Causal Compatibility Inequalities Admitting of Quantum Violations in the Triangle Scenario

T.C. $Fraser^{1,2}$

 1 Perimeter Institute for Theoretical Physics Ontario, Canada 2 University of Waterloo Ontario, Canada

Quantum Networks Workshop, IIP, Nov. 2016

The Triangle Scenario (TS)

This Talk

- Inflation technique provides polynomial inequalities
- Inequalities witnessing non-local quantum correlations in the Triangle Scenario
- 3 Discuss search for new non-local quantum correlations

Causal Compatibility

Triangle Scenario

$$P_{ABC} = \int_{XYZ} P_{A|X,Y} P_{B|Y,Z} P_{C|Z,X} P_X P_Y P_Z$$

General Setting

$$\mathcal{M} = \{V_1, \dots, V_n\}$$

$$P^{\mathcal{M}} = \{P_{V_1}, \dots, P_{V_n}\}$$

$$\forall V \in \mathcal{M} : P_V = \sum_{\mathcal{N} \setminus V} P_{\mathcal{N}}$$

$$P_{\mathcal{N}} = \prod_{n \in \mathcal{N}} P_{n \mid \mathsf{Pa}_{\mathcal{G}}(n)}$$

Part 1: Inflation Technique

Demonstrating Inflation Technique

 $\forall n' \in \mathcal{N}', n' \sim n \in \mathcal{N} : \mathsf{AnSub}_{\mathcal{G}'}(n') \sim \mathsf{AnSub}_{\mathcal{G}}(n)$

Demonstrating Inflation Technique

 $\mathsf{AnSub}_{\mathcal{G}}(A) \sim \mathsf{AnSub}_{\mathcal{G}'}(A_1)$

Demonstrating Inflation Technique

 $\mathsf{AnSub}_{\mathcal{G}}(C) \sim \mathsf{AnSub}_{\mathcal{G}'}(C_2)$

Some Inflations of the Triangle Scenario

What are Injectable Sets?

 $\mathsf{AnSub}_{\mathcal{G}}(A,C) \sim \mathsf{AnSub}_{\mathcal{G}'}(A_2,C_1)$

What are Injectable Sets?

 $?? \not\sim \mathsf{AnSub}_{\mathcal{G}'}(B_1, B_2)$

What are Injectable Sets?

 $?? \not\sim \mathsf{AnSub}_{\mathcal{G}'}(B_2, C_2)$

Injectable Sets Defined

The injectable sets in \mathcal{G}' :

$$\mathsf{Inj}_{\mathcal{G}}(\mathcal{G}') \equiv \{N' \subseteq \mathcal{N}' \mid \exists N \subseteq \mathcal{N} : \mathsf{AnSub}_{\mathcal{G}}(N) \sim \mathsf{AnSub}_{\mathcal{G}'}(N')\}$$

The images of the injectable sets in G:

$$\mathsf{ImInj}_{\mathcal{G}}(\mathcal{G}') \equiv \{N \subseteq \mathcal{N} \mid \exists N' \subseteq \mathcal{N}' : \mathsf{AnSub}_{\mathcal{G}}(N) \sim \mathsf{AnSub}_{\mathcal{G}'}(N')\}$$

What makes injectable sets useful?

Inflation Lemma

Lemma (Inflation Lemma)

Given G and inflation G':

$$\underbrace{ \left\{ P_{N} \mid N \in \operatorname{ImInj}_{\mathcal{G}}(\mathcal{G}') \right\}}_{compatible \ with \ \mathcal{G}} \longrightarrow \left\{ P_{n \mid \operatorname{Pa}_{\mathcal{G}}(n)} \mid n \in \mathcal{N} \right\}$$

$$\underbrace{ \left\{ P_{N'} \mid N' \in \operatorname{Inj}_{\mathcal{G}}(\mathcal{G}') \right\}}_{compatible \ with \ \mathcal{G}'} \longleftarrow \left\{ P_{n' \mid \operatorname{Pa}_{\mathcal{G}'}(n')} \mid n' \in \mathcal{N}' \right\}$$

Perfect Correlation Is Incompatible

Perfect Correlation

$$\blacksquare = \frac{1}{2}$$

$$P_{ABC}(abc) = \frac{[000] + [111]}{2}$$

$$P_{ABC}(abc) = \begin{cases} \frac{1}{2} & a = b = c \\ 0 & \text{otherwise} \end{cases}$$

Compatibility Inequality

$$P_A(0)P_B(1) \le P_{BC}(10) + P_{AC}(01)$$

Witnesses Perfect Correlation

$$\left(\frac{1}{2}\right)^2 \not \leq 0 + 0$$

Deriving Compatibility Inequalities

$$\mathcal{M} = \{\{A_1, B_1\}, \{B_1, C_1\}, \{A_1, C_1\}\}$$

$$P^{\mathcal{M}} = \{P_{A_1B_1}, P_{B_1C_1}, P_{A_1C_1}\}$$
 Compatibility requires:
$$\exists P_{\mathcal{I}} = P_{A_1B_1C_1}$$

$$P_{A_1B_1} = \sum_{C_1} P_{\mathcal{J}} \qquad P_{B_1C_1} = \sum_{A_1} P_{\mathcal{J}} \qquad P_{A_1C_1} = \sum_{B_1} P_{\mathcal{J}}$$

Deriving Compatibility Inequalities Cont'd

$$\mathcal{P}_{A_1B_1} = \sum_{C_1} P_{\mathcal{J}} \qquad P_{B_1C_1} = \sum_{A_1} P_{\mathcal{J}} \qquad P_{A_1C_1} = \sum_{B_1} P_{\mathcal{J}}$$

$$\mathcal{P}^{\mathcal{M}} = M \cdot \mathcal{P}^{\mathcal{J}}$$

$$\mathcal{P}^{\mathcal{M}} = M \cdot \mathcal{P}^{\mathcal{J}}$$

$$\mathcal{P}^{\mathcal{M}} = \begin{bmatrix} P_{A_1B_1}(00) \\ P_{A_1B_1}(01) \\ P_{A_1B_1}(11) \\ P_{B_1C_1}(00) \\ P_{B_1C_1}(01) \\ P_{B_1C_1}(11) \\ P_{A_1B_1C_1}(00) \\ P_{A_1B_1C_1}(01) \\ P_{A_1B_1C_1}(01) \\ P_{A_1B_1C_1}(101) \\ P_{A_1B_1C_1}(101) \\ P_{A_1B_1C_1}(110) \\ P_{A_1B_1C_1}(111) \\ P_{A_1B_1C_1}(111) \end{pmatrix}$$

$$\mathcal{P}^{\mathcal{J}} = \begin{pmatrix} P_{A_1B_1C_1}(000) \\ P_{A_1B_1C_1}(001) \\ P_{A_1B_1C_1}(011) \\ P_{A_1B_1C_1}(101) \\ P_{A_1B_1C_1}(110) \\ P_{A_1B_1C_1}(111) \end{pmatrix}$$

