

Prof. Dr. Sebastian Wild

Outline

7 Randomization Basics

- 7.1 Motivation
- 7.2 Randomized Selection
- 7.3 Recap of Probability Theory
- 7.4 Probabilistic Turing Machines
- 7.5 Classification of Randomized Algorithms
- 7.6 Tail Inequalities and Concentration Bounds
- 7.7 Concentration in Action

7.1 Motivation

Computational Lottery?

- ▶ If we are faced with solving an NP-hard problem and known smart algorithms are too slow, we likely have to compromise on what "solving" means.
- ► Classical algorithms are *always* and *exactly* correct.
- → Here: Let's compromise on "always", i. e., allow algorithms to occasionally fail!
- \P A *deterministic* algorithm A that fails on input x will *always* fail for x.
 - \rightsquigarrow What if we require a solution for such an input x? We get **nothing** from A!
 - ▶ Must use a form of *nondeterminism*.
- ► *Randomization:* Use *random bits* to guide computation.
- → Instead of always failing on some rare inputs, we rarely fail on any input.

can make this arbitrarily rare

Why Could Randomization Help?

- ▶ Main intuitive reason: (can be) much easier to be 99.999999% correct than 100% How can this manifest itself?
 - ► Faster and simpler algorithms

 Random choice can allow to sidestep tricky edge cases
 - We can use fingerprinting (a.k.a. checksums)
 Cheap surrogate question, mostly correct, but sometimes wrong.
 - Protect against adversarial inputs
 We make our (algorithm's) behavior unpredictable, so it us harder to exploit us.
- ► Also: *probabilistic method* for proofs
 - ► Goal: Prove existence of discrete object with some property
 - ► Idea: Design randomized algorithm to find one
 - → If algorithm succeeds with prob. > 0, object must exist!

Average-Case Analysis vs. Randomized Algorithms

Average-Case Analysis

- algorithm is deterministic same input, same computation
- input is chosen according to some probability distribution
- cost given as expectation over inputs

Randomized Algorithm (here)

- algorithm is **not** deterministic same input, potentially different comp.
- input is chosen adversarially (worst-case inputs)
- cost given as expectation over random choices of algorithm

Confusingly enough, the analysis (technique) is often the same!

But: Implications are quite different; randomization is much more versatile and robust.

7.2 Randomized Selection

Separation Example

- ▶ Before we introduce randomization more formally, let's see a successful example
- ▶ Here, not a "hard" problem, but a showcase where randomization makes something possible that is *provably*

Introductory Example - Quickselect

Selection by Rank

- ► **Given:** array A[0..n) of numbers and number $k \in [0..n)$.
- ▶ **Goal:** find element that would be in position k if A was sorted (kth smallest element).
 - ▶ $k = \lfloor n/2 \rfloor$ \rightsquigarrow median; $k = \lfloor n/4 \rfloor$ \rightsquigarrow lower quartile k = 0 \rightsquigarrow minimum; $k = n \ell$ \rightsquigarrow ℓ th largest

```
procedure quickselect(A[0..n), k):

l := 0; r := n

while r - l > 1

b := \text{random pivot from } A[l..r)

j := \text{partition}(A[l..r), b)

if j \ge k then r := j - 1

if j \le k then l := j + 1

return A[k]
```

simple algorithm: determine rank of random element, recurse
over random choices

but 0-based &

counting dups

- \rightarrow O(n) time in expectation
- ▶ worst case: $\Theta(n^2)$
- \triangleright O(n) also possible deterministically, but algorithms is more involved

median of medians

A closer look at Selection

While all within $\Theta(n)$, we do get a strict separation for selecting the median.

Theorem 7.1 (Bent & John (1985))

Any **deterministic** comparison-based algorithm for finding the median of n elements uses at least 2n - o(n) comparisons in the worst case.

Proof omitted.

The following weaker result is easier to see:

Theorem 7.2 (Blum et al. (1973))

Any deterministic comparison-based algorithm for finding the median of n elements uses at least $n - 1 + (n - 1)/2 \sim 1.5n$ comparisons in the worst case.

