WHAT IS CLAIMED IS:

1	1. A layered signal for transmitting data, comprising:
2	a first signal layer including a first carrier and first signal symbols for a
3	first digital signal transmission; and
4	a second signal layer including a second carrier and second signal symbols
5	for a second signal transmission disposed on the first signal layer;
6	wherein the layered signal has the first carrier demodulated and first layer
7	signal decoded to produce the first signal symbols for a first layer transport, the
8	first signal symbols are remodulated and subtracted from the layered signal to
9	produce the second signal layer, and the second signal layer has the second carrier
10	demodulated and decoded to produce the second signal symbols for a second layer
11	transport.
1	2. The layered signal of claim 1, wherein at least one of the first and
2	second signal layers are quadrature phase shift keyed (QPSK).
1	3. The layered signal of claim 1, wherein a code rate for at least one
2	of the first and second signal layers is 6/7.
1	4. The layered signal of claim 1, wherein a code rate for at least one
2	of the first and second signal layers is 2/3.
1	5. The layered signal of claim 1, wherein a code rate for at least one
2	of the first and second signal layers is 1/2.
1	6. The layered signal of claim 1, wherein the second signal layer is
2 ,	generated by power boosting a legacy signal.
1	7. The layered signal of claim 1, wherein a total code and noise level
2	of the second signal layer is no greater than a noise floor of the first signal layer.

1 2

1	8. The layered signal of claim 1, wherein at least one of the first and
2	second signal layers are coded using a turbo code.
1	9. The layered signal of claim 1, wherein both the first and second
2	signal layers are coded using a single turbo code.
1	10. The layered signal of claim 1, wherein the first and second layer
	•
2	each have a frequency that is substantially similar.
1	11. The layered signal of claim 1, wherein the first and second layer
2	each have a frequency with a frequency offset therebetween.
1	12. A method of transmitting layered signals, comprising:
2	transmitting a first signal layer including a first carrier and first signal
3	symbols for a first digital signal transmission; and
4	transmitting a second signal layer including a second carrier and second
5	signal symbols for a second signal transmission disposed over the first signal
6	layer;
7	wherein the layered signal has the first carrier demodulated and first layer
8	decoded to produce the first signal symbols for a first layer transport, the first
9	signal symbols are remodulated and subtracted from the layered signal to produce
10	the second signal layer, and the second signal layer has the second carrier
11	demodulated and decoded to produce the second signal symbols for a second layer
12	transport.
1	13. The method of claim 12, wherein at least one of the first and
2	second signal layers are quadrature phase shift keyed (QPSK).
<i>L</i>	second signal layers are quadrature phase sinit keyed (Q1 Six).

The method of claim 12, wherein a code rate for at least one of the

14.

first and second signal layers is 6/7.

1 .	15. The method of claim 12, wherein a code rate for at least o	ne of the
2	first and second signal layers is 2/3.	
1	16. The method of claim 12, wherein a code rate for at least of	ne of the
2	first and second signal layers is 1/2.	
1	17. The method of claim 12, wherein the second signal layer:	is
2	generated by power boosting a legacy signal.	
1	18. The method of claim 12, wherein a total code and noise le	evel of the
2	first signal layer is no greater than a noise floor of the second signal layer	r.
1	19. The method of claim 12, wherein at least one of the first a	ınd
2	second signal layers are coded using a turbo code.	
1	20. The method of claim 12, wherein both the first and second	d signal
2	layers are coded using a single turbo code	

1	21. A receiver system for demodulating and decoding layered		
2	transmission signals, comprising:		
3	a first demodulator for demodulating a first carrier of a first layer of a		
4	received signal;		
5	a first layer decoder for decoding the first layer producing first signal		
6	symbols for a first layer transport;		
7	a remodulator for receiving the first signal symbols and producing a first		
8	layer signal;		
9	a subtracter for subtracting the first layer signal from the received signal		
10	and producing a second layer signal;		
11	a second layer demodulator receiving the second layer signal for		
12	demodulating a second carrier of a second layer and producing a second		
13	demodulator output; and		
14	a second layer decoder receiving the second demodulator output and		
15	decoding the second layer producing second signal symbols for a second layer		
16	transport.		
1	22. The receiver system of claim 21, wherein the first layer signal		
2	includes the first carrier and is subtracted from the received signal before the first		
3	carrier is demodulated.		
1	23. The receiver system of claim 21, wherein the first layer signal does		
2	not include the first carrier and is subtracted from the received signal after the first		
3	carrier is demodulated.		
1	24. The receiver system of claim 21, further comprising a non-linear		
2	distortion map for removing non-linear distortion effects from the first signal		
3	layer.		

