Supporting Information: Electronic band structure screening for Dirac points in Heuslers

Meza-Morales, Paul J., Taliaronak, Volha, Fumarola, Alessandro, Shirsekar, Afrid, kidner, Jonathan, Ali, Zaheer, and Ali. Mazhar

Material Mind, Fremont, CA 94555, United States

January 31, 2023

Section S1. EBS representing material behaviors

Figure S1. comparison of EBSs for metallic vs semiconducting vs insulating behavior using: a) metallic (Pt), b) semiconducting (Si), and c) insulating (Diamond) properties. The energies of the band gaps are 4.34 eV for Diamond, 0.85 eV for Si and 0.0 eV for Pt. These EBSs were taken from Materials Project (MP) database [1, 2, 3].

Section S1. Feature Engineering

The table S1 lists properties used as primary features (PFs) and their definition. Tables S3 and S2 list the selected features for the development of Heusler and Cubic compounds datasets ML models respectively.

Table S1. Primary features with their definitions

Electronic Property name/ matminer abbreviation	Description/Matminer abbreviation
maximum ionic charge/	Element with the highest oxidation states in the crystal
max ionic char	structure
average ionic charge/	Element with the highest oxidation states in the crystal
avg ionic char	structure
ewald energy per atom/	Computed energy from Coulombic interactions, using
ewald_energy_per_atom	charges already defined for the crystal structure
cwaid_chergy_per_attom	Element with the highest occupied molecular orbital (HOMO)
HOMO element/	estimated from the atomic orbital energies of the structure
HOMO_element	chemical composition
	-
LUMO element/	Element with the lowest unoccupied molecular orbital (LUMO)
LUMO_element	estimated from the atomic orbital energies of the structure
	chemical composition
HOMO character/	Atomic orbital character for the HOMO element
HOMO_character	('s', 'p', 'd', or 'f')
LUMO character/	Atomic orbital character for the LUMO element
LUMO_character	('s', 'p', 'd', or 'f')
HOMO_energy	Atomic orbital energy for the HOMO character
LUMO_energy	Atomic orbital energy for the LUMO character
HOMO-LUMO atomic orbital gap/	bandgap from HOMO and LUMO energies
gap_AO	bandgap from HOMO and LOMO energies
fraction of s valence electrons/	Weighted fraction of 's' valence electrons estimated from the
frac s valence electrons	structure chemical composition
fraction of p valence electrons/	Weighted fraction of 'p' valence electrons estimated from the
frac p valence electrons	structure chemical composition
fraction of d valence electrons/	Weighted fraction of 'd' valence electrons estimated from the
frac d valence electrons	structure chemical composition
fraction of f valence electrons/	Weighted fraction of 'f' valence electrons estimated from the
frac f valence electrons	structure chemical composition
Crystal	Description
Density	Crystal density
Volume per atom	Average volume taken up by an atom in the crystal
	structure
structural complexity per cell	Shannon information entropy of a structure. This
	descriptor treat a structure as a message to evaluate
	structural complexity (bits/cell)
	Shannon information entropy of a structure. This
structural complexity per atom	descriptor treat a structure as a message to evaluate
bitactara complexity per atom	structural complexity (bits/atom)
max packing efficiency	Maximum possible packing efficiency of this structure
mean neighbor distance variation	Statistic (e.g., mean) of the neighbor distance variation
mean neignbor distance variation	Voronoi cell volume across all sites in the structure,
mean absolute deviation in relative cell size	· ·
	divided by the mean Voronoi cell volume
mean absolute deviation in relative bond length	The average bond lengths for all sites, divided by the
	average bond length

Table S2. Heusler dataset ML model features

Electronic	
frac s valence electrons	
frac d valence electrons	
max ionic char	
HOMO_element	
avg ionic char	
gap_AO	
LUMO_element	
LUMO_energy	
HOMO_character	
LUMO_character	
frac f valence electrons	
frac p valence electrons	
HOMO_energy	
ewald_energy_per_atom	
Crystal	
structural complexity per atom	
mean absolute deviation in relative cell size	
structural complexity per cell	
mean neighbor distance variation	
mean absolute deviation in relative bond length	
volume per atom	
packing fraction	
max packing efficiency	
density	

Table S3. Cubic dataset ML model features

Electronic	
HOMO_element	
LUMO_character	
LUMO_element	
frac d valence electrons	
max ionic char	
LUMO_energy	
HOMO_energy	
frac s valence electrons	
frac p valence electrons	
packing fraction	
frac f valence electrons	
ewald_energy_per_atom	
avg ionic char	
HOMO_character	
gap_AO	
Crystal	
structural complexity per cell	
structural complexity per atom	
max packing efficiency	
mean neighbor distance variation	
volume per atom (vpa)	
mean absolute deviation in relative cell size	
mean absolute deviation in relative bond length	
density	

Section S2. Band Structure Features Detection

Figure S2. pymatgen band structure of cubic elemental Platinum (Pt, space group 225, mp-126 on Materials Project). Each individual band is plotted in a different color. The relative order of the bands does not change across the BZ path. The band plotted in brown is the highest in the y-axis range, while the orange one is the lowest.

