Introduciton to R Graphics with ggplot2

Outline

- Introduction
- Statistical Transformations
- Scales
- 5 Faceting
- **6** Themes
- The #1 FAQ
- 8 Putting It All Together
- Wrap-up

Topic

- Introduction
- 2 Geometric Objects And Aesthetics
- Statistical Transformations
- Scales
- 5 Faceting
- 6 Themes
- The #1 FAG
- Putting It All Together
- Wrap-up

Class Files And Administrative Details

- User name: dataclass
- Password: dataclass
- Copy Rgraphics folder from shared drive to your desktop
- Class Structure and Organization
 - Ask questions at any time. Really!
 - Collaboration is encouraged
 - This is your class! Special requests are encouraged
- This is an intermediate R course
 - Assumes working knowledge of R
 - Relatively fast-paced
 - Focus is on ggplot2 graphics-other packages will not be covered

Starting A The End

My goal: by the end of the workshop you will be able to reproduce this graphic from the Economist:

Corruption and human development

Sources: Transparency International; UN Human Development Report

Why ggplot2?

- Advantages of ggplot2
 - Consistent underlying grammar of graphics (Wilkinson, 2005)
 - Plot specification at a high level of abstraction
 - Very flexible
 - Theme system for polishing plot appearance
 - Active maintenance and development–getting better all the time
 - Many users, active mailing list
- Things you cannot do With ggplot2
 - 3-dimensional graphics
 - Graph-theory type graphs (nodes/edges layout)

What Is The Grammar Of Graphics?

- The basic idea: independently specify plot building blocks
- Anatomy of a plot:
 - data
 - aesthetic mapping
 - geometric object
 - statistical transformations
 - scales
 - coordinate system
 - position adjustments
 - faceting

The structure of a ggplot

The ggplot() function is used to initialize the basic graph structure, then we add to it. The structure of a ggplot looks like this:

```
ggplot(data = <default data set>,
       aes(x = \langle default \ x \ axis \ variable \rangle).
   v = <default v axis variable>.
   ... <other default aesthetic mappings>),
       ... <other plot defaults>) +
       geom_<geom type>(aes(size = <size variable for this geom>,
      ... <other aesthetic mappings>),
  data = <data for this point geom>,
  stat = <statistic string or function>,
  position = <position string or function>,
  color = <"fixed color specification">.
  <other arguments, possibly passed to the _stat_ function) +</pre>
  scale_<aesthetic>_<type>(name = <"scale label">,
     breaks = <where to put tick marks>.
     labels = <labels for tick marks>,
     ... <other options for the scale>) +
```

- Dot theme(plot background | lelement rect(fill | | by the atraid, You will understand this by the end of the workshop!
- The basic idea is that you specify different parts of the plot, and add them together using the "+" operator

Example data I: mtcars

print(head(mtcars. 4))

```
mpg Miles/(US) gallon
cyl Number of cylinders
disp Displacement (cu.in.)
hp Gross horsepower
drat Rear axle ratio
wt Weight (lb/1000)
qsec 1/4 mile time
vs V/S
am Transmission (0 = automatic, 1 = manual)
gear Number of forward gears
carb Number of carburetors
```

ggplot2 VS Base Graphics

- Compared to base graphics, ggplot2
 - is more verbose for simple / canned graphics
 - is less verbose for complex / custom graphics
 - does not have methods (data should always be in a data.frame)
 - uses a different system for adding plot elements

ggplot2 VS Base Graphics

Base graphics VS ggplot for simple graphs:

ggplot2 VS Base Graphics

Base graphics VS ggplot for complex graphs:

```
par(mar = c(4,4,.1,.1))
plot(mpg ~ hp,
     data=subset(mtcars, am==1).
     xlim=c(50, 450), ylim=c(5, 40))
points(mpg ~ hp, col="red",
       data=subset(mtcars, am==0))
legend(350, 40,
       c("1", "0"), title="am",
       col=c("black", "red"),
       pch=c(1, 1)
                             am
                            0 1
                            0 0
    5
          100
                200
                       300
                              400
                    dη
```


Topic

- Introduction
- 2 Geometric Objects And Aesthetics
- Statistical Transformations
- Scales
- 5 Faceting
- 6 Themes
- The #1 FAQ
- Putting It All Together
- Wrap-up

