

Visualizing Relationships in ggplot

Doug Joubert Pamela Katzen Burrows 2023-07-11

Class Description

- Provides a basic overview of the methods used to visualize the association among two or more quantitative variables
- Focus on scatterplots, scatterplot matrix, and visualizing paired data
- Participants are expected to have taken the <u>Introduction to Data</u>
 <u>Visualization in R: ggplot</u> class

Class Assumptions

- This class makes a few assumptions about your understanding of R and RStudio:
 - You have already installed R and RStudio
 - You have experience with R
 - You have experience working in RStudio and creating scripts and/or markdown files

Class Objectives: In Class

- Upon completion of this class students should be able to:
 - Define bivariate data
 - Create a scatterplot using ggplot
 - Define linear regression
 - Demonstrate how to perform a simple linear regression in R
 - Identify positive and negative associations from a scatter plot
 - Describe what Pearson's correlation measures
 - State the possible range for Pearson's correlation

Class Objectives: In Handout

- Upon completion of this class students should be able to:
 - Define bivariate data
 - Create a scatterplot using ggplot
 - Define linear regression
 - Demonstrate how to perform a simple linear regression in R
 - Identify positive and negative associations from a scatter plot
 - Describe what Pearson's correlation measures
 - State the possible range for Pearson's correlation

Resource: Theory

- Science-based approach:
 - Visual system
 - Cognition and perception
- 3rd edition is available electronically from the NIH <u>Library</u>
- Substantial changes in 4th
 Edition, and a completely new chapter

Resource: Theory/Practical

- Combines theory and practical application of design principles
- Code agnostics but a lot of the graphics were produced in R
- Thanks Claus, for making your book available <u>online</u> (for free)!!

Resource: Theory/Practical

- Work-in-progress 3rd edition is available <u>online</u> for free
- Primary focus is explaining the Grammar of Graphics that ggplot2 uses
- Not a cookbook
- Will help you understand the details of the underlying theory

Image source

Configuration for Exercises

R and RStudio

- R is a programming language that is especially powerful for data exploration, visualization
- RStudio is an integrated development environment (IDE) that makes using R easier
- R and RStudio are two separate pieces of software
- Must install R before you install RStudio

R and RStudio: Windows

- 1. Download R from the <u>CRAN</u> website
- 2. Run the .exe file that was just downloaded

R and RStudio: Windows

- 1. Go to the RStudio download page
- 2. Under Installers select
 RStudio x.yy.zzz Windows
 Vista/7/8/10 (where x, y, and z
 represent version numbers)
- 3. Double click the file to install it

R and RStudio: Mac

- 1. Download R from the <u>CRAN</u> website
- 2. Select the .pkg file for the latest R version
- 3. Double click on the downloaded file to install R
- 4. It is also a good idea to install XQuartz (needed by some packages)

R and RStudio: Mac

- 1. Go to the RStudio <u>download</u> page
- 2. Under Installers select
 RStudio x.yy.zzz Mac OS X
 10.6+ (64-bit) (where x, y, and
 z represent version numbers)
- 3. Double click the file to install RStudio

Configuration for Exercises

- GGally adds several functions to reduce the complexity of combining geoms with transformed data
- OpenIntro package includes supplemental functions and data for open-source textbooks and resources for introductory statistics

Configuration for Exercises

Tidyverse: <u>collection of R</u>
 <u>packages</u> designed for data
 science

Scatterplots and Correlation

Bivariate Data

- Measures of central tendency, variability, and spread summarize a single variable
- Often, more than one variable is collected on each individual in a study
- Two quantitative variables for each individual
- Example: relationship between the height and weight

Lane, D. (2007)

Data: Blue Jay

- Blue jay <u>data</u>
 - 123 rows of data
 - Head length
 - Skull size
 - Body mass of each bird
- Import data into an object called blue_jays

Blue Jay Data: Histogram (Body Mass)

- Create a histogram of body_mass_g
- What can we say about this distribution?
- Add your thoughts to the Google Doc

Blue Jay Data: Histogram (Body Mass)


```
bj_body_mass_hist <- blue_jays %>%
    ggplot(mapping = aes(x = body_mass_g)) +
    geom_histogram(color = "black", fill = "white") +
    geom_vline(mapping = aes(xintercept = mean(body_mass_g,
na.rm = TRUE)), color = "red", linetype = "dashed", size =
1)
bj_body_mass_hist
```

Blue Jay Data: Histogram (Head Length)

- Create a histogram of head_length_mm
- What can we say about this distribution?
- Add your thoughts to the Google Doc

Blue Jay Data: Histogram (Head Length)


```
bj_head_length_hist <- blue_jays %>%
    ggplot(mapping = aes(x = head_length_mm)) +
    geom_histogram(color = "black", fill = "white") +
    geom_vline(mapping = aes(xintercept = mean(head_length_mm,
na.rm = TRUE)), color = "red", linetype = "dashed", size = 1)
bj_head_length_hist
```

What if We Wanted to Compare the Data?

