INDEX

SR. NO.	TITLE	SIGN
1.	CREATE DATA MODEL USING CASSANDRA	
2.	CONVERSION FROM DIFFERENT FORMS TO HORUS.	
3.	AUDIT FROM LOGGING	
4.	RETRIVE SUPERSTEPS	
5.	ASSESS SUPERSTEPS	
6.	PROCESS SUPERSTEPS	
7.	TRANSFORM SUPERSTEPS	
8.	ORGANIZE SUPERSTEPS	
9.	REPORT SUPERSTEPS	

Practical No. 1

1. Create data model using Cassandra. Required

Software:

Java v1.8, Python v2.7, Cassandra File

ANS:

Create Key space:

cqlsh> CREATE KEYSPACE college WITH replication =
{'class':'SimpleStrategy', 'replication_factor' : 3};

```
WARNING: console codepage must be set to cp65001 to support utf-8 encodindows platforms.

If you experience encoding problems, change your console codepage with '01' before starting cqlsh.

Connected to Test Cluster at 127.0.0.1:9042.

[cqlsh 5.0.1 | Cassandra 3.11.4 | CQL spec 3.4.4 | Native protocol v4]

Use HELP for help.

WARNING: pyreadline dependency missing. Install to enable tab completions cqlsh CREATE KEYSPACE college WITH replication={'class': 'SimpleStrateg lication_factor':3};

cqlsh DESCRIBE keyspaces;

tutorialspoint system_auth college system_traces

system_schema system system_distributed

cqlsh
```

Create Table

cqlsh:college> CREATE TABLE students(stud_id int PRIMARY KEY,stud_name text,stud_phone varint);

cqlsh:college> select * from students;

Creating Data in a Table

cqlsh:college> INSERT INTO students (stud_id, stud_name, stud_phone) VALUES (001, 'Joey', 9876543210);

cqlsh:college> INSERT INTO students (stud_id, stud_name, stud_phone) VALUES (002, 'Ross', 9856321470);

cqlsh:college> INSERT INTO students (stud_id, stud_name, stud_phone) VALUES (003, 'Chandler', 1258963470);

cqlsh:college> SELECT * FROM students;

Update data in table

cqlsh:college> update students SET stud_name='Mike' WHERE stud_id=1; cqlsh:college> SELECT * FROM students;

Delete data from table

cqlsh:college> DELETE stud_phone FROM students WHERE stud_id=2; cqlsh:college> SELECT * FROM students;

Alter Table

1. Adding a column

cqlsh:college> ALTER TABLE students

... ADD stud_add text; cqlsh:college>
SELECT * FROM students

```
C:\Windows\system32\cmd.exe

cqlsh:college> SELECT * FROM students;

stud_id | stud_name | stud_phone

1 | Mike | 9876543210
2 | Ross | null
3 | Chandler | 1258963470

(3 rows)
cqlsh:college> ALTER TABLE students
... ADD stud_add text;
cqlsh:college> SELECT * FROM students;

stud_id | stud_add | stud_name | stud_phone

1 | null | Mike | 9876543210
2 | null | Ross | null
3 | null | Chandler | 1258963470

(3 rows)
cqlsh:college>
```

2. Dropping a column

cqlsh:college> ALTER TABLE students DROP stud_add; cqlsh:college> SELECT * FROM students;

Drop Table

cqlsh:college> DROP TABLE student; cqlsh:college>

describe tables;

```
C:\Windows\system32\cmd.exe

cqlsh:college> DROP TABLE student;
cqlsh:college> describe tables;

<empty>
cqlsh:college> _____
```

Drop Keyspace

cqlsh:college> DROP KEYSPACE college; cqlsh:college> describe keyspaces;

Practical No. 2

Conversion from different formats to HORUS format.

CSV to HORUS

```
INPUT:
import pandas as pd
from datetime import datetime
sInputFileName='C:/practical-data-science-master/VKHCG/05-DS/9999-
Data/Country_Code.csv'
InputData=pd.read csv(sInputFileName,encoding="latin-1")
print('Input Data Values =========')
print(InputData)
ProcessData=InputData
# Remove columns ISO-2-Code and ISO-3-CODE
ProcessData.drop('ISO-2-CODE', axis=1,inplace=True)
ProcessData.drop('ISO-3-Code', axis=1,inplace=True)
now=datetime.now() print("now
= ",now)
dt_string=now.strftime("%d/%m/%y %H:%M:%S")
print("Date and Time= ",dt_string)
f=open('C:/practical-data-science-master/VKHCG/05-DS/9999-
Data/Country_Code_Log.txt',"a")
f.write("Delete column activity recorded at ")
f.write(dt_string)
f.close()
# Rename Country and ISO-M49 ProcessData.rename(columns={'Country':
'CountryName'}, inplace=True)
ProcessData.rename(columns={'ISO-M49': 'CountryNumber'}, inplace=True) # Set
new Index
ProcessData.set_index('CountryNumber', inplace=True) #
Sort data by CurrencyNumber
ProcessData.sort_values('CountryName', axis=0, ascending=False,
inplace=True)
print('Process Data Values ==========') print(ProcessData)
OutputData=ProcessData
```

sOutputFileName='C:/practical-data-science-master/VKHCG/05-DS/9999-Data/HORUS-CSV-Country.csv' OutputData.to_csv(sOutputFileName, index = False) print('CSV to HORUS - Done')

OUTPUT:

```
_ D X
Python 3.7.4 Shell
<u>File Edit Shell Debug Options Window Help</u>
Python 3.7.4 (tags/v3.7.4:e09359112e, Jul 8 2019, 19:29:22) [MSC v.1916 32 bit
(Intel)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
RESTART: C:\practical-data-science-master\VKHCG\05-DS\9999-Data\CSV2HORUS.py
Input Data Values =====
   Country ISO-2-CODE ISO-3-Code ISO-M49
      USA
                1
                        3
                                     248
                   2
                               7
    India
                                     264
                   3
                              5
2 England
                                     102
  Russia
                           6
                                     231
                   4
Process Data Values ======
             CountryName
CountryNumber
248
231
                  Russia
264
                  India
102
                England
CSV to HORUS - Done
>>>
                                                                      Ln: 21 Col: 4
```

CSV TO AUDIO

```
INPUT:
from scipy.io import wavfile
import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
def show_info(aname, a,r):
  print ('----')
  print ("Audio:", aname)
  print ('----')
  print ("Rate:", r) print
       _____')
  print ("shape:", a.shape)
  print ("dtype:", a.dtype)
  print ("min, max:", a.min(), a.max())
  print ('----')
  plot_info(aname, a,r)
def plot_info(aname, a,r):
  sTitle= 'Signal Wave - '+ aname + ' at ' + str(r) + 'hz'
  plt.title(sTitle)
  sLegend=[]
  for c in range(a.shape[1]):
    sLabel = 'Ch' + str(c+1)
    sLegend=sLegend+[str(c+1)]
    plt.plot(a[:,c], label=sLabel)
  plt.legend(sLegend)
  plt.show()
sInputFileName='D:/Downloads/practical-data-science-master/VKHCG/05-
DS/9999-Data/2ch-sound.wav'
print('Processing : ', sInputFileName)
InputRate, InputData = wavfile.read(sInputFileName)
show_info("2 channel", InputData,InputRate)
ProcessData=pd.DataFrame(InputData)
sColumns= ['Ch1','Ch2'] ProcessData.columns=sColumns
OutputData=ProcessData
sOutputFileName='D:/Downloads/practical-data-science-master/VKHCG/05-
DS/9999-Data/HORUS-Audio-2ch.csv' OutputData.to_csv(sOutputFileName, index
```

Roll No: 2024ITI2

= False) sInputFileName='D:/Downloads/practical-data-science-

master/VKHCG/05- DS/9999-Data/4ch-sound.wav'

print('Processing : ', sInputFileName)

InputRate, InputData = wavfile.read(sInputFileName)

show_info("4 channel", InputData,InputRate)

ProcessData=pd.DataFrame(InputData)

sColumns= ['Ch1','Ch2','Ch3', 'Ch4']

