Package 'Metrics'

November 3, 2017

version 0.1.3
Title Evaluation Metrics for Machine Learning
Description An implementation of evaluation metrics in R that are commonly used in supervised machine learning. It implements metrics for regression, time series, binary classification, classification, and information retrieval problems. It has zero dependencies and a consistent, simple interface for all functions.
Maintainer Michael Frasco <mfrasco6@gmail.com></mfrasco6@gmail.com>
Suggests testthat
URL https://github.com/mfrasco/Metrics
BugReports https://github.com/mfrasco/Metrics/issues
License BSD_3_clause + file LICENSE
RoxygenNote 6.0.1
NeedsCompilation no
Author Ben Hamner [aut, cph], Michael Frasco [aut, cre], Erin LeDell [ctb]
Repository CRAN
Date/Publication 2017-11-03 08:12:38
R topics documented: accuracy ae ape apk auc bias ce f1
11

2 accuracy

20011	racy <i>Accuracy</i>	
Index		24
	sse	23
	smape	
	sle	
	se	
	• • • • • • • • • • • • • • • • • • • •	
	ScoreQuadraticWeightedKappa	
	rse	
	rrse	
		18
	rmse	
	rae	
	percent bias	
	params_regression	
	params_classification	
	params_binary	
	msle	
	mse	
	MeanQuadraticWeightedKappa	
	mdae	12
	mase	11
	mapk	10
	mape	10
	mae	9
	logLoss	8

Description

accuracy is defined as the proportion of elements in actual that are equal to the corresponding element in predicted

Usage

```
accuracy(actual, predicted)
```

Arguments

actual The ground truth vector, where elements of the vector can be any variable type.

predicted The predicted vector, where elements of the vector represent a prediction for the corresponding value in actual.

See Also

ae 3

Examples

```
actual <- c('a', 'a', 'c', 'b', 'c')
predicted <- c('a', 'b', 'c', 'b', 'a')
accuracy(actual, predicted)</pre>
```

ae

Absolute Error

Description

ae computes the elementwise absolute difference between two numeric vectors.

Usage

```
ae(actual, predicted)
```

Arguments

actual

The ground truth numeric vector.

predicted

The predicted numeric vector, where each element in the vector is a prediction for the corresponding element in actual.

See Also

mae mdae mape

Examples

```
actual <- c(1.1, 1.9, 3.0, 4.4, 5.0, 5.6) predicted <- c(0.9, 1.8, 2.5, 4.5, 5.0, 6.2) ae(actual, predicted)
```

ape

Absolute Percent Error

Description

ape computes the elementwise absolute percent difference between two numeric vectors

```
ape(actual, predicted)
```

4 apk

Arguments

actual The ground truth numeric vector.

predicted The predicted numeric vector, where each element in the vector is a prediction

for the corresponding element in actual.

Details

ape is calculated as (actual - predicted) / actual. This means that the function will return -Inf, Inf, or NaN if actual is zero.

See Also

```
mape smape
```

Examples

```
actual <- c(1.1, 1.9, 3.0, 4.4, 5.0, 5.6)
predicted <- c(0.9, 1.8, 2.5, 4.5, 5.0, 6.2)
ape(actual, predicted)
```

apk

Average Precision at k

Description

apk computes the average precision at k, in the context of information retrieval problems.

Usage

```
apk(k, actual, predicted)
```

Arguments

k The number of elements of predicted to consider in the calculation.

actual The ground truth vector of relevant documents. The vector can contain any

numeric or character values, order does not matter, and the vector does not need

to be the same length as predicted.

predicted The predicted vector of retrieved documents. The vector can contain any nu-

meric of character values. However, unlike actual, order does matter, with the

most documents deemed most likely to be relevant at the beginning.

Details

apk loops over the first k values of predicted. For each value, if the value is contained within actual and has not been predicted before, we increment the number of sucesses by one and increment our score by the number of successes divided by k. Then, we return our final score divided by the number of relevant documents (i.e. the length of actual).

apk will return NaN if length(actual) equals 0.

auc 5

See Also

```
apk f1
```

Examples

```
actual <- c('a', 'b', 'd')
predicted <- c('b', 'c', 'a', 'e', 'f')
apk(3, actual, predicted)</pre>
```

auc

Area under the ROC curve (AUC)

Description

auc computes the area under the receiver-operator characteristic curve (AUC).

