

FCC 15.209 TEST REPORT

for

AM 58 kHz System

Model: AS-CU6

Prepared for

AMERICAN SECURITY SPOL. S R.O. K VILKAM 1633 107 00 PRAGUE 10 - DUBEC, CZECH REPUBLIC

Prepared by:	
	KYLE FUJIMOTO
Approved by:	

JAMES ROSS

COMPATIBLE ELECTRONICS INC. 114 OLINDA DRIVE BREA, CALIFORNIA 92823 (714) 579-0500

DATE: AUGUST 19, 2013

	REPORT	APPENDICES			TOTAL		
	BODY	\boldsymbol{A}	В	C	D	E	
PAGES	17	2	2	2	12	21	56

This report shall not be reproduced except in full, without the written approval of Compatible Electronics.

TABLE OF CONTENTS

Section / Title	PAGE
GENERAL REPORT SUMMARY	4
SUMMARY OF TEST RESULTS	4
1. PURPOSE	5
2. ADMINISTRATIVE DATA	6
2.1 Location of Testing	6
2.2 Traceability Statement	6
2.3 Cognizant Personnel	6
2.4 Date Test Sample was Received	6
2.5 Disposition of the Test Sample	6
2.6 Abbreviations and Acronyms	6
3. APPLICABLE DOCUMENTS	7
4. DESCRIPTION OF TEST CONFIGURATION	8
4.1 Description of Test Configuration – Emissions	8
4.1.1 Cable Construction and Termination	9
5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT	10
5.1 EUT and Accessory List	10
5.2 Emissions Test Equipment	11
6. TEST SITE DESCRIPTION	12
6.1 Test Facility Description	12
6.2 EUT Mounting, Bonding and Grounding	12
6.3 Facility Environmental Characteristics	12
7. TEST PROCEDURES	13
7.1 Conducted Emissions Test	13
7.2 Radiated Emissions (Spurious, Fundamental, and Harmonics) Test	14
7.3 Variation of the Input Power	15
7.4 RF Emissions Test Results	16
8. CONCLUSIONS	17

LIST OF APPENDICES

APPENDIX	TITLE		
A	Laboratory Accreditations and Recognitions		
В	Modifications to the EUT		
С	Additional Model Covered Under This Report		
D	Diagram, Charts, and Photos		
	Test Setup Diagram		
	Antenna and Amplifier Factors		
	Radiated and Conducted Emissions Photos		
Е	Data Sheets		

LIST OF FIGURES

FIGURE	TITLE
1	Conducted Emissions Test Setup For Tabletop Units
2	Plot Map and Layout of the Radiated Test Site

GENERAL REPORT SUMMARY

Compatible Electronics Inc. generates this emissions test report, which is an independent testing and consulting firm. The test report is based on testing performed by Compatible Electronics personnel according to the measurement procedures described in the test specifications given below and in the "Test Procedures" section of this report.

The measurement data and conclusions appearing herein relate only to the sample tested and this report may not be reproduced without the written permission of Compatible Electronics, unless done so in full.

This report must not be used to claim product endorsement by NVLAP, NIST or any other agency of the U.S. Government.

Device Tested: AM 58 kHz System

Model: AS-CU6

S/N: N/A

Product Description: See Expository Statement

Modifications: The EUT was not modified during the testing.

Customer: American Security spol. s r.o.

K Vilkam 1633

107 00 Prague 10 - Dubec, Czech Republic

Test Date(s): July 22, 23, and 24, 2013

Test Specifications: EMI requirements

CFR Title 47, Part 15 Subpart B; and Subpart C, Sections 15.205 and 15.209

Test Procedure: **ANSI C63.4**

Test Deviations: The test procedure was not deviated from during the testing.

SUMMARY OF TEST RESULTS

TEST	DESCRIPTION	RESULTS
1	Conducted RF Emissions 150 kHz to 30 MHz	Complies with the Class A limits of CFR Title 47, Part 15, Subpart B; and Subpart C Section 15.207.
2	Radiated RF Emissions 9 kHz – 1000 MHz	Complies with the Class A limits of CFR Title 47, Part 15, Subpart B; and Subpart C Sections 15.205 and 15.209.

FCC Part 15 Subpart B and FCC Section 15.209 Test Report

AM 58 kHz System

Model: AS-CU6

1. PURPOSE

This document is a qualification test report based on the emissions tests performed on the AM 58 kHz System, Model: AS-CU6. The emissions measurements were performed according to the measurement procedure described in ANSI C63.4. The tests were performed in order to determine whether the electromagnetic emissions from the equipment under test, referred to as EUT hereafter, are within the **Class A** specification limits defined by CFR Title 47, Part 15, Subpart B for the digital portion; and Subpart C, sections 15.205, 15.207, and 15.209 for the transmitter portion.

Note: The receiver portion was not performed because it is exempt from the technical provisions in CFR Title 47, Part 15, Subpart B per CFR Title 47, Part 15, Subpart B, section 15.101 (b).

FCC Part 15 Subpart B and FCC Section 15.209 Test Report

AM 58 kHz System

2. ADMINISTRATIVE DATA

2.1 Location of Testing

The EMI tests described herein were performed at the test facility of Compatible Electronics, 114 Olinda Drive, Brea, California.

2.2 Traceability Statement

The calibration certificates of all test equipment used during the test are on file at the location of the test. The calibration is traceable to the National Institute of Standards and Technology (NIST).

2.3 Cognizant Personnel

American Security spol. s r.o.

Clint Meyer Technical Manager

Compatible Electronics Inc.

Kyle Fujimoto Test Engineer James Ross Test Engineer

2.4 Date Test Sample was Received

The test sample was received prior to the date of testing.

2.5 Disposition of the Test Sample

The test sample was returned prior to the date of this report.

2.6 Abbreviations and Acronyms

The following abbreviations and acronyms may be used in this document.

FCC Federal Communications Commission

RF Radio Frequency

EMI Electromagnetic Interference EUT Equipment Under Test

P/N Part Number S/N Serial Number

ITE Information Technology Equipment
LISN Line Impedance Stabilization Network

NVLAP National Voluntary Laboratory Accreditation Program

CFR Code of Federal Regulations

N/A Not Applicable
Ltd. Limited
Inc. Incorporated
IR Infrared

3. APPLICABLE DOCUMENTS

The following documents are referenced or used in the preparation of this emissions Test Report.

SPEC	TITLE
CFR Title 47, Part 15	FCC Rules – Radio frequency devices (including digital devices)
ANSI C63.4: 2009	American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

4. DESCRIPTION OF TEST CONFIGURATION

4.1 Description of Test Configuration – Emissions

The AM 58 kHz System, Model: AS-CU6 (EUT) was configured as follows:

CONTROLLER BOX					
Port Name	Connected To	Comments			
TX1	Pedestal #1	TX1 transmits to Pedestal #1			
TX2	Pedestal #2	TX2 transmits to Pedestal #2			
RX1	Pedestal #1	The EUT receives from Pedestal #1			
RX2	Pedestal #1	The EUT receives from Pedestal #2			
RX3	Accessory Receiver PCB #1	This is only for termination purposes to fully terminate the controller box			
RX4	Accessory Receiver PCB #2	This is only for termination purposes to fully terminate the controller box			
Relay 1	Unterminated	1-meter unterminated cable connected for worst case configuration			
Relay 2	Unterminated	1-meter unterminated cable connected for worst case configuration			
Sync	Accessory Controller	The Accessory Controller provides a signal for the Controller			
PC Port	E-comm	Accessory used to conenct the EUT to the internet.			

The controller box was connected to an E-comm vits its PC port.

The E-comm was also connected to a router and AC Adapter via its ethernet and power ports, respectively.

The entire system was continuously transmitting and receiving at 58.2 kHz. The EUT was tested in both its minimum power and maximum power.

Note: The digital portion emissions were tested to the **Class A** limits specification limits defined by CFR Title 47, Part 15, Subpart B.

