

Rep. No. FAA-AEQ-77-13

OZONE CONCENTRATION BY LATITUDE, **₹ ALTITUDE, AND MONTH, NEAR 80° W**

by

R.W. Wilcox and A.D. Belmont

Prepared for:

U.S. DEPARTMENT OF TRANSPORTATION

Federal Aviation Administration

OFFICE OF ENVIRONMENTAL QUALITY

High Altitude Pollution Program

Washington, D.C. 20591

DISTRIBUTION STATEMENT A

Approved for public release: Distribution Unlimited

August 1977

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

1. Report No. FAA-AEQ 77-13 4. Title and Subtitle Ozone Concentration by Latitude, Altitude, and Month, Near 80°W 7. Author's) R.W. Wilcox A.D. Belmont 9. Performing Organization Name and Address Control Data Corporation Research Division Minneapolis, MN 55440 12. Sponsoring Agency Name and Address Department of Transportation Federal Aviation Administration	Recipient's Catalog No. Report Date AUGUST 1977 Performing Organization Code Performing Organization Report No. Work Unit No. (TRAIS) Contract or Great No. Type of Report and Period Covered Final Report. Sponsoring Agency Code
4. Title and Subtitle Ozone Concentration by Latitude, Altitude, and Month, Near 80°W. R.W. Wilcox A.D. Belmont 9. Performing Organization Name and Address Control Data Corporation Research Division Minneapolis, MN 55440 12. Sponsoring Agency Name and Address Department of Transportation Federal Aviation Administration High Altitude Pollution Program Washington, DC 20591 15. Supplementary Notes	Report Date August 1977 Performing Organization Code Performing Organization Report No. Work Unit No. (TRAIS) Contract or Great No. OT -FA77WA-3999 Type of Report and Period Covered Final Report
4. Title and Subtitle Ozone Concentration by Latitude, Altitude, and Month, Near 80°W. 8. M. Wilcox and A.D. Belmont 9. Performing Organization Name and Address Control Data Corporation Research Division Minneapolis, MN 55440 12. Sponsoring Agency Name and Address Department of Transportation Federal Aviation Administration High Altitude Pollution Program Washington, DC 20591 15. Supplementary Notes	Performing Organization Code Performing Organization Report No. Work Unit No. (TRAIS) Contract or Great No. OTT-FA77WA-3999 Type of Report and Period Covered Final Report.
Ozone Concentration by Latitude, Altitude, and Month, Near 80°W. 7. Author's) R.W. Wilcox and A.D. Belmont 9. Performing Organization Name and Address Control Data Corporation Research Division Minneapolis, MN 55440 12. Sponsoring Agency Name and Address Department of Transportation Federal Aviation Administration High Altitude Pollution Program Washington, DC 20591 15. Supplementary Notes	Performing Organization Code Performing Organization Report No. Work Unit No. (TRAIS) Contract or Great No. OTT-FA77WA-3999 Type of Report and Period Covered Final Report.
Month, Near 80 W. 7. Author's) R.W. Wilcox A.D. Belmont 9. Performing Organization Name and Address Control Data Corporation Research Division Minneapolis, MN 55440 12. Sponsoring Agency Name and Address Department of Transportation Federal Aviation Administration High Altitude Pollution Program Washington, DC 20591 15. Supplementary Notes	Performing Organization Code Performing Organization Report No. Work Unit No. (TRAIS) Contract or Great No. OT-FA77WA-3999 Type of Report and Period Covered Final Report.
Month, Near 80 W. 7. Author's) R.W. Wilcox A.D. Belmont 9. Performing Organization Name and Address Control Data Corporation Research Division Minneapolis, MN 55440 12. Sponsoring Agency Name and Address Department of Transportation Federal Aviation Administration High Altitude Pollution Program Washington, DC 20591 15. Supplementary Notes	Performing Organization Report No. Work Unit No. (TRAIS) Contract or Great No. OT-FA77WA-3999 Type of Report and Period Covered Final Report.
R.W. Wilcox and A.D. Belmont 9. Performing Organization Name and Address Control Data Corporation Research Division Minneapolis, MN 55440 12. Sponsoring Agency Name and Address Department of Transportation Federal Aviation Administration High Altitude Pollution Program Washington, DC 20591 15. Supplementary Notes	Contract or Great No. OT-FA77WA-3999 New Type of Report and Period Covered Final Report.
R.W. Wilcox A.D. Belmont 9. Performing Organization Name and Address Control Data Corporation Research Division Minneapolis, MN 55440 12. Sponsoring Agency Name and Address Department of Transportation Federal Aviation Administration High Altitude Pollution Program Washington, DC 20591 15. Supplementary Notes	Contract or Greet New DOT-FA77WA-3999 New Type of Report and Period Covered Final Report
9. Performing Organization Name and Address Control Data Corporation Research Division Minneapolis, MN 55440 12. Sponsoring Agency Name and Address Department of Transportation Federal Aviation Administration High Altitude Pollution Program Washington, DC 20591 15. Supplementary Notes	Contract or Greet New DOT-FA77WA-3999 New Type of Report and Period Covered Final Report
Research Division Minneapolis, MN 55440 12. Sponsoring Agency Name and Address Department of Transportation Federal Aviation Administration High Altitude Pollution Program Washington, DC 20591 15. Supplementary Notes	Type of Report and Period Covered
Minneapolis, MN 55440 12. Sponsoring Agency Name and Address Department of Transportation Federal Aviation Administration High Altitude Pollution Program Washington, DC 20591 15. Supplementary Notes	Type of Report and Period Covered
12. Sponsoring Agency Name and Address Department of Transportation Federal Aviation Administration High Alfitude Pollution Program Washington, DC 20591 15. Supplementary Notes	Final Report.
Department of Transportation Federal Aviation Administration High Altitude Pollution Program Washington, DC 20591 15. Supplementary Notes	
Federal Aviation Administration High Altitude Pollution Program Washington, DC 20591 15. Supplementary Notes 16. Abstract	
Washington, DC 20591 15. Supplementary Notes 16. Abstract	Sponsoring Agency Code
15. Supplementary Notes 16. Abstract	
16. Abstract	
To provide a convenient summary of presently availa	
concentrations, monthly and seasonal means and standard ozone are presented in latitude-height cross-section. Results are given in each of two units: micrograms parts per million by volume. Data are based on Nor sonde stations, 1962-75.	ndard deviations of ons and tables. s per cubic meter, and
17. Key Words Ozone Vertical Porfiles Seasonal Variations	
Tables (Data) Measurement	
Tables (Data)	21. No. of Pages 22. Price

