Question de cours

- 1. Définition de produit scalaire, de norme et de norme euclidienne associée et en donner un exemple de chaque.
- 2. Énoncer et démontrer l'inégalité de Cauchy-Schwarz.
- 3. Énoncer le procédé d'orthonormalisation de Gram-Schmidt. Quelle hypothèse permet d'assurer l'unicité de la base ainsi orthonormalisée.
- 4. Soit E un espace préhilbertien de dimension finie (un euclidien), et soit F un sev de E. Montrer que

$$F \oplus F^{\perp} = E$$

5. Enoncer la formule de la projection orthogonale sur une sous-espace munie d'une base orthonormée. Enoncer le théorème de la projection orthogonale.

Exercice 1 : Produit scalaire dans $\mathcal{M}_n(\mathbb{R})$ et Application de Cauchy-Schwarz

Pour $A, B \in \mathcal{M}_n(\mathbb{R})$, on définit

$$\langle A, B \rangle = \operatorname{tr}(A^T B).$$

- 1. Démontrer que cette formule définit un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.
- 2. En déduire que, pour tous $A, B \in \mathcal{S}_n(\mathbb{R})$, on a

$$(\operatorname{tr}(AB))^2 \le \operatorname{tr}(A^2)\operatorname{tr}(B^2).$$

Exercice 2 : Des produits scalaires définit par des intégrales

Démontrer que les formules suivantes définissent des produits scalaires sur l'espace vectoriel associé :

1.
$$\langle f, g \rangle = f(0)g(0) + \int_0^1 f'(t)g'(t)dt \text{ sur } E = \mathcal{C}^1([0, 1], \mathbb{R});$$

2.
$$\langle f, g \rangle = \int_a^b f(t)g(t)w(t)dt$$
 sur $E = \mathcal{C}([a, b], \mathbb{R})$ où $w \in E$ satisfait $w > 0$ sur $[a, b]$.

Exercice 3: Application de Cauchy-Schwarz 1

Démontrer que : $\forall (x_1, \dots, x_n) \in \mathbb{R}^n$,

$$\left(\sum_{k=1}^{n} \frac{x_k}{2^k}\right)^2 \le \frac{1}{3} \sum_{k=1}^{n} x_k^2.$$

Exercice 4 : Application de Cauchy-Schwarz 2

Soient $x_1, \ldots, x_n \in \mathbb{R}$.

1. Démontrer que

$$\left(\sum_{k=1}^{n} x_k\right)^2 \le n \sum_{k=1}^{n} x_k^2$$

et étudier les cas d'égalité.

2. Désormais, on suppose $\forall k \in [1, n], x_k > 0$. Démontrer que

$$\left(\sum_{k=1}^{n} x_k\right) \left(\sum_{k=1}^{n} \frac{1}{x_k}\right) \ge n^2$$

. Que dire du cas d'égalité?

Exercice 5 : Application de Cauchy-Schwarz 3

Soit $f \in \mathcal{C}^1([a, b], \mathbb{R})$ telle que f(a) = 0.

1. Démontrer que, pour tout $t \in [a, b]$, on a

$$f^2(t) \le (t-a) \int_a^t f'^2(u) du.$$

2. En déduire que

$$\int_a^b f^2(t)dt \leq \frac{(b-a)^2}{2} \int_a^b f'^2(u)du.$$

Exercice 6: Intégration - Produit Scalaire - Application de Cauchy-Schwarz 4

1. Montrer que:

$$||f|| = \sqrt{\int_a^b f^2(t)dt}$$

est une norme sur $C^0([a,b])$.

