

数字集成电路设计 第十章 时序电路设计

白雪飞 中国科学技术大学微电子学院

提纲

- 引言
- 静态电路的时序控制
- 锁存器和触发器电路设计
- 同步器

引言

基本概念

■ 时序元件

- 触发器(Flip-Flop)、锁存器(Latch)
- 时序元件所保持的数据称为令牌(Token)
- 时序元件阻止过早到达的令牌,避免其赶上上一个令牌使这两个令牌混淆

■ 静态电路和动态电路

- 静态电路 (Static Circuit)
 - 没有时钟输入的门,如CMOS逻辑、伪NMOS逻辑、传输管逻辑
- 动态电路 (Dynamic Circuit)
 - 具有时钟输入的门,如多米诺逻辑

■ 静态存储和动态存储

- 静态存储 (Static Storage)
 - 时序元件采用某种反馈使输出值永远保持下去
- 动态存储 (Dynamic Storage)
 - 时序元件的值以电荷保存在电容中,若长时间未刷新,电荷将会因泄漏而消失

静态电路的时序控制

锁存器和触发器

锁存器和触发器

时序控制方法

静态电路的时序控制方法

触发器与锁存器

触发器看作反相时钟驱动的一对连续的锁存器

延时和时序约束

A Comb. Logic

时序图

时序参数和符号

符号	意义			
t_{pd}	组合逻辑传播延时			
t_{cd}	组合逻辑污染延时			
t_{pcq}	锁存器/触发器时钟至输出传播延时			
t_{ccq}	锁存器/触发器时钟至输出污染延时			
t_{pdq}	锁存器输入数据至输出传播延时			
t_{cdq}	锁存器输入数据至输出污染延时			
$t_{ m setup}$	锁存器/触发器建立时间			
$t_{ m hold}$	锁存器/触发器保持时间			

触发器的最大延时约束

触发器的最大延时约束

$$T_c \geqslant t_{pcq} + t_{pd} + t_{
m setup} \ \ t_{pd} \leqslant T_c - (t_{
m setup} + t_{pcq})$$

两相位锁存器的最大延时约束

两相位锁存器的最大延时约束

$$T_c \! \geqslant \! t_{pdq1} + t_{pd1} + t_{pdq2} + t_{pd2} \ t_{pd} = t_{pd1} + t_{pd2} \! \leqslant \! T_c - 2t_{pdq}$$

脉冲锁存器的最大延时约束

脉冲锁存器的最大延时约束

$$T_c \geqslant \max(t_{pdq} + t_{pd}, \ t_{pcq} + t_{pd} + t_{ ext{setup}} - t_{pw})$$
 $t_{pd} \leqslant T_c - \max(t_{pdq}, \ t_{pcq} + t_{ ext{setup}} - t_{pw})$

触发器的最小延时约束

触发器的最小延时约束

$$t_{cd} \! \geqslant \! t_{
m hold} - t_{ccq}$$

两相位锁存器的最小延时约束

两相位锁存器的最小延时约束

$$t_{cd1},\ t_{cd2}\!\geqslant\!t_{
m hold}-t_{ccq}-t_{
m nonoverlap}$$

脉冲锁存器的最小延时约束

脉冲锁存器的最小延时约束

$$t_{cd} \geqslant t_{\text{hold}} - t_{ccq} + t_{pw}$$

时间借用

透明锁存器系统的时间借用(Time Borrowing)

时间借用最大值

两相位锁存器系统能借用的最长时间

$$t_{
m borrow} \leqslant rac{T_c}{2} - (t_{
m setup} + t_{
m nonoverlap})$$

时钟偏斜与触发器

时钟偏斜与触发器的最大延时约束

$$t_{pd} \leqslant T_c - (t_{pcq} + t_{
m setup} + t_{
m skew})$$

时钟偏斜与触发器

时钟偏斜与触发器的最小延时约束

$$t_{cd} \geqslant t_{
m hold} - t_{ccq} + t_{
m skew}$$

时钟偏斜与锁存器

■ 时钟偏斜与透明锁存器

$$egin{align*} t_{pd} \leqslant T_c - 2t_{pdq} \ &t_{cd1}, \; t_{cd2} \geqslant t_{
m hold} - t_{ccq} - t_{
m nonoverlap} + t_{
m skew} \ &t_{
m borrow} \leqslant rac{T_c}{2} - (t_{
m setup} + t_{
m nonoverlap} + t_{
m skew}) \end{aligned}$$

