## AI25BTECH11016-Varun

# **Question:**

A, B, C and D, are four points in a plane respectively such that  $(A - D) \cdot (B - C) = (B - D) \cdot (C - A) = 0$ . The point D, then, is the \_\_\_\_\_ of  $\triangle ABC$ .

#### **Solution:**

Consider the equation,

$$(A - D) \cdot (B - C) = 0 \tag{1}$$

This implies line joining A and D is perpendicular to line joining B and C Consider the equation,

$$(B-D)\cdot(C-A)=0$$
(2)

This implies line joining B and D is perpendicular to line joining A and C In  $\triangle ABC$ ,

side BC is perpendicular to AD

side AC is perpendicular to BD

## We know that,

The altitudes(The perpendiculars drawn from a vertex to opposite sides) are concurrent at Orthocentre.

#### Therefore,

D must be Orthocentre of  $\triangle ABC$ 

1



Fig. 0.1