

Tópicos em Regressão Logística Modelos com desfecho categórico binário

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Logística

Sumário

Tópicos em Regressão Logística

Felipe Figueiredo

Aprofundamento

Aprofundamento

Regressão Logística Regressão Logística

Regressão Linear Múltipla Regressão Linear Múltipla

Discussão da aula passada

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Logística

Aprofundamen

Discussão da leitura obrigatória da aula passada

Sumário

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

- Regressão Linear Múltipla
 - Regressão Linear Múltipla
- Regressão Logística
 - Regressão Logística
- Aprofundamento
 - Aprofundamento

JOURNAL OF WOMEN'S HEALTH Volume 15, Number 9, 2006 © Mary Ann Liebert, Inc.

> The Association between Body Mass Index and Osteoporosis in Patients Referred for a Bone Mineral Density Examination

KOFI ASOMANING, M.B.Ch.B., M.S., ELIZABETH R. BERTONE-JOHNSON, Sc.D., PHILIP C. NASCA, Ph.D., FREDERICK HOOVEN, Ph.D., and PENELOPE S. PEKOW. Ph.D.

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Aprofundament

Hoje vamos interpretar os resultados do abstract

Tópicos em Regressão

ABSTRACT

Purpose: Osteoporosis affects 4–6 million (13%–18%) postmenopausal white women in the United States. Most studies to date on risk factors for osteoporosis have considered body mass index (BMI) only as a possible confounder. In this study, we assess the direct relationship between BMI and osteoporosis.

Methods: We conducted a cross-sectional study among women aged 50–84 years referred by their physicians for a bone mineral density (BMD) examination at Baystate Medical Center between October 1998 and September 2000. BMI was determined prior to the BMD examination in the clinic. Information on other risk factors was obtained through a mailed questionnaire. Ordinal logistic regression was used to model the association between BMI and osteoporosis, controlling for confounding factors.

Results: BMI was inversely associated with BMD status. After adjustment for age, prior hormone replacement therapy (HRT) use, and other factors, odds ratios (OR) for low, high, and obese compared with moderate BMI women were 1.8 (95% CI 1.2-2.7), 0.46 (95% CI 0.29-0.71), and 0.22 (95% CI 0.14-0.36), respectively, with a significant linear trend (p < 0.0001) across BMI categories. Evaluating BMI as a continuous variable, the odds of bone loss decreased 12% for each unit increase in BMI (OR = 0.88, 95% CI 0.85-0.91).

Conclusions: Women with low BMI are at increased risk of osteoporosis. The change in risk associated with a 1 unit change in BMI (~5–8 lb) is of greater magnitude than most other modifiable risk factors. To help reduce the risk of osteoporosis, patients should be advised to maintain a normal weight.

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Aprofundament

Enunciado 1

Os pesquisadores querem investigar se a etnicidade das participantes tem algum efeito detectável na associação entre a densidade mineral óssea (BMD) e o índice de massa corpórea (BMI).

Para isto selecionaram 100 mulheres brancas e 100 mulheres pardas, de meia idade. Mensuraram a BMD e calcularam o BMI delas.

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão ₋ogística

Quais são as variáveis?

Tópicos em Regressão Logística

Felipe Figueiredo

Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Aprofundament

Dependente: BMD (contínua)

Independente: BMI (contínua)

Esta relação pode ser expressa como

 $\mathsf{BMD} \sim \mathsf{BMI}$

Componentes do modelo 1

Versão simplificada (apenas variáveis)

BMD ∼ BMI

Modelo completo

$$\mathsf{BMD} = \beta_0 + \beta_1(\mathsf{BMI}) + \varepsilon$$

Hipótese: ε é um erro aleatório ¹ normalmente distribuído e centrado em zero – a incerteza que não pode ser controlada.