A Median Adversary

Proof (Theorem 7.2):

Randomized Selection

- ► Can prove: Randomized Quickselect uses in expectation $\sim (2 \ln 2 + 2)n \approx 3.39n$ comparisons to find the median
- But we can do better!

```
procedure floydRivest(A[\ell..r), k):
        n := r - \ell
        if n < n_0 return quickselect(A, k)
        s := \frac{1}{2}n^{2/3} // all numbers to be rounded
        sd := \frac{1}{2}\sqrt{\ln(n)s(n-s)}/n
       S[0..s) := \text{random sample from } A
       \hat{k} := s \frac{k}{n}
        p := floydRivest(S, \hat{k} - sd)
        q := floydRivest(S, \hat{k} + sd)
        (i, j) := partition A around <math>p_0 and p_1
10
        if i == k return A[i]
11
        if j == k return A[j]
12
        if k < i return floydRivest(A[\ell..i), k)
13
        if k > j return floydRivest(A[j..r), k)
14
        return floydRivest(A[i..i), k)
15
```

- Variant of Quickselect with huge sample
- ► Analysis sketch:
 - \triangleright partition costs 1.5*n* comparisons
 - ▶ Everything on sample has cost o(n)
 - by the choice of parameters, with prob 1 o(1):
 - (a) i < k < j after partition
 - (b) j i = o(n)
 - \rightsquigarrow all recursive calls expected o(n) cost
- Randomized median selection with 1.5n + o(n) comparisons
- → Separation from deterministic case!

Power of Randomness

- Selection by Rank shows two aspects of randomization:
 - A simpler algorithm by avoiding edge cases (like an initial order giving bad pivots)
 - Protection against adversarial inputs (inputs constructed with knowledge about the algorithm)

Here randomization provably more powerful than any thinkable deterministic algorithm!

constant factor for #cmps

- ► What can we gain for (NP-)hard problems?
- ▶ But first, let's define things properly.

7.3 Recap of Probability Theory

Probability Theory

- ▶ We will quickly revisit some key terms from probability theory
 - Single place to look up notation etc.
- ▶ Much will focus on discrete probability, but some continuous tools useful, too

Probability Spaces

Discrete probability space (Ω, \mathbb{P}) :

- $ightharpoonup \Omega = \{\omega_1, \omega_2, \ldots\}$ a (finite or) *countable* set
- ▶ $\mathbb{P}: 2^{\Omega} \to [0,1]$ a discrete probability measure, i. e.,
 - ightharpoonup $\mathbb{P}[\Omega] = 1$
 - ▶ $\mathbb{P}[A] = \sum_{\omega \in A} \mathbb{P}[\omega]$ \leadsto \mathbb{P} determined by $w_i = \mathbb{P}[\omega_i]$.

General probability space $(\Omega, \mathcal{F}, \mathbb{P})$:

- $ightharpoonup \Omega$ is a set of points (the universe)
- ▶ $\mathcal{F} \subseteq 2^{\Omega}$ is a σ -algebra, i. e., (discrete case: $\mathcal{F} = 2^{\Omega}$; $\Omega = \mathbb{R}$: Borel σ -algebra \mathcal{B} generated by (a,b))
 - **▶** ∅ ∈ 𝒯
 - closed under complementation: $A \in \mathcal{F} \implies \overline{A} = \Omega \setminus A \in \mathcal{F}$
 - closed under *countable* union: $A_1, A_2, ... \in \mathcal{F} \implies \bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$
- ▶ $\mathbb{P}: \mathcal{F} \to [0,1]$ is a probability measure, i. e., $(\Omega = \mathbb{R} \to \text{Lebesgue measure } \lambda((a,b)) = b a)$
 - $ightharpoonup \mathbb{P}[\Omega] = 1$
 - ▶ If $A_1, A_2, ... \in \mathcal{F}$ are pairwise *disjoint* then $\mathbb{P}\left[\bigcup_{i=1}^{\infty} A_i\right] = \sum_{i=1}^{\infty} \mathbb{P}[A_i]$

Events

something we can assign a probability to

 $A \in \mathcal{F}$ is called an *event* of $(\Omega, \mathcal{F}, \mathbb{P})$; also a *measurable set*.

Basic properties

- ▶ $\mathbb{P}[\overline{A}] = 1 \mathbb{P}[A]$ counter-probability $(\overline{A} = \Omega \setminus A)$
- ▶ $\mathbb{P}[\bigcup A_i] \leq \sum_i \mathbb{P}[A]$ the *union bound* (a.k.a. Boole's inequality a.k.a. σ-subadditivity)
- ▶ $\{A_1, ..., A_k\}$ (mutually) independent $\iff \mathbb{P}[\bigcap_i A_i] = \prod_i \mathbb{P}[A_i]$ An infinite set of events is mutually independent if every finite subset is so. k-wise independence means that only all size-k subsets are independent.
- ▶ *conditional probability* for *A* given *B*: $\mathbb{P}[A \mid B] = \mathbb{P}[A \cap B]/\mathbb{P}[B]$ generally undefined if $\mathbb{P}[B] = 0$
- ▶ *law of total probability*: If $Ω = B_1 \dot{\cup} B_2 \dot{\cup} \cdots$ is a partition of Ω, we have

$$\mathbb{P}[A] = \sum_{\substack{i \\ \mathbb{P}[B_i] \neq 0}} \mathbb{P}[A \mid B_i] \cdot \mathbb{P}[B_i].$$

