Divided Difference technique to (1)

generate polynomials hecursively.

The divided differences of f(x) with respect to $\chi_0, \chi_1, \chi_2, \ldots, \chi_N$ are used to express $P_n(x)$ in the form:

 $P_{n}(x) = a_{0} + a_{1}(x-x_{0}) + a_{2}(x-x_{0})(x-x_{1}) + \cdots + a_{n}(x-x_{0})(x-x_{1})\cdots (x-x_{n}).$

for appropriate constants ao, a, ..., an.

Jo determine ao we substitute $x = x_0$ in $P_n(x)$.

 $P_n(x_0) = Q_0 \cdot = f(x_0)$.

Similarly $P_n(x_1) = a_0 + a_1(x_1-x_0)$ $\Rightarrow a_1 = \frac{f(x_1) - f(x_0)}{x_1 - x_0}$ In di Vided difference notation which is related to Aitken's 12 notation, we write

 $P_{m}(x) = f[x_{0}] + f[x_{0},x_{1}](x-x_{0})$ $+ f[x_{0},x_{1},x_{2}](x-x_{0})(x-x_{1})$ $+ \dots + f[x_{0},x_{1},\dots,x_{n-1}]$ $(x-x_{0})(x-x_{1})(x-x_{n-1}).$

where $f[x_0] = f(x_0) - o^{th}$ Divided diff. $f[x_0, x_1] = \frac{f(x_1) - f(x_0)}{x_1 - x_0} - 1^{st}$ Div. Dif.

 $f[\chi_0,\chi_1,\chi_2] = \frac{f[\chi_1,\chi_2] - f[\chi_0,\chi_2]}{\chi_2 - \chi_0}$

2nd Divided difference.

 $f[\chi_0,\chi_1,\ldots,\chi_n] = \frac{f[\chi_1,\chi_2,\ldots,\chi_n] - f[\chi_0,\chi_1,\ldots\chi_{n-1}]}{\chi_n - \chi_0}.$

Exemple Complete the divided difference table for the data: f(x) 0.7651977 1.0 0.6200860 1-3 0.4554022 1-6 0.2818186 1.9 0.1103623 2.2 Construct the Interpolating polynomial that uses all the data. Solution: 1st Newton divided difference involving to and z, is $f[x_0,x_1] = \frac{f[x_1] - f[x_0]}{x_1 - x_0}$ = 0.6200860 - 0.7651977 1.3-1.0 = -0.4837057. $f[x_1,x_2] = f[x_2] - f[x_1]$

0.4554022 - 0.620080 1.6-1.3.

4

$$=-0.548926$$
.

$$f[\chi_{2},\chi_{3}] = \frac{f[\chi_{3}] - f[\chi_{2}]}{\chi_{3} - \chi_{2}}$$

$$= \frac{0.2818186 - 0.4554022}{1.9 - 1.6}$$

$$=-0.578612$$
.

$$f[x_{3},x_{4}] = \frac{f[x_{4}] - f[x_{3}]}{x_{4} - x_{3}} \\
= \frac{0.1103623 - 0.2818186}{0.2818186}$$

$$= -0.571521$$

2-2-1-9

Se cond Divided differences
$$f[\chi_0, \chi_1, \chi_2] = \frac{f[\chi_1, \chi_2] - f[\chi_0, \chi_1]}{\chi_2 - \chi_0}$$

$$= -0.548926 + 0.4837057$$

$$1.6 - 1.0$$

$$= -0.1087005.$$

5

$$f[\chi_{1},\chi_{2},\chi_{3}] = \frac{f[\chi_{1},\chi_{2}]}{\chi_{3}-\chi_{1}}$$

$$= -0.578612+0.54894$$

$$|\cdot q-|\cdot 3|$$

$$= -0.0494767.$$

$$f[\chi_{2},\chi_{3},\chi_{4}] = \frac{f[\chi_{3},\chi_{4}]-f[\chi_{2},\chi_{3}]}{\chi_{4}-\chi_{2}}$$

$$= -0.571521+0.578612$$

$$= -0.571521+0.578612$$

= 0.0118183.

$$\int X_{0}, X_{\frac{1}{2}}, X_{2}, X_{3} \\
= \int [X_{1}, X_{2}, X_{3}] - f[X_{0}, X_{1}, X_{2}] \\
= \frac{\chi_{3} - \chi_{0}}{\chi_{3} - \chi_{0}} \\
= \frac{-0.0494767 + 0.1087005}{1.9 - 1.0} \\
= 0.06580423.$$

 $f[x_{1},x_{2},x_{3},x_{4}] = f[x_{2},x_{3},x_{4}] - f[x_{1},x_{2},x_{3}]$ = 0.0118183 + 0.0494717 = 2.2 - 1.3

= 0.0681056.

