```
In [1]: import pandas as pd
   import numpy as np
   import matplotlib.pyplot as plt
   import seaborn as sns
   from scipy import stats
   from scipy.stats import ttest_ind, t
   import matplotlib.dates as mdates
```

Importing Datasets

```
In [2]: data = pd.read_csv("QVI_data.csv")
    data
```

PROD_NAME	PROD_NBR	TXN_ID	LYLTY_CARD_NBR	STORE_NBR	DATE	
Natural Chip Compny SeaSalt175g	5	1	1000	1	2018- 10-17	0
CCs Nacho Cheese 175g	66	348	1307	1	2019- 05- 14	1
Smiths Crinkle Cut Chips Chicken 170g	61	383	1343	1	2019- 05- 20	2
Smiths Chip Thinly S/Cream&Onion 175g	69	974	2373	2	2018- 08-17	3
Kettle Tortilla ChpsHny&Jlpno Chili 150g	108	1038	2426	2	2018- 08- 18	4
•••				•••		•••
Kettle Sweet Chilli And Sour Cream 175g	89	270088	272319	272	2019- 03- 09	246734
Tostitos Splash Of Lime 175g	74	270154	272358	272	2018- 08- 13	246735
Doritos Mexicana 170g	51	270187	272379	272	2018- 11-06	246736
Doritos Corn Chip Mexican Jalapeno 150g	42	270188	272379	272	2018- 12-27	246737
Tostitos Splash Of Lime 175g	74	270189	272380	272	2018- 09- 22	246738

246739 rows × 12 columns

Out[2]:

Data Wrangling

The client has selected store numbers 77, 86 and 88 as trial stores with a trial period of Feb 2019 to April 2019. The client also wants control stores to be established stores that are operational for the entire observation period.

We would want to match trial stores to control stores that are similar to the trial store

prior to the trial period of Feb 2019 in terms of:

Monthly overall sales revenue, Monthly number of customers, Monthly number of transactions per customer. To choose the control stores, we will create the metrics of interest and filter to stores that are present throughout the pre-trial period.

First, we want to add a column with the year/month of the transaction.

```
In [3]: # Convert 'DATE' to datetime format
  data['DATE'] = pd.to_datetime(data['DATE'])
# Add a column for year/month
  data['YEARMONTH'] = data['DATE'].dt.strftime('%Y%m').astype('str')
  data
```

Out[3]:	DATE	STORE_NBR	LYLTY_CARD_NBR	TXN_ID	PROD_NBR	PROD_NAME
	- 2018-				_	Natural Chip

_	_	_		_		
Natural Chip Compny SeaSalt175g	5	1	1000	1	2018- 10-17	0
CCs Nacho Cheese 175g	66	348	1307	1	2019- 05- 14	1
Smiths Crinkle Cut Chips Chicken 170g	61	383	1343	1	2019- 05- 20	2
Smiths Chip Thinly S/Cream&Onion 175g	69	974	2373	2	2018- 08-17	3
Kettle Tortilla ChpsHny&Jlpno Chili 150g	108	1038	2426	2	2018- 08- 18	4
					•••	•••
Kettle Sweet Chilli And Sour Cream 175g	89	270088	272319	272	2019- 03- 09	246734
Tostitos Splash Of Lime 175g	74	270154	272358	272	2018- 08- 13	246735
Doritos Mexicana 170g	51	270187	272379	272	2018- 11-06	246736
Doritos Corn Chip Mexican Jalapeno 150g	42	270188	272379	272	2018- 12-27	246737
Tostitos Splash Of Lime 175g	74	270189	272380	272	2018- 09- 22	246738

246739 rows × 13 columns

Measures of Interests

For each store and month, calculate total sales, number of customers, transactions per customer, chips per customer and the average price per unit.

```
TOTAL_SALES=pd.NamedAgg(column='TOT_SALES', aggfunc='sum'),
    NUM_OF_CUSTOMERS=pd.NamedAgg(column='LYLTY_CARD_NBR', aggfunc='nunique')
    TOTAL_QTY=pd.NamedAgg(column='PROD_QTY', aggfunc='sum')).reset_index()

# Calculate additional metrics
measure_overtime['TRANSACTIONS_PER_CUSTOMER'] = (measure_overtime['NUM_OF_TF_measure_overtime['CHIPS_PER_CUSTOMER'] = (measure_overtime['TOTAL_QTY'] / memeasure_overtime['AVG_PRICE_PER_UNIT'] = (measure_overtime['TOTAL_SALES'] /

# Drop unnecessary columns
measure_overtime.drop(['NUM_OF_TRANSACTIONS','TOTAL_QTY'], axis=1, inplace=1

measure_overtime = pd.DataFrame(measure_overtime)
measure_overtime
```

0 1	F 4 7	
()11+	1 /1 1	
vul	1 1	

	STORE_NBR	YEARMONTH	TOTAL_SALES	NUM_OF_CUSTOMERS	TRANSACTIO
(1	201807	188.9	47	
,	1 1	201808	168.4	41	
2	2 1	201809	268.1	57	
3	1	201810	175.4	39	
4	1	201811	184.8	44	
••	•	•••	•••		
3160	272	201902	385.3	44	
316	1 272	201903	421.9	48	
3162	2 272	201904	445.1	54	
3163	3 272	201905	314.6	34	
3164	1 272	201906	301.9	33	

 $3165 \text{ rows} \times 7 \text{ columns}$

		STORE_NBR	YEARMONTH	TOTAL_SALES	NUM_OF_CUSTOMERS	TRANSACTIO
	0	1	201807	188.9	47	
	1	1	201808	168.4	41	
	2	1	201809	268.1	57	
	3	1	201810	175.4	39	
	4	1	201811	184.8	44	
	•••					
3155	3155	272	201809	294.5	31	
	3156	272	201810	405.1	41	
	3157	272	201811	355.8	39	
	3158	272	201812	363.1	43	
	3159	272	201901	392.4	44	

1813 rows × 7 columns

Out[65]:

<pre>In [66]: pre_trial_measures.describe()</pre>	In [66]:
---	----------

Out[66]:		STORE_NBR	TOTAL_SALES	NUM_OF_CUSTOMERS	TRANSACTIONS_PER_CUST
	count	1813.000000	1813.000000	1813.000000	1813.0
	mean	136.737452	586.001462	67.583012	1.14
	std	78.561140	363.068511	34.563206	0.1
	min	1.000000	3.000000	1.000000	1.00
2	25%	68.000000	260.500000	39.000000	1.04
	50%	137.000000	654.500000	78.000000	1.13
	75%	204.000000	879.000000	98.000000	1.2
	max	272.000000	1557.600000	144.000000	1.50

Out[61]:	Out[61]: STORE_NBR		TOTAL_SALES	NUM_OF_CUSTOMERS	TRANSACTIONS_PER_CUST
	count	777.000000	777.000000	777.000000	777.0
	mean	136.737452	573.225740	65.894466	1.13

mean	136.737452	573.225740	65.894466	1.1:
std	78.590060	357.558914	33.867072	0.10
min	1.000000	3.000000	1.000000	1.0
25%	68.000000	242.100000	38.000000	1.04
50%	137.000000	639.400000	74.000000	1.13
75%	204.000000	866.400000	96.000000	1.2:
max	272.000000	1467.000000	133.000000	1.4

In Pre-Trial period, the average sales per store per month is 586, along with an average of 1.14 transaction spercus to merand 3.81 per chip unit. During the trial period (from February to April, 2019), the average sales per store per month is \$573, indicating substential impact on the stores' transaction values. Even though with just 3 months of trial, multiple Key Performance Indicators, such as number of customers, transaction per customer, chips per customer and average price per unit remains relatively close to the 7 months of data pre-trial.

