Information Retrieval

by Dr. Rajendra Prasath

Indian Institute of Information Technology

Sri City – 517 646, Andhra Pradesh, India

Lecture - 07

Topics Covered So Far

- ♦ Bi-Word Index
- ♦ Wild Card Queries
- ♦ Permuterm Index

Now: Spelling Correction

♦ Approaches to perform Spelling Correction

Recap: Wild-card queries: *

- mon*: find all docs containing any word beginning with "mon".
- Easy with binary tree (or B-tree) dictionary: retrieve all words in range: mon ≤ w <
 moo
- *mon: find words ending in "mon": harder
 - Maintain an additional B-tree for terms backwards.
 - Carromathis, thow can we enumerate alberties < meeting the wild-card query pro*cent?

Recap: Permuterm query processing

- (Add \$), rotate * to end, lookup in permuterm index
- Queries: lookup on X\$ hello\$ for hello
 - X lookup on \$X* \$hel* for hel*
 - X* lookup on X\$* llo\$* for *llo
 - *x lookup on X* ell* for *ell*
 - *x* lookup on Y\$X* lo\$h for h*lo
 - x*γ treat as a search for X*Z and post-filter
 - For h*a*o, search for h*o by looking up o\$h*
 - and post-filter hello and retain halo

Recap: Bigram (k-gram) indexes

- Enumerate all k-grams (sequence of k chars) occurring in any term
- e.g., from text "April is the cruelest month" we get the 2-grams (bigrams)

```
$a,ap,pr,ri,il,l$,$i,is,s$,$t,th,he,e$,$c,cr,ru,ue,el,le,es,st,t$, $m,mo,on,nt,h$
```

- \$ is a special word boundary symbol
- Maintain a <u>second</u> inverted index <u>from</u> <u>bigrams to dictionary terms</u> that match each bigram.

Spelling Correction

Apps For Spelling Correction

Word processing

Web search

natural langage processing

Showing results for <u>natural language</u> processing Search instead for natural language processing

Phones

Rates of spelling errors

- Depends on the Appln: ~1–20% error
- Web queries Wang et al. 2003
- **13**%: Retyping, no backspace: Whitelaw *et al.* English & German
- **7**%: Words corrected retyping on phone-sized organizer
- 2%: Words uncorrected on organizer Soukoreff & MacKenzie 2003
- **1-2**%:Retyping: Kane and Wobbrock 2007, Gruden et al. 1983

Spelling Tasks

- Spelling Error Detection
- Spelling Error Correction:
 - -Autocorrect
 - hte > the
 - Suggest a correction
 - -Suggestion lists

Types of spelling errors

- Non-word Errors
 - graffe → giraffe
- Real-word Errors
 - Typographical errors
 - three >there
 - Cognitive Errors (homophones)
 - piece > peace,
 - too → two

sensitive

- your → you're
- Non-word correction was mainly context insensitive
- Real-word correction almost needs to be context

Non-word spelling errors

- Non-word spelling error detection:
 - Any word not in a dictionary is an error
 - The larger the dictionary the better ... up to a point
 - (The Web is full of mis-spellings, so the Web isn't necessarily a great dictionary ...)
- Non-word spelling error correction:
 - Generate candidates: real words that are similar to error
 - Choose the one which is best:
 - Shortest weighted edit distance
 - Highest noisy channel probability

Real word & non-word spelling errors

- For each word w, generate candidate set:
 - Find candidate words with similar pronunciations
 - Find candidate words with similar spellings
 - Include w in candidate set
- Choose best candidate
 - Noisy Channel view of spell errors
 - Context-sensitive so have to consider whether the surrounding words "make sense"
 - Flying form Heathrow to LAX → Flying from Heathrow to LAX

Terminology

- We just discussed <u>character bigrams and</u> <u>k-grams</u>:
 - st, pr, an ...
- We can also have <u>word bigrams and n-grams</u>:
 - palo alto, flying from, road repairs

