Lista 2 - AiSD

Zadanie: 7

Prowadzący: Paweł Gawrychowski

Wiktor Pilarczyk

29 marca 2020

1 Wprowadzenie

W zadaniu mamy podane n zadań, wraz z czasami a_i i b_i - czas wykonania zadania odpowiednio na komputerze A i B. Zadanie musi najpierw zostać wykonane na komputerze A, a następnie na B (komputery mogą działać równolegle). Chcemy zminimalizować czas wykonania ostatniego zadania na komputerze B.

2 Własności zadania

Oczywiste jest, że jesli możemy wybrać zadanie do wykonania na komputerze B to nie czekamy tylko wykonujemy dowolne z nich, a także przy wielu dostępnych zadaniach (ich część na komputerze A została zakończona) nie ma wpływu, które będziemy wykonywać w danym momencie, ponieważ i tak liczy się kiedy zostanie wykonane ostatnie zadanie, więc dla uproszczenia niech zadania wykonane na komputerze B będą w tej samej kolejności jak zadania na komputerze A.

Stwórzmy funkcję $F(a_1,...,a_n,b_1,...,b_n)$ która dla zadanych ciągów obliczy czas wykonania ostatniego zadania na komputerze B.

 $F(a_1,...,a_n,b_1,...,b_n) = \sum_{i=1}^n (b_i+t_i) = \sum_{i=1}^n b_i + \sum_{i=1}^n t_i$, gdzie t_i oznacza długość przerwy pomiędzy wykonaniem zadania b_{i-1} , a rozpoczęciem wykonania zadania b_i (czas bezczynności komputer B, więc w przypadku zadania b_1 jest to czas wykonanywania zadania a_1). Na $\sum_{i=1}^n b_i$ nie mamy wpływu więc chcemy zminimalizować $\sum_{i=1}^n t_i$.

 $t_i = \max(0, \sum_{j=1}^i a_j - \sum_{j=1}^{i-1} (b_j + t_j))$, jest to maksimum z różnicy pomiędzy możliwym czasem rozpoczęcia zadania b_i , a czasem zakończenia zadania b_{i-1} , a 0, ponieważ jeśli czas zakończenia zadania b_{i-1} jest większy niż zakończenia zadania a_i to nie musimy czekać więc $t_i = 0$.

Teza:
$$\sum_{i=1}^n t_i = \max_{i=1}^n (\sum_{j=1}^i a_j - \sum_{j=1}^{i-1} b_j)$$

Dowód. Indukcyjnie po n.

Baza: n = 1Wtedy

$$t_1 = a_1 = max(a_1)$$

spełnia tezę.

Założenie indukcyjne: $\sum_{i=1}^n t_i = \max_{i=1}^n (\sum_{j=1}^i a_j - \sum_{j=1}^{i-1} b_j)$ Teza indukcyjna: $\sum_{i=1}^{n+1} t_i = \max_{i=1}^{n+1} (\sum_{j=1}^i a_j - \sum_{j=1}^{i-1} b_j)$

$$\sum_{i=1}^{n+1} t_i = \sum_{i=1}^{n} t_i + t_{n+1} = \sum_{i=1}^{n} t_i + \max(0, \sum_{j=1}^{n+1} a_j - \sum_{j=1}^{n} (b_j + t_j)) = \sum_{i=1}^{n+1} t_i = \sum_{i=1}^{n} t_i + t_{n+1} = \sum_$$

$$\max(\sum_{i=1}^n t_i, \sum_{j=1}^{n+1} a_j - \sum_{j=1}^n b_j) =^{ZI} \max(\max_{i=1}^n (\sum_{j=1}^i a_j - \sum_{j=1}^{i-1} b_j), \sum_{j=1}^{n+1} a_j - \sum_{j=1}^n b_j) = \max(\max_{i=1}^n (\sum_{j=1}^i a_j - \sum_{j=1}^{n-1} b_j)) = \max(\max_{i=1}^n (\sum_{j=1}^n a_j - \sum_{j=1}^n a_j - \sum_{j=1}^n$$

$$max_{i=1}^{n+1}(\sum_{j=1}^{i} a_j - \sum_{j=1}^{i-1} b_j)$$

Więc na mocy zasady o indukcji teza jest spełniona.

