- 1. Which of the following are affine subspace?
 - 1. a line in \mathbf{E}^2
 - 2. a circle in E^2 centered at (0,0)
 - 3. (0,1) in \mathbf{E}^2
 - 4. the half plane x > y in \mathbf{E}^2
 - 5. a line in \mathbf{E}^3
 - 6. a triangle in E^2 or E^3

- 7. a circle in E^2 centered at (-1,1)
- 8. a halfline in \mathbf{E}^2 or \mathbf{E}^3
- 9. a parabola in \mathbf{E}^2
- 10. a plane in \mathbf{E}^3
- 11. a disk in \mathbf{E}^3
- 12. a sphere in \mathbf{E}^3
- 2. Have a look at the third problem set of the geometry cours from last semester. Which problems on that list are purely affine, i.e. involve only vectors and vector relations in a vector space?
- **3.** Let **A** be an affine space over the **K**-vector space **V**. Show that $\overrightarrow{PP} = 0$ for every $P \in \mathbf{A}$ and $\overrightarrow{PQ} = -\overrightarrow{OP}$ for every $P, Q \in \mathbf{A}$.
- **4.** Give two distinct affine structures for the Euclidean plane E^2 . (*hint:* \mathbb{R} and \mathbb{C} .)
- **5.** Let S be an affine subspace of the affine space **A**. Show that if $\dim(S) = \dim(\mathbf{A})$ then $S = \mathbf{A}$.
- 6. Which of the following admits the structure of an affine space? (explain why)
 - 1. $\mathcal{C}(\mathbb{R})$ = the set of continuous functions $\mathbb{R} \to \mathbb{R}$.
 - 2. $\{P \in \mathbf{K}[x] : \deg(P) \le n\} = \text{the set of polynomials of degree at most } n$.
 - 3. $\{P \in \mathbf{K}[x] : \deg(P) = n\} = \text{the set of polynomials of degree } n$.
- 7. Let p be a prime number.
 - 1. Show that $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ is a field.
 - 2. How many vectors does an \mathbb{F}_p -vector space have?
 - 3. How many points does an affine space over an \mathbb{F}_p -vector space have?
- **8.** Let **A** be an affine space and consider four points $A, B, C, D \in \mathbf{A}$. Show that if $\overrightarrow{AB} = \overrightarrow{CD}$ then $\overrightarrow{AC} = \overrightarrow{BD}$.
- **9.** In the affine space $A^2(\mathbb{C})$ consider the line passing through the point A(4,-2i) and having direction vector $\mathbf{a}(7+\mathbf{i},1)$. Give several parametric equations for this line.
- **10.** In the affine space $A^3(\mathbb{C})$ consider the plane passing through the point A(2+i,5,-i) and parallel to the vectors $\mathbf{a}(2,3,1)$ and $\mathbf{b}(-1,-11,3)$. Give several parametric equations for this plane.
- **11.** In the affine space $A^4(\mathbb{R})$ consider

the plane
$$\alpha = \langle \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \rangle + \begin{bmatrix} 2 \\ 4 \\ 1 \\ 2 \end{bmatrix}$$
 and the line $\beta = \langle \begin{bmatrix} 1 \\ 1 \\ -1 \\ 1 \end{bmatrix} \rangle + \begin{bmatrix} 2 \\ 3 \\ -1 \\ 1 \end{bmatrix}$.

Determine $\alpha \cap \beta$.

- 12. Let **V** be a vector space of dimension at least 5 and let **A** be an affine space with associated vector space **V**. Consider three distinct points $a, b, c \in \mathbf{A}$ and a plane $\pi = \langle v_1, v_2 \rangle + a$. Determine an affine subspace in **A** of dimension at most 4 which contains a, b, c and π .
- **13.** Show that the definition of the affine subspace $\langle P_0, \dots, P_n \rangle$ generated by P_0, \dots, P_n does not depend on the point P_0 .
- **14.** Let **A** be an affine space over the vector subspace **V** and let $C \in \mathbf{A}$. For each $P \in \mathbf{A}$, the *reflection* of P in C is the point $Ref_C(P)$ satisfying the vector identity

$$\overrightarrow{C} \operatorname{Ref}_{C}(\overrightarrow{P}) = -\overrightarrow{CP}.$$

This defines a map $\operatorname{Ref}_C : \mathbf{A} \to \mathbf{A}$. Show that $\operatorname{Ref}_C(P)$ maps affine subspaces to affine subspaces.

- **15.** Show that the definition of a k-simplex with vertices P_0, \ldots, P_k doesn't depend on the choice of P_0 .
- **16.** Show that a *k*-simplex is convex.