

MASTER EN ACTUARIAT PARCOURS DATA SCIENCE

Provisionnement Non Vie

Etudiants:

ACHOUR Salma
BEL HADJ SLIMEN Nada
FAYDI Mariem
SMARI Mariem

Table des matières

1	Cha	rgement et Analyse des triangles			1
	1.1	Les triangles de liquidation	 		1
	1.2	Chargement des triangles données	 		1
		1.2.1 Triangle des ouvertures	 		1
		1.2.2 Triangle des Règlements	 		2
		1.2.3 Triangle des Charges	 		3
	1.3	Triangles des cadences et leurs analyses	 		3
		1.3.1 Triangle des cadences pour les ouvertures	 		3
		1.3.2 Analyse des cadences	 		4
		1.3.3 Triangle des cadences pour les règlements			4
		1.3.4 Analyse des cadences			5
		1.3.5 Triangle des cadences pour les charges	 	•	5
		1.3.6 Analyse des cadences	 	•	5
2	Mét	chode de Chain Ladder			7
	2.1	Analyse de la méthode sur les triangles des ouvertures	 		7
	2.2	Analyse de la méthode sur les triangles des règlements	 		8
	2.3	Analyse de la méthode sur les triangles des charges			.0
3	Mét	chode de Bornhuetter-Ferguson		1	2
	3.1	Les facteurs de développement	 	. 1	2
	3.2	Estimation des S/P et des provisions par année de survenance	 	. 1	2
	3.3	Évolution des S/P par année de survenance $\dots \dots$. 1	.3
4	Mét	chode de Mack Chain Ladder		1	5
	4.1	Analyse de la méthode sur les triangles des ouvertures	 	. 1	.5
	4.2	Analyse de la méthode sur le triangle des règlements			.6
5	Mét	chode de Bootstrap Chain Ladder		1	.8
	5.1	Analyse de la méthode sur les triangles des ouvertures	 	. 1	8
	5.2	Analyse de la méthode sur les triangles des règlements			20

Chargement et Analyse des triangles

Les méthodes standards de provisionnement présentées dans ce chapitre sont toutes basées sur des triangles de liquidation. Ces derniers contient l'information des règlements de tous les sinistres survenus dans le portefeuille considéré regroupés par années de survenance et par années de développement. Ils reflètent la dynamique globale des sinistres et permettent d'avoir une vision agrégée de ceux-ci.

1.1 Les triangles de liquidation

Les méthodes standards de provisionnement, sont toutes basées sur des triangles de liquidation. Ces derniers sont l'information des règlements de tous les sinistres survenus dans le portefeuille considéré, regroupés par années de survenance et par années de développement.

Ils reflètent la dynamique globale des sinistres, et permettent d'avoir une vision agrégée de ceux-ci.

Pour ces triangles, les lignes "i" correspondent à l'indice des années de survenance des sinistres. Les colonnes "j" correspondent à l'indice des années de développement des sinistres. L'intersection entre ligne et colonne correspond au montant des règlements effectuées l'année "j" pour les sinistres survenus l'année "i" (ou montant incrémental).

1.2 Chargement des triangles données

Les packages Chain Ladder sont livrés avec deux fonctions d'assistance, "cum2incr" et "incr2cum" pour transformer des triangles cumulés en triangles incrémentaux.

La méthode Chain Ladder oblige que les triangles doivent être cumulés. Donc, on a appliqué la méthode de cumul.

