Plus courts chemins option informatique

Généralités

Pondération

Comme nous l'avons vu dans le premier chapitre, étant donné un graphe G = (V, E) (orienté ou non), une **pondération** de G est une application w de $V \times V$ dans \mathbb{R} telle que :

$$\forall (v, v') \in (V \times V) \setminus E, \quad w(v, v') = \begin{cases} 0 & \text{si } v = v' \\ +\infty & \text{sinon} \end{cases}$$

w(v, v') est le **poids de l'arc** reliant $v \ge v'$.

Pondération

- ▶ Dans un graphe fini, les sommets étant dénombrables, on peut toujours les numéroter de 0 à n-1 où n est l'ordre du graphe.
- Cette numérotation permet d'associer une matrice W aux poids d'un graphe.

$$W = \begin{pmatrix} w(v_0, v_0) & w(v_0, v_1) & \dots & w(v_0, v_{n-1}) \\ w(v_1, v_0) & w(v_1, v_1) & \dots & w(v_1, v_{n-1}) \\ \dots & \dots & \dots & \dots \\ w(v_{n-1}, v_0) & w(v_{n-1}, v_1) & \dots & w(v_{n-1}, v_{n-1}) \end{pmatrix}$$

Graphe pondéré

Un graphe pondéré est un graphe muni d'une pondération.

Le **poids d'un chemin** est la somme des poids des arêtes qui le composent.

Plus court chemin

Rechercher le **plus court chemin dans un graphe**, c'est trouver, s'il en existe, un chemin de poids minimal allant d'un sommet à un autre dans un graphe.

- Dans la suite, seuls les graphes munis de poids positifs sont abordés. La présence de poids négatifs, à l'origine de contraintes supplémentaires, ne sera abordée que dans les exercices.
- Nous parlerons indifféremment de poids minimal, de distance minimale ou de longueur minimale, noté d_{ij}, pour désigner le poids d'un plus court chemin entre deux sommets v_i et v_j d'un graphe.

Objectifs

G = (V, E) étant un graphe pondéré, on cherche à déterminer :

- ▶ l'ensemble des d_{ij} pour tout couple $(v_i, v_j) \in V^2$;
- ▶ l'ensemble des d_{ij} pour un $v_i \in V$ donné, $v_j \in V$;
- un d_{ij} pour un $v_i \in V$ et un $v_j \in V$.

Deux algorithmes

Étant donné un couple $(v_i, v_j) \in V$, il n'existe pas d'algorithme qui calcule directement d_{ij} . Une vision globale du graphe est nécessaire et une visite de tous les sommets est indispensable.

- L'algorithme de Floyd-Warshall détermine l'ensemble des d_{ij} pour tout couple $(v_i, v_j) \in V \times V$. Son implémentation exploite la représentation des graphes par matrices d'adjacences.
- L'algorithme de Dijkstra détermine l'ensemble des d_{ij} pour un v_i ∈ V donné, v_j étant n'importe quel sommet de V. Son implémentation exploite la représentation des graphes par listes d'adjacence.

Algorithme de Floyd-Warshall

Principe

- L'algorithme de Floyd-Warshall détermine l'ensemble des plus courts chemins entre deux sommets quelconques d'un graphe.
- Pour un graphe d'ordre n, cela représente n^2 plus courts chemins à déterminer.
- Une matrice est donc adaptée pour recueillir toutes ces distances.
- Cette matrice est construite de manière itérative en s'appuyant sur le principe de sous-optimalité.

Principe de sous-optimalité

Théorème 1

Si s $\stackrel{c}{\sim}$ t est un plus court chemin qui passe par u, alors s $\stackrel{c_1}{\sim}$ u et $u \stackrel{c_2}{\sim}$ t sont aussi des plus courts chemins.

