Spectral Clustering

Part 1: The Graph Laplacian

Ng Yen Kaow

Laplacian of a function

- \square Given a multivariate function $f: \mathbb{R}^n \to \mathbb{R}$
- $\neg \nabla f(x)$, the gradient at f(x), is a vector pointing at the steepest ascent of f(x)

- \square Δf , the Laplacian of f, is the divergence of ∇f , that is, $\Delta f(x) = \nabla \cdot \nabla f(x)$
 - A scalar measurement of the smoothness in \(\nabla f(x)\) about point \(x\)

Laplacian of a function

□ 1-D example

□ Given a function $f: V \to \mathbb{R}$ on the undirected graph $G = \{\{A, B, C, D\}, \{e_1, e_2, e_3, e_4\}\}$

□ Given a function $f: V \to \mathbb{R}$ on the undirected $G = \{\{A, B, C, D\}, \{e_1, e_2, e_3, e_4, e_5, e_6, e_7, e_8\}\}$

(Oriented) incidence matrix

Every column in the incidence matrix describes an edge

$$\begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} f(A) \\ f(B) \\ f(C) \\ f(D) \end{bmatrix} = f(A) - f(B)$$

(Oriented) incidence matrix

□ Every row in the incidence matrix describes a vertex $\begin{bmatrix} w(e_1) \\ w(e_2) \end{bmatrix}$

 Incidence matrix encodes the graph structure

- What constitutes an incidence matrix is not strictly defined
 - Open to re-definition
 - Results may differ
 - Let's look at some examples

(Unoriented) incidence matrix

https://en.wikipedia.org/wiki/Incidence matrix

$$A \begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$[1 \quad 1 \quad 0 \quad 0] \begin{bmatrix} f(A) \\ f(B) \\ f(C) \\ f(D) \end{bmatrix} = f(A) + f(B)$$

$$\begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} w(e_1) \\ w(e_2) \\ w(e_3) \\ w(e_4) \end{bmatrix} = w(e_1) + w(e_2) + w(e_4)$$

(Oriented) incidence matrix

As shown earlier, this is

https://en.wikipedia.org/wiki/Incidence matrix

$$\begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} f(A) \\ f(B) \\ f(C) \\ f(D) \end{bmatrix} = f(A) - f(B)$$

(Oriented) incidence matrix++

Ordering A < B < C < D

https://en.wikipedia.org/wiki/Laplacian_matrix#Incidence_matrix

Define a fixed ordering over the vertices, then define the (oriented) incidence matrix++ M with each element M_{ve} for vertex v and edge e = (v, u),

$$M_{ve} = \begin{cases} 1 & \text{if } v < u \\ -1 & \text{if } v > u \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{bmatrix} 1 & -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} f(A) \\ f(B) \\ f(C) \\ f(D) \end{bmatrix} = f(A) - f(B)$$

$$\begin{bmatrix} 1 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} w(e_1) \\ w(e_2) \\ w(e_3) \\ w(e_4) \end{bmatrix} = w(e_1) + w(e_2) + w(e_4)$$

Graph Laplacian

- □ Extend the Laplacian $\Delta f(x) = \nabla \cdot \nabla f$ on $f: \mathbb{R}^n \to \mathbb{R}$ to one for $f: V \to \mathbb{R}$
- We have
 - $(M_{ev})f(x)$ (i.e. $(M_{ve})^{\mathsf{T}}f(x)$) gives the edges from each node f(x)
 - $(M_{ve})(M_{ev})f(x)$ gives the divergence of the edges
- □ Our Laplacian is $L = (M_{ve})(M_{ev})$, or $L = (M_{ve})(M_{ve})^{\top}$

Normalized Graph Laplacian

□ The graph Laplacian L of an undirected graph is defined as

$$L = (M_{ve})(M_{ve})^{\top} \text{ or } (M_{ev})^{\top}(M_{ev})$$

- The oriented incidence matrix++ is typically implied
- □ Define the normalized version of a Laplacian L as $D^{-1/2}LD^{-1/2}$, where D is the diagonal matrix indicating the degree of each vertex
 - The reason for such a normalization will only become apparent in Part 3

Laplacian L for earlier matrices

Unoriented incidence matrix (L = D + A)

$$\begin{bmatrix} 1 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 1 & 1 & 1 \\ 1 & 2 & 1 & 0 \\ 1 & 1 & 2 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix}$$
Adjacency matrix

Oriented incidence matrix (L = D - 2A)

$$\begin{bmatrix} 1 & -1 & 1 & -1 & 0 & 0 & 1 & -1 \\ -1 & 1 & 0 & 0 & 1 & -1 & 0 & 0 \\ 0 & 0 & -1 & 1 & -1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & -1 \\ -1 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 6 & -2 & -2 & -2 \\ -2 & 4 & -2 & 0 \\ -2 & -2 & 4 & 0 \\ -2 & 0 & 0 & 2 \end{bmatrix}$$

