Complex Analysis

2011 - June

33. Let $f: \mathbb{C} \to \mathbb{C}$ be a complex valued function given by f(z) = u(x,y) + i v(x,y)Suppose that $v(x,y) = 3xy^2$. Then –

- (a) f cannot be holomorphic on \mathbb{C} for any choice of u.
- (b) f is holomorphic on \mathbb{C} for a suitable choice of u.
- (c) f is holomorphic on \mathbb{C} for all choices of u.
- (d) v is not differentiable as a function of x and y.

Ans: (a)

Given that,

$$U(X,Y) = 3XY^{2}$$

$$\frac{\partial U}{\partial X} = 3Y^{2} \implies \frac{\partial^{2} U}{\partial X^{2}} = 0 \text{ and } \frac{\partial U}{\partial Y} = 6XY \implies \frac{\partial^{2} U}{\partial Y^{2}} = 6X$$

$$\therefore \frac{\partial^2 U}{\partial X^2} - \frac{\partial^2 U}{\partial Y^2} = 0 - 6X = -6X \neq 0, \forall X \neq 0$$

Hence, $U(X,Y) = 3XY^2$ is not harmonic function.

Hence, f(z) = U(X,Y) + iv(X,Y), cannot be holomorphic on $\mathbb C$ for any choice of U.

Hence, option (a) is correct.

37. The power series $\sum_{0}^{\infty} 2^{-n} z^{2n}$ converges, if

- (a) $|z| \le 2$
- (b) |z| < 2
- (c) $|z| \le \sqrt{2}$
- (d) $|z| < \sqrt{2}$

Ans: (d)

Given power series is $-\sum_{0}^{\infty} 2^{-n} z^{2n}$

Note that,
$$a_n = \begin{cases} 0, & n = 2k - 1 \\ 2^{-n}, & n = 2k \end{cases}$$
; $k = 1, 2, 3, \dots \dots$

Now,
$$\lim_{n\to\infty} \sup \sqrt[n]{|a_n|} = \lim_{k\to\infty} |2^{-2k}|^{\frac{1}{2k}} = \frac{1}{2}$$
 and $\lim_{n\to\infty} \inf \sqrt[n]{|a_n|} = \lim_{k\to\infty} |a_{2k-1}|^{\frac{1}{2k-1}} = 0$

Hence,
$$|z|^2 = 2 \implies R = \sqrt{2}$$

Hence, option (d) is correct.

79. Let $D = \{z \in \mathbb{C} : |z| < 1\}$ be the unit disc. Let $f : D \to \mathbb{C}$ be an analytic function satisfying

$$f\left(\frac{1}{n}\right) = \frac{2n}{3n+1}$$
 for $n \ge 1$, then –

(a)
$$f(0) = \frac{2}{3}$$

(b) f has a simple pole at z = -3

(c)
$$f(3) = \frac{1}{3}$$

(d) No such f exists.

Ans: (a), (b), (c)

Given that, $f: D_f \to \mathbb{C}$ is define by $f\left(\frac{1}{n}\right) = \frac{2n}{3n+1}$

$$\therefore D_f = \left\{z : z = \frac{1}{n}\right\} = \left\{\frac{1}{n} : n = \frac{1}{z}\right\}$$

But 0 is the limit point of D_f which is also be a point of $D = \{z : |z| < 1\}$.

Hence, by identity theorem, $f: D \to \mathbb{C}$ is define by $f(z) = \frac{2}{3+z}$

(a) Putting
$$z = 0$$
 in equation (i), we get $f(0) = \frac{2}{3}$

Hence, option (a) is correct.

(b) Since,
$$\lim_{z \to -3} (z+3) \cdot \frac{2}{3+z} = \lim_{z \to -3} 2 = 2$$
, exists.

Hence, z = -3 is a simple pole.

(c) Putting
$$z = 3$$
 in equation (i), we get $f(z) = \frac{2}{3+3} = \frac{2}{6} = \frac{1}{3}$

(d)
$$f(z) = \frac{2}{z+3}$$
 exists, so, option (d) is incorrect.

80. Let f be an entire an entire function. If Re(f) is bounded then,

- (a) Im(f) is constant
- (b) f is constant
- (c) $f \equiv 0$
- (d) f' is a non zero constant.

Ans: (a), (b)

Let f(z) = u + iv be an entire function and $|u| \le M$

Now, construct $g(z) = e^{f(z)}$, which is an entire function, then –

 $g(z) = e^{u+iv} = e^u \cdot e^{iv} \implies |g(z)| = e^u < e^M$ (: exponential function is increasing)

 $\Rightarrow g(z)$ is bounded.

Hence, g(z) is an entire and bounded function, then g(z) is constant function

$$\Rightarrow e^{f(z)} = A, A \in \mathbb{C}$$

$$\Rightarrow f(z) = \log A$$

 $\Rightarrow f(z)$ is a constant function.

Hence, option (b) is correct.

 $\Rightarrow Im(f)$ is constant function

Also, f'(z) is a zero function

Hence, option (a) is correct.

81. Let $f: D \to \mathbb{D}$ be holomorphic with $f(0) = \frac{1}{2}$ and $f\left(\frac{1}{2}\right) = 0$, where $D = \{z : |z| \le 1\}$ which of the following is correct?

(a)
$$|f'(0)| \le \frac{3}{4}$$

(b)
$$\left| f'\left(\frac{1}{2}\right) \right| \le \frac{4}{3}$$

(c)
$$|f'(0)| \le \frac{3}{4}$$
 and $|f'(\frac{1}{2})| \le \frac{4}{3}$

(d)
$$f(z) = z, z \in \mathbb{D}$$

Ans: (b)

Consider the analytic function $f: D \to \mathbb{D}$ defined by $f(z) = \frac{1}{2} - z$ where $D = \{z: |z| \le 1\}$, then –

$$f(0) = \frac{1}{2}$$
 and $f\left(\frac{1}{2}\right) = 0$

(a) We have f'(z) = -1

$$\therefore |f'(0)| = |-1| = 1 > \frac{3}{4}$$

Hence, option (a) is incorrect.

(b) We have, f'(z) = -1

$$\left| f'\left(\frac{1}{2}\right) \right| = \left| -1 \right| = 1 < \frac{4}{3}$$

Hence, option (b) is correct.

(c) We have, $|f'(0)| = |-1| = 1 > \frac{3}{4}$ but $|f'(\frac{1}{2})| = |-1| = 1 < \frac{4}{3}$

Hence, option (c) is incorrect.

(d) We have,
$$f(z) = z \implies f(0) = 0, f(\frac{1}{2}) = \frac{1}{2}$$

But given that, $f(0) = \frac{1}{2}$ and $f(\frac{1}{2}) = 0$, which is a contradiction.

Hence option (d) is incorrect.

83. At
$$z = 0$$
 the function $f(z) = \frac{e^z + 1}{e^z - 1}$ has

- (a) a removable singularity
- (b) a pole
- (c) an essential singularity
- (d) The reduce of f(z) at z = 0 is 2.

Ans: (b), (d)

(b) Poles of f(z) are obtained by equation to zero the denominator of f(z).

$$\therefore e^z - 1 = 0 \ \Rightarrow e^z = e^{2n\pi i} \Rightarrow z = 2n\pi i, n \in \mathbb{Z}$$

(d) Reduce of
$$f(z)$$
 at $z = a$ is $\underset{z \to a}{\text{Lt}}(z - a)f(z)$

$$\therefore \ \, \text{Lt}_{z \to a} \, z \cdot \frac{e^z + 1}{e^z - 1} = \ \, \text{Lt}_{z \to a} \, \frac{z \, e^z + (e^z + 1)}{e^z} = 2$$

2011 - December

22. Consider the power series $\sum_{n\geq 1} a_n z^n$ where a_n =number of divisors of n^{50} . Then, the radius of convergence of $\sum_{n\geq 1} a_n z^n$ is

- (a) 1
- (b) 50
- (c) $\frac{1}{50}$
- (d) 0

Ans: (a)

The divisor of n^{50} are $1, n, n^2, n^5, n^{10}, n^{25}$ and n^{50}

Hence,
$$a_n = 1$$
, $a_{n+1} = 1$

$$\therefore \frac{1}{R} = \lim_{n \to \infty} \sup \left| \frac{a_{n+1}}{a_n} \right| = \lim_{n \to \infty} \sup \left| \frac{1}{1} \right| = 1$$

$$\Rightarrow R = 1$$

Hence, option (a) is correct.

35. Let $I_r = \int_{C_r} \frac{dz}{z(z-1)(z-2)}$, where $C_r = \{z \in C: |z| = r\}, r > 0$, then –

(a)
$$I_r=2\pi i, if\ r\in(2,3)$$

(b)
$$I_r = \frac{1}{2}$$
, if $r \in (0,1)$

(c)
$$I_r = -2\pi i$$
, if $r \in (1,2)$

(d)
$$I_r = 0$$
, if $r > 3$

Ans: (d)

(a) If $r \in (2,3)$, then by Cauchy's integral theorem, $\int_{C_r} \frac{1}{z} dz = 2\pi i$, $\int_{C_r} \frac{1}{z-1} dz =$

$$2\pi i$$
 and $\int_{C_r} \frac{1}{z-2} dz = 2\pi i$

$$\therefore (i) \Rightarrow, I_r = \frac{1}{2} \cdot 2\pi i - 2\pi i + \frac{1}{2} \cdot 2\pi i = 0$$

(b) If $r \in (0,1)$, then by Cauchy's integral theorem, $\int_{C_r} \frac{1}{z} dz = 2\pi i$, $\int_{C_r} \frac{1}{z-1} dz = 0$

$$\therefore (i) \Rightarrow, I_r = 2\pi i$$

(c) If $r \in (1,2)$, then by Cauchy's integral theorem, $\int_{C_r} \frac{1}{z} dz = 2\pi i$, $\int_{C_r} \frac{1}{z-1} dz = 2\pi i$

$$2\pi i$$
 and $\int_{C_r} \frac{1}{z-2} dz = 0$

$$:(i)\Rightarrow, I_r=-\pi i$$

(d) If r > 3, then by Cauchy's integral theorem,

$$\int_{C_r} \frac{1}{z} dz = 2\pi i$$
, $\int_{C_r} \frac{1}{z-1} dz = 2\pi i$ and $\int_{C_r} \frac{1}{z-2} dz = 2\pi i$

$$:(i) \Rightarrow I_r = 0$$

So, option (d) is correct.

79. Let f be an entire function such that $\lim_{|z|\to\infty} |f(z)| = \infty$ then,

- (a) $f\left(\frac{1}{2}\right)$ has an essential singularity at 0.
- (b) f cannot be a polynomial.
- (c) f has finitely many zeros.
- (d) $f\left(\frac{1}{2}\right)$ has a pole at 0.

Ans: (c), (d)

Given that, $\lim_{|z|\to\infty} |f(z)| = \infty$ and f(z) is an entire function.

 \Rightarrow f(z) is a polynomial of infinite degree.

Hence, f(z) has finitely many zeros.

Hence, option (c) is correct.

Let
$$f(z) = a_0 + a_1 z + a_2 z^2 + \dots + a_n z^n$$

$$f\left(\frac{1}{z}\right) = a_0 + a_1\left(\frac{1}{z}\right) + a_2\left(\frac{1}{z^2}\right) + \dots + a_n\left(\frac{1}{z^n}\right)$$

 $\Rightarrow \underset{z\to 0}{\text{Lt}} f\left(\frac{1}{z}\right) \text{ does not exists.}$

But Lt
$$_{z\to 0} z^n f\left(\frac{1}{z}\right) = \lim_{z\to 0} (a_0 z^n + a_1 z^{n-1} + a_2 z^{n-2} + \dots + a_n)$$

 $= a_n$ exists finitely and non zero.

