Тема: Квадратурные формулы Гаусса.

 1^0 . Максимально возможный алгебраический порядок точности квадратурной формулы на отрезке. 2^0 . Полиномы Лежандра: определение, ортогональность, рекуррентные соотношения. Лемма о корнях полинома Лежандра заданной степени. 3^0 . Интерполяционная квадратурная формула с n узлами в корнях полинома Лежандра: конструкция, точность на полиномах степени 2n-1. Определение формулы Гаусса. 4^0 . Свойства формулы Гаусса: симметричность узлов, веса и узлы при малых n. Усложненная (составная) формула Гаусса. Представление погрешности. 5^0 . Сравнение формулы Гаусса с формулой Симпсона. 6^0 . Метод Монте — Карло для вычисления интегралов.

 3^0 . Вернемся к интерполяционной квадратурной формуле

$$\int\limits_{-1}^{1}f(x)dx=\sum\limits_{j=1}^{N}c_{j}f(x_{j}), \qquad \qquad (CF_{N})$$

узлы x_j , $j=1,2,\ldots,N$, которой выбраны в корнях полинома Лежандра $X_N(x)$ степени N.

По доказанной лемме о корнях полиномов

Лежандра все числа x_j , $j=1,2,\ldots,N$, вещественны и расположены в интервале (-1,1).

Веса рассматриваемой квадратурной формулы определяются равенствами

$$c_{j} = \int_{-1}^{1} l_{N-1,j}(x) dx, \quad j = 1, 2, \dots, N.$$

Подынтегральный полином $l_{N-1,j}(x)$ степени (N-1) здесь задается как следующее от-

ношение:

$$\frac{(x-x_1)\dots(x-x_{j-1})(x-x_{j+1})\dots(x-x_N)}{(x_j-x_1)\dots(x_j-x_{j-1})(x_j-x_{j+1})\dots(x_j-x_N)}.$$

Заметим еще, что

Теорема. Квадратурная формула

$$\int_{-1}^{1} f(x)dx \approx \sum_{j=1}^{N} c_j f(x_j) \tag{G}$$

с узлами в корнях x_j полинома Лежандра степени N и весами c_j , определяемыми как интегралы от базисных полиномов $l_{N-1,j}(x)$,

то есть равенствами

$$c_{j} = \int\limits_{-1}^{1} l_{N-1,j}(x) dx, \quad j = 1, 2, \dots, N,$$

точна для полиномов степени 2N-1.

 \mathcal{A} оказательство. Пусть $P_{2N-1}(x)$ — это про-извольный алгебраический полином степени (2N-1). Разделим его с остатком на полином

Лежандра $X_{N}(x)$, то есть получим равенство

$$P_{2N-1}(x) = U_{N-1}(x)X_N(x) + V_{N-1}(x).$$

Здесь $U_{N-1}(x)$ — это частное от деления, которое является полиномом степени (N-1). Остаток от деления $V_{N-1}(x)$ — это также полином степени (N-1).

Полином Лежандра $X_{N}(x)$ ортогонален любому полиному меньшей степени. Следова-

тельно, справедливо равенство

$$\int_{-1}^{1} U_{N-1}(x) X_{N}(x) dx = 0.$$

Учитывая это и интегрируя полином $P_{2N-1}(x)$, получаем равенство

$$\int_{-1}^{1} P_{2N-1}(x) dx = \int_{-1}^{1} V_{N-1}(x) dx.$$

Далее, учитывая, что $X_{oldsymbol{N}}(x_{oldsymbol{j}})=0$, $j=1,2,\ldots,N$,

приходим к следующим соотношениям:

$$\sum_{j=1}^{N} c_{j} P_{2N-1}(x_{j}) =$$

$$= \sum_{j=1}^{N} c_{j} U_{N-1}(x_{j}) X_{N}(x_{j}) + \sum_{j=1}^{N} c_{j} V_{N-1}(x_{j}) =$$

