## 2.1: Probabilities and ensembles



Figure 2.2. The probability distribution over the  $27 \times 27$  possible bigrams xy in an English language document, *The Frequently Asked Questions Manual for Linux.* 

**Marginal probability**. We can obtain the marginal probability P(x) from the joint probability P(x, y) by summation:

$$P(x=a_i) \equiv \sum_{y \in \mathcal{A}_Y} P(x=a_i, y). \tag{2.3}$$

Similarly, using briefer notation, the marginal probability of y is:

$$P(y) \equiv \sum_{x \in \mathcal{A}_X} P(x, y). \tag{2.4}$$

## Conditional probability

$$P(x = a_i \mid y = b_j) \equiv \frac{P(x = a_i, y = b_j)}{P(y = b_j)} \text{ if } P(y = b_j) \neq 0.$$
 (2.5)

[If  $P(y=b_j) = 0$  then  $P(x=a_i | y=b_j)$  is undefined.]

We pronounce  $P(x = a_i | y = b_j)$  'the probability that x equals  $a_i$ , given y equals  $b_j$ '.

Example 2.1. An example of a joint ensemble is the ordered pair XY consisting of two successive letters in an English document. The possible outcomes are ordered pairs such as aa, ab, ac, and zz; of these, we might expect ab and ac to be more probable than aa and zz. An estimate of the joint probability distribution for two neighbouring characters is shown graphically in figure 2.2.

This joint ensemble has the special property that its two marginal distributions, P(x) and P(y), are identical. They are both equal to the monogram distribution shown in figure 2.1.

From this joint ensemble P(x,y) we can obtain conditional distributions,  $P(y \mid x)$  and  $P(x \mid y)$ , by normalizing the rows and columns, respectively (figure 2.3). The probability  $P(y \mid x = \mathbf{q})$  is the probability distribution of the second letter given that the first letter is a  $\mathbf{q}$ . As you can see in figure 2.3a, the two most probable values for the second letter y given