It was determined that the emissions were at their highest level when the EUT was operating in the above configuration. The final emissions data was taken in this mode of operation and any cables were maximized. All initial investigations were performed with the measurement receiver in manual mode scanning the frequency range continuously. Photographs of the test setup are in Appendix D of this report.

4.1.1	Cable Construction and Termination
	, , , , , , , , , , , , , , , , , , ,

- <u>Cable 1</u> This is a 29-meter unshielded cable connecting the E-comm to the router. The cable has an RJ-45 connector at each end.
- <u>Cable 2</u> This is a 1-meter unshielded cable connecting the E-comm to the controller (EUT). The cable has an RJ-11 connector at each end.
- <u>Cable 3</u> This is a 6-meter unshielded cable connecting the controller (EUT) to pedestal #1. The cable has a 4-pin terminal block at each end. The cable was bundled to a length of 2-meters.
- <u>Cable 4</u> This is a 6-meter unshielded cable connecting the controller (EUT) to pedestal #2. The cable has a 4-pin terminal block at each end. The cable was bundled to a length of 2-meters.
- <u>Cable 5</u> This is a 6-meter unshielded cable connecting the controller (EUT) to pedestal #1. The cable has an RJ-45 connector at each end. The cable was bundled to a length of 2-meters.
- <u>Cable 6</u>
 This is a 6-meter unshielded cable connecting the controller (EUT) to pedestal #2. The cable has an RJ-45 connector at each end. The cable was bundled to a length of 2-meters.
- <u>Cable 7</u> This is a 6-meter unshielded cable connecting the controller (EUT) to receiver PCB #1. The cable has an RJ-45 connector at each end. The cable was bundled to a length of 2-meters.
- <u>Cable 8</u> This is a 6-meter unshielded cable connecting the controller (EUT) to receiver PCB #2. The cable has an RJ-45 connector at each end. The cable was bundled to a length of 2-meters.
- <u>Cable 9</u> This is a 2-meter unshielded, unterminated cable connecting the controller's Relay #1 port (EUT). The cable has a 3-pin terminal block connector at the controller end. The cable was bundled to a length of 40-centimeters.
- <u>Cable 10</u> This is a 2-meter unshielded, unterminated cable connecting the controller's Relay #2 port (EUT). The cable has a 3-pin terminal block connector at the controller end. The cable was bundled to a length of 40-centimeters.
- <u>Cable 11</u> This is a 2-meter unshielded, unterminated cable connecting the controller's sync port (EUT). The cable has a 3-pin terminal block connector at the controller end. The cable was bundled to a length of 40-centimeters.

5. LISTS OF EUT, ACCESSORIES AND TEST EQUIPMENT

5.1 EUT and Accessory List

EQUIPMENT	MANUFACTURER	MODEL NUMBER	SERIAL NUMBER	FCC ID
AM 58 kHz SYSTEM (EUT)	AMERICAN SECURITY SPOL. S R.O.	AS-CU6	N/A	UXT-AS-CU6
E-COMM	AMERICAN SECURITY SPOL. S R.O.	AMERICAN SECURITY SPOL. D-ECOM		N/A
E-COMM POWER SUPPLY	STUNTRONICS	3A-066WPI2	N/A	N/A
ROUTER	D-LINK	DI-604	B25I159011999	N/A
PEDESTAL #1 (EUT)	AMERICAN SECURITY SPOL. S R.O.	AA-ANT	N/A	N/A
PEDESTAL #2 (EUT)	AMERICAN SECURITY SPOL. S R.O.	AA-ANT	N/A	N/A
RECEIVER BOARD PCB #1	AMERICAN SECURITY SPOL. S R.O.	PREAMP 05N: 6170	N/A	N/A
RECEIVER BOARD PCB #2	AMERICAN SECURITY SPOL. S R.O.	PREAMP 05N: 6170	N/A	N/A

5.2 Emissions Test Equipment

EQUIPMENT TYPE	MANU- FACTURER	MODEL NUMBER	SERIAL NUMBER	CAL. DATE	CAL. CYCLE
GEN	ERAL TEST EQUIPN	MENT USED FOR	ALL RF EMISS	IONS TESTS	
Spectrum Analyzer – Main Section	Hewlett Packard	8566B	2637A03618	May 6, 2013	1 Year
Spectrum Analyzer – Display Section	Hewlett Packard	85662A	2648A13404	May 6, 2013	1 Year
Quasi-Peak Adapter	Hewlett Packard	85650A	2811A01363	May 29, 2013	1 Year
Monitor	Hewlett Packard	D5258A	TW74500641	N/A	N/A
Computer	Hewlett Packard	4530	US91912319	N/A	N/A
	RF RADIATE	D EMISSIONS TI	EST EQUIPMENT	Γ	
Radiated Emissions Data Capture Program	Compatible Electronics	2.0	N/A	N/A	N/A
CombiLog Antenna	Com-Power	AC-220	61060	May 29, 2013	1 Year
Loop Antenna	Com-Power	AL-130	17089	January 29, 2013	2 Year
Preamplifier	Com-Power	PA-103	1582	December 28, 2012	1 Year
Turntable	Com-Power	TT-100	N/A	N/A	N/A
Antenna-Mast	Com-Power	AM-100	N/A	N/A	N/A
	RF CONDUCTI	ED EMISSIONS T	TEST EQUIPMEN	T	
Emissions Program	Compatible Electronics	2.3 (SR19)	N/A	N/A	N/A
LISN	Com Power	LI-215	12082	June 17, 2013	1 Year
LISN	Com Power	LI-215	12090	June 17, 2013	1 Year
Transient Limiter	Seward	252A910	K39-0220	November 7, 2012	1 Year
	VARIATION OF T	HE INPUT POWI	ER TEST EQUIPM	MENT	
Variable Auto Transformer	Staco Energy Products	3PN1010	N/A	N/A	N/A
Multimeter	Fluke	87	58450372	June 3, 2013	1 Year

6. **TEST SITE DESCRIPTION**

6.1 **Test Facility Description**

Please refer to section 2.1 and 7.1.2 of this report for emissions test location.

6.2 EUT Mounting, Bonding and Grounding

The EUT was mounted on a 0.8 meter non-conductive surface above the ground plane.

The EUT was not grounded.

6.3 **Facility Environmental Characteristics**

When applicable refer to the data sheets in Appendix E for the relative humidity, air temperature, and barometric pressure.

FCC Part 15 Subpart B and FCC Section 15.209 Test Report

AM 58 kHz System

7. TEST PROCEDURES

The following sections describe the test methods and the specifications for the tests. Test results are also included in this section.

7.1 Conducted Emissions Test

The spectrum analyzer was used as a measuring meter. The data was collected with the spectrum analyzer in the peak detect mode with the "Max Hold" feature activated. The quasi-peak was used only where indicated in the data sheets. A transient limiter was used for the protection of the spectrum analyzer input stage, and the offset was adjusted accordingly to read the actual data measured. The LISN output was measured using the spectrum analyzer. The output of the second LISN was terminated by a 50-ohm termination. The effective measurement bandwidth used for this test was 9 kHz.

Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The EUT was powered through the LISN, which was bonded to the ground plane. The LISN power was filtered and the filter was bonded to the ground plane. The EUT was set up with the minimum distances from any conductive surfaces as specified in ANSI C63.4. The excess power cord was wrapped in a figure eight pattern to form a bundle not exceeding 0.4 meters in length

The conducted emissions from the EUT were maximized for operating mode as well as cable placement. The final data was collected under program control by the Compatible Electronics conducted emissions software in several overlapping sweeps by running the spectrum analyzer at a minimum scan rate of 10 seconds per octave. The final qualification data is located in Appendix E.

Note: Due to the fact the transmitter portion limits for conducted emissions (FCC 15.207) have a lower limit than the digital portion limits for conducted emissions (Class A), the data was taken with the lower limits (FCC 15.207).

