This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

1 (Currently Amended): A compound of the formulae:

$$R_1$$
 R_2
 R_3
 R_4
 R_4
 R_5
 R_4
 R_4
 R_5
 R_4
 R_4
 R_4
 R_4
 R_5
 R_7
 R_7
 R_8
 R_8

wherein:

 R_1 and R_1 are independently selected from H, halogen, $-CF_3$, -OH, $-C_1-C_{10}$ alkyl, $-S-C_1-C_{10}$ alkyl, C_1-C_{10} alkoxy, -CN, $-NO_2$, $-NH_2$, $-HN(C_1-C_6)$, $-N(C_1-C_6)_2$, phenyl, -O-phenyl, -S-phenyl, benzyl, -O-benzyl, -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, $-NO_2$, $-NH_2$, -CN, $-CF_3$, or -OH; or a moiety of the formulae:

$$R_7$$
 R_7
 R_7

 R_6 is selected from H, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, -C(O)CH₃, phenyl, -O-phenyl, benzyl, -O-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1 - C_6 alkyl, C_1 - C_6 alkoxy, -NO₂, -NH₂, -CN, -CF₃, or -OH;

 R_7 is selected from -(CH₂)_n-COOH, -(CH₂)_n-N-(C₁-C₆ alkyI)₂, -(CH₂)_n-NH-(C₁-C₆ alkyI), -CF₃, C₁-C₆ alkyI, C₃-C₅ cycloalkyI, C₁-C₆ alkoxy, -NH-(C₁-C₆ alkyI), -N-(C₁-C₆ alkyI)₂, pyridinyI, thienyI, furyI, pyrrolyI, quinolyI, (CH₂)_nphenyI, phenyI,-O-phenyI, benzyI, -O-benzyI, adamantyI, or morpholinyI, -(CH₂)_n-phenyI-O-phenyI, -(CH₂)_n-phenyI-CH₂-phenyI, -(CH₂)_n-O-phenyI-CH₂-phenyI, and -(CH₂)_n-phenyI-(O-CH₂-phenyI)₂, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyI, C₁-C₆ alkoxy, -NH₂, -NO₂, -CF₃,CO₂H, or -OH;

 R_2 is selected from H, halogen, -CF₃, -OH, -C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, -CHO, -CN, -NO₂, -NH₂, -NH-C₁-C₆ alkyl, -N(C₁-C₆ alkyl)₂, -N-SO₂-C₁-C₆ alkyl, or -SO₂-C₁-C₆ alkyl;

 R_3 is selected from H, -CF₃, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, C₃-C₁₀ cycloalkyl, -C₁-C₆ alkyl, -C₃-C₁₀ cycloalkyl, -CHO, halogen, and (CH₂)_nC(O)NH₂ or a moiety of the formula $-L^4$ -M⁴:

-----L¹ indicates a linking or bridging group of the formulae -(CH₂)_n-, -S-, -O-,

 $-C(O)-, -(CH_2)_n-C(O)-, -(CH_2)_n-C(O)-(CH_2)_n-, -(CH_2)_n-C(C$

— M¹ is selected from the group consisting of:

a) H, C_4 - C_6 lower alkyl, C_4 - C_6 lower alkoxy, C_3 - C_{40} cycloalkyl, phenyl, and benzyl, the cycloalkyl, phenyl and benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C_4 - C_{40} alkyl, C_4 - C_{40} alkoxy, -NO₂, -NH₂, -CN, and -CF₃, with the provise that M^4 -cannot be H when L^4 is -O-;

b) a bicyclic ring moiety containing from 8 to 10 ring atoms and optionally containing from 1 to 3 ring heteroatoms selected from N, S or O, the bicyclic ring moiety being optionally substituted by from 1 to 3 substituents selected from halogen, C_4 - C_{10} alkoxy, C_4 - C_{10} - C_4

