31251 – Data Structures and Algorithms Week 4

Luke Mathieson

In this week's episode:

- vectors
- Templates
- Iterators
- Big-Oh notation and comparing algorithms.

The vector class

- Arrays in C/C++ are difficult (as we saw).
- · Lists provide an alternative to this, but
 - Lists usually don't have guarantees about how the memory is managed.
 - Lists also often come with more overhead.
- vectors are the middle ground!

The vector class

- If you don't care what's inside, you can think of vectors as dynamically size arrays.
- Let's see one in action. (Demo.)

The vector class

- What are they really? How does this sorcery work?
- https://gcc.gnu.org/onlinedocs/gcc-4.6.3/libstdc+ +/api/a01116_source.html

Templates

- Wait... what that thing in the angle brackets (<>)?
- If you've used generics in Java, this is the C++ version: templates!
- Templates provide a way to write certain types of code once:
 - If the code doesn't care about the types it's working with.
- So we can easily make vectors that hold different types without rewriting the code.

Working with templates

- They're fairly simple to work with, but provide lots of places to leave something out (and cause weird compile errors).
- Let's go back and take a look at some of our old code.
 (Demo.)

Iterators!

- By now you've all struggled with the tail() function from last week's tutorial.
- It's a really annoying way to access the list right?
- What we would like is a simple way to get the next element, that's still compatible with information hiding.
- Iterators are the answer to this problem.

Iterators!

- Iterators in Java are fairly well put together.
 - In particular, the inheritance structure is well thought out. A little wordy, but simple.
- As you might expect, in C++ they're a lot more flexible, but you pay for this with some ugly code.
- Also, the inheritance structures are not as well defined, so using them is a little more cumbersome.

Iterators!

• Let's have a go at implementing one. (Demo.)

Analysing and Comparing Algorithms: Big-Oh Notation

- How do we reliably compare algorithms?
 - Testing gives good information, but is limited to the cases you test.
 - How much of that information comes from the choice of computer, programming languages, test data?
- We need a way of comparing the abstract algorithms themselves.

Algorithm Analysis

- If we have two algorithms that solve the same problem, what things are we interested in?
 - How long they take.
 - How much space they take up.
- How do we know what resources an algorithm will use for any of the infinite number of inputs?

A Diversion into Mathematics

- If we have two functions f and g, we have ways of comparing them:
- We say $f \in O(g)$ ("f is in big-oh of g") if:

$$\exists c \in \mathbb{Q}, N \in \mathbb{N} \text{ such that } \forall n \geq N, \text{ we have } f(n) \leq c \cdot g(n)$$

• Or: for big enough numbers, f(n) is less than or equal to a constant times g(n).

Some Examples

•
$$f(n) = n, g(n) = 2n \to f \in O(g).$$

•
$$f(n) = n, g(n) = n^2 \to f \in O(g).$$

•
$$f(n) = n^2$$
, $g(n) = n \rightarrow f \notin O(g)$ (but $g \in O(f)$).

•
$$f(n) = 50n$$
, $g(n) = n \to f \in O(g)$ (and $g \in O(f)$).

•
$$f(n) = \log n$$
, $g(n) = n \rightarrow f \in O(g)$.

•
$$f(n) = n, g(n) = 2^n \to f \in O(g).$$

•
$$f(n) = 23n^3$$
, $g(n) = 13n^4 \to f \in O(g)$.

Proving these relationships

- These can all be proved using a variety of techniques:
 - Induction
 - Algebraically
 - Limit based definitions.
- We'll leave the proofs for now, but there's a couple of handy rules:
 - $c \cdot n^k \in O(n^{k+1})$ for any c and k.
 - $\log n \in O(n)$.
 - $f(n) + g(n) + h(n) + \ldots \in O(\max\{f(n), g(n), h(n), \ldots\}).$
 - You can always ignore constant multipliers (i.e. you can treat $c \cdot f(n)$ as f(n).

For the more mathematically inclined...

lf

$$\lim_{n\to\infty}\frac{f(n)}{g(n)}<\infty$$

then $f \in O(g)$ (where $< \infty$ means any constant or $-\infty$).

Some handy names

- *n* is "linear".
- n^2 is "quadratic".
- n^3 is "cubic".
- n^k for any k is "polynomial".
- log *n* is "logarithmic".
- $(\log n)^k$ for any k is "poly-logarithmic".
- k^n for any c is "exponential".

How does this help us?

- Back to the two algorithms A and B:
 - If we can work out functions that describe the running time, we can now compare them and decide which is the fastest (in the long run).
 - Let *n* be the size of the input.
 - If the running time of \mathcal{A} is $T_{\mathcal{A}}(n) = n^2$ and the running time of \mathcal{B} is $T_{\mathcal{B}}(n)$...
 - ... we can work out that $T_{\mathcal{B}} \in O(T_{\mathcal{A}})$, so \mathcal{B} must be the faster algorithm asymptotically.
 - (Because A's running time is always larger for large enough inputs.)

Algorithmic Analysis

- How do we get these functions then?
- In an abstract sense, running time is really the number of steps the algorithm takes for a given input size.
 - This abstracts out programming languages and computers.
- So "all" we need to do is count the number of steps.

A Simple Example

```
begin

a = 1
b = 2
c = a + b

print c
```

end

This code does the same thing for any "input" (it doesn't really take any), so T(n) = 4 (ish).

A Less Simple Example

```
void printArray(int a[], size n){
  for (int i = 0; i < n; i++){
    cout << a[i];
  }
}</pre>
```

At each iteration we do a check to see if i is large enough to stop, print something out, and add one to i. We also initialise i once. Assuming printing is one step (is this reasonable?), $T(n) = 1 + 3n \in O(n)$.

Another Example

```
for (int i = 0; i < n; i++){
  for (int j = 0; j < n; j++){
    System.out.println(i + " " + j);
  }
}</pre>
```

For each iteration of the outer loop, we have n iterations of the inner loop. For each iteration of the inner loop, we do one thing. So if the outer loop runs n times: $T(n) = n \cdot n \cdot 1 = n^2 \in O(n^2)$.

Some other properties and notations

- $O(\cdot)$ is transitive, so if $f \in O(g)$ and $g \in O(h)$, then $f \in O(h)$.
- If $f \in O(g)$ and $g \in O(f)$, we write $f \in \Theta(g)$ (and $g \in \Theta(f)$) this is an equivalence relation.
- If $f \in O(g)$ then $g \in \Omega(f)$. $\Omega(\cdot)$ is defined the same way as $O(\cdot)$, but with \geq , rather than \leq .
- If $f \in O(g)$ and $f \in \Omega(g)$, then $f \in \Theta(g)$.
- o replaces O if we use < instead of \le in the definition.
- ω replaces Ω if we use > instead of \ge in its definition.