SEIVE OF ERATOSTHENES

Team Members

Murarishetty Santhosh Charan (2019287) Repala Nagaraju (2019127) Eraganaboina Venkata Srujan (2019250) Veerisetty Subramanyam (2019172)

Instructor

Dr. Manish Kumar Bajpai

Introduction

The aim of this project is to parallelize sieve of Eratosthenes algorithm. The Sieve of Eratosthenes is an ancient mathematical algorithm of finding prime numbers between two sets of numbers.

Sieve of Eratosthenes models work by sieving or eliminating given numbers that do not meet a certain criterion. For this case, the pattern eliminates multiples of the known prime numbers. A prime number is a positive integer or a whole number greater than 1, which is only divisible by 1 and itself. The Prime number algorithm is a program used to find prime numbers by sieving or removing composite numbers. The algorithm makes work easier by eliminating complex looping divisions or multiplications.

Algorithm

The **Sieve of Eratosthenes** is a mathematical tool that's used to discover all possible prime numbers between any two numbers. Eratosthenes was a brilliant Greek thinker who, among many other important discoveries and inventions, was deeply interested in mathematics. His best known contribution to mathematics is his sieve used to easily find prime numbers. A mathematical sieve is any pattern or algorithm that functions by 'crossing off' any potential numbers that don't fit a certain criteria. In our case, the sieve of Eratosthenes works by crossing off numbers that are multiples of a number that we already know are prime numbers. While this all sounds quite complicated, in practice it's quite simple

Steps involved in algorithm

- List all consecutive numbers from 2 to η , i.e. (2, 3, 4, 5,, η).
- Assign the first prime number letter p.
- Beginning with p^2 , perform an incremental of p and mark the integers equal or greater than p^2 in the algorithm. These integers will be p(p + 1), p(p + 2), p(p + 3), p(p + 4) ...
- The first unmarked number greater than *p* is identified from the list. If the number does not exist in the list, the procedure is halted. *p* is equated to the number and step 3 is repeated.
- The Sieve of Eratosthenes is stopped when the square of the number being tested exceeds the last number on the list.
- All numbers in the list left unmarked when the algorithm ends are referred to as prime numbers.

Pseudo Code

```
input: an integer n > 1
output: All prime numbers from 2 to n
Eratosthenes(n) {
     a[1] := 0
     for i := 2 to n do {
         a[i] := 1
     p := 2
     while p2 ≤ n do {
         j := p2
         while (j ≤ n) do {
a[j] := 0
             j := j+p
         repeat p := p+1 until a[p] = 1
     return(a)
}
```

Basic Illustration

	2	3	4	5	6	7	8	9	10	Prim	e nun	nbers	
11	12	13	14	15	16	17	18	19	20	2	3	5	7
21	22	23	24	25	26	27	28	29	30	11	13	17	19
	Constant of	100	1000		1000		100000	Carrier Control	1000	23	29	31	37
31	32	33	34	35	36	37	38	39	40	41	43	47	53
41	42	43	44	45	46	47	48	49	50	59	61	67	71
51	52	53	54	55	56	57	58	59	60	73	79	83	89
61	62	63	64	65	66	67	68	69	70	97	101	103	107
71	72	73	74	75	76	77	78	79	80	109	113		
12	12	75	2.00	73	70	E.E.	70	19	ou				
81	82	83	84	85	86	87	88	89	90				
91	92	93	94	95	96	97	98	99	100				
101	102	103	104	105	106	107	108	109	110				
111	112	113	114	115	116	117	118	119	120				

Sieve of Eratosthenes: algorithm steps for primes below 121 (including optimization of starting from prime's square).

Serial Implementation Code in C lang

```
#include<stdio.h>
int main()
    int n=0;
    scanf("%d",&n);
    int x=n+1;
    int prime[x];
    for(int p=0;p<=n;p++)</pre>
        prime[p]=1;
    //false as they are composite
```

```
prime[0]=0;
    prime[1]=0;
    for(int p=2;p*p<=n;p++)</pre>
         if(prime[p]==1)
             int j=2;
             while(p*j<=n)</pre>
                  prime[p*j]=0;
                  j+=1;
             }
         }
    }
    for(int p=2;p<=n;p++)</pre>
         if(prime[p])
         {
             printf("%d is prime\n",p);
         }
    return 0;
}
```

Complexity Analysis of the Algorithm

Time Complexity:

O(N*log(log N))

Algorithm's running time is O(N*log(log(N))). The algorithm will perform n/p operations for every prime $p \le N$ the inner loop.

- The number of prime numbers less than or equal to n is approximately N / ln(N).
- The k-th prime number approximately equals k*ln(k) (that follows immediately from the previous fact)

We extracted the first prime number 2 from the sum, because k=1 in approximation k * ln(k) is 0 and causes a division by zero.

Now, returning to the original sum, we'll get its approximate evaluation is O(N*log(log(N))).

Space Complexity:

O(N)

As we are using N sized Boolean array for storing the prime number values as True and composite number values as False, the space complexity becomes o(n).

Applications of the Algorithm

- For cryptography, you mostly need larger primes than what you can get via sieving.
- Pseudo-random number generators use Sieve of Eratosthenes.
- Generation of hash tables use prime numbers which are easy to compute using Sieve of Eratosthenes
- This algorithm is also used to find all the prime factors of factorial of a number.
- In practical uses, prime numbers are used in cyphers and codes including your credit card numbers which can be generated using this algorithm
- Prime numbers are extensively used in cryptography and network security. One of the public key encryption algorithm called RSA actually relies on the factorization of product of large primes.

THANK YOU