# Mathematical Studies Analysis

Notes taken by Runqiu Ye Carnegie Mellon University

Spring 2025

# ${\bf Contents}$

| 1 | Adv  | vanced topics in metric space theory               |    |
|---|------|----------------------------------------------------|----|
|   | 1.1  | Baire category                                     |    |
|   | 1.2  | Open mapping theorem                               | 4  |
|   |      | Hahn-Banach theorem and duality                    |    |
| 2 | Diff | ferential Calculus                                 | 1: |
|   | 2.1  | Inverse and implicit function theorem              | 1: |
| 3 | Mea  | asure and integration                              | 1  |
|   | 3.1  | Introduction to abstrct measure theory             | 1  |
|   |      | 3.1.1 Basic definitions                            |    |
|   |      | 3.1.2 Measures                                     |    |
|   |      | 3.1.3 Outer measures and Carathéodory construction | 1. |
|   |      | 3.1.4 Constructing outer measures                  |    |
|   | 3.2  | Measurable and $\mu$ -measurable functions         |    |
|   |      | Lebesgue-Bochner Integral                          |    |

# 1 Advanced topics in metric space theory

#### 1.1 Baire category

**Definition.** Let X be a metric space.

- 1. We say that  $E \subset X$  is nowhere dense if  $(\overline{E})^{\circ} = \emptyset$ .
- 2. We say that  $E \subset X$  is meager in X if

$$E = \bigcup_{\alpha \in A} E_{\alpha},$$

where A is a countable set and  $E_{\alpha} \subset X$  is nowhere dense for every  $\alpha \in A$ .

**Theorem.** Prove that the following are equivalent for  $E \subset X$ :

- 1. E is nowhere dense
- 2.  $\overline{E}$  is nowhere dense
- 3.  $(\overline{E})^c$  is open and dense in X.

*Proof.* (1)  $\Longrightarrow$  (2). Suppose E is nowhere dense, then  $(\overline{E})^{\circ} = \emptyset$ . Note that the closure of  $\overline{E}$  is just  $\overline{E}$  itself. It follows that  $\overline{E}$  is also nowhere dense.

(2)  $\Longrightarrow$  (3). Suppose  $\overline{E}$  is nowhere dense. Note that  $\overline{E}$  is closed, so  $(\overline{E})^c$  is open. Let  $x \in X$  be arbitrary. Since  $\overline{E}$  is nowhere dense,  $x \notin (\overline{E})^\circ$ . This implies that for arbitrary  $\varepsilon > 0$ , we have  $B(x,\varepsilon) \not\subset \overline{E}$ . This is equivalent to  $B(x,\varepsilon) \cap (\overline{E})^c \neq \emptyset$ . Hence,  $(\overline{E})^c$  is dense in X.

(3)  $\Longrightarrow$  (1). Suppose  $(\overline{E})^c$  is dense in X. Let  $x \in X$  and  $\varepsilon > 0$  be arbitrary. It follows that  $B(x,\varepsilon) \cap (\overline{E})^c \neq \emptyset$ . This is equivalent to  $B(x,\varepsilon) \not\subset \overline{E}$ . Therefore,  $(\overline{E})^\circ = \emptyset$  and E is nowhere dense.

**Theorem** (Baire category theorem). Let X be a complete metric space. Suppose that for each  $n \in \mathbb{N}$ ,  $U_n \subset X$  is open and dense in X. Prove that  $\bigcap_{n=0}^{\infty} U_n$  is dense in X. Hint: use the shrinking closed set property.

*Proof.* Consider any  $x \in X$  and arbitrary  $\varepsilon > 0$ , it suffices to show that  $U_n \cap B(x, \varepsilon) \neq \emptyset$  for each  $n \in \mathbb{N}$ . Now inductively choosing a sequence  $x_i \in X$  and  $\varepsilon_i > 0$  such that for each  $i \in \mathbb{N}$ ,  $B[x_i, \varepsilon_i] \subset U_i$ ,  $B[x_{i+1}, \varepsilon_i] \subset B[x_i, \varepsilon_i] \subset B(x, \varepsilon)$ , and  $\varepsilon_i < 2^{-i}\varepsilon$ .

Since  $U_0$  is dense in X,  $B(x,\varepsilon)\cap U_0\neq\emptyset$ . Note that both  $U_0$  and  $B(x,\varepsilon)$  are open, so we can choose  $x_0\in B(x,\varepsilon)\cap U_0$  and  $\varepsilon_0>0$  so small that  $B[x_0,\varepsilon_0]\subset B(x,\varepsilon)\cap U_0$  and  $\varepsilon_0<\varepsilon$ . Now suppose for  $0\leq i\leq n$ , we have chosen  $x_i\in X$  and  $\varepsilon_i>0$  such that  $B[x_i,\varepsilon_i]\subset U_i$  and  $\varepsilon_i<2^{-i}\varepsilon$  for all  $0\leq i\leq n$ ,  $B[x_{i+1},\varepsilon_{i+1}]\subset B[x_i,\varepsilon_i]$  for all  $0\leq i< n$ . Since  $U_{n+1}$  is dense in X,  $B(x_n,\varepsilon_n)\cap U_{n+1}\neq\emptyset$ . Note also both  $U_{n+1}$  and  $B(x_n,\varepsilon_n)$  are open. Therefore, choose  $x_{n+1}\in B(x_n,\varepsilon_n)\cap U_{n+1}$  and  $\varepsilon_{n+1}>0$  so small that  $B[x_{n+1},\varepsilon_{n+1}]\subset B(x_n,\varepsilon_n)\cap U_{n+1}$  and  $\varepsilon_{n+1}<\frac{\varepsilon_n}{2}$ . It follows that  $B[x_{n+1},\varepsilon_{n+1}]\subset U_{n+1}$  and  $B[x_n,\varepsilon_n]\subset B(x_n,\varepsilon_n)$ . Also,  $\varepsilon<\frac{\varepsilon_n}{2}<2^{-n-1}\varepsilon$ . Now we have successfully constructing the desired sequence.

Since X is complete,  $\bigcap_{n=0}^{\infty} B[x_n, \varepsilon_n] = \{z\}$  for some  $z \in X$ . Note that for each n, we have  $z \in B[x_n, \varepsilon_n] \subset U_n$ . Also,  $z \in B[x_n, \varepsilon_n] \subset B(x, \varepsilon)$ . Therefore,  $z \in U_n \cap B(x, \varepsilon)$  for each  $n \in \mathbb{N}$  and  $\bigcap_{n=0}^{\infty} U_n$  is dense in X.

Remark. An equivalent statement of the theorem is the following:

Let X be a complete metric space and  $\{C_n\}$  a countable collection of closed subsets of X such that  $X = \bigcup_{n \in \mathbb{N}} C_n$ . Then at least one of the  $C_n$  contains an open ball.

## 1.2 Open mapping theorem

#### Linear surjections

**Theorem** (Open mapping theorem). Let X, Y be Banach spaces over a common field and assume that  $T \in \mathcal{L}(X;Y)$ . Prove that the following are equivalent.

- 1. T is surjective.
- 2. There exists  $\delta > 0$  such that  $B_Y(0, \delta) \subset \overline{T(B_X(0, 1))}$ .
- 3. For every  $\varepsilon > 0$  there exists  $\delta > 0$  such that  $B_Y(0, \delta) \subset T(B_X(0, \varepsilon))$ .
- 4. T is an open map: if  $U \subset X$  is open, then  $T(U) \subset Y$  is open.
- 5. There exists  $C \geq 0$  such that for each  $y \in Y$  there exists  $x \in X$  such that Tx = y and

$$||x||_X \le C ||y||_Y.$$

HINT: Prove that  $(1) \implies (2) \implies (3) \implies (4) \implies (5) \implies (1)$ , keeping in mind the following suggestions.

- 1. For (1)  $\implies$  (2): Study the sets  $C_n = \overline{T(B_X(0,n))} \subset Y$  for  $n \geq 1$ .
- 2. For (2)  $\Longrightarrow$  (3): Prove that  $\overline{T(B_X(0,1))} \subset T(B_X(0,3))$  by considering  $y \in \overline{T(B_X(0,1))}$  and inductively constructing  $\{x_j\}_{j=0}^{\infty} \subset X$  such that  $\|x_j\|_X < 2^{-j}$  and  $y \sum_{j=0}^m Tx_j \in B_Y(0, 2^{-m-1}R)$  for all  $m \in \mathbb{N}$ .

Proof. (1)  $\Longrightarrow$  (2). Following the hint, for  $n \ge 1$  let  $C_n = \overline{T(B_X(0,n))}$ . Then each of the  $C_n$  are closed. Since T is surjective,  $Y = \bigcup_{n=1}^{\infty} C_n$ . Suppose for contradiction that each  $C_n$  are nowhere dense. It then follows that  $C_n^c$  are dense in Y. By Baire Category Theorem,  $\bigcap_{n=1}^{\infty} C_n^c$  is dense in Y. However,  $\bigcap_{n=1}^{\infty} C_n^c = (\bigcup_{n=1}^{\infty} C_n)^c = \emptyset$ , a contradiction. Therefore, at least one  $C_n$  is not nowhere dense. That is, there exists some  $n \ge 1$ ,  $\overline{T(B_X(0,n))}$  contains an open ball. However, this is the same set as  $n\overline{T(B_X(0,1))}$ . Therefore,  $\overline{T(B_X(0,1))}$  contains an open ball  $B_Y(y_0, 4r)$  for some  $y_0 \in Y$  and r > 0.

Let  $y_1 = Tx_1$  for some  $x_1 \in B_Y(0,1)$  such that  $||y_0 - y_1|| < 2r$ . It follows that  $B_Y(y_1,2r) \subset B_Y(y_0,4r) \subset T(B_X(0,1))$ . For any  $y \in Y$  such that ||y|| < r, we have

$$y = -\frac{1}{2}y_1 + \frac{1}{2}(2y + y_1) = -T\left(\frac{x_1}{2}\right) + \frac{1}{2}(2y + y_1).$$

However, notice that

$$\frac{1}{2}(2y+y_1) \subset \frac{1}{2}B_Y(y_1,2r) \subset \frac{1}{2}\overline{T(B_X(0,1))} = \overline{T(B_X(0,\frac{1}{2}))}.$$

It follows that

$$y = -T\left(\frac{x_1}{2}\right) + \frac{1}{2}(2y + y_1) \in -T\left(\frac{x_1}{2}\right) + \overline{T(B_X(0, \frac{1}{2}))}.$$

Note that  $-T(\frac{x_1}{2}) \in T(B_X(0,\frac{1}{2}))$ . Therefore,  $y \in \overline{T(B_X(0,1))}$ . Since y is arbitrary with ||y|| < r, we have  $B_Y(0,r) \subset \overline{T(B_X(0,1))}$ .

