Praktický postup návrhu nízkošumových zesilovačů pomocí multiobjektové optimalizace a základní vlastnosti nízkošumových zesilovačů

Josef Dobeš a Jan Míchal České vysoké učení technické v Praze Fakulta elektrotechnická Katedra radioelektroniky

11. října 2022

Základní schéma LNA... Náhradní schéma LNA PHEMT: dynamický & ... PHEMT: šumový model Paretova plocha: L&S-... Paretova plocha: L-pásmo Měřené s-parametry: L&S Měřené s-parametry: L Polární graf s21: L&S a L Graf Rollettova činitele L&S: Šumové číslo a GT L: Šumové číslo a GT Měřené IP3 body: L&S... Měřené IP3 body: L pásmo Domovská stránka -Strana 1 z 23 Vrátit se Celá obrazovka Zavřít Konec

Architektura rádiových přijímačů a vysílačů

1. Základní schéma LNA (zapojení bývá doporučené výrobci pHEMT)

Základní schéma LNA... Náhradní schéma LNA PHEMT: dynamický & ... PHEMT: šumový model Paretova plocha: L&S-... Paretova plocha: L-pásmo Měřené s-parametry: L&S Měřené s-parametry: L Polární graf s21: L&S a L Graf Rollettova činitele... L&S: Šumové číslo a GT L: Šumové číslo a GT Měřené IP3 body: L&S... Měřené IP3 body: L pásmo Domovská stránka 44 **>>** Þ Strana 2 z 23 Vrátit se Celá obrazovka

Zavřít

Konec

2. Náhradní schéma LNA

Základní schéma LNA...
Náhradní schéma LNA

DUEMT: skyramiský 0

PHEMT: dynamický & . . .

PHEMT: šumový model
Paretova plocha: L&S-...

Paretova plocha: L-pásmo

Měřené s-parametry: L&S

Měřené s-parametry: L

Polární graf s₂₁: L&S a L

Graf Rollettova činitele...

L&S: Šumové číslo a G_T

L: Šumové číslo a G_T

Měřené IP3 body: L&S...

Měřené IP3 body: L pásmo

Domovská stránka

44 >>

Strana 3 z 23

Vrátit se

Celá obrazovka

Zavřít

Konec

2. Náhradní schéma LNA

- Každá cívka je modelovaná kmitočtově závislou ekvivalentní indukčností a sériovým odporem
- Každý kondenzátor je modelován kmitočtově závislou ekvivalentní kapacitou a paralelní vodivostí
- Parametry našeho modelu pHEMT byly uvedeny do souladu s měřenými s-parametry firmy Avago
- Mikropásková vedení jsou definována s-parametry generovanými mikrovlnným simulátorem AWR
- Šumové modely jsou generovány pro všechny součástky s výjimkou rozbočnic (2 × T-splitters)

3. PHEMT: dynamický & statický model

Základní schéma LNA... Náhradní schéma LNA PHEMT: dynamický & . . . PHEMT: šumový model Paretova plocha: L&S-... Paretova plocha: L-pásmo Měřené s-parametry: L&S Měřené s-parametry: L Polární graf s21: L&S a L Graf Rollettova činitele L&S: Šumové číslo a G_T L: Šumové číslo a GT Měřené IP3 body: L&S... Měřené IP3 body: L pásmo Domovská stránka 44 •• Strana 4 z 23 Vrátit se Celá obrazovka Zavřít Konec

3. PHEMT: dynamický & statický model

Vypočtené (plné křivky) a naměřené (jednotlivé body) s-parametry odpovídají pracovnímu bodu $i_D = 60 \text{ mA}$ a $v_{DS} = 3 \text{ V}$, přesnost modelování parametrů s_{11} a s_{21} je 3.09 % a 7 % pro model TOM2 (model firmy TriQuint) a 2.94 % a 6.06 % pro námi vyvinutý a používaný model Dobes. (Nazývají to takto v literatuře).

