Notas de Álgebra Linear

Carla Mendes

2015/2016

5. Determinantes

5.1 Definição e propriedades

O determinante de uma matriz quadrada sobre \mathbb{K} , $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$, é um elemento de \mathbb{K} calculado a partir dos elementos da matriz e que, entre outras aplicações, pode ser usado na resolução de certos sistemas de equações lineares e para decidir sobre a invertibilidade de uma matriz.

O determinante de uma matriz pode ser definido de diversas formas. Neste texto optamos por apresentar uma definição indutiva deste conceito.

Para uma matriz de ordem 1×1

$$A = [a]$$

é fácil concluir que a matriz é invertível se e só se $a \neq 0$.

Dada uma matriz quadrada de ordem 2×2

$$A = \left[\begin{array}{cc} a & b \\ c & d \end{array} \right]$$

é também simples concluir em que condições a matriz é invertível; aplicando o método de eliminação de Gauss à matriz A, conclui-se que A é invertível se e só se $ad - bc \neq 0$.

Como iremos ver, a qualquer matriz $A \in \mathcal{M}_n(\mathbb{K})$, $n \in \mathbb{N}$, podemos associar um elemento de \mathbb{K} com a propriedade de A ser invertível se e só se esse escalar for não nulo. A este elemento de \mathbb{K} chamaremos o determinante de A.

Para matrizes de ordem superior apresentamos uma definição indutiva para o determinante de uma matriz, i.e., define-se o determinante de uma matriz 2×2 em função do determinante de matrizes de ordem 1×1 , define-se o determinante de uma matriz 3×3 em função do determinante de matrizes de ordem 2×2 , e assim sucessivamente.

No sentido de apresentarmos a definição referida, começamos por introduzir alguma notação.

Dada uma matriz $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K}), n \in \mathbb{N}$, representa-se por A(i|j) a matriz quadrada de ordem n-1, obtida de A retirando a linha i e a coluna j.

Exemplo 5.1.1. Se
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
 então $A(1|3) = \begin{bmatrix} 4 & 5 \\ 7 & 8 \end{bmatrix}$.

Definição 5.1.2. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Chama-se **determinante de A**, e representa-se por det A ou |A|, ao elemento de \mathbb{K} obtido da seguinte forma:

i) Se n = 1, então $\det A = a_{11}$;

ii) Se
$$n > 1$$
, então $\det A = \sum_{j=1}^{n} (-1)^{1+j} a_{1j} \det A(1|j)$.

Dada uma matriz $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$ e dados $i, j \in \{1, ..., n\}$, designa-se por **complemento algébrico** do elemento a_{ij} , e representa-se por \widehat{a}_{ij} , o elemento de \mathbb{K} dado por $(-1)^{i+j}$ det A(i|j).

Note-se que nas condições da definição anterior, se n > 1, tem-se det $A = \sum_{j=1}^{n} a_{1j} \hat{a}_{1j}$.

Exemplo 5.1.3. Se
$$A = \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix}$$
 então
$$\det A = (-1)^{1+1} \times 1 \times \det[5] + (-1)^{1+2} \times 3 \times \det[4]$$
$$= 5 - 12$$
$$= -7.$$

Exemplo 5.1.4. Se
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 3 \\ 2 & 4 & 5 \end{bmatrix}$$
, então
$$\det A = (-1)^{1+1} \times 1 \times \det \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix} + 0 + 0$$
$$= \det \begin{bmatrix} 1 & 3 \\ 4 & 5 \end{bmatrix}$$
$$= -7.$$

Exemplo 5.1.5. Se $A = [a_{ij}]$ é uma matriz real de ordem 3, então

$$\det A = a_{11}a_{22}a_{33} + a_{12}a_{23}a_{31} + a_{21}a_{32}a_{13} - a_{13}a_{22}a_{31} - a_{23}a_{32}a_{11} - a_{33}a_{12}a_{21}.$$

De acordo com a definição que apresentámos para o determinante de uma matriz $A \in \mathcal{M}_n(\mathbb{K})$, o determinante de A é igual à soma dos elementos da linha 1 multiplicados pelos respectivos complementos algébricos.

O resultado seguinte, que não demonstraremos, estabelece que se procedermos de forma análoga para uma qualquer linha ou uma qualquer coluna de A obtemos também o determinante de A.

Teorema 5.1.6 (Teorema de Laplace). Sejam $n \in \mathbb{N}$ tal que $n \geq 2$ e $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$. Então, para qualquer $k \in \{1, 2, ..., n\}$,

i)
$$\det A = \sum_{j=1}^{n} (-1)^{k+j} a_{kj} \det A(k|j) = \sum_{j=1}^{n} a_{kj} \widehat{a}_{kj}$$
.

ii) det
$$A = \sum_{i=1}^{n} (-1)^{i+k} a_{ik} \det A(i|k) = \sum_{i=1}^{n} a_{ik} \widehat{a}_{ik}$$
. \square

Relativamente à primeira expressão do teorema de Laplace, dizemos que estamos a desenvolver o determinante ao longo da linha k de A e, relativamente à segunda expressão, dizemos que estamos a desenvolver o determinante ao longo da coluna k de A.

