CS 302.1 - Automata Theory

Lecture 04

Shantanav Chakraborty

Center for Quantum Science and Technology (CQST)
Center for Security, Theory and Algorithms (CSTAR)
IIIT Hyderabad

Quick Recap

- RL can also be derived from first principles.
- Regular expressions provide an elegant algebraic framework to represent regular languages.
- We can construct NFAs given a Regular Expression.

A Generalized NFA (GNFA) is similar to an NFA except that transitions contain regular expressions.

Given a DFA M, we obtain the regular expression corresponding to L(M) by constructing a 2-state GNFA via a recursive algorithm.

DFA, NFA, Regular Expressions have equal power and all of them correspond to Regular Languages

How do we prove that certain languages are non-regular? We start with an example

Let $\Sigma = \{0,1\}$. Consider the language $L = \{0^n 1^n | n \ge 0\}$ and the following conversation between Karl and Mil.

Mil: I have a DFA for *L*.

Karl: How many states are there?

Mil: n-states (say n = 10)

Karl: Then $0^{10}1^{10}$ must be accepted. By the **pigeonhole principle**, while reading the first (n = 10) symbols, some states need to be revisited. Otherwise n + 1 = 11 states would have been present. Hence some loop must be present. How many states are there in the loop?

Mil: t-states (say t = 3).

Karl: If your DFA accepts $0^n 1^n$, it must also accept $0^{n+t} 1^n$. This is because, if we take the loop one extra time, we read t more 0's.

Contradiction as $0^{n+t}1^n \notin L$. So Mil, you never had a DFA for L and in fact, L is not regular.

If L is a regular language, all strings in the language, larger than a certain length (pumping length), can be pumped: the string contains a certain section that can be repeated any number of times and the resulting string still $\in L$.

If L is a regular language, all strings in the language, larger than a certain length (pumping length), can be pumped: the string contains a certain section that can be repeated any number of times and the resulting string still $\in L$.

(Pumping Lemma) If L is a regular language, then there exists a number p (the pumping length) where for all $s \in L$ of length at least p, there exists x, y, z such that s = xyz, such that

- 1. $|xy| \leq p$.
- 2. $|y| \ge 1$
- 3. $\forall i \geq 0, xy^i z \in L$.

If L is a regular language, all strings in the language, larger than a certain length (pumping length), can be pumped: the string contains a certain section that can be repeated any number of times and the resulting string still $\in L$.

(Pumping Lemma) If L is a regular language, then there exists a number p (the pumping length) where for all $s \in L$ of length at least p, there exists x, y, z such that s = xyz, such that

- 1. $|xy| \leq p$.
- 2. $|y| \ge 1$
- 3. $\forall i \geq 0, xy^i z \in L$.

Note: $(A \Rightarrow B) \equiv (\neg B) \Rightarrow (\neg A)$

If L is regular then, pumping property is satisfied

 \equiv

If pumping property is NOT satisfied, then \boldsymbol{L} is NOT regular.

Proof sketch: Suppose that we have a DFA M of p states. Then any run in the DFA corresponding to strings of length at least p, some states are repeated.

This is because of the *pigeonhole principle*: any such run would encounter p+1 states, but there are p distinct states in the DFA.

Proof sketch: Suppose that we have a DFA M of p states. Then any run in the DFA corresponding to strings of length at least p, some states are repeated.

This is because of the *pigeonhole principle*: any such run would encounter p+1 states, but there are p distinct states in the DFA.

Suppose $s=s_1s_2\cdots s_n$ be any such string of length $n\ (\geq p)$ and suppose $r_1r_2\cdots r_{n+1}$ be the sequence of states encountered, while implementing a run of s in M.

As $n+1 \ge p+1$, in the above sequence at least two states must be repeated. Let them be r_i and r_l , i.e., $r_i = r_l$, but $j \ne l$.

Proof sketch: Suppose that we have a DFA M of p states. Then any run in the DFA corresponding to strings of length at least p, some states are repeated.

This is because of the *pigeonhole principle*: any such run would encounter p+1 states, but there are p distinct states in the DFA.

Suppose $s=s_1s_2\cdots s_n$ be any such string of length $n\ (\geq p)$ and suppose $r_1r_2\cdots r_{n+1}$ be the sequence of states encountered, while implementing a run of s in M.

As $n+1 \ge p+1$, in the above sequence at least two states must be repeated. Let them be r_i and r_l , i.e., $r_j = r_l$, but $j \ne l$.

So we can divide the s into three parts, $x=s_1\dots s_{j-1},\ y=s_j\dots s_{l-1},\ z=s_l\dots s_n.$ For a run on M, due to s

- the x part takes us from r_1 to r_i
- the y part belongs to the loop part (we go from r_i to r_i)
- z takes us from r_j to r_{n+1} , which is a final state if $s \in L$.

Proof sketch: Suppose that we have a DFA M of p states. Then any run in the DFA corresponding to strings of length at least p, some states are repeated.

This is because of the *pigeonhole principle*: any such run would encounter p+1 states, but there are p distinct states in the DFA.

Suppose $s = s_1 s_2 \cdots s_n$ be any such string of length $n \geq p$ and suppose $r_1 r_2 \cdots r_{n+1}$ be the sequence of states encountered, while implementing a run of s in M.

As $n+1 \ge p+1$, in the above sequence at least two states must be repeated. Let them be r_j and r_l , i.e., $r_j = r_l$, but $j \ne l$.

