Package 'jlsm'

February 9, 2021

Type Package							
Title Joint latent space model for social networks with multivariate attributes							
Version 0.1.0							
Author Selena Wang							
Maintainer Selena Wang <selenashuowang@gmail.com></selenashuowang@gmail.com>							
Description Joint latent space models for unipartite networks and bipartite networks using variational bayesian EM algorithm.							
License MIT + file LICENSE							
Encoding UTF-8							
LazyData true							
Depends R (>= 3.5), MASS							
Imports stats, utils, graphics, ellipse, mvtnorm, expm, boot, matrixcalc, lvm4net, pROC, network, Matrix, grDevices RoxygenNote 7.1.1							
R topics documented:							
jlsm-package							
aplsm							
blsm							
french							
Gofblsm							
Plotaplsm							
1							

2 aplsm

Simulateblsm . Index jlsm-package		Create Joint Latent Space Model for Social networ									ulza		110	-1 A	1.	1+;		wi	at										
			•				•	•		•	•	•	 •	 	•	•	•	 ٠	•	•	•	•		•	•	•	•	•	10
	Simulateaplsm.																												
	Predictblsm																												
	Predictaplsm .																												
	Plotblsm																												

Description

jlsm provides a set of latent space models for jointly modeling unipartite social networks with bipartite attribute networks. The latent space models are implemented using a fast variational inference approach.

Details

Latent space models for bipartite networks: the function blsm implements the bipartite latent space model (BLSM) outlined in Wang et al. (2021) using variational inference and squared Euclidian distance; the function aplsm implements person and attribute latent space model (APLSM) introduced by Wang et.al (2021). These models assume that the person and attribute information can be summarized by latent person and attribute variables. Both the Euclidean distances and the vector distances are used to describe relationships among perons and between persons and attributes.

References

Wang, S. S., Paul, S., Logan, J., & De Boeck, P. (2019). Joint analysis of social and item response networks with latent space models. arXiv preprint arXiv:1910.12128.

aplsm The Attribute Person Latent Space model

Description

Jointly model social network with multivariate attributes

Usage

```
aplsm(Niter, Y.i, Y.ia, D, type)
```

Arguments

Niter	number of iterations
Y.i	N by N matrix containing the binary social network
Y.ia	N by M matrix containing the binary multivariate attributes
D	number of dimensions in the data
type	character indicating the types of model. It could be "DD", distance by distance model, "DV", distance by vector model, "VV", vector by vector model

blsm 3

Value

list containing:

- 1smhEZ. i (N x D) matrix containing the posterior means of the latent person positions
- 1smhEZ.a (M x D) matrix containing the posterior means of the latent item positions
- 1smhVZ. 0 (D x D) matrix containing the posterior variance of the latent person positions
- lsmhVZ.1 (D x D) matrix containing the posterior variance of the latent item positions
- lsmhAlpha.0 scaler of mean of the posterior distributions of $\alpha.0$
- 1smhAlpha.1 scaler of mean of the posterior distributions of $\alpha.1$
- 1smhKL expected log-likelihood

Examples

```
attach(french)
a=aplsm(Niter=10,Y.i, Y.ia, D=2, type="DD")
```

blsm

The Bipartite Latent Space Model

Description

Function to fit the bipartite latent space model (BLSM) outlined in Wang et al. (2021)

Usage

```
blsm(Niter, Y.ia, D)
```

Arguments

Niter	number of iterations
Y.ia	N by M matrix containing the binary multivariate attributes
D	number of dimensions in the data

Value

list containing:

- 1smhEZ. i (N x D) matrix containing the posterior means of the latent person positions
- 1smhEZ.a (M x D) matrix containing the posterior means of the latent item positions
- 1smhVZ.0 (D x D) matrix containing the posterior variance of the latent person positions
- 1smhVZ.1 (D x D) matrix containing the posterior variance of the latent item positions
- 1smhAlpha.1 scaler of mean of the posterior distributions of α .1
- 1smhKL expected log-likelihood

Examples

```
attach(french)
a=blsm(Niter=10,Y.ia,D=2)
```

4 GOFaplsm

french

French Elites Social Networks and Multivariate Attributes

Description

The dataset contains a social network of french financial elites and their multivariate attributes It includes social interaction between 28 elites and their binary responses to 13 questions. The data were downloaded from the social network Repository created by Prof. Linton Freeman. http://moreno.ss.uci.edu/ffe_trait.dat/ and http://moreno.ss.uci.edu/ffe_dat

