Package 'YaYasso'

June 7, 2024

Title Yet another Yasso is a collection of function to combine with the decomposition model Yasso to simulate the C stocks of a commercial stand

Type Package

Version 0.1.0

Author Lorenzo Menichetti, Boris Tupek, Aleksi Lentonen
Maintainer Lorenzo Menichetti <ilmenichetti@gmail.comt></ilmenichetti@gmail.comt>
Description The package is built around an implementation of Yasso done in SoilR, to which a collection of accessory functions to simulate model inputs were added. The package has been developed within the Natural Resources Institute Finland (Luonnonvarakeskus, LUKE). Package documentation is hopefully in a decent shape but still work in progress. Please do not hesitate to contact the maintainer if you find issues, we'll see what we can do.
License CC BY 4.0
Encoding UTF-8
LazyData true
RoxygenNote 7.2.3
Suggests knitr, rmarkdown
Depends SoilR
VignetteBuilder knitr R topics documented:
bark.litter barley.AWEN branches.AWEN branches.litter carbon fineroot.AWEN fineroot.linear fineroot.linear fineroot.litter.reg fineroot.litter.tsum fineroot.stand fineroot.stand.volume fineroot.stand.volume.OLD

foliage.AWEN	10
foliage.litter	11
foliage.litter.Liski2006	11
marklund.birch.livbranch	12
marklund.pine.needles	13
marklund.spruce.needles	13
marklund.spruce.needles.comp	14
multispecies.repo.AWEN	14
petersson.birch.below	15
	16
petersson.spruce.below	16
repola.birch.above	17
	17
	18
	18
repola.birch.livbranch	19
	19
repola.birch.roots	20
	20
repola.birch.stembark.simp	21
	21
	22
repola.pine.dens	22
1 1	23
1 1	23
	24
	24
repola.pine.roots	25
repola.pine.stem.simp	25
	26
	26
	27
	27
	28
1 1	28
	29
1 1	29
	30
	30
	31
	31
	32
	32
	33
	33
	34
	34
•	35
1 1	35
•	36
	36
•	37

bark.litter 3

Index		55
	yasso07.SS	52
	Yasso07.Modelfi.month	
	Yasso07.Modelfi	
	yasso.matrix.fun	
	wheat.AWEN	
	understorey.lichen.OLD	
	understorey.lichen.litter	
	understorey.lichen.AWEN	
	understorey.lichen	
	understorey.herb.OLD	
	understorey.herb.litter	
	understorey.herb	
	understorey.grass.OLD	
	understorey.grass.litter	
	understorey.grass.AWEN	
	understorey.grass	
	understorey.dwarfshrub.OLD	
	understorey.dwarfshrub.litter	
	understorey.dwarfshrub	39
	understorey.bryoph.OLD	
	understorey.bryoph.litter	38
	understorey.bryoph.AWEN	38
	understorey.bryoph	37

bark.litter

Calculates bark litter

Description

Calculates bark litter

Usage

bark.litter(Ms, spec)

Arguments

Ms Mass bark (usually in Mg ha\$^-1\$)

spec tree species, 1=pine 2=spruce, 3=residues (broadleaves)

Value

litter inputs (mass) from a mass of bark, to be passed to the AWEN partitioning function

See Also

stem.AWEN

4 branches.AWEN

barley.AWEN

Calculates the AWEN proportions of barley biomass

Description

Calculates the AWEN proportions of barley biomass

Usage

```
barley.AWEN(Lbarley)
```

Arguments

Lbarley

barley litter biomass

Author(s)

Boris Tupek

branches.AWEN

Calculates the AWEN proportions of branches biomass

Description

Calculates the AWEN proportions of branches biomass

Usage

branches.AWEN(Lb)

Arguments

Lb

branches biomass

Value

the mass of the four AWEN components

Author(s)

Boris Tupek

References

Yasso07 user-interface manual. J Liski, M Tuomi, J Rasinmäki - , Helsinki, 2009

See Also

branches.litter

branches.litter 5

branches.litter

Calculates branch litter

Description

Calculates branch litter

Usage

```
branches.litter(Mb, spec)
```

Arguments

Mb Mass living branches (usually in Mg ha\$^-1\$)

spec tree species, 1=pine 2=spruce, 3=residues (broadleaves)

Value

litter inputs (mass) from a mass of branches, to be passed to the AWEN partitioning function

See Also

branches.AWEN

carbon

Converts biomass in carbon

Description

The function assumes 50% C content of organic matter

Usage

carbon(mass)

Arguments

mass

mass of organic matter

Value

a scalar, mass of C

6 fineroot.linear

fineroot.AWEN

Calculates the AWEN proportins of fine roots biomass

Description

Calculates the AWEN proportins of fine roots biomass

Usage

```
fineroot.AWEN(Lfr, spec)
```

Arguments

Lfr fine roots biomass spec tree species

Value

the mass of the four AWEN components

Author(s)

Boris Tupek

References

Yasso07 user-interface manual. J Liski, M Tuomi, J Rasinmäki - , Helsinki, 2009

See Also

```
fineroot.litter.reg fineroot.litter.tsum
```

fineroot.linear

Fine root based on root mass

Description

Fine root based on root mass

Usage

```
fineroot.linear(Mf, spec)
```

Arguments

Mf mass of foliage (any mass unit)

spec tree species, 1 = Pine, 2 = Spruce, 3 = Birch

fineroot.linear.fertility 7

References

????????? not sure at all!!! Helmisaari, H.-S., Derome, J., Nöjd, P. & Kukkola, M. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiol. 27, 1493–1504 (2007).

```
fineroot.linear.fertility
```

Fine root based on root mass and fertility

Description

Fine root based on root mass and fertility

Usage

```
fineroot.linear.fertility(Mf, spec, type)
```

Arguments

Mf mass of foliage (any mass unit)

spec tree species, 1 = Pine, 2 = Spruce, 3 = Birch

type Forest type, it is a proxy for soil fertility. 3 = Myrtillus, 4 = Vaccinium, 5 =

Calluna

References

????????? not sure at all!!! Helmisaari, H.-S., Derome, J., Nöjd, P. & Kukkola, M. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiol. 27, 1493–1504 (2007).

fineroot.litter.reg Calculates fine root litter

Description

Calculates fine root litter

Usage

```
fineroot.litter.reg(Mfr, reg)
```

Arguments

Mfr mass of fine roots

reg Region (1= Northern Finland or 2= Southern Finland)

Value

litter inputs (mass) from a mass of fine roots, to be passed to the AWEN partitioning function

8 fineroot.stand

See Also

fineroot.AWEN

fineroot.litter.tsum Calculates fine root litter with three different options based on tsum

Description

Calculates fine root litter with three different options based on tsum

Usage

```
fineroot.litter.tsum(Mfr, tsum)
```

Arguments

Mfr mass of fine roots tsum temperature sum

Value

litter inputs (mass) from a mass of fine roots, to be passed to the AWEN partitioning function

See Also

fineroot.AWEN

fineroot.stand

Fine root biomass function (basal area)

Description

Part of a series of functions predicting the fine root biomass of a stand

Usage

```
fineroot.stand(basal, decid, CNo)
```

Arguments

basal stand basal area (m^2ha^{-1})

decid dominance of birch, factor (0= dominance of conifer, 1 = dominance of birch????)