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear

Múltipla

¹residual – não é explicado pela relação entre as variáveis do modelo 📱 ∽ ५ ०

Modelo 1

```
Residuals:

Min 1Q Median 3Q Max
-67.833 -21.767 2.178 20.743 67.185

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 589.199 8.499 69.322 <2e-16 ***

BMI -1.995 0.205 -9.732 <2e-16 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1

Residual standard error: 29.41 on 198 degrees of freedom
```

Multiple R-squared: 0.3236, Adjusted R-squared: 0.3201 F-statistic: 94.71 on 1 and 198 DF, p-value: < 2.2e-16

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Aprofundamento

Modelo 1 completo

 $BMD = 589.20 - 1.99 \times BMI$

Modelo 1

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla Regressão Linear Múltipla

Regressão

Logística

Modelo 1 completo

 $BMD = 589.20 - 1.99 \times BMI$

Interpretação

As participantes perdem, na média, 1.99 unidades de BMD para cada incremento unitário do BMI.

Este é o chamado resultado bruto. Agora vamos ajustá-lo com outros preditores.

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Aprofundament

Agora vamos ver se a etnia tem algum efeito

Felipe Figueiredo

Regressão inear Múltipla

Regressão Linear Múltipla

Regressão Logística

Quais são as variáveis?

Dependente: BMD (contínua)

Independente: BMI (contínua)

Independente: etnia (categórica – binária)

Esta relação pode ser expressa como

Dependente. Divid (continua)

Aprofundamento

 $BMD \sim BMI + etnia$

Regressão Logística Felipe

Tópicos em

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Componentes do modelo 2

Versão simplificada (apenas variáveis)

 $BMD \sim BMI + etnia$

Modelo completo

$$BMD = \beta_0 + \beta_1(BMI) + \beta_2(etnia) + \varepsilon$$

Tópicos em Regressão Logística

Felipe Figueiredo

Regressao Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Modelo 2

```
Residuals:
```

Min 1Q Median 3Q Max -67.357 -22.005 1.801 20.785 67.616

Coefficients:

Estimate Std. Error t value Pr(>|t|) (Intercept) 589.4360 8.6055 68.495 <2e-16 *** -1.9905 0.2067 -9.632 <2e-16 *** BMT etniaparda -0.8206 4.1938 -0.196 0.845

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Residual standard error: 29.49 on 197 degrees of freedom Multiple R-squared: 0.3237, Adjusted R-squared: 0.3168 F-statistic: 47.14 on 2 and 197 DF, p-value: < 2.2e-16

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Aprofundament

Que outra variável os pesquisadores deveriam ter investigado?

Modelo 2.1 - idade

Tópicos em Regressão Logística

Felipe Figueiredo

Linear Múltipla Regressão Linear Múltipla

Nullipia ~

Regressão ₋ogística

Quais são as variáveis?

Dependente: BMD (contínua)

Independente: BMI (contínua)

Independente: idade (contínua)

Esta relação pode ser expressa como

 $BMD \sim BMI + idade$

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Componentes do modelo 2.1

Versão simplificada (apenas variáveis)

 $BMD \sim BMI + idade$

Modelo completo

$$\mathsf{BMD} = \beta_0 + \beta_1(\mathsf{BMI}) + \beta_2(\mathsf{idade}) + \varepsilon$$

Tópicos em Regressão Logística

Felipe Figueiredo

Regressao Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Modelo 2.1

```
Residuals:
```

```
Min 1Q Median 3Q Max -52.039 -24.688 -0.058 23.599 42.146
```

Coefficients:

```
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 24.78 on 197 degrees of freedom Multiple R-squared: 0.5224,Adjusted R-squared: 0.5175 F-statistic: 107.7 on 2 and 197 DF, p-value: < 2.2e-16

Modelo 2.1 completo

 $BMD = 780.03 - 2.04 \times BMI - 3.02 \times idade$

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Felipe Figueiredo

Hegressao Linear Múltipla Regressão Linear Múltipla

Regressão

Logística

Modelo 1 completo

 $BMD = 589.20 - 1.99 \times BMI$

Modelo 2.1 completo

 $BMD = 780.03 - 2.04 \times BMI - 3.02 \times idade$

Interpretação

As participantes perdem, na média, 1.99 unidades de BMD para cada incremento unitário do BMI (resultado bruto).

Após ajustar pela idade, o resultado é 2.04.

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Aprofundament

Que outra variável os pesquisadores deveriam ter investigado?

Modelo 2.2 - vitamina D sérica

Tópicos em Regressão Logística

Felipe Figueiredo

Linear Múltipla Regressão Linear Múltipla

Multipla

Regressão Logística

Quais são as variáveis?

Dependente: BMD (contínua)

Independente: BMI (contínua)

• Independente: vitamina D sérica (categórica – 3 níveis)

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Aprofundament

Esta relação pode ser expressa como

 $\mathsf{BMD} \sim \mathsf{BMI} + \mathsf{vitD}$

Componentes do modelo 2.2

Versão simplificada (apenas variáveis)

 $\text{BMD} \sim \text{BMI} + \text{vitD}$

Modelo completo

$$\mathsf{BMD} = \beta_0 + \beta_1(\mathsf{BMI}) + \beta_2(\mathsf{vitD}) + \varepsilon$$

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Felipe Figueiredo

inear √últipla

Regressão Linear Múltipla

Regressao Logística

Modelo 2.2

