- Weeks 1–2: informal introduction
  - network = path



- Week 3: graph theory
- Weeks 4–7: models of computing
  - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
  - what cannot be computed (efficiently)?
- Week 12: recap

#### Week 4

– PN model: port numbering

### Port-numbering model



### Port-numbering model

#### Simple and restrictive

anonymous nodes, deterministic algorithms

#### All other models are extensions of PN model:

- Chapter 5: add unique identifiers
- Chapter 6: add bandwidth restrictions
- Chapter 7: add randomness







$$V = \{a, b, c, d\}$$
$$E = \{\{a,b\}, \{a,c\}, \{b,c\}, \{b,d\}\}$$



$$V = \{a, b, c, d\}$$

$$P = \{(a,1), (a,2), (b,1), (b,2), (b,3), (c,1), (c,2), (d,1)\}$$

$$p(a,1) = (c,1), p(a,2) = (b,1), \dots$$



$$V = \{a, b, c, d\}$$
$$E = \{\{a,b\}, \{a,c\}, \{b,c\}, \{b,d\}\}$$



$$V = \{a, b, c, d\}$$
  
 $P = \{(a,1), (a,2), (b,1), (b,2), (b,3), (c,1), (c,2), (d,1)\}$   
 $p(a,1) = (c,1), p(a,2) = (b,1), ...$ 



$$V = \{a, b, c, d\}$$
$$E = \{\{a,b\}, \{a,c\}, \{b,c\}, \{b,d\}\}$$



$$V = \{a, b, c, d\}$$
  
 $P = \{(a,1), (a,2), (b,1), (b,2), (b,3), (c,1), (c,2), (d,1)\}$   
 $p(a,1) = (c,1), p(a,2) = (b,1), ...$ 



$$V = \{a, b, c, d\}$$
  
 $E = \{\{a,b\}, \{a,c\}, \{b,c\}, \{b,c\}, \{b,d\}\}$ 



$$V = \{a, b, c, d\}$$

$$P = \{(a,1), (a,2), (b,1), (b,2), (b,3), (c,1), (c,2), (d,1)\}$$

$$p(a,1) = (c,1), p(a,2) = (b,1), \dots$$

- Algorithm = state machine
   (can have infinitely many states)
- Input, States, Output, Msg: sets
- init<sub>d</sub>, send<sub>d</sub>, receive<sub>d</sub>: functions for each degree d = 0, 1, 2, ...

- Input = set of local inputs
- **States** = set of states
- Output = set of stopping states
- Msg = set of possible messages

init<sub>d</sub>: Input → States

how to initialise the state machine

• send<sub>d</sub>: States  $\rightarrow$  Msg<sup>d</sup>

how to construct outgoing messages

receive<sub>d</sub>: States × Msg<sup>d</sup> → States

how to process incoming messages

•  $\operatorname{init}_d(x) = y$ 

local state at time 0 if local input is x

- $send_d(x) = (m_1, m_2, ..., m_d)$ what messages to send if local state is x
- receive<sub>d</sub> $(x, m_1, m_2, ..., m_d) = y$ new state after receiving these messages

- Execution = sequence of state vectors
  - $X_0, X_1, X_2, \dots$ 
    - $x_t(u)$  = state of node u at time t
- $x_0(u) = \operatorname{init}_d(f(u))$ 
  - f(u) is the local input of u
  - d = degree of u

• Assume p(u, i) = (v, j)

- $m_t(u, i)$  = message received by u from port i
  - = message sent by v to port j
  - = component j of vector send<sub>d</sub> $(x_{t-1}(v))$
- $x_t(u) = \text{receive}_d(x_{t-1}(u), m_t(u, 1), ..., m_t(u, d))$

- Current state + send → outgoing messages
- Outgoing messages + p → incoming messages
- Incoming messages + receive → new state

- For any algorithm A and any network N:
   execution X<sub>0</sub>, X<sub>1</sub>, X<sub>2</sub>, ... of A in N
- Stops in time T if  $x_T(v) \in Output$  for all v
  - $x_T(v)$  is the local output of v

