Elliptic Partial Differential Equations Lecture 1

Maximo Fernandez

2022-08-11

1 Classical Form

Consider the following problem: Given $\Omega \subseteq \mathbb{R}^n$, $n \geq 1$, Ω open, with

 $f:\Omega\to\mathbb{R}$, continuous

 $g: \partial \Omega \to \mathbb{R}$, continuous

Solve the following system:

$$\begin{cases} u \in \mathcal{C}^{2}(\Omega) \cap \mathcal{C}^{0}(\overline{\Omega}) \\ -\Delta u = f & \text{in } \Omega \\ u = g & \text{on } \partial\Omega \end{cases}$$

Where Δ is the laplace operator: $\Delta u(x) := \operatorname{div}(\nabla u(x))$. That is:

u is twice differentiable on Ω , continuous on it's boundary, and

$$\begin{cases} -\Delta u(x) = f(x) & \forall x \in \Omega \\ u(x) = g(x) & \forall x \in \partial \Omega \end{cases}$$

where the first condition is called the *Poisson Equation*, and the second condition is called the *Dirichlet Boundary Condition*.

Our interests are in the existence of u, the uniqueness of u, and the regularity of u. These characteristics are found through our initial data Ω , f, and g.

1.1 Laplace's Equation

Consider the above problem with the initial condition f = 0:

$$\begin{cases} u \in \mathcal{C}^{2}(\Omega) \cap \mathcal{C}^{0}(\overline{\Omega}) \\ -\Delta u = 0 & \text{in } \Omega \\ u = g & \text{on } \partial\Omega \end{cases}$$

The new PDE, $-\Delta u = 0$, is called *Laplace's Equation*. Regularity is especially of interest with Laplace's Equation, as smoothness can be much higher than simply $u \in C^2(\Omega)$

2 Semiclassical Form

Consider Ω bounded, $g \in \text{Lip}(\partial \Omega)$, that is, g is Lipschitz continuous. Now let

$$f(\xi) = \frac{|\xi|^2}{2} \quad \forall \, \xi \in \mathcal{R}$$

And consider the Dirichlet Functional

$$F(u) = \int_{\Omega} f(\nabla u) \, dx = \frac{1}{2} \int_{\Omega} |\nabla u|^2 \, dx \quad \forall u \in \text{Lip}(\Omega)$$

Remark. $u \in Lip(\Omega) \implies u$ is differentiable almost everywhere in Ω , so $|\nabla u| \in L^{\infty}(\Omega)$, implying the Dirichlet Functional is well defined.

The Semiclassical Approach is to minimize the Dirichlet Functional:

$$\inf\{F(u)|u\in \operatorname{Lip}(\Omega), u=g \text{ on } \partial\Omega\}.$$

Lemma 2.1. Suppose that u is a solution of the Semiclassical Approach, that is:

$$\frac{1}{2} \int_{\Omega} |\nabla u|^2 dx = \inf \{ F(u) | u \in Lip(\Omega), u = g \text{ on } \partial \Omega \}$$

And suppose $u \in C^2(\Omega) \cap C^0(\overline{\Omega})$, then u solves the Classical Form with f = 0 (Laplace's Equation).

Proof. Take $\phi \in \text{Lip}(\Omega)$ and suppose ϕ has compact support in Ω , that is, ϕ is 0 in the boundary of Ω^1 : $\phi \in \text{Lip}_c(\Omega) \implies f(\partial\Omega) = \{0\}$. Further, let $\lambda \in \mathbb{R}$, and consider $u + \lambda \phi$:

$$u + \lambda \phi \in \operatorname{Lip}(\Omega)$$
 and $u + \lambda \phi = g$ on $\partial \Omega$

We can also compare $u + \lambda \phi$ to u since they are both Lipschitz. Since u solves the Semiclassical Approach:

$$F(u) \leq F(u + \lambda \phi) \implies h(\lambda) := F(u + \lambda \phi)$$
 has minimum $\lambda = 0$

Thus, h'(0) = 0. Computing h':

$$h'(\lambda) = \frac{d}{d\lambda} F(u + \lambda \phi) = \frac{d}{d\lambda} \frac{1}{2} \int_{\Omega} |\nabla u + \lambda \nabla \phi|^2 dx$$
$$\frac{1}{2} |\nabla u + \lambda \nabla \phi|^2 = \frac{1}{2} \frac{d}{d\lambda} \langle \nabla u + \lambda \nabla \phi, \nabla u + \lambda \nabla \phi \rangle = \langle \nabla u + \lambda \nabla \phi, \nabla \phi \rangle$$
$$\frac{d}{d\lambda} \frac{1}{2} \int_{\Omega} |\nabla u + \lambda \nabla \phi|^2 dx = \int_{\Omega} \langle \nabla u + \lambda \nabla \phi, \nabla \phi \rangle dx$$
$$h'(0) = \int_{\Omega} \langle \nabla u, \nabla \phi \rangle dx$$

Thus, $\int_{\Omega} \langle \nabla u, \nabla \phi \rangle dx = 0 \quad \forall \phi \in \text{Lip}_c(\Omega)$. This is a weak formulation of the Classical Form. Integrating h'(0) by parts²:

$$\int_{\Omega} \langle \nabla u, \nabla \phi \rangle \, dx = -\int_{\Omega} \Delta u \phi \, dx = 0 \quad \forall \phi \in \mathrm{Lip}_c(\Omega)$$

Sinc this is true for any ϕ , Δu must be 0 point-wise everywhere. That is:

$$\Delta u = 0$$
 (Laplace's Equation!)

¹Why? Look up compact support later.

²No clue how this works but I'll write an appendix to explain it eventually