

Universidade Estadual de Maringá

Centro de Tecnologia - Departamento de Informática

UNIDADE LÓGICA ARITMÉTICA DE 1 BIT

Acadêmico	Registro Acadêmico				
Luiz Flávio Pereira	91706				

Maringá-PR

16 de novembro de 2017

Universidade Estadual de Maringá

Centro de Tecnologia - Departamento de Informática

Curso de Bacharelado em Informática

UNIDADE LÓGICA ARITMÉTICA DE 1 BIT

Trabalho solicitado aos alunos da disciplina de Circuitos Digitais, pelo professor André Felipe Ribeiro Cordeiro, como requisito de obtenção de nota parcial para a primeira avaliação semestral.

Maringá-PR

16 de novembro de 2017

Relatório da Unidade Lógica Aritmética

Maringá-PR

16 de novembro de 2017

Sumário

1 – Introdução5
2 – Portas Lógicas
2.1 – Porta Lógica Buffer6
2.2 – Porta Lógica Not
2.3 – Porta Lógica Or6
2.4 – Porta Lógica And
2.5 – Porta Lógica Nor
2.6 – Porta Lógica Nand
2.7 – Porta Lógica Xor
2.8 – Porta Lógica Xnor
3 – Circuito da Unidade Lógica Aritmética (ULA)
4 – Explicação da ULA
4.1 – Tabelas Verdades
4.1.1 – Tabela Verdade do Decodificador
4.1.2 – Tabela Verdade do Somador Completo
4.1.3 – Tabela Verdade do Subtrator Completo
4.2 – Expressões Booleanas
4.2.1 – Expressão Booleana do Decodificador
4.2.2 – Expressão Booleana do Somador
4.2.3 – Expressão Booleana do Subtrator
5 – Referências Bibliográficas

1 – Introdução

Este breve relatório tem como objetivo descrever o funcionamento de uma unidade lógica aritmética (ULA) de um bit. O circuito em questão é constituído basicamente por um decodificador, funções lógicas, um somador completo de um bit e um subtrator completo de um bit.

Para um melhor compreendimento do circuito é necessário fazer uma revisão das tabelas verdades e símbolos de cada porta lógica, cada uma delas conta com um comportamento específico e importante para o desenrolar de toda a funcionalidade do circuito.

Esta unidade lógica e aritmética fará apenas somas e subtrações de um bit, mas poderia facilmente ser modificado e ampliado para um circuito maior, tendo apenas que fazer algumas adaptações. O conceito de ULA surgiu a mais de 70 anos, mais especificamente durante a Segunda Guerra Mundial, este conceito foi apresentando pelo matemático John von Neumann.

A ULA é altamente importante, pois é uma peça fundamental dos CPU's e microprocessadores, porém, inicialmente os circuitos das unidades lógicas aritméticas eram constituídos por relés, após um tempo foram substituídos por válvulas, mas que ainda eram grandes e se queimavam com facilidade. Após a década de 1950 surgiram os transistores e, com isso foi sendo possível realizar cada vez mais circuitos integrados (CI's) menores e mais rápidos.

De acordo com a Lei de Moore a cada 18 meses (um ano e meio) é possível dobrar a quantidade de transistores dentro de um microchip, aumentando cada vez mais o poder de processamento dos computadores. Não é possível determinar até quando esta lei será verdade, mas até a atualidade ela vem sendo válida.

2 – Portas Lógicas

As portas lógicas operam de modo binário, onde podem ter como entrada apenas 0 e 1, na computação é muito importante pois permite a criação da expressão booleana a partir dos intervalos de tensão, com a álgebra booleana é possível obter um circuito digital.

Existem diferentes portas lógicas, sendo elas: buffer, not, and, or, nand, nor, xor e xnor. Cada porta lógica tem seu comportamento e abaixo será descrito o funcionamento de cada uma delas, além de contar com a tabela verdade e seu respectivo símbolo. A portas lógicas buffer e not possuem uma característica diferente no que se refere a quantidade de entradas, essas duas possuem apenas uma entrada, enquanto as outras possuem pelo menos duas entras.

2.1 – Porta Lógica Buffer

O Buffer é talvez a porta lógica mais fácil de entender, pois ela é muitas vezes comparada a um fio. A porta lógica denominada buffer é um ótimo condutor de corrente para a saída do circuito ou de outras portas lógicas.

Tabela verdade Simbologia

l	ENTRADAS	SAÍDAS
	A	S
	0	0
Ī	1	1

Tabela 1: Tabela verdade da porta lógica buffer.

2.2 – Porta Lógica Not

A porta lógica Not tem comportamento semelhante ao da Buffer, tendo como único e mais importante detalhe a sua saída. Pois com a utilização desta porta lógica temos a negação da saída, enquanto que a Buffer não ocorre a negação, ou seja, o bit que "entra" vai para a saída. Veja a seguir a tabela verdade e simbologia da porta not.