Form DOT F 1700.7 (8-72)

Reproduction of completed page authorized

401516-1-

CONTENTS

		Page
TEXT		1-5
TABLES		
1.	Ozone conversion factors	7
2.	Ozonesonde stations used	8
FIGURES		
1.	Locations of North American stations	9
2.	Monthly height-latitude cross-sections of ozone means and standard deviations (PPMV)	10-21
3.	Seasonal height-latitude cross-sections	
	of ozone means and standard deviations (PPMV)	22-25
4.	Monthly height-latitude cross-sections of ozone means and standard deviations (μgm^{-3})	26-37
5.	Seasonal height-latitude cross-sections	1
	of ozone means and standard deviations (µgm ⁻³)	38-41
	ACCESSION for NTIS White Section DDC Buff Section UNANNOUNCED JUSTIFICATION BY DISTRIBUTION AVAILABILITY CO	DES

INTRODUCTION

To provide a convenient reference for those concerned with ozone concentrations at aircraft flight altitudes, this compilation of ozone concentration as a function of altitude, latitude, month and season is presented in units of parts per million by volume and micrograms per cubic meter. These sections update those previously available in the literature given in other units:

Hering and Borden (1965a), micrograms per cubic meter, data for 1963-64.

Wu (1973), molecules per cubic meter, data for 1963-65. Wilcox, et al. (1975, 1977), molecules per cubic meter, data for 1963-74.

This summary has additional data over the last reference, but the analysis in molecules per cubic meter would not have changed. The charts here cannot be compared to the earlier ones because of the different units.

There are as many as six units for ozone concentration, five of which are in common use today for different applications: aeronomy, atmospheric physics, atmospheric dynamics and pollution monitoring. In addition, many users retain certain units from habit, although others may serve as well. To help alleviate the confusion, Table 1 gives conversion factors from any one to any other.

DATA

The Air Force Cambridge Research Laboratories conducted a program of quasi-weekly soundings at 14 stations in North America from January 1963 through December 1965 (Hering, 1964; Hering and Borden, 1964, 1965b, 1967). The Regener (chemiluminescent) sonde was used for this series. Following this program, several of these stations continued making soundings mainly with the Brewer-Mast (electrochemical) sonde. The AFCRL and subsequent data through May 1969 were obtained from the World Data Center - A (Meteorology), Asheville, North Carolina. A separate sounding program was conducted at Boulder, Colorado, from 1963 to 1966. These data were

extracted from Dütsch (1966) and Dütsch, et al. (1970) and punched on cards. All remaining data used in this study were obtained from the World Data Center for Ozone, Toronto. Figure 1 and Table 2 show all stations used, their locations, heights, total ascents, periods of record, and principal sonde type(s) used.

Ozonesonde data are calibrated to obtain agreement of the integrated vertical distribution, plus an allowance for ozone above the burst height, with a nearby Dobson total ozone measurement. Following the AFCRL program, the Regener instrument was shown to be subject to substantial inaccuracies due to pump inefficiency at high altitudes. Dütsch (1974), however, notes that "the biggest relative uncertainty in climatological values obtained from sounding programs must be expected at the flight top in the middle stratosphere (i.e., around 10 mb and above) where errors may be on the order of 10%."

COMPUTATIONS

A typical AFCRL sounding contained ozone partial pressure and mixing ratio, as well as temperature and total pressure, every 300 feet or so. For each sounding, the ozone data were linearly interpolated on a log pressure scale to the standard pressures 900, 700, 500, 300, 200, 150, 100, 70, 50, 30, 20, 10, and 7 mb. The "Toronto" data contained ozone partial pressure (and temperature and wind) at the standard pressure levels mentioned above as well as at various "significant" pressure levels. The Boulder data were given as partial pressure at the standard levels. Data from Boulder were merged with that from Fort Collins, about 75 km away.

For each station, all observations for a given calendar month for all years were averaged together as there were small interannual differences in number of soundings per month. Standard deviations were also computed in this manner.

In the figures, ozone was plotted at the altitude of the pressure surface, as a function of latitude and season, according to the U. S. Standard Atmosphere Supplement, 1966. Therefore, height is the true ordinate, and the pressure scale shown is only approximate (annual mid-latitude average).

Seasonal means and standard deviations were computed in the same manner as the monthly means. All tabulated values are read from the analyzed, smoothed graphs.

