Problema 5.01. ()

Os parâmetros de uma linha de transmissão são R, G, C, L. Se for escolhida a frequência f e a potência incidente em z=0 é $P_{m,0}$.

Dado que $R=20\Omega m^{-1},\,G=80\times 10^{-6}Sm^{-1},\,L=0.4\times 10^{-6}Hm^{-1},\,C=40\times 10^{-12}Fm^{-1},\,f=50MHz,\,P_{m,0}=1W$ e $z_1=-10m$, calcule:

- a) a impedância característica da linha.
- b) a constante de propagação.
- c) a potência média da onda incidente em z_1 .

Problema 5.02. ()

Em uma linha de transmissão de comprimento l e impedância característica Z_0 a velocidade de propagação de onda é v_f . A linha é conectada em um extremo por gerador de tensão fasorial V_s e impedância interna Z_s e no outro extremo por impedância de carga Z_L . Se a frequência é f, calcular a tensão fasorial total em Z_L .

Dados: $l = 80m, Z_0 = 50\Omega, v_f = 2c/3, V_s = 120\angle 0, Z_s = 12\Omega, Z_L = 80\Omega, f = 500kHz.$

Problema 5.03. ()

A relação de onda estacionária em uma linha de transmissão, cuja impedância característica é Z_0 , é ROE. Esta linha é usada para medir as posições de máximos e mínimos de tensão da onda estacionária. Quando essa linha está terminada por Z_L a posição de um mínimo é marcada com um risco na linha. Quando Z_L é substituída por um curto-circuito as posições de mínimo estão separadas de Δl e um mínimo está localizado em posição distante l do risco, na direção da fonte de sinal. Calcular Z_L .

Dados: $Z_0 = 60\Omega, ROE = 2.5, \Delta l = 25cm, l = 7cm$

Problema 5.04. (Schaum 6.81) Para certa linha de transmissão, l = 1m, f = 262.5MHz, $R_0 = 50\Omega$, $Z_L = (30 - j200)\Omega$, $Z_S = (100 + j50)\Omega$, $u = 300m/\mu s$, calcule o comprimento elétrico da linha e os coeficientes de reflexão na carga e no início da linha.

Problema 5.05. (Schaum 6.115) Uma antena de impedância de entrada $(72 + j40)\Omega$ em f = 100MHz está conectada à um gerador de mesma frequência por uma seção de ar de 300Ω e comprimento de 1.75m. Dado que o gerador possue tensão de 10V e impedância interna de 50Ω , determine o coeficiente de reflexão na carga e no início da linha.

Problema 5.06. () Uma linha de transmissão de impedância 50Ω e comprimento 0.25λ está terminada em uma carga de $Z_L = (50 + j50)\Omega$. Para cancelar a parte imaginária, foi colocada uma linha em curto conectada em paralelo com a carga. Determine o comprimento dessa linha em curto para que a impedância na entrada da linha seja somente real.

Problema 5.07. () Uma linha de transmissão de impedância 50Ω e comprimento 0.25λ esta conectada a um stub (50Ω) em curto, de tamanho d, e a uma outra linha de 50Ω de comprimento b, terminada em uma carga de $Z_L = (100 + j50)\Omega$. Determine os tamanhos b e d para que a impedância na entrada da linha seja de 50Ω .

Problema 5.08. () A imagem da Figura abaixo mostra um circuito com linhas de transmissão sem perdas. Dado que $Z_G=50\Omega, Z_0=50\Omega, Z_L=(50+j100)\Omega, l_1=0.25\lambda, l_2=0.375\lambda, l_3=0.75\lambda$, calcular:

- a) A impedância nos terminais (A B) do gerador
- b)o coeficiente de reflexão na carga
- c) a relação de onda estacionária (ROE) na linha principal

Figura 1: Figura do exercicio 5.08