$$=\sum_{j=1}^{N}c_{j}V_{N-1}(x_{j}).$$

Но рассматриваемая квадратурная формула — интерполяционная и поэтому точна на всех алгебраических полиномах степени $\leq N-1$. Следовательно,

$$\int_{-1}^{1} P_{2N-1}(x)dx - \sum_{j=1}^{N} c_{j}P_{2N-1}(x_{j}) = 0$$

$$=\int\limits_{-1}^{1}V_{N-1}(x)dx-\sum\limits_{j=1}^{N}c_{j}V_{N-1}(x_{j})=0.$$

Таким образом, рассматриваемая квадратурная формула действительно точна для всех полиномов степени не выше 2N-1.

Определение. Интерполяционная квадратурная формула (CF_N) с узлами в корнях полинома Лежандра степени N называется формулой Гаусса. Таким образом, формула Гаусса с N узлами точна для полиномов степени 2N-1, то есть точна для полиномов максимально возможной степени.

В частности, проведенные построения доказывают, что максимально возможный алгебраический порядок точности d(N) квадратурной формулы с N узлами на отрезке числовой прямой равен 2N-1, то есть d(N)=2N-1. 4^0 . Узлы квадратурной формулы Гаусса расположены на интервале (-1,1) симметрично относительно точки x=0.

Веса c_j формулы Гаусса положительны. В симметричных узлах веса совпадают при любом N. Сумма весов квадратурной формулы Гаусса равна 2, то есть длине отрезка интегрирования.

В качестве примера приведем численные выражения неотрицательных узлов и соответствующих им весов c_j формулы Гаусса для N=1,2,3,4 с десятью десятичными знаками после запятой.

$$N=1 \Rightarrow egin{array}{l} x_1 = 0.0000000000, \ c_1 = 2.0000000000; \end{array}$$

$$N=2\Rightarrow egin{array}{c} x_1=0.5773502692, \ c_1=1.0000000000; \end{array}$$

Неудобство формулы Гаусса в общем случае– это иррациональность ее узлов и весов.

В частном случае N=1 формула Гаусса совпадает с канонической квадратурной формулой прямоугольников для отрезка [-1,1].

Формулу Гаусса с N узлами на отрезке [-1,1] называют иногда **канонической**.

Усложненная квадратурная формула Гаусса на произвольном отрезке [a,b] конструируется следующим образом.

Отрезок [a,b] разбивается на M равных частей точками

$$egin{cases} X_k^*=a+krac{b-a}{M}, & k=0,1,2,\ldots,M-1,\ X_M^*=b. \end{cases}$$

Затем на каждом из интервалов (X_k^*, X_{k+1}^*) задаются N точек с помощью равенства

$$x_{kj} = rac{X_k^* + X_{k+1}^*}{2} + x_j rac{b-a}{2M}, \quad j = 1, 2, \dots, N.$$

Здесь x_j — узлы канонической формулы Гаусса на отрезке [-1,1].

Расположение узлов усложненной формулы

$$x_{oldsymbol{k} oldsymbol{j}}, \quad j=1,2,\ldots,N,$$

на каждом частичном отрезке $[X_k^*, X_{k+1}^*]$ геометрически подобно расположению узлов x_j канонической формулы Гаусса на [-1,1].

Следовательно, квадратурная формула по каждому частичному отрезку

$$egin{aligned} X_{k+1}^* \ \int\limits_{X_k^*}^* f(x) dx &pprox rac{b-a}{2M} \sum\limits_{j=1}^N c_j f(x_{kj}), \ X_k^* \end{aligned} \qquad (G_k)$$

где c_j — это веса канонической формулы Гаусса, точна для полиномов степени 2N-1.

Суммируя равенства (G_k) по всем k от 0 до

M-1, получаем в итоге усложненную формулу Гаусса

$$\int_{a}^{b} f(x)dx pprox rac{b-a}{2M} \sum_{j=1}^{N} c_{j} \sum_{k=0}^{M-1} f(x_{kj}),$$

точную для всех полиномов степени $\leq 2N-1$.