1	25. The receiver system of claim 21, wherein the first layer of the
2	received signal is a boosted legacy signal.
1	26. The receiver system of claim 21, wherein at least one of the first
2	and second signal layers are quadrature phase shift keyed (QPSK).
1	27. The receiver system of claim 21, wherein a code rate for at least
2	one of the first and second signal layers is 6/7.
1	28. The receiver system of claim 21, wherein a code rate for at least
2	one of the first and second signal layers is 2/3.
1	29. The receiver system of claim 21, wherein a code rate for at least
2	one of the first and second signal layers is 1/2.
1	30. The receiver system of claim 21, wherein the second signal layer is
2	generated by power boosting a legacy signal.
1 .	31. The receiver system of claim 21, wherein a total code and noise
2	level of the first signal layer is no greater than a noise floor of the second signal
3	layer.
1	32. The receiver system of claim 21, wherein at least one of the first
2	and second signal layers are coded using a turbo code.
1	33. The receiver system of claim 21, wherein both the first and second
2	signal layers are coded using a single turbo code.
1	34. The receiver system of claim 21, wherein the first and second layer
2	each have a frequency that is substantially similar.

1	33. The receiver system of claim 21, wherein the first and second layer	
2	each have a frequency with a frequency offset therebetween.	
1	36. The receiver system of claim 21, wherein the remodulator receives	
2	the first decoded symbols after a Viterbi decode.	
1	37. The receiver system of claim 21, wherein the remodulator receives	
2	the first decoded symbols after a Reed-Solomon decode.	
1	38. A method of demodulating and decoding, comprising:	
2	demodulating a first carrier of a first layer of a received signal;	
3	decoding the first layer to produce first layer symbols for a second layer	
4	transport;	
5	remodulating the first layer symbols to produce a first layer signal;	
6	subtracting the first layer signal from the received signal producing a	
7	second layer signal;	
8	demodulating a second carrier of the second layer signal; and	
9	decoding the second layer to produce second decoded symbols for a second	
10	layer transport.	
1	39. The method of claim 38, wherein the first layer signal includes the	
2	first carrier and is subtracted from the received signal before the first carrier is	
3	demodulated.	
1	40. The method of claim 38, wherein the first layer signal does not	
2	include the first carrier and is subtracted from the received signal after the first	
3	carrier is demodulated.	
1	41. The method of claim 38, further comprising a non-linear distortion	
2	map for removing non-linear distortion effects from the first signal layer produced	
3	by the remodulator.	

1	42.	The method of claim 38, wherein the first layer of the received
2	signal is a bo	osted legacy signal.
1	43.	The method of claim 38, wherein at least one of the first and
2	second signa	l layers are quadrature phase shift keyed (QPSK).
1	44.	The method of claim 38, wherein a code rate for at least one of the
2	first and seco	and signal layers is 6/7.
1	45.	The method of claim 38, wherein a code rate for at least one of the
2	first and seco	and signal layers is 2/3.
1	46.	The method of claim 38, wherein a code rate for at least one of the
2	first and seco	and signal layers is 1/2.
1	47.	The method of claim 38, wherein the second signal layer is
2	generated by	power boosting a legacy signal.
1	48.	The method of claim 38, wherein a total code and noise level of the
2	first signal la	yer is no greater than a noise floor of the second signal layer.
1	49.	The method of claim 38, wherein at least one of the first and
2	second signal	l layers are coded using a turbo code.
1	50.	The method of claim 38, wherein both the first and second signal
2	layers are coo	led using a single turbo code.
1	51.	The method of claim 38, wherein the first and second layer each
2	have a freque	ency that is substantially similar.
1	52.	The method of claim 38, wherein the first and second layer each
2		ency with a frequency offset therebetween.
_		

53.	The method of claim 38, wherein error correction decoding the first
modulator ou	tput includes a Viterbi decode and error correction remodulating is
performed aft	er the Viterbi decode.

54. The method of claim 38, wherein error correction decoding the first modulator output includes a Reed-Solomon decode and error correction reencoding is performed after the Reed-Solomon decode.