

PLAN CHAPITRE 4 PROTOCOLE DE ROUTAGE

Partie I – Besoins et Définitions

- Vue d'ensemble
- Que doit-on faire? (les besoins)
- Comment le faire? (les définitions)

Partie II – RIP, un protocole simple

- Principe
- Protocole RIP
- Problèmes de RIP et solutions

Bilan

BESOINS QUE DOIT-ON FAIRE?

- Trouver un chemin
 - Configuration des tables de routage de chaque routeur d'Internet
 - Pas le problème d'IP
- Une vue globale?
 - Un problème difficile
 - Des entités différentes
 - Qui et comment?

COMMENT LE FAIRE? DÉFINITIONS

- Recherche d'un chemin (une route)
 - Besoin d'une connaissance minimale du réseau
 - Application d'un algorithme (théorie des graphes)
 - Contraintes ou objectifs éventuels
- o Permettant d'acheminer les données au sein d'un réseau
 - Quelle qu'en soit la structure
- Protocole de routage
 - Ensemble de règles et de mécanismes
 - Communicant
 - Permettant de remplir les tables de routages des routeurs

COMMENT LE FAIRE? CRITÈRES

- o Choix d'un chemin optimal : notion de critères
 - Fiabilité
 - Économie
 - Bande passante
- Adaptation à la dynamique du réseau
 - Reconfiguration
 - Charge (rejoint critères)
 - Pannes
 - Mobilité
- o Implantation réaliste
 - Traitement algorithmique
 - Charge de communication

COMMENT LE FAIRE? DÉCOUPAGE DU PROBLÈME

- Problème trop complexe
 - Pas une seule entité
 - Des besoins et contraintes différents
 - Convergence et lourdeur
- o Chaque entité gère le problème à son échelle
 - Protocole de routage par Système Autonome (AS)
 - Interconnexion avec les autres = échange de routes

COMMENT LE FAIRE? PRINCIPALES ÉTAPES

- Collecte d'information
 - A la main
 - Via un protocole
 - o Centralisé, distribué ou décentralisé
 - Quelles informations collectées?
 - o Dépend des critères pour le calcul des routes
 - o À vecteur de distances
 - Algorithme Bellman Ford
 - À états des liaisons
 - o Algorithme de Dijkstra
- Calcul des routes
 - Centralisée, distribuée ou décentralisée
- Utilisation
 - IP

INTERLUDE EXERCICE

o Donner la table de routage de R et de M1 et M2

CORRECTION EXERCICE

• M1

Destination	Passerelle	Genmask	Indic	Metric	Iface
145.21.45.0	0.0.0.0	255.255.255.0	U	1	eth0
0.0.0.0	145.21.45.1	0.0.0.0	UG	0	eth0

• M2

Destination	Passerelle	Genmask	Indic	Metric	Iface
145.20.34.0	0.0.0.0	255.255.255.0	U	1	eth0
145.20.38.0	145.20.34.1	255.255.255.0	UG	2	eth0
145.20.47.0	145.20.34.1	255.255.255.0	UG	3	eth0
0.0.0.0	145.20.34.254	0.0.0.0	UG	0	eth0

o R

Destination	Passerelle	Genmask	Indic	Metric	Iface
145.21.45.0	0.0.0.0	255.255.255.0	U	1	eth0
145.20.1.0	0.0.0.0	255.255.255.0	U	1	eth1
145.20.32.0	145.20.1.10	255.255.255.0	UG	2	eth1
145.20.47.0	145.20.1.30	255.255.255.0	UG	2	eth1
145.20.34.0	145.20.1.10	255.255.255.0	UG	3	eth1
145.20.38.0	145.20.1.30	255.255.255.0	UG	3	eth1

RIP – EN QUELQUES MOTS

- Routing Information Protocol
 - IGP à vecteur de distances
 - o Information de base : distance à une destination
 - Meilleure route = plus courte
 - o Distance exprimée en "sauts" (hops)
 - Protocole applicatif
 - o Implanté sur UDP, port 520
 - Messages courts
 - Recherche d'efficacité
 - Décrit dans
 - o RFC 1058 en 1988
 - o RFC 1388 en 1993
 - Ajout du support des masques
 - Ajout de l'authentification des routeurs

RIP – PRINCIPE (I)

- o Garder une base de donnée avec une entrée pour chaque entité du système
 - Adresse IP destination
 - Distance en nombre de hop
 - Utilisation de timers
- Émission périodique d'un extrait de la base de donnée
 - Chacune des interfaces
 - TTL 1

RIP - PRINCIPE (II)

- A l'initialisation
 - Configuration
 - Chaque routeur connaît ses voisins immédiats
 - Interface IP
 - o Distance de 1
- Découverte du réseau par envoi périodique d'extraits de sa base de donnée

RIP - ALGORITHME

- Lors de la réception d'une route, comparaison avec les entrées de la base de donnée
 - si destination inconnue et la métrique reçue n'est pas infinie alors
 - o ajout de la route avec
 - Gateway = émetteur
 - Métrique = métrique +1
 - sinon si nouvelle route meilleure alors
 - o remplacement de la route
 - sinon si même chemin (mise à jour)
 - o route modifiée
 - sinon
 - o rien

Mise en œuvre de RIP

• Appliquer RIP sur cet exemple

REPRÉSENTATION DU RÉSEAU

Destination	Passerelle	Genmask	Indic	Metric	Iface	Table de routage de R1
A	F-2 $D-3$ $E-3$	A - 2 D - 3		4 A - 3 C - 3	R5 R6 R6	$C - 1 \\ D - 1$ $E - 2 \\ B - 2$ $A - 3 \\ F - 3$ $E - 1 \\ D - 1$ $F - 2 \\ C - 2$ $B - 3$ $A - 4$

RIP - FORMAT DES MESSAGES

Longueur max = 512 B De 1 à 25 routes

RIP – PROBLÈMES

- Protocole basé sur une topologie fixe
 - Pour s'adapter aux changements...
 - ... il faudrait déjà détecter le changement!
- Protocole simple
 - Problèmes semblables à autoapprentissage Ethernet (pontage)
 - Boucles infinies
 - Distances infinies
 - Convergence lente
 - o Instabilité
 - Fiabilité?
 - o Sécurité?
 - o Détection de messages corrompus
 - o Détection de pannes de routeurs

RIP - SOLUTIONS

- Limiter l'infini
 - Réduit la durée de comptage
 - L'infini c'est 16!
 - Inconvénient: Limite l'AS à 15 bonds
- Split horizon
 - Ne pas informer une station voisine des routes qui passent par elle
 - Avantages
 - o messages de routage différents en fonction des destinataires
 - Messages plus courts
 - Mais ne résout que partiellement le problème du rebond dès que l'on a plus de 2 stations
- Triggered update
 - Diffusion immédiate d'une route suite à la détection de panne

RIP - SOLUTIONS LA SUITE!

- o Détection des stations inaccessibles
 - Route time-out
 - Entrées de la table de routage à durée bornée (3 mn)
- Figer l'inaccessibilité
 - Entrée à l'infinie pour 4 périodes de maj (2 mn)
- o Diffusion de l'inaccessibilité
 - Poison Reverse
 - Ajout des routes inaccessibles au message de routage
 - o Amélioration du Split Horizon
 - On envoie à une station voisine une route infinie pour chacune des routes où l'on passe par elle
 - Inconvénient = augmentation de la taille des messages

