

Qualidade de Energia – ELT 448 Aula 4 – Termos e definições

Victor Dardengo

Revisão da aula passada

- ANEEL;
- Programas de Universalização da energia;
- Regulação da qualidade no setor elétrico brasileiro;
 - Qualidade do produto;
 - Qualidade do serviço;
 - Qualidade no tratamento das informações
- Indicadores de continuidade;
- Compensação;
- Regulação da qualidade na transmissão;
- Regulação da qualidade na geração.

Termos e Definiçoes

• IEC (International Electrotechnical Commission): é uma organização global (a participação é por país), que fornece instruções, diretrizes que são usadas para projetar, fabricar, instalar, testar, certificar, manter e reparar dispositivos e sistemas elétricos e eletrônicos.

International Electrotechnical Commission

Termos e Definiçoes

• As Normas Internacionais IEC são essenciais para a gestão da qualidade e dos riscos; e eles ajudam os pesquisadores a entender o valor da inovação e permitem que os fabricantes produzam produtos de qualidade e desempenho consistentes.

Termos e Definiçoes

• IEE IEEE (Institute of Electrical and Electronics Engineers) - representa o Instituto de Engenheiros Eletricistas e Eletrônicos.

IEEE

- Organização sem fins lucrativos;
- Tem como missão promover a inovação tecnológica e a excelência em benefício da humanidade. A visão para IEEE é que ele seja essencial para a comunidade técnica global e para os profissionais técnicos de todos os lugares e seja universalmente reconhecido pelas contribuições da tecnologia e dos profissionais técnicos na melhoria das condições globais.

IEEE

- Atua:
 - Editando e publicando jornais;
 - Estabelecendo atividades de padrões baseadas em consenso;
 - Organizando conferências;
 - Promovendo publicações técnicas, de seus próprios jornais, padrões e textos membros.

Plano Estratégico 2020-2025 do IEEE

- Impulsionar a inovação global por meio de ampla colaboração e compartilhamento de conhecimento.
- Aprimorar o entendimento público de engenharia e tecnologia e buscar padrões para sua aplicação prática.
- Ser uma fonte confiável de serviços e recursos educacionais para apoiar a aprendizagem ao longo da vida.
- Oferecer oportunidades de carreira e desenvolvimento profissional.
- Inspirar uma audiência mundial construindo comunidades que promovam interesses técnicos, informam políticas públicas e expandem o conhecimento para o benefício da humanidade.

Alguns Padrões do IEEE

• IEEE 488: Padrão de comunicação digital paralelo de <u>8 bits</u>, ainda usado para conectar instrumentos de teste em rede. Também conhecido como GPIB e HP-IB.

• IEEE 754: Aritmética de ponto flutuante, possibilitando uma maior precisão em cálculos.

• IEEE Std 519-1992: Relacionado ao entendimento de harmônicos e seus limites em sistemas de energia.

Padrões Internacionais

- São frequentemente adotados por países ou regiões para se tornarem padrões nacionais ou regionais. Por exemplo, cerca de 80% das normas elétricas e eletrônicas européias são, de fato, Normas Internacionais IEC.
- Por outro lado, os regulamentos são regras ou diretivas que são feitas e mantidas por uma autoridade nacional ou regional. Geralmente, a conformidade com os regulamentos é uma obrigação.

Padrões Internacionais

• No entanto, é bastante comum que os regulamentos técnicos se refiram a padrões internacionais porque os padrões ajudam a evitar que a lei se torne muito detalhada ou descritiva. Essa abordagem permite que as leis permaneçam atualizadas porque os padrões são revisados e atualizados regularmente.

ANEEL

- Agência Nacional de Energia Elétrica ANEEL;
- Procedimento de Distribuição de Energia Elétrica no Sistema Elétrico Nacional – PRODIST
- Módulo 8 Qualidade da Energia Elétrica

ANEXO VIII DA RESOLUÇÃO NORMATIVA № 956, DE 7 DE DEZEMBRO 2021

PROCEDIMENTOS DE DISTRIBUIÇÃO DE ENERGIA ELÉTRICA NO SISTEMA ELÉTRICO NACIONAL —

PRODIST

MÓDULO 8 — QUALIDADE DO FORNECIMENTO DE ENERGIA ELÉTRICA

Seção 8.0 Introdução

Conteúdo

- 1. Além desta seção introdutória, este módulo está estruturado da seguinte forma:
- a) Seção 8.1 Qualidade do produto: define a terminologia, caracteriza os fenômenos, estabelece os indicadores e limites ou valores de referência, além de definir a metodologia de medição e a gestão das reclamações relativas à conformidade de tensão em regime permanente e transitório;

Variação de tensão de curta duração - VTCD

• Variações de tensão de curta duração – VTCD são desvios significativos na amplitude do valor eficaz da tensão durante um intervalo de tempo inferior a 3 minutos.

