Characterizing the Uncertainties in Non-Equilibrium MD for Thermal Transport

Manav Vohra[†], Sankaran Mahadevan[†] Collaborators: Seungha Shin[§], Ali Yousefzadi Nobakht[§]

> [†]Vanderbilt University §University of Tennessee, Knoxville

> > December 18, 2017

BACKGROUND

- Classical MD is used to investigate heat transfer dominated by phonon-phonon interactions in material systems.
 - Commonly applied to study non-metallic systems like C, Si, and Ge
- Typically conducted under equilibrium conditions characterized by thermodynamic ensembles like NVT, NVE, NPT, and μ VT.
- Non-Equilibrium MD involves setting up thermostats in different regions to establish temperature gradients.
 - Thermostatting introduces errors.

WHY MD?

- Enables simulation of much larger systems compared to DFT in a reasonable amount of time.
- Trends from MD are useful despite possible errors in estimates.

PLAN

BACKGROUND

Part I: FORWARD PROBLEM:

- Investigate error in predictions due to size of the material system and fluctuations in thermal gradient.
 - ► Construct a response surface for the error.
- Characterize the impact of uncertainty in inter-atomic potential on predictions.
 - Efficient construction of surrogates using NISP: aPSP,
 Sparse Basis, Active Subspaces
 - Examine sensitivity of estimates on parameters.

Part II: INVERSE PROBLEM:

- Calibrate critical parameters associated with the potential function in a Bayesian setting.
 - ► Exploit the error response surface from Part I.

NEMD ON A SILICON BAR

Lattice Constant (Å)	5.43
W, H (Å)	117.94, 117.94
Temperature (K)	300
Δt (ps)	0.0005
BC	Periodic
Structure	Diamond
Potential	Stillinger-Weber

OPTIMIZE FOR EQUILIBRATION

INITIAL RUNS:

- Determine the time steps needed for equilibration at all stages.
- Select a reasonable width and height for the Si bar.
 - ► Need to be in a regime where changes in width and height do not impact estimates significantly.

SELECTION OF WIDTH

SELECTION OF WIDTH

BACKGROUND

Norm of the fluctuations (NF) is computed using:

$$NF = \frac{1}{N} \left[\sum_{k} \left(T_k - T_{\{nvt,nve\}} \right)^2 \right]^{\frac{1}{2}}$$

• At $W = 21.72L_c$, the effect of length on fluctuations seems to be minuscule.

NEED A SURROGATE?

- OBJECTIVE: Forward UQ, Sensitivity Analysis, calibration, Design
- COMPUTATIONAL EFFORT: Simulations are computationally intensive.
- ACCURACY: Can a surrogate represent the observable with reasonable accuracy in the domain of interest?

MODEL REALIZATIONS

 Model realizations at Gauss-Legendre quadrature nodes are used to construct the PC surrogate.

PC EXPANSION

$$\kappa = \sum_{j} c_{j} \Psi_{j}(\xi_{1}, \xi_{2})$$

 κ : Thermal Conductivity, j: Multi-index

$$L: \mathcal{U}[50L_c, 100L_c] (\mathring{\mathsf{A}}) \rightarrow \xi_1: \mathcal{U}[-1, 1]$$

$$\frac{dT}{dx}$$
: $\mathcal{U}[1.5/L_c, 2.5/L_c]$ $(\frac{K}{\hat{\mathbf{A}}}) \rightarrow \xi_2 : \mathcal{U}[-1, 1]$

$$\epsilon = |\kappa_m - \kappa_{NEMD}|$$

 κ_m : Measured Thermal Conductivity κ_{NFMD} : MD Prediction

ACCURACY:

BACKGROUND

$$\epsilon = \frac{\left[\sum_{j} (\mathcal{G}_{M} - \mathcal{G}_{PCE}))^{2}\right]^{\frac{1}{2}}}{\left[(\mathcal{G}_{M})^{2}\right]^{\frac{1}{2}}} \approx 1.8 \times 10^{-3}$$

 \mathcal{G}_M : Model Output \mathcal{G}_{PCE} :

 \mathcal{G}_{PCE} : PCE Estimate

NEXT STEPS

- Dimension reduction through Local Sensivity Analysis.
- Estimate posterior distributions for significant potential function parameters.
- Discover a potential active subspace.