Tabela verdade Simbologia

ENTRADAS	SAÍDAS
A	S
0	1
1	0

Tabela 2: Tabela verdade da porta lógica not.

2.3 – Porta Lógica Or

A Or é considerada a primeira das três operações básicas, sendo responsável por fazer a soma, ela tem como característica a saída igual a um quando obtivermos uma ou mais entradas setadas com um, ou seja, a única possibilidade de saída igual a zero é quando todas as entradas for zero.

Tabela verdade

ENTR	ADAS	SAÍDAS
Α	В	S
0	0	0
0	1	1
1	0	1
1	1	1

Simbologia

Tabela 3: Tabela verdade da porta lógica or.

2.4 – Porta Lógica And

A função lógica And é considerada a segunda operação básica, ela é a multiplicação de suas entradas, isso significa dizer que ela só terá saída igual a um se ambas as entradas forem um.

Tabela verdade

ENTR	ADAS	SAÍDAS
A	В	S
0	0	0
0	1	0
1	0	0
1	1	1

Simbologia

Tabela 4: Tabela verdade da porta lógica and.

2.5 – Porta Lógica Nor

Podemos dizer que a porta Nor opera de mesmo modo que a porta lógica Or, mas seguida por um inversor, isso significa dizer que ela terá como saída a negação da porta Or. Isso poderá ser facilmente visualizado na tabela verdade, pois só terá saída igual a um quando as duas entradas forem zero.

Tabela verdade

ENTR	ADAS	SAÍDAS
Α	В	S
0	0	1
0	1	0
1	0	0
1	1	0

Simbologia

Tabela 5: Tabela verdade da porta lógica nor.

2.6 – Porta Lógica Nand

Podemos dizer que a porta Nand opera de mesmo modo que a porta lógica And, mas seguida por um inversor, isso significa dizer que ela terá como saída a negação da porta And.

Veja a seguir:

Tabela verdade

ENTR	ADAS	SAÍDAS
Α	В	S
0	0	1
0	1	1
1	0	1
1	1	0

Simbologia

Tabela 6: Tabela verdade da porta lógica nand.

2.7 – Porta Lógica Xor

O comportamento da porta Xor é um tanto quanto diferente das demais, ela só terá saída igual a um quando as entradas forem diferentes. Essa porta lógica é de extrema importância, principalmente no circuito de soma e subtração. Veja a seguir:

Tabela verdade

ENTR	ADAS	SAÍDAS
Α	В	S
0	0	0
0	1	1
1	0	1
1	1	0

Simbologia

Tabela 7: Tabela verdade da porta lógica xor.

2.8 – Porta Lógica Xnor

A porta Xnor é apenas uma porta Xor seguida por inversor, ou seja, o resultado obtido a partir da Xor seria negado logo após a sua saída. Isso significa dizer que só terá um na saída quando as entradas fossem todas iguais.

Tabela verdade

ENTR	ADAS	SAÍDAS
Α	В	S
0	0	1
0	1	0
1	0	0
1	1	1

Simbologia

Tabela 8: Tabela verdade da porta lógica xnor.

3 – Circuito da Unidade Lógica Aritmética (ULA)

4 – Explicação da ULA

A unidade lógica aritmética deste relatório compreender em um circuito que faz a soma ou subtração entre dois bits, a ULA apresentada na página anterior contém: um decodificador, funções lógicas, um somador completo de um bit e um subtrator completo de um bit.

De acordo com Floyd em Sistemas Digitais Fundamentos e Aplicações, um decodificador é um circuito digital que detecta a presença de uma combinação específica de bits (código) em suas entradas indicando a presença desse código através de um nível de saída especificado. Em sua forma geral, um decodificador tem n linhas de entrada para manipular n bits e de uma a 2^n linhas de saída para indicar a presença de uma ou mais combinações de n bits.

Em outras palavras podemos dizer que neste circuito o decodificador tem a função de decodificar as entradas E1, E2 E3 para poder selecionar a opção a ser realizada: somar ou subtrair, juntamente com as funções lógicas. Por isso é indispensável a função de um decodificador neste circuito.

O somador completo aceita dois bits de entrada e um carry de entrada, e gera uma saída de soma e um carry de saída, denominado Carry Out. A diferença básica entre um somador completo e um meio somador é que o somador completo aceita um carry de entrada. (FLOYD, 2007)

Já o subtrator completo é também realizada por um circuito lógico. Um subtrator necessita de três entradas: duas para os números a serem subtraídos e uma para o Carry In (empréstimo). As duas saídas são: a saída da diferença e a saída de Carry Out. (FLOYD, 2007)

Todas as áreas do circuito estão devidamente identificadas além de ter suas respectivas entradas circuladas para facilitar o entendimento do mesmo. As entradas circuladas em vermelho são E1, E2 e E3 (exatamente nesta sequência) que são as entradas do decodificador. Já as entradas circuladas em azul são CarryIN (Carry In), A e B respectivamente, ou seja, as entradas do circuito para possibilitar que a soma ou subtração ocorra.