Exemplo 5.1.7. Seja
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 0 & 0 \\ 7 & 8 & 9 \end{bmatrix}$$
. Por definição, temos
$$\det A = 1 \begin{vmatrix} 0 & 0 \\ 8 & 9 \end{vmatrix} - 2 \begin{vmatrix} 4 & 0 \\ 7 & 9 \end{vmatrix} + 3 \begin{vmatrix} 4 & 0 \\ 7 & 8 \end{vmatrix}$$
$$= 1(0-0) - 2(36-0) + 3(32-0)$$
$$= 24$$

Aplicando o teorema de Laplace, desenvolvendo o determinante ao longo da linha k = 2, vem

$$\det A = (-1)^{2+1} \times 4 \times \begin{vmatrix} 2 & 3 \\ 8 & 9 \end{vmatrix}$$
$$= -4(18 - 24)$$
$$= 24.$$

Proposição 5.1.8. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Então, $\det A^T = \det A$.

Demonstração. A prova segue por indução sobre a ordem n da matriz. Caso base (n = 1): Se $A \in \mathcal{M}_1(\mathbb{K})$, temos $A = [a_{11}] = A^T$ e, portanto, $\det A = \det A^T$.

Passo de indução: Dado $p \in \mathbb{N}$, admitamos, por hipótese de indução, que o determinante de qualquer matriz de $\mathcal{M}_p(\mathbb{K})$ é igual ao determinante da sua transposta. Com

base nesta hipótese prova-se facilmente que se $A \in \mathcal{M}_{p+1}(\mathbb{K})$, então det $A^T = \det A$. Com efeito, pelo Teorema de Laplace, e desenvolvendo o determinante da matriz A ao longo de uma linha $k, k \in \{1, 2, \ldots, p+1\}$, temos

$$\det A = \sum_{j=1}^{p+1} (-1)^{k+j} a_{kj} \det A(k|j).$$

Mas, uma vez que A(k|j) é uma matriz de $\mathcal{M}_p(\mathbb{K})$, por hipótese de indução temos det $A(k|j) = \det(A(k|j))^T$. Então, como $(A(k|j))^T = A^T(j|k)$, temos

$$\det A = \sum_{j=1}^{p+1} (-1)^{k+j} a_{kj} \det A^{T}(j|k).$$

Agora, tendo em conta que a_{kj} é o elemento na linha j e coluna k de A^T , temos que $\sum_{j=1}^{p+1} (-1)^{k+j} a_{kj} \det A^T(j|k)$ é o determinante de A^T desenvolvido ao longo da coluna k. Por conseguinte det $A = \det A^T$.

Do que foi provado no caso base e no passo de indução concluímos pelo Princípio de Indução em \mathbb{N} que, para todo $n \in \mathbb{N}$, se $A \in \mathcal{M}_n(\mathbb{K})$, então det $A = \det A^T$. \square

Observação. Do teorema anterior resulta que, dada uma propriedade sobre determinantes expressa em termos de linhas (respectivamente, colunas), podemos sempre enunciar uma propriedade análoga expressa em termos de colunas (respectivamente, linhas).

Proposição 5.1.9. Sejam $n \in \mathbb{N}$ e $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$ uma matriz triangular superior (respectivamente, inferior). Então det $A = a_{11} \times a_{22} \times \cdots \times a_{nn}$.

Demonstração. A prova segue por indução sobre n.

Caso base (n = 1): Para n = 1, temos $A = [a_{11}]$ e o resultado é imediato.

Passo de indução: Dado $p \in \mathbb{N}$, admitamos, por hipótese de indução, que para qualquer matriz triangular superior B de $\mathcal{M}_p(\mathbb{K})$, det $B = b_{11} \times b_{22} \times \ldots \times b_{pp}$. Então, para qualquer matriz triangular superior $A \in \mathcal{M}_{p+1}(\mathbb{K})$, prova-se que det $A = a_{11} \times a_{22} \times \cdots \times a_{p+1p+1}$. De facto, aplicando o Teorema de Laplace ao longo da linha p+1 da matriz A e atendendo a que A é uma matriz traingular superior, temos

$$\det A = \sum_{j=1}^{p+1} (-1)^{(p+1)+j} a_{p+1j} \det A(p+1|j) = (-1)^{2(p+1)} a_{p+1p+1} \det A(p+1|p+1).$$

Agora, como A(p+1|p+1) é uma matriz de $\mathcal{M}_p(\mathbb{K})$ e é também uma matriz triangular superior, por hipótese de indução temos det $A(p+1|p+1) = a_{11} \times a_{22} \times \cdots \times a_{pp}$. Logo det $A = a_{11} \times a_{22} \times \cdots \times a_{p+1p+1}$.

Assim, do caso base e passo de indução concluímos pelo Princípio de Indução em

 \mathbb{N} que, para todo $n \in \mathbb{N}$, se $A \in \mathcal{M}_n(\mathbb{K})$ é uma matriz triangular superior, então det $A = a_{11} \times a_{22} \times \cdots \times a_{nn}$.

Se A é uma matriz triangular inferior, o resultado segue imediatamente tendo em conta a proposição anterior.

