

Data Collection and Preprocessing Phase

Date	15 March 2024
Team ID	738214
Project Title	Predicting Mental Health Illness Of Working Professionals Using Machine Learning.
Maximum Marks	6 Marks

Data Exploration and Preprocessing Template

- Implement the chosen resolution plans to address data quality issues.
- Explore data distributions (histograms, boxplots) to understand variable ranges and potential skewness. This can help identify outliers and inform normalization decisions.
- Perform feature engineering if needed (e.g., creating new features from existing ones, encoding categorical variables). Consider one-hot encoding for categorical features with many categories.
- Standardize or normalize numerical features (if necessary) to ensure all features contribute equally to the model. Standardization scales features to have a mean of 0 and standard deviation of 1, while normalization scales features to a range of 0 to 1. The choice depends on the algorithm's assumptions.
- Split the data into training and testing sets for model development and evaluation. A common split I
 is 80% for training and 20% for testing, but this can vary depending on the dataset size.

Goal: Build a system to predict mental health needs based on user input using machine learning.

Data: Analyze survey data on demographics, work environment, and mental health experiences.

Tools: Python libraries (scikit-learn, pandas, NumPy, Matplotlib/Seaborn, Flask)

Section	Description
Data Overview	 Structure: Likely stored in a tabular format (CSV) named "survey.csv". Each row represents a participant in the survey. Each column represents a specific question or variable asked in the survey.

	 Additional Notes: The data likely includes a mix of data types (string, boolean, integer). The dataset size is relatively small (around 303.68 KB).
Univariate Analysis	 Access the Data: If you have the "survey.csv" file, you can use Python libraries like pandas to load the data and perform univariate analysis. Explore Existing Analysis: Look for resources that might have already analyzed the data. The original source (Open Sourcing Mental Illness) or related research papers might provide some insights into individual variable explorations. Focus on Descriptive Statistics: You can analyze the data types from the description and identify categorical vs. numerical features. This offers a basic understanding of the data structure, even without specific values.
Bivariate Analysis	 No exact info on number of participants or basic statistics (mean, median) available. Data likely stored in a CSV file with around 27 features (questions) per person. Features likely include a mix of text answers (e.g., country), yes/no options (e.g., self-employed), and numbers (e.g., age). You can't do a full analysis of individual variables (mean, median) or relationships between two variables (correlation) without the actual data.
Multivariate Analysis	 Full analysis involving multiple variables at once (multivariate analysis) requires the actual data. Multivariate analysis is valuable because mental health is influenced by many factors, not just one or two. Machine learning algorithms can be used for this analysis once you have the data. For now, you can explore existing research on similar data analysis or brainstorm potential relationships between multiple variables based on the data description.

- Identification and treatment of outliers. **Skewed Models:**Outliers can significantly influence machine learning models, leading to inaccurate predictions.
- **Data Errors:** They might indicate data entry errors or inconsistencies requiring investigation.
- **Genuine Rarities:** Sometimes, outliers represent genuine but rare cases that shouldn't be removed without justification.

Identifying Outliers:

- **Visualizations:** Techniques like boxplots and scatter plots can help visually identify data points that fall far from the main cluster.
- Statistical Methods: Techniques like calculating standard deviation or using Interquartile Range (IQR) can help define thresholds for outliers.

Treatment of Outliers:

Outliers and Anomalies

- **Investigate:** First, try to understand why the outlier exists. Is it a genuine case or a potential error?
- Winsorization: This technique caps outliers to a specific value within the distribution, preserving their influence but reducing their impact.
- Removal (Caution): Removing outliers should be a last resort, especially if they represent genuine but rare cases. Only remove them if you're confident they are errors.

Considerations for Mental Health Data:

- Sensitivity: Mental health data can be sensitive. Removing outliers needs careful justification to avoid excluding potentially vulnerable populations.
- Domain Knowledge: Understanding the context and expected ranges for each variable is crucial for identifying meaningful outliers.

Remember: There's no one-size-fits-all approach for outliers. The strategy depends on the specific data and the chosen model.

Data Preprocessing Code Screenshots