Patent

 R_4 is selected from the group of C_1 - C_6 lower alkyl, C_1 - C_6 lower alkoxy, -(CH_2)_n- C_3 - C_6 cycloalkyl, -(CH_2)_n- C_3 - C_5 cycloalkyl, -(CH_2)_n- C_3 - C_5 cycloalkyl, and er the groups of:

a) -(CH₂)_n-phenyl-O-phenyl, -(CH₂)_n-phenyl-CH₂-phenyl, -(CH₂)_n-O-phenyl-CH₂-phenyl, -(CH₂)_n-phenyl-(O-CH₂-phenyl)₂, or a moiety of the formulae:

$$(CH_2)_n$$
 $(CH_2)_n$ $(CH_2)_n$

wherein n is independently selected in each appearance as an integer from 0 to 3, Y is C₃-C₅ cycloalkyl, phenyl, benzyl, napthyl, pyridinyl, quinolyl, furyl, thienyl or pyrrolyl; rings of these

groups being optionally substituted by from 1 to 3 substituents selected from H, halogen, CF_3 , OH, C_4 - C_6 -alkyl, C_4 - C_6 -alkoxy, $-NH_2$, $-NO_2$ -or a five membered heterocyclic ring containing one heteroatom selected from N, S, or O; or

a moiety of the formulae - $(CH_2)_n$ -A, - $(CH_2)_n$ -S-A, or - $(CH_2)_n$ -O-A, wherein A is the moiety:

$$D \xrightarrow{B} C$$

wherein

D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or -CF₃;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, substituents selected from H, halogen, $-CF_3$, -OH, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, or $-NO_2$; or

Patent

wherein Z is O or S and the phenyl and pyrimidinyl rings of each moiety are optionally and independently substituted by from 1 to 3 substituents selected from halogen, $-CF_3$, -OH, $-C_4$ - C_6 alkyl, C_4 - C_6 alkoxy, $-NH_2$, or $-NO_2$; or

----d) a moiety of the formula -L²-M², wherein:

where X = O, N

i) a five-membered heterocyclic ring containing one or two ring heteroatoms selected from N, S or O, the five-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C_4 - C_{10} -alkyl, C_4 - C_{40} -alkoxy, -NO₂, -NH₂, -CN, or -CF₃; or

ii) a six-membered heterocyclic ring containing one, two or three ring heteroatoms selected from N, S or O, the six-membered heterocyclic ring being optionally substituted by from 1 to 3 substituents selected from halogen, C_4 - C_{40} -alkyl, C_4 - C_{40} -alkoxy, CHO, -NO₂, -NH₂, -CN, -CF₃ or -OH; or

n is an integer from 0 to 3;

R₅ is a moiety selected from the formulae -L³-M³

wherein L³ is a bridging or linking moiety selected from a chemical bond, -(CH₂)_n-, -S-, -O-, -SO₂-, -C(O)-, -(CH₂)_n-C(O)-, -(CH₂)_n-C(O)-(CH₂)_n-, -(CH₂)_n-O-(CH₂)_n-, -(CH₂)_n-, -C(C)-C(C)-N(R₆)-, -C(C)-N(R₆)-, -C(C)-N(R₆)-, -C(C)-N(R₆)-, -C(C)-N(R₆)-, -C(C)-N(R₆)-, -C(C)-N(R₆)-, -C(C)-N(R₆)-, -C(C)-N(R₆)-, -C(C)-N(R₆)-, -C(C)-N(R₂)_n-, -C(C)-N(C)-N(C)-, -C(C)-N(C)-N(C)-, -C(C)-N(C)-, -C(C)-, -C(C)-,

Z is O or S;

M³ is

and n is an integer from 0 to 3;

R₉ is selected from H, halogen, -CF₃, -OH, -COOH, -(CH₂)_n-COOH, -(CH₂)_n-C(O)-COOH, -C₁-C₆ alkyl, -O-C₁-C₆ alkyl, -NH(C₁-C₆ alkyl), or -N(C₁-C₆ alkyl)₂; n is an integer from 0 to 3;

or a pharmaceutically acceptable salt thereof.

