PROVA SCRITTA DI CALCOLATORI ELETTRONICI DEL 21/1/2015

ESERCIZIO 1 (Tutti):

Si realizzi una rete sequenziale sincrona R con un ingresso X ed una uscita Z. La rete riconosce sequenze del tipo $b_0b_1b_2$ **S** b_3 dove $b_0 = 1$, $b_3 = 0$ e S = $b_0^{b_1b_2}$ ossia S consiste nella ripetizione di b_0 (b_1b_2) volte. Una volta riconosciuta una sequenza valida la rete restituisce 1 e riprende il proprio funzionamento dal principio. Segue un possibile funzionamento di R:

t:	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	
X:	0	1	0	1	1	0	0	1	1	0	0	0	1	0	1	1	1	1	0	1	1	0	
Z:	0	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	1	

La rete come primo bit uno 0 che non può appartenere ad alcuna sequenza valida. Successivamente riceve il bit $b_0=1$ seguito dalla coppia $b_1b_2=01$. Si attende quindi una stringa S composta da un 1 ripetuto una volta sola (e la riceve all'istante t=4) e successivamente si attende il bit $b_3=0$ che riceve all'istante t=5. Quindi, la rete restituisce 1 e riprende il proprio funzionamento dal principio. Si noti che a partire dall'istante t=7 la rete non riceve una sequenza valida, in quanto all'istante t=7 riceve 1, agli istanti t=8 e t=9 riceve i bit 10 e, pertanto, si attende di ricevere la stringa S composta da un 1 ripetuto due volte, invece all'istante t=10 riceve uno 0.

