数理逻辑

第15讲一阶谓词逻辑演算 形式系统-II

授课教师: 蒋琳

e-mail: zoeljiang@hit.edu.cn

哈尔滨工业大学 (深圳) 计算机科学与技术学院

FC的基本定理

定理1(定理5.2.1):对于FC中的任何公式A,变元v:√

 $\vdash_{FC} \forall vA \rightarrow A$

定理2 (定理5.2.2): 对于FC中的任何公式A,变元v: ✓

 $\vdash_{FC} A \to \neg \forall v \neg A$ (也即 $\vdash_{FC} A \to \exists v A$)

定理3(定理5.2.3): 对于FC中的任何公式A,变元v: ✓

 $\vdash_{FC} \forall vA \rightarrow \exists vA$

定理4(定理5.2.4): (全称推广定理)对于FC中的任何公式A,变元v: \checkmark

如果 $\vdash A$,那么 $\vdash \forall vA$

定理5(定理5.2.5): (全称推广定理)对于FC中的任何公式集合 Γ ,公式A,

以及不在 Γ 的任意公式里自由出现的变元 $v: \checkmark$

如果 $\Gamma \vdash A$, 那么 $\Gamma \vdash \forall vA$

FC的基本定理

定理6 (定理5.2.6): (演绎定理)设 Γ 对于FC中的任一公式集合,A,B为

FC中的任意两个公式,那么: Γ ; $A \vdash B$ 当且仅当 $\Gamma \vdash A \rightarrow B$

定理7 (定理5.2.7) : Γ 为FC中的任一公式集合,A,B为FC中的任意两个公式,

那么: Γ ; $A \vdash \neg B$ 当且仅当 Γ ; $B \vdash \neg A$

定理8 (定理5.2.8): (反证法) 如果FC中的公式集合 $\Gamma \cup \{A\}$ 是不一致的,

那么: $\Gamma \vdash \neg A$

定理9 (定理5.2.9): 设 Γ 为FC中的任一公式集合,A,B为FC中的任意两个公

式,并且变元v在 Γ 的任何公式里无自由出现,那么:

 Γ ; $A \vdash B$ 蕴含 Γ ; $\forall xA \vdash B$ 和 Γ ; $\forall xA \vdash \forall xB$

定理10 (定理5.2.10): (存在消除)设 Γ 为FC中的任一公式集合,A,B为

FC中的任意两个公式,并且变元v在 Γ 的任何公式里无自由出现,那么:

由 $\Gamma \vdash \exists v A 以及\Gamma; A \vdash B$ 可以推出 $\Gamma \vdash B$

定理6 (定理5.2.6): (演绎定理)设 Γ 对于FC中的任一公式集

合,A,B为FC中的任意两个公式,那么:

 Γ ; $A \vdash B$ 当且仅当 $\Gamma \vdash A \rightarrow B$

证明: (充分性)已知 $\Gamma \vdash A \multimap B$, 往证 $\Gamma \lor A \vdash B$

- 由 $\Gamma \vdash A \rightarrow B$,则有演绎过程 A_1, A_2, \dots, A_m (= $A \rightarrow B$)。
- 在此序列中加上公式A,B得到一个演绎过程 A_1,A_2,\cdots,A_m (= $A \rightarrow B$), A,B, 即得到一个以 $\Gamma \cup \{A\}$ 为前提对B的演绎过程。

定理6 (定理5.2.6): (演绎定理)设 Γ 对于FC中的任一公式集合,A,B为FC中的任意两个公式,那么: Γ ; $A \vdash B$ 当且仅当 $\Gamma \vdash A \rightarrow B$ 。

