# Lecture 3 Discrete Random Variables

## **Chao Song**

College of Ecology Lanzhou University

September 8, 2025

## **Motivating examples**

**Example 1**: Let the random experiment be throwing a die. The sample space associated with this experiment is  $S = \{1, 2, 3, 4, 5, 6\}$ , with elements of S indicating the number of spots on the side facing up. Let X be a function such that X(s) = s. Now, X is a real-valued function that has the outcome space S as its domain and  $\{0, 1, 2, 3, 4, 5, 6\}$  as its space.

**Example 2**: A rat is selected at random from a cage and its sex is determined. The sample space is thus  $S = \{female, male\} = \{F, M\}$ . Let X be a function that has the outcome space S as its domain and the set of real numbers  $\{x : x = 0, 1\}$  as its range.

## **Definition of random variables**

**Definition**: Given a random experiment with an sample space S, a function X that assigns one and only one real number X(s) = x to each element s in S is called a random variable. The space of X is the set of real number  $\{x: X(s) = x, s \in S\}$ 

**Example 1**: Let the random experiment be throwing a die. The sample space associated with this experiment is  $S = \{1, 2, 3, 4, 5, 6\}$ , with elements of S indicating the number of spots on the side facing up. Let X(s) = s, the space of the random variable X is  $\{1, 2, 3, 4, 5, 6\}$ .

**Example 2**: A rat is selected at random from a cage and its sex is determined. The sample space is  $S = \{female, male\}$ . Let X be a function such that X(F) = 0 and X(M) = 1. X is a random variable with space  $\{0, 1\}$ 

## **Definition of random variables**

A few remarks on the definition of random variable:

- Intuitively, we may view random variable as a quantity whose value is determined by the outcome of an random experiment. For practical purpose, this intuitive interpretation of random variable is sufficient;
- Rigorously, a random variable is a function that maps the outcome of a random experiment to real numbers. This is mainly for mathematical rigor.
- Roughly speaking, because probability is a measure mapping events to unit interval. The argument of probability is events. Thus, if we are going to define probability for random variable, we must be able to interpret {X ≤ x} as an event.
- How to map outcome of random experiment to a real number is not a trivial mathematical question. In practice, the choice is often made based on intuition or convenience.

## Discrete random variables

**Discrete random variable**: a random variable is discrete if it only takes values that are in some countable subsets  $\{x_1, x_2, \ldots\}$  of real number.

- Number of heads in 10 coin flips;
- Number of coin flips until we have two heads;
- Species richness in a country;
- Number of students late to this class each week.

# **Probability mass function**

**Definition**: The probability mass function (PMF) of a discrete random variable X is the function  $f(x) : \mathbb{R} \to [0,1]$  given by f(x) = P(X = x).

## Properties of probability mass function:

- $0 \le f(x) \le 1$  for all x;
- f(x) = 0 if  $x \notin \{x_1, x_2, \ldots\};$
- $\sum_{x} f(x) = 1$ .

# **Probability mass function**

**Example**: Let X be the number of heads when tossing two fair coins. What is the probability mass function for random variable X?

**Answer**: possible number of heads are 0, 1, 2. The PMF of X is

- $P(X = 0) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4}$ ;
- $P(X = 1) = \frac{1}{2} \times \frac{1}{2} + \frac{1}{2} \times \frac{1}{2} = \frac{1}{2};$
- $P(X = 2) = \frac{1}{2} \times \frac{1}{2} = \frac{1}{4};$

## **Cumulative distribution function**

**Definition**: The cumulative distribution function (CDF) of a random variable X is the function  $F(x): \mathbb{R} \to [0,1]$  given by  $F(x) = P(X \le x)$ 

## Properties of cumulative distribution function:

- F(x) is a non-decreasing function: if x < y, then  $F(x) \leqslant F(y)$ ;
- $\lim_{x\to -\infty} F(x) = 0$  and  $\lim_{x\to +\infty} F(x) = 1$ ;
- F(x) is right-continuous.

**Proposition**: Consider real numbers x and y with x < y, then

- P(X > x) = 1 F(x);
- $P(x < X \leqslant y) = F(y) F(x);$

## Visualize PMF and CDF

**Example**: Let *X* be the number of heads when tossing two fair coins. Possible values for *X* are 0, 1, and 2. The PMF and CDF of *X* are:



## **Mathematical expectation**

In addition to PMF and CDF, which fully characterize the distribution of a random variable, **mathematical expectation** is an important concept in summarizing characteristics of distribution of probability.

**Definition**: if f(x) is the probability mass function of the discrete random variable X with space S, and if the summation  $\sum_{x \in X} u(x)f(x)$  exists, then the sum is called the mathematical expectation or the expected value of u(x), and it is denoted E[u(x)]

## **Mathematical expectation**

**Example**: Let X be the number of heads when tossing two coins. What is the expected value of X? If one gets two points for each head, what is the expected value of points?