Incidence Example

$$M = \begin{pmatrix} (A_1,B_1,C_1) = & (0,0,0) & (0,0,1) & (0,1,0) & (0,1,1) & (1,0,0) & (1,0,1) & (1,1,0) & (1,1,1) \\ (A_1=0,B_1=0) & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ (A_1=1,B_1=0) & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\ (A_1=1,B_1=1) & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ (B_1=0,C_1=0) & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 \\ (B_1=1,C_1=0) & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\ (B_1=1,C_1=1) & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ (B_1=0,C_1=1) & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ (B_1=1,C_1=0) & 0 & 0 & 1 & 0 & 0 & 0 & 1 \\ (A_1=0,C_1=1) & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ (A_1=1,C_1=1) & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ (A_1=1,C_1=1) & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ (A_1=1,C_1=1) & 0 & 0 & 0 & 0 & 1 & 0 & 1 \end{pmatrix}$$

$$\mathcal{P}^{\mathcal{M}} = M \cdot \mathcal{P}^{\mathcal{J}}$$

Marginal Linear Program

Marginal LP:

Dual Marginal LP:

minimize: $\emptyset \cdot x$

minimize: $y \cdot \mathcal{P}^{\mathcal{M}}$

subject to: $\mathcal{P}^{\mathcal{J}} \succeq 0$

 $\text{subject to: } y\cdot M\succeq 0$

 $M \cdot \mathcal{P}^{\mathcal{J}} = \mathcal{P}^{\mathcal{M}}$

■ If $\mathcal{P}^{\mathcal{J}}$ exists, then:

$$y \cdot M \cdot \mathcal{P}^{\mathcal{J}} = y \cdot \mathcal{P}^{\mathcal{M}} \ge 0$$

■ If not, then *y* is an infeasibility certificate which generates infeasibility inequality:

$$y \cdot \mathcal{P}^{\mathcal{M}} \ge 0$$

■ Most linear programing toolkits return certificates (*Mosek*, *Gurobi*, *CPLEX*, *cvxr*/*cvxopt*.)

$$P_{A_1B_1}(01) \le P_{B_1C_1}(10) + P_{A_1C_1}(01)$$

Can not deflate inequality!

$$\operatorname{Inj}_{\mathcal{G}}(\mathcal{G}') = \begin{cases} \{A_1, C_1\} \\ \{B_1, C_1\} \\ \{A_1\} \\ \{B_1\} \\ \{C_1\} \end{cases}$$

$$\{A_1, B_1\} \not\in \mathsf{Inj}_{\mathcal{G}}(\mathcal{G}')$$

$$P_{A_1B_1}(01) \le P_{B_1C_1}(10) + P_{A_1C_1}(01)$$

However!

$$\mathsf{AnSub}_{\mathcal{G}'}(A_1) \cap \mathsf{AnSub}_{\mathcal{G}'}(B_1) = \emptyset \iff A_1 \perp B_1$$

Inflation Gives Polynomial Inequalities

- Deflation only holds when inequality constrains probabilities $P_{N'}, N' \in \mathsf{Inj}_{\mathcal{G}}(\mathcal{G}')$
- **Linear inequality** for \mathcal{G}'

■ Polynomial inequality for *G*!

Pre-injectable Sets

A pre-injectable set N' is:

$$N' = \coprod_{i} N'_{i} \quad \forall i : N'_{i} \in \operatorname{Inj}_{\mathcal{G}}(\mathcal{G}')$$

$$\forall i, j : N_i' \perp N_j' \iff \mathsf{An}_{\mathcal{G}'}(N_i') \cap \mathsf{An}_{\mathcal{G}'}(N_j') = \emptyset$$

Only need to consider maximal pre-injectable sets denoted $\operatorname{PreInj}_{\mathcal{G}}(\mathcal{G}')$

Quantum Non-locality From Inflation

Quantum Correlation

 $P_{ABC}(abc) = \text{Tr}[\Pi^{\mathsf{T}} \rho_{AB} \otimes \rho_{BC} \otimes \rho_{CA} \Pi M_{A,a} \otimes M_{B,b} \otimes M_{C,c}]$

Fritz Distribution

Fritz Distribution

$$= \frac{1}{32} (2 - \sqrt{2})$$
 $= \frac{1}{32} (2 + \sqrt{2})$

Quantum Implementation of Fritz Distribution

States:

$$\rho_{AB} = \left| \Phi^+ \right\rangle \left\langle \Phi^+ \right| \quad \rho_{BC} = \rho_{CA} = \frac{|00\rangle \langle 00| + |11\rangle \langle 11|}{2}$$
$$\left| \Phi^+ \right\rangle = \frac{1}{\sqrt{2}} (|00\rangle + |11\rangle)$$

Measurements:

$$\begin{split} M_A &= \{|0\psi_1\rangle\langle 0\psi_1|, |0\psi_5\rangle\langle 0\psi_5|, |1\psi_3\rangle\langle 1\psi_3|, |1\psi_7\rangle\langle 1\psi_7|\}\\ M_B &= \{|0\psi_6\rangle\langle 0\psi_6|, |0\psi_2\rangle\langle 0\psi_2|, |1\psi_0\rangle\langle 1\psi_0|, |1\psi_4\rangle\langle 1\psi_4|\}\\ M_C &= \{|00\rangle\langle 00|, |10\rangle\langle 10|, |01\rangle\langle 01|, |11\rangle\langle 11|\} \end{split}$$

