TURMA DO MÁRIO

Álgebra

Porcentagem

Taxa percentual ou porcentagem de um número \mathbf{a} sobre um número \mathbf{b} , $\mathbf{b} \neq 0$ é a razão

$$\frac{x}{100}$$
 tal que: $\frac{x}{100} = \frac{a}{b}$, e se indica: $\frac{x}{100} = x\%$.

A palavra porcentagem deriva de por (dividido) e centagem (100). Quando se fala x % de um número, significa multiplicar este número por $\frac{x}{100}$.

Exemplo: 15 % de
$$200 = \frac{15}{100}$$
 . $200 = 30$.

Potenciação

Definições

$$\forall \ a \in R \Rightarrow a^0 = 1$$

 $\forall \ a \in R \ e \ \forall \ n \in N \Rightarrow a^n = a^{n-1} \ . \ a$

Propriedades

1.
$$a^m$$
. $a^n = a^{m+n}$

2.
$$\frac{a^{m}}{a^{n}} = a^{m-n}, a \neq 0$$

3.
$$(a^m)^n = a^{m \cdot n}$$

4.
$$(a \cdot b)^n = a^n \cdot b^n$$

5.
$$(a:b)^n = a^n:b^n, b \neq 0$$

6.
$$a^{-n} = \frac{1}{a^n}$$
, $a \neq 0$

Nota: Em geral $\left(a^{m}\right)^{n} \neq a^{m^{n}}$

Em geral
$$(a+b)^n \neq a^n + b^n$$

Radiciação

Propriedades

1.
$$\sqrt[n]{a \cdot b} = \sqrt[n]{a} \cdot \sqrt[n]{b}$$

2.
$$\sqrt[n]{a:b} = \sqrt[n]{a}: \sqrt[n]{b}, b \neq 0$$

$$3. \left(\sqrt[n]{a}\right)^m = \sqrt[n]{a^m}$$

4.
$$\sqrt[m]{\sqrt[n]{a}} = \sqrt[n \cdot m]{a}$$

$$5. \sqrt[n]{a^m} = a^{\frac{m}{n}}$$

$$6. \sqrt[n \cdot p]{a^{m \cdot p}} = \sqrt[n]{a^m}$$

Produtos notáveis

$$(a + b) \cdot (a - b) = a^{2} - b^{2}$$

$$(a + b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a - b)^{2} = a^{2} - 2ab + b^{2}$$

$$(a + b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a - b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

$$(a + b + c)^{2} = a^{2} + b^{2} + c^{2} + 2 \cdot (ab + ac + bc)$$

Fatoração

$$\begin{array}{l} ab+ac=a\cdot(b+c)\\ ab+ac+db+dc=a\cdot(b+c)+d\cdot(b+c)=(b+c)\cdot(a+d)\\ a^2+2ab+b^2=(a+b)^2\\ a^2-2ab+b^2=(a-b)^2\\ ax^2+bx+c=a.(x-\alpha_1)\cdot(x-\alpha_2),\ \text{onde}\ \alpha_1\in\alpha_2\ \text{são as raízes de ax}^2+bx+c=0.\\ a^3+3a^2b+3ab^2+b^3=(a+b)^3\\ a^3-3a^2b+3ab^2-b^3=(a-b)^3\\ a^3+b^3=(a+b)\cdot(a^2-ab+b^2)\\ a^3-b^3=(a-b)\cdot(a^2+ab+b^2)\\ a^2+b^2+c^2+2\cdot(ab+ac+bc)=(a+b+c)^2 \end{array}$$

Números naturais

Números primos: Um número natural e maior que 1 é primo se ele tiver apenas dois divisores naturais distintos: 1 e ele mesmo.

Números primos entre si: Dois números naturais são primos entre si se o único divisor natural comum entre eles for 1.

Quantidade de divisores naturais de um número natural

Se $n = a^p.b^q.c^r.d^s...$, então n tem $(p+1)\cdot(q+1)\cdot(r+1)...$ divisores positivos, sendo n um número natural e a, b, c, d, ... fatores primos do número n.

Seqüências

Definições

Seqüência real é toda função $f: I \rightarrow R$, onde $I = N^*$ ou $I = \{1, 2, 3,, n\}$ Se $I = N^*$, a seqüência é chamada infinita. Se $I = \{1, 2, 3,, n\}$, a seqüência é chamada finita.

Progressão Aritmética (PA)

Definição

Progressão aritmética (PA) é toda seqüência numérica onde, a partir do primeiro termo encontramos os demais somando ao anterior um valor fixo r chamado de razão da PA.

