Supervised Machine Learning Week 1

Patrick J.F. Groenen

2020-2021

Table of Contents

- 1. Introduction
- 2. Set Up of the Course
- 3. R and R-Studio
- 4. Linear Algebra in R
- 5. Multiple Regression
- 6. An MM Algorithm for Multiple Regression
- 7. Inference for Multiple Regression
- 8. Subset Selection
- 9. Summary and Assignment

Table of Contents

1. Introduction

- 2. Set Up of the Course
- 3. R and R-Studio
- 4. Linear Algebra in R
- 5. Multiple Regression
- 6. An MM Algorithm for Multiple Regression
- 7. Inference for Multiple Regression
- 8. Subset Selection
- 9. Summary and Assignment

What is machine learning?

• Wikipedia (2019):

Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use to perform a specific task without using explicit instructions, relying on patterns and inference instead. It is seen as a subset of artificial intelligence.

Categorizations of machine learning techniques:

- 1. Unsupervised versus supervised learning
 - ► In unsupervised learning all variables have the same status. Interest lies in relations between variables (or objects).
 - ► In supervised learning there is a set of independent variables X to predict one or more dependent variables Y. Thus, use X to explain Y
 - \blacksquare Regression problems have a dependent variable Y that is quantitative (linear)
 - Classification problems have a dependent variable *Y* that is categorical (nonmetric)
- 2. Used for exploration or confirmation.
- 3. Modeling is linear or nonlinear in the data.

2 afrigade 5 of 88

Incomplete overview of machine learning techniques:

Method		Un-/supervised	Exploratory vs. Confirmatory	Linear vs. nonlinear	Objective
1	Multiple Regression	Supervised	Both	Linear	Linear prediction.
2	Ridge Regression	Supervised	Exploratory	Linear	Linear prediction with many variables.
3	Lasso	Supervised	Exploratory	Linear	Linear prediction with variable selection.
4	Elastic net	Supervised	Exploratory	Linear	Linear prediction with variable selection.
5	Analysis of Variance (ANOVA)	Supervised	Confirmatory	(Non)linear	Analyzing differences between group means.
6	Neural nets	Supervised	Exploratory	Nonlinear	Prediction by black box (neural net)
7	Regression trees	Supervised	Exploratory	Nonlinear	Fitting tree structure to classifying in- dividuals into groups.
8	Random forest	Supervised	Exploratory	Nonlinear	Flexible nonlinear prediction.
9	Logistic Regression	Supervised	Confirmatory	Linear	Predicting two groups.
10	Support vector machine (SVM)	Supervised	Exploratory	(Non)linear	Predicting two groups.
11	Principal Components Analysis (PCA)	Unsupervised	Exploratory	Linear	Extracting most important compo- nents.
12	Multiple correspondence analy- sis (MCA)	Unsupervised	Exploratory	Nonlinear	Exploration of categorical relations.
13	Nonlinear PCA	Unsupervised	Exploratory	Nonlinear	Extracting components of ordinal variables.
14	Cluster Analysis	Unsupervised	Exploratory	(Non)linear	Create groupings from object similarities.

2 afus 6 of 88

Goals of this course:

- 1. Thorough technical understanding of selected supervised machine learning techniques.
- 2. Implement the technique in the high level language R.
- 3. Being able to apply the technique sensibly to empirical data, and write a short report about it.
- 4. Use R-markdown for reproducible research.

Table of Contents

- Introduction
- 2. Set Up of the Course
- 3. R and R-Studio
- 4. Linear Algebra in R
- 5. Multiple Regression
- 6. An MM Algorithm for Multiple Regression
- 7. Inference for Multiple Regression
- 8. Subset Selection
- 9. Summary and Assignment

How to graduate from this course?

- Active participation (you can miss at most two lectures).
- Group exercises (programming, not graded, but commented).
- Group assignments (grade counts for 15%).
- Group presentation of code discussion (one group per week presents).
- Individual final assignment (counts for 85%).

Set up of the course:

- 2 hour lecture on Tuesday (from Week 2, first hour is presentation).
- 2 hour lecture on Thursday (one hour group presentation/discussion)
- 1 hour tutorial/question hour by TA.
- Group assignments/exercises for Weeks 1–5 (deadline next Tuesday, 9:00 am).
- Individual assignment (deadline two weeks after publication, Friday, 24:00, 18-12-2020).

Online lecture etiquette:

- Mute your microphones (unless you are invited to speak).
- Use the chat to pose a question or a remark.
- One student moderates the chat and (s)he can interrupt me.
- Make only on topic chats and be constructive.
- For a visual feedback to me, it is good to leave your camera open.

2 afrig

Lecturers:

Prof. Patrick J.F. Groenen Erasmus School of Economics

https://www.eur.nl/en/ese/ people/patrick-groenen

Dr. Pieter Schoonees
Rotterdam School of
Management
https://www.rsm.nl/people/
pieter-schoonees/

Recommended prior knowledge:

- Programming in R
- Use of R Markdown or knitr
- Mathematics
- Statistics
- Optimization
- Linear Algebra

Material and Literature:

- We will make extensive use of
 - ► R-Studio (https://www.rstudio.com/)
 - ► R (http://www.r-project.org/)

Students are strongly encouraged to install this on their laptop and bring it to the class.

• R-code used in the lecture will be made available.

Literature

- Hastie, Tibshirani, and Friedman [2009]. The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media.
- Pdf of the book is freely available at http://www.stanford.edu/~hastie/ElemStatLearn/printings/ESLII_print12.pdf
- Selected papers.