Усложненная квадратурная формула Гаусса имеет всего $N\cdot M$ узлов, а ее погрешность

определяется равенством

$$R_{m{N}}(f) = \int\limits_a^b f(x)\,dx - rac{b-a}{2M} \sum_{j=1}^N c_j \sum_{k=0}^{M-1} f(x_{kj}).$$

При условии, что f(x) принадлежит классу $C^{(2N)}[a,b]$, остаток $R_N(f)$ допускает следующее представление:

$$R_{N}(f) = rac{(b-a)^{2N+1}}{M^{2N}} rac{ig(N!ig)^{4}}{ig((2N)!ig)^{3}(2N+1)} f^{ig(2Nig)}(\xi).$$

Здесь ξ — это некоторая точка из отрезка интегрирования [a,b].

В частности, при N=2 получаем

$$R_2(f) = \frac{(b-a)^5}{4320 \cdot M^4} f^{(4)}(\xi),$$

а при N=3 имеем

$$R_3(f) = \frac{(b-a)^7}{2016000 \cdot M^6} f^{(6)}(\xi).$$

 5^0 . Сравним погрешность усложненной квадратурной формулы Гаусса при N=2 и с числом 2M промежуточных отрезков интегрирования с погрешностью усложненной квадратурной формулы Симпсона и с числом узлов 2M и с шагом $h=\frac{b-a}{2M}$.

При условии, что f(x) принадлежит классу $C^{(4)}[a,b]$, остаточный член $R_S(f)$ формулы Симпсона представим в виде

$$R_S(f) = -h^4 \frac{b-a}{180} f^{(4)}(\xi) = -\frac{(b-a)^5}{2880 \cdot M^4} f^{(4)}(\xi).$$

Таким образом, числовой сомножитель перед четвертой производной функции в представлении остатка $R_S(f)$ формулы Симпсона по модулю в 1.5 раза больше, чем модуль сомножителя перед $f^{(4)}(\xi)$ в представлении погрешности $R_2(f)$ усложненной формулы Гаусса.

Обе формулы точны на полиномах третьей степени. В формуле Симпсона требуется вычислить (2M+1) значение функции, а в усложненной формуле Гаусса требуется найти (2M) значений функции.

Квадратурную формулу Гаусса целесообразно применять при N>2 для приближенного вычисления интегралов от функций с высокой гладкостью.

 6^0 . Пусть функция f = f(x) определена на числовой прямой, причем на отрезке [0,1] эта функция такова, что определен интеграл

$$I = \int\limits_0^1 f(x) dx,$$

который может быть и несобственным. При этом на отрезке [0,1], как предполагается, может быть лишь конечное число особых точек, в которых f(x) неограничена.

Условимся, что во всех особых точках функция f(x) равна нулю.

Помимо прочих условий, предполагается также, что функция f(x) принадлежит классу $L_2[0,1]$, то есть

$$\int_{0}^{1} |f(x)|^{2} dx < +\infty.$$

В этом случае для подсчета интеграла I используется метод Монте-Карло.

При реализации этого вероятностного подхода рассматривается случайная величина η , равномерно распределенная на отрезке [0,1].

Это означает, что соответствующая случайной величине η функция распределения име-

ет плотность

$$P_{oldsymbol{\eta}}(x) = egin{cases} 1 & ext{при} & 0 \leq x \leq 1; \ 0 & ext{при} & x < 0 & ext{И} & x > 1. \end{cases}$$

Суперпозиция функции $f(\cdot)$ со случайной величиной η также представляет собой случайную величину $\xi = f(\eta)$.

