

Our Team

11219256

Nguyễn Khánh Huyền 11212719

Đào Ngọc Chi 11219263

O1 ALL STEPS OF EDA

Basic Information of data

Missing Value

Merge TARGET column in application_train to get more insight

Top correlation with TARGET by type of variable: Numerical and Categorical

Plot Categorical feature

```
def plot categorical variables(df, column name, figsize = (18, 6), count display = True, plot defaulter = True):
    print(f"Total Number of unique categories of {column name} = {len(df[column name].unique())}")
    plt.figure(figsize = figsize, tight layout = False)
    sns.set(style = 'whitegrid', font scale = 1.2)
   #plotting overall distribution of category
   data to plot = df[column name].value counts()
    df to plot = pd.DataFrame({column name: data to plot.index, 'Number of contracts': data to plot.values})
   # Calculate the percentage of target = 1 per category
    default percent = df[[column name, 'TARGET']].groupby([column name], as index = False)['TARGET'].mean()
    default percent.sort values(by = 'TARGET', ascending = False, inplace = True)
   if count display:
        plt.subplot(1,2,1)
        s1 = sns.barplot(x = 'Number of contracts', y = column_name, data = df_to_plot)
        #s1.set yticklabels(s1.get yticklabels(),rotation = 90)
        plt.title(f'Distribution of {column name}', pad = 20)
   if plot defaulter:
        plt.subplot(1,2,2)
        s2 = sns.barplot(x = 'TARGET', y = column name, data = default percent)
        #s2.set_yticklabels(s2.get_yticklabels(),rotation=90)
        plt.xlabel('Proportion', fontsize=16)
        plt.title(f'Proportion of Defaulters for each category of {column name}', pad = 20)
    plt.tick params(axis='both', which='major', labelsize=12)
    plt.subplots adjust(wspace = 0.4)
    plt.show();
```


NAME_EDUCATION_TYPE

from application_train|test.csv

```
def plot numerical variables(df, column name, figsize = (20,8), hist plot = True, box plot = True,
                            dist plot = True, number of subplots = 3):
    plt.figure(figsize = figsize)
    sns.set style('whitegrid')
    sns.color palette("RdBu", 10)
   i = 1
   if hist plot:
       plt.subplot(1, number of subplots, i)
       plt.subplots adjust(wspace=0.25)
       plt.title("Distribution of %s" %column name)
        sns.distplot(df[column name].dropna(),color='red', kde=True,bins=100)
       i+=1
   if dist plot:
       plt.subplot(1, number of subplots, i)
       plt.subplots adjust(wspace=0.25)
       sns.distplot(df[column name][df['TARGET'] == 0].dropna(),\
                    label='Non-Defaulters', hist = False, color = 'firebrick')
        sns.distplot(df[column_name][df['TARGET'] == 1].dropna(),\
                    label='Defaulters', hist = False, color = 'dodgerblue')
       plt.xlabel(column name)
       plt.ylabel('Probability Density')
       plt.title("Dist-Plot of {}".format(column name))
       plt.legend(loc="best", labels=['Non-Defaulted(TARGET=0)', 'Defaulted (TARGET = 1)'], fontsize = 'medium')
       plt.tick params(axis='both', which='major', labelsize=12)
       i+=1
   if box plot:
       plt.subplot(1, number_of_subplots, i)
       plt.subplots adjust(wspace=0.25)
       sns.boxplot(x='TARGET', y=column name, data=df)
       plt.title("Box-Plot of {}".format(column name))
    plt.show()
```

Plot Numerical feature

DAYS_DECISION

from previous_application.csv

O2 EDA of each table

2.1

Application_train

Imbalanced Data

- The number of samples with non-defaulter (TARGET=0) is 10 times greater than the number of samples with defaulter (TARGET=1)
- Using ROC-AUC to for model evaluation

```
application train['TARGET'].value counts()
TARGET
     226133
      19876
Name: count, dtype: int64
application train['TARGET'].astype(int).plot.hist();
    200000
    150000
 Frequency
    100000
     50000
                           0.2
                                       0.4
                                                    0.6
                                                                0.8
              0.0
                                                                             1.0
```


