```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

Out[2]:

	Unnamed: 0	Ozone	Solar.R	Wind	Temp	Month	Day	Humidity
0	1	41.0	190.0	7.4	67	5	1	High
1	2	36.0	118.0	8.0	72	5	2	High
2	3	12.0	149.0	12.6	74	5	3	Low
3	4	18.0	313.0	11.5	62	5	4	NaN
4	5	NaN	NaN	14.3	56	5	5	High
148	149	30.0	193.0	6.9	70	9	26	Low
149	150	NaN	145.0	13.2	77	9	27	Low
150	151	14.0	191.0	14.3	75	9	28	High
151	152	18.0	131.0	8.0	76	9	29	Medium
152	153	20.0	223.0	11.5	68	9	30	Low

153 rows × 8 columns

In [3]: df.isnull().sum()

Out[3]: Unnamed: 0 0 0zone 37 7 Solar.R Wind 2 Temp 0 Month 0 Day 0 Humidity 8 dtype: int64

```
In [4]: df = df.drop(["Unnamed: 0"], axis=1)
df
```

Out[4]:

	Ozone	Solar.R	Wind	Temp	Month	Day	Humidity
0	41.0	190.0	7.4	67	5	1	High
1	36.0	118.0	8.0	72	5	2	High
2	12.0	149.0	12.6	74	5	3	Low
3	18.0	313.0	11.5	62	5	4	NaN
4	NaN	NaN	14.3	56	5	5	High
148	30.0	193.0	6.9	70	9	26	Low
149	NaN	145.0	13.2	77	9	27	Low
150	14.0	191.0	14.3	75	9	28	High
151	18.0	131.0	8.0	76	9	29	Medium
152	20.0	223.0	11.5	68	9	30	Low

153 rows × 7 columns

```
In [5]: df["Ozone"]= df["Ozone"].fillna(df["Ozone"].mean())
    df["Solar.R"]= df["Solar.R"].fillna(df["Solar.R"].mean())
    df['Wind'].fillna(df['Wind'].mean(), inplace=True)
    df['Humidity'] = df['Humidity'].fillna(df['Humidity'].mode()[0])
    df
```

Out[5]:

	Ozone	Solar.R	Wind	Temp	Month	Day	Humidity
0	41.00000	190.000000	7.4	67	5	1	High
1	36.00000	118.000000	8.0	72	5	2	High
2	12.00000	149.000000	12.6	74	5	3	Low
3	18.00000	313.000000	11.5	62	5	4	High
4	42.12931	185.931507	14.3	56	5	5	High
148	30.00000	193.000000	6.9	70	9	26	Low
149	42.12931	145.000000	13.2	77	9	27	Low
150	14.00000	191.000000	14.3	75	9	28	High
151	18.00000	131.000000	8.0	76	9	29	Medium
152	20.00000	223.000000	11.5	68	9	30	Low

153 rows × 7 columns

```
In [6]: df.isnull().sum()
Out[6]: Ozone
                        0
          Solar.R
                        0
          Wind
                        0
          Temp
                        0
          Month
                        0
          Day
                        0
          Humidity
          dtype: int64
In [7]: plt.pie([df["Ozone"].mean(), df["Solar.R"].mean(), df["Wind"].mean(), df["Temp"
    plt.plot()
                                                                                                      \blacktriangleright
```

Out[7]: []


```
In [8]: def addLabels():
    for i in range(len(df.iloc[0:31, 3])):
        plt.text(i, df.iloc[0:31, 3][i], df.iloc[0:31, 3][i], ha = "center")

y = np.arange(len(df.iloc[0:31, 3]))
    addLabels()
    plt.bar(x=y, height=df.iloc[0:31, 3], tick_label=y, color="blue")

plt.title("Temperature for May")
    plt.xlabel("Days")
    plt.ylabel("Temperature")
    plt.show()
```


In [9]: plt.boxplot(x=df[["Ozone", "Solar.R", "Wind", "Temp"]], labels=["Ozone", "Solar.
plt.show()


```
In [10]: plt.hist(x=df["Temp"], bins=20,color="orange",label="Temp")
    plt.title("Temperature Count")
    plt.xlabel("Temperature")
    plt.ylabel("Count")
    plt.show()
```



```
In [11]: plt.plot(df.iloc[0:30, 5], df.iloc[0:30, 3], color="green")
    plt.title("Temperature of Month")
    plt.xlabel("Day")
    plt.ylabel("Temperature")
```

Out[11]: Text(0, 0.5, 'Temperature')


```
In [12]: plt.scatter(df.iloc[0:30, 5], df.iloc[0:30, 2], color="red")
    plt.title("Wind of May Month")
    plt.xlabel("Day")
    plt.ylabel("Wind")
```

Out[12]: Text(0, 0.5, 'Wind')

In [13]: sns.heatmap(data=df.iloc[0:30, [0,1,2,3]])
plt.show()

In [14]: sns.pairplot(df.iloc[:, [0,1,2,3,6]], hue="Humidity")
plt.show()

In []: