

版本 1.0

免责申明和版权公告

本文中的信息,包括供参考的 URL 地址,如有变更,恕不另行通知。

文档"按现状"提供,不负任何担保责任,包括对适销性、适用于特定用途或非侵权性的任何担保,和任何提案、规格或样品在他处提到的任何担保。本文档不负任何责任,包括使用本文档内信息产生的侵犯任何专利权行为的责任。本文档在此未以禁止反言或其他方式授予任何知识产权使 许可,不管是明示许可还是暗示许可。

Wi-Fi 联盟成员标志归 Wi-Fi 联盟所有。

文中提到的所有商标名称、商标和注册商标均属其各自所有者的财产,特

目录

1	产品机	既述1
	1.1	产品特性
	1.2	应用方案1
2	模组挂	妾口2
	2.1	尺寸封装2
	2.1	管脚定义4
	2.2	启动模式5
3	电气物	寺性6
	3.1	最大额定值6
	3.2	建议工作环境6
	3.3	数字端口特征6
	3.4	功耗6
	3.5	发射功率7
	3.6	接收灵敏度8
4	硬件技	肯导8
	4.1	典型应用图8
	4.2	PCB 天线摆放说明10
	4.3	模组外围走线说明10
	4.4	GPIO 电平转换11
	4.5	电源参考设计11
	4.6	ADC 参考设计11
	4.7	自动下载电路12
	4.8	回流焊炉温曲线12
5	使用技	指南
	5.1	基础 AT 指令介绍13
		5.1.1 AT
		5.1.2 AT+GMR
		5.1.3 AT+RST

5.1.4 AT+RESTORE	13
5.2 使用示例	14
5.2.1 TCP 通信测试	14
5.2.2 UDP 通信测试	16
6 常见问题	18
6.1 上电时的乱码说明	18
6.2 如何屏蔽上电时的乱码	18
6.3 无法正常烧录	18
6.4 SDK 开发环境	18
6.5 启动信息说明	18
7 模组选型	19
8 联系我们	20

1 产品概述

ESP8266 系列无线模块是安信可科技自主研发设计的一系列高性价比 WiFi SOC 模组。该系列模块支持标准的 IEEE802.11 b/g/n 协议, 内置完整的 TCP/IP 协议栈。用户可以使用该系列模块为现有的设备添加联网功能,也可以构建独 立的网络控制器。

安信可科技为客户提供完整的硬件、软件参考方案,以便缩短您的产品研 发周期,为您节省成本投入。

1.1 产品特性

- 最小的 802.11b/g/n Wi-Fi SOC 模块
- 采用低功率 32 位 CPU, 可兼作应用处理器
- 主频最高可达 160MHz
- 内置 10 bit 高精度 ADC
- 支持 UART/GPIO/IIC/PWM/ADC/HSPI 等接口
- 集成 Wi-Fi MAC/BB/RF/PA/LNA
- 支持多种休眠模式,深度睡眠电流低至 20uA
- 内嵌 Lwip 协议栈
- 支持 STA/AP/STA+AP 工作模式
- 支持 Smart Config/AirKiss 一键配网
- 串口速率最高可达 4Mbps
- 通用 AT 指令可快速上手
- 支持 SDK 二次开发
- 支持串口本地升级和远程固件升级(FOTA)

1.2 应用方案

■ 家用电器

■ 工业无线控制

■ 可穿戴电子产品

■ 家庭自动化

■ 婴儿监控器

■ 无线位置感知设备

■ 智能插座、智能灯 ■ IP 摄像机

■ 安全 ID 标签

■ Mesh 网络

■ 传感器网络

■ 无线定位系统信标

第 1 页 共 20 页

2 模组接口

2.1 尺寸封装

图 2.1 ESP-01/ESP-01S 管脚尺寸图

图 2.2 ESP-07 管脚尺寸图

第 2 页 共 20 页

图 2.3 ESP-07S 管脚尺寸图

图 2.4 ESP-12E/ESP-12F 管脚尺寸图

第 3 页 共 20 页

图 2.5 ESP-12S 管脚尺寸图 表 2.1 ESP 系列模组尺寸对照表

模块型号	长 (mm)	宽 (mm)	高 (mm)	PAD 尺寸 (mm)	Pin 间距 (mm)	屏蔽壳 (mm)	板厚 (mm)
ESP-01 ESP-01S	24.7	14.4	11.0 (排针)	1.5 x 1.5	2.54	-	1.0 ± 0.1
ESP-07	21.2	16.0	3 ± 0.1	-	1.5	2	0.8 ± 0.1
ESP-07S	17.0	16.0	3 ± 0.1	1 x 1.2 (底层)	1.5	2	0.8 ± 0.1
ESP-12E ESP-12F	24.0	16.0	3 ± 0.1		1.5	2	0.8 ± 0.1
ESP-12S	24.0	16.0	3 ± 0.1	1 x 1.2 (底层)	1.5	2	0.8 ± 0.1

2.1 管脚定义

表 2.2 ESP 系列模块管脚功能定义

	Pin 脚编号	ļ		
ESP-01 ESP-01S	ESP-07 ESP-07S ESP-12S	ESP-12E ESP-12F	Pin 脚 名称	备注

第 4 页 共 20 页

7	1	1	RST	复位引脚,低电平有效
-	2	2	ADC	A/D 转换结果。输入电压范围 0~1V, 取值范围: 0~1024。
6	3	3	EN	芯片使能端,高电平有效
-	4	4	IO16	与 RST 管脚相连可做 Deep Sleep 唤醒
-	5	5	IO14	HSPI_CLK, IR_T, I2C_SCL, I2SI_WS
-	6	6	IO12	HSPI_MISO
-	7	7	IO13	HSPI_MOSI; UART0_CTS
8	8	8	VCC	模组供电引脚, 电压范围 3.0~3.6V
-	-	9	CS0	Flash 片选信号
-		10	MISO	从机输出主机输入
-	-	11	IO9	GPIO9,用户不可用
-	-	12	IO10	GBIO10,用户不可用
-	-	13	MOSI	主机输出从机输入
-	-	14	SCLK	时钟
1	9	15	GND	GND
-	10	16	IO15	HSPI_CS, U0_RTS, I2SO_BCK
2	11	17	IO2	U1_TXD, I2C_SDA, I2SO_WS
3	12	18	IO0	GPIO0, HSPI_MISO, I2SI_DATA
-	13	19	IO4	HSPI_MOSI, U0_CTS, I2SI_BCK
-	14	20	IO5	IR_R
4	15	21	RXD	GPIO3, I2SO_DATA
5	16	22	TXD	GPIO1

注意:除 GPIO4和 GPIO5启动时默认为低电平外,其它 GPIO均为高电平

2.2 启动模式

表 2.3 ESP 系列模组启动模式说明

模式	CH_PD (EN)	RST	GPIO15	GPIO0	GPIO2	TXD0
下载模式	高	高	低	低	高	高
运行模式	高	高	低	高	高	高
测试模式	高	高	-	-	-	低

第 5 页 共 20 页

3 电气特性

3.1 最大额定值

表 3.1 最大额定值

额定值	条件	值	单位
存储温度	-	-40 ~ 90	$^{\circ}$
最大焊接温度	-	250	$^{\circ}$ C
供电压	IPC/JEDEC J-STD-020	+3.0 ~ +3.6	V

3.2 建议工作环境

表 3.2 建议工作环境

工作环境	名称	最小值	典型值	最大值	单位
工作温度		-20	20	85	$^{\circ}$
供电电压	VDD	3.0	3.3	3.6	V

3.3 数字端口特征

表 3.3 数字端口特征

端口	名称	最小值	典型值	最大值	单位
输入逻辑电平低	VIL	-0.3	-	0.25 * VDD	V
输入逻辑电平高	VIH	0.75 * VDD	-	VDD + 0.3	V
输出逻辑电平低	VOL	N	-	0.1 * VDD	V
输出逻辑电平高	VOH	0.8 * VDD	-	N	V

注意: 如无特殊说明,测试条件为: VDD = 3.3 V, 温度为 20 ℃。

3.4 功耗

所有测量均在没有 SAW 滤波器的情况下,于天线接口处完成。 所有发射数据是基于 90% 的占空比,在持续发射的模式下测得的。

第 6 页 共 20 页

表 3.4 功耗

模式	最 小 值	典 型 值	最大值	单位
传送 802.11b, CCK 11Mbps, POUT=+17dBm		170		mA
传送 802.11g, OFDM 54Mbps, POUT =+15dBm		140		mA
传送 802.11n, MCS7, POUT =+13dBm		120		mA
接收 802.11b,包长 1024 字节, -80dBm		50		mA
接收 802.11g,包长 1024 字节, -70dBm		56		mA
接收 802.11n,包长 1024 字节, -65dBm		56		mA
Modem-Sleep①		20		mA
Light-Sleep②		2		mA
Deep-Sleep③		20		uA
Power Off		1		uA

注①: Modem-Sleep 于需要 CPU 一直处于工作状态如 PWM 或 I2S 应 等。在保持WiFi 连接时,如果没有数据传输,可根据 802.11 标准 (如 U-APSD),关闭 WiFi Modem 电路来省电。例如,在 DTIM3 时,每 sleep 300mS,醒来 3mS 接收 AP 的 Beacon 包等,则整体平均电流约 20mA。

注②: Light-Sleep 用于 CPU 可暂停的应用,如 WiFi 开关。在保持 WiFi 连接时,如果没有数据传输,可根据 802.11 标准(如 U-APSD),关闭 WiFi Modem 电路并暂停 CPU 来省电。例如,在 DTIM3 时,每 sleep 300 ms,醒来 3ms 接收 AP 的 Beacon 包等,则整体平均电流约 2 mA。

注③: Deep-Sleep 用于不需一直保持 WiFi 连接,很长时间才发送一次数据包的应用,如每 100 秒测量 次温度的传感器。每 300 s 醒来后需 0.3s - 1s 连上 AP 发送数据,则整体平均电流可远小于 2mA。

3.5 发射功率

表 3.5 RF 参数

描述	最小值	典型值	最大值	单位
802.11b@11Mbps	14	16	18	dBm
802.11g@54Mbps	12	14	16	dBm
802.11n@HT20, MCS7	11	13	15	dBm

第 7 页 共 20 页

3.6 接收灵敏度

表 3.6 接收灵敏度

参数	最小值	典型值	最大值	单位
DSSS, 1 Mbps		-95		dBm
CCK, 11 Mbps		-80		dBm
6 Mbps (1/2 BPSK)		-88		dBm
54 Mbps (3/4 64-QAM)		-70		dBm
HT20, MCS7 (65 Mbps, 72.2 Mbps)		-67		dBm

4 硬件指导

4.1 典型应用图

注意: 不可以使用 USB 转 TTL 的 3.3V 或 5V 进行供电,建议使用 2 节干电池或经过 LDO 转换后的 3.3V,强烈建议新手购买开发板。

图 4.1 ESP-01 典型应用图

图 4.2 ESP-01S 典型应用图

第 8 页 共 20 页

图 4.3 ESP-07 典型应用图

图 4.4 ESP-07S 典型应用图

图 4.5 ESP-12E/ESP-12F 典型应用图

图 4.6 ESP-12S 典型应用图

第 9 页 共 20 页

4.2 PCB 天线摆放说明

ESP8266 系列模组可以焊接到 PCB 板上。为了使终端产品获得最佳的射频性能,请注意根据本指南合理设计模组及天线在底板上的摆放位置。

方案1(推荐):

将模组沿 PCB 板边放置,且天线在板框外;

方案 2:

将模组沿 PCB 板边放置,天线沿板边放置且下方挖空;

方案 3:

将模组沿 PCB 板边放置,天线沿板边放置且下方均不铺铜。

图 4.7 ESP-12S 天线摆放说明

4.3 模组外围走线说明

ESP8266 系列模组集成了高速 GPIO 和外设接口,这可能会产生严重的开关噪声。如果一些应用对于功耗和 EMI 特性要求较高,建议在数字 I/O 线上串联 10~100 欧姆的电阻。这样可以在开关电源时抑制过冲,并使信号变得平稳。串联电阻也能在一定程度上防止静电释放(ESD)。

第 10 页 共 20 页

4.4 GPIO 电平转换

图 4.8 3.3V/5V 电平转换

4.5 电源参考设计

图 4.9 电源设计参考图

4.6 ADC 参考设计

图 4.10 ADC 设计参考图

第 11 页 共 20 页

4.7 自动下载电路

图 4.11 自动下载电路图

4.8 回流焊炉温曲线

Ramp-up zone (升温区): Temp. <150°C, Time 60 ~ 90s, Ramp-up rate 1 ~ 3°C/s. Preheating zone (预热恒温区): Temp. 150 ~ 200°C, Time 60 ~ 120s, Ramp-up rate 0.3 ~ 0.8°C/s. Reflow soldering zone (回流焊接区): Peak Temp. 235 ~ 250°C (<245°C recommended), Time 30 ~ 70s. Cooling down zone (冷却区): Temp. 217 ~ 170°C, Ramp-down rate 3 ~ 5°C/s. Sn&Ag&Cu Lead-free solder (SAC305)/焊料为锡银铜合金无铅焊料

图 4.12 回流焊炉温曲线图

第 12 页 共 20 页

5 使用指南

ESP8266 系列模组出厂时已默认内置 AT 固件,且默认波特率为 115200,可参考 4.1 典型应用图 搭建最小系统电路,之后即可进行 AT 指令操作。

5.1 基础 AT 指令介绍

5.1.1 AT

指令	AT
说明	测试 AT 是否 OK
示例	AT
	OK

5.1.2 AT+GMR

指令	AT+GMR					
说明	返回固件版本信息					
	AT+GMR					
	AT version:1.2.0.0(Jul 1 2016 20:04:45)					
示例	SDK version:1.5.4.1(39cb9a32)					
	Ai-Thinker Technology Co. Ltd.					
	Dec 2 2016 14:21:16					
	OK					

5.1.3 AT+RST

指令	AT+RST
说明	软重启模组
	AT+RST
示例	
	OK

5.1.4 AT+RESTORE

指令	AT+RESTORE
----	------------

第 13 页 共 20 页

说明	重置模组为出厂设置
	AT+RESTORE
示例	
	OK

5.2 使用示例

本章节讲解如何在 PC 端通过串口配置 2 个模组通过 TCP/UDP 相互通信,

5.2.1 TCP 通信测试

TCP Server 为 AP 模式, TCP Client 为 Station 模式。

TCP Server 端配置:

Ai-Thinker Technology Co. Ltd.

ready

AT+CWMODE=2 //配置为 AP 模式

OK

AT+CWSAP_DEF="TCP_Server","12345678",5,4 //配置 AP 信息

OK

AT+CIFSR //查询本机 IP 地址

+CIFSR:APIP,"192.168.4.1"

+CIFSR:APMAC,"a2:20:a6:19:c7:0a"

OK

AT+CIPMUX=1 //开启多链接

OK

AT+CIPSERVER=1 //开启服务器

OK

第 14 页 共 20 页

0,CONNECT //有一个客户端连接到服务器

+IPD,0,10:Ai-Thinker //接收到 10 个数据(Ai-Thinker)

AT+CIPSERVER=0 //关闭服务器

OK

0,CLOSED //TCP 连接关闭

TCP Client 端配置:

Ai-Thinker Technology Co. Ltd.

ready

AT+CWMODE=1 //配置为 Station 模式

OK

AT+CWJAP_DEF="TCP_Server","12345678" //连接到 AP

WIFI CONNECTED

WIFI GOT IP

OK

AT+CIFSR //查询本机 IP 地址

+CIFSR:STAIP,"192.168.4.2"

+CIFSR:STAMAC,"5c:cf:7f:91:8b:3b"

OK

AT+CIPMUX=0 //开启单链接

OK

AT+CIPSTART="TCP","192.168.4.1",333 //连接到 TCP 服务器

CONNECT

OK

AT+CIPSEND=10 //发送 10 个字节的数据到服务器端

OK

> //出现该符号后串口发送 Ai-Thinker(不带回车换行)

Recv 10 bytes //串口接收到数据

第 15 页 共 20 页

SEND OK //发送成功

CLOSED //TCP 连接被关闭

5.2.2 UDP 通信测试

一个做 AP 模式, 本地端口为 8001, 一个做 Station 模式, 本地端口为 8002。

AP 端配置:

Ai-Thinker Technology Co. Ltd.

ready

AT+CWMODE=2 //配置为 AP 模式

OK

AT+CWSAP_DEF="TCP_Server","12345678",5,4 //配置 AP 信息

OK

AT+CIFSR //查询本机 IP 地址

+CIFSR:APIP,"192.168.4.1"

+CIFSR:APMAC,"a2:20:a6:19:c7:0a"

OK

AT+CIPSTART="UDP","192.168.4.2",8002,8001,0 //开启 UDP 连接

CONNECT

OK

+IPD,10:Ai-Thinker //接收到 10 个数据(Ai-Thinker) AT+CIPSEND=10 //发送 10 个字节的数据到服务器端

OK

> //出现该符号后串口发送 Ai-Thinker(不带回车换行)

