概率论与数理统计

随机变量的分布

分布函数

$$F(x) = P\left\{X \le k\right\}$$

可推知

$$P\{x_1 < X \le x_2\} = F(x_2) - F(x_1)$$

二元情况下有

$$F(x,y) = P\{X \le x, Y \le y\}$$

$$P\{x_1 < X \le x_2, y_1 < Y \le y_2\} = F(x_2, y_2) - F(x_1, y_2) - F(x_2, y_1) + F(x_1, y_1)$$

密度函数

$$F(x) = \int_{-\infty}^x f(t) dt$$

称f(x)为X的概率密度函数

$$f(x) = F'(x)$$

二元情况下有

$$F(x,y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u,v) du dv$$

$$P\{(X,Y)\in D\}=\iint\limits_{D}f(x,y)dxdy$$

$$\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y)$$

边际密度函数

$$f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy \ f_Y(y) = \int_{-\infty}^{+\infty} f(x,y) dx$$

条件密度函数

给定 $\{X = x\}$ 的情况下Y的条件密度函数

$$f_{Y|X}(y|x) = rac{f(x,y)}{f_X(x)}$$

$$P(X \leq x|Y=y) = \int_{-\infty}^x f_{X|Y}(x|y) dx$$

反函数的密度函数

Y=g(X),若函数g是一处处可导的严格单调函数,其值域为D,记y=g(x)的反函数为x=h(y),则Y的密度函数为

$$f_Y(y) = egin{cases} f_X(h(y)) \cdot |h'(y)|, y \in D \ 0, y
otin D \end{cases}$$

联合分布律

$$P\{X = x_i, Y = y_i\} = p_{ij}, i, j = 1, 2, ...$$

边际分布律

$$P\{X=x_i\}=\sum_{j=1}^{+\infty}p_{ij}=p_i$$

$$P\{Y=y_j\}=\sum_{i=1}^{+\infty}p_{ij}=p_j$$

条件分布律

$$P\{X=x_i|Y=y_j\}=rac{P\{X=x_i,Y=y_j\}}{P\{Y=y_j\}}, i=1,2,...$$

即给定给定 $Y = y_j$ 条件下的条件分布律

独立性

1. X, Y相互独立当且仅当对任意实数x, y有

$$F(x,y) = F_X(x)F_Y(y)$$

2. X, Y相互独立当且仅当对任意实数 x_i, x_j 都有

$$P{X = x_i, Y = y_j} = P{X = x_i}P{X = x_j}$$

3. X, Y相互独立当且仅当下式几乎处处成立(即面积等于0的区域可以不成立,具体参见课本。)

$$f(x,y) = f_X(x)f_Y(y)$$

独立充要条件的定理

二维连续型随机变量X,Y相互独立的充要条件是X,Y的联合密度函数f(x,y)几乎处处可以写成x的函数 m(x)和y的函数n(y)的乘积,即

$$f(x,y) = m(x) \cdot n(y), -\infty < x, y < +\infty,$$

Z = X + Y的分布

二维离散型随机变量

显然有

$$P\{Z=z_k\}=P\{X+Y=z_k\}=\sum_{i=1}^{+\infty}P\{X=x_i,Y=z_k-x_i\}, k=1,2,...$$

$$P\{Z=z_k\}=P\{X+Y=z_k\}=\sum_{i=1}^{+\infty}P\{X=z_k-y_i,Y=y_i\}, k=1,2,...$$

当X,Y相互独立时有

$$P\{Z = z_k\} = P\{X = x_i\}P\{Y = z_k - y_i\}$$

$$P\{Z = z_k\} = P\{X = z_k - y_i\}P\{Y = y_i\}$$

二维连续型随机变量

$$f_z(z) = \int_{-\infty}^{+\infty} f(x,z-x) dy$$

$$f_z(z) = \int_{-\infty}^{+\infty} f(z-y,y) dy$$

当X,Y相互独立时有

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(x) f_Y(z-x) dx$$

$$f_Z(z) = \int_{-\infty}^{+\infty} f_X(z-y) f_Y(y) dy$$

例题

设某服务台顾客等待时间(以min计)X服从参数为 λ 的指数分布,接受服务的时间Y服从区间(0.20)上的均匀分布,且设X,Y相互独立。记Z=X+Y.

(1)求Z的密度函数 $f_Z(t)$

(2)设 $\lambda=\frac{1}{20}$,求等待与接收服务的总时间不超过45min的概率。

(1)由题意知

$$f_X(x) = egin{cases} \lambda e^{-\lambda x}, x > 0 \ 0, x \leq 0 \end{cases}, f_Y(y) = egin{cases} rac{1}{20}, 0 < y < 20 \ 0,$$
其他

由X, Y相互独立,可知X, Y的联合密度函数为

$$f(x,y) = f_X(x) f_Y(y) = egin{cases} rac{1}{20} \lambda e^{-\lambda x}, x > 0, 0 < y < 20 \ 0,$$
其他

即

$$f(x,t-x) = egin{cases} rac{1}{20} \lambda e^{-\lambda x}, x > 0, 0 < t-x < 20 \ 0,$$
其他

$$f_Z(t) = \int_{-\infty}^{+\infty} f(x,t-x) dx$$

如图

当
$$t \leq 0$$
时, $f_Z(t) = 0$

当
$$0 < t < 20$$
时, $f_Z(t) = \int_0^t rac{1}{20} \lambda e^{-\lambda x} = rac{1}{20} (1-e^{-\lambda t})$

当
$$t \geq 20$$
时, $f_Z(t) = \int_{t-20}^t rac{1}{20} \lambda e^{-\lambda x} = rac{1}{20} e^{-\lambda t} (e^{20\lambda} - 1)$

