修改人 : 张元南 www. PIC591. com

修改时间: 2010-06-2 10: 15

修改说明:修正5月17号之前发布的材料的错误。修正接线图有两个HC的错误。

内容目■

一 、	电机连线顺序的学习	1
_,	换相表的适用范围	3
三、	关于 AN957 的换相表的分析	4
四,	电机连线实战	6
附录	:,几种电机反转情况的换相表分析	7
附录	:一、ON_PWM 方式的反转换相表分析	8
附录	:二、PWM_ON 方式的反转换相表	8
附录	:三、上下管都用独立的单级性 PWM 的反转换相表	9

一、电机连线顺序的学习

1、 电机的正转方向

从正面看电机的轴承, 顺时针。可以看看家里的电风扇, 就是如此。

2、 国内大学的各种材料上3相与HALL传感器的位置图

请注意观察上图的特点, 电机 3 相的 A, B, C, 按顺时针标, 而 H1, H2, H3, 按反时针

标,H1即HC,H2即HB,H3即HA,并且HC,HB,HA刚好在A,B,C这3相的180度角位置。 当一个厂家告诉你的是电机3相无论是U,V,W,还是A,B,C,请注意其顺序是否与上图一致,不一致,请按上图的顺序排好3相。

3、HALL出现的理论顺序

0 度的时候 HC, HB, HA, 即 H1, H2, H3, 依次为 101, 是 5。出现的输入如下:

度数	HC (H1)	HB (H2)	HA (H3)	HC/B/A 组合
$0^{\sim}60$	1	0	1	5
$60^{\sim}120$	1	0	0	4
$120^{\sim}180$	1	1	0	6
$180^{\sim}240$	0	1	0	2
$240^{\sim}300$	0	1	1	3
$300^{\sim}360$	0	0	1	1

即 HALL 是按照 5, 4, 6, 2, 3, 1 的顺序出现的。实际的电机,HALL 编码器有 2 种做法,一种是内置,用户不可调节,一种是外置用户可调,用户可调的 HALL,如果调节角度出错,就有可能导致电机反转,堵转。而什么时候调到合适的位置呢? 电机实际运行过程中,电流最小的位置(这就要求必须有能让电机先转起来的程序,以及硬件环境),而测电流则可用交流电流表测试相电流即可。对于低压电机,一般采取的是 H-PWM_L-ON,HALL 的顺序和接线的顺序出点错,经过一定的负负得正导致电机正转,问题都是不大,但如果采取的是 ON_PWM 或者 PWM_ON,HALL 的接线出错,就有可能导致本应该是 ON_PWM 的波形变成了 PWM ON!!。

4、电机3相的驱动管编号

理论上, M1, M2, M3 接的驱动管,编号是可以乱编的,但是,为了记忆方便,中国的大学教程,一般都采取这样的编号,即,上管 135,下管 462(不是 246 哦)。具体连接如下所示范:

为什么这么编号,等下我们就清楚了。

5、电机3相及HALL与MCU的接口

针对PIC的dsPIC30/33的MCU,电机3相由6路PWM引脚(未必都输出PWM波形)直接控制,即PWM1H/L控制M1的上下管,PWM2H/L控制M2的上下管,PWM3H/L控制M3的上下管。

而 HC/B/A,即 H1/2/3,则依次接入 RB5/4/3,或者是带电平变化中断的其它口,比如本站的 dsPIC30F5015 及 33FJXXXMC 代码用到的 RG9/8/7,需要注意的是,HC(H1)接引脚编号高的,HB(H2)中间,HA(H3)接引脚编号低的。以方便编程。

6、理论换向表

这里我们不想直接告诉大家一个答案。我们想通过展示笔者的在资料混乱的情况下的学习和推理过程,再最后给答案,具体请看后续章节。

二、换相表的适用范围

本文档的换相表,适用于星型(Y型)连接的3相BLDC电机,写此文档最早的原因是由于在开发带HALL传感器的BLDC电机控制中,发现《PWM与数字化电动机控制技术应用》一书中描述的星型连接的BLDC电机的换相表,排除管子编号的差异后,与MICROCHIP的AN957的代码以及AN957文档所描述无法匹配。因此综合了多份资料,并咨询了多个相关方面人事,给出一份判定换相表的土办法。适合非自动化专业的电机控制的新手阅读。三角形(DELTA)连接的电机,不适用本文档,目前多数电机,包括MICROCHIP的配套电机,均为星型连接。关于三角型的BLDC电机的控制,根据电机厂家的说法和笔者了解到的情况,市场上用的不多,而且笔者最近也没空去搞,后续如果有机会,会补充到本份文档中。

