Advanced Machine Learning

Probability

$$Y = g(X)$$
 $g(x_{13})$ $g(x_{14})$ $g(x_{14})$ $g(x_{15})$ $g(x_{15})$ $g(x_{16})$ $g(x_{$

Probability, Random Variables, Expectations

Outline

 \mathcal{O}

- 1. Random Variables
- 2. Expectations
- 3. Calculus of Probabilities

x_{31}	x_{32}	x_{33}	x_{34}	x_{35}
x_{26}	x_{27}	x_{28}	x_{29}	x_{30}
x_{21}	x_{22}	x_{23}	x_{24}	x_{25}
x_{16}	x_{17}	x_{18}	x_{19}	x_{20}
x_{11}	x_{12}	x_{13}	x_{14}	x_{15}
x_6	x_7	x_8	x_9	x_{10}
x_1	x_2	x_3	x_4	x_5

Modelling Uncertainty

- To model a world with uncertainty we consider some set of **elementary** events or outcomes Ω
- For the outcome of rolling a dice $\Omega = \{1,2,3,4,5,6\}$
- The elementary events ω_i are mutually exclusive $\omega_i \cap \omega_j = \emptyset$ and exhaustive $\bigcup_i \omega_i = \Omega$
- We consider events $\mathcal{E} = \bigcup_{i \in \mathcal{I}} \omega_i$
- E.g. For a dice throw $\mathcal{E} = \{2,4,6\}$

Probabilities

• We attribute a **probability**, $\mathbb{P}(\mathcal{E})$, to an event, \mathcal{E} , with the requirements

$$\star 0 \leq \mathbb{P}(\mathcal{E}) \leq 1$$

$$\star \mathbb{P}(\mathcal{E}) + \mathbb{P}(\neg \mathcal{E}) = 1 \text{ where } \neg \mathcal{E} = \Omega \setminus \mathcal{E}$$

- In some cases we can interpret $\mathbb{P}(\mathcal{E})$ as the expected frequency of occurrence of a repetitive trial
- But $\mathbb{P}(Pass\ COMP6208\ exam)$ is something you do once
- Can think of probability as an informed belief that something might happen
- When our knowledge changes the probability changes

Random Variables

- We can define a **random variable**, X, by partition the set of outcomes Ω and assign a numbers to each partition
- E.g. for a dice

$$X = \begin{cases} 0 & \text{if } \omega \in \{1,3,5\} \\ 1 & \text{if } \omega \in \{2,4,6\} \end{cases}$$

• $\mathbb{P}(X=x_i)=\mathbb{P}(\mathcal{E}_i)$ where \mathcal{E}_i is the event that corresponding to the partition with value x_i !

What's In A Name

- We denote random variables with capital letters, X, Y, Z, etc.
- The symbol denote an object that can take one of a number of different values, but which one is still to be decided by chance
- ullet When we write $\mathbb{P}(X)$ we can view this as short-hand for

$$(\mathbb{P}(X=x) \mid x \in \mathcal{X}) = (\mathbb{P}(X=x_1), \mathbb{P}(X=x_2), \dots \mathbb{P}(X=x_n))$$

where \mathcal{X} is the set of possible values that X can take

 We treat random variables very differently to normal numbers (scalars) when we consider taking expectations

Function of Random Variables

• Any function, Y=g(X), of a random variable, X, is a random variable!

$$Y = g(X)$$
 Q
 $y_{13} = g(x_{13})$ $y_{14} = g(x_{14})$ $y_{15} = g(x_{15})$ $y_{16} = g(x_{16})$ $y_{19} = g(x_{19})$ $y_{10} = g(x_{10})$ $y_{11} = g(x_{11})$ $y_{12} = g(x_{12})$ $y_{10} = g(x_{10})$ $y_{11} = g(x_{11})$ $y_{12} = g(x_{12})$ $y_{13} = g(x_{11})$ $y_{14} = g(x_{11})$ $y_{15} = g(x_$

Continuous Spaces

- If the space of elementary events is continuous (e.g. for darts x = (x,y)) then $\mathbb{P}(X = x) = 0$
- But if we consider a region, \mathcal{R} , then we can assign a probability to landing in the region $\mathbb{P}(X \in \mathcal{R})$.
- It is useful to work with probability densities function (PDF)

