Números Complejos, Álgebra Matricial y Matrices de Pauli

Ariel Bendersky

27 de marzo de 2025

Índice

- Números Complejos
- Matrices Complejas
 - Matrices Unitarias
 - Matrices Hermíticas
- O Diagonalización
- Matrices de Pauli y Notaciones Asociadas
 - ullet El Operador $\sigma \cdot n$ para n Genérico
- Producto Tensorial
- 6 Guía de Ejercicios Generales

Números Complejos – Definición y Representaciones

• Definición: Un número complejo se escribe como

$$z = x + iy$$
, $x, y \in \mathbb{R}$, $i^2 = -1$.

- Forma cartesiana: z = x + iy.
- Forma polar:

$$z = r(\cos\theta + i\sin\theta),$$

donde:

- $r = |z| = \sqrt{x^2 + y^2}$ es el módulo.
- $\theta = \arg(z)$ es la fase.

Operaciones con Números Complejos

Suma y Resta:

$$z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2).$$

Multiplicación:

$$z_1z_2 = r_1r_2 \left[\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)\right].$$

División:

$$\frac{z_1}{z_2} = \frac{r_1}{r_2} \left[\cos(\theta_1 - \theta_2) + i \sin(\theta_1 - \theta_2) \right], \quad z_2 \neq 0.$$

- **Ejemplo:** Sea $z_1 = 3 + 4i$ y $z_2 = 1 + i$. Se tienen:
 - $r_1 = 5$, $r_2 = \sqrt{2}$.
 - $\theta_1 = \arctan(4/3), \ \theta_2 = \pi/4.$

Forma Exponencial e Identidad de Euler

Forma exponencial:

$$z = re^{i\theta}$$
.

• Identidad de Euler:

$$e^{i\theta} = \cos\theta + i\sin\theta.$$

• **Demostración:** Partiendo de las series de Taylor para $e^{i\theta}$, $\cos \theta$ y $\sin \theta$:

$$e^{i\theta} = \sum_{n=0}^{\infty} \frac{(i\theta)^n}{n!} = \cos\theta + i\sin\theta.$$

• **Ejemplo**: Escribir $z = 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$ como $2e^{i\pi/3}$.

Ejercicios - Números Complejos

Ejercicio 1

Demostrar que la forma polar de un número complejo es única (salvo el ángulo, definido módulo 2π).

Ejercicio 2

Calcular $(3+4i)^2$ usando tanto la forma cartesiana como la polar.

Matrices Unitarias

• Definición: Una matriz U es unitaria si

$$U^{\dagger}U = UU^{\dagger} = I$$
,

donde U^{\dagger} es la matriz conjugada transpuesta.

- Propiedades:
 - Conserva el producto interno.
 - Sus autovalores tienen módulo 1.
- Ejemplo:

$$U = \begin{pmatrix} e^{i\phi} & 0 \\ 0 & e^{-i\phi} \end{pmatrix}.$$

Matrices Hermíticas

• Definición: Una matriz H es hermítica si

$$H^{\dagger} = H$$
.

- Propiedades:
 - Sus autovalores son reales.
 - Los autovectores correspondientes a autovalores distintos son ortogonales.
- Ejemplo:

$$H = \begin{pmatrix} 2 & 1-i \\ 1+i & 3 \end{pmatrix}.$$

Se verifica que $H^{\dagger} = H$.

Ejercicios - Matrices Unitarias y Hermíticas

Ejercicio 1

Verificar que la matriz

$$U = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & i \\ i & 1 \end{pmatrix}$$

es unitaria.

Ejercicio 2

Demostrar que para la matriz

$$H = \begin{pmatrix} 3 & 2-i \\ 2+i & 4 \end{pmatrix},$$

se cumple $H^{\dagger} = H$.

Diagonalización – Conceptos Básicos

- Objetivo: Encontrar una base de autovectores para expresar A en forma diagonal.
- **Teorema**: Si A tiene n autovectores linealmente independientes, existe una matriz invertible P tal que

$$P^{-1}AP = D$$
,

donde D es diagonal y contiene los autovalores.

