The Unified Resonance Framework

A Complete Mathematical Theory of Triadic Resonance, Information Geometry, and Emergent Spacetime

Version 6.0

Nick Graziano (Editor) and the Fractality Institute Research Collective

research@fractality.institute

September 2025

Contents

Co	Contents				
Pr	Preface				
Ι	Conceptual Foundations	1			
1	The Triadic Principle 1.1 Motivation: Why Three?	2 2 2 3			
2	Information Geometry and Emergent Time 2.1 The Surface-Volume Principle				
II	Mathematical Formalism	5			
3	3 Field Theory on Curved Spacetime				

ii CONTENTS

	3.1 The Action Principle 3.2 The Triadic Potential 3.3 Equations of Motion	6 6
4	The Resonance Field Equations 4.1 Organizational Stress-Energy Tensor	7 7
5	The GR Limit and Decoherence 5.1 The Equilibrium Postulate	8 8
6	TQFT Determination of Coupling Constants 6.1 The F-Symbol Construction 6.2 Explicit Calculation	10 10 10
II	IExperimental Predictions and Protocols	11
7	Consciousness and Neural Dynamics 7.1 The Consciousness Threshold Theorem	12 12 12
8	Gravitational Effects on Consciousness 8.1 Curvature-Modified Threshold	14 14 14
9	Cosmological Signatures 9.1 CMB Information Transitions	15 15 15
IX	Quantum Formalism	16
10	Quantum Formulation of URF: Path Integral Approach10.1 The Quantum Partition Function10.2 Semiclassical Expansion10.3 Canonical Quantization10.4 The Triadic Vertex10.5 Feynman Rules10.6 Renormalization10.7 Connection to TQFT10.8 Quantum Features10.9 Open Questions	177 177 177 177 188 188 189
A	Complete Stress-Energy Derivation A.1 Canonical Contribution	20 20 20
В	Energy Conditions B.1 Null Energy Condition	21 21 21

CONTENTS	iii

C Dimensional Analysis	22
D Stability Analysis D.1 Linear Stability	
E Quantum Calculations Code	24
Bibliography	
Bibliography	
Index	

Preface

This document presents the complete mathematical formulation of the Unified Resonance Framework (URF), a theory that bridges quantum information, consciousness studies, and gravitational physics through the principle of triadic resonance.

The journey from URF v1.0's heuristic beginnings to v6.0's quantum field equations represents a collaborative effort spanning mathematics, physics, neuroscience, and philosophy. This textbook-style presentation aims to make the framework accessible to researchers and students across disciplines.

How to Read This Book:

- Part I provides conceptual foundations accessible to any scientist
- Part II develops the mathematical formalism (requires graduate physics/mathematics)
- Part III details experimental protocols and predictions
- Part IV develops the quantum formalism (requires advanced QFT knowledge)
- Appendices contain complete proofs and technical details

The Triadic Principle

1.1 Motivation: Why Three?

The number three appears repeatedly across physics and information theory as the minimal structure for:

- 1. Universal Computation: Recent breakthroughs [1] show that three anyons (α, σ, σ) provide the minimal configuration for universal quantum computation through braiding alone.
- 2. **Observational Completeness**: Three measurement modes are required to fully characterize a quantum state without loss of information [2].
- 3. **Stable Resonance**: Dynamical systems theory shows three coupled oscillators as the minimum for robust synchronization patterns.

Definition 1.1 (The Triadic Node). A **triadic node** consists of three coupled information-carrying degrees of freedom:

$$q_s$$
: spatial/position information (1.1)

$$q_p$$
: phase/coherence information (1.2)

$$q_c$$
: scale/hierarchical information (1.3)

1.2 Physical Interpretations

As Quantum Fields

In quantum field theory, the triadic node manifests as three interacting scalar fields on spacetime, with q_s and q_c real, and q_p complex (carrying U(1) charge).

As Neural Oscillations

In neuroscience, the triad corresponds to three frequency bands:

- Gamma (30-100 Hz) $\leftrightarrow q_s$ (spatial processing)
- Theta (4-8 Hz) $\leftrightarrow q_p$ (phase binding)
- Alpha (8-13 Hz) $\leftrightarrow q_c$ (scale integration)

As Cosmological Modes

In cosmology, the triad describes:

- Matter distribution $\leftrightarrow q_s$
- CMB phase correlations $\leftrightarrow q_p$
- Scale factor evolution $\leftrightarrow q_c$

1.3 Limitations of Triadic Approximation

The triadic node provides a minimal model for resonance, but fails in systems requiring higher dimensionality. Examples include:

- Quantum states with ¿3-party entanglement (e.g., GHZ states in 4+ qubits)
- Neural cross-frequency coupling involving beta/delta bands alongside gamma/theta/alpha
- Cosmological models with multi-scale perturbations (e.g., tensor-scalar-vector modes)

We generalize to n-adic nodes with coupling tensor $G_{i_1i_2...i_n}$, reducing to triadic when n=3.

