Actor-Critic Methods

Chen-Yu Wei

Review: Full-Information Policy Learning in MDPs

$$\theta_{k+1} = \underset{\theta}{\operatorname{argmax}} \left(V^{\pi_{\theta}}(\rho) - V^{\pi_{\theta_k}}(\rho) - \frac{1}{\eta} D(\theta, \theta_k) \right)$$

$$\approx \sum_{s,a} d_{\rho}^{\pi_{\theta_k}}(s) \left(\pi_{\theta}(a|s) - \pi_{\theta_k}(a|s)\right) Q^{\pi_{\theta_k}}(s,a) = \mathbb{E}_{(s_i,a_i)} \left[\frac{\pi_{\theta}(a_i|s_i) - \pi_{\theta_k}(a_i|s_i)}{\pi_{\theta_k}(a_i|s_i)} Q^{\pi_{\theta_k}}(s_i,a_i)\right]$$

$$\approx (\theta - \theta_k)^{\mathsf{T}} \sum_{s,a} d_{\rho}^{\pi_{\theta_k}}(s) \left(\nabla_{\theta} \pi_{\theta}(a|s) \Big|_{\theta = \theta_k} \right) Q^{\pi_{\theta_k}}(s,a)$$

$$= \mathbb{E}_{(s_i,a_i)} \left[\frac{\nabla_{\theta} \pi_{\theta}(a_i|s_i)|_{\theta=\theta_k}}{\pi_{\theta_k}(a_i|s_i)} Q^{\pi_{\theta_k}}(s_i,a_i) \right]$$

PG/NPG: Estimate them using the empirical sum of reward in the trajectory (i.e., Monte Carlo estimator)

We can also use other estimators to balance bias and variance

Actor-Critic Methods

Use value function approximation to estimate $Q^{\pi_{\theta_k}}(s_i, a_i)$ or $A^{\pi_{\theta_k}}(s_i, a_i)$

Use $V_{\phi}(s)$ to approximate $V^{\pi_{\theta_k}}(s)$

Use $Q_{\phi}(s, a)$ to approximate $Q^{\pi_{\theta_k}}(s, a)$

Possible estimators for $A^{\pi_{\theta_k}}(s, a)$:

Let $(s_1, a_1, r_1, s_2, a_2, r_2 \dots)$ be a trajectory starting from $s_1 = s, a_1 = a$

$$Q_{\phi}(s_{1}, a_{1}) - \mathbb{E}_{a' \sim \pi_{\theta_{k}}(\cdot|s)}[Q_{\phi}(s_{1}, a')]$$

$$r_{1} + \gamma V_{\phi}(s_{2}) - V_{\phi}(s_{1})$$

$$r_{1} + \gamma Q_{\phi}(s_{2}, a_{2}) - \mathbb{E}_{a' \sim \pi_{\theta_{k}}(\cdot|s)}[Q_{\phi}(s_{1}, a')]$$

$$r_{1} + \gamma r_{2} + \gamma^{2} V_{\phi}(s_{3}) - V_{\phi}(s_{1})$$

$$\vdots$$

$$r_{1} + \gamma r_{2} + \gamma^{2} Q_{\phi}(s_{3}, a_{3}) - \mathbb{E}_{a' \sim \pi_{\theta_{k}}(\cdot|s)}[Q_{\phi}(s_{1}, a')]$$

$$\vdots$$

Pure Policy-Based Methods vs. Actor-Critic Methods

Actor-Critic with Q_{ϕ}

(find
$$Z^*$$
) (off-policy) $Q(S,u) \leftarrow (1-\alpha)Q(S,u) + \alpha \left(r + \max_{\alpha'} Q(S',\alpha') \right)$
(given Z) TD -learning: $Q(S,u) \leftarrow (1-\alpha)Q(S,\alpha) + \alpha \left(r + \sum_{\alpha'} Z(\alpha',\beta')Q(S',\alpha') \right)$

For k = 1, 2, ...

