Национальный исследовательский университет «МЭИ»

ИНСТИТУТ РАДИОТЕХНИКИ И ЭЛЕКТРОНИКИ Кафедра Радиотехнических систем

Курсовая работа

по дисциплине

«Аппаратура потребителей спутниковых радионавигационных систем»

Группа: Э	P-15-16
Вариан	нт №: 13
Дата:	
Подпись:	
ФИО преподавателя: Корогод	цин И.В.
Оценка:	

ФИО СТУДЕНТА: ТАСКАНОВ В.Е.

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	3
ГЛАВА 1. ИСПОЛЬЗОВАНИЕ СТОРОННИХ СРЕДСТІ	B 4
1.1. Описание задания	4
1.2. Определение формы орбиты и положения спутни	ика на ней с
помощью сервиса CelesTrak	6
1.3. Расчет графика угла места собственного спутника	и от времени
по данным Trimble GNSS Planning Online	7
1.4. Расчет диаграммы угла места и азимута спутника (SkyView, он
же SkyPlot) по данным Trimble GNSS Planning Online	9
1.5. Формирование списка и описание параметров,	входящих в
состав эфемерид	12
1.6. Формирование таблицы эфемерид собственного сп	утника 13
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	15

ВВЕДЕНИЕ

Спутниковые радионавигационные системы (СРНС) являются самыми точными системами по определению координат потребителя. Они стали важной частью в различных сферах нашей жизни. Наиболее распространенными являются системы ГЛОНАСС (Россия), GPS (США), Galileo (Евросоюз), Beidou (Китай).

Цель проекта - добавление в программное обеспечение приемника функции расчета положения спутника Beidou на заданное время по данным его эфемерид.

Требования к разрабатываемому программному модулю:

- требования назначения;
- отсутствие утечек памяти;
- малое время выполнения;
- низкий расход памяти;
- корректное выполнение при аномальных входных данных.

Для достижения цели выполняется ряд задач, соответствующих этапам проекта и контрольным мероприятиям:

- обработка данных от приемника, работа со сторонними сервисами для подготовки входных и проверочных данных для разрабатываемого модуля;
- моделирование модуля в Matlab/Python;
- реализация программного модуля на C/C++, включая юниттестирование в Check.

Конечная цель всего курсового проекта - получить библиотеку функций на «С++», позволяющую рассчитывать положение спутника Beidou по его эфемеридам.

ГЛАВА 1. ИСПОЛЬЗОВАНИЕ СТОРОННИХ СРЕДСТВ

1.1. Описание задания

В задание дан номер спутника BEIDOU, в моем варианте – C24, а также бинарный и текстовый файл со значениями эфемерид для различных спутников, полученный от трехдиапазонной антенны Harxon HX-CSX601A, установленной на крыше корпуса Е МЭИ. Она через 50-метровый кабель, сплиттер, bias-tee и усилитель подключена к трем навигационным приемникам:

- Javad Lexon LGDD,
- SwiftNavigation Piksi Multi,
- Clonicus разработки ЛНС МЭИ.

Эти приемники осуществляют первичную обработку сигналов Beidou B1I, выдавая по интерфейсам соответствующие потоки данных - наблюдения псевдодальностей и эфемериды спутников. Данные от приемника Clonicus, записанные вечером 16 февраля 2021 года.

Определим с помощью «Информационно-аналитического центра координатно-временного и навигационного обеспечения» [1] номер НОРАД¹ и сравним его с номером из «Википедии» [2]:

4

¹ НОРАД(SCN) - номер по спутниковому каталогу представляет собой уникальный пятизначный идентификационный номер искусственных спутников Земли.

