Economics 703: Answer Key to the Mid-Term Exam

Raymond Deneckere

Fall 2017

Answer three out of four questions. Each question is worth 33 points; the remaining point is free. Be sure to substantiate your answers by citing the proper definitions, and by proving your assertions.

1. Consider the set $Z_+ = \{0, 1, 2, ...\}$ of nonnegative integers as a subset of \mathbb{R} . Is Z_+ closed, open or neither?

 Z_+ is closed. To see this, note that the complement of Z_+ in \mathbb{R} consists of $(-\infty,0) \cup_{i=1}^{\infty} (i-1,i)$, which is a union of open intervals. Since arbitrary unions of open sets are open, and since open intervals are open, the complement of Z_+ in \mathbb{R} is open. Hence Z_+ is a closed subset of of \mathbb{R} .

 Z_+ is not an open subset of \mathbb{R} . This is because every open ball around a point $n \in Z_+$ intersects Z_+ in at most a finite number of points, and hence is never entirely contained in Z_+ .

2. Define $f: \mathbb{R}^2 \to \mathbb{R}$ as follows:

$$f(x,y) = \frac{|y|}{x^2} 2^{-|y|/x^2}$$
 if $x \neq 0$
= 0 if $x = 0$

Determine wether or not f is continuous.

The function f is not continuous. To see this consider a sequence $\{x_n, y_n\}$ on the surface $y = \lambda x^2$, where $x_n \to 0$ as $n \to \infty$, and where $\lambda > 0$. Then $f(x_n, y_n) = \lambda 2^{-\lambda}$ for all n, and so $\lim_{n \to \infty} f(x_n, y_n) = \lambda 2^{-\lambda} > 0$. It follows that there exists a sequence $\{x_n, y_n\}$ with $(x_n, y_n) \to (0, 0)$ such that $\lim_{n \to \infty} f(x_n, y_n) \neq f(0, 0)$. Hence f is not continuous at (0, 0), and therefore not a continuous function.

3. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be given by the rule $f(x,y) = x^3 - 7x^2 + y^2$. Solve the problem of maximizing and minimizing f.

The conditions of the Weierstrass Theorem are not satisfied, for the domain of the function $f(\cdot, \cdot)$ is unbounded (and hence, by the Heine-Borel Theorem, not compact), so a maximizer and minimizer are not guaranteed to exist.

Worse yet, there exists no $(x_0,y_0) \in \mathbb{R}^2$ such that $f(x,y) \geq f(x_0,y_0)$ for all $(x,y) \in \mathbb{R}^2$, or $(x_1,y_1) \in \mathbb{R}^2$ such that $f(x_1,y_1) \geq f(x,y)$ for all $(x,y) \in \mathbb{R}^2$. Indeed, fix $x \in \mathbb{R}$. Then $\lim_{y\to\infty} f(x,y) = +\infty$. Furthermore, since $x^3 - 7x^2 = x(x^2 - 7) \to -\infty$ as $x \to -\infty$, we see that for any fixed $y \in \mathbb{R}$, we have $\lim_{x\to -\infty} f(x,y) = -\infty$. Hence for any $(x_1,y_1) \in \mathbb{R}^2$ there always exists (x,y)such that $f(x,y) > f(x_1,y_1)$, and for any $(x_0,y_0) \in \mathbb{R}^2$ there always exists $(x,y) \in \mathbb{R}^2$ such that $f(x,y) < f(x_0,y_0)$, and so neither the maximization problem nor the minimization problem have a solution.

4. Let $f: \mathbb{R} \to \mathbb{R}$ be given by the rule $f(x) = ax^3 + bx^2 + cx + d$, where a > 0. Show that f has a real root, i.e. there exists $x_0 \in \mathbb{R}$ such that $f(x_0) = 0$.

Observe that the function f is continuous (as a polynomial, it is differentiable everywhere, and hence continuous). Since a > 0 we have $\lim_{x\to\infty} f(x) = +\infty$ and $\lim_{x\to-\infty} f(x) = -\infty$. Hence there exists $M < \infty$ such that $f(x) \geq K$ for all $x \geq M$ and $f(x) \leq -K$ for all $x \leq -M$. Since f(-M) < 0 < f(M), it follows from the intermediate value theorem that there exists $x_0 \in (-M, M)$ such that $f(x_0) = 0$.