EDHEC – 8 mai 2018 – épreuve annulée (toute la France sauf Clermont)

Exercice 1

- 1. Pour tout entier naturel n supérieur ou égal à 2, on pose $a_n = \frac{1}{n \ln n}$.
 - (a) Montrer que pour tout entier naturel k supérieur ou égal à 2, on a : $\int_{k}^{k+1} \frac{1}{t \ln t} dt \leqslant \frac{1}{k \ln k}$.
 - (b) En déduire, par sommation, la nature de la série de terme général a_n .

Dans la suite, on considère la fonction f définie par :

$$f(x) = \begin{cases} \frac{-x}{(1-x)\ln(1-x)} & \text{si } x \in]-\infty, 0[\cup]0, 1[\\ 1 & \text{si } x = 0 \end{cases}$$

- 2. (a) Montrer que f est continue sur $]-\infty,1[$.
 - (b) Montrer que f est dérivable en 0 et donner la valeur de f'(0).
- 3. (a) Montrer que f est dérivable sur $]-\infty,0[$ et sur]0,1[, puis calculer f'(x) pour tout x de $]-\infty,0[\cup]0,1[$.
 - (b) Étudier le signe de la quantité $\ln(1-x) + x$, lorsque x appartient à $]-\infty,1[$, puis en déduire les variations de f.
 - (c) Déterminer les limites de f aux bornes de son ensemble de définition, puis dresser son tableau de variation.
- 4. (a) Établir que, pour tout n de \mathbb{N}^* , il existe un seul réel de [0,1[, noté $u_n,$ tel que $f(u_n)=n$ et donner la valeur de u_1 .
 - (b) Montrer que la suite (u_n) converge et que $\lim_{n\to+\infty} u_n=1$.
 - (c) Pour tout entier naturel n non nul, calculer $f\left(1-\frac{1}{n\sqrt{n}}\right)$ puis en déduire qu'il existe un entier naturel n_0 tel que, pour tout entier n supérieur ou égal à n_0 , on a : $u_n \le 1 \frac{1}{n\sqrt{n}}$.
 - (d) En déduire, à l'aide de la première question, que la série de terme général $\frac{1}{-n \ln(1-u_n)}$ est divergente.
 - (e) Conclure, en revenant à la définition de u_n , que la série de terme général $1-u_n$ est divergente.

Exercice 2

On désigne par n et p deux entiers naturels supérieurs ou égaux à 1.

On se place dans l'espace euclidien \mathbb{R}^p . Le produit scalaire canonique des vecteurs x et y de \mathbb{R}^p est noté $\langle x, y \rangle$ et la norme du vecteur x est notée ||x||.

1. Dans cette question, on considère n vecteurs u_1, u_2, \dots, u_n de \mathbb{R}^p , tous de norme égale à 1.

À tout *n*-uplet $x = (x_1, x_2, \dots, x_n)$, on associe le vecteur $w_x = \sum_{k=1}^n x_k u_k$.

On se propose de montrer qu'il existe des *n*-uplets $x = (x_1, x_2, \dots, x_n)$, dont les coordonnées sont éléments de $\{-1, 1\}$, pour lesquels $||w_x|| \leq \sqrt{n}$ et d'autres pour lesquels $||w_x|| \geq \sqrt{n}$.

À cet effet, on considère n variables aléatoires X_1, X_2, \ldots, X_n , toutes définies sur le même espace probabilisé (Ω, \mathcal{A}, P) , indépendantes, et telles que pour tout k de $[\![1,n]\!]$, on ait :

$$P(X_k = 1) = P(X_k = -1) = \frac{1}{2}$$

On considère l'application X, qui, à tout ω de Ω , associe le réel $X(\omega) = \left\|\sum_{k=1}^n X_k(\omega)u_k\right\|^2$.

On admet que X est une variable aléatoire définie, elle aussi, sur (Ω, \mathcal{A}, P) .

- (a) Calculer, pour tout couple (i, j) de $[1, n]^2$, la valeur de $E(X_i X_j)$.
- (b) En déduire l'existence et la valeur de E(X).
- (c) Conclure quant à l'objectif de cette question.
- 2. Dans cette question, on considère n réels p_1, p_2, \ldots, p_n , tous éléments de]0,1[, ainsi que n vecteurs v_1, v_2, \ldots, v_n de \mathbb{R}^p vérifiant : $\forall k \in [\![1,n]\!], ||v_k|| \leq 1$.

