ECE ING4 MACHINE LEARNING

Jeremy Cohen

Linear Regression

Types of Machine Learning

CLASSIFICATION

- Supervised
- Output is a discrete number (0,1,2, ...), (SPAM/NOT SPAM),

REGRESSION

- Supervised
- Output is a continuous number

CLUSTERING

- Unsupervised
- Outputs are clusters

•••

Regression

THE GOAL IS TO DETERMINE THE LINE OR CURVE THAT BEST FITS THE DATA

Regression

THE GOAL IS TO DETERMINE THE LINE OR CURVE THAT BEST FITS THE DATA

Regression in Practice

Outliers

OUTLIERS ARE TO BE REMOVED WHEN TRAINING

Classification vs Regression

Regression

What is the temperature going to be tomorrow?

Classification

Will it be Cold or Hot tomorrow?

Machine Learning Process

PREDICTION

Training Linear Regression

Testing Linear Regression

I want to buy a house of 100 square meters. How much will it cost?

915 k€

3 Datasets

Training Set

~70% of the dataset

Used to train the model

Validation Set

Test Set

~20% of the dataset

Used to **test** the model and **generalize better to new data**

~10% of the dataset

Used **only once** when both accuracies are good and ready for real-world

Train Test Process

Model

House characteristics (size, neighborhood, ...): Feature X House Price: Label Y

$h: X \rightarrow Y$

Hypothesis or function that takes as input the house's characteristics to estimate its price.

Simple Linear Regression

The Best Fit

Each line has different parameters $\theta = (\theta_0, \theta_1)$ different errors

Sum of Squared Errors (SSE)

$$SSE (\theta_0, \theta_1) = \\ (y^{(1)} - (\theta_0 + \theta_1 * x^{(1)}))^2 + \\ (y^{(2)} - (\theta_0 + \theta_1 * x^{(2)}))^2 + \\ \dots + \\ (y^{(m)} - (\theta_0 + \theta_1 * x^{(m)}))^2$$

The Best Fit

$$SSE (\theta_0 = 1, \theta_1 = 2) = 10$$

The green line has the lowest SSE and the best fit!

Mean Squared Error

The Best Fit

The best hypothesis $h_{\theta}(x)$ is the one that minimizes the cost function

1/m - means we determine the average

1/2m - simplifies the maths

The Best Fit

The learning algorithm should find $\theta^* = (\theta_0^*, \theta_1^*)$ that minimizes this cost

Several algorithms:

- Gradient descent
- Ordinary least square (OLS): Used in the linear regression in python (sklearn)

Notation - Simple Linear Regression

X Size (m²)	Y Price (1000\$)	
20	300	
37	540	
88	986	

m: Number of examples

$$X(2) = [37]$$

x(i): Input of the i-th training example

Parameter influence

Hypothesis : $\theta_0 = 0$

 $h_{\theta}(x) = \theta_1 x$

Parameter influence

$$J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}.$$

$$h_{\theta} x \text{ for } \theta_{1} = 1$$

$$h_{\theta} x \text{ for } \theta_{1} = 0.5$$

$$0 \qquad h_{\theta} x \text{ for } \theta_{1} = 0$$

$$0 \qquad 1 \qquad 2 \qquad 3$$

$$J(1) = 1/2m (0^{2}+0^{2}+0^{2}) = 0$$

$$J(0.5) = 1/2m ((0.5-1)^{2}+(1-2)^{2}+(1.5-3)^{2}) \sim 0.6$$

$$J(0) = 14/6 \sim 2.3$$

We want to minimize $J(\theta)$.

Parameter influence

- Start with random Θ_0 and Θ_1
- Change θ_0 and θ_1 to reduce $J(\theta_0, \theta_1)$ until we find a minimum

For different initializations, we might have different results

Local-Global minima

Repeat until convergence:

gradient / rate of change / slope / derivative.

exemple : $f'(x^2) = 2x$ gradient for x = 2 is 4

$$\theta_1 := \theta_1 - \alpha \frac{\partial}{\partial \theta_1} J(\theta_1)$$

In this case, the derivative (gradient) $\partial J(\theta) / \partial \theta < 0$. $\theta^A - \alpha^* \partial J(\theta) / \partial \theta > \theta^A$ θ^A is moving to the right θ is increasing

In this case, the derivative (gradient) $\partial J(\theta) / \partial \theta > 0$. $\theta^B - \alpha^* \partial J(\theta) / \partial \theta < \theta^B$ θ^B is moving to the left θ is decreasing

Learning Rate

GOOD LEARNING RATE

- Not too low
- Allows the network to find the right parameters

BAD LEARNING RATE

- Too high
- Learns fast but quickly overshoots and ends up increasing the error

Gradient Descent Recap

Gradient Descent

$$\text{(n=1):}$$
 Repeat $\left\{ \theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) \right.$
$$\frac{\partial}{\partial \theta_0} J(\theta)$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$
 (simultaneously update θ_0, θ_1) $\left. \right\}$

Notation - Multivariate Linear Regression

n=4

Size X ₁	Number of Bedrooms _{X2}	Floor X ₃	Age (years)	Price (1000\$)	
20	0	3	30	300	
37	1	0	45	540	
88	3	4	60	986	m =

m: Number of examples

n: Number of features

x(i): Input (features) of the i-th training example

x j(i): Value of feature j for the i-th training example

$$X(2) = \begin{cases} 37 \\ 1 \\ 0 \\ 45 \end{cases}$$

$$X_{3}(2) = 0$$

In simple linear regression, $h_{\theta}(x) = \theta_0 + \theta_1 x$

In multiple linear regression, $h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$

For convenience of notation, define $x_0 = 1$ $(x_0^{(i)} = 1)$

$$h_{\theta}(x) = \theta_0 x_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

Rewrite in matrix notation

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_n x_n$$

$$h_{\theta}(x) = \sum_{i=1}^{n} \theta_{i} x_{i} = \theta^{T} x$$

For correct multiplication, we need Θ^T

$$\Theta^{\mathsf{T}} = \begin{bmatrix} \Theta_0 & \Theta_1 & \dots & \Theta n \end{bmatrix}$$

$$X = \begin{pmatrix} X_0 \\ X_1 \\ \dots \\ X_n \end{pmatrix} =>1$$

Cost function:

$$J(\theta_0, \theta_1, \dots, \theta_n) = \frac{1}{2m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)})^2$$

Simple Linear Regression

Repeat $\{$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)})$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x^{(i)}$$

(simultaneously update $heta_0, heta_1$) $\}$

Multivariate Linear Regression

$$\begin{aligned} \text{Repeat } \big\{ \\ \theta_j := \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)} \\ \big\} & \qquad \qquad \text{(simultaneously update } \theta_j \text{ for } \\ j = 0, \dots, n) \end{aligned}$$

$$\theta_0 := \theta_0 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_0^{(i)}$$

$$\theta_1 := \theta_1 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_1^{(i)}$$

$$\theta_2 := \theta_2 - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_2^{(i)}$$

Polynomial Regression

Polynomial Regression

Polynomial regression is a particular case of multiple regression where the features are powers of one single feature x

Polynomial Regression in Practice

Performance

Performance

Thank

You

jeremycohen.podia.com

https://www.linkedin.com/in/jeremycohen2626/