Use π_{θ_k} to collect n trajectories

$$\left(s_1^{(1)},a_1^{(1)},r_1^{(1)},\cdots,s_{\tau_1}^{(1)},a_{\tau_1}^{(1)},r_{\tau_1}^{(1)}\right),\ldots\ldots,\left(s_1^{(n)},a_1^{(n)},r_1^{(n)},\cdots,s_{\tau_n}^{(n)},a_{\tau_n}^{(n)},r_{\tau_n}^{(n)}\right)$$

Define

$$g = \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} \frac{\nabla_{\theta} \pi_{\theta} \left(a_h^{(i)} \middle| s_h^{(i)} \right) \middle|_{\theta = \theta_k}}{\pi_{\theta_k} \left(a_h^{(i)} \middle| s_h^{(i)} \right)} \underbrace{Q_{\phi_k} \left(s_h^{(i)}, a_h^{(i)} \right)}_{\theta = \theta_k} \text{ or } \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} \sum_{a} \nabla_{\theta} \pi_{\theta} \left(a \middle| s_h^{(i)} \middle|_{\theta = \theta_k} Q_{\phi_k} \left(s_h^{(i)}, a \middle|_{\theta = \theta_k} Q_{\phi_k} \right) \right) \right)$$

Perform updates

$$\theta_{k+1} \leftarrow \theta_k + \eta g \qquad \phi_{k+1} \leftarrow \phi_k - \lambda \nabla_{\phi} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} \left(Q_{\phi} \left(s_h^{(i)}, a_h^{(i)} \right) - r_h^{(i)} - \gamma Q_{\phi_k} \left(s_{h+1}^{(i)}, a_{h+1}^{(i)} \right) \right)^2 \bigg|_{\phi = \phi_k}$$

Advantage Actor-Critic (A2C) = PG + V_{ϕ}

For k = 1, 2, ...

Use π_{θ_k} to collect n trajectories

$$\left(s_1^{(1)},a_1^{(1)},r_1^{(1)},\cdots,s_{\tau_1}^{(1)},a_{\tau_1}^{(1)},r_{\tau_1}^{(1)}\right),\ldots\ldots,\left(s_1^{(n)},a_1^{(n)},r_1^{(n)},\cdots,s_{\tau_n}^{(n)},a_{\tau_n}^{(n)},r_{\tau_n}^{(n)}\right)$$

Define

or any other advantage estimator in the previous slide

Perform updates
$$\left. \begin{array}{ll} \left. \bigvee_{\pmb{\phi}} \approx \bigvee^{\pmb{\lambda_{bc}}} \cdot \\ \theta_{k+1} \leftarrow \theta_k + \eta g \end{array} \right. & \left. \phi_{k+1} \leftarrow \phi_k - \lambda \nabla_{\pmb{\phi}} \frac{1}{n} \sum_{i=1}^n \sum_{h=1}^{\tau_n} \left(V_{\pmb{\phi}} \left(s_h^{(i)} \right) - r_h^{(i)} - \gamma V_{\pmb{\phi}_k} \left(s_{h+1}^{(i)} \right) \right)^2 \right|_{\pmb{\phi} = \phi_h}$$

Mnih et al., Asynchronous Methods for Deep Reinforcement Learning. 2016.

Proximal Policy Optimization (PPO) = NPG + V_{ϕ}

For k = 1, 2, ...

Use π_{θ_k} to collect n trajectories

$$\left(s_1^{(1)},a_1^{(1)},r_1^{(1)},\cdots,s_{\tau_1}^{(1)},a_{\tau_1}^{(1)},r_{\tau_1}^{(1)}\right),\ldots\ldots,\left(s_1^{(n)},a_1^{(n)},r_1^{(n)},\cdots,s_{\tau_n}^{(n)},a_{\tau_n}^{(n)},r_{\tau_n}^{(n)}\right)$$

Perform updates

or any other advantage estimator in the previous slide

or any other advantage estimator in the previous
$$\theta_{k+1} \leftarrow \underset{\theta}{\operatorname{argmax}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} \frac{\pi_{\theta} \left(a_h^{(i)} \middle| s_h^{(i)} \right)}{\pi_{\theta_k} \left(a_h^{(i)} \middle| s_h^{(i)} \right)} \left(r_h^{(i)} + \gamma V_{\phi_k} \left(s_{h+1}^{(i)} \right) - V_{\phi_k} \left(s_h^{(i)} \right) \right) - \frac{1}{\eta} \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} \operatorname{KL} \left(\pi_{\theta} \left(\cdot \middle| s_h^{(i)} \right), \pi_{\theta_k} \left(\cdot \middle| s_h^{(i)} \right) \right) \right\}$$

$$\phi_{k+1} \leftarrow \phi_k - \lambda \nabla_{\phi} \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} \left(V_{\phi} \left(s_h^{(i)} \right) - r_h^{(i)} - \gamma V_{\phi_k} \left(s_{h+1}^{(i)} \right) \right)^2 \bigg|_{\phi = \phi_k}$$

Schulman et al., Proximal Policy Optimization Algorithms. 2017.

