Backpropagation

Overview

- Computation graphs
- Using the chain rule
- General backpropagation algorithm
- Toy examples of backward pass
- Matrix-vector calculations: ReLU, linear layer

Recall: Multi-layer neural networks

 The function computed by the network is a composition of the functions computed by individual layers (e.g., linear layers and nonlinearities):

More precisely:

Training a multi-layer network

• What is the SGD update for the parameters w_k of the kth layer?

$$w_k \leftarrow w_k - \eta \frac{\partial e}{\partial w_k}$$

• To train the network, we need to find the gradient of the error w.r.t. the parameters of each layer, $\frac{\partial e}{\partial w_k}$

Computation graph

Let's start with k = 1

$$e = l(f_1(x, w_1), y)$$

Example:
$$e = (y - w_1^T x)^2$$

$$h_1 = f_1(x, w_1) = w_1^T x$$

$$e = l(h_1, y) = (y - h_1)^2$$

$$\frac{\partial h_1}{\partial w_1} = \frac{\partial h_2}{\partial h_2} = \frac{\partial h_1}{\partial h_2} = \frac{\partial h_2}{\partial h_2} = \frac{\partial h_2}{$$

$$\frac{\partial e}{\partial w_1} =$$

Example:
$$e = -\log(\sigma(w_1^T x))$$
 (assume $y = 1$)

$$h_1 = f_1(x, w_1) = w_1^T x$$

 $h_2 = f_2(h_1) = \sigma(h_1)$
 $e = l(h_2, 1) = -\log(h_2)$

Example: $e = -\log(\sigma(w_1^T x))$ (assume y = 1)

$$h_1 = f_1(x, w_1) = w_1^T x$$

$$h_2 = f_2(h_1) = \sigma(h_1)$$

$$e = l(h_2, 1) = -\log(h_2)$$

$$\frac{\partial h_1}{\partial w_1} = \frac{\partial h_2}{\partial h_1} = \frac{\partial e}{\partial h_2} = \frac{\partial e}$$

$$\frac{\partial e}{\partial w_1} = \frac{\partial e}{\partial h_2} \frac{\partial h_2}{\partial h_1} \frac{\partial h_1}{\partial w_1} =$$

Backpropagation summary

Parameter update:

What about more general computation graphs?

What about more general computation graphs?

Overview

- Computation graphs
- Using the chain rule
- General backprop algorithm
- Toy examples of backward pass

$$f(x,w) = \frac{1}{1 + \exp[-(w^{(0)}x^{(0)} + w^{(1)}x^{(1)} + w^{(2)})]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w^{(0)}x^{(0)} + w^{(1)}x^{(1)} + w^{(2)})]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w^{(0)}x^{(0)} + w^{(1)}x^{(1)} + w^{(2)})]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w^{(0)}x^{(0)} + w^{(1)}x^{(1)} + w^{(2)})]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w^{(0)}x^{(0)} + w^{(1)}x^{(1)} + w^{(2)})]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w^{(0)}x^{(0)} + w^{(1)}x^{(1)} + w^{(2)})]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w^{(0)}x^{(0)} + w^{(1)}x^{(1)} + w^{(2)})]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w^{(0)}x^{(0)} + w^{(1)}x^{(1)} + w^{(2)})]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w^{(0)}x^{(0)} + w^{(1)}x^{(1)} + w^{(2)})]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w^{(0)}x^{(0)} + w^{(1)}x^{(1)} + w^{(2)})]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w^{(0)}x^{(0)} + w^{(1)}x^{(1)} + w^{(2)})]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w^{(0)}x^{(0)} + w^{(1)}x^{(1)} + w^{(2)})]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w^{(0)}x^{(0)} + w^{(1)}x^{(1)} + w^{(2)})]}$$

$$f(x,w) = \frac{1}{1 + \exp[-(w^{(0)}x^{(0)} + w^{(1)}x^{(1)} + w^{(2)})]}$$

Sigmoid gate
$$\sigma(x)$$

$$\sigma'(x) = \sigma(x) (1 - \sigma(x))$$

$$\sigma(1) (1 - \sigma(1)) = 0.73 * (1 - 0.73) = 0.20$$

Add gate: "gradient distributor"

Add gate: "gradient distributor"

Multiply gate: "gradient switcher"

Add gate: "gradient distributor"

Multiply gate: "gradient switcher"

Max gate: "gradient router"

General tips

- Derive error signal (upstream gradient) directly, avoid explicit computation of huge local derivatives
- Write out expression for a single element of the Jacobian, then deduce the overall formula
- Keep consistent indexing conventions, order of operations
- Use dimension analysis

For further reading:

- Lecture 4 of <u>Stanford 231n</u> and associated links in the syllabus
- Yes you should understand backprop by Andrej Karpathy