Základní schéma LNA... Náhradní schéma LNA PHEMT: dynamický & . . . PHEMT: šumový model Paretova plocha: L&S-... Paretova plocha: L-pásmo Měřené s-parametry: L&S Měřené s-parametry: L Polární graf s21: L&S a L Graf Rollettova činitele L&S: Šumové číslo a G_T L: Šumové číslo a GT Měřené IP₃ bodv: L&S... Měřené IP3 body: L pásmo Domovská stránka 44 •• Strana 4 z 23 Vrátit se

Celá obrazovka

Zavřít

Konec

3.1. Statický model

Přesnost stejnosměrného modelu je samozřejmě nezbytné kontrolovat také ($i_D = 60 \text{ mA}$ a $v_{DS} = 3 \text{ V...}$):

Základní schéma LNA... Náhradní schéma LNA PHEMT: dynamický & . . . PHEMT: šumový model Paretova plocha: L&S-... Paretova plocha: L-pásmo Měřené s-parametry: L&S Měřené s-parametry: L Polární graf s21: L&S a L Graf Rollettova činitele... L&S: Šumové číslo a G_T L: Šumové číslo a G_T Měřené IP3 body: L&S... Měřené IP3 body: L pásmo Domovská stránka 44 **>>** Strana 5 z 23 Vrátit se Celá obrazovka Zavřít Konec

4. PHEMT: šumový model

Pro maximální přesnost modelování šumu pHEMT doporučuji použít nový šumový model Curtice 3. Šumový zdroj (drain) je definován semiklasickou rovnicí:

$$\left\langle i_{\rm d}^2 \right\rangle = \left(4kTg_{\rm m}P + 4kTg_{\rm m}P\frac{F_{nc}}{f} + K_f \frac{i_D^{A_f}}{f^{F_{fe}}} \right) \Delta f, \tag{1}$$

kde k, $g_{\rm m}$, P, F_{nc} , K_f , A_f , and F_{fe} jsou Boltzmanova konstanta, trans-konduktance, koeficient šumu (drain) a čtyři parametry blikavého šumu.

Relativně novou částí modelu je šumový zdroj (gate), který výrazně roste s kmitočtem:

$$\langle i_{\rm g}^2 \rangle = 4kTC_{\rm gs}^2 \,\omega^2 \frac{R}{q_m} \Delta f,$$
 (2)

kde $C_{\rm gs}$ a R jsou (bariérová) kapacita gate-source při nulovém připojeném napětí a koeficient šumu (gate).

Mezi oběma zdroji šumu existuje korelace (opět rostoucí s kmitočtem):

$$\langle i_{\rm g}, i_{\rm d}^* \rangle = 4kT_j C_{\rm gs} \,\omega \sqrt{PR} \,C\Delta f,$$
 (3)

A nakonec jsou (standardně) připojeny zdroje tepelného šumu způsobené sériovými rezistory:

$$\left\langle i_{\text{G|S|D}}^2 \right\rangle = \frac{4kT}{R_{\sigma|\text{S|d}}} \Delta f. \tag{4}$$

Klasické šumové modely pHEMT neobsahovaly (2) a při vyšších kmitočtech tak byly zatíženy chybou.

5. Paretova plocha: L&S-pásmo

5. Paretova plocha: L&S-pásmo

- Červené body mají Rollettův činitel (velmi mírně) pod 1 a mohly by tedy (výjimečně) být nestabilní
- Zelené body mají Rollettův činitel přes 1 a jsou tedy stabilní za všech okolností (∀ i/o impedance)
- Z množiny bodů s Rollettovým činitelem ¿ 1 byl vybrán zelený bod označený šipkou jako nejvhodnější kompromis mezi šumovým číslem a zesílením
- Kmitočtová charakteristika G_T (transducer power gain) a šumového čísla NF (noise figure) pro tento bod je detailně analyzována v následujících grafech