■ 时钟偏斜与脉冲锁存器

$$egin{aligned} t_{pd} &\leqslant T_c - \max\left(t_{pdq}, \; t_{pcq} + t_{
m setup} - t_{pw} + t_{
m skew}
ight) \ t_{cd} &\geqslant t_{
m hold} + t_{pw} - t_{ccq} + t_{
m skew} \ t_{
m borrow} &\leqslant t_{pw} - \left(t_{
m setup} + t_{
m skew}
ight) \end{aligned}$$

锁存器和触发器电路设计

传统CMOS锁存器

输入噪声若能控制 速度较快面积较小

透明锁存器 (Transparent Latch)

克服上述所有缺点

广泛用于标准单元

时钟控制下拉堆叠结构

弱PMOS管上拉

传统CMOS触发器

触发器

脉冲锁存器

24

可复位锁存器和触发器

可复位锁存器和触发器

具有异步置位和复位的触发器

同时具有异步置位和异步复位的触发器

具有使能端的锁存器和触发器

符号

Flop,

en

多路开关设计

时钟门控设计

将逻辑合并到锁存器中

钟控传输门-反相静态CMOS门结构

多路开关-锁存器结构

将逻辑与锁存器合并

差分触发器

灵敏放大触发器 (Sense-Amplifier Flip-Flop, SAFF)

双轨脉冲边缘触发锁存器 (Dual-Rail Pulsed Edge Triggered Latch)

抗辐照锁存器

抗辐照锁存器

状态保持寄存器

状态保持寄存器 (State Retention Register)

时序元件表征

$$t_{a0} = t_{
m setup0} + t_{
m hold0} \ t_{a1} = t_{
m setup1} + t_{
m hold1}$$

触发器的建立时间和保持时间

同步器

亚稳态

静态锁存器的亚稳态

亚稳态瞬态分析和传播延时

亚稳态瞬态分析和传播延时

$$P(t_{DQ}\!>\!t')\!=\!rac{T_0}{T_c}\mathrm{e}^{-rac{t'}{ au_s}},\;\;t'\!>\!h$$

简单同步器

简单同步器

$$P(ext{failure}) = Nrac{T_0}{T_c} \mathrm{e}^{rac{-(T_c - t_{ ext{setup}})}{ au_s}}, \;\; ext{MTBF} = rac{1}{P(ext{failure})} = rac{T_c \mathrm{e}^{rac{T_c - t_{ ext{setup}}}{ au_s}}}{NT_0}$$

异步时钟域之间的通信

异步系统之间的通信

Four-Phase Handshake Protocol

Two-Phase Handshake Protocol

四相位和两相位握手协议

两相位握手电路

带同步器的两相位握手电路

仲裁器 (Arbiter)

仲裁器符号

仲裁器电路图

同步度

类型	周期性	$\Delta \phi$	Δf	说明 ····································
同步 Synchronous	是	0	0	信号具有与时钟相同的频率和相位,可以安全地使用时钟直接采样信号。 例:芯片内部触发器之间。
中同步 Mesochronous	是	常数	0	信号具有与时钟相同的频率但不同的相位,若将信号延迟一段固定的时间,使它落在间隙时间之外,即可安全地采样信号。 例:采用同一时钟但可能有任意时钟偏斜的芯片之间。
准同步 Plesiochronous	是	缓慢变化	小	信号具有与时钟几乎相同的频率,但相位随时间缓慢漂移。若将信号延迟一段可变但可预测的时间,即可安全地采样信号,但频率之间的差别有可能导致数据丢失或重复。例:采用各自时钟晶振的电路板之间,但两个标称相同频率的晶振之间存在小的失配。
周期性 Periodic	是	快速变化	大	信号是任意频率周期信号,当数据在间隙期间变化时,可以利用周期性所具有的特点进行预测和延迟处理。例:采用不同频率时钟的电路板之间。
异步 Asynchronous	否	未知	未知	信号可能在任意时间变化,需要使用良好的同步器。例:来自按钮开关的输入。

本章结束