Декомпозиция линейных автоматов над кольцом вычетов в сдвиговые регистры *

Арнольд Шойинг (Arnold Scheuing)

Институт информатики и прикладной математики, Бернский университет, СН-3012 Берн, Швейцария

Аннотация

Линейный автомат \mathfrak{A} над факторкольцом \mathbb{Z}_n , $n \in \mathbb{N}$, в общем случае неразложим на параллельно соединённые сдвиговые регистры. Мы смогли сформулировать необходимые и достаточные условия для такого разложения, используя торию об артиновых локальных кольцах R и R[x]-модульной структуре \mathfrak{A} .

1 Введение

Структура конечного, детерминированного линейного автомата (далее KA) интересна не только с точки зрения информатики, но и с точки зрения теории систем. Сфера применений KA, называемых также линейными последовательными схемами (LCS) включает в себя обнаружение и исправление ошибок, генераторы случайных чисел, криптологию (мотивация автора), а также конечномерные линейные системы с постоянными коэффициентами и дискретным или непрерывным временем. До тех пор пока коэффициенты такого автомата или системы являются элементами поля F, структура хорошо известна и тщательно изучалась последние двадцать лет [4] с помощью линейной алгебры: пространство состояний E автомата $\mathfrak A$ — это конечномерное векторное пространство E над F, а функция перехода может быть рассмотрена как эндоморфизм в E или как матрица A над F, если базис в E зафиксирован.

Для нахождения более "простого"эквивалентного \mathfrak{A} KA можно использовать взаимооднозначное соответствие между KA, эквивалентными \mathfrak{A} , и матрицами, подобными A. Есть существенные причины для выбора рациональной канонической формы A как наиболее "простой потому что она соответствует разложению A на параллельные сдвиговые регистры.

На рисунке 1 мы показываем три представления КА относительно данного базиса B в E. Рисунок 1(a) соответствует сдвиговому регистру (его технической реализации) с 3-мерным пространством состояний, каждое из которых обладает компонентами (s_1, s_2, s_3) . В теории систем s_i и a_i называются, соответственно, элементами задержки и умножения. Каждый такт элемент из s_3 переходит в s_2 , из s_2 — в s_1 и сумма $a_0s_1+a_1s_2+a_2s_3$ (в поле F) попадает в s_3 . На рисунке 1(б) изображено представление линейной функции f в форме матрицы 3×3 . Эта специальная форма называется сопровождающей матрицей. Если полином $x^3-a_2x^2-a_1x-a_0$ является несократимым в F[x], тогда КА нельзя разложить. Рисунок 1(в) указывает F[x]-модуль ранга 3, например, базис B имеет три элемента: e, f(e), $f^2(e)$, и

$$f^{3}(e) = a_{0}e + a_{1}f(e) + a_{2}f^{2}(e).$$

^{*}Результаты приведённые в данной работе являются частью докторской диссертации автора, которой руководил профессор Урс Вюрглер (Urs Würgler) из Бернского университета.

Рис. 1: Соответствующие представления $(a_0, a_1, a_2 \in F)$. (a) Сдвиговый регистр. (б) Сопровождающая матрица. (в) Циклический F[x]-модуль ранга 3.

Взаимооднозначное соответствие между этими структурами используется на всём протяжении данной работы: диаграммы КА и сдвиговые регистры для визуализации технической реализации, матрицы для расчётов в примерах, а модули для развития теории.

Известно, что КА с коэффициентами над полем может быть всегда реализован с помощью параллельного соединения сдвиговых регистров [9]. Но в применениях, указанных выше, нас также интересуют системы над кольцами $\mathbb{Z} \mod 2^r (r \in \mathbb{N})$. Например, в криптологии процесс автоматизированного шифрования и расшифрования связан с диапазоном значений 2^r регистра с r бинарными разрядами.

Хорошее исследование расширения теории линейных систем от полей до колец за последние десять лет можно найти в работе [12]. Принцип двойственности для линейных систем над факторкольцами рассматривалась в работах [2, 8]. Представление матричных дробей для линейных систем над коммутативными кольцами также было изучено в работе [5].

В разделе 5 мы приводим пример КА над \mathbb{Z}_4 , который и не является, и не разложим на сдвиговые регистры. Следовательно, возникает вопрос, при каких условиях КА над \mathbb{Z}_n может быть реализован как параллельное соединение сдвиговых регистров. Похожая проблема изучалась в работах [6, 7], путём использования биекции $\beta:\mathbb{Z}_{p^r}\approx\prod_1^r\mathbb{Z}_p$ для декомпозиции КА $\mathfrak A$ над \mathbb{Z}_{p^r} в каскад из r автоматов $\mathfrak A_i$ над \mathbb{Z}_p . Но поскольку β не является гомоморфизмом колец, $\mathfrak A_i$ соединены с помощью нелинейной логикой без задержек, которая ограничивает дальнейший анализ посредством коммутативной алгебры.

Данная работа состоит из следующих разделов: в разделе 2 мы покажем, что \mathbb{Z}_n -свободные $\mathbb{Z}_n[x]$ -модули являются подходящими математическими объектами для изучения структуры KA над полем \mathbb{Z}_n (рисунок 1). В разделе 3 мы докажем что проблема может быть сведена к KA над \mathbb{Z}_p без потери общности; с другой стороны, рекурсивный критерий в последнем разделе предлагает не ограничивать наше внимание на конечных и локальных кольцах \mathbb{Z}_{p^r} , а рассматривать более общие (коммутативные) артиновы локальные кольца R (с 1). Следовательно, в разделе 3 мы соберём все необходимые утверждения относительно артиновых локальных колец и модулей над ними. В разделе 4 мы покажем, что наш R[x]-модуль всегда имеет примарное разложение. Основные результаты находятся в разделах 5 и 6, где мы приводим необходимые и достаточные условия

для циклического разложения пространства состояний; другими словами, условия для того, чтобы КА был эквивалентен прямой сумме сдвиговых регистров. Общий случай мы рассматриваем в разделе 5, а специальный с кольцом главных идеалов — в разделе 6.

2 Модульная структура конечного автомата

Начнём с более точного описания конечного автомата (КА).

Определение 2.1 Конечный детерминированный линейный автомат (без входных или выходных функций) над кольцом R — это пара (E,f), где пространство состояний E является свободным R-модулем конечной размерности (скажем n), а функция перехода f — это линейное отображение из E в E. Каждое $e \in E$ является состоянием KA, функция перехода отображает состояние e в новое f(e). Мы можем использовать простую нотацию без начального состояния, потому что нас интересует структура KA в целом.