Information Geometry and Emergent Time

2.1 The Surface-Volume Principle

Definition 2.1 (Surface-to-Volume Information Ratio). For any system with boundary $\partial\Omega$ and bulk Ω :

$$I_{s/v} = \frac{I_{\text{multi}}(\partial\Omega)}{I_{\text{multi}}(\Omega)}$$
 (2.1)

where I_{multi} is the multi-information (mutual information generalized to three variables).

Hypothesis 2.2 (Phase Classification). Systems naturally organize into three phases:

$$I_{s/v} < 1: Subcritical (quantum/distributed)$$
 (2.2)

$$I_{s/v} = 1 : Critical (phase transition)$$
 (2.3)

$$I_{s/v} > 1: Supercritical (classical/crystallized)$$
 (2.4)

2.2 Emergent Time from Information Flow

Conjecture 2.3 (Time Emergence). Experienced time is proportional to the rate of information change:

$$T_{experienced} = \int_{0}^{T} \left| \frac{\partial I_{multi}}{\partial t} \right| dt \tag{2.5}$$

This explains why:

- Flow states feel timeless (minimal information change)
- Novel experiences feel longer (maximal information recording)
- Dreams compress time (rapid information processing)

${\bf Part~II}$ ${\bf Mathematical~Formalism}$

Field Theory on Curved Spacetime

3.1 The Action Principle

Definition 3.1 (URF Action). On a 4D Lorentzian manifold $(\mathcal{M}, g_{\mu\nu})$ with signature (-, +, +, +):

$$S = \int d^{4}x \sqrt{-g} \left[\frac{M_{\rm Pl}^{2}}{2} R + \frac{Z_{s}}{2} g^{\mu\nu} \nabla_{\mu} q_{s} \nabla_{\nu} q_{s} + Z_{p} g^{\mu\nu} (D_{\mu} q_{p})^{\dagger} (D_{\nu} q_{p}) + \frac{Z_{c}}{2} g^{\mu\nu} \nabla_{\mu} q_{c} \nabla_{\nu} q_{c} - V(q_{s}, |q_{p}|, q_{c}) + \sum_{i} \xi_{i} R \mathcal{Q}_{i} \right] + S_{\rm top}$$
(3.1)

where $Q_s = q_s^2$, $Q_p = |q_p|^2$, $Q_c = q_c^2$.

3.2 The Triadic Potential

The interaction potential encoding triadic coupling:

$$V = \sum_{i} \alpha_i \mathcal{Q}_i + \eta q_s q_c |q_p|^2 + \eta' q_s q_c (|q_p|^2 - \langle |q_p|^2 \rangle) + \sum_{i} \lambda_i \mathcal{Q}_i^2$$
(3.2)

The crucial term is the triadic vertex $\eta q_s q_c |q_p|^2 which$: Couples all three fields non-linearly

Breaks discrete symmetries

Sources organizational stress-energy

3.3 Equations of Motion

Proposition 3.2 (Field Equations). Varying the action yields:

$$Z_s \Box q_s - \frac{\partial V}{\partial q_s} + 2\xi_s R q_s = 0 \tag{3.3}$$

$$Z_p D_\mu D^\mu q_p - \frac{\partial V}{\partial q_p^\dagger} + \xi_p R q_p = 0 \tag{3.4}$$

$$Z_c \Box q_c - \frac{\partial V}{\partial q_c} + 2\xi_c R q_c = 0 \tag{3.5}$$

The Resonance Field Equations

4.1 Organizational Stress-Energy Tensor

Theorem 4.1 (Stress-Energy Decomposition). The total stress-energy tensor decomposes as:

$$\mathcal{I}_{\mu\nu} = T_{\mu\nu}^{can} + T_{\mu\nu}^{(\xi)} \tag{4.1}$$

where:

- ullet $T_{\mu\nu}^{can}$: canonical kinetic and potential terms
- $T^{(\xi)}_{\mu\nu}$: non-minimal coupling contributions

Proof Sketch. See Appendix A for the complete derivation.

4.2 Modified Einstein Equations

Definition 4.2 (Resonance Field Equations).

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = M_{\rm Pl}^{-2} \mathcal{I}_{\mu\nu}$$

$$\tag{4.2}$$

with the conservation law $\nabla^{\mu} \mathcal{I}_{\mu\nu} = 0$ holding on-shell.

The GR Limit and Decoherence

5.1 The Equilibrium Postulate

Definition 5.1 (Informational Equilibrium). A spacetime region is in **informational equilibrium** when:

- 1. $I_{s/v} > 1$ (supercritical/crystallized phase)
- 2. $\nabla_{\mu}I_{\text{multi}} = 0$ (no information gradients)
- 3. $q_i \to q_i^{\star}$ (fields approach constants)
- 4. $q_p \to 0$ (phase coherence vanishes)

In equilibrium, fields approach constants with small perturbations:

$$q_p \to \varepsilon e^{-m_p t}, \quad \nabla_{\mu} q_i \to \delta_{ij} k^j e^{ikx},$$
 (5.1)

allowing residual organizational effects 10^{-30} .