Usage

french

Format

List including a binary adjacency matrix and a binary mutlivariate attributes

Details

social network and multivariate attributes

GOFaplsm

Assess the fit of the APLSM

Description

assess the fit of the model using ROC curves and auc values

Usage

```
GOFaplsm(model, type, Y.i, Y.ia)
```

Arguments

model	object of class the APLSM
type	character indicating the types of model. It could be "DD", distance by distance model, "DV", distance by vector model, "VV", vector by vector model
Y.i	N by N matrix containing the binary social network
Y.ia	N by M matrix containing the binary multivariate attributes

Value

list containing:

- Yi.auc scaler of the area under the curve for the social network
- Ya. auc scaler of the area under the curve for the multivariate covariates

Gofblsm 5

Examples

```
attach(french)
b=aplsm(Niter=10,Y.i, Y.ia,D=2, type="VV")
GOFaplsm(b, "VV",Y.i, Y.ia)
```

Gofblsm

Assess the fit of the BLSM

Description

assess the fit of the model using ROC curves and auc values

Usage

```
Gofblsm(model, Y.ia)
```

Arguments

model object of class BLSM

Y.ia N by M matrix containing the binary item response matrix

Value

scalar containing:

• Ya. auc scaler of the area under the curve for the multivariate covariates

Examples

```
attach(french)
a=blsm(Niter=10,Y.ia,D=2)
Gofblsm(a,Y.ia)
```

Plotaplsm

Two dimensional plot of Person Attribute Latent Space Model

Description

plot the joint latent space with two types of nodes and two types of relations

6 Plotaplsm

Usage

```
Plotaplsm(
  Y.i,
  Y.ia,
  model,
  labels = NULL,
  plotedgesSocial = TRUE,
  plotedgesBipartite = FALSE,
  xlab = ""
  ylab = ""
  edgecolor = "black",
  colEll.i = rgb(0.6, 0.6, 0.6, alpha = 0.1),
  colEll.ia = rgb(1, 0.6, 0.6, alpha = 0.1),
  LEVEL = 0.8,
  pchplot = 20
  pchEll = 19,
  pchPl = 19,
  cexPl = 1.1,
  arrowhead = FALSE,
  curve = 0,
  xlim = c(-2, 2),
  ylim = c(-2, 2),
  lwdLine = 0.001,
)
```

Arguments

```
Y.i
                  N by N matrix containing the binary social network
Y.ia
                  N by M matrix containing the binary mutlivariate attributes
model
                  model output from the APLSM
labels
                  vector of characters containing the attribute names
plotedgesSocial
                  TRUE or FALSE, whether the social network edges should be plotted
plotedgesBipartite
                  TRUE or FALSE, whether the bipartite edges should be plotted
                  name of the x axis
xlab
                  name of the y axis
ylab
edgecolor
                  color of the edge. Default edgecolor = "black"
colEll.i
                  col for the ellipses of persons. Default rgb(.6,.6,.6,alpha=.1)
colEll.ia
                  col for the ellipses of atributes. Default rgb(1, .6, .6, alpha=.1)
LEVEL
                  levels of confidence bounds shown when plotting the ellipses. Default LEVEL =
                   .95
pchplot
                  Default pchplot = 20
pchE11
                  pch for the ellipses. Default pchEll = 19
pchP1
                  pch for the points representing the nodes. Default pchP1 = 19
                  cex for the points representing the nodes. Default cexPl = 1.1
cexPl
                  logical, if the arrowed are to be plotted. Default arrowhead = FALSE
arrowhead
```

Plotblsm 7

```
curve curvature of edges. Default curve = 0

xlim range for x

ylim range for y

lwdLine lwd of edges. Default lwdLine = .3

... Arguments to be passed to methods, such as graphical parameters (see par).
```

Examples

```
library(jlsm)
attach(french)
b=aplsm(Niter=10,Y.i, Y.ia,D=2, type="VV")
Plotaplsm(Y.i, Y.ia, b)
```