三、关于 AN957 的换相表的分析

第1,请仔细查第一章,明白我们要采取的各种连线,管子的编号,MCU的连接顺序。

第2, 电机停下来的时候, 未必是停在0度, 因此第一次通电, 也要查询 HALL 状态。

第3,霍尔和换相间的对应,首先搞清楚,你的管子,下管是按4,6,2这样的顺序,还是2,4,6,你看的材料,到底是依据哪个顺序。**然后,我们建议转换到4,6,2顺序**,做定向分析。

我们依据的驱动图示意,即上管1,3,5,下管4,6,2

	A相	B相	C相
上管编号	Q1	Q3	Q 5
下管编号	Q4	Q6	Q 2

无论管子怎么叫,请注意按照PWM1H连接A相上管,PWM1L连接A相下管,PWM2H连接B相上管,PWM2L连接B相下管,PWM3H连接C相上管,PWM3L连接C相下管的顺序连接,便于代码维护和设计维护。

第4,如何根据 MCHP 的 DEMO 分析换相顺序是否合理。首先要明白 MCHP 的 DEMO 用什么方式控制,AN957,BLDC 带传感器的文档中的表,是按上管 PWM,下管恒通的方式,但是中文注释写错了,写成"上管恒通,下管 PWM"请读者注意。先以 AN957 文档中的换相表为例子。

unsigned int StateLoTable[] = $\{0x0000, 0x0210, 0x2004, 0x0204, 0x0801, 0x0810, 0x2001, 0x0000\}$;

这个表,最后被加载到OVDCON。所以,先要搞清楚OVDCON的作用。

BIT15 BIT8

POVD4H POVD4L POVD3H POVD3L POVD2H POVD2L POVD1H POVD1L

BIT7 BIT0

POUT4H POUT4L POUT3H POUT3L POUT2H POUT2L POUT1H POUT1L

bit 15-8 POVD4H-POVD1L: PWM输出改写位

1 = PWMxx I/O引脚上的输出由PWM发生器控制

0 = PWMxx I/0引脚上的输出由相应的POUTxx位中的值控制

bit 7-0 POUT4H-POUT1L: PWM 手动输出位

1 = 在相应的POVDxx 位被清零时PWMxx I/0引脚驱动为有效

0 = 在相应的POVDxx 位被清零时PWMxx I/0引脚驱动为无效

霍尔CBA	换相控制字	导通管	对应上管135下管462的导通管
001	0X0210	1H, 3L	Q1、2
002	0X2004	3H, 2L	Q5、6
003	0X0204	1H, 2L	Q1、6
004	0X0801	2H, 1L	Q3, 4
005	0X0810	2H, 3L	Q3、2
006	0X2001	3H, 1L	Q5、4

第5,参考第2点,把第4点中推出的霍尔按照通电出现的顺序排列

霍尔CBA 对应上管135下管462的导通管

5	Q2	3
4	Q3,	4
6	Q4,	5
2	Q5,	6
3	Q6、	1
1	Q1 _s	2

继续分析, AN957配套代码中的换相表。

unsigned int StateLoTableAntiClk[] = $\{0x0000, 0x2001, 0x0810, 0x0801, 0x0204, 0x2004, 0x0210, 0x0000\}$;

霍尔CBA	换相控制字	导通管	对应上管135下管462的导通管
001	0X2001	3H, 1L	Q5、4
002	0X0810	2H, 3L	Q3、2
003	0X0801	2H, 1L	Q3、4
004	0X0204	1H, 2L	Q1, 6
005	0X2004	3H, 2L	Q5、6
006	0X0210	1H, 3L	Q1、2

