Introduction
Vizualize the tensorflow graph
Cleaning the graph
Collect some summaries
Hyperparameter Search

TensorBoard

Mohamed Achraf BEN MOHAMED, PhD.

LaTICE laboratory

mohamedachraf@google.com

May 27, 2017

Overview

- Introduction
- Vizualize the tensorflow graph
 - FileWriter class
 - Demo 1
- Cleaning the graph
 - Node Names
 - Name Space
 - Demo 2
- 4 Collect some summaries
 - tf.summury.histogram
 - tf.summury.scalar
 - Demo 3
- 5 Hyperparameter Search
 - Different Learning Rates
 - Demo 4

Exemple de Classification Supervisée

Authentification de billets de banque

Les données ont été extraites d'images provenant de spécimens authentiques de billets de banque.

Quatre paramètres ont été enregistrés :

- Variance
- Skewness
- Curtosis
- Entropy

Deux classes : Vrais billets (1) ou Faux billets (0)

Source: https://archive.ics.uci.edu/ml/datasets/banknote+authentication

Exemple de Classification Supervisée

Authentification de billets de banque

X1	X2	Х3	X4	Label1	Label2
-0.0253140	-0.1738300	-0.1133900	1.2198000	1	0
5.8070000	5.0097000	-2.2384000	0.4387800	0	1
-2.4349000	-9.2497000	8.9922000	-0.5000100	1	0
-1.6936000	2.7852000	-2.1835000	-1.9276000	1	0
0.6365500	5.2022000	-5.2159000	-6.1211000	1	0
3.3848000	3.2674000	0.9096700	0.2512800	0	1
0.0040545	0.6290500	-0.6412100	0.7581700	1	0
2.6415000	7.5860000	-0.2856200	-1.6677000	0	1
-5.0477000	-5.8023000	11.2440000	-0.3901000	1	0

m = 1372

Source: https://archive.ics.uci.edu/ml/datasets/banknote+authentication

Architecture

Model

Code

Layer definition

```
def layer(x, size_in, size_out):
    w = tf.Variable(tf.zeros([size_in, size_out]))
    b = tf.Variable(tf.zeros([size_out]))
    z = tf.matmul(x, w) + b
    a = tf.sigmoid(z)
    return a
```

Model

```
Layer_1 = layer(x , 4, 4)
Layer_2 = layer(Layer_1, 4, 4)
Layer_3 = layer(Layer_2, 4, 2)
```

FileWriter class

Vizualize the tensorflow graph

```
writer = tf.summary.FileWriter("./logs/Demo_1")
writer.add_graph(sess.graph)
```

Turn on Tensorboard

```
🔞 🖨 🗉 МАВМ@МАВМ: ~
```

MABM@MABM:~\$ tensorboard --logdir=logs/Demo_1

DEMO 1

money_1.ipynb

https://github.com/LaTICE-laboratory-Monastir-unit/

Cleaning the graph

- Node Names
- Name Scope

Node Names

2. BUILD GRAPH

```
def layer(x, size_in, size_out, name="Layer"):
    with tf.name_scope(name):
        w = tf.Variable(tf.zeros([size_in, size_out]), name='weight')
        b = tf.Variable(tf.zeros([size_out]), name='biais')
        z = tf.matmul(x, w) + b
        a = tf.sigmoid(z)
    return a
```

2.1. Placholders

```
x = tf.placeholder(tf.float32, shape=[None, 4], name='X')
y = tf.placeholder(tf.float32, shape=[None, 2], name='Y')
```

Node Names

2. BUILD GRAPH

```
def layer(x, size_in, size_out, name="Layer"):
    with tf.name_scope(name):
        w = tf.Variable(tf.zeros([size_in, size_out]), name='weight')
        b = tf.Variable(tf.zeros([size_out]), name='biais')
        z = tf.matmul(x, w) + b
        a = tf.sigmoid(z)
        return a
```

2.1. Placholders

```
x = tf.placeholder(tf.float32, shape=[None, 4], name='X')
y = tf.placeholder(tf.float32, shape=[None, 2], name='Y')
```

Name Space

2. BUILD GRAPH

```
def layer(x, size_in, size_out,
    with tf.name_scope(name):
        w = tf.Variable(tf.zeros([size_in, size_out]), name='weight')
        b = tf.Variable(tf.zeros([size_out]), name='biais')
        z = tf.matmul(x, w) + b
        a = tf.sigmoid(z)
    return a
```