(2)  $\Longrightarrow$  (3). Following the hint, we first show  $\overline{T(B_X(0,1))} \subset T(B_X(0,3))$ . By assumption, we have  $B_Y(0,R) \subset \overline{T(B_X(0,1))}$  for some R > 0. It follows from homogeneity that for each  $m \in \mathbb{N}$ , we have

$$2^{-m}B_Y(0,R) = B_Y(0,2^{-m}R) \subset 2^{-m}\overline{T(B_X(0,1))} = \overline{T(B_X(0,2^{-m}))}.$$

Let  $y \in \overline{T(B_X(0,1))}$  and pick  $x_0 \in X$  with  $\|x\| < 1$  such that  $\|y - Tx\| < 2^{-1}R$ . Now suppose we have chosen  $x_j$  for  $0 \le j \le m$  such that  $\|x_j\| < 2^{-j}$  and  $y - \sum_{j=0}^m Tx_j \in B_Y(0, 2^{-m-1}R)$  for all  $m \in \mathbb{N}$ . By the inclusion above, we can pick  $x_{m+1} \in X$  with  $\|x_{m+1}\| < 2^{-m-1}$  such that

$$\left\| y - \sum_{j=0}^{m} Tx_j - Tx_{m+1} \right\| = \left\| y - \sum_{j=0}^{m+1} Tx_j \right\| < 2^{-m-2}R.$$

Therefore,  $y - \sum_{j=0}^{m+1} Tx_j \in B_Y(0, 2^{-m-2})R$ . This completes the inductive construction, and we have found a sequence  $\{x_j\}$  such that  $\|x_j\| < 2^{-j}$  and  $y - \sum_{j=0}^m Tx_j \in B_Y(0, 2^{-m-1}R)$  for each  $m \in \mathbb{N}$ . Note that

$$\sum_{j=0}^{\infty} ||x_j|| \le \sum_{j=0}^{\infty} 2^{-j} = 2,$$

so  $\sum_{j=0}^{\infty} x_j$  converges absolutely. Since X is Banach,  $\sum_{j=0}^{\infty} x_j$  converges to some  $x \in X$  with  $||x|| \le 2$ . Also, since  $y - \sum_{j=0}^{m} Tx_j \in B_Y(0, 2^{-m-1}R)$ , taking the limit where m approaches infinity we obtain

$$y = \sum_{j=0}^{\infty} Tx_j = T\left(\sum_{j=0}^{\infty} x_j\right) = Tx.$$

Therefore,  $y \in T(B_X(0,3))$  and thus  $\overline{T(B_X(0,1))} \subset T(B_X(0,3))$ .

Now for every  $\varepsilon > 0$ , we have  $\frac{\varepsilon}{3}\overline{T(B_X(0,1))} \subset \frac{\varepsilon}{3}T(B_X(0,3)) = T(B_X(0,\varepsilon))$ . By assumption, there exists  $\delta > 0$  such that  $B_Y(0,\delta) \subset \overline{T(B_X(0,1))}$ . Therefore,

$$B_Y\left(0,\frac{\delta\varepsilon}{3}\right) = \frac{\varepsilon}{3}B_Y(0,\delta) \subset \frac{\varepsilon}{3}\overline{T(B_X(0,1))} \subset T(B_X(0,\varepsilon)).$$

(3)  $\Longrightarrow$  (4). Let  $U \subset X$  be open and  $y \in T(U)$ . There exists  $x \in U$  such that Tx = y. Since U is open, there exists  $\varepsilon > 0$  such that  $B_X(x,\varepsilon) \subset U$ . By assumption, there exists  $\delta > 0$  such that  $B_Y(0,\delta) \subset T(B_X(0,\varepsilon))$ . It follows that

$$B_Y(y,\delta) = y + B_Y(0,\delta) \subset Tx + T(B_X(0,\varepsilon)) = T(x + B_X(0,\varepsilon)) \subset T(U).$$

Therefore, T(U) is open and T is an open map.

(4)  $\Longrightarrow$  (5). Since T is an open map,  $T(B_X(0,1))$  is open. Also, T(0)=0 so there exists r>0 such that  $B_Y(0,r)\subset T(B_X(0,1))$ . Now let  $y\in Y$ . Then,  $\frac{r}{2\|y\|}y\in B_Y(0,r)$  and there exists  $x\in B_X(0,1)$  such that  $Tx=\frac{r}{2\|y\|}y$ . It follows that

$$T\left(\frac{2\|y\|}{r}x\right) = y,$$

and since  $x \in B_X(0,1)$ ,

$$\left\| \frac{2\|y\|}{r} x \right\| = \frac{2\|y\| \|x\|}{r} < \frac{2}{r} \|y\|.$$

Letting  $C = \frac{2}{r}$  completes the proof.

(5)  $\implies$  (1). Since for each  $y \in Y$  there exists  $x \in X$  such that Tx = y, T is surjective.

#### Linear homeomorphisms, norm equivalence, and closed graphs

**Theorem.** Let X and Y be Banach spaces and suppose that  $T \in \mathcal{L}(X,Y)$  is a bijection. Prove that  $T^{-1} \in \mathcal{L}(Y,X)$ , and in particular T is a linear (and thus bi-Lipschitz) homeomorphism.

*Proof.* Since  $T \in \mathcal{L}(X,Y)$  is a bijection, T is a surjection. It follows that T is an open map. In particular, for any  $U \subset X$  open,  $T(U) = (T^{-1})^{-1}(U)$  is open. Therfore,  $T^{-1}$  is continuous and thus T is a linear homeomorphism.

**Theorem.** Let X be a vector space that is complete when equipped with both of the norms  $\|\cdot\|_1$  and  $\|\cdot\|_2$ . Prove that if there exists a constant  $C_1 > 0$  such that  $\|x\|_2 \le C_1 \|x\|_1$  for all  $x \in X$ , then there exists a constant  $C_0 > 0$  such that  $C_0 \|x\|_1 \le \|x\|_2 \le C_1 \|x\|_1$  for all  $x \in X$ .

*Proof.* Let  $T: X_1 \to X_2$ , where  $X_1$  and  $X_2$  are X equipped with norms  $\|\cdot\|_1$  and  $\|\cdot\|_2$ , respectively, be the identity map. Then for any  $x \in X$  with  $\|x\|_1 = 1$ , we have

$$||Tx||_2 = ||x||_2 \le C_1 ||x||_1 = C_1.$$

Therefore,  $T \in \mathcal{L}(X_1, X_2)$ . T is also surjective. Therefore, there exists a constant  $C \geq 0$  such that each  $||x||_1 \leq C ||x||_2$ . Hence, for each  $x \in X$ 

$$\frac{1}{C} \|x\|_1 \le \|x\|_2 \le C_1 \|x\|_1.$$

Letting  $C_0 = \frac{1}{C}$  completes the proof.

**Theorem.** Let X and Y be Banach spaces and let  $T: X \to Y$  be linear (just the algebraic condition). Prove that the following are equivalent

- 1. T is continuous, i.e.  $T \in \mathcal{L}(X;Y)$ .
- 2. The graph of T,  $\Gamma(T) = \{(x, Tx) : x \in X\} \subset X \times Y$ , is closed in  $X \times Y$ , where  $X \times Y$  is endowed with any of the usual p-norms.

*Proof.* (a)  $\Longrightarrow$  (b). Let  $\{(x_n, Tx_n)\}$  be a convergent sequence in  $\Gamma(T)$ . Since X is Banach,  $x_n \to x$  for some  $x \in X$ . Since  $T \in \mathcal{L}(X;Y)$ , we have

$$\lim_{n \to \infty} Tx_n = T\left(\lim_{n \to \infty} x_n\right) = Tx.$$

Therefore,  $(x_n, Tx_n) \to (x, Tx) \in \Gamma(T)$ , and thus  $\Gamma(T)$  is closed.

(b)  $\Longrightarrow$  (a). Let  $\pi_1: \Gamma(T) \to X$  and  $\pi_2: \Gamma(T) \to Y$  by  $\pi_1(x, Tx) = x$  and  $\pi_2(x, Tx) = Tx$ . Since  $\Gamma(T)$  is a closed in Banach space Y,  $\Gamma(T)$  is Banach space. It is clear that both  $\pi_1$  and  $\pi_2$  are bounded linear maps. Moreover,  $\pi_1$  is a bijection. It follows that  $S = \pi_1^{-1}$  is a bounded linear map. Therefore,  $T = \pi_2 \circ S$  is a bounded linear map.

#### Linear injections with closed range

**Theorem.** Let X and Y be Banach spaces and  $T \in \mathcal{L}(X,Y)$ . Prove the following are equivalent.

- 1. T is injective and range(T) is closed.
- 2.  $T: X \to \operatorname{range}(T)$  is a linear homeomorphism.
- 3. There exists  $C \ge 0$  such that  $||x||_X \le C ||Tx||_Y$  for all  $x \in X$ .

HINT: Prove that  $(1) \implies (2) \implies (3) \implies (1)$ .

*Proof.* (1)  $\Longrightarrow$  (2). If T is injective and range(T) is closed, then  $\Gamma(T) = \{(x, Tx) : x \in X\}$  is closed in  $X \times Y$ . Therefore,  $T : X \to \text{range}(T)$  is a bounded linear map. Since T is injective, this map is actually bijective from X to range(T). Therefore, T is a linear homeomorphism.

- (2)  $\Longrightarrow$  (3). Since T is a bijective bounded linear map, from X to range(T). There exists a contant  $C \ge 0$  such that for each  $y \in \text{range}(T)$  there exists a unique  $x \in X$  such that Tx = y and  $||x|| \le C ||y|| = C ||Tx||$ . Since T is a bijection,  $||x|| \le C ||Tx||$  for all  $x \in X$ .
- (3)  $\Longrightarrow$  (1). Let  $x \in X$  be such that Tx = 0. It follows that  $||x|| \le C ||Tx|| = 0$ . Therefore, x = 0 and T is injective. To show that range(T) is closed, consider a convergent sequence  $\{y_n\} \subset \text{range}(T)$  with  $y_n = Tx_n$ . Since for any  $n, m \in \mathbb{N}$  we have

$$||x_n - x_m|| \le C ||T(x_n - x_m)|| = C ||y_n - y_m||,$$

 $\{x_n\}$  is Cauchy. Since X is Banach,  $x_n \to x$  for some  $x \in X$ . Therefore, for all  $n \in \mathbb{N}$  we have

$$||y_n - Tx|| = ||T(x_n - x)|| \le ||T|| ||x_n - x||,$$

and  $y_n \to Tx$ . Hence, range(T) is closed and the proof is complete.

**Theorem.** Let X and Y be Banach spaces over a common field. Then, the following subsets of  $\mathcal{L}(X;Y)$  are open:

- 1.  $\{T \in \mathcal{L}(X;Y) : T \text{ is surjective}\},\$
- 2.  $\{T \in \mathcal{L}(X;Y) : T \text{ is injective with closed range}\},\$
- 3.  $\mathcal{H}(X;Y) = \{T \in \mathcal{L}(X;Y) : T \text{ is a homeomorphism}\}.$

*Proof.* 1. Let  $T \in \mathcal{L}(X;Y)$  be surjective. By open mapping theorem, there is  $\delta > 0$  such that  $B_Y(0,\delta) \subset TB_X(0,1)$ . By homogeneity we have  $B_Y(0,r) \subset TB_X(0,\alpha r)$  for all r > 0 where  $\alpha = \delta^{-1}$ . Now let  $S \in \mathcal{L}(X;Y)$  be such that  $||T - S|| < \beta < (2\alpha)^{-1}$ . Claim S is surjective.

Let  $y \in Y$ , inductively construct sequences  $\{x_n\}$  and  $\{y_n\}$ . First let  $y_0 = y$ . Then,  $||y_0|| \in B(0, 2 ||y_0||)$ . Select  $x_0 \in X$  be such that  $Tx_0 = y_0$  and  $||x_0|| \le 2\alpha ||y_0||$ . Suppose we have selected  $y_i$ ,  $x_i$  for  $0 \le i \le n$ . Set  $y_{n+1} = y_n - Sx_n$  and select  $x_{n+1}$  be such that  $Tx_{n+1} = y_{n+1}$  and  $||x_{n+1}|| \le 2\alpha ||y_{n+1}||$ . Then, we have

$$||y_{n+1}|| = ||Tx_n - Sx_n|| \le ||T - S|| \, ||x_n|| < 2\alpha\beta \, ||y_n||$$

and

$$||x_{n+1}|| = 2\alpha ||y_{n+1}|| \le 2\alpha ||T - S|| ||x_n|| < 2\alpha\beta ||x_n||.$$

Note that  $2\alpha\beta < 1$  and X is Banach, define

$$x = \sum_{n=0}^{\infty} x_n = \lim_{N \to \infty} \sum_{n=0}^{N} x_n.$$

Also note that  $\lim_{n\to\infty} y_n = 0$ . It follows that

$$Sx = \sum_{n=0}^{\infty} Sx_n = \sum_{n=0}^{\infty} (y_n - y_{n+1}) = y_0 - \lim_{n \to \infty} y_{n+1} = y.$$

Therefore S is surjective and the set of surjective bounded linear maps are open.

