

Model Development Phase Template

Date	July 2024
Team ID	team-739778
Project Title	Prosperity Prognosticator : Machine Learning for Startup success Prediction
Maximum Marks	10 Marks

Initial Model Training Code, Model Validation and Evaluation Report

The initial model training code will be showcased in the future through a screenshot. The model validation and evaluation report will include a summary and training and validation performance metrics for multiple models, presented through respective screenshots.

Initial Model Training Code (5 marks):

```
#importing and building the random forest classifier model
from sklearn.ensemble import RandomForestClassifier

rf = RandomForestClassifier()

rf.fit(X_train._get_numeric_data(),y_train)

y_pred_rf = rf.predict(X_test._get_numeric_data())

print("Training Accuracy :", rf.score(X_train._get_numeric_data(), y_train))

print("Testing Accuracy :", rf.score(X_test._get_numeric_data(), y_test))
```



```
#Importing and building the XGBClassifier
from xgboost import XGBClassifier
#train

xgb = XGBClassifier()

xgb.fit(X_train,y_train)

#predict

y_predicted_xgb = xgb.predict(X_test)

print("Training Accuracy :", xgb.score(X_train, y_train))

print("Testing Accuracy :", xgb.score(X_test, y_test))
```

```
#importing and building the AdaBoostClassifier model
from sklearn.ensemble import AdaBoostClassifier
#train
ada = AdaBoostClassifier()
ada.fit(X_train,y_train)
#predict
y_predicted_ab = ada.predict(X_test)
print("Training Accuracy :", ada.score(X_train, y_train))
print("Testing Accuracy :", ada.score(X_test, y_test))
```

```
# Gathering accuracy score for each model
scores = {
    'AdaBoostClassifier': {
        'Accuracy_score': accuracy_score(y_test, y_predicted_ab)
      },
      'XGB classifier': {
        'Accuracy_score': accuracy_score(y_test, y_predicted_xgb)
    },
      'Random Forest': {
        'Accuracy_score': accuracy_score(y_test, y_pred_rf)
    },
      'Gradient Boosting': {
        'Accuracy_score': accuracy_score(y_test, y_predicted_gb)
    }
}
# Plotting comparsion of each model
scores = pd.DataFrame(scores)
scores.plot(kind="barh",figsize=(10, 10)).legend(loc='upper center', ncol=3, title="Machine Learning Model")
```

Model Validation and Evaluation Report (5 marks):

Model	Summary	Training and Validation Performance Metrics
Model 1	Gradient Boosting Classifier model typically include accuracy, precision, recall, F1 score to evaluate its predictive performance and generalization capability.	<pre># Gathering accuracy store for each model scores = {</pre>
Model 2	AdaBoost classifier model commonly include accuracy, precision, recall, F1 score which help assess the model's prediction accuracy and generalizability	from sklearn.ensemble import AdaBoostClassifier atrain ada = AdaBoostClassifier() ada.fit(X_train,y_train) spredict y_predicted_ab = ada.predict(X_test) print("resining Accuracy :", ada.score(X_test, y_test)) cr = classification_report(y_test, y_predicted_ab) print(cr) false_positive_rate, true_positive_rate, thresholds = roc_curve(y_test,y_predicted_ab) print(roc_auc."roc_auc) print("roc_auc."roc_auc) print("roc_auc."roc_auc) print("roc_auc."proc_auc) print("Roc_curves
Model 3	Random forest classifier model often encompass accuracy, precision, recall, F1 score to measure its prediction quality and robustness.	o from sklearm.ensemble import RandomForestClassifier rf = RandomForestClassifier() rf.fit(X train.get_numeric_data(),y_train) y_pred_rf = rf.predictX_testget_numeric_data()) print("Training Accuracy:", rf.score(X_train.get_numeric_data(), y_train)) print("Testing Accuracy:", rf.score(X_testget_numeric_data(), y_test)) ### ### ### ### ### ### ### ### ###

Model 4

XGB Classifier model typically include accuracy, precision, recall, F1 score to evaluate its prediction performance and generalization ability

Model 4

Model 4

F1 score to evaluate its prediction performance and generalization ability

Model 4

Model 4

Model 4

Model 4

F1 score to evaluate its prediction performance and generalization ability

Model 4

Mode