

Artificial Intelligence

8.2.6.

Advanced Search (Ch 4) Part 2

Outline

- Local search algorithms
 - Hill-climbing search
 - Simulated annealing search
 - Local beam search
- Genetic algorithms

Local search algorithms

- In many optimization problems, the path to the goal is irrelevant; the goal state itself is the solution
- State space = set of "complete" configurations
 - Find configuration satisfying constraints, e.g., n-queens
- In such cases, we can use local search algorithms
 - keep a single "current" state, try to improve it

Example: Travelling Salesperson Problem

Start with any complete tour, perform pairwise exchanges

Variants of this approach get within 1% of optimal very quickly with thousands of cities

Example: n-queens

 Put n queens on an n × n board with no two queens on the same row, column, or diagonal

Hill-climbing search

"Like climbing Everest in thick fog with amnesia"

```
function HILL-CLIMBING (problem) returns a state that is a local maximum
   inputs: problem, a problem
   local variables: current, a node
                      neighbor, a node
   current \leftarrow \text{Make-Node}(\text{Initial-State}[problem])
   loop do
        neighbor \leftarrow a highest-valued successor of current
       if Value[neighbor] \leq Value[current] then return State[current]
        current \leftarrow neighbor
   end
```

Hill-climbing search

 Problem: depending on initial state, can get stuck in local maxima

Useful to consider state space landscape

Random-restart hill climbing overcomes local maxima—trivially complete

Random sideways moves Sescape from shoulders Sloop on flat maxima

Hill-climbing search: 8-queens

			_	_			
18	12	14	13	13	12	14	14
14	16	13	15	12	14	12	16
14	12	18	13	15	12	14	14
15	14	14	♛	13	16	13	16
₩			15	_			16
17	₩	16	18	15	♛	15	₩
18	14	♛	15	15	14	₩	16
14	14	13	17	12	14	12	18

- *h* = number of pairs of queens that are attacking each other, either directly or indirectly
- h = 17 for the above state

Hill-climbing search: 8-queens

• A local minimum with h = 1

Demos

- http://eightqueen.becher-sundstroem.de/
- http://cliplab.org/~jfran/ptojs/queens ui/queens ui.html

Simulated annealing search

 Idea: escape local maxima by allowing some "bad" moves but gradually decrease their frequency

```
function SIMULATED-ANNEALING (problem, schedule) returns a solution state
   inputs: problem, a problem
              schedule, a mapping from time to "temperature"
   local variables: current, a node
                         next, a node
                         T, a "temperature" controlling prob. of downward steps
   current \leftarrow \text{Make-Node}(\text{Initial-State}[problem])
   for t \leftarrow 1 to \infty do
        T \leftarrow schedule[t]
        if T = 0 then return current
        next \leftarrow a randomly selected successor of current
         \Delta E \leftarrow \text{Value}[next] - \text{Value}[current]
        if \Delta E > 0 then current \leftarrow next
        else current \leftarrow next only with probability e^{\Delta E/T}
```

Properties of simulated annealing search

At fixed "temperature" T, state occupation probability reaches Boltzman distribution

$$p(x) = \alpha e^{\frac{E(x)}{kT}}$$

T decreased slowly enough \Longrightarrow always reach best state x^* because $e^{\frac{E(x^*)}{kT}}/e^{\frac{E(x)}{kT}}=e^{\frac{E(x^*)-E(x)}{kT}}\gg 1$ for small T

Is this necessarily an interesting guarantee??

Devised by Metropolis et al., 1953, for physical process modelling

Widely used in VLSI layout, airline scheduling, etc.

Local Beam Search

- Keep track of k states rather than just one
- k is called the beam width
- Start with k randomly generated states
- At each iteration, all the successors of all k states are generated
- If any one is a goal state, stop; else select the *k* best successors from the complete list and repeat.

