

FIGURE 1.

Figure 3

41

quantum dot 47

Fig 4

Fig.5

OBLON, SPIVAK, ET AL
DOCKET #: Andrew James SHIELDS, et al
INV: 199866US2CRL
SHEET 5 OF 29

OBLON, SPIVAK, ET AL
DOCKET #: Andrew James SHIELDS, et
INV: 199866US2CRL
SHEET 7 OF 29

Fig. 11

Fig 12

Fig. 13

Fig 14

Fig. 15

Fig. 16

16129

OBLON, SPIVAK, ET AL
DOCKET #: Andrew James SHIELDS, et al.
INV: 19986 CRL
SHEET 16 OF 29

Electrically Injected QD Single Photon Emitter

OBLON, SPIVAK, ET AL
DO #: Andrew James SHIELDS, et al.
INV 866US2CRL
SHEET 17 OF 29

Fig.17

Fig. 18

Figure 20

Figure 21

Active QW - remotely doped QW containing
tunable excess electron density

Figure 22
Tunnelling QW - controls injection
of holes into active region

Figure 23

Figure 24

Active region - remotely doped QW containing
tunable excess electron density

Tunneling through quantum dots
states allows injection of holes
one-by-one into active region

The Hole tunnels from the QD to the active region

1 Hole tunnels into a QD

Figure 27.

Increasing excess electron density

Figure 28

Prior Art

OBLON, SPIVAK, ET AL
DOCKET #: Andrew James SHIELDS, et al.
INV: 1995NS2CRL
SHEET 29 OF 29

29/24

TOTAL P.90

Figure 29