

Vorlesungsskript

Mitschrift von Falk-Jonatan Strube

Vorlesung von Herrn Meinhold 18. Januar 2016

Inhaltsverzeichnis

l.	Elementare Grundlagen										
1.	Aussagen und Grundzüge der Logik										
2.	Mengen										
3.	. Zahlen										
4.	4. Reellwertige Funktionen einer reellen Veränderlichen										
5.	Lineare Algebra										
	5.1. Vektorräume	1									
	5.2. Matrizen										
	5.3. Determinanten	6									
	5.4. Lineare Gleichungssysteme, Rang einer Matrix, Inverse	9									
	5.4.1. Das Austauschverfahren	9									
		10									
	5.4.3. Weitere Anwendungen des Austauschverfahrens	13									
	5.4.4. Die Inverse einer (n,n)-Matrix	13									
	5.5. Vektorrechnung im Raum	14									
	5.5.1. Kartesische Basis	14									
	5.5.2. Das Skalarprodukt	15									
	5.5.3. Das vektorielle Produkt	16									
	5.5.4. Das Spatprodukt	17									
	5.5.5. Geraden- und Ebenengleichungen	18									
	5.5.6. Einige geometrische Grundaufgaben										
	5.6. Eigenwerte und Eigenvektoren	21									

Teil I.

Elementare Grundlagen

- 1. Aussagen und Grundzüge der Logik
- 2. Mengen
- 3. Zahlen
- 4. Reellwertige Funktionen einer reellen Veränderlichen
- 5. Lineare Algebra
- 5.1. Vektorräume

Begriff:

- 1.) Gegeben seien ein Körper $(K,+,\cdot)$, dessen Elemente *Skalare* heißen (meist $(\mathbb{R},+,\cdot)$) und eine ABELsche Gruppe (V,\oplus) (V... Menge, Elemente heißen Vektoren, \oplus ... Vektoraddition).
- 2.) Es gibt eine Abbildung \odot von $K \times V$ in V die jedem $x \in V$ und jedem $\lambda \in K$ ein Element $\lambda \odot x$ in V mit folgenden Eigenschaften zuordnet.
 - Distributivgesetze:

$$(\lambda + \mu) \odot x = (\lambda \odot x) \oplus (\mu \odot x)$$
$$\lambda \odot (x \oplus y) = (\lambda \odot x) \oplus (\lambda \odot y)$$

Assoziativgesetz:

$$(\lambda \cdot \mu) \odot x = \lambda \odot (\mu \odot x)$$

Neutrales Element:

$$1 \odot x = x$$

(für alle $\lambda, \mu \in K$ und $x, y \in V$)

Eine Menge V mit den in 1.) und 2.) aufgeführten Operationen \oplus und \odot heißt Vektorraum (VR) $\textit{\"{uber}}$ K

Bemerkung: Schreibweise meist + anstelle von \oplus und \cdot anstelle von odot (ergibt sich aus Zusammenhang der Elemente).

Bsp. 1:

Skalarbereich \mathbb{R} .

Vektoren: Größen, die durch eine Zahlenangabe (Länge) und eine Richtung charakterisiert sind (z.B. Kräfte, Geschwindigkeiten, Translatimen).

Pfeile als Repräsentanten eines Vektors a.

Bezeichnung: $a = \overrightarrow{d} = \overrightarrow{PQ} = \overrightarrow{RS}$

Ortskurven: Angeheftet in gemeinsamen Anfangspunkt *O* (Ursprung).

- Vektoraddition: $\underline{a} + \underline{b}$ ABB 110
- Multiplikation mit Skalar: $\lambda \cdot \underline{a}$:

 $\lambda > 0 \text{ ABB 111}$

 $\lambda < 0 \text{ ABB } 112$

Länge von $\lambda \cdot \underline{a}$ ist das $|\lambda|$ -fache der Länge von \underline{a} .

- Subtraktion: $\underline{a} \underline{b} = \underline{a} + (-\underline{b}) = \underline{a} + ((-1) \cdot \underline{b})$ ABB 113
- Nullvektor: 0 (Länge 0, keine Richtung)

$$K = \mathbb{R}, V = \left\{ \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}, x_1, x_2, \dots, x_n \in \mathbb{R} \right\}$$

Vektoraddition: $\begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}, x_1, x_2, \dots, x_n \in \mathbb{R}$ $\begin{cases} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} + \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \dots \\ x_n + y_3 \end{pmatrix}$ $\begin{cases} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} \lambda \cdot x_1 \\ \lambda \cdot x_2 \\ \dots \\ \lambda \cdot x_n \end{pmatrix}$ $\begin{cases} x_1 \\ x_2 \\ \dots \\ x_n \end{cases} = \begin{pmatrix} \lambda \cdot x_1 \\ \lambda \cdot x_2 \\ \dots \\ \lambda \cdot x_n \end{pmatrix}$

 $\curvearrowright V$ Vektorraum über \mathbb{R} , Bezeichnung: \mathbb{R}^n , Nullvektor

Def. 1:

Die Vektoren $\underline{a}_1,...,\underline{a}_n$ heißen *linear unabhängig*, wenn die Gleichung $x_1\underline{a}_1+...+x_n\underline{a}_n=\underline{0}$ nur die triviale Lösung $x_1 = x_2 = \dots = x_n = 0$ besitzt.

Diskussion:

- 1.) $x_1\underline{a}_1 + ... + x_n\underline{a}_n$ heißt *Linearkombination* (LK) der Vektoren $\underline{a}_1, ..., \underline{a}_n$.
- 2.) Falls es eine darstellung der Gestalt wie in Def. 1 gibt, in der nicht alle x_i gleich 0 sind, so heißen $\underline{a}_1, ..., \underline{a}_n$ linear unabhängig. In diesem Falle lässt sich (wenigstens) einer der Vektoren als LK der anderen darstellen.

Def. 2:

Es sei $V_1 \subseteq V$ eine nichtleere Teilmenge von V. Wir bezeichnen mit $L(V_1)$ die Menge *aller* LK von jeweils endlich vielen Vektoren aus V_1 . $L(V_1)$ ist die sogenante *lineare Hülle* von V_1 .

Bemerkung:

 $L(V_1)$ ist selbst ein Vektorraum, nämlich der von V_1 aufgespannte Teilraum von V (kleinster VR, welcher V_1 enthält).

Def. 3:

- Ein Vektorraum V heißt *n-dimensional*, wenn es n linear unabhängige Vektoren $\underline{a}_1, ..., \underline{a}_n$ gibt, die den gesamten Raum aufspannen $(L(\{\underline{a}_1,...,\underline{a}_n\})=L(\underline{a}_1,...,\underline{a}_n)=V)$.
- Die Menge der Vektoren $\underline{a}_1,...,\underline{a}_n$ nennt man in diesem Falle eine Basis von V.

Diskussion:

In einem Vektorraum gibt es unterschiedliche Basen, jedoch ist die Anzahl der Vektoren, die eine Basis bilden, stets gleich (Dimension des VR).

Satz 1:

Es sei $\underline{a}_1,...,\underline{a}_n$ eine Basis des VRs V. Dann gibt es für jedes $\underline{x} \in V$ eine eindeutige Darstellung der Gestalt $\underline{x} = x_1 \underline{a}_1, ..., x_n \underline{a}_n$.

Bemerkung:

- Die Koeffizienten $x_1, ... x_n$ heißen Koordinaten von \underline{x} bezüglich der Basis $\underline{a}_1, ..., \underline{a}_n$.
- Die Summanden $x_1\underline{a}_1,...,x_n\underline{a}_n$ heißen Komponenten von \underline{x} bezüglich der Basis $\underline{a}_1,...,\underline{a}_n$.

Bsp. 3:

von \mathbb{R}^n .

Bsp. 4:

Zwei Vektoren $\underline{a}_1 \neq \underline{0}$ und $\underline{a}_2 \neq \underline{0}$ in einer Ebene bilden genau dann eine Basis, wenn sie nicht parallel sind.

