6.3 定轴旋转

这一节我们讨论空间向量的定轴旋转。如下图,已知空间中一点 P,将点 P 绕一条直线 (旋转轴) 旋转一定角度 α ,得到点 P'。我们用直线上一点 A 和直线的方向向量 \vec{v} ($|\vec{v}|=1$) 表示该旋转轴。

对下图我们称,将向量 \overrightarrow{AP} 绕 **轴向量** \overrightarrow{v} $(|\overrightarrow{v}|=1)$ 旋转 α 角,得到向量 $\overrightarrow{AP'}$

6.3.1 绕坐标轴的旋转

向量绕坐标轴的旋转相对容易计算,只需套用平面旋转公式即可。比如,将 $\vec{r}=(x,y,z)$ 绕 y 轴旋转 α 得到 $\vec{r}'=(x',y',z')$ 。

首先有 y'=y。将 \vec{r},\vec{r}' 投影到 zOx 平面,得平面向量 $\vec{r}_{zx}=(z,x),\ \vec{r}'_{zx}=(z',x')$ 。代入平面旋转公式得

$$z' = z \cos(\alpha) - x \sin(\alpha)$$

 $x' = z \sin(\alpha) + x \cos(\alpha)$

绕 x, z 轴的旋转同理。

6.3.2 定轴旋转近似公式

轴向量不局限于坐标轴时,旋转计算将变得复杂,我们在 6.3.3 介绍具体公式。如果我们对精度要求非常低,可以使用下面的相对容易记忆的近似公式。

记 **轴角向量** $\vec{\alpha}=\alpha\cdot\vec{v}=(\alpha_x,\alpha_y,\alpha_z)$ 。 我们将待旋转向量 \vec{r} 依次绕 x,y,z 轴旋转 $\alpha_x,\alpha_y,\alpha_z$,即得到近似结果。

该方法中,三次旋转的顺序不重要。旋转角 α 越接近 0、轴向量 \vec{v} 越接近坐标轴,近似误差越小。

6.3.3 罗德里格斯旋转公式

下面我们给出一个精确计算定轴旋转的公式。将空间向量 \vec{r} 绕单位向量 \vec{v} 旋转 α 得 \vec{r}' ,则

$$ec{r}' = ec{r}\cos(lpha) + (ec{v} imesec{r})\sin(lpha) + ec{v}(ec{v}\cdotec{r})(1-\cos(lpha))$$

简单说明一下推导方法。

将 \vec{r}' 分解为图示相互垂直的三个向量 $\vec{r}_1, \vec{r}_2, \vec{r}_3$ 之和。

 $ec{r}_1$ 与轴向量 $ec{v}$ 同向,知道 $ec{r}_1$ 大小就可以确定 $ec{r}_1$ 。设 $ec{v}, ec{r}$ 夹角为 heta,则有 $|ec{r}_1| = |ec{r}| \cos(heta)$ 。由向量内积有 $ec{v} \cdot ec{r} = |ec{v}| |ec{r}| \cos(heta) = |ec{r}| \cos(heta)$,所以

$$ec{r}_1 = ec{v} \cdot |ec{r}_1| = ec{v}(ec{v} \cdot ec{r})$$

设 $ec{R}=ec{r}-ec{r}_1$,则 $ec{r}_2\parallelec{R}$ 。 $|ec{R}|$ 为图中圆弧的半径,因而有 $|ec{r}_2|=|ec{R}|\cos(lpha)$ 。所以

$$ec{r}_2 = ec{R}\cos(lpha) = (ec{r} - ec{v}(ec{v} \cdot ec{r}))\cos(lpha)$$

 $ec{r}_3$ 与 $ec{v}$, $ec{r}$ 都垂直,由向量外积的含义可知, $ec{r}_3 \parallel ec{v} imes ec{r}_{ extbf{o}}$

计算两向量大小 $|\vec{r}_3| = |\vec{R}|\sin(\alpha), \ |\vec{v} \times \vec{r}| = |\vec{v}||\vec{r}|\sin(\theta) = |\vec{r}|\sin(\theta) = |\vec{R}|$ 。考虑 $\vec{v} \times \vec{r}$ 的方向,有

$$ec{r}_3 = (ec{v} imes ec{r}) \sin(lpha)$$

将 $\vec{r}_1, \vec{r}_2, \vec{r}_3$ 相加即得 \vec{r}' 。