Design Method of Directional GenLOT with Trend Vanishing Moments

S. Muramatsu, T. Kobayashi, D. Han and H. Kikuchi

Dept. of Electrical and Electronic Eng., Niigata University, Japan

December 16, 2010

Outline

- Background
- Review of Symmetric Orthogonal Transforms
- Contribution of This Work
- Review of GenLOT and Trend Vanishing Moment (TVM)
- Two-Order TVM Condition for 2-D GenLOT
- Design Procedure, Design Example and Evaluation
- Conclusions

Background

Transforms play a crucial role in lots of applications such as

Coding/Denoising

$$\textbf{x} \rightarrow [\pmb{\Psi}] \rightarrow \textbf{y} \rightarrow \left[\begin{array}{c} \text{Quantization} \\ \text{or Shrinkage} \end{array} \right] \rightarrow \hat{\textbf{y}} \rightarrow [\pmb{\Psi}^{-1}] \rightarrow \hat{\textbf{x}}$$

Modeling (e.g. Compressive Sensing)

$$\begin{split} \textbf{x} &\rightarrow [\boldsymbol{\Phi}] \rightarrow \textbf{v} \rightarrow [\mathsf{Estimation}] \rightarrow \hat{\textbf{y}} \rightarrow [\boldsymbol{\Psi}^{-1}] \rightarrow \hat{\textbf{x}} \\ &\searrow [\boldsymbol{\Psi}] \rightarrow \textbf{y} \text{ (modeled to be sparse)} \end{split}$$

Feature extraction

$$\mathbf{x} o [\mathbf{\Psi}] o \mathbf{y} o \left[egin{array}{c} \mathsf{Classification} \ \mathsf{or} \ \mathsf{Regression} \end{array}
ight] o \omega$$

Orthogonality, i.e. $\Psi^T \Psi = \mathbf{I}$, makes things simple because of Perseval's theorem $\|\mathbf{x}\|_2^2 = \|\mathbf{y}\|_2^2$.

Symmetric Orthogonal Transforms

Symmetric bases are preferably adopted in image processing.

Contribution

Experimental Results of ECSQ at 0.5bpp [ICIP2010]

(PSNR)

(28.68[dB])

(29.82[dB])

- Current issues on 2-D non-separable GenLOT
 - Adaptive control of bases
 - Efficient implementation
 - Design procedure
- This work contributes to
 - Clarify the relation between TVM direction and overlapping factor
 - Generalize the design procedure in terms of overlapping factor

What is GenLOT?

Generalized Lapped Orthogonal Transform

- Orthogonality, symmetry and variability of basis
- Compatibility w block DCT
- Constructed by a lattice structure

Lattice structure of a 2-D non-separable GenLOT (forward transform)

$$\mathbf{E}(\mathbf{z}) = \prod_{n_{\mathrm{y}}=1}^{N_{\mathrm{y}}} \left\{ \mathbf{R}_{n_{\mathrm{y}}}^{\{\mathrm{y}\}} \mathbf{Q}(z_{\mathrm{y}}) \right\} \cdot \prod_{n_{\mathrm{x}}=1}^{N_{\mathrm{x}}} \left\{ \mathbf{R}_{n_{\mathrm{x}}}^{\{\mathrm{x}\}} \mathbf{Q}(z_{\mathrm{x}}) \right\} \cdot \mathbf{R}_{0} \mathbf{E}_{0},$$

where \mathbf{W}_0 , \mathbf{U}_0 and $\mathbf{U}_{n_d}^{\{d\}}$ are parameter matrices.

Trend vanishing moment is an extention of 1-D VM to 2-D case.

$$0 = \mu_k^{(0)} = \sum_{n \in \mathcal{Z}} h_k[n],$$

Trend vanishing moment is an extention of 1-D VM to 2-D case.

$$0 = \mu_k^{(0)} = \sum_{n \in \mathcal{Z}} h_k[n],$$

$$0 = \mu_k^{(1)} = \sum_{n \in \mathcal{Z}} h_k[n]n, \cdots$$

$$n$$

Trend vanishing moment is an extention of 1-D VM to 2-D case.

$$0 = \mu_k^{(0)} = \sum_{n \in \mathcal{Z}} h_k[n],$$

$$0 = \mu_k^{(1)} = \sum_{n \in \mathcal{Z}} h_k[n]n, \cdots$$

$$n$$

Every wavelet filters with VM annhilate piece-wise polynomials

Trend vanishing moment is an extention of 1-D VM to 2-D case.

$$0 = \mu_k^{(0)} = \sum_{n \in \mathcal{Z}} h_k[n],$$

$$0 = \mu_k^{(1)} = \sum_{n \in \mathcal{Z}} h_k[n]n, \cdots$$

$$n$$

Every wavelet filters with VM annhilate piece-wise polynomials

Every wavelet filters with TVM annhilate piece-wise polynomial surfaces in the direction ϕ

Trend vanishing moment is an extention of 1-D VM to 2-D case.

$$0 = \mu_k^{(0)} = \sum_{n \in \mathcal{Z}} h_k[n],$$

$$0 = \mu_k^{(1)} = \sum_{n \in \mathcal{Z}} h_k[n]n, \cdots$$

$$n$$

Every wavelet filters with VM annhilate piece-wise polynomials

Every wavelet filters with TVM annhilate piece-wise polynomial surfaces in the direction ϕ

- 2-D VM [Stanhill et al., IEEE Trans. on SP 1996]
- Directional VM (DVM) [Do et al., IEEE Trans. on IP 2005]
- Trend VM (TVM) [ICIP2010, PCS2010]

DVM vs. TVM

DVM

Every wavelet filters annihilate piece-wise polynomials along every directed lines.

