Advanced Parallel School 2022 Quantum Computing — Day 5 Quantum Computing @ CINECA

Mengoni Riccardo, PhD

18 Feb 2022

CINECA Overview

CINECA: Italian HPC center

Rank	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 2.2GHz, Tofu interconnect D, Fujitsu RIKEN Center for Computational Science Japan	7,630,848	442,010.0	537,212.0	29,899
14	Marconi-100 - IBM Power System AC922, IBM POWER9 16C 3GHz, Nvidia Volta V100, Dual-rail Mellanox EDR Infiniband, IBM CINECA Italy	347,776	21,640.0	29,354.0	1,476

List of the 500 most powerful supercomputers in the world

CINECA Overview

CINECA: Italian HPC center

Leonardo: Cineca preexascale supercomputer

Coming soon. Will be in the top five most powerful supercomputers in the world

CINECA Overview

- Today Access to:
 - D-Wave Quantum Annealer
 - Pasqal Neutral Atoms

The Quantum Computing Company™

- Future:
 - Soon others...
 - On-site?

Old School Quantum Algorithms: Overview

Cryptography

Shor's Algorithm
Exponential Speedup

Optimization

Grover's Algorithm

Quadratic Speedup

Chemistry

Hamiltonian Simualtion
Exponential Speedup

Old School Quantum Algorithms: Shor's algorithm (1994)

^{*} Assuming we have a fault-tolerant quantum computer capable of executing Shor's algorithm by applying gates at the speed of current quantum computers based on superconducting circuits

Old School Quantum Algorithms: Error Correction

Cryptography

Shor's Algorithm
Exponential Speedup

Optimization

Grover's Algorithm

Quadratic Speedup

Chemistry

Hamiltonian Simualtion
Exponential Speedup

- Require error corrected quantum computers with about 1 million or 100 thousands of qubits
 - Will be availabe in 10-20 years

The NISQ Era

NISQ = Noisy Intermediate-Scale Quantum

Intermediate-Scale Quantum computers with no error correction

NISQ = Noisy Intermediate-Scale Quantum

Intermediate-Scale Quantum computers with no error correction

1. Quantum Annealers

2. Circuit
Quantum
Computers

NISQ = Noisy Intermediate-Scale Quantum

Intermediate-Scale Quantum computers with no error correction

The scientific community believes that NISQ technology could outperform traditional classical computers for specific applications

- Speed up
- Better quality solutions
- Lower energy consumption

- Quantum Chemistry
- Quantum Optimization
- Quantum Al/Machine Learning

Cineca Quantum Computing Lab: Vision

Quantum Computing will always be Hybrid

HPC

Cineca Quantum Computing Lab: Vision

Emulators: develop/test HPC ready software for simulating quantum systems and quantum computers

Hybrid workflows: development of problem oriented hybrid QPU-HPC algorithms

Scheduling hybrid resources: ensure a task is run with the resources it needs and decide when and how to allocate QPU-HPC resources

Real-world applications: chemistry, optimization, machine learning, simulations, etc.

Emulators: develop/test HPC ready software for simulating quantum systems and quantum computers

Emulators: develop/test HPC ready software for simulating quantum systems and quantum computers

Usage:

- Development and verification of Quantum Algorithms
- Benchmarking
- Study Noise
- Assess hardware constraint
- Co-design of quantum hardware
- ...

Emulators: develop/test HPC ready software for simulating quantum systems and quantum computers

State-vector emulators

 Single node Multi-threading using OpenMP to achieve state of the art emulation of quantum circuits.

Working on a multithread/multi-node implementation

Emulators: develop/test HPC ready software for simulating quantum systems and quantum computers

State-vector emulators

 Single node Multi-threading using OpenMP to achieve state of the art emulation of quantum circuits.

Working on a multithread/multi-node implementation

Emulators: develop/test HPC ready software for simulating quantum systems and quantum computers

State-vector emulators

Emulators: develop/test HPC ready software for simulating quantum systems and quantum computers

Tensor Network emulator

- Single node MPS simulator developed in fortran QCOMPS.
- Python interface: qiskit and strawberry fields
- Working on a parellized implementation

QCOMPS

Emulators: develop/test HPC ready software for simulating quantum systems and quantum computers

Tensor Network MPS emulator

Emulators: develop/test HPC ready software for simulating quantum systems and quantum computers

Simulated Quantum Annealing

D-Wave neal library for simulated annealing

 SQAOD Collections of solvers/annealers for simulated quantum annealing on CPU and CUDA(NVIDIA GPU).

Hybrid workflows: development of problem oriented hybrid QPU-HPC algorithms

Hybrid workflows: development of problem oriented hybrid QPU-HPC algorithms

1. QPU - enhanced computation

Hybrid workflows: development of problem oriented hybrid QPU-HPC algorithms

2. Competing CPU-QPU

Hybrid workflows: development of problem oriented hybrid QPU-HPC algorithms

3. Iterative Hybrid algorithm

Cineca Quantum Computing Lab: Scheduling

Scheduling hybrid resources: ensure a task is run with the resources it needs and decide when and how to allocate QPU-HPC resources

Cineca Quantum Computing Lab: Scheduling

Scheduling hybrid resources: ensure a task is run with the resources it needs and decide when and how to allocate QPU-HPC resources

Today

Cineca Quantum Computing Lab: Scheduling

Scheduling hybrid resources: ensure a task is run with the resources it needs and decide when and how to allocate QPU-HPC resources

Real-world applications: chemistry, optimization, machine learning, simulations, etc.

Real-world applications: chemistry, optimization, machine learning, simulations, etc.

Gate model QC

VQE

Quantum Chemistry

QAOA

Quantum Optimization

QNN

Quantum Machine Learning

Real-world applications: chemistry, optimization, machine learning, simulations, etc.

Quantum Annealing

Molecular Unfolding

System of Eqn.s solver

$$AX = \begin{pmatrix} D_1 & B_1^T & & & & \\ B_1 & D_2 & B_2^T & & & \\ & \ddots & \ddots & \ddots & \\ & & B_{N-2} & D_{N-1} & B_{N-1}^T \\ & & & B_{N-1} & D_N \end{pmatrix} \begin{pmatrix} X_1 \\ X_2 \\ \vdots \\ X_{N-1} \\ X_N \end{pmatrix} = \begin{pmatrix} F_1 \\ F_2 \\ \vdots \\ F_{N-1} \\ F_N \end{pmatrix}$$

Real-world applications: chemistry, optimization, machine learning, simulations, etc.

QUANTUM ADVANTAGE IN THE NISQ ERA?

Quantum Computing @ CINECA

CINECA Quantum Computing Lab:

- Collaborate with Universities, Industries and QC startups
- Internship programs, Courses and Conference (HPCQC)

https://www.quantumcomputinglab.cineca.it

r.mengoni@cineca.it

d.ottaviani@cineca.it

