Sprawozdanie 2

Jan Bronicki Nr indeksu: 249011 Marcin Radke Nr indeksu: 241554

Ćwiczenie: 8

Uzyskane dane oraz ich wyliczone niepewności:

Lp.	m[kg]	d[m]	h[m]	t[s]	$\rho_k \left[\frac{kg}{m^3} \right]$	$\rho_c \left[\frac{kg}{m^3} \right]$	$\eta \left[\frac{Ns}{m^2} \right]$
3.29	±0.02	18.7	±0.2	175.94	$\pm \ 2.16$		
4.78	± 0.02	27.8	± 0.3	171.94	± 1.99		
6.35	± 0.02	36.1	± 0.3	175.90	± 1.70		
7.89	± 0.03	44.9	± 0.4	175.72	± 1.41		
9.50	± 0.03	54.2	± 0.4	175.28	± 1.51		
12.44	± 0.04	71.0	± 0.6	175.21	± 1.58		

Przykładowe obliczenia:

Delta niepewności napięcia:
$$\Delta u_p(U) = 0.5\% \cdot rdg + 1 \cdot dgt =$$

Niepewność napięcia:

$$u_B(U) = \frac{\Delta u_p(U)}{\sqrt{3}} =$$

Delta niepewności natężenia: $\Delta u(I) = 1.2\% \cdot rdg + 1 \cdot dgt =$

Niepewność natężenia:

$$u(I) = \frac{\Delta u(I)}{\sqrt{3}} \approx$$

Niepewność całkowita R:
$$u_c(R) = \sqrt{\sum_{j=1}^k \left(\frac{\partial f}{\partial x_j}\right)^2 u^2(x_j)} =$$

Wartość średnia R:
$$\bar{R} = \frac{\sum_{i=1}^{n} x_i}{n} =$$

Niepewność wartości średniej R:
$$u(\bar{R}) = \sqrt{\frac{\sum_{i=1}^n \left(x_i - \bar{x}\right)^2}{n(n-1)}}$$