2 (Currently Amended): A compound of Claim 1 wherein:

 R_4 and R_4 : are independently selected from H, halogen, $-CF_3$, -OH, $-C_4$ - C_{40} alkyl, -S- C_4 - C_{40} alkyl, C_4 - C_{60} alkoxy, -CN, $-NO_2$, $-NH_2$, $-HN(C_4$ - C_6), $-N(C_4$ - C_6), $-N(C_4$ - C_6), phenyl, -O-phenyl, -O-phenyl, or -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_4 - C_6 -alkyl, C_4 - C_6 alkoxy, $-NO_2$, $-NH_2$, -CN, $-CF_3$, or -OH;

—— M^4 -is selected from: H, C_4 - C_6 -lower alkyl, C_4 - C_6 -lower alkoxy, C_3 - C_{40} -cycloalkyl, phenyl and benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C_4 - C_{40} -alkyl, C_4 - C_{40} -alkoxy, -NO₂, -NH₂, -CN, and -CF₃, with the proviso that M^4 -cannot be H when L^4 is -O-;

 R_4 is a moiety of the formulae -(CH₂)_n-A, -(CH₂)_n-S-A, or -(CH₂)_n-O-A, wherein A is the moiety:

$$D \rightarrow C$$

wherein

D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or -CF₃;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl-groups, each optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, or -NO₂; or a pharmaceutically acceptable salt thereof.

3 (Previously Amended): A compound of claim 2 wherein R₄ is the moiety:

B and C are phenyl optionally substituted by from 1 to 3 substituents selected from H, halogen, -CF₃, -OH, -C₁-C₆ alkyl, C₁-C₆ alkoxy, or $-NO_2$; and R₁, R_{1'}, R₂, R₃, R₅, L¹, M¹ and D are as defined in claim 2; or a pharmaceutically acceptable salt thereof.

4 (Currently Amended): A compound of Claim 1 wherein:

 R_4 is selected from the group of C_4 - C_6 lower alkyl, C_4 - C_6 lower alkoxy, -(CH_2)_n- C_3 - C_6 cycloalkyl, -(CH_2)_n- C_3 - C_5 cycloalkyl, -(CH_2)_n- C_3 - C_5 cycloalkyl, or the groups of:

a moiety of the formulae - $(CH_2)_n$ -A, - $(CH_2)_n$ -S-A, or - $(CH_2)_n$ -O-A, wherein A is the moiety:

wherein

D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or -CF₃;

B and C are independently selected from phenyl, pyridinyl, furyl, thionyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, substituents selected from H, halogen, -CF₃, -OH, -C₄-C₆ alkyl, C₄-C₆ alkoxy, or -NO₂; or

b) a moiety of the formula -L²-M², wherein L² and M² are as defined in claim 1; or a pharmaceutically acceptable salt thereof.

5 (Currently Amended): A compound of Claim 1 wherein:

R₁ is H;

——R₄ is selected from the group of C_4 - C_6 lower alkyl, C_4 - C_6 lower alkoxy, -(CH₂)_n- C_3 - C_6 cycloalkyl, -(CH₂)_n- C_3 - C_5 cycloalkyl, -(CH₂)_n- C_3 - C_5 cycloalkyl, or a moiety of the formulae -(CH₂)_n-A, -(CH₂)_n-A, or -(CH₂)_n-A, wherein A is the moiety:

wherein

D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or CF₃;

B and C are independently selected from phenyl, pyridinyl, furyl, thionyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, substituents selected from H, halogen, -CF₃, -OH, -C₄-C₆ alkyl, C₄-C₆ alkoxy, or -NO₂;

or a pharmaceutically acceptable salt thereof.