ProcessData.columns=sColumns

OutputData=ProcessData

sOutputFileName='D:/Downloads/practical-data-science-master/VKHCG/05-

DS/9999-Data/HORUS-Audio-4ch.csv' OutputData.to_csv(sOutputFileName, index

= False) sInputFileName='D:/Downloads/practical-data-science-

master/VKHCG/05- DS/9999-Data/6ch-sound.wav'

print('Processing : ', sInputFileName)

InputRate, InputData = wavfile.read(sInputFileName)

show_info("6 channel", InputData,InputRate)

ProcessData=pd.DataFrame(InputData)

sColumns= ['Ch1','Ch2','Ch3', 'Ch4', 'Ch5','Ch6']

ProcessData.columns=sColumns

OutputData=ProcessData

sOutputFileName='D:/Downloads/practical-data-science-master/VKHCG/05-

DS/9999-Data/HORUS-Audio-6ch.csv' OutputData.to_csv(sOutputFileName, index

= False) sInputFileName='D:/Downloads/practical-data-science-

master/VKHCG/05- DS/9999-Data/8ch-sound.wav'

print('Processing : ', sInputFileName)

InputRate, InputData = wavfile.read(sInputFileName)

show_info("8 channel", InputData,InputRate)

ProcessData=pd.DataFrame(InputData)

sColumns= ['Ch1', 'Ch2', 'Ch3', 'Ch4', 'Ch5', 'Ch6', 'Ch7', 'Ch8']

ProcessData.columns=sColumns

OutputData=ProcessData

sOutputFileName='D:/Downloads/practical-data-science-master/VKHCG/05-

DS/9999-Data/HORUS-Audio-8ch.csv' OutputData.to csv(sOutputFileName, index

= False)

print('Audio to HORUS - Done')

```
*Python 3.7.4 Shell*
                                                                     <u>File Edit Shell Debug Options Window Help</u>
Python 3.7.4 (tags/v3.7.4:e09359112e, Jul 8 2019, 20:34:20) [MSC v.1916 64 bit ^
(AMD64)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>>
RESTART: D:\Downloads\practical-data-science-master\VKHCG\05-DS\9999-Data\AUDIO
2HORUS.py
Processing: D:/Downloads/practical-data-science-master/VKHCG/05-DS/9999-Data/2
ch-sound.wav
______
Audio: 2 channel
Rate: 22050
shape: (29016, 2)
dtype: int16
min, max: -16384 14767
```


Practical No 3

Auditing through Logging

CSV to HORUS log file INPUT:

```
import pandas as pd
from datetime import datetime
sInputFileName='C:/practical-data-science-master/VKHCG/05-DS/9999-
Data/Country_Code.csv'
InputData=pd.read_csv(sInputFileName,encoding="latin-1")
print('Input Data Values ========')
print(InputData)
ProcessData=InputData
# Remove columns ISO-2-Code and ISO-3-CODE
ProcessData.drop('ISO-2-CODE', axis=1,inplace=True)
ProcessData.drop('ISO-3-Code', axis=1,inplace=True)
now=datetime.now()
print("now = ",now) dt_string=now.strftime("%d/%m/%y
%H:%M:%S") print("Date and Time= ",dt_string)
f=open('C:/practical-data-science-master/VKHCG/05-DS/9999-
Data/Country_Code_Log.txt',"a")
f.write("Delete column activity recorded at ")
f.write(dt_string)
f.close()
# Rename Country and ISO-M49 ProcessData.rename(columns={'Country':
'CountryName'}, inplace=True)
ProcessData.rename(columns={'ISO-M49': 'CountryNumber'}, inplace=True) # Set
new Index
ProcessData.set_index('CountryNumber', inplace=True)
# Sort data by CurrencyNumber
ProcessData.sort_values('CountryName', axis=0, ascending=False,
inplace=True)
print('Process Data Values ==========') print(ProcessData)
OutputData=ProcessData
```

sOutputFileName='C:/practical-data-science-master/VKHCG/05-DS/9999-Data/HORUS-CSV-Country.csv' OutputData.to_csv(sOutputFileName, index = False) print('CSV to HORUS - Done')

OUTPUT:

```
- - X
Python 3.7.4 Shell
\underline{\underline{F}} ile \quad \underline{\underline{F}} dit \quad \underline{\underline{D}} ebug \quad \underline{\underline{O}} ptions \quad \underline{\underline{W}} indow \quad \underline{\underline{H}} elp
Python 3.7.4 (tags/v3.7.4:e09359112e, Jul 8 2019, 19:29:22) [MSC v.1916
32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
>>>
 RESTART: C:/practical-data-science-master/VKHCG/05-DS/9999-Data/CSV2HOR
US_Log.py
Input Data Values ======
    Country ISO-2-CODE ISO-3-Code ISO-M49
         USA
                                                    264
       India
   England
                           3
                                                   102
   Russia
                           4
                                                   231
 now = 2019-10-14 10:02:43.792968
Date and Time= 14/10/19 10:02:43
 Process Data Values ==
                  CountryName
 CountryNumber
248
                             USA
231
                        Russia
264
                          India
102
                       England
CSV to HORUS - Done
                                                                                      Ln: 23 Col: 4
```


Practical No 04

Retrieve Superstep

```
Csv to Db
```

```
DATASET.PY
```

```
import sys
import os
import sqlite3 as sq
import pandas as pd
sDatabaseName='C:\Users\Acer\Desktop\sqlite-tools-win32-x86-
3340100\sqlite-tools-win32-x86-3340100\srk.db'
conn = sq.connect(sDatabaseName)
sFileName='C:\Users\Acer\Desktop\DataSet.csv'
print('Loading :',sFileName)
data=pd.read_csv(sFileName,header=0,low_memory=False, encoding="latin-1")
data.index.names = ['RowIDCSV']
sTable='DataSet'
print('Storing :',sDatabaseName,' Table:',sTable)
data.to_sql(sTable, conn, if_exists="replace")
print('Loading :',sDatabaseName,' Table:',sTable)
TestData=pd.read_sql_query("select * from DataSet;", conn) print('###########")
print('## Data Values')
print('#########")
print(TestData)
print('########")
print('## Data Profile')
print('#########")
print('Rows :',TestData.shape[0])
print('Columns :',TestData.shape[1])
print('#########")
```

```
('Loading :', 'C:\\Users\\Acer\\Desktop\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\\sqlite-tools-win32-x86-3340100\sqlite-tools-win32-x86-3340100\sqlite-tools-win32-x86-3340100\sqlite-tools-win32-x86-3340100\sqlite-tools-win32-x86-3340100\sqlite-tools-win32-x86-3340100\sqlite-tools-win32-x86-3340
tools-win32-x86-3340100\\srk.db', ' Table:', 'DataSet')
++++++++++++++
## Data Values
++++++++++++++
                 RowIDCSV Unnamed: 0 Unnamed: 0.1 ...
                                                                                                                                                  tempo valence
                                                                                                                                                                                                      vear
                                                                                                                                          149.976 0.6340 1920.0
0
                                      0
                                                                          0
                                                                                                                     0
                                                                                                                            ...
                                      1
                                                                                                                                               86.889 0.9500 1920.0
1
                                                                          1
                                                                                                                     1
2
                                      2
                                                                          2
                                                                                                                     2
                                                                                                                                                97.600 0.6890
                                                                                                                                                                                              1920.0
                                                                                                                             . . .
                                      3
                                                                          3
                                                                                                                     3
                                                                                                                                            127.997 0.0422 1920.0
3
                                                                                                                              ...
                                      4
                                                                          4
                                                                                                                     4
                                                                                                                                            122.076 0.2990 1920.0
4
                                                                                                                            ...
5
                                      5
                                                                          5
                                                                                                                     5
                                                                                                                                           103.870 0.4770 1920.0
                                                                                                                            . . .
5
                                      6
                                                                          6
                                                                                                                     6
                                                                                                                                               85.652 0.4870 1920.0
                                                                                                                            ...
7
                                     7
                                                                         7
                                                                                                                     7
                                                                                                                                               78.784 0.3660 1920.0
                                                                                                                             ...
                                                                                                                                            130.060 0.6210 1920.0
3
                                     -8
                                                                         -8
                                                                                                                     8
                                                                                                                              ...
9
                                     9
                                                                         9
                                                                                                                     9
                                                                                                                                            126.993 0.1190 1920.0
                                                                                                                             . . .
                                   10
                                                                       10
                                                                                                                10
                                                                                                                                              82.024 0.4140 1920.0
10
                                                                                                                             . . .
11
                                   11
                                                                     11
                                                                                                                 11
                                                                                                                                           131.494 0.7030 1920.0
                                                                                                                            ...
12
                                   12
                                                                      12
                                                                                                                 12
                                                                                                                                          111.268 0.5660 1920.0
                                                                                                                            . . .
13
                                  13
                                                                      13
                                                                                                               13
                                                                                                                                          124.018 0.6390 1920.0
                                                                                                                            ...
                                                                                                                                               67.271 0.8940 1920.0
14
                                   14
                                                                      14
                                                                                                                14
                                                                                                                            . . .
                                   15
                                                                      15
                                                                                                                                             102.578 0.7920 1920.0
15
                                                                                                                 15
                                                                                                                             . . .
16
                                   16
                                                                      16
                                                                                                                 16
                                                                                                                                            118.562 0.1460
                                                                                                                                                                                              1920.0
                                                                                                                            . . .
17
                                   17
                                                                      17
                                                                                                                 17
                                                                                                                                            136.573 0.7280
                                                                                                                                                                                              1920.0
                                                                                                                             . . .
                                                                     18
                                   18
18
                                                                                                                            ...
                                                                                                                                          112.817
                                                                                                                                                                      0.4930 1920.0
                                                                                                                 18
19
                                  19
                                                                    19
                                                                                                                 19
                                                                                                                                                65.485 0.5150 1920.0
                                                                                                                            . . .
20
                                   20
                                                                    20
                                                                                                                 20
                                                                                                                            ...
                                                                                                                                          140.011 0.5780 1920.0
```

```
Users\Acer\Desktop\sqlite-tools-win32-x86-3340100\sqlite-tools-win32-x86-3340100>sqlite3 srk.db,
SQLite version 3.34.1 2021-01-20 14:10:07
Enter ".help" for usage hints.
salite> .schema
CREATE TABLE kkr(team_no integer,name string);
CREATE TABLE IF NOT EXISTS "prac" (
 RowIDCSV" INTEGER,
   "acousticness" REAL,
   "artists" TEXT,
  "danceability" REAL,
"duration_ms" INTEGER,
"energy" REAL,
"explicit" INTEGER,
  "id" TEXT,
  "instrumentalness" REAL,
  "key" INTEGER,
  "liveness" REAL,
"loudness" REAL,
  "mode" INTEGER,
  "name" TEXT,
"popularity" INTEGER,
  "release_date" TEXT,
"speechiness" REAL,
  "tempo" REAL,
"valence" REAL,
  "year" INTEGER
```

