Lehrstuhl für Automatisierung und Informationssysteme Prof. Dr.-Ing. B. Vogel-Heuser

Vorname:	
Nachname:	
Matrikelnummer:	

Prüfung – Informationstechnik

Sommersemester 2017

04.09.2017

Bitte legen Sie Ihren Lichtbildausweis bereit.

Sie haben für die Bearbeitung der Klausur 120 Minuten Zeit.

Diese Prüfung enthält 33 nummerierte Seiten inkl. Deckblatt.

Bitte prüfen Sie die Vollständigkeit Ihres Exemplars!

Bitte nicht mit rot oder grün schreibenden Stiften oder Bleistift ausfüllen!

Aufgabe	Erreichte Punkte
1	
2	
3	
4	
1 2 3 4 5 6 7	
6	
7	
∑G	
9	
9	
10	
11	
12	
13 ∑BS	
14	
15	
16	
17	
∑MSE	
18	
19	
20	
21	
22	
Σ C	
Σ	

Aufgabe G: Grundlagen

Aufgabe G:

1. Umrechnung zwischen Zahlensystemen

48 Punkte

Überführen Sie die unten angegebenen Zahlen in die jeweils anderen Zahlensysteme. Wichtig: Achten Sie genau auf die jeweils angegebene Basis!

$$(2)$$
 (18,625)₁₀ = ()₂

2. IEEE 754 Gleitkommazahlen

Rechnen Sie die gegebene Gleitkommazahl (angelehnt an die IEEE 754 Darstellung) in eine Dezimalzahl um.

1	1	0	1	0	0	1	0	1	1
V		e (4	Bit)			M	(5 B	Bit)	

Hinweis: Ergebnisse und Nebenrechnungen außerhalb der dafür vorgesehenen Textblöcke werden nicht bewertet!

Vorzeichen

V=

Bias und biased Exponent

$$\mathbf{B} = \mathbf{e} =$$

Exponent

Mantisse (Dualzahl und Denormalisiert)

$$\mathbf{M}_2$$
=

Vollständige Dezimalzahl Z (inkl. Vorzeichen)

3. Logische Schaltungen und Schaltbilder

Sie sind zuständig für den Schaltungsentwurf. Ihnen wurde die angegebene Wahrheitstabelle (Bild G-3.1) übergeben. Erstellen Sie eine *graphische Schaltung in Normalform* (KNF / DNF). Erstellen sie diejenige Normalform, die am *wenigsten Schaltglieder* erfordert.

a	b	c	$\mathbf{y_1}$
0	0	0	1
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	1
1	0	1	1
1	1	0	1
1	1	1	0

Bild G-3.1: Wahrheitstabelle

4. Leitungscodes

Die folgende *Binärfolge* soll mit Hilfe eines seriellen Bussystems übertragen werden. Hierfür müssen die Daten *serialisiert* werden. Verwenden Sie dazu den *Manchester-Code*. *Hinweis:* Beachten Sie das angegebene Taktsignal.

Vorname Nachname Matrikelnummer 5. Normalformen und Minimierung Gegeben sind folgende KV-Diagramme. Dieses KV-Diagramm werten Dieses KV-Diagramm werten ā ā a a b b X 1 X 1 1 1 1 1 ħ b 1 X 1 X 0 0 0 0 $\bar{\mathbf{c}}$ Bild G-5.1: KV-Diagramm 1 Bild G-5.2: KV-Diagramm 2 a) Minimieren Sie das KV-Diagramm in Form der DNF (Disjunktive Normalform) durch Einrahmen (Schleifen) der entsprechenden Felder im oben dargestellten KV-Diagramm. Schreiben Sie die minimierte Funktion in boolescher Algebra in das Lösungsfeld unten auf. Die Felder mit y=,,X" sind don't care bits. Hinweis: Das zweite abgebildete KV-Diagramm dient als Ersatz, falls Sie sich verzeichnen. Kennzeichnen Sie durch Ankreuzen im Feld "dieses KV-Diagramm werten", welches KV-Diagramm bewertet werden soll. a $\mathbf{y_1}$ b) Übertragen Sie die gegebene Wahrheitstabelle (Bild G-5,3) in eine 0 0 Konjunktive Normalform (KNF) der booleschen Algebra und minimieren Sie die Schaltung mithilfe der Rechenregeln der 0 1 1 booleschen Algebra. 1 0 0 *Hinweis*: Schreiben Sie alle Zwischenschritte in das Lösungsfeld! 1 Bild G-5.3: Wahrheitstabelle

6. Flip-Flops

Gegeben ist die folgende Master-Slave Flip-Flop Schaltung (MS-FF)

Bei t = 0 sind die Flip-Flops in folgendem Zustand: $Q_1 = Q_2 = 0$.

Analysieren Sie die Schaltung für den Bereich t=[0;9[, indem Sie für die Eingangssignale A, B und T die zeitlichen Verläufe für Q_1 und Q_2 in die vorgegebenen Koordinatensysteme eintragen.

Hinweis: Signallaufzeiten können bei der Analyse vernachlässigt werden.

7. MMIX-Rechner

Im Registerspeicher eines MMIX-Rechners befinden sich die in Bild G-7.2 gegebenen Werte. Es sollen nacheinander die zwei Befehle (Bild G-7.4) abgearbeitet und das Ergebnis in dem Registerspeicher (Bild G-7.2) bzw. Datenspeicher (Bild G-7.3) abgelegt werden.

