

Time-Staging Enhancement of Hybrid System Falsification

Gidon Ernst¹, Ichiro Hasuo¹, Sean Sedwards², Zhenya Zhang¹ ¹National Institute of Informatics, Tokyo, Japan ² University of Waterloo, Waterloo, Canada

Problem

- Falsification problem is defined as follows:
 - Given: a model \mathcal{M} (that takes an input signal **u** and yields an output signal $\mathcal{M}(\mathbf{u})$), and a specification φ (a temporal formula)
 - Answer: error input, that is, an input signal u such that the corresponding output $\mathcal{M}(\mathbf{u})$ violates φ
- Challenges:
 - Black/Grey box model, e.g., model in Simulink, etc.
 - Continuous (infinite) input space

Related work

- Robust semantics of temporal formulas
 - Traditional: Boolean satisfaction relation $\mathbf{v} \models \varphi$
 - Now: quantity $[\![\mathbf{v}, \varphi]\!] \in \mathbb{R} \cup \{\infty, -\infty\}$ $\llbracket \mathbf{v}_2, \varphi \rrbracket = -10$
- Optimization-based falsification:
 - Objective function: $\llbracket \mathbf{v}, \varphi \rrbracket$
 - Solvers: Nelder-Mead, CMA-ES, Simulated Annealing, etc. $\llbracket \mathcal{M}(\mathbf{u}^{(i+1)}), \varphi \rrbracket > \llbracket \mathcal{M}(\mathbf{u}^{(i)}), \varphi \rrbracket$

Motivating example

 \Box (speed < 120)

- In the *i*-th sampling one tries an input signal $\mathbf{u}^{(i)}$. The corresponding output signal $\mathbf{v}^{(i)} = \mathcal{M}(\mathbf{u}^{(i)})$ is shown below it.
- Optimization algorithm decides a new input signal $\mathbf{u}^{(i+1)} = (u_1^{(i+1)}, \dots, u_K^{(i+1)}).$ and $\mathbf{u}^{(i+1)}$ makes the robustness smaller (i.e. the peak vehicle speed higher).

Time-staged strategy

- In the first stage (left), we run a falsification algorithm and try to find an initial input segment that achieves low robustness (i.e. high peak speed).
- This process will gradually improve candidates for the initial input segment, in the way the arrows \(\) on the left in the figure

Time-staged falsification algorithm

Require: a falsification solver Falsify, a system model \mathcal{M} , an **STL** formula φ , $T \in \mathbb{R}_{>0}$ and $K \in \mathbb{N}$ > the input prefix obtained so far. We start with the empty signal () 1: $\mathbf{u} \leftarrow ()$

2: **for** $j \in \{1, ..., K\}$ **do**

 $\mathbf{u}' \leftarrow \mathsf{Falsify}(\mathcal{M}_{\mathbf{u}}, \partial_{\mathcal{M}(\mathbf{u})} \rho_{\varphi}, \frac{T}{K})$

 \triangleright synthesizing the *j*-th input segment

 $\mathbf{u} \leftarrow \mathbf{u} \cdot \mathbf{u}'$

 \triangleright concatenate \mathbf{u}' , after which the length of \mathbf{u} is $\frac{jT}{K}$

 \triangleright a time-staged falsification trial is successful if $\llbracket \mathcal{M}(\mathbf{u}), \varphi \rrbracket < 0$

5: return u

Benchmark 1: Automatic transmission

	S1		S2		S3 easy		S3 hard		S4 easy		S4 hard	
Algorithm	time	#/20	time	#/20	time	#/20	time	#/20	time	#/20	time	#/20
CMA-ES	27s	20	$\mathbf{5s}$	20	39s	14	57s	0	32s	16	59s	0
+TS	52s	15	15s	16	9s	19	23s	11	15s	14	24s	3
+A-TS	41s	18	15s	17	9s	16	21s	10	26s	14	20s	5
SA	50s	5	43s	7	37s	9	55s	0	35s	6	47s	5
+TS	37s	20	33s	16	11s	19	33s	8	21s	14	51s	0
+A-TS	34s	20	18s	17	9s	18	26s	4	16s	18	30s	$2 \mid$
GNM	6 s	20*	61s	0*	56s	0*	55s	0*	43s	0*	53s	0*
+TS	42s	20*	15s	20*	13s	20*	25s	20*	11s	20*	52s	0*
+A-TS	20s	20*	16s	20*	10s	20*	26s	20*	13s	20*	43s	0*

S1 $\square_{[0,30]}$ (speed < 120) **S2** $\square_{[0,30]}$ (gear = 3 \rightarrow speed \geq 30)

S3 $\lozenge_{[10,30]}$ (speed $\le v_{\min} \lor speed \ge v_{\max}$), easy: $v_{\min} : 50$, $v_{\max} : 60$; hard: $v_{\min} : 53$, $v_{\max} : 57$.

S4 $\square_{[0,10]}(v_{\min} < speed) \lor \lozenge_{[0,30]}(rpm > \omega_{\max})$ easy: $v_{\min} : 80, \omega_{\max} : 4500$; hard: $v_{\min} : 50, \omega_{\max} : 2520$.

Benchmark 2: Abstract fuel control

	$\neg (\lozenge_{[0,6]} \square_{[0,3]} (AF - AF_{ref} > 0.07 * 14.7))$	$\neg(\lozenge_{[6,26]}\square_{[0,4]}(AF - AF_{ref} > 0.01 * 14.7))$
Algorithm	#/20	$\pm/20$
CMA-ES	49s 0	82s 1
+TS	30s	42s
$+ A TS $	26s	41s
SA	51s 0	76s 2
- TS	47s 1	54s
$+ A TS $	34s	42s
GNM	50s $0*$	86s 0*
- TS	30s $20*$	20s $20*$
$+ A TS $	0^*	19s $20*$

Conclusion & Future work

We have introduced and evaluated the idea of time staging to enhance falsification for hybrid systems. The proposed method emphasizes exploitation over exploration as part of stochastic optimization. As there is no single algorithm that fits every problem (as a consequence of having no free lunch), having a variety of methods at disposal permits the user of a system to choose the one suitable for the problem at hand. We have shown that the proposed approach is a good fit for problems that suitable exhibit time-causal structures, where it significantly outperforms non-staged algorithms.

Three directions for future work:

- Instead of just picking the best trajectory for each stage, it might be beneficial to retain a few, potentially diverse ones.
- Discover time stages adaptively.
- Explore variations of robust semantics to mitigate discrete propositions.

Acknowledgements

This work is supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), Japan Science and Technology Agency.