

Armed Forces College of Medicine (AFCM)

Histology Department

Erythropoiesis & Bone Marrow Structure

Ass. Prof. Samaa Kamar

Intended Learning Objectives (ILOs)

By the end of this lecture the student should be able

to:

- **Describe the microscopic structure of the bone marrow.**
- **Describe the cellular changes along the series of erythropoiesis.**
- **Interpret the changes in the reticulocyte count in the blood.**

Lecture Plan

- 1. Part 1 (3 min): Introduction to hematopoiesis**
- 2. Part 2 (40 min): Steps of erythropoiesis and bone marrow structure.**
- 3. Part 3 (3 min): Summary**
- 4. Lecture Quiz: (4 min)**

Hematopoiesis

(Hemato= blood / Poiesis= making).

- **Definition:** The process by which blood elements are produced.
- **Site:**

o Prenatal hematopoiesis

- In the 1st trimester (starting from W3): in the yolk sac mesoderm.
- In the 2nd trimester: in liver (mainly) and spleen (minor role)
- In the 3rd trimester: in bone marrow of specific bones

o Postnatal hematopoiesis:

- occurs in the red BM and lymphatic tissues

As the circulating blood cells have a relatively short life span and must be continuously replaced

Hematopoiesis

**Stem cells
(BM)**

**Progenitor
cells
(CFU)**

**Precursor
cells
(=Blasts)**

**Mature cell
(=Functioning
cell)**

Self renewal

Multipotent (give all the blood cell types)

Capable of ~~asymmetric~~ division

Less self renewal

Less potential

Committed to produce specific blood cells (= Form colonies of only one cell type)

Gradually acquire the characteristic shape of the mature cells

Erythropoiesis

Erythropoiesis

Erythrocyte

Erythropoiesis

Common Myeloid Progenitor,
(CFU-E)

Notice changes in:

- **Size**
- **Nucleus**
- **Cytoplasm**

Pro-erythroblast

(free ribosomes)

Basophilic Cytoplasm

Basophilic Erythroblast →

(free ribosomes)

Basophilic Cytoplasm

Polychromatophytic erythroblast →

(free ribosomes and Hb) (last mitosis)

Basophilic & Acidophilic C.

L
→
d v

Normoblast

dark nuclei. Then, it will eject the nucleus)

Erythrocyte

Reticulocytes (Polychromatophytic erythrocytes)

- Immature cells, slightly larger than erythrocytes
- **Number:** **1-1.5%** of erythrocytes in the peripheral blood.
- **LM:** (**brilliant cresyl blue**) Show faintly stained basophilic network,
- **Fate:** soon loses its polyribosomes and becomes mature erythrocytes
- **Clinical significance:** Increases from **blood loss** (ex: chronic ribosomal RNA)anemia).

The corrected reticulocyte count:

- It evaluates the degree of patient's BM response to the anemic stimulus.
- It is calculated as:

(Patient's hematocrit) × (reticulocyte count) /“normal” hematocrit (=45%)

- The corrected reticulocyte count: <2% indicates **poor** BM response

>3% indicates **good** BM

Bone Marrow

© 2014 Terese Winslow LSC
U.S. Govt. has certain rights

Bone Marrow

Structure:

1- Stroma: formed of

- Reticular fibers, **collagen** fibers: for support.
- **Stromal cells (=Reticular cells):** special fibroblasts
- **Fat storing cells**

(Hemopoietic cords)

- **Population of free developing cells**
(erythroid, myeloid and megakaryocytic lineages)

3-Macrophages: phagocytosis of old RBCs.
They are **free** mobile cells (**not fixed**).

4-Blood sinusoid:

BM Blood sinusoid:

- Thin wide irregular capillaries, formed of
 - 1- Fenestrated endothelial cells
 - 2- Discontinuous basement membrane

**Why
Fenestrated ???**
**Through which newly differentiated blood
cells and platelets enter the circulation**

Bone Marrow

**2
Types**

**2
Ratios**

BM Biopsy: most commonly from “iliac crest”

2 Types

Re
d

Yello
w

© 2014 Terese U.S. Govt. has

Bone Marrow:

1- Red bone marrow:

- The site of hematopoiesis.
- Red color is due to abundance of blood & hemopoietic cells.

2- Yellow bone marrow:

- Inactive for hematopoiesis,
- Yellow color is due to abundance of fat cells

Bone Marrow

Sites of red BM:

- In Fetus: all long bones.
- In adult life, red BM is restricted to:
 - Epiphysis of long bones.
 - Some short bones
 - Irregular & flat bones: pelvis, ribs, sternum, bodies of vertebrae, bones of skull vault.

During growth, red BM is progressively replaced by yellow BM in most of long bones.

N.B.:

In times of increased need for erythrocytes (as in hemolytic anemia), yellow BM can change to red BM

2 Ratios

1. Haematopoietic-to-fat ratio = “BM cellularity” —

- The ratio between hemopoietic cells to fat cells.
- It changes with age (decrease with age):
 - Newborn to 3 months 80-100%
 - 20-40 years 60-70%
 - 40-70 years 40-50%
- The normal level (adult) is evaluated by the following formula: (100 - the age ±10%).

Bone Marrow

Clinical correlation: “BM cellularity”

- Hypocellularity: aplastic anemia, chemotherapy
- Hypercellularity: polycythemia , leukemia “proliferation”

Hypocellular BM (Aplastic anemia , chemotherapy)

Hypercellular BM (Tumor in 50 yr old man)

2 Ratios

2. Myeloid-to-Erythroid ratio

- The ratio between myeloid to erythroid precursors.
- Normally = 3:1

Clinical correlation:

- Increased ratio: Chronic myeloid leukemia
- Decreased ratio: erythroid hyperplasia

Quiz

A 35-year-old woman undergoes routine blood screening as part of a pre-employment physical. The screening demonstrates a mild anemia characterized by small cells with relative pallor compared to normal erythrocytes. Deficiency of which of the following would be most likely to have caused this patient's anemia?

- a) Iron
- b) Folate
- c) Vitamin-B12
- d) Vitamin-C

Compare between yellow bone marrow and red bone marrow

	Yellow marrow	bone	Red marrow	bone
Site				
Structure				
Function				

- **Mention the cells in the erythropoietic series that can undergo self renewal**
- **Describe the reticulocytes and assess the value of counting them.**

SUGGESTED TEXTBOOKS

- 1. Junqueira's Basic Histology; Text and Atlas. 14th edition 2018.**
- 2. Histology A Text and Atlas: Michael H. Ross and Wojciech Pawlina, 7th edition, 2016.**

Thank
you