6 (Currently Amended): A compound of Claim 1 wherein:

 R_1 is selected from H, halogen, $-CF_3$, -OH, $-C_1-C_{10}$ alkyl, $-S-C_1-C_{10}$ alkyl, C_1-C_{10} alkoxy, -CN, $-NO_2$, $-NH_2$, $-HN(C_1-C_6)$, $-N(C_1-C_6)_2$, phenyl, -O-phenyl, -S-phenyl, benzyl, -O-benzyl, -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C_1-C_6 alkyl, C_1-C_6 alkoxy, $-NO_2$, $-NH_2$, -CN, $-CF_3$, or -OH;

-or R₊ and R₊ are independently a moiety of the formulae:

-or a moiety of the formulae:

- R₆ and R₂ are as defined in claim 1;

Patent

 R_3 is selected from H, -CF₃, C₄-C₆-lower alkyl, C₄-C₆-lower alkoxy, C₃-C₄₀ cycloalkyl, -C₄-C₆-alkyl, -C₃-C₄₀-cycloalkyl, -CHO, halogen, (CH₂)_aC(O)NH₂ or a moiety of the formula - L⁴-M⁴:

L¹-indicates a linking or bridging group of the formulae -(CH_2)_n-, -C(O)-, -(CH_2)_n-C(O)-, -(CH_2)_n-C(O)-(CH_2)_n-, -(CH_2)_n-C(O)-, or -(CH_2)_n-, or -(CH_2)_n-, or -(CH_2)_n-, -(CH_2)_n-

— M¹ is selected from H, the group of C_4 - C_6 lower alkyl, C_4 - C_6 lower alkoxy, C_3 - C_{40} eycloalkyl, phenyl or benzyl, the cycloalkyl, phenyl or benzyl rings being optionally substituted by from 1 to 3 substituents selected from halogen, C_4 - C_{40} alkyl, C_4 - C_{40} alkoxy, NO₂, NH₂, CN, or CF₃;

 R_4 is selected from the group of C_1 - C_6 lower alkyl, C_4 - C_6 lower alkoxy, - $(CH_2)_n$ - C_3 - C_6 cycloalkyl, - $(CH_2)_n$ - C_3 - C_5 cycloalkyl, - $(CH_2)_n$ - C_3 - C_6 cycloalkyl, or a moiety of the formulae - $(CH_2)_n$ -A, - $(CH_2)_n$ -A, or - $(CH_2)_n$ -A, wherein A is the moiety:

wherein

D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or -CF₃;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl, pyrimidinyl or pyrrolyl groups, each optionally substituted by from 1 to 3, substituents selected from H, halogen, -CF₃, -OH, -C₄-C₆ alkyl, C₄-C₆ alkoxy, or -NO₂;

or a pharmaceutically acceptable salt thereof.

7 (Currently Amended): A compound of Claim 1 wherein:

 R_7 is selected from -OH, -CF₃, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NH-(C₁-C₆ alkyl), -N-(C₁-C₆ alkyl)₂, pyridinyl, thienyl, furyl, pyrrolyl, phenyl, -O-phenyl, benzyl, -O-benzyl, the rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, -CN, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -NH₂, -CF₃, or -OH;

 R_3 is selected from H, $-C_4$ - C_{10} -alkyl, $-(CH_2)$ -OH, $(CH_2)_nC(O)NH_2$, $-CH_2$ -O- $(C_4$ - C_6 -alkyl), $-CH_2$ -N- CH_2 -phonyl, the phonyl rings of which are optionally substituted by 1 or 2 groups selected from H, halogen, $-CF_3$ -or $-C_4$ - $-C_6$ -alkyl;

X is O or N n = 0 or 1:

 R_4 is a moiety of the formulae -(CH_2)_n-A, -(CH_2)_n-S-A, or -(CH_2)_n-O-A, wherein A is the moiety:

wherein

— D is H, C₁-C₆-lower alkyl, C₁-C₆-lower alkoxy, or -CF₃;

