# Power Electronics Education Electronic Book



### Welcome to PEEEB



Lecture 8: DC-AC Converters

Presenter: Dr. Firuz Zare

www.peeeb.com

Lecture 8

### **DC-AC Converters**

### Introduction

- Current Source or Voltage Source Inverters
- Single-phase or Three-phase Inverter
- Modulation Strategies
- Two-level or Multilevel
- Close loop or Open loop Control

### • Single-phase Inverter

- Bipolar and Unipolar Modulations
- Three-phase Inverter
  - Leg, Line and Phase Voltages
  - Active and Zero Switching
  - Common-mode Voltage

Presenter: Dr. Firuz Zare www.peeeb.com



### **Current Source or Voltage Source**



Presenter: Dr. Firuz Zare www.peeeb.com

### Power supplies in DC-AC converters:

- ·Battery
- •PV
- •(Grid and Wind Generator) & Rectifier



### Capacitor



Presenter: Dr. Firuz Zare

www.peeeb.com





w.peeeb.com www.peeeb.com u

Inverter

Presenter: Dr. Firuz Zare www.peeeb.com

### Single-Phase & Three-Phase





# Introduction Modulation Strategies



Presenter: Dr. Firuz Zare www.peeeb.com

# Introduction Modulation Strategies

### Sinusoidal Pulse Width Modulation



Presenter: Dr. Firuz Zare www.peeeb.com

### **Modulation Strategies**

### **Harmonic Elimination Technique**

In this technique, we can switching times, t1, t2 and t3 to control output voltage and cancel harmonics. This is an off-line switching method in which switching times are stored in a memory.



Presenter: Dr. Firuz Zare www.peeeb.com

### Two-level or Multi-level Inverter

### **Multi-level Converter**

- •Less voltage stress
- •Better quality and less switching losses
- •Suitable for high voltage applications
- •Complex circuit and control
- •More components



An output voltage generated by an inverter

Presenter: Dr. Firuz Zare

www.peeeb.com

### **Close Loop or Open Loop Control**



Presenter: Dr. Firuz Zare

www.peeeb.com





w.peeep.com www.peeep.com

www.peeeb.com www.peeeb.com





### **Bipolar Modulation**

We can only control the output voltage by changing  $V_{\text{dc}}!$  BUT we can control the output frequency.

Increasing switching frequency and applying Pulse Width Modulation (PWM) make it possible to change the rms and frequency of output voltage.

Presenter: Dr. Firuz Zare www.peeeb.com

Lecture 8

### **Bipolar Modulation**



Presenter: Dr. Firuz Zare www.peeeb.com







# Single-Phase Inverter Unipolar Modulation $S_1 \& S_3$ : on $S_2, S_4$ : off $S_1 & S_2 & S_4 & S$

 $V_{dc}$   $V_{dc}$  V

 $V_{dc}$ 

+

 $V_{dc}$ 





### **Unipolar Modulation**

We can control the output voltage and frequency by changing the pulse width without changing the DC link voltage.



Presenter: Dr. Firuz Zare www.peeeb.com

### **Unipolar Modulation**



Presenter: Dr. Firuz Zare www.peeeb.com







### Three-Phase Inverter

| $S_1$ | $S_3$ | $S_5$ | vao(t)              | $v_{bo}(t)$         | $v_{co}(t)$         |
|-------|-------|-------|---------------------|---------------------|---------------------|
| 0     | 0     | 0     | $-\frac{V_{dc}}{2}$ | $-\frac{V_{dc}}{2}$ | $-\frac{V_{dc}}{2}$ |
| 0     | 0     | 1     | $-\frac{V_{dc}}{2}$ | $-\frac{V_{dc}}{2}$ | $+\frac{V_{dc}}{2}$ |
| 0     | 1     | 0     | $-\frac{V_{dc}}{2}$ | $+\frac{V_{dc}}{2}$ | $-\frac{V_{dc}}{2}$ |
| 0     | 1     | 1     | $-\frac{V_{dc}}{2}$ | $+\frac{V_{dc}}{2}$ | $+\frac{V_{dc}}{2}$ |
| 1     | 0     | 0     | $+\frac{V_{dc}}{2}$ | $-\frac{V_{dc}}{2}$ | $-\frac{V_{dc}}{2}$ |
| 1     | 0     | 1     | $+\frac{V_{dc}}{2}$ | $-\frac{V_{dc}}{2}$ | $+\frac{V_{dc}}{2}$ |
| 1     | 1     | 0     | $+\frac{V_{dc}}{2}$ | $+\frac{V_{dc}}{2}$ | $-\frac{V_{dc}}{2}$ |
| 1     | 1     | 1     | $+\frac{V_{dc}}{2}$ | $+\frac{V_{dc}}{2}$ | $+\frac{V_{dc}}{2}$ |



Presenter: Dr. Firuz Zare

www.peeeb.com















Presenter: Dr. Firuz Zare www.peeeb.com





Presenter: Dr. Firuz, Zare

www.peeeb.com





Presenter: Dr. Firuz Zare www.peeeb.com



Presenter: Dr. Firuz Zare www.peeeb.com

Increasing switching frequency improves load current and decreases harmonics.