**Answer**: The expected value of number of heads is

$$E(X) = 0 \times \frac{1}{4} + 1 \times \frac{1}{2} + 2 \times \frac{1}{4} = 1.$$

Let u(x) be the points one get after tossing two coins, u(x) = 2x, then

$$E[u(x)] = (2 \times 0) \times \frac{1}{4} + (2 \times 1) \times \frac{1}{2} + (2 \times 2) \times \frac{1}{4} = 2.$$

# **Properties of mathematical expectation**

When exists, the mathematical expectation satisfies the following properties:

- If c is a constant, then E(c) = c;
- If c is a constant, E[cu(x)] = cE[u(x)];
- if  $c_1$  and  $c_2$  are constant,  $E[c_1u_1(x) + c_2u_2(x)] = c_1E[u_1(x)] + c_2E[u_2(x)].$

The above properties arise from the fact that **mathematical expectation is a linear operation**. Thus nonlinear operations cannot be applied the same way. For example,  $E(x^2) \neq [E(x)]^2$  in general.

## Mean and variance

**Mean** and **variance** are special cases of the mathematical expectation. Let X be a discrete random variable with probability mass function f(x)

- Mean:  $\mu = E(X) = \sum_{x \in S} xf(x)$ ;
- Variance:  $\sigma^2 = Var(X) = E[(X \mu)^2] = \sum_{x \in S} (x \mu)^2 f(x)$

## Mean and variance

Let X be a random variance with mean  $\mu$  and variance  $\sigma$ . Its variance can be calculated as  $\sigma^2 = E(X^2) - \mu^2$ 

Proof:

$$\sigma^{2} = E[(x - \mu)^{2}] = E[X^{2} - 2\mu X + \mu^{2}]$$
$$= E(X^{2}) - 2\mu E(X) + \mu^{2}$$
$$= E(X^{2}) - \mu^{2}$$

## Mean and variance

**Properties of mean and variance**: Let X be a random variable with mean  $\mu$  and variance  $\sigma^2$ . Let a and b be constants. What is the mean and variance of aX + b?

Based on the property of mathematical expectation, we have

- $E(aX + b) = aE(X) + b = a\mu + b$ ;
- $Var(aX + b) = E[(aX + b a\mu b)^2] = E[a^2(X \mu)^2] = a^2\sigma^2$

#### **Moment**

We can view  $x_i$  as the distance of that point from the origin. In mechanics, the product of a distance and its weight is called a moment, so  $x_i f(x_i)$  is a moment having a moment arm of length  $x_i$ . The sum of these products would be the moment of the system of distance and weights.

**Definition:** For a random variable with probability mass function f(x), we define  $\Sigma_{x \in S}(x-a)f(x)$  as the first moment about a. More generally, we call  $\Sigma_{x \in S}(x-a)^n f(x)$  the nth moment of X about a.

- The moment about the mean of a random variable  $\mu$  is called the central moment. The first central moment is always zero.
- The second central moment of a random variable is its variance.

# **Moment generating function**

**Definition**: Let *X* be a random variable. We define the moment generating function of *X* to be

$$m_X(t) = E(e^{tX})$$

Moment generating function, as its name suggests, can be used to find moments of a random variable. For example:

$$\frac{d}{dt}m_X(t) = E(Xe^{tX})$$
$$\frac{d^2}{dt^2}m_X(t) = E(X^2e^{tX})$$

which when we evaluate at t=0 becomes E(X) and  $E(X^2)$ . More generally, the *n*th derivative of  $m_X(t)$  evaluated at t=0 is the expected value of  $X^n$ , i.e.,  $m^{(n)}(0)=E(X^n)$ 

# Moment generating function

**Example**: Suppose random variable has a probability mass function

$$f(x) = q^{x-1}p, \ x = 1, 2, 3, \dots$$

What is the moment generating function of X? What is the mean of X?

**Answer**: The moment generating function of *X* is

$$M(t) = E(e^{tX}) = \sum_{x=1}^{\infty} e^{tx} q^{x-1} p$$

$$= \frac{p}{q} \sum_{x=1}^{\infty} (qe^{t})^{x}$$

$$= \frac{p}{q} \sum_{x=1}^{\infty} (qe^{t}) + (qe^{t})^{2} + (qe^{t})^{3} + \cdots$$

$$= \frac{p}{q} \frac{qe^{t}}{1 - qe^{t}} = \frac{pe^{t}}{1 - qe^{t}}$$

# **Moment generating function**

We use the derivatives of the moment generating function to calculate the mean:

$$M'(t) = rac{(1 - qe^t)pe^t - pe^t(-qe^t)}{(1 - qe^t)^2}$$

$$= rac{pe^t}{(1 - qe^t)^2}$$

Evaluating M'(t) at 0, we have:

$$E(X) = M'(0) = \frac{p}{(1-q)^2}$$