Série d'exercices : Dualité

Exercice 1

Soit E le \mathcal{R} -espace vectoriel des polynômes de degrée ≤ 2 et $\varphi_1, \ \varphi_2, \ \varphi_3 \in E^*$ définis par

$$\varphi_1(P) = P(1), \quad \varphi_2 = P'(1), \quad \varphi_3(P) = \int_0^1 P(x) \, dx.$$

Montrer que $\{\varphi_1,\ \varphi_2,\ \varphi_3\}$ est une base de E^*

Exercice 2

Dans \mathbb{R}^4 , on considère les vecteurs

$$v_1 = (1, 1, 1, 1), \quad v_2 = (0, 1, 1, 1), \quad v_3 = (0, 0, 1, 1), \quad v_4 = (0, 0, 0, 1).$$

- 1. Montrer que $B=(v_1,v_2,v_3,v_4)$ est une base de \mathbb{R}^4
- 2. Déterminer la base duale de B.

Exercice 3:

Soit $E = \mathbb{R}_1[X]$, soient f_1 et f_2 deux éléments de E^* définies par

$$f_1(P) = \int_0^1 P(x) dx$$
 et $f_2(P) = \int_0^2 P(x) dx$

- 1. Montrer que $B^*=(f_1,f_2)$ est une base de E^*
- 2. Déterminer une base B telle que B^* soit la base duale de B

Exercice 4:

Soit u un endomorphisme de $E = \mathbb{R}_3[X]$ (espace des polynômes de degré ≤ 3). Soit u une application de E dans E définis par

$$u(P) = P + (1 - X)P'.$$

- 1. Montrer que u est linéaire. Déterminer son noyau et son image.
- 2. Donner sa matrice dans la base $B = \{1, X, X^2, X^3\}$.
- 3. Déterminer le noyau de u^* .
- 4. Donner la matrice de u^* dans la base B.

Exercice 5:

Soient E, F et G des espaces vectoriels de dimension finie sur K. Montrer que :

- 1. $(Id_E)^* = Id_{E^*}$.
- 2. Pour tout u et v dans $\mathcal{L}(E,F)$ et pour tout α,β dans K,

$$(\alpha u + \beta v)^* = \alpha u^* + \beta v^*.$$

3. Si $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$, alors :

$$(u \circ v)^* = v^* \circ u^*.$$

4. Si u est un automorphisme de E, alors u^* est un automorphisme de E^* et :

$$(u^{-1})^* = (u^*)^{-1}.$$

Exercice 6:

Soient E et F deux espaces vectoriels de dimension finie sur K, de bases B_1 et B_2 avec leurs bases duales B_1^* et B_2^* , et $u \in \mathcal{L}(E, F)$.

Montrer que la matrice de u par rapport aux bases duales B_1^* et B_2^* est égale à la transposée de la matrice de u par rapport aux bases B_1 et B_2 .

Exercice 7:

Soit $E = \mathbb{R}_3[X]$. On considère les quatre formes linéaires sur E, f_k (k = 0, 1, 2, 3), définies par :

$$f_k(P) = \int_{-1}^1 t^k P(t) dt.$$

- 1. Montrer que $\{f_0, f_1, f_2, f_3\}$ est une base de E^* .
- 2. Déterminer sa base duale.

Exercice 8:

Soit $E = \mathbb{R}_n[X]$ et a_0, a_1, \dots, a_n des nombres réels deux à deux distincts. Pour tout $k \in \{0, 1, \dots, n\}$, on définit la forme linéaire φ_k par $\varphi_k(P) = P(a_k)$ pour tout $P \in E$.

- 1. Montrer que $\bigcap_{k=0}^n \ker(\varphi_k) = \{0\}.$
- 2. En déduire que $(\varphi_0, \dots, \varphi_n)$ est une base de E^* et déterminer sa base antéduale.
- 3. Montrer qu'il existe $(\lambda_0, \dots, \lambda_n) \in \mathbb{R}^{n+1}$ tel que :

$$\forall P \in E, \quad \int_0^1 P(t) dt = \lambda_0 P(a_0) + \dots + \lambda_n P(a_n)$$

puis donner les λ_i sous forme d'une intégrale.

Exercice 9:

Soient $n \ge 1$ et $E = \mathbb{C}_n[X]$ le \mathbb{C} -espace vectoriel des polynômes de degré $\le n$. On pose $P_0 = 1$ et pour tout $k \ge 1$,

$$P_k = \frac{X(X-k)^{k-1}}{k!}.$$

On définit aussi pour tout $k \geq 0$ la forme linéaire $\phi_k : E \longrightarrow \mathbb{C}$ par $\phi_k(P) = P^{(k)}(k)$.

1. Montrer que pour tout $k \ge 1$, on a :

$$P'_k(X+1) = P_{k-1}(X).$$

- 2. Montrer que (P_0, \ldots, P_n) est une base de E et (ϕ_0, \ldots, ϕ_n) est sa base duale.
- 3. Montrer que pour tout $x, y \in \mathbb{C}$, on a :

$$(x+y)^n = y^n + x \sum_{k=1}^n \binom{n}{k} (x-k)^{k-1} (y+k)^{n-k}.$$