Conseqüência da definição: $r = a_2 - a_1 = a_3 - a_2 = a_4 - a_3 = \dots = a_{n+1} - a_n = r$

Classificação das PA's

Uma PA de números reais pode ser:

I. crescente: (razão positiva): $r>0 \Rightarrow a_{n+1}>a_n$ II. decrescente (razão negativa): $r<0 \Rightarrow a_{n+1}< a_n$

III. constante (razão nula): $r = 0 \Rightarrow a_{n+1} = a_n$

Fórmula do termo geral de uma PA

Seja a PA($a_1, a_2, a_3, \dots a_n$). Então: $a_n = a_1 + (n-1) \cdot r, n \in \mathbf{N}^*$

Consequência: Para obtermos um termo qualquer a_n , a partir de um termo de ordem p (a_n) , poderemos utilizar a regra:

 $a_n = a_p + (n-p) \cdot r, n,p \in \mathbf{N}^*$

Termos equidistantes em PA

Na PA genérica: $PA(a_1, a_2, a_3,... ..., a_{p-1}, a_p, a_{p+1},... ..., a_n)$, tem-se:

$$a_p = \frac{a_{p-k} + a_{p+k}}{2} \text{ com } p, k \in \mathbb{N}^*$$

Soma dos n primeiros termos de uma PA

Seja a $PA(a_1, a_2, a_3, ..., a_n,)$, a soma de seus n primeiros termos é dada por:

3

$$S_n = \frac{(a_1 + a_n) \cdot n}{2}$$

Progressão Geométrica (PG)

Definição

Progressão geométrica (PG) é toda seqüência em que cada termo, a partir do segundo, é igual ao produto do termo anterior por uma constante q, que é chamada razão da P.G.

Consequência da definição:

Se $a_n \neq 0$, então $q = \frac{a_{n+1}}{a_n}$; ou seja, encontramos a razão da PG dividindo um termo qualquer pelo seu antecessor.

Classificação das PG´s:

Uma PG pode ser:

- I. Crescente: quando $a_{n+1} > a_n$ Exemplo: PG(1, 2, 4, 8, 16, ...), q = 2
- II. Decrescente: quando $a_{n+1} < a_n$ Exemplo: PG(81, 27, 9, 3, 1, ...), q = 1/3
- III. Constante: quando $a_{n+1} = a_n$ Exemplo: PG(2, 2, 2, 2, 2, ...), q = 1
- IV.Alternante: quando $a_1 \neq 0$ e q < 0 Exemplo: PG(2, -4, 8, -16, 32, ...), $a_1 = 2$ e q = -2
- V. Não decrescente: quando $a_1 < 0$ e q = 0Exemplo: PG(- 2, 0, 0, 0, 0, ...), $a_1 = -2$ e q = 0
- VI.Não crescente: quando $a_1 > 0$ e q = 0Exemplo: PG(5, 0, 0, 0, 0, ...), $a_1 = 5$ e q = 0

Fórmula do termo geral da PG

Seja a PG genérica: PG(a_1 , a_2 , a_3 , a_4 ,). Assim: $a_n = a_1 \cdot q^{n-1}$, $n \in \mathbf{N}^*$

Consequência: Para obtermos um termo qualquer a_n , a partir de um termo de ordem p (a_p), poderemos utilizar a regra: $a_n = a_p \cdot q^{n-p}$, $n,p \in \mathbf{N}^*$

Termos equidistantes em PG

Na PG genérica: $PG(a_1, a_2, a_3,...$..., $a_{p-1}, a_p, a_{p+1},...$..., $a_n)$, então: $\boxed{(a_p)^2 = (a_{p-k}) \cdot (a_{p+k}), \, p, k \in \mathbf{N}^*}$

Produto dos n primeiros termos de uma PG (Pn)

Seja a $PG(a_1, a_2, a_3, ..., a_n, ..., a_n, ...)$ indicaremos por P_n o produto de seus n primeiros

termos. Assim: $P_n = a_1^n \cdot q^{\frac{n(n-1)}{2}}$ ou $P_n = (a_1 \cdot a_n)^{\frac{n}{2}}$

Soma dos n primeiros termos de uma PG (Sn)

Seja (a₁, a₂, a₃, ..., a_n, ...) uma PG de razão q e indiquemos por S_n a soma de seus n primeiros termos. Assim:

Se a PG não for constante, ou seja $q \ne 1$ teremos: $S_n = \frac{a_1 \cdot (q^n - 1)}{q - 1}$

Se a PG for constante, ou seja q = 1 teremos: $S_n = n \cdot a_1$

Soma dos termos de uma PG infinita (S)

Seja a P.G. = $(a_1, a_2, a_3, \dots, a_n, \dots)$ de razão q e a soma de seus infinitos termos $Sn = a_1 + a_2 + a_3 + \ldots + a_n + \ldots$ (série)

Quando $\lim S_n = S$ existe e é finito, dizemos que a série converge para S.

