Aprendizaje no supervisado

3.1. Agrupamiento jerárquico: Aglomerativo

Javier Sevilla

Universidad Internacional de Valencia Agrupamiento

Tipos de algoritmos de agrupamiento

- ► Basados en particiones
- Jerárquicos
- Espectrales
- ► Basados en densidad
- Probabilísticos

Agrupamiento

Tipos de algoritmos de agrupamiento

- ► Basados en particiones
- Jerárquicos
- Espectrales
- ► Basados en densidad
- Probabilísticos

Elegir el número de clústeres (K)

Un continuo de particiones de los datos

Se particiona el dataset desde K=1 hasta K=n

** ¿Cuál es la mejor partición?

Un continuo de particiones de los datos

Se particiona el dataset desde K = 1 hasta K = n

** ¿Cuál es la mejor partición?

Algoritmos:

- ► Aglomerativo
- Divisivo

Representación gráfica de un agrupamiento jerárquico

- ► Cada nodo, es un conjunto de ejemplos (clúster)
- ► Los clústeres se van uniendo/separando según criterios de distancia
- La longitud de las líneas verticales indica la distancia entre los clústeres que se unen/separan

Intuición

Si no conozco cuántos grupos/clústeres hay, de entrada no voy a elegir el número ${\cal K}$

Los clústeres se forman de ejemplos que están cercanos entre ellos

El concepto de cercanía puede ser relativo:

- Términos absolutos: La similitud entre estos dos clústeres es...
- 2. **Términos relativos**: Los dos clústeres más similares entre sí son...
- ** De manera equivalente, podemos hablar de lejanía/diferencia

Aglomerativo

Aglomeración

Partiendo de K=n, se van uniendo iterativamente pares de clústeres hasta K=1 de manera voraz

- 0. Al principio, cada ejemplo tiene su propio clúster
- 1. Tras la primera unión, existen K=n-1 clústeres (todos unitarios, menos uno clúster que tiene 2 elementos)
- i. Tras la i-ésima unión, existen $\mathcal{K}=n-i$ clústeres
- n-1. El algoritmo acaba cuando ${\cal K}=1$ (se unen los dos últimos clústeres en un clúster con todos los ejemplos)

Aglomerativo

Dos cuestiones

A medida que avanza el algoritmo...

¿qué dos clústeres se deben unir en cada paso?

Dos cuestiones

A medida que avanza el algoritmo...

¿qué dos clústeres se deben unir en cada paso?

Al final del algoritmo, si queremos un partición concreta,

¿con qué partición nos quedamos?

Aglomerativo

Primera cuestión

A medida que avanza el algoritmo...

¿qué dos clústeres se deben unir en cada paso?

El par de clústeres, S_A^* y S_B^* , con menor disimilitud interclúster:

$$\{S_A^*, S_B^*\} = \arg\min_{\{S_A, S_B\}} d(S_A, S_B)$$

Aglomerativo

Primera cuestión

A medida que avanza el algoritmo...

¿qué dos clústeres se deben unir en cada paso?

El par de clústeres, S_A^* y S_B^* , con menor disimilitud interclúster:

$$\{S_A^*, S_B^*\} = \arg\min_{\{S_A, S_B\}} d(S_A, S_B)$$

¿cómo se mide la disimilitud interclúster?

$$d(S_A, S_B) = \min_{x_a \in S_A; x_b \in S_B} d(x_a, x_b)$$

Disimilitud mínima

$$d(S_A, S_B) = \min_{x_a \in S_A; x_b \in S_B} d(x_a, x_b)$$

Disimilitud mínima

$$d(S_A, S_B) = \max_{x_a \in S_A; x_b \in S_B} d(x_a, x_b)$$

Disimilitud máxima

$$d(S_A, S_B) = \max_{x_a \in S_A; x_b \in S_B} d(x_a, x_b)$$

Disimilitud máxima

$$d(S_A, S_B) = \frac{1}{|S_A| \cdot |S_B|} \sum_{x_a \in S_A} \sum_{x_b \in S_B} d(x_a, x_b)$$

Disimilitud media

$$d(S_A, S_B) = \frac{1}{|S_A| \cdot |S_B|} \sum_{x_a \in S_A} \sum_{x_b \in S_B} d(x_a, x_b)$$