CNo carbon:nitrogen ratio of organic layer or upper 0–20 cm peat layer

Value

fine root biomass (<2mm) in g

References

Lehtonen, A. et al. Modelling fine root biomass of boreal tree stands using site and stand variables. For. Ecol. Manag. 359, 361–369 (2016).

fineroot.stand.volume 9

```
fineroot.stand.volume Fine root biomass function (volume)
```

Description

Part of a series of functions predicting the fine root biomass of a stand

Usage

```
fineroot.stand.volume(vol)
```

Arguments

vol stand volume (m^3ha^{-1})

Value

fine root biomass (<2mm) in g

References

Lehtonen, A. et al. Modelling fine root biomass of boreal tree stands using site and stand variables. For. Ecol. Manag. 359, 361–369 (2016).

```
fineroot.stand.volume.OLD
```

Fine root biomass function, DEPRECATED (volume)

Description

Part of a series of functions predicting the fine root biomass of a stand

Usage

```
fineroot.stand.volume.OLD(vol)
```

Arguments

vol stand volume (m^3ha^{-1})

Value

fine root biomass (<2mm) in g

10 foliage.AWEN

fineroot.total.tsum

Fine root of the whole stand (including understorey), based on tsum

Description

Fine root of the whole stand (including understorey), based on tsum

Usage

```
fineroot.total.tsum(tsum)
```

Arguments

tsum

average annual effective temperature sum (>5 °C)

References

????????? not sure at all!!! Helmisaari, H.-S., Derome, J., Nöjd, P. & Kukkola, M. Fine root biomass in relation to site and stand characteristics in Norway spruce and Scots pine stands. Tree Physiol. 27, 1493–1504 (2007).

foliage.AWEN

Calculates the AWEN proportins of foliage biomass

Description

Calculates the AWEN proportins of foliage biomass

Usage

```
foliage.AWEN(Lf, spec)
```

Arguments

Lf leaves biomass spec tree species

Value

the mass of the four AWEN components

Author(s)

Boris Tupek

References

Yasso07 user-interface manual. J Liski, M Tuomi, J Rasinmäki - , Helsinki, 2009

See Also

```
foliage.litter
```

foliage.litter 11

foliage.litter

Calculates foliage litter

Description

Calculates foliage litter

Usage

```
foliage.litter(Mf, spec, reg, min)
```

Arguments

Mf mass of living foliage (unitless, usually in Mg ha\$^-1\$)
spec tree species, 1=pine 2=spruce, 3=residues (broadleaves)
reg Region (1= Northern Finland or 2= Southern Finland)

min mineral soil, TRUE/FALSE

Value

litter inputs (mass) from a mass of leaves, to be passed to the AWEN partitioning function

References

Liski, J. et al. Carbon accumulation in Finland's forests 1922–2004 – an estimate obtained by combination of forest inventory data with modelling of biomass, litter and soil. Ann. For. Sci. 63, 687–697 (2006).

See Also

foliage.AWEN

```
foliage.litter.Liski2006
```

Calculates foliage litter based on the older approach, with one less option (min). Deprecated.

Description

Calculates foliage litter based on the older approach, with one less option (min). Deprecated.

Usage

```
foliage.litter.Liski2006(Mf, spec, reg)
```

Arguments

Mf	mass of living	g foliage (usu	ally in Mg ha\$^-1	\$)
----	----------------	----------------	--------------------	-----

spec tree species, 1=pine 2=spruce, 3=residues (broadleaves)
reg Region (1= Northern Finland or 2= Southern Finland)

12 marklund.birch.livbranch

Value

litter inputs (mass) from a mass of leaves, to be passed to the AWEN partitioning function

References

Liski, J. et al. Carbon accumulation in Finland's forests 1922–2004 – an estimate obtained by combination of forest inventory data with modelling of biomass, litter and soil. Ann. For. Sci. 63, 687–697 (2006).

See Also

foliage.AWEN

marklund.birch.livbranch

Marklund function for birch, branches

Description

Marklund function for birch, branches

Usage

marklund.birch.livbranch(d13rm)

Arguments

d13rm

tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

Value

The biomass component defined by the function (kg)

References

Marklund L.G., Biomassafunktioner för tall, gran och björk i Sve-rige, Sveriges lantbruksuniversitet, Rapporter-Skog 45~(1988)~1-73

marklund.pine.needles 13

marklund.pine.needles Marklund function for pine, needles

Description

Marklund function for pine, needles

Usage

```
marklund.pine.needles(d13rm, ht)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

Value

The biomass component defined by the function (kg)

References

Marklund L.G., Biomassafunktioner för tall, gran och björk i Sve-rige, Sveriges lantbruksuniversitet, Rapporter-Skog 45 (1988) 1–73

marklund.spruce.needles

Marklund function for spruce, needles

Description

Marklund function for spruce, needles

Usage

```
marklund.spruce.needles(d13rm, ht)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

Value

The biomass component defined by the function (kg)

References

Marklund L.G., Biomassafunktioner för tall, gran och björk i Sve-rige, Sveriges lantbruksuniversitet, Rapporter-Skog 45 (1988) 1–73

marklund.spruce.needles.comp

Marklund function for spruce, needles

Description

Marklund function for spruce, needles

Usage

```
marklund.spruce.needles.comp(d13rm, ht, hlc)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

hlc Height of living crown (m)

Value

The biomass component defined by the function (kg)

References

Marklund L.G., Biomassafunktioner för tall, gran och björk i Sve-rige, Sveriges lantbruksuniversitet, Rapporter-Skog 45 (1988) 1–73

multispecies.repo.AWEN

Calculates the AWEN proportions of different component based on the data in Repo et al., 2014. The function is a collection of factors and can be used for both coarse and fine components by selecting the specific option

Description

Calculates the AWEN proportions of different component based on the data in Repo et al., 2014. The function is a collection of factors and can be used for both coarse and fine components by selecting the specific option

Usage

```
multispecies.repo.AWEN(biom, comp, type)
```

petersson.birch.below 15

Arguments

biom biomass to be converted into AWEN pool, unit does not matter (output will be

in the same unit)

components. "coarse" = stem, branch, roots, stump; "fine" = foliage, fine roots

type tree type, "temp.broad.ev" = temperate broadleaved evergreen, "temp.broad.sum"

= = temperate broadleaved evergreen, bor.broad.sum = boreal broadleaved sum-

mergreen, "temp" = temperate, "bor.con" = boreal coniferous

Value

the mass of the four AWEN components

Author(s)

Lorenzo Menichetti

References

Repo, A., Böttcher, H., Kindermann, G., & Liski, J. (2014). sustainability of forest bioenergy in europe: land-use-related carbon dioxide emissions of forest harvest residues. GCB bioenergy, 7(4), 877-887. https://doi.org/10.1111/gcbb.12179

See Also

foliage.AWEN fineroot.AWEN branches.AWEN

petersson.birch.below Petersson function for birch

Description

The function is an alternative approach to Repola, and it calculated the below-ground biomass to roots >2 mm. Please note that the unit is different from repola (g instead of kg).

Usage

petersson.birch.below(d13rm)

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

Value

thbe belowground biomass (>2mm) in g

References

Petersson, H. & Ståhl, G. Functions for below-ground biomass of Pinus sylvestris, Picea abies, Betula pendula and Betula pubescens in Sweden. Scand. J. For. Res. 21, 84–93 (2006).

petersson.pine.below Petersson function for pine

Description

The function is an alternative approach to Repola, and it calculated the below-ground biomass to roots >2 mm. Please note that the unit is different from repola (g instead of kg).

Usage