Quando esse limite não existe ou não é finito dizemos que a série diverge (não se pode

determinar tal soma). Se – 1 < q < 1, pode-se demonstrar que: $\lim_{n\to\infty} S_n = S = \frac{a_1}{1-q}$

$$\lim_{n\to\infty} S_n = S = \frac{a_1}{1-q}$$

Função Exponencial

$$f(x) = a^x$$
; $a > 0$ e $a \ne 1$

$$Im_f = IR_+^*$$

 $D_f = IR$

Propriedades de potência

1.
$$a^m$$
 . $a^n = a^{m+n}$

2.
$$a^m : a^n = a^{m-n}$$
, $a \ne 0$

3.
$$(a^m)^n = a^{m \cdot n}$$

4.
$$\sqrt[n]{a^m} = a^{m/n}, n \in IN / n > 1$$

5.
$$a^{-n} = \frac{1}{a^n}$$
, $a \neq 0$

Equação exponencial

$$a^{f(x)} = a^{g(x)} \Leftrightarrow f(x) = g(x)$$

Inequação exponencial

$$a^{f(x)} > a^{g(x)} \Leftrightarrow f(x) > g(x)$$
, se $a > 1$
 $a^{f(x)} > a^{g(x)} \Leftrightarrow f(x) < g(x)$, se $0 < a < 1$

Logaritmo

Definição

$$log_b a = x \iff a = b^x \text{ com } a > 0, 0 < b \neq 1$$

Propriedade de logaritmo

1.
$$\log_{c}(a.b) = \log_{c}a + \log_{c}b$$
; $a > 0$, $b > 0$, $0 < c \neq 1$

2.
$$\log_c \left(\frac{a}{b}\right) = \log_c a - \log_c b$$
; $a > 0$, $b > 0$, $0 < c \ne 1$

3.
$$\log_c a^m = m \cdot \log_c a$$
; $a > 0$, $0 < c \neq 1 \ e \ m \in IR$

4.
$$\log_{c^m} a = \frac{1}{m}$$
. $\log_c a$; $a > 0$, $0 < c \ne 1$ e $m \in IR^*$

Função Logarítmica

$$f(x) = log_a x , \ a > 0 \ e \ a \neq 1$$

у

0

a > 1

Geometria Plana

Relações métricas no triângulo retângulo

$$h^2 {=} \, m \cdot n$$

$$b \cdot c = a \cdot h$$

$$b^2 = a \cdot m$$

$$c^2 = a \cdot n$$

$$a^2 = b^2 + c^2$$
 (Pitágoras).

Relações métricas no círculo

$$PA \cdot PB = PC \cdot PD$$

$$PA \cdot PB = PC \cdot PD$$

$$(PT)^2 = PA \cdot PB$$

Lei dos

$$\frac{a}{\text{sen}\alpha} = \frac{b}{\text{sen}\beta} = \frac{c}{\text{sen}\gamma} = 2R$$

Lei dos cossenos

$$a^2 = b^2 + c^2 - 2 \cdot b \cdot c \cdot \cos \alpha$$

$$b^2 = a^2 + c^2 - 2 \cdot a \cdot c \cdot \cos \beta$$

$$c^2 = a^2 + b^2 - 2 \cdot a \cdot b \cdot \cos \gamma$$

Teorema de Tales

$$a_1 /\!/ a_2 /\!/ a_3 /\!/$$

$$\frac{AB}{A^{\scriptscriptstyle \mathsf{I}}B^{\scriptscriptstyle \mathsf{I}}} = \frac{BC}{B^{\scriptscriptstyle \mathsf{I}}C^{\scriptscriptstyle \mathsf{I}}} = \frac{CD}{C^{\scriptscriptstyle \mathsf{I}}D^{\scriptscriptstyle \mathsf{I}}} = \frac{AC}{A^{\scriptscriptstyle \mathsf{I}}C^{\scriptscriptstyle \mathsf{I}}} = \frac{AD}{A^{\scriptscriptstyle \mathsf{I}}D^{\scriptscriptstyle \mathsf{I}}}$$

