Machine Learning Data Platform By Example

Craig McChesney Christopher K. Allen Mitch Frauenheim Osprey Scientific Control Systems

MLDP Motivation

The Machine Learning Data Platform (MLDP) provides full-stack support for machine learning and data science applications for the diagnosis, modeling, control, and optimization of particle accelerator facilities.

MLDP Context

The MLDP is intended to be used in a particle accelerator or experimental physics research facility with a control system. Process variables are sampled and correlated in time.

MLDP By Example

Because it is comprised of server applications, an API, and client libraries, it is difficult to give a live MLDP demonstration. The purpose of this presentation is to illustrate MLDP capabilities by way of some simple examples, including:

- time-series data ingestion
- time-series data query
- data provider registration
- ingestion stream error detection
- data provider metadata and PV metadata query
- archive annotation dataset administration
- archive annotation
- calculations upload and provenance tracking
- archive annotation query
- data and calculations export
- ingestion stream subscription

Time-Series Data Ingestion

|S01-GCC-1 | start: 12:00:00

period: 0.25

samples: 4

IngestDataRequest

Correlated PV Data

timestamp	S01-GCC-1	S01A-BPM	CAMERA-1
12:00:00.000	pressure1	[x1, y1]	image1
12:00:00.250	pressure2	[x2, y2]	image2
12:00:00.500	pressure3	[x3, y3]	image3
12:00:00.750	pressure4	[x4, y4]	image4
12:00:01.000	pressure5	[x5, y5]	image5
12:00:01.250	pressure6	[x6, y6]	image6
12:00:01.500	pressure7	[x7, y7]	image7
12:00:01.750	pressure8	[x8, y8]	image8
12:00:02.000	pressure9	[x9, y9]	image9
12:00:02.250	pressure10	[x10, y10]	image10

Data

Provider

App

A Data Provider application uses the Ingestion Service gRPC API to supply correlated time-series data for archival in MongoDB. Requests are handled asynchronously.

Time-Series Data Archive

The Ingestion Service uses MongoDB to manage the time-series data archive. For database efficiency, data are organized in "buckets", each containing a vector of heterogeneous sample values for the time period specified by the bucket's "sampling clock" with start time, sample period, and count.

PV	sampling clock	data values	
S01-GCC-1	start: 12:00:00	pressure1	
	period: 0.25	pressure2	
	samples: 4	pressure3	
		pressure4	
S01-GCC-1	start: 12:00:01	pressure5	
	period: 0.25	pressure6	
	samples: 4	pressure7	
		pressure8	
S01A-BPM	start: 12:00:00	[x1, y1]	
	period: 0.25	[x2, y2]	
	samples: 4	[x3, y3]	
		[x4, y4]	
S01A-BPM	start: 12:00:01	[x5, y5]	
	period: 0.25	[x6, y6]	
	samples: 4	[x7, y7]	
		[x8, y8]	
CAMERA-1	start: 12:00:00	image1	
	period: 0.25	image2	
	samples: 4	image3	
		image4	
CAMERA-1	start: 12:00:01	image5	
	period: 0.25	image6	
	samples: 4	image7	
		image8	

Time-Series Data Query

A query application sends API request with list of PV names and time range to Query Service, which responds with "data buckets" matching the search criteria.

Data Provider Registration

Ingestion

Service

A client Data Provider application uses the Ingestion Service Provider API to register itself with details that can be used for ingestion monitoring and provider metadata queries.

MongoDB

Providers

Collection

	Provider	description	attributes
	IOC-S01-V	Provider for	[sector: 01,
	AC	sector 01	subsystem:
*		vacuum	vacuum]
	IOC-S02-V	Provider for	[sector: 02,
	AC	sector 02	subsystem:
		vacuum	vacuum]

Ingestion Stream Error Detection

Data ingestion is performed asynchronously in order to maximize performance. The status of individual ingestion requests is recorded in a database which administrative tools can use to detect problems in data ingestion.

