Dissertation Defense

Chase Coleman

May 21, 2019

NYU Stern

What have I learned?

Three Chapters:

- 1. Pareto weights as wedges in two-country models (with Dave Backus, Axelle Ferriere, and Spencer Lyon)
- 2. Global solution methods for macroeconomic models (with Spencer Lyon, Lilia Maliar, and Serguei Maliar)
- 3. Cost of income-driven repayment for student loans

Pareto weights as wedges in two-country models

Introduction

Environment: Typical two country, two (tradeable) goods, infinite horizon model (a la Backus Kehoe Kydland 1994). Incorporate recursive preferences following Colacito Croce 2011/2013, Tretvoll 2011/2015

Want: Understand the stochastic process that governs the relative pareto weights in a two country economy with recursive preferences

Pareto weight process

Stochastic process for pareto weights:

$$\log \lambda_{t+1}^* = \log \lambda_t^* + (\rho - \alpha) \left[log \left(\frac{U_{t+1}}{\mu(U_{t+1})} \right) - \log \left(\frac{J_{t+1}}{\mu(J_{t+1})} \right) \right]$$

Additive Case: $\alpha = \rho$ implies $\log \lambda_{t+1}^* = \log \lambda_t^*$

Rewrite: Stochastic process can be rewritten as white noise plus a risk adjustment — If no risk adjustment then process would have unit root.

4

Stable pareto weights

In one good models pareto weights are unstable and one agent eventually consumes everything. It turns out that in two good model that is not true (but they are extremely persistent)!

Backus-Smith puzzle

Backus-Smith puzzle: Theory (with additive preferences) predicts negative relationship between exchange rate and relative consumption but approximately 0 in data

Global Solution methods for

macroeconomic models

Global solutions

Global solutions allow more accurate characterizations of model dynamics than perturbation methods — Many questions require this accuracy:

- · Labor search models: Petrosky-Nadeau Zhang (Forthcoming)
- · Sovereign default models: Arellano et al (2016)
- · Certain classes of NK models: Judd et al 2017

Epsilon-distinguishable sets

Maliar Maliar 2015 introduces *Epsilon-distinguishable sets* for creating non-tensor grids to solve high dimensional state problems

Pseudo-random grids

Epsilon-distinguishable sets requires simulation of model...If we have a rough idea of where states live, can skip simulation step by drawing quasi-random grids in relevant hypercube. Removing simulation step leads to between 1 and 2 orders of magnitude faster solution.

Cost of income-driven student loans

Introduction

"Students should not be asked to pay more on their loans than they can afford...That's why under my student loan program, we would cap repayment for an affordable portion of a borrower's income, 12.5 percent...If borrowers work hard and make their full payments for 15 years, we'll let them get on with their lives — DJT "

U.S. student loan repayment plans

Name	Payment	Forgiveness
AMR	Amortized over 10 years	None
Graduated	Fixed schedule which increases over 10 years	None
IBR	15% of disposable income (up to AMR)	25 years
REPAYE	10% of disposable income	20 years
Trump Proposal	12.5% of disposable income	15 years

IDR expanding

U.S. Department of Education, Federal Student Aid Data Center, Federal Student Loan Portfolio.

Hard to determine cost

Hard to determine cost

"...there are a number of factors that make forecasting future IDR participation inherently difficult...it entails behavioral effects that are extremely difficult to incorporate and project into the future — Department of Education response to Government Accountability Office"

Paper counterfactual

In this paper, I run the following counterfactual:

Consider two economies

- 1. All student loans held in AMR repayment plan
- 2. All student loans held in IDR repayment plan

Will determine how much it costs for the government to support IDR relative to AMR

Government subsidy

Let Δ_{SL} be the subsidy required to keep student loans program solvent:

$$\Delta_{SL} = \sum_{i} (d_i - X_i)$$

where d_i is debt accumulated by individual i and X_i is the present discounted value of the payments they make

Government subsidy decomposition

Decompose Δ_{SL} by

$$\Delta_{SL} = \underbrace{\frac{\sum_{i}(d_{i}-X_{i})}{\sum_{i}d_{i}}}_{\text{subsidy rate}} \times \underbrace{\frac{\sum_{i}d_{i}}{N_{d}}}_{\text{average debt}} \times \underbrace{\frac{N_{d}}{N_{e}}}_{\text{fraction in debt}} \times \underbrace{\frac{N_{e}}{N}}_{\text{enrollment rate}} \times N_{e}$$

What we will learn today

We find that going from an economy with only AMR to an economy with only IDR results in

- · A 1 pp increase in enrollment rate
- 24 pp increase in percent of students with debt
- 17% increase in average student loan size
- 50% increase in subsidy rate

These result in a 15% increase in the cost of running the student loans program

Model outline: idiosyncratic type

All students begin as high school graduates. Draw three idiosyncratic states:

- Ability level (a): Unobservable to individuals and will affect the probability with which they pass classes in college and their labor earnings.
- Type (j): Type consists of 4 components (m,k,q,z)-m is a signal about an individual's ability level, k is the initial risk-free holdings, q is the cost of college, and z is they yearly parental transfer.
- Financial state (ζ_1): Stochastic component of the cost of college and college work opportunities.

Additionally, assume econometrician cannot observe m, but rather observes

$${\rm GPA}=m+\varepsilon_{\rm GPA}$$

Model outline

Enrollment effects

The probability of enrollment is given by:

$$prob(enroll) = \frac{\exp(V^S)}{\exp(V^S) + \exp(V^{HS})}$$

 V^{HS} unaffected by changes in repayment plan which means all changes must come through changes in V^S . V^S is itself only indirectly affected by changes in V^{CD} and V^{CG}

Enrollment effects

Debt effects

Debt effects

Thought experiment:

Imagine that an individual gets an information shock at beginning of the last period of their college degree.

They find out that they will experience low income for 20 years and, at their current student loan level, will experience loan forgiveness. What are implications for student loan accumulation this period?

If forgiveness, $\frac{\partial V^{CD}}{\partial d_t}=0$ implies higher marginal utility for debt today — Take out maximum debt level possible.

Lowest quartile increases debt the most because highest probability of forgiveness

Expected repayment by loan size

Government subsidy rate

	AMR	IDR
Quartile 1	-0.13	0.11
Quartile 2	-0.13	-0.01
Quartile 3	-0.13	-0.07
Quartile 4	-0.13	-0.11

Conclusion and next steps

IDR is expensive — More targeted policies to reduce student loan repayment risk may be more successful.

For example, one policy that reduces overall government subsidy in IDR to the level from AMR by offering IDR only to those in top 3 GPA quartiles.

Occupation choice? Major choice? Higher frequency model to capture more labor market risk?