Correlation & Magnitude Distance Calculation

```
In [6]:
    def calculate_corr(input_table, metric_col, trial_store):
        trial_data = input_table[input_table['STORE_NBR'] == trial_store]
    results = []

# Loop through all stores in the dataset (excluding the trial store)
    for control_store in input_table['STORE_NBR'].unique():
        if control_store != trial_store:
            # Filter control store data
            control_data = input_table[input_table['STORE_NBR'] == control_s

# Merge trial and control store data on YEARMONTH
        merged_data = pd.merge(trial_data, control_data, on="YEARMONTH",

# Calculate the correlation for the selected metric
        correlation = merged_data[[f'{metric_col}_TRIAL', f'{metric_col}]

# Append the result (trial store, control store, and correlation results.append([trial_store, control_store, correlation])

correlation_df = pd.DataFrame(results, columns=['STORE_NBR_TRIAL', 'STORE
```

```
In [7]: def calculate magnitude distance(input table, metric col, trial store):
            # Filter trial store data
            trial data = input table[input table['STORE NBR'] == trial store]
            distance_vals = []
            # Loop through all stores in the dataset (excluding the trial store)
            for control_store in input_table['STORE_NBR'].unique():
                if control store != trial store:
                    # Filter control store data
                    control_data = input_table[input_table['STORE_NBR'] == control_s
                    # Merge the trial and control store data on YEARMONTH
                    merged_data = pd.merge(trial_data, control_data, on='YEARMONTH',
                    # Calculate the absolute difference (magnitude distance)
                    magnitude_distance = abs(merged_data[f'{metric_col}_TRIAL'] - me
                    # Append the result (trial store, control store, YEARMONTH, and
                    for year_month, dist in zip(merged_data['YEARMONTH'], magnitude
                        distance_vals.append([trial_store, control_store, year_month
            # Create a DataFrame for magnitude distances
            distance df = pd.DataFrame(distance vals, columns=['STORE NBR TRIAL', 'S
            # Standardize the magnitude distance (min-max normalization)
            min_max_dist = distance_df.groupby(['STORE_NBR_TRIAL', 'YEARMONTH'])['MA
            distance_df = pd.merge(distance_df, min_max_dist, on=['STORE_NBR_TRIAL',
            # Apply min-max normalization
            distance_df['magnitudeMeasure'] = 1 - (distance_df['MAGNITUDE_DISTANCE']
            # Calculate the mean of the standardized magnitude measure by trial and
            final_dist_df = distance_df.groupby(['STORE_NBR_TRIAL', 'STORE_NBR_CONTF
            final_dist_df.rename(columns={'magnitudeMeasure': 'MAGNITUDE'}, inplace=
            return final_dist_df
```

Helper Functions

```
# Dynamically name the weighted score based on the metric
             weighted_score_column_name = f'WEIGHTED_SCORE_{metric.upper().split('_')
             score[weighted_score_column_name] = 0.5 * score['CORRELATION'] + 0.5 * s
             return score
 In [9]: def match_and_calculate_final_score(trial_store, score_sales, score_customer)
             weighted score sales name = "WEIGHTED SCORE SALES"
             weighted_score_customers_name = "WEIGHTED_SCORE_CUSTOMERS"
             # Ensure the correct column names are being accessed
             score_sales.set_index(['STORE_NBR_TRIAL', 'STORE_NBR_CONTROL'], inplace=
             score_customers.set_index(['STORE_NBR_TRIAL', 'STORE_NBR_CONTROL'], inpl
             # Concatenate the weighted scores from sales and customers
             score control = pd.concat([score sales[weighted score sales name], score
             # Calculate the final control store score
             score_control['FINAL_CONTROL_SCORE'] = score_control[weighted_score_sale
             return score_control
In [10]: def assign_store_types(measure_overtime_sales, trial_store, control_store):
             measure_overtime_sales['STORE_TYPE'] = measure_overtime_sales['STORE_NBF
                 lambda x: 'Trial' if x == trial_store else ('Control' if x in control')
             return measure_overtime_sales
In [11]: def plot_metric_by_month(past_data, metric):
             y_label = 'Total Sales' if metric == 'TOTAL_SALES' else 'Total Customers
             title = f"{y_label} by Month"
             # Plotting the data
             plt.figure(figsize=(14, 6), dpi=200)
             plt.title(title)
             plt.xlabel("Month of Operation")
             plt.ylabel(y_label)
             ax = sns.barplot(x='TRANSACTION_MONTH', y=metric, hue='STORE_TYPE', data
             plt.show()
In [12]: def apply_scaling_factor(data, trial_value, control_value, control_column, m
             # Calculate the scaling factor
             scaling_factor = trial_value / control_value
             scaled_data = data[data['STORE_NBR'].isin(control_store)].copy()
```

```
scaled_data[control_column] = (scaled_data[metric_column] * scaling_fact
             return scaled_data
In [13]: def calculate_percentage_difference(scaled_control_data, trial_store, metric
             # Define the column names for control and trial data dynamically based of
             control_column_name = f'CONTROL_{metric.upper().split("_")[-1]}_SUM'
             trial column name = f'TRIAL {metric.upper().split(" ")[-1]}'
             # Extract the trial store's data
             trial_data = measure_overtime_data[measure_overtime_data['STORE_NBR'] ==
             # Merge the scaled control data with the trial data
             percentage_difference = pd.merge(scaled_control_data[['YEARMONTH', contr
             percentage_difference.rename(columns={metric: trial_column_name}, inplace
             # Calculate percentage difference
             percentage_difference['PERCENTAGE_DIFFERENCE'] = abs(percentage_difference)
             return percentage_difference
In [14]: def perform_hypothesis_test(percentage_difference, alpha=0.05):
             # Calculate STD in pre-trial period
             std_dev = percentage_difference[percentage_difference['YEARMONTH'] < '20</pre>
             df = 7
             t_critical = stats.t.ppf(0.95, df)
             print('H0: trial - pre_trial = 0 | Ha: trial - pre_trial =/= 0')
             print(f"Degree of Freedom: {df} | alpha = 0.05 | std dev = {std dev}")
             print(f"T-Critical Value: {t_critical}")
             percentage_difference['tValue'] = (percentage_difference['PERCENTAGE_DIF
             percentage_diff_trial_period = percentage_difference[(percentage_difference)]
             for (index, row) in percentage_diff_trial_period.iterrows():
                 if row.tValue > t critical:
                     print(f"{row.YEARMONTH}: Reject H0. There is sufficient evidence
                      print(f"{row.YEARMONTH}: Fail to Reject H0.")
             print(percentage_diff_trial_period)
In [15]: def create_trial_assessment(measure_overtime_data, std_dev, metric='TOTAL_SA
             # Filter and prepare data for trial and control stores
             past_data = measure_overtime_data[measure_overtime_data['STORE_TYPE'].is
             past_data['TRANSACTION_MONTH'] = pd.to_datetime(past_data['YEARMONTH'].a
```

