Week 3: Classification

Data Analysis

Leo Hofste & Martin Wesselink 28-02-2020

Agenda

- 1. Recap of week 2
- 2. Data Modeling
 Supervised learning with classification
- 3. Exercises

RECAP WEEK 2

Data Understanding

Scania Example

Source: http://crisp-dm.eu/

Figure 5: Data understanding

Data Understanding

Data exploration

Types of variables

First interval/ratio then ordinal then nominal

Data Understanding

Data exploration

Visualization of the distribution of a variable

Categorical variable

Barchart

Numerical variable

Histogram

Data Understanding

Data exploration

Scatterplot and Pearson's r

Data Understanding

Data exploration

Pivot tables/Contingency tables: Correlation

If the independent groups are in the columns, then percentage must be given VERTICALLY.

Compare HORIZONTAL means calculating VERTICAL percentages

Data Understanding

Data exploration

Cramers 'V

- Full coherence → After calculating vertical percentage, the differences in the horizontal direction are maximal
- Independence → After calculating vertical percentage, there are no differences in the horizontal direction
- Cramer has developed a formula to calculate the strength of cohesion or so called V

V=0	Indepedence
$V \approx 0.10$	Weak coherence
$V \approx 0.25$	Reasonable coherence
$V \approx 0,50$	Strong coherence
$V \approx 0.75$	Very strong coherence
V=1	Full coherence

Data Understanding

Data exploration

Cramers 'V

Cramer has developed a formula to calculate the strength of cohesion or so called V

	E			
INCOME	МВО	НВО	wo	TOTAL
< 3.000	15	30	12	57
3.000 - < 5.000	12	22	10	44
> 5.000	7	18	15	40
TOTAL	34	70	37	141

$$V = \sqrt{\frac{\varphi^2}{\varphi_{\text{max}}^2}} = \sqrt{\frac{0.05}{2}} = \sqrt{0.025} = 0.16$$

Data Understanding

Data exploration

Boxplots

Data distribution of total duration per second of each error

Data Understanding

Data exploration

Cramers 'V

Correlations

Cramér's V (φc) Pearson's r Spearman's p Phik (φk) Recoded Installation 0.8 Lijn 0.6 Message text -Vlessage_type* 0.2 Ploeg ssage_text sage_type*

Data Preparation

Data preparation

Data Preparation

Data preparation

Select data

Main Task	S. de an alex	Describes Maskanda
Main Task	Subtasks	Popular Methods
Data consolidation	Access and collect the data	SQL queries, software agents, Web services.
	Select and filter the data	Domain expertise, SQL queries, statistical tests.
	Integrate and unify the data	SQL queries, domain expertise, ontology-driven data mapping.
Data cleaning	Handle missing values in the data	Fill in missing values (imputations) with most appropriate values (mean, median, min max, mode, etc.); recode the missing values with a constant such as "ML"; remove the record of the missing value; do nothing.
	Identify and reduce noise in the data	Identify the outliers in data with simple statistical techniques (such as averages and standard deviations) or with duster analysis; once identified, either remove the outliers or smooth them by using binning, regression, or simple averages.
	Find and eliminate erroneous data	Identify the erroneous values in data (other than outliers), such as odd values, inconsistent class labels, odd distributions; once identified, use domain expertise to correct the values or remove the records holding the erroneous values.
Data transformation	Normalize the data	Reduce the range of values in each numerically valued variable to a standard range $(e.g., 0 \text{ to } 1 \text{ or } -1 \text{ to } +1)$ by using a variety of normalization or scaling techniques.
	Discretize or aggregate the data	If needed, convert the numeric variables into discrete representations using range- or frequency-based binning techniques; for categorical variables, reduce the number of values by applying proper concept hierarchies.
	Construct new attributes	Derive new and more informative variables from the existing ones using a wide range of mathematical functions (as simple as addition and multiplication or as complex as a hybrid combination of log transformations).
Data reduction	Reduce number of attributes	Principal component analysis, independent component analysis, chi-square testing, correlation analysis, and decision tree induction.
	Reduce number of records	Random sampling, stratified sampling, expert-knowledge-driven purposeful sampling
	Balance skewed data	Oversample the less represented or undersample the more represented classes.