Random Variables

Random variables (r.v.) $X: \Omega \to X$; often $X = \mathbb{R}$ (in general spaces: only *measurable* functions)

Basic properties and conventions:

- event $\{X = x\}$ is defined as $\{\omega \in \Omega : X(\omega) = x\}$.
- ► For event *A* define the indicator r.v. $\mathbb{1}_A$ via $\mathbb{1}_A(\omega) = [\omega \in A]$
- ▶ $F_X(x) = \mathbb{P}[X \le x]$ is the cumulative distribution function (CDF).
- ► *X* is *discrete* if $X(Ω) = {X(ω) : ω ∈ Ω}$ is countable.
- ▶ for discrete r.v. X define $f_X(n) = \mathbb{P}[X = n]$ the probability mass function (PMF).
- ▶ If F_X is everywhere differentiable, X is continuous. Then $f_X = F'_X$ is its probability density function.

Equality in distribution:

▶ We write $X \stackrel{\mathcal{D}}{=} Y$ if $F_X = F_Y$

Independent Random Variables

Independence:

- Consider *vector* $X = (X_1, ..., X_k)$ as single function from Ω to \mathbb{R}^k . CDF/PMF/PDF of X is called *joint CDF/PMF/PDF* of $X_1, ..., X_k$.
- ▶ r.v.s *independent* \iff joint PMF/PDF *factors*: X and Y independent \iff $\mathbb{P}[X = x \land Y = y] = \mathbb{P}[X = x] \cdot \mathbb{P}[Y = y]$ for all x, y. (Naturally follows from independent events)

i.i.d. sequences

- ▶ We often talk about sequences of random variables $X_1, X_2, ...$
- ▶ a sequence of *i.i.d.* r.v. $X_1, X_2, ...$ (*independent and identically distributed*) has $X_i \stackrel{\mathcal{D}}{=} X_1$ and $\{X_i\}_{i\geq 1}$ are mutually independent
 - typical example: sequence of coin tosses (with same coin)

Expected Values

Expectation of an \mathfrak{X} -valued r.v. X, written $\mathbb{E}[X]$, is given by

- ▶ $\mathbb{E}[X] = \sum_{x \in \mathcal{X}} x \cdot f_X(x)$ for *discrete* X with PMF f_X ,
- ▶ $\mathbb{E}[X] = \int_{x \in \mathcal{X}} x \cdot f_X(x) dx$ for continuous X with PDF f_X .
- undefined if sum does not converge / integral does not exist.

Properties:

- ▶ linearity: $\mathbb{E}[aX + bY] = a\mathbb{E}[X] + b\mathbb{E}[Y]$ (X, Y r.v. and a, b constants) even if X and Y are not independent only for *finite* sums / linear combinations!
- ▶ X and Y independent $\Longrightarrow \mathbb{E}[X \cdot Y] = \mathbb{E}[X] \cdot \mathbb{E}[Y]$.

Conditional Expectation

Similar to conditional *probability*, we can define conditional *expectations*.

- ▶ *conditional expectation* on event $\mathbb{E}[X \mid A] = \sum_{x} \mathbb{P}[X = x \mid A]$ for *discrete* X. for general A, continuous definition problematic
- *conditional expectation* on $\{Y = y\}$, written $\mathbb{E}[X \mid Y = y]$.
 - ▶ for *discrete X* and *Y*

$$\mathbb{E}[X \mid Y = y] = \sum_{x \in \mathcal{X}} x \cdot \mathbb{P}[X = x \mid \{Y = y\}]$$

• for *continuous* X and Y, use the joint density $f_{(X,Y)}$ and define the *marginal density* of Y as $f_Y(y) = \int_{x \in Y} f(x, y) dx$. Then

$$\mathbb{E}[X \mid Y = y] = \int_{\mathcal{X}} x \cdot f_{X|Y}(x, y) \, dx \qquad \text{with} \qquad f_{X|Y}(x, y) = \frac{f_{(X,Y)}(x, y)}{f_{Y}(y)}$$

- ▶ With $g(y) := \mathbb{E}[X \mid Y = y]$ we obtain a *new r.v.* $\mathbb{E}[X \mid Y] = g(Y)$.
- ▶ *law of total expectation*: $\mathbb{E}[X] = \mathbb{E}_Y [\mathbb{E}_X[X \mid Y]]$.

