FUNDAMENTOS DE COMPUTADORES Práctica 7

Ensamblador: Datos en memoria: representación y acceso.

INTRODUCCIÓN Y OBJETIVOS

En la presente práctica se continúa con la programación en ensamblador MIPS haciendo uso del simulador PCSpim. Los objetivos de la misma son:

- Elaborar programas que declaren y manipulen datos almacenados en memoria.
- Comprender la representación de diferentes tipos de datos: enteros, reales y caracteres.
- Introducir el uso de pseudoinstrucciones.
- Utilizar instrucciones para el acceso a datos en memoria.

NOTA: Para que el PCSPIM cargue correctamente las pseudoinstrucciones, se debe configurar (por medio del menú *Simulator* → *Settings*) de la siguiente forma: Desactivar la opción *Bare Machine* y activar la opción *Allow pseudo instructions*.

USO DE LAS DIRECTIVAS DE DATOS

Las directivas de datos son indicaciones al programa ensamblador (el programa que traduce desde lenguaje ensamblador a código máquina) que le serán de utilidad en el momento de generar código ejecutable. Estas directivas no generan código de máquina, es decir, no generan instrucciones. El significado de algunas de las directivas más utilizadas se muestra en la siguiente tabla:

Directiva	Significado
.data <addr></addr>	Almacena los elementos declarados en el segmento de datos, a partir de la dirección indicada en addr.
.byte $b_{I,,bn}$	Almacena <i>n</i> valores enteros en palabras sucesivas de 8 bits.
.half $h_{I,\dots,hn}$	Almacena <i>n</i> valores enteros en palabras sucesivas de 16 bits.
.word w ₁ ,, _{wn}	Almacena <i>n</i> valores enteros en palabras sucesivas de 32 bits.
$.floatf_{1},,f_{n}$	Almacena <i>n</i> valores reales en palabras sucesivas de 32 bits.
.ascii str	Almacena la cadena str en memoria. Un byte por carácter.
.asciiz str	Almacena la cadena str en memoria. Un byte por carácter y añade al final el carácter NULL.

Los enteros se representan, todos, en complemento a dos. Los reales, en formato IEEE754 de simple precisión. Los caracteres se almacenan en ASCII de 8 bits.

Cuando se cargue un programa que incluya directivas de datos, se verá inmediatamente reflejado el efecto de estas directivas en cuanto a reserva e inicialización de posiciones de

memoria en el segmento de datos. Esto podrá observarse mediante la ventana de segmento de datos del simulador.

Figura 1. Localización de la ventana de segmento de datos dentro del entorno gráfico del simulador PCSpim.

Ventana de segmento de datos: en esta ventana se muestra el contenido de la memoria. La memoria se despliega mostrando rangos de direcciones y el contenido de este rango. De manera que una línea con la siguiente información:

[0x10000000] 0x12345678 0x22222222 0x3333333 0x44444444

Se interpreta de la siguiente forma:

- 1. Se muestra el contenido de las cuatro palabras de memoria que están en las direcciones 0x10000000 a 0x1000000C. El tamaño de una palabra es de 32 bits. Por lo tanto, en una línea se muestran 32x4 = 128 bits.
- 2. La palabra de memoria 0x10000000 tiene el contenido 0x12345678 (32 bits)
 - 1. Los bytes que componen esta palabra ocuparán, por lo tanto, las posiciones siguientes según el formato *little endian*:

[0x10000000] 0x78 [0x10000001] 0x56 [0x10000002] 0x34 [0x10000003] 0x12

- 3. La palabra de memoria 0x10000004 tiene el contenido 0x22222222 (32 bits)
- 4. La palabra de memoria 0x10000008 tiene el contenido 0x33333333 (32 bits)
- 5. La palabra de memoria 0x1000000C tiene el contenido 0x44444444 (32 bits)

ALINEACIÓN DE DATOS EN MEMORIA

La alineación de datos en memoria es un requisito de muchos procesadores. Esta alineación de los datos quiere decir que cuando el procesador accede a un dato de un determinado tipo (byte, half o word), lo hará empleando direcciones con unas características concretas y particulares. Por ejemplo, cuando el procesador quiere leer un dato de tipo word, la dirección es necesario que sea múltiplo de cuatro, ya que los words ocupan cuatro bytes. En cambio, las direcciones que hacen referencia a datos de tipo half es necesario que sean múltiplos de dos, mientras que las de tipo byte no tienen ninguna restricción.