(2)
$$P\{X \le 45\} = \int_{-\infty}^{45} f_Z(t) = 0.8189$$

$$M=max\{X,Y\}, m=min\{X,Y\}$$
的分布

$$F_M(t)=P\{max\{X,Y\}\leq t\}=P\{X\leq t,Y\leq t\}=F(t,t)$$

当X, Y独立时

$$F_M(t)=F_X(t)\cdot F_Y(t)$$
 $F_N(t)=P\{min\{X,Y\}\leq t\}=P\{(X\leq t)\cup (Y\leq t)\}=F_X(t)+F_Y(t)-F(t,t)$

或者

$$F_N(t) = 1 - P\{X > t, Y > t\}$$

当X, Y独立时

$$F_{N}(t) = F_{X}(t) + F_{Y}(t) - F_{X}(t)F_{Y}(t)$$

推广到n元

$$F_M(t) = \prod_{i=1}^n F_i(t)$$

$$F_N(t) = 1 - \prod_{i=1}^n \left[1 - F_i(t)
ight]$$

随机变量的数字特征

期望

对于离散型随机变量X

$$P\{X=x_i\}=p_i, i=1,2,3$$

若级数 $x_i p_i$ 绝对收敛,则称级数 $x_i p_i$ 为X的期望对于连续型随机变量X,若

$$\int_{-\infty}^{+\infty} |x| f(x) < +\infty$$

则称
$$\int_{-\infty}^{+\infty}xf(x)<+\infty$$
为 X 的期望

$$E(g(X)) = \sum_{i=1}^n g(x_i) p_i$$

$$E(g(X)) = \int_{-\infty}^{+\infty} g(x) f(x) dx$$

其中f(x)是X的密度函数

$$E(h(X,Y)) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} h(x,y) f(x,y) dx dy$$

其中f(x,y)是X,Y的联合密度函数

期望的性质

1.

$$E\left(c_0+\sum_{i=1}^n c_iX_i
ight)=c_0+\sum_{i=1}^n c_iE(X_i)$$

2. 若 X_i (i=1,2,...,n)相互独立,且数学期望都存在,则有

$$E\left(\prod_{i=1}^n X_i
ight) = \prod_{i=1}^n E(X_i)$$

条件期望

给定X = x

$$E\{Y|x\}=E\{Y|X=x\}=\sum_{j=1}^{+\infty}y_jp_j(x)$$

$$E\{Y|x\}=E\{Y|X=x\}=\int_{-\infty}^{+\infty}yf_{Y|X}(y|x)dy$$

全期望公式

$$E(Y) = E[E(Y|X)]$$

当(X,Y)为二维离散型随机变量时

$$E(Y) = \sum_{i=1}^{+\infty} E(Y|X=i)P\{X=i\}$$

当(X,Y)为二维连续型随机变量时

$$E(Y) = \int_{-\infty}^{+\infty} E(Y|X=x) f_X(x) dx$$

方差

$$Var(X) = E[(X - E(X))^{2}]$$

对于离散变量

$$Var(X) = \sum_{i=0}^{+\infty} (x_i - E(X))^2 p_i$$

对于连续变量

$$Var(X) = \int_{-\infty}^{+\infty} (x - E(X))^2 f(x) dx$$

$$Var(X) = E(X^2) - E(X)^2$$

推论:若某一随机变量平方的数学期望存在,则一定保证了这个随机变量数学期望的存在性。

方差的性质

- 1. $Var(cX) = c^2 Var(X)$
- 2. Var(X + c) = Var(X)

3. 推广:
$$Var\left(c_0+\sum_{i=1}^nc_iX_i
ight)=\sum_{i=1}^nc_i^2Var(X_i)$$

- 4. $Var(X) \leq E[(X-c)^2]$,当且仅当E(X) = c时等号成立
- 5. 若 $X_1, X_2, ..., X_n$ 为两两独立的随机变量,方差都存在,则

$$Var\left(\sum_{i=1}^n X_i
ight) = \sum_{i=1}^n Var(X_i)$$

6. X的方差存在时,Var(x)=0当且仅当 $P\{X=c\}=1$,其中c=E(X)

协方差

$$Cov(X,Y) = E[(X - E(X))(Y - E(Y))]$$

对二维离散型变量

$$Cov(X,Y) = \sum_{i=1}^{+\infty} \sum_{j=1}^{+\infty} (x_i - E(X))(y_j - E(Y))p_{ij}$$

对二维连续型变量

$$Cov(x,y) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} (x-E(X))(y-E(Y))f(x,y)dxdy$$

通常使用以下公式

$$Cov(X,Y) = E(XY) - E(X)E(Y)$$

协方差的性质

1.

$$Var(\sum_{i=1}^n X_i) = \sum_{i=1}^n Var(X_i) + 2\sum_{1 \leq i < j \leq n} Cov(X_i, X_j)$$

- 2. Cov(X, Y) = Cov(Y, X)
- 3. Cov(X, X) = Var(X)
- 4. Cov(aX, bY) = abCov(X, Y)
- 5. $Cov(X_1 + X_2, Y) = Cov(X_1, Y) + Cov(X_2, Y)$
- 6. 当 $Var(X)\cdot Var(Y)\neq 0$ 时,有 $(Cov(X,Y))^2\leq Var(X)Var(Y)$,其中等号成立当且仅当X,Y有严格的线性关系

