Parity-check matrix

In coding theory, a **parity-check matrix** of a linear block code *C* is a matrix which describes the linear relations that the components of a codeword must satisfy. It can be used to decide whether a particular vector is a codeword and is also used in decoding algorithms.

$$H = \left[-P^{\top} | I_{n-k} \right]$$

 $GH^{\top} = P - P = 0$

because

Formally, a parity check matrix, H of a linear code C is a generator matrix of the dual code, C^{\perp} . This means that a codeword \mathbf{c} is in C if and only if the matrix-vector product $H\mathbf{c}^{\top} = \mathbf{0}$ (some authors^[1] would write this in an equivalent form, $\mathbf{c}H^{\top} = \mathbf{0}$.)

The rows of a parity check matrix are the coefficients of the parity check equations.^[2] That is, they show how linear combinations of certain digits (components) of each codeword equal zero. For example, the parity check matrix

$$G = \left[\begin{array}{cc|cc} 1 & 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 & 0 \end{array}\right]$$

negation is unnecessary.

then its parity check matrix is

$$H = \left[\begin{array}{cccc} 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 \end{array} \right]$$

compactly represents the parity check equations,

$$H = \left[\begin{array}{ccc|c} 1 & 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 1 \end{array} \right]$$

$$c_3 + c_4 = 0$$
$$c_1 + c_2 = 0$$

that must be satisfied for the vector (c_1, c_2, c_3, c_4) to be a codeword of C.

From the definition of the parity-check matrix it directly follows the minimum distance of the code is the minimum number d such that every d - l columns of a parity-check matrix H are linearly independent while there exist d columns of H that are linearly dependent.

3 Syndromes

See also

• Hamming code

For any (row) vector \mathbf{x} of the ambient vector space, $\mathbf{s} = H\mathbf{x}^{\top}$ is called the syndrome of \mathbf{x} . The vector \mathbf{x} is a codeword if and only if $\mathbf{s} = \mathbf{0}$. The calculation of syndromes is the basis for the syndrome decoding algorithm. [4]

Negation is performed in the finite field $\mathbf{F}q$. Note that if

the characteristic of the underlying field is 2 (i.e., 1 + 1

= 0 in that field), as in binary codes, then -P = P, so the

For example, if a binary code has the generator matrix

2 Creating a parity check matrix

The parity check matrix for a given code can be derived from its generator matrix (and vice versa).^[3] If the generator matrix for an [n,k]-code is in standard form

5 Notes

4

- [1] for instance, Roman 1992, p. 200
- [2] Roman 1992, p. 201
- [3] Pless 1998, p. 9
- [4] Pless 1998, p. 20

$$G = [I_k|P]$$

then the parity check matrix is given by

6 REFERENCES

6 References

• Hill, Raymond (1986). *A first course in coding the-ory*. Oxford Applied Mathematics and Computing Science Series. Oxford University Press. p. 69. ISBN 0-19-853803-0.

- Pless, Vera (1998), *Introduction to the Theory of Error-Correcting Codes* (3rd ed.), Wiley Interscience, ISBN 0-471-19047-0
- Roman, Steven (1992), *Coding and Information Theory*, GTM, **134**, Springer-Verlag, ISBN 0-387-97812-7
- J.H. van Lint (1992). *Introduction to Coding Theory*. GTM. **86** (2nd ed.). Springer-Verlag. p. 34. ISBN 3-540-54894-7.

7 Text and image sources, contributors, and licenses

7.1 Text

• Parity-check matrix Source: https://en.wikipedia.org/wiki/Parity-check_matrix?oldid=727612992 Contributors: Zundark, Bkell, Culix, RussBot, Grubber, PoorLeno, Ma8thew, Thijs!bot, Phosphoricx, Vanish2, David Eppstein, R'n'B, Trachten, 1ForTheMoney, Addbot, Samsam.yh, Loftwyr, GrouchoBot, Rc3002, Tom.Reding, John of Reading, Quondum, MSDousti, Wcherowi, BattyBot, Trismahesh and Anonymous: 14

7.2 Images

7.3 Content license

• Creative Commons Attribution-Share Alike 3.0