

Regression in the real world

Jeffrey Leek, Assistant Professor of Biostatistics Johns Hopkins Bloomberg School of Public Health

Things to pay attention to

- · Confounders
- Complicated interactions
- Skewness
- Outliers
- Non-linear patterns
- Variance changes
- · Units/scale issues
- Overloading regression
- · Correlation and causation

The ideal data for regression

```
library(UsingR); data(galton)
plot(galton$parent,galton$child,col="blue",pch=19)
```


Confounders

Confounder: A variable that is correlated with both the outcome and the covariates

- · Confounders can change the regression line
- · They can even change the sign of the line
- They can sometimes be detected by careful exploration

Example - Millenium Development Goal 1

GOAL 1 **Eradicate Extreme Poverty and Hunger**

TARGETS

- 1. Halve, between 1990 and 2015, the proportion of people whose income is less than \$1 a day
- 2. Achieve full and productive employment and decent work for all, including women and young people
- 3. Halve, between 1990 and 2015, the proportion of people who suffer from hunger

http://www.un.org/millenniumgoals/pdf/MDG FS 1 EN.pdf

FACT SHEET

WHO childhood hunger data

	Indica	ator	Data	Source	PUBLISH.STATES	Year	WHO.region
2							Eastern Mediterranean
-		` '		_			
3	Children aged <5 years underweight	(%)	NLIS	312819	Published	2004	Eastern Mediterranean
6	Children aged <5 years underweight	(%)	NLIS	312361	Published	2000	Europe
7	Children aged <5 years underweight	(%)	NLIS	312361	Published	2000	Europe
9	Children aged <5 years underweight	(%)	NLIS	312879	Published	2005	Europe
10	Children aged <5 years underweight	(%)	NLIS	312879	Published	2005	Europe
Country Sex Display. Value Numeric Low High Comments							
2	Afghanistan Female 33.0	33	.0 N	ia na	NA		
3	Afghanistan Male 32.7	32	.7 N	ia na	NA		
6	Albania Male 19.6	19	.6 N	ia na	NA		
7	Albania Female 14.2	14	.2 N	ia na	NA		
9	Albania Male 7.3	7	.3 N	ia na	NA		
10	Albania Female 5.8	5	.8 N	IA NA	NA		

Hunger over time by region

```
par(mfrow=c(1,2))
plot(hunger$Year,hunger$Numeric,col=as.numeric(hunger$WHO.region),pch=19)
plot(1:10,type="n",xaxt="n",yaxt="n",xlab="",ylab="")
legend(1,10,col=unique(as.numeric(hunger$WHO.region)),legend=unique(hunger$WHO.region),pch=19)
```


Region correlated with year

```
anova(lm(hunger$Year ~ hunger$WHO.region))
```

```
Analysis of Variance Table

Response: hunger$Year

Df Sum Sq Mean Sq F value Pr(>F)

hunger$WHO.region 5 538 107.5 2.33 0.041 *

Residuals 852 39316 46.1

---

Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Region correlated with hunger

```
anova(lm(hunger$Numeric ~ hunger$WHO.region))
```

```
Analysis of Variance Table

Response: hunger$Numeric

Df Sum Sq Mean Sq F value Pr(>F)
hunger$WHO.region 5 76032 15206 154 <2e-16 ***
Residuals 852 84211 99
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

Including region - a complicated interaction

```
plot(hunger$Year,hunger$Numeric,pch=19,col=as.numeric(hunger$WHO.region))
lmRegion <- lm(hunger$Numeric ~ hunger$Year + hunger$WHO.region + hunger$Year*hunger$WHO.region)
abline(c(lmRegion$coeff[1] + lmRegion$coeff[6],lmRegion$coeff[2]+ lmRegion$coeff[12]),col=5,lwd=3)</pre>
```


Income data

```
download.file("http://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data","./data/income
incomeData <- read.csv("./data/income.csv",header=FALSE)
income <- incomeData[,3]
age <- incomeData[,1]</pre>
```

http://archive.ics.uci.edu/ml/datasets/Census+Income

Logs to address right-skew

```
par(mfrow=c(1,4))
smoothScatter(age,income)
hist(income,col="blue",breaks=100)
hist(log(income+1),col="blue",breaks=100)
smoothScatter(age,log(income+1))
```


(Data transforms)

Outliers

"outliers" ... are data points that do not appear to follow the pattern of the other data points.