Plotblsm

Two dimensional plot of the Bipartite Latent Space Model

Description

plot the latent space with two types of nodes and one type of relations

Usage

```
Plotblsm(
  Y.ia,
  model,
  labels = NULL,
  xlab = "",
  ylab = "",
  plotedges = TRUE,
  edgecolor = "black",
  colEll.i = rgb(0.6, 0.6, 0.6, alpha = 0.1),
  colEll.ia = rgb(1, 0.6, 0.6, alpha = 0.1),
  LEVEL = 0.8,
  pchplot = 20,
  pchEll = 19,
  pchPl = 19,
  cexPl = 1.1,
  arrowhead = FALSE,
  curve = 0,
  xlim = c(-2, 2),
  ylim = c(-2, 2),
  lwdLine = 0.001,
)
```

Arguments

Y.ia	N by M matrix containing the binary multivariate attributes
model	model output from BLSM
labels	vector of characters containing the item names

8 Predictaplsm

xlab name of the x axis ylab name of the y axis TRUE or FALSE, whether the bipartite edges should be plotted plotedges color of the edge. Default edgecolor = "black" edgecolor col for the ellipses of persons. Default rgb(.6,.6,.6,alpha=.1) colEll.i colEll.ia col for the ellipses of attributes Default rgb(1, .6, .6, alpha=.1) **LEVEL** levels of confidence bounds shown when plotting the ellipses. Default LEVEL = .95 pchplot Default pchplot = 20 pchE11 pch for the ellipses. Default pchEll = 19 pchP1 pch for the points representing the nodes. Default pchP1 = 19 cexPl cex for the points representing the nodes. Default cexPl = 1.1 arrowhead logical, if the arrowed are to be plotted. Default arrowhead = FALSE curvature of edges. Default curve = 0 curve xlim range for x ylim range for y lwd of edges. Default lwdLine = .3 lwdLine Arguments to be passed to methods, such as graphical parameters (see par).

Examples

. . .

```
attach(french)
a=blsm(Niter=10,Y.ia,D=2)
Plotblsm(Y.ia, a)
```

Predictaplsm

Predict from the APLSM

Description

This function allows you to obtain the posterior edge values based on the APLSM

Usage

```
Predictaplsm(model, type)
```

Arguments

model object of class the APLSM

character indicating the types of model. It could be "DD", distance by distance type

model, "DV", distance by vector model, "VV", vector by vector model

Value

list containing:

- est.P.i (N x N) matrix containing the predicted probabilities of an edge
- est.P.ia (N x M) matrix containing the predicted probabilities of an edge

Predictblsm 9

Examples

```
library(jlsm)
attach(french)
b=aplsm(Niter=10,Y.i, Y.ia,D=2, type="VV")
Predictaplsm(b,"VV")
```

Predictblsm

Predict from BLSM model

Description

This function allows you to obtain the posterior mean of the edges from the BLSM model

Usage

```
Predictblsm(model)
```

Arguments

model

object of class BLSM

Value

list containing:

• est.P.ia (N x M) matrix containing the predicted probabilities of an edge

Examples

```
attach(french)
a=blsm(Niter=10,Y.ia,D=2)
Predictblsm(a)
```

Simulateaplsm

Simulate from the APLSM

Description

function to simulate networks from the APLSM

Usage

```
Simulateaplsm(model, type)
```

Arguments

model object of class APIsm

type character indicating the types of model. It could be "DD", distance by distance

model, "DV", distance by vector model, "VV", vector by vector model

10 Simulateblsm

Value

list containing:

- Y. i (N x N) matrix containing the simulated Y.i
- Y. ia (N x M) matrix containing the simulated Y.ia

Examples

```
attach(french)
b=aplsm(Niter=10,Y.i, Y.ia,D=2, type="VV")
Simulateaplsm(b,"VV")
```

Simulateblsm

Simulate from the BLSM model

Description

function to simulate networks from the BLSM

Usage

```
Simulateblsm(model)
```

Arguments

model

object of class BLSM

Value

list containing:

• Y. ia (N x M) matrix containing the simulated Y.ia

Examples

```
attach(french)
a=blsm(Niter=10,Y.ia,D=2)
Simulateblsm(a)
```

Index

```
*\ datasets
     french, 4
aplsm, 2, 2
blsm, 2, 3
french, 4
GOFaplsm, 4
Gofblsm, 5
jlsm(jlsm-package), 2
jlsm-package, 2
par, 7, 8
Plotaplsm, 5
Plotblsm, 7
{\it Predictaplsm}, \, 8
Predictblsm, 9
{\tt Simulateaplsm}, \textcolor{red}{9}
{\it Simulateblsm},\, {\color{red}10}
```