Recv 10 bytes //串口接收到数据

SEND OK

AT+CIPCLOSE //关闭 UDP 连接

CLOSED

第 16 页 共 20 页

OK

Station 端配置:

Ai-Thinker Technology Co. Ltd.

ready

AT+CWMODE=2 //配置为 Station 模式

OK

AT+CWSAP_DEF="TCP_Server","12345678",5,4 //连接到 AP

OK

AT+CIFSR //查询本机 IP 地址

+CIFSR:STAIP,"192.168.4.2"

+CIFSR:STAMAC,"5c:cf:7f:91:8b:3b"

OK

AT+CIPSTART="UDP","192.168.4.1",8001,8002,0 //开启 UDP 连接

CONNECT

OK

AT+CIPSEND=10 //发送 10 个字节的数据到服务器端

OK

> //出现该符号后串口发送 Ai-Thinker(不带回车换行)

Recv 10 bytes //串口接收到数据

SEND OK

+IPD,10:Ai-Thinker //接收到 10 个数据(Ai-Thinker)

AT+CIPCLOSE //关闭 UDP 连接

CLOSED

OK

第 17 页 共 20 页

6 常见问题

6.1 上电时的乱码说明

ESP8266 芯片本身支持 26MHz 和 40MHz 的晶振,若使用 40MHz 晶振,则默认波特率为 115200,若使用 26MHz 晶振,则 UART0 上电后的波特率 = 26*115200/40 = 74880,安信可的 ESP8266 系列模组均使用 26MHz,由于一般的串口工具不会支持这个波特率,所以上电时会有打印乱码。

可使用安信可串口助手通过配置波特率74880查看启动信息。

注意: 部分 USB 转 TTL 不支持 74880 波特率, 电脑自带 RS232 转 TTL 也不支持 74880 波特率, 推荐使用 FT232、CP2102、CH340 等芯片。

6.2 如何屏蔽上电时的乱码

U0TXD 默认上电会有系统打印,可通过 UART 的内部引脚交换功能,在 user_init() 中调用 system_uart_swap() 函数,则新的 U0TXD 变更为 GPIO15, U0RXD 变更为 GPIO13,硬件连接上这 2 个引脚即可进行串口通讯。

注意:交换后,硬件上的下载管脚依然还是原始的 U0TXD 和 U0RXD。

6.3 无法正常烧录

参考 http://wiki.ai-thinker.com/esp_download 进行下载,注意下载前要确保模组进入下载模式。

6.4 SDK 开发环境

参考 http://wiki.ai-thinker.com/ai_ide_install 可搭建 SDK 开发环境。

6.5 启动信息说明

启动时,若电源和串口连接正常,则在波特率74880下看到的第一句话如下:

ets Jan 8 2013,rst cause:1, boot mode:(3,6)

可依据该打印信息分析模组的启动来源和启动模式:

rst cause:

第 18 页 共 20 页

- 1: 电源重启
- 2: 外部复位
- 4: 硬件看门狗复位

boot mode:

括号内第二位无实际意义,第一位可参照下表进行启动信息的分析:

表 6.1 启动模式说明

数值	模式	GPIO0	GPIO2	GPIO15	
0	-	0	0	0	
1	下载模式	0	1	0	
2	-	1	0	0	
3	运行模式	1	1	0	
4	-	0	0	1	
5	-	0	1	1	
6	-	1	0	1	
7	-	1	1	1	

7 模组选型

表 7.1 模组选型表

₩ 7.1 庆五起王秋							
型号	ESP-01	ESP-01S	ESP-07	ESP-07S	ESP-12E	ESP-12F	ESP-12S
封装	DIP-8	DIP-8	SMD-16	SMD-16	SMD-16	SMD-22	SMD-16
尺寸(mm)	24.7*14.4	24.7*14.4	21.2*16.0	17.0*16.0	24.0*16.0	24.0*16.0	24.0*16.0
板层	2	2	2	4	2	4	4
Flash	8Mbit	8Mbit	8Mbit	32Mbit	32Mbit	32Mbit	32Mbit
认证	-	-	-	FCC/CE	-	FCC/CE	FCC/CE
天线	PCB 天线	PCB 天线	陶瓷天线 IPEX	IPEX	PCB 天线	PCB 天线	PCB 天线
指示灯	TXD0 POWER	GPIO2	GPIO2 POWER	-	GPIO2	GPIO2	GPIO2
可用 IO	2	2	9	9	9	9	9

第 19 页 共 20 页

第 20 页 共 20 页