Kevin Urban, PhD kevin.ddu@gmail.com • (973) 464-6833

https://www.linkedin.com/in/drkrbn https://github.com/krbnite https://krbnite.github.io/

Profile

Highly-motivated, innovative individual with extensive experience in empirical research, data product development, and effective investigation of varied, high-dimensional data sets. Creative, analytic problem solver equipped with the intuition and tools necessary for identifying trends and patterns in complex data, and the broad mathematical insight to generate novel, cross-domain solutions. Self-driven, collaborative personality with the understanding that a diverse, open-minded work environment and combined skill sets result in efficient delivery of high-value, dependable data products and results.

Computing Skills

Programming / Tools: Proficient in Python (TensorFlow-GPU, Keras, scikit-learn, pandas, NumPy, etc.), R (dplyr, tidyr, ggplot2, magrittr, etc.), SQL (postgres, sqlite.), Amazon Web Services (Redshift, S3, EC2, EBS.), Tableau, MatLab, Octave, IDL, UNIX (OS X) and Linux (Ubuntu) Shell Scripting (e.g., bash, awk, sed, grep, wget, ssh, sftp, etc.), LaTeX, Vim, HTML, CSS, MarkDown; Limited / Classroom exposure to Fortran, Spark, Hive, Java, C/C++, JavaScript

Analytics:

- Structured & Unstructured Data (e.g., sensors, scientific instrumentation, spacecraft, images, text, time series, geospatial, simulation, genomics, marketing, viewership, commerce, webpages, social media)
- Data Pre-Processing (e.g., table joins, up/down sampling, outlier detection, imputation, aggregation, feature selection / engineering / extraction, regex and rules-based scrubbing / transformations)
- Probability & Statistics (e.g., inference, hypothesis testing, resampling, conditioning, error analysis)
- Machine Learning (e.g., neural networks, deep learning, CNNs, RNNs, reinforcement learning, statistical models, regression, classification, clustering, prediction, PCA, LDA, decision trees, random forests)
- Time Series Analysis (e.g., parametric, nonparametric, spectral analysis, digital signal processing, digital filtering, forecasting, wavelets)
- Numerical Modeling (e.g., difference equations, numerical derivatives, numerical integration, linear/nonlinear models, dynamical systems, numerical stability, eigenvalue estimation)

Work and Professional Research Experience

WWE, Advanced Analytics Team

Stamford, CT • October 2016 – Present

Data Scientist, Manager

- Design and deployment of deep neural network models in Keras and TensorFlow on cloud GPUs for a handful of projects, including those related customer segmentation, churn, and lifetime value (multilayer perceptrons, autoencoders, recurrent neural networks)
- Development of wrestler image recognition algorithm (transfer learning, convolutional neural networks)
- Lead on numerous business-driven analytics research and predictive modeling projects for WWE Network, including:
- Spectral analyses of customer churn/winback behaviors to enhance customer segmentation efforts, help advise email campaigns, and improve churn/winback forecasting
- Development of multiple revenue attribution models for WWE Network content driven by viewership behaviour at the customer level (analysis of millions of rows of data in Redshift)
- Harmonization of fan panel / survey response data with customer accounts on the WWE Network to better quantify the relationship between subjective responses and objective viewership data
- Sentiment analysis of customer cancellation surveys and social media content to uncover resolvable issues and inform on how to better serve our customer base
- Development of project-agnostic and project-specific R packages to facilitate or fully automate data capture, cleansing, transformation, analysis, and reporting
- Decision tree analyses to help understand and segment customers by WWE content and character preferences
- Design of interactive dashboards in Tableau to help interested parties explore our data assets

NJIT Center for Solar-Terrestrial Research

Newark, NJ • January 2012 - May 2016

Research Scientist

- Led multiple data-driven research projects resulting in a first-author publication, PhD dissertation, and several papers currently in development
- Provided new, empirical insights and interpretation of decades-old problem concerning the geomagnetic field's complex structure in Earth's polar regions
- Developed prediction scheme to forecast the magnetic weather in the deep polar cap
- Developed remote-sensing technique using ground-based sensors to infer/predict parameters in near-Earth space

- Created innovative visualization and analysis techniques
- Implemented robust, non-parametric methods to characterize empirical distributions
- Conducted the collection, harmonization, and normalization of 100's of time series data streams from instruments/sensors distributed across the Earth and solar system to model and understand the linear/nonlinear drivers of a complex systems
- Developed software packages to enable efficient, streamlined analysis

