2023 전력사용량 예측 AI 경진대회

똥안

Contents

CV strategy Remove outliers Feature Categorical Feature Numerical Feature Notebooks Model Loss function

부분적인 월간 데이터

안정적인 CV – Public Score correlation

데이터셋 작음

안정적인 CV - Public Score correlation

일반화 가능한 변수선택

안정적인 CV – Public Score correlation 충분한 fold 확보 코드 작성, 유지, 보수 용이성 고려

Validation set 7일 간격으로 앞, 뒤 1일 드랍

11fold 확보

안정적인 CV - Public Score correlation

일반화 가능한 변수선택

Target Statistic (TS) 변수 사용 시 빠르게 overfitting

특정 범주형 변수와 TS 함께 사용 시 CV – Public Score correlation 급격히 하락

범주형 변수의 정보를 TS에 포함시키면서 그와 동질적 인 범주형 변수들을 제거하여 CV – Public Score correlation을 높이는 전략

마감 2주 전까지 TS를 제외하고, 필수적인 범주형 변수, 기본 변수만 사용

모든 변수는 CV, Public Score 최소 1% 개선 후에 추가

-1% ~ 1% 내에서 변수를 제거할 수 있다면 혹은 범주 형 변수의 차원을 줄일 수 있다면 제거

안정적인 CV – Public Score correlation

일반화 가능한 변수선택

		dhc +	whc
		weekend	
One-Hot Encoding 적용시 차원의 수		12	5
전체 CV 평균		4.772	4.759
submission_1	Public Score	5.295	5.270
	Private Score	6.093	6.105
submission_2	Public Score	5.344	5.279
	Private Score	6.114	6.109

CV - Public Score correlation을 높이는 전략을 바탕으로 dhc + weekend 조합 대신 whc선택

비슷한 논리로 여타 범주형 변수들(month, university_vacation, school_vacation, dhc, weekend)를 제거

1개의 범주형 변수(whc)만을 사용

안정적인 CV - Public Score correlation

Type1. 긴 꼬리

안정적인 CV – Public Score correlation

Type2. 범위 이동

Type3. 휴가

안정적인 CV – Public Score correlation

Type4. 불규칙적 휴무일

안정적인 CV – Public Score correlation

일반화 가능한 변수선택

탐지방법1. dhc, hour별 전력량 평균 이용

안정적인 CV - Public Score correlation

탐지방법2. Validation set 예측값 모니터링

안정적인 CV - Public Score correlation

일반화 가능한 변수선택

공통변수

whc,

cos_hour, sin_hour,

temperature_squared, THI, humidity_squared,

temperature_squared_mean, THI_mean,

power_log1p_stdd_mean,

power_log1p_stdd_shift

EE_TRAIN_0.ipynb

공통변수,

EE_TRAIN_1.ipynb

공통변수,

power_log1p_stdd_cumweek_mean_shift

EE_TRAIN_2.ipynb

공통변수

power_log1p_stdd_cumweek_mean_shift,
power_log1p_stdd_thisweek_mean_shift

안정적인 CV – Public Score correlation

일반화 가능한 변수선택

범주형 변수

whc

One-Hot Encoding을 통해 5개로 변환

	dhc	weekend	whc
0	Monday	Workday	Workday
1	Tuesday	Weekend1	Weekend1
2	Wednesday	Weekend2	Weekend2
3	Thursday		Holiday
4	Friday		Closed
5	Saturday		-
6	Sunday	-	
7	Holiday		-
8	Closed		-

안정적인 CV – Public Score correlation

일반화 가능한 변수선택

범주형 변수 Closed

안정적인 CV – Public Score correlation

일반화 가능한 변수선택

범주형 변수

Closed

할인마트 휴무일

86번 마트의 경우 매월 10일과 4번째 일요일을 휴무일로 지정

87, 88, 89, 90, 91, 92번 마트의 경우 매월 2, 4번째 일요일을 휴무일로 지정

규칙적인 휴무일 외 불규칙적인 휴무일(91번 마트의 경우 6월 13일, 7월 11일, 8월 22일)을 휴

무일로 포함

2022년 8월 28일 일요일이 4번째 일요일이므로 Private Score에 영향을 미칩니다.

