L5: SVM

Shan Wang Lingnan College, Sun Yat-sen University

2020 Data Mining and Machine Learning LN3119 https://wangshan731.github.io/DM-ML/

Last lecture

- Classification problem
- Logistic regression method
 - Model
 - Strategy
 - Algorithm
- Prediction & evaluation
- Multi-class logistic regression
- Application: diabetes care

Logistic regression revisit

- To predict the quality of care
 - The dependent variable is modelled as a binary variable
 - 1 if low-quality care, 0 if high-quality care
- This is a categorical variable
 - Typically a small number of possible outcomes, 2 (low-quality care and high-quality care) in this case
- Logistic regression would predict a probability

$$p_{\theta}(y|x) = \frac{e^{\theta'x}}{1 + e^{\theta'x}}$$

A threshold is chosen

Logistic regression would predict a probability

$$p_{\theta}(y|x) = \frac{e^{\theta'x}}{1 + e^{\theta'x}}$$

- Consider the threshold 0.5, it is easy to check that
 - if $\theta' x > 0$, $p_{\theta}(y|x) > 0.5$
 - if $\theta' x < 0$, $p_{\theta}(y|x) < 0.5$
- Recall $\theta' x = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \dots + \theta_M x_M$
 - $\theta' x = 0$ is a hyperplane which divides the feature space to 2 parts
 - A hyperplane in M dimensions is a flat affine subspace of dimension M-1
- Then hyperplane $\theta' x = 0$ is a decision boundary
 - Given a data point x, the value of $\theta'x$ is the distance from the data point to the hyperplane
 - Positive distance: 1
 - Negative distance: 0
 - The larger distance, the higher confidence (closer to 1 or 0)

2-dimension example

- Recall the error function in logistic regression
 - Cross entropy

$$\min -\frac{1}{N} \sum_{i=1}^{N} [y_i \log p_{\theta}(1|\mathbf{x}_i) + (1-y_i) \log(1-p_{\theta}(1|\mathbf{x}_i))]$$

- For all data points with label 1, we want $p_{\theta}(1|\mathbf{x}_i)$ is as large as possible
- For all data points with label 0, we want $p_{\theta}(1|\mathbf{x}_i)$ is as small as possible
- May the green decision boundary be safer?

Course outline

- Supervised learning
 - Linear regression
 - Logistic regression
 - SVM and kernel
 - Tree models
- Deep learning
 - Neural networks
 - Convolutional NN
 - Recurrent NN

- Unsupervised learning
 - Clustering
 - PCA
 - EM

- Reinforcement learning
 - MDP
 - ADP
 - Deep Q-Network

This lecture

- Linear SVM
 - Model
 - Strategy
 - Algorithm
- Regularization
- Kernels
- Application: diabetes care revisit

Reference: CS420, Weinan Zhang (SJTU)

Linear SVM

Model

What is support vector machine?

- A linear binary classifier with a decision boundary
 - Which is a separating hyperplane providing maximum

 Support vectors: data points that the margin pushes up against

Linear SVM - model

Model

- Feature vector: $\mathbf{x} = (x_1, x_2, ..., x_M)$
- Class label: $y \in \{1, -1\}$
- Parameters
 - Intercept θ_0
 - Feature weight vector $\boldsymbol{\theta} = (\theta_1, \theta_2, ..., \theta_M)$
 - In this lecture, we may drop it if we let extra $x_0=1$, and only use $\pmb{\theta}$ to represent all parameters
- Model

$$y = f_{\boldsymbol{\theta}}(\boldsymbol{x}) = \begin{cases} +1, & \text{if } \boldsymbol{\theta}' \boldsymbol{x} + \theta_0 \ge 0 \\ -1, & \text{if } \boldsymbol{\theta}' \boldsymbol{x} + \theta_0 < 0 \end{cases}$$

- Decision boundary: $\theta' x + \theta_0 = 0$
- $y(\theta'x + \theta_0)$ means what?

Linear SVM

Strategy

Margin

• Margin:

$$\min_{i=1,\dots,N} y_i(\boldsymbol{\theta}' \boldsymbol{x_i} + \boldsymbol{\theta}_0)$$

- For a data point (x_i, y_i)
 - When $y_i = 1$, large positive $\theta' x_i + \theta_0$ value would give a high confidence
 - When $y_i = -1$, large negative $\theta' x_i + \theta_0$ value would give a high confidence
 - $y_i(\theta'x_i + \theta_0) > 0$ means correct prediction

Objective

Objective: maximize the margin

$$\max_{\boldsymbol{\theta}, \theta_0} \min_{i=1,...,N} [y_i(\boldsymbol{\theta}' \boldsymbol{x_i} + \theta_0)]$$

- Any problem?
 - Unbounded solution, add a constraint

$$\max_{\boldsymbol{\theta}, \theta_0} \min_{i=1,...,N} [y_i(\boldsymbol{\theta}' \boldsymbol{x_i} + \theta_0)]$$
s.t. $\|\boldsymbol{\theta}\| = 1$

- Non-convex problem
 - Convex programming: the objective function is convex function, the constraint set is a convex set
- Transform to a convex problem?

