

Your tutor

- Winn Chow (Senior Tutor)
- <u>winn.chow1@unimelb.edu.au</u>
- Office: Doug McDonell 9.23
- Here, you can find my workshop slides:
- https://github.com/winnchow/COMP90042-Workshops

Postings list

Inverted Index - Recap

_

Document frequency

Document IDs

term t	f_t	Postings list for t
and	6	$\langle 1, 6, 7, 8, 9, 12 \rangle$, $\langle 1, 2, 1, 3, 1, 2 \rangle$
big	3	$\langle 2, 5, 42 \rangle$, $\langle 1, 1, 1 \rangle$
old	1	$\langle 32 \rangle$, $\langle 4 \rangle$
in	7	$\langle 2, 3, 5, 6, 8, 14, 25 \rangle, \langle 1, 1, 4, 1, 5, 3, 1 \rangle$
the	52	$\langle 1, 2, 3, 4, 5, 7, 8, 9, \ldots \rangle$, $\langle 10, 21, 10, 42, 12, 14, 12, 4, \ldots \rangle$
night	4	$\langle 1, 12, 13, 14 \rangle$, $\langle 2, 2, 1, 3 \rangle$
house	5	$\langle 6, 21, 32, 33, 43 \rangle, \langle 2, 3, 4, 2, 1 \rangle$
sleep	3	$\langle 1, 51, 53 \rangle$, $\langle 1, 2, 3 \rangle$
where	4	$\langle 1, 3, 4, 6 \rangle$, $\langle 1, 1, 2, 1 \rangle$

Term frequency

Compression

– How should we compress the document IDs?

term t	f_t	Postings list for t
and	6	$\langle 1, 6, 7, 8, 9, 12 \rangle$, $\langle 1, 2, 1, 3, 1, 2 \rangle$

- Document IDs: <1, 6, 7, 8, 9, 12>
- Gaps: <1, 5, 1, 1, 3>, so <u>mostly small numbers</u>
- Variable Byte (Vbyte) Compression

Variable Byte Compression

- For example, 1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,3
- We may encode 1,2,3 using 2 bits each.
- How about we use 0 => 1, 10 => 2, 11 => 3?

Variable Byte Compression

Examples

Number	Encoding	
	00111000 10000101	10000110

824 = 110 0111000

Storage Cost

Number Range	Number of Bytes
0 - 127	1
128 - 16383	2
16384 - 2097151	3

Q1 (c)

 Determine the values of integers X and Y that were encoded as the byte sequence [52,34,147,42,197] using the Variable Byte algorithm described in the lecture slides 9/10.

Q1 (c)

$$-52 = 00110100$$

$$-34 = 00100010$$

$$-147 = 10010011$$

- => 0010011 0100010 0110100 = 315700

$$-42 = 00101010$$

$$-167 = 11000101$$

- => 1000101 0101010 = 8874

$\begin{aligned} WAND-top\text{-}K & query & processing \\ algorithm \end{aligned}$

 $S_{\text{TF-IDF}}(d, Q) = \sum_{t \in Q} t f_{d,t} \times \log \frac{N}{df_t}$

Q2

- Doc 13 is evaluated
- Max score for Doc 13 is 0.9 + 7.1 = 8.0
- So Doc 13 might enter the top-2 list

Q2

- No more documents will have "fox"
- Max score possible for a document with "The", "quick" and "brown" will be 0.9 + 1.9 + 2.3 = 5.1
- Lower than the scores of the top-2 documents
- So, we stop.

Recall and Precision

https://en.wikipedia.org/wiki/Precision and recall

relevant elements

selected elements

How many selected items are relevant?

How many relevant items are selected?

relevant elements

selected elements

How many selected items are relevant?

How many relevant items are selected?

24

- (a) User relevance feedback
 - e.g. ask users to click
- (b) Pseudo relevance feedback
 - e.g. blind feedback, search the top-K documents and perform topic modeling
- (c) Indirect relevance feedback
 - e.g. analyze query click logs to re-rank documents

Very Useful Online Resources

- Andrei Broder WAND Revisited
 - https://youtu.be/gwsWUPVtt6Q?t=433