ANALYSIS

It is well known that there is large longitudinal variability in both total ozone and its vertical distribution. Therefore, true "zonal mean" latitude-height sections of ozone cannot be made from the few widely separated land-based stations. As a first approximation, the analyses are restricted here to eastern North America (~80°W) where latitudinal coverage is best. Some western North American stations were also consulted (Seattle, Albuquerque, Fort Collins/Boulder, and Fairbanks). These stations typically had lower means than those nearer the center of the eastern North America ozone ridge (Wilcox, et al., 1977), and so were given little weight in the analysis.

There was also significant apparent small-scale variability in latitude near 80° W. This was probably due to longitudinal or period-or-record differences, rather than to true latitudinal variability. Where choices had to be made, stations were weighted by number of observations.

The standard deviations were more difficult to analyze than the means because of increased variability between stations. Note that these are standard deviations from the long-term monthly mean at stations and so include interannual variability as well as periodic variations (annual and semi-annual). However, there is no contribution from spatial variability.

The standard deviations given here are <u>not</u> to be confused with the standard error of the mean. The standard error, whose computation is outside the scope of the present work, is a measure of confidence in the mean values. It is normally given by $\sigma_T = \sigma/\sqrt{n}$, where σ is the standard deviation of the individual observations and n is the number of independent observations. The question of independence, both temporal and spatial, is not yet sufficiently resolved.

As to the relative uncertainty within the cross-sections and tables, the analysis above 25 km is less certain than below, due to decreasing numbers of observations. For several station-months, fewer than five sondes reached the highest levels, so any statistics are unreliable. Furthermore, in some months at a few stations, especially in winter at high latitudes, no sondes reached the highest two levels. Such areas are indicated by shading on the charts. In high-latitude, high-altitude regions, the PPMV values still apparently increase upward, and the danger of gross error in extrapolation seems significant. Therefore, on the PPMV cross-sections, these regions have been generally left blank.

A striking peculiarity in the standard deviations is the relative minimum at high altitudes at Grand Turk and the maximum at the Canal Zone. Lacking nearby stations or any reason to choose between stations, and because the feature is so persistent, it was retained. Note, however, that although the observation series at the two stations are concurrent, there were only 10 or so observations per month.

REFERENCES

Ozone units conversion factors. Multiply "FROM" units by this factor to get "TO" units. All temperatures are in deg K and all pressures in millibars. Table 1.

,'<u>TO</u>,'

PPMV	$\frac{1.73\times10^{-3}\mathrm{T}}{\mathrm{p}}$.0370 T	$\frac{1.38 \times 10^{-13} \text{T}}{\text{P}}$.603	- a	1
q шт	1.73×10 ⁻³ T	. 0370 т	1.38×10 ⁻¹³ T	. 603 р	2 87 2 87 2 88 2 88 2 88	Q.
н gg -1	2.87×10-3 T p	.0614 T	$\frac{2.29 \times 10^{-13} \text{ T}}{p}$	1	1.66 p	1.66
molec cm	.126x10 ¹¹	2.69×10 ¹¹	1	4.37×10 ¹² p	$\frac{7.25 \times 10^{12}}{T}$	7.25×10 ¹² p
10-3 cm STP km	. 0467	1	0.372×10 ⁻¹¹	16.3 p	27.0 T	27.0 p T
± gm -3	1	21.4	7.97×10 ⁻¹¹	348. P	578. T	578. p T
	_3 ("gamma")	10 ⁻³ cm STP km ⁻¹	molecules cm	μ88 - 1	qwri	Parts per million by volume (PPMV)

..EBOW.

TABLE 2
Ozonesonde Stations

Stations	Lat.	Long.	Station Elev(m)	Period of Record	Total Ascents	Instrument Type*
Thule	76.5N	68.8W	11	01/63-01/66	92	R
Resolute	74.7N	95.0W	64	01/66-12/75	441	М
Fairbanks	64.8N	147.9W	138	01 63-12/65	107	R,CI
Churchill	58.8N	94.1W	35	01/63-12/65	100	R
Goose Bay	53.3N	60.4W	44	01/63-05/69	207	R,M
Seattle	47.4N	122.3W	137	01/63-12/65	148	R
Madison	43.1N	89.4W	264	01/63-12/65	83	R
Bedford	42.5N	71.3W	80	12/62-03/71	586	M,R
Ft. Collins	40.6N	105.1W	1551	01/63-06/67	209	R
Boulder	40.0N	105.2W	1652	08/63-07/66	494	М
Sterling	39.0N	77.5W	84	08/62-06/66	179	R,CI,M
Wallops Is.	37.8N	75.5W	3	02/67-04/75	223	M
Albuquerque	35.0N	106.6W	1573	01/63-12/65	208	R
Tallahassee	30.4N	84.3W	53	01/63-12/65	138	R
Cape Kennedy	28.4N	80.5W	2	02/66-05/69	135	M
Grand Turk	21.5N	71.1W	10	12/63-05/69	129	M,R
Canal Zone	9.0N	79.6W	9	01/63-05/69	126	R,M

^{*}Instrument types are in decreasing order of number of ascents; only instruments used for more than 10% of the ascents are included.

M=Brewer-Mast; R=Regener; CI=Carbon-Iodide.

Figure 1. North American ozonesonde stations.

JANUARY

Figure 2. Monthly height-latitude cross-sections of ozone means and standard deviations near 80°W in units parts per million by volume. Shaded areas have no data. The pressure scale is approximate, based on the annual mid-latitude average.

