موضوع البكالوريا في مادة الرياضيات شعبة رياضيات

الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

وزارة التوبية الوطنية

دورة: جوان 2011

امتحان بكالوريا التعليم الثانوي

الشعبة: رياضيات

المدة: 4 ساعات ونصف

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين: المترشح أن يختار أحد الموضوعين التاليين: الموضوع الأول

التمرين الأول: (04.5 نقطة)

المستوي منسوب إلى المعلم المتعامد المتجانس $(o; \vec{u}, \vec{v})$.

 $z_{C} = \sqrt{3}(1+i)$ ، $z_{B} = -1+i$ ، $z_{A} = 1-i$:المرتب على الترتب على الأعداد المركبة على الأعداد المركبة المر

2/ أ/ احسب الطويلة وعمدة للعدد المركب $\frac{Z_B-Z_A}{Z_C-Z_A}$ ، ثم فسر هندسيا النتائج المحصل عليها. -

3/ عين الحقة النقطة D بحيث يكون الرباعي ACBD معينا.

z' التحويل النقطي الذي يرفق بكل نقطة M من المستوي لاحقتها z النقطة M' ذات اللاحقة z' z'=(-1+i)z+1-3i

أ عين طبيعة التحول T وعناصره المميزة.

ب/ استنتج طبيعة التحول ToT وعناصره المميزة.

التمرين الثاني: (04.5 نقطة)

 $\left(O\;;ec{i}\;,ec{j}\;,ec{k}\;
ight)$ الفضاء منسوب إلى المعلم المتعامد المتجانس

C(-1;1;1) ، B(1;1;4) ، A(1;0;2) انعتبر النقط A(1;0;2)

أ/ أثبت أنّ النقط A ، B و C تعتين مستويا.

ب/ بيّن أن الشّعاع \overline{AC} و \overline{AB} عمودي على كل من الشّعاعين \overline{AC} و \overline{AC} ثم استنتج معادلة ديكارتية للمستوي \overline{ABC}

 $(P_2):2x-2y-z-1=0$ و $(P_1):3x+4y-2z+1=0$ و $(P_2)=(P_1):2x-2y-z-1=0$ و $(P_1):3x+4y-2z+1=0$ و $(P_2)=(P_1):2x-2y-z-1=0$ و $(P_1):3x+4y-2z+1=0$ و $(P_2)=(P_1):3x+4y-2z+1=0$ و $(P_2)=(P_1):3x+4y-2z+1=0$ و $(P_2)=(P_1):3x+4y-2z+1=0$

 (P_2) و (P_1) نقاطع المستويين و (Δ) نقاطع المستويين ين تمثيلا وسيطيا للمستقيم

 (Δ) لا تتتمي إلى O(0;0;0) لا تتتمي إلى (Δ) .

 $dig(O;ig(\Deltaig)ig)$ و استنج المسافة $dig(O;ig(P_1ig)ig)$ و $dig(O;ig(P_1ig)ig)$

التمرين الثالث: (04 نقاط)

متتالية حسابية متز ايدة تماما حدودها أعداد طبيعية تحقق: (U_n)

$$\begin{cases} m = PPCM (U_3, U_5) \\ d = PGCD (U_3, U_5) \end{cases} \qquad : \underbrace{\qquad}_{m+d=42}$$

 U_0 عين الحدين U_5 و U_3 نم استنتج /1

كتب U_n بدلالة u_n ، ثم بيّن أن: 2010 حد من حدود U_n وعين رتبته.

 (U_n) عين الحد الذي ابتداء منه يكون مجموع 5 حدود متعاقبة من (U_n) يساوي 10080

n / 4 عدد طبیعی غیر معدوم.

أ) احسب بدلالة n المجموع S حيث: $S = U_0 + U_1 + U_2 + ... + U_{2n}$ وإنا المعموع أ

 $S_1 = U_0 + U_2 + U_4 + \dots + U_{2n}$: حيث S_2 و S_1 المجموعين S_1 المتنتج بدلالة S_1

 $S_2 = U_1 + U_3 + U_5 + \dots + U_{2n-1}$ g

التمرين الرابع: (07 نقاط)

 $f(x) = (3x + 4)e^x$ نعتبر الدالة العددية f المعرفة على \mathbb{R} كما يلي:

 $\left(O; \vec{i}, \vec{j}\right)$ المياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس \mathcal{E}_{r}

: أ) احسب f'' ، f' شم بر هن بالتراجع أنّه من أجل كل عدد طبيعي f''' ، f'' عبر معدوم فإن f''' أ) احسب f''' ، f''' ، f''' ، f''' f''' f''' المشتقات المتتابعة للدالة $f^{(n)}(x) = (3x + 3n + 4)e^x$

 $y'' = (3x + 16)e^x$: ستنتج حل المعادلة التفاضلية

ان: 0 = 0 النتيجة هندسيا النتيجة هندسيا $\lim_{x \to -\infty} f(x) = 0$

ب) ادرس اتجاه تغير الدالة f ثم شكّل جدول تغيراتها.

