04 vector autoregressive model

September 29, 2021

1 How to use the VAR model for macro fundamentals forecasts

The vector autoregressive VAR(p) model extends the AR(p) model to k series by creating a system of k equations where each contains p lagged values of all k series. The coefficients on the own lags provide information about the dynamics of the series itself, whereas the cross-variable coefficients offer some insight into the interactions across the series.

1.1 Imports and Settings

color_codes=True)

```
[1]: import warnings
     warnings.filterwarnings('ignore')
[2]: %matplotlib inline
     import pandas as pd
     import pandas_datareader.data as web
     import numpy as np
     import matplotlib.pyplot as plt
     import matplotlib.transforms as mtransforms
     import seaborn as sns
     from statsmodels.tsa.api import VARMAX
     from statsmodels.tsa.stattools import acf, q_stat, adfuller
     from statsmodels.graphics.tsaplots import plot_acf, plot_pacf
     from sklearn.preprocessing import minmax_scale
     from scipy.stats import probplot, moment
     from sklearn.metrics import mean_absolute_error
[3]: sns.set(style='whitegrid',
             context='notebook',
```

1.2 Helper Functions

1.2.1 Correlogram Plot

```
[4]: def plot_correlogram(x, lags=None, title=None):
         lags = min(10, int(len(x)/5)) if lags is None else lags
         fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(14, 8))
         x.plot(ax=axes[0][0], title='Time Series')
         x.rolling(21).mean().plot(ax=axes[0][0], c='k', lw=1)
         q_p = np.max(q_stat(acf(x, nlags=lags), len(x))[1])
         stats = f'Q-Stat: {np.max(q_p):>8.2f}\nADF: {adfuller(x)[1]:>11.2f}'
         axes[0][0].text(x=.02, y=.85, s=stats, transform=axes[0][0].transAxes)
         probplot(x, plot=axes[0][1])
         mean, var, skew, kurtosis = moment(x, moment=[1, 2, 3, 4])
         s = f'Mean: \{mean:>12.2f\}\nSD: \{np.sqrt(var):>16.2f\}\nSkew: \{skew:12.
      →2f}\nKurtosis:{kurtosis:9.2f}'
         axes[0][1].text(x=.02, y=.75, s=s, transform=axes[0][1].transAxes)
         plot_acf(x=x, lags=lags, zero=False, ax=axes[1][0])
         plot_pacf(x, lags=lags, zero=False, ax=axes[1][1])
         axes[1][0].set xlabel('Lag')
         axes[1][1].set_xlabel('Lag')
         fig.suptitle(title, fontsize=14)
         sns.despine()
         fig.tight layout()
         fig.subplots_adjust(top=.9)
```

1.2.2 Unit Root Test

```
[5]: def test_unit_root(df):
    return df.apply(lambda x: f'{pd.Series(adfuller(x)).iloc[1]:.2%}').
    →to_frame('p-value')
```

1.3 Load Data

We will extend the univariate example of a single time series of monthly data on industrial production and add a monthly time series on consumer sentiment, both provided by the Federal Reserve's data service. We will use the familiar pandas-datareader library to retrieve data from 1970 through 2017:

```
[6]: sent = 'UMCSENT'
df = web.DataReader(['UMCSENT', 'IPGMFN'], 'fred', '1970', '2019-12').dropna()
df.columns = ['sentiment', 'ip']
```

```
[7]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 528 entries, 1972-02-01 to 2019-12-01
Data columns (total 2 columns):
```

Column Non-Null Count Dtype
--- ----0 sentiment 528 non-null float64
1 ip 528 non-null float64

dtypes: float64(2)
memory usage: 12.4 KB

```
[8]: df.plot(subplots=True, figsize=(14,8), rot=0)
sns.despine()
plt.tight_layout();
```



```
[9]: plot_correlogram(df.sentiment, lags=24)
```


1.4 Stationarity Transform

Log-transforming the industrial production series and seasonal differencing using lag 12 of both series yields stationary results:

1.5 Inspect Correlograms

[12]: plot_correlogram(df_transformed.sentiment, lags=24)

[13]: plot_correlogram(df_transformed.ip, lags=24)

1.6 VAR Model

To limit the size of the output, we will just estimate a VAR(1) model using the statsmodels VARMAX implementation (which allows for optional exogenous variables) with a constant trend through 2017. The output contains the coefficients for both time series equations.

/home/stefan/.pyenv/versions/miniconda3-latest/envs/ml4t/lib/python3.8/site-packages/statsmodels/tsa/statespace/varmax.py:161: EstimationWarning: Estimation

of VARMA(p,q) models is not generically robust, due especially to identification issues.

warn('Estimation of VARMA(p,q) models is not generically robust,' /home/stefan/.pyenv/versions/miniconda3-latest/envs/ml4t/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:581: ValueWarning: A date index has been provided, but it has no associated frequency information and so will be ignored when e.g. forecasting.

warnings.warn('A date index has been provided, but it has no'

[18]: print(model.summary())