Démonstration

La démonstration se fait par l'absurde. Si G=(V,E) est un graphe pondéré de valuation définie par une fonction w, chaque arc $(v_i,v_j)\in E$ a un poids $w(v_i,v_j)$. Pour tout chemin $c=(x_0,x_1,\ldots,x_k)$ dans G, pas abus de notation, le poids du chemin est :

$$w(c) = \sum_{i=0}^{k-1} w(x_i, x_{i+1})$$

Considérons un plus court chemin c du sommet s au sommet t passant par u :

$$s \stackrel{c_1}{\leadsto} u \stackrel{c2_2}{\leadsto} t$$

Les chemins c_1 et c_2 sont des plus courts-chemins et $w(c)=w(c_1)+w(c_2)$. Supposons qu'il existe un chemin c_1' plus court pour aller de s à u : $w(c_1')< w(c_1)$. Alors il existe

un chemin $s \stackrel{c_1'}{\Rightarrow} u \stackrel{c_2}{\Rightarrow} t$ de s à t de poids :

$$w(c'_1) + w(c_2) < w(c_1) + w(c_2) = w(c)$$

Ce qui est absurde puisque, par hypothèse, $s\stackrel{c_1}{\leadsto} u\stackrel{c_2}{\leadsto} t$ est un plus court chemin. La même analyse vaut pour c_2 .

Principe de sous-optimalité

- L'optimalité de la solution du problème du calcul de plus court chemin passe donc par l'optimalité des solutions des sous-problèmes de calcul de plus courts chemins.
- ▶ Dit autrement, déterminer un plus court chemin entre deux sommets *s* et *t* fournit des plus courts chemins entre *s* et tous les sommets situés sur le chemin aboutissant en *t*.
- ► De tels problèmes peuvent être résolus par des méthodes dites de **programmation dynamique**.

- ▶ Soit un graphe pondéré G = (V, E) d'ordre n dont les sommets sont $v_0, v_1, \ldots, v_{n-1}$.
- ▶ Pour tout entier $k \in [0, n]$, notons $M^{(k)}$ la matrice telle que :

$$M_{ij}^{(k)} = \begin{cases} \text{poids du plus court chemin} \\ \text{entre deux sommets } v_i \text{ et } v_j \\ \text{ne passant que par des sommets } v_p \text{ où } p \leqslant k-1. \end{cases}$$

Puisqu'il n'existe pas de sommet d'indice strictement négatif, M⁽⁰⁾ est la matrice des poids des plus courts chemins ne passant par aucun sommet. Par construction, c'est la matrice des poids du graphe G.

$$\forall (i,j) \in [0, n-1]^2$$
 $M_{i,j}^{(0)} = w(v_i, v_j)$

▶ La matrice $M^{(n)}$ contient les poids des plus courts chemins reliant deux sommets quelconques du graphe. C'est la matrice recherchée des poids d_{ij} pour $(i,j) \in [0,n-1]^2$.

Le **principe de sous-optimalité** fournit un moyen de construire les matrices $M^{(1)}, M^{(2)}, \ldots, M^{(n)}$.

Pour $k \ge 0$, la détermination de $M_{ij}^{(k+1)}$ ne fait intervenir que les sommets v_0, v_1, \ldots, v_k pour calculer le poids du plus court chemin entre v_i et v_i .

▶ Si le chemin ne passe pas par le sommet v_k , alors :

$$M_{ij}^{(k+1)}=M_{ij}^{(k)}$$

▶ Si le chemin passe par le sommet v_k , alors :

$$M_{ij}^{(k+1)} = M_{ik}^{(k)} + M_{kj}^{(k)}$$

Pour un graphe G = (V, E) d'ordre n dont les sommets sont $v_0, v_1, \ldots, v_{n-1}$, l'**algorithme de Floyd-Warshall** construit la suite des matrices $M^{(k)}$ en exploitant la relation de récurrence suivante.

$$\forall (i,j,k) \in [0,n-1]^3 \quad M_{ij}^{(k+1)} = \min \left(M_{i,j}^{(k)}, M_{ik}^{(k)} + M_{kj}^{(k)} \right)$$

sachant:

$$\forall (i,j) \in [0, n-1]^2 \quad M_{i,j}^{(0)} = w(v_i, v_j)$$

Preuve

Théorème 2 (algorithme de Floyd-Warshall)

Si G ne contient pas de cycle de poids strictement négatif, alors pour tout entier $k \in [0, n]$, $M_{i,j}^{(k)}$ est le poids du plus court chemin reliant v_i à v_j passant par les seuls sommets v_0, \ldots, v_{k-1} .

