Modelling Jakobshavn Isbrae Glacier

```
% First capture the geometry from shapefile - convert .shp (GIS) to .exp
cd '/Users/rishi/Desktop/ISSM/examples/Jakobshavn'
shp2exp('Jakobshavn.shp','Jakobshavn.exp');

% Use the .exp file to make the triangular mesh
md = triangle(model,'/Users/rishi/Desktop/ISSM/examples/Jakobshavn/
Jakobshavn.exp',2000);

% plot the mesh with the greenland bondary to observed its location
plotmodel(md,'data','mesh')
hold on
expdisp('/Users/rishi/Desktop/ISSM/examples/Helheim/GreenlandOutline.exp')
```


Interpolate observed surface velocities onto the current mesh

```
[velx, vely]=interpJoughinCompositeGreenland(md.mesh.x,md.mesh.y,...
    '/Users/rishi/Desktop/ISSM/examples/Data/');
vel = sqrt(velx.^2+vely.^2);
% Refine mesh based on surface velocitie s
md=bamg(md,'hmin',200,'hmax',1500,'field',vel,'err',5);
```

```
[md.mesh.lat,md.mesh.long] = xy2ll(md.mesh.x,md.mesh.y,+1,45,70);
md.mesh.epsg=3413;
% plot the mesh to check the triangle adjustment
plotmodel(md,'data','mesh')
```


Parameterization of the model

```
% Step - 1 Interpolate the datasets from the Bedmachine-Greenland-v5 md=setflowequation(md,'SSA','all'); % Set flow law to SSA for original 2d mesh md=setmask(md,'',''); md=parameterize(md,'/Users/rishi/Desktop/ISSM/examples/Jakobshavn/Greenland.par'); % can be used for any Greenland glacier
```

```
Interpolating mask
-- BedMachine Greenland version: v5
-- BedMachine Greenland: loading mask
-- BedMachine Greenland: interpolating mask
-- Interpolation method: nearest
  reading MC bed (assumes no floating ice)
-- BedMachine Greenland version: v5
-- BedMachine Greenland: loading bed
-- BedMachine Greenland: interpolating bed
```

```
    Interpolation method: cubic reading Howat surface
    BedMachine Greenland version: v5
    BedMachine Greenland: loading surface
    BedMachine Greenland: interpolating surface
    Interpolation method: cubic
    Adjusting ice mask
    reconstruct thickness reading velocities
    Creating flow law parameters (assume ice is at 0°C for now)
    Geothermal flux from Shapiro et al.
    Setting up thermal model
    Set Boundary conditions
```

```
md.miscellaneous.name = 'Jacob';

% Plot the parameters interpolated from the input data
plotmodel(md,'data', ...
    md.initialization.temperature,'title','Temp', ...
    'data', md.initialization.vel,'title','Velocity', ...
    'data',md.geometry.thickness,'title','Thickness', ...
    'data',md.geometry.bed,'title','Bed')
```


Model parameterters for running ISSM - Greenland

```
%Control general
md.inversion=m1qn3inversion(md.inversion);
md.inversion.iscontrol=1;
```

```
md.verbose=verbose('solution', false, 'control', true);
md.transient.amr_frequency = 0;
%Cost functions
md.inversion.cost_functions=[101 501];
md.inversion.cost functions coefficients=zeros(md.mesh.numberofvertices,2);
md.inversion.cost_functions_coefficients(:,1)=50;
md.inversion.cost functions coefficients(:,2)= 2e-9;
pos=find(md.mask.ocean_levelset<0 | md.mask.ice_levelset>0);
md.inversion.cost_functions_coefficients(pos,1:2)=0;
md.stressbalance.spcvx(pos)=md.initialization.vx(pos);
md.stressbalance.spcvy(pos)=md.initialization.vy(pos);
%Controls
md.inversion.control_parameters={'FrictionCoefficient'}; % parameters to
md.inversion.maxsteps=100; % maximum steps of inversion
md.inversion.maxiter =100; % maximum iterations
md.inversion.min parameters=0.05*ones(md.mesh.numberofvertices,1);
md.inversion.max_parameters=300*ones(md.mesh.numberofvertices,1);
md.inversion.control scaling factors=1;
%Additional parameters
md.stressbalance.restol= 0.01:
md.stressbalance.reltol= 0.1;
md.stressbalance.abstol= NaN;
md.initialization.pressure=zeros(md.mesh.numberofvertices,1);
%Go solve
md.cluster=generic('name',oshostname,'np',4);
md=solve(md,'sb');
uploading input file and queuing script
launching solution sequence on remote cluster
Ice-sheet and Sea-level System Model (ISSM) version 4.24
(website: http://issm.jpl.nasa.gov forum: https://issm.ess.uci.edu/forum/)
call computational core:
  Initialize M10N3 parameters
  Computing initial solution
```