So we can divide the s into three parts, $x=s_1\dots s_{j-1},\ y=s_j\dots s_{l-1},\ z=s_l\dots s_n.$ For a run on M, due to s

- the x part takes us from r_1 to r_j
- the y part belongs to the loop part (we go from r_i to r_i)
- z takes us from r_i to r_{n+1} , which is a final state if $s \in L$.

• We can traverse the loop bit any number of times and so $\forall i \geq 0, xy^iz \in L$.

Proof sketch: Suppose that we have a DFA M of p states. Then any run in the DFA corresponding to strings of length at least p, some states are repeated.

This is because of the *pigeonhole principle*: any such run would encounter p+1 states, but there are p distinct states in the DFA.

Suppose $s=s_1s_2\cdots s_n$ be any such string of length $n\ (\geq p)$ and suppose $r_1r_2\cdots r_{n+1}$ be the sequence of states encountered, while implementing a run of s in M.

As $n+1 \ge p+1$, in the above sequence at least two states must be repeated. Let them be r_j and r_l , i.e., $r_j = r_l$, but $j \ne l$.

So we can divide the s into three parts, $x = s_1 \dots s_{j-1}$, $y = s_j \dots s_{l-1}$, $z = s_l \dots s_n$. For a run on M, due to s

- the x part takes us from r_1 to r_j
- the y part belongs to the loop part (we go from r_i to r_i)
- z takes us from r_i to r_{n+1} , which is a final state if $s \in L$.

- We can traverse the loop bit any number of times and so $\forall i \geq 0, xy^iz \in L$.
- Also, as $j \neq l$, $|y| \geq 1$
- While reading the input, within the first p symbols of s, some state must be repeated.

Proof sketch: Suppose that we have a DFA M of p states. Then any run in the DFA corresponding to strings of length at least p, some states are repeated.

This is because of the *pigeonhole principle*: any such run would encounter p+1 states, but there are p distinct states in the DFA.

Suppose $s=s_1s_2\cdots s_n$ be any such string of length $n\ (\geq p)$ and suppose $r_1r_2\cdots r_{n+1}$ be the sequence of states encountered, while implementing a run of s in M.

As $n+1 \ge p+1$, in the above sequence at least two states must be repeated. Let them be r_j and r_l , i.e., $r_j = r_l$, but $j \ne l$.

So we can divide the s into three parts, $x=s_1\dots s_{j-1},\ y=s_j\dots s_{l-1},\ z=s_l\dots s_n.$ For a run on M, due to s

- the x part takes us from r_1 to r_j
- the y part belongs to the loop part (we go from r_i to r_i)
- z takes us from r_i to r_{n+1} , which is a final state if $s \in L$.

- We can traverse the loop bit any number of times and so $\forall i \geq 0, xy^iz \in L$.
- Also, as $j \neq l$, $|y| \geq 1$, and
- The DFA reads |xy| by then and so $|xy| \le p$.

In order to prove that a language is non-regular,

- Assume that it is regular and obtain a contradiction.
- Find a string in the language of length $\geq p$ (pumping length) that cannot be pumped.

Examples of languages that are NOT regular:

- $\{0^p | p \text{ is prime}\}$
- $\{0^n 1^n | n \ge 0\}$
- $\{\omega | \omega \text{ has equal number of } 0\text{'s and } 1\text{'s}\}$
- $\{\omega | \omega \text{ is palindrome}\}$

:

The story so far...

- We have built devices (DFAs/NFAs) that decides some languages.
- Regular languages are precisely the ones that are accepted by finite automata.
- For any $L \in RL$, we have DFA/NFA M such that L(M) = L.
- Regular expressions describe regular languages algebraically.
- There are languages that are not regular.

 $DFA \equiv NFA \equiv Regular Expressions$

Next up:

- How do we generate the strings in a language?
- **Syntax:** What are the set of legal strings in a language?
- Think of the English language (Rules of grammar)

- **Grammars** provide a way to generate strings belonging to a language. The set of all strings generated by the grammar is the *language* of the grammar.
- Grammars generate languages: Grammars consist of a set of rules that allow you to construct strings of the language.
- For some classes of grammars, one can build automata that recognizes the language generated by the grammar.
- In fact, these concepts have been fundamental in attempts to formalize natural languages.

- **Grammars** provide a way to generate strings belonging to a language. The set of all strings generated by the grammar is the *language* of the grammar.
- Grammars generate languages: Grammars consist of a set of rules that allow you to construct strings of the language.
- For some classes of grammars, one can build automata that recognizes the language generated by the grammar.
- Consider these rules

Sentence \rightarrow Subject Verb Object Subject \rightarrow Noun. phrase Object \rightarrow Noun. phrase Noun. phrase \rightarrow Article Noun|Noun Article \rightarrow the Noun \rightarrow boy|girl|soccer|poetry Verb \rightarrow loves|plays

- **Grammars** provide a way to generate strings belonging to a language. The set of all strings generated by the grammar is the *language* of the grammar.
- Grammars generate languages: Grammars consist of a set of rules that allow you to construct strings of the language.
- For some classes of grammars, one can build automata that recognizes the language generated by the grammar.
- Consider these rules

Sentence \rightarrow Subject Verb Object Subject \rightarrow Noun. phrase Object \rightarrow Noun. phrase Noun. phrase \rightarrow Article Noun|Noun Article \rightarrow the Noun \rightarrow boy|girl|soccer|poetry Verb \rightarrow loves|plays

Terminals consist of strings over the alphabet corresponding to the language that the Grammar generates

Variables: {Sentence, Subject, Verb, Object, Noun, Noun. phrase, Article}, **Terminals**: {the, girl, loves, plays, soccer, poetry} **Start Variable**: Sentence

- **Grammars** provide a way to generate strings belonging to a language. The set of all strings generated by the grammar is the *language* of the grammar.
- Grammars generate languages: Grammars consist of a set of rules that allow you to construct strings of the language.
- For some classes of grammars, one can build automata that recognizes the language generated by the grammar.
- Consider these rules

Sentence \rightarrow Subject Verb Object Subject \rightarrow Noun. phrase Object \rightarrow Noun. phrase Noun. phrase \rightarrow Article Noun|Noun Article \rightarrow the Noun \rightarrow boy|girl|soccer|poetry

 $Verb \rightarrow loves|plays|$

The sentence "the girl plays soccer" can be derived from this set of rules.

