Inequality-Constrained Multivariate Normal Splines with Some Applications in Finance

Igor I. Kohanovsky

A problem of estimating a smooth function $\varphi(x)$ given discrete scattered observations of its values $\{u_i\}_{i=1}^p$ and given it satisfies a set of linear inequality constraint is presented. Often we may treat $\varphi(x)$ as an element of Hilbert space $H(\mathbb{R}^n)$. Consider a following data model

$$(f_i, \varphi) = u_i, \qquad 1 \le i \le m,$$

$$(f_i, \varphi) \le u_i, \qquad m+1 \le i \le p$$
(1)

where f_i — linear continuous functionals.

Problem of reconstruction of the function φ satisfying with (1) is underdefined. To overcome it we introduce a penalty functional J

$$(J,\varphi) = \|\varphi - \varphi_0\|_H^2 \,, \tag{2}$$

and find a function φ in the Hilbert space H to minimize J subject to (1) (where φ_0 is a trial function, and $\|\cdot\|_H$ denotes the H norm).

Solution of this problem is a generalized spline of Atteia-Laurent [2]. Following to the work [3] we will call it as a Normal Spline.

Let $H \equiv H_{\varepsilon}^s$, H_{ε}^s — a fractional order Sobolev space (it is a kind of the Bessel potentials space [1])

$$H_{\varepsilon}^{s}(\mathbb{R}^{n}) = \left\{ \varphi | \varphi \in S', (\varepsilon^{2} + |\xi|^{2})^{s/2} \mathcal{F}[\varphi] \in L_{2} \right\}, \varepsilon > 0, s > \frac{n}{2},$$

where S' — space of L. Schwartz distributions, $\mathcal{F}[\varphi]$ — Fourier transform of φ .

As H_{ε}^{s} is a Reproducing Kernel Hilbert Space, we can transform functionals f_{i} to the canonic form (form of inner product). It allows to reduce the previous problem to the simplest quadratic programming problem. In order to do such reduction we have to know a reproducing kernel of the Hilbert space H_{ε}^{s} . In the case when parameter s is under the following condition

$$s = r + \frac{n+1}{2}$$
, $(r = 0, 1, ...)$.

related reproducing kernel $V_{s_r}(\eta, x)$ can be expressed via elementary functions, namely

$$V_{s_r}(\eta, x) = C \exp(-\varepsilon |\eta - x|) \sum_{k=0}^{r} \frac{(r+k)!}{2^k k! (r-k)!} (\varepsilon |\eta - x|)^{r-k}.$$
 (3)

Parallelized version of algorithm of solving simplest quadratic programming problem (finding the normal solution of a system of linear equations and inequalities) was developed. Method of the normal splines was applied for investigating some finance data analysis problems.

References

- [1] Aronszajn N., Smith K.T. Theory of bessel potentials I. // Ann.Inst.Fourier, 11 (1961), 385–475.
- [2] P.-J. Laurent Approximation et optimization //Paris, 1972.
- [3] Gorbunov V.K. A Method of Normal Spline Collocation // Computational Mathematics and Mathematical Physics. 1989. V.29. N2. PP.212-224.
- [4] Kohanovsky I.I. Normal Splines in Computing Tomography // Avtometriya, 1995, N2, pp.84-89 (in Russian).
- [5] Kohanovsky I.I. Multidimensional Normal Splines and Problem of Physical Field Approximation // Fourier Analysis and Its Applications (FAA 98) International Conference, Al Kuwait, Kuwait, 1998.
- [6] Kohanovsky I.I. Normal splines in fractional order Sobolev spaces and some of its applications // Third Siberian Congress on Industrial and Applied Mathematics (INPRIM-98)), Novosibirsk, Russia, 1998.
- [7] Gorbunov V.K., Kohanovsky I.I., Makedonsky K.S. Normal splines in reconstruction of multi-dimensional dependencies // Papers of WSEAS International Conference on Applied Mathematics, Numerical Analysis Symposium, Corfu, 2004