# More on Rankings

 Comparing results of Link Analysis Ranking algorithms

Comparing and aggregating rankings

#### Comparing LAR vectors

$$w_1 = [ 1 0.8 0.5 0.3 0 ]$$
  
 $w_2 = [ 0.9 1 0.7 0.6 0.8 ]$ 

• How close are the LAR vectors  $w_1$ ,  $w_2$ ?

#### Distance between LAR vectors

• Geometric distance: how close are the numerical weights of vectors  $w_1$ ,  $w_2$ ?

$$d_{1}(w_{1}, w_{2}) = \sum |w_{1}[i] - w_{2}[i]|$$

$$w_{1} = [1.0 \ 0.8 \ 0.5 \ 0.3 \ 0.0]$$

$$w_{2} = [0.9 \ 1.0 \ 0.7 \ 0.6 \ 0.8]$$

$$d_{1}(w_{1}, w_{2}) = 0.1 + 0.2 + 0.2 + 0.3 + 0.8 = 1.6$$

#### Distance between LAR vectors

- Rank distance: how close are the ordinal rankings induced by the vectors w<sub>1</sub>, w<sub>2</sub>?
  - -Kendal's τ distance

$$d_r(w_1, w_2) = \frac{\text{pairs ranked in a different order}}{\text{total number of distinct pairs}}$$

#### Outline

- Rank Aggregation
  - Computing aggregate scores
  - Computing aggregate rankings voting

# Rank Aggregation

• Given a set of rankings  $R_1, R_2, ..., R_m$  of a set of objects  $X_1, X_2, ..., X_n$  produce a single ranking R that is in agreement with the existing rankings

#### Examples

- Voting
  - rankings  $R_1, R_2, ..., R_m$  are the voters, the objects  $X_1, X_2, ..., X_n$  are the candidates.

#### Examples

- Combining multiple scoring functions
  - rankings  $R_1, R_2, ..., R_m$  are the scoring functions, the objects  $X_1, X_2, ..., X_n$  are data items.
    - Combine the PageRank scores with termweighting scores
    - Combine scores for multimedia items
      - color, shape, texture
    - Combine scores for database tuples
      - find the best hotel according to price and location

#### Examples

- Combining multiple sources
  - rankings  $R_1, R_2, ..., R_m$  are the sources, the objects  $X_1, X_2, ..., X_n$  are data items.
    - meta-search engines for the Web
    - distributed databases
    - P2P sources

#### Variants of the problem

- Combining scores
  - we know the scores assigned to objects by each ranking, and we want to compute a single score
- Combining ordinal rankings
  - the scores are not known, only the ordering is known
  - the scores are known but we do not know how, or do not want to combine them
    - e.g. price and star rating

- Each object X<sub>i</sub> has m scores (r<sub>i1</sub>,r<sub>i2</sub>,...,r<sub>im</sub>)
- The score of object X<sub>i</sub> is computed using an aggregate scoring function f(r<sub>i1</sub>,r<sub>i2</sub>,...,r<sub>im</sub>)

|                       | $R_1$ | $R_2$ | $R_3$ |
|-----------------------|-------|-------|-------|
| $X_1$                 | 1     | 0.3   | 0.2   |
| $X_2$                 | 0.8   | 0.8   | 0     |
| <b>X</b> <sub>3</sub> | 0.5   | 0.7   | 0.6   |
| $X_4$                 | 0.3   | 0.2   | 0.8   |
| $X_5$                 | 0.1   | 0.1   | 0.1   |

 Each object X<sub>i</sub> has m scores (r<sub>i1</sub>,r<sub>i2</sub>,...,r<sub>im</sub>)

 $\dots, r_{im}$ 

The score of object X<sub>i</sub> is computed using an aggregate scoring function f(r<sub>i1</sub>,r<sub>i2</sub>,...,r<sub>im</sub>)
 f(r<sub>i1</sub>,r<sub>i2</sub>,...,r<sub>im</sub>) = min{r<sub>i1</sub>,r<sub>i2</sub>,

|                       | $R_1$ | $R_2$ | $R_3$ | R   |
|-----------------------|-------|-------|-------|-----|
| $X_1$                 | 1     | 0.3   | 0.2   | 0.2 |
| $X_2$                 | 0.8   | 0.8   | 0     | 0   |
| $X_3$                 | 0.5   | 0.7   | 0.6   | 0.5 |
| <b>X</b> <sub>4</sub> | 0.3   | 0.2   | 0.8   | 0.2 |
| <b>X</b> <sub>5</sub> | 0.1   | 0.1   | 0.1   | 0.1 |

