Bioinformatics course Short presentation

Adolfo Hoyos¹

¹Department of Electronics and Computer Science Pontificia Universidad Javeriana, Cali

Class work, 2017

Outline

- Significance of Alignments
 - The basics
 - A guide to not getting burnt
 - Conclussion
- Databases Searches
 - The basics
 - BLAST algorithms
 - FASTA algorithms
 - Significance of results
 - Conclussion

Outline

- Significance of Alignments
 - The basics
 - A guide to not getting burnt
 - Conclussion
- Databases Searches
 - The basics
 - BLAST algorithms
 - FASTA algorithms
 - Significance of results
 - Conclussion

- Alignment score:
 - By chance?
- Compare with a random sequence.
 - $\bullet \ \ \mathsf{No\ better?} \ \to \mathsf{By\ chance}$

- Alignment score:
 - By chance?
- Compare with a random sequence.
 - ullet No better? o By chance

- Alignment score:
 - By chance?
- Compare with a random sequence.
 - ullet No better? o By chance

- Alignment score:
 - By chance?
- Compare with a random sequence.
 - ullet No better? o By chance

Typical scores for random recuences

Comparisson by mean and std. dev.

$$Z-score = \frac{score - mean}{standard\ deviation}$$

p-value

E: number of matches with equal similarity.

- $\bullet > 45\%$: similar structures, common or similar functions
- > 25% : similar folding pattern
- > 18%, < 25%: "twilight zone"
- < 18%: alignments don't provide much information

- > 45%: similar structures, common or similar functions
- $\bullet > 25\%$: similar folding pattern
- > 18%, < 25%: "twilight zone"
- ullet < 18% : alignments don't provide much information

- > 45%: similar structures, common or similar functions
- ullet > 25% : similar folding pattern
- > 18%, < 25%: "twilight zone"
- < 18%: alignments don't provide much information</p>

- \bullet > 45%: similar structures, common or similar functions
- > 25%: similar folding pattern
- > 18%, < 25%: "twilight zone"
- ullet < 18%: alignments don't provide much information

twilight zone

- "lcebergs"
- shared ligands
- known structures

twilight zone

- "lcebergs"
- shared ligands
- known structures

twilight zone

- "Icebergs"
- shared ligands
- known structures

Outline

- Significance of Alignments
 - The basics
 - A guide to not getting burnt
 - Conclussion
- Databases Searches
 - The basics
 - BLAST algorithms
 - FASTA algorithms
 - Significance of results
 - Conclussion

Control populations

E: number of matches with equal similarity.

Randomized permutations

E : number of matches with equal similarity.

z-score

How unusual is our original match is?

$$Z-score = \frac{score - mean}{standard\ deviation}$$

- $\bullet = 0$: No better
- ullet \geq 5 : Significant

z-score

How unusual is our original match is?

$$Z-score = \frac{score - mean}{standard\ deviation}$$

- $\bullet = 0$: No better
- ullet \geq 5 : Significant

z-score

How unusual is our original match is?

$$Z-score = \frac{score - mean}{standard\ deviation}$$

- $\bullet = 0$: No better
- ullet \geq 5 : Significant

p-value

is our match worse than random?

- $P \le 10^{-100}$: exact match
- ullet $10^{-100} < P \le 10^{-50}$: nearly identical
- $10^{-50} < P \le 10^{-10}$: closely related
- $10^{-5} < P \le 10^{-1}$: distant relatives
- $P > 10^{-1}$: probably insignificant

- $P \le 10^{-100}$: exact match
- ullet $10^{-100} < P \le 10^{-50}$: nearly identical
- $10^{-50} < P \le 10^{-10}$: closely related
- $10^{-5} < P \le 10^{-1}$: distant relatives
- $P > 10^{-1}$: probably insignificant

- $P \le 10^{-100}$: exact match
- ullet $10^{-100} < P \le 10^{-50}$: nearly identical
- ullet $10^{-50} < P \le 10^{-10}$: closely related
- $10^{-5} < P \le 10^{-1}$: distant relatives
- $P > 10^{-1}$: probably insignificant

- $P \le 10^{-100}$: exact match
- ullet $10^{-100} < P \le 10^{-50}$: nearly identical
- ullet $10^{-50} < P \le 10^{-10}$: closely related
- ullet $10^{-5} < P \le 10^{-1}$: distant relatives
- $P > 10^{-1}$: probably insignificant

- $P \le 10^{-100}$: exact match
- ullet $10^{-100} < P \le 10^{-50}$: nearly identical
- ullet $10^{-50} < P \le 10^{-10}$: closely related
- ullet $10^{-5} < P \le 10^{-1}$: distant relatives
- \bullet $P > 10^{-1}$: probably insignificant

e-value How many seq.s have the same z-score?

