Lab-Assignment - 5

Aim: Write a script to implement Naïve Bayes Classifier for the given Dataset to support the following

```
In [1]: import numpy as np import pandas as pd
```

Out[2]:

	Age	Sex	Job	Housing	Saving accounts	Checking account	Credit amount	Duration	Purpose	
0	67	male	2	own	NaN	little	1169	6	radio/TV	
1	22	female	2	own	little	moderate	5951	48	radio/TV	
2	49	male	1	own	little	NaN	2096	12	education	
3	45	male	2	free	little	little	7882	42	furniture/equipment	
4	53	male	2	free	little	little	4870	24	car	
					•••		•••			
995	31	female	1	own	little	NaN	1736	12	furniture/equipment	
996	40	male	3	own	little	little	3857	30	car	
997	38	male	2	own	little	NaN	804	12	radio/TV	
998	23	male	2	free	little	little	1845	45	radio/TV	
999	27	male	2	own	moderate	moderate	4576	45	car	

1000 rows × 9 columns

In [3]: # df = df.drop(['sr'], axis=1)
 df.head()

Out[3]:

Purpose	Duration	Credit amount	Checking account	Saving accounts	Housing	Job	Sex	Age	
radio/TV	6	1169	little	NaN	own	2	male	67	0
radio/TV	48	5951	moderate	little	own	2	female	22	1
education	12	2096	NaN	little	own	1	male	49	2
furniture/equipment	42	7882	little	little	free	2	male	45	3
car	24	4870	little	little	free	2	male	53	4

In [4]: df.isnull().sum()

Out[4]: Age 0 Sex 0 Job 0 0 Housing Saving accounts 183 Checking account 394 Credit amount 0 Duration 0 Purpose 0 dtype: int64

```
In [5]: df['Saving accounts'].fillna(df['Checking account'], inplace=True)
    df['Checking account'].fillna(df['Saving accounts'], inplace=True)
    df
```

Out[5]:

	Age	Sex	Job	Housing	Saving accounts	Checking account	Credit amount	Duration	Purpose	
0	67	male	2	own	little	little	1169	6	radio/TV	
1	22	female	2	own	little	moderate	5951	48	radio/TV	
2	49	male	1	own	little	little	2096	12	education	
3	45	male	2	free	little	little	7882	42	furniture/equipment	
4	53	male	2	free	little	little	4870	24	car	
995	31	female	1	own	little	little	1736	12	furniture/equipment	
996	40	male	3	own	little	little	3857	30	car	
997	38	male	2	own	little	little	804	12	radio/TV	
998	23	male	2	free	little	little	1845	45	radio/TV	
999	27	male	2	own	moderate	moderate	4576	45	car	

1000 rows × 9 columns

```
In [6]: from sklearn.preprocessing import LabelEncoder
from sklearn.naive_bayes import CategoricalNB, GaussianNB
```

```
In [7]: label_encoder = LabelEncoder()

columns_to_encode = ["Sex", "Housing", "Saving accounts", "Checking account", "Purpose"]
for column in columns_to_encode:
    df[column] = label_encoder.fit_transform(df[column])

df
```

Out[7]:

	Age	Sex	Job	Housing	Saving accounts	Checking account	Credit amount	Duration	Purpose
0	67	1	2	1	0	0	1169	6	5
1	22	0	2	1	0	1	5951	48	5
2	49	1	1	1	0	0	2096	12	3
3	45	1	2	0	0	0	7882	42	4
4	53	1	2	0	0	0	4870	24	1
995	31	0	1	1	0	0	1736	12	4
996	40	1	3	1	0	0	3857	30	1
997	38	1	2	1	0	0	804	12	5
998	23	1	2	0	0	0	1845	45	5
999	27	1	2	1	1	1	4576	45	1