Famous Distributions

discrete

- ▶ Bernoulli r.v. $X \stackrel{\mathcal{D}}{=} B(p) \rightsquigarrow \mathbb{P}[X=1] = p$, $\mathbb{P}[X=0] = 1 p$
- ▶ Binomial r.v. $Y \stackrel{\mathcal{D}}{=} Bin(n, p) \rightsquigarrow Y = X_1 + \cdots + X_n \text{ for } X_1, \ldots, X_n \text{ i.i.d. } X_i \stackrel{\mathcal{D}}{=} B(p)$
- ▶ discrete *uniform r.v.* $X \stackrel{\mathcal{D}}{=} \mathcal{U}([0..n)) \iff \mathbb{P}[X = i] = \frac{1}{n} \text{ for } i \in [0..n)$ (else 0)
- ► Geometric r.v. $X \stackrel{\mathcal{D}}{=} \text{Geo}(p) \rightsquigarrow \mathbb{P}[X = k] = (1 p)^{k-1}p \text{ for } k \in \mathbb{N}_{\geq 1}$

continuous

► continuous uniform $X \stackrel{\mathcal{D}}{=} \mathcal{U}([0,1]) \rightsquigarrow f_X(x) = 1 \text{ for } x \in [0,1]$ (else 0)

(of course there are many more)

7.4 Probabilistic Turing Machines

Model of Computation

Definition 7.3 (Probabilistic Turing Machine)

A *probabilistic Turing Machine* (PTM) $M = (Q, \Sigma, \Gamma, \delta, q_0, \square, q_{halt})$ is a deterministic TM with an additional read-only tape, filled with random bits.

The *transition function* δ takes as input

- ▶ the current state *q*
- ▶ the current tape symbol *a*
- ▶ the current *random-tape symbol* $r \in \{0, 1\}$

and outputs

- ightharpoonup the next state q'
- ightharpoonup the new tape symbol b
- ▶ the tape-head movement $d \in \{L, R, N\}$
- ▶ the random-tape head movement $d_r \in \{L, R, N\}$

Intended semantics: random tape filled with i.i.d. $B(\frac{1}{2})$ r.v.

Randomized Computation

- ► Configuration of PTM: $(\alpha q\beta, \rho q\sigma)$ $\alpha q\beta$ normal TM config $\rho \sigma$ content of random tape, with head on first bit of σ
- ► *computation relation* ⊢ similar to TM content of random tape unchanged, heads can move independently
- ► function computed by PTM M: for input x and fixed random bits ρ , computation is deterministic: $M(x, \rho) = y$ if $(q_0x, q_0\rho) \vdash^* (q_{\text{halt}}y, \rho'q_{\text{halt}}\rho'')$
- \sim *Randomized computation of PTM:* random variable $M(x, B_0B_1B_2...)$ where $B_0, B_1, B_2, ...$ are i.i.d. $B(\frac{1}{2})$ distributed
- \longrightarrow Write $\mathbb{P}[M(x) = y] = \sum_{b} \mathbb{P}[B_0B_1... = b] \cdot [M(x,b) = y]$
- ▶ Hope: PTM *M* so that correct output computed with high probability

Warmup: Rejection Sampling

We assume only random *bits*. How to simulate, say, a fair (6-sided) die?

```
1 procedure rollDie():

2 do

3 Draw 3 random bits b_2, b_1, b_0

4 // Interpret as binary representation of a number in [0..7]

5 n = \sum_{i=0}^{2} 2^i b_i

6 while (n = 0 \lor n = 7)

7 return n
```

Correctness: Every output $1, \ldots, 6$ equally likely by construction.

Termination: *Infinite* runs possible!

Expected Running Time: Leave loop with probability $\frac{6}{8} = \frac{3}{4}$ in each iteration

$$\rightsquigarrow$$
 in expectation, only $\frac{4}{3} = \sum_{i \ge 1} i \cdot \left(\frac{1}{4}\right)^{i-1} \frac{3}{4}$ repetitions.

rollDie is a correct and practically efficient algorithm.

What can go wrong?

What can go wrong in a randomized computation?

