Tutorial 04 - More space

Exercise 1.

Let $L := \mathsf{DSPACE}(\log n)$ and $\mathsf{NL} := \mathsf{NSPACE}(\log n)$.

- **1.** Show that EVEN = $\{x \mid x \text{ has an even number of 1s} \}$ is in L.
- 2. Show that the language of balanced parentheses (with only one kind of parenthesis) is in L.
- **3.** Show that PATH = $\{\langle G = (V, E), x \in V, y \in V \rangle \mid \text{There exists a path between } x \text{ and } y \text{ in } G\}$ is in NL.

Exercise 2. NL-completeness

Recall that $L = \mathsf{DSPACE}(\log n)$ and $\mathsf{NL} = \mathsf{NSPACE}(\log n)$. We would like to study problems that are complete for the class NL , and therefore we need to define a notion of NL -completeness:

Definition. A language A is *logspace reducible* to a language B ($A \le_l B$), if there exists a function $f: \{0,1\}^* \to \{0,1\}^*$ that can be computed in logspace such that $x \in A$ iff $f(x) \in B$ for every $x \in \{0,1\}^*$. A language B is NL-complete if it is in NL and for every $A \in NL$, $A \le_l B$.

- **1.** Prove that $L \subseteq NL \subseteq P$.
- **2.** Prove that if $A \leq_l B$ and $B \leq_l C$, then $A \leq_l C$. Furthermore, prove that if $A \leq_l B$ and $B \in NL$, then $A \in NL$.
- **3.** Prove that PATH = $\{\langle G = (V, E), s \in V, t \in V \rangle \mid \text{There exists a path between } x \text{ and } y \text{ in } G\}$ is NL-complete.
- **4.** Prove that STRONGCONN = $\{G = (V, E) \mid G \text{ is a strongly connected graph}\}$ is NL-complete.

Exercise 3. NL = coNL

Let coNL be the class of languages whose complements belong to NL. We want to show that NL = coNL (Immerman–Szelepcsényi theorem).

1. Show that $COPATH = \{(G, s, t) : \text{ there is no path from } s \text{ to } t \text{ in } G\}$ is CONL-complete (by logspace reductions).

Given a graph G and its vertex s, we define S_i as the set of vertices of G that are accessible from s in at most i steps.

- **2.** Propose an NDTM M_0 in NL that takes on input (G, s, u, i) and accepts iff $u \in S_i$.
- **3.** Propose a NDTM M_1 in NL that has at least one accepting path on input $(G, s, u, i, |S_i|)$ and, when M_1 accepts this input, then it outputs 1 if $u \in S_i$ and 0 otherwise. (We suppose that i and $|S_i|$ are given in binary.)
- **4.** Propose a NDTM M_2 in NL that has at least one accepting path on input $(G, s, i, |S_i|)$ and, when M_2 accepts this input, then $|S_{i+1}|$ is written on the output tape.

- **5.** Construct a NDTM M in NL with input (G,s) such that M(G,s) has at least one accepting path and, when if M(G,s) accepts, the number of vertices accessible from s is written in the output tape.
- **6.** Prove that $COPATH \in NL$.
- Deduce that NL = coNL.

Exercise 4. Little space is no space at all! We are going to show that a language that can be recognized in $o(\log \log n)$ space can in fact be recognized in O(1) space. This implies, e.g., that DSPACE($\sqrt{\log \log n}$) = DSPACE(1).

- **1.** Let $\mathcal{L} \notin \mathsf{DSPACE}(1)$ and suppose that M is a Turing machine that recognizes \mathcal{L} in space $o(\log\log n)$. For every $k \in \mathbb{N}$ show that there exists $x \in \mathcal{L}$ such that M(x) uses at least k cells on the work tape during the computation. Furthermore, if $x_k \in \mathcal{L}$ denotes the shortest word with this property, then $\lim_{k \to \infty} |x_k| \to \infty$.
- **2.** At every step of the computation of M(x) we define the current *internal configuration* of M as the tuple (q, y), where q is the current state of M and y encodes the current contents of the work tapes of M and the positions of the work heads. Show that M has $o(\log |x|)$ different internal configurations during the computation of M(x).
- 3. We define the *i*th *crossing sequence* $C_i(x)$ of a M on an input x, $1 \le i \le |x| 1$, as a vector (c_1, c_2, \ldots, c_m) , where c_1 is the internal configuration of M when the input head first crossed from a cell i to a cell i + 1 on the input tape, c_2 is the internal configuration of M when the input head first crossed from a cell i + 1 to i, etc. (so that the odd elements denote configurations of M after crossing ith cell left-to-right, and the even ones after crossing right-to-left from (i + 1)th cell to ith). Show that there are o(|x|) different crossing-sequences that appear on an input x.
- **4.** Show that the crossing sequences of M on x_k are pairwise different. Conclude.