6. Paretova plocha: L-pásmo

6. Paretova plocha: L-pásmo

- Povšimněme si zásadního rozdílu mezi tvarem pro LNA s širším pásmem (viz předchozí obrázek)
 a užším pásmem a také že pro lepší hodnoty pro G_T a NF je otázka stability stále významnější
- Červené body mají Rollettův činitel menší nebo rovný 0.99 a mohly by tedy být nestabilní
- Tmavě žluté body mají Rollettův činitel větší 0.99 a menší nebo rovný 1 jsou tedy v oblasti potencionální nestability, ovšem většina z nich patrně stabilní bude
- Zelený bod má Rollettův činitel přes 1 a měl by tedy být stabilní za všech okolností (∀ i/o impedance) logicky byl tedy vybrán tento bod

7. Měřené s-parametry: L&S

7. Měřené s-parametry: L&S

- Protože LNA je navržený jako kompromis (trade-off) mezi zesílením a šumovým číslem, nemůže být impedančně přizpůsobený (šumové přizpůsobení je odlišné od impedančního) a proto jsou hodnoty s_{11} a s_{22} ne zcela malé, v tomto případě zejména na začátku pásma
- Na konci pásma L jsou již hodnoty s₁₁ a s₂₂ poměrně nízké, velmi důležité ale je, že klesají dále a
 v úzkém pásmu S jsou již na hodnotách odpovídajících impedančně přizpůsobenému zesilovači.
- Hodnota s₂₁ sice postupně roste, nicméně na kmitočtu 2.5 GHz má stále vyhovující hodnotu.

8. Měřené s-parametry: L

8. Měřené s-parametry: L

- Úloha pro samotné pásmo L je jednodušší a i hodnoty s₁₁ a s₂₂ vycházejí příznivěji (tj. jsou menší a tím jsou i menší odrazy na vstupu i výstupu)
- Dosáhne se tedy dobrého šumového čísla a zesilovač bude zároveň akceptovatelně impedančně přizpůsobený
- Zesílení charakterizované parametrem s_{21} je poměrně vysoké a stabilní

9. Polární graf s_{21} : L&S a L

Z obou křivek – zobrazených pro měřené parametry od kmitočtu 300 MHz do kmitočtu 10.15 GHz – je jasně vidět odlišnost návrhu pro pásma L&S a (výhradně) pásmo L. Pro kmitočty charakteristické pro čtyři klasické poskytovatele družicové navigace (GPS, GLONASS, Galileo a BeiDou) se stává zesílení (modrá křivka) značně větším, avšak od určitého kmitočtu je naopak větší zesílení optimalizované pro L&S (zelená křivka).

Z obou křivek – zobrazených pro měřené parametry od kmitočtu 300 MHz do kmitočtu 10.15 GHz – je jasně vidět odlišnost návrhu pro pásma L&S a (výhradně) pásmo L. Pro kmitočty charakteristické pro čtyři klasické poskytovatele družicové navigace (GPS, GLONASS, Galileo a BeiDou) se stává zesílení (modrá křivka) značně větším, avšak od určitého kmitočtu je naopak větší zesílení optimalizované pro L&S (zelená křivka). A současně je také naprosto zjevné, že kmitočtový průběh L&S je rovnoměrnější.

Z průsečíků s červeným kruhem je dále zjevné, že obě varianty přestávají zesilovat při kmitočtu $\approx 7~\mathrm{GHz}$.

10. Graf Rollettova činitele stability v závislosti na kmitočtu: L&S a L

Obecně by stabilita zesilovačů měla být prověřována až do mezního kmitočtu použitých aktivních prvků, tj. v našem případě daleko přes 10 GHz. Rollettův činitel stability (přehled a upřesnění různých variant činitelů stability bude zopakováno a doplněno v následujících přednáškách) byl v našem případě počítán z *měřených s*-parametrů až do kmitočtu 24 GHz a zajímavá část výsledků je zobrazena pro stejné kmitočty jako v předcházejícím obrázku. Podle očekávání je rizikovější varianta zesilovače optimalizovaná (výhradně) pro pásmo L, která "škrtá" kritickou linii jednotkového Rollettova činitele stability. V takovýchto těsných případech se lze však většinou na stabilitu spolehnout, protože nestabilita (a tudíž rozkmitání zesilovače) nastává zpravidla pro bizarní hodnoty vstupní nebo výstupní impedance (či obou).