2. Suppose  $T \in \mathcal{L}(X;Y)$  is injective with closed range. Then, closed range theorem gives C > 0 such that  $||x|| \leq C ||Tx||$  for all  $x \in X$ . Now supose  $S \in \mathcal{L}(X;Y)$  is such that  $||T - S|| < (2C)^{-1}$ . Claim that S is also injective with closed range. Indeed,

$$||x|| \le C ||Tx|| \le C ||Sx|| + C ||(T - S)x||$$
  
  $\le C ||Sx|| + \frac{1}{2} ||x||.$ 

This shows that  $||x|| \le 2C ||Sx||$  for all  $x \in X$ . By closed range theorem, S is injective with closed range. This implies that the set of injective bounded linear operator with closed range is open.

3. This directly follows from

$$\mathcal{H}(X;Y) = \{T \in \mathcal{L}(X;Y) : T \text{ is surjective}\} \cap \{T \in \mathcal{L}(X;Y) : T \text{ is injective with closed range}\}.$$

**Theorem.** Let X and Y be Banach spaces over a common field. Then the following holds.

1. The sets

$$\mathcal{L}_R(X;Y) = \{T \in \mathcal{L}(X;Y) : \text{there exists } S \in \mathcal{L}(Y;X) \text{ such that } ST = I_X\}$$

and

$$\mathcal{L}_L(X;Y) = \{T \in \mathcal{L}(X;Y) : \text{there exists } S \in \mathcal{L}(Y;X) \text{ such that } TS = I_Y\}$$

are open.

2. The following inclusion holds:

$$\mathcal{L}_L(X;Y) \subset \{T \in \mathcal{L}(X;Y) : T \text{ is surjective}\}$$

and

$$\mathcal{L}_R(X;Y) \subset \{T \in \mathcal{L}(X;Y) : T \text{ is injective with closed range}\}.$$

3. The sets  $\mathcal{L}_L(X;Y) \setminus \mathcal{L}_R(X;Y)$  and  $\mathcal{L}_R(X;Y) \setminus \mathcal{L}_L(X;Y)$  are open.

Proof. 1. Let  $T_0 \in \mathcal{L}_R$  and  $S_0 \in \mathcal{L}(Y;X)$  be such that  $T_0S_0 = I_Y$ . Note that  $I_X \in \mathcal{H}(X)$  and when  $\|P\| < 1$  for  $P \in \mathcal{L}(X)$ , we have  $I_X + P \in \mathcal{H}(X)$ . Suppose now  $T \in \mathcal{L}(X;Y)$  and  $\|T\| < \|S_0\|^{-1}$ . It follows that  $I_X + S_0T \in \mathcal{H}(X)$ . For such T, we then have

$$T_0 + T = T_0(I_X + S_0T).$$

Also,

$$(T_0 + T)(I_X + S_0T)^{-1}S_0 = T_0(I_X + S_0T)(I_X + S_0T)^{-1}S_0 = T_0S_0 = I_Y.$$

Therefore,  $T_0 + T \in \mathcal{L}_R$  for  $T \in B(T_0, ||S_0||^{-1})$  and  $\mathcal{L}_R$  is open.

Now let  $T_0 \in \mathcal{L}_L$  and  $S_0 \in \mathcal{L}(Y;X)$  be such that  $S_0T_0 = I_X$ . Again, for  $T \in \mathcal{L}(X;Y)$  with  $||T|| < ||S_0||^{-1}$ , we have

$$T_0 + T = (I_X + TS_0)T_0.$$

and

$$S_0(I_X + TS_0)^{-1}(T_0 + T) = I_X.$$

Therefore,  $\mathcal{L}_R$  is also open.

2. Let  $T \in \mathcal{L}_R$  and  $S \in \mathcal{L}(Y;X)$  be such that  $TS = I_Y$ . Then for any  $y \in Y$  let x = Sy. It follows that Tx = TSy = y. Also,  $||x|| \le ||S|| \, ||y||$  so the 4th item in open mapping theorem guarantees that T is surjective. Hence,  $\mathcal{L}_L \subset \{T \in \mathcal{L}(X;Y) : T \text{ is surjective}\}$ .

Now let  $T \in \mathcal{L}_L$  and  $S \in \mathcal{L}(Y; X)$  such that  $ST = I_X$ . Now for any  $x \in X$ , we have  $||x|| = ||STx|| \le ||S|| ||Tx||$ . Then the closed range theorem guarantees that T is injective with closed range. Hence,  $\mathcal{L}_R \subset \{T \in \mathcal{L}_R(X; Y) : T \text{ is injective with closed range}\}.$ 

3. \*\*\* TO-DO \*\*\*

#### 1.3 Hahn-Banach theorem and duality

**Theorem** (Hahn-Banach theorem in  $\mathbb{R}$ ). Let X be a real vector space and suppose  $p: X \to \mathbb{R}$  is such that

$$p(tx + (1-t)y) \le tp(x) + (1-t)p(y)$$

for all  $t \in [0,1]$  and  $x, y \in X$ .

Suppose Y subspace of X and  $l: Y \to \mathbb{R}$  is a linear map such that  $l \leq p$  on Y. Then there exists linear map  $L: X \to \mathbb{R}$  such that  $L \leq p$  on X and L = l on Y.

*Proof.* Let

$$P = \{(Z, \lambda) : Y \subset Z \subset X, \lambda \text{ linear functional on } Z, \lambda \leq p \text{ on } Z \text{ and } l = \lambda \text{ on } Y\}$$

Define partial order  $(Z_1, \lambda_1) \leq (Z_2, \lambda_2)$  if and only if  $Z_1 \subset Z_2$  and  $\lambda_1 = \lambda_2$  on  $Z_1$ . It is easy to verify that this is a partial order. Towards using Zorn's Lemma, let  $C \subset P$  be a chain and define

$$U = \bigcup_{(Z,\lambda) \in C} Z, \qquad \Lambda = \bigcup_{(Z,\lambda) \in C} \lambda.$$

It is easy to verify that  $(U, \Lambda)$  is an upper bound for the chain. By Zorn's Lemma, P has a maximal element (M, L). It remains to show that M = X.

Suppose for contradiction that  $M \neq X$ . Pick  $x_0 \in X \setminus M$ . For any  $x, y \in M$ , we have

$$\begin{split} \beta L(x) + \alpha L(y) &= L(\beta x + \alpha y) \\ &= \frac{1}{\alpha + \beta} L\left(\frac{\beta}{\alpha + \beta} x + \frac{\alpha}{\alpha + \beta} y\right) \\ &\leq (\alpha + \beta) p\left(\frac{\beta}{\alpha + \beta} x + \frac{\alpha}{\alpha + \beta} y\right) \\ &= (\alpha + \beta) p\left(\frac{\beta}{\alpha + \beta} (x - \alpha x_0) + \frac{\alpha}{\alpha + \beta} (y + \beta x_0)\right) \\ &\leq \beta p(x - \alpha x_0) + \alpha p(y + \beta x_0). \end{split}$$

This implies that

$$\sup_{\substack{x \in M \\ \alpha > 0}} \frac{1}{\alpha} \left[ L(x) - p(x - \alpha x_0) \right] \le \inf_{\substack{y \in M \\ \beta > 0}} \frac{1}{\beta} \left[ p(y + \beta x_0) - L(y) \right].$$

Note that  $-p(-x_0) \le \text{LHS}$  and  $\text{RHS} \le p(x_0)$ , so  $\text{LHS}, \text{RHS} < \infty$ . Now pick  $v \in \mathbb{R}$  such that  $\text{LHS} \le v \le \text{RHS}$ . For  $x \in M$  and  $0 < t \in \mathbb{R}$  we have

$$L(x) - tv < p(x - tv_0),$$
  $L(x) + tv < p(x + tv_0).$ 

Now define  $\widehat{L}: M \oplus \mathbb{R}x_0 \to \mathbb{R}$  by  $\widehat{L}(x + \alpha x_0) = L(x) + \alpha v$ . It follows that  $(M \oplus \mathbb{R}x_0, \widehat{L}) \in P$ . However,  $(M, L) \prec (M \oplus \mathbb{R}, \widehat{L})$ , a contradiction. Therefore, M = X and the proof is complete.

**Theorem** (Hahn-Banach theorem in  $\mathbb{C}$ ). Let X be complex vector space and suppose  $p: X \to \mathbb{R}$  is such that

$$p(\alpha x + \beta y) \le |\alpha| p(x) + |\beta| p(y)$$

for all  $\alpha, \beta \in \mathbb{C}$  such that  $|\alpha| + |\beta| = 1$  and  $x, y \in X$ .

Suppose Y subspace of X and  $l: Y \to \mathbb{C}$  is a linear map such that  $|l| \leq p$  on Y. Then there exsits linear map  $L: X \to \mathbb{C}$  such that  $|L| \leq p$  on X and L = l on Y.

*Proof.* Define  $\lambda: Y \to \mathbb{R}$  by  $\lambda(x) = \text{Re}(l(x))$ . Note that

$$\lambda(ix) = \operatorname{Re}(il(x)) = -\operatorname{Im}(l(x)).$$

This implies that  $l(x) = \lambda(x) - i\lambda(ix)$ . Now treat X and Y as vector space over  $\mathbb{R}$  and apply Hahn-Banach theorem in  $\mathbb{R}$  to extend  $\lambda$  to  $\Lambda: X \to \mathbb{R}$  that agrees with  $\lambda$  on Y.

Define  $L: X \to \mathbb{C}$  by  $L(x) = \Lambda(x) - i\Lambda(ix)$ . It remains to show that  $|L| \leq p$ . For  $x \in X$ , write  $L(x) = |L(x)| e^{i\theta}$  for some  $\theta \in \mathbb{R}$ . It follows that

$$\begin{split} |L(x)| &= L(x)e^{-i\theta} \\ &= \Lambda(e^{-i\theta}) - i\Lambda(ie^{-i\theta}x) \\ &= \Lambda(e^{-i\theta}x) \\ &\leq p(e^{-i\theta x}) \\ &\leq \left|e^{-i\theta}\right|p(x) \\ &= p(x), \end{split}$$

as desired.

**Theorem** (Hahn-Banach theorem for bounded linear functionals). Let X be a normed vector space over  $\mathbb{F}$  and Y a subspace of X. If  $\lambda \in Y^*$  then there exists  $\Lambda \in X^*$  such that  $\Lambda = \lambda$  on Y and the operator norm  $\|\lambda\|_{Y^*} = \|\Lambda\|_{X^*}$ .

*Proof.* Consider  $p: X \to \mathbb{R}$  where  $p(x) = \|\lambda\|_{Y^*} \|x\|$ . Apply Hahn-Banach theorem.

Next we show some useful implications of Hahn-Banach theorem.

**Theorem.** Let X be a normed vector space and fix  $x \in X$ . Then the following holds:

1. There exists  $\lambda \in X^*$  such that  $\|\lambda\| = \|x\|$  and

$$\lambda(x) = \|\lambda\| \|x\| = \|x\|^2$$
.

2. We have

$$||x|| = \max_{\substack{w \in X^* \\ ||w|| = 1}} |w(x)|.$$

3. x = 0 if and only if w(x) = 0 for all  $w \in X^*$ .

*Proof.* 1. Let  $Y = \mathbb{F}x$  and define  $\lambda \in Y^*$  by  $\lambda(ax) = a \|x\|^2$ . Apply Hahn-Banach theorem.

- 2. Suppose  $x \neq 0$ . Define  $w = \frac{\lambda}{\|x\|}$  then it follows that  $|w(x)| = \|x\|$ .
- 3. Follows directly from (2).

**Proposition.** Let X be normed vector space. Then the mapping  $\langle \cdot, \cdot \rangle : X^* \times X \to \mathbb{F}$  by  $(w, x) \mapsto w(x)$  is a bilinear map. That is,  $\langle \cdot, \cdot \rangle \in \mathcal{L}(X^*, X; \mathbb{F})$ . Moreover, if  $X \neq \{0\}$ , then  $\|\langle \cdot, \cdot \rangle\| = 1$ .

