P. Maurer ENS Rennes

Leçon 160 : Endomorphismes remarquables d'un espace vectoriel euclidien.

Devs:

- L'exponentielle de matrices exp: $S_n(\mathbb{R}) \to S_n^{++}(\mathbb{R})$ est un homéomorphisme
- Le groupe $SO_3(\mathbb{R})$ est simple

Références:

- 1. Gourdon, Algèbre
- 2. Griffone, Algèbre linéaire
- 3. Caldero, H2G2

Dans tout le plan, E désigne un espace vectoriel euclidien de dimension $n \in \mathbb{N}^*$ muni d'un produit scalaire $\langle .,. \rangle$. $f \in \mathcal{L}(E)$ désigne un endomorphisme de E, et $A \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée.

1 Adjoint d'un endomorphisme.

1.1 Définitions et propriétés

Proposition 1. Il existe un unique endomorphisme $g \in \mathcal{L}(E)$ tel que :

$$\forall x, y \in E \quad \langle f(x), y \rangle = \langle x, q(y) \rangle$$

g est appelé adjoint de E, et on note $f^* := g$.

Remarque 2. $f \mapsto f^*$ est un endomorphisme involutif de $\mathcal{L}(E)$.

Remarque 3. Si B est une base orthonormée de E, on a :

$$\operatorname{mat}_B(f^*) = \overline{\operatorname{mat}_B(f)}^T$$

Exemple 4. $MM^T = 0 \Longrightarrow M = 0$.

Proposition 5. Pour tout $f, g \in \mathcal{L}(E)$, on a:

- $\bullet \quad (f \circ q)^* = q^* \circ f^*$
- $\operatorname{rg}(f^*) = \operatorname{rg}(f)$ et $\det(f^*) = \det(f)$
- $\operatorname{Im}(f)^{\perp} = \operatorname{Im}(f^*)$ et $\operatorname{Ker}(f)^{\perp} = \operatorname{Ker}(f^*)$

• $\chi_{f*} = \chi_f \ et \ \mu_{f*} = \mu_f$

Proposition 6. Soit F un sous-espace vectoriel de E stable par f. Alors F^{\perp} est stable par f^* .

1.2 Vocabulaire

Définition 7. On dit que f est autoadjoint (ou symétrique) si $f^* = f$.

Matriciellement, cela se traduit par $A^T = A$. On note $S_n(\mathbb{R})$ l'ensemble des matrices symétriques.

Exemple 8. Les projecteurs sont autoadjoints.

Remarque 9. Si de plus f vérifie $\langle f(x), x \rangle \geq 0$ (resp. >0), on dit que f est positif (resp. défini positif). On note $S_n^+(\mathbb{R})$ (resp. $S_n^{++}(\mathbb{R})$) l'ensemble des matrices symétriques positives (resp. définies positives).

Définition 10. On dit que f est antisymétrique si $f^* = -f$.

Matriciellement, cela se traduit par $A^T = -A$. On note $A_n(\mathbb{R})$ l'ensemble des matrices antisymétriques.

Définition 11. On dit que f est orthogonal si $f \circ f^* = f^* \circ f = \operatorname{Id}_E$.

Matriciellement, cela se traduit par $AA^T = I_n$. On note $O_n(\mathbb{R})$ l'ensemble des matrices orthogonales.

Définition 12. On dit que f est normal $si_f \circ f_-^* = f^* \circ f$.

Matriciellement, cela se traduit par $AA^T = A^TA$.

Remarque 13. Les endomorphismes symétriques, antisymétriques et orthogonaux sont tous normaux.

2 Réduction. Applications.

2.1 Endomorphismes autoadjoints.

Proposition 14. Soit $A \in S_n(\mathbb{R})$. Alors toutes les valeurs propres de A sont réelles. Si de plus A est positive (resp. définie positive), alors $\operatorname{Sp}(A) \subset \mathbb{R}_+$ (resp. \mathbb{R}_+^*).

Proposition 15. On a $\mathcal{M}_n(\mathbb{R}) = S_n(\mathbb{R}) \oplus A_n(\mathbb{R})$.

Corollaire 16. $\dim(S_n(\mathbb{R})) = \frac{n(n+1)}{2}$ et $\dim(A_n(\mathbb{R})) = \frac{n(n-1)}{2}$.

Théorème 17. Soit f un endomorphisme autoadjoint. Alors f est diagonalisable dans une base orthonormée de vecteurs propres.

2 Section 3

Corollaire 18. Toute matrice symétrique réelle est diagonalisable dans \mathbb{R} , et les espaces propres sont deux à deux orthogonaux. Si $A \in S_n(\mathbb{R})$, il existe D diagonale et $P \in O_n(\mathbb{R})$ tels que $D = P^T A P$.

Exemple 19. Les matrices symétriques complexes ne sont pas nécessairement diagonalisables. Par exemple, $A = \begin{pmatrix} 0 & 1 \\ 1 & 2i \end{pmatrix}$ est symétrique et non diagonalisable.

Théorème 20. Soit q une forme quadratique réelle sur \mathbb{R}^n . Alors il existe une base orthonormée de \mathbb{R}^n sur laquelle $q(x_1, \ldots, x_n) = \sum_{i=1}^n \lambda_i x_i^2$.

Proposition 21. Soit $M \in S_n^{++}(\mathbb{R})$ et $N \in S_n(\mathbb{R})$. Alors il existe $P \in GL_n(\mathbb{R})$ et D diagonale réelle telles que :

$$P^TMP = I_n$$
 et $P^TNP = D$

2.2 Applications

Proposition 22. Soit $f \in S_n^+(\mathbb{R})$. Il existe un unique $h \in S_n^+(\mathbb{R})$ tel que $f = h^2$, et h est un polynôme en f.