霍尔CBA 对应上管135下管462的导通管

5 Q5, 6

4	Q6,	1
6	Q1,	2
2	Q2,	3
3	Q3,	4
1	Ω4、	5

两张表都是对的,那是否一张是正转一张反转呢,正反转,相位差是180度,刚好印证了这两张表。哪张正转,哪张反转呢。第一张表正转,2010年5月17号前发布的材料都写错了,还请大家原谅。因为根据笔者查到的正转的资料,通电相是电机的B,B,C,C,A,A,即使您不怎么懂得电流的流向,但是在HALL传感器按照5,4,6,2,3,1排列后,只有第一张表是比较符合这样B,B,C,C,A,A的通电顺序的。因此第一张表是正转。也许读者会问,为什么笔者在2010年5月17号前发布的资料认为第2张是正转,原因是,在运气其好的情况下,在各种接线错误的组合下,用反转表,实现了正转。电机都正转了,笔者怎么能不认为第2张表是正转的,这个问题直到笔者推导了ON_PWM的换相表,并由笔者的同事发现波形却是PWM_ON后才得以暴露,当这个问题暴露的时候,笔者又开始恶补了理论知识,重新整理了这份材料。

现在分析一下,《PWM与数字化电动机控制技术》,P94页的换相,将书上的下管2,4,6翻译成下管排列为4,6,2后,得到换相表如下:

霍尔CBA 对应上管135下管462的导通管

5	Q6、	1
4	Q1,	2
6	Q2,	3
2	Q3,	4
3	Q4,	5
1	Q5,	6

谁对谁错!我们相信MCHP的代码是更符合实践的。实际上,明确了MCHP的正反转表后,根据 笔者搜集到的信息,正转可以有3种表,反转也可以有3种,即以MCHP的表为准,正负60度挪动,都可以形成正反转表。书本上的,即是如此。

如果你看晕了,那我送大家一句话,抄MCHP的AN957的ZIP包中的代码, StateLoTable即是正转表,另外一个是反转表。当然,这时候要注意连线顺序。不同厂家的电机会略有区别。

四,电机连线实战

1、 实战一

写这个章节的目的在于,我们拿到的电机,不论 3 相标记是 U,V,W 又或者是A,B,C,HALL 是内置调节好的,还是直接外置的,未必都会和我们需要的理论的顺序匹配。如果你用的是 ON_PWM 或者 PWM_ON,检测连线至关重要,而如果是 H-PWM_L-ON或者 H-ON_L-PWM,又或者是 H-PWM_L-PWM,笔者认为连线顺序的检测倒不需要太严格,能转起来,方向对也就差不多了。下面笔者以 42BLFY01A(圆形,内置 HALL,24V BLDC电机)为例子做介绍。

首先,检测 HALL 顺序。厂家一般会给个图,标记你拿到的电机的 HALL,到底哪跟线

对应 S1,哪根对应 S2,哪跟对应 S3。我们固定 HALL 的顺序,建设出某种组合为 HC (H1), HB (H2), HA (H3),给 HALL 传感器接口的 VCC,GND 加上+5V 对 GND 电压,手动顺时针缓慢转动电机(好好看看家里的风扇是怎么转的,多看几台,然后往风扇转动的方向去转动电机),能找到 HALL 变化的顺序符合 546231 的,比如出先 4 后,接下来出现 6,即为正确的方向。如果是反的,对掉头尾两根即可。根据笔者拿到的图,笔者先姑且按照厂家的 HC,HB,HA 的顺序接入,符合我们的理论顺序。即

+5V, 红色

GND,黑色

HC(H1),深蓝,细线

HB(H2),深绿,细线

HA(H3),深黄,细线

HALL对了之后,要惯一个测试程序下去,对于初学者,连线都没搞清楚,就要搞个测试程序下去,似乎有点郁闷。因为可能这时候我们的程序也有BUG啊。笔者在刚刚接触这个时,依赖笔者之前的经理吴先生留下的DEMO,以及对MCHP芯片的熟悉(那时还不熟悉BLDC电机控制),再加上一些非常凑巧的因素,在错误的连线,错误的换相表的基础上,甚至是有问题的开发板的3相标记,居然实现了正转,然后一直错了2周,直到被笔者现在的同事陈先生发现了问题,在问题的解决中,还得到了北京的高先生的大力支持,在此特地表示感谢。由于笔者已经有稳妥的测试程序了,现在只需要实现程序的意图,即如果是加载正转换相表应该正转,如果是反转换相表应该反转,即可完成连线测试。