 (C_f) في النقطة (Δ) اكتب معادلة للمماس ((Δ) للمنحنى ((C_f)) في النقطة (Δ) الكتب معادلة للمماس ((Δ)) الكتب معادلة المماس ((Δ)) المنحنى ((Δ)) المن

 (C_f) بين أن ω هي نقطة انعطاف المنحنى

 \cdot]- ∞ ;0] على المجال (C_f) و (Δ) ارسم

مالية $\int_{-1}^{x} te^{t} dt$ عدد حقيقي من المجال $[0,\infty-[$ ، باستعمال التكامل بالتجزئة جد x (أ x المجال x (أ x) على المجال x (أ x) الدالة x الدالة x على المجال x (أ x) الدالة x الدالة x على المجال x (أ x) الدالة x الدالة x الدالة x (أ x) الدالة x (الدالة x (الدالة x) الدالة x (الدالة x) الدالة x (الدالة x (الدالة x) الدالة x (الدالة x (الدالة x (الدالة x (الدالة x) الدالة x (الدالة x (الدال

ب) λ عدد حقیقی أصغر تماما من $\frac{4}{2}$

احسب بدلالة λ المساحة (λ) للحيز من المستوي المحدد بالمنحنى (λ) و المستقيمات التي

 $\lim_{\lambda \to \infty} A(\lambda)$ معادلاتها: $x = \lambda$ و $x = -\frac{4}{3}$ ، y = 0

الموضوع الثانسي

التمرين الأول: (04 نقاط)

1) نعتبر المعادلة : (E) ... (E) 13x -7y = -1 ... (E) عددان صحيحان. حل المعادلة (E).

 $\begin{cases} a \equiv -1[7] \\ a \equiv 0[13] \end{cases}$: بحيث: a بحيث: (2

(3) ادرس حسب قيم العدد الطبيعي n ، بواقي القسمة الإقليدية للعدد "9 على كل من 7 و 13.

 $\alpha00\beta086$: يكن العدد الطبيعي b المكتوب، في نظام التعداد ذي الأساس e ، كما يلي b المكتوب، في نظام التعداد ذي الأساس e ، كما يلي a عددان طبيعيان a a عددان طبيعيان a .

عين α و β حتى يكون b قابلا للقسمة على 91.

التمرين الثاني: (05 نقاط)

 $\left(O\,; \overline{i}\;, \overline{j}\;, \overline{k}\;\right)$ سنجانس المتعامد المتجانس المعلم المعامد الفضاء

 $G\!\left(rac{1}{3}; rac{2}{3}; 1
ight)$ و $C\!\left(0; 0; 3
ight)$ ، $B\!\left(0; 2; 0
ight)$ ، $A\!\left(1; 0; 0
ight)$ نعتبر النقط

C المستقيم الذي يشمل النقطة A وشعاع توجيهه $u\left(-1;1;\frac{3}{2}\right)$ و $u\left(-1;1;\frac{3}{2}\right)$ و أمستقيم الذي يشمل النقطة $v\left(\frac{1}{2};1;-3\right)$ وشعاع توجيهه $v\left(\frac{1}{2};1;-3\right)$

-1 اكتب تمثيلا وسيطيا لكل من المستقيمين (D) و (Δ) ثم ادرس الوضع النسبي لهما.

بين أن: $\overrightarrow{GA} + \overrightarrow{GB} + \overrightarrow{GC} = \overrightarrow{0}$ ، ماذا تستنتج بالنسبة للنقطة G?

المستوي (ABC) عين شعاعا ناظميا \vec{n} للمستوي (ABC) ثم اكتب معادلة له.

O احسب المسافة بين النقطة O والمستوي O. O

المسقط العمودي للنقطة B على المستقيم (D). المسقط العمودي للنقطة B

أ) جد إحداثيات النقطة H.