Hence, $f\left(\frac{1}{z}\right)$ has pole at z=0

Hence, option (d) is correct.

80. Let f, g be holomorphic function defined on $A \cup D$ where $A = \{z \in C : \frac{1}{2} < |z| < 1 \text{ and } D = \{z \in C : |z - 2| < 1\}$ which of the following statements is correct?

(a) If
$$f(z)g(z) = 0$$
 for all $z \in A \cup D$, then either $f(z) = 0 \ \forall \ z \in A \text{ or } g(z) = 0 \ \forall \ z \in D$

(b) If
$$f(z)g(z) = 0$$
 for all $z \in D$, then either $f(z) = 0 \ \forall \ z \in D$ or $g(z) = 0 \ \forall \ z \in D$

(c) If
$$f(z)g(z) = 0$$
 for all $z \in A$, then either $f(z) = 0 \ \forall \ z \in A$ or $g(z) = 0 \ \forall \ z \in A$

(d) If f(z)g(z) = 0 for all $z \in A \cup D$, then either $f(z) = 0 \ \forall \ z \in A \cup D$ or $g(z) = 0 \ \forall \ z \in A \cup D$

Ans: (a), (b), (c)

- (a) If f(z)g(z) = 0, $\forall z \in A \cup D$, then either $f(z) = 0 \ \forall z \in A \ or \ g(z) = 0 \ \forall z \in A$ Hence, option (a) is correct.
- (b) If f(z)g(z) = 0 for all $z \in D$, then either $f(z) = 0 \ \forall \ z \in D$ or $g(z) = 0 \ \forall \ z \in D$ Hence, option (b) is correct.
- (c) If f(z)g(z) = 0 for all $z \in A$, then either f(z) = 0, $\forall z \in A$ or g(z) = 0, $\forall z \in A$ Hence, option (c) is correct.
- (d) If f(z)g(z) = 0, $\forall z \in A \cup D$, then if does not implies either $f(z) = 0, \forall z \in A \cup D$ $D \text{ or } g(z) = 0, \ \forall z \in A \cup D$
- **81.** Let f be a holomorphic function on $D = \{z \in C: |z| < 1\}$ such that $|f(z)| \le 1$. Define

$$g: D \to C \text{ by } g(z) = \begin{cases} \frac{f(z)}{z}, & \text{if } z \in D, z \neq 0 \\ f'(0), & \text{if } z = 0. \end{cases}$$

Which of the following statements are true?

- (a) g is holomorphic on D
- (b) $|g(z)| \le 1$ for all $z \in D$
- (c) $|f'(z)| \le 1$ for all $z \in D$
- (d) $|f'(0)| \le 1$

Ans: (a),(b),(d)

83. Let $f: C \to \mathbb{C}$ be an entire function and let $g: C \to \mathbb{C}$ be defined by g(z) - f(z+1) for $\in C$. Which of the following statements are true?

- (a) If $f\left(\frac{1}{n}\right) = 0$ for all positive integers n, then f is constant function.
- (b) If f(n) = 0 for all positive integers n, then f is a constant function.
- (c) If $f\left(\frac{1}{n}\right) = f\left(\frac{1}{n} + 1\right)$ for all positive integers n, then f is a constant function.
- (d) If f(n) = f(n+1) for all positive integers n, then g is a constant function.

Ans: (a), (c)

2012 - June

33. Let $f: \mathbb{C} \to \mathbb{C}$ be a complex valued function of the form f(X,Y) = U(X,Y) + iv(X,Y). Suppose that $U(X,Y) = 3X^2Y$. Then –

- (a) f cannot be holomorphic on \mathbb{C} for any choice of V.
- (b) f is holomorphic on \mathbb{C} for a suitable choice of V.
- (c) f is holomorphic on \mathbb{C} for all choices of V.

 $= 6Y \neq 0, Y \neq 0$

(d) *U* is not differentiable.

Ans: (a)

Given that
$$U(X,Y) = 3X^2Y$$
 $\therefore \frac{\partial u}{\partial X} = 6XY$, $\frac{\partial^2 u}{\partial X^2} = 6Y$ and $\frac{\partial^2 u}{\partial Y^2} = 0$ $\therefore \frac{\partial^2 u}{\partial X^2} + \frac{\partial^2 u}{\partial Y^2} = 6Y + 0$

 $\therefore U(X,Y)$ is not harmonic. Therefore, f cannot be holomorphic on $\mathbb C$ for any choice of V. Hence, option (a) is correct.

37. The power series $\sum_{n=0}^{\infty} 3^{-n} (z-1)^{2n}$ converges, if

- (a) $|z| \le 3$
- (b) $|z| < \sqrt{3}$
- (c) $|z| < \sqrt{3}$
- (d) $|z 1| \le \sqrt{3}$

Ans: (c)

$$\frac{1}{R} = \lim_{n \to \infty} \sup \sqrt[n]{3^{-n}} \Rightarrow R = 3$$

$$|z - 1|^2 < R = 3 \implies |z - 1| < \sqrt{3}$$

80. Let $f: \mathbb{C} \to \mathbb{C}$ be meromorphic function analytic at 0 satisfying $f\left(\frac{1}{n}\right) = \frac{n}{2n+1}$ for $n \ge 1$.

Then -

(a)
$$f(0) = \frac{1}{2}$$

(b) f has a simple pole at z = -2

(c)
$$f(2) = \frac{1}{4}$$

(d) no such meromorphic function exists.

Ans: (a), (b), (c)

Given that, $f: \mathbb{C} \to \mathbb{C}$ is defined by $f\left(\frac{1}{n}\right) = \frac{n}{2n+1}$ for $n \ge 1$

$$\therefore D_f = \left\{z : z = \frac{1}{n}\right\} = \left\{\frac{1}{n} : n = \frac{1}{z}\right\}$$

Then,
$$f(z) = \frac{\frac{1}{z}}{\frac{2 \cdot \frac{1}{z} + 1}{z + 1}} = \frac{1}{z + 2}$$

But 0 is limit point of D_f which is also be a point of \mathbb{C} .

Hence, by identity theorem, $f: \mathbb{C} \to \mathbb{C}$ is defined by $f(z) = \frac{1}{z+2} \dots \dots \dots (i)$

(a) Putting
$$z = 0$$
, in (i), we get $f(0) = \frac{1}{2}$

Hence, option (a) is correct.

(b) The pole of (z) is $z + 2 = 0 \Rightarrow z = -2$, a simple pole of f.

∴ option (b) is correct.

(c) Putting z = 2 in (i), we get

$$f(2) = \frac{1}{2+2} = \frac{1}{4}$$
, so option (c) is correct.

(d) Since, $f(z) = \frac{1}{z+2}$ exists, which is meromorphic function.

Hence, option (d) is incorrect.

81. Let f be an entire function. If $Im f \ge 0$, then

- (a) Re f if constant
- (b) f is constant
- (c) f = 0
- (d) f' is non zero constant.

Ans: (a), (b)

Given f(z) = u + iv is an entire function and $Im f = v \ge 0$

Construct an entire function, $g(z) = e^{i f(z)} = e^{i(u+iv)} = e^{iu-v} = e^{iu} \cdot e^{-v}$

$$\therefore \ |g(z)| = e^{-v} \cdot 1 \le 1 \ \ [\because v \ge 0 \Rightarrow e^v \ge e^0 \Rightarrow e^{-v} \le 1]$$

 $|g(z)| \le 1$

Hence, g(z) is bounded, i.e., g(z) is an entire and bounded function. Hence by Liouville's theorem g(z) is constant.

Let $g(z) = C \Rightarrow e^{i f(z)} = C \Rightarrow i f(z) = \log C \Rightarrow f(z) = -i \log C \Rightarrow f(z)$ is constant. $\Rightarrow Re \ f \ is \ constant.$

Hence, option (a) and (b) are correct.

82. Let $f: D \to D$ be holomorphic with f(0) = 0 and $f\left(\frac{1}{2}\right) = 0$ where $D = \{z: |z| < 1\}$. Which of the following statements are correct?

(a)
$$\left| f'\left(\frac{1}{2}\right) \right| \le \frac{4}{3}$$

(b)
$$|f'(0)| \le 1$$

(c)
$$\left| f'\left(\frac{1}{2}\right) \right| \le \frac{4}{3}$$
 and $\left| f'(0) \right| \le 1$

(d)
$$f(z) = z, z \in D$$

Ans: (a), (b), (c)

Consider the holomorphic function $f: D \to D$ defined by $f(z) = z\left(z - \frac{1}{1}\right)$,

where $D = \{z: |z| < 1\}$. Then –

$$f(0) = 0\left(0 - \frac{1}{2}\right) = 0$$

$$f\left(\frac{1}{2}\right) = \frac{1}{2}\left(\frac{1}{2} - \frac{1}{2}\right) = 0$$

(a)
$$f'(z) = 2z - \frac{1}{2}$$

$$\therefore \left| f'\left(\frac{1}{2}\right) \right| = \left| 2 \cdot \frac{1}{2} - \frac{1}{2} \right| = \frac{1}{4} < \frac{4}{3}$$

∴ option (a) is correct.

(b)
$$\left| f'\left(\frac{1}{0}\right) \right| = \left| 2 \cdot 0 - \frac{1}{2} \right| = \frac{1}{2} < 1$$

∴ option (b) is correct.

(c) From option (a) and (b), we have
$$\left| f'\left(\frac{1}{2}\right) \right| \le \frac{4}{3}$$
 and $|f'(0)| < 1$

Hence, option (c) is correct.

(d) If
$$f(z) = z, \forall z \in D$$

$$f(0) = 0, f\left(\frac{1}{2}\right) = \frac{1}{2}$$
 but $f\left(\frac{1}{2}\right) = 0$

Hence,
$$f(z) \neq z, \forall z \in D$$

 \therefore option (d) is incorrect.

83. For $z \in \mathbb{C}$ of the form z = x + iy, define

$$H^+ = \{ z \in \mathbb{C} : y > 0 \}, \ H^- = \{ z \in \mathbb{C} : y < 0 \}$$

$$L^+ = \{ z \in \mathbb{C} : x > 0 \}, \ L^- = \{ z \in \mathbb{C} : x < 0 \}$$

The function $f(z) = \frac{2z+1}{5z+3}$

- (a) maps H^+ onto H^+ and H^- onto H^-
- (b) maps H^+ onto H^- and H^- onto H^+
- (c) maps H^+ onto L^+ and H^- onto L^-
- (d) maps H^+ onto L^- and H^- onto L^+

Ans: (a)

$$W = f(z) = \frac{2z+1}{5z+3} \Rightarrow z = \frac{1-3w}{5w-2}$$

Let z = x + iy and w = u + iv

$$\therefore x + iy = \frac{1 - 3(u + iv)}{5(u + iv) - 2} \quad \text{or, } x + iy = \frac{\left[(1 - 3u)(5u - 2) - 15v^2 \right] - iv[5(1 - 3u) + 3(5u - 2)]}{(5u - 2)^2 + 25v^2}$$

$$\therefore x = \frac{(1-3u)(5u-2)-15v^2}{(5u-2)+25v^2}, \quad y = \frac{[5(1-3u)+3(5u-2)]}{(5u-2)+25v^2} = \frac{v}{(5u-2)+25v^2}$$

Hence, the region y > 0 in z - plane on the region v > 0 in w - plane

Therefore,
$$f(z) = \frac{2z+1}{5z+3}$$
 maps H^+ onto H^+

Therefore,
$$f(z) = \frac{2z+1}{5z+3}$$
 maps H^- onto H^-

∴ Option (a) is correct.

