Market Basket Analysis

This project is for deriving association rules using mlxtend and doing MARKET BASKET analysis.

The is done using a public dataset of real e-commerce transactions.

Executive Summary

DATA

The UCI Machine Learning Repository has made this dataset containing actual transactions from 2010 and 2011. The dataset is maintained on their site, where it can be found by the title "Online Retail".

The dataset contains 541909 rows of which 486165 are for UK customers and the rest are for other countries

EDA

See visuals in the notebook

DATA ENGINEERING

Descriptions

Remove rows with NULL descriptions, remove leading and trailing spaces from descriptions.
 This is required as descriptions are to be used for Association Analysis

Invoice No

 InvoiceNo with a prefix of A are for adjustments and prefix of C are for credits. Remove rows with InvoiceNo with a C or A prefix

Split data into 2 DataFrames

- UK customers and EU customers
- UK DataFrame to be used for Association was limited to 200000 transactions due to performance constraints

RESULTS

(Note: See accompanying presentation for explanations on the metrics mentioned in the results)

The top 5 interesting itemsets for UK are

antecedants	consequents	antecedent support	consequent support	support	confid€
(GREEN REGENCY TEACUP AND SAUCER, ROSES REGENC	(PINK REGENCY TEACUP AND SAUCER)	0.046763	0.044282	0.030141	0.64
(PINK REGENCY TEACUP AND SAUCER)	(GREEN REGENCY TEACUP AND SAUCER, ROSES REGENC	0.044282	0.046763	0.030141	0.68
(GREEN REGENCY TEACUP AND SAUCER)	(PINK REGENCY TEACUP AND SAUCER, ROSES REGENCY	0.064376	0.032746	0.030141	0.46

(PINK REGENCY TEACUP AND SAUCER, ROSES REGENCY	(GREEN REGENCY TEACUP AND SAUCER)	0.032746	0.064376	0.030141	0.92
(PINK REGENCY TEACUP AND SAUCER, GREEN REGENCY	(ROSES REGENCY TEACUP AND SAUCER)	0.034235	0.064004	0.030141	0.88

The top 5 interesting itemsets for EU are

antecedants	consequents	antecedent support	consequent support	suppo
(SET/6 RED SPOTTY PAPER PLATES)	(SET/6 RED SPOTTY PAPER CUPS)	0.05949	0.058924	0.05269
(SET/6 RED SPOTTY PAPER CUPS)	(SET/6 RED SPOTTY PAPER PLATES)	0.058924	0.05949	0.05269
(SPACEBOY LUNCH BOX)	(DOLLY GIRL LUNCH BOX)	0.106516	0.078187	0.0566
(DOLLY GIRL LUNCH BOX)	(SPACEBOY LUNCH BOX)	0.078187	0.106516	0.0566
(PLASTERS IN TIN WOODLAND ANIMALS)	(PLASTERS IN TIN SPACEBOY)	0.121246	0.096884	0.06458

In []:

```
import pandas as pd
import numpy as np
import seaborn as sn
import matplotlib.pyplot as plt
import seaborn as sns # Advanced data visualization
import re # Regular expressions for advanced string selection
from mlxtend.frequent_patterns import apriori # Data pattern exploration
from mlxtend.frequent_patterns import association_rules # Association rules conversion
from mlxtend.preprocessing import OnehotTransactions # Transforming dataframe for apriori
import missingno as msno # Advanced missing values handling
%matplotlib inline
```

Load Data

In [2]:

```
#Load data into DataFrame
df = pd.read_csv('./data/datafile.csv',encoding="ISO-8859-1",dtype = {'CustomerID':str})
```

