

The Most Comprehensive Preparation App For All Exams

QUADRILATERAL

Part-II

Agenda Rectargle] -> (40-42) min (Smin) * Square] -> (8710)min * Tropezion [50-84)hin * Trapezion KITE] -> (8-19)

RHOM BUS

Def: Rhombus is a parallelogram in which adjacent sides are equal.

PROPERTIES OF RHOM BUS

1. All sides of rhombus are equal.

2. (i) Diagonals of a rhombus bisect each other at 90°.

(ii) Diagonals of a rhombus are angle bisector.

3. Diagonals of a rhombus need not be equal.

D17 D2

Let LB=0 where or is an Acute angle 40 = S810/2

Smaller JAC = 25 Sho/2

CON 0/2 = BO BO = S(0)/2

Carger BD= 25(009/2)

4. ABCD is a rhombus and one of the angle of rhombus is

 θ , where 0° < θ < 90°

Length of longer diagonal = $2s\cos\frac{\theta}{2}$

Length of shorter diagonal = $\frac{2s\sin\frac{\theta}{2}}{2}$

Eg7. If perimeter of rhombus is 40 cm and one of its angle is 120°. Find the length of longer diagonal.

5. ABCD is a rhombus and D_1 and D_2 are the diagonals of rhombus and Sisthe side of rhombus.

6.

Perimeter of Rhombus = 4S

Area of Rhombus =
$$\frac{1}{2}D_1D_2$$

= $S^2 \cdot \sin\theta$

Where, θ is one of the angle of rhombus.

BYJU'S EXAM PREP

To Preinter of know buy = 40 cm and One of angles = 60 Area of know 5 = ??

Sol ->

S2 812

100. Sz => 50 Sz cm

7.

8. Figure formed by joining the mid point of all sides of a rhombus is RECTANGLE.

PABCO is a Rismley
PABCO is a Ri

RECTANGLE

Def: A parallelogram in which one angle is 90°.

11gm + One Angle = 90

PROPERTIES OF RECTANGLE

1. All angles of a rectangle are right angle.

2. Diagonals of a rectangle are equal.

- 3. (i) Diagonals of a rectangle bisect each other but not necessarily at 90°.
 - (ii) Diagonals of a rectangle need not be angle bisector.

UNDERSTANDING OF A RECTANGLE FIGURE

If O is any point in the interior of rectangle ABCD, then

$$(OA)^2 + (OC)^2 = (OB)^2 + (OD)^2$$

Proof -) Pythazorny Theorem

Eg8. ABCD is a rectangle and O is only point in the interior of rectangle ABCD. If OA = 3 cm, OB = 4 cm, OC = 5 cm, find the value of OD = ??

$$(OA)^{2} + (OC)^{2} = (OB)^{2} + (OD)^{2}$$
 $9 + 25^{2} = 16 + (OD)^{2}$
 $(OD)^{2} = 18$
 $OD = 3\sqrt{2}$
 $OD = 3\sqrt{2}$

5.

Perimeter of rectangle (P) =
$$2 (L + B)$$

Area of rectangle (A) = $L \cdot B$

Diagonal of rectangle (D)
$$=\sqrt{L^2+B^2}$$

Important relationship between P, A & D of rectangle.

$$P^2 = 4(D^2 + 2A)$$

Eg9. If diagonal of rectangle is 14 cm and its area is 68 cm². Find its perimeter.

$$P = 4 (D + 2A)$$
 $P = 4 (14 + 2.68)$
 $P = 2 \sqrt{196 + 136}$
 $= 2 \sqrt{332}$
 $= 2.2 \sqrt{83}$
 $= 4 \sqrt{83} cm$

8. Angle bisectors of a rectangle forms a square.

7. Figure formed by joining the mid-point of all sides of a rectangle is rhombus.

Dianeter of Circle - Breadth of Rectagle

SQUARE

Def:

- (1) Quadrilateral + all sides are equal + all angles are equal.
- (2) Regular polygon of 4 sides.
- (3) Rectangle in which adjacent sides are equal.
- (4) Rhombus + one angle = 90°

DETAILED ANALYSIS OF SQUARE FIGURE

Perimeter =
$$4:S$$

Area = S^2

= $\frac{(D)^2}{2}$

Diagonal $(D) = \sqrt{2}-S$

Figure formed by joining the mid-points of all sides of a square is a square.

ABCD -> Square

PQRS -> Squar

For a given perimeter of a quadrilateral, square will have maximum area.

Eg. A quadrilateral whose perimeter = 120 cm Find maximum area of quadrilateral.

