

Machine Learning

Lecture 18: Decision Tree / Bagging

Dr. Beilun Wang

Southeast University
School of Computer Science
and Engineering

Course Content Plan

- Regression (supervised)
- Classification (supervised)
- Unsupervised models
- Learning theory
- ☐ Graphical models

☐ Reinforcement Learning

Y is a continuous

Y is a discrete

NO Y

About f()

About interactions among X1,... Xp

Learn program to Interact with its environment

Three major sections for classification

- We can divide the large variety of classification approaches into roughly three major types
 - Discriminative
 - directly estimate a decision rule/boundary
 - e.g., support vector machine, decision tree, logistic regression,
 e.g. neural networks (NN), deep NN
 - Generative:
 - build a generative statistical model
 - e.g., Bayesian networks, Naïve Bayes classifier
 - Instance based classifiers
 - Use observation directly (no models)
 - e.g. K nearest neighbors

Decision Tree / Random Forest

Today

- Decision Tree (DT):
 - Tree representation
- Brief information theory
- Learning decision trees
- Bagging
- Random forests: Ensemble of DT
- More about ensemble

A decision tree to predict heart disease

History of decision tree learning

dates of seminal publications: work on these 2 was contemporaneous

CART developed by Leo Breiman, Jerome Friedman, Charles Olshen, R.A. Stone

ID3, C4.5, C5.0 developed by Ross Quinlan

A study comparing Classifiers

→ 11 binary classification problems / 8 metrics

Top 8 Models Table 2. Normalized scores for each learning algorithm by metric (average over eleven problems)

Models												
	CAL	ACC	FSC	LFT	ROC	APR	BEP	RMS	MXE	MEAN	OPT-SEL	
BST-DT	PLT	.843*	.779	.939	.963	.938	.929*	.880	.896	.896	.917	1
RF	PLT	.872*	.805	.934*	.957	.931	.930	.851	.858	.892	.898	
BAG-DT		.846	.781	.938*	.962*	.937*	.918	.845	.872	.887*	.899	
BST-DT	ISO	.826*	.860*	.929*	.952	.921	.925*	.854	.815	.885	.917*	
RF	-	.872	.790	.934*	.957	.931	.930	.829	.830	.884	.890	
BAG-DT	PLT	.841	.774	.938*	.962*	.937*	.918	.836	.852	.882	.895	
RF	ISO	.861*	.861	.923	.946	.910	.925	.836	.776	.880	.895	
BAG-DT	ISO	.826	.843*	.933*	.954	.921	.915	.832	.791	.877	.894	
SVM	PLT	.824	.760	.895	.938	.898	.913	.831	.836	.862	.880	
ANN	-	.803	.762	.910	.936	.892	.899	.811	.821	.854	.885	
SVM	ISO	.813	.836*	.892	.925	.882	.911	.814	.744	.852	.882	
ANN	PLT	.815	.748	.910	.936	.892	.899	.783	.785	.846	.875	
ANN	ISO	.803	.836	.908	.924	.876	.891	.777	.718	.842	.884	
BST-DT	-	.834*	.816	.939	.963	.938	.929*	.598	.605	.828	.851	
KNN	PLT	.757	.707	.889	.918	.872	.872	.742	.764	.815	.837	
KNN	_	.756	.728	.889	.918	.872	.872	.729	.718	.810	.830	
KNN	ISO	.755	.758	.882	.907	.854	.869	.738	.706	.809	.844	
BST-STMP	PLT	.724	.651	.876	.908	.853	.845	.716	.754	.791	.808	
SVM	_	.817	.804	.895	.938	.899	.913	.514	.467	.781	.810	
BST-STMP	ISO	.709	.744	.873	.899	.835	.840	.695	.646	.780	.810	
BST-STMP	_	.741	.684	.876	.908	.853	.845	.394	.382	.710	.726	
DT	ISO	.648	.654	.818	.838	.756	.778	.590	.589	.709	.774	

Readable

Decision Trees: Classifies based on a series of one-variable decisions.

