第二章 线性规划_的对偶理论

- > 对偶问题定义
- > 对偶问题的性质
- > 单纯形表中的对偶解
- > 对偶单纯形法
- > 灵敏度分析

对偶的定义

原问题

 $\max z = cx$

s.t. $Ax \leq b$

$$x \ge 0$$

 $\begin{array}{c|c}
m & c \\
\hline
m & A \\
\hline
- & n
\end{array}$

对偶问题

 $\min w = b^T y$

s.t.
$$A^T y \ge c^T$$

 $y \ge 0$

$$\begin{array}{c|c}
min & b^{T} \\
\hline
 & A^{T} \\
\hline
 & -m -
\end{array}$$

自返性

第二章 线性规划_的对偶理论

- > 对偶问题定义
- > 对偶问题的性质
- > 单纯形表中的对偶解
- > 对偶单纯形法
- > 灵敏度分析

对偶问题的性质

- ◆ 弱对偶性: $cx \leq b^Ty$
- ◆ 最优性: $cx = b^T y \Rightarrow x$ 、y均为最优解
- ◆ 强对偶性: 设 x^0 、 y^0 分别是原始问题和对偶问题的可行解,则必存在最优解 x^* 、 y^* ,且有 $cx^*=b^Ty^*$
- ◆互补松弛性:最优解的充要条件

$$(Ax-b)^T y = 0 \text{ for } x^T (A^T y - c^T) = 0$$

$$x_S^T y = 0 \text{ for } x^T y_S = 0$$

对偶问题的性质

◆ 弱对偶性: 原问题可行解的目标函数值小于等于对偶问题可行解的目标函数值。

推导:设 x^0 、 y^0 分别是原始问题和对偶问题的可行解,有

$$z = cx^0 \le y^{0T}Ax^0 \le y^{0T}b = w$$

说明: 目标函数值互为对方问题的上、下界

推论:一个问题是无界解时,另一个问题无可行解

最优性

设 x^0 、 y^0 分别是原始问题和对偶问题的可行解,则当 $cx^0=b^Ty^0$ 时, x^0 、 y^0 均为最优解。

证: 设x*、y*分别是原始问题和对偶问题的最优解, 有

$$cx^0 \le cx^* \le b^Ty^* \le b^Ty^0$$

所以 $cx^o = cx^* = b^Ty^* = b^Ty^0$

强对偶性

设 x^0 、 y^0 分别是原始问题和对偶问题的可行解,则必存在最优解 x^* 、 y^* ,且有 $cx^*=b^Ty^*$ 。

证:由弱对偶性知原问题的目标函数值有上界,对偶问题的目标函数值有下界,故均有最优值。

设原问题的最优解为 x^* 时,有 $x_B^*=B^{-1}b$,由单纯形法的矩阵分析,可知 $y=(c_BB^{-1})^T$ 是一个可行解,满足:

$$w = b^{T}y = c_{B}B^{-1}b = c_{B}x_{B}^{*} = cx^{*} = z^{*}$$

由最优性得 $w = z^* = w^*$

单纯形法的矩阵分析

初始单纯形表

	c	0
$0 x_s b$	\boldsymbol{A}	I
$\sigma_{\!j}$	C	0

$$\sigma_{j} = c_{j} - \sum_{i=1}^{m} \overline{c}_{i} a_{ij}$$

$$\sigma_{j} = c_{j} - c_{B} p_{j}$$

$$c_{B} \triangleq [\overline{c}_{1}, \dots, \overline{c}_{m}]$$

最终单纯形表

	C	0	
$c_B x_B B^{-1}b$	$B^{-1}A$	B -1	
$\sigma_{\!j}$	$c - c_B B^{-1} A$	$-c_BB^{-1}$	

$$\boldsymbol{\sigma}_{j} = \boldsymbol{c}_{j} - \boldsymbol{c}_{B} \boldsymbol{B}^{-1} \boldsymbol{p}_{j}$$

