Fahrzeugmechatronik II Optimale Regelung

Prof. Dr.-Ing. Steffen Müller M.Sc. Osama Al-Saidi

Fachgebiet Kraftfahrzeuge • Technische Universität Berlin

Einleitung Motivation

Werden die Güteforderungen an den Regelkreis durch ein Gütefunktional ausgedrückt, das den Verlauf der Stellund Regelgrößen bewertet, so kann der Regler als Lösung eines Optimierungsproblems gefunden werden.

Es werden behandelt:

- > Grundgedanke der optimalen Regelung
- Ermittlung der optimalen Zustandsrückführung
- > Eigenschaften und Anwendungsgebiete des Reglers

Grundgedanke der optimalen Regelung Aufgabenstellung

Im Gegensatz zur *PI-Regelung* oder *Polzuweisung* sollen nun **Güteforderungen für den gesamten Verlauf der Stell- und Regelgrößen** erfüllt werden.

Zunächst wird gefordert, dass die Regel- und Stellgrößen für die Überführung von y(t=0) nach y(t=te) über den gesamten Verlauf möglichst klein werden.

Das **Entwurfsziel** kann dann als **Optimierungsaufgabe** formuliert werden.

Seite 4

Grundgedanke der optimalen Regelung Optimierungsaufgabe

Die Optimierungsaufgabe lautet

$$\min_{\mathbf{u}(t)} J_e(\mathbf{x}_0, \mathbf{u}(t)) = J_e(\mathbf{x}_0, \mathbf{u}^*(t))$$

mit

$$J_e(\mathbf{x}_0, \mathbf{u}(t)) = \mathbf{y}^T(t_e)\mathbf{S}\mathbf{y}(t_e) + \int_0^{t_e} (\mathbf{y}^T(t)\mathbf{Q}_y\mathbf{y}(t) + \mathbf{u}^T(t)\mathbf{R}\mathbf{u}(t)) dt$$

Grundgedanke der optimalen Regelung Umformung des Optimierungsproblems

Die Aufgabenstellung bezieht sich auf

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \quad \mathbf{x}(0) = \mathbf{x}_0$$
$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

Grundgedanke der optimalen Regelung Formulierung des Optimierungsproblems

Für die Regelstrecke

$$\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{B}\mathbf{u}(t) \quad \mathbf{x}(0) = \mathbf{x}_0$$

$$\mathbf{y}(t) = \mathbf{C}\mathbf{x}(t)$$

und das Reglergesetz

$$\mathbf{u}(t) = -\mathbf{K}\mathbf{x}(t)$$

soll das Optimierungsproblem

$$\min_{\mathbf{K}} J$$

gelöst werden, mit

$$J = \int_{0}^{\infty} \left(\mathbf{x}^{T}(t) \mathbf{Q} \mathbf{x}(t) + \mathbf{u}^{T}(t) \mathbf{R} \mathbf{u}(t) \right) dt$$

Seite 7

Optimalitätsbedingung des LQ-Problems Neuer Gütewert für die ungeregelte Strecke

Optimalitätsbedingung des LQ-Problems Neuer Gütewert für die ungeregelte Strecke

Satz 7.1 (Stabilitätsanalyse mit der Ljapunowgleichung)

Die Ljapunowgleichung (7.16) hat genau dann für eine beliebige gegebene symmetrische, positiv definite Matrix Q eine symmetrische, positiv definite Lösung P, wenn die Matrix A asymptotisch stabil ist.

Seite 9

Optimalitätsbedingung des LQ-Problems Neuer Gütewert für die geregelte Strecke

Seite 10

Optimalitätsbedingung des LQ-Problems Ableitung der Optimalitätsbedingung

Seite 11

Optimalitätsbedingung des LQ-Problems Ableitung der Optimalitätsbedingung

Seite 12

Optimalitätsbedingung des LQ-Problems Ableitung der Optimalitätsbedingung

Seite 13

Optimalitätsbedingung des LQ-Problems Hinreichende Optimalitätsbedingung

Seite 14

Lösung des LQ-Problems

Satz 7.2 (Optimalregler)

Betrachtet wird eine vollständig steuerbare Regelstrecke

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t), \qquad \boldsymbol{x}(0) = \boldsymbol{x}_0$$

und ein Gütefunktional

$$J = \int_0^\infty (\boldsymbol{x}'(t)\boldsymbol{Q}\boldsymbol{x}(t) + \boldsymbol{u}'(t)\boldsymbol{R}\boldsymbol{u}(t)) dt$$

mit symmetrischer, positiv semidefiniter Wichtungsmatrix Q und symmetrischer, positiv definiter Wichtungsmatrix R. Unter der Voraussetzung, dass das Paar (A, \bar{Q}) vollständig beobachtbar ist, wobei die Matrix \bar{Q} aus der Zerlegung

$$Q=\bar{Q}'\bar{Q}$$

der Wichtungsmatrix Q hervorgeht, ist die Lösung des Optimierungsproblems

$$egin{array}{c} \min J \ oldsymbol{K} \end{array}$$

durch die Zustandsrückführung

$$\boldsymbol{u}(t) = -\boldsymbol{K}^* \boldsymbol{x}(t)$$

mit

$$K^* = R^{-1}B'P$$

gegeben. P ist dabei die symmetrische, positiv definite Lösung der Matrix-Riccatigleichung

$$A'P + PA - PBR^{-1}B'P + Q = O.$$

Seite 15

Vielen Dank für Ihre Aufmerksamkeit!