

WeChat: cstutorcs

Bernhard Kainz (with thanks to A. Gopalan, N. Dulay and E. Edwards)

b.kainz@imperial.ac.uk

Learning Objectives

- At the end of this lecture you should:
 - Understand Asymbolic relates to jeomputing propplans
 - Be able to represant production as:
 - Truth tables WeChat: cstutorcs
 - Logic circuits
 - Boolean algebra

What is Logic?

- Dictionary definitions (dictionary.com reduced!)
 - reason or sound judgement Project Exam Help
 - a system of principles of reasoning https://tutorcs.com
 - the science that investigates the principles governing correct or reliable inference WeChat: cstutorcs
- Branch of philosophy
 - Principles of inference
- You use logic all the time in your everyday life

Propositional Logic

 The Ancient Greek philosophers created a system to formalise arguments called propositional logic

- A proposition is a statement that can be TRUE or FALSE https://tutorcs.com
- Propositions can We Chatpounded by means of the operators AND, OR and NOT

Propositional Logic Example

- Propositions may be TRUE or FALSE, for example:
 - It is raining Assignment Project Exam Help
 - The weather forecast is bad https://tutorcs.com
- A combined proposition exampleris;
 - It is raining OR the weather forecast is bad

Propositional Logic Example

 Can assign values to propositions, for example: I will take an umbrella if it is raining OR the weather forecast is bad

Assignment Project Exam Help

• Means that the proposition "I will take an umbrella" is the result of the Boolean compination/(QR) between raining and weather forecast being bad. In fact we could write:

WeChat: cstutorcs

I will take an umbrella = it is raining OR the weather forecast is bad

Diagrammatic Representation

• Can think of the umbrella proposition as a result that we calculate from the weather forecast and the fact that it is raining by means of a logical OR Exam Help

Truth Tables

 Since propositions can only take two values, we can express all possible outcomes of the umbrella proposition by a table
 Assignment Project Exam Help

	https://tutores	oom
Raining	https://tutores. Bad Forecast	Umbrella
FALSE	WACSTat: cstute	orcsALSE
FALSE	TRUE	TRUE
TRUE	FALSE	TRUE
TRUE	TRUE	TRUE

Complex Propositions

- Can make our propositions more complex, for example:
 - (Take Umbrallas) gninlent (Project Exam (Head Forecast) OR (Raining))

https://tutorcs.com

Boolean Logic

 To perform calculations quickly and efficiently we need a more succinct notation than propositional logic

Need to have well-defined semanticsect Exam Helfor all the "operators", or connectives that we intend to usehttps://tutorcs.com

Boolean Algebra satisfies the criterion cs above

- Named after George Boole
- Provides a system of logical operations
- Rules for combining operations
- Describes their application to binary numbers

George Boole: 1815-1864

Boolean Algebra – Fundamentals

- The truth values are replaced by 1 and 0
 - 1 = TRUE 0 = FALSE

- https://tutorcs.com
 Propositions are replaced by variables
 - R = it is raining We The weather foregast is bad

- Operators are replaced by symbols
 - ' = NOT + = OR = AND

Boolean Algebra – Simplify Propositions

Recall:

• (Take Umbr**Alss)ign(nNent(Palogieet Exam) (Heap** Forecast) OR (Raining))

https://tutorcs.com

Using notations notations, we get:

• $U = (C') \cdot (W + R)$

Boolean Algebra – Precedence

- Operator Precedence
 - Highest precedence operator is evaluated first

Assignment Project Exam Help

OPERATOR	S. SYMBOL CO	m PRECEDENCE
NOT	' (¬)	Highest
AND We	Chat: est(vt)ord	S Middle
OR	+ (v)	Lowest

math (logic) symbol

- Note that: (C') * (W + R) is not the same as C' * W + R
- Logic operators in, e.g., C:
 - Logical: AND: && OR: | NOT: !
 - (Binary: AND: & OR: | NOT: ~)

Boolean Algebra – Truth Tables

 All possible outcomes of the operators can be written as truth tables

Boolean Algebra – Truth Tables

- Given any Boolean expression e.g.: U = C' (W + R)
- We can calculate a ment late to leaveny beds ble value of the variables on the right hand side https://tutorcs.com
- For n variables Wherehate 29 upossibilities