Property	Rhombus	Rectangle	Square
Diagonals bisect each other	✓	✓	✓,
Diagonals bisect each other at 90°		X	
Diagonals are angle bisector		×	
Diagonals are equal	×		G/P

Figure formed by joining mid-points of all sides of a:

Quadrilateral → Parallelogram

Parallelogram → Parallelogram

Rhombus → Rectangle

Rectangle → Rhombus

Square → Square

TRAPEZIUM

Def: A quadrilateral in which one pair of side is parallel.

1. In a trapezium ABCD, if AB | CD, then

$$\angle A + \angle D = \angle B + \angle C = 180^{\circ}$$

Eg9. If 4 angles of a quadrilateral are in the ratio 5:8:13:16, then what can be the name of the quadrilateral?

2. Area of trapezium = $\frac{1}{2}$ × (Sum of parallel sides) × Distance between them

=
$$\frac{1}{2}$$
 × (AB + CD) × H

3. If diagonals AC and BD of a trapezium intersect each other at O, where AB| CD, then \triangle AOB $\sim \triangle$ COD.

Eg10. In a trapezium ABCD (AB | | CD), diagonals AC & BD intersect each other at O and AB = 2 CD.

Eg11. ABCD is a trapezium where AD | | BC. The diagonals AC and BD intersect each other at a point O. If AO = 3, CO = x - 3, BO = 3x - 19 and DO = x - 5, the value of x is:

4. ABCD is a trapezium where AB | CD.

M, N are points on AD and BC in such a way that MN | AB.

ABII CD

MNIIAB

Proof DDAB

KMIICD

5. ABCD is a trapezium where AB | CD. M, N are mid-points on AD and BC

then

(ii)
$$m{MN} = rac{1}{2}(m{AB} + m{CD})$$

Je ABIICD

M, Nau mid pt of

ADD BC

AB = 20 cm, CD=124

Find MN = ??

MN - 1 (20 +12)

Eg13. ABCD is a trapezium where AB | CD.

M, N are mid-points on AD and BC.

If AB = 20 cm and CD = 12 cm.

Find Area of DCNM: Area of MNBA

BYJU'S J. AND

Eg14. ABCD is a trapezium where AB | CD. M, N are

points on AD and BC in such a way that MN | AB.

If DM: MA = 3:2, DC = 18 cm, AB = 30 cm.

Find the value of MN.

Detailed

MN=52.5CW

me = 18cm

IN ADB C 2 18 2 18 2 2 18 2 2 18 2 2 18 2 2 18 2 2 18 2 2 18 2 2 18 2 2 18 2 2 18 2 2 18 2 2 18 2 2 18 2 2 18 2 2 18 2 2 18 2

Ind

formula Approach

10 (18)
2 3 (28)

$$12^{\times}3 = (7-2)$$

18+7.2

6. $(AC)^2 + (BD)^2 = (AD)^2 + (BC)^2 + 2(AB) (CD)$

Sum of square of diagonals = Sum of squares of non-parallel sides + 2 (product of parallel sides)

$$Ax^{2} + BD = ??$$
 $7^{2} + 6^{2} + 2 \cdot 8 \cdot 5$
 $85 + 85$
 $= 165$

7. ABCD is a trapezium, where AB | CD. M, N are mid-points of AC and BD,

then
$$MN = \frac{1}{2} |AB - CD|$$

eg ABCD is a trapezium when ABII CD D M, M are mid pt J of AC J BD Find MM when AB = 12cm CD = 8cm

$$MN = \frac{1}{2} \left(AB - CD \right)$$

= $\frac{1}{2} \left(9 \right) = \frac{200}{100}$

8. Figure formed by joining mid-point of all sides of the trapezium is a parallelogram.

If ABCO is a tratigion
ABIICO

PORS Jam

ISOSCELES TRAPEZIUM

Def: A trapezium in which non-parallel sides are equal.

$$AD = BC$$

In Isosceles trapezium where AB | CD

$$(1) AD = BC$$

$$(2) AE = BF$$

$$(3) AC = BD$$

$$(4) \angle D = \angle C$$

$$(5)$$
 $\angle A = \angle B$

Cyclic trapezium is always an Isosceles Trapezium.

KITE

Kite is a quadrilateral in which two pairs of adjacent sides are of equal length and the diagonals intersect each other at right angles.

(2)
$$\angle AOB = \angle BOC = \angle COD = \angle DOA = 90^{\circ}$$

(3) AO = OC (The longer diagonal bisects the shorter diagonal.)

$$(4) \angle A = \angle C$$

Area of Kite
$$=\frac{1}{2}D_1D_2$$

Eg15. The area of the rectangle is 80 cm², what is the area of the kite?

Eg16. HATS is a kite with diagonals that intersect at C. \angle TSC = 32°. Find \angle SHC.

