CMPSC 100

Computational Expression

Primitive data types

Туре	Storage	Min Value	Max Value	
byte	8 bits	-128	127	
short	16 bits	-32,768	32,767	
int	32 bits	-2,147,483,648	2,147,483,647	
long	64 bits	-9,223,372,036,854,775,808	9,223,372,036,854,775,807	
float	32 bits	Approximately –3.4E+38 with 7 significant digits	Approximately 3.4E+38 with 7 significant digits	
double	64 bits	Approximately –1.7E+308 with 15 significant digits	Approximately 1.7E+308 with 15 significant digits	

Primitive data type

- "String" is missing, though
 - Why?
 - Because Strings are essentially made up of "Char" objects (which aren't primitives either)
 - And because "Char" objects are pointers to numbers representing elements of a set

Java as a "strongly-typed" language

R to L, L to Right "association"

Precedence Level	Operator	Operation	Associates
1	+	unary plus	R to L
	_	unary minus	
2	*	multiplication	L to R
	/	division	
	g	remainder	
3	+	addition	L to R
	_	subtraction	
	+	string concatenation	
4	=	assignment	R to L

int vs. float vs. double

$$rac{22}{7} = 3.\overline{142\,857}, \ \pi = 3.141\,592\,65\dots$$

$$float pi = 22f/7f$$

double pi = 22/7

$$\mathcal{T}$$

3.14285

3.14285714285714

TC :

 \mathcal{T}

 $\pi\pi$

Let's try a word problem!

Ten thieves stole some jewels from a local shop. They stole a bag of fifty six pearls. Some of them were armed and some were unarmed. The armed ones were those of senior rank. When it came to dividing them up, each senior robber took six pearls, and each junior robber got five. How many of the robbers were senior?

```
int seniorMembers = jewels - thieves * minShare;
int juniorMembers = thieves - seniorMembers
```

```
package wordproblems;
/** This class solves the Thieves' Story.
* @author Alton Caylor
public class ThievesStory { final static int jewels = 56;
 final static int thieves = 10;
 final static int juniorShare = 5;
 final static int seniorShare = 6; /** This is the entry point.
  * @param The command line arguments.
 public static void main(String[] args) {
   int seniorMembers = (juniorShare*thieves-jewels)/(juniorShare-seniorShare);
   int juniorMembers = (seniorShare*thieves-jewels)/(seniorShare-juniorShare);
   System.out.print("There are " + juniorMembers + " junior members, " +
                    "and " + seniorMembers + " senior members.");
```