Introduction			
1	Briefly explain the concept of dynamic programming with example.	8	Jul 17
Multi	stage Graph		
2	Explain multistage graph with example.	4	Jul 17, Jul18
3	Write multistage graph algorithm using forward approach.	6	Jul 17
4	Write multistage graph algorithm using backward approach.	6	Jul 18 Jan 20
6	Find the shortest path from S to T in the following multistage graph using dynamic programming. Use forward approach to solve the problem. Find the shortest path from A to L, in the following multistage graph, using dynamic programming. Use forward approach to solve the problem. V1 V2 V3 V4 V5 B 4 G 7 J 8 L	8	
Trans	Define transitive closure. Write Warshall's algorithm to compute transitive closure. Find its efficiency.	8	Jan 18
8	Generate transitive clossure of the graph given below.	7	Jan 13

9	Trace the following graph using Warshalls algorithm to find transitive clossure.	8	Jan 17 Jul 18 Jan 20
10	Define transitive ve clossure of a directed graph. Find the transitive clossure matrix for the graph whose adjancency matrix is given. $\begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$ air shortest path - Floyds Algorithm	10	Jul 19
11	What is dynamic programming. Explain how would you solve all pair shortest path problem using dynamic programming.	6	Jan 20
12	Apply floyds algirthm to find the all pair shortest path for the graph given below.	8	Jan 14
13	Apply floyds algirthm to find the all pair shortest path for the graph given below. $\begin{bmatrix} 0 & \infty & 3 & \infty \\ 2 & 0 & \infty & \infty \\ \infty & 7 & 0 & 1 \\ 6 & \infty & \infty & 0 \end{bmatrix}$	8	Jul 18

14	Define optimal Binary Serach Tree. Write a pseudocode to find an optimal binary search tree using dynamic programming.	8	Jan 18
15	Find the optimal binary search tree for the keys given below. $\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	Jan 20 Jul 19
16	Find the optimal binary search tree for the keys A, B, C, D, E with search probabilities 0.1, 0.1, 0.2, 0.2, 0.4 respectively.	8	
Knap	sack Problem		
17	Solve the following instance of 0/1 knapsack problem using dynamic programming. Knapsack capacity is W=5 and n=4	6	Jul 17 Jul 16
18	Solve the Knapsack instance n=3, $\{w1, w2, w3\} = \{1, 2, 2\}$ and $\{p1, p2, p3\} = \{18, 16, 6\}$ and M=4 by dynamic programming.	4	Jan 15
19	Apply bottom up dynamic programming algorithm for the following instance of the knapsack problem. Knapsack capacity = 10. Item Weight Value 1 7 42 2 3 12 3 4 40 5 25	10	Jul 19
Belln	nan-Ford Algorithm	1	ı
20	Explain Bellman-ford algorithm to find shortest path from single source to all destinations for a directed graph with negative edge cost.	8	Jul 18
21	Apply Bellman-ford algorithm to the graph given below, to find shortest path to all the vertices from vertex 1.	8	

26	$\begin{bmatrix} 0 & 10 & 15 & 20 \\ 5 & 0 & 9 & 10 \\ 6 & 13 & 0 & 12 \\ 8 & 8 & 9 & 0 \end{bmatrix}$ starting city 1 Solve the following TSP problem using dynamic programming. The starts 1.	rt city		
Relial	bility Design			
27	Design a 3-stage system with device types A, B, C whose costs are 30, 20 and reliability are 0.9, 0.8, 0.5 respectively. Budget available is 105 . Design a system with highest reliability.		3	
28	Design a 3-stage system with device types A, B whose costs are 30, 20 reliability are 0.7, 0.5 respectively. Budget available is 110 . Design a sy with highest reliability.		;	