Each object X<sub>i</sub> has m scores

$$(r_{i1}, r_{i2}, ..., r_{im})$$

 $\dots, r_{im}$ 

The score of object X<sub>i</sub> is computed using an aggregate scoring function f(r<sub>i1</sub>,r<sub>i2</sub>,...,r<sub>im</sub>)
 f(r<sub>i1</sub>,r<sub>i2</sub>,...,r<sub>im</sub>) = max{r<sub>i1</sub>,r<sub>i2</sub>,

|                       | $R_1$ | $R_2$ | $R_3$ | R   |
|-----------------------|-------|-------|-------|-----|
| $X_1$                 | 1     | 0.3   | 0.2   | 1   |
| $X_2$                 | 0.8   | 0.8   | 0     | 0.8 |
| $X_3$                 | 0.5   | 0.7   | 0.6   | 0.7 |
| X <sub>4</sub>        | 0.3   | 0.2   | 0.8   | 0.8 |
| <b>X</b> <sub>5</sub> | 0.1   | 0.1   | 0.1   | 0.1 |

Each object X<sub>i</sub> has m scores

$$(r_{i1}, r_{i2}, ..., r_{im})$$

 The score of object X<sub>i</sub> is computed using an aggregate scoring function f(r<sub>i1</sub>,r<sub>i2</sub>,...,r<sub>im</sub>)

| <br>$f(r_{i1},r_{i2},,r_{im})$ | = | $r_{i1}$ | + | $r_{i2}$ | + | + |
|--------------------------------|---|----------|---|----------|---|---|
| r <sub>im</sub>                |   |          |   |          |   |   |

|                       | $R_1$ | $R_2$ | $R_3$ | R   |
|-----------------------|-------|-------|-------|-----|
| $X_1$                 | 1     | 0.3   | 0.2   | 1.5 |
| $X_2$                 | 0.8   | 0.8   | 0     | 1.6 |
| <b>X</b> <sub>3</sub> | 0.5   | 0.7   | 0.6   | 1.8 |
| X <sub>4</sub>        | 0.3   | 0.2   | 0.8   | 1.3 |
| <b>X</b> <sub>5</sub> | 0.1   | 0.1   | 0.1   | 0.3 |

#### Top-k

- Given a set of n objects and m scoring lists sorted in decreasing order, find the top-k objects according to a scoring function f
- top-k: a set T of k objects such that  $f(r_{j1}, ..., r_{jm}) \le f(r_{i1}, ..., r_{im})$  for every object  $X_i$  in T and every object  $X_j$  not in T
- Assumption: The function f is monotone  $-f(r_1,...,r_m) \le f(r_1',...,r_m')$  if  $r_i \le r_i'$  for all i
- Objective: Compute top-k with the minimum cost

#### Cost function

- We want to minimize the number of accesses to the scoring lists
- Sorted accesses: sequentially access the objects in the order in which they appear in a list
  - cost C<sub>s</sub>
- Random accesses: obtain the cost value for a specific object in a list
  - $-\cos C_r$
- If s sorted accesses and r random accesses minimize s C<sub>s</sub> + r C<sub>r</sub>

# Example

| $R_1$                 |     |  |
|-----------------------|-----|--|
| $X_1$                 | 1   |  |
| $X_2$                 | 8.0 |  |
| $X_3$                 | 0.5 |  |
| X <sub>4</sub>        | 0.3 |  |
| <b>X</b> <sub>5</sub> | 0.1 |  |

| R                     | $R_2$ |  |  |  |
|-----------------------|-------|--|--|--|
| $X_2$                 | 8.0   |  |  |  |
| $X_3$                 | 0.7   |  |  |  |
| $X_1$                 | 0.3   |  |  |  |
| X <sub>4</sub>        | 0.2   |  |  |  |
| <b>X</b> <sub>5</sub> | 0.1   |  |  |  |

| R                     | $R_3$ |  |  |  |  |
|-----------------------|-------|--|--|--|--|
| $X_4$                 | 0.8   |  |  |  |  |
| $X_3$                 | 0.6   |  |  |  |  |
| $X_1$                 | 0.2   |  |  |  |  |
| <b>X</b> <sub>5</sub> | 0.1   |  |  |  |  |
| $X_2$                 | 0     |  |  |  |  |

Compute top-2 for the sum aggregate function

| $R_1$                 |     |  |  |
|-----------------------|-----|--|--|
| $X_1$                 | 1   |  |  |
| $X_2$                 | 8.0 |  |  |
| $X_3$                 | 0.5 |  |  |
| $X_4$                 | 0.3 |  |  |
| <b>X</b> <sub>5</sub> | 0.1 |  |  |

| $R_2$                 |     |  |  |
|-----------------------|-----|--|--|
| $X_2$                 | 0.8 |  |  |
| <b>X</b> <sub>3</sub> | 0.7 |  |  |
| $X_1$                 | 0.3 |  |  |
| X <sub>4</sub>        | 0.2 |  |  |
| <b>X</b> <sub>5</sub> | 0.1 |  |  |

| $R_3$                 |     |  |  |  |
|-----------------------|-----|--|--|--|
| X <sub>4</sub>        | 0.8 |  |  |  |
| $X_3$                 | 0.6 |  |  |  |
| $X_1$                 | 0.2 |  |  |  |
| <b>X</b> <sub>5</sub> | 0.1 |  |  |  |
| $X_2$                 | 0   |  |  |  |