1.2.1 Triangle des ouvertures

La figure ci-dessous présente le triangle des ouvertures :

	1	2	3	4	5	6	7	8	9	10
2005	31 116	33 092	33 280	33 344	33 356	33 360	33 360	33 362	33 362	33 362
2006	31 198	33 120	33 246	33 282	33 294	33 298	33 298	33 298	33 298	NA
2007	35 850	37 760	37 892	37 948	37 960	37 970	37 974	37 976	NA	NA
2008	37 860	39 864	40 004	40 066	40 074	40 078	40 082	NA	NA	NA
2009	31 142	33 112	33 290	33 352	33 358	33 362	NA	NA	NA	NA
2010	32 930	34 724	34 908	34 948	34 964	NA	NA	NA	NA	NA
2011	36 808	38 638	38 824	38 908	NA	NA	NA	NA	NA	NA
2012	37 568	39 790	39 956	NA						
2013	37 966	40 400	NA							
2014	36 480	NA								

 $FIGURE\ 1.1-Triangle\ des\ ouvertures$

1.2.2 Triangle des Règlements

La figure ci-dessous présente le triangle des règlements :

	1	2	3	4	5	6	7	8	9	10
2005	932 885.1	4 170 107.6	5 178 741.3	5 895 582.6	6 101 204.1	6 142 991.4	6 201 205.8	6 339 424.5	6 340 571.9	6 359 225.8
2006	754 417.4	3 466 602.5	5 314 858.1	5 765 461.0	5 929 663.4	6 059 290.4	6 091 617.6	6 149 260.3	6 156 665.2	NA
2007	978 419.0	5 103 958.3	6 778 747.0	7 246 933.5	7 464 957.2	7 583 026.3	7 609 861.5	7 696 705.5	NA	NA
2008	1 316 441.5	6 021 787.6	7 555 658.3	8 053 227.9	8 327 442.5	8 449 895.1	8 497 100.4	NA	NA	NA
2009	1 515 113.7	7 237 752.8	8 623 381.4	9 198 258.7	9 396 272.9	9 521 142.4	NA	NA	NA	NA
2010	2 228 111.4	8 471 438.7	10 040 083.8	10 577 748.5	10 784 701.5	NA	NA	NA	NA	NA
2011	2 444 956.4	10 146 801.5	12 415 451.1	12 882 217.8	NA	NA	NA	NA	NA	NA
2012	2 270 647.8	11 959 203.7	14 344 968.2	NA	NA	NA	NA	NA	NA	NA
2013	2 591 381.9	11 791 984.0	NA	NA	NA	NA	NA	NA	NA	NA
2014	2 045 750.8	NA	NA	NA	NA	NA	NA	NA	NA	NA

FIGURE 1.2 – Triangle des règlements

1.2.3 Triangle des Charges

La figure ci-dessous présente le triangle des charges :

	1	2	3	4	5	6	7	8	9	10
	<l<chr>>></l<chr>	<l<chr>>></l<chr>	<l<chr>></l<chr>	<l<chr>>></l<chr>	<l<chr>>></l<chr>	<l<chr>></l<chr>	<l<chr>>></l<chr>	<l<chr>>></l<chr>	< <chr>>></chr>	<l<chr>></l<chr>
2005	9 507 579	9 509 400	9 649 835	8 196 995	7 328 808	7 251 425	7 221 812	7 143 342	7 126 992	7 061 740
2006	10 035 217	8 977 878	9 166 818	7 055 943	6 960 307	6 879 378	6 787 966	6 906 810	6 828 271	NA
2007	11 648 405	11 989 432	11 313 405	9 391 193	9 479 657	9 337 734	9 223 029	8 716 294	NA	NA
2008	12 973 407	12 592 678	12 424 984	10 701 676	10 355 875	10 333 477	10 339 700	NA	NA	NA
2009	13 679 208	15 263 639	14 679 525	12 757 313	12 258 505	12 027 302	NA	NA	NA	NA
2010	16 380 847	17 115 457	16 516 950	13 274 230	13 285 078	NA	NA	NA	NA	NA
2011	18 480 776	19 425 857	17 946 691	15 319 054	NA	NA	NA	NA	NA	NA
2012	22 345 606	22 699 530	22 066 408	NA	NA	NA	NA	NA	NA	NA
2013	24 430 824	23 358 362	NA	NA	NA	NA	NA	NA	NA	NA
2014	23 679 537	NA	NA	NA	NA	NA	NA	NA	NA	NA

