Ein Einfaches Univerales Schaltelement und Zellularautomaten für Rechnerreversibilität

Vortrag von Dennis Felsing im Proseminar "Zellularautomaten und Diskrete Komplexe Systeme"

Sommersemester 2011

Zugrunde liegende Quellen

A Simple Universal Logic Element and Cellular Automata for Reversible Computing.

Proceedings of the Third International Conference on Machines, Computations, and Universality (2001), S. 102-113.

Kenichi Morita.

Embedding a Counter Machine in a Simple Reversible 2-D Cellular Space P_3 .

Proceedings of the International Workshop on Cellular Automata (2000), S. 30-31.

C. H. Bennett.
Logical reversibility of computation.
IBM J. Res. Dev. 17 (1973), S. 525-532.

Einleitung

- Gewöhnliche Berechnungen nicht reversibel
- Landauer: Wärmeabgabe kT ln 2 beim Löschen eines Bits
- Ziel: Möglichst einfaches reversibles Element finden und dessen Universalität zeigen ⇒ Drehelement
- Außerdem: Als universellen Zellularautomat mit noch einfacheren Regeln aufbauen

Überblick

1 Voraussetzungen

Reversible Mealy-Automaten Drehelemente Drehelement-Spalten

2 Reversible Turingmaschinen aus Drehelementen

Turingmaschinen
Konstruktion einer Bandzelle
Konstruktion einer Steuereinheit
Konstruktion einer reversiblen Turingmaschine

3 Reversible Zellularautomaten 2-D partitionierter Zellularautomat P_3 Drehelemente in P_3

Voraussetzungen Überblick

1 Voraussetzungen

Reversible Mealy-Automaten Drehelemente Drehelement-Spalten

- 2 Reversible Turingmaschinen aus Drehelementen
- 3 Reversible Zellularautomaten

Reversible Mealy-Automaten (RMA)

 $M = (Q, \Sigma, \Gamma, q_1, \delta)$ festgelegt durch

- endliche, nichtleere Zustandsmenge Q
- ullet Eingabealphabet Σ
- Ausgabealphabet Γ
- Anfangszustand $q_1 \in Q$ (optional)
- **bijektive** Zustandsübergangsfunktion $\delta: Q \times \Sigma \rightarrow Q \times \Gamma$

Drehelemente

Simulation de.res

Drehelemente

Formalisierung

Als RMA

$$M_{DE} = (\{ \boxed{\bullet}, \boxed{\bullet} \}, \{n, o, s, w\}, \{n', o', s', w'\}, \delta_{DE})$$

mit Zustandsübergangsfunktion δ_{DE} :

		Eingabe		
Aktueller Zustand	n	0	S	W
<u>-</u>	w' s'		• o'	→ o' → s'

 δ_{DE} bijektiv, also M_{DE} reversibel

Drehelement-Spalten

Simulation des.res

Drehelement-Spalten

Formalisierung

$$M_{DES} = (\{ -, +\}, \{l_1, l_2, ..., l_k, r_1, r_2, ..., r_k \}, \{l'_1, l'_2, ..., l'_k, r'_1, r'_2, ..., r'_k \}, \delta_{DES})$$

Zustandsübergangsfunktion δ_{DES} :

	Eing	Eingabe	
Zustand x	I_j	rj	
→	$\begin{array}{c c} \hline + & l'_j \\ \hline + & r'_i \end{array}$	→ l' _j → r':	

Realisieren Speicherung eines Bits mit k "Auslesebahnen"

Reversible Turingmaschinen aus Drehelementen Überblick

- 1 Voraussetzungen
- 2 Reversible Turingmaschinen aus Drehelementen Turingmaschinen Konstruktion einer Bandzelle Konstruktion einer Steuereinheit Konstruktion einer reversiblen Turingmaschine
- 3 Reversible Zellularautomaten

Eine Einband-Turingmaschine $T = (Q, S, q_0, q_f, s_0, \delta)$ ist festgelegt durch

- endliche, nichtleere Zustandsmenge Q
- Bandalphabet S
- Anfangszustand $q_0 \in Q$
- Endzustand $q_f \in Q$
- Blanksymbol $s_0 \in S$
- partielle Zustandsübergangsfunktion $\delta \subseteq (Q \times S \times S \times Q) \cup (Q \times \{/\} \times \{-, 0, +\} \times Q)$

Determinismus und Reversibilität

Sei
$$\alpha_i := [p_i, b_i, c_i, p'_i] \in \delta$$
:

$$T$$
 deterministisch: $\Leftrightarrow \neg \exists \alpha_1 \neq \alpha_2 : p_1 = p_2 \land (b_1 = b_2 \lor b_2 = /)$

Treversibel :
$$\Leftrightarrow \neg \exists \alpha_1 \neq \alpha_2 : p'_1 = p'_2 \land (c_1 = c_2 \lor b_2 = /)$$

Verbotene Übergänge bei deterministischer Turingmaschine:

Quadrupel	1. Fall	2. Fall
	$b_1 \mid c_1$	$b_1 \mid c_1$
$lpha_1$	(p_1) (p'_1)	(p_1) (p'_1)
	$b_1 \mid c_2$	+
α_2	$\begin{pmatrix} p_1 \end{pmatrix} \qquad \begin{pmatrix} p_2' \end{pmatrix}$	$\begin{pmatrix} p_1 \end{pmatrix} \qquad \begin{pmatrix} p_2' \end{pmatrix}$

