

MRI szegmentáció model-ensemble módszerrel Model Mavericks

Csató Erik - IRKR10 Egyedi Zsolt - I9D6EJ Rimai Dániel - BR2BUJ

ACDC Challenge

Motiváció:

- A szív kamráinak és a szívizomfalak térfogatának ismeretében bizonyos betegségek diagnosztizálhatóak.
- Ezek a régiók mellkasi MRI képeken jól látszanak.

Cél:

 Olyan model-ensemble létrehozása, amely a lehető legpontosabban szegmentálja az input MRI felvételeket 4 osztály szerint

MRI szegmentációs módszerek

- Alapvetően U-net és az Ensemble módszer a domináns
 - Külön U-netek átlagolása
 - Diversity Promoting Ensemble
 - U-netek → Feature map, majd végső U-net → döntés (pl. triU-net)
- Dice értékek (1-DiceLoss): 0.86 0.96

#models (k)	Base	eline	DiPE (ours)		
	Dice	IoU	Dice	IoU	
2	0.9151	0.8886	0.9125	0.8856	
3	0.9168	0.8903	0.9175	0.8911	
4	0.9182	0.8920	0.9185	0.8922	
5	0.9186	0.8923	0.9188	0.8927	
6	0.9187	0.8924	0.9196	0.8936	
7	0.9192	0.8931	0.9196	0.8935	
8	0.9199	0.8938	0.9201	0.8940	
All (9)	0.9199	0.8938	0.9199	0.8938	

	Mean	Mean	Mean	Mean	Mean	Mean
Method	Dice	Dice	Dice	Dice	Dice	Dice
	LV	RV	MYO	LV	RV	MYO
	ED	ED	ED	ES	ES	ES
*DCNN	0.822	0.761	0.510	0.719	0.652	0.601
DaDCNN-00	0.954	0.920	0.869	0.898	0.824	0.878
DaDCNN-01	0.955	0.916	0.868	0.902	0.845	0.880
DaDCNN-10	0.958	0.924	0.872	0.912	0.846	0.885
DaDCNN-11	0.959	0.924	0.873	0.918	0.849	0.884
*Unet-2	0.822	0.779	0.513	0.728	0.677	0.605
DaUnet-2	0.963	0.935	0.888	0.921	0.856	0.898
*Unet-1	0.825	0.778	0.509	0.732	0.684	0.605
DaUnet-1	0.959	0.921	0.877	0.915	0.839	0.890
*DeepLabv3+	0.914	0.824	0.746	0.825	0.686	0.771

ACDC dataset

- Az adatbázis MRI képeket tartalmazó mappákból állt
- A harmadik dimenzió mentén az MRI felvételeket feldaraboltuk, hogy 2D képeket kapjunk
- Az összes kép dimenzióit egyenlő hosszúságúra "paddingeltük"
- Felosztottuk az adatbázist tanító validáció teszt halmazra
- Létrehoztunk egy pytorch dataloadert, amely pytorch-kompatibilis dataset-et hoz létre

Baseline

- Kezdetben ResNet majd SegNet alkalmazása
- DiceLoss használata
- MNIST teszt

Baseline: Adam, Ir=1e-5,b=8,e=100

MNIST: Adam, Ir=1e-3, b=16, e=100

triU-net

- 3 U-net háló:
 - előtanított ResNet50 (UNet1) → feature map
 - előtanított DenseNet201 (UNet2) → feature map
 - saját konvolúciós háló (UNet3) → végleges szegmentáció
- Optimalizáció: AdamW, Ir=0.001
- Loss: DiceLoss + TverskyLoss (egyenlő súllyal)
- Tanítása: 150 epoch, 2 batch, batch méret: 8 kép
- Eredmények: train Dice: 0.71, test Dice: 0.42

triUnet felépítése [3]

Kiértékelés

GUI

Summary

Valószínűleg hibás "labelek" miatt nem sikerült túltanítanunk a modelleket

Adatdúsítás

 Konténerizáció elkészült nagyobb adathalmazon, megfelelő címkézéssel és több erőforrással való tanítás segíthet a jobb eredmények elérésében

Köszönjük a figyelmet!

- [1] Diversity-Promoting Ensemble for Medical Image Segmentation M-I. Georgescu, R. T. Ionescu, A-I. Miron
- [2] Cardiac MRI Segmentation With a Dilated CNN Incorporating Domain-Specific Constraints G. Simantiris, G. Tziritas
- [3] DivergentNets: Medical Image Segmentation by Network Ensemble V. Thambawita, S. A. Hicks, P. Halvorsen, M. A. Riegler
- [4] Benchmark Analysis of Representative Deep Neural Network Architectures S. Bianco, R. Cadene, L. Celona, P. Napoletano
- [5] O. Bernard, A. Lalande, C. Zotti, F. Cervenansky, et al. "Deep Learning Techniques for Automatic MRI Cardiac Multi-structures Segmentation and Diagnosis: Is the Problem Solved?"

