

JUNE 2002

GCE Advanced Subsidiary Level

MARK SCHEME

MAXIMUM MARK: 50

SYLLABUS/COMPONENT:9709/4

MATHEMATICS (Mechanics 1)

Page 1	Mark Scheme	Syllabus	Paper
•	AS Level Examinations – June 2002	9709	4

1	For using WD = $Fd \cos \alpha$ or $P = Fv \cos \alpha$ and WD = Pt	Mi	
	$WD = 5(0.4 \times 10)\cos 30^{\circ}$	Al	
	Work done is 17.3 J (or $10\sqrt{3}$)	Al	3
SR Fo	r candidates who calculate power (only) (max 1 out of 3)	1	
Power	is 1.73 W B1	1	

Notes

M1 - their distance; cos or sin but not just 5x4

Radians M1 A1 A0 (max 2 out of 3); answer 3.085 does not score final A mark but may imply the previous

2	(i)	For using $N = mg \cos \alpha$ [5g cos 12° (= 48.9)] and $F = \mu N$ [0.2 x	M1	
		48.9]		
]	Frictional force is 9.78 N (9.59 from $g = 9.8$ and 9.60 from $g = 9.81$)	Al	2
	(ii)	Component of weight = $5g \sin 12^{\circ}$ (=10.4) (ft absence of g and/or sin/cos mix only)	Bift	
• ·		For comparing component of weight with frictional force or for finding the acceleration (0.123) using both the component of weight and the frictional force	M1	
	native:			
For co	отраті	$ng \mu$ with tan 12° or for comparing the 'angle' of friction with angle of	1	
inclin	ation	M1		
0.2 <	tan 12'	$^{\circ}$ or $\tan^{-1}0.2 < 12^{\circ}$		
		Speed increasing (ft for arithmetic errors only)	Alft	3

Notes:

(i) M1 accept absence of g and/or sin/cos mix

(ii) B1 can be earned in (i)

Illustration: '5a = $1.04 - 9.78 \Rightarrow a < 0 \Rightarrow$ speed decreasing' scores A1 ft, whereas

5a = 10.4 + 9.78 → a > 0 → speed increasing' scores A0

Radians: Can score both M marks as per scheme, and allow one A mark for both 8.44 and -26.8 (or -27 or -30) (max 3 out of 5)

Page 2	Mark Scheme	Syllabus	Paper
	AS Level Examinations – June 2002	9709	4

3	(i)			
		/12 10 or 10 /12		
		<u>h_10a</u> h		
		(may be implied)		
		or recognising that resultant acts along bisector		
		or $12\cos\beta = 10 + 10\cos\theta$ and $12\sin\beta = 10\sin\theta$		
		or $X = 10 - 10 \cos \alpha$ and $Y = 10 \sin \alpha$	Bl	
	}	Complete method for α		
		$\alpha = \frac{6}{2\sin^{-1}\frac{6}{10}} \text{ or } 12^2 = 10^2 + 10^2 - 2x10^2\cos\alpha$		
		or resolving forces along the bisector [$2x10\cos\frac{\theta}{2} = 12$]		
		or squaring and adding and using $c^2 \beta + s^2 \beta = 1$ and $c^2 \theta + s^2 \theta = 1$		
		$[144 = 100 + 200\cos\theta + 100]$	M1	
		$\theta = 106.3^{\circ}$ or 1.85 rads	Αl	3
	(ii)	For using component = $12\cos\frac{\theta}{2}$ [12 x 0.6] or 10 – 10 cos α	Ml	
		Component is 7.2 N (ft only when B1 in part (i) is scored)	Alfi	2
SR fo	or candi	dates whose diagram in (i) (actual or implied) has triangle with sides 10,		
		$ngle \theta$ opposite the 12. (max 1 out of 2)	1	i
Com	ponent i	$is \pm 7.2 N$ B1		
Alter	native:	For candidates who draw a scale diagram.		
As fo	or first n	nark in scheme above B1	•	ļ
		the range 105° to 107° obtained B1	i	1
$\theta =$	106.3°	B1		
12.	\wedge		!	
'/				
4	ر حــک	For drawing relevant perpendicular and measuring appropriate length M1	,	
Com	ponent i			
Notes			'	

Notes

Accept 7.19 or 7.20 or 7.21 (as well as 7.2) for final A1.

The wrong diagram case (diagram may or not appear). Triangle has sides 10, 10, 12 with angle θ opposite the 12. (i) M0, $12^2 = 10^2 + 10^2 - 2 \times 10^2 \cos \theta$ M1 A0 (max 1 out of 3) (ii) Allow M1 as per scheme if appropriate, otherwise use SR.

