CS4.301 Data & Applications

Ponnurangam Kumaraguru ("PK") #ProfGiri @ IIIT Hyderabad

Protocol

Who am I?

- Assistant Associate Professor of Computer Science
- Ph.D. from School of Computer Science, Carnegie Mellon University (CMU)
- Research interests
 - Computational Social Science
 - Social (Societal) Computing
 - Privacy & Security in Social Media
- Courses I teach
 - Data & Applications (2), 4+
 - Responsible & Safe AI (1), 4+
 - Online Privacy (1)
 - Privacy and Security in Online Social Media (8), 4+
 - Designing Human Centered Systems (5), 4+
 - Research methods / Advanced research methods (2), 4+
 - Foundations of Computer Security (5), 4+
 - Big Data & Policing (1), 4+

Who you are?

CND

ECD

EHD

CSD

ECE

CLD

CSE

???

What kind of data are we generating here?

What kind of data are we generating here?

Grading, Relative

Type of Evaluation	Weightage (in %)
Class Quizzes (3)	15
Assignments / Homeworks (4)	20
Mid sem exam (Quiz-2 as scheduled in almanac)	15
Project	30
End Sem Exam	20

TAs

12 TAs \

Students will be assisged among TAs for all evaluations

Aditya Mishra Anika Roy Anirudh Vempati Anish R Joishy **Chetan Mahipal** Debangan Mishra Devika Umesh Bei Jain Hemang Ashok Pratishtha Saxena Priyanshul Govil Rohan Kumar **Shailender Goyal** Tejas Cavale

Memory challenge for me ©

Plagiarism

What is it?

Copying HWs

Any content taken from another source without citation

Whatever policy from IIITH

Moodle

We will use Moodle for all content sharing – slides, HWs, announcements, clarifications, etc.

Service Level Agreement

Any question / clarification ask, if not urgent, will be answered in 24 hrs

If anything urgent, feel free to attach the time in which you want the answer, we will try to respond

TAs are your 1st point of contact only on escalation, you will bring it up to me

Please do not email only me @ Nonot Seed to TAS.

Topics that we will cover

Relational Database Systems
SQL
Database design process
Data Models, Normalization

https://www.dineout.co.in/hyderabad/chutneys-madhapur-west-hyderabad-11747/menu

											I			
Lecture #		7		Ī			(ſ		_			
from	C	Class	Tu	utori	ia	Date	Day	Time		Topic	HW @ 23:59hrs	Quji	z Projec	t
	L5	1	L			26- \$ ep	Th	1535 -	1700	Intro & data models				
:	L6	\\2	2	$ \top $		30-Sep	М	1535 -	1700	Intro & data models	HW1 publish			\
:	L7	/3	3	T	\top	3-Oct	Th	1535 -	1700	DB design & ER models		(
:	L8		1			7-Oct	М	1535 -	1700	DB design & ER models		Quiz	2 1	
		7			λ					Data models, DB				
					1)				Design, ER Models &)			(
				,	X 1	9-Oct	W	0830 -	. 0955	project	HW2 publish			
:	L9	1)5	5			10-Oct	Th	1535 -	1700	Relational DB	HW1 submission			$ \uparrow $
						12-Oct							Data r	equirements
	20	(5			14-Oct	М	1535 -	1700	Relational DB				
										Data models, DB				
										Design, ER Models &				
					2	16-Oct	W	0830 -	0955	project				
2	21	7	7			17 - 19 Oct				Institute Quiz				
	22	8	3			21-Oct	М	1535 -	1700	Normalization	HW3 publ <mark>j</mark> sh			/
					3	23-Oct	W	0830 -	0955	ER models	HW2 submission			
	23	ç	9			24-Oct	Th	1535 -	1700	Normalization			ER Mo	del
	24	10				28-Oct	М	1535 -	1700	Normalization		Qui		

		4	29-Oct	W	0830 - 0955	Relational DB			
									Relational
		5	6-Nov	W	0830 - 0955	Normalization	HW3 submission	X	Database design
25	10		7-Nov	Th	1535 - 1700	Normalization	HW4 publish		
26	11		11-Nov	М	1535 - 1700	SQL			
		6	13-Nov	W	0830 - 0955	SQL			Application
27	12		14-Nov	Th	1535 - 1700	SQL		Quiz 3	
28	13		18-Nov	М	1535 - 1700	SQL	HW4 submission		
		7	20-Nov	W	0830 - 0955	SQL + Revision			
			- 20-No v			All marks check			
)1		22 - 29 Nov			End Sem			
2	+		22 - 29 Nov			Final project demo			
	·		1 - 3 Dec			End Sem paper check			
			5-Dec			Grades to be submitted			
				I	1			1	

Book we will follow

Any questions / clarifications?

What do you want to know by end of Sem?

How many already use MySQL? Oracle?

Basic Definitions

Database:

A collection of related data.

Data;

Known facts that can be recorded and have an implicit meaning.

Mini-world:

Some part of the real world about which data is stored in a database. For example, student grades and transcripts at a university.

Database Management System (DBMS):

A software package/ system to facilitate the creation and maintenance of a computerized database.

