Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 0 605 033 B1

(12)

EUROPEAN PATENT SPECIFICATION

(45) Date of publication and mention of the grant of the patent:21.07.1999 Bulletin 1999/29

(21) Application number: 93203451.5

(22) Date of filing: 09.12.1993

(51) Int CI.⁶: **C12P 41/00**, C12P 17/06, C12P 17/14, C07D 319/20, C07D 311/04, C07D 265/36, C07D 327/06
// C07D405/12, C07D407/12

(54) Enzymatic process for the stereoselective preparation of a hetero-bicyclic alcohol enantiomer

Enzymatisches Verfahren zur stereoselektiven Herstellung einem Enantiomer aus einem hetero bicyclischen Alkohols

Procédé enzymatique pour la préparation stéréoselective, d'un enantiomère d'un alcool hétérobicyclique

(84) Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU NL PT

SE

(30) Priority: 21.12.1992 EP 92204043

(43) Date of publication of application: 06.07.1994 Bulletin 1994/27

(60) Divisional application: 98204281.4

(73) Proprietor: DUPHAR INTERNATIONAL RESEARCH B.V
1381 CP Weesp (NL)

(72) Inventors:

Buizer, Nicolaas
 NL-1380 AC Weesp (NL)

Kruse, Chris G.
 NL-1380 AC Weesp (NL)

van der Laan, Melle
 NL-1380 AC Weesp (NL)

Langrand, Georges
 NL-1380 AC Weesp (NL)

van Scharrenburg, Gustaaf J. M.
 NL-1380 AC Weesp (NL)

Snoek, Maria C.
 NL-1380 AC Weesp (NL)

(74) Representative: Swaters, Pieter D. et al OCTROOIBUREAU ZOAN B.V. P.O. Box 140
1380 AC Weesp (NL)

(56) References cited:

EP-A- 0 089 886 EP-A- 0 372 657

EP-A- 0 185 429

TETRAHEDRON LETTERS. vol. 33, no. 42, 13
 October 1992, OXFORD GB pages 6283 - 6286
 M.D.ENNIS ET AL. 'Enzymatic resolution of 2-Hydroxymethyl-1,4-benzodioxanes.'

TETRAHEDRON LETTERS. vol. 33, no. 42, 13
 October 1992, OXFORD GB pages 6287 - 6290
 M.D.ENNIS ET AL. 'The synthesis of (+)-and (-)-FlesInoxan: Application of enzymatic resolution methodology.'

• AGRICULTURAL AND BIOLOGICAL CHEMISTRY. vol. 51, no. 5, May 1987, TOKYO JP pages 1265 - 1270 K.SAKANO ET AL. 'Optical resolution of (R, S)-3-Acetoxymethyl-7,8-difluoro-2,3-dihydr o-4H-(1,4)benzoxazlne.'

EP 0 605 033 B1

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

Description

L.

10

15

20

25

30

35

40

4

[0001] The present invention relates to an enzymatic process for the stereoselective preparation of a hetero-bicyclic alcohol enantiomer. The invention further relates to a substantially pure alcohol enantiomer and to the use of this enantiomer for the preparation of a pharmacologically active piperazine derivative.

[0002] Various biologically active substances, which may be used, for example, in pharmaceutical compositions for human or veterinary application, contain a chiral centre in their molecular structure and therefore give rise to optical isomerism. It is generally known in the art, that often only one of the enantiomers presents the desired optimum biological activity. The presence of the other optical antipode in a composition or agent may cause or invigorate certain side effects and burden the recipient, i.c. the human or animal body. It is generally deemed more and more desirable to administer the biologically active substance in the form of a substantially pure enantiomer, which specifically exhibits the desired biological activity. Therefore, the resolution of a racemate into its enantiomers is often an important step in the preparation process of pharmacologically active substances.

[0003] There are essentially three methods available to resolve racemates into their respective enantiomers. The first of these, viz. a resolution based on difference in physical properties, e.g. in crystal structure, is only occasionally applicable.

The second and by far most generally used method of resolution involves a reaction with a -- commercially available -- optically active reagent to produce diastereomers, which differ in physical properties. So, the diastereomers obtained in this manner can be separated, e.g. by recrystallization, after which the respective enantiomers can be regenerated by a chemical after-treatment. It will be evident, that such a method of resolving racemates is both labour-intensive and expensive, i.a. on account of the use and recovery of an expensive optically active reagent.

[0004] Recently, in a more economical method of resolution, enzymes are applied to chemically modify one enantiomer of a racemate selectively, followed by a separation of the modified from the unmodified enantiomer. As an example, Bianchi et al. (J. Org. Chem., 1988, 53, 5531-5534) have reported the use of carboxylic anhydrides as acylating agents in lipase-catalysed selective esterification of racemic alcohols. They have succeeded in obtaining a number of primary and secondary alcohols in high optical purity, viz. with enantiomeric excesses (ee) of over 95%. In fact, for most pharmaceutical applications an enantiomeric excess of at least 95% is required. Although several results obtained by Bianchi and coworkers are promising, with some alcohols no or an insufficient stereoselective conversion was observed. In two recent publications by Ennis et al. (Tetrahedron Lett., 1992, 33, 6283-6286 and 6287-6290), the enzymatic resolution methodology is applied to 2-hydroxymethyl-1,4-benzodioxanes as substrates. The authors have observed, that by using this method of resolution the required standards of optical purity could not be reached, so that a repetition of the enzymatic resolution was necessary.

[0005] In order to facilitate the separation of the ester produced from the remaining alcohol, Terao et al. (Chem. Pharm. Bull., 1989, 37, 1653-1655) have used succinic anhydride to produce a succinic monoester enantiomer which could easily be separated from the other, non-reacted alcohol enantiomer by washing with alkaline solution. In this manner the desired active enantiomer could be separated from the undesired inactive enantiomer with less effort, although the results as to optical purity, i. c. the enantiomeric excesses, were generally unsatisfactory. Only with one substrate, viz. (1-hydroxyethyl)benzene, a secondary alcohol, the enzymatic resolution of the racemate by the enantioselective esterification with succinic anhydride was satisfactory.

[0006] In addition to the often unpredictable results of the enzymatic resolution of an alcohol racemate, as can be concluded from the above publications, another problem is inherent to the separation of the desired alcohol enantiomer from its corresponding racemate. In fact, each racemate resolution yields in addition to the desired enantiomer the undesired optical antipode, which is generally useless. This means, that at least 50% of the -- generally expensive -- substrate should be considered as chemical waste, or, in other words, that the yield of the racemate resolution as regards active material is 50% at most. This is clearly illustrated by the Tables in the above Ennis et al. publications, showing that an initial racemate can afford 50% of the desired enantiomer, either in the form of the unconverted alcohol or after conversion to the ester, at most.

[0007] It is the objective of the present invention to provide an economically operative process for the stereoselective preparation of a hetero-bicyclic alcohol enantiomer.

[0008] This objective can be achieved by an enzymatic process according to the present invention, by preparing an enantiomer of the general formula

50

(I)

10 wherein

4

5

15

20

25

30

35

45

50

55

X is O, S, NH, N-(C₁-C₄)alkyl or CH₂;

 Y_1 , Y_2 and Y_3 are each independently hydrogen or substituents selected from halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl, nitro and cyano;

the \overline{NO}_2 substituent is attached to the bicyclic ring system in the 5- or 7-position; and the C*-atom has either the R or the S configuration;

from its corresponding alcohol racemate by the following successive reaction steps:

(i) acylation of said racemate with an acylating agent under the influence of an enzyme having a stereoselective esterification activity;

(ii) separation of the unesterified compound from the ester produced, and isolation of the desired substantially pure alcohol enantiomer of formula I or of its ester;

(iii) subjection of the ester produced to a hydrolysis, thus converting said ester into the corresponding alcohol enantiomer; characterized in that an alcohol compound with an enantiomeric purity (ee) of over 95% is prepared by (iv) conversion of the undesired alcohol enantiomer into the starting alcohol racemate under basic conditions, in order to allow its reuse.

