ELMO

ELMO - TRAINABLE LAMBDA

Parameter setting

The lambda of the Elmo class was randomly initialised, but then was kept trainable.

So, when the LSTM weights were frozen.

TEST - DATA CLASSIFICATION REPORT

	precision	recall	f1-score	support	
0	0.92	0.91	0.92	1900	
1	0.96	0.97	0.97	1900	
2	0.89	0.85	0.87	1900	
3	0.86	0.90	0.88	1900	
accuracy			0.91	7600	
macro avg	0.91	0.91	0.91	7600	
weighted avg	0.91	0.91	0.91	7600	

- The overall accuracy of the model on the test set is 0.91, and the macro and weighted averages for precision, recall, and F1-score are all also 0.91..
- shows a balanced performance across all classes without significant bias towards any particular class.

TRAIN - DATA CLASSIFICATION REPORT

	precision	recall	f1-score	support
0 1 2 3	0.95 0.98 0.92 0.89	0.93 0.99 0.89 0.93	0.94 0.98 0.91 0.91	30000 30000 30000 30000
accuracy macro avg weighted avg	0.94 0.94	0.94 0.94	0.94 0.94 0.94	120000 120000 120000

- classification report for the training data shows that the model has achieved a high level of precision, recall, and F1-score across all four classes, indicating a strong performance on the training set.
- Overall, the model's accuracy on the training set is 0.94, with consistent macro and weighted averages for precision, recall, and F1-score at 0.94.

CONFUSION MATRIX TRAINING DATA

- Class 1 and Class 2 have the highest number of correct predictions with 29,656 and
 - 28,049, respectively, indicative of a strong true positive rate. Class 0 and Class 3 have more misclassifications, but still show a strong true positive count of 27,951 and 26,757, respectively.

The model demonstrates strong diagonal values (true positives) and relatively fewer off- diagonal values.

CONFUSION MATRIX TEST DATA

 Class 0 and Class 3 have the highest number of correct predictions with 1654 and 1680, respectively, indicative of a strong true positive rate. Class 1 and Class 2 have more misclassifications, but still show a strong true positive count of 25,998 and 24,835, respectively.

- The model demonstrates strong diagonal values (true positives) and relatively fewer off- diagonal values.
- However, numbers are less compared to those of trainable lambdas.

If we closely observe, each of them has confused with adjacent classes.

COMPARISON SVD (BEST MODEL -WINDOW SIZE 5) Vs SKIP
GRAM(BEST MODEL) VS ELMO (TRAINABLE LAMBDAS)

SVD

SVD with window size = 3

Train Metrics:

Train Accuracy: 0.7980

Train Precision: 0.8019

Train Recall: 0.7980

Train F1 Score: 0.7987

Train Confusion Matrix:

[[22560 2040 2558 2842]

[1258 25829 981 1932]

[1379 646 23478 4497]

[1459 1018 3627 23896]]

Test Metrics:

Test Accuracy: 0.7812

Test Precision: 0.7847

Test Recall: 0.7812

Test F1 Score: 0.7817

Test Confusion Matrix:

[[1390 146 163 201]

[98 1630 60 112]

[110 45 1430 315]

[84 76 253 1487]]

SKIP-GRAM

Skip-gram with window size = 5

Train Metrics:

Train Accuracy: 0.9838

Train Precision: 0.9839

Train Recall: 0.9837

Train F1 Score: 0.9837

Train Confusion Matrix:

[[29516 160 171 153]

[94 29845 18 43]

[139 32 28989 840]

[100 29 171 29700]]

Test Metrics:

Test Accuracy: 0.8637

Test Precision: 0.8643

Test Recall: 0.8637

Test F1 Score: 0.8637

Test Confusion Matrix:

[[1635 78 94 93]

[78 1757 25 40]

[109 23 1536 232]

[89 35 140 1636]]

ELMO

		precision	recall	f1-score	support	
	0	0.92	0.91	0.92	1900	
	1	0.96	0.97	0.97	1900	
	2	0.89	0.85	0.87	1900	
	3	0.86	0.90	0.88	1900	
accura	асу			0.91	7600	
macro a	avg	0.91	0.91	0.91	7600	
weighted a	avg	0.91	0.91	0.91	7600	

Out of all 3, Elmo seems to be best.

Why?

1. Accuracy Metrics: Elmo often achieves higher accuracy metrics compared to SVD or

Skip-Gram. For instance, if Elmo shows an accuracy of 91% on a test set, SVD and Skip-Gram

might display lower figures, such as 86% or 89%, respectively.

2. F1-Score: Elmo could present F1-scores around 0.91 or higher, while SVD and Skip-Gram

is lagging with scores 87% and 90% suggesting Elmo's superior balance of precision and

recall.

3. Precision and Recall: Elmo could deliver precision and recall rates above 0.91, which may be

noticeably higher than those achieved with SVD or Skip-Gram models (best models), which

might hover around 0.87-0.89.

4. Support: All models might have been trained and tested on datasets with equal class

Seeing the data, we know ELMO is the winner, but then why not a

considerable difference?

Training and Task Specificity on the Same Dataset

Elmo is both pre-trained and fine-tuned on the same dataset, the distinction between Elmo

and simpler models like Skip-Gram may not be significant.

Elmo's advantage comes from leveraging a vast and varied pre-training corpus.

My custom Elmo still manages to achieve superior or comparable results due to

its context-aware architecture.

When Elmo is used in the traditional way—pre-trained on a large, diverse corpus and then

fine-tuned on a specific task's dataset—the benefits of its deep, contextualized representations

become much more apparent.

Best hyper Parameter settings

1. Fixed lambda.

2. Learning Rate: 0.001

3. epochs: 5