NJIT Department of Mathematical Sciences

Newark, NJ • 2008 - 2012

Research Scientist, Mathematical Modeling

- Extensively modeled, analyzed, and visualized several representations of granular fluid systems in MatLab and R
- Investigated sources of chaos in a dimensionally-reduced parameter space of a discrete-dynamical system (e.g., via Poincare map simulations in R [link])
- Led effort in understanding and controlling the propagation of numerical errors, which otherwise prevent proper quantitative analysis and visualization of the underlying dynamical system
- Co-authored four peer-reviewed papers numerically modeling, visualizing, and analyzing granular fluid systems
- Led research project on applications of fractional calculus and co-authored peer-reviewed publication
- Explored real-world applications of advanced mathematical disciplines such as dynamical systems, topological analysis, manifold theory, abstract algebra, stochastic calculus

NASA/CalTech Jet Propulsion Laboratory

Pasadena, CA • Summer 2011

Intern, Trajectory Optimization / Design

- Collaborated with a team of engineers and scientists to develop a full-fledged spacecraft mission to the Trojan asteroids of Jupiter (from establishing and prioritizing science goals, to optimizing the science-engineering-financial parameter space, to the written proposal and presenting our mission design to the NASA review board)
- Gained an appreciation of rapid product development via concurrent engineering, and an understanding of the intricate interplay between the various engineering system designs, science goals, timeline requirements, and budget constraints.
- Published peer-reviewed paper documenting lessons learned

Independent Research Consultant

Clifton, NJ • August 2010 - August 2011

- Procured contracts from NJIT's Physics Department and Siena College's Department of Physics and Astronomy to continue the development of automated, real-time prediction of geomagnetic parameters using geospatially-distributed network of magnetometers
- Published peer-reviewed paper documenting proof-of-concept and lessons learned proof-of-concept [link]

NJIT Department of Physics

Newark, NJ • August 2008 - August 2010

Research Assistant

- Led project demonstrating the feasibility of a real-time surveillance, detection, classification, and prediction of local, regional, and global-scale geomagnetic events of interest
- Analyzed multi-channel instrument data from a spatially-distributed network of automated observatories in Antarctica.
- Developed data metrics and associated classification scheme for events of interest in the data sets.
- In-depth experience visualizing and analyzing data in R, MatLab, and IDL
- In-depth experience in various data analysis techniques, such as digital signal processing, time series analysis, spectral analysis, statistical methods, modeling, and regression.
- \bullet Hardware-software interfacing of instrumentation for data collection
- Published Master's thesis

NASA Goddard Space Flight Center

Greenbelt, MD • June - August 2007

Intern, Observational Cosmology Laboratory

- Developed software implementing a Stokes parameter analysis to run on simulation data for the proposed Absolute Spectrum Polarimeter [ASP] an instrument designed to detect B-mode gravitational waves, which would provide evidence for Einstein's theory of general relativity and cosmological inflationary theory
- Worked with multiple programming languages, including MatLab, Bash (shell scripting), and IDL

NASA Goddard Space Flight Center

Greenbelt, MD • June - August 2006

Intern, Heliophysics Division

- Worked extensively in the UNIX programming environment, learning and developing Python, HTML, CSS, JavaScript, and PHP code
- Developed web content

Selected Peer-Reviewed Publications

• Rethinking the polar cap: Eccentric-dipole structuring of ULF power at the highest corrected geomagnetic latitudes, Journal of Geophysical Research, Space Physics, Vol. 121, 2016.

- Analysis, simulation, and visualization of 1D tapping via reduced dynamical models, Physica D: Nonlinear Phenomena, Vol. 273, 2014.
- Mission to the Trojan Asteroids: Lessons learned during a JPL Planetary Science Summer School mission design exercise, Planetary and Space Science, Vol. 76, 2013.
- Dynamical systems model and discrete element simulations of a tapped granular column, Powders and Grains 2013: Proceedings of the 7th International Conference on Micromechanics of Granular Media. Vol. 1542. No. 1. AIP Publishing, 2013.
- Quiet-time observations of the open-closed boundary prior to the CIR-induced storm of August 9, 2008, Space Weather,
 Vol. 9, S11001, 2011.
- Tapping dynamics for a column of particles and beyond, Journal of Mechanics of Materials and Structures, Vol. 6, No. 1-4, 2011.
- Integrability analysis of regular and fractional Blackmore-Samulyak-Rosato fields, Condensed Matter Physics, Vol. 13, No. 4, 2010.

Education

Ph.D., Applied Physics

New Jersey Institute of Technology & Rutgers University, Newark, NJ

Dissertation: The Hydromagnetic Structure of the Polar Cap and Its Interaction with the Solar Wind

M.S., Applied Physics (Minor: Applied Mathematics)

New Jersey Institute of Technology & Rutgers University, Newark, NJ

Thesis: Synoptic Variability of a CIR-Driven Open-Closed Boundary During Solar Minimum

B.S., Applied Physics (Minor: Applied Mathematics)

New Jersey Institute of Technology & Rutgers University, Newark, NJ

Continuing & Extracurricular Education

Self-Driving Car Nanodegree Deep Learning Nanodegree Foundation Udacity (Currently Enrolled)
Udacity