Iter	Cost	function	Grad. norm	List of contributions
1	f(x)=		0.585	146.4 5.341e-35
2	f(x)=	48.118	0.0936	48.12 6.481e-05
3	f(x)=	39.301	0.0683	39.3 8.449e-05
4	f(x)=	23.388	0.0564	23.39 0.0001908
5	f(x)=	16.65	0.0424	16.65 0.0004199

6	f(x)=	13.318	0.025	13.32 0.0004927
7	f(x)=	11.067	0.0248	11.07 0.0006574
8	f(x)=	10.308	0.0136	10.31 0.0007298
9	f(x)=	9.4613	0.00765	9.46 0.0008889
10	f(x)=	9.0675	0.00788	9.067 0.0009839
11	f(x)=	8.1679	0.00833	8.167 0.001214
12	f(x)=	7.8309	0.0124	7.83 0.001363
13	f(x)=	7.5189	0.00442	7.518 0.001307
14	f(x)=	7.3684	0.00328	7.367 0.001304
15	f(x)=	7.133	0.00329	7.132 0.001375
16	f(x)=	6.9404	0.00514	6.939 0.001483
17	f(x)=	6.772	0.00353	6.77 0.001617
18	f(x)=	6.6769	0.00254	6.675 0.001708
19	f(x) =	6.5379	0.00203	6.536 0.001894
20	f(x)= f(x)=	6.4532 6.327	0.00178 0.00211	6.451 0.001988 6.325 0.002298
22	f(x) =	6.2824	0.00211	6.28 0.002354
23	f(x) =	6.2462	0.00152	6.244 0.002459
24	f(x) =	6.1828	0.003	6.18 0.002673
25	f(x) =	6.1676	0.00161	6.165 0.002713
26	f(x) =	6.1373	0.0016	6.134 0.002905
27	f(x) =	6.1142	0.00158	6.111 0.003017
28	f(x)=	6.0805	0.000915	6.077 0.003296
29	f(x)=	6.0639	0.000982	6.061 0.003409
30	f(x)=	6.038	0.00126	6.034 0.00367
31	f(x)=	6.0127	0.00101	6.009 0.003892
32	f(x)=	6.0019	0.000758	5.998 0.004067
33	f(x)=	5.9844	0.000699	5.98 0.004286
34	f(x)=	5.9704	0.000744	5.966 0.004424
35	f(x)=	5.9559	0.000639	5.951 0.004623
36	f(x)=	5.943	0.000549	5.938 0.004784
37	f(x)=	5.9305	0.000879	5.925 0.005049
38	f(x)=	5.9214	0.000562	5.916 0.005105
39	f(x)=	5.9104	0.000507	5.905 0.005321
40	f(x)=	5.9014	0.000552	5.896 0.005427
41	f(x)=	5.8906	0.000644	5.885 0.005663
42	f(x) =	5.8863 5.8811	0.000418	5.881 0.00564
44	f(x)= f(x)=	5.8759	0.000899 0.000495	5.875 0.006092 5.87 0.005927
45	f(x) =	5.8671	0.000493	5.861 0.006157
46	f(x) =	5.8626	0.000337	5.856 0.006187
47	f(x) =	5.8601	0.00054	5.854 0.006294
48	f(x) =	5.8583	0.000614	5.852 0.006398
49	f(x)=	5.8512	0.000429	5.844 0.006674
50	f(x)=	5.8433	0.000361	5.836 0.007038
51	f(x)=	5.8381	0.000352	5.831 0.007253
52	f(x)=	5.8346	0.000402	5.827 0.007391
53	f(x)=	5.8322	0.000265	5.825 0.007512
54	f(x)=	5.8305	0.000257	5.823 0.007567
55	f(x)=	5.8265	0.000415	5.819 0.007761
56	f(x)=	5.8215	0.000265	5.814 0.007882
57	f(x)=	5.8165	0.000275	5.808 0.008148
58	f(x)=	5.8125	0.000268	5.804 0.008247
59	f(x) =	5.809	0.000233	5.8 0.008508
60	f(x)= f(x)=	5.8055 5.8008	0.000268 0.000302	5.797 0.008684 5.792 0.008954
62	f(x) =	5.7987	0.000249	5.79 0.008958
63	f(x) =	5.7957	0.000249	5.786 0.009328
64	f(x) =	5.7921	0.000298	5.783 0.009084
65	f(x) =	5.7896	0.000230	5.78 0.009419
66	f(x) =	5.7842	0.000293	5.775 0.009428
67	f(x)=	5.7825	0.000206	5.773 0.009544
68	f(x)=	5.7821	0.00019	5.772 0.009591
69	f(x)=	5.7787	0.000306	5.769 0.009914
*	-	'		-