Disimilitud media

Aglomerativo

Aglomerativo

Aglomerativo

0.25

Aglomerativo

Aglomerativo

Aglomerativo

0.25

Aglomerativo

Aglomerativo

0.25

Aglomerativo

0.25

0.20

0.15

0.10

0.05

Aglomerativo

Aglomerativo

Aglomerativo

0.20

Aglomerativo

Aglomerativo

Aglomerativo

Aglomerativo

Aglomerativo

0.25

0.20

Aglomerativo

0.25

0.20

0.15

0.10

Aglomerativo

Aglomerativo

Aglomerativo

Aglomerativo

0.25

Aglomerativo

0.25

0.20

0.15

Aglomerativo

Tipos de clústeres obtenidos según criterio de unión

Definamos el concepto de diámetro de un clúster, S_K :

$$d(S_K) = \max_{x_i, x_j \in S_K} d(x_i, x_j)$$

Disimilitud máxima entre dos elementos del clúster S_K

Tipos de clústeres obtenidos según criterio de uniór

Disimilitud mínima:

$$d(S_A, S_B) = \min_{x_a \in S_A; x_b \in S_B} d(x_a, x_b)$$

Disimilitud máxima:

$$d(S_A, S_B) = \max_{x_a \in S_A: x_b \in S_B} d(x_a, x_b)$$

$$d(S_A, S_B) = \frac{1}{|S_A| + |S_B|} \sum_{x \in S_a} \sum_{x_b \in S_a} d(x_a, x_b)$$

Tipos de clústeres obtenidos según criterio de uniór

Disimilitud mínima:

$$d(S_A, S_B) = \min_{x_a \in S_A; x_b \in S_B} d(x_a, x_b)$$

- Clústeres de ejemplos similares que pueden no formar una unidad compacta Idea de la cadena
- El diámetro puede salir perjudicado

Disimilitud máxima:

$$d(S_A, S_B) = \max_{x_a \in S_A; x_b \in S_B} d(x_a, x_b)$$

$$d(S_A, S_B) = \frac{1}{|S_A| + |S_B|} \sum_{x_a \in S_A} \sum_{x_b \in S_B} d(x_a, x_b)$$

Tipos de clústeres obtenidos según criterio de unión

Disimilitud mínima:

$$d(S_A, S_B) = \min_{x_a \in S_A; x_b \in S_B} d(x_a, x_b)$$

Disimilitud máxima:

$$d(S_A, S_B) = \max_{x_a \in S_A; x_b \in S_B} d(x_a, x_b)$$

- Clústeres compactos con diámetro reducido
 - Se minimiza el diámetro, precisamente La disimilitud máxima intraclúster es, tras la unión, el diámetro del nuevo clúster
- ▶ Puede separar en clústeres diferentes a ejemplos muy similares

$$d(S_A, S_B) = \frac{1}{|S_A| + |S_B|} \sum_{x_a \in S_A} \sum_{x_b \in S_B} d(x_a, x_b)$$

Tipos de clústeres obtenidos según criterio de unión

Disimilitud mínima:

$$d(S_A, S_B) = \min_{x_a \in S_A; x_b \in S_B} d(x_a, x_b)$$

Disimilitud máxima:

$$d(S_A, S_B) = \max_{x_a \in S_A; x_b \in S_B} d(x_a, x_b)$$

$$d(S_A, S_B) = \frac{1}{|S_A| + |S_B|} \sum_{x_a \in S_A} \sum_{x_b \in S_B} d(x_a, x_b)$$

- Escenario intermedio
- Clústeres relativamente compactos
- ▶ Junta elementos no necesariamente muy similares

Ventajas

- ► Intuitivo
- Conceptualmente sencillo
- ► Funciona con clústeres de diferente tamaño
- ▶ Una decisión de entrenamiento: criterio de unión
- Diferentes criterios
- Puede funcionar con diferentes medidas de distancia

Desventajas

- ► Lento
- ▶ Problemas al lidiar con clústeres de diferente densidad

Desventajas

- ▶ Lento
- Problemas al lidiar con clústeres de diferente densidad
- ► ¿Qué partición elegir?

Elección de una partición

Elegir una altura en la jerarquía donde cortar

- ► Número de clústeres concreto (fijando K)
- ► Máxima distancia en la unión de clústeres

Gracias