Variação de tensão de curta duração - VTCD

Classificação	Denominação	Duração da Variação	Amplitude da tensão (valor eficaz) em relação à tensão de referência
	Interrupção Momentânea de Tensão – IMT	Inferior ou igual a 3 segundos	Inferior a 0,1 p.u
Variação Momentânea de Tensão	Afundamento Momentâneo de Tensão – AMT	Superior ou igual a 1 ciclo e inferior ou igual a 3 segundos	Superior ou igual a 0,1 e inferior a 0,9 p.u
	Elevação Momentânea de Tensão – EMT	Superior ou igual a 1 ciclo e inferior ou igual a 3 segundos	Superior a 1,1 p.u
	Interrupção Temporária de Tensão – ITT	Superior a 3 segundos e inferior a 3 minutos	Inferior a 0,1 p.u
Variação Temporária de Tensão	Afundamento Temporário de Tensão – ATT	Superior a 3 segundos e inferior a 3 minutos	Superior ou igual a 0,1 e inferior a 0,9 p.u
	Elevação Temporária de Tensão – ETT	Superior a 3 segundos e inferior a 3 minutos	Superior a 1,1 p.u

Termos e Definições

- **Distúrbio** (**Disturbance**): uma variação de tensão. Comumente, após a operação incorreta de determinado equipamento elétrico, o seu mau funcionamento será relacionado ao distúrbio de tensão.
- Oscilação ou Tremulação (Flicker): variação de tensão de pequena duração, mas longa o necessário para ser percebida pelos olhos humanos como uma oscilação de tensão.
- Ruído (Noise): qualquer sinal elétrico indesejado de alta freqüência que altera a forma de tensão padrão (onda senoidal).

Termos e Definições

- Interrupção (Interruption): completa perda da energia elétrica;
- Interrupção Momentânea (Momentary Outage): uma pequena interrupção na energia permanecendo entre dois ciclos a 3 segundos.
- Tensão Nominal ou Normal (Nominal ou Normal Voltage): tensão nominal ou normal contratada para um sistema de determinada classe de tensão.
- Transitório (Transient, Spike ou Surge): um aumento inesperado no nível de tensão que tipicamente permanece por menos do que 8ms.

- Alguns distúrbios relacionados à qualidade da energia originam-se do próprio sistema da empresa.
- No entanto, as causas destes distúrbios estão, geralmente, além do controle das empresas.
- Como por exemplo, ações provocadas pela ação da natureza como: relâmpagos, contato de galhos de árvores, ventos fortes, contatos de

animais, gelo, etc.

- Além destes, temos os eventos de causas aleatórias como: atividades de construção, acidentes envolvendo veículos motores, falhas de equipamentos.
- Somando-se ainda, as operações normais da empresa como chaveamentos, operações com bancos de capacitores e atividades de manutenção também podem gerar situações que venham a provocar determinados distúrbios sobre o sistema.

- De acordo com o entendimento do Superior Tribunal de Justiça (STJ), cabe ao proprietário do veículo que colidiu com poste de iluminação pública demonstrar que não teve culpa, ou então, pagar pelos danos causados à concessionária.
- Apesar disto, segundo a Copel (concessionária do Estado do Paraná), na maioria dos acidentes os condutores danificam os cabos de energia e fogem do local sem arcar com os prejuízos. Apenas 30% dos responsáveis ressarcem os danos. A Companhia justifica o baixo índice pela dificuldade de identificar o motorista que bateu no poste. Os custos de reparação, em 2020, resultam em uma média de R\$3,5 mil por batida.

Motoristas que batem em postes são obrigados a pagar conserto

Ao atingir um poste de iluminação, o motorista precisa pagar também a substituição da rede elétrica. No Ceará, o prejuízo pode chegar a R\$ 12 mil.

- Para limitar estes tipos de distúrbios sobre o sistema a ummenor número possível de clientes, o sistema de distribuição das empresas emprega um considerável número de dispositivos tais como circuitos disjuntores, circuitos automáticos de religamento, barramentos e seccionadores para auxiliar no isolamento do defeito.
- Uma grande percentagem dos distúrbios relacionados à qualidade da energia, na realidade, originam-se, de uma maneira geral, de dentro das instalações industriais e ou comerciais.

- Dos distúrbios originados de dentro das instalações dos usuários podemos destacar como principais fontes:
- Nas instalações comerciais:
 - os sistemas de aquecimento ou resfriamento de motores;
 - elevadores;
 - refrigeradores,
 - lâmpadas fluorescentes;
 - condutores inadequados e aterramentos impróprios;
 - maquinário de escritório;
 - circuitos sobrecarregados e interferência magnética

- Dos distúrbios originados de dentro das instalações dos usuários podemos destacar como principais fontes:
- Nas instalações industriais:
 - reguladores de velocidade ajustável;
 - capacitores para correção do fator de potência;
 - motores elétricos de grande porte;
 - geradores de emergência;
 - condutores inadequados e aterramentos impróprios;
 - circuitos sobrecarregados e interferência magnética.