(D)ب) استنتج المسافة بين النقطة B والمستقيم (D)

التمرين الثالث: (04 نقاط)

أجب بصحيح أو خطأ مع التبرير في كل حالة من الحالات الآتية:

 $-\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}$ هو $a = -\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$ الشكل المثلثي للعدد المركب /1

a عيث: \overline{a} مرافق $a^{2011} + \overline{a} = 0$

· (C,) + (8) + (1)

 $(O; \vec{u}, \vec{v})$ المنتوي المنسوب إلى المعلم المتعامد والمتجانس (\vec{v}).

اً) التحويل
$$T$$
 الذي كتابته المركبة: $z'=\left(-\frac{\sqrt{2}}{2}+i\,\frac{\sqrt{2}}{2}\right)z$ دوران زاويته $\frac{\pi}{4}$ ومركزه مبدأ المعلم

$$A$$
 الذي يشمل النقطة M ذات اللاحقة D الذي يشمل النقطة D النق

$$u_{n+1} = \frac{3}{4}u_n + \frac{1}{6}$$
 'n except a second according to $u_0 = \frac{1}{12}$: $u_0 = \frac{1}{12}$ | u_0

$$u_n = -\frac{7}{12} \left(\frac{3}{4}\right)^n + \frac{2}{3}$$
 (1)

 \mathbb{N} متناقصة تماما على (u_n)

ج) (u_n) متباعدة

التمرين الرابع: (07 نقاط)

 $g(x) = x^2 + \ln x^2 - 1$:... $g(x) = x^2 + \ln x^2 - 1$ الدالة العددية المعرفة على المجال $g(x) = x^2 + \ln x^2 - 1$ الدرس اتجاه تغير الدالة $g(x) = x^2 + \ln x^2 - 1$ ادرس اتجاه تغير الدالة $g(x) = x^2 + \ln x^2 - 1$

g(x) أنم استنتج إشارة g(x) في المجال g(1)

$$f(x) = (1 - \frac{1}{x^2}) \ln x$$
 : يا إنه المعرفة على المجال $f(x) = (1 - \frac{1}{x^2}) \ln x$ إلى الدالة العددية المعرفة على المجال

$$(C_f)$$
 و (C_f) تمثيلها البياني في المستوي المزود بالمعلم المتعامد المتجانس

$$f'(x) = \frac{g(x)}{x^3}$$
 وأن: $g(x) = \frac{g(x)}{x^3}$ وأن: $g(x) = \frac{g(x)}{x^3}$ وأن: أن $f(x) = \frac{g(x)}{x^3}$

استنتج اتجاه تغير الدالة f ثم شكل جدول تغيراتها.

$$]0;+\infty[$$
 المنحنى الممثل للدالة $x\mapsto \ln x$ على المجال $(\delta)/\psi$

ادرس وضعیة (C_f) بالنسبة إلى (δ) ثم جد $\lim_{x\to +\infty}\frac{1}{x^2}\ln x$ ، ماذا تستنتج (δ)

 \cdot ارسم (δ) و (C_f)

$$\int_{1}^{x} \frac{1}{t^2} \ln t \, dt$$
 عدد حقيقي من المجال $\int_{1}^{x} (1;+\infty) \, dt$ باستعمال التكامل بالتجزئة جد $x / 1$

- تحقق أن: $x\mapsto x\ln x$ هي دالة أصلية للدالة $x\mapsto x\ln x$ على المجال] $x\mapsto x\ln x$

. [1;+ ∞ [استنتج دالة أصلية للدالة f على المجال –

 α با α عدد حقیقی أكبر تماما من α

احسب بدلالة α المساحة α المستوي المحدد بالمنحنيين α و المستقيمين α اللذين معادلتيهما: α و α ، α اللذين معادلتيهما: α و α ، α اللذين معادلتيهما:

التصحيح النموذجي لموضوع الرياضيات لشعبة رياضيات بكالوريا 2011

الإجابة النموذجية وسيلم التنقيط

تحان شهادة البكالوريا دورة: 2011 المادة: الرياضيات الشعبة: رياضيات امتحان شهادة البكالوريا دورة: 2011

ā.	العلا	عناصر الإجابة (الموضوع الأول)	محاور
المجموع	مجزأة		لموضوع
		الشرين الأولى: (04.5 نقطة)	
	0.5×3	$z_{C} = \sqrt{6}e^{\frac{i\pi}{4}}$, $z_{B} = \sqrt{2}e^{\frac{i3\pi}{4}}$, $z_{A} = \sqrt{2}e^{\frac{i\pi}{4}}$ (1	عداد مركبة
	0.25×3	$\arg(\frac{z_B - z_A}{z_C - z_A}) = \frac{\pi}{3} + 2k \pi; k \in \mathbb{Z} 3 \frac{ z_B - z_A }{ z_C - z_A } = 1 \frac{z_B - z_A}{ z_C - z_A } = \frac{1}{2} + \frac{\sqrt{3}}{2}i 1 (2)$	داد مرحبه طبیقاتها هندسیة
04.5	0.25×2	$(\overline{AC}; \overline{AB}) = \frac{\pi}{3}$ $gAB = AC$: التفسير الهندسي	تشابه
04.3	0.25	ب) ABC مثلث متقايس الأضلاع	
	0.25	$z_D = -\sqrt{3} - \sqrt{3}i (3)$	
	0.25×3	$\frac{3\pi}{4}$ ونسبته $\sqrt{2}$ وزاویته T -أ (4	
	0.5	$rac{3\pi}{2}$ ب T تشابه مرکزه A ونسبته 2 وزاویته T T تشابه مرکزه	
		التعرين الثاني (04.5 نقطة)	
	0.75	\overline{AB} -أ \overline{AB} لا يوازي \overline{AC} ومنه النقط \overline{AC} و \overline{B} ه و \overline{AB} تعتين مستويا	
	0.25×2	(ABC) ب $\overline{AB} = 0$ و $\overline{AC} = 0$ و منه \overline{n} شعاع ناظمي ل	
	. 0.5	(ABC) معادلة ديكارتية للمستوي $3x + 4y - 2z + 1 = 0$	مستقيمات
	0.25×2	(P_2) و (P_1) و (P_1) شعاع ناظمي لـ (P_1) و (P_2) أ (P_1) شعاع ناظمي لـ (P_2)	المستويات
		و $n \cdot n' = 0$ و منه (P_1) و (P_2) متعامدان.	ي الفضاء
		$\begin{cases} x = 8t & \begin{cases} x = \frac{4}{7}t + \frac{1}{7} \end{cases} \end{cases}$	طبيقات
04.5	0.25×3	(A) و كذلك $x = 8t$ $y = t - \frac{3}{8}$ و كذلك $y = \frac{1}{14}t - \frac{5}{14}$ $t \in \mathbb{R}$	جداء سلمي في
		$z = 14t - \frac{1}{4}$ $z = t$	سمي دي فضاء
	0.25×2	- التحقق (∆) ¢ (∆) و التحقق التحق التحقق التحقق التحقق التحقق التحقق التحقق التحقق التحقق التحق التحقق التحق التحقق التحقق التحقق التحقق التحقق التحقق التحقق التحقق الت	فصناء
	0.25×2	$d(O;(P_2)) = \frac{1}{3} \cdot d(O;(P_1)) = \frac{\sqrt{29}}{29} - 2$	
	0.25×2	$d\left(\mathcal{O};\left(\Delta\right)\right) = \sqrt{\frac{38}{261}}$	

المجموع	العلاما مجزأة	عناصر الإجابة (الموضوع الأول)	محاور موضوع
بروعه		التمرين الثالث: (04 نقاط)	
	0.25×3+0.5	$U_0 = 3$, $U_5 = 18$ g $U_3 = 12$, $d = 6$ (1)	
	0.75	$U_n = 3 + 3x$ ورنبته 670 ورنبته $U_n = 3 + 3n$ (2	تتاليات
4	0.5	$u_N = 2010 = u_{669}$ ومنه $u_{N+1} = \frac{5}{2}(u_N + u_{N+4})$ (3)	نسابية
	0.5	S = 3(n+1)(2n+1) (f (4)	
-	0.5×2	$S_2 = 3n(n+1)$ $S_1 = 3(n+1)^2$ (\hookrightarrow	
E. As	Tilling Ball	التمرين الرابع: (07 نقاط)	
	0.25		
April	0.25	$f''(x) = (3x + 10)e^{x}$	راسة دالة
A STATE OF THE PARTY OF THE PAR		البرهان بالتراجع أنه من أجل كل عدد طبيعي الاغير معدوم فإن:	ىية لىرھان
	0.75	$f^{(n)}(x) = (3x + 3n + 4)e^x$	لتراجع مادلة
	0.25	$(c_1;c_2) \in \mathbb{R}^2$: $c_1 = (3x+10)e^x + c_1x + c_2$	مماس
	0.25	$\lim_{x \to -\infty} f(x) = 3 \lim_{x \to -\infty} x e^x + 4 \lim_{x \to -\infty} e^x = 0 -1 - (2)$	ساب مساحات
	0.25	درمعادلة المستقيم المقارب لــ (C_f) عند ∞	
	0.25×3	$\left[-\frac{7}{3} \right]$ منز ایدهٔ تماما علی $\left[-\frac{7}{3} \right]$ ومنتاقصهٔ تماما علی $f \cdot f' \cdot f' = -\frac{7}{3}$	
07	. 0.5	جدول التغيرات	
	0.5	$y = -(3x + 16)e^{-\frac{10}{3}}$: (Δ) aluka (1-(3)	
	0.25×2	$\omega\left(-\frac{10}{3};f(-\frac{10}{3})\right)$ ، $f''(x)$ اشارة (ب	
Mark 1	0.75	(c _j) ε (c _j) ε (Δ)	
ere ere frijstjene janske per erementerem erementerem erementerem erementerem erementerem erementerem eremente	0.75	$\int_{0}^{x} te^{t} dt = (x - 1)e^{x} + \frac{2}{e} - 1 - (4)$	
	0.5	$F(x) = (3x + 1)e^x + c : f$ حالة أصلية F	
	0.5	$A(\lambda) = -\int_{\lambda}^{\frac{\pi}{3}} f(x) dx = (3\lambda + 1)e^{\lambda} + 3e^{-\frac{4}{3}} (ua)$	
And the state of t	0.25	$\lim_{\lambda \to \infty} A(\lambda) = 3e^{-\frac{4}{3}} (\lambda a)$	
The second secon	0.25	$\lim_{\lambda \to \infty} A(\lambda) = 3e^{-\frac{1}{3}} \{ \lambda a \}$	

نمة	العلا	تابع الإجابة النموذجية المادة: رياضيات الشعبة: رياضيات	
المجموع		عناصر الإجابة (الموضوع الثاني)	محاور الموضوع
04	0.75 0.75 0.75 0.75 0.25 0.25 0.25 0.25	التمرين الأول: (04) نقاط) $k \in \mathbb{Z} \alpha, y) = (7k+1, 13k+2) (1)$ $k \in \mathbb{Z} a = 91k+13 (2)$ (3) (3) (4) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4) (6) (6) (6) (7) (6) (7) (6) (7) $(7,6)$ $(7,6)$ $(7,6)$ $(7,6)$ $(7,6)$ $(7,6)$ $(8,5), (8,5), (6,7), (7,6)$	الموافقات نظام التعداد القسمة الاقليدية
05	0.5×2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	(التمرين الثاني: (5) نقاط) $x = \frac{1}{2}\lambda$ $y = \lambda$: (Δ) ، $t \in \mathbb{R}$ $x = 1 - t$ $y = t$: (D) (1 $z = \frac{3}{2}t$ $z = 3 - 3\lambda$ $z = \frac{3}{2}t$ $z = 0$ (2 $z = 0$ (3) $z = 0$ (6;3;2) $z = 0$ $z = 0$ (3) $z = 0$ $z = 0$ (4) $z = 0$ $z = 0$ (5) $z = 0$ (6;3;2) $z = 0$ (7) $z = 0$ (8) $z = 0$ (8) $z = 0$ (9) $z = 0$ (1) $z = 0$ (2) $z = 0$ (3) $z = 0$ (4) $z = 0$ (4) $z = 0$ (5) $z = 0$ (6) $z = 0$ (7) $z = 0$ (7) $z = 0$ (8) $z = 0$ (9) $z = 0$ (9) $z = 0$ (1) $z = 0$ (2) $z = 0$ (3) $z = 0$ (4) $z = 0$ (5) $z = 0$ (6) $z = 0$ (7) $z = 0$ (8) $z = 0$ (8) $z = 0$ (9) $z = 0$ (9) $z = 0$ (1) $z = 0$ (2) $z = 0$ (3) $z = 0$ (4) $z = 0$ (4) $z = 0$ (5) $z = 0$ (7) $z = 0$ (8) $z = 0$ (8) $z = 0$ (9) $z = 0$ (9) $z = 0$ (1) $z = 0$ (1) $z = 0$ (1) $z = 0$ (2) $z = 0$ (3) $z = 0$ (4) $z = 0$ (4) $z = 0$ (5) $z = 0$ (7) $z = 0$ (8) $z = 0$ (8) $z = 0$ (9) $z = 0$ (1) $z = 0$ (1) $z = 0$ (1) $z = 0$ (2) $z = 0$ (3) $z = 0$ (4) $z = 0$ (4) $z = 0$ (5) $z = 0$ (7) $z = 0$ (7) $z = 0$ (8) $z $	التمثيل الوسيطي المستقيم معادلة مسا مركز ثقل مثلث بعد نقطة مستقيم

صة		عناصر الإجابة (الموضوع الثاني)	محاور
المجموع	مجزأة		موضوع
	0.5	التمرين الثالث: (44 نقاط) $a = \left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$ / 1 خطأ، لأن $a = \left(\cos\frac{3\pi}{4} + i\sin\frac{3\pi}{4}\right)$	عداد رکبهٔ تتالیات
		$\overline{a} = -\frac{\sqrt{2}}{2} - i\frac{\sqrt{2}}{2}$ $a^{2011} = \frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2}$ (ψ)	
	0.5	$2/$ أ- خطأ لأن زاويته هي $\frac{3\pi}{4}$	
04	0.5	ب- خطأ لأنه مجموعة النقط M هي نصف مستقيم مفتوح مبدؤه: A	
lig Shelt Lad	0.5	$\frac{3}{4} \left[-\frac{7}{12} \left(\frac{3}{4} \right)^n + \frac{2}{3} \right] + \frac{1}{6} = -\frac{7}{12} \left(\frac{3}{4} \right)^{n+1} + \frac{2}{3} $ (1/3)	
	0.5	ب) خطأ لأن: من أجل كل عدد طبيعي n ، $0 < u_{n+1} - u_n > 0$	
	0.5	$\lim_{n\to\infty} u_n = \frac{2}{3} \text{ (\Rightarrow)}$	
	4540	التعرين الرابع: (07 نقاط)	
	0.25×2	$g \cdot g'(x) = 2x + \frac{2}{x} > 0$ أ-أ-(1) و متز الدة تماما على $g \cdot g'(x) = 2x + \frac{2}{x} > 0$	
	0.25×3	$\lim_{x \to \infty} g(x) = +\infty \lim_{x \to \infty} g(x) = -\infty$	
	0.25	ب- g(l) = 0	اريتمية
	0.5	0 < x < 1) $g(x) < 0 < x < 1$ $g(x) > 0$ $g(x) > 0$	ل أصلية ساب
	0.25	$f = -\frac{1}{2}$ قابلة للاشتقاق على $-\frac{1}{2}$ لأنها جداء دالتين قابلتن للاشتقاق	ساجات
	0.5	$\dots f'(x) = \frac{g(x)}{x^3}$	ضع النسبي
	0.25	متزايدة تماما على $]\infty+;1]$ ومتناقصة ثماما على $[0;1]$	
07	0.25×3	$\lim_{x \to +\infty} f(x) = +\infty$ ، $\lim_{x \to +\infty} f(x) = +\infty$ ، $\lim_{x \to +\infty} f(x) = +\infty$	
		(C_f) ومنه (C_f) فوق (S) من أجل (C_f) ومنه (C_f) فوق (C_f) من أجل (C_f)	
37 63	0.25×2	تحت (δ) من أجل x >1	
	0.25	$\lim_{x \to +\infty} \frac{1}{x^2} \ln x = 0$	
	0.25	نستنتج أن (δ) منحنى مقارب ا (C_f) في جوار (C_f) في جوار	
	0.75	(C_r) و (S) و (C_r)	
	0.5	$\int_{t^2}^{1} \ln t dt = -\frac{1}{x} (1 + \ln x) + 1 -1 - \frac{1}{3}$	
	0.25	$x \mapsto x \ln x - x$ هي دالة أصلية ل $x \mapsto \ln x$ على $x \mapsto x \ln x - x$	
	0.25	$F(x) = \frac{(x^2+1)\ln x - x^2 + 1}{x}$ [1;+\infty] [1;+\infty] [1;+\infty]	
	0.25	$A(\alpha) = \int_{1}^{\alpha} (\ln x - f(x)) dx = 1 - \frac{1 + \ln \alpha}{\alpha} (ua) - \varphi$	
	0.25	$\lim_{\alpha \to +\infty} A(\alpha) = 1 (u\alpha)$	