[0009] Completely contrary to expectation, the above basic treatment (step iv) results in racemization of the undesired alcohol enantiomer. This phenomenon cannot be explained, because the proton attached to the chiral centre (C*) is no acidic at all. The alcohol racemate, so obtained, can be reused as a starting material for the next resolution reaction. It will be evident, that this invention makes the enzyme-catalyzed stereoselective preparation of an alcohol enantiomer a feasible process, both from an economical and from an environmental point of view.

[0010] Suitable acylating agents for the above acylation reaction are carboxylic anhydrides, as will be exemplified hereinafter, and vinyl esters, such as vinyl acetate, vinyl propionate, vinyl butyrate, vinyl isobutyrate, and the like. The acylation reaction is preferably carried out in organic solvent systems containing low quantities of water or aqueous buffer.

The enzyme is most often used as a crude solid preparation, which is commercially available, thus facilitating its recovery. Said enzyme, however, may also be applied in an immobilized condition, e.g. covalently bound to or adsorbed on a suitable carrier. The unesterified compound can be separated from the ester produced by using various technics which are known for the separation of related compounds, such as extraction, recrystallization, preparative column chromatography, etc.

A substantially pure alcohol enantiomer, as mentioned above, is to be understood to comprise alcohol compounds with an enantiomeric purity (ee) of over 95%. If in the enzymatic process of the invention such an enantiomeric purity is not reached, the enantiomeric purity can generally be improved up to the desired level by a simple recrystallization procedure. Consequently, isolation of the desired substantially pure alcohol enantiomer, as described hereinbefore, may also include a recrystallization procedure, to improve the enantiomeric purity and to remove minor impurities.

[0011] The crucial reaction step, viz. the racemization of the undesired alcohol enantiomer under basic conditions, can easily be carried out both under aprotic and under protic conditions. Suitable bases are sodium hydroxide, potassium hydroxide, lithium hydroxide, ammonium hydroxide, and the like, dissolved in water or in aqueous solvent mixtures comprising water-miscible organic solvents such as alcohols. Examples of bases to be used in aprotic systems are: (a) hydrides, e.g. sodium hydride, in aprotic solvents such as DMSO; (b) potassium alkoxides, such as potassium tert-butoxide and potassium methyl-2-butoxide, in aprotic solvents such as ethers (e.g. THF); and (c) alkyl lithiums and lithium alkyl amides, such as methyl lithium, the various butyl lithiums and lithium diisopropyl amide, also in aprotic solvents, e.g. THF. The alcohol racemate can be recovered in good yields after neutralization with acid, e.g. by extraction with a suitable organic solvent, from the water phase and is then, if desired after evaporation of the solvent, ready for reuse.

[0012] The hydrolysis of the ester produced, as mentioned under (iii) above, can conveniently be carried out under

acid conditions or under weakly basic conditions to avoid racemization of the alcohol enantiomer to be produced. As a special embodiment of the present invention, however, the above hydrolysis of the ester and the racemization of the alcohol enantiomer can be combined. In this manner the above reaction steps (iii) and (iv) can be combined so that a reduction with one reaction step can be obtained. Sufficiently strong basic conditions, as defined above for the racemization reaction, are required to perform both functions at the same time, viz. a simultaneous hydrolysis and racemization.

[0013] The process of the present invention is preferably intended for the stereoselective preparation of a substantially pure alcohol enantiomer having a benzodioxane structure, so of a compound of the general formula

(II)

wherein

10

15

20

25

30

35

40

45

50

55

4

Y' is hydrogen or a substituent selected from chloro, fluoro and methyl; the NO₂ substituent is attached to the benzodioxane ring in the 5- or 7-position; and the C*-atom has either the R or the S configuration;

by performing the successive reaction steps as defined hereinbefore.

[0014] Preferably the enzyme is applied as a solid and therefore can easily be recovered to allow its reuse. The enzyme recovery is conveniently performed after reaction step (i) above, so after the acylation step has been completed, by using a procedure suitable for this purpose, such as a simple filtration. If an enzyme is used which is bound to a suitable carrier, such as Celite (see the above publication by Bianchi et al.) or glass beads, the enzyme can also be recovered by a simple filtration, if desired followed by washing the filtrate free from impurities.

[0015] The use of carboxylic anhydrides is preferred to the application of vinyl esters as acylating agents, because carboxylic anhydrides, such as acetic anhydride, propionic anhydride, butyric anhydride, isobutyric anhydride or hexanoic anhydride, generally have a better performance, in the presence of a suitable enzyme. To facilitate the separation. of the unesterified compound from the ester produced, cyclic carboxylic anhydrides are preferred, in particular succinic anhydride or glutaric anhydride. The formed monoester obtained in this manner can easily be separated from the unesterified compound by extraction with a weak alkaline solution under such conditions that the ester remains intact. [0016] Suitable enzymes for performing a stereoselective esterification are hydrolases, such as naturally occurring and engeneered lipases and esterases. Examples of suitable lipases are: Aspergillus niger, Candida cylindracea (e. g. Meito® MY 30 or Amano® AY), Candida lipolytica, Chromobacterium viscosum, Geotrichum candidum, Humicola lanuginosa, Mucor miehei, Mucor javanicus (e.g. Amano® M), Pig pancreatic lipase, Penicillium cyclopium, Penicillium roqueforti, Pseudomonas cepacia (Amano® PS), Pseudomonas fluorescence (e.g. Amano® P), Rhizopus niveus (e. g. Amano® N), Rhizopus javanicus (e.g. Amano® F), Rhizopus arrhizus and Rhizopus delemar. As opposed to what is suggested in the Bianchi et al. publication, it has now been found, that certain lipases, in particular the lipase Candida cylindracea, have a preference for the S enantiomer. Such lipases are therefore capable of stereoselectively esterifying the S enantiomer, as a result of which the remaining R enantiomer can be obtained in a high yield and stereochemical purity. Other lipases, for example Pseudomonas fluorescence and many other lipases, prefer the conversion of the R enantiomer and therefore are well suitable for the isolation of the S enantiomer, equally in high yield and stereochemical purity.

[0017] The present invention also relates to a substantially pure alcohol enantiomer of the general formula I, presented hereinbefore,

wherein

X and the substituents Y have the meanings given above, the substituent NO_2 is attached to the bicyclic ring system in the 5- or 7-position, and the C*-atom has the R configuration.

This enantiomer can conveniently be obtained by using the enzymatic process of the invention. This enantiomer can be used as a key intermediate in the process for preparing certain pharmacologically active piperazine derivatives as will be explained hereinafter.

[0018] In Drugs of the Future 1988, 13, 31-33, the synthesis of flesinoxan hydrochloride, a potent orally-active 5-HT_{1A} agonist, is described. The racemic benzodioxan, corresponding with the above formula II, wherein Y' is a 7-chloro substituent, is first converted with benzoyl chloride to protect its alcohol function. Then catalytic hydrogenation followed by a reaction with bis(chloroethyl)amine results in a racemic piperazine compound. In this phase the resolution of the piperazine racemate is carried out with (+)-camphorsulphonic acid. After several recrystallizations, the optically pure R-(+)-enantiomer is obtained. Reaction of this enantiomer with N-(4-fluorobenzoyl)aziridine, deprotection of the hydroxy group by saponification of the benzoate ester, and finally treatment with hydrochloric acid yields the desired substantially pure (+)-enantiomer, viz. flesinoxan.HCl. In the above-mentioned recent publication by Ennis et al. (Tetrahedron Lett., 1992, 33, 6287-6290), the enzymatic resolution of flesinoxan and its optical antipode, so a final stage resolution, is described. After a laborious double-pass enzymatic process, the desired flesinoxan could be isolated in a satisfactory enantiomeric purity.