70	f(x) =	5.7754	0.000188	5.765	0.01006	- 1
71	f(x) =	5.7729	0.000186	5.763	0.01023	ł
72	f(x) =	5.7711	0.00010	5.761	0.01023	ł
73	f(x) =	5.7677	0.000317	5.757	0.01055	ł
74	f(x) =	5.7663	0.000317	5.756	0.01003	ł
1	f(x) =	5.7647	0.000134	5.754	0.01072	ł
75	,					ļ
76	f(x)=	5.7634	0.000186	5.753	0.01076	
77	f(x) =	5.7905	0.00166	5.779	0.0115	I
78	f(x)=	5.7706	0.000324	5.76	0.01085	I
79	f(x)=	5.7667	0.000223	5.756	0.0108	l
80	f(x)=	5.7652	0.000204	5.754	0.0108	l
81	f(x)=	5.7648	0.000199	5.754	0.0108	İ
82	f(x) =	5.7647	0.000197	5.754	0.01079	I
83	f(x)=	5.7646	0.000196	5.754	0.01079	İ
84	f(x)=	5.7646	0.000197	5.754	0.01078	İ
85	f(x)=	5.7646	0.000197	5.754	0.01078	İ
86	f(x)=	5.7646	0.000197	5.754	0.01077	İ
87	f(x)=	5.7646	0.000197	5.754	0.01077	i
88	f(x)=	5.7646	0.000197	5.754	0.01077	İ
89	f(x)=	5.7646	0.000197	5.754	0.01077	[
L				l		

stopped on dxmin during line search
preparing final solution
write lock file:

FemModel initialization elapsed time: 0.077556
Total Core solution elapsed time: 65.1295
Linear solver elapsed time: 45.1619 (69%)

Total elapsed time: 0 hrs 1 min 5 sec

Plot the oberved and modelled velocity with friction coefficient

```
plotmodel(md,'data', md.initialization.vel,'caxis#1',[0 8500],...
'data',md.inversion.vel_obs,'caxis#2',[0 8500],...
'data',md.results.StressbalanceSolution.FrictionCoefficient)
```


Calculate Mechanical properties of ice - Stress and Strain

```
md = mechanicalproperties(md, md.results.StressbalanceSolution.Vx, ...
    md.results.StressbalanceSolution.Vy);

% plot the stresses
plotmodel(md,'data',md.results.deviatoricstress.xx,'caxis#1',[-5e5
5e5],'title','Longitudinal Stress', ...
    'data',md.results.deviatoricstress.xy,'caxis#2',[-5e5
5e5],'title','Shear Stress', ...
    'data',md.results.deviatoricstress.yy,'caxis#3',[-5e5
5e5],'title','Transverse Stress')

colormap(brewermap(50,'RdBu'))
```