The definite percentage (Blid & 7.2) 82 W. Butch							
	0x_0	0x_1		0x_4	0x_5		
	0x_8	0x_9	•••	0x_C	0x_D	•••	
0.40	TRAP	FCMP		FADD	FIX		
0x0_	FLOT	FLOT I	•••	SFLOT	SFLOT I	•••	
01	FMUL	FCMPE		FDIV	FSQRT		
0x1_	MUL	MULI	•••	DIV	DIV I	•••	
0.42	ADD	ADD I		SUB	SUB I		
0x2_	2ADDU	2ADDU I	:	8ADDU	8ADDU I	•••	
0.40	LDB	LDB I		LDW	LDW I		
0x8_	LDT	LDT I	•••	LDO	LDO I	•••	
0x9	LDSF	LDSF I		CSWAP	CSWAP I		
0x9_	LDVTS	LDVTS I	•••	PREGO	PREGO I	•••	
0xA	STB	STB I		STW	STW I		
UXA_	STT	STT I	•••	STO	STO I	•••	
٥٧٢	SETH	SETMH		INCH	INCMH		
0xE_	ORH	ORMH	•••	ANDNH	ANDNMH	•••	
0xF_	JMP	JMP B		GETA	GETA B		

etener (Bria & 7.3) abgelegt werden.						
	Registerspeicher					
Adresse	Adresse Wert <u>vor</u> Befehlsausführung					
\$0x87	0x00 00 00 00 00 01 B0 0F					
\$0x88	0x00 00 00 00 DE AC 10 CF					
\$0x89	0x00 00 00 00 00 00 00 00					
\$0x8A	0x00 00 00 00 00 00 61 FE					
•••						

Bild G-7.2: Registerspeicher

Datenspeicher					
Adresse	Wert				
0x00 00 00 00 00 00 61 FF	0xF0				
0x00 00 00 00 00 00 62 00	0x01				
0x00 00 00 00 00 00 62 01	0xDA				
0x00 00 00 00 00 00 62 02	0x53				
0x00 00 00 00 00 00 62 03	0x1B				
0x00 00 00 00 00 00 62 04	0x00				
0x00 00 00 00 00 00 62 05	0xB0				

Bild G-7.1: MMIX-Code-Tabelle

Bild G-7.3: Datenspeicher

Nr.	Maschinensprache Assemblersprache		Befehlsbeschreibung		
1	0x21 89 87 FF	?	?		
2	?	?	\$0x89=M ₄ [\$0x8A+0x04]		

Bild G-7.4: Befehle in Maschinensprache, Assemblersprache und Befehlsbeschreibung

Bearbeiten Sie nun folgende Fragen (nächste Seite) zu den Befehlen und zu den Änderungen, die sich durch die Befehle ergeben.

Prüfung Informationstechnik SS 2017

Vorname 1	Nachname		
Befehl Zeile 1:			
a) Geben Sie die Formulier	ung in Assemblerspra	ache für den Befehl Nr. 1 in Bild G-7.4 an.	
b) Win landed iin Defeliale		1 in Dild C 7 A annual banan Defable?	
		1. 1 in Bild G-7.4 angegebenen Befehls? ung ist in Bild G-7.4, Zeile Nr. 2 gegeben.	
· ·		ch den Befehl Nr. 1 in Bild G-7.4	
geänderten Registerspeiche	rzelle an!		
]	
Befehl Zeile 2:			
		rache für Befehl Nr. 2 in Bild G-7.4 an.	
<i>Hinweis:</i> Ein Beispiel für e gegeben.	inen Befehl in Masch	ninensprache ist in Bild G-7.4, Zeile Nr. 1	
gegesen.			
e) Geben Sie den Wert der Datenspeicherzelle an!	durch Befehl Nr. 2 in	Bild G-7.4 geänderten Register- oder	
Allgamainag au MMIV.			
Allgemeines zu MMIX:	andan allgamainan E	Fragan zur Arghitaktur von MMIV	
1) Beantworten Sie die Tolg	enden, angememen r	Fragen zur Architektur von MMIX.	
In welcher Komponente ist	der MMIX-Programı	mcode gespeichert?	
() Befehlsspeicher	() Registersper	icher () Datenspeicher	
Welche Komponente ist für	die Ausführung mat	hematischer Operationen zuständig?	
() Steuerung	() ALU	() Demultiplexer	
Worüber wird der Signalflu	iss in der MMIX-Arc	hitektur umgesetzt?	
() ADD	() BZ	() Multiplexer	

Aufgabe BS: Betriebssysteme

Aufgabe BS: 48 Punkte

8. Zeitparameter von Rechenzuständen

Gegeben sei das folgende Prozessmodell (Bild BS-8.1). Ordnen Sie jeweils die entsprechenden Zeitparameter den Lücken im Modell zu. Beantworten Sie außerdem die untenstehende Frage bezüglich Scheduling-Algorithmen.

- Bild BS-8.1: Prozessmodell
- a) Ausführungszeit (), Antwortzeit (), maximale Antwortzeitdauer ()
- b) Spielraum (), Restantwortzeit (), Ausführungszeitdauer ()
- c) Spielraum (), Antwortzeit (), verbleibende Ausführungszeit ()

Für welchen Scheduling-Algorithmus spielt Parameter c) die zentrale Rolle bei der Priorisierung der Tasks?