Database System:

The DBMS software together with the data itself. Sometimes, the applications are also included.

What is a Database?

Uninformation that can be recorded and have

A database is a collection of related data

What is a Database?

A database has the following implicit properties:

A database represents some aspect of the real world (mini-world or Universe of Discourse (UoD))

A database is a <u>logically coherent</u> (associated, related) collection of data with some inherent meaning

A database is designed, built and populated with data for a specific <u>purpose</u>

It has an <u>intended</u> group of users and some <u>preconceived</u> (already thought of) applications in which these users are interested

Simplified Database

Example of Database: University

Data:

STUDENTs.

COURSES

SECTIONs (of COURSEs)

(academic) DEPARTMENTs

INSTRUCTORs

Relation:

SECTIONs are of specific COURSEs

STUDENTs take SECTIONs

COURSEs have prerequisite COURSEs

INSTRUCTORs teach SECTIONs

COURSEs are offered by DEPARTMENTS

STUDENTs major in DEPARTMENTS

Database

///				// /				4	_	\nearrow
ST	ji)		1		L			1		1
Na	m	е	øt	ude	nt	Cla	SS		Majo	T
-		7	N	umk	er			4	4	
Sn	it	n		17		1		(cos	,
Bro	w	n		8		2		(COS	;
	eg				\ /				7	<u></u>

	GRADE R	EPURI	
	Student	Section-	Grade
	Number	Identifier	χ
/	17	85	Α
	18	102	B+
_			

SECTION

	PREREQUIS	IIE
	Course 🕙	Prerequisite
	Number	Number
\geq	COSC3330	COSC3320
\geq	COSC3320	COSC1310
		A A

COURSE			
Course Name	Course	Credit	Department
	Number	Hours	
Intro to CS	CDSC1310	4	- cosc
Data Structures	COSC3320	4	Cosc
Discrete Mathematics	MATH2410	3	MATH
Data Base	COSC3380	3	COSC

	Section-	Course	Seme	ster	Ye	ear	Instru	ctor
	Identifier	Number						<u> </u>
	(85)	MATH2410	Fa	W (9	1	Kin	g
	92	COSC1310	Fa	II	9	1	Ander	son
	102	COSC3320	Spri	ng	9	2	Knu	th
	135	COSC3380	Fą	=	9	2	Stor	пе
,		' 	-			$\overline{}$		

RELATIONS Relation_name No_of_columns STUDENT COURSE SECTION-GRADE REPORT 3 PREREQUISITE COLUMNS Data_type Belongs_to_relation Column_name STUDENT Character (30) Name___ STUDENT Character (4) Student_number STUDENT Integer (1) Class STUDENT Major_type Major COURSE Character (10) Course_name ___ COURSE XXXXNNNN Course_number -. PREREQUISITE XXXXNNNN Note: Major_type is defined as an enumerated type with all known majors. XXXXNNNN is used to define a type with four alphabetic characters followed by four Book

Database catalogue

Many users to DB

Each users may require a different view

View may be a subset or virtual data derived

14 Chapter 1 Da	tabases and Database	9000			
TRANSCRIPT		Stud	ent_transcript Semester	Year 08	Section_id
Student_name	Course_number CS1310	Grade C	Fall Fall	08	112 85
Smith	MATH2410 MATH2410	B	Fall Fall	07	92
Brown	CS1310 CS3320 CS3380	A B A	Spring Fall	08	135

COURSE PREREQUISITES

Course_name	Course_number	Prerequisites
Course_name		CS3320
Database	CS3380	MATH2410
	CS3320	CS1310
Data Structures	C53320	001011

Figure 1.5

Two views derived from the database in Figure 1.2. (a) The TRANSCRIPT view. (b) The COURSE_PREREQUISITES view.

Online Transaction Processing (OLTP)

Multiuser DB

Concurrency control

Flight ticket booking, seats available

Transaction

Executing program or process that includes one or more database accesses, reading or updating of database records

Properties [ACID]

- Atomicity: either all are executed or none are executed [A/c A \rightarrow A/c B]
- Consistency: any data written to a DB must be valid according to the defined rules [telephone number]
- Isolation: each transaction appears to execute in isolation, even though 100s may be executing at the same time [updating the seat preference]
- Durability: guarantees that once a transaction has been committed, it will remain committed even in the case of a system failure

Actors on the Scene: Day-to-Day use of DB

Database administrators

authorizing access to DB, coordinating & monitoring its use, accountable for security breaches & response time

Database designers

responsible for identifying the data to be stored in the DB, interact with potential group of users and develop *views* of the DB

End Users: Casual, naïve / parametric, sophisticated, stand-alone users

Casual: occasional users, typically middle or high-level managers

Naïve / parametric: constantly updating the db using canned transaction, done using mobile apps

bank tellers checking balances post withdrawals & deposits reservation agents checking for availability social media users post and read items on platforms

Any questions?

Bibliography / Acknowledgements

Instructor materials from Elmasri & Navathe 7e

- f Ponnurangam.kumaraguru
 - in /in/ponguru
 - ponguru

Thank you for attending the class!!!

