

Projet 2 Data Analyst: Création d'un système de recommandation de films (WildSalto)

Par Maëlle, Sabrina, Vincent et Laëtitia 28 Janvier 2022

Sommaire:

- Objectif du projet
- Présentation de l'équipe
- Planning
- Etapes
- Etape 1 : Analyse
- Etape 2 : Sélection
- Etape 3 : Algorithme de films

Objectif du projet :

Nous sommes Data Analyst freelance. Un cinéma en perte de vitesse situé dans la Creuse nous contacte.

Il nous demande de <u>créer un moteur de recommandation de</u> <u>films</u> qui à terme, enverra des notifications aux clients via une application web.

Au départ, aucun client n'a renseigné ses préférences, <u>nous sommes dans une situation de cold start</u>. Mais heureusement, le cinéma fournit une base de données de films basée sur la célèbre plateforme IMDb.

Nous disposions de **5 semaines** pour réaliser ce projet.

Outils utilisés :

Trello : suivi de projet Jupyter, Visual Studio

Code: notebooks

Suite Google : réunions,

présentation

Slack: communication

Datasets IMDb : lien

Présentation de l'équipe :

MaëlleData Analyst

SabrinaData Analyst

VincentData Analyst

Laëtitia Data Analyst

Planning:

Semaines 1-2

Appropriation et première exploration des données (Pandas, NumPy, Matplotlib)

Semaine 4

Modèles de Machine Learning, recommendations (Scikit-Learn)

Décembre

Janvier

Semaines 2-3

Jointures, filtres, nettoyage, recherche de corrélations (Pandas, Seaborn)

Semaine 5

Affinage, présentation et Demo Day

Étapes:

- → Analyse complète
- → Sélection
- → Algorithme de recommandation de films

_

Étape 1 :

Analyse complète des bases de données

Objectif:

Prise de connaissance des contenus de chaque table, puis sortie de KPI sous forme de graphiques pertinents.

Grâce à cette étape, nous pourrons ensuite spécialiser notre cinéma.

7 tables:

Volume des tables

Quantité des données par table

Analyse des tables :

NAME BASICS : ACTEURS					
nconst	primaryName	birthYear	deathYear	primary Profession	knownForTitles
nm0000001	Fred Astaire	1899	1987	soundtrack,actor,miscellaneous	tt0072308,tt0050419,tt0053137,tt0031983
nm0000002	Lauren Bacall	1924	2014	actress,soundtrack	tt0117057,tt0075213,tt0038355,tt0037382
nm0000003	Brigitte Bardot	1934	\N	actress,soundtrack,music_department	tt0049189,tt0054452,tt0057345,tt0056404
nm0000004	John Belushi	1949	1982	actor,soundtrack,writer	tt0080455,tt0072562,tt0077975,tt0078723
nm0000005	Ingmar Bergman	1918	2007	writer,director,actor	tt0050976,tt0050986,tt0060827,tt0083922

	TITLE BASICS							
tconst	titleType	primaryTitle	originalTitle	is Adult	startYear	endYear	runtimeMinutes	genres
tt0000001	short	Carmencita	Carmencita	0	1894	/N	1	Documentary, Short
tt0000002	short	Le clown et ses chiens	Le clown et ses chiens	0	1892	/N	5	Animation
tt0000003	short	Pauvre Pierrot	Pauvre Pierrot	0	1892	\N	4	Animation
tt0000004	short	Un bon bock	Un bon bock	0	1892	\N	12	Animation
tt0000005	short	Blacksmith Scene	Blacksmith Scene	0	1893	\N	1	Comedy

	-	TITLE	AKAS : TITRES	FILMS	10000	-	
titleId = tconst	ordering	title	region	language	types	attributes	isOriginalTitle
tt0000001	1	Карменсіта	UA	\N	imdbDisplay	\N	0
tt0000001	2	Carmencita	DE	\N	\N	literal title	0
tt0000001	3	Carmencita - spanyol tánc	HU	\N	imdbDisplay	\N	0
tt0000001	4	Καρμενσίτα	GR	\N	imdbDisplay	\N	0
tt0000001	5	Карменсита	RU	\N	imdbDisplay	\N	0