11. L&S: Šumové číslo (průměr dvou měření s různými pHEMT, ICICDT'22 Hanoi) a G_T

Základní schéma LNA... Náhradní schéma LNA PHEMT: dynamický & ... PHEMT: šumový model Paretova plocha: L&S-... Paretova plocha: L-pásmo Měřené s-parametry: L&S Měřené s-parametry: L Polární graf s21: L&S a L Graf Rollettova činitele... L&S: Šumové číslo a G_T L: Šumové číslo a G_T Měřené IP3 body: L&S... Měřené IP3 body: L pásmo Domovská stránka 44 •• Strana 14 z 23 Vrátit se Celá obrazovka Zavřít Konec

11. L&S: Šumové číslo (průměr dvou měření s různými pHEMT, ICICDT'22 Hanoi) a G_T

- Zelená křivka ukazuje výsledek po optimalizaci, tj. s nalezenými hodnotami L8, L2, C3 a C2 68.448424 nH, 3.1161062 nH, 3.7362289pF a 3.6218839 pF (napětí 0.61887389 V, 4.0752192 V)
- Modrá křivka ukazuje šumové číslo pro obvod s hodnotami v příslušné řadě, tj. pro hodnoty 68 nH,
 3.9 nH,
 3.6 pF a 3.6 pF (napětí 0.629 V, 4.135 V nastaveno rezistory, viz náhradní schéma LNA)
- Šipka ukazuje naměřenou hodnotu pro nový indický systém navigace; celkově naměřené body sledují trend teoretických hodnot a přirozeně jsou o něco vyšší vzhledem k dodatečným šumům v obvodu i chybě měřících přístrojů ±0.2 dB. (Jasně je také vidět rušení GSM a Wi-Fi, body mimo.)

11.1. Výkonové zesílení (Transducer Power Gain, G_T)

11.1. Výkonové zesílení (Transducer Power Gain, G_T)

- V tomto případě jsme pro L2 neměli vhodnou hodnotu v řadě (řada výrobce obsahovala 2 nF a 3.9 nF), což se projevilo citelnější odchylkou mezi zelenou a modrou křivkou při nízkých kmitočtech (optimalizací stanovená hodnota 3.1161062 nH je příliš "uprostřed" mezi těmito dvěma hodnotami)
- Napětí drain a gate byla multiobjektovou optimalizací stanovena na hodnoty 3.785 V (před cívkou 4.135 V) a 0.62898 V (před cívkou 0.629 V) viz náhradní schéma LNA
- Naměřená křivka výkonového zesílení zde však sleduje vypočtené průběhy (tj. modrou křivku) velmi dobře. (A zesílení je o něco větší, protože výrobce tranzistory v každé sérii zdokonaluje.)

12. L: Šumové číslo (průměr tří měření s dvěma různými pHEMT, ICICDT'22 Hanoi) a G_T

Základní schéma LNA... Náhradní schéma LNA PHEMT: dynamický & ... PHEMT: šumový model Paretova plocha: L&S-... Paretova plocha: L-pásmo Měřené s-parametry: L&S Měřené s-parametry: L Polární graf s21: L&S a L Graf Rollettova činitele... L&S: Šumové číslo a G_T L: Šumové číslo a G_T Měřené IP3 body: L&S... Měřené IP3 body: L pásmo Domovská stránka 44 •• Strana 16 z 23 Vrátit se Celá obrazovka Zavřít Konec

12. L: Šumové číslo (průměr tří měření s dvěma různými pHEMT, ICICDT'22 Hanoi) a G_T

- Zelená křivka ukazuje výsledek po optimalizaci, tj. s nalezenými hodnotami L8, L2, C3 a C2 5.7998936 nH, 5.8635883 nH, 4.4360802pF a 4.9225460 pF (napětí 0.61874951 V, 4.0797924 V)
- Modrá křivka ukazuje šumové číslo pro obvod s hodnotami v příslušné řadě, tj. pro hodnoty 5.6 nH,
 5.6 nH, 4.3 pF a 5.1 pF (0.612 V, 4.112 V opět nastaveno rezistory, jde o napětí před cívkami)
- Je jasně vidět, že při zaměření pouze na jedno pásmo (v tomto případě L) lze dosáhnout šumového čísla výrazně nižšího i naměřené hodnoty nepřekračují v celém pásmu (navigačním, L) 0.7 dB

