Analiza podataka i obrada informacija

Nositelj: izv. prof. dr. sc. Siniša Sovilj **Asistent**: mag. inf. Alesandro Žužić

Ustanova: Sveučilište Jurja Dobrile u Puli, Fakultet informatike u Puli

[1] Rosnove

R je programski jezik i okruženje za statističku analizu i grafičku vizualizaciju podataka. Nudi bogat skup funkcija za **statističko modeliranje**, **analizu podataka** i **strojno učenje**. Zbog svoje fleksibilnosti i velikog broja biblioteka, R je široko korišten u znanstvenim istraživanjima i industriji.

Posljednje ažurirano: 12. ožujka 2025.

- · Analiza podataka i obrada informacija
- [1] R osnove
 - o RStudio
 - Preuzimanje i instalacija R-a
 - Preuzimanje i instalacija RStudia
- Uvod
 - Osnovna sintaksa
 - Osnovne operacije
 - Generiranje sekvenci brojeva
 - Ispis podataka
 - paste
 - Varijable i dodjela vrijednosti
 - Imena varijabli
 - Osnovne vrste podataka
 - Uvjeti
 - IF uvjet
 - IFELSE uvjet
 - Petlje
 - FOR petlja
 - WHILE petlja
 - REPEAT petlja
 - o Funkcije
- Strukture podataka

- Podatkovni skupovi Datasets
 - Varijable prema mjernim skalama
- Vrste struktura podataka
 - Vektor Vector
 - Primjer
 - Matrica Matrix
 - Polje Array
 - Okvir podataka Data Frame
 - Faktori Factors
 - Liste Lists
- Učitavanje podataka
 - o Učitavanje iz tekstualnih datoteka
 - Učitavanje CSV datoteka
 - Učitavanje TXT datoteka
 - Učitavanje iz Excel datoteka
 - Učitavanje s interneta
 - Učitavanje ugrađenih podataka
 - o Provjera i čišćenje podataka
 - Provjera strukture podataka
 - Provjera nedostajućih vrijednosti
- Samostalni zadatak za vježbu 1

RStudio

RStudio je integrirano razvojno okruženje (IDE) za programski jezik R.

Preuzimanje i instalacija R-a

Prije nego što instaliramo RStudio, potrebno je instalirati R, jer je RStudio samo okruženje koje koristi R kao svoj temeljni jezik.

Sa službene stranice R-a https://cran.r-project.org preuzmite odgovarajuću verziju te pokrenite preuzetu datoteku slijedeći upute za instalaciju (ostavite zadane postavke).

Preuzimanje i instalacija RStudia

Nakon što je R instaliran, možemo instalirati RStudio tako da sa službene stranicu RStudia https://posit.co/download/rstudio-desktop/ preuzmemo **besplatnu verziju** RStudio Desktop *Open Source Edition*

(AGPL v3). Pokrenite preuzetu datoteku i slijedite upute za instalaciju (ostavite zadane postavke).

Nakon instalacije, pokrenite RStudio. Prvi prikaz trebao bi izgledati ovako:

RStudio se sastoji od nekoliko ključnih panela:

- Editor (Ime Datoteke/Untitled) mjesto gdje pišemo kôd odabrane/nove datoteke
- Konzola (Console) mjesto gdje unosimo i izvršavamo R naredbe i vidimo ispis (print)
- Okruženje (Environment) prikazuje trenutno učitane varijable i objekte
- **Datoteke, Plots, Help, Packages** panel za pregled datoteka, vizualizaciju grafova, instalaciju paketa i dokumentaciju

Kako bi provjerili je li R ispravno instaliran, u konzolu upišemo version:

```
> version
platform
           x86_64-w64-mingw32
arch
         x86_64
        mingw32
os
crt
        ucrt
system
           x86_64, mingw32
status
major
minor
          4.3
         2025
year
         02
month
         28
day
          87843
svn rev
language
            R
version.string R version 4.4.3 (2025-02-28 ucrt)
```

Za testiranje rada RStudia, možemo napisati sljedeću naredbu:

```
> print("Pozdrav iz RStudia!")
[1] "Pozdrav iz RStudia!"
```

Uvod

Prvo što želimo napraviti je stvoriti novu R datoteku u kojoj ćemo spremati kôd koji pišemo. Možemo koristiti kraticu Ctrl+Shift+N ili kliknuti na *New File* ikonu:

Prvo što si želimo namjestiti u RStudiu je trenutni **radni direktorij** (working directory), što je u biti samo mapa (folder) u kojem ćemo raditi i stvarati datoteke.

Da bi provjerili u kojem se radnom direktoriju nalazimo, koristimo komandu: getwd() - get working directory

Dok za namještanje novog direktorija, koristimo komandu: setwd("<value>") - set working directory

Za **pokretanje** kôda u RStudio-u označimo jednu ili više linije kôda i pritisnemo kombinaciju tipki Ctrl+Enter

Primjer.

getwd()
primjer ispisa u konzoli
[1] "C:/Users/user/Documents/GitHub/FIPU-APOI/Skripte/Skripta 1. - R Osnove"

setwd("~/GitHub/FIPU-APOI/Skripte/Skripta 1. - R Osnove/primjeri")

Ako ne želimo ručno pisati putanju do željenog radnog direktorija, možemo u panelu **Files** pronaći i namjestiti trenutni radni direktorij.

Ukoliko nismo sigurni kako neka ugrađena (*built-in*) funkcija ili komanda radi, uvijek možemo iću u panel *Help* te pretražiti dokumentaciju ili ispred funkcije staviti ? i pokrenuti je:

Osnovna sintaksa

Podsjetnik, u RStudiu možete izvršiti kôd tako da:

- napišete naredbu i pritisnete Ctrl+Enter (Windows/Linux) ili CMD+Enter (Mac)
- označite više linija kôda i pokrenete ih na isti način
- konzolu možete očistiti pomoću Ctrl+L, kroz *Edit → Clear Console* ili pritiskom na ikonu *metle*

U RStudiu **undo** se vrši kraticom Ctrl+Z, dok kraticom Ctrl+Shift+Z vršimo **redo**

Jednolinijski (singleline) komentari u R-u se pišu s znakom #, višelinijskih (multiline) komentara nema:

```
# komentar

# jedini način pisanja komentara u
# više linija
```

Za zakomentirat/odkomentirat više linija odjednom možemo koristiti kraticu Ctrl+Shift+C

Osnovne operacije

R podržava standardne matematičke operacije:

```
2 + 2
       # Zbrajanje
[1] 4
5 - 3
       # Oduzimanje
[1] 2
4 * 2
       # Množenje
[1] 8
7 / 2
       # Dijeljenje
[1] 3.5
7 %/% 2 # Cjelobrojno dijeljenje
[1] 3
2^3
       # Potenciranje (2 na treću)
[1] 8
10 %% 3 # Modulo (ostatak pri dijeljenju)
[1] 1
```

U svim primjerima i nadalje, uglate zagrade s brojkom [1] će predstavljati ispis u konzoli (*kao u RStudiu*).