Apply the scaling factor to the control column

```
# Create trial assessment for all stores (Trial + Control)
                         trial_assessment = past_data[['STORE_TYPE', 'TRANSACTION_MONTH', 'YEARMC
                         # Calculate Control store 95th percentile (metric * (1 + std_dev * 2))
                          past_controls_95 = trial_assessment[trial_assessment['STORE_TYPE'] == '(
                          past_controls_95[metric] = past_controls_95[metric] * (1 + std_dev * 2)
                         past controls 95['STORE TYPE'] = f'Control 95th % confidence interval'
                         # Calculate Control store 5th percentile (metric * (1 - std_dev * 2))
                          past_controls_5 = trial_assessment[trial_assessment['STORE_TYPE'] == 'Co
                          past_controls_5[metric] = past_controls_5[metric] * (1 - std_dev * 2)
                          past_controls_5['STORE_TYPE'] = f'Control 5th % confidence interval'
                         # Combine the data
                         trial assessment = pd.concat([trial assessment, past controls 95, past d
                         trial_assessment.set_index('TRANSACTION_MONTH', inplace=True)
                          return trial_assessment
In [16]: def plot_data(trial_assessment, metric, highlight_period_start='201902', highlight_period_
                                             y_label=None, title=None, ylim=None):
                          plt.figure(figsize=(12, 7))
                         # Plot the data with a lineplot
                          sns.lineplot(data=trial assessment, x='TRANSACTION MONTH', y=metric, hue
                         # Highlight the trial period range using axvspan
                          plt.axvspan(pd.to_datetime(f'{highlight_period_start[:4]}-{highlight_per
                                                 pd.to_datetime(f'{highlight_period_end[:4]}-{highlight_period_end[:4]}-
                                                 color='orange', alpha=0.3, label=f'Trial Period ({highlight_
                         # Labeling
                          plt.xlabel('MONTH OF OPERATION', fontsize=14)
                         plt.ylabel(y_label if y_label else metric.replace('_', ' ').title(), for
                         plt.title(title if title else f'{metric.replace("_", " ").title()} BY MC
                         # Set the x-axis to display months properly
                          plt.gca().xaxis.set_major_locator(mdates.MonthLocator())
                          plt.gca().xaxis.set_major_formatter(mdates.DateFormatter('%b %Y'))
                          plt.xticks(rotation=45, fontsize=12)
                         # If ylim is not passed, calculate dynamic limits based on the metric
                          if ylim is None:
                                 min_value = trial_assessment[metric].min()
                                 max_value = trial_assessment[metric].max()
                                 margin = (max\_value - min\_value) * 0.8
                                 plt.ylim(0, max_value + margin) # Increase margin
                          else:
                                 plt.ylim(ylim) # Use provided ylim range
                         # Add a legend and grid
                          plt.legend(title='Store Type', loc='upper left')
```

```
plt.grid(True)

# Tighten layout and show plot
plt.tight_layout()
plt.show()
```

Trial Store 77

```
In [17]: trial_store = 77
In [18]: # Calculate scores for each metric (Sales and Customers)
                                        score_sales = calculate_scores_for_trial(pre_trial_measures, trial_store, 'T
                                        score_customers = calculate_scores_for_trial(pre_trial_measures, trial_store
                                        # Calculate final control store score
                                        score_control = match_and_calculate_final_score(trial_store, score_sales, sc
                                        score_control
                                        # Get the best matching control store based on the final score
                                        control_store_row = score_control.loc[score_control.groupby('STORE_NBR_TRIAL'
                                        control_store_row
Out[18]:
                                                                                                                                                                                                             WEIGHTED_SCORE_SALES WEIGHTED_
                                         STORE_NBR_TRIAL STORE_NBR_CONTROL
                                                                                                    77
                                                                                                                                                                                        233
                                                                                                                                                                                                                                                                          0.980368
```

For Trial Store 77, the best matched Control Store is 233

Sales Data Analysis

```
In [19]: control_store = control_store_row.index.get_level_values('STORE_NBR_CONTROL'
# Assign store types ('Trial', 'Control', 'Other') to the measure_overtime_s
measure_overtime_sales = assign_store_types(measure_overtime.copy(), trial_s

# Group and calculate the mean of 'TOTAL_SALES' for each store type and mont
past_sales = measure_overtime_sales.groupby(['YEARMONTH', 'STORE_TYPE'])['TC

# Convert 'YEARMONTH' to a datetime object
past_sales['TRANSACTION_MONTH'] = pd.to_datetime(past_sales['YEARMONTH'].ast

# Plot total sales by month
plot_metric_by_month(past_sales, 'TOTAL_SALES')
```


In [20]: # Apply scaling factors for sales
 trial_sales = pre_trial_measures[(pre_trial_measures['STORE_NBR'] == trial_s
 control_sales = pre_trial_measures[(pre_trial_measures['STORE_NBR'].isin(cor
 scaled_control_sales = apply_scaling_factor(measure_overtime_sales, trial_sa
 scaled_control_sales

Out[20]:		STORE_NBR	YEARMONTH	TOTAL_SALES	NUM_OF_CUSTOMERS	TRANSACTIO
	2695	233	201807	271.2	47	
	2696	233	201808	260.7	44	
	2697	233	201809	220.9	40	
	2698	233	201810	159.3	32	
	2699	233	201811	206.5	39	
	2700	233	201812	265.4	43	
	2701	233	201901	150.5	31	
	2702	233	201902	220.7	42	
	2703	233	201903	180.6	35	
	2704	233	201904	144.2	27	
	2705	233	201905	312.1	54	
	2706	233	201906	197.0	34	

In [21]: # Calculate percentage difference
 percentage_difference_sales = calculate_percentage_difference(scaled_control
 percentage_difference_sales

	YEARMONTH	CONTROL_SALES_SUM	TRIAL_SALES	PERCENTAGE_DIFFERENCE
0	201807	282.0	268.4	0.048227
1	201808	271.1	247.5	0.087053
2	201809	229.7	216.8	0.056160
3	201810	165.6	194.3	0.173309
4	201811	214.7	224.9	0.047508
5	201812	276.0	255.2	0.075362
6	201901	156.5	188.4	0.203834
7	201902	229.5	211.6	0.077996
8	201903	187.8	255.1	0.358360
9	201904	149.9	258.1	0.721815
10	201905	324.5	272.3	0.160863
11	201906	204.8	246.6	0.204102

Hypothesis Testing

Out[21]:

In [22]: perform_hypothesis_test(percentage_difference_sales)

H0: trial - pre_trial = 0 | Ha: trial - pre_trial =/= 0

Degree of Freedom: 7 | alpha = 0.05 | std_dev = 0.0636103887674503

T-Critical Value: 1.894578605061305

201902: Fail to Reject HO.

201903: Reject HO. There is sufficient evidence to conclude that sales/custo mers differ.

201904: Reject HO. There is sufficient evidence to conclude that sales/custo mers differ.

tValu	PERCENTAGE_DIFFERENCE	TRIAL_SALES	CONTROL_SALES_SUM	YEARMONTH	
1.22614	0.077996	211.6	229.5	201902	e 7
5.63367	0.358360	255.1	187.8	201903	6 8 0
11.34743	0.721815	258.1	149.9	201904	9

Trial Assessment

/var/folders/7m/wfwdc8s14pgch1s3hgyyg6080000gn/T/ipykernel_95955/778200519.p
y:6: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy past_data['TRANSACTION_MONTH'] = pd.to_datetime(past_data['YEARMONTH'].ast ype(str), format='%Y%m')

Out[23]:

STORE_TYPE YEARMONTH TOTAL_SALES

TRANSACTION_MONTH			
2018-07-01	Trial	201807	268.400000
2018-08-01	Trial	201808	247.500000
2018-09-01	Trial	201809	216.800000
2018-10-01	Trial	201810	194.300000
2018-11-01	Trial	201811	224.900000
2018-12-01	Trial	201812	255.200000
2019-01-01	Trial	201901	188.400000
2019-02-01	Trial	201902	211.600000
2019-03-01	Trial	201903	255.100000
2019-04-01	Trial	201904	258.100000
2019-05-01	Trial	201905	272.300000
2019-06-01	Trial	201906	246.600000
2018-07-01	Control	201807	271.200000
2018-08-01	Control	201808	260.700000
2018-09-01	Control	201809	220.900000
2018-10-01	Control	201810	159.300000
2018-11-01	Control	201811	206.500000
2018-12-01	Control	201812	265.400000
2019-01-01	Control	201901	150.500000
2019-02-01	Control	201902	220.700000
2019-03-01	Control	201903	180.600000
2019-04-01	Control	201904	144.200000
2019-05-01	Control	201905	312.100000
2019-06-01	Control	201906	197.000000

