

Data Collection and Preprocessing Phase

Date	20 th June 2024
Team ID	SWTID1720080161
Project Title	Revolutionizing Liver Care: Predicting Liver Cirrhosis Using Advanced Machine Learning Techniques
Maximum Marks	2 Marks

Data Quality Report:

The Data Quality Report will summarize data quality issues from the selected source, including severity levels and resolution plans. It will aid in systematically identifying and rectifying data discrepancies.

Data Source	Data Quality Issue	Severity	Resolution Plan
Kaggle	Too many NULL values	Moderate	Filling the Numerical Columns with Mean and removing abnormalities from categorical column.
Kaggle	Wrong Data Type	Moderate	Changing the data type by type casting. Ex- df["TG"] = df["TG"].astype(float) df["LDL"] = df["LDL"].astype(float) df["Total Bilirubin (mg/dl)"] = df["Total Bilirubin (mg/dl)"].astype[float]

Kaggle	Ambiguous string entries in multiple column	Low	Dropping the below rows df = df[df['TG'] != '130LDL'] df = df[df['LDL'] != 'HDL'] df = df[df['Total Bilirubin (mg/dl)'] != '0.4']
Kaggle	Highly imbalanced outcome	Moderate	• Synthetically generating 300 rows with minority class * where your accounts is "W" * Place of the first product of the p
Kaggle	Many unimportant Features	Moderate	Removing the features by analyzing the importance scores.


```
from sklearn.ensemble import RandomForestClassifier
   model = RandomForestClassifier(n_estimators=100)
   model.fit(X, y)
  importances = model.feature_importances_
   for feature, importance in zip(X.columns, importances):
         print(f"{feature}: {importance:.4f}")
  Age: 0.0006
 Gender: 0.0000
 Quantity of alcohol consumption(years): 0.1940
Quantity of alcohol consumption (quarters/day): 0.0206
 Type of alcohol consumed: 0.0000
Hepatitis B infection: 0.0000
Hepatitis C infection: 0.0000
 Blood pressure (mmhg): 0.0001
 Obesity: 0.0000 Family history of cirrhosis/ hereditary: 0.0001
TCH: 0.0001
  TG: 0.0001
 LDL: 0.0002
HDL: 0.0003
HDL: 0.0003
HCV (%): 0.0007
RBC (million cells/microliter): 0.0282
MCV (femtoliters/cell): 0.0007
MCH (picograms/cell): 0.0194
MCHC (grams/deciliter): 0.0534
Total Count: 0.0010
Polymorphs (%): 0.0104
Lymphocytes (%): 0.0058
MONOCYTES (%): 0.0025
Eosinophils (%): 0.0000
Basophils (%): 0.00074
Platelet Count (lakhs/mm): 0.0203
Total Bilirubin (mg/dl): 0.1059
Indirect (mg/dl): 0.1125
Indirect (mg/dl): 0.0092
Total Protein (g/dl): 0.0092
Total Protein (g/dl): 0.0094
Albumin (g/dl): 0.0800
Globulin (g/dl): 0.0803
A/G Ratio: 0.0518
 Hemoglobin (g/dl): 0.0011
 AGL RALLD: 0.0918
AL.Phosphatase (U/L): 0.0204
SGOT/AST (U/L): 0.0199
SGPT/ALT (U/L): 0.0114
USG Abdomen (diffuse liver or not): 0.1605
                     Dropping all the unnecessary
                      columns.
     for col in drop_col:
          if col in X.columns:
               X.drop(columns=[col],inplace=True)
```