证明: (必要性)已知 $\Gamma \cup \{ \} \vdash_{FC} B$,往证 $\Gamma \vdash_{FC} A \to B$

对 $\Gamma \cup \{A\} \vdash_{FC} B$ 的演绎序列的长度l用第二数学归纳法。

- (1) 当l = 1时,序列中只有B,那么B有如下可能:
 - B为公理,那么序列 $\{B, B \to (A \to B), A \to B\}$ 构成了一个证明,从而 $\Gamma \vdash A \to B$ 。 $B \in \Gamma$,那么序列 $\{B, B \to (A \to B), A \to B\}$ 构成了一个以 Γ 为前提对 $A \to B$ 的演绎过程,从而
- $\Gamma \vdash A \rightarrow B$. • B = A, 由A = B知 $A \to B$ 是一个定理(PC中定理1),从而 $\Gamma \vdash A \to B$ 。
- 假设当演绎序列的长度*l < n*时结论成立 则当长度为l=n时,演绎序列为 A_1,A_2,\cdots,A_l (= B)。观察B:

 - 如果B为公理或者为假设中的元素,可仿照l=1的情形证明结论完全正确。
 - 如果 $B = A_i(j < n)$,则由 $\Gamma \cup \{A\} \vdash B$,得到 $\Gamma \cup \{A\} \vdash A_i$,由归纳假设知 $\Gamma \vdash A \rightarrow A_i$ 即 $\Gamma \vdash$ $A \rightarrow B$.
 - 如果B为 A_j , $A_k(j,k < l)$ 用分离规则导出,不妨设 $A_k = A_j \rightarrow B$,由于 $\Gamma \cup \{A\} \vdash A_j$, $\Gamma \cup \{A\} \vdash A_j$ 。 Γ $\{A\} \vdash A_j \to B$, 有 $\Gamma \vdash A \to A_j$ 和 $\Gamma \vdash A \to (A_j \to B)$ 。此两序列加上公式 $(A \to (A_j \to B)) \to A_j$

 $((A \rightarrow A_j) \rightarrow (A \rightarrow B))$ (公理2),用分离规则得 $(A \rightarrow A_i) \rightarrow (A \rightarrow B)$,再使用分离规则得 $A \to B$,以上序列是一个以 Γ 为前提对 $A \to B$ 的一个演绎过程。从而 $\Gamma \vdash A \to B$ 。

例1: 证明 $\forall x(A \rightarrow B) \vdash A \rightarrow \forall xB$,其中x在A中无自由出现。

证明思路:

例1: 证明 $\forall x(A \rightarrow B) \vdash A \rightarrow \forall xB$,其中x在A中无自由出现。

证明:

- $(1) \vdash \forall x(A \to B) \to (A \to B)$ 定理1
- (2) $\forall x(A \rightarrow B) \vdash (A \rightarrow B)$ 对 (1) 演绎定理6
- (3) $\forall x(A \rightarrow B), A \vdash B$ 对 (2) 演绎定理6
- (4) $\forall x(A \rightarrow B), A \vdash \forall xB$ 对 (3) 用全称推广定理5
- (5) $\forall x(A \rightarrow B) \vdash A \rightarrow \forall xB$ 对(4) 用演绎定理6

例2: 证明 $\forall x(A \rightarrow B) \vdash A \rightarrow \forall xB$,其中x在B中无自由出现。

证明思路:

$$\forall x(A \rightarrow B) \vdash A \rightarrow \forall xB$$

 演绎定理6
 $\vdash \forall x(A \rightarrow B) \rightarrow (A \rightarrow \forall xB)$
 FC定理1 FC中公理6和PC加前件定理4
 $(A \rightarrow B)$

对于FC中的任何公式A,变元v: ⊢ $_{FC}$ $\forall vA \rightarrow A$

 $A_6: A \to \forall vA$ (v在A中无自由出现)

例2: 证明 $\forall x(A \rightarrow B) \vdash A \rightarrow \forall xB$,其中x在B中无自由出现

证明:

- (1) $B \rightarrow \forall xB$ 公理6
- (2) $(B \to \forall xB) \to ((A \to B) \to (A \to \forall xB))$ PC中加前件定理4
- (3) $(A \rightarrow B) \rightarrow (A \rightarrow \forall xB)$ (1)与(2)用rmp分离规则
- (4) $\forall x(A \rightarrow B) \rightarrow (A \rightarrow B)$ FC中定理1
- (5) $\forall x(A \rightarrow B) \rightarrow (A \rightarrow \forall xB)$ (4)与(3)用PC中三段论定理8
- (6) $\forall x(A \rightarrow B) \vdash A \rightarrow \forall xB$ 对 (5) 用演绎定理6

定理7 (定理5.2.7): 设 Γ 为FC中的任一公式集合,A,B为FC

中的任意两个公式,那么: Γ ; $A \vdash \neg B$ 当且仅当 Γ ; $B \vdash \neg A$

证明: (必要性) 由 Γ ; $A \vdash \neg B$ 证 Γ ; $B \vdash \neg A$

(1) Γ ; $A \vdash \neg B$

已知

(2) $\Gamma \vdash A \rightarrow \neg B$

对(1)用演绎定理6

(3) $(A \rightarrow \neg B) \rightarrow (B \rightarrow \neg A)$ PC中定理15

 $(4) \ \Gamma \vdash B \to \neg A$

(2) (3) 用rmp分离规则

(5) Γ ; $B \vdash \neg A$

对(4)用演绎定理6

定理7(定理5.2.7): 设 Γ 为FC中的任一公式集合,A,B为FC

中的任意两个公式,那么: Γ ; $A \vdash \neg B$ 当且仅当 Γ ; $B \vdash \neg A$

证明: (充分性) 由 Γ ; $B \vdash \neg A$ 证 Γ ; $A \vdash \neg B$

(1) Γ ; $B \vdash \neg A$

已知

(2) $\Gamma \vdash B \rightarrow \neg A$

对(1)用演绎定理6

(3) $(B \rightarrow \neg A) \rightarrow (A \rightarrow \neg B)$ PC中定理15

(4) $\Gamma \vdash A \rightarrow \neg B$

(2) (3) 用rmp分离规则

(5) Γ ; $A \vdash \neg B$

对(4)用演绎定理6

定理8 (定理5.2.8): (反证法) 如果FC中的公式集合 $\Gamma \cup \{A\}$

是不一致的,那么: $\Gamma \vdash \neg A$

证明:

- (1) Γ ; $A \vdash B$
- (2) Γ ; $A \vdash \neg B$
- (3) $\Gamma \vdash A \rightarrow B$
- (4) $\Gamma \vdash A \rightarrow \neg B$
- (5) $(A \rightarrow B) \rightarrow ((A \rightarrow \neg B) \rightarrow \neg A)$ PC中定理17
- (6) $\Gamma \vdash (A \rightarrow \neg B) \rightarrow \neg A$ (3) (5) 用rmp分离规则
- (7) Γ ⊢ ¬A (4) (6) 用rmp分离规则

推理规则9: ¬引入规则 $\frac{\Gamma;A \vdash B,\Gamma;A \vdash \neg B}{\Gamma \vdash \neg A}$ (¬+)

由 $\Gamma \cup \{A\}$ 是不一致知

由 $\Gamma \cup \{A\}$ 是不一致知

对(1)用演绎定理6

对(2)用演绎定理6

II SHIDE DES

定理8 (定理5.2.8): (反证法) 如果FC中的

例4: 证明 $\forall x \neg A \rightarrow \exists x B \vdash \exists x (\neg A \rightarrow B)$

 $\forall x \neg A \rightarrow \exists x B \vdash \neg \forall x \neg (\neg A \rightarrow B)$

证明思路: 使用FC定理8反证法

定理8应用

定理8 (定理5.2.8): (反证法) 如果

FC中的公式集合 $\Gamma \cup \{A\}$ 是不一致的,

那么: $\Gamma \vdash \neg A$

例4: 证明 $\forall x \neg A \rightarrow \exists x B \vdash \exists x (\neg A \rightarrow B)$

