

Taxas de Variação nas Ciências Naturais e Sociais

Texto baseado nos livros:

Cálculo - v1 - James Stewart (Editora Cengage Learning)

Introdução ao Cálculo – Pedro Morettin et al. (Editora Saraiva)

Cálculo – v1 – Laurence D. Hoffmann et al. (Editora LTC)

Taxa de Variação

Já vimos que se y = f(x), então a derivada dy/dx pode ser interpretada como a taxa de variação de y em relação a x.

Vamos nos recordar:

Se x variar de x_1 a x_2 , então a variação em x será: $\Delta x = x_2 - x_1$

e a variação correspondente em y será

$$\Delta y = f(x_2) - f(x_1)$$

TAXA MÉDIA

O quociente da diferença

$$\frac{\Delta y}{\Delta x} = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

é a taxa média da variação de y em relação a x sobre o intervalo $[x_1, x_2]$ e pode ser interpretada como a inclinação da reta secante PQ da figura.

TAXA INSTANTÂNEA

Seu limite quando $\Delta x \to 0$ é a derivada $f'(x_1)$, que pode ser interpretada como a **taxa instantânea de variação de** y **em relação a** x ou a inclinação da reta tangente em $P(x_1, f(x_1))$.

TAXAS DE VARIAÇÃO

Usando a notação de Leibniz, escrevemos o processo na forma:

$$\frac{dy}{dx} = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x}$$

Sempre que a função y = f(x) tiver uma interpretação específica em uma das ciências, sua derivada terá outra interpretação específica, como uma taxa de variação.

Motivação para estudo de Derivadas

Ex. 1. DISSEMINAÇÃO DE UMA EPIDEMIA. Uma doença está se disseminando de tal forma que, após *t* semanas, o número de pessoas infectadas é dado por:

$$N(t) = 5.175 - t^3(t-8)$$
, $0 \le t \le 8$

- a) A que taxa a epidemia está se disseminando após 3 semanas?
- b) Suponha que as autoridades sanitárias declarem que uma doença atingiu proporções epidêmicas quando a taxa de variação percentual do número de pessoas infectadas ultrapassa 25%. Qual é o período de tempo no qual esse critério é satisfeito?

Resolução:

Note que
$$N(t) = 5175 - t^3(t - 8) = 5175 - t^4 + 8t^3$$

a) $N'(t) = -4t^3 + 24t^2$ e $N'(3) = -4.3^3 + 24.3^2 = 108$

108 pessoas por semana serão contaminadas.

b)
$$100 \frac{N'(t)}{N(t)} = \frac{100(-4t^3 + 24t^2)}{5175 - t^4 + 8t^3}$$

O gráfico desta função mostra que ele nunca excede 25%.

Ex. 2. Um modelo biológico sugere que a reação do organismo humano a uma dose de um medicamento pode ser modelada por uma função da forma

$$F = \frac{1}{3}(KM^2 - M^3)$$

em que K é uma constante positiva e M é a quantidade de medicamento presente no sangue. A derivada S = dF/dM pode ser considerada uma medida da sensibilidade do organismo ao medicamento.

- a) Determine a sensibilidade S.
- **b)** Calcule $dS/dM = d^2F/dM^2$ e interprete fisicamente essa derivada segunda.

Resolução:
$$F = \frac{1}{3}(KM^2 - M^3)$$

a)
$$S = \frac{dF}{dM} = \frac{1}{3}(2KM - 3M^2) = \frac{2}{3}KM - M^2$$

b)
$$\frac{dS}{dM} = \frac{2}{3}K - 2M$$
 é a taxa em que a sensibilidade está mudando.

Ex. 3. Um ornitólogo observa que a temperatura corporal de uma espécie de ave varia durante um período aproximado de 17 horas de acordo com a expressão

$$T(t) = -68,07t^3 + 30,98t^2 + 12,52t + 37,1$$
 ($0 \le t \le 0,713$), onde T é a

temperatura em graus Celsius t horas após o início de um período.

- a) Calcule e interprete a derivada T'(t).
- b) A que taxas a temperatura está variando no início do período
- (t = 0) e no final do período (t = 0.713)? A temperatura está aumentando ou diminuindo nesses instantes?
- c) Em que instante a temperatura não está aumentando nem diminuindo? Qual é a temperatura da ave nessa ocasião? Interprete o resultado.

- a) $T'(t) = -204,21 t^2 + 61,96t + 12,52$ representa a taxa com que a temperatura do pássaro está mudando após t horas, medido em °C por horas.
- b) $T'(0) = 12,52\,$ °C por hora. Já que é positivo, a temperatura do pássaro está aumentando neste momento.

 $T'(0,713) \approx -47,12$ °C por hora. Como é negativo, a temperatura do pássaro está diminuindo neste momento.

c)
$$T'(t) = 0 \Rightarrow -204,21 t^2 + 61,96t + 12,52 = 0$$
. Por Bhaskara:

$$t = \frac{-61,96 \pm \sqrt{(61,96)^2 - 4(-204,21)(12,52)}}{2(-204,21)} \Rightarrow t \approx 0,442$$

A temperatura do pássaro quando t = 0.442 é $T(0.442) \approx 42.8$ °C. A temperatura do pássaro começa em T(0) = 37.1 °C, aumenta para T(0.442) = 42.8 °C, e então começa a diminuir.

Ex. 4. Uma empresa fabrica um gravador de DVD para computadores pessoais. O gerente de vendas observa que t semanas após o início de uma campanha publicitária, P(t) por cento dos fregueses em potencial já conhecem o produto, em que:

$$P(t) = 100 \left(\frac{t^2 + 5t + 5}{t^2 + 10t + 30} \right)$$

a) A que taxa a porcentagem do mercado P(t) está variando com o tempo após 5 semanas? A porcentagem está aumentando ou diminuindo?

b) O que acontece com a porcentagem P(t) a longo prazo, isto é, quando $t \to +\infty$

Resolução:

a)
$$P'(t) = \frac{100((2t+5)(t^2+10t+30)-(t^2+5t+5)(2t+10))}{(t^2+10t+30)^2}$$

P'(5) = 4,31% por semana. Como é positivo, a porcentagem está aumentando

b)
$$\lim_{t \to \infty} 100 \left(\frac{t^2 + 5t + 5}{t^2 + 10t + 30} \right) = 100 \lim_{t \to \infty} \frac{t^2 \left(1 + \frac{5t}{t^2} + \frac{5}{t^2} \right)}{t^2 \left(1 + \frac{10t}{t^2} + \frac{30}{t^2} \right)} = 100$$

Ou seja, $t \to +\infty$, a porcentagem se aproxima de 100% no longo prazo, de modo que a taxa de variação se aproxima de 0.