Course 3

1.5 Group homomorphisms

Let us now define some special maps between groups. We denote by the same symbol operations in different arbitrary structures.

Definition 1.5.1 Let (G, \cdot) and (G', \cdot) be groups and let $f: G \to G'$ be a function. Then f is called a (group) homomorphism if

$$f(x \cdot y) = f(x) \cdot f(y), \quad \forall x, y \in G.$$

A group homomorphism $f: G \to G'$ is called:

- *isomorphism* if it is bijective;
- endomorphism if $(G, \cdot) = (G', \cdot)$;
- automorphism if it is bijective and $(G, \cdot) = (G', \cdot)$.

The sets of endomorphisms and automorphisms of a group G are denoted by $\operatorname{End}(G)$ and $\operatorname{Aut}(G)$ respectively.

We denote by $G \simeq G'$ or $G \cong G'$ the fact that two groups G and G' are isomorphic. Usually, we denote by 1 and 1' the identity elements in G and G' respectively.

Example 1.5.2 (a) Let (G, \cdot) and (G', \cdot) be groups and let $f: G \to G'$ be defined by $f(x) = 1', \forall x \in G$. Then f is a homomorphism, called the *trivial homomorphism*.

- (b) Let (G,\cdot) be a group. Then the identity map $1_G:G\to G$ is an automorphism of G.
- (c) Let (G, \cdot) be a group and let $H \leq G$. Define $i: H \to G$ by $i(x) = x, \forall x \in H$. Then i is a homomorphism, called the *inclusion homomorphism*.
- (d) Let $a \in \mathbb{Z}$ and let $t_a : \mathbb{Z} \to \mathbb{Z}$ be defined by $t_a(x) = a \cdot x$. Then t_a is a group homomorphism from the group $(\mathbb{Z}, +)$ to itself.
- (e) Let $n \in \mathbb{N}$ with $n \geq 2$. The map $f : \mathbb{Z} \to \mathbb{Z}_n$ defined by $f(x) = \widehat{x}$ is a group homomorphism between the groups $(\mathbb{Z}, +)$ and $(\mathbb{Z}_n, +)$. The map $f : \mathbb{Z} \to n\mathbb{Z}$ defined by f(x) = nx is a group isomorphism between the groups $(\mathbb{Z}, +)$ and $(n\mathbb{Z}, +)$.
- (f) Let $f: \mathbb{C}^* \to \mathbb{R}^*$ be defined by f(z) = |z|. Then f is a group homomorphism between (\mathbb{C}^*, \cdot) and (\mathbb{R}^*, \cdot) . But $f: \mathbb{C} \to \mathbb{R}$ defined by f(z) = |z| is not a group homomorphism between the groups $(\mathbb{C}, +)$ and $(\mathbb{R}, +)$.
 - (g) Let $n \in \mathbb{N}$, $n \geq 2$ and let $f: GL_n(\mathbb{R}) \to \mathbb{R}^*$ be defined by

$$f(A) = \det(A)$$
.

Then f is a group homomorphism between the groups $(GL_n(\mathbb{R}), \cdot)$ and (\mathbb{R}^*, \cdot) .

(h) Let (G,\cdot) be a group and $g\in G$. Let $i_g:G\to G$ be defined by

$$i_g(x) = g^{-1} \cdot x \cdot g.$$

Then i_g is an automorphism of (G, \cdot) , called the *inner automorphism* defined by g. The element $g^{-1} \cdot x \cdot g$ is called the *conjugate* of x by g.

Theorem 1.5.3 (i) Let (G, \cdot) and (G', \cdot) be groups, and let $f : G \to G'$ be a group isomorphism. Then $f^{-1} : G' \to G$ is again a group isomorphism.

(ii) Let (G, \cdot) , (G', \cdot) and (G'', \cdot) be groups, and let $f: G \to G'$ and $g: G' \to G''$ be group homomorphisms. Then $g \circ f: G \to G''$ is a group homomorphism.

