Regresja liniowa i trend liniowy

Tomasz Przechlewski

Czerwiec 2016

1 Regresja liniowa

$$Y = \alpha_0 + \alpha_1 X + e \tag{1}$$

gdzie e oznacza tzw. składnik losowy.

Na podstawie *i*-elementowej próby szacujemy **linię regresji**:

$$\hat{y}_i = a_0 + a_1 x_i \tag{2}$$

gdzie i = 1, ..., n

Metoda najmniejszych kwadratów (MNK) polega na takim oszacowaniu parametrów α_0 i α_1 , aby na podstawie *n*-elementowej próby wyrażenie

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 \to \min \tag{3}$$

Powyższy warunek prowadzi do następujących wzorów na parametry a_0 i a_1 :

$$a_0 = \bar{y} - a_1 \bar{x}; \tag{4}$$

$$a_1 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2}$$
 (5)

gdzie \bar{x} , \bar{y} to średnie wartości x oraz y.

Ocenę a_1 nazywamy współczynnikiem regresji liniowej. Interpretacja: jaki jest przeciętny wzrost/spadek wartości zmiennej zależnej (Y), przy zmianie wartości zmiennej niezależnej o jednostkę.

Resztami nazywamy różnice pomiędzy wartościami empirycznymi a teoretycznymi:

$$u_i = y_i - \hat{y}_i \qquad i = 1, ..., n$$
 (6)

Dla parametrów oszacowanych MNK zawsze jest spełniony warunek:

$$\sum_{i=1}^{n} u_i = 0 \tag{7}$$

Dlatego miarą dokładności jest suma kwadratów reszt (wariancja resztowa/wariancja składnika resztowego) lub pierwiastek kwadratowy wariancji resztowej zwany odchyleniem standardowym składnika resztowego lub błędem standardowym reszt:

$$s_e^2 = \frac{1}{n-k} \sum_{i=1}^n (y_i - \hat{y}_i)^2 \tag{8}$$

gdzie k to liczba szacowanych parametrów równania regresji (czyli 2).

W miarę wzrostu liczbowej wartości odchylenia standardowego składnika resztowego "dobroć" dopasowania funkcji regresji do danych empirycznych maleje.

1.1 Współczynniki zbieżności ϕ^2 i determinacji R^2

Wartość empiryczna zmiennej objaśnianej może zostać zapisana jako wartość teoretyczna plus reszta:

$$y = \hat{y} + e \tag{9}$$

odejmując \bar{y} od obu stron równania, podnosząc obie strony do kwadratu i sumując po i=1,...,n:

$$\sum_{i=1}^{n} (y - \bar{y})^2 = \sum_{i=1}^{n} (\hat{y} - \bar{y})^2 + \sum_{i=1}^{n} e^2$$
 (10)

Zwróćmy uwagę, że:

 $\sum_{i=1}^n (y-\bar{y})^2$ – to suma kwadratów odchyleń zmiennej Yod jej średniej (OSK – ogólna suma kwadratów)

 $\sum_{i=1}^n (\hat{y} - \bar{y})^2$ – to suma kwadratów wartości teoretycznych od średniej (WSK – wyjaśniona suma kwadratów)

 $\sum_{i=1}^n e^2$ – to suma kwadratów odchyleń pomiędzy wartościami empirycznymi a teoretycznymi (RSK – resztowa suma kwadratów)

$$OSK = WSK + RSK \tag{11}$$

Współczynnik zbieżności ϕ^2

$$\phi^2 = \frac{\text{RSK}}{\text{OSK}} \times 100 \tag{12}$$

Interpretacja: udział zmienności resztowej w całkowitej zmienności, tj. % zmienności zmiennej objaśnianej nie wyjaśniona przez model regresji liniowej. Wartość współczynnika zawiera się w przedziale 0–100, im mniej tym lepiej.

Współczynnik determinacji R^2

$$R^2 = \frac{\text{WSK}}{\text{OSK}} \times 100 \tag{13}$$

Interpretacja: udział zmienności wyjaśnionej w całkowitej zmienności, tj. % zmienności zmiennej objaśnianej wyjaśniona przez model regresji liniowej. Wartość współczynnika zawiera się w przedziale 0–100, im więcej tym lepiej.

Współczynnik zmienności losowej

$$V_e = \frac{S_e}{\bar{y}} \times 100 \tag{14}$$

Interpretacja: ile procent przeciętnego poziomu zmiennej objaśnianej stanowi przeciętne odchylenie wartości empirycznych od wartości teoretycznych.

