Iniciação Científica

RELATÓRIO FINAL

Aprendizado de máquina e geometria hiperbólica complexa

Universidade de São Paulo Instituto de Ciências Matemáticas e Computação

> Aluno: Lucas Giraldi Almeida Coimbra Orientador: Carlos Henrique Grossi Ferreira

Junho de 2023 São Carlos

Conteúdo

1	Intr	rodução	2
2	Geometria hiperbólica		
	2.1	Variedades e métricas riemannianas	2
	2.2	Conexões e derivada covariante	9
	2.3	Jacobiana e teorema da função inversa	
	2.4	Geodésicas e transporte paralelo	
	2.5	Mapa exponencial e mapa logarítmico	
	2.6	Curvatura por via de tensores	
	2.7	Conceitos métricos	
3	Modelos para a geometria hiperbólica		
	3.1	Hiperboloide de Lorentz	Ĉ
	3.2	Disco de Poincaré	
	3.3	Semi-plano de Poincaré	
	3.4	Disco de Beltrami-Klein	
	3.5	Modelo do Hemisfério	
	3.6	Isometrias entre os modelos	
	3.7	Generalizando operações euclidianas	
4	Redes neurais		9
5	Mis	sturando tudo	9

1 Introdução

2 Geometria hiperbólica

2.1 Variedades e métricas riemannianas

Uma variedade topológica de dimensão n é um espaço topológico M Hausdorff com base enumerável que é localmente euclidiano de dimensão n, isso é, para cada $p \in M$ existe um aberto U e um homeomorfismo $\phi \colon U \to V \subset \mathbb{R}^n$. O par (U, ϕ) será comumente chamado de carta sobre p. Se (V, ψ) é uma outra carta em M tal que $U \cap V \neq \emptyset$, chamamos de mapas de transição as funções

$$\phi \circ \psi^{-1} : \psi(U \cap V) \to \mathbb{R}^n \quad \text{e} \quad \psi \circ \phi^{-1} : \phi(U \cap V) \to \mathbb{R}^n.$$
 (1)

Se os mapas de transição forem suaves, diremos que (U, ϕ) e (V, ψ) são compatíveis. Uma estrutura diferenciável em M é uma cobertura de M por cartas que são duas a duas compatíveis. Dizemos que M é suave ou diferenciável se possuir uma estrutura diferenciável.

A partir de agora, toda carta estará em uma estrutura diferenciável previamente fixada, e portanto toda variedade será suave. Se $p \in M$ dizemos que $F: M \to N$ é suave em p se existirem (U, ϕ) carta sobre p e (V, ψ) carta sobre F(p) tais que $\psi \circ F \circ \phi^{-1}$ é suave. A função F é suave em $U \subset M$ se for suave em todo ponto de U, e é apenas suave se for suave em todo ponto de M.

Uma curva em M é um mapa suave $c: I \to M$ onde I é um intervalo de \mathbb{R} . Se $p \in M$, definimos por C_p^{∞} como o conjunto dos mapas $f: U \subset M \to \mathbb{R}$ suaves, onde U é uma vizinhança qualquer de p. Esse espaço é uma álgebra com as três operações:

- se $f: U \to \mathbb{R}$ e $g: V \to \mathbb{R}$, definition $f + g: U \cap V \to \mathbb{R}$ por (f + g)(p) = f(p) + g(p);
- se $f: U \to \mathbb{R}$ e $\lambda \in \mathbb{R}$, definimos $\lambda f: U \to \mathbb{R}$ por $(\lambda f)(p) = \lambda f(p)$;
- se $f: U \to \mathbb{R}$ e $g: V \to \mathbb{R}$, definitions $fg: U \cap V \to \mathbb{R}$ por (fg)(p) = f(p)g(p).

