1. HC-SR04と不具合対策	
1.1 超音波センサ.pdf	2 - 5
1.2 FAQ詳細 秋月電子通商 電子部品 ネット通販.pdf	6
1.3.1 超音波センサの回路変更(抵抗除去).pdf	7
1.3.2 HC-SR04 テスト回路(160308).pdf	8
1.4 超音波センサの不具合対策.pdf	9
1.5 prg-Arduino.pdf	10
2. HC-SR04とH8との通信関連	
2.1 通信用回路図(17.7.29).pdf	11
2.2 H8マニュアル(h8_3069f,port2).pdf	12 - 15
2.3 実験7(軌道追従制御実験)の一部.pdf	16
2.4 回路図(H8付属).pdf	17
2.5 prg-H8.pdf	18
3. 補足事項	
3.3 注意·補足事項(1).pdf	19
3.3 注意·補足事項(2).pdf	20
3.3 注意•補足事項(3).pdf	21

HC-SR04 User Guide

1. Ultrasonic Distance Measurement Principles

The transmitter emits a 8 bursts of an directional 40KHz ultrasonic wave when triggered and starts a timer. Ultrasonic pulses travel outward until they encounter an object, The object causes the the wave to be reflected back towards the unit. The ultrasonic receiver would detect the reflected wave and stop the stop timer. The velocity of the ultrasonic burst is 340m/sec. in air. Based on the number of counts by the timer, the distance can be calculated between the object and transmitter The TRD Measurement formula is expressed as: D = C X T which is know as the time/rate/distance measurement formula where D is the measured distance, and R is the propagation velocity (Rate) in air (speed of sound) and T represents time. In this application T is devided by 2 as T is double the time value from transmitter to object back to receiver.

2. Product Features

Features

- Stable performance (Xtal.)
- Accurate distance measurement
- High-density SMD Board
- Close Range (2cm)

Uses

- Robotics barrier
- Object distance measurement
- Level detection
- Security systems
- Vehicle detection/avoidance

3. Product Views

4. Module Pin Asignments

	Pin Symbol	Pin Function Description
1	VCC	5V power supply
2	Trig	Trigger Input pin
3	Echo	Receiver Output pin
4	GND	Power ground

5. Electrical Specifications

WARARNING

Do Not connect Module with Power Applied! Always apply power after connecting Connect "GND" Terminal first

Electrical Parameters	HC-SR04 Ultrasonic Module		
Operating Voltage	5VDC		
Operating Current	15mA		
Operating Frequency	40KHz		
Max. Range	4m		
Nearest Range	2cm		
Measuring Angle	15 Degrees		
Input Trigger Signal	10us min. TTL pulse		
Output Echo Signal	TTL level signal, proportional to		
Output Ecrio Signal	distance		
Board Dimensions	1-13/16" X 13/16" X 5/8"		
Board Connections	4 X 0.1" Pitch Right Angle Header Pins		

6. Module Operation

Set Trig and Echo Low to initalize module. Place a minimum 10us High level pulse to "Trigger" (module will automatically send eight 40KHz acoustic bursts). At the same time, Gate the microcontroller timer to start timing.

Wait to capture the rising edge output of ECHO port to stop the timer. Now read the time of the counter, which is the ultrasonic propagation time in the air. According to the formula: Distance = (ECHO high level time X ultrasonic velocity (Speed of Sound in air 340m/sec) / 2, you can calculate the distance to the obstacle.

For best results and maximum range, the Object should be larger than 0.5M², the nearer the target object, the smaller it may be.

7. ModuleTiming

HC-SR04 ULTRASONIC MODULE

Trigger 10us min. start measurement from microcontroller.

Max Rep. Rate: 60ms

ECHO Output pulse to microcontroller, width is the time from last of 8 40KHz bursts to detected reflected signal (microcontroller Timer gate signal)

Distance in cm = echo pulse width in uS/58

Distance in inch = echo pulse width in uS/148

Information obtained from or supplied by Mpja.com or Marlin P. Jones and Associates inc. is supplied as a service to our customers and accuracy is not guaranteed nor is it definitive of any particular part or manufacturer. Use of information and suitability for any application is at users own discretion and user assumes all risk.