- \bullet $E \le 0.02$: probably homologous
- 0.02 < E < 1: cannot be ruled out
- E > 1: this could happen by chance

e-value How many seq.s have the same z-score?

- $E \le 0.02$: probably homologous
- 0.02 < E < 1: cannot be ruled out
- \bullet E > 1: this could happen by chance

e-value How many seq.s have the same z-score?

- $E \le 0.02$: probably homologous
- 0.02 < E < 1: cannot be ruled out
- ullet E>1: this could happen by chance

Outline

- Significance of Alignments
 - The basics
 - A guide to not getting burnt
 - Conclussion
- Databases Searches
 - The basics
 - BLAST algorithms
 - FASTA algorithms
 - Significance of results
 - Conclussion

- Statistics are a useful guide
- not a substitute for
 - thinking carefully about the results
 - analysis of ones that look promising

- Statistics are a useful guide
- not a substitute for
 - thinking carefully about the results
 - analysis of ones that look promising

- Statistics are a useful guide
- not a substitute for
 - thinking carefully about the results
 - analysis of ones that look promising

- Statistics are a useful guide
- not a substitute for
 - thinking carefully about the results
 - analysis of ones that look promising

Outline

- Significance of Alignments
 - The basics
 - A guide to not getting burnt
 - Conclussion
- Databases Searches
 - The basics
 - BLAST algorithms
 - FASTA algorithms
 - Significance of results
 - Conclussion

Not the best

- Big databases
- Not always feasible to find the best
- Heuristics

Not the best

- Big databases
- Not always feasible to find the best
- Heuristics

Not the best

- Big databases
- Not always feasible to find the best
- Heuristics

Outline

- Significance of Alignments
 - The basics
 - A guide to not getting burnt
 - Conclussion
- Databases Searches
 - The basics
 - BLAST algorithms
 - FASTA algorithms
 - Significance of results
 - Conclussion

BLAST

- Aminoacid sequences (proteins)
- Maximal ungapped local alignments
- Finds subsequences similiar to others in the query

BLAST

- Aminoacid sequences (proteins)
- Maximal ungapped local alignments
- Finds subsequences similiar to others in the query

BLAST

- Aminoacid sequences (proteins)
- Maximal ungapped local alignments
- Finds subsequences similiar to others in the query

- Partition of query into all posible sequential words
 - default length = 4
- Discard words made of mostly common aminoacids
- For every word
 - look for matches
 - when there is a match
 - extend matching until the matching score falls below a given threshold.

- Partition of query into all posible sequential words
 - default length = 4
- Discard words made of mostly common aminoacids
- For every word
 - look for matches
 - when there is a match
 - extend matching until the matching score falls below a given threshold.

- Partition of query into all posible sequential words
 - default length = 4
- Discard words made of mostly common aminoacids
- For every word
 - look for matches
 - when there is a match
 - extend matching until the matching score falls below a given threshold.

- Partition of query into all posible sequential words
 - default length = 4
- Discard words made of mostly common aminoacids
- For every word
 - look for matches
 - when there is a match
 - extend matching until the matching score falls below a given threshold.

- Partition of query into all posible sequential words
 - default length = 4
- Discard words made of mostly common aminoacids
- For every word
 - look for matches
 - when there is a match
 - extend matching until the matching score falls below a given threshold.

- Partition of query into all posible sequential words
 - default length = 4
- Discard words made of mostly common aminoacids
- For every word
 - look for matches
 - when there is a match
 - extend matching until the matching score falls below a given threshold.

- Partition of query into all posible sequential words
 - default length = 4
- Discard words made of mostly common aminoacids
- For every word
 - look for matches
 - when there is a match
 - extend matching until the matching score falls below a given threshold.

Input sequence: AILVPTV

1) Break the query sequence into words

AILVPTVIGCT

Search for word matches (also called high-scoring pairs, or HSPs) in the database sequences

AILV MVOGWALYDFLKCRAILVGTVIAML . .

