Dissertação apresentada à Pró-Reitoria de Pós-Graduação do Instituto Tecnológico de Aeronáutica, como parte dos requisitos para obtenção do título de Mestre em Ciências no Programa de Pós-Graduação em Engenharia Eletrônica e Computação, Área de Sistemas e Controle.

Wellington Vieira Martins de Castro

SLAM DISTRIBUÍDO ENVOLVENDO NAVEGAÇÃO, GUIAMENTO E FUSÃO SENSORIAL PARA RECONSTRUÇÃO 2D

Dissertação aprovada em sua versão final pelos abaixo assinados:

Prof. Dr. Jacques Waldmann Orientador

Prof. Dra. Emília Villani Pró-Reitora de Pós-Graduação

Campo Montenegro São José dos Campos, SP - Brasil 2022

Dados Internacionais de Catalogação-na-Publicação (CIP) Divisão de Informação e Documentação

de Castro, Wellington Vieira Martins

SLAM distribuído envolvendo navegação, guiamento e fusão sensorial para reconstrução 2D / Wellington Vieira Martins de Castro. São José dos Campos, 2022.

100f.

Dissertação de Mestrado – Curso de Engenharia Eletrônica e Computação. Área de Sistemas e Controle – Instituto Tecnológico de Aeronáutica, 2022. Orientador: Prof. Dr. Jacques Waldmann.

1. Cupim. 2. Dilema. 3. Construção. I. Instituto Tecnológico de Aeronáutica. II. Título.

REFERÊNCIA BIBLIOGRÁFICA

DE CASTRO, Wellington Vieira Martins. **SLAM distribuído envolvendo navegação, guiamento e fusão sensorial para reconstrução 2D**. 2022. 100f. Dissertação de Mestrado – Instituto Tecnológico de Aeronáutica, São José dos Campos.

CESSÃO DE DIREITOS

NOME DO AUTOR: Wellington Vieira Martins de Castro TITULO DO TRABALHO: SLAM distribuído envolvendo navegação, guiamento e fusão sensorial para reconstrução 2D.

TIPO DO TRABALHO/ANO: Dissertação / 2022

É concedida ao Instituto Tecnológico de Aeronáutica permissão para reproduzir cópias desta dissertação e para emprestar ou vender cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte desta dissertação pode ser reproduzida sem a autorização do autor.

SLAM DISTRIBUÍDO ENVOLVENDO NAVEGAÇÃO, GUIAMENTO E FUSÃO SENSORIAL PARA RECONSTRUÇÃO 2D

Wellington V	/ieira	Martins	$\mathbf{d}\mathbf{e}$	Castro
--------------	--------	---------	------------------------	--------

Composição da Banca Examinadora:

Prof. Dr. Cairo Lúcio Nascimento Júnior Presidente - ITA Prof. Dr. Jacques Waldmann Orientador - ITA

Agradecimentos

Primeiro gostaria de agradecer meus pais, Adriana e Emerson, por terem prezado minha educação desde os primeiros anos, pois seu apreço e esforços somados à minha vontade me fizeram chegar num lugar incomum para as pessoas de nossa realidade socioeconômica. Além disso, eles sempre são os primeiros a acreditar em mim em meus momentos de dúvida. Devo tudo a eles.

Agradeço ao ITA, pois o instituto figura desde cedo em meu imaginário e estudar aqui sempre foi um sonho. Quero agradecer também ao meu orientador, professor Jacques, por propor um tema de pesquisa tão rico e apaixonante. Também agradeço à CAPES pelo fundamental fomento na forma de bolsa de estudos.

Por fim, quero agradecer aos meus amigos tanto de graduação do LIA-FACOM da UFMS, quanto da pós-graduação do ITA. A amizade e incentivo de vocês tornam a vida mais leve e gostosa de ser vivida, principalmente nos dias difíceis de um mestrando. Também quero agradecer a minha namorada, Camila, por todo amor e carinho durante a última parte dessa jornada, e também por toda compreensão nos momentos que fui ausente.

Além disso, agradeço especificamente à Camila e ao Ivan por terem lido diversas versões desse texto sugerindo alterações pertinentes para facilitar seu entendimento e prazer de leitura.

Resumo

O problema de Localização e Mapeamento Simultâneos, conhecido pela sigla SLAM, pergunta se é possível para um robô ser colocado em um ambiente desconhecido a priori, e incrementalmente construir um mapa deste ambiente enquanto simultaneamente se localiza neste mapa sem a necessidade de infraestrutura de localização como GPS.

A solução do problema de SLAM é fundamental para a robótica móvel autônoma. Entretanto, apesar de já solucionado, não é uma tarefa trivial tanto do ponto de vista teórico como do ponto de vista da implementação. Dependendo da dinâmica do robô, sensores utilizados, recurso computacional disponível, necessidade de navegação e guiamento, a solução pode se tornar mais ou menos complexa.

Este trabalho desenvolve uma solução multiagente em ambiente simulado para o problema SLAM 2D. Para isso emprega o uso do Filtro de Informação Esparso, juntamente com outros algoritmos de navegação, associação de dados e de representação de mapas. As vantagens da solução distribuída do problema de SLAM, em relação ao problema original, são a divisão da carga de trabalho entre os agentes e a redundância de informação.

Abstract

The Simultaneous Localization and Mapping problem, known by the acronym SLAM, asks whether it is possible for a robot to be placed in an environment unknown a priori, and incrementally build a map of this environment while simultaneously locating itself on this map without the need for a location infrastructure such as GPS.

Solving the SLAM problem is critical for mobile robotics autonomy. However, although already solved, it is not a trivial task. both from a theoretical and implementation point of views. Depending on robot dynamics, sensors used, computing power available or need for navigation and guidance, the solution can become more or less complex.

This work develops a multi-agent solution in a simulated environment for the 2D SLAM problem. For this, it uses the Sparse Extended Information Filter, along with other algorithms for navigation, data association and map representation. The advantages of the distributed solution of the SLAM problem, in comparison with the original problem, are workload sharing between the agents and the information redundancy.

Lista de Figuras

FIGURA 1.1 –	Arquitetura simplificada do sistema SLAM desenvolvido neste trabalho. As entradas do sistema estão indicadas em vermelho, enquanto as saídas estão em verde. Em azul é possível observar algumas inter relações entre módulos	27
FIGURA 2.1 –	Diferentes vistas do ambiente simulado	28
FIGURA 2.2 –	Gêmeo digital do robô <i>Turtlebot 3</i> . Os circuitos eletrônicos do robô real não estão representados. O sensor LiDAR encontra-se no topo do robô	29
FIGURA 2.3 –	Visão superior do esquemático de um robô diferencial. O eixo z está apontando para fora da folha. O sistema de coordenadas móvel do robô está posicionado no ponto médio do eixo das rodas (cinza escuro). Na imagem $\{s\}$ é um sistema de coordenadas estático	30
FIGURA 2.4 –	Esquemático do modelo de medida $Range$ - $Bearing$. O sistema de coordenadas do robô é representado em magenta, e o sistema de coordenadas do sensor em azul. A medida (r^j, θ^j) se refere à i-ésima $landmark$ no mapa	32
FIGURA 2.5 –	Esquemático do modelo de medida Range-Bearing. O sistema de coordenadas do robô é representado em magenta, e o sistema de coordenadas do sensor em azul. Os círculos representam landmarks, as conhecidas pelo robô (portanto presentes no vetor de estados), em cinza, e recém descobertas, em laranja. A p-ésima landmark acaba	0.0
	de ser encontrada pelo robô	33

FIGURA 3.1 -	rante o movimento do robô. O vetor média é representado pela barra na esquerda, e a matriz de covariância pelo quadrado na direita. As partes modificadas, em tons de cinza, correspondem ao estado do robô $\mu_{\rm r}$ e sua autocovariância ${\bf P}_{\rm rr}$ (cinza escuro), e às covariâncias cruzadas, ${\bf P}_{\rm rm}$ e ${\bf P}_{\rm mr}$, entre o robô e o mapa (cinza claro). Note que as partes correspondentes ao mapa, $\mu_{\rm m}$ e ${\bf P}_{\rm mm}$, permanecem inalteradas (branco). Adaptado de SOLÀ (2014, p. 10)	39
FIGURA 3.2 –	Partes utilizadas do vetor média e da matriz de covariância durante o cálculo da inovação, quando uma $landmark$ é observada. O vetor média é representado pela barra na esquerda, e a matriz de covariância pelo quadrado na direita. As porções utilizadas, em tons de cinza, correspondem ao estado do robô μ_r e à posição da $landmark$ \mathbf{m}^j , e suas autocovariâncias \mathbf{P}_{rr} e $\mathbf{P}_{m^jm^j}$ (cinza escuro), e às covariâncias cruzadas, \mathbf{P}_{rm^j} e \mathbf{P}_{m^jr} , entre o robô e a j-ésima $landmark$ (cinza claro). Adaptado de (SOLÀ, 2014, p. 8)	10
FIGURA 3.3 –	O vetor média e a matriz de covariâncias são completamente atualizados durante a observação de uma landmark. Retirado de (SOLÀ, 2014, p. 8)	10
FIGURA 3.4 –	Vetor média e matriz de covariância aumentados após inserção de nova <i>landmark</i> . As partes adicionadas, em cinza, correspondem às covariâncias cruzadas entre a nova landmark e o vetor de estados anterior (cinza claro), e à média da nova <i>landmark</i> e sua covariância (cinza escuro). Adaptado de (SOLÀ, 2014, p. 11)	12
FIGURA 3.5 –	Representação das matrizes $\Psi_t, \lambda_t, \kappa_t$, necessárias para calcular a matriz de informação predita durante o movimento do robô. Os elementos nulos são representados em branco, e os não nulos em cinza/magenta. As matrizes acima pertencem a um sistema SEIF-SLAM de um robô diferencial e sensor laser do tipo LiDAR, com duas landmarks ativas, ou seja, $ \mathbf{m}^+ =2$. A quantidade de elementos não nulos é uma constante dada em função do modelo de movimento do robô e do tamanho do conjunto \mathbf{m}^+ , independentemente do tamanho do mapa. Neste momento a terceira e quinta landmark estavam ativas. Os blocos em magenta representa a informação cruzada,	17
	3 Server per movimento de 1999.	- •

FIGURA 3.6 -	Representação dos vetores média e informação, μ_t e ξ_t respectivamente, e da matriz de informação Ω_t na etapa de atualização. O conjunto \mathbf{m}^+ possui tamanho 2, e a segunda $landmark$ é observada. Note que no vetor média, a pose do robô e todas as $landmarks$ ativas são atualizadas, enquanto que no vetor e matriz de informação, apenas a pose do robô e a posição da $landmark$ observada são atualizados.	51
FIGURA 3.7 –	Vetor e matriz de informação aumentados após inserção de nova landmark. As partes adicionadas, em cinza, correspondem à informação cruzada entre a nova landmark e o robô (cinza claro), e à média da nova landmark e do robô, e suas informações (cinza escuro).	53
FIGURA 3.8 -	Matriz de informação (representada pela grade) ao lado do esquemático do robô e $landmarks$, durante a observação das $landmarks$ \mathbf{m}^1 e \mathbf{m}^2 no instante t . Os elementos não nulos da matriz de informação estão representados em cinza. Adaptado de (BONGARD, 2006, p. 389).	54
FIGURA 3.9 –	Matriz de informação (representada pela grade) ao lado do esquemático do robô e $landmarks$, antes (esquerda) e depois (direita) do movimento do robô, entre os instantes t e $t+1$. A conexão de movimento gerada entre as $landmarks$ \mathbf{m}^1 e \mathbf{m}^2 é mostrada em magenta, assim como os elementos correspondentes na matriz de informação. Os demais elementos não nulos estão representados em tons de cinza. Adaptado de (BONGARD, 2006, p. 389)	54
FIGURA 3.10	–Matriz de informação (representada pela grade) ao lado do esque- mático do robô e $landmarks$ no instante $t+1$ durante a observação da $landmark$ \mathbf{m}^3 . Os elementos nulos da matriz de informação estão representados em branco. Adaptado de (BONGARD, 2006, p. 389).	55
FIGURA 3.11	–Matriz de informação (representada pela grade) ao lado do esque- mático do robô e $landmarks$ no instante $t+1$ antes e após a esparsi- ficação da $landmark$ \mathbf{m}^1 . Os elementos nulos da matriz de informa- ção estão representados em branco. Adaptado de (BONGARD, 2006, p. 389)	55
FIGURA 3.12	-Matriz de informação (representada pela grade) ao lado do esque- mático do robô e $landmarks$ durante movimento entre os instantes t e $t+1$. Note que, devido à esparsificação da $landmark$ \mathbf{m}^1 , o mo- vimento não gerou conexão de movimento entre as $landamrks$ \mathbf{m}^1 e \mathbf{m}^3 . Os elementos nulos da matriz de informação estão representados	
	om branco	56

FIGURA 3.13	–Rede de conexões entre $landmarks$ e o robô. A maioria das $landmarks$ estão representadas por círculos, as $landmarks$ vizinhas da $landmark$ candidata a associação estão representadas por quadrados. As $landmarks$ ativas estão coloridas de preto, a $landmark$ candidata está colorida de cinza. O polígono de bordas grossas delimita o conjunto do Cobertor de Markov, \mathbf{m}_{ct}^+ . Neste caso há interseção entre o conjunto de $landmarks$ vizinhas e ativas. Retirado de (BONGARD, 2006, p. 410)	59
FIGURA 4.1 –	- Visualização dos feixes laser emitidos pelo sensor LiDAR e a respec- tiva leitura gerada	64
FIGURA 4.2 –	- Sequência de passos para processar os dados brutos do sensor LiDAR e transforma-los em dados úteis para o modelo de medida utilizado.	65
FIGURA 4.3 –	Derivada central da sequência de distâncias representadas na Figura 4.1b. As linhas pontilhadas em vermelho representam os limiares a partir dos quais os picos são interpretados como início (negativo) ou fim (positivo) da superfície de um cilindro. Os picos destacados em vermelho ultrapassam as valores limiares	66
FIGURA 4.4 –	Representação da leitura do sensor LiDAR em coordenadas cartesianas. Os pontos destacados em azul correspondem a reflexões das superfícies das landmarks	66
FIGURA 4.5 –	Em azul, os conjuntos de pontos selecionados como pertencentes à superfícies das <i>landmarks</i> . Em verde, os círculos estimados para cada conjunto	67
FIGURA 4.6 –	Grade de ocupação produzida utilizando as leituras do sensor Li-DAR. As células em azul representam porções do ambiente com estado desconhecido a partir da observação deste único ponto de vista. A cor das demais células refletem a probabilidade de estarem ocupadas, quanto mais escura maior a confiança do robô de que existe algum objeto no espaço delimitado pela célula. Cada célula é um quadrado com lado 5cm	68
FIGURA 4.7 –	Uso do algoritmo de Bresenham para determinar as células interceptadas pelo feixe (em azul) do sensor LiDAR. As células em verde claro, representam o espaço atravessado pelo feixe. A célula em verde escuro representam o espaço em que o feixe interceptou a su-	
	perfície de um objeto. O robô é representado pelo triângulo cinza	69

FIGURA 4.8 –	- Distribuição de probabilidade simplificada do modelo de medida inverso	70
FIGURA 4.9 -	Diferentes representações de uma mesma grade de ocupação	71
FIGURA 4.10	-Mapa de custo referente à grade de ocupação da Figura 4.9. As regiões quentes (vermelho) representam células de maior custo. Enquanto as células frias (azul escuro) representam células de baixo custo	72
FIGURA 5.1 -	Exemplo de registro de par de num de pontos. As nuvens representam porções diferentes de uma mesma cena e possuem elementos em comum	74
FIGURA 5.2 -	Ilustração do descritor de característica utilizado para relacionar landmarks entre os mapas dos agente. As landmarks estão representadas por círculos em cinza, a landmark descrita é representada em magenta. O vetor descritor está representado no canto inferior esquerdo. Cada posição do vetor corresponde a um setor da circunferência tracejada. Os setores que possuem landmarks vizinhas estão realçados em tons de azul	75
FIGURA 5.3 -	As imagens menores representam os mapas de grande individuais de cada robô. A imagem maior representa o mapa de grade do primeiro robô após receber o mapa de grade do segundo. Note que algumas células com probabilidade de ocupação 0.5 (nem ocupada e nem desocupada) pelo robô 1 passam a ter probabilidade de ocupação diferente de 0.5 pois são observadas do ponto de vista do robô 2	80
FIGURA 6.1 -	Erros de estimação da posição do robô durante exploração parcial do ambiente da Figura 2.1	82
FIGURA 6.2 -	Erros de estimação da orientação do robô durante exploração parcial do ambiente da Figura 2.1	83
FIGURA 6.3 -	Uso de memória para diferentes parametrizações do SEIF-SLAM com diferentes tamanhos (2, 4, 8) do conjunto de <i>landmarks</i> ativas. A linha tracejada representa a quantidade de elementos quem a matriz do EKF-SLAM teria para o mesmo cenário	85
FIGURA 6.4 -	Representação das matrizes de informação correspondentes aos experimentos da Tabela 6.2. Os elementos nulos são representados pela cor branca, e os não nulos em escala de cinza. Quanto mais escuro o tom de cinza, maior a magnitude do valor representado	86

FIGURA 6.5 –	Evolução da área coberta ao longo do tempo por um único robô,	
	no ambiente representado na Figura 2.1 com área total de 100 m^2 .	
	O robô iniciou na posição $(2.5,2.5)$, em relação ao centro do am-	
	biente. Os platôs correspondem a intervalos nos quais o robô está	
	atravessando uma área já mapeada para explorar uma nova fronteira.	87
FIGURA 6.6 –	Evolução da área coberta por dois e três agentes com pose inicial conhecida. Os momentos de comunicação e troca de mapas entre	
	os agentes podem ser identificados por saltos verticais nas curvas de	
	área coberta por cada agente	88
FIGURA 6.7 –	Diferentes execuções do mapeamento com dois agentes com pose	
	inicial desconhecida. Entre as execuções variou-se a pose inicial dos	
	agentes. As curvas da Figura da direta estão defasadas pois o se-	
	gundo agente foi colocado no ambiente alguns instantes depois que	
	o primeiro	89

Lista de Tabelas

TABELA 6.1 -	-Erro Integral Absoluto da trajetória do robô para diferentes estima-	
	dores	81
TABELA 6.2 -	- Quantidade de elementos não nulos da matriz de informação esparsa para diferentes parametrizações do SEIF-SLAM	84
TABELA 6.3 -	-Comparação entre o tempo levado para atingir a marca de 90% de área coberta, de um ambiente de $100~m^2$, entre os sistemas de	
	múltiplos agentes e agente único	88

Lista de Abreviaturas e Siglas

CML Concurrent Mapping and Localization

GPS Global Positioning System

SLAM Simultaneous Localization and Mapping

ROS Robot Operating System

KF Filtro de Kalman

EKF Filtro de Kalman Estendido EIF Filtro de Informação Estendido

SEIF Filtro de Informação Estendido Esparço

IMU Inertial Measurement Unit LiDAR Light Detection and Ranging RANSAC Random Sample Consensus

IAE Erro Absoluto Integral

Lista de Símbolos

 $\mathbf{x}_t^{\mathrm{r}}$ Pose do robô no instante t

 $\mathbf{x}_{0:t}^{\mathrm{r}}$ Conjunto das poses do robô do instante 0 até t

 \mathbf{u}_t Entrada de controle no instante t

 $\mathbf{u}_{0:t}$ Conjunto das entradas de controle to instante 0 até t

 \mathbf{z}_t Medida do sensor extrínseco no instante t

z_{0:t} Conjunto das medidas do sensor extrínseco do instante 0 até t
 m mapa do ambiente, constituído das coordenadas das landmarks

 $p\left(\mathbf{x}_{t}^{\mathrm{r}}, \mathbf{m} \mid \mathbf{z}_{1:t}, \mathbf{u}_{1:t}, \mathbf{x}_{0}^{\mathrm{r}}\right)$ Distribuição do problema online SLAM $p\left(\mathbf{x}_{0:t}^{\mathrm{r}}, \mathbf{m} \mid \mathbf{z}_{1:t}, \mathbf{u}_{1:t}, \mathbf{x}_{0}^{\mathrm{r}}\right)$ Distribuição do problema full SLAM

 μ_t Vetor média no instante t

 $\overline{\mu}_t$ Predição do vetor média no instante tPredição do vetor média no instante tMatriz de covariância no tempo t

 $\overline{\mathbf{P}}_t$ Predição da matriz de covariância no tempo t

 \mathbf{K}_t Ganho de Kalman no tempo t $\mathbf{g}_{\mathrm{r}}(\bullet, \bullet)$ Modelo de movimento do robô $\mathbf{h}(\bullet, \bullet)$ Modelo de medida do sensor laser

 $f(\bullet, \bullet)$ Modelo de medida inverso do sensor laser

 $\mathbb{E}\left[ullet
ight]$ Operador esperança

 $\mathbf{0}_{m \times n}$ Matriz nula de dimensão $m \times n$ \mathbf{I}_n Matriz identidade de dimensão n

 $Cov\left(\bullet\right)$ Covariância

 $egin{array}{ll} \mathbf{M} & & & & & & & & \\ \mathbf{M} & & & & & & & \\ \mathcal{T} & & & & & & & & \\ \mathbf{T} & & & & & & & \\ \mathbf{T} & & & & & & & \\ \mathbf{T} & & & & & & & \\ \mathbf{T} & & \\ \mathbf{T} & & & \\ \mathbf{T} & & \\$

 $\mathcal{T}_r^{j \to k}$ Transformação de corpo rígido do sistema j para o sistema k

Sumário

1	Int	RO	DUÇÃO	21
	1.1	Ob.	jetivo	25
	1.2	Est	rutura de um sistema SLAM	25
	1.3	Org	ganização do trabalho	27
2	Vis	ŝÃO	Geral do Sistema	28
	2.1	O a	ambiente	28
	2.2	O r	robô	29
	2.2	.1	Modelo do robô	29
	2.3	Me	edidas e o modelo de medida Range-Bearing	31
	2.3	.1	Modelo de medida Range-Bearing	31
	2.3	5.2	Modelo de medida inverso Range-Bearing	33
3	AP	LIC	AÇÃO DA ESTIMAÇÃO NO PROBLEMA SLAM (Backend).	35
	3.1	Filt	tro de Kalman Estendido	36
	3.2	EK	F-SLAM	37
	3.2	.1	EKF-SLAM: Predição (Movimento do robô)	37
	3.2	2.2	EKF-SLAM: Atualização	38
	3.2	2.3	EKF-SLAM: Inserção de $landmark$ (aumento do vetor de estados)	41
	3.3	Filt	tro de Informação Estendido (EIF)	42
	3.4	SE	IF-SLAM	44
	3.4	1	SEIF-SLAM: Landmarks ativas e passivas	44
	3.4	2	SEIF-SLAM: Passo de predição	45
	3.4	3	SEIF-SLAM: Recuperação da média	48

SU	JMÁR	IO		xix
	3.4	.4	SEIF-SLAM: Passo de atualização	50
	3.4	.5	SEIF-SLAM: Inserção de nova $landmark$	50
	3.4	6	SEIF-SLAM: Esparsificação da matriz de informação	54
	3.5	Asse	ociação de landmarks	58
	3.5	5.1	Estimação da covariância de <i>landmarks</i> a partir da matriz de informação	58
	3.6	Estr	catégia para mitigar efeito de falsas detecções de landmarks	60
	3.7	Con	iclusão do capítulo	61
4	SL	AM	Frontend	63
	4.1	Dad	los do sensor laser	63
	4.1	.1	Dados brutos	63
	4.1	2	Processamento de dados	64
	4.2	Мар	pa em grade	67
	4.2	2.1	Construção da grade de ocupação	68
	4.2	2.2	Representação em log odds	69
	4.3	Exp	loração Autônoma	71
5	SL	AM	MULTIAGENTE DESCENTRALIZADO	73
	5.1	Cálo	culo da posição relativa entre agentes	74
	5.2	Tro	ca de Mapas	76
	5.2	2.1	Troca do vetor e matriz de informação	76
	5.2	2.2	Troca grades de ocupação	79
6	Ex	PER	IMENTOS E RESULTADOS	81
	6.1	Con	nparação SEIF vs Odometria	81
	6.2	Con	nparações sobre uso de memória	84
	6.3	Maj	peamento conjunto e descentralizado	85
	6.3	3.1	Pose inicial conhecida	87
	6.3	3.2	Pose inicial desconhecida	89
7	Со	NCL	USÃO	90
R	EFER	ÊNC	CIAS	91

Apêndice A — Descrição detalhada de algoritmos	93
A.1 Algoritmo EKF-SLAM	93
Anexo A – Matrizes	96
A.1 Lema da Inversão. Fórmula de Sherman/Morrison	96
A.2 Inversão na forma de blocos	97
Anexo B — Manipulações da distribuição de probabilidade gaussiana multivariada na forma canônica	98
B.1 Marginalização	98
B.2 Condicionamento	98
Anexo C – Algoritmos	99
C.1 Algoritmo ajuste de círculos	99

1 Introdução

A robótica móvel está se desenvolvendo rapidamente, no entanto, aplicações em ambientes sem uma infraestrutura de mapeamento global exigem técnicas de mapeamento e percepção robustas para capacitar agente móveis a navegar de maneira autônoma em ambientes complexos (SAEEDI et al., 2016). Aplicações dessa natureza não surgem apenas da exploração de outros planetas onde não há GPS, por exemplo. Pelo contrário, há diversos cenários na Terra onde o GPS não funciona adequadamente, como debaixo d'água, em minas subterrâneas e dentro de construções. Este problema é denominado SLAM e resolvê-lo implica em empoderar soluções de robótica móvel, que atuem nesses cenários, com aplicações reais e comerciais.

O problema de Mapeamento e Localização Simultâneos conhecido pela sigla SLAM por conta do termo em inglês Simultaneous Localization and Mapping, pergunta se é possível para um robô móvel ser colocado em um ambiente desconhecido a priori e incrementalmente construir um mapa deste ambiente enquanto simultaneamente se localiza neste mapa. Ou seja, tanto a trajetória da plataforma móvel quanto a localização das características do mapa (também conhecidas por landmarks) são estimadas em tempo real sem a necessidade de nenhum conhecimento a priori de suas localizações (DURRANT-WHYTE; BAILEY, 2006), ou infra estrutura de localização prévia, como GPS.

