Package 'dggridR'

April 8, 2018

```
Type Package
Title Discrete Global Grids
Version 2.0.3
Date 2018-04-04
Author Richard Barnes [aut, cre],
     Kevin Sahr [cph],
     Gerald Evenden [cph],
     Angus Johnson [cph],
     Frank Warmerdam [cph]
Maintainer Richard Barnes <rbarnes@umn.edu>
NeedsCompilation yes
Depends R (>= 3.4.0), rgdal (>= 1.1), ggplot2 (>= 2.1), dplyr (>=
     0.4), sp (>= 1.2)
Suggests knitr, rmarkdown, maps, mapproj, R.rsp, testthat
```

License MIT + file LICENCE

Description

Spatial analyses involving binning require that every bin have the same area, but this is impossible using a rectangular grid laid over the Earth or over any projection of the Earth. Discrete global grids use hexagons, triangles, and diamonds to overcome this issue, overlaying the Earth with equally-sized bins. This package provides utilities for working with discrete global grids, along with utilities to aid in plotting such data.

```
URL https://github.com/r-barnes/dggridR/
BugReports https://github.com/r-barnes/dggridR/
Imports Rcpp (>= 0.12.12), methods (>= 3.4.0)
LinkingTo Rcpp
RcppModules dgfuncs, gridgens, gridstats
RoxygenNote 6.0.1
VignetteBuilder knitr, R.rsp
SystemRequirements C++11
Repository CRAN
Date/Publication 2018-04-06 22:58:41
```

R topics documented:

dgcellstogrid	 3
dgconstruct	 4
dgearthgrid	 5
dgGEO_to_GEO	 6
dgGEO_to_PLANE	 7
dgGEO_to_PROJTRI	 7
dgGEO_to_Q2DD	 8
dgGEO_to_Q2DI	 9
dgGEO_to_SEQNUM	 10
dggetres	 10
dginfo	11
dgmaxcell	 12
dgPROJTRI_to_GEO	12
dgPROJTRI_to_PLANE	13
dgPROJTRI_to_PROJTRI	14
dgPROJTRI_to_Q2DD	15
dgPROJTRI_to_Q2DI	15
dgPROJTRI_to_SEQNUM	16
dgQ2DD_to_GEO	17
dgQ2DD_to_PLANE	18
dgQ2DD_to_PROJTRI	18
dgQ2DD_to_Q2DD	19
dgQ2DD_to_Q2DI	20
dgQ2DD_to_SEQNUM	21
dgQ2DI_to_GEO	21
dgQ2DI_to_PLANE	22
dgQ2DI_to_PROJTRI	23
dgQ2DI_to_Q2DD	23
	24
dgQ2DI_to_Q2DI	25
dgQ2DI_to_SEQNUM	26
dgquakes	
dgrectgrid	26
dgsavegrid	28
dgSEQNUM_to_GEO	28
dgSEQNUM_to_PLANE	
dgSEQNUM_to_PROJTRI	
dgSEQNUM_to_Q2DD	30
dgSEQNUM_to_Q2DI	31
dgSEQNUM_to_SEQNUM	32
dgsetres	32
dgshptogrid	33
dgtransform	34
dgverify	35
dg_closest_res	36
dg_closest_res_to_area	37
dg_closest_res_to_cls	 37

dgcellstogrid 3

dgce:	llstogrid	Returr	ı bo	un	da	ry	co	orc	lin	at	es	fo	r s	pe	ecij	fie	d c	el	ls					
Index																								41
	dg_process_polyda dg_shpfname_sout	ıta																						39
	dg_closest_res_to_ dg_env																							

Description

Returns the coordinates constituting the boundary of a specified set of cells. Duplicates are eliminated to reduce processing and storage requirements.

Usage

```
dgcellstogrid(dggs, cells, frame = TRUE, wrapcells = TRUE, savegrid = NA)
```

Arguments

dggs	A dggs object from dgconstruct()
cells	The cells to get the boundaries of
frame	If TRUE, return a data frame suitable for ggplot plotting. If FALSE, return an OGR poly object
wrapcells	Cells which cross -180/180 degrees can present difficulties for plotting. Setting this TRUE will result in cells with components in both hemispheres to be mapped entirely to positive degrees (the Eastern hemisphere). As a result, such cells will have components in the range [180,360). Only used when frame=TRUE.
savegrid	If savegrid is set to a file path, then a shapefile containing the grid is written to that path and the filename is returned. No other manipulations are done. Default: NA (do not save grid, return it)

Value

Returns a data frame or OGR poly object, as specified by frame. If !is.na(savegrid), returns a filename.

