Sheafification in HoTT

Kevin Quirin and Nicolas Tabareau INRIA École des Mines de Nantes Nantes, France

Abstract—Abstract

I. INTRODUCTION

Plan of the paper:

- In section II, we define the foundations on which our worked is based.
- In section III, we explain the construction of the sheafification functor.
- Finally, we discuss related works and present future works.

II. HOMOTOPY TYPE THEORY

A. Homotopy Type Theory

We refer to [Uni13]. Truncation levels?

If x is an object of a product or a sigma type, we denote the i-th projection of x by either $\pi_i x$ or x_i .

• We use the subobjects classification seen in [RS13]: for all type B, Type_n classifies subobjects of B with n-truncated fibers; we have an equivalence

$$\sum_{A: \mathrm{Type}} \sum_{f: A \to B} \prod_{b \in B} \mathrm{IsTrunc} \ n \ \mathrm{fib}_f(b) \simeq (B \to \mathrm{Type}_n)$$

and a pullback (with $\mathrm{Type}_n^{\bullet}$ the universe of pointed n-truncated types) :

$$\begin{array}{ccc}
A & \xrightarrow{t_f} & \text{Type}_n^{\bullet} \\
\downarrow^{\text{pr}_1} & & \downarrow^{\text{pr}_1} \\
B & \xrightarrow{\chi_f} & \text{Type}_n
\end{array}$$

forall f with n-truncated fibers, with

$$t_f = \lambda a$$
, (fib_f(f(a)), (a, idpath)).

B. Left exact Modalities

We use the following definition of truncated left exact modalities :

Definition 1. Let p be a truncation index. Then a left exact modality is the data of

- (i) A predicate $P: \mathrm{Type}_n \to \mathrm{HProp}$
- (ii) For every p-truncated type A, a p-truncated type $\bigcirc A$ such that $P(\bigcirc A)$
- (iii) For every p-truncated type A, a map $\eta_A:A\to \bigcirc A$ such that

(iv) For every p-truncated types A and B, if P(B) then

$$\left\{ \begin{array}{ccc} (\bigcirc A \to B) & \to & (A \to B) \\ f & \mapsto & f \circ \eta_A \end{array} \right.$$

is an equivalence.

- (v) For all A: Type $_p$ and $B: A \to \text{Type}_p$ such that P(A) and $\Pi_{x:A}P(Bx)$, then $P\left(\sum_{x:A}B(x)\right)$
- (vi) For all A: Type $_p$ and x, y : A, if $\bigcirc A$ is contractible, then $\bigcirc (x = y)$ is contractible.

Conditions (i) to (iv) define a reflective subuniverse, (i) to (v) a modality.

Since basic operations (dependent products, products, sigma types) are stable for truncation levels, all theorem in [Uni13], chapter 7.7 remains true.

Moreover, left exactness implies in particular fibers preservations:

$$\bigcirc \left(\sum_{x:X} (fx = y) \right) = \sum_{x:\bigcirc X} (\bigcirc fx = \eta_Y y).$$

Moreover the following diagram commute

where $\pi_1 \circ \gamma = \eta_X$, and $\pi_2 \circ \gamma$ is the usual modalisation of paths.

C. Generalized pullbacks

Definition 3. Let $f: X \to Y$ be a map, and p: nat. The p-pullback of f, noted $X \times_Y \cdots \times_Y X$ is the limit of the diagram

with p copies of X. The 0-pullback of f is Unit.

In homotopy type theory, we have

$$X \times_Y \cdots \times_Y X = \sum_{x \in X^n} (fx_1 = fx_2) \wedge \cdots \wedge (fx_{n-1} = fx_n).$$

Definition 4. If $f: X \to Y$ is a map, then the Čech nerve of f is the diagram

$$C(f) := \cdots X \times_Y X \times_Y X \xrightarrow{\longrightarrow} X \times_Y X \xrightarrow{\longrightarrow} X$$

with canonical projections.

The Giraud axiom asserts that, if $f: X \to Y$ is a surjection, then the colimit of C(f) is Y. See [HTT].

III. SHEAVES

We define sheaves by induction on the homotopical truncation level of types : we define sheaves in HProp as the classical types (ie implied by their double negation), and we define sheaves on Type_{n+1} via usual definition of sheaves, as seen in [MM92] and sheaves on Type_n . Of course, the definition must be cumulative.

We will call S_i the universe of sheaves on Type_i.

A. Definitions and first properties

- Density
- Separated Type / Sheaf / closure : a subobject is always dense into its closure.
- Ω_n° is a sheaf.
- Sheaves are stable by dependent products.

Definition 5. Let E be a type. The closure of a subobject of E classified by χ is the subobject of E classified by $\bigcirc \circ \chi$.

The subobject of E classified by χ is said closed in E if its closure is itself: $\chi = \bigcirc \circ \chi$.

Definition 6. Let E be a type, and $\chi: E \to \mathrm{Type}_n$. The subobject A of E classified by χ is dense in E if its \bigcirc -closure is E seen as a subobject of E, ie

$$\forall e: E, \ \left(\sum_{e':E} e = e'\right) \simeq (\bigcirc(\chi\ e)).$$

Moreover, for all x : A we need the following coherence diagram to commute

$$\sum_{e':A} x = e' = (\chi x)$$

$$\downarrow \qquad \qquad \qquad \downarrow \eta_{(\chi x)}$$

$$\sum_{e':E} x = e' = (\chi x)$$

where $\iota: x \mapsto (x_{11}; x_2)$.

It follows from fibers preservation that any n-subobject of a type seen as a n-subobject of its closure is closed.

B. Construction of sheafification

We mimic the construction in [MM92] Two steps: separation, sheafification.

- 1) For h-propositions:
- Any left exact modality on HProp.
- We use ¬¬

- 2) From Type to Separated Type:
- Definition of the separation reflective subuniverse (\Box, μ) . $\Box + \Box T$ is separated for all (n+1)-truncated type T **Theorem 7.** A (n+1)-truncated type T with an embedding $f: T \to U$ into a separated (n+1)-truncated type U is itself separated.
- If $a, b: T: \mathrm{Type}_{n+1}$ such that $\mu_T a = \mu_T b$, then $\bigcirc (a =$
- Cech nerve of μ is the diagram of closure of diagonals, hence their colimits are equal. Since colimits are universal, so is \square .
- (\Box, μ) is a modality.
- 3) From Separated Type to Sheaf:
- **Theorem 8.** Any type $A : \text{Type}_{n+1}$ closed in a sheaf is itself a sheaf.
- Definition of sheafification reflextive subuniverse (\star, ν)
- left exactness
- cumulativity

IV. FUTURE WORKS

Prove that the Giraud axiom holds in homotopy type theory.

V. CONCLUSION

The conclusion goes here.

ACKNOWLEDGMENT

The authors would like to thank...

REFERENCES

[RS13] Egbert Rijke and Bas Spitters. Sets in homotopy type theory. 2013. [Uni13] Univalent Foundations Project. Homotopy Type Theory: Univalent Foundations for Mathematics. 2013.

[MM92] Saunders MacLane and Ieke Moerdijk. Sheaves in Geometry and Logic. Springer-Verlag, 1992.

[HTT] Jacob Lurie Higher Topos Theory

[lumsdaine] Lumsdaine Diagrams and limits