 $f[\chi_0,\chi_1,\chi_2,\chi_3,\chi_4]$

= f[x1, x2, x3, x4] - f[x0, x1, x2, x3]

24-20

0.0681056 - 0.06580423

2.2-1.0

0.001917808.

The interpolating polynomial that uses all the data in the Newton's forward divided difference form is given as follows:

(7)

$$P_{4}(x) = 0.7651977 - 0.4837057(x-1.6)$$

$$-0.1087005(x-1.0)(x-1.3)$$

$$+0.06580423(x-1.0)(x-1.3)(x-1.6)$$

$$+0.001917808(x-1.0)(x-1.3)(x-1.6)$$

$$(x-1.9).$$

$$P_{4}(1.5) = .0.7651977 - 0.4837057(1.5-1.0)$$

$$-0.1087005(1.5-1.0)(1.5-1.3)$$

$$+0.06580423(1.5-1.0)(1.5-1.3)(1.5-1.6)$$

$$+0.001917808(1.5-1.0)(1.5-1.3)(1.5-1.6)$$

$$(1.5-1.9).$$

$$= 0.7651977 - 0.4837057 \times 0.5 -0.1087005 \times 0.5 \times 0.2 +0.06580423 \times 0.5 \times 0.2 \times (-0.1) +0.061917808 \times 0.5 \times 0.2 \times -0.1 \times -0.4$$

= 0.5118244289

Newton's divided-difference formula can be expressed in a simplified form when the modes are averaged consecutively with equal spacing. In this case introduce the motation $h = \chi_{i+1} - \chi_i$, for each $i = 0,1,\cdots n-1$.

 $(-h \rightarrow)$ 1.0 |.3 |.6 |.9 | 2.2 | 2.5 | χ_0 | χ_1 | χ_2 | χ_3 | χ_4

Then any $x = x_0 + sh$ and the difference $x - x_0 = x_0 + sh - x_0 - ih$ = (s - i)h

The interpolating polynomial

 $P_{n}(x) = f[x_{0}] + \sum_{k=1}^{n} f[x_{0},x_{1},...,x_{k}](x-x_{0})...$ becomes

 $P_{n}(x_{0}+sh) = f[x_{0}] + sh f[x_{0},x_{1}] + s(s-1)h^{2}x + [x_{0},x_{1},x_{2}] + s(s-1)...x_{1}$

$$= f[\chi_0] + \sum_{k=1}^{n} \int_{S(S-1)} \dots (S-k+1)h^k x$$

$$k=1 \qquad f[\chi_0,\chi_1,\dots,\chi_k].$$
Uning binomial-coefficient notation
$$\begin{pmatrix} S \\ k \end{pmatrix} = \frac{S(S-1) \dots (J-k+1)}{k!} \quad \text{we write}$$

$$\begin{pmatrix} P_n(x) = P_n(\chi_0 + Sh) \\ k = 1 \end{pmatrix}$$

$$= f[\chi_0] + \sum_{k=1}^{n} \binom{S}{k} k! h^k f[\chi_0,\chi_1,\dots,\chi_k]$$

Forward Differences $f[\chi_0, \chi_1] = \frac{1}{h} (f(\chi_1) - f(\chi_2)) = \frac{1}{h} \Delta f(\chi_0).$ $f[\chi_0, \chi_1, \chi_2] = \frac{1}{2h} \left[\frac{\Delta f(\chi_1) - \Delta f(\chi_0)}{h} \right]$ $= \frac{1}{2h^2} \Delta^2 f(\chi_0).$ $f[\chi_0, \chi_1, \dots, \chi_k] = \frac{1}{k! h^k} \Delta^k f(\chi_0).$ $P_n(\chi) = f(\chi_0) + \sum_{i=1}^{k} (\frac{s}{k}) \Delta^k f(\chi_0).$

(10)

If the interpolating nodes are reordered from last to first as In, In, ..., to, $P_{n}(x) = f[x_{n}] + f[x_{n}, x_{n-1}](x-x_{n})$ + f[xn, xn-1, xn-2] (x-4n) [M-xn-1] (x-xy-x)+ - - - + f[2n, . - - , 1] (x-xn) (x-xn) --- (x-x1). If in addition if they are equally spaced $\chi = \chi_n + sh \quad A \quad \chi = \chi_i + (s+n-i)h.$ $\chi_i + (n-i)h.$ $\chi_{-\chi_i} = (s+n-i)h$ $\chi_{-\chi_i} = (s+n-i)h$ = f[xn] + sh f[xn,xn-1] + s(s+1)h2 + ... + $f[x_n, ..., x_0](x-x_n)(x-x_{n-1})(x-x_{n-2}) \cdot ... (x-x_1)$. Because $\chi-\chi_n = (s+n-n)h = sh$ $\chi - \chi_{n-1} = (\beta + n - n + 1)h$ = (S+i)h

 $\begin{array}{lll} x_{-x_1} &=& (s_{+n-1})h \\ x_{-x_0} &=& (s_{+n})h \end{array}$

$$P_n(x) = P_n(x_n + sh)$$

Jo further simplicify the Newton's Backward divided differences formula we define the Backward differences as:

Definetion: Given the sequence of Pnon=0 define the backward difference

 $\sqrt{pn} = p_n - p_{n-1}, \text{ for } m > 1.$

 $\nabla^2 p_n = \nabla (\nabla p_n) = \nabla p_n - \nabla p_{n-1}$.