| R                     | 1   |  | $R_2$                 |     | $R_2$                 |     | R | 3 |
|-----------------------|-----|--|-----------------------|-----|-----------------------|-----|---|---|
| $X_1$                 | 1   |  | $X_2$                 | 0.8 | $X_4$                 | 0.8 |   |   |
| $X_2$                 | 0.8 |  | $X_3$                 | 0.7 | $X_3$                 | 0.6 |   |   |
| $X_3$                 | 0.5 |  | $X_1$                 | 0.3 | $X_1$                 | 0.2 |   |   |
| $X_4$                 | 0.3 |  | X <sub>4</sub>        | 0.2 | <b>X</b> <sub>5</sub> | 0.1 |   |   |
| <b>X</b> <sub>5</sub> | 0.1 |  | <b>X</b> <sub>5</sub> | 0.1 | $X_2$                 | 0   |   |   |

| R                     | 1   | $R_2$                 |     | R              | 3   |
|-----------------------|-----|-----------------------|-----|----------------|-----|
| $X_1$                 | 1   | $X_2$                 | 0.8 | X <sub>4</sub> | 0.8 |
| $X_2$                 | 0.8 | $X_3$                 | 0.7 | $X_3$          | 0.6 |
| $X_3$                 | 0.5 | $X_1$                 | 0.3 | $X_1$          | 0.2 |
| X <sub>4</sub>        | 0.3 | $X_4$                 | 0.2 | $X_5$          | 0.1 |
| <b>X</b> <sub>5</sub> | 0.1 | <b>X</b> <sub>5</sub> | 0.1 | $X_2$          | 0   |

| R              | 1   | $R_2$                 |     | R                     | 3   |
|----------------|-----|-----------------------|-----|-----------------------|-----|
| $X_1$          | 1   | $X_2$                 | 0.8 | X <sub>4</sub>        | 8.0 |
| $X_2$          | 0.8 | $X_3$                 | 0.7 | $X_3$                 | 0.6 |
| $X_3$          | 0.5 | $X_1$                 | 0.3 | $X_1$                 | 0.2 |
| X <sub>4</sub> | 0.3 | X <sub>4</sub>        | 0.2 | <b>X</b> <sub>5</sub> | 0.1 |
| $X_5$          | 0.1 | <b>X</b> <sub>5</sub> | 0.1 | $X_2$                 | 0   |

| R                        | 1   | $R_2$                 |     | $R_3$                 |     |
|--------------------------|-----|-----------------------|-----|-----------------------|-----|
| $\langle \chi_1 \rangle$ | 1   | $X_2$                 | 0.8 | $X_4$                 | 0.8 |
| $X_2$                    | 0.8 | $X_3$                 | 0.7 | $X_3$                 | 0.6 |
| $X_3$                    | 0.5 | $X_1$                 | 0.3 | $X_1$                 | 0.2 |
| <b>X</b> <sub>4</sub>    | 0.3 | $X_4$                 | 0.2 | <b>X</b> <sub>5</sub> | 0.1 |
| $X_5$                    | 0.1 | <b>X</b> <sub>5</sub> | 0.1 | $X_2$                 | 0   |

2. Perform random accesses to obtain the scores of all seen objects

| R              | 1   |  | $R_2$                 |     | $R_2$ |                       | $R_2$ |  | 3 |
|----------------|-----|--|-----------------------|-----|-------|-----------------------|-------|--|---|
| $X_1$          | 1   |  | $X_2$                 | 0.8 |       | $X_4$                 | 0.8   |  |   |
| $X_2$          | 0.8 |  | $X_3$                 | 0.7 |       | $X_3$                 | 0.6   |  |   |
| $X_3$          | 0.5 |  | $X_1$                 | 0.3 |       | $X_1$                 | 0.2   |  |   |
| X <sub>4</sub> | 0.3 |  | X <sub>4</sub>        | 0.2 |       | <b>X</b> <sub>5</sub> | 0.1   |  |   |
| $X_5$          | 0.1 |  | <b>X</b> <sub>5</sub> | 0.1 |       | $X_2$                 | 0     |  |   |

3. Compute score for all objects and find the top-k

| R                     | 1   | $R_2$          |     | $R_3$                 |     |
|-----------------------|-----|----------------|-----|-----------------------|-----|
| $X_1$                 | 1   | $X_2$          | 8.0 | $X_4$                 | 0.8 |
| $X_2$                 | 8.0 | $X_3$          | 0.7 | $X_3$                 | 0.6 |
| $X_3$                 | 0.5 | $X_1$          | 0.3 | $X_1$                 | 0.2 |
| X <sub>4</sub>        | 0.3 | X <sub>4</sub> | 0.2 | <b>X</b> <sub>5</sub> | 0.1 |
| <b>X</b> <sub>5</sub> | 0.1 | $X_5$          | 0.1 | $X_2$                 | 0   |