2018-07-01	Control 95th % confidence interval	201807	305.702275
2018-08-01	Control 95th % confidence interval	201808	293.866457
2018-09-01	Control 95th % confidence interval	201809	249.003070
2018-10-01	Control 95th % confidence interval	201810	179.566270
2018-11-01	Control 95th % confidence interval	201811	232.771091
2018-12-01	Control 95th % confidence interval	201812	299.164394
2019-01-01	Control 95th % confidence interval	201901	169.646727
2019-02-01	Control 95th % confidence interval	201902	248.777626
2019-03-01	Control 95th % confidence interval	201903	203.576072
2019-04-01	Control 95th % confidence interval	201904	162.545236
2019-05-01	Control 95th % confidence interval	201905	351.805605
2019-06-01	Control 95th % confidence interval	201906	222.062493
2018-07-01	Control 5th % confidence interval	201807	236.697725
2018-08-01	Control 5th % confidence interval	201808	227.533543
2018-09-01	Control 5th % confidence interval	201809	192.796930
2018-10-01	Control 5th % confidence interval	201810	139.033730
2018-11-01	Control 5th % confidence interval	201811	180.228909
2018-12-01	Control 5th % confidence interval	201812	231.635606
2019-01-01	Control 5th % confidence interval	201901	131.353273
2019-02-01	Control 5th % confidence interval	201902	192.622374

2019-03-01	Control 5th % confidence interval	201903	157.623928
2019-04-01	Control 5th % confidence interval	201904	125.854764
2019-05-01	Control 5th % confidence interval	201905	272.394395
2019-06-01	Control 5th % confidence interval	201906	171.937507

```
In [24]: # Plot the sales data for the trial store and control stores
plot_data(
    trial_assessment,
    metric='TOTAL_SALES',
    y_label='Total Sales',
    title=f'Total Sales by Month (Trial Store {trial_store})',
    ylim=(0,600)
    )
```


Customers Data Analysis

```
In [25]: control_store = control_store_row.index.get_level_values('STORE_NBR_CONTROL'
# Assign store types ('Trial', 'Control', 'Other') to the measure_overtime_s
measure_overtime_customers = assign_store_types(measure_overtime.copy(), tri

# Group and calculate the mean of 'TOTAL_SALES' for each store type and mont
past_customers = measure_overtime_sales.groupby(['YEARMONTH', 'STORE_TYPE'])
```

```
# Convert 'YEARMONTH' to a datetime object
past_customers['TRANSACTION_MONTH'] = pd.to_datetime(past_customers['YEARMON
# Plot total sales by month
plot_metric_by_month(past_customers, 'NUM_OF_CUSTOMERS')
```


In [26]: # Apply scaling factors for customers
 trial_customers = pre_trial_measures[(pre_trial_measures['STORE_NBR'] == tri
 control_customers = pre_trial_measures[(pre_trial_measures['STORE_NBR'].isir
 scaled_control_customers = apply_scaling_factor(measure_overtime, trial_cust
 scaled_control_customers

	STORE_NBR	YEARMONTH	TOTAL_SALES	NUM_OF_CUSTOMERS	TRANSACTIO
2695	233	201807	271.2	47	
2696	233	201808	260.7	44	
2697	233	201809	220.9	40	
2698	233	201810	159.3	32	
2699	233	201811	206.5	39	
2700	233	201812	265.4	43	
2701	233	201901	150.5	31	
2702	233	201902	220.7	42	
2703	233	201903	180.6	35	
2704	233	201904	144.2	27	
2705	233	201905	312.1	54	

197.0

34

Out[26]:

2706

233

In [27]: # Calculate percentage difference
 percentage_difference_customers = calculate_percentage_difference(scaled_cor
 percentage_difference_customers

201906

Out[27]:		YEARMONTH	CONTROL_CUSTOMERS_SUM	TRIAL_CUSTOMERS	PERCENTAGE_DIF
YEARMONTH CONTROL_CU 0 201807 1 201808 2 201809 3 201810 4 201811 5 201812 6 201901 7 201902 8 201903 9 201904 10 201905 11 201906	48.0	47			
	45.0	46			
	40.9	40			
	3	201810	32.7	36	
 0 201807 1 201808 2 201809 3 201810 4 201811 5 201812 6 201901 7 201902 8 201903 9 201904 	39.8	39			
	5	201812	43.9	43	
 0 201807 1 201808 2 201809 3 201810 4 201811 5 201812 6 201901 7 201902 8 201903 9 201904 10 201905 	31.7	31			
	7	201902	42.9	40	
	8	201903	35.8	46	
3 20181 4 20181 5 20181 6 20190 7 20190 8 20190 9 20190 10 20190	201904	27.6	47		
	10	201905	55.2	53	
	11	201906	34.7	38	

Hypothesis Testing

In [28]: perform_hypothesis_test(percentage_difference_customers)

H0: trial - pre_trial = 0 | Ha: trial - pre_trial =/= 0

Degree of Freedom: 7 | alpha = 0.05 | std_dev = 0.030107855697612342

T-Critical Value: 1.894578605061305

201902: Reject HO. There is sufficient evidence to conclude that sales/custo mers differ.

201903: Reject HO. There is sufficient evidence to conclude that sales/custo mers differ.

201904: Reject HO. There is sufficient evidence to conclude that sales/custo mers differ.

YEARMONTH CONTROL_CUSTOMERS_SUM TRIAL_CUSTOMERS PERCENTAGE_DIFFERENCE

\ 7 42.9 201902 40 0.067599 8 201903 35.8 46 0.284916 9 201904 27.6 47 0.702899

tValue

- 7 2.245230
- 8 9.463185
- 9 23.346018

Trial Assessment

In [29]: # Trial Assessment:

std_dev = percentage_difference_customers[percentage_difference_customers['Y
trial_assessment = create_trial_assessment(measure_overtime_customers, std_c
trial_assessment

/var/folders/7m/wfwdc8s14pgch1s3hgyyg6080000gn/T/ipykernel_95955/778200519.p
y:6: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy past_data['TRANSACTION_MONTH'] = pd.to_datetime(past_data['YEARMONTH'].ast

ype(str), format='%Y%m')

Out[29]:

STORE_TYPE YEARMONTH NUM_OF_CUSTOMERS

TRANSACTION_MONTH

2018-07-01	Trial	201807	47.000000
2018-08-01	Trial	201808	46.000000
2018-09-01	Trial	201809	40.000000
2018-10-01	Trial	201810	36.000000
2018-11-01	Trial	201811	39.000000
2018-12-01	Trial	201812	43.000000

2019-01-01	Trial	201901	31.000000
2019-02-01	Trial	201902	40.000000
2019-03-01	Trial	201903	46.000000
2019-04-01	Trial	201904	47.000000
2019-05-01	Trial	201905	53.000000
2019-06-01	Trial	201906	38.000000
2018-07-01	Control	201807	47.000000
2018-08-01	Control	201808	44.000000
2018-09-01	Control	201809	40.000000
2018-10-01	Control	201810	32.000000
2018-11-01	Control	201811	39.000000
2018-12-01	Control	201812	43.000000
2019-01-01	Control	201901	31.000000
2019-02-01	Control	201902	42.000000
2019-03-01	Control	201903	35.000000
2019-04-01	Control	201904	27.000000
2019-05-01	Control	201905	54.000000
2019-06-01	Control	201906	34.000000
2018-07-01	Control 95th % confidence interval	201807	49.830138
2018-08-01	Control 95th % confidence interval	201808	46.649491
2018-09-01	Control 95th % confidence interval	201809	42.408628
2018-10-01	Control 95th % confidence interval	201810	33.926903
2018-11-01	Control 95th % confidence interval	201811	41.348413
2018-12-01	Control 95th % confidence interval	201812	45.589276
2019-01-01	Control 95th % confidence interval	201901	32.866687
2019-02-01	Control 95th % confidence interval	201902	44.529060

2019-03-01	confidence interval	201903	37.107550
2019-04-01	Control 95th % confidence interval	201904	28.625824
2019-05-01	Control 95th % confidence interval	201905	57.251648
2019-06-01	Control 95th % confidence interval	201906	36.047334
2018-07-01	Control 5th % confidence interval	201807	44.169862
2018-08-01	Control 5th % confidence interval	201808	41.350509
2018-09-01	Control 5th % confidence interval	201809	37.591372
2018-10-01	Control 5th % confidence interval	201810	30.073097
2018-11-01	Control 5th % confidence interval	201811	36.651587
2018-12-01	Control 5th % confidence interval	201812	40.410724
2019-01-01	Control 5th % confidence interval	201901	29.133313
2019-02-01	Control 5th % confidence interval	201902	39.470940
2019-03-01	Control 5th % confidence interval	201903	32.892450
2019-04-01	Control 5th % confidence interval	201904	25.374176
2019-05-01	Control 5th % confidence interval	201905	50.748352
2019-06-01	Control 5th % confidence interval	201906	31.952666