[0019] It will be obvious from the above, that the described flesinoxan preparation is laborious and expensive, in particular because of the laborious resolution of the racemate in a so advanced stage of the multi-step synthetic process. It will be obvious, that inevitable losses of active material during resolution are the more detrimental in an advanced stage of the synthetic process.

It has now been found, that the substantially pure alcohol enantiomer of the general formula I can conveniently be used as a key intermediate in the synthesis of pharmacologically active piperazine derivatives, because a laborious resolution of the racemate in an advanced stage of the multistep synthesis is avoided.

Consequently the present invention also relates to the use of a substantially pure alcohol enantiomer of the general formula I, presented hereinbefore,

wherein

10

15

20

25

30

35

X and the substituents Y have the meanings given above, the NO₂ substituent is attached to the bicyclic ring system in the 5-position, and the C*-atom has the R configuration,

for the preparation of a pharmacologically active piperazine derivative, by subjecting said enantiomer to the following reaction sequence:

(i) protection of the free hydroxy group by a suitable hydroxy-protecting group, while retaining the absolute configuration of the C*-atom, to produce a compound of the general formula

$$Y_{1}$$

$$Y_{2}$$

$$Y_{3}$$

$$Y_{3}$$

$$V_{3}$$

$$V_{4}$$

$$V_{3}$$

$$V_{4}$$

$$V_{4}$$

$$V_{5}$$

$$V_{5}$$

$$V_{5}$$

$$V_{7}$$

$$V_{7$$

40

45

50

wherein R₁ is a hydroxy-protecting group;

(ii) reduction of the nitro substituent, in order to convert said substantially pure enantiomer of formula III into an amine compound of the general formula

55

while retaining the absolute configuration of the C*-atom;

(iii) conversion of the above-obtained amino compound of formula IV into a piperazine compound of the general formula

(V)

while retaining the absolute configuration of the C*-atom;

(iv) derivatizing said piperazine compound of formula V, while retaining the absolute configuration of the C*-atom, to a piperazine derivative of the general formula

(VI)

wherein

10

15

20

25

30

35

40

45

50

55

A is a straight or branched C₂-C₄ alkylene group, and

B is a phenyl group or a heterocyclic group, selected from thienyl, pyranyl, furyl, pyrrolyl, pyridyl and pyrazinyl, which groups may be substituted with one or more substituents selected from halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, cyano, nitro, hydroxy, esterified hydroxy and C_1 - C_3 alkoxy, by reacting said piperazine compound of formula V, either

(a) with a compound of the general formula

wherein L is a leaving group, preferably selected from chloro, mesylate, and tosylate, or (b) with a compound of the general formula

producing a piperazine derivative of the general formula VI wherein A is ethylene; and finally

(v) deprotection of said compound of formula VI to the free alcohol enantiomer of the general formula

$$Y_2$$
 Y_3
 X
 CH_2
 OH
 Y_3
 A
 NH
 CO
 B

wherein the C*-atom has the R-configuration.

æ 🐧

5

10

15

20

25

35

40

45

50

55

[0020] As will be clear from the above, the above subsequent reaction steps can easily be performed under retention of the absolute configuration of the C*-atom, so that the enantiomeric purity of the final piperazine derivative is not compromised.

[0021] The free hydroxy group can be protected (reaction step i) by a suitable ester or ether function. Examples of suitable hydroxy-protecting groups are: (trihydrocarbyl)silyl, (dihydrocarbyl)(hydrocarbyloxy)silyl, tert. (C_4-C_{12}) alkyl, (opt. substituted)phenoxy[(C_2-C_8) dialkyl]ethyl, (C_1-C_4) alkoxy[(C_2-C_8) dialkyl]methyl, (thio) acetal-constituting groups such as di- and tetrahydropyran-2-yl and di- and tetrahydrofur-2-yl, and ester-constituting groups derived from mono-, di- or tri-substituted acetic acid, wherein the substituents are preferably selected from (C_1-C_{12}) alkyl and optionally with one or more substituted cyclohexanecarboxylic acid or adamantane carboxylic acid. The above term hydrocarbyl includes (C_1-C_8) alkyl, (C_2-C_8) alkenyl, (C_2-C_8) alkynyl, phenyl and phenyl substituted with one or more substuents. Suitable substituents for the above phenyl and phenoxy groups are: hydroxy, alkylcarbonyloxy, amino, alkylamino, dialkylamino, alkylcarbonylamino, alkylsulphonyl, alkylcarbonyl, halogen, cyano, alkyl, the alkyl substituents of which comprise 1 to 5 carbon atoms, and (C_5-C_{12}) cycloalkyl.

The reduction of the nitro group to the amino group (step ii) can conveniently be carried out with hydrogen under the influence of a suitable metal-catalyst, e.g. Pd/C, in a suitable polar organic solvent, e.g. an alcohol.

The conversion of the amino compound into the piperazine compound (step iii) can easily be carried out, for example with the aid of bis(2-chloroethyl)amine, in a suitable organic solvent, e.g. an aromatic hydrocarbon such as toluene, chlorobenzene, and the like.

The reaction step defined under (iv) above is preferably be carried out as described in European patent specification 138280, viz. in an inert organic solvent or without a solvent, and under the reaction conditions as described in said patent specification.

The final deprotection of the hydroxy group can be carried out with agents suitable for the ester or ether fission. Esters can conveniently be hydrolyzed, under weakly alkaline or under acidic conditions, under conservation of the absolute configuration of the C*-atom. The ether fission is preferably carried out with the aid of strong acids in organic solvents.

[0022] The present invention further relates to new intermediates in the above reaction sequence, viz. to a substantially pure enantiomer of the general formula III and IV, presented hereinbefore, wherein

X and the substituents Y have the meanings given above, and the configuration of the C*-atom corresponds with the R configuration of the C*-atom of the above-mentioned formula I compound.

[0023] The invention finally relates to a method of preparing a substantially pure piperazine derivative enantiomer of the general formula IX, presented above, by first preparing the substantially pure alcohol enantiomer of the general formula I, presented hereinbefore, wherein the C*-atom has the R configuration, from its corresponding alcohol racemate by performing the successive reaction steps as defined hereinbefore, followed by conversion of said formula I compound into the desired piperazine derivative via the reaction sequence as defined above.

[0024] The invention will now be described in greater detail with reference to the following specific examples.

Example I

[0025] A solution of 125 mM (±)-2,3-dihydro-5-nitro-7-chloro-1,4-benzodioxan-2-methanol (BDA), 250 mM propionic anhydride and 0.2 % (w/v) lipase Pseudomonas fluorescens (Amano® P) in TBME (tert-butyl methyl ether) / hexane / water (50/50/0.1 v/v/v) is incubated at 37°C while stirring. After 80% conversion (esterification of the alcohol), the reaction is stopped by filtering off the enzyme. The produced ester and remaining alcohol are separated on a Zorbax® C-8 column. The enantiomeric excess of the remaining alcohol is analyzed using a chiral α-glycoprotein (AGP) column. The enantiomeric excess of the remaining alcohol and produced ester is also determined by ¹H-NMR without separation, using (+)- or (-)-trifluoromethyl-9-anthracenemethanol as chiral resolving agent. The remaining alcohol contains the S-(-)-alcohol with an enantiomeric excess of 97.5%.