```
Residuals:
```

```
Min 1Q Median 3Q Max -36.661 -12.444 -0.798 10.351 46.059
```

Coefficients:

```
Residual standard error: 17.04 on 196 degrees of freedom
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

Multiple R-squared: 0.7754, Adjusted R-squared: 0.772 F-statistic: 225.5 on 3 and 196 DF, p-value: < 2.2e-16

Modelo 2.2 completo

 $BMD = 555.45 - 1.91 \times BMI + \beta_2 \times vitD$

Tópicos em Regressão Logística

> Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Modelo 1 completo

 $BMD = 589.20 - 1.99 \times BMI$

Modelo 2.2 completo

 $BMD = 555.45 - 1.91 \times BMI + \beta_2 \times vitD$

Interpretação

As participantes perdem, na média, 1.99 unidades de BMD para cada incremento unitário do BMI (resultado bruto).

Após ajustar pelo nível sérico de vitamina D, o resultado é 1.91.

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Aprofundament

Agora um modelo maior (ajustando para todas as variáveis relevantes)

Componentes do modelo 3

Versão simplificada (apenas variáveis)

 $BMD \sim BMI + idade + vitD$

Modelo completo

$$\mathsf{BMD} = \beta_0 + \beta_1(\mathsf{BMI}) + \beta_2(\mathsf{idade}) + \beta_3(\mathsf{vitD}) + \varepsilon$$

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Modelo 3

Min

```
Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) 740.47234 6.41200 115.48 <2e-16 ***

BMI -1.94958 0.04933 -39.52 <2e-16 ***
idade -3.04192 0.09904 -30.72 <2e-16 ***
vitDmedia 31.14768 1.22729 25.38 <2e-16 ***
vitDalta 58.07642 1.23165 47.15 <2e-16 ***

---
Signif, codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

Residual standard error: 7.068 on 195 degrees of freedom Multiple R-squared: 0.9615, Adjusted R-squared: 0.9607 F-statistic: 1218 on 4 and 195 DF. p-value: < 2.2e-16

30

Max

10 Median

-19.7284 -4.4059 -0.3755 4.7776 24.0977

Tópicos em Regressão Logística

> Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Aprofundament

Modelo 3 completo

 $\mathsf{BMD} = 740.47 - 1.95 \times \mathsf{BMI} - 3.04 \times \mathsf{idade} + \beta_3 \times \mathsf{vitD}$

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressac Logística

Modelo 1 completo

 $BMD = 589.20 - 1.99 \times BMI$

Modelo 3 completo

BMD = 740.47 - 1.95 × BMI - 3.04 × idade + β_3 × vitD

Interpretação

As participantes perdem, na média, 1.99 unidades de BMD para cada incremento unitário do BMI (resultado bruto).

Após ajustar pela idade e pelo nível sérico de vitamina D, o resultado é 1.95.

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Linear Múltipla

Regressão Logística

Sumário

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Logística

- - Regressão Linear Múltipla
- Regressão Logística
 - Regressão Logística
- - Aprofundamento

Desfecho binário

Vamos discretizar os dados em duas categorias

Osteoporose

Sadio: BMD >= 500

Osteoporose: BMD < 500

Idoso

Não idoso: idade < 60

Idoso: idade >= 60

Obeso

Não obeso: BMI < 30

Obeso: BMI >= 30

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Logística

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Logística Regressão Logística

Quais são as variáveis?

- Dependente: Osteoporose (categórica binária)
- Independente: Idoso (categórica binária)

Esta relação pode ser expressa como

Osteoporose \sim Idoso

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Logística
Regressão Logística

Regressão Logística

Componentes do modelo 4

Versão simplificada (apenas variáveis)

Osteoporose \sim Idoso

Modelo completo

Osteoporose = $\beta_0 + \beta_1(Idoso) + \varepsilon$

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Logística

Tabela de contingência Idoso x Osteoporose

osteo
idoso Sadio Osteoporose
Nao Idoso 98 6
Idoso 68 28

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão
Logística
Regressão Logística

Hegressao Logisti

Modelo 4

Number of Fisher Scoring iterations: 4

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Logística

Regressão Logística

Modelo 4