Dada uma curva $c:]-\varepsilon, \varepsilon[\to M,$ definimos c'(0) como sendo um mapa $c'(0): C_p^{\infty} \to \mathbb{R}$ dado por

$$c'(0)f = \frac{d}{dt}\Big|_{t=0} (f \circ c)(t). \tag{2}$$

Esse mapa é linear e satisfaz a regra de Leibniz, isso é,

$$c'(0)(fg) = f(c(0)) \cdot c'(0)g + c'(0)f \cdot g(c(0)). \tag{3}$$

Se $p \in M$, o espaço tangente a M em $p \in M$ como o conjunto

$$T_p M = \{ c'(0) \mid c \colon] - \varepsilon, \varepsilon [\to \mathbb{R} \text{ e } c(0) = p \}.$$

$$\tag{4}$$

Se M tem dimensão n, então T_pM é um espaço vetorial de dimensão n. Seus elementos são chamados de vetores tangentes. Uma métrica riemanniana em M é a associação de um produto interno $\mathfrak{g}_p(-,-)$ em T_pM para cada $p \in M$. Mais do que isso, pedimos que essa associação seja suave. Entenderemos o que isso significa a seguir.

Um campo vetorial em M é uma associação X de um vetor $X_p \in T_p M$ para cada $p \in M$. Se $\phi = (x^1, \ldots, x^n)$ é uma carta sobre $p \in M$ e $r = (r^1, \ldots, r^n)$ são as coordenadas em \mathbb{R}^n , definimos as derivadas parciais de $f \in C_p^{\infty}$ por

$$\left. \frac{\partial f}{\partial x^i} \right|_p = \left. \frac{\partial}{\partial r^i} \right|_{\phi(p)} (f \circ \phi^{-1})(r). \tag{5}$$

Cada derivada parcial em p pode ser vista como um elemento de T_pM , afinal, se e^1, \ldots, e^n é a base canônica de \mathbb{R}^n , então dadas as curvas $c^i(t) = te^i$ temos

$$\left. \frac{\partial}{\partial x^i} \right|_p = (\phi^{-1} \circ c^i)'(0). \tag{6}$$

Esses vetores tangentes formam uma base para T_pM .

Se (U, ϕ) é uma em M e X é um campo vetorial em M, então para cada $p \in M$ podemos escrever, de maneira única,

$$X_p = \sum_{k=1}^n a^i(p) \left. \frac{\partial}{\partial x^i} \right|_p. \tag{7}$$

Dizemos que o campo vetorial X é suave se existir uma cobertura de M por cartas tais que os mapas a^i são sempre suaves. Ao dizermos que a métrica riemanniana tem que ser suave, queremos dizer que, para quaisquer X, Y campos suaves em M, o mapa $p \mapsto \mathfrak{g}_p(X_p, Y_p)$ tem que ser suave. Uma variedade riemanniana é uma variedade suave equipada com uma métrica riemanniana.

2.2 Conexões e derivada covariante

Denotamos o conjunto de todos os campos suaves em M por $\mathfrak{X}(M)$. Se $M=\mathbb{R}^n$, vamos entender quem é a derivada direcional. Se $X=(v^1,\ldots,v^n)\in\mathbb{R}^n$ e X_p é o vetor tangente a p na direção X, então dada $f\colon\mathbb{R}^n\to\mathbb{R}$ definimos a derivada direcional de f na direção X_p

$$D_{X_p} f = \lim_{t \to 0} \frac{f(p + tX) - f(p)}{t} = \sum_{k=1}^n v^k \left. \frac{\partial f}{\partial x^i} \right|_p = X_p f. \tag{8}$$

Podemos então trocar f por um campo vetorial suave $Y = \sum b^i \partial/\partial x^i$ e obtermos a derivada direcional de Y na direção X_p

$$D_{X_p}Y = \sum_{k=1}^n D_{X_p} b^i \left. \frac{\partial}{\partial x^i} \right|_p. \tag{9}$$

Note que a derivada $D_{X_p}Y$ é um vetor tangente em p. Dessa forma, se X é um campo vetorial em \mathbb{R}^n podemos definir D_XY como o campo vetorial que, em p, vale $D_{X_p}Y$. Esse mapa é a derivada direcional de Y na direcão X.