Usage

```
auc(actual, predicted)
```

Arguments

actual The ground truth binary numeric vector containing 1 for the positive class and 0

for the negative class.

predicted A numeric vector of predicted values, where the smallest values correspond to

the observations most believed to be in the negative class and the largest values indicate the observations most believed to be in the positive class. Each element

represents the prediction for the corresponding element in actual.

Details

auc uses the fact that the area under the ROC curve is equal to the probability that a randomly chosen positive observation has a higher predicted value than a randomly chosen negative value. In order to compute this probability, we can calculate the Mann-Whitney U statistic. This method is very fast, since we do not need to compute the ROC curve first.

```
actual <- c(1, 1, 1, 0, 0, 0)
predicted <- c(0.9, 0.8, 0.4, 0.5, 0.3, 0.2)
auc(actual, predicted)
```

6 ce

bias Bias

Description

bias computes the average amount by which actual is greater than predicted.

Usage

```
bias(actual, predicted)
```

Arguments

actual The ground truth numeric vector.

predicted The predicted numeric vector, where each element in the vector is a prediction

for the corresponding element in actual.

Details

If a model is unbiased bias(actual, predicted) should be close to zero. Bias is calculated by taking the average of (actual - predicted).

See Also

```
percent_bias
```

Examples

```
actual <- c(1.1, 1.9, 3.0, 4.4, 5.0, 5.6) predicted <- c(0.9, 1.8, 2.5, 4.5, 5.0, 6.2) bias(actual, predicted)
```

ce

Classification Error

Description

ce is defined as the proportion of elements in actual that are not equal to the corresponding element in predicted.

```
ce(actual, predicted)
```

*f*1 7

Arguments

actual The ground truth vector, where elements of the vector can be any variable type.

The predicted vector, where elements of the vector represent a prediction for the

corresponding value in actual.

See Also

accuracy

predicted

Examples

```
actual <- c('a', 'a', 'c', 'b', 'c')
predicted <- c('a', 'b', 'c', 'b', 'a')
ce(actual, predicted)</pre>
```

f1

F1 Score

Description

f1 computes the F1 Score in the context of information retrieval problems.

Usage

```
f1(actual, predicted)
```

Arguments

actual The ground truth vector of relevant documents. The vector can contain any

numeric or character values, order does not matter, and the vector does not need

to be the same length as predicted.

predicted The predicted vector of retrieved documents. The vector can contain any nu-

meric or character values, order does not matter, and the vector does not need to

be the same length as actual.

Details

f1 is defined as 2*precision*recall/(precision+recall). In the context of information retrieval problems, precision is the proportion of retrieved documents that are relevant to a query and recall is the proportion of relevant documents that are successfully retrieved by a query. If there are zero relevant documents that are retrieved, zero relevant documents, or zero predicted documents, f1 is defined as \emptyset .

See Also

apk mapk

8 logLoss

Examples

```
actual <- c('a', 'c', 'd')
predicted <- c('d', 'e')
f1(actual, predicted)</pre>
```

11

Log Loss

Description

11 computes the elementwise log loss between two numeric vectors.

Usage

```
ll(actual, predicted)
```

Arguments

actual

The ground truth binary numeric vector containing 1 for the positive class and 0

for the negative class.

predicted

A numeric vector of predicted values, where the values correspond to the prob-

abilities that each observation in actual belongs to the positive class

See Also

logLoss

Examples

```
actual <- c(1, 1, 1, 0, 0, 0)
predicted <- c(0.9, 0.8, 0.4, 0.5, 0.3, 0.2)
ll(actual, predicted)
```

logLoss

Mean Log Loss

Description

logLoss computes the average log loss between two numeric vectors.

```
logLoss(actual, predicted)
```

mae 9

Arguments

actual The ground truth binary numeric vector containing 1 for the positive class and 0

for the negative class.

predicted A numeric vector of predicted values, where the values correspond to the prob-

abilities that each observation in actual belongs to the positive class

See Also

11

Examples

```
actual <- c(1, 1, 1, 0, 0, 0)
predicted <- c(0.9, 0.8, 0.4, 0.5, 0.3, 0.2)
logLoss(actual, predicted)
```

mae

Mean Absolute Error

Description

mae computes the average absolute difference between two numeric vectors.