```
petersson.pine.below(d13rm)
```

Arguments

d13rm

tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

Value

thbe belowground biomass (>2mm) in g

References

Petersson, H. & Ståhl, G. Functions for below-ground biomass of Pinus sylvestris, Picea abies, Betula pendula and Betula pubescens in Sweden. Scand. J. For. Res. 21, 84–93 (2006).

petersson.spruce.below

Petersson function for spruce

Description

The function is an alternative approach to Repola, and it calculated the below-ground biomass to roots >2 mm. Please note that the unit is different from repola (g instead of kg).

Usage

```
petersson.spruce.below(d13rm)
```

Arguments

d13rm

tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

Value

thbe belowground biomass (>2mm) in g

References

Petersson, H. & Ståhl, G. Functions for below-ground biomass of Pinus sylvestris, Picea abies, Betula pendula and Betula pubescens in Sweden. Scand. J. For. Res. 21, 84–93 (2006).

repola.birch.above 17

repola.birch.above

Repola function for birch, aboveground biomass, model 1

Description

Repola function for birch, aboveground biomass, model 1

Usage

```
repola.birch.above(d13rm, ht)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

Value

The biomass component defined by the function (kg)

References

Repola, J. Biomass equations for birch in Finland. Silva Fenn. 42, (2008) and Repola, J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn. 43, (2009).

repola.birch.dens

Repola function for wood density, spruce

Description

Repola function for wood density, spruce

Usage

```
repola.birch.dens(d13rm, t13)
```

Arguments

d13rm tree diameter at breast heigh, (cm). The function converts it to dk=2+1.25*d13rm.

tree age at breast height (years)

Value

bulk density of wood (dimensionless, ratio)

References

Repola, J. & Kukkola, R. O. and M. Biomass functions for Scots pine, Norway spruce and birch in Finland. Working Papers of the Finnish Forest Research Institute (2007).

repola.birch.foliage Repola function for birch, leaves model 2

Description

Repola function for birch, leaves model 2

Usage

```
repola.birch.foliage(d13rm, ht, hlc)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

hlc Height of living crown (m)

Value

The biomass component defined by the function (kg)

References

Repola, J. Biomass equations for birch in Finland. Silva Fenn. 42, (2008) and Repola, J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn. 43, (2009).

```
repola.birch.foliage.simp
```

Repola function for birch, leaves model 1

Description

Repola function for birch, leaves model 1

Usage

```
repola.birch.foliage.simp(d13rm)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

Value

The biomass component defined by the function (kg)

References

repola.birch.livbranch

```
repola.birch.livbranch
```

Repola function for birch, living branches, model 2

Description

Repola function for birch, living branches, model 2

Usage

```
repola.birch.livbranch(d13rm, ht, hlc)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

hlc Height of living crown (m)

Value

The biomass component defined by the function (kg)

References

Repola, J. Biomass equations for birch in Finland. Silva Fenn. 42, (2008) and Repola, J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn. 43, (2009).

```
repola.birch.livbranch.simp
```

Repola function for birch, living branches, model 1

Description

Repola function for birch, living branches, model 1

Usage

```
repola.birch.livbranch.simp(d13rm, ht)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

Value

The biomass component defined by the function (kg)

References

repola.birch.roots

Repola function for birch, roots biomass, model 1

Description

Repola function for birch, roots biomass, model 1

Usage

```
repola.birch.roots(d13rm, ht)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

Value

The biomass component defined by the function (kg)

References

Repola, J. Biomass equations for birch in Finland. Silva Fenn. 42, (2008) and Repola, J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn. 43, (2009).

```
repola.birch.stem.simp
```

Repola function for birch, stem wood, model 1

Description

Repola function for birch, stem wood, model 1

Usage

```
repola.birch.stem.simp(d13rm, ht)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

Value

The biomass component defined by the function (kg)

References

repola.birch.stembark.simp

Repola function for birch, stem bark, model 2

Description

Repola function for birch, stem bark, model 2

Usage

```
repola.birch.stembark.simp(d13rm, ht)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

Value

The biomass component defined by the function (kg)

References

Repola, J. Biomass equations for birch in Finland. Silva Fenn. 42, (2008) and Repola, J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn. 43, (2009).

repola.birch.stump

Repola function for birch, stump biomass, model 1

Description

Repola function for birch, stump biomass, model 1

Usage

```
repola.birch.stump(d13rm)
```

Arguments

d13rm

tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

Value

The biomass component defined by the function (kg)

References

22 repola.pine.dens

repola.pine.above

Repola function for pine, aboveground biomass, model 1

Description

Repola function for pine, aboveground biomass, model 1

Usage

```
repola.pine.above(d13rm, ht)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

Value

The biomass component defined by the function (kg)

References

Repola, J. Biomass equations for birch in Finland. Silva Fenn. 42, (2008) and Repola, J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn. 43, (2009).

repola.pine.dens

Repola function for wood density, pine

Description

Repola function for wood density, pine

Usage

```
repola.pine.dens(d13rm, t13, tsum)
```

Arguments

d13rm tree diameter at breast heigh, (cm). The function converts it to dk=2+1.25*d13rm.

tree age at breast height (years)

tsum average annual effective temperature sum (>5 °C)

Value

bulk density of wood (dimensionless, ratio)

References

Repola, J. & Kukkola, R. O. and M. Biomass functions for Scots pine, Norway spruce and birch in Finland. Working Papers of the Finnish Forest Research Institute (2007).

repola.pine.livbranch 23

repola.pine.livbranch Repola function for pine, living branches, model 2

Description

Repola function for pine, living branches, model 2

Usage

```
repola.pine.livbranch(d13rm, ht, hlc)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

hlc Height of living crown (m)

Value

The biomass component defined by the function (kg)

References

Repola, J. Biomass equations for birch in Finland. Silva Fenn. 42, (2008) and Repola, J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn. 43, (2009).

```
repola.pine.livbranch.simp
```

Repola function for pine, living branches, model 1

Description

Repola function for pine, living branches, model 1

Usage

```
repola.pine.livbranch.simp(d13rm, ht)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

Value

The biomass component defined by the function (kg)

References

repola.pine.needles Repola function for pine, needles model 2

Description

Repola function for pine, needles model 2

Usage

```
repola.pine.needles(d13rm, ht, hlc)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

hlc Height of living crown (m)

Value

The biomass component defined by the function (kg)

References

Repola, J. Biomass equations for birch in Finland. Silva Fenn. 42, (2008) and Repola, J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn. 43, (2009).

