Complex notes

Om Swostik Mishra

Definition: An open, connected subset of $\mathbb C$ is called domain or region.

$$D(a,r) = \{ z \in \mathbb{C} | |z - a| < r \}$$

$$\{z \in \mathbb{C} | r < |z - a| < R\} \rightarrow \text{annulus}$$

Exponential function: $exp(z) : \mathbb{C} \to \mathbb{C}$

$$e^z = e^x(\cos(y) + i\sin(y))$$

$$e^{z_1+z_2} = e^{z_1}.e^{z_2}, 0 \notin Rng(exp(z))$$

$$|e^{ix}| = 1 \ (\forall x \in \mathbb{R})$$

$$e^z = 1$$
 iff $z = 2n\pi i, n \in \mathbb{Z}$

$$e^{z_1} = e^{z_2}$$
 iff $z_1 = z_2 + 2n\pi i$

Argument: $\theta = arg(z)$ (Angle made wrt positive real axis)

arg(z) for $z \in \mathbb{C} \setminus \{0\}$ is multivalued function.

$$arg(z): \mathbb{C}\setminus\{0\}\to(\alpha,\alpha+2\pi] \text{ or } [\alpha,\alpha+2\pi) \text{ is well-defined } (\forall \alpha\in\mathbb{R})$$

Principal value: $Arg(z) = \theta \ (-\pi < \theta \le \pi)$

$$arg(z) = \{Arg(z) + 2n\pi : n \in \mathbb{Z}\}$$

Complex Log: For $z \in \mathbb{C} \setminus \{0\}$, define log(z) = log(|z|) + arg(z) (multivalued)

Whenever arg(z) is well-defined (i.e $R(arg(z)) = [\alpha, \alpha + 2\pi)$ or $(\alpha, \alpha + 2\pi]$)

 $\Rightarrow log(z)$ is well defined

$$Log(z) = log(|z|) + i Arg(z)$$
: principal log $(log(z) = Log(z) + i2n\pi)$

Lemma: For $z \in \mathbb{C} \setminus \{0\}$, the values of $\log(z)$ are the complex numbers ω such that $e^{\omega} = z$

Proof: Do it on your own!

Limit: $f: E \subset \mathbb{C} \to \mathbb{C}$

$$\lim_{z \to z_0} f(z) = l$$

$$\forall \epsilon > 0, \exists \delta > 0 \text{ such that } 0 < |z - z_0| < \delta \Rightarrow |f(z) - l| < \epsilon$$

$$z \in (B(z, z_0) \setminus \{0\}) \cap E \Rightarrow f(z) \in B(l, \epsilon)$$

Proposition: A function $f: E \subset \mathbb{C} \to \mathbb{C}$ has a limit point l as $z \to z_0$ iff $f(z_n) \to l$ for every sequence $\{z_n\} \subset E \setminus \{z_0\}$ with $z_n \to z_0$ as $n \to \infty$

Theorem: If $f: E \subset \mathbb{C} \to \mathbb{C}$ has a limit at z_0 , then f is bounded near z_0

Continuity: $f: E \subset \mathbb{C} \to \mathbb{C}$

f is continuous at $z_0 \in E$ if for every basic neighbourhood V of $f(z_0)$, there is a basic neighbourhood U of z_0 such that $f(U) \subset V$

Let
$$V = B(f(z_0), \epsilon), U = B(z_0, \delta)$$

$$z \in B(z_0, \delta) \Rightarrow f(z) \in B(f(z_0), \epsilon)$$

$$|z - z_0| < \delta \Rightarrow |f(z) - f(z_0)| < \epsilon$$

Then,
$$z \in B(z_0, \delta) \setminus \{z_0\} \Rightarrow f(z) \in B(f(z_0), \epsilon)$$

$$\lim_{z \to z_0} f(z) = f(z_0)$$

$$Arg: \mathbb{C} \setminus \{0\} \to (-\pi, \pi]$$

$$Log(z) = log(|z|) + i Arg(z)$$
 (defined on $\mathbb{C} \setminus \{0\}$)

Log(z) is continuous on $C \setminus (-\infty, 0]$ as Arg(z) is continuous on $\mathbb{C} \setminus (-\infty, 0]$

