Aplicații ale Schemelor de Partajare a Secretelor

Dragoș Alin Rotaru

Universitatea din București

9 februarie, 2015

Motivație: scheme de partajare

Motivație: scheme de partajare

Motivație: scheme de partajare

Motivație: sisteme de stocare

Motivație: sisteme de stocare

Motivație: sisteme de stocare

Schema Shamir - intuiție

• k puncte distincte în plan definesc o curbă polinomială unică având grad k-1

Schema Shamir - intuiție

- k puncte distincte în plan definesc o curbă polinomială unică având grad k-1
- Mai puțin de k puncte nu pot reconstitui polinomul original

Schema Shamir - intuiție

- k puncte distincte în plan definesc o curbă polinomială unică având grad k-1
- Mai puțin de k puncte nu pot reconstitui polinomul original

"3 polynomials of degree 2 through 2 points" by

ullet Secret ${\cal S}$

- ullet Secret ${\cal S}$
- Schema (k, n) majoritară

- ullet Secret ${\cal S}$
- Schema (k, n) majoritară
- ullet Oricare k participanți din cei n pot reconstitui ${\mathcal S}$

- ullet Secret ${\cal S}$
- Schema (k, n) majoritară
- ullet Oricare k participanți din cei n pot reconstitui ${\cal S}$
- ullet Mai puțin de k participanți nu obțin nici o informație despre ${\mathcal S}$

- ullet Secret ${\cal S}$
- Schema (k, n) majoritară
- ullet Oricare k participanți din cei n pot reconstitui ${\cal S}$
- ullet Mai puțin de k participanți nu obțin nici o informație despre ${\mathcal S}$
- Se alege un polinom f de grad k-1 având coeficienți aleatori, termenul liber fiind $\mathcal S$

- ullet Secret ${\cal S}$
- Schema (k, n) majoritară
- ullet Oricare k participanți din cei n pot reconstitui ${\cal S}$
- ullet Mai puțin de k participanți nu obțin nici o informație despre ${\mathcal S}$
- Se alege un polinom f de grad k-1 având coeficienți aleatori, termenul liber fiind ${\cal S}$
- Participantul P_i primeste f(i), $i = \{1, 2, ...n\}$

- ullet Secret ${\cal S}$
- Schema (k, n) majoritară
- ullet Oricare k participanți din cei n pot reconstitui ${\cal S}$
- ullet Mai puțin de k participanți nu obțin nici o informație despre ${\mathcal S}$
- Se alege un polinom f de grad k-1 având coeficienți aleatori, termenul liber fiind $\mathcal S$
- Participantul P_i primeste f(i), $i = \{1, 2, ...n\}$
- După reconstituire secretul S se află în f(0).

Exemplu

Se consideră 8 participanți, unde oricare 3 pot reconstitui secretul S. Fie polinomul $f(x) = a_3x^3 + a_2x^2 + a_1x + S$, $a_i \leftarrow^R Z_q$, a_i aleși în mod aleator din corpul Z_q .

• Schema majoritară (n, n).

- Schema majoritară (n, n).
- n-1 participanți primesc numere aleatoare: $s_1, s_2, \dots s_{n-1}$.

- Schema majoritară (n, n).
- n-1 participanți primesc numere aleatoare: $s_1, s_2, \ldots s_{n-1}$.
- Cel de-al *n*-lea participant primește $S \oplus s_1 \oplus s_2 \oplus \cdots \oplus s_{n-1}$.

- Schema majoritară (n, n).
- n-1 participanți primesc numere aleatoare: $s_1, s_2, \dots s_{n-1}$.
- Cel de-al *n*-lea participant primește $S \oplus s_1 \oplus s_2 \oplus \cdots \oplus s_{n-1}$.
- Reconstrucția: $S = s_1 \oplus s_2 \oplus \cdots \oplus s_n$.

Schema Ito, Saito și Nishizeki

ullet Schema Shamir e insuficientă pentru a realiza partajarea lui ${\cal S}$ unui grup oarecare de participanți.

Schema Ito, Saito și Nishizeki

• Schema Shamir e insuficientă pentru a realiza partajarea lui ${\cal S}$ unui grup oarecare de participanți.