Usage

```
mae(actual, predicted)
```

Arguments

actual The ground truth numeric vector.

predicted The predicted numeric vector, where each element in the vector is a prediction

for the corresponding element in actual.

See Also

mdae mape

```
actual <- c(1.1, 1.9, 3.0, 4.4, 5.0, 5.6)
predicted <- c(0.9, 1.8, 2.5, 4.5, 5.0, 6.2)
mae(actual, predicted)
```

10 mapk

mape

Mean Absolute Percent Error

Description

mape computes the average absolute percent difference between two numeric vectors.

Usage

```
mape(actual, predicted)
```

Arguments

actual The ground truth numeric vector.

predicted The predicted numeric vector, where each element in the vector is a prediction

for the corresponding element in actual.

Details

mape is calculated as the average of (actual - predicted) / actual. This means that the function will return -Inf, Inf, or NaN if actual is zero. Due to the instability at or near zero, smape or mase are often used as alternatives.

See Also

```
\  \, \text{mae smape mase} \,
```

Examples

```
actual <- c(1.1, 1.9, 3.0, 4.4, 5.0, 5.6)
predicted <- c(0.9, 1.8, 2.5, 4.5, 5.0, 6.2)
mape(actual, predicted)
```

mapk

Mean Average Precision at k

Description

mapk computes the mean average precision at k for a set of predictions, in the context of information retrieval problems.

```
mapk(k, actual, predicted)
```

mase 11

Arguments

k The number of elements of predicted to consider in the calculation.

actual A list of vectors, where each vector represents a ground truth vector of relevant

documents. In each vector, the elements can be numeric or character values, and

the order of the elements does not matter.

predicted A list of vectors, where each vector represents the predicted vector of retrieved

documents for the corresponding element of actual. In each vector, the order of the elements does matter, with the elements believed most likely to be relevant

at the beginning.

Details

mapk evaluates apk for each pair of elements from actual and predicted.

See Also

```
apk f1
```

Examples

```
actual <- list(c('a', 'b'), c('a'), c('x', 'y', 'b'))
predicted <- list(c('a', 'c', 'd'), c('x', 'b', 'a', 'b'), c('y'))
mapk(2, actual, predicted)

actual <- list(c(1, 5, 7, 9), c(2, 3), c(2, 5, 6))
predicted <- list(c(5, 6, 7, 8, 9), c(1, 2, 3), c(2, 4, 6, 8))
mapk(3, actual, predicted)</pre>
```

mase

Mean Absolute Scaled Error

Description

mase computes the mean absolute scaled error between two numeric vectors. This function is only intended for time series data, where actual and numeric are numeric vectors ordered by time.

Usage

```
mase(actual, predicted, step_size = 1)
```

Arguments

actual The ground truth numeric vector ordered in time, with most recent observation

at the end of the vector.

predicted The predicted numeric vector ordered in time, where each element of the vector

represents a prediction for the corresponding element of actual.

12 mdae

step_size

A positive integer that specifies how many observations to look back in time in order to compute the naive forecast. The default is 1, which means that the naive forecast for the current time period is the actual value of the previous period.

However, if actual and predictions were quarterly predictions over many years, letting step_size = 4, would mean that the naive forecast for the current time period would be the actual value from the same quarter last year. In this way, mase can account for seasonality.

See Also

smape mape

Examples

```
actual <- c(1.1, 1.9, 3.0, 4.4, 5.0, 5.6)
predicted <- c(0.9, 1.8, 2.5, 4.5, 5.0, 6.2)
step_size <- 1
mase(actual, predicted, step_size)
```

mdae

Median Absolute Error

Description

mdae computes the median absolute difference between two numeric vectors.

Usage

```
mdae(actual, predicted)
```

Arguments

actual The ground truth numeric vector.

predicted The predicted numeric vector, where each element in the vector is a prediction

for the corresponding element in actual.

