$$E = (C - 0)^{2} + (C + D - 8)^{2} + (C + 3D - 8) + (C + 9D - 20)^{2}$$

$$A = \begin{bmatrix} 0 \\ 1 \\ 3 \\ 4 \end{bmatrix} \qquad b = \begin{bmatrix} 8 \\ 8 \\ 20 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \\ 3 \\ 4 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 1 \\ 3 \\ 4 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 1 \\ 20 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 8 \\ 8 \\ 20 \end{bmatrix}$$

$$\begin{bmatrix} 0 \\ 1 \\ 3 \\ 4 \end{bmatrix} \qquad \begin{bmatrix} 0 \\ 1 \\ 20 \end{bmatrix}$$

4,2

a equation b= C+ Dt + Et2

 $A^{\dagger} b = \begin{bmatrix} 26 \\ 112 \end{bmatrix}$ Marbure resigna, rije mor enpoersup Lanus

[26]

2011/ unless linearly dependant or points one colinear Atypenplane in R" is defines! by eq: C1 x1 + C2 x2 + --+ Cn xn = d if dis 0 $C[n \times 1] \times [n \times 1]$ then hyperplace contains 2 CT X =0 normal vector for hyperplane CT:0 =0 C+ 91 - 2 Cran-o The hyperplane is unique if independent containly all point as an

$$Q = \begin{bmatrix} 1 & 1 & 1 \\ 9 & 9 & 9 \\ 1 & 1 & 1 \end{bmatrix}$$

18 scens easy

(35)

How to scale Q components to integers

Think how to make decomposition

Section 5.1 10 Entries of every now of A adds up to 0. Ax=0 => X of Is is in null space so A is singular (non zero null space if entries adds up to 1 $\left(\begin{array}{c} A & -1 \\ A & -1 \end{array} \right) = \begin{array}{c} A & -1 \\ A & -1 \end{array}$ X of Is is in null space Does this mean det (A-I)=0 Proof by example

 $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \qquad |A| = -1$

, +,1		1		3	₽. Z	2-:	L		.2	ф,	3.
							•				
					•	١.					
			<u>'</u>		<u>.</u>	<u>'</u>					
1	-	•	2	•	. :	3.	•		•		
· ·	•	٠	1	٠		1		•	٠	•	•

) .	(
L	. 2 .	.3			•	•
		. 1 .	•	•	•	•
			_	•	•	•
	. 3 .					
. 1	· 1.	· /·	•	•	•	•

	•	•	1	•	•	1	•	•	•		•
	<u> </u>	٠,		٠.	-		_				
2.			3			4.		•			
1	٠	٠	λ.	•	•)	•	•	•	•	•
		<u>.</u>	$\overline{}$	`	-	<u> </u>	- ·		•	•	•
3			4		٠,	5.		•			

		1	•	•	•	•	•	
<u>'</u>		$\overline{}$						
<u>2.</u> .	3	. 9		•				
٠	· \. ·	· ,· ·	•		•	•	•	٠
· ·	<u> </u>	1		•	٠			