*Proof.* It is easy to see that  $\langle \cdot, \cdot \rangle$  is bilinear. For boundedness,

$$|\langle w, x \rangle| = |w(x)| \le ||w|| \, ||x||.$$

Hence,  $\|\langle \cdot, \cdot \rangle\| \leq 1$ . Meanwhile, pick some  $x \in X$  with  $\|x\| = 1$ . It follows that

$$1 = ||x|| = \max_{\substack{w \in X^* \\ ||w|| = 1}} |w(x)| \le ||\langle \cdot, \cdot \rangle||.$$

Therefore,  $\|\langle \cdot, \cdot \rangle\| = 1$ .

**Definition** (Norming set). Let X be normed vector space and  $E \subset X$ ,  $W \subset X^*$ . Say W is a **norming** set for E if

$$||x|| = \sup_{\substack{w \in W \\ ||w|| = 1}} |\langle w, x \rangle|$$

for all  $x \in E$ .

**Proposition.** Let X be normed vector space and  $S \subset X$  be a separable set. Let W be a norming set for S. Then, there exists  $\{w_n\}_{n=0}^{\infty} \subset W$  such that  $||w_n|| = 1$ , and the sequence is norming for S. That is,

$$||x|| = \sup_{n \in \mathbb{N}} |\langle w_n, x \rangle|.$$

*Proof.* Let  $\{v_n\}_{n=0}^{\infty} \subset S$  be dense. For any  $n, k \in \mathbb{N}$ , choose  $w_{n,k} \in W$  with  $||w_{n,k}|| = 1$  such that

$$(1-2^{-k})\|v_n\| \le |w_{n,k},v_n|$$
.

Let  $x \in S$  and  $0 < \varepsilon < 1$  be arbitrary. Pick  $v_n \in S$  such that  $||v_n - x|| < \varepsilon$  and pick  $j \in \mathbb{N}$  such that  $2^{-j} < \varepsilon$ . Then,

$$(1 - \varepsilon) ||x|| \le (1 - 2^{-j}) ||x||$$

$$\le (1 - 2^{-j}) ||v_n|| + (1 - 2^{-j}) ||v_n - x||$$

$$\le |\langle w_{n,j}, v_j \rangle| + \varepsilon$$

$$\le |\langle w_{n,j}, x \rangle| + |\langle w_{n,j}, x - v_n \rangle| + \varepsilon$$

$$\le |\langle w_{n,j}, x \rangle| + 2\varepsilon.$$

This shows that  $\{w_{n,k}\}_{n,k=0}^{\infty}$  is a norming sequence.

**Theorem.** Let X be normed vector space and define  $J: X \to X^{**}$  by  $\langle Jx, w \rangle = \langle w, x \rangle = w(x)$ . Then the following holds:

- 1.  $J \in \mathcal{L}(X, X^{**})$ .
- $2. \ J$  is an isometric embedding. In particular, it is injective.
- 3. range(J)  $\subset X^{**}$  is a norming set for  $X^*$ .
- 4. X is Banach if and only if range(J) is closed.

*Proof.* Note that we have

$$\begin{split} \|Jx\|_{X^{**}} &= \sup \left\{ |\langle Jx, w \rangle| : w \in X^* \text{ and } \|w\| \leq 1 \right\} \\ &= \sup \left\{ |\langle w, x \rangle| : w \in X^* \text{ and } \|w\| \leq 1 \right\} \\ &= \|x\| \,, \end{split}$$

where the last step is by a previous theorem that shows the existence of  $w \in X^*$  such that ||w|| = 1 and |w(x)| = ||x||. This implies (1) and (2). Now we know X is isometrically isomorphic to range(J)  $\subset X^{**}$ . Therefore, X is Banach if and only if range(J) is Banach. However,  $X^{**} = \mathcal{L}(X^*, \mathbb{F})$  is Banach, so range(J) is Banach if and only if range(J) is closed. This implies (4).

To show (3), note that we have

$$\begin{split} \|w\|_{X^*} &= \sup \left\{ |\langle w, x \rangle| : x \in X \text{ and } \|x\| \leq 1 \right\} \\ &= \sup \left\{ |\langle Jx, w \rangle| : x \in X \text{ and } \|x\| \leq 1 \right\} \\ &= \sup \left\{ |\langle v, w \rangle| : v \in \operatorname{range}(J) \text{ and } \|v\|_{X^{**}} \leq 1 \right\}. \end{split}$$

This shows (3), completing the proof.

# 2 Differential Calculus

#### 2.1 Inverse and implicit function theorem

**Theorem** (Local injectivity theorem). Let X and Y be Banach spaces,  $z \in U \subset X$  with U open. Let  $f: U \to Y$  differentiable with Df continuous at z. Suppose  $Df(z) \in \mathcal{L}(X;Y)$  injective with closed range. Then for any  $0 < \varepsilon < 1$ , there exists r > 0 such that

- 1.  $B[z,r] \subset U$ .
- 2. Df(x) injective with closed range for all  $x \in B[z, r]$ .
- 3. If  $x, y \in B(z, r)$ , then

$$(1-\varepsilon) \|Df(z)(x-y)\| \le \|f(x)-f(y)\| \le (1+\varepsilon) \|Df(z)(x-y)\|.$$

4. The restriction  $f: B(z,r) \to f(B(z,r))$  is bi-Lipschitz homeomorphism.

*Proof.* Since Df(z) injective with closed range, there exists  $\theta > 0$  such that

$$\theta \|h\| \le \|Df(z)h\|$$

for all  $h \in X$ . Since the set of bounded linear operator that is injective with closed range is open, there exists  $\delta > 0$  such that  $||Df(z) - T|| < \delta$  implies T is injective with closed range.

Now let  $0 < \varepsilon < 1$ . Note that Df is continuous at z, so we can select r > 0 so small that  $B[z, r] \subset U$ , and  $x \in B[z, r]$  implies

$$||Df(x) - Df(z)|| < \min \{\delta, \theta \varepsilon\}.$$

In particular, Df(x) is injective with closed range for all  $x \in B[z, r]$ . By the mean value theorem, for any  $x, y \in B(x, r)$ 

$$||f(x) - f(y) - Df(z)(x - y)|| \le \sup_{w \in B(z,r)} ||Df(w) - Df(z)|| ||x - y||$$

$$\le \theta \varepsilon ||x - y||$$

$$< \varepsilon ||Df(z)(x - y)||.$$

It follows that

$$(1-\varepsilon) \|Df(z)(x-y)\| \le \|f(x) - f(y)\| \le (1+\varepsilon) \|Df(z)(x-y)\|,$$

as desired.

This also implies that

$$(1 - \varepsilon)\theta \|x - y\| \le \|f(x) - f(y)\| \le (1 + \varepsilon) \|Df(z)\| \|x - y\|,$$

so the restriction of f on B(z,r) is a bi-Lipschitz homeomorphism.

**Theorem** (Local surjectivity theorem). Let X and Y be Banach spaces,  $z \in U \subset X$  with U open. Let  $f: U \to Y$  differentiable with Df continuous at z. Suppose  $Df(z) \in \mathcal{L}(X;Y)$  surjective. Then there exists  $r_0, \gamma > 0$  such that

- 1.  $B_X[z,r_0] \subset U$ .
- 2. Df(x) surjective for all  $x \in B_X[z, r_0]$ .
- 3.  $B_Y[f(z), \gamma r] \subset f(B_X[z, r])$  for all  $0 \le r \le r_0$ .

Proof. \*\*\* TO-DO \*\*\*

**Definition** (diffeomorphism). Let X and Y be normed vector spaces and suppose that  $\emptyset \neq U \subset X$  is open. Let  $f: U \to Y$ . For  $k \geq 1$ , say f is a  $C^k$  diffeomorphism if

- 1.  $f: U \to f(U)$  homeomorphism with  $f(U) \subset Y$  open.
- 2.  $f \in C^k(U;Y)$ .
- 3.  $f^{-1} \in C^k(f(U); X)$ .

If f is a  $C^k$  diffeomorphism for all  $k \ge 1$ , say f is a smooth diffeomorphism.

**Theorem** (Inverse function theorem). Let X and Y be Banach spaces,  $U \subset X$  open and  $x_0 \in U$ . Suppose  $f: U \to Y$  differentiable, Df continuous at  $x_0$ ,  $Df(x_0)$  linear homeomorphism. Then there exists bounded and open  $V \subset U$  with  $x_0 \in V$  such that

1.  $f: V \to f(V)$  is bi-Lipschitz homeomorphism, Df(x) linear homeomorphism for all  $x \in V$ ,  $f(V) \subset Y$  bounded and open,  $f^{-1}: f(V) \to V$  differentiable with

$$Df^{-1}(y) = [Df(f^{-1}(y))]^{-1}$$

for all  $y \in f(V)$  and  $Df^{-1}$  is continuous at  $f(x_0)$ . Also, there exists  $C_0$ ,  $C_1 > 0$  such that

$$C_0 \le ||Df(x)|| \le C_1$$

for all  $x \in V$ , and

$$\frac{1}{C_1} \le ||Df^{-1}(y)|| \le \frac{1}{C_0}$$

for all  $y \in f(V)$ .

- 2. If  $f \in C^k(U;Y)$  for some  $1 \le k \le \infty$ , then  $f^{-1} \in C^k(f(V);X)$ . In particular, f is a local  $C^k$  diffeomorphism at  $x_0$ .
- 3. If  $f \in C^k(U;Y)$  for  $1 \le k \in \mathbb{N}$ , then there exists open  $V_k \subset V$  such that  $x_0 \in V_k$ ,  $f \in C_b^k(V_k;Y)$  and  $f^{-1} \in C_b^k(f(V_k);X)$ .

**Theorem** (Implicit function theorem). Let X and Y be Banach spaces,  $U \subset X \times Y$  be open with  $(x_0, y_0) \in U$ , and suppose  $f: U \to Z$  is differentiable in U with Df continuous at  $(x_0, y_0)$ . Further suppose  $z_0 = f(x_0, y_0)$  and  $D_2 f(x_0, y_0) \in \mathcal{L}(Y; Z)$  is an isomorphism. Then there exists open sets  $x_0 \in V \subset X$ ,  $z_0 \in W \subset Z$ ,  $y_0 \in S \subset Y$ , and  $g \in C_b^{0,1}(V \times W; Y)$  such that the following holds:

- 1.  $g(x_0, z_0) = y_0$  and  $(x, g(x, z)) \in V \times S \subset U$  for all  $(x, z) \in V \times W$ . Also, g is differentiable on  $V \times W$  and Dg continuous at  $(x_0, z_0)$ .
- 2. f(x, g(x, z)) = z for all  $(x, z) \in V \times W$ . Moreover, if  $(x, y) \in V \times S$  such that f(x, y) = z for some  $z \in W$ , then y = g(x, z).
- 3.  $D_2 f(x, g(x, z))$  is an isomorphism for all  $(x, z) \in V \times W$ , and

$$D_1 g(x,z) = -\left[D_2 f(x,g(x,z))\right]^{-1} D_1 f(x,g(x,z)),$$
  
$$D_2 g(x,z) = \left[D_2 f(x,g(x,z))\right]^{-1}.$$

4. If  $f \in C^k$  then  $g \in C^k$  too for  $1 \le k \le \infty$ . If k finite and  $f \in C_b^k$  then the sets can be picked such that  $g \in C_b^k$ .

