Data Structures and Algorithms Cardinality

CS 225 G Carl Evans

April 30, 2025

Department of Computer Science

Bloom Filters

A probabilistic data structure storing a set of values

 $h_{\{1,2,3,...,k\}}$

Has three key properties:

k, number of hash functions

n, expected number of insertions

m, filter size in bits

Expected false positive rate: $\left(1 - \left(1 - \frac{1}{m}\right)^{nk}\right)^k \approx \left(1 - e^{\frac{-nk}{m}}\right)^k$

Optimal accuracy when: $k^* = \ln 2 \cdot \frac{m}{n}$

Bloom Filter Use Cases

Which of the following problems can be solved with a bloom filter?

A) Find the closest matching item to a query of interest

B) Check if a query exists in a dataset

C) Compare the similarity between two datasets

D) Count the number of unique items in a dataset

Cardinality

Sometimes its not possible or realistic to count all objects!

Estimate: 60 billion — 130 trillion

Image: https://doi.org/10.1038/nature03597

946
5581
8945
6145
8126
3887
8925
1246
8324
4549
9100
5598
8499
8970
3921
8575
4859
4960
42
6901
4336

Imagine I fill a hat with numbered cards and draw one card out at random.

If I told you the value of the card was 95, what have we learned?

Analogy from Ben Langmead

Imagine I fill a hat with a random subset of numbered cards from 0 to 999

If I told you that the **minimum** value was 95, what have we learned?

Imagine we have multiple uniform random sets with different minima.

Let min = 95. Can we estimate N, the cardinality of the set?

Let min = 95. Can we estimate N, the cardinality of the set?

Claim:
$$95 \approx \frac{1000}{(N+1)}$$

Let min = 95. Can we estimate N, the cardinality of the set?

Conceptually: If we scatter N points randomly across the interval, we end up with N+1 partitions, each about 1000/(N+1) long

Assuming our first 'partition' is about average: 95
$$\approx 1000/(N+1)$$

 $N+1 \approx 10.5$
 $N \approx 9.5$

Why do we care about "the hat problem"?

Why do we care about "the hat problem"?

Imagine we have a SUHA hash h over a range m.

Inserting a new key is equivalent to adding a card to our hat!

Tracking only the minimum value is a **sketch** that estimates the cardinality!

h(x) 0 m-1

Imagine we have a SUHA hash h over a range m.

Inserting a new key is equivalent to adding a card to our hat!

Tracking only the minimum value is a **sketch** that estimates the cardinality!

To make the math work out, lets normalize our hash...

$$h'(x) = h(x)/(m-1)$$

0

1

Let $M = min(X_1, X_2, ..., X_N)$ where each $X_i \in [0,1]$ is an uniform independent random variable

Claim:
$$\mathbf{E}[M] = \frac{1}{N+1}$$

0

Consider an N + 1 draw:

$$X_1 X_2 X_3 \cdots X_N X_{N+1}$$

$$M = \min_{1 \le i \le N} X_i$$

 X_{N+1} can end up in one of two ranges:

Consider an N + 1 draw:

$$X_1 X_2 X_3 \cdots X_N X_{N+1}$$

$$M = \min_{1 \le i \le N} X_i$$

 X_{N+1} can end up in one of two ranges:

 X_{N+1} will be the new minimum with probability M

Consider an N + 1 draw:

$$X_1 X_2 X_3 \cdots X_N X_{N+1}$$

$$M = \min_{1 \le i \le N} X_i$$

 X_{N+1} can end up in one of two ranges:

 X_{N+1} will be the new minimum with probability M

 X_{N+1} will not change minimum with probability 1-M

Consider an N + 1 draw:

$$X_1$$
 X_2 X_3 ... X_N X_{N+1}

$$M = \min_{1 \le i \le N} X_i$$

 X_{N+1} will be the new minimum with probability M

By definition of SUHA, X_{N+1} has a $\frac{1}{N+1}$ chance of being smallest item

Consider an N + 1 draw:

$$X_1$$
 X_2 X_3 ... X_N X_{N+1}

$$M = \min_{1 \le i \le N} X_i$$

 X_{N+1} will be the new minimum with probability M

By definition of SUHA, X_{N+1} has a $\frac{1}{N+1}$ chance of being smallest item

Thus,
$$\mathbf{E}[M] = \frac{1}{N+1}$$

 $0 \qquad M$

1

Claim:
$$\mathbf{E}[M] = \frac{1}{N+1}$$

$$N \approx \frac{1}{M} - 1$$

Attempt 1

Attempt 2

Attempt 3

The minimum hash is a valid sketch of a dataset but can we do better?

0

Claim: Taking the k^{th} -smallest hash value is a better sketch!

Claim:
$$\mathbf{E}[M_k] = \frac{k}{N+1}$$

$$0 \quad M_1 \quad M_2 \quad M_3 \quad \cdots \quad M_k$$

Given any dataset and a SUHA hash function, we can **estimate the number of unique items** by tracking the **k-th minimum hash value**.

To use the k-th min, we have to track k minima. Can we use ALL minima?

Applied Cardinalities

Cardinalities

$$|A|$$

$$|B|$$

$$|A \cup B|$$

$$|A \cap B|$$

Set similarities

$$O = \frac{|A \cap B|}{min(|A|, |B|)}$$

$$J = \frac{|A \cap B|}{|A \cup B|}$$

Real-world Meaning AGGCCACAGTGTATTATGACTG

How can we describe how **similar** two sets are?

How can we describe how *similar* two sets are?

To measure **similarity** of A & B, we need both a measure of how similar the sets are but also the total size of both sets.

$$J = \frac{|A \cap B|}{|A \cup B|}$$

J is the Jaccard coefficient

Similarity Sketches

But what do we do when we only have a sketch?

Similarity Sketches

Imagine we have two datasets represented by their kth minimum values

Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. **Mash Screen:** high-throughput sequence containment estimation for genome discovery. Genome Biol 20, 232 (2019)

Similarity Sketches

Claim: Under SUHA, set similarity can be estimated by sketch similarity!

Image inspired by: Ondov B, Starrett G, Sappington A, Kostic A, Koren S, Buck CB, Phillippy AM. **Mash Screen:** high-throughput sequence containment estimation for genome discovery. Genome Biol 20, 232 (2019)