独立与相关

相关系数

$$\rho_{XY} = \frac{Cov(X,Y)}{\sqrt{Var(X)}\sqrt{Var(Y)}}$$

若 $\rho_{XY}=0$ 则称X,Y不相关

- $|\rho(X,Y)| \le 1$, 其中等号成立当且仅当X与Y之间有严格的线性关系。越接近1X,Y\$线性关系 就越强
- $|\rho(X,Y)| > 0$ 时X,Y正相关; $|\rho(X,Y)| < 0$ 时X,Y负相关;

不相关

- 1. $\rho(X,Y) = 0$
- 2. Cov(X, Y) = 0
- 3. E(XY) = E(X)E(Y)
- 4. Var(X + Y) = Var(X) + Var(Y)
- 5. 独立一定不相关, 但反之不然。

重要随机变量的概率分布

0-1(p)分布,两点分布

- 符号: $X \sim 0 1(p)$
- 概率分布律:

$$P\{X=k\} = p^k(1-p)^{1-k}, k=0,1...$$

二项分布, n重伯努利实验

- 符号: $X \sim B(n,p)$
- 概率分布律:

$$P\left\{X=k\right\} = C_n^k p^k (1-p)^{n-k}, k=0,1,2,...,n.$$

• 期望: E(X) = np

泊松分布

符号: X ∼ P(λ)

• 概率分布律:

$$P\left\{X=k\right\}=\frac{e^{-\lambda}\lambda^k}{k!}, k=0,1,2,\dots$$

- 代数和性质: n个相互独立的服从泊松分布的随机变量的和仍服从泊松分布,其参数为n个分布的参数之和
- 期望和方差: 若 $X \sim P(\lambda)$, 则 $E(X) = \lambda, Var(X) = \lambda$

均匀分布

- 符号: X ∼ U(a,b)
- 概率密度函数

$$f(x) = egin{cases} rac{1}{b-a}, x \in (a,b) \ 0,$$
其他

• 分布函数

$$F(x) = egin{cases} 0, x < a \ rac{x-a}{b-a}, a \leq x < b \ 1, x \geq b \end{cases}$$

正态分布

符号: X ~ N(μ,σ)

• 概率密度函数
$$f(x)=rac{1}{\sqrt{2\pi}\sigma}e^{-rac{(x-\mu)^2}{2\sigma^2}}$$
 (标准正态分布 $f(x)=rac{1}{\sqrt{2\pi}}e^{-rac{x^2}{2}}$)

• 代数和性质: n个相互独立的正态变量之和仍为正态变量。且若 $X_i \sim N(\mu_i, \sigma_i^2)$,则 $\sum_{i=1}^n X_i \sim$

 $N\left(\sum_{i=1}^n \mu_i, \sum_{i=1}^n \sigma_i^2\right)$,甚至可以进一步证明n个相互独立的正态变量的线性组合仍为正态变量

• 期望和方差: 若 $X \sim N(\mu, \sigma)$, 则 $E(X) = \mu, Var(X) = \sigma^2$

指数分布

- 符号: X ∼ E(λ)
- 密度函数

$$f(x) = egin{cases} \lambda e^{-\lambda x}, x > 0 \ 0, x \leq 0 \end{cases}$$

• 分布函数

$$F(x)=\int_{-\infty}^x f(t)dt=egin{cases} 1-e^{-\lambda x}, x>0\ 0, x\leq 0 \end{cases}$$

• 期望和方差: 若 $X\sim E(\lambda)$, 则 $E(X)=rac{1}{\lambda}, Var(X)=rac{1}{\lambda^2}$

二元均匀分布

• 密度函数

$$f(x,y) = egin{cases} rac{1}{S_D}, (x,y) \in D \ 0,$$
其他

二元正态分布

- 符号: $(X,Y) \sim N(\mu_1, \mu_2; \sigma_1^2, \sigma_2^2; \rho)$
- 密度函数

$$f(x,y) = rac{1}{2\pi
ho_1
ho_2}\sqrt{1-
ho^2}\cdot e^{-rac{1}{2(1-
ho^2)}}\left[rac{(x-\mu_1)^2}{\sigma_1^2} - 2
horac{(x-\mu_1)(y-\mu_2)}{\sigma_1\sigma_2} + rac{(y-\mu_2)^2}{\sigma_2^2}
ight]$$

• 边际密度函数

$$f_X(x) = rac{1}{\sqrt{2\pi}\sigma_1} e^{-rac{(x-\mu_1)^2}{2\sigma_1^2}}$$

$$f_Y(y)=rac{1}{\sqrt{2\pi}\sigma_2}e^{-rac{(x-\mu_2)^2}{2\sigma_2^2}}$$

即
$$X\sim N(\mu_1,\sigma_1^2), Y\sim N(\mu_2,\sigma_2^2)$$

• 条件密度函数

$$Y \sim N(\mu_2 +
ho rac{\sigma_2}{\sigma_1}(x-\mu_1), (\sqrt{1-
ho^2}\sigma_2)^2)$$

给定Y = y

$$Y \sim N(\mu_1 +
ho rac{\sigma_1}{\sigma_2}(y-\mu_2), (\sqrt{1-
ho^2}\sigma_1)^2)$$

大数定律和中心极限定理

大数定律

切比雪夫不等式

$$P\{|X - \mu| \ge \epsilon\} \ge \frac{\sigma^2}{\epsilon^2}$$

伯努利大数定律

设 n_A 为n重伯努利实验中事件A发生的次数,p(0 是事件<math>A在每次实验中发生的概率,即P(A) = p,则对任意的 $\epsilon > 0$,有

$$\lim_{n o +\infty} P\left\{\left|rac{n_A}{n} - p
ight| \geq \epsilon
ight\} = 0$$

