Practice Problems 7

OPTIMIZATION

- Thm Suppose $x^* \in intA \subset \mathbb{R}^n$ is a local maximum or minumum of f on A. If f is differentiable at x^* , then $Df(x^*) = 0$.
- Thm Suppose f is twice differentiable function on $A \subset \mathbb{R}^n$, and x is a point in the interior of A.
 - 1. If f has a local maximum at x, then $D^2 f(x)$ is negative semidefinite.
 - 2. If f has a local minimum at x, then $D^2f(x)$ is positive semidefinite.
 - 3. If Df(x) = 0 and $D^2f(x)$ is negative definite at some x, then x is a strict local maximum of f on A.
 - 4. If Df(x) = 0 and $D^2f(x)$ is positive definite at some x, then x is a strict local maximum of f on A.
- Thm Let $A \subset \mathbb{R}^n$ be convex, and $f: A \to \mathbb{R}$ be a concave and differentiable function on A. Then, x is an unconstrained maximum of f on A if and only if Df(x) = 0.
- Thm An $n \times n$ symmetric matrix M is
 - 1. negative definite if and only if $(-1)^k |A_k| > 0$ for all $k \in \{1, 2, ..., n\}$.
 - 2. positive definite if and only if $|A_k| > 0$ for all $k \in \{1, 2, ..., n\}$

IMPLICIT/ INVERSE FUNCTION THM

- Implicit Function Thm Let $H: O \subset \mathbb{R}^2 \to \mathbb{R}$ be a C^1 function, where O is open. Let (x_0, y_0) be a point in O s.t. $H_y(x_0, y_0)$ is invertible and let $H(x_0, y_0) = 0$. Then, there is a neighborhood $U \subset R^2$ and a C^1 function $g: U \to \mathbb{R}$ s.t. $(x, g(x)) \in O$ for all $x \in U$, i) $g(x_0) = y_0$, and ii)H(x, g(x)) = 0 for all $x \in U$. The derivative of g at any $x \in U$ can be obtained from the chain rule: iii) $Dg(x) = [H_y(x, y)]^{-1}H_x(x, y)$
- Inverse Function Thm Let $H: O \subset \mathbb{R}^2 \to \mathbb{R}$ be a C^1 function, where O is open. Let (x_0, y_0) be a point in O s.t. $H_y(x_0, y_0)$ is invertible and let $H(x_0, y_0) = 0$. Also, $H(x, y) = x - \phi(y)$ where ϕ is a function from \mathbb{R} to \mathbb{R} . Then in addition to the conclusions in Implicit function Thm, we have more details on g(x). i) $g(\phi(y_0)) = y_0$ ii) $H(x, g(x)) = 0 \to x - \phi(g(x)) = 0$ for all $x \in U$. And the derivative of function g is given as iii) $Dg(x) = [H_y(x, y)]^{-1}H_x(x, y) = [-\phi'(g(x))]$. And ϕ is invertible in the sense that $y = g(x) = \phi^{-1}(x)$ for all $x \in O$

EXERCISES

OPTIMIZATION

1. Compute the Jacobian of the following functions:

(a) *
$$f(x,y) = \begin{bmatrix} x^2y \\ 5x + \sin y \end{bmatrix}$$

(b)
$$f(x_1, x_2, x_3) = \begin{bmatrix} x_1 \\ 5x_3 \\ 4x^2 - 2x_3 \\ x_3 \sin x_1 \end{bmatrix}$$

2. Determine the definiteness of the following symmetric matrices.

(a) *
$$\begin{pmatrix} 2 & -1 \\ -1 & 1 \end{pmatrix}$$

(b)
$$\begin{pmatrix} -3 & 4 \\ 4 & 6 \end{pmatrix}$$

(c) *
$$\begin{pmatrix} -3 & 4 \\ 4 & -5 \end{pmatrix}$$

(d)
$$\begin{pmatrix} -1 & 1 & 0 \\ 1 & -1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

(e)
$$\begin{pmatrix} 1 & 2 & 0 \\ 2 & 4 & 5 \\ 0 & 5 & 6 \end{pmatrix}$$

3. *Consider the following quadratic form:

$$f(x,y) = 5x^2 + 2xy + 5y^2$$

- (a) Find a symmetric matrix M such that $f(x,y) = [x \ y]M \begin{bmatrix} x \\ y \end{bmatrix}$.
- (b) Does the form has a local maximum, local minimum or neither at (0,0)?
- 4. For each of the following functions defined in \mathbb{R}^2 , find the *critical points* and clasify these as local max, local min, or neither of two:

(a)
$$xy^2 + x^3y - xy$$

(b)
$$x^2 - 6xy + 2y^2 + 10x + 2y - 5$$

(c)
$$x^4 + x^2 - 6xy + 3y^2$$

(d)
$$3x^4 + 3x^2y - y^3$$

5. For each of the following functions defined in \mathbb{R}^3 , find the *critical points* and clasify these as local max, local min, or neither of two:

(a)
$$x^2 + 6xy + y^2 - 3yz + 4z^2 - 10x - 5y - 21z$$

(b)
$$(x^2 + 2y^2 + 3z^2) \exp\{-(x^2 - y^2 + z^2)\}$$

6. For what numbers of b is the following matrix positive semi-definite?

$$\left(\begin{array}{ccc}
2 & -1 & b \\
-1 & 2 & -1 \\
b & -1 & 2
\end{array}\right)$$

IMPLICIT FUNCTION THEOREM

- 7. * Prove that the expression $x^2 xy^3 + y^5 = 17$ is an implicit function of y in terms of x in a neighborhood of (x, y) = (5, 2). Then Estimate the y value which corresponds to x = 4.8.
- 8. * Define $f: \mathbb{R}^3 \to \mathbb{R}$ by

$$f(x, y, z) = y^2x + e^y + z.$$

Show that there exists a differentiable function g(x,z), such that g(1,-1)=0 and

$$f(x, g(x, z), z) = 0$$

Specify the domain of g. Compute Dg(1,-1).

9. Let q^d be the demand of a good:

$$q^d = f_1(p, x_1)$$

where $f_1: \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}_+$ is the demand function, p is the price, x_1 is an exogenous demand shifter. Let q^s be the supply of the same good:

$$q^s = f_2(p, x_2)$$

where $f_2: \mathbb{R}_+ \times \mathbb{R} \to \mathbb{R}_+$ is the supply function, x_2 is an exogenous supply shifter. The market is in equilibrium if $q^d = q^s$.

- (a) Make the required assumptions on the function f_1 and f_2 to apply the implicit function theorem. Simplify the model to 2 endogenous variables.
- (b) What is the impact of changes in x_1 and x_2 on the equilibrium price and quantity q_0, p_0 ?
- 10. Show that there exist functions u(x,y), v(x,y), and w(x,y) and a radius r > 0 such that u, v, w are continuous differentiable on B((1,1),r) with u(1,1) = 1, v(1,1) = 1 and w(1,1) = -1, and satisfy

$$u^{5} + xv^{2} - y + w = 0$$

$$v^{5} + yu^{2} - x + w = 0$$

$$w^{4} + y^{5} - x^{4} = 1.$$

Find the Jacobian of g(x,y) = (u(x,y), v(x,y), w(x,y)).

August 29, 2018

INVERSE FUNCTION THEOREM

11. *Let $x = y^5 + y^4 + y^3 + y^2 + y + 1$. Show that $f^{-1}(x)$ exists at x = 6 and find $f^{-1}(6)$. Show that $f^{-1}(y)$ actually exists for all $y \in \mathbb{R}$.