4 dgconstruct

```
#Get grid cells for the earthquakes identified
grid <- dgcellstogrid(dggs, dgquakes$cell, frame=TRUE)
## End(Not run)</pre>
```

dgconstruct

Construct a discrete global grid system (dggs) object

Description

Construct a discrete global grid system (dggs) object

Usage

```
dgconstruct(projection = "ISEA", aperture = 3, topology = "HEXAGON",
  res = NA, precision = 7, area = NA, spacing = NA, cls = NA,
  resround = "nearest", metric = TRUE, show_info = TRUE,
  azimuth_deg = 0, pole_lat_deg = 58.28252559, pole_lon_deg = 11.25)
```

Arguments

projection	Type of grid to use. Options are: ISEA and FULLER. Default: ISEA3H
aperture	How finely subsequent resolution levels divide the grid. Options are: 3, 4. Not all options work with all projections and topologies. Default: 3
topology	Shape of cell. Options are: HEXAGON, DIAMOND, TRIANGLE. Default: HEXAGON
res	Resolution. Must be in the range [0,30]. Larger values represent finer resolutions. Appropriate resolutions can be found with dg_closest_res_to_area(), dg_closest_res_to_spacing(), and dg_closest_res_to_cls(). Default is 9, which corresponds to a cell area of ~2600 sq km and a cell spacing of ~50 km. Only one of res, area, length, or cls should be used.
precision	Round output to this number of decimal places. Must be in the range [0,30]. Default: 7.
area	The desired area of the grid's cells. Only one of res, area, length, or cls should be used.
spacing	The desired spacing between the center of adjacent cells. Only one of res, area, length, or cls should be used.
cls	The desired CLS of the cells. Only one of res, area, length, or cls should be used.
resround	What direction to search in. Must be nearest, up, or down.
metric	Whether input and output should be in metric (TRUE) or imperial (FALSE)
show_info	Print the area, spacing, and CLS of the chosen resolution.
azimuth_deg	Rotation in degrees of grid about its pole, value in [0,360]. Default=0.
pole_lat_deg	Latitude in degrees of the pole, value in [-90,90]. Default=58.28252559.
pole_lon_deg	Longitude in degrees of the pole, value in [-180,180]. Default=11.25.

dgearthgrid 5

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dggs <- dgconstruct(area=5,metric=FALSE)
## End(Not run)</pre>
```

dgearthgrid

Return the coordinates constituting the boundary of cells for the entire Earth

Description

Note: If you have a high-resolution grid this may take a loooooong time to execute.

Usage

```
dgearthgrid(dggs, frame = TRUE, wrapcells = TRUE, savegrid = NA)
```

Arguments

dggs A dggs object from dgconstruct()

frame If TRUE, return a data frame suitable for ggplot plotting. If FALSE, return an

OGR poly object

wrapcells Cells which cross -180/180 degrees can present difficulties for plotting. Set-

ting this TRUE will result in cells with components in both hemispheres to be mapped entirely to positive degrees (the Eastern hemisphere). As a result, such cells will have components in the range [180,360). Only used when frame=TRUE.

savegrid If savegrid is set to a file path, then a shapefile containing the grid is written to

that path and the filename is returned. No other manipulations are done. Default:

NA (do not save grid, return it)

Value

Returns a data frame or OGR poly object, as specified by frame. If !is.na(savegrid), returns a filename.

6 dgGEO_to_GEO

Examples

dgGEO_to_GEO

Convert from GEO to GEO

Description

Uses a discrete global grid system to convert between GEO and GEO (see vignette for details)

Usage

```
dgGEO_to_GEO(dggs, in_lon_deg, in_lat_deg)
```

Arguments

dggs A dggs object from dgconstruct()
in_lon_deg Vector of longitude, in degrees
in_lat_deg Vector of latitude, in degrees

Value

Returns a dggs object which can be passed to other dggridR functions

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgGEO_to_GEO(dggs, in_lon_deg, in_lat_deg)
## End(Not run)</pre>
```

dgGEO_to_PLANE 7

dgGE0_	tο	DI ANE	=
UZGEU	LΟ	LAND	_

Convert from GEO to PLANE

Description

Uses a discrete global grid system to convert between GEO and PLANE (see vignette for details)

Usage

```
dgGEO_to_PLANE(dggs, in_lon_deg, in_lat_deg)
```

Arguments

dggs A dggs object from dgconstruct()
in_lon_deg Vector of longitude, in degrees
in_lat_deg Vector of latitude, in degrees

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgGEO_to_PLANE(dggs, in_lon_deg, in_lat_deg)
## End(Not run)</pre>
```

dgGEO_to_PROJTRI

Convert from GEO to PROJTRI

Description

Uses a discrete global grid system to convert between GEO and PROJTRI (see vignette for details)

```
dgGEO_to_PROJTRI(dggs, in_lon_deg, in_lat_deg)
```

8 dgGEO_to_Q2DD

Arguments

dggs A dggs object from dgconstruct()
in_lon_deg Vector of longitude, in degrees
in_lat_deg Vector of latitude, in degrees

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
dgGEO_to_PROJTRI(dggs, in_lon_deg, in_lat_deg)
## End(Not run)</pre>
```

dgGEO_to_Q2DD

Convert from GEO to Q2DD

Description

Uses a discrete global grid system to convert between GEO and Q2DD (see vignette for details)