PRN	НОРАД	Тип КА	Тип системы	Дата запуска	Факт. сущ. (дней)	Примечание
C01	44231	GEO-8	BDS-2	17.05.19	653	Используется по ЦН
C02	38953	GEO-6	BDS-2	25.10.12	3048	Используется по ЦН
C03	41586	GEO-7	BDS-2	12.06.16	1722	Используется по ЦН
C04	37210	GEO-4	BDS-2	01.11.10	3772	Используется по ЦН
C05	38091	GEO-5	BDS-2	25.02.12	3291	Используется по ЦН
C06	36828	IGSO-1	BDS-2	01.08.10	3864	Используется по ЦН
C07	37256	IGSO-2	BDS-2	18.12.10	3725	Используется по ЦН
C08	37384	IGSO-3	BDS-2	10.04.11	3612	Используется по ЦН
C09	37763	IGSO-4	BDS-2	27.07.11	3504	Используется по ЦН
C10	37948	IGSO-5	BDS-2	02.12.11	3376	Используется по ЦН
C11	38250	MEO-3	BDS-2	30.04.12	3226	Используется по ЦН
C12	38251	MEO-4	BDS-2	30.04.12	3226	Используется по ЦН
C13	41434	IGSO-6	BDS-2	30.03.16	1796	Используется по ЦН
C14	38775	MEO-6	BDS-2	19.09.12	3084	Используется по ЦН
C16	43539	IGSO-7	BDS-2	10.07.18	964	Используется по ЦН
C19	43001	MEO-1	BDS-3	05.11.17	1211	Используется по ЦН
C20	43002	MEO-2	BDS-3	05.11.17	1211	Используется по ЦН
C21	43208	MEO-3	BDS-3	12.02.18	1112	Используется по ЦН
C22	43207	MEO-4	BDS-3	12.02.18	1112	Используется по ЦН
C23	43581	MEO-5	BDS-3	29.07.18	945	Используется по ЦН
C24	43582	MEO-6	BDS-3	29.07.18	945	Используется по ЦН

Рисунок 1 — Состав и состояние системы BEIDOU с «Информационноаналитического центра координатно-временного и навигационного обеспечения»

Nº ≑	Спутник +	PRN ÷	Дата (UTC) +	Ракета ≑	NSSDC ID +	SCN ÷	Орбита ♦	Статус +	Система 🕈	
33	Бэйдоу-3 М9	C23	29.07.2018 01:48	CZ-3B/YZ-1	2018-062A&	43581 ₺	СОО, ~21 500 км	действующий		
34	Бэйдоу-3 М10	C24		29.07.2016 01.46 CZ-36/1Z-1	CZ-3B/1Z-1	2018-062B&	43582₺	СОО, ~21 500 км	действующий	
35	Бэйдоу-3 М11	C26	04.00.0040.00.07	04.00.0040.0007	2018-067A&	43602₺	СОО, ~21 500 км	действующий		
36	Бэйдоу-3 М12	C25	24.08.2018, 23:37	3, 23:37 CZ-3B/YZ-1	2018-067B&	43603₺	СОО, ~21 500 км	действующий		
37	Бэйдоу-3 М13	C32	19.09.2018, 14:07	CZ-3B/YZ-1	2018-072A&	43622₺	СОО, ~21 500 км	действующий		
38	Бэйдоу-3 М14	C33		15.05.2010, 14.07	15.05.2010, 14.07 CZ-3B/1Z-	CZ-3B/1Z-1	2018-072B&	43623₺	СОО, ~21 500 км	действующий
39	Бэйдоу-3 М15	C35	15.10.2018, 04:23	CZ-3B/YZ-1	2018-078A&	43647₺	СОО, ~21 500 км	действующий	Бэйдоу-3	
40	Бэйдоу-3 М16	C34		5.10.2016, 04.25 CZ-3B/1Z-1	2018-078B&	43648₺	СОО, ~21 500 км	действующий		
41	Бэйдоу-3 G1Q	C59	01.11.2018, 15:57	CZ-3B/E	2018-085A&	43683₺	ГСО, 144.5° в. д.	действующий		
42	Бэйдоу-3 М17	C36	18.11.2018, 17:49	CZ-3B/YZ-1	2018-093A₽	43706₺	СОО, ~21 500 км	действующий		
43	Бэйдоу-3 М18	C37		CZ-3B/ YZ-1	2018-093B&	43707₺	СОО, ~21 500 км	действующий		
44	Бэйдоу-3 IGSO-1	C38	20.04.2019, 14:41	CZ-3B/G2	2019-023A₽	44204 &	Геосинхронная, накл. 55°;	действующий		