Proposição 5.1.10. Sejam $n \in \mathbb{N}$, $A = [a_{ij}]$, $B = [b_{ij}] \in \mathcal{M}_n(\mathbb{K})$ $e \ 1 \leq k \leq n$. Se $a_{ij} = b_{ij}$, para todo $i \neq k$, então,

$$\det A + \det B = \det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-22} & \cdots & a_{k-1n} \\ a_{k1} + b_{k1} & a_{k2} + b_{k2} & \cdots & a_{kn} + b_{kn} \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}.$$

Demonstração. Sejam

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-22} & \cdots & a_{k-1n} \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
 e
$$B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-22} & \cdots & a_{k-1n} \\ b_{k1} & b_{k2} & \cdots & b_{kn} \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}.$$

$$\operatorname{Ent\tilde{a}o, \, se} M = \left[\begin{array}{ccccc} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-22} & \cdots & a_{k-1n} \\ a_{k1} + b_{k1} & a_{k2} + b_{k2} & \cdots & a_{kn} + b_{kn} \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{array} \right], \text{ temos}$$

$$\det M = \sum_{j=1}^{n} (-1)^{k+j} (a_{kj} + b_{kj}) \det M(k|j)$$

$$= \sum_{j=1}^{n} (-1)^{k+j} a_{kj} \det M(k|j) + \sum_{j=1}^{n} (-1)^{k+j} b_{kj} \det M(k|j)$$

$$= \sum_{j=1}^{n} (-1)^{k+j} a_{kj} \det A(k|j) + \sum_{j=1}^{n} (-1)^{k+j} b_{kj} \det B(k|j)$$

$$= \det A + \det B.$$

Corolário 5.1.11. Sejam $n \in \mathbb{N}$, $A = [a_{ij}]$, $B = [b_{ij}] \in \mathcal{M}_n(\mathbb{K})$ $e \ 1 \le k \le n$. Se $a_{ij} = b_{ij}$, para todo $j \ne k$, então,

$$\det A + \det B = \det \begin{bmatrix} a_{11} & \cdots & a_{1k-1} & a_{1k} + b_{1k} & a_{1k+1} & \cdots & a_{1n} \\ a_{21} & \cdots & a_{2k-1} & a_{2k} + b_{2k} & a_{2k+1} & \cdots & a_{k-1n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \cdots & a_{nk-1} & a_{nk} + b_{nk} & a_{nk+1} & \cdots & a_{nn} \end{bmatrix}.$$

Proposição 5.1.12. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se B é uma matriz obtida de A, multiplicando uma sua linha por $\alpha \in \mathbb{K}$. Então,

$$\det B = \alpha \det A.$$

Demonstração. Sejam $n \in \mathbb{N}$ e

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-22} & \cdots & a_{k-1n} \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
 e
$$B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-22} & \cdots & a_{k-1n} \\ \alpha \cdot a_{k1} & \alpha \cdot a_{k2} & \cdots & \alpha \cdot a_{kn} \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}.$$

Então, desenvolvendo o determinante de B ao longo da sua linha k, temos que

$$\det B = \sum_{j=1}^{n} (-1)^{k+j} (\alpha \cdot a_{kj}) \det B(k|j)$$

$$= \alpha \sum_{j=1}^{n} (-1)^{k+j} a_{kj} \det A(k|j)$$

$$= \alpha \det A.$$

Corolário 5.1.13. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se B é uma matriz obtida de A, multiplicando uma sua coluna por $\alpha \in \mathbb{K}$. Então,

$$\det B = \alpha \det A. \quad \Box$$

Corolário 5.1.14. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se A tem uma linha ou coluna só com zeros, então det A = 0. \square

Corolário 5.1.15. Sejam $n \in \mathbb{N}$, $A \in \mathcal{M}_n(\mathbb{K})$ $e \alpha \in \mathbb{K}$. Então,

$$\det\left(\alpha A\right) = \alpha^n \det A.$$

Demonstração. A prova segue por indução sobre n.

Caso base (n = 1): Se $A \in \mathcal{M}_1(\mathbb{K})$ temos $A = [a_{11}]$, pelo que $\det(\alpha A) = \det[\alpha a_{11}] = \alpha a_{11} = \alpha^1 \det A$.

Passo de indução: Dado $p \in \mathbb{N}$, admitamos, por hipótese de indução, que, para qualquer matriz $A' \in \mathcal{M}_p(\mathbb{K})$, $\det(\alpha A') = \alpha^p \det A'$. Com base nesta hipótese prova-se facilmente que se $A \in \mathcal{M}_{p+1}(\mathbb{K})$, então $\det(\alpha A) = \alpha^{p+1} \det A$. De facto, desenvolvendo o determinante de αA ao longo da linha $k, k \in \{1, 2 \dots, p+1\}$, temos

$$\det(\alpha A) = \sum_{j=1}^{p+1} (-1)^{k+j} (\alpha a_{kj}) \det(\alpha A)(k|j).$$

Mas $(\alpha A)(k|j) = \alpha(A(k|j))$ e $A(k|j) \in \mathcal{M}_p(\mathbb{K})$ e, por hipótese de indução, $\det(\alpha A)(k|j) = \alpha^p \det A(k|j)$. Logo

$$\det(\alpha A) = \sum_{j=1}^{p+1} (-1)^{k+j} (\alpha a_{kj}) (\alpha^p \det A(k|j))$$

$$= \alpha^{p+1} (\sum_{j=1}^{p+1} (-1)^{k+j} a_{kj} \det A(k|j))$$

$$= \alpha^{p+1} \det A.$$

Assim, do caso base e do passo de indução concluímos pelo Princípio de Indução em \mathbb{N} que, para todo $n \in \mathbb{N}$, se $A \in \mathcal{M}_n(\mathbb{K})$, então $\det(\alpha A) = \alpha^n \det A$. \square

Proposição 5.1.16. Sejam $n \in \mathbb{N}$ tal que $n \geq 2$ e seja $A \in \mathcal{M}_n(\mathbb{K})$. Se B é uma matriz obtida de A trocando duas das suas linhas, então

$$\det B = -\det A$$
.

