T1. Conceptos básicos para el análisis de circuitos

Conceptos básicos para el análisis de circuitos

- **INTRODUCCIÓN**
- **VARIABLES ELECTRÓNICAS. SÍMIL HIDRÁULICO**
- **DISPOSITIVOS PASIVOS BÁSICOS**
- **1** LEYES DE KIRCHHOFF
- **TEOREMAS DE THÉVENIN Y NORTON**
- **PRINCIPIO DE SUPERPOSICIÓN**

Introducción

- Electrónica: Compuesta de dos partes:
 - » Estudio de dispositivos electrònicos → Física.
 - No abordaremos esta parte (o lo mínimo imprescindible).
 - » <u>Utilización de los dispositivos</u> para diversas funciones
 - → Ingeniería (Electrónica).
- Ventajas de la Electrónica:
 - » Facilidad de tratamiento de variables electrónicas.
 - » Transporte (señal y energía) a largas distancias.
 - » Otros: rápido, barato.

Introducción

- Sistema electrónico general:
 - » Fases:
 - Transformación señal externa a eléctrica. Ejemplos: teclado, cámara, micrófono...
 - Tratamiento (y transporte) de la señal eléctrica.
 Ejemplos: amplificación, filtrado, almacenamiento...
 - Transformación de señal eléctrica a externa.

Ejemplos: pantalla, brazo robot, impresora...

Introducción

Sistema electrónico general:

- » Ejemplos:
 - <u>Concierto</u>: Micrófono → señal eléctrica →
 Amplificación + filtración+etc → altavoz señal
 mecánica (vibraciones que producen el sonido).
 - Robot de manipulación en fábrica: Sensor de visión o de posición → señal eléctrica → brazo mecánico.

- Carga eléctrica (Unidad: Coulomb (C)):
 - » Algunas partículas poseen propiedad de carga.
 - » Propiedad principal: La cargas se ejercen una fuerza mutuamente. (cargas positivas y negativas).
 - » Conclusión: las cargas en un campo de fuerza tienden a desplazarse y tendrán una cierta energía potencial (que dependerá de la posición).

- n En un circuito eléctrico, se usa un generador de energía eléctrica para hacer mover las cargas a través de un circuito.
- Las cargas irán cambiando (en general perdiendo) su potencial eléctrico a medida que circula por el circuito atravesando los componentes.
- Los componentes son los que realizan "operaciones" sobre las variables eléctricas y proporcionan la funcionalidad del circuito.

- n circuitos electrónicos se trabaja con dos variables: Corriente (símbolo I) y tensión (símbolo V).
 - » <u>Corriente</u>: cantidad de carga que pasa por un punto del circuito por unidad de segundo (flujo de cargas).
 - $I = \frac{dq}{dt}$
 - Unidades: Amperio ([A] = [C/s])
 - Posee una dirección, dada por el sentido de movimiento de las cargas y se indica por una flecha. Por convenio, la flecha indica el sentido de movimiento de las cargas positivas.
 - Valor negativo indica corriente en sentido contrario al indicado por la flecha.

- » <u>Diferencia de tensión</u> (o voltaje o potencial): Es la variación de energía potencial de una carga unidad (1 C) entre dos puntos del circuito.
 - Unidades: Joule/C = V (Volt)
 - Se suele indicar con una flecha curvada desde el punto de menor tensión al de mayor.

K (CÁTODO)

Símil hidraúlico:

- » El circuito lo forman una red de tuberías (o tubos).
- » El generador de energía sería una bomba de agua o una reserva de agua a una cierta presión.
- » La corriente sería el caudal (m³/s) de agua.

 La diferencia de tensión sería la diferencia de presión del agua (va disminuyendo a medida que avanza por el circuito)

Fuentes (Generadores)

- Generan la energía para hacer circular la corriente a través del circuito.
- Hay dos tipos básicos de fuentes: de tensión y de corriente.
 - » <u>Fuente de tensión</u>: Genera una diferencia de tensión determinada independ. de la corriente que circula.

Fuentes (Generadores)

» <u>Fuente de corriente</u>: Genera una corriente (flujo) independ. del potencial requerido para ello.

Ejemplos sencillos:

- Veremos tres elementos: <u>Resistencia</u>, <u>Condensador</u> y <u>Bobinas</u>.
- El "comportamiento" de los elementos se conoce a partir de la relación I-V (corriente que lo atraviesa diferencia de potencial entre sus bornes) (ecuación característica). Ya sea matemáticamente o gráficamente.
- Con elementos lineales podremos resolver "a mano" circuitos.