U (velmi) nízkošumových zesilovačů je však problematická otázka nepřesnosti měření (pásma pro kalibrované/nekalibrované přístroje, měření takových zesilovačů se budeme věnovat v speciální přednášce):

12.1. Výkonové zesílení (Transducer Power Gain, G_T)

12.1. Výkonové zesílení (Transducer Power Gain, G_T)

- Zaokrouhlení hodnot součástek do řady poskytované výrobcem v tomto případě výsledky téměř neovlivnilo
- Napětí drain a gate byla multiobjektovou optimalizací stanovena na hodnoty 3.7914 V (před cívkou 4.112 V) a 0.61198 V (a před cívkou prakticky totéž napětí 0.612 V) – viz náhradní schéma LNA
- Měřené výkonové zesílení vykazuje v tomto případě mírně (cca o 1 dB) vyšší hodnotu na nižších kmitočtech a téměř stejnou hodnotu na vyšších kmitočtech při srovnání s vypočtenými výsledky

13. Měřené IP₃ body: L&S pásmo

 $(1201+1202\,\mathrm{MHz})$

Základní schéma LNA... Náhradní schéma LNA PHEMT: dynamický & ... PHEMT: šumový model Paretova plocha: L&S-... Paretova plocha: L-pásmo Měřené s-parametry: L&S Měřené s-parametry: L Polární graf s21: L&S a L Graf Rollettova činitele... L&S: Šumové číslo a G_T L: Šumové číslo a GT Měřené IP₃ body: L&S… Měřené IP3 body: L pásmo Domovská stránka 44 **>>** Strana 18 z 23 Vrátit se Celá obrazovka Zavřít Konec

13. Měřené IP₃ body: L&S pásmo

 $(1201+1202\,\mathrm{MHz})$

- Podle definice IP₃ je třeba na zelené křivce najít bod, jehož směrnice je co nejvíce blízká poměru
 3:1 a z tohoto bodu se vede směrnice; to projmutí na zelené křivce je pro obvody s pHEMT časté
- Najít bod na modré křivce se směrnicí 1:1 není zdaleka tak problematické; stejně tak není těžké
 jednoduchou interpolací najít i bod P_{1dB} (často se nesprávně označuje jako P_{1dBm})

Základní schéma LNA... Náhradní schéma LNA PHEMT: dynamický & ... PHEMT: šumový model Paretova plocha: L&S-... Paretova plocha: L-pásmo Měřené s-parametry: L&S Měřené s-parametry: L Polární graf s21: L&S a L Graf Rollettova činitele... L&S: Šumové číslo a G_T L: Šumové číslo a GT Měřené IP₃ body: L&S… Měřené IP3 body: L pásmo Domovská stránka 44 **>>** Strana 19 z 23 Vrátit se Celá obrazovka Zavřít Konec

 Povšimněme si, že s rostoucím kmitočtem se tvar křivky IM₃ začíná stále více podobat písmenu 'S', což je pro obvody s pHEMT časté a charakteristické

Základní schéma LNA... Náhradní schéma LNA PHEMT: dynamický & ... PHEMT: šumový model Paretova plocha: L&S-... Paretova plocha: L-pásmo Měřené s-parametry: L&S Měřené s-parametry: L Polární graf s21: L&S a L Graf Rollettova činitele... L&S: Šumové číslo a G_T L: Šumové číslo a GT Měřené IP₃ body: L&S… Měřené IP3 body: L pásmo Domovská stránka 44 **>>** Strana 20 z 23 Vrátit se Celá obrazovka Zavřít Konec

