STA 103 Lecture 2: Random Variable, Probability Distribution

Instructor: Wookyeong Song

Department of Statistics, University of California, Davis

Aug 5th, 2025

Announcement

- Assignment 1 (Due Aug 13th, Wed) will be posted on Canvas today.
- Problem set 1, covering topics in Midterm 1, will be posted on Canvas today.
- Office hour location will be MSB 1143 (Thu 2-3 pm).

Random Variables

- **Definition**: A random variable (RV for short) is a numerical description of the outcome of a random experiment. (i.e, daily revenue, daily visit of website).
- It usually denoted with capital letters X, Y, Z. The values of a random variable can vary with each repetition of an experiment.

- out of box with 3 tickets
- Random variables can take on values with specific probabilities.
 - Example: I will flip two fair coins. Let Y be the number of heads I get. Then, Y is random variable.

Probability Distribution

- **Definition**: A probability distribution is a function of the random variable that determines which values are more likely than others. It assigns the probabilities to the possible values of the random variable.
- Discrete Variable: Random variables that can assume a countable number of values. Discrete RV has probability mass function (PMF) as probability distribution. (Midterm 1)
- Continuous Variable: Random variables that can assume values corresponding to any of the points contained in an interval.
 Continuous RV has probability density function (PDF) as probability distribution. (Midterm 2)

Examples: Discrete vs Continuous

Scenario 1: A retailer tracks the number of customers who make a purchase each day.

- Discrete RV: Let X be number of purchasing customers in a day. Assume X follows Poisson distribution with mean $\lambda=20$.
- Probability Mass Function (PMF):

$$P(X = x) = p(x) = \frac{e^{-20} \cdot 20^x}{x!}, \quad x = 0, 1, 2, \dots$$

Scenario 2: An economist analyzes the monthly household income in a city.

- Continuous RV: Let Y be monthly household income. Assume Y follows normal distribution with mean $\mu=5,$ standard deviation $\sigma=1.$
- Probability Density Function (PDF):

$$P(Y = y) = p(y) = \frac{1}{\sqrt{2\pi}} e^{-\frac{(y-5)^2}{2}}, \quad y \in \mathbb{R}.$$

Probability Mass Function (PMF)

- Every discrete RV X has a unique PMF usually denoted p(x). Discrete means the set of possible values can be put in a list.
- Everything can be computed from p(x).
 - Use p(x) to check if X has the same randomness as another random variable.
 - ▶ Use p(x) to visualize X.
- Random quantities are hard but functions are easy $\to X$ is hard, p(x) is easier.
- We will see ${\bf 2}$ different ways to define the PMF p(x) for a random variable X.

Definition of PMF

Let p(x) = P(X = x): Input is a possible X value x, output is the chance that X = x.

• **Definition 1 (PMF in Table Form)**: The probability mass function p(x) for a random variable X, given in table form is the following:

$$\begin{array}{|c|c|c|c|c|}
\hline
x & p(x) & \\
1 & 1/3 & \\
2 & 2/3 & \\
\end{array}$$

• Definition 2 (PMF in Function Form): The probability mass function p(x) for a random variable X, given in function form is the following:

$$p(x) = \begin{cases} \frac{1}{3} & \text{if } x = 1, \\ \frac{2}{3} & \text{if } x = 2, \\ 0 & \text{otherwise.} \end{cases}$$

Properties of PMF

- $p(x) \ge 0$ for every x.
- $\sum_{x} p(x) = 1.$
- No repeat on the input value x.

Examples and Non-Examples

• Example 1:

x	p(x)
-1	1/4
0	2/4
1	1/4

• Example 2:

x	p(x)
1	2^{-1}
2	2^{-2}
3	2^{-3}
4	2^{-4}
:	:

Examples and Non-Examples

• Non-Example 1:

x	p(x)
0	1/4
1	2/4
0	1/4

• Non-Example 2:

x	p(x)
2	3/4
1	-1/2
0	3/4

• Non-Example 3:

x	p(x)
2	0
1	1/2
0	3/4

Two random variables with the same PMF are identically distributed

- RV X: The number of heads obtained when flipping 2 fair coins.
- RV Y: The selected ticket when one ticket is drawn at random from the following box.

- Question: Are X and Y identical (in terms of randomness)?
- **Answer**: The way to tell is to compare the PMFs.

