

Name:	
Teacher:	

FORT STREET HIGH SCHOOL

2008 HIGHER SCHOOL CERTIFICATE COURSE ASSESSMENT TASK 4: TRIAL HSC

Mathematics Extension 1

TIME ALLOWED: 2 HOURS
(PLUS 5 MINUTES READING TIME)

Outcomes Assessed	Questions	Marks
Chooses and applies appropriate mathematical techniques in order to solve problems effectively	1, 2	
Manipulates algebraic expressions to solve problems from topic areas such as inverse functions, trigonometry and polynomials	3, 4, 5	
Uses a variety of methods from calculus to investigate mathematical models of real life situations, such as projectiles, kinematics and growth and decay	6	
Synthesises mathematical solutions to harder problems and communicates them in appropriate form	7	

Question	1	2	3	4	5	6	7	Total	%
Marks	/12	12	/12	12		/12	/12	/ - /84	. 4

Directions to candidates:

- Attempt all questions
- The marks allocated for each question are indicated
- All necessary working should be shown in every question. Marks may be deducted for careless or badly arranged work.
- Board approved calculators may be used

Answer each question in a SEPARATE writing booklet. Extra writing booklets are available.

Question 1. (12 marks) Use a SEPARATE writing booklet.

Marks

(a) Evaluate
$$\lim_{x\to 0} \frac{\sin 2x}{3x}$$

1

(b) Let A be the point
$$(8,10)$$
 and B the point $(-2,4)$.

2

Find the coordinates of the point P which divides the interval AB externally in the ratio 2:5.

where the largest to the fourties f(x) at x = 1.

(c) Solve
$$\frac{1}{x+2} \le 2$$

3

(d) The angle between the line
$$y = 2x$$
 and the tangent to the curve $y = Ax^2 + Ax$ at $x = 1$ is $\frac{\pi}{4}$ radians. Find the values of A.

3

(e) Use the substitution
$$u = 2x + 1$$
 to evaluate $\int_{\frac{-1}{2}}^{\frac{1}{2}} x\sqrt{2x+1} \ dx$.

3

(a) Find $\int_{0}^{\frac{\pi}{4}} 2\cos^2 x \ dx$

2

(b) Two observers P and Q are 1500 metres apart.

The bearing of a balloon B from observer P is 006° T while the angle of elevation from P is 24° .

The bearing of balloon B from observer Q is 357° T while the angle of elevation from Q is 16° .

(i) Show that if the height BC is h metres then

3

$$h = \frac{1500}{\sqrt{\cot^2 24^\circ + \cot^2 16^\circ - 2\cot 24^\circ \cot 16^\circ \cos 9^\circ}}$$

(ii) Hence find h to the nearest metre.

- (

- (c) $P(x) = x^3 + 3x^2 + x 5$.
 - (i) Show that x-1 is a factor of P(x)

- 1

(ii) Hence factorise P(x)

2

(d) A spherical ball is expanding so that its volume is increasing at the constant rate of $10 \, mm^3$ per second.

7

What is the rate of increase of the radius when the surface area is $400 \, mm^2$?

3