- 2. Énoncer et démontrer l'inégalité de Cauchy Schwarz.
- 3. Application : On considère l'espace $E = C^0([a, b], \mathbb{R}^{+*})$. Déterminer :

$$\inf_{f \in E} \left(\int_{a}^{b} f(t)dt \times \int_{a}^{b} \frac{1}{f(t)}dt \right)$$

Exercice 7: Des bases d'orthogonales par simples observations

 \mathbb{R}^4 est muni de sa structure euclidienne canonique. On considère les sous-espaces F et G de \mathbb{R}^4 définis par :

$$F = \{(x, y, z, t) \in \mathbb{R}^4 : x - y + 2z + t = 0 \text{ et } -x + 2y + 3z - t = 0\}$$
$$G = \text{vect}((1, 1, 1, 0), (2, 1, 1, -1)).$$

Déterminer une base de F^{\perp} et de G^{\perp} .

Exercice 8: Relations sur les orthogonaux à savoir

Soit E un espace préhilbertien, et A et B deux parties de E. Démontrer les relations suivantes :

- $1. \ A \subset B \implies B^{\perp} \subset A^{\perp}.$
- $2. \ (A \cup B)^{\perp} = A^{\perp} \cap B^{\perp}.$

- 3. $A^{\perp} = \text{vect}(A)^{\perp}$;
- 4. $\operatorname{vect}(A) \subset A^{\perp \perp}$.
- 5. On suppose de plus que E est de dimension finie. Démontrer que $\operatorname{vect}(A) = A^{\perp \perp}$.
- 6. Bonus : Soient F et G deux sous-espaces vectoriels de E. Montrer que :

$$(F+G)^{\perp} = F^{\perp} \cap G^{\perp}.$$

$$F^{\perp} + G^{\perp} \subset (F \cap G)^{\perp}$$
.

Que se passe-t-il en dimension finie?

Exercice 9 : Contre-exemple d'un s.e.v. qui n'admet pas de supplémentaire orthogonal

On considère $E = C([0,1], \mathbb{R})$ muni du produit scalaire $(f,g) = \int_0^1 f(t)g(t)dt$.

Soit $F = \{f \in E, f(0) = 0\}$. Montrer que $F^{\perp} = \{0\}$. En déduire que F n'admet pas de supplémentaire orthogonal.

Exercice 10 : Orthonormalisons les vecteurs de $\mathbb{R}_2[X]$

Déterminer une base orthonormale de $\mathbb{R}_2[X]$ muni du produit scalaire

$$\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t)dt.$$

Exercice 11 : Projection sur $\mathbb{R}_1[X]$

Soit $E = \mathcal{C}([0,1])$ muni du produit scalaire $\langle f,g \rangle = \int_0^1 f(t)g(t)dt$. Calculer le projeté orthogonal de x^2 sur F = vect(1,x).

Remarque : On n'est pas obligé d'orthormaliser les vecteurs 1 et X. En effet, on sait que $p_{\mathbb{R}_1[X]}(X^2) \in \mathbb{R}_1[X]$, donc il existe $a, b \in \mathbb{R}$ tel que $p_{\mathbb{R}_1[X]}(X^2) = aX + b$ avec $X^2 - p_{\mathbb{R}_1[X]}(X^2) \perp 1$ et $X^2 - p_{\mathbb{R}_1[X]}(X^2) \perp X$ (un dessin dans \mathbb{R}^3 permet de s'en rappeler). Ces deux conditions d'orthogonalité permettent, par le calcul du produit scalaire de déterminer a et b.

Exercice 12 : Calcul de distance par théorème de la projection orthogonale - 1

Calculer
$$\inf_{a,b\in\mathbb{R}} \int_0^1 (x^2 - ax - b)^2 dx$$
.

Exercice 13 : Calcul de distance par théorème de la projection orthogonale - 2

Calculer
$$\inf_{a,b\in\mathbb{R}} \int_0^{2\pi} (t - a\cos(t) - b\sin(t))^2 dt$$
.