(14) $\forall x \neg A \rightarrow \exists x B \vdash \exists x (\neg A \rightarrow B)$ $\rightleftharpoons \chi \rightrightarrows$

证明: $\forall x \neg A \rightarrow \exists x B$ $\rightarrow \exists xB$ (1) $\neg(\neg A \rightarrow B) \rightarrow \neg A$ PC中定理7, 定理13逆否及分离规则 $\Rightarrow \forall x \neg A$ $\forall x \neg (\neg A \rightarrow B)$ (2) $\neg(\neg A \rightarrow B) \rightarrow \neg B$ 公理1, 定理13逆否及分离规则 (3) $\forall x(\neg(\neg A \rightarrow B) \rightarrow \neg A)$ (1)用全称推广定理4 (4) $\forall x(\neg(\neg A \rightarrow B) \rightarrow \neg B)$ (2)用全称推广定理4 $(5) \ \forall x(\neg(\neg A \to B) \to \neg A) \to (\forall x \neg(\neg A \to B) \to \forall x \neg A) \ \ \underline{} \ \underline{} \ \underline{} \ \forall v(A \to B) \to (\forall vA \to \forall vB)$ (6) $\forall x \neg (\neg A \rightarrow B) \rightarrow \forall x \neg A$ (3)与(5)用rmp分离规则 $(7) \ \forall x(\neg(\neg A \to B) \to \neg B) \to (\forall x \neg(\neg A \to B) \to \forall x \neg B) \ \$ 公理5 (8) $\forall x \neg (\neg A \rightarrow B) \rightarrow \forall x \neg B$ (4)与(7)用rmp分离规则 $(9) \forall x \neg A \rightarrow \exists x B$ 已知假设 (10) $\forall x \neg (\neg A \rightarrow B) \rightarrow \exists x B$ (6)与(9)用PC中三段论定理8 (11) $\forall x \neg A \rightarrow \exists x B, \forall x \neg (\neg A \rightarrow B) \vdash \forall x \neg B \quad (\neg \exists x B)$ 演绎定理6 Γ ; $A \vdash B$ 当且仅当 $\Gamma \vdash A \rightarrow B$ (12) $\forall x \neg A \rightarrow \exists x B, \forall x \neg (\neg A \rightarrow B) \vdash \neg \forall x \neg B (\exists x B)$ 演绎定理6 (13) $\forall x \neg A \rightarrow \exists x B \vdash \neg \forall x \neg (\neg A \rightarrow B)$ (11)(12)用FC中定理8反证法

定理9 (定理5.2.9): 设 Γ 为FC中的任一公式集合,A,B为FC中的

任意两个公式,并且变元v在 Γ 的任何公式里无自由出现,那么:

 Γ ; $A \vdash B$ 蕴涵 Γ ; $\forall vA \vdash B$ 和 Γ ; $\forall vA \vdash \forall vB$

证明思路:

由Γ; A ⊢ B及演绎定理可知:

$$\Gamma \vdash A \rightarrow B$$

• 由v不在 Γ 中自由出现,由全称推广定理5知

$$\Gamma \vdash \forall v(A \rightarrow B)$$

• 再由公理5: $\forall v(A \rightarrow B) \rightarrow (\forall vA \rightarrow \forall vB)$, 知:

$$\Gamma \vdash \forall vA \rightarrow \forall vB$$

• 从而再由演绎定理知:

$$\Gamma$$
; $\forall vA \vdash \forall vB$

• 再由FC中定理1: ∀*vB* → *B*知:

$$\Gamma$$
; $\forall vA \vdash B$

定理9 (定理5.2.9): 设 Γ 为FC中的任一公式集合,A,B为FC中的

任意两个公式,并且变元v在 Γ 的任何公式里无自由出现,那么:

 Γ ; $A \vdash B$ 蕴含 Γ ; $\forall vA \vdash B$ 和 Γ ; $\forall vA \vdash \forall vB$

证明:

- (1) Γ ; $A \vdash B$ 已知
- (2) $\Gamma \vdash A \rightarrow B$ 对(1)用演绎定理6
- (3) Γ ⊢ $\forall v(A \rightarrow B)$ 对(2)用全称推广定理5
- $(4) \ \forall v(A \to B) \to (\forall vA \to \forall vB) 公理5$
- (5) $\Gamma \vdash \forall vA \rightarrow \forall vB$ (3) (4) 用rmp分离规则
- (6) *Γ*; ∀*vA* ⊢ ∀*vB* 对 (5) 用演绎定理6
- (7) ∀*vB* → *B* FC中定理1
- (8) *Γ*; ∀*vA* ⊢ *B* (6) (7) 用rmp分离规则

定理10 (定理5.2.10): (存在消除)设 Γ 为FC中的任一公式集合,A,B为FC

中的任意两个公式,并且变元v在 Γ 的任何公式以及公式B中无自由出现,那么是

由 $\Gamma \vdash \exists v A 以及\Gamma; A \vdash B 可以推出<math>\Gamma \vdash B$

证明思路:

由Γ; A ⊢ B及演绎定理知:

$$\Gamma \vdash A \rightarrow B$$

由PC中定理13: (A → B) → (¬B → ¬A)知:

$$\Gamma \vdash \neg B \rightarrow \neg A$$

• 再由演绎定理知:

$$\Gamma$$
; $\neg B \vdash \neg A$

• 由v在 Γ 及¬B中无自由出现及全称推广定理5知:

$$\Gamma$$
; $\neg B \vdash \forall v \neg A$

• 再由演绎定理知:

$$\Gamma \vdash \neg B \rightarrow \forall v \neg A$$

• 由PC中定理14: $(\neg B \rightarrow \forall v \neg A) \rightarrow (\neg \forall v \neg A \rightarrow B)$ 知:

$$\Gamma \vdash \neg \forall v \neg A \rightarrow B$$

• 也即:

$$\Gamma \vdash \exists vA \rightarrow B$$

再由已知条件Γ⊢∃vA知: Γ⊢B

定理10应用

例5: 证明 $\vdash \exists v(A \rightarrow B) \rightarrow (A \rightarrow \exists vB)$, 其中v在A中无自由出现。

证明:

(1)
$$\exists v(A \to B), A \vdash \exists v(A \to B) \ (\in)$$

(2) $\exists v(A \rightarrow B), A, A \rightarrow B \vdash A$ (\in)

(3)
$$\exists v(A \rightarrow B), A, A \rightarrow B \vdash A \rightarrow B \quad (\in)$$

- (4) $\exists v(A \to B), A, A \to B \vdash B$ (2)(3)($\to -$)
- (5) $B \rightarrow \exists vB$ FC中定理2

在FC的证明中ND, PC,FC的公理,

推理规则都可以用!

定理10 (定理5.2.10) : (存在消除)设 Γ 为FC中的

任一公式集合,A,B为FC中的任意两个公式,并且变元v在 Γ 的任何公式以及公式B中无自由出现,那么:

由 $\Gamma \vdash \exists v A$ 以及 $\Gamma ; A \vdash B$ 可以推出 $\Gamma \vdash B$

- (6) $\exists v(A \rightarrow B), A, A \rightarrow B \vdash \exists vB$ (4)(5)rmp分离规则
- (7) $\exists v(A \to B), A \vdash \exists vB$ (6)(1)用FC中定理10
- (8) $\exists v(A \rightarrow B) \vdash A \rightarrow \exists vB$ 对 (7)用演绎定理6
- $(9) \vdash \exists v(A \rightarrow B) \rightarrow (A \rightarrow \exists vB)$ 对 (8)用演绎定理6