# "A solves problem X on graph family F"

- Take any graph G from graph family F
- Take any port-numbered network N
   such that G is the underlying graph of N
- If we run A in N, then A stops and outputs a valid solution of problem X

# "A solves problem X on family F in time T"

- Take any graph G from graph family F
- Take any port-numbered network N
   such that G is the underlying graph of N
- If we run A in N, then A stops in time T and outputs a valid solution of problem X

# "A solves X given Y on family F"

- Take any graph G from graph family F
- Take any port-numbered network N
   such that G is the underlying graph of N
- If we run A in N with any valid input f
   then A stops and outputs a valid solution
   of problem X

Local maxima pick a new colour from {1,2,3}



- "Algorithm P3C solves problem X given Y on graph family F in time O(|V|)"
- *X* = 3-colouring
- Y = colouring (with any number of colours)
- F = path graphs

- Input = {1, 2, ...}
- States = {1, 2, ...}
- Output =  $\{1, 2, 3\}$
- $Msg = \{1, 2, ...\}$

- $init_0(x) = x$
- $init_1(x) = x$
- $init_2(x) = x$

- $\operatorname{send}_0(x) = ()$
- $\operatorname{send}_1(x) = (x)$
- $\operatorname{send}_2(x) = (x, x)$

- $receive_0(x) = 1$  if  $x \notin Output$
- $receive_0(x) = x$  otherwise

- receive<sub>1</sub> $(x, y) = \min(\{1, 2\} \setminus \{y\})$ if  $x \notin \text{Output and } x > y$
- $receive_1(x, y) = x$  otherwise

- receive<sub>2</sub> $(x, y, z) = \min(\{1, 2, 3\} \setminus \{y, z\})$ if  $x \notin \text{Output and } x > y \text{ and } x > z$
- $receive_2(x, y, z) = x$  otherwise

#### Key question

- What can be solved in PN model without any additional input?
  - no colouring, unique identifiers, etc.
  - no randomness
- Example: 3-approximation of minimum vertex cover

### Algorithm VC3: Small vertex covers

- Original graph G: without any colouring
- Virtual graph G': 2-coloured
- Find a maximal matching M' in G'
- Use M' to find a 3-approximation of a minimum vertex cover in G



## Construct virtual graph G'















#### Why vertex cover?



# Edge not covered → M' not maximal





Why within factor 3 of minimum vertex cover?







Virtual node: incident to at most 1 edge of *M*'



Original node: incident to at most 2 edges of *M* 



Virtual node: incident to at most 1 edge of *M*'







M = paths
and/or cycles

OPT has to cover these!



#### **Approximation ratio**



#### Algorithm VC3: Small vertex covers

- We can find 3-approximation of a minimum vertex cover in any graph
- ... assuming that we can find a maximal matching in 2-coloured graphs!
- Easy to solve: algorithm BMM

- Blue nodes send proposals to their orange neighbours one by one
  - using port numbers
- Orange nodes accept the first proposal that they get
  - using port numbers to break ties

Input: 2-coloured graph



 Unmatched blue nodes send proposals to port 1





 Orange nodes accept the first proposal that they get (giving priority to small ports)





 Unmatched blue nodes send proposals to port 2





 Orange nodes accept the first proposal that they get (giving priority to small ports)



 Continue until all blue nodes matched or rejected





All nodes get ≤ 1 partners → matching



 Maximality: blue node unmatched only if all orange neighbours reject (= already matched)



 Maximality: orange node unmatched only if no proposals (= blue neighbours are matched)



#### Summary

- Algorithm BMM: maximal matching in 2-coloured graphs
- Algorithm VC3: 3-approximation of minimum vertex covering in any graph
- VC3 uses BMM as a subroutine: virtual 2-coloured graph

#### Summary

- There are non-trivial problems that can be solved in the PN model
  - without unique identifiers, colouring, etc.
- However, algorithm design much easier if we assume unique IDs
  - our topic next week

- Weeks 1–2: informal introduction
  - network = path



- Week 3: graph theory
- Weeks 4–7: models of computing
  - what can be computed (efficiently)?
- Weeks 8–11: lower bounds
  - what cannot be computed (efficiently)?
- Week 12: recap