$$\boldsymbol{\sigma} = \boldsymbol{c} - \boldsymbol{c}_B \boldsymbol{B}^{-1} \boldsymbol{A}$$

$$\boldsymbol{\sigma} = \boldsymbol{c} - \boldsymbol{y}^T \boldsymbol{A}$$

原问题和对偶问题解的关系

(1)两个问题都有可行解,则都有最优解。

(2)一个问题有无界解,另一个问题必无可行解。

(3)两个问题都无可行解

互补松弛性

可行解x⁰、y⁰分别是原始问题和对偶问题最优解的充要条件是

$$(Ax^0-b)^Ty^0=0$$
 和 $x^{0T}(A^Ty^0-c^T)=0$ 或 $x_s^{0T}y^0=0$ 和 $x^{0T}y_s^0=0$ 。

互补松弛性证明(充分性)

原问题

 $\max z = cx$

s.t.
$$A\mathbf{x} + \mathbf{x}_s = \mathbf{b}$$

 $\mathbf{x}, \mathbf{x}_s \ge 0$

对偶问题

 $\min w = b^T v$

s.t.
$$A^{T}y - y_{s} = c^{T}$$
$$y, y_{s} \ge 0$$

可得:
$$z = cx^0 = x^{0T} (A^T y^0 - y_S^0) = x^{0T} A^T y^0 - x^{0T} y_S^0$$

 $w = b^T y^0 = (x^{0T} A^T + x_S^{0T}) y^0 = x^{0T} A^T y^0 + x_S^{0T} y^0$

互补松弛性证明(必要性)

必要性

若
$$x^0$$
、 y^0 是最优解,有: $cx^0=b^Ty^0=z^*=w^*$

原问题

 $\max z = cx$

s.t. $Ax \leq b$

 $\mathbf{x}, \mathbf{x}_{s} \geq 0$

对偶问题

 $\min w = b^T y$

s.t. $A^Ty \ge c^T$

 $y, y_s \ge 0$

可得: $x^{0T}A^{T}y^{0} \le b^{T}y^{0} = w^{*} = z^{*} = cx^{0} \le x^{0T}A^{T}y^{0}$

 $\exists \mathbb{I}: \ z^* = w^* = x^{0T}A^Ty^0$

原始问题和对偶问题变量、松弛变量的维数

 $\max z = cx$

s.t.
$$Ax+x_s=b$$

 $x, x_s \ge 0$

min
$$w=b^Ty$$
s.t. $A^Ty-y_s=c^T$
 $y, y_s \ge 0$

$$\mathbf{x}^T \mathbf{y}_s = 0$$
 $\mathbf{y}^T \mathbf{x}_s = 0$

原变量和对偶变量的对应关系

 $x_j y_{m+j} = 0$ $y_i x_{n+i} = 0$ (i=1,2,...,n; j=1,2,...,m) 在一对变量中,其中一个大于0,另一个一定等于0

互补松弛性定理的应用举例

例:
$$min z = 2x_1 + 3x_2 + 5x_3 + 2x_4 + 3x_5$$

$$\left(LP \right) \begin{cases} x_1 + x_2 + 2x_3 + x_4 + 3x_5 \ge 4 \\ 2x_1 - x_2 + 3x_3 + x_4 + x_5 \ge 3 \\ x_i \ge 0 \qquad (i = 1 \dots 5) \end{cases}$$