Generiranje sekvenci brojeva

R omogućuje jednostavno generiranje sekvenci brojeva pomoću operatora : ili funkcije seq()

```
1:10  # Generira brojeve od 1 do 10
[1] 1 2 3 4 5 6 7 8 9 10

seq(1, 10)  # Isto kao 1:10
[1] 1 2 3 4 5 6 7 8 9 10

seq(1, 10, 2) # Generira brojeve od 1 do 10 s korakom 2
[1] 1 3 5 7 9
```

Ispis podataka

Za ispis podataka u konzolu koristimo funkciju print() ili jednostavno napišemo ime varijable

```
print("Hello, World!") # Ispis niza znakova
[1] "Hello, World!"

x <- 42 # Dodjeljivanje vrijednosti varijabli x

x # Ispis varijable x
[1] 42
```

paste()

Funkcija paste() u R-u spaja više objekata (stringova, brojeva, varijabli) u jedan tekstualni niz. Možemo postaviti separator između spojenih elemenata koristeći argument sep. Ako ne postavimo separator, koristi se razmak''.

```
paste("Hello", "World") # "Hello World"
paste("2025", "03", "11", sep = "-") # "2025-03-11"
paste("Broj je:", 10) # "Broj je: 10"
```

Funkcija paste0() je varijanta koja ne koristi separator (nema razmaka), no isto je kao da napišemo paste() gdje je sep=""

Varijable i dodjela vrijednosti

Varijable u R-u dodjeljuju se pomoću <- ili =. Preporučeni operator je <-.

```
a <- 10  # Dodjela broja 10 varijabli a
b = 5  # Alternativni način (nije preporučeno)
ime <- "Ana"  # Tekstualna varijabla
logicka <- TRUE  # Logička varijabla
v1 <- v2 <- v3 <- "jabuka" # Dodjela iste vrijednosti više varijabli istovremeno
```

Možemo ispisati varijable jednostavnim navođenjem njihovih imena:

```
a
[1] 10
b
[1] 5
ime
[1] "Ana"
logicka
[1] TRUE
```

Imena varijabli

Varijable u R-u mogu imati kratka imena (kao što su x i y) ili opisna imena (kao što su godina, ime, ukupna_količina). Iako postoji fleksibilnost u odabiru imena varijabli, postoji nekoliko pravila koja treba slijediti:

- Ime varijable mora započeti s velikim ili malim slovom
- Ime varijable može se sastojati od slova, brojeva, točke (.) i donje crte (_)
- Ako ime varijable započinje točkom (.), ne može biti praćeno brojem
- Ime varijable ne smije započeti brojem ili donjom crtom (_)
- Varijable su osjetljive na velika i mala slova, što znači da mojavarijabla, MojaVarijabla i MOJAVARIJABLA predstavljaju različite varijable
- Rezervirane riječi, poput TRUE, FALSE, NULL i ključnih riječi poput if, ne mogu se koristiti kao imena varijabli

Primjeri dozvoljenih imena varijabli:

```
mojavarijabla <- "jabuka"
moja_varijabla <- "jabuka"
mojaVarijabla <- "jabuka"
MOJAVARIJABLA <- "jabuka"
mojavarijabla.2 <- "jabuka"
.mojavarijabla <- "jabuka" # Izbjegavajte korištenje točki kod naziva varijabli
._.__... <- "jabuka" # Samo zato što je moguće nemojte činiti
```

```
2mojavarijabla <- "jabuka" # Ne može započeti s brojem
moja-varijabla <- "jabuka" # Crtica (-) nije dozvoljena
moja varijabla <- "jabuka" # Razmaci nisu dozvoljeni
_mojavarijabla <- "jabuka" # Ne smije započeti s donjom crtom
moja@varijabla <- "jabuka" # Posebni znakovi nisu dozvoljeni
.2mojavarijabla <- "jabuka" # Ne smije započeti s točkom i brojem nakon točke
TRUE <- "jabuka" # Rezervirana riječ 'TRUE' ne može biti korištena
```

Environment neće prikazati varijable koje počinju s točkom!

Osnovne vrste podataka

U R-u nije potrebno izričito navoditi tip podataka prilikom kreiranja varijable. R automatski prepoznaje vrstu varijable na temelju dodijeljene vrijednosti. Na primjer, ako dodijelimo brojčanu vrijednost, R će varijablu tretirati kao numeričku (numeric), dok će tekstualnu vrijednost automatski prepoznati kao znakovni tip (character). Također, vrijednost varijable se može kasnije ponovno dodijeliti, pri čemu R ažurira njezin tip ovisno o novoj dodijeljenoj vrijednosti.

• Numeric (brojčani podaci) – cijeli brojevi i decimalni brojevi

```
broj <- 42
decimalni <- 3.14
class(broj) # Provjera vrste podataka
[1] "numeric"
class(decimalni)
[1] "numeric"
```

• Integer (cijeli brojevi) – koriste se dodavanjem sufiksa L

```
cijeli <- 10L
class(cijeli)
[1] "integer"
```

• Character (tekstualni podaci) – pohranjuju tekstualne vrijednosti (stringove)

```
ime <- "Ana"
class(ime)
[1] "character"
```

• Logical (logički podaci) – mogu imati vrijednosti TRUE ili FALSE

```
logicka <- TRUE
class(logicka)
[1] "logical"
```

• Factor (kategorijske varijable) – koristi se za rad s diskretnim kategorijama

```
boja <- factor(c("crvena", "plava", "zelena"))
class(boja)
[1] "factor"
```

• Complex (kompleksni brojevi) – koriste se rjeđe, ali su dostupni u R-u

```
kompleksni <- 3 + 4i
class(kompleksni)
[1] "complex"
```

Sve dodane aktivne varijable i podatke možemo vidjeti u panelu Environment u RStudio-u:

Environment Histo	ory Connections Tutorial							
🚰 📊 🌃 Import Dataset 💌 🌗 254 MiB 💌 🎻								
R 🔻 🦺 Global Envi	ronment *							
Values								
a	10							
b	5							
boja	Factor w/ 3 levels "crvena", "plava",: 1 2 3							
broj	42							
cijeli	10L							
decimalni	3.14							
ime	"Ana"							
kompleksni	3+4i							
logicka	TRUE							
x	42							

Za prikaz svih trenutno definiranih varijabli koristimo naredbu ls():

```
ls()
[1] "a" "b" "boja" "broj" "cijeli" "decimalni" "ime" "kompleksni"
[9] "logicka" "x"
```

Za brisanje određene varijable koristimo naredbu rm(<naziv_varijable>):

```
rm(a) # Briše varijablu 'a'
rm(list = ls()) # Za brisanje svih varijabli
```

Za brisanje svih varijabli iz radnog prostora također možemo kliknuti na ikonu *metle* unutar panela Environment

Uvjeti

Uvjeti omogućuju izvršavanje kôda samo ako je određeni uvjet ispunjen. U R-u možemo koristiti if, else i ifelse za kontrolu toka programa.

IF uvjet

U slučaju kada želimo provjeriti određeni uvjet i izvršiti odgovarajući blok kôda, koristimo if uvjet:

```
if (1 == 0) {
  print(1)
} else {
  print(0)
}
```

U ovom primjeru, uvjet 1 == 0 nije zadovoljen, pa se izvršava blok u else dijelu. Rezultat će biti:

```
[1] "O"
```

IFELSE uvjet

Za kraće uvjete koji se mogu izravno koristiti u izrazu, koristi se ifelse funkcija. Ova funkcija omogućava donošenje odluka na temelju uvjeta, bez potrebe za blokovima kôda.

```
x <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
ifelse(x < 5 | x > 8, x, 0)
[1] 1 2 3 4 0 0 0 9 10
```

Ovdje će se provesti provjera je li element iz vektora x manji od 5 ili veći od 8. Ako je uvjet zadovoljen, vraća se vrijednost iz vektora x, a ako nije, vraća se 0.

Petlje

Petlje u R-u omogućuju ponavljanje određenih operacija više puta, što je korisno za rad s velikim količinama podataka ili kada želimo izvršiti isti zadatak više puta bez potrebe za ponovnim pisanjem kôda. U R-u najčešće korištene petlje su for, while i repeat.

FOR petlja

for petlja koristi se za iteriranje kroz nizove vrijednosti, kao što su vektori, liste, ili drugi objekti koji se mogu podijeliti na više elemenata. U svakom koraku petlje, promjenjiva (i) varijabla prima vrijednost iz niza, a zatim se izvršavaju naredbe unutar petlje.

```
for (i in 1:10) {
    print(paste("i = ", i))
}

[1] "i = 1"
[1] "i = 2"
[1] "i = 3"
[1] "i = 4"
[1] "i = 5"
[1] "i = 6"
[1] "i = 7"
[1] "i = 8"
[1] "i = 9"
[1] "i = 9"
[1] "i = 10"
```

Primjer sume brojeva:

```
suma <- 0
for (i in 1:10) {
  suma <- suma + i
  }
  print(paste("Suma brojeva od 1 do 10 je:", suma))

[1] "Suma brojeva od 1 do 10 je: 55"
```

WHILE petlja

while petlja izvršava blok kôda dok je uvjet istinit. Petlja će se ponavljati sve dok uvjet koji se navede unutar zagrade bude zadovoljen.

```
i <- 3
while (i > 0) {
  print(paste("i =", i))
  i <- i - 1 # Smanjenje vrijednosti i
}

[1] "i = 3"
[1] "i = 2"
[1] "i = 1"</pre>
```

REPEAT petlja

repeat petlja je slična while petlji, ali se razlikuje u tome što petlja uvijek mora sadržavati uvjet za izlazak pomoću break naredbe. repeat petlja će se izvršavati besprijekorno dok ne naiđe na uvjet za izlaz. Sintaksa izgleda ovako:

```
i <- 1
repeat {
    print(paste("i =", i))
    i <- i + 1
    if (i %% 5 == 0) {
        break
    }
}

[1] "i = 1"
[1] "i = 2"
[1] "i = 3"
[1] "i = 4"</pre>
```

Funkcije

Funkcije u R-u omogućuju ponovnu upotrebu kôda i povećavaju njegovu čitljivost. One prihvaćaju argumente, izvršavaju određene operacije i mogu vratiti rezultat.

Funkcija se definira pomoću ključne riječi function, a može primati jedan ili više argumenata:

```
naziv_funkcije <- function(argument_1, argument_2, ...) {
# tijelo funkcije/operacije
return(varijabla/vrijednost)
}
```

Funkciju možemo pozvati navođenjem njezina imena i prosljeđivanjem odgovarajućih argumenata.

Funkcija bez argumenata:

```
pozdrav <- function() {
  return("Ahoy!")
}

pozdrav()
[1] "Ahoy!"</pre>
```

Funkcija s jednim argumentom:

```
kvadrat <- function(x) {
  return(x^2)
}
kvadrat(4)
[1] 16</pre>
```

Funkcija s više argumenata:

```
zbroj <- function(a, b) {
  return(a + b)
}
zbroj(5, 3)
[1] 8
```

Argumentima funkcije možemo postaviti zadane (*default*) vrijednosti, što znači da će se, ako argument nije naveden prilikom poziva funkcije, automatski koristiti njegova unaprijed određena vrijednost.

Funkcija sa zadanim argumentima:

```
ponovi_tekst <- function(tekst = "R!", n = 3) {
  return(rep(tekst, n)) # rep() -> ponavlja dani element n puta
}

ponovi_tekst(n = 5)
[1] "R!" "R!" "R!" "R!" "R!"
```

Strukture podataka

U R-u postoji nekoliko osnovnih struktura podataka koje se koriste za pohranu i manipulaciju podacima. Svaka od ovih struktura ima svoje specifične karakteristike i primjene.

