ELSEVIER

Contents lists available at ScienceDirect

# **Expert Systems with Applications**

journal homepage: www.elsevier.com/locate/eswa



# A new approach based on artificial neural networks for high order multivariate fuzzy time series

Erol Egrioglu<sup>a</sup>, Cagdas Hakan Aladag<sup>b,\*</sup>, Ufuk Yolcu<sup>a</sup>, Vedide R. Uslu<sup>a</sup>, Murat A. Basaran<sup>c</sup>

- <sup>a</sup> Department of Statistics, Ondokuz Mayis University, Samsun 55139, Turkey
- <sup>b</sup> Department of Statistics, Hacettepe University, Ankara 06800, Turkey
- <sup>c</sup> Department of Mathematics, Nigde University, Nigde 51000, Turkey

#### ARTICLE INFO

# Keywords: Artificial neural networks Forecasting Fuzzy time series Multivariate fuzzy time series approaches

#### ABSTRACT

Fuzzy time series methods have been recently becoming very popular in forecasting. These methods can be categorized into two subclasses that are univariate and multivariate approaches. It is a known fact that real time series data can actually be affected by many factors. In this case, the using multivariate fuzzy time series forecasting model can be more reasonable in order to get more accurate forecasts. To obtain fuzzy forecasts when multivariate fuzzy time series approach is adopted, the most applied method is using tables of fuzzy relations. However, employing this method is a computationally though task. In this study, we introduce a new method that does not require using fuzzy logic relation tables in order to determine fuzzy relationships. Instead, a feed forward artificial neural network is employed to determine fuzzy relationships. The proposed method is applied to the time series data of the total number of annual car road accidents casualties in Belgium from 1974 to 2004 and a comparison is made between our proposed method and the methods proposed by Jilani and Burney [Jilani, T. A., & Burney, S. M. A. (2008). Multivariate stochastic fuzzy forecasting models. *Expert Systems with Applications*, 35, 691–700] and Lee et al. [Lee, L.-W., Wang, L.-H., Chen, S.-M., & Leu, Y.-H. (2006). Handling forecasting problems based on two factors high order fuzzy time series. *IEEE Transactions on Fuzzy Systems*, 14, 468–477].

© 2009 Elsevier Ltd. All rights reserved.

## 1. Introduction

The real time series data such as temperature and share prices of stockholders contain some uncertainty in itself. The conventional time series analyses can be inefficient to forecast such time series. Song and Chissom (1993a, 1993b, 1994) first introduced the definition of a fuzzy time series based on the concept of the fuzzy set theory proposed by Zadeh (1965). The fuzzy time series forecasting model defined by Song and Chissom is a model called as a one-factor first order model. Chen (2002) and Aladag et al. (2008) present approaches based on a one-factor high order fuzzy time series forecasting model. It is likely reasonable to think that a multivariate fuzzy time series forecasting model will provide better results in terms of prediction accuracy since the real time series data can be affected by many factors. In the literature, Yu and Huarng (2008), Lee, Wang, Chen, and Leu (2006) use two factor fuzzy time series model to forecast such time series. Then, Jilani and Burney (2008) analyze k-factor ( $k \ge 2$ ) and nth order ( $n \ge 1$ ) fuzzy time series forecasting models.

In this paper, a new modified method is proposed to analyze *k*-factor and *n*th order fuzzy time series forecasting model using feed

forward artificial neural networks that determines fuzzy logic relations. The proposed method is applied to the total number of annual car road accidents casualties in Belgium and the results obtained from the proposed method are compared with those obtained from the methods by Jilani and Burney (2008) and Lee et al. (2006).

The sections of this paper are organized as follows. Section 2 gives the concept of the fuzzy time series. In Section 3, feed forward artificial neural networks are briefly reviewed. The proposed method is introduced in Section 4. Section 5 is the implementation of the proposed method using the data of the total number of annual car road accidents casualties in Belgium. The final section gives the comparison results and discussion.

### 2. Fuzzy time series

The definition of fuzzy time series was first introduced by Song and Chissom (1993a, 1993b). In contrast to conventional time series methods, various theoretical assumptions do not need to be checked in fuzzy time series approaches. The most important advantage of the fuzzy time series approaches is to be able to work with a very small set of data. The definition of fuzzy time series are given as follows:

<sup>\*</sup> Corresponding author. E-mail address: chaladag@gmail.com (C.H. Aladag).

Let U be the universe of discourse, where  $U = \{u_1, u_2, \ldots, u_b\}$ . A fuzzy set  $A_i$  of U is defined as  $A_i = f_{A_i}(u_1)/u_1 + f_{A_i}(u_2)/u_2 + \cdots + f_{A_i}(u_b)/u_b$ , where  $f_{A_i}$  is the membership function of the fuzzy set  $A_i$ ;  $f_{A_i}: U \to [0,1]$ .  $u_a$  is a generic element of fuzzy set  $A_i$ ;  $f_{A_i}(u_a)$  is the degree of belongingness of  $u_a$  to  $A_i$ ;  $f_{A_i}(u_a) \in [0,1]$  and  $1 \le a \le b$ .

