Faster Decoding for Phrases and Syntax

Kenneth Heafield

Translation is Expensive

"speed-up in tuning time but affects the performance"

"18 days using 12 cores"

[Williams et al WMT 2014]

"Time-sensitive BLEU score" [Chung and Galley, 2012]

"Due to time constraints, this procedure was not used" [Servan et al, WMT 2012]

⇒ Routine Quality Compromises

Blame the Language Model

"LM queries often account for more than 50% of the CPU" [Green et al, WMT 2014]

Blame the Language Model

"LM queries often account for more than 50% of the CPU" [Green et al, WMT 2014]

Faster queries (KenLM)

More effective queries

- Widely used for phrase-based and syntax-based MT
- May be applied in conjunction with a bottom-up decoder, or as a second "rescoring" pass
 - Nodes may also be grouped together (for example, all nodes corresponding to a certain source span)
- Requirement for topological ordering means translation hypergraph may not have cycles

- Widely used for phrase-based and syntax-based MT
- May be applied in conjunction with a bottom-up decoder, or as a second "rescoring" pass
 - Nodes may also be grouped together (for example all nodes corresponding to a certain source span)
- Requirement for topological ordering means translation hypergraph may not have cycles

- 1 Decoding problem
- 2 Cube pruning
- 3 Incremental

Decoding Example: Input

Le garçon a vu l'homme avec un télescope

Decoding Example: Parse with SCFG

Decoding Example: Read Target Side

Decoding Example: One Constituent

X:VP

Hypothesis

seen man seen the man seen some men saw man saw the man saw some men view man view the man view some men

Hypothesis Score

X:VP

seen man -8.8 seen the man -7.6

seen some men -9.5 saw man -8.3

saw man saw the man

saw the man

view man view the man

view some men -10.8

-6.9

-8.5

-8.5

-8.9

Hypothesis Score

saw the man -6.9

X:VP

seen the man

saw man

saw some men

view man seen man

view the man

seen some men

view some men

-7.6

-8.3

-8.5

-8.5

-8.8

-8.9 -9.5

-10.8

X:VP

Hypothesis Score

saw the man

-6.9-7.6

seen the man saw man

saw some men

-8.5

-8.3

-8.5

-8.8

-8.9-9.5

-10.8

view man

seen man view the man

seen some men

view some men

X:VP

saw the man seen the man saw man

Hypothesis

n -7.6 -8.3

Score

-6.9

-8.5

-8.8

-8.9 -9.5

say some men view wan

seen man

view the man seep some men

ew some men

nen -10.

Appending Strings

Hypotheses are built by string concatenation.

Language model probability changes when this is done:

$$\frac{p(\mathsf{saw} \; \mathsf{the} \; \mathsf{man})}{p(\mathsf{saw})p(\mathsf{the} \; \mathsf{man})} = \frac{p(\mathsf{the} \; | \; \mathsf{saw})p(\mathsf{man} \; | \; \mathsf{saw} \; \mathsf{the})}{p(\mathsf{the})}$$

Appending Strings

Hypotheses are built by string concatenation.

Language model probability changes when this is done:

$$\frac{p(\mathsf{saw} \; \mathsf{the} \; \mathsf{man})}{p(\mathsf{saw})p(\mathsf{the} \; \mathsf{man})} = \frac{p(\mathsf{the} \; | \; \mathsf{saw})p(\mathsf{man} \; | \; \mathsf{saw} \; \mathsf{the})}{p(\mathsf{the})}$$

Log probability is part of the score

- ⇒ Scores do not sum
- ⇒ Local decisions may not be globally optimal
- \implies Search is hard.

- 1 Decoding problem
- 2 Cube pruning
- 3 Incremental

Beam Search

	man -3.6	the man -4.3	some men -6.3
seen -3.8	seen man -8.8	seen the man -7.6	seen some men -9.5
saw -4.0	saw man -8.3	saw the man -6.9	saw some men -8.5
view -4.0	view man -8.5	view the man -8.9	view some men -10.8

[Lowerre, 1976; Chiang, 2005]

saw -4.0

view -4.0

Queue
Hypothesis Sum
→seen man -3.8-3.6=-7.4

```
man -3.6 the man -4.3 some men -6.3 seen -3.8 seen man -8.8 Queue saw -4.0 Queue view -4.0
```

Queue Hypothesis Sum →saw man -4.0-3.6=-7.6 seen the man -3.8-4.3=-8.1

Queue

Hypothesis	Sum
→view man	-4.0 - 3.6 = -7.6
seen the man	-3.8 - 4.3 = -8.1
saw the man	-4.0 - 4.3 = -8.3

Queue

Hypothesis	Sum
→seen the man	-3.8 - 4.3 = -8.1
saw the man	-4.0 - 4.3 = -8.3
view the man	-4.0 - 4.3 = -8.3

Beam Search

Make every dish. Keep the best k, throw the rest out.

Cube pruning

Combine the best ingredients. Only make k dishes.

Cube Pruning Hypotheses are Atomic

String

is a are a

String

countries that countries which country

→String

is a countries that are a countries that are a countries which :

No notion that "a countries" is bad.

Beam Search

Make every dish. Keep the best k, throw the rest out.

Cube pruning

Combine the best ingredients. Only make k dishes.

Coarse-to-Fine

Make small portions, taste, and order the best ones.

Coarse-to-Fine

Decode multiple times, adding detail each time:
Increased LM order, words instead of classes

Detect and prune "a countries" with a bigram LM.

[Zhang et al, 2008; Petrov et al, 2008]

Coarse-to-Fine

Decode multiple times, adding detail each time: Increased LM order, words instead of classes Detect and prune "a countries" with a bigram LM. [Zhang et al, 2008; Petrov et al, 2008]

> Requires tuning each pruning pass. Operates in lock step.