Definition: Let $G \subset \mathbb{C}$ be a region. A continuous function $f: G \to \mathbb{C}$ is called a branch of logarithm in G if:

$$e^{f(z)} = z \ (\forall z \in G) \ (\Rightarrow 0 \notin G)$$

$$e^{Log(z)} = z \ (\forall z \in \mathbb{C} \setminus \{0\})$$

But Log(z) isn't continuous on $\mathbb{C} \setminus \{0\}$

Therefore, Log(z) is a branch of log in $\mathbb{C} \setminus (-\infty, 0]$

$$f_k = Log(z) + 2k\pi i, k \in \mathbb{Z}$$

$$e^{f_k(z)} = z$$
 (Each f_k is a branch of log in G)

Theorem: Let $f:G\to\mathbb{C}$ be a branch of log. Then $g:G\to\mathbb{C}$ is a branch of log iff

$$g(z) = f(z) + 2k\pi i$$
 (for some $k \in \mathbb{Z}$)

Proof: (\Rightarrow) if f is a branch of log, then so is g

 (\Leftarrow) Let $g:G\to\mathbb{C}$ be a branch of log.

Then, (i) g is continuous

(ii)
$$e^{g(z)} = z, \forall z \in G$$

Since $f: G \to \mathbb{C}$ is a branch of log, we have,

(i) f is continuous

$$(ii)e^{f(z)} = z, \forall z \in G$$

$$e^{g(z)} = e^z = e^{f(z)} \ (\forall z \in G)$$

 $\Rightarrow g(z) = f(z) + 2k(z)\pi i$ (k depends on z)

 $k:G\subset\mathbb{C}\to\mathbb{Z}$

 $k(z) = \frac{1}{2\pi i}(g(z) - f(z))$ (k is continuous)

Since G is connected, Img(k) is connected (subset of \mathbb{Z})

 $\Rightarrow k(z)$ is constant

Hence, the claim follows.

Unit disk in \mathbb{C} : $D = \{z \in \mathbb{C} : |z| < 1\}$

 $0 \in D$, hence D cannot be a branch of log

 $D \setminus \{0\}$ isn't a branch of log. (Why?)

$$Log(z): \mathbb{C} \setminus (-\infty, 0] \to \mathbb{C}$$

The half-line is called a branch-cut for any member of $\{Log(z) + 2k\pi i : k \in \mathbb{Z}\}\$

Q: How do you make a branch-cut to define a branch of Log(z+i-1)?

Power functions: Let $\alpha \in \mathbb{C}$. We define z^{α} to be the multi-valued function:

$$z^{\alpha} = e^{\alpha log(z)}$$
, $z \neq 0$

$$z^{\alpha} = e^{\alpha log(z)} = e^{\alpha (log(|z|) + arg(z))} = e^{\alpha (Log(z) + 2k\pi i)} \ (k \in \mathbb{Z})$$

$$=e^{\alpha Log(z)}.e^{2\pi ik\alpha}$$

Let $\alpha = n \in \mathbb{N}$. Then $z^{\alpha} = e^{nLog(z)}$ which is single-valued.

Definition: Let $\Omega \subset \mathbb{C}$ and $f: \Omega \to \mathbb{C}$. Then f is said to be differentiable at $z_0 \in \Omega$ if,

$$f'(z_0) = \lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0}$$
 exists

Definition: A function is said to be holomorphic at z_0 if it is differentiable in a neighbourhood of z_0

Entire functions: If a function f is analytic at every point in $\mathbb{C} \Rightarrow f$ is entire.

Example: $f(z) \to \text{polynomial in } \mathbb{C}$

 $f(z) = \frac{1}{z}$ (differentiable at every point on $\mathbb{C} \setminus \{0\}$)

Proposition: If f and g are differentiable at $z_0 \in \Omega \subset \mathbb{C}$, then so are:

$$(i) f + g, (ii) f g, (iii) f / g (g(z_0) \neq 0)$$

Chain Rule: $f: \Omega \to U$, $g: U \to \mathbb{C}$ are holomorphic at z_0 and $f(z_0)$ respectively. Then

$$g \circ f : \Omega \to \mathbb{C}$$
 is holomorphic at z_0 and $(g \circ f)'(z_0) = g'(f(z_0)).f'(z_0)$

Example: $f(z) = \bar{z}$ isn't differentiable at any point in \mathbb{C} .

