Apellidos	Perez Ji	uévlz
Nombre	Hugo	

Preguntas sobre grupos:

- 1. (4 puntos) Sea $\mathbb{F}_3 = \mathbb{Z}/(3)$ el cuerpo con 3 elementos y $GL(2,\mathbb{F}_3)$ el grupo de matrices invertibles 2×2 con entradas en \mathbb{F}_3 .
 - (a) (½ punto) En el conjunto de vectores no nulos $X=(\mathbb{F}_3\times\mathbb{F}_3)\setminus\{(0,0)\}$ definimos una relación \sim de la siguiente manera: $\vec{v} \sim \vec{w}$ si y solo si $\vec{v} = \pm \vec{w}$. Prueba que \sim es una relación de equivalencia y da la lista de todos los elementos del conjunto cociente, que denotaremos $\mathbb{P}^2(\mathbb{F}_3) = X/\sim$, comprobando que hay exactamente cuatro.
 - (b) ($\frac{1}{2}$ punto) Dada $A \in GL(2, \mathbb{F}_3)$, demuestra que la aplicación

$$\varphi_A : \mathbb{P}^2(\mathbb{F}_3) \longrightarrow \mathbb{P}^2(\mathbb{F}_3)$$

$$[\vec{v}] \longmapsto [A\vec{v}]$$

está bien definida.

- (c) (½ punto) Enumera los elementos de $\mathbb{P}^2(\mathbb{F}_3)$ cuya lista has dado en el primer apartado, y que denotaremos $\mathbb{P}^2(\mathbb{F}_2) = \{ [\vec{a}_2] \ [\vec{a}_3] \ [\vec{a}_4] \ [\vec{a}_4] \ [\vec{a}_5] \}$ notaremos $\mathbb{P}^2(\mathbb{F}_3) = \{[\vec{v}_1], [\vec{v}_2], [\vec{v}_3], [\vec{v}_4]\}$. Prueba que, para todo $A \in GL(2, \mathbb{F}_3)$, la aplicación φ_A es biyectiva y deduce que existe una única permutación $\sigma_A \in S_4$ tal que $\varphi_A([\vec{v}_i]) = [\vec{v}_{\sigma_A(i)}]$ para todo i.
 - (d) (½ punto) Demuestra que la aplicación

$$f: \mathrm{GL}(2,\mathbb{F}_3) \longrightarrow S_4$$

$$A \longmapsto \sigma_A$$

es un homomorfismo de grupos.

- (e) (1 punto) Prueba que para cada trasposición $(ij) \in S_4$ existe $A \in GL(2, \mathbb{F}_3)$ tal que $\sigma_A = (ij)$ y deduce de aquí que f es sobreyectiva.
 - (f) (1 punto) Establece un isomorfismo entre S_4 y un cociente de $\mathrm{GL}(2,\mathbb{F}_3),$ describiendo explícitamente el subgrupo por el que se toma cociente, y úsalo para calcular el número de elementos de $GL(2, \mathbb{F}_3)$.

flugo Pérez Jiménez

Ejercicio 1 (T.2)

F3 = 72/42

- (a) Tomamos $X = (\overline{F_3} \times \overline{F_3}) \cdot (co_16)$ y definitions N como, $\underline{V} N \underline{W} = \underline{V} \cdot \underline{V} = \underline{+} \underline{W} \cdot \underline{V}$ Veamos que N es relación de equivalencia:
 - ·) Replexiva: $\forall v \in X \ v = V \implies v \land v$
 - Si westria: $V \wedge \omega = \omega \wedge V = \omega \otimes V = \omega \otimes \omega = \pm V$. Si $V = + \omega = \omega = V$, si $V = -\omega = \omega = -V = \omega$.
 - Transitiva: $V N \omega N U \implies V N U$. Tevenos $V = \pm \omega$ $V M U = \pm U$. Si $W = \pm U = 1$ $V = \pm W = \pm (u) = 1$ V N U = 1Si W = -U = 1 $V = \pm (-u) \implies V = \pm U \implies V N U = 1$ $V M U = \pm U = 1$ V M U = 1 V M U =

 $\begin{array}{c} (1) \, N(\frac{2}{0}) \, , \, (\frac{9}{0}) \, N(\frac{9}{2}) \, , \, (\frac{1}{2}) \, N(\frac{2}{1}) \, , \, (\frac{1}{3}) \, N(\frac{2}{2}) = 0 \\ = 1 \, P^{2}(\overline{H}_{3}) \, = \, \langle \, [(\frac{1}{0})] \, , \, [(\frac{1}{2})] \, , \, [(\frac{1}{2})] \, , \, [(\frac{1}{2})] \, \langle \, (\frac{1}{2})] \, \rangle \\ \# \left(P^{2}(\overline{H}_{3}) \right) \, = \, 4 \, . \end{aligned}$

(b) $A \in GL(2,\overline{H_3})$, $Q_A: P^2(\overline{H_3}) \longrightarrow P^2(\overline{H_3})$ $[\underline{V}] \longmapsto A.[\underline{V}]$ Es ke aplicación es ki de fi unda de tel forma que monda a un elemento [V] de $P^2(\overline{H_3})$ al producto por la inquisorne por $A \in GL(2)\overline{H_3}$.