• Při nejvyšších kmitočtech je průhyb křivky IM3 největší

14. Měřené IP₃ body: L pásmo

Základní schéma LNA... Náhradní schéma LNA PHEMT: dynamický & ... PHEMT: šumový model Paretova plocha: L&S-... Paretova plocha: L-pásmo Měřené s-parametry: L&S Měřené s-parametry: L Polární graf s21: L&S a L Graf Rollettova činitele... L&S: Šumové číslo a G_T L: Šumové číslo a GT Měřené IP3 body: L&S... Měřené IP3 body: L pásmo Domovská stránka 44 **>>** Strana 21 z 23 Vrátit se Celá obrazovka

> Zavřít Konec

14. Měřené IP₃ body: L pásmo

• Použité kmitočty f_1 a f_2 zde byly 1.201 GHz a 1.202 GHz a poměr výkonů $\left(\frac{f_1}{f_2}\right)$ byl 1. (Pro předcházející měření byl použit stejný poměr výkonů.)

Základní schéma LNA... Náhradní schéma LNA PHEMT: dynamický & ... PHEMT: šumový model Paretova plocha: L&S-... Paretova plocha: L-pásmo Měřené s-parametry: L&S Měřené s-parametry: L Polární graf s21: L&S a L Graf Rollettova činitele... L&S: Šumové číslo a GT L: Šumové číslo a GT Měřené IP3 body: L&S... Měřené IP3 body: L pásmo Domovská stránka •• 44 Strana 21 z 23 Vrátit se Celá obrazovka Zavřít Konec

Základní schéma LNA... Náhradní schéma LNA PHEMT: dynamický & ... PHEMT: šumový model Paretova plocha: L&S-... Paretova plocha: L-pásmo Měřené s-parametry: L&S Měřené s-parametry: L Polární graf s21: L&S a L Graf Rollettova činitele... L&S: Šumové číslo a G_T L: Šumové číslo a G_T Měřené IP3 body: L&S... Měřené IP3 body: L pásmo Domovská stránka 44 **>>** Strana 22 z 23 Vrátit se Celá obrazovka Zavřít Konec

- Deformace křivky IM₃ je opět větší než v předcházejícím případě
- Obecně zesilovače překračující v IP₃ 30 dBm patří k velmi dobrým; v důsledku většího zesílení je zde bod P_{1dB} posunut trochu doleva

Základní schéma LNA... Náhradní schéma LNA PHEMT: dynamický & ... PHEMT: šumový model Paretova plocha: L&S-... Paretova plocha: L-pásmo Měřené s-parametry: L&S Měřené s-parametry: L Polární graf s21: L&S a L Graf Rollettova činitele... L&S: Šumové číslo a GT L: Šumové číslo a GT Měřené IP3 body: L&S... Měřené IP3 body: L pásmo Domovská stránka 44 •• Strana 22 z 23 Vrátit se Celá obrazovka Zavřít Konec

Základní schéma LNA... Náhradní schéma LNA PHEMT: dynamický & ... PHEMT: šumový model Paretova plocha: L&S-... Paretova plocha: L-pásmo Měřené s-parametry: L&S Měřené s-parametry: L Polární graf s21: L&S a L Graf Rollettova činitele... L&S: Šumové číslo a G_T L: Šumové číslo a G_T Měřené IP3 body: L&S... Měřené IP3 body: L pásmo Domovská stránka 44 Strana 23 z 23 Vrátit se Celá obrazovka Zavřít

Konec

• Deformace křivky IM₃ je zde větší i pro $P_{in} > 0$ dBm (výraznější hrbolek nad čárkovanou čarou)

Základní schéma LNA... Náhradní schéma LNA PHEMT: dynamický & ... PHEMT: šumový model Paretova plocha: L&S-... Paretova plocha: L-pásmo Měřené s-parametry: L&S Měřené s-parametry: L Polární graf s21: L&S a L Graf Rollettova činitele... L&S: Šumové číslo a GT L: Šumové číslo a G_T Měřené IP3 body: L&S... Měřené IP3 body: L pásmo Domovská stránka 44 Strana 23 z 23 Vrátit se Celá obrazovka Zavřít Konec