The Noisy Channel Model of Spelling INDEPENDENT WORD SPELLING CORRECTION

Noisy Channel Intuition

Noisy Channel - Bayes' Rule

- We see an observation x of a misspelled word
- Find the correct word ŵ

$$\hat{w} = \underset{w \in V}{\operatorname{argmax}} P(w \mid x)$$

$$= \underset{w \in V}{\operatorname{argmax}} \frac{P(x \mid w)P(w)}{P(x)}$$
Bayes

History: Noisy channel for spelling proposed around 1990

IBM

Mays, Eric, Fred J. Damerau and Robert L.
 Mercer. 1991. Context based spelling correction.
 Information Processing and Management, 23(5), 517–522

AT&T Bell Labs

 Kernighan, Mark D., Kenneth W. Church, and William A. Gale. 1990.

A spelling correction program based on a noisy channel model. Proceedings of COLING 1990,

205-210

Non-word spelling error- example

acress

Candidate Generation

- Words with similar spelling
 - Small edit distance to error
- Words with similar pronunciation
 - Small distance of pronunciation to error

Candidate Testing: Damerau-Levenshtein edit distance

 Minimal edit distance between two strings, where edits are:

- Insertion
- Deletion
- Substitution
- Transposition of two adjacent letters

Words within 1 of acress

Error	Candidate Correctio n	Corre ct Letter	Error Lette r	Type	
acress	actress	t	_	deletion	
acress	cress	_	a	insertion	
acress	caress	ca	ac	transposition	
acress	access	C	r	substitution	
acress	across	0	е	substitution	
acress	acres	_	S	insertion 21	la a

Candidate Generation

- 80% of errors are within edit distance 1
- Almost all errors within edit distance 2

- Also allow insertion of space or hyphen
 - this idea → this idea
 - inlaw → in-law
- Can also allow merging words
 - data base → database
 - For short texts like a query, can just regard whole string as one item from which to produce edits

How do you generate the candidates?

- Run through dictionary, check edit distance with each word
- Generate all words within edit distance ≤ k (e.g., k = 1 or 2) and then intersect them with dictionary
- Use a character k-gram index and find dictionary words that share "most" k-grams with word (e.g., by Jaccard coefficient)
 - see IIR sec 3.3.4
- Compute them fast with a Levenshtein finite state transducer
- Have a precomputed map of words to possible corrections

A Paradigm ...

- We want the best spell corrections
- Instead of finding the very best, we
 - Find a subset of pretty good corrections
 - (say, edit distance at most 2)
 - Find the best amongst them
- These may not be the actual best
- This is a recurring paradigm in IR including finding the best docs for a query, best answers, best ads
 - . . .
 - Find a good candidate set
 - Find the top K amongst them and return them as the best

With candidates Generated: Now back to Bayes' Rule

- We see an observation x of a misspelled word
- Find the correct word \hat{w}

$$\hat{w} = \underset{w \in V}{\operatorname{argmax}} P(w \mid x)$$

$$= \underset{w \in V}{\operatorname{argmax}} \frac{P(x \mid w)P(w)}{P(x)}$$

$$= \underset{w \in V}{\operatorname{argmax}} P(x \mid w) P(w)$$

What's P(w)?

Language Model

 Take a big supply of words (your document collection with T tokens); let C(w) = # occurrences of w

$$P(w) = \frac{C(w)}{T}$$

 In other applications – you can take the supply to be typed queries (suitably filtered) – when a static dictionary is inadequate

Unigram Prior probability

Counts from 404,253,213 words in Corpus of Contemporary English (COCA)

	word	Frequency of word	P(w)
	actress	9,321	.0000230573
	cress	220	.0000005442
	caress	686	.0000016969
X.P.	access	37,038	.0000916207
i de la	across	120,844	.0002989314
	acres	12,874	.0000318463

Channel model probability

- Error model probability, Edit probability
- Kernighan, Church, Gale 1990
- Misspelled word x = x1, x2, x3... xm
- Correct word w = w1, w2, w3,..., wn
- P(x|w) = probability of the edit
 - (deletion/insertion/substitution/transposition)

