Correction par pair

- A Exo 1. Avoir appliqué le TBA sur [0,T] et avoir écrit les deux hypothèses pour f: continue sur un segment.
- B Exo 1 : Avoir écrit clairement une égalité du type x = qT + r avec $r \in [0, T]$ pour justifier que les bornes sur [0, T] seront des bornes sur \mathbb{R} .
- C Exo 2. Avoir raisonné par l'absurde pour écarter le cas où f n'est pas constante.
- D Dans le cadre du raisonnement par l'absurde précédente, avoir bien appliqué le TVI : il faut mentionner la continuité de f bien sûr ! mais aussi le fait que 0 est une "valeur intermédiaire" (on peut aussi dire que "f change de signe").

Exercice 1.

La fonction f est <u>continue</u> sur le <u>segment</u> [0,T] : elle y est bornée et y atteint ses bornes. Notons donc $m = \min_{x \in [a,b]} f(x)$ et $M = \max_{x \in [a,b]} f(x)$. On va prouver que f est minorée par m et majorée par M (ce qui paraît déjà clair par T périodicité).

Soit $x \in \mathbb{R}$. Posons $q = \lfloor \frac{x}{T} \rfloor$ et r = x - qT. On a

$$q \le \frac{x}{T} < q+1$$
 donc $qT \le x < qT+1$.

Ceci amène $0 \le r < T$. Par T-périodicité de f,

$$f(x) = f(qT + r) = f(r) \in [m, M].$$

Ceci démontre bien que m est un minorant de f et M un majorant sur \mathbb{R} . Puisque m et M sont atteints sur [0,T] (et donc sur les segments [pT,(P+1)T] avec $p \in \mathbb{Z}$), ce sont respectivement le minimum et le maximum de f sur \mathbb{R} .

Exercice 2.

Analyse. Soit une fonction f continue sur \mathbb{R} telle que $\forall x \in \mathbb{R}$ $f(x)^2 = 1$. Pour un réel x, l'égalité $f(x)^2 = 1$ donne que $f(x) = \pm 1$. Bien sûr, le fait que f(x) vaut 1 ou -1 dépend a priori de x.

Supposons qu'il existe deux réels x et x' tels que $f(x) \neq f(x')$. Alors f prend à la fois la valeur 1 et la valeur -1. On peut dire ceci de plusieurs façon : dire que 0 est entre f(x) et f(x'), ou encore dire que f change de signe. Puisque de surcroît f est continue sur \mathbb{R} , le TVI dit qu'elle s'annule entre x et x', ce qui est exclu (puisque f ne peut prendre que les valeurs -1 et 1). Ceci démontre que f est constante, égale à 1 ou à -1.

Synthèse. Les fonctions constantes égales à 1 ou -1 sont continues et leur carré vaut 1.

<u>Conclusion</u>. Le problème a deux solutions : la fonction constante égale à 1 et la fonction constante égale à -1.

Petit problème.

On cherche les fonctions f et g solutions continues sur $\mathbb R$ de :

(E)
$$\forall (x,y) \in \mathbb{R}^2$$
 : $f(x+y) + f(x-y) = 2(f(x) + f(y))$
(F) $\forall (x,y) \in \mathbb{R}^2$: $g(x+y)g(x-y) = (g(x)g(y))^2$.

- 1. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue solution de (E).
 - (a) x = y = 0 donne f(0) + f(0) = 2(f(0) + f(0)), d'où f(0) = 0. Avec x = 0 on obtient, pour tout $y \in \mathbb{R}$:

$$f(y) + f(-y) = 2(f(0) + f(y)) = 2f(y),$$

soit f(-y) = f(y). La fonction f est paire.

- (b) Soit $x \in \mathbb{R}$. On montre par récurrence à 2 termes sur $n \in \mathbb{N}$ la propriété $\mathcal{P}(n)$: « $f(nx) = n^2 f(x)$ ».
 - Pour n = 0: $f(0x) = f(0) = 0 = 0^2 f(x)$; d'où $\mathcal{P}(0)$.
 - Pour n = 1: $f(1x) = f(x) = 1^2 f(x)$; d'où $\mathcal{P}(1)$.
 - Soit $n \in \mathbb{N}^*$. Supposons $\mathcal{P}(n-1)$ et $\mathcal{P}(n)$ et montrons $\mathcal{P}(n+1)$.

Par (E): f(nx + x) + f(nx - x) = 2(f(nx) + f(x)).

D'où f((n+1)x) = 2f(nx) - f((n-1)x) + 2f(x).

Par $\mathcal{P}(n)$: $f(nx) = n^2 f(x)$. Par $\mathcal{P}(n-1)$: $f((n-1)x) = (n-1)^2 f(x)$.

Donc $f((n+1)x) = 2n^2 f(x) - (n-1)^2 f(x) + 2f(x) = (n+1)^2 f(x)$.