THERMAL STEADY STATE SOLUTION FOR GLACIER

```
% make the glacier layers for modelling
md=extrude(md,5,1.2);
md=setflowequation(md,'HO','all'); % Set flow law to HO for 3D mesh
md.thermal.fe = 'P1xP2';
md.inversion.iscontrol=0;

%Set single point constraints of surface temperature as boundary conditions
md.thermal.spctemperature(find(md.mesh.vertexonsurface))=...
    md.initialization.temperature(find(md.mesh.vertexonsurface));

%Initialize thermal paramertes
md.initialization.enthalpy = zeros(md.mesh.numberofvertices,1);
md.thermal.isdrainicecolumn=0;

%Run a steady state heat equation solution
md.timestepping.time_step=0;
md.cluster=generic('name',oshostname,'np',4);
md=solve(md,'thermal');
```

```
uploading input file and queuing script launching solution sequence on remote cluster

Ice-sheet and Sea-level System Model (ISSM) version 4.24
```

(website: http://issm.jpl.nasa.gov forum: https://issm.ess.uci.edu/forum/)

call computational core:

write lock file:

FemModel initialization elapsed time: 0.151572
Total Core solution elapsed time: 8.6457

Linear solver elapsed time: 5.53111 (64%)

Total elapsed time: 0 hrs 0 min 8 sec

%Put results back into the model
md.initialization.temperature=md.results.ThermalSolution.Temperature;
md.initialization.enthalpy=md.results.ThermalSolution.Enthalpy;
md.materials.rheology_B = cuffey(md.initialization.temperature);

% Plot the surface temperature and temperature in basal layer
plotmodel(md,'data', md.initialization.temperature,'layer#1',4,'data', ...
md.initialization.temperature,'layer#2',1, 'caxis#all',[255 275])

%Set thermal lateral boundary conditions on all ice that is entering the domain.

%No single point constraints should be set on ice flowing out of the domain % (i.e. ice sheet boundary or ocean locations) md.thermal.spctemperature(md.mesh.vertexonboundary & md.mask.ice_levelset<0)...

```
md.mask.ice_levelset<0);</pre>
%Turn off control for inversion
md.inversion.iscontrol=0;
md.timestepping.time_step=0;
md=solve(md,'ss');
uploading input file and queuing script
launching solution sequence on remote cluster
Ice-sheet and Sea-level System Model (ISSM) version 4.24
(website: http://issm.jpl.nasa.gov forum: https://issm.ess.uci.edu/forum/)
call computational core:
write lock file:
  FemModel initialization elapsed time:
                                      0.264745
  Total Core solution elapsed time:
                                      59.2983
  Linear solver elapsed time:
                                      46.8285 (79%)
  Total elapsed time: 0 hrs 0 min 59 sec
%Put results back into the model
%Save steady state results in intitalization temperature
md.initialization.temperature = md.results.SteadystateSolution.Temperature;
%Save steady state results in intitalization enthalpy
md.initialization.enthalpy = md.results.SteadystateSolution.Enthalpy;
%Call the cuffey function to calculate materials rheology_B and save it in
the model
md.materials.rheology_B = cuffey(md.initialization.temperature);
plotmodel(md, 'figposition', 'fullscreen', 'data',
md.initialization.temperature,...
'layer#1',4,'data',md.initialization.temperature,'layer#2',1,'caxis#all',
```

=md.initialization.temperature(md.mesh.vertexonboundary &

[255 275])


```
%Save the model in a temporary variable.
md3d=md:
%Collapse the new 3D model variable to 2D and save it in md.
md=collapse(md3d);
%Set the new flow equation to SSA for a 2D model
md=setflowequation(md,'SSA','all'); % Set flow law to SSA for original 2d
mesh
%Depth average the 3D model temperature, run the cuffey algorithm to
calcuate a new 2D rheology B
md.materials.rheology_B=cuffey(DepthAverage(md3d,md3d.results.SteadystateSol
ution.Temperature));
%Restrict the maximum rheology_B to 4*10^8
md.materials.rheology B(find(md.materials.rheology B>4*10^8))=4*10^8;
%Cost functions
md.inversion.cost_functions=[101 103 501];
md.inversion.cost_functions_coefficients=zeros(md.mesh.numberofvertices,3);
md.inversion.cost_functions_coefficients(:,1)=50;
md.inversion.cost_functions_coefficients(:,2)=3;
md.inversion.cost functions coefficients(:,3)= 1e-7;
pos=find(md.mask.ocean_levelset<0 | md.mask.ice_levelset>0);
md.inversion.cost functions coefficients(pos,:)=0;
```

```
md.stressbalance.spcvx(pos)=md.initialization.vx(pos);
md.stressbalance.spcvy(pos)=md.initialization.vy(pos);
%Controls
md.inversion.control_parameters={'FrictionCoefficient'};
md.inversion.maxsteps=100;
md.inversion.maxiter =100;
md.inversion.min_parameters=0.05*ones(md.mesh.numberofvertices,1);
md.inversion.max_parameters=300*ones(md.mesh.numberofvertices,1);
md.inversion.control_scaling_factors=1;
%Control general
md.inversion.iscontrol=1;
md.verbose=verbose('solution', false, 'control', true);
%Go solve
md.cluster=generic('name',oshostname,'np',4);
md=solve(md, 'sb');
uploading input file and queuing script
launching solution sequence on remote cluster
Ice-sheet and Sea-level System Model (ISSM) version 4.24
                                rum: https://issm.ess.uci.edu/forum/)
```

(website:	nttp://issm.jpt.nasa.gov	Torum:	nttps://issm
Initia	utational core: lize M1QN3 parameters ing initial solution		

