Mestrado Integrado em Engenharia Informática e Computação EIC0004 ANÁLISE MATEMÁTICA – 2016/2017 1º Semestre – 1º Mini-Teste – 8 Novembro 2016

Duração da prova: 1h30m

. _ . .

Teste sem consulta.

Apresente Grupos II e III em folhas separadas e justifique convenientemente todos os cálculos que efetuar. Não é permitida a utilização de tabelas, formulários ou máquina de calcular com capacidade gráfica.

Durante a realização da prova não é permitida a saída da sala.

A desistência só é possível 30 minutos após o início do teste.

Nome	Compl	leto:
------	-------	-------

GRUPO I - Versão A

Preencha a tabela de RESPOSTAS na folha de enunciado. Não são consideradas respostas múltiplas. COTAÇÃO prevista para este Grupo: **1.2** valores por cada resposta CORRETA. Cada resposta ERRADA desconta **0.5**.

RESPOSTAS							
1	2	3	4	5			

- 1. Calcule, se existir, o valor de $\lim_{x \to +\infty} \frac{\ln(2^x) x^2}{x^3}$
 - (a) ln2
- (b) não existe
- (c) 0
- (d) 1

- 2. Calcule, se existir, o valor de $\lim_{x\to 0^+} (senx)^{2/\ln(x)}$
 - (a) 0
- (b) 1
- (c) e^2
- (d) não existe

3. Qual a expressão de $\frac{d}{dx} \left(x \left(\ln(\sqrt{x}) + e^{2x} \right) \right)$?

(a)
$$ln\sqrt{x} + (1+2x)e^{2x} + \frac{1}{2}$$

(b)
$$ln\sqrt{x} + (1+2x)e^{2x} + \frac{1}{2\sqrt{x}}$$

(c)
$$ln\sqrt{x} + 3e^{2x} + \frac{1}{2}$$

(d)
$$ln\sqrt{x} + 3e^{2x} + \frac{1}{2\sqrt{x}}$$

4. Qual a expressão de $\frac{d}{dx} \left(\frac{\sqrt[3]{1-x^3}}{\sqrt{x}} \right)$?

(a)
$$-\frac{x^3+1}{2x\sqrt{x}\sqrt[3]{(1-x^3)^2}}$$

(b)
$$\frac{x^3+1}{2x\sqrt{x}\sqrt[3]{(1-x^3)^2}}$$

(c)
$$-\frac{x^3+1}{2x\sqrt[3]{(1-x^3)}}$$

(d)
$$-\frac{x^3+1}{2x\sqrt{x}\sqrt[3]{(1-x^3)}}$$

5. Qual o valor do integral $\int_{-\sqrt{2}}^{\sqrt{2}} e^{\frac{x+\sqrt{2}}{\sqrt{2}}} dx$

(a)
$$\sqrt{2}e^{\sqrt{2}} + \sqrt{2}$$
 (b) $\sqrt{2}e^2$ (c) $\sqrt{2}(e^2 - 1)$ (d) $e^2 - 1$

(b)
$$\sqrt{2}e^{2}$$

(c)
$$\sqrt{2}(e^2-1)$$

(d)
$$e^2 - 1$$

GRUPO II

6. Um homem anda ao longo de um caminho retilíneo a uma velocidade de 1.2 m/s. Um holofote localizado no chão a 6 m do caminho focaliza o homem. A que taxa de variação instantânea, $\frac{d\theta}{dt}$, gira o holofote quando o homem está a uma distância de 4.5 m do ponto do caminho mais próximo da luz (x designa genericamente essa distância).

- 7. Usando o conceito de derivada da inversa de uma função calcule $\frac{dy}{dx}$ para y = arctg(x)
- **8.** Esboce a região Q do plano limitada pelos gráficos das funções y = x e $y = 2 x^2$. Determine a área da região Q.

GRUPO III

9. Calcule os seguintes integrais usando técnicas apropriadas:

a)
$$\int \frac{sec^2x}{tgx} dx$$

b)
$$\int \frac{1}{\sqrt{9+x^2}} dx$$