Teorema da bissetriz interna

$$\frac{b}{x} = \frac{c}{y}$$

Teorema da bissetriz externa

$$\frac{b}{x} = \frac{c}{y}$$

Semelhança de triângulos

$$\frac{a}{x} = \frac{b}{y} = \frac{c}{z} = \frac{H}{h} = k$$

$$\frac{\text{Área }\Delta ABC}{\text{Área }\Delta POR} = k^2$$

Arcos e ângulos

$$\alpha=\mathsf{a}$$

$$\alpha = \frac{a}{2}$$

$$\alpha = \frac{a-b}{2}$$

$$\alpha = \frac{a}{2}$$

Razões trigonométricas

$$sen \alpha = \frac{b}{a}$$

sen
$$\beta = \frac{c}{a}$$

$$\cos \alpha = \frac{c}{a}$$

$$\cos \beta = \frac{k}{6}$$

$$tg \alpha = \frac{b}{c}$$

$$tg \beta = \frac{c}{b}$$

Comprimento da circunferência

 $C = 2\pi R$

Base média de triângulo

Base média de trapézio

Baricentro de triângulo

Polígonos convexos

Sendo n = número de lados;

d = número de diagonais;

 $S_i = soma dos ângulos internos e$

 ${\rm S_e}={\rm soma~dos~angulos~externos},$

temos:

 $d = \frac{n(n-3)}{2}$ $S_i = (n-2) \cdot 180^{\circ}e$ $S_e = 360^{\circ}$

$$S_e = 360^\circ$$

Áreas

Retângulo

Quadrado

Paralelogramo

Triângulo

Trapézio

Losango 1

h = b.h

Losango 2

$$A_{Los} = \frac{(AC) \cdot (BD)}{2}$$

Fórmulas especiais para área do triângulo

$$A = \frac{\ell^2 \sqrt{3}}{4}$$

$$A = \frac{b \cdot c}{2}$$

$$A = \sqrt{p(p-a) \cdot (p-b)(p-c)}$$
em que
$$p = \frac{a+b+c}{2}$$

$$A = \frac{1}{2} \cdot a \cdot b \cdot sen\alpha$$

$$A = r p$$

$$p = \frac{a + b + c}{2}$$

$$A = \frac{a \cdot b \cdot c}{4R}$$

Círculo

$$A = \pi \cdot R^2$$

Setor circular

$$R \propto \alpha$$

$$A = \frac{\alpha \cdot \pi \cdot R^2}{360^\circ}$$

$$A = \frac{\alpha \cdot R^2}{2}$$

$$\alpha \text{ em radianos}$$

$$A = \frac{\ell \cdot R}{2}$$

Análise Combinatória / Probabilidades

Número binomial:
$$\binom{n}{p} = \frac{n!}{p!(n-p)!} = C_{n, p} = \begin{pmatrix} \text{combinação de n objetos distintos} \\ \text{agrupados de p em p} \end{pmatrix}$$

Teorema binomial:
$$(a + b)^n = \binom{n}{0}a^nb^0 + \binom{n}{1}a^{n-1}b^1 + \ldots + \binom{n}{n}a^0b^n = \sum_{i=0}^n \binom{n}{i}a^{n-i}b^i$$

Arranjo: $A_{n, p} = \frac{n!}{(n-p)!} \Rightarrow n$ objetos distintos seqüenciados (enfileirados) de p em p

Permutação de n objetos distintos: $P_n = n!$

Permutação de elementos repetidos:
$$P_n^{\alpha,\beta,\gamma} = \frac{n!}{\alpha!\beta!\gamma!}$$
, α objetos iguais entre si β objetos iguais entre si γ objetos iguais entre si

Probabilidade de ocorrer um evento $=\frac{\text{n.o de elementos do conjunto evento}}{\text{n.o de elementos do espaço amostral}} = \frac{\text{n(A)}}{\text{n(E)}} = \text{P(A)}$

Exemplo:

2 bolas azuis
5 bolas verdes
$$P\left(\begin{array}{c} \text{tirar uma bola azul e em} \\ \text{seguida uma bola azul} \end{array}\right) = \frac{2}{7} \times \frac{1}{6}$$

$$\text{chance de retirar uma bola azul sabendo que já saiu uma azul}$$

Conjuntos, Funções e Inequações

Relação

Considerando dois conjuntos A e B, não-vazios, chamamos relação (binária) de A e B a qualquer subconjunto do produto cartesiano ($A \times B = \{(x; y) \mid x \in A \land x \in B\}$).

Definição

Uma relação f de A em B é uma função de A em B, se, para todo x ∈ A, existe um único y \in B tal que (x; y) \in f. (Indica-se: f : A \rightarrow B).

