

Komputasi Numerik

PERTEMUAN 7

SPL - Jacobi dan Gauss-Seidel

2024/2025

Sistem Persamaan Linier

Contoh Soal → Berapa nilai x,y, dan z

$$x + y + 2z = 9$$

 $2x + 4y - 3z = 1$
 $3x + 6y - 5z = 0$

$$X + y = 3$$

 $3x - 5y = 1$

Metode Jacobi dan Gauss Seidel

Penyelesaiaan Sistem Linier

- 2. Gauss
- 3. Gauss Jordan

4. Invers (jk bisa dicari)

1.2 X 2 --> biasa

2. OBE

3. Kofaktor Adj

5. Cramer

6. Gauss Seidel

7. Jacobi

Pada pertemuan ini, kita akan berfokus pada Metode Jacobi dan

Metode Jacobi dan Gauss Seidel

Metode Jacobi <</p>

- Bersifat Iteratif
- Kita memp. persamaan linier sbb:
- Dirubah menjadi:

$$a_{11}X_1 + a_{12}X_2 + a_{13}X_3 = b_1$$

$$a_{21}X_1 + a_{22}X_2 + a_{23}X_3 = b_2$$

$$a_{31}X_1 + a_{32}X_2 + a_{33}X_3 = b_3$$

$$X_{1} = \frac{b1 - a12 \ X2 - a13 \ X3}{a11}$$

$$X_{2} = \frac{b2 - a11 \ X1 - a23 \ X3}{a22}$$

$$X_{3} = \frac{b3 - a31 \ X1 - a32 \ X2}{a33}$$

- Sehingga kita dapat mengetahui nilai X1, X2, dan X3 secara langsung
- Nilai Awal X1 = X2 = X3 =! 0

Metode Jacobi <=</p>

- Contoh Soal =

Contoh Soal

$$20X_1 + X_2 - X_3 = 17$$

 $X_1 - X_2 + X_3 = 13$
 $-X_1 + X_2 + 10X_3 = 18$

Dirubah menjadi

$$X_{1} = \frac{17}{20} - \frac{1}{20}x^{2} - \frac{1}{20}x^{3}$$

$$X_{2} = \frac{-13}{10} + \frac{1}{10}x^{3} + \frac{1}{10}x^{3} + \frac{1}{10}x^{3}$$

$$X_{3} = \frac{18}{10} + \frac{1}{10}x^{3} - \frac{1}{10}x^{2}$$

```
atau
       X = 0,85 - 0,05 X2 + 0,05 X2
       X2 = -1,3 + 0,1 X, + 0,1 X3
X3 = 1,8 + 0,1 X, - 0,1 X2
nilai awal -0 X1 = X2 = X = = Ø
itensii pertama
       K, 2 0,85
       K6 2 -43
      X3 2 1,8
iterasi kedua
       x, 2 0, 85 - 0,05 (-1,3) + 0,05 (1,8) = 60
       X= = -43 +01 (0,85) + 01 (4,8) 3 -4
       X3 = 1,8 +91 (985) -91(-1,3) = 2,04
```

Contoh Soal (

FREE	X 1 2 Xz a	-1,3 +	0,1 (1,0	05) +0	(2,015) = 1,0025 (2,015) = -9,998 (-1,035) 2,004
shg	tabel	metode 3	acobi ada	lah iu	
×	0	0,85	1,005	40025	1,0001
×	0	-1,3	-1,03s	-9998	-0,99935
×2	0	1,0	2,015	2,004	3,0000
	1 4		四		
×	0,99	17	1,0000		
XZ	- 0,99	1994	-40000		
16 B	1 99	99	2,0000		

Contoh Soal

Contoh Lain

(Nilai 18) Carilah nilai ao, a1, dan a2 dengan menggunakan metoda Jacobi. Hitunglah dari iterasi 0, 1, 2 dan 3.