| F     | 2   |
|-------|-----|
| $X_3$ | 1.8 |
| $X_2$ | 1.6 |
| $X_1$ | 1.5 |
| $X_4$ | 1.3 |

 X<sub>5</sub> cannot be in the top-2 because of the monotonicity property

$$- f(X_5) \le f(X_1) \le f(X_3)$$

| R                     | 1   | $R_2$                 |     | $R_3$                 |     |
|-----------------------|-----|-----------------------|-----|-----------------------|-----|
| $X_1$                 | 1   | $X_2$                 | 0.8 | $X_4$                 | 0.8 |
| $X_2$                 | 0.8 | $X_3$                 | 0.7 | $X_3$                 | 0.6 |
| $X_3$                 | 0.5 | $X_1$                 | 0.3 | $X_1$                 | 0.2 |
| X <sub>4</sub>        | 0.3 | X <sub>4</sub>        | 0.2 | <b>X</b> <sub>5</sub> | 0.1 |
| <b>X</b> <sub>5</sub> | 0.1 | <b>X</b> <sub>5</sub> | 0.1 | $X_2$                 | 0   |

| F     | R   |  |  |  |  |
|-------|-----|--|--|--|--|
| $X_3$ | 1.8 |  |  |  |  |
| $X_2$ | 1.6 |  |  |  |  |
| $X_1$ | 1.5 |  |  |  |  |
| $X_4$ | 1.3 |  |  |  |  |

 The algorithm is cost optimal under some probabilistic assumptions for a restricted class of aggregate functions

#### 1. Access the elements sequentially

| $R_1$          |     |  |  |  |
|----------------|-----|--|--|--|
| $X_1$          | 1   |  |  |  |
| $X_2$          | 8.0 |  |  |  |
| $X_3$          | 0.5 |  |  |  |
| X <sub>4</sub> | 0.3 |  |  |  |
| $X_5$          | 0.1 |  |  |  |

| $R_2$                 |     |  |  |  |
|-----------------------|-----|--|--|--|
| $X_2$                 | 8.0 |  |  |  |
| $X_3$                 | 0.7 |  |  |  |
| $X_1$                 | 0.3 |  |  |  |
| $X_4$                 | 0.2 |  |  |  |
| <b>X</b> <sub>5</sub> | 0.1 |  |  |  |

| $R_3$                 |     |  |  |  |
|-----------------------|-----|--|--|--|
| <b>X</b> <sub>4</sub> | 0.8 |  |  |  |
| $X_3$                 | 0.6 |  |  |  |
| $X_1$                 | 0.2 |  |  |  |
| <b>X</b> <sub>5</sub> | 0.1 |  |  |  |
| $X_2$                 | 0   |  |  |  |

- 1. At each sequential access
  - a. Set the threshold t to be the aggregate of the scores seen in this access

| F                     | $R_1$ | $R_2$                 |     | R <sub>2</sub> |                       | 3   |
|-----------------------|-------|-----------------------|-----|----------------|-----------------------|-----|
| $X_1$                 | 1     | $X_2$                 | 8.0 |                | X <sub>4</sub>        | 0.8 |
| $X_2$                 | 0.8   | $X_3$                 | 0.7 |                | $X_3$                 | 0.6 |
| $X_3$                 | 0.5   | $X_1$                 | 0.3 |                | $X_1$                 | 0.2 |
| <b>X</b> <sub>4</sub> | 0.3   | <b>X</b> <sub>4</sub> | 0.2 |                | <b>X</b> <sub>5</sub> | 0.1 |
| $X_5$                 | 0.1   | <b>X</b> <sub>5</sub> | 0.1 |                | $X_2$                 | 0   |

t = 2.6

- 1. At each sequential access
  - b. Do random accesses and compute the score of the objects seen

| R              | <b>Q</b> <sub>1</sub> | $R_2$                 |     | R                     | 3   |
|----------------|-----------------------|-----------------------|-----|-----------------------|-----|
| $X_1$          | 1                     | X <sub>2</sub>        | 0.8 | $X_4$                 | 0.8 |
| X <sub>2</sub> | 0.8                   | $X_3$                 | 0.7 | $X_3$                 | 0.6 |
| $X_3$          | 0.5                   | $X_1$                 | 0.3 | $X_1$                 | 0.2 |
| X <sub>4</sub> | 0.3                   | X <sub>4</sub>        | 0.2 | <b>X</b> <sub>5</sub> | 0.1 |
| $X_5$          | 0.1                   | <b>X</b> <sub>5</sub> | 0.1 | $X_2$                 | 0   |

| t =   | 2.6 |
|-------|-----|
| $X_1$ | 1.5 |
| $X_2$ | 1.6 |
| $X_4$ | 1.3 |

- 1. At each sequential access
  - c. Maintain a list of top-k objects seen so far

| R                     | 1   | $R_2$                 |     | $R_3$ |       | 3   |
|-----------------------|-----|-----------------------|-----|-------|-------|-----|
| $X_1$                 | 1   | $X_2$                 | 0.8 |       | $X_4$ | 0.8 |
| X <sub>2</sub>        | 0.8 | $X_3$                 | 0.7 |       | $X_3$ | 0.6 |
| $X_3$                 | 0.5 | $X_1$                 | 0.3 |       | $X_1$ | 0.2 |
| X <sub>4</sub>        | 0.3 | X <sub>4</sub>        | 0.2 |       | $X_5$ | 0.1 |
| <b>X</b> <sub>5</sub> | 0.1 | <b>X</b> <sub>5</sub> | 0.1 |       | $X_2$ | 0   |

| t =        | 2.6 |
|------------|-----|
| $X_2$      | 1.6 |
| $X_1$      | 1.5 |
| <b>^</b> 1 | 1.5 |