FEBRUARY

			MEAN							STAN	IDARI	D DEV	/IAT	ION			
км	BON	70	0 50	40	30	20	10		KM	80N	70	60	50	40	30	20	10
32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5	6.3 6 6.2 6 6.1 5 5.0 5 4.4 4 3.5 3 2.3 2 1.2 1	.2 .5 .2	8 5.9 7 5.9 5 5.8 0 5.0 0 3.7	6.3 6.4 6.3 6.0 5.0 3.3 1.6 .7 .4 .1 .05	7.5 6.9 6.7 6.1 4.4 2.4 .7 .2 .09 .05 .04	8.3 8.1 7.2 6.0 3.8 1.5 .2 .07 .05 .03	8.5 8.3 7.6 5.5 3.3 1.2 .2 .06 .04 .03 .03		32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0	1.8 1.6 1.4 1.2 .9 .8 .7 .5 .3 .10 .05	1.6 1.4 1.3 1.1 .7 .7 .6 .3 .10 .04	1.4 1.2 .9 .8 .7 .7 .7 .5 .3 .10 .04	1.3 1.0 .8 .6 .7 .7 .6 .5 .2 .10 .03	1.2 1.1 .8 .8 .7 .7 .6 .4 .2 .08 .03	1.0 1.0 .9 .8 .7 .6 .4 .10 .04 .03 .02	1.0 .9 .8 .6 .3 .07 .02 .01 .01	1.2 1.0 1.0 .6 .6 .07 .03 .02 .01 .01
32 - 28 - 24 - 24	F	ç	G S ME	BESW A	7 8	9	Ç	MB 7 10 20 30	32 - 28 - 24 - 24 - 24 - 24 - 24 - 24 - 2		, ,	- 1.2 - - 1.0 - - 0.8 -	MBFSW	1	G	10	MB 7 10 20 30
20							=	50	20					//			
16				//	//	,		100	16			0.6	/	//:	/		100
12		/	_//	,	,'			150	12 -			0.4 -	/	11			150
-		0						30C				0.1 -	/				300
-		0						500	8								-500
4								700	4								700
80	70	60	50 LATIT	40 JDE (N)	30	20	10	900	80	70	60	50 LAT	40 (TUDE (N)	30	50		900

Figure 2 (cont'd).

MARCH

		<u>M</u>	EAN								STA	NDAR	D DE	VIAT	ION			
км	80N 70	60	50	40	30	20	10			KM	800	70	60	50	40	30	20	10
32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5	6.1 5.9 5.8 5.7 5.5 5.6 5.2 5.4 4.7 5.1 4.0 4.1 3.0 2.9 1.8 1.7 1.0 .9 .5 .4 .1 .1 .05 .04	5.9 5.9 5.9 5.7 5.2 4.1 2.6 1.5 .8 .07 .04	6.5 6.3 6.0 5.1 3.8 2.0 1.1 .5 .2 .06	7.3 6.9 6.4 5.8 4.5 3.2 1.4 .7 .3 .1	8.0 7.5 6.8 5.7 4.0 2.3 .0 .3 .1 .05 .04	8.6 8.3 7.3 5.3 3.3 1.6 .3 .1 .06 .04	10.0 9.1 7.9 5.2 3.0 1.0 .2 .06 .04 .04			32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0	1.3 1.0 .8 .7 .7 .7 .5 .3 .15 .07	1.2 1.0 .8 .7 .7 .7 .6 .5 .3 .10 .05	1.2 1.0 .8 .7 .7 .6 .6 .5 .3 .08	1.2 .9 .8 .7 .7 .6 .5 .4 .3 .08 .03 .02	1.1 .9 .8 .7 .7 .6 .5 .3 .2 .07 .02	.8 .7 .6 .6 .5 .3 .2 .08 .02 .02	.5 .5 .5 .4 .15 .03 .02 .01 .01	1.4 1.0 .7 .6 .4 .0 .02 .02 .01 .01
28 - 24 - 20 - 12 - 3	6 F C	5 / 4 / 3 / 2 / 0.5 - 0.1	S MBF	SW A	TK B	9		MB 7 7 10 10 10 10 10 10 10 10 10 10 10 10 10	28 24 20 16 12 12 1	TR		c G	0.6 0.6 0.6 0.6 0.6 0.6 0.6			6	0.8	7

Figure 2 (cont'd).

APRIL PPMV

STANDARD DEVIATION MEAN KM 80N 70 60 50 40 30 20 10 70 60 40 30 10 32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0 9.0 8.4 7.6 5.7 3.3 1.1 .2 .07 .04 .04 5.8 5.7 5.4 4.7 3.7 2.5 1.5 .8 .3 .1 6.5 6.4 6.1 5.6 4.6 3.3 2.0 1.0 7.3 7.1 6.6 5.8 4.3 2.7 1.3 7.7 7.6 7.0 6.0 4.0 2.1 .6 .3 .1 .06 .05 8.4 8.2 7.5 6.0 3.6 1.6 .4 .1 .07 .05 .04 32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0 1.2 1.1 .9 .7 .6 .5 .5 .4 .3 .15 .07 1.0 .9 .7 .7 .4 .2 .07 .03 .02 .02 .02 1.2 1.0 .9 .6 .5 .4 .3 .10 .03 .02 5.8 5.5 5.3 5.0 4.2 3.2 2.1 1.1 .5 .1 5.6 5.3 4.8 4.1 2.8 1.8 1.1 .8 .6 .5 .5 .5 .4 .3 .15 .07 .8 .7 .5 .4 .4 .3 .15 .05 .03 .02 .6 .4 .3 .10 .05 .03 .02 .02 .6 .5 .4 .3 .15 .07 .5 .4 .3 .15 .05 .6 .2 .08 .4 .1 .07 .06 .04 S MBFSW A TK 0.8 1.0 28 28 500 700 900 LATITUDE (N) LATITUDE (N)

Figure 2 (cont'd).