用对偶理论求(LP)的最优解

对偶问题的解

解:对偶问题(DP)为:

$$max w = 4y_1 + 3y_2$$

$$y_1 + 2y_2 \le 2$$

$$y_1 - y_2 \le 3$$

$$y_1 - y_2 \le 3$$

$$2y_1 + 3y_2 \le 5$$

其对偶解

$$y_1 + y_2 \le 2$$

$$y_1^* = 4/5$$

$$3y_1 + y_2 \le 3$$

$$y_2^* = 3/5$$

$$y_1, y_2 \ge 0$$

$$w^* = 5$$

用对偶问题解求原问题解

将 y_1^* , y_2^* 代入,知②,③,④为严格不等式由 $\mathbf{x}^{*T}(\mathbf{A}^T\mathbf{y}^* - \mathbf{c}^T)$ =0得: $x_2 = x_3 = x_4 = 0$ 由 $(\mathbf{A}\mathbf{x}^* - \mathbf{b})^T\mathbf{y}^* = 0$, y_1^* 、 $y_2^* > 0$,知:

$$\begin{cases} x_1 + 3x_5 = 4 \\ 2x_1 + x_5 = 3 \end{cases}$$

$$x^* = [1, 0, 0, 0, 1]^T$$

$$z^* = 5$$

其他对偶关系

 $\max z = cx$

s.t. $Ax \leq b$

x ≥0

min $w = \boldsymbol{b}^T \boldsymbol{y}$

 $s.t. A^T y \ge c^T$ $y \ge 0$

$$y \ge 0$$

$$Ax \ge b$$

$$y \leq 0$$

$$Ax = b$$

y free

$$x \le 0$$

$$A^T y \leq c^T$$

x free

$$\mathbf{A}^T \mathbf{y} = \mathbf{c}^T$$

原问题与对偶问题的对应关系

原问题 对偶问题 约束 原变量 原变量 约束 原变量 松弛变量 松弛变量 原变量 基解 检验数 检验数 基解

第二章 线性规划_的对偶理论

- > 对偶问题定义
- > 对偶问题的性质
- > 单纯形表中的对偶解
- > 对偶单纯形法
- > 灵敏度分析

基解和检验数对应关系举例

例:

$$\max z = 9x_1 + 5x_2 + 8x_3$$

$$\begin{cases} 3x_1 + x_2 + x_3 \le 5 \\ x_1 + x_2 + 8x_3 \le 1 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$
LP:

$$min \ w = 5y_1 + y_2$$

$$\begin{cases} 3y_1 + y_2 \ge 9 \\ y_1 + y_2 \ge 5 \end{cases}$$

$$y_1 + 8y_2 \ge 8$$

$$y_1, y_2 \ge 0$$

初始单纯形表

			9	5	8	0	0
C_B	基	b	\boldsymbol{x}_1	x_2	x_3	x_4	x_5
0	x_4	5	3	1	1	1	0
0	x_5	1	1	1	8	0	1
	$\sigma_{\!j}$		9	5	8	0	0

最终单纯形表

			9	5	8	0	0
C_B	基	b	x_1	x_2	x_3	\mathcal{X}_4	x_5
0	x_4	2	0	-2	-23	1	-3
9	x_1	1	1	1	8	0	1
	$\sigma_{\!j}$		0	-4	-64	0	-9

此时:原问题的最优解: $x^*=[1,0,0,2,0]^T$, $z^*=9$

对偶问题的最优解

根据互补松弛性:

$$\begin{cases} x_{j} & y_{m+j} = 0 & (j = 1 - m) \\ x_{j} & \longrightarrow y_{2+j} & (j = 1 - m) \end{cases} \qquad x_{n+i} & y_{i} = 0 & (i = 1 - m) \\ x_{3+i} & \longrightarrow y_{i} & (i = 1, 2) \end{cases}$$

$$n = 3, m = 2$$

$$x_{1} & \longrightarrow y_{3} \qquad x_{2} & \longrightarrow y_{4} \qquad x_{3} & \longrightarrow y_{5}$$

$$x_{4} & \longrightarrow y_{1} \qquad x_{5} & \longrightarrow y_{2}$$

得: *y**=[0, 9, 0, 4, 64]^T

$$\sigma_j = c_j - \sum_{i=1}^m \overline{c}_i a_{ij} = c_j - c_B p_j$$

单纯形法的矩阵描述

$$\boldsymbol{\sigma}_{j} = \boldsymbol{c}_{j} - \boldsymbol{c}_{B} \boldsymbol{B}^{-1} \boldsymbol{p}_{j}$$

$$\boldsymbol{\sigma} = \boldsymbol{c} - \boldsymbol{c}_{\scriptscriptstyle B} \boldsymbol{B}^{-1} \boldsymbol{A}$$