MODELING: SUPERVISED LEARNING WITH CLASSIFICATION

Modeling

Machine learning Paradigms

Data Mining: <u>learning</u> a model from data

Supervised learning:

- Uses labelled data
- The goal is to learn to accurately predict the label from the data

Unsupervised learning:

- Uses un-labelled data
- The goal is to learn natural structure present within data

Reinforcement learning:

- Uses actions and a reward function
- The goal is to learn what sequence of actions maximizes reward
- RL is a special area in data <u>science</u> (not covered in this course!)

Data Mining Tasks & Techniques

Supervised learning

Classification Logistic regression, Decision tree, Naïve Bayes, Random

Forest, Support Vector Machines, Neural Networks,

Case-Based Reasoning, Genetic algorithms, Rough sets

Regression (non-)Linear regression, Regression Trees, Random Forest,

Support Vector Machines, Neural Networks

Time series ARIMA

Unsupervised learning

• Clustering k-Means, Hierarchical

Association Apriori, Eclat, FP-Growth

Modeling

Supervised learning with Classification

Classification

In machine learning and statistics, classification is a supervised learning approach in which the computer program learns from the data input given to it and then uses this learning to classify new observation.

Explanation in this youtube-film: https://www.youtube.com/watch?v=q1AwkzJ9leM

Modeling

Supervised learning with Classification

Classification

- Most frequently used DM task
- Part of the machine-learning family
- Learn from 'past' data, classify new data
- The output variable is categorical (nominal or ordinal) in nature
 - Nominal: {'man', 'woman'}
 - Ordinal: {'gold', 'silver', 'bronze'}
 - Ordinal: {'10.000-20.000', '20.000-40.000', '40.000-100.000'}
- Better: the probability of each output value
- For example, Pr(Y=man |..) = .92 and Pr(Y=woman |..) = .08
- Decision trees are probabilistic classifiers (as well as logistic regression, Naïve Bayes, Random Forest)

Modeling

Supervised learning with Classification

Example of Classification: Iris

Tree types of irises

Iris-Setosa; Iris-versicolor, Iris-virginica

Variables:

Sepal length(cm);kelk lengte(cm); veldtype numeric Sepal width(cm);kelk breedte(cm); veldtype: numeric

Petal lenghth(cm);....bloemblad lengte(cm); veldtype: numeric Petal width(cm);.....bloemblad breedte(cm); veldtype: numeric

We want to investigate of these four properties are enough to decide if we can categorize an iris in one of these three family types.

This is a 'Supervised learning process'

- We have data(150 records) in an excel-file:

Sepal lenght	sepa	l width peta	l length peta	l width type
	5,1	3,5	1,4	0,2 Iris-setosa
	4,9	3,0	1,4	0,2 Iris-setosa
	4,7	3,2	1,3	0,2 Iris-setosa
	4,6	3,1	1,5	0,2 Iris-setosa
	5,0	3,6	1,4	0,2 Iris-setosa
	5,4	3,9	1,7	0,4 Iris-setosa
	4,6	3,4	1,4	0,3 Iris-setosa
	5,0	3,4	1,5	0,2 Iris-setosa
	4,4	2,9	1,4	0,2 Iris-setosa

Modeling

Supervised learning with Classification

Example of Classification: play tennis

We already know from these data if we will play or not. We will predict if we are playing with certain conditions.