84. At
$$z = 0$$
, the function $f(z) = \exp\left(\frac{z}{1-\cos z}\right)$ has

- (a) a removable singularity
- (b) a pole
- (c) an essential singularity
- (d) the Laurent expansion of f(z) around z = 0 has infinitely many positive and negative powers of z.

Ans: (c)

$$\lim_{z \to 0} f(z) = \lim_{z \to 0} \exp\left(\frac{z}{1 - \cos z}\right) = \exp\left(\lim_{z \to 0} \frac{z}{1 - \cos z}\right) = \exp\left(\lim_{z \to 0} \frac{1}{-\sin z}\right)$$

 $=e^{\infty}$ = does not exists.

Hence, $f(z) = \exp\left(\frac{z}{1-\cos z}\right)$ has an essential singularity.

Hence, option (c) is correct

2012 - December

33. Consider the functions $f, g : \mathbb{C} \to \mathbb{C}$ defined by $f(z) = e^z, g(z) = e^{iz}$.

Let $S = \{z \in \mathbb{C} : Re \ z \in [-\pi, \pi]. \text{ Then } -$

- (a) f is an onto entire function.
- (b) g is a bounded function on \mathbb{C} .
- (c) f is bounded on S
- (d) g is bounded on S.

Ans: (c)

34. Let $f: D \to D$ be a holomorphic function with f(0) = 0 where D is the open unit disc $\{z \in A\}$

 \mathbb{C} : |z| < 1. Then –

- (a) |f'(0)| = 1
- (b) $\left| f\left(\frac{1}{2}\right) \right| \le \frac{1}{2}$
- (c) $\left| f\left(\frac{1}{2}\right) \right| \le \frac{1}{4}$
- (d) $|f'(0)| \le \frac{1}{2}$

Ans: (b)

35. Consider the power series $\sum_{n=1}^{\infty} z^{n!}$. The radius of convergence of this series is

- (a) 0
- (b) ∞
- (c) 1
- (d) a real number greater than 1.

Ans: (c)

79. Which of the following functions f are entire functions and have simple zeros at z = ik for

all $k \in \mathbb{Z}$

(a) $f(z) = a_n z^n + a_{n-1} z^{n-1} + \dots + a_0$ for some $n \ge 1$ and some $a_0, a_1, \dots, a_n \in \mathbb{C}$

- (b) $f(z) = a \sin 2\pi i z$, for some $a \in \mathbb{C}$
- (c) $f(z) = b \cos 2\pi (iz y)$, for some $b \in \mathbb{C}$
- (d) $f(z) = e^{cz}$, for some $c \in \mathbb{C}$

Ans: (b), (c)

80. Let $\gamma_k = \{ke^{ik\theta} : 0 \le \theta \le 2\pi\}$ for k = 1,2,3. Which of the following are necessarily correct?

(a)
$$\frac{1}{2\pi i} \int_{\gamma_1} \frac{1}{z} dz = 0$$
 for $k = 1,2,3$

(b)
$$\frac{1}{2\pi i} \int_{\gamma_2} \frac{1}{z} dz = 1$$

(c)
$$\frac{1}{2\pi i} \int_{\gamma_2} \frac{1}{z} dz = 4$$

$$(d) \frac{1}{2\pi i} \int_{\gamma_3} \frac{1}{z} dz = 3$$

Ans: (b), (d)

81. Let f be an analytic function defined on $D = \{z \in \mathbb{C} : |z| < 1\}$ such that the range of f is contained in the set $\mathbb{C}|(-\infty,0)$. Then –

(a) *f* is necessarily a constant function.

(b) There exists an analytic function g on D such that g(z) is a square root of f(z) for each $z \in D$.

(c) There exists an analytic function g on D such that $Re\ g(z) \ge 0$ and g(z) is a square root of f(z) for each $z \in D$.

(d) There exists an analytic function g and D such the such that $Re\ g(z) \le 0$ and g(z) is square root of f(z) for each $z \in D$.

Ans: (b), (c), (d)

82. Let $f: \Omega \to \mathbb{C}$ be an analytic function on an open set $\Omega \subseteq \mathbb{C}$. For r > 0, let $D_r = \{z \in \mathbb{C}: |z| < r\}$ and let \overline{D}_r be it's closure. Which of the following are necessary true?

(a) If $\overline{D}_1 \subset f(\Omega)$, then $D_r \subset f(\Omega)$ for some r > 1

(b) If $\overline{D}_1 \subset f(\Omega)$, then $D_r = f(\Omega)$ for some r > 1

(c) If $\overline{D}_1 \subset f(\Omega)$, then $\overline{D}_r \subset f(\Omega)$ for some r > 1

(d) $f(\Omega)$ is open.

Ans: (a), (b), (c)

83. Let $f(z) = z + \frac{1}{z}$ for $z \in \mathbb{C}$ with $z \neq 0$. Which of the following are always true?

- (a) f is an analytic function on $\mathbb{C}|\{0\}$
- (b) f is a conformal map on $\mathbb{C}|\{0\}$
- (c) f maps the unit circle to a subset of the real axis.
- (d) The image of any circle on $\mathbb{C}[\{0\}]$ is again a circle.

Ans: (a), (c)

2013 - June

48. Let p(z) and q(z) be two non – zero complex polynomials. Then, p(z) $\overline{q(z)}$ is analytic, if and only if

- (a) p(z) is constant.
- (b) p(z)q(z) is constant.
- (C) q(z) is a constant.
- (d) $\overline{p(z)} q(z)$ is constant.

Ans: (c)

(a) Let
$$p(z) = 1$$
 (constant) & $q(z) = 2$

$$\therefore p(z) \cdot \overline{q(z)} = 1 \cdot \overline{z} = \overline{z} = f(z), (let)$$

$$\therefore \frac{\partial f}{\partial \bar{z}} = 1 \neq 0$$

 \Rightarrow f, not analytic [i.e., C - R equation not satisfies]

So option (a) is not correct.

(b) Let
$$p(z) = 1$$
, $q(z) = 1$

$$p(z)q(z) = 1 = f(z), (let)$$

$$\frac{\partial f}{\partial z} = 0$$

If p(z)q(z) is constant, then $p(z) \bar{q}(z)$ is analytic but if p(z) = z, q(z) = 1, then

$$p(z) \overline{q(z)} = Z = f(z)(let)$$
 & $\frac{\partial f}{\partial z} = 0$ ($C - R$ equation satisfies)

& p(z)q(z) = z, it is not constant/

 \div for if and only if this option is not true.

So, option (b) is not correct.

(c) Let
$$p(z) = z$$
, $q(z) = 1$ then,

$$p(z) \overline{(z)} = z = f(z), (let)$$

$$\frac{\partial f}{\partial z} = 0$$

∴ Option (c) is correct.

- **49.** If z_1 and z_2 are distinct complex numbers such that $|z_1| = |z_2| = 1$ and $z_1 + z_2 = 1$, then the triangle in the complex plane with z_1, z_2 and -1 as vertices.
- (a) must be equilateral.
- (b) must be right angled.
- (c) must be isosceles, but not necessarily equilateral.
- (d) must be obtuse angled.

Ans: (a)

- **86.** Consider the following function $f(z) = z^2(1 \cos z), z \in \mathbb{C}$. Which of the following are correct?
- (a) The function f has zeroes of order 2 at 0.
- (b) The function f has zeroes of order 1 at $2\pi n$, $n = \pm 1, \pm 2, ...$
- (c) The function f has zeroes of order 4 at 0.
- (d) The function f has zeroes of order 2 at $2n\pi$, $n = \pm 1, \pm 2, \dots$

Ans: (a), (b)

Here
$$f(z) = z^2(1 - \cos z)$$

Thus, the zeros can be obtained by $z^2 = 0 \implies z = 0$

i.e., f has zeros of order 2 at z = 0.

Again,
$$\cos z = 1 = \cos 2n\pi$$
, i.e., $zd = 2n\pi$, $n = \pm 1, \pm 2, \dots$

Which are zeros of order 1.

- **87.** Let B be an open subset of \mathbb{C} and ∂B denote the boundary of B. Which of the following statements are correct?
- (a) For every entire function f, we have $\partial(f(B)) \subseteq f(\partial B)$
- (b) For every entire function f and a bounded open set B, we have $\partial(f(b)) \subseteq f(\partial B)$.
- (c) For every entire function f, we have $\partial(f(B)) = f(\partial B)$
- (d) There exists an unbounded open subset B of C and an entire function f such that

$$\partial \big(f(B) \big) \subseteq f(\partial B)$$

Ans: (b), (d)

88. Let $D = \{z \in \mathbb{C} : |z| < 1\}$. Which of the following are correct?

(a) There exists a holomorphic function $f: D \to D$ with f(0) = 0 and f'(0) = 2

(b) There exists a holomorphic function $f: D \to D$ with $f\left(\frac{3}{4}\right) = \frac{3}{4}$ and $f'\left(\frac{2}{3}\right) = \frac{3}{4}$

(c) There exists a holomorphic function $f: D \to D$ with $f\left(\frac{3}{4}\right) = -\frac{3}{4}$ and $f'\left(\frac{3}{4}\right) = -\frac{3}{4}$

(d) There exists a holomorphic function $f: D \to D$ with $f\left(\frac{1}{2}\right) = -\frac{1}{2}$ and $f'\left(\frac{1}{4}\right) = 1$

Ans: (b), (c)

Given domain $D = \{z \in \mathbb{C} : |z| < 1\}$ non – zero is a bounded open set. Then there exists holomorphic function $f: D \to D$ such that f(D) is also open and |f(D)| < 1.

Hence, we have two possibilities:

There exist a holomorphic function $f: D \to D$ with $f\left(\frac{3}{4}\right) = \frac{3}{4}$, $f'\left(\frac{2}{3}\right) = \frac{3}{4}$ and there exists a holomorphic function $f: D \to D$ with $f\left(\frac{3}{4}\right) = -\frac{3}{4}$ and $f'\left(\frac{3}{4}\right) = -\frac{3}{4}$

89. Let $f: \mathbb{C} \to \mathbb{C}$ be an analytic function. For z = x + iy, let $u, v: \mathbb{R}^2 - \mathbb{R}$ be such that $u(x, y) = Re \ f(z)$ and $v(x, y) = Im \ f(z)$. Which of the following are correct?

$$(a)\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

(b)
$$\frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

$$(c)\frac{\partial^2 u}{\partial x \,\partial y} - \frac{\partial^2 u}{\partial y \,\partial x} = 0$$

$$(d) \frac{\partial^2 v}{\partial x \partial y} + \frac{\partial^2 v}{\partial y \partial x} = 0$$

Ans: (a), (b), (c)

As f = u + iv be an analytic function, then u and v must satisfy the Cauchy Riemann's equation. $u_x = v_y$ and $u_y = -v_x$

Again u and v are real and imaginary parts of an analytic function, then u and v must satisfy the Laplace's equation: $u_{xx} + v_{yy} = 0$ and $v_{xx} + v_{yy} = 0$

Now,
$$u_{xy} = -v_{xx}$$
 and $u_{yu} = v_{yy}$

Therefore,
$$u_{xy} - u_{yx} = -v_{xx} + v_{yy} = 0$$

Similarly,
$$v_{xy} - v_{yx} = 0$$

2013 - December

33. Let f be a non – constant entire function. Which of the following properties is possible for f for each $z \in \mathbb{C}$?