Scatterplots

- Plot of paired (x, y)
 quantitative data
- Horizontal axis is used for the first variable (x)
- Vertical axis is used for the second variable (y)
- Implemented in ggplot using the geom_point()

Triola & Lossi, (2018)

Scatterplots: Attributes

- Designed to emphasize the spatial distribution of data plotted in two-dimensions:
 - Marks or points designed with preattentive features
 - Designed with the detection of individual objects
 - Distances between objects represent a notion of similarity

Cleveland, W. S., & McGill, R. (1984)

Scatterplots: Tasks

 Abstracted analysis tasks that are performed with scatterplots

	# Task	Description
object-centric	1 Identify object	Identify the referent from the representation
	2 Locate object	Find a particular object in its new spatialization
	3 Verify object	Reconcile attribute of an object with its spatialization (or other encoding)
	4 Object comparison	Do objects have similar attributes? Are these objects similar in some way?
browsing	5 Explore neighborhood	Explore the properties of objects in a neighborhood
	6 Search for known motif	Find a particular known pattern (cluster, correlation)
	7 Explore data	Look for things that look unusual, global trends
aggregate-level	8 Characterize distribution	Do objects cluster? Part of a manifold? Range of values?
	9 Identify anomalies	Find objects that do not match the 'modal' distribution
	10 Identify correlation	Determine level of correlation
	11 Numerosity comparison	Compare the numerosity/density in different regions of the graph
	12 Understand distances	Understanding a given spatialization (e.g. relative distances)

Sarikaya, A., & Gleicher, M. (2018)

Scatterplots Example: Blue Jay Data 1

- Head length on y-axis and body mass on x axis
- We "say" that we plot the variable shown along the yaxis against the variable shown along the x-axis.
- So, what does this tell us?

Blue Jay Data 1: Code


```
blue_jays %>%
   ggplot(mapping = aes(x = body_mass_g, y = head_length_mm)) +
   geom_point(size = 1.5) +
   labs(y = "Head length in millimeters",
        x = "Body mass in grams")
```

Scatterplots Example: Blue Jay Data 1

- Moderate tendency for heavier birds to have longer heads
- How can we also look at the "sex" of each bird?

Scatterplots Example: Blue Jay Data 2

- geom_point() aesthetics:
 - -X
 - y
 - alpha
 - color
 - fill
 - group
 - shape
 - size
 - stroke

Blue Jay Data 2: Interpretation

- Birds' sex is indicated by color
- Overall trend in head length and body mass is at least in part driven by the sex of the birds
- Meaning that at the same body mass, male birds tend to have longer heads than female birds.

Blue Jay Data 2: Code

Scatterplots: Transformations

- Sometimes transformation is necessary
- Relationship between two variables may not be linear
- Sometimes there is no meaningful relationship between the two variables

Wilke, C. (2019)

Scatterplots: Transformations Example

- ggplot has several methods for transforming a plot:
 - coord_trans() transforms the coordinates of the plot
- scale x log10() and scale y log10() perform a base-10 log transformation of each axis
- This graph uses base-10 log transformation

Correlations

- Method for quantifying the strength of bivariate relationships
- Exists when the values of one variable are somehow associated with values of the other variable
- Correlation between two variables is not evidence that one of the variables causes the other

Triola & Lossi. (2018)

Pearson Correlation

- Measure of the strength of the linear relationship between two variables
- If relationship is not linear, then the correlation coefficient does not adequately represent the strength of the relationship between the variables
- Correlation says nothing about how much Y changes when X changes

Triola & Lossi. (2018)

Correlations: Interpreting

Randomly generated sets of points to illustrate different correlations, in both rows, from left to right correlations go from weak to strong

r	Rough meaning
± 0.1–0.3	Modest
± 0.3-0.5	Moderate
± 0.5–0.8	Strong
± 0.8–0.9	Very strong

Wilke, C. (2019) & Heiss, A. (2021)

Correlations in R: cor()

- Compute the Pearson correlation
- Very conservative when it encounters missing data (e.g., NAs)
- use argument allows you to override the default behavior of returning NA

```
cor(x = blue_jays$body_mass_g,
y = blue_jays$head_length_mm,
use ="pairwise.complete.obs",
method = "pearson")
[1] 0.6294447
```

Using the guide from Heiss, this is a strong positive correlation

Correlations in R: cor.test()

- Provides access to the values returned by the correlation
- Returns:
 - p.value: the p-value of the test
 - estimate: the correlation coefficient

```
cor.test(blue_jays$body_mass_g,
blue_jays$head_length_mm)
    Pearson's product-moment correlation
data: blue_jays$body_mass_g and blue_jays$he
ad_length_mm
t = 8.9105, df = 121, p-value = 6.302e-15
alternative hypothesis: true correlation is n
ot equal to 0
95 percent confidence interval:
    0.5091462, 0.7256207
sample estimates: cor
```