Podatkovni skupovi (Datasets)

U analizi podataka, **podatkovni skup** (*dataset*) predstavlja strukturirane podatke organizirane u obliku tablice. Tablica se sastoji od:

- Redaka (opservacija, primjera) predstavljaju pojedinačne zapise, objekte ili slučajeve u skupu podataka
- Stupaca (varijabli, atributa) predstavljaju karakteristike ili atribute koji opisuju podatke

Matematički se podatkovni skup može prikazati kao:

$podatkovni skup = redci (opservacije) \times stupci (varijable)$

Primjer tabličnog podatkovnog skupa:

PatientID	AdmDate	Age	Diabetes	Status
1	10/15/2014	25	Typel	Poor
2	11/01/2014	34	Type2	Improved
3	10/21/2014	28	Typel	Excellent
4	10/28/2014	52	Typel	Poor

Varijable prema mjernim skalama

Varijable u podatkovnom skupu mogu se klasificirati prema **mjernim skalama**. Postoje dvije osnovne vrste varijabli:

- **1. Kategorijske varijable** (*Categorical Variables*) Kategorijske varijable predstavljaju podatke koji pripadaju određenim grupama ili kategorijama. U R-u se ovakve varijable definiraju kao **faktori** (*factors*).
 - Nominalne varijable (Nominal variables)
 - o Vrijednosti su imena kategorija bez prirodnog reda
 - **Primjer:** Spol (M/\tilde{Z}) , boja očiju, vrsta dijabetesa
 - R reprezentacija: factor(c("M", "Ž", "M"))
 - Ordinalne varijable (Ordinal variables)
 - o Vrijednosti imaju prirodni redoslijed, ali razmaci između njih nisu nužno jednaki
 - o **Primjer:** Skala tvrdoće materijala (meko, srednje, tvrdo), ocjene (loše, dobro, odlično)
 - R reprezentacija: factor(c("Low", "Medium", "High"), ordered = TRUE)
- **2. Kontinuirane varijable** (*Continuous Variables*) Kontinuirane varijable predstavljaju numeričke podatke koji se mogu mjeriti i koji imaju logičan redoslijed s definiranom skalom mjerenja.
 - Intervalne varijable (Interval variables)
 - Vrijednosti imaju definiran redoslijed i jednak razmak između jedinica, ali nemaju prirodnu nultu točku
 - **Primjer:** Temperatura u stupnjevima Celzija (°C) ili Fahrenheita (°F)
 - **R reprezentacija:** c(10, 20, 30)
 - Racionalne varijable (Ratio variables)
 - o Imaju prirodnu nultu točku, što omogućuje razmjerno uspoređivanje vrijednosti
 - o **Primjer:** Duljina, masa, broj stanovnika u gradu
 - R reprezentacija: c(100, 200, 300)

Vrste struktura podataka

U R-u postoje različite strukture podataka koje omogućuju učinkovitu pohranu i manipulaciju podacima.

Klase struktura podataka (classes)

- Vektor (vector) osnovna struktura podataka, može sadržavati samo jedan tip podataka
- Matrica (matrix) dvodimenzionalna struktura s elementima istog tipa
- Polje (array) višedimenzionalna struktura, generalizacija matrice
- Podatkovni okvir (data frame) tablična struktura koja može sadržavati različite tipove podataka po stupcima
- Lista (list) kolekcija objekata različitih tipova podataka
- **Skalar** jednoelementni vektor

Podatkovni okvir (Data Frame) Data frame je glavna struktura podataka za pohranu **podatkovnih skupova** u R-u. Sličan je tablici, pri čemu stupci mogu sadržavati različite tipove podataka.

Svaka struktura podataka može sadržavati jedan ili više tipova podataka, osim vektora, matrica i polja koji moraju imati homogeni tip podataka.

Vektor (Vector)

Vektor je osnovna jedinica podataka u R-u. Može sadržavati elemente istog tipa, poput numeričkih, logičkih ili znakova. Vektori se kreiraju pomoću funkcije c(), koja spaja više vrijednosti u jednu sekvencu.

```
# Numerički vektor
brojevi <- c(1, 2, 3, 4, 5)

# Znakovni vektor
imena <- c("Ana", "Marko", "Iva")

# Logički vektor
logicki <- c(TRUE, FALSE, TRUE)

# Prazan vektor određenog tipa i duljine
prazan <- vector(mode = "numeric", length = 5)
```

Values	
brojevi	num [1:5] 1 2 3 4 5
imena	chr [1:3] "Ana" "Marko" "Iva"
logicki	logi [1:3] TRUE FALSE TRUE
prazan	num [1:5] 0 0 0 0 0

Indeksi u R-u počinju od 1 (za razliku od većine programskih jezika koji počinju od 0)

Možemo dohvatiti elemente vektora pomoću uglati zagrada []:

```
brojevi[2] # Dohvaća drugi element (2)
[1] 2

imena[1] # Dohvaća prvi element ("Ana")
[1] "Ana"

logicki[3] # Dohvaća treći element (TRUE)
[1] TRUE
```

Vektori podržavaju aritmetičke i logičke operacije:

```
# Aritmetičke operacije nad vektorima

x <- c(2, 4, 6)

y <- c(1, 2, 3)

zbroj <- x + y  # Rezultat: c(3, 6, 9)

umnozak <- x * y  # Rezultat: c(2, 8, 18)

kvadrati <- x^2  # Rezultat: c(4, 16, 36)

# Logičke operacije

logicki_v <- c(TRUE, FALSE, TRUE)

negacija <- !logicki_v # Rezultat: c(FALSE, TRUE, FALSE)
```

Vektore možemo filtrirati koristeći logičke izraze:

```
brojevi <- c(10, 20, 30, 40, 50)

# Dohvat brojeva većih od 25
veci_od_25 <- brojevi[brojevi > 25] # Rezultat: c(30, 40, 50)
```

Osim što možemo stvarati vektore isto ih možemo i kombinirati pomoću c() funkcije:

```
vektor1 <- c(1, 2, 3)
vektor2 <- c(4, 5, 6)
kombinirani <- c(vektor1, vektor2) # Rezultat: c(1, 2, 3, 4, 5, 6)
```

R omogućuje generiranje sekvenci pomoću dvotočja: i funkcije seq():

```
sekvencal <- 1:10 # Rezultat: c(1, 2, 3, ..., 10)
sekvenca2 <- seq(2, 20, by = 2) # Rezultat: c(2, 4, 6, ..., 20)
```

Za ponavljanje elemenata koristimo funkciju rep(), omogućuje ponavljanje cijelog vektora više puta ili ponavljanje svakog njegovog elementa određeni broj puta:

```
ponovljeni <- rep(1:3, times = 2) # Rezultat: c(1, 2, 3, 1, 2, 3)
ponovljeni2 <- rep(1:3, each = 2) # Rezultat: c(1, 1, 2, 2, 3, 3)
```

