Survival Analysis of Heart Failure patients

This Project is a study of the patients survival rate due to heart failure condition. One of the premise of this study is that it was based on other researches on Cardiovascular diseases of the heart, which has become very common in medical profession. For more understanding on the study use link below

https://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/s12911-020-1023-5

For this project, we used different models from lifelines python library to predict patients survival of heart failure. The data comprised of 13 features and 299 observations.

Features: age, anaemia, creatinine_phosphokinase, diabetes, ejection_fraction, high_blood_pressure, platelets, serum_creatinine, serum_sodium sex, smoking, time and death_event

```
In [2]: # Libraries to be used for the model (project)
   import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import statsmodels.api as sm
   from lifelines import WeibullFitter
   from lifelines import KaplanMeierFitter
   from lifelines.plotting import plot_lifetimes
```

Next thing we do is to load the data to run the survival analysis after calling the basic library

```
In [3]: dat=pd.read_csv("Desktop/Data.csv") # dataset containing 299 rows and 13 columns was used for this analysis
display(dat)
```

	age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinine	serum_sodium	sex
0	75.0	2	582	2	20	1	265000.00	1.9	130	1
1	55.0	2	7861	2	38	2	263358.03	1.1	136	1
2	65.0	2	146	2	20	2	162000.00	1.3	129	1
3	50.0	1	111	2	20	2	210000.00	1.9	137	1
4	65.0	1	160	1	20	2	327000.00	2.7	116	2

	age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinine	serum_sodium	sex
•••										
294	62.0	2	61	1	38	1	155000.00	1.1	143	1
295	55.0	2	1820	2	38	2	270000.00	1.2	139	2
296	45.0	2	2060	1	60	2	742000.00	0.8	138	2
297	45.0	2	2413	2	38	2	140000.00	1.4	140	1
298	50.0	2	196	2	45	2	395000.00	1.6	136	1

299 rows × 13 columns

Data Cleaning

Out[4]:		age	$creatinine_phosphokinase$	ejection_fraction	platelets	serum_creatinine	serum_sodium	time
	0	False	False	False	False	False	False	False
	1	False	False	False	False	False	False	False
	2	False	False	False	False	False	False	False
	3	False	False	False	False	False	False	False
	4	False	False	False	False	False	False	False
	•••							

	age	$creatinine_phosphokinase$	ejection_fraction	platelets	serum_creatinine	serum_sodium	time
294	False	False	False	False	False	False	False
295	False	False	False	False	False	False	False
296	False	False	False	False	False	False	False
297	False	False	False	False	False	False	False
298	False	False	False	False	False	False	False

299 rows × 7 columns

Data description and basic statistics

The table below shows the basic statistics of the different variables which gives the mean, std, quantile ranges and maximum and minimum values of each variable. Also helps with an indication of how the data is distributed.

In [5]: # for continuous variable in the data
 dat2.describe()

()	1.1	+	
\cup	ч	_	

	age	$creatinine_phosphokinase$	ejection_fraction	platelets	serum_creatinine	serum_sodium	time
count	299.000000	299.000000	299.000000	299.000000	299.00000	299.000000	299.000000
mean	60.833893	581.839465	38.083612	263358.029264	1.39388	136.625418	130.260870
std	11.894809	970.287881	11.834841	97804.236869	1.03451	4.412477	77.614208
min	40.000000	23.000000	14.000000	25100.000000	0.50000	113.000000	4.000000
25%	51.000000	116.500000	30.000000	212500.000000	0.90000	134.000000	73.000000
50%	60.000000	250.000000	38.000000	262000.000000	1.10000	137.000000	115.000000
75%	70.000000	582.000000	45.000000	303500.000000	1.40000	140.000000	203.000000
max	95.000000	7861.000000	80.000000	850000.000000	9.40000	148.000000	285.000000

In [6]: # for categorical variable in the data
 categoricaldata=pd.read_csv("Desktop/catbook.csv") # dataset containing 299 rows and 13 columns was used for this analysi
 display(categoricaldata)

Table below shows the percentage summary of the different categorical variables in the data. # Its also further split into dead and survived patients.

