sekundären Processen. Das Phosphoroxyd, welchem die Formel P⁴O zukommt, bildet sich z. B. bei der Einwirkung von Zink auf POCl³. Die Reaction findet schon bei gewöhnlicher Temperatur statt, rascher beim Erhitzen auf 100°, wobei sich P⁴O als rother, amorpher Körper ausscheidet. Daneben fanden sich als Reactionsproducte Zinkchlorid und metaphosphorsaures Zink. Der Vorgang ist vermuthlich der folgende:

- 1) $9 \text{ Zn} + 4 \text{ POCl}^3 = 6 \text{ ZnCl}^2 + 3 \text{ ZnO} + \text{P}^4 \text{O};$
- 2) $4 \text{ZnO} + 2 \text{POCl}^3 = \text{Zn}(\text{PO}^3)^2 + 3 \text{ZnCl}^3$.

(Ber. d. d. chem. Ges. 13, 845.)

C. J.

Verbindungen organischer Basen mit Quecksilberhaloïdsalzen stellte O. Klein dar.

Anilin und Quecksilberbromid, HgBr² + 2C⁶H⁷N bildet lange, weisse Nadeln und entsteht beim Erhitzen beider Verbindungen auf 100—120°. Analog wird die Quecksilberjodidverbindung erhalten, ferner die entsprechenden Toluidinverbindungen, von denen Verfasser die o-Toluidin- und p-Toluidinverbindungen darstellte. (Ber. d. d. chem. Ges. 13, 834.)

Carobablätter. — Die Carobablätter stammen her von Cybistas antisyphilitica Martius (Jacaranda procera, Sprengel) einer Bignoniacee. In Brasilien werden Decocte dieser Blätter angeblich mit Erfolg gegen Syphilis verwandt. Nach O. Hesse dürfte der Werth der Blätter als Heilmittel weit überschätzt werden, da dieselben gänzlich alkaloïdfrei sind und ausser einer geringen Menge Harz, welche den aromatischen Geschmack zu bedingen scheint, nichts der Erwähnung werthes enthalten. (Ann. Chem. 202, 150.)

Isomere Paraffine. — F. Hermann hat ausgerechnet, dass nach der Structurtheorie 355 Paraffine der Formel C¹² H²⁶ und nicht weniger als 802 der Formel C¹³H²⁸ möglich sind. (Ber. d. deutsch. chem. Ges. 13, 792.)

C. J.

Caryophyllin. — Das Caryophyllin hat dieselbe empirische Zusammensetzung, wie der Campher. E. Mylius nimmt die doppelte Molecularformel des Camphers, also C²⁰H³²O², als die des Caryophyllins an. Nach neueren Untersuchungen giebt E. Hjelt dem Caryophyllin die Formel C⁴⁰H⁶⁴O⁴, da er bei der Behandlung desselben mit Phosphorpentachlorid zwei Chlorproducte erhielt, die sehr gut stimmten mit

C40H63O3Cl und C40H63O3Cl3.

(Ber. d. d. chem. Ges. 13, 800.)

C. J.