: x \leq_{L_1} y \implies f(x) \leq_{L_2} f(y)$$

Theorem 2.1: Knaster Tarski Fixed point theorem [2, 12]

Given a monotone function $f: L \to L$ 2.16 of a complete lattice (L, \land, \lor) , $\exists c \in L: f(c) = c$.

Figure 2.6: Example on an 8×8 chessboard with a missing square. As we can observe, there will always be one square we cannot tile

Definition 2.17: Tarski problem definition [12]

Given a monotone function $f:L\to L$ 2.16 of a lattice (L,\wedge,\vee) we define solutions to the problem as:

- 1. Find $x \in L : f(x) = x$
- 2. Find $x, y \in L$ such that $x \leq y$ and $f(x) \nleq f(y)$

We assume that f is represented by boolean circuits.

Counting complexity of PPAD Ikenmeyer et al. [17] demonstrated that several PPAD-COMPLETE problems behave differently under #PPAD-1. More specifically $\#ENDOFLINE-1 \subseteq \#P$ but $\exists A : \#SourceOrente{Excess}^A - 1 \nsubseteq \#P^A$. We estimate the counting difficulty of the aforementioned problems based on their position in the hierarchy as seen in the figure ??.

2.2 Counting Complexity and Combinatorial Interpretations

Decision problems are problems that ask whether an input problem has a solution. Search problems as we observed earlier ask what is a valid solution given the current input instance like what is a valid colouring of a graph, satisfying assignment to a 3-SAT problem etc. Counting complexity, or counting problems take it a step further and usually ask how many valid solutions does a problem have. Valiant formalised this idea with the help of #P complexity class 2.2, in which he demonstrated that even if a problem is polynomially solvable in its decision/search variant, can be much harder. A much simpler example can be found in the book by Barak et al. [1] where they provide a reduction from HAM-CYCLE to #CYCLE.

Figure 2.7: Example of reducing a 6x6 sudoku puzzle, into a graph colouring problem

Definition 2.18: #P Complexity Class [25]

A function $f: \mathbb{B}^* \to \mathbb{N} \in \#P$, if there exists a poly-function $p: \mathbb{N} \to \mathbb{N}$ and a poly-time TM M such that:

$$f(w) = \left| \left\{ v \in \mathbb{B}^{p(|w|)} \mid M(w, v) = 1 \right\} \right|$$

Alternative but equivalent definition is as follows: A function $f \in \mathbf{\#P}$, if there exists a non-deterministic poly-time TM N such that:

$$f(w) = \#\mathbf{acc}_N(w)$$

Where $\#\mathbf{acc}_N(w)$ denotes the number of accepting paths of N on w.

In hindsight, we can observe that functions in $\#\mathbf{P}$ express functions of the form $\forall w \in \{0,1\}^* : f(w) = |A_w|$, where A_w is a set of objects of size polynomial to the input. Given the above definition, Pak et al. [23, 18] used $\#\mathbf{P}$ to decide whether a class of numbers or objects have or do not have a combinatorial interpretation. Moreover, they argue that the usage of $\#\mathbf{P}$ has several benefits:

- 1. By polynomially bounding objects, we avoid cases such as: $f(w) = |\{1, \ldots, f(w)\}|$. In other words, we create a set of combinatorial objects.
- 2. We can work with $f(\cdot)$, even if its direct computation is hard.
- 3. #P is a formal system that is highly flexible.

Lastly, we introduce the idea of correlating two counting problems with the help of parsimonious reductions. Simply, we say that a problem A can be parsimoniously reduced to a problem B, if for inputs of A, one can create instances of B such that the set of solutions between the two problems have the same cardinality. More formally we refer to the defintion 2.19. An example of how such reduction may look like, can be seen in figure 2.7.

Definition 2.19: Parsimonious reductions

Let R, R' be search problems, and let f be a reduction of $S_R = \{x \mid R(x) \neq \emptyset\}$ to $S_{R'} = \{x \mid R'(x) \neq \emptyset\}$. We say f is **parsimonious** if:

$$\forall x \in S_R : |R(x)| = |R'(f(x))|$$

Where for relation R we say $R(x) \triangleq \{y \in \{0, 1\}^* \mid xRy\}$

We introduce a more relaxed variant of parsimonious reductions in 2.2 for one-to-many reductions, such that the two solutions sets are bounded by some polynomial with respect to the size of the input. We observed that for several problems, it can be difficult to obs

Definition 2.20: Poly-Function Bounded Parsimonious Reductions

Given two counting problems $A, B : \mathbb{B}^* \to \mathbb{N}$ and a poly-function $f : \mathbb{N} \to \mathbb{N}$, we say that:

$$A \subseteq^f B \iff \forall x \in \mathbb{B}^n : A(x) \leqslant B(x) \leqslant f(|x|) \cdot A(x)$$

If $\forall x : f(x) = c$ for $c \in \mathbb{N}$, we use the abbreviation:

$$A \subseteq^{c} B$$

2.3 Kleene Logic and Hazard-Free Circuits

Kleene logic uses the boolean system with an additional *unstable* value [20]. The study of Kleene logic assisted in the development of robust physical systems [13] and aiding in the development of lower bounds for monotone circuits [11, 15, 16, 3]. The current section offers a brief summary to relevant notions and concepts in Kleene logic.