PV Metadata Query

A client application uses the Query Service's PV Metadata Query API to find ingestion metadata for PV names matching a specified pattern.

Data Provider Metadata Query

A client application uses the Query Service's Data Provider Metadata Query API to find metadata for data Providers (suppliers of ingestion data).

Archive Annotation Datasets

The time-series data archive is analogous to a giant spreadsheet with columns for each PV and rows for each unique timestamp. **Datasets** identify subregions of that spreadsheet for targets of the MLDP Annotation and Calculations APIs. A dataset is comprised of **Data Blocks**, each specifying a list of PV names and a time range.

Archive Annotation Dataset Administration

A client application uses the Annotation Service API to create a Dataset for the specified PV names and time ranges.

Archive Annotation

A client application uses the Annotation Service API to create an Annotation about an anomalous situation for the specified Dataset, specifying the associated experiment name and the id of a related Dataset.

User-Defined Calculations Handling

A Calculations Annotation is an Annotation to which Calculations are attached, using a data structure analogous to an Excel workbook with multiple worksheets (the same format used for ingestion of time-series data). For provenance tracking, the Calculations Annotation may reference one or more related Datasets, identifying the data used to derive the Calculations (e.g., normalization of raw data), and include a comment describing the derivation.

comment: The attached
Calculations provide normalized
values for the S01 vacuum
pressure gauge readings over
the time range for the linked
Dataset.

user-defined Calculations with normalization of raw PV values

timestamp	S01-GCC-1	S01-GCC-2
	normalized	normalized
12:00:00.000	pressure1	pressure1
	normalized	normalized
12:00:00.250	pressure2	pressure2
	normalized	normalized
12:00:00.500	pressure3	pressure3

Calculations Annotation

Calculations Upload and Provenance Tracking

A client application uses the Annotation Service API to create a Calculations Annotation containing normalized values derived from the linked Dataset.

Archive Annotation Query

A client application searches for Annotations matching query criteria including text content, related Datasets and Annotations, tags, key/value attributes. The response includes details for all matching Annotations including Calculations.

Data and Calculations Export

The export API allows Datasets with raw PV data and user-defined Calculations to be exported to HDF5, XLSX, and CSV files. When both are included in the same export request, the output file includes Calculations data alongside raw PV data.

timestamp	S01-GCC-1	S01-GCC-2	normalized gcc-1	normalized gcc-2
			normalized	normalized
12:00:00.000	pressure1	pressure1	pressure1	pressure1
			normalized	normalized
12:00:00.250	pressure2	pressure2	pressure2	pressure2
			normalized	normalized
12:00:00.500	pressure3	pressure3	pressure3	pressure3

/var/export/20250626/ce652b290b0f.hdf5 https://export.facility.gov/20250626/ce652b290b0f.hdf5

Ingestion Stream Subscription

The subscription APIs allow clients to receive raw data for specified PVs or notifications of *data events* from the active ingestion stream. Data event subscribers are informed when any of the PV conditions in the data event request are triggered, and can opt to receive data for a list of related target PV names over the time window specified by offset and duration from the trigger time.

Ways to Use the MLDP

- low-level gRPC APIs gRPC support is provided for most programming languages
 - o provider registration, query, metadata
 - PV time-series data ingestion, query, subscription
 - ingestion status and error monitoring
 - data set creation, query
 - annotation and calculations creation, query
 - data set and calculations export
 - ingestion stream PV and event subscription
- EPICS aggregator MLDP data provider for correlated time-series data from EPICS
- Java client libraries hide low-level gRPC API details
- Java application frameworks config-driven mechanism for building apps that use the client libraries
- web application
 - navigate data and metadata
 - create data sets
 - annotate archive data
 - export archive data

Learn More

The MLDP is an open-source project, hosted on github at https://github.com/osprey-dcs/data-platform. There you will find complete project documentation with links to repositories for the various components and an installer to get a system up and running quickly.