B and C are independently selected from phenyl, pyridinyl, furyl, thionyl or pyrrolyl groups, each optionally substituted by from 1 to 3, substituents selected from H, halogen, - CF₃, -OH, -C₄-C₆ alkyl, C₄-C₆ alkoxy, or -NO₂;

R₅ is a moiety selected from the groups of:

$$R_9$$
 or $CH_2)_n$ OH

wherein L¹ is a bridging or linking moiety selected from a chemical bond, $-(CH_2)_{n^-}$, $-(CH_2)_{n^-}$

where n' is an integer from 0 to 53;

 R_9 is selected from $-CF_3$, $-C_1-C_6$ alkyl, C_1-C_6 alkoxy, $-NH(C_1-C_6$ alkyl), or and $-N(C_1-C_6$ alkyl)₂,

n in each instance is independently selected as an integer from 0 to 3; or a pharmaceutically acceptable salt thereof.

8 (Currently Amended): A compound of Claim 1 having the formulae:

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_5
 R_5
 R_7
 R_8
 R_8
 R_8
 R_9
 R_9

wherein:

 R_1 is selected from H, halogen, -CF₃, -OH, -C₁-C₁₀ alkyl, -S-C₁-C₁₀ alkyl, C₁-C₁₀ alkoxy, -CN, -NO₂, -NH₂, -HN(C₁-C₆), -N(C₁-C₆)₂, phenyl, -O-phenyl, -S-phenyl, benzyl, -O-benzyl, <u>and</u> -S-benzyl, the phenyl and benzyl rings of these groups being optionally substituted by from 1 to 3 substituents selected from halogen, C₁-C₆ alkyl, C₁-C₆ alkoxy, -NO₂, -NH₂, -CN, -CF₃, er and -OH;

 R_2 , R_3 and R_4 are as defined in claim 1 is selected from H, halogen, $-CF_3$, -OH, $-C_4$ - C_{40} alkyl, C_4 - C_{40} alkoxy, -CHO, -CN, $-NO_2$, $-NH_2$, $-NH-C_4$ - C_6 alkyl, $-N(C_4$ - C_6 alkyl), $-N-SO_2$ - C_4 - C_6 alkyl;

 R_3 is selected from H, $-C_4$ - C_{40} -alkyl, $-(CH_2)$ -OH, $(CH_2)_a$ C(O)NH₂, $-CH_2$ -O- $(C_4$ - C_6 -alkyl), $-CH_2$ -O CH₂-phonyl, the phonyl rings of which are optionally substituted by 1 or 2 groups selected from H, halogen, $-CF_3$ or $-C_4$ - C_6 -alkyl;

n = 0 or 1.

 R_4 -is a moiety of the formulae -(CH₂)_n-A, -(CH₂)_n-S-A, or -(CH₂)_n-O-A, wherein A is the moiety:

wherein

— D is H, C₁-C₆ lower alkyl, C₁-C₆ lower alkoxy, or -CF₃;

B and C are independently selected from phenyl, pyridinyl, furyl, thienyl or pyrrolyl groups, each optionally substituted by from 1 to 3, substituents selected from H, halogen, - CF₃, -OH, -C₄-C₆ alkyl, C₄-C₆ alkoxy, or -NO₂;

R₅ is a moiety selected from the groups of:

$$R_9$$
 or $CH_2)_n$ OH

wherein L¹ is a bridging or linking moiety selected from a chemical bond, $-(CH_2)_{n^-}$, $-(CH_2)_{n^-}$

where n = 0-5

 R_9 is selected from $-CF_3,\ -C_1-C_6$ alkyl, C_1-C_6 alkoxy, -NH(C_1-C_6 alkyl), or -N(C_1-C_6 alkyl)_2,

n in each instance is independently selected as an integer from 0 to 3,

or a pharmaceutically acceptable salt thereof.