Agora vamos generalizar a derivada direcional em \mathbb{R}^n para uma variedade riemanniana qualquer. Uma conexão afim em M é um mapa

$$\nabla \colon \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$$
$$(X,Y) \mapsto \nabla_X Y$$

que satisfaz as seguintes propriedades:

- se $C^{\infty}(M)$ é o conjunto dos mapas suaves $M \to \mathbb{R}$, então ∇ é $C^{\infty}(M)$ -linear na primeira coordenada;
- ∇ satisfaz a regra de Leibniz na segunda coordenada, isso é, se $f \in C^{\infty}(M)$, então

$$\nabla_X(fY) = (Xf)Y + f\nabla_XY,\tag{10}$$

onde Xf é o mapa suave dado por $(Xf)(p) = X_pf$.

Conexões e métricas riemannianas não estão sempre conectadas. Porém, se M é uma variedade riemanniana e ∇ uma conexão afim em M, então podemos falar sobre alguns aspectos geométricos de ∇ . Definimos o tensor torção de ∇ como sendo o mapa $T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]$, onde $[X,Y]_p f = X_p(Yf) - Y_p(Xf)$ é o bracket de Lie. Do mesmo modo, definimos o tensor curvatura de ∇ como sendo o mapa $R(X,Y) = [\nabla_X, \nabla_Y] - \nabla_{[X,Y]}$, isso é, para um campo vetorial suave Z, temos

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z. \tag{11}$$

Dizemos que uma conexão ∇ em uma variedade riemanniana M é compatível com a métrica se $Z\mathfrak{g}(X,Y) = \mathfrak{g}(\nabla_Z X,Y) + \mathfrak{g}(X,\nabla_Z Y)$. Uma conexão de Levi-Civita é uma conexão compatível com a métrica e que satisfaz T(X,Y) = 0 para todos X,Y campos suaves em M.

Proposição 2.1. Toda variedade riemanniana possui uma, e apenas uma, conexão de Levi-Civita.

Um campo vetorial ao longo de uma curva $c: I \to M$ é a associação V de um vetor $V(t) \in T_{c(t)}M$ para cada $t \in I$. Dizemos que V é suave se, para cada $f: M \to \mathbb{R}$, (Vf)(t) = V(t)f é suave.

Se $c: I \to \mathbb{R}^n$ é uma curva e V é um campo ao longo de c, temos

$$V(t) = \sum_{k=1}^{n} v^{i}(t) \left. \frac{\partial}{\partial x^{i}} \right|_{c(t)}, \tag{12}$$

portanto podemos definir a derivada de V com respeito a t como sendo o campo

$$\frac{dV}{dt} = \sum_{k=1}^{n} \frac{dv^{i}}{dt} \frac{\partial}{\partial x^{i}}.$$
(13)

Essa derivada satisfaz algumas propriedades importantes:

• ela é linear com respeito a V, isso é, se $\lambda \in \mathbb{R}$ e U é outro campo ao longo de c, então

$$\frac{d(\lambda V + U)}{dt} = \lambda \frac{dV}{dt} + \frac{dU}{dt};\tag{14}$$

• ela satisfaz a regra de Leibniz, isso é, se $f \colon I \to \mathbb{R}$ (lembrando aqui que I é o domínio de c) é suave, então

$$\frac{d(fV)}{dt} = \frac{df}{dt}V + f\frac{dV}{dt};\tag{15}$$

• ela é compatível com a derivada direcional em \mathbb{R}^n , isso é, se V se estende para um campo \tilde{V} em \mathbb{R}^n , então

$$\frac{dV}{dt} = D_{c'(t)}\tilde{V}.\tag{16}$$

Vamos agora generalizar o conceito da derivada de V para uma variedade M qualquer, utilizando de conexões afins. Se ∇ é uma conexão afim em M e $c\colon I\to\mathbb{R}$ é uma curva, então definimos uma derivada covariante como um operador D/dt que, para cada campo V ao londo de c associa um outro campo DV/dt ao longo de c. Pedimos que essa associação satisfaça as três propriedades que a derivada definida acima satisfaz:

• D/dt é linear, isso é, se V e U são campos ao longo de c e $\lambda \in \mathbb{R}$ então

$$\frac{D(\lambda V + U)}{dt} = \lambda \frac{DV}{dt} + \frac{DU}{dt};\tag{17}$$

• D/dt satisfaz a regra de Leibniz, isso é, se $f\colon I\to\mathbb{R}$ é suave, então

$$\frac{D(fV)}{dt} = \frac{df}{dt}V + f\frac{DV}{dt};\tag{18}$$

• D/dt é compatível com a conexão afim, isso é: se \tilde{V} é um campo em M que estende V, então

$$\frac{DV}{dt} = \nabla_{c'(t)}V. \tag{19}$$

Definimos acima o que seria **uma** derivada covariante, mas acontece que, fixadas uma conexão e uma curva, sempre existe uma e apenas uma derivada covariante, portanto podemos falar **da** derivada covariante.

2.3 Jacobiana e teorema da função inversa

Se $F: M \to N$ é suave, então para todas as carta (U, ϕ) sobre $p \in (V, \psi)$ sobre F(p) o mapa $\psi \circ F \circ \phi^{-1}$ é suave. Sabemos da teoria de variedades que as derivadas parciais $\partial/\partial\phi^i$ e $\partial/\partial\psi^j$ formam base para T_pM e $T_{F(p)}N$, respectivamente. Considere agora a transformação linear D_pF dada por

$$D_n F(v) f = v(f \circ F) \tag{20}$$

que manda vetores tangentes a p para vetores tangentes a F(p). Na expressão acima, estamos apenas descrevendo como o vetor $D_pF(v)$ age em uma função $f\colon N\to\mathbb{R}$ suave. O mapa D_pF é chamado de derivada de F em p.

Podemos então considerar a matriz de $D_p F$ conforme as bases $\partial/\partial \phi^i$ e $\partial/\partial \psi^j$. Se denotarmos por F^i o mapa $\psi^i \circ F$, então temos que

$$D_p F = \left[\frac{\partial F^i}{\partial \phi^j} \Big|_p \right]. \tag{21}$$

Note que ela coincide com a matriz jacobiana que conhecemos do cálculo. De fato, essa coincidência motiva uma nova versão do teorema da função inversa.

Teorema 2.2. Se $F: M \to N$ é suave $e \dim M = \dim N$, então F é um difeomorfismo local em $p \in M$ se, e somente se, $\det D_p F \neq 0$.

2.4 Geodésicas e transporte paralelo

Se $c: I \to M$ é uma curva, então dizemos que c é uma geodésica se a derivada covariante DT/dt do seu campo velocidade T(t) = c'(t) é nula. Note que a existência de uma conexão, e portanto de uma derivada covariante, não depende da existência de uma métrica riemanniana. Porém, caso a variedade M possua uma métrica, vamos sempre assumir que a conexão considerada é a conexão de Levi-Civita em M.

Proposição 2.3. Geodésicas em variedades riemannianas possuem velocidade constante, isso é, se $c: I \to M$ é uma geodésica, então ||c'(t)|| é constante para cada $t \in I$.

Seja M uma variedade suave com uma conexão ∇ . Se (U, x^1, \ldots, x^n) é uma carta em M, então temos os campos vetoriais $\partial_i = \partial/\partial x^i$. Sabemos que todo campo vetorial em U se escreve como combinação linear destes, e portanto temos

$$\nabla_{\partial_i} \partial_j = \sum_{k=1}^n \Gamma_{ij}^k \partial_k. \tag{22}$$

Os coeficientes Γ_{ij}^k são chamados de símbolos de Christoffel de ∇ em (U, x^1, \dots, x^n) .