# 3 Measure and integration

# 3.1 Introduction to abstrct measure theory

#### 3.1.1 Basic definitions

**Definition.** Let X be a set.

- 1. An **algebra** on X is  $\mathfrak{A} \subset \mathcal{P}(X)$  such that
  - (a)  $\emptyset \in \mathfrak{A}$ .
  - (b)  $E \in \mathfrak{A}$  implies  $E^c \in \mathfrak{A}$ .
  - (c)  $E, F \in \mathfrak{A}$  implies  $E \cup F \in \mathfrak{A}$ .
- 2. A  $\sigma$ -algebra is an algebra  $\mathfrak{M} \subset \mathcal{P}(X)$  such that if  $E_k \in \mathfrak{M}$  for all  $k \in \mathbb{N}$ , then  $\bigcup_{k=0}^{\infty} E_k \in \mathfrak{M}$ .
- 3. A pair  $(X,\mathfrak{M})$  with  $\mathfrak{M}$  a  $\sigma$ -algebra on X is called a **measurable space**.

**Theorem.** Let X be a set.

- 1. Suppose  $A \neq \emptyset$  is a set and  $\mathfrak{M}_{\alpha}$  is  $\sigma$ -algebra for each  $\alpha \in A$ , then  $\mathfrak{M} = \bigcap_{\alpha \in A} \mathfrak{M}_{\alpha}$  is a  $\sigma$ -algebra on X.
- 2. Suppose  $F \subset \mathcal{P}(X)$ , there is unique smallest  $\sigma$ -algebra  $\mathfrak{M}$  on X such that  $F \subset \mathfrak{M}$ . Write  $\mathfrak{M} = \sigma(F)$  and call this the  $\sigma$ -algebra generated by F.

**Theorem.** Let X and Y be sets and  $f: X \to Y$ .

1. Suppose  $\mathfrak{M}$  is a  $\sigma$ -algebra on X and set

$$\mathfrak{N} = \left\{ E \subset Y : f^{-1}(E) \in \mathfrak{M} \right\}.$$

Then,  $\mathfrak{N}$  is a  $\sigma$ -algebra on Y. Call this the **push-forward** of  $\mathfrak{M}$  by f.

2. Suppose  $\mathfrak{N}$  is a  $\sigma$ -algebra on Y and set

$$\mathfrak{M} = \{ f^{-1}(E) : E \in \mathfrak{N} \}.$$

Then,  $\mathfrak{M}$  is a  $\sigma$ -algebra on X. Call this the **pull-back** of  $\mathfrak{N}$  by f.

**Definition.** Let  $A \neq \emptyset$  be a set.

1. Let Y be a set and  $X_{\alpha}$  be sets with  $\sigma$ -algebra  $\mathfrak{M}_{\alpha}$  for all  $\alpha \in A$ . Suppose  $g_{\alpha}: X_{\alpha} \to Y$  for all  $\alpha \in A$ . Define

$$\sigma\left(\left\{E\subset Y:g_\alpha^{-1}(E)\in\mathfrak{M}_\alpha\text{ for all }\alpha\in A\right\}\right)$$

to be the **push-forward** of  $\{g_{\alpha}\}_{{\alpha}\in A}$ .

2. Let X be a set and  $Y_{\alpha}$  be sets with  $\sigma$ -algebra  $\mathfrak{N}_{\alpha}$  for all  $\alpha \in A$ . Suppose  $f_{\alpha}: X \to Y_{\alpha}$  for all  $\alpha \in A$ . Define

$$\sigma\left(\left\{f_{\alpha}^{-1}(E): E \in \mathfrak{N}_{\alpha} \text{ for some } \alpha \in A\right\}\right)$$

to be the **pull-back** of  $\{f_{\alpha}\}_{{\alpha}\in A}$ .

**Definition.** Let  $A \neq \emptyset$  be a set and  $X_{\alpha}$  be sets with  $\sigma$ -algebra  $\mathfrak{M}_{\alpha}$  for all  $\alpha \in A$ . Then on the set  $X = \prod_{\alpha} X_{\alpha}$  we define the **product**  $\sigma$ -algebra  $\bigoplus_{\alpha} \mathfrak{M}_{\alpha}$  to be the pull-back of projection maps  $\pi_{\alpha}: X \to X_{\alpha}$ .

\*\*\* TO-DO \*\*\*

#### 3.1.2 Measures

\*\*\* TO-DO \*\*\*

#### 3.1.3 Outer measures and Carathéodory construction

**Definition.** Let X be a set with outer measure  $\mu^*$ . Say a set  $E \subset X$  is measurable with respect to  $\mu^*$  if

$$\mu^*(A) = \mu^*(A \cap E) + \mu^*(A \cap E^c)$$

for all  $A \subset X$ .

**Theorem** (Carathéodory construction). Let X be a set with outer measure  $\mu^*$ , the following holds.

- 1. The collection  $\mathfrak{M} = \{E \subset X : E \text{ measurable}\}\$ is a  $\sigma$ -algebra.
- 2. If  $E \subset X$  is such that  $\mu^*(E) = 0$ , then  $E \in \mathfrak{M}$ .
- 3. The restriction  $\mu = \mu^*|_{\mathfrak{M}}$  is a measure, and  $(X, \mathfrak{M}, \mu)$  is a complete measure space.

**Definition.** Let  $\mu^*$  be an outer measure on X. Say  $\mu^*$  is cover-regular if for any  $A \subset X$ , there exists  $E \in \mathfrak{M}$  such that  $A \subset E$  and  $\mu^*(A) = \mu(E)$ .

#### 3.1.4 Constructing outer measures

**Definition.** Let X be a set. A gauge on X is a pair  $(\mathcal{E}, \gamma)$  where  $\mathcal{E} \subset \mathcal{P}(X)$  is such that  $\emptyset \in \mathcal{E}$  and  $\gamma : \mathcal{E} \to [0, \infty]$  is such that  $\gamma(\emptyset) = 0$ .

**Theorem.** Let X be a set and  $(\mathcal{E}, \gamma)$  be a gauge on X. Define  $\mu^* : \mathcal{P}(X) \to [0, \infty]$  via

$$\mu^*(E) = \inf \left\{ \sum_{n=0}^{\infty} \gamma(E_n) : E \subset \bigcup_{n=0}^{\infty} E_n \text{ and } \{E_n\}_{n=0}^{\infty} \subset \mathcal{E} \right\}.$$

Then  $\mu^*$  is an outer measure on X and hence generates  $(X, \mathfrak{M}, \mu)$ , a complete measure space thorugh Carathéodory construction.

**Theorem.** Let (X,d) be a metric space with gauge  $(\mathcal{E},\gamma)$  and outer measures  $\mu_{\delta}^*: \mathcal{P}(X) \to [0,\infty]$  produced by  $(\mathcal{E}_{\delta},\gamma_{\delta})$  for  $\delta > 0$ . Define  $\mu_{d}^*: P(X) \to [0,\infty]$  by

$$\mu_d^*(A) = \sup_{\delta > 0} \mu_d^*(A).$$

Then  $\mu_d^*$  is a metric outer measure. Moreover,  $\mu_d^*(A) = \lim_{\delta \to 0} \mu_\delta^*(A)$  for  $A \subset X$ .

**Lemma.** Let X be a set with gauge  $(\mathcal{E}, \gamma)$  that covers X. Let  $A \subset X$ , then the following holds:

- 1. Let  $\mu^*$  be the outer measure generated by  $(\mathcal{E}, \gamma)$ . Then there exists collection  $\{E_{m,n}\}_{m,n=0}^{\infty} \subset \mathcal{E}$  such that  $E = \bigcap_{m=0}^{\infty} \bigcup_{n=0}^{\infty} E_{m,n}$  such that  $A \subset E$  and  $\mu^*(A) = \mu^*(E)$ .
- 2. Suppose (X,d) is metric space and the gauge is fine. Let  $\mu_d^*$  be the metric outer measure. Then there exists collection  $\{E_{m,n}\}_{m,n=0}^{\infty} \subset \mathcal{E}$  such that  $E = \bigcap_{m=0}^{\infty} \bigcup_{n=0}^{\infty} E_{m,n}$  such that  $A \subset E$  and  $\mu^*(A) = \mu^*(E)$ .

*Proof.* The proof for (1) is very similar to the proof for (2), so we only show (2) as follows. Since the gauge is fine,  $(\mathcal{E}_{\delta}, \gamma_{\delta})$  covers X for all  $\delta > 0$ . Then, for any  $m \in \mathbb{N}$ , there exists  $\{E_{m,n}\}_n \subset \mathcal{E}_{2^{-m}}$  such that  $A \subset \bigcup_{n=0}^{\infty} E_{m,n}$  and  $\sum_{n=0}^{\infty} \gamma(E_{m,n}) \leq \mu_{2^{-m}}^*(A) + 2^{-m}$ . Now let  $E = \bigcap_{m=0}^{\infty} \bigcup_{n=0}^{\infty} E_{m,n}$ . Note that  $A \subset E$  and for any  $m \in \mathbb{N}$ , we have

$$\mu_{2^{-m}}^*(E) \le \mu_{2^{-m}}^* \left( \bigcup_{n=0}^\infty E_{m,n} \right) \le \sum_{n=0}^\infty \gamma(E_{m,n}) \le \mu_{2^{-m}}^*(A) + 2^{-m}.$$

Taking the limit as  $m \to \infty$ , we have

$$\mu_d^*(E) \le \mu_d^*(A) \le \mu_d^*(E),$$

as desired.

**Theorem.** Let (X,d) be metric space with  $(\mathcal{E},\gamma)$  such that all sets in  $\mathcal{E}$  are open. Assume that  $\mu^*$  is a metric outer measure on X such that either

- 1.  $\mu^*$  is generated by  $(\mathcal{E}, \gamma)$ , or
- 2.  $\mu^* = \mu_d^*$  is generated by  $(\mathcal{E}_{\delta}, \gamma_{\delta})$ .

Further suppose that  $X = \bigcup_{n=0}^{\infty} A_n$  where  $A_n \subset X$  is such that  $\mu^*(A_n) < \infty$ . Then the following holds:

- 1. The gauge covers X in case 1 and is fine in case 2.
- 2. In both cases,  $\mu^*$  is cover-regular. More precisely, for each  $A \subset X$ , there is  $G \in G_{\delta}(X) \subset \mathfrak{B}(X) \subset \mathfrak{M}$  such that  $A \subset G$  and  $\mu^*(A) = \mu^*(G)$ .
- 3. In both cases, the following are equivalent for  $E \subset X$ :
  - (a)  $E \in \mathfrak{M}$ , i.e. E is measurable.
  - (b) there exists  $G \in G_{\delta}(X)$  such that  $E \subset G$  and  $\mu^*(G \setminus E) = 0$ .
  - (c) there exists  $F \in F_{\sigma}(X)$  such that  $F \subset E$  and  $\mu^*(E \setminus F) = 0$ .

#### Proof. Step 0: proof for (1) and (2).

We know  $X = \bigcup_{n=0}^{\infty} A_n$  for some  $\mu^*(A_n) < \infty$ . For case (1), we can pick  $\{E_{n,m}\} \subset \mathcal{E}$  such that  $A_n \subset \bigcup_{m=0}^{\infty} E_{n,m}$ . Then  $X = \bigcup_{n=0}^{\infty} A_n = \bigcup_{n,m} E_{n,m}$ . Therefore,  $\mathcal{E}$  covers X. For case (2), note that  $\mu_d^*(A_n) < \infty$  and  $\mu_d^*(A_n) \ge \mu_\delta^*(A_n)$  for each  $\delta > 0$  and  $n \in \mathbb{N}$ . Then for each  $\delta > 0$ , there exists  $\{E_{n,m}\} \subset \mathcal{E}_\delta$  such that  $A_n \subset \bigcup_{m=0}^{\infty} E_{n,m}$ . It follows that  $X = \bigcup_{n=0}^{\infty} A_n = \bigcup_{n,m} E_{n,m}$ . Therefore,  $(\mathcal{E}, \gamma)$  is fine.

