อนุกรมขนาน

1 second, 256 MB

กราฟอนุกรมขนาน (series-parallel graph) คือกราฟที่มีนิยามดังนี้

- กราฟอนุกรมขนานจะมีโหนดพิเศษ**สอง**โหนดเป็นโหนดปลาย เรียกว่าโหนดหัวและโหนดท้าย
- กราฟที่มีเส้นเชื่อมเส้นเดียว เป็นกราฟอนุกรมขนาน โดยมีโหนดปลายของเส้นเชื่อมทั้งสองจุดเป็นโหนด ปลายของกราฟ
- ให้กราฟ G1 เป็นกราฟอนุกรมขนานที่มีโหนด s1 เป็นโหนดหัวและ t1 เป็นโหนดท้าย และกราฟ G2 เป็นกราฟอนุกรมขนานที่มีโหนด s2 เป็นโหนดหัวและ t2 เป็นโหนดท้าย เราสามารถนำ G1 และ G2 มา รวมเป็นกราฟอนุกรมขนาน G ได้สองวิธีคือ
 - รวมแบบอนุกรม: กราฟ G จะสร้างโดยการหลอมรวม s2 กับ t1 กลายเป็นโหนดเดียว (ในตัวอย่าง ด้านล่างแสดงเป็นโหนด x) จะได้กราฟอนุกรมขนาน G ที่มีโหนดหัวคือ s1 และโหนดท้ายคือ t2
 - รวมแบบขนาน: กราฟ G จะสร้างโดยการหลอมรวม s1 กับ s2 กลายเป็นโหนด s และ t1 กับ t2
 เป็นโหนด t จะได้กราฟอนุกรมขนานที่มีโหนดหัวคือ s และโหนดท้ายคือ t

รูปด้านล่างแสดงตัวอย่างการสร้างกราฟ G สองแบบ จาก G1 และ G2

สำหรับข้อนี้ รับประกันว่าแต่ละคู่ของโหนด จะมีเส้นเชื่อมไม่เกินหนึ่งเส้น (ถึงแม้ว่าในกรณีทั่วไปของกราฟ อนุกรมขนานจะสามารถมีเส้นเชื่อมในลักษณะดังกล่าวได้ก็ตาม)

ให้เขียนโปรแกรมที่รับกราฟอนุกรมขนาน จากนั้นให้หาวิธีการกำหนดสีให้กับโหนดในกราฟดังกล่าว โดยที่รับ ประกันว่าโหนดสองโหนดที่มีเส้นเชื่อมถึงกันจะต้องมีสีคนละสี โดยให้ใช้จำนวนสีที่น้อยที่สุด

ข้อมูลนำเข้า

บรรทัดแรกระบุจำนวนเต็มสามจำนวน N M และ P (2 <= N <= 1,000; 1 <= M <= 3,000) โดย N ระบุจำนวน โหนด และ M ระบุจำนวนเส้นเชื่อม ถ้าข้อมูลนำเข้าระบุวิธีการสร้างกราฟดังกล่าวมาให้ด้วย P = 1, ในกรณีที่ P = 0 คุณจะได้รับแต่กราฟเท่านั้น โหนดในกราฟจะมีหมายเลข เป็นหมายเลข 1 ถึง N

อีก M บรรทัดจะระบุข้อมูลของเส้นเชื่อม กล่าวคือ บรรทัดที่ 1+i สำหรับ 1 <= i <= M จะระบุข้อมูลของ เส้นเชื่อม i โดยระบุเป็นจำนวนเต็มสองจำนวน A และ B (1 <= A <= N; 1 <= B <= N)

บรรทัดที่ 1+M จะระบุจำนวนเต็มสองจำนวน H และ T แทนหมายเลขโหนดหัวและโหนดท้ายของกราฟ

ถ้า P=0 ข้อมูลนำเข้าจะจบแค่นี้ ถ้า P=1 จะมีข้อมูลระบุขั้นตอนการสร้างกราฟดังกล่าว โดยจะระบุในรูป แบบต่อไปนี้