Théorème 23. (Décomposition polaire)

Pour tout $M \in GL_n(\mathbb{R})$, il existe un unique couple $O, S \in O_n(\mathbb{R}) \times S_n^{++}(\mathbb{R})$ tel que M = OS.

Développement 1 :

Théorème 24. L'exponentielle de matrices définit un homéomorphisme de $S_n(\mathbb{R})$ vers $S_n^{++}(\mathbb{R})$.

2.3 Endomorphismes normaux.

Proposition 25. f est un endomorphisme normal si et seulement si $||f(x)|| = ||f^*(x)||$ pour tout $x \in E$.

Proposition 26. Soit f un endomorphisme normal et E_{λ} un sous-espace propre de f. Alors E_{λ}^{\perp} est f^* -stable et f-stable.

Proposition 27. Soit M matrice normale de $\mathcal{M}_2(\mathbb{R})$ de spectre vide dans \mathbb{R} . Alors M est semblable à une matrice de rotation $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$, avec $b \neq 0$.

Théorème 28. Les propositions suivantes sont équivalentes :

- f est normal.
- f est diagonalisable dans une base orthonormale de vecteurs propres de E.
- f et f* sont codiagonalisables dans une base orthonormale de vecteurs propres de E.

Théorème 29. Si f est normal, il existe une base orthogonale de E dans laquelle la matrice de f est :

$$\begin{pmatrix}
\lambda_1 & & & \\
& \ddots & & (0) \\
& & \lambda_r & & \\
& & & \tau_1 & \\
& & & (0) & & \ddots \\
& & & & \tau_s
\end{pmatrix}$$

Où $\lambda_i \in \mathbb{R}$ et $\tau_j = \begin{pmatrix} a_j & -b_j \\ b_j & a_j \end{pmatrix} \in \mathcal{M}_2(\mathbb{R})$ est une matrice de rotation.

Exemple 30. Les matrices antisymétriques réelles et les matrices orthogonales sont diagonalisables sur \mathbb{C} .

3 Endomorphismes orthogonaux

3.1 Résultats généraux

Proposition 31. Les propositions suivantes sont équivalentes :

- $f \in O_n(\mathbb{R})$
- $\forall x, y \in E \quad \langle f(x), f(y) \rangle = \langle x, y \rangle$
- $\forall x \in E \quad ||f(x)|| = ||x||$

Théorème 32. $O_n(\mathbb{R})$ est un sous-groupe de $GL_n(\mathbb{R})$.

Proposition 33. Soit $f \in O_n(\mathbb{R})$. Alors $\det(f) \in \{-1, 1\}$.

Le déterminant est donc un morphisme de groupes entre $O_n(\mathbb{R})$ et $\{-1,1\}$: on note $SO_n(\mathbb{R})$ son noyau, appelé groupe spécial orthogonal. C'est un sous-groupe distingué de $O_n(\mathbb{R})$.

Exemple 34.
$$A = \frac{1}{2} \begin{pmatrix} 2 & -1 & 2 \\ 2 & 2 & -1 \\ -1 & 2 & 2 \end{pmatrix} \in SO_3(\mathbb{R}).$$

Proposition 35. f est orthogonale si et seulement si elle transforme toute base orthonormée en une base orthonormée.

Proposition 36. Les valeurs propres d'une matrice orthogonale sont de module 1.

Théorème 37. (Réduction des isométries)

Endomorphismes orthogonaux 3

Soit f un endomorphisme orthogonal. Il existe une base orthonormale dans laquelle la matrice de f est :

$$\begin{pmatrix} R(\theta_1) & & & & \\ & \ddots & & & \\ & & R(\theta_r) & & \\ & & & \varepsilon_1 & \\ & & & & \ddots & \\ & & & & \varepsilon_s \end{pmatrix}$$

$$O\hat{u}\ R(\theta_i) = \left(\begin{array}{cc} \cos(\theta_i) & -\sin(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i) \end{array}\right)\ et\ \varepsilon_i \in \{-1,1\}\,,\ avec\ \theta_i \in \mathbb{R}\ et\ \theta_i \not\equiv 0\ [\pi]\,.$$

Théorème 38. $O_n(\mathbb{R})$ est compact dans $\mathcal{M}_n(\mathbb{R})$. Plus précisément, c'est un sous-groupe compact maximal de $GL_n(\mathbb{R})$.

3.2 Dimension 2 et 3

Proposition 39.

• Les matrices de $SO_2(\mathbb{R})$ sont de la forme $\begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$ pour $\theta \in \mathbb{R}$.

• Les matrices de $O_2^-(\mathbb{R})$ sont de la forme $\begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$ pour $\theta \in \mathbb{R}$.

Proposition 40. Les matrices de $O_3(\mathbb{R})$ sont semblables à :

$$\begin{pmatrix}
\cos(\theta) & -\sin(\theta) & 0 \\
\sin(\theta) & \cos(\theta) & 0 \\
0 & 0 & \varepsilon
\end{pmatrix}$$

Où $\varepsilon = 1$ pour les matrices de $SO_3(\mathbb{R})$ et $\varepsilon = -1$ pour les matrices de $O_3^-(\mathbb{R})$.

Corollaire 41. Pour $A \in SO_3(\mathbb{R})$, on a alors det(A) = 1 et $Tr(A) = 2\cos(\theta) + 1$.

Proposition 42. Pour $A \in SO_3(\mathbb{R})$ distinct de l'identité, l'endomorphisme associé à A est une rotation par rapport à l'axe $E_1 = Ker(A - I_3)$, dont l'angle est donné par $\theta = Arccos\left(\frac{Tr(A) - 1}{2}\right)$.

Développement 2 :

Théorème 43. $SO_3(\mathbb{R})$ est simple.