Algoritmi e Strutture Dati

Capitolo 7 - Tabelle hash

Alberto Montresor Università di Trento

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/ or send a letter to Creative Commons, 543 Howard Street, 5th Floor, San Francisco, California, 94105, USA.

Introduzione

Dizionario (reloaded):

- Struttura dati per memorizzare insiemi dinamici di coppie (chiave, valore)
- * Il valore è un "dato satellite"
- Dati indicizzati in base alla chiave
- Operazioni: insert(), remove() e lookup()

+ Applicazioni:

- Le tabelle dei simboli di un compilatore
- La gestione della memoria nei sistemi operativi

Introduzione

• Possibili implementazioni e relativi costi

	Array non ordinato	Array ordinato	Lista	Alberi (abr, rb,)	Performance ideale
insert()	0(1)	0 (n)	0(1)	O(log n)	0(1)
looup()	0(n)	O(log n)	0 (n)	O(log n)	0(1)
remove()	0(n)	0 (n)	0 (n)	0(log n)	0(1)

Notazione

- + U Universo di tutte le possibili chiavi
- \star K Insieme delle chiavi effettivamente memorizzate
- Possibili implementazioni
 - |U| corrisponde al range [0..m-1], $|K| \sim |U| \rightarrow$
 - tabelle ad indirizzamento diretto
 - * U è un insieme generico, $|K| << |U| \rightarrow$
 - tabelle hash

Tabelle a indirizzamento diretto

* Implementazione:

- Basata su array ordinari
- * L'elemento con chiave k è memorizzato nel k-esimo "slot" del vettore
- Se |K| ~ |U|:
 - Non sprechiamo (troppo) spazio
 - * Operazioni in tempo O(1) nel caso peggiore
- * Se $|K| \ll |U|$: soluzione non praticabile
 - * Esempio: studenti ASD con chiave "n. matricola"

valore

Tabelle hash

- + Tabelle hash:
 - Un vettore A[0..m-1]
 - **+** Una funzione hash $H: U \rightarrow \{0,...,m-1\}$

- Diciamo che H(k) è il valore hash della chiave k
- + Chiave k viene "mappata" nello slot A[H(k)]
- * Quando due o più chiavi nel dizionario hanno lo stesso valore hash, diciamo che è avvenuta una *collisione*
- * Idealmente: vogliamo funzioni hash senza collisioni

Problema delle collisioni

Utilizzo di funzioni hash perfette

* Una funzione hash *H* si dice *perfetta* se è iniettiva, ovvero:

$$\forall u, v \in U : u \neq v \Rightarrow H(u) \neq H(v)$$

• Si noti che questo richiede che $m \ge |U|$

+ Esempio:

- Studenti ASD solo negli ultimi tre anni
- Distribuiti fra 234.717 e 235.716
- + H(k) = k 234.717, m = 1000
- * Problema: spazio delle chiavi spesso grande, sparso, non conosciuto
 - * E' spesso impraticabile ottenere una funzione hash perfetta

* Se le collisioni sono inevitabili

- almeno cerchiamo di minimizzare il loro numero
- * vogliamo funzioni che distribuiscano *uniformemente* le chiavi negli indici [0...*m*-1] della tabella hash

+ Uniformità semplice:

- * sia P(k) la probabilità che una chiave k sia inserita nella tabella
- * sia $Q(i) = \sum_{k:H(k)=i} P(k)$ la probabilità che una chiave qualsiasi, finisca nella cella i.
- * Una funzione H gode della proprietà di uniformità semplice se

$$\forall i \in \{0, \dots, m-1\} : Q(i) = 1/m.$$

* Per poter ottenere una funzione hash con uniformità semplice, la distribuzione delle probabilità *P* deve essere nota

+ Esempio:

* *U* numeri reali in [0,1] e ogni chiave ha la stessa probabilità di essere scelta, allora

$$H(k) = \lfloor km \rfloor$$

soddisfa la proprietà di uniformità semplice

- Nella realtà
 - * La distribuzione esatta può non essere (completamente) nota
 - * Si utilizzano allora tecniche "euristiche"

+ Assunzioni:

- * Tutte le chiavi sono equiprobabili: P(k) = 1 / |U|
 - * Semplificazione necessaria per proporre un meccanismo generale
- Le chiavi sono valori numerici non negativi
 - * E' possibile trasformare una chiave complessa in un numero
 - + ord(c): valore ordinale del carattere c
 - * bin(k): rappresentazione binaria della chiave k, concatenando i valori ordinali dei caratteri che lo compongono
 - \bullet *int*(k): valore numerico associato ad una chiave k
 - + Esempio:

 - + int("DOG") → $68 \cdot 256^2 + 79 \cdot 256 + 71$ → 4.476.743

Nei prossimi esempi

- + ord(`a') = 1, ord(`b')=2, ..., ord(`z')=26, $ord(`\underline{b}')=32$
 - + <u>b</u> rappresenta lo spazio
- * Sono sufficienti 6 bit per rappresentare questi caratteri
- + Si considerino le seguente due stringhe: "weber<u>b</u>" e "webern"
- + Rappresentazione binaria
 - + bin("weber<u>b</u>") = 010111 000101 000010 000101 010010 100000
 - * bin("webern") = 010111 000101 000010 000101 010010 001110
- Rappresentazione intera
 - * $int("weberb") = 23.64^5 + 5.64^4 + 2.64^3 + 5.64^2 + 18.64^1 + 32.64^0 = 24.780.493.966$
 - + $int("webern") = 23.64^5 + 5.64^4 + 2.64^3 + 5.64^2 + 18.64^1 + 14.64^0 = 24.780.493.984$

Funzioni hash - Estrazione

- + Assunzioni
 - $+ m=2^p$
- Come calcolare H(k)
 - + H(k) = int(b), dove b è un sottoinsieme di p bit presi da bin(k)
- + Esempio:
 - * $m = 2^8 = 256$, bit presi dalla posizione 15 alla posizione 22
 - + bin("weberb") = 010111 000101 00010 000101 010010 100000
 - + bin("webern") = 010111 000101 00<u>0010 0001</u>01 010010 001110
 - + da cui si ottiene:
 - + H("weberb") = bin(00100001) = 33
 - + H("webern") = bin(00100001) = 33

Funzioni hash: XOR

- + Assunzioni
 - + m=2p
- Come calcolare H(k)
 - * H(k) = int(b), dove b è dato dalla somma modulo 2, effettuata bit a bit, di diversi sottoinsiemi di p bit di bin(k)
- + Esempio:
 - * $m = 2^8 = 256$, 5 gruppi di 8 bit, 40 bit ottenuti con 4 zeri di "padding"

 - + H(``webern'') = $int(01011100 \oplus 01010000 \oplus 10000101 \oplus 01001000 \oplus 1110\underline{0000})$ = int(00100001) = 33

Funzioni hash: metodo della divisione

- + Assunzioni:
 - * *m* dispari, meglio se primo
- + Procedimento di calcolo
 - $H(k) = k \mod m$
- + Esempio:
 - + m = 383
 - + $H(\text{"weberb"}) = 24.780.493.966 \mod 383 = ?$
 - + H("webern") = 24.780.493.984 mod 383 = 242
- * Nota: il valore *m* deve essere scelto opportunamente

Non vanno bene:

- * $m=2^p$: solo i p bit più significativi vengono considerati
- $m=2^p-1$: permutazione di stringhe in base 2^p hanno lo stesso valore hash
 - + Domanda: Dimostrazione

Vanno bene:

* Numeri primi, distanti da potenze di 2 (e di 10)

Funzioni hash: Moltiplicazione

+ Assunzioni

- * m numero qualsiasi (potenze 2 consigliate)
- + C una costante reale, 0 < C < 1

+ Procedimento di calcolo

- i = int(bin(k))
- $\star H(k) = |m(iC |iC|)|$

+ Esempio

- $C = (\sqrt{5} 1)/2 \text{ e } m = 256.$
- + $H(\text{Webern}) = |m(iC |iC|)| = |256 \cdot 0.9996833801...| = 255.$

- * Come implementare il metodo della moltiplicazione:
 - Si scelga un valore $m=2^p$
 - * Sia w la dimensione in bit della parola di memoria: $k, m \le 2^w$
 - Sia $s = \lfloor C \cdot 2^w \rfloor$
 - * $k \cdot s$ può essere scritto come $r_1 \cdot 2^w + r_0$
 - * r₁ contiene la parte intera di *kA*
 - * r₀ contiene la parte frazionaria di *kA*
 - * Ritorniamo i p bit più significativi di r₀

w bit

k

 $S = \lfloor C \cdot 2^w \rfloor$

 r_1 r_0 estrai p bits H(k)