Outlook	Temp	Humidity	Windy	Play	
Sunny	Hot	High	False	No	
Sunny	Hot	High	True	No	
Overcast	Hot	High	False	Yes	
Rainy	Mild	High	False	Yes	
Rainy	Cool	Normal	False	Yes	
Rainy	Cool	Normal	True	No	
Overcast	Cool	Normal	True	Yes	
Sunny	Mild	High	False	No	
Sunny	Cool	Normal	False	Yes	
Rainy	Mild	Normal	False	Yes	
Sunny	Mild	Normal	True	Yes	
Overcast	Mild	High	True	Yes	
Overcast	Hot	Normal	False	Yes	
Rainy	Mild	High	High True		
				①	
			Th	e targe	

variable

Modeling

Supervised learning with Classification

Example of Classification: photos

- An algorithm that classifies a photo in the right class;
 - Given classes: {"day", "night"}
 - We have a new photo, and the algorithm gives the right class

Modeling

Classification Techniques

- Statistical analysis (logistic regression, linear discriminant analysis)
- Decision trees
- Bayesian classifiers
- Support vector machines
- Case-based reasoning (k-Nearest Neighbors)
- Neural networks
- Genetic algorithms
- Rough sets

Modeling

Supervised learning with Classification

Decision Trees

To solve a problem, you just have to ask the right questions

Representation of a decision tree:

- Every internal node has a question
- Every branch represents an answer
- Every leaf represents a decision

Modeling

Supervised learning with Classification

Decision Trees

Example: "Will you play tennis?"

Outlook	Temp	Humidity	Windy	Play		
Sunny	Hot	High	False	No		
Sunny	Hot	High	True	No		
Overcast	Hot	High	False	Yes		
Rainy	Mild	High	False	Yes		
Rainy	Cool	Normal	False	Yes		
Rainy	Cool	Normal	True	No		
Overcast	Cool	Normal	True	Yes		
Sunny	Mild	High	False	No		
Sunny	Cool	Normal	False	Yes		
Rainy	Mild	Normal	False	Yes		
Sunny	Mild	Normal	True	Yes		
Overcast	Mild	High	True	Yes		
Overcast	Hot	Normal	False	Yes		
Rainy	Mild	High True No				
				①		
The target						

variable

Modeling

Supervised learning with Classification

Decision Trees

Example: Iris flower set

With two variable 'sepal length' and 'sepal width'

Modeling

Supervised learning with Classification

Decision Trees

Example: Iris flower set

With two variable 'sepal length' and 'sepal width'

Modeling

Supervised learning with Classification

Decision Tree Algorithm

The DT algorithm recursively splits data to improve purity

Exercise 1 - Tree

Modeling

Supervised learning with Classification

Decision Tree Algorithm

General algorithm (steps) for building a decision tree:

- 1. Create a root node and assign all training data to it
- 2. Each leaf node is split into two leaf nodes, choosing the predictor variable and the cutpoint value that most improves purity, if such a split is possible
- 3. Repeat step 2 until no improvement in purity is possible or a stopping criterion is reached (max. tree height, min. number of observations in a leaf node)
- 4. To estimate class probabilities the class proportions of the leaf nodes are used

Modeling

Supervised learning with Classification

Decision Tree Algorithm

DT algorithms mainly differ on;

- Splitting criteria
 Which variable, what value, etc.
- Stopping criteriaWhen to stop building the tree
- 3. Pruning (generalization method)
 Pre-pruning versus post-pruning

Most popular DT algorithms include: ID3, C4.5, C5; CART; CHAID; M5

Modeling

Supervised learning with Classification

Properties of DT model and algorithm

- Trees (unless very large) are easily interpreted, even by nonexperts
- Trees can model complex interactions
- The algorithm can deal with missing values
- The algorithm is prone to overfitting (solved by pruning)
- Imbalanced classes (which are common in classification) require special treatment to correctly classify the minority class

Modeling

Supervised learning with Classification

Assessment of predictive models

- Predictive performance: ability to correctly classify out-of-sample data
- Interpretability: level of understanding and insight provided by model
- Robustness: ability to 'reasonably accurately' classify noisy data

Assessment of predictive algorithms

- Speed: of model building and usage speed
- Scalability: ability to build and use a model with a growing amount of data