Demonstração. A prova segue por indução sobre a ordem n da matriz. Caso base (n=2): Para n=2 o resultado é válido, pois

$$\det \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = a_{11}a_{22} - a_{12}a_{21} = -(a_{21}a_{12} - a_{22}a_{11}) = -\det \begin{bmatrix} a_{21} & a_{22} \\ a_{11} & a_{12} \end{bmatrix}.$$

Passo de indução: Dado $p \in \mathbb{N}$ tal que $p \geq 2$, admitamos, por hipótese de indução, que se B' é uma matriz obtida de uma matriz $A' \in \mathcal{M}_p(\mathbb{K})$ trocando duas das suas linhas, então det $B' = -\det A'$. Com base nesta hipótese prova-se que se B é uma matriz obtida de uma matriz $A \in \mathcal{M}_{p+1}(\mathbb{K})$ trocando duas das suas linhas, então det $B = -\det A$. Suponhamos que B é a matriz obtida de A trocando as linhas $i \in j, i \neq j, i, j \in \{1, \ldots, p+1\}$. Como $p+1 \geq 3$, a matriz A tem uma linha

 $k \in \{1, \ldots, p+1\}$ tal que $k \neq i$ e $k \neq j$. Então, aplicando o Teorema de Laplace ao longo da linha k da matriz A, temos

$$\det A = \sum_{l=1}^{p+1} (-1)^{k+l} \times a_{kl} \times \det A(k|l).$$

Para quaisquer $k, l \in \{1, ..., p+1\}$, a matriz A(k|l) é uma matriz de $\mathcal{M}_p(\mathbb{K})$ e, como $k \neq i$ e $k \neq j$, a matriz B(k|l) é a matriz obtida de A(k|l) trocando as linhas i e j. Por conseguinte, pela hipótese de indução, temos det $B(k|l) = -\det A(k|l)$, donde segue que

$$\sum_{l=1}^{p+1} (-1)^{k+l} \times a_{kl} \times \det A(k|l) = \sum_{l=1}^{p+1} (-1)^{k+l} \times a_{kl} \times (-\det B(k|l)).$$

Agora, como a linha k de A é igual à linha k de B, temos

$$\sum_{l=1}^{p+1} (-1)^{k+l} \times a_{kl} \times (-\det B(k|l)) = \sum_{l=1}^{p+1} (-1)^{k+l} \times b_{kl} \times (-\det B(k|l)) = -\det B.$$

Assim, do caso base e do passo de indução concluímos que, para todo $n \in \mathbb{N}$, se $A \in \mathcal{M}_n(\mathbb{K})$ e B é uma matriz obtida de A trocando duas linhas, então det $B = -\det A$.

Corolário 5.1.17. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se B é uma matriz obtida de A trocando duas das suas colunas, então

$$\det B = -\det A$$
. \square

Corolário 5.1.18. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se A tem duas linhas iguais, então det A = 0.

Demonstração. Se trocarmos as duas linhas iguais da matriz A, obtemos a mesma matriz A. Mas, pela Proposição 5.1.16, det $A = -\det A$, pelo que det A = 0.

Corolário 5.1.19. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se A tem duas colunas iguais, então det A = 0.

Proposição 5.1.20. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se B é uma matriz obtida de A, substituindo uma sua linha pela sua soma com um múltiplo de outra linha, então

$$\det B = \det A$$
.

Demonstração. Sejam $n, k, p \in \mathbb{N}$ tais que $1 \le k e$

$$A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$
 e
$$B = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} + \alpha \cdot a_{k1} & a_{p2} + \alpha \cdot a_{k2} & \cdots & a_{pn} + \alpha \cdot a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}.$$

Então

$$\det B = \det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} + \alpha \cdot a_{k1} & a_{p2} + \alpha \cdot a_{k2} & \cdots & a_{pn} + \alpha \cdot a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$= \det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{p1} & a_{p2} & \cdots & a_{pn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} + \alpha \det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k1} & a_{k2} & \cdots & a_{kn} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

Corolário 5.1.21. Sejam $n \in \mathbb{N}$ e $A \in \mathcal{M}_n(\mathbb{K})$. Se B é uma matriz obtida de A, substituindo uma sua coluna pela sua soma com um múltiplo de outra coluna, então

 $= \det A + \alpha \cdot 0 = \det A.$

$$\det B = \det A$$
. \square

Proposição 5.1.22. Sejam $n \in \mathbb{N}$, $A \in \mathcal{M}_n(\mathbb{K})$ e E_1, \ldots, E_s matrizes elementares de $\mathcal{M}_n(\mathbb{K})$. Então

$$\det(E_1 \dots E_s A) = \det(E_1 \dots E_s) \det A.$$

Demonstração. A prova segue por indução sobre s.

Caso base (s = 1): Pretendemos mostrar que det $E_1A = \det E_1 \det A$. Para provar este resultado vamos considerar os 3 subcasos seguintes:

- i) E_1 é a matriz obtida de I_n trocando as linhas $i \in j$, com $i \neq j$;
- ii) E_1 é a matriz obtida de I_n multiplicando a linha i por $\alpha \in \mathbb{K} \setminus \{0\}$.
- iii) E_1 é a matriz obtida de I_n substituindo a linha i pela sua soma com a linha j multiplicada por $\alpha \in \mathbb{K}$, com $i \neq j$.