• Shorthand: $|\psi_n\rangle=\frac{1}{\sqrt{2}}\Big(|0\rangle+e^{in/4}|1\rangle\Big)$

Fritz Distribution Violating CHSH

- \blacksquare C's outcome acts as measurement "setting" for A, B; independent of ρ_{AB}
- Correlation between right bits

$$\langle A_r B_r \rangle = P_{A_r B_r}(00) + P_{A_r B_r}(11) - P_{A_r B_r}(01) - P_{A_r B_r}(10)$$

 $\langle A_r B_r | C = 0, 1, 2 \rangle = \frac{1}{\sqrt{2}} \quad \langle A_r B_r | C = 3 \rangle = -\frac{1}{\sqrt{2}}$

Gives CHSH violation

$$\langle A_r B_r | C = 0 \rangle + \langle A_r B_r | C = 1 \rangle + \langle A_r B_r | C = 2 \rangle - \langle A_r B_r | C = 3 \rangle$$

$$= 3 \left(\frac{1}{\sqrt{2}} \right) - \left(-\frac{1}{\sqrt{2}} \right)$$

$$= 2\sqrt{2} \nleq 2$$

Notes on Fritz Distribution

- $lue{}$ Incompatibility proof contingent on perfect correlation between C and pseudo-settings
- Proof not robust to noise

Problem (2.17 in **Fritz_2012**)

Find an example of non-classical quantum correlations in TS together with a proof of its non-classicality which does not hinge on Bell's Theorem.

"...would be helpful to have inequalities..."

Large Inflation

Large Inflation Pre-injectable Sets

Maximal Pre-injectable Sets

$$\{A_1, B_1, C_1, A_4, B_4, C_4\}$$

$$\{A_1, B_2, C_3, A_4, B_3, C_2\}$$

$$\{A_2, B_3, C_1, A_3, B_2, C_4\}$$

$$\{A_2, B_4, C_3, A_3, B_1, C_2\}$$

$$\{A_1, B_3, C_4\}$$

$$\{A_1, B_4, C_2\}$$

$$\{A_2, B_1, C_4\}$$

$$\{A_2, B_2, C_2\}$$

$$\{A_3, B_3, C_3\}$$

$$\{A_3, B_4, C_1\}$$

$$\{A_4, B_1, C_3\}$$

$$\{A_4, B_2, C_1\}$$

Ancestral Independences

$$\{A_1, B_1, C_1\} \perp \{A_4, B_4, C_4\}$$

$$\{A_1, B_2, C_3\} \perp \{A_4, B_3, C_2\}$$

$$\{A_2, B_3, C_1\} \perp \{A_3, B_2, C_4\}$$

$$\{A_2, B_4, C_3\} \perp \{A_3, B_1, C_2\}$$

$$\{A_1\} \perp \{B_3\} \perp \{C_4\}$$

$$\{A_1\} \perp \{B_4\} \perp \{C_2\}$$

$$\{A_2\} \perp \{B_1\} \perp \{C_4\}$$

$$\{A_2\} \perp \{B_2\} \perp \{C_2\}$$

$$\{A_3\} \perp \{B_3\} \perp \{C_3\}$$

$$\{A_3\} \perp \{B_4\} \perp \{C_1\}$$

$$\{A_4\} \perp \{B_1\} \perp \{C_3\}$$

$$\{A_4\} \perp \{B_2\} \perp \{C_1\}$$

Large Inflation Incidence

 \blacksquare Joint variables are all of the observable nodes $\mathcal{N}_O'=\mathcal{J}$

$$\mathcal{J} = \{A_1, A_2, A_3, A_4, B_1, B_2, B_3, B_4, C_1, C_2, C_3, C_4\}$$

- $\begin{tabular}{ll} \bf Marginal scenario is composed of pre-injectable sets \\ {\cal M} = {\sf PreInj}_{{\cal G}}({\cal G}') \\ \end{tabular}$
- Inequalities violated by Fritz distribution are inherently 4-outcome
- Incidence matrix M is very large $\sim 2.25 {\rm Gb}$
 - \blacksquare #Columns = $4^{12} = 16,777,216$
 - #Rows = $4 \times 4^6 + 8 \times 4^3 = 16,896$
 - $\blacksquare \ \# \mathsf{Non-zero} \ \mathsf{Entries} = 201, 326, 592$

Certificate for Fritz Distribution

$$\begin{split} P(110)P(223) + P(110)P(233) + P(110)P(323) + P(110)P(333) &\leq \\ 2P(020)P(213) + 2P(023)P(210) + 2P(023)P(310) + 2P(030)P(213) + \\ 2P(033)P(210) + 2P(033)P(310) + 2P(120)P(213) + 2P(123)P(210) + \\ 2P(123)P(310) + 2P(130)P(213) + 2P(132)P(311) + 2P(133)P(210) + \\ &\qquad \qquad + \cdots \quad 324 \text{ more terms } \cdots + \\ P(320)P(323) + P(320)P(333) + P(323)P(330) + P(330)P(333) \end{split}$$

Note: P(abc) shorthand for $P_{ABC}(abc)$

Party Symmetric Inequality

 $2[P(001)P(333)]_3 + 2[P(010)P(323)]_3 + 6[P(000)P(323)]_3 + 6[P(000)P(333)]_1 + 6[P(000)P(333)]_2 + 6[P(000)P(333)]_3 + 6[P(000)P(323)]_3 + 6[P($