Modeling

Supervised learning with Classification

Predictive performance of classification models

In classification problems, the primary source for accuracy estimation is the confusion matrix

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

$$True\ Positive\ Rate = \frac{TP}{TP + FN}$$

$$True\ Negative\ Rate = \frac{TN}{TN + FP}$$

$$Precision = \frac{TP}{TP + FP} \qquad Recall = \frac{TP}{TP + FN}$$

Modeling

Supervised learning with Classification

Examples of confusion matrices

Let us look into four prediction results from 100 positive and 100 negative instances:

	Α			В		С				C'		
TP=63	FP=28	91	TP=77	FP=77	154		TP=24	FP=88	112	TP=76	FP=12	88
FN=37	TN=72	109	FN=23	TN=23	46		FN=76	TN=12	88	FN=24	TN=88	112
100	100	200	100	100	200	_	100	100	200	100	100	200
TPR = 0.63		TPR = 0.24				TPR = 0.76						
FPR = 0.28	3	FPR = 0.77				FPR = 0.88			FPR = 0.12			
PPV = 0.69)		PPV = 0.5	60			PPV = 0.2	:1		PPV = 0.8	86	
F1 = 0.66			F1 = 0.61		F1 = 0.23			F1 = 0.81				
ACC = 0.68	В	ACC = 0.50 ACC = 0.18			ACC = 0.50				ACC = 0.	82		

Modeling

Supervised learning with Classification

ROC Curve

- Works with binary probabilistic classifiers
- Created by varying the threshold p-value that determines whether observation are classified as positive (usually 0.5)
- Can be used to find the optimal threshold
- Can be used to compare classifiers (f.i. A and B, C is the random guessing line)

Modeling

Supervised learning with Classification

Methods for evaluating model accuracy

- Simple split: split dataset in a training set and a test set
- k-Fold Cross Validation: randomly split dataset in k folds for k times training and testing of a model and averaging accuracy measures
- Leave-one-out: similar to k-fold where k = number of observations
- Bootstrapping: random sampling (with replacement)
- Jackknifing: similar to leave-one-out

These methods can be used to evaluate the predictive accuracy of both classification and regression models

Modeling

Supervised learning with Classification

Model accuracy using Simple Split

 Split the data into 2 mutually exclusive sets: training(~70%) and testing (30%)

For NeuralNetworks, the data is split into three subsets (training [~60%], validation [~20%], testing [~20%])

Modeling

Supervised learning with Classification

Model accuracy using k-Fold Cross-Validation

- The complete dataset is used as training set to build the model
- The dataset is also randomly partitioned into k folds
- In k iterations, each fold is retained as test set, the remaining k-1 folds are used as training set

Modeling

Supervised learning with Classification

Classification Techniques

Which technique is the best?

Modeling

Supervised learning with Classification

Ensemble method

- Uses multiple prediction models to improve predictive accuracy
- Example: Random Forest is an ensemble of Decision Trees
- Graphical illustration of a heterogeneous ensemble

EXERCISES

Let's start with the exercises in Orange

Exercise 1

- Go to Blackboard and download the Iris file in week 3 (skip test file!)
- Build a classification model using "Tree, Naive Bayes, kNN and random forest" algorithms
- Check with "test and score" which algorithm is the most accurate.

Let's start with the exercises in Orange

Exercise 2

- Go to Blackboard and download the Iris files in week 3
- Build a classification model using "Tree, Naive Bayes, kNN and random forest" algorithms
- Check with "test and score" which algorithm is the most accurate.
- Answer the following questions:
 - Which types of classifiers do we find in Orange?
 - Which type classifier is Naïve Bayes?
 - What is the function of the confusion matrix?
 - How much items are correctly classified in the first run?
 - Visualize the decision tree of the first run.
 - Minimize the leaves of the decision tree(change the 'min. instances per leave 'in 15)
 - Visualize the decision tree of the third run. What is the difference of these two decision trees?

• Use https://www.youtube.com/watch?v=pYXOF0jziGM&t=2s to help you building your model.

