

Cambridge IGCSE[™]

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

3127719504

CO-ORDINATED SCIENCES

0654/33

Paper 3 Theory (Core)

May/June 2022

2 hours

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 120.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

1 (a) Fig. 1.1 shows three different types of neurones.

Fig. 1.1

	stimulus volu	ntary		[2]
	automatic conscious	rapid	slow	
(iv)	Circle two words that can be used to describe	a reflex action		
	2			 [2]
	1			
	Name the two other neurones found in a reflex			
(iii)	Motor neurones are part of a reflex arc.			
				[1]
(ii)	Describe how nerve impulses are passed alor	g neurones.		
				[1]
(i)	Identify which drawing in Fig. 1.1, A , B or C , re	epresents the n	notor neurone.	

(b) Two students investigate reaction time.

The students press a button as quickly as possible after the button lights up.

Table 1.1 shows the results.

Table 1.1

student			reaction tim	ne/seconds		average 0.14
Student	test 1	test 2	test 3	test 4	test 5	average
Α	0.14	0.13	0.14	0.13	0.18	0.14
В	0.15	0.15	0.16	0.16	0.15	

(i)	Calculate t	the average	reaction	time for	student B	

Give your value to two significant figures.

	\$ [2]
(ii)	This reaction is a voluntary reaction. This is similar to a reflex arc but involves the brain.
	In this reaction, suggest the name of the:
	effector
	coordinator.
	[2]

[Total: 10]

2 (a) Table 2.1 shows a list of six elements.

Table 2.1

name of element
copper
helium
magnesium
nitrogen
oxygen
sodium

	(i)	State the names of two metallic elements from Table 2.1.	
		and	[1]
	(ii)	State the name of an element from Table 2.1 which is 78% of clean air.	
			[1]
	(iii)	State the name of a noble gas from Table 2.1.	
			[1]
	(iv)	State the name of a transition element from Table 2.1.	
			[1]
(b)	Exc	ess magnesium powder reacts with dilute hydrochloric acid.	
	Dur	ing this reaction, a gas and an aqueous solution of a salt are made.	
	(i)	State the chemical formula of the gas made.	
			[1]
	(ii)	State the name of the salt made.	
			[1]
	(iii)	Some solid magnesium remains unreacted.	
		State the method used to remove the unreacted solid magnesium from the react mixture.	ion
			[1]

(iv)	The rate of reaction is decreased by decreasing the concentration of the hydrochloric acid.					
	State two other ways of decreasing 1					
	2					
	_		[2]			
(c) Tab	le 2.2 shows the composition of an all	oy of magnesium.				
	Tabl	e 2.2				
	element	percentage by mass				
	aluminium	4%				
	cerium	3%				
	lanthanum	1%				
	magnesium	92%				
(i)	State what is meant by the term alloy	/.				
			[1]			
(ii)	Calculate the mass of magnesium in	2000 kg of this alloy.				
		mass =	kg [1]			
			[Total: 11]			
			[1000.11]			

3 (a) X-ra	ays and γ-radiation a	re used in hospitals.		
(i)	State one use of X	-rays in a hospital.		
				[1]
(ii)	Write X-rays in the Fig. 3.1.	correct place in the inc	omplete electromagnetic spec	trum shown in
	•	incre	asing frequency	
γ-radiation		visible light		radio waves
		Fig. 3.1		[1]
(iii)	X-rays and γ-radiat	ion are forms of ionising	radiation.	
	State one harmful	effect of ionising radiatio	n on humans.	
				[1]
(b) (i)	Fig. 3.2 represents			
		Fig. 3.2		
		each wave property to i	·	
	wave property		description	
	amplitude		listance between the tops of consecutive waves	
	frequency		distance between the top and middle of a wave	
	wavelength		number of waves passing y second	

(ii)	State the approximate range of audible frequencies for a healthy human ear.	
	from Hz to Hz	[2]
(iii)	A student determines the speed of sound in air.	
	State the two measurements that she makes.	
	Describe how she uses these measurements to calculate the speed of sound.	
	measurements	
	description of calculation	
		 [3]
	[Total:	10]

4 (a) Different digestive enzymes work best at different pH values.

The best pH for enzyme activity is called its optimum pH.