On pose $z = \sum_{k=1}^{n} p_k v_k$ et on se propose de montrer qu'il existe un n-uplet $x = (x_1, x_2, \dots, x_n)$ dont les

coordonnées sont dans $\{0,1\}$, tel que, en notant $y_x = \sum_{k=1}^n x_k v_k$, on ait :

$$||z - y_x|| \leqslant \frac{\sqrt{n}}{2}$$

À cet effet, on considère n variables aléatoires Y_1, Y_2, \ldots, Y_n , définies sur le même espace probabilisé (Ω, \mathcal{A}, P) , indépendantes, et telles que, pour tout k de [1, n], Y_k suit la loi de Bernoulli $\mathcal{B}(p_k)$.

On considère l'application Y, qui, à tout ω de Ω , associe le réel $Y(\omega) = \left\| \sum_{k=1}^{n} (p_k - Y_k(\omega))v_k \right\|^2$ et on admet que Y est une variable aléatoire définie sur (Ω, \mathcal{A}, P) .

- (a) Calculer, pour tout couple (i, j) de $[1, n]^2$, la valeur de $E((p_i Y_i)(p_j Y_j))$.
- (b) Justifier que Y possède une espérance et montrer que : $E(Y) \leq \frac{n}{4}$.
- (c) Conclure quant à l'objectif de cette question.

Exercice 3

Un mobile se déplace aléatoirement sur un axe dont l'origine est le point O d'abscisse 0.

Au départ (instant 0), le mobile est situé sur le point O.

Le mobile se déplace selon la règle suivante : à l'instant n $(n \in \mathbb{N}^*)$, il se place de façon équiprobable, sur l'un des points d'abscisse $0, 1, \ldots, n$.

Pour tout entier naturel n, on note X_n l'abscisse de ce point à l'instant n (on a donc $X_0 = 0$).

On admet que, pour tout entier naturel n, X_n est une variable aléatoire définie un espace probabilisé (Ω, \mathcal{A}, P) que l'on ne cherchera pas à déterminer. On admet aussi que $(X_n)_{n\in\mathbb{N}}$ est une suite de variables aléatoires mutuellement indépendantes.

1. (a) Déterminer, pour tout entier naturel n non nul, la loi de X_n .

- (b) En déduire que, pour tout entier naturel n non nul, X_n possède une espérance et une variance, puis déterminer $E(X_n)$ et $V(X_n)$.
- 2. On note Y le rang du premier retour à l'origine du mobile et on admet que Y est une variable aléatoire définie, elle aussi, sur (Ω, \mathcal{A}, P) .
 - (a) Pour tout entier naturel n non nul, exprimer l'événement [Y = n] à l'aide des variables aléatoires X_1, X_2, \ldots, X_n .
 - (b) En déduire que la loi de Y est définie par : $\forall n \in \mathbb{N}^*, P(Y=n) = \frac{1}{n(n+1)}$.
 - (c) Vérifier par le calcul que l'on a : $\sum_{n=1}^{+\infty} P(Y=n) = 1$.
 - (d) La variable aléatoire Y admet-elle une espérance?
- 3. (a) Montrer que, pour tout entier naturel k non nul, on a : $\frac{1}{k+1} \le \ln(k+1) \ln k \le \frac{1}{k}$.
 - (b) En déduire que : $\forall j \ge 2$, $\ln j \le \sum_{k=1}^{j-1} \frac{1}{k} \le \ln j + 1 \frac{1}{j}$.
 - (c) Conclure alors que : $\sum_{k=1}^{j-1} \frac{1}{k} \sim \lim_{j \to +\infty} \ln j$.
- 4. On note Z le rang du deuxième retour à l'origine du mobile et on admet que Z est une variable aléatoire, définie, elle aussi, sur (Ω, \mathcal{A}, P) .
 - (a) Déterminer pour tout $i \ge j$, la probabilité $P_{|Y=i|}(Z=j)$.
 - (b) Établir que:

$$\forall i \leq j-1, \quad P_{[Y=i]}(Z=j) = \frac{i+1}{j(j+1)}$$

- (c) Écrire, pour tout entier naturel j supérieur ou égal à 2, la probabilité P(Z=j) comme une somme finie.
- (d) La variable aléatoire Z possède-t-elle une espérance?
- 5. Informatique

On rappelle qu'en Scilab, l'instruction grand(1,1,'uin',a,b) permet de simuler une variable aléatoire suivant la loi uniforme à valeurs dans [a,b].