Test Results:

The EUT complies with the **Class A** (**digital portion**) limits of CFR Title 47, Part 15, Subpart B; and CFR Title 47, Part 15, Subpart C, section 15.207 (**transmitter portion**) for conducted emissions.

FCC Part 15 Subpart B and FCC Section 15.209 Test Report

AM 58 kHz System

Model: AS-CU6

7.2 Radiated Emissions (Spurious, Fundamental, and Harmonics) Test

The spectrum analyzer was used as a measuring meter along with the quasi-peak adapter. A preamplifier was used to increase the sensitivity of the instrument. The spectrum analyzer was used in the peak detect mode with the "Max Hold" feature activated. In this mode, the spectrum analyzer records the highest measured reading over all the sweeps.

The measurement bandwidths and transducers used for the radiated emissions test were:

The quasi-peak adapter was used only for those readings which are marked accordingly on the data sheets.

The fundamental readings were adjusted by a "duty cycle correction factor", derived from 20 log (dwell time / dwell time + blanking interval).

FREQUENCY RANGE	EFFECTIVE MEASUREMENT BANDWIDTH	TRANSDUCER
9 kHz to 150 kHz	200 Hz	Active Loop Antenna
150 kHz to 30 MHz	9 kHz	Active Loop Antenna
30 MHz to 1000 MHz	120 kHz	Combilog Antenna

The open field test site of Compatible Electronics, Inc. was used for radiated emission testing. This test site is set up according to ANSI C63.4. Please see section 6.2 of this report for mounting, bonding and grounding of the EUT. The turntable supporting the EUT is remote controlled using a motor. The turntable permits EUT rotation of 360 degrees in order to maximize emissions. Also, the antenna mast allows height variation of the antenna from 1 meter to 4 meters. Data was collected in the worst case (highest emission) configuration of the EUT. At each reading, the EUT was rotated 360 degrees and the antenna height was varied from 1 to 4 meters (for E field radiated field strength). The loop antenna was also rotated in the horizontal and vertical axis in order to ensure accurate results.

The presence of ambient signals was verified by turning the EUT off. In case an ambient signal was detected, the measurement bandwidth was reduced temporarily and verification was made that an additional adjacent peak did not exist. This ensures that the ambient signal does not hide any emissions from the EUT. The EUT (except for the fundamental) was tested at a 10-meter test distance to obtain the final test data.

FCC Part 15 Subpart B and FCC Section 15.209 Test Report

AM 58 kHz System

Radiated Emissions (Spurious, Fundamental, and Harmonics) Test (Continued)

For the fundamental the EUT was tested at both a 10-meter test distance and a 15-meter test distance to obtain "P".

P is the roll-off multiplier used to determine the correct spec limit at 10 meters based on the following formula: [(P*20) Log (spec test distance / actual test distance)] + spec limit

P itself is determined by the following formula:

P = [Level (at 10 Meters) – Level (at 15 Meters)] / 20 Log (15 Meters / 10 Meters)

The final qualification data sheets are located in Appendix E.

Test Results:

The EUT complies with the **Class A** (**digital portion**) limits of CFR Title 47, Part 15, Subpart B; and CFR Title 47, Part 15, Subpart C, sections 15.205, and 15.209 (transmitter portion) for radiated emissions.

7.3 Variation of the Input Power

The variation of the input power test was performed using the EMI Receiver. The EUT input power was varied between 85% and 115% of the nominal rated supply voltage. The carrier frequency was monitored for any change in amplitude.

Test Results:

The EUT complies with the relevant requirements of FCC Title 47, Part 15, Subpart C section 15. 31(e).

7.4 **RF Emissions Test Results**

Table 1.0 CONDUCTED EMISSION RESULTS AM 58 kHz System, Model: AS-CU6

Frequency MHz	Corrected Reading* dBuV	Specification Limit dBuV	Delta (Cor. Reading – Spec. Limit) dB
9.660 (White Lead) (Minimum Power)	45.54	50.00	-4.46
0.471 (White Lead) (Minimum Power)	41.73	46.49	-4.76
9.557 (White Lead) (Minimum Power)	45.24	50.00	-4.76
0.409 (White Lead) (Minimum Power)	42.91	47.68	-4.77
0.421 (White Lead) (Minimum Power)	42.41	47.42	-5.00
0.831 (White Lead) (Maximum Power)	40.96	46.00	-5.04

Table 2.0 RADIATED EMISSION RESULTS AM 58 kHz System, Model: AS-CU6

Frequency MHz	Corrected Reading* dBuV	Specification Limit dBuV	Delta (Cor. Reading – Spec. Limit) dB
560.331 (V) (Minimum)	45.45 (Quasi-Peak)	46.44	-0.99
199.978 (V) (Minimum)	41.95 (Quasi-Peak)	43.52	-1.57
0.582 (V) (Minimum)	49.7	51.39	-1.69
200.006 (V) (Maximum)	41.32 (Quasi-Peak)	43.52	-2.20
199.994 (H) (Minimum)	41.13 (Quasi-Peak)	43.52	-2.39
199.986 (H) (Maximum)	41.02 (Quasi-Peak)	43.52	-2.50

Notes:

The complete emissions data is given in Appendix E of this report.

FCC Part 15 Subpart B and FCC Section 15.209 Test Report

AM 58 kHz System

Model: AS-CU6

8. CONCLUSIONS

The AM 58 kHz System, Model: AS-CU6, as tested, meets all of the <u>Class A specification limits</u> <u>defined in CFR Title 47, Part 15, Subpart B for the digital portion; and the limits defined in Subpart C, sections 15.205, 15.207, and 15.209 for the transmitter portion.</u>

APPENDIX A

LABORATORY ACCREDITATIONS AND RECOGNITIONS

FCC Part 15 Subpart B and FCC Section 15.209 Test Report

AM 58 kHz System

Model: AS-CU6

LABORATORY ACCREDITATIONS AND RECOGNITIONS

For US, Canada, Australia/New Zealand, Japan, Taiwan, Korea, and the European Union, Compatible Electronics is currently accredited by NVLAP to ISO/IEC 17025. Please follow the link to the NIST/NVLAP site for each of our facilities' NVLAP certificate and scope of accreditation

NVLAP listing links

Agoura Division / Brea Division / Silverado/Lake Forest Division

.Quote from ISO-ILAC-IAF Communiqué on 17025:

"A laboratory's fulfilment of the requirements of ISO/IEC 17025:2005 means the laboratory meets both the technical competence requirements and management system requirements that are necessary for it to consistently deliver technically valid test results and calibrations. The management system requirements in ISO/IEC 17025:2005 (Section 4) are written in language relevant to laboratory operations and meet the principles of ISO 9001:2008 Quality Management Systems — Requirements."

ANSI listing CETCB

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for EMC under the US/EU Mutual Recognition Agreement (MRA).

US/EU MRA list NIST MRA site

Compatible Electronics has been nominated as a Conformity Assessment Body (CAB) for Taiwan/BSMI under the US/APEC (Asia-Pacific Economic Cooperation) Mutual Recognition Agreement (MRA). **APEC MRA list NIST MRA** site

We are also listed for IT products by the following country/agency:

VCCI Support member: Please visit http://www.vcci.jp/vcci_e/

FCC Listing, from FCC OET site
FCC test lab search https://fjallfoss.fcc.gov/oetcf/eas/reports/TestFirmSearch.cfm

Compatible Electronics IC listing can be found at: http://www.ic.gc.ca/eic/site/ic1.nsf/eng/home

FCC Part 15 Subpart B and FCC Section 15.209 Test Report AM 58 kHz System Model: AS-CU6

APPENDIX B

MODIFICATIONS TO THE EUT

MODIFICATIONS TO THE EUT

The modifications listed below were made to the EUT to pass FCC 15.205, 15.207, FCC 15.209, or FCC Class A specifications.

All the rework described below was implemented during the test in a method that could be reproduced in all the units by the manufacturer.