Множество функций переходов над E — это кольцо эндоморфизмов $\operatorname{End}_R(E) = \{f: E \to E \mid f \text{ линейна}\}$. $\operatorname{End}_R(E)$ также является R-модулем. Этот факт может быть выражен с помощью гомоморфизма колец на следующей коммутативной диаграмме.

Для $r \in R$, $\psi(r)$ — это скалярное произведение для r из E. Так как f линейна над E, мы можем расширить ψ на R[x] как гомоморфизм колец с помощью задания $\hat{\psi}(x) := f$. Теперь E становится R[x]-модулем.

Путём параллельного соединения различных КА над одним и тем же кольцом мы можем построить более крупный автомат. Но ещё больший интерес представляет возможность разложения данного (сложного) автомата на мельчайшие, несократимые части — сдвиговые регистры.

Определение 2.2 КА (E,f) над кольцом R называется cdeuroeым регистром, если E цикличное, как R[x]-модуль. Другими словами, если существует такое начальное состояние $e \in E$, что его орбита:

$$e, f(e), f^{2}(e), ..., f^{n-1}(e)$$

охватывает E.

Под «параллельным соединением КА (E_i,f_i) » мы подразумеваем техническую реализацию (см. рисунок 2(б)), но оно попросту означает прямую сумму КА $(\bigoplus E_i,\bigoplus f_i)$. Высказывание «КА реализован как параллельное соединение сдвиговых регистров» является интуитивным способом выразить то, что E — это прямая сумма R[x]-цикличных R-свободных подмодулей.

Для формулировки первой теоремы необходима следующая нотация:

- $M_n(R)$ множество всех $n \times n$ -матриц над R,
- $GL_n(R)$ подмножество всех регулярных матриц из $M_n(R)$,

- $M_n(R)/GL_n(R)$ множество всех классов подобия матриц $(A \in M_n(R))$ подобна $T^{-1}AT$ для всех $T \in GL_n(R)$,
- $Mod_n(Rp[x])$ класс всех R-свободных R[x]-модулей E ранга n (т.е. $dim_R(E) = n$),
- $Iso(Mod_n(R[x]))$ множество классов изоморфизма таких модулей.

Теорема 2.3 Существует биекция:

$$\chi: M_n(R)/GL_n(R) \to Iso(Mod_n(R[x]))$$

Доказательство. Определение χ : Пусть $[A] \in M_n(R)/GL_n(R)$ и $A \in M_n(R)$ — представители (Definition of χ : Let ... be a representant.). Далее, пусть E — свободный R-модуль ранга n. Выберем базис в E и определим $x \cdot e := A \cdot e \ (\forall e \in E)$. Таким образом E становится R[x]-модулем E_A . Определим $\chi[A] := [E_A]$ — класс изоморфизма E_A . χ определено корректно, потому что для подобных матриц $A \sim A'$, модули изоморфны: $E_A \cong E_{A'}$, следовательно, $[E_A] = [E_{A'}]$.

Определение χ' : Пусть $[F] \in Iso(Mod_n(R[x]))$ и $F \in Mod_n(R[x])$ — представители (Definition of χ : Let ... be a representant.). Выберем R-базис в F, тогда (линейное) преобразование x может быть выражено с помощью матрицы A. Если мы зададим $\chi'[F] := [A]$, то оно также корректно определено и очевидно является обратной функцией к χ . \square

3 Артиновы локальные кольца и конечнопорождённые модули

В первой части этого раздела мы применим китайскую теорему об остатках для упрощения задачи с КА над \mathbb{Z}_n до КА над \mathbb{Z}_{p^r} (p — простое, $r \in \mathbb{N}$). Мы помним, что кольцо \mathbb{Z}_n изоморфно произведению колец $\prod_{i=1}^m \mathbb{Z}_{p_i^{r_i}}$, так как n единственным образом разлагается на простые множители $n=p_1^{t_1}p_2^{t_2}\cdots p_m^{t_m}$. Из этого изоморфизма вытекает следующая теорема.

Теорема 3.1 Пусть $R_1, R_2, ..., R_m$ — (коммутативные) кольца (с единицей), $R := \prod_{i=1}^m R_i, E - R$ -модуль и определим $E_i := E \otimes R_i$. Тогда кольцо $End_R(E)$ изоморфно $\bigoplus_{i=1}^m End_{R_i}(E_i)$.

Доказательство. Пусть $f_i := f \otimes 1_{E_i} \in \operatorname{End}_{R_i}(E_i)$. Мы можем определить гомоморфизм колец $\phi : \operatorname{End}_R(E) \to \bigoplus_{i=1}^m \operatorname{End}_{R_i}(E_i)$ как $\phi(f) := (f_1, f_2, ..., f_m)$.

Если ϕ — мономорфизм: для $f \in ker(\phi) \Rightarrow f_i = f \otimes 1_{E_i} = 0 (\forall i) \Rightarrow f(E) \cong \prod_i (f(E) \otimes R_i) = 0 \Rightarrow f = (OПЕЧАТКА: в оригинальной статье формула обрывается).$

Если ϕ — эпиморфизм: мы выбираем произвольное $f_i \in \operatorname{End}_{R_i}(E_i)$. Принимая во внимание диаграмму:

$$E \xrightarrow{\prod_{i} f_{i}(1_{E} \otimes \pi_{i})} \prod_{i} E_{i} = \prod_{i} (E \otimes R_{i}) \cong E \otimes \prod_{i} R_{i} \cong E,$$

$$\downarrow^{\pi_{i}} \qquad \qquad \downarrow^{\pi_{i}}$$

$$E_{i} \xrightarrow{f_{i}} E_{i}$$

получаем, что $\phi(\prod_i f_i(1_E \otimes \pi_i)) = (f_1, f_2, ..., f_m)$. \square

Следствие 3.2 KA над \mathbb{Z}_n может быть всегда реализован с помощью параллельного соединения KA над \mathbb{Z}_{p^r} .

Пример 3.3 KA над \mathbb{Z}_6 , изображенный на рисунке 2(a), изоморфен автомату на рисунке 2(b). Соответствующий модуль выглядит следующим образом:

$$E \cong \mathbb{Z}_6[x]/(x^3 - 2x^2 - 3x - 4) \cong \mathbb{Z}_2[x]/(x^3 + x) \oplus \mathbb{Z}_3[x]/(x^3 + x^2 - 1).$$

Во второй части данного раздела мы хотим собрать воедино необходимые факты об артиновых локальных кольцах и о модулях над ними.