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \lim_{\epsilon \to 0} \frac{\mathbb{P}(\boldsymbol{X} \in \mathcal{B}(\boldsymbol{x}, \epsilon))}{|\mathcal{B}(\boldsymbol{x}, \epsilon)|}$$

where $\mathcal{B}(\boldsymbol{x},\epsilon)$ is a ball of radius ϵ around the point \boldsymbol{x} and $|\mathcal{B}(\boldsymbol{x},\epsilon)|$ is the volume of the ball

• If we make a change of variable the volume $|\mathcal{B}(x,\epsilon)|$ might change so $f_{\boldsymbol{X}}(x)$ will change

Change of Variables

- Consider a region \mathcal{R} —we can describe this using different coordinate systems x or y=g(x)
- But

$$\mathbb{P}(X \in \mathcal{R}) = \int_{\mathcal{R}} f_X(x) dx = \mathbb{P}(Y \in \mathcal{R}) = \int_{\mathcal{R}} f_Y(y) dy$$

- As this is true for any region \mathcal{R} : $f_X(x)|\mathrm{d} x|=f_Y(y)|\mathrm{d} y|$
- Or

$$f_X(x) = f_Y(y) \left| \frac{\mathrm{d}y}{\mathrm{d}x} \right| = f_Y(g(x)) |g'(x)|$$

 The probability density measured in units of probability per cm is different to that measured in units of probability per inch.

Jacobian

- ullet In high dimension if we make a change of variables $m{x} o m{y}(m{x})$ (which can be seen as a change of random variables $m{X} o m{Y}(m{X})$).
- Then

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = f_{\boldsymbol{Y}}(\boldsymbol{y})|\det(\boldsymbol{\mathsf{J}})|$$

where J is the Jacobian matrix

$$\mathbf{J} = \begin{pmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \cdots & \frac{\partial y_1}{\partial x_n} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_2}{\partial x_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_n}{\partial x_1} & \frac{\partial y_n}{\partial x_2} & \cdots & \frac{\partial y_n}{\partial x_n} \end{pmatrix} \mathbf{I}$$

Ensures integrals over volumes are the same

Meaning of Probability Densities

- Probability densities are not probabilities
- They are positive, but don't need to be less than 1
- Note that

$$f_X(x) = \lim_{\delta x \to 0} \frac{\mathbb{P}(x \le X < x + \delta x)}{\delta x}$$

- We can think of $f_X(x)\delta x$ as $\mathbb{P}(x \leq X < x + \delta x)$
- Note that $f_X(x)\delta x \leq 1$

Cumulative Distribution Functions

• We can define the **cumulative distribution function** (CDF)

$$F_X(x) = \mathbb{P}(X \le x) = \begin{cases} \sum_{i: x_i \le x} \mathbb{P}(X = x_i) \\ \int_{-\infty}^x f_X(y) \, \mathrm{d}y \end{cases}$$

- This is a function that goes from 0 to 1 as x goes from $-\infty$ to ∞ !
- We note that for continuous random variables

$$f_X(x) = \frac{\mathrm{d}F_X(x)}{\mathrm{d}x}$$

Outline

 Ω

- 1. Random Variables
- 2. Expectations
- 3. Calculus of Probabilities

x_{31}	x_{32}	x_{33}	x_{34}	x_{35}
x_{26}	x_{27}	x_{28}	x_{29}	x_{30}
x_{21}	x_{22}	x_{23}	x_{24}	x_{25}
x_{16}	x_{17}	x_{18}	x_{19}	x_{20}
x_{11}	x_{12}	x_{13}	x_{14}	x_{15}
x_6	x_7	x_8	x_9	x_{10}
x_1	x_2	x_3	x_4	x_5

Expectation

ullet We can define the expectation of $oldsymbol{Y}=g(oldsymbol{X})$ as

$$\mathbb{E}_{\boldsymbol{X}}[g(\boldsymbol{X})] = \begin{cases} \sum_{\boldsymbol{x} \in \mathcal{X}} g(\boldsymbol{x}) \mathbb{P}(\boldsymbol{X} = \boldsymbol{x}) \\ \int_{g(\boldsymbol{x})} f_{\boldsymbol{X}}(\boldsymbol{x}) d\boldsymbol{x} \end{cases}$$

ullet The expectation of a constant c is

$$\mathbb{E}_{\mathbf{X}}[c] = \begin{cases} \sum_{\mathbf{x} \in \mathcal{X}} c\mathbb{P}(\mathbf{X} = \mathbf{x}) = c \sum_{\mathbf{x} \in \mathcal{X}} \mathbb{P}(\mathbf{X} = \mathbf{x}) = c \\ \int c f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x} = c \int f_{\mathbf{X}}(\mathbf{x}) d\mathbf{x} = c \end{cases}$$