Definition 2.21: Kleene value ordering [22]

The instability ordering for \leq^u is defined as: $\bot \leq^u 0, 1$. The *n*-dimensional extension of the ordering is:

$$\forall x, y \in \mathbb{T}^n : x \leq^u y \implies \forall j \in [n] : (x_j \in \mathbb{B} \implies x_i = y_i)$$

Definition 2.22: Kleene Resolutions [22, 15]

Given $x \in \mathbb{T}^n$, we define the resolutions of x, using the following notation:

$$Res(x) \triangleq \{ y \in \mathbb{B}^n \mid x \leqslant^u y \}$$

Unless otherwise specified, we assume that all Kleene functions are *natural* 2.23, since they can be represented by circuits 2.1. Detecting hazards is a concept that is analysed heavily when talking about Kleene logic. The idea is ensuring robustness in our circuits, meaning if all resolutions of $x \in \mathbb{T}^n$ give the same value, then we should expect the circuit to behave the same way 2.24. An example of hazard values can be seen in the figure ??.

Definition 2.23: Natural functions [15]

A function $F: \mathbb{T}^n \to \mathbb{T}^m$ for some $n, m \in \mathbb{N}$ is natural if and only if it satisfies the following properties:

- 1. Preserves stable values: $\forall x \in \mathbb{B}^n : F(x) \in \mathbb{B}^m$
- 2. Preserves monotonicity 2.16 2.22

Proposition 2.1: Natural functions and Circuits [22, 15]

A function $F: \mathbb{T}^n \to \mathbb{T}^m$ can be computed by a circuit iff F is natural 2.23

Definition 2.24: Hazard [15, 11]

A circuit C, on n inputs has **hazard** at $x \in \mathbb{T}^n \iff C(x) = \bot$ and $\exists b \in \mathbb{B}, \forall r \in \text{RES}(x) : C(r) = b$. If such value does not exists then we say that C is hazard-free.

Definition 2.25: K-bit Hazard [15]

For $k \in \mathbb{N}$ a circuit $C : \mathbb{T}^n \to \mathbb{T}$ has a k-bit hazard at $x \in \mathbb{T}^n \iff C$ has a hazard at x and \perp appears at most k times.

We also wish to introduce the following corollary by Ikenmeyer et al. [15] which allows us to construct k-bit hazard free circuits

Corollary 2.1: K-bit Hazard Construction [15]

Given circuit $C: \mathbb{T}^n \to \mathbb{T}$, one can construct a k-bit hazard free circuit of C denoted as C' such that:

$$\operatorname{size}(C') = \left(\frac{ne}{k}\right)^k (\operatorname{size}(C) + a6) + O(n^{2.71k})$$

$$\operatorname{depth}(C') = \operatorname{depth}(C) + 8k + O(k \log n)$$

Where size(P) denotes the number of gates of P and depth(P) denotes the longest path from the input bit to the output bit

2.3.1 Kleene logic and Complexity Theory

Lastly we want to introduce the notion of Alternating Turing Machines, which are meant to represent a generalisation of non-deterministic Turing machines. These have been introduced by Chandra et al. and the idea is that we introduce universal and existential quantifiers to alternate the course of computation. The informal presentation can be thought as follows: In a non-deterministic TM, given a single state q or configuration c, we execute $\beta_1, ..., \beta_k$ separate processes. We say that q will accept if at least one of the processes $\{\beta_i\}_{i\in[k]}$ accepts. Alternating Turing machines introduce additional conditions where one accepts all $\{\beta_i\}_{i\in[k]}$ to accept or in case of a negation state, if β_1 accepts, then q rejects or vice versa. More formally, we offer the definition in 2.3.1.

Definition 2.26: Alterenting Turing Machines(ATM) [21, 4]

An alternating TM is a seven tuple

$$M = (k, Q, \Sigma, \Gamma, \delta, q_0, q)$$

Where each term denotes:

- 1. K: The number of work tapes
- 2. Q: Finite set of states
- 3. Σ : Finite input alphabet. Moreover, $\star \notin \Sigma$ denotes the end of the input
- 4. Γ : Finite work tape alphabet. Moreover $\# \in \Gamma$ to denote blank symbol.
- 5. δ transition function or next move relation which has type of:

$$\delta: Q \times \Gamma^k \times (\Sigma \cup \{\star\}) \to Q \times (\Gamma \smallsetminus \{\#\})^k \times \{L,R\}^{k+1}$$

- 6. $q_0 \in Q$: Is the initial state
- 7. $g: Q \to \{\lor, \land, \neg, \mathbf{1}, \mathbf{0}\}$: Where g denotes the type of state and $\mathbf{1}, \mathbf{0}$ denote whether it is accepting or not.

