PROGRAM STUDI TEKNIK INFORMATIKA

FAKULTAS ILMU KOMPUTER UNIVERSITAS DIAN NUSWANTORO

Memory (Bag. 2)

- ✓ Main Memory
- ✓ Virtual Memory
- ✓ Read Only Memory

Tim pengampu

Sistem Komputer, Komunikasi dan Keamanan Data

T.A. 2020

Capaian Pembelajaran

Mahasiswa dapat memahami tentang konsep dasar memori, cache memory, main memory, secondary memory dan virtual memory.

Main Memory

FAKULTAS ILMU KOMPUTER

Main Memory atau sering disebut random access memory (RAM) menyediakan ruang penyimpanan utama bagi komputer.

Bersifat *volatile*, yaitu jenis penyimpanan yang akan kehilangan kemampuan menyimpan data didalamnya saat asupan listrik terganggu/hilang.

Terdapat 2 jenis RAM:

Dynamic RAM (DRAM), tiap memory cell-nya terdiri dari sebuah transistor dan sebuah capasitor, dimana capasitor membutuhkan asupan daya berkala untuk tetap dapat menyimpan bit 1.

Static RAM (SRAM), tersusun dari rangkaian 4 hingga 6 transistor yang akan tetap menyimpan nilai bit 1 hingga nilainya dirubah.

Gambar 9.5. korelasi main memory dengan CPU (atas) Contoh RAM (bawah)

Read Only Memory

ROM merupakan jenis memori yang nilai datanya permanen/ tidak dapat dirubah (*read-only = unerasable*), bersifat nonvolatile.

Dimanfaatkan untuk microprogramming, dengan pemanfaatan sbb:

- Library subroutine untuk fungsi- fungsi yang sering digunakan
- System Program
- Tabel fungsi

Jenis-jenis ROM:

- Programmable ROM (PROM)
- Erasable Programmable ROM (EPROM)
- Electrically Erasable Programmable ROM (EEPROM)

Main memory

Page 1

Page 2

Page 3

use

use

Page 0

of A

16

17

19

20

Process A
Page 0

Page 1 Page 2

Page 3

Virtual Memory

Bertujuan untuk mengoptimalkan kinerja komputer, virtual memory memanfaatkan hard disk untuk menambah kapasitas physical memory.

Swapping, proses yang terjadwal dalam *long-term queue* akan disimpan kedalam disk hingga ia dieksekusi, dan saat proses tersebut selesai maka ia keluar dari main memory dan dimasukkan kedalam *intermediate-term queue*.

Paging, proses dibagi menjadi potongan - potongan program (*page*) dimasukkan kedalam potongan-potongan memory (*frame*). SO menciptakan *page table* dimana didalamnya tersimpan daftar lokasi *frame* dimana *page* tersimpan.

Gambar 9.8. swapping (kiri), paging (kanan)

Magnetic Disk

- Media berupa piringan dengan lapisan berbahan bermagnet, berputar pada **spindle** pada kecepatan tertentu (*rpm*).
- Sebuah hard disk bisa tersusun dari beberapa *platter* (fisik), tersusun dan berbutar pada sebuah *spindle*. Piringan *platter* terbagi menjadi sejumlah *track*, dan setiap *track* terbagi menjadi sejumlah *sector* (logic).
- Proses baca/ tulis dilakukan oleh *head* yang dapat mengakses setiap sisi dari *platter* dengan menggerakkan *arm* sehingga mendapatkan posisi *sector* yang dituju.
- Seperangkat arm digunakan untuk memastikan head dapat mengakses lokasi sector yang dituju, namun hanya 1 arm yang diperbolehkan bergerak dalam setiap operasi baca/ tulis.
- **Cylinder** merupakan sejumlah **track** serupa yang berada pada **platter** yang berbeda.

Gambar 9.9. tata letak disk

Magnetic Disk - Lanjt.

Pada hard disk modern, pembagian *sector* tidak lagi menggunakan *contant angular velocity* (gambar 9.10 a) yang membangi track berdasar sudut yang sama. 15track x 16sector/track = 240sector.

Menggunakan *multiple zone recording* yang menggabungkan beberapa *track* terdekat kedalam sebuah *zone* sehingga kapasitas tiap *zone* sama.

Pada gambar 9.10b terdapat terbagi 5 zone, dimana setiap zone tersusun dari beberapa track. Dimulai dari zone terdalam tersusun dari 2 track yang terbagi menjadi 9 sector; zone berikutnya tersusun dari 2 track dan terbagi menjadi 11 sector; zone-3 tersusun dari 3 track dan terbagi menjadi 12 sector; zone-4 tersusun dari 3 track dan 14 sector; zone-5 tersusun dari 3 track dan 16 sector.

Gambar 9.10. angular sector (a), MZR (b)

Redundant Array of Independent Disks (RAID)

RAID merupakan sejumlah physical disk drive yang dilihat oleh sistem operasi sebagai sebuah logical drive.

Category	Level	Description	Disks Required	Data Availability	Large I/O Data Transfer Capacity	Small I/O Request Rate
Striping	0	Nonredundant	N	Lower than single disk	Very high	Very high for both read and write
Mirroring	1	Mirrored	2 <i>N</i>	Higher than RAID 2, 3, 4, or 5; lower than RAID 6	Higher than single disk for read; similar to single disk for write	Up to twice that of a single disk for read; similar to single disk for write
Parallel access	2	Redundant via Hamming code	N + m	Much higher than single disk; comparable to RAID 3, 4, or 5	Highest of all listed alternatives	Approximately twice that of a single disk
	3	Bit-interleaved parity	N + 1	Much higher than single disk; comparable to RAID 2, 4, or 5	Highest of all listed alternatives	Approximately twice that of a single disk
Independent access	4	Block-interleaved parity	N + 1	Much higher than single disk; comparable to RAID 2, 3, or 5	Similar to RAID 0 for read; significantly lower than single disk for write	Similar to RAID 0 for read; significantly lower than single disk for write
	5	Block-interleaved distributed parity	N + 1	Much higher than single disk; comparable to RAID 2, 3, or 4	Similar to RAID 0 for read; lower than single disk for write	Similar to RAID 0 for read; generally lower than single disk for write
	6	Block-interleaved dual distributed parity	N + 2	Highest of all listed alternatives	Similar to RAID 0 for read; lower than RAID 5 for write	Similar to RAID 0 for read; significantly lower than RAID 5 for write

Tabel 9.3. RAID Levels

P(0-3)

Q(4-7)

block 10

block 14

Q(0-3)

block 7

block 11

block 15

Redundant Array of Independent Disks (RAID) - Lanjt.

block 0

block 4

block 8

block 12

block 1

block 5

block 9

P(12-15)

block 2

block 6

P(8-11)

Q(12-15)

block 3

P(4-7)

Q(8-11)

block 13

Tabel 9.11. Layout of RAID

SUMBER PUSTAKA

- Mostafa dan Hesham.2005.Fundamentals Of Computer Organization And Architecture.New Jersey:
 Wiley Interscience
- W. Stallings. 2016. Computer Organization and Architecture. Hoboken: Pearson Education
- A.S. Tanenbaum.Structured Computer Organization.New Jersey: Pearson Prentice Hall

