

A.I. IN AUDIO & SIGNAL PROCESSING

Session 3: HMM for speech processing

COURSE STRUCTURE

Quick Summary

Audio processing for Al

- Signal, audio, speech encoding (4h)
- Deep learning for audio processing (4h+4h)

Automata for language modelling

- HMM for speech processing (4h)
- Automata and transducer (4h)

Towards speaking with an Al-bot

- Speech synthesis (4h)
- Automatic speech recognition (4h)
- Speaker and emotion recognition (4h)

SESSION 3: HMM FOR SPEECH PROCESSING

Quick Summary

- 1. Markov models & HMM
- 2. Scoring a sentence
- 3. Decoding a sequence of phonems
- 4. Training a language model

Markov models and HMM

Markov property defining a Markov Model

$$\forall n \geq 0, (i_0, ..., i_{n-1}, i, j) \in \mathbf{E}^{n+2},$$

$$P(X_{n+1} = j | X_0 = i_0, X_1 = i_1, ..., X_{n-1} = i_{n-1}, X_n = i) = P(X_{n+1} = j | X_n = i)$$

We consider homogeneous models ($p_{i,j}$ is constant over time).

Transition probability

$$p_{i,j} = P(X_1 = j | X_0 = i)$$
 with $\forall i \in E, \sum_{j \in E} p_{i,j} = 1$

E	states space
$X_0, X_1, \dots, X_{n-1}, X_n$	random variable sequence of successive states
$p_{i,j}$	transition probability from state i to state j
n	time index (noted t further)

Example of Markov process

- Hamster pet
 - \rightarrow hamster activity at t_n is predictable, knowing its activity at t_0

Hidden Markov Model

Markov model with "partially observable" states Usually, part only of the model is known:

- → either the sequence of observations O is unknown
- → either the sequence of states Q is unknown
- → either the transition probabilities are unknown

Elements of a discrete HMM

$$S = \{S_0, S_1, \dots, S_N\}$$
 set of possible states $V = \{V_0, V_1, \dots, V_M\}$ set of possible observations

$$Q=(q_0,q_1,\ldots,q_T)$$
 sequence of states with t from 0 to T $\mathcal{O}=(\sigma_0,\sigma_1,\ldots,\sigma_T)$ sequence of observations with t from 0 to T

$$a_{i,j} = P(q_{t+1} = S_j | q_t = S_i)$$
 state transition probability (matrix A) $b_j(k) = P(\sigma_t = V_k | q_t = S_j)$ observation probability (matrix B)

$$\pi = {\pi_0, \pi_2, ..., \pi_N}$$

initial state distribution, with $\pi_i = P(q_0 = S_i)$

Example of Hidden Markov Model

HMM application to speech

Basic problems for HMMs

Scoring

Given the state sequence $Q = (q_0, q_1, ..., q_T)$, and a model $\lambda = (A, B, \pi)$, how do we efficiently compute $P(O|\lambda, Q)$, the probability of the observation sequence, given the model?

→ Forward algorithm

Matching/Decoding

Given the observation sequence $\mathcal{O}=(\sigma_0,\sigma_1,\ldots,\sigma_T)$, and a model λ , how do we choose a corresponding state sequence $Q=(q_0,q_1,\ldots,q_T)$ which is optimal in some meaningful sense (i.e., best "explains" the observations). $P(Q|\lambda,\mathcal{O})$?

→ Viterbi algorithm

Training

How do we adjust the model parameters model $\lambda = (A, B, \pi)$ to maximize $P(\lambda | Q, O)$?

→ Baum-Welch re-estimation procedures

(known as forward-backward algorithm)

Scoring a sentence

SCORING A SENTENCE

Goal

Find $P(\mathcal{O}|\lambda)$,

 $P(\mathcal{O}|\lambda)$: probability to observe $\mathcal{O}=(\sigma_0,\sigma_1,\ldots,\sigma_n)$, knowing the model $\lambda=(A,B,\pi)$

Analytical solving

law of total probability

(1)
$$P(\mathcal{O}|\lambda) = \sum_{all \ Q} P(\mathcal{O}|Q,\lambda) \ P(Q|\lambda)$$

Indépendance of observations knowing Q

(2)
$$P(\mathcal{O}|Q,\lambda) = \prod_{t=0}^{T} P(\sigma_t|Q,\lambda)$$

initial state and transition probabilities

(3)
$$P(Q|\lambda) = \pi_{q_0} \prod_{t=1}^{T} a_{q_{t-1},q_t}$$

(1), (2) and (3) give the result

(4)
$$P(\mathcal{O}|\lambda) = \sum_{all\ Q} \left[\pi_{q_0} . b_{q_0}(\sigma_0) . \prod_{t=1}^T a_{q_{t-1}, q_t} . b_{q_t}(\sigma_t) \right]$$

 σ_t depends on q_t and q_0, q_1, \dots, q_{t-1}

besides, as Q follow Markov property

$$\begin{aligned} \mathbf{P}(\sigma_t|Q,\lambda) &= \mathbf{P}(\sigma_t|q_t,\lambda) \\ &= b_{q_t}(\sigma_t) \end{aligned} \quad \text{by definition}$$

