Name: .

Mark and Paris				- Commence of the Party
0	1 11	Landon Landon	ON	10
\sim ()	1-11	1:1	UII	13.
			THE RESERVE AND ADDRESS OF THE PARTY OF THE	CENTRED STEEL STORY

_ / 25

Instructor: Bueler | Jurkowski | Maxwell

There are 25 points possible on this quiz. No aids (book, calculator, etc.) are permitted. Show all work for full credit.

1. [5 points] Sketch the region enclosed by the given curves and calculate its area. [You may use either part of the Fundamental Theorem of Calculus.]

$$y = \sqrt{x}, \quad y = 0, \quad x = 4$$

$$A = \int_{0}^{4} \sqrt{x} dx$$

$$= F(4) - F(0) = \frac{2}{3} \cdot 4^{3/2} - 0$$

$$F(x) = \frac{x^{3/2}}{3h} = \frac{2}{3}x^{3/2}$$

$$F(x) = \frac{x^{3/2}}{3h} = \frac{2}{3}x^{3/2}$$

2. [5 points] Use the Midpoint Rule with n=2 subintervals to approximate the integral:

$$\int_0^4 \frac{x}{x+1} dx \approx f(1) \cdot 2 + f(3) \cdot 2$$

$$= \frac{1}{1+1} \cdot 2 + \frac{3}{3+1} \cdot 2$$

$$= \frac{1}{2} \cdot 2 + \frac{3}{4} \cdot 2 = 1 + \frac{3}{2}$$

$$= (5/3)$$

3. [3 points] The graph of f is shown. Evaluate each integral by interpreting it in terms of areas.

b.
$$\int_{-4}^{1} f(x) dx = \bigcup_{x = 0}^{4} f(x) dx$$

c.
$$\int_{4}^{1} f(x) dx = -\int_{1}^{4} f(x) dx$$

$$= -\left(-\frac{9}{2}\right) = \frac{9}{2}$$

Math 251: Quiz 9

4. [4 points] Evaluate the integral.

$$\int_{1}^{3} (x-2)(x+4)dx = \int_{1}^{3} x^{2} + 2x - 8 dx$$

$$= F(3) - F(1) = \left(\frac{27}{3} + 9 - 24\right) - \left(\frac{1}{3} + 1 - 8\right)$$

$$F(x) = \frac{x^{3}}{3} + x^{2} - 8x = -68 - \frac{1}{3} + 7 = \boxed{\frac{2}{3}}$$

5. [4 points] Evaluate the integral.

[4 points] Evaluate the integral.
$$\int_{0}^{1} (e+x^{e}+e^{x}) dx = F(1) - F(0) = (e+\frac{1}{e+1} + e) - (0+0+1)$$

$$F(x) = ex + \frac{x}{e+1} + e^{x} = (2e + \frac{1}{e+1} - 1)$$

6. [4 points] Let $F(x) = \int_2^x e^{t^2} dt$. Find an equation of the tangent line to the curve y = F(x) at the point where x = 2.

by FTCI:
$$F'(x) = e^{x^2}$$

So: $F'(2) = e^4$
also: $F(2) = \int_2^2 e^{t^2} dt = 0$
So: $y-y_0 = m(x-x_0)$: $y-0 = e^4(x-2)$
 $y=e^4(x-2)$