MS115 Mathematics for Enterprise Computing Tutorial Sheet 4

- 1. For each of the following relations on \mathbb{Z} , determine whether the relation is (a) reflexive, (b) symmetric, (c) transitive.
 - (i) xRy exactly when x + y is an odd integer.
 - (a) Not reflexive: We do not have that x is related to x for all $x \in \mathbb{Z}$. Indeed, x is not related to x for any x as x + x = 2x, which is even.
 - (b) Symmetric: If x + y = 2k + 1 for some $k \in \mathbb{Z}$, then y + x = 2k + 1.
 - (c) Not transitive: eg. 1R2 and 2R1 but 1 is not related to 1.
 - (ii) xRy exactly when x + y is an even integer.
 - (a) Reflexive: x is related to x for all $x \in \mathbb{Z}$ as x + x = 2x, which is even.
 - (b) Symmetric: If x + y = 2k for some $k \in \mathbb{Z}$, then y + x = 2k.
 - (c) Transitive: If x + y = 2k and $y + z = 2\ell$ for some $k, \ell \in \mathbb{Z}$ then

$$(x+y) + (y+z) = 2k + 2\ell$$
 whereby $x + z = 2(k + \ell - y)$.

- 2. Let n be a fixed positive integer. Consider the relation R on \mathbb{Z} defined by xRy exactly when x-y is divisible by n.
 - (i) Prove that R is an equivalence relation on \mathbb{Z} .
 - (a) Reflexive: x is related to x for all $x \in \mathbb{Z}$ as x x = 0 = 0(n).
 - (b) Symmetric: If x y = nk for some $k \in \mathbb{Z}$, then y x = n(-k).
 - (c) Transitive: If x-y=nk and $y-z=n\ell$ for some $k,\ell\in\mathbb{Z}$ then $(x-y)+(y-z)=nk-n\ell$, whereby $x-z=n(k-\ell)$.
 - (ii) Express the relation xRy in terms of x and y sharing a common property.
 - Here, x is related to y exactly when x and y have the same remainder after division by n.
 - (iii) Determine the number of equivalence classes in the associated partition of \mathbb{Z} .

There are n equivalence classes: $E_0, E_1, \ldots, E_{n-1}$.

3. The graph of a function f is a graphical representation of all ordered pairs (x, f(x)) for x an element of the domain of f.

Consider the following graphs of two functions f and g:

- (i) Determine the domain and range of f.
 Referencing the horizontal axis, the domain of f is the interval [0, 4].
 Referencing the vertical axis, the range of f is the interval [0, 4].
- (ii) Determine the domain and range of g.Referencing the horizontal axis, the domain of f is the interval [0, 4].Referencing the vertical axis, the range of f is the interval [1, 5].
- (iii) Justifying your answer, determine whether f is invertible. Here, it is understood that f is a function mapping [0,4] to [0,4]. f is not invertible. We do have that every $b \in [0,4]$ is the image of some $a \in [0,4]$. However, there exist $b \in [0,4]$ that are not the image of exactly one $a \in [0,4]$. For example, f(1) = 3 and f(3) = 3, whereby $f^{-1}(3)$ is not defined.
- (iv) Justifying your answer, determine whether g is invertible. Here, it is understood that g is a function mapping [0,4] to [1,5]. g is invertible as every $b \in [1,5]$ is the image of exactly one $a \in [0,4]$.
- 4. Consider the function $f: \mathbb{R} \to \mathbb{R}$ given by f(x) = 2x 1 and the function $g: \mathbb{R} \to \mathbb{R}$ given by g(x) = 3x + 3.
 - (i) Determine the output of the function $g \circ f$. $g \circ f(x) = g(f(x)) = g(2x - 1) = 3(2x - 1) + 3 = 6x.$
 - (ii) Determine the output of the function $f \circ g$. $f \circ g(x) = f(g(x)) = f(3x+3) = 2(3x+3) - 1 = 6x + 5.$