# Design and analysis of technical systems for humans Introductory talk

Victor Morel https://victor-morel.net/

Chalmers University of Technology

morely@chalmers.se





6th October 2022

# Goals of this presentation

### Introduce myself to iSec

- Where I was / What I did
- What are my interests / What could be my input

### Present my past work

- PhD thesis: Enhancing information and consent in the IoT
- A standard for consent in the IoT
- Recent paper on cookie paywalls

### Expose my perspectives

- For the CyberSecIT project
- In line with my research interests

- Introduction
  - An introductory talk
  - \$ whoami
  - Overview
- PhD at Inria
  - Motivations
  - Contributions

- SCLab
  - Interdisciplinary experience
  - Cookie paywalls
- Chalmers
  - CyberSecIT project
  - Perspectives on usable privacy
- Conclusion

# Sweden: there and back again

### Master thesis in Uppsala

Generating co-evolutionary polarized opinion networks

#### PhD in France

Inria - Privatics (Lyon), Enhancing information and consent in the IoT

#### Back to Sweden

For kannelbullar? For kannelbullar? For a postdoc at iSec



Kanelbullar by hepp, CC-BY 2.0

# Title explained - Design and analysis of technical systems for humans

### Design?

- Not just as in interface design
- More like conception of systems

### Analysis?

- Technical analysis
- Network and data science background

#### Humans?

- Often the weak link of technical systems
- Providing a technical interpretation of legal requirements

# Blending law, design/HCI, and computer science

Law because

Privacy is also a legal topic

Design/HCI because

Research is needed on both architectures and interfaces of systems

Computer science because

I am still a computer scientist

### The combination of the three...

- $\dots$  results in promising research
- ... tailored to a human society

### Research interests



- Introduction
  - An introductory talk
  - \$ whoami
  - Overview
- PhD at Inria
  - Motivations
  - Contributions

- SCLab
  - Interdisciplinary experience
  - Cookie paywalls
- Chalmers
  - CyberSecIT project
  - Perspectives on usable privacy
- Conclusion

### Past, present, future

### Past

PhD work at Inria

Present (recent past)

Short postdoc in Austria

#### **Future**

Perspectives on the CyberSecIT project

- Introduction
  - An introductory talk
  - \$ whoami
  - Overview
- PhD at Inria
  - Motivations
  - Contributions

- SCLab
  - Interdisciplinary experience
  - Cookie paywalls
- Chalmers
  - CyberSecIT project
  - Perspectives on usable privacy
- Conclusion

# The Internet of Things



- Growing infrastructure
- Numerous devices, various uses
- Limited capacities and interfaces
- Different types of data collected

# Privacy concerns in the IoT



#### Personal data collection

- $\rightarrow$  Risks of surveillance and abuse of targeted advertising
- → Specific issues raised with the IoT
- $\rightarrow$  Difficult to comply with regulations

<sup>&</sup>quot;Surveillance" by jonathan mcintosh is licensed under CC BY-SA 2.0

# General Data Protection Regulation

#### **GDPR**

- Most recent legal framework for personal data protection in Europe
- Extra-territorial scope: impact outside Europe as well
- Introduces rights for data subjects
- And obligations for data controllers



### Key ideas

- Bundle of principles (Art. 5)
  - Fair and transparent processing
  - Purpose limitation
  - Data minimization . . .
- Content of information (Art. 13/14)
- Conditions for consent (Art. 7, 4(11))

# Research question and global approach

It is possible to design a generic framework to communicate information and manage consent in the Internet of Things?

TL;DR: yes.

### Global approach

- Machine-readable privacy policies for information and consent
- Controller privacy policies for commitment
- Data subject privacy policies to define choices

- Introduction
  - An introductory talk
  - \$ whoami
  - Overview
- PhD at Inria
  - Motivations
  - Contributions

- SCLab
  - Interdisciplinary experience
  - Cookie paywalls
- Chalmers
  - CyberSecIT project
  - Perspectives on usable privacy
- Conclusion

# A generic framework for information and consent in the IoT



Explanatory diagram of the framework

# ColoT: a proof of concept



ColoT - A Consent and Information assistant for the IoT

### A mobile app

- Designed for Android
- Works with a gateway device (ESP32)
- Implements:
  - Information through different channels
  - ▶ P2P consent management via BLE
  - Proof of consent
- Video time!

Colot: a consent and information assistant for the iot, Cunche, Métayer, and Morel, 2020

- Introduction
  - An introductory talk
  - \$ whoami
  - Overview
- PhD at Inria
  - Motivations
  - Contributions

- SCLab
  - Interdisciplinary experience
  - Cookie paywalls
- Chalmers
  - CyberSecIT project
  - Perspectives on usable privacy
- Conclusion

# Engaging with other disciplines working on consent

Willfulness to engage with:



Viennese croissants?