9. Asynchrones Scheduling, präemptiv, RR

Gegeben seien die folgenden sechs Prozesse (Bild BS-9.1), welche jeweils ab dem Zeitpunkt "Start" eingeplant werden sollen. Zur Abarbeitung eines Tasks wird die Rechenzeitspanne "Dauer" benötigt. Periodische Tasks werden mit der Häufigkeit "Frequenz" erneut aufgerufen. Erstellen Sie im untenstehenden Diagramm das präemptive Scheduling nach dem Schema "Round-Robin" für den Zeitraum 0 bis 50s für einen Einkernprozessor. Treffen innerhalb eines Zeitschlitzes mehrere Tasks ein, beachten Sie die "Prioritäten". Ein Zeitschlitz hat eine Größe von vier Sekunden. Tragen Sie anschließend die Zeitpunkte, an denen die Tasks fertig abgearbeitet werden, mit einer Genauigkeit von 1s in den untenstehenden Lösungskasten ein.

Hinweis: Nur Antworten innerhalb des Lösungskastens werden gewertet!

	Priorität	Start	Dauer	Frequenz		Priorität	Start	Dauer	Frequenz
P1	1 (hoch)	10 s	4 s	14 s	P4	4	3 s	5 s	einmalig
P2	2	0 s	7 s	einmalig	P5	5	13 s	3 s	einmalig
P3	3	6 s	6 s	einmalig	P6	6 (niedrig)	9 s	7 s	einmalig

Bild BS-9.1: Taskspezifikation I

- a) P1 (), P2 (), P3 (), P4 (), P5 (), P6 (), ruhend ()
- b) P1(), P2(), P3(), P4(), P5(), P6(), ruhend()
- c) P1 (), P2 (), P3 (), P4 (), P5 (), P6 (), ruhend ()
- d) P1 (), P2 (), P3 (), P4 (), P5 (), P6 (), ruhend ()
- e) P1(), P2(), P3(), P4(), P5(), P6(), ruhend()

10. Asynchrones Scheduling, präemptiv, Interrupts

Die <u>drei periodischen Prozesse</u> P1, P2 und P3 (Bild BS-10.1) sollen mit dem Verfahren der asynchronen Programmierung <u>präemptiv</u> auf einem Einkernprozessor eingeplant werden. Der Prozess P1 besitzt die höchste, der Prozess P3 die niedrigste Priorität. Die Ausführung wird durch einen Interrupt unterbrochen.

Tragen Sie in das unten angegebene leere Diagramm den Verlauf der Abarbeitung von Prozessen und Interrupts ein. Kreuzen Sie danach an den durch einen Pfeil markierten Stellen den aktiven Prozess an.

Hinweis: Nur Kreuze innerhalb des Lösungskastens werden gewertet!

Bild BS-10.1: Prozessverlauf

- a) Interrupt (), P1 (), P2 (), P3 (), ruhend ()
- b) Interrupt (), P1 (), P2 (), P3 (), ruhend ()
- c) Interrupt (), P1 (), P2 (), P3 (), ruhend ()
- d) Interrupt (), P1 (), P2 (), P3 (), ruhend ()
- e) Interrupt (), P1 (), P2 (), P3 (), ruhend ()
- f) Interrupt (), P1 (), P2 (), P3 (), ruhend ()

11. Semaphoren

Gegeben seien die folgenden vier Tasks T1 bis T4 mit <u>absteigender Priorität</u> sowie die dazugehörigen <u>Semaphoren</u> S1 bis S4 (Bild BS-11.1). Die Startwerte der Semaphoren entnehmen Sie der Antworttabelle. Tragen Sie in der ersten Spalte der Antworttabelle den aktuell laufenden Task ein sowie im Rest der Zeile die Werte der Semaphoren nach Ausführung des jeweiligen Tasks.

T1	T2	Т3	T4
P(S1)	P(S2)	P(S3)	P(S4)
	P(S2)	P(S3)	P(S4)
	•••		
		V(S2)	V(S1)
V(S3)	V(S4)	V(S2)	V(S3)

Bild BS-11.1: Semaphorenzuweisung

Task	S 1	S2	S3	S4
-	1	0	1	1

Beantworten Sie außerdem, ob im betrachteten Schedule folgende Phänomene auftreten:

() ja	() nein
() ja	() nein
() ja	() nein
	() ja

12. Echtzeitbetriebssysteme

Im Folgenden (Bild BS-12.1) ist ein unvollständiges "erweitertes Taskzustandsdiagramm von RTOS-UH" gegeben.

Bild BS-12.1: Erweitertes Taskzustandsdiagramm von RTOS-UH

Bezeichnen Sie die im Diagramm mit Buchstaben markierten Lücken:

$\overline{}$	
a)	
b)	
c)	
d)	
l	

13. IEC 61131-3: Funktionsbausteinsprache (FBS)

Ein Kaffeeautomat soll über drei Tasten (*Taste_Abbruch*, *Taste_Kaffee*, *Taste_Eiskaffee*) gesteuert werden. Der Automat verwendet drei Schnittstellen zum Rest der Maschinensteuerung (*Produktion_läuft*, *Produktion_fertig* und *Bestellung*).

Wählt der Kunde über einen Druck der Tasten Taste_Kaffee oder Taste_Eiskaffee ein Produkt, soll das Signal Produktion_läuft von 0 auf 1 wechseln und Bestellung für einen Kaffee auf 1 und für einen Eiskaffee auf 0 gesetzt werden. Im selben Moment wechselt der Sensor Produktion_fertig auf 0. Der Zustand von Bestellung darf bis zum Ende der Herstellungsdauer nicht verändert werden. Ein Drücken von beiden Bestelltasten gleichzeitig muss abgefangen werden. Ebenso der Beginn einer neuen Bestellung, so lange das Signal Produktion_läuft sich noch im Zustand 1 befindet.

Ist die Produktion abgeschlossen, wechselt der Sensor *Produktion_fertig* auf 1. Als Reaktion soll das Signal *Produktion_läuft* auf 0 gesetzt werden.