Démonstration

Si k=0, alors $M_{i,j}^{(0)}=w(v_i,v_j)$ est le poids du chemin minimal reliant v_i à v_j sans passer par aucun autre sommet. Supposons le résultat établi pour un certain rang $k\geqslant 1$ et considérons un chemin de poids minimal $v_i \rightsquigarrow v_i$ ne passant que par les sommets v_0,\ldots,v_k .

- S'il ne passe pas par v_k , par hypothèse de récurrence, son poids est $M_{i,i}^{(k)}$.
- ▶ S'il passe par v_k , d'après le principe de sous-optimalité, les chemins $v_i \rightsquigarrow v_k$ et $v_k \rightsquigarrow v_j$ sont minimaux et ne passent que par v_0, \ldots, v_{k-1} . Par hypothèse de récurrence, son poids est $M_{ik}^{(k)} + M_{ki}^{(k)}$.

Alors $M_{ij}^{(k+1)} = \min\left(M_{ij}^{(k)}, M_{ik}^{(k)} + M_{kj}^{(k)}\right)$ est le poids minimal d'un plus court chemin reliant v_i à v_j et ne passant que par des sommets de la liste v_0, \ldots, v_k .

$$M^{(0)} = \begin{pmatrix} 0 & 7 & 1 & \infty & \infty & \infty \\ \infty & 0 & \infty & 4 & \infty & 1 \\ \infty & 5 & 0 & \infty & 2 & 7 \\ \infty & \infty & \infty & 0 & \infty & \infty \\ \infty & 2 & \infty & 5 & 0 & \infty \\ \infty & \infty & \infty & \infty & \infty & 3 & 0 \end{pmatrix} \quad \rightarrow \quad M^{(5)} = \begin{pmatrix} 0 & 5 & 1 & 8 & 3 & 6 \\ \infty & 0 & \infty & 4 & 4 & 1 \\ \infty & 4 & 0 & 7 & 2 & 5 \\ \infty & \infty & \infty & 0 & \infty & \infty \\ \infty & 2 & \infty & 5 & 0 & 3 \\ \infty & 5 & \infty & 8 & 3 & 0 \end{pmatrix}$$

Implémentation / Complexité

Code sur machine

Algorithme de Dijkstra

Principe

- L'algorithme de Dijsktra détermine l'ensemble des d_{ij} pour un v_i ∈ V donné, v_i ∈ V;
- ▶ Traditionnellement, si s un sommet particulier d'un graphe G pondéré, pour sommet t de G, on note $\delta(s,t)$ le plus court chemin de s à t.
- Si toutes les pondérations sont positives, l'algorithme de Dijkstra généralise le parcours en profondeur pour trouver les plus courts chemins.

Avant de présenter cet algorithmes, donnons quelques résultats utiles.

Inégalité triangulaire

Théorème 3

Soit s, t, u trois sommets d'un graphe pondéré. Alors :

$$\delta(s,t) \leq \delta(s,u) + w(u,t)$$

Démonstration

S'il existe un chemin de s à u et un arc de u à t, $\delta(s,u)$ et w(u,t) sont des quantités finies. On obtient un chemin de s à t de poids $\delta(s,u)+w(u,t)$ en prenant un plus court chemin de s à u et l'arc (u,t), donc :

$$\delta(s,t) \leq \delta(s,u) + w(u,t)$$

Sinon, on a $\delta(s, u) + w(u, t) = +\infty$, et l'inégalité reste valable.

Existence d'un plus court chemin

Théorème 4

Soit t un sommet accessible depuis s. Alors il existe un chemin de poids $\delta(s,t)$ entre s et t composé de sommets tous distincts.

Démonstration

Considérons un chemin c entre s et t, de poids $\delta(s,t)$, et de longueur minimale parmi les chemins de poids $\delta(s,t)$ reliant s à t. S'il existait deux sommets égaux sur le chemin, on obtiendrait un circuit. Comme il n'y a pas de circuit de poids strictement négatif dans le graphe par hypothèse, ce circuit est de poids nul, sinon on pourrait le supprimer pour obtenir un chemin de s à t de poids strictement inférieur à $\delta(s,t)$, ce qui est exclu. Mais le supprimer mène alors à un chemin de même poids mais avec strictement moins d'arcs, ce qui est exclu également. Donc c est composé de sommets distincts.