Математическое ожидание $M[\xi]$ этой величины в соответствии со своим определением

удовлетворяет равенству

$$M[\xi] = \int\limits_0^1 f(x) P_{oldsymbol{\eta}}(x) dx = \int\limits_0^1 f(x) dx = I.$$

Таким образом, подсчет интеграла I равнозначен вычислению математического ожидания $M[\xi]$ случайной величины $\xi = f(\eta)$. Для того чтобы подсчитать $M[\xi]$, предлагается провести серию из N независимых испытаний случайной величины η .

Пусть результаты этих испытаний — это числа (величины) $\eta_1,\,\eta_2,\,\dots,\,\eta_N$. Тогда рассмотрим соответствующие им значения случайной величины ξ , то есть числа

$$\xi_1 = f(\eta_1), \quad \xi_2 = f(\eta_2), \quad \dots, \quad \xi_N = f(\eta_N).$$

Среднее арифметическое этих чисел используем в приближенном равенстве

$$M[\xi]pprox rac{\xi_1+\xi_2+\ldots+\xi_N}{N} = rac{1}{N}\sum_{j=1}^N f(\eta_j) \equiv \overline{\xi_N}.$$

Иными словами, для подсчета интеграла *I* предлагается использовать следующую квадратурную формулу с равными весами и со

случайно подсчитанными узлами:

$$\int\limits_{0}^{1}f(x)\,dxpproxrac{1}{N}\sum\limits_{j=1}^{N}f(\eta_{j}). \hspace{1.5cm} (CF\eta)$$

Заметим, что $\xi_j = f(\eta_j)$ — это такая случайная величина, для которой справедливы равенства $M[\xi_j] = M[\xi] = I$. Следовательно,

$$M\left[rac{1}{N}\sum_{j=1}^{N}\xi_{j}
ight] = rac{1}{N}\sum_{j=1}^{N}M[\xi_{j}] = rac{NI}{N} = I.$$

Сосчитаем дисперсию σ случайной величины $\xi = f(\eta)$. Имеем по определению

$$\sigma^2=D[\xi]=D[f(\eta)]=\int\limits_0^1ig|f(x)-M[f]ig|^2dx=0$$

$$=\int\limits_0^1 f^2(x)dx-ig(M[f]ig)^2<+\infty.$$

Из условия на функцию f следует, что вели-

чина σ конечна и таким образом, справедливы равенства

$$D[\overline{\xi_N}] = rac{1}{N^2} \sum_{j=1}^N D[\xi_j] = rac{N\sigma^2}{N^2} = rac{\sigma^2}{N}.$$

В силу **центральной предельной теоремы** распределение случайной величины $\overline{\xi_N}$ при $N \to \infty$ стремится к нормальному.

Поэтому при достаточно больших N (практически при N>10) и согласно формулам

$$M[\overline{\xi_N}] = I, ~~ D[\overline{\xi_N}] = rac{\sigma^2}{N}$$

вероятность того события, что

$$|I - \overline{\xi_N}| < 3\frac{\sigma}{\sqrt{N}} \tag{E*}$$

равна приблизительно 0.997. Таким образом, оценка (E_*) погрешности квадратурной формулы (CF_{η}) верна с вероятностью 0.997, весьма близкой к единице.

На практике при N>10 для оценки σ в правой части неравенства неравенства (E_*) используют приближенное равенство

$$\sigma pprox \sqrt{rac{1}{N-1}\sum_{j=1}^{N}\left(\xi_{j}-\overline{\xi_{N}}
ight)^{2}}.$$

Отметим, что случайные числа (величины), равномерно распределенные на отрезке [0,1],

задаются в современных компьютерах с помощью специальных физических датчиков и программ. При применении программ эти числа называются псевдослучайными.

Недостатком метода Монте-Карло является вероятностный характер результата, то есть отсутствие строгих стремящихся к нулю оценок погрешности при $N \to \infty$.