Computational solving: Forward algorithm

Initialization

$$\alpha_0(i) = \pi_i \cdot b_i(\sigma_0) \quad \text{for } i \in \llbracket 0, N \rrbracket$$

Induction

$$\alpha_t(j) = \left[\sum_{i=0}^{N} \alpha_{t-1}(i) \cdot a_{i,j}\right] \cdot b_j(\sigma_t) \text{ for } t \in [1, T], j \in [0, N]$$

Termination

$$P(\mathcal{O}|\lambda) = \sum_{i=0}^{N} \alpha_T(i)$$

$$a_{i,j} = Pig(q_{t+1} = S_j \, | \, q_t = S_iig)$$
 state transition probability (matrix A) $b_j(k) = Pig(\sigma_t = V_k \, | \, q_t = S_jig)$ observation probability (matrix B)
$$\pi = \{\pi_0, \pi_2, \dots, \pi_N\}$$
 initial state distribution, with $\pi_i = P(q_0 = S_i)$

Decoding a sequence of phonems

Goal

```
Find most probable sequence of state Q = (q_0, q_1, ..., q_T), given observations \mathcal{O} and model \lambda. \rightarrow find Q maximizing P(Q|\mathcal{O}, \lambda)
```

Forward algorithm provides a probability through all path sequence Q \rightarrow find the optimum path sequence

Solving approaches

- Consider the path sequence maximizing successively each $a_{i,j}$ \rightarrow possibly not optimal
- Consider the path sequence maximizing $P(Q|\mathcal{O},\lambda)$ with respect to the whole sequence \rightarrow Viterbi algorithm

Analytical solving

From equations (1) and (4), (see scoring previous chapter)

$$P(Q|\mathcal{O},\lambda) = \pi_{q_0}.b_{q_0}(\sigma_0).\prod_{t=1}^{T} a_{q_{t-1},q_t}.b_{q_t}(\sigma_t)$$

$$\delta_T$$

$$P(Q|O,\lambda) = \pi_{q_0}.b_{q_0}(o_0).\prod_{t=1}^{T} a_{q_{t-1},q_t}.b_{q_t}(o_t)$$

Idea to compute iteratively overtime the probability δ_t for $t \in [1, T]$

$$\delta_t(j) = \max_{0 \le i \le N} (\delta_{t-1} a_{i,j}) \cdot b_j(\sigma_t)$$

And thus, compute at each time step t, the most likely state transition

Viterbi algorithm assumptions

- \mathcal{O} and Q are both in sequences
- \mathcal{O} and Q are isomorphic (one observed event per hidden event)
- *Q* verifies Markov property

Viterbi algorithm

1. Initialization:

$$\delta_1(i) = \pi_i b_i(o_1), \qquad 1 \le i \le N$$

$$\psi_1(i) = 0$$

2. Recursion:

$$\begin{split} \delta_t(j) &= \max_{1 \leq i \leq N} [\delta_{t-1}(i)a_{ij}]b_j(o_t), & 2 \leq t \leq T & 1 \leq j \leq N \\ \psi_t(j) &= \underset{1 \leq i \leq N}{\operatorname{argmax}} [\delta_{t-1}(i)a_{ij}], & 2 \leq t \leq T & 1 \leq j \leq N \end{split}$$

3. Termination:

$$P^* = \max_{1 \le i \le N} [\delta_T(i)]$$

$$q_T^* = \arg\max_{1 \le i \le N} [\delta_T(i)]$$

$$1 \le i \le N$$

4. Path (state-sequence) backtracking:

$$q_t^* = \psi_{t+1}(q_{t+1}^*), \qquad t = T - 1, T - 2, ..., 1$$

Viterbi algorithm

Training a language model

TRAINING A LANGUAGE MODEL

Goal

Adjusting model parameters to maximize $P(Q, \mathcal{O}|\lambda)$. $\mathcal{O} = (\sigma_0, \sigma_1, ..., \sigma_T)$ is one of the training sequence

Analytical solving

→ none

Baum-Welch re-estimation procedures

Iterative algorithm that:

- Compute statistics on the current model given the training data
- Adapt the model given the previous statistics
- Return to 1st step until convergence

Also known as forward-backward algorithm

TRAINING A LANGUAGE MODEL

Language model using HMM

SUB-WORD UNIT

Thank you for your attention.

References:

Xavier Anguera

PRACTICAL EXERCISE

1. Modelize Rainy-sunny model with hmmlearn

Use the following items:

- from hmmlearn import hmm
- MultinomialHMM
- startprob_
- transmat_
- emissionprob_

TO DO:

- write starting probability
- transition matrix
- emission probability

Example of <u>Hidden Markov Model</u>

PRACTICAL EXERCISE

2. Solve scoring problem

Find probability of observations for the following sequences of states:

- (Start)
- (Rainy)
- (Sunny)
- -(Sunny, Sunny, Sunny)

Use the following items:

- model.score

Example of <u>Hidden Markov Model</u>

PRACTICAL EXERCISE

2. Solve scoring problem

Find the sequence of states for the following observations:

- (Walk)
- (Shop)
- (Clean)
- -(Clean, Clean, Clean)

Use the following items:

- model.decode

Example of <u>Hidden Markov Model</u>

