Detección de Rasgos en la Identificación de Letras Utilizando Bubbles

Intr. a Neurociencia Cognitiva y Computacional

Christian Cossio Mercado, Mailén Gómez Mayol, Miguel Martínez Soler

Departamento de Computación - FCEyN, UBA

31 de mayo de 2011

Objetivo del experimento

 Identificar rasgos utilizados por las personas para identificar letras presentadas en distintas tipografías

Objetivo del experimento

- Identificar rasgos utilizados por las personas para identificar letras presentadas en distintas tipografías
- ¿Cómo lo hacemos?

Todos Somos Sujetos

• Vamos a intentar identificar algunas letras. . .

Parte I

Revisión de Antecedentes

Feature Detection and Letter Identification (Pelli et al., 2006)

 Conceptos de la identificación de letras y metodología experimental

Feature Detection and Letter Identification (Pelli et al., 2006)

- Conceptos de la identificación de letras y metodología experimental
- Definición de complejidad (Attneave)

$$\mathsf{complejidad}(l) = \frac{\mathsf{perimetro}(l)^2}{\mathsf{superficie}(l)}$$

Feature Detection and Letter Identification (Pelli et al., 2006)

- Conceptos de la identificación de letras y metodología experimental
- Definición de complejidad (Attneave)

$$\mathsf{complejidad}(l) = \frac{\mathsf{per}(\mathsf{metro}(l)^2}{\mathsf{superficie}(l)}$$

• Relación eficiencia/complejidad

Figura: Eficiencia vs complejidad para distintas tipografías

Bubbles: a technique to reveal the use of information in recognition task (Gosselin & Schyns, 2001)

 Concepto de la técnica y del diseño del experimento

Bubbles: a technique to reveal the use of information in recognition task (Gosselin & Schyns, 2001)

- Concepto de la técnica y del diseño del experimento
- Generación de un estímulo

Figura: Generación de un estímulo

- Variables en juego
 - estímulo
 - dimensiones del estímulo
 - tamaño y cant. de burbujas
 - observadores

Bubbles: a technique to reveal the use of information in recognition task (Gosselin & Schyns, 2001)

- Concepto de la técnica y del diseño del experimento
- Generación de un estímulo

Figura: Generación de un estímulo

Variables en juego

Figura: Reconocimiento de expresión (ENEX) y género (GENDER)

Features for Identification of Uppercase and Lowercase Letters (Fiset et al., 2008)

 Uso de Bubbles para identificación de letras

Features for Identification of Uppercase and Lowercase Letters (Fiset et al., 2008)

- Uso de Bubbles para identificación de letras
- 54 letras Arial

Features for Identification of Uppercase and Lowercase Letters (Fiset et al., 2008)

- Uso de Bubbles para identificación de letras
- 54 letras Arial

Figura: Rasgos relevantes para humanos

- Humanos: Agregan 1 burbuja hasta llegar al 52 % de aciertos
- Obs.Ideal: Burbujas fijas, aumentan ruido hasta bajar al 52% de aciertos

Parte II

Diseño del Experimento

 Identificar rasgos utilizados por las personas para identificar letras presentadas en distintas tipografías

 Identificar rasgos utilizados por las personas para identificar letras presentadas en distintas tipografías

Hipótesis

- El uso de tipografías ampliamente conocidas facilita el reconocimiento de letras, aún cuando la persona no se da cuenta de ello
- 2 La performance en el reconocimiento de las letras es inversamente proporcional a su complejidad
- Los rasgos de cada letra varían de acuerdo a la tipografía que se esté utilizando
- Habrá cambios en los rasgos de la 'n' por la incorporación de la 'ñ'
- Se obtendrá rasgos similares a los encontrados en la bibliografía
- Un observador ideal utilizará rasgos distintos a los que utiliza una persona para identificar letras

 Identificar rasgos utilizados por las personas para identificar letras presentadas en distintas tipografías

Hipótesis

- El uso de tipografías ampliamente conocidas facilita el reconocimiento de letras, aún cuando la persona no se da cuenta de ello
- 2 La performance en el reconocimiento de las letras es inversamente proporcional a su complejidad
- Los rasgos de cada letra varían de acuerdo a la tipografía que se esté utilizando
- Habrá cambios en los rasgos de la 'n' por la incorporación de la 'ñ'
- Se obtendrá rasgos similares a los encontrados en la bibliografía
- Un observador ideal utilizará rasgos distintos a los que utiliza una persona para identificar letras

 Identificar rasgos utilizados por las personas para identificar letras presentadas en distintas tipografías

Hipótesis

- El uso de tipografías ampliamente conocidas facilita el reconocimiento de letras, aún cuando la persona no se da cuenta de ello
- 2 La performance en el reconocimiento de las letras es inversamente proporcional a su complejidad
- Los rasgos de cada letra varían de acuerdo a la tipografía que se esté utilizando
- Habrá cambios en los rasgos de la 'n' por la incorporación de la 'ñ'
- Se obtendrá rasgos similares a los encontrados en la bibliografía
- Un observador ideal utilizará rasgos distintos a los que utiliza una persona para identificar letras

