ELEC 221 Lecture 12 The discrete-time Fourier transform

Tuesday 18 October 2022

Announcements

- No quiz today (quizzes resume next week)
- Assignment 4 will be made available this week
- Midterm grading underway

Midterm postmortem...

We saw the multiplication property of the CT Fourier transform:

We saw the multiplication property of the CT Fourier transform:

We saw how the CT Fourier spectrum behaves under differentiation and integration:

We leveraged differentiation/integration and the convolution property to compute impulse and frequency response for systems described by ODEs.

Where are we going?

Today

Learning outcomes:

- Compute the DT Fourier transform of non-periodic DT signals
- State key properties of the DTFT
- Leverage convolution properties of DTFT to analyze the behaviour of LTI systems

On Thursday and Tuesday:

- Learn how the fast Fourier transform algorithm works
- Hands-on with the NumPy FFT module: image processing

Recap: CT Fourier series and transform

Fourier series pair:

Fourier transform pair:

Recap: DT Fourier series

When a DT signal is periodic (with period N) it can be represented using only the integer harmonics at the same frequency.

DT synthesis equation:

DT analysis equation:

The discrete-time Fourier transform (DTFT) is the generalization of the Fourier series representation to **aperiodic** signals.

We derive it just like we did in CT:

Image credit: Oppenheim chapter 5.1

Suppose $\tilde{x}[n]$ is a periodic extension of x[n]. We can write it as a DT Fourier series:

We could just as well change the bounds of the sum to include where our signal actually is:

Now, what happens if we make the period larger and larger (i.e., increase the spacing?)

If $N \to \infty$, for any finite n, our new signal $\tilde{x}[n]$ basically just looks like our old signal:

But since x[n] = 0 outside this range, we can change the bounds of the sum:

We have

Let's define

Then

Substituting

$$c_k = \frac{1}{N}X(e^{jk\omega})$$

back into the original synthesis equation for $\tilde{x}[n]$ yields

Now what happens as $N \to \infty$?

As
$$N \to \infty$$
, $\omega \to 0$.

Consider what we are summing:

This is going to be a sum of terms like $X(e^{jk\omega})e^{jk\omega n}\omega$ for very small ω . We can convert the sum to an integral:

Recall though that in this range, $\tilde{x}[n]$ is basically x[n], and we only need to integrate from over 0 to 2π . The result is the **DT Fourier transform pair**.

Inverse DTFT (synthesis equation):

DTFT (analysis equation):

Let's compute the DTFT of the DT signal

Image credit: Oppenheim chapter 5.1

Recall: FT of a CT square pulse

Image credit: Oppenheim chapter 4.1

$$x[n] = \begin{cases} 1 & |n| \le N_1 \\ 0 & |n| > N_1 \end{cases}$$

Compute the DTFT:

How do we evaluate this sum?

Change variable in the summation to $m = n + N_1$

Use our handy identity:

$$X(e^{j\omega})=e^{j\omega N_1}rac{1-e^{-j\omega(2N_1+1)}}{1-e^{-j\omega}}$$

Straightforward from here:

Note that this function is periodic!

Convergence criteria

Recall in CT we had Dirichlet criteria for both Fourier series and inverse Fourier transform representations:

$$x(t) = \sum_{k=-\infty}^{\infty} c_k e^{jk\omega t}$$
 $c_k = \frac{1}{T} \int_T x(t) e^{-jk\omega t} dt$

$$x(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} X(j\omega) e^{j\omega t} d\omega \quad X(j\omega) = \int_{-\infty}^{\infty} x(t) e^{-j\omega t} dt$$

Convergence criteria

We didn't have this issue for the DT Fourier series:

$$x[n] = \sum_{k=\langle N \rangle} c_k e^{jk\omega n}$$
 $c_k = \frac{1}{N} \sum_{n=\langle N \rangle} x[n] e^{-jk\omega n}$

What about for the DT Fourier transform?

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jk\omega}) e^{jk\omega n} d\omega \qquad X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

Convergence criteria

$$x[n] = \frac{1}{2\pi} \int_{2\pi} X(e^{jk\omega}) e^{jk\omega n} d\omega \qquad X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

The synthesis equation is fine; but the analysis equation has an infinite sum. One of the following must be satisfied:

Convolution

Convolution works the same way as in CT:

We also have the same relationship between impulse response and the frequency response:

Convolution

Convolution works the same way as in CT:

We also have the same relationship between impulse response and the frequency response:

Example: convolution property

Example: convolution property

$$H(e^{j\omega}) = \frac{-12 + 5e^{-j\omega}}{12 - 7e^{-j\omega} + e^{-2j\omega}}$$

Hint:

Example: convolution property

Many properties are the same as the CT analogs.

Linearity: If

then

Many properties are the same as the CT analogs.

Time shift: If

then

Frequency shift:

Conjugation: If

then

If x[n] is real,

Consequences for odd/even functions:

Periodicity:

Differentiation in frequency:

Differencing:

Accumulating:

Parseval's relation:

Here $|X(e^{j\omega})|^2$ is called the *energy-density spectrum*.

Recap

Today's learning outcomes were:

- Compute the DT Fourier transform of non-periodic DT signals
- State key properties of the DTFT
- Leverage convolution properties of DTFT to analyze the behaviour of LTI systems

What topics did you find unclear today?

For next time

Content:

■ The discrete Fourier transform (DFT) and the Fast Fourier Transform (FFT) algorithm

Action items:

1. Keep an eye out for Assignment 4

Recommended reading:

- From today's class: Oppenheim 5.0-5.7
- For next class: Oppenheim extension problems 5.53-5.54