$$8a_0 + 5a_2 = 59$$

 $-2 a_0 - 7 a_1 + 3 a_2 = 41$
 $-5 a_1 + 12 a_2 = 104$

								8	ao	+	0	a1	+	5	a2	=	59
								-2	ao	+	-7	a1	+	3	a2	=	41
iterasi	(ao, a1, a	2 =	0					0	ao	+	-5	a1	+	12	a2	=	104
iterasi	1			DENGA	AN MET	ODA	JACOBI										
ao =	59	-	0	*	0	-	5	*	0		nila	i = 3					
		A			8												
ao =	7.38																
a1 =	41	-	-2	*	0	-	3	*	0								
					-7												
a1 =	-5.86																
a2 =	104	-	0	*	0	-	-5	*	0								
					12												
a2 =	8.67																

iterasi 2

6.90

a2 =

Contoh Soal

ao =	59	-	0	•	-5.86	-	5	•	8.67
					8				
ao =	1.96								
a1 =	41	-	-2	*	7.375	12	3	*	8.67
					-7				
a1 =	-4.25								
a2 =	104	-	0	*	7.375	-	-5	*	-5.86
					12				
a2 =	6.23								
iterasi 3		100							
ao =	59		0	*	-4.25	22	5	*	6.23
	8	<u> </u>			8			7	
ao =	3.48								
a1=	41	-	-2	*	1.95833	(+	3	*	6.23
					-7				
a1 =	-3.75								
<									

1.95833

Metode Gauss - Seidel

- Pengembangan dari Jacobi
- Nilai X berikutnya langsung menggunakan nilai x yang baru di dapat

Kita memp. persamaan linier sbb:

} idem

Nilai awal \rightarrow X1 = X2 = X3 =! 0

```
iterasi
        pertama :
           cbi - QIZ XZ
            63 - Q31 X1
ilorani
             01 - a12 X2
                      922
                         933
```


Contoh Soal

Contoh Soal

$$20 X_1 + X_2 - X_3 = 17$$

 $X_1 - X_2 + X_3 = 13$
 $-X_1 + X_2 + 10 X_3 = 18$

Dirubah menjadi

$$X_1 = 0.85 - 0.005 X_2 + 0.005 X_3$$

 $X_2 = -1.3 + 0.1 X_1 + 0.1 X_3$
 $X_3 = 1.8 + 0.1 X_1 - 0.1 X_2$

```
awal x1= X2 = X3 = Ø
   pertama
X, a 0,85
X2 = -1,3 + Q1(0,85) +0,1.(0) = -1,215
    1,3 + 91 (0,35) -0,1(-1,215) = 2,0063
    kedua
X1 2 0,85 - 0,05 (-425) + 0,05 (2,0065)
          + 01 (1,0111) +01 (2,0065) =-0, 998
×3 = 1,8 +01 (1,0111) - 91 (-0,998)=2,0009
```

Contoh Soal

shg	tabel	meto da s	adala adala	ih:	
	1 awal	11	II	1 44	T (
×,	0	0,85	1,0111	0,4995	1,0006
×2	0	-1,215	-0,998	-0 99992	-1,0000
*3	0	2,0065	2,0009	2,0000	2 0000

1	awal	I	I	14	T IF
1	0	0,85	1,005	1,0025	1,0001
	0	-1,3	-1,03s	-9998	-0,99935
9	٥	1,0	2,015	2,004	2,0000
	1 "		団		
	0,99	17	1,0000		
	0,99	17	団		

Metode Gauss - Seidel

Metoda Gaus Seidel & Jacobi tidak selalu dapat kita gunakan. Kadang hasil bisa divergen. Agar dijamin divergen, maka matriks dari konst harus "dominan diagonal secara tepat" artinya pada sebuah baris angka mutlak pada diagonal harus > jumlah angka lainnya.

Contoh Soal

Contoh Lain

Carilah nilai ao, a1, dan a2 denganmenggunakan metoda Jacobi dan Gauss-Seidel. Hitunglah dari iterasi 0, 1, 2 dan 3.

$$20a_0 + 1a_1 + (-1)a_2 = 17$$

 $1a_0 + (-7)a_1 + 1a_2 = 13$
 $-1a_0 + 12a_1 + 10a_2 = 18$

-1,00

18

2,00

a1 =

a2 =

a2 =

Jawaban

Contoh Soal

-1,00

iterasi 3 17 1 -1,04 -1 2,02 ao = 20 1,00 ao = 13 1,005 2,02 a1 = -10 a1 = -1,00 18 1,005 a2 = -1,04 10 2,00 a2 = iterasi 4 17 2,00 -1,00 -1 ao = 20 1,00 ao = 1,0025 13 2,00 a1 = 1 -10

1,0025

10

Jawaban

- Contoh Soal

Contoh Soal

iterasi 3

iterasi 4

Contoh Soal

Cari persamaan polynomial ber-orde 2 terhadap table berikut:

$$y = a_2 x^2 + a_1 x + a_0$$

Carilah nilai a2 + a1 + a0 dengan menggunakan Jacobi dan Gauss-Seidel (antar baris jangan di tukar) carilah iterasi 1 dan iterasi 2.