Cauchy-Riemann equations: Let $f: \Omega \to C$ be differentiable at $z_0 = x_0 + iy_0$. Then,

$$\frac{\partial u}{\partial x}(x_0, y_0) = \frac{\partial v}{\partial y}(x_0, y_0)$$

$$\frac{\partial u}{\partial y}(x_0, y_0) = -\frac{\partial v}{\partial x}(x_0, y_0)$$

Further,

$$f'(z_0) = \frac{\partial u}{\partial x}(x_0, y_0) + i \frac{\partial v}{\partial x}(x_0, y_0)$$

Note that the last equation only has partial derivatives wrt x.

Power series: A series of the form $\sum_{0}^{\infty} a_n(z-z_0)^n$ $(a_n, z, z_0 \in \mathbb{C}; z_0 \text{ is center})$

Theorem(Radius of convergence): Given a power series $\sum_{0}^{\infty} a_n(z)^n$,

 $\exists R \in [0, \infty) \cup \{\infty\}$ such that:

(i) the series converges $(\forall z \in B(0, R); \text{ the disk of convergence})$

(ii) diverges $\forall z$ such that |z| > R

Convention: if $\frac{1}{0} = +\infty$; $\frac{1}{\infty} = 0$, then $R = \frac{1}{\limsup |a_n|^{\frac{1}{n}}}$

Proof: Can be found in any standard text (Try Conway!)

$$e^z = \sum \frac{z^n}{n!} \ (R = +\infty \text{ i.e an entire function})$$

Theorem: The power series $f(z) = \sum_{n=0}^{\infty} a_n z^n$ defines a holomorphic function (in its disk of convergence)

Derivative of f is obtained by differentiation of each term:

$$f'(z) = \sum_{n=0}^{\infty} n a_n z^{n-1}$$

 $f^{'}$ has same disk of convergence

Proof: Found in any standard text

Remark: A power series is infinitely differentiable and analytic in its disk of convergence

$$f(z) = \sum_{k=0}^{\infty} a_k z^n = \sum_{k=0}^{\infty} \frac{f^k(0)}{k!} z^k$$

Examples: (i) $\sum_{n=1}^{\infty} nz^n < \infty$ ($\forall z \in B(0,1)$; doesn't converge for |z|=1)

(ii)
$$\sum_{n=1}^{\infty} \frac{z^n}{n^2} < \infty$$
 ($\forall z \in B(0,1)$; converges for $|z|=1$)

(iii)
$$\sum_{n=1}^{\infty} \frac{z^n}{n} < \infty$$
 (converges for $|z| < 1$; diverges otherwise)

Proposition: Let $\Omega_1, \Omega_2 \subset \mathbb{C}$ be domains and let $f: \Omega_1 \to \mathbb{C}$, $g: \Omega_2 \to \mathbb{C}$ be continuous function such that $f(\Omega_1) \subset \Omega_2$ and that g(f(z)) = z ($\forall z \in \Omega_1$). If g is differentiable on Ω_2 and if $g'(w) \neq 0$ ($\forall w \in \Omega_2$), then f is differentiable and $f'(z) = \frac{1}{g'(f(z))}$ ($\forall z \in \Omega_1$)

Theorem: A branch of logarithm is analytic and its derivative is $\frac{1}{z}$.

Proof: Let f be a branch of log. Define $g(z) = e^z$. Then g(f(z)) = z. $(e^{f(z)} = z)$

Lemma: Let $f: \Omega \to \mathbb{C}$. Then f is differentiable at $z_0 \in \Omega$ iff $\exists a \in \mathbb{C}$ such that

$$f(z_0 + h) - f(z_0) = ah + h\psi(h) (\lim_{h\to 0} \psi(h) = 0)$$

Theorem: Let $\Omega \subset \mathbb{C}$ be a domain and let f = u + iv is a function from Ω to \mathbb{C} . Then f is analytic at $z_0 \in \Omega$ iff the partial derivatives exist, are continuous and satisfy Cauchy-Riemann equations.