SLAM também já foi conhecido como Mapeamento e Localização Concorrentes (CML, do inglês Concurrent Mapping and Localization), porém este termo caiu em desuso a partir de 1995 quando o termo SLAM foi cunhando por Durrant-Whyte et al. (1996) no Simpósio Internacional de Pesquisa em Robótica, ISSR, onde originalmente era chamado Simultaneous Localization and Map Building. A solução do problema de SLAM é fundamental para atingir a robótica móvel autônoma e independente de operadores (DURRANT-WHYTE; BAILEY, 2006). Entretanto resolver o problema de localização e mapeamento simultâneos, apesar de solucionado, não é uma tarefa trivial tanto do ponto de vista teórico como do ponto de vista da implementação (DURRANT-WHYTE et al., 1996).

Caracterização do problema

Imagine um robô se deslocando por um ambiente e dotado de um sensor extrínseco, capaz de capturar medidas relacionadas ao ambiente e, um sensor intrínseco capaz de medir os comandos de controle executados. Até o instante t as seguintes quantidades são observadas:

- \mathbf{x}_{t}^{r} : o vetor de estados descrevendo a pose do robô no instante t.
- $\mathbf{x}_{1:t}^{\mathrm{r}} = \{\mathbf{x}_1^{\mathrm{r}}, \mathbf{x}_2^{\mathrm{r}}, \dots, \mathbf{x}_{t-1}^{\mathrm{r}}, \mathbf{x}_t^{\mathrm{r}}\}$: histórico de poses do robô até o instante t.
- \mathbf{u}_t : o vetor de controle executado pelo robô no instante t.
- $\mathbf{u}_{1:t} = {\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_{t-1}, \mathbf{u}_t}$: histórico de controles executados pelo robô até o instante t.
- \mathbf{z}_t : o vetor de medidas no instante t
- $\mathbf{z}_{1:t} = \{\mathbf{z}_1, \mathbf{z}_2, \dots, \mathbf{z}_{t-1}, \mathbf{z}_t\}$: o conjunto de todas as medidas realizadas até o instante t.
- m: o vetor de mapa, constituído pelas posições das características do ambiente consideradas pelo robô.

De maneira bastante sucinta, os problemas de SLAM consistem em estimar uma das seguintes distribuições de probabilidade:

$$p\left(\mathbf{x}_{t}^{\mathbf{r}}, \mathbf{m} \mid \mathbf{z}_{1:t}, \mathbf{u}_{1:t}, \mathbf{x}_{0}^{\mathbf{r}}\right) \tag{1.1}$$

$$p\left(\mathbf{x}_{1:t}^{\mathbf{r}}, \mathbf{m} \mid \mathbf{z}_{1:t}, \mathbf{u}_{1:t}, \mathbf{x}_{0}^{\mathbf{r}}\right) \tag{1.2}$$

Além da solução da primeira distribuição se preocupar apenas em estimar o estado atual, enquanto na segunda toda a trajetória, o histórico de poses até o instante t, é estimada. A diferença fundamental entre as duas soluções é que para calcular a primeira distribuição, não são utilizadas entradas de controle e medidas posteriores a um instante t para estimar a pose \mathbf{x}_t^r . Enquanto na solução da segunda, medidas e controles posteriores podem ser utilizados para calcular poses anteriores a eles. Habitualmente os problemas de estimação dessas duas distribuições são conhecidos como *online* SLAM e *full* SLAM, respectivamente.

Embora as definições do problema em 1.1 e 1.2 sejam simples, resolvê-lo está longe de ser. A depender das características do sistema como: a dinâmica do robô, sensores utilizados, recursos computacionais disponíveis, restrição de tempo real, e, necessidade de navegação e guiamento autônomos, sua solução pode se tornar mais ou menos complexa.

Difícil também, é aprender terminologia utilizada, pelos pesquisadores, para cada uma dessas características. Parte da terminologia do problema de SLAM, pertinente a este trabalho, é abordada a seguir.

Taxonomia do problema SLAM

Como é de se esperar, há termos específicos para tratar cada aspecto de um sistema SLAM. Esta Seção visa apresentar os termos pertinentes a este trabalho, a fim de estabelecer um vocabulário comum que será utilizado em todas as seções e capítulos subsequentes a este.

Como mencionado anteriormente, há duas classes de problemas de SLAM: online SLAM e full SLAM, e, portanto, duas classes de algoritmos para resolvê-los. Os algoritmos full SLAM também são chamados de offline SLAM por serem normalmente utilizados em etapas de pós processamento, como refinamento de mapas. Esses algoritmos exigem mais recursos, tanto de processamento quanto de memória para serem processados. Portanto, há grande dificuldade para utiliza-los embarcados nos agentes durante a etapa de exploração do ambiente.

Em contra partida, os algoritmos que resolvem o problema de *online* SLAM são comumente utilizados de maneira embarcada, pois tendem a consumir menos recursos computacionais. A pose e o mapa estimado por eles podem ser utilizados no processo de tomada de decisão do agente durante a execução da tarefa de mapeamento.

Contudo, para que um robô consiga estimar precisamente sua pose \mathbf{x} , é necessário alimentar os algoritmos com as medidas \mathbf{u} , provenientes dos sensores intrínsecos (encoders, giroscópios e acelerômetros), e, também, com as medidas \mathbf{z} do ambiente obtidas por sensores extrínsecos. O erro entre a posição esperada pelo robô de um objeto, dada a estimativa que o robô tem da sua pose e, a posição desse objeto lida pelo sensor extrínseco, pode ser utilizado para atualizar a confiança que o robô tem sobre a sua pose, por exemplo. Aqui, objeto significa qualquer aspecto do ambiente com características suficientes que permita-o ser identificado, podendo ser desde objetos propriamente ditos como móveis e árvores, a pontos e quinas.

Essas medidas relacionadas ao ambiente, lidas pelos sensores extrínsecos (sonares, câmeras RGB, scanner laser, entre outros), possuem, em geral, duas componentes comumente denominados Range e Bearing. A componente Range é a distância do sensor até o objeto medido. Enquanto Bearing é a posição angular do objeto em relação ao sensor. Porém, nem todo sensor é capaz de fornecer essas duas medidas, câmeras RGB por exemplo, conseguem informar apenas o Bearing.

Então, de acordo com a presença/ausência dessas componentes os termos: Range

Only, Bearing Only e Range-Bearing SLAM são utilizados para identificar qual classe de medidas do ambiente está sendo utilizada na solução do problema. Range Only significa que a medida possui apenas a componente de distância. Em medidas Bearing Only apenas a posição angular é lida. E em Range-Bearing ambas as quantidades são lidas, em sistemas Range-Bearing SLAM são comumente utilizados sensores do tipo LIDAR (Light Detection and Ranging), que retornam uma nuvem de pontos onde cada ponto é descrito pela distância e posição angular em relação ao sensor.

Com um algoritmo capaz de estimar 1.1 ou 1.2 e sensores apropriados para alimenta-lo, um robô é capaz de performar SLAM como foi apresentado até agora. Porém, ao mapear o ambiente, o robô pode explora-lo de maneira autônoma, ou, quando o cenário permite, ser controlado remotamente por um operador. Em cenários como a exploração de Marte tal controle é inviável. Quando a solução para o problema de SLAM também incorpora a geração de trajetórias, para que a exploração seja feita de forma autônoma (ativa), é denominada SLAM Ativo.

Até o momento, o problema de SLAM foi tratado como se a tarefa fosse resolvida por um único agente/robô. Porém, é possível integrar mais robôs para executarem a tarefa de maneira conjunta, surgindo assim uma série de benefícios. O primeiro, e mais óbvio, benefício é que a tarefa pode ser executada mais rápido já que a carga de trabalho é dividida entre os agentes. Outro ponto, é que mesmo que um agente venha a sofrer um dano, a tarefa ainda pode ser concluída, pois o sistema pode reagir e redistribuir a tarefa entre os robôs restantes. Porém, esses benefícios vêm com o preço de um sistema complexo que lida com a coordenação e cooperação dos robôs (SAEEDI et al., 2016). Essa abordagem com múltiplos robôs é chamada de SLAM Distribuído.

Além disso, dependendo da arquitetura do fluxo de informação entre os agentes, a abordagem SLAM Distribuído é subdividida em Centralizada e Descentralizada (CADENA et al., 2016, p. 1316). Na arquitetura centralizada, há um nó central responsável por processar e distribuir o mapa global composto pelo mapa local de cada agente do sistema, há portanto um único ponto de falha catastrófica, o nó central. Nessa arquitetura é geralmente mais simples manter consistência e consenso sobre o mapa global.

Em contra partida, a arquitetura descentralizada não possui figura central, a comunicação e troca de mapas é realizada par a par entre os agentes. Neste arranjo todo o processamento é feito na ponta, consenso e convergência se tornam mais complicados, porém, o sistema se torna mais robusto com redundância de informação e ausência de falha catastrófica de um nó central.

1.1 Objetivo

O objetivo deste trabalho é criar um sistema que consiste em um grupo de robôs capazes de mapear o ambiente onde estão inseridos, sem nenhuma infraestrutura de localização como GPS, de maneira ativa e descentralizada, preocupando-se com restrições de memória e processamento em ambiente simulado.

Portanto, além de produzir algoritmos que capacitem os robôs a resolverem o problema de SLAM Ativo Descentralizado e Distribuído, é preciso criar uma infraestrutura de software onde o ambiente e os agentes serão simulados. Para isso utilizou-se o Sistema Operacional de Robô, ROS do inglês Robot Operating System, que é um framework de código aberto e linguagem neutra (QUIGLEY et al., 2009), amplamente utilizado pela indústria e pela academia. Pois ele provê um conjunto de bibliotecas e ferramentas pertinentes ao cenário de desenvolvimento em robótica, além de uma camada de comunicação comum utilizada pelos diferentes módulos do sistema (mapeamento, navegação, visão) trocarem informações.

Dessa forma, ao utilizar o ROS este trabalho se torna facilmente reutilizável em outras pesquisas, permitindo que cada um de seus módulos (simulação, visualização, SLAM e navegação) possa ser explorado e até modificado de forma individual. Além disso, permite que mais módulos sejam adicionados, estendendo as capacidades do sistema aqui desenvolvido.

Para a simulação do ambiente, sensores e agentes, utilizou-se o também amplamente difundido, simulador Gazebo (KOENIG; HOWARD, 2004). Sua escolha se deu por conta de suas simulações fidedignas de sensores, massa, fricção, e inúmeras outras variáveis físicas, e também por sua natural integração com o ROS.

1.2 Estrutura de um sistema SLAM

Um sistema SLAM multiagente distribuído e descentralizado, como o desenvolvido neste trabalho, é resultado da sinergia entre diferentes módulos/algoritmos com funções e responsabilidades delimitadas. Cada um resolvendo um dos aspectos do problema, a listagem a seguir enumera, de maneira sucinta, os módulos que compõem a solução desenvolvida nesse trabalho:

- Transformação de leituras em dados: utilizar as leituras brutas do sensor LiDAR e extrair medidas para alimentar o modelo de medida.
- Representação do ambiente: há diferentes formas de representar o ambiente como mapas de *landmarks* ou mapas métricos em grade.

- Exploração e Navegação: para que os agentes mapeiem o ambiente é necessário que identifiquem regiões inexploradas e possuam capacidade de navegar até essas regiões evitando obstáculos ou até mesmo outros agentes.
- Comunicação entre agentes: durante a aproximação entre agentes, ocorre a troca dos mapas: tanto o mapa métrico quanto o de *landmarks*.
- Cálculo de posição relativa: após uma comunicação é preciso calcular a posição relativa entre os agentes para que os mapas sejam combinados corretamente.
- Associação de dados: o robô utiliza os erros entre as medidas fornecidas para o modelo e sua estimativa das mesmas, para corrigir sua pose e a posição das landmarks em seu mapa. Para isso é necessário estabelecer quais leituras são re-observações, e portanto serão utilizadas na correção, e quais são novas observações de landmarks que serão incorporadas ao mapa.
- **Filtro**: é o que estima a pose do robô e a posição das *landmarks* de fato, utilizando como entrada as leituras dos sensores intrínsecos, as medidas processadas e as relações estabelecidas pela associação de dados.

Dessa forma o desenvolvimento de um sistema SLAM também pode ser visto como um problema de Engenharia de *Software*, cujo objetivo é desenvolver módulos isolados que podem ser unitariamente substituídos e/ou reutilizados desde que suas interfaces sejam mantidas.

Pensar o problema dessa forma torna o trabalho mais flexível, de fácil alteração e manutenção. Por exemplo: o algoritmo filtragem, utilizado para estimar a pose do robô e as posições das landmarks, pode ser substituído independentemente do pipeline de processamento de dados dos sensores, desde que sejam mantidas as estruturas de troca de informação entre eles. Outro aspecto importante é que a arquitetura de separação de responsabilidades força que as alterações no sistema sejam unitárias, tornando mais fácil o isolamento e identificação de erros decorrentes dessas alterações.

É comum agrupar esses módulos em dois macro grupos denominados back end e front end. O front end abstrai dados de sensores em modelos úteis para a estimação e também é onde geralmente são colocados os módulos de comportamento de alto nível como a exploração, enquanto o back end utiliza o dado abstrato produzido pelo front end para estimar o estado do sistema (CADENA et al., 2016).

Neste trabalho, além do processamento dos dados do sensor extrínseco, o front end também acumula outras responsabilidades como a representação métrica do ambiente, na forma de mapas de grade, a comunicação com outros agentes, o cálculo da posição relativa entre agentes, e também, a navegação autônoma. E o back end é composto pelo algoritmo

de filtragem, responsável por estimar o estado do sistema dadas as leituras extrínsecas e intrínsecas, e pela associação de dados. Esse último normalmente é associado ao front end (CADENA et al., 2016), mas aqui foi colocado no back end por conta da técnica utilizada estar incorporada ao filtro.

FIGURA 1.1 – Arquitetura simplificada do sistema SLAM desenvolvido neste trabalho. As entradas do sistema estão indicadas em vermelho, enquanto as saídas estão em verde. Em azul é possível observar algumas inter relações entre módulos.

1.3 Organização do trabalho

O próximo capítulo apresenta o ambiente simulado assim como o robô e os modelos de cinemática e medida utilizados. A organização do restante do trabalho é pautada pela Figura 1.1, o Capítulo 3 trata da maioria aspectos do *back end*, começa discorrendo uma técnica clássica para resolver o problema de SLAM e termina discutindo a técnica utilizada nesse trabalho. Porém a troca de mapas de fora.

O Capítulo 4 é sobre os diversos componentes do *front end* menos o cálculo de posição relativa entre os agentes. Tanto esse cálculo, quanto a troca de mapas do *back end* são concentrados no Capítulo 5 por comporem a característica fundamental de sistemas multiagentes.

Por fim o Capítulo 6 avalia e discute o sistema desenvolvido através de experimentos no ambiente simulado. E o Capítulo 7 é a Conclusão.

2 Visão Geral do Sistema

Nesse capítulo são mostrados o ambiente simulado onde a solução SLAM foi avaliada e o robô que a performou. Também são descritos o modelo cinemático do robô e os modelos de medida inverso e direto, utilizados pelos algoritmos de estimação para predizer poses e medidas.

2.1 O ambiente

O ambiente consiste em uma espaço de $100m^2$ delimitado por paredes e diversos "postes" de formato cilíndrico de 16cm de diâmetro, e está representado na Figura 2.1.

(a) Vista perspectiva ampla

(b) Vista ortográfica superior

(c) Vista perspectiva fechada

FIGURA 2.1 – Diferentes vistas do ambiente simulado

2.2 O robô

Neste trabalho foi utilizado o gêmeo digital do robô *Turtlebot 3* (ROBOTIS, 2021), que é um robô de acionamento diferencial, e é equipado com *encoder* de rodas, uma IMU e um sensor laser do tipo LiDAR.

FIGURA 2.2 – Gêmeo digital do robô *Turtlebot 3*. Os circuitos eletrônicos do robô real não estão representados. O sensor LiDAR encontra-se no topo do robô.

2.2.1 Modelo do robô

Na Figura 2.3 é representado o esquemático de um robô diferencial, as características mais importantes nesse tipo de construção são: o raio da roda, r, e a distância entre os eixos das rodas, 2d. A pose do robô, no instante t, é definida como:

$$\mathbf{x}_t = \begin{bmatrix} \phi_t & x_t & y_t \end{bmatrix}^T \tag{2.1}$$

Onde ϕ é o ângulo do eixo \hat{x}_r , do sistema de coordenadas móvel do robô, com o eixo \hat{x} do sistema de coordenadas estático $\{s\}$. E (x,y) é origem do sistema de coordenadas do robô, no sistema estático.

O modelo de movimento do robô utilizado neste trabalho, na Equação 2.2, usa apenas a informação dos *encoders*. Na expressão abaixo, a entrada \mathbf{u}_t é composta pelos deslocamentos angulares, u_t^L e u_t^R , das rodas esquerda e direita, durante o intervalo]t-1,t].

FIGURA 2.3 – Visão superior do esquemático de um robô diferencial. O eixo z está apontando para fora da folha. O sistema de coordenadas móvel do robô está posicionado no ponto médio do eixo das rodas (cinza escuro). Na imagem $\{s\}$ é um sistema de coordenadas estático.

$$\mathbf{x}_{t} = \mathbf{g}_{\mathbf{r}}(\mathbf{x}_{t-1}, \mathbf{u}_{t})$$

$$= \begin{bmatrix} \phi_{t-1} \\ x_{t-1} \\ y_{t-1} \end{bmatrix} + \begin{cases} \alpha_{t} \\ d \cdot \frac{u_{t}^{R} + u_{t}^{L}}{u_{t}^{R} - u_{t}^{L}} \left(\sin(\phi_{t-1} + \alpha_{t}) - \sin(\phi_{t-1}) \right) \\ d \cdot \frac{u_{t}^{R} + u_{t}^{L}}{u_{t}^{R} - u_{t}^{L}} \left(-\cos(\phi_{t-1} + \alpha_{t}) + \cos(\phi_{t-1}) \right) \\ \end{bmatrix}, \text{ Se } u_{t}^{L} \neq u_{t}^{R}$$

$$(2.2)$$

$$\begin{bmatrix} 0 \\ r \cdot u_{t}^{R} \cos(\phi_{t-1}) \\ r \cdot u_{t}^{R} \sin(\phi_{t-1}) \end{bmatrix}, \text{ Caso contrário}$$

Onde:

$$\alpha_t = \frac{r}{2d} \left(u_t^L - u_t^R \right) \tag{2.3}$$

Assim como os modelos de medida na próxima Seção, o modelo de movimento do robô de acionamento diferencial é não linear. Portanto, é necessário calcular sua matriz jacobiana, em torno de um ponto $\overline{\mathbf{x}}_{t-1}$, que será utilizada para linearizá-lo em técnicas como EKF e SEIF-SLAM, apresentadas mais adiante. O jacobiano do modelo $\mathbf{g}_{r}(\bullet, \bullet)$ está na Equação

2.4.

$$\mathbf{G}_{R} = \mathbf{I}_{3} + \begin{cases} 0 & 0 & 0 \\ d \cdot \frac{u_{t}^{R} + u_{t}^{L}}{u_{t}^{R} - u_{t}^{L}} \left(\cos(\overline{\phi}_{t-1} + \overline{\alpha}_{t-1}) - \cos(\overline{\phi}_{t-1}) \right) & 0 & 0 \\ d \cdot \frac{u_{t}^{R} + u_{t}^{L}}{u_{t}^{R} - u_{t}^{L}} \left(\sin(\overline{\phi}_{t-1} + \overline{\alpha}_{t-1}) - \sin(\overline{\phi}_{t-1}) \right) & 0 & 0 \\ d \cdot \frac{u_{t}^{R} + u_{t}^{L}}{u_{t}^{R} - u_{t}^{L}} \left(\sin(\overline{\phi}_{t-1} + \overline{\alpha}_{t-1}) - \sin(\overline{\phi}_{t-1}) \right) & 0 & 0 \\ -r \cdot u_{t}^{R} \sin(\overline{\phi}_{t-1}) & 0 & 0 \\ r \cdot u_{t}^{R} \cos(\overline{\phi}_{t-1}) & 0 & 0 \\ \end{cases}, \text{Caso contrário}$$
(2.4)

2.3 Medidas e o modelo de medida Range-Bearing

A medida gerada pelo sensor LiDAR, embarcado no TurtleBot, consiste em uma nuvem de pontos planar. Essa nuvem de pontos é processada e dela são extraídas estimativas dos centros dos cilindros presentes no ambiente. Esses centros são as medidas utilizadas pelo algoritmo de SLAM, eles são descritos em termos de coordenadas polares (r, θ) no sistema de coordenadas do sensor.

2.3.1 Modelo de medida Range-Bearing

O modelo de medida calcula a medida que espera-se ser lida pelo sensor, quando o sistema está no estado \mathbf{x}_t . Na Figura 2.4, é representado um sistema composto por um robô e três landmarks i, j e k. Logo o vetor de estados, \mathbf{x} , é formado pela pose do robô, e pelas posições das landmarks no mapa:

$$\mathbf{x} = \begin{bmatrix} \phi & x & y & m_x^i & m_y^i & m_x^j & m_y^j & m_x^k & m_y^k \end{bmatrix}^T \tag{2.5}$$

O modelo de medida para a j-ésima landmark é dado por

$$\boldsymbol{h}^{j}(\mathbf{x}) = \begin{bmatrix} r^{j} \\ \theta^{j} \end{bmatrix} = \begin{bmatrix} \sqrt{(m_{x}^{j} - x_{l})^{2} + (m_{y}^{j} - y_{l})^{2}} \\ \arctan\left(\frac{m_{y}^{j} - y_{l}}{m_{x}^{j} - x_{l}}\right) - \phi \end{bmatrix}$$
(2.6)

onde

$$\begin{cases} x_l = x + d\cos\phi \\ y_l = y + d\sin\phi \end{cases}$$
 (2.7)

FIGURA 2.4 – Esquemático do modelo de medida Range-Bearing. O sistema de coordenadas do robô é representado em magenta, e o sistema de coordenadas do sensor em azul. A medida (r^j, θ^j) se refere à i-ésima landmark no mapa.

Como o modelo de medida em 2.6 é não linear, é necessário lineariza-lo para utilizá-lo em soluções como EKF-SLAM, e seus derivados como SEIF-SLAM. Sua matriz jacobiana, \mathbf{H} , para a j-ésima landmark é descrita na Equação 2.10, ela é composta pelos jacobianos \mathbf{H}_{r} , calculado com relação à pose do robô, e pelo jacobiano \mathbf{H}_{M} , calculado com relação à posição da landmark no vetor de estado.

$$\mathbf{H}_{\mathbf{r}}^{j} = \begin{bmatrix} \frac{d}{r^{j}} \left(\delta_{x} \sin \phi - \delta_{y} \cos \phi \right) & \frac{-\delta_{x}}{r^{j}} & \frac{-\delta_{y}}{r^{j}} \\ -\left(\frac{d}{\left[r^{j}\right]^{2}} \left(\delta_{y} \sin \phi + \delta_{x} \cos \phi \right) + 1 \right) & \frac{\delta_{y}}{\left[r^{j}\right]^{2}} & \frac{-\delta_{x}}{\left[r^{j}\right]^{2}} \end{bmatrix}$$
(2.8)

$$\mathbf{H}_{\mathrm{m}}^{j} = \begin{bmatrix} \frac{\delta_{x}}{r^{j}} & \frac{\delta_{y}}{r^{j}} \\ -\delta_{y} & \delta_{x} \\ \overline{[r^{j}]^{2}} & \overline{[r^{j}]^{2}} \end{bmatrix}$$
(2.9)

$$\mathbf{H}^{j}(\mathbf{x}) = \begin{bmatrix} \mathbf{H}_{r}^{j} & \mathbf{0} & \cdots & \mathbf{H}_{m}^{j} & \cdots & \mathbf{0} \end{bmatrix}$$
 (2.10)

2.3.2 Modelo de medida inverso Range-Bearing

O modelo de medida descrito na Seção anterior é também conhecido como modelo de medida direto, ele calcula a medida que espera-se ler quando o sistema está em um dado estado. Mas também há o modelo de medida inverso, que calcula um estado a partir de uma medida, esse modelo é útil durante o descobrimento de novas *landmarks*, pois ele dá meios para que suas posições sejam incorporadas no vetor de estados, na Figura 2.5 está representado o momento no qual o robô descobre a p-ésima *landmark* do ambiente.

FIGURA 2.5 – Esquemático do modelo de medida Range-Bearing. O sistema de coordenadas do robô é representado em magenta, e o sistema de coordenadas do sensor em azul. Os círculos representam landmarks, as conhecidas pelo robô (portanto presentes no vetor de estados), em cinza, e recém descobertas, em laranja. A p-ésima landmark acaba de ser encontrada pelo robô.

