Modelli della concorrenza - Formulario

Alessandro Vasquez

November 9, 2016

Contents

1	Log	ica di l	Hoare - Correttezza parziale
	1.1	Regole	di derivazione primitive
		1.1.1	Istruzione vuota
		1.1.2	Assegnamento
		1.1.3	Conseguenza
		1.1.4	Sequenza
		1.1.5	Iterazione
	1.2	Regole	di derivazione ottenibili induttivamente
		1.2.1	Controllo di flusso
2	Cor	rettezz	za totale
	2.1	Determ	ninare la precondizione
		2.1.1	Definizioni e notazioni

1 Logica di Hoare - Correttezza parziale

1.1 Regole di derivazione primitive

1.1.1 Istruzione vuota

Sia data una formula proposizionale α . Allora:

$$\overline{\{\alpha\} \ skip \ \{\alpha\}}$$

1.1.2 Assegnamento

Sia data una formula proposizionale α , una variabile x e un'espressione E. Allora:

$$\overline{\left\{\alpha\left[\frac{E}{x}\right]\right\}\,x:=E\,\left\{\alpha\right\}}$$

1.1.3 Conseguenza

Siano date le formule proposizionali p, q, p_1, q_1 e il programma P. Allora:

$$\frac{p_1 \to p \quad \{p\} \ P \ \{q\}}{\{p_1\} \ P \ \{q\}} \qquad \frac{\{p\} \ P \ \{q\} \qquad q \to q_1}{\{p\} \ P \ \{q_1\}}$$

Dalle ultime due deduzioni si ottiene induttivamente la seguente:

$$\frac{p_1 \to p \qquad \{p\} \ P \ \{q\} \qquad q \to q_1}{\{p_1\} \ P \ \{q_1\}}$$

1.1.4 Sequenza

Siano date le formule proposizionali p, q, r e le istruzioni C_1, C_2 . Allora:

$$\frac{\{p\}\ C_1\ \{q\}\qquad \{q\}\ C_2\ \{r\}}{\{p\}\ C_1\ ;\ C_2\ \{r\}}$$

La regola di sequenza è utile nei cicli il cui corpo presenta istruzioni diverse che coinvolgono le stesse variabili.

1.1.5 Iterazione

Siano dati un ciclo iterativo, la relativa condizione B, una sua invariante i, e il corpo del ciclo C. Allora:

$$\frac{\{i \land B\} \ C \ \{i\}}{\{i\} \ \text{while B do C od} \ \{i \land \neg B\}}$$

1.2 Regole di derivazione ottenibili induttivamente

Siano date le formule proposizionali p, q, r e il programma P. Allora:

$$\frac{\{p\}\ P\ \{q\}\qquad \{r\}\ P\ \{q\}}{\{p\lor r\}\ P\ \{q\}}$$

Nel caso in cui $r = \neg p$, la precondizione nella conclusione della deduzione diventa una tautologia:

$$\frac{\{p\}\ P\ \{q\}\qquad \{\neg p\}\ P\ \{q\}}{\{p\vee\neg p\}\ P\ \{q\}}$$

1.2.1 Controllo di flusso

Siano date le formule proposizionali $p,\ q$. Siano dati inoltre una condizione $B,\$ un blocco P (eseguito solo se B è verificata) e un blocco Q (eseguito altrimenti). Sia infine R il blocco che include l'istruzione di controllo su B e i blocchi P e Q. Vale la seguente deduzione:

$$\frac{\{p \wedge B\}\ P\ \{q\} \qquad \{p \wedge \neg B\}\ Q\ \{q\}}{\{p\}\ R\ \{q\}}$$

2 Correttezza totale

Si vuole verificare la terminazione di un programma dato. La non-terminazione può avvenire solo in presenza di cicli: ci si concentrerà sullo studio di programmi iterativi. Si supponga di avere un programma P che presenta un ciclo while W il cui corpo è denotato con C.

Si supponga di aver determinato un invariante i del ciclo. Dimostrare che il P termina significa determinare una espressione E e un invariante p, indipendente da E e da i, tali che:

1.
$$p \to E \ge 0$$

2.
$$\vdash_p \{p \land B \land E = K\} \ C \ \{E < K\}$$

2.1 Determinare la precondizione

Si supponga di avere una tripla di Hoare priva della precondizione: $P\{q\}$. Si rende necessario trovare un metodo per determinarne la precondizione.

2.1.1 Definizioni e notazioni

Definizione 1. Sia V l'insieme delle variabili di un programma P. Uno stato σ di P è una funzione

$$\sigma: V \to \mathbb{Z}$$
.

Definizione 2. L'insieme di tutti gli stati di un programma è l'insieme:

$$\Sigma \{ \sigma : V \to \mathbb{Z} \}.$$

Definizione 3. L'insieme di tutte le formule proposizionali costruite a partire da V di chiama Π .

Dati $\sigma \in \Sigma$ e $p \in \Pi,$ si dirà che la formula p è valida nello stato σ usando la notazione

$$\sigma \models p$$
.

Definizione 4. L'insieme di tutte le possibili asserzioni vere per lo stato σ è l'insieme

$$t(\sigma) = \{ p \in \Pi : \sigma \models p \}.$$

Definizione 5. L'insieme degli stati che rendono vera la formula p è l'insieme

$$m(p) = \{ \sigma \in \Sigma : \sigma \models p \}.$$

Tale insieme è definito come l'estensione della formula p.

Lemma 1. Siano $S \subseteq \Sigma$ e $F \subseteq \Pi$. Allora

$$t(S) = \{ p \in \Pi : \forall s \in S : \sigma \models p \} = \bigcap_{\sigma \in S} t(\sigma),$$

$$m(F) = \{ \sigma \in \Sigma : \forall p \in F : \sigma \models p \} = \bigcap_{p \in F} t(p).$$

Lemma 2. Siano $A, B \in \Sigma$ tali che $A \subseteq B$. Allora

$$t(A) \supseteq t(B)$$
.

Lemma 3. Siano $A, B \in \Pi$ tali che $A \subseteq B$. Allora

$$m(A) \supseteq m(B)$$
.

Lemma 4. Siano p, q formule proposizionali. Grazie alla definizione ricorsiva di formula proposizionale, valgono le seguenti proprietà:

- $m(\neg p) = \Sigma \setminus m(p)$
- $m(p \lor q) = m(p) \cup m(q)$
- $m(p \wedge q) = m(p) \cap m(q)$
- $(m \to q) = (\Sigma \setminus m(p)) \cup m(q)$

in cui l'ultima uguaglianza è data dal fatto che $p \to q \equiv \neg p \lor q^1$.

 $^{^1\}mathrm{Si}$ veda la definizione di $\beta\text{-formula}.$