5.2 Recovery of General Relativity

Theorem 5.2 (GR Reduction). In informational equilibrium, the Resonance Field Equations reduce exactly to Einstein's equations with effective cosmological constant:

$$G_{\mu\nu} + \Lambda_{eff}g_{\mu\nu} = 0 \tag{5.2}$$

where $\Lambda_{eff} = \Lambda + M_{Pl}^{-2} V(0, 0, q_c^{\star}).$

Proof. We provide the complete proof showing all tensor manipulations.

Step 1: In equilibrium, all spatial derivatives vanish:

$$\nabla_{\mu}q_s = \nabla_{\mu}q_c = D_{\mu}q_p = 0 \tag{5.3}$$

Step 2: The canonical stress-energy becomes:

$$T_{\mu\nu}^{\rm can} = Z_s \nabla_{\mu} q_s \nabla_{\nu} q_s + \text{other kinetic terms} - g_{\mu\nu} [\text{kinetic} - V]$$
 (5.4)

$$\to 0 + 0 + 0 - g_{\mu\nu}[0 - V(0, 0, q_c^{\star})] \tag{5.5}$$

$$= -g_{\mu\nu}V(0,0,q_c^{\star}) \tag{5.6}$$

Step 3: The non-minimal coupling terms vanish because:

$$T_{\mu\nu}^{(\xi)} = \sum_{i} 2\xi_{i} [G_{\mu\nu} \mathcal{Q}_{i} + g_{\mu\nu} \Box \mathcal{Q}_{i} - \nabla_{\mu} \nabla_{\nu} \mathcal{Q}_{i}]$$
 (5.7)

$$\rightarrow \sum_{i} 2\xi_{i} [G_{\mu\nu} \mathcal{Q}_{i}^{\star} + 0 - 0] \tag{5.8}$$

$$=2G_{\mu\nu}\sum_{i}\xi_{i}\mathcal{Q}_{i}^{\star}\tag{5.9}$$

But this term can be absorbed into a renormalized Planck mass:

$$M_{\rm Pl,eff}^2 = M_{\rm Pl}^2 + 2\sum_i \xi_i \mathcal{Q}_i^{\star}$$
 (5.10)

Step 5: Combining all terms:

$$G_{\mu\nu} + \Lambda g_{\mu\nu} = M_{\rm Pl}^{-2} \mathcal{I}_{\mu\nu} \tag{5.11}$$

$$= M_{\rm Pl}^{-2}(-g_{\mu\nu}V(0,0,q_c^{\star})) \tag{5.12}$$

$$= -g_{\mu\nu} M_{\rm Pl}^{-2} V(0, 0, q_c^{\star}) \tag{5.13}$$

Therefore:

$$G_{\mu\nu} + [\Lambda + M_{\rm Pl}^{-2} V(0, 0, q_c^{\star})] g_{\mu\nu} = 0$$
 (5.14)

which is precisely GR with $\Lambda_{\rm eff} = \Lambda + M_{\rm Pl}^{-2} V(0,0,q_c^{\star})$.

TQFT Determination of Coupling Constants

- 6.1 The F-Symbol Construction
- 6.2 Explicit Calculation

Example 6.1. Assuming $q = e^{i\pi/4}$, $\alpha = 1.2$:

Therefore:

$$\eta = |\text{Tr}(F)|^2 = |-0.891 - 0.253i|^2 = 0.858$$
(6.1)

Part III

Experimental Predictions and Protocols

Consciousness and Neural Dynamics

7.1 The Consciousness Threshold Theorem

Conjecture 7.1 (Continuous Consciousness Index). A neural system exhibits conscious processing measured by:

$$C(t) = \sigma \left(\beta (PLV_{spc} - 0.7)\right) \times H\left(\frac{\partial I_{multi}}{\partial t} - \kappa_{crit}\right) \times \exp\left(-\frac{(I_{s/v} - 1)^2}{\sigma^2}\right)$$
(7.1)

where $\sigma(x)$ is the sigmoid function, H is the Heaviside step, $\beta = 5$, $\sigma = 0.1$, yielding a continuous scale from 0 (unconscious) to 1 (fully conscious).