Тема: Численные методы решения задачи Коши для ОДУ

 1^0 . Дифференциальная постановка задачи Коши для уравнения первого порядка. 2^0 . Базовые понятия сеточных методов на отрезке. Лемма об оценке сеточных функций. 3^0 . Метод Эйлера: расчетные формулы, геометрическая интерпретация. 4^0 . Оценка устойчивости метода Эйлера, порядок точности относительно шага сетки. 5^0 . Методы Рунге — Кутта: расчетные формулы, порядок точности (локальный и глобальный). Усовершенствованный метод Эйлера: расчетные формулы, аппроксимационные свойства. 6^0 . Методы Рунге — Кутта четвертого порядка точности.

1⁰. Рассмотрим некоторые численные методы решения задач для обыкновенных дифференциальных уравнений первого порядка.

Пусть имеется следующее обыкновенное диф-ференциальное уравнение (ОДУ):

$$u' = f(x, u). (E)$$

Его решение — функция u=u(x), определенная на отрезке $x_0 \leq x \leq x_0 + l$ числовой прямой.

При этом график u(x) содержится в некотором прямоугольнике вида

$$\overline{G} = ig\{ (x,u) \in \mathbb{R}^2 \mid x_0 \leq x \leq x_0 + l, \quad a \leq u \leq b ig\}.$$

К уравнению (E) добавим условие Коши в начальной точке отрезка:

$$u(x_0) = u_0. (Ic)$$

По условию $a < u_0 < b$. Предполагаем, что решение задачи Коши, состоящей из уравнения (E) и начальных данных (Ic), существует, единственно и расположено в замкнутом прямоугольнике \overline{G} .

Для численного решения поставленной задачи Коши используются различные методы, среди которых выделяются метод Эйлера, методы Рунге-Кутта и метод Адамса.

Изложим далее основные идеи этих методов и приведем соответствующие расчетные формулы.

 2^0 . Приближения к решению u=u(x) задачи Коши (E)-(Ic) принято искать на конечном подмножестве отрезка $[x_0,x_0+l]$.

Точки этого конечного подмножества называют узлами, в совокупности узлы образуют множество ω_h , называемое сеткой метода.

Выберем в качестве узлов равноотстоящие друг от друга точки, задаваемые равенством

$$x_j = x_0 + jh, \quad j = 0, 1, 2, \dots, N; \quad Nh = l.$$

Здесь N — натуральное число, $x_N = x_0 + l$. Таким образом, узлы x_j разбивают отрезок $[x_0, x_0 + l]$ на N равных частей, каждая длины $h = \frac{l}{N}$.

Каждому узлу x_j сопоставим вещественное число φ_j , то есть зададим некоторое соответствие

$$x_j\mapsto arphi_j, \quad j=0,1,2,\ldots,N,$$

из ω_h в \mathbb{R} . Вектор

$$(\varphi_0, \varphi_1, \varphi_2, \dots, \varphi_N) = \overrightarrow{\varphi_h}$$

называют сеточной функцией. Совокупность \mathbb{U}_h всех таких векторов образует векторное пространство, изоморфное \mathbb{R}^{N+1} .

Суммой двух сеточных функций φ_h и ψ_h из \mathbb{U}_h называется сеточная функция, получаемая суммированием в \mathbb{R}^{N+1} соответствующих векторов $\overrightarrow{\varphi_h}$ и $\overrightarrow{\psi_h}$.

Произведение сеточной функции на скаляр $\lambda \longrightarrow \lambda \longrightarrow \lambda \oplus \lambda$ из \mathbb{R}^{N+1} .

Введем в линейном пространстве \mathbb{U}_h сеточ-

ных функций следующую основную норму:

$$\|\varphi_h\|_h = \|\varphi\|_h = \max_{0 \le j \le N} |\varphi_j|.$$

Пусть решение u=u(x) задачи Коши $({\color{blue} E})$ - $({\color{blue} Ic})$ определено на отрезке $[x_0,x_0+l].$

Тогда оно известно также и в узлах x_j сетки ω_h , то есть определена сеточная функция

$$\overrightarrow{u_h} = \big(u(x_0), u(x_1), u(x_2), \dots, u(x_N)\big).$$

Под нормой $\|u\|_h$ подразумевается норма соответствующей сеточной функции u_h в пространстве \mathbb{U}_h , то есть

$$\|u\|_{h} = \max_{0 \leq j \leq N} |u(x_j)|.$$

Для оценки погрешностей приближений к решению u=u(x) задачи Коши нам понадобится следующее утверждение.