See Also

mae mape

```
actual <- c(1.1, 1.9, 3.0, 4.4, 5.0, 5.6)
predicted <- c(0.9, 1.8, 2.5, 4.5, 5.0, 6.2)
mdae(actual, predicted)
```

 ${\tt MeanQuadraticWeightedKappa}$

Mean Quadratic Weighted Kappa

Description

MeanQuadraticWeightedKappa computes the mean quadratic weighted kappa, which can optionally be weighted

Usage

```
MeanQuadraticWeightedKappa(kappas, weights = rep(1, length(kappas)))
```

Arguments

kappas A numeric vector of possible kappas.

weights An optional numeric vector of ratings.

See Also

ScoreQuadraticWeightedKappa

Examples

```
kappas <- c(0.3, 0.2, 0.2, 0.5, 0.1, 0.2)
weights <- c(1.0, 2.5, 1.0, 1.0, 2.0, 3.0)
MeanQuadraticWeightedKappa(kappas, weights)
```

mse

Mean Squared Error

Description

mse computes the average squared difference between two numeric vectors.

Usage

```
mse(actual, predicted)
```

Arguments

actual The ground truth numeric vector.

predicted The predicted numeric vector, where each element in the vector is a prediction

for the corresponding element in actual.

14 msle

See Also

rmse mae

Examples

```
actual <- c(1.1, 1.9, 3.0, 4.4, 5.0, 5.6) predicted <- c(0.9, 1.8, 2.5, 4.5, 5.0, 6.2) mse(actual, predicted)
```

msle

Mean Squared Log Error

Description

msle computes the average of squared log error between two numeric vectors.

Usage

```
msle(actual, predicted)
```

Arguments

actual The ground truth non-negative vector

predicted The predicted non-negative vector, where each element in the vector is a predic-

tion for the corresponding element in actual.

Details

msle adds one to both actual and predicted before taking the natural logarithm to avoid taking the natural log of zero. As a result, the function can be used if actual or predicted have zero-valued elements. But this function is not appropriate if either are negative valued.

See Also

```
rmsle sle
```

```
actual <- c(1.1, 1.9, 3.0, 4.4, 5.0, 5.6)
predicted <- c(0.9, 1.8, 2.5, 4.5, 5.0, 6.2)
msle(actual, predicted)
```

params_binary 15

params_binary	Inherit Documentation for Binary Classification Metrics	
params_binary	Inherit Documentation for Binary Classification Metrics	

Description

This object provides the documentation for the parameters of functions that provide binary classification metrics

Arguments

actual The ground truth binary numeric vector containing 1 for the positive class and 0

for the negative class.

predicted The predicted binary numeric vector containing 1 for the positive class and 0 for

the negative class. Each element represents the prediction for the corresponding

element in actual.

 ${\tt params_classification} \ \ \textit{Inherit Documentation for Classification Metrics}$

Description

This object provides the documentation for the parameters of functions that provide classification metrics

Arguments

actual The ground truth vector, where elements of the vector can be any variable type.

predicted The predicted vector, where elements of the vector represent a prediction for the

corresponding value in actual.

Description

This object provides the documentation for the parameters of functions that provide regression metrics

Arguments

actual The ground truth numeric vector.

predicted The predicted numeric vector, where each element in the vector is a prediction

for the corresponding element in actual.

16 rae

percent_bias

Percent Bias

Description

percent_bias computes the average amount that actual is greater than predicted as a percentage of actual.

Usage

```
percent_bias(actual, predicted)
```

Arguments

actual

The ground truth numeric vector.

predicted

The predicted numeric vector, where each element in the vector is a prediction

for the corresponding element in actual.

Details

If a model is unbiased percent_bias(actual, predicted) should be close to zero. Percent Bias is calculated by taking the average of (actual - predicted) / actual.

percent_bias will give -Inf, Inf, or NaN, if any elements of actual are 0.

