NUME:	
PRENUME:	
GRUPA:	

INSTRUCŢIUNI

- 1. Toate problemele sunt obligatorii.
- 2. Problemele vor fi rezolvate pe coli de hârtie numerotate corespunzător, menţionându-se explicit numărul problemei şi subpunctul acesteia.
- 3. Pe prima pagină a rezolvării fiecarei probleme, vor fi scrise **cu litere de tipar** numele şi prenumele studentului, precum şi grupa acestuia.
- 4. Fiecare problemă trebuie să aibă cel puţin o pagină alocată rezolvării sale chiar dacă respectiva problemă nu se poate rezolva.
- 5. TIMP DE LUCRU: 150 minute, i.e. 11:00-13:30.
- 6. Rezolvările problemelor corespunzătoare acestui examen vor fi trimise prin email:
 - ca fișier PDF, împreună cu fișierul cu subiectele examenului la adresa liviu.marin@fmi.unibuc.ro (Prof. dr. Liviu MARIN);
 - vor avea următoarea linie de subiect:
 Examen AnNum Nume si prenume student, Grupa 3XX
- 7. Termenul limită de trimitere prin email a rezolvărilor problemelor: joi, 28 ianuarie 2021, orele 14:00.

Analiză Numerică Examen – Anul III – Subiectul#17

- I. Fie A > 0 și funcția $\phi(x) = 2x Ax^2$.
 - (a) Arătaţi că dacă metoda iterativă de punct fix asociată funcţiei ϕ converge către o limită nenulă, atunci această limită este 1/A.
 - (b) Determinați o vecinătate a lui 1/A pentru care metoda iterativă de punct fix asociată funcției ϕ converge dacă aproximarea inițială x_0 se găsește în această vecinătate.
- II. Fie $f: \mathbb{R} \longrightarrow \mathbb{R}$, $x \in \mathbb{R}$ fixat și nodurile echidistante $x_0 = x$, $x_1 = x + h$ și $x_2 = x + 2h$, unde h > 0.
 - (a) Determinați polinomul de interpolare Lagrange, $P_2 \in \mathbb{P}_2$, asociat funcției f și nodurilor de interpolare x_0, x_1 și x_2 .
 - (b) Dacă $f \in C^3[x_0, x_2]$, aplicați teorema de interpolare Lagrange pentru f(y) și $P_2(y)$, unde $y \in [x_0, x_2]$.
 - (c) Folosind (a) şi (b), determinați formula de aproximare cu diferențe finite ascendente pentru f'(x) şi ordinul său de aproximare.
- III. (a) Fie $I(f)=\int_0^2 f(x)\,\mathrm{d}x$. Dacă $I_1(f)=4$ și $I_2(f)=2$, determinați f(1).
 - (b) Fie $I(f) = \int_0^2 f(x) dx$. Dacă $I_0(f) = 4$ și $I_1(f) = 5$, determinați $I_2(f)$.
- IV. Fie funcția pondere $w:(-1,1)\longrightarrow \mathbb{R}, \ w(x)=1.$
 - (a) Folosind procedeul Gram-Schmidt, determinați polinoamele ortogonale în raport cu produsul scalar din $L_w^2(-1,1)$, $\{L_0,L_1,L_2\}\subset \mathbb{P}_2$ (polinoamele Legendre).
 - (b) Determinați cea mai bună aproximare polinomială $p_2 \in \mathbb{P}_2$ a funcției

$$f: [-1,1] \longrightarrow \mathbb{R}, \quad f(x) = \left\{ \begin{array}{ll} 0, & x \in [-1,0) \\ 1, & x \in [0,1]. \end{array} \right.$$