Page 3	Mark Scheme	Syllabus	Paper
_	AS Level Examinations – June 2002	9709	4

4	(i)	N = 4.5g, F = 15	B1	
		For using $\mu = F/N$	M1	
		Coefficient is $1/3$ or 0.333 (0.340 from $g = 9.8$ or 9.81)	A1	3
	(ii)	For using Newton's 2^{nd} law $[-15 = 4.5a]$	M1	
		Deceleration is $10/3 \text{ ms}^{-2}$ (or 3.33) or $a = -10/3$ (or -3.33)	A1	2
	(iii)	For using $v^2 = u^2 + 2as$ or $v = u + at$ and $s = \frac{u + v}{2}t$		
		[0=4+2(-10/3)s]	MI	
		Distance is 0.6 m	Alft	2

Accept 0.601 from a = -3.33 for A mark in (iii)

5 (i)	(a)	For using $v = u + at [6 = 3 + (0.06)t]$	MI	<u></u> .
_		Time taken is 50s	A1	2
	(b)	For using $v^2 = u^2 + 2as [36 = 9 + 2(0.06)s]$ or $s = ut + \frac{1}{2} at^2 [s = 3(50) + \frac{1}{2} (0.06)2500]$		
		or $s = \frac{u+v}{2}t$ [$s = \frac{1}{2}(3+6)50$]	M1	
		Distance is 225m	Al	2
(ii)	(a)	For attempting to integrate kt ²	Ml	
		$s = kt^{3}/3$	Al	
		For finding k by substituting for s and t in the expression for s obtained by integration or by using appropriate limits in the integration $[k50^3/3 = 225]$	DM1	
	<u> </u>	k = 0.0054 or 27/5000 ft for 3 x (ans i(b)) / (ans i(a)) ³	A1ft	4
	(b)	Speed is 13.5ms^{-1} ft for (ans ii(a)) x (ans i(a)) ²	Blft	1
(max	l out o			
For k	= 0.00	36 and speed at B is 9ms ⁻¹ (in either order)	1	

Notes: Allow inequality for M mark in (i) $4.5a = 15 \Rightarrow a = 10/3$ in (ii) scores M1 A0 (unless a is said to be deceleration) v = 2, u = 0 and a = 10/3 is OK for M1 in (iii) even if a = +10/3 is found in (ii). Allow A1 as well if 0.6m is

Page 4	Mark Scheme	Syllabus	Paper
	AS Level Examinations – June 2002	9709	4

6	(i)(a)	For using PE = mgh [15 000x10(800sin2°)]	M1	
-		Gain in PE is 4 190 000 J (4 187 900)	·	
	1	$(4\ 100\ 000\ \text{from}\ g = 9.8\ \text{and}\ 4\ 110\ 000\ \text{from}\ g = 9.81)$	A1	2
	(b)	WD by driving force is 5 600 000 J	B1	1
	(c)	For using WD = ans (b) - ans (a) or WD = $(7000 - mg\sin 2^{\circ}) \times 800$	M1	
	<u> </u>	WD against resistance is 1 410 000 J (ft candidate's ans (b) - ans (a)		
		or $(7000 - mg\sin 2^{\circ}) \times 800$ providing the value found is +ve)		1
		$(1.500\ 000\ \text{from } g = 9.8\ \text{and}\ 1.490\ 000\ \text{from } g = 9.81)$	A1ft	2
	(ii)	For using KE loss = $\frac{1}{2} m(u^2 - v^2)$ [$\frac{15000(400 - 100)}{100}$]	MI	
		KE loss is 2 250 000 J May be implied by final answer	A1	
		WD against resistance is 900 x 800	B1	
		For using WD as a linear combination of 3 terms reflecting the PE, the		
		KE and the resistance [4 190 000 - 2 250 000 + 720 000]	M1	
	1	WD by driving force is 2 660 000 J (2 657 900)		
		(2.570.000 from g = 9.8 and 2.580.000 from g = 9.81)	A1	5
SRI	For cand	idates who assume, explicitly or implicitly, that the acceleration is	1	
cons	stant.	(max 3 out of 5)	1	
For	using v^2 :	$= u^2 + 2as (a = -0.1875)$ and DF = $ma \pm 900 \pm mg \sin 2^{\circ}$ M1		
	_	ing by 800 M1		
		ng force is 2 660 000 J A1		

For incorrect use of multiple units (eg kJ) withold the A or B mark at the first occurrence, but do not penalise subsequently.

Allow cos or (1 - cos) instead of sin for M mark in (i)(a), but g must be present

Accept - 5 600 000 in (i)(b) and -2 660 000 in (ii)

Allow ± the expressions for WD for M mark in (i)(c), but not for the A mark (including the ft)

Answer 2 250 000 in (ii) is almost certainly worth 0 out of 5 (unless it is an answer for the loss in KE); see notes distributed at meeting.