Para mantener la relación entre el tipo de dato y su dirección, el programa ensamblador, al cargar el programa y procesar a las directivas, dejará los espacios necesarios entre datos declarados consecutivamente.

Considere el código que aparece a continuación y responda a las cuestiones siguientes:

.data 0x10000000

.byte 1,-1,2

.half -2, 3

.byte 4

.word -4

.byte 5

.half 6

Pregunta 1. Rellene **de forma teórica** la tabla siguiente con los contenidos que tendrá la memoria al cargar y procesar a las directivas.

		Contenido (Decimal y hexadecimal)										
Dirección (HEX)	31		24	23		16	15		8	7		0
0x10000000												
0x10000004												
0x10000008												
0x1000000C												
0x10000010												
0x10000014												

Pregunta 2. Una vez en el laboratorio, teclee y cargue el código anterior en el PCSpim, y llene nuevamente la tabla, esta vez copiando los datos tal como aparecen en la ventana del segmento de datos.

		Contenido (Decimal y hexadecimal)										
Dirección (HEX)	31		24	23		16	15 · · · 8	7 · · · 0				
0x10000000												
0x10000004												
0x10000008												
0x1000000C												
0x10000010												
0x10000014												

REPRESENTACIÓN DE REALES

Los números reales se representan en la mayoría de computadores con el formato IEEE754 de simple precisión. En este formato, se utilizan los criterios siguientes para representar un número real:

- El formato es:

1 bit	8 bits	23 bits
Signo	Exponente	Mantisa

- El bit de signo a cero quiere decir que la cantidad representada es positiva. Y con un uno, quiere decir que es negativa.
- El exponente se representa en exceso Z, con Z=127, Esto quiere decir que si el exponente de la cantidad que queremos representar es 3, el que realmente se almacenará es 130.
- La mantisa es necesario que esté normalizada de la forma 1.xxx, y se almacena empleando la técnica del bit implícito. Es decir, el primer 1 no se almacena.

Teclee el código siguiente en un editor, cárguelo en el PCSpim, y responda a las siguientes cuestiones:

.data 0x10000000 .float 1.0, -1.0, 3.23, -3.23

Pregunta 3. Llene la tabla siguiente con los contenidos de la memoria mostrada en la ventana del segmento de datos.

		Contenido (Decimal y hexadecimal)										
Dirección (HEX)	31		24	23		16	15		8	7		0
0x10000000												
0x10000004												
0x10000008												
0x1000000C												
0x10000010												

Pregunta 4. Indique los campos de signo, exponente y mantisa (en binario los tres) de los cuatro valores reales definidos en el código anterior:

	Signo	Exponente	Mantisa
1.00			
-1.00			
3.23			
-3.23			

REPRESENTACIÓN DE CARACTERES

Teclee el código siguiente en un editor, cargadlo en el PCSpim, y responda las siguientes cuestiones:

.data 0x10000000 .asciiz "el profe" .byte 16 .ascii "el profe" .byte 16

Pregunta 5. Llene la tabla siguiente con los contenidos de la memoria mostrada en la ventana del segmento de datos.

		Contenido (Decimal y hexadecimal)										
Dirección (HEX)	31		24	23		16	15		8	7		0
0x10000000												
0x10000004												
0x10000008												
0x1000000C												
0x10000010												

Pregunta 6. ¿En qué dirección de memoria se encuentran las letras "p"?

rección en hexadecimal:	

LOCALIZACIÓN DE INSTRUCCIONES Y DE DATOS

Las siguientes preguntas se refieren al código que aparece a continuación. Escríbalo usando un editor de textos, llame al archivo "practica_7_1.s, cárguelo en el PCSPIM y compruebe que se carga correctamente.

```
.globl
         start
.data 0x10000000
base:
      .word 3
altura: .word 10
area:
        .space 4
.text 0x00400000
start:
     la $10, base
     lw $11, 0($10)
     la $12, altura
     lw $13, 0($12)
     mult $11,$13
    mflo $14
     addi $15,$0,2
     div $14,$15
    mflo $16
     la $17, area
     sw $16, 0($17)
.end
```

Código 1. Cálculo del área de un triángulo (archivo "practica_7_1.s")

Pregunta 7. Determine las direcciones de memoria asociadas con las siguientes etiquetas:

Dato	Dirección
base	0x10000000
altura	
area	

Pregunta 8. Determine las direcciones de memoria donde se almacenan las siguientes instrucciones:

Instrucción	Dirección
lui \$10, 0x1000	0x00400000
lw \$11, 0(\$10)	
lui \$1, 0x1000	
ori \$12, \$1, 0x0004	
lw \$13, 0(\$12)	
div \$14,\$15	

Pregunta 9. Indique el contenido del segmento de datos antes de iniciarse la ejecución,
teniendo en cuenta que los datos se almacenan en formato "little endian". El contenido debe
ponerse en hexadecimal por cada byte de memoria.