Elección de tipografías

Arial

ABCDEFGHIJKLMNÑOPQRSTUVWXYZ abcdefghijklmnñopqrstuvwxyz

Kunstler ABCDEFGKIJKLMNNOPORSTUVWXYX abcdefghijklmnñopgrstuvwxyx

Famosas

本学でも世牙で計画をLMNnelunaであるようでは、WXYZ るものdef8hiしたMMnaのPatatuvwXyZ

Elección de tipografías

Arial

ABCDEFGHIJKLMNÑOPQRSTUVWXYZ abcdefghijklmnñopqrstuvwxyz

Kunstler ABCDEFGKIJKLMNNOPORSTUVWXYX abcdefghijklmnñopgrstuvwxyx

Famosas

本等でも置牙で計画をLMNnaP4RSIWWXYZ *abC*def8hiJk/MMnaCPatotUVWX.yz

Identificación de Rasgos

Figura: Uso relativo de los rasgos necesarios para identificar letras

Figura: Identificación de rasgos para la letra ñ

Generación de Estímulos

Figura: Armado del estímulo final

Primer Diseño del Experimento: Jueves 12/5

- 13 sujetos (Gracias a todos, nuevamente!)
- Pocos bloques y ensayos (5 x 100, t \approx 20min)
- Se completa una encuesta al terminar (performance, tipografías famosas)
- Muchas burbujas (todas las letras comienzan igual con la misma cantidad)
- Muy poca información :-((para la mayoría no se alcanza un valor cercano al 52% de aciertos)

Primer Diseño del Experimento: Jueves 12/5

- 13 sujetos (Gracias a todos, nuevamente!)
- Pocos bloques y ensayos (5 x 100, t \approx 20min)
- Se completa una encuesta al terminar (performance, tipografías famosas)
- Muchas burbujas (todas las letras comienzan igual con la misma cantidad)
- Muy poca información :-((para la mayoría no se alcanza un valor cercano al 52 % de aciertos)
- Muchos gastos en golosinas :-P

Primer Diseño del Experimento: Jueves 12/5

- 13 sujetos (Gracias a todos, nuevamente!)
- Pocos bloques y ensayos (5 x 100, t \approx 20min)
- Se completa una encuesta al terminar (performance, tipografías famosas)
- Muchas burbujas (todas las letras comienzan igual con la misma cantidad)
- Muy poca información :-((para la mayoría no se alcanza un valor cercano al 52 % de aciertos)
- Muchos gastos en golosinas :-P

Posible Solución: Ampliar la cantidad de ensayos y ajustar parámetros (bloques y burbujas)

Rediseño del Experimento

- Más bloques por sujeto (17 x 100, t \approx 1hr)
- Correcciones de errores menores (randoms, cantidad de burbujas, burbujas por banda)
- Mejora en la cantidad de burbujas inicial (mayor complejidad, mayor cantidad de burbujas iniciales)
- Filtrando casos en que no se llegó al 52 %

Rediseño del Experimento

- Más bloques por sujeto (17 x 100, t \approx 1hr)
- Correcciones de errores menores (randoms, cantidad de burbujas, burbujas por banda)
- Mejora en la cantidad de burbujas inicial (mayor complejidad, mayor cantidad de burbujas iniciales)
- Filtrando casos en que no se llegó al 52 %
- Se tiró los datos anteriores, utilizando sólo los nuevos
- Medimos la performance a través de tres variables
 - Cant. de Burbujas (↓)
 - Tiempo de Respuesta (↓)
 - % de Aciertos (†)

Datos Finales

- 6 sujetos
- Edades entre 21-33 años
- Con estudios universitarios
- 1700 ensayos por persona

Datos Finales

- 6 sujetos
- Edades entre 21-33 años
- Con estudios universitarios
- 1700 ensayos por persona
- Para completar datos . . .

Datos Finales

- 6 sujetos
- Edades entre 21-33 años
- Con estudios universitarios
- 1700 ensayos por persona
- Para completar datos . . . también fuimos sujetos! (2500 ensayos)

Parte III

Resultados

Burbujas vs. Aciertos

Burbujas vs. Complejidad

Performance por Burbujas, Tipografías Famosas

Tiempos de Respuesta

Figura: Distribución de Tiempos de Respuesta

Performance por Tiempo de Respuesta, Tipografías Famosas

Rasgos Detectados

Rasgos para Ñ

Identificación Humana vs. Observador Ideal

Conclusiones

- Diferencia significativa en tiempo de respuesta de letras no conocidas, conocidas y conocidas vistas
- Mejora en los tiempos inclusive para letras conocidas pero no vistas vs. las no conocidas (!)
- Diferencia significativa de burbujas requeridas para letra no conocidas y conocidas.
 - No se pudo demostrar la significatividad entre no conocidas y conocidas vistas en el experimento. . .
- Correlación entre log(Complejidad) y Cant. Burbujas (↑Complejidad, ↑Cant. de Burbujas)
- Correlación inversa entre Cant. de Burbujas y % de Aciertos (↓Cant. de Burbujas, ↑% de Aciertos)
- Bubbles fue una técnica interesante para recorrer espacio de búsquedas de imágenes y obtener rasgos de identificación

Lecciones Aprendidas

- Cantidad de respuestas necesarias (o estímulos a mostrar): 156,000 = 4 días de experimentación continua.
- Resulta una técnica útil para el muestreo de espacios sin limitación en la cantidad de dimensiones

¿Cómo Seguimos?