Usage

```
dgGEO_to_Q2DD(dggs, in_lon_deg, in_lat_deg)
```

Arguments

dggs A dggs object from dgconstruct()
in_lon_deg Vector of longitude, in degrees
in_lat_deg Vector of latitude, in degrees

Value

Returns a dggs object which can be passed to other dggridR functions

dgGEO_to_Q2DI

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgGEO_to_Q2DD(dggs, in_lon_deg, in_lat_deg)
## End(Not run)</pre>
```

dgGEO_to_Q2DI

Convert from GEO to Q2DI

Description

Uses a discrete global grid system to convert between GEO and Q2DI (see vignette for details)

Usage

```
dgGEO_to_Q2DI(dggs, in_lon_deg, in_lat_deg)
```

Arguments

dggs A dggs object from dgconstruct()
in_lon_deg Vector of longitude, in degrees
in_lat_deg Vector of latitude, in degrees

Value

Returns a dggs object which can be passed to other dggridR functions

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
dgGEO_to_Q2DI(dggs, in_lon_deg, in_lat_deg)
## End(Not run)</pre>
```

dggetres dggetres

dgGEO_to_SEQNUM

Convert from GEO to SEQNUM

Description

Uses a discrete global grid system to convert between GEO and SEQNUM (see vignette for details)

Usage

```
dgGEO_to_SEQNUM(dggs, in_lon_deg, in_lat_deg)
```

Arguments

dggs A dggs object from dgconstruct()
in_lon_deg Vector of longitude, in degrees
in_lat_deg Vector of latitude, in degrees

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgGEO_to_SEQNUM(dggs, in_lon_deg, in_lat_deg)
## End(Not run)</pre>
```

dggetres

Get table of grid resolution information

Description

Gets a grid's resolution and cell property info as a data frame.

Usage

```
dggetres(dggs)
```

Arguments

dggs

A dggs object from dgconstruct()

dginfo 11

Value

A data frame containing the resolution levels, number of cells, area of those cells, intercell spacing, and characteristic length scale of the cells. All values are in kilometres.

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
dggetres(dggs)
## End(Not run)</pre>
```

dginfo

Print a buncha info about a dggs object to the screen

Description

dggs objects have many settings. This returns all of them, along with info about the grid being specified.

Usage

```
dginfo(dggs)
```

Arguments

dggs

A dggs object from dgconstruct()

Value

No return. All info is printed to the screen.

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
dginfo(dggs)
## End(Not run)</pre>
```

dgmaxcell

Get largest cell id for a dggs

Description

Cells are labeled 1-N. This function returns N. This is useful if you want to choose cells from the dggs randomly.

Usage

```
dgmaxcell(dggs, res = NA)
```

Arguments

dggs A dggs object from dgconstruct()

res If NA, use the resolution specified by the dggs. Otherwise, override the resolu-

tion.

Value

The maximum cell id.

Examples

dgPROJTRI_to_GEO

Convert from PROJTRI to GEO

Description

Uses a discrete global grid system to convert between PROJTRI and GEO (see vignette for details)

```
dgPROJTRI_to_GEO(dggs, in_tnum, in_tx, in_ty)
```

Arguments

dggs	A dggs object from dgconstruct()
in_tnum	Vector of triangle numbers
in_tx	Vector of triangle x values
in_ty	Vector of triangle y values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgPROJTRI_to_GEO(dggs, in_tnum, in_tx, in_ty)
## End(Not run)</pre>
```

dgPROJTRI_to_PLANE

Convert from PROJTRI to PLANE

Description

Uses a discrete global grid system to convert between PROJTRI and PLANE (see vignette for details)

Usage

```
dgPROJTRI_to_PLANE(dggs, in_tnum, in_tx, in_ty)
```

Arguments

dggs	A dggs object from dgconstruct()
in_tnum	Vector of triangle numbers
in_tx	Vector of triangle x values
in_ty	Vector of triangle y values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgPROJTRI_to_PLANE(dggs, in_tnum, in_tx, in_ty)
## End(Not run)</pre>
```

dgPROJTRI_to_PROJTRI Convert from PROJTRI to PROJTRI

Description

Uses a discrete global grid system to convert between PROJTRI and PROJTRI (see vignette for details)

Usage

```
dgPROJTRI_to_PROJTRI(dggs, in_tnum, in_tx, in_ty)
```

Arguments

dggs	A dggs object from dgconstruct()
in_tnum	Vector of triangle numbers
in_tx	Vector of triangle x values
in_ty	Vector of triangle y values

Value

Returns a dggs object which can be passed to other dggridR functions

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgPROJTRI_to_PROJTRI(dggs, in_tnum, in_tx, in_ty)
## End(Not run)</pre>
```

dgPROJTRI_to_Q2DD

15

dgPR0J	TRT	to	02DD
agi itos	· · + -		-QZDD

Convert from PROJTRI to Q2DD

Description

Uses a discrete global grid system to convert between PROJTRI and Q2DD (see vignette for details)

