Semestre: 2025-1

Profesor del curso: Alberto Mercado

Hecho por: Jorge Bravo MAT-225 - Analisis I

Ayudantía 1 - Analisis I

Problema 1. Sea (X,d) un espacio métrico. Pruebe que dado un conjunto $A \subset X$, int A es el conjunto abierto mas grande contenido en A. Es decir

$$\theta \subset A \ y \ \theta \ abierto \implies \theta \subset \operatorname{int} A$$

Pruebe un resultado análogo para \overline{A} .

Solución 1. Sea $A \subset X$ y $\theta \subset A$ abierto. Veamos que $\theta \subset \operatorname{int} A$, sea $x \in \theta$, dado que θ es abierto, existe $\epsilon > 0$ de tal forma que

$$B(x,\epsilon) \subset \theta \subset A$$

Por lo tanto $x \in \text{int } A$. Es decir $\theta \subset \text{int } A$.

Sea $A\subset X$ y $A\subset C$ cerrado. Veamos que $\overline{A}\subset C$. Sea $x\in \overline{A}$, luego dado $\epsilon>0$, sabemos que $A\cap B(x,\epsilon)\neq\emptyset$ $\Longrightarrow C\cap B(x,\epsilon)$. Por lo tanto $x\in \overline{C}$, dado que C es cerrado tenemos que $C=\overline{C}$ y luego $x\in C$. Es decir $\overline{A}\subset C$

Problema 2. Considere el siguiente conjunto

$$\mathcal{C}([0,1]) = \{ f : [0,1] \to \mathbb{R} \mid f \text{ es continua } \}$$

Además considere la función

$$d: \mathcal{C}([0,1]) \times \mathcal{C}([0,1]) \to \mathbb{R}$$
$$(f,g) \mapsto \sup_{x \in [0,1]} |f(x) - g(x)|$$

Muestre que d esta bien definida y $(\mathcal{C}([0,1]),d)$ es un espacio métrico.

Solución 2. Notemos que si $(f,g) \in \mathcal{C}([0,1]) \times \mathcal{C}([0,1])$, entonces $f+g \in \mathcal{C}([0,1])$ y la función h(x) = |f(x)+g(x)| es continua. Dado que [0,1] es un compacto de \mathbb{R} , sabemos que h([0,1]) es compacto y por tanto acotado. Por axioma del supremo, la función d esta bien definida.

Verifiquemos que es un espacio métrico. Sean $f, g \in \mathcal{C}([0,1])$ tal que

$$d(f,g) = 0$$

Luego tenemos que dado $x \in [0,1]$

$$0 \le |f(x) - g(x)| \le \sup_{x \in [0,1]} |f(x) - g(x)| = 0$$

Por lo tanto $|f(x) - g(x)| = 0 \implies f(x) = g(x)$. Es decir f = g

Verifiquemos la simetría de la métrica, Sean $f, g \in \mathcal{C}[0, 1]$. Notemos que

$$d(f,g) = \sup_{x \in [0,1]} |f(x) - g(x)| = \sup_{x \in [0,1]} |g(x) - f(x)| = d(g,f)$$

MAT-225 - Analisis I

Semestre: 2025-1

Profesor del curso: Alberto Mercado

Hecho por: Jorge Bravo MAT-225 - Analisis I

Por ultimo nos falta verificar la desigualdad triangular. Sean $f, g, h \in \mathcal{C}([0,1])$, luego tenemos que

$$\begin{split} d(f,h) &= \sup_{x \in [0,1]} |f(x) - h(x)| \\ &= \sup_{x \in [0,1]} |f(x) - g(x) + g(x) - h(x)| \\ &\leq \sup_{x \in [0,1]} |f(x) - g(x)| + |g(x) - h(x)| \\ &\leq \sup_{x \in [0,1]} |f(x) - g(x)| + \sup_{x \in [0,1]} |g(x) - h(x)| \\ &= d(f,g) + d(g,h) \end{split}$$

Por lo tanto $(\mathcal{C}([0,1]), d)$ es un espacio métrico.

Problema 3. Sea (X,d) un espacio métrico. Muestre que $\theta \subset X$ es abierto $\iff X \setminus \theta$ es cerrado.

Solución 3. Supongamos que $\theta \subset X$ es abierto. Veamos que $X \setminus \theta$ es cerrado. Sea $x \in \overline{X \setminus \theta}$ y $\epsilon > 0$, luego $B(x,\epsilon) \cap (X \setminus \theta) \neq \emptyset$, por lo tanto $x \notin \theta$, pues si estuviera en θ existiría $\epsilon_0 > 0$ tal que $B(x,\epsilon_0) \cap X \setminus \theta \neq \emptyset$ y $B(x,\epsilon_0) \subset \theta$. Es decir $\overline{X \setminus \theta} \subset X \setminus \theta$. La otra inclusión viene de una proposición de clases y por lo tanto es cerrado.