- (a) Re f(z) = Im f(z)
- (b) |f(z)| < 1
- (c) Im f(z) < 0
- (d) $f(z) \neq 0$

Ans: (d)

(a) Let $f(z) = e^z$, non constant, entire function

$$= e^{x+iy} = e^x (\cos y + i \sin y)$$

$$\therefore Re f(z) \neq Im f(z)$$

So option (a) is not correct.

(b) |f(z)| < 1 i.e., f is bounded (contradiction)

∴Option (b) is not correct.

(c)
$$f(z) = e^z$$

$$Im f(z) = e^x \sin y < 0$$
, for each $z \in \mathbb{C}$

∴ Option (c)is not correct.

(d)
$$f(z) = e^z \neq 0$$

- ∴ Option (d) is correct.
- **34.** Let a, b, c be non collinear points in the complex plane and let Δ denote the closed triangular region of the plane with vertices a, b, c. For $z \in \Delta$ let $h(z) = |z a| \cdot |z b| \cdot |z c|$. The maximum value of the function h is
- (a) not attained at any point of Δ .
- (b) attained at an interior point of Δ .
- (c) attained at the centre of gravity of Δ .
- (d) attained at a boundary point of Δ .

35. f be a non – constant holomorphic function in the unit disc $\{|z| < 1\}$ such that f(0) = 1. Then, it is necessary that

- (a) There are infinitely many points z in unit disc such that |f(z)| = 1
- (b) f is bounded.
- (c) There are almost finitely many points z in the unit disc such that |f(z)| = 1
- (d) f is a rational function.

Ans: (a)

(a) and (c)

Let $f(z) = e^z$

$$|f(z)| = 1$$

- \therefore (a) is true and option (c) is not correct.
- (b) Since, f be a non constant holomorphic function, so f is unbounded.
- ∴ Option (b) is not correct.
- (d) $f(z) = e^z$, not a rational function.
- : Option (d) is not correct.
- **79.** Let f be a holomorphic function on the unit disc $\{|z| < 1\}$ in the complex plane. Which of the following is/are necessarily true?
- (a) If for each positive integer , we have $f\left(\frac{1}{n}\right) = \frac{1}{n^2}$, then $f(z) = z^2$ on the unit disc.
- (b) If for each positive integer n, we have $f\left(1-\frac{1}{n}\right)=\left(1-\frac{1}{n}\right)^2$ then $f(z)=z^2$ on the unit disc.
- (c) f cannot satisfy $f\left(\frac{1}{n}\right) = \frac{(-1)^n}{n}$ for each positive integer n.
- (d) f cannot satisfy $f\left(\frac{1}{n}\right)\frac{1}{1+n}$ for each positive integer n.

Ans: (a), (c)

(a) f, holomorphic function on the unit disc, |z| < 1

$$f\left(\frac{1}{n}\right) = \frac{1}{n^2}, n \in \mathbb{Z}^+$$
 limit point $= 0 \in D$

Now,
$$\frac{1}{n} = z$$
, $\Rightarrow f(z) = z^2$

So, option (a) is correct.

(b)
$$f\left(1-\frac{1}{n}\right) = \left(1-\frac{1}{n}\right)^2$$
 limit point = $1 \notin D$

$$\therefore f(z) \neq z^2$$

So, option (b) is not correct.

(c)
$$f\left(\frac{1}{n}\right) = \frac{(-1)^n}{n} = \begin{cases} -\frac{1}{n}, & n \text{ is odd} \\ \frac{1}{n}, & n \text{ is even} \end{cases}$$

limit point of $\left\{-\frac{1}{n}\right\}$ and $\left\{\frac{1}{n}\right\}$ is 0 but if $\frac{1}{n} = z$, $f(z) = \left\{\frac{-z}{z}\right\}$

f(z) is not analytic on domain.

So, option (c) is correct.

(d)
$$f\left(\frac{1}{n}\right) = \frac{1}{n+1}$$
, limit point = 0

Let
$$\frac{1}{n} = z$$
, $f(z) = \frac{z}{z+1}$

$$\therefore -1 \notin D$$
 $\therefore z \neq -1$

$$\therefore z \neq -1$$

 $\Rightarrow f(z)$ is analytic on domain D.

So option (d) is not correct.

80. Let
$$(z) = \frac{z-1}{\exp(\frac{2\pi i}{z})-1}$$
. Then

- (a) f has an isolated singularity at z = 0.
- (b) f has a removable singularity at z = 1.
- (c) f has infinitely many poles.
- (d) each pole of f is of order 1.

Ans: (b), (c), (d)

81. Let $f(z) = \frac{1+z}{1-z}$. Which of the following is/are true?

(a)
$$f$$
 maps $\{|z| < 1\}$ onto $\{Re(z) > 0\}$

(b)
$$f$$
 maps { $|z| < 1$, $Im(z) > 0$ } onto { $Re(z) < 0$, $Im(z) > 0$ }

(c)
$$f$$
 maps { $|z| < 1$, $Im(z) < 0$ } onto { $Re(z) < 0$, $Im(z) < 0$ }

(d)
$$f$$
 maps $\{|z| > 1\}$ onto $\{Im(z) > 0\}$.

Ans: (a), (b)

82. Let f be a mermorphic function on \mathbb{C} such that $|f(z)| \ge |z|$ each z, where f is holomorphic.

Then, which of the following is/are true?

- (a) The hypothesis are contradictory, so on such f exists.
- (b) Such an f is entire
- (c) There is a unique f satisfying the given conditions.
- (d) There is an $A \in \mathbb{C}$ with $|A| \ge 1$ such that f(z) = Az for each $z \in \mathbb{C}$.

Ans: (b), (d)

2014 - June

37. Let f and g be meromorphic functions on \mathbb{C} . If f has a zero of order k at z=a and g has a pole of order m at z=0, then g(f(z)) has

(a) a zero of order km at z = a

(b) a pole of order km at z = a

(c) a zero of order |k - m| at z = a

(d) a pole of order |k - m| at z = a

Ans: (b)

f and g are meromorphic functions on \mathbb{C} . If f has a zero of order k at z=a and g(z) is a pole of order m at z=0.

Then, let,
$$f(z) = (z - a)^k$$
, $g(z) = \frac{1}{(z-0)^m} = \frac{1}{z^m}$

Then,
$$g(f(z)) = g((z-a)^k) = \frac{1}{(z-a)^{km}}$$

 $\Rightarrow g(f(z))$ has a pole of order km at z = a

38. Let p(x) be a polynomial of the real variable x of degree $k \ge 1$. Consider the power series $f(z) = \sum_{n=0}^{\infty} p(n)z^n$, where , z is a complex variable. Then, the radius of convergence of f(z) is

- (a) 0
- (b) 1
- (c) k
- $(d) \infty$

Ans: (b)

 $p(x) = \text{polynomial of the real variable } x \text{ of degree } k \ge 1 \ \Rightarrow p(x) = x^k, k \ge 1$

$$\therefore f(z) = \sum_{n=0}^{\infty} p(n)z^n = \sum_{n=0}^{\infty} n^k z^n$$

Radius of convergence of $f(z) = R = \frac{1}{\lim_{n \to \infty} \sup |a_n|^{\frac{1}{n}}} = \frac{1}{\lim_{n \to \infty} \sup(n)^{\frac{k}{n}}}$

$$\therefore R = 1$$

80. Let f be an entire function. Suppose for each $a \in \mathbb{R}$, there exists at least one coefficient C_n in

$$f(z)\sum_{n=0}^{\infty} C_n(z-a)^n$$
, which is zero, then

(a)
$$f^{(n)}(0) = 0$$
 for infinitely many $n \ge 0$

(b)
$$f^{(2n)}(0) = 0$$
 for every $n \ge 0$

(c)
$$f^{(2n+1)}(0) = 0$$
 for every $n \ge 0$

(d) there exists $k \ge 0$ such that $f^{(n)}(0) = 0$ for all $n \ge k$

Ans: (a), (d)

81. Let $k \subseteq \mathbb{C}$ be a bounded set. Let $H(\mathbb{C})$ denote the set of all entire functions and let C(k) denote the set of all continuous functions on k. Consider the restriction map $r: H(\mathbb{C}) \to C(k)$ given by $(f) = f_k$. Then, r is injective, if

- (a) *k* is compact.
- (b) k is connected
- (c) k is uncountable
- (d) k is finite.

Ans: (c)

82. Let
$$z \in \mathbb{C}$$
, define $f(z) = \frac{e^z}{e^z - 1}$, then

- (a) f is entire.
- (b) The only singularities of f are poles.
- (c) f ahs infinitely many poles on the imaginary axis.
- (d) each pole of f is simple.

Ans: (b), (c), (d)

 $z \in \mathbb{C}$

$$f(z) = \frac{e^z}{e^z - 1}$$

for pole, $e^z - 1 = 0 \implies e^z = 1 = e^{2n\pi}, n = 0,1,2,...$

$$\Rightarrow z = 2n\pi i, \ n = 0, 1, 2, \dots$$

 \therefore f has infinitely many poles, each pole is simple and only singularity of f are poles.

83. Let $D = \{z \in \mathbb{C}: |z| < 1\}$. Then, there exists a holomorphic function $f: D \to \overline{D}$ with f(0) = 0 with the property

(a)
$$f'(0) = \frac{1}{2}$$

(b)
$$\left| f\left(\frac{1}{3}\right) \right| = \frac{1}{4}$$

(c)
$$f\left(\frac{1}{3}\right) = \frac{1}{2}$$

(d)
$$|f'(0)| = \sec\left(\frac{\pi}{6}\right)$$

Ans: (a), (b)

$$D = \{ z \in \mathbb{C} : |z| < 1 \}$$

 \exists a holomorphic function $f: D \to \overline{D}$, with f(0) = 0

Schwartz' Lemma: $f: D \to D$, holomorphic function with f(0) = 0

Then,

(i)
$$|f(z)| \le |z|^n, \forall z \in D$$

(ii)
$$|f^n(0)| \le n!$$

Option (b), (c)

$$|f(z)| \le |z|^n \Rightarrow |f(\frac{1}{3})| \le (\frac{1}{3})^n \le \frac{1}{3} \text{ and } \frac{1}{4} < \frac{1}{3} < \frac{1}{2},$$

$$\therefore \left| f\left(\frac{1}{3}\right) \right| = \frac{1}{4}$$

∴ option (b) is correct and option (c) is not correct.

Option (a), (d)

$$|f^n(0)| \le n!$$

$$|f'(0)| \le 1$$

$$\sec\left(\frac{\pi}{6}\right) = \frac{2}{\sqrt{3}} > 1 \& \frac{1}{2} < 1$$

 \therefore option (a) is correct.