初始单纯形表

	c_B	c_N	0
$0 x_s b$	\boldsymbol{B}	$oldsymbol{N}$	I
$\sigma_{\!j}$	c_B	c_N	0

迭代后单纯形表

	c_B	c_N	0
$c_B x_B B^{-1}b$	I	$B^{-1}N$	B -1
$\sigma_{\!j}$	0	c_N - $c_B B^{-1} N$	$-c_BB^{-1}$

基解与检验数的对应关系

性质:单纯形表上,原问题的检验数对应对偶问题的一个基解

证明:对偶问题的约束方程 $A^Ty-y_s=c^T$

记
$$A=[BN]$$
 $y_s=[y_{sB}^T y_{sN}^T]^T$ $c=[c_B c_N]$

约束方程可改写为:

$$\boldsymbol{B}^{T}\boldsymbol{y}-\boldsymbol{y}_{SB} = \boldsymbol{c}_{B}^{T}$$
 $\boldsymbol{N}^{T}\boldsymbol{y}-\boldsymbol{y}_{SN} = \boldsymbol{c}_{N}^{T}$

基解与检验数的对应关系

$$\boldsymbol{B}^{T}\boldsymbol{y}\boldsymbol{-}\boldsymbol{y}_{SB} = \boldsymbol{c}_{B}^{T}$$
 $\boldsymbol{N}^{T}\boldsymbol{y}\boldsymbol{-}\boldsymbol{y}_{SN} = \boldsymbol{c}_{N}^{T}$

取 y_{sB} =0为对偶问题的非基变量,可得唯一解:

$$\mathbf{y} = (\mathbf{c}_{B}\mathbf{B}^{-1})^{\mathrm{T}}, \quad \mathbf{y}_{SN} = -(\mathbf{c}_{N} - \mathbf{c}_{B}\mathbf{B}^{-1}\mathbf{N})^{\mathrm{T}}$$

可见 $[\mathbf{y}^T \mathbf{y}_{sB}^T \mathbf{y}_{sN}^T]^T$ 为对偶问题的基解。

单纯形表上的对应关系

原变量	x_B	x_N	$\boldsymbol{\mathcal{X}_{S}}$
检验数	0	c_N - $c_B B^{-1} N$	$-c_BB^{-1}$
对偶变量	$-y_{sB}$	$-y_{sN}$	-y

$$\sigma_{j} = -y_{m+j}
\sigma_{n+i} = -y_{i} \quad (i=1,...,m; j=1,..., n)$$

对应关系与互补松弛性定理一致。

单纯形表同时给出了原问题和对偶问题的基解!

最优解的对应关系

当 $\mathbf{x}_B = \mathbf{B}^{-1}\mathbf{b}$ 为最优解时,有:

$$(\boldsymbol{c} - \boldsymbol{c}_{\boldsymbol{B}} \boldsymbol{B}^{-1} \boldsymbol{A}) \leq 0$$

-
$$c_B B^{-1}$$
 ≤0

此时, $y=(c_BB^{-1})^{\mathrm{T}}$ 为原对偶问题可行解

而且是最优解,因为

$$w = \boldsymbol{b}^T \boldsymbol{y} = \boldsymbol{c}_B \boldsymbol{B}^{-1} \boldsymbol{b} = \boldsymbol{c}_B \boldsymbol{x}_B = \boldsymbol{c} \boldsymbol{x} = \boldsymbol{z}$$

最终单纯形表同时给出了原问题和对偶问题的最优解!

