

Statistical Natural Language Processing

Lecture 4: Language Modeling

Dr. MomtaziAmirkabir University of Technology

Motivation

2 Estimation

3 Smoothing

Motivation

2 Estimation

3 Smoothing

Finding the probability of a sentence or a sequence of words

$$P(S) = P(w_1, w_2, w_3, ..., w_n)$$

- Applications:
 - Word prediction
 - Speech recognition
 - Machine translation
 - Spell checker

Word Prediction

"natural language ..." ⇒ "processing" "management" Speech recognition

 \Rightarrow

"Computers can recognize speech."
"Computers can wreck a nice peach."

Applications

7

Machine translation

```
"The cat eats ..." ⇒ "Die Katze frisst ..." 
"Die Katze isst ..."
```

Spell checker

"I want to <u>adver</u> this project." ⇒ "advert" "adverb" Motivation

2 Estimation

3 Smoothing

- Probabilities are based on counting things
- Counting of thing in natural language is based on a corpus (plural: corpora)
- A computer-readable collection of text or speech
 - The Brown Corpus
 - A million-word collection of samples
 - 500 written texts from different genres (newspaper, fiction, non-fiction, academic, ...)
 - Assembled at Brown University in 1963-1964
 - The Switchboard Corpus
 - A collection of 240 hours of telephony conversations
 - 3 million words in 2430 conversations averaging 6 minutes each
 - · Collected in early 1990s

Corpus

11

- Text Corpora
 - The Brown Corpus
 - □ Corpus of Contemporary American English
 - The British National Corpus
 - □ The International Corpus of English
 - □ The Google *N*-gram Corpus

- A language consist of a set of *V* words (Vocabulary)
- A text is a sequence of the words from the vocabulary
- A word can occur several times in a text
 - Word Token: each occurrence of words in text
 - Word Type: each unique occurrence of words in the text

Example:

This is a sample text from a book that is read every day

Word Tokens: 13 # Word Types: 11

- Brown
 - 1,015,945 word tokens
 - 47,218 word types
- Google *N*-gram
 - □ 1,024,908,267,229 word tokens
 - 13,588,391 word types

That seems like a lot of types... Even large dictionaries of English have only around 500k types. Why so many here? Numbers Misspellings

Names Acronyms

Finding the probability of a sentence or a sequence of words

$$P(S) = P(w_1, w_2, w_3, ..., w_n)$$

P(Computer, can, recognize, speech)

Bayes Decomposition

Write joint probability as product of conditional probabilities

$$P(w_1, w_2) = P(w_1) \cdot P(w_2|w_1)$$

$$P(w_1, w_2, w_3, w_4) = P(w_1) \cdot P(w_2|w_1) \cdot P(w_3|w_1, w_2) \cdot P(w_4|w_1, w_2, w_3)$$

$$P(w_1, w_2, ... w_n) = P(w_1) \cdot P(w_2|w_1) \cdot P(w_3|w_1, w_2) \cdot \cdot \cdot P(w_n|w_1, w_2, w_3, ..., w_{n-1})$$

$$P(S) = P(w_1) \cdot P(w_2|w_1) \cdot P(w_3|w_1, w_2) \cdots P(w_n|w_1, w_2, w_3, ..., w_{n-1})$$

$$P(S) = \prod_{i=1}^{n} P(w_i|w_1, w_2, ..., w_{i-1})$$

Conditional Probability

$$P(S) = \prod_{i=1}^{n} P(w_i|w_1, w_2, ..., w_{i-1})$$

P(Computer, can, recognize, speech) =

P(Computer) · P(can|Computer) · P(recognize|Computer can) · P(speech|Computer can recognize)

Maximum Likelihood Estimation

P(speech|Computer can recognize)

$$P(\textit{speech}|\textit{Computer can recognize}) = \frac{\#(\textit{Computer can recognize speech})}{\#(\textit{Computer can recognize})}$$

- Too many phrases
- Limited text for estimating the probability

⇒ Making a simplification assumption

Markov Assumption

$$P(S) = \prod_{i=1}^{n} P(w_i|w_1, w_2, ..., w_{i-1})$$

$$P(S) = \prod_{i=1}^{n} P(w_i|w_{i-1})$$

$$\begin{split} \textit{P(Computer, can, recognize, speech)} &= \\ \textit{P(Computer)} \cdot \textit{P(can|Computer)} \cdot \textit{P(recognize|can)} \cdot \textit{P(speech|recognize)} \end{split}$$

$$P(speech|recognize) = \frac{\#(recognize \ speech)}{\#(recognize)}$$

N-gram Model

20

Unigram
$$P(S) = \prod_{i=1}^{n} P(w_i)$$

Bigram
$$P(S) = \prod_{i=1}^{n} P(w_i|w_{i-1})$$

Trigram
$$P(S) = \prod_{i=1}^{n} P(w_i | w_{i-2}, w_{i-1})$$

N-gram
$$P(S) = \prod_{i=1}^{n} P(w_i|w_1, w_2, ..., w_{i-1})$$

```
<s> I saw the boy </s>
<s> the man is working </s>
<s> I walked in the street </s>
```