31	•••	24	23	•••	16	15	 8	7	 0	Dirección

Pregunta 10. Indique el contenido del segmento de datos una vez finalizada la ejecución, teniendo en cuenta que los datos se almacenan en formato "little endian". El contenido debe ponerse en hexadecimal por cada byte de memoria.

31	• • •	24	23	•••	16	15	 8	7	 0	Dirección

Pregunta 11. Determinar el contenido de los siguientes registros cuando se haya finalizado la ejecución del programa.

Registro	Contenido	Qué representa el contenido
\$10		
\$11		
\$12		
\$13		
\$14		
\$15		
\$16		
\$17		

Pregunta 12. El programa propuesto utiliza muchos registros. Sin embargo, es posible realizar los mismos cálculos con menos registros. Reescribir el programa en un archivo llamado "practica 7 2.s donde se minimice el número de registros empleados

TABLA ASCII

Regular ASCII Chart (character codes 0 – 127)

	_	_							_	_	_	_	_		_
Д	Ъ	r	Ø	4	n	Δ	W	×	У	N	Ļ	_	<u>~</u>	\$	a
70h	71h	72h	73h	74h	75h	16h	77h	78h	79h	7Ah	7Bh	7Ch	7Dh	7Eh	7Fh
112d	1134	114d	1154	116d	117 d	1184	1194	120d	121d	122d	123d	124d	125d	126d	127 d
•	В	р	υ	р	Φ	Ŧ	ы	Ч	.н	٦.	¥	П	Ħ	п	0
409	61h	62h	63h	64h	65h	99	67h	68 h	469	6Ah	6Bh	ech	6Dh	6Eh	6Fh
p960	p 160	p860	P660	100 d	101d	102d	103d	104d	105d	106d	107 d	108d	109 d	110d	111d
Ь	ď	Я	ß	Н	D	^	W	X	Y	Z		/	_	•	1
20V	51h	52h	534	54h	25h	26h	57h	58h	29h	5Ah	5Bh	5Ch	5Dh	5Eh	5Fh
p080	081d	082d	0834	084d	085d	p980	087 d	p880	p680	p060	091d	092d	p860	094 <i>d</i>	095d
0	A	В	O	Q	ы	ы	5	н	н	r	Ж	ı	M	N	0
40h	41h	42h	43h	444	45h	46h	47h	48h	49h	4Ah	4Bh	4Ch	4Dh	4Eh	4Fh
064d	065d	p990	P 190	p890	p690	D070	0714	072d	0734	074d	0754	p920	D17d	0784	p620
0	1	2	က	4	2	9	7	00	6		••	v	II	^	ر.
30h	31h	32h	33h	34h	35h	36h	37h	38h	39h	3Ah	3Bh	3Ch	3Dh	3Eh	3Fh
048¢	049¢	020 g	051d	052d	053d	054d	055d	056d	057 d	058d	p690	P090	0614	062d	p 890
_	- -	=	#	↔	%	8	-	_	^	*	+	•	E		_
20h	21h	22h	23h	24h	25h	26h	27h	28h	29h	2Ah	2Bh	2Ch	2Dh	2Eh	2Fh
032d	0334	034d	0354	0364	037 d	0384	p680	040 d	0414	042d	043d	044 <i>d</i>	045d	046d	047d
(dle)	(dc1)	(dc2)	(dc3)	(dc4)	(nak)	(syn)	(etp)	(can)	(em)	(eof)	(esc)	(fs)	(gg)	(rs)	(sn)
•	•	↔	=:	F	w	ı	↔	←	→		Ţ	٦	:	4	٠
10h	11h	12h	13h	14h	15h	16h	17h	18h	19h	1Ah	1Bh	1Ch	1Dh	1Eh	1Fh
0164	017d	0184	0194	020d	021d	022d	023d	024d	025d	026d	027 d	028d	029d	0309	0314
(nul)	(soh)	(stx)	(etx)	(eot)	(end)	(ack)	(be1)	(ps)	(tab)	(1f)	(vt)	(du)	(cr)	(so)	(si)
*°	③	•	>	*	4	•	•			0	ъ		4	E,	•
400	01h	02h	03h	04h	05h	490	07h	08h	460	OAh	0Bh	OCh	ODh	0Eh	0Fh
P000	001d	002d	0034	004d	005d	p900	p 200	p800	p600	010d	0114	012d	013d	014d	015d