MAY PPMV

			M	EAN								STAI	NDAR	D DE	TAIV	ION			
KM I	1 80N	70	60	50		20	20												
				50	40	30	20	10			KM	80N		60	50	40	30	50	10
32.5	5.3	5.2	5.6	6.3	7.3	7.9	8.2	8.5			32.5	1.0	1.3	1.0	1.3	1.3	1.3	•5	1.4
27.5	4.7	4.9	5.3	5.2	7.1	7.3	7.5	7.8			27.5	.6	. 6	.6	.6	.6	.6	• 5	1.0
22.5	4.1 3.5	3.4	3.3	3.1	4.2	2.2	3.7	3.4			22.5	.5	•5	.5	.5	.5	.5	.5	.5
17.5	2.8	2.3	2.0	1.8	1.3	.7	.4	.3			17.5	.5	.5	.5	.4	.4	. 3	.2	.10
15.0	1.7	.8	1.3	1.0	.6	.3	.08	.07			12.5	.3	• 4	.3	.3	.3	.15	.04	.03
7.5	.5	.5	.3	.2	.07	.07	.06	.03			7.5	.15	.15	.15	.06	.0H	.03	.02	.01
2.5	.05	.05	.04	.05	.06	.05	.05	.03			2.5	.02	.07	.02	.02	.02	.01	.02	.02
т		F C	G	s MBI	SW A	TK	G	-			TP				ADECW	A TK	G	(
KM F	1		1,	3 100	1 1	+	1	C	MB 7	KM F	TR	-	1	5 1	MBFSW	A TK	1111	1111	MB 7
32			6	7	8					32							///	114	
-						\			10				1.2			-)		1.2	10
28	1			1			_	_		28			1.0			-/		10	
		1		(_				20				0.8	3—		-/		0.8	-20
24			5					=	30	24			O. c	5—	-			0.6	30
																			-
20-			_ 4 -						50	20			,			/			50
			_3-	_					70						/				70
16			_ 2	/	//		_	,-	100	16				/		/			- 100
16					/		1	•		"			0,		,	/ .	1	,	
_				/			,		150	12					/	/	,'		150
12			_0.5		/				200	12			0.2	2	/				-200
-					-				300				0.1		//				-300
8 -			- 0.1							8	===		_ 0.0	5					
									500										-500
4									700	4									700
									900										900
80	70	60	50	0	10	30	20	10]	0	80	70	60	50	40	30	20	IC	
				LATITU	DE (N)									LAT	TUDE (N)				

Figure 2 (cont'd).

JUNE

			M	EAN							STAN	DARI) DE	VIAT	ION			
KM	80N	70	60	50	40	30	20	10		KM	80N	70	60	50	40	30	20	10
32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5	5.0 4.4 3.9 3.7 3.3 3.0 2.0 1.1 .7 .3 .1	4.8 4.4 4.2 3.9 3.0 1.9 1.1 .7 .2 .1 .04	4.9 4.8 4.6 4.2 3.6 3.0 1.8 .9 .6 .2 .07 .05	6.3 6.2 5.7 4.8 3.9 2.8 1.5 .7 .4 .1	7.3 7.0 6.5 5.4 4.0 2.4 1.0 .4 .2 .08 .07	8.0 7.5 7.0 5.5 3.8 2.0 .7 .3 .09 .07	7.7 7.4 7.1 5.3 3.5 1.6 .5 .2 .0d .07	7.5 7.3 7.1 5.1 3.2 1.2 .3 .1 .04 .03 .03		32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 2.5	.6 .6 .7 .7 .6 .3 .3 .2 .15 .15 .05	.4 .6 .7 .6 .3 .3 .2 .15 .05	.4 .5 .6 .6 .5 .3 .3 .2 .15 .04	.7 .7 .7 .6 .5 .4 .3 .3 .2 .10	1.2 1.0 .7 .6 .5 .4 .3 .2 .15 .04	1.3 .9 .6 .4 .3 .3 .2 .15 .05 .03 .07	.7 .6 .4 .3 .2 .15 .10 .03 .03 .03	1.0 .8 .4 .3 .2 .10 .03 .02 .01
32	R	F	5 6	S MBI	SW A	8/	Ģ	c	MB 7	32 - TR	F 04	0.6	11	MBF SW 1.4 1.2	1	9	0.8	MB 7
28	\		1	1		<u></u>		=	20	28					//		1	20
24 -			_				_	_	30	24		0.6 0.4	_					30
20		— 3 — 3	-			_		_	50 70	20-						/	_	70
16		_	_	/					100	16					/		11	-100
12		0	.5-	/	,.				200	12		-0.2						150
8 _		0							300	8		0.1 0.05	-1.	-				300
+								-	50C	4								-500
1									700 900	,								700
90	70	60	5	LATITU	IO DE (N)	30	20	10		80	70 e	0	50 LATI	40 TUDE (N)	30	20	10	

Figure 2 (cont'd).

