

Dekyuz 15:

(15.1) Равномерног сходимость функционаннях рядов

Переформулируем определения 13.1 и 13.2 поточенной и равномарной сходимости функциональной последовательности $\{A_n(z)\}_{n=1}^{\infty}$ на ли-ве E, в терминах величих

 $r_n(x) := |f_n(x) - f(x)|$ u $r_n := \sup_{x \in F} r_n(x)$

(15.1) $f_n(z) \rightarrow f(z)$ no $E \Leftrightarrow \forall x \in E \quad \Gamma_n(x) \rightarrow 0$.

(15.2) $f_n(z) \stackrel{?}{\Rightarrow} f(z) \text{ na } E \Leftrightarrow \Gamma_n \stackrel{?}{\Rightarrow} O$.

Πραιμερ 15.1: Pacchompien nocleg-mb $f_n(x) = \frac{\sin n^2x}{n} \rightarrow 0$ на R. B αιμ $f_n = \sup_{R} \left| \frac{\sin n^2x}{n} \right| \le \frac{1}{n} \rightarrow 0$ дакносаем, «mo $\frac{\sinh n^2x}{n} \rightarrow 0$ на R.

Teopeua 15.1: (ϵ pume pui Kouu palnover puoi exoduno emu gynny noce-mu) $f_n(z) \stackrel{\rightarrow}{\Rightarrow} f(z)$ na $E \Leftrightarrow \forall \epsilon > 0 \exists N \in \mathbb{N} \text{ m. r. } \forall n > N \forall m > N \text{ u. } \forall \alpha \in E \Rightarrow |f_n(\alpha) - f_m(\alpha)| \leqslant n + \infty$

Donogamenteito:

Tyemb $f_n(x) \Rightarrow f(x)$ na E. Torga $\forall E \neq 0 \exists N \in \mathbb{N}$, $m \neq \infty$. $\forall n > N$ u $\forall x \in E$ bygem bonomaica repalements $|f_n(x) - f(x)| < \ell_A$. Francom gue modern n > N, whose m > N u $\forall x \in E$ bygem $|f_n(x) - f_m(x)| \le |f_n(x) - f(x)| + |f_n(x) - f_m(x)| < \frac{n}{2} + \frac{n}{2} = \ell$.

(a) The cont $\forall \varepsilon > 0 \exists N \in \mathbb{N}, m.r. \forall n > N \forall m > N \ u. \ \forall x \in E \Rightarrow |f_n(x) - f_m(x)| \neq \varepsilon.$ Torga orchidus, rus $f_m(x) \underset{n \to \infty}{\longrightarrow} f(x)$ ha E. So smowly, repexage to repeggely no $m \to \infty$, row rus.

nouyeux, emo $\forall z>0$ $\exists N\in \mathbb{N}$, m.z. $\forall n>N$ u $\forall z\in E \Rightarrow |f_n(z)-f(z)| \leq \varepsilon$. $Omegga f_n(z) \underset{n\to\infty}{\rightrightarrows} f(z)$ the E.

Chequibul 1: (*pumepui Kowu pakroneproi cxoqunocmu pyrwy-ro paga)

Pynkywopankroni pag $\sum_{k=1}^{n} f_k(x)$ cxoquma pakronepro na $E \Leftrightarrow$ korga $\forall e > 0$ $\exists N \in \mathbb{N}, m.r. \forall m \ge n > \mathbb{N}$ n $\forall x \in E$ bonomeoica $\left| \sum_{k=n}^{m} f_k(x) \right| \leq E.$

luegetbue di (neovero punoe quodue pakuomeprioù exedunoca paga)

Nyemb queny- pag $\sum_{n=1}^{\infty}f_n(x)$ exogumes pakuomeprio na E.

Torga $f_n(x) \stackrel{>}{\Rightarrow} 0$ na E.

Πραιμέρ 15.2: Uzbeonio, emo $e^z = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ на \mathbb{R} (game на \mathbb{C}). Τίρα οποια Γ_n : Sup $\frac{x^n}{n!} = +\infty$. Πιοσπαιμή, эπον ραθ не εχορώτα palμομέριο να \mathbb{R} .

(5.2) Признак вейеринтрасса равномерной сходимости рада

Teoperia 15.2 $f_y cmb = \int_{n=1}^{\infty} f_n(x), \sum_{n=1}^{\infty} g_n(x), m.t. |f_n(x)| \leq g_n(x)$ gue biex $x \in E$ u gue biez goemomorus soubien $n \in N$ Torga, ecu pag $\sum_{n=1}^{\infty} f_n(x)$ ezogumax pabrio neprio na E, mo pag $\sum_{n=1}^{\infty} f_n(x)$ ezogumax na Easconomoro u paluouepro

Дохадательство: В илу условия и неравенства треугольших

comprese suba oyerka $| \sum_{k=n}^{m} f_{k}(x) | \leq \sum_{k=n}^{m} |f_{k}(x)| \leq \sum_{k=n}^{m} g_{k}(x) = \left| \sum_{k=1}^{m} g_{k}(x) \right|$

Us pabro naprovi czogunocmu $\sum_{n=1}^{\infty}g_n(z)$ na E no koumepuro Koume $VE70\ JNEN, m.t.$ Vmzn-N bornamerta $\left|\sum_{k=1}^{\infty}g_k(z)\right| < \mathcal{E}$. Ho morga no koutepuro Koum ny (*) cregyem, two na E pobronopus czogata $\sum_{n=1}^{\infty}f_n(z)$ no $\sum_{n=1}^{\infty}f_n(z)$

Chequibue 1. (маторонтной признак вейерийрасса ряви сходимоети) \mathbb{R}_y сто функциональной ряд \mathbb{E}_y \mathbb{E}_y \mathbb{E}_y такой, тто существует сходащийся числовой ряд \mathbb{E}_y $\mathbb{E$ gocianomo bousuux u beex x & E. Torga peg In(2) exogumes na E абсольто и равномерно.