안정적인 CV – Public Score correlation

일반화 가능한 변수선택

수치형 변수

모든 수치형 변수는 NN을 염두에 두고 생성

cos_hour, sin_hour

temperature_squared, THI, humidity_squared

안정적인 CV - Public Score correlation

일반화 가능한 변수선택

수치형 변수 (rolling)

모든 수치형 변수는 NN을 염두에 두고 생성

temperature_mean, THI_mean

$$i \ rolling_h^d = \frac{x_{h-2}^{d-i} + x_{h-1}^{d-i} + x_h^{d-i} + x_{h+1}^{d-i} + x_{h+2}^{d-i}}{5}$$

$$2 \, rolling_{10}^d = \frac{x_8^{d-2} + x_9^{d-2} + x_{10}^{d-2} + x_{11}^{d-2} + x_{12}^{d-2}}{5}$$

rolling: 어제 혹은 2, 3일 전 비슷한 시간대(5window)에 느꼈던 온도, 습도의 정보

$$1 \ rolling_mean_h^d = \frac{x_h^d + 1 \ rolling_h^d}{2}$$

$$12 \ rolling_mean_h^d = \frac{x_h^d + 1 \ rolling_h^d + 2 \ rolling_h^d}{3}$$

$$123 \ rolling_mean_h^d = \frac{x_h^d + 1 \ rolling_h^d + 2 \ rolling_h^d + 3 \ rolling_h^d}{4}$$

$$mean_h^d = \frac{x_h^d + 1rolling_mean_h^d + 12rolling_mean_h^d + 123rolling_mean_h^d}{4}$$

안정적인 CV – Public Score correlation

일반화 가능한 변수선택

수치형 변수 (rolling)

모든 수치형 변수는 NN을 염두에 두고 생성

temperature_mean, THI_mean

	temperature	e_squared	THI	humidity_squared
vanilla	1	0.521688	0.487043	-0.275728
1rolling		0.523406	0.483777	-0.273691
2rolling		0.533213	0.487919	-0.279840
3rolling	상관계수 증가	0.536625	0.490460	-0.268420
1rolling_mean		0.554868	0.505015	-0.314470
12rolling_mean		0.578910	0.517876	-0.338940
123rolling_mean	1	0.596524	0.527870	-0.350416
mean		0.576859	0.518419	-0.333736
power_log1p		1.000000	1.000000	1.000000

1rolling_mean 정보함축 12rolling_mean (feature}_mean 123rolling_mean

변수들과 power_log1p 간 상관계수

안정적인 CV - Public Score correlation

일반화 가능한 변수선택

수치형 변수 (Target Statistic)

모든 수치형 변수는 NN을 염두에 두고 생성

power_log1p_stdd_mean

예) 월요일 1시 전력량들의 평균을 월요일 1시의 변수로 사용

안정적인 CV - Public Score correlation

일반화 가능한 변수선택

수치형 변수 (Target Statistic)

모든 수치형 변수는 NN을 염두에 두고 생성

power_log1p_stdd_shift

예) 지난주 월요일 1시의 전력량을 이번주 월요일 1시의 변수로 사용

dhc 정보 포함
month, vacation 정보 일부 포함

dhc + weekend 조합 제거 month, vacation 제거

안정적인 CV - Public Score correlation

일반화 가능한 변수선택

수치형 변수 (Target Statistic)

모든 수치형 변수는 NN을 염두에 두고 생성

power_log1p_stdd_cumweek_mean_shift

- 예) 지난주 workday들의 전력량 평균을 이번주 workday의 변수로 사용
- 예) 14번 건물의 경우 지난주 workday(월, 화, 수, 목, 금)들의 전력량 평균을 이번주 수요일 변수로 사용

workday 정보 포함
month, vacation 정보 일부 포함
week 정보 일부 포함

month, vacation 제거 week 제거

안정적인 CV – Public Score correlation

일반화 가능한 변수선택

수치형 변수 (Target Statistic)

