Algebra

van der Waerden 2022-7-21

1 Numbers and Sets

1.1 Sets

Definition 1.1 (Set(Class)). .

Symbol 1.1.1. \in , \subseteq , \subset , $[A, B](\cap)$, \land (\cup)

1.2 Mappings. Cardinality

Definition 1.2 (Function). $\forall a \in \mathcal{M}, \exists \text{only one} \phi(a) \in \mathcal{N}.$

image: $\{\phi(a): a \in \mathcal{M}\}$

preimage: $\{a : \exists \phi(a) \in \text{image}(\phi)\}$

surjective(onto): $\forall y \in \text{image}(\phi), \exists a \to \phi(a) = y$

injective(one-one): $\phi(a) = \phi(b) \rightarrow a = b$

inverse: $\phi^{-1}\phi = I_{\mathcal{M}}; \phi\phi^{-1} = I_{\mathcal{N}}$

Theorem 1.2.1 (Bernstein).

$$|\mathcal{M}| = |\mathcal{N}| := \exists \text{bijective } \phi : \mathcal{M} \to \mathcal{N}$$

We say \mathcal{M} and \mathcal{N} are equipotent or have same cardinality.

1.3 The Number Sequence

Axiom 1.3.1 (Peano).

1 is a natural number.

 \forall natural number a has a definite successor $a^+ \in N$

 $\forall a \in N, a^+ \neq 1$

 $\forall a,b \in N, a^+ = b^+ \rightarrow a = b$

$$X \subseteq N.1 \in X, \forall a \in X, a^+ \in X \to X = N$$

The five axiom is called the principle of mathematical induction.

Sum of two numbers.

Definition 1.3 (Addition +).

$$+(x,y) := \begin{cases} \forall x, x+1 = x^+ \\ \forall x, y, x+y^+ = (x+y)^+ \end{cases}$$

Proposition 1.3.1 (Addition).

Associative : (a + b) + c = a + (b + c)

Commutative : a + b = b + a

Cancellative : $a + b = a + c \rightarrow b = c$

Definition 1.4 (Product \cdot).

$$\cdot (x,y) := \begin{cases} \forall x, x \cdot 1 = x \\ \forall x, y, x \cdot y^+ = x \cdot y + x \end{cases}$$

Proposition 1.3.2 (Product).

Associative :
$$(a \cdot b) \cdot c = a \cdot (b \cdot c)$$

Commutative :
$$a \cdot b = b \cdot a$$

Cancellative :
$$a \cdot b = a \cdot c \rightarrow b = c$$

Proposition 1.3.3 (Addition and Product, Distributive).

$$a \cdot (b+c) = a \cdot b + a \cdot c$$

Definition 1.5 (Order, Greater, Less). $a > b := \exists u \in N, a = b + u$.

Proposition 1.3.4 (Order).

 $\forall a, b, \text{ only one relation } a < b, a = b, a > b \text{ hold.}$

$$a < b \land b < c \rightarrow a < c$$

$$a < b \rightarrow a + c < b + c$$

$$a < b \rightarrow ac < bc$$

Theorem 1.3.1. Every nonempty set of natural numbers contains a least number.

- 1.4 Finite and Countable (Denumerable) Sets
- 1.5 Partitions