 \mathcal{D} оказательство: Сходенцийся гисловой рад можно сгитать ревнаперно сходащимся на E думициональным рядом C $g_n(x) = a_n$ que $x \in E$.

Onpegeve nue 15.1: Pyrkywonavshowi prog buga $\sum_{n=0}^{\infty} a_n(x-x_n)^n$, rge anc \mathbb{R} , x, x, $\in \mathbb{R}$ (an $\in \mathbb{C}$, u x, x, $\in \mathbb{C}$), has not become convergence productions. Тогка хо - центр этого рада.

Теорема 15.3: Пусть етененной раз $\sum_{n=0}^{\infty} a_n (x-x_0)^n$ оходита в т. $t \neq x_0$ Тогда он сходитая абсолютно и равномерно на штервам (kpyre & kommencuom cayrae) $|2t-x_0| < 9|t-x_0|$ rge 0 < 9 < 1.

Dokazarenicito: "ucuoboci pag Zan(t-xo)" cxoquence, normouy noun-00 an (t-xo) 0 Ecu |2-xo| < 9 |t-xo|, mo

 $\left| a_n(x-x_0)^n \right| = \left| a_n(t-x_0)^n \right| \left| \frac{x-x_0}{t-x_0} \right|^n \leq \left| a_n(t-x_0)^n \right| \cdot q^n < q^n$

how been go cravo zuo besteuez $h \in N$ Torga no nous reasy beineput pacca b cury exeguinoun $\sum_{n=0}^{\infty} q^n$ up 0 < q < 1 pag $\sum_{n=0}^{\infty} a_n(a-a_n)^n$ exeguince avecnomeno u palnoneque ne 12-20/<9/t-20/.

Теорена 15.4: Степенной рад $\sum_{n=0}^{\infty} a_n (z-x_0)^n$ сходится в щигрвом сходиност $(-R+x_0, x_0+R)$ (крум $|z-x_0|< R$ в комплексном слугае) радиус, которого спределяется по срормум Коши - Адамара

 $R = \frac{1}{\widehat{C_{int}} \sqrt[n]{a_{n}!}}.$ Bue Jamarana этого интербага (ирта) ряд расходится. На любых подотредка $[a_i;b] \subset (-R+x_0, x_0+R)$ (заихнующ круги, летащем егрого видтри круга $[x-x_0] < R$) степеньной ряд сходитая абгомотно и ревномерью.

Bropoi pag l'eury eyeur $\left|\frac{T^n}{h^2}\right| \leqslant \frac{1}{h^2}$ na [-1;1] no repugnary Beisepuipacca exeguira asconustus u paktonepuo na [-1;1].

15.3 Признан Абеля - Дирижие

Onpequenul 15.1: Pyunyuonausnae nocuegobatensnocts $\{f_n(z)\}_{n=1}^{\infty}$ pabnovapuo orpanurena na uniosmecife E, ecun eyyeotyem $M \in \mathbb{R}$, m.z. gus bcez $n \in \mathbb{N}$ u bcez $x \in E$ enpabequibo $|f_n(x)| \leq M$ (ansrepair $f_n(x) \neq M$)

Опредиение 15.3: Рушнушональная последовательность $\{g_n(x)\}_{n=1}^\infty$ надповаемая неубльа ющей (невозрасталощей) на E, если для любого $x_0 \in E$ числовая последовательность $\{g_n(x_0)\}$ не убльаем (не возрастаем). Неубльающие и невозраста ющия — мономонносте.

Теорема 5.5: (признак Абеле - Дириги равномерной сходимости)

Для равномерной сходимости на ли-ве E рада $\sum_{n=1}^{\infty} f_n(z) g_n(z)$ достатого, гиноби выпомнялась мюбая пара условий:

«1) последоватемность $\{S_n(x)\}$, 23е $S_n(x) = f_1(x) + ... + f_n(x)$, равномерно

очраничена на E; β_1) посидоватемность $\{g_n(x)\}$ моньтонна на E и $g_n(x) = 0$ на E;

o(2) pag I for les exogueres paleonepro na E;

вг) посмоватемность (диня) моньточна на Е и равнашерно о ераничена на Е.

Πρυμερ 15.4: Ραςςνιστριν μες $\sum_{n=1}^{\infty} \frac{1}{N^n} e^{inx}$. Β ευμ $\left|\frac{1}{N^n} e^{inx}\right| = \frac{1}{N^n}$ μοπιο βακινονινό, το μες ραςκοθυπαε νησι d < 0 τι εχοζινίας αδε. τι μεδικονισμο κα \mathbb{R} τρι d > 1.

Теорема 15.6: (вторая теорема Абела в степечнох радах)

Пусть втепенной рад $\sum_{n=1}^{\infty} a_n (z-z_0)^n$ сходится в неноторой тогне $3 \in \mathbb{R}$. Тогда он сходитае равномерно на отредке с

Концали x_0, ξ . ДОКАЗАТЕЛЬСТВО: Тогки отрезка параматризуются в виде $x = x_0 + (\xi - x_0)t$

2 ge 0 = t = 1. Fogomabul Porpareque que æ l pag, nouquese

 $\sum_{n=1}^{\infty} a_n \left(\frac{1}{2} - x_0 \right)^n t^n$ $\int_{10}^{\infty} yero bu w zucro box pag <math>\sum_{n=1}^{\infty} a_n | \frac{1}{2} - x_0 \right)^n$ сходится (b впомерто $a_1 = x_0 = x_$