MCC125 Wireless link project Link Budget

Microwave Surfers Group

Bingcheng Chen Filip Aldebrink Geo Philip Muppathiyil Jiquan Mao Malik Fahd

November 12, 2023

1 Introduction

This document describes the link budget for the project in which we implement a one-way wireless communication system that can communicate over 100 meter.

The parameters we selected for the system are illustrated in Table 1

Seq	Item	Value
1	RF Frequency	2.4 GHz
2	IF frequency	20 MHz
3	Target Bitrate R_b	10 Mbits/s
4	Modulation Format	64-QAM
5	Modulation Order m	6
6	Symbol Rate R_s	$1.67~\mathrm{MBaud/s}$
7	Bandwidth	1.67 MHz
8	Distance	100 m

Table 1: Parameters selected for the system

2 System Overview

By choosing a desired BER of 10^{-6} , we get a $\frac{E_b}{N_0}$, for our chosen modulation, from the graph shown in Figure 1.

Figure 1: Estimated BER vs $E_{\rm b}/N_0$ [1].

We can read that we have a $E_b/N_0 = 18.8 \,\mathrm{dB}$ when we use 64-QAM with a BER of 10^{-6} . With this, the required minimum SNR at the receiver is given by, with a $R_b/B = 10 \,\mathrm{Mbps}/1.67 \,\mathrm{MHz} = 6$, the following equation [2]:

$$SNR_{In} = 10log_{10}(\frac{E_b}{N_0} \cdot \frac{R_b}{B}) = 10log_{10}(\frac{E_b}{N_0} \cdot 6) = 26.78 \, dB$$

2.1 Receiver Details

The block diagram of the receiver are illustrated in Figure 2.

Figure 2: Receiver Block Diagram

From the block diagram shown in Figure 2, we can calculate the noise figure as:

$$NF_{tot} = 10log_{10}(NF_1 + \frac{NF_2 - 1}{G_1} + \frac{NF_3 - 1}{G_1G_2} + \cdots) = 4.74 \,\mathrm{dB}$$

2.2 Link Budget Calculation

We can calculate the noise power from the following equation:

$$P_n = -174 + 10log_{10}(BW) + NF_{tot} = -107.04 \, dBm$$

Where -174 is the Boltzmann constant in dBm/Hz. The SNR_{in} is the ratio between the received signal power and the noise power, hence the receiver sensitivity is given by:

$$P_r = P_p + SNR = -80.26 \, dBm$$

With a frequency of 2.4 GHz and a distance of 100 m the free space loss can be calculated by the following equation:

$$FSPL = 20 \cdot log_{10}(\frac{c}{4\pi \cdot d \cdot f}) = 20 \times log_{10}(\frac{3 \times 10^8}{4\pi \times 100 \times 2.4 \times 10^9}) = -80 \ dB$$

The minimum required transmitted power in ideal circumstances can be calculated by Friis formula:

$$P_t = P_r - FSPL - G_t - G_r = -6.21 \, dBm$$

2.3 Transmitter Details

The block diagram of the transmitter can be seen in Figure 3.

Figure 3: Transmitter Block Diagram

Seq	Component	Device	Input power (dBm)	$rac{{ m Gain/Loss}}{{ m (dB)}}$	Output power (dBm)	1-dB compression (dBm)
1	DAC	USRP N210	-	-	-15	-
2	Amplifier	HMC480	-15	20	5	20
3	Mixer	HMC213	5	-10	-5	8
4	Amplifier	MAX2615	-5	18.6	13.6	19.5
5	Antenna	VERT2450	13.6	3 dBi	16.6	

Table 2: Detailed input and output power of the transmitter

The 1-dB compression point of the transmitter is given by,

$$P_{1dB,tot} = 10log_{10} \left[\left(\dots + \frac{1}{P_{1dB,n-2}G_{n-1}G_n} + \frac{1}{P_{1dB,n-1}G_n} + \frac{1}{P_{1dB,n}} \right)^{-1} \right] = 18.3 \ dBm$$

Our designed transmitter power is $13.6 \ dBm$, which is within the safe range of the minimum required transmitted power of $-6.21 \ dBm$.

References

[1] Unknown (2023) - "Eb/N0". Retrieved from: https://www.linuxtv.org/wiki/index.php/Eb/N0 [Online resorce]

[2] Vessen Vassilev (2023) - "Introduction". Retrieved from: https://chalmers.instructure.com/courses/26387/files/3001161?module_item_id=420200 [Lecture]

A MATLAB code

```
1 clc, clf, clear all;
  c = 3e8;
  f = 2.4 e9;
  R=100;
  Ebn0=19; %dB for 64QAM at e-6 BER
  Rb=10e6; %bit/s
  M = 64;
  m=log2(M); %modulation order for 64QAM
  B=Rb/m;
11
  SNRin=Ebn0+10*log10 (m)
13
  G1 = -2;
15
  F1=2;
  G2 = 18.6;
  F2=2;
  G3 = -10;
  F3 = 10;
  F4 = 0.6;
  G4 = 0.6;
  F5 = 3.5;
  G5=20;
  F6 = 3.5;
25
  G6=20;
26
27
  Frx=10*log10(10^{(F1/10)}+((10^{(F2/10)}-1)/10^{(G1/10)})+((10^{(F3/10)}-1)/10^{(F3/10)})
      -1)/(10^{(G1+G2)/10}))+((10^{(F4/10)-1})/(10^{(G1+G2+G3)/10}))
      +((10^{(5/10)}-1)/(10^{((G1+G2+G3+G4)/10)})+((10^{(5/10)}-1)/(10^{((G1+G2+G3+G4)/10)}))
      G1+G2+G3+G4+G5)/10)))
29
  Pn = -174 + 10 * log 10 (B) + Frx
  Pr=SNRin+Pn
31
32
  Lfs = 10 * log 10 ((c/(4*pi*R*f))^2)
33
34
  Gr=3; %dBi
  Gt=3; %dBi
  Pt=Pr-Lfs-Gt-Gr
```