Рис. 2: Эквивалентные KA над \mathbb{Z}_6 (со входом и выходом)

Определение 3.4 Кольцо R является артиновым, если оно нётерово и имеет размерность 0 (любой простой идеал максимален, см. [1]).

Кольцо R является локальным, если оно нётерово и имеет ровно один максимальный идеал M. Нотация: (R, M).

Пример 3.5 $(\mathbb{Z}_{p^r},(p))$ и $(\mathbb{Z}_{p^r}[x]/(x^S),(p,x))$ — это артиновы локальные кольца.

Пемма 3.6 Артиновы локальные кольца (R, M), обладают следующими свойствами:

- (а) М является единственным простым идеалом;
- (б) нильрадикал Rad(R) совпадает с M и сам является нильпотентным; наименьшее $z \in \mathbb{N}$, при котором $M^z = (0)$, называется нильпотентностью M;
- (в) каждый элемент R либо обратим, либо нильпотентен.

Снэппер (Snapper) [11] называет такие кольца «совершенно простыми кольцами». Учитывая важность канонического отображения $\pi: R \to R/Rad(R)$, мы будем использовать следующую нотацию на всём протяжении работы: $\overline{R} = R/Rad(R)$, поле вычетов, $\overline{r} = \pi(r)(\forall r \in R), \overline{M[x]} = \pi(M[x]) = 0$.

Примечание 3.7 В данной работе мы будем рассматривать только конечнопорождённые модули, не повторяя этот факт каждый раз.

Причина, по которой мы не можем следовать такому же разложению, как для автомата над полем F (т.е. как модули над областью главных идеалов F[x]), состоит в том, что подмодуль свободного модуля не обязательно является свободным. Но у нас есть следующая фундаментальная теорема.

Теорема 3.8 (a) B локальном кольце (S, M) все конечнопорождённые модули свободны.

- (б) Пусть (S, M) артиново локальное кольцо, $F \subset E$ оба конечнопорождённые свободные S-модули. Тогда $E \cong F \oplus E/F$.
- (в) Пусть (S, M) артиново локальное кольцо, $F, G \subset E$ три конечнопорожедённых свободных S-модуля. Тогда $F \cap G$ и F + G являются свободными.

Доказательство. (а) См. [10].

- (б) Пусть $\{e_1,...,e_n\}$ и $\{f_1,...,f_m\}$ базисы в E и F, соответственно. Поскольку $F\cap E\Rightarrow f_1=\sum \phi_i e_i$ и поскольку $\{f_1,...,f_m\}$ линейно независимы, как минимум один из ϕ_i должен быть обратим (см. лемму 3.6). Без потери общности, обратимый ϕ_i подразумевает $e_1=(\phi_1^{-1})(f_1-\sum_{i<1}\phi_i e_i)$. Поэтому $\{f_1,e_2,...,e_n\}$ это базис в E. По индукции получаем, что $\{f_1,f_2,...,f_m,e_{m+1},...,e_n\}$ является базисом в E, следовательно, $E\cong F\oplus L_R(e_{m+1},...,e_n)$.
- (в) $G \to F \oplus E/F$ и оба слагаемых свободные (см. часть (б)). Пусть $\{g_1,...,g_p\}$ базис в G, а $\{f_1,f_2,...,f_m,e_{m+1},...,e_n\}$ базис в $E=F \oplus E/F$. Поскольку $g_i \in E$, мы можем заключить аналогично части (б), что $\{g_1,...,g_q,f_{q+1},...,f_m,g_{q+1},...,g_p,e_{n-m-p+q},...,e_n\}$ является базисом в E. Следовательно, $F \cap G = L_S(g_1,...,g_q)$ и $F + G = L_S(g_1,...,g_p,f_{q+1},...,f_m)$ свободны. \square

Напомним, что для несократимого полинома $\alpha \in R[x]$, отображение (projection) $\overline{\alpha} \in \overline{R}[x]$ не обязательно будет несократимым. Если оно является таковым, то мы называем α фундаментально несократимым.

Лемма 3.9 Вот некоторые важные типы идеалов в R[x] для артинова локального (R,M):

- (a) $M[x] := \{ \sum_i r_i x^i \in R[x] | r_i \in M \} \subset R[x]$ является единственным <mark>нулевым (nil)</mark> простым идеалом в R[x];
- (б) Все ненулевые простые идеалы имеют вид $M[x] + (\alpha)$, где $\alpha \in R[x]$ приведённый и фундаментально несократимый. Поскольку \overline{R} поле, эти идеалы также являются максимальными;
- (в) Ненулевой идеал в R[x] представим в виде $N+(\beta)$, где β приведённый многочлен и $N \subset M[x]$. Порождающие N могут быть всегда выбраны так, что их степень будет меньше, чем β .

Доказательство очевидно; подробности можно найти в работе [11].

4 Примарное разложение

Для начала подготовим факты и определения, связанные с идеалами. Пусть J-идеал в кольце S. Радикал в J- это $Rad(J)=\{s\in S|\exists n\in\mathbb{N}:s^n\in J\}$. Напомним, что Rad(R):=Rad(0). J называется примарным, если для $st\in J, t\notin J\Rightarrow s\in Rad(J)$.

Пусть E — это S-модуль, тогда аннигиляторный идеал в E определяется как $\operatorname{Ann}_S(E) := \{ s \in S | se = 0 (\forall e \in E) \}.$

Определение 4.1 S-модуль называется примарным, если (0) — это примарный подмодуль E. To есть se=0 (при $s\in S, 0\neq e\in E$) означает, что $s\in Rad(\mathrm{Ann}_S(E))$. (Если элемент s уничтожает один элемент из E, то мощность s уничтожает всё в E.) Идеалы J и I в S называются взаимно простыми, если I+J=S.

Лемма 4.2 Пусть (R, M) — артиново локальное кольцо и I, J — примарные идеалы в R[x]. Тогда:

- (a) J, I взаимно простые $\Leftrightarrow Rad(J), Rad(I)$ взаимно простые;
- (б) Пусть J и I ненулевые: $Rad(J) = Rad(I) \Rightarrow J$ и I взаимно простые.

Доказательство (a) (\Leftarrow): Очевидно, так как $Rad(J) \subset J$ и $Rad(I) \subset I$.

