P425/2 APPLIED MATHEMATICS Paper 2 Oct. 2023 3 HOURS

UGANDA ADVANCED CERTIFICATE OF EDUCATION

APPLIED MATHEMATICS (PRINCIPAL SUBJECT) Set 7

Paper 2

TIME: 3 HOURS

INSTRUCTIONS TO CANDIDATES:

Answer all the Eight questions in Section A and Five questions from Section B. Any additional question(s) answered will not be marked.

All necessary working must be clearly shown.

Begin each answer on a fresh sheet of paper.

Graph paper is provided.

Silent, non-programmable scientific calculators and mathematical tables with a list of formulae may be used.

In numerical work, take g to be 9.8 ms^{-2} .

SECTION A: (40 MARKS)

Answer all the questions in this section

- 1. Given that A and B are independent events in a sample space that $P(A) = \frac{3}{5}$, $P(AuB) = \frac{4}{5}$. Find the;
 - (i) **P**(B)

- (ii) P(A'uB')
- 2. A market gardener planted potatoes, after 90 days he took a sample and weighed potatoes obtained from each plot, the results in Newtons (N) were as follows: 8.5, 7.6, 8.9, 7.6, 8.9, 8.2, 9.1, 7.9 and 8.5, determine the;
 - (i) mean

- (ii) variance
- 3. A particle starts from rest with a constant acceleration of 3ms^{-2} for 12 s, for the next 48 s, the acceleration is $\frac{1}{6} \text{ms}^{-2}$ and for the last 10 s it decelerates uniformly to rest. By drawing a velocity time graph, find the:
 - (i) Velocities at different points
- (ii) Total distance travelled
- 4. A biased coin is tossed six times. The coin is such that the ratio of the tail to the head is 2:1. Find the probability of getting;
 - (i) At least 4 heads

- (ii) Between 2 and 4 tails
- 5. Use the trapezium rule with 6 ordinates to estimate $\int_0^2 \frac{1}{\sqrt{1+x^2}} dx$ correct it to 3 decimal places.
- 6. ABCD is a square of side 2m. Force of magnitude 9N, 5N and $3\sqrt{2}$ N act along BC and BD respectively by taking AB and AD as the positive x and positive y axes and taking moments about A. Find the line of action
- 7. In an experiment the following observations were recorded

Time (T)	0	12	20	30
Temperature (θ°)	6.6	2.9	-0.1	-2.9

Use either linear interpolation or extrapolation to estimate;

(i) θ when T = 16.

- (ii) T when $\theta = -3.5$
- 8. A particle of mass 2.4kg is held at rest on a rough horizontal surface AB with coefficient of friction of 0.5, it is connected by a light inextensible string passing over a smooth fixed pulley at B to a particle of mass 3.6kg. the slopping face BC is smooth and makes an angle of 30° to the horizontal

2

If the system is released from rest. Find the;

(i) Common acceleration

(ii) Tension in the string

SECTION B: (60 MARKS)

Answer any five questions in this section. All questions carry equal marks

9. The table below shows the marks obtained by 100 students of principal mathematics in a certain school

Marks	Number of students		
5 - < 25	5		
25-< 35	10		
35-< 40	15		
40 -< 50	8		
50-< 60	25		
60-< 80	10		
80-< 90	12		
90-< 100	15		

- (a) Draw a histogram for the data and use it to estimate the mode
- (b) Calculate the;
 - (i) Mean mark
- (ii) Variance
- (iii) median
- 10.Ten students were given two separate tests and the following are the scores.

Test X	65	45	40	55	60	50	80	30	70	65
Test Y	60	60	55	70	80	40	85	50	70	80

- (a) Plot a scatter diagram for the above data,
- (b) Draw a line of best fit, use it to estimate x when y=72
- (c) Calculate the rank correlation co-efficient and comment at 1% level of significance.
- 11.A particle is projected from a horizontal ground at an angle of elevation α , the horizontal range is x and full time of flight is T.
 - (a) Prove that the trajectory is connected by the equation $gT^2 = 2x\tan\alpha$
 - (b) Show that if the maximum horizontal distance is 160km then the full time of flight is about 3 minutes
 - (c) Hence determine the muzzle velocity and the maximum height of the trajectory

12.A random variable X has probability density function

$$f(x) = \begin{cases} A & 0 \le x \le 2\\ A(2x - 3) & 2 \le x \le 3\\ 0 & else\ where \end{cases}$$

Where A is a constant, find the;

- (a) Value of A
- (b) Expected value and standard deviation
- (c) Find the Cumulative distribution function F(x), hence evaluate the median
- 13.(a) The numbers X and Y are measured with errors Δx and Δy respectively. Show that the expression for maximum percentage error in calculating $Z = X\sqrt{Y}$ is

$$\left(\left| \frac{\Delta x}{X} \right| + \frac{1}{2} \left| \frac{\Delta y}{Y} \right| \right) 100\%$$

- (b) Given that X=2.5 and Y=0.16 were estimated with percentage of 4 and 5 respectively, calculate the absolute error in evaluating $X\sqrt{Y}$
- 14.(a) Sketch the graph $y = e^{-3x} \cos x$ using the interval [0.5(0.5)2.5] and show that it has a root. State it to 1 decimal place
 - (b) Hence using $x_0 = 1.5$ the first approximation and Newton Raphson method find the root correct it to 3 decimal places
- 15.A particle of mass 4kg starts from rest at position (2,3,4)m is acted on by a force $F = (2ti + 3t^2j + 5k)N$, determine the;
 - (i) Acceleration at time, t

- (ii) Velocity at time, t
- (iii) Position at time t. Hence work done by the force at t= 4 seconds
- 16.A jet fighter and a cruiser starts at 11:30 a.m and noon respectively with the following position and velocity vectors

	Position vectors	Velocity vectors
jet fighter	(-6i + 12j)km	(16i-4j)km/h
cruiser	(12i-15j)km	(8i + 16)km/h

If the velocities remain constant, determine the;

- (a) Position of the jet fighter at noon
- (b) Position of jet fighter relative to cruiser at time, t
- (c) Hence show that they collide, state the time of collision