Por ser [Y] un vector 2×1 con entradas en \mathbb{F}_3 y

A una matriz 2×2 con entradas en \mathbb{F}_3 benavor que

el producto esta ajustado y produce un vector 2×1 con

entradas en \mathbb{F}_3 . Como \mathbb{A} es invertible \longrightarrow $\mathbb{A} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$ un existe es posible \Longrightarrow $\mathbb{F}(\mathbb{F}_3)$ \longrightarrow $\mathbb{P}^2(\mathbb{F}_3)$.

: $\mathbb{P}^2(\mathbb{F}_3)$ \longrightarrow $\mathbb{P}^2(\mathbb{F}_3)$. For facto $\mathbb{P}^2(\mathbb{F}_3)$ por cer las files

of las matrices \mathbb{A} vectores an $\mathbb{P}^2(\mathbb{F}_3)$ diffictor al culo por

c) Tourenos $\mathbb{P}^2(\overline{H}_3) = \angle [V_1] = [\binom{1}{0}], [V_2] = [\binom{1}{1}], [V_3] = [\binom{1}{2}],$ $[V_4] = [\binom{1}{1}] \{ \text{ Veausos que } \forall_A \text{ es biyectiva pere} \}$ $\forall_A \in GL(2,\overline{H}_3)$

) Injectividad: tomames [V], [w] \in \mathbb{P}^2(\mathbb{H}_3): [V] \no \text{[w]}

pero \(\Phi_A([\text{V}]) = \Phi_A([\text{W}]) = \text{A. [V]} \text{A. [V]} \text{A. [w]}

Aplicames \(\Phi_{A^{-1}} \) \((A^{-1} \in GL(2,\mathbb{H}_3) \text{ por ore filmicion}):

\(\Phi_{A^{-1}} \) \((A \in VI) = \Phi \) \((A \in VI) = \)

\(\text{A. [V]} = \Phi' \) \(\in VI = \text{V} \) \(\text{VI} = \text{VI} \) \(\tex

. Hugo Retor

) Sobrey ectividad: [Y] $\in \mathbb{P}^2(\mathbb{F}_3)$. Quere usor usor gue existe [w] $\in \mathbb{P}^2(\mathbb{F}_3)$: $(P_A([w]) = [Y]$. Basta terror [w] = $A^{-1}[Y] \in \mathbb{P}^2(\mathbb{F}_3)$ y $(P_A([w]) = A \cdot A^{-1}[Y] = [Y]$ \Rightarrow $(P_A) = Sobrey ective <math>A \in GL(2, \mathbb{F}_3)$. $\therefore (P_A) = Sobrey ective <math>A \in GL(2, \mathbb{F}_3)$.

Too ser Up biyective se tieve que tiel1,2,3,4 \

Up [[Vi]] = [Vi] con 1 \(\) j \(\) u esto es: Up mande

ade i (1 \(\) i \(\) a un j (1 \(\) j \(\) distinto para

cada i (por ser Up biyectivo). Toto corresponde a

ma permutación en Su. Sen & SA dicha permutación.

OA es suica: Supongamos SAN + OAZ (SANJOAZE SM)

 $\psi_{A}([V_{i}]) = [V_{j}] \Longrightarrow [V_{\sigma_{A1}(i)}] = [V_{\sigma_{A2}(i)}] = [V_{\sigma_{A2}(i)}] = [V_{j}] \Longrightarrow *$ $= [V_{j}] \Longrightarrow *$ $\Rightarrow A_{1}(i) = S_{A2}(i) = J \Longrightarrow \sigma_{A1} = \sigma_{A2}[!]!$

(d)

f. GL (2, Tf3) ---> Su A ---> OA

Veauvor que f a hours morfismes:

) I identified => f(I) = o_I = id. ya que $\Psi_{I}([Vi]) = Vi + i \in \{1,2,3,4\}$

f (AB) = OAB = OAOB = f(A) f(B) (YAB [[Vi]) X AB [Vi] = YA (YB[Vi]) ct us parece $1 f(A^{-1}) = \sigma_{A^{-1}} = \sigma_{A}^{-2}$ *24 1-1 (A. [Vi]) = PA-1 ([Vai]) = A-1. [Va(i)] = = A-1 A [Vi] = [vi] [Vari(oa(i))] = [Vi] =) f es homomosfismo de gropos (e) \((ij) ∈ Su \(\frac{1}{2}\) \(\frac{1}{2} Por ser (la bigedius HA & GL (2,7#3) y tomando A' EGL (2, Ft3): [Vi] : A-1 [Vi] y

[VK] = A-1[VK] si K # i & g K # j

PA([Vi]) = [Vi] , VA([VK]) = VK Dicka matriz existe por trabajar en #3.

:. \(\(\text{ij}\) \(\in \Su \(\frac{1}{2}\) \(\frac{1}{3}\) : \(\sigma_A = (\text{ij})\).

For ser took or 6 Su producto de eides trasposiciones ≈ fiere que to € Su] A € GL (2, F3): 5A=0. =) f sobreyeding.