Usage

```
dgPROJTRI_to_Q2DD(dggs, in_tnum, in_tx, in_ty)
```

Arguments

dggs	A dggs object from dgconstruct()
in_tnum	Vector of triangle numbers
in_tx	Vector of triangle x values
in_ty	Vector of triangle y values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgPROJTRI_to_Q2DD(dggs, in_tnum, in_tx, in_ty)
## End(Not run)</pre>
```

dgPROJTRI_to_Q2DI

Convert from PROJTRI to Q2DI

Description

Uses a discrete global grid system to convert between PROJTRI and Q2DI (see vignette for details)

```
dgPROJTRI_to_Q2DI(dggs, in_tnum, in_tx, in_ty)
```

Arguments

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
dgPROJTRI_to_Q2DI(dggs, in_tnum, in_tx, in_ty)
## End(Not run)</pre>
```

dgPROJTRI_to_SEQNUM

Convert from PROJTRI to SEQNUM

Description

Uses a discrete global grid system to convert between PROJTRI and SEQNUM (see vignette for details)

Usage

```
dgPROJTRI_to_SEQNUM(dggs, in_tnum, in_tx, in_ty)
```

Arguments

Value

Returns a dggs object which can be passed to other dggridR functions

dgQ2DD_to_GEO

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgPROJTRI_to_SEQNUM(dggs, in_tnum, in_tx, in_ty)
## End(Not run)</pre>
```

dgQ2DD_to_GEO

Convert from Q2DD to GEO

Description

Uses a discrete global grid system to convert between Q2DD and GEO (see vignette for details)

Usage

```
dgQ2DD_to_GEO(dggs, in_quad, in_qx, in_qy)
```

Arguments

dggs	A dggs object from dgconstruct()
in_quad	Vector of quad numbers
in_qx	Vector of quadrant x values
in_qy	Vector of quadrant y values

Value

Returns a dggs object which can be passed to other dggridR functions

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgQ2DD_to_GEO(dggs, in_quad, in_qx, in_qy)
## End(Not run)</pre>
```

dgQ2DD_to_PLANE

Convert from Q2DD to PLANE

Description

Uses a discrete global grid system to convert between Q2DD and PLANE (see vignette for details)

Usage

```
dgQ2DD_to_PLANE(dggs, in_quad, in_qx, in_qy)
```

Arguments

dggs A dggs object from dgconstruct()

in_quadin_qxvector of quadrant x valuesin_qyVector of quadrant y values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgQ2DD_to_PLANE(dggs, in_quad, in_qx, in_qy)
## End(Not run)</pre>
```

dgQ2DD_to_PROJTRI

Convert from Q2DD to PROJTRI

Description

Uses a discrete global grid system to convert between Q2DD and PROJTRI (see vignette for details)

```
dgQ2DD_to_PROJTRI(dggs, in_quad, in_qx, in_qy)
```

dgQ2DD_to_Q2DD

Arguments

dggs	A dggs object from dgconstruct()
in_quad	Vector of quad numbers

in_qx Vector of quadrant x values in_qy Vector of quadrant y values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgQ2DD_to_PROJTRI(dggs, in_quad, in_qx, in_qy)
## End(Not run)</pre>
```

dgQ2DD_to_Q2DD

Convert from Q2DD to Q2DD

Description

Uses a discrete global grid system to convert between Q2DD and Q2DD (see vignette for details)

Usage

```
dgQ2DD_to_Q2DD(dggs, in_quad, in_qx, in_qy)
```

Arguments

dggs	A dggs object f	rom dgconstruct()
------	-----------------	-------------------

in_quadVector of quad numbersin_qxVector of quadrant x valuesin_qyVector of quadrant y values

Value

Returns a dggs object which can be passed to other dggridR functions

20 dgQ2DD_to_Q2DI

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgQ2DD_to_Q2DD(dggs, in_quad, in_qx, in_qy)
## End(Not run)</pre>
```

dgQ2DD_to_Q2DI

Convert from Q2DD to Q2DI

Description

Uses a discrete global grid system to convert between Q2DD and Q2DI (see vignette for details)

Usage

```
dgQ2DD_to_Q2DI(dggs, in_quad, in_qx, in_qy)
```

Arguments

dggs A dggs object from dgconstruct()

in_quadin_qxvector of quadrant x valuesin_qyVector of quadrant y values

Value

Returns a dggs object which can be passed to other dggridR functions

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
dgQ2DD_to_Q2DI(dggs, in_quad, in_qx, in_qy)
## End(Not run)</pre>
```

dgQ2DD_	tο	SEONLIM
uguzuu	ιO	SECINON

Convert from Q2DD to SEQNUM

Description

Uses a discrete global grid system to convert between Q2DD and SEQNUM (see vignette for details)

