S

 $\overline{9}3102$

For Supervisor's use only

Scholarship 2009 Chemistry

9.30 am Saturday 28 November 2009 Time allowed: Three hours Total marks: 48

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

You should answer ALL the questions in this booklet.

A periodic table is provided on page 2 of this booklet.

Write all your answers in this booklet.

If you need more space for any answer, use the page(s) provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–25 in the correct order and that none of these pages is blank.

You are advised to spend approximately 30 minutes on each question.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

PERIODIC TABLE OF THE ELEMENTS

<i>18</i> He 4.0	0 Ne 20.2	8 Ar 40.0	6 Kr 83.8	р Хе 131	5 Rn 222	
2	<u> </u>	-	ω	24 X	86 R 27.	
17	9 F 19.0	17 CI 35.5	35 Br 79.9	53 I 127	85 At 210	
16	8 O 16.0	16 S 32.1	34 Se 79.0	52 Te 128	84 Po 210	
15	N 14.0	15 P 31.0	33 As 74.9	51 Sb 122	83 Bi 209	
14	6 C 12.0	14 Si 28.1	32 Ge 72.6	50 Sn 119	82 Pb 207	
13	5 B 10.8	13 Al 27.0	31 Ga 69.7	49 In 115	81 T1 204	
		12	30 Zn 65.4	48 Cd 112	80 Hg 201	
		II	29 Cu 63.5	47 Ag 108	79 Au 197	
1-100		10	28 Ni 58.7	46 Pd 106	78 Pt 195	
Molar Mass/e mol ⁻¹	0	6	27 Co 58.9	45 Rh 103	77 Ir 192	109 Mt 268
Molar		∞	26 Fe 55.9	44 Ru 101	76 Os 190	108 Hs 265
1 H 1.0		_	25 Mn 54.9	43 Tc 98.9	75 Re 186	107 Bh 264
lumber		9	24 Cr 52.0	42 Mo 95.9	74 W 184	106 Sg 263
Atomic Number		2	23 V 50.9	41 Nb 92.9	73 Ta 181	105 Db 262
,		4	22 Ti 47.9	40 Zr 91.2	72 Hf 179	104 Rf 261
		n	21 Sc 45.0	39 Y 88.9	71 Lu 175	103 Lr 262
\sim	4 Be 9.0	12 Mg 24.3	20 Ca 40.1	38 Sr 87.6	56 Ba 137	88 Ra 226
I	3 Li 6.9	11 Na 23.0	19 K 39.1	37 Rb 85.5	55 Cs 133	87 Fr 223

	57	58	59	09	61	62	63	64	65	99	29	89	69	70
Lanthanide	La	Ce	Pr	PN	Pm	Sm		P. Cq	Tb	Dy	Но	Er	Tm	ΛP
Series	139	140	141	144	147	150	152	157	159	163	165	167	169	173
	68	06	91	92	93	94	95	96	97	86	66	100	101	102
Actinide	Ac	Th	Pa	n	Np	Pu	Am	Cm	Bk	Ct	Es	Fm	Md	No
Series	227	232	231	238	237	239	241	244	249	251	252	257	258	259

You have three hours to complete this examination.

Assessor's use only

QUESTION ONE (8 marks)

(a)	(i)	Draw a 3-dimensional structure for each of the possible isomers of the pentahalide PCl ₃ F ₂ , indicating the size of the F-P-F bond angle in each isomer.
	(ii)	In VSEPR theory it is assumed that the bond from the central atom to an atom of lower electronegativity occupies more space than the bond from the central atom to an atom of higher electronegativity. Comment on the polarity of each of the isomers of PCl ₃ F ₂ and identify the isomer that is most likely to occur.

(iii)	Upon standing for several days at low temperature, phosphorus pentahalide compounds convert to isomeric ionic solids.	Assessor's use only
	In crystalline PBr ₄ Cl, only one of the two ions formed contains phosphorus.	
	Predict the formulae of the ions in solid PBr ₄ Cl, and justify your answer.	

(b)	Two possible isomers may be formed when H ⁺ reacts with isocyanate, NCO ⁻ , as the H ⁺ may bond to either nitrogen or oxygen. A structural study of one of the isomers that is produced shows that it has a bond angle of 105° at the atom to which the H is attached.	Assessor's use only
	• Draw Lewis diagrams for the two possible structures of the product.	
	• Identify and explain which Lewis diagram better represents the structure of the product with the bond angle of 105° mentioned above.	
		_
		_
		_
		_
		_
		-
		_
		_
		-
		_
		_
		-
		-
		_

QUESTION TWO (8 marks)

(a)	Titanium is a Group 4 transition metal. There are three different chlorides of titanium: TiCl ₂ ,
	TiCl ₃ and TiCl ₄ . One of these chlorides, A , is a solid that dissolves in water to produce a
	mildly acidic purple solution. On standing in the presence of air, the colour of this solution
	fades, and a white solid, TiO ₂ , is formed. The chlorides B and C are very reactive toward
	water. B is a liquid and reacts to produce a strongly acidic solution and TiO ₂ . C reacts with
	acidified water to produce a purple solution and hydrogen gas.

inctais. Include	e balanced equ	ations 101 tl	ic reactions (icscribed.	

$E_0(H \cap H) = 0.42 \text{ M}$	$E_0(O_1/H_1O_2) = 0.92 \text{ V}$	
$E^{o}(H_2O/H_2) = -0.42 \text{ V}$	$E^{*}(O_{2}/H_{2}O) = 0.82 \text{ V}$	
		-
		_

b)	Titanium occurs naturally both as ilmenite ($FeTiO_3$) and TiO_2 . The isolation of titanium metal from ilmenite involves heating ilmenite, chlorine and carbon to form $TiCl_4$. This is then converted into titanium metal by treatment with magnesium.	Assessor use only
	$2\text{FeTiO}_3 + 7\text{Cl}_2 + 6\text{C} \rightarrow 2\text{TiCl}_4 + 2\text{FeCl}_3 + 6\text{CO}$	
	Discuss the possible oxidation number changes and electron transfers that occur in the conversion of ilmenite to TiCl_4 , taking into consideration the variety of oxidation numbers that are possible for the metals.	

QUESTION THREE (8 marks)

(a)	(i)	The structural formula of the amino acid glycine can sometimes be written as $H_3NCH_2COO^-$ (a zwitterion) and sometimes as H_2NCH_2COOH .
		Explain which structure is more appropriate, taking into account functional group chemistry and the fact that glycine is a crystalline solid that has a melting point of 233°C.

(ii)	The amino acids serine and aspa	ragine have the zwitterion structures shown below.	Assessor use only
		H ₃ N-CH-COO-	
	H ₃ N-CH-COO-	CH ₂	
	CH ₂	C=O	
	OH	NH ₂	
	serine	asparagine	
	These amino acids can be linked	to form two different dipeptides.	
		ese dipeptides change as the pH of the aqueous idic, through neutral, to highly basic.	
	Include structural formulae in yo	our answer.	
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_
			_

	se two processes is involved in preparing and isolating pure sa	amples
of the organic products.		

(c)	Compound A has the formula $C_9H_{18}O_3$.
	When compound $\bf A$ is refluxed with dilute sulfuric acid, it forms compound $\bf B$, $C_6H_{12}O_3$ and compound $\bf C$, C_3H_8O . Both compounds $\bf B$ and $\bf C$ react with acidified potassium dichromate to produce compounds $\bf D$, $C_6H_{10}O_3$ and $\bf E$, C_3H_6O respectively. Neither compound $\bf D$ nor $\bf E$ reacts with Tollens' reagent.
	When compound ${\bf B}$ is reacted with concentrated sulfuric acid, it produces THREE structural isomers ${\bf F}$, ${\bf G}$ and ${\bf H}$, of molecular formula $C_6H_{10}O_2$, all of which are optically active. ${\bf F}$ exists as geometrical isomers, but ${\bf G}$ does not. Both ${\bf F}$ and ${\bf G}$ decolourise a solution of bromine, ${\bf H}$ does not.
	Give the structural formulae for compounds A to H that are consistent with the information above.

Space for working.

QUESTION FOUR (8 marks)

Assessor's use only

(a) Models are representations used to explain observed phenomena.

A model useful for describing the physical properties of Group 18 elements views the particles of these elements as individual atoms.

In contrast, various properties of metals, both in solid and liquid form, can be explained by a model that views the structure of the metal as cations submerged in a "sea of electrons". In this model, the "electron sea" consists of valence electrons moving freely throughout the metal structure.

The table below shows the melting points (mp) and boiling points (bp) for selected elements in Groups 1 and 18 of the periodic table.

