EQUILIBRIUM

A system that is at equilibrium has the following properties.

- 1. The rates of the forward and reverse reactions are equal.
- 2. The concentrations of all species in the system are constant.

Nb: For equilibrium to occur it must be a closed system and the temperature must remain constant.

At equilibrium both the forward and reverse reaction occur at a molecular level but they are occurring at the same rate but in opposite directions. This is why it is called **DYNAMIC EQUILIBRIUM**.

If some water is placed in a closed container at a constant temperature, some of the liquid will evaporate and become a gas. As soon as some gas is formed there is the possibility that it will condense back into a liquid.

After a period of time the rates of evaporation and condensation will become equal and the system has reached equilibrium.

If the temperature is increased, the extra energy will increase the rate of evaporation. After time a new equilibrium position will be reached.

When a solid solute is placed in water it will start to dissolve. If there is excess solute, a saturated solution is formed, then the macroscopic properties will become constant. Some of the dissolved solid can also crystallises out of solution.

When the rate of dissolving and crystallising become constant the solution is at equilibrium.

For a <u>solution</u> to reach equilibrium it must be a saturated solution and the temperature must be kept constant.

CHEMICAL EQUILIBRIUM:

$$\mathcal{N}_2O_4(g) \longleftrightarrow 2\mathcal{N}O_2(g)$$
Colourless Brown

<u>EQUILIBRIUM CONSATAMT:</u>

$$a\mathcal{A} + b\mathcal{B} \leftrightarrow c\mathcal{C} + d\mathcal{D}$$

$$\mathcal{K} = \frac{[C]^{c}[\mathcal{D}]^{d}}{[\mathcal{A}]^{a}[\mathcal{B}]^{b}}$$

Solids and liquids are not included as they do not have a concentration ($mol L^{-1}$).

Example:

$$\mathcal{N}_2O_4(g) \longleftrightarrow 2\mathcal{N}O_2(g)$$

$$\mathcal{K} = \frac{[\mathcal{N}O_2]^2}{[\mathcal{N}_2O_4]} = 0.213 \text{ at } 100^{\circ}C$$

The value of the equilibrium constant stays the same as long as the temperature remains constant.

This means if you know the concentration of one substance (at equilibrium) you can calculate the other.

Also if the concentration of a reactant changes the new concentration of other substances can be calculated.

$$\mathcal{H}_2(g) + I_2(g) \longleftrightarrow 2\mathcal{H}I(g)$$

$$3\mathcal{K} = [\mathcal{H}I]^2 = 57 \text{ at } 425^{\circ}C$$
$$\overline{[\mathcal{H}_2][I_2]}$$

What does the equilibrium constant say about the system?

If K is large -

If K is small -

If K is close to 1 –

Le Chatelier's Principle

If a chemical system at equilibrium is subjected to a change in conditions, the system will adjust to establish equilibrium in such a way to partially counteract the imposed change.

There are three main ways to change the conditions of an equilibrium system.

Concentration, Pressure, Temperature.

Temperature:

An <u>increase</u> in the <u>temperature</u> of the system will <u>favour</u> the <u>endothermic</u> reaction.

A <u>decrease</u> in the <u>temperature</u> of the system will <u>favour</u> the <u>exothermic</u> reaction.

In your own words explain why.

Concentration:

An <u>increase</u> in the <u>concentration</u> of a reactant or product of the system will <u>favour</u> the direction, which will <u>decrease</u> the <u>concentration</u> of that substance.

A <u>decrease</u> in the <u>concentration</u> of a reactant or product of the system will <u>favour</u> the direction, which will <u>increase</u> the <u>concentration</u> of that substance.

If an equilibrium system involves one or more gaseous reactants or products the partial pressure of these substances is a measure of their concentration.

An <u>increase</u> in the <u>partial pressure</u> of a gaseous reactant or product of the system will <u>favour</u> the direction, which will <u>decrease</u> the <u>partial pressure</u> of that gaseous substance.

If the external pressure of a system at equilibrium is changed the volume will be altered.

If <u>decreasing</u> the <u>volume</u> of the system <u>increases</u> the <u>pressure</u> it will <u>favour</u> the direction, which will <u>reduce</u> the <u>pressure</u>. This can be achieved by favouring the <u>production</u> of <u>fewer moles</u> of <u>gaseous</u> substances.

If <u>increasing</u> the <u>volume</u> of the system <u>decreases</u> the <u>pressure</u> it will <u>favour</u> the direction, which will <u>increase</u> the <u>pressure</u>. This can be achieved by favouring the <u>production</u> of <u>more moles</u> of <u>gaseous</u> substances.

