МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе №5

по дисциплине «Качество и метрология программного обеспечения»

ТЕМА: «Оценка параметров надежности программ по временным моделям обнаружения ошибок»

Студентка гр. 6304	Иванкова В.М.
Преподаватель	Кирьянчиков В.А.

Санкт-Петербург 2020

Задание

Выполнить исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды, для различных законов распределения времен обнаружения отказов и различного числа используемых для анализа данных. Для проведения исследования требуется:

- 1. Сгенерировать массивы данных $\{X_i\}$, где X_i случайное значение *интервала между соседними (i-1)-ой и i-ой ошибками* (i = [1,30], также смотри примечание в п.3), в соответствии с:
- А) равномерным законом распределения в интервале [0,20]; при этом средний интервал между ошибками будет $m_{\text{равн}}=10$, СКО $s_{\text{равн}}=20/(2*\text{sqrt}(3))=5.8$.
- Б) экспоненциальным законом распределения

$$W(y) = b*exp(-b*y),$$
 y>=0, с параметром b=0.1 и соответственно $m_{3KC\Pi} = s_{3KC\Pi} = 1/b = 10.$

Значения случайной величины Y с экспоненциальным законом распределения с параметром «b» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: $Y = -\ln(t) / b$

В) релеевским законом распределения

$$W(y)=(y/c^2)*exp(-y^2/(2*c^2)), y>=0, c$$
 параметром $c=8.0$ и соответственно $m_{pen}=c*sqrt(\pi/2), s_{pen}=c*sqrt(2-\pi/2).$

Значения случайной величины Y с релеевским законом распределения с параметром «с» можно получить по значениям случайной величины t, равномерно распределенной в интервале [0,1], по формуле [1]: Y = c * sqrt(-2*ln(t)).

- 2. Каждый из 3-х массивов $\{X_i\}$ интервалов времени между соседними ошибками упорядочить по возрастанию.
- 3. Для каждого из 3-х массивов $\{X_i\}$ оценить значение первоначального числа ошибок в программе В. При этом для каждого закона использовать 100%, 80% и 60% входных данных (то есть в массивах $\{X_i\}$ использовать n=30, 24 и 18 элементов).

Примечание: для каждого значения п следует генерировать и сортировать новые массивы.

- 4. Если В>n, оценить значения средних времен Xj , j=n+1,n+2..., n+k до обнаружения k<= 5 следующих ошибок и общее время на выполнение тестирования.
- 5. Результаты вычислений представить в виде двух таблиц, одна из которых содержит оценки первоначального числа ошибок, а другая оценки полных времен проведения тестирования для разных законов распределения времен между отказами и разного числа используемых данных.
- 6. Сравнить и объяснить результаты, полученные для различных законов распределения времени между соседними отказами и различного числа используемых для анализа данных.

Равномерный закон распределения (100% входных данных):

Было сгенерировано n = 30 значений

i	X	i	X	i	X
1	0.486	2	0.563	3	0.935
4	1.726	5	3.045	6	3.704
7	4.162	8	4.791	9	5.333
10	5.549	11	7.283	12	8.138
13	9.342	14	9.543	15	9.648
16	10.012	17	10.288	18	10.301
19	10.672	20	10.701	21	11.184
22	11.944	23	12.511	24	14.354
25	14.657	26	14.959	27	16.468
28	17.116	29	18.636	30	19.490

Формула коэффициента $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 20.425$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 20.43 > 15.5

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	31	32	33	34	35	36
f	3.995	3.027	2.558	2.255	2.035	1.863
g	2.837	2.592	2.386	2.210	2.058	1.926
f-g	1.158	0.435	0.173	0.045	0.023	0.063

Минимум разности при m = 35

Первоначальное количество ошибок B = m - 1 = 34

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^n X_i - \sum_{i=1}^n iX_i} = 0.007416$$

Среднее время обнаружения (i+1)-й ошибки $X_{i+1} = \frac{1}{K(B-i)}$

i	31	32	33	34
Xi	33.709	44.946	67.419	134.837

Время до завершения тестирования $t_k = 280.911$ дней

Общее время тестирования: 558.452 дней

Равномерный закон распределения (80% входных данных):

Было сгенерировано n = 24 значения

i	X	i	X	i	X
1	0.304	2	1.012	3	1.347
4	1.398	5	1.620	6	2.391
7	2.653	8	2.963	9	4.543
10	5.207	11	7.885	12	9.672
13	10.380	14	11.475	15	12.023
16	12.720	17	13.044	18	13.194
19	13.943	20	13.960	21	16.081
22	18.422	23	19.664	24	19.678

Формула коэффициента $A = \frac{\sum_{i=1}^{n} i X_i}{\sum_{i=1}^{n} X_i} = 17.269$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 17.27 > 12.5

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	25	26	27
f	3.776	2.816	2.354
g	3.104	2.749	2.466
f-g	0.672	0.067	0.112

Минимум разности при m = 26

Первоначальное количество ошибок B = m - 1 = 25

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.012751$$

Среднее время обнаружения (i+1)-й ошибки $X_{i+1} = \frac{1}{K(B-i)}$

i	25
Xi	78.428

Время до завершения тестирования $t_k = 78.428$ дней

Общее время тестирования: 294.007 дней

Равномерный закон распределения (60% входных данных):

Было сгенерировано п = 18 значений

i	X	i	X	i	X
1	0.552	2	3.790	3	8.627
4	8.735	5	9.771	6	9.968
7	11.726	8	12.059	9	12.551
10	14.898	11	15.486	12	15.969
13	16.064	14	16.554	15	16.612
16	18.729	17	18.881	18	19.671

Формула коэффициента $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 11.466$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 11.47 > 9.5

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	19	20	21	22	23	24	25	26
f	3.495	2.548	2.098	1.812	1.607	1.451	1.326	1.223
g	2.389	2.109	1.888	1.709	1.561	1.436	1.330	1.238
f-g	1.106	0.439	0.210	0.103	0.047	0.015	0.004	0.015

Минимум разности при m = 25

Первоначальное количество ошибок B = m - 1 = 24

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^n X_i - \sum_{i=1}^n iX_i} = 0.005766$$

Среднее время обнаружения (i+1)-й ошибки $X_{i+1} = \frac{1}{K(B-i)}$

i	19	20	21	22	23	24
Xi	28.903	34.683	43.354	57.806	86.708	173.417

Время до завершения тестирования $t_k = 424.872$ дней

Общее время тестирования: 655.515 дней

Экспоненциальный закон распределения (100% входных данных):

Было сгенерировано n = 30 значений

i	X	i	X	i	X
1	0.171	2	0.256	3	0.390
4	0.641	5	1.209	6	1.391
7	1.488	8	1.541	9	2.700
10	2.791	11	3.895	12	4.165
13	4.334	14	4.452	15	4.856
16	4.932	17	6.272	18	6.399
19	8.380	20	8.478	21	10.134
22	10.216	23	10.302	24	14.547
25	15.451	26	15.821	27	19.514
28	19.538	29	25.957	30	27.255

Формула коэффициента $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 23.047$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 23.05 > 15.5

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$
$$g(m, A) = \frac{n}{m-A}$$

m	31	32
f	3.995	3.027
g	3.772	3.351
f-g	0.223	0.324

Минимум разности при m = 31

Первоначальное количество ошибок B=m-1=30

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.015885$$

Время до завершения тестирования $t_k = 0$ дней

Общее время тестирования: 237.476 дней

Экспоненциальный закон распределения (80% входных данных):

Было сгенерировано n = 24 значения

i	X	i	X	i	X
1	0.307	2	0.596	3	0.637
4	1.348	5	3.353	6	5.228
7	5.371	8	7.346	9	8.066
10	8.758	11	9.426	12	10.268
13	10.462	14	10.520	15	10.631
16	14.601	17	15.138	18	15.530
19	16.906	20	17.904	21	20.249
22	25.962	23	32.055	24	32.792

8

Формула коэффициента $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 17.476$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 17.48 > 12.5

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$
$$g(m, A) = \frac{n}{m-A}$$

m	25	26	27
f	3.776	2.816	2.354
g	3.190	2.816	2.520
f-g	0.586	0.000	0.165

Минимум разности при m = 26

Первоначальное количество ошибок B=m-1=25

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.009933$$

Среднее время обнаружения (i+1)-й ошибки $X_{i+1} = \frac{1}{K(B-i)}$

i	25
Xi	100.676

Время до завершения тестирования $t_k = 100.676$ дней

Общее время тестирования: 384.13 дней

Экспоненциальный закон распределения (60% входных данных):

Было сгенерировано n = 18 значений

i	X	i	X	i	X
1	0.008	2	0.155	3	0.189
4	0.459	5	1.016	6	3.736
7	4.003	8	5.952	9	6.051
10	6.065	11	8.033	12	8.126
13	11.766	14	12.816	15	15.695
16	20.033	17	23.019	18	34.759

Формула коэффициента $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 14.283$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 14.28 > 9.5

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	19	20
f	3.495	2.548
g	3.816	3.149
f-g	0.321	0.601

Минимум разности при т = 19

Первоначальное количество ошибок B = m - 1 = 18

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.023573$$

Время до завершения тестирования $t_k=0$ дней

Общее время тестирования: 161.881 дней

Релеевский закон распределения (100% входных данных):

Было сгенерировано n = 30 значений

i	X	i	X	i	X
1	1.615	2	2.561	3	4.088
4	5.168	5	6.098	6	6.363
7	7.194	8	7.742	9	7.799
10	9.168	11	9.201	12	9.313
13	10.262	14	10.509	15	10.680
16	11.650	17	11.949	18	12.100
19	12.209	20	12.801	21	13.810
22	13.898	23	14.120	24	14.410
25	14.500	26	14.923	27	15.393

