Let *N* be the dimension of the vector. For one sample:

$$\mathbf{y}^{(n)} = \begin{bmatrix} y_1^{(n)} & y_2^{(n)} & \dots & y_{N-1}^{(n)} & y_N^{(n)} \end{bmatrix} \ (n \in \mathbb{N})$$

Let x be the original vector, and let $x + Sublayer(x) = x + y^{(n)}$ be

$$\mathbf{z}^{(n)} = \begin{bmatrix} y_1^{(n)} + x_1 & y_2^{(n)} + x_2 & \dots & y_{N-1}^{(n)} + x_{N-1} & y_N^{(n)} + x_N \end{bmatrix}$$

$$= \begin{bmatrix} z_1^{(n)} & z_2^{(n)} & \dots & z_{N-1}^{(n)} & z_N^{(n)} \end{bmatrix}$$

$$\mathbf{y}^{(n+1)} = \frac{\gamma}{\sigma} (\mathbf{z}^{(n)} - \mu) + \beta$$

Let C be the loss function and assuming we already found

$$\frac{\partial \mathcal{C}}{\partial \boldsymbol{y^{(n+1)}}} = \begin{bmatrix} \frac{\partial \mathcal{C}}{\partial y_1^{(n+1)}} & \frac{\partial \mathcal{C}}{\partial y_2^{(n+1)}} & \dots & \frac{\partial \mathcal{C}}{\partial y_{N-1}^{(n+1)}} & \frac{\partial \mathcal{C}}{\partial y_N^{(n+1)}} \end{bmatrix}$$

then:

$$\frac{\partial C}{\partial \gamma} = \frac{\partial C}{\partial y^{(n+1)}} \frac{\partial y^{(n+1)}}{\partial \gamma} = \frac{\partial C}{\partial y^{(n+1)}} \frac{z^{(n)} - \mu}{\sigma} = \frac{1}{N} \sum \frac{\partial C}{\partial y_k^{(n+1)}} \frac{z_k^{(n)} - \mu}{\sigma}$$

$$\frac{\partial C}{\partial \beta} = \frac{\partial C}{\partial y^{(n+1)}} \frac{\partial y^{(n+1)}}{\partial \beta} = \frac{\partial C}{\partial y^{(n+1)}} = \frac{1}{N} \sum \frac{\partial C}{\partial y_k^{(n+1)}}$$

$$\frac{\partial C}{\partial z^{(n)}} = \frac{\partial C}{\partial y^{(n+1)}} \frac{\partial y^{(n+1)}}{\partial z^{(n)}}$$

We have

$$\mu = \frac{\sum z_k^{(n)}}{N} \Rightarrow \frac{\partial \mu}{\partial z_k^{(n)}} = \frac{1}{N}$$

$$V = Var(\mathbf{z}^{(n)}) = \frac{\sum (z_k^{(n)})^2}{N} - \mu^2 \Rightarrow \frac{\partial V}{\partial z_k^{(n)}} = \frac{2z_k^{(n)}}{N} - \frac{2\mu}{N} = \frac{2}{N} (z_k^{(n)} - \mu)$$

$$V = \sigma^2 \Rightarrow \frac{\partial V}{\partial z_k^{(n)}} = 2\sigma \frac{\partial \sigma}{\partial z_k^{(n)}} \Leftrightarrow \frac{\partial \sigma}{\partial z_k^{(n)}} = \frac{(z_k^{(n)} - \mu)}{N\sigma}$$

Combining the above, for 2 natural numbers k, l we have two cases:

Case 1: $k \neq l$, then we have:

$$\frac{\partial y_k^{(n+1)}}{\partial z_l^{(n)}} = \gamma \frac{-\frac{1}{N}\sigma - \frac{\left(z_l^{(n)} - \mu\right)}{N\sigma}\left(z_k^{(n)} - \mu\right)}{\sigma^2} = \frac{-\gamma}{N\sigma}\left(1 + \frac{\left(z_l^{(n)} - \mu\right)\left(z_k^{(n)} - \mu\right)}{\sigma^2}\right)$$

Case 2: k = l, then we have:

$$\frac{\partial y_k^{(n+1)}}{\partial z_k^{(n)}} = \gamma \frac{\left(1 - \frac{1}{N}\right)\sigma - \frac{\left(z_k^{(n)} - \mu\right)^2}{N\sigma}}{\sigma^2} = \frac{\gamma}{N\sigma} \left(N - 1 - \frac{\left(z_k^{(n)} - \mu\right)^2}{\sigma^2}\right)$$