Page 5	Mark Scheme	Syllabus	Paper
	AS Level Examinations – June 2002	9709	4

(i)	1	or B or for using	Mı	
 	$(m_1 + m_2)a = (m_2 - m_1)g$ $0.15a = T - 0.15g$		Al	
 	0.25a = 0.25g - T		Al	
1 native f	or the above 2 A marks:	. ,	 	_
+ 0.25)	a = (0.25 - 0.15)g	A2	<u> </u>	
	Acceleration is 2.5ms^{-2} (ft only for (2.45 from g = 9.8 or g = 9.81)	or 0.25 following the absence of g)	A1ft	4
(ii)			B1 ft	
	For using $v = u + at$ to find time up down; acceleration must be $\pm g$	or time down or total time up and	MI	
	$t = 2 \times \frac{5}{10}$ or $-5 = 5 - 10t$		Alft	
1	Slack for 1s		Al	4
(iii)	1	For 2 line segments representing motion with the string taut	Bi	
		For the line segment representing	Bi	
		For the line segment $v = 0$ representing B stationary with the string slack	Ві	3
	(ii)	$(m_1 + m_2)a = (m_2 - m_1)g$ $0.15a = T - 0.15g$ $0.25a = 0.25g - T$ mative for the above 2 A marks: $+ 0.25)a = (0.25 - 0.15)g$ Acceleration is 2.5ms^{-2} (ft only for (2.45 from g = 9.8 or g = 9.81) (ii) $v = 5$ ft for 2 x ans(i) $(4.9 \text{ from g} = 9.8 \text{ and } 4.90(5) \text{ from g} = 9.8 \text{ and } 4.90(5) \text{ from g} = 9.8 \text{ and } 4.90(5) \text{ from g} = 2.8 \text{ and } 4.90(5) \text{ from g} = 2.8 \text{ and } 4.90(5) \text{ from g} = 2.8 \text{ and } 4.90(5) \text{ from g} = 2.8 \text{ and } 4.90(5) \text{ from g} = 2.8 \text{ and } 4.90(5) \text{ from g} = 2.8 \text{ and } 4.90(5) \text{ from g} = 2.8 \text{ and } 4.90(5) \text{ from g} = 3.8 \text{ and } 4.90($	$(m_1 + m_2)a = (m_2 - m_1)g$ $0.15a = T - 0.15g$ $0.25a = 0.25g - T$ mative for the above 2 A marks: $+ 0.25)a = (0.25 - 0.15)g$ $A2$ Acceleration is 2.5ms^{-2} (ft only for 0.25 following the absence of g) $(2.45 \text{ from } g = 9.8 \text{ or } g = 9.81)$ (ii) $v = 5$ ft for 2 x ans(i) $(4.9 \text{ from } g = 9.8 \text{ and } 4.90(5) \text{ from } g = 9.81)$ For using $v = u + at$ to find time up or time down or total time up and down; acceleration must be $\pm g$ $t = 2 \times \frac{5}{10} \text{ or } -5 = 5 - 10t$ Slack for 1s For 2 line segments representing motion with the string taut For the line segment representing motion of A with the string slack For the line segment $v = 0$ representing B stationary with the	$(m_1 + m_2)a = (m_2 - m_1)g$ $0.15a = T - 0.15g$ $0.25a = 0.25g - T$ All native for the above 2 A marks: $+ 0.25)a = (0.25 - 0.15)g$ Acceleration is 2.5ms^{-2} (ft only for 0.25 following the absence of g) $(2.45 \text{ from g} = 9.8 \text{ or g} = 9.81)$ (ii) $v = 5 \text{ft for 2 x ans(i)}$ $(4.9 \text{ from g} = 9.8 \text{ and 4.90(5) from g} = 9.81)$ B1 ft For using $v = u + at$ to find time up or time down or total time up and down; acceleration must be $\pm g$ $t = 2 \times \frac{5}{10} \text{ or } -5 = 5 - 10t$ Slack for 1s For 2 line segments representing motion with the string taut For the line segment representing motion of A with the string slack For the line segment $v = 0$ representing B stationary with the

Notes: Allow absence of g for the M mark in (i)

Allow -a instead of a for the first two A marks in (i) if, and only if, it applies to both equations.

Third A mark is for 2.5 and if it follows a = -2.5 the answer must be properly justified.

For answer 1s + 2s = 3s in (ii) allow final A mark (ISW for + 2s = 3s)

Line segments must appear to be symmetric for first B mark in (iii)

The graphs can have v positive downwards, but for I* B mark the line segments must appear to be reflections of each other in the taxis.

Accept separate graphs for particles A and B, providing the direction of positive v is the same for both.