Data

- Set of 494 unique proteins with a PDB structure
 - Less than 20% sequence identity (PISCES)

Secondary structure already determined by

DSSP and STRIDE

Data

• Tab-delimited files for DSSP and STRIDE

PDB				Actual
	sequence		secondary	
PDB chain code		code	Residue	structure
PDB code				
1w0n	A	12	ILE	Other
1w0n	A	13	THR	Beta
1w0n	A	14	LYS	Beta
1w0n	A	15	VAL	Beta
1w0n	A	16	GLU	Beta
1w0n	A	17	ALA	Other
1w0n	A	18	GLU	Other
1w0n	A	19	ASN	Other
1w0n	A	20	MET	Other
1w0n	A	21	LYS	Beta

Data

• Tab-delimited file CATH protein family

T D B Chain code Troccin farmiy				
PDB code				
1w0n	A	Beta		
2gpi	A	Alpha/beta		
1vbw	A	Alpha/beta		
2odk	A	Alpha/beta		
2zxy	A	Alpha		
2pr7	A	Alpha/beta		
2pyq	A	Alpha		
1jy2	N	Alpha		

PDB chain code Protein family

STRIDE **DSSP** data data Predict **DSSP** STRIDE prediction prediction

GOR III

GOR III

$$I(\Delta S_j; R_1, ..., R_n) \approx I(\Delta S_j; R_j) + \sum_{\substack{m=-8 \ m \neq 0}}^{m=8} I(\Delta S_j; R_{j+m} \mid R_j)$$

Self information

Pair information

$$I(\Delta S_j; R_{j+m} \mid R_j) = \log(f_{S_j, R_{j+m}, R_j} / f_{n-S_j, R_{j+m}, R_j}) + \log(f_{n-S_j, R_j} / f_{S_j, R_j})$$

- Predict secondary structure for each of 494 proteins
- Protein to calculate cannot be in data set
 - Implement jackknife/leave-one-out!
- Calculate Q₃ and MCC quality scores
 - Prediction variation between STRIDE and DSSP
 - Both for whole set and per protein family

• Q_3 measure

$$Q_3 = \frac{N_{residues_correctly_predicted}}{N_{residues_total}}$$

- Matthews correlation coefficient (MCC)
 - Predicted for each secondary structure state
 - Uses false/true positives and false/true negatives

$$\label{eq:mcc} \text{MCC} = \frac{TP \times TN - FP \times FN}{\sqrt{(TP + FP)(TP + FN)(TN + FP)(TN + FN)}}$$

- Based on the secondary structure prediction, predict the protein family.
 - Can determine own criteria for this step
 - Compare prediction against actual protein family
- Use evolutionary information to improve your results (OPTIONAL)