FRM 1 - ASSIGNMENT 1

NGUYEN NGOC PHUNG

5/7/2021

Financial Risk Management 1: Assignment 1

Using the following command in R to download adjusted prices of IMB from 2015-2019

```
p = get.hist.quote(instrument = "ibm", start = "2015-01-01", end = "2019-12-31",quote = "AdjClose")
```

Write your own program in R to answer the following questions:

- a. Plot histogram of IBM stock prices, and used historical method to estimated value at risk at 5%
- b. You will find the latest price of IBM from your data (at date: 2019-12-30). Use Monte Carlo method with 1000 simulations to forecast the price of the next day and then forecast Value at Risk for the next day.

GET THE IBM STOCK PRICE FROM 2015-2019

```
# IMPORT THE LIBRARY
library(tseries)

## Warning: package 'tseries' was built under R version 4.0.3

## Registered S3 method overwritten by 'quantmod':

## method from

## as.zoo.data.frame zoo

library('quantmod')

## Loading required package: xts

## Loading required package: zoo
```

```
##
## Attaching package: 'zoo'
## The following objects are masked from 'package:base':
##
##
      as.Date, as.Date.numeric
## Loading required package: TTR
## Version 0.4-0 included new data defaults. See ?getSymbols.
library('tidyquant')
## Warning: package 'tidyquant' was built under R version 4.0.3
## Loading required package: lubridate
## Warning: package 'lubridate' was built under R version 4.0.3
##
## Attaching package: 'lubridate'
## The following objects are masked from 'package:base':
##
##
      date, intersect, setdiff, union
## Loading required package: PerformanceAnalytics
## Warning: package 'PerformanceAnalytics' was built under R version 4.0.3
##
## Attaching package: 'PerformanceAnalytics'
## The following object is masked from 'package:graphics':
##
##
      legend
## Business Science offers a 1-hour course - Learning Lab #9: Performance Analysis & Portfolio Optimiza
## </> Learn more at: https://university.business-science.io/p/learning-labs-pro </>
# GET THE STOCK PRICE DATA
stock_price= get.hist.quote(instrument = "ibm", start = "2015-01-01", end = "2019-12- 31",quote = "AdjC
## 'getSymbols' currently uses auto.assign=TRUE by default, but will
## use auto.assign=FALSE in 0.5-0. You will still be able to use
## 'loadSymbols' to automatically load data. getOption("getSymbols.env")
## and getOption("getSymbols.auto.assign") will still be checked for
## alternate defaults.
##
## This message is shown once per session and may be disabled by setting
## options("getSymbols.warning4.0"=FALSE). See ?getSymbols for details.
## time series starts 2015-01-02
## time series ends
                   2019-12-30
```

PLOTTING AND HISTOGRAM OF STOCK PRICE St

```
# Plotting of stock price
plot(stock_price,col="darkblue",lwd=1.5, main= 'STOCK PRICE IBM')
```

STOCK PRICE IBM

Histogram of stock price
hist(coredata(stock_price), col='darkmagenta', breaks=40, main='HISTOGRAM; STOCK PRICE IBM')

HISTOGRAM; STOCK PRICE IBM

HISTORICAL METHOD: VALUE AT RISK AT 5% (95% CONFIDENCE LEVEL)

```
# First, we calculate the loss of each day by taking S(t-1)-S(t)
loss <- -diff(stock_price,differences = 1)
n<- length(loss)

# Second, we sort the loss in ascending order @-@
sorted_loss<- sort(coredata(loss))

# Third, we calculate the VaR 95% by taking the 1193rd value of sorted_loss (n*0.95= 1193.2)
# So VaR 95% of IBM is:
VaR_95= sorted_loss[1193]
VaR_95

## [1] 2.420417

# Plotting
hist(coredata(loss), col='darkblue', breaks=40, main='HISTOGRAM OF LOSS IBM')
abline(v=VaR_95,col='red')</pre>
```

HISTOGRAM OF LOSS IBM

MONTE-CARLO METHOD:

```
# Loss in the last day (30-12-2019) is:
S_t<- coredata(stock_price)[1256]</pre>
# We simulate 1000 Z_t from N(0,1) @-@
Z_t<-rnorm(1000)</pre>
Z_t[1:10]
## [1] 0.13210981 0.58559528 -0.21838621 -0.65035644 1.68336425 -2.11417898
   [7] -1.28902619 -0.87962979 -2.06145227 0.01333112
# Calculate the mean and standard deviation:
u<-mean(diff(log(stock_price),1)[-1,])
sigma<-sd(diff(log(stock_price),1)[-1,])</pre>
c(u, sigma)
## [1] 1.233769e-05 1.298964e-02
# So 1000 scenarios of S(t+1) is:
S_t1<-S_t*exp((u-(sigma^2)/2) + Z_t)
# Plotting
hist(S_t1, col='deeppink3', breaks=40, main='HISTOGRAM OF 1000 SIMULATION')
```

HISTOGRAM OF 1000 SIMULATION


```
# Now, we calculate VaR by taking 5% quantile from the return (estimated) @-@
return_monte <- log(S_t1/S_t)
VaR_95_monte <- quantile(return_monte,prob=0.05)
VaR_95_monte

## 5%
## -1.646906

# Histogram of the simulated return @-@
hist(return_monte, breaks = 70, col='darkblue', main='SIMULATED RETURN')
abline(v=VaR_95_monte,col='red')</pre>
```

SIMULATED RETURN