Example II

10

15

20

25

30

35

40

45

50

55

[0026] In a corresponding manner as described in Example I the esterification is performed with 0.2% (w/v) lipase Candida cylindracea (Meito® MY). After conversion of 69% alcohol, the reaction is stopped. The remaining alcohol contains R-(+)-alcohol with an enantiomeric excess of 97.5%. The R-(+)-alcohol is characterized by its ¹H-NMR spectrum, as described in Example I. The specific rotation of R-(+)-BDA in acetonitrile is determined: $[\alpha]_D^{25} = +$ 181.1°. In a corresponding manner R-(+)-2,3-dihydro-5-nitro-7-methyl-1,4-benzodioxan-2-methanol and R-(+)-2,3-dihydro-5-nitro-1,4-benzodioxan-2-methanol are prepared, equally with high enantiomeric excesses.

Example III

[0027] A solution of 250 mM (±)-BDA, 500 mM butyric anhydride and 0.5% (w/v) lipase Candida cylindracea (Meito® MY) in hexane / ethyl acetate / water (50/50/0.2 v/v/v) is incubated at 25°C while stirring. After conversion of 65% alcohol, the reaction is stopped. The remaining alcohol contains the R-(+)-alcohol with an enantiomeric excess of 97.5%.

Example IV

[0028] In a corresponding manner as described in Example III, 250 mM (±)-BDA is incubated with 500 mM isobutyric resp. hexanoic anhydride. After conversion of 63 resp. 60% alcohol, the reaction is stopped. The remaining alcohol contains the R-(+)-alcohol, in both cases with an enantiomeric excess of 97.5%.

Example V

[0029] A solution of 350 mM (±)-BDA, 600 mM succinic anhydride and 2.4% (w/v) lipase Candida cylindracea (Meito® MY) in TBME / acetonitrile / water (90/10/0.6 v/v/v) is incubated at room temperature while stirring. After conversion of 70% alcohol, the reaction is stopped by filtration. The remaining alcohol contains the R-(+)-enantiomer with an enantiomeric excess of 98%.

Example VI

Enantioselective esterification

5 Reaction equation:

[0030]

10

15

20

25

30

35

45

50

55

Reaction equation:

[0031] A solution of 15.2 kg (\pm)-BDA, 7.6 kg succinic anhydride and 3.7 kg lipase Candida cylidracea (Meito® MY) in a mixture of 200 l tert-butyl methyl ether (MTBE), 17.5 l acetonitrile and 925 ml water is incubated under nitrogen at room temperature in a rection vessel. After a conversion has been reached of 60-63% (HPLC, approx. 20 h), the reaction is stopped by filtering off the enzyme. The enzyme is washed twice with 10 l MTBE, and the organic layer is washed successively with 90 l and 30 l aqueous carbonate (150 g Na₂CO₃ in 1 l water). The carbonate solution is extracted twice with 10 l MTBE. Then the combined organic layers are successively washed with 30 l water, with dil. hydrochloric acid obtained by dissolving 40 ml 36% HCl in 15 l water, and with 10 l water. The MTBE is distilled off in vacuo at 60°C. The crystalline residue (4.6 kg) is dissolved in 15 l 96% EtOH at 60°C; to this solution are added 10 l n-hexane while stirring. The mixture is cooled to approx. 10°C, and after 2 to 10 h stirring the crystalline material is removed, washed successively with 10 l EtOH/hexane (15/35 v/v) and with 5 l n-hexane, and dried. The crystalline material is the pure (ee 98%) (+)-enantiomer, viz. R-(+)-2,3-dihydro-5-nitro-7-chloro-1,4-benzodioxan-2-methanol [R-(+)-BDA]; yield approx. 4 kg.

Melting point 116.0°C; [α] $_D^{25}$ = + 194.8° (c = 4.5; CH₃OH).

Example VII

Saponification of the S-(-)-BDA ester produced.

[0032]

Reaction equation:

To the combined aqueous layers from the experiment of Example VI are added 15 1 50% NaOH at approx. 23°C. The

reaction mixture is stirred for approx. 15 h at 23°C and is then cooled to 5°C. After grafting, the mixture is stirred for 3 h at 5°C. The crystalline material is removed, washed with 60 l water and dried. The resulting alcohol, having an excess of the S-(-)-BDA enantiomer, is obtained in a yield of approx. 10 kg.

Example VIII

Racemization of the S-(-)-BDA enantiomer.

[0033]

5

10

25

30

35

40

45

50

55

Reaction equation:

OH
NO₂
NO₂
NO₂
S-(-)-BDA

OH
NO₂
racemic BDA

[0034] S-(-)-BDA, obtained according to Example VII, in a quantity of 1 kg, is dissolved in 6 I n-propanol under nitrogen and reflux. To this solution are added 235 ml 2N aqueous NaOH in approx. 15 min. The solution is allowed to reflux for 1.5 h. After cooling to approx. 40°C, 47 ml conc. HCl-solution are added (to pH=3). The propanol is distilled off in vacuo at approx. 60°C. To the residue are added 4 I n-hexane, and the solution is grafted, while cooling to 20°C and slowly stirring. After stirring for two hours at 20°C and overnight at 0°C, the crystalline material is sucked off and washed twice with 0.5 I n-hexane. The crystalline material is then stirred with 7.5 I water on approx. 70°C for 1 hour. After cooling to 20°C, adding 350 ml n-hexane and stirring for another hour, the crystalline material is filtered off and washed twice with 0.5 I n-hexane. After drying, the desired racemic BDA is obtained in a yield of 850 g; content 95%; ee = 0. Melting point 108.2°C.

The racemization proceeds equally successful with the aid of lithium diisopropyl amide as the base in THF as the solvent: reaction temperature 40°C; complete racemization after 5.5 hours.

Example IX

Saponification and simultaneous racemization of the S-(-)-BDA ester.

[0035] To an aliquot, which obtained 43.5 g (126 mmol) S-(-)-BDA ester, 620 ml aqueous carbonate (150 g Na₂CO₃ in 1 l water), 150 ml water and 59 ml acetonitrile, of the basic water layer obtained as in example VI 250 ml ethanol and 50 ml 50 % w/v aqueous sodium hydroxide solution is added. The raction mixture is stirred under reflux for 16 h. After cooling down to 40° C 160 ml 12 n aqueous hydrochloric acid solution is carefully added (pH is approximately 5). The reaction mixture is cooled down to room temperature after which the solid material is removed, washed with water and dried. 23.8 light brown (±)-BDA with an enantiomeric excess of 0 is obtained.

Example X

Preparation of flesinoxan from R-(+)-BDA.

[0036]

5

35

40

45

50

55

Reaction equations:

(a). Benzoylation of R-(+)-BDA (1) with benzoyl chloride in methylene chloride as the solvent, to produce compound (2).

To a solution of 20 g (0.081 mol) compound (1) in 250 ml dichloromethane and 12 ml triethylamine is added dropwise 10.1 ml (0.086 mol) benzoylchloride; temp. 25°C. After addition of 10 ml water and stirring for 10 min the layers are separated. The organic layer is washed with 50 ml water and the combined water layers are extracted with 25 ml dichloromethane. The organic layers are combined and evaporated at 100 mbar and 30°C. After addition of 100 ml toluene, the product is evaporated to dryness (10 mbar, 50°C).

The desired compound (2) is obtained in a yield of 97.3%; purity 97.5%.

TLC (eluens: $CH_2CI_2 / CH_3OH / NH_4OH = 94 / 5 / 1)$: Rf = 0.71.

(b). Reduction of the nitro-compound (2) to the corresponding amino-compound (3) with hydrogen in the presence of a catalytic amount of Pd/C; EtOH as the solvent.