If there are the same number of moles of gaseous substances in the reactants and products a change in the external pressure will favour <u>neither</u> direction.

Factors which effect the rate and equilibrium position.

Change made to the Effect on the Yield system (amount of product)

Effect on the rate of reaction

Temperature	
Exothermic reaction	
Endothermic reaction	
Concentration of	
reactants	
Pressure of the system	
Partial pressure of a	
reactant or product	
Cataluat	
Catalyst	
Sub-division of reactants.	

Factors which effect the rate and equilibrium position.

Change made to the	Effect on the Yield (amount of	Effect on the rate of reaction
system	product)	
Temperature	Increases temp decreases	Increased temp increases
Exothermic reaction	yield	-
Endothermic reaction	Increases temp increases yield	the rate of all reactions
Concentration of reactants	Increase in conc favours the direction which consumes extra	Increase in conc increases reaction rate.

Pressure of the system	Increase in pressure favours less moles of gas	Increase in pressure increases rate
Partial pressure of a reactant or product	Increase in partial pressure favours direction which consumes	Increase in partial pressure increases rate
Catalyst	No effect just gets to equilibrium quicker	Increase rate of forward & reverse
Sub-division of reactants.	No effect	Increase in SA increases rate

In Industry chemist must find a compromise between the factors that favour a fast reaction and the factors that favour a high yield of the product.

THE HABER PROCESS (Ammonia production)

The main use of ammonia in WA is to make fertilisers and explosives in the form of ammonium nitrate and ammonium sulfate.

$$\mathcal{N}_2 + 3\mathcal{H}_2 \iff 2\mathcal{N}\mathcal{H}_3 + 92\mathcal{K} \mathbf{I} \mathbf{mol}^1$$

The factors that favour a high reaction rate are:

- High temperature
- High Pressure
- Addition of a catalyst (Fe/Fe₂O₃ ie rusty iron)

The factors that favour a high yield are:

- Low temperature (favours the forward reaction that is exothermic)
- **High pressure** (favours the forward reaction due to the 4:2 mole ratio of gases)

The actual conditions used are:

• 500°C, 350atm, Fe/Fe_2O_3 catalyst.

The ammonia is liquefied under pressure and the unused N_2 and H_2 gas are recycled.

$$\mathcal{NH}_3 + \mathcal{H}\mathcal{NO}_3 \rightarrow \mathcal{NH}_4\mathcal{NO}_3$$
$$2\mathcal{NH}_3 + \mathcal{H}\mathcal{SO}_4 \rightarrow (\mathcal{NH}_4)\mathcal{SO}_4$$

THE CONTACT PROCESS (Sulfuric acid production)

The main uses of \mathcal{H}_2SO_4 are in the production of fertilisers and explosives, batteries and many industrial processes.

To start the process sulfur can be burnt or the roasting of zinc blend (ZnS ore).

$$2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$$

The second step involves the oxidation of SO_2

$$2SO_2 + O_2 \Leftrightarrow 2SO_3 + heat$$

The factors that favour a high reaction rate are:

- High temperature
- High Pressure
- Addition of a catalyst $(V_2O_5 \ Vanadium \ oxide)$

The factors that favour a high yield are:

• Low temperature (favours the forward reaction that is exothermic)

• **High pressure** (favours the forward reaction due to the 3:2 mole ratio of gases)

The actual conditions used are:

• 600°C, 1atm, V_2O_5 catalyst.

This is quick but gives a low yield, the gas is removed and cooled to 400°C, which gives a high yield.

The SO₃ cannot be dissolved in water because it forms a mist when it comes near water that cannot be condensed.

The SO_3 is then dissolved in concentrated (18M) \mathcal{H}_2SO_4 to produce oleum, and the oleum is diluted and some is removed and the rest recycled.

$$SO_3 + \mathcal{H}_2SO_4 \rightarrow \mathcal{H}_2S_2O_7$$

 $\mathcal{H}_2S_2O_7 + \mathcal{H}_2O \rightarrow 2\mathcal{H}_2SO_4$ (98% or 18M)

$$2N\mathcal{H}_3 + \mathcal{H}_2SO_4 \rightarrow (N\mathcal{H}_4)_2SO_4$$

$$Ca_3(PO_4)_2 + 2H_2SO_4 + 5H_2O \rightarrow Ca(H_2PO_4)_2.H_2O + CaSO_4.2H_2O$$

superphosphate