第二章 线性规划_的对偶理论

- > 对偶问题定义
- > 对偶问题的性质
- > 单纯形表中的对偶解
- > 对偶单纯形法
- > 灵敏度分析

单纯形法思路的另一种解释

单纯形法思路:

单纯形法: 找基B,满足 $B^{-1}b \ge 0$,若 $c - c_R B^{-1}A$ 不 $ellet \leq 0$,(即检验数)。

迭代 保持 $B^{-1}b \ge 0$,使 $c - c_B B^{-1}A \le 0$

保持x为可行解,使y演变为可行解

对偶单纯形法的思路

保持y为可行解,使x演变为可行解

对偶单纯形法: 找基B,满足 $\mathbf{c} - \mathbf{c}_B \mathbf{B}^{-1} \mathbf{A} \leq 0$, 但**B**-1**b**不全≥0

迭代 保持 \mathbf{c} - $\mathbf{c}_{B}\mathbf{B}^{-1}\mathbf{A} \leq 0$,使 $\mathbf{B}^{-1}\mathbf{b} \geq 0$

步骤1:构造初始可行解

1. 构造一个对偶问题的初始可行解,即要求全部 $\sigma_i \leq 0$

$$\sigma_j = c_j - \sum_{i=1}^m c_i a_{ij}$$

注意:有的问题难以找到初始可行解,就无法采用对偶单纯形法

举例

例:

$$\min z = 2x_1 + 3x_2 + 4x_3$$

$$\begin{cases} x_1 + 2x_2 + x_3 \ge 3 \\ 2x_1 - x_2 + 3x_3 \ge 4 \\ x_1, x_2, x_3 \ge 0 \end{cases}$$

标准形式: max z=-2x₁-3x₂-4x₃

$$\begin{cases}
-x_1 - 2x_2 - x_3 + x_4 &= -3 \\
-2x_1 + x_2 - 3x_3 &+ x_5 = -4 \\
x_1 \dots x_5 \ge 0
\end{cases}$$

初始单纯形表

			-2	-3	-4	0	0
C_B	基	b	x_1	x_2	$\boldsymbol{x_3}$	x_4	\boldsymbol{x}_{5}
0	\boldsymbol{x}_4	-3	-1	-2	-1	1	0
0	x_5	-4	-2	1	-3	0	1
	$\sigma_{\!j}$		-2	-3	-4	0	0

步骤2: 相邻基可形解迭代

2. 如果所有的 $b_i > 0$,已是最优解

否则: (1)取 x_r 为出基变量,满足

$$b_r = \min_i \{b_i < 0\}$$
 $i = 1, ..., m$

(2)取 x_s 为入基变量,满足

$$\theta' = \frac{\sigma_s}{a_{rs}} = \min_{i} \left\{ \frac{\sigma_j}{a_{rj}} \middle| a_{rj} < 0, j = 1, ..., n \right\}$$

问题:如果所有的 $a_{rj} \ge 0$,说明什么?

可行性分析

如上选取的目的: 保持 $\sigma_i' \leq 0$, y为可行解

分析:
$$\sigma'_{j} = \sigma_{j} - \frac{a_{rj}}{a_{rs}} \sigma_{s} = a_{rj} \left\{ \frac{\sigma_{j}}{a_{rj}} - \frac{\sigma_{s}}{a_{rs}} \right\}$$

因为 $\sigma_j \leq 0$, a_{rs} 为主元素,有 $a_{rs} < 0$,

当 a_{rj} 名 $: \sigma_j/a_{rj}$ 名 $: \sigma_s/a_{rs}$ 2 $: \sigma_s/a_$

确定主元素

			-2	-3	-4	0	0
C_B	基	b	x_1	$\boldsymbol{x_2}$	x_3	x_4	\boldsymbol{x}_{5}
0	\boldsymbol{x}_4	-3	-1	-2	-1	1	0
0	x_5	-4	[-2]	1	-3	0	1
	$\sigma_{\!j}$		-2	-3	-4	0	0

