# Programming Language Principles

Programming Language Theory

#### This Week's Topics

- Syntax, Semantics, Pragmatics
- How to define a language mathematically?
  - Formal Language Basics
  - Backus-Naur Form (BNF)
  - Context-free Grammar (Syntax)
  - Parsing and Ambiguity

## We already learned Grammar and Language

- G = (V, T, S, P)
- A grammar defines how strings (sentences) of a language can be generated.
- We can use such grammars and notations we've learned for programming languages too.
- However, in PL, there is another notation for specifying grammars of programming languages.

#### **Backus Naur Form**

- Originally Backus Normal Form, developed by John Backus.
- After expanded and used by Peter Naur, the name was changed to *Backus-Naur Form (BNF)* by the suggestion of Donald Knuth.
- It is a notation technique for *context-free grammars*.

#### BNF

- Variables (or nonterminals): enclosed in brackets <, >
  - <expression>, <term>, <operator>
- Terminal symbols: without any marking.
  - int, void, for
- Use ::= instead of →.
- Use '|' to represent 'or'.
  - <bool-literal> ::= true|false

#### Example: Real Number

- <real-num> ::= <int-part>.<frac-part>
- <int-part> ::= <digit>|<int-part><digit>|
- <frac-part> ::= <digit>|<digit><frac-part>
- <digit> ::= 0|1|2|3|4|5|6|7|8|9
- Start nonterminal is <real-num>.

#### Left-most Derivation

- Derive the leftmost nonterminal first, if there are more than one nonterminal.
- 3.14
  - <real-num> ⇒ <int-part>.<frac-part>
  - →
     digit>.
     frac-part> ⇒ 3.
     frac-part>
  - $\Rightarrow$  3. <digit><frac-part>  $\Rightarrow$  3.1 <frac-part>
  - $\Rightarrow$  3.1<digit>  $\Rightarrow$  3.14

#### Right-most Derivation

- Let's derive (())
- <balanced> ::= (<balanced>)<balanced>| $\varepsilon$
- <balanced>)<balanced>)
- $\Rightarrow$  (<balanced>) $\varepsilon \Rightarrow$  (<balanced>)
- $\Rightarrow$  ((<balanced>)(<balanced>)  $\Rightarrow$  ((<balanced>) $\varepsilon$ )
- $\Rightarrow$  (( $\langle$ balanced $\rangle$ ))  $\Rightarrow$  (( $\varepsilon$ ))  $\Rightarrow$  (())

#### **Extended BNF**

- Or simply EBNF, has the same expressive power as BNF, but much simpler.
- { X } : repeat X 0 or more times.
  - <statements> ::= {<statement>;}
- [X]: X is optional. You can also use '?' like regular expression style.
  - <signed> ::= ['-']<num>
  - <signed> ::= '-'?<num>

#### Extended BNF

- We can also use some regular expression like notations.
  - \*:  $\langle expr \rangle$  ::=  $\langle digit \rangle | \varepsilon$ 
    - -> <expr> ::= <digit>\*
  - +: <expr> ::= <digits>|<digits>|
    - -> <expr> ::= <digit>+
- (X): for grouping.
  - <id> ::= <letter>|<id><letter>|<id><digit>
    - -> <id>::= <letter> (<letter>|<digit>)\*

## Real Number Again

- In BNF, let's consider full spec. here.
- <real-num> ::= '-'<num>|<num>
- <num> ::= <digits>|<digits>.<digits>
- <digits> ::= <digit>|<digit><digits>
- <digit> ::= 0|1|2|3|4|5|6|7|8|9

#### Real Number Again

- In **EBNF**,
- <real-num> ::= ['-'] <digit>+ ['.'<digit>+]
- <digit> ::= 0|1|2|3|4|5|6|7|8|9
- A lot simpler than BNF.
- Using '?' instead.
- <real-num> ::= '-'? <digit>+ ('.'<digit>+)?

## Context-free Language

- G = (V, T, S, P) is context-free, if all productions in P have the form
  - $\bullet A \rightarrow X$
- where  $A \in V$ ,  $x \in (V \cup T)^*$ .
- L is context-free iff. there exists a context-free grammar G such that L = L(G).
- Meaning that allowing only one variable on the left side.

#### Why is it Context-Free?

- Suppose a grammar with productions contain something else on the left.
  - $xAy \rightarrow b$ :  $xAyb \Rightarrow bb \ OK!$   $xAb \Rightarrow bb \ Wrong!$
  - $xA \rightarrow c$ :  $xAb \Rightarrow cb \ OK! \ xAyb \Rightarrow cyb \ OK! \ yAxb \Rightarrow ycxb \ Wrong!$
  - Each production can only be applied to a certain sequence of strings (i.e. context).
- On the other hand, we can always replace a variable when it appears during derivation with context-free grammar.
  - A → Ab | Bc
  - B → Ba | b
  - <expr> ::= <digit>| $\varepsilon$

#### Parsing

- So far, we were talking about 'generative' aspect of grammars.
  - Given a grammar G, which set of strings can be derived by G?
- What if we want to know that, for a given string s of terminals,
  - whether or not  $s \in L(G)$ .