Use the PMF to find any probability

• Illustrate with previous PMF example:

$$p(x) = \begin{cases} 2^{-x} & \text{for } x \in \{1, 2, 3, \dots\}, \\ 0 & \text{otherwise.} \end{cases}$$

- Think of X as the outcome of a game you can bet on. For example, if you bet X=3 on next play then

$$p(3) = 2^{-3} = 1/8$$

is the chance you win that bet.

• But you can bet on other things e.g., bet $X \leq 3$, we have

$$P(X \le 3) = p(1) + p(2) + p(3) = \frac{1}{2} + \frac{1}{4} + \frac{1}{8}.$$

• This X can also be interpreted as the number of games played until a streak of consecutive wins ends (including the final losing game), in a game where the probability of winning each round is $\frac{1}{2}$.

Use the PMF to find any probability

• Illustrate with previous PMF example:

$$p(x) = \begin{cases} 2^{-x} & \text{if } x \in \{1, 2, 3, \dots\}, \\ 0 & \text{otherwise.} \end{cases}$$

- **Question**: What is the probability of winning when you bet $X \leq 2$ or X > 4?
- **Question**: What is the probability of winning when you bet X is even?
- In general, for any set of possible outcomes A for X,

$$P(X \in A) = \sum_{x \in A} p(x).$$

The left hand side is the chance you win a bet that X is in A. The right hand side is to compute p(x) for each x in A and add them up.

Finding the PMF to match an X

- Start by listing the possible values of X in the left column of a PMF table.
- Then go back and figure out p(x) = P(X = x) for each x in the right column.
- Example: Flip a fair coin until you see the first heads. Let X
 denote the number of flips it takes.
- For example, if we have T, T, H, then X=3 (took 3 flips).

Finding the PMF to match an \boldsymbol{X}

• First think of the possible values for X.

ĺ	x	
	1	
	2	
	2 3 4	
	4	
	:	:

• Now start with x=1. Only way is first flip is heads. Then, P(X=1)=P(first flip heads)=1/2.

x	p(x)
1	1/2
2	
3	
4	
:	:
•	•

Finding the PMF to match an X

• Now think about x=2.

 $P(X=2) = P(\text{first flip tails, then heads}) = 1/2 \cdot 1/2 = 1/4.$

x	p(x)
1	1/2
2	1/4
3	·
4	
:	:
•	•

· In a similar argument,

x	p(x)
1 2 3	1/2 1/4 1/8
4	$\begin{vmatrix} 1/16 \\ \vdots \end{vmatrix}$

We always need to check the second column sums to 1.

Finding X to match a PMF

· Gives this PMF table

x	p(x)
-1	0.51
0	0.15
1	0.34

 Make a new column (large number)×p(x), so all elements are integers.

x	$100 \times p(x)$
-1	51
0	15
1	34

• Now make 100 tickets with x column values written on them duplicated by the frequency $100 \times p(x)$. The number showing on a random draw is a X.

$$\begin{array}{ccc} 51_{\times} & 15_{\times} & 34_{\times} \\ \hline -1 & \boxed{0} & \boxed{1} \end{array}$$

Expected Value

• If X is a discrete random variable with PMF p(x), the expected value E(X) is defined as

$$E(X) = \sum_{x} x p(x).$$

• The expected value E(X) is a fundamental quantity useful for all sort of things. E(X) is analogous to sample mean (average of a list x_1, x_2, \ldots, x_n .)

$$\frac{1}{n} \sum_{i=1}^{n} x_i.$$

• **Example**: The expected value of a random variable is its weighted average value and can be viewed as a central value of the random variable. E(X) is the best prediction of the future RV X.

Expected Value

 Example 1: A bookstore owner tracks the number of books sold daily. Let the random variable X represent the number of books sold in a day. The probability mass function (PMF) is:

x (Books Sold)	0	1	2	3	4
p(x)	0.10	0.25	0.30	0.20	0.15

• Question: What is the expectation number of books sold in a day?

Answer:

$$E(X) = \sum_{x} xp(x) = 0 \times 0.1 + 1 \times 0.25 + 2 \times 0.3 + 3 \times 0.2 + 4 \times 0.15$$
$$= 0 + 0.25 + 0.6 + 0.6 + 0.6 = 2.05.$$

Expected Value

• Example 2 (HW): Let X have PMF given by:

$$p(x) = \begin{cases} \binom{2}{x}(0.4)^x(0.6)^{2-x} & \text{for } x \in \{0,1,2\}\,, \\ 0 & \text{otherwise}. \end{cases}$$

• Note: The binomial coefficient, $\binom{n}{k}$, is defined by the expression:

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}, \qquad k! = k \cdot (k-1) \cdot (k-2) \cdots 2 \cdot 1.$$

- For example, 0! = 1, 1! = 1, $2! = 2 \cdot 1 = 2$, and $3! = 3 \cdot 2 \cdot 1 = 6$.
- Question: Find E(X).