4B. PERFORMING OPERATIONS ON DATASET

DATASETFIX.PY

```
import sys
import os
import pandas as pd
import sqlite3 as sq
sDatabaseName='C:/Users/Acer/Desktop/sglite-tools-win32-x86-
3340100/sqlite-tools-win32-x86-3340100/srk.db'
conn = sq.connect(sDatabaseName)
print('Loading :',sDatabaseName)
DataSet=pd.read_sql_query("select * from DataSet;", conn)
print('Rows:', DataSet.shape[0])
print('Columns:', DataSet.shape[1])
print('### Raw Data Set ###############################)
for i in range(0,len(DataSet.columns)):
print(DataSet.columns[i],type(DataSet.columns[i]))
print('### Fixed Data Set ########################)
DataSet FIX=DataSet
for i in range(0,len(DataSet.columns)):
 cNameOld=DataSet_FIX.columns[i] + '
 print("Old : ",cNameOld);
 cNameNew=cNameOld.strip().replace(" ", ",")
 print("New : ",cNameNew);
 DataSet FIX.columns.values[i] = cNameNew
 print(DataSet.columns[i],type(DataSet.columns[i]))
#print(DataSet FIX.head())
print('#########")
print('Fixed Data Set with ID')
print('##########")
DataSet with ID=DataSet FIX
print('#########")
```

```
print(DataSet_with_ID.head())
print('#########")
sTable2='Retrieve_IP_DATA'
DataSet_with_ID.to_sql(sTable2,conn,index_label="RowID", if_exists="replace")
print('### Done!! ##############")
```

```
('Loading :', 'C:/Users/Acer/Desktop/sqlite-tools-win32-x86-3340100/sqlite-tools-win32-x86-3340100/srk.db')
('Rows:', 4761)
('Columns:', 22)
## Raw Data Set ####
## Raw Data Set ####
('RowIDCSV', <cype 'str'>)
('Unnamed: 0', <type 'str'>)
('Unnamed: 0', <type 'str'>)
('acousticness', <type 'str'>)
('atcists', <type 'str'>)
('atcists', <type 'str'>)
('danceablity', <type 'str'>)
('danceablity', <type 'str'>)
('dunation_ms', <cype 'str'>)
('dunation_to, <cype 'str'>)
('explicit', <cype 'str'>)
('ind', <type 'str'>)
('ind', <type 'str'>)
('ind', <type 'str'>)
('liveness', <cype 'str'>)
('liveness', <cype 'str'>)
('liveness', <cype 'str'>)
('loudness', <cype 'str'>)
('name', <cype 'str'>)
('release date', <type 'str'>)
('release date', <type 'str'>)
('release date', <type 'str'>)
('valence', <type 'str'>)
('valence', <type 'str'>)
('yaer', <type 'str'>)
f'seechiness', <cype 'str'>)
('yaer', <type 'str'>)
f'seen', <type 'str'>)
f'seen', <type 'str'>)
('Yaer', <type 'str'>)
('Yaer', <type 'str'>)
('Yaer', <type 'str'>)
('New ', 'RowIDCSV')
('RowIDCSV', <cype 'str'>)
('Old : ', 'Unnamedi, 0')
('Unnamedi, 0', <type 'str'>)
('Unnamedi, 0', <type 'str'>)
('Unnamedi, 0', <type 'str'>)
('Unnamedi, 0', <type 'str'>)
```

```
('Old : ', 'RowIDCSV
('New : ', 'RowIDCSV')
('RowIDCSV', <type 'str'>)
('Old : ', 'Unnamed: 0
('New : ', 'Unnamed:,0')
('Unnamed:,0', <type 'str'>)
('Old : ', 'Unnamed: 0.1
('New : ', 'Unnamed:,0.1')
('Unnamed:, 0.1', <type 'str'>)
('Old : ', 'acoustioness
('New : ', 'acoustioness')
('acousticness', <type 'str'>)
('Old : ', 'artists
('New : ', 'artists')
('artists', <type 'str'>)
('Old : ', 'danceability
('New : ', 'danceability')
('danceability', <type 'str'>)
('Old : ', 'duration_ms
('New : ', 'duration_ms')
('duration_ms', <type 'str'>)
('Old : ', 'energy
('New : ', 'energy')
('energy', <type 'str'>)
('Old : ', 'explicit
('New : ', 'explicit')
('explicit', <type 'str'>)
('Old : ', 'id
('New : ', 'id')
('id', <type 'str'>)
('Old : ', 'instrumentalness
('New : ', 'instrumentalness')
('instrumentalness', <type 'str'>)
('Old : ', 'key ')
('Old : ', 'key
('New : ', 'key')
```

```
Fixed Data Set with ID
*************
*************
  RowIDCSV Unnamed:, 0 Unnamed:, 0.1 ... tempo valence
                                                    year
        0
                 0
                              0 ... 149.976 0.6340 1920.0
1
        1
                  1
                              1 ... 86.889 0.9500 1920.0
2
                             2 ... 97.600 0.6890 1920.0
       2
                 2
                             3 ... 127.997 0.0422 1920.0
3
       3
                 3
                 4
                             4 ... 122.076 0.2990 1920.0
[5 rows x 22 columns]
```

```
CREATE TABLE IF NOT EXISTS "Retrieve_IP_DATA" (
 RowID" INTEGER,
  "RowIDCSV" INTEGER,
  "Unnamed:,0" INTEGER,
  "Unnamed:,0.1" INTEGER,
  "acousticness" REAL,
 "artists" TEXT,
  "danceability" REAL,
  "duration_ms" INTEGER,
  "energy" TEXT,
  "explicit" INTEGER,
  "id" TEXT,
"instrumentalness" REAL,
  "key" INTEGER,
  "liveness" REAL,
  "loudness" REAL,
  "mode" INTEGER,
  "name" TEXT,
"popularity" INTEGER,
  "release_date" TEXT,
  "speechiness" REAL,
  "tempo" REAL,
  "valence" REAL,
  "year" INTEGER
```

