ILYA DROBYSHEVSKIY

Moscow, Russia

EDUCATION

• Higher School of Economics

Moscow, Russia

Bachelor of Applied Mathematics and Computer Science; GPA: 7.50/10

Sep 2021 - Present

- Specialization: Machine Learning & Applications.
- o Relevant courses: Generative models based on Diffusion, DL in Audio, Bayesian Methods, Methods of Optimizations, Stochastic Calculus, Algorithms and Data Structures, Linear Algebra, Probability Theory and Statistics, Graph Theory, Abstract Algebra, Calculus.

EXPERIENCE

• AIRI, Controllable Generative AI

Moscow, Russia

Intern researcher

May 2024 - Present

o Tasks: Doing research in the field of FaceSwap via Diffusion Models and GANs supervised by Alanov Aibek.

Teaching

• Higher School of Economics

Moscow, Russia

Teacher assistant

Sep 2022 - Present

• Courses: ML/DL, Matrix Computations, Linear Algebra, Calculus, Probability Theory and Statistics.

Interests & Skills

- Interests: Diffusion Models, RL, Bayesian Methods, Audio, Interpretability of Neural Networks.
- Skills: Python, C++, PyTorch, Jax, Git, Docker, LATEX.
- Languages: Russian (Native), English (Upper-Intermediate), Polish (Upper-Intermediate).

PROJECTS

- DL in Audio: Speech to Text with DeepSpeech2, Audio-Visual Speech Separation with RTFS-Net, Neural Vocoder with HiFiGAN.
- FaceSwap via GANs: My 3rd year coursework, in which we were researching some of FaceSwap methods and introduced the huge improvements for SOTA method.
- Image Classifier: In this competition I had to make a classifier for small images (40 x 40) but there were some limitations such as don't use pretrained models, use only authors data and don't resize up images. My model was taken 3rd place out of 119.
- Generative Models: My implementation of some generative models/pipelines such as autoencoder, StarGAN, VAE, DDPM, RAG.
- DL: Homeworks from DL course with implementations of PyTorch analogue (main classes and backpropagation), MLP, CNN, RNN and Transformer.
- ML: Homeworks from ML course with implementations of gradient boosting, logistic regression, SVM, some of RecSys, EM-algorithm, methods of clusterization, anomaly detection and kernel tricks.

ACHIEVEMENTS

• The best teacher assistant for the Matrix Computations course in the 2023/2024 academic year.