Set up of the course

Schedule:

Week	Dav	Lecturer	Topics	Material	Assignment/Exercise ¹
TTCCIT	Duy		,		7 toolgimiene/ Exercise
1	Tuesday	Groenen	Introduction; Linear methods for regression	3.1, 3.2, 3.3	
1	Thursday	Groenen	Model selection and assessment	Xiong (2014)	Group Exerc. Week 1
1	Friday	de Jong	Tutorial/question hour		
2	Tuesday	Groenen	Regularized regression and k-fold cross validation	3.4.1-3.4.3, 3.8.4, 7.10	Deadline Assign. Week 1
2	Thursday	Groenen	Remainder regularized regression		Pres. Assign. Week 1
2	Friday	de Jong	Tutorial/question hour		
3	Tuesday	Groenen	Basis funct. expansions, kernels, bias-var. trade-off	5.1-5.2.1, 5.8, 7.3	Deadline Group Assign. Week 2
3	Thursday	Groenen	bias-var. trade-off		Pres. Group Assign. Week 2
3	Friday	de Jong	Tutorial/question hour		
4	Tuesday	Groenen	Support vector machines	Groenen et al. (2009)	Deadline Group Exerc. Week 3
4	Thursday	Groenen		12.1-12.3	Pres. Group Exerc. Week 3
4	Friday	de Jong	Tutorial/question hour		
5	Tuesday	Schoonees	Class. and regr. trees, random forests, bootstrap	7.11, 9.2, 15	Deadline Group Assign. Week 4
5	Thursday	Schoonees			Pres. Group Assign. Week 5
5	Friday	de Jong	Tutorial/question hour		
6	Tuesday	Schoonees	Boosting	10	Deadline Group Exerc. Week 5
6	Thursday	Schoonees	Handing out Individual Assignment		Pres. Group Exerc. Week 5
6	Friday	de Jong	Tutorial/question hour		

2 afus Side 16 of 88

¹Assignments are graded, exercises not.

Table of Contents

- Introduction
- 2. Set Up of the Course
- 3. R and R-Studio
- 4. Linear Algebra in R
- 5. Multiple Regression
- 6. An MM Algorithm for Multiple Regression
- 7. Inference for Multiple Regression
- 8. Subset Selection
- 9. Summary and Assignment

- R is a free software environment for statistical computing and graphics: http://www.r-project.org/
- Strong points R:
 - ► State-of-the-art statistical software available.
 - ► Many contributions by leading scientists in so-called packages.
 - ► Syntax-based programming allows reproducing your results.
 - ► R-Studio is a good interface for R.
 - ► New York Times: Data Analysts Are Mesmerized by the Power of Program R http://www.nytimes.com/2009/01/07/technology/business-computing/07program.html

2 afrigade 19 of 88

R-workspace:

- A workspace is the collection of all things currently stored in R's memory:
 - ► data object
 - ► function
 - ► variable with a scalar
 - ► a variable with a matrix
 - ▶ etc.
- Workspace to be saved to a file by: save.image("MyWorkSpace.RData")
- Loading a workspace from a file by double-clicking on the file or by: load("wave5NL.RData")
- To see what is stored, use the ls() command.

R-Resources:

- A good resource and introduction to R is Quick-R: http://www.statmethods.net/
- For MatLab users who want to switch to R: http://www.math.umaine.edu/~hiebeler/comp/matlabR.html

Table of Contents

- Introduction
- 2. Set Up of the Course
- 3. R and R-Studio
- 4. Linear Algebra in R
- 5. Multiple Regression
- б. An MM Algorithm for Multiple Regressior
- 7. Inference for Multiple Regression
- 8. Subset Selection
- 9. Summary and Assignment

- Purpose: Helps you to understand certain properties in MVA techniques in an intuitive way
- Why using matrix algebra?
 - ▶ Because the notation is very compact and powerful.
 - ► Efficient notation compared to element notation.
 - ► Notation gives more insight.
 - Very useful for linear and quadratic expressions.
 - ► Understanding of details is less important.

- A matrix is a emphasizerectangular array of numbers of, say, n rows and m columns.
- Example of a 3×2 matrix **A** is $\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \end{bmatrix}$
- Properties of a matrix:
 - ► Matrices are indicated by a boldface uppercase letter: e.g., A, B, X, etc.
 - ► The order of a matrix is the number of rows × the number of columns: e.g., 3 × 2.

Defining a matrix in R:

```
R> ## Matrix A
R> A <- matrix(c(1, 3, 4, 2, 5, 7), nrow = 3, ncol = 2)
R> A

[,1] [,2]
[1,] 1 2
[2,] 3 5
[3,] 4 7
```


Identity I

Special Matrices

Type	Description	Order	Example
Square	n is equal to m	$n \times n$	$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 4 \\ 2 & 3 & 3 \end{bmatrix}$
Symmetric	elements ij and ji are equal	$n \times n$	$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 2 \end{bmatrix}$
Diagonal	off-diagonal elements are zero	$n \times n$	$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 2 \end{bmatrix}$

diagonal matrix with 1 on the diagonal $n \times n$ $\mathbf{I} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

- A vector is a matrix with only one row or column and denoted by a boldface lowercase letter, for example **a**, **b**, **x**, etc.
- Examples of column vectors:

size
$$3 \times 1$$
, $\mathbf{a} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix}$, vector of ones for $n = 3$, $\mathbf{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$

• Examples of row vectors: size 1×2 , $\mathbf{b} = \begin{bmatrix} 1 & 3 \end{bmatrix}$, vector of ones for m = 3, $\mathbf{1}' = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$

2 afung Side 27 of 88

The transpose of a matrix (or a vector) is denoted by the superscript \top and flips the matrix along the diagonal, examples:

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ 3 & 5 \\ 4 & 7 \end{bmatrix} \implies \mathbf{A}^{\top} = \begin{bmatrix} 1 & 3 & 4 \\ 2 & 5 & 7 \end{bmatrix}$$

$$\mathbf{b} = \begin{bmatrix} 1 & 2 \end{bmatrix} \implies \mathbf{b}^{\top} = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$$

$$\mathbf{a} = \begin{bmatrix} 1 \\ 3 \\ 4 \end{bmatrix} \implies \mathbf{a}^{\top} = \begin{bmatrix} 1 & 3 & 4 \end{bmatrix}$$

$$\mathbf{1} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \implies \mathbf{1}^{\top} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}$$

