Automated Sarcasm Detection

Presentation by Jonathan Waring and Jonathan Hayne

Sarcasm Detection

- Sarcastic comments have become quite common on the Internet →
 especially on sites where people are more likely to express opinions
 (i.e., product reviews or social media)
- Sarcasm can be ambiguous, which makes it difficult for even humans to detect if a comment is sarcastic or not
- Sarcasm is usually detected in face-to-face communication through vocal tone and facial cues that communicate the speaker's intent → detecting it in plain writing is much more difficult

Why bother?

 There's actually been quite a few people who have expressed interest in the area, including the Secret Service, which posted a request for an automated software that detected whether threats on Twitter were serious or not

There are <u>massive amounts of text data being</u> <u>generated</u> every minute, including 456,000 tweets, 74,220 tumblr posts, 600 new Wikipedia edits, 15,220,700 texts sent, etc

Why is this such a hard problem?

- NLP algorithms have been successful in <u>summarizing text</u>, creating <u>chatbots</u>, <u>classifying documents</u>, identifying the <u>emotional sentiment</u> <u>behind text</u>, and <u>automated question answering</u>.
- These algorithms are typically programmed to process text exactly as they see it
- This is problematic when you consider the fact that sarcasm is just saying the opposite of what you mean → sarcasm inherently conveys contradictions
- How do we identify sarcasm from plain text alone?

The Dataset

Self-Annotated Reddit Corpus (SARC)

- The SARC dataset is a large corpus for sarcasm research and for training and evaluating systems for sarcasm detection that was put together by the Computer Science Department at Princeton University¹
- Each statement is self-annotated sarcasm is labeled by the author, not an independent annotator — and provided with user, topic, and conversation context
- All the statements come from Reddit, a social media site in which
 users communicate by commenting on submissions, which are titled
 posts consisting of embedded media, external links, and/or text, that
 are posted on topic-specific forums known as subreddits

Problems with Self-Annotation

- Reddit users have adopted a common method for sarcasm annotation consisting of adding the marker "/s" to the end of sarcastic statements
- As with Twitter hashtags, using these markers as indicators of sarcasm is noisy²
 - Many users do not make use of the marker, do not know about it, or only use it where sarcastic intent is not otherwise obvious
- The creators of the corpus estimated a false positive rate of 1.0% and a false negative rate of 2.0%

Data Points

- The SARC dataset contains over 1.3 million quote-response pairs, but the dataset is very imbalanced (approximately 10x more non-sarcasm comments)
- Each datapoint in the dataset also contains a variety of metadata surrounding the actual text including:
 - Author of comment, number of upvotes, number of downvotes, subreddit, date posted, etc.
- Our goal was to create a general automated sarcasm detector from text alone, so we choose to ignore a lot of this metadata (we do acknowledge that this metadata could be potentially useful)
- We also choose to use only a subset of the SARC dataset in order to give us balanced labels
 - We end up with 255,172 training examples and 63,979 testing examples from over 4,000 different subreddits
 - Each quote has at least one sarcastic and one non-sarcastic response

Examples from the SARC Dataset

Sarcastic

- Quote: AMA Request: Anyone involved or has been involved in Organized Crime
 - I think there has already been an AMA for someone working in Goldman Sachs
- Quote: Jeb Bush defends Paul Ryan's lies
 - Wow this is the first Bush to ever lie to the public.

Non-Sarcastic

- Quote: AMA Request: Anyone involved or has been involved in Organized Crime
 - Nice try, newly "made" mob dude seeking out rats to report to your fucking boss.
- Quote: Jeb Bush defends Paul Ryan's lies
 - Jeb Bush 'nuff said.

Feature Extraction

Preprocessing

- Stemming
 - o "Boiling" a word down to its base meaning
 - Didn't use stemming
 - how a word is said is almost as important as the content of the word
- Removed Stopwords
 - the, are, that, etc.
- Tokenization
 - Twitter versus Word Tokenizer
 - We used Twitter tokenizer
 - Very flexible

Word2Vec

- Turn a corpus into a vector space
- Combines CBOW and Skip Gram Models
- Parameters:
 - Context window (7)
 - Dimension (300)
 - Higher dimension yields better results but slower training time
 - Typical word2vec dimension sizes are 100-300
 - N-gramming

CBOW

- Predicts probability of a word given a context
- Topology
 - Input layer is one hot encoded context window of each word
 - Output layer is vocabulary
 - Hidden layer has same number of nodes as word2vec dimension size
 - Cost function is negative log likelihood of a word given a set of context
 - Linear Activation

Skip-Gram

Input	Output(Context1)	Output(Context2)
Hey	this	<padding></padding>
this	Hey	is
is	this	sample
sample	is	corpus
corpus	sample	corpus
using	corpus	only
only	using	one
one	only	context
context	one	word
word	context	<padding></padding>

- Same as CBOW but reverse architecture
- Predicts
 probability of a context given a word
- Context window of 1 on left

Afinn

- Database of words and their corresponding valence
 - Measures how positively or negatively charged a word is
- Valence values between -5 (very negative) and +5 (very positive)
 - le abandon has score of -2
- Average each individual word's score to get a sentence's valence

NRC Word-Emotion Association

- Database with ~14000 words and their associations with 8 emotions
 - Anger
 - Anticipation
 - Disgust
 - Fear
 - Joy
 - Sadness
 - Surprise
 - Trust
- Generated from Tweets hashtagging the above emotions
- Average each individual word's emotion vector to get emotion vector for a sentence

Standardization of Feature Vectors

- Structure of Feature Vector:
 - [300 dimensional word embedding, emotion vector, valence]
- Why standardize?
 - Necessary for neural nets
 - Feature vectors with larger magnitude have greater influence on estimators
 - Speeds up LR training time
- Don't need to standardize for NB and XGBoost but we did anyway
- Used Scikit-learn StandardScaler

Machine Learning Models and Results

Naive Bayes

- Even though the independence assumptions of Naive Bayes are often far-fetched, it still performs well in practice
- We use Gaussian Naive Bayes, which assumes that the continuous values (features)
 associated with each class are distributed according to a Gaussian distribution
- Thus each observation value (comment), v, has its probability distribution given a class C_k , $p(x = v \mid C_k)$ computed by plugging v into an equation for a normal distribution parameterized by μ_k and σ_k^2 :

$$p(x=v\mid C_k) = rac{1}{\sqrt{2\pi\sigma_k^2}}\,e^{-rac{(v-\mu_k)^2}{2\sigma_k^2}}$$

Naive Bayes

- Was by far the fastest to train, but also performed the worst
- Naive Bayes took 0.22 minutes to train

Training Accuracy	54.18%
Test Accuracy	54.21%
Testing Precision	53.31%
Testing Recall	70.58%

Logistic Regression

 Logistic regression uses the concept of odds ratios to calculate the probability of a certain outcome of the dependent variable

$$Odds = rac{P(y=1|x)}{1-P(y=1|x)} egin{array}{c} ext{Logit transformation} \ ext{} Logit(P(x)) = \lnigg(rac{P(y=1|x)}{(1-P(y=1|x)}igg) \ ext{} \end{pmatrix}$$

• In Logistic regression the Logit of the probability is said to be linear with respect to x, so the logit becomes:

$$Logit(P(x)) = a + bx - P(y = 1|x) = e^{a+bx} - P(y = 1|x) = \frac{e^{a+bx}}{1 + e^{a+bx}} = \frac{1}{1 + e^{-(a+bx)}}$$

More generally:

$$P(y=1|x) = rac{1}{1+e^{-(w^Tx)}}$$

Logistic Regression

- Not much difference between Logistic Regression and Naive Bayes
- Logistic Regression took 3.35 minutes to train

Training Accuracy	54.73%
Test Accuracy	54.64%
Testing Precision	54.74%
Testing Recall	55.39%

Logistic Regression Optimized

- Performed a Grid Search to optimize for Logistic Regression regularization parameter
- Grid Search took 45 minutes
- Best parameter value was C = 1000 (C is described as the inverse of regularization strength in Scikit Learn's documentation)

Training Accuracy	59.68%
Test Accuracy	59.32%
Testing Precision	59.56%
Testing Recall	58.97%

XGBoost

- XGBoost is short for "Extreme Gradient Boosting"
- XGBoost is an algorithm that has recently been dominating applied machine learning and Kaggle competitions
- Boosting is an ensemble technique where new models are added to correct the errors made by existing models.
- Gradient boosting³ is an approach where new models are created that predict the residuals or errors of prior models and then added together to make the final prediction.
- Incredibly powerful/flexible → MANY hyperparameters to tune

XGBoost

- Little better than Naive Bayes and Logistic Regression
- XGBoost took 20.40 minutes to train

Training Accuracy	60.71%
Test Accuracy	59.46%
Testing Precision	59.98%
Testing Recall	57.79%

XGBoost Optimized

- Performed a Randomized Search to optimize 6 of XGBoost's hyperparameters
- Randomized Search took almost a day to run
- Almost no improvement

Training Accuracy	71.73%
Test Accuracy	61.24%
Testing Precision	61.89%
Testing Recall	59.22%

Neural Network in TensorFlow

- Is it really a Data Science project if we don't try to use a neural network?
- Built our Neural Network model in TensorFlow using the following:
 - ReLU activation functions
 - Gradient Clipping using global norm ⁴ to account for vanishing gradients
 - Minibatch gradient descent
 - Adam optimizer ⁵
 - Dropout and L2 loss for regularization
 - Convergence threshold of 1.0 x 10⁻⁵
 - Several different architectures

Neural Network – 1 hidden layer

No Regularization

Training Time	11.46 minutes
Training Accuracy	62.77%
Testing Accuracy	59.65%

Dropout Regularization

Training Time	4.32 minutes
Training Accuracy	59.92%
Testing Accuracy	59.24%

L2 Regularization

Training Time	2.44 minutes
Training Accuracy	53.45%
Testing Accuracy	52.30%

Training Time	3.20 minutes
Training Accuracy	53.05%
Testing Accuracy	52.07%

Neural Network - 2 hidden layers (all same size)