Resistencia:

- » Como su nombre indica, se resiste al paso de la corriente.
- » Se disipa (pierde) energía al atravesar la resistencia → Disminuye el potencial en el sentido de la corriente.
- » Su ecuación característica viene dada por la ley de Ohm:

$$V_1 - V_2 = R \cdot I_{1 \to 2}$$

$$V_1 \longrightarrow V_2$$

- \odot R es la resistencia del elemento. Unidades: Ohm= Ω =V/A.
- R alta → Pasa menos corriente para la misma energía (V).
- R depende del material específico y de sus dimensiones.

- Resistencia: (continuación)
 - » Símil hidraúlico:

$$V_1 - V_2 = R \cdot I_{1 \rightarrow 2}$$

$$R = \frac{L}{\sigma \cdot S} = \rho \cdot \frac{L}{S}$$

$$P_1 - P_2 = R \cdot \phi_{1 \rightarrow 2}$$

$$R = (8 \cdot \eta \cdot \pi) \cdot \frac{L}{S^2} = \rho \cdot \frac{L}{S^2}$$

 ρ es la resistividad del material y es una propiedad de ese material (no depende de las dimensiones).

- Resistencia: (continuación)
 - » Combinaciones serie de resistencias:

$$R_1$$
 R_2 R_N R_S R_S

- \bullet I común, ΔV es la suma de todas las ΔV_{Ri} .
- » Combinaciones paralelo de resistencias:

ΔV es común, I es la suma de todas las I_i.

- Condensador (o capacidad):
 - Como su nombre indica, es como un almacenador ("contenedor") de energía eléctrica. Se consigue acumulando cargas.
 - » Esquema y composición:
 - Generalmente consiste en dos placas conductoras separadas por un material no conductor (aislante; ej: aire, óxidos). En las placas puede almacenarse carga.
 - Por tanto, las cargas nunca atraviesan el componente.
 - Si en una placa se acumula +q, en la otra −q (ya que se atraen). Por tanto, habrá una diferencia de potencial.

- Condensador (continuación):
 - » Ecuación característica:

$$C = \frac{q}{V_c}$$

- C es la capacidad. Unidades: Faradio=C/V (por cada volt, cuánta carga se acumula).
- C depende del material específico de aislante y de propiedades geométricas.
- Para una capacidad de placas plano-paralelas: $C = \varepsilon \cdot \frac{A}{d}$
 - od: separación de las placas.
 - ε: Permitividad del aislante.

- Condensador (continuación):
 - » Si por un terminal entra I_c (=dq/dt), se irán acumulando cargas en esa placa. Además, saldrá I_c por la otra placa, acumulando la misma carga (pero negativa).

$$dq = I_C \cdot dt \implies q - q_0 = \int_{t=0}^t I_C \cdot dt$$

- Es "como si" le atravesase una corriente I_C.
- De la ecuación característica (derivando con respecto t), también se cumple: $i_C = C \cdot \frac{dV_C}{dt}$
- © Como V_C depende de la historia de I_C → memoria.

Condensador (continuación):

» Comportamiento en un circuito:

$$\begin{split} I &= (V_f - V_C) / R = I_C \\ I_C &= C \cdot \frac{dV_C}{dt} \end{split} \rightarrow \frac{dV_C}{dt} = \frac{1}{R \cdot C} \cdot \left(V_f - V_C \right) \rightarrow \frac{dV_C}{\left(V_C - V_f \right)} = -\frac{1}{R \cdot C} \cdot dt \\ \Rightarrow & \ln \left(V_C(t) - V_f \right) - \ln(-V_f) = -\frac{1}{R \cdot C} \cdot t \quad \Rightarrow \quad V_C(t) = V_f \left(1 - e^{-\frac{1}{R \cdot C} \cdot t} \right) \end{split}$$

- Condensador (continuación):
 - » Aplicaciones múltiples:
 - Almacenadores de energía eléctrica.

- Condensador (continuación):
 - » Aplicaciones múltiples:
 - Teclados de tipo capacitivo.

Pantallas táctiles capacitivas.

Bobinas:

- » Su comportamiento se basa en fenómeno experimental de inducción electromagnética.
- » Al variar en el tiempo la corriente que circula por un cable enrollado, se genera una diferencia de tensión entre sus terminales:

- L es la inductancia de la bobina.
- L depende de factores como el número de vueltas y el material sobre el que se enrolla.
- Para un solenoide: $L = ct \frac{n^2 \cdot \mu \cdot S}{l}$

- Bobinas (continuación):
 - » I_L no puede cambiar instantáneamente (ya que V_L (\leftrightarrow energía) no puede ser infinita).
 - » Si no hay variación de I_L con el tiempo, V_L=0. Por tanto, es como si fuese un hilo de conexión entre componentes.
 - » Es también un almacenador de energía. (La energía se almacena al crearse un campo magnético entorno al conductor.
 - » Tienen también múltiples aplicaciones.