2014 – December

33. Let $p(z) = a_0 + a_1 z + \dots + a_n z^n$ and $q(z) = b_1 z + b_2 z^2 + \dots + b_n z^n$ be complex polynomials.

If a_0 , b_1 are non – zero complex numbers, then the residue of $\frac{p(z)}{q(z)}$ at 0 is equal to

- (a) $\frac{a_0}{b_1}$
- (b) $\frac{b_1}{a_0}$
- $(c)\frac{a_1}{b_1}$
- (d) $\frac{a_0}{a_1}$

Ans. (a)

$$p(z) = a_0 + a_1 z + \dots + a_n z^n$$

$$q(z) = b_1 z + b_2 z^2 + \dots + b_n z^n$$

$$\frac{p(z)}{q(z)} = \frac{z(a_0/z + a_1 + \dots + a_n z^{n-1})}{z(b_1 + b_2 z + \dots + b_n z^{n-1})}$$

$$= \frac{\frac{a_0}{z} + a_1 + \dots + a_n z^{n-1}}{b_1 \left[1 + \frac{b_2}{b_1} z + \dots + \frac{b_n}{b_1} z^{n-1} \right]}$$

Residue of $\frac{p(z)}{q(z)}$ = coefficient of $\left(\frac{1}{z}\right) = \frac{a_0}{b_1}$

34. Let $\sum_{n=0}^{\infty} a_n z^n$ be a convergent power series such that $\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = R > 0$

Let p be a polynomial of degree d. Then the radius of convergence of the power series $\sum_{n=0}^{\infty} p(n)a_n z^n$ equal to

- (a) *R*
- (b) *d*
- (c) Rd
- (d) R + d

Ans. (a)

 $\sum a_n z^n$ be a convergent power series $\lim_{n\to\infty} \frac{a_n+1}{a_n} = R > 0$ p be a polynomial of degree d

Let
$$p(x) = x^d$$
 $\therefore p(n) = n^d$

Let
$$a_n = 1 \Rightarrow a_{n+1} = 1$$

$$\lim_{n\to\infty} \frac{a_{n+1}}{a_n} = 1 > 0$$

Now,
$$\sum_{n=0}^{\infty} n^d \cdot 1 \cdot z^n = \sum_{n=0}^{\infty} n^d \cdot z^n$$

Cauchy root test,
$$R = \frac{1}{\lim_{n \to \infty} |a_n|^{\frac{1}{n}}} = \frac{1}{\lim_{n \to \infty} |n^d|^{\frac{1}{n}}} = 1$$

79) Let f be an entire function on C and let Ω be a bounded open subset of C.

Let
$$S = \{Re f(z) + Im f(z) | z \in \Omega\}$$

Which of the following statements is / are necessarily correct?

- a) S is an open set in R
- b) S is an closed set in R
- c) S is an open set in C
- d) S is a discrete set in R
- **80**) Let $u(x+iy) = x^3 3xy^2 + 2x$. For which of the following functions v, is u+iv a holomorphic function on C?

a)
$$V(x + iy) = y^3 - 3x^2y + 2y$$

b)
$$V(x + iy) = 3x^2y - y^3 + 2y$$

c)
$$V(x + iy) = x^3 - 3xy^2 + 2x$$

$$d) V(x + iy) = 0$$

Ans. (b)

$$U(x+ir) = x^3 - 3xy^2 + 2x$$

 \because we know that, a function f(z) = U + iV be analytic in a domain D, if it satisfies the Cauchy Riemann equation $U_x = V_y$ and $U_y = -V_x$

$$\therefore U_x = 3x^2 - 3y^2 + 2$$

$$U_{y} = -6xy$$

Now,

a)
$$V_x = -6xy \neq -\frac{\partial U}{\partial y}$$

∴ option a) is not correct.

b)
$$V_x = 6xy = \frac{\partial U}{\partial y}$$

$$V_y = 3n^2 - 3y^2 + 2 = U_x$$

 \therefore option b) is correct.

c)
$$V_x = 3n^2 - 3y^2 + 2$$

$$V_x \neq -U_y$$

Option c) is not correct

d)
$$U_x \neq V_y$$

option d) is not correct.

81) Let f be an entire function on C. Let, $g(z) = \overline{f(\overline{z})}$

Which of the following statements is / are correct?

- a) if $f(z) \in R$ for all $z \in R$ then f = g
- b) if $f(z) \in R$ for all $z \in \{z | Im \ z = 0\} \cup \{z | Im \ z = a\}$, for some a > 0,

then f(z + ia) = f(z - ia) for all $z \in C$.

c) if $f(z) \in R$ for all $z \in \{z | Im \ z = 0\} \cup \{z | Im \ z = a\}$, for some a > 0,

then f(z + 2ia) = f(z), for all $z \in C$.

d) if $f(z) \in R$ for all $z \in \{z | Im z = 0\} \cup \{z | Im z = a\}$ for some a > 0,

then $f(z + ia) = f(z)all z \in C$.

f be a entire function on \mathbb{C}

$$g(z) = \overline{f(\bar{z})}$$

a) If $f(z) \in R, \forall z \in R$

$$\Rightarrow z = \bar{z}$$

$$[\because z = x + iy, z \in R]$$

$$\Rightarrow f(z) = f(\bar{z})$$

$$\Rightarrow \overline{f(z)} = \overline{f(\overline{z})} = g(z)$$

$$\Rightarrow f(z) = g(z)$$

So, option a) is correct.

b) $f(z) \in R$, $\forall z \in \{z | Im z = 0\} \cup \{z | Im z = a\}$ for some a > 0, then

$$f(z+io) = f(z-ia)$$
 for all $z \in \mathbb{C}$

$$f(z) \in R \& z \in \{z | Im z = 0\} \cup \{z | Im z = a\}$$

$$\Rightarrow$$
 for $z = x$ or $z = x + ia$

$$\Rightarrow f(z) = f(\bar{z})$$

$$\Rightarrow f(z - ia) = f(\overline{z - ia}) = \overline{f(\overline{z - ia})} = f(z + ia)$$

So, option b) is correct.

c)
$$f(z - ia) = f(z + ia)$$

$$if \ z \rightarrow z + ia, f(z) = f(z + 2ia)$$

So, option c) is correct and option d) is not correct.

82) Let $f(z) = \sum_{n=0}^{\infty} a_n Z^n$ be an entire function and let r be a positive real number. Then –

a)
$$\sum_{n=0}^{\infty} |a_n|^{\nu} r^{2n} \le \sup_{|z|=r} |f(z)|^2$$

b)
$$\sup_{|z|=r} |f(z)|^2 \le \sum_{n=0}^{\infty} |a_n|^2 r^{2n}$$

c)
$$\sum_{n=0}^{\infty} |a_n|^2 r^{2n} \le \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta$$

d)
$$\sup_{|z|=r} |f(z)|^2 \le \frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta$$

2015 – June

33) Let f be a real valued harmonic function on C, that is, f satisfied the equation $\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$

Define the functions.

$$g = \frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y}, h = \frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y}$$

Then,

- a) g and h are both holomorphic functions.
- b) g is holomorphic, but h need not be holomorphic.
- c) *h* is holomorphic, but *g* need not be holomorphic.
- b) both *g* and *h* are identically equal to the zero function.

Ans. (b)

Let
$$g = \frac{\partial f}{\partial x} - i \frac{\partial f}{\partial y} = u + iv$$

Then
$$u_x = \frac{\partial^2 f}{\partial x^2}$$
, $u_y = \frac{\partial^2 f}{\partial y \partial x}$

$$v_x = -\frac{\partial^2 f}{\partial x \partial y}$$
, $v_y = -\frac{\partial^2 f}{\partial y^2} = \frac{\partial^2 f}{\partial x^2}$

Since,
$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0$$

Thus,
$$u_x = v_y$$
, $u_y = -v_x$

i.e., g satisfies C - R equation.

Also, all the derivatives are continuous.

Hence g is a holomorphic function.

Now, let,
$$h = \frac{\partial f}{\partial x} + i \frac{\partial f}{\partial y} = u + iv$$

In this case,
$$u_x = \frac{\partial^2 f}{\partial x^2}$$
, $u_y = \frac{\partial^2 f}{\partial y \partial x}$

and
$$V_x = \frac{\partial^2 f}{\partial x \partial y}$$
, $v_y = \frac{\partial^2 f}{\partial y^2} = -\frac{\partial^2 f}{\partial x^2}$

Thus,
$$u_x \neq v_y$$
 and $u_y \neq -v_x$

Hence, h does not satisfy C - R equations. Therefore, h is not holomorphic.

34)
$$\int_{|z+1|=2} \frac{z^2}{4-z^2} dz = 0$$

- a) 0
- b) $-2\pi i$
- c) $2\pi i$
- d) 1

Ans. (c)

The poles are $4 - z^2 = 0 \Rightarrow z = \pm 2$

Only z = -2. Lies on the given region.

Now,
$$\int_{|z+1|=2} \frac{z^2}{4-z^2} dz = \int_{|z+1|=2} \frac{\frac{z^2}{2-z}}{2+z} dz$$

$$=\int_{|z+1|=2} \frac{f(z)}{2+z} dz$$
, where $f(z) = \frac{z^2}{2-z}$

Hence by Cauchy's integral formula, the integral is $= 2\pi i f(-2) = 2\pi i$

79) Let f be an entire function. Which of the following statements are correct?

- a) f is constant if the range of f is contained in a straight line.
- b) f is constant uncountably many zeros.
- c) f is constant if f is bounded on $\{z \in C: Re(z) \le 0\}$
- d) f is constant if the real part of f is bounded

- a) f entire function
- \therefore Domain of $'f' = \mathbb{C}$

i.e., here range skip uncountable many points.

 \Rightarrow f is constant.

So, option (a) is correct.

b)
$$f(z_i) = 0$$
, for uncountable z_i

$$\Rightarrow f(z) = 0, \forall z \in \mathbb{C}$$

$$\Rightarrow f(z)$$
 is constant

 \Rightarrow option b) is correct.

c)
$$\{z \in \mathbb{C} | Re(z) \le 0\}$$
 $z = x + iy$

 $\therefore x \leq 0$

Let
$$f(z) = e^z = e^{x+iy} = e^x \cdot e^{iy}$$

 $|e^2| = e^x$, bounded in $\{z \in \mathbb{C} | Re(z) \le 0\} x \le 0$

 \Rightarrow but f(z) is non castant,

So, option (c) is incorrect.

d) If f = u + iv is an entire function and either of the u & v are bounded then f is constant. So, option (d) is correct.

80) Consider the following subsets of the complex plane:

$$\begin{split} \Omega_1 &= \left\{ C \in \mathbb{C} \begin{bmatrix} 1 & c \\ \bar{c} & 1 \end{bmatrix} \text{ is non } - \text{ negative definite. (or equivalently positive semi } - \text{ definite}) \right\} \\ \Omega_2 &= \left\{ C \in \mathbb{C} : \begin{bmatrix} 1 & C & C \\ \bar{C} & 1 & C \\ \bar{C} & \bar{C} & 1 \end{bmatrix} \text{ is non } - \text{ negative definite (or equivalently positive semi } - \text{ definite}) \right\} \\ &- \text{ definite}) \end{split}$$

Let
$$\overline{D} = \{z \in \mathbb{C} \mid |z| < 1\}$$
 then

a)
$$\Omega_1 = \overline{D}$$
, $\Omega_2 = \overline{D}$

b)
$$\Omega_1 \neq \overline{D}$$
, $\Omega_2 = \overline{D}$

c)
$$\Omega_1 = \overline{D}$$
, $\Omega_2 \neq \overline{D}$

d)
$$\Omega_1 \neq \overline{D}$$
 , $\Omega_2 \neq \overline{D}$

Ans: (c)

81) Let p be a polynomial in 1 – complex variable suppose all zeros of p are in the upper half plane.

$$H = \{z \in \mathbb{C} | Im(z) > 0\}$$
. Then

a)
$$Im \frac{p'(z)}{p(z)} > 0$$
 for $z \in \mathbb{R}$

b)
$$Re^{\frac{p'(z)}{p(z)}} < 0$$
 for $z \in \mathbb{R}$

c)
$$Im \frac{p'(z)}{p(z)} > 0$$
, for $z \in \mathbb{C}$, with $Im z < 0$

d)
$$Im \frac{p'(z)}{p(z)} > 0$$
 for $z \in \mathbb{C}$, with $Im z > 0$

Ans. (a), (b) & (c)

p = polynomial in 1 - complex variable.

