over \mathbb{F}_q . Let \mathscr{C}_g be the affine plane curve defined by this equation. Note that \mathscr{C}_g is non-singular and irreducible over $\overline{\mathbb{F}_q}$, an algebraic closure of \mathbb{F}_q . Denote the set of \mathbb{F}_q -rational points of \mathscr{C}_g by

$$\mathscr{C}_g(\mathbb{F}_q) = \left\{ (x, y) \in \mathbb{F}_q^2 \mid g^2 x^\ell + g y^\ell + 1 = 0 \right\}$$

and let $N_g = |\mathscr{C}_g(\mathbb{F}_q)|$ be its cardinality. Furthermore, let $\widetilde{\mathscr{C}}_g$ be the (Zariski) closure of \mathscr{C}_g in the projective plane defined by the homogeneous equation

$$g^2X^\ell + gY^\ell + Z^\ell = 0.$$

Note that $\widetilde{\mathscr{C}}_g$ is also non-singular. We let \widetilde{N}_g denote the cardinality of $\widetilde{\mathscr{C}}_g(\mathbb{F}_q)$. Having Conjecture \mathbb{E} and Conjecture \mathbb{C} in mind, we are especially concerned with whether or not a point $(x,y) \in \mathscr{C}_g(\mathbb{F}_q)$ satisfying $xy \neq 0$. The following lemma shows that this is always true except for very limited special cases.

Lemma 2.1. Equation (4) has a nontrivial solution (x, y, z) with xyz = 0 if and only if one of the following situations holds:

- (i) $\ell = 1 \ or \ 2;$
- (ii) $\ell = 4$ and $-1 \notin L$.

Moreover, if $\ell > 2$ *, then* $xz \neq 0$.

Proof. Suppose that (x,y,z) is a nontrivial solution to Equation (4) with xyz=0. Then only one of x,y,z is zero. Observe that if x=0 or z=0, then $-g \in L$ and gL is either of order 1 or 2 in \mathbb{F}_q^\times/L ; if y=0, then $-g^2 \in L$ and gL is of order 4 in \mathbb{F}_q^\times/L . In particular, we have $xz \neq 0$ provided that $\ell \neq 2$. In the case where $\ell = 4$, we see that $-L = g^2L \neq L$. It follows that $-1 \not\in L$.

Conversely, if $\ell=1$ then it's clear that Equation (4) has a nontrivial solution (x,y,z) with xyz=0. Suppose that $\ell=2$, then $\mathbb{F}_q^\times/L=\{L,gL\}$. If $-1\not\in L$, then -L=gL. In this case, $g=-a^2\in L$ for some $a\in\mathbb{F}_q^\times$. Then, we clearly have solutions (x,y,z)=(1,a,0) and (0,1,a). Suppose $-1\in L$, then $-g^2=b^2\in L$ for some $b\in\mathbb{F}_q^\times$ and we have the solution (x,y,z)=(1,0,b) in this case.

Finally, suppose that $\ell = 4$ and $-1 \notin L$. Then both g^2L and -L are of order 2 in the cyclic group \mathbb{F}_q^\times/L . Thus, $-L = g^2L$ and this gives a solution (x,y,z) = (1,0,b) where $-g^2 = b^4 \in L$.

Following [Wei48], the number N_g of solutions to Equation (3) can be expressed as a character sum which we now recall. As usual, by a multiplicative character of \mathbb{F}_q we mean a character of the group \mathbb{F}_q^{\times} , i.e. a group homomorphism from \mathbb{F}_q^{\times} to \mathbb{C}^{\times} . As we only deal with multiplicative characters of \mathbb{F}_q , we'll simply call them characters. The trivial character will be denoted by ε such that $\varepsilon(a) = 1$ for all $a \in \mathbb{F}_q^{\times}$. We extend the domain of a character χ such that $\chi(0) = 1$ if $\chi = \varepsilon$ and $\chi(0) = 0$ otherwise. We call the extension of χ an extended character and still denote the extension by χ if there is no