FINM 34500/STAT 39000

Winter 2024

Problem Set 1 (due January 8)

Reading: Chapter 1 through Section 1.6 (we will not cover 1.7). Much of this material should be review since it was covered in FINM 34000. Indeed, much of Sections 2 and 5 of the FINM 34000 notes were cut-and-pasted from the text for this course. The first lecture will discuss the discrete stochastic integral and give a couple of problems on the material for this chapter, but your other job for the first week is to check that you know the rest of the material in the chapter. Next week we will be moving to Chapter 2.

Exercise 1 Suppose X_1, X_2, \ldots are independent random variables with

$$\mathbb{P}{X_j = 1} = \frac{1}{4}, \quad \mathbb{P}{X_j = 0} = \frac{1}{4} \quad \mathbb{P}{X_j = -1} = \frac{1}{2}.$$

Let $S_0 = 0$ and $S_n = X_1 + \cdots + X_n$. Let \mathcal{F}_n denote the information contained in X_1, \dots, X_n .

- 1. Which of these is S_n : martingale, submartingale, supermartingale (more than one answer is possible)?
- 2. For which values of r is $Y_n := S_n rn$ a martingale?
- 3. For what u > 1 is it true that if $M_n := u^{S_n}$, then M_n is a martingale? For the remainder of this exercise, use this value of u.
- 4. Is $\{M_n\}$ a square integrable martingale?
- 5. Find

$$\mathbb{E}\left[\sum_{j=1}^{20}(M_j-M_{j-1})^2\right].$$

6. Find

$$E[S_{20}^2 \mid \mathcal{F}_5] \quad E[M_{20}^2 \mid \mathcal{F}_5].$$

Exercise 2 Suppose X_1, X_2, \ldots are independent random variables each with a N(0,1) distribution. Let \mathcal{F}_n denote the information in X_1, \ldots, X_n , and let A_1, A_2, \ldots be a sequence of random variables such that for each j, A_j is \mathcal{F}_{j-1} -measurable. Let $W_0 = 0$ and for n > 0,

$$W_n = \sum_{j=1}^n A_j X_j.$$

1. Suppose that $A_j = \sqrt{j}$. Explain why W_n has a mean zero normal distribution. What is $\mathbb{E}[W_n^2]$?

2. Suppose that $A_1 = 1$ and for n > 1,

$$A_n = 1$$
 if $A_{n-1} = 1$ and $W_{n-1} \le 0$,

and $A_n = 0$ otherwise. Show that for all n > 1, W_n does not have a normal distribution. (Hint: consider $\mathbb{E}[W_n]$ and $\mathbb{P}\{W_n > 0\}$.)

- 3. Suppose that $A_1 = 1$ and $A_n = W_{n-1}$ for all $n \geq 2$. Let T be the first n such that $W_n > 0$. Explain why this is a stopping time T with respect to the filtration such that with probability one $T < \infty$ and $W_T > 0$.
- 4. Let $M_n = W_{n \wedge T}$ where $n \wedge T = \min\{n, T\}$, Is M_n a martingale with respect to the filtration?
- 5. Does the optional sampling theorem hold for $\{M_n\}$ and T, that is, is it true that $\mathbb{E}[M_T] = \mathbb{E}[M_0]$?

Exercise 1 Suppose X_1, X_2, \ldots are independent random variables with

$$\mathbb{P}{X_j = 1} = \frac{1}{4}, \quad \mathbb{P}{X_j = 0} = \frac{1}{4} \quad \mathbb{P}{X_j = -1} = \frac{1}{2}.$$

Let $S_0 = 0$ and $S_n = X_1 + \cdots + X_n$. Let \mathcal{F}_n denote the information contained in X_1, \dots, X_n .

- 1. Which of these is S_n : martingale, submartingale, supermartingale (more than one answer is possible)?
- 2. For which values of r is $Y_n := S_n rn$ a martingale?
- 3. For what u > 1 is it true that if $M_n := u^{S_n}$, then M_n is a martingale? For the remainder of this exercise, use this value of u.
- 4. Is $\{M_n\}$ a square integrable martingale?
- 5. Find

$$\mathbb{E}\left[\sum_{j=1}^{20} (M_j - M_{j-1})^2\right].$$

6. Find

$$E[S_{20}^2 \mid \mathcal{F}_5] \quad E[M_{20}^2 \mid \mathcal{F}_5].$$

1.
$$E[X_j] = \frac{1}{4} \times 1 + \frac{1}{4} \times 0 + \frac{1}{2} \times (-1) = -\frac{1}{4}$$

$$E[S_n+1]F_n] = E[S_n+X_n+1]F_n]$$

$$= E[S_n|F_n] + E[X_n+1]$$

$$= S_n-\frac{1}{4} \leq S_n$$

$$\therefore S_n \text{ is Supermartingale}$$

2.
$$Y_n = S_n - r_n$$

3.
$$Mn = u^{Sn}$$
 $E[u^{Xi}] = \frac{1}{4} \cdot u^{i} + \frac{1}{4} \cdot u^{o} + \frac{1}{2} \cdot u^{-i} = \frac{1}{4}u + \frac{1}{4} + \frac{1}{2u}$