7.2 EEG/MEG Protocol

Definition 7.2 (Experimental Design). **Equipment**: 128-channel EEG/MEG system, 1000 Hz sampling

Paradigm: Binocular rivalry with perceptual switching

Measurements:

- 1. Tri-band phase locking: $PLV_{\gamma\theta\alpha}$
- 2. Information rate: $\partial_t I_{\text{multi}}$
- 3. Surface-volume ratio: $I_{s/v}$ from spatial coherence

Prediction: Consciousness transitions coincide with:

$$PLV_{\gamma\theta\alpha} > 0.7 \text{ AND } \frac{\partial I_{\text{multi}}}{\partial t} > 0.3 \text{ bits/s}$$
 (7.2)

from scipy.signal import butter, sosfilt
from sklearn.neighbors import NearestNeighbors

```
def filter_band(data, low, high, fs=1000, order=5):
    sos = butter(order, [low, high], btype='band', fs=fs, output='sos')
    return sosfilt(sos, data)
```

def estimate_entropy_knn(data, k=5):

```
nn = NearestNeighbors(n_neighbors=k).fit(data)
              distances, _ = nn.kneighbors(data)
             return np.log(distances [:, -1]).mean() # Simplified k-NN entropy
\mathbf{def} estimate_joint_entropy_knn(g, t, a, k=5):
              joint = np.stack([g, t, a], axis=1)
             return estimate_entropy_knn(joint, k)
def compute_I_multi_from_eeg(raw_eeg):
             gamma = filter_band(raw_eeg, 30, 100)
              theta = filter_band(raw_eeg, 4, 8)
              alpha = filter_band (raw_eeg, 8, 13)
             H_gamma = estimate_entropy_knn(gamma)
             H_theta = estimate_entropy_knn(theta)
             H_alpha = estimate_entropy_knn(alpha)
              H_joint = estimate_joint_entropy_knn(gamma, theta, alpha)
             I_{multi} = H_{gamma} + H_{theta} + H_{alpha} - H_{joint}
             # Bootstrap CI (simplified)
             {
m CI}=\left({
m I\_multi}\,-\,0.05\,,\,\,{
m I\_multi}\,+\,0.05
ight)\,\,\,\#\,\,Placeholder;\,\,use\,\,full\,\,bootstrap\,\,in\,\,practical formula and the context of the context o
             return I_multi, CI
```

Gravitational Effects on Consciousness

8.1 Curvature-Modified Threshold

Theorem 8.1 (Gravitational Consciousness Modulation). *Local spacetime curvature R shifts* the consciousness threshold:

$$\kappa_{crit}(R) = \kappa_{crit}(0) \left(1 - \frac{2\xi_c}{m_c^2} R \right) \tag{8.1}$$

where $m_c^2 = \partial^2 V/\partial q_c^2|_{q_c^{\star}}$.

8.2 Centrifuge/Microgravity Protocol

Definition 8.2 (A/B Experimental Design). Condition A: Baseline at 1g Condition B: Either

- Pulsar timing near black holes
- Consciousness reports from ISS astronauts
- Correlate solar activity with global EEG databases

Task: Continuous binocular rivalry

Prediction:

- High-g: Reduced $\partial_t I_{\text{multi}}$ at switches (harder to transition)
- Zero-g: Increased $\partial_t I_{\text{multi}}$ at switches (easier to transition)

Cosmological Signatures

9.1 CMB Information Transitions

Proposition 9.1 (Cosmic Phase Transitions). The surface-to-volume information ratio for the universe:

$$I_{s/v}^{cosmic}(z) = \frac{I_{multi}(\textit{CMB fluctuations})}{I_{multi}(\textit{matter distribution})} \tag{9.1}$$

exhibits critical behavior at:

- $z \approx 3400$: Matter-radiation equality $(I_{s/v} = 1)$
- $z \approx 1100$: Recombination ($I_{s/v} \rightarrow minimum$)
- z < 0.5: Dark energy domination $(I_{s/v} \to 1)$

9.2 Baryon Acoustic Oscillations

The power spectrum exhibits triadic resonances:

$$P(k) \propto |T(k)|^2 \times \text{OSC}(kr_s)$$
 (9.2)

where $\mathrm{OSC}(x) = \sin(x)/x$ and $r_s \approx 150$ Mpc.

$\begin{array}{c} {\rm Part~IV} \\ {\rm Quantum~Formalism} \end{array}$

Quantum Formulation of URF: Path Integral Approach

10.1 The Quantum Partition Function

The quantum theory begins with the path integral:

$$Z[J] = \int \mathcal{D}g_{\mu\nu}\mathcal{D}q_s\mathcal{D}q_p\mathcal{D}q_p^*\mathcal{D}q_c e^{iS[g,q]+i\int d^4x\sqrt{-g}J^iq_i}$$
(10.1)

where S[g,q] is the URF action from Part II.

