RÉGRESSION LINÉAIRE

Enfin les élélements de correction sont disponibles sur le site http://josephsalmon.eu/index.php? page=teaching 13 14&lang=fr sous forme de fichiers R.

- Rappels sur le modèle linéaire -

Nous considérons le modèle statistique suivant :

$$\mathbf{y} = X\boldsymbol{\theta} + \boldsymbol{\varepsilon},\tag{1}$$

- $\mathbf{y} = (y_i)_{1 \le i \le n} \in \mathbb{R}^n$ est un vecteur colonne $n \times 1$,
- $-X = (X_{i,j})_{1 \le i \le n, 0 \le j \le p}$ est une matrice $n \times (p+1)$ de **rang plein** telle que $X_{i,0} = 1$ pour tout
- $-\boldsymbol{\theta} = (\theta_i)_{0 \le i \le p} \in \mathbb{R}^{p+1}$ est un vecteur colonne $(p+1) \times 1$,
- $-\varepsilon = (\varepsilon_i)_{1 \leq i \leq n} \in \mathbb{R}^n$ un vecteur colonne $n \times 1$ aléatoire.

On suppose de plus que le vecteur ε suit la distribution :

$$\varepsilon \sim \mathcal{N}(0, \sigma^2 I_n)$$
.

On rappelle les notations suivantes :

- $-\hat{\boldsymbol{\theta}} = (X^{\top}X)^{-1}X^{\top}\mathbf{y}$ l'estimateur par moindres carrés de $\boldsymbol{\theta}$ quand la matrice $(X^{\top}X)$ est inversible.
- $-\hat{\mathbf{y}} = X\hat{\boldsymbol{\theta}}$, la prédiction sur les valeurs observées
- $-\bar{x}_n = n^{-1} \sum_{i=1}^n x_i$ et $\bar{y}_n = n^{-1} \sum_{i=1}^n y_i$, les moyennes empiriques
- $-\operatorname{var}_n(\mathbf{x})$ et $\operatorname{var}_n(\mathbf{y})$, les variances empiriques

- Le vecteur $r = \mathbf{y} \hat{\mathbf{y}}$ est appelé vecteur des résidus. $\mathbf{1}_n = (1, \dots, 1)^{\top}$ est le vecteur "tout à un" de taille $n \times 1$ On note RSS = $||\mathbf{y} \hat{\mathbf{y}}||^2$ (Residual Sum of Squares en anglais).

- Régression linéaire simple -

On utilisera le langage R et par exemple le logiciel RStudio pour faire ce TP. Le mot "régression" a été introduit par Sir Francis Galton (cousin de C. Darwin) alors qu'il étudiait la taille des individus au sein d'une descendance.

- 1. Récupérer les données du fichier http://www.math.uah.edu/stat/data/Galton.txt. La seconde colonne contient la taille du parent "moyen", c'est-à-dire $\frac{1}{2}$ (taille(pere) + 1.08taille(mere)). La première colonne contient la taille d'un de leurs enfants (à l' \hat{a} ge adulte). On note x_i la taille du parent moyen pour la famille i et y_i la taille de l'enfant. On écrit $y_i = \theta_1 x_i + \theta_0 + \varepsilon_i$ et on modélise les variables ε_i comme gaussienne centrées, indépendantes de même variance σ^2 inconnue.
- 2. Tracer le nuage de points (x_i, y_i) pour $1 \le i \le n$ où n est le nombre de familles figurant dans les données. Utiliser la fonction plot.
- 3. Estimer θ_0 , θ_1 , par $\hat{\theta}_0$, $\hat{\theta}_1$ en utilisant la fonction 1m puis en vérifiant les formules vues en cours pour le cas unidimensionnel.
- 4. Calculer et visualiser les valeurs prédites $\hat{y}_i = \hat{\theta}_1 x_i + \hat{\theta}_0$ et y_i sur un même graphique.
- 5. Visualiser l'histogramme des résidus $r_i = y_i \hat{y}_i$. L'hypothèse de normalité est-elle crédible? On pourra aussi s'appuyer sur la fonction qqnorm.
- 6. Régresser \mathbf{x} sur \mathbf{y} et comparer les coefficients $\hat{\alpha}_0$ et $\hat{\alpha}_1$ obtenus par rapport aux $\hat{\theta}_0$ et $\hat{\theta}_1$ du modèle original. Vérifier numériquement (et éventuellement en exercice formellement) que :

$$\hat{\alpha}_0 = \bar{x}_n + \frac{\bar{y}_n}{\bar{x}_n} \frac{\text{var}_n(\mathbf{x})}{\text{var}_n(\mathbf{y})} (\hat{\theta}_0 - \bar{y}_n)$$

$$\text{var}_n(\mathbf{x}) \hat{\alpha}$$

$$\hat{\alpha}_1 = \frac{\operatorname{var}_n(\mathbf{x})}{\operatorname{var}_n(\mathbf{y})} \hat{\theta}_1$$

- Régression linéaire multiple -

On travaille maintenant sur le fichier $\mathtt{auto-mpg.data}$ et on cherche à régresser la consommation des voitures sur leurs caractéristiques : nombre de cylindres, cylindrés (engine displacement en anglais), puissance, poids, accélération, année, pays d'origine et le nom de la voiture. On utilise le modèle (1), où \mathbf{y} est le vecteur contenant les consommations des voitures (plus précisément la distance parcourue en miles par Gallon, ou mpg); les colonnes de X sont les régresseurs quantitatifs 1 .

- 7. Importer la base de données avec la commande read.table.
- 8. Calculer $\hat{\theta}$, $\hat{\mathbf{y}}$ sur une sous partie de la base : garder les 9 premières lignes et les 8 premières colonnes. Que constatez-vous?
- 9. Calculer $\hat{\boldsymbol{\theta}}$, $\hat{\mathbf{y}}$ cette fois sur l'intégralité des données.
- 10. Calculer le carré de la norme du vecteur des résidus RSS = $||r||^2$, puis la moyenne des ces écarts MSE = SSE/(n-p-1) (Mean Square Errors en anglais). Vérifier numériquement que :

$$\|\mathbf{y} - \bar{y}_n \mathbf{1}_n\|^2 = \|\mathbf{y} - \hat{\mathbf{y}}\|^2 + \|\hat{\mathbf{y}} - \bar{y}_n \mathbf{1}_n\|^2.$$

On proposera une méthode matricielle pure, et une méthode utilisant la fonction 1m de R.

11. Supposons que l'on vous fournisse les caractéristiques suivantes d'un nouveau véhicule :

cylinders	displacement	horsepower	weight	acceleration	year	origin
6	225	100	3233	15.4	76	1

Prédire sa consommation².

12. Calculer de nouveau $\hat{\theta}$, $\hat{\mathbf{y}}$ mais cette fois sur sur les données centrées réduites.

Liens pour aller plus loin:

- *** http://cbio.ensmp.fr/~jvert/svn/tutorials/practical/linearregression/linearregression.R
- ** http://perso.univ-rennes1.fr/bernard.delyon/regression.pdf

^{1.} sauf la variable du nom, et la variable "origine". Pour cette dernière, si on veut l'intégrer il faut introduire 3 nouvelles variables explicatives binaires (une pour chaque origine).

^{2.} A titre d'information, la consommation effectivement mesurée sur cet exemple était de 22 mpg.