Variables: {Sentence, Subject, Verb, Object, Noun, Noun. phrase, Article}, **Terminals**: {the, girl, loves, plays, soccer, poetry} **Start Variable**: Sentence

- **Grammars** provide a way to generate strings belonging to a language. The set of all strings generated by the grammar is the *language* of the grammar.
- Grammars generate languages: Grammars consist of a set of rules that allow you to construct strings of the language.
- For some classes of grammars, one can build automata that recognizes the language generated by the grammar.
- Consider these rules

Sentence \rightarrow Subject Verb Object Subject \rightarrow Noun. phrase Object \rightarrow Noun. phrase Noun. phrase \rightarrow Article Noun|Noun Article \rightarrow the Noun \rightarrow boy|girl|soccer|poetry Verb \rightarrow loves|plays

Sentence → Subject Verb Object

→ Noun. phrase Verb Object

→ Article Noun Verb Object

→ the Noun Verb Object

→ the girl Verb Object

→ the girl plays Object

→ the girl plays Noun. phrase

→ the girl plays Noun

→ the girl plays soccer

Variables: {Sentence, Subject, Verb, Object, Noun, Noun. phrase, Article}, **Terminals**: {The, girl, loves, plays, soccer, poetry} **Start Variable**: Sentence

Noam Chomsky

- Noam Chomsky did pioneering work on linguistics and formalized many of these concepts.
- Also made great contributions to political economy and has been a champion of anti-imperialist, anti-capitalist, social justice struggles across the globe.

(Grammar) Formally, a Grammar G is a 5-tuple (V, Σ, P, S) such that

- *V* is the set of **Variables**
- Σ is the set of **Terminals** (disjoint from V)
- *P* is the set of production **Rules** $[(V \cup \Sigma)^* V (V \cup \Sigma)^* \rightarrow (V \cup \Sigma)^*]$
- S is the Start Variable [The variable in the LHS of the first rule is generally the start variable]

Eg: Consider the grammar *G*

$$X \rightarrow 1X$$

$$X \rightarrow 0Y$$

$$Y \rightarrow 0X$$

$$Y \rightarrow 1Y$$

$$Y \rightarrow \epsilon$$

X is the start variable of the Grammar. Variables: $\{X, Y\}$, Terminals: $\{\epsilon, 0, 1\}$

(Grammar) Formally, a Grammar G is a 5-tuple (V, Σ, P, S) such that

- *V* is the set of **Variables**
- Σ is the set of **Terminals** (disjoint from V)
- *P* is the set of production **Rules** $[(V \cup \Sigma)^*V(V \cup \Sigma)^* \rightarrow (V \cup \Sigma)^*]$
- S is the **Start Variable** [The variable in the LHS of the first rule is generally the start variable]

Grammars can be used to derive strings.

The sequence of **substitutions** (using the rules of G) required to obtain a certain string is called a **derivation**.

- Begin the derivation from the Start variable.
- Replace any variable according to a rule. Repeat until only terminals remain.
- The generated string is derived by the grammar.

Eg: Consider the grammar *G*

$$X \rightarrow 1X$$

$$X \rightarrow 0Y$$

$$Y \rightarrow 1Y$$
 X: Start Variable

$$Y \to 0X$$
 {X, Y}: Variables

$$Y \to \epsilon$$
 { ϵ , 0,1}: Terminals

The following is a derivation

$$X \to 1X \to 11X \to 110Y \to 1101Y \to 1101$$

(Grammar) Formally, a Grammar G is a 4-tuple (V, Σ, P, S) such that

- *V* is the set of **Variables**
- Σ is the set of **Terminals**
- *P* is the set of production **Rules** $[(V \cup T)^*V(V \cup T)^* \rightarrow (V \cup T)^*]$
- S is the **Start Variable** [The variable in the LHS of the first rule is generally the start variable]
- To show that a string $w \in L(G)$, we show that there exists a **derivation ending up in** w. The fact that w can be derived using the rules of G, is expressed as $S \stackrel{*}{\Rightarrow} w$.
- The language of the grammar, L(G) is $\{w \in \Sigma^* | S \stackrel{*}{\Rightarrow} w\}$

(Grammar) Formally, a Grammar G is a 5-tuple (V, Σ, P, S) such that

- *V* is the set of **Variables**
- Σ is the set of **Terminals**
- *P* is the set of production **Rules** $[(V \cup T)^*V(V \cup T)^* \rightarrow (V \cup T)^*]$
- S is the **Start Variable** [The variable in the LHS of the first rule is generally the start variable]
- To show that a string $w \in L(G)$, we show that there exists a **derivation ending up in** w. The fact that w can be derived using the rules of G, is expressed as $S \stackrel{*}{\Rightarrow} w$.
- The language of the grammar, L(G) is $\{w \in \Sigma^* | S \stackrel{*}{\Rightarrow} w\}$

Eg: Consider the grammar *G*

$$X \rightarrow 1X$$

$$X \rightarrow 0Y$$

$$Y \rightarrow 1Y$$

$$Y \rightarrow 0X$$

$$Y \rightarrow \epsilon$$

The string $1101 \in L(G)$ because there exists the following derivation

$$X \rightarrow 1X \rightarrow 11X \rightarrow 110Y \rightarrow 1101Y \rightarrow 1101$$

Regular grammar: If the *rules* of the underlying grammar *G* are of the form

$$Var \rightarrow Ter Var$$
 $Var \rightarrow Ter$
 $Var \rightarrow \epsilon$

then the language of the grammar is **regular**. Also known as **Right-linear grammar** (all variables are to the right of terminals in the RHS).

