Algoritmo di eliminazione dei quantificatori di Cooper una semplice implementazione scritta in linguaggio C

Andrea Ciceri

21 dicembre 2018

Sommario

L'algoritmo di Cooper permette di effettuare l'eliminazione dei quantificatori universali da formule dell'aritmetica di Presburger. In questo documento verrà descritto l'algoritmo e verrà discussa una semplice implementazione in C di una versione ridotta dell'algoritmo atta ad interfacciarsi al software di model checking MCMT.

1 Aritmetica di Presburger

Sia \mathbb{Z} l'anello degli interi, sia $\Sigma_{\mathbb{Z}}$ la segnatura $\{0,+,-,<\}$ e sia $\mathcal{A}_{\mathbb{Z}}$ il modello standard degli interi. Definiamo la teoria dell'aritmetica di **Presburger** come l'insieme $T_{\mathbb{Z}} = Th(\mathcal{A}_{\mathbb{Z}}) = Th(\mathbb{Z}, 0, 1, +, -, <)$ di tutte le $\Sigma_{\mathbb{Z}}$ -formule vere in $\mathcal{A}_{\mathbb{Z}}$. Tale teoria non ammette l'eliminazione dei quantificatori.

Consideriamo ora la segnatura estesa $\Sigma_{\mathbb{Z}}^*$ ottenuta aggiungendo a $\Sigma_{\mathbb{Z}}$ un'infinità di predicati unari di divisibiltà D_k per ogni $k \geq 2$, dove $D_k(x)$ indica che $x \equiv_k 0$. Sia $T_{\mathbb{Z}}^*$ l'insieme delle $\Sigma_{\mathbb{Z}}$ -formule vere nell'espansione $\mathcal{A}_{\mathbb{Z}}^*$ ottenuta da $\mathcal{A}_{\mathbb{Z}}$.

Nel 1930 Mojžesz Presburger ha esibito un algoritmo di eliminazione dei quantificatori per $T_{\mathbb{Z}}^*$ e nel 1972 Cooper ha fornito una versione migliorata basata sull'eliminazione dei quantificatori da formule nella forma $\exists x \,.\, \varphi$, dove φ è una formula senza quantificatori arbitraria.

2 L'algoritmo

Si ha quindi che l'algoritmo ha come ingresso una formula del tipo $\exists x \,.\, \varphi$ e come uscita una una formula equivalente senza il quantificatore esistenziale. Se si vogliono eliminare più quantificatori esistenziali basta reiterare l'algoritmo.

Si osserva come ovviamente ogni formula contenente quantificatori universali possa essere trasformata in una formula equivalente con soli quantificatori esistenziali. Pertanto non si ha una perdita di generalità ad assumere un input in tale forma.

2.1 Processo di semplificazione

In questo passaggio vengono effettuate le seguenti semplificazioni alla formula in ingresso φ :

- Tutti i connettivi logici composti, cioè che non sono ¬, ∧ o ∨, vengono sostituiti nella loro definizione in termini di ¬, ∧ o ∨.
- I predicati binari \geq e \leq vengono sostituiti con le loro definizioni (e.g. $s \leq t$ diventa s < t + 1).
- Le diseguaglianze negate della forma $\neg (s < t)$ vengono sostituite con t < s + 1.
- Tutte le equazioni e le disequazioni vengono riscritte in modo da avere 0 nel lato sinistro (s = t e s < t diventano 0 = t s e 0 < t s).

• Tutti gli argomenti dei predicati vengono sostituiti con la loro forma canonica.

Dopo aver applicato queste sostituzioni e aver trasformato la φ ottenuta in forma normale negativa possiamo dunque assumere che φ sia congiunzione e disgiunzione dei seguenti tipi di letterali:

$$0 = t$$
 $\neg (0 = t)$ $0 < t$ $D_k(t)$ $\neg D_k(t)$

Diremo che φ in tale forma é una formula ristretta.

2.2 Normalizzazione dei coefficienti

Assumiamo quindi che l'algoritmo riceva in ingresso $\exists x.\varphi$ con φ formula ristretta. Il primo passaggio consiste nel trasformare φ in una formula dove il coefficiente della x è sempre lo stesso. Per fare questo è sufficiente calcolare il minimo comune multiplo l di tutti i coefficienti di x ed effettuare i seguenti passi:

- Per le equazioni e le equazioni negate, rispettivamente nella forma 0 = t e $\neg (0 = t)$, si moltiplica t per l/c, dove c indica il coefficiente della x.
- Analogamente, per i predicati di divisibilità $D_k(t)$ e i predicati di divisibilità negati $\neg D_k(t)$ si moltiplica sia t che k per l/c, sempre dove c indica il coefficiente della x.
- Per le diseguaglianze 0 < t si moltiplica t per il valore assoluto l/c, dove ancora un volta c indica il coefficiente della x.

Quindi ora tutti i coefficienti della x in φ sono $\pm l$, passiamo ora a considerare la seguente formula equivalente:

$$\exists x. (D_l(x) \land \psi)$$

dove ψ è ottenuta da φ sostituendo $l \cdot x$ con x. Dunque la formula $\varphi' = D_l(x) \wedge \psi$ è una formula ristretta dove i coefficienti della x sono ± 1 .

2.3 Costruzione di $\varphi'_{-\infty}$

Definiamo una nuova formula $\varphi'_{-\infty}$ ottenuta partendo da φ' e sostituendo tutte le formule atomiche α con $\alpha_{-\infty}$ secondo la seguente tabella:

α	$\alpha_{-\infty}$
0 = t	falso
$0 < t \text{ con } 1 \cdot x \text{ in } t$	falso
$0 < t \text{ con } -1 \cdot x \text{ in } t$	vero
ogni altra formula atomica α	α

2.4 Calcolo dei boundary points

Ad ogni letterale L[x] di φ' contenente la x che non è un predicato di divisibilità associamo un intero, detto **boundary point**, nel seguente modo:

Tipo di letterale	Boundary point
0 = x + t	il valore di $(-t+1)$
$\neg (0 < x + t)$	il valore di $-t$
0 < x + t	il valore di $-t$
0 < -x + t	niente

Si osserva come nel caso la formula φ contenga più variabili da eliminare allora i valori nella colonna di destra possano dipendere da altre variabili. Chiamiamo B-set l'insieme di questi boundary points.

2.5 Eliminazione dei quantificatori

Quest'ultimo passaggio è semplicemente l'applicazione della seguente equivalenza:

$$\exists x . \varphi'[x] \longleftrightarrow \bigvee_{j=1}^{m} \left(\varphi'_{-\infty}[j] \lor \bigvee_{b \in B} (\varphi'[b+j]) \right)$$

dove φ' è la formula ristretta in cui i coefficienti della x sono sempre ± 1 , m è il minimo comune multiplo di tutti i k dei predicati di divisbilità $D_k(t)$ che appaiono in φ' tali che appaia la x in t e infine B è il B-set relativo a φ' . Considerando quindi il lato destro della precedente equivalenza si ha una formula priva del quantificatore esistenziale e si ha dunque ottenuto ciò che si voleva.

3 Implementazione

Il software è stato scritto nel linguaggio C rispettando lo standard C99