MAD Assignment 3

Ask Jensen

12. december 2021

Indhold

_	Problem 1	1
	1.1 (a)	
	1.2 (b)	2
2	Problem 2	3
	Problem 3 3.1 (a)	4
	Problem 4 4 1 (a)	4

1 Problem 1

1.1 (a)

```
import numpy.matlib
        def pca(data):
            # Creating "clone" of matrix
            data_cent = np.full_like(data,0)
            # Iterate the matrix subtracting the mean diatiom
            # from each row
            for i in range(780):
                data_cent[:,i] = diatoms[:,i] - mean_diatom
10
11
            # Create the covariance matrix
            cov_matrix = np.cov(data_cent)
13
            # Calculate the eigenvecotrs and eigenvalues
15
            PCevals, PCevecs = np.linalg.eigh(cov_matrix)
17
            # linalg.eigh returns the vectors and values
19
            # in the wrong order.
            \# Np.flip will reverse the order so it is correct and
21
            # corrosponding to the exercise requirements
            PCevals = np.flip(PCevals)
            PCevecs = np.flip(PCevecs, axis=1)
            return PCevals, PCevecs, data_cent
25
        PCevals, PCevecs, data_cent = pca(diatoms)
```


Figur 1: Values for the first 10 proportions of variance, and the corrosponding graph

1.2 (b)

```
# gets the fourth eigenvector
        e4 = PCevecs[:, 3]
        # gets the fourth eigenvalue
        lambda4 = PCevals[3]
        # In case the naming std is confusing --
        # the eigenvalues have a statistical interpretation
        # print(std4)
        std4 = np.sqrt(lambda4)
        # Makes matrix filled with zeros
10
        diatoms_along_pc = np.zeros((7, 180))
12
        # Iterates the length of the matrix
        # For each row, add the mean diatom with added
        # values
        for i in range(7):
            diatoms_along_pc[i] = mean_diatom + ( e4 * std4 * (i-3))
18
        # Plotting each diatom
19
        for i in range(7):
```

```
plot_diatom(diatoms_along_pc[i])

plt.title('Diatom shape along PC1')
```


Figur 2: Plotted diatom

2 Problem 2

assesses the given claim $E[(X - \mu)^4] \ge \sigma^4$

X has the mean μ and the variance σ^4 which can be rewritten as $\sigma^4 = (Var(X))^2$ $E[(X - \mu)^4]$ kan be rewritten as E(g(x)) where $g(x) = (x - \mu)^4$

It is possible to Jensen's inequality if $g''(x) \ge 0$

$$g(x) = (x - \mu)^4$$

$$g(x) = 4(x - \mu)^3$$

$$g(x) = 12(x - \mu)^2$$

g(x) is convex, since the second derivative of the function is quadratic. Hence it will always be greater than zero. Which means that it its possible to make use of Jensen's inequality.

$$E(cX - \mu)^4 \ge (E(X - \mu))^4$$

 $(E(X - \mu))^4$
 $((E(X - \mu))^2)^2 = (Var(X))^2$

thus the claim is true, and shown by Jensen's inequality

$$E[(X-\mu)^4] \ge \sigma^4$$

3 Problem 3

3.1 (a)

4 Problem 4

4.1 (a)

In this exercise I'm asked to choose the null hypothesis. The dataset is $X_i - Y_i$, which gives me

1 0.5	-0.5	1.5	0.5
-------	------	-----	-----

Calculating the observed mean = $\frac{1+0.5-0.5+1.5+0.5}{5}$ = 0.6 μ_0 = 0 since the assumption is, that there is no difference between the two types of flowers

Thus my null hypothesis is: $H_0: \mu_0 = 0$