

Capstone Project On Coronavirus Tweet Sentiment Analysis By

Roshan Tile

CONTENT

Following is the Standard Operating Procedure to tackle the Sentiment Analysis kind of project. We will be going through this procedure to predict what we supposed to predict.

- Problem Statement
- Data Summary
- Exploratory Data Analysis (EDA)
- Text Pre-processing
- Classification Analysis
- Models Performance Metrics
- Conclusion

Problem Statement

Sentiment Analysis is the process of computationally identifying and categorizing opinions expressed in a piece of text, especially in order to determine whether the writer's attitude towards a particular topic is Positive, Negative, or Neutral. The given challenge is to build a classification model to predict the sentiment of Covid-19 tweets. The tweets have been pulled from Twitter and manual tagging has been done.

Data Summary

- The original dataset has 6 columns and 41157 rows. In order to analyze various sentiments, from this 6 feature 2 features are unusable so will ignore them
 - 1. Location = location (country) from where tweet is posted
 - 2. Tweet At = Date on which tweet is posted
 - 3. Original Tweet = Context of tweet
 - **4. Label = Type of sentiments**
- We require just two columns named Original Tweet and Sentiment. There are five types of sentiments- Extremely Negative, Negative, Neutral, Positive, and Extremely Positive.

Exploratory Data Analysis (EDA)

Percentage wise sentiments

When we try to explore the 'Sentiment' pie chart, we came to know that:

- ✓ Most of the peoples about 44% are having positive sentiments about various issues shows us their optimism during pandemic times.
- ✓ Very few people about 37.4% are having negatives thoughts about Covid-19.
- ✓ While 18.7% people have neutral opinion.

Top 10 most tweet's locations

London	540
United States	528
London, England	520
New York, NY	395
Washington, DC	373
United Kingdom	337
Los Angeles, CA	281
India	268
UK	232
Australia	225

Top 10 highest number of tweet days

20-03-2020	3448
19-03-2020	3215
25-03-2020	2979
18-03-2020	2742
21-03-2020	2653
22-03-2020	2114
23-03-2020	2062
17-03-2020	1977
08-04-2020	1881
07-04-2020	1843

Text Pre-Processing

Text pre-processing of the text data is an essential step as it makes the raw text ready for mining and making it suitable for a machine learning model. The objective of this step is to clean noise those are less relevant to find the sentiment of tweets such as:

- ✓ Url links (HTTPS: / HTTP:)
- ✓ Username/tweeter handle (@Xyz)
- ✓ Punctuation (.,?," etc.),
- ✓ Special characters (@,%,&,\$, etc.),
- ✓ Numbers (1,2,3, etc.)

Other Essential Steps are:

- √ Stop words
- ✓ Positive Negative Word Count
- √ Stemming
- ✓ Tokenization
- ✓ Encode the Sentiments

Vectorization

 vectorization is a methodology in NLP to map words or phrases from vocabulary to a corresponding vector of real numbers which used to find word predictions, word similarities/semantic. i.e., Process of converting text into numerical representation.

Techniques:

- ✓ One hot encoding
- ✓ Bag Of Words
- ✓ Ngrams
- **✓** TFIDF
- ✓ Word2Vec
- ✓ CountVectorizer

Classification Analysis

Building Classification Models

The given problem is Ordinal Multiclass classification. We had five types of sentiments and we converted them into three type, We have trained our models on different classification models are:

- 1. Logistic Regression
- 2. Ridge Classifier
- 3. K-Nearest Neighbors (KNN)
- 4. XGBoost Classifier
- 5. Gradient Boosting Classifier (GBM)
- 6. Random Forest Classifier
- 7. Support Vector Machine (SVC)

Models Performance Metrics

	Model_Name	Accuracy	Precision	Recall	F1 score
1	Logistic Regression	0.80	0.80	0.80	0.80
2	Ridge Regression	0.79	0.78	0.79	0.78
3	K-Nearest Neighbors (KNN)	0.46	0.55	0.46	0.48
4	XGBoost Classifier	0.72	0.72	0.72	0.72
5	Gradient Boosting Machine (GBM)	0.72	0.72	0.72	0.72
6	Random Forest Classifier	0.70	0.71	0.70	0.68
7	Support Vector Machine (SVC)	0.76	0.76	0.76	0.76

Conclusion

- ✓ K-Nearest Neighbors (KNN) doesn't work well with a large dataset and with a high number of dimensions. It didn't classify the sentiments efficiently and gives worse results than all the other implemented models.
- √ The Gradient Boosting classifier (GBM) and XGBoost classifier gave almost identical results of 0.72 F1-score.
- ✓ Gradient Boosting classifier (GBM), XGBoost classifier and Random Forrest take a lot of time to run.
- ✓ Logistic regression gives the highest result of about 0.80 F1-score of all the implemented models , Followed by the Ridge Regression (0.79 F1-score) and Support Vector Machine(SVC) (0.76 F1-score) .
- ✓ While selecting a model, it should need to have good explainability and less complexibility. As per the result, We have all three models with higher accuracy and less error. Therefore, we will select Logistic Regression.

Thank You