

Dynamic Ensemble Bayesian Filter for Robust BCI Control of a Human with Tetraplegia

Xinyun Zhu[#], Yu Qi[#], Feixiao Ren, Junming Zhu, Jianmin Zhang, Yueming Wang*

Presented by Xinyun Zhu (Ph. D Student)

Zhejiang University

The Robustness of BCI control is an important problem

Challenge: the variability in neural signals

Noises

Dynamic Neural Pathways

Neural Functional Changes

External or Biological

Neural function changes when control speed changes or error occurs [Shenoy et al., 2017; Schwartz et al., 2018].

Static decoders makes inaccurate predictions

Variability in neural signals

Static neural decoders

Instabilities in BCI control

Dynamic neural decoders to cope with neural variability

Variability in neural signals

Dynamic neural decoders

But how???

The Dynamic Ensemble Bayesian Filter model (DyEnsemble)

 $\text{Model weight $\textbf{Stastingation woidle | Books is addy name leads served in the } p(\mathcal{H}_{\mathcal{M}_t} = m_k | \mathbf{y}_{0:t}) = \frac{p(\mathcal{H}_{\mathcal{M}_t} = m_k | \mathbf{y}_{0:t-1}) p_k(\mathbf{y}_t | \mathbf{y}_{0:t-1})}{\sum_{j=1}^q p(\mathcal{H}_{\mathcal{M}_t} = m_j | \mathbf{y}_{0:t-1}) p_j(\mathbf{y}_t | \mathbf{y}_{0:t-1})}$

Enabling model switching with changes in signals.

Neural signals

Model space

Simulation performance

 Simulated neural signals with encoding model changes in time

DyEnsemble correctly assigns model weights in simulations

Visualization of online BCI control

DyEnsemble switches to the 'optimal' model for each time slot to achieve more accurate online control

Online performance comparison with KF

Improve the accuracy

max 13.9%

Improve the stability

max **91%**

DyEnsemble significantly improves the control accuracy (increases the success rate by 13.9% in the random target pursuit task) and robustness (performs more stably over different experiment days).

Analysis of the dynamic ensemble process

 Model ensemble changes during the closedloop calibration, converging to a linear dominant model at full brain control stages.

- Linear models are favored at low speeds
- Polynomial models cover the high speeds.

Now Uncle Bobo can happily play his favorite mahjong with BCI!

Thanks!

Scan me to down load the papers:

Please find details in our papers:

- [1] Dynamic Ensemble Bayesian Filter for Robust Control of a Human Brain-machine Interface, *Arxiv* 2022 (*Trans. BME minor*)
- [2] Dynamic Ensemble Modeling Approach to Nonstationary Neural Decoding in Brain-Computer Interfaces, *NeurIPS* 2019