Sejam M uma variedade com uma conexão ∇ , $(U,\phi)=(U,x^1,\ldots,x^n)$ uma carta em M e Γ^k_{ij} os seus símbolos de Christoffel. Note que, se $c\colon I\to M$ é uma curva e $y=\phi\circ c$, então temos

$$T = c'(t) = \sum_{k=1}^{n} \frac{dy^k}{dt} \partial_k.$$
 (23)

Dessa maneira, segue que

$$\frac{DT}{dt} = \sum_{j=1}^{n} \frac{d^2 y^j}{dt^2} \partial_j + \sum_{j=1}^{n} \frac{dy^j}{dt} \frac{D\partial_j}{dt} = \sum_{j=1}^{n} \frac{d^2 y^j}{dt^2} \partial_j + \sum_{j=1}^{n} \frac{dy^j}{dt} \nabla_{c'(t)} \partial_j$$
(24)

$$= \sum_{j=1}^{n} \frac{d^2 y^j}{dt^2} \partial_j + \sum_{i,j=1}^{n} \frac{dy^j}{dt} \nabla_{\frac{dy^i}{dt} \partial_i} \partial_j = \sum_{j=1}^{n} \frac{d^2 y^j}{dt^2} \partial_j + \sum_{i,j=1}^{n} \frac{dy^j}{dt} \frac{dy^i}{dt} \nabla_{\partial_i} \partial_j$$
 (25)

$$=\sum_{k=1}^{n}\frac{d^{2}y^{k}}{dt^{2}}\partial_{k}+\sum_{i,j,k=1}^{n}\frac{dy^{j}}{dt}\frac{dy^{i}}{dt}\Gamma_{ij}^{k}\partial_{k}=\sum_{k=1}^{n}\left(\frac{d^{2}y^{k}}{dt^{2}}+\sum_{i,j=1}^{n}\frac{dy^{i}}{dt}\frac{dy^{j}}{dt}\Gamma_{ij}^{k}\right)\partial_{k}.$$
(26)

Portanto, temos o seguinte resultado.

Teorema 2.4. Se M é uma variedade suave com uma conexão ∇ e $c: I \rightarrow M$ é uma curva, então c é uma geodésica se, com respeito a qualquer carta $(U, \phi) = (U, x^1, \dots, x^n)$, as componentes de $y = \phi \circ c$ satisfazem o sistema de EDOs

$$\frac{d^2y^k}{dt^2} + \sum_{i,j=1}^n \frac{dy^i}{dt} \frac{dy^j}{dt} \Gamma_{ij}^k = 0$$
 (27)

As equações do sistema acima são chamadas de equações geodésicas. Pelo teorema de existência e unicidade de solução para EDOs temos a existência e unicidade de geodésicas.

Teorema 2.5. Seja M uma variedade suave com uma conexão ∇ . Dado $p \in M$ e $X_p \in T_pM$, existe uma geodésica $c\colon I \to M$ tal que c(0) = p e $c'(0) = X_p$. Mais do que isso, essa geodésica é única no sentido de que qualquer outra geodésica satisfazendo essas propriedades deve coincidir com c na intersecção de seus domínios.

Um difeomorfismo entre variedades suaves M e N é um mapa $F: M \to N$ suave, bijetor e com inversa suave. Se M e N forem riemannianas, dizemos que F é uma isometria se, para todos $p \in M$ e $X_p, Y_p \in T_pM$, temos

$$\mathfrak{g}_p(X_p, Y_p) = \mathfrak{g}_{F(p)}(D_p F(X_p), D_p F(Y_p)). \tag{28}$$

Proposição 2.6. Isometrias preservam conexões de Levi-Civita. Mais ainda, mapas que preservam conexões, preservam geodésicas. Como corolário, isometrias preservam geodésicas.

Se $c: I \to M$ é uma curva e V é um campo ao longo de c, então dizemos que V é paralelo se DV/Dt = 0. Dessa forma, uma geodésica é uma curva cujo campo velocidade é paralelo. Fixado $X_p \in T_{c(t_0)}M$, existe um único campo V ao longo de c, paralelo, tal que $V(t_0) = X_p$. Se $c: [a, b] \to M$ é uma curva e V é um campo paralelo ao longo de c, dizemos que V(b) é obtido a partir de V(a) por translação paralela. Dizemos que V(b) é o transporte <math>transporte transporte transporte <math>transporte <math>transporte transporte <math>transporte transporte <math>transporte transporte <math>transporte transporte <math>transporte transporte <math>

Proposição 2.7. Se V e W são paralelos ao longo de c em uma variedade riemanniana M, então ||V|| e $\mathfrak{g}(V,W)$ são constantes.