No modifications were made to the EUT during the testing.

APPENDIX C

ADDITIONAL MODEL COVERED UNDER THIS REPORT

ADDITIONAL MODEL COVERED UNDER THIS REPORT

USED FOR THE PRIMARY TEST AM 58 kHz System

Model: AS-CU6 S/N: N/A

There were no additional Model covered under this report.

APPENDIX D

DIAGRAMS, CHARTS AND PHOTOS

FIGURE 1: CONDUCTED EMISSIONS TEST SETUP FOR TABLETOP UNITS

FIGURE 2: PLOT MAP AND LAYOUT OF THE RADIATED TEST SITE

OPEN LAND > 15 METERS

OPEN LAND > 15 METERS

X = GROUND RODS = GROUND

D = TEST DISTANCE (meters) = WOOD COVER

COM-POWER AL-130

LOOP ANTENNA

S/N: 17089

CALIBRATION DATE: JANUARY 29, 2013

FREQUENCY (MHz)	MAGNETIC (dB/m)	ELECTRIC (dB/m)
0.009	-42.5	9
0.01	-42.5 -42.3	9.2
0.02	-42.1	9.4
0.03	-41.4	10.1
0.04	-41.8	9.7
0.05	-42.4	9.1
0.06	-42.3	9.2
0.07	-42.5	9
0.08	-42.4	9.1
0.09	-42.5	9
0.1	-42.5	9
0.2 0.3	-42.7	8.8
0.3	-42.6	8.9
0.4	-42.5	9
0.5	-42.7	8.8
0.6	-42.7	8.8
0.7	-42.5	9
0.8	-42.3	9.2
0.9	-42.2	9.3
1	-42.2	9.3
2	-41.8	9.7
3	-41.7	9.8
4	-41.7	9.8
5	-41.5	10
6	-41.6	9.9
7	-41.4	10.1
8	-41	10.5
9	-40.8	10.7
10	-41.3	10.2
15	-41.4	10.1
20	-41.2	10.3
25	-42.6	8.9
30	-41.7	9.8

COM-POWER AC-220

COMBILOG ANTENNA

S/N: 61060

CALIBRATION DATE: MAY 29, 2013

FREQUENCY (MHz)	FACTOR (dB)	FREQUENCY (MHz)	FACTOR (dB)
30	19.40	200	9.10
35	19.10	250	11.40
40	19.70	300	11.90
45	18.00	350	14.20
50	16.80	400	15.20
60	12.50	450	16.50
70	7.30	500	17.10
80	4.40	550	16.20
90	8.00	600	17.70
100	8.80	650	19.10
120	10.50	700	20.00
125	10.60	750	21.50
140	8.60	800	21.50
150	11.20	850	21.70
160	8.90	900	22.70
175	9.60	950	22.10
180	8.50	1000	22.90

COM-POWER PA-103

PREAMPLIFIER

S/N: 1582

CALIBRATION DATE: DECEMBER 28, 2012

FREQUENCY	FACTOR	FREQUENCY	FACTOR
(MHz)	(dB)	(MHz)	(dB)
30	32.80	300	32.26
40	33.10	350	32.23
50	33.10	400	32.17
60	33.10	450	32.16
70	33.00	500	32.11
80	33.00	550	32.07
90	33.10	600	32.02
100	33.00	650	31.97
125	33.00	700	31.87
150	33.00	750	31.81
175	32.90	800	31.73
200	32.80	850	31.57
225	32.34	900	31.43
250	32.32	950	31.29
275	32.28	1000	31.14

FRONT VIEW

AMERICAN SECURITY SPOL. S R.O. AM 58 kHz System Model: AS-CU6 FCC 15.209 - RADIATED EMISSIONS - BELOW 30 MHz

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

REAR VIEW

AMERICAN SECURITY SPOL. S R.O.
AM 58 kHz System
Model: AS-CU6
FCC 15.209 – RADIATED EMISSIONS – BELOW 30 MHz

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

FRONT VIEW

AMERICAN SECURITY SPOL. S R.O.

AM 58 kHz System

Model: AS-CU6

FCC SUBPART B – RADIATED EMISSIONS – ABOVE 30 MHz

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

REAR VIEW

AMERICAN SECURITY SPOL. S R.O. AM 58 kHz System Model: AS-CU6 FCC SUBPART B - RADIATED EMISSIONS - ABOVE 30 MHz

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

FRONT VIEW

AMERICAN SECURITY SPOL. S R.O.

AM 58 kHz System

Model: AS-CU6

FCC 15.207 and FCC SUBPART B – CONDUCTED EMISSIONS

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

REAR VIEW

AMERICAN SECURITY SPOL. S R.O.

AM 58 kHz System

Model: AS-CU6

FCC 15.207 and FCC SUBPART B – CONDUCTED EMISSIONS

PHOTOGRAPH SHOWING THE EUT CONFIGURATION FOR MAXIMUM EMISSIONS

APPENDIX E

DATA SHEETS

Report Number: B30724A1

Date: 07/22/2013

Tested By: Kyle Fujimoto

Lab: A

FCC 15.209

American Security spol. s r.o. AM 58 kHz System

Model: AS-CU6

Transmit Mode - Maximum Power

Test Distance: 10 Meters (Except Where Noted in Comments)

Corrected Spec Limit at 10 Meters for Harmonics = [40 Log (spec test dist./actual test dist.)] + spec limit Corrected Spec Limit at 10 Meters for Fundamental = [(P*20) Log (spec test dist./actual test dist.)] + spec limit

Freq. (kHz)	Level (dBuV)	Pol (v/h)	Spec Limit (at 10 Meters)	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
58.2	115	V	-	-	Peak	1	90	Actual Reading @ 10m
58.2	104.8	٧	2 (1724) 2 (1724) 2 (1724)	=	Peak	1	90	Actual Reading @ 15m
58.2	115	V	117.86	-2.8606	Peak	1	90	Actual Reading @ 10m Corrected using (P*20)
116.4	74.5	٧	85.37	-10.87	Peak	1	90	
174.6	72.6	V	81.85	-9.2482	Peak	1	90	
232.8	60.4	٧	79.35	-18.949	Peak	1	90	
291	54.4	V	77.41	-23.011	Peak	1	90	
349.2	58.2	V	75.83	-17.628	Peak	1	90	
407.4	54.2	٧	74.49	-20.289	Peak	1	90	
465.6	51.5	V	73.33	-21.829	Peak	1	90	
523.8	45.8	٧	52.31	-6.5058	Peak	1	90	
582	47.3	V	51.39	-4.0906	Peak	1	90	
) /- -					

Limit in uV/m = 2400/F (kHz) at 300 Meters from 9 kHz to 490 kHz Limit in uV/m = 24000/F (kHz) at 30 Meters from 490 kHz to 1705 kHz

Limit in uV/m = 30 at 30 Meters from 1705 kHz to 30 MHz

dBuV/m = 20 Log (uV/m)

Distance Correction Factor for Fundamental = [(P*20) log (Test Distance / 300)] Where P is the roll-off exponent. P is found as follows: P = (Level (at 10 Meters) - Level (at 2nd Test Distance)) / 20 Log (2nd Test Distance / 10 Meters) @ 15 Meters - P =[(115-104.8) / 20 Log (15/10)] = 2.896

Report Number: **B30724A1 FCC Part 15 Subpart B** and **FCC Section 15.209** Test Report

Date: 07/22/2013

Tested By: Kyle Fujimoto

Lab: A

AM 58 kHz System Model: AS-CU6

FCC 15.209

American Security spol. s r.o. AM 58 kHz System

Model: AS-CU6

Transmit Mode - Maximum Power Test Distance: 10 Meters

Corrected Spec Limit at 10 Meters for Harmonics = [40 Log (spec test dist./actual test dist.)] + spec limit

Corrected Spec Limit at 10 Meters for Fundamental = [(P*20) Log (spec test dist./actual test dist.)] + spec limit