Wird die Taste *Taste_Abbruch* betätigt, soll das Signal *Produktion_läuft* sofort auf 0 gesetzt werden. So lange *Taste_Abbruch* gedrückt wird, darf keine Reaktion auf die Bestelltasten erfolgen.

Hinweis: Signalverzögerungen im System sind zu vernachlässigen

Aufgabe MSE: Modellierung und Softwareentwicklung

Aufgabe MSE: 48 Punkte

14. Automaten

a) Gegeben sei der nachfolgende Automat. Der Automat befindet sich aktuell im Zustand *s2*.

Leiten Sie eine Übersicht der Übergänge ab, indem sie die untenstehende Tabelle vervollständigen (Zustand und Ausgabe)!

Bild MSE-14.1: Automat

Т	s 1	s2	s3	s4
а				
b				

Welche Eingabe müssen Sie tätigen damit Sie die Ausgabesequenz

y2 y1 y2 y1 y1 y2 erhalten?

Handelt es sich bei dem gegebenen Automaten um einen Moore- oder Mealy-

Automaten?

Moore-Automat () Mealy-Automat ()

Handelt es sich um einen deterministischen oder nicht-deterministischen Automaten?

Begründen Sie Ihre Antwort! (Begründung ausschlaggebend)

- b) Der Automat aus a) repräsentiert die Betriebsarten einer Maschine. Im nachfolgenden soll der Automat erweitert werden:
 - Der Anfangszustand s2 bleibt bestehen.
 - Durch die Eingabe von a und b gleichzeitig, also *ab*, soll die Maschine aus allen Zuständen in den Zustand *sFehler* übergehen. In diesen Fällen wird *f0* ausgegeben.
 - Das Verlassen des Zustands *sFehler* ist nur durch den Übergang zum Anfangszustand *s2* möglich. Hierfür ist eine Eingabe *c* notwendig. Ausgegeben wird dabei *r0*.

Vervollständigen Sie den Automaten gemäß der obigen Beschreibung!

15. Zustandsdiagramm

Der Hochlauf einer Maschine soll als Zustandsdiagramm modelliert werden. Dafür wird das System als Erstes in den Zustand *Selbsttest* versetzt. Nachdem das Selbsttestende erreicht wurde, wird überprüft, ob das Ergebnis (Variable *Result*) des Selbsttests wahr oder falsch war.

Falls das Ergebnis falsch war, wechselt das System in den Zustand *Störung*. Beim Betreten des Zustandes soll dabei die Aktion *Störungsmeldung* ausgeführt werden, danach geht das System in den Endzustand über.

Falls der Selbsttest ein wahres Ergebnis hatte, soll in den Zustand *Grundstellung* übergegangen werden. Während dieser Zustand aktiv ist, soll die Aktion *ZylinderEinfahren* durchgeführt werden. Nach 10 Sekunden soll das System dann in den Zustand *Betriebsbereit* wechseln und bei Zustandseintritt ein Protokoll senden (Aktion *ProtokollSenden*). Das System geht dann ebenfalls in den Endzustand über und der Hochlauf ist abgeschlossen.

Wird im Zustand *Grundstellung* der Trigger *Notaus* ausgelöst, soll das System in den Zustand *Störung* übergehen.

Vervollständigen Sie das Zustandsdiagramm. Fügen Sie Start- und Endzustand ein. Zeichnen Sie keine zusätzlichen Zustände ein.

16. SA/RT: Flussdiagramm

Für die folgenden Teilaufgaben ist eine Maschine zur Abfüllung von Kaffee und Eis in Becher gegeben, die aus drei Prozessschritten besteht.

Im Prozess Becher platzieren (Prozess 1) wird ein leerer Becher aus einem Becherstapel in der Maschine platziert. Im Prozess Kaffee einfüllen (Prozess 2) wird der leere Becher mit Kaffee befüllt. Mittels einer CSPEC kann kontrolliert werden, ob laut Bestellung im Prozess Kaffee einfüllen ein einfacher Kaffee oder ein doppelter Kaffee eingefüllt werden soll. Im Prozess Eis einfüllen (Prozess 3) wird dem Kaffeebecher Eis hinzugefügt und der Eiskaffee abschließend an den nächsten Prozessschritt weitergegeben, der hier nicht weiter betrachtet wird.

Modellieren Sie den Prozess Eiskaffee herstellen (Prozess 0) mittels Strukturierter Analyse / Real-Time (SA/RT) in einem Flussdiagramm. Identifizieren Sie hierzu alle Subprozesse, Daten-, und Steuerflüsse und tragen Sie diese mit Bezeichnung ein. Beachten Sie, dass Sensor- und Aktordaten eines Prozesses mit SDProzessnummer und ADProzessnummer (z.B. SD1 oder AD3) zusammengefasst werden. Beachten Sie außerdem folgende Informationen:

Flüsse Material:

Becherstapel, Kaffee, Eis, leerer Becher, Kaffeebecher, Eiskaffee

Flüsse Sensordaten:

je nach Prozess: SD*Prozessnummer*, also z.B. SD2 bei "Kaffee einfüllen".

Flüsse Aktordaten:

Wie Sensordaten nur AD*Prozessnummer* **Steuerflüsse:**

Bestellung, einfacher Kaffee, doppelter Kaffee

17. Antwortzeitspezifikation: Timing-Diagramm

Zur Verfeinerung der Eiskaffee-Herstellung soll eine Antwortzeitspezifikation in Form eines Timing-Diagramms erstellt werden, um sicherzustellen, dass der Prozess korrekt durchgeführt wird.