- 1. At each sequential access
  - d. When the scores of the top-k are greater or equal to the threshold, stop

| R                     | 1   |  | $R_2$                 |     | R <sub>2</sub>        |     | R | 3 |
|-----------------------|-----|--|-----------------------|-----|-----------------------|-----|---|---|
| $X_1$                 | 1   |  | $X_2$                 | 0.8 | X <sub>4</sub>        | 0.8 |   |   |
| $X_2$                 | 0.8 |  | $X_3$                 | 0.7 | $X_3$                 | 0.6 |   |   |
| $X_3$                 | 0.5 |  | $X_1$                 | 0.3 | $X_1$                 | 0.2 |   |   |
| X <sub>4</sub>        | 0.3 |  | X <sub>4</sub>        | 0.2 | <b>X</b> <sub>5</sub> | 0.1 |   |   |
| <b>X</b> <sub>5</sub> | 0.1 |  | <b>X</b> <sub>5</sub> | 0.1 | $X_2$                 | 0   |   |   |

| t =   | 2.1 |
|-------|-----|
| $X_3$ | 1.8 |
| $X_2$ | 1.6 |
|       |     |

- 1. At each sequential access
  - d. When the scores of the top-k are greater or equal to the threshold, stop

| F                     | $R_1$ |  | $R_2$                 |     | $R_2$                 |     | R | 3 |
|-----------------------|-------|--|-----------------------|-----|-----------------------|-----|---|---|
| $X_1$                 | 1     |  | $X_2$                 | 0.8 | X <sub>4</sub>        | 0.8 |   |   |
| $X_2$                 | 0.8   |  | X <sub>3</sub>        | 0.7 | $X_3$                 | 0.6 |   |   |
| $X_3$                 | 0.5   |  | $X_1$                 | 0.3 | $X_1$                 | 0.2 |   |   |
| X <sub>4</sub>        | 0.3   |  | <b>X</b> <sub>4</sub> | 0.2 | <b>X</b> <sub>5</sub> | 0.1 |   |   |
| <b>X</b> <sub>5</sub> | 0.1   |  | <b>X</b> <sub>5</sub> | 0.1 | $X_2$                 | 0   |   |   |

| t =   | 1.0 |
|-------|-----|
| $X_3$ | 1.8 |
| $X_2$ | 1.6 |
|       | •   |

2. Return the top-k seen so far

| F     | $R_1$ |  | $R_2$          |     | $R_2$                 |     | R | 3 |
|-------|-------|--|----------------|-----|-----------------------|-----|---|---|
| $X_1$ | 1     |  | $X_2$          | 0.8 | X <sub>4</sub>        | 0.8 |   |   |
| $X_2$ | 0.8   |  | $X_3$          | 0.7 | $X_3$                 | 0.6 |   |   |
| $X_3$ | 0.5   |  | $X_1$          | 0.3 | $X_1$                 | 0.2 |   |   |
| $X_4$ | 0.3   |  | X <sub>4</sub> | 0.2 | <b>X</b> <sub>5</sub> | 0.1 |   |   |
| $X_5$ | 0.1   |  | $X_5$          | 0.1 | $X_2$                 | 0   |   |   |

| t — 1.0 |
|---------|
|---------|

| $X_3$ | 1.8 |
|-------|-----|
| $X_2$ | 1.6 |

 From the monotonicity property for any object not seen, the score of the object is less than the threshold

$$-f(X_5) \le t \le f(X_2)$$

- The algorithm is instance cost-optimal
  - within a constant factor of the best algorithm on any database

# Combining rankings

- In many cases the scores are not known
  - e.g. meta-search engines scores are proprietary information
- ... or we do not know how they were obtained
  - one search engine returns score 10, the other 100. What does this mean?
- ... or the scores are incompatible
  - apples and oranges: does it make sense to combine price with distance?
- In this cases we can only work with the rankings

### The problem

- Input: a set of rankings  $R_1, R_2, ..., R_m$  of the objects  $X_1, X_2, ..., X_n$ . Each ranking  $R_i$  is a total ordering of the objects
  - for every pair  $X_i, X_j$  either  $X_i$  is ranked above  $X_j$  or  $X_j$  is ranked above  $X_i$

 Output: A total ordering R that aggregates rankings R<sub>1</sub>,R<sub>2</sub>,...,R<sub>m</sub>

### Voting theory

- A voting system is a rank aggregation mechanism
- Long history and literature
  - criteria and axioms for good voting systems

## What is a good voting system?

- The Condorcet criterion
  - if object A defeats every other object in a pairwise majority vote, then A should be ranked first
- Extended Condorcet criterion
  - if the objects in a set X defeat in pairwise comparisons the objects in the set Y then the objects in X should be ranked above those in Y
- Not all voting systems satisfy the Condorcet criterion!