Usage

```
dgQ2DD_to_SEQNUM(dggs, in_quad, in_qx, in_qy)
```

Arguments

dggs	A dggs object from	dgconstruct()
------	--------------------	---------------

in_quadin_qxvector of quadrant x valuesin_qyVector of quadrant y values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgQ2DD_to_SEQNUM(dggs, in_quad, in_qx, in_qy)
## End(Not run)</pre>
```

dgQ2DI_to_GEO

Convert from Q2DI to GEO

Description

Uses a discrete global grid system to convert between Q2DI and GEO (see vignette for details)

```
dgQ2DI_to_GEO(dggs, in_quad, in_i, in_j)
```

22 dgQ2DI_to_PLANE

Arguments

dggs A dggs object from dgconstruct()

in_quadin_iVector of quadrant i valuesin_jVector of quadrant j values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgQ2DI_to_GEO(dggs, in_quad, in_i, in_j)
## End(Not run)</pre>
```

dgQ2DI_to_PLANE

Convert from Q2DI to PLANE

Description

Uses a discrete global grid system to convert between Q2DI and PLANE (see vignette for details)

Usage

```
dgQ2DI_to_PLANE(dggs, in_quad, in_i, in_j)
```

Arguments

dggs A dggs object from dgconstruct()

in_quadin_iVector of quadrant i valuesin_jVector of quadrant j values

Value

Returns a dggs object which can be passed to other dggridR functions

dgQ2DI_to_PROJTRI 23

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgQ2DI_to_PLANE(dggs, in_quad, in_i, in_j)
## End(Not run)</pre>
```

dgQ2DI_to_PROJTRI

Convert from Q2DI to PROJTRI

Description

Uses a discrete global grid system to convert between Q2DI and PROJTRI (see vignette for details)

Usage

```
dgQ2DI_to_PROJTRI(dggs, in_quad, in_i, in_j)
```

Arguments

dggs A dggs object from dgconstruct()
in_quad Vector of quad numbers
in_i Vector of quadrant i values
in_j Vector of quadrant j values

Value

Returns a dggs object which can be passed to other dggridR functions

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
dgQ2DI_to_PROJTRI(dggs, in_quad, in_i, in_j)
## End(Not run)</pre>
```

24 dgQ2DI_to_Q2DI

dgQ2DI_	to	02DD
~54 <u>-</u> 2±-		

Convert from Q2DI to Q2DD

Description

Uses a discrete global grid system to convert between Q2DI and Q2DD (see vignette for details)

Usage

```
dgQ2DI_to_Q2DD(dggs, in_quad, in_i, in_j)
```

Arguments

dggs A dggs object from dgconstruct()
in_quad Vector of quad numbers
in_i Vector of quadrant i values
in_j Vector of quadrant j values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgQ2DI_to_Q2DD(dggs, in_quad, in_i, in_j)
## End(Not run)</pre>
```

dgQ2DI_to_Q2DI

Convert from Q2DI to Q2DI

Description

Uses a discrete global grid system to convert between Q2DI and Q2DI (see vignette for details)

```
dgQ2DI_to_Q2DI(dggs, in_quad, in_i, in_j)
```

dgQ2DI_to_SEQNUM 25

Arguments

dggs	A dggs object from dgconstruct()
in_quad	Vector of quad numbers
in_i	Vector of quadrant i values
in_j	Vector of quadrant j values

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgQ2DI_to_Q2DI(dggs, in_quad, in_i, in_j)
## End(Not run)</pre>
```

dgQ2DI_to_SEQNUM

Convert from Q2DI to SEQNUM

Description

Uses a discrete global grid system to convert between Q2DI and SEQNUM (see vignette for details)

Usage

```
dgQ2DI_to_SEQNUM(dggs, in_quad, in_i, in_j)
```

Arguments

dggs	A dggs object from dgconstruct()
in_quad	Vector of quad numbers
in_i	Vector of quadrant i values
in_j	Vector of quadrant j values

Value

Returns a dggs object which can be passed to other dggridR functions

26 dgrectgrid

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgQ2DI_to_SEQNUM(dggs, in_quad, in_i, in_j)
## End(Not run)</pre>
```

dgquakes

All earthquakes with magnitude >= 3.0 earthquakes for 2015

Description

A data frame with 19914 observations on the following 4 variables.

time Time of the quake. Example: 2015-12-31T23:39:28.940Z

lat Latitude of the epicenter. Example: -7.0711

1on Longitude of the epicenter. Example: -173.5178

mag Magnitude of the quake. Example: 3.2

Usage

```
data(dgquakes)
```

Format

data frame

Source

The USGS Earthquake Hazards Program (http://earthquake.usgs.gov/earthquakes/).

dgrectgrid

Return the coordinates constituting the boundary of cells within a specified region

Description

Note: This may generate odd results for very large rectangles, because putting rectangles on spheres is weird... as you should know, if you're using this package.

dgrectgrid 27

Usage