Caso i): Pela Proposição 5.1.16 temos det $E_1 = -\det I_n = -1$ e, uma vez que E_1A é a matriz obtida de A trocando as linhas i e j, também pela Proposição 5.1.16, temos $\det(E_1A) = -\det A$. Logo

$$\det(E_1 A) = -\det A = \det E_1 \det A.$$

Caso ii) Pela proposição 5.1.12 temos det $E_1 = \alpha$ det $I_n = \alpha$ e, uma vez que E_1A é a matriz obtida de A multiplicando a linha i por α tem-se det $(E_1A) = \alpha$ det A. Logo

$$\det(E_1 A) = \alpha \det A = \det E_1 \det A.$$

Caso iii): Pela Proposição 5.1.20 temos det $E_1 = \det I_n = 1$ e, uma vez que E_1A é a matriz obtida de A susbstituindo a linha i pela sua soma com a linha j multiplicada por α , tem-se $\det(E_1A) = \det A$. Logo

$$\det(E_1 A) = \det A = \det E_1 \det A.$$

Passo de indução: Dado $k \in \mathbb{N}$, admitamos, por hipótese de indução, que o resultado é válido para o produto de quaisquer k matrizes elementares de $\mathcal{M}_n(\mathbb{K})$ por qualquer matriz de $\mathcal{M}_n(\mathbb{K})$. Como

$$\det(E_1 \dots E_k E_{k+1} A) = \det((E_1 \dots E_k)(E_{k+1} A)),$$

pela hipótese de indução segue que

$$\det(E_1 \dots E_k E_{k+1} A) = \det(E_1 \dots E_k) \det(E_{k+1} A).$$

Por outro lado, do que foi provado no caso base temos

$$\det(E_{k+1}A) = \det E_{k+1} \det A.$$

Assim,

$$\det(E_1 \dots E_k E_{k+1} A) = \det(E_1 \dots E_k) \det E_{k+1} \det A$$

=
$$\det(E_1 \dots E_k \det E_{k+1}) \det A.$$

Do que foi provado no caso base e no passo de indução concluímos pelo Princípio de Indução em \mathbb{N} que, para qualquer $s \in \mathbb{N}$, quaisquer matrizes elementares $E_1, \ldots E_s \in \mathcal{M}_n(\mathbb{K})$ e qualquer matriz $A \in \mathcal{M}_n(\mathbb{K})$,

$$\det(E_1 \dots E_s A) = \det(E_1 \dots E_s) \det A.$$

Proposição 5.1.23. Sejam $n \in \mathbb{N}$ e $A, B \in \mathcal{M}_n(\mathbb{K})$. Então,

$$\det(AB) = \det A \det B. \quad \Box$$

Demonstração. Na prova deste resultado consideraremos dois casos: i) A é invertível; ii) A não é invertível.

Caso i): Se A é invertível, então car(A) = n, pelo que é possível obter I_n a partir de A efetuando um número finito de transformações elementares sobre linhas. Por conseguinte, existem matrizes elementares $E_1, \ldots E_s \in \mathcal{M}_n(\mathbb{K})$ tais que $I_n = E_1 \ldots E_s A$. Da igualdade anterior, e tendo em conta que toda a matriz elementar é invertível, temos $A = E_s^{-1} \ldots E_1^{-1}$. A inversa de uma matriz elementar é também uma matriz elementar e, por conseguinte, da proposição anterior segue que

$$\det(AB) = \det(E_s^{-1} \dots E_1^{-1}B) = \det(E_s^{-1} \dots E_1^{-1}) \det B = \det A \det B.$$

Caso ii): Se A não é invertível, então car(A) < n. Logo existem matrizes elementares $E_1, \ldots, E_s \in \mathcal{M}_n(\mathbb{K})$ tais que

$$E_1 \dots E_s A = A'$$

onde A' é uma matriz triangular superior com um número de linhas não nulas menor do n, ou seja, A' tem pelo menos uma linha nula.

Da igualdade anterior, e tendo em conta que toda a matriz elementar é invertível, temos

$$A = E_s^{-1} \dots E_1^{-1} A'.$$

Então, atendendo a que inversa de uma matriz elementar é também uma matriz elementar, pela proposição anterior temos

$$\det(AB) = \det((E_s^{-1} \dots E_1^{-1}A')B)
= \det((E_s^{-1} \dots E_1^{-1})(A'B))
= \det(E_s^{-1} \dots E_1^{-1})\det(A'B).$$

Daqui segue que $\det(AB) = 0$, pois, como A' tem pelo menos uma linha nula, a matriz A'B também tem pelo menos uma linha nula, pelo que $\det(A'B) = 0$. Analogamente, a matriz $A = E_s^{-1} \dots E_1^{-1} A'$ também tem pelo menos uma linha nula e, portanto, $\det A = 0$. Assim,

$$\det(AB) = 0 = 0 \det B = \det A \det B.$$

Tendo em conta algumas das propriedades sobre determinantes referidas anteriormente, o cálculo do determinante de uma matriz pode ser reduzido ao problema do cálculo do determinante de uma matriz triangular. Considerando $A \in \mathcal{M}_n(\mathbb{K})$, $n \in \mathbb{N}$, efectuam-se operações elementares sobre as linhas (ou colunas) de A até se

obter uma matriz uma matriz triangular superior (inferior) $U = [u_{ij}] \in \mathcal{M}_n(\mathbb{K})$. Assim,

$$\det A = (-1)^l \times \beta \times u_{11} \times u_{22} \times \cdots \times u_{nn},$$

onde l é o número de vezes que trocamos duas linhas ou duas colunas e β é o inverso do produto dos escalares pelos quais multiplicamos as linhas ou colunas.