JULY PPMV

		MO M	<u>IEAN</u>								STAN	IDAR)	D DE	VIAT	ION			
км	80N 70	60	50	40	30	20	10		K	- I	801	70	60	50	40	30	20	10
30.0 4 27.5 3 25.0 3 22.5 3 20.0 2 17.5 2 15.0 1 12.5 10.0 7.5 5.0	.8 4.8 .1 4.3 .8 4.1 .5 3.7 .2 3.3 .8 2.7 .0 1.d .2 1.0 .6 .6 .6 .6 .1 .1 .1 .1 .05 .05	4.9 4.8 4.7 4.0 3.4 2.6 1.7 .8 .5 .1 .07	6.7 6.4 5.7 3.6 2.4 1.3 .6 .3 .1 .07	8.2 7.4 6.5 5.3 3.8 2.2 .8 .3 .2 .08 .07	8.0 7.5 6.7 5.5 3.6 1.8 .6 .2 .08 .08	7.6 7.4 6.7 5.4 3.4 1.5 .2 .08 .06	7.4 7.3 6.5 5.2 3.3 1.3 .1 .05 .04		5	.0 .5 .0 .5 .0 .5	.8 .7 .6 .5 .4 .3 .2 .15 .15 .10 .07	.7 .7 .6 .5 .4 .3 .2 .15 .10 .05	.7 .7 .7 .6 .5 .4 .3 .2 .15 .09 .04	.9 .9 .7 .6 .4 .3 .3 .2 .15 .07 .03	1.1 .9 .7 .5 .4 .3 .2 .15 .07 .04 .03	.7 .6 .5 .4 .3 .3 .15 .07 .03 .02 .02	.5 .5 .4 .3 .2 .10 .04 .02 .02	1.5 1.0 .7 .4 .3 .2 .10 .03 .02 .02 .01
28 - 24 - 20 - 16 - 12 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	70 600	500		8 / 7 / 6 / 5 / 4 / 3 / 2 / 1 / 0.5 / 0.5	TK	6,	Ç	MB 7 10 20 30 50 70 100 300 500 700 900	28 - 24 - 20 - 16 - 12 - 12 - 16 - 12 - 16 - 12 - 16 - 12 - 16 - 16	R. P.	F	Ç Ğ	5 50	0.8 0.6 0.4 0.2 0.1 0.05	A TK	5	0.6 0.6	4 7 -20 -30 -50 -100 -150 -200 -300 -700 -900

Figure 2 (cont'd).

AUGUST

			M	EAN							STA	NDAR	D DE	VIAT	ION			
км	80N	70	60	50	40	30	20	10		км	80N	70	60	50	40	30	20	10
32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5	3.9 3.7 3.6 3.4 3.3 2.8 2.0 1.0 .5 .2 .07	4.3 4.2 4.0 3.7 3.4 2.7 1.7 .8 .4 .1 .06 .05	4.8 4.8 4.7 4.3 3.6 2.5 1.5 .6 .3 .09 .05	6.4 6.3 5.8 4.8 3.7 2.3 1.1 .4 .3 .08 .06	7.3 7.1 6.6 5.4 3.7 2.0 .7 .3 .1 .08 .07	7.4 7.2 7.0 5.3 3.3 1.7 .5 .2 .08 .08	7.6 7.4 7.1 5.3 3.2 1.3 .1 .07 .05 .05	7.6 7.4 7.2 5.2 3.1 1.1 .2 .06 .04 .03 .03		32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 5.0 2.5	.5 .6 .7 .5 .2 .15 .10 .08 .05	•5 •6 •7 •7 •5 •3 •15 •15 •10 •05 •03 •01	.6 .7 .8 .7 .5 .3 .2 .15 .10 .05 .03	.7 .8 .8 .6 .4 .3 .2 .15 .10 .05 .03	1.1 1.1 .7 .5 .3 .3 .15 .15 .07 .03 .03	.6 .6 .5 .4 .3 .2 .10 .07 .04 .03 .03	.6 .5 .4 .4 .15 .0 .0 .0 .0 .0 .0 .0 .0 .0	.6 .5 .3 .5 .4 .15 .04 .02 .01 .01
28 - 24 - 20 - 16 - 12 - 4		F C	9	S MBI	FSW A	7 6 6 5 4 4 3 3 2 2 1 5 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7	Ģ.	Ç	77 - 10 - 20 - 30 - 50 - 200 - 30 - 50 - 200 - 2	28 - 24 - 20 - 16 - 8 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4	0.6			MBF S.W	A IK	6	0.4	7
80	10	60	50	LATITU	IO DE (N)	30	20	10	900	80	70	60	50 LATI	40 TUDE (N)	30	20	10	900

Figure 2 (cont'd).

SEPTEMBER

Figure 2 (cont'd).

OCTOBER

Figure 2 (cont'd).

