Analysis, Prediction, Recommendation For Churn Rate of a telecom

Raymond Kwok 23 June 2019

Flow

- Get to know the data
- Be creative!
- Make a choice on how to model
- See what features matter more and how
- Find a way to lower churn rate

Hidden column explanation Let's educatedly guess!

Initially...

uid	Service_05			
gender	Service_06			
Factor_00	Service_07			
Factor_01	Service_08			
Factor_02	Service_09			
Factor_03	C_01			
Service_01	C_02			
Service_02	C_03			
Service_03	MonthlyCharges			
Service_04 Charges				
is_churn				

Guessed ...

	uid	InternetService_addon2				
	gender	InternetService_addon3				
	Factor_FiberGroup	InternetService_addon4				
	Factor_loyalGroup	InternetService_addon5				
	Factor_loyalGroupForPhoneSe	InternetService_addon6				
1	LifetimeInMonth	SubscriptionPeriod				
/	PhoneService	ExpensivePaymentChoice				
/	PhoneService_addon	PaymentChannel				
	InternetService	MonthlyCharges				
	InternetService_addon1	Charges				
	is churn					

Why Factor_03 → LifetimeInMonths?

 This product is distributed around 1

 Having a unit of month makes sense

So it's a time!

 Hinted by high correlation between Factor_03 and Charges

Why Phone / Internet Services?

- Well, it's a telecom!
- Guess from feature values

P h	one				Interne	et			E	3illir	na
Service_01	Service_02	Service_03	Service_04	Service_05	service_06	Service_07	Service_08	Service_09	C_01	C_02	C_03
No	No phone service	DSL	Yes	No	Yes	Yes	Yes	No	Two year	Yes	Bank transfer (automatic)
Yes	No	No	No internet service	Two year	No	Mailed check					
Yes	No	DSL	Yes	Yes	Yes	No	Yes	Yes	Two year	No	Mailed check
Yes	Yes	No	No internet service	Two year	No	Mailed check					
No	No phone service	DSL	Yes	Yes	Yes	Yes	Yes	No	Two year	No	Credit card (automatic)

Seems they are related this way

How about being *creative*?

- Lack of client behavior and satisfactory level
- Squeeze something out from the existing data!

Let the churn population speaks 1/4: churn probability

- Naive arguments:
 - Clients are very similar
 - Clients leave at similar rates as those who have left
- Assign a churn probability to all clients

Let the churn population speaks 2/4: accumulative churn probability

- Accumulate churn probability
- The longer a client stays, the higher the accumulative churn, the more possible it is to leave / stay
- Non-linearize LifetimeInMonth

$$AccumChurnProb(x) = \frac{\int_0^x ChurnDistribution(x)dx}{\int_0^\infty ChurnDistribution(x)dx}$$

Let the churn population speaks 3/4: relative churn probability

churn

1.0

0.8

retention data and fit - 2exp + 1line

stay months

exp1 halflife=0.5592

exp2 halflife=8.8003

line decay=0.0045

- Retention curve
- 3 processes
 - Exponential (half-life ~1mth)
 - Exponential (half-life ~9mth)
 - Linear (drop 0.45%/mth)

Let the churn population speaks 4/4: expected lifetime

- Un-supervisedly group churn clients and give each group an expected lifetime as median value
- Assign all clients to the groups and get their remaining lifetime

RemainLifeTime = ExpectedLifeTime - LifeTime

Change of client's pay

$$AvgMonthlyCharge = \frac{Charges}{LifetimeInMonth}$$

$$PayTrend = MonthlyCharge - AvgMonthlyCharge$$

Positive > Pay more recently than in history > feel satisfied?

Relatively higher churn at no change Partly due to clients who stayed for only short period of time 1 month

Models performance

- 4:1 train:test shuffled split
- Standard-Scaling learnt from train and apply to both
- Stratified, 5-Fold CV Grid-Search for best parameters
- LGB_goss 80.24% accuracy and is selected as the model!

Our data is ready!

- From 7043 rows to 7032 rows
- From 20 features to 32 features
 - Adding new features
 - Label one-hot encoding
 - Removed uid
- And not miss the label 'is_churn'

Scary giant correlation matrix

Models

Method	characteristic	feature importance
logistic regression	linear in feature space	by coefficients
GBDT (lightgbm)	non-linear in feature space	by feature frequency
SVM	linear in high dim space	by permutation test
NN	non-linear in high dim space	by permutation test

XGBoost

- gbtree (6.1min / 270fits)

<u>LightGBM – faster by grouping up cols and rows</u>

- gbdt (1.9min / 270fits)
- goss down-sample low loss rows (1.4min / 270fits)
- random forest (7.5sec / 270fits)

We have 7 models in total for comparison!

Models performance

- 4:1 train:test shuffled split
- Standard-Scaling learnt from train and apply to both
- Stratified, 5-Fold CV Grid-Search for best parameters
- LGB_goss 80.24% accuracy and is selected as the model!

Feature importance

Feature importance X Improve Churn rate

- Model predicts churn probability
- Important features have larger effect to making the probability large or small
- We want to know which feature to tune that will reduce the probability
- We can come up with real-world action plans that can effectively tune the feature values.

Let's approach the problem in 3 steps 1/3: User segmentation

- Recall: three processes
 - Group 1: 1-month old clients
 - Group 2: 2-to-9-month old
 - Group 3: 10-or-more-month
- Model predicts churn probability
 - Group A: 0.00 >= p > 0.25 : Safe
 - Group B: 0.25 >= p > 0.50: Low
 - Group C: 0.50 >= p > 0.75 : High
 - Group D: 0.75 >= p >= 1.00 : Danger
- Totaling $3 \times 4 = 12$ groups

How to reduce Churn Rate? 2/3: Compare averages of each feature

How to reduce Churn Rate? 3/3: Zoom-in each feature

 Hold other features constant, change the value of one feature for all clients

How to reduce Churn Rate? 3/3: Zoom-in each feature

Action: Cheaper long-term plan, particularly avoid Internet service addon 5 and 6 (unless reason for boosting churn rate is found, fixed, verified)

How to reduce Churn Rate? 3/3: Zoom-in each feature

Action: Cheaper long-term plan, particularly avoid Internet service addon 5 and 6 (unless reason for boosting churn rate is found and fixed), however, the company could consider selling more Internet service addon 1,4 and PhoneService to maintain or increase the revenue, as their users stay longer.

=> Can proceed to some AB tests

Summary

- Churn chance of 7032 clients with lifetime from 0-72 months is modeled on their 32 features
- A lightGBM gradient-boosted decision tree model is determined to be the best with accuracy of 80.24%
- Model's response to the change of features' values is examined and used as a handle to suggest an action plan to decrease the churn rate
- Model's dependence on the features is expressed as feature importance