Additional Technique 1: Clipped Objective (for PPO)

$$\rho := \frac{\pi_{\theta} \left(a_{h}^{(i)} \middle| s_{h}^{(i)} \right)}{\pi_{\theta_{k}} \left(a_{h}^{(i)} \middle| s_{h}^{(i)} \right)} \qquad A := \left(r_{h}^{(i)} + \gamma V_{\phi_{k}} \left(s_{h+1}^{(i)} \right) - V_{\phi_{k}} \left(s_{h}^{(i)} \right) \right) \qquad \text{oliphis in } \left(\rho \right) = \min \left(\max \left(\rho, \left(- \xi \right) \right) \right)$$

Instead of using ρA as the objective, use $\min\{\rho A, \operatorname{clip}_{[1-\epsilon,1+\epsilon]}(\rho)A\}$

Schulman et al., Proximal Policy Optimization Algorithms. 2017.

If
$$\rho \in (1-\xi, 1+\xi) \Rightarrow \rho A$$

If $\rho \in (1-\xi, 1+\xi) \Rightarrow \rho A$

If $\rho \in (1-\xi, 1+\xi) \Rightarrow \rho A$

(Stronge case)

If $\rho \geqslant 1+\xi \Rightarrow \rho A$

algorithm	avg. normalized score
No clipping or penalty	-0.39
Clipping, $\epsilon = 0.1$	0.76
Clipping, $\epsilon = 0.2$	0.82
Clipping, $\epsilon = 0.3$	0.70
Adaptive KL $d_{\text{targ}} = 0.003$	0.68
Adaptive KL $d_{\text{targ}} = 0.01$	0.74
Adaptive KL $d_{\text{targ}} = 0.03$	0.71
Fixed KL, $\beta = 0.3$	0.62
Fixed KL, $\beta = 1$.	0.71
Fixed KL, $\beta = 3$.	0.72
Fixed KL, $\beta = 10$.	0.69

Additional Technique 2: Entropy Bonus

In the objective of policy update, add a bonus term

$$H(\pi_{\theta}(\cdot | s)) = \sum_{a} \pi_{\theta}(a|s) \ln \frac{1}{\pi_{\theta}(a|s)}$$

For PPO:

$$\operatorname{argmax} \left\{ \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} \frac{\pi_{\theta} \left(a_h^{(i)} \middle| s_h^{(i)} \right)}{\pi_{\theta_k} \left(a_h^{(i)} \middle| s_h^{(i)} \right)} A_h^{(i)} - \frac{1}{\eta} \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} \operatorname{KL} \left(\pi_{\theta} \left(\cdot \middle| s_h^{(i)} \right), \pi_{\theta_k} \left(\cdot \middle| s_h^{(i)} \right) \right) \right. \\ \left. + c \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} H \left(\pi_{\theta} \left(\cdot \middle| s_h^{(i)} \right) \right) \right\}$$

$$- \operatorname{KL} \left(\pi_{\theta} \left(\cdot \middle| s_h^{(i)} \right), \pi_{\operatorname{unif}} \left(\cdot \middle| s_h^{(i)} \right) \right)$$

For A2C:

$$g = \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} \nabla_{\theta} \log \pi_{\theta} \left(a_h^{(i)} \middle| s_h^{(i)} \right) \Big|_{\theta = \theta_k} A_h^{(i)} + c \nabla_{\theta} \frac{1}{n} \sum_{i=1}^{n} \sum_{h=1}^{\tau_n} H \left(\pi_{\theta} \left(\cdot \middle| s_h^{(i)} \right) \right)$$

Additional Technique 3: Parallel Sample Collection

A2C

synchronized parallel actor-critic

A3C.