NOVEMBER

			<u>M</u>	EAN								STAI	NDAR	D DE	VIAT	ION			
км	80N	70	60	50	40	30	20	10			км	80N	70	60	50	40	30	20	10
32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0	5.3 5.2 4.7 3.8 3.2 2.3	5.3 5.3 6.9 6.0 2.9 2.0	5.6 5.4 5.1 4.0 2.7 1.7	5.7 5.8 5.8 5.3 4.0 2.5 1.4	6.4 6.7 6.4 5.4 4.0 2.3 1.0	8.1 7.5 7.0 5.5 3.6 1.8 .5 .2	8.0 7.6 7.1 5.6 3.3 1.3 .3 .07	7.7 7.4 7.2 5.3 2.9 .9 .2 .05			32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0	1.4 1.3 1.3 1.2 .7 .5 .4	1.4 1.3 1.2 .6 .5	1.2 .9 .7 .5 .5	.8 .6 .5 .5 .5 .4 .3 .2	.8 .6 .5 .5 .4 .3 .3	1.0 .7 .5 .4 .3 .3 .2	1.1 .8 .5 .4 .3 .2 .10	1.1 .3 .5 .5 .4 .2 .05
10.0 7.5 5.0 2.5	.08	.2	.2 .07 .04	.1 .05 .03	.08 .06 .05	.05	.03 .03 .03	.03			10.0 7.5 5.0 2.5	.15 .05 .02	.04 .04 .02	.15 .07 .03 .02	.06 .03 .01	.04 .03 .02	.03 .02 .01 .01	.01 .01 .01	.01 .01 .01
KM F	* ;	ç	Ģ ,	S MBF	SW A	TK	9	· ·	MB 7	KM	T F	<u> </u>	ç ç	\$ 1	MBFSW	A TK	G	1	MB 7
32 -				6	(8-			10	32			//		0.6	.0	_		10
28						_			20	28	- 12	1.0/			0.6	_			- 20
24								\equiv	30	24	1					_		\	30
20		;	-					=	50					/	0.4				-50
				_					70	20			/				/		- 70
16		_	_			,-			100	16	-				0.2	/	1		-100
12 -		_0	.5 -		,/	,			150	12		_			-0.1	/			-150 -200
-		C	—						300				 		0.05				300
8										8									
4									500	4									500
1									900										900
80	70	60	50	LATITUE	IO DE (N)	30	20	10	J	0	80 7	70 (50	50 LATI	40 TUDE (N)	30	20	IC	

Figure 2 (cont'd).

DECEMBER

Figure 2 (cont'd).

DECEMBER - FEBRUARY

Figure 3. Seasonal height-latitude cross-sections of ozone means and standard deviations near 80°W in units parts per million by volume. Shaded areas have no data. The pressure scale is approximate, based on the annual mid-latitude average.

MARCH - MAY

Figure 3 (cont'd).

JUNE - AUGUST

	<u>M</u>	EAN							STAN	DARI	DEV	/IAT	ION			
KM 80N	0 60	50	40	30	50	10		км	80N	70	60	50	40	30	20	10
	3 4.8 1 4.7 7 4.0 4 3.5 8 2.8 8 1.8 0 1.0 6 .5 2 .1 8 .07 4 .04	6.4 6.2 5.7 5.0 3.7 2.5 1.4 .7 .3 .1	7.3 7.2 6.5 5.5 3.7 2.2 .9 .4 .29 .07	7.7 7.5 6.9 5.5 3.5 1.8 .7 .2 .1 .07 .06	7.3 7.0 7.0 5.3 3.2 1.3 .4 .2 .07 .06 .05	7.0 7.3 7.0 5.3 3.1 .9 .3 .08 .04 .03 .03		32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0	.7 .7 .7 .6 .4 .3 .2 .2 .15 .15 .08	.7 .7 .7 .7 .5 .3 .3 .2 .2 .15 .06 .02	.7 .7 .7 .7 .5 .4 .3 .3 .2 .15 .04	.8 .7 .7 .6 .5 .4 .3 .3 .2 .10 .03	1.0 .8 .6 .5 .4 .3 .2 .2 .10 .04 .03 .02	.9 .8 .5 .4 .4 .3 .2 .15 .06 .03 .02	.6 .5 .4 .4 .4 .7 .15 .04 .03 .02	.9 .9 .7 .5 .4 .3 .09 .03 .02 .01 .01
28 - 24 - 20 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	5 6	Ş MB	FSW A	T K	G.	7	700 150 200 300 4500 4500 4500 4500 4500 4500 450	28 - 24 - 20 - 16 - 12 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 - 4 -	0.6 0.4 0.2 - 0.1 - 0.0!	¢ 6 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	0.8	MBFSW	1	6	0.8	MB 7 7 10 20 30 150 150 150 150 150 1500 1500 1500

Figure 3 (cont'd).

SEPTEMBER - NOVEMBER

Figure 3 (cont'd).

JANUARY μg m⁻³

Figure 4. Monthly height-latitude cross-sections of ozone means and standard deviations near 80°W in units micrograms per cubic meter. Shaded areas have no data. The pressure scale is approximate, based on the annual mid-latitude average.

FEBRUARY

ug m-3

Figure 4 (cont'd).

MARCH μg m⁻³

MEAN										STANDARD DEVIATION									
км	80N 7	0 60	50	40	30	20	10		км	80N	70	60	50	40	30	50	10		
32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0 2.5	150 10 210 16 270 25 380 37 480 48 600 61 630 62 560 50 440 41 300 25 150 10 60 5	0 160 0 250 0 360 0 480 0 610 0 560 0 470 0 370 0 210 0 70 5 45	130 170 260 360 480 550 450 350 270 150 50 45	150 190 270 370 460 450 330 220 180 100 55 50	160 210 290 370 420 340 170 60 40 40	170 240 320 360 340 220 80 40 30 30 30 45	190 270 340 360 290 140 50 20 25 25 30 45		32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5	30 30 35 40 55 75 100 160 150 105 70 30 20	25 30 35 50 70 90 130 170 140 85 55 15	25 25 35 50 70 85 130 165 110 70 40 15 20	25 25 35 40 60 80 120 130 105 70 40 20	25 25 35 40 60 90 120 125 110 70 40 20	15 20 25 40 60 90 85 70 55 25 15	10 15 15 25 50 55 40 20 10 5 15 15	25 30 30 25 35 30 15 10 10 10		
24 - 20 - 16 - 12 - 12 - 12 - 12 - 12 - 12 - 12	300 - 		S MBF	5W A)	6		MB 7 10 20 30 50 70 100 150 200 300	32 - 28 - 24 - 20 - 16 - 12 - 12	40 — 60 — 60 — 120 — 140 — 160	c e	S N	MBFSW	20	9	,	MB 7 7 10 200 150 150 150 150 150 150 150 150 150 1		
4-	70	50 - 50	LATITUDE	(30	20		500 700 900	4	70 60		20	40 UDE (N)	30	1 20	10	-500 -700 -900		

Figure 4 (cont'd).