秋月電子通商

クイック注文: 通販コードを入力 (アルファベット+数字) - 数量 注文 通販コードー括入力フォーム

<u>商品カタログ</u> | <u>新商品</u> | <u>お知らせ</u> | <u>注文方法</u> | <u>振込先</u> | <u>よくある質問</u> | <u>ダウンロード</u> | <u>トラ技広告(PDF)</u> | <u>配送状況確認</u> | <u>ログイン</u>

検索

<u>トップ</u> > <u>センサー般</u> > <u>超音波センサ</u> > <u>超音波距離センサー HC-SR04(2~180cm)</u>

超音波距離センサー HC-SR04(2~180cm)の質問と回答

【質問】 測距範囲外になると、どのような動作をしますか? [2015/07/28 15:13:21]

【回答】測距範囲外(反射時間約10ms以上)になると、エコー出力がHを保持します。距離センサーの電源を切ってリセットしてください。

詳細画像4

この内容は一般的な使用用途・使用環境を想定してお答えしています。商品の使用目的以外、特殊用途でのご使用については必ずしもこの回答通りにならないこともございますので、予めご承知おきください。

通販コードを入力してください。

表示する

copyright c 2002-2016 秋月電子通商 AKIZUKI DENSHI TSUSHO CO.,LTD.

1 / 1 2016/11/12 22:58

超音波センサの回路変更

抵抗 R1 を半田ごてを使って取り外す(半田を少し追加し,こてを横にし,2 箇所同時に温め,下にスライド).

うまく行かないときは、こちらでやります.

ローサイドスイッチ NPNトランジスタ

ローサイドスイッチ NchFET

ハイサイドスイッチ PNPトランジスタ

ハイサイドスイッチ PchFET

TITLE			DRAWI NG_No.	
HC-SR	04 テスト回路			
-		_		
SHEET	DATE	DESTG	V .	
1/1	16. 03. 08	l N	I. Tanaka	

- ・超音波センサ 不具合対策
- 電源投入から初回トリガ入力まで 30[ms]以上必要
- ダミーリードが必要?初回はエコー出力がほぼ固定になってしまう
- ・2回目とのリードの間は10[ms]以上あけないと 正常なエコー出力が得られない


```
// ****************
//
// *** 超音波センサ(HC-SRO4) 読み取りプログラム ***
// ****************
#define PIN_TRG 2
#define PIN_ECHO 3
#define PIN PWR
#define LEDPIN 13 // 13番ピンに出力(LED点灯)
#define T_dist 10.0 // [cm] 閾値の距離
int interval;
double distance;
void setup() {
  // put your setup code here, to run once:
pinMode(PIN_TRG, OUTPUT);
pinMode(PIN_ECHO, INPUT);
pinMode(PIN_PWR, OUTPUT);
   Serial. begin (115200);
   digitalWrite(PIN_TRG, LOW);
   digitalWrite(PIN_PWR, HIGH);
   // for Output
  // LEDに接続ピンをデジタル出力に設定pinMode(LEDPIN, OUTPUT);
void loop() {
   // put your main code here, to run repeatedly:
   digitalWrite(PIN_PWR, LOW);
   delay(30); // 時間待ち 30[ms]
   // ダミーリード
   // trigger pulse output (10us) digitalWrite(PIN_TRG, HIGH);
   delayMicroseconds(9);
   digitalWrite(PIN_TRG, LOW);
   // echo pulse width measure
interval = pulseIn(PIN_ECHO, HIGH, 30000);
   delay(10); // 時間待ち 10[ms]
  // 距離計測
// trigger pulse output (10us)
digitalWrite(PIN_TRG, HIGH);
   delayMicroseconds(9)
  digitalWrite(PIN_IKG, LOM),
// echo pulse width measure
interval = pulseIn(PIN_ECHO, HIGH, 30000); // 時間計測
distance = interval * 0.017; // 時間=>距離に変換 [cm]
// 340[m/sec]/2 = 0.017[cm/μs]
   // send result
Serial.print("pulse width =");
  Serial.print(interval);
Serial.print("[us] distance =");
Serial.print(distance);
Serial.print("[cm]¥n");
   // power off & delay
digitalWrite(PIN_PWR, HIGH);
   delay(200); // adjustable
   // 出力設定 (LED)
if( distance <= T_dist ){
    digitalWrite( LEDPIN, HIGH );
   else{
     digitalWrite(LEDPIN, LOW);
```


8.3 ポート2

8.3.1 概要

ポート2は、アドレス出力兼用の8ビットの入出力ポートです。ポート2の各端子は、図8.2に示す構成となっており、動作モードにより端子機能が異なります。

モード $1\sim4$ (内蔵 ROM 無効拡張モード) のときは、アドレスバス ($A_{15}\sim A_8$) 出力端子となります。モード 5 (内蔵 ROM 有効拡張モード) のときは、ポート 2 データディレクションレジスタ (P2DDR) の設定によりアドレスバス ($A_{15}\sim A_8$) または入力ポートとなります。

モード7(シングルチップモード)のときは、入出力ポートとなります。

エリア 2、3、4、5 に DRAM を接続する場合には、リード / ライトサイクルで $A_{12} \sim A_8$ がロウ / カラムアドレス出力となります。詳細は「6.5 DRAM インタフェース」を参照してください。