Trial Store 86

```
In [31]: trial_store = 86
In [32]: # Calculate scores for each metric (Sales and Customers)
                                        score_sales = calculate_scores_for_trial(pre_trial_measures, trial_store, 'T
                                        score_customers = calculate_scores_for_trial(pre_trial_measures, trial_store
                                        # Calculate final control store score
                                        score_control = match_and_calculate_final_score(trial_store, score_sales, sc
                                        score_control
                                        # Get the best matching control store based on the final score
                                        control_store_row = score_control.loc[score_control.groupby('STORE_NBR_TRIAL
                                         control_store_row
Out[32]:
                                                                                                                                                                                                              WEIGHTED_SCORE_SALES WEIGHTED_
                                         STORE_NBR_TRIAL STORE_NBR_CONTROL
                                                                                                    86
                                                                                                                                                                                          155
                                                                                                                                                                                                                                                                                 0.91645
```

For Trial Store 86, the best matched Control Store is 155

Sales Data Analysis

```
In [33]: control_store = control_store_row.index.get_level_values('STORE_NBR_CONTROL'
# Assign store types ('Trial', 'Control', 'Other') to the measure_overtime_s
```

```
measure_overtime_sales = assign_store_types(measure_overtime.copy(), trial_s

# Group and calculate the mean of 'TOTAL_SALES' for each store type and mont
past_sales = measure_overtime_sales.groupby(['YEARMONTH', 'STORE_TYPE'])['TO

# Convert 'YEARMONTH' to a datetime object
past_sales['TRANSACTION_MONTH'] = pd.to_datetime(past_sales['YEARMONTH'].ast

# Plot total sales by month
plot_metric_by_month(past_sales, 'TOTAL_SALES')
```


In [34]: # Apply scaling factors for sales
 trial_sales = pre_trial_measures[(pre_trial_measures['STORE_NBR'] == trial_s
 control_sales = pre_trial_measures[(pre_trial_measures['STORE_NBR'].isin(cor
 scaled_control_sales = apply_scaling_factor(measure_overtime_sales, trial_sa
 scaled_control_sales

	STORE_NBR	YEARMONTH	TOTAL_SALES	NUM_OF_CUSTOMERS	TRANSACTIO
1792	155	201807	900.60	98	
1793	155	201808	738.70	88	
1794	155	201809	939.60	96	
1795	155	201810	914.00	105	
1796	155	201811	835.00	96	
1797	155	201812	799.80	91	
1798	155	201901	834.60	92	
1799	155	201902	850.80	92	
1800	155	201903	767.00	91	
1801	155	201904	800.40	93	
1802	155	201905	863.25	101	
1803	155	201906	760.80	87	

In [35]: # Calculate percentage difference
 percentage_difference_sales = calculate_percentage_difference(scaled_control
 percentage_difference_sales

Out[35]:		YEARMONTH	CONTROL_SALES_SUM	TRIAL_SALES	PERCENTAGE_DIFFERENCE
	0	201807	875.4	851.00	0.027873
	1	201808	718.1	726.85	0.012185
	2	201809	913.3	855.00	0.063834
	3	201810	888.5	898.80	0.011593
	4	201811	811.7	851.20	0.048663
0 201807 875.4 1 201808 718.1 2 201809 913.3 3 201810 888.5	812.20	0.044765			
	6	201901	811.3	800.60	0.013189
	7	201902	827.0	872.80	0.055381
	8	201903	745.6	945.40	0.267972
	9	201904	778.0	804.00	0.033419
	10	201905	839.1	826.90	0.014539
	11	201906	739.5	766.00	0.035835

Out[34]:

In [36]: perform_hypothesis_test(percentage_difference_sales)

H0: trial - pre trial = 0 | Ha: trial - pre trial =/= 0

Degree of Freedom: 7 | alpha = 0.05 | std_dev = 0.020950396547484092

T-Critical Value: 1.894578605061305

201902: Reject HO. There is sufficient evidence to conclude that sales/custo mers differ.

201903: Reject HO. There is sufficient evidence to conclude that sales/custo mers differ.

201904: Fail to Reject HO.

tValu	PERCENTAGE_DIFFERENCE	TRIAL_SALES	CONTROL_SALES_SUM	YEARMONTH	
2.64342	0.055381	872.8	827.0	201902	e 7
12.79078	0.267972	945.4	745.6	201903	9 8 9
1.59515	0.033419	804.0	778.0	201904	9

Trial Assessment

/var/folders/7m/wfwdc8s14pgch1s3hgyyg6080000gn/T/ipykernel_95955/778200519.p
y:6: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy past_data['TRANSACTION_MONTH'] = pd.to_datetime(past_data['YEARMONTH'].ast ype(str), format='%Y%m')

TRANSACTION MONTH

Out[37]:

STORE_TYPE	YEARMONTH	TOTAL	SALES
------------	-----------	-------	-------

TRANSACTION_MONTH			
2018-07-01	Trial	201807	851.000000
2018-08-01	Trial	201808	726.850000
2018-09-01	Trial	201809	855.000000
2018-10-01	Trial	201810	898.800000
2018-11-01	Trial	201811	851.200000
2018-12-01	Trial	201812	812.200000
2019-01-01	Trial	201901	800.600000
2019-02-01	Trial	201902	872.800000
2019-03-01	Trial	201903	945.400000

2019-04-01	Trial	201904	804.000000
2019-05-01	Trial	201905	826.900000
2019-06-01	Trial	201906	766.000000
2018-07-01	Control	201807	900.600000
2018-08-01	Control	201808	738.700000
2018-09-01	Control	201809	939.600000
2018-10-01	Control	201810	914.000000
2018-11-01	Control	201811	835.000000
2018-12-01	Control	201812	799.800000
2019-01-01	Control	201901	834.600000
2019-02-01	Control	201902	850.800000
2019-03-01	Control	201903	767.000000
2019-04-01	Control	201904	800.400000
2019-05-01	Control	201905	863.250000
2019-06-01	Control	201906	760.800000
2018-07-01	Control 95th % confidence interval	201807	938.335854
2018-08-01	Control 95th % confidence interval	201808	769.652116
2018-09-01	Control 95th % confidence interval	201809	978.969985
2018-10-01	Control 95th % confidence interval	201810	952.297325
2018-11-01	Control 95th % confidence interval	201811	869.987162
2018-12-01	Control 95th % confidence interval	201812	833.312254
2019-01-01	Control 95th % confidence interval	201901	869.570402
2019-02-01	Control 95th % confidence interval	201902	886.449195
2019-03-01	Control 95th % confidence interval	201903	799.137908
2019-04-01	Control 95th % confidence interval	201904	833.937395
	Control OFth O/ confidence		

Control 95th % confidence

2019-05-01	interval	201905	899.420860
2019-06-01	Control 95th % confidence interval	201906	792.678123
2018-07-01	Control 5th % confidence interval	201807	862.864146
2018-08-01	Control 5th % confidence interval	201808	707.747884
2018-09-01	Control 5th % confidence interval	201809	900.230015
2018-10-01	Control 5th % confidence interval	201810	875.702675
2018-11-01	Control 5th % confidence interval	201811	800.012838
2018-12-01	Control 5th % confidence interval	201812	766.287746
2019-01-01	Control 5th % confidence interval	201901	799.629598
2019-02-01	Control 5th % confidence interval	201902	815.150805
2019-03-01	Control 5th % confidence interval	201903	734.862092
2019-04-01	Control 5th % confidence interval	201904	766.862605
2019-05-01	Control 5th % confidence interval	201905	827.079140
2019-06-01	Control 5th % confidence interval	201906	728.921877

```
In [38]: # Plot the sales data for the trial store and control stores
plot_data(
    trial_assessment,
    metric='TOTAL_SALES',
    y_label='Total Sales',
    title=f'Total Sales by Month (Trial Store {trial_store})',
    ylim=(0,1500)
    )
```


Despite of the significant increase in customer volume, the total sales for Trial Store 86 did not surpass the Control Store's 95th percentile in all 3 months.

