Ejemplo

En el caso de que el archivo **VIAJES.IN** contenga:

```
6 7 7 1 6
2 1 2
2 1 3
2 2 3
2 4 5
2 2 5
2 1 6
2 3 4
1 4 8
4 2 5
4 5 80
2 3 14
3 5 21
5 6 12
5 7 2
4 2 1 3 4
```

El archivo **VIAJES.OUT** podría contener:

```
64
1 4 2 3 5 7 5 6
```

Puntuación

100% de los puntos se asignarán a quien calcule una solución óptima.

40% de los puntos se asignarán a quien calcule correctamente el costo de una solución óptima, aunque no provea el itinerario o se equivoque en el mismo.

20% de los puntos se asignarán a quien calcule una solución no óptima e indique coherentemente el itinerario y costo de la misma.

Tiempo de ejecución

El programa deberá resolver el problema en 80 segundos.

Versión 3.4 hoja 2 de 2

Organización de una gira turística

Descripción del problema

Un cliente visita una empresa de turismo para que se le arme la ruta más económica que le permita disfrutar de ciertos atractivos en cierto orden, comenzado y terminando el viaje en ciudades por él escogidas.

Las ciudades pueden ofrecer diversos atractivos: opera, zoológico, planetario, etc. No todas las ciudades ofrecen los mismos atractivos. Se conocen las conexiones por vía aérea entre ciudades y su costo. (Las conexiones que se dan existen en ambos sentidos y tienen el mismo costo)

Si una ciudad permite satisfacer varios atractivos, puedes permanecer en ella (sin costo adicional). Además es factible volver a una ciudad en el transcurso del viaje como también pasar por una ciudad intermedia, sin disfrutar necesariamente de atractivos en la misma.

Para facilitarte la codificación, enumeraremos los atractivos (Por ejemplo opera = 1, zoo = 2, botánico = 3, etc.) y las ciudades.

La empresa conoce las conexiones existentes entre ciudades.

La empresa de turismo te pide que le ayudes, escribiendo un programa **VIAJES.EXE** para resolver este exótico pedido.

Aclaraciones

Las ciudades se enumeran de 1..C:

 $1 \le \mathbf{C} \le 500$

Los atractivos se enumeran de 1..A:

 $1 \le A \le 500$

La cantidad de conexiones es **T**:

 $0 \leq \boldsymbol{T} \leq 20.000$

Ninguna conexión cuesta más de 100 U\$ (son viajes interurbanos) y se representan por cantidades enteras.

El largo de la lista de atractivos que el cliente quiere visitar es \mathbf{L} :

 $0 \le L \le 1.000$

Puede haber ciudades sin atractivos.

Datos de entrada

Se recibe un archivo **VIAJES.IN** del directorio actual, que contiene:

 Primera línea: 5 números separados por un blanco: el número A de atractivos, el número C de ciudades, el número T de conexiones de transporte aéreo, el numero CS que indica la ciudad de salida y el número CR que indica la ciudad de retorno.

• A continuación, **C** líneas (cada una se refiere a la correspondiente ciudad) con:

Un número AC que indica cuantos atractivos existen en esa ciudad, seguidos de AC números distintos que los identifican.

- A continuación, T líneas con tres números separados por un blanco, indicando ciudad i, ciudad j y precio p de la conexión para ir de i a j o viceversa.
- Una línea que contiene el largo **L** de la lista de atractivos a visitar, seguidos de **L** números que identifican a cada atractivo (en el orden de visita solicitado).

Datos de salida

El programa **VIAJES.EXE** debe generar el archivo **VIAJES.OUT**, en el directorio actual, con:

- Una línea conteniendo el precio mínimo del viaje.
- Una segunda línea con una secuencia de ciudades a visitar para cumplir con las visitas solicitadas a ese costo. La secuencia no debe tener ciudades consecutivas iguales.
- De no ser factible realizar el viaje, debe escribirse una única línea con la leyenda "no hay solución".

El texto sigue al dorso

Versión 3.4 hoja 1 de 2