SUPSI

Red wine quality prediction

Machine Learning course project

Nicolò Rubattu

nicolo.rubattu@student.supsi.ch

The Dataset

- Objective: predict quality → Regression + Classification
- Credits:

P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis. Modeling wine preferences by data mining from physicochemical properties. In Decision Support Systems, Elsevier, 47(4):547-553. ISSN: 0167-9236.

Available at: [@Elsevier] http://dx.doi.org/10.1016/j.dss.2009.05.016
[Pre-press (pdf)] http://www3.dsi.uminho.pt/pcortez/dss09.bib
[bib] http://www3.dsi.uminho.pt/pcortez/dss09.bib

Data Analisys

- Number of Instances: red wine 1599; white wine 4898
- Number of Attributes: 11 (fixed acidity, volatile acidity, citric acid, residual sugar, chlorides, free sulfur dioxide, total sulfur dioxide, density, pH, sulphates, alcohol) + quality
- Statistic analysis, outliers, NaN values, correlation analysis

Red Wine choice

BoxPlot overview of features and target correlation with outliers check.

Univariate linear regression (alcohol)

Simple Multivariate linear regression (alcohol + volatile acidity)

MSE Adjusted R²
0.414 0.2723

Multivariate linear regression (all features) with Stratified KFold Validation

• Training Set

MSE Adjusted R²
0.416 0.357

• Test Set

MSE Adjusted R²
0.434 0.2844

Multivariate linear regression with Ridge and Lasso Regularization (1)

• Ridge

Multivariate linear regression with Ridge and Lasso Regularization (2)

• Lasso

MSE Adjusted R²
0.432 0.287

Classification

- Three classes: Bad, Average and Good wine
- Logistic Regression
 K Neighbors Classifier
 Support Vector Classifier (SVC)
 Gaussian Naive Bayes
 Gaussian Process Classifier
 Decision Tree Classifier
 Random Forest Classifier
- Playground:

Classification

Random Forest Classifier

>				
	PRE	DICTED		
	Bad A	verage Goo	od	
Bad	0	13	0	
MEASURED Average	ge 3	256	5	
Good	0	23 2	20	
I	precision	recall	fl-score	support
Bad	0.00	0.00	0.00	13
Average	0.88	0.97	0.92	264
Good	0.80	0.47	0.59	43
accuracy			0.86	320
macro avg	0.56	0.48	0.50	320
weighted avg	0.83	0.86	0.84	320

Misclassification cost: 44

Accuracy Score

0.863

Classification

Support Vector Classifier (SVC)

		PR	EDICTED			
		Bad	Average	Good	d	
	Bad	0	13	(0	
MEASURED	Average	0	261	3	3	
	Good	0	25	18	8	
	pre	cision	reca	all	f1-score	support
	Bad	0.00	0.	.00	0.00	13
Ave	rage	0.87	0 .	.99	0.93	264
(Good	0.86	0 .	.42	0.56	43
accu	racy				0.87	320
macro	avg	0.58	0 .	.47	0.50	320
weighted	avg	0.84	0.	.87	0.84	320
Misclass	ification	n cost:	41			

```
# Let's perform some tuning
model = SVC()
param = {
    'C': [0.1,0.8,0.9,1,1.1,1.2,1.3,1.4],
    'kernel':['linear', 'rbf'],
    'gamma' :[0.1,0.8,0.9,1,1.1,1.2,1.3,1.4]
}
grid_svc = GridSearchCV(model, param_grid=param, scoringrid_svc.fit(xTrain, yTrain) # ~ 1 min of tuning
bestParams = grid_svc.best_params_
```

Accuracy Score

0.872

Conclusion

- Quality entries not balanced
- Disappointing results but unrelated data
- Implementation of the topics covered in the course \square
- Learning methods \(\square\$

https://github.com/nicorbtt/RedWineMachineLearning