Die Werte der Sensoren und Aktoren können jeweils *TRUE* (z. B. Becher erkannt) oder *FALSE* (z. B. Becher nicht erkannt) sein.

Ergänzen Sie das Timing-Diagramm gemäß folgender Angaben (Werteverläufe und Zeitangaben):

- Sobald ein großer Kaffee bestellt wird, liefert das Signal *doppelter Kaffee* den Wert TRUE. Um das Getränk zu produzieren, muss nach spätestens 500 ms ein Becher eingestellt werden und somit der Sensor *Becher erkannt* auf TRUE wechseln.
- Nachdem ein Becher erkannt wurde, aktiviert sich nach 200 +/- 100 ms die Kaffeepumpe durch Wechsel des Signals *Kaffee füllen* auf TRUE. Der Füllstandssensor *Becher voll* soll erwartungsgemäß 10 s +/- 0,1 s nach Start des Füllvorgangs einen mittlerweile gefüllten Becher erkennen und auf TRUE wechseln. Die Pumpe wird daraufhin nach 150 +/- 50 ms wieder deaktiviert.
- Nach Abschalten der Pumpe darf der Becher frühestens nach 150 ms entnommen werden. Entsprechend werden ab diesem Moment weder ein Becher noch ein voller Füllstand erkannt.
- Ab dem Zeitpunkt, in dem der volle Becher erkannt wird, wechselt das Signal *doppelter Kaffee* nach 150 +/- 100 ms wieder auf FALSE.

Aufgabe C: C-Programmierung

18. Datentypen und Boolsche Algebra

Aufgabe 18: 13 Punkte

a)	Datentyper	1
----	------------	---

Definieren Sie die Datentypen der folgenden Variablen so, dass so wenig Speicher wie möglich benötigt wird. Die Variablen sollen zur Beschreibung der Artikels in einem Getränkeautomat verwendet werden.

Variable	preis
Variable	gesamtUmsatz

Preis eines Artikels auf zwei Nachkommastellen genau Umsatz seit der letzten Leerung gerundet auf ganze Euro, Die Leerung erfolgt monatlich, Im Schnitt werden monatlich

300 Artikel zu einem Durchschnittspreis von 2€ verkauft

Variable verbArtikel

Verbleibende Artikel in einem Fach (ein Fach enthält höchstens 20 Artikel)

	char	int	double	float
preis	()	()	()	()
gesamtUmsatz	()	()	()	()
verbArtikel	()	()	()	()

Es soll der Wert der in einem Fach verbleibenden Artikel berechnet werden, also (preis * verbArtikel). Welchen Datentyp hat das Ergebnis dieser Berechnung?

() char	() int	() double	() float

b) Ein- und Ausgabe

Füllen Sie die folgenden Ein- und Ausgabebefehle sowie die Formatstrings aus. Die verwendeten Variablen sind deklariert und initialisiert.

1) Ausga	be einer	Gleitke	ommazah	mit 3	Nachk	ommaste	ellen

(" ", fZahl);

ii) Einlesen eines Strings von maximal 50 Zeichen von der Standardeingabe.

(puffer, ,);

Prüfung Informationstechnik SS 2017

Vorname Nachname Matrikelnummer

c) Boolsche Algebra

Bestimmen Sie das Ergebnis der nachfolgend angegebenen Ausdrücke im Dezimalsystem. Gegeben sind folgende Variablen:

```
int a = 3;
int b = 17;
int c = 1;
int* d = &a;
float f = 1.16;
```

Nach jedem der nachfolgenden Ausdrücke werden die Variablen auf die oben genannten Werte zurückgesetzt.

x.1	((c + a++) << !(b < a))	
x.2	((int)f ++*d) && ('c' > 0))	

d) Boolsche Ausdrücke

Schreiben Sie jeweils einen boolschen Ausdruck, der die Aussagen der gegebenen textuellen Beschreibungen wiedergibt.

Hierfür sind die Variablen int iZahl1, int iZahl2 und int b bereits definiert.

- i) Die Zahl iZahl1 ist größer oder gleich 12 und die Zahl b ist 0.
- ii) Die Zahl iZahl1 ist ungerade oder die iZahl2 ist gerade und größer 20.

19. Kontrollstrukturen

Sie sollen ein Programm entwickeln, dass die Verkaufszahlen eines Getränkeautomaten analysiert. Hierzu liegen die Verkaufszahlen der letzten drei Tage der vier Artikel als zwei-dimensionales Array *verkaeufe*, sowie die Preise der Artikel als Array *preise* vor.

Aufgabe 19: 10 Punkte

Das Programm soll den

- Gesamtumsatz mit 2 Nachkommastellen,
- den umsatzstärksten Tag und den
- durchschnittlichen Umsatz pro Artikel mit 2 Nachkommastellen ausgeben.

Kreuzen Sie auf der folgenden Seite im Bild C-19.2 die korrekten Codefragmente für die in Bild C-19.1 angegebenen Lücken an.

```
(1)
        FAECHER 4
int main()
  int verkaeufe [][FAECHER] = \{\{3, 2, 1, 2\}, \{1, 2, 6, 2\},
                                                      //Tag1
                                                      //Tag2
                                \{7, 2, 7, 2\}\};
                                                      //Tag3
  float preise[] = {1.5, 0.5, 3.7, 1}; // Preise Artikel 1-4
  float umsaetzeArtikel[] = {0, 0, 0, 0};
  int umsatzTageweise[] = {0, 0, 0};
  int i = 0, j = 0, iStaerksterTag = 0;
  float fGesamtumsatz = 0;
  for (
        (j = 0; j < FAECHER; j++)
      umsatzTageweise[i] += verkaeufe[i][j] * preise[j];
      umsaetzeArtikel[j] += verkaeufe[i][j] * preise[j];
    if (umsatzTageweise[iStaerksterTag]
      iStaerksterTag = i;
    fGesamtumsatz
  }
  printf("Der Gesamtumsatz war %.2f. Tag %i war der umsatzstaerkste Tag.\n",
          fGesamtumsatz,____
  printf("Durchschnittlicher Umsatz war: (8)
```

Bild C-19.1: Sourcecode zur Auswertung der Verkaufszahlen eines Getränkeautomaten.

Kreuzen Sie in dem folgenden Bild C-19.2 die korrekten Codefragmente für die in Bild C-19.1 angegebenen Lücken an (nur Einfachantwort möglich).

i) Lücke (1) in Bild C-19.1		
<pre>() #include stdio.h () #define <stdlib.h></stdlib.h></pre>	<pre>() #include <stdio> () #include stdlib</stdio></pre>	<pre>() #include <stdio.h> () #define <io.h></io.h></stdio.h></pre>
ii) Lücke ② in Bild C-19.1		
<pre>() #define () #define <stdlib.h></stdlib.h></pre>	<pre>() #typedef () #include stdlib</pre>	() #include () #const
iii) Lücke ③ in Bild C-19.1		
() i = 0; i <= 3; i++ () i = 0; i < 3; i++	() i = 1; i <= 3; i++ () i = 0; i < 3; ++i	() i = 0; i < 4; i + 1 () i = 0; i < 3; i + 1
iv) Lücke 4 in Bild C-19.1		
() while () for	() do () switch	() if () case
v) Lücke 5 in Bild C-19.1		
<pre>() > fGesamtumsatz () <= umsatzTageweise[i - () > iStaerksterTag</pre>	<pre>() <= umsatzTag 1] () < umsatzTage () > umsatzTage</pre>	eweise[iStaerksterTag - 1] weise[i] weise[i++]
vi) Lücke 6 in Bild C-19.1		
<pre>() += umsaetzeArtikel[i]; () -= umsatzTageweise[i] () += umsatzTageweise[i];</pre>	() = umsatzTageweis	se[i] e[i]; se[i] + umsaetzeArtikel[j];
vii) Lücke (7) in Bild C-19.1		
<pre>() iStaerksterTag () i + 1</pre>	<pre>() ++iStaerksterTag () iStaerksterTag + 1</pre>	() i () ++i
viii) Lücke (8) in Bild C-19.	1	
() %.3f () %d	() .3%f () %f	() .3%i () .%d2
ix) Lücke (9) in Bild C-19.1		
() fGesamtumsatz() fGesamtumsatz *iStaerks() fGesamtumsatz * Preise	() FAECHER / fGe sterTag () fGesamtumsatz () fGesamtumsatz	/ FAECHER
x) Lücke 10 in Bild C-19.1		
() return () continue;	() break 0; () break;	() continue 1; () return 0;

Bild C-19.2: Codefragmente für Bild C-19.1.

Prüfung Informationstechnik SS 2017

Vorname Nachname Matrikelnummer

20. Objektorientierte Programmierung

Aufgabe 20: 25 Punkte

a) Grundlagen & Konzepte

Im Folgenden werden grundlegende Konzepte der objektorientierten Programmierung besprochen. Bitte wählen Sie aus den Antwortalternativen die eine korrekte Alternative aus (nur Einfachnennung möglich).

	nn eine konkrete Ausprägung	
() Objekt	() Exemplar	() Instanz
() Klasse	() Assoziation	() Typ
ii) In welcher Bezieh	ung steht die Klasse Bier zu	r Klasse Getränk?
() Aggregation	() Vererbung	() Instanz
() In keiner	() Assoziation	() Schnittstelle
() Objekte der Unterk () Der Datentyp einer () Zwischen Oberklas () Der Datentyp einer () Objekt einer Unterk () Objekte der Unterk	Variablen wird automatisch unsse und Unterklasse dürfen keir Variablen wechselt. klasse kann auch als Objekt sei klasse können auf private Meribute oder Methoden mit der	ne Beziehungen bestehen.
() Alle anderen Metho () Abgeleitete Klasse () Niemand () Oberklassen	oden	
() Bei der Zerstörung	tem auf dem das Programm au ung eines Objekts ierung rwendung der Instanz	sgeführt wird
,	uf ein Attribut einer Klasse zu () & () ->	1? (): ()>

b) Modellierung mit UML

Sie sollen eine Software für einen Getränkeautomaten entwickeln. Hierfür soll zunächst ein UML-Klassendiagramm erstellt werden. Beim Treffen mit Ihrem Auftraggeber erfragen Sie die notwendigen Informationen in einem Interview. Ein Ausschnitt der Interviewergebnisse, den Sie in ein Klassendiagramm überführen sollen, ist in Bild C-20.1 gegeben.

- Ein Getränkeautomat wird von einem Betreiber betrieben.
- Der Getränkeautomat enthält eine Reihe von Fächern.
- Jedes Fach besitzt eine Nummer und eine Variable, die den aktuellen Füllstand beschreibt. Zudem existiert eine Methode, die den Umsatz seit dem letzten Auffüllen berechnet und als Gleitkommazahl zurückgibt.
- Ein Fach beinhaltet Artikel, wie zum Beispiel ein Getränk oder einen Snack, die einen ganzzahligen Preis besitzen.

Bild C-20.1: Klassendiagramm des Getränkeautomaten.

Beachten Sie die folgenden Konventionen: Attribute sollen mit privater Sichtbarkeit und Methoden mit öffentlicher Sichtbarkeit versehen werden.

Füllen Sie die Lücken im folgenden Klassendiagramm (siehe Bild C-20.2) aus. Die auszufüllenden Lücken sind mit Zahlen markiert.

Lücken **zwischen** Klassen erfordern das Einzeichnen von Beziehungen, Lücken **innerhalb** von Klassen erfordern das Einfüllen von Attributen, Methoden oder Klassennamen.

Bild C-20.2: Klassendiagramm des Getränkeautomaten.

c) Vom Code zum Klassendiagramm

Sie haben den Programmcode der Software des Getränkeautomaten vom Entwickler erhalten. Um die Struktur der Software zu verstehen, möchten Sie nun ein Klassendiagramm des Codeausschnitts in Bild C-20.3 erstellen.

```
class AlkoholischesGetraenk:public Getraenk
  public:
    AlkoholischesGetraenk(float alkoholGehalt);
  private:
    float alkoholGehalt;
};
class Getraenk
  public:
    Getraenk();
  private:
    Hersteller* hersteller
    int kalorien;
};
class Getraenkeautomat
  private:
    Getraenk getraenke[];
};
```

Bild C-20.3: Programmcode für den Getränkeautomaten.

Ein Grundgerüst des Klassendiagramms ist in Bild C-20.4 vorgegeben. Die auszufüllenden Lücken sind mit Zahlen markiert.

Lücken **zwischen** Klassen erfordern das Einzeichnen von Beziehungen, Lücken **innerhalb** von Klassen erfordern das Einfüllen von Attributen, Methoden oder Klassennamen.

Achten Sie beim Ausfüllen auf die Datentypen der Variablen, der Parameter und der Rückgabewerte der Funktionen.

Prüfung Informationstechnik SS 2017

Vorname Nachname Matrikelnummer Getraenkeautomat Getraenk 3 + Getraenk()

Bild C-20.4: Klassendiagramm für den Getränkeautomaten.

21. Anlagen/Zustandsautomat

Aufgabe 21: 25 Punkte

Die Befüllung des zuvor betrachteten Getränkeautomaten soll automatisiert werden. Hierzu wird an der Rückseite ein Aufzugsystem angebracht, welches die benötigten Dosen in die jeweiligen Getränkefächer sortiert. Eine schematische Darstellung des Prozesses ist in Bild C-21.1 gegeben.

Bild C-21.1: Skizze des Aufzugsystems zum Einsortieren der Dosen

Hierzu sind folgende Ein- und Ausgänge vorhanden:

Тур	Name	Beschreibung
7	a.Z1hoch	Fährt(1) Aufzug nach oben oder stoppt (0)
NR EN	a.Z1runter	Fährt(1) Aufzug nach unten oder stoppt (0)
AKTOREN	a.S1	Öffnet(1) oder schließt (0) Sperre S1
₹	a.Freigabe	Setzt Freigabe (1) an Vorgängerstation
	s.x0	Liefert (1) falls sich Aufzug bei Eingangsschacht befindet, sonst (0)
Z W	s.x1	Liefert (1) falls sich Aufzug bei Ausgabeschacht E1 befindet, sonst (0)
SENSOREN	s.x2	Liefert (1) falls sich Aufzug bei Ausgabeschacht E2 befindet, sonst (0)
S	s.Teil	Dose im Aufzug vorhanden (1), sonst (0)
	s.F1	(0) bei Wasser, (1) bei Zitronenlimonade, Wert nur sinnvoll falls Dose im Aufzug
Variablen	time	Aktuelle Laufzeit des Programms in ms

Bild C-21.2: Sensor- und Aktorwerte des Aufzugs.

Zunächst soll die Anlage in einen Initialzustand gebracht werden. Hierzu wird der Kran nach unten gefahren, das Freigabesignal zurückgesetzt und die Sperre ausgefahren. Ist dieser Zustand erreicht wird eine Freigabe erteilt und auf eine Dose, welche aus dem Lager über das Band A1 zugeführt wird, gewartet.

Sobald die Dose im Aufzug ist, wird die Freigabe zurückgesetzt und der Aufzug gestartet. Während der Aufzugsfahrt wird mit Sensor F1 der Getränkeinhalt bestimmt. Wasser soll auf Ausgabeband E2 aussortiert werden, Zitronenlimonade auf E1. Die Position des Aufzugs wird über die entsprechenden Anschläge x0, x1 und x2 detektiert und der Aufzug muss am entsprechenden Band gestoppt werden.

Hat der Aufzug seine Position erreicht, soll die Sperre geöffnet werden, damit die Dose auf das Ausgabeband rutscht. Da hier ein Sensor fehlt, muss ein Timer verwendet werden, der die Sperre für zwei Sekunden offen hält. Anschließend wird erneut der Initialzustand hergestellt.

a) Vervollständigen Sie das folgende, in Bild C-21.3 gegebene Zustandsdiagramm entsprechend der oben gegebenen Ablaufbeschreibung unter Berücksichtigung der in Tabelle C-21.2 gegebenen Signale.