Suppose all zeros of p are in the upper half planc $H = \{z \in \mathbb{C} | Im(z) > 0\}$, then by Luca's theorem, zerosof it's derivative (p'(z)) also lie in the some half plane.

Let
$$p(z) = z - 2i \in \mathbb{C}$$

$$\Rightarrow p'(z) = 1$$

$$\frac{p_{\prime}(z)}{p(z)} = \frac{1}{z - 2i}$$

$$=\frac{x-i(y-2)}{x^2+(y-2)^2}$$

$$[z = x + iy]$$

a)
$$Im \frac{p'(z)}{p(z)} > 0$$
 for $z \in \mathbb{R}$

$$\Rightarrow \frac{(y-2)}{x^2+(y-2)^2} > 0$$
. i.e., image $(z) = y = 0$

 \Rightarrow (a) is correct.

b) Re
$$i\left(\frac{p'(z)}{p(z)}\right) = \frac{y-2}{x^2+(y-2)^2} < [if \ z \in \mathbb{R} \ i.e., y = 0]$$

So, option b) is correct

c)
$$Im\left(\frac{p'(z)}{p(z)}\right) = \frac{-(y-2)}{x^2 + (y-2)^2} > 0$$
, if $z \in \mathbb{C}$, $y < 0$

So, option (c) is correct

d)
$$Im\left(\frac{p'(z)}{p(z)}\right) = \frac{-(y-2)}{x^2 + (y-2)^2} > 0$$
, $if z \in \mathbb{C}$, $y > 0$

So, option d) is not correct.

82) Let f be an analytic function defined on the open unit disc in \mathbb{C} . Then f is constant, if

a)
$$f\left(\frac{1}{n}\right) = 0$$
 for all $n \ge 1$

b)
$$f(z) = 0$$
 for all $|z| = \frac{1}{2}$

c)
$$f\left(\frac{1}{n^2}\right) = 0$$
 for all $n \ge 1$

$$\mathrm{d})\,f(z)=0\,for\,all\,z\in(-1,1)$$

Ans. (a), (b), (c) & (d)

2015 – December

38) Consider the following power series in the complex variable z is

$$f(z) = \sum_{n=1}^{\infty} n \log n \, z^n,$$

 $g(z) = \sum_{n=1}^{\infty} \frac{e^{n^2}}{n} z^n$. If r, R are the radii of convergence of f and g respectively, then

- a) r = 0, R = 1
- b) r = 1, R = 0
- c) r = 1, $R = \infty$
- d) $r = \infty$, R = 1

Ans: (b)

39) Let $a, b, c, d \in \mathbb{R}$ be such that ad - bc > 0. Consider the Mobius transformation

$$T_{a,b,c,d}(z) = \frac{az+b}{cz+d} \cdot Define$$

$$H_+ = \{z \in \mathbb{C}: Im(z) > 0\},\$$

$$H_{-}=\{z\in\mathbb{C}:Im(Z)<0\},$$

$$R_+=\{z\in\mathbb{C}:Re(z)>0\},$$

$$R_{-}=\{z\in\mathbb{C}:Re(z)<0\},$$

Then, $T_{a,b,c,d}$ maps -

- a) H_+ to H_+
- b) *H*₊ to *H*₋
- c) R_+ to R_+
- d) R_+ to R_-

Ans: (a)

88) Let
$$f(z) = \frac{1}{e^z - 1}$$
 for all $z \in \mathbb{C}$ such that $e^z \neq 1$. Then

- a) f is mesomorphic
- b) the only singularities of f are poles.
- c) f has infinitely many poles on the imaginary axis.
- d) each pole of f is simple.

Ans. (a), (b). (c), (d)

Except the pole pt., given function is mesomorphic pole point, $e^z = 1$

$$: e^z \neq 1$$

and
$$e^z = 1 = e^{2n\pi i}$$

$$\Rightarrow z = 2n\pi i, n = 0,1,2,\cdots$$

90) Let f be an analytic function in \mathbb{C} . Then f is constant if the zero set of f contains the sequence.

a)
$$a_n = \frac{1}{n}$$

b)
$$a_n = (-1)^{n-1} \cdot \frac{1}{n}$$

c)
$$a_n = \frac{1}{2n}$$

d) $a_n = n$ if 4 does not divide n and $a_n = \frac{1}{n}$ if 4 divides n.

Ans: (a), (b), (c), (d)

$$\begin{vmatrix} \frac{1}{n} \to 0 \\ \frac{1}{2n} \to 0 \end{vmatrix} and \ a_{4k} = \frac{1}{4k} \to 0$$

2016 - June

- 33) Let p(x) be a polynomial of degree $d \ge 2$. The radius of convergence of the power series $\sum_{n=0}^{\infty} p(n) z^n$ is –
- a) 0
- b) 1
- c) ∞
- d) dependent on d

Ans. (b)

$$p(x) = a_0 + a_1 x + \dots + a_k x^k$$

$$R = \lim_{n \to \infty} \left| \frac{1}{\frac{p(n+1)}{p(n)}} \right|$$

$$= \lim_{n \to \infty} \frac{a_0 + a_1 n + a_2 n^2 + \cdots + a_n n^d}{a_0 + a_1 (n+1) + a_2 (n+2)^2 + \cdots + a_n (n+1)}$$

$$=\frac{a_n}{a_n}=1$$

- **34.** Let p(z), Q(z) be two complex non-constant polynomials of degree m, n respectively. The number or roots of p(z) = p(z), Q(z) consted with multiplicity is equal to –
- a) $\min\{m,n\}$
- b) $\max\{m, n\}$
- c) m + n
- d) m n

Ans. (c)

[If f and g have zero of order m, n respectively. Then h(z) = f(z)g(z) have zero of order m + n at $z = z_0$]

35) The residue of the function $f(z) = e^{-e^{1/2}}$ at z = 0 is –

a)
$$1 + e^{-1}$$

b)
$$e^{-1}$$

c)
$$-e^{-1}$$

d)
$$1 - e^{-1}$$

Ans. (c)

$$f(z) = e^{-e^{\frac{1}{z}}}$$

$$= 1 - \frac{e^{\frac{1}{z}}}{1!} + \frac{e^{\frac{2}{z}}}{2!} - \cdots$$

$$= 1 - \frac{1}{1!} \left(1 + \frac{1}{z} + \frac{1}{2!z^2} + \cdots \right) + \frac{1}{2!} \left(1 + \frac{2}{z} + \frac{4}{2!z^2} + \cdots \right)$$

Residue of f at (z = 0) = the coefficient of $\frac{1}{z}$

$$= -1 + \frac{1}{1!} - \frac{1}{2!} + \frac{1}{3!} - \dots$$

$$= -\left(1 - \frac{1}{1!} + \frac{1}{2!} - \frac{1}{3!} + \dots\right)$$

$$= -e^{-1}$$

36) Let D be the open unit disc is \mathbb{C} and H(D) be the collection of all holomorphic functions on

it. Let
$$S = \left\{ f \in H(D): f\left(\frac{1}{2}\right) = \frac{1}{2}, f\left(\frac{1}{4}\right) = \frac{1}{4}, \dots, f\left(\frac{1}{2n}\right) = \frac{1}{2n} \dots \right\}$$

and
$$T = \left\{ f \in H(D): f\left(\frac{1}{2}\right) = f\left(\frac{1}{3}\right) = \frac{1}{2}, f\left(\frac{1}{4}\right) = f\left(\frac{1}{5}\right) = \frac{1}{4}, \dots, f\left(\frac{1}{2n}\right) = f\left(\frac{1}{2n+1}\right) = \frac{1}{2n}, \dots \right\}$$

Then,

- a) both S, T are singleton set
- b) S is a singleton set but $T = \phi$
- c) T is a singleton set but $S = \phi$
- d) both S, T are empty.

Ans: (b)

79) Let $F: \mathbb{C} \to \mathbb{C}$ be an entire function. Suppose that f = u + iv, where u, v are the real and imaginary parts of f respectively. Then f constant if -

a)
$$\{u(x, y); z = x + iy \in \mathbb{C}\}$$
 is bounded

b)
$$\{vV(x, y); z = x + iy \in \mathbb{C}\}$$
 is bounded

c)
$$\{u(x,y) + v(x,y); z = x + iy \in \mathbb{C}\}$$
 is bounded

d)
$$\{u^2(x,y) + v^2(x,y); z = x + iy \in \mathbb{C}\}$$
 is bounded

Ans.
$$(a)$$
, (b) , (c) , (d)

If u(x,y) and v(x,y) are both bounded functions of x and y, then u(x,y) + v(x,y) is also a bounded function then ultimately the function f(z) = u(x,y) + iv(x,y) becomes a bounded function.

80) Let $A = \{z \in \mathbb{C} | z| > 1\}$, $B = \{z \in \mathbb{C} | z \neq 1\}$. Which of the following statement are true?

- a) There is a continuous on to function $f: A \to B$
- b) There is a continuous one to one function $f: B \to A$
- c) There is a non-constant analytic function $f: B \to A$
- d) There is a non-constant analytic function $f: A \rightarrow B$

If
$$f: B \to A$$
 then $|f(z)| > 1, \forall z$

Hence
$$g(z) = \frac{1}{f(z)}$$
, which is entire and $|g(z)| < 1$

- \Rightarrow g(z) bounded entire function \Rightarrow constant.
- $\Rightarrow f(z)$ is constant.

So, option (c) is incorrect.

(a)
$$f(z) = \begin{cases} e^z, & \text{if } |z| > 0 \\ e^{\frac{1}{z}}, & \text{if } |z| \le 0 \end{cases}$$
 So, (a) option correct.

(b)
$$f(z) = \begin{cases} |z|, & \text{if } |z| > 1\\ \frac{1}{|z|}, & \text{if } |z| \le 1 \end{cases}$$
 So, option (b) correct

(d) Picard's Little theorem:

Every non constant entire function eliminates at most one complex no as its value.

$$\therefore$$
 Range of $F = \mathbb{C}$ or $\frac{\mathbb{C}}{\{a\}}$, where $a \in \mathbb{C}$

So, option (d) correct.

81) Let $H = \{z - x + iy \in \mathbb{C}: y > 0\}$ be the upper half plane and $D = \{z \in \mathbb{C}: |z| < 1\}$ be the open unit disc. Suppose that f is a Mobius transformation, which maps H conformally onto D. Suppose that f(2i) = 0 pick each correct statement from below.

a) f has a simple pole at z = -2i

b)
$$f$$
 satisfies $f(i)\overline{f(-i)} = 1$

c) f has an essential singularity at z = -2i

d)
$$|f(2+2i)| = \frac{1}{\sqrt{5}}$$

Ans: (a), (b), (d)

82) Consider the function

$$F(z) = \int_{1}^{2} \frac{1}{(x-z)^{2}} dn, Im(z) > 0$$

Then, there is a meromorphic function G(z) on \mathbb{C} that agrees with F(z) when Im(z) > 0 such that

- a) 1, ∞ are poles of G(z).
- b) $0,1,\infty$ are poles of G(z).
- c) 1,2 are poles of G(z).
- d) 1,2 are simple poles of G(z).

Ans. (c), (d)

Given that

$$F(z) = \int_{1}^{2} \frac{1}{(x-z)^{2}} dx$$
, $Im(z) > 0$

$$=\frac{1}{1-z}+\frac{1}{2-z}$$
, $Im(z)>0$

Here F is analytic at all point in \mathbb{C} except at Z = 1,2.