5

 $12[P(031)P(302)]_6 + 12[P(033)P(303)]_6 + 12[P(103)P(130)]_6 + 12[P(203)P(230)]_6 + 12[P(203)P(330)]_6 + 2[P(001)P(320)]_6 + 2[P(002)P(221)]_3 + 2[P(003)P(211)]_6 + 2[P(003)P(30)]_6 + 2[P(003)P(30)]_6$ $2[P(003)P(331)]_3 + 2[P(011)P(211)]_3 + 2[P(012)P(322)]_6 + 2[P(013)P(313)]_6 + 2[P(013)P(332)]_6 + 2[P(020)P(111)]_3 + 2[P(020)P(211)]_6 + 2[P(021)P(212)]_6 + 2[P(020)P(211)]_6 + 2[P($ $2[P(022)P(211)]_3 + 2[P(022)P(212)]_6 + 2[P(022)P(322)]_3 + 2[P(023)P(232)]_6 + 2[P(030)P(212)]_3 + 2[P(031)P(231)]_6 + 2[P(032)P(331)]_6 + 2[P(033)P(333)]_3 + 2[P(032)P(32)]_6 + 2[P$ $2[P(101)P(131)]_3 + 2[P(101)P(132)]_6 + 2[P(102)P(131)]_6 + 2[P(102)P(132)]_6 + 2[P(102)P(133)]_6 + 2[P(110)P(133)]_6 + 2[P(110)P(132)]_6 + 2[P($ $2[P(110)P(223)]_3 + 2[P(112)P(331)]_3 + 2[P(120)P(122)]_6 + 2[P(121)P(201)]_6 + 2[P(122)P(200)]_3 + 2[P(122)P(202)]_6 + 2[P(122)P(210)]_6 + 2[P($ $2[P(130)P(232)]_6 + 2[P(130)P(233)]_6 + 2[P(131)P(201)]_6 + 2[P(131)P(202)]_3 + 2[P(131)P(313)]_3 + 2[P(133)P(200)]_3 + 2[P(133)P(201)]_6 + 2[P(133)P(201)]_6 + 2[P(133)P(201)]_6 + 2[P(133)P(201)]_6 + 2[P(131)P(202)]_7 + 2[P($ $2[P(133)P(212)]_6 + 2[P(133)P(300)]_3 + 2[P(202)P(231)]_6 + 2[P(210)P(222)]_6 + 2[P(220)P(222)]_3 + 2[P(220)P(313)]_6 + 2[P(221)P(313)]_6 + 2[P(222)P(313)]_6 + 2[P($ $2[P(223)P(331)]_3 + 2[P(230)P(312)]_6 + 2[P(231)P(313)]_6 + 2[P(232)P(320)]_6 + 2[P(302)P(322)]_6 + 2[P(320)P(323)]_6 + 2[P(330)P(332)]_3 + 3[P(000)P(003)]_3 + 2[P(320)P(320)]_6 + 2[P(320)P(320)P(320)]_6 + 2[P(320)P(320)P(320)]_6 + 2[P(320)P(320)P(320)P(320)_6 + 2[P(320)P(320)P(320)_6 + 2[P(320)P(320)P(320)_6 + 2[P(320)P(3$ $3[P(010)P(301)]_6 + 4[P(001)P(131)]_6 + 4[P(002)P(020)]_6 + 4[P(002)P(133)]_6 + 4[P(002)P(323)]_6 + 4[P(010)P(123)]_6 + 4[P(013)P(212)]_6 + 4[P(013)P(312)]_6 + 4[P($ $4[P(023)P(221)]_6 + 4[P(023)P(222)]_6 + 4[P(023)P(322)]_6 + 4[P(031)P(211)]_6 + 4[P(032)P(321)]_6 + 4[P(100)P(123)]_6 + 4[P(100)P(232)]_6 + 4[P(100)P(313)]_6 + 4[P($ $4[P(112)P(310)]_6 + 4[P(122)P(203)]_6 + 4[P(122)P(302)]_6 + 4[P(130)P(222)]_6 + 4[P(130)P(223)]_6 + 4[P(222)P(310)]_6 + 4[P(223)P(320)]_6 + 4[P(231)P(310)]_6 + 4[P(32)P(310)]_6 + 4[P$ $4[P(312)P(330)]_6 + 6[P(001)P(031)]_6 + 6[P(001)P(033)]_6 + 6[P(002)P(300)]_6 + 6[P(002)P(330)]_3 + 6[P(003)P(032)]_6 + 6[P(003)P(131)]_6 + 6[P(003)P(132)]_6 + 6[P(003)P(032)]_6 + 6[P($ $6[P(011)P(300)]_3 + 6[P(011)P(320)]_6 + 6[P(012)P(200)]_6 + 6[P(012)P(301)]_6 + 6[P(013)P(030)]_6 + 6[P(013)P(10)]_6 + 6[P(013)P(120)]_6 + 6[P(0$ $6[P(020)P(102)]_6 + 6[P(020)P(103)]_6 + 6[P(020)P(123)]_6 + 6[P(020)P(202)]_3 + 6[P(020)P(203)]_6 + 6[P(020)P(311)]_6 + 6[P(020)P(322)]_6 + 6[P($ $6[P(022)P(303)]_6 + 6[P(030)P(033)]_6 + 6[P(030)P(101)]_3 + 6[P(030)P(133)]_6 + 6[P(030)P(202)]_3 + 6[P(030)P(303)]_3 + 6[P(030)P(303)]_6 + 6[P($ $6[P(032)P(310)]_6 + 6[P(033)P(101)]_6 + 6[P(033)P(130)]_6 + 6[P(033)P(200)]_3 + 6[P(033)P(212)]_6 + 6[P(033)P(220)]_6 + 6[P(033)P(222)]_3 + 6[P(033)P(230)]_6 + 6[P(030)P(230)]_6 + 6[P($ $6[P(033)P(322)]_3 + 6[P(100)P(203)]_6 + 6[P(101)P(130)]_6 + 6[P(103)P(310)]_6 + 6[P(113)P(130)]_6 + 6[P(113)P(230)]_6 + 6[P(113)P(330)]_3 + 6[P(122)P(330)]_6 + 6[P(123)P(320)]_6 + 6[P(122)P(320)]_6 + 6[P(122)P(320)]_6 + 6[P(122)P(320)]_6 + 6[P(122)P(320)]_6 + 6[P($ $6[P(130)P(313)]_6 + 6[P(132)P(303)]_6 + 6[P(133)P(303)]_6 + 6[P(133)P(303)]_6 + 6[P(200)P(203)]_6 + 6[P(201)P(230)]_6 + 6[P(203)P(231)]_6 + 6[P(203)P(303)]_6 + 6[P($ $8[P(003)P(320)]_6 + 8[P(032)P(300)]_6$

Maximal Violations & Noise

Numerical Optimization

Minimize objective function $f(\lambda) \in \mathbb{R}$:

- **1** Real-valued parameters $\lambda = (\lambda_0, \dots, \lambda_n)$
- 2 Quantum states/measurements $ho_{AB},
 ho_{BC},
 ho_{CA}, M_A, M_B, M_C$

$$P_{ABC}(abc) = \text{Tr}[\Pi^{\mathsf{T}} \rho_{AB} \otimes \rho_{BC} \otimes \rho_{CA} \Pi M_{A,a} \otimes M_{B,b} \otimes M_{C,c}]$$

- **3** Distribution P_{ABC}
- 4 Plug into inequality I in homogeneous form $I(P_{ABC}) \geq 0$
- **5** Output is objective value $I(P_{ABC})$

Numerical Optimization Methods

■ Numerical minimization of $f(\lambda)$

$$f(\lambda_{(k+1)}) = \lambda_{(k)} - \gamma_{(k)} \nabla f(\lambda_{(k)})$$

- Non-convex, non-linear, smooth/continuous
- Gradient Descent, BFGS Method, Nelder-Mead simplex method
- Stochastic methods: simulated annealing, basin-hopping

Parameterizing Unitary Group

■ Spengler, Huber and Heismayr **Spengler_2010_Unitary** demonstrate a parameterization of $\mathcal{U}(d)$ where the parameters are organized in a $d \times d$ -matrix of real values $\lambda_{n,m}$

$$U = \left[\prod_{m=1}^{d-1} \left(\prod_{n=m+1}^{d} R_{m,n} R P_{n,m} \right) \right] \cdot \left[\prod_{l=1}^{d} G P_{l} \right]$$

- Global Phase Terms: $GP_l = \exp(iP_l\lambda_{l,l})$
- Relative Phase Terms: $RP_{n,m} = \exp(iP_n\lambda_{n,m})$
- Rotation Terms: $R_{m,n} = \exp(i\sigma_{m,n}\lambda_{m,n})$
- Projection Operators: $P_l = |l\rangle\langle l|$
- Anti-symmetric σ -matrices: $\sigma_{m,n} = -i|m\rangle\langle n| + i|n\rangle\langle m|$
- Parameters $\lambda_{n,m} \in [0,2\pi]$

Parameterizing Unitary Group Cont'd

- Each parameter $\lambda_{n,m}$ has physical interpretation
- Degeneracies are easily eliminated such as global phase

$$\forall l = 1, \dots, d : \lambda_{l,l} = 0 \implies GP_l = 1$$

- Parameterize $U \in \mathcal{U}(d)$ up to global phase denoted $\tilde{U} \in \mathcal{U}(d)$
- Computationally efficient

$$GP_{l} = \mathbb{1} + P_{l} \left(e^{i\lambda_{l,l}} - 1 \right)$$

$$RP_{n,m} = \mathbb{1} + P_{n} \left(e^{i\lambda_{n,m}} - 1 \right)$$

$$R_{m,n} = \mathbb{1} + (|m\rangle\langle m| + |n\rangle\langle n|)(\cos\lambda_{n,m} - 1)$$

$$+ (|m\rangle\langle n| - |n\rangle\langle m|)\sin\lambda_{n,m}$$

Parameterizing States

- Each latent resource $\rho \in (\rho_{AB}, \rho_{BC}, \rho_{CA})$ modeled as bipartite qubit state acting on $\mathcal{H}^{d/2} \otimes \mathcal{H}^{d/2}$
- $\blacksquare \ d \times d$ positive semi-definite (PSD) hermitian matrices with unitary trace
- \blacksquare Cholesky Parametrization allows one to write any hermitian PSD as $\rho=T^\dagger T$
- For d = 4:

$$T = \begin{bmatrix} \lambda_1 & 0 & 0 & 0 \\ \lambda_2 + i\lambda_3 & \lambda_4 & 0 & 0 \\ \lambda_5 + i\lambda_6 & \lambda_7 + i\lambda_8 & \lambda_9 & 0 \\ \lambda_{10} + i\lambda_{11} & \lambda_{12} + i\lambda_{13} & \lambda_{14} + i\lambda_{15} & \lambda_{16} \end{bmatrix}$$

- lacksquare d^2 real-valued parameters
- Normalized $ho = T^\dagger T/{
 m Tr} \left(T^\dagger T\right)$ adds degeneracy

Parameterizing States Cont'd

■ SHH parameterization Spengler_2010_Unitary exploits spectral decomposition; for rank $k \le d$ density matrix

$$\rho = \sum_{i=1}^{k} p_i |\psi_i\rangle\langle\psi_i| \qquad p_i \ge 0, \sum_i p_i = 1$$

- Orthonormal k-element sub-basis $\{|\psi_i\rangle\}$ of \mathcal{H}^d can be transformed into computational basis $\{|i\rangle\}$ by unitary $U \in \mathcal{U}(d)$ such that $|\psi_i\rangle = U|i\rangle$
- Freedom to choice k
- lacksquare Parameterize ho through $\{p_i\}$ and \tilde{U}_k

$$\tilde{U}_k = \prod_{m=1}^k \left(\prod_{n=m+1}^d R_{m,n} R P_{n,m} \right)$$

■ real-value parameters $d^2-(d-k)^2-k$ for \tilde{U}_k , k-1 for $\{p_i\}$ (no degeneracy)

Parameterizing POVMs

■ Each party (A, B, C) is assigned a projective-operator valued measure (POVM) (M_A, M_B, M_C)

$$\forall |\psi\rangle \in \mathcal{H}^d : \langle \psi | M_{\chi} | \psi \rangle \ge 0 \quad M_{\chi} = M_{\chi}^{\dagger}$$

■ *n*-outcome measurement

$$M_{\chi} = \{M_{\chi,1}, \dots, M_{\chi,n}\} \quad \sum_{i=1}^{n} M_{\chi,i} = 1$$

- For n=2 outcomes, a parameterization exists by constraining the eigenvalues of $M_{\chi,i}$; for n>2 not aware of anything
- Warrants consideration of projective-valued measures (PVMs)

Parameterizing PVMs

■ Each party (A,B,C) is assigned n-outcome (M_A,M_B,M_C) such that,

$$M_{\chi,i}M_{\chi,j} = \delta_{ij}M_{\chi,i} \quad M_{\chi,i} = |m_{\chi,i}\rangle\langle m_{\chi,i}|$$