5.2. Matrizen

Def. 4:

Ein aus $m \cdot n$ Zahlen $a_{ij} \in \mathbb{R}$, welche in m Zeilen und n Spalten angeordnet sind, bestehendes

$$\underline{A} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{pmatrix} = (a_{ij})_{\substack{i=1,\dots,m \\ j=1,\dots,n}} \text{(Zeilenindex)}$$

Def. 5 Rechenoperationen

1.) $\underline{\underline{A}} = (a_{ij}), \underline{\underline{B}} = (b_{ij})$ seien vom gleichen Typ (m, n). $\underline{\underline{A}} + \underline{\underline{B}} := (a_{ij} + b_{ij})$ Addition von Matrizen

2.) Sei $\lambda \in \mathbb{R}$ und $\underline{A} = (a_{ij})$ vom Typ (m,n). $\boxed{\lambda \cdot \underline{A} = (\lambda \cdot a_{ij})}$ Multiplikation einer Matrix mit einem Skalar

3.) $\underline{A} = (a_{ij} \text{ sei vom Typ } (m, n)$ $\underline{B} = (b_{ij}) \text{ sei vom Typ } (n, p)$

 $\underline{\underline{A}}$ und $\underline{\underline{B}}$ heißen in dieser Reihenfolge *verkettet* (Spaltenzahl von $\underline{\underline{A}}$ = Zeilenzahl von $\underline{\underline{B}}$).

$$\underline{\underline{A}} \cdot \underline{B} = \left(\sum_{j=1}^n a_{ij} \cdot b_{jk}\right)_{\substack{i=1,\dots,m\\k=1,\dots,p}} \text{ Matrizenmultiplikation }$$

Das Produkt ist also vom Typ (m, p).

Diskussion:

Zweckmäßig FALK-Schema zur Matrizenmultiplikation (vgl. folgendes Bsp. 5).

Def. 6

Die aus der (m,n)-Matrix \underline{A} durch Vertauschung von Zeilen und Spalten entstehende (n,m)-Matrix heißt *Transformierte* von A. Bezeichnung: A^T .

Bsp. 5:

$$\underline{A} = \begin{pmatrix} 5 & -3 \\ 1 & 4 \end{pmatrix}, \underline{B} = \begin{pmatrix} 3 & 6 & 4 \\ -2 & 0 & 1 \end{pmatrix}, \underline{C} = \begin{pmatrix} -1 & 5 \\ 0 & 3 \end{pmatrix}$$

a.) $\underline{A} + \underline{B}$ existiert nicht (unterschiedliche Typen).

b.)
$$\underline{A} + \underline{C} = \begin{pmatrix} 4 & 2 \\ 1 & 7 \end{pmatrix}$$

c.)
$$2 \cdot \underline{A} = \begin{pmatrix} 10 & -6 \\ 2 & 8 \end{pmatrix}$$

$$\mathbf{d.)} \ \underline{B}^T = \begin{pmatrix} 3 & -2 \\ 6 & 0 \\ 4 & 1 \end{pmatrix}$$

e.) $\underline{B} \cdot \underline{A}$ existiert nicht ((2,3) und (2,2) nicht verkettet)

f.)
$$\underline{A} \cdot \underline{B} = \begin{pmatrix} 21 & 30 & 17 \\ -5 & 6 & 8 \end{pmatrix}$$

Bemerkung: Die Matrizenmultiplikation ist nicht kommutativ!

Mathematik I

Diskussion: (ausgewählte Rechenregeln)

1.) Die Menge der Matrizen vom gleichen Typ bilden mit den Operationen Addition und Multiplikation mit einem Skalar einen Vektorraum.

Bsp: $V = \{ \text{Matrizen vom Typ } (2, 2) \}$

$$\mathsf{Basis:} \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

- 2.) Falls die entsprechenden Typvoraussetzungen erfüllt sind, gelten:
 - $(\underline{A} \cdot \underline{B}) \cdot \underline{C} = \underline{A} \cdot (\underline{B} \cdot \underline{C})$ (Assoziativgesetz)
 - $(\underline{A} \cdot \underline{B}) + \underline{C} = \underline{A} \cdot \underline{B} + \underline{A} \cdot \underline{C}$ $(\underline{A} + \underline{B}) \cdot \underline{C} = \underline{A} \cdot \underline{C} + \underline{B} \cdot \underline{C}$ (Distributivgesetze)
 - $(\lambda \cdot \underline{A}) \cdot \underline{B} = \lambda \cdot (\underline{A} \cdot \underline{B}) = \underline{A} \cdot (\lambda \cdot \underline{B})$
 - $(\lambda \cdot \underline{A})^T = \lambda \cdot \underline{A}^T$ $(\underline{A}^T)^T = \underline{A}$
 - $(\underline{A} + \underline{B})^T = \underline{A}^T + \underline{B}^T$ $(\underline{A} \cdot \underline{B})^T = \underline{B} \cdot \underline{A}^T$
- 3.) Achtung: Im Allgemeinen gilt $\underline{A} \cdot \underline{B} \neq \underline{B} \cdot \underline{A}$!
- 4.) FALK-Schema bei fortgesetzter Multiplikation $\underline{A} \cdot \underline{BC}$

Spezielle Matrizen

- 1.) Quadratische Matrizen: Typ (n, n) Eine quadratische Matrix A heißt
 - a) symmetrisch, wenn $\underline{A}^T = \underline{A}$ gilt.
 - b) obere *Dreiecksmatrix*, wenn $a_{ij} = 0$ für i > j. untere *Dreiecksmatrix*, wenn $a_{ij} = 0$ für i < j.
 - c) Diagonalmatrix, wenn $a_i j = \text{für } i \neq j$.
 - d) Einheitsmatrix \underline{E} , wenn $a_{ij} = \begin{cases} 1 & \text{für } i = j \\ 0 & \text{für } i \neq j \end{cases}$ (spezielle Diagonalmatrix).

$$\underline{E} = \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots \\ 0 & 0 & \dots & 1 \end{pmatrix}$$

- 2.) Nullmatrix 0 (sämtliche Elemente 0, nicht notwendig quadratisch).
- 3.) Matrizen vom Typ (n, 1) (n Zeilen, eine Spalte) heißen (Spalten-)Vektoren.

$$\underline{a} = egin{pmatrix} a_1 \ a_2 \ ... \ a_n \end{pmatrix} \in \mathbb{R}^n ext{ (vgl. ??)}$$

 a_n Es ist $\underline{a}^T = (a_1|a_2|...|a_n) = \begin{pmatrix} a_1 & a_2 & ... & a_n \end{pmatrix}$ vom Typ (1,n) (Zeilenvektor).

Diskussion:

- 1.) Die quadratischen Matrizen vom Typ (n, n) bilden mit den Operationen Addition und Multiplikation von Matrizen einen (nicht kommutativen) Ring.
- 2.) Für guadratische Matrizen A sind Potenzen bildbar:

$$\underline{\underline{A}^0} = \underline{\underline{E}} \quad \underline{\underline{A}^n} = \underbrace{\underline{\underline{A} \cdot \underline{A} \cdot \ldots \cdot \underline{A}}}_{n-\text{Faktoren}}, n \in \mathbb{N}$$

3.) Falls die entsprechenden Typvoraussetzungen erfüllt sind, gelten:

$$\underline{A} \cdot \underline{E} = \underline{A}$$

$$\underline{E} \cdot \underline{A} = \underline{A}$$

$$\underline{0} \cdot \underline{A} = \underline{0}$$

$$\underline{A} \cdot \underline{0} = \underline{0}$$

$$\underline{A} + \underline{0} = \underline{A}$$

$$\underline{0} + \underline{A} = \underline{A}$$

(analog 0 und 1 bei den reellen Zahlen)

4.) Sei \underline{A} vom Typ (m,n), $x \in \mathbb{R}^n$, d.h. vom Typ (n,1). Dann ist $\underline{y} = \underline{A} \cdot \underline{x}$ vom Typ (m,1).