	Category feature	Total	%	Dead Total	%.1	Survived Total	%.2
0	Anaemia_nopresence	170	56.86	50	52.08	120	59.11
1	Anaemia_presence	129	43.14	46	47.92	3	40.89
2	High blood pressure_nopresence	194	64.88	57	59.38	137	67.49
3	High blood pressure_presence	105	35.12	39	40.62	66	32.51
4	Diabetes_nopresence	174	58.19	56	58.33	118	58.13
5	Diabetes_presence	125	41.81	40	41.67	85	41.87
6	Sex_women	105	35.12	34	35.42	71	34.98
7	Sex_man	194	64.88	62	64.58	132	65.02
8	Smoking_nopresence	203	67.89	66	68.75	137	67.49
9	Smoking_presence	96	32.11	30	31.25	66	32.51

Correlation

Because this study focuses on multivariate features in patients survival rate (death rate) from heart failure, we tried to get an overview of how the features are associated by doing a correlation to determine if there is any other relationship that exist between them.

In [7]: # We also used Correlation matrix to determine the relationship between features that are highly correlated round(dat.corr(),3)

Out[7]:		age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinin
	age	1.000	-0.088	-0.082	0.101	0.060	-0.092	-0.052	0.15
	anaemia	-0.088	1.000	0.191	-0.013	-0.032	0.025	0.044	-0.05
	creatinine_phosphokinase	-0.082	0.191	1.000	0.010	-0.044	0.069	0.024	-0.01
	diabetes	0.101	-0.013	0.010	1.000	0.005	0.004	-0.092	0.04
	ejection_fraction	0.060	-0.032	-0.044	0.005	1.000	-0.024	0.072	-0.01
	high_blood_pressure	-0.092	0.025	0.069	0.004	-0.024	1.000	-0.033	0.00

	age	anaemia	creatinine_phosphokinase	diabetes	ejection_fraction	high_blood_pressure	platelets	serum_creatinin
platelets	-0.052	0.044	0.024	-0.092	0.072	-0.033	1.000	-0.04
serum_creatinine	0.159	-0.052	-0.016	0.047	-0.011	0.007	-0.041	1.00
serum_sodium	-0.046	-0.042	0.060	0.090	0.176	-0.050	0.062	-0.18
sex	-0.075	-0.106	-0.073	-0.168	0.162	-0.102	0.127	-0.00
smoking	-0.059	-0.089	0.004	-0.156	0.064	-0.044	-0.018	0.03
time	-0.224	0.141	-0.009	-0.034	0.042	0.174	0.011	-0.14
DEATH_EVENT	0.254	-0.066	0.063	0.002	-0.269	-0.068	-0.049	0.29

import seaborn as sns
Correlation visualization to show continuous features that are highly correlated
plt.figure(figsize=[20,10])
matrix=round(dat.corr(),3)

sns.heatmap(matrix,annot=True) # cmap="YLGnBu"
plt.show()

https://rpubs.com/aeghorie/982981 5/29

The correlation plots help us identify other relationships between the features. From the correlation plot, Time(follow-up period) seems to be the highest positive relationship with death_event. This is understable as patients recovery is associated with recuperation time. There also seems to be a 40% relationship between sex and smoking. These results can be used for future studies with other multivariate techniques.

Lifeline plots

```
plot_lifetimes(df['time'])
plt.title('lifetimes plot in days')
plt.xlabel('time in days')
plt.ylabel('patients')
plt.show()
```


Histogram to show frequency of death patients against survived time in days

```
In [10]: # Survival model to predict patients death rate and survival probability
    T=dat[dat['DEATH_EVENT']==1]['time'] # 1 means a death_event occured, while 0 is patient survived
    #plt.figure(figsize=[15,7]) # we selected death event to visualize how long they survived
    plt.hist(T,bins=20)
    #plt.hist(T)

plt.title('Survival time in days')
    plt.xlabel('time in days')
```

https://rpubs.com/aeghorie/982981 7/29

```
plt.ylabel('Freq of deaths')
plt.show()
```


Cummulative failure plots to describe death rate

```
# Next we calculate the cummulative failure probability, to show the chance of failure (death) by time (days)
In [11]:
           dsort=dat.sort values(by='time')
           #display(dsort)
           cumdat=dsort[dsort['DEATH EVENT']==1] # exact failure data after removing censored data
           #display(cumdat)
           cumfailure=cumdat['DEATH_EVENT'].cumsum()
                                                        # cumulative failure data
           #Ft=cumfailure/299 # failure rate
           Ft=(cumfailure-0.3)/(299+0.4) # failure rate using rank
           plt.plot(cumdat['time'],Ft,label='cummulative failure (deaths)')
           plt.axvline(x=249, color='b')
           # kaplanmeier
           km=KaplanMeierFitter()
           kmf=km.fit(dat['time'],dat['DEATH EVENT'])
           #kmf.plot()
           kmf.plot cumulative density(label='kaplanMeier')
           plt.legend()
           plt.show()
```


From the plot, there is a slight difference in the projection of curves between the 2 kaplanmeier and cummulative failure rate. However, the curves also indicates increasing death rate overtime, but stops before the 250th day of the follow-up time, where there seems to be no more deaths (heart failure).

Next we worked on the development of a model which we can use to predict the survival rate of patients with heart failure. For this we tried diffrent distribution models to check which one will be a better fit. 2 distributions we considered were weibull distribution and exponential distribution.

We also compared the model estimates and considered maximum likelihood and AIC of both models. A model with a smaller AIC value is a better fit, while the model with a higher(maximum) loglikehood is a good fit.

Other things considered was kaplanmeier survival plot against the survival plots of both models to visualize the direction of the curve.

And finally a comparism of the data probability plot, to check how the observations are clustered along the intercept. This is also a good indication that the model will be a better fit if the observations are aligned with the slope curve of the model.

	coef	se(coef)	coef lower 95%	coef upper 95%	cmp to	z	р	-log2(p)		
lambda_	405.708301	41.407427	324.551236	486.865366	0.0	9.79796	1.148826e-22	72.882258		
AIC of Exponential model is: 1347.081826041116 The loglikelihood for exponential dist is -672.54										

	coef	se(coef)	coef lower 95%	coef upper 95%	cmp to	Z	р	-log2(p)
lambda_	491.735790	80.564012	333.833227	649.638352	1.0	6.091253	1.120303e-09	29.733464
rho_	0.833304	0.076913	0.682557	0.984051	1.0	-2.167328	3.020983e-02	5.048838

```
AIC of Weibull model is: 1344.8757115822702
The loglikelihood for weibull dist is -670.44
```

After running innitial analyais, its observed that Weibull distribution has a higher loglikelihood and the smallest AIC when compared with exponential model. Therefore its a better fit for the model. Below is also visual represesentation of the distribution models in comparism with kaplanmeier fitting

```
In [13]: # survival probability plot of different distribution models in comparism with kaplanmeier probability plot

# probability plots of different models
plt.figure(figsize=[16,4])
plt.subplot(1,2,1) # # exponential
ef.plot_survival_function()
plt.xlabel('Days Survived')
plt.ylabel('Survival Prob')
plt.subplot(1,2,2) # weibull
```

```
wf.plot_survival_function()
plt.xlabel('Days Survived')
plt.ylabel('Survival Prob')
plt.show()
#wf.plot hazard()
#plt.xlabel('Days Survived')
#plt.ylabel('Hazard Rate')
#plt.show()
# Comparing survival curve of 2 models with kaplanMeier
# kaplanMeier
plt.figure(figsize=[12,10])
km.plot(label='kaplanMeier')
#weibull distribution
wf.plot_survival_function(label='weibull')
# exponential distribution
ef.plot_survival_function(label='exponential')
plt.xlabel('Days Survived')
plt.ylabel('Survival Prob')
plt.show()
1.0
                                                        1.0
                                    Exponential estimate
                                                                                               Weibull estimate
0.9
                                                         0.9
```


The curve indicates a steady decline in patients survival rate after 250 days. This means most patients who died of heart failure happened in the latter days of treatment. This might be due to risk of the underlying ailment that led to cause of the heartfailure, or may be the patients were unable to get adequate treatment.

And finally the survival plot of the 2 models also reveals which model follows the kaplanMeier curve. The green curve which respresents exponential distribution survival plot seems to be a little bit deviated from the blue curve which represent kaplanMeier survival plot, while

the orange plot seems to be inline with it.

To further explore which model is a better fit, we can use the probability plot of the 2 models to reveal which one has more observations clustered around slope line

```
In [14]:
          # probability data ploting is another way to check model fitting and also helps in validating maximum likelihood estimati
          # exponential
          # Assuming the life-time of the patients follow exponential distribution, we can fit the model in
          # ordinary least squares regression to estimate coefficients that helps us to visualise the data
          \# Input and output is derived by using exponential distribution formula for reliability -ln(1-Ft)=lambda*time
          #cumdat
          expl=cumdat['time']
          lnft=-np.log(1-Ft)
          elm=sm.OLS(lnft,expl) # because its exponential, it doesn't require a constant
          res elm=elm.fit()
          print(res elm.summary())
          print('lambda is:', res elm.params.time)
          plt.figure(figsize=[12,9])
          plt.subplot(1,2,1)
          plt.scatter(expl,lnft,label='Obs')
          plt.plot(expl,res elm.predict(expl) ,label='Exp model')
          plt.title('Exponential probability plot')
          plt.xlabel('survival time in days')
          plt.ylabel('-ln(1-Ft)')
          plt.legend()
          print('\n######################### weibull #############################"')
          # weibull formula for reliability ln(-ln(1-Ft))= beta*ln*time - beta*ln*alpha
          weil= np.log(cumdat['time'])
          xweil= sm.add constant(weil) # weibull requires a constant because it has slope and intersect
          yweil= np.log(lnft)
          wlm=sm.OLS(yweil,xweil)
          res wlm=wlm.fit()
          print(res wlm.summary())
          print('alpha is:', np.exp(-(res wlm.params.const/res wlm.params.time)))
          print('beta is:', 1/res wlm.params.time)
          plt.subplot(1,2,2)
          plt.scatter(weil,yweil,label='Obs')
```

```
plt.plot(weil,res_wlm.predict(xweil) ,label='Weibul model')
plt.title('Weibull probability plot')
plt.xlabel('survival time in days')
plt.ylabel('ln(-ln(1-Ft))')
plt.legend()
plt.show()
```


______ Dep. Variable: DEATH EVENT R-squared (uncentered): 0.935 Adj. R-squared (uncentered): Model: OLS 0.934 Method: Least Squares F-statistic: 1367. Date: Mon, 12 Dec 2022 Prob (F-statistic): 3.43e-58 Time: 16:55:42 Log-Likelihood: 143,43 No. Observations: 96 AIC: -284.9 Df Residuals: 95 BIC: -282.3

Df Model: 1
Covariance Type: nonrobust

______ P>|t| 36,971 0.0022 5.91e-05 0.000 0.002 0.002 time ______ Omnibus: 29.210 Durbin-Watson: 0.020 Prob(Omnibus): 0.000 Jarque-Bera (JB): 44.060 Skew: -1.394 Prob(JB): 2.71e-10 Kurtosis: 4.800 Cond. No. 1.00 ______

Notes:

- [1] R² is computed without centering (uncentered) since the model does not contain a constant.
- [2] Standard s assume that the covariance matrix of the s is correctly specified.

lambda is: 0.0021867574032586176

coef

std err

OLS Regression Results

_____ Dep. Variable: DEATH EVENT R-squared: 0.884 Model: Adj. R-squared: 0.883 OLS Method: Least Squares F-statistic: 716.7 Date: Mon, 12 Dec 2022 Prob (F-statistic): 9.14e-46 16:55:42 Time: Log-Likelihood: -32,772 No. Observations: 96 AIC: 69.54 Df Residuals: 94 BIC: 74.67 Df Model: 1 Covariance Type: nonrobust ______

t

https://rpubs.com/aeghorie/982981

[0.025

0.975]

P>|t|

const	-5.5710	0.137	-40.732	0.000	-5.843	-5.299	
time	0.9267	0.035	26.771	0.000	0.858	0.995	
========	========	=======	=======	=========	=======	=======	
Omnibus:		66.	287 Durb	in-Watson:		0.065	
Prob(Omnibu	s):	0.	000 Jarq	ue-Bera (JB)	:	320.339	
Skew:		-2.	297 Prob	(JB):		2.75e-70	
Kurtosis:		10.	680 Cond	. No.		16.3	
========							

Notes:

[1] Standard s assume that the covariance matrix of the s is correctly specified.

alpha is: 408.2465413413826 beta is: 1.0791364876436285

https://rpubs.com/aeghorie/982981 15/29

By careful observation between the 2 plots, it shows that weibull is a better fit for the model as most of the data points (observations) seems to be clustered along the slope line. Now we would use the weibull model to predict other features affecting heartfailure of the patients, This will help us determine which features are highly associated with patients survival

Out[15]:

	age	$creatinine_phosphokinase$	ejection_fraction	platelets	serum_creatinine	serum_sodium
0	75.0	582	20	265000.00	1.90	130
1	55.0	7861	38	263358.03	1.10	136
2	65.0	146	20	162000.00	1.30	129
3	50.0	111	20	210000.00	1.90	137
4	65.0	160	20	327000.00	2.70	116
•••						
220	73.0	582	20	263358.03	1.83	134
230	60.0	166	30	62000.00	1.70	127
246	55.0	2017	25	314000.00	1.10	138
262	65.0	258	25	198000.00	1.40	129
266	55.0	1199	20	263358.03	1.83	134

96 rows × 6 columns

```
In [16]: # using weibull survival model to observe other features against patients death
for column in cumdat2:

    print('\n#################################, column,'#######################")
    wf=WeibullFitter().fit(cumdat2[column],cumdat['DEATH_EVENT'])
    display(wf.summary)

    wf.plot_survival_function(label='weibul')
    plt.xlabel(column)
    plt.ylabel('Survival Prob')
    plt.show()
```

	coef	se(coef)	coef lower 95%	coef upper 95%	cmp to	Z	р	-log2(p)
lambda_	70.651805	1.428920	67.851174	73.452436	1.0	48.744382	0.000000e+00	inf
rho_	5.345640	0.411925	4.538281	6.152999	1.0	10.549579	5.102532e-26	84.018917

	coef	se(coef)	coef lower 95%	coef upper 95%	cmp to	z	р	-log2(p)
lambda_	551.824846	76.796256	401.306950	702.342742	1.0	7.172548	7.361450e-13	40.305075
rho_	0.780300	0.054459	0.673562	0.887038	1.0	-4.034208	5.478686e-05	14.155811

	coef	se(coef)	coef lower 95%	coef upper 95%	cmp to	z	р	-log2(p)
lambda_	37.613387	1.429357	34.811899	40.414875	1.0	25.615286	1.030769e-144	478.313924

	coef	se(coef)	coef lower 95%	coef upper 95%	cmp to	z	р	-log2(p)
lambda_	287538.155810	11229.168689	265529.389604	309546.922017	1.0	25.606273	1.298882e-144	477.980375
rho_	2.756795	0.208681	2.347788	3.165802	1.0	8.418574	3.810943e-17	54.542630

	coef	se(coef)	coef lower 95%	coef upper 95%	cmp to	Z	р	-log2(p)
lambda_	2.063559	0.148934	1.771653	2.355465	1.0	7.141130	9.256674e-13	39.974571
rho_	1.507325	0.100534	1.310282	1.704368	1.0	5.046303	4.504418e-07	21.082156

	coef	se(coef)	coef lower 95%	coef upper 95%	cmp to	Z	р	-log2(p)
lambda_	137.668670	0.489708	136.708860	138.628480	1.0	279.082022	0.000000e+00	inf
rho_	30.354604	2.280551	25.884806	34.824402	1.0	12.871716	6.494321e-38	123.534089

Among the different features, we observered the alpha of each feature, serum_creatinine with alpha value of 2.063559 and ejection_fraction with alpha value of 37.613387 which is very low compared with others. low alpha values indicate features are at risk, because the alpha tells us about the characteristic life of the model and how long it will last before it fails. Hence we want alphas of high values. Age is another likely indicator, it is the feature with the 3rd least alpha value of 70.651805. But observing the curve, its likely that patients within that age range from 70 and upwards have low survival probability. Other researches also concluded with same phenomenon that they are likely to have heart failure because they are in their older years of living.

```
In [17]: # checking accuracy of model technique 1

#from sklearn.model_selection import train_test_split

#cumdat2['Ft']=Ft # adding failure rate
#df_train, df_test = train_test_split(cumdat2, train_size=0.7, test_size=0.3)

#lnft2=-np.log(1-df_train['Ft'])

#weil= np.log(df_train)
#xweil= sm.add_constant(weil) # weibull requires a constant because it has slope and intersect
#yweil= np.log(lnft2)
#wlm=sm.OlS(yweil,xweil)
#res_wlm=wlm.fit()
#print(res_wlm.summary())
```

We can use CoxPHFitter from lifeline to check model accuracy and fitting. It will also help rank the features based on which features are

high risk for predicting survival probability of the patients

```
In [18]: # checking accuracy of model using CoxPHFitter from lifelines

from lifelines import CoxPHFitter
cph=CoxPHFitter()
cph.fit(dat, duration_col='time',event_col='DEATH_EVENT')
display(cph.summary)
display(cph.check_assumptions(dat, show_plots=False))
```

	coef	exp(coef)	se(coef)	coef lower 95%	coef upper 95%	exp(coef) lower 95%	exp(coef) upper 95%	cmp to	z	р	-log2(p)
covariate											
age	4.584074e- 02	1.046908	0.009278	0.027656	0.064026	1.028042	1.066120	0.0	4.940629	7.787076e- 07	20.292415
anaemia	-4.671758e- 01	0.626770	0.215895	-0.890321	-0.044030	0.410524	0.956925	0.0	-2.163908	3.047145e- 02	5.036398
creatinine_phosphokinase	2.155390e- 04	1.000216	0.000099	0.000021	0.000410	1.000021	1.000410	0.0	2.173347	2.975422e- 02	5.070762
diabetes	-1.392864e- 01	0.869979	0.223084	-0.576523	0.297950	0.561848	1.347095	0.0	-0.624367	5.323864e- 01	0.909454
ejection_fraction	-4.855312e- 02	0.952607	0.010523	-0.069178	-0.027928	0.933161	0.972458	0.0	-4.613947	3.950929e- 06	17.949377
high_blood_pressure	-4.316403e- 01	0.649443	0.210035	-0.843301	-0.019980	0.430288	0.980218	0.0	-2.055090	3.987031e- 02	4.648541
platelets	-3.470572e- 07	1.000000	0.000001	-0.000003	0.000002	0.999997	1.000002	0.0	-0.311286	7.555835e- 01	0.404337
serum_creatinine	3.237701e- 01	1.382330	0.070255	0.186073	0.461467	1.204511	1.586400	0.0	4.608514	4.055567e- 06	17.911665
serum_sodium	-4.433929e- 02	0.956629	0.023168	-0.089748	0.001070	0.914161	1.001070	0.0	-1.913786	5.564756e- 02	4.167538
sex	1.755524e- 01	1.191904	0.245300	-0.305226	0.656331	0.736957	1.927706	0.0	0.715665	4.741980e- 01	1.076439
smoking	-1.624323e- 01	0.850074	0.234804	-0.622640	0.297775	0.536526	1.346859	0.0	-0.691778	4.890767e- 01	1.031867

https://rpubs.com/aeghorie/982981 22/29

The ``p_value_threshold`` is set at 0.01. Even under the null hypothesis of no violations, some covariates will be below the threshold by chance. This is compounded when there are many covariates. Similarly, when there are lots of observations, even minor deviances from the proportional hazard assumption will be flagged.

With that in mind, it's best to use a combination of statistical tests and visual tests to determine the most serious violations. Produce visual plots using ``check_assumptions(..., show_plots=True)`` and looking for non-constant lines. See link [A] below for a full example.

chi squared

degrees_of_freedom

model < lifelines.CoxPHFitter: fitted with 299 total ...

test_name proportional_hazard_test

		test_statistic	р	-log2(p)
age	km	0.07	0.79	0.34
	rank	0.02	0.90	0.16
anaemia	km	0.00	0.99	0.02
	rank	0.01	0.93	0.10
$creatinine_phosphokinase$	km	1.10	0.29	1.77
	rank	1.07	0.30	1.73
diabetes	km	0.06	0.81	0.31
	rank	0.00	0.96	0.06
ejection_fraction	km	5.68	0.02	5.87
	rank	5.99	0.01	6.12
high_blood_pressure	km	0.20	0.66	0.61
	rank	0.18	0.67	0.58
platelets	km	0.05	0.82	0.29
	rank	0.16	0.69	0.53
serum_creatinine	km	3.23	0.07	3.79

		test_statistic	р	-log2(p)
	rank	3.51	0.06	4.03
serum_sodium	km	1.11	0.29	1.77
	rank	1.76	0.19	2.43
sex	km	0.06	0.80	0.32
	rank	0.15	0.70	0.52
smoking	km	0.77	0.38	1.40
	rank	0.52	0.47	1.08

1. Variable 'ejection fraction' failed the non-proportional test: p-value is 0.0144.

Advice 1: the functional form of the variable 'ejection_fraction' might be incorrect. That is, there may be non-linear terms missing. The proportional hazard test used is very sensitive to incorrect functional forms. See documentation in link [D] below on how to specify a functional form.

Advice 2: try binning the variable 'ejection_fraction' using pd.cut, and then specify it in `strata=['ejection_fraction', ...]` in the call in `.fit`. See documentation in link [B] below.

Advice 3: try adding an interaction term with your time variable. See documentation in link [C] below.

- - -

- [A] https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html
- [B] https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html#Bin-variable-and-stratify-on-it
- [C] https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html#Introduce-time-varying-covariates
- $\label{lem:proportion} \begin{tabular}{l} \begin{$
- [E] https://lifelines.readthedocs.io/en/latest/jupyter_notebooks/Proportional%20hazard%20assumption.html#Stratification

[]

Based on the rank ejection_fraction has the highest rank 5.99, serum_creatinine is the 2nd highest with 3.23 and the other continuous features are below 1.76. For categorical, smoking is 0.52, high_blood_pressure is 0.18 and sex is 0.15, the others were below 0.01.

```
In [19]: # kaplan Meier curve to compare the difference high risk continuous features
#wf=WeibullFitter().fit(cumdat2['serum_creatinine'],cumdat['DEATH_EVENT'])
```

```
plt.figure(figsize=[16,5])
plt.subplot(1,2,1)
km1=KaplanMeierFitter().fit(dat['serum_creatinine'],weights=dat['DEATH_EVENT'])
km1.plot(label='serum_creatinine')
plt.xlabel('serum_creatinine')
plt.ylabel('Survival Prob')
plt.title('kaplan meier model')

plt.subplot(1,2,2)
km2=KaplanMeierFitter().fit(dat['ejection_fraction'],weights=dat['DEATH_EVENT'])
km2.plot(label='ejection_fraction')
plt.xlabel('ejection_fraction')
plt.ylabel('Survival Prob')

plt.title('kaplan meier model')
plt.title('kaplan meier model')
plt.show()
```


Serum creatinine measures the level of creatine in the blood and creatinine is waste product in the blood that comes from the muscles, healthy kidneys filter creatinine out of your blood through urine and higher creatinine of 0.7 - 1.3mg means the kidneys are not fuctioning well which may lead to hypertension and heart failure. Ejection fraction measures the volume of fluid ejected from heart chamber with contraction of the left ventricle and its measured is % of blood pumped out. High >70%, normal 70% < x >55%, low 55% < x >40% and heart failure < 40%

Based on the kaplan meier model, There are more patients with high serum creatinine levels with low survival rates when compared to patients low ejection fraction levels.