Funzioni hash - continua

- Non è poi così semplice...
 - * Il metodo della moltiplicazione suggerito da Knuth non è poi così buono....
- Test moderni per valutare
 - * Avalanche effect:
 - * Se si cambia un bit nella chiave, deve cambiare almeno la metà dei bit del valore hash
 - Test statistici (Chi-square)
 - Funzioni crittografiche (SHA-1)

Problema delle collisioni

- Abbiamo ridotto, ma non eliminato, il numero di collisioni
- Come gestire le collisioni residue?
 - Dobbiamo trovare collocazioni alternative per le chiavi
 - * Se una chiave non si trova nella posizione attesa, bisogna andare a cercare nelle posizioni alternative
 - + Le operazioni possono costare $\Theta(n)$ nel caso peggiore...
 - + ...ma hanno costo $\Theta(1)$ nel caso medio
- Due delle possibili tecniche:
 - * *Liste di trabocco* o memorizzazione esterna
 - * *Indirizzamento aperto* o memorizzazione interna

Tecniche di risoluzione delle collisioni

Liste di trabocco (chaining)

- * Gli elementi con lo stesso valore hash *h* vengono memorizzati in una lista
- * Si memorizza un puntatore alla testa della lista nello slot *A[h]* della tabella hash

Operazioni:

- * Insert: inserimento in testa
- + Lookup, Delete: m-richiedono di scandire la lista alla ricerca della chiave

n=1 numero di chiavi memorizzate nella tabella hash m=1 dimensione della tabella hash $\alpha=n/m$ (fattore di carico) $I(\alpha)=1$ numero medio di accessi alla tabella per la ricerca di una chiave non presente nella tabella ($ricerca\ con\ insuccesso$) $S(\alpha)=1$ numero medio di accessi alla tabella per la ricerca di una chiave presente nella tabella ($ricerca\ con\ successo$)

+ Analisi del caso pessimo:

- Tutte le chiavi sono collocate in unica lista
 - Insert: $\Theta(1)$
 - + Search, Delete: $\Theta(n)$

Analisi del caso medio:

- Dipende da come le chiavi vengono distribuite
- Assumiamo hashing uniforme semplice
- + Costo funzione di hashing f: $\theta(1)$

+ Teorema:

* In tavola hash con concatenamento, una ricerca senza successo richiede un tempo atteso $\Theta(1 + \alpha)$

+ Dimostrazione:

- Una chiave non presente nella tabella può essere collocata in uno qualsiasi degli
 m slot
- Una ricerca senza successo tocca tutte le chiavi nella lista corrispondente
- * Tempo di hashing: 1 + lunghezza attesa lista: $\alpha \to \Theta(1+\alpha)$

+ Teorema:

- * In tavola hash con concatenamento, una ricerca con successo richiede un tempo atteso di $\Theta(1+\alpha)$
- Più precisamente: $\Theta(1 + \alpha/2)$
- Dimostrazione: idee chiave
 - * Si assuma che l'elemento cercato *k* sia uno qualsiasi degli n elementi presenti nella tabella
 - * Il numero di elementi esaminati durante una ricerca con successo:
 - → 1 (l'elemento cercato) +
 - in media, dovrò scandire metà della lista (di lunghezza attesa α)

- Qual è il significato del fattore di carico:
 - * Influenza il costo computazionale delle operazioni sulle tabelle hash
 - se n = O(m), $\alpha = O(1)$
 - quindi tutte le operazioni sono $\Theta(1)$

Indirizzamento aperto

- Problema della gestione di collisioni tramite concatenamento
 - * Struttura dati complessa, con liste, puntatori, etc.
- + Gestione alternativa: indirizzamento aperto
 - * Idea: memorizzare tutte le chiavi nella tabella stessa
 - Ogni slot contiene una chiave oppure nil
 - * Inserimento:
 - * Se lo slot prescelto è utilizzato, si cerca uno slot "alternativo"
 - * Ricerca:
 - * Si cerca nello slot prescelto, e poi negli slot "alternativi" fino a quando non si trova la chiave oppure **nil**

Indirizzamento aperto

- * Ispezione: Uno slot esaminato durante una ricerca di chiave
- * Sequenza di ispezione: La lista ordinata degli slot esaminati
- + Funzione hash: estesa come
 - + *H* : *U* × [0 ... *m*-1] → [0 ... *m*-1]
- * <u>n. sequenza</u> <u>indice array</u>
- + La sequenza di ispezione $\{H(k, 0), H(k, 1), ..., H(k, m-1)\}$ è una permutazione degli indici [0...m-1]
 - + Può essere necessario esaminare ogni slot nella tabella
 - * Non vogliamo esaminare ogni slot più di una volta