Determinismus und Reversibilität

Sei
$$\alpha_i := [p_i, b_i, c_i, p'_i] \in \delta$$
:

$$T$$
 deterministisch: $\Leftrightarrow \neg \exists \alpha_1 \neq \alpha_2 : p_1 = p_2 \land (b_1 = b_2 \lor b_2 = /)$

Treversibel :
$$\Leftrightarrow \neg \exists \alpha_1 \neq \alpha_2 : p'_1 = p'_2 \land (c_1 = c_2 \lor b_2 = /)$$

Verbotene Übergänge bei reversibler Turingmaschine:

Quadrupel	1. Fall	2. Fall
0	$b_1 \mid c_1$	$b_1 \mid c_1$
α_1	$b_2 \mid c_1$	(p_1) (p'_1)
$lpha_2$	p_2 p'_1	p_2 p'_1

Universalität und Konstruktion

Theorem

Für jede Einband-Turingmaschine gibt es eine reversible (semiunendliche) Einband-Zwei-Symbol-Turingmaschine, welche die Erstere simuliert.

Konstruktion

Bestandteile einer reversiblen Turingmaschine:

- Semiunendliches Band bestehend aus Bandzellen
- Steuereinheit: Implementiert Zustandsübergangsfunktion δ

Konstruktion einer Bandzelle Eingänge

```
Befehle von Steuereinheit an Bandzelle an Kopfposition: \mathbb{B} := \{ \quad R , \quad W , \quad SL , SR , \quad E0 , E1 \} Signale zwischen benachbarten Bandzellen (intermediate): \mathbb{I} := \{ \quad SLI , SRI \} Antworten von Bandzelle an Steuereinheit (completion): \mathbb{C} := \{ Rc0 , Rc1 , Wc , SLc , SRc , Ec \} Lesen Schreiben Kopfbewegung Löschen
```

Konstruktion einer Bandzelle Formalisierung

$$\begin{aligned} M_{BZ} &= (Q_{BZ}, \Sigma_{BZ}, \Gamma_{BZ}, \delta_{BZ}) \\ Q_{BZ} &= \{(k, z) \mid k, z \in \{0, 1\}\} \\ \Sigma_{BZ} &= \mathbb{B} \cup \mathbb{I} \cup \mathbb{C} \\ \Gamma_{BZ} &= \{x' \mid x \in \Sigma_{BZ}\} \end{aligned}$$

Konstruktion einer Bandzelle

Formalisierung: Zustandsübergänge

 δ_{BZ} ist wie folgt definiert, mit $z \in \{0,1\}$ und $y \in \mathbb{B} \cup \mathbb{C}$:

$$\delta_{BZ}((0,z),y) = (0,z,y') \qquad (1)
\delta_{BZ}((0,z),SRI) = (1,z,SRc') \qquad (2)
\delta_{BZ}((0,z),SLI) = (1,z,SLc') \qquad (3)
\delta_{BZ}((1,0),R) = (1,0,Rc0') \qquad (4)
\delta_{BZ}((1,1),R) = (1,1,Rc1') \qquad (5)
\delta_{BZ}((1,0),W) = (1,1,Wc') \qquad (6)
\delta_{BZ}((1,1),W) = (1,0,Wc') \qquad (7)
\delta_{BZ}((1,z),SR) = (0,z,SRI') \qquad (8)
\delta_{BZ}((1,z),SL) = (0,z,SLI') \qquad (9)
\delta_{BZ}((1,0),E0) = (1,0,Ec') \qquad (10)
\delta_{BZ}((1,1),E1) = (1,1,Ec') \qquad (11)$$

Konstruktion einer Bandzelle

Simulation bzm.res

Konstruktion einer Steuereinheit

 T_{2n} berechnet f(n) = 2n für unär kodiertes n auf Band:

Konstruktion einer Steuereinheit

Simulation steuereinheit.res

Konstruktion einer Steuereinheit Reversibles Löschen

- Löschen inverse Operation zum Lesen
- Verbindungen in Drehelement-Schaltung dürfen nicht auseinander- oder zusammenlaufen
 - ⇒ Zwei Übergänge in einen Zustand nicht in Steuereinheit möglich
- Lösung: Vergessen ob 0 oder 1 gelesen wurde Dazu Bandzelle gelesenen Wert übergeben

Konstruktion einer reversiblen Turingmaschine

Simulation t2n-3.res

Reversible Zellularautomaten Überblick

- 1 Voraussetzungen
- 2 Reversible Turingmaschinen aus Drehelementen
- Reversible Zellularautomaten
 2-D partitionierter Zellularautomat P₃
 Drehelemente in P₃

2-D partitionierter Zellularautomat P_3

- Jede Zelle in 4 Teile partitioniert:
- Jeder Teil kann 3 Zustände annehmen: O, O,
- Zustand einer Zelle von benachbarten Teilen abhängig
- Alle Regeln rotationssymetrisch
- Reversibel, da es keine zwei verschiedenen Regeln gibt, die Feld in gleichen Zustand bringen

2-D partitionierter Zellularautomat

Drehelemente in P_3

Simulationen de.rle, des.rle, t2n-3.rle

Abschluss

- Sehr einfaches logisches Element: Drehelement
- Turingmaschine lässt sich damit einfach konstruieren:
 - Endliche Schaltung für Steuereinheit
 - Keine Synchronisierung notwendig
- Drehelemente und -schaltungen lassen sich in einfachen reversiblen Zellularautomaten P₃ implementieren