Fig. 4.1 shows the optimum pH of five different digestive enzymes.

Fig. 4.1

Use Fig. 4.1 to complete these sentences.

	The enzyme with the lowest optimum pH is enzyme	
	The two enzymes with the same optimum pH are enzymes	
	and	
	The enzyme that works best in neutral conditions is enzyme	[3]
,. .		اد]
(b)	Name one factor, other than pH, that affects enzyme activity.	
		[1]
(c)	Complete this definition of an enzyme.	
	Enzymes are proteins that function as catalysts.	[1]

(d) Carbohydrate, protein and fat are made from chemical elements.

Place ticks (\checkmark) in the boxes in Table 4.1 to show **all** the correct elements each substance is made from.

Table 4.1

		elen	nent	
substance	carbon	hydrogen	oxygen	nitrogen
carbohydrate				
protein				
fat				

(e) Starch is a carbohydrate.

(i) State the name of the smaller molecules that starch is made from.

[1]

(ii) Circle the name of one other carbohydrate.

amino acid fatty acid glycogen oil [1]

[Total: 10]

3	(a)	A SI	tudent adds calcium and copper to separate test-tubes of cold water.	
		Des	scribe the reaction, if any, for each metal.	
		calc	cium	
		сор	pper	
	(b)		e student reacts copper carbonate with dilute sulfuric acid.	[2]
		Cop	oper(II) sulfate, carbon dioxide and water are made.	
		(i)	Complete the word equation for this reaction.	
			+ + + + +	
				[1]
		(ii)	Carbon dioxide gas is a greenhouse gas.	
			State the name of one other greenhouse gas.	
				[1]
		(iii)	The formula of copper(II) sulfate is CuSO ₄ .	
			State the number of different elements and the total number of atoms shown in formula.	ı this
			number of elements	
			number of atoms	[2]

(c) Copper oxide, CuO, is reduced to copper, Cu, by heating with carbon.

The	e equation for the reaction is shown.
	2CuO + C \rightarrow 2Cu + CO $_2$
(i)	Explain how the equation shows that copper oxide, CuO, is reduced.
	[1]
(ii)	The reaction between copper oxide and carbon is exothermic.
	State what is meant by exothermic.
	[1]
(iii)	Name a metal, other than copper, that can be extracted from its ore by heating with carbon.
	[1]
	[Total: 9]

6	(a)	A farmer uses solar panels to generate the electricity needed for his farm.
		Suggest why the farmer should have an alternative method of generating electricity rathe than relying on just solar energy.
		[1

(b) Fig. 6.1 shows the farmer driving his tractor.

Four forces, A, B, C and D, are acting on the tractor.

Fig. 6.1

The tractor is moving at constant speed.

The weight of the tractor is 40 000 N.

(i)	State which force, A , B , C or D , is the weight of the tractor.	
	force	[1]

(ii) Calculate the mass of the tractor.

The gravitational field strength, g, is 10 N/kg.

mass = kg [2]

	(iii)	Force B is 2000 N.	
		State the value of force D .	
		Explain your answer.	
		force D =	
		explanation	
			 [2]
(c)	The	tractor uses diesel fuel.	[~]
	Stat	te the form of energy stored in the diesel fuel.	
			[1]

(d) The farmer drives his tractor across a field.

Fig. 6.2 shows the speed-time graph for the tractor.

Fig. 6.2

(i) State the maximum speed of the tractor.

- (ii) On Fig. 6.2, mark with an **X** a time when the tractor is moving with changing speed. [1]
- (iii) Calculate the distance travelled by the tractor between time = 15 s and time = 20 s.

distance = m [2]

[Total: 11]

7 (a) Fig. 7.1 is a diagram of the gas exchange system in humans.

Fig. 7.1

	(i)	Draw a label line and the name to identify a rib on Fig. 7.1.	[1]
	(ii)	Draw a label line and the name to identify the diaphragm on Fig. 7.1.	[1]
(b)	Des	scribe how inspired air is different from expired air.	
			[3]
(c)	Nar	me one of the main blood vessels that connects the lungs with the heart.	
			[1]

(d)	Blo	od transports substances around the body.	
	(i)	State the name of the part of the blood that transports oxygen.	
			[1]
	(ii)	State the name of the part of the blood that transports hormones.	
			[1]
(e)	Sta	te the name of the hormone secreted in a 'fight or flight' situation.	
			[1]
		Т]	otal: 9

8 (a) Table 8.1 shows information about some of the halogens in the Periodic Table.