辛钦大数定律

设 $\{X_i, i \geq 1\}$ 为独立同分布的随机变量序列,且数学期望存在,记为 μ ,则对任意的 $\epsilon > 0$,有

$$\lim_{n o +\infty} P\left\{\left|rac{1}{n}\sum_{i=1}^n X_i - \mu
ight| \geq \epsilon
ight\} = 0$$

即 $rac{1}{n}X_i\sum_{i=1}^n\stackrel{P}{
ightarrow}\mu(n
ightarrow+\infty)$,并认为此时随机变量序列 $\{X_i,i\geq 1\}$ 服从大数定律。

推论

设 $\{X_i,i\geq 1\}$ 为独立同分布的随机变量序列,若h(x)为一连续函数,且 $E(h(|X_1|))<+\infty$ 则对任意的 $\epsilon>0$, $a=E(h(X_1))$ 有

$$\lim_{n o +\infty} P\left\{\left|rac{1}{n}\sum_{i=1}^n X_i - a
ight| \geq \epsilon
ight\} = 0$$

即 $rac{1}{n}\sum_{i=1}^n h(X_i)\stackrel{P}{ o} a(n o +\infty)$,并认为此时随机变量序列 $\{X_i,i\geq 1\}$ 服从大数定律。

中心极限定理

林德伯格-莱维中心极限定理

设 $\{X_i,i\geq 1\}$ 为独立同分布的随机变量序列,且数学期望 $E(X_i)=\mu$ 和方差 $Var(X_i)=\sigma^2$ 均存在($\sigma>0$),则对任意的 $x\in R$,有

$$\lim_{n o +\infty} P\left\{rac{\displaystyle\sum_{i=1}^n X_i - n\mu}{\sigma\sqrt{n}} \leq x
ight\} = rac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-rac{t^2}{2}} dt = arPhi(x)$$

即

$$\sum_{i=1}^n X_i - n \mu \ \stackrel{$$
近似地 $}{\sim} N(0,1)$

棣莫弗-拉普拉斯中心极限定理

设 n_A 为在n重伯努利试验中事件A发生的次数,p为事件A在每次试验中发生的概率,即P(A)=p(0< p<1),则对任意的 $x\in R$,有

$$\lim_{n o +\infty} P\left\{rac{n_A-np}{\sqrt{np(1-p)}}\leq x
ight\} = rac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-rac{t^2}{2}}dt = arPhi(x)$$

统计量和抽样分布

统计量

样本均值

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

样本方差

$$S^2 = rac{1}{n-1} \sum_{i=1}^n (X_i - ar{X})^2 = rac{1}{n-1} \left(\sum_{i=1}^n X_i^2 - n ar{X}^2
ight)$$

样本标准差

$$S=\sqrt{S^2}=\sqrt{rac{1}{n-1}\left(\sum_{i=1}^n X_i^2-nar{X}^2
ight)}$$

样本k阶原点矩

$$A_k = rac{1}{n} \sum_{i=1}^n X_i^k, k = 1, 2, ...$$

样本k阶中心矩

$$B_k = rac{1}{n} \sum_{i=1}^n (X_i - ar{X})^k, k = 2, 3, ...$$

χ^2 分布,t分布,F分布

χ^2 分布

设 $X_1, X_2, ..., X_n$ 为独立同分布的随机变量,且都服从正态分布N(0,1)。记

$$Y = X_1^2 + X_2^2 + \ldots + X_n^2$$

则称Y服从自由度为n的 χ^2 分布,记为 $Y\sim\chi^2(n)$

性质

可加性

设 $Y_1\sim \chi^2(m), Y_2\sim \chi^2(n), m,n\geq 1$,且两者相互独立,则 $Y_1+Y_2\sim \chi^2(m+n)$

期望和方差

设 $Y \sim \chi^2(n)$,则

$$E(Y) = n, Var(Y) = 2n$$

χ^2 分布分位数

对于给定的正数 α , $0 < \alpha < 1$, 称满足条件

$$P\{\chi^2>\chi^2_lpha(n)\}=\int_{\chi^2_lpha(n)}^{+\infty}f_{\chi^2}(x)dx=lpha$$

的 $\chi^2_{\alpha}(n)$ 为 $\chi^2(n)$ 分布的上(侧) α 分位数

t分布

设 $X \sim N(0,1), Y \sim \chi^2(n)$,且X, Y相互独立,则称随机变量

$$t = \frac{X}{\sqrt{Y/n}}$$

服从自由度为n的t分布,又称为学生氏分布,记为 $t\sim t(n)$

t分布分位数

对于给定的正数 α , $0 < \alpha < 1$, 称满足条件

$$P\{\chi>t_lpha(n)\}=\int_{t_lpha(n)}^{+\infty}f_t(x)dx=lpha$$

的 $t_{\alpha}(n)$ 为t(n)分布的上(侧) α 分位数

性质

- 1. n足够大时,t分布近似于标准正态分布N(0,1)
- 2. 密度函数是偶函数,可知 $t_{1-lpha}(n)=-t_lpha(n)$

F分布

设 $U\sim\chi^2(n_1)$, $V\sim\chi^2(n_2)$,且 U,V 相互独立,则称随机变量

$$F=rac{U/n_1}{V/n_2}$$

服从自由度为 (n_1,n_2) 的 F 分布,记 $F\sim F(n_1,n_2)$ 。

F分布分位数

对于给定的正数 α , $0 < \alpha < 1$, 称满足条件

$$P\{\chi>F_lpha(n)\}=\int_{F_lpha(n)}^{+\infty}f_F(x)dx=lpha$$

的 $t_{\alpha}(n)$ 为t(n)分布的上(侧) α 分位数

性质

1. 设
$$F \sim F(n_1, n_2)$$
,则 $F^{-1} \sim F(n_2, n_1)$

2. 设
$$X \sim t(n)$$
,则 $X^2 \sim F(1,n)$

3.
$$F_{1-lpha}(n_1,n_2)=rac{1}{F_lpha(n_2,n_1)}$$

正态总体下的抽样分布

设 $X_1, X_2, ..., X_n$ 是来自正态总体 $N(\mu, \sigma^2)$ 的样本, \overline{X} 是样本均值, S^2 是样本方差,则有:

1.
$$\overline{X} \sim N(\mu, rac{\sigma^2}{n})$$

2.
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

3.
$$\overline{X}$$
 与 S^2 相互独立

4.
$$rac{\overline{X}-\mu}{S/\sqrt{n}}\sim t(n-1)$$

*注意:
$$\dfrac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$$

设 $X_1, X_2, ..., X_n$ 和 $Y_1, Y_2, ..., Y_n$ 是分别来自正态总体 $N(\mu_1, \sigma_1^2)$ 和 $N(\mu_2, \sigma_2^2)$, 并且它们相互独立, $\overline{X}, \overline{Y}$ 是样本均值, S_1^2, S_2^2 是样本方差,则有:

1.
$$rac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2}\sim F(n_1-1,n_2-1)$$

2.
$$\frac{(\overline{X}^2 - \overline{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \sim N(0, 1)$$

3. 当
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
 时:

$$rac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{S_\omega\sqrt{rac{1}{n_1}+rac{1}{n_2}}}\sim t(n_1+n_2-2)$$
,其中 $S_\omega^2=rac{(n_1-1)S_1^2+(n_2-1)S_2^2}{n_1+n_2-2}$

Chapter 7 参数估计

点估计

设总体 X 的分布函数为 $F(x;\theta)$, $\theta=(\theta_1,\theta_2,...,\theta_k)$ 是未知的待估参数, $X_1,X_2,...,X_n$ 是 X 的一个样本。点估计就是要对每一个未知参数 θ_i 构造一个适当的统计量 $\hat{\theta_i}=\theta_i(X_1,X_2,...,X_n)$,用作对未知参数 θ_i 的估计,称为 θ_i 的**估计量**。

若已知样本的观察值为 $x_1, x_2, ..., x_n$,则称 $\hat{\theta_i} = \theta_i(X_1, X_2, ..., X_n)$ 为 θ 的一个**估计值**。

矩法

思想:用样本矩去估计相应的总体矩,换言之,用原点矩 A_k 去估计 μ_k ,用中心距 B_k 去估计 ν_k 。

具体步骤如下(假设有k个待求未知参数):

1. 列出总体的前 k 阶矩

$$\mu_i = E(X^i) = h_i(\theta_1, \theta_2, ..., \theta_k)$$
, $i = 1, 2, ..., k$

2. 从方程组中解出这 k 个参数

$$heta_i = g_i(\mu_1, \mu_2, ..., \mu_k) \;\; , \;\; i = 1, 2, ..., k$$

3. 将上一步解出的参数的表达式中出现的总体矩用相应的样本矩替换

$$\hat{ heta}_i = g_i(A_1, A_2, ..., A_k) \;\; , \;\; i = 1, 2, ..., k$$

值得注意的是:

- 如果方程中存在恒等式,则可以顺延求 $\mu_{k+1},\mu_{k+2},...$
- 理论上任意 k 个关于 μ_i 的方程组都可以,但考试要求前 k 个才算对

极大似然法

思想:用"最像" θ 真值的值去估计 θ ,换言之,在参数空间中找一个 θ ,使得 $L(\theta)$ 达到最大。

具体步骤如下(若待估参数不止一个,则对每个待估参数 θ_i 均执行如下操作):

- 1. 构造似然函数 $L(\theta) = L(\theta; x_1, x_2, ..., x_n) = \prod_{i=1}^n f(x_i; \theta)$
- 2. 求解 θ , 使得 $L(\theta)$ 达到最大值, 称这个 θ 为极大似然估计量, 记作 $\hat{\theta}$

求解似然函数最大值点的常用方法:

- 解似然方程 $\frac{\partial L(\theta)}{\partial \theta_i} = 0$, 检验极大值点
- 或者也可以解对数似然方程 $\frac{\partial \ln L(\theta)}{\partial \theta_i} = 0$,检验极大值点
- 若 $L(\theta)$ 关于某个 θ_i 是单调的,则最大值在边界取得

极大似然估计法的性质:

• 不变原则: 设参数 θ 的极大似然估计为 $\hat{\theta}$ 若 $g(\cdot)$ 为连续函数,则 $g(\theta)$ 的极大似然估计为 $g(\hat{\theta})$

估计量的评价准则

无偏性准则

若参数 θ 估计量 $\hat{\theta}=\theta(X_1,X_2,...,X_n)$ 的数学期望存在,且满足 $E(\hat{\theta})=\theta$,则称 $\hat{\theta}$ 是 θ 的一个**无偏估计量或无偏估计(Unbiased Estimation)**。

- 若 $E(\hat{\theta}) \neq \theta$,则称 $|E(\hat{\theta}) \theta|$ 为估计量 $\hat{\theta}$ 的偏差
- 若 $\lim_{n o +\infty} E(\hat{ heta}) = 0$,则称 $\hat{ heta}$ 是heta的渐进无偏估计(Asymptotic Unbiased Estimation)