FC的基本定理

定理6 (定理5.2.6): (演绎定理)设 Γ 对于FC中的任一公式集合,A,B为

*FC*中的任意两个公式,那么: Γ ; $A \vdash B$ 当且仅当 $\Gamma \vdash A \to B$ ✓

定理7 (定理5.2.7) : Γ 为FC中的任一公式集合,A,B为FC中的任意两个公式,

那么: Γ ; $A \vdash \neg B$ 当且仅当 Γ ; $B \vdash \neg A \checkmark$

定理8 (定理5.2.8): (反证法) 如果FC中的公式集合 $\Gamma \cup \{A\}$ 是不一致的,

那么: $\Gamma \vdash \neg A \checkmark$

定理9(定理5.2.9):设 Γ 为FC中的任一公式集合,A,B为FC中的任意两个公式,并且变元v不在 Γ 的任何公式里面自由出现,那么:

 Γ ; $A \vdash B$ 蕴含 Γ ; $\forall xA \vdash B$ 和 Γ ; $\forall xA \vdash \forall xB \checkmark$

定理10 (定理5.2.10): (存在消除)设 Γ 为FC中的任一公式集合,A,B为

FC中的任意两个公式,并且变元v不在 Γ 的任何公式里面自由出现,那么:

由 Γ ⊢ ∃vA以及 Γ ; A ⊢ B可以推出 Γ ⊢ B \checkmark

FC的基本定理

定理11 (定理5.2.11): (替换原理) 设 A, B 为 FC 中的公式,且满足 $A \vdash \exists B$

 $A \in C$ 的子公式, $D \in A$ 的若干出现换为公式B得到的公式,则 $C \vdash A$ D。

定理12 (定理5.2.12): (改名定理)在FC中,若A 是A的改名式,且A 改用的

变元不在A中出现,则 $A \vdash \dashv A$ 。

定理13 (定理5.2.13)

- (1) $\exists x \neg A \vdash \neg \neg \forall x A$
- (2) $\forall x \neg A \vdash \neg \exists x A$

定理14 (定理5.2.14)

- (1) $\forall x(A \land B) \vdash \dashv \forall xA \land \forall xB$
- (2) $\exists x(A \lor B) \vdash \exists xA \lor \exists xB$

定理15 (定理5.2.15)

- (1) $\exists x(A \land B) \vdash \exists xA \land \exists xB$
- (2) $\forall x A \lor \forall x B \vdash \forall x (A \lor B)$
- (3) $\exists x \forall y B(x, y) \vdash \forall y \exists x B(x, y)$

定理11 (定理5.2.11) : (替换原理) 设A, B为FC中的公式,且

满足 $A \vdash \vdash B$ (即 $A \vdash B \sqsubseteq B \vdash A$), $A \not\models C$ 的子公式, $D \not\models B \not\vdash A$

的若干出现换为公式B得到的公式,则 $C \vdash \vdash D$ 。

例6: $\forall x(A \rightarrow B) \vdash \exists xA \rightarrow \exists xB$ 。

证明:

(1) $A \rightarrow B \vdash \neg \neg A$ PC中定理13和公理3

(2) $\forall x(A \rightarrow B) \vdash \exists \forall x(\neg B \rightarrow \neg A)$ 对 (1) 用替换原理

- $(3) \ \forall x(\neg B \to \neg A) \to (\forall x \neg B \to \forall x \neg A) \ \triangle 25$
- (4) $\forall x(A \rightarrow B) \vdash \forall x \neg B \rightarrow \forall x \neg A$ (2) (3) 用rmp分离规则
- (5) $\forall x \neg B \rightarrow \forall x \neg A \vdash \neg \forall x \neg A \rightarrow \neg \forall x \neg B$ PC中定理13
- (6) $\forall x(A \rightarrow B) \vdash \neg \forall x \neg A \rightarrow \neg \forall x \neg B$ (4) (5) 用rmp分离规则
- $(7) \ \forall x(A \to B) \vdash \exists xA \to \exists xB$ 定义式