Transpose and vectors in R:

R> ones

```
R> ## Examples of transpose and vectors in R
R.> A
     [,1] [,2]
[1,] 1 2
[2,] 3 5
[3,] 4 7
R> # Transpose of A
R> t(A)
     [,1] [,2] [,3]
[1,] 1 3 4
[2,] 2 5 7
R> # Vector a
R > a < -c(3, 0, 2)
R> a
[1] 3 0 2
R> # Create vector of ones
R> ones <- rep(1, length.out = 3)
```

• Matrix addition (or subtraction) is done elementwise

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + a_{22} \end{bmatrix}$$
$$= \begin{bmatrix} 3 & 6 \\ 7 & 2 \end{bmatrix} + \begin{bmatrix} 1 & -6 \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 11 & -1 \end{bmatrix}$$

Matrix addition in R:

```
R> ## Matrix addition:
R > A <- matrix(c(3, 7, 6, 2), nrow = 2, ncol = 2)
R> A
    [,1] [,2]
[1,] 3 6
[2,] 7 2
R > B < - matrix(c(1, 4, -6, -3), nrow = 2, ncol = 2)
R> B
[,1] [,2]
[1,] 1 -6
[2,] 4 -3
R> A + B
    [,1] [,2]
[1,] 4 0
[2,] 11 -1
```


- Matrix multiplication is not elementwise.
- Let AB = C. Then C has elements $c_{ij} = \sum_k a_{ik} b_{kj}$.

$$\mathbf{a}^{\top}\mathbf{b} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \end{bmatrix} \begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \end{bmatrix} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} = c$$
$$\begin{bmatrix} 3 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = 3 \times 2 + 0 \times 0 + 2 \times 1 = 8$$

- Matrix multiplication is not elementwise.
- Let AB = C. Then C has elements $c_{ij} = \sum_k a_{ik} b_{kj}$.

$$\mathbf{a}^{\top}\mathbf{b} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \end{bmatrix} \begin{bmatrix} b_{11} \\ b_{21} \\ b_{31} \end{bmatrix} = a_{11}b_{11} + a_{12}b_{21} + a_{13}b_{31} = c$$
$$\begin{bmatrix} 3 & 0 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = 3 \times 2 + 0 \times 0 + 2 \times 1 = 8$$

Matrix multiplication in R:

```
R> ## Inner product (vector product)
R> a <- c(3, 0, 2)
R> b <- c(2, 0, 1)
R> a %*% b
```


- Matrix multiplication is not elementwise.
- Let AB = C. Then C has elements $c_{ij} = \sum_k a_{ik} b_{kj}$.

$$\mathbf{AB} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \\ c_{31} & c_{32} \end{bmatrix} = \mathbf{C}$$
$$\begin{bmatrix} 3 & 0 & 2 \\ 1 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 8 & 5 \\ 2 & 3 \\ -1 & -1 \end{bmatrix}$$

- Important: Order in matrix multiplication must be right!
- Multiplication with the identity matrix I has no effect: AI = A

2 afus 34 of 88

Matrix multiplication in R:

[3,]

```
R> ## Matrix multiplication (matrix product)
R > A < -matrix(c(3, 1, 0, 0, 2, 0, 2, 0, -1), nrow = 3, ncol = 3)
R> A
     [,1] [,2] [,3]
[1,] 3 0 2
[2,] 1 2 0
[3,] 0 0 -1
R > B \leftarrow matrix(c(2, 0, 1, 1, 1, 1), nrow = 3, ncol = 2)
R> B
     [,1] [,2]
[1,] 2 1
[2,] 0 1
[3,] 1 1
R> A %*% B
     [,1] [,2]
[1,]
[2,]
```

- Let **A** be a square $n \times n$ matrix
- Then A^{-1} is the matrix inverse of A such that

$$\mathbf{A}^{-1}\mathbf{A}=\mathbf{A}\mathbf{A}^{-1}=\mathbf{I}$$

Linear Algebra in R

Matrix inverse in R:

```
R> ## Matrix inverse
R > A \leftarrow matrix(c(3, 1, 0, 2), nrow = 2, ncol = 2)
R> Ainv \leftarrow solve(A, diag(2)) # diag(2) creates the 2 x 2 identity matrix
R.> A
[,1] [,2]
[1,] 3 0
[2,] 1 2
R> Ainv
      [,1] [,2]
[1.] 0.333 0.0
[2,] -0.167 0.5
R> Ainv %*% A
     [,1] [,2]
[1,] 1 0
[2,] 0 1
```

[.1] [.2]

R> A %*% Ainv

Linear Algebra in R

Example of matrix inverse that does not exist in R:

```
R> ## The inverse does not always exist
R> A <- matrix(1, nrow = 2, ncol = 2)
R> A

[,1] [,2]
[1,] 1 1
[2,] 1 1
R> Ainv <- solve(A, diag(2))

Error in solve.default(A, diag(2)): Lapack routine dgesv: system is exactly singular:
U[2,2] = 0</pre>
```


Table of Contents

- Introduction
- 2. Set Up of the Course
- 3. R and R-Studio
- 4. Linear Algebra in R
- 5. Multiple Regression
- 6. An MM Algorithm for Multiple Regression
- 7. Inference for Multiple Regression
- 8. Subset Selection
- 9. Summary and Assignment

Material this lecture:

Topic		To read
1.	Introduction	Multiple Regression 3.1, 3.2
2.	Subset selection	3.3, Xiong (2014)

Regression

- Regression is the work horse in statistics.
- Careful understanding is needed
- Later on, adaptations, extensions are introduced.