Durch die Zuordnung $\underline{x} \longmapsto \underline{A} \cdot \underline{x} = \underline{y}$ wird eine *lineare Abbildung* von \mathbb{R}^n in \mathbb{R}^m beschrieben (Fkt. f heißt linear, wenn gilt $f(x+y) = \overline{f}(x) + f(y)$ und $f(\alpha \cdot x) = \alpha \cdot f(x)$ für alle $\alpha \in \mathbb{R}, \ x, y \in Db(f)$ gilt).

5.3. Determinanten

Def. 7:

Jeder n-reihigen quadratischen Matrix ist eindeutig eine Zahl $det \underline{A}$, die sogenannte Determinante von \underline{A} , wie folgt zugeordnet.

$$\begin{split} n &= 1 \text{: } \det \left(\left(a_{11} \right) \right) := a_{11} \\ n &\geq 2 \text{: } \det \left(\begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & & \dots \\ a_{n1} & \dots & a_{nn} \end{pmatrix} \right) := a_{11} A_{11} + a_{12} A_{12} + \dots + a_{1n} A_{1n}. \end{split}$$

Dabei ist $A_{ij} = (-1)^{i+j} det U_{ij}$ die Adjunkte des Elements a_{ij} .

 U_{ij} ist die (n-1)-reihige *(Unter-)Matrix*, die durch Streichen der i-ten Zeile und der j-ten Spalte von \underline{A} ernsteht.

Bezeichnung:
$$det(\underline{A}) = det\left(\begin{pmatrix} \dots & \dots \\ \dots & \dots \end{pmatrix}\right) = \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}$$

Bsp. 6:

a.)
$$n = 2$$
:
$$\begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix}$$

$$= a_{11}A_{11} + a_{12}A_{12} = a_{11} \cdot (-1)^{1+1} \cdot a_{22} + a_{12} \cdot (-1)^{1+2} \cdot a_{21}$$

$$= \underline{a_{11} \cdot a_{22} - a_{12} \cdot a_{21}}$$

b.)
$$n = 3$$
:
$$\begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix}$$

$$= a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13}$$

$$= a_{11}\begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} - a_{12}\begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{32} \end{vmatrix} + a_{13}\begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$

$$= a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{13}a_{21}a_{32} - (a_{13}a_{22}a_{31} + a_{11}a_{23}a_{32} + a_{12} + a_{21} + a_{33})$$

(Alternativ auch: Regel von SARRUS [diese gilt NUR für 3-reihige Determinanten] ⇒ (Summe der Produkte der Diagonalen nach rechts unten)-(Summe der Produkte der Diagonalen nach links unten))

Satz 2:

a.)
$$det(A \cdot B) = det(A) \cdot det(B)$$

b.)
$$det(\underline{A}) = det(\underline{A}^T)$$

Wegen Satz 2b gelten für alle folgenden, für die Zeilen formulierten Eigenschaften auch sinngemäß für die Spalten.

Satz 3: (Eigenschaften der Determinante)

- (E1) \underline{B} gehe aus \underline{A} durch Vertauschen zweier Zeilen hervor, dann gilt $det(\underline{B}) = -det(\underline{A})$.
- (E2) Es gilt $det(\underline{A}) = 0$ falls zwei Zeilen elementweise proportional sind bzw. falls alle Elemente einer Zeile gleich 0 sind.

(E3) Es gilt
$$\begin{vmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ \lambda a_{i1} & \dots & \lambda a_{in} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{vmatrix} = \lambda \begin{vmatrix} a_{11} & \dots & a_{1n} \\ \dots & \dots & \dots \\ a_{n1} & \dots & a_{nn} \end{vmatrix}$$
 (steht ein Faktor in einer Zeile einer Determinante, so kann er auch vorgezogen werden).

(E4) Der Wert einer Determinante ändert sich nicht, wenn das λ -fache einer Zeile elementweise zu einer anderen Zeile addiert wird.

(E5)
$$det(\underline{A}) = \sum_{j=1}^{n} a_{ij} A_{ij}$$
 (Entwicklung nach i -ter Zeile, $(i=1,...,n)$) $det(\underline{A}) = \sum_{i=1}^{n} a_{ij} A_{ij}$ (Entwicklung nach j -ten Spalte, $(j=1,...,n)$) \rightarrow Entwicklungssatz

Bsp. 7:

$$\begin{vmatrix} 1 & 1 & 3 & -1 \\ -2 & 2 & -5 & -4 \\ -1 & 1 & -4 & 2 \\ 6 & 2 & -1 & 0 \end{vmatrix}$$

3. Spalte = Arbeitsspalte (bleibt unverändert)

Um in der untersten Spalte mehr Nullen zu erzeugen (mit Regel E4):

$$S_{1,neu} := S_1 + 6 \cdot S_3$$

$$S_{2,neu} := S_2 + 2 \cdot S_3$$

$$\Rightarrow$$

$$\begin{vmatrix} 19 & 7 & 3 & - \\ -32 & -8 & -5 & - \end{vmatrix}$$

Nun kann mit der letzen Zeile relativ einfach die Determinante berchnet werden:

$$= (-1) \cdot (-1)^{4+3} \cdot \begin{vmatrix} 19 & 7 & -1 \\ -32 & -8 & -4 \\ -26 & -7 & 2 \end{vmatrix}$$

Auf gleiche Weise werden nun wieder in Zeilen Nullen erzeugt:

Z_{2,neu} := Z₂ - 4Z₁
Z_{3,neu} := Z₃ + 2Z₁

$$\Rightarrow \begin{vmatrix} 19 & 7 & 1 \\ -108 & -36 & 0 \\ 12 & 7 & 0 \end{vmatrix}$$

$$= (-1) \cdot (-1)^{1+3} \begin{vmatrix} -108 & -36 \\ 12 & 7 \end{vmatrix}$$

$$\stackrel{E3}{=} (-1) \cdot (-36) \cdot \begin{vmatrix} 3 & 1 \\ 12 & 7 \end{vmatrix} = 36 \cdot 9 = 324$$
Prinzip: Nullen erzeugen mit (E4), dann

Prinzip: Nullen erzeugen mit (E4), dann mit Entwicklungssatz lösen (E5).

Anwendungen

1.) Vekotorrechnung in \mathbb{R}^3 (vgl. später, Abschnitt 5.5 ??)

2.) Gegeben sei ein lineares Gleichungssytem (n Gleichungen, n Unbekannte)

Matrixform
$$\underline{\underline{A} \cdot \underline{x} = \underline{b}}$$
 mit $\underline{A} = (a_{ij}), \underline{x} = \begin{pmatrix} x_1 \\ \dots \\ x_n \end{pmatrix}, \underline{b} = \begin{pmatrix} b_1 \\ \dots \\ b_n \end{pmatrix}$. Diese Matrixform besitzt genau dann eine eindeutige Lögung x , wonn d at (A)

dann eine eindeutige Lösung \underline{x} , wenn $det(\underline{A}) \neq 0$.

In diesem Falle gilt $x_j = \frac{\det(\underline{B}_j)}{\det(A)}$ j = 1, ..., n. Wobei \underline{B}_j aus \underline{A} hervorgeht, indem man die j-

te Spalte durch b ersetzt (CRAMERsche Regel, theoretische Bedeutung, praktisches Vorgehen zur Lösung der Matrixform vgl. folgenden Abschnitt).