28	17.496	29	17.959	30	22.870

Формула коэффициента $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 19.097$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 19.1 > 15.5

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	31	32	33	34	35	36	37	38	39	40
f	3.995	3.027	2.558	2.255	2.035	1.863	1.725	1.609	1.510	1.425
g	2.520	2.325	2.158	2.013	1.886	1.775	1.676	1.587	1.507	1.435
f-g	1.475	0.702	0.401	0.243	0.148	0.089	0.049	0.022	0.003	0.011

Минимум разности при m = 39

Первоначальное количество ошибок B = m - 1 = 38

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^n X_i - \sum_{i=1}^n iX_i} = 0.004597$$

Среднее время обнаружения (i+1)-й ошибки $X_{i+1} = \frac{1}{K(B-i)}$

i	31	32	33	34	35	36	37	38
Xi	27.189	31.073	36.252	43.502	54.378	72.503	108.755	217.510

Время до завершения тестирования $t_k = 591.162$ дней

Общее время тестирования: 919.011 дней

Релеевский закон распределения (80% входных данных):

Было сгенерировано n = 24 значения

i	X	i	X	i	X
1	2.863	2	2.885	3	3.216
4	4.174	5	4.409	6	4.781
7	7.633	8	7.740	9	8.318

10	8.673	11	8.724	12	9.402
13	9.797	14	10.052	15	11.277
16	11.770	17	12.315	18	13.155
19	14.675	20	15.236	21	18.988
22	19.119	23	20.531	24	22.709

Формула коэффициента
$$A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 16.096$$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 16.1 > 12.5

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	25	26	27	28	29	30
f	3.776	2.816	2.354	2.058	1.844	1.678
g	2.695	2.423	2.201	2.016	1.860	1.726
f-g	1.081	0.393	0.153	0.042	0.016	0.048

Минимум разности при m = 29

Первоначальное количество ошибок B = m - 1 = 28

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.007368$$

Среднее время обнаружения (i+1)-й ошибки $X_{i+1} = \frac{1}{K(B-i)}$

i	25	26	27	28
Xi	33.933	45.243	67.865	135.730

Время до завершения тестирования $t_k = 282.772$ дней

Общее время тестирования: 535.214 дней

Релеевский закон распределения (60% входных данных):

Было сгенерировано n = 18 значений

i	X	i	X	i	X
1	2.913	2	3.490	3	7.926
4	8.891	5	9.442	6	9.693
7	10.021	8	10.196	9	10.470
10	11.850	11	12.836	12	12.903
13	13.304	14	13.327	15	14.297
16	17.409	17	18.828	18	25.549

Формула коэффициента $A = \frac{\sum_{i=1}^{n} iX_i}{\sum_{i=1}^{n} X_i} = 11.566$

Условие сходимости $A > \frac{n+1}{2}$ выполнено: 11.57 > 9.5

$$f(m) = \sum_{i=1}^{n} \frac{1}{m-i}$$

$$g(m,A) = \frac{n}{m-A}$$

m	19	20	21	22	23	24	25
f	3.495	2.548	2.098	1.812	1.607	1.451	1.326
g	2.421	2.134	1.908	1.725	1.574	1.448	1.340
f-g	1.074	0.413	0.190	0.087	0.033	0.003	0.014

Минимум разности при m = 24

Первоначальное количество ошибок B=m-1=23

Коэффициент
$$K = \frac{n}{(B+1)\sum_{i=1}^{n} X_i - \sum_{i=1}^{n} iX_i} = 0.006786$$

Среднее время обнаружения (i+1)-й ошибки $X_{i+1} = \frac{1}{K(B-i)}$

i	19	20	21	22	23
Xi	29.475	36.843	49.124	73.686	147.373

Время до завершения тестирования $t_k = 336.502$ дней

Общее время тестирования: 549.847 дней

Сводные таблицы

Оценка первоначального числа ошибок.

n	Входные	Распределение				
	данные, %	Равномерное	Экспоненциальное	Релеевское		
30	100	34	30	38		
24	80	25	25	28		
18	60	24	18	23		

Оценка полного времени проведения тестирования

n	Входные	Распределение				
	данные, %	Равномерное	Экспоненциальное	Релеевское		
30	100	558.452	237.476	919.011		
24	80	294.007	384.13	535.214		
18	60	655.515	161.881	549.847		

Результаты при экспоненциальном распределении ниже, чем при равномерном и релеевском. Это связано с тем, что модель Джелинского-Моранды основана на предположении, что время до следующего отказа программы распределено экспоненциально. Относительно релеевского распределения равномерное показывает лучшие результаты при входных данных равных 80% и 100%.

Вывод

В ходе выполнения лабораторной работы была проведена оценка характеристик надежности программ по временным моделям обнаружения ошибок. Было выполнено исследование показателей надежности программ, характеризуемых моделью обнаружения ошибок Джелинского-Моранды для равномерного, экспоненциального и релеевского распределения времён обнаружения отказов.