Tutorato Fisica, CdL Informatica Foglio 6

 $Giulia\ Mercuri:\ giulia.mercuri@edu.unito.it$

13 maggio 2021

1 Formule utili

Legge di Coulomb: $\vec{F}_e=k \frac{q_o q}{r^2} \hat{u}_r \; N$, con $k=\frac{1}{4\pi\epsilon_0}=8.98\times 10^9 \; \frac{N\cdot m^2}{C^2}.$

Campo elettrico: $\vec{E} = \frac{\vec{F_e}}{q_0} \cdot \frac{N}{C}$. Potenziale elettrico: $V = k \frac{q}{r} V$. Energia potenziale: $\Delta U_e = q_0 \Delta V J$.

Costante dielettrica nel vuoto: $\epsilon_0 = 8.85 \times 10^{-12} \frac{C^2}{N \cdot m}$.

Carica elementare: $e = -1.6 \times 10^{-19} \ C$. massa dell'elettrone: $m_e = 9.1 \times 10^{-31} \ Kg$. massa del protone: $m_p = 1.67 \times 10^{-27} \ Kg$.

Capacità elettrica: $C = \frac{q}{V}$.

Campo elettrico in un condensatore piano: V = Ed.

Energia in un condensatore: $U = \frac{q^2}{2C}$.

Capacità condensatore piano: $C = \epsilon_0 \ \epsilon_r \ \frac{\Sigma}{d}$, con Σ superficie, d distanza tra le piastre.

2 Esercizi

2.1 Esercizio 1

Un condensatore piano è costituito da due armature parallele di superficie 25 cm e distanti 2.3 mm nel vuoto. Calcolare capacità e tensione da applicare tra le armature per avere al suo interno un campo elettrico uniforme di $30 \ V/cm$.

2.2 Esercizio 2

Un condensatore piano riempito di dielettrico viene caricato con 1J di energia, la carica sulle armature alla fine del processo di carica è $Q=8\mu C$. Calcolare i valori del campo elettrico e della costante dielettrica relativa ϵ_r sapendo che la distanza tra le armature è d=1.25~mm e la superficie di ogni piastra misura $\Sigma=255~cm^2$.

2.3 Esercizio 3

Un condensatore di capacità $C = 1.87 \ mF$, nel vuoto, una volta carico è in grado di mantenere accesa per un minuto una lampadina da $40 \ W$. Qual è la differenza di potenziale tra le armature quando il condensatore è carico? Quanta carica è presente sulle armature?

2.4 Esercizio 4

Un condensatore nel vuoto è connesso ad una batteria da 12 V e viene caricato. In seguito viene scollegata la batteria e inserito un dielettrico ($\epsilon_r = 3.5$). Calcolare la variazione della differenza di potenziale fra le armature prima e dopo l'inserimento del dielettrico.

2.5 Esercizio 5

Nel circuito in figura i condensatori hanno capacità: $C_1 = 160 \ pF,$

 $C_2=0,2\ nF,$ $C_3=21,1\ pF,$ $C_4=0,25\ nF.$ Calcolare la capacità totale vista dai morsetti A e B. Quale sarà la carica tra le armature del condensatore se viene applicata una tensione di 120 ${\cal V}$?