Right linear Grammar to DFA

Eg: Consider the grammar *G*

$$X \rightarrow 1X$$

$$X \rightarrow 0Y$$

$$Y \rightarrow 1Y$$

$$Y \rightarrow 0X$$

 $Y \rightarrow \epsilon$ (indicates that Y is the final state)

Regular grammar: If the *rules* of the underlying grammar *G* are of the form

$$Var \rightarrow Ter Var$$
 $Var \rightarrow Ter$
 $Var \rightarrow \epsilon$

then the language of the grammar is **regular.** Also known as **Right-linear grammar** (all variables are to the right of terminals in the RHS).

Right linear Grammar to DFA

Eg: Consider the grammar *G*

$$X \rightarrow 1X$$

$$X \rightarrow 0Y$$

$$Y \rightarrow 1Y$$

$$Y \rightarrow 0X$$

 $Y \rightarrow \epsilon$ (indicates that Y is the final state)

Regular grammar: If the *rules* of the underlying grammar *G* are of the form

$$Var \rightarrow Ter Var$$
 $Var \rightarrow Ter$
 $Var \rightarrow \epsilon$

then the language of the grammar is **regular**. Also known as **Right-linear grammar** (all variables are to the right of terminals in the RHS).

Right linear Grammar to DFA

Eg: Consider the grammar *G*

$$X \rightarrow 1X$$

$$X \rightarrow 0Y$$

$$Y \rightarrow 1Y$$

$$Y \rightarrow 0X$$

 $Y \rightarrow \epsilon$ (indicates that Y is the final state)

A **run** in a DFA model is analogous to a **derivation** in a linear grammar.

For the string **1101**:

Derivation: $X \rightarrow 1X \rightarrow 11X \rightarrow 110Y \rightarrow 1101Y \rightarrow 1101$. So $1101 \in L(G)$

Run: $X \xrightarrow{1} X \xrightarrow{1} X \xrightarrow{0} Y \xrightarrow{1} Y$ (Accepting Run and so $1101 \in L(M)$).

Regular grammar: If the *rules* of the underlying grammar *G* are of the form

$$Var \rightarrow Ter Var$$
 $Var \rightarrow Ter$
 $Var \rightarrow \epsilon$

then the language of the grammar is **regular**. Also known as **Right-linear grammar** (all variables are to the right of terminals in the RHS).

DFA to Right linear Grammar

Consider the following DFA M

The right-linear grammar *G* for *M*

$$S \rightarrow 0A$$

$$A \rightarrow 01B$$

$$B \rightarrow 1S$$

$$F \rightarrow 01F$$

$$A \rightarrow 1F$$

$$B \rightarrow 0F$$

$$S \rightarrow 1F$$

$$F \rightarrow \epsilon$$

Right-linear grammar \equiv DFA \equiv NFA \equiv Regular Expressions

Left linear grammar: If the *rules* of the underlying grammar *G* are of the form

$$Var \rightarrow Var Ter$$
 $Var \rightarrow Ter$
 $Var \rightarrow \epsilon$

then such a grammar is called **Left-linear** (all Variables are to the left of terminals in the RHS).

Right linear grammars are equivalent to Left-linear grammar (We won't be proving it here)

Right-linear grammar \equiv DFA \equiv NFA \equiv Regular Expressions

Left linear grammar: If the *rules* of the underlying grammar *G* are of the form

$$Var \rightarrow Var Ter$$
 $Var \rightarrow Ter$
 $Var \rightarrow \epsilon$

then such a grammar is called **Left-linear** (all Variables are to the left of terminals in the RHS).

Right linear grammars are equivalent to Left-linear grammar (We won't be proving it here)

Right-linear grammars and Left-linear grammars generate Regular Languages.

Note that mixing left-linear grammars and right-linear grammars in the same set of rules **won't generate regular** languages. (e.g: $S \to aX, X \to Sb, S \to \epsilon$)

Left-linear grammar \equiv Right-linear grammar \equiv DFA \equiv Regular Expressions

(Grammar) Formally, a Grammar G is a 4-tuple (V, Σ, P, S) such that

- *V* is the set of **Variables**
- Σ is the set of **Terminals**
- *P* is the set of production **Rules**
- S is the Start Variable

$$[(V \cup T)^*V(V \cup T)^* \rightarrow (V \cup T)^*]$$

[The variable in the LHS of the first rule is generally the start variable]

Context-Free Grammars: If the *rules* of the underlying grammar *G* are of the form

$$V \rightarrow (V \cup T)^*$$

then such a grammar is called **Context-Free**.

Any language generated by a context-free grammar is called a *context-free language*.

Immediately we find that the *rules* are less restrictive than left-linear grammars and right-linear grammars. Context free grammars allow

$$Var \rightarrow Anything$$

 $Var \rightarrow String \ of \ Variables \ | String \ of \ Terminals \ | Strings \ of \ Variables \ and \ Terminals \ | \epsilon$

Context-Free Grammars: If the *rules* of the underlying grammar *G* are of the form

$$V \rightarrow (V \cup T)^*$$

then such a grammar is called **Context-Free**.