Practical No 5

Assess Superstep

1)Drop the Columns Where All Elements Are Missing Values

```
#-*-coding:utf-8-*-
import sys
import os
import pandas as pd
sFileName='C:\Users\Acer\Desktop\DataSet3.csv'
print('Loading:',sFileName)
RawData=pd.read csv(sFileName,header=0)
print('############")
print('##RawDataValues')
print('#############")
print(RawData)
print('#############")
print('##DataProfile')
print('#############")
print('Rows:',RawData.shape[0])
print('Columns:',RawData.shape[1])
print('##############")
TestData=RawData.dropna(axis=1,how='all')
print('##############")
print('##TestDataValues')
print('#############")
print(TestData)
print('############")
print('##DataProfile')
print('############")
print('Rows:',TestData.shape[0])
print('Columns:',TestData.shape[1])
```

```
('Loading:', 'C:\\Users\\Acer\\Desktop\\DataSet3.csv')
******************************
                     artists danceability ... Unnamed: 12 Unnamed: 13
        ['Mamie Smith']
["Screamin' Jay Hawkins"]
                           0.598 ...
                                               NaN
                                 0.852 ...
                                               NaN
                                                         NaN
               ['Mamie Smith']
            ['Oscar Velazquez']
                                 0.730 ...
                                               NaN
                                                         NaN
                                     . . . .
  ['Mamie Smith & Her Jazz Hounds']
                                 0.424 ...
                                               NaN
                                                         NaN
                                 0.782 ...
               ['Mamie Smith']
  ['Mamie Smith & Her Jazz Hounds']
                                 0.474 ...
                                               NaN
                                                         NaN
                                 0.469 ...
                                               NaN
                                                         NaN
           ['Francisco Canaro']
                                               NaN
                   ['Meetya']
                  ['Dorville']
                                 0.688 ...
                                               NaN
                                                         NaN
                                 0.579
                                     . . .
              ['Ka Koula']
                                 0.353 ...
                                               NaN
                                                         NaN
                  ['Justrock']
                                 0.643 ...
             ['Takis Nikolaou']
                                 0.453 ...
                                               NaN
                                                         NaN
                                0.525 ...
0.528 ...
         ['Aggeliki Karagianni']
                                               NaN
                                                         NaN
            ['Giorgos Katsaros']
                                               NaN
            ['Francisco Canaro']
                                0.468 ...
0.528 ...
                                               NaN
                                                         NaN
            ['Giorgos Katsaros']
##DataProfile
.........
('Rows:', 19)
('Columns:', 14)
...........
...........
##TestDataValues
##TestDataValues
************************
                                        artists
                                                   ... year
                                                   ...
                              ['Mamie Smith']
                                                           1920
                ["Screamin' Jay Hawkins"]
                                                          1920
                                                    - - -
                             ['Mamie Smith']
2
                                                           1920
3
                        ['Oscar Velazquez']
                                                    - - -
                                       ['Mixe']
                                                          1920
                                                    . . .
    ['Mamie Smith & Her Jazz Hounds']
5
                                                           1920
                             ['Mamie Smith']
                                                    - - -
    ['Mamie Smith & Her Jazz Hounds']
7
                                                           1920
                                                    . . .
                       ['Francisco Canaro']
8
9
                                     ['Meetya']
                                                    - - -
                                  ['Dorville']
10
                                                          1920
                                                    - - -
                       ['Francisco Canaro']
                                                          1920
11
12
                                 ['Ka Koula']
                                                    - - -
                                  ['Justrock']
                                                           1920
13
                                                    - - -
                         ['Takis Nikolaou']
                                                          1920
14
                                                   - - -
                   ['Aggeliki Karagianni']
15
                       ['Giorgos Katsaros']
                                                          1920
16
                                                    - - -
                                                          1920
                       ['Francisco Canaro']
17
                       ['Giorgos Katsaros']
[19 rows x 10 columns]
************************
##DataProfile
```

2)Drop the Columns Where Any of the Elements Is Missing Values

```
import sys
import os
import pandas as pd
sFileName='C:\Users\Acer\Desktop\DataSet2.csv'
print('Loading:',sFileName)
RawData=pd.read_csv(sFileName,header=0)
print('##RawDataValues')
print(RawData) print('##DataProfile')
print('Rows:',RawData.shape[0])
print('Columns:',RawData.shape[1])
print('############")
TestData=RawData.dropna(axis=1,how='any')
print('##TestDataValues')
print(TestData) print('##DataProfile')
print('Rows:',TestData.shape[0])
print('Columns:',TestData.shape[1])
sFileName='C:\Users\Acer\Desktop\DataSet2.csv'
TestData.to_csv(sFileName,index=False)
print('###Done!!###########")
```

OUTPUT:

```
.......
                          artists danceability ... Unnamed: 12 Unnamed: 13
e Smith'] 0.598 ... NaN NaN
          ['Mamie Smith'] 0.598
["Screamin' Jay Hawkins"] NaN
                                            NaN
                                                              NaN
                                                                          NaN
              ['Oscar Velazquez']
                                                              NaN
                           ['Mixe']
                                                 ...
5 ['Mamie Smith & Her Jazz Hounds']
                                                 ...
  ['Mamie Smith']
['Mamie Smith & Her Jazz Hounds']
                                                              NaN
                                                                          NaN
             ['Francisco Canaro']
['Meetya']
                                          0.571
                                                              NaN
                                                                          NaN
                     ['Dorville']
             ['Francisco Canaro']
['Ka Koula']
['Justrock']
                                          0.579
                                                              NaN
                                           0.353
                                                                          NaN
                                                              NaN
                 ['Takis Nikolaou']
                                          0.453
                                                              NaN
                                                                          NaN
            ['Aggeliki Karagianni']
               ['Giorgos Katsaros']
['Francisco Canaro']
                                           0.528
                                                              NaN
               ['Giorgos Katsaros']
[19 rows x 14 columns]
.........
......
('Rows:', 19)
..........
..........
..........
```

```
##TestDataValues
************************
                            artists ... year
                    ['Mamie Smith'] ... 1920
1
           ["Screamin' Jay Hawkins"] ... 1920
2
                    ['Mamie Smith'] ... 1920
3
                 ['Oscar Velazquez']
                                    ... 1920
                                    ... 1920
                           ['Mixe']
5
  ['Mamie Smith & Her Jazz Hounds']
6
                    ['Mamie Smith'] ... 1920
7
  ['Mamie Smith & Her Jazz Hounds'] ... 1920
8
               ['Francisco Canaro'] ... 1920
9
                        ['Meetya'] ... 1920
                                    ... 1920
10
                       ['Dorville']
                                    ... 1920
11
               ['Francisco Canaro']
                       ['Ka Koula'] ... 1920
12
13
                       ['Justrock'] ... 1920
14
                 ['Takis Nikolaou'] ... 1920
             ['Aggeliki Karagianni'] ... 1920
15
16
                ['Giorgos Katsaros'] ... 1920
                ['Francisco Canaro'] ... 1920
17
18
                ['Giorgos Katsaros'] ... 1920
[19 rows x 7 columns]
*************************
##DataProfile
**************************
('Rows:', 19)
('Columns:', 7)
*************************
```

3)Keep Only the Columns that missing only 2 values.

```
import sys
import os
import pandas as pd ###
Import Warehouse
sFileName='C:\Users\Acer\Desktop\DataSet2.csv'
print('Loading :',sFileName)
RawData=pd.read csv(sFileName,header=0) print('##
Raw Data Values')
print(RawData) print('##
Data Profile')
print('Rows:',RawData.shape[0]) print('Columns
:',RawData.shape[1])
print('############")
TestData=RawData.dropna(thresh=2,axis=1) print('##
Test Data Values')
print(TestData) print('##
Data Profile')
print('Rows:',TestData.shape[0]) print('Columns
:',TestData.shape[1]) TestData.to_csv(sFileName,
index = False) print('### Done!!
##########")
```

OUTPUT:

```
('Loading :', 'C:\\Users\\Acer\\Desktop\\DataSet2.csv')
                                              ...
                             ['Mamie Smith']
                   ["Screamin' Jay Hawkins"]
                                                           NaN
                                                                         NaN
                            ['Mamie Smith']
                                              ...
                         ['Oscar Velazquez'] ...
                                                           NaN
                                                                         NaN
                                     ['Mixe']
                                                           NaN
                                                                         NaN
        5 ['Mamie Smith & Her Jazz Hounds']
                                                           NaN
                                                                         NaN
                             ['Mamie Smith']
                                                           NaN
                                                                         NaN
        7 ['Mamie Smith & Her Jazz Hounds'] ...
                                                           NaN
                                                                         NaN
                        ['Francisco Canaro']
                                                           NaN
                                                                         NaN
                                  ['Meetya']
                                                           NaN
                                                                         NaN
                               ['Dorville']
10
       10
                                                           NaN
                                                                         NaN
11
       11
                        ['Francisco Canaro']
                                                            NaN
                                                                         NaN
                                ['Ka Koula']
12
       12
                                                           NaN
                                                                         NaN
13
                                ['Justrock']
       13
                                                           NaN
                                                                         NaN
14
15
                                                           NaN
                                                           NaN
                                              . . .
                       ['Giorgos Katsaros'] ...
[19 rows x 17 columns]
## Data Profile
('Rows :', 19)
('Columns :', 17)
```

```
******************************
## Test Data Values
   Unamed
                                   artists danceability duration ms
0
                           ['Mamie Smith'] 0.598
                                                             168333
1
       1
                  ["Screamin' Jay Hawkins"]
                                                 0.852
                                                             150200
2
                           ['Mamie Smith']
                                                 0.647
                                                            163827
3
       3
                        ['Oscar Velazquez']
                                                 0.730
                                                             422087
4
                                  ['Mixe']
                                                 0.704
                                                             165224
5
      5 ['Mamie Smith & Her Jazz Hounds']
                                                             198627
                                                   NaN
                                                   NaN
6
                           ['Mamie Smith']
7
                                                   NaN
       7 ['Mamie Smith & Her Jazz Hounds']
                                                             186173
                                                   NaN
8
       8
                       ['Francisco Canaro']
                                                             146840
                                                   NaN
9
       9
                                ['Meetya']
                                                             476304
      10
                                                   NaN
10
                               ['Dorville']
                                                             150067
11
      11
                       ['Francisco Canaro']
                                                  NaN
                                                             167213
12
      12
                              ['Ka Koula']
                                                   NaN
                                                             285707
13
      13
                               ['Justrock']
                                                 0.643
                                                             304078
14
      14
                                      NaN
                                                 0.453
                                                             255520
15
      15
                                      NaN
                                                 0.525
                                                             258167
16
      16
                                                             277720
                                      NaN
                                                 0.528
17
       17
                                                             177427
                                      NaN
                                                 0.468
18
       18
                      ['Giorgos Katsaros']
                                                 0.528
                                                             278813
## Data Profile
('Rows :', 19)
('Columns :', 4)
```

Practical No 6

Process superstep

LOCATION.PY

```
import sys
import os
import pandas as pd
import sqlite3 as sq
from pandas.io import sql
import uuid
sDatabaseName='C:\Users\Acer\Desktop\sqlite-tools-win32-x86-
3340100\sqlite-tools-win32-x86-3340100\srk.db'
conn1 = sq.connect(sDatabaseName)
sDatabaseName='C:\Users\Acer\Desktop\sqlite-tools-win32-x86-
3340100\sqlite-tools-win32-x86-3340100\go.db'
conn2 = sq.connect(sDatabaseName)
t=0
tMax=360*180
for Longitude in range(-180,180,10): for
  Latitude in range(-90,90,10):
    t+=1
    IDNumber=str(uuid.uuid4())
    LocationName='L'+format(round(Longitude,3)*1000, '+07f') +\ '-
           '+format(round(Latitude, 3)*1000, '+07f')
    print('Create:',t,' of ',tMax,':',LocationName)
    LocationLine=[('ObjectBaseKey', ['GPS']),
            ('IDNumber', [IDNumber]),
            ('LocationNumber', [str(t)]),
            ('LocationName', [LocationName]),
            ('Longitude', [Longitude]),
            ('Latitude', [Latitude])]
    if t==1:
      LocationFrame = pd.DataFrame.from_items(LocationLine) else:
      LocationFrame = LocationFrame.append(LocationRow)
LocationHubIndex=LocationFrame.set_index(['IDNumber'],inplace=False)
```

```
sTable = 'Process-Location'
print('Storing:',sDatabaseName,' Table:',sTable) LocationHubIndex.to sql(sTable,
conn1, if_exists="replace")
sTable = 'HubLocation'
print('Storing:',sDatabaseName,' Table:',sTable) LocationHubIndex.to_sql(sTable,
conn2, if exists="replace")
print('#########")
print('Srk Databases')
sSQL="srk;"
sql.execute(sSQL,conn1)
sql.execute(sSQL,conn2)
print('##########)
```

```
('Create:', 1, ' of ', 64800, ':', 'L-180000.000000--90000.000000')
('Create:', 2, ' of ', 64800, ':', 'L-180000.000000--80000.000000')
('Create:', 3, ' of ', 64800, ':', 'L-180000.000000--70000.000000')
('Create:', 4, ' of ', 64800, ':', 'L-180000.000000--60000.000000')
('Create:', 5, ' of ', 64800, ':', 'L-180000.000000--50000.000000')
('Create:', 6, ' of ', 64800, ':', 'L-180000.000000--40000.000000')
('Create:', 7, ' of ', 64800, ':', 'L-180000.000000--30000.000000')
('Create:', 8, ' of ', 64800, ':', 'L-180000.000000--20000.000000')
('Create:', 9, ' of ', 64800, ':', 'L-180000.000000--10000.000000')
('Create:', 10, ' of ', 64800, ':', 'L-180000.000000-+0.000000')
('Create:', 11, ' of ', 64800, ':', 'L-180000.000000-+10000.000000')
('Create:', 12, ' of ', 64800, ':', 'L-180000.000000-+20000.000000')
('Create:', 13, ' of ', 64800, ':', 'L-180000.000000-+30000.000000')
('Create:', 14, ' of ', 64800, ':', 'L-180000.000000-+40000.000000')
('Create:', 15, ' of ', 64800, ':', 'L-180000.000000-+50000.000000')
('Create:', 16, ' of ', 64800, ':', 'L-180000.000000-+60000.000000')
('Create:', 17, ' of ', 64800, ':', 'L-180000.000000-+70000.000000')
('Create:', 18, ' of ', 64800, ':', 'L-180000.000000-+80000.000000')
('Create:', 19, ' of ', 64800, ':', 'L-170000.000000--90000.000000')
('Create:', 20, ' of ', 64800, ':', 'L-170000.000000--80000.000000')
```

```
('Create:', 640, ' of ', 64800, ':', 'L+170000.000000-+0.000000')
('Create:', 641, ' of ', 64800, ':', 'L+170000.000000-+10000.000000')
('Create:', 642, ' of ', 64800, ':', 'L+170000.000000-+20000.000000')
('Create:', 643, ' of ', 64800, ':', 'L+170000.000000-+30000.000000')
('Create:', 644, ' of ', 64800, ':', 'L+170000.000000-+40000.000000')
('Create:', 645, ' of ', 64800, ':', 'L+170000.000000-+50000.000000')
('Create:', 646, ' of ', 64800, ':', 'L+170000.000000-+60000.000000')
('Create:', 647, ' of ', 64800, ':', 'L+170000.000000-+70000.000000')
('Create:', 648, ' of ', 64800, ':', 'L+170000.000000-+80000.000000')
('Storing :', 'C:\\Users\\Acer\\Desktop\\sqlite-tools-win32-x86-3340100\\sqlite-
tools-win32-x86-3340100\\go.db', ' Table:', 'ProcessLocation')
('Storing :', 'C:\\Users\\Acer\\Desktop\\sqlite-tools-win32-x86-3340100\\sqlite-
tools-win32-x86-3340100\\go.db', 'Table:', 'HubLocation')
+==============
Srk Databases
..............
```

```
C:\Users\Acer\Desktop\sqlite-tools-win32-x86-3340100\sqlite-tools-win32-x86-3340100>sqlite3 go.db
SQLite version 3.34.1 2021-01-20 14:10:07
Enter ".help" for usage hints.
sqlite> .tables
Dim-BMI-Island
                   Dim_Person
                                      Hub-Location
                                                         101
Dim-BMI-Vertical Dim_Time
                                      HubEvent
DimBMIHorizontal
                  Fact_Person_Time HubLocation
sqlite> select * from HubLocation;
6e953ce0-07f5-4237-b27f-3f5c1910ef7c|GPS|1|L-180000.000000--90000.000000|-180|-90
c9a0beeb-fe9b-408e-9eec-a13af392c17d|GPS|2|L-180000.000000--80000.000000|-180|-80
8fbd8f05-e83a-45e4-868f-0db331ed78b0|GPS|3|L-180000.000000--70000.000000|-180|-70
58ae5c7f-5753-4ea6-8027-55945989e14f|GPS|4|L-180000.000000--60000.000000|-180|-60
072a5aa6-5389-45fc-997d-0a26b44cab2b|GPS|5|L-180000.000000--50000.000000|-180|-50
f6873895-f56e-415b-9a2f-cbe4eeb4f726|GPS|6|L-180000.000000--40000.000000|-180|-40
d56d0ba4-ca7e-4c32-ae5d-fbcbd0d4815d|GPS|7|L-180000.000000--30000.000000|-180|-30
09901d9b-9243-47d2-a47d-f58880ca58c2|GPS|8|L-180000.000000--20000.000000|-180|-20
ba0707d4-5be7-4333-9890-474d0673367c|GPS|9|L-180000.000000--10000.000000|-180|-10
10825757-f82d-44f4-95be-45062fb60f5c|GPS|10|L-180000.000000-+0.000000|-180|0
87a46457-033b-41f9-a8c3-dda7616e629d|GPS|11|L-180000.000000-+10000.000000|-180|10
```