Vocab:

I saw the boy man is working walked in street

boy I in is man saw street the walked working

<s> I saw the boy </s>
<s> the man is working </s>
<s> I walked in the street </s>

boy		in	is	man	saw	street	the	walked	working
1	2	1	1	1	1	1	3	1	1

	boy		in	is	man	saw	street	the	walked	working
boy	0	0	0	0	0	0	0	0	0	0
I	0	0	0	0	0	1	0	0	1	0
in	0	0	0	0	0	0	0	1	0	0
is	0	0	0	0	0	0	0	0	0	1
man	0	0	0	1	0	0	0	0	0	0
saw	0	0	0	0	0	0	0	1	0	0
street	0	0	0	0	0	0	0	0	0	0
the	1	0	0	0	1	0	1	0	0	0
walked	0	0	1	0	0	0	0	0	0	0
working	0	0	0	0	0	0	0	0	0	0

<s> I saw the man </s>

boy		in	is	man	saw	street	the	walked	working
1	2	1	1	1	1	1	3	1	1

	boy		in	is	man	saw	street	the	walked	working
boy	0	0	0	0	0	0	0	0	0	0
I	0	0	0	0	0	1	0	0	1	0
in	0	0	0	0	0	0	0	1	0	0
is	0	0	0	0	0	0	0	0	0	1
man	0	0	0	1	0	0	0	0	0	0
saw	0	0	0	0	0	0	0	1	0	0
street	0	0	0	0	0	0	0	0	0	0
the	1	0	0	0	1	0	1	0	0	0
walked	0	0	1	0	0	0	0	0	0	0
working	0	0	0	0	0	0	0	0	0	0

$$P(S) = P(I) \cdot P(saw|I) \cdot P(the|saw) \cdot P(man|the)$$

$$P(S) = \frac{\#(I)}{\#} \cdot \frac{\#(I \text{ saw})}{\#(I)} \cdot \frac{\#(\text{saw the})}{\#(\text{saw})} \cdot \frac{\#(\text{the man})}{\#(\text{the})}$$

$$P(S) = \frac{2}{13} \cdot \frac{1}{2} \cdot \frac{1}{1} \cdot \frac{1}{3}$$

Motivation

2 Estimation

3 Smoothing

Maximum Likelihood

<s> I saw the man </s>

$$P(S) = P(I) \cdot P(saw|I) \cdot P(the|saw) \cdot P(man|the)$$

$$P(S) = \frac{\#(I)}{\#} \cdot \frac{\#(I \text{ saw})}{\#(I)} \cdot \frac{\#(saw \text{ the})}{\#(saw)} \cdot \frac{\#(the \text{ man})}{\#(the)}$$

$$P(S) = \frac{2}{13} \cdot \frac{1}{2} \cdot \frac{1}{1} \cdot \frac{1}{3}$$

<s> I saw the man in the street </s>

ſ	boy		in	is	man	saw	street	the	walked	working
ſ	1	2	1	1	1	1	1	3	1	1

	boy		in	is	man	saw	street	the	walked	working
boy	0	0	0	0	0	0	0	0	0	0
I	0	0	0	0	0	1	0	0	1	0
in	0	0	0	0	0	0	0	1	0	0
is	0	0	0	0	0	0	0	0	0	1
man	0	0	0	1	0	0	0	0	0	0
saw	0	0	0	0	0	0	0	1	0	0
street	0	0	0	0	0	0	0	0	0	0
the	1	0	0	0	1	0	1	0	0	0
walked	0	0	1	0	0	0	0	0	0	0
working	0	0	0	0	0	0	0	0	0	0

$$P(S) = P(I) \cdot P(saw|I) \cdot P(the|saw) \cdot P(man|the) \cdot P(in|man) \cdot P(the|in) \cdot P(street|the)$$

$$P(S) = \frac{\#(I)}{\#} \cdot \frac{\#(I \text{ saw})}{\#(I)} \cdot \frac{\#(\text{saw the})}{\#(\text{saw})} \cdot \frac{\#(\text{the man})}{\#(\text{the})} \cdot \frac{\#(\text{man in})}{\#(\text{man})} \cdot \frac{\#(\text{in the})}{\#(\text{in})} \cdot \frac{\#(\text{the street})}{\#(\text{the})}$$