Any language generated by a context-free grammars is called a *context-free language*.

Immediately we find that the *rules* are less restrictive than left-linear grammars and right-linear grammars. Context free grammars allow

$$Var \rightarrow Anything$$

 $Var \rightarrow String \ of \ Variables \ | \ String \ of \ Terminals \ | \ Strings \ of \ Variables \ and \ Terminals \ | \ \epsilon$

- So Left linear grammars and Right linear grammars are also context-free grammars.
- Regular languages

 Context Free Languages.

Context-Free Grammars: If the *rules* of the underlying grammar *G* are of the form

$$V \rightarrow (V \cup T)^*$$

then such a grammar is called **Context-Free**.

Any language generated by a context-free grammars is called a *context-free language*.

- So Left linear grammars and Right linear grammars are also context-free grammars.
- Regular languages ⊂ Context Free Languages.

Consider the Grammar *G* with the following rules:

$$S \rightarrow 0S1$$

$$S \to \epsilon$$

Context-Free Grammars: If the rules of the underlying grammar G are of the form

$$V \rightarrow (V \cup T)^*$$

then such a grammar is called **Context-Free**.

Any language generated by a context-free grammars is called a *context-free language*.

- So Left linear grammars and Right linear grammars are also context-free grammars.
- Regular languages ⊂ Context Free Languages.

Consider the Grammar *G* with the following rules:

$$S \rightarrow 0S1|\epsilon$$

Context-Free Grammars: If the *rules* of the underlying grammar *G* are of the form

$$V \rightarrow (V \cup T)^*$$

then such a grammar is called **Context-Free**.

Any language generated by a context-free grammars is called a *context-free language*.

- So Left linear grammars and Right linear grammars are also context-free grammars.

Consider the Grammar *G* with the following rules:

$$S \rightarrow 0S1|\epsilon$$

What is the language generated by this grammar?

Context-Free Grammars: If the *rules* of the underlying grammar *G* are of the form

$$V \rightarrow (V \cup T)^*$$

then such a grammar is called **Context-Free**.

Any language generated by a context-free grammars is called a *context-free language*.

- So Left linear grammars and Right linear grammars are also context-free grammars.
- Regular languages ⊂ Context Free Languages.

Consider the Grammar G with the following rules:

Strings that can be derived from *G*:

$$S \to 0S1|\epsilon$$

$$S \to \epsilon$$

What is the language generated by this grammar?

 $\{\epsilon\}$

Context-Free Grammars: If the *rules* of the underlying grammar *G* are of the form

$$V \to (V \cup T)^*$$

then such a grammar is called **Context-Free**.

Any language generated by a context-free grammars is called a context-free language.

- So Left linear grammars and Right linear grammars are also context-free grammars.
- Regular languages ⊂ Context Free Languages.

Consider the Grammar *G* with the following rules:

Strings that can be derived from *G*:

$$S \to 0S1|\epsilon$$

$$S \rightarrow 0S1 \rightarrow 01$$

What is the language generated by this grammar?

$$\{\epsilon, 01\}$$

Context-Free Grammars: If the *rules* of the underlying grammar *G* are of the form

$$V \rightarrow (V \cup T)^*$$

then such a grammar is called Context-Free.

Any language generated by a context-free grammars is called a *context-free language*.

- So Left linear grammars and Right linear grammars are also context-free grammars.
- Regular languages ⊂ Context Free Languages.

Consider the Grammar G with the following rules:

Strings that can be derived from *G*:

$$S \to 0S1|\epsilon$$

$$S \rightarrow 0S1 \rightarrow 00S11 \rightarrow 0011$$

What is the language generated by this grammar?

$$\{\epsilon, 01, 0011\}$$

Context-Free Grammars: If the *rules* of the underlying grammar G are of the form

$$V \rightarrow (V \cup T)^*$$

then such a grammar is called Context-Free.

Any language generated by a context-free grammars is called a *context-free language*.

- So Left linear grammars and Right linear grammars are also context-free grammars.
- Regular languages ⊂ Context Free Languages.

Consider the Grammar G with the following rules:

Strings that can be derived from *G*:

$$S \rightarrow 0S1|\epsilon$$

$$S \rightarrow 0S1 \rightarrow 00S11 \rightarrow 000S111 \rightarrow 000111$$

What is the language generated by this grammar?

$$\{\epsilon, 01, 0011, 000111\}$$

Context-Free Grammars: If the *rules* of the underlying grammar *G* are of the form

$$V \rightarrow (V \cup T)^*$$

then such a grammar is called **Context-Free**.

Any language generated by a context-free grammars is called a *context-free language*.

- So Left linear grammars and Right linear grammars are also context-free grammars.
- Regular languages ⊂ Context Free Languages.

Consider the Grammar *G* with the following rules:

Strings that can be derived from *G*:

$$S \rightarrow 0S1|\epsilon$$

$$\{\epsilon, 01, 0011, 000111, 0^41^4, \cdots\}$$

What is the language generated by this grammar?

$$L(G) = \{\omega | \omega = 0^n 1^n, n \ge 0\}$$

So although L(G) is not regular, it is context-free.

Context-Free Grammars: If the *rules* of the underlying grammar *G* are of the form

$$V \rightarrow (V \cup T)^*$$

then such a grammar is called Context-Free.

Any language generated by a context-free grammars is called a *context-free language*.

- So Left linear grammars and Right linear grammars are also context-free grammars.
- Regular languages ⊂ Context Free Languages.