Proof: Conway

A path or a curve is a continuous function, $\gamma:[a,b]\to\mathbb{C}$ $(Rng(\gamma)\subset\mathbb{C})$

 $\gamma(a)$: initial point of path; $\gamma(b)$: endpoint of path

[a,b]: parameter interval

 γ is said to be:

- 1. closed if $\gamma(a) = \gamma(b)$
- 2. smooth or C^1 if γ is differentiable and γ' is continuous
- 3. simple if γ is one-one
- 4. simple closed if $\gamma(a) = \gamma(b)$ and γ is one-one on (a,b)
- 5. piecewise smooth if there are finitely many points $s_0, s_1 \dots s_n \in [a.b]$ with $a = s_0 < s_1 < s_2 \dots < s_n = b$ such that the restriction of γ to each (s_i, s_{i+1}) is smooth.

$$-\gamma$$
 or γ^{-1} is defined by $\gamma^{-1}(t) = \gamma(a+b-t)$

$$\phi:[0,1]\to[a,b]$$
 defined as: $\phi(t)=a+(b-a)t$ (one-one and differentiable)

Line integral: $f:[a,b]\to\mathbb{C}$: continuous

$$f = u + iv$$
, where $u, v : [a, b] \to \mathbb{R}$

Define
$$\int_a^b f(t)dt = \int_a^b u(t)dt + i \int_a^b v(t)dt$$

Properties:

1.
$$\int_a^b c \cdot f(t) dt = c \cdot \int_a^b f(t) dt$$

2.
$$\left| \int_a^b f(t)dt \right| \leq \int_a^b |f(t)|dt$$

Length of a smooth curve: Let $\gamma:[a,b]\to\mathbb{C}$ be a smooth curve.

$$L(\gamma) = \int_a^b |\gamma^{'}(t)| dt = \int_a^b \sqrt{\gamma_1^{'}(t)^2 + \gamma_2^{'}(t)^2} dt \ (\gamma(t) = \gamma_1(t) + i.\gamma_2(t))$$

If $\gamma:[a,b]\to C$ is piecewise smooth then $L(\gamma)$ is the sum of the length of its smooth parts.

Definition(orientation): A curve γ is positively oriented if traversed in anti-clockwise direction else is negatively oriented.

Examples:

1.
$$\gamma(t) = r.e^{it}$$
, $(t \in [0, 2\pi])$ $(r > 0$: simple, smooth curve);

$$L(\gamma) = \int_0^{2\pi} |i.r.e^{it}| dt = r.(2\pi)$$

2. $\gamma(t) = e^{it}$, $(t \in [0, 4\pi])$: closed, smooth, traverses the unit circle twice in the positive direction

6

Integration over paths: $\gamma[a,b] \to \mathbb{C}$ is a smooth curve and $f: \gamma \to \mathbb{C}$: continuous

Definiton: $\int_{\gamma} f(z)dz = \int_{a}^{b} f(\gamma(t))\gamma'(t)dt = \int_{a}^{b} g(t)dt$

$$(g(t) = f(\gamma(t))\gamma^{'}(t) \text{ where } g:[a,b] \to \mathbb{C})$$

Let $[a_1,b_1]$ be any closed interval. Then $\exists \varphi: [a_1,b_1] \to [a,b]$ (one-one,differentiable and

$$\phi(a_1) = a; \phi(a_2) = b)$$

 $\phi[a_1, b_1] \to \mathbb{C}$: smooth

$$\int_{a_1}^{b_1} f(\gamma_1(t)).\gamma_1'(t)dt \ (= \int_{\gamma_1} f(z)dz)$$

$$= \int_{a_1}^{b_1} f(\gamma(\varphi(t))).\varphi'(t)dt = \int_{\gamma} f(\gamma(s))\gamma'(s)ds = \int_{\gamma} f(z)dz \ (\varphi(t) = s)$$

If γ is piecewise smooth, the integral can be split into the sum of its smooth components:

if
$$\gamma = \gamma_1 + \gamma_2 \cdots + \gamma_n$$
, then $\int_{\gamma} f = \int_{\gamma_1} f + \cdots + \int_{\gamma_n} f$.

Note that $\gamma_i's$ are smooth.