**Definition 1** (*Fuzzy time series*). Let Y(t) (t = ..., 0, 1, 2, ...), a subset of real numbers be the universe of discourse by which fuzzy sets  $f_j(t)$  are defined. If F(t) is a collection of  $f_1(t), f_2(t), ...$  then F(t) is called a fuzzy time series defined on Y(t).

**Definition 2.** Fuzzy time series relationships assume that F(t) is caused only by F(t-1), then the relationship can be expressed as: F(t) = F(t-1) \* R(t,t-1), which is the fuzzy relationship between F(t) and F(t-1), where \* represents as an operator. To sum up, let  $F(t-1) = A_i$  and  $F(t) = A_j$ . The fuzzy logical relationship between F(t) and F(t-1) can be denoted as  $A_i \rightarrow A_j$  where  $A_i$  refers to the left-hand side and  $A_j$  refers to the right-hand side of the fuzzy logical relationship. Furthermore, these fuzzy logical relationships can be grouped to establish different fuzzy relationships.

**Definition 3.** Let F(t) be a fuzzy time series. If F(t) is caused by  $F(t-1), F(t-2), \ldots$ , and F(t-n), then this fuzzy logical relationship is represented by

$$F(t-n), \dots, F(t-2), F(t-1) \to F(t)$$
 (1)

and it is called the *n*th order fuzzy time series forecasting model.

**Definition 4.** Let F and G be two fuzzy time series. Suppose that  $F(t-1) = A_i$ ,  $G(t-1) = B_k$  and  $F(t) = A_j$ . A bivariate fuzzy logical relationship is defined as  $A_i$ ,  $B_k o A_j$ , where  $A_i$ ,  $B_k$  are referred to as the left-hand side and  $A_j$  as the right-hand side of the bivariate fuzzy logical relationship.

Therefore, first order bivariate fuzzy time series forecasting model is as follows:

$$F(t-1), G(t-1) \to F(t) \tag{2}$$

**Definition 5.** Let F and G be two fuzzy time series. If F(t) is caused by  $(F(t-1), G(t-1)), (F(t-2), G(t-2)), \dots, (F(t-n), G(t-n))$  then this fuzzy logical relationship is represented by

$$(F(t-1),G(t-1)),(F(t-2),G(t-2)),\ldots,(F(t-n),G(t-n))\to F(t) \end{substitute}$$

and it is called the two factors nth order fuzzy time series forecasting model, where F(t) and G(t) are called the main factor fuzzy time series and the second factor fuzzy time series, respectively  $(t = \dots, 0, 1, 2, \dots)$ .

**Definition 6.** Let F and  $G_1, G_2, \ldots, G_{k-1}$  be k fuzzy time series. If F(t) is caused by  $(F(t-1), G_1(t-1)G_2(t-1)\cdots G_{k-1}(t-1)), \ldots, (F(t-n), G_1(t-n)G_2(t-n)\cdots G_{k-1}(t-n))$  then this fuzzy logical relationship is represented by

$$(F(t-1), G_1(t-1)G_2(t-1)\cdots G_{k-1}(t-1)), \dots, (F(t-n), G_1(t-n)G_2(t-n)\cdots G_{k-1}(t-n)) \to F(t)$$

$$(4)$$

and it is called the k-factors nth order fuzzy time series forecasting model, where F(t) and  $G_i(t)$  are called the main factor fuzzy time series and the secondary factors fuzzy time series, respectively (t = ..., 0, 1, 2, ..., i = 1, 2, ..., k - 1).

#### 3. Artificial neural networks

ANN consists of algorithms that mimic the features of brain of human being. These features are generating new knowledge and exploring by learning. In other words, ANN are synthetic networks that imitate biological neural networks. ANN are much more different than biological ones in terms of structure and ability (Zurada, 1992). ANN compose of a mathematical model (Zhang, Patuwo, & Hu, 1998). The fundamental elements of ANN can be given as follows:

#### 3.1. Architecture structure

The structure of multilayer feed forward ANN is basically given in Fig. 1. Multilayer feed forward ANN as illustrated in the figure consist of three parts such as input, hidden and output layers. Each layer consists of neurons. The architecture structure is determined based on deciding the number of neuron in each layer. These neurons are linked each other by weights. There is no link among the neurons in the same layer.

#### 3.2. Learning algorithm

There have been many learning algorithms in order to determine weights. The one of the most employed algorithm is called back propagation learning algorithm. This learning algorithm updates the weights based on difference between real value and output value of the ANN. Learning parameter in back propagation algorithm plays an important role in reaching the desired outputs. When learning parameter is taken as a fixed value, it can be dynamically updated in the algorithm.