Iter	Cost	function	Grad. norm	List of cor	ntributio	ons
1	f(x)=	424.78	0.881	143.3	281.4	2.671e-33
2	f(x)=	122.13	0.149	28.52	93.6	0.01364
3	f(x)=	94.315	0.102	23.6	70.7	0.01917
3 4	f(x)=	52.251	0.046	15.73	36.47	0.0428
5 6	f(x)=	37.172	0.0454	14.01	23.09	0.07496
6	f(x)=	28.671	0.0728	12.3	16.24	0.1216
7	f(x)=	23.635	0.0251	8.993	14.48	0.1594
8	f(x)=	21.911	0.0185	8.368	13.37	0.1734
9	f(x)=	19.034	0.0151	7.895	10.93	0.2079
10	f(x)=	17.526	0.0143	7.614	9.686	0.2263
11	f(x)=	16.149	0.0208	7.465	8.425	0.2585
12	f(x)=	15.041	0.0101	6.948	7.825	0.2686
13	f(x)=	14.498	0.00748	6.774	7.45	0.2736
14	f(x)=	13.732	0.0071	6.609	6.833	0.2901
15	f(x)=	13.29	0.0113	6.529	6.456	0.305
16	f(x)=	12.886	0.00713	6.406	6.162	0.3172
17	f(x)=	12.534	0.006	6.301	5.907	0.3263
18	f(x)=	12.251	0.00616	6.221	5.7	0.3307
19	f(x)=	11.861	0.00608	6.151	5.373	0.3375
20	f(x)=	11.592	0.00469	6.085	5.164	0.3439
21	f(x)=	11.429	0.00372	6.049	5.032	0.3483
22	f(x)=	11.223	0.00388	6	4.868	0.3542
23	f(x)=	11.043	0.00445	5.961	4.722	0.3596
24	f(x)=	10.889	0.00409	5.927	4.595	0.3667
25	f(x)=	10.811	0.00271	5.907	4.537	0.3677
26	f(x)=	10.695	0.00285	5.873	4.452	0.3699
27	f(x)=	10.587	0.0027	5.847	4.365	0.3742

```
28
     f(x) =
               10.453
                            0.00389
                                           5.825
                                                      4.25
                                                                0.378
               10.375
29
     f(x) =
                            0.00236
                                            5.8
                                                      4.189
                                                               0.3863
                                                               0.3857
30
     f(x) =
               10.353
                            0.00199
                                           5.802
                                                      4.166
     f(x) =
               10.272
                                           5.777
                                                                0.384
31
                            0.00176
                                                      4.111
32
     f(x) =
               10.226
                            0.00307
                                           5.769
                                                      4.073
                                                               0.3844
33
     f(x) =
               10.184
                            0.00172
                                            5.75
                                                      4.047
                                                               0.3872
34
     f(x) =
               10.146
                                           5.737
                                                      4.019
                                                               0.3893
                            0.00142
35
     f(x) =
               10.125
                                                               0.3907
                            0.00154
                                           5.734
36
     f(x) =
               10.051
                            0.00156
                                           5.714
                                                      3.941
                                                               0.3957
37
     f(x) =
               10.055
                            0.00402
                                           5.712
                                                      3.945
                                                               0.3984
38
     f(x) =
                                                      3.932
               10.032
                            0.00203
                                           5.703
                                                               0.3968
39
     f(x) =
               10.03
                            0.00154
                                           5.698
                                                      3.944
                                                               0.3879
40
     f(x) =
               12.904
                                           6.902
                                                               0.3793
                             0.0282
                                                      5.622
     f(x) =
41
               9.9843
                            0.00225
                                           5.673
                                                      3.923
                                                               0.3889
42
     f(x) =
                9.973
                            0.00146
                                           5.676
                                                      3.904
                                                               0.3925
               9.9591
43
     f(x) =
                           0.000965
                                           5.678
                                                      3.891
                                                                 0.39
44
     f(x) =
               9.9476
                           0.000952
                                           5.678
                                                      3.883
                                                               0.3867
45
     f(x) =
               9.9137
                            0.00106
                                           5.672
                                                      3.866
                                                               0.3759
     f(x) =
46
                9.896
                            0.00199
                                           5.672
                                                      3.858
                                                               0.3658
47
     f(x) =
               9.8806
                            0.00112
                                           5.665
                                                      3.851
                                                               0.3649
48
     f(x) =
               9.8753
                            0.00162
                                           5.667
                                                      3.847
                                                               0.3618
                                                               0.3617
49
     f(x) =
               9.8777
                                                      3.846
                            0.00149
                                            5.67
50
     f(x) =
               9.8814
                            0.00192
                                           5.674
                                                      3.846
                                                               0.3618
51
     f(x) =
                9.884
                            0.00195
                                           5.676
                                                      3.846
                                                               0.3618
52
     f(x) =
                                           5.676
               9.8846
                                                      3.847
                            0.00197
                                                               0.3618
53
     f(x) =
               9.8853
                            0.00201
                                           5.677
                                                      3.847
                                                               0.3618
54
     f(x) =
               9.8861
                            0.00205
                                           5.677
                                                      3.847
                                                               0.3618
55
     f(x) =
               9.8867
                            0.00208
                                           5.678
                                                      3.847
                                                               0.3618
56
     f(x) =
               9.8871
                                           5.678
                                                      3.847
                                                               0.3618
                             0.0021
57
     f(x) =
               9.8874
                            0.00211
                                           5.678
                                                      3.847
                                                               0.3618
58
     f(x) =
               9.8876
                            0.00212
                                           5.678
                                                      3.847
                                                               0.3618
     f(x) =
               9.8878
                            0.00213
                                                      3.847
                                           5.679
                                                               0.3618
```

stopped on dxmin during line search
preparing final solution
write lock file:

FemModel initialization elapsed time: 0.06634
Total Core solution elapsed time: 43.5056
Linear solver elapsed time: 30.2389 (70%)

Total elapsed time: 0 hrs 0 min 43 sec

```
%Put results back into the model
md.friction.coefficient=md.results.StressbalanceSolution.FrictionCoefficient
;
md.initialization.vx=md.results.StressbalanceSolution.Vx;
md.initialization.vy=md.results.StressbalanceSolution.Vy;
md.initialization.vel=md.results.StressbalanceSolution.Vel;
md.stressbalance.spcvx(pos)=nan;
md.stressbalance.spcvy(pos)=nan;
```

```
% Plot the surface velocity and basal friction
plotmodel(md,'data', md.initialization.vel,'title','Intialized Velocity',
...
'data',md.inversion.vel_obs,'title','Inverted Velocity','caxis#all',[0
8500])
```


Plot other variables

```
plotmodel(md,'data',
md.results.StressbalanceSolution.FrictionCoefficient,'title','Friction
Coefficient',...
'data',md.materials.rheology_B,'title','Rheology (B)')
```