Lagorita -	128 T 10765 T		Spec Limit		Peak /	Ant.	Table	
Freq.	Level	5 17 (11)	(at 10		QP/	Height	Angle	
(kHz)	(dBuV)		Meters)	Margin	Avg	(m)	(deg)	Comments
58.2	104.5	Н			Peak	1	135	Actual Reading @ 10m
50.0	96	Н			Doole	1	135	Actual Deading @ 45m
58.2	96	п			Peak	1	133	Actual Reading @ 15m
58.2	104.5	Н	103.61	0.89359	Peak	1	135	Actual Reading @ 10m
00.2	101.0		100.01	0.00000	, our		100	Corrected using (P*20)
-								3 ()
58.2	89.7	Н	103.61	-13.906	Avg	1	135	Actual Reading @ 10m
								Corrected using (P*20)
	- National	1,00			- CONT. 11 (1)			
116.4	55.7	Н	85.37	-29.67	Peak	1	180	
474 C	60.7	H	04.05	10 140	Dook	1	135	
174.6	62.7	П	81.85	-19.148	Peak	1	133	
232.8	58.4	н	79.35	-20.949	Peak	1	135	
202.0	50.4		70.00	20.040	1 Call	-	100	
291	58.6	Н	77.41	-18.811	Peak	1	135	
349.2	56.8	Н	75.83	-19.028	Peak	1	135	
407.4	55.9	Н	74.49	-18.589	Peak	1	90	
105.0	50	**	70.00	47.000	D 1	- 4	00	
465.6	56	Н	73.33	-17.329	Peak	1	90	
523.8	49.2	Н	52.31	-3.1058	Peak	1	90	
020.0	40.2		02.01	0.1000	1 Out		- 50	
582	47.3	Н	51.39	-4.0906	Peak	1	90	
							,	Average Based On
								Duty Cycle
								of 2 mSec Pulse per
					-	4		11 mSec Cycle
						,		
				-				

Limit in uV/m = 2400/F (kHz) at 300 Meters from 9 kHz to 490 kHz Limit in uV/m = 24000/F (kHz) at 30 Meters from 490 kHz to 1705 kHz Limit in uV/m = 30 at 30 Meters from 1705 kHz to 30 MHz

dBuV/m = 20 Log (uV/m)

Distance Correction Factor for Fundamental = [(P*20) log (Test Distance / 300)]
Where P is the roll-off exponent. P is found as follows:
P = (Level (at 10 Meters) - Level (at 2nd Test Distance)) / 20 Log (2nd Test Distance / 10 Meters)
@ 15 Meters - P = [(104.5-96.00) / 20 Log (15/10)] = 2.4135

FCC 15.209

American Security spol. s r.o. Date: 07/22/2013 AM 58 kHz System Lab: A

Model: AS-CU6 Tested By: Kyle Fujimoto

Transmit Mode - Minimum Power

Test Distance: 10 Meters

Corrected Spec Limit at 10 Meters = [40 Log (spec test dist./actual test dist.)] + spec limit

Freq.	Level	Pol (v/h)	Spec Limit (at 10 Meters)	Margin	Peak / QP / Avg	Ant. Height (m)	Table Angle (deg)	Comments
58.2	50.6	\(\(\pi\)\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	91.39	-40.791	Peak	1	135	Comments
30.2	30.0	V	91.59	-40.791	reak	1)	133	
116.4	54.1	V	85.37	-31.27	Peak	1	90	
174.6	63.3	V	81.85	-18.548	Peak	1	90	
232.8	55.2	V	79.35	-24.149	Peak	1	90	
291	50.2	V	77.41	-27.211	Peak	1	90	
349.2	49.8	V	75.83	-26.028	Peak	1	90	
407.4	48.2	V	74.49	-26.289	Peak	1	90	
465.6	47.3	V	73.33	-26.029	Peak	1	90	
523.8	44.9	V	52.31	-7.4058	Peak	1	90	
582	49.7	V	51.39	-1.6906	Peak	1	90	

Limit in uV/m = 2400/F (kHz) at 300 Meters from 9 kHz to 490 kHz Limit in uV/m = 24000/F (kHz) at 30 Meters from 490 kHz to 1705 kHz

Limit in uV/m = 30 at 30 Meters from 1705 kHz to 30 MHz

dBuV/m = 20 Log (uV/m)

FCC 15.209

American Security spol. s r.o. Date: 07/22/2013

AM 58 kHz System Lab: A

Model: AS-CU6 Lab: A

Tested By: Kyle Fujimoto

Transmit Mode - Minimum Power

Test Distance: 10 Meters

Corrected Spec Limit at 10 Meters = [40 Log (spec test dist./actual test dist.)] + spec limit

	VI.		Spec Limit		Peak /	Ant.	Table	1
Freq.	Level	Pol	(at 10	Manada	QP /	Height	Angle	C
(kHz)	(dBuV)	(v/h)	Meters)	Margin	Avg	(m)	(deg)	Comments
58.2	51.8	Н	91.39	-39.591	Peak	1	90	
116.4	43.1	Н	85.37	-42.27	Peak	1	90	
174.6	55.6	Н	81.85	-26.248	Peak	1	90	
232.8	53.6	Н	79.35	-25.749	Peak	1	90	
291	52.5	Н	77.41	-24.911	Peak	1	90	
349.2	49.8	Н	75.83	-26.028	Peak	1	90	
407.4	47.4	Н	74.49	-27.089	Peak	1	90	
465.6	45.2	Н	73.33	-28.129	Peak	1	90	
523.8	48.1	Н	52.31	-4.2058	Peak	1	90	
582	47.2	Н	51.39	-4.1906	Peak	1	90	
							4	
							-	
	1							

Limit in uV/m = 2400/F (kHz) at 300 Meters from 9 kHz to 490 kHz Limit in uV/m = 24000/F (kHz) at 30 Meters from 490 kHz to 1705 kHz

Limit in uV/m = 30 at 30 Meters from 1705 kHz to 30 MHz

dBuV/m = 20 Log (uV/m)

Test Location: Compatible Electronics Page: 1/2

Customer : American Security spol. s r.o. Date: 07/23/2013

Manufacturer : American Security spol. s r.o. Time: 08:35:40 AM

Eut name : AM 58 kHz System Lab: A

Model : AS-CU6 Test Distance : 10.00

Serial # : N/A Specification : FCC A

Distance correction factor (20 * log(test/spec)): 0.00

Test Mode : Test Type: Spurious Emissions Qualification Scan

Test Range: 30 MHz to 1 GHz (Horizontal and Vertical)

