Is there potential for California alfalfa production to be climate neutral?

Gina Nichols¹, Dan Putnam¹, Cameron Pittelkow¹

¹University of California, Davis

https://www.beecultuiter.bin/aut.st the buzz-doiny-alfalfa-doesnt-g to-bloom-but-beef-alfalfa-does-where-to-put-your-bees-is-simple/

https://westernagnetwork.com/premium-alfalfa-hay-delivered-by-amazon-prime

Narrow lens: Not a great crop for California.

Narrow lens: Not a great crop for California. Broader lens: Is that true?

requirements per acre

Alfalfa has the highest water Alfalfa has the 2nd higapplication of all California crops

One of the only wetland bird feeding areas left in California (Bray & Klebenow 1988)

Provides 'free' nitrogen to subsequent crop (Putnam & Pettygrove 2015)

Provides productive years without soil disturbance

Flexible water user (Montazar et al. 2020)

Close proximity to dairies lowers transportation requirements

Lower yield variability compared to rainfed regions

Yields are consistently twice the US average

Motivation

Use Life Cycle Assessment methodologies to estimate climate impacts of California alfalfa production

Use Life Cycle Assessment methodologies to estimate climate impacts of California alfalfa production

Use Life Cycle Assessment methodologies to estimate climate impacts of California alfalfa production

System boundaries:

Impact factors:

- 1 hectare-year of land (carbon emissions)
- 1 Mg of dry yield (carbon efficiency)

System boundaries:

Impact factors:

- 1 hectare-year of land (carbon emissions)
- 1 Mg of dry yield (carbon efficiency)

System boundaries:

Cradle to roadside (~80% of alfalfa is sold)

Impact factors:

- 1 hectare-year of land (carbon emissions)
- 1 Mg of dry yield (carbon efficiency)

System boundaries:

Cradle to roadside (~80% of alfalfa is sold)

Impact factors:

Piece together from publicly available sources

http://comet-planner-cdfahsp.com/

- 1 hectare-year of land (carbon emissions)
- 1 Mg of dry yield (carbon efficiency)

System boundaries:

Cradle to roadside (~80% of alfalfa is sold)

Impact factors:

Piece together from publicly available sources

Flows:

Enterprise budgets, California Healthy Soils tool

Medium input, medium yields

High input, high yields

healthy soils program

http://comet-planner-cdfahsp.com/

The Alfalfa N Credit

The amount of N that is supplied by the previous alfalfa crop is called a N credit. According to various university studies, farmers planting corn after alfalfa can take N credits from 40 to 190 lb/acre, depending on such factors as the quality of the previous alfalfa stand, soil types, and other growing conditions. As a recommendation, Midwestern universities suggest that applied N fertilizer for corn following a good alfalfa stand can be reduced by up to 100% for first-year corn and by up to 50% or more for second-year corn.

Fully account for cropping system impacts (Costa et al. 2020 Int J LCA)

 $\frac{1000}{\text{kg CO}_2 \text{ e ha}^{-1} \text{ yr}^{-1}}$

 $^{\circ}$ kg CO_2 e ha^{-1} yr^{-1} -500 1000

 $^{\circ}$ kg CO_2 e ha^{-1} yr^{-1} -500 1000

-500

kg CO₂ e ha⁻¹ yr⁻¹

1000

"It shall be the goal of the State to transition to 100% zero-emission off-road vehicles and equipment by 2035 where feasible."

1. General rule of thumb: CA alfalfa emits ~1 Mg net CO₂e ha⁻¹ yr⁻¹

3. Restricting access to surface water has significant impact on energy use/GHG emissions

4. Focus groups/surveys could help create scenarios that are meaningful to producers...

Impact factors:

Category	Description	Souce
Manufacturing	Fertilizers, pesticides, fuel	GREET, NRCS, Audsley et al. 2009)
Fuel use	Diesel, propane, electricity	EPA
Seed	Growing seed	Imperial County results
Soil emissions	Soil N ₂ O emissions	IPCC
Soil carbon changes	CO ₂ sequestration/emissions	California Healthy Soils
Avoided fertilizer application	,	
Avoided soil emissions	Avoided soil N ₂ O emissions	IPCC

http://comet-planner-cdfahsp.com/

		Reduction Coeffic 2 equivalent per a		
		Greenhouse Gases		
NRCS Conservation Practices	Carbon Dioxide (CO ₂)	Nitrous Oxide (N ₂ O)	Methane (CH ₄)	Estimated HSP payment dollars for the Project Term
Conservation Crop Rotation (CPS 328) - Decrease Fallow Frequency or Add Perennial Crops to Rotations-Basic Rotation		1 0.01	N.E.**	\$61.44/Acre

oils program

Emission Reduction Coefficients (ERC) (tonnes CO₂ equivalent per acre per year)

Greenhouse Gases

Carbon Dioxide (CO ₂)	Nitrous Oxide (N ₂ O)	Methane (CH ₄)	Estimated HSP payment dollars for the Project Term
0.21	0.01	N.E.**	\$61.44/Acre

NRCS Conservation Practices

Conservation Crop Rotation (CPS 328) - Decrease Fallow Frequency or Add Perennial Crops to Rotations-Basic Rotation

Sequester carbon and reduce nitrous oxide emissions

Emission Reduction Coefficients (ERC) (tonnes CO₂ equivalent per acre per year)

Greenhouse Gases

 (N_2O)

Carbon Dioxide (CO₂)

Nitrous Oxide Methane (CH_4)

soils program

Estimated HSP payment dollars for the Project Term

0.21

N.E.** 0.01

\$61.44/Acre

NRCS Conservation Practices

Conservation Crop Rotation (CPS 328) - Decrease Fallow Frequency or Avd Perennial Crops to Rotations-Basic Rotation