Лемма. Пусть $\alpha>0$, $\beta\geq0$, $\varepsilon_0=0$ и при этом для $j=0,1,2,\ldots,N-1$ справедливы неравенства

$$|\varepsilon_{j+1}| \le (1+\alpha)|\varepsilon_j| + \beta.$$
 (Es₀)

Тогда справедлива и следующая оценка:

$$|arepsilon_{oldsymbol{k}}| \leq eta rac{e^{oldsymbol{k}lpha}-1}{lpha}, \hspace{0.5cm} k=0,1,2,\ldots,N. \hspace{1.5cm} (Es)$$

 \mathcal{L} оказательство. Применим метод математической индукции. При k=0 оценка (Es) при-

нимает вид $|arepsilon_0| \leq 0$, то есть верна в силу условия $arepsilon_0 = 0$.

Предположим, что $({\color{blue}Es})$ выполнена при некотором k=m, то есть

$$|\varepsilon_m| \leq \beta \frac{e^{m\alpha} - 1}{\alpha}.$$

Тогда при k=m+1 имеем в силу условия (Es_0) и индуктивного предположения:

$$|\varepsilon_{m+1}| \leq (1+\alpha)|\varepsilon_m| + \beta \leq (1+\alpha)\frac{\beta}{\alpha}(e^{m\alpha}-1) + \beta.$$

Преобразуя выражение в правой части, име-ем далее

$$ert arepsilon_{m+1} ert \leq rac{eta}{lpha}(e^{mlpha}-1) + eta(e^{mlpha}-1) + eta =$$
 $= rac{eta}{lpha}(e^{mlpha}-1) + eta e^{mlpha} = eta[rac{e^{mlpha}-1}{lpha} + e^{mlpha}] =$
 $= rac{eta}{lpha}[e^{mlpha}-1 + lpha e^{mlpha}] = rac{eta}{lpha}[(1+lpha)e^{mlpha}-1].$

Учитывая, что при lpha>0 имеет место нера-

венство $(1+\alpha) < e^{\alpha}$, получаем далее

$$|\varepsilon_{m+1}| \leq \frac{\beta}{\alpha} [e^{\alpha}e^{m\alpha} - 1] = \frac{\beta}{\alpha} (e^{(m+1)\alpha} - 1).$$

Таким образом, искомая оценка $({\it Es})$ при k=m+1 также справедлива.

 3^0 . Перейдем к формулировке различных сеточных методов, применяемых для численного решения задачи Коши (E)-(Ic).

Прежде всего условимся о классе, которому должна принадлежать функция f(x,u) из правой части уравнения (E).

Предположим, что f(x,u) принадлежит пространству $C^{(m)}(\overline{G})$, где \overline{G} — определенный ранее замкнутый прямоугольник

$$\overline{G} = [x_0, x_0 + l] \times [a, b].$$

Известна следующая теорема, доказываемая в теории ОДУ.

Теорема. Пусть f = f(x,u) имеет в \overline{G} непрерывные производные до порядка m включительно, $m \geq 1$. Тогда всякое решение u = u(x) уравнения u' = f(x,u), расположенное в \overline{G} , имеет (m+1) непрерывную производную по переменной x.

В случае, если f(x,u) принадлежит классу

 $C^{\left(1
ight)}(\overline{G})$, решение задачи Коши

$$u'=f(x,u), \quad u(x_0)=u_0$$

единственно и принадлежит классу $C^{(2)}(\overline{G})$.