- 1. Convert DAYS_BIRTH data to year format
- 2. The age with the most defaulter is 30 years old. Young people tend to have more bad debt than older people
- 3. Splitting AGE into bins is also an important feature for the 'TARGET' variable. New features can be created from dividing into bins

EXT_SOURCE

- The distribution of people with defaulter and people without defaulter is clearly different
- The EXT_SOURCE features show relatively good linear separation between defaulters and non-defaulters. Among them, EXT_SOURCE_1 and EXT_SOURCE_3 tend to show better separation ability than EXT_SOURCE_2
- Create some more features from EXT_SOURCE variables

Bureau

Top Correlation of Bureau

TARGET	1	0.061	0.041	0.039	0.025	-0.011	-0.0071	0.0063	-0.0056	0.0023
DAYS_CREDIT	0.061	1	0.69	0.87	0.23	0.056	0.016	-0.0012	0.024	0.13
DAYS_CREDIT_UPDATE	0.041	0.69	1	0.75	0.25	0.11	0.019	0.0035	0.044	0.14
DAYS_ENDDATE_FACT	0.039	0.87	0.75	1	0.25	0.075	0.019	-0.00042	0.019	0.025
DAYS_CREDIT_ENDDATE	0.025	0.23	0.25	0.25	1	0.062	0.0087	0.0011	0.087	0.081
AMT_CREDIT_SUM	-0.011	0.056	0.11	0.075	0.062	1	0.0082	0.0065	0.0043	0.7
SK_ID_BUREAU	-0.0071	0.016	0.019	0.019	0.0087	0.0082	1	-0.00065	-0.0044	0.006
AMT_CREDIT_SUM_OVERDUE	0.0063	-0.0012	0.0035	-0.00042	0.0011	0.0065	-0.00065	1	-0.00076	0.0082
AMT_CREDIT_SUM_LIMIT	-0.0056	0.024	0.044	0.019	0.087	0.0043	-0.0044	-0.00076	1	-0.019
AMT_CREDIT_SUM_DEBT	0.0023	0.13	0.14	0.025	0.081	0.7	0.006	0.0082	-0.019	1
	TARGET	DAYS_CREDIT	DAYS_CREDIT_UPDATE	DAYS_ENDDATE_FACT	DAYS_CREDIT_ENDDATE	AMT_CREDIT_SUM	SK_ID_BUREAU	AMT_CREDIT_SUM_OVERDUE	AMT_CREDIT_SUM_LIMIT	AMT_CREDIT_SUM_DEBT

- 0.4

bureau merged['DAYS CREDIT ENDDATE'].describe() 1.102115e+06 count 4.909742e+02 mean 4.955661e+03 std -4.206000e+04 min 25% -1.142000e+03 50% -3.330000e+02 75% 4.730000e+02 3.119800e+04 max Name: DAYS_CREDIT_ENDDATE, dtype: float64

bureau_merged['DAYS_ENDDATE_FACT'].describe() 737359,000000 count -1022.087408 mean 718.422310 std -42023.000000 min 25% -1502.000000 50% -898.000000 75% -427.000000 0.000000 max Name: DAYS_ENDDATE_FACT, dtype: float64

bureau_merged['DAYS_CREDIT_UPDATE'].describe() 1.173378e+06 count -5.993146e+02 mean 7.317144e+02 std -4.194700e+04 min 25% -9.030000e+02 50% -4.060000e+02 75% -3.300000e+01 3.720000e+02 max Name: DAYS_CREDIT_UPDATE, dtype: float64

DAYS_CREDIT_UPDATE

CREDIT_ACTIVE

The majority of loans are Closed, followed by Active loans. Feature Engineering we can only focus on two states, Closed and Active