Oriented incidence matrix++ (L = D - A)

$$\begin{bmatrix} 1 & 1 & 0 & 1 \\ -1 & 0 & 1 & 0 \\ 0 & -1 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 0 \\ 1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & -1 \end{bmatrix} = \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 2 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix}$$

$D^{-1/2}LD^{-1/2}$ for earlier matrices

Unoriented incidence matrix

$$\begin{bmatrix} 0.58 & 0 & 0 & 0 \\ 0 & 0.71 & 0 & 0 \\ 0 & 0 & 0.71 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & 1 & 1 & 1 \\ 1 & 2 & 1 & 0 \\ 1 & 1 & 2 & 0 \\ 1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.58 & 0 & 0 & 0 \\ 0 & 0.71 & 0 & 0 \\ 0 & 0 & 0.71 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0.41 & 0.41 & 0.58 \\ 0.41 & 1 & 0.5 & 0 \\ 0.41 & 0.5 & 1 & 0 \\ 0.58 & 0 & 0 & 1 \end{bmatrix}$$

Oriented incidence matrix

$$\begin{bmatrix} 0.41 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 0.71 \end{bmatrix} \begin{bmatrix} 6 & -2 & -2 & -2 \\ -2 & 4 & -2 & 0 \\ -2 & -2 & 4 & 0 \\ -2 & 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 0.41 & 0 & 0 & 0 \\ 0 & 0.5 & 0 & 0 \\ 0 & 0 & 0.5 & 0 \\ 0 & 0 & 0 & 0.71 \end{bmatrix} = \begin{bmatrix} 1 & -0.41 & -0.41 & -0.58 \\ -0.41 & 1 & -0.5 & 0 \\ -0.41 & -0.5 & 1 & 0 \\ -0.58 & 0 & 0 & 1 \end{bmatrix}$$

Oriented incidence matrix++

$$\begin{bmatrix} 0.58 & 0 & 0 & 0 \\ 0 & 0.71 & 0 & 0 \\ 0 & 0 & 0.71 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 & -1 & -1 & -1 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & 2 & 0 \\ -1 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0.58 & 0 & 0 & 0 \\ 0 & 0.71 & 0 & 0 \\ 0 & 0 & 0.71 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -0.41 & -0.41 & -0.58 \\ -0.41 & 1 & -0.5 & 0 \\ -0.41 & -0.5 & 1 & 0 \\ -0.58 & 0 & 0 & 1 \end{bmatrix}$$

 Note that normalization unified the oriented incidence matrices

Significance of the graph Laplacian

- Each row in L describes the dependency of a vertex with respect to the others
- \Box Let the adjacency matrix $A = (a_{ij})$, then

$$x^{\mathsf{T}}Lx = \frac{1}{2} \sum_{i,j=1}^{m} a_{ij} (x_i - x_j)^2$$

$$x^{\mathsf{T}}Lx = x^{\mathsf{T}}Dx - x^{\mathsf{T}}Ax = \sum_{i=1}^{m} d_{i}x_{i}^{2} - \sum_{i,j=1}^{m} a_{ij}x_{i}x_{j}$$

$$= \frac{1}{2} \left(\sum_{i=1}^{m} d_{i}x_{i}^{2} - 2 \sum_{i,j=1}^{m} a_{ij}x_{i}x_{j} + \sum_{i=1}^{m} d_{i}x_{i}^{2} \right)$$

$$= \frac{1}{2} \sum_{i,j=1}^{m} a_{ij} (x_{i} - x_{j})^{2}$$

Significance of the graph Laplacian

- Each row in L describes the dependency of a vertex with respect to the others
- \Box Let the adjacency matrix $A = (a_{ij})$, then

$$x^{\mathsf{T}}Lx = \frac{1}{2} \sum_{i,j=1}^{m} a_{ij} (x_i - x_j)^2$$

Suppose x is a vector of only the values +1 and -1, indicating the membership of the vertices in a set S

$$x_i = \begin{cases} 1 & \text{if } v_i \in S \\ -1 & \text{if } v_i \in \bar{S} \end{cases}$$

That is, we want to use x to indicate the result of a 2-partition, S and \overline{S}

