Image Processing Exam Answers

Question 1: Short Answer Questions (2×10=20)

- 1. **What is the first step in digital image processing?**
- The first step is image acquisition, which involves capturing the image using sensors like cameras or scanners and converting it into a digital form.
- 2. **What is the importance of image enhancement?**
- Image enhancement improves the visual quality of an image by increasing contrast, reducing noise, or highlighting specific features to make it more suitable for analysis or human interpretation.
- 3. **What do you mean by Gray level?**
- Gray level refers to the intensity value assigned to each pixel in a grayscale image, typically ranging from 0 (black) to 255 (white) for 8-bit images.
- 4. **Region Of Interest (ROI) is known by which operation?**
- ROI is known by the operation called "masking" where a specific region is selected for processing while ignoring other parts of the image.
- 5. **What is the other name of low pass filter?**
- The other name for a low pass filter is "smoothing filter" as it attenuates high-frequency components (noise, edges) while preserving low-frequency components.
- 6. **Why do you say that an image is a 2D function?**
- An image is a 2D function because it can be represented as f(x,y) where x and y are spatial coordinates, and the function value at each point represents the intensity or color at that location.
- 7. **Write the process of extracting information from digital image.**
- The process involves: acquisition \rightarrow enhancement \rightarrow segmentation \rightarrow feature extraction \rightarrow object recognition \rightarrow interpretation.
- 8. **What are the different types of noises present in digital image?**

- Common noise types include: Gaussian noise, salt-and-pepper noise, speckle noise, Poisson noise, and quantization noise.
- 9. **Distinguish between image processing and graphics.**
- Image processing deals with analyzing and manipulating existing images, while computer graphics focuses on creating new images from models and descriptions.
- 10. **What do you mean by frequency of an image?**
- Frequency in an image refers to how rapidly pixel values change across the spatial domain. High frequencies correspond to edges and fine details, while low frequencies represent smooth areas.

Question 2: Histogram Processing (20)

- **Mention about a few fields where different digital image processing technology is mostly used:**
- Medical imaging (X-rays, MRI, CT scans)
- Remote sensing (satellite image analysis)
- Industrial inspection (quality control)
- Security (face recognition, fingerprint analysis)
- Entertainment (special effects, image restoration)
- **How histogram of an image is computed?**

A histogram is computed by counting the number of pixels at each gray level and plotting these counts against the gray level values.

- **Unique features of histogram equalization and histogram stretching:**
- *Histogram equalization*: Automatically determines transformation function to produce uniform histogram, enhances contrast globally.
- *Histogram stretching*: Linearly scales the intensity values to span the full range, requires manual specification of input range.
- **Histogram equalization for the given table:**

| Gray Level | n_k | $p(r_k) = n_k/n$ | Cumulative $p(r_k)$ | s_k = round(6×cumulative) |

0	100 100/	210≈0.476 0.	476	3		
1	90 90/210≈0.429 0.905			5		1
2	20 20/210≈0.095 1.000			6		1
3-6	0 0	1.000	6		1	

Where n = total pixels = 100+90+20 = 210

The equalized histogram will have:

- Gray level 0 → mapped to 3
- Gray level 1 \rightarrow mapped to 5
- Gray level 2 → mapped to 6
- Gray levels 3-6 remain 0

Question 3: Compression and Morphology (20)

- **Lossless predictive coding with block diagram:**
- 1. Diagram components:
 - Original image \rightarrow Predictor \rightarrow Difference encoder \rightarrow Compressed data
 - For decoding: Compressed data \rightarrow Difference decoder \rightarrow Predictor \rightarrow Reconstructed image

2. Process:

- The predictor estimates pixel values based on neighboring pixels
- Only the difference (error) between actual and predicted value is encoded
- This reduces entropy as differences typically have smaller magnitude than original values
- **RGB length Encoding for data compression:**
- RGB length encoding (Run-Length Encoding) compresses sequences of identical pixels
- Instead of storing each pixel value, it stores (value, count) pairs
- Effective for images with large uniform areas
- Example: Sequence RRRRGGGBBB becomes (R,4),(G,3),(B,3)

- **Arithmetic coding for "EAU":**
- 1. Calculate probabilities and ranges:
 - Total = 2+3+1+2+1+1 = 10
 - A: 0.0-0.2, B: 0.2-0.5, I: 0.5-0.6, O: 0.6-0.8, U: 0.8-0.9, P: 0.9-1.0
- 2. Encoding "EAU":
 - First symbol 'E' is not in table (assuming 'E' is typo, perhaps 'A' was intended)
 - If we proceed with 'A', 'U':
 - 'A' range: [0.0, 0.2)
 - 'U' within 'A' range: $0.0 + 0.8 \times 0.2 = 0.16$ to $0.0 + 0.9 \times 0.2 = 0.18$
 - Final range: [0.16, 0.18)
 - Can represent this range with a number like 0.17
- **Image morphology Opening operation:**
- Opening is erosion followed by dilation
- It removes small objects while preserving shape of larger objects
- Structuring element determines what is considered "small"
- ## Question 4: Image Segmentation (10)
- **Image segmentation methods based on discontinuities:**
- 1. Point detection (isolated points)
- 2. Line detection (edge detection)
- 3. Edge detection (gradient-based: Sobel, Prewitt, Roberts, Canny)
- 4. Laplacian-based methods (zero crossings)
- **Deriving gradients using masks:**
- Gradient magnitude: $|\nabla f| = V(G_x^2 + G_y^2)$
- Gradient direction: $\phi = atan(G_v/G_x)$

- Common masks:
- Sobel:

$$G_x = [-1 \ 0 \ 1; -2 \ 0 \ 2; -1 \ 0 \ 1]$$

$$G_{v} = [-1 -2 -1; 0 0 0; 1 2 1]$$

- Prewitt:

$$G_x = [-1 \ 0 \ 1; -1 \ 0 \ 1; -1 \ 0 \ 1]$$

$$G_v = [-1 -1 -1; 0 0 0; 1 1 1]$$

Question 5: Notes (5×4=20)

- **RGB color model:**
- Additive color model using Red, Green, Blue primaries
- Used in displays, cameras
- Each channel typically 8-bit (0-255)
- Colors formed by combining different intensities of R, G, B
- Limitations: device-dependent, not perceptually uniform
- **Sampling and quantization:**
- Sampling: Measuring image values at discrete spatial intervals
- Quantization: Mapping continuous brightness values to discrete levels
- Nyquist theorem: Sampling rate must be >2× highest frequency
- Quantization error leads to false contours in smooth areas
- **Point processing image enhancement:**
- Operations where output depends only on input pixel value
- Includes:
- Contrast stretching
- Logarithmic transformations
- Power-law (gamma) transformations
- Thresholding
- Implemented via lookup tables for efficiency

- **Sobel operator:**
- Edge detection operator using 3×3 convolution masks
- Computes gradient approximation in x and y directions
- Less sensitive to noise than simpler operators
- Often followed by thresholding and non-maximum suppression
- Part of many edge detection pipelines including Canny edge detector

[PDF version of these answers with questions is being generated...]