X	у
3	15
4	32
5	55
6	84
7	119

$$y = a_2 x^2 + a_1 x + a_0$$

n = 5

х	У	x . X	x . x .x	x . x .x . X	x . Y	x . X . Y
3	15	9	27	81	45	135
4	32	16	64	256	128	512
5	55	25	125	625	275	1375
6	84	36	216	1296	504	3024
7	119	49	343	2401	833	5831
25	305	135	775	4659	1785	10877

n	ao	+	ΣΧί	a1	+	Σ Xi.Xi	a2	=	Σyi
ΣXi	ao	+	Σ Xi.Xi	a1	+	Σ xi.xi.xi	a2	=	Σ xi.yi
						Σ xi.xi.xi.xi			

5	ao	+	25	a1	+	135	a2	=	305
25	ao	+	135	a1	+	775	a2	=	1785
135	ao	+	775	a1	+	4659	a2	=	10877

Metode Jacobi <</p>

iterasi 0, ao, a1, a2 = 0

iterasi 1

Metode Jacobi <</p>

Metode Gauss - Seidel

iterasi 0, ao, a1, a2 = 0

iterasi 1

$$a2 = 0.25$$

Metode Gauss - Seidel

iterasi 2

Soal 2

Cari nilai ao, a1, dan a2 menggunakan Metoda Jacobi dalam 2 iterasi:

$$Y = a_0 + a_1 x + a_2 x^2$$

X	3	4	5	6	7
Y	33	57	89	129	177

- 1. Menggunakan Metode Jacobi
- 2. Dari tabel ditemukan data berikut:

$$\sum x = 25$$

$$\sum y = 485$$

$$\sum x^{2} = 135$$

$$\sum x^{3} = 775$$

$$\sum x^{4} = 4659$$

$$\sum x \cdot y = 2785$$

$$\sum x^{2} \cdot y = 16751$$

3. Diubah ke sistem persamaan linear

$$5a_0 + 25a_1 + 135a_2 = 485$$

 $25a_0 + 135a_1 + 775a_2 = 2785$
 $135a_0 + 775a_1 + 4659a_2 = 16751$

Jawaban Soal 2

4. Pada iterasi 1

$$a_0 = \frac{485}{5} = 97$$
 $a_1 = \frac{2785}{135} = 20,63$
 $a_2 = \frac{16751}{4659} = 3,6$

5. Pada iterasi 2

$$-a_0 = \frac{1}{5} (485 - 25(20,63) - 135(3,6)) = -103,35$$

$$-a_1 = \frac{1}{135} (2785 - 25(97) - 775(3,6)) = -18$$

$$-a_2 = \frac{1}{4659} (16751 - 135(97) - 775(20,63)) = -2,65$$

Jadi berdasarkan iterasi 2, nilai $a_0 = -103,35$, $a_1 = -18$, dan $a_2 = -2,65$

Soal 3

Cari nilai ao, a1, dan a2 menggunakan Metode Gauss-Seidell dalam 2 iterasi!

$$Y = a_0 + a_1 x + a_2 x^2$$

X	3	4	5	6	7
Y	33	57	89	129	177

Jawaban Soal 3

- 1. Menggunakan Metode Gauss Seidell
- 2. Dari tabel ditemukan data berikut:

$$\sum x = 25$$

$$\sum y = 485$$

$$\sum x^{2} = 135$$

$$\sum x^{3} = 775$$

$$\sum x^{4} = 4659$$

$$\sum x. y = 2785$$

$$\sum x^{2}. y = 16751$$

3. Diubah ke sistem persamaan linear

$$5a_0 + 25a_1 + 135a_2 = 485$$

 $25a_0 + 135a_1 + 775a_2 = 2785$
 $135a_0 + 775a_1 + 4659a_2 = 16751$

Jawaban Soal 3

4. Pada iterasi 1

$$a_0 = \frac{97}{a_1}$$

 $a_1 = \frac{1}{135} (2785 - 25(97) - 775(0)) = 2,67$
 $a_2 = \frac{1}{4659} (16751 - 135(97) - 775(2,67)) = 0,34$

