

EPFL

Modeling Mice Sensory Perception of Whisker Stimulus in Simple Learning Task

Sobhan Nili

June 2025

Sensory Processing Lab, EPFL

Grand Picture: Modeling Learning of a Goal-Directed Behavior In Mice

Grand Picture: Modeling Learning of a Goal-Directed Behavior In Mice

Grand Picture: Modeling Learning of a Goal-Directed Behavior In Mice

Project Goal

Goal:

Infer the latent variable perception from neural activity and behavior

Project Goal

Motivation

- Exploring the evolution of estimated perception over time and task conditions
- Parameter estimation for block of perception in the learning model

Neural Decoding

Goal

- Decoding the stimulus presence from spiking activity in barrel cortex
- Is not necessarily what the mouse is perceiving
- The decoder should be computationally simple and interpretable

Decoding Method

- Template matching
- Extract useful features from PSTH of neurons and concatenate them in a feature vector
- Compare feature vectors indicating presence/non-presence of stimulus with trial feature vector

Template Construction

Sample PSTH for Stimulus Levels

Similarity Metric

Cosine / Euclidean Distance

Trials get clustered based on stimulus levels

Decoder Parameters

- Spike binning size
- Similarity metric
- Multi-Level or Binary Templates
- Which trials to use for template construction

Decoder Output: Estimated Perception (between 0 & 1) $\frac{e^{\frac{T}{T}}}{e^{\frac{-d_1}{T}} + e^{\frac{-d_2}{T}}}$

Evaluation Method: F1 score in prediction of binarized stimulus in trials

Decoder Parameters: Insights

Grid search on decoder parameters in 3 phases:

From Trials To Continuous Decoding

- Running the decoder on time windows other than trial surroundings
- Optimize the temperature and threshold parameters to optimize either:
 - Best decoding accuracy
 - Best behavior correspondence

Role of Thresholding

Perception Trajectory Over Time

Method of Optimization

First Step: for each timepoint, calculate soft measure of distance with threshold

$$d[t] = \sigma\left(K(s[t] - heta)
ight) ext{ where } s[t] = rac{e^{rac{-d_1}{T}}}{rac{-d_1}{T} + rac{-d_2}{T}}$$

Decoding Loss:

- Goal: Better alignment of perception and stimulus
- Losses:
 - \circ Miss loss: $\log \max = \max \{1 \max(d[t])\} \text{ (over windows after stimulus)}$
 - \circ False alarm loss: $\log_{\mathrm{fa}} = \max\{d[t]\}$ (over timepoints not in stimulus windows)
- Final Loss: $loss_{total} = \lambda loss_{miss} + loss_{fa}$

Method of Optimization

First Step: for each timepoint, calculate soft measure of distance with threshold

$$d[t] = \sigma\left(K(s[t] - heta)
ight) ext{ where } s[t] = rac{e^{rac{-d_1}{T}}}{rac{-d_1}{T} + rac{-d_2}{T}}$$

Behavior Loss:

- Goal: Better alignment of perception and licks
- Losses:
 - \circ Miss loss: $\log_{\text{miss}} = \max\{d[t]\}\$ (over timepoints not in windows preceding lick)
 - \circ False alarm loss: $\log_{\mathrm{fa}} = \max\{1 \max(d[t])\}\ (\text{over windows before each lick})\}$
- Final Loss: $loss_{total} = \lambda loss_{miss} + loss_{fa}$

Evaluation of Continuous Perception & Behavior Matching

Gradient decent to optimize temperature and threshold

$$ext{Rate of lick prediction miss} = rac{n_{ ext{ no threshold crossing preceding a lick}}}{n_{ ext{ all licks}}}$$

$$ext{Rate of lick prediction false alarm} = rac{n_{ ext{ no licks after a threshold crossing}}}{n_{ ext{ all threshold crossings}}}$$

Decoder does better in the first metric compared to the latter

possible inflation of threshold crossings

Distribution of PerceptionSurrounding Behavioral Windows

Extractable Parameters

To use in artificial perception generation:

 λ : Representing lick cost

T: Exploration / Exploitation Balancing

 θ : Risk Averseness

Recap

• Extending perception from trials to whole session (doesn't work well honestly)

Exploring interplay of parameters in template matching decoding scheme

- Interpretable and extractable parameters for simulating perception
- Checking if the optimized decoding scheme justifies the licking behavior
- A GUI for exploration of parameter interplay / visualization of perception trajectories

Possible Future Directions

- Use the parameter ranges as guides for setting sensory block parameters
- Involve the loss balancing (lambda) in optimization and track evolution of its trajectory
- Try to regress out effect of learning / motivation / engagement from perception
- Using autoregressive model for perception estimation

Thank You!

To Dr. Crochet for properly planning the project and guiding me through difficulties...