```
dgrectgrid(dggs, minlat = -1, minlon = -1, maxlat = -1, maxlon = -1,
  cellsize = 0.1, frame = TRUE, wrapcells = TRUE, savegrid = NA)
```

Arguments

dggs	A dggs object from dgconstruct()
minlat	Minimum latitude of region of interest
minlon	Minimum longitude of region of interest
maxlat	Maximum latitude of region of interest
maxlon	Maximum longitude of region of interest
cellsize	Distance, in degrees, between the sample points used to generate the grid. Small values yield long generation times while large values may omit cells.
frame	If TRUE, return a data frame suitable for ggplot plotting. If FALSE, return an OGR poly object
wrapcells	Cells which cross -180/180 degrees can present difficulties for plotting. Setting this TRUE will result in cells with components in both hemispheres to be mapped entirely to positive degrees (the Eastern hemisphere). As a result, such cells will have components in the range [180,360). Only used when frame=TRUE.
savegrid	If savegrid is set to a file path, then a shapefile containing the grid is written to that path and the filename is returned. No other manipulations are done. Default: NA (do not save grid, return it)

Value

Returns a data frame or OGR poly object, as specified by frame. If !is.na(savegrid), returns a filename.

dgsavegrid

Saves a generated grid to a shapefile

Description

Saves a generated grid to a shapefile

Usage

```
dgsavegrid(grid, shpfname)
```

Arguments

grid Grid to be saved

shpfname File to save the grid to

Value

The filename the grid was saved to

dgSEQNUM_to_GEO

Convert from SEQNUM to GEO

Description

Uses a discrete global grid system to convert between SEQNUM and GEO (see vignette for details)

Usage

```
dgSEQNUM_to_GEO(dggs, in_seqnum)
```

Arguments

dggs A dggs object from dgconstruct()

in_seqnum Globally unique number identifying the surface polygon

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgSEQNUM_to_GEO(dggs, in_seqnum)
## End(Not run)</pre>
```

dgSEQNUM_to_PLANE

Convert from SEQNUM to PLANE

Description

Uses a discrete global grid system to convert between SEQNUM and PLANE (see vignette for details)

Usage

```
dgSEQNUM_to_PLANE(dggs, in_seqnum)
```

Arguments

dggs A dggs object from dgconstruct()

in_seqnum Globally unique number identifying the surface polygon

Value

Returns a dggs object which can be passed to other dggridR functions

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgSEQNUM_to_PLANE(dggs, in_seqnum)
## End(Not run)</pre>
```

 $dgSEQNUM_to_PROJTRI$ C

Convert from SEQNUM to PROJTRI

Description

Uses a discrete global grid system to convert between SEQNUM and PROJTRI (see vignette for details)

Usage

```
dgSEQNUM_to_PROJTRI(dggs, in_seqnum)
```

Arguments

dggs A dggs object from dgconstruct()

in_seqnum Globally unique number identifying the surface polygon

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgSEQNUM_to_PROJTRI(dggs, in_seqnum)
## End(Not run)</pre>
```

dgSEQNUM_to_Q2DD

Convert from SEQNUM to Q2DD

Description

Uses a discrete global grid system to convert between SEQNUM and Q2DD (see vignette for details)

```
dgSEQNUM_to_Q2DD(dggs, in_seqnum)
```

dgSEQNUM_to_Q2DI 31

Arguments

dggs A dggs object from dgconstruct()

in_seqnum Globally unique number identifying the surface polygon

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgSEQNUM_to_Q2DD(dggs, in_seqnum)
## End(Not run)</pre>
```

dgSEQNUM_to_Q2DI

Convert from SEQNUM to Q2DI

Description

Uses a discrete global grid system to convert between SEQNUM and Q2DI (see vignette for details)

Usage

```
dgSEQNUM_to_Q2DI(dggs, in_seqnum)
```

Arguments

dggs A dggs object from dgconstruct()

in_seqnum Globally unique number identifying the surface polygon

Value

Returns a dggs object which can be passed to other dggridR functions

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgSEQNUM_to_Q2DI(dggs, in_seqnum)
## End(Not run)</pre>
```

32 dgsetres

dgSEQNUM_to_SEQNUM

Convert from SEQNUM to SEQNUM

Description

Uses a discrete global grid system to convert between SEQNUM and SEQNUM (see vignette for details)

Usage

```
dgSEQNUM_to_SEQNUM(dggs, in_seqnum)
```

Arguments

dggs A dggs object from dgconstruct()

in_seqnum Globally unique number identifying the surface polygon

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)

dgSEQNUM_to_SEQNUM(dggs, in_seqnum)
## End(Not run)</pre>
```

dgsetres

Set the resolution of a dggs object

Description

Set the resolution of a dggs object

```
dgsetres(dggs, res)
```

dgshptogrid 33

Arguments

dggs A dggs object from dgconstruct().

res Resolution. Must be in the range [0,30]. Larger values represent finer reso-

lutions. Appropriate resolutions can be found with dg_closest_res_to_area(), dg_closest_res_to_spacing(), and dg_closest_res_to_cls(). Default is 9, which corresponds to a cell area of ~2600 sq km and a cell spacing of ~50 km. Default:

9.

Value

Returns a dggs object which can be passed to other dggridR functions

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
dggs <- dgsetres(dggs,10)
## End(Not run)</pre>
```

dgshptogrid

Return boundary coordinates for cells intersecting a shapefile

Description

Returns the coordinates constituting the boundary of a set of cells which intersect or are contained by a polygon (or polygons) specified in a shapefile. Note that grid cells are also generated for holes in the shapefile's polygon(s).