Computing error probability: confusion "matrix"

```
del[x,y] : count(xy typed as x)
ins[x,y] : count(x typed as xy)
sub[x,y] : count(y typed as x)
trans[x,y] : count(xy typed as yx)
```

Insertion and deletion conditioned on previous character

Confusion matrix for substitution

sub[X, Y] = Substitution of X (incorrect) for	Y	(correct)
---	---	-----------

					31	որլա	л, і] =	Suv	5 1111	uu			(HRC		CL) I	UL	1 (6	OLL	CCL)						
X												Y	(co	rrect))											
	a	b	С	d	е	f	g	h	i	j	k	1	m	n	0	p	q	r	S	t	u	V	W	Х	у	Z
a	0	0	7	1	342	0	0	2	118	0_	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	0
b	0	0	9	9	2	2	3	1	0	0	0	5	11	5	0	10	0	0	2	I	0	0	8	0	0	0
c	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0
С	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0
f	0	15	0	3	1	0	5	2	0	0	0	3	4	1	0	0	0	6	4	12	0	0	2	0	0	0
g	4	1	11	11	9	2	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0
i	103	0	0	0	146	0	1	0	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0	0
k	1	2	8	4	1	1	2	5	0	0	0	0	5	0	2	0	0	0	6	0	0	0	. 4	0	0	3
1	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0
m	1	3	7	8	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2
O	91	1	1		116	0	0	0	25	0	2	0	0	0	0	14	0	2	4	14	39	0	0	0	18	0
p	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0	0
q	0	0	1	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0
8	11	8	27	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6 *
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0
v	0	0	7	0	0	3	0	0	0	0	0	1	0	0	1	0	0	0	8	3	0	0	0	0	0	0
w	2	2	I	0	1	0	0	2	0	0	1	0	0	0	0	7	0	6	3	3	1	0	0	0	0	0
Х	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	9	0	0	0	0	0	0	0 /
У	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	l n	0	7	36	8	5	0	0	l O	0	0
	- (1	•	11		[1	• • •	- 11	- 11	(1	7.1		- 1	•	- 11		- 11	- 11		,	- 4	13	4 1	1.3	- 11	- 4	Λ .

Nearby keys

Generating the confusion matrix

- Peter Norvig's list of errors
- Peter Norvig's list of counts of single-edit errors

 All Peter Norvig's ngrams data links: http://norvig.com/ngrams/

How to we perform Channel Modeling?

Channel model

 $\frac{\operatorname{del}[w_{i-1},w_i]}{\operatorname{count}[w_{i-1}w_i]}$, if deletion $\frac{\operatorname{ins}[w_{i-1},x_i]}{\operatorname{count}[w_{i-1}]}$, if insertion P(x|w) = $\sup[x_i,w_i]$ if substitution $\overline{\operatorname{count}[w_i]}$, $\frac{\operatorname{trans}[w_i, w_{i+1}]}{\operatorname{count}[w_i w_{i+1}]}$, if transposition

Kernighan, Church, Gale 1990

Smoothing probabilities: Add-1 smoothing

- But if we use the confusion matrix example, unseen errors are impossible!
- They'll make the overall probability 0. That seems too harsh
 - e.g., in Kernighan's chart q→a and a→q are both
 0, even though they're adjacent on the keyboard!
- A simple solution is to add 1 to all counts and then if there is a |A| character alphabet, to normalize appropriately:

If substitution,
$$P(x|w) = \frac{\text{sub}[x,w]+1}{\text{count}[w]+A}$$

Channel model for acress

Candidat e Correctio n	Correct Letter	Error Letter	X W	P(x w)
actress	t	-	c ct	.000117
cress	-	a	a #	.00000144
caress	ca	ac	ac ca	.00000164
access	C	r	r c	.000000209
across	0	е	e o	.0000093
acres	_	S	es e	.0000321
acres	_	S	sss	.0000342