Proof. (i) Clearly, f^{-1} is bijective. Now let $x', y' \in G'$. By the surjectivity of f, $\exists x, y \in G$ such that f(x) = x' and f(y) = y'. Since f is a homomorphism, it follows that

$$f^{-1}(x' \cdot y') = f^{-1}(f(x) \cdot f(y)) = f^{-1}(f(x \cdot y)) = x \cdot y = f^{-1}(x') \cdot f^{-1}(y').$$

Therefore, f^{-1} is an isomorphism.

(ii) Let $x, y \in G$. We have:

$$(g\circ f)(x\cdot y)=(g(f(x\cdot y))=g(f(x)\cdot f(y))=g(f(x))\cdot g(f(y))=(g\circ f)(x)\cdot (g\circ f)(y)).$$

This shows that $g \circ f$ is a group homomorphism.

Corollary 1.5.4 Let (G, \cdot) be a group. Then $(\operatorname{End}(G), \circ)$ is a monoid and its group of invertible elements is

$$U(\operatorname{End}(G), \circ) = \operatorname{Aut}(G).$$

Theorem 1.5.5 Let (G, \cdot) and (G', \cdot) be groups, and let $f: G \to G'$ be a group homomorphism. Then: (i) f(1) = 1';

$$(ii)(f(x))^{-1} = f(x^{-1}), \forall x \in G.$$

Proof. (i) We have $\forall x \in G$, $1 \cdot x = x \cdot 1 = x$, so that $f(1 \cdot x) = f(x \cdot 1) = f(x)$. Since f is a homomorphism, it follows that

$$f(1) \cdot f(x) = f(x) \cdot f(1) = f(x)$$
,

whence we get f(1) = 1' by multiplying by $(f(x))^{-1}$.

(ii) Let $x \in G$. Since $x \cdot x^{-1} = x^{-1} \cdot x = 1$, f is a homomorphism and f(1) = 1', it follows that

$$f(x) \cdot f(x^{-1}) = f(x^{-1}) \cdot f(x) = 1'$$
.

Hence
$$(f(x))^{-1} = f(x^{-1})$$
.

Let us now define two important sets related to a group homomorphism, that will be even subgroups.

Definition 1.5.6 Let (G,\cdot) and (G',\cdot) be groups, and let $f:G\to G'$ be a group homomorphism. Then the set

$$Ker f = \{x \in G \mid f(x) = 1'\}$$

is called the kernel of the homomorphism f and the set

$$Im f = \{ f(x) \mid x \in G \}$$

is called the *image* of the homomorphism f.

Theorem 1.5.7 Let (G,\cdot) and (G',\cdot) be groups, and let $f:G\to G'$ be a group homomorphism. Then

$$\operatorname{Ker} f \leq G \ and \ \operatorname{Im} f \leq G'$$
.

Proof. Since f(1) = 1', we have $1 \in \text{Ker} f \neq \emptyset$. Now let $x, y \in \text{Ker} f$. Then f(x) = f(y) = 1'. It follows that

$$f(x \cdot y^{-1}) = f(x) \cdot f(y^{-1}) = f(x) \cdot (f(y))^{-1} = 1' \cdot 1' = 1',$$

hence $x \cdot y^{-1} \in \text{Ker } f$. Therefore, $\text{Ker } f \leq G$.

Since 1' = f(1), we have $1' \in \text{Im} f \neq \emptyset$. Now let $x', y' \in \text{Im} f$. Then $\exists x, y \in G$ such that f(x) = x' and f(y) = y'. It follows that

$$x' \cdot {y'}^{-1} = f(x) \cdot (f(y))^{-1} = f(x) \cdot f(y^{-1}) = f(x \cdot y^{-1}) \in \operatorname{Im} f,$$

hence $x' \cdot {y'}^{-1} \in \text{Im} f$. Therefore, $\text{Im} f \leq G'$.