To a solution of 6.0 g (16.7 mmol) compound (2) in 120 ml ethanol and 40 ml ethyl acetate is added 1.50 g Pd/C preparation (39.1% Pd/C 10% and 60.9% water). After stirring for 5 min, 10.8 g (10 eq) ammonium formiate is added and the mixture is stirred, at first 1 hour at ambient temp. and then 2 hours at 40°C. The reaction mixture is cooled to 20-25°C, and the Pd/C is filtered off and washed with 50 ml ethanol. The ethanol is evaporated at 100 mbar and 50°C. The residue is dissolved in 75 ml ethyl acetate and 15 ml 2N aqueous sodium hydrode solution. After separation of the layers, the water layer is extracted twice with 10 ml ethyl acetate. the combined organic layers are washed twice with 25 ml water and reduced to dryness at 100 mbar and 50°C. After drying in vacuo at 50°C, the desired product (3), having a purity of 96.0%, is obtained in a yield of 97.0%.

TLC (see above): Rf = 0.67. Melting point of the HCl-salt: 218-223°C. $[\alpha]_D^{25} = +65.1^{\circ}$ (c = 3.38; CH₃OH).

(c). Conversion of the amino-compound (3) to the corresponding piperazine-compound (4) with bis(2-chloroethyl) amine. HCI in xylene as the solvent.

To a solution of 4.40 g (14.8 mmol) compound (3) in 50 ml xylene is added 2.8 g (14.8 mmol) bis (2-chloroethyl)

amine.HCI. The reaction mixture is refluxed for 48 hours under nitrogen. After cooling the reaction mixture to 35°C, 1.36 ml 50% aqueous NaOH-solution in 25 ml 5% aqueous NaHCO₃-solution is added. The reaction mixture is stirred at 35 °C for 3 hours, after which 10 ml 2N aqueous NaOH-solution and 20 ml water are added. After stirring at 35°C for 10 min, the reaction mixture is cooled to 20-25°C and the layers are separated. The xylene layer is washed three times with 25 ml water. The organic layer is reduced to dryness (100% ethanol as entrainer) at 10 mbar and 50°C. The desired product (4), having a purity of 85.5%, is obtained in a yield of 82.3%.

TLC (see above): Rf =0.07. Melting point of the HCl-salt: 183-186°C. $[\alpha]_D^{25} = +63.66^{\circ}$ (c = 1.67; CH₃OH).

. (d). Reaction of the piperazine-compound (4) with 4-fluorobenzoylaziridine to produce compound (5). p-Fluorobenzoylaziridine (53.8 g; 325 mmol) and 200 ml toluene are added to 100.7 g (284 mmol) of compound (4). The reaction mixture is kept under reduced pressure at 80°C (rotorvapor); 150 ml is evaporated. After addition of 100 ml toluene the reaction mixture is treated as described above for another 2 hours. After evaporation to dryness, methanol is added to the residue and the product is allowed to crystallize at 5°C. The product is removed, washed with methanol (200 ml) and hexane (400ml) successively, and dried. The desired compound 5, having a purity of 82%, is obtained in a yield of 105 g (71%). Work-up of the mother liquor results in an additional quantity of desired product.

TLC (see above): Rf = 0.59. Melting point: 126-127°C $[\alpha]_D^{25} = +56^\circ$. (c = 4.32; CH₃OH).

(e). Saponification of the ester (5) with KOH in EtOH, followed by acidification with HCI in EtOH, to produce flesinoxan (6).

To a suspension of 104 g (0.2 mol) of compound (5) in 1500 ml 96% ethanol is added a solution of 14 g (0.25 mol) KOH in 10 ml water. After stirring at 20-25°C for 3.5 hours, the ethanol is evaporated at 100 mbar and 50°C. Water (500 ml) and dichloromethane (200 ml) are added to the residue and the reaction mixture is stirred for 5 min. After separation of the layers, the water layer is extracted with 250 ml dichloromethane. The combined organic layers are washed twice with 100 ml water. After drying, the organic solution is evaporated to a residual volume of approx. 200 ml. To this residue is added 300 ml ethyl acetate, and 100 ml of liquid is evaporated. After addition of 100 ml n-hexane, the product is allowed to crystallize overnight at 5°C. The crystalline product is filtered, washed successively with 30 ml cold ethyl acetate and 200 ml n-hexane, and dried at 30°C. Flesinoxan (purity 78%) is obtained in a yield of 73 g.

TLC (see above): Rf = 0.67. Melting point: 183-185°C. $[\alpha]_D^{20} = +27.8^{\circ}$ (c = 2.49; CH₃OH).

Example XI

5

10

15

20

25

30

*3*5

45

50

55

[0037] A solution of 0.2 M 5-chloro-2,3-dihydro-7-nitro-1,4-benzodioxin-2-methanol, 0.34 M succinic anhydride and 2 % (w/v) lipase Candida cylindracea (Meito MY) in TBME/acetonitril/water (90/10/0.3 v/v/v) is incubated at room-temperature while stirring. After conversion of 41% alcohol (determined by use of a Zorbax C-8 column), the reaction is stopped by filtration. The remaining alcohol contains the (+)-enantiomer with an enantiomeric excess of 38% (determined by use of a Chiracel®-OD column).

Example XII

Preparation of 6-chloro-2,3-dihydro-8-nitro-1,4-benzoxazine-3-methanol.

[0038]

5

10

15

20

25

30

35

40

45

50

55

(a) To a suspension of 18.5 g (91 mmol) compound (7) in 50 ml toluene 30 ml (314 mmol) acetic anhydride is added under stirring.

After 4 h heating at 100°C another 10 ml acetic anhydride is added. Heating is continued for an other 2 h. After removal of the heating bath about 25 ml ethanol is added carefully. After cooling down to room-temperature the reaction mixture is worked up with ethylacetate and water. The organic layer is washed twice with water and dried on magnesiumsulfate. After filtration the solvent is evaporated under vacuum. To 18.23 g of the light brown solid 75 ml ethanol and 80 ml of a 2n aqueous sodium hydroxide solution is added. The dark red suspension is stirred during the night at room-temperature. After cooling down to 0°C 90 ml 2n aqeous hydrochloric acid solution is added. The solid material is removed and washed twice with water. After drying at room-temparature and normal pressure 16.5 g orange powder (8) is obtained.

TLC (eluens: ethylacetate / petr. ether 40-65° C = 50 / 50): Rf = 0.3. Melting point: 156 - 160° C.

(b) To a solution of 8 g (34.5 mmol) compound (8) in a mixture of 80 ml toluene and 80 ml 1-methyl-2-pyrrolidone 5.6 g (40 mmol) powdered potassium carbonate is added. The reaction mixture is stirred at reflux temperature during one hour and water is removed by means of a Dean-Stark apparatus. Toluene is distilled off at atmospheric pressure. After cooling down to 100° C 9.3 g (41 mmol) glycidyl tosylate is added. After stirring at 120° C during 4.5 h the suspension is cooled down to room-temperature. The reaction mixture is diluted with water and ethylacetate and brought on pH 5 with a 2n aqueous hydrochloric acid solution. The water layer is extracted twice with ethylacetate. The combined organic layers are washed with brine and dried on magnesium sulfate. After filtration of the magnesium sulfate and evaporation of the solvent under vacuum 10.86 g dark brown oil is obtained. Purification by medium pressure chromatography (eluens: ethylacetate / petr. ether 40-65° C = 25 / 75) gives 4.18 g compound (9) as red plates.

Melting point: 76 - 84° C. TLC (see above): Rf = 0.15.

(c) To a suspension of 3 g (10 mmol) compound (9) in a mixture of 100 ml methanol and 30 ml water 1.44 g powdered potassium carbonate is added. After stirring at room-temperature for 1.5 h the reaction mixture is worked up by dilution with water and two times extraction with ethylacetate. The combined organic layers are washed three times with diluted brine and dried on magnesium sulfate. After filtration of the magnesium sulfate and evaporation of the solvent under vacuum 2.53 g compound (10) (NMR) is obtained as orange solid material. TLC (ethylacetate / petrol ether $40-65^{\circ}$ C = 75 / 25): Rf = 0.3.

