COMPUTER ORGANIZATION (IS F242)

LECT 13: FLOATING POINT

Arithmetic Operations

- Addition & Subtraction
 - Check for Zeros
 - Align the Mantissas
 - Add or Subtract the Mantissas
 - Normalize the result
 - Example
 - $X = 0.3 * 10^2 Y = 0.2 * 10^3$
 - $X = (0.1 * 2^{\circ})_2 Y = (-0.0111 * 2^{\circ})_2$
 - \blacksquare 12.5 x 10¹ + 346 x 10⁻³

FP Adder Hardware

FP Addition & Subtraction Flowchart

Arithmetic Operations

- Multiplication & Division
 - Check for Zero
 - Add or Subtract the exponents
 - Multiply or Divide the Mantissas (significands) (watch sign)
 - Normalize the result
 - Round
 - All intermediate results should be in double length storage
 - Example
 - $X = 0.3 * 10^2$
 - $Y = 0.2 * 10^3$

Biased Exponent

If
$$X = 1.110 * 2^{10}$$

 $Y = 0.001 * 2^{-5}$

- Bias = 127
- New Exponent?
- Adjust the exponent
- What about Division?

Floating Point Multiplication

Floating Point Division

Guard Bits

Guard Bits

Additional bits used to pad out the right end of the significand

Example:

- Consider:
- Equalize Exponents and Subtract
- Normalize

Guard Bits

- Now add few bits extra to Mantissa

 - \neg Y = 1.1111111111111111111111111000 * 2⁰
- Equalize Exponents and Subtract
- Normalize

Precision Considerations[2]

- Rounding
 - Disposal of extra bits
 - □ How???
 - If extra bit amount to more than one half of the last representable bit position then rounding up to the next representable number.
 - If extra bit amount to less than one half of the last representable bit position then rounding down to the next representable number.

Rounding IEEE Standards

- Rounding to nearest
 - Result is rounded to the nearest representable number
 - If rounding bits are exactly in the midway
 - Round to the nearest EVEN (IEEE standard)
- Rounding towards Zero
 - Result is rounded towards zero (Simple truncation)
- Rounding towards +Infinity
 - Result is rounded up towards plus infinity
- Rounding towards —Infinity
 - Result is rounded down towards negative infinity

LC-3 SINGLE CYCLE DESIGN

Instruction

- The instruction is the fundamental unit of work.
- Control Unit interprets instruction
- Specifies two things:
 - <u>opcode</u>: Operation to be performed (what the instruction does)
 - e.g. ADD, SUB, LOAD, STORE
 - <u>operands</u>: Data/locations to be used for operation
 - e.g ADD dest scr1 scr2
- An instruction is encoded as a <u>sequence of bits</u>.
- Often, but not always, instructions have a fixed length, such as 16 or 32 bits.
- Note:
- A computer's instructions and their formats is known as its Instruction Set Architecture (ISA).