Cela prouve $\mathcal{P}(n+1)$ et termine cette récurrence.

$$\forall (x,n) \in \mathbb{R} \times \mathbb{N} \quad f(nx) = n^2 f(x)$$

(c) Soit $(k, x) \in \mathbb{Z} \times \mathbb{R}$. Puisque f est paire : $f(kx) = f(\pm |k| x) = f(|k| x)$. On applique la question précédente à $|k| \in \mathbb{N}$: $f(kx) = |k|^2 f(x) = k^2 f(x)$.

$$\forall (k, x) \in \mathbb{Z} \times \mathbb{R} \quad f(kx) = k^2 f(x)$$

(d) Soit $r \in \mathbb{Q}$. Notons $r = \frac{a}{b}$ avec $(a,b) \in \mathbb{Z} \times \mathbb{N}^*$. On a donc f(a) = f(br). D'après la question précédente $f(br) = b^2 f(r)$ et $f(a) = f(a \times 1) = a^2 f(1)$. Il reste donc $a^2 f(1) = b^2 f(r)$, d'où on déduit $f(r) = a^2 f(1)/b^2 = r^2 f(1)$.

$$\forall r \in \mathbb{Q} \quad f(r) = r^2 f(1)$$

2. Soit $x \in \mathbb{R}$. Par densité de \mathbb{Q} dans \mathbb{R} , on peut considérer une suite (r_n) de rationnels telle que $r_n \to x$. Par 1-d on sait que $\forall n \in \mathbb{N}$ $f(r_n) = r_n^2 f(1)$. De la continuité de f en x on déduit que $f(r_n) \to f(x)$. Un passage à la limite montre donc que $f(x) = x^2 f(1)$. En posant a = f(1), on obtient

$$\forall x \in \mathbb{R} \quad f(x) = ax^2.$$

3. (a) On constate que pour tout $(x,y) \in \mathbb{R}^2$:

$$e^{a(x+y)^2}e^{a(x-y)^2} = e^{a(x^2+2xy+y^2+x^2-2xy+y^2)} = e^{2ax^2}e^{2ay^2} = \left(e^{ax^2}e^{ay^2}\right)^2.$$
Pour tout $a \in \mathbb{R}, \ x \mapsto e^{ax^2}$ est solution de (F) .

(b) Il est clair que $g=0 \implies g(0)=0$. Réciproquement, supposons g(0)=0. En choisissant y=0, (F) conduit à $g(x)^2=(g(x)g(0))^2=0$ pour tout $x\in\mathbb{R}$. D'où g=0.

$$g = 0 \iff g(0) = 0$$

- (c) On suppose que g est une solution de (F), continue et non identiquement nulle.
 - (i) Puisque $g \neq 0$, on a $g(0) \neq 0$ (question précédente). Avec x = y = 0, il découle de (F) que $g(0)^2 = g(0)^4$, ce qui donne g(0) = 0 ou $g(0)^2 = 1$. La possibilité g(0) = 0 étant écartée, il reste

$$g(0) = \pm 1$$

(ii) Soit $x \in \mathbb{R}$. En prenant "x = y" on obtient $g(2x)g(0) = g(x)^4$. On a donc aussi $g(t)g(0) = g(t/2)^4$ pour tout $t \in \mathbb{R}$ (prendre x = t/2). Raisonnons par l'absurde en supposant que g s'annule en $a \in \mathbb{R}$. La relation précédente (t = a) montre alors que g(a/2) = 0, puis (t = a/2) que g(a/4) = 0 et par une récurrence rapide que $g(a/2^n) = 0$ pour tout $n \in \mathbb{N}$. On passe à la limite pour $n \to +\infty : g(0) = 0$; (la continuité de g en 0 justifie que $\lim_{n \to +\infty} g(a/2^n) = g(0)$). D'après la question (b) cela contredit $g \neq 0$.

$$g$$
 ne s'annule pas.

(iii) D'abord, du fait que g ne s'annule pas, f est bien définie sur \mathbb{R} . Ensuite, par composition, f est continue sur \mathbb{R} . Enfin pour tout $(x,y) \in \mathbb{R}^2$:

$$f(x+y) + f(x-y) = \ln|g(x+y)| + \ln|g(x-y)|$$

$$= \ln|g(x+y)g(x-y)|$$

$$= \ln|(g(x)g(y))^{2}|$$

$$= 2\ln|g(x)| + 2\ln|g(y)|$$

$$= 2f(x) + 2f(y).$$

f est une solution continue de (E).

- (d) On constate que la fonction nulle est solution.
 - Soit $g \neq 0$ une solution continue de (F). D'après la question précédente et la question 2, on sait que g ne s'annule pas et qu'il existe $a \in \mathbb{R}$ tel que $\ln |g(x)| = ax^2$ pour tout $x \in \mathbb{R}$, ce qui laisse $|g(x)| = e^{ax^2}$. Puisque g est continue et ne s'annule pas, elle garde un signe constant (conséquence du théorème des valeurs intermédiaires). Si g > 0 alors $g(x) = e^{ax^2}$ et si g < 0 alors $g(x) = -e^{ax^2}$ (pour tout $x \in \mathbb{R}$, bien sûr).
 - Réciproquement, $x \mapsto e^{ax^2}$ est solution continue de (F) pour tout $a \in \mathbb{R}$ (question 3-(a)). On vérifie aisément qu'il en est de même pour $x \mapsto -e^{ax^2}$.

— Conclusion:

Solutions continues de $(F): x \mapsto \lambda e^{ax^2}$ où $(\lambda, a) \in \{-1, 0, 1\} \times \mathbb{R}$