Note that coordinates in the shapefile must be rounded to check polygon intersections. Currently this round preserves eight decimal digits of precision.

The eighth decimal place is worth up to 1.1 mm of precision: this is good for charting the motions of tectonic plates and the movements of volcanoes. Permanent, corrected, constantly-running GPS base stations might be able to achieve this level of accuracy.

In other words: you should be just fine with this level of precision.

```
dgshptogrid(dggs, shpfname, cellsize = 0.1, frame = TRUE,
  wrapcells = TRUE, savegrid = NA)
```

34 dgtransform

Arguments

dggs	A dggs object from dgconstruct()
shpfname	File name of the shapefile. Filename should end with '.shp'
cellsize	Distance, in degrees, between the sample points used to generate the grid. Small values yield long generation times while large values may omit cells.
frame	If TRUE, return a data frame suitable for ggplot plotting. If FALSE, return an OGR poly object
wrapcells	Cells which cross -180/180 degrees can present difficulties for plotting. Setting this TRUE will result in cells with components in both hemispheres to be mapped entirely to positive degrees (the Eastern hemisphere). As a result, such cells will have components in the range [180,360). Only used when frame=TRUE.
savegrid	If savegrid is set to a file path, then a shapefile containing the grid is written to that path and the filename is returned. No other manipulations are done. Default: NA (do not save grid, return it)

Value

Returns a data frame or OGR poly object, as specified by frame. If !is.na(savegrid), returns a filename.

Examples

```
## Not run:
library(dggridR)

dggs <- dgconstruct(spacing=25, metric=FALSE, resround='nearest')
south_africa_grid <- dgshptogrid(dggs,dg_shpfname_south_africa())
## End(Not run)</pre>
```

dgtransform	(DEPRECATED) Converts lat-long pairs into discrete global grid cell
	numbers

Description

A discrete global grid maps lat-long points to particular cells. These cells are uniquely numbered, for a given resolution, from 1 to some maximum number. Cell numbers may be reused from one resolution to the next. THIS FUNCTION IS DEPRECATED.

```
dgtransform(dggs, lat, lon)
```

dgverify 35

Arguments

dggs A dggs object from dgconstruct().

1at A vector of latitudes. Same length at the longtiudes1on A vector of longitudes. Same length as the latitudes.

Value

A vector of the same length as latitudes and longitudes containing the cell id numbers of the points' cells in the discrete grid.

Examples

dgverify

Verify that a dggs object has appropriate values

Description

Verify that a dggs object has appropriate values

Usage

```
dgverify(dggs)
```

Arguments

dggs

The dggs object to be verified

Value

The function has no return value. A stop signal is raised if the object is misspecified

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
dgverify(dggs)
## End(Not run)</pre>
```

36 dg_closest_res

dg_closest_res Determine an appropriate grid resolution based on input data.	dg_closest_res	Determine an appropriate grid resolution based on input data.	
--	----------------	---	--

Description

This is a generic function that is used to determine an appropriate resolution given an area, cell spacing, or correlated length scale. It does so by extracting the appropriate length/area column and searching it for a value close to the input.

Usage

```
dg_closest_res(dggs, col, val, round = "nearest", show_info = TRUE,
  metric = TRUE)
```

Arguments

dggs	A dggs object from dgconstruct()
col	Column in which to search for a close value. Should be: AreaKm, SpacingKm, or CLSKm.
val	The value to search for
round	What direction to search in. Must be nearest, up, or down.
show_info	Print the area, spacing, and CLS of the chosen resolution.
metric	Whether input and output should be in metric (TRUE) or imperial (FALSE)

Value

A number representing the grid resolution

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
res <- dg_closest_res(dggs,'AreaKm',1)
dggs <- dgsetres(dggs,res)
## End(Not run)</pre>
```

dg_closest_res_to_area 37

```
dg_closest_res_to_area
```

Determine resolution based on desired area

Description

Determine an appropriate grid resolution based on a desired cell area.

