MAST30001 Stochastic Modelling

Tutorial Sheet 7

1. A two state continuous time Markov chain $(X_t)_{t\geq 0}$ has the following generator with transition rates $\lambda, \mu > 0$:

$$\left(\begin{array}{cc} -\lambda & \lambda \\ \mu & -\mu \end{array}\right),\,$$

- (a) Find the time t transition matrix $P^{(t)}$ with $(P^{(t)})_{i,j} = \mathbb{P}(X_t = j | X_0 = i)$.
- (b) Using your answer to part (a) with $\lambda = \mu$, find a simple expression (i.e., not an infinite sum) for the chance that a random variable having the Poisson distribution with mean λ is an even number.

Ans.

(a) We solve the equation

$$\frac{d}{dt}P^{(t)} = P^{(t)}A,$$

where A is the generator in the problem. Thus

$$p'_{11}(t) = -\lambda p_{11}(t) + \mu p_{12}(t)$$

and also use $p_{11}(t) = 1 - p_{12}(t)$. We find

$$p_{11}(t) = \frac{\lambda}{\lambda + \mu} e^{-(\lambda + \mu)t} + \frac{\mu}{\lambda + \mu}$$
 and $p_{12}(t) = \frac{\lambda}{\lambda + \mu} \left(1 - e^{-(\lambda + \mu)t}\right)$

and by symmetry

$$p_{22}(t) = \frac{\mu}{\lambda + \mu} e^{-(\lambda + \mu)t} + \frac{\lambda}{\lambda + \mu}$$
 and $p_{12}(t) = \frac{\mu}{\lambda + \mu} \left(1 - e^{-(\lambda + \mu)t} \right)$.

(b) If $\lambda = \mu$, then the exponential waiting time description of the chain with generator in the problem implies that that number of times the chain switches states in (0,t) has a Poisson distribution with mean λt . If the chain starts at state 1, then the chain being at state 1 at time t is the same as there being an even number of jumps. So $p_{11}(1)$ is the chance a Poisson variable with mean λ is even, and according to (a) this is

$$(1/2)(1+e^{-2\lambda}).$$

Alternatively, you can use Taylor's expansion of e^x to find

$$\frac{e^{\lambda} + e^{-\lambda}}{2} = \sum_{k=0}^{\infty} \frac{\lambda^{2k}}{(2k)!},$$

which leads to the same conclusion.

2. If $(X_t^{(1)})_{t\geq 0}, \ldots, (X_t^{(k)})_{t\geq 0}$ are i.i.d. continuous time Markov chains on $\{0,1\}$ each having generator

$$\left(\begin{array}{cc} -\lambda & \lambda \\ \mu & -\mu \end{array}\right),$$

then what is the generator for the chain determined by $Y_t = \sum_{i=1}^k X_t^{(i)}$?

Ans. Y_t takes values in $\{0,\ldots,k\}$. $Y_t=i$ means that exactly i of the $X_t^{(j)}$'s are one. So from this point Y_t increases by one at rate $(k-i)\lambda$ (the minimum of the (k-i) exponential clocks where the $X_t^{(j)}=0$) and decreases by one at rate $i\mu$ (the minimum of the i exponential clocks where the $X_t^{(j)}=1$); as a check note these formulas are correct for i=k and i=0. So the generator has for $i=1,\ldots,k-1$

$$a_{ii+1} = (k-i)\lambda, \ a_{ii-1} = i\mu \ a_{ii} = -(k\lambda + i(\mu - \lambda)),$$

$$-a_{k,k} = a_{kk-1} = k\mu$$
, $-a_{00} = a_{01} = k\lambda$, and all other entries 0.

- 3. A workshop has two machines and one repairperson. Each machine is either functional or broken. If the *i*th machine (i = 1, 2) is functional, then it fails after an exponential rate λ_i time. If the *i*th machine is broken, it takes the repairperson an exponential rate μ_i amount of time to fix it and once it is fixed, it's good as new. Assume the repairperson begins work the instant a machine breaks down, that only one machine can be repaired at a time, and all lifetime and repair times are independent.
 - (a) Construct an appropriate continuous time Markov chain to describe the system and find the generator.
 - (b) If $\lambda_i = \mu_i = i$ for i = 1, 2, find the stationary distribution of the process.

Ans.