```
Deviance Residuals:

Min 1Q Median 3Q Max
-1.2233 -1.2233 -0.8752 1.1322 1.5134

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -0.7621 0.2289 -3.330 0.000868 ***
idosoIdoso 0.8694 0.2970 2.927 0.003418 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 273.87 on 199 degrees of freedom
Residual deviance: 265.03 on 198 degrees of freedom
AIC: 269.03

Number of Fisher Scoring iterations: 4
```

log da OR de um idoso x osteoporose

log(OR) = 0.8694

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Logística

Regressão Logística

Transformando o log da OR na OR

 $log(OR) \approx 0.87...$

... portanto...

$$\mathsf{OR} = e^{0.87} \approx 2.4$$

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Logística Regressão Logística

A ()

Transformando o log da OR na OR

 $log(OR) \approx 0.87...$

... portanto...

 $OR = e^{0.87} \approx 2.4$

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Logística Regressão Logística

Regressão Logística

profundament

Resultado

• (Idoso) OR: 2.39, IC: [1.33, 4.27]

baixa • media • alta

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Logística

Quais são as variáveis?

Dependente: Osteoporose (categórica – binária)

Independente: BMI (contínua)

Independente: idade (contínua)

Independente: vitamina D sérica (categórica – 3 níveis)

Tópicos em Regressão Logística

Felipe Figueiredo

Regressã Linear Múltipla

Logística Regressão Logística

Regressão Logistica

profundament

Esta relação pode ser expressa como

Osteoporose \sim BMI + idade + vitD

Componentes do modelo 5

Versão simplificada (apenas variáveis)

Osteoporose \sim BMI + idade + vitD

Modelo completo

Osteoporose = $\beta_0 + \beta_1(BMI) + \beta_2(idade) + \beta_3(vitD) + \varepsilon$

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Logística Regressão Logística

negressao Logistica

Modelo 5