 (\Rightarrow) : Выберем $p \in Rad(J), q \in Rad(I)$ такими, что p+q=1. Теперь существуют такие $n,m \in \mathbb{N}$, для которых выполняется $p^m \in J$ и $q^n \in I$, что:

$$1 = 1^{m+n-1} = (p+q)^{m+n-1} = \sum_{k=1}^{m+n-1} \binom{m+n-1}{k} p^k \cdot q^{m+n-k-1} = p^m(...) + q^n(...) \in J+I,$$

что подразумевает $1 \in I + J$.

(б) Из леммы 3.9 мы знаем что $Rad(\underline{J}) = M[x] + (\alpha), Rad(I) = M[x] + (\beta),$ где подходящие $\alpha, \beta \in R[x]$ нормированы, а $\overline{\alpha}, \overline{\beta} \in \overline{R}[x]$ взаимно просты. Следовательно, $1 \in (\overline{\alpha}) + (\overline{\beta}),$ и $1 + \nu \in (\alpha) + (\beta)$ для некоторого $\nu \in M[x]$. Таким образом, Rad(J) и Rad(I) взаимно простые и, учитывая часть (а), J и I взаимно простые. \square

Лемма 4.3 Пусть R — нётерово кольцо, и E — R-свободный R[x]-модуль. E является примарным тогда и только тогда, когда $Ann_{R[x]}(E)$ является примарным.

Доказательство Пусть $A := Ann_{R[x]}(E)$.

- (⇒): Допустим $\alpha\beta \in A, \beta \notin A$, подразумевая, что существует $0 \neq e \in E$, для которого $\beta e \neq 0$. Но $(\alpha\beta)e = 0 = \alpha(\beta e)$ и E примарный, следовательно, $\alpha \in Rad(A)$.
 - (\Leftarrow) Пусть $0 \neq e \in E, \alpha e = 0$. Мы знаем, что

$$((\alpha) + A) \cdot ((\alpha) \cap A) \subset (\alpha) \cdot A \subset (\alpha) \cap A.$$

Случай 1: $(\alpha) \cdot A = (\alpha) \cap A$. Для нётеровых колец это означает, что $(\alpha) + A = R[x]$. Следовательно, существуют такие $\beta \in R[x]$ и $\gamma \in A$, что $\beta \alpha + \gamma = 1$. Возникает противоречие: $1 \cdot e = \beta(\alpha e) + \gamma e = \beta 0 + 0$.

Cлучай 2: $(\alpha) \cdot A \neq (\alpha) \cap A$. Существует $\beta \in (\alpha) \cap A$, $\beta \notin (\alpha) \cdot A$ такое, что $\beta = \alpha \gamma \in A$, $\gamma \notin A$, следовательно, $\alpha \in Rad(A)$. \square

Нас интересуют артиновы локальные кольца, а они по определению являются нётеровыми, поэтому мы можем применить следующую важную теорему.

Теорема 4.4 В нётеровом кольце R каждый идеал имеет примарное разложение на примарные идеалы Q_i (с точностью до порядка (unique up to order))

$$J = \bigcap_{i=1}^{m} Q_i, \qquad Q_i \not\subset \bigcap_{j \neq i} Q_j \quad (i = 1, ..., m)$$

u все $Rad(Q_i)$ различны.

Eсли все Q_i попарно взаимно просты, тогда

$$J \cong \prod_{i=1}^{m} Q_i.$$

Доказательство первой части можно найти в работе [3]. Второй — в [13].

Теорема 4.5 (Примарное разложение модулей). Пусть (R, M) — артиново локальное кольцо, $E \in Mod_n(R[x])$. Тогда существуют примарные $L_i \in Mod_{n_i}(R[x]), L_i \subset E$, и эндоморфизмы $f_i = f|L_i$ такие, что

$$E \cong \bigoplus_{i=1}^{m} L_i \qquad u \qquad Ann_{R[x]}(E) \cong \prod_{i=1}^{m} Ann_{R[x]}(L_i).$$

Доказательство Применяя теорему 4.4 мы получаем примарное разложение $\operatorname{Ann}_{R[x]}(E) = \bigcap_i Q_i$, где все Q_i примарные. Поскольку E имеет конечный ранг, все Q_i не нулевые (nonnil). Лемма 4.2 гарантирует, что все Q_i попарно взаимно просты, следовательно, $\operatorname{Ann}_{R[x]} \cong \prod_i Q_i$.

Пусть $L_i:=\prod_{j\neq i}Q_j\cdot E, K_i:=\prod_{j=1}^iQ_j\cdot E$. Мы хотим показать, что $E=L_1\oplus L_2\oplus \cdots \oplus L_i\oplus K_i$ для i=0,...,m с помощью индукции. Естественно, $L_0=\mathrm{Ann}(E)E=0, K_0=E,$ и $K_m=0$. Покажем, что $K_{i-1}=L_i\oplus K_i$:

$$L_i + K_i = \left(\prod_{j \neq i} Q_j + \prod_{j=1}^i Q_j\right) E = \prod_{j=1}^{i-1} Q_j \left(Q_i + \prod_{j=i+1}^m Q_j\right) E = \prod_{j=i}^m (Q_i + Q_j) K_{i-1} = K_{i-1},$$

поскольку все Q_j взаимно простые. Аналогичным образом, $L_i \cap K_i = \prod_{j=1}^m Q_j E = \operatorname{Ann}(E)E = 0$.

Каждый L_i R-свободен, потому что он является R-проективным (R-projective) (как прямое слагаемое R-свободного модуля), следовательно, R-свободным по теореме 3.8. По лемме 4.3 L_i является примарным, так как $Ann(L_i) = Q_i$. \square

Пример 4.6 Пусть $R = \mathbb{Z}_4, E = e_1 R \oplus e_2 R$. КА на рисунке 3(a) соответствует матрице переходов $A = \begin{pmatrix} 3 & 3 \\ 0 & 0 \end{pmatrix}$.

 $A^2 + A = 0$ подразумевает $Ann(E) = (x^2 + x)$ с примарным разложением (x)(x+1). Следовательно,

$$L_1 = (x)E = (3e_1 + 3e_2)\mathbb{Z}_4, \quad f_1 = f|L_1 = (3),$$

 $L_2 = (x+1)E = (e_2)\mathbb{Z}_4, \quad f_2 = f|L_2 = (0).$

Относительно нового базиса $\{3e_1+3e_2,e_2\}$ мы имеем матрицу переходов $A=\begin{pmatrix} 3 & 0 \\ 0 & 0 \end{pmatrix}$ и конечный автомат на рисунке 3(b).