Indirizzamento aperto

- Cosa succede al fattore di carico α?
 - * Compreso fra 0 e 1
 - La tabella può andare in overflow
 - * Inserimento in tabella piena
 - * Esistono tecniche di crescita/contrazione della tabella
 - linear hashing

Tecniche di ispezione

- * La situazione ideale prende il nome di hashing uniforme
 - ◆ Ogni chiave ha la stessa probabilità di avere come sequenza di ispezione una qualsiasi delle *m*! permutazioni di [0...*m*-1]
 - Generalizzazione dell'hashing uniforme semplice

+ Nella realtà:

- E' difficile implementare il vero uniform hashing
- * Ci si accontenta di ottenere semplici permutazioni

+ Tecniche diffuse:

- * Ispezione lineare
- Ispezione quadratica
- Doppio hashing

Ispezione lineare

- + Funzione: $H(k, i) = (H(k) + h \cdot i) \mod m$ chiave n. ispezione funzione hash base
- + Il primo elemento determina l'intera sequenza
 - + H(k), H(k)+h, $H(k)+2\cdot h$..., $H(k)+(m-1)\cdot h$ (tutti modulo m)
 - Solo *m* sequenze di ispezione distinte sono possibili
- Problema: agglomerazione primaria (primary clustering)
 - Lunghe sotto-sequenze occupate...
 - ... che tendono a diventare più lunghe:
 - * uno slot vuoto preceduto da i slot pieni viene riempito con probabilità (i+1)/m

29

I tempi medi di inserimento e cancellazione crescono

Ispezione quadratica

+ Funzione: $H(k, i) = (H(k) + h \cdot i^2) \mod m$ chiave n. ispezione funzione hash base

- * Sequenza di ispezioni:
 - * L'ispezione iniziale è in H(k)
 - * Le ispezione successive hanno un offset che dipende da una funzione quadratica nel numero di ispezione *i*
 - * Solo *m* sequenze di ispezione distinte sono possibili
- + Problema: la sequenza così risultante non è una permutazione
- + Problema: agglomerazione secondaria (secondary clustering)
 - * Se due chiavi hanno la stessa ispezione iniziale, le loro sequenze sono identiche

© Alberto Montresor

Ispezione pseudo-casuale

- + Funzione: $H(k, i) = (H(k) + r_i) \mod m$ chiave n. ispezione funzione hash base
- Sequenza di ispezioni:
 - * L'ispezione iniziale è in H(k)
 - * r_i è l'i-esimo elemento restituito da un generatore di numeri casuali fra $[0 \dots m-1]$
 - * Solo *m* sequenze di ispezione distinte sono possibili
- + La sequenza così risultante è una permutazione
- + Problema: agglomerazione secondaria (secondary clustering)
 - Questo problema rimane

Doppio hashing

+ Funzione: $H(k, i) = (H(k) + i \cdot H'(k)) \mod m$ chiave n. ispezione funzioni hash base, ausiliaria

- Due funzioni ausiliarie:
 - * *H* fornisce la prima ispezione
 - * H' fornisce l'offset delle successive ispezioni
 - \star m^2 sequenze di ispezione distinte sono possibili
- * Nota: Per garantire una permutazione completa, H'(k) deve essere relativamente primo con m
 - * Scegliere $m = 2^p$ e H'(k) deve restituire numeri dispari
 - * Scegliere m primo, e H'(k) deve restituire numeri minori di m

Cancellazione

* Non possiamo semplicemente sostituire la chiave che vogliamo cancellare con un nil. Perché?

- + Approccio
 - * Utilizziamo un speciale valore **deleted** al posto di **nil** per marcare uno slot come vuoto dopo la cancellazione
 - * Ricerca: **deleted** trattati come slot pieni
 - * Inserimento: **deleted** trattati come slot vuoti
- + Svantaggio: il tempo di ricerca non dipende più da α.
- * Concatenamento più comune se si ammettono cancellazioni

Codice - Hashing doppio

HASH

ITEM[]A

ITEM[]V

integer m

% Tabella delle chiavi% Tabella dei valori% Dimensione della tabella

HASH Hash(integer capacità)