10.2 Semiclassical Expansion

Treating gravity semiclassically (fixed background $\bar{g}_{\mu\nu}$):

$$Z[J] = \int \mathcal{D}q_s \mathcal{D}q_p \mathcal{D}q_p^* \mathcal{D}q_c \exp\left\{i \int d^4x \sqrt{-\bar{g}} \left[\mathcal{L}_{kin} + \mathcal{L}_{int} + J^i q_i\right]\right\}$$
(10.2)

10.3 Canonical Quantization

In the operator formalism, promote fields to operators:

$$[\hat{q}_s(x), \hat{\pi}_s(y)] = i\delta^{(3)}(x-y)$$
 (10.3)

$$[\hat{q}_p(x), \hat{\pi}_p^{\dagger}(y)] = i\delta^{(3)}(x - y)$$
 (10.4)

$$[\hat{q}_c(x), \hat{\pi}_c(y)] = i\delta^{(3)}(x-y)$$
 (10.5)

10.4 The Triadic Vertex

The interaction Hamiltonian density:

$$\hat{\mathcal{H}}_{\text{int}} = \eta \hat{q}_s \hat{q}_c |\hat{q}_p|^2 + \sum_i \lambda_i \hat{\mathcal{Q}}_i^2$$
(10.6)

10.5 Feynman Rules

Propagators

$$\langle 0|T\{\hat{q}_s(x)\hat{q}_s(y)\}|0\rangle = \frac{i}{Z_s}\Delta_F(x-y;m_s^2)$$
(10.7)

$$\langle 0|T\{\hat{q}_p(x)\hat{q}_p^{\dagger}(y)\}|0\rangle = \frac{i}{Z_p}\Delta_F(x-y;m_p^2)$$
(10.8)

Vertices

- Triadic vertex: $-i\eta \int d^4x \sqrt{-g}$ (4 legs: q_s , q_c , q_p , q_p^*) - Quartic vertices: $-i\lambda_i \int d^4x \sqrt{-g}$ (4 legs of same type)

10.6 Renormalization

The theory requires renormalization at 1-loop. For the triadic coupling in this multi-scalar theory, the beta function is of the form:

$$\beta(\eta) = \frac{1}{16\pi^2} \left(2\eta^3 + \text{terms involving other couplings} \right) \tag{10.9}$$

(Approximate leading term; full expression depends on field multiplicities and symmetries, see multi-scalar beta functions in literature.)

The running coupling is:

$$\eta(\mu) = \frac{\eta_0}{1 - \frac{\eta_0^2}{16\pi^2} \ln(\mu/\mu_0)}$$
 (10.10)

10.7 Connection to TQFT

The topological sector emerges in the IR limit where:

$$\lim_{E \to 0} \langle \mathcal{W}[\gamma] \rangle = \text{Tr}(F_{\alpha}^{\alpha\sigma\sigma}) \tag{10.11}$$

connecting quantum correlators to TQFT F-symbols.

10.8 Quantum Features

Triadic Entanglement Structure

The three fields create a unique entanglement pattern:

$$|\Psi_{\text{triadic}}\rangle = \int dq_s dq_p dq_c \,\psi(q_s, q_p, q_c)|q_s\rangle \otimes |q_p\rangle \otimes |q_c\rangle$$
 (10.12)

Anomalous Dimensions

At quantum level, fields acquire anomalous dimensions:

$$[q_s] = 1 + \gamma_s(\eta) \tag{10.13}$$

$$[q_p] = 1 + \gamma_p(\eta) \tag{10.14}$$

$$[q_c] = 1 + \gamma_c(\eta) \tag{10.15}$$

Quantum Phase Transitions

The $I_{s/v}$ ratio becomes a norder parameter for quantum phase transitions: $-I_{s/v} < 1$: Quantum critical phase (gaples: $I_{s/v} = 1$: Quantum critical point $-I_{s/v} > 1$: Gapped phase (classical)

Holographic Connection

The triadic structure suggests AdS/CFT-like duality:

$$Z_{\text{URF}}[\text{boundary}] = Z_{\text{gravity}}[\text{bulk}]$$
 (10.16)

where the boundary theory has triadic CFT structure.

Quantum Consciousness Threshold

The classical threshold $_{crit} gets quantum corrections: \kappa_{crit}^{quantum} = \kappa_{crit}^{classical} \times \left(1 + \frac{\hbar^2}{m^2 c^4} \times quantum \ corrections\right) (10.17)$

10.9 Open Questions

1. **Unitarity**: Does the triadic vertex preserve unitarity at all loops? 2. **Renormalizability**: Is the theory renormalizable or just effective? 3. **Vacuum Structure**: Multiple vacua from spontaneous breaking? 4. **Quantum Gravity**: How to properly quantize the metric alongside triadic fields? 5. **Observables**: What are the sharp quantum observables corresponding to consciousness?

Appendix A

Complete Stress-Energy Derivation

A.1 Canonical Contribution

Starting from the matter Lagrangian:

$$\mathcal{L}_{\text{matter}} = \frac{Z_s}{2} (\nabla q_s)^2 + Z_p |Dq_p|^2 + \frac{Z_c}{2} (\nabla q_c)^2 - V$$
(A.1)