Consider the Grammar *G* with the following rules:

$$S \to 0S1|\epsilon$$

What is the language generated by this grammar?

$$L(G) = \{\omega | \omega = 0^n 1^n, n \ge 0\}$$

So although L(G) is not regular, it is context-free.

Context-Free Grammars: If the *rules* of the underlying grammar *G* are of the form

$$V \rightarrow (V \cup T)^*$$

then such a grammar is called **Context-Free**.

Regular languages ⊂ **Context Free Languages**.

Consider the Grammar *G* with the following rules:

Strings that can be derived by *G*:

$$S \to 0S1|SS|\epsilon$$

$$S \to \epsilon$$

 $\{\epsilon\}$

Context-Free Grammars: If the *rules* of the underlying grammar *G* are of the form

$$V \rightarrow (V \cup T)^*$$

then such a grammar is called **Context-Free**.

Regular languages ⊂ **Context Free Languages**.

Consider the Grammar *G* with the following rules:

 $S \rightarrow 0S1|SS|\epsilon$

Strings that can be derived by *G*:

$$S \to 0$$
S1 $\to 0$ **0S**11 ...

$$\{\epsilon, 01, 0011, \dots 0^n 1^n\}$$

Context-Free Grammars: If the *rules* of the underlying grammar *G* are of the form

$$V \rightarrow (V \cup T)^*$$

then such a grammar is called **Context-Free**.

Regular languages ⊂ **Context Free Languages**.

Consider the Grammar *G* with the following rules:

Strings that can be derived by *G*:

$$S \to 0S1|SS|\epsilon$$

$$S \to \mathbf{0S1} \to 0\mathbf{SS1} \to 0\mathbf{0S1}S1 \to 001S1 \to 001\mathbf{0S1}1 \to 001011$$

 $\{\epsilon, 01, 0011, \dots 0^n 1^n, 001011, \dots \}$

Context-Free Grammars: If the *rules* of the underlying grammar *G* are of the form

$$V \rightarrow (V \cup T)^*$$

then such a grammar is called **Context-Free**.

Regular languages ⊂ **Context Free Languages**.

Consider the Grammar *G* with the following rules:

Strings that can be derived by *G*:

$$S \rightarrow 0S1|SS|\epsilon$$

$$S \to \mathbf{0S1} \to 0\mathbf{SS1} \to 0\mathbf{0S1}S1 \to 001S1 \to 001\mathbf{0S1}1 \to 001011$$

 $\{\epsilon, 01, 0011, \dots 0^n 1^n, 001011, \dots \}$

Show that the string $010101 \in L(G)$.

Context-Free Grammars: If the rules of the underlying grammar G are of the form

$$V \rightarrow (V \cup T)^*$$

then such a grammar is called **Context-Free**.

Regular languages ⊂ **Context Free Languages**.

Consider the Grammar *G* with the following rules:

Strings that can be derived by *G*:

$$S \to 0S1|SS|\epsilon$$

$$S \rightarrow SS \rightarrow SSS \rightarrow 0S1SS \rightarrow 0S10S1S \rightarrow 0S10S10S1 \rightarrow 010101$$

$$\{\epsilon, 01, 0011, \dots 0^n 1^n, 001011, 010101, \dots\}$$

Context-Free Grammars: If the rules of the underlying grammar G are of the form

$$V \rightarrow (V \cup T)^*$$

then such a grammar is called **Context-Free**.

Regular languages ⊂ **Context Free Languages**.

Consider the Grammar *G* with the following rules:

Strings that can be derived by *G*:

$$S \rightarrow 0S1|SS|\epsilon$$

$$S \to SS \to SSS \to 0S1SS \to 0S10S1S \to 0S10S10S1 \to 010101$$

 $\{\epsilon, 01, 0011, \dots 0^n 1^n, 001011, 010101, \dots \}$

What is L(G)?

Consider the Grammar *G* with the following rules:

Strings that can be derived by *G*:

$$S \to 0S1|SS|\epsilon$$

 $\{\epsilon, 01, 0011, \dots 0^n 1^n, 001011, 010101, \dots\}$

What is L(G)?

Consider the Grammar G with the following rules:

Strings that can be derived by *G*:

$$S \rightarrow 0S1|SS|\epsilon$$

 $\{\epsilon, 01, 0011, \dots 0^n 1^n, 001011, 010101, \dots\}$

What is L(G)?

You can see what the language is, if you replace **0** with (and **1** with)

Consider the Grammar *G* with the following rules:

Strings that can be derived by *G*:

$$S \rightarrow 0S1|SS|\epsilon$$

 $\{\epsilon, 01, 0011, \dots 0^n 1^n, 001011, 010101, \dots\}$

What is L(G)?

You can see what the language is, if you replace **0** with (and **1** with)

Strings that can be derived by $G: \{\epsilon, 01, 0011, ..., 0^n1^n, 001011, 010101,\}$

 $\{\epsilon, ()\}$

Consider the Grammar *G* with the following rules:

Strings that can be derived by *G*:

$$S \to 0S1|SS|\epsilon$$

$$\{\epsilon, 01, 0011, \dots 0^n 1^n, 001011, 010101, \dots\}$$

What is L(G)?

You can see what the language is, if you replace $\mathbf{0}$ with (and $\mathbf{1}$ with)

Strings that can be derived by $G: \{\epsilon, 01, 0011, ..., 0^n1^n, 001011, 010101,\}$

$$\{\epsilon, (), (()), \ldots, \}$$

Consider the Grammar *G* with the following rules:

Strings that can be derived by *G*:

$$S \rightarrow 0S1|SS|\epsilon$$

$$\{\epsilon, 01, 0011, \dots 0^n 1^n, 001011, 010101, \dots\}$$

What is L(G)?

