Examenul de bacalaureat național 2020 Proba E. d) FIZICĂ BAREM DE EVALUARE ȘI DE NOTARE

Test 20

- Se punctează oricare alte modalități de rezolvare corectă a cerințelor.
- Nu se acordă fracțiuni de punct.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea punctajului total acordat pentru lucrare la 10.

A. MECANICĂ (45 de puncte)

A. Subjectul I

Nr.Item	Soluţie, rezolvare	Punctaj
l.1.	c	3р
2.	a	3р
3.	С	3p
4.	b	3р
5.	b	3p
TOTAL	pentru Subiectul I	15p

A. Subiectul al II - lea

II.a.	Pentru:	4p
	reprezentarea corectă a forțelor 4p	_
b.	Pentru:	4p
	$a = \frac{g(m_2 - m_1)}{m_1 + m_2}$	
	rezultat final: $a = 2 \text{m/s}^2$	
C.	Pentru:	3р
	$T = m_1(a+g)$	
	T'=2T	
	rezultat final: $T' = 48 \text{ N}$	
d.	Pentru:	4p
	$\Delta E_c = L_{total}$	
	$\Delta E_c = E_c - 0 = E_c $ 1p	
	$L_{total} = m_2 g \frac{h}{2} - m_1 g \frac{h}{2} $ 1p	
	rezultat final: $E_c = 3 \text{ J}$	
TOTAL	pentru Subiectul al III-lea	15p

A. Subjectul al III - lea

A. Subic	A. Judiectul al III - lea		
III.a.	Pentru:		3р
	Energia cinetică este maximă la baza planului înclinat	1p	
	$E_{c,\text{max}} = \frac{1}{2}mv^2$	1p	
	rezultat final: $E_{c,max} = 1280 \text{ J}$	1p	
b.	Pentru:		4p
	Pe plan înclinat:	1 n	
	$\Delta E_c = L$	1p	
	$ \operatorname{fin care} \begin{cases} \Delta E_c = \frac{1}{2} m v^2 \\ L = L_G + L_{F_7,1} = mgh + L_{F_7,1} \end{cases} $	1p	
		1p	
	rezultat final: $L_{F_{71}} = -720 \text{ J}$	1p	

Ministerul Educației și Cercetării Centrul Național de Politici și Evaluare în Educație

C.	Pentru:	4p
	$L_{F_{f}} = -F_{f} \cdot d_{1}$ $F_{f} = \mu mg \cos \alpha$ 1p	
	$d_1 = \frac{h}{\sin \alpha}$	
	rezultat final: $tg\alpha \cong 0,56$	
d.	Pentru:	4p
	$\frac{mv^2}{2} = mad$ 2p	
	$a = \mu g$	
	rezultat final: $d = 16 \text{ m}$	
TOTAL	pentru Subiectul al II-lea	15p

B. ELEMENTE DE TERMODINAMICĂ

(45 de puncte)

B. Subiectul I

Nr.Item	Soluţie, rezolvare	Punctaj
I.1.	a	3р
2.	c	3р
3.	b	3р
4.	d	3р
5.	a	3р
TOTAL	pentru Subiectul I	15p

B. Subiectul al II - lea

II.a.	Pentru:	3р
	$N = v \cdot N_A$ 2p	
	rezultat final: $N \cong 1,44 \cdot 10^{23}$ molecule	
b.	Pentru:	
	gazul suferă o transformare izobară 1p	4p
	$ \frac{T_1}{V_1} = \frac{T_2}{V_2} $ 2p	
	$V_1 V_2$	
	rezultat final: $T_2 = 510 \text{ K}$	
C.	Pentru:	4p
	$\rho = \rho_0 + \frac{G}{S}$ $(\rho_0 + \frac{G}{S}) \cdot V = \nu R T_2$ 1p	
	$(p_0 + \frac{G}{S}) \cdot V = \nu R T_2 $ 1p	
	rezultat final: $G = 20 \text{ N}$	
d.	Pemtru:	4p
	$Q = \nu C_p (T_2 - T_1) $ 2p	
	$Q = \nu C_p (T_2 - T_1)$ $C_p = C_V + R$ 1p	
	rezultat final: Q=1785J	
TOTAL	pentru Subiectul al II-lea	15p

B. Subiectul al III - lea

III.a.	Pentru:	4p
	$L_{total} = \rho_1 V_1$ 3p	
	rezultat final: $L_{total} = 400 \text{ J}$	
b.	Pentru:	4p
	$\Delta U_{31} = \nu C_{\nu} \left(T_1 - T_3 \right) $ 2p	
	$T_3 = 3T_1$	
	rezultat final: ΔU_{31} = -1200 J	
C.	Pentru:	4p
	$Q_{cedat} = Q_{23} + Q_{31} $ 1p	
	$Q_{cedat} = \nu C_{V} \left(T_3 - T_2 \right) + \nu C_{P} \left(T_1 - T_3 \right) $	
	$T_2 = 6T_1$	
	rezultat final: $Q_{cedat} = -3800 \text{ J}$	
d.	Pentru:	3р
	$\eta_c = 1 - \frac{T_1}{T_3} $ 2p	
	rezultat final: $\eta_{c}\cong 83\%$	
TOTAL	pentru Subiectul al III-lea	15p