Advertising data set

- Advertising budget in thousands of dollars.
- *n* = 200 markets.
- Response variable is sales.
- Three predictor variables: TV, radio, and newspaper.

Example:

sales
$$\approx \beta_0 + \beta_1 \times TV$$

- For prediction we need estimates by using training data denoted by the symbol ^.
- $\hat{\beta}_0$ and $\hat{\beta}_1$ are estimates of β_0 and β_1 based on the training data.
- A future prediction of sales \hat{y} for a particular value x of TV advertising is:

$$\hat{\mathbf{y}} = \hat{\beta}_0 + \hat{\beta}_1 \mathbf{x}
\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$$

with
$$\mathbf{X} = [\mathbf{1}, \mathbf{x}_{\mathrm{TV}}]$$

Consider the error

$$\mathbf{e} = \mathbf{y} - \hat{\mathbf{y}}$$

Estimation is done by minimizing the sum of squared errors over all observations (x₁, y₁), (x₂, y₂),..., (x_n, y_n):
 residual sum of squares (RSS)

$$\begin{aligned} \mathsf{RSS}(\beta) &= & \mathbf{e}^{\top} \mathbf{e} = (\mathbf{y} - \mathbf{X}\beta)^{\top} (\mathbf{y} - \mathbf{X}\beta) \\ \hat{\beta} &= & \mathsf{argmin}_{\beta} \mathsf{RSS}(\beta) \end{aligned}$$

.

Least-squares estimates of weights $\hat{\beta}$:

```
R> ## Least-squares estimates of weights for simple regression model
R> load("Advertising.Rdata") # Load the Advertsing data set
R> result <- lm(Sales ~ TV, Advertising) # Call the linear regression model (lm, R> # Sales dependent, TV as predictor
R> round(coef(result), digits = 3) # Give weights

(Intercept) TV
7.033 0.048
```

Thus,

$$\hat{\beta}_0 = 7.033$$
 $\hat{\beta}_1 = 0.048$

Residual sum of squares (RSS) as a function of β_0 and β_1

The red dot corresponds to the (β_0, β_1) with the lowest RSS: $\hat{\beta} = [7.03, 0.048]^{\top}$

Multiple regression: make a linear combination of predictors to predict Y

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_p X_p + \epsilon$$

 $\mathbf{y} = \mathbf{X} \boldsymbol{\beta} + \epsilon$

with

Y: random response variable

X: random vector of p predictor variables

observed *n* vector of response variable

X $n \times (p+1)$ prediction variables with first column of ones for the intercept

(p+1) vector of weights $[\beta_0, \beta_1, \beta_2, \dots, \beta_p]^{\top}$

Residuals for multiple regression of Y on X_1 and X_2 .

Multiple Regression: Advertising Example

```
R> load("Advertising.Rdata") # Load the Advertsing data set
R> # Call the linear regression model (lm):
R> result <- lm(Sales ~ TV + Radio + Newspaper, Advertising)
R> summary(result) # Give a summary of the results object
Call:
lm(formula = Sales ~ TV + Radio + Newspaper, data = Advertising)
Residuals:
  Min 1Q Median 3Q
-8.828 -0.891 0.242 1.189 2.829
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.93889 0.31191 9.42 <2e-16 ***
TV
           0.04576 0.00139 32.81 <2e-16 ***
Radio 0.18853 0.00861 21.89 <2e-16 ***
Newspaper -0.00104 0.00587 -0.18 0.86
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.69 on 196 degrees of freedom
Multiple R-squared: 0.897, Adjusted R-squared: 0.896
F-statistic: 570 on 3 and 196 DF, p-value: <2e-16
```

2 afrig

Multiple Regression: Advertising Example

Interpretation

- Prediction goes very well: $R^2 = 90\%$.
- TV and Radio budgets constribute significantly. Newspaper does not contribute.
- Interpretation TV coefficient:
 - $\hat{\beta}_1 = 0.0457$, all other predicters remaining the same, then \$ 1,000,000 more TV advertising is expected to increase sales by 45.7 units.
- Interpretation Radio coefficient: $\hat{\beta}_2 = 0.1885$, all other predicters remaining the same, then \$1,000,000 more radio advertising is expected to increase sales by 188.5 units.

How to minimize $RSS(\beta)$ over β with

$$\mathsf{RSS}(\boldsymbol{\beta}) = \mathbf{e}^{\top}\mathbf{e} = (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\top}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})?$$

Linear algebra: multiple regression estimation of two or more predictors:

• In linear algebra, $\hat{\beta}$ is given by

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$$

with **X** is the vector of ones appended with the matrix of predictors.

R code:

Table of Contents

- Introduction
- 2. Set Up of the Course
- 3. R and R-Studio
- 4. Linear Algebra in R
- 5. Multiple Regression
- 6. An MM Algorithm for Multiple Regression
- 7. Inference for Multiple Regression
- 8. Subset Selection
- 9. Summary and Assignment

- Multiple regression involves solving the linear system $\mathbf{X}^{\top}\mathbf{X}\boldsymbol{\beta} = \mathbf{X}^{\top}\mathbf{y}$ or the computation of $(\mathbf{X}^{\top}\mathbf{X})^{-1}$.
- Advantage: the minimum is analytical.
- What if your computer language does not have a linear system solver?
- Here we derive an MM-based iterative algorithm.
- Will be useful for better subset selection.

- Majorization is also known under other names:
- MM algorithm [Hunter and Lange, 2004]
 - ► Minimization by majorization
 - ► Maximization by minorization
- Machine learning literature, concave convex procedure (CCCP) [Yuille and Rangarajan, 2003]
- Generalized Weiszfeld's method [Voss and Eckhardt, 1980].