Table 8.1

halogen	symbol	proton number	physical state at 20°C
chlorine	Cl	17	
bromine	Br	35	liquid
iodine	I	53	

	(i)	Complete Table 8.1.	[2]	
	(ii)	Halogen molecules are diatomic.		
		State the formula of a molecule of bromine.		
((iii)	State the group number of the halogens in the Periodic Table.		
			[1]	
	(iv)	State the number of electrons in an iodine atom.		
			[1]	
(b)		te the type of bond made when chlorine reacts with hydrogen to make the gas hydrogoride, $HC\mathit{l}$.	jen	
	Ехр	lain your answer.		
	type of bond			
	ехр	lanation		
			 [2]	

(c) Fig. 8.1 shows the apparatus used in the electrolysis of molten lead(II) bromide.

Fig. 8.1

(i)	Sta	te which letter	r, A–F , in Fig. 8.1 identifies the:	
	•	anode		
	•	cathode		
	•	electrolyte.		[2]
(ii)	Sta	te the two pro	ducts of this electrolysis.	
	1			
	2			

[2]

9 (a) Table 9.1 contains descriptions of a solid, a liquid and a gas.

Complete Table 9.1 using the words in the list.

solid liquid gas

Use each word once only.

Table 9.1

description	solid, liquid or gas
the particles have a random arrangement and are close together	
the particles have a regular arrangement and are close together	
the particles have a random arrangement and are widely separated from each other	

[2]

(b) Some water is heated in a copper saucepan on the hot-plate of an electric cooker.

This is shown in Fig. 9.1.

Fig. 9.1

(1)	State the main method of thermal energy transfer through.	
	the copper saucepan	
	the water.	
		[4]
(ii)	Suggest why the handle of the saucepan is made from plastic and not copper.	

.....

	۸ ۸						
(C	:) Ar	i electric	circuit	contains	а	copper	wire.

The current in the copper wire is 0.5A.

The potential difference (p.d.) across the copper wire is 4.0 V.

Calculate the resistance of the wire.

State the unit of your answer.

resistance =	 unit	[3

(d) Fig. 9.2 shows a copper wire placed between the poles of a magnet.

Fig. 9.2

When the switch is closed, the wire moves upwards.

State how this observation would change if the current is reversed.

[Total: 9]

10 (a) Fig. 10.1 is a diagram of a cross-section through a leaf.

Fig. 10.1

(i)	Identify the letter in Fig. 10.1 that represents:		
	where photosynthesis occurs		
	the part which controls the cell's activities		
	where water vapour is lost from the leaf.		[3]
(ii)	State the name of the part labelled E in Fig.	10.1.	
			[1]

(b) A student investigates which substances are needed for photosynthesis.

The student **removes** different substances from the environment the plant is in.

They then record if the plant photosynthesises.

Table 10.1 shows a summary of their results.

Table 10.1

		sul	bstances remov	red .	
	carbon dioxide, oxygen and water	carbon dioxide only	oxygen and water	oxygen only	none
did the plan photosynthes	1 110	no	no	yes	yes
` '	e the information in otosynthesis.	n Table 10.1 to	identify which	substance is	•
					[1]
(ii) Du	ıring the investigatior	n, the student use	es a lamp to pro	vide a source of	f light.
Pr	edict the effect on ph	otosynthesis if th	ne investigation	is repeated with	no light.
Gi	ve a reason for your	answer.			
pre	ediction				

		reason	••••
			[2]
(c)	Min	eral ions are also required for plant health.	
	(i)	State the main mineral ion required for making chlorophyll.	
			[1]
	(ii)	State the name of the cell where mineral ions enter a plant.	
			[1]
(d)	Des	cribe the function of phloem in a plant.	
			[2]

[Total: 11]