5.4. Lineare Gleichungssysteme, Rang einer Matrix, Inverse

5.4.1. Das Austauschverfahren

Gegeben sei System von m linearen Funktionen mit den unabhängigen Veränderlichen $x_1, ..., x_n$ und den abhängigen Veränderlichen $y_1, ..., y_n$.

$$y_1 = a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n + a_{10}$$

$$y_2 = a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n + a_{20}$$

$$\dots$$

$$y_m = a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n + a_{m0}$$

Bsp. 8:

Betrieb, in Abteilungen, n Produkte $P_1, ..., P_n$:

 a_{ij} ... Kosten pro Einheit von P_i die in Abteilung i entstehen.

 a_{i0} ... Fixkosten in Abteilung i.

 x_i ... produzierte Mengen von P_i .

 y_i ... Gesamtkosten in Abteilung i.

$$\text{Matrix-Schreibweise: } \underline{y} = \underline{A}\,\underline{x} + \underline{a} \text{ mit } \underline{A} = (a_{ij})_{\substack{i=1,\ldots,m\\j=1,\ldots,n}}, \ \underline{a} = \begin{pmatrix} a_{01}\\ \ldots\\ a_{0m} \end{pmatrix}$$

Tabellenform:

	x_1	x_2	 x_n	1	_			
y_1	a_{11}	a_{12}	 a_{1n}	a_{10}	bzw. $-\frac{y}{y}$		x^T	1
y_2	a_{21}	a_{22}	 a_{2n}	a_{20}		21	$\frac{x}{\Delta}$	
						\underline{g}	<u>11</u>	\underline{u}
y_m	a_{m1}	a_{m2}	 a_{mn}	a_{m0}				

Aufgaben:

- 1.) \underline{x} vorgegeben, y ist zu berechnen (klar!).
- 2.) \underline{y} vorgegeben, \underline{x} zu berechnen (nicht immer lösbar, falls lösbar, nicht immer eindeutig lösbar).

Lösungsprinzip:

Man tausche so oft wie möglich y_r gegen x_s aus, Austauschschritt AS $(y_r \leftrightarrow x_s) \to \textit{Austauschverfahren}$

Austauschschritt $y_r \leftrightarrow x_s$ bedeutet:

- 1.) r-te Zeile $y_r = \dots$ nach x_s auflösen $x_s = \dots$
- 2.) in allen anderen Zeilen x_s durch die rechte Seite vom obigen x_s ersetzen. \sim neue Tabelle

FOLIEN IM NETZ (Neumann)

Praktisches Vorgehen:

- 1.) Pivotelement (Pivot) kennzeichnen o
- 2.) Austauschregeln Austauschregel (AR) 1 bis AR 4 abarbeiten Dabei für AR 4 unter der alten Tabelle die neue Pivotzeile (PZ) als Kellerzeile notieren.

ABB51

$$a_{ij}^* = a_{ij} + a_{is} \cdot a_{rj}^*$$
 (Rechteckregel)

Bsp. 8 (Fortsetzung)

$$y_1 = 2x_1 + 3x_2 + x_3 + 50$$
 (Kosten in Abt. 1)

$$y_2 = x_1 + 2x_3 + 40$$
 (Kosten in Abt. 2)

$$x_3 = \frac{2}{3}y_2 + x_2 - \frac{1}{3}y_1 - 10$$
$$x_1 = -\frac{1}{3}y_2 - 2x_2 + \frac{2}{3}y_1 - 20$$

 \curvearrowright bei vorgegebenen Kosten y_1,y_2 ist die Lösung $\underline{x}=$ $\left(\begin{array}{c} x_2 \end{array}\right)$ nicht eindeutig bestimmbar.

z.B.
$$y_1 = 600, y_2 = 300$$
:

$$x_2 = t$$
 (frei wählbar)

$$x_{2} = t \text{ (frei wählbar)}$$

$$x_{3} = \frac{2}{3} \cdot 300 + t - \frac{1}{3} \cdot 600 - 10 = t - 10$$

$$x_{1} = -\frac{1}{3} \cdot 300 - 2t + \frac{2}{3} \cdot 600 - 20 = 280 - 2t$$

$$\Rightarrow \underline{x} = \begin{pmatrix} 280 - 2t \\ t \\ t - 10 \end{pmatrix}$$

Varianten des Austauschverfahrens (AV)

- 1.) AVZ ... Austauschverfahren mit Zeilentilgung, d.h. neue PZ in neuer Tabelle weglassen.
- 2.) AVS ... Austauschverfahren mit Spaltentilgung, d.h. neue Pivotspalte in neuer Tabelle weglassen (nur anwendbar, wenn Variable über der weggelassenen Spalte = Null ist, siehe folgender Abschnitt).
- 3.) AVSZ ... AVZ+AVS gleichzeitig.

5.4.2. Lineare Gleichungssysteme

• Gegeben sei das lineare Gleichungssystem (m Gleichungen, n Unbekannte $x_1, ..., x_n$) $a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1$

$$a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m$$

- Gleichungssystem heißt homogen, falls $b_1 = ... = b_m = 0$ gilt, sonst unhomogen.
- $\bullet \ \ \mathsf{Matrixform} \ \underline{A} \ \underline{x} = \underline{b} \ \mathsf{mit} \ \underline{A} = (a_{ij})_{\substack{i=1,\ldots,m \\ j=1,\ldots,n}}, \ \underline{x} = \begin{pmatrix} x_1 \\ \ldots \\ x_n \end{pmatrix}, \ \underline{b} = \begin{pmatrix} b_1 \\ \ldots \\ b_{-1} \end{pmatrix}$

• Tabellenform:
$$\begin{array}{c|c} & \underline{x}^T & \mathbf{1} \\ \hline \underline{y} & \underline{A} & \underline{b} \end{array}$$

Lösungsprinzip:

Austauschverfahren, Variante AVS (da $y_i = 0$: Pivotspalte in neuer Tabelle weglassen!)

Alle y_i sind austauschbar \Rightarrow Gleichungssystem ist lösbar, Lösung aus letzter Tabelle (TE) ablesbar.

Fall 2:

Wenigstens ein y_i ist gegen kein x_j austauschbar.

Zeile y_i kann gestrichen werden (0 = 0).

Fall 2b: $\alpha \neq 0$

Gleichungssystem nicht lösbar (Widerspruch, da $y_i = 0$)

Das Verfahren endet also im Fall 2b (unlösbar) oder mit einer Tabelle, in der kein y_i mehr vorkommt (Fall 1 oder 2a).

 $x_{S...}$: NBV ... Nichtbasisvariablen (nicht ausgetauschte x_i)

 $x_{r...}$: BV ... Basisvariablen (ausgetauschte x_i)

- Allgemeine Lösung ergibt sich aus Endtabelle: NBV beliebig vorgeben, BV daraus berechenbar.
- Falls keine NBV vorhanden sind, ist die Lösung eindeutig.

Def. 8:

Die Darstellung der Endtabelle heißt Basisdarstellung des lin. Gleichungssystems.

Bemerkung: Aus einer Basisdarstellung lassen sich weitere Basisdarstellungen durch Austausch $x_{ri} \leftrightarrow x_{sj}$ gewinnen.

Bsp. 9

$$3x_1 + x_2 + 2x_3 = -2$$
$$-5x_1 - 3x_2 - 2x_3 = -2$$

(in T3 kann letzte 0-Zeile gestrichen werden)

 \sim T3 ist Endtabelle (BV: x_1, x_2 , NBV: x_3)

allg. Lösung:

$$x_2 = x_3 + x_4$$

$$x_1 = -x_3 - 2$$

 $x_3 \in \mathbb{R}$ frei wählbar

andere Form:
$$x_3=t$$
 (Parameter), $\underline{x}=\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}=\begin{pmatrix} -t-2\\t+4\\t \end{pmatrix}$, $t\in\mathbb{R}$ Bemerkung:

- 1.) Bei homogenen System $\underline{A}\,\underline{x}=\underline{0}$ muss die 1-Spalte $\begin{pmatrix} 0\\0\\...\\0 \end{pmatrix}$ nicht geschrieben werden (nur "gedacht").
- 2.) Die Methode AVS entspricht dem sogenannten *Gauß-Jordan-Verfahren*. Der *Gauß-Algorithmus* (siehe folgendes Beispiel):
 - AVSZ (Spalten- und Zeilentilgung)
 - weggelassene Zeilen merken (→ Kellerzeilen)
 - Rückrechnung durchführen

Bsp. 10:

Rückrechnung:

$$T_3 \curvearrowright x_3 = \frac{1}{2}$$
 $T_2 \curvearrowright x_1 = \overline{2x_3} - 2 = \underline{-1}$
 $T_1 \curvearrowright x_2 = -2x_1 + 4x_3 - 3 = \underline{1}$

Lösung:
$$\underline{x}=\begin{pmatrix} x_1\\x_2\\x_3 \end{pmatrix}=\begin{pmatrix} -1\\1\\\frac{1}{2} \end{pmatrix}$$
 Bemerkung:

m Gleichungen, n Unbekannte

 $m \leq n \quad \curvearrowright \mathsf{AVS}$ günstiger

 $m \geq n \quad \curvearrowright \mathsf{GauB} \mathsf{ oder AVS}$

5.4.3. Weitere Anwendungen des Austauschverfahrens

1.) Lineare Unabhängigkeit von Vektoren $\underline{a}_1,...,\underline{a}_n \in \mathbb{R}^m$ überprüfen.