- Unfortunately the Condorcet winner does not always exist
  - irrational behavior of groups

|   | $V_1$ | $V_2$ | $V_3$ |
|---|-------|-------|-------|
| 1 | A     | В     | O     |
| 2 | В     | С     | Α     |
| 3 | С     | A     | В     |

$$A > B$$
  $B > C$   $C > A$ 

|   | $V_1$ | V <sub>2</sub> | V <sub>3</sub> |
|---|-------|----------------|----------------|
| 1 | Α     | D              | Е              |
| 2 | В     | Е              | Α              |
| 3 | С     | Α              | В              |
| 4 | D     | В              | С              |
| 5 | Е     | С              | D              |

|   | $V_1$ | $V_2$ | $V_3$ |
|---|-------|-------|-------|
| 1 | A     | D     | Е     |
| 2 | В     | Е     | Α     |
| 3 | С     | Α     | В     |
| 4 | D     | В     | С     |
| 5 | Е     | С     | D     |



|   | $V_1$ | $V_2$ | $V_3$ |
|---|-------|-------|-------|
| 1 | A     | D     | Е     |
| 2 | В     | Е     | Α     |
| 3 | С     | A     | В     |
| 4 | D     | В     | С     |
| 5 | Е     | С     | D     |



|   | $V_1$ | $V_2$ | $V_3$ |
|---|-------|-------|-------|
| 1 | Α     | D     | Ш     |
| 2 | В     | Е     | Α     |
| 3 | С     | Α     | В     |
| 4 | D     | В     | С     |
| 5 | Е     | С     | D     |



Resolve cycles by imposing an agenda

|   | $V_1$ | $V_2$ | $V_3$ |
|---|-------|-------|-------|
| 1 | Α     | D     | Е     |
| 2 | В     | Е     | Α     |
| 3 | С     | Α     | В     |
| 4 | D     | В     | С     |
| 5 | Е     | С     | D     |



C is the winner

Resolve cycles by imposing an agenda

|   | $V_1$ | $V_2$ | $V_3$ |
|---|-------|-------|-------|
| 1 | A     | D     | Е     |
| 2 | В     | Е     | A     |
| 3 | С     | Α     | В     |
| 4 | D     | В     | С     |
| 5 | Е     | С     | D     |



But everybody prefers A or B over C

- The voting system is not Pareto optimal
  - there exists another ordering that everybody prefers
- Also, it is sensitive to the order of voting

## Plurality vote

Elect first whoever has more 1st position votes

| voters | 10 | 8 | 7 |
|--------|----|---|---|
| 1      | A  | С | В |
| 2      | В  | Α | С |
| 3      | С  | В | Α |

 Does not find a Condorcet winner (C in this case)

### Plurality with runoff

 If no-one gets more than 50% of the 1st position votes, take the majority winner of the first two

| voters | 10 | 8 | 7 | 2 |
|--------|----|---|---|---|
| 1      | Α  | С | В | В |
| 2      | В  | Α | С | Α |
| 3      | С  | В | Α | С |

first round: A 10, B 9, C 8

second round: A 18, B 9

winner: A

## Plurality with runoff

 If no-one gets more than 50% of the 1st position votes, take the majority winner of the first two

| voters | 10 | 8 | 7 | 2 |
|--------|----|---|---|---|
| 1      | A  | С | В | Α |
| 2      | В  | Α | С | В |
| 3      | С  | В | Α | С |

change the order of A and B in the last column

first round: A 12, B 7, C 8 second round: A 12, C 15

winner: C!

#### Positive Association axiom

Plurality with runoff violates the positive association axiom

 Positive association axiom: positive changes in preferences for an object should not cause the ranking of the object to decrease

- For each ranking, assign to object X, number of points equal to the number of objects it defeats
  - first position gets n-1 points, second n-2,
     ..., last 0 points
- The total weight of X is the number of points it accumulates from all rankings

| voters | 3 | 2 | 2 |
|--------|---|---|---|
| 1 (3p) | A | В | С |
| 2 (2p) | В | С | D |
| 3 (1p) | С | D | Α |
| 4 (0p) | D | Α | В |

A: 
$$3*3 + 2*0 + 2*1 = 11p$$
B:  $3*2 + 2*3 + 2*0 = 12p$ 
C:  $3*1 + 2*2 + 2*3 = 13p$ 
D:  $3*0 + 2*1 + 2*2 = 6p$ 

BC C B A

Does not always produce Condorcet winner

Assume that D is removed from the vote

| voters | 3 | 2 | 2 |
|--------|---|---|---|
| 1 (2p) | Α | В | O |
| 2 (1p) | В | С | Α |
| 3 (0p) | С | Α | В |

A: 
$$3*2 + 2*0 + 2*1 = 7p$$
  
B:  $3*1 + 2*2 + 2*0 = 7p$   
C:  $3*0 + 2*1 + 2*2 = 6p$ 

BC B A

 Changing the position of D changes the order of the other elements!