¹H-NMR: δ (ppm) 6.99 (d, 1H, arom); 6.90 (s, 1H, NH); 6.88 (d, 1H, arom); 5.02 (t, 1H, CH₂OH); 4.19 (dd, 1H, ·OCH₂CH); 4.11 (dd, 1H, OCH₂CH); 3.40/3.50 (cluster, 3H, CHCH₂OH)

Example XIII

5

10

15

20

25

30

45

50

*5*5

[0039] A solution of 0.35 M 6-chloro-2,3-dihydro-8-nitro-1,4-benzoxazine-3-methanol, 0.6 M succinic anhydride and 3.3 % (w/v) lipase Candida cylindracea (Meito® MY) in TBME/acetonitril/water (90/10/0.6 v/v/v) is incubated at room-temperature while stirring. After conversion of 47 % alcohol (determined by use of a Zorbax C-8 column), the reaction is stopped by filtration. The remaining alcohol contains the (+)-enantiomer with an enantiomeric excess of 39% (determined by use of a Chiracel®-OD column).

Example XIV

[0040] A solution of 0.13 M 2,3-dihydro-7-nitro-1,4-benzodioxin-2-methanol, 0.24 M butyric anhydride and 25% (w/v) lipase in diisopropylether/acetonitril/water (50/50/0.5 v/v/v) is incubated at room-temperature while stirring. After conversion of 64 % alcohol, the reaction is stopped by filtration. The remaining alcohol contains the (+)-enantiomer with an enantiomeric excess of 42.4 %.

Example XV

Racemisation of (+)-2,3-dihydro-7-nitro-1,4-benzodioxin-2-methanol.

[0041] To a solution of 0.1 g (47 mmol) (+)-2,3-dihydro-7-nitro-1,4-benzodioxin-2-methanol ($[\alpha]_D^{20}$ = + 65.5 (c= 0.58, 96% ethanol) in 15 ml ethanol 0.2 ml (40 mmol) of a 2n aqueous sodium hydroxide solution is added. After reflux during 125 h the reaction mixture is cooled down to room-temperature. The reaction mixture is diluted with water and extracted twice with ethylacetate. The organic layer is dried on magnesium sulfate. After filtration of the magnesiumm sulfate and evaporation of the solvent under vacuum 0.1 g light brown solid material is obtained. The specific rotation (see above) is 0. Analysis of the enantiomeric excess by using a chiral α -glycoprotein (AGP) column results in an ee = 0. Using n-propanol as the solvent results in a 30 h reaction time.

Example XVI

Racemisation of (+)-5-chloro-2,3-dihydro-7-nitro-1,4-benzodioxin-2-methanol.

[0042] To a solution of 0.85g (3.46 mmol) (+)-5-chloro-2,3-dihydro-7-nitro-1,4-benzodioxin-2-methanol($[\alpha]_D^{20} = +55$ (c = 0.4, ethanol)) in 80 ml ethanol 15 ml of a 2n aqueous sodium hydroxide solution is added. After reflux for 16 h the mixture is cooled down to room-temperature and worked up as described in example XV. The specific rotation (see above) of the obtained solid material is 0. Chiral analysis on a chiracel-OD column showes an ee = 0.

40 Example XVII

Racemisation of (+)-6-chloro-2,3-dihydro-8-nitro-1,4-benzoxazine-3-methanol.

[0043] To a solution of 2 g (8.18 mmol) (+)-6-chloro-2,3-dihydr-8-nitro-1,4-benzoxazine-3-methanol($[\alpha]_D^{20} = +$ 14 (c = 0.71, 96% ethanol)) in 50 ml ethanol a 2n aqueous sodium hydroxide solution is added. After 3 h reflux an other aliquot of 1 ml of a 2n aqueous sodium hydroxide solution is added. After reflux for 32 h the reaction mixture is cooled down to room-temperature and diluted with brine. The water layer is extracted twice with ethylacetate. The combined organic layers are washed twice with diluted brine and dried on magnesium sulfate. After filtration of

the magnesium sulfate and evaporation of the solvent in vacuum there is obtained 1.83 g orange brown solid material. The specific rotation is 0 and chiral analysis on a chiracel-OD column showed an ee = 0.

Example XVIII

Racemisation with the aid of sodiumhydride.

[0044] To a mixture of 0.2 g (0.8 mmol) R-(+)-BDA and 0.01 g (0.5 equivalent) of a 60% sodium hydride suspension in mineral oil 5 ml DMF is added. After termination of gas development the orange solution is stirred at room-temperature. The racemisation was complete within 0.75 h as analysed with the aid of a Chiracel-OD column.

In THF as the solvent, the reaction proceeds equally sucessfull.

Claims

5

10

15

20

25

30

35

40

45

50

55

 An enzymatic process for the stereoselective preparation of a hetero-bicyclic alcohol enantiomer of the general formula

> Y₂ X CH₂ OH Y₃ NO₂ 3 O

> > (I)

wherein

X is O, S, NH, N-(C₁-C₄)alkyl or CH₂;

 Y_1 , Y_2 and Y_3 are each independently hydrogen or substituents selected from halogen, C_1 - C_4 alkyl, C_1 - C_4 alkoxy, C_1 - C_4 haloalkyl, nitro and cyano;

the NO₂ substituent is attached to the bicyclic ring system in the 5- or 7-position; and the C*-atom has either the R or the S configuration;

from its corresponding alcohol racemate by the following successive reaction steps:

- (i) acylation of said racemate with an acylating agent under the influence of an enzyme having a stereoselective esterification activity;
- (ii) separation of the unesterified compound from the ester produced, and isolation of the desired substantially pure alcohol enantiomer of formula I or of its ester;
- (iii) subjection of the ester produced to a hydrolysis, thus converting said ester into the corresponding alcohol enantiomer, characterized in that an enantiomeric purity (ee) of over 95% is prepared by
- (iv) conversion of the undesired alcohol enantiomer into the starting alcohol racemate under basic conditions, in order to allow its reuse.
- 2. A process as claimed in claim 1, characterized in that reaction steps (iii) and (iv) are combined by using sufficiently strong basic conditions to perform the simultaneous hydrolysis of the ester and racemization of the alcohol enantiomer.
- 3. A process as claimed in claim 1 or 2, characterized in that a compound of the general formula

NO₂ CH₂ OH

(II)

wherein

Y' is hydrogen or a substituent selected from chloro, fluoro and methyl; the NO₂ substituent is attached to the bicyclic ring system in the 5- or 7-position; and the C*-atom has either the R or the S configuration;

having an enantiomeric purity (ee) of over 95% is prepared by the successive reaction steps as defined in claim 1.