```
Deviance Residuals:
     Min 10 Median
                              30
                                           Max
-2.61379 -0.07713 -0.00244 0.08301 1.89523
Coefficients:
            Estimate Std. Error z value Pr(>|z|)
(Intercept) -53.07482 10.80588 -4.912 9.03e-07 ***
BMI 0.43097 0.08301 5.191 2.09e-07 ***
idade 0.67277 0.14175 4.746 2.07e-06 ***
vitDmedia -6.13676 1.28900 -4.761 1.93e-06 ***
vitDalta -12.59502 2.38905 -5.272 1.35e-07 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 273.869 on 199 degrees of freedom
Residual deviance: 69.365 on 195 degrees of freedom
AIC: 79.365
```

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Logística

Modelo 5 completo

 $log(Osteoporose) = -77.43 + 0.46 \times BMI + 0.83 \times idade + \beta_3 \times vitD$

Modelo 5 completo

 $log(Osteoporose) = -77.43 + 0.46 \times BMI + 0.83 \times idade + \beta_3 \times vitD$

Resultado

(BMI) OR: 1.54, IC: [1.31, 1.81]

(idade) OR: 1.96, IC: [1.48, 2.59]

• (vitD média x baixa) OR: 0.002161, IC: [0.0001728, 0.0270419]

• (vitD alta x baixa) OR: 3.388847e-06, IC: [3.13678e-08, 3.66116e-04]

Interpretação

Após ajustar pela idade e pelo nível sérico de vitamina D, as participantes tem chance aumentada de desenvolver osteoporose para cada incremento unitário do BMI.

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Regressão Logística Regressão Logística

Aprofundament

Tópicos em Regressão

ABSTRACT

Purpose: Osteoporosis affects 4–6 million (13%–18%) postmenopausal white women in the United States. Most studies to date on risk factors for osteoporosis have considered body mass index (BMI) only as a possible confounder. In this study, we assess the direct relationship between BMI and osteoporosis.

Methods: We conducted a cross-sectional study among women aged 50–84 years referred by their physicians for a bone mineral density (BMD) examination at Baystate Medical Center between October 1998 and September 2000. BMI was determined prior to the BMD examination in the clinic. Information on other risk factors was obtained through a mailed questionnaire. Ordinal logistic regression was used to model the association between BMI and osteoporosis, controlling for confounding factors.

Results: BMI was inversely associated with BMD status. After adjustment for age, prior hormone replacement therapy (HRT) use, and other factors, odds ratios (OR) for low, high, and obese compared with moderate BMI women were 1.8 (95% CI 1.2-2.7), 0.46 (95% CI 0.29-0.71), and 0.22 (95% CI 0.14-0.36), respectively, with a significant linear trend (p < 0.0001) across BMI categories. Evaluating BMI as a continuous variable, the odds of bone loss decreased 12% for each unit increase in BMI (OR = 0.88, 95% CI 0.85-0.91).

Conclusions: Women with low BMI are at increased risk of osteoporosis. The change in risk associated with a 1 unit change in BMI (~5–8 lb) is of greater magnitude than most other modifiable risk factors. To help reduce the risk of osteoporosis, patients should be advised to maintain a normal weight.

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão Linear Múltipla

Logística

Regressão Logística

Aprofundament

Como tabular os dados necessários para esta análise?

Como tabular os dados necessários para esta análise?

	Α	В	С	D	E	F	G	Н
111	BMI ▼	BMD w	etnia 🔻	idade 🔻	vitD ▼	osteo 💌	obeso ▼	idoso ▼
2	26,24	508,68	branca	62	baixa	Sadio	Nao Obeso	Idoso
3	31,10	516,43	parda	68	media	Sadio	Obeso	ldoso
4	24,99	482,01	branca	68	baixa	Osteoporose	Nao Obeso	ldoso
5	39,57	514,25	branca	58	media	Sadio	Obeso	Nao Idoso
6	31,98	586,27	parda	49	alta	Sadio	Obeso	Nao Idoso
7	25,08	471,34	parda	72	baixa	Osteoporose	Nao Obeso	Idoso
8	32,92	542,71	branca	63	alta	Sadio	Obeso	Idoso
9	34,43	540,17	branca	63	alta	Sadio	Obeso	ldoso
10	33,45	562,70	parda	60	alta	Sadio	Obeso	Idoso
11	28,17	490,01	branca	63	baixa	Osteoporose	Nao Obeso	Idoso
12	39,07	512,27	parda	59	media	Sadio	Obeso	Nao Idoso
13	32,34	553,67	parda	62	alta	Sadio	Obeso	Idoso
14	26,27	520,95	parda	58	baixa	Sadio	Nao Obeso	Nao Idoso
15	16,71	602,43	branca					Nao Idoso
16	36,75	528,11	branca	65	alta	Sadio	Obeso	Idoso
17	29.73	510.03	parda	68	media	Sadio	Nao Obeso	Idoso

Dados coletados

BMI, BMD, etnia, idade, vitD

Dados calculados

osteo = BMD < 500; obeso = BMI > 30; idoso = idade > 60

Tópicos em Regressão Logística

Felipe Figueiredo

Regressão inear Múltipla

Logística
Regressão Logística

Regressão Logística

profundamer

Sumário

Tópicos em Regressão Logística

Felipe Figueiredo

- - Regressão Linear Múltipla
- Aprofundamento
 - Aprofundamento

Aprofundamento

Tópicos em Regressão Logística

Felipe Figueiredo

Aprofundamento

Leitura obrigatória

- Capítulo 31
- Capítulo 32

Leitura recomendada

Capítulo 25: seção teste t de uma razão (sobre o uso do logaritmo)