• If X is a random variable with expected value E(X), the variance of X is

$$Var(X) = E([X - E(X)]^2).$$

• The standard deviation, sd(X), is the square root of the variance.

$$\operatorname{sd}(X) = \sqrt{\operatorname{Var}(X)}.$$

- The variance / standard deviation of a random variable, is an indication of how dispersed the probability distribution is about its center, indication of how spread out on the average.
- Interpretation: Start with X-E(X): the difference between your prediction E(X) and the actual X: Now square the prediction error to make it positive.

The variance of X can be computed by two ways

$$\operatorname{Var}(X) = E(X^2) - (E(X))^2$$
 (easy to compute), $\operatorname{Var}(X) = E\left([X - E(X)]^2\right)$ (easy to understand).

• The variance $\mathrm{Var}(X)$ tells you the typical squared prediction error for X. The standard deviation $\mathrm{sd}(X)$ tells you the typical prediction error for X.

• We already know how to compute E(X) so the only tricky part is $E(X^2)$. Technically this requires finding the PMF for X^2 but this is often hard. Luckily there is a shortcut:

$$E(X^2) = \sum_{x} x^2 p(x)$$

- Note that p(x) is the PMF for X not X^2 .
- This trick extends for computing E(f(X)) for any function f(x) mapping real numbers to real numbers.

$$E(f(X)) = \sum_{x} f(x)p(x),$$

where p(x) is PMF for X, not Y = f(X).

- Computing $E(f(X)) = \sum\limits_x f(x) p(x)$ from a PMF in a table form is particularly easy.
- **Example**: Suppose RV X has a PMF table:

x	p(x)
1	0.4
2	0.6

- **Question**: Find E(X), sd(X), and Var(X).
- Interpretation: In words: we predict X to be E(X). The typical magnitude of prediction error will be sd(X). We may sometimes write this interpretation with shorthand

 $X \sim E(X) \pm \operatorname{sd}(X) = \operatorname{best} \operatorname{prediction} \pm \operatorname{typical} \operatorname{prediction} \operatorname{error}.$

Answer:

$$\begin{array}{|c|c|c|c|c|} \hline x^2 & x & p(x) \\ \hline 1 & 1 & 0.4 \\ 4 & 2 & 0.6 \\ \hline \end{array}$$

$$E(X) = \sum_{x} xp(x) = 1 \cdot (0.4) + 2 \cdot (0.6) = 1.6,$$

$$E(X^{2}) = \sum_{x} x^{2}p(x) = 1 \cdot (0.4) + 4 \cdot (0.6) = 2.8.$$

Then,

$$Var(X) = E(X^2) - (E(X))^2 = 2.8 - (1.6)^2 = 0.24,$$

 $sd(X) = \sqrt{Var(X)} = \sqrt{0.24} \approx 0.49.$

• Interpretation: In words: we predict X to be E(X). The typical magnitude of prediction error will be $\operatorname{sd}(X)$. We may sometimes write this interpretation with shorthand

$$X \sim E(X) \pm sd(X) = 1.6 \pm 0.49.$$

• Example (HW): Suppose RV W has a PMF table:

w	p(w)
0	35/47
2	2/47
4	10/47

• Question: Find $E(W^2)$, Var(W), E(5-W), and $E(\exp(W))$?

Properties of Mean and Variance

• If Y is a linear function of X, i.e., Y=aX+b, where a,b are fixed constants. Then,

$$E(Y) = E(aX + b) = E(aX) + b = aE(X) + b$$
$$Var(Y) = Var(aX + b) = Var(aX) = a^{2}Var(X)$$
$$sd(Y) = |a|sd(X).$$

Properties of Mean and Variance

• Example (HW): Let X represent the number of units of a product sold per day at a local street market. The probability mass function (PMF) is given below:

x (Units Sold)	0	1	2	3
p(x)	0.1	0.3	0.4	0.2

• **Question**: Let Y = 2X - 3. What is the variance and standard deviation of Y?