Genetic algorithms

- A successor state is generated by combining two parent states
- Start with k randomly generated states (population)
- A state is represented as a string over a finite alphabet (often a string of 0s and 1s)
- Evaluation function (fitness function). Higher values for better states.
- Produce the next generation of states by selection, crossover, and mutation.

Genetic algorithms contd.

- What is the fitness function?
- How is an individual represented?
 - Using a string over a finite alphabet.
 - Each element of the string is a gene.
- How are individuals selected?
 - Randomly, with probability of selection proportional to fitness
 - Usually, selection is done with replacement.
- How do individuals reproduce?
 - Through crossover and mutation

GA Pseudocode

- Choose initial population (usually random)
- Repeat (until terminated)
 - Evaluate each individual's fitness
 - Select pairs to mate
 - Replenish population (next-generation)
 - Apply crossover
 - Apply mutation
 - Check for termination criteria

Genetic Algorithms

GAs require states encoded as strings (GPs use programs)

Crossover helps iff substrings are meaningful components

 $GAs \neq evolution$: e.g., real genes encode replication machinery!

Genetic algorithms

= stochastic local beam search + generate successors from pairs of states

- Fitness function: number of non-attacking pairs of queens (min = 0, max = 8 × 7/2 = 28)
- 24/(24+23+20+11) = 31%
- 23/(24+23+20+11) = 29% etc.

Replacement

- Simple or generational GAs replace entire population
- Steady state or online GAs use different replacement schemes:
 - Replace worst
 - Replace best
 - Replace parent
 - Replace random
 - Replace most similar

Demo

```
% python ga.py 10 4 | more
Initial Population
individual bitarray('010011001000') fitness 4
individual bitarray('000001001000') fitness 2
individual bitarray('00100000000') fitness 2
individual bitarray('000010000011') fitness 4
individual bitarray('010011001001') fitness 3
individual bitarray('011010001001') fitness 2
individual bitarray('001001011010') fitness 3
individual bitarray('000010000011') fitness 4
individual bitarray('011010010001') fitness 3
individual bitarray('010000010000') fitness 4
average 3.1
average 3.7
average 3.9
average 4.2
parent x bitarray('001011000010')
parent y bitarray('011011000010')
crossover pt 2
child bitarray('001011000010')
individual bitarray('001011000010') fitness 6
2413
```

Car Design Simulation

- http://www.boxcar2d.com/
- http://www.boxcar2d.com/about.html

Crossover

Here are the associated chromosomes for the cars shown above:

Car	Angle0	Mag0	Anglel	Magl													WheelVertex0	AxleAngle0	WheelRadius0	WheelVertex1	AxleAnglel	WheelRadiusl
Α	0.769	2.614	0.584	0.319	0.278	2.883	0.666	1.13	0.305	2.752	0.376	2.507	0.814	1.963	0.392	2.872	3	5.284	0.434	7	2.625	1.191
В	0.535	2.682	0.732	2.256	0.422	0.149	0.676	0.578	0.709	2.774	0.592	2.623	0.519	1.531	0.924	0.404	-1	0.704	0.122	4	0.167	0.409
AB	0.535	2.682	0.584	0.319	0.278	2.883	0.666	1.13	0.305	2.752	0.376	2.507	0.814	1.963	0.392	2.872	3	5.284	0.434	7	2.625	0.409
BA	0.769	2.614	0.732	2.256	0.422	0.149	0.676	0.578	0.709	2.774	0.592	2.623	0.519	1.531	0.924	0.404	-1	0.704	0.122	4	0.167	1.191

Genetic Algorithms Links

- http://math.hws.edu/eck/jsdemo/jsGeneticAlgorithm.html
- http://www.theprojectspot.com/tutorial-post/simulatedannealing-algorithm-for-beginners/6
- http://www.theprojectspot.com/tutorial-post/applying-agenetic-algorithm-to-the-travelling-salesman-problem/5
- http://www.theprojectspot.com/tutorials/page/2
- http://genetic-algorithms-explained.appspot.com/

