1. Analysis of Convolutional Codes

a.
$$R = 1/2$$

b.

c.

00 state A 01 State B 10 state C 11 State D	bi- 0000 1111	(Before) birthing OOA OIB IOC IID OOA OIB IOC	C		(After) birdis 00 A 00 B 01 B 10 C 10 C
---	---------------	---	---	--	---

d.

e.

f. Hamming distance = 1

2. Implementation of convolutional code #1

a.

 decoded_data =
 0 1 0 0 0

same

c.

當 p>1/2 時,其 error rate 會超過一半,此時 encode 及 decode 的作用已和隨機猜測的結果相去不遠,沒有特別的好處。

3. Implementation of convolutional code #2

此組結果效果相較前一題明顯比較差,原因是 [1,0,1] [1,1,1] 這組 FIR filters 所對應的 encoded data 在 input 為 0 和 1 時各有完全相同的組合,並無法有效拉開距離。

心得:這次實作的內容很有趣,也可以從中很明顯看出上課所學的知識,再加上越來越熟悉 MATLAB 的操作,整體而言都很順利。