More generally, we have the following property.

Theorem 1.5.8 Let (G,\cdot) and (G',\cdot) be groups, and let $f:G\to G'$ be a group homomorphism and let H be a subgroup of G. Then

$$f(H) = \{ f(x) \mid x \in H \}$$

is a subgroup of G'.

Proof. Since H is a subgroup of G, we have $H \neq \emptyset$, and thus $f(H) \neq \emptyset$. Now let $x', y' \in f(H)$. Then x' = f(x) and y' = f(y) for some $x, y \in H$. It follows that

$$x' \cdot y'^{-1} = f(x) \cdot (f(y))^{-1} = f(x) \cdot f(y^{-1}) = f(x \cdot y^{-1}) \in f(H),$$

because $x \cdot y^{-1} \in H$. Hence $x' \cdot y'^{-1} \in f(H)$. Therefore, $f(H) \leq G'$.

It is well-known that a group homomorphism (and even a function) $f: G \to G'$ is surjective if and only if Im f = G'. We have a similar characterization of injective group homomorphisms by their kernel.

Theorem 1.5.9 Let (G,\cdot) and (G',\cdot) be groups, and let $f:G\to G'$ be a group homomorphism. Then

$$\operatorname{Ker} f = \{1\} \iff f \text{ is injective.}$$

Proof. \Longrightarrow . Suppose that $\operatorname{Ker} f = \{1\}$. Let $x, y \in G$ be such that f(x) = f(y). Then we have:

$$f(x) \cdot (f(y))^{-1} = 1' \Longrightarrow f(x \cdot y^{-1}) = 1' \Longrightarrow x \cdot y^{-1} \in \text{Ker } f = \{1\}.$$

Hence x = y. Therefore, f is injective.

 \Leftarrow . Suppose that f is injective. Clearly, $\{1\} \subseteq \operatorname{Ker} f$. Now let $x \in \operatorname{Ker} f$. Then

$$f(x) = 1' = f(1),$$

whence x = 1. Hence $\operatorname{Ker} f \subseteq \{1\}$, so that $\operatorname{Ker} f = \{1\}$.

Theorem 1.5.10 Let $f: G \to G'$ be a group homomorphism and let $X \subseteq G$. Then

$$f(< X >) = < f(X) > .$$

Proof. If $X = \emptyset$, then we have:

$$f(\langle \emptyset \rangle) = f(\{1\}) = \{f(1)\} = \{1'\} = \langle f(\emptyset) \rangle$$
.

Now assume that $X \neq \emptyset$. We have seen that

$$\langle X \rangle = \{x_1 \cdot x_2 \cdot \ldots \cdot x_n \mid x_i \in X \cup X^{-1}, i = 1, \ldots, n, n \in \mathbb{N}^* \}.$$

Since f is a group homomorphism, it follows that

$$f(\langle X \rangle) = f(\{x_1 \cdot x_2 \cdot \dots \cdot x_n \mid x_i \in X \cup X^{-1}, i = 1, \dots, n, n \in \mathbb{N}^*\})$$

$$= \{f(x_1 \cdot x_2 \cdot \dots \cdot x_n) \mid x_i \in X \cup X^{-1}, i = 1, \dots, n, n \in \mathbb{N}^*\}$$

$$= \{f(x_1) \cdot f(x_2) \cdot \dots \cdot f(x_n) \mid x_i \in X \cup X^{-1}, i = 1, \dots, n, n \in \mathbb{N}^*\}$$

$$= \langle f(X) \rangle.$$

which proves the theorem.