0.020

		Statespac	e Model	. Result			
Dep. Variable:	['ip', 's	sentiment'] No. Observations:					492
Model:		VARMA(1,1) Log	Likeli	ihood	1560	. 335
	4	- intercep	t AIC	;		-3094	.669
Date:	Thu, 1	15 Apr 202	1 BIC	;		-3040	.089
Time:		15:41:5	-3073	. 237			
Sample:			0				
		- 49	2				
Covariance Type:		op.	g 				
===							
Ljung-Box (L1) (Q 16.67):	0.15,	0.29	Jarque	e-Bera (JB):	151.67	7,
<pre>Prob(Q):</pre>		0.70,	0.59	Prob(JB):	0.0	00,
0.00							
Heteroskedasticit	y (H):	0.46,	1.03	Skew:		0.1	19,
0.21							
<pre>Prob(H) (two-sided):</pre>		0.00,	, 0.86 Kurtosis:			5.69,	
3.80							
		Results	for eq	uation	ip		
===							
	coef	std err		z	P> z	[0.025	
0.975]						• • • •	
intercept	-0.0115	0.006	-1	.794	0.073	-0.024	
0.001							
L1.ip	0.9270	0.010	97	.414	0.000	0.908	
0.946							
L1.sentiment	0.0940	0.009	10	.478	0.000	0.076	
0.112							
L1.e(ip)	0.0065	0.036	C	.182	0.856	-0.064	
0.077							
L1.e(sentiment)	-0.0157	0.018	-C	.864	0.388	-0.051	

Results for equation sentiment

===	coef	std e		z	P> z	 [0).025				
0.975]											
intercept 0.157	0.1189	0.0	019 6	. 169	0.000	C	0.081				
L1.ip -0.034	-0.0996	0.0)34 -2	. 955	0.003	-0	0.166				
L1.sentiment 0.927	0.8825	0.0)23 39	. 025	0.000	C	0.838				
L1.e(ip) 0.532	0.2983	0.1	.20 2	. 496	0.013	C	0.064				
L1.e(sentiment)	0.0190	0.0	051 0	.373	0.709	-C	0.081				
0.119											
Error covariance matrix											
=======================================			=======	======	======	======					
=======							_				
0.075]		coef	std err		Z	P> z	[0.025				
0.975]											
sqrt.var.ip 0.032	0	.0302	0.001	41.98	80	0.000	0.029				
sqrt.cov.ip.sent	iment 0	.0004	0.003	0.1	11	0.912	-0.006				
sqrt.var.sentimer	nt O	.0809	0.002	36.29	92	0.000	0.076				
=======================================			:======	======	======	======	========				
=======											

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

1.6.1 Plot Diagnostics

statsmodels provides diagnostic plots to check whether the residuals meet the white noise assumptions, which are not exactly met in this simple case:

Industrial Production

```
[19]: model.plot_diagnostics(variable=0, figsize=(14,8), lags=24)
    plt.gcf().suptitle('Industrial Production - Diagnostics', fontsize=14)
    plt.tight_layout()
    plt.subplots_adjust(top=.93);
```


Sentiment

[20]: model.plot_diagnostics(variable=1, figsize=(14,8), lags=24)
plt.title('Sentiment - Diagnostics');

1.6.2 Impulse-Response Function

1.6.3 Generate Predictions

Out-of-sample predictions can be generated as follows:

```
[22]: n =len(df_transformed)
start = n-24
preds = model.predict(start=start+1, end=n)
```

/home/stefan/.pyenv/versions/miniconda3-latest/envs/ml4t/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:376: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`.

warnings.warn('No supported index is available.'

```
[23]: preds.index = df_transformed.index[start:]

fig, axes = plt.subplots(nrows=2, figsize=(14, 8), sharex=True)
```

```
df_transformed.ip.loc['2010':].plot(ax=axes[0], label='actual',_
→title='Industrial Production')
preds.ip.plot(label='predicted', ax=axes[0])
trans = mtransforms.blended_transform_factory(axes[0].transData, axes[0].
→transAxes)
axes[0].legend()
axes[0].fill_between(x=df_transformed.index[start+1:], y1=0, y2=1,__
→transform=trans, color='grey', alpha=.5)
trans = mtransforms.blended_transform_factory(axes[0].transData, axes[1].
→transAxes)
df_transformed.sentiment.loc['2010':].plot(ax=axes[1], label='actual',_
→title='Sentiment')
preds.sentiment.plot(label='predicted', ax=axes[1])
axes[1].fill_between(x=df_transformed.index[start+1:], y1=0, y2=1, __
→transform=trans, color='grey', alpha=.5)
axes[1].set_xlabel('')
sns.despine()
fig.tight_layout();
```


1.6.4 Out-of-sample forecasts

A visualization of actual and predicted values shows how the prediction lags the actual values and does not capture non-linear out-of-sample patterns well:

```
[24]: forecast = model.forecast(steps=24)
```

/home/stefan/.pyenv/versions/miniconda3-latest/envs/ml4t/lib/python3.8/site-packages/statsmodels/tsa/base/tsa_model.py:376: ValueWarning: No supported index is available. Prediction results will be given with an integer index beginning at `start`.

warnings.warn('No supported index is available.'


```
[26]: mean_absolute_error(forecast, df_transformed.iloc[492:])
```

[26]: 0.042856543992030566