```
repola.pine.needles.simp
```

Repola function for pine, needles model 1

Description

Repola function for pine, needles model 1

Usage

```
repola.pine.needles.simp(d13rm, ht)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

Value

The biomass component defined by the function (kg)

References

repola.pine.roots 25

repola.pine.roots

Repola function for pine, roots biomass, model 1

Description

Repola function for pine, roots biomass, model 1

Usage

```
repola.pine.roots(d13rm)
```

Arguments

d13rm

tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

Value

The biomass component defined by the function (kg)

References

Repola, J. Biomass equations for birch in Finland. Silva Fenn. 42, (2008) and Repola, J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn. 43, (2009).

repola.pine.stem.simp Repola function for pine, stem wood, model 1

Description

Repola function for pine, stem wood, model 1

Usage

```
repola.pine.stem.simp(d13rm, ht)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

Value

The biomass component defined by the function (kg)

References

26 repola.pine.stump

```
repola.pine.stembark.simp
```

Repola function for pine, stem bark, model 2

Description

Repola function for pine, stem bark, model 2

Usage

```
repola.pine.stembark.simp(d13rm, ht)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

Value

The biomass component defined by the function (kg)

References

Repola, J. Biomass equations for birch in Finland. Silva Fenn. 42, (2008) and Repola, J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn. 43, (2009).

repola.pine.stump

Repola function for pine, stump biomass, model 1

Description

Repola function for pine, stump biomass, model 1

Usage

```
repola.pine.stump(d13rm)
```

Arguments

d13rm

tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

Value

The biomass component defined by the function (kg)

References

repola.spruce.above 27

repola.spruce.above

Repola function for spruce, aboveground biomass, model 1

Description

Repola function for spruce, aboveground biomass, model 1

Usage

```
repola.spruce.above(d13rm, ht)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

Value

The biomass component defined by the function (kg)

References

Repola, J. Biomass equations for birch in Finland. Silva Fenn. 42, (2008) and Repola, J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn. 43, (2009).

repola.spruce.dens

Repola function for wood density, spruce

Description

Repola function for wood density, spruce

Usage

```
repola.spruce.dens(d13rm, t13)
```

Arguments

d13rm tree diameter at breast heigh, (cm). The function converts it to dk=2+1.25*d13rm.

tree age at breast height (years)

Value

bulk density of wood (dimensionless, ratio)

References

Repola, J. & Kukkola, R. O. and M. Biomass functions for Scots pine, Norway spruce and birch in Finland. Working Papers of the Finnish Forest Research Institute (2007).

repola.spruce.livbranch

Repola function for spruce, living branches, model 2

Description

Repola function for spruce, living branches, model 2

Usage

```
repola.spruce.livbranch(d13rm, ht, hlc)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

hlc Height of living crown (m)

Value

The biomass component defined by the function (kg)

References

Repola, J. Biomass equations for birch in Finland. Silva Fenn. 42, (2008) and Repola, J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn. 43, (2009).

```
repola.spruce.livbranch.simp
```

Repola function for spruce, living branches, model 1

Description

Repola function for spruce, living branches, model 1

Usage

```
repola.spruce.livbranch.simp(d13rm, ht)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

Value

The biomass component defined by the function (kg)

References

repola.spruce.needles 29

repola.spruce.needles Repola function for spruce, needles model 2

Description

Repola function for spruce, needles model 2

Usage

```
repola.spruce.needles(d13rm, ht, hlc)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

hlc Height of living crown (m)

Value

The biomass component defined by the function (kg)

References

Repola, J. Biomass equations for birch in Finland. Silva Fenn. 42, (2008) and Repola, J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn. 43, (2009).

```
repola.spruce.needles.simp
```

Repola function for spruce, needles model 1\beta

Description

Repola function for spruce, needles model 1ß

Usage

```
repola.spruce.needles.simp(d13rm, ht)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

Value

The biomass component defined by the function (kg)

References

repola.spruce.roots

Repola function for spruce, roots biomass, model 1

Description

Repola function for spruce, roots biomass, model 1

Usage

```
repola.spruce.roots(d13rm)
```

Arguments

d13rm

tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

Value

The biomass component defined by the function (kg)

References

Repola, J. Biomass equations for birch in Finland. Silva Fenn. 42, (2008) and Repola, J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn. 43, (2009).

```
repola.spruce.stem.simp
```

 $Repola\ function\ for\ spruce,\ stem\ wood,\ model\ 1$

Description

Repola function for spruce, stem wood, model 1

Usage

```
repola.spruce.stem.simp(d13rm, ht)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

Value

The biomass component defined by the function (kg)

References

```
repola.spruce.stembark.simp
```

Repola function for spruce, stem bark, model 2

Description

Repola function for spruce, stem bark, model 2

Usage

```
repola.spruce.stembark.simp(d13rm, ht)
```

Arguments

d13rm tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

ht tree height, m

Value

The biomass component defined by the function (kg)

References

Repola, J. Biomass equations for birch in Finland. Silva Fenn. 42, (2008) and Repola, J. Biomass equations for Scots pine and Norway spruce in Finland. Silva Fenn. 43, (2009).

repola.spruce.stump

Repola function for spruce, stump biomass, model 1

Description

Repola function for spruce, stump biomass, model 1

Usage

```
repola.spruce.stump(d13rm)
```

Arguments

d13rm

tree diameter at breast heigh, cm (the function converts it to dk=2+1.25*d13rm)

Value

The biomass component defined by the function (kg)

References

32 shit.AWEN

root.litter

Calculates root litter

Description

Calculates root litter

Usage

```
root.litter(Mr, spec)
```

Arguments

Mr Mass roots (usually in Mg ha\$^-1\$)

spec tree species, 1=pine 2=spruce, 3=residues (broadleaves)

Value

litter inputs (mass) from a mass of roots, to be passed to the AWEN partitioning function

See Also

branches.AWEN

shit.AWEN

Calculates the AWEN proportions of cow dung biomass

Description

Calculates the AWEN proportions of cow dung biomass

Usage

```
shit.AWEN(Lshit)
```

Arguments

Lshit cow dung biomass

Author(s)

Boris Tupek

stem.AWEN 33

stem.AWEN

Calculates the AWEN proportions of stems biomass

Description

Calculates the AWEN proportions of stems biomass

Usage

```
stem.AWEN(Lst, spec)
```

Arguments

Lst stem biomass spec tree species

Value

AWEN proportions of stem biomass

Author(s)

Boris Tupek

References

Yasso07 user-interface manual. J Liski, M Tuomi, J Rasinmäki - , Helsinki, 2009

See Also

```
foliage.litter
```

stem.vol.birch

Function for calculating the stem volume, birch

Description

Function for calculating the stem volume, birch

Usage

```
stem.vol.birch(d13rm, ht)
```

Arguments

d13rm tree diameter at breast heigh, cm

ht tree height, m

Value

the volme of stem (m^3)

stem.vol.pine

References

Laasasenaho, J. Taper curve and volume functions for pine, spruce and birch. at (1982).

stem.vol.birch.comp

Function for calculating the stem volume, birch

Description

Function for calculating the stem volume, birch

Usage

```
stem.vol.birch.comp(d13rm, ht, d6)
```

Arguments

d13rm tree diameter at breast heigh, cm

ht tree height, m

d6 diameter at 6 m height (cm)

Value

the volme of stem (m^3)

References

Laasasenaho, J. Taper curve and volume functions for pine, spruce and birch. at (1982).

stem.vol.pine

Function for calculating the stem volume, pine

Description

Function for calculating the stem volume, pine

Usage

```
stem.vol.pine(d13rm, ht)
```

Arguments

d13rm tree diameter at breast heigh, cm

ht tree height, m

Value

the volme of stem (m^3)

References

Laasasenaho, J. Taper curve and volume functions for pine, spruce and birch. at (1982).

stem.vol.pine.comp 35

stem.vol.pine.comp

Function for calculating the stem volume, pine

Description

Function for calculating the stem volume, pine

Usage

```
stem.vol.pine.comp(d13rm, ht, d6)
```

Arguments

d13rm tree diameter at breast heigh, cm

ht tree height, m

d6 diameter at 6 m height (cm)

Value

```
the volme of stem (m^3)
```

References

Laasasenaho, J. Taper curve and volume functions for pine, spruce and birch. at (1982).

stem.vol.spruce

Function for calculating the stem volume, spruce

Description

Function for calculating the stem volume, spruce

Usage

```
stem.vol.spruce(d13rm, ht)
```

Arguments

d13rm tree diameter at breast heigh, cm

ht tree height, m

Value

```
the volme of stem (m^3)
```

References

Laasasenaho, J. Taper curve and volume functions for pine, spruce and birch. at (1982).