Significance of the graph Laplacian

- Each row in L describes the dependency of a vertex with respect to the others
- \Box Let the adjacency matrix $A = (a_{ij})$, then

$$x^{\mathsf{T}}Lx = \frac{1}{2} \sum_{i,j=1}^{m} a_{ij} (x_i - x_j)^2$$

Suppose x is a vector of only $\{1, -1\}$, then $x^T L x$ has special significance

$$\frac{1}{2} \sum_{i,j=1}^{m} a_{ij} (x_i - x_j)^2 = \sum_{i,j=1,i< j}^{m} a_{ij} (x_i - x_j)^2$$

$$= 4 \sum_{1 \le i < j \le m, x_i \ne x_j}^{m} a_{ij}$$

■ That is, $x^T L x$ is 4 times the number of edges between adjacent vertices of each from S and \overline{S}

Intuitions of the graph Laplacian

- \Box Compute $x^{\mathsf{T}}Lx$ for all x
 - e.g. x = [1, -1, -1, -1]gives $x^T L x = 12$
- This gives us the 2-partition that results in the least number of removed edges
 - $x = 1 = [1 \ 1 \ 1 \ 1]$ or $x = -1 = [-1 \ -1 \ -1]$ which has $x^T L x = 0$ are trivial solutions
 - Best x is [1 1 1 -1], that is, A, B, C in one group and D in another

Group 1	Group 2	$x^{T}Lx$
А	BCD	12
В	ACD	8
С	ABD	8
D	ABC	4
АВ	CD	12
AC	ВD	12
AD	ВС	8
ABCD	Ø	0

 \Box The optimal x can be approximately found

Rayleigh Quotient

- \square Minimize $x^{T}Lx$
 - Consider instead problem of minimizing
 - \Box x is of only +1 and -1 \Rightarrow $x^{T}x = |x| = \text{const}$

Group 1	Group 2	$x^{T}Lx$	$\frac{x^{\top}Lx}{x^{\top}x}$
Α	BCD	12	3
В	ACD	8	2
С	ABD	8	2
D	ABC	4	1
АВ	C D	12	3
AC	ВD	12	3
AD	ВС	8	2

Rayleigh Quotient

- $\Box \frac{x^{\mathsf{T}}Lx}{x^{\mathsf{T}}x}$ is known as the Rayleigh quotient
 - By the min-max theorem of Rayleigh quotient,

$$\min_{x} \frac{x^{\top} L x}{x^{\top} x} = \lambda_k$$

- where λ_k is the smallest eigenvalue in the decomposition of $Lx = \lambda x$, and
- $\mu_k = \underset{x}{\operatorname{argmin}} \frac{x^{\mathsf{T}} L x}{x^{\mathsf{T}} x}$
- \square However, μ_k is the trivial solution
 - Compromise and use the second best solution μ_{k-1} (which corresponds to the second smallest eigenvalue λ_{k-1})

Eigendecomposition example

Eigenvalues

λ_1	λ_2	λ_3	λ_4
4.0000	3.0000	1.0000	0.0000

Eigenvectors

More precisely, -9.51E-17

μ_1	μ_2	μ_3	μ_4
0.8660	0.0000	0.000	-0.5000
-0.2887	0.7071	-0.4082	-0.5000
-0.2887	-0.7071	-0.4082	-0.5000
-0.2887	0.0000	0.8165	-0.5000

- If group by the (\pm) sign, μ_3 correctly places A, B, C in one group (-) and D in another (+)

Compromise in +1/-1 restriction

- □ By relaxing the restriction of +1 and -1 in x to allow any real number, an x^TLx smaller than the optimal under the restriction is often achieved
 - The improvement can be guaranteed if x is orthogonal to $\mathbf{1}$ (or $-\mathbf{1}$) since by the min-max theorem, $\frac{\mu_{k-1}^{\mathsf{T}}L\mu_{k-1}}{\mu_{k-1}^{\mathsf{T}}\mu_{k-1}}$ is minimal among all $\frac{x^{\mathsf{T}}Lx}{x^{\mathsf{T}}x}$ that are orthogonal to μ_k
 - □ However, in the present case, $x = [1 \ 1 \ 1 \ -1]$ and not orthogonal to $\mu_4 = [1 \ 1 \ 1 \ 1]$
 - $\square \quad \text{Still, } \frac{\mu_3^{\mathsf{T}} L \mu_3}{\mu_3^{\mathsf{T}} \mu_3} = \lambda_3 = 1 = \min_{x \in \{1, -1\}^4} \frac{x^{\mathsf{T}} L x}{x^{\mathsf{T}} x}$
 - Though no guarantee, improvements are usual

The significance of μ_{k-1} and λ_{k-1}

- The heuristic for translating μ_{k-1} back into discrete values for a grouping of the vertices is an important topic
- \square μ_{k-1} is called the Fiedler vector
- \square λ_{k-1} is called the Fiedler value
 - The multiplicity of λ_{k-1} is always 1
 - Also called the algebraic connectivity
 - □ The further λ_{k-1} is from 0, the more connected is the graph