SST1 Übungsstunde 1

Matteo Dietz

September 2024

Organisatorisches

- Übungsstunde dienstags 16:15-18:00 im HG E22
- Study-Center dienstags 18:15-19:00 im ETZ E7
- Vorlesungsskript und Übungsskript auf der Vorlesungswebsite Username: sigsys2024, Passwort: Fourier2024

Organisatorisches

Bonussystem: Es gibt dieses Semester keinen Bonus in SST1

 Ich werde jede Woche ein kurzes Skript auf meiner Website hochladen. Der Link zu meiner Website ist auf der Vorlesungswebsite.

Hinweise

Geht in die Vorlesung!

 Macht Aufgaben während des Semesters und schiebt nicht alles für die Lernphase auf!

Themenüberblick

Einführung Signale:

Einteilung der Signale und einfache Beispielsaufgaben

Lineare Algebra Recap:

Lineare Räume und Unterräume:

Lineare Unabhängigkeit, Basen, Koordinaten, Dimensionsbegriff, duale Basen, Funktionsräume, Normen, Skalarprodukte, Orthogonalität

Aufgaben für diese Woche

1, **2**, **3**, **4**, **5**, **6**, 7, **8**, **9**, 10, **11**, 12, 13, 14, **15**

Die **fettgedruckten** Übungen empfehle ich, weil sie wesentlich zu eurem Verständnis der Theorie beitragen und/oder sehr prüfungsrelevant sind.

Lineare Räume

Definition: Ein linearer Raum über \mathbb{C} ist eine nichtleere Menge X zusammen mit

- (i) einer Abbildung $+: X \times X \to X$, genannt Addition und notiert mit $x_1 + x_2$,
- (ii) einer Abbildung von $\mathbb{C} \times X$ nach X, genannt skalare Multiplikation und notiert mit αx , so, dass Addition und skalare Multiplikation folgende Eigenschaften erfüllen:
 - (A1) Kommutativität (+): $x_1 + x_2 = x_2 + x_1$, für alle $x_1, x_2 \in X$.
 - (A2) Assoziativität (+): $x_1 + (x_2 + x_3) = (x_1 + x_2) + x_3$, für alle $x_1, x_2, x_3 \in X$.
 - (A3) Nullelement (+): $\exists ! 0 \in X$, so dass 0 + x = x, für alle $x \in X$.
 - (A4) Inverses Element (+): $\forall x \in X \exists ! -x \in X$, so dass x + (-x) = 0.
 - (SM1) Assoziativität (·): $\alpha(\beta x) = (\alpha \beta)x$, für alle $\alpha, \beta \in \mathbb{C}$ und alle $x \in X$
 - (SM2) Einselement (·): 1x = x, für alle $x \in X$.
 - (A&SM1) Distributivgesetz: $\alpha(x_1 + x_2) = \alpha x_1 + \alpha x_2$, für alle $\alpha \in \mathbb{C}$, und alle $x_1, x_2 \in X$.
 - (A&SM2) Distributivesetz: $(\alpha + \beta)x = \alpha x + \beta x$, für alle $\alpha, \beta \in \mathbb{C}$, und alle $x \in X$.

Aufgabe 7

Lineare Unterräume

• **Definition:** Ein linearer Unterraum ist eine **nichtleere Teilmenge** (\tilde{X}) eines linearen Raumes X, wenn gilt:

(i)
$$x_1 + x_2 \in \tilde{X}$$
, für alle $x_1, x_2 \in \tilde{X}$.

(ii)
$$\alpha x \in \tilde{X}$$
, für alle $\alpha \in \mathbb{C}$ und alle $x \in \tilde{X}$.

Aufgabe 9

Definition: Eine Teilmenge $\{x_i\}_{i=1}^n$ des linearen Raumes X ist linear abhängig, wenn es zugehörige Skalare $\{\alpha_i\}_{i=1}^n$ gibt, die **nicht alle gleich Null** sind und so, dass

$$\sum_{i=1}^n \alpha_i x_i = 0.$$

Wenn $\sum_{i=1}^{n} \alpha_i x_i = 0$ impliziert, dass $\alpha_i = 0$ für alle $i \in \{1, \ldots, n\}$, dann ist die Teilmenge $\{x_i\}_{i=1}^{n}$ linear unabhängig.

 Die Basis eines linearen Raums X ist eine Menge von Vektoren in X, die linear unabhängig sind und jedes Element x des gesamten Raumes X durch eindeutige Linearkombination erzeugen können.

- Formale Definition: Die Menge $\{\mathbf{e}_k\}_{k=1}^M, \ \mathbf{e}_k \in \mathbb{C}^M$, ist eine Basis für \mathbb{C}^M , wenn:
 - lacksquare span $\{\mathbf{e}_k\}_{k=1}^M=\mathbb{C}^M$
 - $\{\mathbf{e}_k\}_{k=1}^M$ linear unabhängig ist.