O modelo de medida inverso $f(\bullet, \bullet)$ é descrito na Equação 2.11. Como pode ser observado, assim como o modelo de media "direto", o modelo de medida inverso é não linear, logo devemos lineariza-lo para utilizá-lo com o EKF-SLAM e seus algoritmos derivados. Sua matriz jacobiana, \mathbf{F} , na Equação 2.14 é composta pelos jacobianos parciais em relação ao vetor de estados, \mathbf{F}_X , e à medida da nova landmark encontrada, \mathbf{F}_Y , mostrados nas

Equações 2.12 e 2.13, respectivamente.

$$\mathbf{f}(\mathbf{x}, \mathbf{y}^p) = \begin{bmatrix} m_x^p \\ m_y^p \end{bmatrix} = \begin{bmatrix} x_l + r^p \cos(\phi + \theta^p) \\ y_l + r^p \sin(\phi + \theta^p) \end{bmatrix}$$
(2.11)

$$\mathbf{F}_X = \begin{bmatrix} -d\sin\phi - r^p\sin(\phi + \theta^p) & 1 & 0\\ d\cos\phi + r^p\cos(\phi + \theta^p) & 0 & 1 \end{bmatrix} \quad \mathbf{0}_{2\times n-3}$$
 (2.12)

$$\mathbf{F}_Y = \begin{bmatrix} \cos(\phi + \theta^p) & -r^p \sin(\phi + \theta^p) \\ \sin(\phi + \theta^p) & r^p \cos(\phi + \theta^p) \end{bmatrix}$$
(2.13)

$$\mathbf{F} = \begin{bmatrix} \mathbf{F}_X & \mathbf{F}_Y \end{bmatrix} \tag{2.14}$$

3 Aplicação da estimação no problema $SLAM\ (Backend)$

O famoso Filtro de Kalman (KF) é uma técnica de estimação ótima para sistemas lineares com ruídos gaussianos, nele a distribuição de probabilidade do estado estimado é representada por uma gaussiana, Eq. 3.1, parametrizada pelos momentos média e covariância. Ele foi desenvolvido simultaneamente em 1958 por Peter Swerling, e em 1960 por Rudolf Kalman (BONGARD, 2006, p. 40). Apesar de sua otimalidade ser garantida apenas para sistemas lineares, ele é aplicado em sistemas não lineares também. Para isso, é feita uma aproximação linear em torno da estimativa do estado atual do sistema, utilizando-se série de Taylor, e a premissa de que os termos de ordem maior ou igual a dois são desprezíveis.

$$p(\mathbf{x}) = \eta \exp\left(-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu})^T \mathbf{P}^{-1} (\mathbf{x} - \boldsymbol{\mu})\right)$$
(3.1)

Essa técnica derivada do KF para sistemas não lineares é conhecida como Filtro de Kalman Estendido (EKF). O EKF é muito utilizado em aplicações reais, pois a grande maioria dos sistemas reais são não lineares, como o movimento de um robô diferencial, por exemplo. Além disso o modelo de medida do sensor é, muitas vezes, uma função não linear do estado do sistema.

Neste capítulo, serão descritas as alterações necessárias no EKF clássico para que ele possa ser aplicado na resolução do problema de SLAM, estimando a pose do robô e a posição das landmarks, o que é conhecido como EKF-SLAM. Além disso, também serão abordadas técnicas decorrentes do EKF-SLAM como EIF-SLAM (Filtro de Informação Estendido) e SEIF-SLAM (Filtro de Informação Estendido Esparso), sendo esta última a técnica de estimação utilizada neste trabalho.

3.1 Filtro de Kalman Estendido

Para que seja possível estimar o estado de um sistema utilizando-se KF, é necessário conhecer duas equações: a primeira, denominada modelo do sistema, modela a transição de estado do sistema a partir do estado anterior e da entrada aplicada, Eq. 3.2; a segunda, chamada de modelo de medida, relaciona o estado do sistema com a medida esperada, gerada pelo sensor, Eq. 3.3.

$$\mathbf{x}_t = \mathbf{g}(\mathbf{x}_{t-1}, \mathbf{u}_t) + \boldsymbol{\epsilon}_t \tag{3.2}$$

$$\mathbf{y}_t = \boldsymbol{h}(\mathbf{x}_t) + \boldsymbol{\delta}_t \tag{3.3}$$

Como o modelo do sistema $g(\bullet, \bullet)$, e o modelo de medida $h(\bullet, \bullet)$ não são exatos, suas incertezas e erros de modelagem são aproximados por ruídos gaussianos $\epsilon_t \sim \mathcal{N}(\mathbf{0}, \mathbf{R}_t)$ e $\delta_t \sim \mathcal{N}(\mathbf{0}, \mathbf{Q}_t)$. Quando $g(\bullet, \bullet)$ e/ou $h(\bullet, \bullet)$ não são lineares, o EKF pode ser utilizado para estimar o estado do sistema.

As Equações de 3.4 até 3.10 definem o EKF 1 para o sistema não linear acima. Onde \mathbf{G}_t é o jacobiano do modelo do sistema no ponto $\boldsymbol{\mu}_{t-1}$, e \mathbf{H}_t é o jacobiano do modelo de medida no ponto $\overline{\boldsymbol{\mu}}_t$.

$$\overline{\boldsymbol{\mu}}_t = \boldsymbol{g}(\boldsymbol{\mu}_{t-1}, \mathbf{u}_t) \tag{3.4}$$

$$\overline{\mathbf{P}}_t = \mathbf{G}_t \mathbf{P}_{t-1} \mathbf{G}_t^T + \mathbf{R}_t \tag{3.5}$$

$$\mathbf{z}_t = \mathbf{y}_t - \boldsymbol{h}(\overline{\boldsymbol{\mu}}_t) \tag{3.6}$$

$$\mathbf{Z}_t = \mathbf{H}_t \overline{\mathbf{P}}_t \mathbf{H}_t^T + \mathbf{Q}_t \tag{3.7}$$

$$\mathbf{K}_t = \overline{\mathbf{P}}_t \mathbf{H}_t^T \mathbf{Z}_t^{-1} \tag{3.8}$$

$$\boldsymbol{\mu}_t = \overline{\boldsymbol{\mu}}_t + \mathbf{K}_t \mathbf{z}_t \tag{3.9}$$

$$\mathbf{P}_t = \overline{\mathbf{P}}_t - \mathbf{K}_t \mathbf{Z}_t \mathbf{K}_t^T \tag{3.10}$$

Porém, a resolução do problema de SLAM utilizando o EKF, não é uma aplicação direta das Equações acima. São necessárias algumas alterações, pois em SLAM o vetor de medidas tem tamanho variável. Esses detalhes e outras particularidades da aplicação do EKF em SLAM serão tratados na próxima Seção.

 $[\]overline{}^1$ O leitor pode estanhar a Equação 3.10 do erro da estimativa. Normalmente ela é escrita na forma $\mathbf{P}_t = (\mathbf{I} - \mathbf{K}_t \mathbf{H}_t) \overline{\mathbf{P}}_t$, porém de acordo com Lewis et al. (2017, p. 73), a forma em 3.10 é uma alternativa melhor na presença de erros de arredondamento, e é frequentemente utilizada em implementações de software.

3.2 EKF-SLAM

Para aplicar o EKF na solução de SLAM, é necessário entender como o vetor de estados \mathbf{x} é composto (aqui o subíndice t é omitido, pois não é importante para esta discussão). Como tanto a pose do robô, quanto o mapa são estimados, o vetor de estados é composto por ambos com apresentado na Equação 3.11, abaixo.

$$\mathbf{x} = \begin{bmatrix} \mathbf{x}_{\mathrm{r}} \\ \mathbf{x}_{\mathrm{m}} \end{bmatrix} \tag{3.11}$$

O vetor \mathbf{x}_{m} , que representa o mapa, é composto pela posição (x, y) das landmarks identificadas. Seu tamanho é variável e cresce à medida que o robô navega pelo ambiente e mede novas landmarks.

$$\mathbf{x}_{\mathbf{m}} = \begin{bmatrix} m_x^1 \\ m_y^1 \\ \vdots \\ m_x^n \\ m_y^n \end{bmatrix}$$

$$(3.12)$$

Utilizando a definição do vetor de estados do EKF-SLAM acima (Eq. 3.11), as próximas três Seções (3.2.1, 3.2.2 e 3.2.3) descrevem as alterações necessários e/ou desejáveis no EKF para sua aplicação em SLAM. O algoritmo completo pode ser encontrado no Apêndice A.1.

3.2.1 EKF-SLAM: Predição (Movimento do robô)

Em SLAM apenas uma parte do vetor de estados é variante no tempo, a pose do robô. Isso significa que apenas a porção $\mathbf{x}_{\rm r}$ é alterada pela entrada \mathbf{u} , logo o modelo do sistema consiste apenas no modelo de movimento do robô $\mathbf{g}_{\rm r}$ concatenado com as posições das landmarks:

$$\mathbf{x}_{t} = \begin{bmatrix} \mathbf{g}_{r}(\mathbf{x}_{r,t}, \mathbf{u}_{t}) \\ \mathbf{x}_{m} \end{bmatrix} + \begin{bmatrix} \boldsymbol{\epsilon}_{r,t} \\ \mathbf{0} \end{bmatrix}$$
(3.13)

Portanto, o passo de predição do vetor média do EKF-SLAM torna-se:

$$\overline{\boldsymbol{\mu}}_{t} = \begin{bmatrix} \boldsymbol{g}_{r}(\boldsymbol{\mu}_{r,t-1}, \mathbf{u}_{t}) \\ \boldsymbol{\mu}_{m} \end{bmatrix}$$
(3.14)

Em termos de implementação, isso significa que apenas as posições de memória da pose são modificadas no vetor de estados. Dessa forma, o passo de predição do vetor de estados do EKF-SLAM 2D tem complexidade $\mathcal{O}(3)$ (constante), enquanto no EKF essa

complexidade é $\mathcal{O}(n)$, onde n é o tamanho do vetor de estados.

A matriz de covariância, **P**, também é parcialmente atualizada, pois o jacobiano do sistema na Equação 3.13 possui forma esparsa:

$$\mathbf{G}_t = \begin{bmatrix} \mathbf{G}_t^{\mathrm{r}} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \tag{3.15}$$

Então, a Equação do erro de predição do EKF, em 3.5, torna-se:

$$\overline{\mathbf{P}}_{t} = \begin{bmatrix} \mathbf{G}_{t}^{\mathrm{r}} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \mathbf{P}_{t-1} \begin{bmatrix} \mathbf{G}_{t}^{\mathrm{r}} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}^{T} + \begin{bmatrix} \mathbf{R}_{t}^{\mathrm{r}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \\
= \begin{bmatrix} \mathbf{G}_{t}^{\mathrm{r}} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{P}_{t-1}^{\mathrm{rr}} & \mathbf{P}_{t-1}^{\mathrm{rm}} \\ \mathbf{P}_{t-1}^{\mathrm{mr}} & \mathbf{P}_{\mathrm{mm}} \end{bmatrix} \begin{bmatrix} \mathbf{G}_{t}^{\mathrm{r}} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}^{T} + \begin{bmatrix} \mathbf{R}_{t}^{\mathrm{r}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \\
= \begin{bmatrix} \mathbf{G}_{t}^{\mathrm{r}} \mathbf{P}_{t-1}^{\mathrm{rr}} & [\mathbf{G}_{t}^{\mathrm{r}}]^{T} + \mathbf{R}_{t}^{\mathrm{r}} & \mathbf{G}_{t}^{\mathrm{r}} \mathbf{P}_{t-1}^{\mathrm{rm}} \\ \mathbf{P}_{t-1}^{\mathrm{mr}} & [\mathbf{G}_{t}^{\mathrm{r}}]^{T} & \mathbf{P}_{\mathrm{mm}} \end{bmatrix} \tag{3.16}$$

A complexidade dessa operação é da ordem de $\mathcal{O}(n)$ por conta do termo $\mathbf{G}_t^{\mathrm{r}}\mathbf{P}_{t-1}^{\mathrm{rm}}$, enquanto no caso geral do EKF onde o jacobiano \mathbf{G}_t é denso, essa complexidade é $\mathcal{O}(n^3)$, que é a complexidade prática da multiplicação de matrizes $n \times n$. A Figura 3.1 ilustra as porções do vetor de estados, e da matriz de covariância, modificadas no passo de predição do EKF-SLAM.

3.2.2 EKF-SLAM: Atualização

Assim como na predição, no passo de atualização há algumas particularidades que devem ser levadas em conta no EKF-SLAM. Ao contrário de um sistema convencional, em SLAM o vetor de medidas é variável, seu tamanho depende da quantidade de landmarks que vão sendo avistadas pelo robô enquanto ele navega pelo ambiente. Ou seja, no EKF-SLAM o vetor de medidas é sempre "incompleto", e normalmente a inovação \mathbf{z}_t é calculada para cada medida de maneira individual, e é denotada por \mathbf{z}_t^j .

$$\mathbf{z}_t^j = \mathbf{y}_t^j - \mathbf{h}^j(\overline{\boldsymbol{\mu}}_t) \tag{3.17}$$

FIGURA 3.1 – Partes modificadas do vetor média e da matriz de covariância durante o movimento do robô. O vetor média é representado pela barra na esquerda, e a matriz de covariância pelo quadrado na direita. As partes modificadas, em tons de cinza, correspondem ao estado do robô $\mu_{\rm r}$ e sua autocovariância ${\bf P}_{\rm rr}$ (cinza escuro), e às covariâncias cruzadas, ${\bf P}_{\rm rm}$ e ${\bf P}_{\rm mr}$, entre o robô e o mapa (cinza claro). Note que as partes correspondentes ao mapa, $\mu_{\rm m}$ e ${\bf P}_{\rm mm}$, permanecem inalteradas (branco). Adaptado de SOLÀ (2014, p. 10).

Além disso, como o jacobiano do modelo de medida na Equação 2.10 é esparso, o cálculo da covariância da inovação pode ser obtido por:

$$\mathbf{Z}_{t}^{j} = \begin{bmatrix} \mathbf{H}_{r}^{j} & \mathbf{H}_{m}^{j} \end{bmatrix} \begin{bmatrix} \overline{\mathbf{P}}_{rr} & \overline{\mathbf{P}}_{rm^{j}} \\ \overline{\mathbf{P}}_{rm^{j}}^{T} & \overline{\mathbf{P}}_{m^{j}m^{j}} \end{bmatrix} \begin{bmatrix} \mathbf{H}_{r}^{j} \\ \mathbf{H}_{m}^{j} \end{bmatrix} + \mathbf{Q}_{t}$$
(3.18)

As dimensões da inovação e das matrizes na Equação acima são constantes e dependem apenas da dimensão da pose do robô, e da dimensão da medida. Portanto, aqui as complexidades dos cálculos da inovação \mathbf{z}_t^j , e de sua covariância \mathbf{Z}_t^j são constantes, enquanto no EKF essas complexidades são $\mathcal{O}(m)$ e $\mathcal{O}(nm^2)$, respectivamente, onde m é o tamanho do vetor de medidas. Embora, aqui esse cálculo de complexidade constante deve ser repetido para cada observação presente no vetor de medidas, ou seja, no EKF-SLAM o cálculo da inovação, e de sua covariância possuem complexidade linear no número de medidas obtidas.

O cálculo do Ganho de Kalman, \mathbf{K}_t , também é influenciado pelo tamanho constante da matriz de covariância da inovação (2 × 2, no caso deste trabalho), Equação 3.18, e pela esparsidade do jacobiano do modelo de medida, na Equação 2.10. Ademais, se todos os cálculos triviais de multiplicação por zero não forem feitos, a complexidade do cálculo do Ganho de Kalman, \mathbf{K}_t^j , é $\mathcal{O}(n)$ no EKF-SLAM.

Por fim, as complexidades da atualização e sua matriz de covariância, Equações 3.9 e 3.10, são $\mathcal{O}(n)$ e $\mathcal{O}(n^2)$, respectivamente. A Figura 3.2 mostra as porções do vetor de estados e da matriz de covariância do sistema SLAM, utilizadas no cálculo da inovação e

de sua matriz de covariância.

FIGURA 3.2 – Partes utilizadas do vetor média e da matriz de covariância durante o cálculo da inovação, quando uma landmark é observada. O vetor média é representado pela barra na esquerda, e a matriz de covariância pelo quadrado na direita. As porções utilizadas, em tons de cinza, correspondem ao estado do robô μ_r e à posição da landmark \mathbf{m}^j , e suas autocovariâncias \mathbf{P}_{rr} e $\mathbf{P}_{m^jm^j}$ (cinza escuro), e às covariâncias cruzadas, \mathbf{P}_{rm^j} e \mathbf{P}_{m^jr} , entre o robô e a j-ésima landmark (cinza claro). Adaptado de (SOLÀ, 2014, p. 8).

A Figura 3.3 deixa claro que todos os elementos do vetor média e da matriz de covariâncias são atualizados pelas Equações 3.9 e 3.10, mesmo o cálculo da inovação sendo esparso. Isso ocorre porque no EKF todas as *landmarks* são correlacionadas, mesmo que muitas dessas correlações sejam próximas de zero. Esse tipo de correlação "fraca" será explorada pelo Filtro de Informação Estendido Esparso, a fim de obter-se um algoritmo de estimação mais eficiente.

FIGURA 3.3 – O vetor média e a matriz de covariâncias são completamente atualizados durante a observação de uma *landmark*. Retirado de (SOLÀ, 2014, p. 8).

3.2.3 EKF-SLAM: Inserção de *landmark* (aumento do vetor de estados)

Nas Seções anteriores, 3.2.1 e 3.2.2, foram tratadas as diferenças do EKF-SLAM para o EKF, nas já conhecidas pelo usuário comum do EKF, etapas de predição e atualização. No entanto, em EKF-SLAM uma nova operação aparece: A etapa de inserção de *landmark*. Ela ocorre quando o robô observa uma *landmark* que ainda não está no mapa, $\mathbf{x}_{\rm m}$, e portanto não é possível calcular a inovação na Equação 3.17. Nesse caso, a nova *landmark* deve ser adicionada ao vetor média e à matriz de covariância, aumentando a dimensão do sistema.

Para adicionar uma nova landmark no vetor de estado, será definida a função $\sigma(\bullet, \bullet)$, ela gera um novo vetor de estados que é resultado da concatenação do vetor atual, com a posição da nova landmark calculada pelo modelo de medida inverso, descrito na Seção 2.3.2, a partir da leitura \mathbf{y}^j .

$$\boldsymbol{\sigma}(\mathbf{x}_t, \mathbf{y}^j) = \begin{bmatrix} \mathbf{x}_t \\ \boldsymbol{f}(\mathbf{x}_t, \mathbf{y}^j) \end{bmatrix}$$
(3.19)

Porém, não basta apenas adicionar a nova landmark no vetor de estados, é necessário adicioná-la também na matriz de covariâncias. Quando o robô observa uma nova landmark, é esperado que o erro de estimação da posição dessa nova landmark seja influenciado pelo erro da pose do robô, no momento da leitura, e pelo erro de de medição do sensor.

Inicializar a covariância da nova landmark com ∞ (ou números muito grandes), como indicado em (BONGARD, 2006, p. 317), pode ser injusto. Portanto devemos calcular o erro, α , da nova estimativa do vetor aumentado, de maneira análoga à forma como é feita nos passos de predição e atualização do EKF.

$$\alpha = \mathbf{x}_{t}^{*} - \boldsymbol{\mu}_{t}^{*}$$

$$= \begin{bmatrix} \mathbf{x}_{t} \\ \boldsymbol{f}(\mathbf{x}_{t}, \mathbf{y}) \end{bmatrix} - \begin{bmatrix} \boldsymbol{\mu}_{t} \\ \boldsymbol{f}(\boldsymbol{\mu}_{t}, \mathbf{y}^{j}) \end{bmatrix} = \begin{bmatrix} \mathbf{x}_{t} - \boldsymbol{\mu}_{t} \\ \boldsymbol{f}(\mathbf{x}_{t}, \mathbf{y}) - \boldsymbol{f}(\boldsymbol{\mu}_{t}, \mathbf{y}^{j}) \end{bmatrix}$$

$$= \begin{bmatrix} \boldsymbol{\eta}_{t} \\ \boldsymbol{f}(\boldsymbol{\mu}_{t}, \mathbf{y}^{j}) + \mathbf{F}_{X} \boldsymbol{\eta}_{t} + \mathbf{F}_{Y} \boldsymbol{\delta} - \boldsymbol{f}(\boldsymbol{\mu}_{t}, \mathbf{y}^{j}) \end{bmatrix}$$

$$= \begin{bmatrix} \boldsymbol{\eta}_{t} \\ \mathbf{F}_{X} \boldsymbol{\eta}_{t} + \mathbf{F}_{Y} \boldsymbol{\delta} \end{bmatrix} \text{ Onde } \boldsymbol{\eta}_{t} = \mathbf{x}_{t} - \boldsymbol{\mu}_{t} \in \boldsymbol{\delta} = \mathbf{y} - \mathbf{y}^{j}$$

$$(3.20)$$

A matriz de covariância do sistema aumentado, \mathbf{P}_{t}^{*} , é obtida por:

$$\mathbf{P}_{t}^{*} = \mathbb{E}\left[\boldsymbol{\alpha}\,\boldsymbol{\alpha}^{T}\right]$$

$$= \begin{bmatrix} \mathbf{P}_{t} & \mathbf{P}_{t}\mathbf{F}_{X}^{T} \\ \mathbf{F}_{X}\mathbf{P}_{t} & \mathbf{F}_{X}\mathbf{P}_{t}\mathbf{F}_{X}^{T} + \mathbf{F}_{Y}\mathbf{Q}\mathbf{F}_{Y}^{T} \end{bmatrix}$$
(3.21)

Portanto, a matriz de covariância do sistema aumentado é a matriz de covariância do sistema antes da inserção da nova landmark, concatenada as covariâncias cruzadas $\mathbf{P}_t \mathbf{F}_X^T$ e $\mathbf{F}_X \mathbf{P}_t$, e com a covariância $\mathbf{F}_X \mathbf{P}_t \mathbf{F}_X^T + \mathbf{F}_Y \mathbf{Q} \mathbf{F}_Y^T$, da nova landmark inserida no mapa.

Vale notar que o jacobiano \mathbf{F}_X descrito na Equação 2.12 é esparso, logo a complexidade de $\mathbf{P}_t\mathbf{F}_x$ pode ser reduzida de $\mathcal{O}(n^2)$ para $\mathcal{O}(n)$ se todos os cálculos inúteis forem ignorados, logo toda a operação de inserção de landmark tem custo $\mathcal{O}(n)$. A Figura 3.4 mostra o vetor média e a matriz de covariância com as novas inserções destacadas.

FIGURA 3.4 – Vetor média e matriz de covariância aumentados após inserção de nova *landmark*. As partes adicionadas, em cinza, correspondem às covariâncias cruzadas entre a nova landmark e o vetor de estados anterior (cinza claro), e à média da nova *landmark* e sua covariância (cinza escuro). Adaptado de (SOLÀ, 2014, p. 11).

3.3 Filtro de Informação Estendido (EIF)

O Filtro de Kalman Estendido, apresentado na Seção 3.1 utiliza a parametrização de momentos (Eq. 3.1) para representar a distribuição de probabilidade gaussiana. Já o Filtro de Informação utiliza a chamada representação canônica, composta pelo vetor de informação, ξ , e pela matriz de informação, Ω . Definidos a seguir:

$$\boldsymbol{\xi} = \mathbf{P}^{-1}\boldsymbol{\mu} \tag{3.22}$$

$$\mathbf{\Omega} = \mathbf{P}^{-1} \tag{3.23}$$

Com as parametrizações acima, o EKF pode ser reescrito na forma do Filtro de Informação Estendido:

$$\mu_{t-1} = \Omega_{t-1}^{-1} \boldsymbol{\xi}_{t-1} \tag{3.24}$$

$$\overline{\Omega}_t = (\mathbf{G}_t \mathbf{\Omega}_{t-1}^{-1} \mathbf{G}_t^T + \mathbf{R}_t)^{-1}$$
(3.25)

$$\overline{\boldsymbol{\mu}}_t = \boldsymbol{g}(\boldsymbol{\mu}_{t-1}, \mathbf{u}_t) \tag{3.26}$$

$$\overline{\boldsymbol{\xi}}_t = \overline{\Omega}_t \, \overline{\boldsymbol{\mu}}_t \tag{3.27}$$

$$\Omega_t = \overline{\Omega}_t + \mathbf{H}_t^T \mathbf{Q}_t^{-1} \mathbf{H}_t \tag{3.28}$$

$$\boldsymbol{\xi}_{t} = \overline{\boldsymbol{\xi}}_{t} + \mathbf{H}_{t}^{T} \mathbf{Q}_{t}^{-1} \left[\mathbf{y}_{t} - \boldsymbol{h}(\overline{\boldsymbol{\mu}}_{t}) + \mathbf{H}_{t} \overline{\boldsymbol{\mu}}_{t} \right]$$
(3.29)

e a distribuição de probabilidade na Eq. 3.1 pode ser reescrita como:

$$p(\mathbf{x}) = \eta \exp\left(-\frac{1}{2}\mathbf{x}^T \mathbf{\Omega} \mathbf{x} + \mathbf{x}^T \boldsymbol{\xi}\right)$$
(3.30)

Uma vantagem do Filtro de Informação é que ele tende a ser numericamente mais estável. Além disso, representar alto nível de incerteza é numericamente mais seguro quando comparado com o Filtro de Kalman, aqui basta definir $\Omega = 0$, enquanto no KF é necessário utilizar valores muito grandes na matriz de covariância. Outro aspecto interessante do IF é sua naturalidade para sistemas multi robôs, onde a informação é coletada de maneira descentralizada (BONGARD, 2006, p. 78).

Porém, as principais desvantagens do EIF são a necessidade da recuperação da média em 3.24 e, a predição da matriz de informação em 3.25, pois ambas operações envolvem a inversão da matriz de informação, cuja complexidade é $\mathcal{O}(n^3)$. Embora, no EKF também seja necessário inverter a matriz de covariância da inovação, \mathbf{Z} , essa usualmente possui dimensão menor que a matriz de informação. Em geral, para sistemas de grande dimensão acredita-se que o EIF seja computacionalmente inferior, do ponto de vista de tempo de execução, em relação ao EKF. Por esse motivo ele é menos utilizado que o EKF, na prática (BONGARD, 2006, p. 78).

No entanto, ao empregar o EIF no problema SLAM nota-se que grande parte dos blocos fora da diagonal principal da matriz de informação são quase nulos, ou seja, agregam pouca informação ao sistema. Isso se deve à estrutura do problema SLAM, pois grande parte das correlações entre landmarks (portanto fora da diagonal principal) são propagadas pela incerteza da pose do robô, quando essas (as landmarks) são observadas por ele. Apenas landmarks dentro de uma mesma vizinhança são observadas juntas resultando em alta correlação.

