School of Mathematics and Statistics ${ m MAST30030}$ Applied Mathematical Modelling

Problem Sheet 1. Some answers

Question 1

- (a) $\bar{x} = k\pi$
- (b) $\bar{x} = (2k + 1/2)\pi$
- (c) $\ddot{x} = 1/2 \sin 2x$
- (d) $x = 2\pi k$

Question 2

- (a) $\bar{x} = -2$ (stable); $\bar{x} = 2$ (unstable)
- (b) $\bar{x} = 1$ (stable); $\bar{x} = -1$ (unstable)
- (c) $\bar{x} = \pm 1$ (stable); $\bar{x} = 0$ (unstable)
- (d) $\bar{x} = (2k+1)\pi$ (stable); $\bar{x} = 2k\pi$ (unstable)
- (e) No fixed points
- (f) $\bar{x} = (2k + 1/3)\pi$ (stable); $\bar{x} = (2k 1/3)\pi$ (unstable)

Question 3

$$\bar{x} = -1$$
 (half stable); $\bar{x} = 0$ (stable); $\bar{x} = 1$ (unstable)

Question 4

- (a) $\bar{x} = 1$ (stable); $\bar{x} = 0$ (unstable)
- (b) $\bar{x} = 1$ (stable); $\bar{x} = 0, 2$ (unstable)
- (c) $\bar{x} = k\pi$ (unstable)
- (d) $\bar{x} = 6$ (stable); $\bar{x} = 0$ (LSA indeterminate half stable)
- (e) $\bar{x} = 1$ (unstable)

Question 5

Not one-dimensional system

Question 6

- (a) $x(t) = x_0 e^{at}$, $y(t) = y_0 e^{-t}$
- (b) $y = Ax^{-1/a}$
- (d) Along y-axis.

Question 7

(a)
$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$
.

(b)
$$\lambda_1 = 2$$
, $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ and $\lambda_2 = 3$, $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$.

(c)
$$\mathbf{x}(t) = C_1 e^{2t} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + C_2 e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
.

(d) Origin is unstable.

(e)
$$\mathbf{x}(t) = e^{2t} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + 2e^{3t} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
.

Question 8

(a)
$$\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}; \lambda_{1,2} = 1 \pm i$$

(b)
$$\lambda_1 = 1 + i$$
, $\mathbf{v}_1 = \begin{bmatrix} i \\ 1 \end{bmatrix}$; $\lambda_2 = 1 - i$, $\mathbf{v}_2 = \begin{bmatrix} -i \\ 1 \end{bmatrix}$.

(c)
$$\mathbf{x}(t) = e^t \left(C_1 \begin{bmatrix} \cos t \\ \sin t \end{bmatrix} + C_2 \begin{bmatrix} -\sin t \\ \cos t \end{bmatrix} \right).$$

Question 9

- (a) Unstable degenerate node (counter clockwise).
- (b) Centre (clockwise).
- (c) Saddle node.
- (d) Indeterminate.