Além disso, o circuito possui uma Saída e também um CarryOU (Carry Out), os termos CarryIN e CarryOU são peças indispensáveis para que possa ocorrer a soma ou a subtração completa, pois há casos em que necessita de um empréstimo de um bit. CarryIN é o bit

emprestado, enquanto que o CarryOU é o bit emprestador para a próxima coluna a ser realizada a operação.

Segue abaixo as tabelas verdades e as expressões booleanas que descrevem o comportamento das principais partes do circuito:

4.1 – Tabelas Verdades

Nesta seção será apresentada a tabela verdade das três principais partes do circuito.

4.1.1 – Tabela Verdade do Decodificador

FUNÇÃO	E1	E2	E3	S 0	S1	S2	S 3	S4	S5	S 6	S 7
AND	0	0	0	1	0	0	0	0	0	0	0
OR	0	0	1	0	1	0	0	0	0	0	0
NAND	0	1	0	0	0	1	0	0	0	0	0
NOR	0	1	1	0	0	0	1	0	0	0	0
XOR	1	0	0	0	0	0	0	1	0	0	0
XNOR	1	0	1	0	0	0	0	0	1	0	0
SOMA	1	1	0	0	0	0	0	0	0	1	0
SUBTRAÇÃO	1	1	1	0	0	0	0	0	0	0	1

Tabela 9: Tabela verdade do Decodificador.

4.1.2 – Tabela Verdade do Somador Completo

A	1	В	CarryIN	SAÍDA	CarryOU
()	0	0	0	0
()	0	1	1	0
()	1	0	1	0
()	1	1	0	1
1	1	0	0	1	0
1	1	0	1	0	1
1		1	0	0	1
1		1	1	1	1

Tabela 10: Tabela verdade do somador completo.

4.1.3 – Tabela Verdade do Subtrator Completo

A	В	CarryIN	SAÍDA	CarryOU
0	0	0	0	0
0	0	1	1	1
0	1	0	1	1
0	1	1	0	1
1	0	0	1	0
1	0	1	0	0
1	1	0	0	0
1	1	1	1	1

Tabela 11: Tabela verdade do subtrator completo.

4.2 – Expressões Booleanas

Nesta seção será apresentada a expressão booleana das três principais partes do circuito.

4.2.1 – Expressão Booleana do Decodificador

- $S0 = \overline{E1}.\overline{E2}.\overline{E3}$
- $S1 = \overline{E1}.\overline{E2}.E3$
- $S2 = \overline{E1}.E2.\overline{E3}$
- $S3 = \overline{E1}.E2.E3$
- $S4 = E1.\overline{E2}.\overline{E3}$
- $S5 = E1.\overline{E2}.E3$
- $S6 = E1.E2.\overline{E3}$
- S7 = E1.E2.E3

4.2.2 - Expressão Booleana do Somador

- Saída = A 🕦 B 🕦 CarryIN
- CarryOU = A.B + B.CarryIN + A.CarryIN

4.2.3 – Expressão Booleana do Subtrator

- Saída = A 🕀 B 🕕 CarryIN
- $CarryOU = \overline{A}.B + B.CarryIN + \overline{A}.CarryIN$

5 – Referências Bibliográficas

CIRCUITO integrado. 1. Disponível em: https://pt.wikipedia.org/wiki/Circuito_integrado. Acesso em: 13 nov. 2017.

FLOYD, Thomas L.Sistemas Digitais Fundamentos e Aplicações. 9. ed. Porto Alegre: Bookman, 2007. 888 p.

JORDÃO, Fábio.O que é a Lei de Moore? . 1. Disponível em: https://www.tecmundo.com.br/curiosidade/701-o-que-e-a-lei-de-moore-.htm>. Acesso em: 15 nov. 2017.

MORIMOTO, Carlos E.Válvula. 1. Disponível em: http://www.hardware.com.br/termos/valvula. Acesso em: 14 nov. 2017.

PORTA lógica. 1. Disponível em: https://pt.wikipedia.org/wiki/Porta_l%C3%B3gica. Acesso em: 15 nov. 2017.

TOCCI, Ronald J.; WIDMER, Neal S.; MOSS, Gregory L. Sistemas Digitais Princípios e Aplicações. 1. ed. Texas: EBook, 2011. 840 p. v. 1.

UNIDADE lógica e aritmética. 1. Disponível em: https://pt.wikipedia.org/wiki/Unidade_1%C3%B3gica_e_aritm%C3%A9tica. Acesso em: 1 nov. 2017.