Data Engineering

In [3]:

```
df.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 541909 entries, 0 to 541908 Data columns (total 8 columns): InvoiceNo 541909 non-null object StockCode 541909 non-null object 540455 non-null object Description Quantity 541909 non-null int64 InvoiceDate 541909 non-null object 541909 non-null float64 UnitPrice CustomerID 406829 non-null object Country 541909 non-null object dtypes: float64(1), int64(1), object(6) memory usage: 33.1+ MB

In [4]:

df.head()

Out[4]:

	InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
0	536365	85123A	WHITE HANGING HEART T- LIGHT HOLDER	6	12/1/2010 8:26	2.55	17850	United Kingdom
1	536365	71053	WHITE METAL LANTERN	6	12/1/2010 8:26	3.39	17850	United Kingdom
2	536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	12/1/2010 8:26	2.75	17850	United Kingdom
3	536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	12/1/2010 8:26	3.39	17850	United Kingdom
4	536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	12/1/2010 8:26	3.39	17850	United Kingdom

In [3]:

```
# Convert Invoice Date to datetime and get various components to help analyse data.
df['InvoiceDate'] = pd.to_datetime(df['InvoiceDate'])
df['InvYr'] = df.InvoiceDate.dt.year
df['InvMth'] = df.InvoiceDate.dt.month
df['InvDOW'] = df.InvoiceDate.dt.weekday_name
df['InvHr'] = df.InvoiceDate.dt.hour
df.set_index(['InvoiceDate'],inplace=True)
```

```
In [4]:
```

```
# Invoice Numbers have an alpha prefix. Find out the prefixes
df['InvoiceNo'][df.InvoiceNo.str.match('^[A-Za-z]')].str[0].unique()
Out[4]:
array(['C', 'A'], dtype=object)
In [5]:
# Invoice No is present for all rows but is an object whereas it should be an integer.
# Find invoice numbers that have alpha characters. Invoices with a C prefix have negative q
# are credit invoices and have to be removed.
df = df[~df.InvoiceNo.str.contains('C')]
                                           # Write to DataFrame all the rows where InvoiceN
df = df[~df.InvoiceNo.str.contains('A')] # Write to DataFrame all the rows where InvoiceN
In [6]:
```

```
# Drop rows with null Descriptions as they are going to be used for association rules
df.dropna(inplace=True, subset=['Description'])
df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
DatetimeIndex: 531164 entries, 2010-12-01 08:26:00 to 2011-12-09 12:50:00
Data columns (total 11 columns):
InvoiceNo
               531164 non-null object
StockCode
               531164 non-null object
Description
               531164 non-null object
Quantity
               531164 non-null int64
UnitPrice
               531164 non-null float64
               397924 non-null object
CustomerID
Country
               531164 non-null object
               531164 non-null int64
InvYr
InvMth
               531164 non-null int64
               531164 non-null object
InvDOW
InvHr
               531164 non-null int64
dtypes: float64(1), int64(4), object(6)
memory usage: 48.6+ MB
```

In [10]:

Visualise missing values. Descriptions are missing for some rows and Customer Id is missimsno.bar(df)

Out[10]:

<matplotlib.axes._subplots.AxesSubplot at 0x18a60c32a58>

In [7]:

```
# Change datatypes
df['InvoiceNo'] = df.InvoiceNo.astype('int')
df['Country'] = df.Country.astype('category')
```

In [8]:

```
# Create column for sale value
df['Amt'] = df.Quantity * df.UnitPrice
```

In [9]:

```
# Remove spaces from Description for Association Rules derivation
df['Description'] = df.Description.str.strip()
```

In [10]:

```
df.Country.value_counts()
```

Out[10]:

United Kingdom	486165
Germany	9042
France	8408
EIRE	7894
Spain	2485
Netherlands	2363
Belgium	2031
Switzerland	1967
Portugal	1501
Australia	1185
Norway	1072
Italy	758
Channel Islands	748
Finland	685
Cyprus	614
Sweden	451
Unspecified	446
Austria	398
Denmark	380
Poland	330
Japan	321
Israel	295
Hong Kong	284
Singapore	222
Iceland	182
USA	179
Canada	151
Greece	145
Malta	112
United Arab Emirates	68
European Community	60
RSA	58
Lebanon	45
Lithuania	35
Brazil	32
Czech Republic	25
Bahrain	18
Saudi Arabia	9
Name: Country, dtype:	int64

Data Visualisation

In [14]:

```
# Create DataFrame with Country Information
dfcntry = df[['Country','InvoiceNo']].groupby(['Country']).count().reset_index()
```

In [15]:

```
dfcntry.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 38 entries, 0 to 37
Data columns (total 2 columns):
Country
             38 non-null category
             38 non-null int64
InvoiceNo
dtypes: category(1), int64(1)
memory usage: 2.0 KB
In [16]:
plt.figure(figsize=(9,6))
plt.title('Distribution of Invoices by Country')
plt.xticks(rotation=60)
#sns.countplot(y='Country',data=df)
sns.barplot(x='Country',y='InvoiceNo',data =dfcntry)
Out[16]:
<matplotlib.axes._subplots.AxesSubplot at 0x18a6073e940>
                            Distribution of Invoices by Country
   500000
   400000
   300000
InvoiceNo
   200000
```

In [17]:

```
plt.figure(figsize=(9,6))
plt.title('Num Invoices excluding UK')
plt.xticks(rotation=60)
sns.barplot(x='Country',y='InvoiceNo',data =dfcntry[dfcntry.Country!='United Kingdom'])
```

Out[17]:

<matplotlib.axes._subplots.AxesSubplot at 0x18a6095ca90>

In [11]:

```
# Create a datafrome for UK only
dfUK = df[df.Country == 'United Kingdom']
```

In [12]:

```
dfUK.shape
```

Out[12]:

(486165, 12)

In [13]:

In [36]:

In [38]:

```
# Resample timeseries dataframe - fill Nans with next value - for Quantity
plt.figure(figsize=(9,6))
plt.title = 'Sale Trend for UK'
plt.xticks(rotation=90)
plt.tight_layout()
plt.plot(dftsUK.Quantity.resample('W').sum().bfill(),color='red',label = 'Quantity')
plt.plot(dftsUK.SaleAmt.resample('W').sum().bfill(),color='blue', label='SaleAmt')
plt.plot(dftsUK.Count.resample('W').sum().bfill(),color='green', label='NumInvoices')
plt.legend(loc=2)
plt.draw()
```


In [67]:

In [68]:

```
plt.figure(figsize=(12,6))
#plt.title('Sale by Day of Week')
plt.xticks(rotation=60)
sns.barplot(x='InvMth',y='SaleAmt',hue='InvDOW',data =dfdowUK)
```

Out[68]:

<matplotlib.axes._subplots.AxesSubplot at 0x18a6ab0fd30>

In [63]:

In [64]:

```
# Resample timeseries dataframe - fill Nans with next value - for Quantity
plt.figure(figsize=(9,6))
plt.title = 'Sale Trend for UK'
plt.xticks(rotation=90)
plt.tight_layout()
plt.plot(dftsUK.Quantity.resample('W').sum().bfill(),color='red',label = 'Quantity')
plt.plot(dftsUK.SaleAmt.resample('W').sum().bfill(),color='blue', label='SaleAmt')
plt.plot(dftsUK.Count.resample('W').sum().bfill(),color='green', label='NumInvoices')
plt.legend(loc=2)
plt.draw()
```


In [69]:

In [72]:

```
plt.figure(figsize=(12,6))
#plt.title('Sale by Day of Week')
plt.xticks(rotation=60)
sns.barplot(x='InvMth',y='SaleAmt',hue='InvDOW',data =dfdowEU)
```

Out[72]:

<matplotlib.axes._subplots.AxesSubplot at 0x18a6af0d8d0>

MARKET BASKET ANALYSIS

In [42]:

```
# Prepare the datasets - EU
# dfEU.reset_index(inplace=True)
bEU = dfEU[['InvoiceNo','Description']][dfEU.Description != 'POSTAGE']
gdEU = pd.get_dummies(bEU,columns=['Description'],prefix='',prefix_sep='')
basketEU = pd.pivot_table(gdEU,index='InvoiceNo',aggfunc='sum')
```

In [36]:

```
# dfUK.reset_index(inplace=True)
# x = dfUK[['InvoiceNo','Description']][dfUK.Description != 'POSTAGE']
# bUK = x.iloc[0:200000,:]
# gdUK = pd.get_dummies(bUK,columns=['Description'],prefix='',prefix_sep='')
# basketUK = pd.pivot_table(gdUK,index='InvoiceNo',aggfunc='sum')
```

In [37]:

```
basketUK.shape
```

Out[37]:

(8062, 3478)

In [43]:

```
# Use Apriori to generate frequent itemsets. Use minimum support of 5%
freqitemEU= apriori(basketEU, min_support=0.05, use_colnames=True)
# Generate rules
rulesEU = association_rules(freqitemEU, metric="lift", min_threshold=1)
```

In [47]:

```
# Use Apriori to generate frequent itemsets. Use minimum support of 5%
freqitemUK= apriori(basketUK, min_support=0.03, use_colnames=True)
# Generate rules
rulesUK = association_rules(freqitemUK, metric="lift", min_threshold=1)
```

In [49]:

rulesUK.shape

Out[49]:

(32, 9)

In [53]:

rulesUK.sort_values(by='lift',ascending=False).head(5)

Out[53]:

	antecedants	consequents	antecedent support	consequent support	support	confidence	lift	lever
28	(GREEN REGENCY TEACUP AND SAUCER, ROSES REGENC	(PINK REGENCY TEACUP AND SAUCER)	0.046763	0.044282	0.030141	0.644562	14.555915	0.028
29	(PINK REGENCY TEACUP AND SAUCER)	(GREEN REGENCY TEACUP AND SAUCER, ROSES REGENC	0.044282	0.046763	0.030141	0.680672	14.555915	0.028
30	(GREEN REGENCY TEACUP AND SAUCER)	(PINK REGENCY TEACUP AND SAUCER, ROSES REGENCY	0.064376	0.032746	0.030141	0.468208	14.298082	0.028
27	(PINK REGENCY TEACUP AND SAUCER, ROSES REGENCY	(GREEN REGENCY TEACUP AND SAUCER)	0.032746	0.064376	0.030141	0.920455	14.298082	0.028
26	(PINK REGENCY TEACUP AND SAUCER, GREEN REGENCY	(ROSES REGENCY TEACUP AND SAUCER)	0.034235	0.064004	0.030141	0.880435	13.755940	0.027
4								•

In [54]:

rulesEU.sort_values(by='lift',ascending=False).head()

Out[54]:

	antecedants	consequents	antecedent support	consequent support	support	confidence	lift	levera
14	(SET/6 RED SPOTTY PAPER PLATES)	(SET/6 RED SPOTTY PAPER CUPS)	0.059490	0.058924	0.052691	0.885714	15.031593	0.049
15	(SET/6 RED SPOTTY PAPER CUPS)	(SET/6 RED SPOTTY PAPER PLATES)	0.058924	0.059490	0.052691	0.894231	15.031593	0.049
0	(SPACEBOY LUNCH BOX)	(DOLLY GIRL LUNCH BOX)	0.106516	0.078187	0.056657	0.531915	6.803114	0.048
1	(DOLLY GIRL LUNCH BOX)	(SPACEBOY LUNCH BOX)	0.078187	0.106516	0.056657	0.724638	6.803114	0.048
7	(PLASTERS IN TIN WOODLAND ANIMALS)	(PLASTERS IN TIN SPACEBOY)	0.121246	0.096884	0.064589	0.532710	5.498442	0.052
4								•

In []: