Olimpiada Națională de Matematică Etapa Județeană și a Municipiului București, 14 Martie 2015

CLASA a XI-a Soluții și bareme

Problema 1. Fie $f:[0,1]\to [0,1]$ o funcție cu proprietatea că pentru oricare $y\in [0,1]$ și oricare $\varepsilon>0$ există $x\in [0,1]$ astfel încât $|f(x)-y|<\varepsilon$.

- a) Demonstrați că dacă f este continuă pe [0,1] atunci f este surjectivă.
- b) Dați un exemplu de funcție f cu proprietatea din enunț, care să nu fie surjectivă.

Solutie.

a) Considerăm o funcție continuă $f:[0,1] \to [0,1]$ având proprietatea din enunț. Fie $y \in [0,1]$. Din ipoteză deducem că există un şir $(x_n)_{n\geq 1}$, cu termenii în [0,1], astfel încât $|f(x_n) - y| < 1/n$, $\forall n \geq 1$. (2 puncte) Şirul $(x_n)_{n\geq 1}$ este mărginit, deci admite un subşir convergent $(x_{i_n})_{n\geq 1}$, cu $x := \lim_{n\to\infty} x_{i_n} \in [0,1]$. (1 punct)

Prin trecere la limită în inegalitatea $|f(x_{i_n}) - y| < 1/i_n$, $\forall n \geq 1$, obținem (pe baza continuității lui f în punctul x) $|f(x) - y| \leq 0$, deci f(x) = y. Rezultă că f este surjectivă. (1 punct)

b) Definim funcția $f:[0,1] \to [0,1]$,

$$f(x) = \begin{cases} x, & x \in [0,1] \cap \mathbb{Q} \\ 0, & x \in [0,1] \setminus \mathbb{Q} \end{cases} . \quad (2 \text{ puncte})$$

 $f([0,1]) = [0,1] \cap \mathbb{Q},$ decifnu este surjectivă.

Avem |f(y) - y| = 0, $\forall y \in [0, 1] \cap \mathbb{Q}$. Pentru $y \in [0, 1] \setminus \mathbb{Q}$ şi $\varepsilon > 0$, există $x \in [0, 1] \cap \mathbb{Q}$ astfel ca $|x - y| < \varepsilon$, sau $|f(x) - y| < \varepsilon$. (1 punct)

Problema 2. Fie două matrice $A, B \in \mathcal{M}_2(\mathbb{R})$ astfel încât $(A-B)^2 = O_2$.

- a) Arătați că $\det(A^2 B^2) = (\det(A) \det(B))^2$.
- b) Demonstrați că $\det(AB-BA)=0$ dacă și numai dacă $\det(A)=\det(B)$. Soluție.
- a) Din $(A B)^2 = O_2$ obţinem $\det(A B) = 0$. (1 punct) De asemenea, deducem Tr(A - B) = 0, deciTr(A) = Tr(B) =: a. (1 punct) Notăm $b = \det(A) - \det(B)$. Conform relației lui Cayley, avem

$$\begin{cases} A^2 - aA + \det(A)I_2 = O_2 \\ B^2 - aB + \det(B)I_2 = O_2 \end{cases},$$

de unde $\det(A^2 - B^2) = \det(a(A - B) - bI_2)$. (1 punct) Dar $\det(a(A - B) - bI_2) = a^2 \det(A - B) - abTr(A - B) + b^2 = b^2$. Rezultă $\det(A^2 - B^2) = (\det(A) - \det(B))^2$. (1 punct)

b) Fie $f:\mathbb{R} \to \mathbb{R}$ funcția definită prin

$$f(x) = \det \left(A^2 - B^2 + x(AB - BA) \right), \ x \in \mathbb{R}.$$

Funcția f se poate reprezenta sub forma

$$f(x) = \det\left(A^2 - B^2\right) + cx + \det(AB - BA)x^2, \ x \in \mathbb{R},$$

unde c este o constantă reală. (1 punct)

Din $f(1) = f(-1) = \det(A - B) \det(A + B) = 0$ obţinem c = 0 şi

$$\det(A^2 - B^2) + \det(AB - BA) = 0.$$
 (1 punct)

Atunci, conform a), $(\det(A) - \det(B))^2 = -\det(AB - BA)$, de unde concluzia. (1 punct)

Problema 3. Determinaţi toate numerele naturale $k \geq 1$ şi $n \geq 2$ cu proprietatea că există $A, B \in \mathcal{M}_n(\mathbb{Z})$ astfel încât $A^3 = O_n$ şi $A^kB + BA = I_n$. Soluţie. Fie $A, B \in \mathcal{M}_n(\mathbb{Z})$ astfel încât $A^3 = O_n$ şi $A^kB + BA = I_n$.

