MATH 100, Fall, 2021 Tutorial #8

Story Problems and Newton's method

Q1 A printed page contains 24 in² of text with 1 in blank side margins and 1.5 inch top and bottom margins each. Find the dimensions of the page with smallest area that satisfies these constraints. In your group, make a sketch of the page and apply labels x and y to width and height of the printed area respectively. Convince yourself that the problem becomes: minimize A = (x + 2)(y + 3) where xy = 24.

Assignment:

- 1. Formulate the problem as a single variable optimization problem (in terms of x or y, but not both) and then solve the problem via calculus to find the optimal page dimension. Explain how you know your solution is a minimum. State your conclusion in a grammatically correct sentence that tells the printer what size paper to order.
- Q2 A business manufactures and sells $x \geq 0$ tons of a product each week with revenue r(x) and operating costs c(x) measured in thousands of \$. Its weekly profit at production level x is therefore P(x) = r(x) c(x). In your group, discuss the economist's rule-of-thumb that says the company's profit is maximized at output x_* when $r'(x_*) = c'(x_*)$ and interpret this in terms of a critical point for the profit function P.

Assignment:

1. Suppose that $r(x) = 50\sqrt{x}$ and that $c(x) = 10 + 6x^{3/2}$. Find the output x_* that maximizes profit for the firm. Summarize your findings in a grammatically correct sentence that can be understood by the president of the company.

Final thought: is there a way to be sure you have found a maximizer, and not a minimizer? The president might ask.

Q3 In your group, discuss how the function $g(x) = x^{12} - 2$ can be used to approximate the number $2^{\frac{1}{12}}$ by Newton's method.

Assignment:

- 1. If your current estimate of the root is x_n find Newton's formula for computing the next approximation x_{n+1} .
- 2. Set $x_0 = 1$, and derived the approximations $x_1, x_2...$ until your estimate agrees with the first 3 decimals of your calculator's estimate for $\sqrt[12]{2}$. Report back: calculator = ...; Newton after n steps= Tell us what n you stopped at.

 $\sqrt[12]{2}$ turns out to be an important number in music theory, so having a decimal approximation is actually a helpful thing to know: (Eg, see https://en.wikipedia.org/wiki/Twelfth_root_of_two)

Q4 As many of you have realized, Newton's method does not always work first time. Consider the function $f(x) = x^3 - 2x + 2$. Discuss in your group how you **know** that f has a root and set up a Newton iteration formula to compute its approximation x_{n+1} from the estimate x_n .

Assignment: Let $x_0 = 1$. Compute the Newton iteration x_1 . Now compute x_2 . What do you notice happening?

Q5 Consider the same function $f(x) = x^3 - 2x + 2$ from Q4. Despite your experience in Q4, discuss again why you are sure there must be a root for f. Can you find it?

Assignment: Set $x_0 = -2$. Compute x_1 and x_2 along with $f(x_1)$ and $f(x_2)$. Does the method now seem to be working?

MATH 100, Fall 2021 Tutorial Worksheet Tutorial Section (T01, T02 etc) Tutorial Instructor Name: Question Number Attempted (Q1, Q	Your Name: Your Student Number: V00 Today's Date: 2, etc)
	A(x,y) = (x+2)(y+3) $xy = 24 \leftarrow \text{ required}$ $2x < \infty$? $4(x) = (x+2)(\frac{24}{x}+3)$
	$= 24 + 3x + \frac{48}{x} + 6$ $= 3x + \frac{48}{x} + 30$
$A(x) = 3 - \frac{48}{x^2} = 0$	G7 X2 48 = 16 G7 X=±4
more X=-4 (obviously	3400

 $A(x) = \frac{1}{x^2}(3x^2 + 8)$.

Sqn A'

| break min'

The minimum area paper format in width = 4+2=6 in 3 6x9. Somat. height = 6+3=9 in

MATH 100, Fall 2021 Tutorial Worksheet Your Student Number: V00 Tutorial Section (T01, T02 etc) Today's Date: Tutorial Instructor Name: Question Number Attempted (Q1, Q2, etc)
$PCO = 50\sqrt{x} - (10 + 6x^{3/2})$
$P(x) = 50 \frac{1}{2\sqrt{x}} - \frac{18}{2} \times \frac{1}{2}$ $= \frac{25}{\sqrt{x}} - 9\sqrt{x} = 0 $ $= \frac{25}{\sqrt{x}} - \sqrt{x}$
In order to maximize profit, your company should produce and sell $x_{\pm} = \frac{25}{9} \sim 2.77$ tons of product per week If you do this, your profit will be \$45.55.5
thousands per week: $945,555$ Look at $p'(x) = \frac{1}{\sqrt{x}}(25 - 9x)$ this in $p'(x) > 0$ when $x \ge 25/9$.
ecx) 20 wh x > 25/9. I to the total way Ocal way

MATH 100, Fall 2021 Tutorial Worksheet Tutorial Section (T01, T02 etc) Tutorial Instructor Name: Question Number Attempted (Q1, 0	,
Looking for voots of	g(x) = x2-2
Ithatu g'ex)=	S. urita
Xn+1 = Xn	12 X 11 12 X 11 12 12 12 12 12 12 12 12 12 12 12 12
= Xh =	12×4 + 72×14
X0=1 = 11/2 × n	+ 6x" = xner Iteration
X, = 11 + 6.11 =	13 × 1.08333
X2 = 1/2.13 + 6.(4)	$\frac{1}{3} = \frac{143}{144} + \frac{12''}{6.13''} \approx 1.06215.$
×3 = 11/1.06215 +	6.(1.06215)" & 1.05950:
alc 12/2 2 1.05	946

Newton, 3 steps = 1.05950

MATH 100, Fall 2021 Tutorial Worksheet Tutorial Section (T01, T02 etc) Tutorial Instructor Name: Question Number Attempted (Q1, Q2, et	Your Name: Your Student Number: W00 Today's Date:
$f(x) = x^3 - 2x + 2$ $f'(x) = 3x^2 - 2$	
$\frac{1}{2} \times \frac{3}{2} \times \frac{2}{2} \times \frac{2}$	int 2 literationing tule

$$x_0 = 1$$
 $x_1 = 1 - \frac{1-2+2}{3-2} = 1-1=0$
 $x_1 = 0$
 $x_2 = 0 - \frac{2}{-2} = 1$
 $x_3 = 0$
 $x_4 = 0$
 $x_5 = 1$
 $x_6 = 1$
 x_6

No convergence Newton Pails etc.

MATH 100, Fall 2021 Tutorial Worksheet Your Student Number: V00 Tutorial Section (T01, T02 etc) Today's Date: Tutorial Instructor Name: Question Number Attempted (Q1, Q2, etc)
$f(x) = x^3 - 2x + 2$
S(x) = 3x2 - 2
$X_{N+1} = X_N - X_N^3 = 2X_N + 2$ $3X_N^2 - 2$
X ₀ = -2
$X_1 = -2 - \frac{8+4+2}{12-2} = -2+\frac{2}{10} = \frac{-18}{10}$
$5(\frac{18}{10}) = (-1.8)^3 - 2(-1.8) + 2$ = -0.232 (not so great)
$x_2 = -1.8 - (-1.8)^3 + 2(1.8) + 2$ $3(1.8)^2 - 2$

$$5(-1.76995) \approx -0.0049$$
 (better.) Students

 $f(some)$

 $X_3 = -1.76995 - \frac{f(same)}{f'(same)} \approx -1.76929$ $f(-1.76929) \approx 0.00002 (good!)$