5. Pada iterasi 2

$$-a_0 = \frac{1}{5} (485 - 25(2,67) - 135(0,34)) = 74,47$$

$$-a_1 = \frac{1}{135} (2785 - 25(74,47) - 775(0,34)) = 4,89$$

$$-a_2 = \frac{1}{4659} (16751 - 135(74,47) - 775(4,89)) = 0,62$$

Jadi berdasarkan iterasi 2, nilai $a_0 = 74,47$, $a_1 = 4,89$, dan $a_2 = 0,62$

Soal 4

Cari nilai ao, a1, dan a2 menggunakan Metode Gauss-Jordan!

$$Y = a_0 + a_1 x + a_2 x^2$$

X	3	4	5	6	7
Y	33	57	89	129	177

- 1. Menggunakan Metode Gauss Jordan
- 2. Dari tabel ditemukan data berikut:

$$\sum x = 25$$

$$\sum y = 485$$

$$\sum x^{2} = 135$$

$$\sum x^{3} = 775$$

$$\sum x^{4} = 4659$$

$$\sum x \cdot y = 2785$$

$$\sum x^{2} \cdot y = 16751$$

3. Diubah ke sistem persamaan linear

$$5a_0 + 25a_1 + 135a_2 = 485$$

 $25a_0 + 135a_1 + 775a_2 = 2785$
 $135a_0 + 775a_1 + 4659a_2 = 16751$

4. Eliminasi Gauss Jordan pada Iterasi 1:

$$a_0 + 5a_1 + 27a_2 = 97$$

 $25a_0 + 135a_1 + 775a_2 = 2785$
 $135a_0 + 775a_1 + 4659a_2 = 16751$
 $\Rightarrow A(1,4) = 97$

5. Eliminasi Gauss Jordan pada Iterasi 2:

$$a_0 + 5a_1 + 27a_2 = 97$$
 $10a_1 + 100a_2 = 360$
 $135a_0 + 775a_1 + 4659a_2 = 16751$
 $\Rightarrow A(2,3) = 100$

6. Eliminasi Gauss Jordan pada Iterasi 3:

$$a_0 + 5a_1 + 27a_2 = 97$$
 $10a_1 + 100a_2 = 360$
 $100a_1 + 1014a_2 = 3656$

$$\Rightarrow A(3,2) = 100$$

7. Eliminasi Gauss Jordan pada Iterasi 4:

$$a_0 + 5a_1 + 27a_2 = 97$$
 $a_1 + 10a_2 = 36$
 $100a_1 + 1014a_2 = 3656$

$$\Rightarrow A(2,4) = 36$$

8. Eliminasi Gauss Jordan pada Iterasi 5:

$$a_0 + 5a_1 + 27a_2 = 97$$
 $a_1 + 10a_2 = 36$
 $14a_2 = 56$

$$\Rightarrow A(3,4) = 56$$

9. Eliminasi Gauss Jordan pada Iterasi 6:

$$a_0 + 5a_1 + 27a_2 = 97$$
 $a_1 + 10a_2 = 36$
 $a_2 = 4$

$$\Rightarrow A(3,4) = 4$$

10. Mencari a_0 , a_1 , $dan a_2$

$$- a_2 = 4$$

$$- a_1 = 36 - 10(4) = -4$$

$$- a_0 = 97 - 5(-4) - 27(4) = 9$$

11. Jadi nilai dari a_0 , a_1 , dan a_2 secara berturut adalah 4, -4, dan 9

https://its.id/m/komnum25

Tugas Kelompok <

- 1. Buatlah contoh soal sendiri, boleh mengarang atau mengambil dari internet:
- Cari persamaan polynomial ber-orde 2 terhadap table (buatan sendiri) dan dijawab dengan menggunakan Jacobi 4 iterasi
 - --> 5 kelompok
- Cari persamaan polynomial ber-orde 2 terhadap table (buatansendiri) dan dijawab dengan menggunakan Gauss seidel 4 iterasi
 - --> 5 kelompok

Ditanya:

- Tiap iterasi cari Et dan Ea
- Ketelitian 2 angka dibelakang koma
- Cari dari iterasi 1 sampai iterasi 3
- Tuliskan rumusnya terlebih dahulu

https://its.id/m/komnum25

PRI

- Buatlah soal anda sendiri, kemudian carilah nilai x1, x2 dan x3 dengan menggunakan:
- 1. Gauss
- 2. Gauss jourdan
- 3. Invers adjoint
- 4. Invers OBE
- 5. Cramer
- 6. Jacobi --> 6 iterasi
- 7. Gauss seidel --> 6 iterasi

Komnum PPT 7

TERIMA KASIH

Sampai Bertemu Kembali