Application No.: 09/970,351 Docket No.: 49581/P030US/10104106

CHANGES TO THE SPECIFICATION

Please insert the following paragraph on page 7, line 6, between the Brief Descriptions of FIGURES 2 and 3:

FIGURE 2A shows an alternative embodiment π network PIN diode attenuator circuit of the present invention;

Please amend the paragraph beginning at page 8, line 10, as follows:

The common cathode nodes of attenuator 100 are coupled to a DC ground (whether zero potential ground or some potential with respect thereto) through resistors (R3₁ for the common cathode node of D1₁ and D2₁ and R4₁ for the common cathode node of D3₁ and D4₁). Resisters Resistors R3₁ and R4₁ are used to adjust the voltage present at that common cathode point as a function of the control voltage (V_{control}). The control voltage in attenuator 100 is provided to the pairs of diodes at the common anode node of D2₁ and D3₁. As the control voltage is applied across one diode at the anode node, the corresponding cathode voltage will have a tendency to rise or fall, therefore adjusting the bias in the corresponding diode of the pair. As the current through a shunt diode (diode D1₁ or D4₁) is increased, the current through the corresponding series diode (diode D2₁ or D3₁, respectively) will decrease, and vice versa. With the control voltage V_{control} low, D2₁ and D3₁ are biased off and D1₁ and D4₁ receive DC bias from the reference voltage V_{reference} resulting in a high attenuation. As the control voltage V_{control} is increased, D2₁ and D3₁ start receiving current from V_{control} and stealing current from D1₁ and D4₁ resulting in a lower attenuation.

Please amend the paragraph beginning at page 10, line 9, as follows:

Capacitors C3₂-C5₂, such as may be approximately 10,000 pF in a preferred embodiment, preferably provide RF shorts to ground. Inductors L1₂ and L2₂, such as may be approximately 820 nH in a preferred embodiment, and inductor L3₂, such as may be approximately 1,500 nH in a preferred embodiment, pass DC bias currents but present high impedance at RF frequencies. Resisters Resistors R1₂ and R2₂, such as may be approximately 470 ohms in a preferred embodiment, preferably decouple the anodes of D1₂ and D4₂ to thereby block a possible RF leakage path.

3

25288355.1

Application No.: 09/970,351 Docket No.: 49581/P030US/10104106

Please amend the paragraph beginning at page 10, line 16, as follows:

In the π network configuration of FIGURE 2, PIN diodes D1₂ and D2₂ are coupled in a common cathode configuration with PIN diodes D4₂ and D3₂ mirrored with respect thereto. Specifically, the two series diodes, D2₂ and D3₂, are disposed in anti-phase or a common anode configuration. This configuration improves the dynamic range over the linearity of the structure by having the second order products of one diode canceled out by the opposite, non-linear portion generated in the series diode pair. The two shunt diodes, D1₂ and D4₂, are eonnected to the two series diodes in a common cathode configuration

Please amend paragraph beginning at page 11, line 24, as follows:

According to an alternative embodiment $\underline{200a}$ of the present invention $\underline{\text{depicted in}}$ $\underline{\text{FIGURE 2A}}$, steering resistors R1₂ and R2₂ are omitted and the two shunt diodes, D1₂ and D4₂, are provided independent attenuator control currents $\underline{\text{I}}_2$ and $\underline{\text{I}}_3$. This embodiment of the present invention provides additional flexibility with respect to optimizing the match on either end of the attenuator to the characteristic impedance of the circuit into which it is inserted. For example, this alternative embodiment allows matching from a 50 ohm system to a 75 ohm system, if desired.

Please amend paragraph beginning at page 13, line 16, as follows:

In the T network configuration of FIGURE 4, PIN diodes D1₄-D3₄ are coupled in a common cathode configuration. The two series diodes, D1₄ and D2₄, are also disposed in a common cathode configuration. This the common collector configuration improves the dynamic range over the linearity of the structure by having the second order products of one diode canceled out by the opposite, non-linear portion generated in the series diode pair.

25288355.1 4