Automatic detection and identification of band structure features can dramatically accelerate large-scale discovery of materials property. The number and type of band structure features are detected using an algorithm developed in *python* with the numerical library *numpy* as the only functional dependency (other libraries are needed for visualization, data management and debug).

The input data is a $pymatgen.electronic_structure.bandstructure.BandStructure$ object with the bands represented as a $M \cdot N$ numpy.array of eigenvalues. M is the number of bands calculated for the given material while N is the number of reciprocal space locations sampled for each band. A separate array BandStructure.kpoints of shape $N \cdot 3$ is also provided to locate the k-points within the Brillouin Zone. The sequence of k-points follows the Setyawan-Curtarolo [4] convention.

Band structure features usually arise from the interaction of multiple bands. The first step of the feature detection algorithm consists in producing the band indexes $i, j \in [1, M]$ of the bands that need to be compared. All three types of features we are focusing on (i.e. degeneracy lines, degeneracy points and gaps) are characteristic of the interaction between two bands, but there is no theoretical limitation to the number of bands that contributes to the calculation. Bands in *pymatgen* keep their relative order which means that if a band has a largest energy value at the Γ point with respect to another, it will keep a higher or equal value for the whole Brillouin Zone path. For this reason, we never compare bands whose indexes are too far from each other as they will most likely have a large energy difference and small interaction. Each band is compared with the 2 closest higher bands and the 2 lower.

```
def find_degeneracy_lines(
eigenvalues,
                     # M x N matrix with band structure
                     # maximum energy difference
max_delta_energy,
                     # for degenerate bands
                     # minimum number of consecutive
delta k.
                     # degenerate points to form a degenerate line
# Calculate indexes of the bands that need to be
# combined
index_a, index_b = make_combinations(
                         eigenvalues.shape[0],
                         n_bands_in_combination = 2
band_a = eigenvalues[index_a,:] # Shape 1 x N
band_b = eigenvalues[index_b,:] # Shape 1 x N
diffs = band_b - band_a
                                 # Shape 1 x N
# Sequence of Boolean operations to verify
# existence of a band structure feature
condition = (diffs<=max_delta_energy)</pre>
                                          # Shape 1 x N
# If a sequence of true values is shorter
# than delta_k, set all the sequence to False
condition = filter_short_sequences(
                 condition,
                 delta_k
k_indexes = where(condition == True)
return k_indexes
```

The band pairs are sequentially inputted to the function find_feature() together with auxiliary parameters which determine the type of feature the user wants to detect. For each run of the find_feature() function, that is the detection of a given feature, we assign a truth value to each

eigenvalue of the band pairs. If at the end of the function this value is True, it means that the desired feature is found at the assigned array index k < N (each index corresponds to a reciprocal space location). A series of binary checks are performed on the band values and their combination to determine whether the conditions apply to detect a feature. A pseudo-code to detect degeneracy lines is reported above.

Figure S3. Band structure of cubic elemental Platinum (Pt, space group 225, mp-126 on Materials Project). The eigenvalues are plotted in black, the degeneracy lines are highlighted in green. The degeneracy points and inter-band gaps are highlighted in red and blue respectively

References

- [1] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, K. a. Persson, The Materials Project: A materials genome approach to accelerating materials innovation, APL Materials 1 (1) (2013) 011002. doi:10.1063/1.4812323. URL http://link.aip.org/link/AMPADS/v1/i1/p011002/s1&Agg=doi
- [2] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek, S. Cholia, D. Gunter, D. Skinner, G. Ceder, et al., Commentary: The materials project: A materials genome approach to accelerating materials innovation, APL materials 1 (1) (2013) 011002.
- [3] S. P. Ong, S. Cholia, A. Jain, M. Brafman, D. Gunter, G. Ceder, K. A. Persson, The materials application programming interface (api): A simple, flexible and efficient api for materials data based on representational state transfer (rest) principles, Computational Materials Science 97 (2015) 209–215.
- [4] W. Setyawan, S. Curtarolo, High-throughput electronic band structure calculations: Challenges and tools, Computational materials science 49 (2) (2010) 299–312.