

Complete Data Science and Machine Learning Using Python

By Jitesh Khurkhuriya

Regularization

Importance of Regularization

 Used by almost all the linear models such as Linear Regression, Logistic regression as well as neural network

• One of the most important parameters

What we usually hear about regularization?

- Regularization prevents overfitting and improves generalization
- L1 or Lasso and L2 or Ridge regression or L1-L2 regularization
- Adds a penalty to the error term
- One penalizes the absolute term while the other penalizes in squared manner
- Used for the Bias-Variance trade-off
- One makes the coefficients to zero while the other makes them near zero

Bias Variance Trade Off

What is Bias?

Definition [edit]

Suppose we have a statistical model, parameterized by a real number θ , giving rise to a probability distribution for observed data, $P_{\theta}(x) = P(x \mid \theta)$, and a statistic $\hat{\theta}$ which serves as an estimator of θ based on any observed data x. That is, we assume that our data follow some unknown distribution $P(x \mid \theta)$ (where θ is a fixed constant that is part of this distribution, but is unknown), and then we construct some estimator $\hat{\theta}$ that maps observed data to values that we hope are close to θ . The **bias** of $\hat{\theta}$ relative to θ is defined as

$$\operatorname{Bias}_{\theta}[\hat{\theta}] = \operatorname{E}_{x|\theta}[\hat{\theta}] - \theta = \operatorname{E}_{x|\theta}[\hat{\theta} - \theta],$$

where $\mathbf{E}_{x\mid\theta}$ denotes expected value over the distribution $P(x\mid\theta)$, i.e. averaging over all possible observations x. The second equation follows since θ is measurable with respect to the conditional distribution $P(x\mid\theta)$.

An estimator is said to be **unbiased** if its bias is equal to zero for all values of parameter θ .

In a simulation experiment concerning the properties of an estimator, the bias of the estimator may be assessed using the mean signed difference.

What is Bias?

What is Variance?

Ideal Scenario

Bias-Variance Tradeoff

Ridge Regression or L2 Regularization

Ordinary Least Square Revisited

Minimum

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Minimum

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + Penalty$$

Minimum

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda * Slope^2$$

Understand using an Example

$$Slope = 2$$
 $\lambda =$

OLS

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

Ridge

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda * Slope^2$$

$$0 + 1 * 2^2$$

4

$$Slope = 1.6$$
 $\lambda = 1$
 $Intercept = 1$

n	_
$\sum (y_i - \hat{y}_i)^2 + \lambda * Slope^2$	
$\sum_{i=1}^{\infty} (j_i - j_i) + i = 0$	

$\boldsymbol{\mathcal{X}}$	y	$\widehat{oldsymbol{y}}$	$(y-\widehat{y})^2$						
1	2	2.6	0.36						
2	4	4.2	0.04 0.04						
3	6	5.8							
4	8	7.4	0.36						
Sum of	0.80								

$$0.8 + 2.56$$

$$Penalty = \lambda * Slope^2 = 1 * 1.6^2 = 2.56$$

OLS

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

0

$$v = 2x$$

Higher Dependency on X

Ridge

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda * Slope^2$$

3.36 < 4

$$y = 1.6x + 1$$

Lesser Dependency on X

Effect of Lambda Values

$$\lambda = 1$$

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda * Slope^2$$

$$y = 1.6x + 1$$

Lesser Dependency on X

$$\lambda = 10$$

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda * Slope^2$$

$$y = 0.5x + 4$$

Reduced Dependency on X

Effect of Penalty Parameter

Lasso Regression or L1 - Regularization

Lasso Regression

Minimum

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda * |Slope|$$

Ridge

 $\lambda * Slope^2$

Shrinks some of the coefficient to near zero.

All features are important.

Lasso

 $\lambda * |Slope|$

Shrinks some of the coefficients to zero.

Some features can be eliminated.

Effect of Lasso and Ridge

Dataset

$$x_2 = 1.8 * x_1$$

X1	X2	Х3	X4	X5	Х6	X7	X8	Х9	X10	X11	X12	X13	X14	X15	Υ
7	12.6	2	16	12	19	19	2	5	11	13	12	6	20	10	294.958
4	7.2	13	14	12	16	11	18	20	1	9	6	17	17	19	344.721
10	18	20	9	2	10	14	7	3	9	15	19	2	14	14	343.366
15	27	1	20	2	18	18	15	8	14	11	4	19	5	6	280.772
6	10.8	20	2	17	16	15	11	4	13	20	2	19	20	19	374.397
16	28.8	2	7	15	1	8	20	5	14	11	1	6	18	2	296.258
5	9	14	9	3	8	20	10	7	10	3	15	1	5	14	304.648

Decreasing Coefficients

<u>Ridge</u>

 $\lambda * Slope^2$

Shrinks some of the coefficient to near zero.

Can not be used for feature selection.

Makes correlated features coefficients smaller.

Makes sense when all features are important.

<u>Lasso</u>

 $\lambda * |Slope|$

Shrinks some of the coefficients to zero.

Performs Embedded feature Selection

Makes some of the correlated features irrelevant.

Can be used when some features can be eliminated.

1000s of features?

Elasticnet Regularization

<u>Ridge</u>

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda * Slope^2$$

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda * |Slope|$$

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda * Slope^2 + \lambda * |Slope|$$

<u>Ridge</u>

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda * Slope^2$$

<u>Lasso</u>

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda * |Slope|$$

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda_1 * Slope^2 + \lambda_2 * |Slope|$$

$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda_1 * Slope^2 + \lambda_2 * |Slope|$$

$$\frac{1}{2n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \left(\frac{1-\alpha}{2} * \sum Slope^2 + \alpha * \sum |Slope| \right)$$

$$n \rightarrow Number\ of\ Samples$$

$$\alpha = 0 \rightarrow Ridge Regularization$$

 $\alpha \rightarrow ridge/lasso\ parameter$

$$\frac{1}{2n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \left(\frac{1-\alpha}{2} * \sum Slope^2 + \alpha * \sum |Slope| \right)$$

$$n \rightarrow Number of Samples$$

$$\alpha = 1 \rightarrow Lasso\ Regularization$$

 $\alpha \rightarrow ridge/lasso\ parameter$

Complete Data Science and Machine Learning Using Python

Thank You!