Customers Data Analysis

```
In [39]: control_store = control_store_row.index.get_level_values('STORE_NBR_CONTROL'
# Assign store types ('Trial', 'Control', 'Other') to the measure_overtime_s
measure_overtime_customers = assign_store_types(measure_overtime.copy(), tri

# Group and calculate the mean of 'TOTAL_SALES' for each store type and mont
past_customers = measure_overtime_sales.groupby(['YEARMONTH', 'STORE_TYPE'])

# Convert 'YEARMONTH' to a datetime object
past_customers['TRANSACTION_MONTH'] = pd.to_datetime(past_customers['YEARMON
# Plot total sales by month
plot_metric_by_month(past_customers, 'NUM_OF_CUSTOMERS')
```


In [40]: # Apply scaling factors for customers
 trial_customers = pre_trial_measures[(pre_trial_measures['STORE_NBR'] == tri
 control_customers = pre_trial_measures[(pre_trial_measures['STORE_NBR'].isir
 scaled_control_customers = apply_scaling_factor(measure_overtime, trial_cust
 scaled_control_customers

Out[40]:		STORE_NBR	YEARMONTH	TOTAL_SALES	NUM_OF_CUSTOMERS	TRANSACTIO
	1792	155	201807	900.60	98	
	1793	155	201808	738.70	88	
	1794	155	201809	939.60	96	
	1795	155	201810	914.00	105	
	1796	155	201811	835.00	96	
	1797	155	201812	799.80	91	
	1798	155	201901	834.60	92	
	1799	155	201902	850.80	92	
	1800	155	201903	767.00	91	
	1801	155	201904	800.40	93	
	1802	155	201905	863.25	101	
	1803	155	201906	760.80	87	

In [41]: # Calculate percentage difference
 percentage_difference_customers = calculate_percentage_difference(scaled_cor
 percentage_difference_customers

	YEARMONTH	CONTROL_CUSTOMERS_SUM	TRIAL_CUSTOMERS	PERCENTAGE_DIF
0	201807	98.3	94	
1	201808	88.3	92	
2	201809	96.3	100	
3	201810	105.3	105	
4	201811	96.3	95	
5	201812	91.3	93	
6	201901	92.3	89	
7	201902	92.3	105	
8	201903	91.3	108	
9	201904	93.3	99	
10	201905	101.3	99	
11	201906	87.3	92	

Hypothesis Testing

Out[41]:

```
In [42]: perform_hypothesis_test(percentage_difference_customers)
```

H0: trial - pre_trial = 0 | Ha: trial - pre_trial =/= 0
Degree of Freedom: 7 | alpha = 0.05 | std_dev = 0.016023300886540606
T-Critical Value: 1.894578605061305

201902: Reject HO. There is sufficient evidence to conclude that sales/custo mers differ.

201903: Reject HO. There is sufficient evidence to conclude that sales/custo mers differ.

201904: Reject HO. There is sufficient evidence to conclude that sales/custo mers differ.

	YEARMONIH	CONTROL_CUSTOMERS_SUM	TRIAL_CUSTOMERS	PERCENTAGE_DIFFERENCE
\				
7	201902	92.3	105	0.137595
8	201903	91.3	108	0.182913
9	201904	93.3	99	0.061093

tValue

- 7 8.587169
- 8 11.415468
- 9 3.812775

Trial Assessment

```
In [43]: # Trial Assessment:
std_dev = percentage_difference_customers[percentage_difference_customers['Y
```

trial_assessment = create_trial_assessment(measure_overtime_customers, std_c
trial_assessment

/var/folders/7m/wfwdc8s14pgch1s3hgyyg6080000gn/T/ipykernel_95955/778200519.p
y:6: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame.

Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy past_data['TRANSACTION_MONTH'] = pd.to_datetime(past_data['YEARMONTH'].ast ype(str), format='%Y%m')

Out[43]:

STORE_TYPE YEARMONTH NUM_OF_CUSTOMERS

TRANSACTION_MONTH				
2018-07-01	Trial	201807	94.000000	
2018-08-01	Trial	201808	92.000000	
2018-09-01	Trial	201809	100.000000	
2018-10-01	Trial	201810	105.000000	
2018-11-01	Trial	201811	95.000000	
2018-12-01	Trial	201812	93.000000	
2019-01-01	Trial	201901	89.000000	
2019-02-01	Trial	201902	105.000000	
2019-03-01	Trial	201903	108.000000	
2019-04-01	Trial	201904	99.000000	
2019-05-01	Trial	201905	99.000000	
2019-06-01	Trial	201906	92.000000	
2018-07-01	Control	201807	98.000000	
2018-08-01	Control	201808	88.000000	
2018-09-01	Control	201809	96.000000	
2018-10-01	Control	201810	105.000000	
2018-11-01	Control	201811	96.000000	
2018-12-01	Control	201812	91.000000	
2019-01-01	Control	201901	92.000000	
2019-02-01	Control	201902	92.000000	
2019-03-01	Control	201903	91.000000	
2019-04-01	Control	201904	93.000000	

2019-05-01	Control	201905	101.000000
2019-06-01	Control	201906	87.000000
2018-07-01	Control 95th % confidence interval	201807	101.140567
2018-08-01	Control 95th % confidence interval	201808	90.820101
2018-09-01	Control 95th % confidence interval	201809	99.076474
2018-10-01	Control 95th % confidence interval	201810	108.364893
2018-11-01	Control 95th % confidence interval	201811	99.076474
2018-12-01	Control 95th % confidence interval	201812	93.916241
2019-01-01	Control 95th % confidence interval	201901	94.948287
2019-02-01	Control 95th % confidence interval	201902	94.948287
2019-03-01	Control 95th % confidence interval	201903	93.916241
2019-04-01	Control 95th % confidence interval	201904	95.980334
2019-05-01	Control 95th % confidence interval	201905	104.236707
2019-06-01	Control 95th % confidence interval	201906	89.788054
2018-07-01	Control 5th % confidence interval	201807	94.859433
2018-08-01	Control 5th % confidence interval	201808	85.179899
2018-09-01	Control 5th % confidence interval	201809	92.923526
2018-10-01	Control 5th % confidence interval	201810	101.635107
2018-11-01	Control 5th % confidence interval	201811	92.923526
2018-12-01	Control 5th % confidence interval	201812	88.083759
2019-01-01	Control 5th % confidence interval	201901	89.051713

2019-02-01	Control 5th % confidence interval	201902	89.051713
2019-03-01	Control 5th % confidence interval	201903	88.083759
2019-04-01	Control 5th % confidence interval	201904	90.019666
2019-05-01	Control 5th % confidence interval	201905	97.763293
2019-06-01	Control 5th % confidence interval	201906	84.211946

It looks like the number of customers is significantly higher in all of the three months. This seems to suggest that the trial had a significant impact on increasing the number of customers in trial store 86 but as we saw, sales were not significantly higher. We should check with the Category Manager if there were special deals in the trial store that were may have resulted in lower prices, impacting the results.

