Laurea Triennale in Matematica, Laurea Triennale in Informatica Elementi di Probabilità/Introduzione alla Statistica

Scritto 5

Si svolgano 3 esercizi a scelta sui 4 proposti. Il punteggio finale sarà la somma dei punti dei 3 esercizi riusciti meglio.

Problema 5.1 (11 punti). Steve gioca ad un videogame di corse automobilistiche. Per una certa pista, per completare un giro impiega un tempo casuale con media 135 secondi e deviazione standard 6 secondi. Sia T il tempo che impiega per completare una gara di 15 giri.

- (6 punti) Determinare la media e la deviazione standard di T e approssimativamente la probabilità che T superi i 34 minuti.
- (3 punti) Determinare di quanto dovrà abbassare il tempo medio sul giro (tenendo fissa la deviazione standard) per avere almeno il 25% di probabilità di concludere la gara in meno di 30 minuti.
- (2 punti) In realtà il tempo necessario per compiere un giro senza grossi errori, sarebbe una variabile aleatoria con media 130 s e deviazione standard 1 s. Il problema è che con probabilità p durante un giro Steve commette un errore grossolano, che gli fa perdere r secondi. Determinare p e r per cui media e deviazione standard diventano quelle date all'inizio.

Problema 5.2 (11 punti). Sia X una variabile aleatoria continua con funzione di densità di probabilità

$$f_X(t) = \begin{cases} c(t-1)^2 & 0 \le t \le 2\\ 0 & \text{altrimenti} \end{cases}$$

- (7 punti) Si determini il valore di c, si tracci un grafico di f_X , si calcolino media, moda e deviazione standard di X.
- (2 punti) Si determini la funzione di ripartizione di X e si trovi la mediana.
- (2 punti) Si trovino due reali $a \in b$ tali che $(X a)^b$ abbia distribuzione uniforme con estremi qualsiasi.

Problema 5.3 (12 punti). Nel 2022 vi sono state finora 814 estrazioni del Lotto, contando tutte le

ruote. Ogni numero dovrebbe uscire in una estrazione con probabilità di $\frac{5}{90} = \frac{1}{18}$. Le estrazioni sono indipendenti. Il numero 13 è uscito 36 volte in totale.

- (7 punti) In media, quante volte dovrebbe uscire ciascun numero? Si verifichi al 5% di significatività se sia possibile che la probabilità del 13 sia davvero $\frac{1}{18}$. È richiesto il calcolo del p-value.
- (3 punti) Nelle ultime 44 estrazioni il 13 non è mai uscito. Si determini il più piccolo n tale che dopo n estrazioni senza che il 13 esca si può concludere al 5% di significatività che la probabilità di questo numero è inferiore a $\frac{1}{18}$.
- (2 punti) Se la probabilità di estrazione del 13 fosse $\frac{1}{20}$, quante estrazioni sarebbero necessarie affinché il test del primo punto avesse una potenza dell'80%?

Problema 5.4 (11 punti). Una bomboletta di deodorante spray viene testata per misurare il peso delle singole spruzzate. I dati qui sotto rappresentano i pesi in mg di 14 spruzzate prese a inizio bomboletta,

- (6 punti) La deviazione standard del peso di una spruzzata dovrebbe non superare 1 mg. Si verifichi se questa ipotesi è soddisfatta al 95% di significatività.
- (3 punti) Quante spruzzate sarebbe necessario raccogliere più o meno per stimare il peso medio al 95% di confidenza con una forbice di valori di semiampiezza non superiore a 0.1 mg?
- (2 punti) Altre 10 pesate a fine bomboletta mostrano pesi con media campionaria di 9.04 mg e deviazione standard campionaria di 0.97 mg. Si verifichi tramite calcolo del p-value se questi dati sono compatibili con l'ipotesi che il peso medio di una spruzzata sia uguale a inizio e a fine bomboletta.