#### 3.3. Activation function

Activation function provides the non-linear mapping between input and output. The performance of networks depends on the proper choice of activation function. Activation function can be chosen as either linear or double polarized, or one polarized. Slope parameter should be determined when the activation is non-linear. Also, slope parameter plays a key role in reaching desired output values.

## 4. The proposed method

To obtain forecasts for fuzzy time series, using multivariate fuzzy time series model, instead of using univariate one, can provide better forecasts since real time series data has a complex structure and is affected by many other factors. In the literature, Yu and Huarng (2008) presented an algorithm that analyzes a first order bivariate fuzzy time series forecasting model. Then, Yu and Huarng



Fig. 1. Multilayer feed forward ANN with one output neuron.

(2008) proposed another algorithm that analyzes a two factor and first order fuzzy time series forecasting model using a feed forward artificial neural network. On the other hand, Jilani and Burney (2008) proposed an algorithm based on an approach that is used to forecast a multivariate high order fuzzy time series. It has been shown that the method proposed by Jilani and Burney (2008) gives better-forecast values than those generated by the method introduced by Lee et al. (2006). However, the determination of fuzzy relationships in the algorithm proposed by Jilani and Burney (2008) depends on fuzzy logic relation tables which require too many complicated calculations and so too much time.

In this paper, we propose a new algorithm that determines fuzzy relationships using a feed forward artificial neural network in order to improve the accuracy of forecast for a multi-factor high order fuzzy time series. The proposed algorithm is given as follows.

- **Step 1.** The universe of discourses and subintervals are defined for two time series. The min and max values of the time series are denoted by  $D_{\min}$  and  $D_{\max}$ , respectively. Then two arbitrary positive numbers  $D_1$  and  $D_2$  for each fuzzy time series can be chosen in order to define the universe of discourse  $U = [D_{\min} D_1, D_{\max} + D_2]$ .
- **Step 2.** Define fuzzy sets based on the universe of discourses. Based on defined U and V universe of discourses and subintervals, fuzzy sets  $A_1, A_2, \ldots, A_{r_1}$  and  $B_{i1}, B_{i2}, \ldots, B_{ir_2}$  are defined and given below for time series and residuals, respectively,

$$\begin{split} A_1 &= a_{11}/u_1 + a_{12}/u_2 + \dots + a_{1r_1}/u_{r_1} \\ A_2 &= a_{21}/u_1 + a_{22}/u_2 + \dots + a_{2r_1}/u_{r_1} \\ &\vdots \\ A_{r_1} &= a_{r_11}/u_1 + a_{r_12}/u_2 + \dots + a_{r_1r_1}/u_{r_1} \\ B_{i1} &= b_{i11}/v_{i,1} + b_{i12}/v_{i,2} + \dots + b_{i1r_2}/v_{i,r_2} \\ B_{i2} &= b_{i21}/v_{i,1} + b_{i22}/v_{i,2} + \dots + b_{i2r_2}/v_{i,r_2} \\ &\vdots \\ B_{ir_2} &= b_{ir_21}/v_{i,1} + b_{ir_22}/v_{i,2} + \dots + b_{ir_2r_2}/v_{i,r_2} \end{split}$$

where  $a_{ij}$  is the degree of membership values of  $u_i$  and  $a_{ij} \in [0,1]$  for  $1 \le i,j \le r_1.$   $r_1$  is the numbers of subintervals and fuzzy sets, respectively. In similar way, where  $b_{ijm}$  is the degree of membership values of  $v_{ij}$  and  $b_{ijm} \in [0,1]$  for  $1 \le i \le k-1$  and  $1 \le j$ ,  $m \le r_2$ .  $r_2$  is the numbers of subintervals and fuzzy sets, respectively.

$$A_{j} = a_{j1}/u_{1} + a_{j2}/u_{2} + \dots + a_{jr_{1}}/u_{r_{1}},$$

$$a_{jm} = \begin{cases} 1, & m = j \\ 0.5, & m = j - 1 \\ 0.5, & m = j + 1 \end{cases}, \quad j, m = 1, \dots, r_{1}$$

$$0, \quad o.w.$$

and

$$B_{ij} = b_{ij1}/v_{i,1} + b_{ij2}/v_{i,2} + \cdots + b_{ij,r_2}/v_{i,r_2},$$
  

$$i = 1, 2, \dots, k-1$$

No. 
$$F(t)$$
  $G_1(t)$   $G_2(t)$  Input 1  $F(t-1)$  Input 2  $F(t-2)$  Input 3  $G_1(t-1)$  Input 4  $G_1(t-2)$  Input 5  $G_2(t-1)$  Input 6  $G_2(t-2)$  Target  $F(t-2)$  Input 3  $G_1(t-1)$  Input 4  $G_1(t-2)$  Input 5  $G_2(t-1)$  Input 6  $G_2(t-2)$  Target  $F(t-2)$  Input 5  $G_2(t-1)$  Input 6  $G_2(t-2)$  Target  $F(t-2)$  Input 6  $G_2(t-2)$  Target  $F(t-2)$  Input 6  $G_2(t-2)$  Input 6  $G_2(t-2)$  Target  $F(t-2)$  Input 6  $G_2(t-2)$  Input 6  $G_2(t-2)$  Target  $F(t-2)$  Input 9  $G_2(t-2)$  Input

$$b_{ijm} = \begin{cases} 1, & m = j \\ 0.5, & m = j - 1 \\ 0.5, & m = j + 1 \end{cases}, \quad j, m = 1, \dots, r_2$$
 $0, \quad o.w.$ 