## Independence of Irrelevant Alternatives

- The relative ranking of X and Y should not depend on a third object Z
  - heavily debated axiom

- The Borda Count of an an object X is the aggregate number of pairwise comparisons that the object X wins
  - follows from the fact that in one ranking X wins all the pairwise comparisons with objects that are under X in the ranking

### Voting Theory

 Is there a voting system that does not suffer from the previous shortcomings?

#### Arrow's Impossibility Theorem

- No voting system satisfies the following axioms
  - Universality
    - all inputs are possible
  - Completeness and Transitivity
    - for each input we produce an answer and it is meaningful
  - Positive Assosiation
    - Promotion of a certain option cannot lead to a worse ranking of this option.
  - Independence of Irrelevant Alternatives
    - Changes in individuals' rankings of irrelevant alternatives (ones outside a certain subset) should have no impact on the societal ranking of the subset.
  - Non-imposition
    - Every possible societal preference order should be achievable by some set of individual preference orders
  - Non-dictatoriship
- KENNETH J. ARROW Social Choice and Individual Values (1951). Won Nobel Prize in 1972

### Kemeny Optimal Aggregation

- Kemeny distance  $K(R_1,R_2)$ : The number of pairs of nodes that are ranked in a different order (Kendall-tau)
- Kemeny optimal aggregation minimizes

$$K(R, R_1, \dots, R_m) = \sum_{i=1}^m K(R, R_i)$$

- Kemeny optimal aggregation satisfies the Condorcet criterion and the extended Condorcet criterion
- ...but it is NP-hard to compute
  - easy 2-approximation by obtaining the best of the input rankings, but it is not "interesting"

## Rankings as pairwise comparisons

 If element u is before element v, then u is preferred to v

- From input rankings output majority tournaments G = (U,A):
  - for u,v in U, if the majority of the rankings prefer u to v, then add (u,v) to A

### The KwikSort algorithm

- KwikSort(G=(U,A))
  - if U is empty return empty list
  - -U1 = U2 = empty set
  - pick random pivot u from U
  - For all v in  $U\setminus\{u\}$ 
    - if (v,u) is in A then add v to U1
    - else add v to U2
  - -G1 = (U1,A1)
  - -G2 = (U2,A2)
  - Return KwikSort(G1),u,KwikSort(G2)

# Properties of the KwikSort algorithm

 KwikSort algorithm is a 3-approximation algorithm to the Kemeny aggregation problem

#### Locally Kemeny optimal aggregation

- A ranking R is locally Kemeny optimal if there is no bubble-sort swap of two consecutively placed objects that produces a ranking R' such that
- $K(R',R_1,...,R_m) \le K(R,R_1,...,R_m)$

 Locally Kemeny optimal is not necessarily Kemeny optimal

•

#### Locally Kemeny optimal aggregation

- Locally Kemeny optimal aggregation can be computed in polynomial time
  - At the i-th iteration insert the i-th element x in the bottom of the list, and bubble it up until there is an element y such that the majority places y over x
- Locally Kemeny optimal aggregation satisfies the Condorcet and extended Condorcet criterion

#### Rank Aggregation algorithm [DKNS01]

- Start with an aggregated ranking and make it into a locally Kemeny optimal aggregation
- How do we select the initial aggregation?
  - Use another aggregation method
  - Create a Markov Chain where you move from an object X, to another object Y that is ranked higher by the majority

### Spearman's footrule distance

 Spearman's footrule distance: The difference between the ranks R(i) and R'(i) assigned to object i

$$F(R,R') = \sum_{i=1}^{n} |R(i) - R'(i)|$$

 Relation between Spearman's footrule and Kemeny distance

$$K(R,R') \le F(R,R') \le 2K(R,R')$$

# Spearman's footrule aggregation

Find the ranking R, that minimizes

$$F(R, R_1, \dots, R_m) = \sum_{i=1}^m F(R, R_i)$$

- The optimal Spearman's footrule aggregation can be computed in polynomial time
  - It also gives a 2-approximation to the Kemeny optimal aggregation
- If the median ranks of the objects are unique then this ordering is optimal

### Example

| $R_1$ |   |  |
|-------|---|--|
| 1     | Α |  |
| 2     | В |  |
| 3     | С |  |
| 4     | D |  |

| $R_2$ |   |  |  |
|-------|---|--|--|
| 1     | В |  |  |
| 2     | Α |  |  |
| 3     | D |  |  |
| 4     | С |  |  |

| $R_3$ |   |  |  |  |
|-------|---|--|--|--|
| 1     | В |  |  |  |
| 2     | С |  |  |  |
| 3     | Α |  |  |  |
| 4     | D |  |  |  |



```
A: (1,2,3)
B: (1,1,2)
C: (2,3,4)
D: (3,4,4)
```