FCC Class A - Maximum Power Test Engineer: Alex Benitez

Pol	Freq	Rdng	Cable loss	Ant factor	Amp gain	Cor'd $rdg = R$	Limit = L	Delta R-L
	MHz	dBuV	dB	dB	dB	dBuV	dBuV/n	
1V	49.158	51.80	1.08	17.00	33.10	36.79	39.08	-2.29
2V	49.159Qp	49.48	1.08	17.00	33.10	34.47	39.08	-4.61
3V	63.392	58.90	1.23	10.74	33.07	37.80	39.08	-1.28
4V	63.392Qp	54.99	1.23	10.74	33.07	33.89	39.08	-5.19
5H	72.984	50.40	1.36	6.43	33.00	25.19	39.08	-13.89
6V	79.719	58.10	1.49	4.48	33.00	31.08	39.08	-8.00
7V	112.503	58.40	1.70	9.86	33.00	36.96	43.52	-6.56
8H	122.875	47.40	1.78	10.56	33.00	26.74	43.52	-16.78
9V	123.979	53.30	1.79	10.58	33.00	32.67	43.52	-10.85
10V	133.114	45.20	1.90	9.52	33.00	23.62	43.52	-19.90
11H	145.413	48.30	2.04	10.01	33.00	27.35	43.52	-16.17
12H	147.478	49.30	2.07	10.54	33.00	28.91	43.52	-14.61
13V	171.633	56.40	2.27	9.44	32.91	35.20	43.52	-8.32
14V	174.326	55.50	2.29	9.57	32.90	34.46	43.52	-9.06
15V	181.174	52.60	2.35	8.54	32.88	30.61	43.52	-12.91
16H	199.986	62.70	2.50	9.10	32.80	41.50	43.52	-2.02
17H	199.986Qp	62.22	2.50	9.10	32.80	41.02	43.52	-2.50
18V	200.006	63.40	2.50	9.10	32.80	42.20	43.52	-1.32
19V	200.006Qp	62.52	2.50	9.10	32.80	41.32	43.52	-2.20
20H	224.984	47.90	2.80	10.25	32.34	28.61	46.44	-17.83
21V	228.824	54.60	2.83	10.43	32.34	35.52	46.44	-10.92
22H	228.868	48.70	2.83	10.43	32.34	29.62	46.44	-16.82
23V	249.999	51.80	3.00	11.40	32.32	33.88	46.44	-12.56
24H	250.027	53.70	3.00	11.40	32.32	35.78	46.44	-10.66
25V	266.983	51.30	3.14	11.57	32.29	33.71	46.44	-12.73
26H	267.001	51.20	3.14	11.57	32.29	33.61	46.44	-12.83
27H	299.999	54.60	3.40	11.90	32.26	37.64	46.44	-8.80
28V	300.005	55.10	3.40	11.90	32.26	38.14	46.44	-8.30
29V	319.990	53.10	3.60	12.82	32.25	37.27	46.44	-9.17
30H	350.017	48.80	3.90	14.20	32.23	34.67	46.44	-11.77
31H	399.979	52.50	4.20	15.20	32.17	39.73	46.44	-6.71
32H	449.983	44.90	4.60	16.50	32.16	33.84	46.44	-12.60
33H	649.995	44.30	6.30	19.10	31.97	37.73	46.44	-8.71
34H	849.999	40.80	7.90	21.70	31.57	38.83	46.44	-7.61
35H	899.984	45.50	8.10	22.70	31.43	44.87	46.44	-1.57

Test Location: Compatible Electronics Page: 2/2

Customer : American Security spol. s r.o. Date: 07/23/2013

Manufacturer : American Security spol. s r.o. Time: 08:35:40 AM

Eut name : 58 kHz Acoustic Magnetic System Lab: A

Model : AS-CU6 Test Distance : 10.00

Serial # : N/A Specification : FCC A

Distance correction factor (20 * log(test/spec)) : 0.00

Test Mode : Test Type: Spurious Emissions Qualification Scan

Test Range: 30 MHz to 1 GHz (Horizontal and Vertical)

FCC Class A - Maximum Power Test Engineer: Alex Benitez

Pol	Freq	Rdng	Cable loss	Ant factor	gain	Cor'd $rdg = R$	=L	Delta R-L
	MHz	dBuV	dB	dB	dB	dBuV	dBuV/m	
36H	899.984Qp	43.89	8.10	22.70	31.43	43.26	46.44	-3.18
37V	949.978	40.70	8.30	22.10	31.29	39.81	46.44	-6.63

Model: AS-CU6

Cor'd

Amp

Limit

43.52

43.52

46.44

46.44

46.44

46.44

46.44

46.44

46.44

46.44

46.44

46.44

-1.82

-2.39

-15.06

-17.31

-15.82

-11.62

-12.51

-10.76

-11.76

-16.43

-8.90

-7.20

Delta

Test Location: Compatible Electronics Page: 1/2

Customer : American Security spol. s r.o. Date: 07/23/2013

Manufacturer : American Security spol. s r.o. Time: 01:00:08 PM

Eut name : AM 58 kHz System Lab: A

Model : AS-CU6 Test Distance : 10.00

Serial # : N/A Specification : FCC A

Freq

Pol

24H

25H

26V

27H

28H

29V

30H

31H

32V

33H

34H

35V

199,994

219.324

219.991

228.818

228.843

240.004

249.982

249.989

267.016

300.006

300.023

199.994Qp

Distance correction factor (20 * log(test/spec)) : 0.00

Test Mode: Test Type: Spurious Emissions Qualification Scan
Test Range: 30 MHz to 1 GHz (Horizontal and Vertical)

Cable

Rdng

FCC Class A - Minimum Power
Test Engineer: Alex Benitez

Ant

gain rdg = R=LR-L loss factor MHz dBuV dBdBdBdBuV dBuV/m dB39.26 1V36.890 52.20 0.7419.33 33.01 39.08 0.18 2V36.890Qp 49.29 0.7419.33 33.01 36.35 39.08 -2.731.08 33.10 39.08 3V 49.134Qp -3.83 50.26 17.01 35.25 4V 49.134 51.40 1.08 17.01 33.10 36.39 39.08 -2.695V 57.215 55.50 13.70 33.10 37.27 39.08 1.17 -1.8157.215Qp 6V 53.96 1.17 13.70 33.10 35.73 39.08 -3.357V 65.058 60.30 1.25 9.87 33.05 38.37 39.08 -0.7165.058Qp 1.25 8V 55.54 9.87 33.05 33.61 39.08 -5.471.50 9V 54.70 81.214 4.84 33.01 28.02 39.08 -11.0610H 85.827 49.60 1.50 6.50 33.06 24.54 39.08 -14.5411V 112.530 59.50 1.70 9.87 33.00 38.07 43.52 -5.45 12V 55.80 1.79 10.58 33.00 35.17 43.52 -8.35123.961 13H 133.278 54.00 1.90 9.50 33.00 32.40 43.52 -11.1214H 147.431 49.30 2.07 10.53 33.00 28.90 43.52 -14.6215H 149.997 50.10 2.10 11.20 33.00 30.40 43.52 -13.1248.60 2.27 9.44 32.91 27.40 43.52 -16.1216H 171.650 17V 2.27 32.91 43.52 171.850 52.00 9.45 30.82 -12.7018V 55.20 2.29 9.57 32.90 34.16 43.52 -9.36 174.310 19V 2.35 8.53 32.88 28.61 43.52 181.164 50.60 -14.9124.14 20V 184.316 46.00 2.37 8.63 32.86 43.52 -19.3821V 186.324 55.30 2.39 8.69 32.85 33.53 43.52 -9.99 22V 2.50 32.80 43.52 199.978 64.10 9.1042.90 -0.62199.978Qp 23V 63.15 2.50 9.10 32.80 41.95 43.52 -1.57

9.10

9.10

9.99

10.02

10.43

10.43

10.94

11.40

11.40

11.57

11.90

11.90

32.80

32.80

32.44

32.43

32.34

32.34

32.33

32.32

32.32

32.29

32.26

32.26

41.70

41.13

31.38

29.13

30.62

34.82

33.93

35.68

34.68

30.01

37.54

39.24

2.50

2.50

2.73

2.74

2.83

2.83

2.92

3.00

3.00

3.14

3.40

3.40

62.90

62.33

51.10

48.80

49.70

53.90

52.40

53.60

52.60

47.60

54.50

56.20

Test Location : Compatible Electronics Page: 2/2

Customer : American Security spol. s r.o. Date: 07/23/2013

Manufacturer : American Security spol. s r.o. Time: 01:00:08 PM

Eut name : AM 58 kHz System Lab: A

Model : AS-CU6 Test Distance : 10.00

Serial # : N/A Specification : FCC A

Distance correction factor (20 * log(test/spec)): 0.00

Test Mode : Test Type: Spurious Emissions Qualification Scan

Test Range: 30 MHz to 1 GHz (Horizontal and Vertical)

