

FACULTY OF ENGINEERING SCIENCES AND TECHNOLOGY

Department: Computer Science Program: BS

M R CLLCLL	
Multivariable Calculus	

Assignment 2				
Mapped CLO	SDG	Knowledge Profile	Complex Problem Solving Mapped	
CLO 2	4 & 9	WK2 (Mathematics)	GA – 2 (Knowledge for Solving Computing Problems)	

Problem Statement:

Question # 01(Directional Derivative)

a) find the directional derivative $f_{\vec{u}}$. (1, 2) for the function f with $\vec{u} = (3\vec{\iota} - 4\vec{\jmath})/5$.

i.
$$f(x,y) = sin(2x - y)$$
 ii. $f(x,y) = xy + y^3$

b) If $f(x,y) = x^2y$ and $\vec{v} = 4\vec{\imath} - 3\vec{\jmath}$, find the directional derivative at the point (2, 6) in the direction of \vec{v} .

Question # 02(Chain Rule)

a) Find dz/dt using the chain rule.

1.
$$z = (x + y)e^y$$
, $x = 2t$, $y = 1 - t^2$

$$2. z = ln(x^2 + y^2), \quad x = 1/t, \ y = \sqrt{t}$$

3.
$$z = \sin\left(\frac{x}{y}\right), \quad x = 2t, \ y = 1 - t^2$$

b) Use the chain rule to find dz/dt, and check the result by expressing z as a function of t and differentiating directly.

$$z = y^3 x^3$$
, $x = t^3$, $y = t^2$

a) Find the critical points and classify them as local maxima, local minima, saddle points, or none.

$$1. f(x,y) = x^3 + y^3 - 3x^2 - 3y + 10$$

$$2. f(x,y) = x^2y + 2y^2 - 2xy + 6$$

Question # 04(Implicit Differentiation)

a) Find the differentiation $(\frac{dy}{dx} o \frac{dz}{dx}, \frac{dz}{dy})$ for the following functions.

1.
$$y^2 + x^3 - y^3 + 6 = 3y$$
 2. $x^2 + y^2 + z^2 + \sin(xy) = 0$.

Question # 05(Differential)

- b) An unevenly heated plate has a temperature T(x,y) in °C at the point (x, y). If T(2,1)=135, and Tx(2,1)=16, and Ty(2,1)=-15, estimate the temperature at the point (2.04,0.97).
- c) 26. A right circular cylinder has a radius of 50 cm and a height of 100 cm. Use differentials to estimate the cylinder's volume change if its height and radius increase by 1 cm.