

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL INSTITUTO DE MATEMÁTICA E ESTATÍSTICA DEPARTAMENTO DE ESTATÍSTICA

 $\rm MAT02023$ - INFERÊNCIA A - 2019/1

Plano Aula 4

Markus Stein 21 March 2019

Estatísticos gerlamente estão interessados no comportamento (exato ou aproximado) de momentos amostrais.

Função Geradora de Momentos da Média Amostral X_n

• Função geradora de momentos (fgm) da média amostral (Teorema 5.2.7, Casella e Berger).

Amostras da Distribuição Normal

Exemplos: (Distribuição amostral) Seja X_1, \ldots, X_n uma amostra aleaória de $X \sim Normal(\mu, \sigma^2)$, encontre a distribuição de probabilidade (amostral) de:

- a. X_n ;
- b. S_n^2 ; c. $\frac{\bar{X}_n \mu}{S/n}$;
- d. assuma uma segunda amostra aleatória, Y_1, \ldots, Y_n , selecionada da população $Y \sim Normal(\nu, \tau^2)$, então encontre a distribuição amostral de $\frac{S_X^2/\sigma_X^2}{S_X^2/\sigma_X^2}$.

E quando nossa população não é normal?

Teorema 1: Lei fraca dos grandes números.

Teorema 2: Teorema Central do Limite.

Tarefa 1: Fazer lista 2 de exercícios para entregar.

Tarefa 2: Revisão de probabilidade

- Modos de convergência: (Casella e Berger, seção 5.5)
 - Definição de **convergencia em probabilidade** (Definição 5.5.1);
 - Definição de **convergência quase certa** (Definição 5.5.6);
 - Convergência em distribuição (Definição 5.5.10).
- Condições de regularidade:
 - alternando entre diferenciação e integração (Casella e Berger, seção 2.4).