 $\nabla^{k} p_{n} = \nabla (\nabla^{k-1} p_{n}) / n > 2.$

The above definition implies that $f[x_n, x_{n-1}] = \frac{1}{h} \nabla f(x_n)$.

 $f[\chi_n, \chi_{n-1}, \chi_{n-2}] = \frac{1}{2h^2} \nabla^2 f(\chi_n).$

and in general,
$$f\left[x_{n}, x_{n-1}, \dots, x_{n-k}\right] = \frac{1}{k! h^{k}} \nabla^{k} f(x_{n}).$$
Consequently,
$$P_{n}(x) = f\left[x_{n}\right] + \delta \nabla f(x_{n}) + \frac{\delta(\delta+1)}{2} \nabla^{2} f(x_{n}) + \dots + \frac{\delta(\delta+1)}{n!} \nabla^{n} f(x_{n}).$$
Using the binomial coefficient notation
$$\begin{pmatrix} -\delta \\ k \end{pmatrix} = \frac{-\lambda (ds-1) \cdots (-ds-k+1)}{k!}$$

$$= \frac{-\lambda (ds-1) \cdots (-ds-k+1)}{k!}$$
then
$$P_{n}(x) = f\left[x_{n}\right] + (-1)^{l} \begin{pmatrix} -\delta \\ 1 \end{pmatrix} \nabla f(x_{n}) + (-1)^{2} \begin{pmatrix} -\delta \\ 2 \end{pmatrix}.$$

$$\nabla^{2} f(x_{n})$$

 $P_{n}(x) = f[xn] + (-1)^{n} (-1)^{n} \nabla f(xn) + (-1)^{n} (-1)^{n} \nabla f(xn)$ $= f(xn) + \sum_{k=1}^{\infty} (-1)^{k} (-1)^{k} \nabla f(xn)$ $= f(xn) + \sum_{k=1}^{\infty} (-1)^{k} (-1)^{k} \nabla f(xn)$

poly	0	
oduced earlier will be wed for the backward divided ditterne interpolating sol.	4th divided of obliterance	0.001825
eastier will be divided differe	3rd divided	0.06 58784
luced rearli	2nd divided differences	-0.1087339 -0.0494433
table produced Newton's backwa		-0.4837057 -0.5489460 -0.5786120
The same	f(2)	0.7651977 0.6200860 0.4554022 0.2818186
	75	1.5 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

J

Only one interpolating polynomial of degree at most 4 uses these five data points, but we will organize the data points to obtain the best approximating of degree 1, 2 and 3. This will give us a serve of accuracy of the 4th-degree approximation for the given value of x.

$$\Rightarrow \Delta = \frac{0.1}{0.3} = \frac{1}{3}.$$

The forward divided difference formula is used with the divided differences that have a holid underline — in the table.

given in the previous pages. $P_4(1.1) = P_4(1.0 + \frac{1}{3}(0.3))$ $= 0.7651977 + \frac{1}{3} \times (0.3)(-0.483767)$ $+\frac{1}{3}(-\frac{2}{3})(0.3)^{2}(-0.1087339)$ $+\frac{1}{3}(-\frac{2}{3})(-\frac{5}{3})(0.0658784)$ $+\frac{1}{3}\left(-\frac{2}{3}\right)\left(-\frac{5}{3}\right)\left(-\frac{8}{3}\right)\left(0.3\right)^{4}\left(0.0018251\right)$

= 0.7196460.

To approximate a value when x is close to the end of the tabulated values, say -x=2.0, we would again like to make the earliest use of the data points closest to x. This requires using Newtons backward divided-difference

formula with h=0.3, $n_{1}=2.2$ then $1=2.0=2.2+3\times0.3$

 $\Rightarrow \beta = \frac{-0.2}{0.3} = \frac{2}{3}.$

The divided differences in the Table that have double underline 's are used. Here too we use the 4th divided difference formula:

$$P_4(2.0) = P_4(2.2 - \frac{2}{3}.(0.3))$$

$$= 0.1103.623 - \frac{2}{3}(0.3)(-0.5715210)$$

$$-\frac{2}{3}(\frac{1}{3})(0.3)^{2}(0.0118183)$$

$$-\frac{2}{3}(\frac{1}{3})(\frac{4}{3})(0.3)^{3}(0.0680685)$$

$$-\frac{2}{3}(\frac{1}{3})(\frac{4}{3})(\frac{7}{3})(0.3)^{4}(0.0018251)$$

= 0.2238754.