Destroy - continuation (Token wing) Lemma 4 (Convergence) ME algorithm	
Lemma 4 (Convergence) ME algoriti	Im from any configuration
reaches some legal configuration where n-size of the ning.	CEL in O(n3) steps
Pf Let us consider any initial a) At most 2n (n-1) steps can step of Po. The file of (n-i), where	confightation 1 be done without
step of Po.	we take all tollens one has and calculate their distance

SH)= {i: i>11 in Cs in slep + from initial configuration

$$(a.2)F(H)$$
 is a potential function $0 \le F(H) \le \sum_{i \le n-1} (n-i) = \frac{1}{2}n(n-1)$

and FH) decreases with any step of any process, expet Po.

- 6) A legal configuration $v_0=v_1=...=v_{n-1}$ is weathed in $O(n^3)$ \$\frac{1}{2}eps (it is not the only legal c)
- 6.1) For any configuration $c=(v_0,v_1,...,v_{n-1})$ there is oit least one value $x \in \{0,1,...,n\}$ which is not present in c.
- 6.2) vo takes value x after no move than n steps of Po.

 Then x is unique value in the ning (other registers just capy values)
- 6.3) Since $r_0 = x$ is unique in the ning. Po will enter C5 only when $r_0 = r_1 = \dots = r_{n-1} = x$. This is legal configuration.
- (6.4) Thus we can compute an apper bound for total number of steps as:

steps of Po antil ro=x
(from 62)

 $n \frac{1}{2} n(n-1)$ steps d i + 0 until ro = x(from a and 6.2)

+ $\frac{1}{z}n(n-1) = O(n^3)$ Steps of $P_{i\neq 0}$ until next wave of P_{i} of P_{i}

Movimal motching (self-stabilizi	ng)
Def: (Maximal matching) Let C= (V, E) be undirected Maximal matching is a subset a) each venter v EV can be {v,u} & M. (matching)	graph, i.e. $E \subseteq \{\{v_i, v_j\}\}: v_i, v_j \in V_i$
Example $9 - 2 - 3$ 4 - 5 - 6 $M = \{41,2\}, \{5,6\}\}$	natch out! Maximal not necesory is maximum mothins. Maximum= 3{1,43, {2,5}, {3,4}}

Our requirements:

1) distributed algorithm - a node can communicate only with its reighbours to achive a global property

2) sett-stabilizing algorithm - e.g. can adopt to charages in topology.

```
The motching algorithm

1) each machine p has only one variable - pointer
                                                                                                                                                                               pref p ∈ N(p) UNULL
             ·N(p)-set of reighbours of p in graph G.
2) possible states of p:
                    a) mounied (p) = pref_p = q + N(p)^{-1} pref_q = p \in N(q)
                                                                                                                                             1 (\forall q \in N(p)) (mannial (q))
                                                                          = profp = NULL
                     6) single (p)
                                                                                                                                            1 ( Fg \in Ncp) (7 wanniod (9))
                                                                  = prefp=NULL
                    () free (p)
                                                                                                                                           n pref g=NUL
                   g) wait (p) = prof = 9 \in N(p) ^{1} prof 9 = N(p) ^{2} prof 9 = N(p) ^{3} prof 9 = N(p) ^{4} prof ^{4} ^{4} prof ^{4} p
Algonithm for modine p
      do fonever:

I if prefp=NUL 1(=g \in N(p))(prefq,
prefp=q //occept purposal
                                                                     \Lambda(\exists q \in N(p))(prefq = p):
                                                                       \Lambda (\forall q \in N(p))(pnfq \neq p) \Lambda (\exists q \in N(p)(pnfq = NULL))
              if pref,p=NULL
                 profo=9 // propose
                if pref = 9, 1 pref 9 ≠ p 1 pref 9 ≠ NVLL: (***)
                  pref p = NUL // unchain
```

in order to provide atomic operations in practice negumes composing this algorithm on top of Token-Ring algorithm.

Specification 5 (set of legal configuration): (Up) (wannied (p) v singlap) Lemma 1 If the constition of specification S holds then set $M = \{\{p, prefp\}, prefp\}$ prefp * NVLL } is marinal matching. p-f(a) it is matching); indirect $(S\rightarrow M \leftarrow) \neg M \rightarrow \neg S$: {p,g}, {p,n} ∈ M, g ≠r -> 15 = (1p) (free (p) vuait(p) v choin(p)) 19 29 Par Per b) is maximal; indirect proof:
assume that M'= M v {p,q,1, {p,q,1} \$ N 75 for M Lemma 2 (Correcthess) Specification 5 holds (---) a configuration is terminal. pf's' if 5 holds no action of the algorithm is possible possible if (3p) (noit (p)) (3p) (free(p)) (3p) (chouin (p))

 $p-f' \subseteq '$ indirect proof; $15 \rightarrow configuration not tensional. <math>\equiv configuration of alg. is possible action of alg. is possible <math>(\exists p) (free(p) \lor wait(p) \lor choun(p))$ • choun(p) $\rightarrow (\forall \star \star \star) = possible$ • wait(p) for $q \rightarrow (\exists t) possible for q$ • free(p) $\rightarrow (\exists t) possible for q$ p is not matched a) wait(q) $\rightarrow (\forall t) possible for neighbour of q$ 6) chain(q) $\rightarrow (\forall \star) possible for neighbour of q$ c) free $(q, t) \rightarrow (\forall \star) possible for neighbour of q$

Home is always a move, 50 configuration is not terminal 1.