Samples

Range and domain SOLUTIONS

1.
$$f(z) = \sqrt{4(-3+z)}$$

When determining the domain of this function, we need to keep in mind the following:

- we can only take the square root of positive numbers or 0, so $4(-3+z) \ge 0$;
- so $z \geq 3$.

Hence, the domain of this function is $[3, \infty)$, i.e. $z \ge 3$.

When evaluating the range, we need to keep in mind the following (starting with variable z):

• square root is always positive or 0, so $\sqrt{4(-3+z)} \ge 0$.

Hence, the range of this function is $[0, \infty)$.

2.
$$f(x) = -9\sqrt{-4+x}$$

When determining the domain of this function, we need to keep in mind the following:

- we can only take the square root of positive numbers or 0, so $-4 + x \ge 0$;
- so $x \ge 4$.

Hence, the domain of this function is $[4,\infty)$, i.e. $x\geq 4$.

When evaluating the range, we need to keep in mind the following (starting with variable x):

- square root is always positive or 0, so $\sqrt{-4+x} \ge 0$;
- multiplying by a negative number usually reverses the inequality, so $-9\sqrt{-4+x} \le 0$.

Hence, the range of this function is $(-\infty, 0]$.

$$3. \ f(z) = \left| \frac{-6}{\sqrt{z}} \right|$$

When determining the domain of this function, we need to keep in mind the following:

- we can find the absolute value of any number;
- denominator of a fraction cannot be 0, so $\sqrt{z} \neq 0$;
- we can only take the square root of positive numbers or 0, so z > 0.

Hence, the domain of this function is $(0, \infty)$, i.e. z > 0.

When evaluating the range, we need to keep in mind the following (starting with variable z):

- square root is always positive or 0, so $\sqrt{z} \ge 0$;
- negative numerator usually reverse the inequality, and also this fraction can't be 0, so $\frac{-6}{\sqrt{z}} < 0$;
- absolute value is always positive or 0, so $\left| \frac{-6}{\sqrt{z}} \right| > 0$.

Hence, the range of this function is $(0, \infty)$.