Bobinas (continuación):

» Comportamiento en un circuito:

$$\left. \begin{array}{l}
I = (U - V_L) / R = I_L \\
V_L = L \cdot \frac{dI_L}{dt}
\end{array} \right\} \rightarrow V_L = \frac{L}{R} \cdot \left(-\frac{dV_L}{dt} \right) \rightarrow \frac{dV_L}{V_L} = -\frac{R}{L} \cdot dt$$

$$\Rightarrow \ln V_L(t) - \ln V_f = -\frac{R}{L} \cdot t \quad \Rightarrow \quad V_L(t) = V_f \cdot e^{-\frac{R}{L} \cdot t}$$

Potencia eléctrica

- La energía generada puede disiparse/transformarse (como en R's) o almacenarse (como en L y C) en los distintos componentes.
- La energía disipada, almacenada o generada por unidad de tiempo se calcula: $P = I \cdot \Delta V$ $\begin{bmatrix} \mathbf{Unidades:} \ J/s = W \end{bmatrix}$
 - » I: Corriente que atraviesa al elemento (R, C, etc).
 - » AV: Diferencia de tensión entre bornes del elemento.
 - » Válida tanto para DC como AC (valores instantáneos).
- Para una resistencia:

$$P = I \cdot \Delta V = I^2 \cdot R = \frac{\Delta V^2}{R}$$

- Con la aplicación de estas leyes, podremos <u>resolver</u> <u>circuitos</u>. Es decir, obtener todas las diferencias de tensiones y corrientes del circuito.
- Nosotros las utilizaremos para resolver circuitos "sencillos". Existen <u>programas de cálculo</u> que resuelven las ecuaciones obtenidas por este método.

- Conceptos preliminares:
 - » Nodo (o nudo): Punto de unión entre dos o más ramas.
 (Para las leyes, serán importantes las de 3 o más).

- » Rama: Elemento(s) del circuito entre dos terminales (o nodos) consecutivos.
- » Malla: Conjunto de ramas que forman un circuito cerrado. (sin pasar dos veces por una misma rama).

- Conceptos preliminares (continuación):
 - » Ejemplo:

Nodo

- Primera ley: <u>Ley de nodos o de corrientes</u>
 - » La suma (con signo) de corrientes concurrentes a un nodo es nula. (principio de conservación de la masa).
 - Por ejemplo, se toma positiva la corriente entrante al nodo y negativa la corriente saliente.
 - » O la suma de corrientes entrantes a un nodo es igual a la suma de corrientes salientes.

$$i_1 + i_2 - i_3 - i_4 - i_5 = 0$$

$$o$$
 $i_1 + i_2 = i_3 + i_4 + i_5$

$$\sum_{nodo} i = 0$$

- 🗈 Segunda ley: <u>Ley de mallas</u>
 - » La suma de las diferencias de tensiones en los elementos del circuito encontrados al recorrer una malla en una dirección ha de ser nula. (Principio de conservación de la energía).
 - Se ha de tener en cuenta el signo de la variación de tensión en el elemento en el sentido recorrido de la malla.
 - Tomar positivo si aumenta la tensión en el sentido de la malla y negativo si disminuye.
 - ■En elementos pasivos (como resistencias), tomamos que la tensión disminuye en el sentido de la corriente (como si se disipase energía en el sentido de la corriente)

- Segunda ley: <u>Ley de mallas</u> (continuación)
 - » Ejemplo:

$$+12V - I_1 \cdot R_1 - I_2 \cdot R_2 = 0$$

Probad con las otras 2 mallas del circuito.

$$+12V - I_1 \cdot R_1 - I_3 \cdot R_3 - I_3 \cdot R_4 = 0$$

+ $I_2 \cdot R_2 - I_3 \cdot R_3 - I_3 \cdot R_4 = 0$

- Aplicación de las leyes a la resolución de circuitos:
 - Asignar una corriente (nombre y dirección (arbitraria)) a cada rama "completa"
 del circuito. (son las incógnitas a resolver)
 - » Aplicamos la 1ª ley de nudos donde concurran 3 o más ramas, excepto en uno de ellos (suele descartarse tierra, si se ha indicado).
 - » El número de ecuaciones total ha de ser igual al número de corrientes. Escogemos un número de mallas tal que el número de ecuaciones sea igual que de corrientes y recorran todo el circuito. (más de 1 opción).
 - » Aplicamos la 2^a ley (de mallas) a estas mallas.
 - » Resolvemos las ecuaciones resultantes.