9 (Currently Amended): A compound of Claim 1 having the formulae:

$$R_1$$
 R_2
 R_3
 R_4
 R_5
 R_5
 R_7
 R_8
 R_8
 R_8
 R_8
 R_8

wherein:

 R_1 is selected from H, halogen, -CF₃, -OH, -CN, -NO₂, -NH₂, -HN(C₁-C₆), -N(C₁-C₆)₂, phenyl, -N-SO₂-C₁-C₆ alkyl, or -SO₂-C₁-C₆ alkyl;

 $R_2 \text{ is selected from H, halogen, -CF}_3, -OH, , -CN, -NO}_2, -NH}_2, -NH-C_1-C_6 \text{ alkyl, -N}(C_1-C_6 \text{ alkyl})_2, -N-SO}_2-C_1-C_6 \text{ alkyl, or -SO}_2-C_1-C_6 \text{ alkyl};$

 R_3 is selected from H, -C₁- C_{40} C_{6} alkyl, -(CH₂)-OH, (CH₂)_nC(O)NH₂, -CH₂-O-(C₄-C₆ alkyl), -CH₂-O-CH₂-phenyl, the phenyl rings of which are optionally substituted by 1 or 2 groups selected from H, halogen, -CF₃ or -C₄-C₆ alkyl;

n = 0 or 1.

R₅ is a moiety selected from the groups of:

Patent

$$O \longrightarrow (CH_2)_n$$
or
$$O \longrightarrow (CH_2)_n$$

$$O \longrightarrow OH$$

wherein L¹ is a bridging or linking moiety selected from a chemical bond, $-(CH_2)_{n'}$, $-(CH_2)_{n'}$, or $-(CH_2)_{n'}$.

n' in each instance is independently selected as an integer from 0 to $5\underline{3}$; or a pharmaceutically acceptable salt thereof.

10 (Original): A compound of Claim 1 which is 4-{[(E)-4-(3-benzhydryl-5-chloro-2-methyl-1H-indol-1-yl)-2-butenyl]oxy}benzoic acid or a pharmaceutically acceptable salt thereof.

11 (Original): A compound of Claim 1 which is 4-[2-(3-benzhydryl-5-chloro-2-methyl-1H-indol-1-yl)ethoxy]benzoic acid or a pharmaceutically acceptable salt thereof.

12 (Original): A compound of Claim 1 which is 3-{4-[2-(3-benzhydryl-5-chloro-2-methyl-1H-indol-1-yl)ethoxy]phenyl}propanoic acid or a pharmaceutically acceptable salt thereof.

13 (Original): A compound of Claim 1 which is 3-(4-{[2-(3-benzhydryl-6-chloro-1H-indol-1-yl)ethyl]sulfonyl}phenyl)propanoic acid or a pharmaceutically acceptable salt thereof.

14 (Original): A compound of Claim 1 which is 4-{[2-(3-benzhydryl-6-chloro-1H-indol-1-yl)ethyl]sulfonyl}benzoic acid or a pharmaceutically acceptable salt thereof.

15 (Original): A compound of Claim 1 which is 4-[2-(3-benzhydryl-2-methyl-1H-indol-1-yl)ethoxy]benzoic acid or a pharmaceutically acceptable salt thereof.

16 (Original): A method of inhibiting the phospholipase activity of an enzyme in a mammal in need thereof comprising administering to said mammal a therapeutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof.

17 (Original): A method of treating or preventing an inflammatory response in a mammal in need thereof, the method comprising administering to said mammal a therapeutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof.

18 (Original): The method of Claim 17 wherein the inflammatory response is associated with inflammatory bowel disease.

19 (Original): The method of Claim 17 wherein the inflammatory response is associated with osteoarthritis, psoriatic arthritis or rheumatoid arthritis.

20 (Original): A pharmaceutical composition comprising a therapeutically effective amount of a compound of Claim 1, or a pharmaceutically acceptable salt thereof, and a pharmaceutically acceptable carrier.