The machine essentially contains a read-only input tape with endmarkers and k work tapes which are initially blank. A step of m consists of reading a symbol from the input tape, writing a symbol to each work tape, moving the writing head in each head left or right while transitioning into a new state.

Definition 2.27: ATM configurations [21, 4]

A configuration $\mathcal C$ of an ATM M is a element of the set $\mathcal C_M$

$$\mathcal{C}_M \triangleq Q \times \Sigma^* \times (\Gamma \setminus \{\#\})^k \times \mathbb{N}^{k+1}$$

Which represent, the current state, the input, the current contents of each work tape, and the k+1 head positions.

3 Project Motivation and Objectives

4 Current findings

4.1 PureCircuit and EndOfLine

We will present several attempts and efforts we made across several problems and their parsimonious reductions. First we want to introduce combine Kleene Logic with **PPAD**. We define the following series of Problems

Definition 4.1: Kleene Unary Numbers

Given a number $p \in M$, its unary representation can be depicted as a binary number $\{0,1\}^M$ such that: $k \in M \to 1^k \in \overline{M}$. Under Kleene algebra, we mainly refer to notations M_k^n where $k, n, M \in \mathbb{N}_0$ such that:

$$M_n^k \triangleq \{1^j \perp^k \mid \forall j \in \mathbb{N}_0 : j + k \leqslant n\}$$

Definition 4.2: HF-STRONGSPERNER problem

Input: A hazard-free circuit $\lambda : [M]^n \to \{-1, +1\}^n$, where $M \in n^{O(1)}$, that describes a *StrongSperner* labelling, as explained in 2.13, where the inputs are represented using Kleene Unary numbers 4.1 and $\#1(p) = \bar{p}$.

Output: A point $p \in \times_{i \in [n]} M_n^1 \cup M_n^0$ if and only if: $\lambda(p) = \perp^n$.

We will mainly refer to a specific subset of these problems, which we will refer to as HF-DISCRETESTRONGSPERNER. The general idea is that we exploit the hazard-free property of the Strong Sperner function In the original problem, we request for d+1 points as a solution to the problem. Due to the assumption that $\forall p, p' \in S : \|p-p'\|_{\infty} \leq 1$, we can assume they are all part of some high-dimensional cube. We abuse this notation by making the observation that given $p \in [M^1]^n$, all the resolutions of p, resolve in a hypercube, as seen in the figure one can observe that, we only need two points to create a panchromatic solution, where $\lambda(p) = \overline{\lambda(p')}$. These can create a lot of duplicate solutions and therefore can behave unpredictably. We will mainly focus on subproblems of the HF-STRONGSPERNER where two cubes do not overlap. More formally we define

Figure 4.1

Definition 4.3: HF-DISCRETESTRONGSPERNER problem

An HF-STRONGSPERNER instance λ such that $\forall p \in [M^1]^n$, if $\lambda(p) = \perp^n$, then

$$\forall j, i \in [n], [\phi_i^b(x)]_j \triangleq \begin{cases} x_i & \text{if } i \neq j \\ b & \text{if } i = j \end{cases}$$

 $\forall i \in [n], b \in \{0,1\}, \exists j \in [n] : \forall x, x' \in \mathbf{Res}(\phi_i^b(x)) : [\lambda(x)]_j = [\lambda(x')]_j$

Lastly we introduce a specific subset of the above solutions where introduce antipodal panchromatic cubes. In the specific type of solution said we argue that two opposite corners of a cube contain opposite colourings. This notion of antipodal cubes is used in the majority of reductions across literature. More formally we say

Definition 4.4: MinRes min and max resolution functions

We use the **MinRes**, to denote the smallest resolution of a kleene string. More formally we can use the following equivalent definitions:

$$\forall x \in \{0, 1, \bot\}^*, j \in [|x|] : [\mathbf{MinRes}(x)]_j \triangleq \begin{cases} x_i & \text{if } x_i \in \{0, 1\} \\ 0 & \text{otherwise} \end{cases}$$

For the maximum resolution we will use the **MaxRes** function where we instead replace all \perp with 1 instead.