FIGURE 1.3 – Triangle des charges

1.3 Triangles des cadences et leurs analyses

1.3.1 Triangle des cadences pour les ouvertures

La figure ci-dessous présente le triangle des cadences des ouvertures :

	1	2	3	4	5	6	7	8	9	10
2005	NA	106.35	100.57	100.19	100.04	100.01	100.00	100.01	100	100
2006	NA	106.16	100.38	100.11	100.04	100.01	100.00	100.00	100	NA
2007	NA	105.33	100.35	100.15	100.03	100.03	100.01	100.01	NA	NA
2008	NA	105.29	100.35	100.15	100.02	100.01	100.01	NA	NA	NA
2009	NA	106.33	100.54	100.19	100.02	100.01	NA	NA	NA	NA
2010	NA	105.45	100.53	100.11	100.05	NA	NA	NA	NA	NA
2011	NA	104.97	100.48	100.22	NA	NA	NA	NA	NA	NA
2012	NA	105.91	100.42	NA	NA	NA	NA	NA	NA	NA
2013	NA	106.41	NA	NA	NA	NA	NA	NA	NA	NA
2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

FIGURE 1.4 – Cadences du triangle d'ouverture

1.3.2 Analyse des cadences

Pour mieux analyser le triangle des cadences des ouvertures et extraire les années atypiques, nous avons réalisé le tableau représentant les résultats statistiques tels que la moyenne, l'écart-type, le coefficient de variation, le minimum et le maximum qui sont représentés dans la figure ci-dessous :

	1	2	3	4	5	6	7	8	9	10
Moyenne	NaN	105.80	100.45	100.16	100.03	100.01	100.00	100.01	100	100
Ecart_type	NaN	0.52	0.08	0.04	0.01	0.01	0.01	0.00	0	0
Coeff_variation	NaN	0.49	0.08	0.04	0.01	0.01	0.00	0.00	0	0
Min	NaN	105.28	100.37	100.12	100.02	100.00	99.99	100.01	100	100
Max	NaN	106.32	100.53	100.20	100.04	100.02	100.01	100.01	100	100

FIGURE 1.5 – Analyse des cadences pour les ouvertures

A travers les résultats obtenus du tableau, on remarque que la deuxième année possède une moyenne égale à 105.8 qui semble un peu élevée par rapport aux autres années. A partir de cette valeur, on peut détecter des années atypiques dans le triangle des cadences par exemple en 2011 qui est moins inférieur de la moyenne.

1.3.3 Triangle des cadences pour les règlements

Nous avons calculé la partie inférieur du triangle des cadences des règlements, la figure ci-dessous présente le triangle des cadences des règlements :

	1	2	3	4	5	6	7	8	9	10
2005	NA	447.01	124.19	113.84	103.49	100.68	100.95	102.23	100.02	100.29
2006	NA	459.51	153.32	108.48	102.85	102.19	100.53	100.95	100.12	NA
2007	NA	521.65	132.81	106.91	103.01	101.58	100.35	101.14	NA	NA
2008	NA	457.43	125.47	106.59	103.41	101.47	100.56	NA	NA	NA
2009	NA	477.70	119.14	106.67	102.15	101.33	NA	NA	NA	NA
2010	NA	380.21	118.52	105.36	101.96	NA	NA	NA	NA	NA
2011	NA	415.01	122.36	103.76	NA	NA	NA	NA	NA	NA
2012	NA	526.69	119.95	NA						
2013	NA	455.05	NA							
2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

FIGURE 1.6 – Cadences du triangles des règlements

1.3.4 Analyse des cadences

Pour mieux analyser le triangle des cadences des règlements, nous avons réalisé le tableau d'analyse des cadences. On remarque que la moyenne de la deuxième année de valeur 460.03 est trop élevée par rapport aux autres. Aussi, pour l'écart-type qui est égale à 43.66 avec ces deux valeurs nous avons calculé le minimum et le maximum pour détecter les années atypiques dans le triangle des cadences des charges.