• Ecuación característica: Se obtiene resolviendo:

$$\det(A - \lambda I) = 0.$$

Diagonalización – Ejemplo

Considera la matriz

$$A = \begin{pmatrix} 4 & 1 \\ 2 & 3 \end{pmatrix}.$$

Polinomio característico:

$$\det\begin{pmatrix} 4-\lambda & 1 \\ 2 & 3-\lambda \end{pmatrix} = (4-\lambda)(3-\lambda)-2 = \lambda^2-7\lambda+10 = 0.$$

- **2** Autovalores: $\lambda_1 = 5$ y $\lambda_2 = 2$.
- Autovectores:
 - Para $\lambda_1 = 5$:

$$(A-5I)v=0 \Rightarrow v_1 \propto \begin{pmatrix} 1 \\ 1 \end{pmatrix}.$$

• Para $\lambda_2 = 2$:

$$(A-2I)v=0 \quad \Rightarrow \quad v_2 \propto \begin{pmatrix} 1 \\ -2 \end{pmatrix}.$$

Ejercicios - Diagonalización

Ejercicio 1

Sea

$$B = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}.$$

Calcular el polinomio característico, encontrar los autovalores y determinar una base de autovectores.

Ejercicio 2

Verificar que para la matriz diagonalizada D, se cumple $P^{-1}AP = D$ utilizando la matriz P de autovectores.

Matrices de Pauli – Introducción y Propiedades

• Definición: Las matrices de Pauli son:

$$\sigma_{\mathsf{x}} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_{\mathsf{y}} = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_{\mathsf{z}} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- Propiedades:
 - Son hermíticas y unitarias.
 - Conmutador: Para dos operadores A y B, se define como

$$[A, B] = AB - BA.$$

En particular, se cumple:

$$[\sigma_i, \sigma_j] = 2i\epsilon_{ijk}\sigma_k.$$

• Anticonmutador: Para dos operadores A y B, se define como

$${A,B} = AB + BA.$$

En particular, se cumple:

$$\{\sigma_i,\sigma_j\}=2\delta_{ij}I.$$

Definiciones: δ_{ij} y ϵ_{ijk}

• δ_{ii} es el **delta de Kronecker**, definido como:

$$\delta_{ij} = \begin{cases} 1, & ext{si } i = j, \\ 0, & ext{si } i
eq j. \end{cases}$$

• ϵ_{ijk} es el símbolo de Levi-Civita, definido como:

$$\epsilon_{ijk} = \begin{cases} +1, & \text{si } (i,j,k) \text{ es una permutación par de } (1,2,3), \\ -1, & \text{si } (i,j,k) \text{ es una permutación impar de } (1,2,3), \\ 0, & \text{si algún par de índices es igual.} \end{cases}$$

Autovalores y Autovectores - Parte 1

 σ_x **y** σ_y :

- σ_X:
 - Ecuación característica:

$$\det(\sigma_x - \lambda I) = \lambda^2 - 1 = 0 \quad \Rightarrow \quad \lambda = \pm 1.$$

- Autovectores:
 - Para $\lambda = +1$: $v_+ \propto \begin{pmatrix} 1 \\ 1 \end{pmatrix}$.
 - Para $\lambda = -1$: $v_- \propto \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.
- \bullet σ_y :
 - Ecuación característica: $\lambda^2 1 = 0$.
 - Autovectores:
 - Para $\lambda = +1$: $v_+ \propto \begin{pmatrix} 1 \\ i \end{pmatrix}$.
 - Para $\lambda = -1$: $v_- \propto \begin{pmatrix} 1 \\ -i \end{pmatrix}$.

Autovalores y Autovectores – Parte 2

 σ_z :

Ecuación característica:

$$\det(\sigma_z - \lambda I) = \lambda^2 - 1 = 0 \quad \Rightarrow \quad \lambda = \pm 1.$$

- Autovectores:

 - Para $\lambda=+1$: $\mathbf{v}_+=\begin{pmatrix}1\\0\end{pmatrix}$. Para $\lambda=-1$: $\mathbf{v}_-=\begin{pmatrix}0\\1\end{pmatrix}$.

