1. In a bag of marbles, there are two disjoint events: A represents selecting a red marble, and B represents selecting a blue marble. The probability of selecting a red marble is $P(A)=\frac{1}{4}$, and the probability of selecting a blue marble is $P(B)=\frac{1}{3}$.

1/1 point

What is the probability of selecting either a red or a blue marble, $P(A \cup B)$, from the bag?

- $\bigcap P(A \cup B) = \frac{5}{12}$
- $\bigcap P(A \cup B) = \frac{1}{12}$
- $\bigcirc P(A \cup B) = \frac{2}{3}$
- **(a)** $P(A \cup B) = \frac{7}{12}$
- **⊘** Correct

The probability of the union of disjoint events is the sum of their individual probabilities.

$$P(A \cup B) = P(A) + P(B) = \frac{1}{4} + \frac{1}{3} = \frac{7}{12}$$

2. You throw 10 fair coins, what is the probability that coins do not result in all heads?

1/1 point

0

 $\frac{10^2 - 1}{10^2}$

0

 $\frac{1}{2^{10}}$

0

 $\frac{1}{10^2}$

•

 $\frac{2^{10}-1}{2^{10}}$

(Correct

By throwing 10 fair coins, there are 2^{10} possible outcomes and only one outcome results in HHHHHHHHHH or all heads. This means the

$$P(\text{not all heads}) = 1 - P(\text{all heads}) = 1 - \frac{1}{2^{10}} = \frac{2^{10} - 1}{2^{10}}$$

What is the probability that a randomly selected person likes basketball given they like soccer?

Hint: Find P(B|S), where B is the event of liking basketball and S is the event of liking soccer.

0

 $\frac{3}{7}$

 \odot

 $\frac{7}{10}$

0

 $\frac{1}{2}$

0

 $\frac{7}{20}$

○ Correct

Let S represent the number of people who like soccer and B represent the number of people who like basketball. Therefore, $P(B|S)=\frac{P(B\cap S)}{P(S)}$.

1/1 point

4. Imagine there is a disease that impacts 1% of the population. Researchers devised a test so that people with the disease test positive 95% of the time. People who do not have the disease test negative 90% of the time. If an individual receives a positive test result for the disease, what is the probability that they truly have the disease or $P(\text{sick}|\text{test}_{pos}))$?

Hint: In the description above, you were given $P(\operatorname{sick})$, probability for true positive (or $P(\operatorname{test}_{\operatorname{pos}}|\operatorname{sick})$), and probability for true negative (or $P(test_{neg}|not\ sick)$). Use this information to find $P(not\ sick)$ and $P(\text{test}_{pos}|\text{not sick}).$

Remember that Bayes' Theorem is $P(A|B)=\frac{P(B|A)\cdot P(A)}{P(B)}$. Also, remember that you may write $P(B)=P(B|E)\cdot P(E)+P(B|\text{not }E)\cdot P(\text{not }E)$, where E is any event and not E=E'.

- 90%
- 8.76%
- 15.58%
- 42.76%
 - ✓ Correct

According to Bayes' Theorem,

$$P(\text{sick}|\text{test}_{\text{pos}}) = \frac{P(\text{test}_{\text{pos}}|\text{sick}) \cdot P(\text{sick})}{P(\text{sick}) \cdot P(\text{test}_{\text{pos}}|\text{sick})) + P(\text{not sick}) \cdot P(\text{test}_{\text{pos}}|\text{not sick})}$$

From the problem description, you know that $P(
m sick) = 0.01, P(
m test_{pos}|
m sick) = 0.95$, and $P(\mathrm{test}_{\mathrm{neg}}|\mathrm{not}\;\mathrm{sick}) = 0.9$. You can use the complement rule to find $P(\text{test}_{\text{pos}}|\text{not sick}) = 1 - P(\text{test}_{\text{neg}}|\text{not sick}) = 1 - 0.9 = 0.1.$

Using these numbers, we get:

$$\frac{0.01 \cdot 0.95}{0.01 \cdot 0.95 + 0.99 \cdot 0.1} \approx 0.0876$$

5. Which of the following are examples of continuous random variables? Select all that apply.

1/1 point

- Number of cars passing through a toll booth in an hour.
- Weight of a package.
 - Correct

Weight is a continuous variable with infinitely many values within a range.

- Number of students in a classroom.
- Height of students in a class.
- Correct

Height is a continuous variable with infinitely many values within a range.

- Number of goals scored in a soccer match.
- ▼ Time taken to run a 100-meter race.
- Correct

Time is a continuous variable with infinitely many values within a range.