 Extend the match until the local alignment score falls below a fixed threshold (the most recent version of BLAST allows gaps in the extended match)

Outline

- Significance of Alignments
 - The basics
 - A guide to not getting burnt
 - Conclussion
- 2 Databases Searches
 - The basics
 - BLAST algorithms
 - FASTA algorithms
 - Significance of results
 - Conclussion

- Find gapped matches
- Slower than BLAST
 - Considered more sentivie

- Find gapped matches
- Slower than BLAST
 - Considered more sentivie

- Find gapped matches
- Slower than BLAST
 - Considered more sentivie

FASTA's steps

- Partition of sequences in all possible sequential words
 - Generally words of length 4 to 6
- Table the positions of aminoacids from the query sequence

Word	A	С	D	Е	F	G	Н	I	K	L	M	N	P	Q	R	s	т	v	w	Y
Pos.	2	13			1	5		7	8	4	3		11							9
					6	12				10	14									

FASTA's steps

- Partition of sequences in all possible sequential words
 - Generally words of length 4 to 6
- Table the positions of aminoacids from the query sequence

Word	A	С	D	Е	F	G	Н	I	K	L	M	N	P	Q	R	s	т	v	w	Y
Pos.	2	13			1	5		7	8	4	3		11							9
					6	12				10	14									

FASTA's steps

- Partition of sequences in all possible sequential words
 - Generally words of length 4 to 6
- Table the positions of aminoacids from the query sequence

Word	A	С	D	E	F	G	н	I	K	L	M	N	P	Q	R	s	т	v	W	Y
Pos.	2	13			1	5		7	8	4	3		11							9
					6	12				10	14								Ī	

- Subtract the positions of aminoacids of the target sequence from the values of those aminoacids in the query sequence tabble
 - Query sequence table:

Word	A	С	D	E	F	G	Н	I	K	L	M	N	P	Q	R	s	т	v	W	Y
Pos.	2	13			1	5		7	8	4	3		11							9
					6	12				10	14									

Target sequence table:

1	2	3	4	5	6	7	8	9	10	11	12
Т	G	F	I	ĸ	Y	L	P	G	A	С	т
	3	-2	3	3	3	-3	3	-4	-8	2	
	10	3				3		3			

- Subtract the positions of aminoacids of the target sequence from the values of those aminoacids in the query sequence tabble
 - Query sequence table:

	Word	A	С	D	E	F	G	н	I	ĸ	L	M	N	P	Q	R	s	т	v	W	Y
	Pos.	2	13			1	5		7	8	4	3		11							9
i						6	12				10	14									

Target sequence table:

1	2	3	4	5	6	7	8	9	10	11	12
т	G	F	I	ĸ	Y	L	P	G	A	С	т
	3	-2	3	3	3	-3	3	-4	-8	2	
	10	3				3		3			

- Count the ocurrence of specific numbers
- The most recurrent represent shifts that bring good alignments between the sequences

Outline

- Significance of Alignments
 - The basics
 - A guide to not getting burnt
 - Conclussion
- Databases Searches
 - The basics
 - BLAST algorithms
 - FASTA algorithms
 - Significance of results
 - Conclussion

- Cannot be asumed to be related
- Alignment score are not sufficient
 - Results by chance
 - p-values, e-values, etc.

- Cannot be assumed to be related
- Alignment score are not sufficient
 - Results by chance
 - p-values, e-values, etc.

- Cannot be assumed to be related
- Alignment score are not sufficient
 - Results by chance
 - p-values, e-values, etc.

- Cannot be assumed to be related
- Alignment score are not sufficient
 - Results by chance
 - p-values, e-values, etc.

Outline

- Significance of Alignments
 - The basics
 - A guide to not getting burnt
 - Conclussion
- 2 Databases Searches
 - The basics
 - BLAST algorithms
 - FASTA algorithms
 - Significance of results
 - Conclussion

Conclussion

- Brute force algorithms may not be feasible
- Different algorithms can work better than others depending on application
- Aligment scores do not give definitive answers

Conclussion

- Brute force algorithms may not be feasible
- Different algorithms can work better than others depending on application
- Aligment scores do not give definitive answers

Conclussion

- Brute force algorithms may not be feasible
- Different algorithms can work better than others depending on application
- Aligment scores do not give definitive answers

App en dix

References I

Lesk, Arthur.
Introduction to bioinformatics.
Oxford University Press, 2013.