D'où vient le théorème 2.1?

1 2 3 . . n

L1	1	2	3		٠	٠	N
L2	N+1	N+2	•	•	٠	•	2N
L3	2N+1	•					3N

$$L1 + L3 \pmod{N}$$

$$Min(L2) + Min(L2) > Max(L2)$$

1	2	3
4	•	
		3N

1	2	3
4		
		3N

	1
2 v	•
3 x	•
	N

1	2	3
4	•	
	•	
		3N
201.4		

$$1 + 1 = 2 \pmod{3}$$

$$1 \neq 2 \pmod{3}$$

1	2	3
4	٠	٠
		3N
3N+1		

$$C1 + C1 \neq C1 \pmod{3}$$

$$3K - 1 + 3L - 1 > 3 (K + L - 1)$$

1		N	N+1	2N	2N+1
(2N+1) +1		(2N+1) +N			

1	2	3
•		
·		3N

1	M	N
N+1		2N
		λΝ
λN+1	λN+M	

$$\lambda = f(n)$$

$$f(n+k) \ge Nf(n) + M$$

1	٠	М
N+1	٠	٠
λN+1		λM+N

$$A(N - M - 1) < N$$

$$N < \frac{A}{A - 1}(M + 1)$$

$$N \le \left\{\frac{A}{A - 1}(M + 1)\right\}$$

$$\sum_{i=1}^{t} a_i (b_i N + c_i) = \sum_{i=t+1}^{l} a_i (b_i N + c_i)$$

$$-B+1 \le \mu \le A-1$$

1	M
N+1	
λN+1	λM+N

$$f(n + h(M, N)) \ge Nf(n) + M$$

(N,M) maximum à h(M,N) fixé