Ansatz:
$$\boxed{x_1\underline{a}_1 + x_2\underline{a}_2 + ... + x_n\underline{a}_n = \underline{0} } \Leftrightarrow \boxed{\underline{A}\,\underline{x} = \underline{0}} \text{ mit } \underline{A} = \begin{pmatrix} \underline{a}_1 \\ \underline{a}_2 \\ ... \\ \underline{a}_n \end{pmatrix}$$
 (Spalten von \underline{A} sind die

(Spalten-)Vektoren $\underline{a}_1,...,\underline{a}_n$). Homogenes GLS mit AVS mit Starttabelle: $y \mid \underline{x}^T$

- Unabhängigkeit genau dann, wenn alle x_i ausgetauscht werden können.
- Allgemein: Die zu den ausgetauschten x_i , d.h. BV, gehörenden a_i sind unabhängig. Sie bilden die Basis von $L(\underline{a}_1,...,\underline{a}_n)$.

2.) Rang einer Matrix
$$\underline{A} = \begin{pmatrix} \underline{a}_1 \\ \dots \\ \underline{a}_n \end{pmatrix} \dots rang(\underline{A})$$
 (auch: $rank(\underline{A}), rk(\underline{A}), \dots$)

 $\mathsf{Def.:} \ \, \boxed{rang(\underline{A}) := \dim L(\underline{a_1},...,\underline{a_n})}$

(Dimension des von den Spaltenvektoren aufgespannten Teilraumes).

Berechnung: $rang(\underline{A})$ =Anzahl der ausführbaren Austauschschritte im AVSZ mit $\frac{x^T}{\underline{y}}$ als

Starttabelle (1-Spalte entfällt).

Bemerkung: Es gilt $rang(\underline{A}^T) = rang(\underline{A})$.

3.) Berechnung der Determinante einer (n,n)-Matrix (vgl. Merkblatt "Lineare Algebra")

5.4.4. Die Inverse einer (n,n)-Matrix

Def. 9:

Es sei \underline{A} vom Typ (n,n). Das Gleichungssystem $\underline{y} = \underline{A}\,\underline{x}$ sei für jedes \underline{y} eindeutig nach \underline{x} auflösbar, d.h. $\underline{x} = \underline{B}\,\underline{y}$. Dann heißt die (n,n)-Matrix \underline{B} Inverse von \underline{A} . Bezeichnung: $\underline{A}^{-1} = \underline{B}$. Falls \underline{A}^{-1} existiert, so heißt \underline{A} regulär, sonst singulär.

Bemerkuna:

1.)
$$\underline{\underline{A}}$$
 ist regulär $\Leftrightarrow \underline{\det \underline{A} \neq 0}$

2.) \underline{A} regulär, dann hat $\underline{A}\underline{x} = \underline{b}$ die eindeutige Lösung $\underline{x} = \underline{A}^{-1}\underline{b}$

Rechenregeln: Seien A und B regulär. Dann gilt:

•
$$\underline{A} \cdot \underline{A}^{-1} = \underline{E}$$
, $\underline{A}^{-1} \cdot \underline{A} = \underline{E}$

$$\bullet \ \left(\underline{A}^{-1}\right)^{-1} = \underline{A}$$

$$\bullet$$
 $AB = E$

$$\bullet \ (\underline{A}\underline{B})^{-1} = \underline{B}^{-1}\underline{A}^{-1}$$

•
$$(\underline{A}^T)^{-1} = (\underline{A}^{-1})^T$$

Verfahren zur Ermittlung der Inversen:

ullet vollständiges AV mit Starttabelle $\frac{x^T}{y}$

Fall 1: alle x_i austauschbar $\wedge \underline{A}$ regulär.

Fall 2: nicht alle x_i austauschbar $\land \underline{A}$ singulär.

im Fall 1: \sim nach Ordnen der Zeilen und Spalten: \underline{A}^{-1} aus TE ablesbar.

• Probe: $\underline{A} \cdot \underline{A}^{-1} = \underline{E}$

Bsp. 11:

$$\underline{\underline{A}} = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 0 & 2 \\ 1 & -1 & 1 \end{pmatrix}$$
 gesucht: $\underline{\underline{A}}^{-1}$ (falls diese existiert).

Lösung:

Probe: $\underline{A}\underline{A}^{-1} = \underline{E} = \underline{A}^{-1}\underline{A}$

5.5. Vektorrechnung im Raum

5.5.1. Kartesische Basis

Einige Begriffe:

- 1.) Betrag eines Vektors \underline{a} : Länge des Pfeils, der \underline{a} repräsentiert. Bezeichnung: $|\underline{a}|$
- 2.) *Einheitsvektor*: Vektor mit $|\underline{a}| = 1$.
- 3.) zu $|\underline{a}|
 eq \underline{0}$ gehörender Einheitsvektor $\underline{\underline{a}^0} = \frac{1}{|\underline{a}|}\underline{a}$
- 4.) Kartesische Basis $\{\underline{i},\underline{j},\underline{k}\}$ $\underline{i},\underline{j},\underline{k}$ besitzen Betrag 1, stehen \bot aufeinander und bilden in dieser Reihenfolge ein Rechtssystem (Rechtsschraubregel: Rechtsschraube \bot zu \underline{i} und \underline{j} halten, auf kürzestem Weg von \underline{i} nach \underline{j} drehen. \curvearrowright Bewegung in Richtung \underline{k}). ABB 52
- 5.) Kartesisches Koordinatensystem:

- Fester Punkt O als Ursprung
- kartesische Basis $\{i, j, \underline{k}\}$ (jeweils linear unabhängig)

Damit eineindeutige Zuordnung:

Damit eineindeutige Zuordnung:
$$P \xleftarrow{1} \overrightarrow{OP} \overrightarrow{OP} = \underline{r} = x \cdot \underline{i} + y \cdot \underline{j} + z \cdot \underline{k}$$
 ABB 53

ABB 53
$$\underline{r} = x \cdot \underline{i} + y \cdot \underline{j} + z \cdot \underline{k} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} \text{ (Kurzschreibweise – beide Schreibweisen gleichberechtigt)}$$
 Betrag eines Vektors $\underline{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$:
$$\underline{|\underline{a}| = \sqrt{a_1^2 + a_2^2 + a_3^2}}$$

Betrag eines Vektors
$$\underline{a}=\begin{pmatrix} a_1\\a_2\\a_3 \end{pmatrix}$$
 : $\boxed{|\underline{a}|=\sqrt{a_1^2+a_2^2+a_3^2}}$

Bemerkung:

Bezeichnung auch
$$\underline{e_1} = \underline{i} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \underline{e_2} = \underline{j} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \underline{e_3} = \underline{k} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\underline{r} = \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \underline{x} = \overrightarrow{x} = \mathbf{x}$$

5.5.2. Das Skalarprodukt

Def. 10:

Die Zahl $(a,b) := |a| \cdot |b| \cdot cos(\varphi)$ heißt Skalarprodukt der Vektoren a und b. Dabei ist φ der Winkel zwischen den Vektoren a und b.