A dataset that is 44% outliers

Example - extreme points

```
set.seed(1235)
xVals <- rcauchy(50)
hist(xVals,col="blue")</pre>
```

Histogram of xVals

Example - Outliers may be real

```
# Add Tim Cook, CEO of Apple 2011 income
age <- c(age,52)
income <- c(income,378e6)
smoothScatter(age,income)</pre>
```


http://www.macworld.com/article/2023491/apple-gives-tim-cook-51-percent-salary-increase.html

Example - Does not fit the trend

A dataset that is 44% outliers

Outliers - what you can do

- If you know they aren't real/of interest, remove them (but changes question!)
- Alternatively
 - Sensitivity analysis is it a big difference if you leave it in/take it out?
 - Logs if the data are right skewed (lots of outliers)
 - Robust methods we've been doing averages, but there are more robust approaches (Robust,rlm)

A line isn't always the best summary

http://en.wikipedia.org/wiki/Linear_regression

You can end up saying some pretty silly stuff

http://www.nature.com/nature/journal/v431/n7008/fig_tab/431525a_F1.html

"We are students aged 16–18 in a Texas high school. Our biology teacher Vidya Rajan asked us to comment on the paper by A. J. Tatem and colleagues (Nature 431, 525; 2004); we believe the projection on which it is based is riddled with flaws..." http://www.nature.com/nature/journal/v432/n7014/full/432147c.html

"They omit to mention, however, that (according to their analysis) a far more interesting race should occur in about 2636, when times of less than zero seconds will be recorded" http://www.nature.com/nature/journal/v432/n7014/full/432147b.html

Variance changes

```
bupaData <- read.csv("ftp://ftp.ics.uci.edu/pub/machine-learning-databases/liver-disorders/bupa.data",h

ggt <- bupaData[,5]; aat <- bupaData[,3]

plot(log(ggt),aat,col="blue",pch=19)</pre>
```


Plot the residuals

```
lm1 <- lm(aat ~ log(ggt))
plot(log(ggt),lm1$residuals,col="blue",pch=19)</pre>
```


Power (a.k.a. Box-Cox) transform

Changing variance - what you can do

- · There is a long literature on this problem (heteroskedasticity)
- · A few examples
 - Box-Cox Transform
 - Variance stabilizing transform
 - Weighted least squares
 - Huber-white standard errors

Variation in units

All Deaths

Relative units

Per 1000 Deaths

When there is variation in units

- Standardize, but keep track
 - Affects model fits
 - Affects interpretation
 - Affects inference

Overloading regression

$$AMR_{it} = \alpha + \beta_1 PRIV_{it} + \beta_2 GDP_{it} + \beta_3 LIB_{it} + \beta_4 TRADE_{it} + \beta_5 DEM_{it} + \beta_6 WAR_{it} + \beta_7 DEP_{it} + \beta_8 URBAN_{it} + \beta_9 EDUC_{it} + \mu_i + \varepsilon_{it}$$

http://bit.ly/YiB5Um http://wmbriggs.com/blog/?p=7026

Correlation and Causation

http://xkcd.com/552/

Even when looking for associations

http://www.nejm.org/doi/full/10.1056/NEJMon1211064

Again, it can get silly

http://www.statschat.org.nz/2012/10/12/even-better-than-chocolate/

Correlation vs. Causation

- Use caution when interpreting regression results
- Be critical of surprising associations
- Consider alternative explanations

8/30/13