Рис. 3: Два эквивалентных КА: упрощение путём примарного разложения

5 Циклическое разложение

В силу теоремы 4.5 мы можем предположить без потери общности, что начнём с локального артинова кольца (R, M) и примарного $E \in Mod_n(R[x])$. В общем случае разложение E на циклические R[x]-модули не представляется возможным. Приведём следующий пример.

Пример 5.1 Пусть $R = \mathbb{Z}_4, E = e_1 R \oplus e_2 R$. Два КА на рисунке 4 эквивалентны. Они соответствуют матрицам $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}, \ A' = \begin{pmatrix} 3 & 2 \\ 2 & 1 \end{pmatrix}$.

Перебирая все преобразования $GL_2(\mathbb{Z}_4)$, мы можем убедиться в том, что $\{A, A'\}$ — это <mark>класс подобия (similarity-class)</mark> A. И ни A, ни A' не являются <mark>представлениями</mark> (representations) циклических модулей.

Рис. 4: Контрпример: КА над \mathbb{Z}_4 , который неразложим на сдвиговые регистры

Поэтому мы определяем более слабое условие, чем прямая сумма. Пусть L_i — это R[x]-подмодули $E\ (i=1,...,k)$ такие, что $\sum_{i=1}^k L_i = E.$

Определение 5.2 Сумма $E = \sum_{i=1}^k L_i$ называется прямой суммой по модулю M, если $\overline{E} \cong \bigoplus_{i=1}^k \overline{L_i}$, и обозначается как $M \sum_{i=1}^k L_i$. Легко заметить, что $E = M \sum_i L_i$, если $(L_i + ME) \cap \sum_{j \neq i} L_j \subset ME$. Напомним, что R[x]-модуль E называется циклическим, если E может быть порождён одним эле-

ментом; тогда мы имеем $E \cong R[x]/\mathrm{Ann}(E)$.

Пемма 5.3 Для указанных выше (R, M) и E существуют нормированные и неприводимые $\alpha_i \in \overline{R}[x]$ и $s_i \in \mathbb{N}(i=1,...,k)$ такие, что $\overline{E} \cong \bigoplus_{i=1}^k L_i'$ и $L_i' \cong \overline{R}[x]/(\alpha_i^{s_j})$.

Доказательство Поскольку e является R[x]-модулем, мы можем применить структурную теорему для конечнопорождённых модулей над <mark>областью главных идеалов(principial</mark> ideal domain) $\overline{R[x]} = R[x]/M[x] = (R/M)[x]$ (пример в работе [3]). Из того, что e примарный, получается что \overline{E} и, следовательно, все подмодули L_i' тоже примарный идеал в $\overline{R[x]}$ — это мощность простого идеала $(\bar{\alpha}_i)^{s_i}$. \square

Эти $\bar{R}[x]$ -подмодули $L_i' \subset \bar{E}$ могут быть подняты до (can be lifted to) R[x]-подмодулей L_i следующим образом. Пусть $e_i' \in L_i'$ порождает L_i' , а выбор $e_i \in \pi^{-1}(e_i') \subset E$ произволен: тогда $L_i := R[x] \cdot e_i (i=1,...,k)$. Каждый L_i циклический по определению, но в общем случае не R-свободный. Поскольку $\pi((L_i + ME) \cap \sum_{j \neq i} L_j) = L_i' \cap \sum_{j \neq i} L_j = 0$ мы доказали следующую теорему.

Теорема 5.4 Пусть (R, M) — артиново локальное кольцо, и $E \in Mod_n(R[x])$ — примарный модуль. Тогда существуют циклические R[x]-модули $L_i \subset E(i=1,...,k)$ такие, что $E = M \sum_{i=1}^{k} L_i$ (сумма по модулю M).

Теорема 5.5 Для (R, M) и E указанных выше:

$$E \cong \bigoplus_{i=1}^k L_i \Leftrightarrow L_i$$
 является R -свободным $(i=1,...,k)$ $\Leftrightarrow Ann_{R[x]}(L_i)$ является главным идеалом $(i=1,...,k)$.

Доказательство (a) (\Rightarrow): E-R-свободный модуль, а L_i — прямое слагаемое E, следовательно, L_i является R-проективным (R-projective), и тогда можно использовать теорему 3.8.

 (\Leftarrow) : Из теоремы 3.8 мы можем заключить, что $L_1 \cap \sum_{i>1} L_i$ является R-свободным, а из определения суммы по модулю M, мы знаем, что

$$(L_1 + ME) \cap \sum_{i>1} L_i \subset ME \implies L_1 \cap \sum_{i>1} L_i = 0.$$

Теперь продолжим для $\sum_{i>1} L_i$ по индукции.

- (б) Пусть i=1,...,k произвольно, e порождающий в L_i и $d:=d_i$, тогда $B:=e,xe,...,x^{d-1}e-R$ -базис в L_i .
- (\Rightarrow) : $x^de = \sum_{j=0}^{d-1} a_j(x^je) \in L$ подразумевает (в оригинале implying причастие), что $\alpha := x^d \sum_{j=0}^{d-1} a_j x^j \in \mathrm{Ann}(L)$ и α имеет степень d. Согласно лемме 3.9, $\mathrm{Ann}(L) = (\alpha) + N$ при $N \subset M[x]$. Если $N \neq 0$, тогда $\exists 0 \neq \beta \in N, \deg(\beta) < d$ (лемма 3.9), но это приводит к противоречию с тем, что базис B линейно независим.
- (\Leftarrow) : Без потери общности, $\mathrm{Ann}(L_i)$ порождён элементом $\alpha \in R[x]$ с ненулевым старшим коэффициентом. Очевидно, что $\deg(\alpha) = d$. Поскольку $\mathrm{Ann}(L_i)$ не содержит многочленов меньшей степени, в B не существует зависимостей между элементами, следовательно, B является базисом. \square

Пример 5.6 Пусть $R = \mathbb{Z}_4$, $E = \bigoplus_{i=1}^4 e_i \cdot \mathbb{Z}_4$. Автомат на рисунке 5 соответствует матрице переходов

$$A = \begin{pmatrix} 0 & 1 & 0 & 2 \\ 1 & 2 & 2 & 0 \\ 0 & 0 & 0 & 1 \\ 4 & 0 & 1 & 0 \end{pmatrix}.$$

