第五周

必做题

- -、(1) 求级数 $\sum_{n=0}^{\infty} \frac{(2n)!!}{(2n+1)!!} x^{2n+1}$ 的和函数,这里0!!=1. 并由此求 $\sum_{n=0}^{\infty} \frac{(2n)!!}{(2n+1)!!} \cdot \frac{1}{2^n}$ 的和.
 - (2) 利用公式 $\int_0^{\frac{\pi}{2}} \sin^{2n+1} x dx = \frac{(2n)!!}{(2n+1)!!}$, 求 $\sum_{n=0}^{\infty} \frac{(2n)!!}{(2n+1)!!} \cdot \frac{1}{2^n}$ 的和.
- 二、解微分方程 $(4x-1)^2y''-2(4x-1)y'+8y=0$.
- 三、设螺旋面 $S: x = r\cos\theta$, $y = r\sin\theta$, $z = h\theta$, 其中 $0 \le r \le a$, $0 \le \theta \le 2\pi$, 试求该曲面面积.
- 四、设对于下半空间x>0内任意的光滑有向封闭曲面,都有

$$\bigoplus_{\Sigma} xf(x)dydz - xyf(x)dzdx - e^{2x}zdxdy = 0$$

其中函数 f(x) 在 $(0,+\infty)$ 内具有连续的一阶导数,且 $\lim_{x\to 0^+} f(x) = 1$,求 f(x).

五、设 f(x) 在 $[1,+\infty)$ 上有连续的二阶导数, f(1)=0 , f'(1)=1 ,且二元函数 $z=(x^2+y^2)f(x^2+y^2)$

满足
$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$
, 求 $f(x)$ 在 $[1,+\infty)$ 上的最大值.

六、设函数 f(x,y) 在区域 $D:0 \le x \le 1,0 \le y \le 1$ 上具有连续的四阶偏导数,且 $\left| \frac{\partial^4 f(x,y)}{\partial x^2 \partial y^2} \right| \le 3$,在 D

的边界上
$$f(x,y)$$
 恒为零,试证明:
$$\left| \iint_D f(x,y) d\sigma \right| \leq \frac{1}{48}.$$

选做题

七、设函数 f(x,y) 及它的二阶偏导数在全平面连续,且 f(0,0) = 0, $\left| \frac{\partial f}{\partial x} \right| \le 2|x-y|$, $\left| \frac{\partial f}{\partial y} \right| \le 2|x-y|$,

证明: |f(5,4)|≤1.

八、设 f(x) 在 $(-\infty,\infty)$ 上有界, 且导数连续, 又对任意的实数 x , 有 $|f(x)+f'(x)| \le 1$, 试证: $|f(x)| \le 1$