$\sigma \cdot n$ – Parte 1: Definición

- Sea un versor $\mathbf{n}=(n_x,n_y,n_z)$ con $n_x^2+n_y^2+n_z^2=1$.
- Se define el operador:

$$\sigma \cdot \mathbf{n} = \mathbf{n}_{\mathsf{x}} \sigma_{\mathsf{x}} + \mathbf{n}_{\mathsf{y}} \sigma_{\mathsf{y}} + \mathbf{n}_{\mathsf{z}} \sigma_{\mathsf{z}}.$$

$\sigma \cdot n$ – Parte 2: Forma Matricial

• Utilizando las matrices de Pauli, se tiene:

$$\sigma \cdot n = \begin{pmatrix} n_z & n_x - in_y \\ n_x + in_y & -n_z \end{pmatrix}.$$

$\sigma \cdot n$ – Parte 3: Planteamiento del Determinante

• Para encontrar los autovalores, se resuelve:

$$\det(\sigma \cdot n - \lambda I) = 0.$$

Escribiendo:

$$\sigma \cdot \mathbf{n} - \lambda \mathbf{I} = \begin{pmatrix} n_z - \lambda & n_x - i n_y \\ n_x + i n_y & -n_z - \lambda \end{pmatrix},$$

se tiene:

$$\det\begin{pmatrix} n_z - \lambda & n_x - in_y \\ n_x + in_y & -n_z - \lambda \end{pmatrix} = 0.$$

Se desarrolla el determinante:

$$(n_z - \lambda)(-n_z - \lambda) - (n_x - in_y)(n_x + in_y) = 0.$$

Calculamos:

$$(n_z - \lambda)(-n_z - \lambda) = -n_z^2 + \lambda^2,$$

 $(n_x - in_y)(n_x + in_y) = n_x^2 + n_y^2.$

$\sigma \cdot n$ – Parte 5: Conclusión sobre Autovalores

La ecuación característica queda:

$$\lambda^2 - (n_x^2 + n_y^2 + n_z^2) = \lambda^2 - 1 = 0.$$

• Por lo tanto, los autovalores son:

$$\lambda = \pm 1.$$

• Nota: La obtención de los autovectores requiere resolver $(\sigma \cdot n - \lambda I)v = 0$.

Ejercicios - Matrices de Pauli

Ejercicio 1

Verificar los autovalores y autovectores de σ_x , σ_y y σ_z a partir de sus definiciones.

Ejercicio 2

Para el versor n = $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$, calcular explícitamente los autovalores y, al menos, una forma de los autovectores de $\sigma \cdot n$.

Producto Tensorial de Vectores

• Dados dos vectores $u \in \mathbb{C}^m$ y $v \in \mathbb{C}^n$, su producto tensorial se define como:

$$u \otimes v \in \mathbb{C}^{mn}$$
,

que es un vector de dimensión *mn* con componentes dadas por:

$$(\mathsf{u}\otimes\mathsf{v})_k=u_iv_j,$$

donde la relación entre k e (i,j) se da por k=(i-1)n+j con $1 \le i \le m$ y $1 \le j \le n$.

• **Ejemplo:** Si $u = \begin{pmatrix} u_1 \\ u_2 \end{pmatrix}$ y $v = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$, entonces:

$$\mathsf{u} \otimes \mathsf{v} = \begin{pmatrix} u_1 v_1 \\ u_1 v_2 \\ u_2 v_1 \\ u_2 v_2 \end{pmatrix}.$$

Producto Tensorial de Matrices

• Dadas dos matrices $A \in \mathbb{C}^{m \times m}$ y $B \in \mathbb{C}^{n \times n}$, su producto tensorial se define como:

$$A \otimes B \in \mathbb{C}^{(mn) \times (mn)}$$

donde cada entrada a_{ii} de A se multiplica por la matriz B, es decir:

$$(A \otimes B)_{(i,j),(k,l)} = a_{ij}b_{kl}.$$

Ejemplo: Si

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix},$$

entonces:

$$A \otimes B = \begin{pmatrix} a_{11}B & a_{12}B \\ a_{21}B & a_{22}B \end{pmatrix} = \begin{pmatrix} a_{11}b_{11} & a_{11}b_{12} & a_{12}b_{11} & a_{12}b_{12} \\ a_{11}b_{21} & a_{11}b_{22} & a_{12}b_{21} & a_{12}b_{22} \\ a_{21}b_{11} & a_{21}b_{12} & a_{22}b_{11} & a_{22}b_{12} \\ a_{21}b_{21} & a_{21}b_{22} & a_{22}b_{21} & a_{22}b_{22} \end{pmatrix}.$$