有效性准则

设 θ_1 和 θ_2 是参数 θ 的两个无偏估计,如果对于 $\forall \theta \in \Theta$, $Var(\theta_1) \leq Var(\theta_2)$,且不恒取等,则称 θ_1 比 θ_2 **有效**。

均方误差准则

 $E[(\hat{ heta}- heta)^2]$ 是估计量 $\hat{ heta}$ 的**均方误差(Mean Square Error)**,记为 $Mse(\hat{ heta})$ 。

在均方误差准则下,估计量的均方误差越小越好。若 $Mse(\hat{\theta}_1) \leq Mse(\hat{\theta}_2)$ 且不恒取等,则称 $\hat{\theta}_1$ 优于 $\hat{\theta}_2$

- 若 $\hat{ heta}$ 是参数 heta 的无偏估计量,则有 $Mse(\hat{ heta}) = Var(\hat{ heta})$
- 均方误差有分解式 $E[(\hat{\theta} \theta)^2] = Var(\hat{\theta}) + (E(\hat{\theta}) \theta)^2$
- 均方误差准则常用于有偏估计量之间,或有偏估计量与无偏估计量之间的比较;实际应用中,有时均方误差准则比无偏性准则更加重要

相合性准则

若对于 $\forall \varepsilon > 0$,有 $\lim_{n \to +\infty} P\{|\hat{\theta}_n - \theta| < \varepsilon\} = 1$,即 $\hat{\theta}_n \overset{P}{\longrightarrow} \theta$,则称 $\hat{\theta}_n$ 是 θ 的相合估计量 (Consistent Estimation)或一致估计量。

有如下定理:

• 设 $\hat{\theta}_n$ 是 θ 的一个估计量,若 $\lim_{n\to\infty} E(\hat{\theta}) = \theta$, $\lim_{n\to\infty} Var(\hat{\theta}_n) = 0$,则 $\hat{\theta}_n$ 是 θ 的相合估计。

区间估计

点估计是由样本求出未知参数 θ 的一个估计值 $\hat{\theta}$,而**区间估计**则要由样本给出参数 θ 的一个估计范围,并指出该区间包含 θ 的可靠程度。

下面给出区间估计的一些基本概念:

- 置信区间:设总体 X 的分布函数 $F(x;\theta)$ 含有一个未知参数 θ ,对于给定的值 α ,如果有两个统计量 $\theta_L = \theta_L(X_1, X_2, ..., X_n)$, $\theta_U = \theta_U(X_1, X_2, ..., X_n)$, $\theta_L < \theta_U$,使得 $P\{\theta_L(X_1, X_2, ..., X_n) < \theta < \theta_U(X_1, X_2, ..., X_n)\} \ge 1 \alpha$, $\forall \theta \in \Theta$,则称随机区间 $[\theta_L, \theta_U]$ 是 θ 的置信水平为 1α 的**双侧置信区间**,简称**置信区间**
- 置信下限和置信上限: 分别是 θ_L 和 θ_{U}
- 置信度(置信水平): 1 − α
- 单侧置信区间:在置信区间的定义中,如果修改为 $P\{\theta_L(X_1,X_2,...,X_n)<\theta\}\geq 1-\alpha$, $\forall \theta\in\Theta$,则称随机区间 $[\theta_L,+\infty]$ 是 θ 的置信水平为 $1-\alpha$ 的单侧置信区间 。 相应地,我们还可以定义单侧置信下限,以及具有单侧置信上限的单侧置信区间 $(-\infty,\theta_U)$

双侧置信区间和单侧置信区间的关系:

设 $\theta_L = \theta_L(X_1, X_2, ..., X_n)$, $\theta_U = \theta_U(X_1, X_2, ..., X_n)$ 分别是 θ 的置信水平为 $1 - \alpha_1$ 和 $1 - \alpha_2$ 的 单侧置信下限及上限,且对于任何样本都满足 $\theta_L < \theta_U$,则 (θ_L, θ_U) 是 θ 的置信水平为 $1 - \alpha_1 - \alpha_2$ 的 双侧置信区间。

评价区间估计的原则

置信度原则:

希望随机区间 $[\theta_L, \theta_U]$ 包含真值 θ 的概率越大越好

精确度原则:

可以用随机区间的平均长度 $E(\theta_U-\theta_L)$ 去衡量,希望其越短越好;并称二分之一区间的平均长度为置信区间的**误差限**

• 这是一对矛盾的标准,现实应用中我们通常希望在保证置信度的前提下,尽可能提高精确度

枢轴量法

枢轴量法是寻求区间估计的常用方法。

枢轴量是样本 $X=(X_1,X_2,...,X_n)$ 和待估参数 θ 的函数,即 $G=G(X_1,X_2,...,X_n;\theta)$,并且要求 G 的分布已知且不依赖于任何未知参数。

具体步骤如下:

- 1. 构造枢轴量 $G(X;\theta)$
- 2. 对于给定的置信度 $1-\alpha$,确定两个常数 a,b,使得:

$$P{a < G(X; \theta) < b} \ge 1 - \alpha$$

3. 若能从 $a < G(X; \theta) < b$ 反解出不等式:

$$\theta_L(X) < \theta < \theta_U(X)$$

那么 $[\theta_L, \theta_U]$ 就是 θ 的置信水平为 $1-\alpha$ 的置信区间,也称**同等置信区间**

值得注意的是:

- 若要求单侧置信限,只需要将 $P\{a < G(X;\theta) < b\} \ge 1-\alpha$ 相应地改为 $P\{a < G(X;\theta)\} \ge 1-\alpha$ 或 $P\{G(X;\theta) < b\} \ge 1-\alpha$ 即可
- 枢轴量和统计量的区别:
 - 。 枢轴量是样本和待估参数的函数, 其分布不依赖于任何未知参数
 - 。 统计量只是样本的函数, 其分布常依赖于未知参数

