Laurea triennale in INFORMATICA, Corso di **PROBABILITÀ**APPELLO STRAORDINARIO (L. Bertini)

NOME e COGNOME (scrivere in stampatello)

Rispondere alle seguenti domande a scelta multipla.
1. Il numero degli anagrammi (non necessariamente di senso compiuto) della parola PATATA è:
\square $\frac{6^6}{2^23^3}$
$\Box \frac{6!}{2!3!}$
$\Box \frac{6!}{3!}$
□ Nessuna delle risposte precedenti è corretta
2. Quante sono le permutazioni di $\{1, 2, 3, 4\}$ in cui il secondo elemento è un numero pari?
\square 4!
\square 3!
$\square \ \ 2\cdot 3!$
$\square \ \ 2\cdot 3^3$
\Box Nessuna delle risposte precedenti è corretta.
$\overline{3.}$ Siano A e B due eventi e si indichi con B^c il complementare di B . Allora:
$\square \ \mathbb{P}(A \cup B^{c}) = 1 + \mathbb{P}(A) - \mathbb{P}(B) - \mathbb{P}(A \cap B^{c})$
$\square \ \mathbb{P}(A \cup B^{c}) = 1 + \mathbb{P}(A) - \mathbb{P}(B)$
$\square \ \mathbb{P}(A \cup B^{c}) = \mathbb{P}(A) + \mathbb{P}(B) - \mathbb{P}(A \cap B)$
$\square \ \mathbb{P}(A \cup B^{c}) = 1 - \mathbb{P}(A^{c})\mathbb{P}(B)$
\Box Nessuna delle risposte precedenti è corretta
$\overline{4.}$ Siano A e B due eventi <i>indipendenti</i> e si indichi con B^c il complementare di B . Allora:
$\square \ \mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B)$
$\square \ \mathbb{P}(A \cap B^{c}) = \mathbb{P}(A) - \mathbb{P}(A) \cdot \mathbb{P}(B)$
$\square \ \mathbb{P}(A \cup B^{c}) = \mathbb{P}(A) - \mathbb{P}(A) \cdot \mathbb{P}(B)$
$\square \ \mathbb{P}(A \cap B^{c}) = \mathbb{P}(A) + \mathbb{P}(A) \cdot \mathbb{P}(B)$
\Box Nessuna delle risposte precedenti è corretta
5. Un dado equo viene lanciato 6 volte. La probabilità di ottenere 6 esattamente una volta è:
$\Box \left(\frac{5}{6}\right)^5$
$\Box \left(\frac{5}{6}\right)^6$
\Box $\frac{1}{6}$
$\Box \frac{5^5}{66}$
□ Nessuna delle risposte precedenti è corretta

6. Un dado equo viene lanciato sei volte. La probabilità di ottenere due volte 1, tre volte 3 e due volte 6 è:
$\Box \frac{6!}{2!3!}$
$\Box \frac{6!}{3!} \cdot \left(\frac{1}{6}\right)^6$
$\square \frac{6!}{2!3!} \cdot \left(\frac{1}{6}\right)^6$
$\Box \ \ 6! \cdot \left(\frac{1}{6}\right)^6$
□ Nessuna delle risposte precedenti è corretta
7. Sia $T = 1, 2, 3, \ldots$ una variabile aleatoria geometrica con valore di attesa pari a 3. Allora
$\square \ \mathbb{P}(T>3) = \left(\frac{2}{3}\right)^4$
$\square \ \mathbb{P}(T > 3) = \left(\frac{1}{3}\right)^3$
$\square \mathbb{P}(T>3) = \left(\frac{2}{3}\right)^3$
$\square \ \mathbb{P}(T>3) = \frac{1}{2}$
\Box Nessuna delle risposte precedenti è corretta
8. Si consideri una moneta truccata in cui la probabilità di testa è 1/3. La probabilita che la prima testa appaia al terzo lancio è:
\square $\frac{2}{3}$
\square $\frac{2}{27}$
\square $\frac{4}{9}$
\Box $\frac{4}{27}$
□ Nessuna delle risposte precedenti è corretta
9. Si consideri una moneta truccata in cui la probabilità di testa è $1/3$. La probabilita di ottenere esattamente due volte testa in 4 lanci è:
$\Box \frac{4}{81}$
\square $\frac{1}{9}$
\square $\frac{12}{27}$
\square $\frac{8}{27}$
$\hfill \square$ Nessuna delle risposte precedenti è corretta.
$\overline{\bf 10.}$ Sia X una variabile aleatoria gaussiana con valore di attesa -1 e varianza 9 . Allora
$\square \ \mathbb{P}(-2 < X < 2) \approx 0.95$
$\square \mathbb{P}(-4 < X < 2) \approx 0.95$
$\square \ \mathbb{P}(-7 < X < 5) \approx 0.95$
$\square \ \mathbb{P}(-2 < X < 7) \approx 0.95$
□ Nessuna delle risposte precedenti è corretta

11. Siano X e Y variabili gaussiane indipendenti di media nulla e rispettivamente di varianza 1 e 4. varianza di $Z = X + Y$ è
\square 5
\square 3
\square $\sqrt{5}$
\square $\sqrt{3}$
$\hfill \square$ Nessuna delle risposte precedenti è corretta.
12. Siano X e Y due variabili aleatorie indipendenti rispettivamente di varianza 1 e 5 . La varianza $Z = 2X - Y$ vale
\square 7
\square 9
\square 29
\Box -3
\Box Nessuna delle risposte precedenti è corretta.
13. Sia X una variabile uniforme nell'intervallo $[-1,3]$. Allora
$\square \ \mathbb{P}(X>0) = \frac{1}{4}$
$\square \ \mathbb{P}(X>0) = \frac{1}{3}$
$\square \ \mathbb{P}(X>0) = \frac{3}{4}$
$\square \ \mathbb{P}(X>0) = \frac{2}{3}$
\Box Nessuna delle risposte precedenti è corretta.
14. Sia X una variabile uniforme nell'intervallo $[0,2]$. Allora
$\square \ \mathbb{P}\big(\tfrac{1}{3} < X < 1\big) = \tfrac{2}{3}$
$\square \ \mathbb{P}\left(\frac{1}{3} < X < 1\right) = \frac{1}{4}$
$\square \ \mathbb{P}\big(\tfrac{1}{3} < X < 1\big) = \tfrac{1}{2}$
$\square \ \mathbb{P}\big(\tfrac{1}{3} < X < 1\big) = \tfrac{1}{3}$
\Box Nessuna delle risposte precedenti è corretta
15. Sia X una variabile esponenziale con valore di attesa $\mathbb{E}(X)=2$. Allora
$\square \ \mathbb{P}(X > 2) = 1/e$
$\square \ \mathbb{P}(X > 2) = e$
$\square \ \mathbb{P}ig(X>2ig)=rac{1}{2}$
$\square \ \mathbb{P}ig(X>2ig) = \log 2$
\Box Nessuna delle risposte precedenti è corretta.