We have the following observations:

- 1.  $\mu^*$  is a metric outer measure. This implies that  $\mathfrak{B}(X) \subset \mathfrak{M}$ .
- 2.  $G_{\delta}(X) \cup F_{\sigma}(X) \subset \mathfrak{B}(X) \subset \mathfrak{M}$  and  $\mu^*(A) = 0$  implies  $A \in \mathfrak{M}$ .
- 3. By previous lemma and all sets in  $\mathcal{E}$  are open, we know for each  $A \subset X$  there is  $E \in G_{\delta}(X)$  such that  $A \subset E$  and  $\mu^*(A) = \mu^*(E)$ . In particular,  $\mu^*$  is cover regular.

#### Step 1: starting on (3).

For (b)  $\Longrightarrow$  (a), suppose (b) holds for  $E \subset X$ . Then  $E = G \setminus (G \setminus E) \in \mathfrak{M}$  since  $\mu^*(G \setminus E) = 0$ .

For (c)  $\implies$  (a), suppose (c) holds for  $E \subset X$ . Then  $E = F \cup (E \setminus F) \in \mathfrak{M}$  since  $\mu^*(E \setminus F) = 0$ .

Next we show "(a)  $\Longrightarrow$  (c)" implies "(a)  $\Longrightarrow$  (b)". Suppose  $E \in \mathfrak{M}$ , then  $E^c \in \mathfrak{M}$ . By (a)  $\Longrightarrow$  (b) we know there exists  $F \in F_{\sigma}$  such that  $F \subset E^c$  and  $\mu^*(E^c \setminus F) = 0$ . Let  $G = F^c \in G_{\delta}$  then  $E \subset G$  and  $G \subset E = E^c \subset F$ .

Therefore, it remains to show (a)  $\implies$  (c) to complete the proof for the theorem.

#### Step 2: reduction for (a) $\implies$ (c).

Claim it suffices to show it for E such that  $\mu^*(E) < \infty$ . Suppose we did this and  $\mu^*(E) = \infty$ . Using observation there exists  $B_n \in \mathfrak{M}$  such that  $A_n \subset B_n$  and  $\mu^*(B_n) = \mu^*(A_n) < \infty$ . Then  $E_n = E \cap B_n \in \mathfrak{M}$  and  $\mu^*(E_n) < \infty$ . Then by special case there is  $F_n \in F_{\sigma}(X)$  such that  $F_n \subset E_n$  and  $\mu^*(F_n \setminus E_n) = 0$ . Let  $F = \bigcup_{n=0}^{\infty} F_n \in F_{\sigma}$  then  $F \subset \bigcup_{n=0}^{\infty} E_n = E$  and

$$\mu^*(E \setminus F) \le \sum_{n=0}^{\infty} \mu^*(E_n \setminus F_n) = 0.$$

#### Step 3: further reduction.

Claim it suffices to show it for the case where  $\mu^*(E) < \infty$  and  $E \in G_{\delta}(X)$ . Suppose we have proved this and consider  $E \subset X$  such that  $\mu^*(E) < \infty$ . Observation 3 allows us to pick  $G \in G_{\delta}(X)$  such that  $E \subset G$  and  $\mu^*(E) = \mu^*(G)$ . Now pick  $H \in G_{\delta}$  such that  $G \setminus E \subset H$  and  $\mu^*(H) = \mu^*(G \setminus E)$ .

Now apply special case. This gives  $F \in F_{\sigma}$  such that  $F \subset G$  and  $\mu^*(G \setminus F) = 0$ . Let  $K = F \setminus H = F \cap H^c \in F_{\sigma}$  and  $K = F \cap H^c \subset G \cap (G \setminus E)^c \subset E$ .

Note that  $E, F, G, H, K \in \mathfrak{M}$ , so

$$\mu^{*}(E \setminus K) = \mu^{*}(E) - \mu^{*}(K)$$

$$= \mu^{*}(G) - \mu^{*}(F \setminus H)$$

$$= \mu^{*}(G) - \mu^{*}(F) + \mu^{*}(F \cap H)$$

$$\leq \mu^{*}(G) - \mu^{*}(F) + \mu^{*}(H)$$

$$= \mu^{*}(G \setminus F) + \mu^{*}(H)$$

$$= \mu^{*}(G \setminus E)$$

$$= \mu^{*}(G) - \mu^{*}(E)$$

$$= 0.$$

Therefore, K is the desired  $F_{\sigma}$  set.

Step 4: finishing (a)  $\implies$  (c).

Suppose  $E \in G_{\delta}(X)$  and  $\mu^*(E) < \infty$ . Write  $E = \bigcup_{n=0}^{\infty} V_n$  where  $V_n \subset X$  open. For  $m, n \in \mathbb{N}$ , let

$$C_{n,m} = \left\{ x \in V_n : \operatorname{dist}(x, V_n^c) \ge 2^{-m} \right\} \subset V_n.$$

Note that  $C_{n,m}$  is closed,  $C_{n,m} \subset C_{n,m+1}$ ,  $V_n = \bigcup_m C_{n,m}$ . Since  $E, C_{n,m}, V_n \in \mathfrak{M}$ , we have

$$\mu^*(E) = \mu^*(E \cap V_n) = \lim_{m \to \infty} \mu^*(E \cap C_{n,m}).$$

Thus, there exists M(n,k) such that  $\mu^*(E \setminus C_{n,M(n,k)}) < 2^{-n-k}$ . Now let  $D_k = \bigcup_{n=0}^{\infty} C_{n,M(n,k)}$  closed. Also,  $D_k \subset \bigcup_{n=0}^{\infty} V_n = E$  and

$$\mu^*(E) - \mu^*(D_k) = \mu^*(E \setminus D_k) \le \sum_{n=0}^{\infty} \mu^*(E \setminus C_{n,M(n,k)}) \le 2^{-k+1}.$$

Let  $F = \bigcup_{k=0}^{\infty} D_k \subset E$  and note that  $F \in F_{\sigma}$ . Then

$$\mu^*(E \setminus F) = \mu^*(E) - \mu^*(F) \le \mu^*(E) - \mu^*(D_k) < 2^{-k+1}$$

for all  $k \in \mathbb{N}$ . Therefore,  $\mu^*(E \setminus F) = 0$ .

**Lemma.** Suppose (X,d) metric space with metric outer measure  $\mu^*$ . Suppose  $X = \bigcup_{n=0}^{\infty} V_n$  for  $V_n \subset X$  open and  $\mu^*(V_n) < \infty$ . Suppose  $E \subset G \in G_{\delta}(X)$  such that  $\mu^*(G \setminus E) = 0$ . Then for each  $\varepsilon > 0$ , there exists open  $U \subset X$  such that  $E \subset U$  and  $\mu^*(U \setminus E) < \varepsilon$ .

*Proof.* Let  $E_n = E \cap V_n$  and  $G = G \cap V_n$ . Write  $G = \bigcap_{j=0}^{\infty} W_j$  where  $W_j$  open. Now set

$$Z_{n,m} = V_n \cap \bigcap_{j=0}^m W_j,$$

which are open for all  $n, m \in \mathbb{N}$ . Now notice that  $G_n \subset Z_{n,m+1} \subset Z_{n,m} \subset V_n$ . Note that  $\mu^*(V_n) < \infty$ , so  $\mu^*(G_n) = \lim_{m \to \infty} \mu^*(Z_{n,m})$ . Therefore, for all  $\varepsilon > 0$ , there exists M(n) such that

$$\mu^*(Z_{n,M(n)} \setminus G_n) < \varepsilon 2^{-n-2}.$$

Then set  $U = \bigcup_{n=0}^{\infty} Z_{n,M(n)} \supset \bigcup_{n=0}^{\infty} G_n = G \supset E$  open, then we have

$$\mu^*(U \setminus E) = \mu^*(U \setminus G) + \mu^*(G \setminus E)$$

$$= \mu^* \left( \bigcup_{n=0}^{\infty} Z_{n,M(n)} \cap \bigcap_{n=0}^{\infty} G_n^c \right)$$

$$\leq \sum_{n=0}^{\infty} \mu^*(Z_{n,M(n)} \setminus G_n)$$

$$< \varepsilon,$$

as desired.

**Definition** (Outer-regular). Let X be a metric space,  $\mathfrak{M}$  a  $\sigma$ -algebra with  $\mathfrak{B}(X) \subset \mathfrak{M}$  and suppose  $\mu: \mathfrak{M} \to [0, \infty]$  is a measure. Say  $\mu$  is outer-regular if

$$\mu(E) = \inf \{ \mu(U) : E \subset U \text{ open} \}.$$

## 3.2 Measurable and $\mu$ -measurable functions

#### \*\*\* TO-DO \*\*\*

**Definition** (Measurable functions). Let  $(X, \mathfrak{M})$  and  $(Y, \mathfrak{N})$  be measurable sets. A map  $f: X \to Y$  is called  $(\mathfrak{M}, \mathfrak{N})$  measurable if  $f^{-1}(E) \in \mathfrak{M}$  for all  $E \in \mathfrak{N}$ .

**Definition** (Simple functions). Let  $(X, \mathfrak{M})$  and  $(Y, \mathfrak{N})$  be measurable sets. A map  $f: X \to Y$  is called simple if it is measurable and f(X) is finite. Write the set of all simple functions from X to Y as S(X, Y).

**Theorem** (Characterization of  $\overline{\mathbb{R}}$  measurablility). Let  $(X,\mathfrak{M})$  be measure space and  $f:X\to\overline{\mathbb{R}}$ . The following are equivalent:

- 1. f is measurable.
- 2. There exists  $\{\varphi_k\}_{k=0}^{\infty} \subset S(X; \overline{\mathbb{R}})$  such that  $\varphi_k \to f$  pointwise as  $k \to \infty$ .

Moreover, if f is measurable, the sequence can be built such that

- On the set  $\{f \geq 0\}$ , we have  $0 \leq \varphi_k \leq \varphi_{k+1} \leq f$ .
- On the set  $\{f < 0\}$ , we have  $f \le \varphi_{k+1} \le \varphi_k \le 0$ .
- If f is actually from X to  $\mathbb{R}$  and is bounded, then  $\varphi_k \to f$  uniformly.

*Proof.* (2)  $\implies$  (1). Pointwise limit of measurable functions are measurable.

(1)  $\Longrightarrow$  (2). Suppose  $f: X \to [0, \infty]$  is measurable. For  $k \in \mathbb{N}$ , define  $\varphi_k: [0, \infty)$  by

$$\varphi_k(x) = \begin{cases} (j-1)2^{-k} & \text{if } (j-1)2^{-k} \le f(x) < j2^{-k} \text{ for } 1 \le j \le k2^k, \\ k & \text{if } f(x) > k. \end{cases}$$

Because f is measurable,  $\varphi_k$  is simple for each  $k \in \mathbb{N}$ .

Note that  $0 \le \varphi_k \le \varphi_{k+1} \le f$ . Also, if  $f(x) < \infty$ , then  $0 \le f(x) - \varphi_k(x) \le 2^{-k}$ . If  $f(x) = \infty$ , then  $\varphi_k(x) = k$ . This shows that  $\varphi_k \to f$ . Moreover, if f is bounded then  $\varphi_k \to f$  uniformly.

In the general case, apply the special case to f on  $\{f \geq 0\}$  and -f on  $\{f < 0\}$ .

**Definition** (Separably-valued). Let X be a set and Y a metric space. A map  $f: X \to Y$  is **separably-valued** if  $f(X) \subset Y$  is separable.

**Theorem.** Let  $(X,\mathfrak{M})$  be measure space and Y be metric space,  $f:X\to Y$ . The following are equivalent for  $f:X\to Y$ :

- 1. f is  $(\mathfrak{M}, \mathfrak{B}(Y))$  measurable and separably valued.
- 2. There exists  $\{\varphi_k\}_{k=0}^{\infty} \in S(X;Y)$  such that  $\varphi_k \to f$  pointwise.

*Proof.* (2)  $\Longrightarrow$  (1). The pointwise limit of measurable function is measurable. On the other hand,  $f(X) = \overline{\bigcup_{k=0}^{\infty} \varphi_k(X)}$ , which is separable since  $\varphi_k(X)$  finite for any  $k \in \mathbb{N}$ .