Previous_application

NAME_CONTRACT_STATUS

The status of the most previous loans is 'Approved', accounting for more than 65% of the total number of loans, while the highest rate of defaulter is 'Refused'. This makes sense as people with previous unsuccessful loans tend to have defaulter

Installments Payments

TARGET -	1	0.033	0.033	-0.016	-0.0096	-0.0056	-0.0036	-0.0016	-0.0013
DAYS_ENTRY_PAYMENT -	0.033	1	1	0.1	0.13	-0.00021	0.13	0.13	0.0025
DAYS_INSTALMENT -	0.033	1	1	0.1	0.14	-0.00019	0.13	0.13	0.0025
NUM_INSTALMENT_NUMBER -	-0.016	0.1	0.1	1	-0.35	-0.0021	-0.091	-0.093	-0.0046
NUM_INSTALMENT_VERSION -	-0.0096	0.13	0.14	-0.35	1	0.00035	0.18	0.18	0.004
SK_ID_CURR -	-0.0056	-0.00021	-0.00019	-0.0021	0.00035	1	0.0013	0.00082	-0.0041
AMT_PAYMENT -	-0.0036	0.13	0.13	-0.091	0.18	0.0013	1	0.94	0.0033
AMT_INSTALMENT -	-0.0016	0.13	0.13	-0.093	0.18	0.00082	0.94	1	0.0035
SK_ID_PREV -	-0.0013	0.0025	0.0025	-0.0046	0.004	-0.0041	0.0033	0.0035	1
	TARGET -	DAYS_ENTRY_PAYMENT -	DAYS_INSTALMENT -	NUM_INSTALMENT_NUMBER -	NUM_INSTALMENT_VERSION -	SK_ID_CURR -	AMT_PAYMENT -	AMT_INSTALMENT -	SK_ID_PREV -

Top Correlation of Installments Payments

- 0.8

- 0.6

- 0.4

- 0.2

- 0.0

A few pairs of features with high correlation

- DAYS_INSTALMENT and DAYS_ENTRY_PAYMENT

- AMT_INSTALMENT and AMT_PAYMENT

It is understandable that these two pairs of characteristics are highly correlated, because these are expected and actual information variables.

Bureau Balance, POS CAS Balance, Credit Card Balance

MONTHS_BALANCE

- MONTHS_BALANCE is a time-series variable
- When FE we can sort value according to this variable and perform some FE techniques to create some features such as using Exponential Weighted Moving Average(EMA) to weight the records
- The closer the recording is to the present time, the more important it is and should have higher weight.

03

FEATURE ENGINEERING AND SELECTION

CLEANING DATA

Handle missing value, outlier, annomolies

```
# Missing value
def remove_missing_col(df, threshold = 0.6):
    # Calculate the percentage of missing values for each column
    missing_percentage = df.isnull().mean()

# Identify columns where the missing percentage is greater than the threshold
    columns_to_drop = missing_percentage[missing_percentage > threshold].index

# Drop the identified columns from the DataFrame
    df = df.drop(columns=columns_to_drop)

    return df

def fill_nan(df):
    numeric_columns = df.select_dtypes(include=['number']).columns.tolist()
    df[numeric_columns] = df[numeric_columns].fillna(df[numeric_columns].mean())

    categorical_columns = df.dtypes[df.dtypes == 'object'].index.tolist()
    df[categorical_columns] = df[categorical_columns].fillna(df[categorical_columns].mode())
    return df
```

```
## Xử lý Outliers
def get thresh(col, df):
    xs = df[col]
    mu = xs.mean()
    sigma = xs.std()
    low = mu - 3*sigma
   high = mu + 3*sigma
    return low, high
def change value(x, low, high):
    if x < low:</pre>
        return low
    elif x > high:
        return high
    else:
        return x
def replace outlier(df):
    num columns = df.select dtypes(include=['int64', 'float64'])
    for col in num columns.columns:
        if col == 'TARGET':
            pass
        else:
            low, high = get thresh(col, df)
            df[col] = df[col].apply(lambda x: change_value(x, low, high))
    return df
```