Supongamos que $X \setminus \theta \subset X$ es cerrado, veamos que θ es abierto. Sea $x \in \theta$, si suponemos que para todo $\varepsilon > 0$, $B(x,\varepsilon)$ no esta contenido en θ , esto significa que $B(x,\varepsilon) \cap \theta \neq \emptyset$, dado que se cumpliría para todo ε , esto implica que $x \in \overline{X \setminus \theta} = X \setminus \theta$, contradicción. Por lo tanto θ es abierto.

Problema 4. Sea (X,d) un espacio métrico. Suponga que $A \subset B \subset X$. Muestre que int $A \subset \operatorname{int} B$ y $\overline{A} \subset \overline{B}$

Solución 4. Mostremos que int $A \subset \operatorname{int} B$. Sea $x \in \operatorname{int} A$, luego existe $\varepsilon > 0$ de tal forma que $B(x, \varepsilon) \subset A \subset B$. Por lo tanto $x \in \operatorname{int} B$, es decir int $A \subset \operatorname{int} B$.

Mostremos que $\overline{A} \subset \overline{B}$. Sea $x \in \overline{A}$, luego para todo $\varepsilon > 0$, $B(x, \varepsilon) \cap A \neq \emptyset$, dado que $A \subset B \implies B(x, \varepsilon) \cap A \subset B(x, \varepsilon) \cap B$ y por lo tanto

$$B(x,\varepsilon)\cap B\neq\emptyset$$

Es decir $x \in \overline{B}$. Por lo tanto $\overline{A} \subset \overline{B}$

Problema 5. Sea E un \mathbb{R} espacio vectorial. Muestre que una métrica d sobre E proviene de una norma $||\cdot||_d$ si y solo si la métrica cumple que

- 1. Para todo $v, w \in E$ $y \lambda \in \mathbb{R}$, $d(\lambda x, \lambda y) = |\lambda| d(x, y)$
- 2. Para todo $v, w, a \in E$, se tiene que d(v + a, w + a) = d(v, w)

Solución 5. (\Longrightarrow) Supongamos que d proviene de una métrica, es decir existe una norma $||\cdot||_d$ sobre E de tal forma que

$$d(v, w) = ||v - w||_d$$

Verifiquemos que se cumple la propiedad 1 y 2. Sea $v, w \in E$ y $\lambda \in \mathbb{R}$, luego tenemos que

$$d(\lambda v, \lambda w) = ||\lambda v - \lambda w||_d = ||\lambda(v - w)||_d = |\lambda| \cdot ||v - w||_d = |\lambda| d(v, w)$$

MAT-225 - Analisis I

Semestre: 2025-1

Profesor del curso: Alberto Mercado

Hecho por: Jorge Bravo MAT-225 - Analisis I

Ahora sean $v, w, a \in E$, entonces tenemos que

$$d(v + a, w + a) = ||(v + a) - (w + a)||_d = ||v - w||_d = d(v, w)$$

 (\Leftarrow) Supongamos que d es una métrica que cumple las propiedades 1 y 2, verifiquemos que esta proviene de una norma. Consideremos la siguiente función

$$||v||_d = d(0, v)$$

Verifiquemos que en efecto es una norma y la métrica inducida por esta es d. Notemos que para todo $v \in E$ se tiene que $||v||_d = d(0,v) \ge 0$. Notemos que $||v||_d = 0 \iff d(0,v) = 0 \iff v = 0$. Sea $\lambda \in \mathbb{R}$ y $v \in E$, luego tenemos que

$$||\lambda v|| = d(0, \lambda v) = d(\lambda 0, \lambda v) = |\lambda| d(0, v) = |\lambda| \cdot ||v||_d$$

Por ultimo veamos que se cumple la desigualdad triangular, sean $v, w \in E$, luego tenemos que

$$\begin{aligned} ||v+w||_d &= d(0,v+w) \\ &= d(-w+w,v+w) \\ &= d(-w,v) \\ &\leq d(-w,0) + d(0,v) \\ &= d(0-w,w-w) + d(0,v) \\ &= d(0,w) + d(0,v) \\ &= ||v||_d + ||w||_d \end{aligned}$$

Por lo tanto $||\cdot||_d$ es una norma.

Veamos que la métrica inducida por $||\cdot||_d$ es d

$$||v - w|| = d(0, v - w) = d(w - w, v - w) = d(w, v) = d(v, w)$$

Por lo tanto d provenía de una norma.

MAT-225 - Analisis I