36 stump.litter

stem.vol.spruce.comp Function for calculating the stem volume, spruce

Description

Function for calculating the stem volume, spruce

Usage

```
stem.vol.spruce.comp(d13rm, ht, d6)
```

Arguments

d13rm tree diameter at breast heigh, cm

ht tree height, m

d6 diameter at 6 m height (cm)

Value

```
the volme of stem (m^3)
```

References

Laasasenaho, J. Taper curve and volume functions for pine, spruce and birch. at (1982).

stump.litter

Calculates stump bark litter

Description

Calculates stump bark litter

Usage

```
stump.litter(Mst, spec)
```

Arguments

Mst Mass stumps (usually in Mg ha\$^-1\$)

spec tree species, 1=pine 2=spruce, 3=residues (broadleaves)

Value

litter inputs (mass) from a mass of stumps, to be passed to the AWEN partitioning function

See Also

stem.AWEN

understorey.biomass 37

understorey.biomass	Calculates the biomass of the understorey based on % cover, uplands
	soils.

Description

Calculates the biomass of the understorey based on % cover, uplands soils.

Usage

```
understorey.biomass(p_lich, p_bryoph, p_shrubs, p_grasses, spec)
```

Arguments

p_lich	coverage of lichens (ratio)
p_bryoph	coverage of bryphites (ratio)
p_shrubs	coverage of shrubs (ratio)
p_grasses	coverage of grasses (ratio)
0000	transpraises 1 - mine 2 - summan 2 - maxiduae (hum

spec tree species, 1 = pine 2 = spruce, 3 = residues (broadleaves). For broadleaves

the functions are missing, it relies on the same functions than in pine forests

Value

a vector with biomass of briophytes, lichens, shrubs and grasses, values in g m^-2

Author(s)

author Boris Tupek, Lorenzo Menichetti

References

reference Muukkonen, P. et al. Relationship between biomass and percentage cover in understorey vegetation of boreal coniferous forests. Silva Fenn. 40, (2006).

understorey.bryoph	Understorey vegetation functions, developed by Lehtonen based on
	data from Salemaa, M., et. al 2013

Description

Understorey vegetation functions, developed by Lehtonen based on data from Salemaa, M., et. al 2013

Usage

```
understorey.bryoph(cov, reg)
```

Arguments

```
cov coverage, as 0 to 1 ratio
reg region (1 = south 2 = north Finland ????)
```

understorey.bryoph.AWEN

Calculates the AWEN proportions of bryophytes (was: mosses) biomass

Description

Calculates the AWEN proportions of bryophytes (was: mosses) biomass

Usage

```
understorey.bryoph.AWEN(Lm)
```

Arguments

Lm

moss litter biomass

Author(s)

Boris Tupek

See Also

```
understorey.bryoph.litter
```

understorey.bryoph.litter

Calculates the litter input of the understorey bryophytes

Description

Calculates the litter input of the understorey bryophytes

Usage

```
understorey.bryoph.litter(mass)
```

Arguments

mass

mass of bryophytes

Value

litter inputs (mass) from a mass of bryophytes, to be passed to the AWEN partitioning function

See Also

understorey.bryoph understorey.bryoph.AWEN

understorey.bryoph.OLD

Understorey vegetation functions, developed by Lehtonen based on data from Salemaa, M., et. al 2013

Description

Understorey vegetation functions, developed by Lehtonen based on data from Salemaa, M., et. al 2013

Usage

```
understorey.bryoph.OLD(cov, reg)
```

Arguments

cov coverage, as 0 to 1 ratio

reg region (1 = south 2 = north Finland ????)

understorey.dwarfshrub

Understorey vegetation functions, developed by Lehtonen based on data from Salemaa, M., et. al 2013

Description

Understorey vegetation functions, developed by Lehtonen based on data from Salemaa, M., et. al 2013

Usage

```
understorey.dwarfshrub(cov, comp, reg)
```

Arguments

cov coverage, as 0 to 1 ratio

comp compartment, abv = above, bel = below ????

reg region (1 = south 2 = north Finland ????)

References

?????? probably missing, data source could be Salemaa, M., Hamberg, L., Kalinauskaite, N., Korpela, L., Lindroos, A-J., Nöjd, P., & Tonteri, T. (2013). Understorey vegetation on level II plots during 1998-2009. In L. Merilä, & S. Jortikka (Eds.), Forest Condition Monitoring in Finland - National Report. The Finnish Forest Research Institute The Finnish Forest Research Institute. http://urn.fi/URN:NBN:fi:metla-201305087568

understorey.dwarfshrub.litter

Calculates the biomass of the understorey dwarf shrubs

Description

Calculates the biomass of the understorey dwarf shrubs

Usage

```
understorey.dwarfshrub.litter(mass, comp)
```

Arguments

mass of shrubs

comp compartment, abv = above, bel = below

Value

biomass of dwarf shrubs

See Also

understorey.dwarfshrub

understorey.dwarfshrub.OLD

Understorey vegetation functions, probably developed by Lehtonen, origin unknown

Description

Understorey vegetation functions, probably developed by Lehtonen, origin unknown

Usage

```
understorey.dwarfshrub.OLD(cov, comp, reg)
```

Arguments

cov coverage, as 0 to 1 ratio

comp compartment, abv = above, bel = below ????

reg region (1 = south 2 = north Finland ????)

understorey.grass 41

understorey.grass Understorey vegetation functions, developed by Lehtonen based on data from Salemaa, M., et. al 2013

Description

Understorey vegetation functions, developed by Lehtonen based on data from Salemaa, M., et. al 2013

Usage

```
understorey.grass(cov, comp, reg)
```

Arguments

cov coverage, as 0 to 1 ratio

comp compartment, abv = above, bel = below ????
reg region (1 = south 2 = north Finland ????)

understorey.grass.AWEN

Calculates the AWEN proportions of grass litter

Description

Calculates the AWEN proportions of grass litter

Usage

```
understorey.grass.AWEN(Lg, comp)
```

Arguments

Lg grass biomass

comp compartment, abv = above, bel = below

Value

the mass of the four AWEN components

Author(s)

Boris Tupek

References

Yasso07 user-interface manual. J Liski, M Tuomi, J Rasinmäki - , Helsinki, 2009

See Also

```
understorey.grass.litter
```

understorey.grass.litter

Calculates the litter input of the understorey grasses

Description

Calculates the litter input of the understorey grasses

Usage

```
understorey.grass.litter(mass, comp)
```

Arguments

mass of grasses

comp compartment, abv = above, bel = below

Value

litter inputs (mass) from a mass of grasses, to be passed to the AWEN partitioning function

See Also

```
understorey.grass understorey.grass.AWEN
```

understorey.grass.OLD *Understorey vegetation functions, developed by Lehtonen based on data from Salemaa, M., et. al 2013*

Description

Understorey vegetation functions, developed by Lehtonen based on data from Salemaa, M., et. al 2013