TVM

Every wavelet filters annihilate directed piece-wise polynomial surfaces.

NOTE: \mathbf{u} must be INTEGER, while \mathbf{u}_{ϕ} is STEERABLE FLEXIBLY.

Trend Vanishing Moment (TVM) Condition

We say that a filter bank has *P*-order TVM along the direction $\mathbf{u}_{\phi} = (\sin \phi, \cos \phi)^T$ if and only if the following condition holds:

• For wavelet filters $(k = 1, 2, \dots, M-1, p = 0, 1, 2, \dots, P-1)$

$$0 = (-j)^{p} \sum_{q=0}^{p} {p \choose q} \sin^{p-q} \phi \cos^{q} \phi \frac{\partial^{p}}{\partial \omega_{y}^{p-q} \partial \omega_{x}^{q}} H_{k} \left(e^{j\omega^{T}} \right) \bigg|_{\omega=0}$$

Trend Vanishing Moment (TVM) Condition

We say that a filter bank has *P*-order TVM along the direction $\mathbf{u}_{\phi} = (\sin \phi, \cos \phi)^T$ if and only if the following condition holds:

• For wavelet filters $(k = 1, 2, \dots, M-1, p = 0, 1, 2, \dots, P-1)$

$$0 = (-j)^p \sum_{q=0}^p \binom{p}{q} \sin^{p-q} \phi \cos^q \phi \frac{\partial^p}{\partial \omega_y^{p-q} \partial \omega_x^q} H_k \left(e^{j\omega^T} \right) \bigg|_{\omega = 0}$$

An equivalent condition is derived for FIR PU systems

ullet For a polyphase matrix $(p=0,1,2,\cdots,P-1)$

$$c_{p}\mathbf{a}_{M} = \sum_{q=0}^{p} \binom{p}{q} \sin^{p-q} \phi \cos^{q} \phi \frac{\partial^{p}}{\partial z_{\mathbf{y}}^{p-q} \partial z_{\mathbf{x}}^{q}} \mathbf{E} \left(\mathbf{z}^{\mathbf{M}}\right) \mathbf{d}(\mathbf{z}) \bigg|_{\mathbf{z}=\mathbf{1}},$$

where c_p is a constant, $\mathbf{1} = (1, 1, \dots, 1)^T$ and $\mathbf{a}_m = (1, 0, \dots, 0)^T$ [PCS2010].

Two-Order TVM Conditions for Lattice Parameters

$$\begin{split} \mathbf{o} &= \mathit{M}_{\mathbf{y}} \sin \phi \sum_{k_{\mathbf{y}}=1}^{\mathit{N}_{\mathbf{y}}} \prod_{n_{\mathbf{y}}=k_{\mathbf{y}}}^{\mathit{N}_{\mathbf{y}}} \mathbf{U}_{n_{\mathbf{y}}}^{\{\mathbf{y}\}} \cdot \mathbf{a}_{\frac{\mathit{M}}{2}} \\ &+ \mathit{M}_{\mathbf{x}} \cos \phi \prod_{n_{\mathbf{y}}=1}^{\mathit{N}_{\mathbf{y}}} \mathbf{U}_{n_{\mathbf{y}}}^{\{\mathbf{y}\}} \cdot \sum_{k_{\mathbf{x}}=1}^{\mathit{N}_{\mathbf{x}}} \prod_{n_{\mathbf{x}}=k_{\mathbf{x}}}^{\mathit{N}_{\mathbf{x}}} \mathbf{U}_{n_{\mathbf{x}}}^{\{\mathbf{x}\}} \cdot \mathbf{a}_{\frac{\mathit{M}}{2}} \\ &+ \prod_{n_{\mathbf{y}}=1}^{\mathit{N}_{\mathbf{y}}} \mathbf{U}_{n_{\mathbf{y}}}^{\{\mathbf{y}\}} \cdot \prod_{n_{\mathbf{x}}=1}^{\mathit{N}_{\mathbf{x}}} \mathbf{U}_{n_{\mathbf{x}}}^{\{\mathbf{x}\}} \cdot \mathbf{U}_{0} \mathbf{b}_{\phi}, \end{split}$$

The same approach as [Oraintara et al., IEEE Trans. SP 2001] is applicable to obtain the design constraint.