- Temperature in degrees Celsius.
- **⊘** Correct

Temperature is a continuous variable with infinitely many values within a range.

6. You roll a six-sided die 20 times and want to find the probability that the number 4 appears exactly 7 times. Which of the following equations correctly represents the probability distribution for this scenario?

1/1 point

$$P(X=7) = \binom{20}{7} \cdot \left(\frac{1}{6}\right)^{13} \cdot \left(\frac{5}{6}\right)^{7}$$

$$P(X=7) = {20 \choose 7} \cdot \left(\frac{1}{6}\right)^7 \cdot \left(\frac{5}{6}\right)^{13}$$

$$P(X=4) = {20 \choose 4} \cdot \left(\frac{1}{6}\right)^4 \cdot \left(\frac{5}{6}\right)^{16}$$

$$P(X=7) = \binom{20}{7} \cdot \left(\frac{1}{6}\right)^7 \cdot \left(\frac{5}{6}\right)^7$$

✓ Correct

In this case, let n= total number of tosses =20, k= number times 4 is rolled =7, p= probability of rolling $4=\frac{1}{6}$, and q= probability of not rolling $4=\frac{5}{6}$.

7. Imagine you are tasked with modeling the heights of individuals in a diverse country. Which probability distribution would be most suitable for capturing the patterns in the heights of the population?

1/1 point

- Normal Distribution
- Binomial Distribution
- Uniform Distribution

✓ Correct

The normal distribution, often likened to a bell curve, is a fitting choice for modeling height variations in a country. It beautifully represents the natural diversity observed in the heights of individuals.

8. A taxi cab service analyzes the number of passengers in its daily rides. The table and graph below show the number of passengers, X, in a single taxi cab and the observed probabilities at a randomly selected time.

1/1 point

Number of passengers xi	0	1	2	3	4	5	6
Probability, pi	0.10	0.25	0.25	0.15	0.15	0.05	0.05

Probability distribution of number of passengers

What is the probability that a randomly selected taxi ride will have less than or equal to 3 passengers?

- $\bigcap P(X \leq 3) = 0$
- $OP(X \le 3) = 0.25$
- $\bigcap P(X \le 3) = 0.40$
- $OP(X \le 3) = 0.60$
- $P(X \le 3) = 0.75$

○ Correct

To find the probability that a randomly selected taxi ride will have **less than 3 passengers** means that you can *add* up the probabilities when P(X=3) + P(X=2) + P(X=1) + P(X=0).

9. A taxi cab service analyzes the number of passengers in its daily rides. The table and graph below show the number of passengers, X, in a single taxi cab and the observed probabilities at a randomly selected time.

1/1 point

Number of passengers xi	0	1	2	3	4	5	6
Probability, pi	0.10	0.25	0.25	0.15	0.15	0.05	0.05

Probability distribution of number of passengers

Select the correct Cumulative Distribution Function (CDF) based on the observed probabilities.

0	Number of passengers(x)	0	1	2	3	4	5	6
	Cumulative probability (Fx)	0.5	0.5	0.5	0.5	0.5	0.5	0.5

0	Number of passengers(x)	0	1	2	3	4	5	6
	Cumulative probability (Fx)	0.10	0.35	0.35	0.5	0.65	0.7	0.75

0	Number of passengers(x)	0	1	2	3	4	5	6
	Cumulative probability (Fx)	1	0.90	0.65	0.4	0.25	0.1	0.05

\odot	Number of passengers(x)	0	1	2	3	4	5	6	
	Cumulative probability (Fx)	0.1	0.35	0.6	0.75	0.9	0.95	1	

⊘ Correct

A CDF calculates the probability of a random variable being **less than or equal to a specific point**. It accumulates probabilities such that its values are non-decreasing, starting at 0 and ending at

Select all statements that are true based on the provided graph.

 $\label{eq:multiple} \square \qquad \qquad \mu_{normal_A} > \mu_{normal_B}$

 $\sigma_{\text{normal}_D} > \sigma_{\text{normal}_A}$

⊘ Correct

The parameter σ , or standard deviation, controls the spread of the distribution. Therefore, the higher the σ , the wider (more spread) the graph is around the center.

 ν $\mu_{normal_D} > \mu_{normal_C}$

 \bigcirc Correct
The parameter μ , or mean, controls the center of the distribution. Therefore the higher the μ , the farther the center is from the origin.

 $\sigma_{\text{normal_C}} > \sigma_{\text{normal_B}}$

The parameter σ , or standard deviation, controls the spread of the distribution. Therefore, the higher the σ , the wider (more spread) the graph is around the center.