Usage

```
understorey.grass.OLD(cov, comp, reg)
```

Arguments

cov coverage, as 0 to 1 ratio

comp compartment, abv = above, bel = below ????
reg region (1 = south 2 = north Finland ????)

understorey.herb 43

understorey.herb	Understorey vegetation functions, developed by Lehtonen based on
data from Salemaa, M., et. al 2013	

Description

Understorey vegetation functions, developed by Lehtonen based on data from Salemaa, M., et. al 2013

Usage

```
understorey.herb(cov, comp, reg)
```

Arguments

cov coverage, as 0 to 1 ratio

comp compartment, abv = above, bel = below ????

reg region (1 = south 2 = north Finland ????)

understorey.herb.litter

Calculates the litter input of the understorey herbs

Description

Calculates the litter input of the understorey herbs

Usage

```
understorey.herb.litter(mass, comp)
```

Arguments

mass of herbs

comp compartment, abv = above, bel = below

Value

litter inputs (mass) from a mass of herbs, to be passed to the AWEN partitioning function

See Also

understorey.herb understorey.grass.AWEN

44 understorey.lichen

understorey.herb.OLD *Understorey vegetation functions, developed by Lehtonen based on data from Salemaa, M., et. al 2013*

Description

Understorey vegetation functions, developed by Lehtonen based on data from Salemaa, M., et. al 2013

Usage

```
understorey.herb.OLD(cov, comp, reg)
```

Arguments

cov coverage, as 0 to 1 ratio

comp compartment, abv = above, bel = below ????

reg region (1 = south 2 = north Finland ????)

understorey.lichen U

Understorey vegetation functions, developed by Lehtonen based on data from Salemaa, M., et. al 2013

Description

Understorey vegetation functions, developed by Lehtonen based on data from Salemaa, M., et. al 2013

Usage

```
understorey.lichen(cov)
```

Arguments

cov coverage, as 0 to 1 ratio

```
understorey.lichen.AWEN
```

Calculates the AWEN proportions of lichens biomass

Description

Calculates the AWEN proportions of lichens biomass

Usage

```
understorey.lichen.AWEN(L1)
```

Arguments

L1

lichens litter biomass

See Also

```
understorey.lichen.litter
```

```
understorey.lichen.litter
```

Calculates the litter input of the understorey lichens

Description

Calculates the litter input of the understorey lichens

Usage

```
understorey.lichen.litter(mass)
```

Arguments

mass

mass of lichens

Value

litter inputs (mass) from a mass of lichens, to be passed to the AWEN partitioning function

See Also

```
understorey.lichen understorey.lichen.AWEN
```

46 wheat.AWEN

understorey.lichen.OLD

Understorey vegetation functions, developed by Lehtonen based on data from Salemaa, M., et. al 2013

Description

Understorey vegetation functions, developed by Lehtonen based on data from Salemaa, M., et. al 2013

Usage

```
understorey.lichen.OLD(cov)
```

Arguments

cov

coverage, as 0 to 1 ratio

wheat.AWEN

Calculates the AWEN proportions of wheat biomass

Description

Calculates the AWEN proportions of wheat biomass

Usage

```
wheat.AWEN(Lwheat)
```

Arguments

Lwheat

wheat litter biomass

Author(s)

Boris Tupek

yasso.matrix.fun 47

yasso.matrix.fun

Yasso07 model implemented as a matrix (to solve its steady state)

Description

The function generates the structural matrix of the model

Usage

```
yasso.matrix.fun(
    WS,
    clim,
    wetlands = FALSE,
    A.print,
    ksY = c(kA = 0.73, kW = 5.8, kE = 0.29, kN = 0.031, kH = 0.0017),
    pY = c(p1 = 0.48, p2 = 0.01, p3 = 0.83, p4 = 0.99, p5 = 0, p6 = 0.01, p7 = 0, p8 = 0,
        p9 = 0.03, p10 = 0, p11 = 0.01, p12 = 0.92, pH = 0.0045),
    beta1 = 0.096,
    beta2 = -0.0014,
    gamma = -1.21,
    delta1 = -1.7,
    delta2 = 0.86,
    r = -0.306
)
```

Arguments

WS	woody size, for example 0 no effect for nonwoody, 2 finewoody, 20 coarse woody (cm) $$
clim	a vector containing the mean values of MT, TA, PR_mm as in Yasso07.Modelfi. If clim = 1 ignored. Since we are considering steady states, climate must be constant
wetlands	if wetlands = TRUE, apply 35% reduction of decomposition se Kleinen et al. (2021). default is FALSE
A.print	if A.print = "y", prints the structural matrix, "n" ignored
ksY	a vector with the decomposition constants of the five Yasso decomposing pools, default $c(kA=0.73,kW=5.8,kE=0.29,kN=0.031,kH=0.0017)$
pY	a vector with the transfers (including feedback) between the five Yasso pools, default $pY = c(p1 = 0.48, p2 = 0.01, p3 = 0.83, p4 = 0.99, p5 = 0, p6 = 0.01, p7 = 0, p8 = 0, p9 = 0.03, p10 = 0, p11 = 0.01, p12 = 0.92, pH = 0.0045),$
beta1	temperature dependence parameter
beta2	temperature dependence parameter
gamma	precipitation dependence parameter
delta1	Woody litter size dependence parameters (cm^-1)
delta2	Woody litter size dependence parameters (cm^-1)
r	Woody litter size dependence parameters (adimensional)

48 Yasso07.Modelfi

Value

structural matrix modified by woody size and climate

Author(s)

Boris Tupek, boris.tupek@luke.fi

References

Tuomi, M., Rasinmäki, J., Repo, A., Vanhala, P., & Liski, J. (2011). soil carbon model yasso07 graphical user interface.. https://doi.org/10.48550/arxiv.1105.4961

Tupek, B. et al. Modeling boreal forest's mineral soil and peat C stock dynamics with Yasso07 model coupled with updated moisture modifier. EGUsphere 2023, 1–34 (2023). #'

Kleinen, T., Gromov, S., Steil, B., & Brovkin, V. (2021). atmospheric methane underestimated in future climate projections. Environmental Research Letters, 16(9), 094006. https://doi.org/10.1088/1748-9326/ac1814

See Also

```
Yasso07.Modelfi.month
```

Examples

```
### steady state calculation
AYS.ws <- yasso.matrix.fun(WS = 2, clim = c(5, 500, 7), A.print = "n")
# xss=-1*solve(AYS.ws)%*%u.Li #inverse of matrix solve(B)</pre>
```

Yasso07.Modelfi

Yasso07 model as in Tuomi et al. 2011 ecological applications.