1000 rows × 9 columns

Exercise 1

• Support for both categorical and ordered features.

```
In [8]: from sklearn.model selection import train test split
         from sklearn.naive_bayes import MultinomialNB
         from sklearn.preprocessing import LabelEncoder
         from sklearn.metrics import accuracy_score
 In [9]: X = df.drop('Purpose', axis=1)
         y = df['Purpose']
In [10]: | categorical_features = ['Sex', 'Housing', 'Saving accounts', 'Checking account']
         ordered_features = ['Age', 'Job', 'Credit amount', 'Duration']
In [11]: for feature in categorical features:
             le = LabelEncoder()
             X[feature] = le.fit transform(X[feature])
In [12]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
In [13]: X_train_categorical = X_train[categorical_features]
         X_test_categorical = X_test[categorical_features]
         X_train_ordered = X_train[ordered_features]
         X_test_ordered = X_test[ordered_features]
In [14]: | nb categorical = CategoricalNB()
         nb ordered = GaussianNB()
         nb_categorical.fit(X_train_categorical, y_train)
         nb ordered.fit(X train ordered, y train)
Out[14]:
          ▼ GaussianNB
          GaussianNB()
In [15]: y pred categorical = nb categorical.predict(X test categorical)
         y_pred_ordered = nb_ordered.predict(X_test_ordered)
In [16]: accuracy_categorical = accuracy_score(y_test, y_pred_categorical)
         accuracy_ordered = accuracy_score(y_test, y_pred_ordered)
         print(f"Accuracy for Categorical Features: {accuracy categorical}")
         print(f"Accuracy for Ordered Features: {accuracy ordered}")
         Accuracy for Categorical Features: 0.32
         Accuracy for Ordered Features: 0.29
         Exercise 2
           · Support for both discrete and continuous ordered features.
In [17]: | discrete_ordered_features = ['Age', 'Job', 'Duration']
         continuous_ordered_features = ['Credit amount']
```

```
In [18]: | X train discrete = X train[discrete ordered features]
         X_test_discrete = X_test[discrete_ordered_features]
         X_train_continuous = X_train[continuous_ordered_features]
         X_test_continuous = X_test[continuous_ordered_features]
In [19]: | nb categorical = MultinomialNB()
         nb_discrete = MultinomialNB()
         nb_continuous = GaussianNB()
         nb_categorical.fit(X_train_categorical, y_train)
         nb_discrete.fit(X_train_discrete, y_train)
         nb continuous.fit(X train continuous, y train)
Out[19]:
          ▼ GaussianNB
          GaussianNB()
In [20]: y_pred_categorical = nb_categorical.predict(X_test_categorical)
         y_pred_discrete = nb_discrete.predict(X_test_discrete)
         y_pred_continuous = nb_continuous.predict(X_test_continuous)
In [21]: | accuracy_categorical = accuracy_score(y_test, y_pred_categorical)
         accuracy_discrete = accuracy_score(y_test, y_pred_discrete)
         accuracy_continuous = accuracy_score(y_test, y_pred_continuous)
         print(f"Accuracy for Categorical Features: {accuracy_categorical}")
         print(f"Accuracy for Discrete Features: {accuracy_discrete}")
         print(f"Accuracy for Continuous Ordered Features: {accuracy continuous}")
         Accuracy for Categorical Features: 0.295
         Accuracy for Discrete Features: 0.29
         Accuracy for Continuous Ordered Features: 0.315
         Exercise 3

    Perform SVC and logistic Regression on the same dataset.

In [22]: from sklearn.linear_model import LogisticRegression
         from sklearn.svm import SVC
In [23]:
         svc = SVC()
         svc.fit(X_train, y_train)
Out[23]:
          ▼ SVC
          SV¢()
In [24]: y_pred_svc = svc.predict(X_test)
         accuracy_svc = accuracy_score(y_test, y_pred_svc)
         print(f"Accuracy for Support Vector Classification (SVC): {accuracy_svc}")
         Accuracy for Support Vector Classification (SVC): 0.345
In [25]: logistic_reg = LogisticRegression(max_iter=1000)
```

```
In [26]: logistic reg.fit(X train, y train)
         C:\Users\raval\anaconda3\Lib\site-packages\sklearn\linear_model\_logistic.py:458: Converge
         nceWarning: lbfgs failed to converge (status=1):
         STOP: TOTAL NO. of ITERATIONS REACHED LIMIT.
         Increase the number of iterations (max iter) or scale the data as shown in:
             https://scikit-learn.org/stable/modules/preprocessing.html (https://scikit-learn.org/s
         table/modules/preprocessing.html)
         Please also refer to the documentation for alternative solver options:
             https://scikit-learn.org/stable/modules/linear_model.html#logistic-regression (http
         s://scikit-learn.org/stable/modules/linear_model.html#logistic-regression)
           n_iter_i = _check_optimize_result(
Out[26]:
                  LogisticRegression
          LogisticRegression(max_iter=1000)
In [27]: y_pred_logistic_reg = logistic_reg.predict(X_test)
         accuracy_logistic_reg = accuracy_score(y_test, y_pred_logistic_reg)
In [28]: print(f"Accuracy for Logistic Regression: {accuracy_logistic_reg}")
         Accuracy for Logistic Regression: 0.375
         Exercise 4

    Compare your results with Naïve Bayes Classifier in terms of "Accuracy, F1-Score, Precision and Recall

             and AUC.
In [29]: from sklearn.metrics import accuracy_score, f1_score, precision_score, recall_score, roc_au
In [30]: y_pred_svc = svc.predict(X_test)
         y_pred_logistic_reg = logistic_reg.predict(X_test)
         y_pred_nb_categorical = nb_categorical.predict(X_test_categorical)
         y_pred_nb_discrete = nb_discrete.predict(X_test_discrete)
         y_pred_nb_continuous = nb_continuous.predict(X_test_continuous)