Dodatne funkcije za rad s vektorima:

```
brojevi <- c(10, 20, 40, 20, 70, 20)
```

Funkcija	Opis	Primjer	Rezultat		
sum()	Zbraja sve elemente u vektoru	sum(brojevi)	180		
min()	Vraća minimalnu vrijednost u vektoru	min(brojevi)	10		
max()	Vraća maksimalnu vrijednost u vektoru	max(brojevi)	70		
mean()	Vraća prosječnu vrijednost vektora	mean(brojevi)	30		
unique()	Vraća jedinstvene vrijednosti (bez duplikata)	unique(brojevi)	10, 20, 40, 70		
length()	Vraća broj elemenata u vektoru	length(brojevi)	6		
sort()	Sortira elemente vektora (rastući redoslijed)	sort(brojevi)	10, 20, 20, 20, 40, 70		
rev()	Obrće redoslijed elemenata u vektoru	rev(brojevi)	20, 70, 20, 40, 20, 10		
which()	Vraća indekse elemenata koji zadovoljavaju uvjet	which(brojevi > 30)	3, 5 (indeksi)		
any()	Provjerava postoji li barem jedan element koji zadovoljava uvjet	any(brojevi > 50)	TRUE		
all()	Provjerava zadovoljavaju li svi elementi uvjet	all(brojevi > 15)	FALSE		
cumsum()	Vraća kumulativni zbroj elemenata	cumsum(brojevi)	10, 30, 70, 90, 160, 180		
diff()	Vraća razlike između susjednih elemenata	diff(brojevi)	10, 20, -20, 50, -50		
rep()	Ponavlja elemente vektora	rep(c(1, 2), times = 3)	1, 2, 1, 2, 1, 2		
seq()	Generira sekvencu brojeva	seq(from = 1, to = 10, by = 2)	1, 3, 5, 7, 9		
paste()	Spaja stringove u jedan vektor	paste("Broj", 1:3)	"Broj 1", "Broj 2", "Broj 3"		
table()	Vraća frekvenciju svake jedinstvene vrijednosti	table(brojevi)	10:1, 20:3, 40:1, 70:1		
range()	Vraća minimalnu i maksimalnu vrijednost	range(brojevi)	10, 70		
median()	Vraća medijan vektora	median(brojevi)	20		
sd()	Vraća standardnu devijaciju vektora	sd(brojevi)	22.9089		
var()	Vraća varijancu vektora	var(brojevi)	480		

Matrica (Matrix)

Matrica je dvodimenzionalna struktura podataka u R-u koja sadrži **samo jedan tip podataka** (npr. samo numeričke vrijednosti ili samo znakove). Kreira se pomoću funkcije matrix()

```
# Kreiranje 3x3 matrice s brojevima od 1 do 9 po stupcima mat <- matrix(1:9, nrow = 3, ncol = 3) print(mat)

[,1] [,2] [,3]
[1,] 1 4 7
[2,] 2 5 8
[3,] 3 6 9
```

- Argument nrow određuje broj redaka, a ncol broj stupaca
- R automatski popunjava matricu po stupcima, osim ako se ne koristi byrow = TRUE

```
# Kreiranje 3x3 matrice s brojevima od 1 do 9 po retcima mat2 <- matrix(1:9, nrow = 3, byrow = TRUE) print(mat2)

[,1] [,2] [,3]
[1,] 1 2 3
[2,] 4 5 6
[3,] 7 8 9
```

Elementi matrice dohvaćaju se pomoću [redak, stupac]:

```
# Dohvaćanje elementa u drugom retku i trećem stupcu
mat[2,3]
[1] 8

# Dohvaćanje cijelog retka
mat[2, ]
[1] 2 5 8

# Dohvaćanje cijelog stupca
mat[ ,3]
[1] 7 8 9
```

Spajanje vektora u matricu vrši se pomoću funckija cbind() (column bind) i rbind() (row bind):

```
# Spajanje dvaju vektora u stupce
vl <- c(1, 2, 3)
v2 <- c(4, 5, 6)
mat3 <- cbind(vl, v2) # Kombinira vektore u stupce
print(mat3)

vl v2
[1,] 1 4
[2,] 2 5
[3,] 3 6

# Spajanje dvaju vektora u retke
mat4 <- rbind(vl, v2) # Kombinira vektore u retke
print(mat4)

[,1] [,2] [,3]
vl 1 2 3
v2 4 5 6
```

Matrice možemo vizualno pregledati ako kliknemo na njihovu varijablu unutar panela **Environment**:

_	V1 [‡]	V2	V 3
1	1	4	7
2	2	5	8
3	3	6	9

Polje (Array)

Polje (*array*) je višedimenzionalna struktura podataka u R-u. Dok su matrice ograničene na dvije dimenzije (redci i stupci), polja mogu imati tri ili više dimenzija. Ova struktura korisna je za pohranu podataka koji zahtijevaju više od dvije dimenzije, poput vremenskih serija ili složenih eksperimentalnih podataka.

```
# Kreiranje polja s 3 reda, 2 stupca i 2 sloja
arr <- array(1:12, dim = c(3, 2, 2))
print(arr)

,,1

[,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

,,2

[,1] [,2]
[1,] 7 10
[2,] 8 11
[3,] 9 12
```

• Polje se može vizualizirati kao niz matrica, gdje svaki sloj predstavlja zasebnu matricu

Elementi polja dohvaćaju se pomoću indeksa u obliku [redak, stupac, sloj]:

```
# Dohvaćanje elementa u drugom retku, prvom stupcu i drugom sloju arr[2, 1, 2]
[1] 8

# Dohvaćanje cijelog prvog sloja arr[,, 1]
        [,1] [,2]
[1,] 1 4
[2,] 2 5
[3,] 3 6

# Dohvaćanje cijelog drugog stupca u svim slojevima arr[, 2,]
        [,1] [,2]
[1,] 4 10
[2,] 5 11
[3,] 6 12
```

Polja podržavaju aritmetičke operacije, ali moraju imati iste dimenzije:

```
arr <- array(1:12, dim = c(3, 2, 2))

arr2 <- array(13:24, dim = c(3, 2, 2))

zbroj <- arr + arr2

print(zbroj)

,,1

[,1] [,2]

[1,] 14 20

[2,] 16 22

[3,] 18 24

,,2

[,1] [,2]

[1,] 26 32

[2,] 28 34

[3,] 30 36
```

Primjeri upotrebe polja:

- 1. **Vremenski podaci:** Polja se često koriste za pohranu podataka koji se mijenjaju kroz vrijeme, poput mjerenja temperature u različitim lokacijama i vremenskim intervalima
- 2. **Slike i videozapisi:** Polja se mogu koristiti za pohranu piksela slike ili videozapisa, gdje svaki sloj predstavlja različitu komponentu (npr. RGB)

In a nutshell:

Okvir podataka (Data Frame)

Okvir podataka (data.frame) je jedna od najčešće korištenih struktura podataka u R-u. Omogućuje pohranu podataka u tabličnom formatu, gdje svaki stupac može sadržavati različite tipove podataka (npr. numeričke, znakovne, logičke).

