

4. 原子半径とイオン半径

原子の「半径」には、いくつかの種類がある。

- ■ファンデルワールス半径 結合を作っていない原子同士が近づける距離。
- 共有結合半径 & 金属結合半径 共有結合、または金属結合を作っている原子間の距離
- イオン半径 イオン同士が近づける距離

4. 原子半径とイオン半径

(1) 原子半径

- ① ファンデルワールス半径
 - 原子間に結合が無いときの最近接距離の半分
 - ●。原子間距離 <ファンデルワールス半径の和

原子間に結合が無い

表2.5 ファ	ンデルワー	ルス半径(A)	(pp. 43)

H 1.20									Не	1.40
	C	1.70	N	1.55	0	1.52	F	1.47	Ne	1.54
		2.10								
	Ge	2.10	As	1.85	Se	1.90	Br	1.85	Kr	2.02
		2.17				2.06				

4. 原子半径とイオン半径

ファンデルワールス半径は、何で決まるのか?

原子の電子同士が強く反発する距離 → 原子の一番外側、最外殻電子の広がりで決まる。

最外殻電子が遠くまで広がる → 半径が大きい

最外殻電子が原子核に近い → 半径が小さい

と予想することができる。

4. 原子半径とイオン半径

では、最外殻電子の広がりは何で決まるのか?

- → 最外殻の主量子数と有効核電荷と考えることができる
- 1. 主量子数が大きい = 原子核から遠い軌道
 - 周期表を下がると、最外殻の電子配置は同じで 最外殻の主量子数だけ増える。

例) C: 1s²2s²2p², Si: 1s²2s²2p⁶3s²3p²

- 2. 有効核電荷が大きい = 原子核に強く引っ張られる
 - 同じ周期なら、右にいくほど最外殻電子からみた 有効核電荷が大きい。
 - 同じ軌道なら、最外殻電子からみた有効核電荷が大きいほど原子は小さい。

例) C: 3.25, N: 3.90, O: 4.55, F: 5.20

4. 原子半径とイオン半径

共有結合半径、金属結合半径

結合している原子同士は、最外殻電子を一部共有 → ファンデルワールス半径よりもっと近づける

結合に使われている最外殻電子は、両方の原子の軌道に広がって存在する。反発が減り、もっと近づける。

- 共有結合: 隣の原子との間で電子を共有
- 金属結合:金属の塊全体で電子を共有 (電子は広い範囲で広がる)

4. 原子半径とイオン半径

- (1)原子半径
- ② 共有結合半径

- 同じ原子が単結合で共有結合した分子の核間距離の半分 多重結合半径<共有結合半径
- 「異なる2原子の共有結合半径の和=原子間結合距離」が成立するように決定 化合物によって結合距離は多少異なるため

同周期元素:族番号が増えると半径は収縮

(Z*の増加、希ガスは除く)

同族元素 : 周期

: 周期番号が増えると半径は増大

(nの増加により核から離れた分布)

③ 金属結合半径 金属結晶中の原子間距離から半径を求める

4. 原子半径とイオン半径

演習問題1

第3周期と第4周期の13族では共有結合半径はあまり変化しない 理由を考えてみよう。

第3周期13族AI < 第4周期13族Ga (0.13 nm) (0.12 nm)

直前にd ブロックが挟まるため、 最外殻電子からみた有効核電荷が増えて 原子が小さくなる

第4周期3d軌道の電子の遮へい効率:低 動径密度分布は外側

Z*の増加による4p軌道の束縛が大

表2.6 共有結合半径 (上段, A) (教科書 pp. 44)

H 0.37		第13族														
Li 1.34 1.57	0.00000											B 0.90		N 0.75	0,73	F 0.71
1,54	Mg 1.45 1.60	第4周期										Al 1.30 1.43	SI 1.18	P 1.10	5 1.02	0.3
1.96	Ca 1.97			300							1,20	Ga 1.20 1.41	1.22	1.22	1,17	1.14
Rb	_			_	=	_	_		_	0	_	In	Sn	5h	Te 1.35	1
	_		_		_	_	_	_	_			1,67 T1	1,58	1.45		
												1.71	133			
La 1.88	ALC: UNKNOWN											Tm 1.75				
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	CI	Es	Fm	Md	No	Lr		
The same of		1,64	1.54	1.55	1.59	1.73	1.74	1.70	1.86	1.85						L

4. 原子半径とイオン半径

イオン半径

陽イオン(カチオン)と陰イオン(アニオン)で大きく異なる。

陽イオン:原子から、(最外殻)電子が引き抜かれたもの

- → 電子同士の反発(=遮蔽)が減る
 - → 有効核電荷が増える
 - → 引力が増え、小さくなる

価電子が全部引き抜かれたイオンの場合(例えば、Ca2+、Al3+など)

- → 最外殻が一つ下の主量子数の軌道に (Ca:4s → Ca²⁺:3p、Al:3p → Al³⁺:2p)
 - → 主量子数が小さい軌道は、一段小さい
 - → 原子のサイズは小さくなる

陽イオン(カチオン)は、元の原子より小さい

4. 原子半径とイオン半径

陰イオン:原子に電子を付け加えたもの

- → 他の最外殻電子との反発(遮蔽)が増える
 - → 有効核電荷が減る
 - → 引力が減り、大きくなる

4. 原子半径とイオン半径

(2) イオン半径

イオン結晶:最近接イオン間距離=両イオン半径の和

(仮定)

掲イオン 陰イオン

r:両イオン問品短距離(実別値)

7*: 鶏イオン半径(計算値)

た: 随イオン半径(A)算値)

X線回折測定より イオン間の距離を 決定

成分イオンに半径を割り当て

基準: O2-(配位数 6) のイオン半径 (0.140 nm)

(Shannonの値)

大学の無機化学 理科年表 0 126 nm

配位数:イオンを取り囲む反対電荷の数

増加 一 イオン間距離増大 一 イオン半径増大

(配位イオン間の反発)

例えば、O2-(配位数:4)のイオン半径は、0.124 nm

4. 原子半径とイオン半径

(2) イオン半径

陽イオン半径<原子半径 Z*の増大による電子雲の収縮

陰イオン半径>原子半径 > Z*の減少+電子間反発による電子雲の膨張

同一元素 正電荷が大きいほど小

S 2-: 0.170 nm, 0: 0.102 nm, 4+: 0.051 nm, 6+: 0.043 nm

表2.7 典型元素のイオン半径(A) (pp. 46)

Li ⁺ 0.90 0.73(4)	Be ²⁺ 0.59 0.41(4)	B ³⁺ 0.41 0.25(4)	C' 0.30 0.29(4)	N ³⁻ 0.30 N ³⁻ 1.32(4) N ⁵⁻ 0.27	O ² 1.26 1.24(4)	F-1.19 1.17(4)
Na* 1.16 1.13(4)	Mg ²⁺ 0.86 0.71(4)	Al ³⁺ 0.675 0.53(4)	Si ⁴⁻ 0.540 0.40(4)	P ³⁺ 0.58 P ⁵⁺ 0.52 0.31(4)	S ²⁻ 1.70 S ⁴⁺ 0.51 S ⁶⁺ 0.43	Cl ⁻ 1.67 Cl ⁷⁺ 0.22(4)
K+1.52	Ca ³⁺ 1.14	Ga** 0.760	Ge ⁴ 0.670	As ³⁺ 0.72	Se ²⁻ 1.84	Br 1.82
1.65(8)	1.26(8)	0.61(4)	0.530(4)	As ⁵⁺ 0.60	Se ⁴⁻ 0.64	Br 0.39(4)
Rb+1.66	Sr ²⁺ 1.32	In ³ * 0.94	Sn** 0.83	Sb ³⁺ 0.90	Te ³⁻ 2.07	I-2.06
1.75(8)	1.40(8)	0.76(4)	0.69(4)	Sb ⁵⁺ 0.74	Te ⁴⁻ 1.11	I'+0.56(4)
Cs* 1.81	Ba ²⁺ 1.49	T1 ³⁺ 1.025	Pb ⁴⁺ 0.915	Bi ³⁺ 1.17	Po ⁴⁺ 1.08	At*- 0.76
1.88(8)	1.56(8)	T1 ⁺ 1.64	Pb ²⁺ 1.33	Bi ⁶⁺ 0.90	Po ⁶⁺ 0.81	

カッコ内の数値は配位数を示す。カッコがついていない場合は6配位。

4. 原子半径とイオン半径

(3) イオン半径

同電子配置イオン

第2周期 Li+ (0.076 nm) > Be2+ (0.045 nm) > B3+ (0.027 nm) > C4+ (0.016 nm)

 $O^{2-}(0.140 \text{ nm}) > F^{-}(0.133 \text{ nm})$ 6配位

4配位 N³⁻ (0.146 nm) > O²⁻ (0.138 nm) > F⁻ (0.131 nm)

表2.7 典型元素のイオン半径(A) (pp. 46)

Li ⁺ 0.90 0.73(4)	Be ²⁺ 0.59 0.41(4)	B ³⁺ 0.41 0.25(4)	C ⁴⁺ 0 30 0.29(4)	N ³⁻ 0.30 N ³⁻ 1.32(4) N ⁵⁺ 0.27	O ² 1.26 1.24(4)	F-1.19 1.17(4)
Na 1.16 1.13(4)	Mg ²⁻ 0.86 0.71(4)	Al ³⁺ 0.675 0.53(4)	Si ⁴⁺ 0.540 0.40(4)	P ³⁺ 0.58 P ⁵⁺ 0.52 0.31(4)	S ²⁻ 1.70 S ⁴⁻ 0.51 S ⁶⁺ 0.43	Cl ⁻ 1.67 Cl ⁷⁺ 0.22(4)
K+1.52 1.65(8)	Ca ²⁺ 1.14 1.26(8)	Ga* 0.760 0.61(4)	Ge ⁴⁺ 0.670 0.530(4)	As ³⁺ 0.72 As ⁵⁺ 0.60	Se ² - 1.84 Se ⁴ - 0.64	Br 1.82 Br 0.39(4)
Rb* 1.66 1.75(8)	Sr ²⁺ 1.32 1.40(8)	In ³⁺ 0.94 0.76(4)	Sn4+ 0.83 0.69(4)	Sb ³⁺ 0.90 Sb ⁵⁺ 0.74	Te ² 2.07	1-2.06 1-0.56(4)
Cs* 1.81	Ba ²⁺ 1.49 1.56(8)	Tl ^{a+} 1.025 Tl ^a 1.64	Pb ⁴⁺ 0.915 Pb ²⁺ 1.33	Bi ³⁺ 1.17 Bi ⁵⁺ 0.90	Po* 1.08 Po* 0.81	

カッコ内の数値は配位数を示す。カッコがついていない場合は

4. 原子半径とイオン半径

(4) イオン半径

同周期·同電荷

族番号が増加するほど減少 Z*の増大

同族 · 同電荷

▶ 周期番号が増加するほど増大 外殻軌道(価電子)の主量子数nが増大

両方とも他の原子半径と同じ理由・挙動

表2.7 典型元素のイオン半径(A) (pp. 46)

Li+0.90 0.73(4)	Be ²⁺ 0.59 0.41(4)	B ³⁺ 0,41 0.25(4)	C ⁽⁺ 0.30 0.29(4)	N ³⁻ 0.30 N ³⁻ 1.32(4) N ⁵⁺ 0.27	O ² 1.26 1.24(4)	F-1.19 1.17(4)
Na* 1.16 1.13(4)	Mg ²⁺ 0.86 0.71(4)	Al ³ - 0.675 0.53(4)	Si ⁴⁻ 0.540 0.40(4)	P ³⁻ 0.58 P ⁵⁻ 0.52 0.31(4)	St+ 0.51 St+ 0.43	Cl ⁻ 1.67 Cl ⁷⁺ 0.22(4)
K+1,52	Ca ²⁺ 1.14	Ga ^{s-} 0.760	Ge ⁴ - 0.670	As ³⁺ 0.72	Se ²⁻ 1.84	Br 1.82
1,65(8)	1.26(8)	0.61(4)	0.530(4)	As ⁵⁺ 0.60	Se ⁴⁻ 0.64	Br 0.39(4)
Rb+ 1.66	Sr ²⁺ 1.32	In ³⁺ 0.94	Sn ⁴⁺ 0.83	Sb ³⁺ 0.90	Te ³ 2.07	I-2,06
1.75(8)	1.40(8)	0.76(4)	0.69(4)	Sb ⁵⁺ 0.74	Te ⁴ 1.11	I'+ 0.56(4)
Cs 1.81	Ba ²⁺ 1.49	Tl ²⁺ 1.025	Pb ⁴⁻ 0.915	Bi ³⁻ 1.17	Po** 1.08	At7+ 0.76
1.88(8)	1.56(8)	Tl ⁻ 1.64	Pb ²⁻ 1.33	Bi ⁵⁻ 0.90	Po** 0.81	

カッコ内の数値は配位数を示す。カッコがついていない場合は6配位。

5. 結合エネルギー

(1) 定義

分子A-Bの結合を切断するのに必要なエネルギー

結合エネルギー大 結合力が強い

分子ABの解離

実用:25°Cでの結合解離エンタルピー△H^Φ

化合物の平均単結合エネルギーを使用

(例) H₂O → 2H + O (解離反応)

H₂O → OH + H (開裂反応): 494 kJ/mol

(開裂反応): 424 kJ/mol $OH \rightarrow O + H$

O-Hの結合エネルギー : 平均459 kJ/mol

5. 結合エネルギー

- (2) 典型元素の傾向
- ① 典型元素の同核原子間結合 共有結合

同族では周期番号が増加するほど小

同周期では、明確な傾向は無い

原子径:大

-

結合距離: 增大

原子価軌道:広

軌道の重なり:減少

第2周期15-17族 (N, O, F)は例外

原子径:小

孤立電子対間の 静電反発→大

分子軌道法で議論

5. 結合エネルギー

孤立電子対(非共有電子対)は、むき出しの負電荷

結合の電子対:2つの核(正電荷)に挟まれている。 核の電荷と合わさる事で、外部への影響は小さい。

孤立電子対:1つの核だけからの引力 反対側は負電荷がむき出しのため、 近くに来た電子とは強く反発する。

5. 結合エネルギー

孤立電子対を持つ原子同士が結合すると、むき出しの負電荷同士が強く反発する。

→ 結合が不安定になる(結合が弱くなる)

5. 結合エネルギー

第15族(窒素等): 価電子5. 結合3本 + 孤立電子対1 第16族(酸素等): 価電子6. 結合2本 + 孤立電子対2 第17族(フッ素等): 価電子7. 結合1本 + 孤立電子対3 このため, N, O, Fの間の結合はかなり弱い。

ただし、周期表の下では原子が大きくなり、結合が伸びる。

- → 孤立電子対同士が遠ざかり反発が弱まる。
- → 結合もそんなに不安定化しない。

第二周期の非共有電子対を持つ原子(N、O、F)と、他の非共有電子を持つ原子の間の「単結合」は弱い。(N-N, N-Cl, O-O, F-F, N-O, O-F など)

第三周期以降になると、結合が伸びて反発が弱まるのでこの効果は効かなくなる。

(P-P, P-CI, S-S, CI-CI, P-O, S-Fなど)

Ⅱ元素の性質

5. 結合エネル

- (2) 典型元素の傾向
- ② 典型元素の異核原子間結合

A-B間の単結合エネルギーン A-A間, B-B間の単結合エネルギーの平均値

A, Bの電気陰性度の差によるイオン結合性の付加

(例) C-CI結合E (326 kJ/mol) > 平均值 (相乗 290 kJ/mol, C-C: 347 kJ/mol, Cl-Cl: 242 kJ/mol

A固定+B同族で周期番号増加

結合E→小

(例) ハロゲン化水素

原子径:大

結合距離: 增大

軌道の重なり:減少

電気的に陽性

原子価軌道:広

軌道の重なり:減少

表2.	9 原	子間(の単結	合工:	ネルキ	- (J/mol) (pp. 48	3)				
											F			
H	436	414	318	285	389	326	297	459	347	317	569	432	366	298