Sequence models & Attention mechanism

9/10 points (90.00%)

Quiz, 10 questions

Next Item

1/1 points

1.

Consider using this encoder-decoder model for machine translation.

This model is a "conditional language model" in the sense that the encoder portion (shown in green) is modeling the probability of the input sentence x.

Correct

1/1 points

2.

In beam search, if you increase the beam width ${\it B}$, which of the following would you expect to be true? Check all that apply.

Beam search will run more slowly.

Sequence models & Attention mechanism

9/10 points (90.00%)

Quiz, 10 questions

Corre	Beam search will use up more memory.
Corre	Beam search will generally find better solutions (i.e. do a better job maximizing $P(y\mid x)$)
Un-s	Beam search will converge after fewer steps. elected is correct
	1 / 1 points hine translation, if we carry out beam search without using sentence lization, the algorithm will tend to output overly short translations.
Corre	True
	False
4 .	1 / 1 points

https://www.coursera.org/learn/nlp-sequence-models/exam/4CCc4/sequence-models-attention-mechanism

Suppose you are building a speech recognition system, which uses an RNN model to map from audio clip x to a text transcript y. Your algorithm uses

Sequence models & Attention machanism maximizes $P(y \mid x)$. 9/10 points (90.00%)

Quiz, 10 questions

On a dev set example, given an input audio clip, your algorithm outputs the transcript $\hat{y}=$ "I'm building an A Eye system in Silly con Valley.", whereas a human gives a much superior transcript $y^*=$ "I'm building an AI system in Silicon Valley."

According to your model,

$$P(\hat{y} \mid x) = 1.09 * 10^{-7}$$

$$P(y^* \mid x) = 7.21 * 10^-8$$

Would you expect increasing the beam width B to help correct this example?

No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.

- No, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.
- Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the RNN rather than to the search algorithm.
- Yes, because $P(y^* \mid x) \leq P(\hat{y} \mid x)$ indicates the error should be attributed to the search algorithm rather than to the RNN.

1/1 points

5.

Continuing the example from Q4, suppose you work on your algorithm for a few more weeks, and now find that for the vast majority of examples on which your algorithm makes a mistake, $P(y^* \mid x) > P(\hat{y} \mid x)$. This suggest you should focus your attention on improving the search algorithm.

True.

Correct

Sequence models Attention mechanism

9/10 points (90.00%)

Quiz, 10 questions

6.

Consider the attention model for machine translation.

Further, here is the formula for $\alpha^{< t, t'>}$.

$$\alpha^{< t, t'>} = \frac{\exp(e^{< t, t'>})}{\sum_{t'=1}^{T_{x}} \exp(e^{< t, t'>})}$$

Which of the following statements about $\alpha^{< t,t'>}$ are true? Check all that apply.

We expect $\alpha^{<\iota,\iota'>}$ to be generally larger for values of $a^{<\iota'>}$ that are highly relevant to the value the network should output for $y^{<t>}$. (Note the indices in the superscripts.)

Correct

We expect $\alpha^{< t,t'>}$ to be generally larger for values of $a^{< t>}$ that are

Sequence models (Note the indices in the subject should output for $y^{< t'>}$).

9/10 points (90.00%)

Quiz, 10 questions

Un-selected is correct

 $\sum_{t} \alpha^{\langle t,t'\rangle} = 1 \text{ (Note the summation is over } t.)$

Un-selected is correct

 $\sum_{t'} \alpha^{\langle t,t'\rangle} = 1 \text{ (Note the summation is over } t'.)$

Correct

1/1 points

7.

The network learns where to "pay attention" by learning the values $e^{\langle t,t'\rangle}$, which are computed using a small neural network:

We can't replace $s^{< t-1>}$ with $s^{< t>}$ as an input to this neural network. This is because $s^{< t>}$ depends on $\alpha^{< t,t'>}$ which in turn depends on $e^{< t,t'>}$; so at the time we need to evalute this network, we haven't computed $s^{< t>}$ yet.

True

Correct

False

1/1 points

8.

Compared to the encoder-decoder model shown in Question 1 of this quiz (which does not use an attention mechanism), we expect the attention

10 points (90.00%)

Sequence m	100 dels	so&aAttegtion mechanism	9/			
Quiz, 10 questions	0	The input sequence length T_{x} is large.				
	Correct					
		The input sequence length ${\cal T}_x$ is small.				
	×	0 / 1 points				
	"blank"	the CTC model, identical repeated characters not separated by the character (_) are collapsed. Under the CTC model, what does the ng string collapse to?	!			
	c_oo_	_o_kkb_oooooookkk				
		cokbok				
		cookbook				
	0	cook book				
	This	should not be selected				
		coookkbooooookkk				
	~	1 / 1 points				
	10. In trigg	er word detection, $x^{< t>}$ is:				

Features of the audio (such as spectrogram features) at time t.

Correct

Sequence m	odel	The t -th input word, represented as either a one-hot vector or a $s^{\text{wordendedding}}$ mechanism	9/10 points (90.00%)
Quiz, 10 questions		Whether the trigger word is being said at time $t. $	
		Whether someone has just finished saying the trigger word at time $t. \ \ $	ne
	<i>\fotage</i>	abla	