11 Fig. 11.1 shows the structures of four molecules, **P**, **Q**, **R** and **S**.

Fig. 11.1

(a)	(i)	State which of the molecules P, Q, R or S is an alkene.	
			[1]
	(ii)	State which of the molecules P , Q , R or S is ethanol.	
			[1]
	(iii)	State which of the molecules P , Q , R or S is the main constituent of natural gas.	
			[1]
	(iv)	State which two of the molecules P , Q , R and S are saturated hydrocarbons.	
		and	[1]
(b)	Car	bon dioxide is made during the complete combustion of substance R.	
	Stat	te the name of the other product made in this reaction.	
			[1]
(c)	Mol	ecule S is a compound made from the two elements carbon and hydrogen.	
	Stat	te what is meant by a compound.	
			[1]
(d)	Dec	duce the formula of molecule P .	
			[1]

(e) Fig. 11.2 shows an incomplete dot-and-cross diagram for molecule **R**. Complete Fig. 11.2.

Show the outer-shell electrons only.

Fig. 11.2

[2]

[Total: 9]

12 (a) During a journey, a car becomes positively charged with static electricity.

State the name of the charged particles that have been removed from the car.

.....[1]

(b) The car has two headlamps powered by the car battery.

The lamps are connected in parallel.

Complete the circuit diagram in Fig. 12.1 to show two lamps connected in parallel both controlled by one switch.

The battery has been drawn for you.

Fig. 12.1

[2]

(c) The driver of the car changes a wheel.

Fig. 12.2 shows a wheel nut being loosened by a spanner.

Fig. 12.2

The driver uses a force of 1200 N on the spanner.

Calculate the moment of this force on the wheel nut in Nm.

moment = Nm [3]

(d) The car driver uses a mirror to see behind the car.

Fig. 12.3 shows the driver looking into a plane mirror.

He can see the reflection of a street lamp.

Fig. 12.3

(i) State the name of the line labelled XY.

.....[1]

(ii) On Fig. 12.3, label the angle of incidence with the letter *i*. [1]

(iii) Circle **two** words or phrases that correctly describe the image of the street lamp seen in the mirror.

larger laterally inverted same size

smaller upside down

[2]

[Total: 10]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

	 	5 He	helium 4	10	Ne	neon 20	18	Ą	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	R	radon			
	=			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	ğ	bromine 80	53	П	iodine 127	85	¥	astatine -			
	5			8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъо	polonium –	116	^	livermorium -
	>			7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	B	bismuth 209			
	2			9	ပ	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pp	lead 207	114	Εl	flerovium -
	=			2	Δ	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	lL	thallium 204			
										30	Zu	zinc 65	48	g	cadmium 112	80	£	mercury 201	112	ű	copernicium —
										29	J.	copper 64	47	Ag	silver 108	79	Au	gold 197	111	Rg	roentgenium -
dn										28	Z	nickel 59	46	Pd	palladium 106	78	പ	platinum 195	110	Ds	darmstadtium -
Group										27	ပိ	cobalt 59	45	R	rhodium 103	77	Ľ	indium 192	109	₩	meitnerium -
		- I	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	9/	SO	osmium 190	108	Hs	hassium
				,						25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium —
					loc	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	>	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	Q Q	niobium 93	73	<u>ra</u>	tantalum 181	105	Ср	dubnium –
					ato	rels				22	F	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿒	rutherfordium -
							-			21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	Š	strontium 88	56	Ba	barium 137	88	Ra	radium —
	_			3	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	22	Cs	caesium 133	87	μ̈	francium -

71	Lu lutetium 175	103	۲	lawrencium -	
۶ ۲	ytterbium 173	102	9 2	nobelium	
69 F	thulium 169	101	Md	mendelevium -	
99 1	erbium 167	100	Fm	fermium	
67	holmium 165	66	Es	einsteinium	
99	dysprosium 163	86	Ç	californium -	
65 T.	terbium 159	97	Ř	berkelium -	
49 7	gadolinium 157	96	Cm	curium	
63 L	Eu europium 152	92	Am	americium	
62	samarium 150	94	Pn	plutonium	
61	promethium	93	d d	neptunium -	
09	neodymium 144	92	\supset	uranium 238	
59	r I praseodymium 141	91	Ъа	protactinium 231	
28 0	Cerium 140	06	Т	thorium 232	
57	רמ lanthanum 139	88	Ac	actinium	

lanthanoids

actinoids

The volume of one mole of any gas is $24\,\mathrm{dm}^3$ at room temperature and pressure (r.t.p.).