### **EEEGUIDE.COM**

Online Electrical and Electronics Study



### 8086 Instruction Format:

The 8086 Instruction 8086 Instruction Format vary from 1 to 6 bytes in length. Fig. 6.8 shows the instruction formats for 1 to 6 bytes instructions. As shown in the Fig. 6.8, displacements and operands may be either 8-bits or 16-bits long depending on the instruction. The opcode and the addressing mode is specified using first two bytes of an instruction.



Fig. 6.8 Sample 8086 instruction formats

The opcode/addressing mode byte(s) may be followed by:

- No additional byte
- Two byte EA (For direct addressing only).
- One or two byte displacement

- One or two byte immediate operand
- One or two byte displacement followed by a one or two byte immediate operand
- Two byte displacement and a two byte segment address (for direct intersegment addressing only).

Most of the opcodes in 8086 has a special 1-bit indicates. They are:

**W-bit**: Some instructions of 8086 can operate on byte or a word. The W-bit in the opcode of such instruction specify whether instruction is a byte instruction (W = 0) or a word instruction (W = 1).

**D-bit**: The D-bit in the opcode of the instruction indicates that the register specified within the instruction is a source register (D = 0) or destination register (D = 1).

**S-bit**: An 8-bit 2's complement number can be extended to a 16-bit 2's complement number by making all of the bits in the higher-order byte equal the most significant bit in the low order byte. This is known as sign extension. The S-bit along with the W-bit indicate:

| S | W | Operation                                                     |
|---|---|---------------------------------------------------------------|
| 0 | 0 | 8-bit operation                                               |
| 0 | 1 | 16-bit operation with 16-bit immediate operand                |
| 1 | 0 |                                                               |
| 1 | 1 | 16-bit operation with a sign extended 8-bit immediate operand |

**V-bit**: V-bit decides the number of shifts for rotate and shift instructions. If V = 0, then count = 1; if V = 1, the count is in CL register. For example, if V = 1 and CL = 2 then shift or rotate instruction shifts or rotates 2-bits

**Z-bit**: It is used for string primitives such as REP for comparison with ZF Flag. (Refer Appendix A for instruction formats)

As seen from the Fig. 6.8 if an instruction has two opcode/addressing mode bytes, then the second byte is of one of the following two forms.

| MOD | Opcode | R/M |
|-----|--------|-----|
|     |        | -   |
|     |        |     |

where Mod, Reg and R/M fields specify operand as described in the following tables.

| Mode |   | Displacement                                                          |  |  |
|------|---|-----------------------------------------------------------------------|--|--|
| 0    | 0 | Disp = 0 Low order and High order displacement are absent             |  |  |
| 0    | 1 | Only Low order displacement is present with sign extended to 16-bits. |  |  |
| 1    | 0 | Both Low-order and High-order displacements are present.              |  |  |
| 1    | 1 | r/m field is treated as a 'Reg' field.                                |  |  |

Table 6.2 'Mod' field assignments

| Word Opera | nd (W = 1) | Byte Operand (W = 0) |    | Segment |     |
|------------|------------|----------------------|----|---------|-----|
| 000        | AX         | 0 0 0                | AL | .0 0    | ES. |
| 001        | CX         | 001                  | CL | 0 1     | CS  |
| 010        | DX         | 010                  | DL | 1 0     | SS  |
| 011        | BX         | 011                  | BL | 11      | DS  |
| 100        | SP         | 100                  | АН |         |     |
| 101        | BP         | 101                  | CH |         |     |
| 110        | SI         | 110                  | DH |         |     |
| 111        | DΪ         | 111                  | ВН |         |     |

Table 6.3 'Reg' field assignment

| R/M   | Operand Address                 |  |  |
|-------|---------------------------------|--|--|
| 0 0 0 | EA = (BX) + (SI) + Displacement |  |  |
| 001   | EA = (BX) + (DI) + Displacement |  |  |
| 010   | EA = (BP) + (SI) + Displacement |  |  |
| 0 1 1 | EA = (BP) + (DI) + Displacement |  |  |
| 100   | EA = (SI) + Displacement        |  |  |
| 101   | EA = (DI) + Displacement        |  |  |
| 110   | EA = (BP) + Displacement        |  |  |
| 111   | EA = (BX) + Displacement        |  |  |

Table 6.4 'R/M' field assignment

← Previous Post

Next Post →

# **Related Posts:**

**8086 Addressing Modes** 

**Features of 8086 Microprocessor** 

**Internal Architecture of 8086** 

Search ... Q

# Main Categories

**Circuits** 

**Electrical Drives** 

**Electrical Machines** 

**Electronics Engineering** 

**Electronic Communication** 

**Electronic Devices** 

**Electronic Instrumentation** 

**High Voltage** 

**Integrated Circuits** 

**Microprocessors** 

**Modern Power System** 

**Network Analysis** 

**Power System** 

**Power System Protection** 

**Power Plant Engineering** 

**Electrical and Electronics Important Questions and Answers** 

**Comparisons** 

#### Recent Article

Brayton Cycle – Process, PV Diagram and TS Diagram

Mixed/Dual Cycle – Process and its Derivation

Diesel Cycle – Definition, Process, PV Diagram and TS Diagram

Otto Cycle – Definition, PV Diagram and TS Diagram

Waste Heat Recovery System

Binary Vapour Cycle – Schematic Diagram and its Workings

Feed Water Treatment in Power Plant and Types

Overfeed Stoker and Underfeed Stoker – Definition and Types

Draught System in Power Plant – Definition and Classification

Fuel Handling System and Ash Handling System

Difference Between Boiler Mountings and Accessories

What is Boiler Mountings? – Types and its Workings

What is a Cooling Tower? - Types of Cooling Tower

Types of Chimney in Power Plant

Electrostatic Precipitator (ESP) - Construction and Working Principle

## To Receive Updates

Your Email Address

**SUBSCRIBE** 

# Active users on site

# | HOME | SITEMAP | CONTACT US | ABOUT US | PRIVACY POLICY |

COPYRIGHT © 2014 TO 2022 EEEGUIDE.COM ALL RIGHTS RESERVED