- **Step 3.** Fuzzify the observations. Each crisp value is mapped into a fuzzy set where its membership degree has maximum value. Fuzzy main factor time series is demonstrated by F(t), fuzzy secondary factors time series are demonstrated by  $G_i(t)$ , i = 1, 2, ..., k 1.
- Step 4. Establish fuzzy relationship. In order to establish fuzzy relationships, ANN is employed. The lagged variables  $F(t-1), F(t-2), \dots, F(t-n)$  of the main factor fuzzy time series are used for training, and the lagged variables  $G_1(t-1), G_1(t-2), \dots, G_1(t-n), \dots, G_{k-1}(t-1), G_{k-1}(t-2), \dots, G_{k-1}(t-n)$  of secondary factors are taken as the inputs of network. The main factor fuzzy time series F(t) is used for the output of network. Feed forward neural network is trained in terms of these inputs and output. The number of neurons in the input layer is taken as the product of k times n while the number of neurons in the hidden layer (NNHL) can be decided by trial and error method. It is obvious that the number of neurons in the output layer should be one.

A small example will give an idea of what is being done in Step 4 clearly for three variables second order fuzzy time series. Because of dealing with a second order fuzzy time series, four inputs are employed in neural network model, so that lagged variables F(t-1), F(t-2),  $G_1(t-1)$ ,  $G_1(t-2)$ ,  $G_2(t-1)$ ,  $G_2(t-2)$  are obtained from three fuzzy time series F(t),  $G_1(t)$  and  $G_2(t)$ . These series are given in Table 1. The index numbers (j) of  $A_i$  of F(t-1)and F(t-2) series are taken as input values whose titles are Input 1 and Input 2, The index numbers (j) of  $B_{i,j}$  of  $G_i(t-1)$ ,  $G_i(t-2)$ , i=1,2 series are taken as input values whose titles are Input 3, Input 4, Input 5, Input 6 in Table 1 for the neural network model. Also, the index numbers of  $A_i$  of F(t) series are taken as target values whose title is Target in Table 1 for the neural network model. When the third observation is taken as an example, inputs values for the learning sample  $[A_5, A_6, B_{15}, B_{12}, B_{23}, B_{21}]$  are 5, 6, 5, 2, 3 and 1. Then, target value for this learning sample is 2.

- **Step 5.** Forecast. Prepare data for forecasting:  $F(t+l-1), \ldots, F(t+l-n+1), F(t+l-n)$  and  $G_1(t+l-1), \ldots, G_1(t+l-n+1), G_1(t+l-n+1), \ldots, G_{k-1}(t+l-n+1), \ldots, G_{k-1}(t+l-n+1), G_{k-1}(t+l-n+1$
- **Step 6.** Defuzzify each fuzzy forecast F(t+l). Apply "Centroid" method to get the results. This procedure (also called center of area, center of gravity) is the most often adopted method of defuzzyfication. Suppose that the

fuzzy forecast of F(t+1) is  $A_i$ . The defuzzified forecast is equal to the midpoint of the interval (with a biggest membership value) that corresponds to  $A_i$ .

#### 5. Application

We have applied this new technique to the time series data of the total number of annual car road accidents casualties in Belgium from 1974 to 2004 that is given in Table 2.

In this application, the main factor fuzzy time series is the number of killed persons, secondary factor time series are mortally wounded, died within 30 days, severely wounded, light casualties, respectively. The application is given step by step below.

Step1. Universe of discourses and subintervals for five time series are defined as

 $D_{\min} = 953$ ,  $D_{\max} = 1644$ ,  $D_1 = 103$ ,  $D_2 = 6$ , U = [850, 1650] for killed,

 $D_{\min}$  = 90,  $D_{\max}$  = 819,  $D_1$  = 40,  $D_2$  = 31,  $V_1$  = [50,850] for mortally wounded,

 $D_{\text{min}} = 1094$ ,  $D_{\text{max}} = 2393$ ,  $D_1 = 44$ ,  $D_2 = 57$ ,  $V_2 = [1050, 2450]$  for died within 30 days,

 $D_{\text{min}}$  = 5949,  $D_{\text{max}}$  = 16,645,  $D_{1}$  = 149,  $D_{2}$  = 255,  $V_{3}$  = [5800,16,900] for severely wounded,

 $D_{\text{min}} = 38,390$ ,  $D_{\text{max}} = 46,818$ ,  $D_1 = 40$ ,  $D_2 = 282$ ,