See Also

bias

Examples

```
actual <- c(1.1, 1.9, 3.0, 4.4, 5.0, 5.6)
predicted <- c(0.9, 1.8, 2.5, 4.5, 5.0, 6.2)
percent_bias(actual, predicted)
```

rae

Relative Absolute Error

Description

rae computes the relative absolute error between two numeric vectors.

```
rae(actual, predicted)
```

rmse 17

Arguments

actual The ground truth numeric vector.

predicted The predicted numeric vector, where each element in the vector is a prediction

for the corresponding element in actual.

Details

rae divides sum(ae(actual, predicted)) by sum(ae(actual, mean(actual))), meaning that it provides the absolute error of the predictions relative to a naive model that predicted the mean for every data point.

See Also

```
rse rrse
```

Examples

```
actual <- c(1.1, 1.9, 3.0, 4.4, 5.0, 5.6)
predicted <- c(0.9, 1.8, 2.5, 4.5, 5.0, 6.2)
rrse(actual, predicted)
```

rmse

Root Mean Squared Error

Description

rmse computes the root mean squared error between two numeric vectors

Usage

```
rmse(actual, predicted)
```

Arguments

actual The ground truth numeric vector.

predicted The predicted numeric vector, where each element in the vector is a prediction

for the corresponding element in actual.

See Also

mse

```
actual <- c(1.1, 1.9, 3.0, 4.4, 5.0, 5.6)
predicted <- c(0.9, 1.8, 2.5, 4.5, 5.0, 6.2)
rmse(actual, predicted)
```

18 rrse

rmsle

Root Mean Squared Log Error

Description

rmsle computes the root mean squared log error between two numeric vectors.

Usage

```
rmsle(actual, predicted)
```

Arguments

actual The ground truth non-negative vector

predicted The predicted non-negative vector, where each element in the vector is a predic-

tion for the corresponding element in actual.

Details

rmsle adds one to both actual and predicted before taking the natural logarithm to avoid taking the natural log of zero. As a result, the function can be used if actual or predicted have zero-valued elements. But this function is not appropriate if either are negative valued.

See Also

```
msle sle
```

Examples

```
actual <- c(1.1, 1.9, 3.0, 4.4, 5.0, 5.6)
predicted <- c(0.9, 1.8, 2.5, 4.5, 5.0, 6.2)
rmsle(actual, predicted)
```

rrse

Root Relative Squared Error

Description

rrse computes the root relative squared error between two numeric vectors.

```
rrse(actual, predicted)
```

rse 19

Arguments

actual The ground truth numeric vector.

predicted The predicted numeric vector, where each element in the vector is a prediction

for the corresponding element in actual.

Details

rrse takes the square root of sse(actual, predicted) divided by sse(actual, mean(actual)), meaning that it provides the squared error of the predictions relative to a naive model that predicted the mean for every data point.

See Also

rse rae

Examples

```
actual <- c(1.1, 1.9, 3.0, 4.4, 5.0, 5.6) predicted <- c(0.9, 1.8, 2.5, 4.5, 5.0, 6.2) rrse(actual, predicted)
```

rse

Relative Squared Error

Description

rse computes the relative squared error between two numeric vectors.

Usage

```
rse(actual, predicted)
```

Arguments

actual The ground truth numeric vector.

predicted The predicted numeric vector, where each element in the vector is a prediction

for the corresponding element in actual.

Details

rse divides sse(actual, predicted) by sse(actual, mean(actual)), meaning that it provides the squared error of the predictions relative to a naive model that predicted the mean for every data point.

See Also

rrse rae

Examples

```
actual <- c(1.1, 1.9, 3.0, 4.4, 5.0, 5.6)
predicted <- c(0.9, 1.8, 2.5, 4.5, 5.0, 6.2)
rse(actual, predicted)
```

 ${\tt ScoreQuadraticWeightedKappa}$

Quadratic Weighted Kappa

Description

 ${\tt ScoreQuadraticWeightedKappa\ computes\ the\ quadratic\ weighted\ kappa\ between\ two\ vectors\ of\ integers}$

Usage

```
ScoreQuadraticWeightedKappa(rater.a, rater.b, min.rating = min(c(rater.a, rater.b)), max.rating = max(c(rater.a, rater.b)))
```

Arguments

rater.a	An integer vector of the first rater's ratings.
rater.b	An integer vector of the second rater's ratings.
min.rating	The minimum possible rating.
max.rating	The maximum possible rating.

