

BEARS Make Neuro-Symbolic Models Aware of their Reasoning Shortcuts

E. Marconato ^{1,2} S. Bortolotti ¹ E. v. Krieken ³

A. Vergari³ A. Passerini¹ S. Teso¹

¹University of Trento

²University of Pisa

³University of Edinburgh

REASONING SHORTCUTS

NeSy predictors such as **DeepProbLog**[1], and **Logic Tensor Networks**[2], acquire concepts that comply with the knowledge.

Are learned concepts interpretable and is the model trustworthy? Not always! [3]

Reasoning Shortcuts (RSs) like this might affect any NeSy predictor!

[3] Marconato et al., Not All Neuro-Symbolic Concepts are Created Equal: Analysis and Mitigation of Reasoning Shortcuts, NeurIPS (2023)

BEARS: BE AWARE OF REASONING SHORTCUTS!

Effective mitigation strategies for RSs, like concept supervision, are often impractical. If the model learns a RS what concepts can we trust?

Over-confident solutions are dangerous: impossible to be aware of wrong concepts!

We propose bears to estimate concept uncertainty!

DESIDERATA

- Concept calibration
- High label accuracy
- Cost effectiveness

SOLUTION

bears combines **Deep Ensembles** + **diversification** (\sim Bayesian NeSy) and provably optimizes for all desiderata:

$$\mathcal{L}_{\texttt{bears}} = \mathcal{L}(\mathbf{x}, \mathbf{y}; \mathsf{K}, \theta_t) \ + \gamma_1 \cdot \mathsf{KL}\big(p_{\theta_t}(\mathbf{C} \mid \mathbf{x}) \mid\mid \frac{1}{t} \sum\limits_{i=1}^t p_{\theta_i}(\mathbf{C} \mid \mathbf{x})\big) + \gamma_2 \cdot H(p_{\theta_t}(\mathbf{C} \mid \mathbf{x}))$$

EXPERIMENTS

1 An example from MNIST-Addition

Solve the sum between two digits, e.g., 2 + 3 = 5.

2 Active learning with bears

3 bears in real-world: BDD-OIA [4]

	mECE_C	$ECE_C(F, S)$	$ECE_C(R)$	$\mathrm{ECE}_C(L)$
DPL	0.84 ± 0.01	0.75 ± 0.17	0.79 ± 0.05	0.59 ± 0.32
+ MCDO	0.83 ± 0.01	0.72 ± 0.19	0.76 ± 0.08	0.55 ± 0.33
+ LA	0.85 ± 0.01	0.84 ± 0.10	0.87 ± 0.04	0.67 ± 0.19
+ PCBM	0.68 ± 0.01	0.26 ± 0.01	0.26 ± 0.02	0.11 ± 0.02
+ DE	0.79 ± 0.01	0.62 ± 0.03	0.71 ± 0.10	0.37 ± 0.12
+ bears	$\boldsymbol{0.58 \pm 0.01}$	$\boldsymbol{0.14 \pm 0.01}$	0.10 ± 0.01	$\boldsymbol{0.02 \pm 0.01}$

- 1 Manhaeve et al., DeepProblog, NeurlPS (2018)
- [2] Donadello et al., Logic Tensor Networks, IEEE (2018)
- [4] Xu et al., BDD-OIA dataset, CVPR (2020).