Гапей М.Ю. ПД-21

Тема роботи: «Функціональні ряди та ряди Фур'є»

Мета роботи: навчитись розкладати функції в ряд Тейлора та в ряд Фур'є, використовуючи програму Махіта.

Варіант 5

Завдання 1. Знайти область збіжності функціонального ряду

$$\sum_{n=1}^{\infty} \frac{3^{n} \cdot (n+1)^{4}}{(n+2) \cdot (x^{2}+3x+3)^{n}}.$$

 $e^{x}-2$

Завдання 2. Знайти перші 6 доданків ряду Тейлора для функції $f(x) = \overline{x^2 + 1}$ в точці $x_0 = 1$. Записати частинну суму $S_6(x)$. Побудувати графіки функцій f(x) та $S_6(x)$ в околі точці x_0 в одній системі координат.

3авдання 3. Розкласти функцію $f(x) = \frac{x+1}{x^2+1}$ в околі точці $x_0 = -1$ в ряд Тейлора.

3авдання 4. Розкласти в ряд Фур'є функцію $f(x) = x^2 - x + 1$ на інтервалі (-2; 2).

- 1. Знайти загальні вирази для коефіцієнтів a₀, a_n, b_n.в явному вигляді.
- 2. Знайти числові значення коефіцієнтів a_0 , a_1 , b_1 , a_2 , b_2 , a_3 , b_3 , a_4 , b_4 , a_5 , b_5 .

Завдання 1. Розв'язок:

Застосуємо ознаку Даламбера.

(%i1)
$$a(n,x):=3^n\cdot(n+1)^4/((n+2)\cdot(x^2+3\cdot x+3)^n);$$

(%01)
$$a(n,x) := \frac{3^n (n+1)^4}{(n+2) (x^2+3x+3)^n}$$

(dalamb)
$$\frac{3(n+2)^5}{(n+1)^4(n+3)(x^2+3x+3)}$$

$$\frac{3}{x^2 + 3x + 3}$$

Графічно розв'яжемо нерівність $abs(3/(x^2+3x+3)<1)$

3 графіка видно, що розв'язком буде область (-inf; 3) U (0;+inf). Дослідимо ряд на кінцях інтервалів:

(%i9)
$$a(n,-3)$$
;
(%o9) $\frac{(n+1)^4}{n+2}$
(%i10) $a(n,0)$;
(%o10) $\frac{(n+1)^4}{n+2}$

Очевидно, що в точках $x=\{0,3\}$ ряд розбігається, тому остаточно, область збіжності ряду має вигляд: (-inf; 3) U (0;+inf).

Завдання 2. Розв'язок:

Задаємо функцію f

(%i4) f:(exp(x)-2)/(x^2+1);
(f)
$$\frac{\%e^x - 2}{x^2 + 1}$$

та точку x_0

Знаходимо суму перших шести членів розкладу в ряд Тейлора в околі точки x_0

(%i9) s: taylor (f,x,x0,6);

(s)
$$\frac{\%e-2}{2} + (x-1) - \frac{(x-1)^2}{2} + \frac{\%e(x-1)^3}{12} - \frac{(\%e-4)(x-1)^4}{16} + \frac{(\%e-10)(x-1)^5}{40} + \frac{(\%e+18)(x-1)^6}{144} + \dots$$

Будуємо графіки функції f та частинної суми перших шести членів розкладу в ряд Тейлора в околі точки x_0

(%i16) plot2d([f,s],[x,0,3,1.5])\$;

Завдання 3. Розв'язок:

Задаємо функцію f

(f)
$$\frac{x+1}{x^2+1}$$

та точку x_0

Виводимо десять перших членів розкладу в ряд Тейлора

(%i45) taylor (f,x,x0,10);

$$\frac{(\%045)(77)}{2} + \frac{(x+1)^{2}}{2} + \frac{(x+1)^{3}}{4} - \frac{(x+1)^{5}}{8} - \frac{(x+1)^{6}}{8} - \frac{(x+1)^{7}}{16} + \frac{(x+1)^{9}}{32} + \frac{(x+1)^{10}}{32} + \dots$$

Завдання 4. Розв'язок:

Задаємо функцію f

(f)
$$x^2 - x + 1$$

та половину періоду розкладу в ряд Фур'є

Завантажуємо пакет fourie

Та знаходимо коефіцієнти розкладу в ряд Фур'є

(%t20)
$$a_0 = \frac{4}{3}$$

(%t21)
$$a_n = \frac{4 \sin(\pi n)}{\pi n} - \frac{4 \sin(\pi n)}{\pi^3 n^3} + \frac{4 \cos(\pi n)}{\pi^2 n^2}$$

(%t22)
$$b_n = \frac{2\cos(\pi n)}{\pi n} - \frac{2\sin(\pi n)}{\pi^2 n^2}$$

Спрощуємо результат

(%i23) foursimp(%);

(%t23)
$$a_0 = \frac{2^2}{3}$$

(%t24)
$$a_n = \frac{4(-1)^n}{\pi^2 n^2}$$

(%t25)
$$b_n = \frac{2(-1)^n}{\pi n}$$

Знаходимо п'ять перших коефіцієнтів розкладу

(%026)
$$[a_1 = -\frac{4}{\pi^2}, a_2 = \frac{1}{\pi^2}, a_3 = -\frac{4}{9\pi^2}, a_4 = \frac{1}{4\pi^2}, a_5 = -\frac{4}{25\pi^2}]$$

(%027)
$$[b_1 = -\frac{2}{\pi}, b_2 = \frac{1}{\pi}, b_3 = -\frac{2}{3\pi}, b_4 = \frac{1}{2\pi}, b_5 = -\frac{2}{5\pi}]$$

Висновок: навчився розкладати функції в ряд Тейлора та в ряд Φ ур'є, використовуючи програму Maxima.