Sequence Models

What is a sequence?

"This morning I took the dog for a walk".

Sentence

Medical signals

Speech waveform

A sequence modeling problem predict the next word

A sequence modeling problem

"This morning I took the dog for a walk."

A sequence modeling problem

"This morning I took the dog for a walk."

Given these words

Predict what comes next

An idea: use a fixed window

"This morning I took the dog for a walk."

Given these two words predict the next word

An idea: use a fixed window

"This morning I took the dog for a walk."

[1000001000]

for a

One hot feature vector
Indicates what
each word is

Prediction

Given these two words predict the next word

Problem: we can't model long term dependencies

"In Finland, I had a great time and I learnt some of the language"

We need information from the far past and the future to accurately predict the correct word.

An idea: use entire sequence, as a set of counts

"This morning I took the dog for a walk.

Problem...

Counts do not preserve the order.

Hence we lose all the sequential information!

Problem...

Counts do not preserve the order.

Hence we lose all the sequential information! (3)

"The food was good, not bad at all"

"The food was bad, not good at all"

An idea: use a really big fixed window

Given these 7 words predict the next word

Problem: no parameter sharing

[01000010000000001000010001...]

this morning

each of these inputs has a separate parameter

[000010000100001000010000100000...]

this morning

Things we learn about the sequence will not transfer if they appear at different points of the sequence.

To model sequences, we need...

- To deal with variable-length sequences
- To maintain sequence order
- To keep track of long term dependencies
- To share parameters across the sequence

Hidden Markov Model (HMM)

What is an HMM?

- Graphical Model
- Circles indicate states
- Arrows indicate probabilistic dependencies between states

What is an HMM?

- Green circles are hidden states
- Dependent only on the previous state
- "The past is independent of the future given the present."

What is an HMM?

- Purple nodes are observed states
- Dependent only on their corresponding hidden state

HMM Notations

- $\{S, K, \Pi, A, B\}$
- $S: \{s_1...s_N\}$ are the values for the hidden states
- $K: \{k_1...k_M\}$ are the values for the observations

HMM Notations

- $\{S, K, \Pi, A, B\}$
- $\Pi = \{\pi_1\}$ are the initial state probabilities
- $A = \{a_{ij}\}$ are the state transition probabilities
- $B = \{b_{ik}\}$ are the observation state probabilities

Inference in an HMM

- Compute the probability of a given observation sequence
- Given an observation sequence, compute the most likely hidden state sequence
- Given an observation sequence and set of possible models, which model most closely fits the data?

Decoding in HMM

Given an observation sequence and a model, compute the probability of the observation sequence

$$O = (o_1...o_T), \mu = (A, B, \Pi)$$

Compute $P(O | \mu)$

Decoding in HMM

$$P(O \mid X, \mu) = b_{x_1 o_1} b_{x_2 o_2} ... b_{x_T o_T}$$

$$P(X \mid \mu) = \pi_{x_1} a_{x_1 x_2} a_{x_2 x_3} ... a_{x_{T-1} x_T}$$

$$P(O, X \mid \mu) = P(O \mid X, \mu) P(X \mid \mu)$$

$$P(O \mid \mu) = \sum_{X} P(O \mid X, \mu) P(X \mid \mu)$$

Decoding in HMM

$$P(O \mid \mu) = \sum_{\{x_1 \dots x_T\}} \pi_{x_1} b_{x_1 o_1} \prod_{t=1}^{T-1} a_{x_t x_{t+1}} b_{x_{t+1} o_{t+1}}$$

Example: Word recognition

• Typed word recognition, assume all characters are separated.

 Character recognizer outputs probability of the image being particular character, P(image|character).

Example: Word recognition

- Hidden states of HMM = characters.
- Observations = typed images of characters segmented from the images
 **Note that there is an infinite number of observations
- Observation probabilities = character recognizer scores.
- Transition probabilities will be defined differently in two subsequent models.

Example: Word recognition

• If lexicon is given, we can construct separate HMM models for each lexicon word.

• Here, recognition of word image is equivalent to the problem of evaluating few HMM models.

HMM Applications

- Generating parameters for n-gram models
- Tagging speech
- Speech recognition

Recurrent Neural Networks (RNNs)

A neural network

RNNs remember their previous state

RNNs remember their previous state

RNNs through time

To model sequences, we need...

- To deal with variable-length sequences
- To maintain sequence order
- To keep track of long term dependencies
- To share parameters across the sequence

Summary

- What is a sequence?
- Sequence modeling
- Hidden Markov Model (HMM)
- HMM Example
- A brief intro to RNNs

References

- Slides modified from "Sequence Modeling with Neural Networks" by Harini Suresh, 2018, MIT.
- Slides modified from "Hidden Markov Models" by David Meir Blei. 2009.