Aesthetic Mapping

- In ggplot land aesthetic means "something you can see"
- Examples include:
 - position (i.e., on the x and y axes)
 - color ("outside" color)
 - fill ("inside" color)
 - shape (of points)
 - linetype
 - size
- Each type of geom accepts only a subset of all aesthetics-refer to the geom help pages to see what mappings each geom accepts
- Aesthetic mappings are set with the aes() function

Geometic Objects (geom)

- Geometric objects are the actual marks we put on a plot
- Examples include:
 - points (geom_point, for scatter plots, dot plots, etc)
 - lines (geom_line, for time series, trend lines, etc)
 - boxplot (geom_boxplot, for, well, boxplots!)
- A plot must have at least one geom; there is no upper limit
- Add a geom to a plot using the + operator
- You can get a list of available geometric objects:

```
geoms <- help.search("geom_", package = "ggplot2")
geoms$matches[1:4, 1:2]</pre>
```

Points (Scatterplot)

 Now that we know about geometric objects and aesthetic mapping, we can make a ggplot

Lines (Prediction Line)

- A plot constructed with ggplot can have more than one geom
- Our hp vs mpg plot could use a regression line:

Smoothers

 Not all geometric objects are simple shapes—the smooth geom includes a line and a ribbon

Text (Label Points)

 Each geom accepts a particular set of mappings—for example geom_text() accepts a labels mapping

Aesthetic Mapping VS Assignment

- Note that variables are mapped to aesthetics with the aes() function, while fixed aesthetics are set outside the aes() call
- This sometimes leads to confusion, as in this example:

Mapping Variables To Other Aesthetics

• Other aesthetics are mapped in the same way as x and y in the previous example

Exercise I

- Create a scatter plot with displacement on the x axis and horse power on the y axis
- 2 Color the points in the previous plot blue
- 3 Color the points in the previous plot according to miles per gallon

Exercise I prototype

```
# ex1.1
(p.ex1 <- ggplot(mtcars, aes(x = disp, y = hp)) + geom_point())
# ex1.2
p.ex1 + geom_point(color = "blue")
# ex1.3
p.ex1 + geom_point(aes(color = mpg))</pre>
```

Topic

- Introduction
- 2 Geometric Objects And Aesthetics
- Statistical Transformations
- Scales
- Faceting
- Themes
- The #1 FAG
- Putting It All Together
- Wrap-up

Statistical Transformations

- Some plot types (such as scatterplots) do not require transformations—each point is plotted at x and y coordinates equal to the original value
- Other plots, such as boxplots, histograms, prediction lines etc. require statistical transformations
 - For a boxplot the y values must be transformed to the median and 1.5(IQR)
 - For a smoother smother the y values must be transformed into predicted values
- Each geom has a default statistic, but these can be changed
- For example, the default statistic for geom_bar is stat_bin

```
args(geom_bar)
# ?stat bin
```

Setting Statistical Transformation Arguments

- Arguments to stat_ functions are passed through geom_ functions
- Slightly annoying because in order to change it you have to first determine which stat the geom uses, then determine the arguments to that stat

Changing The Statistical Transformation

- Sometimes the default statistical transformation is not what you need
- Often the case with pre-summarized data

```
(mtc.sum <- aggregate(mtcars["mpg"], mtcars["gear"], FUN=mean))</pre>
```

```
> ggplot(mtc.sum, aes(x=gear, y=mpg)) +
    geom_bar()
Mapping a variable to y and also
using stat="bin".
Error in pmin(y, 0) : object
'y' not found
.
```


Exercise II

- Create boxplots of mpg by gear
- Overlay points on top of the box plots
- Create a scatter plot of weight vs. horsepower
- Overlay a linear regression line on top of the scatter plot

Exercise II Prototype

```
#Ex2.1
(p <- ggplot(mtcars, aes(x = factor(gear), y = mpg)) + geom_boxplot())
#Ex2.2
p + geom_point()
#Ex2.3
(p <- ggplot(mtcars, aes(x = wt, y = hp)) + geom_point())
#Ex2.4
p + geom_smooth(method = "lm")</pre>
```

Topic

- Introduction
- 2 Geometric Objects And Aesthetics
- Statistical Transformations
- Scales
- 5 Faceting
- 6 Themes
- The #1 FAQ
- Putting It All Together
- Wrap-up

Scales: Controlling Aesthetic Mapping

- In ggplot2 scales include
 - position
 - color and fill
 - size
 - shape
 - line type
- Modified with scale_<aesthetic>_<type>