Charse-to-Fine

Decode multiple times, adding detail each time: Increased LM order, words instead of classes Detect and prune "a countries" with a bigram LM. [Zhang et al, 2008; Petrov et al, 2008]

> Requires tuning each pruning pass. Operates in lock step.

Can coarse-to-fine be done on the fly?

- 1 Decoding problem
- 2 Cube pruning
- 3 Incremental

Observations

Competing translations have words in common: is a, are a

Observations

Competing translations have words in common: is a, are a

Words at the boundary matter most: a + country, a + countries

Observations

Competing translations have words in common: is a, are a

Words at the boundary matter most: a + country, a + countries

Emphasize boundary words

Beam Search

Make every dish. Keep the best k, throw the rest out.

Cube pruning

Combine the best ingredients. Only make k dishes.

Coarse-to-Fine

Make small portions, taste, and order the best ones.

Incremental

Taste during cooking. Share ingredients.

Boundary Words

- 1 Left-to-right phrase-based: one side
- 2 Bottom-up syntax: both sides

Partial Translations

Plain text

The United Kingdom is a $+ \dots$ Scotland and Wales are a $+ \dots$

Tree

Phrase Continuations

Plain text ... + countries that ... + countries which ... + country

Does the model like "a + countries"?

Exploring and Backtracking

Does the model like "a + countries"?

Yes Try more detail.

No Consider alternatives.

Exploring and Backtracking

Does the model like "a + countries"?

Yes Try more detail.

No Consider alternatives.

Formally: best-first search with a priority queue.

The queue entry

"a
$$+\epsilon$$
"

splits into

Best Child "a + countries" Other Children "a + country"

Scores come from the best descendant:

Score(a) = max{Score(is a), Score(are a)}

Scores come from the best descendant:

The language model updates scores:

Score(a + countries) < Score(a) + Score(countries)

Scores come from the best descendant:

$$Score(a) = max{Score(is a), Score(are a)}$$

The language model updates scores:

$$Score(a + countries) < Score(a) + Score(countries)$$

Formally: $p(\text{countries} \mid a)$ replaces p(countries)

Best-First Algorithm Summary

Populate the queue with $\epsilon + \epsilon$

Loop until *k* complete options have been found: Split the top-scoring option

Build a tree from the k complete options

Summary

Translations are assembled from left to right.

Partial translations often share suffixes.

Phrases often share prefixes.

Test suffixes and prefixes before full combinations.

Experiment

Task Chinese–English

Source Stanford

Model Phrase-based

Software My own decoder, mtplz, versus Moses

Phrase-Based Results

Phrase-Based Results

Search

The language model cares most about adjacent words.

Test them first.

Share work for shared words.

Boundary Words

- 1 Left-to-right phrase-based: one side
- 2 Bottom-up syntax: both sides

Bottom-Up Syntax: Both Sides

is a X:NP1 </s> is a X:NP1 that

How do we find the best value to substitute? Manage words on both sides.

Example Hypotheses

Left State	Right State	
countries that maintain diplomatic	relations with North Kore	a .
countries that have an embassy in		
country that maintains some diplo		
nations which has some diplomatic ties with DPR Korea .		
country that maintains some diplo	matic ties with DPR Korea	a .

Example Hypotheses

```
Left State
                          Right State
(countries that ◇ with North Korea .)
(nations which has ⋄ with DPR Korea .)
(countries that have ⋄
                          DPR Korea .)
(country
                   ⋄ in North Korea .)
(country
                    with DPR Korea .)
```

Words the language model does not care about

Idea: alternate between left and right side

Group by Leftmost Word

Reveal Common Words in Each Group

Alternate Sides Until Tree is Full

Using Rules

is a
$$X:NP1$$

turns into
is a $(\epsilon \diamond \epsilon)$

X:V1 the X:N2 turns into $(\epsilon \diamond \epsilon)$ the $(\epsilon \diamond \epsilon)$

$$(\epsilon \diamond \epsilon)$$
 the $(\epsilon \diamond \epsilon)$

Exploring and Backtracking

Does the LM like "is a (countries that \diamond Korea .) </s>"? Yes Try more detail.

No Consider alternatives

Exploring and Backtracking

Does the LM like "is a (countries that \diamond Korea .) </s>"? Yes Try more detail.

No Consider alternatives.

Formally: priority queue containing breadcrumbs.

Split and Leave Breadcrumbs

Split and Leave Breadcrumbs

The queue entry

is a
$$(\epsilon \diamond \epsilon)$$

splits into

Zeroth Child "is a (countries that \diamond Korea .) </s>" Other Children "is a $(\epsilon \diamond \epsilon)[1+] </s>$ "

Children except the zeroth.

A priority queue contains competing entries:

is a (countries that
$$\diamond$$
 Korea .) $(\epsilon \diamond \epsilon)$ the $(\epsilon \diamond \epsilon)$ is a $(\epsilon \diamond \epsilon)[1+]$

The algorithm pops the top entry, splits a non-terminal, and pushes.

Best-First Algorithm

Populate the queue with rules like "is a $(\epsilon \diamond \epsilon) </s>$ "

Loop until *k* complete options have been found: Split the top-scoring option, leave a breadcrumb

Build a tree from the k complete options

Syntax

Same as phrase-based, just concatenate on left and right.

Experiment

Task WMT 2011 German-English Model Hierarchical Decoder Moses

Moses Hierarchical

Moses Hierarchical

Incremental

A series of coarse-to-fine estimates.

Continually taste the dish and adjust.

Takeaway

Search limits what translation can do. Long-distance models like gender and number are harder.

Open the black box.

Language models can produce intermediate scores.