Um problema importante com questão ao transporte paralelo é a existência. Ela está garantida pelo resultado abaixo.

Teorema 2.8. Se M é uma variedade suave com uma conexão ∇ e c: $[a,b] \rightarrow M$ uma curva. Dado $v \in T_{c(a)}M$, existe um campo vetorial paralelo V_t ao longo de c tal que $V_a = v$.

2.5 Mapa exponencial e mapa logarítmico

Uma geodésica $c: I \to M$ é maximal se não podemos estender c para um intervalo maior do que I sem que a curva deixe de ser uma geodésica. Do Teorema 2.5 temos que, dado $p \in M$ e $X_p \in T_pM$ existe uma única geodésica maximal c com c(0) = p e $c'(0) = X_p$. Vamos denotar essa geodésica por γ_{X_p} .

O mapa exponencial em um ponto $p \in M$ é a função dada por $\operatorname{Exp}_p(X_p) = \gamma_{X_p}(1)$. Esse mapa não está necessariamente definido para todo $X_p \in T_pM$, visto que nem sempre γ_{X_p} possui 1 no seu domínio. Uma variedade comuma conexão é dita completa se toda geodésica puder ter seu domínio extendido para todo \mathbb{R} . No caso de variedades riemannianas consideradas com a conexão de Levi-Civita, temos dois resultados que nos ajudam no sentido de definir Exp_p para um conjunto satisfatório de vetores.

Proposição 2.9. Para qualquer $p \in M$, com M variedade riemanniana, existem uma vizinhança U de p e dois números $\epsilon, \delta > 0$ tais que para todos $q \in U$ e $v \in T_qM$ com $||v|| < \delta$, existe uma única geodésica $\gamma:]-\varepsilon, \varepsilon[\to M \text{ com } \gamma(0) = q \text{ e } \gamma'(0) = v.$

Corolário 2.10. Para qualquer $p \in M$, com M variedade riemanniana, existem uma vizinhança U de p e um número $\delta > 0$ tais que para todos $q \in U$ e $v \in T_q M$ com $||v|| < \delta$ existe uma única geodésica $\gamma \colon]-2,2[\to M$ com $\gamma(0) = q$ e $\gamma'(0) = v$.

O Corolário 2.10 nos diz que o mapa exponencial está sempre definido em todas as direções, porém essa existência só está garantida para velocidades pequenas. Se você for muito rápido, pode ficar cansado muito rápido e não dar tempo do seu conjunto de parâmetros englobar o 1.

Proposição 2.11. A derivada $D_0 \operatorname{Exp}_p$ é a identidade em T_pN para qualquer $p \in M$.

A Proposição acima garante, em particular, que sempre existe um $\varepsilon > 0$ tal que Exp_p mapeia $B(0,\varepsilon)$ difeomorficamente em M. Por causa disso, existe uma inversa para o mapa exponencial, que chamaremos de mapa logarítmico.

2.6 Curvatura por via de tensores

Fixada uma conexão ∇ em M,já conhecemos o tensor de torção, que é dado por

$$T(X,Y) = \nabla_X Y - \nabla_Y X - [X,Y]. \tag{29}$$

Ao tomarmos $X = \partial_i$ e $Y = \partial_j$ em uma carta (U, ϕ) , temos $[X, Y] = \partial_i \partial_j - \partial_j \partial_i = 0$, portanto se a conexão ∇ é a de Levi-Citiva, temos pelo anulamento da torção que $\nabla_{\partial_i} \partial_j = \nabla_{\partial_j} \partial_i$. Dessa maneira, as derivadas desses campos comutam.