모든 수치형 변수는 NN을 염두에 두고 생성

power_log1p_stdd_thisweek_mean_shift

- 예) 이번주 workday인 월요일의 전력량 평균을 이번주 화요일 변수로 사용
- 예) 이번주 workday인 월, 화 전력량 평균을 이번주 수요일 변수로 사용
- 예) 이번주 workday인 월, 화, 수 전력량 평균을 이번주 목요일 변수로 사용

workday 정보 포함
month, vacation 정보 일부 포함
week 정보 일부 포함

안정적인 CV – Public Score correlation

일반화 가능한 변수선택

공통변수

whc,

cos_hour, sin_hour,

temperature_squared, THI, humidity_squared,

temperature_squared_mean, THI_mean,

power_log1p_stdd_mean,

power_log1p_stdd_shift

EE_TRAIN_0.ipynb

EE_TRAIN_1.ipynb

공통변수,

power_log1p_stdd_cumweek_mean_shift

EE_TRAIN_2.ipynb

공통변수

공통변수,

power_log1p_stdd_cumweek_mean_shift, power_log1p_stdd_thisweek_mean_shift

안정적인 CV – Public Score correlation

일반화 가능한 변수선택

EE_TRAIN_0.ipynb

mean power_log1p_stdd_mean 11.225888 power_log1p_stdd_shift 9.112626 power_log1p_stdd_thisweek_mean_shift 3.538538 cos_hour 2.691489 THI_mean 2.219360 temperature_squared_mean 1.367848 THI 1.304061 sin_hour 1.113261 power_log1p_stdd_cumweek_mean_shift 0.710931 0.629741 temperature_squared humidity_squared 0.380160

EE_TRAIN_1.ipynb

mean

power_log1p_stdd_mear	1 11.323575
power_log1p_stdd_shif	t 7.429943
cos_hou	r 4.397443
THI_mear	2.449407
sin_hou	r 2.018548
temperature_squared_mear	1.713289
тн	I 1.206053
power_log1p_stdd_cumweek_mean_shift	t 1.076983
temperature_squared	0.527321
humidity_squared	0.410157

EE_TRAIN_2.ipynb

	mean
power_log1p_stdd_mean	11.834591
power_log1p_stdd_shift	7.895171
THI_mean	2.056753
temperature_squared_mean	1.577904
sin_hour	1.500297
cos_hour	1.499326
тні	1.268647
temperature_squared	0.618974
humidity_squared	0.498841

수치형 변수의 Feature Importance

안정적인 CV - Public Score correlation

일반화 가능한 변수선택

EE_INFERENCE.ipynb

submission_1.csv

8월 27일 이전	8월 27일 당일, 이후	
EE_TRAIN_0 EE_TRAIN_1	EE_TRAIN_2	
Public Score	5.2707265718	
Private Score	6.1053683645	

submission_2.csv

8월 27일 이전	8월 27일 당일, 이후
EE_TRAIN_1	EE_TRAIN_2
Public Score	5.2786695632
Private Score	6.1087725037

submission_1과 submission_2 간 Score 차이가 크지 않으므로 더 적은 변수를 사용한 submission_2 를 선택하는 것이 바람직해 보임

Model

안정적인 CV - Public Score correlation

일반화 가능한 변수선택

건물별 XGBoost 단일모형

Loss function: huber_standardized_log1p_target

	smape	mae_log1p_target	huber_log1p_target	huber_standardized_log1p_target
diffrentiable	X	X	0	0
stable	X	Х	Х	0

Model

안정적인 CV - Public Score correlation

일반화 가능한 변수선택

건물별 XGBoost 단일모형

Hyper parameter tuning: 없음

Post processing: 없음