寧新潟大學

Conditions for Polyphase Order

Theorem (Necessary Condition for the Polyphase Order)

2-D GenLOT requires polyphase order $[N_y, N_x]$ such that $(N_y + N_x) > 1$ to hold the two-order TVM except for some singular angles.

Conditions for Polyphase Order

Theorem (Necessary Condition for the Polyphase Order)

2-D GenLOT requires polyphase order $[N_{\rm y},N_{\rm x}]$ such that $(N_{\rm y}+N_{\rm x})>1$ to hold the two-order TVM except for some singular angles.

Theorem (Sufficient Condition for the Polyphase Order)

- 2-D GenLOT can hold the two-order TVM for any angle in the following specified range when the corresponding condition is satisfied:
 - For $\phi \in [-\pi/4, \pi/4]$, the horizontal polyphase order $N_x \ge 2$.
 - 2 For $\phi \in [\pi/4, 3\pi/4]$, the vertical polyphase order $N_{\rm y} \geq 2$.

 $\begin{array}{c} \text{Vertical overlapping} \\ \text{factor} \geq 2 \end{array}$

 $\begin{array}{c} \text{Horizontal overlapping} \\ \text{factor} \geq 2 \end{array}$

Design Procedure with Two-Order TVM

For $\phi \in [\pi/4, 3\pi/4]$ and $N_{\mathrm{y}} \geq 2$

- ① Give a direction ϕ and let $\overline{\mathbf{x}}_3$ as given in Tab. II.
- 2 Impose parameter matrices $\mathbf{U}_{N_{y}-2}^{\{y\}}$ and $\mathbf{U}_{N_{y}-1}^{\{y\}}$ to constitute a triangle.
- ③ Optimize parameter matrices for minimizing a given cost function under the constraint $\|\overline{\mathbf{x}}_3\| \leq 2$.

Design Procedure with Two-Order TVM

For $\phi \in [\pi/4, 3\pi/4]$ and $N_{\mathrm{y}} \geq 2$

- ① Give a direction ϕ and let $\overline{\mathbf{x}}_3$ as given in Tab. II.
- 2 Impose parameter matrices $\mathbf{U}_{N_{y}-2}^{\{y\}}$ and $\mathbf{U}_{N_{y}-1}^{\{y\}}$ to constitute a triangle.
- ③ Optimize parameter matrices for minimizing a given cost function under the constraint $\|\bar{\mathbf{x}}_3\| \leq 2$.

For $\phi \in [-\pi/4, \pi/4]$ and $N_{\rm x} \geq 2$

- ① Give a direction ϕ and let $\overline{\mathbf{x}}_3$ as given in Tab. I.
- ② Impose parameter matrices $\mathbf{U}_{N_{\mathrm{x}}-2}^{\{\mathrm{x}\}}$ and $\mathbf{U}_{N_{\mathrm{x}}-1}^{\{\mathrm{x}\}}$ to constitute a triangle.
- **③** (← same)

Directional Design Specification

We adopt Passband Error & Passband Energy Criteria.

An example of passband region deformation for ideal lowpass filters, and an example set of magnitude response specification for $M_{\rm y}=M_{\rm x}=4$, $d={\rm x}$ and $\alpha=-2.0$ [ICIP2009]

Design Examples with Two-Order TVM

A design example with two-order TVMs of $\phi = \cot^{-1}\alpha \sim -26.57^{\circ}$ optimized for the specification given in the previous slide, where $N_{\rm y}=N_{\rm x}=2$, i.e. basis images of size 12×12 .

A novel result more than 2×2 channels.

Evaluation

QUESTION!

Do really the obtained systems satisfy the TVM condition?

- Numerically verify
 - Simulation for Ramp Picture Rotation
 - Simulation for TVM Rotation
- Sparsity ratio as a fraction of nonzero samples and Coefs.:

$$R_{x} = \frac{\sum_{k=0}^{M-1} \|y_{k}[\mathbf{m}]\|_{0}}{\|x[\mathbf{n}]\|_{0}},$$

 $(|x| \le 10^{-15} \text{ is regarded as zero.})$

A ramp picture of size 128×128 , where $\phi_{\rm x} = 30.00^{\circ}$

Simulation for Ramp Picture Rotation

• Direction of TVM is fixed to $\phi = -26.57^{\circ}$.

Sparsity ratio R_x against for directions of trend surface in ramp pictures

Simulation for TVM Rotation

- Direction of input picture is fixed to $\phi_x = 30.00^\circ$
- 2-D GenLOT w TVM of minimum order is designed for every ϕ
- 3-lv. DWT structure of 2 × 2-ch 2-D GenLOT is adopted.

Sparsity ratio R_x against for directions of two-order TVMs.

Spiky drop can be seen when $\phi = \phi_x$.

Conclusions

- 2-D GenLOT belongs to symmetric orthogonal transforms
- TVM was introduced
 - An extention of 1-D VM to 2-D case
 - Different from classical VM and DVM
- A novel generalized design procedure was given
- Capability of trend surface annihilation property was shown

Future works

- Design parameter reduction
- Adaptive control of local basis
- Fast hardware-friendly implementation
- Killer application

