Theoretische Physik I (Mechanik) - physik220

$\overline{Modul\text{-}Nr.}$	physik220
Kategorie	Pflicht
Le ist ung spunkte	9
vorgesehenes Semester	2.

Modul: Theoretische Physik I (Mechanik)

Modulbe standteile:

$\overline{ m Nr}$	Lehrveranstaltung	LV-Nr.	LP	LV-Art	SWS	Semester
1	Theoretische Physik I (Mechanik)	physik221	9	Vorl. + Üb.	4+3	SS

Teilnahmevoraussetzungen: keine

Prüfungsform: Klausur unbenotet

Inhalt: Analytische Mechanik

Qualifikationsziel: Umgang mit Konzepten und Rechenmethoden der Klassischen Mechanik

Studienleistung/Kriterien zur Vergabe von LP: Erfolgreiche Bearbeitung der Übungsaufgaben + be-

standene Klausur

Dauer: 1 Semester

Max. Teilnehmerzahl: ca. 200

Gewichtung: 0/163

Anmerkung:

PDF version of this page.

Theoretische Physik I (Mechanik) - physik221

$\overline{Lehr veran staltung}$	Theoretische Physik I (Mechanik)
LV-Nr.	physik221

Kategorie	LV-Art	Sprache	SWS	LP	Semester
Pflicht	Vorlesung mit Übungen	deutsch	4+3	9	SS

Teilnahmevoraussetzungen:

Empfohlene Vorkenntnisse: Mathematik I für Physiker (math140), Physik I (physik110)

Studien- und Prüfungsmodalitäten: Voraussetzung zur Teilnahme an der unbenoteten Klausur: erfolgreiche Teilnahme an den Übungen

Dauer der Lehrveranstaltung: 1 Semester

Lernziele der LV: Umgang mit Konzepten und Rechenmethoden der Klassischen Mechanik

Inhalte der LV:

Newtonsche Mechanik

Zentralkraftproblem

Mechanik des starren Körpers

Lagrangeformalismus

Symmetrien und Erhaltungssätze

Hamiltonformalismus

Hamilton/Jacobi-Gleichung

Literaturhinweise:

- T. Fließbach; Lehrbuch der Theoretischen Physik 1: Mechanik (Spektrum Akademischer Vlg., Heidelberg 4. veränd. Aufl. 2003)
- F. Kuypers; Klassische Mechanik (Wiley-VCH, Weinheim 7. erw. Aufl. 2005)
- L. Landau; E. Lifschiz; Lehrbuch der Theoretischen Physik Band 1: Mechanik (Harri Deutsch, Frankfurt am Main, 14. korr. Aufl. 1997)
- W. Nolting; Grundkurs Theoretische Physik 1: Klassische Mechanik (Springer, Heidelberg 7. Nachdruck 2005)
- W. Nolting; Grundkurs Theoretische Physik 2: Analytische Mechanik (Springer, Heidelberg korr. Nachdruck 2005)
- H. R. Petry, B. Metsch; Theoretische Mechanik (Oldenburg, München 2005)

PDF version of this page.