the polyTest model

polyTest is a statistical method for identifying genomic annotations that are enriched with GWAS signals. The polyTest model is detailed in the supplement to this paper. It makes the assumption that, at each SNP i, the GWAS effect β_i is a draw from a normal distribution centered at 0 with some variance σ_i^2 :

$$\beta_i \sim N(0, \sigma_i^2)$$

It further assumes that σ_i^2 is determined by the functional annotations at SNP i, so that:

$$\sigma_i^2 = s_i + \exp(\sum_j x_{ij} \gamma_j)$$

Where s_i is a baseline value depending on properties of the SNP (allele frequency, imputation quality, etc), x_{ij} is 0 or 1^1 for absence or presence of annotation j at SNP i, and γ_j is the model parameter for annotation j.

polyTest determines a maximum-likelihood fit for the parameters $(\gamma_1, \gamma_2, \gamma_3, ...)$ to the observed GWAS data. If annotation j is uninformative about the GWAS signal, γ_j will be close to 0. However, if annotation j is a good model for the GWAS signal, it will be significantly greater than 0, because SNPs with annotation j will have large effects and require large γ_j (leading to large σ^2) for the maximum-likelihood fit.

 $^{^{1}}x_{ij}$ could also be a continuous value