- Some references of iterative majorization (IM):
 - ► De Leeuw [1993]; numerical aspects
 - ► Heiser [1995]; overview article
 - ▶ Borg and Groenen [2005]; simple, step by step explanation
 - ► Lange et al. [2000]; discussion article
 - ► Kiers [2002]; matrix optimization problems

• Replace original function f(x) by a simpler function, the majorizing function g(x, y).

- Requirements majorizing function g(x, y):
 - 1. f(y) = g(y, y) touch at supporting point y
 - 2. $f(x) \le g(x, y)$
 - 3. g(x, y) must be simple (usually linear or quadratic)

• Replace original function f(x) by a simpler function, the majorizing function g(x, y).

- Requirements majorizing function g(x, y):
 - 1. f(y) = g(y, y) touch at supporting point y
 - 2. $f(x) \le g(x, y)$
 - 3. g(x, y) must be simple (usually linear or quadratic)

Minimize

$$RSS(\beta) = \mathbf{e}^{\top}\mathbf{e} = (\mathbf{y} - \mathbf{X}\beta)^{\top}(\mathbf{y} - \mathbf{X}\beta)$$
$$= \mathbf{y}^{\top}\mathbf{y} + \beta^{\top}\mathbf{X}^{\top}\mathbf{X}\beta - 2\beta^{\top}\mathbf{X}^{\top}\mathbf{y}$$

- Difficult part lies in $\beta^{\top} \mathbf{X}^{\top} \mathbf{X} \beta$.
- Solution: find majorizing function of the form $\lambda \beta^{\top} \beta$

Goal Minimize
$$RSS(\beta) = \beta^{\top} \mathbf{X}^{\top} \mathbf{X} \beta - 2\beta^{\top} \mathbf{X}^{\top} \mathbf{y} + \mathbf{y}^{\top} \mathbf{y}.$$

Step 1a Find a majorizing function for $\beta^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}$ of the form $\lambda \boldsymbol{\beta}^{\top} \boldsymbol{\beta} - 2 \boldsymbol{\beta}^{\top} \mathbf{b} + c$.

Step 1b To do so, we need $\mathbf{X}^{\top}\mathbf{X} - \lambda \mathbf{I}$ to be negative semidefinite (nsd) so that $\mathbf{r}^{\top}(\mathbf{X}^{\top}\mathbf{X} - \lambda \mathbf{I})\mathbf{r} \leq 0$ for any vector \mathbf{r} .

Step 1c Fact: $\mathbf{X}^{\top}\mathbf{X} - \lambda \mathbf{I}$ is nsd if $\lambda \geq \lambda_{\max}$ with λ_{\max} the largest eigenvalue of $\mathbf{X}^{\top}\mathbf{X}$

Step 2a Then $(\boldsymbol{\beta} - \boldsymbol{\beta}_0)^{\top} (\mathbf{X}^{\top} \mathbf{X} - \lambda \mathbf{I}) (\boldsymbol{\beta} - \boldsymbol{\beta}_0) \leq 0$ because $\mathbf{X}^{\top} \mathbf{X} - \lambda \mathbf{I}$ is nsd.

Step 2b From the inequality of Step 2a:

$$\begin{array}{ll} \boldsymbol{\beta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta} & \leq & \lambda \boldsymbol{\beta}^{\top} \boldsymbol{\beta} - 2\lambda \boldsymbol{\beta}^{\top} (\boldsymbol{\beta}_0 - \lambda^{-1} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}_0) + \lambda \boldsymbol{\beta}_0^{\top} (\lambda \mathbf{I} - \mathbf{X}^{\top} \mathbf{X}) \boldsymbol{\beta}_0 \\ & = & \lambda \boldsymbol{\beta}^{\top} \boldsymbol{\beta} - 2\lambda \boldsymbol{\beta}^{\top} (\boldsymbol{\beta}_0 - \lambda^{-1} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}_0) + c_1 \end{array}$$

 $= \lambda \boldsymbol{\beta}^{\mathsf{T}} \boldsymbol{\beta} - 2\lambda \boldsymbol{\beta}^{\mathsf{T}} \mathbf{u} + c_2 = g(\boldsymbol{\beta}, \boldsymbol{\beta}_0)$

Step 3 Substitute majorising function for
$$\boldsymbol{\beta}^{\top} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}$$
 in $RSS(\boldsymbol{\beta})$:

$$RSS(\boldsymbol{\beta}) \leq \lambda \boldsymbol{\beta}^{\top} \boldsymbol{\beta} - 2\lambda \boldsymbol{\beta}^{\top} (\boldsymbol{\beta}_0 - \lambda^{-1} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}_0 + \lambda^{-1} \mathbf{X}^{\top} \mathbf{y}) + c_1 + \mathbf{y}^{\top} \mathbf{y}$$

$$= \lambda \boldsymbol{\beta}^{\top} \boldsymbol{\beta} - 2\lambda \boldsymbol{\beta}^{\top} \mathbf{y} + c_2 = \sigma(\boldsymbol{\beta}, \boldsymbol{\beta}_2)$$

Step 4 Set the gradient of $g(\beta, \beta_0)$ to zero:

$$\nabla g(\boldsymbol{\beta}, \boldsymbol{\beta}_0) = 2\lambda(\boldsymbol{\beta} - \mathbf{u}) = \mathbf{0}$$

Step 5 Update β^+ without the need of an inverse of $\mathbf{X}^{\top}\mathbf{X}$ is:

$$\boldsymbol{\beta}^+ = \mathbf{u} = \boldsymbol{\beta}_0 - \lambda^{-1} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}_0 + \lambda^{-1} \mathbf{X}^{\top} \mathbf{y}$$

An MM algorithm for the elastic net:

```
Choose with some initial eta_0 \in \mathbb{R}^p and small \epsilon
Compute RSS(eta_0)
Compute \lambda as the largest eigenvalue of \mathbf{X}^{\top}\mathbf{X}
Set k \leftarrow 1
while k = 1 or (RSS(eta_{k-1}) - RSS(eta_k)) / RSS(eta_{k-1}) > \epsilon do k \leftarrow k+1
The update eta^{(k)} = eta_{k-1} - \lambda^{-1}\mathbf{X}^{\top}\mathbf{X}eta_{k-1} + \lambda^{-1}\mathbf{X}^{\top}\mathbf{y}
As a check, print k, RSS(eta_k), and RSS(eta_{k-1}) - RSS(eta_k) end
```

• Useful test for programming: in each iteration $RSS(\beta_k)$ must go down.