Рисунок 2 — Состав и состояние системы BEIDOU с сайта Википедия Из рисунков 1-2 видно, что номер спутника совпадает и равен 43582, название спутника - «BEIDOU-3 M10»

1.2. Определение формы орбиты и положения спутника на ней с помощью сервиса CelesTrak

Зайдем на официальный сайт CelesTrak [3] и настроим данный сервис для определения формы орбита и положения 24-го спутника не ней

Введем наше название спутника и сверим его по номеру NSSDC ${\rm ID}^2$ и ${\rm HOPAJ}$ (SCN).

Значения совпадают, значит это действительно нужный нам спутник, проведем моделирование на момент времени 15:00, 16 февраля 2021, так как на данном сервисе отсчет времени происходит по UTC(0):

Рисунок 3 – Моделирование с помощью сервиса CelesTrak

6

² NSSDC ID - номер полёта представляет собой каталожный номер каждого летающего космического объекта, находящегося на орбите и зарегистрированного в COSPAR (Комитет по космическим исследованиям)

1.3. Расчет графика угла места собственного спутника от времени по данным Trimble GNSS Planning Online

Настроим для моделирования GNSS Planning Online [4], координаты установим в соответствии с расположением антенны — и они будут соответствовать значению корпуса Е МЭИ, также начальное время будет соответствовать 18:00, временной пояс будет равен +3 (UTC +3) на всем этапе моделирования в сервисе GNSS Planning Online, высота выбирается из суммы высоты над уровнем моря (146 м) и примерной высотой здания (25 м) и округляется до сотен:

Рисунок 4 – Моделирование с помощью сервиса Trimble GNSS Planning

Далее ограничим количество отображаемых спутников и оставим в моделирование только нужны нам спутник – C24:

Рисунок 5 — Моделирование с помощью сервиса Trimble GNSS Planning Получим график расчета угла места собственного спутника от времени:

Рисунок 6 — График угла места собственного спутника от времени По графику видно, что на указанном в задание интервале с 18:00 — 06:00, спутник был в области видимости 2 раза - с 18:00 до 22:00 и с 4:30 до 6:00.

1.4. Расчет диаграммы угла места и азимута спутника (SkyView, он же SkyPlot) по данным Trimble GNSS Planning Online

Так как сервис для определения Sky Plot используется тот же - Trimble GNSS Planning Online, то настройки оставим прежние, и проведем моделирование Sky Plot во временном интервале 18:00-06:00 и зафиксируем положение спутника на небосводе в критических точках, то есть когда он находился в области видимости - в 18:00, 22:00, 4:30 и 6:00.

Тогда получим 4-е графика моделирования:

• 16 февраля 2021 в 18:00:

Рисунок 7 – Моделирование с помощью сервиса Trimble GNSS Planning

• 16 февраля 2021 в 22:00:

Рисунок 8 – Моделирование с помощью сервиса Trimble GNSS Planning

• 17 февраля 2021 в 4:30:

Рисунок 9 – Моделирование с помощью сервиса Trimble GNSS Planning

• 17 февраля 2021 в 6:00:

Рисунок 10 – Моделирование с помощью сервиса Trimble GNSS Planning Для удобства наложим друг на друга полученные 4 графика - рисунок 7-10 и получим карту небосвода:

Рисунок 11 – Карта небосвода

1.5. Формирование списка и описание параметров, входящих в состав эфемерид

Таблица 1 – Описание параметров, входящих в состав эфемерид

Параметры	Определение			
t_{oe}	Отсчет времени эфемерид			
\sqrt{A}	Квадратный корень из большой полуоси орбиты			
e	Эксцентриситет			
ω	Аргумент перигея			
$\triangle n$	Среднее отклонение движения от расчетного значения			
M_{0}	Средняя аномалия в исходное время			
Ω_0	Долгота восходящего узла орбитальной плоскости,			
	вычисленная по опорному времени			
$\dot{\Omega}$	Скорость прямого восхождения			
i_0	Угол наклона в исходное время			
IDOT	Скорость угла наклона			
C_{uc}	Амплитуда косинусной поправки к аргументу широты			
C_{us}	Амплитуда синусной поправки к аргументу широты			
C_{rc}	Амплитуда косинусной поправки к			
	радиусу орбиты			
C_{rs}	Амплитуда синусной поправки к радиусу орбиты			
C_{ic}	Амплитуда косинусной поправки к углу наклона			
C_{is}	Амплитуда синусной поправки к углу наклона			

1.6. Формирование таблицы эфемерид собственного спутника

Данные спутника берутся из текстового файла, полученного из дампа бинарного потока данных от приемника в формате NVS BINR.

Таблица 2 – Значения эфемерид спутника С24

Параметры	араметры Значение		
SatNum	24	-	
toe, t _{oe}	223200000.000	МС	
Crs, C_{rs}	6.56093750000000000e+01	M	
Dn, △n	4.35125286496473862e-12	рад/мс	
M0, M ₀	1.40953592060026917e-01	рад	
Cuc, C_{uc}	3.36393713951110840e-06	рад	
e	7.20643904060125351e-04	-	
Cus, C_{us}	5.78071922063827515e-06	рад	
sqrtA, \sqrt{A}	5.28261434555053711e+03	M ^{1/2}	
Cic, C _{ic}	2.32830643653869629e-09	рад	
Omega 0 , Ω_0	1.82433512285772315e+00	рад	
Cis, C _{is}	-6.56582415103912354e-08	рад	
i0, <i>i</i> ₀	9.49918991207442720e-01	рад	
Crc, C_{rs}	2.34390625000000000e+02	M	
omega, ω	5.72152208390331540e-01	рад	
OmegaDot, Ω	-7.16708425211283236e-12	рад/мс	
iDot, IDOT	1.51077721564943834e-13	рад/мс	
Tgd, T_{GD}	7.00000000000000000e+04	МС	
toc, t_{oc}	2.23200000000000000e+08	МС	
af2, a_{f2}	0.00000000000000000000e+00	MC/MC ²	

af1, a_{f1}	-8.33733082572507556e-12	мс/мс
af0, a_{f0}	-7.61786103248596191e-01	МС
URA	0	-
IODE	257	-
IODC	1	-
codeL2	0	-
L2P	0	-
WN	789	-

ГЛАВА 2. МОДЕЛИРОВАНИЕ

Моделирование проводится в программе Matlab. Код программы приведет в приложение 1.

Построим траектории движения спутника:

Рисунок 12 – Траектории движения спутника

Расчет графиков SkyView:

Рисунок 13 – SkyView

График угла места:

Рисунок 14 – График угла места

По рисункам 13-14 можно убедиться, что графики совпали с рассчитанными ранее на сайте «Trimble GNSS Planning Online», а значит моделирование выполнено верно.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- [1]. Электронный ресурс: «Информационно-аналитического центра координатно-временного и навигационного обеспечения «www.glonass-iac.ru»»
- [2]. Электронный ресурс: «Википедия. Свободная энциклопедия «https://ru.wikipedia.org/wiki/Бэйдоу»»
- [3]. Электронный ресурс: «https://www.celestrak.com»
- [4]. Электронный ресурс: «https://www.gnssplanningonline.com/»
- [5]. Электронный ресурс:
 «https://gssc.esa.int/navipedia/index.php/GPS_and_Galileo_Satellite_
 Coordinates_Computation»