- Computation could run into a deterministic infinite loop (as for deterministic TM)
 - don't ever terminate, no output
 - → Clearly don't want that (just as before)

(annoyingly undecidable to check . . . also just as before)

- Computation could repeatedly have branches that keep looping (as for rollDie)
 - \rightarrow For every t, there is a probability p > 0 to run for more than t time steps
 - ► This is a new option that deterministic TMs didn't have
 - \ldots but nondeterministic TMs did, and we just defined running time to be ∞ there!

So, is that a problem? Or is it not??

Random Termination

Key question: What is the probability space for the running time of the PTM simulating rollDie?

- ▶ Note: this could indeed be a problem.
 - $\{0,1\}^*$ (the set of **finite** bitstrings) is countably infinite (=discrete)
 - ▶ But the set of *infinite strings* (ω -language) is not! $\{0,1\}^{\omega} = \{b_0b_1...:b_i \in \{0,1\}\} = \{b:b:\mathbb{N}_0 \to \{0,1\}\}$ surjectively maps to $[0,1) \subset \mathbb{R}$
- ► Config $(\alpha q\beta, \rho q\sigma)$ for PTM needs $\sigma \in \{0, 1\}^{\omega}$ in general
- ▶ Define the random variable $Time_M(x) \in \mathbb{N}_0 \cup \{\infty\}$ on the *Bernoulli probability space*
 - generators: $\{\pi_x : x \in \{0,1\}^*\}$ where $\pi_x = \{xw : w \in \{0,1\}^\omega\} \subseteq \{0,1\}^\omega$
 - ► Bernoulli *σ*-algebra: smallest \mathcal{F} containing all $\{\pi_x\}_x$ that is closed under countable union and complement
- \leadsto expectations over $\rho \in \{0,1\}^{\omega}$, the infinite initial random-bit tape input are well-defined

(Expected) Time

Definition 7.4 (PTM running time)

For a PTM M, we define $time_M(x)$ as for nondeterministic TMs as the supremum of time steps over all computations.

Moreover, we define the *expected time* as

$$\mathbb{E}\text{-}time_{M}(x) \ = \ \mathbb{E}[time_{M}(x)] \ = \ \mathbb{E}_{\rho}\big[\inf\{t \in \mathbb{N}_{0}: (q_{0}x, q_{0}\rho) \ \vdash^{t} \ (q_{\text{halt}}y, \rho'q_{\text{halt}}\rho'')\big]$$

Similarly

$$\mathbb{E}\text{-}Time_{M}(n) = \sup \left\{ \mathbb{E}\text{-}time_{M}(x) : x \in \Sigma^{n} \right\}$$

- We can of course also study full distribution of $time_M(x)$
- ► Useful property of expected time:

$$\mathbb{E}$$
-time_M $(x) < \infty$ iff $\mathbb{P}[time_M(x) = \infty] = 0$

A New Complexity Measure: Random Bits

Definition 7.5 (Random-bit complexity)

For a PTM M computing with input alphabet Σ , the *random-bit cost* for an input $x \in \Sigma^*$ is denote by

$$random_{M}(x) = \sup\{|\rho'|: (xq_0, q_0\rho) \vdash^{\star} (\alpha q\beta, \rho' q\rho'') \vdash^{\star} (q_{\text{halt}}y, \rho' q_{\text{halt}}\rho'')\}$$

and similarly

$$Random_M(n) = \sup\{random_M(x) : x \in \Sigma^n\}.$$

Further, the *expected random-bit cost* are defined as

$$\mathbb{E}$$
-random_M $(x) = \mathbb{E}_{\rho}[random_M(x)]$ and

$$\mathbb{E}\text{-}Random_{M}(n) = \sup \left\{ \mathbb{E}\text{-}random_{M}(x) : x \in \Sigma^{n} \right\}$$

Randomization vs. Nondeterminism

- Superficially similar concepts
- ► Key difference: meaning of number of computations of TM
 - ▶ nondeterministic TM: accept if **some** (**single**) accepting computation is possible
 - randomized TM: accept if most possible computations are accepting
- → nondeterminism = purely theoretical construction (overly powerful yardstick)
- ► randomization = widely applied efficient design technique

7.5 Classification of Randomized Algorithms

Las Vegas

Consider here the general problem to compute some *function* $f: \Sigma^* \to \Gamma^*$.

$$\leadsto \text{Covers } \textit{decision problems } L \subseteq \Sigma^{\star} \text{ by setting } \Gamma = \{0,1\} \text{ and } f(w) = \begin{cases} 1 & w \in L \\ 0 & w \notin L \end{cases}$$