FCC Class A - Minimum Power Test Engineer: Alex Benitez

Pol	Freq MHz	Rdng dBuV	Cable loss dB	Ant factor dB	Amp gain dB	Cor'd rdg = R dBuV	Limit = L dBuV/n	Delta R-L n dB
36H 37V 38V 39H 40H	349.994 350.015 399.988 399.988 449.980	48.60 47.90 52.10 54.90 43.90	3.90 3.90 4.20 4.20 4.60	14.20 14.20 15.20 15.20 16.50	32.23 32.23 32.17 32.17 32.16	34.47 33.77 39.33 42.13 32.84	46.44 46.44 46.44 46.44	-11.97 -12.67 -7.11 -4.31 -13.60
41V 42H 43H 44H 45V	450.012 549.978 554.322 554.322Qp 554.335	50.70 41.00 54.50 50.95 54.90	4.60 5.60 5.64 5.64 5.64	16.50 16.20 16.33 16.33 16.33	32.16 32.07 32.07 32.07 32.07	39.64 30.73 44.41 40.86 44.81	46.44 46.44 46.44 46.44	-6.80 -15.71 -2.03 -5.58 -1.63
46V 47V 48V 49H 50H	554.335Qp 560.331 560.331Qp 649.980 700.013	52.99 57.60 55.30 42.40 40.10	5.64 5.70 5.70 6.30 6.60	16.33 16.51 16.51 19.10 20.00	32.07 32.06 32.06 31.97 31.87	42.90 47.75 45.45 35.83 34.83	46.44 46.44 46.44 46.44	-3.54 1.31 -0.99 -10.61 -11.61
51V 52H 53H 54H	800.002 899.974 950.006 999.999	40.30 44.70 42.40 41.10	7.20 8.10 8.30 8.70	21.50 22.70 22.10 22.90	31.73 31.43 31.29 31.14	37.27 44.07 41.51 41.56	46.44 46.44 46.44 49.54	-9.17 -2.37 -4.93 -7.98

07/24/13 09:55:18

Model: AS-CU6

FREQUENCY [MHz]

07/24/13 09:55:18

FCC Class B - Black Lead American Security spol. s r.o. AM 58 kHz System M/N: AS-CU6 Maximum Power BL L-215 12090 - Due 6-17-1

BL LI-215 12090 - Due 6-17-14 Test Engineer : Alex Benitez

Peak criteria :	1.00 dB, Curve : Peak	

			Linett/-ID)	D = It = (=ID)
Peak#	Freq(MHz)	Amp(dBuV)	Limit(dB)	Delta(dB)
1	4.361	49.52	46.00	3.52**
2	4.408	48.52	46.00	2.52**
3	4.294	46.22	46.00	0.22**
4	0.398	46.11	47.90	-1.79**
5	0.341	47.29	49.18	-1.88**
5 6	0.369	46.50	48.52	-2.01**
7	0.365	46.50	48.61	-2.10**
8	0.379	46.10	48.29	-2.19**
9	0.406	45.31	47.72	-2.41**
10	0.431	44.82	47.24	-2.41**
11	0.387	45.30	48.12	-2.81**
12	0.457	43.93	46.76	-2.82**
13	0.383	45.20	48.21	-3.00**
14	4.456	42.83	46.00	-3.17**
15	0.471	43.13	46.49	-3.36**
16	4.227	41.41	46.00	-4.59**
17	0.637	41.10	46.00	-4.90**
18	0.518	41.03	46.00	-4.97**
19	4.182	40.21	46.00	-5.79**
20	4.576	39.63	46.00	-6.37**
21	4.504	39.13	46.00	-6.87**
22	0.547	39.02	46.00	-6.98**
23	4.648	38.94	46.00	-7.06**
24	0.580	38.51	46.00	-7.49**
25	4.008	38.41	46.00	-7.59**
26	4.071	37.71	46.00	-8.29**
27	0.586	37.51	46.00	-8.49**
28	0.598	37.51	46.00	-8.49**
29	9.813	41.51	50.00	-8.49
30	9.065	41.40	50.00	-8.60

07/24/13 09:55:18

FCC Class B - Black Lead American Security spol. s r.o. AM 58 kHz System M/N: AS-CU6 Maximum Power

BL LI-215 12090 - Due 6-17-14 Test Engineer: Alex Benitez

22 highest peaks above -50.00 dB of FCC - Class B - Average limit line							
Peak cr	riteria: 1.00 dB, C	urve : Average					
Peak#	Freq(MHz)	Amp(dBuV)	Limit(dB)	Delta(dB)			
1	0.641	35.55	46.00	-10.45			
2	4.361	32.14	46.00	-13.86			
3	4.294	32.14	46.00	-13.86			
4	4.408	29.98	46.00	-16.02			
5	4.227	29.01	46.00	-16.99			
6	4.528	28.60	46.00	-17.40			
7	0.409	29.56	47.68	-18.12			
8	0.469	28.11	46.53	-18.42			
9	4.576	27.27	46.00	-18.73			
10	0.442	28.19	47.02	-18.83			
11	0.350	29.62	48.95	-19.34			
12	4.480	26.44	46.00	-19.56			
13	0.229	32.48	52.48	-20.00			
14	4.182	26.00	46.00	-20.00			
15	4.648	25.53	46.00	-20.47			
16	4.008	25.50	46.00	-20.50			
17	3.945	24.72	46.00	-21.28			
18	4.071	24.61	46.00	-21.39			
19	0.152	33.96	55.86	-21.90			
20	0.175	32.82	54.72	-21.90			
21	0.320	27.22	49.71	-22.49			
22	0.290	26.84	50.54	-23.70			

07/24/13 10:09:46

FREQUENCY [MHz]

07/24/13 10:09:46

FCC Class B - White Lead American Security spol. s r.o. AM 58 kHz System M/N: AS-CU6 Maximum Power WL LI-215 12090 - Due 6-17-14

Test Engineer: Alex Benitez

Peak criteria :	1.00 dB, Curve : Peak	

reak ci	iteria. 1.00 db, Ci	urve . Feak		
Peak#	Freq(MHz)	Amp(dBuV)	Limit(dB)	Delta(dB)
1	4.408	49.93	46.00	3.93**
2	4.361	48.83	46.00	2.83**
2 3	4.227	48.62	46.00	2.62**
4	4.182	47.12	46.00	1.12**
5	0.454	47.82	46.80	1.02**
6	0.481	46.63	46.32	0.32**
7	0.442	47.32	47.02	0.30**
8	4.928	46.14	46.00	0.14**
9	0.469	46.23	46.53	-0.30**
10	0.404	47.41	47.77	-0.36**
11	0.367	47.69	48.56	-0.87**
12	0.343	48.08	49.13	-1.05**
13	0.356	47.68	48.82	-1.14**
14	0.502	44.54	46.00	-1.46**
15	0.641	43.10	46.00	-2.90**
16	4.008	42.02	46.00	-3.98**
17	4.294	41.13	46.00	-4.87**
18	0.831	40.96	46.00	-5.04
19	4.528	40.53	46.00	-5.47**
20	3.945	40.31	46.00	-5.69**
21	9.711	44.14	50.00	-5.86
22	4.071	39.82	46.00	-6.18**
23	0.561	39.52	46.00	-6.48**
24	4.696	39.33	46.00	-6.67**
25	0.573	39.02	46.00	-6.98**
26	4.114	38.82	46.00	-7.18**
27	4.600	38.63	46.00	-7.37**
28	3.882	38.61	46.00	-7.39**
29	0.586	38.41	46.00	-7.59**
30	0.611	38.01	46.00	-7.99**

07/24/13 10:09:46

FCC Class B - White Lead American Security spol. s r.o.