Exemplo

Contra-exemplo

- Domínio de $f = D(f) = A = \{1, 2, 5\}$
- Conjunto Imagem de $f = Im(f) = \{3, 4\}$
- Contradomínio = $CD(f) = B = \{3, 4, 6\}$
- 4 é imagem de 5, isto é, 4 = f(5)
- 4 é imagem de 2, isto é, 4 = f(2)

Tipos de função

Função crescente e decrescente

- Uma função f é crescente em $A \subset D_f \Leftrightarrow (x_1 < x_2 \Rightarrow f(x_1) < f(x_2), \forall x_1, x_2 \in A)$.
- Uma função f é decrescente em $A \subset D_f \Leftrightarrow (x_1 < x_2 \Rightarrow f(x_1) > f(x_2), \forall x_1, x_2 \in A).$

Função injetora, sobrejetora e bijetora

- Uma f : A \rightarrow B é injetora se todos os elementos distintos em A têm imagens distintas em B (\forall x₁, x₂ \in A, x₁ \neq x₂ \Rightarrow f(x₁) \neq f(x₂)).
- Uma f : A \rightarrow B é sobrejetora se todos os elementos de B são imagens de elementos de A (Im(f) = CD(f) ou \forall y \in B, \exists x \in A / f(x) = y)
- Uma função de f : $A \rightarrow B$ é bijetora se é injetora e sobrejetora.

Exemplos:

f é sobrejetora e não é injetora

f é injetora e não é sobrejetora

f é bijetora

f não é injetora e nem sobrejetora

Função par e ímpar

- $\bullet \ \mathsf{Uma} \ \mathsf{funç\~ao} \ \ \mathsf{f} : \mathsf{A} \to \mathsf{B} \ \mathsf{\acute{e}} \ \mathsf{par} \Leftrightarrow \forall \ \mathsf{x} \in \mathsf{A}, \ \mathsf{f}(\mathsf{x}) = \mathsf{f}(-\mathsf{x}).$
- Uma função $f:A \to B$ é ímpar $\Leftrightarrow \forall \ x \in A$, f(x) = -f(-x).

Função periódica

• Uma função $f:A \rightarrow B$ é periódica de período $p \Leftrightarrow \forall \ x \in A$, $f(x+p)=f(x), \ p>0$.

Função composta

• Dadas duas funções f e g, podemos obter uma outra função fog, tal que fog(x) = f(g(x)), chamada função composta de f com g.

Função inversa

• Denomina-se inversa da função bijetora y = f(x), $f : A \to B$ a função $f^{-1} : B \to A$, tal que $f^{-1}(y) = x$.

Observação:

Para se obter a inversa de uma função f (bijetora) definida por uma sentença matemática y = f(x)

- a. troca-se x por y e y por x;
- b. coloca-se o novo y em função do novo x.

Matrizes, Determinantes e Sistemas Lineares

Propriedades dos determinantes

- a. $det(A^t) = det(A)$.
- b. Se uma linha (ou coluna) é formada só de zeros, o determinante é igual a zero.
- c. Quando trocamos de lugar duas linhas (ou colunas) paralelas, o determinante fica multiplicado por –1.
- d. Se duas linhas (ou colunas) paralelas são iguais (ou proporcionais), o determinante é igual a zero.
- e. Se os elementos de uma linha (ou coluna) apresentam um fator comum k, este pode ser colocado em "evidência".
- f. Se A é uma matriz quadrada de ordem n, então $det(k.A) = k^{n}.det(A)$
- g. Teorema de Binet: det(A.B) = det(A).det(B)Atenção: em geral, $det(A+B) \neq det(A) + det(B)$
- h. Teorema de Jacobi (importante para obtenção de zeros). O determinante de uma matriz não se altera quando somamos a uma linha (ou coluna) outra linha (ou coluna) paralela multiplicada por uma constante.

i. Matriz Triangular:
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 4 & 0 & 0 \\ 2 & 3 & -5 & 0 \\ 5 & 6 & 7 & 8 \end{bmatrix} \Rightarrow det(A) = 1 \cdot 4(-5) \cdot 8$$

Multiplicação de matrizes

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} x & y \\ z & w \end{pmatrix} = \begin{pmatrix} ax + bz & ay + bw \\ cx + dz & cy + dw \end{pmatrix}$$

- a. Todo sistema de equações lineares apresenta apenas uma solução, ou seja, é um sistema possível e determinado (s. p. d.), quando D ≠ 0, onde D é o determinante da matriz dos coeficientes de tal sistema.
- b. Para os casos onde D = 0, para analisar o sistema, ou seja, dizer se o mesmo é impossível (s. i.) ou indeterminado (s. p. i.), deve-se escalonar tal sistema, eliminando ordenadamente as incógnitas das equações.