 $Ann(E) = ((x^2 - 1)(x^2 - 2x - 1), 4(x^2 - 1)).$

Следуя выводу и нотации теоремы 5.4, мы получаем $\bar{R}[x] = \mathbb{Z}_2[x], \bar{E} = \bigoplus_{i=1}^4 \bar{e}_i \mathbb{Z}_2$ и $\mathrm{Ann}_{\mathbb{Z}_2[x]}(\bar{E}) = (x^2 + 1).$ $L_1' = L_{\mathbb{Z}_2}(\bar{e}_1, \bar{e}_2),$ аналогично, $L_2' = L_{\mathbb{Z}_2}(\bar{e}_3, \bar{e}_4).$ Теперь выберем

 $\hat{e}_1 := e_1 + 2e_3, \hat{e}_2 := 3e_3$ и найдём, что оба

$$L_1 = L_{\mathbb{Z}_8[x]}(\hat{e}_1) = L_{\mathbb{Z}_8}(\hat{e}_1, x\hat{e}_1, (4x+4)\hat{e}_2),$$
$$L_2 = L_{\mathbb{Z}_8}(\hat{e}_2, x\hat{e}_2, (4x+4)\hat{e}_1)$$

не являются \mathbb{Z}_8 -свободными.

Рис. 5: Три эквивалентных КА: упрощение с помощью циклического разложения

Относительно нового базиса $\{\hat{e}_i\}$ мы получаем новую матрицу переходов A^*

$$A^* = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 2 & 4 & 0 \\ 0 & 0 & 0 & 1 \\ 4 & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} + \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 0 \\ 4 & 0 & 0 & 0 \end{pmatrix}.$$
*TBUCT-МАТРИЦА»

Поскольку L_1 и L_2 не являются \mathbb{Z}_8 -свободными, два сдвиговых регистра соединены, но со следующими ограничениями:

- (1) они соединены только элементами нильрадикала (составляющими «твист-матрицы»);
- (2) они заканчиваются только в первых элементах задержки (с наивысшим индексом) каждого сдвигового регистра.

Определение 5.7 Примарный R-свободный R[x]-модуль называется скрученным, если он не изоморфен прямой сумме циклических R[x]-модулей.

Теорема 5.4 даёт нам необходимые и достаточные условия для определения скручен ли модуль или нет. Но у нас существует неприятная ситуация, в которой подмодули L_i зависят от выбора $e_i \in \pi^{-1}(e_i')$. Для одних e_i L_i будут циклическими, а для других нет. В приведённом ниже следствии мы следуем «алгоритмическому» подходу к проблеме отсутствующей независимости.

Следствие 5.8 Для (R, M) и E указанных выше, $E = {}_{M}\!\!\sum_{i=1}^{m}\!\!L_{i}$, пусть $\alpha_{i} \in R[x]$ — нормированный многочлен, для которого $(\overline{\alpha_{i}}) = Ann(L'_{i}) \subset \overline{R}[x]$. Тогда E не является скрученным, если существуют $\nu_{i} \in M[x](i=1,...,k)$ такие, что $(\alpha_{i}+\nu_{i})L_{i} \subset (\alpha_{i}+\nu_{i})ME$. Если E не скрученный, тогда $Ann(E) = \bigcap_{i=1}^{k} (\alpha_{i}+\nu_{i})$.

Доказательство (\Rightarrow): Очевидно по теореме 5.5: мы зададим $\nu_i := 0$.

 (\Leftarrow) : Существует $m_i \in ME$ такой, что $(\alpha_i + \nu_i)e_i = (\alpha_i + \nu_i)m_i$ для L_i -порождающих e_i подразумевает $(\alpha_i + \nu_i)(e_i - m_i) = 0$. Определим $L_i^0 := R[x](e_i - m_i)$; L_i^0 является R-свободным, и $\overline{L_i^0} = L_i'$ подразумевает $E = \sum_{i=1}^k L_i^0$, а теорема 5.4 завершает доказательство:

$$\operatorname{Ann}(E) = \operatorname{Ann}\left(\sum_{i} L_{i}\right) = \bigcap_{i} \operatorname{Ann}(L_{i}) = \bigcap_{i} (\alpha_{i} + \nu_{i}). \quad \Box$$

Пример 5.6 (Продолжение). Зададим $\alpha_1 = x^2 + 1 \in \mathbb{Z}_8[x]$, $\nu_1 = nx + m$ ($n,m \in (2) \subset \mathbb{Z}_8$). $(x^2 + nx + m + 1)\hat{e}_1 = \hat{e}_1((m+2) + x(n+2)) + 4\hat{e}_2$, и для n = m = 6 мы получаем $(x^2 - 2x - 1)\hat{e}_1 = (x^2 - 2x - 1)2x\hat{e}_2 = 4\hat{e}_2$. Следовательно, для нового выбора $\hat{e}_1^0 := \hat{e}_1 - 2x\hat{e}_2 = e_1 + 2e_3 + 2e_4$, L_1^0 является \mathbb{Z}_8 -свободным, $\mathrm{Ann}(L_1^0) = (x^2 - 2x - 1)$. Аналогичным образом если мы выберем $\hat{e}_2^0 := \hat{e}_2 - 2x\hat{e}_1 = e_3 + 2e_2$, то L_2^0 тоже становится \mathbb{Z}_8 -свободным, $\mathrm{Ann}(L_2^0) = (x^2 - 1)$. Матрица переходов A^* принимает вид

$$A^* = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 2 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix},$$

соответствуя конечному автомату на рисунке 5(с).

$$E$$
 не скручен \Rightarrow Ann $(E) = (x^2 - 2x - 1) \cap (x^2 - 1)$
= $((x^2 - 2x - 1)(x^2 - 1), 4(x^2 - 1)).$

6 Специальный случай с рекурсивным критерием

Мы продолжим рассматривать проблему предыдущего раздела, где (R, M) — это локальное артиново кольцо, а $E \in Mod_n(R[x])$ — примарный модуль. Для формулировки специального случая, нам необходимо сначала дать определение. Напомним, что согласно теореме 5.4 $E = M \sum_{i=1}^{k} L_i$, где циклические R[x]-модули $L_i \subset E(i=1,...,k)$.

Определение 6.1 Примарный модуль $E = {}_{M} \sum_{i=1}^{k} L_{i} \in Mod_{n}(R[x])$ называется полным степени d (full of degree), если все L_{i} имеют d линейно независимых порождающих.