#### Law

Consent is notably a legal issue

### Design

Dark patterns

### Cognitive science

User-centered perception

### Interdisciplinary paper

On DPCCMs (ADPC & GPC)

### ADPC-IoT



An alternative to cookie banners



In partnership with the Austrian NGO

### Porting ADPC to the IoT

Towards standardization of consent

- Introduction
  - An introductory talk
  - \$ whoami
  - Overview
- PhD at Inria
  - Motivations
  - Contributions

- SCLab
  - Interdisciplinary experience
  - Cookie paywalls
- Chalmers
  - CyberSecIT project
  - Perspectives on usable privacy
- Conclusion

### Cookies?





More like cookie paywalls!

### $\rightarrow$ Overlooked by academia

# Methodology and findings

### Description

- Manual annotation of top Central Europe websites (Tranco list)
- Presence and type of wall, category of website, general info (price etc)

#### Measurement

- 61 of the 2800 websites studied use paywalls (2.72%), and 13 cookie paywalls (0.66%)
- Most cookie paywalls consist of news websites

### Legal analysis of both cookie walls and paywalls

Divergent positions on cookie walls and paywalls from EU DPAs

### Updated classification

Hard, soft and metered paywall, registration wall, cookie wall, and cookie paywall

# Future work on cookie paywalls

### We also found out that cookie paywalls:

- They do not track visitors prior to interaction
- Websites present different versions → personalized pricing?



Different presentations on Chrome and Firefox

→ Requires *large scale analysis* and *automated tracking detection* 

- Introduction
  - An introductory talk
  - \$ whoami
  - Overview
- PhD at Inria
  - Motivations
  - Contributions

- SCLab
  - Interdisciplinary experience
  - Cookie paywalls
- 4 Chalmers
  - CyberSecIT project
  - Perspectives on usable privacy
- Conclusion

# Overview of CyberSecIT



### Two key challenges for security and privacy in IoT app platforms

- ullet Automation o securing software from malicious attackers
- $\bullet \ \, \text{Autonomy} \to \text{securing machine-learning for IoT apps} \\$

# WP2: Usable privacy-enhancing permission management

### High-level goal

To develop usable UI techniques and prototypes, supported by machine learning

Task 2.1

Privacy Profiles for IoT application permissions (relates to consent)

Task 2.2

ML-supported usable and privacy-compliant permission management

Task 2.3

Usable UIs for permission management

- Introduction
  - An introductory talk
  - \$ whoami
  - Overview
- PhD at Inria
  - Motivations
  - Contributions

- SCLab
  - Interdisciplinary experience
  - Cookie paywalls
- Chalmers
  - CyberSecIT project
  - Perspectives on usable privacy
- Conclusion

#### User studies

#### How to build privacy profiles?

- By conducting user studies (surveys)
- With focus on legal, cross-cultural, and gender aspects
- Using vignette studies

### Example of a vignette

Consider that you exercising using a *fitness device* that collects your *HeartRateVariability* to assess your sport performance. This data will be stored for a year on the servers of *Fitbits*, a private company.

### Research questions

- ightarrow What are the privacy preferences and expectations in Trigger-App Platforms with respect to privacy permissions and privacy notifications?
- ightarrow What is the influence of the legal framework in these preferences and expectations?

- Introduction
  - An introductory talk
  - \$ whoami
  - Overview
- PhD at Inria
  - Motivations
  - Contributions

- SCLab
  - Interdisciplinary experience
  - Cookie paywalls
- 4 Chalmers
  - CyberSecIT project
  - Perspectives on usable privacy
- Conclusion

# Summary

What was this presentation about? Mostly pastries!



#### But also consent and human factors:

- A technical interpretation of GDPR requirements
- Interdisciplinary view on consent management
- Cookie paywalls
- User studies for the CyberSecIT project



Grab a coffee? (With pastries naturligtvis)

# **Bibliography**

- Cunche, Mathieu, Daniel Le Métayer, and Victor Morel (2020). "ColoT: a Consent and Information assistant for the IoT". In: Proceedings of the 13th ACM Conference on Security and Privacy in Wireless and Mobile Networks, pp. 334–336.
- Cunche, Mathieu, Daniel Le Métayer, and Victor Morel (2019). "A Generic Information and Consent Framework for the IoT". en. In: p. 9. URL: https://hal.inria.fr/hal-02166181.
- Human, Soheil et al. (2022). "Data Protection and Consenting Communication Mechanisms: Current Open Proposals and Challenges". In: 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). IEEE, pp. 231–239.
- Morel, Victor and Raúl Pardo (Aug. 2020). "SoK: Three Facets of Privacy Policies". en. In: WPES. DOI: 10.1145/3411497.3420216. URL: https://hal.inria.fr/hal-02267641 (visited on 09/25/2019).
- Morel, Victor et al. (2022). "Your Consent Is Worth 75 Euros A Year–Measurement and Lawfulness of Cookie Paywalls". In: arXiv preprint arXiv:2209.09946.