Exemplo 5.1.24.
$$Seja \ A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 1 & 3 \\ 2 & 3 & 1 \end{bmatrix}$$
.

Então,

$$\det A = \det \begin{bmatrix} 1 & 2 & 1 \\ 0 & -5 & 0 \\ 0 & -1 & -1 \end{bmatrix} = -\det \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & -1 \\ 0 & -5 & 0 \end{bmatrix}$$
$$= -\det \begin{bmatrix} 1 & 2 & 1 \\ 0 & -1 & -1 \\ 0 & 0 & 5 \end{bmatrix} = -1 \times (-1) \times (5) = 5.$$

Exemplo 5.1.25.
$$Seja\ A = \begin{bmatrix} 1 & 2 & -3 & 4 \\ 1 & 2 & 1 & 3 \\ 3 & 0 & -2 & 0 \\ 1 & 0 & 2 & -5 \end{bmatrix}$$
. $Ent\tilde{a}o$

$$\begin{vmatrix} 1 & 2 & -3 & 4 \\ 1 & 2 & 1 & 3 \\ 3 & 0 & -2 & 0 \\ 1 & 0 & 2 & -5 \end{vmatrix} = \begin{vmatrix} 1 & 2 & -3 & 4 \\ 0 & 0 & 4 & -1 \\ 0 & -6 & 7 & -12 \\ 0 & -2 & 5 & -9 \end{vmatrix} = - \begin{vmatrix} 1 & 2 & -3 & 4 \\ 0 & -2 & 5 & -9 \\ 0 & -6 & 7 & -12 \\ 0 & 0 & 4 & -1 \end{vmatrix}$$

$$= - \begin{vmatrix} 1 & 2 & -3 & 4 \\ 0 & -2 & 5 & -9 \\ 0 & 0 & -8 & 15 \\ 0 & 0 & 4 & -1 \end{vmatrix} = -2 \begin{vmatrix} 1 & 2 & -3 & 4 \\ 0 & -2 & 5 & -9 \\ 0 & 0 & -4 & \frac{15}{2} \\ 0 & 0 & 4 & -1 \end{vmatrix} = -2 \begin{vmatrix} 1 & 2 & -3 & 4 \\ 0 & -2 & 5 & -9 \\ 0 & 0 & -4 & \frac{15}{2} \\ 0 & 0 & 0 & \frac{13}{2} \end{vmatrix}$$

$$= (-2) \times 1 \times (-2) \times (-4) \times (\frac{13}{2}) = -104$$
.

5.2 Aplicação ao cálculo da inversa de uma matriz

Definição 5.2.1. Sejam $n \in \mathbb{N}$ e $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$. Chama-se matriz adjunta de A, e representa-se por Adj A, à matriz

$$AdjA = \left[\hat{a}_{ij}\right]^T.$$

Exemplo 5.2.2.
$$Seja \ A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
.

Como

$$\hat{a}_{11} = (-1)^2 \begin{vmatrix} 5 & 6 \\ 8 & 9 \end{vmatrix} = -3, \quad \hat{a}_{12} = (-1)^3 \begin{vmatrix} 4 & 6 \\ 7 & 9 \end{vmatrix} = 6, \qquad \hat{a}_{13} = (-1)^4 \begin{vmatrix} 4 & 5 \\ 7 & 8 \end{vmatrix} = -3,$$

$$\hat{a}_{21} = (-1)^3 \begin{vmatrix} 2 & 3 \\ 8 & 9 \end{vmatrix} = 6, \quad \hat{a}_{22} = (-1)^4 \begin{vmatrix} 1 & 3 \\ 7 & 9 \end{vmatrix} = -12, \quad \hat{a}_{23} = (-1)^5 \begin{vmatrix} 1 & 2 \\ 7 & 8 \end{vmatrix} = 6,$$

$$\hat{a}_{31} = (-1)^4 \begin{vmatrix} 2 & 3 \\ 5 & 6 \end{vmatrix} = -3, \quad \hat{a}_{32} = (-1)^5 \begin{vmatrix} 1 & 3 \\ 4 & 6 \end{vmatrix} = 6, \qquad \hat{a}_{33} = (-1)^6 \begin{vmatrix} 1 & 2 \\ 4 & 5 \end{vmatrix} = -3,$$

temos que

$$AdjA = \begin{bmatrix} -3 & 6 & -3 \\ 6 & -12 & 6 \\ -3 & 6 & -3 \end{bmatrix}.$$

Proposição 5.2.3. Sejam $n \in \mathbb{N}$ e $A = [a_{ij}]_n$ uma matriz quadrada de ordem n sobre \mathbb{K} . Então, se $i \neq j$,

i)
$$a_{i1}\hat{a}_{j1} + a_{i2}\hat{a}_{j2} + \cdots + a_{in}\hat{a}_{jn} = 0.$$

$$ii) \ a_{1i}\hat{a}_{1j} + a_{2i}\hat{a}_{2j} + \cdots + a_{ni}\hat{a}_{nj} = 0.$$

Demonstração. i) Sejam $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$ e A' a matriz que se obtém de A substituindo a linha j pela linha i. Então det A' = 0, uma vez que A' tem duas linhas iguais. Por outro lado, aplicando o Teorema de Laplace ao longo da linha j de A', tem-se

$$\det A' = a'_{j1}\hat{a}'_{j1} + a'_{j2}\hat{a}'_{j2} + \dots a'_{jn}\hat{a}'_{jn} = a_{i1}(-1)^{j+1} \det A'(j|1) + a_{i2}(-1)^{j+2} \det A'(j|2) + \dots + a_{in}(-1)^{j+n} \det A'(j|n) = a_{i1}(-1)^{j+1} \det A(j|1) + a_{i2}(-1)^{j+2} \det A(j|2) + \dots + a_{in}(-1)^{j+n} \det A(j|n),$$

pois, para cada $k \in \{1, \dots, n\}$, A'(j|k) = A(j|k).

