Table of Contents

1 代码改动1	1
1.1 相机仿真数据处理	
1.2 IMU 仿真数据处理	
2 配置改动	
3.1 参考噪声设置及其实验结果	
3.2 错误噪声设置及其实验结果	
4 仿真数据有噪声	
4.1 参考噪声设置及其实验结果	
4.2 错误噪声设置及其实验结果	
4.3 噪声设置实验	
5 总结	

levinjian-第7章作业

1 代码改动

为了能够处理仿真数据,我们增加了一个新的可执行文件 run_sim,大部分代码在新增的 rum_sim.cpp 中。 代码的改动主要包括相机数据的读取,封装与发布,IMU 数据的读取与发布。

1.1 相机仿真数据处理

```
void PubImageData()
{
    string sImage_file = sData_path + "cam_pose_tum.txt";
    cout << "1 PubImageData start sImage_file: " << sImage_file << endl;
    ...
    // cv::namedWindow("SOURCE IMAGE", CV_WINDOW_AUTOSIZE);
    int img_id = 0;
    while (std::getline(fsImage, sImage_line) && !sImage_line.empty())
    {
        std::istringstream ssImuData(sImage_line);
        ssImuData >> dStampNSec;

        std::ostringstream stringStream;
        stringStream << sData_path<<"keyframe/all_points_"<<img_id++<<".txt";
        string imagePath = stringStream.str();
        cout << "Image t: " << fixed << dStampNSec << " Name: " << imagePath</pre>
```

```
void System::PubImageData_sim(double dStampSec, std::string img path){
      std::string sImage line;
      vector<int> ids;
      vector<cv::Point2f> cur un pts;
      while (std::getline(fsImage, sImage line) && !sImage line.empty()){
            double x,y,z,cont;
            double u, v;
            std::istringstream ssImuData(sImage line);
            ssImuData >> x>>y>>z>>cont>>u>>v;
            std::ostringstream stringStream;
            stringStream << x<<"_"<<y<<"_"<<z;
            int fid = get_feature_id(stringStream.str());
            ids.push back(fid);
            cur_un_pts.push_back(Point2f(u,v));
      }
      if (PUB_THIS_FRAME)
            pub count++;
            shared ptr<IMG MSG> feature points(new IMG MSG());
            feature points->header = dStampSec;
            vector<set<int>> hash ids(NUM OF CAM);
            for (int i = 0; i < NUM OF CAM; i++)
                  for (unsigned int j = 0; j < ids.size(); j++)</pre>
                        int p id = ids[j];
                        hash_ids[i].insert(p_id);
                        double x = cur_un_pts[j].x;
                        double y = cur un pts[j].y;
                        double z = 1;
                        feature points->points.push back(Vector3d(x, y, z));
                        feature_points->id_of_point.push_back(p_id * NUM_OF_CAM + i);
                        feature_points->u_of_point.push_back(-1);
                        feature_points->v_of_point.push_back(-1);
                        feature points->velocity x of point.push back(-1);
                        feature_points->velocity_y_of_point.push_back(-1);
                  }
```

1.2 IMU 仿真数据处理

IMU 仿真数据处理在 run_sim.cpp 的 PubImageData 函数中。

```
void PubImuData()
      bool use noisy data = true;
      string sImu_data_file;
      if(use_noisy_data){
            sImu data file = sData path + "imu pose noise.txt";
            sImu data file = sData path + "imu pose.txt";
      cout << "1 PubImuData start sImu data filea: " << sImu data file << endl;</pre>
      ifstream fsImu;
      fsImu.open(sImu_data_file.c_str());
      if (!fsImu.is open())
            cerr << "Failed to open imu file! " << sImu data file << endl;
            return;
      }
      std::string sImu line;
      double dStampNSec = 0.0;
      Vector3d vAcc;
      Vector3d vGyr;
      Vec3 P; // pose
                // Rotation
           0;
      while (std::getline(fsImu, sImu line) && !sImu line.empty()) // read imu data
      {
            std::istringstream ssImuData(sImu line);
            ssImuData >> dStampNSec;
            ssImuData>>Q.w()>>Q.x()>>Q.y()>>Q.z();
            ssImuData>>P.x()>>P.y()>>P.z();
            ssImuData >> vGyr.x() >> vGyr.y() >> vGyr.z() >> vAcc.x() >> vAcc.y()
>> vAcc.z();
            pSystem->PubImuData(dStampNSec , vGyr, vAcc);
            usleep(5000*nDelayTimes);
      fsImu.close();
```