ポート 2 は、プログラムで制御可能なプルアップ MOS が内蔵されています。また、1 個の TTL 負荷と 90pF の容量を駆動することや、LED、ダーリントントランジスタを駆動することができます。

図 8.2 ポート 2 の端子構成

8.3.2 レジスタ構成

表 8.3 にポート 2 のレジスタ構成を示します。

表 8.3 ポート 2 レジスタ構成

アドレス*	名 称	略称	R/W	初期値	
				モード1~4	モード5、7
H'EE001	ポート2データディレクションレジスタ	P2DDR	W	H'FF	H'00
H'FFFD1	ポート2データレジスタ	P2DR	R/W	H'	00
H'EE03C	ポート2入力プルアップ MOS コントロ	P2PCR	R/W	H'	00
	ールレジスタ				

【注】 * アドバンストモード時のアドレス下位20ビットを示しています。

(1) ポート2 データディレクションレジスタ (P2DDR)

P2DDR は、8 ビットのライト専用のレジスタで、ポート 2 の各端子の入出力をビットごとに指定することができます。

	ビット:	7	6	5	4	3	2	1	0
		P27DDR	P26DDR	P25DDR	P24DDR	P23DDR	P22DDR	P21DDR	P20DDR
± - 151 ~ 15	初期値:	1	1	1	1	1	1	1	1
モード1~4 {	R/W :								
モード5、7	初期値:	0	0	0	0	0	0	0	0
2 , 3(,)	.R/W :	W	W	W	W	W	W	W	W
	<u> ポート2データディレクション7~0</u>								
	ポート2の各端子の入出力を選択するビットです。					,			

(a) モード1~4 (内蔵 ROM 無効拡張モード)

P2DDR は1に固定され、ポート2はアドレスバスとして機能します。

(b) モード5(内蔵 ROM 有効拡張モード)

ポート2はリセット直後は入力ポートとなっています。

P2DDR に 1 をセットすると対応するポート 2 の端子はアドレス出力端子となり、0 にクリアすると入力ポートになります。

(c) モード7(シングルチップモード)

ポート2は入出力ポートとして機能します。P2DDRに1をセットすると対応するポート2の端子は出力ポートとなり、0にクリアすると入力ポートとなります。

モード $1\sim4$ では P2DDR は、リードすると常に 1 が読み出されます。ライトは無効です。 モード 5、7 では P2DDR は、ライト専用のレジスタで、リードは無効です。リードすると 1 が読み出されます。

P2DDR は、リセット、またはハードウェアスタンバイモード時にモード 1~4 の場合は H'FF に、モード 5、7 の場合は H'00 にイニシャライズされます。ソフトウェアスタンバイモード時には、直前の状態を保持します。そのため、ポート 2 が入出力ポートとして機能 しているとき、P2DDR が 1 にセットされた状態でソフトウェアスタンバイモードに遷移するとその端子は出力状態のままとなっています。

(2)ポート2データレジスタ(P2DR)

P2DR は、8 ビットのリード / ライト可能なレジスタで、ポート 2 の出力データを格納します。ポート 2 が出力ポートとして機能する場合、本レジスタの値が出力されます。また、このレジスタをリードすると、P2DDR が 0 のビットは端子のロジックレベルが読み出され、1 のビットは P2DR の値が読み出されます。

P2DR は、リセット、またはハードウェアスタンバイモード時に、H'00 にイニシャライズされます。ソフトウェアスタンバイモード時には、直前の状態を保持します。

(3)ポート2入力プルアップ MOS コントロールレジスタ (P2PCR)

P2PCR は 8 ビットのリード / ライト可能なレジスタで、ポート 2 に内蔵した入力プルアップ MOS をビットごとに制御します。

モード 5、7 のとき、P2DDR を 0 にクリアした(入力ポートの)状態で P2PCR を 1 にセットすると対応するビットの入力プルアップ MOS は ON します。

P2PCR は、リセット、またはハードウェアスタンバイモード時に、H'00 にイニシャライズされます。ソフトウェアスタンバイモード時には、直前の状態を保持します。

表 8.4 入力プルアップ MOS の状態 (ポート2)

モード	リセット	ハードウェア	ソフトウェア	その他の動作時	
		スタンバイモード	スタンバイモード		
1					
2	0	FF	OFF		
3					
4					
5	OFF		ON / OFF		
7					