Relâchement d'arcs

- ► Soit G un graphe pondéré et s un sommet fixé de G.
- Pour tout sommet t de G, désignons par $d_s[t]$ le **tableau des** estimations des distances $\delta(s,t)$, c'est-à-dire les valeurs telles que :

$$\forall t \in G \quad \delta(s,t) \leq d_s[t]$$

► Relâcher l'arc (u, v), c'est réaliser l'affectation :

$$d_s[v] \leftarrow \min(d_s[v], d_s[u] + w(u, v))$$

Relâchement d'arcs

Théorème 5

Après relâchement de l'arc (u, v), on a toujours :

$$\delta(s,v) \leqslant d_s[v]$$

Démonstration

Par hypothèse, avant relâchement, on a $\delta(s,u) \leq d_s[u]$. Ainsi, par inégalité triangulaire :

$$\delta(s,v) \leqslant d_s[u] + w(u,v)$$

Preuve

Théorème 6 (algorithme de Dijkstra)

Soit t un sommet accessible depuis s et $c = (s_0 = s, s_1, \ldots, s_k = t)$ un chemin de poids $\delta(s,t)$ entre s et t. Soit un tableau $(d_s[u])_{u \in G}$ vérifiant $d_s[s] = 0$ et pour tout u de G, $\delta(s,u) \leqslant d_s[u]$. Après relâchements successifs des arcs $(s_0,s_1),\ldots,(s_{k-1},s_k)$ dans cet ordre, le tableau $d_s[t]$ contient $\delta(s,t)$.

Démonstration

Le théorème 1 montre que pour tout entier i de $[\![0,k]\!]$, (s_0,s_1,\ldots,s_i) est un plus court chemin de s à s_i . Montrons par récurrence sur i qu'après relâchement de l'arc (s_{i-1},s_i) , $d_s[s_i]$ contient $\delta(s,s_i)$.

- Si i = 0, alors $d_s[s]$ vaut 0, qui est bien $\delta(s, s)$.
- ▶ Soit i>1 et supposons la propriété démontrée au rang i-1. Alors juste avant le relâchement de (s_{i-1},s_i) , $d_s[s_{i-1}]$ contient $\delta(s,s_{i-1})$. Comme $\delta(s,s_i)=\delta(s,s_{i-1})+w(s_{i-1},s_i)$, on a $d[s_i]\leqslant \delta(s,s_i)$ après relâchement de l'arc (s_{i-1},s_i) . Or le théorème 5 prouve que $d_s[s_i]$ était supérieur ou égal à $\delta(s,s_i)$ avant relâchement. Donc la propriété est vraie au rang i.
- Par principe de récurrence, elle est vraie pour tout $i \in [0, k]$, et en particulier $d_s[t]$ contient $\delta(s, t)$ à la fin du processus.

Algorithme

L'algorithme de Dijsktra construit un tableau d de longueur n dont l'élément d[i] contient, à la fin de l'algorithme, le poids $\delta(s,i)$ du plus court chemin entre s et i.

- ▶ Initialiser d avec les poids initiaux : $\forall v \in V, d[v] \leftarrow w(s, v)$
- Initialiser la liste des sommets déjà visités S avec $\{s\}$.
- ▶ Définir la liste complémentaire \overline{S} des sommets non encore visités. Initialement, $\overline{S} = V \setminus \{s\}$.
- ▶ Tant que \overline{S} n'est pas vide, sélectionner un sommet u qui respecte la condition :

$$d[u] = \min(d[v] \mid v \in \overline{S})$$

Supprimer u de \overline{S} .

- ▶ Ajouter $u {a} {S} : {S} \leftarrow {S} \cup \{u\}$.
- ▶ Relâcher les arcs issus de u.

$$\forall v \in \overline{S}$$
 $d[v] \leftarrow \min(d[v], d[u] + w(u, v))$

Poids de plus courts chemins du sommet 0 vers les autres sommets.

0 vers $1 \rightarrow 5$ 0 vers $2 \rightarrow 1$ 0 vers $3 \rightarrow 8$

0 vers $4 \rightarrow 3$ 0 vers $5 \rightarrow 6$

Implémentation / Complexité

Code sur machine