定理12 (定理5.2.12): (改名定理)在FC中,若A'是A的改名式,且A'改用

的变元不在A中出现,则 $A \vdash \vdash A'$

例如: $\forall xA \vdash \dashv \forall yA_y^x$

```
定理13 (定理5.2.13):
```

- (1) $\exists x \neg A \vdash \dashv \neg \forall x A$
- (2) $\forall x \neg A \vdash \neg \exists x A$

证明: 先证 $\exists x \neg A \vdash \neg \forall x A$

- (1) $A \rightarrow \neg \neg A$ PC 中的定理12
- (2) ∀x(A → ¬¬A) 对 (1) 用全称推广定理4
- (3) $\forall x(A \rightarrow \neg \neg A) \rightarrow (\forall xA \rightarrow \forall x\neg \neg A)$ 公理5
- (4) $\forall xA \rightarrow \forall x \neg \neg A$ (2) (3) 用rmp分离规则
- (5) $(\forall xA \rightarrow \forall x \neg \neg A) \rightarrow (\neg \forall x \neg \neg A \rightarrow \neg \forall xA)$ PC中的定理13
- (6) $\neg \forall x \neg \neg A \rightarrow \neg \forall x A$ (4) (5) 用rmp分离规则
- (7) $\exists x \neg A \rightarrow \neg \forall x A$ 定义式
- (8) ∃*x*¬*A* ⊢ ¬∀*xA* 对 (7) 演绎定理6

```
定理13 (定理5.2.13):
```

- (1) $\exists x \neg A \vdash \dashv \neg \forall x A$
- (2) $\forall x \neg A \vdash \neg \exists x A$

证明: 再证 $\neg \forall xA \vdash \exists x \neg A$

- (1) $\neg \neg A \rightarrow A$ PC 中的定理10
- (2) $\forall x(\neg \neg A \rightarrow A)$ 对(1)用全称推广定理4
- (3) $\forall x(\neg \neg A \rightarrow A) \rightarrow (\forall x \neg \neg A \rightarrow \forall x A)$ 公理5
- (4) $\forall x \neg \neg A \rightarrow \forall x A$ (2) (3) 用rmp分离规则
- (5) $(\forall x \neg \neg A \rightarrow \forall x A) \rightarrow (\neg \forall x A \rightarrow \neg \forall x \neg \neg A)$ PC中的定理13
- (6) $\neg \forall x A \rightarrow \neg \forall x \neg \neg A$ (4) (5) 用rmp分离规则
- (7) ¬ $\forall xA \rightarrow \exists x\neg A$ 定义式
- (8) ¬∀*xA* ⊢ ∃*x*¬*A* 对 (7) 演绎定理6

```
定理14 (定理5.2.14):
```

- (1) $\forall x(A \land B) \vdash \dashv \forall xA \land \forall xB$
- (2) $\exists x(A \lor B) \vdash \exists xA \lor \exists xB$

证明: 先证 $\forall x(A \land B) \vdash \forall xA \land \forall xB$

- (1) $\forall x(A \land B) \rightarrow A \land B$ FC中的定理1
- (2) $\forall x(A \land B) \vdash A \land B$ 对 (1) 用演绎定理6
- $(3) \ \forall x(A \land B) \vdash A \qquad (2) \quad (\land -)$
- $(4) \ \forall x(A \land B) \vdash B \qquad (2) \quad (\land -)$
- (5) $\forall x(A \land B) \vdash \forall xA$ 对(3) 用全称推广定理5
- (6) $\forall x(A \land B) \vdash \forall xB$ 对(4) 用全称推广定理5
- $(7) \quad \forall x (A \land B) \vdash \forall x A \land \forall x B \quad (5) \quad (6) \quad (\land +)$

```
定理14 (定理5.2.14) :

(1) \ \forall x(A \land B) \vdash \exists xA \land \forall xB
(2) \ \exists x(A \lor B) \vdash \exists xA \lor \exists xB

证明: 再证\forall xA \land \forall xB \vdash \forall x(A \land B)
(1) \ \forall xA \land \forall xB \vdash \forall xA \land \forall xB \ (\in)
(2) \ \forall xA \land \forall xB \vdash \forall xA \ (1) \ (\land -)
```