asynchronous parallel actor-critic

Levine CS285 Lecture 6

Actor-Critic Summary

$$PG \longrightarrow PPO$$

$$S \rightarrow 0 \rightarrow 2.1.(5)$$

$$S \rightarrow 0 \rightarrow 0.0.0$$

Off-Policy Actor-Critic

Leveraging off-policy evaluation → allow reusing data

Review: Full-Information Policy Learning in MDPs

$$\theta_{k+1} = \underset{\theta}{\operatorname{argmax}} \left(V^{\pi_{\theta}}(\rho) - V^{\pi_{\theta_k}}(\rho) - \frac{1}{\eta} D(\theta, \theta_k) \right)$$

$$\approx \sum_{s,a} d_{\rho}^{\pi_{\theta_k}}(s) \left(\pi_{\theta}(a|s) - \pi_{\theta_k}(a|s) \right) Q^{\pi_{\theta_k}}(s, a)$$

$$\approx (\theta - \theta_k)^{\mathsf{T}} \sum_{s,a} d_{\rho}^{\pi_{\theta_k}}(s) \left(\nabla_{\theta} \pi_{\theta}(a|s) \Big|_{\theta = \theta_k} \right) Q^{\pi_{\theta_k}}(s, a)$$

Use any off-policy policy evaluation methods to find ϕ_k such that $Q_{\phi_k}(s, a) \approx Q^{\pi_{\theta_k}}(s, a)$

Suppose that our (s_i, a_i) samples are obtained from $\hat{\pi}$

Off-Policy Actor-Critic

$$\theta_{k+1} = \operatorname{argmax} \left(V^{\pi_{\theta}}(\rho) - V^{\pi_{\theta}k}(\rho) - \frac{1}{\eta} D(\theta, \theta_{k}) \right)$$

$$\approx \sum_{s,a} d_{\rho}^{\pi_{\theta_{k}}}(s) \left(\pi_{\theta}(a|s) - \pi_{\theta_{k}}(a|s) \right) Q_{\phi_{k}}(s,a) = \mathbb{E}_{s \sim d_{\rho}^{\pi}} \left[\frac{d_{\rho}^{\pi_{\theta_{k}}}(s)}{d_{\rho}^{\pi}(s)} \sum_{a} \left(\pi_{\theta}(a|s) - \pi_{\theta_{k}}(a|s) \right) Q_{\phi_{k}}(s,a) \right]$$

$$\approx (\theta - \theta_{k})^{\mathsf{T}} \sum_{s,a} d_{\rho}^{\pi_{\theta_{k}}}(s) \left(\nabla_{\theta} \pi_{\theta}(a|s) \Big|_{\theta = \theta_{k}} \right) Q_{\phi_{k}}(s,a) = (\theta - \theta_{k})^{\mathsf{T}} \mathbb{E}_{s \sim d_{\rho}^{\pi}} \left[\frac{d_{\rho}^{\pi_{\theta_{k}}}(s)}{d_{\rho}^{\pi}(s)} \sum_{a} \nabla_{\theta} \pi_{\theta}(a|s) \Big|_{\theta = \theta_{k}} Q_{\phi_{k}}(s,a) \right]$$

Use any off-policy policy evaluation methods to find ϕ_k such that $Q_{\phi_k}(s, a) \approx Q^{\pi_{\theta_k}}(s, a)$

Suppose that our (s_i, a_i) samples are obtained from $\hat{\pi}$

Actor-Critic + Replay Buffer

For k = 1, 2, ...

Collect samples using π_{θ_k} , and place them in the replay buffer

Sample a batch $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n$ from replay buffer

Define

$$g = \frac{1}{n} \sum_{i=1}^{n} \sum_{a} \nabla_{\theta} \pi_{\theta}(a|s_{i}) \Big|_{\theta = \theta_{k}} Q_{\phi_{k}}(s_{i}, a)$$
 Note: not using a_{i} here

Perform updates

$$\theta_{k+1} \leftarrow \theta_k + \eta g$$

Off-policy TD → unstable (more on this later)

$$\phi_{k+1} \leftarrow \phi_k - \lambda \nabla_{\phi} \frac{1}{n} \sum_{i=1}^n \left(Q_{\phi}(s_i, a_i) - r_i - \gamma \mathbb{E}_{a' \sim \pi_{\theta_k}(\cdot | s_i')} [Q_{\phi_k}(s_i', a')] \right)^2 \bigg|_{\phi = \phi_k}$$

Dealing with Continuous Action Sets

Review: Linear Bandits and One-Point Gradient Estimator

Fersibleset A = IRd

For t=1, ..., T;