Linear Classifier: Weight vector w tells us how important each variable is for classification and in which direction it points.

Quadratic Classifier: Linear weights work as in linear classifier, with additional information coming from all products of variables.

k Nearest Neighbors: Classifies using the complete training set, no information about the nature of the class difference

Example: Play Tennis

PlayTennis: training examples

Day	Outlook	Temperature	Humidity	Wind	PlayTennis	
D1	Sunny	Hot	High	Weak	No	
D2	Sunny	Hot	High	Strong	No	
D3	Overcast	Hot	High	Weak	Yes ←	
D4	Rain	Mild	High	Weak	Yes	
D5	Rain	Cool	Normal	Weak	Yes	
D6	Rain	Cool	Normal	Strong	No	
D7	Overcast	Cool	Normal	Strong	Yes _	
D8	Sunny	Mild	High	Weak	No	
D9	Sunny	Cool	Normal	Weak	Yes	
D10	Rain	Mild	Normal	Weak	Yes	
D11	Sunny	Mild	Normal	Strong	Yes	
D12	Overcast	Mild	High	Strong	Yes <u></u>	
D13	Overcast	Hot	Normal	Weak	Yes ←	
D14	Rain	Mild	High	Strong	No	

Anatomy of a decision tree

Apply Model to Test Data:

To 'play tennis' or not.

Apply Model to Test Data:

To 'play tennis' or not.

Decision trees (on Discrete)

 Decision trees represent a disjunction of conjunctions of constraints on the attribute values of instances.

```
(Outlook ==overcast)
OR
((Outlook==rain) and (Windy==false))
OR
((Outlook==sunny) and (Humidity=normal))
=> yes play tennis
```


 R_5

 R_4

 R_3

 X_1

Decision trees (on Continuous)

From ESL book Ch9:

<u>C</u>lassification <u>a</u>nd **R**egression **T**rees (CART)

- Partition feature space into set of rectangles
- Fit simple model in each partition

Decision Tree / Random Forest

- Decision Tree (DT):
 - Tree representation
- Brief information theory
- Learning decision trees
- Bagging
- Random forests: Ensemble of DT
- More about ensemble

Challenge in Tree Representation

Same concept / different representation

How do we choose which attribute to split?

Which attribute should be used first to test?

Intuitively, you would prefer the one that *separates* the training examples as much as possible.

(2Y,3N) (4Y,0N) (3Y,2N)

one criteria: Information gain

- Imagine:
 - Someone is about to tell you your own name
 - You are about to observe the outcome of a dice roll
 - You are about to observe the outcome of a coin flip
 - You are about to observe the outcome of a biased coin flip

 Each situation has a different amount of uncertainty as to what outcome you will observe.

Information

 Information: Reduction in uncertainty (amount of surprise in the outcome)

$$I(X) = \log_2 \frac{1}{p(x)} = -\log_2 p(x)$$

If the probability of this event happening is small and it happens, the information is large.

- > Observing the outcome of a coin flip $\longrightarrow I = -\log_2 \frac{1}{2} = 1$ is head
- Observe the outcome of a dice is 6 \longrightarrow $I = -\log_2 \frac{1}{6} = 2.58$

 The expected amount of information when observing the output of a random variable X

$$H(X) = E(I(X)) = \sum_{i} p(x_i)I(x_i) = \sum_{i} p(x_i)\log_2 p(x_i)$$

 If the X can have 8 outcomes and all are equally likely

$$H(X) = -\sum_{i} \frac{1}{8} \log_2 \frac{1}{8} = 3$$

Entropy

If there are k possible outcomes

$$H(X) \leq \log_2 k$$

- Equality holds when all outcomes are equally likely
- The more the probability distribution that deviates from uniformity, the lower

$$H(X^{\text{the}} E(Y^{\text{tree}})) = \sum_{i}^{0.2} p(x_i) I(x_i) = \sum_{i}^{0.2} p(x_i) \log_2 p(x_i)$$
2021/5/31
Beilun Wang