Eigenschaften des Sklarproduktes:

a.)
$$(\underline{a},\underline{a}) > 0$$
 für $\underline{a} \neq \underline{0}$

b.)
$$(\underline{a},\underline{b}) = (\underline{b},\underline{a})$$
 (Symmetrie)

c.)
$$(\lambda \underline{a} + \mu \underline{b}, \underline{c} = \lambda \cdot (\underline{a}, \underline{c}) + \mu(\underline{b}, \underline{c})$$
 (Linearität)

Satz 4:

Es sei
$$\underline{a}=\begin{pmatrix} a_1\\a_2\\a_3 \end{pmatrix}, \underline{b}=\begin{pmatrix} b_1\\b_2\\b_3 \end{pmatrix}$$
. Dann gilt $\underline{(\underline{a},\underline{b})}=a_1b_1+a_2b_2+a_3b_3$.

Folgerung:
$$(\underline{a},\underline{b}) = \underline{a}^T \cdot \underline{b} = \underline{b}^T \cdot \underline{a}$$

Schreibweisen: $(a,b) = a \circ b = ...$

Anwendungen:

1.) Projektion
$$\underline{a}_{\underline{b}}$$
 von \underline{a} auf \underline{b} : $\underline{a}_{\underline{b}} = (\underline{a}, \underline{b}^0)\underline{b}^0 = \frac{(\underline{a}, \underline{b})}{|\underline{b}|^2}\underline{b}$

ABB 54

Herleitung:

$$\begin{split} &|\underline{a}_{\underline{b}}| = |\underline{a}| \cdot \cos(\varphi) \\ &\underline{a}_{\underline{b}} = |\underline{a}| \cdot \cos(\varphi) \frac{\underline{b}}{|\underline{b}|} = |\underline{a}| \cdot |\underline{b}| \cdot \cos(\varphi) \frac{\underline{b}}{|\underline{b}|^2} = (\underline{a},\underline{b}) \cdot \frac{1}{|\underline{b}|^2} \cdot \underline{b} \end{split}$$

2.) Winkel φ zwischen zwei Vektoren: $cos(\varphi) = \frac{(\underline{a},\underline{b})}{|\underline{a}|\cdot |\underline{b}|}$

Bsp. 12:

$$\underline{a} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \underline{b} = \begin{pmatrix} 0 \\ -4 \\ 7 \end{pmatrix}$$

$$\begin{aligned} \text{a.)} \ \ |\underline{a}| &= \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{14}, |\underline{b}| &= \sqrt{0^2 + (-4)^2 + 7^2} = \sqrt{65} \\ & \cos(\varphi) &= \frac{(\underline{a},\underline{b})}{|\underline{a}| \cdot |\underline{b}|} = \frac{1 \cdot 0 + (-2) \cdot (-4) + 3 \cdot 7}{\sqrt{14} \cdot \sqrt{65}} = \frac{29}{\sqrt{14} \cdot \sqrt{65}} \\ & \varphi = \arccos\left(\frac{29}{\sqrt{14} \cdot \sqrt{65}}\right) \approx 15,92^\circ \end{aligned}$$

b.) Projektion von
$$\underline{b}$$
 auf \underline{a} : $\underline{ba} = \frac{(\underline{a},\underline{b})}{|\underline{a}|^2}\underline{a} = \frac{29}{14}\begin{pmatrix}1\\-2\\3\end{pmatrix} = \frac{29}{14}\underline{e}_1 - \frac{29}{7}\underline{e}_2 + \frac{29\cdot 3}{14}\underline{e}_3$

3.) Orthogonalitätskriterium:

$$(\underline{a},\underline{b}) = 0 \Leftrightarrow (\underline{\underline{|\underline{a}|}} = \underline{0} \vee \underline{\underline{|\underline{b}|}} = \underline{0} \vee cos(\varphi) = 0)$$

Vereinbarung: $\underline{0}$ orthogonal zu jedem Vektor $\sim \boxed{(\underline{a},\underline{b}) = 0 \ \Leftrightarrow \ \underline{a} \perp \underline{b}}$

5.5.3. Das vektorielle Produkt

Def. 11:

Das vektorielle Produkt $\underline{a} \times \underline{b}$ zweier Vektoren $(\underline{a}, \underline{b} \in \mathbb{R}^3)$ ist ein Vektor, der eindeutig festgelegt ist durch:

- (1) $|\underline{a} \times \underline{b}| = |\underline{a}| \cdot |\underline{b}| \cdot sin(\varphi)$
- (2) $\underline{a} \times \underline{b}$ ist senkrecht zu \underline{a} und senkrecht zu \underline{b} .
- (3) $\underline{a}, \underline{b}$ und $\underline{a} \times \underline{b}$ bilden in dieser Reihenfolge ein Rechtssystem.

Eigenschaften des vektoriellen Produktes:

- $a \times b = -(b \times a)$ (Anti-Kommutativgesetz)
- $\underline{a} \times (\underline{a} + \underline{c}) = \underline{a} \times \underline{b} + \underline{a} \times \underline{c}$ (Distributivgesetz)
- $\lambda(\underline{a} \times \underline{b}) = (\lambda \underline{a}) \times \underline{b} = \underline{a} \times (\lambda \underline{b})$
- Speziell: $a \times a = 0$
- $\underline{e}_1 \times \underline{e}_2 = \underline{e}_3$, $\underline{e}_2 \times \underline{e}_3 = \underline{e}_1$ USW.

Es sei
$$\underline{a} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix}$$
 und $\underline{b} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$, dann gilt:
$$\underline{a} \times \underline{b} \stackrel{\cong}{=} \begin{bmatrix} \underline{i} & a_1 & b_1 \\ \underline{j} & a_2 & b_2 \\ \underline{k} & a_3 & b_3 \end{bmatrix} \stackrel{\cong}{=} \begin{bmatrix} a_2 & b_2 \\ a_3 & b_3 \end{bmatrix} \underline{i} - \begin{bmatrix} a_1 & b_1 \\ a_3 & b_3 \end{bmatrix} \underline{j} + \begin{bmatrix} a_1 & b_1 \\ a_2 & b_2 \end{bmatrix} \underline{k}$$

$$\underline{a} \times \underline{b} = (a_2b_3 - a_3b_2)\underline{i} - (a_1b_3 - a_3b_1)\underline{j} + (a_1b_2 - a_2b_1)\underline{k} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_2b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$

Bsp. 13:

$$\underline{a} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}, \ \underline{b} = \begin{pmatrix} 0 \\ -4 \\ 7 \end{pmatrix}$$

$$\underline{a} \times \underline{b} = \begin{vmatrix} -2 & -4 \\ 3 & 7 \end{vmatrix} \underline{i} - \begin{vmatrix} 1 & 0 \\ 3 & 7 \end{vmatrix} \underline{j} + \begin{vmatrix} 1 & 0 \\ -2 & -4 \end{vmatrix} \underline{k} = -2\underline{i} - 7\underline{j} - 4\underline{k} = \begin{pmatrix} -2 \\ -7 \\ -4 \end{pmatrix}$$

Kontrolle: $(\underline{a} \times \underline{b}, \underline{a}) = 0, \ (\underline{a} \times \underline{b}, \underline{b}) = 0 !$

Anwendungen:

1.) Flächeninhalt des von \underline{a} und \underline{b} aufgespannte Parallelogramms: $F = |\underline{a} \times \underline{b}|$ ABB 55

$$sin(\alpha) = \frac{h}{|\underline{b}|}$$

$$F = |\underline{a}| \cdot h = |\underline{a}| \cdot |\underline{b}| \cdot sin(\alpha) = |\underline{a} \times \underline{b}|$$

- 2.) Flächeninhalt eines Dreiecks $\Delta P_1 P_2 P_3$: $F = \frac{1}{2} \left| \overrightarrow{P_1 P_2} \times \overrightarrow{P_1 P_2} \right|$ (halbes Parallelogramm)
- 3.) Parallelitätskriterium: $\underline{a} \times \underline{b} = \underline{0} \Leftrightarrow |\underline{a} \times \underline{b}| = 0 \Leftrightarrow (|\underline{a}| = 0 \lor |\underline{b}| = 0 \lor sin(\varphi) = 0)$ Vereinbarung: $\underline{0} \mid \mid$ zu jedem Vektor $\bigcirc |\underline{a} \times \underline{b} = \underline{0} \Leftrightarrow \underline{a} \mid \mid \underline{b} \mid$

5.5.4. Das Spatprodukt

Def. 12:

Die Zahl $(a \times b, c)$ heißt Spatprodukt der Vektoren a, b und c.