- 4. A process as claimed in any of the preceding claims, wherein after reaction step (i) the enzyme is recovered by using a procedure suitable for this purpose.
- 5. A process as claimed in any of the preceding claims, characterized in that a carboxylic anhydride is used as the acylating agent.
- 6. A process as claimed in claim 5, characterized in that succinic anhydride or glutaric anhydride is used as the acylating agent.
- 7. A process as claimed in any of the preceding claims, characterized in that a lipase or esterase having a stereoselective esterification activity is used as the enzyme.
 - 8. A method of preparing a piperazine derivative having an enantiomeric purity (ee) of over 95%, of the general formula IX,

wherein X and the substituents Y have the meanings given in claim 1, wherein A is a straight or branched C_2 - C_4 alkylene group, and

B is a phenyl group or a heterocyclic group, selected from thienyl, pyranyl, furyl, pyrrolyl, pyridyl and pyrazinyl, which groups may be substituted with one or more substituents selected from halogen, C_1 - C_3 alkyl, C_1 - C_3 haloalkyl, cyano, nitro, hydroxy, esterified hydroxy and C_1 - C_3 alkoxy, and the C*-atom has the R configuration,

characterized in that:

15

20

25

30

35

40

45

50

55

- (a) an alcohol enantiomer having an enantiomeric purity (ee) of over 95%, of the general formula I, presented in claim 1, wherein the C*-atom has the R configuration, is prepared from its corresponding alcohol racemate by performing the successive reaction steps as defined in claim 1;
- (b) thereupon the free hydroxy group of the alcohol enantiomer thus obtained is protected by a hydroxy-protecting group, under retention of the absolute configuration of the C*-atom, to produce a compound of the general formula III,

$$Y_1$$
 Y_2
 Y_3
 V_2
 V_3
 V_3
 V_4
 V_4
 V_5
 V_6
 V_7
 V_8
 V_8

(c) thereupon the enantiomer thus obtained is converted into an amino compound of the general formula IV,

$$Y_2$$
 Y_3
 OR_1
 OR_1
 OR_2
 OR_3
 OR_4
 OR_5
 OR_5

by reduction of the nitro substituent, under retention of the absolute configuration of the C*-atom; (d) thereupon said amino compound, thus obtained, is converted into a piperazine compound of the general formula V,

$$\begin{array}{c} Y_1 \\ Y_2 \\ Y_3 \end{array} \begin{array}{c} CH_2 \\ OR_1 \end{array}$$

under retention of the absolute configuration of the C*-atom;

(e) thereupon said piperazine compound is derivatized, under retention of the absolute configuration, by reaction with a compound of the general formula VII or VIII,

wherein L is leaving group, preferably selected from chloro, mesylate and tosylate, and A and B have the above mentioned meanings, to produce a compound of the general formula VI,

$$Y_{12}$$
 Y_{21}
 Y_{21}
 Y_{31}
 Y_{31}
 Y_{31}
 Y_{32}
 Y_{31}
 Y_{32}
 Y_{33}
 Y_{32}
 Y_{33}
 Y_{32}
 Y_{33}
 Y_{33}
 Y_{32}
 Y_{33}
 Y

(f) finally, said compound of formula VI is deprotected to the free alcohol enantiomer of the general formula

IX, under retention of the R configuration of the C*-atom.

Patentansprüche

 Ein enzymatisches Verfahren zur stereoselektiven Herstellung eines heterobicyclischen Alkohol-Enantiomers der allgemeinen Formel

Y₂ Y₁ X CH₂ OH

Y₃ OH

(I)

: worin

10

15

20

25

30

35

40

45

55

X bedeutet O, S, NH, N-(C₁-C₄)Alkyl oder CH₂;

Y₁, Y₂ und Y₃ jeweils unabhängig Wasserstoff oder Substituenten, ausgewählt aus Halogen, C₁-C₄-Alkyl, C₁-C₄-Alkoxy, C₁-C₄-Halogenalkyl, Nitro und Cyano bedeuten; der NO₂-Substituent an das bicyclische Ringsystem in der 5- oder 7-Position gebunden ist; und das C*-Atom entweder die R- oder S-Konfiguration aufweist;

aus seinem entsprechenden Alkohol-Racemat durch die folgenden aufeinanderfolgenden Umsetzungsschritte:

(i) Acylierung des besagten Racemat mit einem Acyliermittel unter dem Einfluß eines Enzyms mit einer stereoselektiven Veresterungsaktivität;

(ii) Trennung der nicht veresterten Verbindung von dem hergestellten Ester und Isolierung des gewünschten, im wesentlichen reinen Alkohol-Enantiomers der Formel I oder seines Esters;

(iii) Unterwerfung des hergestellten Esters unter eine Hydrolyse, somit Umwandeln besagten Esters in das entsprechende Alkohol-Enantiomer, dadurch gekennzeichnet, daß eine enantiomere Reinheit (ee) von über 95% hergestellt wird durch

(iv) Umwandlung des unerwünschten Alkohol-Enantiomers in das Ausgangs-Alkohol-Racemat unter basischen Bedingungen, um seine Wiederverwendung zu erlauben.

2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, daß Umsetzungsschritte (iii) und (iv) durch Verwenden ausreichend starker basischer Bedingungen kombiniert werden, um die gleichzeitige Hydrolyse des Esters und Racemisierung des Alkohol-Enantiomers auszuführen.

3. Verfahren gemäß Anspruch 1 oder 2, dadurch gekennzeichnet, daß eine Verbindung der allgemeinen Formel

$$V'$$
 O
 CH_2
 OH
 $O(II)$

50 worin

Y' Wasserstoff oder ein Substituent, ausgewählt aus Chloro, Fluoro und Methyl bedeutet; der NO₂-Substituent an das bicyclische Ringsystem in der 5- oder 7-Position gebunden ist; und das C*-Atom entweder die R- oder S-Konfiguration aufweist;

mit einer enantiomeren Reinheit (ee) von über 95% durch die aufeinanderfolgenden Umsetzungsschritte, wie in Anspruch 1 definiert, hergestellt wird.

- 4. Verfahren gemäß einem der vorhergehenden Ansprüche, wobei nach Umsetzungsschritt (i) das Enzym durch Verwenden eines für diesen Zweck geeigneten Verfahrens wiedergewonnen wird.
- 5. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß ein Carbonsäureanhydrid als Acyliermittel verwendet wird.

5

15

20

25

30

35

40

45

50

55

- 6. Verfahren gemäß Anspruch 5, dadurch gekennzeichnet, daß Bernsteinsäureanhydrid oder Glutarsäureanhydrid als Acyliermittel verwendet wird.
- 7. Verfahren gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß eine Lipase oder Esterase mit einer stereoselektiven Veresterungsaktivität als Enzym verwendet wird.
 - 8. Verfahren zum Herstellen eines Piperazin-Derivats mit einer enantiomeren Reinheit (ee) von über 95%, der allgemeinen Formel IX,

$$Y_2$$
 Y_3
 Y_4
 Y_2
 Y_3
 Y_4
 Y_4
 Y_5
 Y_6
 Y_7
 Y_8
 Y_8

worin X und die Substituenten Y die in Anspruch 1 gegebenen Bedeutungen haben, worin A eine gerade oder verzweigte C₂-C₄-Alkylengruppe bedeutet und B eine Phenylgruppe oder eine heterocyclische Gruppe, ausgewählt aus Thienyl, Pyranyl, Furyl, Pyrrolyl, Pyridyl und Pyrazinyl bedeutet, welche Gruppen mit einem oder mehreren Substituenten, ausgewählt aus Halogen, C₁-C₃-Alkyl, C₁-C₃-Halogenalkyl, Cyano, Nitro, Hydroxy, verestertes Hydroxy und C₁-C₃-Alkoxy substituiert sein können, und das C*-Atom die R-Konfiguration aufweist, dadurch gekennzeichnet, daß

- (a) ein Alkohol-Enantiomer mit einer enantiomeren Reinheit (ee) von über 95%, der allgemeinen Formel 1, dargestellt in Anspruch 1, worin das C*-Atom die R-Konfiguration aufweist, aus seinem entsprechenden Alkohol-Racemat hergestellt wird, durch Ausführen der aufeinanderfolgenden Umsetzungsschritte, wie in Anspruch 1 definiert;
- (b) daraufhin die freie Hydroxygruppe des so erhaltenen Alkohol-Enantiomers durch eine Hydroxy-Schutzgruppe unter Beibehaltung der absoluten Konfiguration des C*-Atoms geschützt wird, um eine Verbindung der allgemeinen Formel III herzustellen,

$$Y_1$$
 Y_2
 Y_3
 Y_3
 Y_3
 Y_3
 Y_3
 Y_3
 Y_4
 Y_4
 Y_4
 Y_5
 Y_5
 Y_5
 Y_5
 Y_6
 Y_7
 Y_8
 Y_8

(c) daraufhin das so erhaltene Enantiomer in eine Amino-Verbindung der allgemeinen Formel IV

$$Y_2$$
 Y_3
 Y_3
 Y_3
 Y_4
 Y_4
 Y_5
 Y_6
 Y_7
 Y_8
 Y_8

durch Reduktion des Nitro-Substituenten unter Beibehaltung der absoluten Konfiguration des C*-Atoms umgewandelt wird;