Linear SVM

Algorithm

Convex reformulation

Equivalent to

$$\min_{\boldsymbol{\theta}, \theta_0} \frac{1}{2} \|\boldsymbol{\theta}\|^2$$
 Quadratic programming s.t. $y_i(\boldsymbol{\theta}' \boldsymbol{x}_i + \theta_0) \geq 1$, $i = 1, ..., N$

- Why?
 - From math
 - From intuition
 - Original problem: nomarlize the othorgonal vector, maximize the margin
 - Current problem: normarlize the margin to be 1, minimize the norm of the othorgonal vector
 - Functional margin: $y_i(\theta'x_i + \theta_0)$
 - Geometric margin: $y_i \frac{1}{\|\boldsymbol{\theta}\|} (\boldsymbol{\theta}' \boldsymbol{x_i} + \theta_0)$

Linear SVM - Algorithm

Lagrangian Dual

$$\min_{\boldsymbol{\theta}, \theta_0} \frac{1}{2} \|\boldsymbol{\theta}\|^2$$
s.t. $y_i(\boldsymbol{\theta}' \boldsymbol{x_i} + \theta_0) \ge 1, i = 1, ..., N$

- Lagrangian dual problem
 - For each constraint: dual variable α_i

$$\max_{\alpha > 0} \min_{\theta, \theta_0} \frac{1}{2} \|\theta\|^2 + \sum_{i=1}^{N} \alpha_i [1 - y_i (\theta' x_i + \theta_0)]$$

• Take the FOC on $\boldsymbol{\theta}$, θ_0

•
$$\theta - \sum_{i=1}^{N} \alpha_i y_i x_i = 0;$$
 $\sum_{i=1}^{N} \alpha_i y_i = 0$
$$\max_{\alpha > 0} \frac{1}{2} \left\| \sum_{i=1}^{N} \alpha_i y_i x_i \right\|^2 + \sum_{i=1}^{N} \alpha_i - \sum_{i=1}^{N} \alpha_i y_i \left(\sum_{i=1}^{N} \alpha_i y_i x_i \right)' x_i + \theta_0 \sum_{i=1}^{N} \alpha_i y_i$$

$$\max_{\alpha \ge 0} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j x_j' x_i$$

$$s.t. \sum_{i=1}^{N} \alpha_i y_i = 0$$

More on the dual

Prim

$$\min_{\boldsymbol{\theta}, \theta_0} \frac{1}{2} \|\boldsymbol{\theta}\|^2$$
s.t. $y_i(\boldsymbol{\theta}' \boldsymbol{x}_i + \theta_0) \ge 1, i = 1, ..., N$

• If $y_i(\theta' x_i + \theta_0) = 1$, $\alpha_i > 0$

- If $y_i(\theta' x_i + \theta_0) > 1$, $\alpha_i = 0$
- Only support vectors (data points against the margin has positive α_i)
- $\theta = \sum_{i \text{ is support vector }} \alpha_i y_i x_i$
- $\theta_0 = -\frac{1}{2}(\min_{i:y_i=1} \boldsymbol{\theta}' \boldsymbol{x_i} + \max_{j:y_j=-1} \boldsymbol{\theta}' \boldsymbol{x_j})$

Dual

$$\max_{\alpha \ge 0} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j x_j' x_i$$

$$s.t. \sum_{i=1}^{N} \alpha_i y_i = 0$$

Coordinate ascent algorithm

[Coordinate Ascent]

• For optimization problem

$$\max_{\alpha} W(\alpha_1, \alpha_2, ..., \alpha_N)$$

- Loop until convergence:
 - For i = 1, ..., N:
 - Fix all α_j s.t. $j \neq i$
 - Update α_i such that,

$$\alpha_i = \underset{\alpha_i}{\operatorname{argmax}} W(\alpha_1, \alpha_2, ..., \alpha_N)$$

SMO algorithm

- SMO: Sequential Minimal Optimization
- For SVM dual problem: cannot directly apply coordinate ascent algorithm because

$$\max_{\alpha \ge 0} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j x_j' x_i$$

$$s. t. \sum_{i=1}^{N} \alpha_i y_i = 0$$

- If you fix all α_j s. t. $j \neq i$, α_i is also fixed
- Any idea?

SMO algorithm (cont.)

- Update two variables each time
- Loop until convergence:
 - For i, j = 1, ..., N:
 - Fix all α_k s.t. $k \neq j, k \neq i$
 - Update α_i , α_j such that, $(\alpha_i, \alpha_j) =$

$$\underset{\alpha_{i},\alpha_{j} \geq \mathbf{0}}{\operatorname{argmax}} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}' x_{i}$$

$$s. t. \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

- Convergence test: whether the change of $W(\alpha)$ is smaller than a predefined value (e.g. 0.01)
- Key advantage: the update of α_i , α_j is efficient

SMO algorithm (cont.)

