7.7 D flip-flops and registers

D latch

A **D latch** stores one bit, with an input d having the bit to be stored, an input e that when 1 enables storing the bit, and with t appearing on output q. D and d are short for "data", and e for "enable".

An SR latch has an oscillation problem if both inputs were 1's then both change back to 0's. A D latch can be implemented SR latch with s = d and r = d'. Because sr = 11 is impossible, the SR latch oscillation problem is avoided. When e = 1, the AN to s, and d' to r. So d = 1 sets the SR latch, and d = 0 resets. When e = 0, the AND gates pass 0's to s and r, so the SR latch n stored bit.

0

Figure 7.7.1: D latch behavior.

0 1 Previously-stored bit (d is ignored)	е	d	l q
	0	0	Previously-stored bit (d is ignored)
1 0 0 (d is stored)	0	1	Previously-stored bit (d is ignored)
	1	0	0 (d is stored)
1 1 (d is stored)	1	1	1 (d is stored)

PARTICIPATION ACTIVITY

7.7.2: D latch.

Indicate q's present value for the given input sequence. "d: 0..1" means d was 0 and is presently 1.

- 1) d: 0
 - e: 1
 - 0 1
 - 0 0
- 2) d: 0..0
 - e: 1..0
 - 0
 - 0 0

Clock

For reasons that will be clear in later sections relating to synchronizing bit storage in a circuit, most digital circuits use a registral, called a **clock** signal, to control when to store bits. Ex: A clock signal may oscillate at a frequency of 1 GHz (1 billion second). Rather than bits being stored while an enable signal is high, bits are stored only at the instant a clock signal change known as a **rising edge**.

0	0	1	1	
---	---	---	---	--

PARTICIPATION 7.7.4: Clocks.	_				
Consider the example above.					
1) A change of the clock signal from 0 to 1 is called a rising					
O edge					
O cliff					
2) The three boxes represent three stored bits. On each rising clock edge, those bits move one place to the					
O left					
O right					
3) On each rising clock edge, the bits move					
·					
O one at a time					
O simultaneously					

D flip-flop

A **latch** stores a new bit while an enable input is 1. A latch is said to be **level sensitive**, storing when the enable's "level" is hi **flip-flop** stores a new bit only at the instant of an enable signal's rising edge. A flip-flop is said to be **edge-triggered**.

PARTICIPATION 7.7.5: D flip-flop.	•
Given a single D flip-flop with data input d, clock input clk, and output q. 1) d is 0, clk is 0, q is 0. d changes to 1. Moments later, what is q? O 1	-
O 0 2) d is 0, clk is 0, q is 0. clk changes to 1. Moments later, what is	•
q? O 1 O 0	
 3) d is 0, clk is 0, q is 0. d changes to 1, then clk changes to 1. Moments later, what is q? O 1 O 0 	
4) d is 1, clk is 0, q is 1. d changes to 0. Moments later, what is q? O 1	
O 0	

A D flip-flop can be implemented by cascading two D latches, with the first latch's enable inverted. A flip-flop implemented I with the first latch's enable inverted, has a **master-servant** arrangement. (Actually, master-slave is the common term, which

avoids for obvious reasons). The first latch is the master, the second the servant. Other implementations exist.

PARTICIPATION ACTIVITY

7.7.7: D flip-flop implemented as master-servant.

Given a single D flip-flop implemented with a master-servant arrangement.

1) d is 0, clk is 0, q is 1.

What is in the first latch?

O 1

O 0

2) d is 0, clk is 0, q is 1.

What is in the second latch?

O 1

O 1

0 **CHALLENGE** 7.7.1: Indicate q's value over time. ACTIVITY Start SR latch S q 3 4 Check Next

Basic register

Bits are usually stored in groups. A **register** is a circuit that stores a group of bits; a 3-bit register stores three bits. On a risir bits are stored simultaneously. Storing bits in a register is known as **loading** the register. A common register implementatic

so q2q1q0 becomes 111.
Then d2d1d0 changes to 010. What does q2q1q0 become?

Check Show answer

Provide feedback on this section