Binary H(X)0.8 entropy 0.6 0.2 p(H)0.4 0.6 8.0

e.g. for a random binary variable₂₅

Entropy Lower \rightarrow better purity

Entropy measures the purity

The distribution is less uniform Entropy is lower The node is purer

- IG(X,Y) = H(Y) H(Y|X)
- Reduction in uncertainty of Y by knowing a feature variable X
- Information gain:
 - = (information before split) (information after split)
 - = entropy(parent) [average entropy(children)]

Conditional entropy

$$H(Y) = -\sum_{i} p(y_{i}) \log_{2} p(y_{i})$$

$$H(Y|X = x_{j}) = -\sum_{i} p(y_{i}|x_{j}) \log_{2} p(y_{i}|x_{j})$$

$$H(Y|X) = \sum_{j} p(x_{j}) H(Y|X = x_{j})$$

$$= -\sum_{i} p(x_{j}) \sum_{i} p(y_{i}|x_{j}) \log_{2} p(y_{i}|x_{j})$$

Example

Attributes Labels

	X1	X2	Y	Count
→	Т	†	+	2
→	Т	F	+	2
	F	Τ ←	-	5
	F	F	+	1

Which one do we choose?

$$X_1$$
 or X_2 ?

Example

X1	X2	Υ	Count
Т	Т	+	2
Т	F	+	2
F	Т	-	5
F	F	+	1

$$H(Y|X_1 = T) = -\{P(Y = + |X_1 = T) \log P(Y = + |X_1 = T) + P(Y = -|X_1 = T) \log P(Y = -|X_1 = T)\}$$

$$= 0$$

$$H(Y|X_1 = T) = \begin{pmatrix} 4+\\ 0- \end{pmatrix} \Rightarrow -(P(+)\log(P(+)) + P(-)\log(P(-)))$$
$$= -(1\log 1 + 0\log 0) = 0$$

$$H(Y|X_1 = F) = \underbrace{\binom{1+}{5-}} \Rightarrow -(P(+)\log(P(+)) + P(-)\log(P(-)))$$
$$= -\left(\frac{1}{6}\log\frac{1}{6} + \frac{5}{6}\log\frac{5}{6}\right)$$

$$\frac{4}{10} T$$

$$\frac{4}{10} T$$

$$\frac{6}{10} H(Y|X_1) = \frac{4}{10} H(Y|X_1 = T)$$

$$+ \frac{6}{10} H(Y|X_1 = F)$$

2021/5/31

Example

Attributes Labels

X1	X2	Υ	Count
Т	Т	+	2
Т	F	+	2
F	Т	1	5
F	F	+	1

Which one do we choose?

$$X_1$$
 or X_2 ?

$$IG(X1,Y) = H(Y) - H(Y|X1)$$

$$H(Y) = -(5/10) \log(5/10) - 5/10 \log(5/10) = 1$$
 $H(Y|X1) = P(X1=T)H(Y|X1=T) + P(X1=F) H(Y|X1=F)$
 $= 4/10 (1 \log 1 + 0 \log 0) + 6/10 (5/6 \log 5/6 + 1/6 \log 1/6)$
 $= 0.39$

Information gain (X1,Y) = 1 - 0.39 = 0.61

Which one do we choose?

Attributes Labels

X1	X2	Υ	Count
Т	Т	+	2
Т	F	+	2
F	Т	-	5
F	F	+	1

Which one do we choose?

$$X_1$$
 or X_2 ?

Information gain (X1,Y) = 0.61

Information gain (X2,Y) = 0.12

Pick the variable which provides the most information gain about Y

Pick X_1

Which one do we choose?