Definition 4.5: HF-AntipodalStrongSperner problem

An HF-DISCRETESTRONGSPERNER instance λ such that $\forall p \in [M^1]^n$, if $\lambda(p) = \perp^n$, and denote **MinRes** $(x) = \hat{x}$ as the *anchor* of the cube, then:

$$\forall b \in \{0,1\}^n, j \in [n] : [\lambda(x+b)]_j = -[\lambda(x+1^n \oplus b)]_j$$

Claim 4.1: Antipodal discrete squares

Given a panchromatic solution of a HF-ANTIPODALSTRONGSPERNER p, it must be the case then that:

$$\forall j \in \{-1,1\}^n, \exists ! x \in \mathbf{Res}(p) : \lambda(x) = j$$

Proof. We proof by induction on n. Lets assume base case n = 2. We can observe that the only satisfying cube that is both antipodal and discrete, is some rotation of the following matrix

$$\begin{pmatrix} \mp & + \\ - & \pm \end{pmatrix}$$

Where we denote $+ = (+, +), - = (-, -), \pm = (+, -)$ and $\mp = (-, +)$, we can observe indeed that the panchromatic square contains all the colourings. For the induction step, we can observe that if we want our colouring function to be both discrete and antipodal, then the following must suffice: given k, k' the two resolutions of dimension k + 1, we know that $[\lambda(p_{-(n+1)}(k))] = (b, \perp^n)$ for some $b \in \{0, 1\}^n$. But that implies $[\lambda(p_{-(n+1)}(k'))] = (\bar{b}, \perp^n)$, which indicates a discrete antipodal panchromatic solution. Moreover if $p_{-(n+1)}$ cover 2^n labels, then the whole cube covers all 2^{n+1} labels, which by pigeonhole principle means that we must cover all possible combinations of colourings.

All the problems above are clearly in **PPAD** as all of them reduce to the *StrongSperner* problem, under only binary inputs, since we make the assumption that all such circuits are inherently *natural*. For the purposes of our current research, we demonstrate a parsimonious reduction from HF-DISCRETESTRONGSPERNER to PURECIRCUIT.

Theorem 4.1

$$\#PPAD(HF-DISCRETESTRONGSPERNER) \subseteq \#PPAD(PURECIRCUIT)$$

Proof. Given an input instance Λ of a HF-DISCRETESTRONGSPERNER, we create a Pure-Circuit Input nodes, Output nodes, Bit generator gadget and Circuit application gadget. To

visualise our construction we will refer to the figure in 4.2. Each of these parts describe the following:

- 1. Input nodes: Vector of n value nodes. Will be represented as $(x_i)_{i \in [n]} \in \mathbb{T}^n$.
- 2. Bit generator gadget: Given a value node x_i , apply the Bit generator gadget such that we create Kleene unary number as defined in 4.1, where $x^i \in M_n^{\leq 1}$. We will refer to the bit generator circuit as C_i .
- 3. Circuit application gadget: Since the above numbers form coordinates in a $[M]_0^n$ space, we apply the Λ function to extract a set of output nodes $(u^i)_{i \in [n]} \in \mathbb{T}^n$.
- 4. Output nodes: We use the Copy gate to copy $u^i \to x_i$, for all $i \in [n]$.

The 1st and last part of our construction is self-explanatory, we will analyse the other two sections in greater depth and prove some claims.

Figure 4.2: Pure Circuit construction visualisation

Bit generator gadget In order to create Kleene unary numbers we make use of a binary tree of Purify gates as seen in the figure 4.3. We now claim that the current construction has certain desirable properties.

Figure 4.3: Purification gadget. The red nodes denote the outputs of the purification gadget.

Claim 4.2: Purification Claim

Given the description of the bit generator gadget, we make the following two claims:

- 1. $b \in \{0,1\}^n : C_i(b) = b^n$
- 2. $C_i(\perp) \in M_n^{\leq 1}$

Proof. From the definition of the Purify gate we know that $\forall b \in \{0, 1\}$: Purify(b) = (b, b), and therefore any subtree that takes a pure input, will copy its value to all its leafs, which follows

our first claim directly. To the second part of our lemma, we can observe that the only valid outputs are $(0, \perp)$, $(\perp, 1)$, (0, 1). Based on our previous observation, if a purify gate outputs a $(0, \perp)$ value, it will propagate \perp to the rest of the tree and return 0 in the current level, if the value is $(\perp/0, 1)$, the tree will return $\perp/0$ at the specific level, and then propagate 1 to the rest of the leaves. This shows that all possible strings generated are of the form $1^k \perp^{0|1} 0^*$.

Correctness and parsimonious argument One can observe that the current construction is a valid construction, as we satisfy the arities of all gates and ensured that every node has an in-degree of 1. We now make the following lemma

Lemma 4.1: Correctness Lemma

A correct assignment corresponds to panchromatic cube in the original problem instance.

It suffices to show that every vector $x^i \in M^1_{\perp}$ and $\forall i \in [n] : \mathbf{x}[u^i] = \bot$. Assume that we have a correct assignment, and WLOG $\mathbf{x}[u^i] = 0$ for some $i \in [n]$. By our copy that, we know that $\mathbf{x}[u^i] = \mathbf{x}[x_i]$. By our purification lemma .. we know that $\mathbf{x}[x^i] = 0^i$. Since our circuit is hazard-free and applies the boundary conditions of the sperner problem, we know that $[\Lambda(x_{-i}(0))]_i = 1 \neq \mathbf{x}[u^i]$. We can make a similar argument for $\mathbf{x}[u^i] = 1$. Therefore, a satisfying assignment corresponds to some panchromatic solution. Given that our instance is in HF-DISCRETESTRONGSPERNER, it has to be the case that all $x_i \in M_n^1$, otherwise that would imply that there exists a (n-1)-subspace that also covers all the labels. This also shows that there exists a 1-to-1 mapping between a panchromatic cube and a satisfying assignment.