Linear Relationships and Regression

Simple Linear Regression

- Scatterplots are a common method for visualizing the relationship between two numeric variables
- Simple linear regression can be visualized on a scatterplot by a straight line
- "Best fit" line cuts through the data in a way that minimizes the distance between the line and the data points
- We will define "best-fitting line"

Simple Linear Regression

- Predict values on one variable from the values on a second variable:
 - Variable we are predicting is Y
 - Variable we are basing our predictions on is X
 - When there is only one predictor variable, the prediction method is called simple regression

Simple Linear Regression

X	Y
1	1
2	2
3	1.3
4	3.75
5	2.25

Regression Line

- Vertical lines from the points to the regression line represent the errors of prediction
 - Red point is very near the regression line; its error of prediction is small
 - Yellow point is much higher than the regression line and therefore its error of prediction is large.

Simple Linear Regression: Example 1


```
blue_jays %>%
   ggplot(mapping = aes(x = body_mass_g,
y = head_length_mm)) +
   geom_point(size = 1.5) +
   geom_smooth()
## `geom_smooth()` using method = 'loes
s' and formula 'y ~ x'
```


Example 1: Interpretation

- Head length versus body mass (in grams), for 123 blue jays
- Each dot corresponds to one bird
- geom_smooth overlays the scatterplot with a smooth curve
- Confidence intervals (CI) shown in grey
- Cl turned off: geom_smooth(se = FALSE)

Wilke, C. (2019); Wickham & Sievert. (2016)

Simple Linear Regression: Modifications

- geom_smooth(method =) for choosing type of model:
 - method = "loess," the default for small n
 - Loess does not work well for large datasets
 - n is greater than 1,000. method =
 "1m" fits a linear model, gives the line of best fit

Wilke, C. (2019); Wickham & Sievert. (2016)

Simple Linear Regression: Comparison

Wilke, C. (2019); Wickham & Sievert. (2016)

Fitting Simple Linear Models: 1m()

- geom_smooth(method = "lm") is useful for drawing linear models on a scatterplot
 - However, it does not return the characteristics of the model
- lm() function takes two arguments:
 - Formula that specifies the model
 - Data argument for the data frame
 - StatQuest has a great <u>overview</u> of performing this in R

```
fit_blue_jays <- lm(data = blue_jays, head_length_mm ~ body_mass_g)
# Saves the output from the lm() function</pre>
```


Im(): Viewing Output

- summary() function includes:
 - Standard error
 - p-value for each coefficient
 - R2, and adjusted R2
 - Residual standard error
- Handout has information on interpreting these values

1m(): Residuals

- Distance from the data to the fitted line
- Should be symmetrically distributed around the line (which is equal to 0)
- Want the min value and max value to be approximately the same distance from 0
- Likewise, you would like the 1Q and 3Q to be equidistant from 0

```
summary(fit_blue_jays)
```

Residuals:

Min 1Q Median 3Q Max -2.6308 -0.9115 0.0271 0.7307 3.6204

lm(): Viewing Output

 The coef() function displays only the values of the coefficients

```
coef(fit_blue_jays)
(Intercept) body_mass_g
40.8621453    0.2072662
```

lm(): Coefficients - Intercept

- Intercept is 40.86215
- Indicates that the head length of Blue Jays was 40.8625 millimeters when the body weight was 0 grams
- Please note that the importance or relevance of the intercept value is dependent on the nature of the biological systems which are being examined

Coefficients:

Estimate Std.

(Intercept) 40.86215 body mass g 0.20727

lm(): Coefficients - Slope

- Slope is 0.20727
- Slope indicates the change in Y (or dependent variable) for every one unit increase in X (or independent variable)
- Slope value (0.20727)
 indicates that the head length
 of Blue Jays increased
 0.20727 millimeters per every
 1 gram increase in body
 weight

Coefficients:

Estimate Std.

(Intercept) 40.86215 body mass g 0.20727

1m(): Coefficients – Regression Equation

- Estimates can be used to write the following regression equation: head_length_mm = (0.20727 x body_mass_g) + 40.86215
- The structure of a regression equation is often times described as:
 y = mx + b. Such that:
 - y = response variable (body mass (grams))
 - m = slope x = independent variable (head length (mm))
 - -b = intercept

1m(): Coefficients – R²

- Multiple R-squared head_length_mm can explain 40% of the variation in body mass g
- Adjusted R-squared is the Rsquared scaled by the number of parameters in the model

Multiple R-squared: 0.3962,

Adjusted R-squared: 0.3912

lm(): Coefficients – p-value

- P = 6.302e-15
- Based on this value and an established alpha level of 0.05, we can conclude that there is a significant effect of body mass (in grams) on the head length (in mm) of Blue Jay birds