You can see what the language is, if you replace **0** with (and **1** with)

Strings that can be derived by $G: \{\epsilon, 01, 0011, ..., 0^n1^n, 001011, 010101,\}$

$$\{\epsilon, (), (()), ..., ((((...)))\}$$

Consider the Grammar *G* with the following rules:

Strings that can be derived by *G*:

$$S \to 0S1|SS|\epsilon$$

$$\{\epsilon, 01, 0011, \dots 0^n 1^n, 001011, 010101, \dots\}$$

What is L(G)?

You can see what the language is, if you replace $\mathbf{0}$ with (and $\mathbf{1}$ with)

Strings that can be derived by $G: \{\epsilon, 01, 0011, ..., 0^n1^n, 001011, 010101,\}$

$$\{\epsilon, (), (()), ..., ((((...)))), (()), ...\}$$

Consider the Grammar *G* with the following rules:

Strings that can be derived by *G*:

$$S \to 0S1|SS|\epsilon$$

$$\{\epsilon, 01, 0011, \dots 0^n 1^n, 001011, 010101, \dots\}$$

What is L(G)?

You can see what the language is, if you replace **0** with (and **1** with)

Strings that can be derived by $G: \{\epsilon, 01, 0011, ..., 0^n1^n, 001011, 010101,\}$

$$\{\epsilon, (\), ((\)), ..., ((((...)))), ((\)(\)), ()(), ...\}$$

So, L(G) is the language of all strings of properly nested parentheses.

 $L(G) = \{\omega | \omega \text{ is a correctly nested parenthesis}\}$

Constructing CFG corresponding to a Language.

There is no fixed recipe for doing this. Requires some level of creativity.

Some tips might come in handy:

• Check if the CFL is a union of simpler languages. If $L(G) = L(G_1) \cup L(G_2)$ and G_1 and G_2 are known. If S_1 is the start variable for G_1 and S_2 is the start variable for G_2 then the rules of G_2 :

$$S \to S_1 | S_2$$

$$S_1 \to \cdots \cdots$$

$$S_2 \to \cdots \cdots$$

Constructing CFG corresponding to a Language.

There is no fixed recipe for doing this. Requires some level of creativity.

Some tips might come in handy:

• Check if the CFL is a union of simpler languages. If $L(G) = L(G_1) \cup L(G_2)$ and G_1 and G_2 are known. If S_1 is the start variable for G_1 and S_2 is the start variable for G_2 then the rules of G_3 :

$$S \to S_1 | S_2$$

$$S_1 \to \cdots \cdots$$

$$S_2 \to \cdots \cdots$$

• Grammars with rules such as $S \to aSb$ help generate strings where the corresponding machine would need unbounded memory to *remember* the number of a's needed to verify that there are an equal number of b's. This was not possible with regular expressions/linear grammars.

Constructing CFG corresponding to a Language.

- Check if the CFL is a union of simpler languages.
- Grammars with rules such as $S \rightarrow aSb$ help generate where the portions of a and b are equal.

Example: Construct the grammar G such that $L(G) = \{\omega | \omega \text{ has equal number of 0's and 1's}\}$

Constructing CFG corresponding to a Language.

- Check if the CFL is a union of simpler languages.
- Grammars with rules such as $S \to aSb$ help generate where the portions of a and b are equal.

Example: Construct the grammar G such that $L(G) = \{\omega | \omega \text{ has equal number of } 0\text{'s and } 1\text{'s}\}$

- The first thing to notice is that $L_1 = \{0^n 1^n, n \ge 0\} \subset L(G)$. We know the grammar for this language.
- Any string $\omega \in L_1$ has a series of 0's followed by an equal number of 1's.
- Again, consider L_2 to comprise all strings that start with a series of 1's followed by an equal number of 0's, i.e.

$$L_2 = \{1^n 0^n, n \ge 0\}$$

- The grammar for L_2 is similar to that of L_1 : replace the 0's with 1's and vice versa. Importantly, $L_2 = \{1^n 0^n, n \ge 0\} \subset L(G)$ also.
- Also, $L_1 \cup L_2 \subset L(G)$

Constructing CFG corresponding to a Language.

- Check if the CFL is a union of simpler languages.
- Grammars with rules such as $S \to aSb$ help generate where the portions of a and b are equal.

Example: Construct the grammar G such that $L(G) = \{\omega | \omega \text{ has equal number of 0's and 1's}\}$

- So $L'(G') = \{0^n 1^n | n \ge 0\} \cup \{1^n 0^n | n \ge 0\} \subset L(G)$
- Grammar for $L_1: S \to 0S1 | \epsilon$
- Grammar for $L_2: S \to 1S0 | \epsilon$
- Grammar for $L_1 \cup L_2$:

$$S \to S_1 | S_2$$

$$S_1 \to 0S_1 1 | \epsilon$$

$$S_2 \to 1S_2 0 | \epsilon$$

Constructing CFG corresponding to a Language.

- Check if the CFL is a union of simpler languages.
- Grammars with rules such as $S \to aSb$ help generate where the portions of a and b are equal.

Example: Construct the grammar G such that $L(G) = \{\omega | \omega \text{ has equal number of 0's and 1's}\}$

• Grammar for $L_1 \cup L_2$:

$$S \to S_1 | S_2$$

$$S_1 \to 0S_1 1 | \epsilon$$

$$S_2 \to 1S_2 0 | \epsilon$$

• Is that all? Is $L_1 \cup L_2 = L(G)$? $L_1 \cup L_2$ contains all strings that have equal number 0's followed by equal number of 1's or vice versa.

