Math 244 Quiz 2

1. Let $A = \begin{bmatrix} 6 & 4 & -2 \\ -3 & -2 & 1 \end{bmatrix}$ and let S be the subspace of solutions to $A\mathbf{x} = \mathbf{0}$. Find vectors that span S.

2. Let A be an $n \times n$ matrix and λ a constant. Show the solutions to $A\mathbf{x} = \lambda \mathbf{x}$ form a subspace of \mathbb{R}^n .

3. Let S be the set of 3×3 matrices A such that $A^{\top} = A$. Find vectors that span S.

4. Show that the vectors $\begin{bmatrix} 1\\1\\-1 \end{bmatrix}$, $\begin{bmatrix} 2\\2\\-2 \end{bmatrix}$, $\begin{bmatrix} 1\\0\\1 \end{bmatrix}$, $\begin{bmatrix} 2\\1\\0 \end{bmatrix}$ are linearly dependent. More generally, why must 4 vectors in \mathbb{R}^3 be linearly dependent?

5. Let S be the set of all 2×2 matrices A with $A^2 = I$. Show that S is not a subspace.