See Also

MeanQuadraticWeightedKappa

```
rater.a <- c(1, 4, 5, 5, 2, 1)
rater.b <- c(2, 2, 4, 5, 3, 3)
ScoreQuadraticWeightedKappa(rater.a, rater.b, 1, 5)</pre>
```

se 21

se

Squared Error

Description

se computes the elementwise squared difference between two numeric vectors.

Usage

```
se(actual, predicted)
```

Arguments

actual The ground truth numeric vector.

predicted The predicted numeric vector, where each element in the vector is a prediction

for the corresponding element in actual.

See Also

mse rmse

Examples

```
actual <- c(1.1, 1.9, 3.0, 4.4, 5.0, 5.6) predicted <- c(0.9, 1.8, 2.5, 4.5, 5.0, 6.2) se(actual, predicted)
```

sle

Squared Log Error

Description

sle computes the elementwise squares of the differences in the logs of two numeric vectors.

Usage

```
sle(actual, predicted)
```

Arguments

actual The ground truth non-negative vector

predicted The predicted non-negative vector, where each element in the vector is a predic-

tion for the corresponding element in actual.

22 smape

Details

sle adds one to both actual and predicted before taking the natural logarithm of each to avoid taking the natural log of zero. As a result, the function can be used if actual or predicted have zero-valued elements. But this function is not appropriate if either are negative valued.

See Also

```
msle rmsle
```

Examples

```
actual <- c(1.1, 1.9, 3.0, 4.4, 5.0, 5.6)
predicted <- c(0.9, 1.8, 2.5, 4.5, 5.0, 6.2)
sle(actual, predicted)
```

smape

Symmetric Mean Absolute Percentage Error

Description

smape computes the symmetric mean absolute percentage error between two numeric vectors.

Usage

```
smape(actual, predicted)
```

Arguments

actual The ground truth numeric vector.

predicted The predicted numeric vector, where each element in the vector is a prediction

for the corresponding element in actual.

Details

smape is defined as two times the average of abs(actual - predicted) / (abs(actual) + abs(predicted)). Therefore, at the elementwise level, it will provide NaN only if actual and predicted are both zero. It has an upper bound of 2, when either actual or predicted are zero or when actual and predicted are opposite signs.

```
smape is symmetric in the sense that smape(x, y) = smape(y, x).
```

See Also

```
mape mase
```

```
actual <- c(1.1, 1.9, 3.0, 4.4, 5.0, 5.6)
predicted <- c(0.9, 1.8, 2.5, 4.5, 5.0, 6.2)
smape(actual, predicted)
```

sse 23

sse

Sum of Squared Errors

Description

sse computes the sum of the squared differences between two numeric vectors.

Usage

```
sse(actual, predicted)
```

Arguments

actual The ground truth numeric vector.

predicted The predicted numeric vector, where each element in the vector is a prediction

for the corresponding element in actual.

See Also

mse

```
actual <- c(1.1, 1.9, 3.0, 4.4, 5.0, 5.6)
predicted <- c(0.9, 1.8, 2.5, 4.5, 5.0, 6.2)
sse(actual, predicted)
```

Index

```
accuracy, 2, 7
ae, 3
ape, 3
apk, 4, 5, 7, 11
auc, 5
bias, 6, 16
ce, 2, 6
f1, 5, 7, 11
11, 8, 9
logLoss, 8, 8
mae, 3, 9, 10, 12, 14
mape, 3, 4, 9, 10, 12, 22
mapk, 7, 10
mase, 10, 11, 22
mdae, 3, 9, 12
MeanQuadraticWeightedKappa, 13, 20
mse, 13, 17, 21, 23
msle, 14, 18, 22
params_binary, 15
params_classification, 15
params_regression, 15
percent_bias, 6, 16
rae, 16, 19
rmse, 14, 17, 21
rmsle, 14, 18, 22
rrse, 17, 18, 19
rse, 17, 19, 19
ScoreQuadraticWeightedKappa, 13, 20
se, 21
sle, 14, 18, 21
smape, 10, 12, 22
sse, 23
```