Okvir podataka kreira se pomoću funkcije data.frame(), gdje se svaki stupac definira kao vektor.

- Svaki stupac može imati različit tip podataka (npr. Ime je znakovni, Dob i Visina su numerički)
- Redovi predstavljaju pojedinačne opservacije, a stupci varijable

Također ih kao i matrice možemo vizualno pregledati ako kliknemo na njihovu varijablu unutar panela **Environment**.

•	Ime [‡]	Dob [‡]	Visina [‡]
1	Ana	25	168
2	Marko	30	175
3	lva	22	160

Da bi dobili dimenzije tablice koristimo funkciju dim() ili nrow() za broj redaka i ncol() za broj stupaca:

```
dimenzije <- dim(podaci)

print(paste("Broj opservacija (redaka):", dimenzije[1]))
[1] "Broj opservacija (redaka): 4"

print(paste("Broj varijabli (stupaca):", dimenzije[2]))
[1] "Broj varijabli (stupaca): 3"

print(paste("Broj opservacija (redaka):", nrow(podaci)))
[1] "Broj opservacija (redaka): 4"

print(paste("Broj varijabli (stupaca):", ncol(podaci)))
[1] "Broj varijabli (stupaca): 3"
```

Ukoliko želimo ispraviti ili promijeniti neke podatke možemo korisitit funkciju fix() koja otvara grafički editor za interaktivno uređivanje objekata (vektora, okvira podataka, funkcija):

Uređivanje okvira podataka:

```
fix(podaci) # Otvara editor za podatke
```

Podacima u okviru možemo pristupiti na više načina:

1. Pristup stupcima pomoću \$:

```
podaci$lme # Vraća vektor imena
[1] "Ana" "Marko" "Iva" "Pero"
```

2. Pristup određenom retku i stupcu pomoću []:

```
podaci[2, 3] # Vraća vrijednost u drugom retku i trećem stupcu
[1] 175
```

3. Pristup cijelom retku ili stupcu:

```
podaci[2, ] # Vraća drugi redak

Ime Dob Visina
2 Marko 30 175

podaci[, 3] # Vraća treći stupac
[1] 168 175 160 191
```

4. Pristup pomoću imena stupaca:

```
podaci["Visina"] # Vraća stupac Visina kao podokvir

Visina
1 168
2 175
3 160
4 190
```

Novi stupac možemo dodati jednostavno dodjeljivanjem vrijednosti:

```
# Dodavanje stupca "Težina"
podaci$Težina <- c(55, 80, 60, 87)
print(podaci)

Ime Dob Visina Težina
1 Ana 25 168 55
2 Marko 30 175 80
3 Iva 22 160 60
4 Pero 25 191 87
```

Stupac možemo izbrisati postavljanjem tog stupca na NULL:

```
# Brisanje stupca "Težina"
podaci$Težina <- NULL
print(podaci)

Ime Dob Visina
1 Ana 25 168
2 Marko 30 175
3 Iva 22 160
4 Pero 25 191
```

Podatke možemo filtrirati koristeći logičke uvjete:

```
# Filtriranje osoba starijih od 23 godine
stariji_od_23 <- podaci[podaci$Dob > 23, ]
print(stariji_od_23)

Ime Dob Visina
1 Ana 25 168
2 Marko 30 175
3 Pero 25 191
```

```
podaci <- data.frame(
Ime = c("Ana", "Marko", "Iva", "Petar", "Marija", "Ivan"),
Dob = c(25, 30, 25, 28, 25, 30),
Visina = c(168, 175, 160, 180, 165, 178)
)

# Sortiranje po dobi (silazno)
sortirani_podaci <- podaci[order(podaci$Dob, decreasing = TRUE), ]
print(sortirani_podaci)

Ime Dob Visina
2 Marko 30 175
1 Ana 25 168
3 Iva 22 160
```

Funkcije poput summary() i aggregate() koriste se za sažimanje podataka:

```
# Sažetak podataka
summary(podaci)
  Ime
               Dob
                         Visina
              Min. :25.00 Min. :160.0
Length:6
 Class:character 1st Qu.:25.00 1st Qu.:165.8
 Mode :character Median :26.50 Median :171.5
          Mean :27.17 Mean :171.0
          3rd Qu.:29.50 3rd Qu.:177.2
          Max. :30.00 Max. :180.0
# Agregacija prosječne visine po dobi
aggregate(Visina ~ Dob, data = podaci, FUN = mean)
 Dob Visina
1 25 164.3333
2 28 180.0000
3 30 176.5000
```

Funkcija colnames() koristi se za dohvaćanje ili promjenu naziva stupaca u okviru podataka data.frame.

```
podaci <- data.frame(
Ime = c("Ana", "Marko"),
Dob = c(25, 30),
Visina = c(168, 175)
)

# Dohvaćanje naziva stupaca
nazivi <- colnames(podaci)

print(nazivi)
[1] "Ime" "Dob" "Visina"
```

Promjena naziva stupaca:

```
# Promjena naziva svih stupaca
colnames(podaci) <- c("Name", "Age", "Height")

# Promjena naziva određenog stupca
colnames(podaci)[2] <- "Year"

print(podaci)

Name Year Height
1 Ana 25 168
2 Marko 30 175
```

Faktori (Factors)

Faktori su struktura podataka u R-u koja se koristi za pohranu kategorijskih varijabli. Kategorijske varijable su one koje imaju ograničen broj različitih vrijednosti (npr. spol, boja, razredi). Faktori su posebno korisni u statističkim analizama i modeliranju jer R interno pohranjuje faktore kao brojeve, što omogućuje efikasniju obradu podataka.

