Capstone 2: Collaborative Recommendation Model based on User Profiles

Kenneth Truong

Background

- Client is building a food review site or looking to open a restaurant
- What factors entice users to rate a restaurant higher than others?

Deliverables

- Functioning Collaborative Recommendation Model
- Answers the question: what variables predict ratings the most.

Data Wrangling

- Load datasets:
 - Used pd.read_csv to load in 3 datasets
- Check DataFrames
- Merge DataFrames
 - First, merged user_profile and ratings on userID, then with cuisine on placeID.

Data Wrangling(cont.)

- Treat missing values
 - Wrote a function to replace '?' with a random value based on the proportion of the population.
- Feature Engineering
 - Wrote a function to change qualitative values to numeric ones
- Select columns that are relevant

Data Visualizations

 Heat map based on correlation

Data Visualization

 Higher rated restaurants tend to congregate in the same location

Checking Distributions

- Using the chi-square test, I checked normality of height and weight.
- Height was normally distributed, but weight was not.

Machine Learning

- RandomForestRegressor, RandomForestClassifier, and SelectFromModel
- GridSearchCV was used to tune the hyperparameters of the model.

RandomForestRegressor

- R^2 score from the test was 0.326, with a RMSE of 0.660
- Tuned model: R^2 of 0.324 and RMSE of 0.665, with parameters {'max_depth': 8, 'max_features': 7, 'n_estimators': 11}

SelectFromModel

- SelectFromModel was used to select the most predictive variables.
- It selected 'userID', 'latitude', 'longitude', 'weight', 'height', 'placeID', and 'Rcuisine_cat'

Recommendation System

- Wrote Class CollabReco to recommend restaurants based on other user profiles.
- The RMSE for this was 0.722.