 $(1) \implies (2). \text{ Assume initially that } Y \text{ is totally bounded. Then for each } n \in \mathbb{N} \text{ there exists } y_0^n, \dots, y_{K(n)}^n \in Y \text{ such that } Y = \bigcup_{k=0}^{K(n)} B(y_k^n, 2^{-n}). \text{ Let } V_0^n = B(y_0^n, 2^{-n}) \text{ and for } k \geq 1 \text{ define } V_k^n = B(y_k^n, 2^{-n}) \setminus \bigcup_{j=0}^{k-1} B(y_j^n, 2^{-n}). \text{ Then, } Y = \bigcup_{k=0}^{M(n)} V_k^n \text{ where } V_k^n = \emptyset \text{ for } M(n) < k \leq K(n).$ 

Define  $\varphi_n: Y \to \{y_0^n, \dots, y_{M(n)}^n\}$  via  $\varphi_n(y) = y_k^n$  if  $y \in V_k^n$ . Clearly  $\varphi_n$  is simple and  $d(\varphi_n(y), y) < 2^{-n}$  for all  $n \in \mathbb{N}$  and  $y \in Y$ . Therefore,  $\varphi_n(y) \to (y)$  pointwise. Then  $f_n = \varphi_n \circ f$  are simple functions from X to Y. Also, since  $\varphi_n \to \text{id}$  pointwise,  $f_n \to f$  pointwise.

Now consider the general case in which f(X) is a separable subset of Y. Then there exists a homeomorphism  $h: f(X) \to Z$  for Z a totally bounded metric space, for example take Z a subset of Hilbert cube  $H^{\infty}$  since all separable metric space is homeomorphism to a subset of the Hilbert cube. Thus  $h \circ f: X \to Z$  is measurable with Z totally bounded, so the special case provides a sequence  $\{\varphi_n\}_{n=0}^{\infty} \subset S(X;Z)$  such that  $\varphi_n \to h \circ f$  pointwise. Then,  $h^{-1} \circ \varphi_n \in S(X;Y)$  is such that  $h^{-1} \circ \varphi_n \to h^{-1} \circ h \circ f = f$  pointwise, using continuity of h and  $h^{-1}$ .

**Definition** (Almost everywhere). Let  $(X, \mathfrak{M}, \mu)$  be a measure space and let P(x) be a proposition for every  $x \in X$ . Say P is true **almost everywhere** (a.e.) if there exists a set  $N \in \mathfrak{M}$  such that  $\mu(N) = 0$  and P(x) is true for all  $x \in N^c$ .

**Theorem.** Let  $(X, \mathfrak{M}, \mu)$  be a measure space. Let Y be a metric space,  $f: X \to Y$ . The following are equivalent:

- 1. There exists  $\{\psi_n\}_{n=0}^{\infty} \subset S(X;Y)$  such that  $\psi_n \to f$  pointwise a.e. in X.
- 2. There exists a measurable and separably valued  $F: X \to Y$  such that f = F a.e.
- 3. There exists a null set  $N \in \mathfrak{M}$  and a measurable  $F: X \to Y$  such that f = F on  $N^c$  and  $f(N^c)$  is separable in Y.

*Proof.* (1)  $\Longrightarrow$  (2). There exists  $N \in \mathfrak{M}$  null such that  $\psi_n \to f$  pointwise in  $N^c$ . Thus,  $f: N^c \to Y$  is measurable and separably valued by the previous theorem. Note the constant map  $N \ni x \mapsto y \in Y$  for  $y \in Y$  fixed is measurable. Thus we can define  $F: X \to Y$  by

$$F(x) = \begin{cases} f(x) & (x \in N^c), \\ y & (x \in N). \end{cases}$$

Then F is measurable. It is also separably valued since  $F(X) = f(N^c) \cup \{y\}$ .

- $(2) \implies (3)$ . Trivial.
- (3)  $\Longrightarrow$  (1). Note that  $F: N^c \to Y$  is measurable and  $F(N^c) = f(N^c)$  is separable. By previous theorem, there exists  $\{\varphi_n\}_{n=0}^{\infty} \in S(N^c; Y)$  such that  $\varphi_n \to F = f$  pointwise on  $N^c$ . Now let  $\psi_n \in S(X; Y)$  be  $\varphi_n$  in  $N^c$  and  $y \in Y$  fixed in N. Then  $\psi_n \to f$  pointwise in  $N^c$ .

**Definition.** Let  $(X,\mathfrak{M})$  be measurable, Y be either a normed vector space or  $\overline{\mathbb{R}}$ . Let  $\psi \in S(X;Y)$ .

1. A **representation** of  $\psi$  is a finite and well-defined sum  $\psi = \sum_{k=1}^{K} v_k \chi_{E_k}$  for  $v_k \in Y$  and  $E_k \in \mathfrak{M}$ .

- 2. A canonical representation is  $\psi = \sum_{v \in \psi(X)} v \chi_{\psi^{-1}(\{v\})}$
- 3. Now suppose  $\mu$  is a measure. We say a representation  $\psi = \sum_{k=1}^{K} v_k \chi_{E_k}$  is **finite** if  $\mu(E_k) < \infty$  for all k such that  $v_k \neq 0$ . We say  $\psi$  is a **finite simple function** if it has a finite representation.

We write  $S_{\text{fin}}(X;Y) = \{ f \in S(X;Y) : f \text{ is finite} \}$ . Note that it is clear  $\psi$  is finite if and only if the canonical representation is finite if and only if  $\mu(\text{supp}(\psi)) < \infty$  where  $\text{supp}(\psi) = \{ x \in X : \psi(x) \neq 0 \}$  is the support of  $\psi$ .

**Definition.** Let  $(X, \mathfrak{M}, \mu)$  be a measure space and Y be a metric space.

- 1. We say  $f: X \to Y$  is almost measurable if f = F a.e. with  $F: X \to Y$  is measurable.
- 2. We say  $f: X \to Y$  is almost separably valued if there exists a null set  $N \in \mathfrak{M}$  such that  $f(N^c)$  is separable.
- 3. We say  $f: X \to Y$  is  $\mu$ -measurable if it is almost measurable and almost separably valued. Equivalently, f is the a.e. limit of simple functions.
- 4. Suppose Y is a normed vector space or  $\overline{\mathbb{R}}$ . We say  $f: X \to Y$  is **strongly**  $\mu$ -measurable if there exists  $\{\psi_n\}_{n=0}^{\infty} \subset S_{\text{fin}}(X;Y)$  such that  $\psi_n \to f$  a.e. as  $n \to \infty$ .

**Example.** Let  $X = \{1, 2, 3\}$  and  $\mathfrak{M} = \{\emptyset, \{1, 2\}, \{3\}, \{1, 2, 3\}\}$ . Let  $f, g : X \to \mathbb{R}$  via f(x) = x and g(x) = 3. Then f is not measure since  $f^{-1}(\{1\}) = \{1\} \notin \mathfrak{M}$  but g is measurable.

Now equip  $(X, \mathfrak{M})$  with the measure  $\delta_3$ . Then, f = g a.e. This shows that equality almost everywhere does not preserve measurablility. The problem is that  $(X, \mathfrak{M}, \delta_3)$  is not **complete**.

This brings us to the next theorem.

**Theorem.** Let  $(X, \mathfrak{M}, \mu)$  be a measure space. Then the following are equivalent:

- 1.  $(X, \mathfrak{M}, \mu)$  is complete.
- 2. If  $(Y,\mathfrak{N})$  is a measure space,  $f,g:X\to Y$ , f is measurable and f=g a.e., then g is measurable.
- 3. If Y is a metric space with card  $Y=2, f, g: X \to Y, f$  measurable, f=g a.e., then g is measurable.

*Proof.* (1)  $\Longrightarrow$  (2). Suppose  $f, g: X \to Y$ , f is measurable, f = g a.e. Pick null set  $N \in \mathfrak{M}$  such that f = g on  $N^c$ . Take  $E \in \mathfrak{N}$ , then

$$g^{-1}(E) = (g^{-1}(E) \cap N) \cup (g^{-1}(E) \cap N^c)$$
  
=  $(g^{-1}(E) \cap N) \cup (f^{-1}(E) \cap N^c).$ 

Note that  $f^{-1}(E) \cap N^c$  is measurable, and  $g^{-1}(E) \cap N \subset N$  null, so it is also measurable. Therefore,  $g^{-1}(E)$  is measurable and g is measurable.

- $(2) \implies (3)$ . Clear.
- (3)  $\Longrightarrow$  (1). Prove the contrapositive. Suppse  $(X, \mathfrak{M}, \mu)$  is not complete and  $Y = \{y, z\}$  a metric space. Find  $\emptyset \neq A \subsetneq B$  such that  $\mu(B) = 0$  and  $A \notin \mathfrak{M}$ . Define  $f, g : X \to Y$  by

$$g(x) = \begin{cases} y & (x \notin A), \\ z & (x \in A). \end{cases}$$

and f(x) = y be constant. Then f = g a.e., f is measurable, and g is not measurable.

**Corollary.** Let  $(X, \mathfrak{M}, \mu)$  be a complete measurable space, Y a separable metric space, and  $f: X \to Y$ . Then, f is  $\mu$ -measurable if and only if f is measurable.

**Proposition.** Let  $(X, \mathfrak{M}, \mu)$  be a measure space and Y be a metric space. The following holds:

1. Let  $f, g: X \to Y$ . If f is  $\mu$ -measurable and f = g a.e., then g is  $\mu$ -measurable.

- 2. Suppose Y is a normed vector space or  $\overline{\mathbb{R}}$ . If  $f, g: X \to Y$ , f is strongly  $\mu$ -measurable, f = g a.e., then g is strong  $\mu$ -measurable.
- Proof. 1. Let  $\{\varphi_n\}_{n=0}^{\infty} \subset S(X;Y)$  be such that  $\varphi_n \to g$  pointwise a.e. Pick null set  $N \in \mathfrak{M}$  such that f = g on  $N^c$ . Pick null set  $Z \in \mathfrak{M}$  such that  $f = \lim_{n \to \infty} \varphi_n$ . This implies that  $g = \lim_{n \to \infty} \varphi_n$  on  $(N \cup Z)^c$ .
  - 2. Same proof as the first item but let  $\{\varphi_n\}_{n=0}^{\infty} \in S_{\text{fin}}(X;Y)$ .

**Theorem.** Let  $(X, \mathfrak{M}, \mu)$  be a measure space and Y be a normed vector space with  $V \neq \{0\}$ . Then the following are equivalent:

- 1.  $(X, \mathfrak{M}, \mu)$  is  $\sigma$ -finite.
- 2. If  $f: X \to Y$  is  $\mu$ -measurable, then f is strongly  $\mu$ -measurable.
- 3. Let  $f: X \to Y$ , then f is  $\mu$ -measurable if and only if f is strongly  $\mu$ -measurable.
- 4. If  $y \in Y \setminus \{0\}$ , then  $f: X \to Y$  via f(x) = y strongly  $\mu$ -measurable.

*Proof.* (1)  $\Longrightarrow$  (2). Suppose  $(X,\mathfrak{M},\mu)$  is  $\sigma$ -finite. We can find  $\{X_n\}_{n=0}^{\infty}\subset\mathfrak{M}$  such that  $X_n\subset X_{n+1}$ ,  $\mu(X_n)<\infty$  and  $\bigcup_{n=0}^{\infty}X_n=X$ . Let  $f:X\to Y$  be  $\mu$ -measurable. Pick  $\{\psi_n\}_{n=0}^{\infty}\subset S(X;Y)$  such that  $\psi_n\to f$  pointwise a.e. Define  $\varphi_n=\chi_{X_n}\psi_n$ . This shows that f is strongly  $\mu$ -measurable.