• Os distúrbios de energia podem ser originados tanto nos sistemas eou equipamentos das empresas concessionárias como dos consumidores.

Tipo do distúrbio	Descrição	Possíveis causas	Efeitos	Soluções
Interrupção de energia	Total interrupção do fornecimento de energia:	Acidentes, ações da natureza, etc., os quais requerem a devida	Saída e/ou queda do sistema	Uninterruptible Power Supply (UPS) –
	Interrupção momentânea: permanece de 0,5	operação dos equipamentos da concessionária (fusíveis, religadores,	Perda de memória de controladores e computadores	Suprimento de energia de forma contínua
	s até 3 s	etc.)	Avaria de	Gerador de emergência
	Interrupção temporária:	Curto circuitos internos requerendo a devida	hardware	(interrupção permanente)
	permanece de 3 s até 1 min	operação de disjuntores e fusíveis ao nível do consumidor.	Avaria de produtos	
	Interrupção permanente:			
	permanece por um período superior a 1 min			

Tipo do distúrbio	Descrição	Possíveis causas	Efeitos	Soluções
Transitório	Alterações súbitas nas	São causados por tempestades	Erros de processamento e	Pára-raios
	formas CA, resultando um	(relâmpagos), operação de fusíveis, religadores	perda de dados.	Uninterruptible Power Supply
	abrupto, mas breve aumento da	e disjuntores da concessionária	Queima de placas de circuitos,	(UPS)
	tensão	Causas internas são a entrada ou saída de	danos ao isolamento e avarias nos	Transformadores de isolação
		grandes equipamentos e chaveamento de capacitores	equipamentos elétricos	Transformador de tensão constante

Tipo do distúrbio	Descrição	Possíveis causas	Efeitos	Soluções
Afundamento/elevação	Qualquer	Parada ou partida de	Perda de	Uninterruptible
	decréscimo	pesados (grandes)	memória e erros	Power Supply
	(afundamento) ou aumento	equipamentos	de dados	(UPS)
	(elevação) na	Curto circuitos	Parada de	Transformador
	tensão por um		equipamentos	de tensão
	período de	Falhas de		constante
	tempo entre	equipamentos ou	Oscilações	
	meio ciclo a 1	chaveamentos da	luminosas	Reguladores de
	min.	concessionária		tensão
			Redução da vida	
	Afundamentos		útil e diminuição	
	de tensão		da velocidade	
	correspondem a		e/ou parada de	
	87% de todos os		motores	
	distúrbios			
	observados em			
	um sistema de			
	energia (de			
	acordo com			
	estudos do Bell			
	Labs).			

Tipo do distúrbio	Descrição	Possíveis causas	Efeitos	Soluções
Ruído	Sinal elétrico de alta freqüência indesejável que altera a forma de	Interferência da transmissão de rádio ou televisão	Perda de dados e erros de processamento	Uninterruptible Power Supply (UPS)
	onda de tensão convencional (forma senoidal)	Operação de equipamentos eletrônicos	Recepção distorcida de áudio e vídeo	Transformadores de isolação
				Filtros de linha

Tipo do distúrbio	Descrição	Possíveis causas	Efeitos	Soluções
Distorção harmônica	Alteração no padrão normal da tensão (forma	Dispositivos eletrônicos e cargas não lineares	Aquecimento de equipamentos e condutores	Filtros harmônicos
	senoidal) devido a equipamentos		elétricos	Transformadores de isolação
	gerando freqüências diferentes das de 60 ciclos por		Decréscimo do desempenho de motores	Melhoras nos condutores e aterramento
	segundo		Operação indevida dos disjuntores, relés ou fusíveis	Cargas isoladas Reatores de linha

Tipo do distúrbio	Descrição	Possíveis causas	Efeitos	Soluções
Sub e Sobretensão	Qualquer alteração abaixo ou acima do	Sobrecarga nos equipamentos e condutores	Ofuscamento ou brilho da luz	Uninterruptible Power Supply (UPS)
	valor nominal da tensão que persista por mais	Flutuação de grandes cargas ou <i>taps</i> dos	Parada de equipamentos	Transformadores de tensão
	de um min	transformadores incorretamente	Sobreaqueciment o de motores	constante
		ajustados Condutor	Vida ou eficiência reduzida dos	Distribuição de equipamentos
		desenergizado ou faltoso ou conexões elétricas indevidas	equipamentos	Motores de tensão reduzidas

Conclusões

- Órgãos internacionais propões diversas diretrizes para o funcionamento adequado de equipamentos e procedimentos. Muitas dessas diretrizes são adotadas como normas dentro dos países.
- Os distúrbios podem ser resultado de diversos fenômenos, sendo eles causados por concessionárias, clientes, fatores externos, etc.
- Cada distúrbio traz consequências distintas ao sistema, assim, soluções distintas também devem ser usadas.

Dúvidas?!

Obrigado!

Victor Dardengo

GESEP - Gerência de Especialistas em Sistemas Elétricos de Potência E-mail: victor.dardengo@ufv.br