A equação, na incógnita x, ax = b tem apenas uma solução para $a \ne 0$; tem infinitas soluções para a = 0 e b = 0 e não tem solução para a = 0 e $b \ne 0$.

14

Trigonometria

Relações Fundamentais

$$sen^2x + cos^2x = 1, \forall x \in R$$

$$tgx = \frac{senx}{cosx} \left(x \neq \frac{\pi}{2} + k\pi \right)$$

$$cotgx = \frac{cosx}{senx} (x \neq k\pi)$$

$$secx = \frac{1}{cosx} \left(x \neq \frac{\pi}{2} + k\pi \right)$$

$$cossecx = \frac{1}{senx} (x \neq k\pi)$$

Consequências
$$\left(x \neq \frac{k\pi}{2}\right)$$

$$cotgx = \frac{1}{tgx}$$

$$1 + tg^2x = sec^2x$$

$$1 + cotg^2x = cossec^2x$$

$$\cos^2 x = \frac{1}{1 + tg^2 x}$$

$$sen^2 x = \frac{tg^2 x}{1 + tg^2 x}$$

Fórmulas de adição

$$cos(a + b) = cos a . cos b - sen a . sen b$$

$$cos(a - b) = cos a . cos b + sen a . sen b$$

$$sen(a + b) = sen a . cos b + sen b . cos a$$

$$sen(a - b) = sen a . cos b - sen b . cos a$$

$$tg(a+b) = \frac{tg \ a + tg \ b}{1 - tg \ a \cdot tg \ b}$$

$$tg(a - b) = \frac{tg \ a - tg \ b}{1 + tg \ a \cdot tg \ b}$$

Fórmulas de multiplicação

Arcos duplos

$$sen 2a = 2 sen a cos a$$

$$\cos 2a = \begin{cases} \cos^2 a - \sin^2 \\ ou \\ 2\cos^2 a - 1 \\ ou \\ 1 - 2\sin^2 a \end{cases}$$

$$tg 2a = \frac{2 tg a}{1 - tg^2 a}$$

Arcos Triplos

$$sen 3a = 3 sen a - 4 sen^3 a$$

$$\cos 3a = 4 \cos^3 a - 3 \cos a$$

$$tg \ 3a = \frac{3 \ tga - tg^3a}{1 - 3tg^2a}$$

Fórmulas de divisão

$$\operatorname{sen} \frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{2}} \qquad \operatorname{cos} \frac{x}{2} = \pm \sqrt{\frac{1 + \cos x}{2}} \qquad \operatorname{tg} \frac{x}{2} = \pm \sqrt{\frac{1 - \cos x}{1 + \cos x}}$$

$$\cos\frac{x}{2} = \pm\sqrt{\frac{1+\cos x}{2}}$$

$$tg\frac{x}{2} = \pm \sqrt{\frac{1-\cos x}{1+\cos x}}$$

Fórmulas de transformação em produto

$$\cos p + \cos q = 2 \cdot \cos \frac{p+q}{2} \cdot \cos \frac{p-q}{2}$$

$$\cos p - \cos q = -2 \cdot sen \frac{p+q}{2} \cdot sen \frac{p-q}{2}$$

$$sen \ p + sen \ q = 2 \cdot sen \frac{p+q}{2} \cdot cos \frac{p-q}{2}$$

$$sen \ p-sen \ q=2 \cdot sen \frac{p-q}{2} \cdot cos \frac{p+q}{2}$$

$$tg p + tg q = \frac{sen(p+q)}{cos p \cdot cos q}$$

$$tg p - tg q = \frac{sen(p-q)}{cos p \cdot cos q}$$

Equações trigonométricas fundamentais

$$\operatorname{sen} \alpha = \operatorname{sen} \beta \Rightarrow \alpha = \beta + 2k\pi \text{ ou } \alpha = (\pi - \beta) + 2k\pi$$

$$\cos \alpha = \cos \beta \Rightarrow \alpha = \pm \beta + 2k\pi$$

$$tg \alpha = tg \beta \Rightarrow \alpha = \beta + k\pi$$

Funções circulares inversas

$$y = arc senx \Leftrightarrow seny = x e - \frac{\pi}{2} \le y \le \frac{\pi}{2}$$

$$y = arc cosx \Leftrightarrow cosy = x e 0 \le y \le \pi$$

$$y = arc tgx \Leftrightarrow tgy = x e - \frac{\pi}{2} < y < \frac{\pi}{2}$$

Geometria Espacial

• O volume de um prisma e o de um cilindro (retos ou oblíquos) é igual ao produto da área da base (B) pela altura (H). E o volume de uma pirâmide e o de um cone reto (ou oblíquo) é igual a 1/3 do produto da área da base pela altura.

