Lesson	18			02/21/2022
7.2	Finish,	Partial	fractions	
ξ× 1:	{ x'+	3x 44	= cos(+)	
	۷ '-	x + 2y =	+	
	X(0) = C	= y(0)		
Take			for both	
			s) + Y(s) =	
	s y(s) -	y(0) - X($(s) + 2 \gamma (s) =$	<u>5</u> 2
	(< 13)X(s) + Y	(6) = 2	
				× (5+3) ×
			$(s+z)\gamma(s) = \frac{s^2}{s^2}$	
			53	()
	=)	Y(5) = -	$\frac{1}{(s+3)(s+2)} \left(\frac{s}{s^2+1}\right)$	+ 5+3
				1
		ec (c	Hourd function	s, can use
		supule y	(+) = 2 - { Y	(3)}
0	nce y (t) is fo	und, solve	for x(+)
in				1.
C	Ch100-		4	41. 10 60
Seeu:	Piffe	ventication	<u> </u>	ultiplication
	hy !			

Today | Intropation
$$\stackrel{\leftarrow}{\rightarrow}$$
 | Multiplication by $\frac{1}{5}$

Let $\frac{1}{5}$ | $\frac{1}{5}$ |

7.3 7	extial	F	race	h'ous					
Method	4	or de) (ou	4011	neg	rati	`ou	ıl	
function	١.				7				
						PG	;)		
Patione	4	cf?	C)	2 (5)	7	0	6))	
PG), Q						degp.	- 0	2) 4	
<u> </u>	52+3	_		st	_				
	53+25	+1	٦ :	54+2					
If given long din Ex:	2 5	(5)	, (Jey 1	> >	deg	Q	use	
long di	r'sion.	deg 3		U		0			
EK:	3 - 352	+45	-2						
P(S)= -	5 ² -((-	dea	2					
	S - 3	3	U						
s ² +1) 53 -	3 s ²	+ 4	· S	2				
Θ	S		+ 5						
			+35					(
	○ -?	352	2	- 3			leg	(35+1) -> < de	'q(s²+1)
=) 53-39	2,40	7 -	35.				0.4	7	J . (1)
-/ 5 - 3:	2 7 73	L =	15	+1) (s	5-5	1 + 1.	57		

5	<u>o</u> :		F	(<)	5		C	- 2	+		3 s	+1					
				\ <i>)</i>			3		+	3	52+	-)					
10.	<u></u> 0ω) <u>. </u>		PC	s)			d	Q a	P	_	4	2ع	Q			
				Q	(5)		,		U				U				
1	•	Fa	ct	oγ	(2) É	(:	a	, (× 1)~0	duc	t	of			
	っん	ine	ow	4er	cto	rs:		(!	3- o	()		人					· w
	ا د	rre	du	cib	le	9	Non	dro	chc	4	Perc	.fov	2	((5	S-01	1+1	2)
										a,	b €	: IK		6	+ ()	
<u>}</u>	Jot	1'Ci.		Li	rea	~	b	وده	om	3	0	f	ov	S=9			
				(V Y	•	a	محر	n	s t	be	<u>ි</u> උර	an	C)	fo	~	
				au	4	re	el	. 2									
	8x	:				2_		0				0					
			(5-			7	, b	inec	CV.	4	-ac	for	Ca		2	371
				(5	+)		9	irr.	9	749	idu	•	(3-	-0)	4	(1)
				(5)	-1	.) -	= (st	1)(s -'	()						
								0.	/	1							
		\circ							nea								
2.		Pa	1+	c'	7				n		_ou	upo	7120	iou			
	C	OV		40		((s-	a)		îs							
				A,			d	12					A	· S			
			5	5-a			(5-	- or j	2 +			7	(s-a))4		
				all		lou	20/11		ହର	Pac	0	40.0	0.				
							-0		1	-V)	d	ppe	an,				

3. Part of P.F. 15 worr. to
$$((s-a)^2 + b^2)^{M}$$

is

 $\frac{A_1 s + B_1}{((s-a)^2 + b^2)} + \frac{A_2 s + B_2}{((s-a)^2 + b^2)^2} + \frac{A_{11} s + B_{11}}{((s-a)^2 + b^2)^{M}}$
 $\frac{Ex 1:}{(s+1)(s^2 - s - 2)} = F(s)$

1. factor denominator

 $s^2 - s - 2 = 0 \Rightarrow s = -1, s = 2 \Rightarrow (s^2 - s - 2) = (s+1)(s-2)$

So:

 $F(s) = \frac{s-1}{(s+1)^2(s-2)} = \frac{A_1}{(s+1)^2} + \frac{A_2}{(s+1)^2} + \frac{B_1}{s-2}$

To find $A_1, A_2, B_1: Multiply by denominator

 $s - 1 = A_1(s+1)(s-2) + A_2(s-2) + B_1(s+1)^2$

To find $A_1: set s = -1$
 $A_2: set s = -1$
 $A_2: set s = -1$
 $A_2: set s = -1$$

Once A_2 , B_3 , are known, plug in any S that doesn't make (S-11)(S-2)=0. S=1 $0=-2A, -\frac{2}{3}+4\cdot\frac{1}{9}$ $\Rightarrow A_1 = -\frac{1}{9}.$ hereal nethod. from (x), expand polynomials, match coel- of 1,5,5° on the two sides. Ex 2: S-1 (s+1)(s2-s+2) Notice: $s^2 - s + 2 = s^2 - 2(\frac{1}{2})s + \frac{1}{4} + \frac{7}{4}$ $= \left(S - \frac{1}{2}\right)^2 + \frac{7}{4}$ ive- quadr. 5 = : $= \frac{A_1}{S+1} + \frac{A_2S+B_2}{S^2-S+2}$ (S+1) (S2-S+Z) (compare ul previous example)

Ex 3: Spring-mass system a/ geniodic external force farmon T st $\begin{cases} x' + 9x = 5\cos(\omega t) \\ x(0) = x'(0) = 0 \end{cases}$ Different behavior depending on whether $w \neq \sqrt{9} = 3$ or w = 3. =) $\chi(s) = \frac{ss}{(s^2 + \omega^2)(s^2 + 9)}$ Inverse Laplace next time.