ПРИЛОЖЕНИЕ

Приложение 1

Calc.m

```
clear all;
clc;
close all;
a=(5.28261434555053711e+03)^2;
toe = 223200000.000 * 10^{-3}; %ms
M0 = 1.40953592060026917e - 01;
dn = (4.35125286496473862e-12)/10^-3; %rad/ms
w = 5.72152208390331540e - 01;
Cuc =5.78071922063827515e-06;
Crc =2.34390625000000000e+02;
Crs = 6.560937500000000000e+01;
Cic =2.32830643653869629e-09;
Cis = -6.56582415103912354e - 08;
Cus =5.78071922063827515e-06;
i0 = 9.49918991207442720e-01;
IDOT =1.51077721564943834e-13;
Omega0 =1.82433512285772315e+00;
OmegaDot = -7.16708425211283236e-12;
e= 7.20643904060125351e-04;
n = 3.986004418e+14;
OMEGA_e = 7.2921151467*10^{-5}; %
omegaE=OMEGA_e;%%
tstart = (24*2 + 18 - 3)*60*60;
tstop = (24*3 + 6 - 3)*60*60;
t_arr = tstart:1:tstop;
dt = 12*60*60;
for i = 1:1:length(t_arr)
coord(:, i) = CoordGPS(t_arr(i),toe, M0,e, n, a, dn,w, Cuc, Cus,
Crc, Crs,Cic, Cis,i0, IDOT, Omega0,OmegaDot, omegaE );
coord_eci_x(i) = coord(i).ECI(1);
coord_eci_y(i)=coord(i).ECI(2);
coord_eci_z(i) = coord(i).ECI(3);
coord_ecef_x(i) = coord(i).ECEF(1);
coord_ecef_y(i) = coord(i).ECEF(2);
coord_ecef_z(i) = coord(i).ECEF(3);
coord_eci(1,i) = coord(i).ECI(1);
coord_eci(2,i) = coord(i).ECI(2);
coord_eci(3,i) = coord(i).ECI(3);
coord_ecef(1,i) = coord(i).ECEF(1);
coord_ecef(2,i) = coord(i).ECEF(2);
coord_ecef(3,i) = coord(i).ECEF(3);
end
ppb = 1e-9;
mas = 1e-3/206264.8; % [рад]
MATRIX_WGS_84 = [-3*ppb -353*mas -4*mas;
    353*mas -3*ppb 19*mas;
    4*mas -19*mas -3*ppb];
crd_WGS_84 = [coord_ecef_x; coord_ecef_y; coord_ecef_z];
for i = 1:length(crd_WGS_84(1,:))
    crd_WGS_84(:,i) = crd_WGS_84(:,i) + MATRIX_WGS_84 *
crd_WGS_84(:,i) + [0.07; -0; -0.77];
crd_WGS_84 = crd_WGS_84.'
```

```
figure (1)
E = wqs84Ellipsoid;
ellipsoid(0,0,0,E.SemimajorAxis, E.SemimajorAxis,
E.SemiminorAxis);
hold on;
plot3(coord_eci_x, coord_eci_y,coord_eci_z);
hold on;
plot3(crd_WGS_84(:,1), crd_WGS_84(:,2), crd_WGS_84(:,3))
title('Траектория движения спутника', 'FontSize',12)
xlabel('X, M', 'FontSize',12)
ylabel('Y, M', 'FontSize',12)
zlabel('Z, M', 'FontSize',12)
lgd = legend('Земля', 'Инерциальная СК', 'СК ЕСЕF WGS84');
% Географические координаты корпуса Е и их перевод в систему
WGS-84
% Lantitude
N_gr = 55;
N_{\min} = 45;
N_{sec} = 23.8178;
N = N_gr*pi/180 + N_min/3437.747 + N_sec/206264.8; % широта
[рад]
% Longtitude
E_gr = 37;
E_{\min} = 42;
E_{sec} = 12.2608;
E = E_gr*pi/180 + E_min/3437.747 + E_sec/206264.8; % долгота
[рад]
Н = 200; % высота [м]
llh = [N E H];
crd PRM = llh2xyz(llh)';
% Постороение SkyPlot
for i = 1:length(crd_WGS_84(:,1))
    [X(i) Y(i) Z(i)] =
ecef2enu(crd_WGS_84(i,1),crd_WGS_84(i,2),crd_WGS_84(i,3),N,E,H,w
gs84Ellipsoid, 'radians');
    if Z(i) > 0
        r(i) = sqrt(X(i)^2 + Y(i)^2 + Z(i)^2);
        teta(i) = acos(Z(i)/r(i));
        if X(i) > 0
            phi(i) = -atan(Y(i)/X(i))+pi/2;
        elseif (X(i)<0)&&(Y(i)>0)
            phi(i) = -atan(Y(i)/X(i))+3*pi/2;
        elseif (X(i)<0)&&(Y(i)<0)
            phi(i) = -atan(Y(i)/X(i))-pi/2;
        end
    else teta(i) = NaN;
        r(i) = NaN;
        phi(i) = NaN;
    end
end
% Skyplot
figure (2)
ax = polaraxes;
polarplot(ax,phi,teta*180/pi)
ax.ThetaDir = 'clockwise';
ax.ThetaZeroLocation = 'top';
title('SkyView')
% Угол места
th = hours(t_arr/60/60 - 2*24+3); % Перевод временной оси в
формат hh:mm:ss
figure (3)
grid on
hold on
```

```
plot(th,(-teta)*180/pi+90,'DurationTickFormat','hh:mm:ss') xlim([th(1) th(end)]) title('Угол места', 'FontSize',12) xlabel('Время в UTC', 'FontSize',12) ylabel('Угол места, град', 'FontSize',12)
```