APRIL µg m⁻³

Figure 4 (cont'd).

MAY

MAY

MB m-3

Figure 4 (cont'd).

JUNE µg m⁻³

Figure 4 (cont'd).

JULY μg m⁻³

Figure 4 (cont'd).

AUGUST
μg m⁻³

	MEAN									STANDARD DEVIATION									
КМ	80N	70	60	50	40	30	20	10		км	1	80N	70	60	50	40	30	20	10
32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5	110 150 180 260 360 430 400 330 130 80 55	110 160 200 280 370 430 390 280 200 100 70 50 45	120 180 250 310 360 410 350 250 170 80 45 45	150 200 280 330 370 370 280 180 130 70 55 55	160 230 310 360 380 300 200 110 70 60 55 60 70	160 240 320 360 340 250 140 60 40 50 60 65	150 230 320 360 320 210 100 45 35 35 50 55	140 220 320 360 310 200 60 25 20 25 25 30 25		32.1 30. 27. 25. 22. 20. 17. 15. 12. 10.	0 5 0 5 0 5 0 5 0 5 0 5 0	15 20 30 45 50 55 60 60 50 45 25 15	15 15 30 45 50 55 55 55 50 40 20 15	15 15 30 45 60 60 60 60 55 40 25 15	15 20 30 45 50 55 60 85 60 30 20	20 25 25 30 40 45 45 45 45 25 20 25	15 20 20 40 40 35 30 20 20 15 20 25	15 15 15 30 45 35 25 20 15 15 15	15 15 15 30 30 15 5 10 10 10
KM 1	P 100	ξ · ç	6	\$ MBF	FSW A	İķ	Ģ	Ç,	MB 7	KM TR	•	f,	ç ç	S M	BFSW A	7 K	Ģ,	Ç	MB 7
28 200 20 40													-20						
24	300													30					
20 - 400 - 50 - 70 - 70																			
16 300 16 80 60												100							
12 -					(200	12			1	(ل					-150 -200
8-	_100	,-	50	,		50			-30C -50C -70C	8 -		20			20	_	\		-300 -500 -700
90	70	60	50	LATITUD	0 E (N)	30	20	10]	80	70	60	,	50 LATIT	40 UDE (N)	30	50	10]

Figure 4 (cont'd).

SEPTEMBER

 $\mu g m^{-3}$

Figure 4 (cont'd).

OCTOBER

 $\mu g m^{-3}$

Figure 4 (cont'd).

NOVEMBER

 $\mu \text{g m}^{-3}$

Figure 4 (cont'd).

DECEMBER

 $\mu g m^{-3}$

Figure 4 (cont'd).

DECEMBER - FEBRUARY

 $\mu g m^{-3}$

Figure 5. Seasonal height-latitude corss-sections of ozone means and standard deviations near 80°W in units micrograms per cubic meter. Shaded areas have no data. The pressure scale is approximate, based on the annual mid-latitude average.

MARCH - MAY

STANDARD DEVIATION **MEANS** KM 80N KM 80N 32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0 150 210 180 250 200 280 370 430 410 300 210 170 110 70 60 70 260 330 380 290 150 50 20 25 30 35 45 35 45 35 35 45 50 45 25 10 10 15 15 25 32.5 30.0 27.5 25.0 22.5 20.0 17.5 15.0 12.5 10.0 7.5 5.0 210 300 370 370 310 150 60 50 60 70 230 320 370 340 210 90 45 35 40 50 30 35 50 60 85 120 130 125 105 65 25 30 35 40 55 85 105 110 105 40 25 25 30 35 50 80 70 40 20 15 15 170 220 300 400 520 570 510 430 320 160 70 55 150 220 300 410 530 560 510 420 290 120 60 55 30 45 55 65 85 115 130 105 70 20 15 30 40 50 60 85 110 160 130 105 65 20 15 25 35 40 55 45 20 15 15 15 15 20 70 85 430 530 540 500 370 250 90 55 490 410 340 280 180 80 55 160 140 105 70 20 15 30C 50 40 LATITUDE (N) LATITUDE (N)

Figure 5 (cont'd).

JUNE - AUGUST
μg m⁻³

Figure 5 (cont'd).

SEPTEMBER - NOVEMBER

 $\mu g m^{-3}$

MEAN	STANDARD DEVIATION								
KM 80N 70 60 50 40 30 20	10 KM 80N 70 60 50 40 30 20 10								
32.5	150								
100 S MBFSW 4 TK G	7 MB KM TR F C G S MBFSW A TK G C MB								
24 - 300	20 30 24 80 40 30								
20 400	150 20 70								
16 300	100 16								
12 200 12									
9 - 100 - 300									
50 50 50 40 30 20 LATITUDE (N)	50C 70C 90C 90C 10 80 70 60 50 50C 70C 90C 10 10 10 10 10 10 10 10 10 10								

Figure 5 (cont'd).