Examenul național de bacalaureat 2024

Proba E. c)

Matematică *M_mate-info*BAREM DE EVALUARE ȘI DE NOTARE

Simulare

Filiera teoretică, profilul real, specializarea matematică-informatică Filiera vocațională, profilul militar, specializarea matematică-informatică

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă zece puncte din oficiu. Nota finală se calculează prin împărțirea la zece a punctajului total acordat pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\left(3 + \lg \frac{1}{10}\right) \cdot \lg \sqrt{10} = 2 \cdot \lg \sqrt{10} =$	3p
	$=2\cdot\frac{1}{2}=1$	2p
2.	$f(1) = a, (f \circ f)(1) = 2a^2 - 1$	2p
	$2a^2 - 1 = 1$, de unde obținem $a = -1$ sau $a = 1$	3p
3.	$2^{x+1} \cdot 2^{3x} = 32$, deci $2^{4x+1} = 2^5$, de unde obținem $4x + 1 = 5$	3p
	x=1	2p
4.	Mulțimea numerelor naturale de două cifre are 90 de elemente, deci sunt 90 de cazuri posibile	2p
	Cum $110 \le n + 100 \le 199$ și $n + 100$ este pătratul unui număr natural, obținem 4 numere: 21,	
	44, 69 şi 96, deci $p = \frac{4}{90} = \frac{2}{45}$	3p
5.	$\overrightarrow{OD} = \frac{1}{2} \left(3\overrightarrow{i} + 2\overrightarrow{j} + 3\overrightarrow{i} - 2\overrightarrow{j} \right) = 3\overrightarrow{i}$	3p
	Coordonatele punctului D sunt $x_D = 3$ și $y_D = 0$	2p
6.		3 p
	$E\left(\frac{\pi}{3}\right) = \sqrt{3} - 4 \cdot \frac{\sqrt{3}}{2} \cdot \frac{1}{2} = \sqrt{3} - \sqrt{3} = 0$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$A(0) = \begin{pmatrix} 1 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \Rightarrow \det(A(0)) = \begin{vmatrix} 1 & -1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & -1 \end{vmatrix} =$	2p
	= 0 + 0 + 0 - 0 - 0 - (-1) = 1	3 p
b)	$A(x) \cdot A(x) = \begin{pmatrix} 2 + x^2 & -1 & 0 \\ -1 & 1 & -x \\ 0 & -x & x^2 + 1 \end{pmatrix}, \ A(x) \cdot A(x) - I_3 = \begin{pmatrix} 1 + x^2 & -1 & 0 \\ -1 & 0 & -x \\ 0 & -x & x^2 \end{pmatrix}$	3р
	$\det\left(A(x)\cdot A(x)-I_3\right)=-x^2\left(1+x^2\right)-x^2=-x^2\left(2+x^2\right)\leq 0, \text{ pentru orice număr real } x$	2p
c)	$X = B \cdot A(0) \cdot A(0)$	2p
	$X = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 1 & 0 \end{pmatrix}$	3 p

	Centrul Național de Fondei și Evaluare în Educație	
2.a)	$1*2 = \frac{1^2 + 2^2 + 1 + 2}{1 + 2 + 1} =$	3р
	$=\frac{8}{4}=2$	2p
b)	$x*0 = \frac{x + 0 + x + 0}{x + 0 + 1} = \frac{x(x + 1)}{x + 1} = x$, pentru orice $x \in M$	2p
	$0*x = \frac{0^2 + x^2 + 0 + x}{0 + x + 1} = \frac{x(x+1)}{x+1} = x$, pentru orice $x \in M$, deci $e = 0$ este elementul neutru al legii de compoziție,,*"	3p
c)	$\frac{m^2 + n^2 + m + n}{m + n + 1} = 5$, de unde obţinem $(m - 2)^2 + (n - 2)^2 = 13$	3p
	Cum m şi n sunt numere naturale, obținem perechile $(0,5)$, $(4,5)$, $(5,0)$ şi $(5,4)$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = \sqrt{x^2 + 4} + (x + 6) \cdot \frac{2x}{2\sqrt{x^2 + 4}} =$	3 p
	$= \frac{2x^2 + 6x + 4}{\sqrt{x^2 + 4}} = \frac{2(x^2 + 3x + 2)}{\sqrt{x^2 + 4}}, \ x \in \mathbb{R}$	2p
b)	$f'(x) = 0 \Leftrightarrow x = -2 \text{ sau } x = -1$	2p
	$f'(x) \ge 0$, pentru orice $x \in (-\infty, -2] \Rightarrow f$ este crescătoare pe $(-\infty, -2]$, $f'(x) \le 0$, pentru	
	orice $x \in [-2,-1] \Rightarrow f$ este descrescătoare pe $[-2,-1]$ și $f'(x) \ge 0$, pentru orice	3 p
	$x \in [-1, +\infty) \Rightarrow f$ este crescătoare pe $[-1, +\infty)$	
c)	$\lim_{x \to -\infty} f(x) = -\infty, f(-2) = \sqrt{128}, f(-1) = \sqrt{125}, \lim_{x \to +\infty} f(x) = +\infty, f \text{este continuă și}$	3p
	$11 < \sqrt{125} < \sqrt{128} < 12$	
	Cum f este strict crescătoare pe $(-\infty, -2)$, f este descrescătoare pe $[-2, -1]$ și f este	2
	strict crescătoare pe $(-1,+\infty)$, obținem că ecuația $f(x)=m$ are soluție unică, pentru orice	2p
2.a)	număr întreg <i>m</i>	
	$\int_{0}^{4} e^{x} f(x) dx = \int_{0}^{4} (x+1) dx = \left(\frac{x^{2}}{2} + x\right) \Big _{0}^{4} =$	3 p
	= 8 + 4 = 12	2p
b)		3 p
	$= -\frac{2}{e} + 1 - \frac{1}{e} + 1 = \frac{2e - 3}{e}$	2p
c)	$I_n = \int_0^1 \frac{x^{n-1} e^{x^n}}{x^n + 1} dx = \frac{1}{n} \int_0^1 \frac{\left(x^n\right)' e^{x^n}}{x^n + 1} dx = \frac{1}{n} \int_0^1 \frac{e^t}{t + 1} dt$, pentru orice număr natural $n, n \ge 2$	3 p
	$\left I_n \ge \frac{1}{n} \int_0^1 \frac{1}{t+1} dt = \frac{1}{n} \ln \left(t+1 \right) \right _0^1 = \frac{\ln 2}{n} , \text{ pentru orice număr natural nenul } n, n \ge 2 \text{ și}$	2p
	$I_n \le \frac{1}{n} \int_0^1 e^t dt = \frac{e-1}{n}$, pentru orice număr natural nenul $n, n \ge 2$	- P