So finally, we have:

$$\frac{\partial C}{\partial \boldsymbol{z^{(n)}}} = \begin{bmatrix} \frac{\partial C}{\partial z_{1}^{(n)}} & \frac{\partial C}{\partial z_{2}^{(n)}} & \cdots & \frac{\partial C}{\partial z_{N-1}^{(n)}} & \frac{\partial C}{\partial z_{N}^{(n)}} \end{bmatrix} = \frac{\gamma}{N\sigma} \left(\frac{\partial C}{\partial \boldsymbol{y^{(n+1)}}} \cdot \boldsymbol{\mathcal{J}} \right)$$

where " \cdot " is the dot product, \mathcal{J} is the Jacobian matrix with value at the i-th row and j-th column be:

$$\mathbf{J}_{i,j} = \begin{cases} -1 - \frac{(z_i^{(n)} - \mu)(z_j^{(n)} - \mu)}{\sigma^2} & \text{if } i \neq j \\ N - 1 - \frac{(z_i^{(n)} - \mu)^2}{\sigma^2} & \text{if } i = j \end{cases}$$

Note that if we store the values

$$w_i^{(n)} = \frac{z_i^{(n)} - \mu}{\sigma} \to \boldsymbol{w}^{(n)}$$

then the expressions will come out cleanly as:

$$\frac{\partial C}{\partial \gamma} = \frac{1}{N} \sum \frac{\partial C}{\partial y_k^{(n+1)}} w_i^{(n)}$$

$$\frac{\partial C}{\partial \beta} = \frac{1}{N} \sum \frac{\partial C}{\partial y_k^{(n+1)}}$$

$$\mathcal{J} = \left(NI_N - 1_N - \mathbf{w}^{(n)} \otimes \mathbf{w}^{(n)} \right)$$

$$\frac{\partial C}{\partial \mathbf{z}^{(n)}} = \frac{\gamma}{N\sigma} \left(\frac{\partial C}{\partial \mathbf{y}^{(n+1)}} \cdot \mathcal{J} \right)$$

Where I_N is the identity matrix, 1_N is the $N \times N$ matrix filled with 1s and \otimes is the outer product.

Note that in reality however, this Jacobian matrix is simple enough to manually calculate so we don't need the third formula.

Now, having calculated $\mathbf{z}^{(n)} = x + y^{(n)}$, we want to calculate the gradient of x and $y^{(n)}$ separately. Notice that:

$$\frac{\partial C}{\partial \mathbf{y}^{(n)}} = \frac{\partial C}{\partial \mathbf{z}^{(n)}} \frac{\partial \mathbf{z}^{(n)}}{\partial \mathbf{y}^{(n)}} = \frac{\partial C}{\partial \mathbf{z}^{(n)}} \left(\frac{\partial \mathbf{x}}{\partial \mathbf{y}^{(n)}} + I_N \right) = \frac{\partial C}{\partial \mathbf{z}^{(n)}}$$

since x is independent with respect to $y^{(n)}$. More precisely, $y^{(n)}$ is derived from x and therefore is a function of x. However, this is only a one-way relation since there were no steps in which we update the values of x based on $y^{(n)}$, so any changes on $y^{(n)}$ does not affect x whatsoever, which makes x essentially independent from $y^{(n)}$.

Next, we have:

$$\frac{\partial C}{\partial x} = \frac{\partial C}{\partial z^{(n)}} \frac{\partial z^{(n)}}{\partial x} = \frac{\partial C}{\partial z^{(n)}} \left(I_N + \frac{\partial y^{(n)}}{\partial x} \right) = \frac{\partial C}{\partial z^{(n)}} + \frac{\partial C}{\partial z^{(n)}} \frac{\partial y^{(n)}}{\partial x}$$

Intuitively, since $\mathbf{z}^{(n)} = \mathbf{x} + \mathbf{y}^{(n)}$, any change on x affect z by two ways:

- 1. Directly onto $\mathbf{z}^{(n)}$ (any change on \mathbf{x} yields the same effect on $\mathbf{z}^{(n)}$).
- 2. The change propagates through the layers, in which $y^{(n)}$ acts as an intermediate to change $z^{(n)}$, so any change on x affects $y^{(n)}$, which then yields the same effect on $z^{(n)}$.

So having calculated $\frac{\partial C}{\partial z^{(n)}}$, we can first add it into the gradient of x, then we input it into the previous layer to calculate $\frac{\partial C}{\partial z^{(n)}} \frac{\partial y^{(n)}}{\partial x}$ using the conventional back propagation procedure.