Il gruppo dei quaternioni

di Gabriel Antonio Videtta

Si illustra in questo documento il **gruppo dei quaternioni**, spesso e volentieri impiegato in teoria dei gruppi per fornire controesempi. Storicamente si definisce tale gruppo, indicato con Q_8 , come il gruppo formato dai quaternioni ± 1 , $\pm i$, $\pm j$ e $\pm k$ sotto le usuali regole dei moltiplicazione di \mathbb{H} . In particolare, si può definire Q_8 mediante la seguente presentazione:

$$Q_8 = \langle i, j \mid i^2 = j^2, i^4 = j^4 = e, ij = j^3 i \rangle,$$

dove 1 := e, k := ij e $-1 := i^2$. In particolare $-i := i^3$ è l'inverso di $i, -j := j^3$ quello di j e $-k := j^3 i$ quello di k. Si osserva che Q_8 ha otto elementi, sei di ordine 4 ($\pm i, \pm j$ e $\pm k$), uno di ordine 2 (-1) e, ovviamente, uno di ordine 1 (1).

Le moltiplicazioni tra i, j e k si possono riassumere col seguente diagramma:

Moltiplicando in senso orario viene restituito il terzo termine, in senso antiorario viene restituita la terza potenza del terzo termine rimanente (per esempio, $ik = j^3 = -j$, si "aggiunge" in pratica il segno meno).

Si possono classificare molto facilmente i sottogruppi di Q_8 , che sono:

- Q_8 stesso, di ordine 8, banalmente normale,
- $\langle i \rangle$, $\langle j \rangle$ e $\langle k \rangle$, di ordine 4, normali perché di indice 2,
- $\langle -1 \rangle$ di ordine 2, normale perché caratteristico (è l'unico sottogruppo di ordine 2 ed è anche il centro $Z(Q_8)$ di Q_8),
- {1}, di ordine 1, banalmente normale.

Pertanto Q_8 è un esempio di gruppo non abeliano i cui sottogruppi sono tutti normali (e in particolare anche ciclici). Inoltre Q_8 non può essere decomposto non banalmente in un prodotto semidiretto tra i suoi sottogruppi: andrebbero infatti scelti due sottogruppi di ordine 4, che, essendo normali, indurrebbero obbligatoriamente un prodotto diretto tra gruppi ciclici; poiché questo prodotto è abeliano, Q_8 non può essergli isomorfo.