#### Parsing

- Parsing is finding a sequence of productions by which a
   w ∈ L(G) is derived.
- In other words, it answers whether w can be derived by G.
- Parse tree, top-down parsing, bottom-up parsing.

#### Parse Tree

- To verify an expression (or a string) can be derived by a given BNF, we can construct a Parse Tree.
- A parse tree should satisfy the following conditions.
  - All terminal nodes (leaf nodes) are either terminals or  $\varepsilon$ .
  - All intermediate nodes are nonterminals.
  - Each nonterminal is located on the left hand side, and the right hand side will be the nonterminal's children.
  - The root node is the start nonterminal.

• 3.14



Right hand side become child nodes.

- <real-num> ⇒ <int-part>.<frac-part>
  - ⇒ <digit>.<frac-part> **try this**

• ⇒ <int-part> <digit>. <frac-part> try this



- <real-num> ⇒ <int-part>.<frac-part>
  - $\Rightarrow$  <digit>.<frac-part>  $\Rightarrow$  3.<frac-part>



- 3.<frac-part>
  - $\stackrel{1}{\Rightarrow}$  3.<digit><frac-part>  $\stackrel{2}{\Rightarrow}$  3.1<frac-part>



- 3.1<frac-part>
  - $\stackrel{1}{\Rightarrow}$  3.1<digit>  $\stackrel{2}{\Rightarrow}$  3.14



## Top-down Parsing

- **Top-down parsing** starts from the start nonterminal (i.e., root).
- For each round of parsing, it checks all possible productions to be applied to nonterminals.
- Hence it is also called exhaustive search parsing.
- <int-part> ::= <digit>|<int-part><digit>
  - <int-part>.<frac-part> ⇒ <digit>.<frac-part>
  - <int-part>.<frac-part>⇒ <int-part>digit>.<frac-part>

#### Flaws in Top-down Parsing

- It's very tedious.
  - We have to verify every possible productions for each step, until we find the target expression.
  - This is not efficient way of parsing.
- It doesn't terminate, if a given string w is not in L(G).
  - In other words, if w cannot be derived by given BNF, parsing will never end.

## Bottom-up Parsing

- Conversely, we can reduce terminals of given string w to a nonterminal using BNF.
  - e.g.)  $3.14 \Rightarrow \langle \text{digit} \rangle.14$
- Usually it reads the input text from left to right, and finds nonterminal to replace terminals in the text.

• 3.14

• 
$$\stackrel{1}{\Leftarrow}$$
 .14  $\stackrel{2}{\Leftarrow}$  .14  $\stackrel{3}{\Leftarrow}$  .14

```
<int-part> .3

<digit>
1
3
```

- <int-part>.14
  - $\stackrel{1}{\Leftarrow}$  <int-part>.<digit>4
  - $\stackrel{\mathbf{2}}{\Leftarrow}$  <int-part>.<digit><digit>

- <int-part>.<digit><digit>





<frac-part> ::=

<digit>I<digit><frac-part>

• <int-part>.<frac-part> ← <real-num>



## Ambiguity

- If there exist more than one production, which one should be applied?
  - For <digit>.14, we can reduce <digit> into two different nonterminals.
  - <int-part> ::= <digit>|<int-part><digit>|
  - <frac-part> ::= <digit>|<digit><frac-part>
  - For <int-part>.<digit>4, we can reduce <digit>
     further, or just move onto the next.

## Ambiguity

- Let's consider another example.
- Suppose we're parsing a + b \* c
- Whether we apply
   <expr>+<expr> or
   <expr>\*<expr> first, there could
  be two possible parse trees.



## Ambiguity

- Grammar itself has ambiguity.
- For an input, there are more than one interpretation.
- If a PL has more than one parse tree for the same input, we call the PL is 'ambiguous'.
- For the previous example, we might use operator precedences.
  - This is not syntax, but semantics.
- It is necessary to design syntax carefully, so that syntactically correct statement is also semantically correct.

## To Resolve Ambiguity

- One way to resolve ambiguity is to rewrite the grammar.
- Think about the a + b \* c example again.

 We know that we have two parse trees for the expression, based on which operator (+, \*) is considered first.

## To Resolve Ambiguity

We can introduce new nonterminals.

- This example is not that difficult to resolve the ambiguity.
- But usually it is very hard to tell whether a grammar has ambiguity or not, and also to resolve it.

## Summary

- BNF
- Context-free Grammar
- Parsing and Ambiguity