• Planificando a superfície lateral de um cilindro reto de raio $\bf R$ e altura $\bf H$ obtemos um retângulo de lados $2\pi R$ e H. Então a área lateral (A_i) do cilindro reto é:

• Planificando a superfície lateral de um cone reto de raio $\bf R$ e geratriz $\bf g$ obtemos um setor circular de raio $\bf g$ e arco $\bf 2\pi \bf R$. Então a área lateral do cone reto é.

• O volume V e a área A de uma esfera de raio R são dados por:

Números Complexos

Forma algébrica

Nomenclatura

$$z = a + bi (a, b \in IR)$$

$$a = Re(z) = parte real de z$$

Exemplos de números complexos

$$z = 3i = 0 + 3i = número imaginário puro.$$

$$z = -6 = -6 + 0i = número real.$$

$$z = a + bi$$
 ($b \ne 0$) = número imaginário ou número complexo não real.

Potências inteiras de i (i^k , $k \in \mathbb{Z}$)

$$i^0 = 1$$
 e $i^{4k} =$

$$i^{0} = 1$$
 e $i^{4k} = 1$
 $i^{1} = i$ e $i^{4k+1} = i^{4k} \cdot i^{1} = i$

$$i^{2} = -1$$
 e $i^{4k+2} = i^{4k}$. $i^{2} = -i$
 $i^{3} = -i$ e $i^{4k+3} = i^{4k}$. $i^{3} = -i$

$$i^3 = -i$$
 e $i^{4k+3} = i^{4k}$. $i^3 = -i$

Conjugado de z = a + bi (a, $b \in IR$)

$$\bar{z} = a - bi$$

Propriedades

$$1.\,\overline{z+w}=\overline{z}+\overline{w}$$

$$2.\overline{z.w} = \overline{z}.\overline{w}$$

$$3.\overline{\left(\frac{z}{w}\right)} = \frac{\bar{z}}{\overline{w}}$$

$$4. \overline{z^n} = (\overline{z})^n \qquad (n \in \mathbb{Z})$$

5.
$$\overline{(\overline{z})} = z$$

Produtos e divisões notáveis

1.
$$(1 + i)^2 = 2i$$

2.
$$(1 - i)^2 = -2i$$

3.
$$(1 + i)(1 - i) = 2$$

4.
$$\frac{1+i}{1-i} = i$$

$$5. \frac{1-i}{1+i} = -i$$

Igualdade na forma algébrica

$$a + bi = c + di \Leftrightarrow a = c e b = d$$
 (a, b, c, d \in IR)

Representação no plano de Argand-Gauss

$$z = a + bi = (a, b) = P (a, b \in IR)$$

P = afixo de z $d_{op} = |z| = \sqrt{a^2 + b^2} = \text{m\'odulo de z}$ $\theta + k \cdot 2\pi = \text{arg(z)} = \text{argumento de z}$ $(0 \le \theta < 2\pi)$ $\theta = \text{argumento principal de z}$

Propriedades

1.
$$|z|^2 = z.\overline{z}$$

$$3. \left| \frac{z}{w} \right| = \frac{|z|}{|w|} \qquad (w \neq 0)$$

$$4. \mid z^n \mid = \mid z \mid n, \quad n \in \mathbb{Z}$$

$$5. |z+w| \le |z| + |w|$$

6.
$$|z| = |\overline{z}|$$

Forma trigonométrica de $z \in C^*$

$$z = a + bi = |z| (\cos \theta + i \sin \theta)$$

$$|z| = \sqrt{a^2 + b^2} e \begin{cases} \cos \theta = \frac{a}{|z|} \\ \sin \theta = \frac{b}{|z|} \end{cases}$$

Igualdade na forma trigonométrica

$$\underbrace{\left| z \mid (\cos \theta + i \operatorname{sen} \theta) \right|}_{Z} = \underbrace{\left| w \mid (\cos \alpha + i \operatorname{sen} \alpha) \right|}_{W}$$

Operações na forma trigonométrica

Sejam
$$z = |z| (\cos \theta + i \sin \theta)$$

 $z_1 = |z_1| (\cos \theta_1 + i \sin \theta_1)$
 $z_2 = |z_2| (\cos \theta_2 + i \sin \theta_2)$

