Feuille 7 – Applications linéaires

- $u: E \to F$ est linéaire $\iff \forall \lambda \in \mathbb{K}, \forall x, y \in E, u(\lambda x + y) = \lambda u(x) + u(y)$
- u est un **endomorphisme** si E = F
- u est un **isomorphisme** si u est bijectif
- u est un **automorphisme** si u est un endomorphisme et un isomorphisme
- u est injectif $\Leftrightarrow \ker u = \{0_E\}$
- Pour u linéaire, on a : u injective $\Leftrightarrow u$ surjective $\Leftrightarrow u$ bijective
- Théorème du rang : $E = \dim \ker(u) + \dim \operatorname{Im}(u)$

Exercice 1:

Déterminer si les applications suivantes sont linéaires :

- 1) $F: C([0,1],\mathbb{R}) \to \mathbb{R}$ définie par $F(f) = \int_0^1 f(t)dt$
- 2) $f: \mathbb{R}^2 \to \mathbb{R}^4$ définie par f(x, y) = (x + y, x, y, 1)
- 3) $g: \mathbb{R}^2 \to \mathbb{R}$ définie par $g(x, y) = (x^2, y)$
- 4) $h: C(\mathbb{R}, \mathbb{R}) \to \mathbb{R}$ définie par $h(f) = f(x^3)$
- 5) $p: M_n(\mathbb{R}) \to M_n(\mathbb{R})$ définie par p(A) = AM où M est fixée dans $M_n(\mathbb{R})$

Exercice 2:

Soit $u: \mathbb{R}^3 \to \mathbb{R}^2$, définie par $u(x_1, x_2, x_3) = (x_1 + x_2 + x_3, 2x_1 + x_2 - x_3)$

- 1) Montrer que *u* est linéaire
- 2) Déterminer le noyau et l'image de u.

Exercice 3:

- 1) Montrer que l'application $\psi: C^{\infty}(\mathbb{R}, \mathbb{R}) \to C^{\infty}(\mathbb{R}, \mathbb{R})$ définie par $\psi(f) = f'' 6f' + 9f$ est un endomorphisme de $C^{\infty}(\mathbb{R}, \mathbb{R})$.
- 2) ψ est-elle injective ? bijective ? Donner son noyau.

Exercice 4:

Soit E un \mathbb{K} -ev et $f \in \mathcal{L}(E)$ tel que

$$f^2 - 3f + 2Id = 0_{\mathcal{L}(E)}$$

- 1) *f* est-elle inversible ? Si oui, préciser son inverse.
- 2) En considérant u = 2x f(x) et v = x f(x), montrer que $\ker(f Id) \oplus \ker(f 2Id) = E$.