 $\operatorname{Hash} t = \operatorname{\mathbf{new}} \operatorname{Hash}$

 $t.m \leftarrow capacità$

 $t.A \leftarrow \mathbf{new} \ Item[0 \dots t.m-1]$

 $t.V \leftarrow \mathbf{new} \ Item[0 \dots t.m-1]$

for $i \leftarrow 0$ to t.m - 1 do $t.A[i] \leftarrow nil$

return t

Codice - Hashing doppio

integer scan(ITEM k, boolean insert)

$$\begin{array}{l} \textbf{integer} \ c \leftarrow m \\ \textbf{integer} \ i \leftarrow 0 \\ \textbf{integer} \ j \leftarrow H(k) \\ \textbf{while} \ A[j] \neq k \ \textbf{and} \ A[j] \neq \textbf{nil} \ \textbf{and} \ i < m \ \textbf{do} \\ | \ \ \textbf{if} \ A[j] = \textbf{deleted} \ \textbf{and} \ c = m \ \textbf{then} \ c \leftarrow j \\ | \ \ j \leftarrow (j + H'(k)) \ \text{mod} \ m \\ | \ \ i \leftarrow i + 1 \end{array}$$

if insert and $A[j] \neq k$ and c < m then j = c

% Prima posizione *deleted*% Numero di ispezione% Posizione attuale

return j

Codice - Hashing doppio

```
 \begin{array}{c|c} \textbf{ITEM} & \textbf{lookup}(\textbf{ITEM} \ k) \\ & \textbf{integer} \ i \leftarrow \textbf{scan}(k, \textbf{false}) \\ & \textbf{if} \ A[i] = k \ \textbf{then} \\ & | \ \textbf{return} \ V[i] \\ & \textbf{else} \\ & | \ \textbf{return nil} \end{array}
```

```
\begin{array}{|c|c|} \text{remove}(\text{ITEM } k) \\ & \textbf{integer } i \leftarrow \text{scan}(k, \textbf{false}) \\ & \textbf{if } A[i] = k \textbf{ then} \\ & \lfloor A[i] \leftarrow \textbf{deleted} \end{array}
```

Indirizzamento aperto: Complessità hashing doppio

+ Assunzioni

- Hashing uniforme
- * Nessuna cancellazione
- Nella ricerca con successo, tutte le chiavi hanno la stessa probabilità di essere cercate

+ Analisi

- * n chiavi inserite in una tabella di m slot
- n < m, ovvero il fattore di carico $\alpha < 1$
- Analisi basata sul valore di α

Indirizzamento aperto: Complessità hashing doppio

- + Il numero atteso di ispezioni $I(\alpha)$ per una ricerca senza successo è $O(1/(1-\alpha))$
 - * Esempio: $\alpha = 0.5$, $I(\alpha) = 2$; $\alpha = 0.9$, $I(\alpha) = 10$
 - * A cosa tende queste valore per $\alpha \rightarrow 1$?
- + Il numero atteso di ispezioni $S(\alpha)$ per una ricerca con successo è $O(-1/\alpha \ln (1-\alpha))$
 - Esempio: $\alpha = 0.5$, $S(\alpha) = 1.387$; $\alpha = 0.9$, $S(\alpha) = 2.559$

Complessità - Riassunto

SCANSIONE

 α

 $I(\alpha)$

 $S(\alpha)$

Lineare

$$0 \le \alpha < 1$$

$$\frac{(1-\alpha)^2+1}{2(1-\alpha)^2}$$

$$\frac{1 - \alpha/2}{1 - \alpha}$$

Hashing doppio

$$0 < \alpha < 1$$

$$\frac{1}{1-\alpha}$$

$$-\frac{1}{\alpha}\ln(1-\alpha)$$

Liste di trabocco

$$\alpha \ge 0$$

$$1 + \alpha$$

$$1 + \alpha/2$$

Figura 7.3: Numero medio di accessi per ricerche in tabelle hash.

Ristrutturazione

- + Usando la scansione interna, non è conveniente che α cresca troppo
- **+** Sopra un soglia prefissata (tipicamente 0.5)
 - * Si alloca una nuova tabella di dimensione 2m
 - * Si reinseriscono tutte le chiavi presenti nella nuova tabella
- + Risultato
 - Fattore di carico dimezzato (tipicamente 0.25)
 - Nessun elemento deleted
- + Costi
 - * Costo O(m) per la ristrutturazione nel caso pessimo
 - Costo ammortizzato costante (vedi dimostrazione per vettori)

Commenti finali

Problemi con hashing

- * Scarsa "locality of reference" (cache miss)
- * Non è possibile ottenere le chiavi in ordine

+ Implementazione

- + HashMap in Java
- hash_map della Standard Template Library del C++

+ Un'interessante estensione

Distributed Hash Table (DHT)