TITLE RATINGS					
averageRating	numVotes				
5.7	1847				
6.0	238				
6.5	1609				
6.0	155				
6.2	2432				
	5.7 6.0 6.5 6.0				

Nombre de films par genre

Sélection des genres Comédie, Drame, Romance

Nombre de films par année de sortie

Sélection: 1950 - 2022

Nombre de films vs durée moyenne par catégories

Nombre de films par type

Sélection: movie

"Anomalies" observées durant l'exploration des données :

- C. Daveillans, né en 1962, mort en 1936!
- Dennis Reddy: mort en 1967 au lieu de 1947!
- Michael Hook: né en 1946, mort en 1913!
- Titus Livius : né en -59 avant JC est présent!
- Felipe Villanueva (1862-1863) apparaît dans des films des années 1980!
- Jakob Haringer (1948-1948) était scénariste en 1994...
- Aristote : -384 / -322 avant JC est présent!
- Charline Arthur (1929-1929): apparaît dans un doc de 2001!
- Yuki Kawamura, née en 1998, connue pour des films de 1968 et 1972!
- Le saviez-vous ? Dexter The Kitten ("A Cat's Life") était un chaton victime de cruauté animale...:(
- Une ligne d'une série dont les éléments d'une colonne sont décalées (ie: le type dans le runtime :-D)

Inconvénient du NoSQL nous pouvons insérer n'importe quoi : il y a beaucoup d'erreurs...

Cette étape nous a permis de procéder à notre sélection, afin de spécialiser notre cinéma.

Étape 2 : Sélection de films

Objectif:

Dans le cadre de la spécialisation du cinéma. Puis, nouvelle sortie de KPI sous forme de graphiques pertinents pour notre sélection.

Notre sélection IMDb

Elle se compose de films :

- tous publics
- toutes nationalités

Genres de film:

- Comedy
- Drama
- Romance

Dates de sortie de films comprises entre :

- 1950 et 2022

Durées de films comprises entre :

- 69 et 240 min

Elle compte:

169 929 films!

Nombre de films par genre

Genres principaux Drame, Romance, Comédie

Notation et nombre de votes par genres

Genres principaux : Drame, Romance, Comédie

Analyse Durée vs Notation de la sélection. Sur la catégorie principale du film Comédie ou Dramatique ou Romance.

Evolution Durée Par Date de Sortie

Répartition nombre de films selon leur date de sortie

Les 10 films ayant eu le plus de votes

Top 10 des films ayant obtenu le plus de votes

Étape 3:

Utilisation d'un algorithme de recommandation de films

Objectif:

Réalisation et application de modèles de Machine Learning à partir de la sélection pour la recommandation de films aux clients.

Cette étape nous a permis de pouvoir faire fonctionner notre algorithme.

Définition des features :

- Nombre de traduction par film :
 - o nombre de régions par titre (tconst)
- Langues dans lesquelles le film a été traduit :
 - o Français, Anglais GB, Anglais US
- Titres traduits en Français:
 - Pour la recherche par nom de films
- Nombre de genre par film :
 - On peut avoir jusqu'à 3 genres
- Nombre d'acteurs, d'actrices, de "self" (acteurs ayant joué leur propre rôle)
- Création de colonnes (+ de 4000) pour chaque réalisateur dont les films sont les mieux notés (>8)

Cette étape permet au client d'avoir des recommandations de films en fonction d'un titre.

Point sur notre modèle

Points positifs

- Le film recherché est trouvé (quand il est dans la base)
- Message lorsque le film cherché n'est pas dans la base
- Proposition de films si plusieurs films du même titre

Points d'amélioration

- Ajouts de features :
- % d'actrices
- Acteurs célèbres
- Permettre de faire des recherches en fonction du titre original
- Réduire le nombre de colonnes de réalisateurs (test d'un top 100)