Group exercise for next Thursday (not graded):

- I have formed groups of three (some four) on Canvas.
- Read Sections 3.1, 3.2, 3.3.
- The data set Airq.RData comes from the Ecdat package in R and describes airquality. Look at the help file on Airq in the Ecdat package for more details on the variables.
- The response variable is airq and the remaining variables are predictors.
- Program a multiple regression including R^2 , the β , their standard deviation, and their z-values.
- Make a numeric comparison of your own results and those oobtained from to the standard output of R through lm(). How can you can you make a numeric comparison?
- Write a general R-function that implements the MM-algorithm for multiple regression. At the very least, it should accept as input \mathbf{y} and \mathbf{X} and return the vector of weights $\hat{\boldsymbol{\beta}}$.
- Do the above before the coming Thursday lecture.

Cafus Side 63 of 88

How well does the model fit the data?

- We assume that **y** and **X** have column mean 0 (thus no intercept).
- The multiple R^2 is the squared correlation of y and \hat{y} ;

$$R^2 = \left(\frac{(\mathbf{y}^{\top}\hat{\mathbf{y}})}{(\mathbf{y}^{\top}\mathbf{y})^{1/2}(\hat{\mathbf{y}}^{\top}\hat{\mathbf{y}})^{1/2}}\right)^2 = \frac{(\mathbf{y}^{\top}\hat{\mathbf{y}})^2}{(\mathbf{y}^{\top}\mathbf{y})(\hat{\mathbf{y}}^{\top}\hat{\mathbf{y}})}$$

- R² always increases when a predictor variable is added.
- ullet R^2 is closely related to the proportion of Variance Accounted For (VAF):

$$R^2 = 1 - rac{\hat{\mathbf{y}}^{ op} \hat{\mathbf{y}}}{\mathbf{y}^{ op} \mathbf{y}} = 1 - \mathsf{VAF}$$

• As an exercise, prove the relation between R^2 and VAF. (Hint: use $\hat{\mathbf{y}} = \mathbf{X}\hat{\boldsymbol{\beta}}$ and $\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\top}\mathbf{X})^{-1}\mathbf{X}^{\top}\mathbf{y}$).

Table of Contents

- 1. Introduction
- Set Up of the Course
- 3. R and R-Studio
- 4. Linear Algebra in R
- 5. Multiple Regression
- 6. An MM Algorithm for Multiple Regression
- 7. Inference for Multiple Regression
- 8. Subset Selection
- 9. Summary and Assignment

Important questions:

- 1. Is at least one of the predictors X_1, X_2, \dots, X_p useful to predict the response?
- 2. Is a subset of predictors enough to explain Y or do we need all?
- 3. How accurate can we determine the regression weights?

Generated samples with n = 100, $\beta_0 = 2$ and $\beta_1 = 3$

Multivariate normal distribution:

$$\mathsf{z} \sim \mathsf{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$$

with p dimensional normal density function:

$$f(\mathbf{z}) = \frac{1}{(2\pi)^{p/2} |\Sigma|^{1/2}} e^{-(\mathbf{z} - \boldsymbol{\mu})^{\top} \Sigma^{-1} (\mathbf{z} - \boldsymbol{\mu})/2}$$

• The multiple regression model

$$y = X\beta + \epsilon$$

has the following assumptions on the errors in ϵ :

- \blacktriangleright the ϵ_i are independent (and thus have correlation 0);
- ightharpoonup all ϵ_i are identically distributed;
- ϵ_i is normally distributed with mean 0 and variance σ^2 : $\epsilon_i \sim N(0, \sigma^2)$.
- Consequently, ${\bf y}-{\bf X}{m eta}={m \epsilon}$ is multivariate normally distributed with ${m \mu}={\bf 0}$ and ${m \Sigma}=\sigma^2{\bf I}$:

$$\epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$$

The covariance matrix of $\hat{oldsymbol{eta}}$ equals

$$\operatorname{var}(\hat{\boldsymbol{\beta}}) = \hat{\sigma}^2(\mathbf{X}^{\top}\mathbf{X})^{-1}$$

with

$$\hat{\sigma}^2 = \frac{(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})^{\top}(\mathbf{y} - \mathbf{X}\hat{\boldsymbol{\beta}})}{n - p - 1}$$

	Intercept	TV	Radio	Newspaper
Intercept	0.0972867	-0.0002657	-0.0011155	-0.0005910
TV	-0.0002657	0.0000019	-0.0000004	-0.0000003
Radio	-0.0011155	-0.0000004	0.0000742	-0.0000178
Newspaper	-0.0005910	-0.0000003	-0.0000178	0.0000345

The standard deviation of the elements of $\hat{\beta}$ is

$$\mathsf{Diag}(\hat{\sigma}^2(\mathbf{X}^{\top}\mathbf{X})^{-1})^{1/2}$$

```
beta sdev z
Intercept 2.9389 0.3119 9.4223
TV 0.0458 0.0014 32.8086
Radio 0.1885 0.0086 21.8935
Newspaper -0.0010 0.0059 0.1767
```

 $z_i = \hat{\beta}_i / \text{sdev}_i$ and is *t*-distributed with n - p - 1 degrees of freedom.

