Formal Completion

Formal Completion

1 Formal completion of rings and modules

Definition 1. Let A be a ring and \mathcal{T} a topology on A. We say that (A, \mathcal{T}) is a topological ring if the operations of addition and multiplication are continuous with respect to the topology \mathcal{T} .

Given a topological ring A. A topological A-module is a pair (M, \mathcal{T}_M) where M is an A-module and \mathcal{T}_M is a topology on M such that the addition and scalar multiplication is continuous. The morphisms of topological A-modules are the continuous A-linear maps. They form a category denoted by \mathbf{TopMod}_A .

Definition 2. Let A be a ring and I an ideal of A. The I-adic topology on A is the topology defined by the basis of open sets $a + I^n$ for all $n \ge 0$.

A sequence $\{a_n\}$ in A is said to converge to $a \in A$ if for every n, there exists N such that for all $m \ge N$, we have $a_m - a \in I^n$.

A sequence $\{a_n\}$ in A is said to be Cauchy if for every n, there exists N such that for all $m, k \geq N$, we have $a_m - a_k \in I^n$.

Definition 3 (Formal Completion). Let A be a ring and I an ideal of A. The formal completion of A with respect to I, denoted by \widehat{A} , is defined as

$$\widehat{A}:=\varprojlim(\cdots\to A/I^n\to A/I^{n-1}\to\cdots\to A/I),$$

where the maps are the natural projections $A/I^n \to A/I^{n-1}$.

Let M be a A-module. The formal completion of M with respect to I, denoted by \widehat{M} , is defined as

$$\widehat{M}:= \varliminf (\cdots \to M/I^nM \to M/I^{n-1}M \to \cdots \to M/IM),$$

where the maps are the natural projections $M/I^nM \to M/I^{n-1}M$.

By the universal property of the inverse limit, we get a covariant functor from the category of A-modules to the category of \widehat{A} -modules, which sends an A-module M to \widehat{M} and a morphism $f: M \to N$ to the induced morphism $\widehat{f}: \widehat{M} \to \widehat{N}$.

Lemma 4. The functor of completion with respect to an ideal is exact. Yang: finite.

Proof. Yang: To be completed.

Proposition 5. The formal completion \widehat{A} of a ring A with respect to an ideal I is a complete topological ring with respect to the I-adic topology. That is, every Cauchy sequence in \widehat{A} converges to an element in \widehat{A} .

П

Yang: To be completed.

Lemma 6. Let \widehat{A} be the formal completion of a noetherian ring A with respect to an ideal I. Suppose that I is generated by $a_1, ..., a_n$. Then we have an isomorphism of topological rings

$$\widehat{A} \cong A[[X_1,\ldots,X_n]]/(X_1-a_1,\cdots,X_n-a_n).$$

Proof. Yang: To be completed.

Proposition 7. Let A be a noetherian ring and I an ideal of A. Then the formal completion \widehat{A} of A with respect to I is a noetherian ring.

Proof. Yang: To be completed.

Date: June 30, 2025, Author: Tianle Yang, My Website

Proposition 8. Let A be a noetherian ring and I an ideal of A. Then the formal completion \widehat{A} of A with respect to I is a flat A-module.

Proof. Yang: To be completed.

Proposition 9. Let \widehat{A} be completion of a noetherian ring A with respect to an ideal I and M a finite A-module. Then the natural map $M \otimes_A \widehat{A} \to \widehat{M}$ is an isomorphism.

Proof. Yang: To be completed.

Theorem 10 (Artin-Rees Lemma). Let A be a noetherian ring, I an ideal of A, M a finite A-module and N a submodule of M. Then there exists an integer N such that for all $n \ge 0$, we have

$$(I^{N+n}M) \cap N = I^n(I^NM \cap N).$$

Proof. Yang: To be completed.

Proposition 11. Let A be a noetherian ring and \mathfrak{m} a maximal ideal of A. Then the formal completion \widehat{A} of A with respect to \mathfrak{m} is a local ring with maximal ideal $\mathfrak{m}\widehat{A}$.

Proof. Yang: To be completed.

2 Complete local rings

Definition 12 (Coefficient rings).

Theorem 13 (Weierstrass Preparation Theorem). Let (A, \mathfrak{m}) be a noetherian complete local ring, $f = \sum_{n=0}^{\infty} a_n X^n \in A[[X]]$ a power series with $f \not\equiv 0 \mod \mathfrak{m}$. Then there exists a unique factorization of the form f = ug, where u is a unit in A[[X]] and g is a polynomial of the form

$$g = X^d + b_{d-1}X^{d-1} + \dots + b_0,$$

where $b_i \in \mathfrak{m}$ for all i.

Theorem 14 (Hensel's Lemma). Let (A, \mathfrak{m}, k) be a noetherian complete local ring,

Theorem 15 (Cohen Structure Theorem). Let $A, \mathfrak{m}, \mathsf{k}$ be a noetherian complete local ring with coefficient field k . Then

(a) If A is regular of dimension d, then $A \cong \mathsf{k}[[X_1, \dots, X_d]]$.

3 Unique factorization of regular local rings

2