Noisy channel probability for acress

Candidate Correction	Correc t Letter	Error Lette r	x w	P(x w)	P(w)	10 ⁹ * P(x w)* P(w)
actress	t	-	c ct	.000117	.0000231	2.7
cress	-	a	a #	.00000144	.000000544	.00078
caress	ca	ac	ac ca	.00000164	.00000170	.0028
access	С	r	r c	.000000209	.0000916	.019
across	0	е	e o	.0000093	.000299	2.8
acres	-	S	es e	.0000321	.0000318	1.0
acres	_	S	ss s	.0000342	.0000318	1.0

Noisy channel probability for acress

Candidate Correction	Correct Letter	Error Letter	x w	P(x w)	P(w)	10 ⁹ * <i>P(x w)P(w)</i>
actress	t	-	c ct	.000117	.0000231	2.7
cress	-	a	a #	.00000144	.000000544	.00078
caress	ca	ac	ac ca	.00000164	.00000170	.0028
access	С	r	r c	.000000209	.0000916	.019
across	•	e	elo	.0000093	.000299	2.8
acres	-	S	es e	.0000321	.0000318	1.0
acres	-	S	ss s	.0000342	.0000318	1.0

Evaluation

- Some spelling error test sets
 - Wikipedia's list of common English misspelling
 - Aspell filtered version of that list
 - Birkbeck spelling error corpus
 - Peter Norvig's list of errors (includes
 Wikipedia and Birkbeck, for training or testing)

Context-Sensitive Spelling Correction SPELLING CORRECTION WITH THE NOISY CHANNEL

Real-word spelling errors

- ...leaving in about fifteen *minuets* to go to her house.
- The design an construction of the system ...
- Can they lave him my messages?
- The study was conducted mainly **be** John Black.

25-40% of spelling errors are real words
 Kukich 1992

Context-sensitive spelling error fixing

- For each word in sentence (phrase, query ...)
 - Generate candidate set
 - the word itself
 - all single-letter edits that are English words
 - words that are homophones
 - (all of this can be pre-computed!)
- Choose best candidates
 - Noisy channel model

Noisy channel for real-word spell correction

- Given a sentence x₁,x₂,x₃,...,x_n
- Generate a set of candidates for each word X_i
 - Candidate(x_1) = { x_1 , w_1 , w'_1 , w''_1 ,...}
 - Candidate(x_2) = { x_2 , w_2 , w'_2 , w''_2 ,...}
 - Candidate(x_n) = { x_n , w_n , w'_n , w''_n ,...}
- Choose the sequence w that maximizes

$$P(W|X) = \underset{w \in Y}{\underset{x \in Y}{\text{argmax}}} P(x|w)P(w)$$

Incorporating context words: Context-sensitive spelling correction

- Determining whether actress or across is appropriate will require looking at the context of use
- We can do this with a better language model
- A bigram language model conditions the probability of a word on (just) the previous word

$$P(w_1...w_n) = P(w_1)P(w_2|w_1)...P(w_n|w_{n-1})$$

Incorporating context words

- For unigram counts, P(w) is always non-zero
 - if our dictionary is derived from the document collection
- This won't be true of P(wk|wk-1). We need to smooth
- We could use add-1 smoothing on this conditional distribution
- But here's a better way interpolate a unigram and a bigram:
 - Pli(wk|wk-1) = λ Puni(wk) + $(1-\lambda)$ Pbi(wk|wk-1) - Pbi(wk|wk-1) = C(wk-1, wk) / C(wk-1)

All the important fine points

- Note that we have several probability distributions for words
 - Keep them straight!
 - You might want/need to work with log probabilities:
 - $\log P(w1...wn) = \log P(w1) + \log P(w2|w1) + ... + \log P(wn|wn-1)$
 - Otherwise, be very careful about floating point underflow
- Our query may be words anywhere in a document
 - We'll start the bigram estimate of a sequence with a unigram estimate
 - Often, people instead condition on a start-ofsequence symbol, but not good here
 - Because of this, the unigram and bigram counts have different totals – not a problem