 $V_{\text{min}} = 36,350, \quad D_{\text{max}} = 40,618, \quad D_1 = 40, \quad D_2 = 26.$   $V_{\text{max}} = 40,618, \quad D_1 = 40, \quad D_2 = 26.$ 

The intervals for five time series are defined as given below:

$$\begin{bmatrix} u_1 \\ u_2 \\ u_3 \\ u_4 \\ u_5 \\ u_6 \\ u_7 \\ u_8 \end{bmatrix} = \begin{bmatrix} 850 & 950 \\ 950 & 1050 \\ 1050 & 1150 \\ 1150 & 1250 \\ 1250 & 1350 \\ 1450 & 1550 \\ 1550 & 1650 \end{bmatrix}, \quad \begin{bmatrix} v_{1,1} \\ v_{1,2} \\ v_{1,3} \\ v_{1,4} \\ v_{1,5} \\ v_{1,6} \\ v_{1,6} \\ v_{1,7} \\ v_{1,8} \end{bmatrix} = \begin{bmatrix} 50 & 150 \\ 150 & 250 \\ 250 & 350 \\ 350 & 450 \\ 450 & 550 \\ 550 & 650 \\ 650 & 750 \\ 750 & 850 \end{bmatrix},$$

$$\begin{bmatrix} v_{2,1} \\ v_{2,2} \\ v_{2,3} \\ v_{2,4} \\ v_{2,5} \\ v_{2,6} \\ v_{2,7} \\ v_{2,8} \end{bmatrix} = \begin{bmatrix} 1050 & 1225 \\ 1225 & 1400 \\ 1400 & 1575 \\ 1575 & 1750 \\ 1750 & 1925 \\ 1925 & 2100 \\ 2100 & 2275 \\ 2275 & 2450 \end{bmatrix}$$

$$\begin{bmatrix} v_{3,1} \\ v_{3,2} \\ v_{3,3} \\ v_{3,4} \\ v_{3,5} \\ v_{3,6} \\ v_{3,7} \\ v_{2,8} \end{bmatrix} = \begin{bmatrix} 5800 & 7100 \\ 7100 & 8500 \\ 8500 & 9900 \\ 11,300 & 12,700 \\ 12,700 & 14,100 \\ 14,100 & 15,500 \\ 15,500 & 16,900 \end{bmatrix}, \begin{bmatrix} v_{4,1} \\ v_{4,2} \\ v_{4,3} \\ v_{4,4} \\ v_{4,5} \\ v_{4,6} \\ v_{4,7} \\ v_{4,8} \end{bmatrix} = \begin{bmatrix} 38,350 & 39,400 \\ 39,400 & 40,500 \\ 40,500 & 41,600 \\ 41,600 & 42,700 \\ 42,700 & 43,800 \\ 43,800 & 44,900 \\ 44,900 & 46,000 \\ 46,000 & 47,100 \end{bmatrix}$$

Step 2. Based on defined U,  $V_1$ ,  $V_2$ ,  $V_3$ ,  $V_4$  universe of discourses and subintervals,  $r_1 = r_2 = 8$  and fuzzy sets  $A_i$ , j = 1, 2, ..., 8

**Table 2**Yearly car accident causalities in Belgium from 1974 to 2004.

| Year | Killed | Mortally<br>wounded | Died within<br>30 days | Severely<br>wounded | Light<br>casualties |
|------|--------|---------------------|------------------------|---------------------|---------------------|
| 1974 | 1574   | 819                 | 2393                   | 16,506              | 44,640              |
| 1975 | 1460   | 701                 | 2161                   | 15,794              | 42,423              |
| 1976 | 1536   | 728                 | 2264                   | 16,057              | 44,227              |
| 1977 | 1597   | 701                 | 2298                   | 15,830              | 44,995              |
| 1978 | 1644   | 728                 | 2372                   | 16,645              | 44,797              |
| 1979 | 1572   | 544                 | 2116                   | 15,750              | 42,346              |
| 1980 | 1616   | 557                 | 2173                   | 15,915              | 42,670              |
| 1981 | 1564   | 454                 | 2018                   | 15,091              | 41,915              |
| 1982 | 1464   | 406                 | 1870                   | 14,601              | 40,936              |
| 1983 | 1479   | 412                 | 1891                   | 14,864              | 42,023              |
| 1984 | 1369   | 363                 | 1732                   | 14,471              | 42,456              |
| 1985 | 1308   | 352                 | 1660                   | 13,287              | 39,879              |
| 1986 | 1456   | 330                 | 1786                   | 13,764              | 42,965              |
| 1987 | 1390   | 380                 | 1770                   | 13,809              | 44,090              |
| 1988 | 1432   | 339                 | 1771                   | 14,029              | 44,956              |
| 1989 | 1488   | 312                 | 1800                   | 14,515              | 46,667              |
| 1990 | 1574   | 190                 | 1764                   | 13,864              | 46,818              |
| 1991 | 1471   | 209                 | 1680                   | 12,965              | 43,578              |
| 1992 | 1380   | 173                 | 1553                   | 12,113              | 41,772              |
| 1993 | 1346   | 171                 | 1517                   | 11,680              | 41,736              |
| 1994 | 1415   | 149                 | 1564                   | 11,160              | 40,294              |
| 1995 | 1228   | 109                 | 1337                   | 10,267              | 39140               |
| 1996 | 1122   | 115                 | 1237                   | 9123                | 38,390              |
| 1997 | 1150   | 105                 | 1255                   | 9229                | 39,594              |
| 1998 | 1224   | 121                 | 1345                   | 8784                | 41,038              |
| 1999 | 1173   | 126                 | 1299                   | 8461                | 41,841              |
| 2000 | 1253   | 103                 | 1356                   | 7990                | 39,719              |
| 2001 | 1288   | 90                  | 1378                   | 7319                | 38,747              |
| 2002 | 1145   | 118                 | 1263                   | 6834                | 39,522              |
| 2003 | 1035   | 101                 | 1136                   | 6898                | 42,445              |
| 2004 | 953    | 141                 | 1094                   | 5949                | 41,627              |

