

Remarques: « L'attribution du répultat à Pythogore est douteure, il est vroisembla-blement plus ancien, et en le retrouve un peu parteut: 1 lesopotamie (~-1800), Inde (-600), Chine (quelque partente-1000 et -250). Pythogore vit lui au VI vieile av. Ce résultat permet d'exprimer la ilement la longueur manquante d'un triangle rectangle dont on connaît deux longueurs: quel nombre donne ce névultat quand on le met au course 2)-soit on cherche un des petits côtés et on calcule denc par exemple a? = c? - b pour tremer a. eremple 1: Governt trawer BC. E un triangle rectangle en A: BC2=AB2+AC2 Comme AB=3cm et AC=4cm, on a donc BC=3+42cm2 Doù BC2=3+16=25 cm2 On, on sait que 25=5 x5, donc BC=5 cm. exemple 2: (figure à l'échelle 04) En veux ici determina AB connaissant le reste Doù AB2 = BC2 - AC2. Adone BC2 = AB2+AC2. En remplaçant por les valeurs de l'énencé : AB= 25 / 24 = 625-576=49 cm² (on sait que 49=7,7=72 denc AB=7cm

II) Récipioque Remarque: un théorème affirme que vicentaines hypothèses sont réciliées (ici: ABC est rectangle en A) une conclusion est vive (ia: AB" AC2-BC). La reciproque d'un théorème est obterne en invovant les hypothèses et la conclusion. A Un théorème peut être vous sans que ba nécipaque le soit! Par exemple, si un quadrilatère est un carre, il a quatre angles draits, mais on repeut pas die que si un quadrilatère a quatre angles diats il est nécessairement un carré. Ici, rependant, la recipaque du théorème de Pythague est praie: Théaine: Si dans intriangle ABC, les longueurs des côtés véisfient BC=AB+AC?, alors ABC est rectangle en A. démonstration: considérons le triangle A'BC rectangle en A' avec A'B'=AB et A'C=AC.

D'agrès le théveine de Pythagore en a (B'C')=(A'B')^2+(A'C')^2.

Comme A'B'=AB et AC'=AC, cela derrent (B'C')^2=AB^2+AC^2.

Par hypothèse AB^2+AC^2=BC^2, donc on a montré que (B'C')^2=BC^2.

Done B'C'=BC. Done B'C'=BC.
Les triangles ABC et A'B'C' recipient 9 AC=A'C' don ils sont agair.
Les = B'C' Deuro angles sont donc égodement againe 2 à 2, donc en particulier: BAC-B'A'C'
Comme A'B'C' est re ctangle en A', on sait que B'A'C' = 90°. Done BAC = 90°
Donc ABC est rectangle en A. Remarque. Le théorème de Pythousore permet de trouver une longueur manquante dans un triangle que l'on soit désà être rectangle; sa réciproque permet quant à elle de démontrer qu'un triangle dont on connaît toutes les longueurs est un triangle rectangle 5cm corrige: en calable: AB2+AC2= 32+42=9+16=25cm2

dante part BC3-52= 25cm2. ocercie type 3cm Monter que ABC est rectargle en A. A Consider Bo? - AB?+AC. Daprès la réciproque du Chéoreme de lythague, PRE est rectangle en A.

	TII) (Questions 190					
	7				. 0		1
				rectangle se de brau		côtes de	angle droit
						andit al	ens Ouro.
	Envoice	labote	les solution	avec toute	o les lengu	euro inférieure	s à 100:
	A 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3				0	U	
	a	Ь	· C	4.5	20	25	
Q	3	12	5 13	15 15	36	39	
	6	8	10	16	63	65	
	7	24	25	8	16	17	
e b	9	40	41	16	30	34	
	10	24	26	18	80	82	
	11	60	61	20	21	29	
V	12	16	20	20	48	52	
	12	35	37	21	72	75	
	13	84	85	21	28	35	
	14	48	50	24	45	51	
7120000	25	60	65	24	32	40	
	27	36	45	24	70	74	
	9	12	15	28	96	100	
	30	40	50	28	45	53	
	30	72	78	32	60	68	
	33	56	65	35	84	91	
	36	77	85	40	42	82	
	36	48	60	42	56	70	
39, 52,65	45	60	75	48	55	73	
40, 75,85	51	68	85	48	64	80	
, , , , ,	33	80	89	54	72	30	
	57	76	85	60	80	100	
17 3 17 00 10 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	65	72	37	60	63	87 30	
1 TO Report of the a	33	44	55	18	24	30	

Ily a done 52 volutions au total avec a < b, done 10ten complant les synétriques (avec a 2,6).

Sion choint les longueurs a et 5 au horand, entre 1 et 100,

on a 100 x 100 = 10 000 possibilités.

Il y a donc une probabilité de 10+ = 1,04% d'avoir
une hypoténuse de longueur entière. Blan: sion choisit les longueurs d'un triangle roctangle au havand, on a ai peine une chance sur cent pour que l'hypoténuse tombejuste. exemple leplus simple: 1 trouve $C^2 = 1 + 1^2 = 1 + 1 = 2$. Bion veut exprimer c, on calcule ainsi. · Genne 12 1 et 22=4, 12<2=2<22 et 1<C<2 · On calcule (1,1)2, (1,2)2, (1,3)2, etc. jugue (1,3)2, et on remarque que $(14)^{2}=1,96< c^{2}=2< (1,5)^{2}=2,25$ donc 1,4< c< 1,5- On calule $(1,+1)^2 = 1,9881$ et $(1,+2)^2 = 2,0164$,

denc $(1,+1)^2 < 0^2 = 2 < (1,+2)^2$ donc 1,41<0 <1,42 en peut continuer indéfiniment à encadrer & de plus en plus précisément E est ce que fait la calculatrice quand on his denande 12: $C = \sqrt{2} \approx 1,414213562373095...$

		-pa													J- m	contra	25. 0	1.0	o neu	
ms	201	NA/VO	(P	mme	un	0	tion	ir	ntio		y j -		1	50 p 400	O1 74	(57 stota	7			~
Jus	500					0	75507		715000											
											1									
										0,1	1									
				D.																
					19.73															
			75.33								41									
											<u> </u>		-							
																			71	
<u>.</u>																				
												4.5								
**																				
											4)	1							1	
																	-			
					1															
			-																	