บรรทัดแรก ระบุจำนวนเต็ม Q (Q <= 6,000) แทนขั้นตอนในการสร้างทั้งหมด

แต่ละบรรทัดจะระบุข้อมูลการสร้างกราฟแต่ละขั้น บรรทัดที่ 2+M+j ระบุขั้นตอนที่ j และจะเรียกส่วน กราฟที่สร้างจากขั้นตอนนั้นว่ากราฟที่ j และหลังจากขั้นตอนที่ Q กราฟที่ Q จะเป็นกราฟที่ได้รับ

แต่ละบรรทัดจะขึ้นด้วยตัวอักษร 1 ตัว ตามด้วยจำนวนเต็มหนึ่งหรือสองตัว กล่าวคือบรรทัดที่ 2+M+j จะ มีรูปแบบดังนี้

- อักษร C ตามด้วยจำนวนเต็ม X ระบุว่ามีการสร้างกราฟที่เป็นเส้นเชื่อมหนึ่งเส้น คือเส้นเชื่อม X โหนดหัว ของกราฟดังกล่าวคือโหนดแรกที่ระบุในบรรทัดที่ระบุเส้นเชื่อมที่ X โหนดท้ายของกราฟดังกล่าวคือโหนด ที่สองที่ระบุในบรรทัดที่ระบุเส้นเชื่อมที่ X
- อักษร S ตามด้วยจำนวนเต็ม X และ Y (X < j; Y <j) ระบุว่ามีการนำกราฟที่ X และกราฟที่ Y มาเชื่อม กันแบบอนุกรม โหนดหัวของกราฟดังกล่าวคือโหนดหัวของกราฟ X โหนดท้ายของกราฟดังกล่าวคือ โหนดท้ายของกราฟ Y
- อักษร P ตามด้วยจำนวนเต็ม X และ Y (X < j; Y < j) ระบุว่ามีการนำกราฟที่ X และกราฟที่ Y มาเชื่อม กันแบบขนาน โหนดหัวของกราฟดังกล่าวคือโหนดหัวของทั้งกราฟ X และ Y, โหนดท้ายของกราฟดัง กล่าวคือโหนดท้ายของทั้งกราฟ Y และกราฟ Y (นั่นคือกราฟ X และ Y จะมีโหนดหัวเป็นโหนดเดียวกัน รวมทั้งมีโหนดท้ายเป็นโหนดเดียวกันด้วย)

ข้อมูลส่งออก

บรรทัดแรกระบุจำนวนเต็ม K แทนจำนวนสีที่น้อยที่สุดที่ต้องใช้

จากนั้นอีก N บรรทัด ให้ระบุข้อมูลสีของแต่ละโหนด กล่าวคือในบรรทัดที่ r สำหรับ 1<=r<=N จะระบุ จำนวนเต็มบวกหนึ่งจำนวนที่มีค่าไม่เกิน K ที่แทนหมายเลขสีของโหนดที่ r

ถ้ามีวิธีระบายสีโดยใช้สี K สีได้หลายแบบ สามารถตอบแบบใดก็ได้

ปัญหาย่อย

ปัญหาย่อย 1 (10%): P=1, รับประกันว่ากราฟจะสามารถกำหนดสีได้โดยใช้สีไม่เกิน 2 สี

ปัญหาย่อย 2 (50%): P=1 ปัญหาย่อย 3 (40%): P=0

ตัวอย่าง 1

Input	Output
7 9 1	3
1 2	1
2 3	2
1 4	1
6 4	2
6 1	3
4 5	3 3 3
5 3	3
4 7	
7 3	(เป็นวิธีการระบายสีที่เป็นไปได้วิธีหนึ่ง)
1 3	(607000111000001001100010000000000000000
17	
C 1	
C 2	
S 1 2	
C 3	
C 5 C 4	
C 4	
S 5 6	
P 4 7	
C 6	
C 7	
C 8	
C 9	
S 9 10	
S 11 12	
P 13 14	
S 8 15	
P 3 16	

ตัวอย่าง 2

Input	Output
8 9 0	3
1 2	1
2 3	2
3 4	1
3 5	2
5 4	3
6 7	2
8 7	1
4 6	1
4 8	(เป็นวิธีการระบายสีที่เป็นไปได้วิธีหนึ่ง)
7 1	(32.332332.232.332.332.330.7)