Smoothing

27

■ Giving a small probability to all as unseen *n*-grams

Laplace Smoothing

Add one to all counts (Add-one)

	boy		in	is	man	saw	street	the	walked	working
boy	0	0	0	0	0	0	0	0	0	0
I	0	0	0	0	0	1	0	0	1	0
in	0	0	0	0	0	0	0	1	0	0
is	0	0	0	0	0	0	0	0	0	1
man	0	0	0	1	0	0	0	0	0	0
saw	0	0	0	0	0	0	0	1	0	0
street	0	0	0	0	0	0	0	0	0	0
the	1	0	0	0	1	0	1	0	0	0
walked	0	0	1	0	0	0	0	0	0	0
working	0	0	0	0	0	0	0	0	0	0

	boy	1	in	is	man	saw	street	the	walked	working
boy	1	1	1	1	1	1	1	1	1	1
I	1	1	1	1	1	2	1	1	2	1
in	1	1	1	1	1	1	1	2	1	1
is	1	1	1	1	1	1	1	1	1	2
man	1	1	1	2	1	1	1	1	1	1
saw	1	1	1	1	1	1	1	2	1	1
street	1	1	1	1	1	1	1	1	1	1
the	2	1	1	1	2	1	2	1	1	1
walked	1	1	2	1	1	1	1	1	1	1
working	1	1	1	1	1	1	1	1	1	1

Add one to all counts (Add-one)

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1},w_i)}{\#(w_{i-1})}$$
 \Rightarrow $P(w_i|w_{i-1}) = \frac{\#(w_{i-1},w_i)+1}{\#(w_{i-1})+V}$

- Interpolation and Back-off Smoothing
 - Use a background probability

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1},w_i)}{\#(w_{i-1})}$$

Back-off

$$P(w_i|w_{i-1}) = \begin{cases} \frac{\#(w_{i-1},w_i)}{\#(w_{i-1})} & \text{if } \#(w_{i-1},w_i) > 0 \\ \\ P_{BG} & \text{otherwise} \end{cases}$$

- Interpolation and Back-off Smoothing
 - Use a background probability

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1},w_i)}{\#(w_{i-1})}$$

Interpolation

$$P(w_{i}|w_{i-1}) = \lambda_{1} \frac{\#(w_{i-1}, w_{i})}{\#(w_{i-1})} + \lambda_{2} P_{BG}$$

$$\sum \lambda = 1$$
Parameter
Tuning

Parameter
Probability

Background Probability

- Lower levels of n-gram can be used as background probability
 - \Box trigram \rightarrow bigram
 - □ bigram → unigram
 - □ unigram \rightarrow zerogram $(\frac{1}{V})$

Back-off

$$P(w_i|w_{i-1}) = \begin{cases} \frac{\#(w_{i-1},w_i)}{\#(w_{i-1})} & \text{if } \#(w_{i-1},w_i) > 0 \\ P(w_i) & \text{otherwise} \end{cases}$$

$$P(w_i) = \begin{cases} \frac{\#(w_i)}{N} & \text{if } \#(w_i) > 0 \\ \frac{1}{V} & \text{otherwise} \end{cases}$$

- Lower levels of *n*-gram can be used as background probability
 - □ trigram → bigram
 - □ bigram → unigram
 - \square unigram \rightarrow zerogram $(\frac{1}{V})$

Interpolation

$$P(w_i|w_{i-1}) = \lambda_1 \frac{\#(w_{i-1}, w_i)}{\#(w_{i-1})} + \lambda_2 P(w_i)$$

$$P(w_i) = \lambda_1 \frac{\#(w_i)}{N} + \lambda_2 \frac{1}{V}$$

$$P(w_i|w_{i-1}) = \lambda_1 \frac{\#(w_{i-1}, w_i)}{\#(w_{i-1})} + \lambda_2 \frac{\#(w_i)}{N} + \lambda_3 \frac{1}{V}$$

Momtazi | SNLP

- Bayesian Smoothing with Dirichlet Prior
- Absolute Discounting
- Kneser-Ney Smoothing
- Bayesian Smoothing based on Pitman-Yor Processes

Bayesian Smoothing with Dirichlet Prior

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1}, w_i) + 1}{\#(w_{i-1}) + V}$$

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1}, w_i) + k}{\#(w_{i-1}) + kV}$$

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1}, w_i) + \mu(\frac{1}{V})}{\#(w_{i-1}) + \mu}$$