Dacă $k \geq 3$, atunci $BA = I_n$ (deoarece $A^k = O_n$), deci A este inversabilă, în contradicție cu $A^3 = O_n$. (1 punct)

Dacă k=2 atunci din $A^2B+BA=I_n$, prin înmulțire la stânga cu A și apoi la dreapta cu A^2 , rezultă ABA=A și $A^2BA^2=A^2$. Scriind ultima egalitate sub forma $A(ABA)A=A^2$, obținem $A^3=A^2$, deci $A^2=O_n$. Atunci $BA=I_n$, în contradicție cu $A^3=O_n$. (1 punct)

Prin urmare, dacă există k şi n ca în enunţ, atunci k = 1. Din $Tr(AB) = Tr(BA) \in \mathbb{Z}$ şi $AB + BA = I_n$ rezultă 2Tr(AB) = n, deci n este un număr natural par. (1 punct)

Arătăm în continuare că, pentru orice număr natural par $n \geq 2$, există $A, B \in \mathcal{M}_n(\mathbb{Z})$ astfel încât $A^3 = O_n$ şi $AB + BA = I_n$.

Pentru n=2, putem alege matricele $A=\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ şi $B=\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, care satisfac condițiile $AB+BA=I_2$ şi $A^2=B^2=O_2$. (2 puncte)

Pentru n=2k, cu $k \geq 2$, matricele bloc diagonale A și B, de dimensiune 2k, care au pe diagonala principală k matrice $\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ și respectiv k matrice

 $\begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$, iar restul coeficienților nuli, satisfac relațiile $AB + BA = I_n$ și $A^2 = B^2 = O_n$. (2 puncte)

Problema 4. Fie $(x_n)_{n\geq 1}$ un şir de numere reale din intervalul $[1,\infty)$. Presupunem că şirul $\left(y_n^{(k)}\right)_{n\geq 1}$, definit prin $y_n^{(k)}=\left[x_n^k\right],\ n\geq 1$, este convergent pentru oricare $k\in\mathbb{N}^*$. Să se demonstreze că şirul $(x_n)_{n\geq 1}$ este convergent. (Prin [a] se notează partea întreagă a numărului real a.)

Soluție. Pentru $k \in \mathbb{N}^*$, $\left(y_n^{(k)}\right)_{n\geq 1}$ este un șir convergent de numere naturale nenule. Atunci există $n_k, a_k \in \mathbb{N}^*$ astfel ca $y_n^{(k)} = a_k, \ \forall n \geq n_k$. Ca urmare, $x_n^k \in [a_k, a_k + 1)$, $\forall n \geq n_k$. (2 puncte)

In particular, $x_n \in [a_1, a_1 + 1)$, $\forall n \geq n_1$. Rezultă că şirul $(x_n)_{n\geq 1}$ este mărginit. (1 punct)

Presupunem, prin reducere la absurd, că șirul $(x_n)_{n\geq 1}$ admite două puncte

limită a şi b, cu $1 \le a < b$. Atunci există două subșiruri $(x_{i_n})_{n \ge 1}$ şi $(x_{j_n})_{n \ge 1}$ ale şirului $(x_n)_{n \ge 1}$ astfel încât $\lim_{n \to \infty} x_{i_n} = a$ şi $\lim_{n \to \infty} x_{j_n} = b$. Fie $k \in \mathbb{N}^*$. Deoarece $i_n, j_n \ge n$, $\forall n \in \mathbb{N}^*$, avem $x_{i_n}^k, x_{j_n}^k \in [a_k, a_k + 1)$, $\forall n \ge n_k$. Rezultă $x_{j_n}^k - x_{i_n}^k < 1$, $\forall n \ge n_k$. Prin trecere la limită $(n \to \infty)$ obținem $b^k - a^k \le 1$. Prin urmare, $b^k - a^k \le 1$, $\forall k \in \mathbb{N}^*$. (2 puncte)
Dar $1 \le a < b$ implică $\lim_{k \to \infty} (b^k - a^k) = \infty$, în contradicție cu inegalitatea

precedentă. În concluzie, șirul $(x_n)_{n\geq 1}$ este convergent. (2 puncte)