/CP1252
LATINI
-255
128
codes
(character
CHART
ASCII
EXTENDED

_	_		_	_											
Ø	ñ	ó	,0	0	žO.	:0	٠١٠	10.	ù	ú	û	ü	ý	ф	ÿ
F0h	F1h	F2h	F3h	F4h	F5h	F6h	F7h	F8h	F9h	FAh	FBh	FCh	FDh	FEh	FFh
240d	241d	242d	243d	244d	245d	246d	247 d	248d	249d	250d	251d	252d	253d	254d	255d
'n	'n	(rd	≀ત્વ	:๗	ಂದ	æ	O	Φ,	·Φ	œ	:O	, ,,	ч	(H	:-
E0h	E1h	E2h	E3h	E4h	ESh	E6h	E7h	E8h	E9h	EAh	EBh	ECh	EDh	EEh	EFh
224d	225d	226d	227 d	228d	229d	230d	231d	232d	233d	234d	235d	236d	237 d	238d	239 d
Ð	Ñ	Ō	Ó	Û	Õ	:0	×	0	ņ	Ú	Û	Ü	Ý	Д	\$
DOA	D1h	D2h	D3h	D4h	D54	D67	D7h	D81	D9h	DAA	DBh	DCh	DDA	DEA	DFh
208d	209d	210d	211d	212d	213d	214d	215d	216d	217d	2184	219d	220d	221d	222d	223d
A	Ā	Ą	Ã	Ä	∞¥	땓	S	'n	ıΉ	ФŦ	:[1]	'n	·Н	Ф	:Н
COh	C1h	C2h	C3h	C4h	C5h	CGh	C7 h	C8h	C9h	CAh	CBh	CCh	CDh	CEh	CFh
192d	193 <i>d</i>	194 <i>d</i>	195 <i>d</i>	196 <i>d</i>	197 <i>d</i>	198 <i>d</i>	199 <i>d</i>	200d	201d	202d	203d	204d	205d	206d	207 d
0	#	N	ø	,	ц	F		1	н	OI	A	니4	HIC	0 4	.2
B0h	B1h	B2h	B3h	B4h	B5h	B6h	B7 h	B8h	B9h	BAh	BBh	BCh	BDh	BEh	BFh
176d	177d	178d	179d	180¢	1814	182d	1834	184d	185d	186d	187 d	1884	189¢	190 <i>d</i>	191 <i>d</i>
part.		÷	47	¤	*		ဏ	:	0	તા	¥	г		(H)	ı
A0h	A1h	A2h	A3h	A4h	A5h	A6h	A7h	A8h	A9h	AAh	ABh	ACh	ADh	AEh	AFh
160d	161d	162d	1634	164 <i>d</i>	1654	1664	167 d	168d	1694	170d	171d	172d	173d	174d	175d
	•	•	3	•	•	1	1	ł	¥	×Ω	^	8		N	Ÿ
90V	91h	92h	93h	94h	95h	496	97h	98 <i>h</i>	466	9Ah	9Bh	9Ch	9Dh	9Eh	9Fh
144 d	145d	146d	147 d	148 <i>d</i>	149 <i>d</i>	150d	151d	152d	1534	1544	155d	156d	157 d	1584	1594
Ψ			£	:	:	+	++	(%	хх	v	띰		X	
		ų	h	14	24	49	12 h	184	39h	SAh	8Bh	3Ch	3Dh	Eh	8Fh
80 h	81h	82	83	8	∞	ω	ω	ω	w	w	~	~	ω	ω	w

Hexadecimal to Binary

0	0000	4	0100	∞	1000	O	1100
_	0001	2	0101	6	1001	Q	1101
2	0010	9	0110	A	1010	ы	1110
m	0011	7	0111	В	1011	ш	1111

Groups of ASCII-Code in Binary

Bit 6	Bit 5	Group
0	0	Control Characters
0	1	Digits and Punctuation
1	0	Upper Case and Specia
-	П	Lower Case and Special

© 2009 Michael Goerz
This work is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 License.
To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/