Koordinaten
$$c_k := \langle \mathbf{x}, \mathbf{e}_k \rangle, k = 1, \dots, M$$

Analysematrix

Analysematrix
$$\mathbf{T} := \begin{bmatrix} \mathbf{e}_1^H \\ \vdots \\ \mathbf{e}_M^H \end{bmatrix}$$

Koordinaten
$$\mathbf{c} = \begin{bmatrix} c_1 \\ \vdots \\ c_M \end{bmatrix} = \begin{bmatrix} \mathbf{e}_1^H \cdot \mathbf{x} \\ \vdots \\ \mathbf{e}_M^H \cdot \mathbf{x} \end{bmatrix} = \begin{bmatrix} \langle \mathbf{e}_1, \ \mathbf{x} \rangle \\ \vdots \\ \langle \mathbf{e}_M, \ \mathbf{x} \rangle \end{bmatrix} = \mathbf{T}\mathbf{x}$$

Dimensionsbegriff

- Dimension M
 - maximale Anzahl linear unabhängiger Elemente im linearen Raum
 - = Anzahl Basiselemente **jeder** Basis dieses linearen Raumes
- Wenn es kein endliches M gibt, $\implies X$ unendlich-dimensional.

Duale Basen

• Eine Menge $\{\tilde{\mathbf{e}}_k\}_{k=1}^M,\ \tilde{\mathbf{e}}_k\in\mathbb{C}^M,\ k=1,\ldots,M$ heisst dual zu einer Basis $\{\mathbf{e}_k\}_{k=1}^M$, wenn:

$$\mathbf{x} = \sum_{k=1}^{M} \langle \mathbf{x}, \; \mathbf{e}_k
angle \mathbf{ ilde{e}}_k, \; \; ext{für alle} \; \; \mathbf{x} \in \mathbb{C}^M$$

Duale Basen einer ONB

• Die duale Basis einer Orthonormalbasis ist sie selbst. $\tilde{\mathbf{e}}_k = \mathbf{e}_k$, für alle k = 1, ..., M, denn dann gilt trivialerweise:

$$\mathbf{x} = \sum_{k=1}^{M} \langle \mathbf{x}, \; \mathbf{e}_k
angle \mathbf{e}_k$$

Duale Basen einer allgemeinen Basis

- Synthesematrix: $\tilde{\mathbf{T}}^H = [\tilde{\mathbf{e}}_1, \dots, \tilde{\mathbf{e}}_M]$
- Setze $\tilde{\mathbf{T}}^H = \mathbf{T}^{-1}$, um eine duale Basis zu finden.

$$\implies \tilde{\mathbf{T}}^H \mathbf{T} \mathbf{x} = [\tilde{\mathbf{e}}_1, \dots, \tilde{\mathbf{e}}_M] \begin{bmatrix} \langle \mathbf{x}, \ \mathbf{e}_1 \rangle \\ \vdots \\ \langle \mathbf{x}, \ \mathbf{e}_M \rangle \end{bmatrix} = \sum_{k=1}^M \langle \mathbf{x}, \ \mathbf{e}_k \rangle \tilde{\mathbf{e}}_k = \mathbf{x},$$

Aufgabe 11

Funktionsräume

• Für eine nichtleere Menge S definiert man den linearen Raum X als Menge aller Funktionen von S nach \mathbb{C} , wobei die Addition und die skalare Multiplikation wie folgt definiert sind:

$$(+) \ \forall x_1, x_2 \in X + : X \times X \to X$$

 $(x_1 + x_2)(s) = x_1(s) + x_2(s) \ \forall s \in S$

(·)
$$\forall \alpha \in \mathbb{C}, x \in X \cdot : \mathbb{C} \times X \to X$$

 $(\alpha \cdot x)(s) = \alpha x(s)$

Norm

• **Definition:** Eine reelle Funktion $||\cdot||$, definiert auf einem linearen Raum X, ist eine Norm auf X, wenn gilt:

- (N1) Nichtnegativität: $||x|| \ge 0$, für alle $x \in X$
- (N2) Dreiecksungleichung: $||x_1 + x_2|| \le ||x_1|| + ||x_2||$, für alle $x_1, x_2 \in X$
- (N3) Homogenität: $||\alpha x|| = |\alpha|||x||$, für alle $x \in X$
- (N4) Definitheit: ||x|| = 0 dann, und nur dann, wenn x = 0

Normierte Lineare Räume

• **Definition:** Ein normierter linearer Raum ist ein Paar $(X, ||\cdot||)$ bestehend aus einem linearen Raum X und einer Norm auf X.

Beispiele für Normierte Lineare Räume

• linearer Raum \mathbb{R}^n oder \mathbb{C}^n mit einer der folgenden Normen:

Summennorm (1-Norm):
$$||\mathbf{x}||_1 = \sum_{i=1}^n |x_i|$$

Euklidische Norm (2-Norm):
$$||\mathbf{x}||_2 = \sqrt{\sum_{i=1}^n |x_i|^2}$$

p-Norm:
$$||\mathbf{x}||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{1/p} \text{ für } 1 \le p < \infty$$

Maximum snorm:
$$||\mathbf{x}||_{\infty} = \max_{i=1,\dots,n} |x_i|$$

Beispiele für Normierte Lineare Räume

- linearer Raum $L^p:=\{x:\mathbb{R} \to \mathbb{C}: \int_{-\infty}^\infty |x(t)|^p \mathrm{d} t < \infty\}$ mit der Norm $||x||_{L^p}:=\left(\int_{-\infty}^\infty |x(t)|^p \mathrm{d} t\right)^{1/p}$
- linearer Raum $I^p := \{x : \mathbb{Z} \to \mathbb{C} : \sum_{n=-\infty}^{\infty} |x[n]|^p < \infty \}$ mit der Norm $||x||_{I^p} := \left(\sum_{n=-\infty}^{\infty} |x[n]|^p\right)^{1/p}$

Einteilung der Signale