Temas Pendientes

- Aumentar la cantidad de ensayos por persona, y dividirlo en sesiones (total,)
- Ajuste de cantidad de burbujas ascendente y descendente
- Utilización del tiempo como una dimensión más (análisis espacio-temporal)
- Preguntar por letras conocidas mostrando un ejemplo para cada una de ellas.

¿Cómo Seguimos?

Temas Pendientes

- Aumentar la cantidad de ensayos por persona, y dividirlo en sesiones (total,)
- Ajuste de cantidad de burbujas ascendente y descendente
- Utilización del tiempo como una dimensión más (análisis espacio-temporal)
- Preguntar por letras conocidas mostrando un ejemplo para cada una de ellas.

Trabajo Futuro

• Bubbles en habla (e.g., detección de rasgos para expresividad o emociones)

Detección de Rasgos en la Identificación de Letras Utilizando Bubbles

Intr. a Neurociencia Cognitiva y Computacional

Mailén Gómez Mayol, Miguel Martínez Soler, Christian Cossio Mercado

Departamento de Computación - FCEyN, UBA

31 de mayo de 2011

Burbujas vs. Complejidad

Burbujas vs. Aciertos

Tiempo de Respuesta vs. Complejidad: Test de Mann-Whitney

GRUPO	N	Rango promedio	Suma de rangos	
No Conocidas	1439	1128.38	1623740	U de Mann-Whitney
Conocidas	769	1059.81	814996	W de Wilcoxon
Total	2208			Z
				Sig. asintót. (bilateral)

GRUPO	N	Rango promedio	Suma de rangos		T_RESP
Conocidas	769	750.4	577060.5	U de Mann-Whitney	226544.5
Conocidas Vistas	660	673.75	444674.5	W de Wilcoxon	444674.5
Total	1429			Z	-3.501
				Sig. asintót. (bilateral)	0

GRUPO	N	Rango promedio	Suma de rangos		TRESP
No Conocidas	1439	1104.78	1589772	U de Mann-Whitney	396048
Conocidas Vistas	660	930.57	614178	W de Wilcoxon	614178
Total	2099			Z	-6.114
				Sig. asintót. (bilateral)	0

T_RESP

518931 814996 -2.408

Tiempo de Respuesta vs. Complejidad: Test de Student

GRUPO	N	Media	Desviación típ.	Error típ. de la media
No Conocida	1439	0.8764	0.3082	0.0081
Conocida	769	0.8495	0.2874	0.0104

	Prueba	de Levene			Pr	ueba T para la igua			
	F	Sig.	t	gl	Sig. (bil.)	Dif. de medias	Error típ. de la dif.	95 % con	f. para la dif.
								Inferior	Superior
Varianzas iguales	2.797	0.095	1.998	2206	0.046	0.0269	0.0134	0.0005	0.0532
Varianzas no iguales			2.041	1665.884	0.041	0.0269	0.0132	0.001	0.0527
Turiunzas no iguaics			2.541	1000.004	3.041	0.0209	0.0132	0.001	0.032

GRUPO	N	Media	Desviación típ.	Error típ. de la media
Conocida	769	0.8495	0.2874	0.0104
Conocida Vista	660	0.796	0.2779	0.0108

	Prueba	de Levene		Prueba I para la igualdad de medias					
	F	Sig.	t	gl	Sig. (bil.)	Dif. de medias	Error típ. de la dif.	95 % conf. para la dif.	
								Inferior	Superior
Varianzas iguales	2.858	0.091	3.558	1427	0	0.0534	0.015	0.024	0.0829
Varianzas no iguales			3.567	1406.885	0	0.0534	0.015	0.0241	0.0828
-									

GRUPO	N	Media	Desviación típ.	Error típ. de la media
No Conocida	1439	0.8764	0.3082	0.0081
Conocida Vista	660	0.796	0.2779	0.0108

	I I I I I I I I I I I I I I I I I I I	C LCVCIIC				rucba i para la igualdad de iliculas			
	F	Sig.	t	gl	Sig. (bil.)	Dif. de medias	Error típ. de la dif.	95 % conf. para la dif.	
		l						Inferior	Superior
Varianzas iguales	11.449	0.001	5.714	2097	0	0.0803	0.0141	0.0527	0.1079
Varianzas no iguales			5.937	1406.88	0	0.0803	0.0135	0.0538	0.1068

Prueba T para la igualdad de medias

Prueba de Levene