42BLY01A, 厂家给的3相图如下, 我们用U, V, W来表示, 避免混淆

U(黄) W(蓝)

V (绿)

从这张图可以看到,如果要对应到按顺时针排列的电机3相,A,B,C,则有以下3种组合:

- 1、U(黄)——A, W(蓝)——B, V(绿)——C, (反转)
- 2、W(蓝)——A, V(绿)——B, U(黄)——C, (正转)
- 3、V (绿) ——A, U (黄) ——B, W (蓝) ——C, (堵转)

笔者将这3种组合一一测试了过去,请注意,执行此测试的前提是,A接M1(由PWM1H/L控制上下管),B接M2(又PWM2H/L控制上下管),C接M3(由PWM3H/L)控制上下管。而换相表,就用之前分析的最简单实用的AN957的正转换相表即可,低压控制部分,这张表也基本可以应付了。

由于我们用的是正转换相表得出了以上测试,因此,我们得出,42BLY01A,如此对应理论上的A,B,C3相(在HALL已经对应的前提下)。

- A, 浅蓝, 接我站 BLDC 开发板的 M1
- B, 浅绿, 接我站 BLDC 开发板的 M2
- C, 浅黄, 接我站 BLDC 开发板的 M3

如果您用的是反转换相表做测试,那很显然,电机反转的时候的连线对应,才是正统的。通过这个测试,不知道大家发现没有,既然正转表也可以反转(接错线的话),反转表也可以正转(接错线),甚至说 HALL 错了(不是按 546231 出现,而是按 132645 出现),3 相

线再接错,也可以正反转。既然连线如此之混乱都可以达到效果,对于初学者,建议购买开 发板的时候先问一下开发板供应商所用的测试电机和连线,先把电机转起来,有个可用的测 试程序,解决了软件的问题,再好好研究这连线的事情。

实战二

笔者换了一个马达,先找到HALL按照546213变化的线序,接好。接着,按照厂家给的3相示意图:

U(黄) W(蓝)

V(绿)

按照之前描述的办法,依次测试UWV,WVU,VUW,悲剧了,全部堵转,排除接线不牢原因后,笔者觉悟了,厂家的UVW,并非反时针,而是顺时针,即,应该是如下的:

V(绿)

U(黄) W(蓝)

于是笔者接着测试 UVW, VWU, WUV。最后,实现了一种正转,一种反转,一种堵转。

之前笔者曾经在网络上搜寻BLDC电机以配套我站的BLDC模块,无意中接触到一个拆机的 12V BLDC电机,用于风扇,虽然没有购买,但是该风扇的资料,清清楚楚给出了S1/2/3,对应的A,B,C 3相的通电顺序。希望今后我们不要在测试电机连上上大花时间。

附 , 几 • 机反 • 情况的 • 相表分析

由于笔者 2010 年 5 月 17 号前的错误,导致了浪费了大量的时间在分析反转的换相表,不过不要紧的,正转与反转的换相表差 180 度,聪明的读者可以在比较 MICROCHIP 的正反转换相表的基础上,从笔者已经推好并验证过的反转换相表推出正转的换相表。