Bild C-21.3: *Zustandsdiagramm des Aufzugsystems.*

b) Vervollständigen Sie nun den vorgegebenen Programmcode (siehe Bild C-21.4 und C-21.5).

```
#include <stdio.h>
#include "eavar A.h"
int schritt = 0;
                      // Timervariable
int main()
{
                 ___ {
// Initalisierungszustand
       a.S1 = 0;
       a.Z1hoch = 0;
       a.Z1runter = 1;
       a.Freigabe = 0;
       if ( ______ ) // Waechterbedingung
           a.Z1runter = 0;
           schritt = 1;
                 _;
// AufDoseWarten
       if (
           schritt = 2;
              // AufzugHochfahren
        a.Z1hoch = 1;
        if ( _____)
        else if ( ______)
```



```
// DoseAuswerfen
_____;
if ( ______; ) // Timer starten
{
    _____;
}
if ( ______; ) // Timer pruefen
{
    _____;
schritt = 0;
}
return 0;
}
```

Bild C-21.5: *Programmcode des Aufzugsystems (Teil 2 von 2).*

Aufgabe 22: 23 Punkte

22. Erweiterte Datenstrukturen und FileIO

Als weitere Verbesserung wurde im Getränkeautomaten eine Protokollierung der getätigten Bestellungen implementiert. Dieser schreibt die Bestellungen in eine Datei, welche nun ausgewertet werden soll. Hierzu benötigen Sie aber zunächst geeignete Datenstrukturen zur Speicherung der Daten. Zwei Strukturdatentypen sollen definiert werden:

Der Typ BESTELLUNGEN nimmt hierbei den Zeitpunkt der Bestellung, genannt Timestamp auf. Der Automat erzeugt für jeden Tag eine eigene Datei (bestellungen.csv, siehe Bild C-21.1), in welcher der jeweilige Bestellzeitpunkt in der Form HHMM (HH = Stunde, MM = Minute), z.B. 1205 für 12:05 Uhr, angeben ist. Weiterhin wird zu jeder Bestellung eine eindeutige, ganzzahlige Identifikationsnummer (ID) für das bestellte Getränk gespeichert. Diese soll in einer Variablen mit dem Namen Getraenk gespeichert werden.

In einer zweiten Datei (getraenke.csv, siehe Bild C-21.2) werden die Identifikationsnummern der Getränke den jeweiligen Getränken zugeordnet. Hierzu soll erneut die Nummer des Getränks, Feld Getraenk, gespeichert werden. Weiterhin besitzt jedes Getränk einen Namen (maximale Länge 20 Zeichen), genannt Name, und einen Verkaufspreis (z.B. 2.40 für einen Preis von 2,40€) mit der Bezeichnung Preis. Zusätzlich soll für eine spätere Auswertung ein Feld mit dem Namen Umsatz erzeugt werden. Dieses besitzt den gleichen Datentyp wie Preis. Die Einträge in getraenke.csv sind immer nach aufsteigender Identifikationsnummer sortiert, wobei mit einer ID von 1 gestartet wird und keine Zahlen ausgelassen werden können.

Bild C-22.1: *Auszug aus der Datei* bestellungen.csv.

Bild C-21.2: Auszug aus der Datei gestraenke.csv.

a) Ergänzen Sie den untenstehenden Quelltext (Bild C-22.3) in der Headerdatei datentypen.h um die notwendigen Typendefinitionen.

Bild C-22.3: Typendefinitionen in der Headerdatei datentypen.h.

b) Die in der Headerdatei datentypen.h definierten Typen sollen nun in einem Programm zum Einlesen und Auswerten der einzelnen Dateien verwendet werden. Nachdem die Dateien geparst wurden, sollen die Umsätze pro Getränk berechnet und in der Struktur beim jeweiligen Getränk im Feld Umsatz gespeichert werden. Vervollständigen Sie den in den Bildern C-22.5 und C-22.6 gegebenen Code für den Spezialfall von nur zwei Getränkesorten, wie in Bild C-21.2 gegeben. Der Programmentwurf ist in Bild C-22.4 als Nassi-Shneidermann-Diagramm gegeben.

Bild C-22.4: *Nassi-Shneiderman-Diagramm des Auswerteprogramms.*


```
#include <stdio.h>
#include <string.h>
#include "datentypen.h"
//Konstanten mit vordefinierten Laengen
#define NARTIKEL 2
#define NBESTELLUNGEN 3
#define LENGTH 200
int main()
{
    // Variablen und Pointer
    GETRAENKE artikel[NARTIKEL];
    BESTELLUNGEN bst[NBESTELLUNGEN];
    GETRAENKE* pArtikel = &artikel;
    BESTELLUNGEN* pBst = &bst;
    int i = 0;
    float fUmsatz = 0;
    // Dateien oeffnen
    // Verfuegbare Getraenke einlesen
    for (i = 0; i < NARTIKEL; i++)
       _____ (a,"%i;%f;%s\n", _____,
    }
    // Aufgezeichnete Bestellungen einlesen
    for (i = 0; i < NBESTELLUNGEN; i++)</pre>
         ______(b,"%i;%i\n", ______,
```

Bild C-22.5: *Programmcode des Auswerteprogramms (Teil 1 von 2).*


```
for (i = 0; i < NBESTELLUNGEN; i++)</pre>
       // Pruefen auf bestellten Artikel
       // und Umsatzberechnung
       if ( _____ == pArtikel->Getraenk)
       else
       pBst++;
   }
   // Ausgabe der Umsaetze
   fprintf(stdout, "Gesamtumsatz heute:\t%.2f\n",
            pArtikel->Umsatz + (pArtikel+1)->Umsatz);
   fprintf(stdout, "Einzelumsatz %s:\t%.2f\n",
            pArtikel->Name, pArtikel->Umsatz);
   pArtikel++;
   fprintf(stdout, "Einzelumsatz %s:\t%.2f\n",
           pArtikel->Name, pArtikel->Umsatz);
   // Dateien schliessen
   fclose(a);
   fclose(b);
   return 0;
}
```

Bild C-22.6: *Programmcode des Auswerteprogramms (Teil 2 von 2).*