2.1. Placholders

```
x = tf.placeholder(tf.float32, shape=[None, 4], name='X')
y = tf.placeholder(tf.float32, shape=[None, 2], name='Y')
```

Name Space

```
with tf.name scope("softmax"):
    v pred = tf.nn.softmax(Layer 3)
2.3.2. Cost function
with tf.name scope("Error"):
    cross entropy = tf.reduce mean(-tf.reduce sum(y * tf.log(y pred),reduction indices=[1]))
2.3.3. Optimizer
with tf.name scope("Train"):
    optimiser = tf.train.AdamOptimizer(learning rate).minimize(cross entropy)
2.3.4. Accuracy
 with tf.name scope('Accuracy'):
    correct prediction = tf.equal(tf.argmax(v pred.1), tf.argmax(v.1))
    final acc = tf.reduce mean(tf.cast(correct prediction, tf.float32))*100
```

Name Space

```
with tf.name scope("softmax"):
    y_pred = tf.nn.softmax(Layer_3)
```

2.3.2. Cost function

```
with tf.name scope("Error"):
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(y_pred),reduction_indices=[1]))
```

2.3.3. Optimizer

```
with tf.name_scope("Train"):
    optimiser = tf.train.AdamOptimizer(learning_rate).minimize(cross_entropy)
```

2.3.4. Accuracy

```
with tf.name_scope('Accuracy'):
    correct_prediction = tf.equal(tf.argmax(y_pred,1), tf.argmax(y,1))
    final_acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))*100
```

FileWriter class

Vizualize the tensorflow graph

```
writer = tf.summary.FileWriter("./logs/Demo_2")
writer.add_graph(sess.graph)
```

Turn on Tensorboard

```
🔞 🖨 🗉 МАВМ@МАВМ: ~
```

MABM@MABM:~\$ tensorboard --logdir=logs/Demo_2

DEMO 2

money_2.ipynb

https://github.com/LaTICE-laboratory-Monastir-unit/

summary (n): Tensorflow operation that summarized data.

Examples:

- tf.summary.scalar
- tf.summary.histogram

Histogram

2. BUILD GRAPH

```
def layer(x, size_in, size_out, name="Layer"):
    with tf.name_scope(name):
        w = tf.Variable(tf.zeros([size_in, size_out]), name='weight')
        b = tf.Variable(tf.zeros([size_out]), name='biais')
        z = tf.matmul(x, w) + b
        a = tf.sigmoid(z)
        tf.summary.histogram("weight", w)
        tf.summary.histogram("biais", b)
        tf.summary.histogram("Activation", a)
        return a
```

Histogram

2. BUILD GRAPH

```
def layer(x, size_in, size_out, name="Layer"):
    with tf.name_scope(name):
        w = tf.Variable(tf.zeros([size_in, size_out]), name='weight')
        b = tf.Variable(tf.zeros([size_out]), name='biais')
        z = tf.matmul(x, w) + b
        a = tf.sigmoid(z)
        tf.summary.histogram("weight", w)
        tf.summary.histogram("biais", b)
        tf.summary.histogram("Activation", a)
        return a
```

Scalar

2.3.2. Cost function

```
with tf.name_scope("Error"):
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(y_pred)))
    tf.summary.scalar("CrossEnt", cross_entropy)
```

2.3.4. Accuracy

```
with tf.name_scope('Accuracy'):
    correct_prediction = tf.equal(tf.argmax(y_pred,1), tf.argmax(y,1))
    final_acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))*100
    tf.summary.scalar("Accuracy", final_acc)
```

Scalar

2.3.2. Cost function

```
with tf.name_scope("Error"):
    cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(y_pred)))
    tf.summary.scalar("CrossEnt", cross_entropy)
```

2.3.4. Accuracy

```
with tf.name_scope('Accuracy'):
    correct_prediction = tf.equal(tf.argmax(y_pred,1), tf.argmax(y,1))
    final_acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))*100
    tf.summary.scalar("Accuracy", final_acc)
```

Merge Summaries

```
merged_summary = tf.summary.merge_all()
writer = tf.summary.FileWriter("./logs/Demo_3")
writer.add_graph(sess.graph)
```

3.2. Training

```
for step in range(training_epochs+1):
    _, cost = sess.run([optimiser, cross_entropy], feed_dict={x : x_train, y: y}
    s = sess.run(merged_summary, feed_dict={x : x_train, y: y_train})
    writer.add_summary(s,step)

if step % step_display == 0 :
    print(step,'::', cost)
```

