NATIONAL UNIVERSITY OF SINGAPORE

Department of Mathematics

Semester 1 (2003/2004) MA4253 Mathematical Programming Tutorial 4

Q1. Solve the following problem by the Dantzig-Wolfe decomposition algorithm:

min
$$-4x_1 - 2x_2 - 6x_3$$

s.t. $3x_1 + 2x_2 + 4x_3 = 34$
 $2 \le x_1 \le 4$
 $2 \le x_2 \le 4$
 $2 \le x_3 \le 4$.

Q2. Consider the linear program

min
$$-x_1 - x_2$$

s.t. $x_1 - x_2 + x_3 = 2$
 $4x_1 + 9x_2 \le 18$
 $-2x_1 + 4x_2 \le 4$
 $x_1, x_2, x_3 \ge 0$.

Treat the first constraint as the constraint set Ax = b and the second and the third constraints as the set $Cx \ge d$. Form the Dantzig-Wolfe master program and solve it.

Q3. Consider the following linear programming

$$\begin{array}{ll} \min & 10y_1 - 2y_2 + 4y_3 + 8y_4 + y_5 \\ \mathrm{s.t.} & y_1 - 4y_2 - y_3 \, \geq \, 8 \\ & 2y_1 - y_2 + y_3 \, \geq \, 2 \\ & 3y_1 + y_4 + y_5 \geq 4 \\ & y_1 + 2y_4 - y_5 \, \geq \, 10 \\ & y_1, y_2, y_3, y_4, y_5 \, \geq \, 0 \, . \end{array}$$

- (a) Solve the **DUAL** of the above problem using the Dantzig-Wolfe decomposition algorithm.
- (b) Identify an optimal solution of the primal problem.