Definition 7.6 (Las Vegas Algorithm)

A randomized algorithm A is a Las-Vegas (LV) algorithm for a problem $f: \Sigma^* \to \Gamma^*$ if for all $x \in \Sigma^*$ holds

- (a) $\mathbb{P}\left[time_A(x) < \infty\right] = 1$ (terminate almost surely)
- **(b)** $A(x) \in \{f(x), ?\}$ (answer always *correct or "don't know"*)
- (c) $\mathbb{P}[A(x) = f(x)] \ge \frac{1}{2}$ (correct half the time)

Don't Know vs. Won't Terminate

Theorem 7.7 (Don't know don't needed)

Every Las Vegas algorithm A for $f: \Sigma^* \to \Gamma^*$ can be transformed into a randomized algorithm B for f so that for all $x \in \Sigma^*$ holds

- (a) $\mathbb{P}[B(x) = f(x)] = 1$ (always correct)
- **(b)** \mathbb{E} -time_B $(x) \leq 2 \cdot time_A(x)$

Proof:

See exercises.

Theorem 7.8 (Termination Enforcible)

Every randomized algorithm B for $f: \Sigma^* \to \Gamma^*$ with $\mathbb{P}[B(x) = f(x)] = 1$ can be transformed into a Las Vegas algorithm A for f so that for all $x \in \Sigma^*$ holds

- (a) $\mathbb{P}[A(x) = f(x)] \ge \frac{1}{2}$
- **(b)** $time_A(x) \le 2 \cdot \mathbb{E} time_B(x)$ (always terminates).

Proof:

See exercises.

Las Vegas Variants

→ Can trade expected time bound for worst-case bound by allowing "don't know" and vice versa!

Both types are called commonly LV algorithms; where helpful, we distinguish:

- (A) Always-Decisive Las Vegas algorithms (output of Theorem ??)
- **(B)** *Always-Terminating Las Vegas algorithms* (output of Theorem ??)

Las Vegas Examples

rollDie by rejection sampling is Las Vegas of unbounded worst-case type.

Easy to transform into Las Vegas according to Definition 7.6:

```
procedure rollDieLasVegas:

Draw 3 random bits b_2, b_1, b_0

n = \sum_{i=0}^{2} 2^{i}b_i // Interpret as binary representation of a number in [0:7]

if (n = 0 \lor n = 7)

return ?

else

return n
```

Other famous examples: (randomized) Quicksort and Quickselect

- always correct and
- ► $time(n) = O(n^2) < \infty$
- much better average:
 - ightharpoonup \mathbb{E} -time_{OSort} $(n) = \Theta(n \log n)$
 - $\blacktriangleright \quad \mathbb{E}\text{-}time_{QSelect}(n) = \Theta(n)$

To Err is Algorithmic

Sometimes sensible to allow *wrong / imprecise* answers . . . but random should not mean *arbitrary*!

Definition 7.9 (Monte Carlo Algorithm)

A randomized algorithm A is a *Monte Carlo algorithm* for $f: \Sigma^* \to \Gamma^*$

- ▶ with bounded error if $\exists \varepsilon > 0 \ \forall x \in \Sigma^*$: $\mathbb{P}[A(x) = f(x)] \ge \frac{1}{2} + \varepsilon$.
- ▶ with *unbounded error* if $\forall x \in \Sigma^*$: $\mathbb{P}[A(x) = f(x)] > \frac{1}{2}$.

Seems like a minuscule difference? We will see it is vital!

7.6 Tail Inequalities and Concentration Bounds

How To Summarize A Random Variable?

- ► running time of randomized algorithm is a random variable
- ► For two randomized algorithms *A* and *B*, we'd like to decide which is better Whether *A* is faster than *B* is also random.
- → need a way to compare random variables!
- ► One option: *stochastic dominance*
 - ▶ If $\forall t : \mathbb{P}[time_A(x) \ge t] \ge \mathbb{P}[time_B(x) \ge t]$, we say $time_A(x)$ (weakly) stochastically dominates $time_B(x)$ (on input x)
 - ▶ Would rather use *B* then!
 - dominance rarely true for real algorithms
 - $\hfill \bigcap$ no prediction of running time / comparison with explicit bound
- \rightarrow look at **expected value** \mathbb{E} -time(x) (randomized version of average case)
 - simple (one number); reflects typical case
 - not always reliable / representative