Inference for Multiple Regression

```
R> ## Test for simultaneous contribution of Radio and Newspaper
R> summary(result)
Call:
lm(formula = Sales ~ TV + Radio + Newspaper, data = Advertising)
Residuals:
  Min 1Q Median 3Q Max
-8.828 -0.891 0.242 1.189 2.829
Coefficients:
          Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.93889 0.31191 9.42 <2e-16 ***
TV 0.04576 0.00139 32.81 <2e-16 ***
Radio 0.18853 0.00861 21.89 <2e-16 ***
Newspaper -0.00104 0.00587 -0.18 0.86
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 1.69 on 196 degrees of freedom
```

Multiple R-squared: 0.897, Adjusted R-squared: 0.896 F-statistic: 570 on 3 and 196 DF, p-value: <2e-16

Table of Contents

- 1. Introduction
- 2. Set Up of the Course
- 3. R and R-Studio
- 4. Linear Algebra in R
- 5. Multiple Regression
- 6. An MM Algorithm for Multiple Regression
- 7. Inference for Multiple Regression
- 8. Subset Selection
- 9. Summary and Assignment

- Which predictors X_i are important? (variable selection)
- Incomplete list of subset selection methods:
 - 1. Exhaustive search: try out all possible combinations of predictor variables.
 - 2. Forward selection
 - 3. Backward elimination
 - 4. Mixed selection: combine forward selection and backward elimination.
 - 5. Best subset: search for the best subset of K variables.
 - Lasso: shrinkage method with automatic variable selection (discussed next week).

2 afrigade 74 of 88

Ad 1. Exhaustive search

• Try out all possible combinations of predictor variables. With two predictors X_1 and X_2 , the three models are

$$Y = \beta_0 + \beta_1 X_1$$

 $Y = \beta_0 + \beta_2 X_2$
 $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2$

- Evaluate a fit statistic (Mallows C_p , Akaike information criterion (AIC), Bayesian information criterion (BIC), adjusted R^2).
- Disadvantage: 2^p models need to be evaluated (cannot be done for p large: p > 30 leads to $2^{30} = 1,073,741,824$ models).

Ad 2. Forward selection:

- Start with intercept only.
- Try p simple regression and select the model with the lowest RSS.
- Expand selected model by trying out combinations with p-1 remaining predictors and select the one with the lowest RSS.
- Keep on adding a predictor until some stopping rule is satisfied.

Ad 3. Backward elimination:

- Start with all p predictors in the model.
- Eliminate the predictor with the largest *p*-value (contributes the least).
- Keep on removing a predictor until some stopping rule is satisfied.

Ad 4. Mixed selection:

- Start with foward selection until *p*-value rises above a threshold value.
- Then, remove this variable.
- Repeat these steps until all variables have a *p*-value below a threshold value.

Example stepwise selection predictors:

```
R> ## Stepwise regression (automatic selection of predictors)
R> result <- lm(Sales " TV + Radio + Newspaper, data = Advertising)
R> step <- stepAIC(result, direction="both")
Start: AIC=213
Sales ~ TV + Radio + Newspaper
          Df Sum of Sq RSS AIC
- Newspaper 1 0 557 211
<none>
                   557 213
- Radio 1 1362 1919 458
- TV 1 3058 3615 585
Step: AIC=211
Sales ~ TV + Radio
          Df Sum of Sq RSS AIC
<none>
                557 211
+ Newspaper 1 0 557 213
- Radio 1 1546 2103 475
- TV
    1 3062 3618 583
```

2 afright 79 of 88

Ad 5. Best subset selection:

- Goal: try to find best subset of m nonzero weights in β .
- This is an NP-hard combinatorial problem.
- For fixed *m*, we use an approximate algorithm based on MM proposed by Xiong [2014] called better subsets regression.
- One can try various values of m.

Ad 5. Main ideas better subset algorithm:

- The same majorizing function is used as in the MM algorithm for multiple regression.
- Then we have:

$$RSS(\boldsymbol{\beta}) \leq \lambda \boldsymbol{\beta}^{\top} \boldsymbol{\beta} - 2\lambda \boldsymbol{\beta}^{\top} \mathbf{u} + c_{2}$$

$$= \lambda (\boldsymbol{\beta} - \mathbf{u})^{\top} (\boldsymbol{\beta} - \mathbf{u}) - \lambda \mathbf{u}^{\top} \mathbf{u} + c_{2}$$

$$= \lambda \sum_{j=1}^{p} (\beta_{j} - u_{j})^{2} + c_{3} = g(\boldsymbol{\beta}, \beta_{0})$$

- Only m values of β_i can be chosen different from 0.
- Then, sort $|u_j|$ from large to small and set $\beta_j^+ = u_j$ for the first m elements.
- This choice ensures that $g(\beta, \beta_0)$ is minimal.

Ad 5. Main ideas better subset algorithm:

• Better subset regression algorithm:

```
Choose some initial \beta_0 \in \mathbb{R}^p with at most m values nonzero
Choose a small \epsilon
Compute RSS(\beta_0)
Compute \lambda as the largest eigenvalue of \mathbf{X}^{\top}\mathbf{X}
Set k \leftarrow 1
while k = 1 or (RSS(\beta_{k-1}) - RSS(\beta_k)) / RSS(\beta_{k-1}) > \epsilon do
      k \leftarrow k + 1
      Compute \mathbf{u} = \boldsymbol{\beta}_{k-1} - \lambda^{-1} \mathbf{X}^{\top} \mathbf{X} \boldsymbol{\beta}_{k-1} + \lambda^{-1} \mathbf{X}^{\top} \mathbf{v}
      Sort |u_i| and return index vector \psi such that
       |u_{\eta_1}| \leq |u_{\eta_2}| \leq \ldots \leq |u_{\eta_m}|
      Update \beta_{\psi_e}^{(k)} = u_{\psi_\ell} for \ell = 1, ..., m and \beta_{\psi_e}^{(k)} = 0 otherwise
     As a check, print k, RSS(\beta_k), and RSS(\beta_{k-1}) - RSS(\beta_k)
end
```

• Because of MM: in each iteration $RSS(\beta_k)$ must go down.