- Without loss of generality, we assume $\alpha_3, ..., \alpha_N$ are fixed
- Optimization on α_1 , α_2 :

$$\underset{\alpha_{i},\alpha_{j} \geq \mathbf{0}}{\operatorname{argmax}} \sum_{i=1}^{N} \alpha_{i} - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_{i} \alpha_{j} y_{i} y_{j} x_{j}' x_{i}$$

$$s. t. \sum_{i=1}^{N} \alpha_{i} y_{i} = 0$$

- Rewrite the constraint: let ω denote $-\sum_{i=3}^{N} \alpha_i y_i$
 - $\alpha_2 = \frac{\omega \alpha_1 y_1}{y_2} = y_2(\omega \alpha_1 y_1)$
- Maximize a quadratic function
- FOC on α_1 :

$$\alpha_1 = \frac{1 - y_1 y_2 - \omega y_1 (x_1 - x_2)' x_2 - \sum_{j=3}^{N} \alpha_j y_j y_1 x_j' (x_1 - x_2)}{x_1' x_1 + x_2' x_2 - 2x_1' x_2}$$

Regularization

Non-separable Data

Linear SVM assumes linearly separable data

 The data on the left are not separable by a linear boundary

• This is often the case

Noisy Data

- Sometimes the data are separable, but noisy.
- This can lead to a poor solution for the linear SVM.

Soft margin

- To make the algorithm
 - work for non-linearly separable datasets
 - be less sensitive to outliers
- Allow some data points violates constraint

$$\min_{\boldsymbol{\theta},\boldsymbol{\theta}_0} \frac{1}{2} \|\boldsymbol{\theta}\|^2 + C \sum_{i=1}^N \xi_i$$
 L1 regularization
$$s.t. \ y_i(\boldsymbol{\theta}' \boldsymbol{x}_i + \boldsymbol{\theta}_0) \geq 1 - \xi_i, \quad i = 1, \dots, N$$

$$\xi_i \geq 0, \quad i = 1, \dots, N$$

Soft margin (cont.)

$$\min_{\boldsymbol{\theta}, \theta_0} \frac{1}{2} \|\boldsymbol{\theta}\|^2 + C \sum_{i=1}^{N} \xi_i$$
s.t. $y_i(\boldsymbol{\theta}' \boldsymbol{x_i} + \theta_0) \ge 1 - \xi_i, \quad i = 1, ..., N$
 $\xi_i \ge 0, \quad i = 1, ..., N$

- C is a regularization parameter
 - The smaller C, the softer margin
 - The larger C, the narrower margin

Soft margin (cont.)

- Correctly classified points beyond / on the support line with $\xi=0$
- Correctly classified points inside the margin with $0 < \xi \le 1$
- The misclassified points inside the margin with slack $1 < \xi \le 2$
- The misclassified points outside the margin with slack $\xi > 2$

Lagrangian Dual

Prim

$$\min_{\boldsymbol{\theta}, \theta_0} \frac{1}{2} \|\boldsymbol{\theta}\|^2 + C \sum_{i=1}^{\infty} \xi_i$$
s.t. $y_i(\boldsymbol{\theta}' \boldsymbol{x}_i + \theta_0) \ge 1 - \xi_i, i = 1, ..., N$

$$\xi_i \ge 0, \qquad i = 1, ..., N$$

Dual problem: can be efficiently solved by SMO algorithm Maximize a quadratic function

Dual

$$\min_{\boldsymbol{\theta}, \theta_0} \frac{1}{2} \|\boldsymbol{\theta}\|^2 + C \sum_{i=1}^{N} \xi_i \qquad \max_{\boldsymbol{\alpha}} \sum_{i=1}^{N} \alpha_i - \frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} \alpha_i \alpha_j y_i y_j x_j' x_i
\boldsymbol{\theta}' x_i + \theta_0) \ge 1 - \xi_i, i = 1, ..., N
\xi_i \ge 0, \qquad i = 1, ..., N$$

$$s.t. \sum_{i=1}^{N} \alpha_i y_i = 0
0 \le \alpha_i \le C, \qquad i = 1, ..., N$$

Compared with the dual of linear SVM, the only change is the upper bound for dual variable

Bonus question:

Can you derive the dual problem by yourself?

Lecture 5 wrap-up

- ✓ Linear SVM
 - ✓ Model
 - √ Strategy
 - ✓ Algorithm
- ✓ Regularization
- Kernels
- Application: diabetes care revisit

Assignment 4

No official assignment

- One bonus question (NOT required):
 - Derive the Lagrangian Dual for the problem with soft margin
 - Send your answer to TA (any form, e.g., word, pdf, photo ...)

• Due: TBD

TA: Mr. Xiong, xiongym3@mail2.sysu.edu.cn

2020 Data Mining and Machine Learning LN3119 https://wangshan731.github.io/DM-ML/

Questions?

Shan Wang (王杉)

https://wangshan731.github.io/