Faktori se kreiraju pomoću funkcije factor(). Ona pretvara vektor u faktor i automatski određuje razine (levels) faktora:

```
# Kreiranje faktora za spol
spol <- factor(c("M", "Ž", "M", "Ž", "M"))
print(spol)

[1] M Ž M Ž M
Levels: M Ž
```

- MiŽ su razine (levels) faktora.
- R interno pohranjuje faktore kao brojeve (npr. $M=1, \ \tilde{Z}=2$), ali prikazuje ih kao znakovne vrijednosti

Razine faktora mogu se promijeniti pomoću argumenta levels:

```
# Promjena redoslijeda razina
spol <- factor(spol, levels = c("Ž", "M"))
print(spol)
[1] M Ž M Ž M
Levels: Ž M # Sada je prva razina `Ž`, a druga `M`
```

Ako želimo dodati nove razine koje nisu prisutne u podacima, možemo koristiti argument levels:

```
# Dodavanje nove razine "N" (nepoznato)
spol <- factor(spol, levels = c("M", "Ž", "N"))
print(spol)

[1] M Ž M Ž M
Levels: M Ž N
```

• Sada faktor ima tri razine, iako vrijednost N nije prisutna u podacima

Faktori se mogu pretvoriti u znakovne vektore pomoću funkcije as.character() ili numeričke vektore pomoću funkcije as.numeric():

```
# Pretvorba faktora u znakovni vektor
spol_znakovni <- as.character(spol)
print(spol_znakovni)
[1] "M" "Ž" "M" "Ž" "M"

# Pretvorba faktora u numerički vektor
spol_numericki <- as.numeric(spol)
print(spol_numericki)
[1] 12121
```

• R interno pohranjuje faktore kao brojeve, gdje svaka razina ima svoj numerički kod.

Primjeri upotrebe faktora:

- 1. **Statističke analize:** Faktori su ključni u analizi varijance (ANOVA), regresiji i drugim statističkim metodama
- 2. Grupiranje podataka: Faktori se koriste za grupiranje podataka u grafikone i tablice
- 3. **Kodiranje podataka:** Faktori se koriste za pretvaranje tekstualnih podataka u numeričke kodove

Liste (Lists)

Lista je fleksibilna struktura podataka koja može sadržavati različite tipove podataka, uključujući vektore, okvire podataka i čak druge liste. Liste se kreiraju pomoću funkcije list().

AKA:


```
moja_lista <- list(
 broj = 42,
imena = c("Ana", "Marko"),
 matrica = matrix(1:4, nrow = 2)
print(moja_lista)
$broj
[1] 42
$imena
[1] "Ana" "Marko"
$matrica
   [,1] [,2]
[1,] 1 3
[2,] 2 4
moja_lista$broj
[1] 42
moja_lista$imena[1]
[1] "Ana"
moja_lista$matrica[1,2]
[1] 3
```

Učitavanje podataka

U R-u postoji više načina za učitavanje podataka iz različitih izvora, poput tekstualnih datoteka, Excel datoteka, baza podataka ili internetskih izvora.

Učitavanje iz tekstualnih datoteka

Tekstualne datoteke (*npr. CSV, TXT*) najčešći su izvor podataka. R ima ugrađene funkcije za čitanje ovih datoteka.

Učitavanje CSV datoteka

CSV (*Comma-Separated Values*) datoteke su tablični podaci pohranjeni u tekstualnom obliku, gdje su vrijednosti odvojene zarezom.

```
# Učitavanje CSV datoteke
podaci <- read.csv("data/primjer.csv")

# Prikaz prva 3 retka
head(podaci, n = 3L)
    Ime Dob Visina Grad

1 Ana 25 168 Zagreb
2 Marko 30 175 Split
3 Iva 22 160 Rijeka

# Prikaz zadnja 3 retka
tail(podaci, n = 3L)
    Ime Dob Visina Grad
4 Petar 28 180 Osijek
5 Marija 35 165 Zadar
6 Ivan 40 178 Dubrovnik
```

• Argumenti funkcije read.csv():

- o file: Putanja do datoteke.
- header: Ako je TRUE, prvi redak se koristi kao nazivi stupaca (default je TRUE)
- o sep: Znak koji odvaja vrijednosti (default je ,)

Učitavanje TXT datoteka

Za datoteke s drugim separatorima (*npr. tabulator, točka-zarez, razmak*) koristi se funkcija read.table().

```
# Učitavanje TXT datoteke s razmakom kao separatorom
podaci <- read.table("data/primjer.txt", header = TRUE, sep = " ")

# Prikaz prva 2 retka
head(podaci, n = 2L)

Ime Dob Visina Grad
1 Ana 25 168 Zagreb
2 Marko 30 175 Split
```

Argumenti funkcije read.table():

- o header: Ako je TRUE, prvi redak se koristi kao nazivi stupaca
- sep: Znak koji odvaja vrijednosti (npr. sep = "\t" za tabulator)

Učitavanje iz Excel datoteka

Za učitavanje podataka iz Excel datoteka (XLSX) potreban je paket readxl:

```
install.packages("readxl") # Instalacija paketa
library(readxl) # Učitavanje paketa

# Učitavanje Excel datoteke
podaci <- read_excel("putanja/do/datoteke.xlsx", sheet = 1)

# Prikaz prva 2 retka
head(podaci, n = 2L)

# A tibble: 2 × 4
Ime Dob Visina Grad
<chr> <dbl> <dbl> <chr> 1 Ana 25 168 Zagreb
2 Marko 30 175 Split
```

Argumenti funkcije read_excel():

- o path: Putanja do Excel datoteke
- o sheet: Naziv ili indeks lista koji se želi učitati (default je prvi list)
- o range: Opseg ćelija koji se želi učitati (npr. range = "A1:D10")

Učitavanje s interneta

R može učitati podatke s interneta, bilo izravno s web stranice ili iz API-ja.

Za učitavanje podataka s API-ja koristi se paket httr.

```
install.packages("httr") # Instalacija paketa
library(httr)

# Zahtjev za informacije o repozitoriju
odgovor <- GET("https://api.github.com/repos/tidyverse/ggplot2")

# Pretvorba odgovora u JSON
podaci <- content(odgovor, "parsed")

# Prikaz podataka
print(podaci)
```

Učitavanje ugrađenih podataka

U R-u postoji veliki broj ugrađenih skupova podataka koji su dostupni odmah nakon pokretanja R-a. Ovi podaci često se koriste za demonstraciju, vježbu i testiranje različitih funkcija i paketa. Ugrađeni podaci mogu se učitati pomoću funkcije data().