Encoding categorical feature

Using both LabelEncoder and OneHotEncoder

```
from sklearn.preprocessing import LabelEncoder
def encode(df):
    label = LabelEncoder()
    categorical cols = df.select dtypes(include=['object']).columns
    for col in categorical cols:
       nunique_cols = df[col].nunique()
       if nunique cols == 2:
            df[col] = label.fit_transform(df[col])
    df = pd.get_dummies(df)
    return df
```


CREATE FEATURE

Perform mathematical operations

CREATE NEW FEATURE

1					
INCOME & CREDIT FEATURES					
1. CREDIT_INCOME_RATIO	Số tiền vay chiếm bao nhiều phần trăm tổng thu nhập của khách hàng.				
2. CREDIT_ANNUITY_RATIO	Số tiền vay gấp bao nhiều lần số tiền trả góp hàng tháng.				
3. ANNUITY_INCOME_RATIO	Số tiền trả góp hàng tháng chiếm bao nhiêu phần trăm tổng thu nhập của khách hàng.				
4. INCOME_ANNUITY_DIFF	Số tiền còn lại sau khi khách hàng trả góp hàng tháng.				
5. CREDIT_GOODS_RATIO	Số tiền vay gấp bao nhiều lần giá trị hàng hóa.				
6. CREDIT_GOODS_DIFF	Số tiền vay còn lại sau khi mua hàng.				
7. GOODS_INCOME_RATIO	Giá trị hàng hóa chiếm bao nhiều phần trăm tổng thu nhập của khách hàng.				
8. PAYMENT_RATE	Tỷ lệ phần trăm số tiền vay được khách hàng trả hàng tháng.				
9. INCOME_CREDIT_PERC	Tổng thu nhập gấp bao nhiều lần số tiền vay.				
10. INCOME_TO_EMPLOYED_RATIO	Mức thu nhập trung bình hàng năm của khách hàng.				
AGE RATIOS & DIFFS					
11. AGE_EMPLOYED_DIFF	Chênh lệch giữa tuổi thực của khách hàng và tuổi bắt đầu đi làm.				
12. EMPLOYED_TO_AGE_RATIO	Tỷ lệ thời gian khách hàng đã đi làm so với tuổi của họ.				
13. INCOME_TO_BIRTH_RATIO	Mức thu nhập trung bình hàng năm của khách hàng.				
14. ID_TO_BIRTH_RATIO	Giá trị này cho biết độ vững chắc về tài chính và tín dụng của khách hàng.				

```
#income and credit features
data['CREDIT_INCOME_RATIO'] = data['AMT_CREDIT'] / (data['AMT_INCOME_TOTAL'] + 0.00001)
data['CREDIT_ANNUITY_RATIO'] = data['AMT_CREDIT'] / (data['AMT_ANNUITY'] + 0.00001)
data['ANNUITY_INCOME_RATIO'] = data['AMT_ANNUITY'] / (data['AMT_INCOME_TOTAL'] + 0.00001)
data['INCOME_ANNUITY_DIFF'] = data['AMT_INCOME_TOTAL'] - data['AMT_ANNUITY']
data['CREDIT_GOODS_RATIO'] = data['AMT_CREDIT'] / (data['AMT_GOODS_PRICE'] + 0.00001)
data['CREDIT_GOODS_DIFF'] = data['AMT_CREDIT'] - data['AMT_GOODS_PRICE'] + 0.00001
data['GOODS INCOME RATIO'] = data['AMT GOODS PRICE'] / (data['AMT INCOME TOTAL'] + 0.00001)
data['PAYMENT_RATE'] = data['AMT_ANNUITY'] / (data['AMT_CREDIT'] + 0.00001)
data['INCOME_CREDIT_PERC'] = data['AMT_INCOME_TOTAL'] / (data['AMT_CREDIT'] + 0.00001)
data['INCOME TO EMPLOYED RATIO'] = data['AMT INCOME TOTAL'] / (data['YEARS EMPLOYED'] + 0.00001)
#age ratios and diffs
data['AGE_EMPLOYED_DIFF'] = data['AGE'] - data['YEARS_EMPLOYED']
data['EMPLOYED_TO_AGE_RATIO'] = data['YEARS_EMPLOYED'] / (data['AGE'] + 0.00001)
data['INCOME_TO_BIRTH_RATIO'] = data['AMT_INCOME_TOTAL'] / (data['AGE'] + 0.00001)
data['ID_TO_BIRTH_RATIO'] = data['YEARS_ID_PUBLISH'] / (data['AGE'] + 0.00001)
```