Description

The function relies on the soilR implementation, and it generates a model object that needs then to be solved by soilR functions (see examples)

Usage

```
Yasso07.Modelfi(
    t,
    ksY = c(kA = 0.73, kW = 5.8, kE = 0.29, kN = 0.031, kH = 0.0017),
    pY = c(p1 = 0.48, p2 = 0.01, p3 = 0.83, p4 = 0.99, p5 = 0, p6 = 0.01, p7 = 0, p8 = 0,
        p9 = 0.03, p10 = 0, p11 = 0.01, p12 = 0.92, pH = 0.0045),
    beta1 = 0.096,
    beta2 = -0.0014,
    gamma = -1.21,
    delta1 = -1.7,
    delta2 = 0.86,
    r = -0.306,
    C0,
    In,
    AWEN,
```

Yasso07.Modelfi 49

```
xi = T,
xi_modifier = 1,
MT = NULL,
TA = NULL,
PR_mm = NULL,
WS,
solver = deSolve.lsoda.wrapper,
pass = FALSE
)
```

Arguments

t	time (years)
ksY	a vector with the decomposition constants of the five Yasso decomposing pools, default $c(kA=0.73,kW=5.8,kE=0.29,kN=0.031,kH=0.0017)$
pΥ	a vector with the transfers (including feedback) between the five Yasso pools, default $pY = c(p1 = 0.48, p2 = 0.01, p3 = 0.83, p4 = 0.99, p5 = 0, p6 = 0.01, p7 = 0, p8 = 0, p9 = 0.03, p10 = 0, p11 = 0.01, p12 = 0.92, pH = 0.0045),$
beta1	temperature dependence parameter
beta2	temperature dependence parameter
gamma	precipitation dependence parameter
delta1	Woody litter size dependence parameters (cm^-1)
delta2	Woody litter size dependence parameters (cm^-1)
r	Woody litter size dependence parameters (adimensional)
C0	initial C, 5 element vector, e.g. c(0,0,0,0,0)
In	litter C input, same length as years, if AWEN fractionation not provided it has to be a data.frame (years, 5 AWEN pools), as long as the time steps
AWEN	5 element vector, fractionation of plant C litter input to yasso AWEN pools
xi	climate scaling, if $xi = FALSE$ then the model will scale decomposition based on temperature and precipitation data, otherwise it will ignore it ($xi = TRUE$ or $xi = 1$ is equivalent to setting the xi scaling factor to 1)
xi_modifier	linear modifier of the climatic effect on decomposition, if = 1 effect is null. Used mostly for model calibration.
MT	Annual mean temperature (vector of length t) (cat('°0') C)
TA	Temperature Amplitude = (mothly temp. range)/2 (cat($^{\circ}0^{\circ}$) C) (vector of length t)
PR_mm,	Annual precipitation_mm (vector of length t)
WS	woody size, for example 0 no effect for nonwoody, 2 finewoody, 20 coarse woody (cm)
solver	the solver used by deSolve to solve the linear ODE system, called by SoiLR, default is = deSolve.lsoda.wrapper,
pass	= FALSE

Value

a model object to be utilized within the SoilR package.

50 Yasso07.Modelfi.month

Author(s)

Boris Tupek, boris.tupek@luke.fi

References

Tupek, B. et al. Modeling boreal forest's mineral soil and peat C stock dynamics with Yasso07 model coupled with updated moisture modifier. EGUsphere 2023, 1–34 (2023).

See Also

```
Yasso07.Modelfi.month
```

Examples

```
years=seq(1:10)
Litter= cbind(years, matrix(rep(c(2,2,2,2,0), each = 10), nrow = 10))
PR_mm=rep(200, 10)
MT = rep(10, 10)
TA= rep(2,10)
yassofix <- Yasso07.Modelfi(years,</pre>
                            C0=rep(0,5), #initial carbon
                   AWEN = c(0.52, 0.18, 0.08, 0.2, 0), #to separate litter to YASSO AWEN pools,
                            # this depends on plant organ and species
                            In=Litter,#litter C input (same length as years)
                        xi = 1, # only xi = 1 will replace climate data no climate effect,
                            MT=MT,#MeanTemperature
                            TA=TA, #TemperatureAmplitude
                            PR_mm=PR_mm, #Precipitation_mm)
                            WS=2)
Ct=getC(vassofix)
Rt=getReleaseFlux(yassofix) #respiration
```

Yasso07.Modelfi.month Yasso07 model as in Tuomi et al. 2011 ecological applications, modified to run in monthly steps

Description

The function relies on the soilR implementation, and it generates a model object that needs then to be solved by soilR functions (see examples)

Usage

```
Yasso07.Modelfi.month( t, ksY = c(kA = 0.73, kW = 5.8, kE = 0.29, kN = 0.031, kH = 0.0017)/12, wetlands = FALSE, pY = c(p1 = 0.48, p2 = 0.01, p3 = 0.83, p4 = 0.99, p5 = 0, p6 = 0.01, p7 = 0, p8 = 0, p9 = 0.03, p10 = 0, p11 = 0.01, p12 = 0.92, pH = 0.0045), beta1 = 0.096,
```

Yasso07.Modelfi.month 51

```
beta2 = -0.0014,
      gamma = -1.21.
      delta1 = -1.7,
      delta2 = 0.86,
      r = -0.306,
      C0,
      In,
      AWEN,
      xi = 1,
      MT = NULL,
      TA = NULL,
      PR_mm = NULL,
      solver = deSolve.lsoda.wrapper,
      pass = FALSE
Arguments
    t
                      months (1/12 of year)
    ksY
                      a vector with the decomposition constants of the five Yasso decomposing pools,
                      default c(kA = 0.73, kW = 5.8, kE = 0.29, kN = 0.031, kH = 0.0017)
    wetlands
                      if wetlands = T decrease kSY down to 35% (Goll et al. 2015, Kleinen et al.
                      2021)
                      a vector with the transfers (including feedback) between the five Yasso pools,
    pΥ
                      default pY = c(p1 = 0.48, p2 = 0.01, p3 = 0.83, p4 = 0.99, p5 = 0, p6 = 0.01, p7
                      = 0, p8 = 0, p9 = 0.03, p10 = 0, p11 = 0.01, p12 = 0.92, pH = 0.0045),
    beta1
                      temperature dependence parameter
    beta2
                      temperature dependence parameter
                      precipitation dependence parameter
    gamma
    delta1
                      Woody litter size dependence parameters (cm^-1)
    delta2
                       Woody litter size dependence parameters (cm^-1)
                      Woody litter size dependence parameters (adimensional)
    r
                      initial C, 5 element vector, e.g. c(0,0,0,0,0)
    C0
                      litter C input, same length as years, if AWEN fractionation not provided it has
    Ιn
                      to be a data.frame (years, 5 AWEN pools), as long as the time steps
                      5 element vector, fractionation of plant C litter input to yasso AWEN pools
    AWEN
                      climate scaling, if xi = FALSE then the model will scale decomposition based
    хi
                      on temperature and precipitation data, otherwise it will ignore it (xi = TRUE or
                      xi = 1 is equivalent to setting the xi scaling factor to 1)
                      Annual mean temperature (vector of length t) (cat('°0') C)
    MT
                      Temperature Amplitude = (mothly temp. range)/2 (cat(^{\circ}0') C) (vector of length
    TA
    PR_mm
                       Annual precipitation_mm (vector of length t)
                      woody size, for example 0 no effect for nonwoody, 2 finewoody, 20 coarse
    WS
                       woody (cm)
    solver
                      the solver used by deSolve to solve the linear ODE system, called by SoiLR,
                      default is = deSolve.lsoda.wrapper,
```

= FALSE

pass

52 yasso07.SS

Value

a model object to be utilized within the SoilR package.

