B.Sc (HONS.) IN CSE SECOND YEAR, FOURTH SEMESTER EXAMINATION, 2020

DATABASE MANAGEMENT SYSTEM

[According to the New Syllabus]

Subject Code: 520221

Examination Code: 5614

Time—3 hours

Full marks-80

ns.]

<u></u>	M	arks
1. (a)	Define DBMS. Write down the goals of DBMS.	4
/ /gb)	Discuss the differences between a typical file processing system and DBMS.	4
JC)	Explain the differences between physical and logical data independence. Define instance and schema.	. 6
(A)	What do you mean by data model? Describe E-R model with an example.	6 ~
Z.=(a)	Differentiate between Hierarchical data model and Relational data model.	5
(6)	What is DBA stand for? Describe the responsibilities of DBA.	5
(k)	Describe mapping cardinalities with diagram.	. 5
(9)	What is key? Discuss different types of key with example.	5
B. (6)	Explain the basic structure of an SQL expression.	4
(6)	What do you mean by aggregate functions? Describe briefly.	4
(c)	Considerate C. Herring relation selection	4=12
	Branch-schema=(branch name, branch-city, assets)	12
,	Customer-schema=(customer-id, customer-name, customer-street, customer-city)	
	Loan-schema=(loan-no, branch-name, amount)	
/	Borrower-schema=(customer-name, loan-no)	
	Account-schema=(account-no, branch-name, balance)	
	Depositor-schema=(customer-name, account-no)	
	Write an SQL expression to express each of the following queries:	
,	(i) Find the names of all branches in the loan relation.	
	(ii) Find all customers who have both a loan and an account at the bank.	
	(iii) Delete all of Smith's account records.	
	(iv) Increase all balances by 5 percent.	

[Please turn over

			Marks
4.	(a)	Why data Integrids rules are used?	5
	(b)	What is normalization? How normalization can be accomplished?	5
	(c)	Explain assertion with example.	5
	(d)	What is database security? How can we protect a database?	5
5.	(a)	What do you mean by functional dependency? Describe with example.	4
	<i>(b)</i>	What is Armstrong's Axioms rule? Write down the procedure to compute F ⁺ using Armstrong's axioms.	: 6
	(c)	Let a schema R = (A, B, C, G, H, I) and the set F of functional	5
		dependencies	
		$\{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$	
		Find several members of F ⁺ .	
	(d)	Describe 3NF with example.	5
6.	(Gi)	Explain basis notations used in E-R diagram.	4
,	(h)	What is a entity? Differentiate between weak entity and strong	g 6
	,	entity.	
	(c)	Explain concurrency control with example.	4
	(A)	Differentiate between centralized and distributed database	6
/	/	management system.	

B.Sc (HONS.) IN CSE, PART-II, FOURTH SEMESTER EXAMINATION, 2020 MICROPROCESSOR AND ASSEMBLY LANGUAGE

[According to the New Syllabus]

Subject Code: CSE-520223

Examination Code: 5614

Time-3 hours

Full marks—80

[N.B. The figures in the right margin indicate full marks. Answer any four questions.]

	questions.]	
		Marks
1. (g)	Write down some important features of 8, 16, 32 bit microprocessor.	6
Js)	Explain BIU and EU of 8086 microprocessor with block diagram.	7
(c)	Distinguish between accumulator-based and register-based microprocessor.	4
my (A)	What are the advantages of assembly language in comparison with high level language?	3
2. (4)	Define physical address and logical address. Describe logical to physical address translation process of 8086 with example.	2+4=6
(b)	Discuss the condition flags of 8086.	5
	What physical address is represented by— (i) 3A23: CD45H (ii) FB6A: 53D6H	4
(d)	What is macro? Write an assembly language program to display a message five times using macro.	1+4=5
3. <i>(a)</i>	Write down the key properties of semi conductor memory.	4
<i>(b)</i>	How does SDRAM differ from ordinary DRAM?	4
(c)	Design a memory 16K×8 using 4K×4chip.	. 4
(d)	What do you mean by Error correcting lode? Explain with diagram of the Hamming Error correcting lode.	2+6=8

[Please turn over

			Marks
4.	Ø	What do you know about maskable and non-maskable interrupt?	4
	<i>(b)</i>	Describe 8259A interrupt controller with block diagram.	6
	(9)	Distinguish between hardware and software interrupt.	4
	/ _(d)	Write an assembly language program to display all English alphabets.	6
ß.	(a)	Define machine cycle and instruction cycle.	4
	(y)	Describe the operation that on 8086 processor will perform	6
	/	when it executes each of the following instruction:	
		MOV BX, O3FFH	
		MOV AL, ODBOH	
		(M) MOV DH, CL	
	(g)*	Explain the functional units of 80386 microprocessor with necessary diagram.	6
-	(d)	Discuss the main features of CISC processor.	4
6.	(a)	What is register? Explain the register organization of 1 Pentium processor.	+4=5
	(b)	Explain the major sections of an assembly program.	5
	(c)	Write an assembly language program to calculate the factorial of a positive integer number.	5
	(d)	Describe interrupt handling procedure	_

B.SC (HONS) IN CSE, SECOND YEAR, FOURTH SEMESTER EXAMINATIN, 2020

DESIGN AND ANALYSIS OF ALGORITHMS

Subject Code: 520225

Examination Code: 5614

[According to the New Syllabus]

