

Evolution of Baffin Bay water masses and transport in a climate change experiment including Greenland runoff

Nathan Grivault, Xianmin Hu and Paul G. Myers Earth and Atmospheric Sciences, University of Alberta, Edmonton

Outline

- Introduction:
 - Baffin Bay and water masses
- Numerical experiments:
 - Domain and forcing
- Results:
 - Heat and Freshwater budget in Baffin Bay
 - Heat and Freshwater transport in and out of Baffin Bay
 - Evolution of Baffin Bay water masses
- Conclusions

Introduction

Baffin Bay:

 Polar water inflow through the Canadian Arctic Archipelago

 Atlantic water inflow through Davis Strait

• Gyre in Baffin Bay, mixing

Aim of this study:

 Quantify the qualitative importance of Greenland runoff

 Relate the evolution of Baffin Bay heat content to recent studies

Introduction

Myers and Ribergaard, 2013

Baffin Bay water masses

 Definition based on the water masses going through Davis Strait (Curry et al., 2011)

Curry and Lee, 2011

WGIW: West Greenland Irminger Water

WGSW: West Greenland Slope Water

Transitional Water TrW:

AW: **Arctic Water**

Nathan Grivault - grivault@ualberta.ca

Numerical experiments

Model configuration

Model: NEMO v3.1

Sea Ice : LIM2-EVP

OBC : East & West

H. Grid : 568x400

V. Levels: 46

H. Res. : 11 – 15km

T. Step : 800s

Hu and Myers, 2013

Heat and Freshwater Budgets

Tref: - 2°C

Budget = In - Out + Surface flux + Storage

All output data are yearly averaged

Heat transport at the domain boundaries

Greenland He • W tra

Solid line: South transport Dashed line: North transport

Heat transport (Tref: -2°C) Negative: southward transport

Freshwater transport at the domain boundaries

Solid line: South transport Dashed line: North transport

- Impact of the forcing:
 - Less transport in and out Baffin Bay
- Cannot explain the changes in the freshwater budget

Freshwater transport (Sref. 34.8 g/kg) Negative: southward transport

Water masses evolutions

Climatology Changes may come from: Inter-annual 14. West Greenland Slope Water West Greenland Irminger Water More inflow/outflow from a particular water mass Change in the surface fluxes Change of the water proprieties in 2010 1990 the Bay Temperature (°C) WGIW ဋ 45 **WGSW** Arctic Water TrW Transitional Water 2010 Evolution of the volume of individual water mass AW in Baffin Bay Salinity (g/kg)

33.7

34.1

Water masses evolutions: impact on the heat budget

Temperature (°C)

WGSW

TrW

O-AW

-2

33.7

34.1

Salinity
(g/kg)

- Difference in heat content
 - WGSW \rightarrow WGIW \rightarrow TW \rightarrow AW

Evolution of the volume of individual water mass evolution in Baffin Bay

Water masses evolutions: impact on the freshwater budget

- Difference in freshwater content
 - AW → TW → WGSW → WGIW

Temperature (°C)

WGSW

33.7

34.1

TrW

AW

Evolution of the volume of individual water mass evolution in Baffin Bay

Salinity (g/kg)

Conclusions

- Impact of the runoff in your numerical simulation: numerical output closer to measurement data
- The warming since the 90s is driven by the WGIW
- The freshening driven by a combination of all water masses
- The potential impact of heat/freshwater changes on:
 - Circulation? Geostrophic current?
 - West Greenland glaciers
 - Deep convection in Labrador Sea?

Questions?