Different attacks on Salsa and ChaCha Cipher with attack complexity

- Aumasson et al. (FSE 2008)
 - \circ 2²⁵¹ on Salsa20/8,
 - \circ 2²⁴⁸ on ChaCha7,
 - \circ 2¹⁵¹ on Salsa20/7,
 - \circ 2¹³⁹ on ChaCha6.

Idea: In this the authors introduced the concept of Probabilistic Neutral Bits (PNBs). Using this idea authors divided the key bits into two types *significant key bits* and *non-significant key bits* based on the amount of influence which each bit of the key has on the output function. Using this they proposed a meet-in-the-middle attack.

• Shi et al. (ICISC 2012)

Margin of improvement:

- \circ 2¹ on Salsa20/8 (2²⁵¹ to 2²⁵⁰),
- \circ 2^{1.5} on ChaCha7 (2²⁴⁸ to 2^{246.5}),
- \circ 2³ on Salsa20/7 (2¹⁵¹ to 2¹⁴⁸),
- \circ 2³ on ChaCha6 (2¹³⁹ to 2¹³⁶).

Idea: The authors modified the PNB-based attack slightly by introducing the concept of Column Chaining Distinguisher.

• Maitra et al. (WCC 2015)

Margin of improvement:

 \circ 2^{2.8} on Salsa20/8 (2²⁵⁰ to 2^{247.2}).

Idea: The authors use the similar attack idea as above, but provide some better result by using better set of PNBs and better distinguishers.

• Maitra (DAM 2015)

Margin of improvement:

- \circ 2^{1.7} on Salsa20/8 (2^{247.2} to 2^{245.5}),
- \circ 2^{7.5} on ChaCha7 (2^{246.5} to 2²³⁹).

Idea: The author introduced the idea of Right-pair (chosen-IV attack). Author showed that if the IV can be chosen in such a way that the difference propagation in the first round is minimum, we can observe improvement in the bias of the distinguisher. Thus, attack complexity decreases.

• Choudhuri et al. (FSE 2017)

Margin of improvement:

```
to 2<sup>0.6</sup> on Salsa20/8 (2<sup>245.5</sup> to 2<sup>244.9</sup>),
to 2<sup>1.3</sup> on ChaCha7 (2<sup>239</sup> to 2<sup>237.7</sup>),
to 2<sup>11</sup> on Salsa20/7 (2<sup>148</sup> to 2<sup>137</sup>),
to 2<sup>20</sup> on ChaCha6 (2<sup>136</sup> to 2<sup>116</sup>).
```

Idea: The authors found correlation between a single bit of lower round with a linear combination of bits of the higher round. Thus, from the existing differential attack they generated a linear extension, which is essentially a differential-linear attack. The key recovery attack process remains same as before.

• Dey et al. (DAM 2017)

Margin of improvement:

```
    2 <sup>1.2</sup> on Salsa20/8 (2<sup>244.9</sup> to 2<sup>243.67</sup>),
    2 <sup>2.5</sup> on ChaCha7 (2<sup>237.7</sup> to 2<sup>235.2</sup>).
```

Idea: In this author provided a improved algorithm by Greedy approach to find probabilistic neutral bits, thus achieved a better set of PNBs. The online attack procedure remains same.

• Dey et al. (AMC 2019)

Margin of improvement:

```
\circ 2<sup>0.46</sup> on Salsa20/8 (2<sup>243.67</sup> to 2<sup>243.23</sup>), \circ 2<sup>0.42</sup> on ChaCha7 (2<sup>235.2</sup> to 2<sup>234.78</sup>).
```

Idea: Analyzing how to assign values to the PNBs in order to improve the backward bias. No change in the remaining attack technique.

• Beierle et al. (CRYPTO 2020)

Margin of improvement:

- 2^{38.6} on ChaCha6 (2¹¹⁶ to 2^{77.4}),
 2^{3.92} on ChaCha7 (2^{234.78} to 2^{230.86}).
- Idea: In this they discovered a single bit distinguisher in the 3.5 round of ChaCha. Also produced a differential linear partial key recovery attack on 6-round ChaCha. For 7-round ChaCha, they used the existing attack technique.

• Coutinho et al (EUROCRYPT 2021)

Margin of improvement:

2^{26.4} on ChaCha6 (2^{77.4} to 2⁵¹),
 2^{6.86} on ChaCha7 (2^{230.86} to 2²²⁴).

Idea: In this they discovered few more single bit distinguisher in the 3.5 round of ChaCha. Using linear approximation techniques similar to the Choudhuri et al., they produced distinguishers for 7-round ChaCha. They key recovery attack technique remains same, except that they used a better distinguisher.

• Dev et al. (EUROCRYPT 2022)

Margin of improvement:

o 2^{2.05} on ChaCha7 (2²²⁴ to 2^{221.95}).

Idea: In this author portioned the key bits into memory and non-memory key bits. Thus, they use a time-memory tradeoff technique. Also, provide some modification in the PNB finding algorithm.

• Coutinho et al. (JOC 2023)

Margin of improvement:

- o 2¹⁰ distinguishing attack on ChaCha7 (2²²⁴ to 2²¹⁴),
- \circ 2^{27.61} key recovery attack on Salsa20/8 (2^{243.23} to 2^{215.62}),
- \circ 2^{27.76} distinguishing attack on Salsa20/8 (2^{244.9}to 2^{217.14}).

Idea: Used an idea called Bidirectional Linear Expansions (BLE) where with the help of piling up lemma, they theoretically estimate a single bit distinguisher bias in a higher round from the biases of a few bits in a smaller round. Then, they linearly extend that distinguisher to higher rounds by some modifications of the previously existing extension techniques.

• Dey et al. (FSE2023)

Margin of improvement:

 \circ 2^{5.2} on ChaCha6 (2^{104.68} to 2^{99.48}).

Idea: The authors provided a multi-step key recovery attack, using multiple distinguishers, and thus multiple set of PNBs.

• Our Work

Margin of improvement:

 \circ 2^{21.19} on Salsa20/8 (2^{217.14} to 2^{195.95}) and 2^{40.23} on Salsa20/8 (2^{236.15} to 2^{195.95}).

(Note that as we have mentioned in our work that the corrected complexity of JOC 2023(by Coutinho et al.) is $2^{236.15}$ instead of $2^{217.14}$.)

 $\circ \ \ 2^{6.32}$ on Salsa20/7 (2^{107} to $2^{100.68}$). (128-bit key version)

<u>First-ever Attack:</u>

- o 2^{253.80} on Salsa20/8.5, (256-bit key version)
- o 2^{116.62} on Salsa20/7.5. (128-bit key version)