Esse aspecto é explorado pelo Filtro de Informação Estendido Esparso (SEIF), por meio de aproximações o SEIF mantém a matriz de informação diagonalizada, aproximando os elementos fora da diagonal para zero. Isso leva o SEIF a otimizar operações e ter complexidade de tempo constante, enquanto mantém uso linear de memória. A próxima Seção descreve o SEIF e seus detalhes de implementação.

3.4 SEIF-SLAM

Essa Seção descreve o Filtro de Informação Estendido Esparso (SEIF), e como ele endereça as principais desvantagens do EIF clássico no contexto de SLAM. Será mostrado como ele mantém complexidade linear no uso de memória, e complexidade de tempo constante nos passos de predição e atualização, independentemente do número de *landmarks* no mapa/ambiente.

Para atingir essas façanhas, o SEIF mantém a matriz de informação com formato próximo ao de uma matriz diagonal, por meio do uso de *landmarks* ativas e passivas, que serão descritas mais adiante. Além disso, a recuperação da média, na Equação 3.24, é modelada como um problema de otimização. As Seções a seguir são baseadas na discussão em (BONGARD, 2006, Capítulo 12.4).

3.4.1 SEIF-SLAM: Landmarks ativas e passivas

A diferença fundamental entre o SEIF-SLAM e o EIF-SLAM está na estrutura da matriz de informação, no SEIF ela é esparsa, ou melhor, esparsificada. Enquanto no EKF-SLAM/EIF-SLAM temos que $Cov\left(\mathbf{m}^{j},\mathbf{m}^{k}\right)\neq\mathbf{0},\forall\left\{j,k\right\}$, ou seja, que as posições de todas as landmarks são correlacionadas, o SEIF tenta eliminar a maioria dessas correlações, a fim de obter uma matriz de informação esparsa.

Para isso, ele mantém dois conjuntos de landmarks \mathbf{m}_t^+ e \mathbf{m}_t^- , cuja inter-relação está descrita na Equação 3.31. O conjunto \mathbf{m}_t^+ é composto pelas landmarks ativas, que estão "ligadas" ao robô no tempo t, ou seja, $Cov\left(\mathbf{x}_{R,t},\mathbf{m}_t^+\right) \neq 0$. Já o conjunto \mathbf{m}_t^- é formado pelas landmarks passivas, que não estão correlacionadas com a pose atual do robô, ou seja, $Cov\left(\mathbf{x}_{R,t},\mathbf{m}_t^-\right) = 0$.

$$\begin{cases}
\mathbf{m}_{t}^{+} \cup \mathbf{m}_{t}^{-} &= \mathbf{x}_{m} \\
\mathbf{m}_{t}^{+} \cap \mathbf{m}_{t}^{-} &= \emptyset
\end{cases}$$
(3.31)

Uma das consequências desse esquema, é que as landmarks não são globalmente correlacionadas entre sí, como ocorre no EKF-SLAM e EIF-SLAM. Na verdade, aqui, elas são localmente correlacionadas com sua vizinhança. Onde vizinhança é definida como o conjunto de landmarks presentes em \mathbf{m}_t^+ concomitantemente. Portanto, a inovação de uma

landmark observada afeta apenas a pose do robô e de sua vizinhança, ao contrário do que acontece no EKF/EIF onde a inovação de uma landmark afeta todo o sistema.

O conjunto \mathbf{m}_t^+ contém as k últimas landmarks observadas até o instante t, onde k é o tamanho do conjunto. As landmarks vão entrando e saindo desse conjunto conforme o robô navega no ambiente e novas landmarks vão sendo observadas enquanto outras deixam de sê-lo.

Nas próximas Seções, ficará claro que o tamanho definido para o conjunto de landmarks ativas limitará a quantidade de elementos longe da diagonal principal da matriz de informação, tornando-a esparsa. É essa característica que confere ao SEIF-SLAM a complexidade linear em memória e tempo constante de atualização e predição.

3.4.2 SEIF-SLAM: Passo de predição

O passo de predição do SEIF-SLAM está condensado no Algoritmo 1, abaixo. As Seções que se seguem derivam os passos do algoritmo a partir das equações de predição do EIF, 3.25, 3.27 e 3.26. A esparsidade da matriz de informação é usada como premissa para garantir o tempo de execução constante. A esparsificação em sí será tratada mais adiante, por hora vamos assumir que a matriz é esparsa.

Algorithm 1 SEIF-SLAM passo de predição

```
1: function SEIF-SLAM-PREDICTION(\boldsymbol{\xi}_{t-1}, \boldsymbol{\mu}_{t-1}, \boldsymbol{\Omega}_{t-1}, \mathbf{u}_t)
```

2:
$$\mathbf{\Psi}_t \leftarrow \mathbf{M}_{x_{\mathrm{r}}}^T \left(\left[\mathbf{G}_t^{\mathrm{r}} \right]^{-1} - \mathbf{I}_3 \right) \mathbf{M}_{x_{\mathrm{r}}}$$

3:
$$oldsymbol{\lambda}_t \leftarrow oldsymbol{\Psi}_t^T oldsymbol{\Omega}_{t-1} + oldsymbol{\Psi}_t^T oldsymbol{\Omega}_{t-1} oldsymbol{\Psi}_t + oldsymbol{\Omega}_{t-1} oldsymbol{\Psi}_t$$

4:
$$\Phi_t \leftarrow \Omega_{t-1} + \lambda_t$$

5:
$$\boldsymbol{\kappa}_t \leftarrow \boldsymbol{\Phi}_t \mathbf{M}_{x_r}^T \left(\mathbf{R}_{R,t}^{-1} + \mathbf{M}_{x_r} \boldsymbol{\Phi}_t \mathbf{M}_{x_r}^T \right)^{-1} \mathbf{M}_{x_r} \boldsymbol{\Phi}_t$$

6:
$$\overline{\Omega}_t \leftarrow \Phi_t - \kappa_t$$

7:
$$\overline{\boldsymbol{\xi}}_t \leftarrow (\boldsymbol{\lambda}_t - \boldsymbol{\kappa}_t) \, \boldsymbol{\mu}_{t-1} + \boldsymbol{\xi}_{t-1} + \overline{\boldsymbol{\Omega}}_t \mathbf{M}_{x_{\mathrm{r}}}^T \boldsymbol{\delta}_{r,t}$$

8:
$$\overline{\boldsymbol{\mu}}_t \leftarrow \boldsymbol{\mu}_{t-1} + \mathbf{M}_{x_r}^T \boldsymbol{\delta}_{r,t}$$

9: return
$$\overline{m{\xi}}_t, \overline{m{\mu}}_t, \overline{\Omega}_t$$

10: end function

Antes é importante relembrar que o jacobiano do sistema SLAM tem a seguinte forma:

$$\mathbf{G}_t = \begin{bmatrix} \mathbf{G}_t^{\mathrm{r}} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}$$
 (3.15 repetida)

Além disso, vamos definir o ruído do modelo do sistema, \mathbf{R}_t , como:

$$\mathbf{R}_{t} = \begin{bmatrix} \mathbf{R}_{t}^{r} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}^{T} \mathbf{R}_{t}^{r} \begin{bmatrix} 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \end{bmatrix}$$

$$= \mathbf{M}_{x_{r}}^{T} \mathbf{R}_{t}^{r} \mathbf{M}_{x_{r}}$$
(3.32)

3.4.2.1 Predição da Matriz de Informação

Primeiro, vamos reescrever a Equação 3.25 em termos de Φ_t e, $\mathbf{R}_{R,t}$:

$$\overline{\mathbf{\Omega}}_t = (\mathbf{\Phi}_t^{-1} + \mathbf{M}_{x_r}^T \mathbf{R}_t^r \mathbf{M}_{x_r})^{-1}$$
(3.33)

Onde:

$$\Phi_t = (\mathbf{G}_t \mathbf{\Omega}_{t-1}^{-1} \mathbf{G}_t^T)^{-1}
= [\mathbf{G}_t^T]^{-1} \mathbf{\Omega}_{t-1} [\mathbf{G}_t]^{-1}$$
(3.34)

Aplicando o lema da inversão (Apêndice A.1) em 3.33, temos:

$$\overline{\Omega}_{t} = \Phi_{t} - \Phi_{t} \mathbf{M}_{x_{r}}^{T} \left(\mathbf{R}_{R,t}^{-1} + \mathbf{M}_{x_{r}} \Phi_{t} \mathbf{M}_{x_{r}}^{T} \right)^{-1} \mathbf{M}_{x_{r}} \Phi_{t}
= \Phi_{t} - \kappa_{t}$$
(3.35)

Para calcularmos

$$\boldsymbol{\kappa}_t = \boldsymbol{\Phi}_t \mathbf{M}_{x_r}^T \left(\mathbf{R}_{R,t}^{-1} + \mathbf{M}_{x_r} \boldsymbol{\Phi}_t \mathbf{M}_{x_r}^T \right)^{-1} \mathbf{M}_{x_r} \boldsymbol{\Phi}_t$$
(3.36)

em tempo constante, temos que calcular Φ_t em tempo constate a partir de Ω_{t-1} . Para isso, vamos representar \mathbf{G}_t como na Equação 3.15, e calcular sua inversa:

$$\mathbf{G}_{t}^{-1} = \begin{bmatrix} \mathbf{G}_{t}^{\mathbf{r}} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix}^{-1}$$

$$= \begin{bmatrix} [\mathbf{G}_{t}^{\mathbf{r}}]^{-1} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \qquad \text{(inversão de matriz bloco diagonal)}$$

$$= \mathbf{I}_{n} + \begin{bmatrix} [\mathbf{G}_{t}^{\mathbf{r}}]^{-1} - \mathbf{I}_{3} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix}$$

$$= \mathbf{I}_{n} + \mathbf{M}_{x_{\mathbf{r}}}^{T} ([\mathbf{G}_{t}^{\mathbf{r}}]^{-1} - \mathbf{I}_{3}) \mathbf{M}_{x_{\mathbf{r}}}$$

$$= \mathbf{I} + \mathbf{\Psi}_{t}$$

$$(3.37)$$

Note que Ψ_t é uma matriz de dimensão n, onde apenas os elementos do bloco superior esquerdo 3×3 , são diferentes de zero. Usando a Equação 3.37 na Equação 3.34 temos:

$$\Phi_{t} = \left[\mathbf{G}_{t}^{T}\right]^{-1} \mathbf{\Omega}_{t-1} \left[\mathbf{G}_{t}\right]^{-1}$$

$$= \left(\mathbf{I} + \mathbf{\Psi}_{t}^{T}\right) \mathbf{\Omega}_{t-1} \left(\mathbf{I} + \mathbf{\Psi}_{t}\right)$$

$$= \mathbf{\Omega}_{t-1} + \underbrace{\mathbf{\Psi}_{t}^{T} \mathbf{\Omega}_{t-1} + \mathbf{\Psi}_{t}^{T} \mathbf{\Omega}_{t-1} \mathbf{\Psi}_{t} + \mathbf{\Omega}_{t-1} \mathbf{\Psi}_{t}}_{\boldsymbol{\lambda}_{t}}$$

$$= \mathbf{\Omega}_{t-1} + \boldsymbol{\lambda}_{t}$$
(3.38)

Como Ψ_t é esparsa e com quantidade de elementos não nulos constante, λ_t também será esparsa e com elementos não nulos constantes, pois, ambas dependem apenas do modelo de movimento do robô e das covariâncias cruzadas da posição do robô com as posições das landmarks ativas, que são quantidades constantes.

Portanto, o cálculo de Φ_t a partir de Ω_{t-1} é constante, pois resulta da subtração dos elementos não nulos de λ_t , de Ω_{t-1} . Na Figura 3.5 são representadas as matrizes Ψ_t , λ_t , κ_t obtidas durante a execução do SEIF-SLAM com tamanho do conjunto de *landmarks* ativas igual a dois.

FIGURA 3.5 – Representação das matrizes $\Psi_t, \lambda_t, \kappa_t$, necessárias para calcular a matriz de informação predita durante o movimento do robô. Os elementos nulos são representados em branco, e os não nulos em cinza/magenta. As matrizes acima pertencem a um sistema SEIF-SLAM de um robô diferencial e sensor laser do tipo LiDAR, com duas landmarks ativas, ou seja, $|\mathbf{m}^+| = 2$. A quantidade de elementos não nulos é uma constante dada em função do modelo de movimento do robô e do tamanho do conjunto \mathbf{m}^+ , independentemente do tamanho do mapa. Neste momento a terceira e quinta landmark estavam ativas. Os blocos em magenta representa a informação cruzada, entre as landmarks em \mathbf{m}^+ , gerada pelo movimento do robô.

A princípio, pode parecer que a quantidade de elementos não nulos é significativa em relação ao tamanho das matrizes. Porém, essa percepção se deve ao fato das matrizes representadas na Figura 3.5 serem pequenas, o tamanho delas foi escolhido de modo a facilitar a visualização.

3.4.2.2 Predição do vetor de informação

Abaixo é apresentada uma série de manipulações para que a predição do vetor de informação, na Equação 3.27, possa ser realizada em tempo constante no SEIF-SLAM. Primeiro, vamos reescrever o modelo de movimento na Equação Referênciaseq:motion-model, como:

$$\mathbf{x}_t = \mathbf{x}_{t-1} + \boldsymbol{\delta}_t \tag{3.39}$$

Partindo da Equação 3.27 e utilizando 3.39 acima, temos:

$$\overline{\boldsymbol{\xi}}_{t} = \overline{\Omega}_{t} \, \overline{\boldsymbol{\mu}}_{t}$$

$$= \overline{\Omega}_{t} \left(\boldsymbol{\mu}_{t-1} + \mathbf{M}_{x_{r}}^{T} \boldsymbol{\delta}_{r,t} \right)$$

$$= \overline{\Omega}_{t} \left(\Omega_{t-1}^{-1} \boldsymbol{\xi}_{t-1} + \mathbf{M}_{x_{r}}^{T} \boldsymbol{\delta}_{r,t} \right)$$

$$= \overline{\Omega}_{t} \Omega_{t-1}^{-1} \boldsymbol{\xi}_{t-1} + \overline{\Omega}_{t} \mathbf{M}_{x_{r}}^{T} \boldsymbol{\delta}_{r,t}$$

$$= \left(\overline{\Omega}_{t} + \underbrace{\Omega_{t-1} - \Omega_{t-1}}_{\mathbf{0}} + \underbrace{\Phi_{t} - \Phi_{t}}_{\mathbf{0}} \right) \Omega_{t-1}^{-1} \boldsymbol{\xi}_{t-1} + \overline{\Omega}_{t} \mathbf{M}_{x_{r}}^{T} \boldsymbol{\delta}_{r,t}$$

$$= \left(\underbrace{\overline{\Omega}_{t} - \Phi_{t}}_{-\kappa_{t}} + \Omega_{t-1} + \underbrace{\Phi_{t} - \Omega_{t-1}}_{\lambda_{t}} \right) \Omega_{t-1}^{-1} \boldsymbol{\xi}_{t-1} + \overline{\Omega}_{t} \mathbf{M}_{x_{r}}^{T} \boldsymbol{\delta}_{r,t}$$

$$= \left(\lambda_{t} - \kappa_{t} + \Omega_{t-1} \right) \Omega_{t-1}^{-1} \boldsymbol{\xi}_{t-1} + \overline{\Omega}_{t} \mathbf{M}_{x_{r}}^{T} \boldsymbol{\delta}_{r,t}$$

$$= \left(\lambda_{t} - \kappa_{t} \right) \Omega_{t-1}^{-1} \boldsymbol{\xi}_{t-1} + \Omega_{t-1} \Omega_{t-1}^{-1} \boldsymbol{\xi}_{t-1} + \overline{\Omega}_{t} \mathbf{M}_{x_{r}}^{T} \boldsymbol{\delta}_{r,t}$$

$$= \left(\lambda_{t} - \kappa_{t} \right) \boldsymbol{\mu}_{t-1} + \boldsymbol{\xi}_{t-1} + \overline{\Omega}_{t} \mathbf{M}_{x_{r}}^{T} \boldsymbol{\delta}_{r,t}$$

Como λ_t e κ_t são ambas esparsas, o produto $(\lambda_t - \kappa_t) \mu_{t-1}$ contém um número determinado de elementos não nulos, e portanto é calculado em tempo constante. O produto $(\lambda_t - \kappa_t) \mu_{t-1}$ resulta em uma matriz nula exceto pelo primeiro bloco 3×3 , e ao multiplicala pela matriz de informação predita, que também é esparsa, temos como resultado um vetor esparso (BONGARD, 2006, p. 398). Portanto, é necessário um número constante de operações, que independe do tamanho do mapa, para calcular o vetor de informação predito 2 .

3.4.3 SEIF-SLAM: Recuperação da média

Outro desafio a ser resolvido no SEIF-SLAM, para manter o tempo de predição e/ou atualização constantes, é o cálculo do vetor média. Fundamental para as linearizações dos modelos de movimento e medida, e para o cálculo do vetor de informação na etapa

²Comumente a orientação do robô é normalizada para o intervalo $[-\pi,\pi[$ no vetor média, portanto é necessário ajustar alguns elementos do vetor de informação para que ele continue obedecendo a identidade $\boldsymbol{\xi} = \boldsymbol{\Omega} \boldsymbol{\mu}$. Porém esse ajuste não viola o caráter constante do passo de atualização, pois a quantidade de elementos é fixa de acordo com $|\mathbf{m}^+|$.

de esparsificação. Na Equação 3.24, do Filtro de Informação Estendido, esse cálculo é feito através da inversão da matriz de informação, e, mesmo numa matriz esparsa, essa operação não é constante.

Para contornar essa inversão, no SEIF esse passo é executado de uma forma completamente diferente: ele é modelado como um problema de otimização. Em (BONGARD, 2006, Cap. 12.6) mostra-se que o vetor média equivale ao ponto de máximo da quadrática na representação canônica da gaussiana Eq. 3.30, então o vetor média atualizado μ_t pode ser calculado como:

$$\mu_{t} = \underset{\boldsymbol{\mu}}{\operatorname{argmax}} \exp\left(-\frac{1}{2}\boldsymbol{\mu}^{T}\boldsymbol{\Omega}_{t}\boldsymbol{\mu} + \boldsymbol{\mu}^{T}\boldsymbol{\xi}_{t}\right)$$

$$= \underset{\boldsymbol{\mu}}{\operatorname{argmin}} - \left(-\frac{1}{2}\boldsymbol{\mu}^{T}\boldsymbol{\Omega}_{t}\boldsymbol{\mu} + \boldsymbol{\mu}^{T}\boldsymbol{\xi}_{t}\right)$$

$$= \underset{\boldsymbol{\mu}}{\operatorname{argmin}} \frac{1}{2}\boldsymbol{\mu}^{T}\boldsymbol{\Omega}_{t}\boldsymbol{\mu} - \boldsymbol{\mu}^{T}\boldsymbol{\xi}_{t}$$

$$(3.41)$$

A minimização acima pode ser realizada por qualquer algoritmo de minimização como gradiente descendente, gradiente conjugado, entre outros. Nesse trabalho foi utilizado a descida de coordenadas, Algoritmo 2, que apesar de não ser tão sofisticada quanto os algoritmos citados, se mostrou boa o suficiente para a tarefa.

Em problemas de otimização um bom palpite inicial próximo da vizinhança do ponto de interesse é fundamental para a convergência do algoritmo, no caso de SLAM esperamos que o estado atualizado sempre esteja próximo do estado predito, portanto o vetor $\overline{\mu}_t$ é utilizado como ponto de partida da otimização.

Algorithm 2 Etapa de recuperação da média no SEIF-SLAM

```
1: function SEIF-SLAM-RECUPERAÇÃO-MÉDIA(\overline{\mu}_t, \xi_t, \Omega_t, \mathbf{K})
   2:
                      \boldsymbol{\mu}_t \leftarrow \overline{\boldsymbol{\mu}}_t
                      for j \in \mathbf{m}^+ do
   3:
                                 k \leftarrow 0
   4:
                                 while k < K do
   5:
                                           oldsymbol{\mu}_t^{m^j} \leftarrow (\mathbf{M}_{m^j} \mathbf{\Omega}_t \mathbf{M}_{m^j}^T)^{-1} \, \mathbf{M}_{m^j} \left[ oldsymbol{\xi}_t - \mathbf{\Omega}_t \overline{oldsymbol{\mu}}_t + \mathbf{\Omega}_t \mathbf{M}_{m^j}^T \mathbf{M}_{m^j} \overline{oldsymbol{\mu}}_t 
ight]
   6:
                                           \boldsymbol{\mu}_{t}^{x_{\mathrm{r}}} \leftarrow (\mathbf{M}_{x_{\mathrm{r}}} \mathbf{\Omega}_{t} \mathbf{M}_{x_{\mathrm{r}}}^{T})^{-1} \mathbf{M}_{x_{\mathrm{r}}} \left[ \boldsymbol{\xi}_{t} - \mathbf{\Omega}_{t} \overline{\boldsymbol{\mu}}_{t} + \mathbf{\Omega}_{t} \mathbf{M}_{x_{\mathrm{r}}}^{T} \mathbf{M}_{x_{\mathrm{r}}} \overline{\boldsymbol{\mu}}_{t} \right]
   7.
                                            k \leftarrow k + 1
   8:
                                 end while
   9:
                      end for
10:
11:
                      return \mu_t
12: end function
```

Como pode ser notado na linha 2 do algoritmo acima, dentre todas as landmarks

apenas as ativas são atualizadas, além da pose do robô, é claro. Isso se deve novamente à esparsidade da matriz de informação, pois a atualização de uma landmark só contribui para a estimação da posição de suas vizinhas e da pose do robô. Portanto, a complexidade da recuperação da média também é constante, dado que K e o tamanho do conjunto \mathbf{m}^+ são ambos constantes.

3.4.4 SEIF-SLAM: Passo de atualização

Por hora, assim como foi feito com o EKF-SLAM na Eq. 3.17 vamos assumir que é possível calcular a inovação \mathbf{z}_t^j a partir da medida \mathbf{y}_t^j . É claro que na prática, é preciso antes uma etapa que estabeleça correspondência entre as medidas lidas e as landmarks existentes no vetor de estados. Essa correspondência é fundamental para utilizar a landmark \mathbf{m}^i correta no cálculo do modelo de medida $h(\bullet, \bullet)$, Eq. 2.6.

O algoritmo abaixo pressupõe que tais correspondências são conhecidas. Mais adiante na Seção 3.5 será abordado uma maneira de como essas correspondências são estabelecidas. Ao contrário dos outros passos, no passo de atualização a esparsidade da matriz de informação não influencia e/ou altera nada em relação ao Filtro de Informação Estendido. As equações de atualização nas linhas 3 e 4 abaixo, são as mesmas equações 3.28 e 3.29 do EIF.

```
Algorithm 3 Etapa de atualização do SEIF-SLAM com associação conhecida
```

```
1: function SEIF-SLAM-ATUALIZAÇÃO(\overline{\mu}_t,\overline{\xi}_t,\overline{\Omega}_t,\mathbf{y},j=índice da landmark)
```

- 2: $\mathbf{z} \leftarrow \mathbf{y} \boldsymbol{h}^j(\overline{\boldsymbol{\mu}}_t)$
- 3: $\Omega_t \leftarrow \overline{\Omega}_t + \mathbf{H}_t^T \mathbf{Q}_t^{-1} \mathbf{H}_t$
- 4: $\boldsymbol{\xi}_t \leftarrow \overline{\boldsymbol{\xi}}_t + \mathbf{H}_t^T \mathbf{Q}_t^{-1} \left[\mathbf{z} + \mathbf{H}_t \overline{\boldsymbol{\mu}}_t \right]$
- 5: $\boldsymbol{\mu}_t \leftarrow \text{SEIF-SLAM-Recuperação-Média}(\overline{\boldsymbol{\mu}}_t, \boldsymbol{\xi}_t, \Omega_t, \mathbf{K})$
- 6: return $\boldsymbol{\xi}_t, \boldsymbol{\mu}_t, \boldsymbol{\Omega}_t$
- 7: end function

A atualização acima altera apenas os elementos referentes ao robô e à j-ésima landmark tanto na matriz de informação quanto no vetor de informação, como é ilustrado na Figura 3.6. O SEIF herda o caráter "local" da atualização do EIF, e difere do EKF onde a atualização altera todos os elementos do vetor média e da matriz de covariâncias como foi mostrado na Figura 3.3.

3.4.5 SEIF-SLAM: Inserção de nova landmark

A etapa de atualização na Seção anterior ocorre quando uma medida é associada com uma landmark presente no mapa, porém quando uma landmark é observada pela primeira

FIGURA 3.6 – Representação dos vetores média e informação, μ_t e ξ_t respectivamente, e da matriz de informação Ω_t na etapa de atualização. O conjunto \mathbf{m}^+ possui tamanho 2, e a segunda landmark é observada. Note que no vetor média, a pose do robô e todas as landmarks ativas são atualizadas, enquanto que no vetor e matriz de informação, apenas a pose do robô e a posição da landmark observada são atualizados.

vez ela não é associada com nenhuma *landmark* prévia e portanto deve ser inserida nos vetores de estado e informação, e na matriz de informação.