C. PRODUCEREA ȘI UTILIZAREA CURENTULUI CONTINUU

(45 de puncte)

C. Subiectul I

Nr.Item	Soluţie, rezolvare	Punctaj
I.1.	c	3р
2.	b	3р
3.	c	3р
4.	b	3р
5.	d	3р
TOTAL	pentru Subiectul I	15p

C. Subjectul al II - lea

C. Subic	ctul al II - lea		
II.a.	Pentru:		3р
	$U_{AB} = I_3 R_3$	2p	
	rezultat final: $U_{AB} = 12 \text{ V}$	1p	
b.	Pentru:		4p
	$E_2 = I_2(R_2 + r_2) + U_{AB}$	3р	
	rezultat final: $I_2 = 1A$	1p	
C.	Pentru:		4p
	$P_1 = R_1 l_1^2$	1p	
	$I_1 + I_2 = I_3$	1p	
	$E_1 = I_1(R_1 + r_1) + U_{AB}$	1p	
	rezultat final: $P_1 = 2 \text{ W}$	1p	
d.	Pentru:		4p
	rezistenţa grupării paralel $R_p = \frac{R_3 \cdot R_1}{R_3 + R_1}$	1p	
	rezistenţa circuitului exterior sursei cu t.e.m. E_2 : $R_{ext} = R_2 + R_p$	1p	
	$I_2' = \frac{E_2}{R_{ext} + r_2}$	1 p	
	rezultat final: $I_2 \cong 3.3 \mathrm{A}$	1p	
TOTAL	pentru Subiectul al II-lea		15p

C. Subiectul al III - lea

III.a.	Pentru:	3р
	$R_{bec} = \frac{U_n}{I_n}$ 2p	
	rezultat final: $R_{\rm bec}$ = 12 Ω	
b.	Pentru:	4p
	$n_{\text{max}} = \left[\frac{I_{\text{max}}}{I_n}\right]$ 3p	
	rezultat final: $n_{\text{max}} = 12$ beculeţe	
C.	Pentru:	4p
	$P_{bec} = U_n \cdot I_n$ 2p	
	$W = n_1 \cdot P_{bec} \cdot t $ 1p	
	rezultat final: $W = 46656 \text{ J}$	
d.	Pentru:	4p
	$R_{\text{ext}} = r$ 2p	
	$R_{\text{ext}} = \frac{R_{\text{bec}}}{n_2}$	
	rezultat final: $n_2 = 12$ beculeţe	
TOTAL	pentru Subiectul al III-lea	15p

D. OPTICĂ (45 de puncte)

D. Subiectul I

Nr.Item	Soluţie, rezolvare	Punctaj
I.1.	d	3р
2.	b	3р
3.	d	3р
4.	b	3р
5.	C	3р
TOTAL	pentru Subiectul I	15p

D. Subjectul al II - lea

D. Suble	J. Subjectul al II - lea		
II.a.	Pentru:	3р	
	$C_2 = \frac{1}{f_2}$		
	rezultat final:, $C_2 = -2.5 \mathrm{m}^{-1}$		
b.	Pentru:	4p	
	$C = C_1 + C_2$		
	$f = \frac{1}{C}$		
	rezultat final: $f = 1 \mathrm{m}$		
C.	Pentru:	4p	
	$\frac{1}{x_2} - \frac{1}{x_1} = \frac{1}{f} \Rightarrow x_2 = \frac{x_1 f}{x_1 + f}$		
	$-x_1 = D$		
	rezultat final: $x_2 \cong 1,1 \text{ m}$		
d.	Pentru:	4p	
	$C_1 = (n-1)\left(\frac{1}{R_1} - \frac{1}{R_2}\right)$ 2p		
	$R_1 = R \; ; \; R_2 = -R$		
	rezultat final: $n = 1,7$		
TOTAL	pentru Subiectul al II-lea	15p	

D. Subiectul al III - lea

III.a.	Pentru:	4p
	$d = x_2 + x_3 $ 1p	
	$x_k = ki$	
	rezultat final $i = 1,24$ mm	
b.	Pentru:	4p
	$i = \frac{\lambda D}{2\ell}$	
	rezultat final $\lambda = 620\mathrm{nm}$	
C.	Pentru:	4p
	$\delta_1 = (n_1 - 1)e_1 $	
	$\delta_1 = (n_1 - 1)e_1$ 1p $x'_0 = \frac{e_1(n_1 - 1)D}{2\ell}$ 2p	
	rezultat final: $x'_0 = 2,6 \text{ mm}$	
d.	Pentru:	3р
	$\delta_1 = \delta_2$	
	$\delta_2 = (n_2 - 1)e_2$ 1p	
	rezultat final $n_2 = 1,65$	
TOTAL pentru Subiectul al III-lea		15p