and  $B_{ij}$ , i = 1,2,3,4, j = 1,2,...,8, are defined and given below for main factor and secondary factor time series, respectively. The membership values are

$$a_{jm} = \left\{ egin{aligned} 1, & m = j \ 0.5, & m = j - 1 \ 0.5, & m = j + 1 \end{aligned} 
ight., \quad j, m = 1, \ldots, 8, \ 0, \quad o.w.$$

$$b_{ijm} = \begin{cases} 1, & m = j \\ 0.5, & m = j - 1 \\ 0.5, & m = j + 1 \end{cases}, \quad j, m = 1, \dots, 8, \ i = 1, 2, 3, 4$$

$$0, \quad o, w.$$

**Table 3** Fuzzified observations for the killed time series.

| Year | Killed | Fuzzified killed | Year | Killed | Fuzzified killed |
|------|--------|------------------|------|--------|------------------|
| 1974 | 1574   | $A_8$            | 1990 | 1574   | $A_8$            |
| 1975 | 1460   | A <sub>7</sub>   | 1991 | 1471   | $A_7$            |
| 1976 | 1536   | A <sub>7</sub>   | 1992 | 1380   | $A_6$            |
| 1977 | 1597   | $A_8$            | 1993 | 1346   | $A_5$            |
| 1978 | 1644   | $A_8$            | 1994 | 1415   | $A_6$            |
| 1979 | 1572   | $A_8$            | 1995 | 1228   | $A_4$            |
| 1980 | 1616   | $A_8$            | 1996 | 1122   | $A_3$            |
| 1981 | 1564   | $A_8$            | 1997 | 1150   | $A_4$            |
| 1982 | 1464   | A <sub>7</sub>   | 1998 | 1224   | $A_4$            |
| 1983 | 1479   | A <sub>7</sub>   | 1999 | 1173   | $A_4$            |
| 1984 | 1369   | $A_6$            | 2000 | 1253   | $A_5$            |
| 1985 | 1308   | $A_5$            | 2001 | 1288   | $A_5$            |
| 1986 | 1456   | A <sub>7</sub>   | 2002 | 1145   | $A_3$            |
| 1987 | 1390   | $A_6$            | 2003 | 1035   | $A_2$            |
| 1988 | 1432   | $A_6$            | 2004 | 953    | $A_2$            |
| 1989 | 1488   | A <sub>7</sub>   |      |        |                  |

**Table 4**MSE and AFER values obtained from changing the number of neurons in the hidden layer and the model order.

| Number of hidden layer neurons | 1         |        | 2           | 2       |           | 3        |           | 4      |  |
|--------------------------------|-----------|--------|-------------|---------|-----------|----------|-----------|--------|--|
|                                | MSE       | AFER   | MSE         | AFER    | MSE       | AFER     | MSE       | AFER   |  |
| Model order                    |           |        |             |         |           |          |           |        |  |
| 1                              | 5782.8670 | 4.9773 | 3554.6900   | 3.7957  | 2013.9290 | 2.745486 | 1651.1480 | 2.4979 |  |
| 2                              | 3922.8670 | 3.7930 | 989.1724    | 2.1774  | 978.2143  | 2.1715   | 1014.1110 | 2.2449 |  |
| 3                              | 1169.5330 | 2.2978 | 989.1724    | 2.1774  | 978.2143  | 2.1715   | 1014.1110 | 2.2449 |  |
| 4                              | 2296.2000 | 2.7527 | 86,409.8600 | 19.4696 | 978.2143  | 2.1715   | 1014.1110 | 2.2449 |  |
| 5                              | 1009.5330 | 2.1961 | 989.1724    | 2.1774  | 978.2143  | 2.1715   | 1014.1110 | 2.2449 |  |