Corner choose at Ed

Environat reveals $f_{t}(a_{t})$, where $f_{t}: A \rightarrow R$

Ideal update

 $a_{t+1} \leftarrow a_t + 17 f_t(a_t)$

 a_{t-V} a_{t} a_{t+V} $\nabla f_{t}(a_{t}) \approx \frac{f_{t}(a_{t+V}) - f_{t}(a_{t-V})}{z_{U}}$ $=\frac{f_{t}(\widehat{a_{t}})5}{U}=\frac{f_{t}(\widehat{a_{t}})(\widehat{a_{t}}-a_{t})}{U}$ $=\frac{f_{t}(\widehat{a_{t}})5}{U}=\frac{f_{t}(\widehat{a_{t}})(\widehat{a_{t}}-a_{t})}{U}$ $=\frac{f_{t}(\widehat{a_{t}})5}{U}=\frac{f_{t}(\widehat{a_{t}})(\widehat{a_{t}}-a_{t})}{U}$ $=\frac{f_{t}(\widehat{a_{t}})5}{U}=\frac{f_{t}(\widehat{a_{t}})(\widehat{a_{t}}-a_{t})}{U}$ $=\frac{f_{t}(\widehat{a_{t}})5}{U}=\frac{f_{t}(\widehat{a_{t}})(\widehat{a_{t}}-a_{t})}{U}$ $=\frac{f_{t}(\widehat{a_{t}})5}{U}=\frac{f_{t}(\widehat{a_{t}})(\widehat{a_{t}}-a_{t})}{U}$ $=\frac{f_{t}(\widehat{a_{t}})5}{U}=\frac{f_{t}(\widehat{a_{t}})(\widehat{a_{t}}-a_{t})}{U}$ $=\frac{f_{t}(\widehat{a_{t}})(\widehat{a_{t}}-a_{t})}{U}$

Policy Network for Continuous Action Sets

Policy Network for Continuous Action Sets

A2C / PPO with Continuous Action Sets (a) da = 1

$$\pi_{\theta}(a) = \operatorname{cmst.exp}\left(\frac{-(a-\mu_{\theta})^{2}}{2\sigma^{2}}\right)$$

$$g = \frac{1}{n} \sum_{i=1}^{n} \nabla_{\theta} \log \pi_{\theta}(a_{i}|s_{i}) \Big|_{\theta = \theta_{k}} A_{i}$$

leg
$$\pi_{o}(a) = const - (a-\mu_{o})^{2}$$

$$\theta_{k+1} \leftarrow \underset{\theta}{\operatorname{argmax}} \left\{ \frac{1}{n} \sum_{i=1}^{n} \frac{\pi_{\theta}(a_{i}|s_{i})}{\pi_{\theta_{k}}(a_{i}|s_{i})} A_{i} - \frac{1}{\eta} \frac{1}{n} \sum_{i=1}^{n} \operatorname{KL}\left(\pi_{\theta}(\cdot | s_{i}), \pi_{\theta_{k}}(\cdot | s_{i})\right) \right\}$$

Recall: Actor-Critic with Q_{ϕ} Critic

For
$$k = 1, 2, ...$$

Use π_{θ_k} to collect samples $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n$

Define
$$g = \frac{1}{n} \sum_{i=1}^{n} \sum_{a} \nabla_{\theta} \pi_{\theta}(a|s_i) \Big|_{\theta = \theta_k} Q_{\phi_k}(s_i, a)$$

Perform updates

$$\theta_{k+1} \leftarrow \theta_k + \eta g \qquad \phi_{k+1} \leftarrow \phi_k - \lambda \nabla_{\phi} \sum_{i=1}^{n} \left(Q_{\phi}(s_i, a_i) - r_i - \gamma \mathbb{E}_{a' \sim \pi_{\theta_k}(\cdot | s_i')} \left[Q_{\phi_k}(s_i', a') \right] \right)^2 \bigg|_{\phi = \phi_k}$$