Usage

```
dg_closest_res_to_area(dggs, area, round = "nearest", show_info = TRUE,
  metric = TRUE)
```

Arguments

dggs	A dggs object from dgconstruct()
area	The desired area of the grid's cells
round	What direction to search in Must be nearest

round What direction to search in. Must be nearest, up, or down. show_info Print the area, spacing, and CLS of the chosen resolution.

metric Whether input and output should be in metric (TRUE) or imperial (FALSE)

Value

A number representing the grid resolution

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
res <- dg_closest_res_to_area(dggs,1)
dggs <- dgsetres(dggs,res)
## End(Not run)</pre>
```

Description

The characteristic length scale (CLS) is the diameter of a spherical cap of the same area as a cell of the specified resolution.

Usage

```
dg_closest_res_to_cls(dggs, cls, round = "nearest", show_info = TRUE,
  metric = TRUE)
```

Arguments

dggs A dggs object from dgconstruct()
cls The desired CLS of the cells.

round What direction to search in. Must be nearest, up, or down. show_info Print the area, spacing, and CLS of the chosen resolution.

metric Whether input and output should be in metric (TRUE) or imperial (FALSE)

Value

A number representing the grid resolution

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
res <- dg_closest_res_to_cls(dggs,1)
dggs <- dgsetres(dggs,res)
## End(Not run)</pre>
```

```
dg_closest_res_to_spacing
```

Determine grid resolution from desired spacing.

Description

Determine an appropriate grid resolution based on a desired spacing between the center of adjacent cells

Usage

```
dg_closest_res_to_spacing(dggs, spacing, round = "nearest",
    show_info = TRUE, metric = TRUE)
```

Arguments

dggs A dggs object from dgconstruct()

spacing The desired spacing between the center of adjacent cells round What direction to search in. Must be nearest, up, or down. show_info Print the area, spacing, and CLS of the chosen resolution.

metric Whether input and output should be in metric (TRUE) or imperial (FALSE)

dg_env 39

Value

A number representing the grid resolution

Examples

```
## Not run:
library(dggridR)
dggs <- dgconstruct(res=20)
res <- dg_closest_res_to_spacing(dggs,1)
dggs <- dgsetres(dggs,res)
## End(Not run)</pre>
```

dg_env

Control global aspects of the dggridR package

Description

This environment is used to control global features of the dggridR package. At the moment the only option is 'dg_debug' which, when set to TRUE provides extensive outputs useful for tracking down bugs.

Usage

dg_env

Format

An object of class environment of length 1.

```
dg_process_polydata Load a KML file
```

Description

Convert data from internal dggrid functions into something useful: an sp object or a data frame

```
dg_process_polydata(polydata, frame, wrapcells)
```

Arguments

polydata Polygons generated by dggrid. These will be converted.

frame If TRUE, return a data frame suitable for ggplot plotting. If FALSE, return an

SpatialPolygons

wrapcells Cells which cross -180/180 degrees can present difficulties for plotting. Set-

ting this TRUE will result in cells with components in both hemispheres to be mapped entirely to positive degrees (the Eastern hemisphere). As a result, such cells will have components in the range [180,360). Only used when frame=TRUE.

Value

Returns a data frame or OGR poly object, as specified by frame $\,$

dg_shpfname_south_africa

National border of South Africa

Description

This variable points to a shapefile containing the national border of South Africa

Usage

dg_shpfname_south_africa()

Value

A filename of a shapefile containing the national border of South Africa

Index

*Topic datasets
dg_env, 39
dgquakes, 26
dg_closest_res, 36
dg_closest_res_to_area, 37
dg_closest_res_to_cls, 37
<pre>dg_closest_res_to_spacing, 38</pre>
dg_env, 39
dg_process_polydata, 39
$\verb dg_shpfname_south_africa , 40$
dgcellstogrid, 3
dgconstruct, 4
dgearthgrid, 5
dgGEO_to_GEO, 6
dgGEO_to_PLANE, 7
dgGEO_to_PROJTRI, 7
dgGEO_to_Q2DD, 8
dgGEO_to_Q2DI, 9
dgGEO_to_SEQNUM, 10
dggetres, 10
dginfo, 11
dgmaxcell, 12
dgPROJTRI_to_GEO, 12
dgPROJTRI_to_PLANE, 13
dgPROJTRI_to_PROJTRI, 14
dgPROJTRI_to_Q2DD, 15
dgPROJTRI_to_Q2DI, 15
dgPROJTRI_to_SEQNUM, 16
dgQ2DD_to_GEO, 17
dgQ2DD_to_PLANE, 18
dgQ2DD_to_PROJTRI, 18 dgQ2DD_to_Q2DD, 19
dgQ2DD_to_Q2DI, 20
dgQ2DD_to_SEQNUM, 21
dgQ2DI_to_GEO, 21
dgQ2DI_to_PLANE, 22
dgQ2DI_to_PROJTRI, 23
dgQ2DI_to_Q2DD, 24
dgQ2DI_to_Q2DI, 24

```
dgQ2DI_to_SEQNUM, 25
dgquakes, 26
dgrectgrid, 26
dgsavegrid, 28
dgSEQNUM_to_GEO, 28
dgSEQNUM_to_PLANE, 29
dgSEQNUM_to_PROJTRI, 30
dgSEQNUM_to_Q2DD, 30
dgSEQNUM_to_Q2DI, 31
dgSEQNUM_to_SEQNUM, 32
dgsetres, 32
dgshptogrid, 33
dgtransform, 34
dgverify, 35
```