迭代后单纯形表

			-2	-3	-4	0	0
C_B	基	b	x_1	x_2	x_3	x_4	\boldsymbol{x}_{5}
0	x_4	-1	0	-5/2	1/2	1	-1/2
-2	x_1	2	1	-1/2	3/2	0	-1/2
	$\sigma_{\!j}$		0	-4	-1	0	-1

步骤3: 最优性的检验

3. 最优性检验

判断迭代后所有的 b_i '>0?如果不满足,继续迭代

确定主元素

			-2	-3	-4	0	0
C_B	基	b	$\boldsymbol{x_1}$	$\boldsymbol{x_2}$	x_3	x_4	x ₅
0	x_4	-1	0	[-5/2]	1/2	1	-1/2
-2	x_1	2	1	-1/2	3/2	0	-1/2
	$\sigma_{\!j}$		0	-4	-1	0	-1

最终单纯形表

			-2	-3	-4	0	0
C_B	基	b	$\boldsymbol{x_1}$	x_2	$\boldsymbol{x_3}$	x_4	\boldsymbol{x}_{5}
-3	x_2	2/5	0	1	-1/5	-2/5	1/5
-2	x_1	11/5	1	0	7/5	-1/5	-2/5
	$\sigma_{\!j}$		0	0	-9/5	-8/5	-1/5

 $x = [11/5, 2/5, 0, 0, 0]^T$

 $y = [8/5, 1/5, 0, 0, 9/5]^T$

第二章 线性规划_的对偶理论

- > 对偶问题定义
- > 对偶问题的性质
- > 单纯形表中的对偶解
- > 对偶单纯形法
- > 灵敏度分析

灵敏度分析

原始数据A,b,c一般为统计数据、量测值、专家评估数据,不精确且有变动。

灵敏度分析指最优解在参数、约束条件或变量个数发生变化时的影响.

通常有两类问题:

- (1)参数变化时,最优解如何变?
- (2)最优解/最优基保持不变,参数变化的范围。

最终单纯形表

		c_1	c_2	• • •	c_{j}	• • •	c_n
c_B 基	b	x_1	x_2	• • •	x_{j}	• • •	\boldsymbol{x}_n
$c_1 x_1$							
c_2 x_2	$B^{-1}b$		1				
• •	D U		Ď	A-E	$B^{-1}[p_1, p_1]$	p_2,\ldots,p_p	n]
$c_m x_m$							
O			c	$-c_BB^{-1}$	\overline{A}		

参数变化对解可行性的影响

- ① \boldsymbol{b} 的变化: $\boldsymbol{x}_{B} = \boldsymbol{B}^{-1}\boldsymbol{b}$
- ② c的变化:

$$\sigma_A = c - c_B B^{-1} A$$
 $\sigma_N = c_N - c_B B^{-1} N$
 $\sigma_j = c_j - c_B B^{-1} p_j$

③ aij的变化

$$A' = B^{-1} A$$
 $p_j' = B^{-1} p_j$

变化的处理

原问题	对偶问题	处理
可行解	可行解	最优解/最优基不变
可行解	非可行解	用单纯形法迭代求解
非可行解	可行解	用对偶单纯形法迭代求解
非可行解	非可行解	重新编制单纯形表

灵敏度分析例

例:

序料产品	A	В	C	备用资源
甲	1	1	1	12
Z	1	2	2	20
利润	5	8	6	

问:如何安排产品产量,可获最大利润?

