From last time

Direct waves

$$t_{dir} = rac{x}{v_1}$$

Reflected waves

$$t_{refl} = rac{\sqrt{x^2 + 4h^2}}{v_1}$$

 Critically refracted waves (head waves)

$$t_{refr} = rac{x}{v_2} + rac{2h\sqrt{v_2^2 - v_1^2}}{v_1 v_2}$$

From last time

- Plot the arrival times
- Identify each wave
- Use plot and equations to estimate layer velocity and thickness

Today's Topics

- Survey
 - Basic idea
 - Sources
 - Receivers
 - Data acquisition
- Processing and Interpretation (Refraction)

Survey

Reading on the GPG:

https://gpg.geosci.xyz/content/seismic/seismic_survey.html

Seismic survey: Basic idea

- Source generates seismic signal
- Signal spreads in all directions
- Signal reflects, refracts and transmits at boundaries
- Geophones measure signal amplitude over time
- Raw signal turned into arrival time plot

Seismic survey: Basic idea

- Sources: anything that causes earth particles to move
 - Natural sources, like earthquakes
 - Man-made sources, like explosives, "hammers", shock waves
- Receivers: record ground motion for some time following the source
 - Geophones
 - Seismometers (3 component, broadband)

Sources

Natural source: earthquakes

Man-made source: vibroseis truck

Single Source

Group of sources

Man-made source: borehole explosion

Man-made source: in the ocean

Multiple Sources

By Hannes Grobe, Alfred Wegener Institute - Own work, CC BY-SA 2.5, https://commons.wikimedia.org/w/index.php?curid=2270335

Man-made source: small-scale

Sledge Hammer Shotgun Blast Weight Drop **Explosives**

Receivers

Receivers: geophones

Set up the geophone array

Set up the geophone array

Receivers: hydrophone streamer

https://commons.wikimedia.org/w/index.php?curid=1468353

Receivers: seismometer

Smartphone example

- iPhone app: iSeismometer
- Android:

Measure gravitational acceleration

Data Acquisition

Multichannel data collection

• **Split spread:** Receivers on either side of source (common for land surveys)

• **Single-ended spread:** Receivers on one side of source (common in marine surveys)

(b)

Common shot vs. common midpoint

- Common shot gathers:
 - Multiple receivers for each source
 - Different reflection point

- Common midpoint gathers:
 - Set of sources and receivers
 - Common reflection point (if flat interface)
- Survey possibly comprised of both sets of information

Refraction Surveys

Each source has multiple receivers

 Uses first arrivals from refracted waves to infer information about layers

Reflection Surveys

 Use reflected waves to infer information about layers

Reflection Surveys: reflection amplitude

• Reflection due to changes in acoustic impedance.

$$Z = \rho V$$

Fold

- How times a subsurface point is sampled by pull-along arrays
 - N = number of geophones
 - n = move up number (shot spacing / geophone spacing)

points

- Example:
 - Geophones places every 2 m
 - Source shots every 4 m
 - n = 4/2 = 2

$$fold = \frac{N}{2n}$$

- Example:
 - 8 geophones
 - Move up of 2
 - What is the fold?

•
$$fold = \frac{8}{2*2} = 2$$

Reflection S.

Processing and Interpretation: Refraction Surveys

Reading on the GPG:

https://gpg.geosci.xyz/content/seismic/seismic_refraction_dipping_layers.html

https://gpg.geosci.xyz/content/seismic/seismic_refraction_irregular_layers.html

Refraction Recap

- Direct, reflected and refracted waves
- Assuming flat interfaces, travel times are known
- Use travel time formulas and points to estimate layer thickness and velocity

Low velocity zones

No refracted arrival from the top of the second layer

$$\frac{\sin\theta_1}{v_1} = \frac{\sin\theta_2}{v_2}$$

Hidden layers

 Layers that are too thin may not be seen

decreases

Thickness h₂

 Arrival from layer 3 beats that from layer 2

 The red refracted wave has to travel a LONGER distance than if the layer was horizontal.

 Thus the travel time is longer and the slope on the T-X plot is increased.

 The estimated velocity will be SMALLER than the actual velocity

 The blue refracted wave has to travel a SHORTER distance thanif the layer was horizontal.

 Thus the travel time is shorter and the slope on the T-X plot is decreased.

 The estimated velocity will be LARGER than the actual velocity

• So this requires **TWO** shots to be able to interpret

- Depth estimates
 - "Slant" depths can be obtained through the intercept times
 - True depths can be estimated using dip-angle (see GPG)

• Travel time in down-dip direction
$$t_2 = rac{x \sin(heta + \gamma)}{v_1} + rac{2z \cos heta}{v_1} = rac{x}{v_{2d}} + t_i$$

Travel time in up-dip direction

$$t_2'=rac{x\sin(heta-\gamma)}{v_1}+rac{2z'\cos heta}{v_1}=rac{x}{v_{2u}}+t_i'$$

Irregular layers

- What happens when the boundary can no longer be approximated as a plane?
 - Plus-minus method
 - Generalized reciprocal methods
 - Ray tracing
 - Other sophisticated procedures

Lateral Velocity Changes

• Critically refracted wave travels at v_{2a} then at v_{2b}

Seismograms looks like
3 layer case

Lateral Velocity Changes

- Examine seismogram from shifted common shot gather
- If layer
 - → Horizontal shift

- If lateral change
 - → Vertical shift

Recap

- Refraction survey good when layer velocity increases with depth
- Low velocity zones and thin layers no visible
- Need shots from two sides to resolve dipping layers

Unit Activities

- Labs: (Seismic I)
 - Monday, September 30th
 - Tuesday, October 1st
- Labs: (Seismic II)
 - Monday, October 7th
 - Tuesday, October 8th
- TBL:
 - Monday, October 7th
- Quiz:
 - Monday, October 7th