[")acohis nethod: Ax=h, a::X: = b: - \(\frac{2}{2}, \alpha: \cdot \cdot \) it II. nz.
$\frac{1}{2} \left(\frac{\lambda^{2}}{\lambda^{2}} - \left(\frac{\lambda^{2}}{\lambda^{2}} - \frac{\lambda^{2}}{\lambda^{2}} \right) \right) \left(\frac{\lambda^{2}}{\lambda^{2}} \right) $
(" ();;
Matrix version: Xh = Txh-1+(T= p-1(L+u)
Matrix version: $X^k = Tx^{k-1} + C$, $T = D^{-1}(L+u)$ $A = D - L - u$ $(= 0^{-1}b)$
7 hauss - Seided iteration: X: (har) = (h: = 1 h: X: (har) - 2 0: X: (h) / 0:
Matrix vasion: T= (D-4)-14, C= (D-4)-16
3" Convergence
3" Convergence, Thi: $X^{h-1} + C$ wonverge (=) $f(T) = C$ Thi: $X^{h-1} + C$ wonverge (=) $f(T) = C$
Th: 11/1-x-x+1 4/17/1/ /1x-x3/
1//
By (17x = Txh-11) = 1171/1x-xh-11)
1x x x h 1 2 = m x t - x t 2 2 x t = m T t x - x 1
1x x x / 1 2 / 1x 1 - X 1 / 2 / 1 / 1 / 1 / 2 / 1
1 1 1 1 k
L 1.71/h /1 x1- x"/