- (2)  $\iff$  (3). Trivial since strongly  $\mu$ -measurablility implies  $\mu$ -measurablility.
- (2)  $\Longrightarrow$  (4). Constant function are  $\mu$ -measurable.
- (4)  $\Longrightarrow$  (1). Let  $y \in Y \setminus \{0\}$  and define  $f: X \to Y$  via f(x) = y. This is strongly  $\mu$ -measurable by assumption. Then there exists  $\{\varphi_n\}_{n=0}^{\infty} \subset S_{\text{fin}}(X;Y)$  such that  $\varphi_n \to f$  pointwise on  $N^c$  where N is null.

Pick  $\varepsilon > 0$  such that  $\{0\} \cap B(y,\varepsilon) = \emptyset$ . Set  $X_n = \varphi_n^{-1}(B(y,\varepsilon))$ . Then we have  $\mu(X_n) < \infty$ . For any  $x \in N^c$  and n sufficiently large,  $\varphi_n(x) \in B(y,\varepsilon)$ . Therefore,  $N^c \subset \bigcup_{n=0}^{\infty} X_n$  and the proof we are complete.

Finally, we present a useful characterization of  $\mu$ -measurablility of Banach-valued maps.

**Theorem** (Pettis). Let  $(X, \mathfrak{M}, \mu)$  be a measure space and V be a Banach space over  $\mathbb{F}$ . Suppose  $W \subset V^*$  is a norming subspace. Let  $f: X \to V$ . Then the following are equivalent:

- 1. f is  $\mu$ -measurable.
- 2. f is almost separably valued, and  $w \circ f : X \to \mathbb{F}$  is  $\mu$ -measurable for each  $w \in V^*$ .
- 3. f is almost separably valued, and  $w \circ f : X \to \mathbb{F}$  is  $\mu$ -measurable for each  $w \in W$ .

In any case, there exists  $\{\varphi_n\}_{n=0}^{\infty} \subset S(X;V)$  such that  $\|\varphi_n\| \leq 2 \|f\|$  on X such that  $\varphi_n \to f$  pointwise a.e. as  $n \to \infty$ . Moreover, the same equivalence holds with  $\mu$ -measurablility replaced by stronly  $\mu$ -measurablility and  $\{\varphi_n\}_{n=0}^{\infty}$  replaced by  $\{\varphi_n\}_{n=0}^{\infty} \subset S_{\text{fin}}(X;V)$ .

*Proof.* (1)  $\Longrightarrow$  (2). Suppose f is  $\mu$ -measurable, which means it is almost separably valued. Each  $w \in V^*$  is also continuous so  $w \circ f$  is  $\mu$ -measurable.

- (2)  $\implies$  (3). Trivial since  $W \subset V^*$ .
- (3)  $\Longrightarrow$  (1). Suppose f is almost separably valued. Then there exists null set  $N_* \subset X$  such that  $f(X \setminus N_*) \subset V$  separable. Define the subspace

$$M=\operatorname{span}(f(X\setminus N_*))\subset V,$$

which is separable by construction. Pick a dense set  $\{v_n\}_{m=0}^{\infty} \subset M$  such that  $v_0 = 0$ . Then by a previous theorem, we know there exists a norming sequence  $\{w_n\}_{n=0}^{\infty} \subset W$  for M.

Now, given any  $v \in V$  and  $n \in \mathbb{N}$ , define the function  $\Phi_{n,v}: X \to [0,\infty)$  by

$$\Phi_{n,v}(x) = |\langle w_n, f(x) - v \rangle| = |w_n(f(x) - v)|.$$

Note that  $X \ni x \mapsto \langle w_n, v \rangle \in \mathbb{F}$  is  $\mu$ -measurable and the map  $X \ni x \mapsto \langle w_n, f(x) \rangle \in \mathbb{F}$  is also  $\mu$ -measurable by assumption. It follows that  $\Phi_{n,v}$  is  $\mu$ -measurable. Therefore, there exists null set  $N_{n,v} \subset X$  and a measurable map  $\Psi_{n,v}: X \to [0,\infty)$  such that  $\Psi_{n,v} = \Phi_{n,v}$  on  $X \setminus N_{n,v}$ . For each  $v \in V$  define null set

$$N(v) = N_* \cup \bigcup_{n=0}^{\infty} N_{n,v} \subset X,$$

with  $\Psi_{n,v} = \Phi_{n,v}$  on  $X \setminus N(v)$  for all  $n \in \mathbb{N}$ .

For  $v \in M$  define the map  $\Phi_v : X \to [0, \infty]$  by  $\Phi_v(x) = ||f(x) - v||$  and note that  $\{w_n\}_{n=0}^{\infty}$  is norming sequence for M. This implies that

$$\Phi_v(x) = \sup_{n \in \mathbb{N}} |\langle w_n, f(x) - v \rangle|$$

for all  $x \in X \setminus N_*$ . We also have that

$$\Phi_v(x) = \sup_{n \in \mathbb{N}} \Phi_{n,v}(x) = \sup_{n \in \mathbb{N}} \Psi_{n,v}(x)$$

for all  $x \in X \setminus N(v)$ , so  $\Phi_v$  is measurable when restricted to  $X \setminus N(v)$ . We can then define the set

$$N = \bigcup_{m=0}^{\infty} N(v_m) \subset X,$$

which is null. By construction, each  $\Phi_{v_m}$  is measurable when restricted to  $N^c$ . In particular,  $\Phi_0 = \Phi_{v_0} = ||f||$  is measurable when restricted to  $N^c$ .

For  $u \in M$  and  $n \in \mathbb{N}$ , define

$$k(n, u) = \min \left\{ 0 \le k \le n : ||u - v_k|| = \min_{0 \le j \le n} ||u - v_j|| \right\}.$$

By construction,

$$||v_{k(n,u)}|| \le ||u - v_{k(n,m)}|| + ||u|| \le ||u - v_0|| + ||u|| = 2 ||u||.$$

We then define  $S_n: M \to \{v_0, \dots, v_n\}$  via  $S_n(u) = v_{k(n,u)}$ . Note that  $||S_n(u)|| \le 2 ||u||$ . Also,  $\{v_m\}_{m=0}^{\infty}$  dense in M implies  $S_n(u) \to u$  as  $n \to \infty$ .

Finally, for  $n \in \mathbb{N}$ , define  $\psi_n : N^c \to \{v_0, \dots, v_n\} \subset V$  via  $\psi_n = S_n \circ f$ . For  $0 \le k \le n$ , we compute

$$\{x \in N^c : \psi_n(x) = v_k\}$$

$$= \left\{ x \in N^c : \|f(x) - v_k\| = \min_j \|f(x) - v_j\| \right\} \cap \bigcap_{i=0}^{k-1} \left\{ x \in N^c : \|f(x) - v_k\| < \|f(x) - v_j\| \right\}$$

This set is measurable since  $\Phi_{v_m}$  measurable on  $N^c$  for each  $m \in \mathbb{N}$ . It follows that  $\psi_n$  is measurable on  $N^c$ . Let  $\varphi_n \in S(X; V)$  by

$$\varphi_n(x) = \begin{cases} \psi_n(x) & (x \in N^c), \\ 0 & (x \in N). \end{cases}$$

Then,  $\|\varphi_n\| \le 2 \|f\|$  and  $\varphi_n(x) = \psi_n(x) \to f(x)$  as  $n \to \infty$  for  $x \in \mathbb{N}^c$ . Therefore,  $\varphi_n \to f$  a.e. and thus f is  $\mu$ -measurable.

#### 3.3 Lebesgue-Bochner Integral

**Lemma.** Let  $(X, \mathfrak{M}, \mu)$  be a measure space and  $Y \in \{V, [0, \infty]\}$ . Let  $\psi : X \to Y$  be simple such that

$$\psi = \sum_{i=1}^{I} \alpha_i \chi_{E_i} = \sum_{i=1}^{J} \beta_j \chi_{F_j}.$$

Additionally, if Y = V suppose both representation are finite. Then,

$$\sum_{i=1}^{I} \alpha_i \mu(E_i) = \sum_{j=1}^{J} \beta_j \mu(F_j).$$

Based on this lemma, we can define

$$\int_X \psi \ d\mu = \sum_{i=1}^I \alpha_i \mu(E_i).$$

This induces maps  $\int_X \cdot d\mu : S(X; [0, \infty]) \to [0, \infty]$  and  $\int_X \cdot d\mu : S_{\text{fin}}(X; V) \to V$ .

**Proposition.** Let  $(X, \mathfrak{M}, \mu)$  be a measure space and  $Y \in \{V, [0, \infty]\}$ . Then the following holds:

1. If Y = V, then

$$\int_X (\alpha f + \beta g) \ d\mu = \alpha \int_X f \ d\mu + \beta \int_X g \ d\mu.$$

for all  $\alpha, \beta \in \mathbb{F}$  and  $f, g \in S_{\text{fin}}(X; V)$ . If  $Y = [0, \infty]$ , the same equality holds for any  $\alpha, \beta > 0$  and  $f, g \in S(X; V)$ .

2. If Y = V, then  $||f|| \in S_{fin}(X; [0, \infty))$  and

$$\left\| \int_X f \ d\mu \right\| \le \int_X \|f\| \ d\mu.$$

3. If  $E \in \mathfrak{M}$ , then

$$\int_E f \ d\mu = \int_X f \chi_E \ d\mu.$$

4. If  $N \in \mathfrak{M}$  is a null set, then

$$\int_{\mathcal{N}} f \ d\mu = 0.$$

5. If  $A, B \in \mathfrak{M}$  is such that  $A \cap B = \emptyset$ , then

$$\int_{A \cup B} f \ d\mu = \int_{A} f \ d\mu + \int_{B} f \ d\mu.$$

6. Suppose  $\{X_n\}_{n=0}^{\infty} \subset \mathfrak{M}$  is such that  $X_n \subset X_{n+1}$  and  $\mu(X_n) < \infty$ . Then

$$\int_X f \ d\mu = \lim_{n \to \infty} \int_{X_n} f \ d\mu.$$

*Proof.* Write  $f = \sum_k f_k \chi_{E_k}$  be the canonical representation. We then have

$$\int_{X_n} f \ d\mu = \sum_k f_k \mu(X_n \cap E_k).$$

For each k, we have  $X_n \cap E_k \subset X_{n+1} \cap E_k$  and  $\bigcup_{n=0}^{\infty} (X_n \cap E_k) = E_k$ . It follows that

$$\lim_{n\to\infty}\mu(X_n\cap E_k)=\mu(E_k).$$

Therefore,

$$\lim_{n\to\infty} \int_{X_n} f\ d\mu = \sum_k f_k \mu(E_k) = \int_X f\ d\mu.$$

7. If  $Y = \mathbb{R}$  or  $Y = [0, \infty]$  and  $f \leq g$  a.e., then

$$\int_X f \ d\mu \le \int_X g \ d\mu.$$

#### Integral of $\overline{\mathbb{R}}$ -valued functions

Note that if  $(X, \mathfrak{M}, \mu)$  is a measure space and  $\varphi \in S(X; [0, \infty])$ , then

$$\int_X \varphi \ d\mu = \sup \left\{ \int_X \psi \ d\mu : \psi \in S(X; [0, \infty]) \text{ and } \psi \le \varphi \text{ a.e.} \right\}.$$

**Definition.** Let  $(X, \mathfrak{M}, \mu)$  be a measure space. Let  $f: X \to [0, \infty]$  be  $\mu$ -measurable. We define

$$\int_X f \ d\mu = \sup \left\{ \int_X \psi \ d\mu : \ \psi \in S(X; [0, \infty]) \text{ and } \psi \leq f \text{ a.e.} \right\} \in [0, \infty].$$

Remark. There are two remarks with regard to the definition above.

- 1. In principle we do not need f to be  $\mu$ -measurable here. We build this into the definition because the resulting integral is more-or-less useless without this assumption.
- 2.  $[0, \infty]$  is a separable metric space, so for  $f: X \to [0, \infty]$  f is measurable implies f is  $\mu$ -measurable, and f almost measurable implies f is  $\mu$ -measurable.