TIME.PY

```
from datetime import datetime
from pytz import timezone, all_timezones
now_date=datetime(2021,02,17,13,26,6,7);
now_utc=now_date.replace(tzinfo=timezone('GMT'))
print('Date:',str(now_utc.strftime("%Y-%m-%d %H:%M:%S (%Z)")))
print('Year:',str(now_utc.strftime("%Y")))
print('Month:',str(now_utc.strftime("%m")))
print('Month:',str(now_utc.strftime("%B")))
print('Day:',str(now_utc.strftime("%d")))
print('Hours:',str(now_utc.strftime("%H"))) print('Minutes:',str(now_utc.strftime("%M")))
print('Seconds:',str(now_utc.strftime("%S")))
print('Mill.Seconds:',str(now_utc.strftime("%f")))
```

OUTPUT:

```
"Date:', '2021-02-17 13:26:06 (GMT)')

('Year:', '2021')

('Month:', '02')

('Month:', 'February')

('Day:', '17')

('Hours:', '13')

('Minutes:', '26')

('Seconds:', '06')

('Mill.Seconds:', '000007')

>>>
```

EVENT.PY

```
import sys
import os
import pandas as pd
import sqlite3 as sq
from pandas.io import sql
InputFileName='C:\Users\Acer\Desktop\DataSet.csv'
sDatabaseName='C:\Users\Acer\Desktop\sqlite-tools-win32-x86-
3340100\sqlite-tools-win32-x86-3340100\srk.db'
conn1 = sq.connect(sDatabaseName)
sDatabaseName='C:\Users\Acer\Desktop\sqlite-tools-win32-x86-
3340100\sqlite-tools-win32-x86-3340100\go.db'
conn2 = sq.connect(sDatabaseName)
sFileName=InputFileName
print('Loading :',sFileName)
EventRawData=pd.read_csv(sFileName,header=0,low_memory=False,
encoding="latin-1")
EventRawData.index.names=['EventID']
EventHubIndex=EventRawData
sTable = 'ProcessEvent'
print('Storing :',sDatabaseName,' Table:',sTable)
EventHubIndex.to sql(sTable, conn1, if exists="replace")
sTable = 'HubEvent'
print('Storing :',sDatabaseName,' Table:',sTable)
EventHubIndex.to_sql(sTable, conn2, if_exists="replace")
print('##########)
print('Srk_Databases')
```

sSQL="Srk;"

```
Python 2.7.16 (v2.7.16:413a49145e, Mar 4 2019, 01:30:55) [MSC v.1500 32 bit (In
tel)] on win32
Type "help", "copyright", "credits" or "license()" for more information.
('Loading :', 'C:\\Users\\Acer\\Desktop\\DataSet.csv')
('Storing :', 'C:\\Users\\Acer\\Desktop\\sqlite-tools-win32-x86-3340100\\sqlite-
tools-win32-x86-3340100\\go.db', ' Table:', 'ProcessEvent')
Warning (from warnings module):
 File "C:\Python27\lib\site-packages\pandas\core\generic.py", line 2531
   dtype=dtype, method=method)
UserWarning: The spaces in these column names will not be changed. In pandas ver
sions < 0.14, spaces were converted to underscores.
('Storing :', 'C:\\Users\\Acer\\Desktop\\sqlite-tools-win32-x86-3340100\\sqlite-
tools-win32-x86-3340100\\go.db', ' Table:', 'HubEvent')
*************
Srk Databases
*************
>>>
```

Practical No 7

Transform Superstep

LINEAR REGRESSION.PY

```
import sys
import os
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from sklearn import linear_model, datasets
sFileName='C:\Users\Acer\Desktop\DataSet.csv'
print('Loading :',sFileName)
DataRaw=pd.read_csv(sFileName,header=0,low_memory=False,
encoding="latin-1")
sFileName='C:\Users\Acer\Desktop\DataSet.csv'
print('Storing :',sFileName)
DataRaw.to csv(sFileName, index = False, encoding="latin-1")
# import data to ecosystem
iris = datasets.load_iris()
X = iris.data[:, :2] # we only take the first two features.
Y = iris.target
h = .02 # step size in the mesh
logreg = linear_model.LogisticRegression(C=1e5)
# we create an instance of Neighbours Classifier and fit the data.
logreg.fit(X, Y)
# Plot the decision boundary. For that, we will assign a color to each #
point in the mesh [x_min, x_max]x[y_min, y_max].
x_{min}, x_{max} = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
Z = logreg.predict(np.c_[xx.ravel(), yy.ravel()])
# Put the result into a color plot
Z = Z.reshape(xx.shape)
plt.figure(1, figsize=(8, 6))
```

```
plt.pcolormesh(xx, yy, Z, cmap=plt.cm.Paired)

# Plot also the training points
plt.scatter(X[:, 0], X[:, 1], c=Y, edgecolors='k', cmap=plt.cm.Paired) plt.title('Shipping
Box Sizes')
plt.xlabel('Box Length')
plt.ylabel('Box Width')
plt.xlim(xx.min(), xx.max())
plt.ylim(yy.min(), yy.max())
plt.yticks(())
plt.yticks(())
plt.show()
```