Para derivar a inserção de *landmark* no EIF/SEIF, vamos partir dos resultados da inserção de *landmark* no EKF apresentados na Seção 3.2.3. Utilizando o resultado do aumento da matriz de covariâncias, repetido a seguir:

$$\mathbf{P}_{t}^{*} = \begin{bmatrix} \mathbf{P}_{t} & \mathbf{P}_{t} \mathbf{F}_{X}^{T} \\ \mathbf{F}_{X} \mathbf{P}_{t} & \mathbf{F}_{X} \mathbf{P}_{t} \mathbf{F}_{X}^{T} + \mathbf{F}_{Y} \mathbf{Q} \mathbf{F}_{Y}^{T} \end{bmatrix}$$
(3.21 repetida)

E aplicando a equivalência $\Omega^{-1} = \mathbf{P}$, pode-se reescrever a expressão acima como:

$$\left[\mathbf{\Omega}_{t}^{*}\right]^{-1} = \begin{bmatrix} \mathbf{\Omega}_{t}^{-1} & \mathbf{\Omega}_{t}^{-1}\mathbf{F}_{X}^{T} \\ \mathbf{F}_{X}\mathbf{\Omega}_{t}^{-1} & \mathbf{F}_{X}\mathbf{\Omega}_{t}^{-1}\mathbf{F}_{X}^{T} + \mathbf{F}_{Y}\mathbf{Q}\mathbf{F}_{Y}^{T} \end{bmatrix}$$
(3.42)

Invertendo ambos os lados:

$$oldsymbol{\Omega}_t^* = egin{bmatrix} \mathbf{X} & \mathbf{Y} \ \mathbf{Z} & \mathbf{U} \end{bmatrix}$$

Onde, pelo lema da inversão na forma de blocos (Apêndice??) temos:

$$\mathbf{U} = \left[\mathbf{F}_{X} \mathbf{\Omega}_{t}^{-1} \mathbf{F}_{X}^{T} + \mathbf{F}_{Y} \mathbf{Q} \mathbf{F}_{Y}^{T} - \mathbf{F}_{X} \mathbf{\Omega}_{t}^{-1} \left[\mathbf{\Omega}_{t}^{-1} \right]^{-1} \mathbf{\Omega}_{t}^{-1} \mathbf{F}_{X}^{T} \right]^{-1}$$

$$= \left[\mathbf{F}_{X} \mathbf{\Omega}_{t}^{-1} \mathbf{F}_{X}^{T} + \mathbf{F}_{Y} \mathbf{Q} \mathbf{F}_{Y}^{T} - \mathbf{F}_{X} \mathbf{\Omega}_{t}^{-1} \mathbf{F}_{X}^{T} \right]^{-1}$$

$$= \left[\mathbf{F}_{Y}^{T} \right]^{-1} \mathbf{Q}^{-1} \mathbf{F}_{Y}^{-1}$$
(3.43)

$$\mathbf{Y} = -\left[\mathbf{\Omega}_{t}^{-1}\right]^{-1}\mathbf{\Omega}_{t}^{-1}\mathbf{F}_{X}^{T}\mathbf{U}$$

$$= \mathbf{F}_{X}^{T}\left(\left[\mathbf{F}_{Y}^{T}\right]^{-1}\mathbf{Q}^{-1}\mathbf{F}_{Y}^{-1}\right)$$
(3.44)

$$\mathbf{Z} = -\mathbf{U}\mathbf{F}_{X}\mathbf{\Omega}_{t}^{-1}\left[\mathbf{\Omega}_{t}^{-1}\right]^{-1}$$

$$= -\left(\left[\mathbf{F}_{Y}^{T}\right]^{-1}\mathbf{Q}^{-1}\mathbf{F}_{Y}^{-1}\right)\mathbf{F}_{X}$$
(3.45)

$$\mathbf{X} = \left[\boldsymbol{\Omega}_{t}^{-1}\right]^{-1} + \left[\boldsymbol{\Omega}_{t}^{-1}\right]^{-1} \boldsymbol{\Omega}_{t}^{-1} \mathbf{F}_{X}^{T} \mathbf{U} \mathbf{F}_{X} \boldsymbol{\Omega}_{t}^{-1} \left[\boldsymbol{\Omega}_{t}^{-1}\right]^{-1}$$

$$= \boldsymbol{\Omega}_{t} + \mathbf{F}_{X}^{T} \left(\left[\mathbf{F}_{Y}^{T}\right]^{-1} \mathbf{Q}^{-1} \mathbf{F}_{Y}^{-1}\right) \mathbf{F}_{X}$$
(3.46)

Por fim, temos que a matriz de informação aumentada é dada por:

$$\Omega_t^* = \begin{bmatrix}
\Omega_t + \mathbf{F}_X^T \left(\left[\mathbf{F}_Y^T \right]^{-1} \mathbf{Q}^{-1} \mathbf{F}_Y^{-1} \right) \mathbf{F}_X & -\mathbf{F}_X^T \left(\left[\mathbf{F}_Y^T \right]^{-1} \mathbf{Q}^{-1} \mathbf{F}_Y^{-1} \right) \\
- \left(\left[\mathbf{F}_Y^T \right]^{-1} \mathbf{Q}^{-1} \mathbf{F}_Y^{-1} \right) \mathbf{F}_X & \left[\mathbf{F}_Y^T \right]^{-1} \mathbf{Q}^{-1} \mathbf{F}_Y^{-1}
\end{bmatrix}$$
(3.47)

Note que ao contrário da matriz de covariâncias aumentada do EKF, na Eq. 3.21, que não altera a covariância dos elementos já existentes no filtro. A matriz de informação aumentada altera a informação de alguns elementos existentes, mais especificamente ela altera a informação do robô.

Isso pode ser concluído a partir da observação da forma da matrix \mathbf{F}_X , Eq. 2.12, nula em todos elementos exceto pelo primeiro bloco 2×3 . Para deixar isso em evidência a Eq. 3.47 é reescrita abaixo:

$$\Omega_{t}^{*} = \begin{bmatrix}
\Omega_{RR,t} + \mathbf{F}_{R}^{T} \left(\begin{bmatrix} \mathbf{F}_{Y}^{T} \end{bmatrix}^{-1} \mathbf{Q}^{-1} \mathbf{F}_{Y}^{-1} \right) \mathbf{F}_{R} & \Omega_{RM,t} & -\mathbf{F}_{R}^{T} \left(\begin{bmatrix} \mathbf{F}_{Y}^{T} \end{bmatrix}^{-1} \mathbf{Q}^{-1} \mathbf{F}_{Y}^{-1} \right) \\
\Omega_{RM,t}^{T} & \Omega_{MM,t} & \mathbf{0}_{n-3 \times 2} \\
- \left(\begin{bmatrix} \mathbf{F}_{Y}^{T} \end{bmatrix}^{-1} \mathbf{Q}^{-1} \mathbf{F}_{Y}^{-1} \right) \mathbf{F}_{R} & \mathbf{0}_{2 \times n-3} & \begin{bmatrix} \mathbf{F}_{Y}^{T} \end{bmatrix}^{-1} \mathbf{Q}^{-1} \mathbf{F}_{Y}^{-1}
\end{bmatrix}$$
(3.48)

A partir da matriz de informação e do vetor de estado aumentados pode-se calcular o

vetor de informação aumentado:

$$\boldsymbol{\xi}_{t}^{*} = \boldsymbol{\Omega}_{t}^{*} \boldsymbol{\mu}_{t}^{*}$$

$$= \begin{bmatrix} \begin{bmatrix} \left[\boldsymbol{\Omega}_{t}^{\mathrm{rr}} \right]^{*} & \left[\boldsymbol{\Omega}_{t}^{\mathrm{rm}} \right]^{*} \right] \boldsymbol{\mu}_{t}^{*} \\ \boldsymbol{\xi}_{t}^{\mathrm{m}} \\ \left[\left[\boldsymbol{\Omega}_{t}^{\mathrm{rm}^{\mathrm{j}}} \right]^{*} & \left[\boldsymbol{\Omega}_{t}^{\mathrm{m}^{\mathrm{j}}\mathrm{m}^{\mathrm{j}}} \right]^{*} \right] \boldsymbol{\mu}_{t}^{*} \end{bmatrix}$$

$$(3.49)$$

Assim como na matriz de informação, os elementos do vetor de informação correspondentes ao robô também são alterados, além dos elementos da nova landmark, é claro. De novo, é o contrário do que acontece no EKF, onde apenas os elementos da nova landmark são alterados no vetor de estados. A Figura 3.7 representa as porções alteradas e/ou adicionadas à matriz de informação e ao vetor de informação.

FIGURA 3.7 – Vetor e matriz de informação aumentados após inserção de nova *landmark*. As partes adicionadas, em cinza, correspondem à informação cruzada entre a nova landmark e o robô (cinza claro), e à média da nova *landmark* e do robô, e suas informações (cinza escuro).

Como pode ser observado na figura acima, a operação de inserção de landmark no SEIF possui complexidade constante $\mathcal{O}(1)$ em memória (o EKF possui complexidade linear), porém assim como no EKF o cálculo das novas porções possui complexidade $\mathcal{O}(n)$.

3.4.6 SEIF-SLAM: Esparsificação da matriz de informação

A esparsidade da matriz de informação foi utilizada como premissa em toda a discussão nas Seções 3.4.2, 3.4.3 e 3.4.4. Esta Seção mostrará como a operação de esparsificação é realizada, mas primeiro será ilustrado como a matriz de informação é povoada nos passos de atualização e predição e como a esparsificação elimina a informação cruzada entre landmarks, mostrada na Figura 3.5c, tornando a matriz de informação esparsa.

Ao longo das Figuras 3.8 até 3.12 é possível observar: A inserção de novas landmarks na matriz de informação no momento em que são observadas Figuras 3.8 e 3.10b; Como as informações cruzadas entre landmarks surgem através do movimento do robô (passo de predição do filtro), Figuras 3.9b e 3.12b; A eliminação dessa informação cruzada entre a pose do robô e a posição de uma landmark através da esparsificação, Figura 3.11; Como a eliminação de informação cruzada entre o robô e uma landmark impede a criação de novas conexões de movimento, Figura 3.12.

FIGURA 3.8 – Matriz de informação (representada pela grade) ao lado do esquemático do robô e land-marks, durante a observação das landmarks \mathbf{m}^1 e \mathbf{m}^2 no instante t. Os elementos não nulos da matriz de informação estão representados em cinza. Adaptado de (BONGARD, 2006, p. 389).

FIGURA 3.9 – Matriz de informação (representada pela grade) ao lado do esquemático do robô e land-marks, antes (esquerda) e depois (direita) do movimento do robô, entre os instantes t e t+1. A conexão de movimento gerada entre as landmarks \mathbf{m}^1 e \mathbf{m}^2 é mostrada em magenta, assim como os elementos correspondentes na matriz de informação. Os demais elementos não nulos estão representados em tons de cinza. Adaptado de (BONGARD, 2006, p. 389).

Através da sequência de esquemas apresentados acima foi possível desenvolver uma noção de como a matriz de informação é construída ao longo do tempo e, como a esparsificação impede a criação de conexões entre *landmarks*. Como foi mostrado, a esparsificação

FIGURA 3.10 – Matriz de informação (representada pela grade) ao lado do esquemático do robô e landmarks no instante t+1 durante a observação da landmark \mathbf{m}^3 . Os elementos nulos da matriz de informação estão representados em branco. Adaptado de (BONGARD, 2006, p. 389).

FIGURA 3.11 – Matriz de informação (representada pela grade) ao lado do esquemático do robô e landmarks no instante t+1 antes e após a esparsificação da landmark \mathbf{m}^1 . Os elementos nulos da matriz de informação estão representados em branco. Adaptado de (BONGARD, 2006, p. 389).

consiste em "desativar" conexões entre landmarks e o robô, isto é, tornar a pose do robô condicionalmente independente da posição da landmark desativada. Neste exemplo, isso é obtido através da aproximação $p\left(\mathbf{x}_{t+1}^{\mathrm{r}} \mid \mathbf{m}^{1}, \mathbf{m}^{2}\right) \approx p\left(\mathbf{x}_{t+1}^{\mathrm{r}} \mid \mathbf{m}^{2}\right)$. Em distribuições multivariadas gaussianas, a independência condicional entre variáveis implica nulidade entre os elementos correspondentes da matriz de informação.

Para realizar a esparsificação da matriz de informação do SEIF-SLAM, vamos retomar os conjuntos de $landmarks \mathbf{m}_t^+$ e \mathbf{m}_t^- , ativas e passivas, respectivamente e já definidos na Seção 3.4.1. Também vamos subdividir \mathbf{m}_t^+ em:

$$\mathbf{m}_t^+ = \mathbf{m}_t^{++} \cup \mathbf{m}_t^{+-} \tag{3.50}$$

onde

- \mathbf{m}_t^{+-} é a porção do conjunto de *landmarks* ativas \mathbf{m}_t^{+} que serão tornadas passivas, ou seja, passarão a compor o conjunto \mathbf{m}_t^{-} e terá suas informações cruzadas com o robô zeradas.
- \mathbf{m}_t^{++} é a porção do conjunto de *landmarks* que continuarão ativas após a etapa de esparsificação.

A esparsificação consiste em quebrar a distribuição de probabilidade do problema SLAM

FIGURA 3.12 – Matriz de informação (representada pela grade) ao lado do esquemático do robô e landmarks durante movimento entre os instantes t e t+1. Note que, devido à esparsificação da landmark \mathbf{m}^1 , o movimento não gerou conexão de movimento entre as landamrks \mathbf{m}^1 e \mathbf{m}^3 . Os elementos nulos da matriz de informação estão representados em branco.

em 1.1 utilizando a regra do produto e aproximar a distribuição $p(\mathbf{x}_t^{\mathrm{r}} | \mathbf{m}^{+-}, \mathbf{m}^{++}, \mathbf{m}^{-} = 0)$ pela marginal $p(\mathbf{x}_t^{\mathrm{r}} | \mathbf{m}^{++}, \mathbf{m}^{-} = 0)$, como é mostrado abaixo:

$$p\left(\mathbf{x}_{t}^{r}, \mathbf{m} \mid \mathbf{z}_{1:t}, \mathbf{u}_{1:t}\right) = p\left(\mathbf{x}_{t}^{r}, \mid \mathbf{m}, \mathbf{z}_{1:t}, \mathbf{u}_{1:t}\right) p\left(\mathbf{m} \mid \mathbf{z}_{1:t}, \mathbf{u}_{1:t}\right)$$

$$= p\left(\mathbf{x}_{t}^{r}, \mid \mathbf{m}^{+-}, \mathbf{m}^{++}, \mathbf{m}^{-}, \mathbf{z}_{1:t}, \mathbf{u}_{1:t}\right) p\left(\mathbf{m}^{+-}, \mathbf{m}^{++}, \mathbf{m}^{-} \mid \mathbf{z}_{1:t}, \mathbf{u}_{1:t}\right)$$

$$= p\left(\mathbf{x}_{t}^{r}, \mid \mathbf{m}^{+-}, \mathbf{m}^{++}, \mathbf{m}^{-} = 0, \mathbf{z}_{1:t}, \mathbf{u}_{1:t}\right) p\left(\mathbf{m}^{+-}, \mathbf{m}^{++}, \mathbf{m}^{-} \mid \mathbf{z}_{1:t}, \mathbf{u}_{1:t}\right)$$

$$\approx p\left(\mathbf{x}_{t}^{r}, \mid \mathbf{m}^{++}, \mathbf{m}^{-} = 0, \mathbf{z}_{1:t}, \mathbf{u}_{1:t}\right) p\left(\mathbf{m}^{+-}, \mathbf{m}^{++}, \mathbf{m}^{-} \mid \mathbf{z}_{1:t}, \mathbf{u}_{1:t}\right)$$

$$\approx \frac{p\left(\mathbf{x}_{t}^{r}, \mathbf{m}^{++} \mid \mathbf{m}^{-} = 0, \mathbf{z}_{1:t}, \mathbf{u}_{1:t}\right)}{p\left(\mathbf{m}^{+-}, \mathbf{m}^{++}, \mathbf{m}^{-} \mid \mathbf{z}_{1:t}, \mathbf{u}_{1:t}\right)} p\left(\mathbf{m}^{+-}, \mathbf{m}^{++}, \mathbf{m}^{-} \mid \mathbf{z}_{1:t}, \mathbf{u}_{1:t}\right)$$

$$\approx \frac{p\left(\mathbf{x}_{t}^{r}, \mathbf{m}^{++} \mid \mathbf{m}^{-} = 0, \mathbf{z}_{1:t}, \mathbf{u}_{1:t}\right)}{p\left(\mathbf{m}^{+-}, \mathbf{m}^{++}, \mathbf{m}^{-} \mid \mathbf{z}_{1:t}, \mathbf{u}_{1:t}\right)} (3.51)$$

Os cálculos das matrizes de informações correspondentes às distribuições da última linha do desenvolvimento acima serão feitos com base na discussão em (BONGARD, 2006, p. 401) e, dos resultados de manipulação de distribuições gaussianas na forma canônica presentes no Apêndice B. Primeiramente vamos calcular a matriz Ω_t^0 correspondente a $p(\mathbf{x}_t^{\mathrm{r}}, \mathbf{m}^{+-}, \mathbf{m}^{++} \mid \mathbf{m}^{-} = 0)$, isso é feito extraindo os elementos correspondentes a todas as variáveis de estado exceto \mathbf{m}^{-} :

$$\Omega_t^0 = \mathbf{M}_{x_r,m^{++},m^{+-}}^T \mathbf{M}_{x_r,m^{++},m^{+-}} \Omega_t \mathbf{M}_{x_r,m^{++},m^{+-}}^T \mathbf{M}_{x_r,m^{++},m^{+-}}$$
(3.52)

A partir da matriz Ω_t^0 pode-se calcular as matrizes correspondentes a $p(\mathbf{x}_t^{\mathrm{r}}, \mathbf{m}^{++} | \mathbf{m}^{-} = 0, \mathbf{z}_{1:t}, \mathbf{u}_{1:t})$ e $p(\mathbf{m}^{++} | \mathbf{m}^{-} = 0, \mathbf{z}_{1:t}, \mathbf{u}_{1:t})$, denominadas Ω_t^1 e Ω_t^2 , respectivemente:

$$\Omega_t^1 = \Omega_t^0 - \Omega_t^0 \mathbf{M}_{m^{+-}}^T \left(\mathbf{M}_{m^{+-}} \Omega_t^0 \mathbf{M}_{m^{+-}}^T \right)^{-1} \mathbf{M}_{m^{+-}} \Omega_t^0$$
(3.53)

$$\Omega_t^2 = \Omega_t^0 - \Omega_t^0 \,\mathbf{M}_{x_r,m^{+-}}^T \,\left(\mathbf{M}_{x_r,m^{+-}} \,\Omega_t^0 \,\mathbf{M}_{x_r,m^{+-}}^T\right)^{-1} \,\mathbf{M}_{x_r,m^{+-}} \,\Omega_t^0 \tag{3.54}$$

Por fim, a matriz Ω_t^3 correspondente a $p(\mathbf{m}^{+-}, \mathbf{m}^{++}, \mathbf{m}^{-} | \mathbf{z}_{1:t}, \mathbf{u}_{1:t})$ é calculada por:

$$\Omega_t^3 = \Omega_t - \Omega_t \, \mathbf{M}_{x_r}^T \left(\mathbf{M}_{x_r} \, \Omega_t \, \mathbf{M}_{x_r}^T \right)^{-1} \mathbf{M}_{x_r} \, \Omega_t$$
 (3.55)

De posse das matrizes Ω_t^1 , Ω_t^2 e Ω_t^3 , a matriz de informação esparsificada, $\tilde{\Omega}_t$, correspondente a distribuição aproximada na Eq. 3.51 é obtida:

$$\tilde{\Omega}_t = \Omega_t^1 - \Omega_t^2 + \Omega_t^3 \tag{3.56}$$

Após a esparsificação da matriz de informação, para manter a equivalência abaixo,

$$\boldsymbol{\xi} = \mathbf{P}^{-1}\boldsymbol{\mu} \tag{3.22 repetida}$$

é preciso recalcular o vetor de informação:

$$\tilde{\boldsymbol{\xi}}_{t} = \tilde{\Omega}_{t} \boldsymbol{\mu}_{t}
= \left(\Omega_{t} - \Omega_{t} + \tilde{\Omega}_{t}\right) \boldsymbol{\mu}_{t}
= \Omega_{t} \boldsymbol{\mu}_{t} + \left(\tilde{\Omega}_{t} - \Omega_{t}\right) \boldsymbol{\mu}_{t}
= \boldsymbol{\xi}_{t} + \left(\tilde{\Omega}_{t} - \Omega_{t}\right) \boldsymbol{\mu}_{t}$$
(3.57)

As Equações 3.52 até 3.57 estão sumarizadas no Algoritmo 4, que trata da esparsificação da matriz de informação do SEIF utilizada como premissa para no desenvolvimento das etapas anteriores.

Algorithm 4 Etapa de esparsificação do SEIF-SLAM

- 1: function SEIF-SLAM-ESPARSIFICAÇÃO $(\mu_t, \xi_t, \Omega_t, \mathbf{m}^{++}, \mathbf{m}^{+-})$
- 2: /* Defina as matrizes de projeção $\mathbf{M}_{x_{\rm t},m^{++},m^{+-}}, \mathbf{M}_{m^{+-}}, \mathbf{M}_{x_{\rm r},m^{+-}}$ e $\mathbf{M}_{x_{\rm r}}$ */

3:
$$\Omega_t^0 \leftarrow \mathbf{M}_{x_{\mathrm{r}},m^{++},m^{+-}}^T \mathbf{M}_{x_{\mathrm{r}},m^{++},m^{+-}} \Omega_t \mathbf{M}_{x_{\mathrm{r}},m^{++},m^{+-}}^T \mathbf{M}_{x_{\mathrm{r}},m^{++},m^{+-}}$$

4:
$$\tilde{\Omega}_t \leftarrow \Omega_t^0 - \Omega_t^0 \mathbf{M}_{m^{+-}}^T \left(\mathbf{M}_{m^{+-}} \Omega_t^0 \mathbf{M}_{m^{+-}}^T \right)^{-1} \mathbf{M}_{m^{+-}} \Omega_t^0$$

5:
$$-\left(\boldsymbol{\Omega}_{t}^{0}-\boldsymbol{\Omega}_{t}^{0}\,\mathbf{M}_{x_{\mathrm{r}},m^{+-}}^{T}\left(\mathbf{M}_{x_{\mathrm{r}},m^{+-}}\,\boldsymbol{\Omega}_{t}^{0}\,\mathbf{M}_{x_{\mathrm{r}},m^{+-}}^{T}\right)^{-1}\mathbf{M}_{x_{\mathrm{r}},m^{+-}}\boldsymbol{\Omega}_{t}^{0}\right)$$

6:
$$+\Omega_t - \Omega_t \mathbf{M}_{x_{\mathrm{r}}}^T \left(\mathbf{M}_{x_{\mathrm{r}}} \Omega_t \mathbf{M}_{x_{\mathrm{r}}}^T \right)^{-1} \mathbf{M}_{x_{\mathrm{r}}} \Omega_t$$

7:
$$ilde{oldsymbol{\xi}}_t \leftarrow oldsymbol{\xi}_t + \left(ilde{oldsymbol{\Omega}}_t - oldsymbol{\Omega}_t
ight)oldsymbol{\mu}_t$$

- 8: **return** $\tilde{\boldsymbol{\xi}}_t, \tilde{\boldsymbol{\Omega}}_t$
- 9: end function

3.5 Associação de landmarks

Para calcular a inovação, $\mathbf{z}_t = \mathbf{y}^j - h(\boldsymbol{\mu}_t)$, da j-ésima leitura, é necessário estabelecer a qual landmark do vetor de estados a leitura \mathbf{y}^j corresponde. Porém, até o momento, tanto na atualização do EKF-SLAM quanto do SEIF-SLAM, essa correspondência foi dada como premissa. Mas um sistema SLAM precisa lidar com o problema da associação de medidas e landmarks, pois essas associações são desconhecidas e precisam ser feitas sempre que as landmarks não podem ser identificadas individualmente utilizando apenas a medida do sensor (LIU; THRUN, 2003, p. 4). Dessa forma é preciso diferenciar quando uma landmark é re-observada e quando é observada pela primeira vez e, além disso associar a medida à landmark correta pois caso contrário o filtro irá divergir.

Portanto nessa Seção é apresentado um método de associação entre as medidas lidas e as *landmarks* presentes no vetor de estados do sistema SLAM. Esa etapa é necessária em qualquer sistema SLAM independente do "backend" utilizado (EKF, EIF, Filtro de Partículas, etc), no entanto a discussão aqui apresentada focará nas particularidades do SEIF.

Para calcular as correspondências foi utilizado o método guloso $Individual\ Compatibility\ Nearest\ Neighbor\ (ICNN)$, Algoritmo 5, em linhas gerais ele atribui a landmark cuja distribuição de probabilidade possui a menor distância de Mahalanobis (MCLACHLAN, 1999) para a medida lida. E caso essa distância seja menor que um limiar $\chi^2_{2,\alpha}$, essa medida é associada à landmark candidata. Caso contrário, é considerado que essa medida pertence a uma landmark não observada antes, e então ela é inserida no vetor e matriz de informação como mostrado na Seção 3.7.

Como pode ser observado acima, o Algoritmo utiliza as covariâncias das landmarks, denominadas por $\mathbf{P}_{0:M}$, como entrada. Porém, no SEIF não é mantida uma matriz de covariâncias, mas sim a matriz de informação. Portanto, para utilizar a técnica acima é necessário "recuperar" as covariâncias das landmarks a partir da matriz de informação.

3.5.1 Estimação da covariância de landmarks a partir da matriz de informação

Para utilizar a técnica de associação de dados, apresentada na Seção anterior, com o SEIF, uma técnica para calcular a covariância das landmarks se faz necessária. Num primeiro momento, basta inverter a matriz de informação e extrair os blocos da diagonal principal. Porém, dessa forma todo o esforço para manter as etapas do SEIF com complexidade constante seriam minados, pois a inversão de matrizes tem complexidade $\mathcal{O}(2.376n)$ (COPPERSMITH; WINOGRAD, 1987).

Algorithm 5 Associação da medida \mathbf{y}_t com landmark do vetor de estados

```
1: function Teste-Correspondência-ICNN(oldsymbol{\mu}_t, \mathbf{P}_{0:\mathrm{M}}, \mathbf{y}_t)
            m \leftarrow 0
  2:
            c \leftarrow \{\}
  3:
            d \leftarrow \infty
            while m < M do
  5:
                  \Delta_m \leftarrow \mathbf{y}_t - \boldsymbol{h}^m(\boldsymbol{\mu}_t)
  6:
                  \pi_m \leftarrow \Delta_m^T \mathbf{P}_m^{-1} \Delta_m
  7:
                  if \pi_m < d and \pi_m < \chi^2_{2,\alpha} then
  8:
                         c \leftarrow \{m\}
 9:
                  end if
10:
                  m \leftarrow m + 1
11:
            end while
12:
            return c
13:
14: end function
```

A fim de tratar esse problema, (LIU; THRUN, 2003, p. 5) propõe calcular a covariância das landmarks candidatas à associação de maneira aproximada levando em consideração apenas um subconjunto de landmarks, denominado Cobertor de Markov (Markov Blanket) e simbolizado por $\mathbf{m}_{c_t}^+$, e condicionando todas as demais. Esse conjunto contém as landmarks ativas \mathbf{m}^+ e, as vizinhas (landmarks conectadas na matriz de informação) da landmark candidata à associação. Um exemplo do Cobertor de Markov é ilustado na Figura 3.13.