- Inspired by Pal_2010 parameterizing PVMs means parameterizing a n-element sub-basis $\{|m_{\chi,i}\rangle\}$
- Use unitary transformation again

$$\{|m_{\chi,1}\rangle,\ldots,|m_{\chi,n}\rangle\}=\{U|1\rangle,\ldots,U|n\rangle\}$$

- \blacksquare Global phase and remaining basis irrelevant: \tilde{U}_n requires n(2d-n-1) real-valued parameters
- PVMs are computationally more efficient

$$P_{ABC}(abc) = \langle m_{A,a} m_{B,b} m_{C,c} | \Pi^{\mathsf{T}} \rho_{AB} \otimes \rho_{BC} \otimes \rho_{CA} \Pi | m_{A,a} m_{B,b} m_{C,c} \rangle$$

Max Entangled vs. Max Violating

Maximally Violating Distributions

- Able to out-perform violation provided by Fritz distribution
- Maximally-violating states are not maximally-entangled;
 similar to detection loop-hole example of Methot_2006
- Both symmetric and asymmetric inequalities exhibit same qualitative features

Uniform Noise

$$\mathcal{U}_{\varepsilon}(P) = (1 - \varepsilon)P + \varepsilon \mathcal{U}$$

Uniform Distribution

Robust to Noise

Robust to Noise Zoomed

Noisy Non-locality

Noisy Yet Non-Local Fritz Distribution

$$= 0.00133$$

Conclusions

- Inflation technique capable of producing polynomial inequalities with quantum/classical witnesses
- 2 Fritz witness-able by party-symmetric inequalities
- Maximally violating distributions require non-maximally entangled states

Postdoc Opportunities At The Perimeter Institute

Two Postdoctoral Fellowships in Quantum Foundations at the Perimeter Institute

Project: Quantum Causal Structures

- How to define quantum causal models
- Quantum causal inference
- How to provide causal explanations of Bell inequality violations
- Exploring the possibilities for indefinite causal structure

Application & Info:

The Perimeter Website → Research → Careers → Positions →
Quantum Causal Structures Postdoctoral Fellowship
https://www.perimeterinstitute.ca/2016/
17-quantum-causal-structures-postdoctoral-fellowship

Funded by the John Templeton Foundation

References I

Optional Slides

Notation [Optional]

Question: Which marginal models $P^{\mathcal{M}}$ are compatible with a causal structure \mathcal{G} ?

lacktriangle Marginal model $P^{\mathcal{M}}$ is collection of probability distributions

$$P^{\mathcal{M}} = \{P_{V_1}, \dots, P_{V_k}\}$$

lacktriangle Marginal scenario $\mathcal{M} = \{V_1, \dots, V_k\}$

$$V \in \mathcal{M}, V' \subseteq V \implies V' \in \mathcal{M}$$

- Joint random variables $\mathcal{J} = \bigcup_i V_i = \{v_1, \dots, v_n\}$
- \blacksquare Causal Structure $\mathcal{G} = (\mathcal{N}, \mathcal{E})$ is a directed acyclic graph (DAG)
- lacktriangle Nodes classified into latent nodes \mathcal{N}_L and observed nodes \mathcal{N}_O

Graph Theory [Optional]

Let $n, m \in \mathcal{N}$ be nodes of the graph \mathcal{G} .

- parents of n: $Pa_{\mathcal{G}}(n) \equiv \{m \mid m \to n\}$
- children of n: $\mathsf{Ch}_{\mathcal{G}}(n) \equiv \{m \mid n \to m\}$
- lacksquare ancestry of n: $\operatorname{An}_{\mathcal{G}}(n) \equiv \bigcup_{i \in \mathbb{W}} \operatorname{Pa}_{\mathcal{G}}^i(n)$

$$\mathsf{Pa}^0_{\mathcal{G}}(n) = n \qquad \mathsf{Pa}^i_{\mathcal{G}}(n) \equiv \mathsf{Pa}_{\mathcal{G}}\Big(\mathsf{Pa}^{i-1}_{\mathcal{G}}(n)\Big)$$

Notation extends to sets of nodes $N \subseteq \mathcal{N}$,

- \blacksquare parents of $N \colon \operatorname{Pa}_{\mathcal{G}}(N) \equiv \bigcup_{n \in N} \operatorname{Pa}_{\mathcal{G}}(n)$
- children of N: $\mathsf{Ch}_{\mathcal{G}}(N) \equiv \bigcup_{n \in N} \mathsf{Ch}_{\mathcal{G}}(n)$
- \blacksquare ancestry of N: $\mathsf{An}_{\mathcal{G}}(N) \equiv \bigcup_{n \in N} \mathsf{An}_{\mathcal{G}}(n)$

An induced subgraph of $\mathcal{G}=(\mathcal{N},\mathcal{E})$ due to $N\subseteq\mathcal{N}$

$$\mathsf{Sub}_{\mathcal{G}}(N) = (N, \{e \in \mathcal{E} \mid e \subseteq N\})$$

Causal Compatibility [Optional]

Question: Which marginal models $P^{\mathcal{M}}$ are compatible with a causal structure \mathcal{G} ?

Answer: $P^{\mathcal{M}}$ is compatible with \mathcal{G} if there exists a set of casual parameters

$$\left\{P_{n\mid \mathsf{Pa}_{\mathcal{G}}(n)}\mid n\in\mathcal{N}\right\}$$

Such that for each $V \in \mathcal{M}$, P_V can be recovered:

$$P_V = \sum_{\mathcal{N} \setminus V} P_{\mathcal{N}}$$

Inequality: A casual compatibility inequality I is an inequality over $P^{\mathcal{M}}$ that is satisfied by all compatible $P^{\mathcal{M}}$

Deriving Inequalities [Optional]

Two necessary components to compatibility:

- **1** Marginal problem: $\forall V \in \mathcal{M} : P_V = \sum_{\mathcal{N} \setminus V} P_{\mathcal{N}}$
 - Is the marginal model contextual or non-contextual?
 - 3 distinct ways to tackle this problem
 - 1 Convex hull, Polytope projection, Fourier-Motzkin
 - Possibilistic Hardy Inequalities (Hypergraph transversals)
 - 3 Linear Program Feasibility/Infeasibility
- Markov Separation: $P_{\mathcal{N}} = \prod_{n \in \mathcal{N}} P_{n|\mathsf{Pa}_{\mathcal{G}}(n)}$
 - Much harder to determine since latent nodes \mathcal{N}_O have unspecified behaviour
 - It is possible to turn Markov Separation problem into a Marginal problem (at least partially)