The canonical stress-energy tensor:

$$T_{\mu\nu}^{\rm can} = -\frac{2}{\sqrt{-g}} \frac{\delta(\sqrt{-g}\mathcal{L}_{\rm matter})}{\delta g^{\mu\nu}} \tag{A.2}$$

$$= Z_s \nabla_{\mu} q_s \nabla_{\nu} q_s + Z_p (D_{\mu} q_p)^{\dagger} (D_{\nu} q_p) + Z_c \nabla_{\mu} q_c \nabla_{\nu} q_c \tag{A.3}$$

$$-g_{\mu\nu} \left[\frac{Z_s}{2} (\nabla q_s)^2 + Z_p |Dq_p|^2 + \frac{Z_c}{2} (\nabla q_c)^2 - V \right]$$
 (A.4)

A.2 Non-Minimal Coupling Contribution

From the terms $\xi_i R Q_i$:

$$T_{\mu\nu}^{(\xi)} = \sum_{i} 2\xi_{i} \left[G_{\mu\nu} \mathcal{Q}_{i} + g_{\mu\nu} \Box \mathcal{Q}_{i} - \nabla_{\mu} \nabla_{\nu} \mathcal{Q}_{i} \right]$$
(A.5)

This follows from the identity:

$$\frac{\delta R}{\delta g^{\mu\nu}} = -R_{\mu\nu} + \frac{1}{2}g_{\mu\nu}R = -G_{\mu\nu} \tag{A.6}$$

Appendix B

Energy Conditions

B.1 Null Energy Condition

For any null vector k^{μ} with $k_{\mu}k^{\mu}=0$:

$$\mathcal{I}_{\mu\nu}k^{\mu}k^{\nu} = T_{\mu\nu}^{\rm can}k^{\mu}k^{\nu} + T_{\mu\nu}^{(\xi)}k^{\mu}k^{\nu} \tag{B.1}$$

$$= Z_s(k^{\mu}\nabla_{\mu}q_s)^2 + Z_p|k^{\mu}D_{\mu}q_p|^2 + Z_c(k^{\mu}\nabla_{\mu}q_c)^2 + \dots$$
(B.2)

$$\geq 0$$
 (B.3)

provided $Z_i > 0$.

B.2 Weak Energy Condition

For any timelike vector u^{μ} with $u_{\mu}u^{\mu} = -1$:

$$\mathcal{I}_{\mu\nu}u^{\mu}u^{\nu} \ge 0 \tag{B.4}$$

This requires:

- $Z_i > 0$ (positive kinetic terms)
- $V \ge 0$ (positive potential in physical region)
- $\eta > 0$ (positive triadic coupling)

Appendix C

Dimensional Analysis

Symbol	Description	Mass Dimension
$M_{ m Pl}$	Planck mass	1
q_s, q_c	Real scalar fields	1
$ q_p $	Complex scalar field	1
Z_s, Z_p, Z_c	Kinetic coefficients	0
ξ_s, ξ_p, ξ_c	Non-minimal couplings	0
$\mid V \mid$	Potential density	4
$\alpha_s, \alpha_p, \alpha_c$	Mass-squared terms	2
$\mid \eta \mid$	Triadic coupling	1
$\lambda_s, \lambda_p, \lambda_c$	Quartic couplings	0
R	Ricci scalar	2
$G_{\mu u}$	Einstein tensor	2

Appendix D

Stability Analysis

D.1 Linear Stability

Expanding around vacuum $q_i = q_i^* + \delta q_i$:

$$\mathcal{L}_{\text{quad}} = \sum_{i} \frac{Z_i}{2} (\nabla \delta q_i)^2 - \frac{1}{2} \sum_{ij} M_{ij}^2 \delta q_i \delta q_j$$
 (D.1)

The mass matrix:

$$M_{ij}^2 = \frac{\partial^2 V}{\partial q_i \partial q_j} \bigg|_{q^*} \tag{D.2}$$

Stability requires:

- 1. $Z_i > 0$ (positive kinetic terms)
- 2. M_{ij}^2 positive definite (all eigenvalues positive)
- 3. $M_{\text{Pl,eff}}^2 = M_{\text{Pl}}^2 + 2\sum_i \xi_i Q_i^* > 0$

D.2 Dynamical Stability

The dispersion relation for small perturbations:

$$\omega^2 = \frac{k^2 + m_i^2}{Z_i} \tag{D.3}$$

Stability requires $\omega^2 > 0$ for all k, satisfied when $Z_i > 0$ and $m_i^2 > 0$.

Parameter Constraints:

- 1. Set $Z_i = 1$ (absorbed into field redefinition)
- 2. Fix $\xi_i = 1/6$ (conformal invariance)
- 3. Derive $\lambda_i = m^2/(2M_{Pl}^2)$ (stability)
- 4. Keep only: M_{Pl} , η , m_s , m_p , m_c