Пользуясь равенством

$$u' = f(x, u) \quad \forall x \in [x_0, x_0 + l],$$

несложно выразить в терминах функции f(x,u) и ее частных производных вторую производную решения:

$$u''(x) = \frac{\partial f}{\partial x}(x, u(x)) + \frac{\partial f}{\partial u}(x, u(x)) \frac{du}{dx} =$$

$$= \frac{\partial f}{\partial x}(x, u(x)) + \frac{\partial f}{\partial u}(x, u(x)) \cdot f(x, u(x)). (D'')$$

Отметим, что при выборе метода численного приближения существенны свойства глад-кости искомой функции u=u(x).

Кроме того свойства гладкости решения дифференциальной задачи весьма интенсивно используются при анализе погрешности численного решения этой же задачи.

Первым рассмотрим метод Эйлера. В качестве приближения к решению задачи Коши на сетке ω_h используется сеточная функция,

значения которой в точках сетки ω_h вычисляются по формулам

$$egin{cases} y_0 = u_0, \ y_{j+1} = y_j + h f(x_j, y_j), \ j = 0, 1, 2, \dots, N-1. \end{cases}$$
 (Eu₁)

Пусть сеточная функция $y_h = (y_0, y_1, \dots, y_N)$ содержится в прямоугольнике \overline{G} , то есть

$$a \leq y_j \leq b, \quad j = 0, 1, 2, \dots, N.$$

Переход по формулам (Eu_1) от значения y_j к значению y_{j+1} геометрически означает перемещение по касательной к интегральной кривой $\widetilde{u_j}(x)$ уравнения y'=f(x,y).

Касательная проходит через точку (x_j, y_j) , а перемещение по ней происходит в направлении оси Ox на шаг h.

На следующем шаге перемещение происходит из точки (x_{j+1},y_{j+1}) в точку касательной

к другой интегральной кривой $\widetilde{u_{j+1}}(x)$ того же уравнения. Интегральная кривая $\widetilde{u_{j+1}}(x)$ проходит через точку $(x_{j+1},y_{j+1}).$

При этом начальной точкой, с которой начинается построение, служит точка (x_0,y_0) , где $y_0=u_0$. Итог построения — ломаная, проходящая через точки (x_j,y_j) плоскости и лежащая в прямоугольнике \overline{G} .

 4^0 . Оценим, насколько формулы (Eu_1) метода Эйлера устойчивы к погрешностям округлений.

Для этого вместо формул (Eu_1) рассмотрим следующие возмущенные к ним:

$$egin{cases} y_0 = u_0, \ y_{j+1} = y_j + hf(x_j, y_j) + \eta_j, \ j = 0, 1, 2, \dots, N-1. \end{cases}$$

Пусть сеточная функция $\eta_h = (\eta_0, \eta_1, \dots, \eta_N),$ характеризующая возмущение, удовлетворяет условию

$$\|\eta\|_h = \max_{0 \le j \le N} |\eta_j| \le C_0 h^2,$$

где C_0 — постоянная, не зависящая от h.

Введем обозначения $arepsilon_j = u_j - y_j$, где $u_j = u(x_j)$, а u = u(x) — решение исходной задачи Коши.

Используем в дальнейших оценках следующий набор констант, характеризующих количественно функцию f(x,u) из (E):

$$M_0 = \max_{(x,u) \in \overline{G}} |f(x,u)|,$$

$$M_1 = \max_{(x,u) \in \overline{G}} \left| rac{\partial f}{\partial x}(x,u)
ight|;$$

$$M_2 = \max_{(x,u) \in \overline{G}} \left| \frac{\partial f}{\partial u}(x,u) \right|.$$

Предполагаем далее, что число M_2 строго положительно.

Если же $M_2=0$, то функция f(x,u) не зависит от переменной u внутри прямоугольника G, то есть f(x,u)=f(x) и поиск решения задачи Коши сводится к вычислению первообразной функции одной переменной.