Ilustracja graficzna (por. rys. 1.1): składnik losowy e ma rozkład normalny o wartości średniej 0 oraz odchyleniu standardowym 1 (lewy wykres) oraz 6 (prawy wykres).

Zgodnie z założeniami mniejsze rozproszenie składnika losowego przekłada się na lepsze dopasowanie linii regresji, większą wartość R^2 oraz mniejsze wartości S_e i S_{a_1} .

1.2 Badanie istotności współczynnika regresji

Ponieważ o wartościach α_0 i α_1 wnioskujemy na podstawie próby a model zawiera składnik losowy, to parametry a_0 oraz a_1 są zmiennymi losowymi.

Przy przyjęciu pewnych założeń odnośnie składnika losowego można wywieść, że zmienne a_0 oraz a_1 mają wartości oczekiwane (średnie) równe prawdziwym wartościom, tj. $\bar{a}_0 = \alpha_0$ oraz $\bar{a}_1 = \alpha_1$. Odchylenia standardowe S_{a_1} oraz S_{a_0} (zwane średnimi błędami szacunku parametrów modelu) określają precyzję oszacowania parametrów.

1.3 Istotność współczynnika regresji

Statystyczną oceną jakości modelu regresji liniowej jest zweryfikowanie hipotezy o istotności współczynnika regresji, tj:

 $H_0: \alpha_1=0$, wobec $H_1: \alpha_1\neq 0$ (można też stosować hipotezy $H_1: \alpha_1<0$ lub $H_1: \alpha_1>0$ jeżeli dysponujemy stosownym informacjami pozastatystycznymi wskazującymi iż alternatywą dla wartości zerowej jest mniejsza/większa wartość współczynnika)

Można udowodnić, że statystyka:

$$t = \frac{a_1}{S_{a_1}} \tag{15}$$

ma rozkład T-Studenta z n-k stopniami swobody.

Reguła decyzyjna:

Mając obliczone t porównujemy je dla określonego poziomu istotności oraz n-k stopni swobody z tzw. wartością krytyczną, którą można obliczyć przykładowo korzystając z funkcji ROZKŁAD. T w programie OOCalc/Excel (niżej dokładniej opisanej).

Jeżeli t < wartość krytyczna nie ma podstaw do odrzucenia H_0 . W przypadku przeciwnym H_0 należy odrzucić.

Uwaga:

W przypadku $H_1: \alpha_1 \neq 0$ mówimy o **dwustronnym obszarze krytycznym** – duże odchylenia na \pm świadczą przeciwko H_0 ; w przypadku

 $H_1: \alpha_1 < 0$ mówimy o **lewostronnym obszarze krytycznym** – tylko duże odchylenia na minus świadczą przeciwko H_0 (te odchylenia na minus są *po lewej* stronie w kartezjańskim układzie współrzędnych.

 $H_1: \alpha_1 > 0$ mówimy o **prawostronnym obszarze krytycznym** – tylko duże odchylenia na plus świadczą przeciwko H_0 (te odchylenia na pplus są *po prawej* stronie w kartezjańskim układzie współrzędnych.

Alternatywna reguła decyzyjna:

Programy statystyczne często podają prawdopodobieństwo P(|T|) > t, tj prawdopodobieństwo że zmienna T przyjmie (co do wartości bezwzględnej) wartość t lub większą. Znając wartość prawdopodobieństwa P wystarczy porównać ją z poziomem istotności:

jeżeli $P \ge \alpha$ nie ma podstaw do odrzucenia H_0 jeżeli $P < \alpha$ H_0 należy odrzucić

1.4 Przykład

Plik fueldata.ods zawiera dane dotyczące m.in zużycia paliwa na mieszkańca (FUEL) oraz odsetek mieszkańców posiadających prawo jazdy (DLIC) dla 48 stanów w USA (por. rys. 1.4).

Zależność pomiedzy przeciętnym zużyciem benzyny na mieszkańca a odsetkiem kie-

rowców w stanie można zapisać jako:

$$FUEL = \alpha_0 + \alpha_1 DLIC + e \tag{16}$$

Oszacowana linia regresji dana jest równaniem:

$$FUEL = 14,01DLIC - 227,31 (17)$$

Interpretacja: Zwiększenie o 1% odsetka mieszkańców posiadających prawo jazdy przeciętnie zwiększy zużycie na głowę o 14,01 galona.

Uwaga: do obliczenia linii regresji w programie OOCalc/Excel służy funkcja:

REGLINP $\{y; x; 1; 1\}$

Jest to funkcja tablicowa (tj zwracająca obszar a nie pojedynczą wartość), co oznacza że należy ją zatwierdzić naciskając Ctr-Shift-Enter (zamiast zwykłego Enter). Funkcja REGLINP (w wersji OpenOffice) zwraca obszar o wielkości 5 wierszy na 2 kolumny. Poszczególne komórki tego obszaru zawierają co następuje:

$$\begin{array}{ccc}
a_1 & a_0 \\
S_{a_1} & S_{a_0} \\
R^2 & S_e
\end{array}$$

Zawartość wierszy 4 i 5 nie interesuje nas.... Użytkownicy Excela proszę sprawdzić w dokumentacji jak interpretować działanie funkcji REGLINP w Excelu.

Odsyłam do pliku fueldata.ods w celu przećwiczenia praktycznego wyznaczania linii regresji za pomocą REGLINP.

Ocena dopasowania:

 $S_e=80,88$, Przeciętne odchylenie wartości teoretycznych od empirycznych wynosi 80.88 galona (S_e jest zawsze mianowane w jednostkach zmiennej Y).

Współczynnik zbieżności $R^2=48.9\%$ oznacza, że 48.9% zmienności zużycia benzyny na głowę jest objaśnione przez model regresji liniowej pomiędzy zużyciem benzyny na głowę a odsetkiem mieszkańców posiadających prawo jazdy.

Zatem $\phi^2 = 100 - R^2 = 100 - 48,9 = 51,1$. 51,1% zmienności zużycia benzyny na głowę **nie jest wyjaśniana** przez model regresji liniowej.

Odchylenie ocen parametrów: $S_{a_1}=2,13$ oraz $S_{a_0}=121,9.$

Już na pierwszy rzut oka widać, że parametr a_1 jest istotny ($H_0:\alpha=0$ należy odrzucić) ponieważ przeciętny błąd S_{a_1} stanowi zaledwie 15% oceny parametru.

Sprawdzanie istotności parametru a_1 :

Obliczenie t i porównanie jej z wartością krytyczną

Do wyznaczanie wartości zmiennej t odpowiadającej określonemu prawdopodobieństwu służy:

ROZKŁ.T.ODWR.DS(poziom-istotności; stopnie-swobody)

Zatem ROZKŁ.T.ODWR.DS(0,05;46) = 2.013.

Wartością krytyczną (obszar dwustronny) jest zatem 2,013.

Ponieważ $t_{n-2}=6,577>2,013$ (wartość krytyczna na poziomie istotności $\alpha=0.05$ dla 48-2=46 stopni swobody) to H_0 należy odrzucić.

Obliczanie prawdopodobieństwa dla t i porównanie z poziomem istotności α :

Wykonujemy funkcję ROZKŁAD.T(wartość-zmiennej;stopnie-swobody;tryb).

Wartość zmiennej to oczywiście a_1/S_{a_1} ;

Stopnie-swobody to oczywiście liczba stopni swobody (n-k);

Tryb określa czy testujemy hipotezę alternatywną postaci $H_1: \alpha_1 \neq 0$ (dwustronny obszar krytyczny; wtedy tryb = 2) czy też $H_1: \alpha_1 < 0 / H_1: \alpha_1 > 0$ (prawo/lewo-stronny obszar krytyczny; wtedy tryb = 1).

Użytkownicy Excela proszę sprawdzić w dokumentacji jak interpretować działanie funkcji ROZKŁAD.T w Excelu.

Stosując funkcję ROZKŁAD. T otrzymujemy (dla dwustronnego obszaru krytycznego):

ROZKŁAD.T(6,577;46;2) = 3,289E-008

Ponieważ $3,289E-008 \approx 0,000000003 < 0,05$ (porównujemy z zakładanym poziomem istotności $\alpha=0,05$) H_0 należy odrzucić – przy założeniu prawdziwości H_0 wartość t=6,577 lub większa co do wartości bezwzględnej zdarza się 3 razy na 100000000.

2 Liniowa funkcja trendu

Liniowa funkcja trendu ma postać:

$$Y = \alpha_0 + \alpha_1 t + e \tag{18}$$

gdzie e oznacza tzw. składnik losowy a t – zmienna czasowa (np. t = 1, ..., n)

Od strony rachunkowej ocena jakości dopasowania oraz ocena istotność parametrów strukturalnych jest wykonywana **identycznie jak w metodzie regresji** tylko należy zmodyfikować interpretacje:

Współczynnik zbieżności – procent zmienności zmiennej y nie objaśniony przez liniową funkcję trendu.

Współczynnik determinacji $R^2=100-\phi^2$ interpretuje się jako "procent zmienności zmiennej y objaśniony przez liniową funkcję trendu."

2.1 Przykład

Plik Cena_paliw_sprzedaz_i_samochody_2.ods.