When Expectation Isn't Enough

- ► Two hypothetical algorithms:
 - ► *A* takes 1 step in half the cases and 3 steps otherwise
 - ▶ *B* takes 1 step in 99% of cases and **101** steps otherwise
 - \rightarrow both have \mathbb{E} -time(x) = 2
 - ▶ probably want *A* . . . certainly would want to be able to distinguish them!
- ▶ **Goal:** Strengthen algorithms so time(x) rarely far from \mathbb{E} -time(x)
 - ▶ formally: bound probability that X (far) exceeds $\mathbb{E}[X]$
 - $\leadsto \ \ \textit{concentration bounds } a.k.a. \ \textit{tail inequalities}$
 - can then compare these typical times again
 - also obtain more reliable algorithms
 - → Let's establish some tools for that!

With High Probability

Definition 7.10 (With high probability)

We say

- ▶ an event X = X(n) happens with high probability (w.h.p.) when $\forall c : \mathbb{P}[X(n)] = 1 \pm O(n^{-c})$ as $n \to \infty$.
- ▶ a random variable X = X(n) is in O(f(n)) with high probability (w.h.p.) when $\forall c \ \exists d : \mathbb{P}[X \leq df(n)] = 1 \pm O(n^{-c})$ as $n \to \infty$. (This means, the constant in O(f(n)) may depend on c.)

- ▶ Very strong notion: failure probability smaller than any polynomial
- → If *A* succeeds w.h.p. then also polynomially many repetitions of *A* succeed w.h.p.

Lemma 7.11 (Repetitions w.h.p.)

Suppose A is an algorithm that w.h.p. does not fail.

In n^d independent repetitions of A on inputs of size n, w.h.p. no repetition fails.

With High Probability [2]

Proof (Lemma ??):

Let *c* from the definition of w.h.p. be given.

The event F_i that the ith run of A fails happens with probability $O(n^{-(c+d)})$ by definition.

Then
$$\mathbb{P}[\bigcup_{i=1}^{n^d} F_i] \leq \sum_{i=1}^{n^d} \mathbb{P}[F_i] = n^d \cdot O(n^{-(c+d)}) = O(n^{-c}).$$

→ events that happen with high probability can be combined

Concentration I – Markov's Inequality

Theorem 7.12 (Markov's Inequality)

Let $X \in \mathbb{R}_{\geq 0}$ be a r.v. that assumes only *weakly positive* values. Then holds

$$\forall a > 0 : \mathbb{P}[X \ge a] \le \frac{\mathbb{E}[X]}{a}$$

Proof:

Since $X \ge 0$ implies $\mathbb{E}[X] \ge 0$, nicer equivalent form: $\forall a > 0 : \mathbb{P}[X \ge a\mathbb{E}[X]] \le \frac{1}{a}$ Mnemonic: With probability at least $\frac{1}{a}$, won't exceed expectation by a factor a.

Moments

- ▶ Markov's Inequality is tight (for some r.v.), but not usually a strong concentration result.
- ▶ but we can apply it to f(X) for any (positive) *function* of X!

Towards this, we consider moments of r.v.:

Definition 7.13 (Moments, variance, standard deviation)

For a random variable $X \in \mathbb{R}$,

- ▶ $\mathbb{E}[X^k]$ is the *kth moment* of *X*.
- $\blacktriangleright \mathbb{E}[|X \mathbb{E}[X]|^k]$ is the *kth centered moment* of *X*.
- ▶ The *variance* of *X* is the second centered moment: $Var[X] = \mathbb{E}[(X \mathbb{E}[X])^2]$
- ► The standard deviation of *X* is $\sigma[X] = \sqrt{\text{Var}[X]}$.

Note: None of the moments is guaranteed to exist!

Concentration II – Chebychev's Inequality

Using second moments, we obtain a stronger concentration inequality.

Theorem 7.14 (Chebychev's Inequality)

Let *X* be a random variable. We have

$$\forall a > 0 : \mathbb{P}\Big[\big|X - \mathbb{E}[X]\big| \ge a\Big] \le \frac{\operatorname{Var}[X]}{a^2}.$$

Convergence in Probability

Corollary 7.15 (Chebychev Concentration)

Let X_1, X_2, \ldots be a sequence of random variables and assume

- ightharpoonup $\mathbb{E}[X_n]$ and $\mathrm{Var}[X_n]$ exist for all n and
- $ightharpoonup \sigma[X_n] = o(\mathbb{E}[X_n]) \text{ as } n \to \infty.$

Then holds

$$\forall \varepsilon > 0 : \mathbb{P}\left[\left|\frac{X_n}{\mathbb{E}[X_n]} - 1\right| \ge \varepsilon\right] \to 0 \quad (n \to \infty).$$

This means $\frac{X_n}{\mathbb{E}[X_n]}$ converges in probability to 1.