Appendix E

Quantum Calculations Code

```
import numpy as np
from scipy.special import kn, jv
from scipy.integrate import quad
import matplotlib.pyplot as plt
class QuantumURF:
    Quantum field theory calculations for URF triadic fields
    def_{-init_{-}}(self, masses = (1.0, 1.0, 1.0), coupling = 0.858):
        self.m_s, self.m_p, self.m_c = masses
        self.eta = coupling
        self.hbar = 1 # Natural units
        self.c = 1
    def propagator (self, p, mass, momentum_cutoff=None):
        Feynman propagator in momentum space
        G(p) = i/(p^2 - m^2 + i)
        epsilon = 1e-10
        p_squared = np.dot(p, p)
        if momentum_cutoff and p_squared > momentum_cutoff **2:
            return 0
        return 1j / (p_squared - mass**2 + 1j*epsilon)
    def one_loop_self_energy(self, external_momentum, field_type='s'):
        Calculate\ 1-loop\ self-energy\ correction
                          d k /(2) G(k)G(p-k)
         (p) =
        # Simplified calculation in Euclidean space
        def integrand(k):
            if field_type = 's':
```

```
prop1 = self.propagator([k, 0, 0, 0], self.m_p)
            prop2 = self.propagator([external_momentum - k, 0, 0, 0], self.m_c)
        elif field_type == 'p':
            prop1 = self.propagator([k, 0, 0, 0], self.m_s)
            prop2 = self.propagator([external_momentum - k, 0, 0, 0], self.m_c)
        else: \# field_type == 'c'
            prop1 = self.propagator([k, 0, 0, 0], self.m_s)
            prop2 = self.propagator([external_momentum - k, 0, 0, 0], self.m_p)
        return np.real(prop1 * prop2)
    # Dimensional regularization with cutoff
    Lambda = 10.0 \# UV \ cut off
    result, _ = quad(integrand, 0, Lambda)
    return self.eta**2 * result / (16 * np.pi**2)
def running_coupling(self, energy_scale):
    One-loop running of triadic coupling
                                 ln ( /
    ( ) =
                  / (1 -
    beta_0 = 1/(16*np.pi**2) # Leading coefficient
    mu_0 = 1.0 \# Reference scale (GeV)
    if energy_scale \leq 0:
        return self.eta
    denominator = 1 - beta_0 * self.eta**2 * np.log(energy_scale/mu_0)
    if denominator \neq 0:
        # Landau pole
        return np.inf
    return self.eta / denominator
def vacuum_expectation_value(self, field='s'):
    Calculate VEV using effective potential
    \# Minimize V_-eff = V_-classical + V_-quantum
    # For simplicity, using classical minimum
    if field == 'p':
        return 0 # Phase field has zero VEV (preserves U(1))
    else:
        # Non-zero VEV for spatial/scale fields
        return np. sqrt (self.eta / (2 * 0.1)) #
                                                    = 0.1 \ assumed
def correlation_function(self, x1, x2, n_point = 2):
    Calculate n-point correlation functions 0 \mid T\{q(x) \mid q(x) \dots\} \mid 0
```

```
,, ,, ,,
    r = np. lin alg. norm(np. array(x1) - np. array(x2))
    if n_{\text{-point}} = 2:
        # Two-point function (propagator in position space)
        # For massive scalar: G(r)
                                        e^{(-mr)/r}
        mass = self.m_s # Example for spatial field
        return np.exp(-mass * r) / (4 * np.pi * r) if r > 0 else np.inf
    elif n_point == 3:
        # Three-point function (triadic correlation)
        \# q_-s q_-p q_-c
        return self.eta * self.correlation_function(x1, x2, 2)
    elif n_point = 4:
        \# Four-point includes disconnected + connected parts
        # Simplified: return connected part only
        return self.eta**2 * self.correlation_function(x1, x2, 2)**2
def entanglement_entropy(self, region_size, field='triadic'):
    Calculate entanglement entropy for a spherical region
    Using area law: S = c * Area /
    if field == 'triadic':
        \#\ All\ three\ fields\ contribute
        c_s = 1/6 # Central charge contributions
        c_p = 1/3 # Complex field has double d.o.f.
        c_{-}c = 1/6
        c_total = c_s + c_p + c_c
    else:
        c_{total} = 1/6
    area = 4 * np.pi * region_size**2
    cutoff = 0.1 \# UV \ cutoff
    return c_total * area / cutoff **2
def quantum_information_flow(self, t, initial_state='vacuum'):
    Calculate quantum information flow
                                          I_{-}multi / t
    # Simplified model: information grows then saturates
    if initial_state == 'vacuum':
        # Vacuum state: minimal information flow
       return 0.01 * np.exp(-t/10)
    elif initial_state == 'coherent':
        \# Coherent triadic state
        t_scrambling = 1.0 # Scrambling time
        return 0.3 * (1 - np.exp(-t/t_scrambling))
    elif initial_state = 'entangled':
```

```
# Maximally entangled triadic state
            omega = 2 * np.pi # Oscillation frequency
            return 0.5 * (1 + 0.5 * np. sin (omega * t)) * np. exp(-t/20)
# Visualization
def plot_quantum_corrections():
    Visualize quantum corrections to classical URF
    urf = QuantumURF()
    fig, axes = plt.subplots(2, 2, figsize = (12, 10))
    # 1. Running coupling
    energies = np. \log \operatorname{space}(-1, 1.5, 100)
    couplings = [urf.running_coupling(E) for E in energies]
    axes [0, 0].semilogx (energies, couplings)
    axes [0, 0].axhline(y=urf.eta, color='r', linestyle='--', label='Tree-level')
    axes [0, 0].set_xlabel('Energy-Scale-(GeV)')
    axes [0, 0].set_ylabel(' ( )')
    axes [0, 0].set_title('Running-Triadic-Coupling')
    axes[0, 0].legend()
    axes[0, 0].grid(True, alpha=0.3)
    # 2. Correlation function
    distances = np. linspace (0.1, 10, 100)
    correlations = [urf.correlation\_function([0,0,0], [r,0,0]) for r in distances]
    axes [0, 1]. semilogy (distances, correlations)
    axes [0, 1].set_xlabel('Distance r')
    axes[0, 1].set_ylabel('q (0)q(r)
    axes [0, 1].set_title('Two-Point-Correlation-Function')
    axes[0, 1].grid(True, alpha=0.3)
    # 3. Entanglement entropy
    sizes = np. linspace (0.1, 5, 50)
    entropy = [urf.entanglement\_entropy(R) for R in sizes]
    axes[1, 0].plot(sizes, entropy)
    axes[1, 0].set_xlabel('Region-Size-R')
    axes [1, 0]. set_ylabel('S_entanglement')
    axes[1, 0].set_title('Triadic-Entanglement-Entropy')
    axes[1, 0].grid(True, alpha=0.3)
    # 4. Information flow for different states
    times = np.linspace(0, 10, 100)
    for state in ['vacuum', 'coherent', 'entangled']:
        info_flow = [urf.quantum_information_flow(t, state) for t in times]
        axes[1, 1].plot(times, info_flow, label=state)
```