Using a bigram language model

- "a stellar and versatile acress whose combination of sass and glamour..."
- Counts from the Corpus of Contemporary American English with add-1 smoothing
- P(actress|versatile)=.000021 P(whose|actress) = . 0010
- P(across|versatile) =.000021 P(whose|across) = . 000006
- P("versatile actress whose") = .000021*.0010 = 210 x10-10
- P("versatile across whose") = .000021*.000006 = 17

Using a bigram language model

- "a stellar and versatile acress whose combination of sass and glamour..."
- Counts from the Corpus of Contemporary American English with add-1 smoothing
- P(actress|versatile)=.000021 P(whose|actress) = . 0010
- P(across|versatile) =.000021 P(whose|across) = . 000006
- P("versatile actress whose") = .000021*.0010 = 210 x10-10
- P("versatile across whose") = .000021*.000006 = 1°

Noisy channel for real-word spell correction

Noisy channel for real-word spell correction

Simplification: One error per sentence

Out of all possible sentences with one word replaced

```
- w_1, w''_2, w_3, w_4 two off thew - w_1, w_2, w'_3, w_4 two of the - w'''_1, w_2, w_3, w_4 too of thew -
```

Choose the sequence W that maximizes P(W)

Where to get the probabilities?

- Language model
 - Unigram
 - Bigram
 - etc.
- Channel model
 - Same as for non-word spelling correction
 - Plus need probability for no error, P(w|w)

Probability of no error

- What is the channel probability for a correctly typed word?
- P("the"|"the")
 - If you have a big corpus, you can estimate this percent correct
- But this value depends strongly on the application
 - .90 (1 error in 10 words)
 - .95 (1 error in 20 words)
 - .99 (1 error in 100 words)

Peter Norvig's "thew" example

X	W	x w	P(x w)	P(w)	10 ⁹ P(x w)P(w)
thew	the	ew e	0.00007	0.02	144
thew	thew		0.95	0.0000009	90
thew	thaw	e a	0.001	0.000007	0.7
thew	threw	h hr	0.000008	0.000004	0.03
thew	thwe	ew we	CC 2 7990	0.0000004	The same of the same of the same

State of the art noisy channel

- We never just multiply the prior and the error model
- Independence assumptions > probabilities not commensurate
- Instead: Weight them

$$\hat{w} = \underset{w \in V}{\operatorname{argmax}} P(x \mid w) P(w)^{\lambda}$$

Learn λ from a development test set

Improvements to channel model

- Allow richer edits (Brill and Moore 2000)
 - ent→ant
 - $ph \rightarrow f$
 - le→al
- Incorporate pronunciation into channel (Toutanova and Moore 2002)
- Incorporate device into channel
 - Not all Android phones need have the same error model
 - But spell correction may be done at the system
 level

Summary

In this class, we focused on:

- (a) Words / Terms / Lexical Units
- (b) Preparing Term Document matrix
- (c) Boolean Retrieval
- (d) Inverted Index Construction
 - i. Computational Cost
 - ii. Managing Bigger Collections
 - iii. How much storage is required?
 - iv. Boolean Queries: Exact match

Acknowledgements

Thanks to ALL RESEARCHERS:

- 1. Introduction to Information Retrieval Manning, Raghavan and Schutze, Cambridge University Press, 2008.
- 2. Search Engines Information Retrieval in Practice W. Bruce Croft, D. Metzler, T. Strohman, Pearson, 2009.
- 3. Information Retrieval Implementing and Evaluating Search Engines Stefan Büttcher, Charles L. A. Clarke and Gordon V. Cormack, MIT Press, 2010.
- 4. Modern Information Retrieval Baeza-Yates and Ribeiro-Neto, Addison Wesley, 1999.
- Many Authors who contributed to SIGIR / WWW / KDD / ECIR / CIKM / WSDM and other top tier conferences
- Prof. Mandar Mitra, Indian Statistical Institute, Kolkatata (https://www.isical.ac.in/~mandar/)

Thanks ...