1	2	13	14	<i>15</i>	<i>16</i>	<i>17</i>	
Li mp: 180°C bp: 1342°C	Be						1
Na mp: 98°C bp: 883°C	Mg						
K mp: 63°C bp: 760°C	Ca						
Rb mp: 39°C bp: 686°C	Sr						1

- (i) Explain the trend in boiling points of the Group 18 elements.
- (ii) Discuss how each of the statements below is evidence for the different models described above.
 - The boiling point of a Group 18 element is significantly lower than the boiling point of the Group 1 element with the next higher atomic number.
 - The difference between the boiling point and the melting point of a Group 1 metal, such as sodium, is much larger than the difference between the boiling point and melting point of a Group 18 element, such as argon.

Predict, using the "electron sea" model described above, how the boiling points for the Group 1 metals would compare with those for the Group 2 metals.

 Assessor's
use only

(b) The standard enthalpy of atomisation, $\Delta_{\rm at}H^{\circ}$, is defined as the enthalpy change when 1 mole of atoms, in the gas phase, is formed from the element in its standard state at 25°C.

Element	Standard Enthalpy of Atomisation, $\Delta_{\rm at} H^{\circ}$ / kJ mol ⁻¹
С	717
F	79
C1	122

	Bond Enthalpy / kJ mol ⁻¹
C–F	485
C-C1	328

alculate the stan	culate the standard enthalpy of formation, $\Delta_f H^*$, of trichlorofluoromethane, $CCl_3F(g)$.		

QUESTION FIVE (8 marks)

Assessor's use only

(a) When silver ions are dissolved in an aqueous ammonia solution, complex ions of $Ag(NH_3)_2^+(aq)$ form. The formation of $Ag(NH_3)_2^+(aq)$ occurs in two steps that are represented by the equations below, together with the corresponding equilibrium constant for each reaction.

$$Ag^+(aq) + NH_3(aq) \rightleftharpoons Ag(NH_3)^+(aq)$$
 $K_1 = 2.1 \times 10^3$

$$Ag(NH_3)^+(aq) + NH_3(aq) \implies Ag(NH_3)_2^+(aq)$$
 $K_2 = 8.2 \times 10^3$

 $0.15 \text{ mol of AgNO}_3(s)$ is dissolved in 1.00 L of a 1.00 mol L^{-1} solution of aqueous ammonia.

Use the values of the equilibrium constants to identify the major species in this solution at equilibrium, and hence calculate the concentrations in mol L^{-1} of the Ag^+ , $Ag(NH_3)^+$ and $Ag(NH_3)_2^+$ ions.

(b)	15.35 g of a mixture of sodium nitrate, NaNO $_3$, and magnesium nitrate, Mg(NO $_3$) $_2$, was heated until no more gases were evolved. The NaNO $_3$ decomposes giving sodium nitrite, NaNO $_2$, and oxygen gas, while the Mg(NO $_3$) $_2$ decomposes to give the metal oxide, nitrogen dioxide and oxygen. The water-soluble part of the residue produced on heating was used to prepare 1.00 L of solution. 10.00 mL of this solution was reacted with 20.00 mL of 0.0200 mol L ⁻¹ acidified potassium permanganate (which oxidises nitrite to nitrate). The excess potassium permanganate required 10.25 mL of 0.0500 mol L ⁻¹ oxalic acid, H $_2$ C $_2$ O $_4$, for complete reaction in which oxalic acid is oxidised to form CO $_2$.	Assessor's use only
	Write balanced equations for all of the reactions occurring above, and hence calculate the mass, in grams, of each metal nitrate present in the original mixture.	

Accessor's
Assessor's use only
1

QUESTION SIX (8 marks)

Assessor's use only

Three flasks contain aqueous solutions of the **same pH**. One of the solutions is $0.0010 \text{ mol } L^{-1}$ nitric acid, one is $0.0060 \text{ mol } L^{-1}$ methanoic acid (HCOOH) and one is $0.040 \text{ mol } L^{-1}$ anilinium hydrochloride ($C_6H_5NH_3Cl$).

Explain why the different concentrations of the three acids produce the same pH.					

Discuss the change in both the pH of each of the solutions and the concentrations of the	
species present.	
NO CALCULATIONS ARE REQUIRED.	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

Extra paper for continuation of answers if required. Clearly number the question.

Question number	
	L

Extra paper for continuation of answers if required. Clearly number the question.

Question number	
	L

Extra paper for continuation of answers if required. Clearly number the question.

Question number	
	L

Extra paper for continuation of answers if required. Clearly number the question.

Question number	

For Assessor's Use Only		
Question Number	Marks	
ONE	(0)	
TWO	(8)	
THREE	(8)	
FOUR	(8)	
FIVE	(8)	
SIX	(8)	
TOTAL	(48)	

For Assessor's use only.

Keep flap folded in.