 \mathcal{S} poate fi reconstruit doar din $\{P_2, P_3\}$ sau $\{P_2, P_4\}$

 RAID (Redundant Array of Independent Disks) combină 2 concepte ortgonale:

- RAID (Redundant Array of Independent Disks) combină 2 concepte ortgonale:
 - Data striping

- RAID (Redundant Array of Independent Disks) combină 2 concepte ortgonale:
 - Data striping
 - Redundanţa datelor

- RAID (Redundant Array of Independent Disks) combină 2 concepte ortgonale:
 - Data striping
 - Redundanţa datelor
- Datele sunt distribuite în moduri diferite denumite niveluri RAID.

Nivelul 0 Raid - Data Striping

Nivelul 1 Raid - Redundanța datelor

Sisteme securizate de stocare de lunga durata

• Securitatea este asigurată cu ajutorul schemelor de partajare.

Sisteme securizate de stocare de lunga durata

- Securitatea este asigurată cu ajutorul schemelor de partajare.
- Disponibilitatea cu nivele RAID.

PASIS

 Informația este partajată cu ajutorul agenților PASIS folosind Schema Shamir.

PASIS

- Informația este partajată cu ajutorul agenților PASIS folosind Schema Shamir.
- Componentele (share-uri) rezultate in urma partajării sunt distribuite apoi nodurilor existente în rețea.

PASIS

• Informația este partajată cu ajutorul unei aplicații la nivelul clientului folosind o versiune modificată a schemei Shamir.

- Informația este partajată cu ajutorul unei aplicații la nivelul clientului folosind o versiune modificată a schemei Shamir.
- Coeficienții polinomului f nu mai sunt aleși aleator ci sunt luați direct din fisierul partajat in maniera secventială.

- Informația este partajată cu ajutorul unei aplicații la nivelul clientului folosind o versiune modificată a schemei Shamir.
- Coeficienții polinomului f nu mai sunt aleși aleator ci sunt luați direct din fisierul partajat in maniera secventială.
- Nodul cu indexul i primește valoarea polinomului f(i).

- Informația este partajată cu ajutorul unei aplicații la nivelul clientului folosind o versiune modificată a schemei Shamir.
- Coeficienții polinomului f nu mai sunt aleși aleator ci sunt luați direct din fisierul partajat in maniera secventială.
- Nodul cu indexul i primește valoarea polinomului f(i).

Exemplu

Fie un fișier *File* avand octetii: 10 15 in aceasta ordine. Polinomul după care se realizeaza partajarea este f(x) = 10 + 15x. Nodul i primeste valoarea f(i)

Alouneh et al.: partajare + reconstrucție

Alouneh et al. - atacuri

Construirea polinomului este determinista! \to Componentele vor fi aceleași pentru fișiere identice partajate.

Alouneh et al. - determinarea tipului de fișier partajat

Prin obținerea informatiilor dintr-un singur nod, se poate constata tipul de fisier partajat inițial:

Semnături de fișiere

Tip fişier	Primii 4 octeți							
doc	D0	CF	11	E0				
gif	47	49	46	38				
pdf	25	50	44	46				
png	89	50	4E	47				
rar	52	61	72	21				
wav	52	49	46	46				
zip	50	4B	03	04				

Alouneh et al. - determinarea tipului de fișier partajat

Prin obținerea informatiilor dintr-un singur nod, se poate constata tipul de fisier partajat inițial:

Indicele maxim i a.î. componentele primului bloc sa fie distincte(k = 3)

Tip Fişier	doc	gif	pdf	png	rar	wav	zip
doc	-	63	-1	-1	-1	-1	-1
gif	63	-	-1	-1	-1	-1	-1
pdf	-1	-1	-	164	-1	119	-1
png	-1	-1	164	-	143	122	129
rar	-1	-1	-1	143	-	143	-1
wav	-1	-1	119	122	143	-	172
zip	-1	-1	-1	129	-1	172	-

CV Europass BG

CV Europass DK

Europass Mobility RO

Partajarea celor componentele af

rul obține

Partajarea celor componentele af

orul obține

19 / 19