On a considéré que à l'année 2010, on a un développement atypique.

	1	2	3	4	5	6	7	8	9	10
Moyenne	NaN	460.03	126.97	107.37	102.81	101.45	100.60	101.44	100.07	100.29
Ecart_type	NaN	43.66	10.85	2.96	0.58	0.48	0.22	0.56	0.05	0.00
Coeff_variation	NaN	9.49	8.54	2.76	0.56	0.48	0.22	0.56	0.05	0.00
Min	NaN	416.37	116.12	104.41	102.23	100.97	100.38	100.88	100.02	100.29
Max	NaN	503.69	137.82	110.33	103.39	101.93	100.82	102.00	100.12	100.29

FIGURE 1.7 – Analyse des cadences pour les règlements

1.3.5 Triangle des cadences pour les charges

La figure ci-dessous présente le triangle des cadences des charges :

	1	2	3	4	5	6	7	8	9	10
2005	NA	100.02	101.48	84.94	89.41	98.94	99.59	98.91	99.77	99.08
2006	NA	89.46	102.10	76.97	98.64	98.84	98.67	101.75	98.86	NA
2007	NA	102.93	94.36	83.01	100.94	98.50	98.77	94.51	NA	NA
2008	NA	97.07	98.67	86.13	96.77	99.78	100.06	NA	NA	NA
2009	NA	111.58	96.17	86.91	96.09	98.11	NA	NA	NA	NA
2010	NA	104.48	96.50	80.37	100.08	NA	NA	NA	NA	NA
2011	NA	105.11	92.39	85.36	NA	NA	NA	NA	NA	NA
2012	NA	101.58	97.21	NA	NA	NA	NA	NA	NA	NA
2013	NA	95.61	NA	NA	NA	NA	NA	NA	NA	NA
2014	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

FIGURE 1.8 – Cadences du triangle des charges

1.3.6 Analyse des cadences

Concernant l'analyse du triangle des cadences pour le triangle des charges, on applique la même méthode pour les deux derniers triangles. On utilise la moyenne, l'écart-type et la valeur du minimum et du maximum pour extraire les années atypiques.

	1	2	3	4	5	6	7	8	9	10
Moyenne	NaN	100.87	97.36	83.38	96.99	98.83	99.27	98.39	99.31	99.08
Ecart_type	NaN	6.00	3.10	3.31	3.79	0.56	0.58	2.98	0.45	0.00
Coeff_variation	NaN	5.94	3.19	3.97	3.91	0.56	0.58	3.03	0.46	0.00
Min	NaN	94.87	94.26	80.07	93.20	98.27	98.69	95.41	98.86	99.08
Max	NaN	106.87	100.46	86.69	100.78	99.39	99.85	101.37	99.76	99.08

FIGURE 1.9 – Analyse des cadences pour les charges

Méthode de Chain Ladder

C'est une méthode déterministe pour obtenir le montant des réserves à l'ultime. La méthode Chain Ladder est la méthode déterministe la plus utilisée en provisionnement non-vie. Elle est simple et facile à interpréter. C'est un modèle de développement par cadences qui se base sur le triangle de liquidation cumulé.

2.1 Analyse de la méthode sur les triangles des ouvertures

Nous estimons la partie inférieure du triangle des ouvertures avec la méthode Chain Ladder. Nous obtenons les résultats suivants :

