

 Table 9.1
 Number of Arrivals in a 5-Minute Period

Arrivals per Period	Frequency	Arrivals per Period	Frequency
0	12	6	7
1	10	7	5
2	19	8	5
3	17	9	3
4	10	10	3
5	8	11	1

Figure 9.4 Histogram of number of arrivals per period.

, from 0.002 day to 144.695 days. However, most of the values (30 of range. Using intervals of width three results in Table 9.2. The data of prepare the histogram shown in Figure 9.5.

 Table 9.2
 Electronic Component Data

Frequency
23
10
5
1
1
2
0
1
1
0
1
1
•
•
1
•
•
1
1
•
•
1

observations are now ordered from smallest to largest as follows:
99.96 99.90 100.06 99.85
100.23 100.27 100.02 100.47 99.55 99.62 99.65 99.82 99.96 99.90 100.06 99.85

15

99.96

10

99.79

100.23

100.47

20

Figure 9.6 A q-q plot and histogram of the installation times.

 Table 9.3
 Suggested Estimators for Distributions Often Used in Simulation

Distribution	Parameter(s)	Suggested Estimator(s)	
Poisson	α	$\widehat{\alpha} = \bar{X}$	
Exponential	λ	$\widehat{\lambda} = rac{1}{ar{ar{X}}}$	
Gamma	$oldsymbol{eta}$, $ heta$	$\widehat{\beta}$ (see Table A.9)	
		$\widehat{\theta} = \frac{1}{\bar{X}}$	
Normal	μ , σ^2	$\widehat{\mu} = \bar{X}$	
		$\widehat{\sigma}^2 = S^2$ (unbiased)	
Lognormal	μ , σ^2	$\widehat{\mu} = \bar{X}$ (after taking ln of the data)	
		$\widehat{\sigma}^2 = S^2$ (after taking ln of the data)	
Weibull with $v = 0$	α, β	$\widehat{\beta}_0 = \frac{\bar{X}}{S}$	
		$\widehat{\beta}_{j} = \widehat{\beta}_{j-1} - \frac{f(\widehat{\beta}_{j-1})}{f'(\widehat{\beta}_{j-1})}$	
		See Equations (9.11) and (9.14) for $f(\widehat{\beta})$ and $f'(\widehat{\beta})$	
		Iterate until convergence	
		$\widehat{\alpha} = \left(\frac{1}{n} \sum_{i=1}^{n} X_i^{\widehat{\beta}}\right)^{1/\beta}$	
Beta	$oldsymbol{eta}_1$, $oldsymbol{eta}_2$	$\Psi(\widehat{\beta}_1) + \Psi(\widehat{\beta}_1 - \widehat{\beta}_2) = \ln(G_1)$	
		$\Psi(\widehat{\beta}_2) + \Psi(\widehat{\beta}_1 - \widehat{\beta}_2) = \ln(G_2)$ where Ψ is the digamma function,	
		$G_1 = \left(\prod_{i=1}^n X_i\right)^{1/n}$ and	
		$G_2 = \left(\prod_{i=1}^n (1 - X_i)\right)^{1/n}$	

Order	Lead Time (days)	Order	Lead Time (days)
1	70.292	11	30.215
2	10.107	12	17.137
3	48.386	13	44.024
4	20.480	14	10.552
5	13.053	15	37.298
6	25.292	16	16.314
7	14.713	17	28.073
8	39.166	18	39.019
9	17.421	19	32.330
10	13.905	20	36.547

Table 9.6 Chi-Square Goodness-of-Fit Test for Example 9.17

x_i	Observed Frequency	Expected Frequency	$(O_i - E_i)^2$
	O_i	E_i	$\frac{(O_i - E_i)^2}{E_i}$
$\begin{vmatrix} 0\\1\\2 \end{vmatrix}$	$\begin{bmatrix} 12 \\ 10 \\ 19 \end{bmatrix} 22$	$\left.\begin{array}{c} 2.6 \\ 9.6 \end{array}\right\} 12.2$	7.87
3	17	17.4 21.1	0.15
4	10	19.2	0.80
5 6	8 7	14.0	4.41 2.57
7	5)	8.5 4.4)	0.26
8 9 10 ≥11	$ \begin{array}{c} 5 \\ 3 \\ 3 \\ \hline 100 \end{array} $ 17	$ \begin{array}{c} 2.0 \\ 0.8 \\ 0.3 \\ 0.1 \end{array} $	11.62
	100	100.0	27.68
•			

Class Interval

[0, 1.590)

[1.590, 3.425)

[3.425, 5.595)

[5.595, 8.252)

[8.252, 11.677)

[11.677, 16.503)

[16.503, 24.755]

 $[24.755, \infty)$

Observed Frequency

19

10

50

Table 9.7 Chi-Square Goodness-of-Fit Test for Example 9.18

Expected Frequency

 E_i

6.25

6.25

6.25

6.25

6.25

6.25

6.25

6.25

• 50

 $(O_i-E_i)^2$

26.01

2.25

0.81

0.01

4.41

4.41

0.81

0.01

39.6