正态总体参数的区间估计

单个正态总体的情形

设 $X_1,X_2,...,X_n$ 来自总体 $N(\mu,\sigma_2)$, \overline{X} 和 S^2 分别为样本均值和样本方差,置信度为 $1-\alpha$:

1. σ^2 已知时 μ 的置信区间:

取枢轴量
$$rac{\overline{X}-\mu}{\sigma/\sqrt{n}}\sim N(0,1)$$
,置信区间为 $\Big(\overline{X}-rac{\sigma}{\sqrt{n}}z_{lpha/2},\overline{X}+rac{\sigma}{\sqrt{n}}z_{lpha/2}\Big)$ 。

若只考虑单侧置信限,以单侧置信下限为例,单侧置信区间为 $\left(\overline{X}-rac{\sigma}{\sqrt{n}}z_{lpha},+\infty
ight)$ 。

 $2. \sigma^2$ 未知时 μ 的置信区间:

取枢轴量
$$rac{\overline{X}-\mu}{S/\sqrt{n}}\sim t(n-1)$$
,置信区间为 $\Big(\overline{X}-rac{S}{\sqrt{n}}t_{lpha/2}(n-1),\overline{X}+rac{S}{\sqrt{n}}t_{lpha/2}(n-1)\Big)$ 。

3. σ^2 的置信区间(当作 μ 未知):

取枢轴量
$$\frac{(n-1)S^2}{\sigma^2}\sim \chi^2(n-1)$$
,置信区间为 $\left(\frac{(n-1)S^2}{\chi^2_{lpha/2}(n-1)}, \frac{(n-1)S^2}{\chi^2_{1-lpha/2}(n-1)}
ight)$ 。

两个正态总体的情形

设 $X_1,X_2,...,X_{n_1}$ 来自 $N(\mu_1,\sigma_1^2)$, $Y_1,Y_2,...,Y_{n_2}$ 来自 $N(\mu_2,\sigma_2^2)$,这两个样本相互独立, $\overline{X}=\frac{1}{n_1}\sum\limits_{i=1}^{n_1}X_i$, $\overline{Y}=\frac{1}{n_2}\sum\limits_{i=1}^{n_2}Y_i$, S_1^2 和 S_2^2 分别为它们的样本均值和样本方差,置信度为 $1-\alpha$:

- 比较均值 (估计 $\mu_1-\mu_2$, 也称为 Behrens-Fisher 问题)
- 比较方差 (估计 $\frac{\sigma_1^2}{\sigma_2^2}$)

1. σ_1^2, σ_2^2 已知时 $\mu_1 - \mu_2$ 的置信区间:

取枢轴量
$$rac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}}\sim N(0,1)$$
,置信区间为 $\left(\overline{X}-\overline{Y}\pm z_{lpha/2}\sqrt{rac{\sigma_1^2}{n_1}+rac{\sigma_2^2}{n_2}}
ight)$ 。

2.
$$\sigma_1^2 = \sigma_2^2 = \sigma^2$$
 未知时 $\mu_1 - \mu_2$ 的置信区间:

取枢轴量
$$rac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{S_\omega\sqrt{rac{1}{n_1}+rac{1}{n_2}}}\sim t(n_1+n_2-2)$$
,置信区间为 $\Big(\overline{X}-\overline{Y}\pm t_{lpha/2}(n_1+n_2-2)S_w\sqrt{rac{1}{n_1}+rac{1}{n_2}}\Big)$ 。

3. $\sigma_1^2 \neq \sigma_2^2$ 且未知时 $\mu_1 - \mu_2$ 的置信区间:

当样本容量 n_1 和 n_2 都充分大时(一般要大于 50),取枢轴量 $\frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{\frac{S_1^2}{n_1}+\frac{S_2^2}{n_2}}}\sim N(0,1)$,置信区间为 $\left(\overline{X}-\overline{Y}\pm z_{\alpha/2}\sqrt{\frac{S_1^2}{n_1}+\frac{S_2^2}{n_2}}\right)$ 。

对于有限小样本,仍取枢轴量 $\frac{(\overline{X}-\overline{Y})-(\mu_1-\mu_2)}{\sqrt{\frac{S_1^2}{n_1}+\frac{S_2^2}{n_2}}}$,可以证明其近似服从自由度为 k 的 t 分布,其中 k=

$$rac{(rac{S_1^2}{n_1}+rac{S_2^2}{n_2^2})^2}{rac{(S_1^2)^2}{n_1^2(n_1-1)}+rac{(S_2^2)^2}{n_2^2(n_2-1)}},$$
 置信区问为 $\left(\overline{X}-\overline{Y}\pm t_{lpha/2}(k)\sqrt{rac{S_1^2}{n_1}+rac{S_2^2}{n_2}}
ight)$ 。

实际使用中,也常用 $min(n_1-1,n_2-1)$ 近似代替上述自由度 k。

4. $\frac{\sigma_1^2}{\sigma_2^2}$ 的置信区间(当作 μ_1,μ_2 未知):

取枢轴量
$$rac{S_1^2/S_2^2}{\sigma_1^2/\sigma_2^2}\sim F(n_1-1,n_2-1)$$
,置信区间为 $\left(rac{S_1^2/S_2^2}{F_{lpha/2}(n_1-1,n_2-1)},rac{S_1^2/S_2^2}{F_{1-lpha/2}(n_1-1,n_2-1)}
ight)$ 。