Multiplicação

$$z_1 \cdot z_2 = |z_1| \cdot |z_2| \cdot [\cos(\theta_1 + \theta_2) + i\sin(\theta_1 + \theta_2)]$$

Divisão

$$\frac{z_1}{z_2} = \frac{|z_1|}{|z_2|} \left[\cos \left(\theta_1 - \theta_2 \right) + i \text{sen } (\theta_1 - \theta_2) \right]$$

• Potenciação

$$z^n = |z|^n$$
. [cos (n θ) + isen (n θ)]

• Radiciação

$$\sqrt[n]{z}^{C} = w_{k} = \sqrt[n]{|z|} \left[\cos \left(\frac{\theta}{n} + k \cdot \frac{2\pi}{n} \right) + i \operatorname{sen} \left(\frac{\theta}{n} + k \cdot \frac{2\pi}{n} \right) \right], \quad (k = 0, 1, 2, \dots, n-1)$$

Propriedades

1.
$$w_0 + w_1 + w_2 + \ldots + w_{n-1} = 0$$

- 2. A raiz enésima de z divide a circunferência em n partes iguais.
- 3. O raio dessa circunferência é $\sqrt[n]{|z|}$.
- 4. O "ponto de partida" (w_o) é o arco $\frac{\theta}{n}$ e o "pulo' de uma raiz para outra é de $\frac{2\pi}{n}$.

Equação binômia em C

$$ax^{n} + b = 0$$
 $(a \neq 0)$
 $ax^{n} = -b \Rightarrow x^{n} = \frac{-b}{a} \Rightarrow x = \sqrt[n]{\frac{-b}{a}}^{c} = w_{k}$, $(k = 0, 1, 2, ..., n-1)$

Geometria Analítica

Distâncias

De dois pontos A e B

$$d_{AB} = \sqrt{(x_B - x_A)^2 + (y_B - y_A)^2}$$

Do ponto P à reta (r) ax + by + c = 0

$$d = \frac{|ax_p + by_p + c|}{\sqrt{a^2 + b^2}}$$

Pontos especiais

M divide AB na razão
$$\frac{AM}{MB} = r$$

$$r = \frac{x_M - x_A}{x_B - x_M} = \frac{y_M - y_A}{y_B - y_M}$$

Se M é ponto médio de AB, M =
$$\left(\frac{x_A + x_B}{2}, \frac{y_A + y_B}{2}\right)$$

b. Ponto do eixo x:
$$A = (a, 0)$$

Ponto do eixo y:
$$B = (0, b)$$

Ponto da bissetriz dos quadrantes pares:
$$C = (k, k)$$

Ponto da bissetriz dos quadrantes ímpares:
$$D = (k, -k)$$

Baricentro do
$$\triangle ABC$$
: $G = \left(\frac{x_A + x_B + x_C}{3}, \frac{y_A + y_B + y_C}{3}\right)$

Área do ABC

$$S = \frac{|D|}{2} \text{ onde } D = \begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x_C & y_C & 1 \end{vmatrix}$$

Observação: Se A, B e C são colineares,
$$D=0$$
.

Equação de circunferência

$$(x - x_C)^2 + (y - y_C)^2 = r^2$$

Equação de reta

• Geral:
$$ax + by + c = 0$$
 (r)

Geral:
$$ax + by + c = 0$$
 (r)

Conhecendo 2 pontos A e B de r: $\begin{vmatrix} x_A & y_A & 1 \\ x_B & y_B & 1 \\ x & y & 1 \end{vmatrix} = 0$

• Reduzida:
$$y = mx + k$$

$$m = tg\alpha$$
 (não existe, se m é vertical)

Conhecendo 2 pontos A e B da reta, m =
$$\frac{y_B - y_A}{x_B - x_A}$$

Paralelas / perpendiculares

•
$$r /\!/ s \Leftrightarrow m_r = m_s$$

Exemplos:

Paralela a
$$y = 2x - 3$$
 é $y = 2x + k$
Paralela a $2x + 5y - 3$ é $2x + 5y + k = 0$

• $r \perp s \Leftrightarrow m_r . m_s = -1$

Exemplos:

Perpendicular a
$$y = \frac{2}{3}x - 3$$
 é $y = -\frac{3}{2}x + k$

Perpendicular a
$$2x + 5y - 6 = 0$$
 é $5x - 2y + k = 0$

Observação:

Se P pertence a ax + by + c = 0, então $ax_p + by_p + c = 0$.