【記号説明】

OFF : 入力プルアップ MOS は、常に OFF 状態です。

ON / OFF : P2PCR = 1 かつ P2DDR = 0 のとき ON 状態、その他のときは OFF 状態です。

```
// ************
.
// *** 実験7 のプログラムの一部 ***
// ***********
/// --- H8の初期設定関数 ---
static void
init_settings( void )
       // *** NMI 設定(リセット用)***
SYSCR.BIT.NMIEG= 0;
       set_handler( 7, prg_end );
       // *** ITU2 位相係数モード設定(for Left encoder)***
HEX_ITU. TMDR. BIT. MDF= 1; // 位相係数モード
HEX_ITU. TMDR. BIT. FDIR= 1; // オーバフロー・アンダーフロー検知
HEX_ITU. TSTR. BIT. STR2= 1; // 1:タイマスタート, 0:ストップ
HEX_ITU2. TCNT =0;
       // *** ITU0, ITU1 カウンタ (for Right encoder) ***
// --- ITU0: カウント ---
HEX_ITU0. TCR. BIT. CCLR= 0; // クリア禁止
HEX_ITU0. TCR. BIT. CKEG= 2; // 0:立ち上がり, 1:立下り, 2:両エッジ
HEX_ITU0. TCR. BIT. TPSC= 6; // 外部クロックC: TCLKC端子入力でカウント 110
HEX_ITU0. TCNT= 0;
HEX_ITU. TSTR. BIT. STR0= 1; // 1:タイマスタート, 0:ストップ
// --- ITU1: カウント ---
       HEX_ITU. ISTR. BIT. STR0= 1, // 1.ダイマスダート, 0.ストップ

--- ITU1: カウント ---

HEX_ITU1. TCR. BIT. CCLR= 0; // クリア禁止

HEX_ITU1. TCR. BIT. CKEG= 2; // 0:立ち上がり, 1:立下り, 2:両エッジ

HEX_ITU1. TCR. BIT. TPSC= 7; // 外部クロックD: TCLKD端子入力でカウント 111

HEX_ITU1. TSTR. BIT. STR1= 1; // 1:タイマスタート, 0:ストップ
       // *** ポート入出力設定(for motor, photo-sensor)***
P4. DDR=0xff; // output(for motor)
P5. DDR=0x00; // input (for photo-sensor)
       // *** 8bit timer pwm settings (for motor) 3069マニュアル pp. 482 参照 *** // [\phi/8192 ->3] , [\phi/64 ->2] , [\phi/8 ->1] OCT_ITUO. TCR. BIT. CKS= 2; OCT_ITUI. TCR. BIT. CKS= 2:
        //OCT_ITU2.TCR.BIT.CKS= 2; // 予備ポート
       // TCNTをコンペアマッチAでクリア: CCLR0=1, CCLR1=0, pp. 462 OCT_ITUO. TCR. BIT. CCLR= 1; OCT_ITUI. TCR. BIT. CCLR= 1;
        //OCT_ITU2.TCR.BIT.CCLR= 1; // 予備ポート
       // コンペアマッチBで1出力: OIS3 と OIS2 を 01 に設定, pp. 467 OCT_ITU0. TCSR. BIT. OIS32= 1; OCT_ITU1. TCSR. BIT. OIS32= 1;
        //OCT_ITU2.TCSR.BIT.OIS32= 1; // 予備ポート
       // コンペアマッチAで0出力: OS1 と OSO を 10 に設定, pp. 468 OCT_ITUO. TCSR. BIT. OS10= 2; OCT_ITUI. TCSR. BIT. OS10= 2;
        //OCT_ITU2.TCSR.BIT.OS10= 2; // 予備ポート
       // Duty
0CT_ITU0.TCORB= 0;
0CT_ITU1.TCORB= 0;
        //OCT_ITU2.TCORB= 0; // 予備ポート
       // TCRB: タイムコンスタントレジスタA
// 周波数: 20MHz(Clock)/64(φ)/250(TCORA)= 1.25kHz
0CT_ITU0.TCORA= Max_duty;
0CT_ITU1.TCORA= Max_duty;
//0CT_ITU2.TCORA= 250; // 予備ポート
       // *** ITU3 タイマ割り込み 8bit (for timer) ***
// OCT_ITU3. TCORA: タイムコンスタントレジスタA pp. 465
// 1秒間に呼び出されるfeed関数の回数と同じ.
// 20000000:システムクロック, 8192:分周値(r3069.hの197行目 CKS:3 (CKS2=0, CKS1=1, CKS0=1))
// 内部クロック=システムクロック/分周値 pp. 463
OCT_ITU3. TCORA= (20000000/8192)*SampTime/1000;
OCT_ITU3. TCNT = 0; // カウンタ, TCORAと8TCNTの値は常に比較されている. pp. 460
```


注意•補足事項

● トランジスタのピン配置

エクボ

● ジャンパ線と基板の接続

● 電源周りの注意事項

・電源コネクタ: 左が黒 (GND)

・アルディーノと H8 のグランド (GND, 0V) を共通に (短絡) すること

・サーボモータ、センサ(超音波、PSD) 用の電源は、アルディーノから取らない

電源周りの配線

