

What's cooking?

Predicting cuisine by provided ingredients & market basket analysis

Gabriela Dvořáková, Michal Lehončák

Data mining agenda

- Part 01: Goal definition
- Part 02: Dataset
- Part 03: Preprocessing

- Part 04: Prediction
- Part 05: Results discussion
- Part 06: Market Basket Analysis

What's the goal?

Predict the category of a dish's cuisine given a list of its ingredients.

INGREDIENTS

romaine lettuce
black olives
grape tomatoes
garlic
pepper
purple onion
seasoning
garbanzo beans
feta cheese crumbles

Dataset

Kaggle competition free dataset with 3 features: cuisine, recipe id, ingredients

cuisine	id	ingredients		
greek	10259	['romaine lettuce', 'black olives', 'grape tomatoes', 'garlic', 'pepper', 'purple onion', 'seasoning', 'garbanzo beans', 'feta cheese crumbles']		
southern_us	25693	['plain flour', 'ground pepper', 'salt', 'tomatoes', 'ground black pepper', 'thyme', 'eggs', 'green tomatoes', 'yellow corn meal', 'milk', 'vegetable oil']		
filipino	20130	l'eggs', 'pepper', 'salt', 'mayonaise', 'cooking oil', 'gree chilies', 'grilled chicken breasts', 'garlic powder', 'yelle onion', 'soy sauce', 'butter', 'chicken livers']		
indian	22213	['water', 'vegetable oil', 'wheat', 'salt']		

TRAINING SET

39.74
recipes

7.944
recipes

Dataset

CLASSES

20
cuisines

- number of dishes per cuisine:

Dataset

- most frequent ingredients:

Preprocessing

1. Ingredient concatenation

- some ingredients have multiple names:
- 'finely chopped onion' & 'diced onions' & 'onions'
- computers view them as two distinct ingredients
- to solve this problem, ingredients are:
 - concatenated to form a single string
 - tokenized

example:

['water', 'vegetable oil', 'wheat', 'salt']

['water vegetable oil wheat salt']

2. Normalizing Case

- all words are converted to lowercase

example:

'KRAFT Zesty Italian Dressing'

'kraft zesty italian dressing'

Preprocessing

3. Punctation removal

- removing any redundant symbols from the set:

4. Digits removal

- numbers do not hold much informational value for cuisine prediction

example:

'1% low-fat milk'

'40% less sodium taco seasoning'

Preprocessing

5. Porter Stemming

- 'tomatoes' & 'tomato' are the same ingredient
- to achieve that, we use **stemming**:

 process of reducing words to their word stem,
 base or root form by removing characters
 from the word endings

example:

```
['tomatoes', 'sweetened, 'onions']

['tomato', 'sweeten', 'onion']
```

6. Rare words removal

- words that appear **less then 3 times** are removed from the ingredients, as their occurence does not provide proof of distinctness between classes

examples of rare words (after stemming):

['poupon', 'krachai', 'nusalt', 'bluefish', 'rapini', 'rouget', 'shanghaistyl', 'moscato', 'dasti', 'hors', 'delux', 'silk', 'cupcak', 'surimi', 'dream', 'hint'...]

Preprocessing

Features encoding: Binary representation

each dish is represented by a **vector** of length of the number of unique ingredients feature vector at i-th term may be 1 or 0

1: i-th ingredient appears in the example

0: otherwise
ingredient cannot appear more than once

id	'olive'	'garlic'	'pepper'	'milk'	'broccoli'	•••
10259	1	1	1	0	0	***
25693	0	0	1	0	0	•••
20130	0	0	0	0	0	•••
22213	0	0	0	1	0	•••

1 Logistic Regression

Prediction

5 Neural Network

- we compared 5 different predictive models

- models are evaluated on the test-train <u>20%-80%</u> split of the training dataset

2 Gaussian
Bayes
classifier

Random Forest classifier

4 KNN classifier

1. Logistic Regression

TRAIN ACCURACY

84.11%

TEST ACCURACY

78.66%

2. Gaussian Bayes classifier

Assumption: conditional independence assumption

we assume the probability of one ingredient does not depend on the presence of different ingredient in a dish

 $p(ingr_i \mid ingr_{i+1}, ..., ingr_n, Dish_k) = p(ingr_i \mid Dish_k)$

TRAIN ACCURACY

29.61%

TEST ACCURACY

23.77%

3. Random Forest classifier

TRAIN ACCURACY

99.97%

TEST ACCURACY

75.80%

4. K nearest neighbors

Optimal K: 15

number of nearest neighbors 'K' found using Grid Search

Metric: minkowski

TRAIN ACCURACY

70.13%

TEST ACCURACY

65.48%

5. Neural Network

- we acquired the best results with the following architecture:

EPOCHS

100

BATCH SIZE

64

Layer (type)	Output shape	Param #	
Dense	(None, 1024)	2749440	
Dropout	(None, 1024)	0	
Dense	(None, 512)	524800	
Dropout	(None, 512)	0	
Dense	(None, 256)	131328	
Dropout	(None, 256)	0	
Dense	(None, 20)	5140	

TRAIN ACCURACY

99.93%

TEST ACCURACY

80.38%

Results discussion

- using the 5 classification algorithms discussed, the best performance observed is from the NN model
- we created a final model by training NN on the whole training dataset
- submittion to kaggle we achieved the following accuracy:

FINAL SCORE ON KAGGLE

80.31%

Results discussion

- we compared our results with the kernel <u>cuisine-classification</u>, which achieved the best accuracy of 78.88% using the OVA SVM algorithm
- different feature encoding method TF-IDF
- less thorough preprocessing steps (no sparse words removal)
- our model performed better by almost 2 % using the deep neural network

Market basket analysis

- we used Apriori algorithm for rule generating
- algorithm was evaluated on every cuisine separately
- minimal treshold was dependent on number of recipes in cuisine
- only relevant rules were generated (with confidence > 70%)

Results

- we deleted irrelevant rules (e. g. those, which resulted in salt)
- support and lift were also considered measures of good rule
- some rules were interesting, but some were obvious and not so useful

General rules

salt pepper baking powder

garlic onion

flour

flank steak -> corn starch

cardamom -> clove cream -> garam masala

galangal -> lemongrass

spinach -> carrots

coriander -> cumin

rice -> white wine celery -> carrots

Thank you for your attention.

References:

[0] https://www.kaggle.com/c/whats-cooking