We're getting there, but this is still a far cry from our "with high probability"! (superpolynomial convergence rate in above limit)

Concentration III – Chernoff Bounds

Stronger concentration inequalities require more assumptions on distribution of *X*. A classical one is that *X* consists of many **small and independent** parts.

Theorem 7.16 (Chernoff Bound for Bernoulli trials)

Let $X_1, \ldots, X_n \in \{0, 1\}$ be (*mutually*) *independent* with $X_i \stackrel{\mathcal{D}}{=} B(p_i)$. Define $X = X_1 + \cdots + X_n$ and $\mu = \mathbb{E}[X_1] + \cdots + \mathbb{E}[X_n] = p_1 + \cdots + p_n$. Then holds

$$\begin{split} \forall \delta > 0 &: & \mathbb{P}[X \geq (1+\delta)\mu] \; < \; \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \\ \forall \delta \in (0,1] &: & \mathbb{P}[X \geq (1+\delta)\mu] \; \leq \; \exp(-\mu\delta^2/3) \end{split}$$

Concentration III – Chernoff Bounds [2]

Proof (cont.):

Chernoff Bound for Binomial Distribution

The algorithmically most widely used special case has identical coin flips.

Corollary 7.17 (Chernoff Bound for Binomial Distribution)

Let $X \stackrel{\mathcal{D}}{=} Bin(n, p)$. Then

$$\forall \delta \ge 0 : \mathbb{P}\left[\left|\frac{X}{n} - p\right| \ge \delta\right] \le 2\exp(-2\delta^2 n)$$

$$\rightarrow$$
 $\left[Bin(n,p) \in np \pm n^{0.501} \text{ w.h.p.} \right]$

7.7 Concentration in Action

Application 1: Majority Voting for Monte Carlo

Monte Carlo algorithms are allowed to err half the time. That sound unusable in practice . . . can we improve upon that?

Idea: Use t independent repetitions of A on x.

If at least $\lceil t/2 \rceil$ runs (i. e., an absolute majority) yield result y, return y, otherwise return ?

Theorem 7.18 (Majority Voting)

Let *A* be a Monte Carlo algorithm for *f* with *bounded* error. Then, a *majority vote* of $t = \omega(\log n)$ repetitions of *A* is correct *with high probability*.

Application 1: Majority Voting for Monte Carlo [2]

Application 2: Majority Voting for Unbounded Error

Theorem 7.19 (Majority Voting with unbounded error)

There are Monte Carlo algorithms A with unbounded error that use only a linear number of random bits $(Random_A(n) = \Theta(n) \text{ as } n \to \infty)$, so that a guarantee for successful majority votes with fixed probability $\delta \in (\frac{1}{2}, 1)$ requires the number of repetitions t to satisfy $t = \omega(n^c)$ for every constant c as $n \to \infty$.

That means, probability amplification for *unbounded* error Monte Carlo methods requires a *superpolynomial* number of repetitions and is not in general tractable.

Application 2: Majority Voting for Unbounded Error [2]

Proof (cont.):

Application 2: Majority Voting for Unbounded Error [3]

Proof (cont.):

Randomized Algorithms for Optimization Problems

- For algorithms solving an optimization problem, "wrong" answers may just be suboptimal solutions
- but we can compute their cost!(Wouldn't want to follow a majority vote if that's provably worse!)
- → Can naturally lead to an approximately optimal answer
- ► For this chapter: The only correct output = optimal solution
- → same methodology applies

Application 3: Can we trust Quicksort's expectation?

Theorem 7.20 (Quicksort Concentration)

The height of the recursion tree of (randomized) Quicksort is w.h.p. in $O(\log n)$.

 \triangleleft

Corollary 7.21

The number of comparisons of randomized Quicksort is w.h.p. in $O(n \log n)$.

•

Summary

- randomization can provably improve performance
 - not clear in general by how much
- Randomized computation can be modeled formally as Probabilistic Turing Machines
 - Bernoulli probability space to handle non-terminating runs
- Las Vegas algorithms use randomization internally, but never give wrong results
- Monte Carlo algorithms are allowed to output wrong results with small probability
- ▶ Chernoff bounds give strong concentration results for independent repetitions