CoordGPS.m

```
function coord = CoordGPS(t,toe, M0,e, n, a, dn,w, Cuc, Cus,
Crc, Crs,Cic, Cis,i0, IDOT, Omega0,OmegaDot, omegaE )
tk = t-toe;
if tk>302400
    tk = tk-604800;
else if tk < -302400
        tk = tk + 604800;
    end
end
Mk = M0+( (sqrt(n/(a^3))) + dn)*tk;
Ekold =0;
Ek = e*sin(0)+Mk;
while (abs(Ek-Ekold)> 10^-9)
    Ekold = Ek;
    Ek = Mk + e * sin(Ek);
end
vk = atan2((sqrt(1-e^2))*sin(Ek), cos(Ek)-e);
uk = w + vk + Cuc*cos(2*(w+vk))+Cus*sin(2*(w+vk));
rk = (a*(1-e*cos(Ek)))+Crc*cos(2*(w+vk))+Crs*sin(2*(w+vk));
ik = i0 + IDOT*tk + Cic*cos(2*(w+vk)) + Cis*sin(2*(w+vk));
lymbdak_ECEF = Omega0 + (OmegaDot - omegaE)*tk-omegaE*toe;
응응응
lymbdak_ECI = Omega0 + OmegaDot*tk ;
R1 = [1 \ 0 \ 0;
    0 \cos(-ik) \sin(-ik);
    0 -sin(-ik) cos(-ik)];
R31_ECEF = [cos(-lymbdak_ECEF) sin(-lymbdak_ECEF) 0;
    -sin(-lymbdak_ECEF) cos(-lymbdak_ECEF) 0;
    0 0 1];
R3uk = [cos(-uk) sin(-uk) 0;
    -sin(-uk) cos(-uk) 0;
    0 0 1];
coord.ECEF = R31 ECEF*R1*R3uk* [rk;0;0];
R31 ECEF = [cos(-lymbdak ECI) sin(-lymbdak ECI) 0;
    -sin(-lymbdak_ECI) cos(-lymbdak_ECI) 0;
    0 0 1];
coord.ECI = R31_ECEF*R1*R3uk* [rk;0;0];
```