Cafus 82 of 88

Table of Contents

- 1. Introduction
- 2. Set Up of the Course
- 3. R and R-Studio
- 4. Linear Algebra in R
- 5. Multiple Regression
- 6. An MM Algorithm for Multiple Regression
- 7. Inference for Multiple Regression
- 8. Subset Selection
- 9. Summary and Assignment

Summary and Assignment

Summary:

Week	Topics	Material
1	Introduction; Introduction to R; Linear methods	3.1, 3.2, 3.3, Xiong (2014)
	for regression, model selection, and assessment	
2	Regularized regression and k -fold cross validation	3.4.1-3.4.3, 3.8.4, 7.10
3	Basis function expansions, kernels, bias-variance trade-off	5.1-5.2.1, 5.8, 7.3
4	Support vector machines	Groenen, Nalbantov, Bioch (2009); 12.1-12.3
5	Classification and regression trees, random forests, bootstrap	7.11, 9.2, 15
6	Boosting	10

2 afus side 84 of 88

Assignment Week 1

To do before first lecture next week:

- Read Sections 3.1, 3.2, 3.3 and use the slides (or Xiong 2014) for better subset regression.
- The data set Airq.RData comes from the Ecdat package in R and describes airquality. Look at the help file on Airq in the Ecdat package for more details on the variables.
- The response variable is airq and the remaining variables are predictors.
- Implement the better subset regression MM algorithm and use it.
- Write a 4 page report. For the report template for requirements. Write the report in R-markdown (as the template does, deadline Tuesday, 09:00).

2 afus 85 of 88

References I

- Borg and P. J. F. Groenen. Modern multidimensional scaling. Springer, New York, 2. edition, 2005.
- J. De Leeuw. Fitting distances by least squares. Technical Report 130, Interdivisional Program in Statistics, UCLA, Los Angeles, CA, 1993.
- Trevor Hastie, Robert Tibshirani, and Jerome Friedman. The elements of statistical learning: data mining, inference, and prediction. Springer Science & Business Media, 2009.
- Willem J. Heiser. Convergent computation by iterative majorization: Theory and applications in multidimensional data analysis. In W. J. Krzanowski, editor, Recent advances in descriptive multivariate analysis, pages 157–189, Oxford, 1995. Oxford University Press.
- D. R. Hunter and K. Lange. A tutorial on MM algorithms. The American Statistician, 39: 30–37, 2004.
- Henk A. L. Kiers. Setting up alternating least squares and iterative majorization algorithms for solving various matrix optimization problems. Computational Statistics and Data Analysis, 41:157–170, 2002.
- K. Lange, D. R. Hunter, and I. Yang. Optimization transfer using surrogate objective functions. Journal of Computational and Graphical Statistics, 9:1–20, 2000.
- H. Voss and U. Eckhardt. Linear convergence of generalized Weiszfeld's method. Computing, 25(3):243–251, 1980.
- Shifeng Xiong. Better subset regression. Biometrika, 101(1):71-84, 2014.
- Alan L Yuille and Anand Rangarajan. The concave-convex procedure. Neural computation, 15 (4):915–936, 2003.

Acknowledgement

Some of the figures in this presentation are taken from "An Introduction to Statistical Learning, with applications in R" (Springer, 2013) with permission from the authors: G. James, D. Witten, T. Hastie and R. Tibshirani

Derivation Majorization Inequality

$$\begin{split} (\boldsymbol{\beta} - \boldsymbol{\beta}_0)^\top (\mathbf{X}^\top \mathbf{X} - \lambda \mathbf{I}) (\boldsymbol{\beta} - \boldsymbol{\beta}_0) & \leq & 0 \text{ because } \lambda \mathbf{I} - \mathbf{X}^\top \mathbf{X} \text{ is nsd} \\ (\boldsymbol{\beta} - \boldsymbol{\beta}_0)^\top \mathbf{X}^\top \mathbf{X} (\boldsymbol{\beta} - \boldsymbol{\beta}_0) & \leq & \lambda (\boldsymbol{\beta} - \boldsymbol{\beta}_0)^\top (\boldsymbol{\beta} - \boldsymbol{\beta}_0) \\ \boldsymbol{\beta}^\top \mathbf{X}^\top \mathbf{X} \boldsymbol{\beta} + \boldsymbol{\beta}_0^\top \mathbf{X}^\top \mathbf{X} \boldsymbol{\beta}_0 - 2 \boldsymbol{\beta}^\top \mathbf{X}^\top \mathbf{X} \boldsymbol{\beta}_0 & \leq & \lambda \boldsymbol{\beta}^\top \boldsymbol{\beta} + \lambda \boldsymbol{\beta}_0^\top \boldsymbol{\beta}_0 - 2 \lambda \boldsymbol{\beta}^\top \boldsymbol{\beta}_0 \\ \boldsymbol{\beta}^\top \mathbf{X}^\top \mathbf{X} \boldsymbol{\beta} & \leq & \lambda \boldsymbol{\beta}^\top \boldsymbol{\beta} - 2 \lambda \boldsymbol{\beta}^\top (\boldsymbol{\beta}_0 - \lambda^{-1} \mathbf{X}^\top \mathbf{X} \boldsymbol{\beta}_0) \\ & + \boldsymbol{\beta}_0^\top (\lambda \mathbf{I} - \mathbf{X}^\top \mathbf{X}) \boldsymbol{\beta}_0 \end{split}$$

▶ Back

