Long Nguyen

Matrix Multiplication ijk Forms with MPI Report

April 8, 2018

1. Description

For all the form I broadcast B.

Evenly distribute matrix A by looking at the rows and number of processors.

If the row is odd numbers some processors will take more rows, and some will take less rows.

The only different from ijk, ikj and kji is that the loop that they calculate is different, MPI_Scatterv handle the distribution

2. Table timing

ijk		Times		
		1	2	3
	1	2073.692	1653.24	1842.34
cores	4	718.41	782.02	738.94
	12	365.86	342.73	390.91
	16	253.21	211.82	271.6
	20	152.35	162.21	182.07

ikj		Times		
		1	2	3
	1	532.34	562.08	535.11
cores	4	295.72	274.59	291.17
	12	95.01	102.73	93.56
	16	73.42	74.9	73.21
	20	61.27	62.15	59.34

kij		Times		
		1	2	3
	1	612.87	589.81	569.12
cores	4	275.31	278.25	286.36
	12	96.81	94.03	94.91
	16	73.55	77.24	74.6
	20	60.02	61.65	60.94

3. Table speedup and Efficiency

ijk	Speed	Efficiency	
Times	up	Efficiency	
1653.24	100	1	
718.41	230.1249	0.575312	
342.73	482.3739	0.401978	
211.82	780.4929	0.487808	
152.35	1085.159	0.54258	

ikj	Speed	Efficiency	
Times	up	Efficiency	
532.34	100	1	
274.59	193.8672	0.484668	
93.56	568.9825	0.474152	
73.21	727.1411	0.454463	
59.34	897.1014	0.448551	

kij	Speed	Efficiency	
Times	up	Efficiency	
569.12	100	1	
275.31	206.7197	0.516799	
94.03	605.2536	0.504378	
73.55	773.7865	0.483617	
60.02	948.2173	0.474109	

4. Graph speedup

5. Graph Efficiency

6. Observations, analysis, & conclusions

First, I thought kij will have a fastest run but it turn out that ikj is slightly faster

During the work I also learn that if communication overhead it will make parallel way slower than running normally.

In concussion, ijk is the slowest because the way how they given out data that not much can do to parallel it. Ikj and kij is somewhat similar in the way how rows and columns are given to all thread so their run time is very close