For a martingale $E[M_{1H}|F_{1}] = M_{1}$
 $E[M_{11}|F_{1}] = E[u^{Sn} + X_{1H}|F_{1}]$
 $= E[u^{Sn}, u^{X_{1H}}|F_{1}]$
 $= M_{11} \cdot E[u^{X_{1H}}] = M_{11}$
 $= M_{11} \cdot E[u^{X_{1H}}] = M_{11}$
 $= u^{2} + u + 2 = 4u$
 $= u^{2} - 3u + 2 = 0$
 $= u^{2} - 3u + 2 = 0$

4.
$$E[4^{X_1}] = \frac{1}{4} \cdot 4^1 + \frac{1}{4} \cdot 4^0 + \frac{1}{2} \cdot 4^{-1} = 1 + \frac{1}{4} + \frac{1}{8} = \frac{11}{8}$$

$$E[Mn^2] = E[2^{Sn} \cdot 2^{Sn}]$$

$$= E[2^{Sn+Sn}] = E[2^{2Sn}]$$

$$= E[4^{Sn}]$$

$$= E[4^{Sn}]$$

$$= E[4^{(X_1+\cdots+X_n)}]$$

$$= E[4^{X_1}] \cdots E[4^{X_n}] = (\frac{1}{8})^n < \infty$$

$$\therefore i+ ks \text{ a square integrable marting are}$$

5. For a square integrable montingale
$$E(Mn)^{2} = E(Mo^{2}) + \sum_{j=1}^{n} E[M_{j} - M_{j-1})^{2}$$

$$E\left[\frac{2^{\circ}}{3^{-1}}(M_{3}-M_{1})^{\gamma}\right] = E\left[M_{2}^{\circ}\right] - E\left[M_{0}^{\circ}\right]$$

$$= \left(\frac{11}{8}\right)^{20} - 1$$

b.
$$E(X_{j}^{2}) = \frac{1}{4} \cdot 1^{2} + \frac{1}{4} \cdot 0^{2} + \frac{1}{2} \cdot (H)^{2} = \frac{1}{4} + \frac{1}{2} = \frac{3}{4}$$
 $VAr(X_{j}) = E[X_{j}^{2}] - (E(X_{j}))^{2} = \frac{3}{4} - (\frac{1}{4})^{2} = \frac{11}{16}$
 $E[S_{10}^{2}] F_{5}] = E[(S_{5} + (S_{20} - S_{7}^{2})^{2}) F_{5}]$
 $= E[S_{5}^{2} + 1 \cdot S_{5} \cdot (S_{20} - S_{7}^{2}) + (S_{20} - S_{5}^{2})^{2}] F_{5}]$
 $= (S_{5}^{2} + 1 \cdot S_{5} \cdot E[S_{20} - S_{5}^{2}] + E[(S_{20} - S_{5}^{2})^{2}]$
 $= (S_{5}^{2} + 1 \cdot S_{5} \cdot 15 \cdot E[X_{j}] + [VAr(S_{20} - S_{5}^{2}) + (E(S_{20} - S_{5}^{2})^{2}]$
 $= (S_{5}^{2} + 1 \cdot S_{5} \cdot 15 \cdot E[X_{j}] + [S_{5}^{1}] + [S_{5}^{1}]^{2}$
 $= (S_{5}^{2} + 1 \cdot S_{5} \cdot 15 \cdot E[X_{5}^{2}] + (S_{5}^{2})^{2}$

Mn is a marting Me: ElMn) = ElMo)

$$E(2^{Xj}) = \frac{1}{4} \cdot 2 + \frac{1}{4} + \frac{1}{2} \cdot 2 = 1 , E[(2^{Xj})^2] = E[(4^{Xj})] = \frac{1}{8}$$

$$VAr(2^{Xj}) = E(4^{Xj}) - (E(2^{Xj}))^2 = \frac{3}{8} = VAr(M_i)$$

$$E(M_{1}^{2})^2 = E(2^{2(55+XH....+XN)}) | F_5)$$

$$= E[2^{55}] + F_5 = E[2^{2(1XH....+XN)}] | F_5$$

$$= M_5 \cdot (E[4^{Xj}])^{15}$$

$$= M_5 \cdot (\frac{11}{8})^{15}$$

Exercise 2 Suppose X_1, X_2, \ldots are independent random variables each with a N(0,1) distribution. Let \mathcal{F}_n denote the information in X_1, \ldots, X_n , and let A_1, A_2, \ldots be a sequence of random variables such that for each j, A_j is \mathcal{F}_{j-1} -measurable. Let $W_0 = 0$ and for n > 0,

$$W_n = \sum_{j=1}^n A_j X_j.$$

- 1. Suppose that $A_j = \sqrt{j}$. Explain why W_n has a mean zero normal distribution. What is $\mathbb{E}[W_n^2]$?
- 2. Suppose that $A_1 = 1$ and for n > 1,

$$A_n = 1$$
 if $A_{n-1} = 1$ and $W_{n-1} \le 0$,

and $A_n = 0$ otherwise. Show that for all n > 1, W_n does not have a normal distribution. (Hint: consider $\mathbb{E}[W_n]$ and $\mathbb{P}\{W_n > 0\}$.)