Другими словами, $\dim_{\bar{R}}(\overline{L_i}) = d \quad (i = 1, ..., k)$. Конечный автомат, соответствующий полному модулю степени d (full module of degree) d, характеризуется постоянным числом d элементов задержки в каждом сдвиговом регистре.

Пусть $A := R[x]/\mathrm{Ann}(E)$. Конечно, E — это A-модуль.

Эта часть имеет следующую мотивацию. Конечный автомат, соответствующий полному модулю (full module), состоит из сдвиговых регистров \mathcal{A}_i (i=1,...,k), а соединения между ними описываются «твист-матрицей». Мы хотим рассматривать сдвиговый регистр как «векторный элемент задержки», как элемент задержки \mathcal{J}_i над A, а мультипликаторы в соединениях между \mathcal{J}_i как элементы A (см. рисунок 6).

Рис. 6: (a) Диаграмма KA над (R, M), соответствующего полному модулю степени (full module of degree) 3. (b) Диаграмма эквивалентного KA над A = R[x]/Ann(E).

Выберем минимальный набор (minimal set) А-порождающих $\{e_1,...,e_k\}$ из E. Поскольку каждый модуль является образом свободного модуля, мы имеем отображение $\rho: F \to E$ для свободного А-модуля F с базисом $\{b_1,...,b_k\}$, $\rho(b_i) = e_i (i=1,...,k)$. Мы получаем короткую, чёткую последовательность

$$0 \to \ker(\rho) \to F \xrightarrow{\rho} E \to 0.$$

Лемма 6.2 Пусть $E = {}_{M} \sum_{i=1}^{k} L_{i}$ полный А-модуль степени (full A-module of degree) d. Тогда существует нормированный $\alpha \in A$ степени d такой, что $im(\alpha) \subset ME$. α уникален c точностью до многочленов степени d-1 из MA.

Доказательство Для полного модуля мы всегда можем выбрать нормированный $\alpha \in A$, для которого $(\bar{\alpha}) = \operatorname{Ann}(\overline{L_i})$ (i = 1, ..., k). $deg(\alpha) = deg(\bar{\alpha}) = dim_{\overline{R}}(\overline{L_i}) = d$. Для всех $e \in E, \pi(\alpha e) = \bar{\alpha}\bar{e} = 0$, следовательно, $e \in ME$. \square

Порождающие $\ker(\rho)$ определяются с помощью <mark>отношений (relations)</mark> в E. Они имеют вид $ab_i = \sum_{j=1}^k \beta_{ij}b_j$ $(i=1,...,k), \ \alpha \in A$ нормирован, $\beta_{ij} \in MA$. Мы выбираем α в соответствии с леммой 6.2. Затем мы определим $h \in \operatorname{End}(F)$ как $h(b_i) := ab_i - \sum_{j=1}^k \beta_{ij}b_j$ (i=1,...,k) и, таким образом, найдём точную последовательность

$$F \stackrel{h}{\to} F \stackrel{\rho}{\to} E \to 0.$$

Заметим, что $E \cong \operatorname{coker}(h)$. Теперь определим $f_{\alpha} := \alpha - h$.

Теорема 6.3 Пусть $E \in Mod_n(A)$ полный степени d. Тогда следующие свойства эквивалентны:

- (a) E не является скрученным с циклическими подмодулями ранга d (i = 1, ..., k);
- (б) h duaroнализируемый (diagonalisable) c нормированными eigenvalue-polynomials of degree d (i = 1, ... k);
- (в) $f_{\alpha} \in Hom(F, MF)$ диагонализируемый (diagonalisable) with eigenvalue-polynomials in MA of de- gree < d ($i = 1, \ldots, k$).

Доказательство (1) \Rightarrow (2): В лемме 3.9 и в доказательстве теоремы 5.5 мы использовали факт того, что $x^d \cdot \hat{e}_i = \beta_i e_i$, $\deg(\beta_i) < d \Rightarrow h(b_i) = (x^d - \beta_i)b_i$), следовательно, h является диагональным по отношению к базису $\{b_i\}$ и $\deg(x^d - \beta_i) = d$.

(2) \leftarrow (1): Пусть h диагонализируемый (diagonalisable). Тогда существует преобразование базиса $t \in \text{Aut}(F)$ такое, что $t^{-1} \cdot h \cdot t$ является диагональным.

$$F \xrightarrow{h} F \xrightarrow{\rho} E \longrightarrow 0$$

$$\downarrow^{t} \qquad \downarrow^{t} \qquad \downarrow^{\hat{t}}$$

$$F \xrightarrow{tht^{-1}} F \xrightarrow{\rho} E \longrightarrow 0$$

В общем случае невозможно расширить t на E (extend t to E) как A-гомоморфизм, потому что $t(\ker(\rho)) \not\subset \ker(\rho)$. Но достаточно рассматривать как (свободный) R-модуль. Тогда существует $\hat{t} \in \operatorname{Aut}_R(E)$, где $\rho t = \hat{t} \rho$. Начиная с $h(b_i) = \alpha b_i - \sum_j \beta_{ij} \cdot b_j$, мы получаем $(tht^{-1})(tb_i) = \alpha(tb_i) - \sum_j \beta_{ij} \cdot (tb_j) = \gamma_i \cdot (tb_i)$, поскольку h диагонализируемый (diagonalisable). $\deg(\gamma_i) < d$. С учётом $\hat{e}_i^0 := \rho(tb_i)$, мы получаем $\gamma_i(e_i^0) = \gamma_i \rho(tb_i) = \rho \gamma_i (tb_i) = \hat{t}(\rho h) t^{-1} (tb_i) = 0$, так как $\rho h = 0$.