Logo $a_{i1}\hat{a}_{j1} + a_{i2}\hat{a}_{j2} + \cdots + a_{in}\hat{a}_{jn} = 0.$

ii) A prova é análoga à anterior; basta considerar a matriz A' que se obtém de A substituindo a coluna j pela coluna i e desenvolver o determinante ao longo da coluna j de A'.

Proposição 5.2.4. Sejam $n \in \mathbb{N}$ e A uma matriz quadrada de ordem n sobre \mathbb{K} . Então,

- i) A é invertível se e só se $\det A \neq 0$.
- ii) Se A é invertível, então

$$A^{-1} = \frac{1}{\det A} \mathrm{Adj} A.$$

Demonstração. (i) Suponhamos que $A = [a_{ij}] \in \mathcal{M}_n(\mathbb{K})$ não é invertível. Então prova-se que det A=0. Com efeito, no caso em que n=1, temos $A=[a_{11}]$ e como A não é invertível, então $a_{11} = 0$, ou seja, $\det A = 0$. Caso $n \ge 2$, temos c(A) < npois A não é invertível. Logo as linhas $L_1, L_2, ..., L_n$ da matriz A são vectores de \mathbb{K}^n linearmente dependentes. Seja L_k o vector que é combinação linear dos restantes vectores, i.e., existem $\alpha_1, \alpha_2, ..., \alpha_{k-1}, \alpha_{k+1}, ..., \alpha_n \in \mathbb{K}$, não todos nulos, tais que

$$L_k = \alpha_1 L_1 + \alpha_2 L_2 + \dots + \alpha_{k-1} L_{k-1} + \alpha_{k+1} L_{k+1} + \dots + \alpha_n L_n.$$

Então, para todo j = 1, 2, ..., n,

$$a_{kj} = \alpha_1 a_{1j} + \alpha_2 a_{2j} + \dots + \alpha_{k-1} a_{k-1j} + \alpha_{k+1} a_{k+1j} + \dots + \alpha_n a_{nj} = \sum_{i \neq k} \alpha_i a_{ij}.$$

Então,

$$\det A = \det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-12} & \cdots & a_{k-1n} \\ \sum_{i \neq k} \alpha_i a_{i1} & \sum_{i \neq k} \alpha_i a_{i2} & \cdots & \sum_{i \neq k} \alpha_i a_{in} \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$\det A = \det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-12} & \cdots & a_{k-1n} \\ \sum_{i \neq k} \alpha_i a_{i1} & \sum_{i \neq k} \alpha_i a_{i2} & \cdots & \sum_{i \neq k} \alpha_i a_{in} \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$= \alpha_1 \det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-12} & \cdots & a_{k-1n} \\ a_{11} & a_{12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} + \alpha_2 \det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{k-11} & a_{k-12} & \cdots & a_{k-1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} + \alpha_2 \det \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

$$\cdots + \alpha_{k-1} \det \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{k-11} & a_{k-12} & \cdots & a_{k-1n} \\
a_{k+11} & a_{k+12} & \cdots & a_{k+1n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix} + \cdots + \alpha_n \det \begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{k-11} & a_{k-12} & \cdots & a_{k-1n} \\
a_{n1} & a_{n2} & \cdots & a_{nn} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & a_{n2} & \cdots & a_{nn}
\end{bmatrix}$$

$$= \alpha_1 \times 0 + \alpha_2 \times 0 + \dots + \alpha_n \times 0 = 0.$$

Reciprocamente, suponhamos que $A = [a_{ij}]_n$ é uma matriz invertível. Então, existe $X \in \mathcal{M}_n(\mathbb{K})$ tal que $AX = I_n = XA$. Ora, como $A \in X$ são ambas matrizes

quadradas de ordem n, tem-se det A. det $X = \det(AX) = \det I_n = 1$, pelo que det $A \neq 0$.

(ii) Seja $A = [a_{ij}]$ uma matriz invertível. Então, Adj $A = [\hat{a}_{ij}]_n^T$, pelo que

$$A \cdot \text{Adj} A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} \hat{a}_{11} & \hat{a}_{21} & \cdots & \hat{a}_{n1} \\ \hat{a}_{12} & \hat{a}_{22} & \cdots & \hat{a}_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{a}_{1n} & \hat{a}_{n2} & \cdots & \hat{a}_{nn} \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{i=1}^{n} a_{1i} \hat{a}_{1i} & \sum_{i=1}^{n} a_{1i} \hat{a}_{2i} & \cdots & \sum_{i=1}^{n} a_{1i} \hat{a}_{ni} \\ \sum_{i=1}^{n} a_{2i} \hat{a}_{1i} & \sum_{i=1}^{n} a_{2i} \hat{a}_{2i} & \cdots & \sum_{i=1}^{n} a_{2i} \hat{a}_{ni} \\ \vdots & \vdots & \ddots & \vdots \\ \sum_{i=1}^{n} a_{ni} \hat{a}_{1i} & \sum_{i=1}^{n} a_{ni} \hat{a}_{2i} & \cdots & \sum_{i=1}^{n} a_{ni} \hat{a}_{ni} \end{bmatrix}$$

$$= \begin{bmatrix} \det A & 0 & \cdots & 0 \\ 0 & \det A & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \det A \end{bmatrix} = \det A \cdot I_{n}.$$