X1	X2	Υ	Count
Т	Т	+	2
Т	F	+	2
F	Т	-	5
F	F	+	1

X1	X2	Υ	Count
T	Т	+	2
T	F	+	2
F	Т	-	5
F	F	+	1

One branch

The other branch

Information gain (X1,Y)=0.61

Information gain (X2,Y)=0.12

Pick the variable which provides the most information gain about Y

Pick X_1

Then recursively choose next Xi on branches

- Caveats: The number of possible values influences the information gain.
 - The more possible values, the higher the gain (the more likely it is to form small, but pure partitions)
- Other Purity (diversity) measures
 - Information Gain
 - Gini (population impurity)
 - where is p_{mk} proportion of class k at node m

$$\sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

Chi-square Test

Overfitting

- You can perfectly fit DT to any training data
- Instability of Trees
 - High variance (small changes in training set will result in changes of tree model)
 - Hierarchical structure Error in top split propagates down
- Two approaches:
 - Stop growing the tree when further splitting the data does not yield an improvement
 - Grow a full tree, then prune the tree, by eliminating nodes.

Summary: Decision trees

- Non-linear classifier / regression
- Easy to use
- Easy to interpret
- Susceptible to overfitting but can be avoided.

Decision Tree / Random Forest

- Decision Tree (DT):
 - Tree representation
- Brief information theory
- Learning decision trees

- Bagging
- Random forests: Ensemble of DT
- More about ensemble

Bagging

- Bagging or bootstrap aggregation
 - a technique for reducing the variance of an estimated prediction function.
- For instance, for classification, a committee of trees
 - Each tree casts a vote for the predicted class.

Bootstrap

- The basic idea:
 - randomly draw datasets with replacement (i.e. allows duplicates) from the training data, each samples the same size as the original training set

- The basic idea:
 - randomly draw datasets with replacement (i.e. allows duplicates) from the training data, each samples the same size as the original training set

With vs Without Replacement

 Bootstrap with replacement can keep the sampling size the same as the original size for every repeated sampling. The sampled data groups are independent on each other.

 Bootstrap without replacement cannot keep the sampling size the same as the original size for every repeated sampling. The sampled data groups are dependent on each other.

Bagging

Create bootstrap samples from the training data

Bagging of DT Classifiers

Peculiarities of Bagging

- Model Instability is good when bagging
 - The more variable (unstable) the basic model is, the more improvement can potentially be obtained
 - Low-Variability methods (e.g. SVM, LDA) improve less than High- Variability methods (e.g. decision trees)

Can understand the bagging effect in terms of a consensus of independent weak leaners and wisdom of crowds

Bagging: an example with simulated data

- N = 30 training samples,
- two classes and p = 5 features,
- Each feature N(0, 1) distribution and pairwise correlation .95 Response Y generated according to:

$$Pr(Y = 1|x_1 \le 0.5) = 0.2$$
 $Pr(Y = 1|x_1 > 0.5) = 0.8$

- Test sample size of 2000
- Fit classification trees to training set and bootstrap samples B = 200

→ No clear

difference with

feature to split

picking up which

Notice the bootstrap trees are different than the original tree

b = 2

x.2 < 0.205

- → Small
 changes in
 the training
 set will result
 in different
 tree
- → But these trees are actually quite similar for classification

- → For B>30, more trees do not improve the bagging results
- Since the trees correlate highly to each other and give similar classifications

Consensus: Majority vote

Probability: Average distribution at terminal nodes

Bagging

- Slightly increases model space
 - Cannot help where greater enlargement of space is needed
- Bagged trees are correlated
 - Use random forest to reduce correlation between trees

Bagged Decision Tree

- Prof. Tan, Steinbach, Kumar's "Introduction to Data Mining" slide
- ESLbook: Hastie, Trevor, et al. The elements of statistical learning. Vol. 2. No. 1. New York: Springer, 2009.
- Dr. Oznur Tastan's slides about RF and DT
- Dr. Camilo Fosco's slides

Thanks for listening