then

$$A_{1} = a_{11}/u_{1} + a_{12}/u_{2} + \dots + a_{1,8}/u_{8}$$

$$A_{2} = a_{21}/u_{1} + a_{12}/u_{2} + \dots + a_{2,8}/u_{8}$$

$$\vdots$$

$$A_{8} = a_{8,1}/u_{1} + a_{8,2}/u_{2} + \dots + a_{8,8}/u_{8}$$

$$B_{i,1} = b_{i,1,1}/v_{i,1} + b_{i,1,2}/v_{i,2} + \dots + b_{i,1,8}/v_{i,8}$$

$$B_{i,2} = b_{i,2,1}/v_{i,1} + b_{i,2,2}/v_{i,2} + \dots + b_{i,2,8}/v_{i,8}$$

$$\vdots$$

$$h_{i,8} = b_{i,8,1}/v_{i,1} + b_{i,8,2}/v_{i,2} + \dots + b_{i,8,8}/v_{i,8}$$

model order and the number of neurons in the hidden layer. The formulas of mean squared error (MSE) and the average forecasted error rate (AFER) are given below. Table 4 shows different MSE and AFER values that are obtained from changing the model order and the number of neurons in the hidden layer:

$$= \sum_{j=1}^{n} \frac{(\text{Forecasted value of day } j - \text{Actual value of day } j)}{n} \tag{5}$$

$$AFER = \sum_{j=1}^{n} \frac{|(\text{Forecasted value of year } j - \text{Actual value of year } j)/\text{Actual value of year } j|}{n} \times 100\%$$
 (6)

- Step 3. The observations are fuzzified. The fuzzified observations for the killed time series are demonstrated in Table 3
- Step 4. Feed forward ANN is used to determine fuzzy relationships. The inputs of the ANN are being changed according to the order of the model since it is changed between 1 and 4 in the application. For example, the inputs of ANN for the second order five variables (one main factor and four secondary factor time series) model are given as follows:

$$\begin{split} F(t-1), & F(t-2), G_1(t-1), G_1(t-2), G_2(t-1), G_2(t-2), \\ & G_3(t-1), G_3(t-2), G_4(t-1), G_4(t-2) \end{split}$$

The target value of ANN is F(t). The outputs of ANN will be the predicted values of the fuzzy time series denoted by  $\widehat{F}(t)$ . The number of neurons in the hidden layer for the ANN has been determined by changing the number of neurons between 1 and 5. The algorithm is applied to each possible case that is 20 in total. In every stage of ANN, the logistic activation function has been used. Also, the backward learning algorithm is employed in the training stage of the network.

- Step 5. The outputs of ANN will be the predicted values of the fuzzy time series denoted by  $\hat{F}(t)$ .
- Step 6. The centroid method is used to defuzzify the fuzzy fore-casts. For example, if  $\hat{F}(t) = A_4$  is obtained then the defuzzified forecast will be the midpoint of the interval  $u_4$  which has got the biggest membership value as defining this linguistic variable  $A_4$ . For each of the 20 different cases, mean squared errors (MSE) and the average fore-casted error rate (AFER) are calculated based on the

**Table 5**The comparison of the methods proposed by Jilani and Burney (1–2) (2008), Lee et al. and the method proposed in this paper for yearly car accident casualties in Belgium from 1974 to 2004.

| Years | Actual<br>killed | Jilani and Burney<br>(2008) Method 1 | Jilani and Burney<br>(2008) Method 2 | Lee et al. (2006) | Proposed<br>method |
|-------|------------------|--------------------------------------|--------------------------------------|-------------------|--------------------|
| 1974  | 1574             | _                                    |                                      |                   | _                  |
| 1975  | 1460             |                                      | _                                    | _                 | _                  |
| 1976  | 1536             |                                      | _                                    | _                 | _                  |
| 1977  | 1597             | 1497                                 | 1497                                 | 1500              | 1600               |
| 1978  | 1644             | 1497                                 | 1497                                 | 1500              | 1600               |
| 1979  | 1572             | 1497                                 | 1497                                 | 1500              | 1600               |
| 1980  | 1616             | 1598                                 | 1497                                 | 1500              | 1600               |
| 1981  | 1564             | 1598                                 | 1497                                 | 1500              | 1600               |
| 1982  | 1464             | 1498                                 | 1497                                 | 1500              | 1500               |
| 1983  | 1479             | 1498                                 | 1497                                 | 1500              | 1500               |
| 1984  | 1369             | 1398                                 | 1497                                 | 1500              | 1400               |
| 1985  | 1308             | 1298                                 | 1396                                 | 1400              | 1300               |
| 1986  | 1456             | 1498                                 | 1296                                 | 1300              | 1500               |
| 1987  | 1390             | 1398                                 | 1497                                 | 1500              | 1400               |
| 1988  | 1432             | 1398                                 | 1396                                 | 1400              | 1400               |
| 1989  | 1488             | 1498                                 | 1396                                 | 1400              | 1500               |
| 1990  | 1574             | 1598                                 | 1497                                 | 1500              | 1600               |
| 1991  | 1471             | 1498                                 | 1497                                 | 1500              | 1500               |
| 1992  | 1380             | 1398                                 | 1497                                 | 1500              | 1400               |
| 1993  | 1346             | 1298                                 | 1396                                 | 1400              | 1300               |
| 1994  | 1415             | 1398                                 | 1296                                 | 1300              | 1400               |
| 1995  | 1228             | 1198                                 | 1396                                 | 1400              | 1200               |
| 1996  | 1122             | 1098                                 | 1095                                 | 1100              | 1100               |
| 1997  | 1150             | 1198                                 | 1196                                 | 1200              | 1200               |
| 1998  | 1224             | 1198                                 | 1196                                 | 1200              | 1200               |
| 1999  | 1173             | 1198                                 | 1196                                 | 1200              | 1200               |
| 2000  | 1253             | 1298                                 | 1296                                 | 1300              | 1300               |
| 2001  | 1288             | 1298                                 | 1296                                 | 1300              | 1300               |
| 2002  | 1145             | 1098                                 | 1095                                 | 1100              | 1100               |
| 2003  | 1035             | 997                                  | 995                                  | 1000              | 1000               |
| 2004  | 953              | 997                                  | 995                                  | 1000              | 1000               |
| AFER  |                  | 2.6951                               | 5.2444                               | 5.2483            | 2.1715             |