Assim,

$$A \cdot \left(\frac{1}{\det A} \operatorname{Adj} A\right) = \frac{1}{\det A} (A \cdot \operatorname{Adj} A) = I_n.$$

De modo análogo, prova-se que

$$\left(\frac{1}{\det A}\operatorname{Adj}A\right)\cdot A = \frac{1}{\det A}\left(\operatorname{Adj}A\cdot A\right) = I_n,$$

pelo que obtemos o resultado pretendido.

Exemplo 5.2.5. Seja A a matriz do exemplo 5.2.2. Então, como

$$\det A = \det \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$
$$= 1(45 - 48) - 2(36 - 42) + 3(32 - 35)$$
$$= 0$$

concluímos que a matriz A não admite inversa.

Exemplo 5.2.6. Seja
$$A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$
. Como det $A = 4 - 6 = -2$ e

$$\hat{a}_{11} = 4; \quad \hat{a}_{12} = -3; \quad \hat{a}_{21} = -2 \quad e \quad \hat{a}_{22} = 1,$$
temos
$$A^{-1} = \frac{1}{-2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}.$$

5.3 Aplicação à resolução de sistema de equações lineares

Definição 5.3.1. Seja $n \in \mathbb{N}$. Um sistema de n equações em n incógnitas, Ax = b, diz-se um **sistema de Cramer** se det $A \neq 0$.

Proposição 5.3.2. Sejam $n \in \mathbb{N}$ e Ax = b um sistema de n equações em n incógnitas. Se $\det A \neq 0$, então o sistema Ax = b tem solução única $(x_1, x_2, ..., x_n)$, dada por

$$x_i = \frac{\det(A^{(i)})}{\det A}, \quad i = 1, 2, ..., n,$$

onde $A^{(i)}$ é a matriz quadrada de ordem n obtida de A substituíndo a coluna correspondente à variável x_i pela coluna b.

Demonstração. Seja $A=[a_{ij}]_n$ uma matriz tal que det $A\neq 0$. Então, $A^{-1}=\frac{1}{\det A}\mathrm{Adj}A$ e, portanto,

$$Ax = b \implies x = A^{-1}b$$

$$\implies x = \frac{1}{\det A} \begin{bmatrix} \hat{a}_{11} & \hat{a}_{21} & \cdots & \hat{a}_{n1} \\ \hat{a}_{12} & \hat{a}_{22} & \cdots & \hat{a}_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ \hat{a}_{1n} & \hat{a}_{2n} & \cdots & \hat{a}_{nn} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$

$$\implies x = \frac{1}{\det A} \begin{bmatrix} \hat{a}_{11}b_1 + \hat{a}_{21}b_2 + \cdots + \hat{a}_{n1}b_n \\ \hat{a}_{12}b_1 + \hat{a}_{22}b_2 + \cdots + \hat{a}_{n2}b_n \\ \vdots \\ \hat{a}_{1n}b_1 + \hat{a}_{2n}b_2 + \cdots + \hat{a}_{nn}b_n \end{bmatrix}.$$

Logo, para cada i = 1, 2, ..., n

$$x_{i} = \frac{1}{\det A} (\hat{a}_{1i}b_{1} + \hat{a}_{2i}b_{2} + \dots + \hat{a}_{ni}b_{n})$$

$$= \frac{1}{\det A} \begin{vmatrix} a_{11} & \dots & a_{1i-1} & b_{1} & a_{1i+1} & \dots & a_{1n} \\ a_{21} & \dots & a_{2i-1} & b_{2} & a_{2i+1} & \dots & a_{2n} \\ \vdots & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{n1} & \dots & a_{ni-1} & b_{n} & a_{ni+1} & \dots & a_{nn} \end{vmatrix} . \square$$

Exemplo 5.3.3. Consideremos o seguinte sistema de 3 equações lineares em 3 incógnitas:

$$\begin{cases} 5x_1 - 2x_2 + x_3 = 1 \\ 3x_1 + 2x_2 = 3 \\ x_1 + x_2 - x_3 = 0 \end{cases}.$$

Como

$$\det \begin{bmatrix} 5 & -2 & 1 \\ 3 & 2 & 0 \\ 1 & 1 & -1 \end{bmatrix} = -15,$$

o sistema é possível determinado e a solução é

$$x_{1} = \frac{\begin{vmatrix} 1 & -2 & 1 \\ 3 & 2 & 0 \\ 0 & 1 & -1 \end{vmatrix}}{-15} = \frac{-5}{-15} = \frac{1}{3},$$

$$x_{2} = \frac{\begin{vmatrix} 5 & 1 & 1 \\ 3 & 3 & 0 \\ 1 & 0 & -1 \end{vmatrix}}{-15} = \frac{-15}{-15} = 1,$$

$$x_{3} = \frac{\begin{vmatrix} 5 & -2 & 1 \\ 3 & 2 & 3 \\ 1 & 1 & 0 \end{vmatrix}}{-15} = \frac{-20}{-15} = \frac{4}{3}.$$