

DIETARY HABITS AND BREAST CANCER

The Desease

What do we know?

Breast cancer is cancer that develops from breast tissue.

Risk factors for developing breast cancer include:

- being female
- obesity
- a lack of physical exercise
- alcoholism
- an early age at first menstruation
- having children late in life or not at all, older age
- having a prior history of breast cancer, and a family history of breast cancer.

Is diet associated to cancer risk?

So far...

A priori and a posteriori dietary patterns allowed to consider diet as an overall exposure and were weakly associated with breast cancer risk

Our goal:

Find new methods to consider diet as an overall exposure and its relationship with the breast cancer risk

Strategy

Extract a posteriori dietary patterns from the available data

Identify an association between breast cancer and dietary patterns

Traditional approach

Extract a posteriori dietary patterns from the available data

Dietary patterns identified using data driven statistical methods as for example:

- Principal Component Analysis
- Factor Analysis
- Cluster Analysis

Our approach

Extract a posteriori dietary patterns from the available data

Dietary patterns identified using a neural network typically used for dimensionality reduction:

Autoencoder

Autoencoder

It is a neural network based model to compress the data. Therefore, it has the ability to learn the compressed representation of our input data

Autoencoder

In our application the first layer was populated with 27 nutrients, then reduced into 4 dimensions, which correspond to the 4 dietary patterns extracted

Autoencoder vs PCA performance

Autoencoder vs PCA

- PCA is essentially a linear transformation but Auto-encoders are capable of modelling complex non-linear functions
- PCA features are totally linearly uncorrelated with each other since features
 are projections onto the orthogonal basis. But auto-encoded features might
 have correlations, thus allowing to reconstruct more realistic dietary patterns
- A single layered autoencoder, like the one used in this case, is very similar to PCA, but with some advantages
- Autoencoders results are harder to interpret

Autoencoder Results: layer weights

Autoencoder Results: correlations

0.5

0.0

-0.5

Autoencoder Results: correlations vs weights

Autoencoder Results: interpretation

Weights	Correlation	Dietary Pattern Name
V1	DIM1	Animal products vs vegetable fats
V2	DIM2	Sugar vs vegetable fats
V3	DIM3	Starch vs animal products
V4	DIM4	Sodium vs beta-carotene

Traditional approach

Analyze the relationship between risk and disease with a logistic regression model and interpret the odds ratio adjusted for counfounding variables

Identify an association between breast cancer and dietary patterns

Our approach

Apply a Bayesian Network and describe the links among variables using the resulting conditional dependencies

Identify an association between breast cancer and dietary patterns

Forward Imputation

It is an algorithm which applies nonlinear PCA in order to impute missing values in matrices with ordinal data

Bayesian Network

It is a probabilistic graphical model that represents a set of variables and their conditional dependencies via a directed acyclic graph

Logistic Regression Results

List of confounding factors: Education, Menopausal status, Number of Children, Smoking Status, Alcohol Status, Physical activity in 15-19 years old.

Unadjusted Model:

```
Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.007242
                       0.027923
                                 -0.259 0.795365
            -0.018565
                       0.028802
                                 -0.645 0.519214
Х1
X2
                      0.028833
                                 2.530 0.011414 *
            0.072941
Х3
                       0.029129
            0.096806
                                 3.323 0.000889 ***
                       0.028484
                                 3.358 0.000787 ***
X4
            0.095634
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
```

Unadjusted vs Adjusted odds ratio:

```
(Intercept)
                          1.0756674
  0.9927843
              0.9816066
                                      1.1016468
                                                  1.1003560
(Intercept)
                     Х1
                                 X2
                                             Х3
                                                          X4
                                                                     V12
                                                                                GIN4
                                                                                              V11
  0.5188119
              0.9742165
                          1.0675567
                                      1.1412513
                                                 1.0952470
                                                              1.0751798
                                                                           0.9664423
                                                                                       0.9375706
                   ALC1
      FUM1
 1.0239415
             1.1842451
```

Adjusted Model:

```
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.656214
                        0.162649
                                 -4.035 5.47e-05 ***
                       0.029550 -0.884 0.376705
X1
            -0.026122
X2
                       0.029227
            0.065373
Х3
             0.132125
                       0.029752
                                  4.441 8.96e-06 ***
X4
            0.090980
                       0.028981
                                  3.139 0.001693 **
            0.072488
                       0.008208
V12
                                  8.831 < 2e-16 ***
                       0.033738
GIN4
            -0.034134
                                 -1.012 0.311661
V11
            -0.064463
                       0.021488
                                 -3.000 0.002700 **
            0.023659
                       0.042001
FUM1
                                  0.563 0.573230
ALC1
             0.169106
                       0.050267
                                  3.364 0.000768 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Autoencoder Results: interpretation

Weights	Correlation	Dietary Pattern Name	Impact on breast cancer
V1	DIM1	Animal products vs vegetable fats	-
V2	DIM2	Sugar vs vegetable fats	↑ Sugar ↓ Vegetable fats
V3	DIM3	Starch vs animal products	↑ Starch ↓ Animal Products
V4	DIM4	Sodium vs beta- carotene	↑ Sodium ↓ Beta-carotene

Bayesian Network Results

Bayesian Network - Some examples

Probabilities of cancer given X2 and BMI

Bayesian Network - Some examples

Probabilities of cancer given X3 and Menopausal Status

Bayesian Network - Some examples

Probabilities of cancer given X4 and AGE