Trial Store 88

```
In [45]: trial_store = 88
In [46]: # Calculate scores for each metric (Sales and Customers)
score_sales = calculate_scores_for_trial(pre_trial_measures, trial_store, 'I score_customers = calculate_scores_for_trial(pre_trial_measures, trial_store)
# Calculate final control store score
score_control = match_and_calculate_final_score(trial_store, score_sales, sc score_control
# Get the best matching control store based on the final score
control_store_row = score_control.loc[score_control.groupby('STORE_NBR_TRIAL control_store_row)
```

237

Out[46]:

WEIGHTED_SCORE_SALES WEIGHTED_SCO

STORE_NBR_TRIAL STORE_NBR_CONTROL

88

0.529452

For Trial Store 88, the best matched Control Store is 237

Sales Data Analysis

```
In [47]: control_store = control_store_row.index.get_level_values('STORE_NBR_CONTROL'
# Assign store types ('Trial', 'Control', 'Other') to the measure_overtime_s
measure_overtime_sales = assign_store_types(measure_overtime.copy(), trial_s

# Group and calculate the mean of 'TOTAL_SALES' for each store type and mont
past_sales = measure_overtime_sales.groupby(['YEARMONTH', 'STORE_TYPE'])['TC

# Convert 'YEARMONTH' to a datetime object
past_sales['TRANSACTION_MONTH'] = pd.to_datetime(past_sales['YEARMONTH'].ast

# Plot total sales by month
plot_metric_by_month(past_sales, 'TOTAL_SALES')
```


In [48]: # Apply scaling factors for sales so control and trial stores are comparable
 trial_sales = pre_trial_measures[(pre_trial_measures['STORE_NBR'] == trial_s
 control_sales = pre_trial_measures[(pre_trial_measures['STORE_NBR'].isin(cor
 scaled_control_sales = apply_scaling_factor(measure_overtime_sales, trial_sa
 scaled_control_sales

Out[48]:		STORE_NBR	YEARMONTH	TOTAL_SALES	NUM_OF_CUSTOMERS	TRANSACTIO
	2743	237	201807	1387.2	125	
	2744	237	201808	1321.9	132	
	2745	237	201809	1250.8	120	
	2746	237	201810	1287.1	118	
	2747	237	201811	1316.0	125	
	2748	237	201812	1234.4	121	
	2749	237	201901	1117.7	111	
	2750	237	201902	1313.0	119	
	2751	237	201903	1177.6	116	
	2752	237	201904	1153.6	116	
	2753	237	201905	1127.9	122	
	2754	237	201906	1143.4	118	

In [49]: # Calculate percentage difference between sales for scaled control & trial s
percentage_difference_sales = calculate_percentage_difference(scaled_control
percentage_difference_sales

		YEARMONTH	CONTROL_SALES_SUM	TRIAL_SALES	PERCENTAGE_DIFFERENCE
	0	201807	1374.4	1218.20	0.113650
	1	201808	1309.7	1242.20	0.051539
	2	201809	1239.3	1361.80	0.098846
	3	201810	1275.2	1270.80	0.003450
	4	201811	1303.9	1311.40	0.005752
	5	201812	1223.0	1213.00	0.008177
	6	201901	1107.4	1215.40	0.097526
	7	201902	1300.9	1339.60	0.029749
	8	201903	1166.7	1467.00	0.257393
	9	201904	1143.0	1317.00	0.152231
1	10	201905	1117.5	1236.85	0.106801
•	11	201906	1132.8	1252.60	0.105756

Hypothesis Testing

Out[49]:

In [50]: perform_hypothesis_test(percentage_difference_sales)

H0: trial - pre_trial = 0 | Ha: trial - pre_trial =/= 0

Degree of Freedom: 7 | alpha = 0.05 | std_dev = 0.049079160365275945

T-Critical Value: 1.894578605061305

201902: Fail to Reject HO.

201903: Reject HO. There is sufficient evidence to conclude that sales/custo mers differ.

201904: Reject HO. There is sufficient evidence to conclude that sales/custo mers differ.

	YEARMONTH	CONTROL_SALES_SUM	TRIAL_SALES	PERCENTAGE_DIFFERENCE	tValue
7	201902	1300.9	1339.6	0.029749	0.606136
8	201903	1166.7	1467.0	0.257393	5.244439
9	201904	1143.0	1317.0	0.152231	3.101744

Trial Assessment

/var/folders/7m/wfwdc8s14pgch1s3hgyyg6080000gn/T/ipykernel_95955/778200519.p
y:6: SettingWithCopyWarning:

A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead

See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
stable/user_guide/indexing.html#returning-a-view-versus-a-copy
 past_data['TRANSACTION_MONTH'] = pd.to_datetime(past_data['YEARMONTH'].ast
ype(str), format='%Y%m')

Out[51]:

STORE_TYPE YEARMONTH TOTAL_SALES

	-		-
TRANSACTION_MONTH			
2018-07-01	Trial	201807	1218.200000
2018-08-01	Trial	201808	1242.200000
2018-09-01	Trial	201809	1361.800000
2018-10-01	Trial	201810	1270.800000
2018-11-01	Trial	201811	1311.400000
2018-12-01	Trial	201812	1213.000000
2019-01-01	Trial	201901	1215.400000
2019-02-01	Trial	201902	1339.600000
2019-03-01	Trial	201903	1467.000000
2019-04-01	Trial	201904	1317.000000
2019-05-01	Trial	201905	1236.850000
2019-06-01	Trial	201906	1252.600000
2018-07-01	Control	201807	1387.200000
2018-08-01	Control	201808	1321.900000
2018-09-01	Control	201809	1250.800000
2018-10-01	Control	201810	1287.100000
2018-11-01	Control	201811	1316.000000
2018-12-01	Control	201812	1234.400000
2019-01-01	Control	201901	1117.700000
2019-02-01	Control	201902	1313.000000
2019-03-01	Control	201903	1177.600000
2019-04-01	Control	201904	1153.600000
2019-05-01	Control	201905	1127.900000
2019-06-01	Control	201906	1143.400000

2018-07-01	Control 95th % confidence interval	201807	1523.365223
2018-08-01	Control 95th % confidence interval	201808	1451.655484
2018-09-01	Control 95th % confidence interval	201809	1373.576428
2018-10-01	Control 95th % confidence interval	201810	1413.439575
2018-11-01	Control 95th % confidence interval	201811	1445.176350
2018-12-01	Control 95th % confidence interval	201812	1355.566631
2019-01-01	Control 95th % confidence interval	201901	1227.411555
2019-02-01	Control 95th % confidence interval	201902	1441.881875
2019-03-01	Control 95th % confidence interval	201903	1293.191238
2019-04-01	Control 95th % confidence interval	201904	1266.835439
2019-05-01	Control 95th % confidence interval	201905	1238.612770
2019-06-01	Control 95th % confidence interval	201906	1255.634224
2018-07-01	Control 5th % confidence interval	201807	1251.034777
2018-08-01	Control 5th % confidence interval	201808	1192.144516
2018-09-01	Control 5th % confidence interval	201809	1128.023572
2018-10-01	Control 5th % confidence interval	201810	1160.760425
2018-11-01	Control 5th % confidence interval	201811	1186.823650
2018-12-01	Control 5th % confidence interval	201812	1113.233369
2019-01-01	Control 5th % confidence interval	201901	1007.988445
2019-02-01	Control 5th % confidence interval	201902	1184.118125

2019-03-01	Control 5th % confidence interval	201903	1062.008762
2019-04-01	Control 5th % confidence interval	201904	1040.364561
2019-05-01	Control 5th % confidence interval	201905	1017.187230
2019-06-01	Control 5th % confidence interval	201906	1031.165776

```
In [52]: # Plot the sales data for the trial store and control stores
plot_data(
    trial_assessment,
    metric='TOTAL_SALES',
    y_label='Total Sales',
    title=f'Total Sales by Month (Trial Store {trial_store})',
    ylim=(0,2000)
    )
```


The results show that the trial in store 88 is significantly different to its control store in the trial period as the trial store performance lies outside of the 5% to 95% confidence interval of the control store in two of the three trial months.