Access the rankings sequentially

| $R_1$ |   |  |  |
|-------|---|--|--|
| 1     | Α |  |  |
| 2     | В |  |  |
| 3     | С |  |  |
| 4     | D |  |  |

| $R_2$ |   |  |  |
|-------|---|--|--|
| 1     | В |  |  |
| 2     | Α |  |  |
| 3     | D |  |  |
| 4     | С |  |  |

| $R_3$ |   |  |
|-------|---|--|
| 1     | В |  |
| 2     | С |  |
| 3     | Α |  |
| 4     | D |  |

| R |  |  |  |  |
|---|--|--|--|--|
| 1 |  |  |  |  |
| 2 |  |  |  |  |
| 3 |  |  |  |  |
| 4 |  |  |  |  |

- Access the rankings sequentially
  - when an element has appeared in more than half of the rankings, output it in the aggregated ranking

|   | R <sub>1</sub> |  | $R_2$ |   | $R_3$ |   |
|---|----------------|--|-------|---|-------|---|
| 1 | A              |  | 1     | В | 1     | В |
| 2 | В              |  | 2     | Α | 2     | С |
| 3 | С              |  | 3     | D | 3     | Α |
| 4 | D              |  | 4     | С | 4     | D |

| R |   |  |  |  |
|---|---|--|--|--|
| 1 | В |  |  |  |
| 2 |   |  |  |  |
| 3 |   |  |  |  |
| 4 |   |  |  |  |

- Access the rankings sequentially
  - when an element has appeared in more than half of the rankings, output it in the aggregated ranking

|   | $R_1$ | $R_2$ |   | $R_3$ |   |
|---|-------|-------|---|-------|---|
| 1 | Α     | 1     | В | 1     | В |
| 2 | В     | 2     | Α | 2     | С |
| 3 | С     | 3     | D | 3     | A |
| 4 | D     | 4     | С | 4     | D |

| R |   |  |  |  |
|---|---|--|--|--|
| 1 | В |  |  |  |
| 2 | A |  |  |  |
| 3 |   |  |  |  |
| 4 |   |  |  |  |

- Access the rankings sequentially
  - when an element has appeared in more than half of the rankings, output it in the aggregated ranking

|   | $R_1$ |  | R |   | $R_3$ |   |
|---|-------|--|---|---|-------|---|
| 1 | Α     |  | 1 | В | 1     | В |
| 2 | В     |  | 2 | Α | 2     | С |
| 3 | С     |  | 3 | D | 3     | Α |
| 4 | D     |  | 4 | С | 4     | D |

| R |   |  |
|---|---|--|
| 1 | В |  |
| 2 | Α |  |
| 3 | С |  |
| 4 |   |  |

- Access the rankings sequentially
  - when an element has appeared in more than half of the rankings, output it in the aggregated ranking

|   | $R_1$ | $R_2$ |   | $R_3$ |   |
|---|-------|-------|---|-------|---|
| 1 | Α     | 1     | В | 1     | В |
| 2 | В     | 2     | Α | 2     | С |
| 3 | С     | 3     | D | 3     | Α |
| 4 | D     | 4     | С | 4     | D |

| R |   |  |  |
|---|---|--|--|
| 1 | В |  |  |
| 2 | Α |  |  |
| 3 | С |  |  |
| 4 | D |  |  |

## The Spearman's rank correlation

Spearman's rank correlation

$$S(R, R') = \sum_{i=1}^{\infty} (R(i) - R'(i))^{2}$$

- Computing the optimal rank aggregation with respect to Spearman's rank correlation is the same as computing Borda Count
  - Computable in polynomial time

### Extensions and Applications

- Rank distance measures between partial orderings and top-k lists
- Similarity search
- Ranked Join Indices
- Analysis of Link Analysis Ranking algorithms
- Connections with machine learning

#### References

- A. Borodin, G. Roberts, J. Rosenthal, P. Tsaparas, Link Analysis Ranking: Algorithms, Theory and Experiments, ACM Transactions on Internet Technologies (TOIT), 5(1), 2005
- Ron Fagin, Ravi Kumar, Mohammad Mahdian, D. Sivakumar, Erik Vee, Comparing and aggregating rankings with ties, PODS 2004
- M. Tennenholtz, and Alon Altman, "On the Axiomatic Foundations of Ranking Systems", Proceedings of IJCAI, 2005
- Ron Fagin, Amnon Lotem, Moni Naor. Optimal aggregation algorithms for middleware, J. Computer and System Sciences 66 (2003), pp. 614-656. Extended abstract appeared in Proc. 2001 ACM Symposium on Principles of Database Systems (PODS '01), pp. 102-113.
- Alex Tabbarok Lecture Notes
- Ron Fagin, Ravi Kumar, D. Sivakumar Efficient similarity search and classification via rank aggregation, Proc. 2003 ACM SIGMOD Conference (SIGMOD '03), pp. 301-312.
- Cynthia Dwork, Ravi Kumar, Moni Naor, D. Sivakumar. Rank Aggregation Methods for the Web. 10th International World Wide Web Conference, May 2001.
- C. Dwork, R. Kumar, M. Naor, D. Sivakumar, "Rank Aggregation Revisited," WWW10; selected as Web Search Area highlight, 2001.