Constrained Optimization

min
$$f(x)$$
 subject to $\begin{cases} c_i(x)=0, & i \in \mathcal{E}, \text{ equality const.} \\ c_i(x) \ge 0, & i \in \mathcal{I} \text{ inequality const.} \end{cases}$

Feasible set:
$$\Omega = \{x \mid c_i(x) = 0, i \in E; c_i(x) > 0, i \in \Sigma\}$$
so, min $f(x)$
 $x \in \Omega$

Definition: The active set A(x) at any feasible x consists of the equality const. indices from E together with the indices of the inequality cons. i for which $c_i(x)=0$; that is

$$A(x) = E \cup \{i \in \mathcal{L} \mid c_i(x) = 0\}$$

At a feasible point x, the inequality cost if E I is said to be active if $C_i(x)=0$ and inactive if the strict inequality $C_i(x)>0$ is satisfied.

O A Single Equality Constraint

min
$$x_1 + x_2$$
 s.t. $x_1^2 + x_2^2 - 2 = 0$

Here
$$f(x) = x_1 + x_2$$
 $f(x) = x_1 + x_2 + x_2 - 2$

Feasible set for this problem is circle of radius $\sqrt{2}'$ centered at origin. (Just boundary not interior)

The solution x^* is obviously (-1,-1). See that at x^* , the constraint normal $\nabla c_1(x^*)$ is parallel to $\nabla f(x^*)$. There is a scalar $1,^*$ (here $1,^*=-1/2$)

$$\nabla f(x^*) = 7^* \nabla c_1(x^*)$$

By introducing the Lagrangian function: $L(x,\lambda_1) = f(x) - \lambda_1 c_1(x)$ Lagrange Multiplier $\nabla_{x} \perp (x, \lambda_{1}) = \nabla f(x) - \lambda_{1} \nabla c_{1}(x)$ At solution x*, there is a scolor 2, such that \star $\nabla_x \mathcal{L}(x^*, \lambda^*) = 0$ \leftarrow This is necessary but not sufficient. x (1,1) with 1,=1/2 satisfies # but it is not optimal solution! O A Single Inequality Constraint min $x_1 + x_2$ s.t. 2- $x_1^2 - x_2^2 \ge 0$ Now, teasible region consists of the circle and its interior! Vc, = [-2x] Constraint normal Vc, points toward the interior of the feasible region at each point on the boundary A given feasible point x is not optimal if we can find a small step 5 that both retains feasibility and decreases the objective function f to first order. C1: O The step s improves the objective function, to first order, if $\nabla f(x)^T s < 0$. f(x+s)-f(x)<0C2: 0 S retains feasibility if $0 \le c_1(x+s) \approx c_1(x) + \nabla c_1(x)^T s$ $F(x) + \nabla f(x)^{\frac{7}{5}} - f(x) \in O$ $\Re c_1(x) + \nabla c_1(x)^T s \ge 0.$ $\nabla f(\mathbf{x})^{\mathsf{T}_{\mathsf{S}}} \leq 0$ Case I: x lies strictly inside the circle, $c_1(x)>0$. Any step vector s satisfies the condition (*), provided only that its length is sufficiently small. Whenever $\nabla f(x) \neq 0$, we can obtain a step s that satisfies both C1, C2 s = - < Vf(x) for any positive scalar & sufficiently small. However, no step s is given when $\nabla f(x) = 0$.

$$\nabla_{x} L(x^{*}, \lambda^{*}) = 0 \quad \text{for some} \quad \lambda^{*} \geq 0$$

$$\lambda^{*} c_{*}(x) = 0 \quad \lambda^{*} c_{*}(x) = 0$$
When $x^{*} = (\sqrt{2}, 0)^{T}$, we have
$$\nabla_{y} f(x^{*}) = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla_{c_{*}} (x^{*}) = \begin{bmatrix} 277 \\ 1 \end{bmatrix} \quad \nabla_{c_{*}} (x^{*}) = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\nabla_{x} L(x^{*}, \lambda^{*}) = \nabla_{y} f(x^{*}) - \lambda^{*} \nabla_{c_{*}} (x^{*}) - \lambda^{*} \nabla_{c_{*}} (x^{*}) - \lambda^{*} \nabla_{c_{*}} (x^{*})$$

$$= \begin{bmatrix} 1 \\ 1 \end{bmatrix} - \lambda^{*} \begin{bmatrix} 2\sqrt{2} \\ 0 \end{bmatrix} - \lambda^{*} \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\lambda^{*} = \frac{1}{2\sqrt{2}} \quad \lambda^{*} = 1$$

$$\Rightarrow P_{\text{extrue}} \quad \nabla_{f} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla_{c_{*}} = \begin{bmatrix} -2xy \\ -2xy \end{bmatrix} \quad \nabla_{c_{*}} = \begin{bmatrix} 0 \\ -2xy \end{bmatrix}$$

$$V_{f} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \quad \nabla_{c_{*}} = \begin{bmatrix} -2xy \\ -2xy \end{bmatrix} \quad \nabla_{c_{*}} = \begin{bmatrix} 0 \\ -2$$

 $(2.1 \neq 0) \times \Rightarrow \times (-1,1)$ is not the optimal solution.

Given the point x and the active set A(x), we say that the linear independence constraint qualification (LICQ) holds if the set of active constraint gradients ${\{\nabla c_i(x), i \in \mathcal{A}(x)\}}$ is linearly independent.

Numerical Optimization
Nocedal & Wright

Theorem 12.1: First-Order Necessary Conditions It is called first-order, because they are concerned with properties of gradients (first-derivative vectors). Suppose that x^* is a local solution of $x \in \mathbb{R}^n$ subject to $\{c_i(x)=0, i \in E, x \in \mathbb{R}^n\}$ that the functions f and ci are continuously differentiable, and that the LICQ holds at x^* . Then there is a Lagrange multiplier vector λ^* , with components λ^* , $i \in EUL$, such that the following conditions are sotisfied at (x^*, λ^*) $\nabla_{x} \mathcal{L}(x^*, \lambda^*) = 0,$ for all $i \in E$, $c_i(x^*)=0,$ $c_i(x^*) \geq 0$ for all $i \in \mathcal{I}$, $\lambda_i^* \geq 0$ for all $i \in I$, Complenes tonity for all $i \in EUI$. • $\lambda_i^* c_i(x^*) = 0$ Conditions These conditions are often known as the Karush-Kuhn-Tucker (KKT) conditions. If exactly one of λ_i^* and $c_i(x^*)$ is zero for each index $i \in I$.
e.g., we have that $\lambda_i^* > 0$ for each $i \in I \cap A(x)$. Strict Complementarity

When LICQ holds, the optimal 7 is unique!