Inflation Technique [Optional]

Developed by Wolfe, Spekkens, and Fritz Inflation

Definition

An inflation of a causal structure \mathcal{G} is another causal structure \mathcal{G}' such that:

$$\forall n' \in \mathcal{N}', n' \sim n \in \mathcal{N} : \mathsf{AnSub}_{\mathcal{G}'}(n') \sim \mathsf{AnSub}_{\mathcal{G}}(n)$$

Where $\mathsf{AnSub}_{\mathcal{G}}(n)$ denotes the ancestral sub-graph of n in \mathcal{G}

$$\mathsf{AnSub}_{\mathcal{G}}(n) = \mathsf{Sub}_{\mathcal{G}}\big(\mathsf{An}_{\mathcal{G}}(n)\big)$$

And ' \sim ' is a copy-index equivalence relation

$$A_1 \sim A_2 \sim A \not\sim B_1 \sim B_2 \sim B$$

Inflation Lemma [Optional]

If one has obtained \mathcal{G} , inflation \mathcal{G}' and *compatible* marginal distribution P_N where $N\subseteq\mathcal{N}$, then:

 \blacksquare There exists causal parameters $\left\{P_{n|\mathsf{Pa}_{\mathcal{G}}(n)}\mid n\in\mathcal{N}\right\}$ such that

$$P_N = \prod_{n \in N} P_{n|\mathsf{Pa}_{\mathcal{G}}(n)}$$

- $2 \ \mathsf{AnSub}_{\mathcal{G}'}(n') \sim \mathsf{AnSub}_{\mathcal{G}}(n) \implies \mathsf{Pa}_{\mathcal{G}'}(n') \sim \mathsf{Pa}_{\mathcal{G}}(n)$
- 3 Construct inflated causal parameters

$$\forall n' \in \mathcal{N}' : P_{n'|\mathsf{Pa}_{\mathcal{G}'}(n')} \equiv P_{n|\mathsf{Pa}_{\mathcal{G}}(n)}$$

4 Obtain *compatible* marginal distributions over any $N' \subseteq \mathcal{N}'$

$$P_{N'} = \prod_{n' \in N'} P_{n'|\mathsf{Pa}_{\mathcal{G}'}(n')}$$

Inflation Lemma Cont'd [Optional]

- Inflation procedure holds for any $N \in \mathcal{N}, N' \in \mathcal{N}'$ where $\mathsf{AnSub}_{\mathcal{G}'}(N) \sim \mathsf{AnSub}_{\mathcal{G}'}(N')$
- lacksquare Define injectable sets of \mathcal{G}' and images of the injectable of \mathcal{G}

$$\begin{split} \operatorname{Inj}_{\mathcal{G}}(\mathcal{G}') &\equiv \left\{ N' \subseteq \mathcal{N}' \mid \exists N \subseteq \mathcal{N} : \operatorname{AnSub}_{\mathcal{G}}(N) \sim \operatorname{AnSub}_{\mathcal{G}'}(N') \right\} \\ \operatorname{ImInj}_{\mathcal{G}}(\mathcal{G}') &\equiv \left\{ N \subseteq \mathcal{N} \mid \exists N' \subseteq \mathcal{N}' : \operatorname{AnSub}_{\mathcal{G}}(N) \sim \operatorname{AnSub}_{\mathcal{G}'}(N') \right\} \end{split}$$

- For $N' \in \operatorname{Inj}_{\mathcal{G}}(\mathcal{G}')$ there is a unique $N \subseteq \mathcal{N}$ such that $\operatorname{AnSub}_{\mathcal{G}}(N) \sim \operatorname{AnSub}_{\mathcal{G}'}(N')$
- For $N \in \operatorname{Inj}_{\mathcal{G}}(\mathcal{G})$ there can *exist many* $N' \subseteq \mathcal{N}'$ such that $\operatorname{AnSub}_{\mathcal{G}}(N) \sim \operatorname{AnSub}_{\mathcal{G}'}(N')$

Inflation Lemma Cont'd [Optional]

Lemma

The Inflation Lemma: Inflation Given a particular inflation \mathcal{G}' of \mathcal{G} , if a marginal model $\{P_N \mid N \in \mathrm{ImInj}_{\mathcal{G}}(\mathcal{G}')\}$ is compatible with \mathcal{G} then all marginal models $\{P_{N'} \mid N' \in \mathrm{Inj}_{\mathcal{G}}(\mathcal{G}')\}$ are compatible with \mathcal{G}' provided that $P_N = P_{N'}$ for all instances where $N \sim N'$.

Corollary

Any causal compatibility inequality I' constraining the injectable sets $\operatorname{Inj}_{\mathcal{G}}(\mathcal{G}')$ can be deflated into a causal compatibility inequality I constraining the images of the injectable sets $\operatorname{ImInj}_{\mathcal{G}}(\mathcal{G}')$.

Pre-injectable Sets [Optional]

- \blacksquare d-separation relations + inflation = polynomial inequalities over $\mathcal G$
- Restrict focus to sets N' that are partitioned into N_1', N_2' d-separated by empty set \emptyset
- \blacksquare A pre-injectable set N':

$$\begin{split} N' &= \coprod_i N_i' \quad \forall i: N_i' \in \mathrm{Inj}_{\mathcal{G}}(\mathcal{G}') \\ \forall i, j: N_i' \perp N_j' \iff \mathrm{An}_{\mathcal{G}'}(N_i') \cap \mathrm{An}_{\mathcal{G}'}\Big(N_j'\Big) = \emptyset \end{split}$$

lacksquare Only need to consider maximal pre-injectable sets $\mathsf{PreInj}_{\mathcal{G}}(\mathcal{G}')$

Network Permutation Matrix [Optional]

- States and measurements in the Triangle Scenario are not aligned
- Without Π , P_{ABC} would be separable
- Required to align B's measurement over $\operatorname{Tr}_{A,C}(\rho_{AB}\otimes\rho_{BC})$
- \blacksquare Π is a $2^6\times 2^6$ matrix
- Shifts one qubit to the left

$$\Pi \equiv \sum_{|q_i\rangle \in \{|0\rangle, |1\rangle\}} |q_2 q_3 q_4 q_5 q_6 q_1\rangle \langle q_1 q_2 q_3 q_4 q_5 q_6|$$

Outcomes and Events [Optional]

Definition

Each variable v has finite set of outcomes O_v .