Boolean Algebra – Truth Tables

- Truth table for "Umbrella"
 - $U = C' \cdot (W + R)$

R W	ssig	n ment Proj	ect Exan	Help _{1•X2}
0 0	0 h	ttps://tutoro	com	0
0 0	1		0	0
0 1	0 🗸	/eChat: cst	utores	1
0 1	1	1	0	0
1 0	0	1	1	1
1 0	1	1	0	0
1 1	0	1	1	1
1 1	1	1	0	0
Input	outs Partial		Results	Outputs

Boolean Algebra – Rules

Note: A and B can be any Boolean Expression

Negation: Assignitive: Project Examinative:
$$(A')' = A$$
 $(A \cdot B) \cdot C = A \cdot (B \cdot C)$ $A \cdot B = B \cdot A$ $A \cdot A' = 0$ $(A + B) \cdot C + A \cdot B = B + A$
$$A \cdot A' = 1$$
 WeChat: cstutorcs Distributive:
$$A \cdot (B + C) = A \cdot B + A \cdot C$$

$$A + (B \cdot C) = (A + B) \cdot (A + C)$$

Note the precedence

Boolean Algebra – Rules

Single variables (Idempotent law):

https://tutorcs.com

Simplification rules with 1 and 0:

A We Chat: cstutorcs

$$A \cdot 1 = A$$

$$A + O = A$$

$$A + 1 = 1$$

Boolean Algebra – de Morgan's Rule

```
(A + B)' = A' • B'

(A • B)' Asignment Project Exam Help

as before, A and B can be any Boolean expression

https://tutorcs.com
```

Can generalise to Thorlean variables: $(A + B + C + D + ...)' = A' \cdot B' \cdot C' \cdot D' \cdot ...$ $(A \cdot B \cdot C \cdot D \cdot ... \cdot X)' = A' + B' + C' + D' + ... + X'$

Boolean Functions – Schematic Representation

 A standard set of easy-to-recognise symbols is used to represent Boolean functions

 A circle is all that is required to indicate NOT. The triangle is just to indicate Input/Output direction

Inverting Functions

 A circle can be added to the AND and OR symbol outputs to create their inverted functions – NotAnd (NAND) and NotOr (NOR) gatesment Project Exam Help

Building Blocks for Circuits

 NAND/NOR are the commonly used building blocks for most circuits

 Assignment Project Exam Help
 NAND / NOR can easily be constructed from transistors https://tutorcs.com

NAND is complete

WeChat: cstutorcs

- A set of Boolean functions f1,f2,... is "complete" if and only if any Boolean function can be generated by a combination these functions
- Also called "universal gate"

NAND Gate – NOT

- It is possible to build all other gates out of NAND gates
- · Create a NOTS signament of the transfer of the control of the co

• A • A = A therefore
$$(A • A) = A$$

WeChat: cstutorcs

NAND Gate – AND

Create an AND gate using the Involution law:

• (A')' = A Assignment Project Exam Help

NAND Gate – OR / NOR

 To make an OR gate we need to apply de Morgan's theorem:

Just invert output to get a NOR gate ©

NAND – Complex Circuits

Consider two cascading NAND Gates

- What circuit have We chatatest intorcs
 - Use Boolean Algebra to find out
 - I = (B C)'
 - X = (A I)' = (A (B C)')'
 - Apply de Morgan's law, we get
 - $X = A' + ((B \cdot C)')' = A' + (B \cdot C)$

NAND – Complex Circuits

• Truth table for $X = A' + (B \cdot C)$

A	ASSI	B 2nm	ent I	B • C roje	XEXam Help
	0	0	0	O'	1 1
	0]	ntfps	://tu	topes	.com ¹
	0	1	0	0	1
	0	WeC	hat:	cstut	orcs 1
	1	0	0	0	0
	1	0	1	0	0
	1	1	0	0	0
	1	1	1	1	1

XOR and XNOR Gates

Very useful gates

Exclusive Or (XOR) Exclusive Nor (XNOR)

Assignment Project Exam Help

R

https://tutorcs.comB

A	В	XOR
0	0	0
0	1	1
1	0	1
1	1	0

A	В	XNOR
0	0	1
0	1	0
1	0	0
1	1	1

Instantaneous on IC?

Instantaneous on IC?

 Time delay and saturation limit state 'switching' speed of real in-silico circuits

CMOS NAND in silico

Assignment Project Exam Help

https://tutorcs.com

WeChat: cstutorcs

Figure 4. Base-Emitter On Voltage