Exponential Weighted Moving Average (EMA)

```
bureau_balance['EXP_WEIGHTED_STATUS'] =
    bureau_balance.groupby('SK_ID_BUREAU')['WEIGHTED_STATUS'].transform(lambda x:x.ewm(alpha = 0.8).mean())
bureau_balance['EXP_ENCODED_STATUS'] =
    bureau_balance.groupby('SK_ID_BUREAU')['STATUS'].transform(lambda x: x.ewm(alpha = 0.8).mean())
```

WOE - Binning Process

```
# binning process
target_var = application_train['TARGET']
application_train.drop('TARGET', axis = 1, inplace = True)
cate_cols = application_train.select_dtypes(include='object').columns.tolist()

columns = application_train.columns.tolist()
binning_process = BinningProcess(columns, categorical_variables=cate_cols, max_n_prebins=30)
binning_process.fit(application_train, target_var)
```

GROUPBY, AGGREGATE

```
aggregations basic = {
     'MONTHS BALANCE' : ['mean', 'max'],
    'STATUS' : ['mean', 'max', 'first'],
     'WEIGHTED STATUS' : ['mean', 'sum', 'first'],
     'EXP ENCODED STATUS' : ['last'],
     'EXP WEIGHTED STATUS' : ['last']}
#aggregating over whole dataset first
aggregated bureau balance = bureau balance.groupby(['SK ID_BUREAU']).agg(aggregations_basic)
aggregated bureau balance.columns = [' '.join(ele).upper() for ele in aggregated bureau balance.columns]
aggregations for year = {
    'STATUS' : ['mean', 'max', 'last', 'first'],
    'WEIGHTED_STATUS' : ['mean', 'max', 'first', 'last'],
    'EXP WEIGHTED STATUS' : ['last'],
    'EXP ENCODED STATUS' : ['last']}
#aggregating some of the features separately for latest 2 years
aggregated bureau years = pd.DataFrame()
for year in range(2):
   year_group = bureau_balance[bureau_balance['MONTHS_BALANCE'] == year].groupby('SK_ID_BUREAU').agg(aggregations for year)
   year group.columns = [' '.join(ele).upper() + ' YEAR ' + str(year) for ele in year group.columns]
    if year == 0:
       aggregated bureau years = year group
    else:
       aggregated bureau years = aggregated bureau years.merge(year group, on = 'SK ID BUREAU', how = 'outer')
```


FEATURE SELECTION

StandardScaler()

```
from sklearn.linear_model import LogisticRegression

log_reg = LogisticRegression(C = 0.1)
train, test = train_test_split(application_train,test_size=.25,random_state = 123)

#separating dependent and independent variables
train_x1 = train[[i for i in train.columns if i not in ['SK_ID_CURR'] + [ 'TARGET']]]
train_y1 = train[["TARGET"]]

test_x1 = test[[i for i in test.columns if i not in ['SK_ID_CURR'] + [ 'TARGET']]]
test_y1 = test[["TARGET"]]

scaler = StandardScaler()
train_x1 = scaler.fit_transform(train_x1)
test_x1 = scaler.fit_transform(test_x1)
```

KBestSelection

```
#Using SelectKBest để chọn ra bộ feature tốt nhất
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import f_classif

k = int(0.855 * train_X.shape[1])
k_best = SelectKBest(score_func=f_classif, k=k)
```

Thanks for Listening!

Do you have any question?