	1	2	3	4	5	6	7	8	9	10
2005	31 116	33 092	33 280	33 344	33 356	33 360	33 360	33 362	33 362	33 362
2006	31 198	33 120	33 246	33 282	33 294	33 298	33 298	33 298	33 298	33 298
2007	35 850	37 760	37 892	37 948	37 960	37 970	37 974	37 976	37 976	37 976
2008	37 860	39 864	40 004	40 066	40 074	40 078	40 082	40 084	40 084	40 084
2009	31 142	33 112	33 290	33 352	33 358	33 362	33 364	33 365	33 365	33 365
2010	32 930	34 724	34 908	34 948	34 964	34 969	34 971	34 972	34 972	34 972
2011	36 808	38 638	38 824	38 908	38 920	38 926	38 928	38 929	38 929	38 929
2012	37 568	39 790	39 956	40 020	40 033	40 038	40 041	40 042	40 042	40 042
2013	37 966	40 400	40 581	40 646	40 659	40 665	40 667	40 669	40 669	40 669
2014	36 480	38 589	38 762	38 824	38 836	38 842	38 844	38 845	38 845	38 845

FIGURE 2.1 – Estimations des ouvertures par la méthode de Chain Ladder

FIGURE 2.2 – Facteurs de développement pour le triangle des ouvertures

Les coefficients de développement fournit par cette méthode convergent vers 100% à partir de la 6ème année, ces estimations reflètent la stabilité du triangle.

Le tableau ci-dessous montre le nombre de tardifs pour chaque année ainsi que le total qui est égal à 2755 Tardifs entre les années 2005 et 2014.

	NB_tardifs
2005	0
2006	0
2007	0
2008	2
2009	3
2010	8
2011	21
2012	86
2013	269
2014	2 365
Total	2 755

FIGURE 2.3 – Le nombre de tardifs par années

2.2 Analyse de la méthode sur les triangles des règlements

Nous estimons la partie inférieure du triangle des règlements avec la méthode Chain Ladder. Nous obtenons les résultats suivants :

	1	2	3	4	5	6	7	8	9	10
2005	932 885	4 170 108	5 178 741	5 895 583	6 101 204	6 142 991	6 201 206	6 339 424	6 340 572	6 359 226
2006	754 417	3 466 602	5 314 858	5 765 461	5 929 663	6 059 290	6 091 618	6 149 260	6 156 665	6 174 778
2007	978 419	5 103 958	6 778 747	7 246 933	7 464 957	7 583 026	7 609 861	7 696 706	7 701 976	7 724 635
2008	1 316 441	6 021 788	7 555 658	8 053 228	8 327 443	8 449 895	8 497 100	8 617 797	8 623 698	8 649 069
2009	1 515 114	7 237 753	8 623 381	9 198 259	9 396 273	9 521 142	9 576 641	9 712 671	9 719 322	9 747 917
2010	2 228 111	8 471 439	10 040 084	10 577 748	10 784 702	10 940 246	11 004 016	11 160 321	11 167 964	11 200 820
2011	2 444 956	10 146 801	12 415 451	12 882 218	13 231 450	13 422 283	13 500 521	13 692 288	13 701 664	13 741 975
2012	2 270 648	11 959 204	14 344 968	15 297 548	15 712 260	15 938 872	16 031 780	16 259 501	16 270 636	16 318 504
2013	2 591 382	11 791 984	14 641 985	15 614 289	16 037 587	16 268 892	16 363 723	16 596 159	16 607 524	16 656 384
2014	2 045 751	9 304 401	11 553 179	12 320 370	12 654 371	12 836 881	12 911 707	13 095 110	13 104 077	13 142 629

FIGURE 2.4 – Estimations des règlements par la méthode de Chain Ladder

	1	2	3	4	5	6	7	8	9
f_reg	454.816%	124.169%	106.641%	102.711%	101.442%	100.583%	101.420%	100.068%	100.294%

FIGURE 2.5 – Facteurs de développement pour le triangle des règlements

Afin d'obtenir la valeur de la charge ultime des sinistres, nous avons estimé la partie inférieure du triangle de règlements en utilisant la méthode Chain Ladder.

Ceci nous permet d'obtenir finalement les PSAP nettes de recours en retranchant les règlements nets à la charge ultime nette.