AM 58 kHz System M/N: AS-CU6 Maximum Power

WL LI-215 12090 - Due 6-17-14 Test Engineer: Alex Benitez

29 highest peaks above -50.00 dB of FCC - Class B - Average limit line

	est peaks above -		Class B - Av	erage limit line
	iteria: 1.00 dB, C			- · · · · · · · · · · · · · · · · · · ·
Peak#	Freq(MHz)	Amp(dBuV)	Limit(dB)	Delta(dB)
1	0.641	37.73	46.00	-8.27
2	4.480	31.11	46.00	-14.89
3	4.294	30.83	46.00	-15.17
4	4.182	30.67	46.00	-15.33
5	4.408	30.62	46.00	-15.38
6	4.528	30.42	46.00	-15.58
7	4.361	30.39	46.00	-15.61
8	4.249	30.22	46.00	-15.78
9	0.409	30.18	47.68	-17.50
10	4.576	28.40	46.00	-17.60
11	0.471	28.56	46.49	-17.93
12	4.114	27.84	46.00	-18.16
13	4.008	27.84	46.00	-18.16
14	0.442	28.82	47.02	-18.20
15	3.945	27.57	46.00	-18.43
16	4.648	27.22	46.00	-18.78
17	0.348	29.38	49.00	-19.62
18	0.229	32.17	52.48	-20.31
19	0.570	25.63	46.00	-20.37
20	4.050	25.57	46.00	-20.43
21	3.722	25.27	46.00	-20.73
22	3.820	25.16	46.00	-20.84
23	3.882	24.98	46.00	-21.02
24	4.696	24.94	46.00	-21.06
25	3.781	24.73	46.00	-21.27
26	4.928	23.50	46.00	-22.50
27	4.774	23.49	46.00	-22.51
28	0.320	26.74	49.71	-22.97
29	0.288	26.68	50.58	-23.90

07/24/13 10:39:11

FCC Class B - Black Lead American Security spol. s r.o.

AM 58 kHz System M/N: AS-CU6 Minimum Power

BL LI-215 12090 - Due 6-17-14 Test Engineer: Alex Benitez

Freq(MHz)	Amp(dBuV)	Limit(dB)	Delta(dB)
4.774	46.34	46.00	0.34**
0.162	55.39	55.34	0.05**
0.154	55.49	55.78	-0.29**
0.157	55.29	55.60	-0.31**
0.156	55.29	55.69	-0.40**
0.172	53.99	54.86	-0.87**
0.178	53.68	54.59	-0.90**
0.180	53.38	54.50	-1.12**
9.608	48.41	50.00	-1.59**
0.188		54.10	-2.12**
			-2.20**
			-2.21**
			-2.70**
			-3.04**
			-3.23**
			-3.81**
			-3.82**
			-3.92**
			-4.23**
			-4.45**
			-4.91**
			-5.08
			-5.09**
			-5.36**
			-5.57**
			-5.65**
			-5.68**
			-5.83**
			-5.98**
0.406	41.71	47.72	-6.01
	Freq(MHz) 4.774 0.162 0.154 0.157 0.156 0.172 0.178 0.180 9.608	4.774 46.34 0.162 55.39 0.154 55.49 0.157 55.29 0.156 55.29 0.172 53.99 0.178 53.68 0.180 53.38 9.608 48.41 0.188 51.98 0.184 52.08 0.186 51.98 0.641 43.30 0.200 50.58 0.198 50.48 0.203 49.68 0.196 49.98 0.205 49.48 0.207 49.08 0.220 48.38 0.213 48.18 11.814 44.92 9.762 44.91 0.230 47.07 0.254 46.87 0.269 45.47 0.243 46.17 0.256 45.57	Freq(MHz) Amp(dBuV) Limit(dB) 4.774 46.34 46.00 0.162 55.39 55.34 0.154 55.49 55.78 0.157 55.29 55.60 0.156 55.29 55.69 0.172 53.99 54.86 0.178 53.68 54.59 0.180 53.38 54.50 9.608 48.41 50.00 0.188 51.98 54.10 0.184 52.08 54.28 0.186 51.98 54.19 0.641 43.30 46.00 0.200 50.58 53.62 0.198 50.48 53.71 0.203 49.68 53.49 0.196 49.98 53.80 0.207 49.08 53.31 0.220 48.38 52.83 0.213 48.18 53.09 11.814 44.92 50.00 9.762 44.91 50.00 <tr< td=""></tr<>

07/24/13 10:39:11

FCC Class B - Black Lead American Security spol. s r.o.

AM 58 kHz System M/N: AS-CU6

Minimum Power

BL LI-215 12090 - Due 6-17-14 Test Engineer: Alex Benitez

		0.00 GD 011 00	01000 D 711	orago mine m
Peak crite	ería: 1.00 dB, C	urve : Average		
Peak#	Freq(MHz)	Amp(dBuV)	Limit(dB)	Delta(dB)
1	0.641	38.19	46.00	-7.81
2	9.660	29.62	50.00	-20.38
3	9.454	29.37	50.00	-20.63
4	4.648	24.25	46.00	-21.75
5	4.576	23.77	46.00	-22.23
6	4.774	23.57	46.00	-22.43
7	4.528	23.41	46.00	-22.59
8	0.229	27.92	52.48	-24.56
9	9.017	25.13	50.00	-24.87
10	0.286	25.42	50.63	-25.21
11	8.777	24.63	50.00	-25.37

07/24/13 10:26:10

Model: AS-CU6

FCC Class B - White Lead American Security spol. s r.o.

AM 58 kHz System M/N: AS-CU6 Minimum Power

WL LI-215 12090 - Due 6-17-14 Test Engineer : Alex Benitez

30 highest peaks above -50.00 dB of FCC - Class B - Average limit line

		Book about FCC -	Class D - AV	erage iiriit iirie
Peak crit Peak#	eria: 1.00 dB, C Freq(MHz)	urve : Peak Amp(dBuV)	Limit(dB)	Delta(dB)
1	0.152	56.09	55.86	0.22**
2	0.152	55.69	55.69	-0.00**
3	0.154	55.59	55.78	-0.19**
		54.28		
4 5	0.169 0.162	54.26 54.38	55.03 55.34	-0.75**
5				-0.95**
6 7	0.151	54.99	55.95 54.77	-0.97**
	0.174	53.37	54.77	-1.39**
8	4.877	44.54	46.00	-1.46**
9	0.166	53.68	55.16	-1.48**
10	0.170	53.28	54.94	-1.66**
11	0.181	52.17	54.46	-2.29**
12	0.183	51.86	54.37	-2.51**
13	0.196	51.16	53.80	-2.64**
14	0.187	51.46	54.15	-2.69**
15	0.637	43.10	46.00	-2.90**
16	0.203	49.96	53.49	-3.53**
17	0.192	50.36	53.97	-3.61**
18	0.189	50.36	54.06	-3.70**
19	0.201	49.86	53.58	-3.72**
20	0.205	49.56	53.40	-3.84**
21	0.207	49.26	53.31	-4.05**
22	0.215	48.87	53.00	-4.14**
23	0.226	48.37	52.61	-4.24**
24	0.210	48.96	53.23	-4.26**
25	0.213	48.66	53.09	-4.43**
26	9.660	45.54	50.00	-4.46
27	0.471	41.73	46.49	-4.76
28	9.557	45.24	50.00	-4.76
29	0.409	42.91	47.68	-4.77
30	0.421	42.41	47.42	-5.00

page 1/1

07/24/13 10:26:10

FCC Class B - White Lead American Security spol. s r.o.

AM 58 kHz System

M/N: AS-CU6 Minimum Power

WL LI-215 12090 - Due 6-17-14 Test Engineer: Alex Benitez

7	high	est pea	aks ab	oove	-50.00	dB of	FCC -	Class	B - A	verage	limit line
_					_						

Peak criteria: 1.00 dB, Curve: Average								
Peak#	Freq(MHz)	Amp(dBuV)	Limit(dB)	Delta(dB)				
1	0.637	38.08	46.00	-7.92				
2	4.576	24.56	46.00	-21.44				
3	4.748	24.24	46.00	-21.76				
4	4.648	24.04	46.00	-21.96				
5	4.696	23.70	46.00	-22.30				
6	4.928	23.20	46.00	-22.80				
7	0.232	27.53	52.39	-24.86				