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1}, w_i) + \mu P_{BG}}{\#(w_{i-1}) + \mu}$$

 $\mu = kV$

$$P(w_i|w_{i-1}) = \left\{ egin{array}{ll} rac{\#(w_{i-1},w_i)}{\#(w_{i-1})} & ext{if } \#(w_{i-1},w_i) > 0 \\ P_{BG} & ext{otherwise} \end{array}
ight.$$

$$P(w_i|w_{i-1}) = \begin{cases} \frac{\#(w_{i-1},w_i) - \delta}{\#(w_{i-1})} & \text{if } \#(w_{i-1},w_i) > 0 \\ \\ \alpha P_{BG} & \text{otherwise} \end{cases}$$

Absolute Discounting

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1}, w_i) - \delta}{\#(w_{i-1})} + \alpha P_{BG}$$
$$\alpha = \frac{\delta}{\#(w_{i-1})} \cdot B$$

B: the number of times $\#(w_{i-1},w_i)>0$ (the number of times that we applied discounting)

$$P(w_i|w_{i-1}) = \frac{\max(\#(w_{i-1},w_i) - \delta,0)}{\#(w_{i-1})} + \alpha P_{BG}$$

■ Estimation base on the lower-order *n*-gram

I cannot see without my reading ... \Rightarrow "Francisco" "glasses"

- Observations:
 - □ "Francisco" is more common than "glasses"
 - □ But "Francisco" always follows "San"
 - "Francisco" is not a novel continuation for a text
- Solution:
 - □ Instead of P(w): "How likely is w to appear in a text"
 - \square $P_{continuation}(w)$: "How likely is w to appear as a novel continuation"
 - Count the number of words types that w appears after them

$$P_{continuation}(w) \propto |w_{i-1}: \#(w_{i-1}, w_i) > 0|$$

Kneser-Ney Smoothing

■ How many times does w appear as a novel continuation

$$P_{continuation}(w) \propto |w_{i-1}: \#(w_{i-1}, w_i) > 0|$$

Normalized by the total number of bigram types

$$P_{continuation}(w) = \frac{|w_{i-1} : \#(w_{i-1}, w_i) > 0|}{|(w_{i-1}, w_i) : \#(w_{i-1}, w_i) > 0|}$$

Alternatively: normalized by the number of words preceding all words

$$P_{continuation}(w) = \frac{|w_{i-1}: \#(w_{i-1}, w_i) > 0|}{\sum_{w'} |w'_{i-1}: \#(w'_{i-1}, w'_i) > 0|}$$

$$P(w_i|w_{i-1}) = \frac{\max(\#(w_{i-1},w_i) - \delta, 0)}{\#(w_{i-1})} + \alpha P_{BG}$$

$$P(w_i|w_{i-1}) = rac{\max(\#(w_{i-1},w_i)-\delta,0)}{\#(w_{i-1})} + lpha P_{continuation}$$
 $lpha = rac{\delta}{\#(w_{i-1})} \cdot B$

B: the number of times $\#(w_{i-1}, w_i) > 0$

- Improving the Dirichlet prior by using a discounting parameter deriving from absolute discounting method
 - Dirichlet prior

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1},w_i) + \mu P_{BG}}{\#(w_{i-1}) + \mu}$$

Absolute discounting

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1}, w_i) - \delta + (\delta \cdot B)P_{BG}}{\#(w_{i-1})}$$

Combined

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1}, w_i) - \delta + (\mu + \delta \cdot B)P_{BG}}{\#(w_{i-1}) + \mu}$$

Bayesian Smoothing based on Pitman-Yor Processes

 Using different discounting value for each word based on the frequency of that word

$$P(w_i|w_{i-1}) = \frac{\#(w_{i-1}, w_i) - \delta \cdot t + (\mu + \delta \cdot t)P_{BG}}{\#(w_{i-1}) + \mu}$$

t: discounting weight

t.: total amount of applied discounting

 $t = 1 \rightarrow \text{basic combined model}$

 $\mu = \mathbf{0} \quad o \text{ absolute discounting method}$

- Calculating parameter t is the most important and computationally expensive part of the formula
- Idea for a near optimum estimation of t: Generating a power-law distribution in the language model, which is one of the statistical properties of word frequencies in natural language

$$\begin{cases} t = 0 & \text{if } \#(w_{i-1}, w_i) = 0 \\ t = f(\#(w_{i-1}, w_i)) = (\#(w_{i-1}, w_i))^{\delta} & \text{if } \#(w_{i-1}, w_i) > 0 \end{cases}$$

Further Reading

44

- Speech and Language Processing
 - □ Chapter 4