Berechnung:
$$\left| (\underline{a} \times \underline{b}, \underline{c}) = det(\underline{a}|\underline{b}|\underline{c}) = \begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} \right|$$

Anwendung:

1.) Volumen des von $\underline{a},\underline{b}$ und \underline{c} aufgespannten Spates (Parallelotop): $V = |(\underline{a} \times \underline{b},\underline{c})|$ ABB 57

$$\begin{split} V &= F_{\mathsf{Grundfl\"{a}che}} \cdot h = |\underline{a} \times \underline{b}| \cdot |\underline{c}| \cdot |cos(\alpha)| = |(\underline{a} \times \underline{b},\underline{c})| \\ \mathsf{Bemerkung:} \\ \mathsf{Spatprodukt} \begin{cases} > 0 & \dots \mathsf{Rechtssystem} \\ < 0 & \dots \mathsf{Linkssystem} \end{cases} \end{split}$$

2.) Komplanaritätskriterium:

Die Vektoren a, b, c sind komplanar, d.h. sie liegen in einer (in O angehefteten) Ebene $\Leftrightarrow (\underline{a} \times \underline{b}, \underline{c}) = 0$ $\Leftrightarrow \underline{a}, \underline{b}, \underline{c}$ sind linear abhängig.

5.5.5. Geraden- und Ebenengleichungen

1.) Parameterdarstellung einer Geraden g durch P_1 und P_2 :

$$P \dots$$
 beliebiger Punkt von g

Bsp.:

Gerade durch die Punkte $P_1 = (1, 2, -1), P_2 = (0, 1, 4)$

$$g: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix} + t \begin{pmatrix} -1 \\ -1 \\ 5 \end{pmatrix} \quad (t \in \mathbb{R})$$

2.) Parameterdarstellung einer Ebene ε durch 3 Punkte P_1, P_2, P_3 , die nicht auf einer Geraden lieaen.

ABB 59

$$\begin{array}{l} P \ldots \text{ beliebiger Punkt von } \varepsilon \\ \overrightarrow{OP} = \overrightarrow{OP_1} + u \cdot \overrightarrow{P_1P_2} + v \cdot \overrightarrow{P_1P_3} \quad (u,v \in \mathbb{R}) \\ \underline{\underline{r} = \underline{r}_1 + u \cdot \underline{a} + v \cdot \underline{b}} \quad (u,v \in \mathbb{R}) \\ \underline{\underline{r} = \underline{r}_1 + u \cdot (\underline{r}_2 - \underline{r}_1) + v (\underline{r}_3 - \underline{r}_1)} \end{array}$$

3.) Parameterfreie Ebenengleichung

ABB 60

Normalenvektor \underline{n} ($\underline{n} \neq 0$, $\underline{n} \perp \varepsilon$):

$$\underline{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, \ \underline{n} \bot \overrightarrow{P_0 P}$$

Dabei sei P(x,y,z) ein beliebiger Punkt in ε und $P_0(x_0,y_0,z_0)$ ein fester Punkt in ε mit Orthogonalitätskriterium $(\underline{n}, \overrightarrow{P_0P}) = 0$ bzw. $(\underline{n}, \underline{r} - \underline{r_0}) = 0$.

Ausführlich:
$$\begin{pmatrix} a \\ b \\ c \end{pmatrix}, \begin{pmatrix} x-x_0 \\ y-y_0 \\ z-z_0 \end{pmatrix} = 0, \text{ d.h. } a\cdot(x-x_0) + b(y-y_0) + c(z-z_0) = 0$$

Allgemeine Form: |ax + by + cz + d = 0| mit $d = -ax_0 - by_0 - cz_0$.

Bsp. 15:

Ebene durch $P_1(1,0,0), P_2(3,1,5), P_3(-2,0,2)$

• P.d. (Parameterdarstellung)
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} + u \underbrace{\begin{pmatrix} 2 \\ 1 \\ 5 \end{pmatrix}}_{a} + v \underbrace{\begin{pmatrix} -3 \\ 0 \\ 2 \end{pmatrix}}_{b} \quad (u, v \in \mathbb{R})$$

• Ein Normalenvektor ist bpsw.
$$\underline{u} = \underline{a} \times \underline{b} = \begin{pmatrix} 2 \\ -19 \\ 3 \end{pmatrix}$$

 \bigcirc Parameterfreie Darstellung: $2x - 19y + 3z + d = 0$
 d berechnen: Einsetzen von $x = 1, y = z = 0$ (P_1) liefert $2 \cdot 1 + d = 0 \implies d = -2$
 $\bigcirc \boxed{2x + 19y + 3z - 2 = 0}$

5.5.6. Einige geometrische Grundaufgaben

1.) Schnitt von Gerade und Ebene

Bsp. 16:

Gegeben:

Ebene
$$\varepsilon$$
: $2x - 4y + z + 3 = 0$ Gerade g :
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 3 \\ 0 \\ 1 \end{pmatrix} + t \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}$$

Gesucht:

- a.) Schnittpunkt (Spurpunkt) $S(x_S, y_S, z_S)$
- b.) Schnittwinkel

zu a.)
$$g: x=3-t, \ y=t, \ z=1-2t$$
 einsetzen in Ebenengleichung: $2(3-t)-4\cdot t+1-2t+3=0 \Rightarrow -8t+10=0 \Rightarrow t=\frac{5}{4}$
$$t=\frac{5}{4} \text{ in Geradengleichung einsetzen: } x_S=3-\frac{5}{4}=\frac{7}{4}, y_S=\frac{5}{4}, z_S=1-2\frac{5}{4}=-\frac{3}{2}$$

$$\sim \underline{S\left(\frac{7}{4},\frac{5}{4},-\frac{3}{2}\right)}$$

zu b.) Schnittwinkel:

$$\beta = \measuredangle(\underline{n},\underline{a}) \text{ (Richtungsvektor von } g)$$

$$\alpha = |90^{\circ} - \beta|$$

$$\underline{n} = \begin{pmatrix} 2 \\ -4 \\ 1 \end{pmatrix}, \underline{a} = \begin{pmatrix} -1 \\ 1 \\ -2 \end{pmatrix}, \beta = arrcos\left(\frac{(\underline{n},\underline{a})}{|\underline{n}| \cdot |\underline{a}|}\right) \approx 135,45^{\circ}$$

$$\alpha = |90^{\circ} - \beta| \approx 45,45^{\circ}$$

2.) Schnitt zweier Ebenen: 2 Gleichungen, 3 Unbekannte

Bsp. 17:

Schnitt der Ebenen ε_1 : x+y+z-1=0 und ε_2 : x-2y+3z+4=0. Austauschverfahren

also
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -\frac{5}{2}t + \frac{7}{2} \\ t \\ \frac{3}{2}t - \frac{5}{2} \end{pmatrix}$$
, oder $\begin{pmatrix} x \\ y \\ z \end{pmatrix} = t \begin{pmatrix} -\frac{5}{2} \\ 1 \\ \frac{3}{2} \end{pmatrix} + \begin{pmatrix} \frac{7}{2} \\ 0 \\ -\frac{5}{2} \end{pmatrix}$ $(t \in \mathbb{R})$

3.) Abstand $d(P_1, \varepsilon)$ eines Punktens P_1 in einer Ebene ε .

