Oefening elektronica: Bipolaire transistoren

Arthur Adriaens — Tweede bachelor fysica en sterrenkunde — 01702104

1 Opgave 1

1.1 Schakeling 1

Figuur 2: spanningsval over R_2

Figuur 1: schakeling 1

Aangezien $V_{BE}\approx 0.7V$ is in rust, kijkend naar figuur 2, zien we dat de stroom over R_2 gegeven wordt door $I_{R_2}=\frac{12-0.7}{R_2}$ (wet van Ohm), vervolgens weten we dat de bipolaire transistor een versterkingsfactor β heeft. Dit betekent dat de collectorspanning gegeven wordt door $I_c=\beta I_{R_2}$ en er dus een spanning I_cR_1 heerst over R_1 . Aan VM1 wordt er dus een spanning gemeten van:

$$VM1 \approx 12 - I_c R_1 = 12 - \beta I_{R_2} R_1 = 12 - \beta \frac{12 - 0.7}{R_2} R_1 = 12 - 0.0565\beta$$
 (1)

Als we functie 1 uitzetten en een simulatie van VM1 in functie van β bemerken we dezelfde karakteristieke helling (bemerk het bereiken van de saturatiespanning in de simulatie):

Figuur 3: voorspelde V_{CE} (in volt) in functie van β Figuur 4: gesimuleerde V_{CE} (in volt) in functie van

Als deze schakeling dus gesimuleerd zou worden met $\beta = 100$ dan zou er een spanning van ongeveer 6.35V (volt) verwacht worden over VM1, dit zien we ook:

Figuur 5: simulatie met $\beta = 100$, blauw: gesimuleerd en zwart: voorspeld

1.2 Schakeling 2

Figuur 6: schakeling 2

Figuur 7: Schakeling 2 anders bekeken

De berekening van V_0 (= V_{CE}) in rust gebeurt in deze schakeling redelijk analoog aan de vorige, eerst en vooral weten we dat $\beta = \frac{I_C}{I_{R_2}}$ en dus $\beta I_{R_2} = I_C$. Vervolgens zien we in dat de spanning aan de transistor wederom 0.7 volt bedraagt, nu moet wel ook rekening gehouden worden met de spanning over R_1 , de spanning over R_2 wordt dus gegeven door:

$$I_{R_2}R_2 = 12 - (I_C + I_{R_2})R_1 - 0.7 \stackrel{\beta I_{R_2} = I_C}{=} 11.3 - (1+\beta)I_{R_2}R_1$$
 (2)

En dus:

$$I_{R_2} = \frac{11.3}{R_2 + (1+\beta)R_1} \tag{3}$$

Nu weten we ook dat de spanning over R_1 12 – V_0 bedraagt, en dus:

$$12 - V_0 = (I_C + I_{R_2})R_1 = (1+\beta)R_1I_{R_2} \implies V_0 = 12 - 11.3\frac{R_1(1+\beta)}{R_2 + R_1(1+\beta)}$$
(4)

Als deze vergelijking wordt geplot en V_0 in functie van β wordt gesimuleerd worden de volgende resultaten bekomen:

Figuur 8: voorspelde V_0 (volt) in functie van β — Figuur 9: gesimuleerde V_0 (volt) in functie van β

We zien dus dat deze overeenkomen, als dit circuit aan een $\beta=100$ wordt gesimuleerd verwachten we dus een V_0 van ongeveer 8.21V, dit blijkt te kloppen:

Figuur 10: simulatie met $\beta=100,$ blauw: gesimuleerd en zwart: voorspeld

2 Opgave 2

2.1 Schakeling 1

Met $R_1 = 10K\Omega$, $R_2 = 4K\Omega$ en $R_3 = 220\Omega$. Merk eerst en vooral op dat R_1 en R_2 een spanningsdeler vormen, dus kunnen we stellen dat:

$$V_B \approx V_{CC} \frac{R_2}{R_1 + R_2} = 12 * 4/14V \approx 3.34V$$
 (5)

Vervolgens weten we dat $V_E = V_B - V_{BE} \approx 3.43V - 0.7V = 2.73V$, en dus dat $I_E = \frac{V_E}{R_E} \approx 2.73/220 = 12.41mA$ bedraagt. Als we nu I_B verwaarloosbaar klein stellen is $I_E \approx I_C$ en dus bedraagt de stroom over de LED 12.41mA.

2.2 Schakeling 2

Met $R_1=100\Omega$ en $R_2=1000\Omega$. Eerst en vooral zien we in dat er 1.4V van de voedingsspanning verloren gaat over de diodes, aan de basis heerst er dus een spanning van 10.6V. Dit is een pnp transistor, er zal dus stroom vloeien als de spanning aan de basis lager is dan die aan de collector, wat het geval is. De pnp transistor zelf neemt 0.7V en er zal dus aan de collector een spanning van 11.3V moeten liggen (spanning basis +0.7V) en dus een spanning over R_1 van 0.7V. We zien dus in dat er een stroom vloeit door R_1 van $\frac{0.7}{R_1}=0.007A$. We kunnen nu de stroom die wegvloeit aan de basis verwaarloosbaar klein stellen waardoor $I_{R_2}\approx I_{LED}$ en dus de stroom door de LED 0.007A=7mA bedraagt.