	PSAP_REG
2005	0
2006	18 113
2007	27 930
2008	151 968
2009	226 774
2010	416 119
2011	859 757
2012	1 973 536
2013	4 864 400
2014	11 096 878
Total	19 635 475

FIGURE 2.6 – PSAP pour les règlements

Il nous reste 19 635 475 au totale à payer comme sinistres ouverts suivant l'estimation.

2.3 Analyse de la méthode sur les triangles des charges

La méthode Chain Ladder peut également s'appliquer sur le triangle des charges cumulées. C'est à dire l'estimation du coût total des sinistres par exercice de survenance et année de développement. Nous estimons la partie inférieure du triangle des charges avec la méthode Chain Ladder :

	1	2	3	4	5	6	7	8	9	10
2005	9 507 579	9 509 400	9 649 835	8 196 995	7 328 808	7 251 425	7 221 812	7 143 342	7 126 992	7 061 740
2006	10 035 217	8 977 878	9 166 818	7 055 943	6 960 307	6 879 378	6 787 966	6 906 810	6 828 271	6 765 754
2007	11 648 405	11 989 432	11 313 405	9 391 193	9 479 657	9 337 734	9 223 029	8 716 294	8 657 427	8 578 163
2008	12 973 407	12 592 678	12 424 984	10 701 676	10 355 875	10 333 477	10 339 700	10 132 148	10 063 719	9 971 579
2009	13 679 208	15 263 639	14 679 525	12 757 313	12 258 505	12 027 302	11 945 640	11 705 851	11 626 794	11 520 343
2010	16 380 847	17 115 457	16 516 950	13 274 230	13 285 078	13 126 448	13 037 322	12 775 620	12 689 338	12 573 159
2011	18 480 776	19 425 857	17 946 691	15 319 054	14 892 478	14 714 655	14 614 746	14 321 379	14 224 658	14 094 422
2012	22 345 606	22 699 530	22 066 408	18 456 349	17 942 412	17 728 172	17 607 801	17 254 354	17 137 824	16 980 916
2013	24 430 824	23 358 362	22 601 579	18 903 966	18 377 564	18 158 128	18 034 839	17 672 819	17 553 463	17 392 750
2014	23 679 537	23 925 762	23 150 595	19 363 164	18 823 975	18 599 209	18 472 924	18 102 111	17 979 855	17 815 239

FIGURE 2.7 – Estimations des charges par la méthode de Chain Ladder

A travers les résultats obtenus du tableau des charges, on peut remarquer que les coefficients de développement fournis par cette méthode sont entrain de converger vers 100%. Mais, ils n'ont pas atteint la valeur 100% dans la 9ème année.

On peut dire, dans ce cas, que l'évaluation de la charge lors de l'inventaire est à un moment supérieure à l'ultime car la pluspart des valeurs des coefficients sont inférieurs à 100% comme l'indique la figure ci-dessous :

FIGURE 2.8 – Facteurs de développement pour le triangle des charges

En se basant sur la méthode chain Ladder sur le triangle des charges, les résultats sont présentés dans le tableau ci-dessous. Les PSAP totales obtenues par différence entre la charge ultime et les derniers paiements cumulés s'élèvent à -19 927 681 \$.

Les survenances présentent des montants négatifs. On peut conclure dans ce cas que les recours anticipés deviennent supérieurs aux paiements après 10 ans.

	PSAP	PSAP_GEST	PSAP_CHARG
2005	0	702 514	702 514
2006	-62 517	671 606	609 089
2007	-138 131	1 019 588	881 457
2008	-368 121	1 842 600	1 474 479
2009	-506 959	2 506 160	1 999 201
2010	-711 919	2 500 376	1 788 457
2011	-1 224 632	2 436 836	1 212 204
2012	-5 085 492	7 721 440	2 635 948
2013	-5 965 612	11 566 378	5 600 766
2014	-5 864 298	21 633 786	15 769 488
Total	-19 927 681	52 601 284	32 673 603