Vamos tentar entender o que acontece para o tensor de curvatura. Comecemos lembrando que ele é dado por

$$R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_Y \nabla_X Z - \nabla_{[X,Y]} Z. \tag{30}$$

Ao tomarmos $X = \partial_i$, $Y = \partial_j$ e Z qualquer, temos novamente que [X, Y] = 0, portanto $\nabla_{[X,Y]}Z = 0$. Dessa forma, segue que

$$R(\partial_i, \partial_j) Z = \nabla_{\partial_i} \nabla_{\partial_i} Z - \nabla_{\partial_i} \nabla_{\partial_i} Z. \tag{31}$$

Porém, mesmo que ∇ seja a conexão de Levi-Civita, não temos garantia de que R(X,Y)Z=0, dessa forma nem sempre derivar um campo em direções diferentes independe da ordem dessas derivadas. O que vai medir a diferença entre essas operações é a curvatura da sua variedade.

Para entendermos a curvatura geometricamente, precisamos falar de holonomia. Dado $p \in M$ e γ : $[a,b] \to M$ fechada em p e contrátil, para cada $v \in T_pM$ podemos considerar o campo V_t ao longo de γ que seja paralelo e satisfaça $V_a = v$. O vetor $v' = V_b$, que é o transporte paralelo de v ao longo de γ , é chamado de holonomia de v ao longo de γ .

A menos que sua variedade possua curvatura 0, isso é, se R(X,Y)Z = 0 para todos X,Y,Z, a sempre existirá $v \in T_pM$ tal que $v' \neq v$. Ou seja, o ângulo entre esses dois vetores é também medido pela curvatura.

Agora vamos entender quem são as possíveis curvaturas de uma variedade riemanniana. Por enquanto, vamos dar enfoque em três principais tipos: a seccional (ou gaussiana), a de Ricci e a escalar.

A primeira coisa a notar é que, dados $x,y,z\in T_pM$, podemos construir campos suaves X,Y,Z ao redor de p de maneira que $X_p=x,\,Y_p=y$ e $Z_p=z$. Definimos então R(x,y)z como sendo o campo R(X,Y)Z no ponto p.

Teorema 2.12. Seja $p \in M$ com dim $M \ge 2$ e $W \le T_p M$ um subespaço de dimensão 2 (também conhecido como plano). Considere x, y uma base para W e defina o número

$$K(W) = \frac{\mathfrak{g}_p(R(x,y)x,y)}{|x \wedge y|^2},\tag{32}$$

onde $|x \wedge y|$ é a área do paralelogramo formado por x e y, que pode ser explicitamente calculada por

$$|x \wedge y| = \sqrt{||x||^2 ||y||^2 - \mathfrak{g}_p(x, y)},$$
 (33)

onde $||\cdot||$ é a norma induzida pela métrica \mathfrak{g} . Temos então que K(W) não depende da base escolhida para W.

A quantidade K(W) definida no teorema acima é a curvatura seccional ou curvatura gaussiana de W em p. Agora podemos usar essa curvatura para falarmos de curvatura de Ricci. Dado $p \in M$ e $v \in T_pM$ unitário, considere $w \in v^{\perp}$. Se $P_w = \mathbb{R}v + \mathbb{R}w$, então temos a curvatura seccional $K(P_w)$. A curavura de Ricci em p na direção v é a média de todas essas curvaturas seccionais, ou seja,

$$\operatorname{Ricci}_{p}(v) = \lambda \int_{S} K(P_{w})dV, \tag{34}$$

onde S é a esfera unitária em T_pM , dV é a forma de volume em S e λ é uma constante positiva que é, honestamente, irrelevante. De fato, ela pode ser calculada explicitamente se utilizarmos a seguinte proposição.

Proposição 2.13. Se w_1, \ldots, w_{n-1} é uma base ortonormal de v^{\perp} , então

$$Ricci_{p}(v) = \frac{1}{n-1} \sum_{i=1}^{n-1} \mathfrak{g}_{p}(R(x, z_{i})x, z_{i}).$$
(35)

Probabilisticamente, podemos pensar que curvatura de Ricci é a curvatura seccional média de planos aleatórios da forma P_w . Isso nos dá alguma ideia do porquê não conseguimos recuperar as curvaturas seccionais a partir da curvatura de Ricci: há perda de informação, pois a partir da média de um conjunto de dados raramente conseguimos recuperar quem são esses dados.