建模

解 $max z=5x_1+8x_2+6x_3$

$$\begin{cases} x_1 + x_2 + x_3 + x_4 &= 12 \\ x_1 + 2x_2 + 2x_3 &+ x_5 = 20 \\ x_1 \dots x_5 \ge 0 \end{cases}$$

最终单纯形表

			5	8	6	0	0
c_B	基	b	\boldsymbol{x}_1	$\boldsymbol{x_2}$	$\boldsymbol{x_3}$	x_4	x_5
5	x_1	4	1	0	0	2	-1
8	x_2	8	0	1	1	-1	1
	$\sigma_{\!j}$		0	0	-2	-2	-3

C的灵敏度分析

(1)、非基变量系数 c_j

求最优方案不变的前提下, c_3 的改变范围

$$\sigma_{3} = c_{3} - c_{B}B^{-1}p_{3}$$

$$= c_{3} - [5 \ 8] \binom{2 - 1}{-1 \ 1} \binom{1}{2} = c_{3} - 8 \le 0$$
即 $c_{3} \le 8$

C的灵敏度分析

(2)、基变量系数 c_j 求保持最优方案不变, c_1 改变的变化范围。 $\sigma_A = \mathbf{c} - \mathbf{c}_B \mathbf{B}^{-1} \mathbf{A}$ $= [c_1, 8, 6, 0, 0] - [c_1 8] \begin{bmatrix} 1 & 0 & 0 & 2 & -1 \\ 0 & 1 & 1 & -1 & 1 \end{bmatrix}$

$$= [0,0,-2,-2c_1+8, c_1-8] \le 0$$

$$\begin{cases} -2c_1+8 \le 0 \\ c_1-8 \le 0 \end{cases} \qquad 4 \le c_1 \le 8$$

b的灵敏度分析

保持最优方案不变,求b1的变化范围。

$$\mathbf{B}^{-1}\mathbf{b} = \begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix} \begin{pmatrix} b_1 \\ 20 \end{pmatrix} \ge 0$$

$$\begin{cases} 2b_1 - 20 \ge 0 \\ -b_1 + 20 \ge 0 \end{cases} :: 10 \le b_1 \le 20$$

A的灵敏度分析

(计划生产的产品工艺结构改变)

(1)、非基变量 x_j 工艺改变

只影响单纯形表 p_j 列,即 σ_{j} .

关键看 $\sigma_j \le 0$? 还是>0? 可用类似前述方法解决。

(2)、基变量 x_j 工艺改变,具体分析

增加新变量的灵敏度分析

例 对于新产品D,已知1个单位D要消耗

甲: 3 乙: 2

问:保持原有生产比例,利润为多少时,投产产品D有利?

解:
$$\sigma_6 = c_6 - c_B B^{-1} p_6 = c_6 - [5 8] \begin{bmatrix} 2 - 1 \\ -1 1 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \end{bmatrix}$$

$$= c_6 - 12 > 0$$
 得 $c_6 > 12$

添加约束灵敏度分析

例 新增加电力约束: 13

A、B、C每单位需电 2、1、3

问:原方案是否改变?

解:

$$2x_1 + x_2 + 3x_3 \le 13$$

原方案 A: 4 B: 8 C: 0

16 >13 原方案要改变

算法小结

- (1)71年 Klee 变量n 约束2n 单纯形计算步骤 *O(2ⁿ)*
- (2)79年 哈奇扬 椭球法 $O(n^6 L^2)$
 - 82年 十一次国际数学规划会议Fulkerson奖
- (3)84年 Karmarkar 内点算法 O(n^{3.5} L²)
 - 88年 十三次国际数学规划会议Fulkerson奖

常用软件

LINGO: Linear Interactive and Discrete Optimizer

免费试用: 150 个约束、300个变量、30 整数变量 芝加哥大学开发

Matlab: Optimization Toolbox

Excel: Excel Solver

IBM CPLEX Optimizer: Matlab\Python\c++

免费版限 1000 个变量和 1000 个约束,

高校师生可使用教育版

GUROBI (美国)、COPT (杉数科技)

阿里、华为、中科院也有线性规划和整数规划产品