Customers Data Analysis

```
In [53]: control_store = control_store_row.index.get_level_values('STORE_NBR_CONTROL'
# Assign store types ('Trial', 'Control', 'Other') to the measure_overtime_s
measure_overtime_customers = assign_store_types(measure_overtime.copy(), tri
```

```
# Group and calculate the mean of 'TOTAL_SALES' for each store type and mont
past_customers = measure_overtime_sales.groupby(['YEARMONTH', 'STORE_TYPE'])
# Convert 'YEARMONTH' to a datetime object
past_customers['TRANSACTION_MONTH'] = pd.to_datetime(past_customers['YEARMON')
# Plot total sales by month
plot_metric_by_month(past_customers, 'NUM_OF_CUSTOMERS')
```


In [54]: # Apply scaling factors for customers
 trial_customers = pre_trial_measures[(pre_trial_measures['STORE_NBR'] == tri
 control_customers = pre_trial_measures[(pre_trial_measures['STORE_NBR'].isir
 scaled_control_customers = apply_scaling_factor(measure_overtime, trial_cust
 scaled_control_customers

	STORE_NBR	YEARMONTH	TOTAL_SALES	NUM_OF_CUSTOMERS	TRANSACTIO
2743	237	201807	1387.2	125	
2744	237	201808	1321.9	132	
2745	237	201809	1250.8	120	
2746	237	201810	1287.1	118	
2747	237	201811	1316.0	125	
2748	237	201812	1234.4	121	
2749	237	201901	1117.7	111	
2750	237	201902	1313.0	119	
2751	237	201903	1177.6	116	
2752	237	201904	1153.6	116	
2753	237	201905	1127.9	122	

1143.4

118

Out[54]:

2754

237

In [55]: # Calculate percentage difference
 percentage_difference_customers = calculate_percentage_difference(scaled_cor
 percentage_difference_customers

201906

Out[55]:		YEARMONTH	CONTROL_CUSTOMERS_SUM	TRIAL_CUSTOMERS	PERCENTAGE_DIF
	0	201807	124.4	124	
	1	201808	131.4	125	
	2	201809	119.4	121	
	3	201810	117.4	120	
	4	201811	124.4	123	
	5	201812	120.4	120	
	6	201901	110.5	115	
	7	201902	118.4	122	
	8	201903	115.5	133	
	9	201904	115.5	119	
	10	201905	121.4	123	
	11	201906	117.4	113	

Hypothesis Testing

2018-12-01

2019-01-01

```
In [56]: | perform_hypothesis_test(percentage_difference_customers)
        H0: trial - pre_trial = 0 | Ha: trial - pre_trial =/= 0
        Degree of Freedom: 7 | alpha = 0.05 | std dev = 0.017967379944439074
        T-Critical Value: 1.894578605061305
        201902: Fail to Reject HO.
        201903: Reject HO. There is sufficient evidence to conclude that sales/custo
        mers differ.
        201904: Fail to Reject HO.
          YEARMONTH CONTROL_CUSTOMERS_SUM TRIAL_CUSTOMERS
                                                              PERCENTAGE_DIFFERENCE
        7
             201902
                                      118.4
                                                         122
                                                                            0.030405
        8
             201903
                                      115.5
                                                         133
                                                                            0.151515
                                                         119
             201904
                                      115.5
                                                                            0.030303
             tValue
        7 1.692256
        8 8.432791
        9 1.686558
         Trial Assessment
In [57]: # Trial Assessment:
         std_dev = percentage_difference_customers[percentage_difference_customers['Y
         trial_assessment = create_trial_assessment(measure_overtime_customers, std_c
         trial_assessment
        /var/folders/7m/wfwdc8s14pgch1s3hgyyg6080000gn/T/ipykernel_95955/778200519.p
        y:6: SettingWithCopyWarning:
        A value is trying to be set on a copy of a slice from a DataFrame.
        Try using .loc[row_indexer,col_indexer] = value instead
        See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/
        stable/user_guide/indexing.html#returning-a-view-versus-a-copy
          past_data['TRANSACTION_MONTH'] = pd.to_datetime(past_data['YEARMONTH'].ast
        ype(str), format='%Y%m')
Out[57]:
                                      STORE_TYPE YEARMONTH NUM_OF_CUSTOMERS
         TRANSACTION_MONTH
                                              Trial
                    2018-07-01
                                                        201807
                                                                          124.000000
                   2018-08-01
                                              Trial
                                                        201808
                                                                          125.000000
                   2018-09-01
                                              Trial
                                                        201809
                                                                          121.000000
                                              Trial
                    2018-10-01
                                                         201810
                                                                          120.000000
                    2018-11-01
                                              Trial
                                                         201811
                                                                          123.000000
```

Trial

Trial

201812

201901

120.000000

115.000000

2019-02-01	Trial	201902	122.000000
2019-03-01	Trial	201903	133.000000
2019-04-01	Trial	201904	119.000000
2019-05-01	Trial	201905	123.000000
2019-06-01	Trial	201906	113.000000
2018-07-01	Control	201807	125.000000
2018-08-01	Control	201808	132.000000
2018-09-01	Control	201809	120.000000
2018-10-01	Control	201810	118.000000
2018-11-01	Control	201811	125.000000
2018-12-01	Control	201812	121.000000
2019-01-01	Control	201901	111.000000
2019-02-01	Control	201902	119.000000
2019-03-01	Control	201903	116.000000
2019-04-01	Control	201904	116.000000
2019-05-01	Control	201905	122.000000
2019-06-01	Control	201906	118.000000
2018-07-01	Control 95th % confidence interval	201807	129.491845
2018-08-01	Control 95th % confidence interval	201808	136.743388
2018-09-01	Control 95th % confidence interval	201809	124.312171
2018-10-01	Control 95th % confidence interval	201810	122.240302
2018-11-01	Control 95th % confidence interval	201811	129.491845
2018-12-01	Control 95th % confidence interval	201812	125.348106
2019-01-01	Control 95th % confidence interval	201901	114.988758
2019-02-01	Control 95th % confidence interval	201902	123.276236
2019-03-01	Control 95th % confidence interval	201903	120.168432

2019-04-01	Control 95th % confidence interval	201904	120.168432
2019-05-01	Control 95th % confidence interval	201905	126.384041
2019-06-01	Control 95th % confidence interval	201906	122.240302
2018-07-01	Control 5th % confidence interval	201807	120.508155
2018-08-01	Control 5th % confidence interval	201808	127.256612
2018-09-01	Control 5th % confidence interval	201809	115.687829
2018-10-01	Control 5th % confidence interval	201810	113.759698
2018-11-01	Control 5th % confidence interval	201811	120.508155
2018-12-01	Control 5th % confidence interval	201812	116.651894
2019-01-01	Control 5th % confidence interval	201901	107.011242
2019-02-01	Control 5th % confidence interval	201902	114.723764
2019-03-01	Control 5th % confidence interval	201903	111.831568
2019-04-01	Control 5th % confidence interval	201904	111.831568
2019-05-01	Control 5th % confidence interval	201905	117.615959
2019-06-01	Control 5th % confidence interval	201906	113.759698

Overall Sales Performance

Summary of Insights

- 1. In Pre-Trial period, the average sales per store per month is 586, alongwith an average of 1.14 transaction spercus to merand 3.81 per chip unit. During the trial period (from February to April, 2019), the average sales per store per month is \$573, indicating substantial impact on the stores' transaction values. Even though with just 3 months of trial, multiple Key Performance Indicators, such as number of customers, transaction per customer, chips per customer and average price per unit remains relatively close to the 7 months of data pre-trial.
- 2. Upon the data wrangling and analysis process, we have found the following trial control store pairs matched based on performanced metrics (Total Sales & Number of Customers):
- Trial Store 77 Control Store 233
- Trial Store 86 Control Store 155
- Trial Store 88 Control Store 237
- 3. For Trial Store 77: Total Sales and Number of Customers are significantly increased during the trial period in at least two of the three trial months (March & April).
- 4. For Trial Store 86: Even though the number of customers is significantly higher in all of the three months, the Total Sales were not significantly higher in all 3 months (only February and March). We should check with the Category Manager if there were special deals in the trial store that were may have resulted in lower prices, impacting the results.