Deterministic Policy Gradient Theorem

$$\nabla^{\pi_{\theta+\delta\theta}}(\rho) - \nabla^{\pi_{\theta}}(\rho) = \sum_{S} d_{\rho}^{\pi_{\theta+\delta\theta}}(s) \sum_{A} \left(\pi_{\theta+\delta\theta}(a|s) - \pi_{\theta}(a|s) \right) Q^{\pi_{\theta}}(s, a)
= \sum_{S} d_{\rho}^{\pi_{\theta+\delta\theta}}(s) \left(Q^{\pi_{\theta}}(s, M_{\theta+\delta\theta}(s)) - Q^{\pi_{\theta}}(s, M_{\theta}(s)) \right)
\Rightarrow \nabla_{\theta} \nabla^{\pi_{\theta}}(\rho) = \sum_{S} d_{\rho}^{\pi_{\theta}}(s) \nabla_{\theta} \left(Q^{\pi_{\theta}}(s, M_{\theta}(s)) \right)
= \sum_{S} d_{\rho}^{\pi_{\theta}}(s) \left(Q^{\pi_{\theta}}(s, M_{\theta}(s)) \right)
= \sum_{S} d_{\rho}^{\pi_{\theta}}(s) \nabla_{\theta} \left(Q^{\pi_{\theta}}(s, M_{\theta}(s)) \right)$$

Deterministic Policy Gradient

A.C.

For
$$k=1, 2, ...$$

Use μ_{θ_k} to collect samples $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n$

$$Q \leftarrow ((a)) Q + \alpha (r + b) \max_{\alpha'} Q(s', \alpha)$$

Define $g = \frac{1}{n} \sum_{i=1}^n \nabla_{\theta} Q_{\phi_k} (s_i, \mu_{\theta_k}(s_i)) \Big|_{\theta = \theta_k}$

Perform updates

$$\theta_{k+1} \leftarrow \theta_k + \eta g \qquad \phi_{k+1} \leftarrow \phi_k - \lambda \nabla_{\phi} \sum_{i=1}^n \left(Q_{\phi}(s_i, a_i) - r_i - \gamma Q_{\phi_k}(s'_i, \mu_{\theta_k}(s_i'))\right)^2 \Big|_{\phi = \phi_k}$$

$$\mu_{\theta_k}(s) \approx \underset{\alpha}{\operatorname{argmox}} Q_{\theta_k}(s, u)$$

Two Viewpoints for the Deterministic PG Algorithm

Deep Deterministic Policy Gradient (DDPG)

For k = 1, 2, ...

Use $\mu_{\theta_k}(s) + \mathcal{N}(0, \sigma^2)$ to collect samples and place them in replay buffer

Sample a batch $\{(s_i, a_i, r_i, s_i')\}_{i=1}^n$ from the replay buffer

$$\theta \leftarrow \theta + \eta \sum_{i=1}^{n} \nabla_{\theta} Q_{\phi}(s_{i}, \mu_{\theta}(s_{i}))$$

$$\phi \leftarrow \phi - \lambda \nabla_{\phi} \sum_{i=1}^{n} \left(Q_{\phi}(s_{i}, a_{i}) - r_{i} - \gamma Q_{\phi_{\text{tar}}}(s'_{i}, \mu_{\theta_{\text{tar}}}(s'_{i})) \right)^{2}$$

$$\theta_{\text{tar}} \leftarrow \tau \theta + (1 - \tau) \theta_{\text{tar}}$$

$$\phi_{\text{tar}} \leftarrow \tau \phi + (1 - \tau) \phi_{\text{tar}}$$

Elements: replay buffer, target network, action noise

Lillicrap et al., Continuous control with deep reinforcement learning. 2015.

Further Stabilizing DDPG (1/3)

Double Q-learning

Double Q-learning: When training ϕ_1 , instead of using $Q_{\phi_{tar_1}}$ to evaluate the regression target, use Q_{tar_2}

TD3: $\min \{Q_{\phi_{\text{tar1}}}, Q_{\phi_{\text{tar2}}}\}$

Double Q-learning: Use independent samples to train ϕ_1 and ϕ_2

TD3: Use the same set of samples

(the independence between ϕ_1 and ϕ_2 only comes from random initialization)

Further Stabilizing DDPG (2/3)

Target policy smoothing

DDPG: use $Q_{\phi_{\text{tar}}}(s', \mu_{\theta_{\text{tar}}}(s'))$ as the regression target

TD3: sample $a' = \mu_{\theta_{\text{tar}}}(s') + \mathcal{N}(0, \sigma^2)$ use $Q_{\phi_{\text{tar}}}(s', a')$ as the regression target

Further Stabilizing DDPG (3/3)

 Delayed policy updates: running multiple steps of value updates before running one step of policy update