No Regularization

Training Time	53.76 minutes
Training Accuracy	83.40%
Testing Accuracy	56.11%

Dropout Regularization

Training Time	25.82 minutes
Training Accuracy	65.04%
Testing Accuracy	58.95%

L2 Regularization

Training Time	4.44 minutes
Training Accuracy	54.64%
Testing Accuracy	52.30%

Training Time	7.14 minutes
Training Accuracy	53.79%
Testing Accuracy	52.44%

Neural Network - 2 hidden layers (varying sizes)

No Regularization

Training Time	96.21 minutes
Training Accuracy	92.32%
Testing Accuracy	55.31%

Dropout Regularization

i	
Training Time	76.94 minutes
Training Accuracy	70.66%
Testing Accuracy	57.70%

L2 Regularization

Training Time	28.77 minutes
Training Accuracy	59.37%
Testing Accuracy	52.41%

Training Time	14.91 minutes
Training Accuracy	54.08%
Testing Accuracy	52.73%

Neural Network - 3 hidden layers (varying sizes, all shrinking)

No Regularization

Training Time	100.34 minutes
Training Accuracy	93.15%
Testing Accuracy	55.12%

Dropout Regularization

Training Time	55.37 minutes
Training Accuracy	67.98%
Testing Accuracy	57.60%

L2 Regularization

Training Time	28.24 minutes
Training Accuracy	59.86%
Testing Accuracy	52.05%

Training Time	8.69 minutes
Training Accuracy	53.09%
Testing Accuracy	52.32%

Neural Network - 3 hidden layers (varying sizes, expanding then shrinking)

No Regularization

Training Time	349.50 minutes
Training Accuracy	96.64%
Testing Accuracy	54.50%

Dropout Regularization

<u> </u>	<u> </u>
Training Time	198.92 minutes
Training Accuracy	74.77%
Testing Accuracy	56.55%

L2 Regularization

Training Time	138.23 minutes
Training Accuracy	59.36%
Testing Accuracy	52.18%

Training Time	26.81 minutes
Training Accuracy	53.16%
Testing Accuracy	52.36%

Neural Network - 3 hidden layers (varying sizes, all shrinking) with varying Dropout

20% Dropout Regularization

Training Time	55.37 minutes
Training Accuracy	67.98%
Testing Accuracy	57.60%

30% Dropout Regularization

-	
Training Time	153.15 minutes
Training Accuracy	69.78%
Testing Accuracy	57.87%

40% Dropout Regularization

Training Time	82.60 minutes
Training Accuracy	65.07%
Testing Accuracy	58.41%

50% Dropout Regularization

Training Time	26.81 minutes
Training Accuracy	61.07%
Testing Accuracy	58.97%

Discussion of Results

- Our best testing accuracy came from XGBoost with a 61.24% testing accuracy
 - o 61.89% of sarcastic classified comments were actually sarcastic
 - Correctly classified 59.22% of the sarcastic comments
- Had lots of problems with our neural networks overfitting even with dropout
 - While adding L2 penalties to our loss function helped reduce overfitting, we also got our lowest training/testing accuracies with the added penalties
 - The best testing accuracy from a neural network was from the 1 hidden layer network (59.65%) with no regularization. This is barely better than the optimized Logistic Regression model at 59.32%
 - Got training accuracy as high as 96.64%, but resulted in testing accuracy of only 54.50%

Conclusion

- A similar study that attempted to detect sarcasm on Twitter achieved testing accuracies around 70% using lexical and pragmatic features, along with feature selection techniques ⁶
 - Word2Vec, while supposedly better at capturing context, did not help us in our performance.
 We also only used 22 lexical features, which appear to perhaps be more helpful in this case.
- This same study also showed that human accuracy in detecting sarcasm in plain text on Twitter was only around 62.59% ⁶
 - Our best testing accuracy was 61.24%, so we are close to the human baseline
- Potential ways to address this problem in the future:
 - Consider metadata surrounding each sarcastic comment
 - Maybe work on detecting sarcasm within subreddits before trying to build a general sarcasm detector
 - Use more lexical features and maybe employ feature selection techniques

References

- [1] Khodak, Mikhail, Nikunj Saunshi, and Kiran Vodrahalli. "A Large Self-Annotated Corpus for Sarcasm." *arXiv preprint arXiv:1704.05579* (2017).
- [2] Bamman, David, and Noah A. Smith. "Contextualized Sarcasm Detection on Twitter." ICWSM. 2015.
- [3] Friedman, Jerome H. "Greedy function approximation: a gradient boosting machine." *Annals of statistics* (2001): 1189-1232.
- [4] Pascanu, Razvan, Tomas Mikolov, and Yoshua Bengio. "On the difficulty of training recurrent neural networks." *International Conference on Machine Learning*. 2013.
- [5] Kingma, Diederik, and Jimmy Ba. "Adam: A method for stochastic optimization." arXiv preprint arXiv:1412.6980 (2014).
- [6] González-Ibánez, Roberto, Smaranda Muresan, and Nina Wacholder. "Identifying sarcasm in Twitter: a closer look." *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: Short Papers-Volume 2.* Association for Computational Linguistics, 2011.