Author(s)

Boris Tupek, boris.tupek@luke.fi

References

Tuomi, M., Rasinmäki, J., Repo, A., Vanhala, P., & Liski, J. (2011). soil carbon model yasso07 graphical user interface.. https://doi.org/10.48550/arxiv.1105.4961

Kleinen, T., Gromov, S., Steil, B., & Brovkin, V. (2021). atmospheric methane underestimated in future climate projections. Environmental Research Letters, 16(9), 094006. https://doi.org/10.1088/1748-9326/ac1814

See Also

```
Yasso07.Modelfi
```

Examples

```
years=seq(1:10)
Litter= cbind(years, matrix(rep(c(2,2,2,2,0), each = 10), nrow = 10))
PR_mm=rep(200, 10)
MT = rep(10,10)
TA = rep(2,10)
yassofix <- Yasso07.Modelfi(years,</pre>
                            C0=rep(0,5), #initial carbon
                   AWEN = c(0.52, 0.18, 0.08, 0.2, 0), #to separate litter to YASSO AWEN pools,
                            # this depends on plant organ and species
                            In=Litter,#litter C input (same length as years)
                        xi = 1, # only xi = 1 will replace climate data no climate effect,
                            MT=MT, #MeanTemperature
                            TA=TA, #TemperatureAmplitude
                            PR_mm=PR_mm, #Precipitation_mm)
                            WS=2)
Ct=getC(yassofix)
Rt=getReleaseFlux(yassofix) #respiration
```

yasso07.SS

Yasso07 steady state calculation

Description

The function is just a wrapper for the example in yasso.matrix.fun, to calculate the steady state by solving the matrix model definition

yasso07.SS 53

Usage

```
yasso07.SS(
    WS,
    clim,
    wetlands = FALSE,
    In_ave,
    ksY = c(kA = 0.73, kW = 5.8, kE = 0.29, kN = 0.031, kH = 0.0017),
    pY = c(p1 = 0.48, p2 = 0.01, p3 = 0.83, p4 = 0.99, p5 = 0, p6 = 0.01, p7 = 0, p8 = 0,
        p9 = 0.03, p10 = 0, p11 = 0.01, p12 = 0.92, pH = 0.0045),
    beta1 = 0.096,
    beta2 = -0.0014,
    gamma = -1.21,
    delta1 = -1.7,
    delta2 = 0.86,
    r = -0.306
)
```

Arguments

WS	woody size, for example 0 no effect for nonwoody, 2 finewoody, 20 coarse woody (cm)
clim	a vector containing the mean values of MT, TA, PR_mm as in Yasso07.Modelfi. If clim = 1 ignored. Since we are considering steady states, climate must be constant
wetlands	if wetlands = TRUE, apply 35% reduction of decomposition se Kleinen et al. (2021). default is FALSE
In_ave	average AWEN inputs
ksY	a vector with the decomposition constants of the five Yasso decomposing pools, default $c(kA=0.73,kW=5.8,kE=0.29,kN=0.031,kH=0.0017)$
pY	a vector with the transfers (including feedback) between the five Yasso pools, default $pY = c(p1 = 0.48, p2 = 0.01, p3 = 0.83, p4 = 0.99, p5 = 0, p6 = 0.01, p7 = 0, p8 = 0, p9 = 0.03, p10 = 0, p11 = 0.01, p12 = 0.92, pH = 0.0045),$
beta1	temperature dependence parameter
beta2	temperature dependence parameter
gamma	precipitation dependence parameter
delta1	Woody litter size dependence parameters (cm^-1)
delta2	Woody litter size dependence parameters (cm^-1)
r	Woody litter size dependence parameters (adimensional)

Value

structural matrix modified by woody size and climate

Author(s)

Lorenzo Menichetti, lorenzo.menichetti@luke.fi

54 yasso07.SS

References

Tuomi, M., Rasinmäki, J., Repo, A., Vanhala, P., & Liski, J. (2011). soil carbon model yasso07 graphical user interface.. https://doi.org/10.48550/arxiv.1105.4961

Ťupek, B. et al. Modeling boreal forest's mineral soil and peat C stock dynamics with Yasso07 model coupled with updated moisture modifier. EGUsphere 2023, 1–34 (2023). #'

Kleinen, T., Gromov, S., Steil, B., & Brovkin, V. (2021). atmospheric methane underestimated in future climate projections. Environmental Research Letters, 16(9), 094006. https://doi.org/10.1088/1748-9326/ac1814

See Also

```
Yasso07.Modelfi.month
```

Examples

```
yasso07.SS(WS = 2, clim = c(5, 500, 7), In_ave = c(2, 2, 2, 2, 0))
```

Index

bark.litter, 3	repola.pine.needles.simp, 24
barley.AWEN,4	repola.pine.roots, 25
branches.AWEN, 4, 5, 15, 32	repola.pine.stem.simp, 25
branches.litter, 4, 5	repola.pine.stembark.simp,26
	repola.pine.stump, 26
carbon, 5	repola.spruce.above, 27
finance AWEN 6 9 15	repola.spruce.dens, 27
fineroot. AWEN, 6, 8, 15	repola.spruce.livbranch,28
fineroot.linear, 6	repola.spruce.livbranch.simp, 28
fineroot.linear.fertility,7	repola.spruce.needles, 29
fineroot.litter.reg, 6, 7	repola.spruce.needles.simp, 29
fineroot.litter.tsum, 6, 8	repola.spruce.roots, 30
fineroot.stand, 8	repola.spruce.stem.simp, 30
fineroot.stand.volume, 9	repola.spruce.stembark.simp,31
fineroot.stand.volume.OLD, 9	repola.spruce.stump, 31
fineroot.total.tsum, 10	root.litter, 32
foliage.AWEN, 10, 11, 12, 15	
foliage.litter, 10, 11, 33	shit.AWEN, 32
foliage.litter.Liski2006,11	stem.AWEN, <i>3</i> , 33, <i>36</i>
marklund.birch.livbranch, 12	stem.vol.birch,33
marklund.pine.needles, 13	stem.vol.birch.comp, 34
marklund.spruce.needles, 13	stem.vol.pine, 34
marklund.spruce.needles.comp, 14	stem.vol.pine.comp, 35
multispecies.repo.AWEN, 14	stem.vol.spruce, 35
marerspecies. repo./men, 17	stem.vol.spruce.comp, 36
petersson.birch.below, 15	stump.litter, 36
petersson.pine.below, 16	
petersson.spruce.below, 16	understorey.biomass, 37
	understorey.bryoph, 37, 38
repola.birch.above, 17	understorey.bryoph.AWEN, 38, 38
repola.birch.dens, 17	understorey.bryoph.litter, 38,38
repola.birch.foliage, 18	understorey.bryoph.OLD,39
repola.birch.foliage.simp, 18	understorey.dwarfshrub, $39,40$
repola.birch.livbranch,19	$\verb"understorey.dwarfshrub.litter, 40"$
repola.birch.livbranch.simp, 19	understorey.dwarfshrub.OLD, 40
repola.birch.roots, 20	understorey.grass, 41, 42
repola.birch.stem.simp,20	understorey.grass.AWEN, 41 , 42 , 43
repola.birch.stembark.simp,21	understorey.grass.litter,41,42
repola.birch.stump, 21	understorey.grass.OLD,42
repola.pine.above, 22	understorey.herb, 43, 43
repola.pine.dens, 22	understorey.herb.litter,43
repola.pine.livbranch, 23	understorey.herb.OLD,44
repola.pine.livbranch.simp, 23	understorey.lichen, 44, 45
repola.pine.needles, 24	understorey.lichen.AWEN,45,45

56 INDEX

```
understorey.lichen.litter, 45, 45
understorey.lichen.OLD, 46
wheat.AWEN, 46
yasso.matrix.fun, 47, 52
Yasso07.Modelfi, 47, 48, 52, 53
Yasso07.Modelfi.month, 48, 50, 50, 54
yasso07.SS, 52
```