F-statistic:

79.4 on 1 and 121 DF,

p-value: 6.302e-15

Data Reporting with Report Package

Report Package

- Works in a two-step fashion:
 - Create a report object with the report() function
 - Report object can be displayed either textually (the default output) or as a table, using as.data.frame()
- Can also access a compact version of the report using <u>summary()</u> on the report object

report() Function

 Nice and easy way to report results of a regression analysis in R is with the report() function from the {report} package:

```
library(report)
report(fit_blue_jays)
We fitted a linear model (estimated using OLS) to predict head_length_mm with
body_mass_g (formula: head_length_mm ~ body_mass_g)
The model explains a statistically significant and substantial proportion of
variance (R2 = 0.40, F(1, 121) = 79.40, p < .001, adj. R2 = 0.39). The model's
intercept, corresponding to body_mass_g = 0, is at 40.86 (95% CI [37.56, 44.16],
t(121)</pre>
```

Other Methods for Visualizing Associations

Correlation Matrix and Bubble Plot

Correlation Matrix

- Used with three or more quantitative variables
- In this case, it is more useful to quantify the amount of association between pairs of variables and visualize these quantities
- Common method is using correlation coefficients

Correlation Matrix

- Correlogram or correlation matrix allows to analyze the relationship between each pair of numeric variables in a dataset
- Gives a quick overview of the whole dataset. It is more used for exploratory purpose than explanatory

Correlation Matrix: GGalley

- Ggally options to build correlograms:
 - pairwise plot matrix
 - scatterplot plot matrix
 - parallel coordinates plot
 - survival plot
- ggpairs() function build a classic correlogram with scatterplot, correlation coefficient and variable distribution

Correlation Matrix: Example

- ggpairs plots each variable against the other
- Scatterplots for quantitative, quantitative pairs
- Top half, is the correlation for each of the quantitative, quantitative pairs

Correlation Matrix: Example

- On the diagonal, we have the density functions for each of the variables
- Boxplots and histograms for the qualitative variable, sex
- All variables are correlated, with significance

Correlation Matrix: Example – ggplot

 It is also possible to inject ggplot2 code into a ggcor statement. For example, you can add color categories

```
ggpairs(blue_jays_matrix,
ggplot2::aes(colour=sex))
```


Correlation Matrix: Example – ggcorr()

- Another option is the ggcorr() function
- Visualize the correlation of each pair of variable as tiles
- Method sets the correlation type

```
blue_jays_matrix %>%
  ggcorr(method = c("everything",
"pearson"))
```


Correlation Matrix: Example – ggcorr()

- Blue jar data only has positive correlations
- This figure is demonstrating what this would look like if we had both positive and negative correlations between the variables

Bubble Graph

Bubble Graph

- Multi-variable graph
- Cross between a scatterplot and a proportional area chart
- Compares and show the <u>relationships</u> between categorized circles
- Uses positioning and <u>proportions</u>
- Can be used to analyze for <u>patterns/correlations</u>

Ribecca, S. (2019)

Bubble Graph: Example

- If we wanted to look at head size and bill size, we can do that too
- Need another aesthetic to which we can map skull size, what could it be?

Bubble Graph: Example

- Already using the x position for body mass
- Position for head length
- Dot color for bird sex
- Birds' skull size by symbol size

Bubble Graph: Interpretation

- Head length and skull size appear to be correlated
- Some birds with unusually long or short bills given their skull size
- Guidance on how to only display certain legends
- Change the position of the legend using this <u>resource</u> and this <u>resource</u>

Bubble Graph: Code


```
blue jays %>%
 ggplot(mapping = aes(x = body_mass_g, y = head_length_mm,
  size = skull_size mm, color = sex)) +
  geom point() +
  scale size(range = c(.1, 5), name= "Skull Size (mm)") +
  facet wrap(vars(sex)) +
  scale color brewer(palette="Set1") +
  labs(y = "Head length (mm)", x = "Body mass (g)") +
  guides(col = FALSE) +
  theme(legend.position="bottom")
```

We Can Help

- Classes on a variety of data-related topics, including:
 - Data management
 - Data visualization
 - Data analysis
 - R and RStudio
- Computers which offers a suite of tools for data analysis, processing, and visualization

Contact Us for Ongoing Support

Doug Joubert

Bioinformatics Support Program 301-827-3829 douglas.joubert@nih.gov

NIH Library Help Desk (301) 496-1080

- Ask a Question: https://www.nihlibrary.nih.gov/get-help/ask-question
- Request a Tutorial: https://www.nihlibrary.nih.gov/get-help/consultations-tutorials
- Sign up for Additional Classes: https://www.nihlibrary.nih.gov/training/calendar

