

A.A. 2019/2020 Politecnico di Milano Corso di Laurea in Ingegneria Elettrica, Automazione, Telecomunicazioni, Elettronica, Informatica

Scuola di Ingegneria Industriale e dell'Informazione

Programma relativo al Corso - 082740 - <u>Analisi Matematica 1</u>

Docente: Ing. Federico M.G. Vegni

Studio: Dipartimento di Matematica "F. Brioschi", "Nave", via Bonardi 9,

IV piano, tel. 02.2399.4631

Ricevimento: su appuntamento inviare una mail il giorno prima

Email: <u>federico.vegni@polimi.it</u>
Web-info: <u>beep.metid.polimi.it</u>

OBIETTIVI

Si vogliono introdurre gli strumenti fondamentali del calcolo differenziale e integrale per funzioni reali di una variabile reale, sottolineando il significato geometrico e fisico. Oltre a fornire un chiaro fondamento teorico, che permetta un uso critico e consapevole del linguaggio matematico, ci si prefigge di coltivare nello studente la familiarità con il discorso scientifico abituandolo al necessario rigore nella discussione e verifica delle ipotesi ed alla sintesi nella formalizzazione.

PROGRAMMA DETTAGLIATO

- 1. **Insiemi numerici.** Richiami sugli insiemi dei numeri naturali. Elementi di calcolo combinatorio. Numeri interi, dei numeri razionali. Principio di induzione. Binomio di Newton. Numeri reali. Ordinamento e completezza. Estremo superiore ed inferiore di un insieme.
- 2. **Numeri complessi.** Motivazioni. Struttura di R: campi ordinati. Definizione. Rappresentazione nel piano di Gauss. Forma algebrica e trigonometrica dei numeri complessi. Teoremi di De Moivre. Operazioni sui numeri complessi. Radici complesse. Equazioni algebriche e teorema fondamentale dell'algebra. Formula di Eulero.
- 3. Calcolo differenziale per funzioni reali di una variabile reale.
 - 3.1. Generalità. Funzione, dominio, codominio, grafico. Funzioni elementari. Funzioni simmetriche, monotone, limitate, periodiche. Funzione composta, funzione inversa.
 - 3.2. Limiti. Definizione di limite per successioni e per funzioni. Unicità del limite. Algebra dei limiti. Forme di indecisione. Teorema della permanenza del segno. Teorema del confronto. Limiti notevoli. Infinitesimi ed infiniti; ordine di un infinitesimo, di un infinito. Il simbolo di asintotico. Il simbolo di "o piccolo". Algebra e proprietà fondamentali degli asintotici. Esistenza del limite per funzioni monotone. Il numero e.
 - 3.3. Continuità. Definizione. Continuità delle funzioni elementari. Operazioni con funzioni continue. Punti di discontinuità e loro classificazione. Teoremi di Weierstrass, degli zeri e dei valori intermedi.
 - 3.4. Derivate. Definizione di derivata ed interpretazioni geometriche e fisiche. Derivate di funzioni elementari. Continuità e derivabilità. Differenziale e linearizzazione. Regole di derivazione. Derivata di funzione composta ed inversa. Ricerca di massimi e minimi: teoremi di Fermat, di Lagrange. Teorema di De L'Hospital. Concavità e convessità. Studio del grafico di una funzione.

3.5. Formula di Taylor. Approssimazione locale mediante polinomi.

4. Calcolo integrale per funzioni reali di una variabile reale.

- 4.1. Integrale definito di funzioni continue o continue a tratti su intervalli limitati; sue interpretazioni geometriche e fisiche. Proprietà elementari dell'integrale definito. Primitiva, integrale indefinito. Teorema fondamentale del calcolo integrale. Metodi di integrazione per parti, per sostituzione.
- 4.2. Integrali generalizzati. Integrale generalizzato per funzioni illimitate su un intervallo limitato o definite su un intervallo illimitato. Criteri di integrabilità al finito e all'infinito. Integrabilità assoluta e integrabilità semplice. Criteri di confronto. Funzioni integrali e prime proprietà.

5. Serie.

- 5.1. Serie numeriche. Serie convergenti, divergenti, oscillanti. Serie notevoli. Serie a termini positivi: criteri del confronto, confronto asintotico, confronto tra serie e integrale generalizzato. Serie a termini qualunque: convergenza semplice e convergenza assoluta. Serie a termini di segno alterno; criterio di Leibniz.
- 5.2. Serie di Taylor di una funzione infinitamente derivabile. Sviluppo in serie di Taylor delle funzioni trascendenti elementari.
- 5.3. Esponenziale complesso. Definizione dell'esponenziale nel campo complesso e delle altre trascendenti elementari mediante serie di potenze. Giustificazione della formula di Eulero e forma esponenziale dei numeri complessi.

PREREQUISITI

Gli argomenti di matematica elementare che costituiscono oggetto del test di accesso alle facoltà di ingegneria del Politecnico di Milano.

LIBRO DI TESTO

Marco Bramanti, Carlo Pagani, Sandro Salsa, Analisi matematica I, Zanichelli 2014.

TESTI suggeriti per la consultazione ed ESERCIZIARI

- M. Bramanti, Esercitazioni di Analisi Matematica 1, Esculapio (2011);
- M. Bramanti, Esercitazioni di Analisi Matematica 2, Esculapio (2012);
- M. Bramanti, C.D. Pagani, S. Salsa, Analisi Matematica 2, Zanichelli (2009);
- M. Contedini, G. Grillo, Esercizi di Analisi Matematica I e algebra lineare, La Dotta (2015);
- E. Giusti, Analisi Matematica 1 terza edizione, Bollati Boringhieri (2003);
- E. Giusti, Elementi di Analisi Matematica, Bollati Boringhieri (2008);
- P. Marcellini, C. Sbordone, Esercizi di Analisi Matematica Vol. I, tomi 1, 2, 3, 4, Liguori (2009);

APPSTORE

Matita - Matematica in tasca App per iPhone e iPad di F. Vegni