 $(2)\Leftrightarrow(3)$: Этот факт непосредственно следует из эквивалентности (1) и (2) и из определения f_{α} . \square

Нотация $E' := F/M^{z-1}F, R' := R[x]/(Ann(E) + M^{z-1}).$

Теорема 6.4 Пусть (R, M) — локальное артиново кольцо главных идеалов, M = (m), z — нильпотентность (nilpotency) M и $E \in Mod_n(R[x])$. Тогда существуют изоморфизмы

- (a) $\phi : \operatorname{Hom}_R(F, MF) \to \operatorname{End}_{R'}(E')$;
- (6) $\psi : \operatorname{Aut}_{R}(F)/(1 + \operatorname{Hom}(F, M^{z-1}F)) \to \operatorname{Aut}_{R'}(R');$
- (в) ϕ и ψ коммутируют (commute) с действием группы автоморфизмов на кольце эндоморфизмов, особенно,

$$\bar{\phi}: \operatorname{Hom}_R(E, ME)/\operatorname{Aut}_R(E) \cong \operatorname{End}_{R'}(E')/\operatorname{Aut}_{R'}(E').$$

Доказательство Для данного доказательства пусть $H := \text{Hom}(F, M^{z-1}F)$

- (а) Пусть $m := F \to (m)E$ (умножение на m). Тогда $\ker(m) = M^{z-1}$ и $\bar{m} : E' \cong (m)E$. Аналогично мы можем связать $f : E \to (m)E$ с $\bar{f} : E' \to (m)E$ и, таким образом, определить $f' := \phi(f) := \bar{m}^{-1} \cdot \bar{f} \in \operatorname{End}(E')$, где $f'\pi = \pi f$.
 - ϕ мономорфизм, потому что $\ker(\phi) = \{f \in \operatorname{Hom}(E, ME) | \bar{f} = 0\} = 0.$
 - ϕ эпиморфизм: Пусть $f' \in \text{End}(E')$ будет произвольным:

$$E \xrightarrow{mf} (m)E$$

$$\downarrow^{\pi} \qquad \cong \uparrow_{\bar{m}}$$

$$E' \xrightarrow{f'} E'$$

Поскольку E является свободным, f' может быть поднят по π (be lifted along π) для получения $mf \in \text{End}(E)$. $\phi^{-1}(f') := mf$ подразумевает $\phi(mf) = \bar{m}^{-1} \cdot (mf) = \pi \bar{f} = f'$.

(б) Определим ψ' : $\operatorname{Aut}(E) \to \operatorname{Aut}(E')$ с помощью $\psi(g) := g'$, где $\pi g = g'\pi$ для $g \in \operatorname{Aut}(E)$. ψ' корректно определено и является эпиморфизмом (как в асти (а)). Прим.: в начале абзаца вероятно опечатка во второй формуле.

$$E \xrightarrow{g} E$$

$$\downarrow^{\pi}$$

$$E' \xrightarrow{g'} E'$$

 $\psi'(g)=1_E\Leftrightarrow \pi=\pi g\Leftrightarrow 1_E-g\in\ker(\pi)\Leftrightarrow 1_E-g\in H$. Следовательно, $\ker(\psi')=1+H$ и ψ является мономорфизмом.

$$\begin{array}{c} \operatorname{Aut}(E) \\ \downarrow \\ \operatorname{Aut}(E)/(1+H) \xrightarrow{\alpha} \operatorname{End}(\operatorname{Hom}(E,ME)) \\ \psi \downarrow \cong \\ \operatorname{Aut}(E') \xrightarrow{\alpha} \operatorname{End}(\operatorname{End}(E')) \end{array}$$

(в) α — это действие $g \in \operatorname{Aut}(E)$ на $f \in \operatorname{End}(E)$, $\alpha(g)f := g^{-1}fg \in \operatorname{End}(E)$. Пусть $\bar{g} \in \operatorname{Aut}(E)/(1+H)$ и $mf \in \operatorname{Hom}(E,ME)$. Тогда $\phi^*\alpha(\bar{g})(mf) = \phi^*(\bar{g}^{-1}mf\bar{g}) = (\bar{g}^{-1}f\bar{g})'$ и $\alpha\psi(\bar{g})(f') = (\bar{g}')^{-1}f'\bar{g}'$. Из-за линейности f,g и π получаем $(\bar{g}^{-1}f\bar{g})' = (\bar{g}')^{-1}f'\bar{g}'$. \square

Теорема 6.5 Пусть (R, M) — артиново локальное кольцо главных идеалов, а $E \in Mod_n(R[x])$ ввляется полным степени d (full of degree d). E не скручен тогда и только тогда, когда $f' := \phi(f) \in End_{R'}(E')$ диагонализируемый (diagonalisable).

Доказательство Согласно теореме 6.3, нам необходимо показать, что ϕ : Hom $(F, MF) \to \operatorname{End}(E')$ «сохраняет диагональность». Пусть $B := \{b_1, ..., b_k\}$ — базис в $F, \pi : F \to E' = F/M^{z-1}F$ — канониеское отображение (canonical projection) и $\pi(B)$ — базис в E'.

$$\begin{array}{ccc}
A & F & \xrightarrow{f_{\alpha}} & MF \\
\pi \downarrow & & \pi \downarrow & \cong \uparrow m \\
R' & E' & \xrightarrow{f'} & E'
\end{array}$$

Теорема непосредственно следует из того факта, то π и m являются диагональными по отношению к B. \square

Список литературы

- [1] M.F. Atiyah and I.G. MacDonald, Introduction to Commutative Algebra (Addison-Wesley, Reading, MA, 1969).
- [2] W.S. Ching and B.F. Wyman, Duality and the regulation problem for linear systems over commutative rings, J. Comput. System Sci. 14 (1977) 360-368.
- [3] T. Hungefford, Algebra (Holt, Rinehart & Winston, New York, 1974).
- [4] R.E. Kalman, P.L. Falb and M.A. Arbib, Topics in Mathematical System Theory (McGraw-Hill, New York, 1969).
- [5] P. Khargonekar, On Matrix Fraction Representation for Linear Systems over Commutative Rings (Center of Math. System Theory, Univ. of Florida, 1980).
- [6] M. Magidin and A. Gill, Decomposition of linear sequential circuits over residue rings,J. Franklin Inst. 294 (1972) 167-180.
- [7] M. Magidin and A. Gill, Singular shift registers over residue class rings, Math. Systems Theory 9(4) (1976) 345-358.
- [8] G. Nandi and C. Nolte, Duality for systems over rings, Inform. Control 50. (1981) 128-132.
- [9] B. Reusch, Lineare Automaten (Bibliographisches Institut, Mannheim, 1969).
- [10] J.R. Silvester, Introduction to Algebraic K-theory (Chapman & Hall, London, 1981).
- [11] E. Snapper, Completely primary rings, Ann. of Math. 52 (1950) 666-693.
- [12] E.D. Sontag, Linear systems over commutative rings, Ricerche Automat. 7(1) (1976) 1-34.
- [13] B.L. van der Waerden, Algebra 2 (Springer, Berlin, 1967).