- 3. Suppose that $A_1 = 1$ and $A_n = W_{n-1}$ for all $n \ge 2$. Let T be the first n such that $W_n > 0$. Explain why this is a stopping time T with respect to the filtration such that with probability one $T < \infty$ and $W_T > 0$.
- 4. Let $M_n = W_{n \wedge T}$ where $n \wedge T = \min\{n, T\}$, Is M_n a martingale with respect to the filtration?
- 5. Does the optional sampling theorem hold for $\{M_n\}$ and T, that is, is it true that $\mathbb{E}[M_T] = \mathbb{E}[M_0]$?

I. ELMn] =
$$E\left[\sum_{j=1}^{N} A_{j}X_{j}\right] = \sum_{j=1}^{N} E\left[\int_{j}^{n}X_{j}\right] = \sum_{j=1}^{N} \int_{j}^{n} E\left[X_{j}\right] = \sum_{j=1}^{N} \int_{j}^{n} e\left[X_{j}\right] = 0$$

According to Linearity, Wn is also a normal distribution with o near

$$E(W_{1}) = E(\sum_{j=1}^{n} A_{j}^{2} X_{j}^{2}) = \sum_{j=1}^{n} E(j) X_{j}^{2} = \sum_{j=1}^{n} E(X_{j}^{2}) = \sum_{j=1}^{n} E(X_{j}^{2}) = \sum_{j=1}^{n} \frac{(H_{1}) \cdot H_{2}}{2}$$

$$\lambda$$
. A1=1

when An=0, ETWn]=0

When An=1. E[Wn] = E[
$$\sum_{j=1}^{n} X_j$$
) = $\sum_{j=1}^{n} E[X_j] = D$
E[Wn] = E[Wn] = 0: Whis a martingale

= If it has a mormal distribution. P3Wn>03=05.

P&Wn703= P&Wn70 | X1703 PLX170) + P&Wn70 | X1503 PLX160)

- Q when x1>0 & A1=1 , W1=A1X1=X170 ⇒ A2=0, W2= X1+0=X170
- -> Az=A+... = An = 0 and W1=W2=.... = Wn = X1 > 0

: P&Wn>0 | X1703 =1

(1) when $X_1 \le 0$ & $A_1 = 1$, $W_1 = A_1 X_1 = X_1 \le 0 \Rightarrow A_2 = 1$, $W_2 = X_1 + X_1 X_2$: $0 < P \le W_1 > 0 \mid X_1 \le 0 \le 1$

: $P(x) = \frac{1}{2}x + \frac{1}{2}x P(w) = 0 \times 1 = 0 \times 7 = 0$

i it is not symmetric i it does not have a normal distribution

3. A1=1, An=Wn-1 for am n=2

 $Wn = \sum_{j \ge 1}^{N} A_j X_j = W_1 X_1 + W_1 X_2 + W_2 X_3 + \cdots + W_{n-1} X_n = W_{n-1} X_n$

T= min & Wn >03 is a positive integer

Also, For all n the event is Fn-measurable

:. T is a stopping-time

PLT= M) = PLWn = 0 for every n)

= P(W1 < 0) P(W2 < 0 | W1 < 0) P(W3 < 0 | W2 < 0, W1 < 0) ...

= TH PLWj = D | Wj-1 = D)

= T P(Wj-1 Xj = 0 | Wj-1 = 0)

 $= \prod_{j>1}^{\infty} P(X_j > 0) = \left(\frac{1}{2}\right)^{\infty} = 0$

1. T is a stopping time with filtroation than PST-20 and WT>03=1

4.
$$Mn = Wnn\overline{1}, \quad nAT = min \SniT\S$$

$$E[Wn+1]Fn] = E[\sum_{j=1}^{n} A_j X_j | Fn]$$

$$= E[\sum_{j=1}^{n} A_j X_j + Wn X_{n+1}]Fn]$$

$$= E[\sum_{j=1}^{n} A_j X_j | Fn] + Wn E[X_{n+1}]$$

$$= Wn + Wn \cdot 1 = Wn$$

: Whis a martingale.

According to optional sampling theorem I. since T is a stopping time and Wn is a mestingale. With respect to ffing. ...

Mn=WnxT is also a martingale.

5. ELMO] = ELWO] = ELAOXO] = AOELXO] = O

ECMT] = E[WT] >0 because P& WT >03 =1

: E[MO] = E[MT]

Also ECIWNATI I does not exist C< & sun-theat
ECIWNATI] < C

· ECMOT + ECMTT