$$\varepsilon: ax + by + cz + d = 0, \text{ Punkt } P_1(x_1, y_1, z_1)$$
$$d(P_1, \varepsilon) = \frac{|ax_1 + by_1 + cz_1 + d|}{\sqrt{a^2 + b^2 + c^2}}$$

$$\underline{n} = \begin{pmatrix} a \\ b \\ c \end{pmatrix}, P_0 \in \varepsilon, \text{d.h. } ax_0 + by_0 + cz_0 + d = 0$$

$$d(P_1, \varepsilon) = \left| \overrightarrow{P_0 P_1}_{\overrightarrow{n}} \right| = \frac{\left| \left(\overrightarrow{P_0 P_1}, \underline{n} \right) \right|}{|\underline{n}|}$$

$$\overrightarrow{P_0 P_1} = \begin{pmatrix} x_1 - y_0 \\ y_1 - y_0 \\ z_1 - z_0 \end{pmatrix}$$

$$\Rightarrow d(P_1, \varepsilon) = \frac{|a(x_1 - x_0 + b(y_1 - y_0) + c(z_1 - z_0))|}{\sqrt{a^2 + b^2 + c^2}} = \frac{|ax_1 + by_1 + cz_1|}{\sqrt{a^2 + b^2 + c^2}}$$

Abstand von
$$P_1(2, -9, -16)$$
 von der Ebene ε : $3x - 7y + 8z + 26 = 0$. $d(P_1, \varepsilon) = \frac{|3 \cdot 2 - 7 \cdot (-9) + 8 \cdot (-16) + 26|}{\sqrt{3^2 + (-7)^2 + 8}} = \frac{|-33|}{\sqrt{122}} = \frac{33}{\sqrt{122}}$

Bemerkung: Gerade g in der x-y-Ebene, Gleichung ax + by + c = 0, NV: $\underline{n} = \binom{a}{b}$, Abstand

eines Punktes $P_1(x_1,y_1)$ von g:

$$d(P_1,g) = \frac{|ax_1 + by_1 + c|}{\sqrt{a^2 + b^2}}$$

4.) Abstand d(Q, g) eines Punktes Q von einer Geraden g (in \mathbb{R}^3).

$$g: \underline{r} = \overrightarrow{OP_1} + t\underline{a} \quad t \in \mathbb{R}$$
 (Parameterdarstellung)

ABB 92

 $(d \text{ ist H\"ohe } \overline{LQ} \text{ des von } \underline{a} \text{ und } \overline{P_1Q} \text{ aufgespannten Parallelogramms)}$ $\text{Lotfußpunkt:} \boxed{\overrightarrow{OL} = \overrightarrow{OP_1} + \overline{P_1Q_a}}$

Lotfußpunkt:
$$\overrightarrow{OL} = \overrightarrow{OP_1} + \overrightarrow{P_1Q_a}$$

$$g: \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix} + t \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \quad t \in \mathbb{R}, Q(1, 1, 1)$$

a) Abstand d(Q, g):

$$\underline{a} = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}, \underline{r}_1 = \begin{pmatrix} 2 \\ 3 \\ 1 \end{pmatrix}, \overrightarrow{OQ} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \overrightarrow{P_1Q} = \begin{pmatrix} -1 \\ -2 \\ 0 \end{pmatrix}$$

$$\overrightarrow{P_1Q} \times \underline{a} = 2\underline{i} - \underline{j} + 2\underline{k} = \begin{pmatrix} 2 \\ -1 \\ 2 \end{pmatrix}$$

$$\begin{vmatrix} \overrightarrow{P_1Q} \times \underline{a} \end{vmatrix} = \sqrt{2^2 + (-1)^2 + 2^2} = \sqrt{9} = 3$$

$$d(Q, g) = \frac{3}{\sqrt{2}} = \frac{3}{2}\sqrt{2}$$

5.) Abstand $d(g_1, g_2)$ zweier nicht paralleler Geraden g_1 und g_2 .

$$\begin{array}{l} g_1: \ \underline{r} = \underline{r}_1 + s \cdot \underline{a}_1 \\ g_2: \ \underline{r} = \underline{r}_2 + t \cdot \underline{a}_2 \quad (s, t \in \mathbb{R}) \\ \mathsf{ABB} \ \mathsf{93} \\ d = \left| \overrightarrow{P_1 P_2}_{\underline{a}_1 \times \underline{a}_2} \right| = d(g_1, g_2) = \frac{|(\underline{r}_2 - \underline{r}_1, \underline{a}_1 \times \underline{a}_2)|}{|\underline{a}_1 \times \underline{a}_2|} \end{array}$$

Bemerkung: Lotfußpunkte L_1 und L_2 aus Bedingungen $\overline{L_1L_2}\bot\underline{a_1}$ und $\overline{L_1L_2}\bot\underline{a_2}$ ermittelbar.

5.6. Eigenwerte und Eigenvektoren

Es sei \underline{A} eine (n, n)-Matrix.

Def. 13:

Die Zahl $\lambda \in \mathbb{C}$ heißt *Eigenwert* (EW) der quadratischen Matrix \underline{A} , falls die Gleichung $\underline{\underline{A}\,\underline{x} = \lambda\underline{x}}$ nichttriviale Lösungsvektoren \underline{x} besitzt. Diese heißen dann *Eigenvektoren* (EV) von \underline{A} zum Eigenwert λ .

Diskussion:

- 1.) $\underline{A}\underline{x} = \lambda \underline{x} \Leftrightarrow (\underline{A} \lambda \underline{E})\underline{x} = \underline{0}$ D.h. nichttriviale Lösungen existieren genau dann, wenn $\boxed{\det(\underline{A} \lambda \underline{E}) = 0}$ (*charakteristische Gleichung*) gilt.
- 2.) Vorgehensweise zur Ermittlung von EW und EV:

- charakt. Gleichung lösen (n i.a. komlpexe Lösungen $\lambda_1,...,\lambda_n$)
- Gleichungssystem $(\underline{A} \lambda_i \underline{E})\underline{x} = \underline{0}$ für i = 1, ..., n lösen.

Im folgenden werden nur symmetrische (n, n)-Matrizen \underline{S} betrachtet, d.h. $\underline{S}^T = \underline{S}$.

Satz 6:

Es sei \underline{S} eine symmetrische (n, n)-Matrix. Dann gilt:

- (1) Alle Eigenwerte von \underline{S} sind reell.
- (2) Zu verschidenen EW λ_1 bzw. λ_2 ($\lambda_1 \neq \lambda_2$) gehörende EV \underline{v}_1 bzw. \underline{v}_2 sind orthogonal (vgl. Disskussion).
- (3) Es gibt eine Basis des Raumes \mathbb{R}^n , die aus n paarweise orthonormierten EV $\underline{v}_1,...,\underline{v}_n$ von \underline{S} besteht.
- (4) Es sei $\underline{V}=(\underline{v}_1|...|\underline{v}_n)$ eine Matrix, deren Spaltenvektoren n paarweise orthonomierte EV von \underline{S} sind. Dann gilt:
 - $\underline{V} \cdot \underline{V}^T = \underline{V}^T \cdot \underline{V} = \underline{E}$ (d.h. $\underline{V}^{-1} = \underline{V}^T$, \underline{V} ist sogenannte orthogonale Matrix)

$$\bullet \ \underline{V}^T \cdot \underline{S} \cdot \underline{V} = \begin{pmatrix} \lambda_1 & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \lambda_n \end{pmatrix} = \Lambda \ \curvearrowright \boxed{\underline{S} = \underline{V} \cdot \Lambda \cdot \underline{V}^T}$$

$$\bullet \ \, \text{Es gilt } \underline{S}^{-1} = \underline{V} \cdot \Lambda^{-1} \cdot \underline{V}^T \ \, \text{mit} \left(\begin{matrix} \frac{1}{\lambda_1} & 0 & 0 \\ 0 & \dots & 0 \\ 0 & 0 & \frac{1}{\lambda_n} \end{matrix} \right) = \Lambda^{-1} \\ \underline{S}^n = \underline{V} \cdot \Lambda^n \cdot \underline{V}^T$$

 $\textit{Betrag (Norm)} \text{ eines Vektors } |\underline{a}| = \sqrt{\sum_{i=1}^n a_i^2} \text{ paarweise orthonormiert bedeutet } (\underline{v}_i, \underline{v}_j = \begin{cases} 1 & \text{für } i = j \\ 0 & \text{für } i \neq j \end{cases}.$