MATH H113: Honors Introduction to Abstract Algebra

2016-04-22

- Polynomials over fields
- Constructing a field extension in which a given polynomial of degree > 0 has a root

For Wednesday: Read §13.1 and 9.3

Recall Ex. 7.4.14: Let $f(x) \in R[x]$ (R is a commutative ring with $1 \neq 0$) be a monic polynomial of degree ≥ 1 , and let bar denote passage from R[x] to R[x]/(f(x)). Then:

- a. Every element of R[x]/(f(x)) is represented by an element $\overline{p(x)}$, where $p(x) \in R[x]$ has degree < n (or is 0)>
- b. If $\overline{p(x)} = \overline{q(x)}$ with both p and q of degree < n (or zero), then p(x) = q(x).

Theorem: Let F be a field. Then F[x] is a Euclidean domain, with norm $N(f(x)) = \begin{cases} \deg f & f \neq 0 \\ 0 & f = 0 \end{cases}$

Proof: We need to show: given $a(x), b(x) \in F[x]$ with $b(x) \neq 0$, there exist $q(x), r(x) \in F[x]$ such that a(x) = q(x)b(x) + r(x) and $\deg r(x) < \deg b(x)$ or r(x) = 0).

Case 1: $\deg b(x) = 0$. Then $b(x) = c \in F$, and we have a = qb + r with $q(x) = \frac{1}{c}a(x)$ and r(x) = 0.

Case 2: deg b(x) >). Let c be the leading coefficient of b(x) and let $n = \deg b(x)$. Let $f(x) = \frac{1}{c}b(x)$. This is monic of degree n, so by Ex. 7.4.14, $\overline{a(x)} \in R[x]/(f(x))$ is represented by overliner(x) with r = 0 or $\deg r < n$. Then $f(x) \mid (a(x) - r(x))$, so $b(x) \mid (a(x) - r(x))$, say b(x)q(x) = a(x) - r(x), $\therefore a(x) = q(x)b(x) + r(x)$ with r = 0 or $\deg r < n$.

Note: We also have uniqueness (as for \mathbb{Z}): If $a(x) = q_1(x)b(x) + r_1(x) = \underline{q_2(x)}b(x) + r_2(x)$ where r_1 and r_2 are 0 or have degree < n, Then $a(x) = r_1(x) = r_2(x)$, so by (b) $r_1(x) = r_2(x)$. $\therefore q_1(x)b(x) = q_2(x)b(x)$, so $q_1 = q_2$. (Note: (f(x)) = (b(x)), so R[x]/(f(x)) = R[x]/(b(x)).)

Next Goal: Given a field F and a nonconstant polynomial f(x), construct a field K containing F containing F as a subfield, such that f(x) has a root in K. **Definition:** Let F be a field. A *vector space* over F is an abelian group V, written additively, and a map $F \times V \to V$ written $(c, v) \mapsto cv$ (scalar multiplication), such that $(\forall x, y \in F; v, w \in V)$:

$$1. \ (x+y)v = xv + yv$$

- 2. (xy)v = x(yv)
- 3. x(v+w) = xv + xw
- 4. 1v = v
- (2) and (4) give us that F^{\times} acts on V (plus $0v = 0 \ \forall v$).

You should know: linear (in)dependence, basis, linear transformation. An *isomorphism* of vector spaces is a bijective linear transformation.

Examples:

- 1. \mathbb{C} is a vector space over \mathbb{R} (with basis (1,i)).
- 2. \mathbb{R} is a vector space over \mathbb{Q}
- 3. Any field is a vector space over itself.
- 4. For any field F, F[x] is a vector space over F.

In particular, let F be a field and let $n \in \mathbb{Z}_{>0}$.

Then $\{a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \ldots + a_1x + a_0 : a_0, \ldots, a_{n-1} \in F\} = \{p(x) \in F[x] : p(x) = 0 \lor \deg p(x) < n\}$ is a vector subspace of F[x], with basis $\{1, x, x^2, \ldots, x^{n-1}\}$. Therefore it has dimension n.

By Ex. 7. 4.14, if $f(x) \in F[x]$ is monic of degree n > 0, then the map from $\{p(x) \in F[x] : p(x) = 0 \lor \deg p(x) < n\}$ to F[x]/(f(x)) given by $p(x) \mapsto \overline{p(x)}$ is an isomorphism of vector spaces (onto by (a), and injective by (b)). (So it has dimension n as a vector space over F).

Ex. 9.2.3: Let F be a field and let $f(x) \in F[x]$. Prove that F[x]/(f(x)) is a field if and only if f(x) is irreducible.

Proof:

Case 1: f(x) = 0. Then (f(x)) = (0), so $F[x]/(f(x)) \cong F[x]$ is not a field $(x \neq 0 \text{ and } x \text{ is not invertible})$. Also f(x) is not irreducible.

Case 2: $f(x) \neq 0$. Then

- f(x) is irreducible $\iff f(x)$ is prime (Prop. 12 p.286)
- \iff (f(x)) is a nonzero prime ideal (Def. of prime element)
- \iff (f(x)) is a maximal ideal (Prop. 7 p. 280 and max ideals are prime and (0) is not maximal in F[x]) \iff F[x]/(f(x)) is a field (Prop. 12 p. 284)

Theorem: Let F be a field and let p(x) be an irreducible polynomial in F[x]. Then \exists a field K containing an isomorphic copy of F as a subfield, in which p(x) has a root. Identifying F with this subfield shows that there exists a field K, containing F as a subfield in which p(x) has a root.

Proof: Let K = F[x]/(p(x)). This is a field. Define $\phi : F \to K$ by $F \to F[x] \to F[x]/(p(x)) = K$. Then ϕ is a ring homomorphism, and $\phi(1) = 1$, so $\ker \phi = (1)$, $\therefore \ker \phi = (0)$, so ϕ is injective, and it gives an isomorphism from F to $\phi(F)$, which is a subfield of K.

*Next:: Show that p(x) has a root in K. Let $\theta = \overline{x}$. Then $\theta \in K$, and $p(\theta) = 0$, because if $p(x) = a_n x^n + a_{n-1} x^{n-1} + \cdots + a$ with $a_0, a_1, \ldots, a_n \in F$, then

 $0 = \overline{p(x)} = \overline{a_n x^n + a_{n-1} x^{n-1} + \dots + a_0} = \overline{a_n x^n} + \overline{a_{n-1} x^{n-1}} + \dots + \overline{a_0} \text{ ("bar" is a ring homomorphism)} = a_n \theta^n + a_{n-1} \theta^{n-1} + \dots + a_0 = p(\theta) \ (\overline{x} = \theta). \text{ If we identify } F \text{ with a subfield of } K \text{ (via } \phi), \text{ then } p(x) \in K[x], \text{ and } \overline{a_i} = a_i \forall i.$

Next Time: Example $F = \mathbb{R}$, $p(x) = x^2 + 1$ gives you \mathbb{C} .