(6) $\forall x A \land \forall x B \vdash A$ (2) (4) 用rmp分离规则

(7) $\forall x A \land \forall x B \vdash B$ (3) (5) 用rmp分离规则

(9) $\forall x A \land \forall x B \vdash \forall x (A \land B)$ 对(8)用全称推广定理5

(8) $\forall x A \land \forall x B \vdash A \land B$ (6) (7) (\(\lambda\)+)

(3) $\forall x A \land \forall x B \vdash \forall x B$ (1) $(\land -)$

(4) $\forall xA \rightarrow A$ FC中的定理1

(5) $\forall xB \rightarrow B$ FC中的定理1

```
定理15 (定理5.2.15)
                                (1) \exists x(A \land B) \vdash \exists xA \land \exists xB
                                (2) \forall x A \lor \forall x B \vdash \forall x (A \lor B)
                                (3)
                                       \exists x \forall y B(x,y) \vdash \forall y \exists x B(x,y)
                                                           定理10 (定理5.2.10): (存在消除)设\Gamma为FC中的
证明:
                                                           任一公式集合,A,B为FC中的任意两个公式,并且变
                                                           元v在\Gamma的任何公式以及公式B中无自由出现,那么:
         \exists x (A \land B), A \land B \vdash A \land B
                                              (∈)
                                                                   由\Gamma \vdash \exists v A以及\Gamma; A \vdash B可以推出\Gamma \vdash B
         \exists x (A \land B), A \land B \vdash A
                                              (1) (\wedge -)
  (3) \exists x (A \land B), A \land B \vdash B
                                         (1) \quad (\wedge -)
 (4) A \rightarrow \exists x A
                                               FC中的定理2
         \exists x(A \land B), A \land B \vdash \exists xA (2) (4) 用rmp分离规则
  (5)
                                             FC中的定理2
  (6) B \rightarrow \exists x B
         \exists x(A \land B), A \land B \vdash \exists xB (3) (6) 用rmp分离规则
        \exists x (A \land B), A \land B \vdash \exists x A \land \exists x B  (5) (7) (\(\lambda\+)
 (9) \ \exists x(A \land B) \vdash \exists x(A \land B) \ (\in)
```

(10) $\exists x(A \land B) \vdash \exists xA \land \exists xB$ 对(9) 和(8) 用存在消除定理10

FC的基本定理

定理11 (定理5.2.11): (替换原理) 设 A, B 为 FC 中的公式,且满足 $A \vdash \exists B$

A是C的子公式,D是将C中A的若干出现换为公式B得到的公式,则C ⊢¬ D 。 \checkmark

定理12(定理5.2.12): (改名定理)在FC中,若A 是A的改名式,且A 改用的

变元不在A中出现,则A ⊢⊣ A′。 \checkmark

定理13 (定理5.2.13) : (1) ∃ $x \neg A \vdash \neg \neg \forall x A$ (2) $\forall x \neg A \vdash \neg \neg \exists x A \checkmark$

定理14 (定理5.2.14) : √

- (1) $\forall x(A \land B) \vdash \dashv \forall xA \land \forall xB$
- (2) $\exists x(A \lor B) \vdash \dashv \exists xA \lor \exists xB$

定理15 (定理5.2.15) √

- (1) $\exists x(A \land B) \vdash \exists xA \land \exists xB$
- (2) $\forall x A \lor \forall x B \vdash \forall x (A \lor B)$
- (3) $\exists x \forall y B(x, y) \vdash \forall y \exists x B(x, y)$