Propiedades de Autovalores y Autovectores en el Producto Tensorial

- Sea A con autovalor λ y autovector v, y B con autovalor μ y autovector w.
- Entonces, el vector $v \otimes w$ es autovector de $A \otimes B$ con autovalor $\lambda \mu$:

$$(A \otimes B)(v \otimes w) = (Av) \otimes (Bw) = (\lambda v) \otimes (\mu w) = (\lambda \mu)(v \otimes w).$$

• Consecuencia: Los autovalores de $A \otimes B$ son todos los productos $\lambda_i \mu_j$, donde λ_i son los autovalores de A y μ_j los de B.

Ejercicios - Producto Tensorial

Ejercicio 1

Dados los vectores $u = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ y $v = \begin{pmatrix} 3 \\ 4 \end{pmatrix}$, calcular explícitamente $u \otimes v$.

Ejercicio 2

Sean

$$A = \begin{pmatrix} 2 & 0 \\ 0 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}.$$

Calcular $A \otimes B$ y demostrar la propiedad de los autovalores y autovectores.

Ejercicio 1

Demostrar que $|z_1z_2| = |z_1||z_2|$ para dos números complejos z_1 y z_2 .

Ejercicio 2

Escribir en forma exponencial el número complejo $-1+i\sqrt{3}$ y hallar su módulo y argumento.

Ejercicio 3

Verificar que la suma de dos matrices unitarias no es, en general, una matriz unitaria.

Ejercicio 4

Demostrar que los autovalores de una matriz hermítica son reales.

Ejercicio 5

Calcular la diagonalización de la matriz $C = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ y discutir si es diagonalizable.

Ejercicio 6

Sea
$$D = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
. Calcular sus autovalores y autovectores.

Ejercicio 7

Verificar la relación de anticonmutación $\{\sigma_i, \sigma_j\} = 2\delta_{ij}I$ para las matrices de Pauli.

Ejercicio 8

Calcular explícitamente $\sigma \cdot n$ para el versor n = (0, 1, 0) y determinar sus autovalores.

Ejercicio 9

Para un versor general $n=(n_x,n_y,n_z)$, demostrar que la ecuación característica de $\sigma \cdot n$ es $\lambda^2 - 1 = 0$.

Ejercicio 10

A partir de la definición de $\sigma \cdot n$, derivar el cociente entre las componentes del autovector para $\lambda = +1$.

Ejercicio 11

Dados dos vectores u y v, demostrar que el producto tensorial u \otimes v es lineal en cada uno de sus argumentos.

Ejercicio 12

Sea
$$E = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$
 y $F = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Calcular $E \otimes F$ y hallar uno de sus autovalores.

Ejercicio 13

Demostrar que si v es autovector de A con autovalor λ y w es autovector de B con autovalor μ , entonces $v \otimes w$ es autovector de $A \otimes B$ con autovalor $\lambda \mu$.

Ejercicio 14

Plantear un ejemplo donde el producto tensorial de dos matrices no conmute, es decir, demostrar que en general $A \otimes B \neq B \otimes A$.

Conclusiones y Discusión

- Se revisaron representaciones y operaciones con números complejos.
- Se estudiaron matrices unitarias, hermíticas y su diagonalización.
- Se analizaron las matrices de Pauli, sus notaciones asociadas (incluyendo las definiciones de conmutador y anticonmutador) y el operador $\sigma \cdot n$ para un versor genérico.
- Se introdujo el producto tensorial de vectores y matrices, y se estudiaron sus implicaciones en autovalores y autovectores.

Preguntas y Discusión