Constructing CFG corresponding to a Language.

- Check if the CFL is a union of simpler languages.
- Grammars with rules such as $S \to aSb$ help generate where the portions of a and b are equal.

Example: Construct the grammar G such that $L(G) = \{\omega | \omega \text{ has equal number of 0's and 1's}\}$

• Grammar for $L_1 \cup L_2$:

$$S \to S_1 | S_2$$

$$S_1 \to 0S_1 1 | \epsilon$$

$$S_2 \to 1S_2 0 | \epsilon$$

- Is that all? Is $L_1 \cup L_2 = L(G)$? $L_1 \cup L_2$ contains all strings that have equal number 0's followed by equal number of 1's or vice versa.
- What about strings such as $s_1=0101\cdots$ and $s_2=1010\cdots$? For this we need to be able to go from

$$0S_11 \rightarrow 0S_21 \rightarrow 01S_201 \rightarrow \cdots$$

Constructing CFG corresponding to a Language.

Example: Construct the grammar G such that $L(G) = \{\omega | \omega \text{ has equal number of 0's and 1's}\}$

• Grammar for $L_1 \cup L_2$:

$$S \to S_1 | S_2$$

$$S_1 \to 0S_1 1 | \epsilon$$

$$S_2 \to 1S_2 0 | \epsilon$$

• What about strings such as $s_1=0101\cdots$ and $s_2=1010\cdots$? Add transitions $S_1\to S_2$ and $S_2\to S_1$.

$$S \rightarrow S_1 | S_2$$

$$S_1 \rightarrow 0S_1 1 | \epsilon$$

$$S_2 \rightarrow 1S_2 0 | \epsilon$$

$$S_1 \rightarrow S_2$$

$$S_2 \rightarrow S_1$$

Constructing CFG corresponding to a Language.

Example: Construct the grammar G such that $L(G) = \{\omega | \omega \text{ has equal number of 0's and 1's}\}$

$$S \to S_1 | S_2$$

$$S_1 \to 0S_1 1 | \epsilon$$

$$S_2 \to 1S_2 0 | \epsilon$$

$$S_1 \to S_2$$

$$S_2 \to S_1$$

- Can't we simplify this? We can replace S_1 and S_2 with a single Start variable as follows: $S \to 0S1|1S0|\epsilon$
- What kind of strings does the grammar generate? Well if we use Rule $S \to 0S1$, m times, we get to rules such as 0^mS1^m .
- Now applying the rule $S \to 1S0$, k times, we get $\mathbf{0}^m \mathbf{1}^k \mathbf{S} \mathbf{0}^k \mathbf{1}^m$.
- So the strings we obtain are of the form:

$$\{0^{m_1}1^{n_1}0^{m_2}1^{n_2}\cdots 0^{n_2}1^{m_2}0^{n_1}1^{m_1}\} \cup \{1^{m_1}0^{n_1}1^{m_2}0^{n_2}\cdots 1^{n_2}0^{m_2}1^{n_1}0^{m_1}\} \in L(G)$$

Constructing CFG corresponding to a Language.

Example: Construct the grammar G such that $L(G) = \{\omega | \omega \text{ has equal number of 0's and 1's}\}$

$$S \rightarrow S_1 | S_2$$

$$S_1 \rightarrow 0S_1 1 | \epsilon$$

$$S_2 \rightarrow 1S_2 0 | \epsilon$$

$$S_1 \rightarrow S_2$$

$$S_2 \rightarrow S_1$$

• Simplified grammar:

$$S \rightarrow 0S1|1S0|\epsilon$$

Constructing CFG corresponding to a Language.

Example: Construct the grammar G such that $L(G) = \{\omega | \omega \text{ has equal number of 0's and 1's}\}$

$$S \rightarrow S_1 | S_2$$

$$S_1 \rightarrow 0S_1 1 | \epsilon$$

$$S_2 \rightarrow 1S_2 0 | \epsilon$$

$$S_1 \rightarrow S_2$$

$$S_2 \rightarrow S_1$$

Simplified grammar:

$$S \rightarrow 0S1|1S0|\epsilon$$

- Is that all? What about strings such as {0110, 00111100}?
- More generally, what about strings that are a concatenation of L_1 and L_2 ?

Constructing CFG corresponding to a Language.

Example: Construct the grammar G such that $L(G) = \{\omega | \omega \text{ has equal number of 0's and 1's}\}$

$$S \rightarrow S_1 | S_2$$

$$S_1 \rightarrow 0S_1 1 | \epsilon$$

$$S_2 \rightarrow 1S_2 0 | \epsilon$$

$$S_1 \rightarrow S_2$$

$$S_2 \rightarrow S_1$$

Simplified grammar:

$$S \rightarrow 0S1|1S0|\epsilon$$

- Is that all? What about strings such as {0110, 00111100}?
- More generally, what about strings that are a concatenation of L_1 and L_2 ?
- Adding transitions like $S \to S_1 S_2$ incorporates this.

Constructing CFG corresponding to a Language.

Example: Construct the grammar G such that $L(G) = \{\omega | \omega \text{ has equal number of 0's and 1's}\}$

$$S \rightarrow S_1 | S_2 | S_1 S_2$$

$$S_1 \rightarrow 0S_1 1 | \epsilon$$

$$S_2 \rightarrow 1S_2 0 | \epsilon$$

$$S_1 \rightarrow S_2$$

$$S_2 \rightarrow S_1$$

• Simplify this further.

G:
$$S \rightarrow SS|0S1|1S0|\epsilon$$

Thank You!