Corollary 1.5.11 Let $f: G \to G'$ be a group homomorphism and let $x \in G$. Then

$$f(\langle x \rangle) = \{ f(x)^k \mid k \in \mathbb{Z} \}.$$

Proof. Recall that we have $\langle x \rangle = \{x^k \mid k \in \mathbb{Z}\}$. By Theorem 1.5.10, it follows that

$$f(\langle x \rangle) = \langle f(x) \rangle = \{ f(x)^k \mid k \in \mathbb{Z} \},\$$

as required. \Box

Example 1.5.12 Let us show that

$$\operatorname{End}(\mathbb{Z}, +) = \{ t_a \mid a \in \mathbb{Z} \},\$$

$$Aut(\mathbb{Z}, +) = \{t_1, t_{-1}\},\$$

where $\forall a \in \mathbb{Z}, t_a : \mathbb{Z} \to \mathbb{Z}$ is defined by $t_a(n) = a \cdot n$.

We show the first equality by double inclusion.

First, let $f \in \text{End}(\mathbb{Z}, +)$. For every $n \in \mathbb{N}^*$, we have:

$$f(n) = f(\underbrace{1 + \dots + 1}_{n \text{ times}}) = \underbrace{f(1) + \dots + f(1)}_{n \text{ times}}) = f(1) \cdot n,$$

$$f(-n) = -f(n) = -f(1) \cdot n = f(1) \cdot (-n).$$

Also, we have $f(0) = f(1) \cdot 0$. Hence for every $n \in \mathbb{Z}$, we have $f(n) = f(1) \cdot n = t_{f(1)}(n)$. Thus $f = t_{f(1)} \in \{t_a \mid a \in \mathbb{Z}\}.$

Now let $a \in \mathbb{Z}$. For every $m, n \in \mathbb{Z}$, we have:

$$t_a(m+n) = a(m+n) = am + an = t_a(m) + t_a(n).$$

Hence $t_a \in \operatorname{End}(\mathbb{Z}, +)$

In view of the second equality, note that $\operatorname{Aut}(\mathbb{Z},+)$ consists of the bijective endomorphisms of $(\mathbb{Z},+)$. Now let $a \in \mathbb{Z}$ be such that $t_a \in \operatorname{Aut}(\mathbb{Z},+)$. By the surjectivity of t_a , there is $b \in \mathbb{Z}$ such that $t_a(b) = 1$, that is, ab = 1. But this implies that $a \in \{-1,1\}$. Note that $t_1 = 1_{\mathbb{Z}}$ and $t_{-1}(n) = -n$ for every $n \in \mathbb{Z}$. Finally, it is easy to see that $t_1, t_{-1} \in \operatorname{Aut}(\mathbb{Z},+)$.

Example 1.5.13 (a) Let us show that the groups $(\mathbb{Z}_4, +)$ and (\mathbb{Z}_5^*, \cdot) are isomorphic.

Consider $f: \mathbb{Z}_4 \to \mathbb{Z}_5^*$ defined by $f(\hat{x}) = 2^x \mod 5$. Note first that f is a well-defined function. Indeed, if $\hat{x} = \hat{y}$, then x - y = 4k for some $k \in \mathbb{Z}$, whence $2^x \equiv 2^{y + 4k} \equiv 2^y \cdot 2^{4k} \equiv 2^y \pmod 5$.

One shows that f is a group isomorphism. Note that $g: \mathbb{Z}_4 \to \mathbb{Z}_5^*$ defined by $f(\hat{x}) = 4^x \mod 5$ is a group homomorphism, but not an isomorphism.

(b) Let us show that the groups $(\mathbb{Z}, +)$ and $(\mathbb{Q}, +)$ are not isomorphic.

If there is a group isomorphism $f: \mathbb{Q} \to \mathbb{Z}$ between them, then there is $r \in \mathbb{Q}$ such that f(r) = 1. But then we have:

$$1 = f(r) = f\left(\frac{r}{2} + \frac{r}{2}\right) = f\left(\frac{r}{2}\right) + f\left(\frac{r}{2}\right) = 2f\left(\frac{r}{2}\right),$$

whence $f(\frac{r}{2}) = \frac{1}{2} \notin \mathbb{Z}$, a contradiction.