附录一、ON_PWM方式的反转换相表分析

1、反转换相表推导过程

这里的ON_PWM说的是,采取上下管轮流PWM调制的一种方式,在每个管导通的120度,前60度恒通段,后60度PWM。

	A相	B相	C相
上管编号	Q1	Q3	Q5
下管编号	Q4	Q6	Q2
DIW1E			

BIT15 BIT8

RIT7 RITO

POUT4H POUT4L POUT3H POUT3L POUT2H POUT2L POUT1H POUT1L

POVD4H POVD4L POVD3H POVD3L POVD2H POVD2L POVD1H POVD1L

bit 15-8 POVD4H-POVD1L: PWM输出改写位

1 = PWMxx I/O引脚上的输出由PWM发生器控制

0 = PWMxx I/O引脚上的输出由相应的POUTxx位中的值控制

bit 7-0 POUT4H-POUT1L: PWM 手动输出位

1 = 在相应的POVDxx 位被清零时PWMxx I/O引脚驱动为有效

0 = 在相应的POVDxx 位被清零时PWMxx I/O引脚驱动为无效

霍尔CBA 对应上管135下管462 导通管信号

换算到3相

5	Q5、6	Q5, PWMQ	6, ON	ЗН,	PWM,	2L,	ON	0X2004
4	Q6、1	Q6, PWMQ	1, ON	2L,	PWM,	1Н,	ON	0X0402
6	Q1, 2	Q1, PWMQ	2, ON	1H,	PWM,	3L,	ON	0X0210
2	Q2, 3	Q2, PWMQ	3, ON	3L,	PWM,	2Н,	ON	0X1008
3	Q3, 4	Q3, PWMQ	4, ON	2Н,	PWM,	1L,	ON	0X0801
1	Q4, 5	Q4, PWMQ	5, ON	1L,	PWM,	ЗН,	ON	0X0120

数组: {0x0000, 0x0120, 0x1008, 0x0801, 0x0402, 0x2004, 0x0210, 0x0000}。已测试,可用。

2、正转换相表

霍尔CE	BA 对应上管135下管462	导通管信号	换算到3相	OVDCON
5	Q2, 3	Q2, PWM Q3, ON	3L, PWM, 2H, ON	0X1008
4	Q3, 4	Q3, PWM Q4, ON	2H, PWM, 1L, ON	0X0801
6	Q4, 5	Q4, PWM Q5, ON	1L, PWM, 3H, ON	0X0120
2	Q5, 6	Q5, PWM Q6, ON	3H, PWM, 2L, ON	0X2004
3	Q6, 1	Q6, PWM Q1, ON	2L, PWM, 1H, ON	0X0402
1	Q1, 2	Q1, PWM Q2, ON	1H, PWM, 3L, ON	0X0210
水ケ /・ロ	1,000,000,000,000,000	07/04/00 07/0004 07/4	[000000 001000 0000]	TH TO 44 CHIEF TO

数组: {0x0000, 0X0210, 0X2004, 0X0402, 0X0801, 0X1008, 0X0120, 0X0000};已测试,可用。

附录二、PWM_ON 方式的反转换相表

霍尔CBA	对应上管135下管462	导通	管信	言号		换舅	[到3]	相		OVDCON
4	Q6、1	Q6, (ON	Q1,	PWM	2L,	ON,	1Н,	PWM	0X0204
6	Q1, 2	Q1, (ON	Q2,	PWM	1Н,	ON,	3L,	PWM	0X1002
2	Q2, 3	Q2, (ON	Q3,	PWM	3L,	ON,	2Н,	PWM	0X0810
3	Q3, 4	Q3, (ON	Q4,	PWM	2Н,	ON,	1L,	PWM	0X0108
1	Q4, 5	Q4, (ON	Q5,	PWM	1L,	ON,	ЗН,	PWM	0X2001
5	Q5, 6	Q5, (ON	Q6,	PWM	ЗН,	ON,	2L,	PWM	0X0420

数组: {0x0000, 0x2001, 0x0810, 0x0108, 0x0204, 0x0420, 0x1002, 0x0000}, 已测试,可用。

附录三、上下管都用独立的单级性 PWM 的反转换相表

BIT15 BIT8 POVD4H POVD4L POVD3H POVD3L POVD2H POVD2L POVD1H POVD1L

霍尔CBA	对应上管135下管462的导通管	换算	到3相	OVDCON
4	Q6. 1	2L,	1H,	0x0600
6	Q1, 2	1Н,	3L,	0x1200
2	Q2, 3	3L,	2Н,	0x1800
3	Q3, 4	2Н,	1L,	0x0900
1	Q4, 5	1L,	ЗН,	0x2100
5	Q5, 6	ЗН,	2L,	0x2400

数组: $\{0x0000, 0x2100, 0x1800, 0x0900, 0x0600, 0x2400, 0x1200, 0x0000\}$, 实验证明,该数组可以实现正转,但启动阶段容易出现堵转,且最低启动占空比要大于35%以上(估算,未仔细测量),不建议使用。