• Note $\mathbb{E}_X[\mathbb{E}_X[g(X)]] = \mathbb{E}_X[g(X)]$

Linearity of Expectation

Because sums and integrals are linear operators

$$\sum_{i} (ax_i + by_i) = a \left(\sum_{i} x_i\right) + b \left(\sum_{i} y_i\right)$$
$$\int (af(\mathbf{x}) + bg(\mathbf{x})) d\mathbf{x} = a \left(\int f(\mathbf{x}) d\mathbf{x}\right) + b \left(\int g(\mathbf{x}) d\mathbf{x}\right)$$

then expectations are linear

$$\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$$

• Beware usually $\mathbb{E}[XY] \neq \mathbb{E}[X]\mathbb{E}[Y]$ (unless X and Y are independent)

Indicator Functions

An indicator function has the property

$$[predicate] = \begin{cases} 1 & \text{if } predicate \text{ is True} \\ 0 & \text{if } predicate \text{ is False} \end{cases}$$

(sometimes written $I_A(x)$ where A(x) is the predicate)

We can obtain probabilities from expectations

$$\mathbb{P}(predicate) = \mathbb{E}[[predicate]]$$

E.g. The CDF is given by

$$F_X(x) = \mathbb{P}(X \le x) = \mathbb{E}[[X \le x]]$$

Outline

 Ω

- 1. Random Variables
- 2. Expectations
- 3. Calculus of Probabilities

x_{31}	x_{32}	x_{33}	x_{34}	x_{35}
x_{26}	x_{27}	x_{28}	x_{29}	x_{30}
x_{21}	x_{22}	x_{23}	x_{24}	x_{25}
x_{16}	x_{17}	x_{18}	x_{19}	x_{20}
x_{11}	x_{12}	x_{13}	x_{14}	x_{15}
x_6	x_7	x_8	x_9	x_{10}
x_1	x_2	x_3	x_4	x_5

Joint Probabilities

- Often we want to model complex processes where we have multiple random variables
- We can define the joint probability

$$p_{X,Y}(x,y) = \mathbb{P}(X = x, Y = y)$$

i.e. the probability of the event where both X=x and Y=y

• Clearly $\mathbb{P}(X,Y) = \mathbb{P}(Y,X)$

Marginalisation

- Probabilities are extremely easy to manipulate (although lots of people struggle)
- One of the most useful properties is known as marginalisation

$$\mathbb{P}(X) = \sum_{y \in \mathcal{Y}} \mathbb{P}(X, Y = y)$$

where \mathcal{Y} is the set of values that the random variable Y takes

- Note that when we write $\mathbb{P}(X)$ we are saying this is true for all values that X can take
- Although obvious and easy this is extremely useful

Conditional Probability

• We can also define the probability of an event X given that Y=y has occurred

$$\mathbb{P}(X \mid Y = y) = \frac{\mathbb{P}(X, Y = y)}{\mathbb{P}(Y = y)}$$

- In constructing a model it is often much easier to specify conditional probabilities (because you know something) rather than joint probabilities
- When manipulating probabilities it is often easier to work with joint probabilities because we can simplify them by marginalising out random variables we are not interested in

Basic Calculus

To obtain the joint probability we can use

$$\mathbb{P}(X,Y) = \mathbb{P}(X|Y)\mathbb{P}(Y) = \mathbb{P}(Y|X)\mathbb{P}(X)$$

This generalises to more random variables

$$\mathbb{P}(X,Y,Z) = \mathbb{P}(X,Y|Z)\mathbb{P}(Z) = \mathbb{P}(X|Y,Z)\mathbb{P}(Y|Z)\mathbb{P}(Z)$$

We can do this in a number of different ways

$$\mathbb{P}(X,Y,Z) = \mathbb{P}(Y,Z|X)\,\mathbb{P}(X) = \mathbb{P}(Z|Y,X)\,\mathbb{P}(Y|X)\,\mathbb{P}(X)$$

• Note that $\mathbb{P}(A,B\mid X,Y)$ means the probability of random variables A and B given that X and Y take particular values