Exercice 14 : Une sorte de réciproque à l'identité du parallélogramme

Version MP cf $Algèbre\ et\ Probabilités$ de Xavier Gourdon exercice 9 page 263 : Soit E un \mathbb{R} -espace vectoriel normé vérifiant

$$\forall (x,y) \in E^2, \|x+y\|^2 + \|x-y\|^2 = 2\|x\|^2 + 2\|y\|^2.$$

Montrer que E est un espace préhilbertien réel (ce qui est équivalent à montrer que la norme est euclidienne).

Version sup:

Il est bien connu que si E est un espace préhilbertien muni de la norme $\|.\|$, alors l'identité de la médiane (ou du parallélogramme) est vérifiée, à savoir : pour tous x, y de E, on a :

$$||x + y||^2 + ||x - y||^2 = 2||x||^2 + 2||y||^2.$$

L'objectif de cet exercice est de montrer une sorte de réciproque à cette propriété, à savoir le résultat suivant : si E est un espace vectoriel normé réel dont la norme vérifie l'identité de la médiane, alors E est nécessairement un espace préhilbertien, c'est-à-dire qu'il existe un produit scalaire (.,.) sur E tel que pour tout x de E, on a $(x,x) = ||x||^2$. Il s'agit donc de construire un produit scalaire, et compte tenu des formules de polarisation, on pose :

$$(x,y) = \frac{1}{4} (\|x+y\|^2 - \|x-y\|^2).$$

Il reste à vérifier que l'on a bien défini ainsi un produit scalaire.

- 1. Montrer que pour tout x, y de E, on a (x, y) = (y, x) et $(x, x) = ||x||^2$.
- 2. Montrer que pour $x_1, x_2, y \in E$, on a $(x_1 + x_2, y) (x_1, y) (x_2, y) = 0$ (on utilisera l'identité de la médiane avec les paires $(x_1 + y, x_2 + y)$ et $(x_1 y, x_2 y)$).
- 3. Montrer, en utilisant la question précédente, que si $x,y\in E$ et $r\in\mathbb{Q}$, on a (rx,y)=r(x,y). En utilisant un argument de densité et de continuité, montrer que c'est encore vrai pour $r\in\mathbb{R}$.
- 4. Conclure!

Exercice 15 : Déterminant de Gram

Soit E un espace euclidien. A une famille (x_1, \ldots, x_p) de p vecteurs de E. On introduit la matrice suivante : $G_p(x_1, \ldots, x_p) = (\langle x_i, x_j \rangle)_{1 \leq i,j \leq p}$.

- 1. Montrer que la famille (x_1, \ldots, x_p) est liée ssi $\det G_p(x_1, \ldots, x_p) = 0$
- 2. On suppose maintenant que la famille (x_1, \ldots, x_p) est libre et on note $F = \text{vect}(x_1, \ldots, x_p)$.
 - (a) Soit $\mathcal{B} = (e_1, \dots, e_p)$ une BON de F et $A = \operatorname{mat}_{\mathcal{B}}(x_1, \dots, x_p)$. Montrer que $G_p(x_1, \dots, x_p) = A^{\top}A$.
 - (b) En déduire que $\det G_p(x_1, \ldots x_p) > 0$
- 3. Soit $x \in E$. On note p la projection orthogonale sur F.
 - (a) Montrer que det $G_{p+1}(x, x_1, \dots x_p) = \det G_{p+1}(x p(x), x_1, \dots x_p)$
 - (b) Montrer que $d(x, F)^2 = \frac{\det G_{p+1}(x, x_1, \dots, x_p)}{\det G_p(x_1, \dots, x_p)}$

Exercice 16 : Théorème de représentation de Riesz

Soit $(E, \langle .;. \rangle)$ un espace préhilbertien réel de dimension finie $(n \geq 1)$ (un euclidien). On note E' (ou E^*) l'espace dual de E (c'est l'espace des formes linéaires de E dans \mathbb{R}). Montrer que :

$$\forall \varphi \in E', \exists ! y \in E, \forall x \in E, \varphi(x) = \langle y; x \rangle.$$