Universidade de Aveiro

Departamento de Matemática

Cálculo II - C 2023/2024

Soluções do Exame de Recurso (Versão 1)

- 1. (a) é uma série divergente.
 - (b) convergente em x=2.

(c)
$$\sum_{n=0}^{+\infty} (-1)^n \frac{2^{2n+1}}{2n+1} x^{2n+1}, \quad -\frac{1}{2} < x < \frac{1}{2}$$

- (d) $\lim_{(x,y)\to(0,0)} f(x,y) = 0$
- (e) $\pi\sqrt{2} + \frac{\pi^2\sqrt{2}}{2}$
- (f) y z = -1
- 2. (a) A série dada é divergente (Sugestão: usar o Critério do Limite).
 - (b) A série dada é absolutamente convergente (Sugestão: usar o Critério doa Raiz).

3.
$$3 + 2(x+1) + \sum_{n=2}^{+\infty} \frac{3}{n!} (x+1)^n$$

- 4. —
- 5. (a) $I_c =]-1-\sqrt{2}, -1+\sqrt{2}[$
 - (b) —

6. (a)
$$\sum_{n=1}^{+\infty} (-1)^{n+1} \frac{2\pi}{n} \operatorname{sen}(nx)$$

- (b) $S(3\pi) = 0$ (pelo Teorema de Dirichlet).
- 7. (a) f não tem pontos críticos no interior de \mathcal{D} .
 - (b) Como f é contínua e \mathcal{D} é compacto, o Teorema de Weierstrass garante que f tem máximo e mínimo globais em \mathcal{D} .

Como não há pontos críticos no interior de \mathcal{D} e todos os pontos do interior de \mathcal{D} admitem derivadas parciais, os extremantes estão na fronteira do conjunto \mathcal{D} . Usando o Método dos Multiplicadores de Langrange, conclui-se que há 4 candidatos a extremantes: $P_1 = (1, \sqrt{3})$, $P_2 = (1, -\sqrt{3})$, $P_3 = (-2, 0)$ e $P_4 = (2, 0)$. Uma vez que $f(P_1) = f(P_2) = \frac{5}{2}$, $f(P_3) = -2$ e $f(P_4) = 2$, concluimos que o máximo global é $\frac{5}{2}$ e o mínimo global é -2.