Fig. 2. A comparison of the proposed method with other methods.

As seen from Table 4, the smallest values for MSE and AFER obtained from the proposed method are 978.2143 and 2.1715, respectively. In our proposed method, the best result has been found for the third order model. When the model order is 3, for all cases in which the number of neurons in the hidden layer is 2, 3, 4 and 5. the same MSE and AFER values have been found. Consequently the forecasted values obtained from our new techniques for the case with third order model and two neurons of the hidden laver are listed in Table 5. This table also presents the forecasts from the method of Jilani and Burney (2008) and Lee et al. (2006). It has also seen that the smallest AFER value was obtained from our proposed method which is 2.1715. The real values and the forecasts obtained from all the methods in the literature and the forecasts obtained from our proposed method are shown in Fig. 2. When Fig. 2 is examined, it is easily seen that our proposed method has performed better than existing methods.

#### 6. Conclusion

To analyze multivariate high order fuzzy time series forecasting models, the method proposed by Jilani and Burney (2008) has to

deal with too many computations to get fuzzy relation table. In this study, we propose a new method which is based on feed forward artificial neural networks to analyze multivariate high order fuzzy time series forecasting models. Using artificial neural networks for determining fuzzy relationships avoids intense computations and therefore saves time. For the implementation purpose, our proposed method is applied to time series that are yearly car accident causalities in Belgium from 1974 to 2004. The proposed method provides forecasts with a smaller AFER value than ones obtained from the methods presented by Jilani and Burney (2008) and Lee et al. (2006). The advantage of the proposed method can be summarized with two words that are more accurate forecasts and easy implementation. As a future works, other architectures available in ANN should be searched to reach more accurate forecasts.

#### References

Aladag, C. H., Basaran, M. A., Egrioglu, E., Yolcu, U., & Uslu, V. R. (2008). Forecasting in high order fuzzy time series by using neural networks to define fuzzy relations. Expert Systems with Applications, 36, 4228–4231.

Chen, S. M. (2002). Forecasting enrollments based on high-order fuzzy time series. *Cybernetics and Systems an International Journal*, 33, 1–16.

Jilani, T. A., & Burney, S. M. A. (2008). Multivariate stochastic fuzzy forecasting models. Expert Systems with Applications, 35, 691–700.

Lee, L.-W., Wang, L.-H., Chen, S.-M., & Leu, Y.-H. (2006). Handling forecasting problems based on two factors high order fuzzy time series. *IEEE Transactions on Fuzzy Systems*, 14, 468–477.

Song, Q., & Chissom, B. S. (1993a). Fuzzy time series and its models. Fuzzy Sets and Systems, 54, 269–277.

Song, Q., & Chissom, B. S. (1993b). Forecasting enrollments with fuzzy time series. Part I. Fuzzy Sets and Systems, 54, 1–10.

Song, Q., & Chissom, B. S. (1994). Forecasting enrollments with fuzzy time series. Part II. Fuzzy Sets and Systems, 62, 1–8.

Yu, T. K., & Huarng, K. (2008). A bivariate fuzzy time series model to forecast the TAIEX. Expert Systems with Applications, 34(4), 2945–2952.

Zadeh, L. A. (1965). Fuzzy sets. Information and Control, 8, 338-353.

Zhang, G. P., Patuwo, B. E., & Hu, Y. M. (1998). Forecasting with artificial neural networks: The state of the art. *International Journal of Forecasting*, 14, 35–62.

Zurada, J. M. (1992). Introduction of artificial neural systems. St. Paul: West Publishing.