(a) We take the state space to be $\{(1,1),(1,0),(0,1),(0,0,1),(0,0,2)\}$ where the *i*th coordinate is one if machine *i* is functional and zero otherwise and (0,0,i) means both machines are broken and the repairperson is working on machine *i*. Then

$$(1,1) \rightarrow (1,0)$$
, rate λ_2 ,
 $(1,1) \rightarrow (0,1)$, rate λ_1
 $(1,0) \rightarrow (1,1)$, rate μ_2 ,
 $(1,0) \rightarrow (0,0,2)$, rate λ_1
 $(0,1) \rightarrow (1,1)$, rate μ_1 ,
 $(0,1) \rightarrow (0,0,1)$, rate λ_2
 $(0,0,1) \rightarrow (1,0)$, rate μ_1 ,
 $(0,0,2) \rightarrow (0,1)$, rate μ_2 .

So the generator can be written

$$A = \begin{pmatrix} -(\lambda_1 + \lambda_2) & \lambda_2 & \lambda_1 & 0 & 0\\ \mu_2 & -(\lambda_1 + \mu_2) & 0 & 0 & \lambda_1\\ \mu_1 & 0 & -(\lambda_2 + \mu_1) & \lambda_2 & 0\\ 0 & \mu_1 & 0 & -\mu_1 & 0\\ 0 & 0 & \mu_2 & 0 & -\mu_2 \end{pmatrix}.$$

(b) Solving $\pi A = 0$ yields

$$\pi = (7/34, 8/34, 5/34, 10/34, 4/34).$$

4. (CTMCs as limits of DTMCs) Let P be a one step transition matrix for a discrete time Markov chain on 0, 1... such that $p_{ii} = 0$ for all i. Also let $0 < \lambda_0, \lambda_1, ...$ be such that $\max_{i \ge 0} \lambda_i < N$, with N an integer. Define the discrete time Markov chain $Y_0, Y_1, ...$ by

$$\mathbb{P}(Y_{n+1}^{(N)} = i | Y_n^{(N)} = i) = \left(1 - \frac{\lambda_i}{N}\right),$$

and for $i \neq j$

$$\mathbb{P}(Y_{n+1}^{(N)} = j | Y_n^{(N)} = i) = \frac{\lambda_i}{N} p_{ij}.$$

We can think of the discrete jumps of $Y^{(N)}$ occurring at times on the lattice $\{0, 1/N, 2/N \dots\}$ and make a continuous time process by defining

$$X_t^{(N)} = Y_{|Nt|}^{(N)},$$

where |a| is the greatest integer not bigger than a.

- (a) What does a typical trajectory of $X^{(N)}$ look like? Does it have jumps? At what times? How do jumps correspond to $Y^{(N)}$?
- (b) Given $X_0^{(N)} = i$, what is the distribution of the random time

$$T^{(N)}(i) = \min\{t \ge 0 : X_t^{(N)} \ne i\}$$

- (c) As $N \to \infty$, to what distribution does that of $(T^{(N)}(i)|X_0^{(N)}=i)$ converge?
- (d) Based on the previous two items and comparing to the previous problem, do you think that $X^{(N)}$ converges as $N \to \infty$ to a continuous time Markov chain (not worrying about what exactly convergence means)? What is its generator?

Ans.

- (a) The chain only has jumps at times k/N for k an integer. Given the chain is in state i, it stays there for a geometric λ_i/N (> 0) number of 1/N time units and then jumps according to the one step transition matrix P. The number of these time units are the number of integer time units between jumps in the $Y^{(N)}$ chain.
- (b) As mentioned in the previous problem, the $Y^{(N)}$ chain stays at state i for a geometric (λ_i/N) number of time units before jumping. Then considering the time change to get from $Y^{(N)}$ to $X^{(N)}$, the variable $NT^{(N)}(i)$ is geometric λ_i/N (> 0); that is for k = 1, 2, ...

$$\mathbb{P}(T^{(N)}(i) = k/N) = \frac{\lambda_i}{N} \left(1 - \frac{\lambda_i}{N}\right)^{k-1}.$$

- (c) A standard calculation (do it!) shows that if Z_p is geometric p, then pZ_p converges in distribution to an exponential distribution with mean 1 as $p \to 0$. Since $NT^{(N)}(i)$ is geometric λ_i/N , $T^{(N)}(i)$ converges to an exponential variable with rate λ_i (or what's the same an exponential rate one variable divided by λ_i).
- (d) Since the holding times converge to exponential variables as N goes to infinity, the description of the limiting chain is as follows. Given $X_0 = i$ the chain waits an exponential with rate λ_i time and then jumps to state j with probability p_{ij} (the

state jumped to is independent of the time of the jump). Then the chain stays in state j and exponential λ_j amount of time and jumps to state k with probability p_{jk} , and so on. According to our interpretation of the entries of the generator from lecture, the (i, j)th entry of the generator is $\lambda_i p_{ij}$ for $i \neq j$ and $p_{ii} = -\lambda_i$.