FIGURE 2.9 – PSAP pour les charges

Méthode de Bornhuetter-Ferguson

La méthode de Bornhuetter-Ferguson est basée sur une combinaison des principes des méthodes du Loss Ratio et Chain Ladder. En effet, elle utilise une cadence et un paramètre exogène pour estimer la charge ultime de sinistres d'une année d'origine donnée. Cette méthode a donc l'avantage d'assurer une meilleure stabilité des estimations

3.1 Les facteurs de développement

On détermine les facteurs de développement à l'ultime des charges. à partir des cadences de développement de la méthode de Chain Ladder

	1	2	3	4	5	6	7	8	9	1
рс	15.57%	70.8%	87.91%	93.74%	96.28%	97.67%	98.24%	99.64%	99.71%	100%
1-рс	84.43%	29.2%	12.09%	6.26%	3.72%	2.33%	1.76%	0.36%	0.29%	0%

FIGURE 3.1 – Les facteurs de développement à l'ultime des charges

3.2 Estimation des S/P et des provisions par année de survenance

Pour calculer la prime acquise pour l'année 2005, on a considéré un loss ratio de 95%, pour le reste des années on a pris comme hypothèse une évolution annuelle de la prime acquise de 4%.

Les résultats des estimations sont représentés dans la figure 3.2

	REG	1-рс	Prime aquise	Loss Ratio Estimé	PSAP
	2005	0%	6 693 922	95%	NA
	2006	0.29%	6 961 679	88.44%	18 060
	2007	0.36%	7 240 146	106.31%	27 829
	2008	1.76%	7 529 752	112.85%	149 298
	2009	2.33%	7 830 942	121.58%	221 499
	2010	3.72%	8 144 180	132.42%	400 660
	2011	6.26%	8 469 947	152.09%	805 967
	2012	12.09%	8 808 745	162.85%	1 734 859
	2013	29.2%	9 161 094	128.72%	3 443 780
	2014	84.43%	9 527 538	21.47%	1 727 314
Total					8 529 265

FIGURE 3.2 – Résultats de l'estimation de la provision par la méthode Bornhuetter Ferguson

Les ratios obtenus pour les années 2005 et 2006 sont inférieurs à 100% ce qui traduit une couverture totale des sinistres. Cependant, les ratios obtenus pour le reste des années sont supérieurs à 100% ce qui indique que la compagnie d'assurance n'a pas réaliser un profit.

Le loss ratio pour l'année 2014 est de 21.47%, cette valeur est due aux sinistres qui ne sont pas encore déclarés et aux sinistres qui ne sont pas encore totalement réglés.

3.3 Évolution des S/P par année de survenance

	1	2	3	4	5	6	7	8	9	10
2005	13.94%	62.3%	77.36%	88.07%	91.15%	91.77%	92.64%	94.7%	94.72%	95%
2006	10.84%	49.8%	76.34%	82.82%	85.18%	87.04%	87.5%	88.33%	88.44%	
2007	13.51%	70.5%	93.63%	100.09%	103.11%	104.74%	105.11%	106.31%		
2008	17.48%	79.97%	100.34%	106.95%	110.59%	112.22%	112.85%			
2009	19.35%	92.43%	110.12%	117.46%	119.99%	121.58%				
2010	27.36%	104.02%	123.28%	129.88%	132.42%					
2011	28.87%	119.8%	146.58%	152.09%						
2012	25.78%	135.77%	162.85%							
2013	28.29%	128.72%								
2014	21.47%									

FIGURE 3.3 – Évolution des S/P par année de survenance

Le figure 3.3 montre que les primes acquises ont été capable de couvrir la totalité des charges seulement pour les années 2005 et 2006. Cependant pour le reste des années, les valeurs des loss ratio indiquent que cette compagnie d'assurance est entrain de sous-estimer les charges et par conséquent sous-estimer les montants des primes acquises.