Merge Summaries

```
merged_summary = tf.summary.merge_all()
writer = tf.summary.FileWriter("./logs/Demo_3")
writer.add_graph(sess.graph)
```

3.2. Training

```
for step in range(training_epochs+1):
    _, cost = sess.run([optimiser, cross_entropy], feed_dict={x : x_train, y: y}
s = sess.run(merged_summary, feed_dict={x : x_train, y: y_train})
writer.add_summary(s,step)

if step % step_display == 0 :
    print(step,'::', cost)
```

FileWriter class

Turn on Tensorboard

😕 🗐 🗊 МАВМ@МАВМ: ~

MABM@MABM:~\$ tensorboard --logdir=logs/Demo_3

DEMO 3

money_3.ipynb

https://github.com/LaTICE-laboratory-Monastir-unit/

Hyperparameter Search

What's the best learning rates?
What's the best model architecture?

Hyperparameter

```
def train model(learning rate, writer):
    # 1. NAME SCOPE
    with tf.name scope("softmax"):
        y pred = tf.nn.softmax(Layer 3)
    with tf.name scope("Error"):
        cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(y pred)))
        tf.summarv.scalar("Error", cross entropy)
    with tf.name scope("Train"):
        optimiser = tf.train.AdamOptimizer(learning rate).minimize(cross entropy)
    with tf.name scope('Accuracy'):
        correct prediction = tf.equal(tf.argmax(y pred,1), tf.argmax(y,1))
        final acc = tf.reduce mean(tf.cast(correct prediction, tf.float32))*100
        tf.summarv.scalar("Accuracy", final acc)
    # 2. SESSTON
    sess = tf.Session()
    sess.run(tf.global variables initializer())
    # 3. SUMMARY
    merged summary = tf.summary.merge all()
    writer.add graph(sess.graph)
    # 4. TRAINING
    for step in range(epochs+1):
        . cost = sess.run([optimiser, cross entropy], feed dict={x : x train, y: y train})
        s = sess.run(merged summary, feed dict={x : x train, y: y train})
        writer.add summary(s.step)
    print ('Accuracy = {:05.2f}'.format(sess.run(final acc.feed dict={x: x test, v:v test})),'%')
    sess.close()
```

Hyperparameter

```
def train model(learning rate, writer):
    # 1. NAME SCOPE
    with tf.name scope("softmax"):
        y pred = tf.nn.softmax(Layer 3)
    with tf.name scope("Error"):
        cross_entropy = tf.reduce_mean(-tf.reduce_sum(y * tf.log(y pred)))
        tf.summarv.scalar("Error", cross entropy)
    with tf.name scope("Train"):
        optimiser = tf.train.AdamOptimizer(learning rate).minimize(cross entropy)
    with tf.name scope('Accuracy'):
        correct prediction = tf.equal(tf.argmax(y pred,1), tf.argmax(y,1))
        final acc = tf.reduce mean(tf.cast(correct prediction, tf.float32))*100
        tf.summarv.scalar("Accuracy", final acc)
    # 2. SESSTON
    sess = tf.Session()
    sess.run(tf.global variables initializer())
    # 3. SUMMARY
   merged summary = tf.summary.merge all()
   writer,add graph(sess,graph)
    # 4. TRAINING
    for step in range(epochs+1):
        . cost = sess.run([optimiser, cross entropy], feed dict={x : x train, y: y train})
        s = sess.run(merged summary, feed dict={x : x train, y: y train})
        writer.add summary(s.step)
    # 5. ACCURACY
    print ('Accuracy = {:05.2f}'.format(sess.run(final acc.feed dict={x: x test, v:v test})),'%')
    sess.close()
```

Hyperparameter

```
for learning_rate in [0.0001,0.001, 0.01, 0.1]:
    #Construct a hyperparameter for each learning rate (example : lr_1E-01 or lr_1E-04)
    hparam_str = make_hparam_string(learning_rate)
    writer = tf.summary.FileWriter("./logs/Demo_4/" + hparam_str)
    # Run with the new parameters
    train_model(learning_rate, writer)
```


FileWriter class

Turn on Tensorboard

😕 🖨 🗈 МАВМ@МАВМ: ~

MABM@MABM:~\$ tensorboard --logdir=logs/Demo_4

DEMO 4

money_4.ipynb

https://github.com/LaTICE-laboratory-Monastir-unit/

References

Dandelion Man (Feb 15, 2017), Hands-on TensorBoard (TensorFlow Dev Summit 2017). Retrieved from https://www.youtube.com/watch?v=eBbEDRsCmv4

Fin.