Por fim, a curvatura escalar nada mais é do que uma média das curvaturas de Ricci, ou seja, se $p \in M$, podemos considerar uma base ortonormal z_1, \ldots, z_n de T_pM . A curvatura escalar é o número definido por

$$K_s(p) = \frac{1}{n} \sum_{i=1}^n \operatorname{Ricci}_p(z_i). \tag{36}$$

Por mais que a curvatura escalar não dependa de uma direção, e apenas do ponto, não é a ela que nos referimos ao dizer que M tem curvatura constante κ em $p \in M$. Essa expressão diz que todas as curvaturas seccionais em p valem κ .

2.7 Conceitos métricos

Antes de brincarmos com a geometria hiperbólica, vamos falar de duas definições que aparecem na teoria de espaços métricos e que podem ser úteis mais para frente. Dado um espaço métrico (X, d), o produto de Gromov é uma operação que, dados três pontos $x, y, z \in X$, retorna o número

$$(y,z)_x = \frac{1}{2}(d(x,y) + d(x,z) - d(y,z)). \tag{37}$$

Dizemos que X é δ -hiperbólico, com $\delta > 0$, se para todos $x, y, z, w \in X$ temos

$$(x, z)_w \ge \min\{(x, y)_w, (y, z)_w\} - \delta.$$
 (38)

Uma definição equivalente envolve triângulos geodésicos. Uma geodésica em (X,d) é a imagem isométrica de um intervalo [a,b]. Se γ é essa isometria, $x=\gamma(a)$ e $y=\gamma(b)$, denotamos a imagem de γ por [x,y]. Um $triângulo geodésico com vértices <math>x,y,z\in X$ é a união das geodésicas [x,y], [y,z] e [z,x]. Se para cada $m\in [x,y]$ existe um ponto em $n\in [y,z]\cup [z,w]$ tal que $d(m,n)<\delta$, dizemos que o triângulo geodésico $\Delta(x,y,z)$ é δ -fino. Dizemos que (X,d) é δ -hiperbólico se todo triângulo geodésico é δ -fino.

Por fim, precisamos falar de distorção, que é uma medida de fidelidade para certos mergulhos de dados em aprendizado de máquina. Se X e Y são espaços métricos e $f\colon X\to Y$ é um mergulho de dados em X para pontos de Y, a distorção de f em $x,y\in X$ é dada por

$$\mathbb{D}_f(a,b) = \frac{|d(a,b) - d(f(a),f(b))|}{d(a,b)}.$$
(39)

3 Modelos para a geometria hiperbólica

O espaço hiperbólico real é uma variedade riemanniana de curvatura constante igual a -1. Existem diversos modelos isométricos para ele, e agora vamos falar de alguns.

- 3.1 Hiperboloide de Lorentz
- 3.2 Disco de Poincaré
- 3.3 Semi-plano de Poincaré
- 3.4 Disco de Beltrami-Klein
- 3.5 Modelo do Hemisfério
- 3.6 Isometrias entre os modelos
- 3.7 Generalizando operações euclidianas
- 4 Redes neurais
- 5 Misturando tudo

Referências

- [1] Hugo Cattarucci Botós. «Geometrias Clássicas». 2020. URL: https://github.com/HugoCBotos/geometria-classica/blob/master/Geometrias%20C1%C3%A1ssicas%20-%20Hugo%20C.%20Bot%C3%B3s.pdf.
- [2] Anna Wienhard e Gye-Seon Lee. «Curvature of Riemannian Manifolds». 2015. URL: https://www.mathi.uni-heidelberg.de/~lee/Soeren05.pdf.
- [3] Loring W. Tu. Differential Geometry: Connections, Curvature and Characteristic Classes. Springer-Verlag New York Inc, 2017. ISBN: 978-3-319-55082-4.
- [4] Wei Peng e Tuomas Varanka e Abdelrahman Mostafa e Henglin Shi e Guoying Zhao. «Hyperbolic Deep Neural Networks: A Survey». Em: JOURNAL OF LATEX CLASS FILES 14.8 (2015).