Hadamard 门作用在全 0 态上

Hadamard 门作用在全 0 态上的结果为:

$$H^{\otimes n}|0 = H|0 \otimes H|0 \otimes ... \otimes H|0 = \frac{1}{\sqrt{2^n}} \sum_{x=0}^{2^n - 1} |x|^{-1}$$

其中,|x| 表示所有 n 比特的二进制数,即 $|x|=|x_1x_2...x_n$,其中 $x_1,x_2,...,x_n$ 可以是 0 或 1。所以,Hadamard 门作用在全 0 态上,得到 的结果是所有可能的 n 比特的二进制数的叠加。

Hadamard 门作用在任意 n 比特基态上

Hadamard 门可以作用在任意 n 比特的基态上, 其作用结果为:

$$H(|y\rangle) = \frac{1}{\sqrt{n}} \sum_{x=0}^{2^{n}-1} (-1)^{x \cdot y} |x\rangle$$

= $\frac{1}{\sqrt{n}} \left(|0\rangle + (-1)^{0 \cdot y} |1\rangle + \dots + (-1)^{(2^{n}-1) \cdot y} |2^{n} - 1\rangle \right)$

其中, $|y\rangle$ 表示任意 n 比特的基态,即 $|y\rangle=|y_{n-1}y_{n-2}\dots y_1y_0\rangle$,其中 $y_{n-1},y_{n-2},\dots,y_1,y_0$ 可以是 0 或 1。作用后,Hadamard 门将基态变换成一组叠加态。

逻辑运算和结果

我们定义一个操作 $r \cdot y$ 来表示逻辑运算,其中 y 是一个 n 比特的二进制数,表示为 $y = y_{n-1}y_{n-2} \dots y_1y_0$ 。操作 $r \cdot y$ 的计算过程如下:

$$r \cdot y = (1 \oplus y_0) \cdot (0 \oplus y_1) \cdot (1 \oplus y_2) \cdot \dots \cdot (n - 2 \oplus y_{n-2}) \cdot (1 \oplus y_{n-1})$$

= $(1 - y_0) \cdot (y_1) \cdot (1 - y_2) \cdot \dots \cdot ((n - 2) - y_{n-2}) \cdot (1 - y_{n-1})$

其中, \oplus 表示 XOR(异或)运算, $1-y_i$ 表示取反操作。接下来,我们考虑将操作 $r\cdot y$ 应用到基态 $|x\rangle = |x_{n-1}x_{n-2}\dots x_1x_0\rangle$ 上。我们看到,当 $x_i=1$ 时,会出现 $(-1)^{ry}$ 作为 $|x\rangle$ 的系数。为了获得 $|r\rangle$ 的系数为 -1,我们需要同时满足条件 $s_i=1$ 和 $y_i=1$,或者 $x_i=1$ 且 $y_i=0$ 。这相当于在经典逻辑中进行 AND 运算。最后, $|r\rangle$ 的系数为 1 的条件是 $|r\cdot x\rangle$ 中 1 的数量为奇数,这可以通过对所有运算结果进行经典的 XOR 操作得到。

三种计算 H 211

Method 1: 我们可以直接对 H 2|11

Method 2: 我们可以先对每个单比特进行 H 操作,然后再计算张量积:

$$H2|11 = H|1 \otimes H|1$$
= (0) \otimes (0) + (-1) \otimes (0) + (0) \otimes (-1) + (-1) \otimes (-1)
= (0) + (-1) + (0) + 1
= 0

Method 3: 我们可以逐个计算每个单比特上的 H 操作,然后再计算张量积:

$$H2|11 = H|1 \otimes H|1$$
= (0) \otimes (0) + (-1) \otimes (0) + (0) \otimes (-1) + (-1) \otimes (-1)
= (0) + (-1) + (0) + 1
= 0

三种计算 $H^{\otimes 2}00$ 的方法

Method 1: 我们可以直接对 $H^{\otimes 2}00$ 进行操作:

$$H^{\otimes 2}00 = H^{\otimes 2}0 \otimes H^{\otimes 2}0$$

$$= (H0) \otimes (H0)$$

$$= \frac{1}{\sqrt{2}}(0+1) \otimes \frac{1}{\sqrt{2}}(0+1)$$

$$= \frac{1}{2}(00+01+10+11)$$

三种计算 $H^{\otimes 2}00$ 的方法

Method 2: 我们可以先对每个单比特进行 H 操作,然后再计算张量积:

$$H^{\otimes 2}00 = H0 \otimes H0$$

$$= \frac{1}{\sqrt{2}}(0+1) \otimes \frac{1}{\sqrt{2}}(0+1)$$

$$= \frac{1}{2}(00+01+10+11)$$

三种计算 $H^{\otimes 2}00$ 的方法

Method 3: 我们可以逐个计算每个单比特上的 H 操作,然后再计算张量积:

$$H^{\otimes 2}00 = H0 \otimes H0$$

$$= \frac{1}{\sqrt{2}}(0+1) \otimes \frac{1}{\sqrt{2}}(0+1)$$

$$= \frac{1}{2}(00+01+10+11)$$

因此,三种方法都得到了相同的结果,即 $H^{\otimes 2}00 = \frac{1}{2}(00 + 01 + 10 + 11)$ 。