Common Scale Arguments

- name: the first argument gives the axis or legend title
- limits: the minimum and maximum of the scale
- breaks: the points along the scale where labels should appear
- labels: the labels that appear at each break

Scale Modification Examples

Scale breaks and labels

```
p7 <- p6 + geom_point(aes(color = wt)) +
  scale_x_discrete("Number of Gears",
   breaks = c("3", "4", "5"),
   labels = c("Three", "Four", "Five"))
p7 + scale_color_continuous("Weight",
 breaks = with(mtcars, c(min(wt), median(wt), max(wt))),
 labels = c("Light", "Medium", "Heavy"))
    35 -
                                                        Weight
    30 -
                                                             Heavy
 ©<sup>25</sup>
E<sub>20</sub> −
                                                             Medium
    15 -
                                                             Light
    10 -
              Three
                             Four
                                           Five
                     Number of Gears
```

Scale breaks and labels

```
p7 + scale_color_continuous("Weight",
 breaks = with(mtcars, c(min(wt), median(wt), max(wt))),
 labels = c("Light", "Medium", "Heavy"),
 low = "black",
 high = "gray80")
     35 ·
                                              Weight
     30 ·
                                                   Heavy
                                                   Medium
     15 -
                                                   Light
     10 -
                        Four
                                  Five
             Three
               Number of Gears
```

Using different color scales

```
p7 + scale_color_gradient2("Weight",
  breaks = with(mtcars, c(min(wt), median(wt), max(wt))),
  labels = c("Light", "Medium", "Heavy"),
  low = "blue",
  mid = "black",
  high = "red",
  midpoint = median(mtcars$wt))
```


Scale Modification Examples

Scale range

Available Scales

• Partial combination matrix of available scales

Scale	Types	Examples
scale _{color} _	identity	scale _{fillcontinuous}
$scale_{fill}$	manual	scale _{colordiscrete}
scale _{size} _	continuous	scale _{size manual}
	discrete	scale _{sizediscrete}
scale _{shape} _ scale _{linetype} _	discrete identity manual	$scale_{shapediscrete}$ $scale_{shapemanual}$ $scale_{linetypediscrete}$
scale _x _ scale _y _	continuous discrete reverse log date datetime	scale _{xcontinuous} scale _{ydiscrete} scale _{xlog} scale _{yreverse} scale _{xdate} scale _{ydatetime}

Exercise III

- Experiment with color, size, and shape aesthetics / scales
- ② What happens when you map more than one aesthetic to a variable?
- Which aesthetics are good for continuous variables? Which work better for discrete variables?

- Introduction
- 2 Geometric Objects And Aesthetics
- Statistical Transformations
- 4 Scales
- 5 Faceting
- Themes
- The #1 FAG
- Putting It All Together
- Wrap-up

Faceting

- Faceting is ggplot2 parlance for small multiples
- The idea is to create separate graphs for subsets of data
- ggplot2 offers two functions for creating small multiples:
 - facet_wrap(): define subsets as the levels of a single grouping variable
 - facet_grid(): define subsets as the crossing of two grouping variables
- Facilitates comparison among plots, not just of geoms within a plot

Example Data II: Housing prices

```
housing <- read.csv("dataSets/landdata-states.csv")
head(housing[1:5])

(Data from https:www.lincolninst.edu/subcenters/land-values/
land-prices-by-state.asp)</pre>
```

What is the trend in housing prices?

Start by using a technique we already know-map State to color

 There are two problems here—there are too many states to distinguish each one by color, and the lines obscure one another

Faceting to the rescue

 We can remedy the deficiencies of the previous plot by faceting by state rather than mapping state to color

• There is also a facet_grid() function for faceting in two dimensions

- Introduction
- Quantities Qua
- Statistical Transformations
- 4 Scales
- 5 Faceting
- **6** Themes
- The #1 FAG
- Putting It All Together
- Wrap-up

Themes

- The ggplot2 theme system handles non-data plot elements such as
 - Axis labels
 - Plot background
 - Facet label backround
 - Legend appearance
- Two built-in themes:
 - theme_gray() (default)
 - theme_bw()
 - More available on the wiki:

https:github.com/hadley/ggplot2/wiki/Themes

Overriding theme defaults

- Specific theme elements can be overridden using theme()
- Example:

• You can see available options by printing theme_gray() or theme_bw()