Beware

• Conditional probabilities, $\mathbb{P}(X \mid Y)$ are probabilities for X, but not Y

$$\sum_{x \in \mathcal{X}} \mathbb{P}(X = x \mid Y) = 1$$

$$\sum_{y \in \mathcal{Y}} \mathbb{P}(X \mid Y = y) \neq 1$$

(in general)

Note that

$$\mathbb{E}_{Y}[\mathbb{P}(X \mid Y)] = \sum_{y \in \mathcal{Y}} \mathbb{P}(Y = y) \mathbb{P}(X | Y = y) \blacksquare$$
$$= \sum_{y \in \mathcal{Y}} \mathbb{P}(X, Y = y) \blacksquare = \mathbb{P}(X) \blacksquare$$

Causality

- Conditional probabilities does not imply causality
- We might have causal relationships

$$\mathbb{P}(\mathsf{pass} \mid \mathsf{study}) = 0.9$$
 $\mathbb{P}(\mathsf{pass} \mid \neg \mathsf{study}) = 0.2$

• But if we know $\mathbb{P}(\text{study}) = 0.8$ then we can compute

$$\mathbb{P}(\mathsf{pass},\mathsf{study}) = \mathbb{P}(\mathsf{pass} \mid \mathsf{study}) \mathbb{P}(\mathsf{study}) = 0.9 \times 0.8 = 0.72$$

$$\mathbb{P}(\mathsf{pass}, \neg \mathsf{study}) = \mathbb{P}(\mathsf{pass} \mid \neg \mathsf{study}) \mathbb{P}(\neg \mathsf{study}) = 0.2 \times 0.2 = 0.04 \mathbb{I}$$
 and

$$\begin{split} \mathbb{P}(\mathsf{study} \mid \mathsf{pass}) &= \frac{\mathbb{P}(\mathsf{pass}, \mathsf{study})}{\mathbb{P}(\mathsf{pass})} \\ &= \frac{\mathbb{P}(\mathsf{pass}, \mathsf{study})}{\mathbb{P}(\mathsf{pass}, \mathsf{study}) + \mathbb{P}(\mathsf{pass}, \neg \mathsf{study})} = \frac{0.72}{0.72 + 0.04} \approx 0.947 \end{split}$$

Independence

Random variables X and Y are said to be independent if

$$\mathbb{P}(X,Y) = \mathbb{P}(X)\,\mathbb{P}(Y)$$

• Because $\mathbb{P}(X,Y) = \mathbb{P}(X|Y)\mathbb{P}(Y)$ and $\mathbb{P}(X,Y) = \mathbb{P}(Y|X)\mathbb{P}(X)$ independence implies

$$\mathbb{P}(X|Y) = \mathbb{P}(X) \qquad \qquad \mathbb{P}(Y|X) = \mathbb{P}(Y)$$

- Probabilistic independence implies a mathematical co-incident not necessarily causal independence
- However causal independence implies probabilistic independence
- If $X \in \{0,1\}$ represents the outcome of tossing a coin and $Y \in \{1,2,3,4,5,6\}$ the outcome of rolling a dice then X and Y are independent

Well Conducted Experiments

- In well conducted experiments we expect the results we obtain are independent
- Let $\mathcal{D} = (X_1, X_2, ..., X_m)$ represents possible outcomes from a set of m well conducted experiments then

$$\mathbb{P}(\mathcal{D}) = \prod_{i=1}^{m} \mathbb{P}(X_i)$$

• Denoting a possible sentence I might say by $S = (W_1, W_2, ..., W_m)$ then

$$\mathbb{P}(\mathcal{S}) \neq \prod_{i=1}^{m} \mathbb{P}(W_i)$$

otherwise it's time I retired

Conditional Independence

- Let K(d) be a random variable measuring the amount you know about ML on day d of your revision!
- From you revision schedule you can write down your belief

$$\mathbb{P}(K(d) \mid K(d-1), K(d-2), ...K(1))$$

But a very reasonable model is

$$\mathbb{P}(K(d) \mid K(d-1), K(d-2), \dots K(1)) = \mathbb{P}(K(d) \mid K(d-1))$$

what you are going to know today will just depend on what you knew yesterday.

• We say that K(d) is **conditionally independent** on K(d-2), K(d-3), etc. given K(d-1)

Conclusion

- To work with probabilities you need to know
 - How to go back and forward between joint probabilities and conditional probabilities
 - ★ How to marginalise out variables
- You need to understand that for continuous outcomes, it makes sense to talk about the probability density
- You need to know that expectations are linear operators and the expectation of a constant is the constant.
- You need to understand independence