(d) daraufhin besagte, so erhaltene Amino-Verbindung in eine Piperazin-Verbindung der allgemeinen Formel V

$$\begin{array}{c} Y_1 \\ Y_2 \\ Y_3 \end{array} \begin{array}{c} CH_2 \\ OR_1 \\ \end{array}$$

$$(V)$$

unter Beibehaltung der absoluten Konfiguration des C*-Atoms umgewandelt wird;

(e) daraufhin besagte Piperazin-Verbindung unter Beibehaltung der absoluten Konfiguration derivatisiert wird, durch Umsetzung mit einer Verbindung der allgemeinen Formel VII oder VIII,

worin Laustretende Gruppe bedeutet, vorzugsweise ausgewählt aus Chlor, Mesilat und Tosilat, und Aund B die zuvor erwähnten Bedeutungen haben, um einer Verbindung der allgemeinen Formel VI

herzustellen,

10

15

20

25

30

35

40

45

50

55

(f) schließlich besagte Verbindung der Formel VI zu dem freien Alkohol-Enantiomer der allgemeinen Formel

IX unter Beibehaltung der R-Konfiguration des C*-Atoms entschützt wird.

Revendications

10

15

20

25

30

35

55

 Procédé enzymatique pour la préparation stéréosélective d'un énantiomère d'alcool hétérobicyclique de formule générale :

$$Y_{2}$$

$$Y_{3}$$

$$NO_{2}$$

$$X$$

$$CH_{2}$$

$$OH$$

$$(I)$$

dans laquelle

X est O, S, NH, N-(alkyle en C_1 à C_4) ou CH_2 ; chacun de Y_1 , Y_2 et Y_3 est indépendamment l'hydrogène ou un substituant choisi parmi les halogènes et les radicaux alkyle en C_1 à C_4 , alcoxy en C_1 à C_4 , halogénoalkyle en C_1 à C_4 , nitro et cyano;

le substituant NO₂ est attaché au système bicyclique en position 5 ou 7 ; et

l'atome C* a la configuration R ou S;

à partir de son racémate d'alcool correspondant, par les étapes réactionnelles successives suivantes :

- (i) acylation dudit racémate avec un agent d'acylation sous l'influence d'une enzyme ayant une activité d'estérification stéréosélective ;
- (ii) séparation du composé non estérifié d'avec l'ester produit, et isolement de l'énantiomère d'alcool pratiquement pur souhaité de formule l ou de son ester;
- (iii) soumission de l'ester produit à une hydrolyse, de façon à convertir ledit ester en l'énantiomère d'alcool correspondant, caractérisé en ce qu'une pureté d'énantiomère (ee) supérieure à 95 % est préparée par
- (iv) conversion de l'énantiomère d'alcool non souhaité en le racémate d'alcool de départ dans des conditions basiques, afin de permettre sa réutilisation.
- 2. Procédé selon la revendication 1, caractérisé en ce que les étapes réactionnelles (iii) et (iv) sont combinées par utilisation de conditions basiques suffisamment fortes pour réaliser simultanément l'hydrolyse de l'ester et la racémisation de l'énantiomère d'alcool.
- 3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'un composé de formule générale :

$$V$$
 OH V OH V OH V OH

50 dans laquelle

Y' est l'hydrogène ou un substituant choisi parmi les radicaux chloro, fluoro et méthyle; le substituant NO₂ est attaché au système bicyclique en position 5 ou 7 ; et l'atome C* a la configuration R ou S ;

ayant une pureté d'énantiomère (ee) éventuellement supérieure à 95 %, est préparé par les étapes réactionnelles successives telles que définies dans la revendication 1.

- 4. Procédé selon l'une quelconque des revendications précédentes, dans lequel, après l'étape réactionnelle (i), l'enzyme est récupérée par utilisation d'un mode opératoire convenant à ce propos.
- 5. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un anhydride carboxylique est utilisé au titre de l'agent d'acylation.
- 6. Procédé selon la revendication 5, caractérisé en ce que de l'anhydride succinique ou de l'anhydride glutarique est utilisé au titre de l'agent d'acylation.
- 7. Procédé selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une lipase ou une estérase ayant une activité d'estérification stéréosélective est utilisée au titre de l'enzyme.
 - 8. Procédé de préparation d'un dérivé de pipérazine ayant une pureté d'énantiomère (ee) éventuellement supérieure à 95 %, de formule générale IX,

dans laquelle X et les substituants Y ont les significations données dans la revendication 1, dans laquelle

A est un groupe alkylène en C2 à C4 linéaire ou ramifié, et

B est un groupe phényle ou un groupe hétérocyclique, choisi parmi les radicaux thiényle, pyrazyle, furyle, pyrrolyle, pyridyle et pyrazinyle, lesquels groupes peuvent être substitués par un ou plusieurs substituants choisis parmi les halogènes et les radicaux alkyle en C_1 à C_3 , halogénoalkyle en C_1 à C_3 , cyano, nitro, hydroxy, hydroxy estérifié et alcoxy en C_1 à C_3 , et

l'atome C* a la configuration R,

caractérisé en ce que :

15

20

25

30

35

40

45

50

55

- (a) un énantiomère d'alcool ayant une pureté d'énantiomère (ee) supérieure à 95 %, de formule générale I présentée dans la revendication 1 et dans laquelle l'atome C* a la configuration R, est préparé à partir de son racémate d'alcool correspondant par réalisation des étapes réactionnelles successives telles que définies dans la revendication 1;
- (b) ensuite, le groupe hydroxy libre de l'énantiomère d'alcool ainsi obtenu est protégé par un groupe hydroxyprotecteur, avec maintien de la configuration absolue de l'atome C*, pour produire un composé de formule générale III :

$$Y_{1}$$

$$Y_{2}$$

$$Y_{3}$$

$$NO_{2}$$

$$CH_{2}$$

$$OR_{1}$$

$$NO_{2}$$

$$(III)$$

(c) ensuite, l'énantiomère ainsi obtenu est converti en un composé amino de formule générale IV,

par réduction du substituant nitro, avec maintien de la configuration absolue de l'atome C*; (d) ensuite, ledit composé amino ainsi obtenu est converti en un composé de pipérazine de formule générale V,

$$Y_1 \longrightarrow X \longrightarrow CH_2 \longrightarrow OR_1$$

$$Y_2 \longrightarrow Y_3 \longrightarrow OR_1$$

$$Y_1 \longrightarrow CH_2 \longrightarrow OR_1$$

$$Y_1 \longrightarrow CH_2 \longrightarrow OR_1$$

$$Y_1 \longrightarrow CH_2 \longrightarrow OR_1$$

avec maintien de la configuration absolue de l'atome C*;

(e) ensuite ledit composé de pipérazine est dérivé, avec maintien de la configuration absolue, par réaction avec un composé de formule générale VII ou VIII,

formules dans lesquelles L est un groupe partant, de préférence choisi parmi les radicaux chloro, mésylate et tosylate, et A et B ont les significations mentionnées ci-dessus, pour produire un composé de formule générale VI,

$$Y_1$$
 Y_2
 Y_3
 O
 OR_1
 OR_1
 $A-NH-CO-B$
 (VI)

(f) finalement, ledit composé de formule VI est déprotégé en l'énantiomère d'alcool libre de formule générale IX, avec maintien de la configuration R de l'atome C*.