FIGURA 3.13 – Rede de conexões entre landmarks e o robô. A maioria das landmarks estão representadas por círculos, as landmarks vizinhas da landmark candidata a associação estão representadas por quadrados. As landmarks ativas estão coloridas de preto, a landmark candidata está colorida de cinza. O polígono de bordas grossas delimita o conjunto do Cobertor de Markov, $\mathbf{m}_{c_t}^+$. Neste caso há interseção entre o conjunto de landmarks vizinhas e ativas. Retirado de (BONGARD, 2006, p. 410).

Utilizando o resultado do condicionamento da distribuição gaussiana na forma de

informação apresentado no Anexo B.2 e já utilizado na esparsificação, calcula-se a matriz de covariância aproximada $\tilde{\mathbf{P}}_{m^j}$ da seguinte forma:

$$\tilde{\mathbf{P}}_{\mathbf{m}^{\mathbf{j}}} = \mathbf{M}_{\mathbf{m}^{\mathbf{j}}} \left(\mathbf{M}_{\mathbf{x}_{t}^{\mathbf{r}}, \mathbf{m}^{\mathbf{j}}, \mathbf{m}_{c_{t}}^{+}} \mathbf{\Omega}_{t} \, \mathbf{M}_{\mathbf{x}_{t}^{\mathbf{r}}, \mathbf{m}^{\mathbf{j}}, \mathbf{m}_{c_{t}}^{+}}^{T} \right)^{-1} \mathbf{M}_{\mathbf{m}^{\mathbf{j}}}^{T}$$
(3.58)

Entretanto ao contrário do que é mostrado na Figura 3.13 pode ser que não exista interseção entre o conjunto de landmarks vizinhas a candidata e o conjunto de landmarks ativas \mathbf{m}^+ dentro do Cobertor de Markov. Nesses casos o cobertor deve ser aumentado de forma que englobe um "caminho" entre o robô e a landmark candidata. Para isso, a matriz de informação pode ser interpretada como um grafo e inserir as landmarks que integram o menor caminho entre o robô e a landmark candidata.

${f 3.6}$ Estratégia para mitigar efeito de falsas detecções de landmarks

Um problema comum que ocorre na prática em sistemas SLAM é a detecção errônea e/ou falsa de landmarks, gerando medidas erradas. Isso pode acontecer por erros no processamento dos dados do sensor, movimentos bruscos do robô, e em sistemas multiagentes um robô pode ser confundido com uma landmark dependendo dos tipos de landmark e do sensor utilizado. Esse último é particularmente comum no cenário desse trabalho, onde as landmarks e os robôs possuem formato cilíndrico e o sensor do tipo LiDAR fornece apenas informação espacial, sem cores ou texturas.

Falsas detecções podem levar a falsas associações de novas medidas, acarretando em erro de localização e consequente divergência na observação de novas *landmarks*. Para atenuar esse problema e diminuir as chances de uma falsa *landmark* causar divergência dos filtros, é comum separar as *landmarks* em uma lista provisória e numa lista permanente.

A lista de *landmarks* permanentes é composta pelas *landmarks* já consolidadas pelo filtro, e influenciam na estimação da pose do robô. Já as *landmarks* provisórias são *landmarks* ainda não consolidadas, as leituras associadas a elas são utilizadas apenas para melhorar a estimativa de sua posição e não influenciam na estimação da pose do robô.

Para construir essas listas Saputra (2019) empregou o uso de um esquema de pontuação para as landmarks observadas. Esse esquema possui duas operações: atualização e degradação. A operação de atualização consiste em aumentar um ponto a pontuação \mathcal{Q} da landmark sempre que ela é re-observada. Enquanto a degradação diminui dois pontos sempre que a landmark não é re-observada.

$$Q_{t+1}\left(\mathbf{m}^{j}\right) = \begin{cases} \mathbf{m}^{j} \text{ \'e re-observada} & \Longrightarrow Q_{t}\left(\mathbf{m}^{j}\right) + 1 \text{ (atualização)} \\ \mathbf{m}^{j} \text{ não \'e re-observada} & \Longrightarrow Q_{t}\left(\mathbf{m}^{j}\right) - 2 \text{ (degradação)} \end{cases}$$
(3.59)

Toda landmark começa na lista provisória e conforme sua pontuação \mathcal{Q} evolui no tempo ela pode ser promovida para a lista de landmarks permanentes, passando a ser utilizada na correção da pose do robô. Ou até mesmo removida no filtro caso deixe de ser observada sistematicamente. Uma landmark se torna permanente quando sua pontuação chega a 10, e é excluída quando pontua cinco pontos negativamente:

$$\begin{cases} \mathcal{Q}_t(\mathbf{m}^j) \ge 10 & \text{Promoção} \\ \mathcal{Q}_t(\mathbf{m}^j) \le -5 & \text{Remoção} \end{cases}$$
(3.60)

Com essa abordagem foi possível erradicar a incorporação de falsas *landmarks* geradas tanto no cenário com um robô quanto no cenário com dois robôs. Além disso, como será visto na próxima Seção 5.2, ao trocarem seus mapas os robôs enviam para o outro par apenas o vetor e matriz de informação correspondentes às *landmarks* consolidadas pelo filtro (i.e. permanentes).

3.7 Conclusão do capítulo

Neste Capítulo foram exploradas as particularidades da estimação de estado de sistemas SLAM em relação a estimação de estado de sistemas convencionais. Enquanto um sistema SLAM possui vetor de estados com tamanho dinâmico, o tamanho do vetor de medidas é variante no tempo, uma porção do estado é variante no tempo (a pose do robô) enquanto a outra é invariante (posição das landmarks), e a associação entre medidas e estados é desconhecida a priori. Um sistema convencional possui número de medidas fixo e os estados têm mesmo tipo de variabilidade no tempo.

Também foram mostradas as adaptações necessárias para utilizar o Filtro de Kalman Estendido na estimação de estado de sistemas SLAM, caracterizando a técnica EKF-SLAM. Além disso, foi apresentado a técnica SEIF-SLAM e como ela é baseada na formulação dual do EKF, e como ela utiliza o conceito de *landmarks* ativas para manter a matriz de informação esparsa levando ao uso linear de memória e tempos de atualização e predição constantes. Mais adiante, na Seção 5.2 também será mostrado como a troca de informações entre sistemas SEIF-SLAM é natural devido a utilização da parametrização canônica do filtro.

Além disso foi abordada a técnica de associação de dados Individual Compatibility

Nearest Neighbor, que se mostrou boa o suficiente para as configurações de ambiente utilizadas neste trabalho. E por fim, foi tratado o problema prático da detecção de falsas landmarks e evitá-lo.

4 SLAM Frontend

No capítulo anterior foram abordadas as soluções EKF e SEIF, com maior foco neste último, do problema de estimação que deve ser resolvido por um sistema SLAM. Mas apenas resolver a estimação não é suficiente, existem outras capacidades "comportamentais" que um robô deve possuir para performar SLAM, como: processamento de leituras dos sensores, construir representações úteis do ambiente e, a partir dessas representações traçar trajetórias a fim de explorá-lo e aumentar seu conhecimento a respeito do mesmo. Todos esses aspectos são compreendidos pelo *front end* como mostrado na Figura 1.1, e nesse capítulo serão abordadas as soluções para alguns de seus componentes.

4.1 Dados do sensor laser

Essa Seção explica o formato dos dados brutos do sensor LiDAR, e como eles são processados e transformados nos dados utilizados pelo modelo de medida descrito na Seção 2.3 (Medidas e o modelo de medida *Range-Bearing*).

4.1.1 Dados brutos

Os dados brutos do sensor LiDAR utilizado, consistem numa sequência de distâncias $\{r^0, r^1, \dots, r^N\}$. Esses valores são gerados pela reflexão de feixes de laser, emitidos pelo sensor, nas superfícies presentes no ambiente. Os feixes são disparados de maneira sequencial no sentido anti-horário, a partir do eixo x do sistema de coordenadas do sensor. Além disso, o sensor também fornece as posições angulares θ_0 do primeiro e θ_N do último feixe, e o incremento na posição angular $\Delta \theta$ entre o feixe k e o feixe k+1.

A Figura 4.1b apresenta os dados brutos obtidos em uma leitura feita no ambiente mostrado na Figura 2.1.

(b) Interpolação linear das distâncias lidas pelo sensor.

FIGURA 4.1 – Visualização dos feixes laser emitidos pelo sensor LiDAR e a respectiva leitura gerada.

4.1.2 Processamento de dados

Para transformar o dado bruto, a sequência de distâncias na Figura 4.1b, nas medidas consumidas pelo modelo de medida descrito na Seção *Medidas e o modelo de medida Range-Bearing*, é proposto um *pipeline* de processamento de dados, Figura 4.2,cujo último estágio é o algoritmo de estimação de círculos a partir de pontos em coordenadas cartesianas (AL-SHARADQAH; CHERNOV, 2009, p. 903).

Para começar, é necessário extrair os pontos que correspondem às reflexões nas superfícies dos cilindros presentes no ambiente. Para isso, observa-se que há uma variação brusca nas distâncias lidas pelo sensor quando os feixes são refletidos pelas superfícies dos cilindros. Ao analisar a derivada do sinal, representada na Figura 4.3, podemos notar que o intervalo de medidas correspondente às reflexões dos cilindros se encontram entre uma variação negativa seguida rapidamente de uma variação positiva na curva da derivada.

O próximo passo consiste em transformar o sinal para a representação em coordenadas cartesianas, e segmentar os conjuntos de pontos correspondentes aos intervalos entre picos e vales do sinal de derivada computado anteriormente, como é mostrado na Figura 4.4. Então, cada um desses conjuntos é fornecido como entrada do Algoritmo 10 (listado no Anexo C.1), o resultado são círculos que melhor explicam esses conjuntos de pontos (Figura 4.5), juntamente com o erro médio quadrático entre cada conjunto de pontos e seu círculo.

Por fim são considerados apenas os círculos cujo erro médio quadrático para seus pontos correspondentes é inferior a um limiar $\epsilon = 10^{-3}$ e cujo raio seja superior a 6cm. Essa última condição é especialmente útil no cenário multiagente, pois evita que um robô

 ${
m FIGURA~4.2-Sequência}$ de passos para processar os dados brutos do sensor LiDAR e transforma-los em dados úteis para o modelo de medida utilizado.

descrevem os conjuntos de pontos.

Com r > 6.5cm e $\sigma < \epsilon$

0

FIGURA 4.3 – Derivada central da sequência de distâncias representadas na Figura 4.1b. As linhas pontilhadas em vermelho representam os limiares a partir dos quais os picos são interpretados como início (negativo) ou fim (positivo) da superfície de um cilindro. Os picos destacados em vermelho ultrapassam as valores limiares.

FIGURA 4.4 – Representação da leitura do sensor LiDAR em coordenadas cartesianas. Os pontos destacados em azul correspondem a reflexões das superfícies das landmarks.

FIGURA 4.5 – Em azul, os conjuntos de pontos selecionados como pertencentes à superfícies das *land-marks*. Em verde, os círculos estimados para cada conjunto.

confunda o sensor LiDAR (que fica montado no topo do robô, conforme visto na Figura 2.2) do outro com uma *landmark*.

4.2 Mapa em grade

Até o momento o ambiente foi representado apenas como um conjunto de landmarks, embora essa representação seja muito útil para a estimação, abordada no Capitulo 3, ela não é adequada para representar outros aspectos do ambiente além das próprias landmarks. O robô não consegue representar a presença de outros objetos, paredes ou até mesmo outros agentes.

Uma forma de representação que trata desses problemas é a grade de ocupação. Grades de ocupação discretizam o espaço em um conjunto de células, onde cada célula armazena a probabilidade de estar ocupada ou não (ELFES, 1989). A Figura 4.6 ilustra a grade de ocupação construída a partir das observações a partir do centro da cena representada na Figura 4.1a.

Para utilizar grade de ocupação são adotadas duas hipóteses simplificadoras: a primeira é que as células são independentes e o estado de ocupação de uma célula não diz nada sobre o estado de outra; a segunda é que o ambiente é estático. Embora essas duas premissas sejam falsas, grades de ocupação funcionam muito bem na prática inclusive

FIGURA 4.6 – Grade de ocupação produzida utilizando as leituras do sensor LiDAR. As células em azul representam porções do ambiente com estado desconhecido a partir da observação deste único ponto de vista. A cor das demais células refletem a probabilidade de estarem ocupadas, quanto mais escura maior a confiança do robô de que existe algum objeto no espaço delimitado pela célula. Cada célula é um quadrado com lado 5cm.

em ambientes dinâmicos. A primeira hipótese é falsa porque se uma célula representa a ocupação de parte do corpo de um objeto, é muito provável que suas vizinhas também estejam ocupadas por esse objeto. E a segunda porque há outros agentes se movimentando no ambiente.

Utilizando essas hipóteses, cada célula pode ser modelada como uma variável aleatória binária que pode assumir os estados livre ou ocupado, e cujo estado é constante no tempo (i.e. estático). Isso sugere a utilização do filtro de Bayes binário (BONGARD, 2006, p. 94) para estimar o estado das células da grade.

4.2.1 Construção da grade de ocupação

Para construir a grade de ocupação primeiro é necessário definir sua resolução, isto é, o tamanho de sua célula. Quanto menor a célula, mais memória é utilizada para representar o ambiente e melhor é a representação. A quantidade de células pode ser fixa, caso a área da grade seja definida inicialmente, ou dinâmica.

Uma vez que o ambiente está segmentado em células, utiliza-se o modelo de medida inverso $f(\bullet, \bullet)$ (Seção 2.3.2) para determinar a qual célula pertence a extremidade do feixe da leitura do LiDAR. Caso o comprimento do feixe seja menor que o alcance máximo

FIGURA 4.7 – Uso do algoritmo de Bresenham para determinar as células interceptadas pelo feixe (em azul) do sensor LiDAR. As células em verde claro, representam o espaço atravessado pelo feixe. A célula em verde escuro representam o espaço em que o feixe interceptou a superfície de um objeto. O robô é representado pelo triângulo cinza.

do sensor a probabilidade de ocupação da célula, que contém a extremidade do feixe, aumenta. Enquanto as das células ao longo do feixe diminui.

Para determinar quais células da grade são interceptadas pelos feixes do sensor LiDAR é utilizado o algoritmo de desenho de linha de Bresenham (BRESENHAM, 1965). Inicialmente esse algoritmo foi criado para desenhar linhas em *plotters* digitais, mas ele também pode ser usado para desenhar linhas em grades de pixel, como monitores. Aqui ele é usado para "desenhar" o feixe do LiDAR, com origem no sensor e extremidade calculada pelo modelo de medida inverso, na grade de ocupação. Então as células utilizadas no desenho são as células interceptadas pelo feixe, como é ilustrado na Figura 4.7.

Por fim é preciso definir uma distribuição de probabilidade de ocupação das células para o modelo de medida inverso. Por conta da boa precisão de sensores do tipo LiDAR utilizou-se um modelo simplificado, ilustrado na Figura 4.8.

4.2.2 Representação em log odds

Implementações do filtro de Bayes binário são comumente realizadas na forma do logaritmo da razão de chances (log odds ratio) (BONGARD, 2006, p. 94). A razão de chances, ou odds, é a razão entre a probabilidade de ocorrência de um evento (a célula estar ocupada), dividida pela razão da não ocorrência desse evento (a célula estar livre).

FIGURA 4.8 – Distribuição de probabilidade simplificada do modelo de medida inverso.

Se $p(c_{ij} | \mathbf{y}_{1:t})$ é a probabilidade da célula c_{ij} estar ocupada dada as medidas dos sensor LiDAR até o instate t, então a sua razão de chances é:

$$\frac{p(c_{ij} \mid \mathbf{y}_{1:t})}{p(\neg c_{ij} \mid \mathbf{y}_{1:t})} = \frac{p(c_{ij} \mid \mathbf{y}_{1:t})}{1 - p(c_{ij} \mid \mathbf{y}_{1:t})}$$
(4.1)

A atualização recursiva da razão de chances da ocupação de uma célula é dada pelo produto de razões mostrado na Equação 4.2 abaixo (BONGARD, 2006, p. 96). A primeira razão corresponde à razão de chances de ocupação do modelo de medida inverso, cuja distribuição de probabilidade foi mostrada na Figura 4.8, o termo do meio é o termo recursivo, e o da direita representa algum conhecimento incial que se possa ter sobre o ambiente.

$$\frac{p(c_{ij} \mid \mathbf{y}_{1:t})}{p(\neg c_{ij} \mid \mathbf{y}_{1:t})} = \frac{p(c_{ij} \mid \mathbf{y}_t)}{1 - p(c_{ij} \mid \mathbf{y}_t)} \frac{p(c_{ij} \mid \mathbf{y}_{1:t-1})}{1 - p(c_{ij} \mid \mathbf{y}_{1:t-1})} \frac{1 - p(c_{ij})}{p(c_{ij})}$$
(4.2)

Definindo o logaritmo da razão de chances, também conhecido por logit, por:

$$l_t = \log \left(\frac{p\left(c_{ij} \mid \mathbf{y}_{1:t}\right)}{p\left(\neg c_{ij} \mid \mathbf{y}_{1:t}\right)} \right) \tag{4.3}$$

Aplicando a definição acima na Equação 4.2, ela pode ser reescrita na forma da Equação 4.6:

$$l_t = \log\left(\frac{\text{Modelo-de-medida-inverso}}{1 - \text{Modelo-de-medida-inverso}}\right) + l_{t-1} - l_0 \tag{4.4}$$

E a probabilidade de ocupação de uma célula pode ser recuperada utilizando a relação na Equação 4.5.

$$p = 1 - \frac{1}{1 + \exp(l_t)} \tag{4.5}$$

Como fica claro na Equação 4.4, a incorporação de novas leituras se resume a uma simples adição. Esse aspecto da representação em *log odds* será muito útil mais adiante quando os agentes trocarem suas grades de ocupação, pois após o alinhamento entre as grades a fusão entre elas também será uma simples soma.

(b) Visualização da grade de ocupação no software RVIZ

FIGURA 4.9 – Diferentes representações de uma mesma grade de ocupação.

4.3 Exploração Autônoma

Na Seção anterior foi mostrado como as grades de ocupação são utilizadas para representar ambiente e como essa representação é construída e mantida. Nessa seção será mostrado como a grande pode ser empregada para determinar regiões alvo para exploração dos agentes e como elas são úteis para evitar obstáculos.

A técnica de exploração utilizada nesse trabalho é uma simplificação da exploração orientada ao ganho de informação, denominada ganho binário. Ela consiste em guiar o robô para a região desconhecida mais próxima na grade de ocupação, e também é conhecida por exploração baseada em fronteira. Apesar de ser uma técnica simples, ela tende a funcionar bem na prática, pois sempre guia o robô em direção a terreno desconhecido (BONGARD, 2006, p. 584). Se o robô estivesse no centro da grade representada na Figura 4.9a, ele selecionaria a célula com ocupação desconhecida (azul) mais próxima, e com uma distância de segurança mínima de uma célula ocupada, para explorar.

Além de selecionar o novo ponto para onde deve seguir, o robô também precisa estabelecer um caminho livre de obstáculos que o leve de sua posição atual para a posição de destino. Para isso o mapa de grade é transformado em um mapa de custo, e o robô calcula o caminho com menor custo até a célula de destino. O custo de uma célula é inversamente proporcional a sua distância para as células ocupadas mais próximas, o resultado pode ser visualizado como um "mapa de calor" na Figura 4.10.

Para obter o caminho com menor custo, o mapa de custo é modelado como um grafo com os custos das arestas iguais aos custos da células e então o menor caminho é obtido utilizando o algoritmo de Dijkstra, ou sua variante com heurística o A*.

FIGURA~4.10 — Mapa de custo referente à grade de ocupação da Figura 4.9. As regiões quentes (vermelho) representam células de maior custo. Enquanto as células frias (azul escuro) representam células de baixo custo.

5 SLAM multiagente descentralizado

Até o momento foram tratados todos os aspectos importantes para que um robô resolva o problema SLAM ativamente: reconhecimento de landmarks, diferentes formas de representar o ambiente, exploração, estimação e um mecanismo para evitar que landmarks espúrias sejam incorporadas ao filtro causando divergência e falha. Porém, resta explorar um aspecto fundamental para sistema multiagentes: a troca de informações e a subsequente inclusão dos mapas de um agente no(s) do(s) outro(s), e vice e versa.

A troca de informação par a par entre os agentes é o mecanismo que caracteriza um sistema SLAM multiagente descentralizado, e que confere a ele redundância de informação e robustez frente a falhas de agentes. Além disso, também pode propiciar que os agentes dividam a carga de trabalho na exploração concluindo a tarefa em menos tempo.

Essa troca pode acontecer em dois níveis: filtro e mapa de grade. Quando um robô incorpora as informações do filtro de seu par, ele pode aumentar a informação a respeito das landmarks já conhecidas por ele e que também foram observadas pelo seu par, e ainda adquirir informação de landmarks que ainda não foram observados por ele, mas foram observadas pelo seu par. A matriz e vetor de informação de um é incorporado nos do outro.

Similarmente, a troca dos mapas de grade de ocupação permite a mesma coisa do ponto de vista do mapa de grade. Durante a comunicação um agente incorpora as probabilidades de ocupação, ou melhor o logaritmo das razões de chances (log odds), do mapa do outro ao seu próprio. Isso é muito simples por conta da natureza aditiva da representação em log odds, como mostrado na Equação 4.4.

No entanto, para que um robô incorpore os mapas (grade e *landamrks*) do outro aos seus prórpios, é necessário antes que se determine a posição relativa entre eles para transformar os mapas que estão no sistema de referência local do outro, para o seu próprio sistema de referência local, alinhando assim os elementos comuns que aparecem em ambos.

5.1 Cálculo da posição relativa entre agentes

Para determinar a posição relativa entre os robôs utilizou-se a técnica de registro de nuvens de pontos, que consiste em estimar uma transformação \mathcal{T} que ao ser aplicada em uma nuvem de pontos *fonte* a melhor alinhe com uma nuvem de pontos *alvo*. Um exemplo de registro de nuvens de pontos é mostrado na Figura 5.1, onde duas nuvens de um mesmo ambiente são alinhadas resultando em uma nuvem mais completa.

FIGURA 5.1 – Exemplo de registro de par de num de pontos. As nuvens representam porções diferentes de uma mesma cena e possuem elementos em comum.

Com isso, ao utilizar como nuvem de pontos o mapa e landamrks de cada robô e restringir que a transformação \mathcal{T} seja uma transformação de corpo rígido \mathcal{T}_r , é possível determinar a posição relativa entre eles. A Transformação \mathcal{T}_r é definida por um ângulo de rotação e um vetor de descolamento entre dois sistemas de referência:

$$\mathcal{T}_r = \begin{bmatrix} \theta & d_x & d_y \end{bmatrix}^T \tag{5.1}$$

A premissa para utilizar essa técnica é que ao explorar o mesmo ambiente os mapas criados por cada robô possui elementos (landmarks) em comum com os mapas dos demais, e portanto é possível identificar e estabelecer relação entre as landmarks em comum para determinar a transformação \mathcal{T}_r que melhor as alinhem.

Porém, como a única informação que caracteriza uma landmark é a sua posição, no sistema de referência local, fica difícil determinar se ela também foi observada pelo outro par e, portanto está em seu mapa. Essa dificuldade se deve à utilização do sensor LiDAR, pois em soluções que usam câmeras RGB ou de RGB-D, as texturas e cores podem ser utilizadas para identificar pontos de interesse.

Para superar essa limitação, utilizou-se um descritor de características para descrever uma landmark a partir de sua vizinhança, dessa forma criando uma "digital" que se repetiria no outro mapa, possibilitando identificar quando uma mesma landmark foi observada pelo outro par. Então foi desenvolvido um descritor de características inspirado

no descritor *Spin Image* (JOHNSON; HEBERT, 1999), para o caso planar do mapa de *land-marks*. A Figura 5.2 ilustra o descritor. Ele define uma vizinhança em torno da *landmark* descrita, e a divide em setores. Cada setor possui uma posição correspondente no vetor de características, em cada posição do vetor é colocada a quantidade de *landmarks* vizinhas, a *landmark* descrita, em seu setor correspondente.

FIGURA 5.2 – Ilustração do descritor de característica utilizado para relacionar landmarks entre os mapas dos agente. As landmarks estão representadas por círculos em cinza, a landmark descrita é representada em magenta. O vetor descritor está representado no canto inferior esquerdo. Cada posição do vetor corresponde a um setor da circunferência tracejada. Os setores que possuem landmarks vizinhas estão realçados em tons de azul.

Depois que o vetor de características de cada *landmark* em ambos os mapas é criado, são estabelecidas correspondências entre pares de vetores de descrição (um de cada mapa) utilizando como critério a distância euclidiana. Então, utiliza-se o algoritmo *Random Sample Consensus* (RANSAC) (FISCHLER; BOLLES, 1981) para estimar a melhor transformação que alinha os dois mapas.

Aplicando a transformação obtida no mapa de landmarks do outro robô, o primeiro avalia quantas landmarks a transformação alinha corretamente, e se há alguma landmark com alinhamento indefinido. Um alinhamento é tido como correto quando a distância d entre as landmarks é menor que um limiar δ_{near} , e como indefinido se a distância está entre os limiares $\delta_{near} \leq d < \delta_{far}$. A transformação é então aceita como correta se não existe alinhamentos indefinidos e a quantidade de alinhamentos corretos é maior ou igual a três.

5.2 Troca de Mapas

Dada a transformação da posição relativa entre o par de robôs (j,k), obtida pelo registro dos mapas de landmarks dos robôs j e k, resta incorporar os mapas de um no outro. As próximas duas Seções abordam a fusão dos vetores e matrizes de informação de ambos os agentes, e de seus mapas de ocupação. Ambas as fusões exploram o caráter aditivo de suas respectivas representações.

5.2.1 Troca do vetor e matriz de informação

A exposição que segue abaixo nessa Seção é inspirada em (BONGARD, 2006, Seção 12.11).

Para que um robô incorpore os vetores de estado e informação e a matriz de informação um do outro, é necessário antes mudar o sistema de referência de um para o outro. Em posse da transformação de mudança do sistema de referência do robô j para o sistema de referência do robô k, $\mathcal{T}_r^{j\to k}$,

$$\mathcal{T}_r^{j \to k} = \begin{pmatrix} \theta^{j \to k} & d_x^{j \to k} & d_y^{j \to k} \end{pmatrix} \tag{5.2}$$

onde:

- $\theta^{j\to k}$ é o ângulo de rotação necessário para alinhar os eixos do sistema de referência local do robô k com os eixos do sistema de referência do robô j
- $d_x^{j\to k}$ descolamento no eixo x que leva a componente x da origem do sistema de referência do robô k para a origem do sistema de referência do robô j
- $d_y^{j\to k}$ descolamento no eixo y que leva a componente y da origem do sistema de referência do robô k para a origem do sistema de referência do robô j

A posição da i-ésima landmark do vetor de estados do robô j é reescrita no sistema de referência do robô k da seguinte forma:

$$\mathbf{m}_{i}^{j \to k} = \underbrace{\begin{bmatrix} d_{x}^{j \to k} \\ d_{y}^{j \to k} \end{bmatrix}}_{\boldsymbol{\delta}_{m}} + \underbrace{\begin{bmatrix} \cos(\theta^{j \to k}) & \sin(\theta^{j \to k}) \\ -\sin(\theta^{j \to k}) & \cos(\theta^{j \to k}) \end{bmatrix}}_{\mathbf{A}_{m}} \begin{bmatrix} m_{x}^{i} \\ m_{y}^{i} \end{bmatrix}$$
(5.3)

Já a pose do robô j no sistema de referência do robô k é dada por:

$$\mathbf{x}_{r}^{j \to k} = \underbrace{\begin{bmatrix} \theta^{j \to k} \\ d_{x}^{j \to k} \\ d_{y}^{j \to k} \end{bmatrix}}_{\boldsymbol{\delta}_{r}} + \underbrace{\begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos(\theta^{j \to k}) & \sin(\theta^{j \to k}) \\ 0 & -\sin(\theta^{j \to k}) & \cos(\theta^{j \to k}) \end{bmatrix}}_{\mathbf{A}_{r}} \underbrace{\begin{bmatrix} \theta^{j} \\ x^{j} \\ y^{j} \end{bmatrix}}_{\mathbf{A}_{r}}$$
(5.4)

Definindo o vetor Δ e a matrix A como:

$$\mathbf{\Delta} = \begin{bmatrix} \boldsymbol{\delta}_r & \boldsymbol{\delta}_m & \dots & \boldsymbol{\delta}_m \end{bmatrix}^T \tag{5.5}$$

 \mathbf{e}

$$\mathbf{A} = \begin{bmatrix} \mathbf{A}_r & \mathbf{0} & \dots & \mathbf{0} \\ \mathbf{0} & \mathbf{A}_m & \dots & \mathbf{0} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{0} & \mathbf{0} & \dots & \mathbf{A}_m \end{bmatrix}$$
(5.6)

pode-se reescrever a mudança de referência do vetor de estados do robô j para o sistema de referência do robô k, como:

$$\mathbf{x}^{j \to k} = \mathbf{\Delta} + \mathbf{A} \, \mathbf{x}^j \tag{5.7}$$

Com o resultado a mudança de sistema de referência do robô j para o do robô k, mostrado na Equação 5.7, e usando como hipótese que não há ganho ou perca de informação ao mudar o sistema de referência dos vetores e matrizes do robô j para o robô k, ou seja que

$$p\left(\mathbf{x}_{t}^{j\to k} \mid \mathbf{z}_{1:t}, \mathbf{u}_{1:t}\right) = p\left(\mathbf{x}_{t}^{j} \mid \mathbf{z}_{1:t}, \mathbf{u}_{1:t}\right)$$

$$(5.8)$$

chegamos aos valores de $\boldsymbol{\xi}^{j \to k}$ (vetor de informação) e $\Omega^{j \to k}$ (matriz de informação) através

do seguinte desenvolvimento:

$$p\left(\mathbf{x}_{t}^{j\to k} \mid \mathbf{z}_{1:t}, \mathbf{u}_{1:t}\right) = \eta \exp\left(-\frac{1}{2} \left(\mathbf{x}^{j\to k}\right)^{T} \mathbf{\Omega}^{j\to k} \mathbf{x}^{j\to k} + \left(\mathbf{x}^{j\to k}\right)^{T} \boldsymbol{\xi}^{j\to k}\right)$$

$$= \eta \exp\left(-\frac{1}{2} \left(\boldsymbol{\Delta} + \mathbf{A} \mathbf{x}^{j}\right)^{T} \mathbf{\Omega}^{j\to k} \left(\boldsymbol{\Delta} + \mathbf{A} \mathbf{x}^{j}\right) + \left(\boldsymbol{\Delta} + \mathbf{A} \mathbf{x}^{j}\right)^{T} \boldsymbol{\xi}^{j\to k}\right)$$

$$= \eta \exp\left(-\frac{1}{2} \mathbf{\Delta}^{T} \mathbf{\Omega}^{j\to k} \boldsymbol{\Delta} - \frac{1}{2} \mathbf{\Delta}^{T} \mathbf{\Omega}^{j\to k} \mathbf{A} \mathbf{x}^{j} - \frac{1}{2} \left[\mathbf{x}^{j}\right]^{T} \mathbf{A}^{T} \mathbf{\Omega}^{j\to k} \boldsymbol{\Delta}\right)$$

$$= \frac{1}{2} \left[\mathbf{x}^{j}\right]^{T} \mathbf{A}^{T} \mathbf{\Omega}^{j\to k} \mathbf{A} \mathbf{x}^{j} + \underbrace{\boldsymbol{\Delta}^{T} \boldsymbol{\xi}^{j\to k}}_{\text{constante}} + \left[\mathbf{x}^{j}\right]^{T} \mathbf{A}^{T} \boldsymbol{\xi}^{j\to k}\right)$$

$$= \eta \exp\left(-\frac{1}{2} \left[\mathbf{x}^{j}\right]^{T} \left(\mathbf{A}^{T} \mathbf{\Omega}^{j\to k} \mathbf{A}\right) \mathbf{x}^{j} - \left[\mathbf{x}^{j}\right]^{T} \mathbf{A}^{T} \mathbf{\Omega}^{j\to k} \boldsymbol{\Delta} + \left[\mathbf{x}^{j}\right]^{T} \mathbf{A}^{T} \boldsymbol{\xi}^{j\to k}\right)$$

$$= \eta \exp\left(-\frac{1}{2} \left[\mathbf{x}^{j}\right]^{T} \underbrace{\left(\mathbf{A}^{T} \mathbf{\Omega}^{j\to k} \mathbf{A}\right) \mathbf{x}^{j}}_{\mathbf{\Omega}^{j}}\right)$$

$$= \left[\mathbf{x}^{j}\right]^{T} \underbrace{\left(\mathbf{A}^{T} \mathbf{\Omega}^{j\to k} \mathbf{A}\right) \mathbf{x}^{j}}_{\mathbf{\Omega}^{j}}$$

$$= \left[\mathbf{x}^{j}\right]^{T} \underbrace{\left(\mathbf{A}^{T} \mathbf{\Omega}^{j\to k} \mathbf{A}\right) \mathbf{A}}_{\mathbf{\Sigma}^{j}}$$

$$= \left[\mathbf{X}^{j}\right]^{T} \underbrace{\left(\mathbf{A}^{T} \mathbf{\Omega}^{j\to k} \mathbf{A}\right) \mathbf{A}}_{\mathbf{\Sigma}^{j}}$$

$$= \underbrace{\left(\mathbf{A}^{T} \mathbf{\Omega}^{j\to k} \mathbf{A}\right) \mathbf{A}}_{\mathbf{\Sigma}^{j}}$$

Utilizando a equivalência da Equação 5.8, têm-se:

$$\mathbf{\Omega}^j = \mathbf{A}^T \mathbf{\Omega}^{j \to k} \mathbf{A} \tag{5.10}$$

$$\boldsymbol{\xi}^{j} = -\mathbf{A}^{T} \mathbf{\Omega}^{j \to k} \mathbf{\Delta} + \mathbf{A}^{T} \boldsymbol{\xi}^{j \to k}$$
(5.11)

e como ${\bf A}$ é ortogonal $({\bf A}^{-1}={\bf A}^T)$, temos que ${\pmb \xi}^{j\to k}$ e ${\pmb \Omega}^{j\to k}$ são obtidos da seguinte forma:

$$\mathbf{\Omega}^{j \to k} = \mathbf{A} \mathbf{\Omega}^j \mathbf{A}^T \tag{5.12}$$

$$\boldsymbol{\xi}^{j \to k} = \mathbf{A} \left(\boldsymbol{\xi}^j + \mathbf{\Omega}^j \mathbf{A}^T \mathbf{\Delta} \right) \tag{5.13}$$

Com o vetor de informação e a matriz de informação do robô j reescritos no sistema de referência do robô k, Equações 5.13 e 5.12 respectivamente, criamos as seguintes grandezas aumentadas:

$$\boldsymbol{\xi}_t^* = \begin{bmatrix} \boldsymbol{\xi}_t^k & \boldsymbol{\xi}_t^{j \to k} \end{bmatrix}^T \tag{5.14}$$

$$\Omega_t^* = \begin{bmatrix} \Omega_t^k & \mathbf{0} \\ \mathbf{0} & \Omega_t^{j \to k} \end{bmatrix}$$
 (5.15)

O vetor e a matriz de informação aumentados é simplesmente o vetor e matriz do robô

k concatenados com o vetor e matriz de informação do robô j transformados para o sistema de referência do robô k. Portanto, há mais de uma linha/bloco que possui informação relacionada a uma mesma landmark que foi observada por ambos os robôs separadamente, então resta ainda fundir linhas e blocos que dizem respeito à mesma landmark. Para isso basta somá-los, no exemplo abaixo supõe-se que os blocos 2 e 4 do vetor e matriz de informação correspondem ao mesmo objeto:

$$\begin{bmatrix} \Omega_{11} & \Omega_{12} & \Omega_{13} & \Omega_{14} \\ \Omega_{21} & \Omega_{22} & \Omega_{23} & \Omega_{24} \\ \Omega_{31} & \Omega_{32} & \Omega_{33} & \Omega_{34} \\ \Omega_{41} & \Omega_{42} & \Omega_{43} & \Omega_{44} \end{bmatrix} \rightarrow \begin{bmatrix} \Omega_{11} & \Omega_{12} + \Omega_{14} & \Omega_{13} \\ \Omega_{21} + \Omega_{41} & \Omega_{22} + \Omega_{42} + \Omega_{24} \Omega_{44} & \Omega_{23} + \Omega_{43} \\ \Omega_{31} & \Omega_{32} + \Omega_{34} & \Omega_{33} \end{bmatrix}$$
(5.16)

$$\begin{bmatrix} \boldsymbol{\xi}_1 \\ \boldsymbol{\xi}_2 \\ \boldsymbol{\xi}_3 \\ \boldsymbol{\xi}_4 \end{bmatrix} \rightarrow \begin{bmatrix} \boldsymbol{\xi}_1 \\ \boldsymbol{\xi}_2 + \boldsymbol{\xi}_4 \\ \boldsymbol{\xi}_3 \end{bmatrix}$$
(5.17)

Por último, depois da fusão bos blocos da matriz e do vetor de informação, é necessário ajustar os elementos correspondentes do vetor média. Para isso foi utilizado o método descrito no Algoritmo 2, mas ao invés da otimização ser realizada num conjunto de landmarks observadas, ela é realizada no conjunto de landmarks que foram observadas por ambos os robôs do par e portanto tiveram seus elementos fundidos.

5.2.2 Troca grades de ocupação

Similarmente a troca do vetor e matriz de informação, as células da grade de ocupação de um robô são projetadas na do outro por meio da transformação $\mathcal{T}_r^{j\to k}$. O logaritmo da razão de chance da *i*-ésima célula da grade de ocupação do robô k é atualizada da seguinte forma:

$$l_i^k = l_i^{j \to k} + l_i^k + l_0^k \tag{5.18}$$

A Figura 5.3 ilustra a fusão das grades de ocupação de um par de robôs. É possível observar que um robô passa a ter informações de células que não podem ser observadas do seu ponto de vista, mas que foram observadas pelo outro robô.

(a) Mapa de grande do robô 1. O robô está no centro da grade em amarelo.

(b) Mapa de grande do robô 1. O robô está no centro da grade em vermelho.

(c) Mapa de grade do robô 1 após incorporar o mapa de grande do robô 2.

FIGURA 5.3 – As imagens menores representam os mapas de grande individuais de cada robô. A imagem maior representa o mapa de grade do primeiro robô após receber o mapa de grade do segundo. Note que algumas células com probabilidade de ocupação 0.5 (nem ocupada e nem desocupada) pelo robô 1 passam a ter probabilidade de ocupação diferente de 0.5 pois são observadas do ponto de vista do robô 2.

6 Experimentos e resultados

6.1 Comparação SEIF vs Odometria

Este primeiro experimento visa medir a capacidade do SEIF em estimar a pose do robô enquanto ele explora o ambiente de maneira autônoma, e compara essa estimativa com a odometria das rodas. Além disso, compara-se a estimativa do SEIF variando o tamanho do conjunto de landmarks ativas $\{\mathbf{m}^+\}$. O critério de comparação utilizado foi o Erro Absoluto Integral (IAE) (Equação 6.1) da posição estimada $\hat{\mathbf{x}}$, em relação à pose real \mathbf{x} colhida do simulador. Para repetir o experimento com outro tamanho de $\{\mathbf{m}^+\}$ foram gravadas a sequência de entradas $\mathbf{u}_{1:t}$ (posição angular das rodas) e a sequência de leituras $\mathbf{y}_{1:t}$ do sensor LiDAR.

$$IAE(\hat{\mathbf{x}}, \mathbf{x}) = \sum \|\hat{\mathbf{x}}_i - \mathbf{x}_i\|_2$$
(6.1)

A Tabela 6.1 lista os valores obtidos para o IAE. E a Figura 6.1 ilustra a evolução temporal do erro da estimativa de posição do robô. Além da posição, também foi avaliado o erro na estimação da orientação, ilustrado na Figura 6.2. Em ambas as Figuras os valores obtidos pelo SEIF são mostrados separadamente pois na escala do erro da odometria eles aparecem sobrepostos.

Como esperado, ambas as configurações do SEIF estimaram de maneira satisfatória tanto a posição quanto a orientação do robô quando comparadas com a estimação da odometria. Porém, nota-se que a configuração com o tamanho do conjunto {**m**⁺} menor estimou melhor tanto a posição quanto a orientação, o que vai contra o consenso geral e a observação de Bongard (2006, p. 408) de que quanto maior o conjunto **m**⁺ melhor é a

TABELA 6.1 – Erro Integral Absoluto da trajetória do robô para diferentes estimadores

Fonte da estimativa	IAE (m)
Odometria	846.01
SEIF $\mathbf{m}^+ = 4$	7.01
SEIF $\mathbf{m}^+ = 8$	8.04

(a) Evolução temporal do erro da estimativa de posição pela odometria e das duas configurações do SEIF com $|\mathbf{m}^+|=4$ e $|\mathbf{m}^+|=8$.

(b) Evolução temporal do erro da estimativa de posição das duas configurações do SEIF com $|\mathbf{m}^+|=4$ e $|\mathbf{m}^+|=8$.

FIGURA 6.1 – Erros de estimação da posição do robô durante exploração parcial do ambiente da Figura $2.1\,$

(a) Evolução temporal do erro da estimativa de orientação do robô pela odometria e pelas duas configurações do SEIF com $|\mathbf{m}^+|=4$ e $|\mathbf{m}^+|=8$.

(b) Evolução temporal do erro da estimativa da orientação do robô pelas duas configurações do SEIF com $|\mathbf{m}^+|=4$ e $|\mathbf{m}^+|=8$.

FIGURA 6.2 – Erros de estimação da orientação do robô durante exploração parcial do ambiente da Figura $2.1\,$

Tamanho do conjuntoElementos não nulos da
matriz de informaçãoEconomia em relação ao
EKF-SLAM 1 2172169.40%4187966.608202164.07

TABELA 6.2 – Quantidade de elementos não nulos da matriz de informação esparsa para diferentes parametrizações do SEIF-SLAM

estimativa. A causa dessa divergência não foi entendida até o momento da escrita deste texto.

6.2 Comparações sobre uso de memória

Neste experimento foram comparados o uso de memória de diferentes configurações do SEIF num mapa com 36 landmarks e comparado com o uso que a abordagem mais clássica EKF-SLAM utilizaria. Nesse ensaio o robô foi teleoperado, e para garantir a reprodução exata do mesmo cenário as entradas e leituras foram novamente gravadas para alimentar as diferentes configurações do SEIF.

As quantidades de elementos não nulos da matriz de informação de cada parametrização estão compiladas na Tabela 6.2, e um comparativo com a quantidade de memória que seria utilizado pelo EKF-SLAM, com a mesma quantidade de landmarks, é ilustrado na Figura 6.3. Por fim, as matrizes de informação são mostradas na Figura 6.4 para se ter uma uma ilustração de sua estrutura e quantidade e quantidade de elementos nulos, que não ocupam memória quando utilizada uma estrutura de dados adequada para a representação de matrizes esparsas.

O perfil de uso de memória observado mostrou-se como esperado, quanto maior o tamanho do conjunto de *landmarks* ativas \mathbf{m}^+ , maior o consumo de memória pelo SEIF-SLAM. E além disso, todas as parametrizações muito menos memória quando comparados com o EKF-SLAM.

¹Embora esses valores correspondam ao número de elementos nulos em re relação ao tamanho total da matriz de informação, eles não representam necessariamente a economia de memória. Pois para que a a matriz esparsa seja representada é necessário utilizar memória extra para organizar o arranjo de armazenamento dos elementos. Porém, essa quantidade tende a ser irrisória quando comparada com a quantidade total de elementos de uma matriz densa. Na estrutura de dados utilizada nesse trabalho, a quantidade de memória utilizada para armazenas a matriz esparsa é da ordem de $\mathcal{O}(2n+N)$, onde n é a quantidade de elementos não nulos e N é a dimensão da matriz. Porém esses valores podem variar dependendo da técnica utilizada para armazenar a matriz.

Comparativo memória utilizada no SEIF vs EKF cenário com 36 landmark

FIGURA 6.3 – Uso de memória para diferentes parametrizações do SEIF-SLAM com diferentes tamanhos (2, 4, 8) do conjunto de *landmarks* ativas. A linha tracejada representa a quantidade de elementos quem a matriz do EKF-SLAM teria para o mesmo cenário.

6.3 Mapeamento conjunto e descentralizado

Esse experimento avalia cenários com mais de um robô desempenhando SLAM e trocando mapas entre sí como mostrado na Seção 5.2. Como tanto o vetor e matrix de informações quanto as grades de ocupação são compartilhados entre os agente, esse experimento é dividido em duas partes.

Na primeira o objetivo é medir a capacidade dos agentes de trocar os vetores e matrizes de informação entre sí (Seção 5.2.1) no cenário ideal onde a transformação entre seus sistemas de referências é exata e conhecida, para isso são fornecidas as poses iniciais de cada agente. Enquanto que na segunda, os agentes não conhecem suas poses inicias e usam o registro de nuvem de pontos para calcular as transformações.

Nos cenários multiagente a comunicação ocorre sempre que dois robôs chegam a uma distância de dois metros um do outro e há um intervalo mínimo de 60 segundos entre duas comunicações consecutivas de um mesmo par de robôs. Erros de comunicação ou degeneração de mensagens não são simulados.

Para medir o desempenho de mapeamento dos robôs, calcula-se a área coberta por eles ao longo do tempo. A área coberta é definida como a soma das áreas de todas as células da grade de ocupação que possuem probabilidade de ocupação diferente de 50%.

FIGURA 6.4 – Representação das matrizes de informação correspondentes aos experimentos da Tabela 6.2. Os elementos nulos são representados pela cor branca, e os não nulos em escala de cinza. Quanto mais escuro o tom de cinza, maior a magnitude do valor representado.

FIGURA 6.5 – Evolução da área coberta ao longo do tempo por um único robô, no ambiente representado na Figura 2.1 com área total de $100~m^2$. O robô iniciou na posição (2.5, 2.5), em relação ao centro do ambiente. Os platôs correspondem a intervalos nos quais o robô está atravessando uma área já mapeada para explorar uma nova fronteira.

6.3.1 Pose inicial conhecida

Além do ganho de redundância, sistemas multiagentes também podem apresentar ganho de eficiência ao dividir a carga de trabalho entre os robôs. Para efeitos de comparação, primeiro foi realizado o mapeamento com apenas um robô, a curva da área coberta pelo tempo é ilustrada na Figura 6.5. Logo após o experimento foi repetido no mesmo ambiente com dois e três robôs, as curvas estão ilustradas na Figura 6.6.

A Tabela 6.3 registra o momento em que todos os agentes dos diferentes sistemas alcançam a marca de 90% de área mapeada. Como é possível notar, quando houve ganho de eficiência ele não foi fez o tempo cair pela metade. E ainda no cenário com três robôs esse ganho foi negativo, o sistema levou mais tempo que o sistema com um único agente. Isso pode ser explicado por dois motivos: o primeiro é que não há uma política de exploração conjunta acordada entre os agentes, cada um explora o ambiente com base nas fronteiras presentes nos seus mapas individuais sem levar em consideração a posição de seus pares em relação a essas fronteiras; o segundo motivo é que a navegação se torna mais complexa pois agora um agente deve se desviar do outro durante a exploração e também não fazem isso de maneira sincronizada e/ou combinada.

Apesar do ganho de eficiência geral dos sistemas ficarem abaixo do esperado, observando as Figuras 6.5 e 6.6 é possível ver que o tempo levado pelo primeiro agente dos sistemas multiagentes para atingir a marca de 90% de área coberta foi sempre menor que o tempo levado pelo sistema de agente único, com destaque para o sistema de dois agentes no qual o primeiro agente atingiu a marca em menos da metade do tempo do sistema de agente único.

- (a) Evolução da área coberta ao longo do tempo por dois robôs
- (b) Evolução da área coberta ao longo do tempo por três robôs.

FIGURA 6.6 – Evolução da área coberta por dois e três agentes com pose inicial conhecida. Os momentos de comunicação e troca de mapas entre os agentes podem ser identificados por saltos verticais nas curvas de área coberta por cada agente.

TABELA 6.3 – Comparação entre o tempo levado para atingir a marca de 90% de área coberta, de um ambiente de $100 \ m^2$, entre os sistemas de múltiplos agentes e agente único.

Quantidade de agentes	Tempo para 90% de área	Eficiência em relação a um	
	coberta (s)	agente	
1	516	-	
2	368	+40.21%	
3	600	-14%	

FIGURA 6.7 – Diferentes execuções do mapeamento com dois agentes com pose inicial desconhecida. Entre as execuções variou-se a pose inicial dos agentes. As curvas da Figura da direta estão defasadas pois o segundo agente foi colocado no ambiente alguns instantes depois que o primeiro.

6.3.2 Pose inicial desconhecida

Nesse último experimento, as poses iniciais dos agentes não foram fornecidas, como no experimento anterior. Dessa forma para incorporarem um o mapa do outro é necessário que calculem a transformação entre seus mapas de *landmarks* utilizando a técnica de registro de nuvem de pontos discutida na Seção 5.1. A Figura 6.7 mostra duas execuções do sistema SLAM com dois robôs, entre elas variou-se apenas as posições iniciais dos agentes.

Além dos problemas de sincronia entre os agentes, já citados no experimento anterior, neste exemplo também foram observados problemas com a estimação da transformação entre os mapas de landmarks dos agentes. Enquanto no experimento anterior a troca de mapas entre os robôs sempre ocorre com sucesso, pois eles sabem suas poses iniciais e portanto sabem relacionar o mapa de um com o do outro. Neste nem toda aproximação dos robôs resultou em troca dos mapas, pois muitas vezes eles não conseguiram estimar a transformação entre os mapas.

Este experimento também teve que ser repetido mais de uma vez, pois em algumas execuções os robôs estimavam a transformação errada, incorporando a informação do outro de maneira errada e provocando divergência do filtro. Desse modo a técnica de registro de nuvem de pontos utilizada se mostrou capaz de calcular a transformação entre os mapas dos robôs, mas não se mostrou robusta e confiável.

7 Conclusão

Neste trabalho foi desenvolvido um sistema SLAM multiagente distribuído e descentralizado, no qual todo o processamento é feito pelos agentes sem a presença de uma figura reguladora central, utilizando o Filtro de Informação Estendido Esparso e explorando seu baixo uso de memória e tempo de processamento constante (desconsiderando-se associação de dados).

O sistema é capaz de resolver o problema SLAM nos cenários nos quais foi testado em um ambiente simulado. Porém ficou claro que a falta de coordenação entre os agentes limita o ganho de eficiência esperado de um sistema com mais de um robô, como discutido na Seção 6.3.1. Dessa forma um trabalho futuro deve focar na coordenação entre agentes com o objetivo de dividir a carga de trabalho.

Em relação a troca de mapas, há espaço para melhorias na técnica de registro de nuvem de pontos utilizada, possibilitando maior taxa de sucesso na troca de mapas no cenário onde a pose inicial dos agentes não é fornecida como debatido na Seção 6.3.2.

Outro aspecto que merece ser contemplado num trabalho futuro, é a recuperação após uma falsa associação de medida e landamrk, e/ou a utilização de uma técnica de associação de dados mais robusta. Apesar da lista de landmarks provisórias ter evitado esse problema, notou-se que as landmarks demoram ser inicializadas no filtro perdendo-se informação.

Referências

AL-SHARADQAH, A.; CHERNOV, N. Error analysis for circle fitting algorithms. **Electronic Journal of Statistics**, Institute of Mathematical Statistics and Bernoulli Society, v. 3, p. 886–911, 2009.

BONGARD, J. Probabilistic robotics. sebastian thrun, wolfram burgard, and dieter fox.(2006, mit press.) 647 pages. [S.l.]: MIT Press, 2006.

BRESENHAM, J. E. Algorithm for computer control of a digital plotter. **IBM Systems journal**, IBM, v. 4, n. 1, p. 25–30, 1965.

CADENA, C.; CARLONE, L.; CARRILLO, H.; LATIF, Y.; SCARAMUZZA, D.; NEIRA, J.; REID, I.; LEONARD, J. J. Past, present, and future of simultaneous localization and mapping: Toward the robust-perception age. **IEEE Transactions on robotics**, IEEE, v. 32, n. 6, p. 1309–1332, 2016.

COPPERSMITH, D.; WINOGRAD, S. Matrix multiplication via arithmetic progressions. *In*: **Proceedings of the nineteenth annual ACM symposium on Theory of computing. Proceedings** [...]. [*S.l.:* s.n.], 1987. p. 1–6.

DURRANT-WHYTE, H.; BAILEY, T. Simultaneous localization and mapping: part i. **IEEE robotics & automation magazine**, IEEE, v. 13, n. 2, p. 99–110, 2006.

DURRANT-WHYTE, H.; RYE, D.; NEBOT, E. Localization of autonomous guided vehicles. **Robotics Research**, Springer, p. 613–625, 1996.

ELFES, A. Using occupancy grids for mobile robot perception and navigation. **Computer**, IEEE, v. 22, n. 6, p. 46–57, 1989.

FISCHLER, M. A.; BOLLES, R. C. Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. **Communications of the ACM**, ACM New York, NY, USA, v. 24, n. 6, p. 381–395, 1981.

JOHNSON, A. E.; HEBERT, M. Using spin images for efficient object recognition in cluttered 3d scenes. **IEEE Transactions on pattern analysis and machine intelligence**, IEEE, v. 21, n. 5, p. 433–449, 1999.

KOENIG, N.; HOWARD, A. Design and use paradigms for gazebo, an open-source multi-robot simulator. *In*: **IEEE/RSJ International Conference on Intelligent Robots and Systems**. **Proceedings** [...]. Sendai, Japan: [s.n.], 2004. p. 2149–2154.

REFERÊNCIAS 92

LEWIS, F. L.; XIE, L.; POPA, D. Optimal and robust estimation: with an introduction to stochastic control theory. [S.l.]: CRC press, 2017.

LIU, Y.; THRUN, S. Results for outdoor-slam using sparse extended information filters. In: IEEE. **2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422).** Proceedings [...]. [S.l.: s.n.], 2003. v. 1, p. 1227–1233.

MCLACHLAN, G. J. Mahalanobis distance. Resonance, v. 4, n. 6, p. 20–26, 1999.

QUIGLEY, M.; CONLEY, K.; GERKEY, B.; FAUST, J.; FOOTE, T.; LEIBS, J.; WHEELER, R.; NG, A. Y. *et al.* Ros: an open-source robot operating system. *In*: KOBE, JAPAN. **ICRA workshop on open source software**. **Proceedings** [...]. [*S.l.: s.n.*], 2009. v. 3, n. 3.2, p. 5.

ROBOTIS. **TurtleBot 3**. 2021. Available at: https://github.com/ROBOTIS-GIT/turtlebot3.

SAEEDI, S.; TRENTINI, M.; SETO, M.; LI, H. Multiple-robot simultaneous localization and mapping: A review. **Journal of Field Robotics**, Wiley Online Library, v. 33, n. 1, p. 3–46, 2016.

SAPUTRA, R. P. Implementation 2d ekf-based simultaneous localisation and mapping for mobile robot. arXiv preprint arXiv:1905.06529, 2019.

SOLÀ, J. Simulataneous localization and mapping with the extended Kalman filter. A very quick guide... with Matlab code! 2014. Available at: https://www.iri.upc.edu/people/jsola/JoanSola/objectes/curs_SLAM/SLAM2D/SLAM%20course.pdf. Accessed on: 02/05/2022.

Apêndice A - Descrição detalhada de algoritmos

Algoritmo EKF-SLAM **A.1**

As três operações principais do EKF-SLAM (predição, atualização e inserção de novas landmarks) estão descritas nos Algoritmos 6, 7 e 8, respectivamente. Por fim, o Algoritmo 9 descreve o EKF-SLAM completo, composto pelas três operações. A correção na orientação, para que ela permaneça dentro do intervalo $[-\pi,\pi]$, é omitida tanto no Algoritmo 6 quanto no 7.

Algorithm 6 Etapa de predição do EKF-SLAM

1: function EKF-SLAM-PREDIÇÃO $(oldsymbol{\mu}_{t-1}, \mathbf{P}_{t-1}, \mathbf{u}_t)$

2:
$$\overline{\boldsymbol{\mu}}_t \leftarrow \begin{bmatrix} \boldsymbol{g}_{\mathrm{r}}(\boldsymbol{\mu}_{\mathrm{r},t-1},\mathbf{u}_t) \\ \boldsymbol{\mu}_{\mathrm{m}} \end{bmatrix}$$

3:
$$\overline{\mathbf{P}}_{RR,t} \leftarrow \mathbf{G}_{R,t} \mathbf{P}_{RR,t-1} \mathbf{G}_{R,t}^T$$

4:
$$\overline{\mathbf{P}}_{RM,t} \leftarrow \mathbf{G}_{R,t} \mathbf{P}_{RM,t-1}$$

4:
$$\overline{\mathbf{P}}_{RM,t} \leftarrow \mathbf{G}_{R,t} \mathbf{P}_{RM,t-1}$$
5: $\overline{\mathbf{P}}_{t} \leftarrow \begin{bmatrix} \overline{\mathbf{P}}_{RR,t} & \overline{\mathbf{P}}_{RM,t} \\ \overline{\mathbf{P}}_{RM,t}^{T} & \mathbf{P}_{\mathrm{mm}} \end{bmatrix}$

7: end function

Algorithm 7 Etapa de atualização do EKF-SLAM

- 1: function EKF-SLAM-ATUALIZAÇÃO $(\overline{\mu}_t, \overline{\mathbf{P}}_t, \mathbf{y}, j = \text{indice da } landmark)$
- $\mathbf{z} \leftarrow \mathbf{y} \boldsymbol{h}^j(\overline{\boldsymbol{\mu}}_t)$

2:
$$\mathbf{Z} \leftarrow \mathbf{y} - \mathbf{h}^{s}(\boldsymbol{\mu}_{t})$$

3: $\mathbf{Z} \leftarrow \begin{bmatrix} \mathbf{H}_{r}^{j} & \mathbf{H}_{m}^{j} \end{bmatrix} \begin{bmatrix} \overline{\mathbf{P}}_{rr} & \overline{\mathbf{P}}_{rm^{j}} \\ \overline{\mathbf{P}}_{rm^{j}}^{T} & \overline{\mathbf{P}}_{m^{j}m^{j}} \end{bmatrix} \begin{bmatrix} \mathbf{H}_{r}^{j} \\ \mathbf{H}_{m}^{j} \end{bmatrix} + \mathbf{Q}_{t}$
4: $\mathbf{K} \leftarrow \begin{bmatrix} \mathbf{P}_{RR,t} & \mathbf{P}_{RM^{j},t} \\ \mathbf{P}_{MR,t} & \mathbf{P}_{MM^{j},t} \end{bmatrix} \begin{bmatrix} [\mathbf{H}_{r}^{j}]^{T} \\ [\mathbf{H}_{m}^{j}]^{T} \end{bmatrix} \mathbf{Z}^{-1}$
5: $\boldsymbol{\mu}_{t} \leftarrow \mathbf{K}\mathbf{z}$

4:
$$\mathbf{K} \leftarrow \begin{bmatrix} \mathbf{P}_{RR,t} & \mathbf{P}_{RM^{j},t} \\ \mathbf{P}_{MR,t} & \mathbf{P}_{MM^{j},t} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \mathbf{H}_{r}^{j} \end{bmatrix}^{T} \\ \begin{bmatrix} \mathbf{H}_{m}^{j} \end{bmatrix}^{T} \end{bmatrix} \mathbf{Z}^{-1}$$

- $\mathbf{P}_t \leftarrow \overline{\mathbf{P}}_t \mathbf{K}\mathbf{Z}\mathbf{K}^T$
- return μ_t , P_t
- 8: end function

Algorithm 8 Etapa de inserção de nova landmark do EKF-SLAM

1: function EKF-SLAM-INSERÇÃO-NOVA-LANDMARK $(\overline{\mu}_t, \overline{\mathbf{P}}_t, \mathbf{y}, j)$

2:
$$\overline{\mu}_t^* \leftarrow \begin{bmatrix} \overline{\mu}_t \\ f(\overline{\mu}_t, \mathbf{y}) \end{bmatrix}$$

2:
$$\overline{\mu}_{t}^{*} \leftarrow \begin{bmatrix} \overline{\mu}_{t} \\ f(\overline{\mu}_{t}, \mathbf{y}) \end{bmatrix}$$
3: $\overline{\mathbf{P}}_{t}^{*} \leftarrow \begin{bmatrix} \overline{\mathbf{P}}_{t} & \overline{\mathbf{P}}_{t} \mathbf{F}_{X}^{T} \\ \overline{\mathbf{P}}_{t} \mathbf{F}_{X} & \mathbf{F}_{X} \overline{\mathbf{P}}_{t} \mathbf{F}_{X}^{T} + \mathbf{F}_{Y} \mathbf{Q} \mathbf{F}_{Y}^{T} \end{bmatrix}$

- return $\overline{\mu}_{t}^{*}, \overline{\mathbf{P}}_{t}^{*}$
- 5: end function

Algorithm 9 EKF-SLAM

```
1: function EKF-SLAM(\boldsymbol{\mu}_{t-1}, \mathbf{P}_{t-1}, \mathbf{u}_t, \mathbf{y}^{1:k}, \mathbf{c}^{1:k})
               \overline{\boldsymbol{\mu}}_t, \overline{\mathbf{P}}_t \leftarrow \text{EKF-SLAM-Predição}(\boldsymbol{\mu}_{t-1}, \mathbf{P}_{t-1}, \mathbf{u}_t)
               \mathcal{L}^* \leftarrow \{\}
                                                                                                                              ⊳ Conjunto de novas landmarks
  3:
               for (\mathbf{y}^i \in \mathbf{y}^{1:k}) do
  4:
                      j \leftarrow \mathbf{c}^i
  5:
                      if landmark j está no mapa \mathbf{x}_{\mathrm{m}} then
                              \overline{\mu}_t, \overline{P}_t \leftarrow \text{EKF-SLAM-ATUALIZAÇÃO}(\overline{\mu}_t, \overline{P}_t, \mathbf{y}^i, j)
  7:
  8:
                       else
                              \mathcal{L}^* \leftarrow \mathcal{L}^* + \{(j, \mathbf{y}^i)\}
 9:
                       end if
10:
               end for
11:
               for \mathcal{L}^i \in \mathcal{L}^* do
12:
                      j, \mathbf{y}^i \leftarrow \mathcal{L}^i
13:
                      \overline{\mu}_t, \overline{\mathbf{P}}_t \leftarrow \text{EKF-SLAM-Inserção-Nova-Landmark}(\overline{\mu}_t, \overline{\mathbf{P}}_t, \mathbf{y}^i, j)
14:
               end for
15:
               oldsymbol{\mu}_t, \mathbf{P}_t \leftarrow \overline{oldsymbol{\mu}}_t, \overline{\mathbf{P}}_t
16:
               return \mu_t, P_t
17:
18: end function
```

Anexo A - Matrizes

A.1 Lema da Inversão. Fórmula de Sherman/Morrison

A fórmula de Sherman/Morrison, também conhecida como lema da inversão especializado, é definido a seguir, retirado de (BONGARD, 2006, p. 50).

Lemma 1. Para qualquer matrizez quadradas invertíveis **R** e **Q** e qualquer matriz **P** com dimensões apropriadas, o seguinte é verdadeiro:

$$\left(\mathbf{R} + \mathbf{P}\mathbf{Q}\mathbf{P}^{T}\right)^{-1} = \mathbf{R}^{-1} - \mathbf{R}^{-1}\mathbf{P}\left(\mathbf{Q}^{-1} + \mathbf{P}^{T}\mathbf{R}^{-1}\mathbf{P}\right)^{-1}\mathbf{P}^{T}\mathbf{R}^{-1}$$
(A.1)

assumindo que todas as matrizes acima podem ser invertidas como definido na premissa.

Demonstração. Defina $\Psi = (\mathbf{Q^{-1}} + \mathbf{P}^T \mathbf{R^{-1}} \mathbf{P})^{-1}$. É suficiente mostrar que:

$$\left(\mathbf{R^{-1}} - \mathbf{R^{-1}} \mathbf{P} \mathbf{\Psi} \mathbf{P}^T \mathbf{R^{-1}}\right) \left(\mathbf{R} + \mathbf{P} \mathbf{Q} \mathbf{P}^T\right) = \mathbf{I}$$

Isso é mostrado através de uma série de manipulações:

$$\begin{split} &= \mathbf{R}^{-1}\mathbf{R} + \mathbf{R}^{-1}\mathbf{P}\mathbf{Q}\mathbf{P}^{\mathrm{T}} - \mathbf{R}^{-1}\mathbf{P}\mathbf{\Psi}\mathbf{P}^{\mathrm{T}}\mathbf{R}^{-1}\mathbf{R} - \mathbf{R}^{-1}\mathbf{P}\mathbf{\Psi}\mathbf{P}^{\mathrm{T}}\mathbf{R}^{-1}\mathbf{P}\mathbf{Q}\mathbf{P}^{\mathrm{T}} \\ &= \mathbf{I} + \mathbf{R}^{-1}\mathbf{P}\mathbf{Q}\mathbf{P}^{\mathrm{T}} - \mathbf{R}^{-1}\mathbf{P}\mathbf{\Psi}\mathbf{P}^{\mathrm{T}}\mathbf{I} - \mathbf{R}^{-1}\mathbf{P}\mathbf{\Psi}\mathbf{P}^{\mathrm{T}}\mathbf{R}^{-1}\mathbf{P}\mathbf{Q}\mathbf{P}^{\mathrm{T}} \\ &= \mathbf{I} + \mathbf{R}^{-1}\mathbf{P}\mathbf{Q}\mathbf{P}^{\mathrm{T}} - \mathbf{R}^{-1}\mathbf{P}\mathbf{\Psi}\mathbf{P}^{\mathrm{T}} - \mathbf{R}^{-1}\mathbf{P}\mathbf{Q}\mathbf{P}^{\mathrm{T}} \\ &= \mathbf{I} + \mathbf{R}^{-1}\mathbf{P}\left[\mathbf{Q}\mathbf{P}^{\mathrm{T}} - \mathbf{\Psi}\mathbf{P}^{\mathrm{T}}\mathbf{R}^{-1}\mathbf{P}\mathbf{Q}\mathbf{P}^{\mathrm{T}}\right] \\ &= \mathbf{I} + \mathbf{R}^{-1}\mathbf{P}\left[\mathbf{Q}\mathbf{P}^{\mathrm{T}} - \mathbf{\Psi}\mathbf{Q}^{-1}\mathbf{Q}\mathbf{P}^{\mathrm{T}} - \mathbf{\Psi}\mathbf{P}^{\mathrm{T}}\mathbf{R}^{-1}\mathbf{P}\mathbf{Q}\mathbf{P}^{\mathrm{T}}\right] \\ &= \mathbf{I} + \mathbf{R}^{-1}\mathbf{P}\left[\mathbf{Q}\mathbf{P}^{\mathrm{T}} - \mathbf{\Psi}\mathbf{Q}^{-1}\mathbf{Q}\mathbf{P}^{\mathrm{T}} - \mathbf{\Psi}\mathbf{P}^{\mathrm{T}}\mathbf{R}^{-1}\mathbf{P}\mathbf{Q}\mathbf{P}^{\mathrm{T}}\right] \\ &= \mathbf{I} + \mathbf{R}^{-1}\mathbf{P}\left[\mathbf{Q}\mathbf{P}^{\mathrm{T}} - \mathbf{\Psi}\left(\mathbf{Q}^{-1} - \mathbf{P}^{\mathrm{T}}\mathbf{R}^{-1}\mathbf{P}\right)\mathbf{Q}\mathbf{P}^{\mathrm{T}}\right] \\ &= \mathbf{I} + \mathbf{R}^{-1}\mathbf{P}\left[\mathbf{Q}\mathbf{P}^{\mathrm{T}} - \mathbf{\Psi}\mathbf{\Psi}^{-1}\mathbf{Q}\mathbf{P}^{\mathrm{T}}\right] \\ &= \mathbf{I} + \mathbf{R}^{-1}\mathbf{P}\left[\mathbf{Q}\mathbf{P}^{\mathrm{T}} - \mathbf{\Psi}\mathbf{\Psi}^{-1}\mathbf{Q}\mathbf{P}^{\mathrm{T}}\right] \\ &= \mathbf{I} + \mathbf{R}^{-1}\mathbf{P}\left[\mathbf{Q}\mathbf{P}^{\mathrm{T}} - \mathbf{Q}\mathbf{P}^{\mathrm{T}}\right] \\ &= \mathbf{I} + \mathbf{R}^{-1}\mathbf{P}\left[\mathbf{Q}\mathbf{P}^{\mathrm{T}} - \mathbf{Q}\mathbf{P}^{\mathrm{T}}\right] \end{split}$$

A.2 Inversão na forma de blocos

Seja a matriz $(m+n) \times (m+n)$, M, particionada na seguinte forma de blocos:

$$\mathbf{M} = \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \tag{A.3}$$

onde as matrizes $\mathbf{A}_{m\times m}$ e $\mathbf{D}_{n\times n}$ são invertíveis, então temos que \mathbf{M}^{-1} é dado por:

$$\mathbf{M}^{-1} = \begin{bmatrix} \mathbf{A}^{-1} + \mathbf{A}^{-1} \mathbf{B} \left(\mathbf{D} - \mathbf{C} \mathbf{A}^{-1} \mathbf{B} \right)^{-1} \mathbf{C} \mathbf{A}^{-1} & -\mathbf{A}^{-1} \mathbf{B} \left(\mathbf{D} - \mathbf{C} \mathbf{A}^{-1} \mathbf{B} \right)^{-1} \\ - \left(\mathbf{D} - \mathbf{C} \mathbf{A}^{-1} \mathbf{B} \right)^{-1} \mathbf{C} \mathbf{A}^{-1} & \left(\mathbf{D} - \mathbf{C} \mathbf{A}^{-1} \mathbf{B} \right)^{-1} \end{bmatrix}$$
(A.4)

Anexo B - Manipulações da distribuição de probabilidade gaussiana multivariada na forma canônica

Os resultados exibidos nas próximas Seções foram retirados de (BONGARD, 2006, p. 358-359), onde são demonstrados. Seja a distribuição de probabilidade $p(\mathbf{x}, \mathbf{y})$ sobre os vetores aleatórios \mathbf{X} e \mathbf{Y} uma gaussiana representada na forma canônica (informação).

$$\Omega = \begin{bmatrix} \Omega_{xx} & \Omega_{xy} \\ \Omega_{yx} & \Omega_{yy} \end{bmatrix}$$
(B.1)

$$\boldsymbol{\xi} = \begin{bmatrix} \boldsymbol{\xi}_{x} \\ \boldsymbol{\xi}_{y} \end{bmatrix} \tag{B.2}$$

B.1 Marginalização

Se Ω_{yy} é invertível, a marginal $p(\mathbf{x})$ é também uma gaussiana representada por:

$$\overline{\Omega}_{xx} = \Omega_{xx} - \Omega_{xy} \Omega_{yy}^{-1} \Omega_{yx}$$
(B.3)

$$\overline{\boldsymbol{\xi}}_{x} = \boldsymbol{\xi}_{x} - \boldsymbol{\Omega}_{xy} \boldsymbol{\Omega}_{yy}^{-1} \boldsymbol{\xi}_{y} \tag{B.4}$$

B.2 Condicionamento

A condicional $p(\mathbf{x} | \mathbf{y})$ também é uma gaussiana representada por:

$$\overline{\Omega}_{x|y} = \Omega_{xx} \tag{B.5}$$

$$\overline{\boldsymbol{\xi}}_{x|y} = \boldsymbol{\xi}_{x} - \boldsymbol{\Omega}_{xy} y \tag{B.6}$$

Anexo C - Algoritmos

C.1 Algoritmo ajuste de círculos

O Algoritmo 10 é uma adaptação das notas de aula do professor Matthew L. Elwin da disciplina ME495 (Sensing, Navigation, and Machine Learning for Robotics) ministrada na Universidade Northwestern.

Algorithm 10

30: end function

```
1: function AJUSTE-CÍRCULO(x_{0:n}, y_{0:n})
                 if n+1 < 4 then
  2:
  3:
                          return \{\emptyset\}
                 end if
  4:
              \hat{x} \leftarrow \frac{1}{n+1} \sum x_i
                \hat{y} \leftarrow \frac{1}{n+1} \sum y_i
               z_{1:n} \leftarrow \{\emptyset\}
               for x_i, y_i do
  8:
                         x_i \leftarrow x_i - \hat{x}
  9:
10:
                         y_i \leftarrow y_i - \hat{y}
                          z_i \leftarrow x_i^2 + y_i^2
11:
                 end for
12:
                \mathbf{Z} \leftarrow \begin{bmatrix} z_0 & x_0 & y_0 & 1 \\ \vdots & \vdots & \vdots & \vdots \\ z_{n+1} & x_{n+1} & y_{n+1} & 1 \end{bmatrix}
\mathbf{U} \mathbf{\Sigma} \mathbf{V}^T \leftarrow \mathrm{SVD}(\mathbf{Z})
13:
14:
                 if \sigma_{44} \le 10^{-4} then
15:
                          \mathbf{a} \leftarrow \begin{bmatrix} \sigma_{14} & \sigma_{24} & \sigma_{34} & \sigma_{44} \end{bmatrix}^T
16:
17:
                 else
                       \mathbf{H}^{-1} \leftarrow \begin{bmatrix} 0 & 0 & 0 & \frac{1}{2} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \frac{1}{2} & 0 & 0 \end{bmatrix}
18:
19:
20:
                          Encontre os autovetores e autovalores de \mathbf{Q} \leftarrow \mathbf{Y}\mathbf{H}^{-1}\mathbf{Y}
21:
                          Seja \mathbf{a}_* o autovetor correspondente ao menor autovalor de \mathbf{Q}
22:
                          \mathbf{a} \leftarrow \mathbf{Y}^{-1}\mathbf{a}_*
23:
                 end if
24:
                 c_x \leftarrow -\frac{a_2}{2a_1} + \hat{x}
25:
             c_{y} \leftarrow -\frac{a_{3}}{2a_{1}} + \hat{y}
r^{2} \leftarrow \frac{a_{2}^{2} + a_{3}^{2} - 4a_{1}a_{4}}{4a_{1}^{2}}
\sigma^{2} \leftarrow \frac{1}{n+1} \sum_{i=1}^{n} ((x_{i} - c_{x})^{2} + (y_{i} - c_{y})^{2} - r^{2})^{2}
26:
27:
28:
                 return (c_x, c_y), \sqrt{r^2}, \sqrt{\sigma^2}
29:
```

	FOLHA DE REGIST	RO DO DOCUMENTO			
1. CLASSIFICAÇÃO/TIPO DM	 DATA 25 de março de 2015 	3. DOCUMENTO Nº DCTA/ITA/DM-018/2015	⁴ · Nº DE PÁGINAS 100		
5. TÍTULO E SUBTÍTULO: SLAM distribuído envolvenc	do navegação, guiamento e f	usão sensorial para reconstruç	ão 2D		
6. AUTOR(ES): Wellington Vieira Martins of	le Castro				
7. INSTITUIÇÃO(ÕES)/ÓRGÃ Instituto Tecnológico de Ae	, , , , , , , , , , , , , , , , , , , ,	ES):			
8. PALAVRAS-CHAVE SUGER Cupim; Cimento; Estrutura					
9. PALAVRAS-CHAVE RESUL' Cupim; Dilema; Construção	7				
-	9	rama de Pós-Graduação em E	~		
Coorientadora: Prof ^a . Dr ^a .	_				
Mecânica. Área de Sistemas Aeroespaciais e Mecatrônica. Orientador: Prof. Dr. Adalberto Santos Dupont. Coorientadora: Profª. Drª. Doralice Serra. Defesa em 05/03/2015. Publicada em 25/03/2015. 11. RESUMO: O problema de Localização e Mapeamento Simultâneos, conhecido pela sigla SLAM, pergunta se é possível para um robô ser colocado em um ambiente desconhecido a priori, e incrementalmente construir um mapa deste ambiente enquanto simultaneamente se localiza neste mapa sem a necessidade de infraestrutura de localização como GPS. A solução do problema de SLAM é fundamental para a robótica móvel autônoma. Entretanto, apesar de já solucionado, não é uma tarefa trivial tanto do ponto de vista teórico como do ponto de vista da implementação. Dependendo da dinâmica do robô, sensores utilizados, recurso computacional disponível, necessidade de navegação e guiamento, a solução pode se tornar mais ou menos complexa. Este trabalho desenvolve uma solução multiagente em ambiente simulado para o problema SLAM 2D. Para isso emprega o uso do Filtro de Informação Esparso, juntamente com outros algoritmos de navegação, associação de dados e de representação de mapas. As vantagens da solução distribuída do problema de SLAM, em relação ao problema original, são a divisão da carga de trabalho entre os agentes e a redundância de informação.					
12. GRAU DE SIGILO: (X) OSTENSI	EVO () RESE	RVADO () SEC	RETO		