Neki primjeri ugrađenih skupina podataka:

Skup podataka	Opis
mtcars	Podaci o različitim modelima automobila iz 1974. godine. Sadrži informacije o potrošnji goriva, broju cilindara, snazi motora i drugim karakteristikama
iris	Podaci o cvijetu perunike (Iris). Sadrži mjere za duljinu i širinu latica i čašičnih listova za tri različite vrste perunike
airquality	Podaci o kvaliteti zraka u New Yorku tijekom 1973. godine. Sadrži mjerenja ozona, sunčevog zračenja, temperature i drugih varijabli
Titanic	Podaci o preživjelima na Titanicu. Organizirani u obliku tabele s informacijama o putnicima, uključujući klasu, spol, dob i preživljavanje
USArrests	Podaci o broju uhićenja po 100.000 stanovnika u SAD-u za različite zločine (ubojstvo, napad, silovanje) i postotak urbane populacije po državi
ChickWeight	Podaci o težini pilića tijekom vremena, s informacijama o prehrani i dobi

Funkcija data() prikazuje popis svih ugrađenih skupova podataka dostupnih u trenutnoj R sesiji. Ako želite učitati određeni skup podataka, jednostavno navedite njegovo ime kao argument:

```
# Prikaz popisa svih ugrađenih skupova podataka
data()
# Učitavanje određenog skupa podataka
data("mtcars") # Učitava skup podataka 'mtcars'
cars <- data.frame(mtcars)</pre>
head(cars)
          mpg cyl disp hp drat wt qsec vs am gear carb
               21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
Mazda RX4
Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
Datsun 710
            22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
            18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
Valiant
```

*	mpg [‡]	cyl [‡]	disp [‡]	hp [‡]	drat [‡]	wt ‡	qsec [‡]	vs [‡]	am ‡	gear [‡]	carb [‡]
Mazda RX4	21.0	6	160.0	110	3.90	2.620	16.46	0	1	4	4
Mazda RX4 Wag	21.0	6	160.0	110	3.90	2.875	17.02	0	1	4	4
Datsun 710	22.8	4	108.0	93	3.85	2.320	18.61	1	1	4	1
Hornet 4 Drive	21.4	6	258.0	110	3.08	3.215	19.44	1	0	3	1
Hornet Sportabout	18.7	8	360.0	175	3.15	3.440	17.02	0	0	3	2
Valiant	18.1	6	225.0	105	2.76	3.460	20.22	1	0	3	1

Provjera i čišćenje podataka

Nakon učitavanja podataka, važno je provjeriti njihovu strukturu i očistiti ih od eventualnih grešaka.

Provjera strukture podataka

```
podaci <- read.csv("data/primjer_with_nulls.csv")</pre>
# Prikaz strukture podataka
str(podaci)
'data.frame': 6 obs. of 4 variables:
$ Ime : chr "Ana" "" "Iva" "Petar" ...
 $ Dob : int 25 30 22 28 35 40
 $ Visina: int NA 175 160 180 165 NA
 $ Grad : chr "Zagreb" "Split" "Rijeka" "" ...
# Sažetak podataka
summary(podaci)
               Dob
                          Visina
   Ime
                                     Grad
               Min. :22.00 Min. :160.0 Length:6
Length:6
 Class:character 1st Qu.:25.75 1st Qu.:163.8 Class:character
 Mode :character Median :29.00 Median :170.0 Mode :character
           Mean :30.00 Mean :170.0
           3rd Qu.:33.75 3rd Qu.:176.2
           Max. :40.00 Max. :180.0
                   NA's :2
```

Provjera nedostajućih vrijednosti

```
# Broj nedostajućih vrijednosti po stupcu
colSums(is.na(podaci))
 Ime Dob Visina Grad
  0 0 2 0
# Uklanjanje redaka s nedostajućim vrijednostima
podaci_clean <- na.omit(podaci)</pre>
podaci_clean
  Ime Dob Visina Grad
2
     30 175 Split
3 Iva 22 160 Rijeka
4 Petar 28 180
5 Marija 35 165 Zadar
# Uklanjanje redaka gdje bilo "Ime" ili "Grad" ima prazne stringove
podaci_clean <- podaci_clean[podaci_clean$Ime!= "" | podaci_clean$Grad!= "", ]
podaci_clean
  Ime Dob Visina Grad
3 Iva 22 160 Rijeka
5 Marija 35 165 Zadar
```

Samostalni zadatak za vježbu 1

Skup podataka mtcars sadrži informacije o različitim modelima automobila iz 1974. godine. Podaci uključuju potrošnju goriva, broj cilindara, snagu motora i druge karakteristike.

Učitajte skup podataka mtcars u varijablu naziva cars i odgovorite na sljedeća pitanja:

- 1. Koliko ima opservacija (redaka) i varijabli (stupaca)?
- 2. Navedite kojeg su tipa varijable.
- 3. Ima li nedostajućih vrijednosti?
- 4. Izmijenite nazive stupaca tako da budu na hrvatskom jeziku.
 - Hint: colnames()
 - o Koristite sljedeće nazive:
 - mpg → potrosnja
 - cyl → cilindri
 - disp → zapremina
 - hp → snaga
 - drat → omjer
 - wt → tezina
 - qsec → ubrzanje
 - vs → motor
 - am → mjenjac
 - gear → brzine
 - carb → karburatori
- 5. **Koja je minimalna, maksimalna i prosječna potrošnja goriva?** Hint: min(), max(), mean()
- 6. **Koliko je različitih brojeva cilindara u skupu podataka?** Hint: unique()
- 7. Koliko je automobila s ručnim mjenjačem (mjenjac = 1)? Hint: sum()
- 8. Kreirajte novi dataframe koji sadrži sve podatke za automobile s 8 cilindara. Spremite podatke u varijablu naziva cars_8cyl.
- 9. Koliko iznosi prosječna težina automobila s 8 cilindara?
- 10. **Koliko iznosi potrošnja goriva za prva 3 automobila?** Hint: head()
- 11. Koliko iznosi potrošnja goriva za posljednjih 5 automobila? Hint: tail()
- 12. Prikažite sažetak svih numeričkih varijabli u skupu podataka.