Multi Class Drug Classification Using Molecular Structures

Vivian Peng

https://github.com/veeps/molecular classification

Overview

Problem Statement

Current drug R&D is long and costly...
And it doesn't incentivize for research into treatments for neglected diseases.

What if we could improve the R&D process

by reducing redundancy, and screen for

multiple therapeutic uses in parallel?

Neural Network

Antineoplastic

CNS

Cardio

Here's what my data looked like:

Ran 3 types of models:

How do these neural networks compare in classifying drug classes using molecular structure data?

My hypothesis was that a CNN model using image data would be better at classifying than an RNN model using SMILES.

Models

SVC Support Vector

Classification

FEATURES:

- Molecular Weight
- Hydrogen Bond Acceptors
- Hydrogen Bond Donors
- XlogP (Solubility)

HYPERPARAMETERS:

- Ridge penalty
- Linear kernel
- Gamma = "scale"

CNN

Convolutional Neural Network

DATA PROCESSING:

MODELS:

- Custom convolutional neural net
- Pre-trained VGG16 model
 - 2 hidden layers (256 and 128 neurons)
 - Adam optimizer

CONVOLUTIONAL

Neural Network

DATA PROCESSING:

Brc1c(NC2=NCCN2)ccc2nccnc12

MODEL:

- Simple RNN
- Pre-trained VGG16 model
 - 5 hidden layers
 - Adam optimizer

RECURRENT NEURAL Network

RECURRENT Neural Network

Model	Score
RNN	0.64
CNN	0.62
SVC	0.53
Baseline	0.37

Both types of neural networks performed **relatively the same** in predicting drug classes. **This is really interesting** because running an RNN with text data is **computationally much lighter** than running a CNN with image data.

RNN

CNN

Models are good at predicting different types of drug classes.

Limitations

- Unable to tokenize SMILES to keep two-letter elements as one unit
- Lack of chemical expertise
- Unable to deploy app to Heroku

App Demo

Thank you!