Série 10

Dans les exercices qui suivent on pourra utiliser avec profit le fait que l'application partie lineaire

$$\lim : \frac{\operatorname{Isom}(\mathbb{R}^2)}{\phi} \quad \mapsto \quad \frac{\operatorname{Isom}(\mathbb{R}^2)_0}{\phi_0}$$

est un morphisme de groupe.

On rappelle que

$$\operatorname{Isom}(\mathbb{R}^2)^+$$
 et $\operatorname{Isom}(\mathbb{R}^2)^-$

designent les ensembles d'isometries du plan dont la partie lineaire est contenue dans $\operatorname{Isom}(\mathbb{R}^2)_{\mathbf{0}}^+$ et $\operatorname{Isom}(\mathbb{R}^2)_{\mathbf{0}}^-$ respectivement.

Le premier ensemble est appelle ensemble des rotations affines, le second l'ensemble des symetries affines. On a vu en cours que $\text{Isom}(\mathbb{R}^2)^+$ est un sous-groupe distingue de $\text{Isom}(\mathbb{R}^2)$.

Exercice 1. Montrer que

- 1. l'ensemble $\text{Isom}(\mathbb{R}^2)^-$ est le translate (a gauche ou a droite) de $\text{Isom}(\mathbb{R}^2)^+$ par un element quelconque de $\text{Isom}(\mathbb{R}^2)^-$.
- 2. Montrer que l'ensemble $\operatorname{Isom}(\mathbb{R}^2)^-$ est "distingue" dans $\operatorname{Isom}(\mathbb{R}^2)$ au sens suivant : pour toute symetrie affine $s \in \operatorname{Isom}(\mathbb{R}^2)^-$ et toute isometrie affine $\phi \in \operatorname{Isom}(\mathbb{R}^2)$ le conjugue

$$\phi \circ s \circ \phi^{-1}$$

est encore une symetrie affine.

3. Le groupe $\operatorname{Isom}(\mathbb{R}^2)$ est engendre par $\operatorname{Isom}(\mathbb{R}^2)^-$: tout element de $\operatorname{Isom}(\mathbb{R}^2)$ s'ecrit comme le compose de 1 ou 2 symetries affines (utiliser le resultat analogue pour $\operatorname{Isom}(\mathbb{R}^2)_{\mathbf{0}}$)

Exercice 2. Soit $P \in \mathbb{R}^2$ et $\text{Isom}(\mathbb{R}^2)_P$, $\text{Isom}(\mathbb{R}^2)_P^+$, $\text{Isom}(\mathbb{R}^2)_P^-$ l'ensemble des isometries ϕ (rotations, symetries) affines qui fixent P, i.e.

$$\phi(P) = P$$
.

1. Trouver une translation t telle que

$$\operatorname{Isom}(\mathbb{R}^2)_P = t \circ \operatorname{Isom}(\mathbb{R}^2)_{\mathbf{0}} \circ t^{-1}.$$

- 2. Montrer que $\operatorname{Isom}(\mathbb{R}^2)_P$ est un sous-groupe de $\operatorname{Isom}(\mathbb{R}^2)$ et que $\operatorname{Isom}(\mathbb{R}^2)_P^+$ est un sous-groupe commutatif et distingue dans $\operatorname{Isom}(\mathbb{R}^2)_P$.
- 3. Montrer que l'ensemble $\text{Isom}(\mathbb{R}^2)_P^-$ est le translate (a gauche ou a droite) de $\text{Isom}(\mathbb{R}^2)_P^+$ par un element quelconque de $\text{Isom}(\mathbb{R}^2)_P^-$.
- 4. Montrer que le groupe $\operatorname{Isom}(\mathbb{R}^2)_P^+$ n'est pas distingue dans $\operatorname{Isom}(\mathbb{R}^2)$ (bien qu'il le soit dans $\operatorname{Isom}(\mathbb{R}^2)_P$).
- 5. Montrer que le groupe $\text{Isom}(\mathbb{R}^2)^+$ n'est pas commutatif (bien que $\text{Isom}(\mathbb{R}^2)_P^+$ le soit).

Exercice 3. Etant donne une rotation r, montrer qu'il existe deux rotations $r^{1/2}$, $-r^{1/2}$ telles que

$$(r^{1/2})^2 = (-r^{1/2})^2 = r;$$

on dira que la paire $\{r^{1/2}, -r^{1/2}\}$ est l'angle moitie.

Exercice 4. 1. Donner la matrice de la symetrie s d'axe la droite d'equation

$$3x + 4y = 0?$$

2. Quelle est la nature (et donner les points fixes) de la composee $\phi \circ s$ ou ϕ est l'application lineaire de matrice

$$\begin{pmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}.$$

3. Meme question avec la matrice

$$\begin{pmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}.$$

Exercice 5. Quelle est l'angle ¹ entre la demi-droite $\mathbb{R}_{\geq 0}(1,1)$ et la demi-droite $\mathbb{R}_{\geq 0}(-\sqrt{3},-1)$ (on commencera par chercher les matrices des rotations envoyant $\mathbb{R}(1,0)$ sur respectivement, $\mathbb{R}_{\geq 0}(1,1)$ et $\mathbb{R}_{\geq 0}(-\sqrt{3},-1)$).

Exercice 6. On considere la transformation

$$\phi(x,y) = (X,Y)$$

avec

$$X = \frac{\sqrt{3}}{2}x - \frac{1}{2}y + 1. \ Y = \frac{1}{2}x + \frac{\sqrt{3}}{2}y + 2$$

^{1.} suivant la definition du cours

- 1. Quelle est la nature de ϕ ?
- 2. Quels sont ses points fixes.
- 3. Quelle est la nature de ϕ^6 (on commencera par calculer la partie lineaire)?

Exercice 7. On considere les transformations

$$\phi_1(x,y) = (y+1, x+1)$$

$$\phi_2(x,y) = (y+1, x-1)$$

- 1. Quelle est la nature de ϕ_1 et de ϕ_2 ?
- 2. Quels sont leurs points fixes respectifs.
- 3. Calculer ϕ_1^2 et ϕ_2^2 .
- 4. Que valent ϕ_1^{2n} et ϕ_2^{2n} pour $n \in \mathbb{Z}$?