Although the above reduction also works for the general **HF-StrongSperner**, the reduction is not parsimonious since the PureCircuit will accept cubes in (n-1) or lower subspaces.

4.2 From the EndOfLine

Although we have not managed to create a full reduction from the *EndOfLine* to *PureCircuit*, we will demonstrate the closest to what we can hope. First we acknowledge will mainly focus on the *RLeafD* problem, as it has been shown to be parsimonious to the *EndOfLine* problem. Chen et al. [5], has showed how to convert the problem from a graph problem to a sperner problem but with linear colouring. We will first demonstrate how to do this with bipolar instead. We will demonstrate how to apply the snake embedding technique to go reduce the problem to an *AntipodalStrongSperner* instance.

Bipolar colouring of RLeafD

Proof. We construct the same reduction as in the *RLeafD* but with slight differences: We will use points $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V_{2^k}$ and $\mathbf{p}, \mathbf{q}, \mathbf{r} \in B_{2^{2k+5}}$ where

$$B_n \triangleq \left\{ \mathbf{p} \in [n]^2 \right\}$$

Moreover a polychromatic square will be denoted if all the points in the neighbouring squares satisfy the bipolar colouring. Moreover below we will denote our colouring scheme for clarity:

$$+ = (+1, +1)$$

$$\pm = (+1, -1)$$

$$\mp = (-1, +1)$$

$$- = (-1, -1)$$

Figure 4.4: Shielding method on 2D-EoL embeddings.

First, we define mapping $\mathcal{F}: V_{2^k} \to B_{2^{2k+5}}$ such that

$$\mathcal{F}(\mathbf{u}) = \begin{pmatrix} 6\mathbf{u}_1 + 6\\ 6\mathbf{u}_2 + 6 \end{pmatrix} \in B_{2^{2k+5}}$$

Since $G \in C_{2^k}$, its edge-set can be decomposed into a collection of paths and cycles $(P_i)_{i \in [m]}$. By using \mathcal{F} , every P_i is mapped to a set $I(P_i) \subset B_{2^{2k+5}}$ We will colour every point on $I(P_i)$ with +

$$P = \mathbf{u}^1, \dots, \mathbf{u}^t$$
, if P is a cycle $\mathbf{u}^1 = \mathbf{u}^t$ (4.1)

$$I(P) \triangleq \bigcup_{i \in [t-1]} I(u^t u^{t-1}) \tag{4.2}$$

A lot of *Line reductions* under colouring use the notion of shielding. Essentially we embed our lines and cycles in a grid, everything not a line is denoted as a negative charge -. All lines are denoted as positive charge +. To protect our lines from creating solutions, we cover them with \pm , \mp lines. A visualisation can be seen in figure 4.4. We define the following set to denote the set of shielding points around our paths.

$$O(P) = \{ \mathbf{p} \in B_{2^{2k+5}} \setminus I(P) : |: \exists \mathbf{p}' \in I(P), ||p - p'||_{\infty} = 1 \}$$

If P is a simple path we can decompose $\{\mathbf{s}_p, \mathbf{e}_p\} \cup L(P) \cup R(P)$ such that: $\mathbf{s}_p = \mathcal{F}(\mathbf{u}^1) + \Delta + \Delta^T$, where $\Delta = (\mathbf{u}^1 - \mathbf{u}^2) \mathbf{e}_p = \mathcal{F}(\mathbf{u}^1) + \bar{\Delta} + \bar{\Delta}^T$, where $\bar{\Delta} = (\mathbf{u}^t - \mathbf{u}^{t-1})$ Starting from \mathbf{s}_p , enumerate vertices in O(P) clockwise as $\mathbf{s}_p, \mathbf{q}^1, \dots, \mathbf{q}^{n_1}, \mathbf{e}_p, \mathbf{r}^1, \dots, \mathbf{r}^{n_2}$ such that

$$L(P) = \{\mathbf{q}^{i}\}_{i \in [n_{1}]},$$

$$R(P) = \{\mathbf{r}^{i}\}_{i \in [n_{2}]}$$

If P is a simple cycle, then can can decompose $L(P) \cup R(P)$, where L(P) contains all the vertices on the left side of the cycle and R(P) all the vertices on the right side If G is specified by $(K, 0^k) \subset C_{2^k}$, we can uniquely decompose the edge set into $P_1, \ldots P_m$ Every path is either a maximal path, or a cycle in G We can prove the following:

Lemma 4.2: Disjoint Lemma

$$\forall i, j : 1 \leq i \neq j \leq m : \left(I(P_i) \cup O(P_i)\right) \cap \left(I(P_j) \cap O(P_j)\right) = \emptyset$$

We can use the following to describe our colouring algorithm:

Algorithm 4.1 Turing machine F with input $(p_1, p_2) \in B_{2^{2k+5}}$

```
if p_1 = 0 then
   if p_2 \leq 6 then
       return +
    else
    \lfloor return \pm
else if p_1 < 6 then
    if p_2 = 6 then
       return +
    else if p_2 < 6 then
       \mathbf{return} \; \mp
    else if p_2 = 7 then
       return \pm
    else
       return -
else
    return M_K(\mathbf{p})
```

Where $M_k(\mathbf{p})$ is can be described with the following description:

$$M_k(\mathbf{p}) = \begin{cases} + & \text{if } \exists i, \mathbf{p} \in I(P_i) \\ \pm & \text{if } \exists i, \mathbf{p} \in L(P_i) \lor p_1 = 0 \\ \mp & \text{if } \exists i, \mathbf{p} \in R(P_i) \lor p_2 = 0 \\ - & \text{otherwise} \end{cases}$$

We will call the path of nodes $(0,0) \to (0,6) \to (6,6)$ as the tail. An example of how such reduction looks like can be seen in figure 4.5.

Figure 4.5: 2D EndOfLine Bipolar Colouring

Lemma 4.3: Correctness Lemma

The following statements hold correct:

- 1. $\forall i, j : \min_{x \in P_i, y \in P_j} ||\mathcal{F}(x) \mathcal{F}(y)||_{\infty} > 4$
- 2. All polychromatic squares represent solutions

To prove the first statement, assume we have $a, b \in V_{2^k}$: $||a - b||_{\infty} > 1$. WLOG assume a - b = (x, y) for some $x, y \in \mathbb{N}$ which implies the following:

$$\mathcal{F}(a) = \mathcal{F} \begin{pmatrix} b_x + x \\ b_y + y \end{pmatrix} = \begin{pmatrix} 6b_x + 6x + 6 \\ 6b_x + 6y + 6 \end{pmatrix}$$

$$\mathcal{F}(a) - \mathcal{F}(b) = \begin{pmatrix} 6x \\ 6y \end{pmatrix}$$

Since $x + y > 0 \implies \|\mathcal{F}(a) - \mathcal{F}(b)\|_{\infty} \ge 6 > 4$. This statement is meant space all lines far enough such that the colouring of each one won't affect the other.

To show our second part of our solution, we can observe that: All nodes that are not boundary nor not in $\bigcup_i I(P_i) \cup L(P_i) \cup S(P_i)$ are coloured -. All + coloured nodes are on the tail and in the line, all non-tail nodes are cushioned by \pm , \mp and every non-tail node is not poly chromatic. All - elements do not affect \pm , \mp coloured nodes. Since all lines are sufficiently apart from each other, it suffices to check only the ends of paths. One can observe that the square anchored at s_{P_i} , and the square that contains e_{P_i} will be polychromatic. Since only one of each 1-1, therefore we have a valid and parsimonious reduction.

We call this coloured instances as 2D-StrongRLeafD. We now want to introduce the Snake embedding method developed by Chen et al. [6]. The idea is folding the space in higher and higher dimensions with the goal of going from an $2^n \times 2^n \to f(n)^m$ where $m, f(n) \in O(n)$. The original reduction, expresses the ability to go from a $2^n \times 2^n$ space, to a $f(n)^d$ where $d = \lceil \frac{n}{f(n)} \rceil$ space. We must also keep in mind the corollary 10 by [15], where they demonstated that the size of a circuit scales exponentially with the number of potential hazard. This implies the best we can hope for when using the vanilla method is:

$$M = n^k, f(n) = \log_2(n)^k \implies d = \frac{n}{\log(n)^k}$$

The above demonstrates that the resulting circuits are superpolynomial with respect to the input size.

In the current duration of the project, despite not being able to achieve a generalised reduction, we want to demonstrate a specific circuit that can be constructed. This circuit contains properties that may lead to a full reduction in the future. We demonstrate this over a simplified version of the snake embedding, first employed by .. on the StrongTucker version of the problem, which reduced the space from $2^n \times 2^n \to 7^m$, where m = O(n). We will show how to expend this for the StrongSperner problems as well as demonstrate that such reduction will to AntipodalStrongSperner instansces.

$$\#PPAD(2D\text{-}StrongEoL) \subseteq \#PPAD(AntipodalStrongSperner)$$

Proof. General idea is that we have these twisted sheets that capture the n-1 embedding onto the higher on We are given as an input a $2^n \times 2^n$ grid representing any 2D-StrongEoL problem.