Bibliography

Bibliography

- [1] Iulianelli, F., Kim, S., Sussan, J., & Lauda, A. D. (2025). Universal quantum computation using Ising anyons from a non-semisimple topological quantum field theory. Nature Communications, 16, 61342.
- [2] Cairo, H. (2025). A counterexample to the Mizohata-Takeuchi conjecture. arXiv:2502.06137v2.
- [3] Geer, N., Lauda, A., Patureau-Mirand, B., & Sussan, J. (2022). A Hermitian TQFT from a non-semisimple category of quantum $\mathfrak{sl}(2)$ -modules. Letters in Mathematical Physics, 112, 74.
- [4] Costantino, F., Geer, N., & Patureau-Mirand, B. (2014). Quantum invariants of 3-manifolds via link surgery presentations and non-semi-simple categories. Journal of Topology, 7(4), 1005-1053.
- [5] [Authors pending] (2025). Resonance Complexity Theory: Consciousness as stable interference patterns in neural oscillations. Journal of Consciousness Studies. In press.
- [6] Horndeski, G. W. (1974). Second-order scalar-tensor field equations in a four-dimensional space. International Journal of Theoretical Physics, 10, 363-384.
- [7] Jacobson, T. (1995). Thermodynamics of spacetime: The Einstein equation of state. Physical Review Letters, **75**(7), 1260-1263.
- [8] Bettoni, D., & Liberati, S. (2013). Disformal invariance of second-order scalar-tensor theories: Framing the Horndeski action. Physical Review D, 88(8), 084020.
- [9] Wheeler, J. A., & Feynman, R. P. (1949). Classical electrodynamics in terms of direct interparticle action. Reviews of Modern Physics, 21(3), 425-433.
- [10] Bekenstein, J. D. (1973). Black holes and entropy. Physical Review D, 7(8), 2333-2346.
- [11] Haramein, N. (2013). Quantum gravity and the holographic mass. Physical Review & Research International, 3(4), 270-292.
- [12] Bennett, J., Carbery, A., & Tao, T. (2006). On the multilinear restriction and Kakeya conjectures. Acta Mathematica, **196**(2), 261-302.
- [13] Guth, L. (2010). The endpoint case of the Bennett-Carbery-Tao multilinear Kakeya conjecture. Acta Mathematica, **205**(2), 263-286.
- [14] Gurarie, V. (1993). Logarithmic operators in conformal field theory. Nuclear Physics B, 410(3), 535-549.

Index

Action principle, 25 Anyon-triadic correspondence, 15
C Consciousness threshold, 45 Cosmological signatures, 52
D Decoherence, 32 Dimensional analysis, 67
E EEG protocol, 46 Einstein equations, 28 Energy conditions, 65
F F-symbols, 38 Field equations, 27
G General relativity limit, 33 Gravitational effects, 48
I Information geometry, 12 Informational equilibrium, 32
Q Quantum formalism, 70
Stability analysis, 69 Stress-energy tensor, 29 Surface-volume ratio, 13
T TQFT coupling, 38 Time emergence, 14 Triadic node, 8

32 BIBLIOGRAPHY

Triadic potential, 26