- (a) Écrire des commandes Scilab calculant et affichant la valeur de l'abscisse du mobile après son $n^{\rm e}$ déplacement lorsque la valeur de n est entrée au clavier par l'utilisateur.
- (b) Compléter le script Scilab suivant pour qu'il permette d'afficher dans cet ordre les valeurs prises par les variables aléatoires Y et Z.

```
n = 0
a = 0
while a < 2
    n = n+1
    if grand(1,1,'uin',0,n) == 0 then
        a = a+1
        if a == 1 then y=n,end
    end
end
disp(...,'y=')
disp(...,'z=')</pre>
```

Problème

Partie 1

Pour tout entier naturel n, on pose $u_n = \int_0^{\pi/2} (\cos t)^n dt$.

- 1. (a) Calculer u_0 et u_1 .
 - (b) Montrer que la suite (u_n) est décroissante.
 - (c) Établir que : $\forall n \in \mathbb{N}, u_n > 0$.
- 2. (a) Montrer, grâce à une intégration par parties, que : $\forall n \in \mathbb{N}, (n+2)u_{n+2} = (n+1)u_n$.
 - (b) En déduire que : $\forall n \in \mathbb{N}, u_{2n} = \frac{(2n)!}{(2^n \times n!)^2} \times \frac{\pi}{2}.$
 - (c) Montrer que : $\forall n \in \mathbb{N}, (n+1)u_{n+1}u_n = \frac{\pi}{2}$.
 - (d) En déduire la valeur de u_{2n+1} .
- 3. (a) Calculer $\lim_{n \to +\infty} \frac{u_{n+2}}{u_n}$.
 - (b) En déduire, par encadrement, que $\lim_{n\to +\infty} \frac{u_{n+1}}{u_n} = 1$.
 - (c) Montrer enfin que $u_n \underset{n \to +\infty}{\sim} \sqrt{\frac{\pi}{2n}}$.
- 4. Utiliser la question 2c) pour compléter les commandes Scilab suivantes afin qu'elles permettent de calculer u_n lorsque n est entré par l'utilisateur.

```
n = input('entrer la valeur de n:')
u = %pi/2
for .....
end
disp(u)
```

Partie 2

On note f la fonction définie pour tout réel x par : $f(x) = \begin{cases} \sin x & \text{si } 0 \le x \le \pi/2 \\ 0 & \text{sinon} \end{cases}$

- 5. Vérifier que f est une densité de probabilité. Dans la suite, on considère une variable aléatoire réelle X définie sur un certain espace probabilisé (Ω, \mathcal{A}, P) , et ayant f pour densité.
- 6. Déterminer la fonction de répartition F de la variable aléatoire X.
- 7. (a) Montrer que X possède une espérance et la calculer.
 - (b) Montrer que X possède également une variance et la calculer.
- 8. On considère maintenant une suite $(X_n)_{n\in\mathbb{N}^*}$ de variables aléatoires toutes définies sur (Ω, \mathcal{A}, P) , mutuellement indépendantes et qui suivent toutes la même loi que X.

4

Pour tout entier naturel n supérieur ou égal à 2, on pose $I_n = \min(X_1, X_2, \dots, X_n)$ et on admet que I_n est une variable aléatoire à densité, elle aussi définie sur (Ω, \mathcal{A}, P) .

- (a) Déterminer la fonction de répartition, notée F_n , de la variable aléatoire I_n .
- (b) La suite (I_n) converge-t-elle en loi?

(c) Déterminer une densité de I_n , puis montrer que I_n possède un moment d'ordre 2:

$$E(I_n^2) = 2 \int_0^{\pi/2} x(\cos x)^n dx$$

- (d) Établir que : $E(I_n^2) \leq \pi u_n$.
- (e) En déduire que la suite $(I_n)_{n\in\mathbb{N}^*}$ converge en probabilité vers la variable aléatoire dont on précisera la loi.
- 9. Soit h la restriction de la fonction cosinus à $[0, \frac{\pi}{2}]$.
 - (a) Montrer que h réalise une bijection de $[0, \frac{\pi}{2}]$ sur [0, 1].
 - (b) Justifier que l'on peut poser Y = h(X). On admet alors que Y est une variable aléatoire, elle aussi définie sur (Ω, \mathcal{A}, P) . Déterminer la fonction de répartition G de Y, puis vérifier que Y suit une loi uniforme.
 - (c) On rappelle que la commande grand(1,1,'unf',a,b) renvoie une simulation Scilab d'une variable aléatoire à densité suivant une loi uniforme sur [a,b] et on admet que la fonction h^{-1} s'obtient par l'instruction acos. Compléter les commandes Scilab suivantes afin qu'elles permettent de simuler la variable aléatoire X.

```
Y = grand(1,1,'unf',...,...)
X = ...
```