We will reduce to a hypercube $[7]^m$ where m = O(n). The procedure is summarised as follows: Given dimension n, apply the **padding operation** such that $n' = 3 \cdot s + 1$ for some $s \in \mathbb{N}$. Then apply the *folding* operation, which reduces "width" of the space to s + 3 and compresses the space into a higher dimension. We will now go into a greater detail as to how each operation works. To make notation simple and consistent, we define M^t as

$$M^t \triangleq \underset{i \in [n_t]}{\times} m_i^t$$

Where m_i^t denotes the width of dimension i at iteration t, and n_t as the number of dimensions.

Padding Dimensions We will use the definition 4.2 to define our operation.

Definition 4.6: Padding dimension P(T, i, u)

Given labelling function $\Lambda^t: M_d^T \to \{-1, +1\}^{n_t}$, we define the padding operation $P(\Lambda^t, i, u)$ for $i \in [n_t]$ and $u \in \mathbb{N}$ where $n_{t+1} = n_t$ and

$$\forall j \in [n_{t+1}] : m_j = \begin{cases} m_i & \text{if } i \neq j \\ m_i + u & \text{otherwise} \end{cases}$$

We essentially add u additional layers to dimension i.

How the operation work is that we append a null dimension such that:

$$\forall x \in M^t, j \in [n] : [\Lambda(x_{-i}(m_i^t + 1))]_j = \begin{cases} -1 & \text{if } x_i > 0\\ +1 & \text{otherwise} \end{cases}$$

We can be sure that the above will not result in any new solutions since in $[\Lambda^t(\cdot, m_i^t, \cdot)]_i = -1$, and therefore any solution between $(\cdot, m_i^t, \cdot), (\cdot, m_i^t + 1, \cdot)$ will not yield in a solution.

Snake Embedding below we will give a overview of the snake embedding technique. This method is a modification of the method used in the tucker problem, in order to make it compatible with *StrongSperner*.

Before giving a formal definition, we will first give an informal overview of what the technique actually does based on the figure 4.6. where the y-axis denotes the new dimension, denoted as d' and the x axis denotes the folded dimension referred as \bar{i} with width $m_{\bar{i}}^{t+1} = s + 3 = m_{\bar{i}}^{t'}$, given that the original width was 3s + 1 for some $s \in \mathbb{N}$. Moreover, we will use notation (a, b) as a, the labels in the d subspace and b as the label of the d + 1 dimension. From the figure we observe that we have orange, red, green and blue lines. Blue and orange lines denote $(\omega, -)$ and $(\omega, +)$ where ω is the d-dim null space, where for each point > 0, we use label - and for 0 we use label +. For the red and green lines, these are denoted as $(\star, -), (\star, +)$ where \star is an n-dim copy of the lower space with some additional points. The core idea is that all solutions, must belong in between the red and green lines, and if we have a solution in the n-space, we should also have a solution in the n + 1 space, as shown in the figure 4.7.

To define the above more formally, we define sets $B^U, B^L \subseteq M_{n+1}^{t'}$ which denote the set of boundary indices of the orange and blue lines. In addition, we define functions $\ell^P, \ell^N \subseteq M_{n+1}^{t'}$ to denote the points on the greed and red lines with functions ϕ^P, ϕ^N that are maps $phi^i: \ell^i to M_n^t$ that indicate the indexes in the original space. Given our new circuit Λ^{t+1} , we define the

Figure 4.6: Snake Embedding technique between the folding dimension and the new dimension

Figure 4.7: Snake Embedding technique between the folding dimension and the new dimension

following:

$$\forall x \in M_{n+1}^{t+1}, j \in [n] : [\Lambda^{t+1}(x)]_j = \begin{cases} -1 & \text{if } x \in B^U \cup B^O \wedge x_j > 0 \\ +1 & \text{if } x \in B^U \cup B^O \wedge x_j = 0 \\ [\Lambda^{t+1}(\phi^P(x))]_j & \text{if } x \in \ell^P \\ [\Lambda^{t+1}(\phi^N(x))]_j & \text{if } x \in \ell^N \end{cases}$$

For the new dimension, we apply the labelling rules as described previously

$$\forall x \in M_{n+1}^{t+1} : [\Lambda^{t+1}(x)]_{n+1} = \begin{cases} -1 & \text{if } x \in B^U \cup \ell^N \\ +1 & \text{if } x \in B^L \cup \ell^P \end{cases}$$

Using the above we formally define the operation the snake embedding operation S(T, i).

Definition 4.7: Snake Embedding operation $S(\Lambda^t, i)$

Given labelling function $\Lambda: M_n^t \to \{-1,+1\}^n$, apply the snake embedding operation on dimension $i \in [n]$, where $m_i \equiv 1 \mod 3$, to a get a new labelling function $\Lambda': M'_{n+1} \to \{-1,+1\}^{n+1}$ such that $m'_i = s+3$, where Λ' is defined based on the above description.

Claim 4.3: Antipodality Solution preservation

Given Λ^t which is antipodal, we argue that Λ^{t+1} will remain antipodal.