The point z = 1,2 are the poles of F(z)

Hence, these exists a mesomorphic function G(z) agrees with F(z) where G has simple poles at z=1,2.

2016 - December

- **33)** The radius of convergence of the series $\sum_{n=1}^{\infty} z^{n^2}$ is –
- a) 0
- b) ∞
- c) 1
- d) 2

Ans. (c)

Given that

$$\sum_{n=1}^{\infty} z^{n^2} = \sum_{m=1}^{\infty} z^m = \sum_{m=1}^{\infty} a_m z^m$$
, say where $n^2 = m$

Thus
$$a_m=1$$
 and $\lim_{m\to\infty}a_m^{\frac{1}{m}}=1$

Hence, the radius of convergence is 1.

34) Let C be the circle $|z| = \frac{3}{2}$ in the complex plane that is oriented in the counter clock wise direction. The value of a for which

$$\int_{C} \left(\frac{z+1}{z^{2}-3z+2} + \frac{a}{z-1} \right) dz = 0 \text{ is } -$$

- a) 1
- b) -1
- c) 2
- d) 2

Ans. (c)

$$\int_{C} \left(\frac{z+1}{z^{2} - 3z + 2} + \frac{a}{z-1} \right) dz = 0$$

$$\Rightarrow \int_{\mathcal{C}} \left(\frac{z+1}{(z-1)(z-2)} + \frac{a}{z-1} \right) dz = 0$$

Here only the pole at z = 1 lies within circle $|z| = \frac{3}{2}$ and which is a simple pole.

Thus, by Cauchy's theorem.

$$\int_{c} \left(\frac{z+1}{(z-1)(z-2)} + \frac{a}{z-1} \right) dz = 0$$

i. e.,
$$\int_{c} \left(\frac{f(z)}{z-1} + \frac{g(z)}{z-1} \right) dz = 0$$
 [where $f(z) = \frac{z+1}{z-2}$, $g(z) = a$]

$$\Rightarrow 2\pi i (f(1) + g(1)) = 0$$

$$\Rightarrow 2\pi i(-2+a) = 0 \Rightarrow a = 2.$$

35) Suppose f and g are entire functions and $g(z) \neq 0$ for all $z \in \mathbb{C}$ if $|f(z)| \leq |g(z)|$, then we conclude that

a)
$$f(z) \neq 0$$
 for all $z \in \mathbb{C}$

b) f is a constant function

c)
$$f(0) = 0$$

d) for some $c \in \mathbb{C}$, f(z) = cg(z)

Ans: (d)

36) Let f be a holomorphic function on $0 < |z| < \varepsilon, \varepsilon > 0$ given by a convergent Laurent series

$$\sum_{n=-\infty}^{\infty} a_n \, z^n$$

Given also that $\lim_{z\to 0} |f(z)| = \infty$

We can conclude that

a)
$$a_{-1} \neq 0$$
 and $a_{-n} = 0$ for all $n \geq 2$

b)
$$a_{-N} \neq 0$$
 for some $N \geq 1$ and $a_{-n} = 0$ for all $n > N$

c)
$$a_{-n} \neq 0$$
 for all $n \geq 1$

d)
$$a_{-n} \neq 0$$
 for all $n \geq 1$

Ans. (b)

Given Laurent series is –

$$f(z) = \sum_{n=-\infty}^{\infty} a_n z^n$$

As $\lim_{z\to 0} |f(z)| = \infty$, then z = 0 is a pole of f.

Then at least one negative coefficient must be non-zero.

Thus, $a_{-N} \neq 0$ for some $N \geq 1$ and $a_{-n} = 0$ for all n > N

79) Let f(z) be the meromorphic function given by $\frac{z}{(1-e^z)\sin z}$ then,

a)
$$z = 0$$
 is a pole of order 2

b) for every
$$k \in z$$
, $z = 2\pi i k$ is a simple pole.

c) for every
$$k \in \mathbb{Z} \mid \{0\}, k = k\pi$$
 is a simple pole.

d)
$$z = \pi + 2\pi i$$
 is a pole.

Ans: (b), (c)

80) Consider the polynomial

$$P(z) = \sum_{n=1}^{\infty} a_n z^n, 1 \le N < \infty, a_n \in \mathbb{R} | \{0\}$$

Then, with $D = \{ w \in c : |w| < 1 \}$

- a) $P(D) \subseteq \mathbb{R}$
- b) P(D) is open
- c) P(D) is closed
- d) P(D) is bounded

Ans. (b), (d)

$$P(z) = \sum_{n=1}^{N} a_n z^n, 1 \le N < \infty, a_n \in \mathbb{R} \mid \{0\}$$

$$D = \{ w \in C : |w| < 1 \}$$

i.e., D is a open unit disk and bounded.

We know that image of open set is open and image of a bounded set bounded.

Here $P(z) = \text{polynomial} \Rightarrow \text{continuus}$.

81) Consider the polynomial

$$P(z) = (\sum_{n=0}^{5} a_n z^n)(\sum_{n=0}^{9} b_n z^n)$$

Where $a_n, b_n \in \mathbb{R}$, $\forall n, a_5 \neq 0, b_9 \neq 0$. Then, counting roots with multiplicity we can conclude that P(z) has

- a) at least two real roots.
- b) 14 complex roots.
- c) no real roots.
- d) 12 complex roots.

Ans: (a)

$$P(z) = \left(\sum_{n=0}^{5} a_n z^n\right) \left(\sum_{n=0}^{9} b_n z^n\right)$$

$$\downarrow \qquad \qquad \downarrow$$

$$odd \ degree \qquad odd \ degree$$

$$at \ least \ one \ real \ root \qquad at \ least \ one \ real \ root$$

 $\therefore P(z)$ has at least two real roots.

82) Let D be the open unit disc in \mathbb{C} . Let $g: D \to D$ be holomorphic, g(0) = 0, and let

$$h(z) = \begin{cases} \frac{g(z)}{z}, z \in D, z \neq 0 \\ g'^{(0)}, z = 0 \end{cases}$$

Which of the following statements are true?

- a) h is holomorphic in D
- b) $h(D) \subseteq \overline{D}$
- c) |g'(0)| > 1
- d) $\left| g\left(\frac{1}{2}\right) \right| \le \frac{1}{2}$

Ans. (a), (b), (d)

2017 (June)

33) Let *C* denote the unit circle centered at the origin in *C*.

Then
$$\frac{1}{2\pi i} \int_{c} |1 + z + z^2|^2 dz$$

Where the integral is taken anti clockwise along C equals.

- a) 0
- b) 1
- c) 2
- d) 3

Ans. (c)

$$\begin{split} &\frac{1}{2\pi i} \int_{c} |1+z+z^{2}|^{2} dz \\ &= \frac{1}{2\pi i} \int_{c} (1+z+z^{2}) \left(\overline{1+z+z^{2}}\right) dz \\ &= \frac{1}{2\pi i} \int_{c} (1+z+z^{2}) \left(1+\bar{z}+\bar{z}^{2}\right) dz \\ &= \frac{1}{2\pi i} \int_{c} (3+2\bar{z}+\bar{z}^{2}+z^{2}+2z) dz | \because |z| = 1 \\ &\text{Let } z = e^{i\theta} \Rightarrow dz = i e^{i\theta} d\theta \\ &= \frac{1}{2\pi i} \int_{0}^{2\pi} \left(3+2e^{-i\theta}+e^{-2i\theta}+e^{2i\theta}+2e^{i\theta}\right) i e^{i\theta} d\theta \end{split}$$

$$= \frac{1}{2\pi} \times 4\pi \qquad \qquad \because \left[e^{ni\theta}\right]_0^{2\pi} = 0$$

$$= 2 \qquad \qquad n = 1, 1, 2, 3$$

So, option (c) is correct.

34) Consider the power series $f(x) = \sum_{n=2}^{\infty} \log(n) x^n$

The radius of convergence of the series f(x) is –

- a) 0
- b) 1
- c) 3
- d) ∞

Ans. (b)

$$R = \frac{1}{\lim_{n \to \infty} \left| \frac{a_n + 1}{a_n} \right|}$$

$$= \lim_{n \to \infty} \frac{\log n}{\log(n+1)}$$

$$= \log_{n \to \infty} \frac{n+1}{n}$$
 [by L'Hospital rule]

$$= \log_{n \to \infty} \left(1 + \frac{1}{n} \right) = 1$$

So, option 2) is correct.

- 35) For an odd integer $k \ge 1$, let F be the set of all entire functions f such that $f(x) = |x^k|$ for all $x \in (-1,1)$. Then, the cardinility of F is
- a) 0
- b) 1
- c) Strictly greater than 1 but finite
- d) infinite.

Ans. (a)

$$f(x) = |x^k| = \begin{cases} x^k, x \in (0,1) \\ -x^k, x \in (-1,0) \end{cases}$$

$$ut\ g(z) = z^k \Rightarrow f(z) = g(z); z \in (0,1)$$

$$\Rightarrow f(z) = z^k$$

If
$$h(z) = -z^k \Rightarrow f(z) = h(z) \Rightarrow f(z) = -z^k, z \in (-1,0)$$

- : if two entire function agree on D which has limit pt. in itself then they agree on \mathbb{C} .
- \Rightarrow f(x) agree with g(z) on (0,1)
- and f(z) agree with h(z) on (-1,0)
- \Rightarrow So, such function cannot be entire.
- \Rightarrow The given set has no such function.

So,
$$|F| = 0$$
,

- so, option (a) is correct.
- **36)** Suppose f is holomorphic in an open nbd of $z_0 \in C$. Given that the series $\sum_{n=0}^{\infty} f^{(n)}(z_0)$ converges absolutely, we can conclude that
- a) f is constant
- b) *f* is a polynomial
- c) f can be extended to an entire function
- d) $f(x) \in R$ for all $x \in R$

Let
$$f(z) = e^{iz/4} \& z_0 = 0$$

$$f'^{(z)} = \frac{i}{4}e^{iz/4} \Rightarrow |f'(z_0)| = \frac{1}{4}$$

$$f''(z) = \frac{i^2}{4^2} e^{iz/4} \Rightarrow |f''(z_0)| = \frac{1}{4^2}$$

$$f^{n}(z) = \left(\frac{1}{4}\right)^{n} e^{iz/4} \Rightarrow |f^{n}(z_{0})| = \frac{1}{4^{n}}$$

$$\therefore \sum f^{n}(z_{0}) = \sum_{n=1}^{\infty} \frac{1}{4^{n}}, \text{ converge absolutely.}$$

79) Let f = u + iv be an entire function where u, v are the real and imaginary parts of f respectively. If the Jacobian matrix $J_a = \begin{bmatrix} u_x(a) & u_y(a) \\ v_x(a) & v_y(a) \end{bmatrix}$ is

Symmetric for all $a \in C$, then

- a) f is a polynomial
- b) f is a polynomial of degree ≤ 1
- c) f is necessarily a constant function.
- d) f is a polynomial of degree strictly greater than 1.

Ans: (a), (b)

- **80**) Consider the function $(z) = \frac{\sin(\frac{\pi z}{2})}{\sin(\pi z)}$. Then f has poles at
- a) all integers
- b) all even integers
- c) all odd integers
- d) all integers of the form 4k + 1, $k \in z$

Ans. (c), (d)

Now, $\sin(\pi z) = 0 = \sin n\pi$

i.e.,
$$z = n, n = 0, \pm 1, \pm 2, \dots$$

But, $\sin\left(\frac{\pi z}{2}\right)$ is non-zero, only at odd integers. Hence, f has poles at all odd integers.