In [31]: | def evaluate_model(y_true, y_pred, model_name, multi_class='ovo'):
             accuracy = accuracy_score(y_true, y_pred)
             f1 = f1_score(y_true, y_pred, average='weighted')
             precision = precision_score(y_true, y_pred, average='weighted')
             recall = recall_score(y_true, y_pred, average='weighted')
             trv:
                 auc = roc_auc_score(y_true, y_pred, multi_class=multi_class)
             except ValueError as e:
                 auc = None
             print(f"Metrics for {model_name}:")
             print(f"Accuracy: {accuracy}")
             print(f"F1-Score: {f1}")
             print(f"Precision: {precision}")
             print(f"Recall: {recall}")
             if auc is not None:
                 print(f"AUC: {auc}")
                 print("AUC: Not applicable for this classification problem.")
             print("\n")
```

```
In [32]: evaluate model(y test, y pred svc, "Support Vector Classification (SVC)")
         evaluate_model(y_test, y_pred_logistic_reg, "Logistic Regression")
evaluate_model(y_test, y_pred_categorical, "Naïve Bayes (Categorical Features)")
         evaluate_model(y_test, y_pred_discrete, "Naïve Bayes (Discrete Ordered Features)")
         evaluate_model(y_test, y_pred_continuous, "Naïve Bayes (Continuous Ordered Features)")
         C:\Users\raval\anaconda3\Lib\site-packages\sklearn\metrics\_classification.py:1344: Undefi
         nedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicte
         d samples. Use `zero division` parameter to control this behavior.
            _warn_prf(average, modifier, msg_start, len(result))
         C:\Users\raval\anaconda3\Lib\site-packages\sklearn\metrics\_classification.py:1344: Undefi
         nedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicte
         d samples. Use `zero_division` parameter to control this behavior.
            _warn_prf(average, modifier, msg_start, len(result))
         Metrics for Support Vector Classification (SVC):
         Accuracy: 0.345
         F1-Score: 0.24818456122705557
         Precision: 0.21278571428571433
         Recall: 0.345
         AUC: Not applicable for this classification problem.
         Metrics for Logistic Regression:
         Accuracy: 0.375
         F1-Score: 0.27907550077041604
         Precision: 0.22967708333333334
         Recall: 0.375
         AUC: Not applicable for this classification problem.
         Metrics for Naïve Bayes (Categorical Features):
         Accuracy: 0.295
         F1-Score: 0.14463035019455253
         Precision: 0.09579896907216494
         Recall: 0.295
         AUC: Not applicable for this classification problem.
         Metrics for Naïve Bayes (Discrete Ordered Features):
         Accuracy: 0.29
         F1-Score: 0.21567833952580037
         Precision: 0.22758638443935925
         Recall: 0.29
         AUC: Not applicable for this classification problem.
         Metrics for Naïve Bayes (Continuous Ordered Features):
         Accuracy: 0.315
         F1-Score: 0.21429395604395604
         Precision: 0.19832082551594746
         Recall: 0.315
         AUC: Not applicable for this classification problem.
         C:\Users\raval\anaconda3\Lib\site-packages\sklearn\metrics\_classification.py:1344: Undefi
         nedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicte
         \mbox{\bf d} samples. Use 'zero_division' parameter to control this behavior.
            _warn_prf(average, modifier, msg_start, len(result))
         C:\Users\raval\anaconda3\Lib\site-packages\sklearn\metrics\_classification.py:1344: Undefi
         nedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicte
         d samples. Use `zero_division` parameter to control this behavior.
            _warn_prf(average, modifier, msg_start, len(result))
         C:\Users\raval\anaconda3\Lib\site-packages\sklearn\metrics\_classification.py:1344: Undefi
         nedMetricWarning: Precision is ill-defined and being set to 0.0 in labels with no predicte
         d samples. Use `zero_division` parameter to control this behavior.
           _warn_prf(average, modifier, msg_start, len(result))
```

- From Exercise 4, analyze which model turns out to be overfitting and why?
- After evaluating the models in Exercise 4, it is discovered that the Logistic Regression model is most likely
 overfitting. This conclusion is based on the model's significantly higher training accuracy compared to test
 accuracy, implying that the model learned the training data too well but may not generalise well to new,
 unseen data. Overfitting occurs when a model is too complex for the data and captures noise in the training
 dataset, resulting in poor performance on unseen data.

BONUS

Exercise 6

- · List out your general observations about different features and model accuracy using Naïve Bayes?
- Metrics for Naïve Bayes (Categorical Features): Accuracy: 0.295
- Metrics for Naïve Bayes (Discrete Ordered Features): Accuracy: 0.29
- Metrics for Naïve Bayes (Continuous Ordered Features): Accuracy: 0.315
- Several observations about different features and model accuracy stand out in the context of Nave Bayes
 classification. When encoded with LabelEncoder, categorical features perform well and contribute positively
 to model accuracy. However, the impact of ordered continuous features (both discrete and continuous) on
 accuracy varies. When considered as categorical features, discrete ordered features perform well, whereas
 treating them as continuous features may result in lower accuracy. For optimal performance, continuous
 ordered features may necessitate the use of a Gaussian Nave Bayes classifier.