Proof. We will prove this by induction. We start with a base case of $2 \to 3$ and we can observe that all 2D-StrongEoL instances preserve the antipodality condition. Assume we apply snake embedding to one of the two dimensions such that we have $2^n \times y \times z$. We can observe that all solutions in the embedded space will be anchored between the red or green lines (using figure 4.6), otherwise the third dimension will not be covered. Moreover one can observe can never be anchored in any of the turning points since we have a copy of the point and therefore x, y dims will not be covered. We define $\perp^n(\cdot)$ as

$$\forall \bar{p} \in [M] : \perp^{n}(p) \triangleq \begin{cases} 1^{p} \perp & \text{if } \bar{p} < M \\ 1^{M} & \text{otherwise} < M \end{cases}$$

G

References

- [1] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge, 2009.
- [2] K. Bronisław. Un theoreme sur les functions d'ensembles. 6:133-134, 1928.
- [3] J. Bund, C. Lenzen, and M. Medina. Small Hazard-Free Transducers. *IEEE Transactions on Computers*, 74(5):1549–1564, May 2025.
- [4] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. *Journal of the ACM (JACM)*, 28(1):114–133, 1981.
- [5] X. Chen and X. Deng. On the complexity of 2D discrete fixed point problem. *Theoretical Computer Science*, 410(44):4448–4456, Oct. 2009.
- [6] X. Chen, X. Deng, and S.-H. Teng. Settling the complexity of computing two-player Nash equilibria. J. ACM, 56(3):14:1–14:57, May 2009.
- [7] C. Daskalakis, P. Goldberg, and C. Papadimitriou. *The Complexity of Computing a Nash Equilibrium*, volume 39. Association for Computing Machinery, Jan. 2006.
- [8] C. Daskalakis, S. Skoulakis, and M. Zampetakis. The complexity of constrained min-max optimization. In *Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of Computing*, STOC 2021, pages 1466–1478, New York, NY, USA, June 2021. Association for Computing Machinery.
- [9] A. Deligkas, J. Fearnley, A. Hollender, and T. Melissourgos. Constant inapproximability for PPA. In *Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing*, STOC 2022, pages 1010–1023, New York, NY, USA, June 2022. Association for Computing Machinery.
- [10] A. Deligkas, J. Fearnley, A. Hollender, and T. Melissourgos. Pure-Circuit: Tight Inapproximability for PPAD. *J. ACM*, 71(5):31:1–31:48, Oct. 2024.
- [11] E. B. Eichelberger. Hazard Detection in Combinational and Sequential Switching Circuits. *IBM Journal of Research and Development*, 9(2):90–99, Mar. 1965.
- [12] J. Fearnley, D. Pálvölgyi, and R. Savani. A Faster Algorithm for Finding Tarski Fixed Points. *ACM Trans. Algorithms*, 18(3):23:1–23:23, Oct. 2022.
- [13] S. Friedrichs, M. Függer, and C. Lenzen. Metastability-Containing Circuits. *IEEE Transactions on Computers*, 67(8):1167–1183, Aug. 2018.
- [14] A. Hollender and P. Goldberg. The Complexity of Multi-source Variants of the End-of-Line Problem, and the Concise Mutilated Chessboard, June 2018.
- [15] C. Ikenmeyer, B. Komarath, C. Lenzen, V. Lysikov, A. Mokhov, and K. Sreenivasaiah. On the complexity of hazard-free circuits. *Journal of the ACM*, 66(4):1–20, Aug. 2019.
- [16] C. Ikenmeyer, B. Komarath, and N. Saurabh. Karchmer-Wigderson Games for Hazard-free Computation, Nov. 2022.
- [17] C. Ikenmeyer and I. Pak. What is in #P and what is not? In 2022 IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 860–871, Oct. 2022.

- [18] C. Ikenmeyer, I. Pak, and G. Panova. Positivity of the Symmetric Group Characters Is as Hard as the Polynomial Time Hierarchy. *International Mathematics Research Notices*, 2024(10):8442–8458, May 2024.
- [19] D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis. How easy is local search? *Journal of Computer and System Sciences*, 37(1):79–100, Aug. 1988.
- [20] S. Kleene and M. Beeson. *Introduction to Metamathematics*. Ishi Press International, 2009.
- [21] D. Kozen. Theory of Computation. Texts in Computer Science. Springer London, 2006.
- [22] M. Mukaidono. On the B-ternary logic function. Trans. IECE, 55:355–362, Jan. 1972.
- [23] I. Pak. What is a combinatorial interpretation?, Sept. 2022.
- [24] C. H. Papadimitriou. On the complexity of the parity argument and other inefficient proofs of existence. *Journal of Computer and System Sciences*, 48(3):498–532, June 1994.
- [25] L. G. Valiant. The complexity of computing the permanent. *Theoretical Computer Science*, 8(2):189–201, Jan. 1979.

Appendices

A The Flux Sketch