Creating and saving new themes

• You can create new themes, as in the following example:

```
theme new <- theme bw() +
  theme(text=element_text(size = 12, family = ""),
axis.text.x = element_text(colour = "red"),
panel.background = element_rect(fill = "pink"))
p7 + theme_new
    35 -
    30 -
  625 -
E 20 -
    15 -
    10 -
              Three
                              Four
                                              Five
                       Number of Gears
```

- Introduction
- Statistical Transformations
- Scales
- 5 Faceting
- Themes
- The #1 FAQ
- Putting It All Together
- Wrap-up

Map Aesthetic To Different Columns

The most frequently asked question goes something like this: I have two variables in my data.frame, and I'd like to plot them as separate points, with different color depending on which variable it is. How do I do that?

- Introduction
- Quantities Qua
- Statistical Transformations
- 4 Scales
- 5 Faceting
- Themes
- The #1 FAQ
- 8 Putting It All Together
- Wrap-up

Challenge: Recreate This Economist Graph

Corruption and human development

Sources: Transparency International; UN Human Development Report

Data

The data is available in the dataSets/EconomistData.csv file. Read it in with

Challenge data

Load the data:

dat <- read.csv("dataSets/EconomistData.csv")</pre>

Recreate this graph:

Corruption and human development

Create basic scatter plot

```
pc1 <- ggplot(dat, aes(x = CPI, y = HDI, color = Region))</pre>
(pc1 <- pc1 + geom_point(shape = 1))
                                                       Region
                                                          Americas
 0.8 -

    Asia Pacific

                                                          East EU Cemt Asia
                                                          EU W. Europe

    MENA

                                                          SSA
                         5.0
                                      7.5
            2.5
                           CPI
```

Add labels

```
label.these <- c("Congo", "Sudan", "Afghanistan", "Greece", "China",
 "India", "Rwanda", "Spain", "France", "United States",
 "Japan", "Norway", "Singapore")
(pc2 <- pc1 +
 geom_text(aes(label = Country),
   color = "black", size = 3, hjust = 1.1,
   data = dat[dat$Country %in% label.these, ]))
                                                   Region

    Americas

   0.8 -

    Asia Pacific

 무0.6
                                                       East EU Cemt Asia
                                                       EU W. Europe
                                                      MENA
                   Rwandao
   0.4 no
                                                       SSA
                                    7.5
             2.5
                        5.0
                          CPI
```

Add smoothing line

```
(pc3 <- pc2 +
 geom_smooth(aes(group = 1),
      method = "lm",
      color = "black",
      formula = y^{\sim} poly(x, 2),
      se = FALSE))
                                                      Region
                                                          Americas
  0.8 -

    Asia Pacific

무 0.6 -
                                                          East EU Cemt Asia
                                                          EU W. Europe
                    Rwanda
                                                          MENA
  0.4 no
                                                          SSA
                         5.0
                                      7.5
            2.5
                           CPI
```

Finishing touches

```
(pc4 <- pc3 + theme_bw() +
  scale x continuous("Corruption Perceptions Index, 2011\n(10 = least corrupt)") +
  scale_y_continuous("Human Development Index, 2011\n(1 = best)") +
  theme(legend.position = "top", legend.direction = "horizontal"))
       Region O Americas O Asia Pacific O East EU Cemt Asia O EU W. Europe O MENA O SSA
 Human Development Index, 2011
                                                             gapano |
     8.0
   best)
     0.6
                                   Rwanda
     0.4 -stan o
                   2.5
                                       5.0
                             Corruption Perceptions Index, 2011
                                    (10 = least corrupt)
```

- Introduction
- 2 Geometric Objects And Aesthetics
- Statistical Transformations
- Scales
- 5 Faceting
- Themes
- The #1 FAQ
- Putting It All Together
- Wrap-up

Help Us Make This Workshop Even Better!

- Please take a moment to fill out a very short feedback form
- These workshops exist for you tell us what you need!
- http:tinyurl.com/R-graphics-feedback

Additional resources

- ggplot2 resources
 - Mailing list: http:groups.google.com/group/ggplot2
 - Wiki: https:github.com/hadley/ggplot2/wiki
 - Website: http:had.co.nz/ggplot2/
 - StackOverflow: http:stackoverflow.com/questions/tagged/ggplot
- IQSS resources
 - Research technology consulting: http:projects.iq.harvard.edu/rtc
 - Workshops: http:projects.iq.harvard.edu/rtc/filter_by/workshops