Twin Delayed DDPG (TD3)

```
For k = 1, 2, ...
           Use \mu_{\theta}(s) + \mathcal{N}(0, \sigma^2) to collect samples and place them in replay buffer
           Sample a batch \{(s_i, a_i, r_i, s_i')\}_{i=1}^n from the replay buffer
           For each sample i, draw a'_i \sim \mu_{\theta_{tar}}(s_i) + \mathcal{N}(0, \sigma^2 I)
          \phi_j \leftarrow \phi_j - \lambda \nabla_{\phi_j} \sum_{i=1}^n \left( Q_{\phi_j}(s_i, a_i) - r_i - \gamma \min_{\ell=1,2} Q_{\phi_{\text{tar}\ell}}(s_i', a_i') \right)^2 \quad \forall j = 1,2
           If k \mod M = 0:
                           \theta \leftarrow \theta + \eta \sum_{i=1}^{N} \nabla_{\theta} Q_{\phi}(s_i, \mu_{\theta}(s_i))
                            \theta_{\text{tar}} \leftarrow \tau \theta + (1 - \tau)\theta_{\text{tar}}
                            \phi_{\text{tar}i} \leftarrow \tau \phi_i + (1 - \tau) \phi_{\text{tar}i} \quad \forall j = 1,2
```

Fujimoto et al., Addressing Function Approximation Error in Actor-Critic Methods. 2018.

Soft Actor-Critic (SAC)

- TD3 / DDPG: modeling a deterministic policy + additional noise for exploration
- SAC: modeling a randomized policy (by adding entropy as an exploration bonus)
- TD3 / DDPG vs. SAC is similar to ϵ -greedy vs. Boltzmann exploration

Entropy Bonus

TD3 vs. SAC

Policy update

TD3: Do not view $-\alpha \log \pi_{\theta} (a|s)$ as part of the reward Simply perform $\theta \leftarrow \theta + \eta \nabla_{\theta} Q_{\phi}(s, \mu_{\theta}(s))$

SAC: View $-\alpha \log \pi_{\theta}$ (a|s) as part of the reward Perform the following:

Let $a_{\theta}(s) = \mu_{\theta}(s) + \epsilon \sigma_{\theta}(s)$ where $\epsilon \sim \mathcal{N}(0,1)$ Perform $\theta \leftarrow \theta + \eta \nabla_{\theta} (Q_{\phi}(s, a_{\theta}(s)) - \alpha \log \pi_{\theta}(a_{\theta}(s)|s))$

"reparameterization trick"

TD3 vs. SAC

Value update

TD3: Sample $a' \sim \mu_{\theta}(s') + \mathcal{N}(0, \sigma^2)$ Use $Q_{\phi_{\text{tar}}}(s', a')$ as the regression target

SAC: Sample $a' \sim \pi_{\theta}(\cdot | s') = \mu_{\theta}(s') + \mathcal{N}(0, \sigma_{\theta}^{2}(s'))$ Use $Q_{\phi_{\text{tar}}}(s', a') - \alpha \log \pi_{\theta}(a' | s')$ as the regression target

Soft Actor-Critic (SAC)

```
For k = 1, 2, ...
           Use \mu_{\theta}(s) + \mathcal{N}(0, \sigma^2) to collect samples and place them in replay buffer
           Sample a batch \{(s_i, a_i, r_i, s_i')\}_{i=1}^n from the replay buffer
           For each sample i, draw a_i' \sim \mu_{\theta}(s_i') + \mathcal{N}(0, \sigma_{\theta}^2(s_i'))
          \phi_{j} \leftarrow \phi_{j} - \lambda \nabla_{\phi_{j}} \sum_{i=1}^{n} \left( Q_{\phi_{j}}(s_{i}, a_{i}) - r_{i} - \gamma \min_{\ell=1,2} Q_{\phi_{tar\ell}}(s'_{i}, a'_{i}) + \alpha \log \pi_{\theta}(a'_{i}|s_{i}') \right)^{2} \quad \forall j = 1,2
            Let a_{\theta}(s_i) = \mu_{\theta}(s_i) + \epsilon \sigma_{\theta}(s_i) where \epsilon \sim \mathcal{N}(0, I)
           Perform \theta \leftarrow \theta + \eta \sum_{i=1}^{n} \nabla_{\theta} (Q_{\phi}(s, a_{\theta}(s_i)) - \alpha \log \pi_{\theta}(a_{\theta}(s_i)|s_i))
            \phi_{\text{tar}j} \leftarrow \tau \phi_j + (1 - \tau) \phi_{\text{tar}i} \quad \forall j = 1,2
```

Haarnoja et al., Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning with a Stochastic Actor. 2018.