Each set of variables V has finite set of events $\mathcal{E}(V)$:

$$\mathcal{E}(V) \equiv \{s : V \to O_V \mid \forall v \in V, s(v) \in O_v\}$$

Definition

The set of events over the joint variables $\mathcal{E}(\mathcal{J})$ are termed the joint events.

Definition

The set of events over the marginal contexts are the marginal events

$$\mathcal{E}(\mathcal{M}) \equiv \coprod_{V \in \mathcal{M}} \mathcal{E}(V)$$

Distribution Vectors [Optional]

Definition

The joint distribution vector $\mathcal{P}^{\mathcal{J}}$

$$\mathcal{P}_j^{\mathcal{J}} = P_{\mathcal{J}}(j) \quad \forall j \in \mathcal{E}(\mathcal{J})$$

Definition

The marginal distribution vector $\mathcal{P}^{\mathcal{M}}$

$$\mathcal{P}_m^{\mathcal{M}} = P_{\mathcal{D}(m)}(m) \quad \forall m \in \mathcal{E}(\mathcal{M}), \mathcal{D}(m) \in \mathcal{M}$$

Can now write complete marginal problem as matrix multiplication:

$$\forall V \in \mathcal{M} : P_V = \sum_{\mathcal{J} \setminus V} P_{\mathcal{J}} \iff \mathcal{P}^{\mathcal{M}} = M \cdot \mathcal{P}^{\mathcal{J}}$$

Incidence Matrix [Optional]

- Incidence matrix M is a bit-wise matrix
- Row-indexed by marginal events $m \in \mathcal{E}(\mathcal{M})$
- Column-indexed by joint events $j \in \mathcal{E}(\mathcal{J})$

$$M_{m,j} = \begin{cases} 1 & m = j|_{\mathcal{D}(m)} \\ 0 & \text{otherwise} \end{cases}$$

$$\begin{aligned} \#\mathsf{Columns} &= |\mathcal{E}(\mathcal{J})| = \prod_{v \in \mathcal{J}} |O_v| \\ \#\mathsf{Rows} &= |\mathcal{E}(\mathcal{M})| = \sum_{V \in \mathcal{M}} \prod_{v \in V} |O_v| \end{aligned}$$

Causal Symmetry [Optional]

Desirable to find compatibility inequality I such that

$$\forall \varphi \in \mathsf{Perm}(A,B,C) : \varphi[I] = I$$

- Compatibility is independent of variable labels $I, \mathcal{G} \to \varphi[I], \varphi[\mathcal{G}]$
- $\blacksquare \ \operatorname{Need} \ \varphi[\mathcal{G}] = \mathcal{G} \ \operatorname{to} \ \operatorname{find} \ \operatorname{new} \ \varphi[I]$

Definition

The causal symmetry group of causal structure G:

$$\mathsf{Aut}(\mathcal{G}) = \{ \varphi \in \mathsf{Perm}(\mathcal{N}) \mid \varphi[\mathcal{G}] = \mathcal{G} \}$$

Strictly speaking, one needs to preserve observable nodes:

$$\operatorname{Aut}_{\mathcal{N}_O}(\mathcal{G}) = \{ \varphi \in \operatorname{Aut}(\mathcal{G}) \mid \varphi[\mathcal{N}_O] = \mathcal{N}_O \}$$

Causal Symmetry and Inflation [Optional]

- Causal symmetry group for \mathcal{G}' is no good!
- Not possible to deflate inequality if it's not in terms of injectable sets

Definition

The restricted causal symmetry group Φ of \mathcal{G}' :

$$\Phi = \mathsf{Aut}_{\mathsf{PreInj}_{\mathcal{G}}(\mathcal{G}')}(\mathcal{G}')$$

Restricted Causal Symmetry of Large Inflation [Optional]

lacktriangledown for the large inflation is an order 48 group with 4 generators

Symmetric Incidence [Optional]

■ Group orbits through repeated action of $\varphi \in \Phi$ on $m \in \mathcal{E}(\mathcal{M})$ and $j \in \mathcal{E}(\mathcal{J})$

$$\begin{split} \Phi[m] &\equiv \{\varphi[m] \mid \varphi \in \Phi\} \\ \Phi[j] &\equiv \{\varphi[j] \mid \varphi \in \Phi\} \end{split}$$

• Construct symmetric incidence matrix $\Phi[M]$

$$\begin{split} \Phi[M]_{\Phi[m],\Phi[j]} &= \sum_{m' \in \Phi[m]} \sum_{j' \in \Phi[j]} M_{m',j'} \\ \Phi[M] &= \Lambda_{\Phi[\mathcal{E}(\mathcal{M})]} \cdot M \cdot \Lambda_{\Phi[\mathcal{E}(\mathcal{J})]} \end{split}$$

- ullet $\Phi[M]$ not a bit-wise matrix like M
- For large inflation M is $16,896 \times 16,777,216$
- \blacksquare For large inflation $\Phi[M]$ is $450\times358, 120$

Local Minima Concerns

Results [Optional]

- Finding global minimum is tricky
- Difficult to converge to violation
- Noisy seed (Gaussian noise):

$$\lambda_{(0)} = \lambda_{(F)} + \delta \lambda$$
 $\delta \lambda_i \sim \mathcal{N} \left(\mu = 0, \sigma^2 = (2\pi 10^{\chi})^2 \right)$

Uniform seed:

$$\lambda_{(0),i} \sim \mathcal{U}([0,2\pi])$$

Fritz Local Minima [Optional]

Fritz Local Minima Zoomed [Optional]

Max Entangled vs. Max Violating (???) [Optional]

Max Entangled vs. Max Violating (???) [Optional]