- **81**) Consider the Mobius transformation $f(z) = \frac{1}{z}$, $z \in c$, $z \neq 0$, If C denotes a circle with positive radius passing through the origin, then f maps $C/\{0\}$ to
- a) a circle
- b) a line
- c) a line passing through the origin.
- d) a line not passing through the origin.

$$w = \frac{1}{z}$$

Then image of a finite circle through the origin is a straight line not trough the origin.

Circle not through origin maps circle not trough origin.

Line not through origin maps circle not through origin.

- **82**) For which among the following functions f(z) defined on $G = C \setminus \{0\}$, is thereno sequence of polynomials approximating f(z) uniformly on compact subsets of G?
- a) $\exp(z)$
- b) $\frac{1}{z}$
- c) z^2
- d) $\frac{1}{z^2}$

Ans: (b), (d)

2017 - December

- **33**) The function $f: \mathbb{C} \to \mathbb{C}$ defined by $f(z) = e^z + e^{-z}$ has
- a) finitely many zeros.
- b) no zeros.
- c) only real zeros.
- d) has infinitely many zeros.

Ans. (d)

$$f(z) = e^z + e^{-z}$$

$$=\frac{e^{2^{z}}+1}{e^{z}}$$

f(z) has zeros if f(z) = 0

$$\Rightarrow \frac{e^{2^z} + 1}{e^z} = 0$$

$$\Rightarrow e^{2^z} + 1 = 0 \Rightarrow e^{2^z} = -1$$

$$\Rightarrow e^{2^z} = e^{i(2n-1)\pi}$$

$$\Rightarrow z = \frac{(2n-1)\pi i}{2}, n \in \mathbb{N}$$

 $\therefore f(z)$ has infinitely many zeros.

So, option (d) is correct.

34) Let f be a holomorphic function in the open unit disc such that $\lim_{z\to 1} f(z)$ does not exist. Let

 $\sum_{n=0}^{\infty} a_n z^n$ be the Taylor's series of f about z=0 and let R be the radius of convergence. Then

a)
$$R = 0$$

b)
$$0 < R < 1$$

c)
$$R=1$$

d)
$$R > 1$$

Ans. (c)

Let us consider that

$$f(z) = \frac{1}{1-z}$$
, which is holomorphic in $|z| < 1$.

Now,
$$f(z) = (1-z)^{-1} = 1 + z + z^2 + \dots = \sum_{n=0}^{\infty} a_n z^n$$
, where $a_n = 1$.

Hence the radius of convergence is 1.

35) Let *C* be the circle of radius 2 with the centre at the origin in the complex plane, oriented in the anti-clockwise direction. Then the integral $\oint_C \frac{dz}{(z-1)^2} dz$ is equal to

a)
$$\frac{1}{2\pi i}$$

- b) 2π*i*
- c) 1
- d) 0

Ans. (d)

$$\oint_{c} \frac{dz}{(z-1)^{2}} = \oint_{c} \frac{f(z)}{(z-1)^{n+1}} dz$$
$$= \frac{2\pi i}{1!} f'(1) = 0$$

Since
$$f(z) = 1$$

Hence option (d) is correct.

36) Let *D* be the open unit disc in the complex plane and $U = D \setminus \left\{-\frac{1}{2}, \frac{1}{2}\right\}$. Also, let

 $H_1 = \{f: D \to C | f \text{ is a holomorphic and bounded} \}$ and

 $H_2 = \{f: U \rightarrow C | f \text{ is a holomorphic and bounded}\}$

Then the map $r: H_1 \to H_2$ is given by r(f) = f|U, the restriction of F to U, is

- a) injective but not surjective
- b) surjective but not injective
- c) injective and surjective
- d) neither injective nor surjective.

Ans: (c)

79) Let f be an entire function. Consider $= \{z \in \mathbb{C} \mid f^n(z) = 0 \text{ for some positive integer } n\}.$

Then,

- a) if $A = \mathbb{C}$, then f is a polynomial.
- b) if $A = \mathbb{C}$, then f is a constant function.
- c) if A is uncountable then f is a polynomial.
- d) if A is uncountable, then f is a constant function.

Ans. (a) & (c)

Let
$$f(z) = 1 + z + z^2 + \dots + z^{n-1}$$

Here f is a polynomial function of z of degree (n-1).

Also, $f^n(z) = 0$ for all $z \in \mathbb{C}$

Thus, for all $z \in \mathbb{C}$, f is a polynomial.

80) Let $f: \mathbb{C} \to \mathbb{C}$ be a holomorphic function and let u be the real part of f and v be the imaginaly part of f. Then, for $x, y \in \mathbb{R}$, $|f'(x + iy)|^2$ is equal to

a)
$$u_x^2 + u_y^2$$

b)
$$u_x^2 + v_x^2$$

c)
$$v_y^2 + u_y^2$$

d)
$$v_v^2 + v_x^2$$

Here f = u + iv be a holomorphic function.

Then, by C - R equations, $u_x = v_y$ and $u_y = -v_x$

Now,
$$f'(z) = u_x + iv_x$$
, then $|f'(z)|^2 = u_x^2 + v_x^2$

Also,
$$f'(z) = v_y + iv_x$$
, then $|f'(z)|^2 = v_y^2 + v_x^2$

Again,
$$f'(z) = u_x - iu_y$$
, then $\left| f'^{(z)} \right|^2 = u_x^2 + u_y^2$

and also,
$$f'(z) = v_y - iu_y$$
, then $\left|f'^{(z)}\right|^2 = v_y^2 + u_y^2$

81) Let $P(z) = z^n + a_{n-1}z^{n-1} + \dots + a_0$, where $a_0, \dots a_{n-1}$ are complex numbers and let $q(z) = 1 + a_{n-1}z + \dots + a_0z^n$.

If $|P(z)| \le 1$ for all z with $|z| \le 1$ then

a)
$$|q(z)| \le 1$$
 for all z with $|z| \le 1$

- b) q(z) is a constant polynomial.
- c) $P(z) = z^n$ for all complex numbers z.
- d) P(z) is a constant polynomial.

Ans. (a), (b), (c)

If
$$|P(z)| \le 1$$
 for all z with $|z| \le 1$

i.e.,
$$1 + |a_{n-1}| + \dots + |a_0| \le 1$$

Now,
$$|q(z)| = |1 + a_{n-1}z + \dots + a_0z^n| \le 1 + |a_{n-1}| + \dots + |a_0| \le 1$$

Thus, the option (a) is true

Again, if all the coefficients a_0, \dots, a_{n-1} are vanish then $P(z) = z^n$, a polynomial function, but q(z) = 1, a constant function.

So, (b) and (c) will be correct.

82) Let f be a non-constant entire function and let E be the image of f. Then

- a) E is an open set
- b) $E \cap \{z: |z| < 1\}$ is empty
- c) $E \cap \mathbb{R}$ is non-empty
- d) E is a bounded set.

Ans. (a)

f is a non-constant entire function so, f is unbounded (by Liouville's theorem)

- \Rightarrow range (f) is unbounded
- \Rightarrow *E* is unbounded

So, option (d) is incorrect.

Open mapping theorem:

Image of an open set under non constant entire function is an open set.

- \Rightarrow Range (f) = E, open set.
- ∴ option (a) is correct.

Little picards theorem:

If f is non constant entire function then range (f) can skip at most one pt. from \mathbb{R}

- $\Rightarrow E = \mathbb{C} \ or \ \mathbb{C}/\{a\} \ when \ a \in \mathbb{C}$
- (b) and (c) are incorrect.

2019 - June

33) Let c be the counter clockwise oriented circle of radius $\frac{1}{2}$ centered at $i = \sqrt{-1}$. Then the value of the contour integral $\oint_C \frac{dz}{z^4-1}$ is

- a) $-\frac{\pi}{2}$
- b) $\frac{\pi}{2}$
- c) $-\pi$
- d) π

Ans. (a)

34) Consider the function $f: \mathbb{C} \to \mathbb{C}$ given by $f(z) = e^z$. Which of the following is false?

- a) $f(\{z \in \mathbb{C}: |z| < 1\})$ is not an open set.
- b) $f(\{z \in \mathbb{C}: |z| \le 1\})$ is not an open set.
- c) $f(\{z \in \mathbb{C}: |z| = 1\})$ is a closed set.
- d) $f(\{z \in \mathbb{C}: |z| > 1\})$ is an unbounded open set.

Ans. (a)

36) Let $f: \mathbb{C} \to \mathbb{C}$ be an entire function such that $\lim_{z \to 0} \left| f\left(\frac{1}{z}\right) \right| = \infty$. Then which of the following is true?

- a) f is constant.
- b) f can have infinitely many zeros.
- c) f can have most finitely many zeros.
- d) f is necessarily nowhere vanishing.

Ans. (c)

35) Given a real number a > 0. Consider the triangle Δ with vertices 0, a, a + ia. If Δ is given the counter clockwise orientation, then the contour integral $\oint_{\Delta} Re(z)dz$ (with Re(z) denoting the real part of z) is equal to

- a) 0
- b) $i \frac{a^2}{2}$
- c) ia^2
- d) $i^{\frac{3a^2}{2}}$

Ans. (b)

80) Let Re(z), Im(z) denote the real and imaginary parts of $z \in \mathbb{C}$ respectively. Consider the domain $\Omega = \{z \in \mathbb{C}; Re(z) > |Im(z)|\}$ and let $f_n(z) = \log z^n$, where $n \in \{1,2,3,4\}$ and where $\log \mathbb{C} \setminus (-\infty, 0] \to C$ defines the principle branch of logarithm, then which of the following are true?

a)
$$f_1(\Omega) = \left\{ z \in \mathbb{C}; 0 \le |Im(z)| < \frac{\pi}{4} \right\}$$

b)
$$f_2(\Omega) = \left\{ z \in \mathbb{C}; 0 \le |Im(z)| < \frac{\pi}{2} \right\}$$

c)
$$f_3(\Omega) = \left\{ z \in \mathbb{C}; 0 \le |Im(z)| < \frac{3\pi}{4} \right\}$$

d)
$$f_4(\Omega) = \{z \in \mathbb{C}: 0; \le |Im(z)| < \pi\}$$

Ans. (a), (b), (c) & (d)

81) Consider the set

 $F = \{f : \mathbb{C} \to \mathbb{C}\}\ f \text{ is an entire functions, } |f'(z)| \le |f(z)| \text{ for all } z \in \mathbb{C}$

Then which of the following are true?

- a) F is a finite set
- b) *F* is an infinite set

c)
$$F = \{\beta e^{\alpha x}; \beta \in \mathbb{C}, \alpha \in \mathbb{C}\}$$

d)
$$F = \{\beta e^{\alpha x}; \beta \in \mathbb{C}, |\alpha| \le 1\}$$

Ans. (b), (d)

82) Let $D = \{z \in \mathbb{C} \mid |z| < 1\}$ and $w \in D$. Define $F_w D \to D$ by $F_W(z) = \frac{w-z}{1-\bar{w}z}$. Then which of the following are true?

- a) *F* is one to one
- b) *F* is not one to one
- c) F is onto
- d) *F* is not onto

Ans. (a), (c) & (d)

79) Let $f(z) = (z^2 + 1) \sin z^2$ for $z \in \mathbb{C}$. Let f(z) = u(x, y) + iv(x, y) where z = x + iy and u, v are real valued functions.

Then which of the following are true?

- a) $u: R^2 R^2$ is infinitely differentiable
- b) u is continuous but need not be differentiable.
- c) u is bounded
- d) f can be represented by an absolutely convergant power series $\sum_{n=0}^{\infty} a_n z^n$ for all $z \in \mathbb{C}$.

Ans. (a) & (d)