$$\begin{split} I_1 &= I_2 + I_3 \\ &+ 12V - I_1 \cdot R_1 - I_2 \cdot R_2 = 0 \\ &+ 12V - I_1 \cdot R_1 - I_3 \cdot R_3 - I_3 \cdot R_4 = 0 \end{split}$$

- Aplicación de las leyes a la resolución de circuitos: (cont.)
 - » Una vez resuelto el circuito (obtenemos las corrientes), podemos calcular todas las diferencias de tensiones entre cualesquiera de los puntos del circuito.
 - Sumamos diferencias de tensiones desde la referencia ("cola") hasta el punto donde queremos saber la tensión ("punta"). (Similar a ley mallas)

Ejemplos:

$$V_{BC} = V_B - V_C = +I_3 \cdot R_3$$

$$V_{BD} = V_B - V_D = V_B = +I_2 \cdot R_2 = +I_3 \cdot R_3 + I_3 \cdot R_4$$

$$V_{CA} = V_C - V_A = -I_1 \cdot R_1 - I_3 \cdot R_3 = -12V + I_3 \cdot R_4$$

departament d'Electrònica Universitat de Barcelona

- Si tenemos fuentes de corriente:
 - » En la rama en la que se encuentra, I no es incógnita. La incógnita asociada a esa rama pasa a ser la diferencia de tensión en la fuente.

Red B

Teoremas de Thevenin y Norton

- n general, sirven para simplificar una parte de un circuito.
 - » Nos permite resolver el circuito total posteriormente de forma más sencilla.
 - » La parte simplificada, por regla general, no contendrá la parte del circuito de interés.

Red A

Ejemplo:

Teorema de Thevenin:

» Cualquier red lineal de un circuito, respecto a un par de terminales, puede substituirse por un generador de tensión (V_{th}) y una resistencia (R_{th}) en serie.

Red A

• Hemos conseguido así dividir la solución del circuito en dos problemas más "pequeños".

- Teorema de Thevenin: (continuación)
 - » ¿Cómo obtener V_{th} y R_{th}?
 - V_{th}: Eliminando la red B por los puntos 1 y 2, V_{th}
 coincide con la diferencia de tensión de 1 respecto a 2.

Se asumen condiciones iniciales nulas.

- Teorema de Thevenin: (continuación)
 - » ¿Cómo obtener V_{th} y R_{th}? (continuación)
 - R_{th}: Eliminando la red B y eliminando las fuentes, R_{th} coincide con la resistencia equivalente del circuito (red A) entre los puntos 1 y 2.
 - Eliminar las fuentes quiere decir cortocircuitar las fuentes de tensión y dejar abierta la rama donde hay fuentes de corriente.

- Teorema de Norton:
 - » Parecido al de Thevenin, pero ahora la red A se substituye por:

I_N se obtiene eliminando la red B y uniendo los nodos 1 y 2. I_N coincide con la corriente que pasa por esta unión.

Si se conoce uno de los dos circuitos equivalentes, es fácil calcular el otro equivalente. Se han de usar:

$$R_{th} = R_N$$
 $V_{th} = R_{th} \cdot I_N$

Ejemplo (Thevenin):

Ejemplo: (continuación)

Cálculo de V_{th}

Ley de nudos: $i_1 = i_2 + i_3$ (1)

Ley de mallas:

$$-i_1 \cdot 3R - i_3 \cdot R - 1/2V_v + V_v = 0$$
 (2)

$$-i_2 \cdot 3R + i_3 \cdot R - V_v + 1/2V_v = 0$$
 (3)

$$(2) + (3) \rightarrow i_1 + i_2 = 0$$

$$(1) \rightarrow 2i_1 = i_3$$

$$i_1 = -i_2 = V/10R$$
; $i_3 = V/5R$

$$V_{th} = V_A - V_B = i_2 \cdot R + V_v = -V/10 + V = 9 \cdot V/10$$

Principio de superposición

- Permite dividir la resolución de un circuito con varias fuentes en varios circuitos más simples.
- Principio: La solución (V's e l's) de un circuito lineal con múltiples fuentes puede obtenerse como la suma de las soluciones del mismo circuito con cada una de las fuentes (eliminando las otras fuentes).
 - » Si el circuito tiene 5 fuentes, tendré que resolver el circuito 5 veces. Cada vez con una sola fuente y eliminando el resto.

Principio de superposición

£ Ejemplo:

$$V_o = V_{o1} + V_{o2} = \frac{R_2}{R_1 + R_2} \cdot V_x + \frac{R_1 \cdot R_2}{R_1 + R_2} \cdot I_x = \frac{R_2}{R_1 + R_2} \cdot (V_x + R_1 \cdot I_x)$$