Méthode de Mack Chain Ladder

Le modèle de Mack est un modèle non paramétrique permettant d'estimer les erreurs commises lors de l'évaluation des réserves. Il constitue le pendant stochastique de Chain Ladder dans le sens où les hypothèses se font sur l'espérance des paiements et non les paiements eux-mêmes.

4.1 Analyse de la méthode sur les triangles des ouvertures

D'après la méthode de mack chain ladder, on constate dans le premier graphe qu'en 2014 la valeur de projection semble d'être la plus élevée ce qui veut dire que la prévision est supérieure aux règlements effectués ce qui apparaît logique.

Par rapport aux résidus et en se basant sur le deuxième graphe, les variances sont fixes et les espérances se tournent autour de la valeur zéro ce qui le cas parfait c'est à dire le modèle est bien adapté aux données.

Ceci nous montre donc que les résultats obtenus avec la méthode de Chain Ladder prouvent une tolérance et une certitude.

FIGURE 4.1 – Résultats de l'estimation des ouvertures par la méthode de Mack Chain Ladder

4.2 Analyse de la méthode sur le triangle des règlements

Par rapport au triangle des règlements, on remarque que la valeur de projection la plus importante est réalisée en 2014 d'après le graphe. Comme le montre le premier graphique, pour les dernières années, la prévision est supérieure aux règlements effectués (ce qui semble logique), mais l'erreur de prédiction atteint près de 15% de la prévision pour la dernière année.

FIGURE 4.2 – Résultats de l'estimation des règlements par la méthode de Mack Chain Ladder

Méthode de Bootstrap Chain Ladder

Il s'agit d'une méthode de provisionnement non paramétrique, basée sur le ré-échantillonnage du triangle des paiements et la méthode de Chain Ladder. Elle consiste à reproduire un triangle de paiements par un tirage aléatoire sans remise des résidus.

5.1 Analyse de la méthode sur les triangles des ouvertures

Les fonctions amorcent les résidus R (= 999) de l'échelle en chaîne et ré-estime l'IBNR pour fournir une approximation de la distribution complète.

Le graphique suivant donne la distribution des provisions sous une représentation «densité».

FIGURE 5.1 – Résultats de l'estimation des ouvertures par la méthode de Bootstrap Chain Ladder

Le tracé montre quatre graphiques, en commençant par :

- un histogramme du total des IBNR simulés sur toutes les périodes d'origine, y compris un tracé de tapis (Histogramme des réserves).
- un graphique de la distribution cumulative empirique des IBNR totaux sur toutes les périodes d'origine (Distribution des réserves).
- un diagramme à moustaches des coûts ultimes simulés des réclamations par rapport aux périodes d'origine (Boxplot de la chargé à l'ultime estimée).
- un diagramme à moustaches du coût des sinistres différentiels simulés pour la dernière période civile disponible par rapport aux sinistres différentiels réels de la même période (Boxplot du montant de la réserve).

Dans le dernier graphique, les données simulées devraient suivre la même tendance que les données réelles, sinon les données originales pourraient avoir des tendances intrinsèques qui ne sont pas reflétées dans le modèle.

D'après l'histogramme, on peut distinguer que la moyenne est 2750, le Min est égale à 2300 et le Max est égale à 3300. Mais le point le plus important à noter est la forte

dispersion des réserves.

En plus, l'histogramme suit la loi log-Normale et qui est symétrique ce qui est prouvé dans l'histogramme du total des IBNR .

5.2 Analyse de la méthode sur les triangles des règlements

FIGURE 5.2 – Résultats de l'estimation des règlements par la méthode de Bootstrap Chain Ladder

Pour l'histogramme du total des IBNR des ouvertures, il suit la loi log-Poisson en enregistrant une dissymétrie. On remarque aussi dans le Boxplot de la chargé à l'ultime estimée une croissance de l'année 2005 jusqu'à 2013. Mais, à l'année 2014, on constate que la médiane a marqué une chute avec la présence des points aberrants.