

III SEMESTER B. TECH (COMPUTER SCIENCE AND ENGINEERING) MID TERM EXAMINATION, OCTOBER 2020

SUBJECT: DIGITAL SYSTEM DESIGN (CSE 2153)

REVISED CREDIT SYSTEM

Time: 90 Minutes for Writing +15 Mins for Uploading

MAX. MARKS: 20

Note: Answer ALL the questions.

1.	Write the Verilog code for half adder. Use this as the submodule in the Hierarchical Verilog code	02
	for implementing full adder.	
2.	Design a 16:1 Multiplexer using one 8:1, two 4:1 and two 2:1 multiplexers. Take the select signals	02
	as ABCD where A is the MSB and D is the LSB. Also take the data inputs as W0, W1,,W15.	
3.	Draw the logic diagram of a 2-digit BCD adder using 4-bit binary adders and other necessary gates.	02
4.	Write the expression for calculating c8 in the carry lookahead adder. Rewrite the expression for c8	03
	by assuming the maximum fan-in constraint of all the gates as 3. What would be the gate-delay	
	generated for the resultant expression? Justify your answer for gate delay.	
5.	Write down the truth table for a 4-to-2 priority encoder having input W[3:0] and with priority levels	03
	in the decreasing order (i.e., W[0]-Highest,, W[3]-Least). Write down the Verilog code for	
	implementing the same.	
6.	Use functional decomposition to find the best implementation of the function	04
	$f = \prod M(1, 2, 3, 7, 8, 12, 13, 14)$	
	Draw the logic diagram for your implementation assuming that the input variables are available in	
	uncomplemented form only.	
7.	Consider the function $f(w_1, w_2, w_3, w_4) = \sum m(0, 1, 3, 6, 8, 9, 14, 15)$. With the help of Shannon's	04
	expression, derive the best implementation using 2:1 multiplexer and other necessary gates.	
	Assume that the inputs are available in both the complemented and uncomplemented form. Draw	
	the circuit diagram.	

CSE 2153 Page **1** of **1**