Shipping Box Sizes

Box Length

CHISQUARE.PY

```
import numpy as np import
scipy.stats as st
np.random.seed(1)
# Create sample data.
nSet=3
if nSet==1:
  a = abs(np.random.randn(20))
  b = abs(50*np.random.randn(30)) if
nSet==2:
a=np.array([27.1,22.0,20.8,23.4,23.4,23.5,25.8,22.0,24.8,20.2,21.9,22.1,22.9,20.
5,24.4])
b=np.array([27.1,22.0,20.8,23.4,23.4,23.5,25.8,22.0,24.8,20.2,21.9,22.1,22.9,20
.5,24.41
if nSet==3:
  a=np.array([17.2,20.9,22.6,18.1,21.7,21.4,23.5,24.2,14.7,21.8])
  b=np.array([21.5,22.8,21.0,23.0,21.6,23.6,22.5,20.7,23.4,21.8])
obs = np.array([a,b])
chi2, p, dof, expected = st.chi2_contingency(obs) msg
= "Test Statistic : {}\np-value: {}\ndof: {}\n" print(
msg.format( chi2, p , dof,expected) )
P=1-p
if P < 0.001:
  print('Statistically highly significant:',P)
else:
  if P < 0.05:
     print('Statistically significant:',P)
  else:
     print('No conclusion')
OUTPUT:
    ----- RESTART: C:\Users\Acer\Desktop\chisq.py
Test Statistic: 0.00785295014029
```

p-value: 0.999999999675

Roll No: 2024ITI2

('Statistically highly significant:', 3.2511682235281114e-10)

SUN MODEL.PY

```
import sys
import os
from datetime import datetime
from pytz import timezone
import pandas as pd
import sqlite3 as sq
import uuid
pd.options.mode.chained_assignment = None
sDatabaseName='C:/Users/Acer/Desktop/sglite-tools-win32-x86-
3340100/sqlite-tools-win32-x86-3340100/srk.db'
conn1 = sq.connect(sDatabaseName)
sDatabaseName='C:/Users/Acer/Desktop/sqlite-tools-win32-x86-
3340100/sqlite-tools-win32-x86-3340100/go.db'
conn2 = sq.connect(sDatabaseName)
print('\n##############")
print('Time Dimension') BirthZone =
'Atlantic/Reykjavik'
BirthDateUTC = datetime(1960,12,20,10,15,0)
BirthDateZoneUTC=BirthDateUTC.replace(tzinfo=timezone('UTC'))
BirthDateZoneStr=BirthDateZoneUTC.strftime("%Y-%m-%d %H:%M:%S")
BirthDateZoneUTCStr=BirthDateZoneUTC.strftime("%Y-%m-%d
%H:%M:%S (%Z) (%z)")
BirthDate = BirthDateZoneUTC.astimezone(timezone(BirthZone))
BirthDateStr=BirthDate.strftime("%Y-%m-%d %H:%M:%S (%Z) (%z)")
BirthDateLocal=BirthDate.strftime("%Y-%m-%d %H:%M:%S")
IDTimeNumber=str(uuid.uuid4()) TimeLine=[('TimeID',
[IDTimeNumber]),
    ('UTCDate', [BirthDateZoneStr]),
    ('LocalTime', [BirthDateLocal]),
    ('TimeZone', [BirthZone])]
TimeFrame = pd.DataFrame.from_items(TimeLine)
```

```
DimTime=TimeFrame DimTimeIndex=DimTime.set index(['TimeID'],inplace=False)
sTable = 'Dim Time'
print('\n###############")
print('Storing :',sDatabaseName,'\n Table:',sTable)
print('\n##############")
DimTimeIndex.to_sql(sTable, conn1, if_exists="replace") DimTimeIndex.to_sql(sTable,
conn2, if_exists="replace")
print('\n#############")
print('Dimension Person')
print('\n###########")
FirstName = 'Shweta' LastName
= 'Kasbe'
IDPersonNumber=str(uuid.uuid4())
PersonLine=[('PersonID', [IDPersonNumber]),
     ('FirstName', [FirstName]),
     ('LastName', [LastName]),
     ('Zone', ['UTC']),
     ('DateTimeValue', [BirthDateZoneStr])] PersonFrame
= pd.DataFrame.from items(PersonLine)
DimPerson=PersonFrame
DimPersonIndex=DimPerson.set_index(['PersonID'],inplace=False)
sTable = 'Dim_Person'
print('\n###########")
print('Storing :',sDatabaseName,'\n Table:',sTable)
print('\n####################)
DimPersonIndex.to_sql(sTable, conn1, if_exists="replace")
DimPersonIndex.to sql(sTable, conn2, if exists="replace")
print('\n################")
print('FactPersontime')
print('\n##############################)
IDFactNumber=str(uuid.uuid4())
PersonTimeLine=[('IDNumber', [IDFactNumber]),
      ('IDPersonNumber', [IDPersonNumber]),
      ('IDTimeNumber', [IDTimeNumber])]
```

```
PersonTimeFrame = pd.DataFrame.from_items(PersonTimeLine)
FctPersonTime=PersonTimeFrame
FctPersonTimeIndex=FctPersonTime.set_index(['IDNumber'],inplace=False)
sTable = 'Fact Person Time'
print('\n###########")
print('Storing :',sDatabaseName,'\n Table:',sTable)
print('\n##############")
FctPersonTimeIndex.to_sql(sTable, conn1, if_exists="replace")
FctPersonTimeIndex.to_sql(sTable, conn2, if_exists="replace")
print('Done')
```

```
======= RESTART: C:\Users\Acer\Desktop\SunModel.py ==========
**************************
Time Dimension
Storing:', 'C:/Users/Acer/Desktop/sglite-tools-win32-x86-3340100/sglite-tools-win32-x86-3340100/go.db', '\n Table:', 'Dim Time')
..........
..........
('Storing :', 'C:/Users/Acer/Desktop/sqlite-tools-win32-x86-3340100/sqlite-tools-win32-x86-3340100/go.db', '\n Table:', 'Dim Person')
FactPersontime
('Storing :', 'C:/Users/Acer/Desktop/sqlite-tools-win32-x86-3340100/sqlite-tools-win32-x86-3340100/go.db', '\n Table:', 'Fact Person Time')
Done
sqlite> select * from Dim_Person;
f14d4ee8-858e-49be-8277-57ec257181f3|Shweta|Kasbe|UTC|1960-12-20 10:15:00
sqlite>
sqlite> select * from Dim Time ;
b95da42b-2741-409c-9c4e-9818106c3e97|1960-12-20 10:15:00|1960-12-20 09:15:00|Atlantic/Reykjavik
```

Practical No 8

Organize Superstep

HORIZONTAL.PY

```
import sys
import os
import pandas as pd
import sqlite3 as sq
sDatabaseName= 'C:\Users\Acer\Desktop\sqlite-tools-win32-x86-
3340100\sqlite-tools-win32-x86-3340100\srk.db'
conn1 = sq.connect(sDatabaseName)
sDatabaseName1= 'C:\Users\Acer\Desktop\sqlite-tools-win32-x86-
3340100\sqlite-tools-win32-x86-3340100\go.db'
conn2 = sq.connect(sDatabaseName1)
print('##########)
sTable = 'DimBmi'
print('Loading :',sDatabaseName,' Table:',sTable) ##
id, key, tempo, year
sSQL="SELECT * FROM DimBmi;"
PersonFrame0=pd.read sql query(sSQL, conn1)
print('############")
sTable = 'DimBmi'
print('Loading :',sDatabaseName,' Table:',sTable, 'After apply Horizontal style')
print('#############")
sSQL="SELECT *\
FROM [DimBmi]\ WHERE \
key > 5 \
and tempo= 1\
ORDER BY \
  year; PersonFrame1=pd.read sql query(sSQL,
conn1)
DimPerson=PersonFrame1 DimPersonIndex=DimPerson.set index(['key'],inplace=False)
```

```
sTable = 'DimBMIHorizontal'
print('\n###############")
print('Storing :',sDatabaseName1,'\n Table:',sTable)
print('\n###############")
DimPersonIndex.to sql(sTable, conn2, if exists="replace")
sSQL="SELECT * FROM DimBMIHorizontal;"
PersonFrame2=pd.read_sql_query(sSQL, conn2)
print(PersonFrame2)
print('############")
print('Full Data Set (Rows):', PersonFrame0.shape[0])
print('Full Data Set (Columns):', PersonFrame0.shape[1])
print('#############")
print('Horizontal Data Set (Rows):', PersonFrame2.shape[0]) print('Horizontal
Data Set (Columns):', PersonFrame2.shape[1])
print('############")
```