Hence Serum creatinine is more associated with heart failure of the patients in this study.

```
In [27]:
         # kaplan Meier curve to compare the difference between each categorical feature
         catdata=cumdat[['anaemia','diabetes','high blood pressure','sex','smoking','time','DEATH EVENT']]
         pcatdata=catdata[catdata['anaemia']==1] # this code indicates that there is presence / 1 also indicates male for sex feat
         npcatdata=catdata[catdata['anaemia']==2] # this code indicates that there is no presence / 2 also indicates female for se
         akm1=KaplanMeierFitter().fit(pcatdata['time'],weights=pcatdata['DEATH EVENT'])
         akm2=KaplanMeierFitter().fit(npcatdata['time'],weights=npcatdata['DEATH EVENT'])
         In [21]:
         pcatdata=catdata[catdata['diabetes']==1] # this code indicates that there is presence / 1 also indicates male for sex fed
         npcatdata=catdata[catdata['diabetes']==2] # this code indicates that there is no presence / 2 also indicates female for s
         dkm1=KaplanMeierFitter().fit(pcatdata['time'],weights=pcatdata['DEATH EVENT'])
         dkm2=KaplanMeierFitter().fit(npcatdata['time'],weights=npcatdata['DEATH EVENT'])
In [22]:
         pcatdata=catdata[catdata['high blood pressure']==1] # this code indicates that there is presence / 1 also indicates male
         npcatdata=catdata[catdata['high_blood_pressure']==2] # this code indicates that there is no presence / 2 also indicates f
         hkm1=KaplanMeierFitter().fit(pcatdata['time'],weights=pcatdata['DEATH EVENT'])
         hkm2=KaplanMeierFitter().fit(npcatdata['time'],weights=npcatdata['DEATH EVENT'])
         In [23]:
         pcatdata=catdata[catdata['smoking']==1] # this code indicates that there is presence / 1 also indicates male for sex feat
         npcatdata=catdata[catdata['smoking']==2] # this code indicates that there is no presence / 2 also indicates female for se
         skm1=KaplanMeierFitter().fit(pcatdata['time'],weights=pcatdata['DEATH EVENT'])
         skm2=KaplanMeierFitter().fit(npcatdata['time'],weights=npcatdata['DEATH EVENT'])
In [24]:
         pcatdata=catdata[catdata['sex']==1] # 1 indicates male for sex feature
         npcatdata=catdata[catdata['sex']==2] # 2 indicates female for sex feature
         mkm1=KaplanMeierFitter().fit(pcatdata['time'],weights=pcatdata['DEATH EVENT'])
         fkm2=KaplanMeierFitter().fit(npcatdata['time'],weights=npcatdata['DEATH EVENT'])
```

https://rpubs.com/aeghorie/982981 26/29

```
# categorical features with high risk associated to patients survival
In [25]:
           # using 50 days as survival time to check survival probability rate for each feature
           plt.figure(figsize=[18,6])
           plt.subplot(1,3,1)
           skm1.plot(label='presence')
           skm2.plot(label='no presence')
           plt.title('survival plot of smoking')
           plt.xlabel('smoking')
           plt.ylabel('Survival Prob')
           plt.axvline(x=50, color='b')
           plt.subplot(1,3,2)
           hkm1.plot(label='presence')
           hkm2.plot(label='no presence')
           plt.title('survival plot of high blood pressure')
           plt.xlabel('high blood pressure')
           plt.ylabel('Survival Prob')
           plt.axvline(x=50, color='b')
           plt.subplot(1,3,3)
           mkm1.plot(label='male')
           fkm2.plot(label='female')
           plt.title('survival plot of sex')
           plt.xlabel('sex')
           plt.ylabel('Survival Prob')
           plt.axvline(x=50, color='b')
           plt.show
```

Out[25]: <function matplotlib.pyplot.show(close=None, block=None)>

From the model plots, we used 50days to measure a 50% survival rate for each feature. As a result we can observe that patients with high_blood_pressure are more at risk with heart failure when compared with the other features because the survival rate curve falls below 50% on the 50th day during follow-up periods. The survival rate for sex features tends to drop between male and female along the follow-up periods, with some instances showing female have higher survival rate than male. Other indications are patient smokers have a lower survival rate when compared to non smoking patients.

```
In [26]:
           # Other low risk categorical features which are not associated with patient's survival
           plt.figure(figsize=[20,7])
           plt.subplot(1,3,1)
           akm1.plot(label='presence')
           akm2.plot(label='no presence')
           plt.title('survival plot of anaemia')
           plt.xlabel('anaemia')
           plt.ylabel('Survival Prob')
           plt.axvline(x=100, color='b')
           plt.subplot(1,3,2)
           dkm1.plot(label='presence')
           dkm2.plot(label='no presence')
           plt.title('survival plot of diabetes')
           plt.xlabel('diabetes')
           plt.ylabel('Survival Prob')
           plt.axvline(x=100, color='b')
```

Out[26]: <matplotlib.lines.Line2D at 0x7fe05b33cd00>

From the model plots, there seem to be no significant difference between both features when comparing the survival rates below 50%, however in 100days of follow-up treatment patients who exibit diabetes, have a higher survival rate when compared to patients with presence of anaemia in their system.