Proposition: If f and g are continuous on a smooth curve γ , then

1.
$$\int_{\gamma} \alpha f + \beta g = \alpha \int_{\gamma} f + \beta \int_{\gamma} g$$

2.
$$\int_{\alpha^{-}} f = -\int_{\alpha} f$$

3.
$$\left| \int_{\gamma} f(z)dz \right| \le \|f\|_{\infty,\gamma} L(\gamma) \left(\|f\|_{\infty,\gamma} = \sup_{z \in \{\gamma\}} |f(z)| \right)$$

$$|\int_{\gamma} f| = |\int_{a}^{b} f(\gamma(t)) \cdot \gamma^{'}(t) dt| \leq \int_{\gamma} |f(\gamma(t)) \cdot \gamma^{'}(t)| dt \leq ||f||_{\infty,\gamma} \int_{a}^{b} |\gamma^{'}(t)| dt \ (L(\gamma) = \int_{a}^{b} |\gamma^{'}(t)| dt)$$

Examples:

(i)Let γ be the arc of a circle of radius 3 (|z| = 3) from 3 to 3i.

Show that:

$$\left| \int_{\gamma} \frac{z+4}{z^3 - 1} dz \right| \le \frac{21\pi}{52}$$

(ii) $\gamma : |z| = 2$ (traverse curve in positive direction)

Prove:

$$|\int_{\gamma} \frac{e^z dz}{z^2 + 1}| \le \frac{4\pi e^2}{3}$$

Fundamental theorem of calculus:

If $f:[a,b]\to\mathbb{R}$ has a primitive F, then $\int_a^b f(x)dx=F(b)-F(a)$ $(F'(x)=f(x),\forall x\in[a,b])$

Definition: Suppose $G \in \mathbb{C}$ be a domain. If a continuous function $f : G \to \mathbb{C}$ has a primitive F on G and if γ is a smooth curve in G with initial and terminal points ω_1 and ω_2 respectively, then:

$$\int_{\gamma} f = F(\omega_1) - F(\omega_2)$$

Proof: Let $[a, b] \in \mathbb{R}$ be a parameter interval for γ and $\gamma(a) = \omega_1$; $\gamma(b) = \omega_2$ Given $F'(z) = f(z) \ (\forall z \in G)$

$$\int_{\gamma}f=\int_{a}^{b}f(\gamma(t)).\gamma^{'}(t)dt=\int_{a}^{b}F^{'}(\gamma(t))\gamma^{'}(t)dt$$

$$= \int_{a}^{b} (F \circ \gamma)'(t)dt = F \circ \gamma(b) - F \circ \gamma(a) = F(\omega_{2}) - F(\omega_{1})$$

Corollary-1: If γ is a closed curve (smooth), then

 $\int_{\gamma} f = 0$ (Proof follows from FTC)

Corollary-2: If $f \in H(\Omega)$ for a region $\Omega \in \mathbb{C}$ and if f' = 0 on Ω , then f is a constant function.

Proof: Fix a point $\omega_0 \in \Omega$. It suffices to show that $f(\omega) = f(\omega_0), \forall \omega \in \Omega$

Simple Closed Curve:

Jordan-curve theorem: Every simple closed curve in \mathbb{C} divides the complex plane into two regions. One of these regions is bounded and the other is unbounded. The bounded region is called the interior of the curve.

Example: $G = \mathbb{C} \setminus \{0\}$

$$f(z) = \frac{1}{z}$$
 on $G, \gamma : |z| = 1, \gamma(t) = e^{it}, (t \in [0, 2\pi])$

$$\int_{\gamma} f = \int_{0}^{2\pi} f(\gamma(t)).\gamma^{'}(t)dt = \int_{0}^{2\pi} \frac{i.e^{it}}{e^{it}}dt = 2\pi i \neq 0$$

Winding number or index of a closed curve: Let γ be a closed curve on $\mathbb C$ and let $\alpha \in \mathbb C \setminus \{\gamma\}$. The winding number of γ about α or the index of γ with respect to α is denoted by: $\eta(\gamma; \alpha)/Ind_{\gamma}(\alpha)$ defined by:

$$\eta(\gamma; \alpha) = \frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z - \alpha}$$

Example: $\gamma:[0,6\pi]\to\mathbb{C}$

 $\gamma(t) = a + re^{it}$

$$\eta(\gamma;\alpha) = \frac{1}{2\pi i} \int_{\gamma} \frac{\gamma'(t)}{\gamma(t) - a} = \frac{1}{2\pi i} \int_{\gamma} \frac{1}{a + re^{it} - a} . ire^{it} dt = 3$$

Theorem: Let γ be a smooth, closed curve in \mathbb{C} . Let $\alpha \in \mathbb{C} \setminus \{\gamma\}$. Then $\eta(\gamma; \alpha) \in \mathbb{Z}$.

Proof: To be done