2022 年度京都大学微分積分学(演義)B(中安淳担当)第 5 回(2022 年 12 月 7 日)問題と宿題(2022 年 12 月 14 日締め切り)

学籍番号: 氏名: 評価:

- 問題 1

曲線

$$\varphi(x,y) = x^2 - xy^2 + 2y = 0$$

の (x,y)=(-1,-1) 以外の点での陰関数 y=y(x) の極大・極小を求めよ。

2022 年度京都大学微分積分学(演義)B(中安淳担当)第 5 回(2022 年 12 月 7 日)問題と宿題(2022 年 12 月 14 日締め切り)

学籍番号: 氏名: 評価:

- 問題 2 -

x,y が曲線

$$x^2 + xy + y^2 = 1$$

を満たしながら動くとき、関数

$$f(x,y) = 2x + y$$

の最大・最小をラグランジュの未定乗数法(講義ノート第8回ページ2)を用いて計算せよ。

2022 年度京都大学微分積分学(演義)B(中安淳担当)第 5 回(2022 年 12 月 7 日)問題と宿題(2022 年 12 月 14 日締め切り)

学籍番号: 氏名: 評価:

- 宿題 3 —

直角三角形で 3 辺の長さの和が一定の値 l>0 であるもののうち面積が最大になるものが存在する(認めてよい)。その三角形を求めてその時の面積も答えよ。

2022 年度京都大学微分積分学(演義)B(中安淳担当)第5回(2022年12月7日)問題と宿題(2022年12月14日締め切り)

学籍番号: 氏名: 評価:

- 宿題 4 ·

2 変数関数 $\varphi(x,y)$ を C^2 級関数とする。点 (a,b) において $\varphi(a,b)=0$, $\varphi_y(a,b)\neq 0$ を仮定すると、陰関数定理より (a,b) の 近くで方程式 $\varphi(x,y)=0$ は $y=\eta(x)$ と解けるのであった。ここでさらに $\varphi_x(a,b)=0$ かつ $\varphi_{xx}(a,b)\varphi_y(a,b)<0$ (つまり $\varphi_{xx}(a,b)$ と $\varphi_y(a,b)$ が異符号)のとき、陰関数 $y=\eta(x)$ は x=a で極小になることを示せ。