VERTICAL.PY

```
import sys
import os
import pandas as pd
import sqlite3 as sq
sDatabaseName='C:\Users\Acer\Desktop\sqlite-tools-win32-x86-
3340100\sqlite-tools-win32-x86-3340100\srk.db'
conn1=sq.connect(sDatabaseName)
#############
sDatabaseName='C:\Users\Acer\Desktop\sqlite-tools-win32-x86-
3340100\sqlite-tools-win32-x86-3340100\go.db'
conn2=sq.connect(sDatabaseName)
print('############")
sTable='DimBmi'
print('Loading:',sDatabaseName,'Table:',sTable)
sSQL="SELECT*FROM[DimBmi];"
PersonFrame0=pd.read_sql_query(sSQL,conn1)
############ print('#################")
sTable='DimBmi'
print('Loading:',sDatabaseName,'Table:',sTable)
print('#############")
sSQL="SELECT name,key,tempo FROM [DimBmi];"
PersonFrame1=pd.read_sql_query(sSQL,conn1)
DimPerson=PersonFrame1
DimPersonIndex=DimPerson.set_index(['key'],inplace=False)
sTable='Dim-BMI-Vertical'
print('\n################")
print('Storing:',sDatabaseName,'\nTable:',sTable)
print('\n###############")
DimPersonIndex.to sql(sTable,conn2,if exists="replace")
print('#########")
sTable='Dim-BMI-Vertical'
```

ISLAND.PY

```
import sys
import os
import pandas as pd
import sqlite3 as sq
sDatabaseName='C:\Users\Acer\Desktop\sqlite-tools-win32-x86- 3340100\sqlite-
tools-win32-x86-3340100\srk.db' conn1=sq.connect(sDatabaseName)
sDatabaseName='C:\Users\Acer\Desktop\sqlite-tools-win32-x86- 3340100\sqlite-
tools-win32-x86-3340100\go.db' conn2=sq.connect(sDatabaseName)
print('#########")
sTable='DimBmi'
print('Loading:',sDatabaseName,'Table:',sTable)
sSQL="SELECT*FROM[DimBmi];"
PersonFrame0=pd.read sql query(sSQL,conn1)
print('##########")
sTable='DimBmi'
print('Loading:',sDatabaseName,'Table:',sTable)
sSQL="SELECT name, key, tempo FROM [DimBmi] where key > 2 order by name;"
PersonFrame1=pd.read_sql_query(sSQL,conn1)
DimPerson=PersonFrame1
DimPersonIndex=DimPerson.set index(['key'],inplace=False)
sTable='Dim-BMI-Island'
print('\n############")
print('Storing:',sDatabaseName,'\nTable:',sTable)
print('\n################")
DimPersonIndex.to_sql(sTable,conn2,if_exists="replace")
```

```
print('############")
sTable='Dim-BMI-Island'
print('Loading:',sDatabaseName,'Table:',sTable)
print('############")
sSQL="SELECT*FROM[Dim-BMI-Island];"
PersonFrame2=pd.read_sql_query(sSQL,conn2)
print('############")
print('FullDataSet(Rows):',PersonFrame0.shape[0])
print('FullDataSet(Columns):',PersonFrame0.shape[1])
print('############")
print('HorizontalDataSet(Rows):',PersonFrame2.shape[0])
print('HorizontalDataSet(Columns):',PersonFrame2.shape[1])
print('############")
```

SECURE VAULT.PY

```
import sys
import os
import pandas as pd
import sqlite3 as sq
sDatabaseName='C:\Users\Acer\Desktop\sqlite-tools-win32-x86- 3340100\sqlite-
tools-win32-x86-3340100\srk.db' conn1=sq.connect(sDatabaseName)
sDatabaseName='C:\Users\Acer\Desktop\sqlite-tools-win32-x86- 3340100\sqlite-
tools-win32-x86-3340100\srk.db' conn2=sq.connect(sDatabaseName)
print('##########)
sTable='DimBmi'
print('Loading:',sDatabaseName,'Table:',sTable)
sSQL="SELECT*FROM[DimBmi];"
PersonFrame0=pd.read_sql_query(sSQL,conn1)
print('##########)
sTable='DimBmi'
print('Loading:',sDatabaseName,'Table:',sTable)
sSQL="SELECT key, liveness from DimBmi where key > 1 order by name;"
PersonFrame1=pd.read_sql_query(sSQL,conn1)
DimPerson=PersonFrame1 DimPersonIndex=DimPerson.set_index(['key'],inplace=False)
sTable='Dim-BMI-Secure'
print('\n##############")
print('Storing:',sDatabaseName,'\nTable:',sTable)
print('\n#################")
DimPersonIndex.to_sql(sTable,conn2,if_exists="replace")
print('#############")
sTable='Dim-BMI-Secure'
print('Loading:',sDatabaseName,'Table:',sTable)
print('############")
sSQL="SELECT*FROM[Dim-BMI-Secure]WHERE key < 1;"
PersonFrame2=pd.read_sql_query(sSQL,conn2)
```

```
print('##########################")
print('FullDataSet(Rows):',PersonFrame0.shape[0])
print('FullDataSet(Columns):',PersonFrame0.shape[1])
print('#####################")
print('HorizontalDataSet(Rows):',PersonFrame2.shape[0])
print('HorizontalDataSet(Columns):',PersonFrame2.shape[1])
print('OnlySamData')
print(PersonFrame2.head())
print('##########################")
```

Practical No 9

Report Superstep

Line Graph: We can also visualize the data in the form of a Line graph.

import sys import os import pandas as pd import matplotlib as ml from matplotlib import pyplot as plt ml.style.use('ggplot') data=[['Keep A Song In Your Soul',129.2,20.8],['I Put A Spell On You',110.5,15.5],['Golfing Papa',305.9,15.2],['Head Off',16.2,9.2],['High Rated',216.9,18.7],['Bang Bang',212.3,17.9]] new_data=pd.DataFrame(data) new_data.rename(columns={0:"Song Name"},inplace=True) new_data.rename(columns={1:"loudness"},inplace=True) new_data.rename(columns={2:"mode"},inplace=True) colors_name=['blue','red'] explode=(0,0,0,0,0,0)label= new_data["Song Name"] new_data.plot(figsize=(10,10),kind="line" ,y=["loudness","mode"],x='Song Name') plt.savefig('C:\Users\Acer\Desktop\ds\Music.png',dpi=600) plt.show()

OUTPUT:

Hexbin Graph: We can also visualize the data in the form of a hexbingraph.

import sys import os import pandas as pd import matplotlib as ml from matplotlib import pyplot as plt ml.style.use('ggplot') data=[['Keep A Song In Your Soul',129.2,20.8],['I Put A Spell On You',110.5,15.5],['Golfing Papa',305.9,15.2],['Head Off',16.2,9.2],['High Rated',216.9,18.7],['Bang Bang',212.3,17.9]] new_data=pd.DataFrame(data) new data.rename(columns={0:"Song Name"},inplace=True) new_data.rename(columns={1:"loudness"},inplace=True) new_data.rename(columns={2:"mode"},inplace=True) colors_name=['blue','red','green','gold','pink','yellow'] explode=(0,0,0,0,0,0)label= new_data["Song Name"] new_data.plot(figsize=(10,10),kind="hexbin",y="loudness",x="mode") plt.savefig('C:\Users\Acer\Desktop\ds\Music3.png',dpi=600) plt.show()

OUTPUT:

Scatter Graph: We could also visualize using scatter graphs

```
import sys
import os
import pandas as pd
import matplotlib as
ml
from matplotlib import pyplot as plt
ml.style.use('ggplot')
data=[['Keep A Song In Your Soul',129.2,20.8],['I Put A Spell On
You',110.5,15.5],['Golfing Papa',305.9,15.2],['Head Off',16.2,9.2],['High
Rated',216.9,18.7],['Bang Bang',212.3,17.9]]
new_data=pd.DataFrame(data)
new_data.rename(columns={0:"Song Name"},inplace=True)
new_data.rename(columns={1:"loudness"},inplace=True)
new_data.rename(columns={2:"mode"},inplace=True)
colors_name=['blue','red','green','golden','pink','yellow']
explode=(0,0,0,0,0,0)
label= new_data["Song Name"]
new_data.plot(figsize=(10,10),kind="scatter" ,y="loudness",x="mode")
plt.savefig('C:\Users\Acer\Desktop\ds\Music4.png',dpi=600)
plt.show()
```

OUTPUT:

