Homework 7

Due date: Jan. 2nd, 2024

Turn in your hard-copy hand-writing homework in class

Rules:

- Work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism.
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.

1. For the circuit below, $U_S=100 \angle 0^\circ \text{ V (rms)}$, $I_S=2 \angle 0^\circ \text{ A}$, $\omega L=30 \Omega$, $1/\omega C=90 \Omega$, find the complex power delivered by **voltage and current source**.

2. For the circuit below, find I_{AB} , I_{BC} , I_{CA} , V_{CA} and in the circuit.

- 3. Consider the following three-phase circuit. R=20 Ω , $jX_L = j5 \Omega$, Z= $(1+j0.5) \Omega$.
 - (1) Calculate the line current I_{θ} .
 - (2) Calculate the voltage U_{AB} .
 - (3) Calculate the total complex power absorbed by all the loads including \mathbb{Z} , \mathbb{R} and jX_L .

- 4. For the circuit below, $U_S=80 \angle 30^{\circ} \text{ V}$ (phasor expressed by amplitude), find
 - (1) The current I_S for switch S is off.
 - (2) The complex power delivered by **voltage source** when *S* is off.
 - (3) The current I_S when the switch S is on.

- 5. For the circuit below, please find:
 - (a) The average power released by the source.
 - (b) The average power delivered to the 18Ω resistor.

S. (a)
$$Z_{L}' = 8 - 20j + (18 + 45j) = 10 - 15j$$
 $2'$
 $Z_{IN} = 6 + 4j + \frac{10 - 15j}{n^{2}} = 7.6 + 1.6j = 7.77 \times 11.8j^{\circ}$, $n = \frac{3}{2} \approx 2.5$
 $L_{1} = \frac{40}{2in} = 5.15 \times 1.18j^{\circ}$ $2'$
 $5 = 1.5 \times 1 = 2.06 \times 11.8j^{\circ}$ $1.8 \times 1.8 \times 1.8$

6. For the following circuit, please find current I_{θ}