Presenter: Dr. Firuz Zare www.peeeb.com

$$\begin{cases} v_{ao}(t) = v_{an}(t) + v_{no}(t) \\ v_{bo}(t) = v_{bn}(t) + v_{no}(t) \end{cases}$$

$$\begin{cases} v_{ao}(t) = v_{bn}(t) + v_{no}(t) \\ v_{co}(t) = v_{cn}(t) + v_{no}(t) \end{cases}$$

$$v_{ao}(t) + v_{bo}(t) + v_{co}(t) = (v_{an}(t) + v_{bn}(t) + v_{cn}(t)) + 3 \times v_{no}(t)$$

$$v_{an}(t) + v_{bn}(t) + v_{cn}(t) = 0$$

$$v_{no}(t) = \frac{(v_{ao}(t) + v_{bo}(t) + v_{co}(t))}{3}$$



Presenter: Dr. Firuz Zare

www.peeeb.com

Three-Phase Inverter  $v_{no}(t) = \frac{(v_{ao}(t) + v_{bo}(t) + v_{co}(t))}{3}$ 

| a     | a     | $S_5$ $v_{ao}(t)$ $v_{bo}(t)$ $v_{co}(t)$ $v_{no}(t)$ $v_{an}(t)$ $v_{an}(t)$ |                     |                     |                     |                     |                      |                      | (1)                  |
|-------|-------|-------------------------------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|----------------------|----------------------|----------------------|
| $S_1$ | $S_3$ | 55                                                                            | $v_{ao}(t)$         | $v_{bo}(t)$         | $v_{co}(t)$         | $v_{no}(t)$         | $v_{an}(t)$          | $v_{bn}(t)$          | $v_{cn}(t)$          |
| 0     | 0     | 0                                                                             | $-\frac{V_{dc}}{2}$ | $-\frac{V_{dc}}{2}$ | $-\frac{V_{dc}}{2}$ | $-\frac{V_{dc}}{2}$ | 0                    | 0                    | 0                    |
| 0     | 0     | 1                                                                             | $-\frac{V_{dc}}{2}$ | $-\frac{V_{dc}}{2}$ | $+\frac{V_{dc}}{2}$ | $-\frac{V_{dc}}{6}$ | $-\frac{V_{dc}}{3}$  | $-\frac{V_{dc}}{3}$  | $\frac{2V_{dc}}{3}$  |
| 0     | 1     | 0                                                                             | $-\frac{V_{dc}}{2}$ | $+\frac{V_{dc}}{2}$ | $-\frac{V_{dc}}{2}$ | $-\frac{V_{dc}}{6}$ | $-\frac{V_{dc}}{3}$  | $\frac{2V_{dc}}{3}$  | $-\frac{V_{dc}}{3}$  |
| 0     | 1     | 1                                                                             | $-\frac{V_{dc}}{2}$ | $+\frac{V_{dc}}{2}$ | $+\frac{V_{dc}}{2}$ | $+\frac{V_{dc}}{6}$ | $-\frac{2V_{dc}}{3}$ | $\frac{V_{dc}}{3}$   | $\frac{V_{dc}}{3}$   |
| 1     | 0     | 0                                                                             | $+\frac{V_{dc}}{2}$ | $-\frac{V_{dc}}{2}$ | $-\frac{V_{dc}}{2}$ | $-\frac{V_{dc}}{6}$ | $\frac{2V_{dc}}{3}$  | $-\frac{V_{dc}}{3}$  | $-\frac{V_{dc}}{3}$  |
| 1     | 0     | 1                                                                             | $+\frac{V_{dc}}{2}$ | $-\frac{V_{dc}}{2}$ | $+\frac{V_{dc}}{2}$ | $+\frac{V_{dc}}{6}$ | $\frac{V_{dc}}{3}$   | $-\frac{2V_{dc}}{3}$ | $\frac{V_{dc}}{3}$   |
| 1     | 1     | 0                                                                             | $+\frac{V_{dc}}{2}$ | $+\frac{V_{dc}}{2}$ | $-\frac{V_{dc}}{2}$ | $+\frac{V_{dc}}{6}$ | $\frac{V_{dc}}{3}$   | $\frac{V_{dc}}{3}$   | $-\frac{2V_{dc}}{3}$ |
| 1     | 1     | 1                                                                             | $+\frac{V_{dc}}{2}$ | $+\frac{V_{dc}}{2}$ | $+\frac{V_{dc}}{2}$ | $+\frac{V_{dc}}{2}$ | 0                    | 0                    | 0                    |

Presenter: Dr. Firuz Zare

www.peeeb.com

### **Dead-time in Inverters**



Two switches in each leg should not be turned on simultaneously. This case, makes a short circuit across the DC supply and may damage the power converter due to a significant short circuit current through the power switches.

 $T_{sw}/2$   $T_{sw}$  t  $T_{sw}/2$   $T_{sw}$  t  $T_{sw}/2$   $T_{sw}$  t  $T_{sw}/2$   $T_{sw}$  t

Presenter: Dr. Firuz Zare

www.peeeb.com

## **Dead-time in Inverters**





Presenter: Dr. Firuz Zare

www.peeeb.com

# **Dead-time in Inverters**





Presenter: Dr. Firuz Zare

www.peeeb.com

## **Hysteresis Current Control for a Single-Phase Inverter**



Presenter: Dr. Firuz Zare www.peeeb.com

## **Hysteresis Current Control for a Single-Phase Inverter**



Presenter: Dr. Firuz Zare www.peeeb.com