Time-3 hours

Full marks-80

[N.B. The figures in the right margin indicate full marks. Answer any four questions]

	,	four questions.]	
			Marks
1. 6	d	Define an algorithm. What are the various properties of an	1+3
/	/	algorithm.	=4
, a	B)	What is asymptotic notation? Describe different types of	6
	-/	asymptotic notation with example.	
(OF	Explain the time and space complexity of an algorithm.	5
1	dr	Prove that best case complexity of quick sort algorithm is	5
/	/ /	$O(n \log_2 n)$.	
1	<i>(</i>)		2+2
<i>f</i> . ((a)	State the control abstraction of divide conquer technique. What	=4
		kinds of problems can be best solved using divide and conquer method.	,
	(h)	Write down the complexity of a sorting algorithms.	. 5
	(v) CX	Simulate the binary search algorithm using the following set of	5
	9	numbers:	
		20, 25, 27, 32, 40, 50, 72, 83, 91 to find 83.	
	(d)	Write down an algorithm to find the maximum and minimum	6
_ '		number from a given set of numbers.	
13. 1	6	Draw the minimum cost spanning tree for the following graph	6
/ /		(Using Kruskal's algorithm):	
,		\mathbb{B}_{3} \mathbb{P}_{3}	
		6 / 1	
		(A) 12 (H)	
		\bigcirc	
		4 / 8	
		(C)—(E)—(G)	
	,	5 6 4	14: ;
(bf	Find the optimal solution of Knapsack problem where $M = 15$,	6
/		$(p_1, p_2, p_3,, p_7) = (10, 5, 15, 7, 6, 18, 3)$ and $(w_1, w_2, w_3,,$	
/		W_7) = (2, 3, 5, 1, 4, 1, 2).	100
	,		3
9	R)	Write down the difference between greedy method and dynamic	3
	,	programming.	5
8	(d)	What is control abstraction? Describe the general approach of	3
		greedy method using control abstraction.	
,			

(d) What do you mean birnary search tree and optimal binary search tree?	4
\$. (a) Define binary tree. How can we traverse a binary tree?	4
Differentiate between BFS and DFS tree traversal techniques.	4
(c) Define forward checking. Write down the solution steps of N queen problem.	6
Define sum of subset problem. Explain sum of subset problem with proper example.	6
6. (a) What is branch and bound algorithm? Write down the working principle of branch and bound algorithm with example.	6
Differentiate between 'Branch & Bound' and 'Backtracking' algorithm techniques.	4
Define travelling salesman problem (TSP). Explain TSP in the concepts of branch and bound technique with proper example.	6
(d) Describe least cost search (LCS).	4

B.Sc (HONS.) IN CSE PART-II FOURTH SEMESTER EXAMINATION, 2020

NUMERICAL ANALYSIS

[According to the New Syllabus]

Subject Code: 520227

Examination Code: 5614

Time-3 hours

Full marks-80

[N]	B. T	he figures in	the right m	argin indica	te full mark	s. Answer ar	y four <i>qu</i> e	Man
1.	(a)	Define alg	ebraic and t	ranscenden	tal equation	1.		2
1.	 (a) Define algebraic and transcendental equation. (b) Establish the method of false position. Also discuss the geometrical interpretation of this method. 							
	/	Find a roo false positi	t of the eq	uation x ³	3x - 5 =			8
7.	(d)	Define in general int	terpolation	and extr formula for	rapolation. unequal int	Derive Nervals for y	Newton's $f(x)$.	3+6=9
1	(b)	Find the difference.	relation b	etween di	vided diffe	erence and	simple	4
	(8	Given the	set of data	oints satisf	ying the rel	lation $y = f($	x):	7
	1	r .	-1	0	3	6	7	
		ν:	3	0 -6	39	822	1611	
		Find the d	egree of f(x) a	x) directly 1 and $f(2.5)$.	from the di	fference ta		
ß.	$\langle h \rangle$	Define nu	ımerical ir	itegration.	Derive Si	impson's '	$\frac{1}{3}$, and	2+6=8
Simpson's ' $\frac{3}{8}$ ' rules for numerical integration.								
	ιþ	Find the v	value of \int_{0}^{1}	$\frac{dx}{1+x^2}$ by u	sing Simp	son's ' $\frac{1}{3}$ '	and $\frac{3}{8}$,	6
		rules. Heno	e obtain th	e approxim	ate value o	f π in each	case.	
	(c)	Prove that,						6
4.	(a)	Define nun	nerical diff	erentiation.				2
(b) Derive the derivatives obtained by Newton's forward diff							difference	8
		interpolation Find the f	on formula.	oond deriv	atives of	v at $r = 5$	from the	10
	(c)	find the f	irst and se able:	Cona acriv	actives of	, at x 3		_
		x	50	60	70	80	90	
		y	19.96	36.65	58.81	77.21	94.61	

[Please turn over

Marks (a) Describe the method of factorization to solve the system of 8 linear equation AX = B. 6 (b) Solve the following system by factorization method: 2x + 3y + z = 9x + 2y + 3z = 63x + y + 2z = 8. (c) Solve the following system of equations with the help of Gausselimination method: x - y + z = 1-3x + 2y - 3z = -62x - 5y + 4z = 5. 6. (a) Write in short about the different types of errors. 6 6 (b) Establish the general error formula to calculate error. (c) Find the real root of the equation $x^2 + 4\sin x = 0$ correct up to 8

four decimal places by using Newton-Raphson method.