3 Algorytm

Należy podzielić zadania ze względu na znak $a_i - b_i$ ($\Theta(n)$). Zadania ze znakiem dodatnim należy posortować względem b_i , a pozsotałe posortować względem a_i ($\Theta(n \log(n))$). Następnie należy wybrać zadania z drugiej puli wraz z rosnącym a_i , a później zadania z dodatnim znakiem wraz z malejącym b_i ($\Theta(n)$). Więc algorytm działa w czasie $\Theta(n \log(n))$.

4 Uzasadnienie

Weźmy optymalne rozwiązanie (a i b) i spróbujmy sprowadzić je do naszego rozwiązania (a' i b'). Weźmy pierwsze zadanie z naszego rozwiązania - a_i' , które różni się miejscami (kolejnością wykonywania) z rozwiązaniem optymalnym. Skoro jest to pierwsze czyli prefiks kolejności zadań jest taki sam do tego miejsca, więc pozycja tego zadania w rozwiązaniu optymalnym jest większa - a_k , gdzie k > i > 0. Więc zamieńmy miejscami a_k z a_{k-1} i sprawdźmy jak to wpłynie na nasz wynik - $\max_{i=1}^n \left(\sum_{j=1}^i a_j - \sum_{j=1}^{i-1} b_j\right)$, interesuje nas jedynie zmiana sumy dla i = k-1 oraz i = k-1, ponieważ na poprzednie i następne i nie ma to wpływu (nie ma tych wyrazów lub są one spermutowane tylko).

Chcę pokazać, że takie przestawienie nie pogarsza wyniku czyli po zredukowaniu wyrazów, które są w obu sumach otrzymujemy:

$$max(a_k, a_{k-1} + a_k - b_k) \le max(a_{k-1}, a_{k-1} + a_k - b_{k-1})$$

(Wynik ten nie może być mniejszy bo zabraliśmy optymalny rozwiązanie, ale znak ten ułatwia rachunki).

Rozważmy przypadki:

1.
$$a_k - b_k \leq 0$$

a)
$$a_{k-1} - b_{k-1} \leq 0$$

Więc wtedy $a_k\leqslant a_{k-1}$, ponieważ wpp. a_{k-1} byłoby wcześniej w naszym rozwiązaniu. A także $a_{k-1}+a_k-b_k\leqslant a_{k-1}$, ponieważ $a_k-b_k\leqslant 0$, więc zachodzi nierówność.

b) $a_{k-1}-b_{k-1}>0$ Więc wtedy $a_k< a_{k-1}+a_k-b_{k-1}$, ponieważ $a_{k-1}-b_{k-1}>0$, a także $a_{k-1}+a_k-b_k\leqslant a_{k-1}$, ponieważ $a_k-b_k\leqslant 0$, więc zachodzi nierówność.

2.
$$a_k - b_k > 0$$

Wtedy $a_{k-1}-b_{k-1}>0$ oraz $b_k\geqslant b_{k-1}$, ponieważ wpp. a_{k-1} byłoby wcześniej w naszym rozwiązaniu. $a_k\leqslant a_{k-1}+a_k-b_{k-1}$, ponieważ $a_{k-1}-b_{k-1}>0$, a także $a_{k-1}+a_k-b_k\leqslant a_{k-1}+a_k-b_{k-1}$, ponieważ $b_k\geqslant b_{k-1}$

Mamy skończony ciąg więc za pomocą skonczeniu wielu takich operacji możemy otrzymać nasze rozwiązanie nie pogarszając wyniku, więc nasze rozwiązanie jest też rozwiązaniem optymalnym.