Для точного решения u=u(x) задачи Коши согласно формуле Тейлора имеем

$$egin{cases} u_0 = u_0, \ u_{j+1} = u_j + hf(x_j, u_j) + rac{h^2}{2} u''(\xi_j), \end{cases}$$
 (1)

Вычитая из равенств (1) равенства (Eu_1), получаем уравнение для сеточного возмуще-

ния $arepsilon_{m{j}}$:

$$\begin{cases} \varepsilon_0 = 0, \\ \varepsilon_{j+1} = \varepsilon_j + h(f(x_j, u_j) - f(x_j, y_j)) + (\frac{h^2}{2}u''(\xi_j) - \eta_j). \end{cases}$$

К разности $f(x_j,u_j)-f(x_j,y_j)$ применим формулу конечных приращений Лагранжа. Учитывая, что $(u_j-y_j)=arepsilon_j$, получим

$$f(x_j,u_j)-f(x_j,y_j)=\frac{\partial f}{\partial u}(x_j,\theta_j)(u_j-y_j)=\frac{\partial f}{\partial u}(x_j,\theta_j)\varepsilon_j,$$

где $heta_j$ лежит между u_j и y_j .

Таким образом, получили неравенства

$$|\varepsilon_{j+1}| \leq |\varepsilon_j| + hM_2|\varepsilon_j| + h^2(|\frac{1}{2}u''(\xi_j)| + C_0).$$

Для оценки $|u''(\xi_j)|$ используем следующее равенство, получаемое дифференцированием исходного ОДУ:

$$u''(x) = \frac{\partial f}{\partial x}(x, u(x)) + \frac{\partial f}{\partial u}(x, u(x)) \cdot f(x, u(x)).$$

Полагая здесь $x=\xi_j$, имеем далее

$$|u''(\xi_j)| \leq M_1 + M_2 \cdot M_0.$$

Таким образом, для погрешности ε_j выполняется следующая серия оценок:

$$|\varepsilon_{j+1}| \leq (1+hM_2)|\varepsilon_j| + h^2M.$$

Постоянная M здесь задается равенством

$$M = C_0 + \frac{1}{2}(M_1 + M_0 M_2).$$

В результате получаем следующую мажоранту сеточной погрешности метода:

$$\|\varepsilon\|_h = \max_{0 \leq k \leq N} |\varepsilon_k| \leq \max_{1 \leq k \leq N} [(1+\alpha)|\varepsilon_{k-1}| + \beta],$$

где
$$lpha=M_2h$$
 и $eta=Mh^2$.

Пользуясь доказанной ранее леммой о рекуррентных оценках, имеем далее:

$$\|\varepsilon\|_h \leq \frac{Mh^2(e^{N\alpha}-1)}{M_2h} = h\frac{M}{M_2}(e^{NhM_2}-1).$$

Учитывая, что Nh=l, получаем

$$\|arepsilon\|_h\leqslant hrac{M}{M_2}(e^{M_2l}-1).$$
 (Es_h)

В этой итоговой оценке учтены как погрешности замены точных значений $u(x_j)$ в узлах сетки приближенными, так и влияние возможных ошибок округления. В частности, заключаем, что метод Эйлера — это метод первого порядка точности.

Сделаем еще два вывода из оценки (Es_h) .

1. Локальная погрешность метода Эйлера, то есть погрешность на одном шаге h, возникающая за счет перемещения по касательной, а не по интегральной кривой, является величиной $O(h^2)$. Это следует из приведенной выше формулы (1):

$$u_{j+1} = u_j + hf(x_j, u_j) + \frac{h^2}{2}u''(\xi_j).$$

Глобальная же погрешность, как следует из (Es_h) , это величина O(h), то есть на 1 меньшего порядка чем локальная.

2. Если погрешность округлений имеет тот же порядок точности $O(h^2)$, что и локальная погрешность, то глобальная погрешность по порядку не ухудшается.