2 配置改动

我们增加了一个和仿真数据对应的配置文件, sim_config.yaml. 相对于现有的 euroc_config.yaml,改动的 地方包括外参设定,噪声设定。

```
extrinsicRotation: !!opencv-matrix
  rows: 3
  cols: 3
  dt: d
  data: [0, 0, -1,
           -1, 0, 0,
          0, 1, 0]
#Translation from camera frame to imu frame, imu^T cam
extrinsicTranslation: !!opencv-matrix
  rows: 3
  cols: 1
  dt: d
  data: [0.05,0.04,0.03]
acc_n: 0.26870057685088805
                                  # accelerometer measurement noise standard
deviation. #0.2 0.04
gyr_n: 0.21213203435596426
                                 # gyroscope measurement noise standard
deviation. #0.05 0.004
acc_w: 7.0710678118654756e-06
                                    # accelerometer bias random work noise
standard deviation. #0.02
gyr_w: 7.071067811865476e-07
                                 # gyroscope bias random work noise standard
deviation. #4.0e-5
g norm: 9.81007 # gravity magnitude
```

3 仿真数据无噪声

使用无噪声的数据,我们分别试了参考噪声设置与错误噪声设置,发现两者差不多,与真值轨迹的差别都很小。参考噪声设置是指数据仿真器使用的噪声值,在离散化后的结果。

```
具体来说, 仿真器中用到的噪声是,
```

```
acc_n: 0.019, gyr_n:0.015,acc_w:0.0001,gyr_w:1.0e-5
```

离散化后的参考噪声设置是:

```
dt = 1/200
```

acc_n/sqrt(dt), gry_n/sqrt(dt), acc_w*sqrt(dt), gyr_w*sqrt(dt),

也有是

```
acc_n: 0.26870057685088805, gyr_n:0.21213203435596426,acc_w:7.0710678118654756e-06,gyr_w:7.071067811865476e-07
```

3.1 参考噪声设置及其实验结果

```
      acc_n:
      0.26870057685088805
      # accelerometer measurement noise standard deviation.

      #0.2
      0.04
      # gyroscope measurement noise standard deviation.

      #0.05
      0.004
      # accelerometer bias random work noise standard deviation.

      deviation.
      #0.02
      # accelerometer bias random work noise standard deviation.

      gyr_w:
      7.071067811865476e-07
      # gyroscope bias random work noise standard deviation.

      #4.0e-5
      # accelerometer measurement noise standard deviation.
```

```
APE w.r.t. translation part (m)
(with SE(3) Umeyama alignment)
                0.006818
       max
                0.004558
      mean
    median
                0.004729
       min
                0.001244
      rmse
                0.004761
       sse
                0.004261
       std
                 0.001374
```

3.2 错误噪声设置及其实验结果

#imu parameters
acc_n: 19 # a
gyr_n: 15 # gy
acc_w: 0.0001
gyr_w: 1.0e-5 #

The more accurate parameters you provide, the better performance # accelerometer measurement noise standard deviation. #0.2 0.04 # gyroscope measurement noise standard deviation. #0.05 0.004 # accelerometer bias random work noise standard deviation. #0.02 # gyroscope bias random work noise standard deviation. #4.0e-5


```
APE w.r.t. translation part (m)
(with SE(3) Umeyama alignment)
                0.009270
       max
                0.005805
      mean
    median
                0.006089
                0.001282
       min
                0.006095
      rmse
                0.006984
       sse
       std
                0.001859
```

4 仿真数据有噪声

4.1 参考噪声设置及其实验结果

在噪声设置正确的情况下,一段长达 119 米的 VIO 轨迹 RMSE 误差仅为 3cm.

```
acc_n: 0.26870057685088805
standard deviation. #0.2 0.04
gyr_n: 0.21213203435596426 # gyroscope measurement noise
deviation. #0.05 0.004
acc_w: 7.0710678118654756e-06
noise standard deviation. #0.02
gyr_w: 7.071067811865476e-07
standard deviation. #4.0e-5
# accelerometer measurement noise
# accelerometer bias random work
# accelerometer bias random work
# gyroscope bias random work noise
# gyroscope bias random work noise
```


4.2 错误噪声设置及其实验结果

在噪声设置错误的情况下,一段 119 米的 VIO 轨迹 RMSE 误差为 8m.

```
acc_n: 0.0019# accelerometer measurement noise standard deviation. #0.2 0.04gyr_n: 0.0015# gyroscope measurement noise standard deviation. #0.05 0.004acc_w: 0.0001# accelerometer bias random work noise standard deviation. #0.02gyr_w: 1.0e-05# gyroscope bias random work noise standard deviation. #4.0e-5
```



```
APE w.r.t. translation part (m)
(with SE(3) Umeyama alignment)
                25.412674
       max
                6.457839
      mean
                4.949057
    median
       min
                2.258735
                8.133958
      rmse
                12438.318267
       sse
       std
                4.945461
```

4.3 噪声设置实验

为了进一步研究 IMU 噪声设置与 VIO 轨迹精度的关系,我们在参考噪声值的基础上,每次只改变其中的一个参数,做了一些交叉实验。主要的观察与分析如下:

- 1) 噪声设置对 VIO 精度有很大的影响。
 - 在本次实验中,当噪声设置合适时,VIO 精度是 cm 级别的,但不合适时,精度是米级别的,VIO 基本不可用。
- 2) 角速度白噪声的设置对精度影响最大,其次是加速度白噪声。角速度偏置随机游走噪声与加速度偏置 随机游走噪声影响不大。
- 3) 相对来说,取比参考噪声稍大一点的值时得到的精度最好。

原因可能是在生成仿真数据时,我们的图像数据是没有噪声的。适当加大 IMU 噪声可以较少 IMU 参差在成本函数中的权重,更加依赖图形数据,从而取得了更好的效果。

具体的实验结果如下,其中, 所有表格的第一行是参考噪声,绿色的行表示精度最好的组合,

<i></i>		_		_		•
与噪声参考值的倍数关系	测试参数	max	mean	median	rmse	std
1	acc_n, 0.26870057685088805	0.06625	0.032357	0.029164	0.034444	0.011808
0.1	acc_n,0.026870057685088805	0.14559	0.062551	0.059148	0.06854	0.028018
0.01	acc_n,0.0026870057685088805	0.170923	0.068579	0.062001	0.076149	0.0331
10	acc_n,2.6870057685088805	0.065533	0.021683	0.0198	0.024614	0.011648
100	acc_n,26.870057685088805	0.463865	0.25247	0.217428	0.265492	0.082126
与噪声参考值的倍数关系	测试参数	max	mean	median	rmse	std
1	gyr_n: 0.21213203435596426	0.06625	0.032357	0.029164	0.034444	0.011808
0.1	gyr_n: 0.021213203435596426	1.289007	0.588574	0.599336	0.67815	0.336851
0.01	gyr_n: 0.0021213203435596426	13.100765	3.291967	2.956284	4.114657	2.468472
10	gyr_n: 2.1213203435596426	0.0663	0.027632	0.022596	0.031582	0.015293
100	gyr_n: 21.213203435596426	0.10221	0.040772	0.035613	0.046762	0.022898
与噪声参考值的倍数关系	测试参数	max	mean	median	rmse	std
1	acc w: 7.0710678118654756e-06	0.06625		0.029164	~~~	
0.1	acc w: 7.0710678118654756e-07	0.066156				
0.01	acc w: 7.0710678118654756e-08	0.072833				
10	acc w: 7.0710678118654756e-05	0.066506	0.032407	0.029268	0.034505	0.011848
100	acc w: 7.0710678118654756e-04	0.066416	0.032409	0.029295	0.034499	0.011827
1000	acc w: 7.0710678118654756e-03	0.06601	0.032296	0.029147	0.034377	0.011778
10000	acc w: 7.0710678118654756e-02	0.067389	0.027777	0.025047	0.029966	0.011242
100000	acc w: 7.0710678118654756e-01	0.069192	0.026364	0.023951	0.030387	0.015111
1000000	acc_w: 7.0710678118654756e-0	0.15089	0.052706	0.045264	0.062302	0.03322
与噪声参考值的倍数关系	测试参数	max	mean	median	rmoo	std
2 777 2 2 127 2 177 7 7 7 7 7	gyr w: 7.071067811865476e-07	0.06625		0.029164	mse 0.034444	
0.1	gyr w: 7.071067811865476e-07	0.065128		0.029164		
10	#A-		0.031851			
100	gyr_w: 7.071067811865476e-06 gyr_w: 7.071067811865476e-05	0.066351 0.066352		0.029319		
1000	gyr w: 7.071067811865476e-05	0.066381	0.032397			
1000	gyr w: 7.071067811865476e-04	0.066308				
10000	gyr w: 7.071067811865476e-03	0.06468				
100000	gyr w: 7.071067811865476e-02	0.0649				
1000000	gyr w: 7.071067811865476e-01	0.0649				
1000000	gyi_w. 7.071007611603470e0	0.037110	0.024294	0.022555	0.020071	0.00940
		-				

5 总结

利用仿真的相机特征数据和 IMU 数据,来调试和分析 VIO 运行是一件非常有意义的事情。从这个项目的实验结果来看,IMU 噪声设置对 VIO 有非常大的影响。

在实际 VIO 项目中,IMU 噪声调优是一项十分重要的工作,它很大程度上决定了系统的定位精度。受到这个项目实验结果的启发,打算在实际工作中曾试以下步骤做 IMU 噪声参数调优。

- 1) 利用 Allan 方差标定方法得到 IMU 噪声的参考值
- 2) 在 IMU 噪声的参考值附近,设计一系列参数组合,其中,角速度白噪声可选值最多,加速度白噪声次之,偏置随机游走噪声可选值可比较少。
- 3) 测试所有的参数组合,选取最佳组合