Clusteringverfahren

- O Cluster analysis of gene expression dynamics Marco Ramoni, Paola Sebastiani, Isaac Kohane PNAS 14, 2002.
- O Cluster inference methods and graphical models evaluated on NCIGO microarray gene expression data Peter Waddell, Hirohisha Kishino Genome Informatics 11, 2000.
- o Clusterverfahren erzeugen Bäume;

keine Netze im eigentlichen Sinne,

O Clusterverfahren erzeugen Gruppen ähnlicher Gene, die zur weiteren Analyse als Einheit gehandhabt werden können.

Dadurch vereinfacht sich die weitere Analyse erheblich.

- O Clusterverfahren benötigen ein Distanzmass Dzwischen den Genen, eine sog. Metrik. Diese kann auf melfältige weise definiert werden.
- o Clustering erfordert also zwei Schritte:
 - 1. Berechnung aller paarweisen Distanzen
 - 2. Erzeugung des Baums
- O Die Menge der Distanzen kann bestimmte Eigenschaften haben, z.B. ultra metrisch sein: Spitzen 1999

Wurzel

o Oder auch nicht.

Partielle Kortelation

Prxy.z =
$$(t_{xx} - t_{xz}t_{yz})(1 - t_{xz}^2)(1 - t_{yz}^2)^{1/2}$$

For me. o's Some!
 $pr_{xy.g} = -\omega_{xy}(\omega_{yx}\omega_{yy})^{1/2}$
 $W = V^{-1}(nverse hovernanz matrix)$

Distanzen

1.
$$S_{r} = 1 - r$$
 $\frac{1}{2}$ 0...2

3.
$$S_{1H} = 1 - |r|$$
4. $S_{1PH} = 1 - |Pr|$

0 Waddell & Kishino haben verschiedene Clustering verfahren und verschiedene Metriken ausprobient.

Table 1: Fit of trees to the data.

Correlation Distances					Partial Correlation Distances				
Method	Native	%s.d. ^b	OLS+	OLS+	Method	Native	%s.d.	OLS+	OLS+
	Fita		Ces.d./ $\delta_r^{\rm C}$	%s.d./ $\delta_{ pr }$		Fit*		$\%\mathrm{s.d.}/\delta_r$	$\%\mathrm{s.d.}/\delta_{[pr]}$
$\overline{\mathrm{UP}\delta_r}$	-	-	14.456	17.031	$UP\delta_{pr}$	-	-	17.612	16.435
$N.1\delta_r$	-	-	15.007	17.001	$NJ\delta_{pr}$	-	-	17.437	16.451
OLS- δ_r	18.041	13.209	15.145	17.006	OLS- δ_{pr}	36.462	18.778	17.881	15.205
$OLS+\delta_r$	21.238	14.331	14.331	17.000	$OLS+\delta_{pr}$	184.932	42.291	17.408	16.499
$FM-\delta_r$	19.364	13.685	15.142	16.932	$\text{FM-}\delta_{pr}$	62.538	24.593	17.931	15.260
$FM+\delta_r$	22.853	14.867	14.363	17.032	$FM+\delta_{pr}$	165.514	40.009	17.640	12.679
ME - δ_r	16.322	_	14.528	17.027	$\text{ME-}\delta_{pr}$	15.627	-	17.447	16.453
$ME+\delta_r$	16.322	-	14.528	17.027	$\text{ME} + \delta_{pr}$	15.894	-	17.440	16.458
$-\mathrm{UP}\delta_{\mathrm{tr}}$	-	-	16.768	16.926	$\mathrm{UP}\delta_{ pr }$	-	-	17.896	12.750
$\mathrm{NJ}\delta_{ij}$	-	-	16.619	16.951	$\mathrm{NJ}\delta_{ pr }$	-	-	17.783	13.948
$\text{OLS-}\delta_{[r]}$	7.524	8.530	16.809	17.011	$\text{OLS-}\delta_{ pr }$	13.650	11.490	17.710	12.285
$\text{OLS}+\delta_{ r }$	8.159	8.883	16.544	16.940	$OLS+\delta_{ pr }$	15.612	12.288	17.746	12.904
$\text{FM-}\delta_{ r }$	12.010	10.777	16.920	17.010	$\text{FM-}\delta_{ pr }$	38.230	19.228	17.688	12.901
$FM+\delta_{ r }$	13.399	11.384	16.502	16.963	$_{\mathrm{FM}+\delta_{ pr }}$	44.795	20.814	17.655	12.432
$\text{ME-}\delta_{!r!}$	15.236	-	16.390	16.931	$\text{ME-}\delta_{ pr }$	8.607	-	17.703	12.774
$ME+\delta_{ r }$	15.236	-	16.390	16.931	$ME+\delta_{ pr }$	8.646	-	17.705	12.702

o Die erzeugten Cluster unterschieden sich zum Teil erheblich.

O Das Verhalten der Methoden kann in einem Baum dargestellt werden.

Ergebnis:

- 6.6)
- 1. Gleiche Distanzmasse egeben ähnlichere Bäume als verschiedene bei gleichem Custerverfahren
 - 2. ME-Methoden sind unterein ander ähnlicher als gegenüber NJ.
 - 3. Das Spektrum der erhaltenen Bäume ist so gross, dass wohl für jede Anwendung ein passender dabei ist.

- O Ein Bayesianischer Ansatz Liefeit ein Distanzmass welches die Ähnlichkeit der zeitlichen Expressionsverläufe beschreibt
- Programm namens CAGED Baumst-ukturen
- O Expressions verlauf wird deschineben durch einen autoregressiven Ansatz.

$$\vec{x}_{t} = A_{i} \vec{x}_{t-1} + A_{i} \vec{x}_{t-2} + ... + A_{p} \vec{x}_{t-p} + C + \epsilon$$

Expression zum Zeitpunkt t hängt von den vorhergehenden Expressionsschritten ab. Oft verwendet man nur den letzten, pist die Ordnung.

o Der zufällige Fehler E erlaubt noch Annahme einer geeignehen Verteilung die Berechnung der Wahrscheinlichkeit, das zwei Expressionsverläufe in Wirklich keit identisch sind.

(8.5)

$$P(M_c|y) \propto P(M_c) f(y|M_c)$$

$$f(y|M_c) = \frac{\Gamma(1)}{\Gamma(1+m)} \times \frac{\Gamma(m_k/m+m_k)}{\Gamma(m_k/m)(2\pi)} \frac{\frac{RSS_k}{2} \Gamma(m_k-m_k)/2}{\frac{2}{\sqrt{2}} \frac{RSS_k}{\sqrt{2}} \frac{\Gamma(m_k-m_k)/2}{\sqrt{2}}$$

o Distanzmass:

$$D_{e}(S_{i}, S_{j}) = \sqrt{\sum_{t=1}^{n} (y_{it} - y_{jt})^{2}}$$

O Ergebnis ist ein Baum mit einer Darstellung (9) ter Expressions verläufe an den Spitzen

O Der autoregressive Ansatz benötgt unöfig nele unbekannte Parameter: Ein Gen kann nicht von beliebig vielen anderen Genen abhängen.

Regulator 1

Regulator 1

Ser

Zusammenfassung:

- o Der Ansatz berück sichtigt die dynamische Struktur der Genexpression
- o Er reduziert die Zahl der Dimensonen durch Zusammenfassen ähnlicher Gene
- o Besser ware dos direkte Ableden eines Netzwerks