非正态总体参数的区间估计

通常把这个非正态分布根据中心极限定理近似成一个正态分布,从而利用上文的方法构造枢轴量,并求解置信区间。

Chapter 8 假设检验

- 橙书 P314
- 绿书 P211

处理假设检验问题的基本步骤

- 1. 提出原假设和备择假设;
- 2. 选择检验同计量,给出拒绝域形式;
- 3. 选择显著性水平, 求拒绝域中的临界值(给出拒绝域);
- 4. 根据实际样本作出判断;

或者

- 1. 提出原假设和备择假设;
- 2. 选择检验同计量,给出拒绝域形式;
- 3. 计算检验统计量的观察值和 P_{-} 值;
- 4. 根据给定的显著水平 α 作出判断;

■ 表 8.3.4 正态总体均值、方差的检验法 (显著水平为 a)

	原假设 Ho	检验统计量	备择假设 H ₁	拒绝域	检验统计量的取值	P_值
	$\mu \leqslant \mu_0$ $\mu \geqslant \mu_0$ $\mu = \mu_0$ $(\sigma^2 已知)$	$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}}$	$\mu > \mu_0$ $\mu < \mu_0$ $\mu \neq \mu_0$	$Z\geqslant z_{lpha}$ $Z\leqslant -z_{lpha}$ $ Z \geqslant z_{lpha/2}$	$z_0 = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$	$1 - \Phi(z_0)$ $\Phi(z_0)$ $2(1 - \Phi(z_0))$
2	$\mu \leqslant \mu_0$ $\mu \geqslant \mu_0$ $\mu = \mu_0$ $(\sigma^2 $	$T = \frac{\overline{X} - \mu_0}{S/\sqrt{n}}$	$\mu > \mu_0$ $\mu < \mu_0$ $\mu \neq \mu_0$	$T \geqslant t_{\alpha}(n-1)$ $T \leqslant -t_{\alpha}(n-1)$ $ T \geqslant t_{\alpha/2}(n-1)$	$t_0 = rac{\overline{x} - \mu_0}{s/\sqrt{n}}$	$P(t(n-1) \geqslant t_0)$ $P(t(n-1) \leqslant t_0)$ $2P(t(n-1) \geqslant t_0)$
3	$\mu_1 - \mu_2 \leqslant \delta$ $\mu_1 - \mu_2 \geqslant \delta$ $\mu_1 - \mu_2 = \delta$ $(\sigma_1^2, \sigma_2^2 已知)$	$Z = \frac{\overline{X} - \overline{Y} - \delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$\mu_1 - \mu_2 > \delta$ $\mu_1 - \mu_2 < \delta$ $\mu_1 - \mu_2 \neq \delta$	$Z\geqslant z_{lpha}$ $Z\leqslant -z_{lpha}$ $ Z \geqslant z_{lpha/2}$	$z_0 = \frac{\overline{x} - \overline{y} - \delta}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}}$	$1 - \Phi(z_0)$ $\Phi(z_0)$ $2(1 - \Phi(z_0))$
	$\mu_1 - \mu_2 \leqslant \delta$ $\mu_1 - \mu_2 \geqslant \delta$ $\mu_1 - \mu_2 = \delta$ $\sigma_1^2 = \sigma_2^2 = \sigma^2 未知)$	$T = \frac{\overline{X} - \overline{Y} - \delta}{S_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$ $S_w^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$	$\mu_1 - \mu_2 > \delta$ $\mu_1 - \mu_2 < \delta$ $\mu_1 - \mu_2 \neq \delta$	$T \geqslant t_{\alpha}(n_1 + n_2 - 2)$ $T \leqslant -t_{\alpha}(n_1 + n_2 - 2)$ $ T \geqslant t_{\alpha/2}(n_1 + n_2 - 2)$	$t_0 = \frac{\overline{x} - \overline{y} - \delta}{s_w \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$P(t(n_1 + n_2 - 2) \ge t_0)$ $P(t(n_1 + n_2 - 2) \le t_0)$ $2P(t(n_1 + n_2 - 2) \ge t_0)$
	$\mu_1 - \mu_2 \leqslant \delta$ $\mu_1 - \mu_2 \geqslant \delta$ $\mu_1 - \mu_2 = \delta$ $(\sigma_1^2 \neq \sigma_2^2 $	$T = \frac{\overline{X} - \overline{Y} - \delta}{\sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}}$	$\mu_1 - \mu_2 > \delta$ $\mu_1 - \mu_2 < \delta$ $\mu_1 - \mu_2 \neq \delta$	$T\geqslant t_{lpha}(k)$ $T\leqslant -t_{lpha}(k)$ $ T \geqslant t_{lpha/2}(k)$ $k=\min(n_1-1,n_2-1)$ 或采用公式 (8.3.6)	$t_0=rac{\overline{x}-\overline{y}-\delta}{\sqrt{rac{s_1^2}{n_1}+rac{s_2^2}{n_2}}}$	$P(t(k) \ge t_0)$ $P(t(k) \le t_0)$ $2P(t(k) \ge t_0)$
	$\sigma^2 \leqslant \sigma_0^2$ $\sigma^2 \geqslant \sigma_0^2$ $\sigma^2 = \sigma_0^2$ $(\mu 未知)$	$\chi^2 = \frac{(n-1)S^2}{\sigma_0^2}$	$\sigma^2 > \sigma_0^2$ $\sigma^2 < \sigma_0^2$ $\sigma^2 \neq \sigma_0^2$	$\chi^{2} \geqslant \chi_{\alpha}^{2}(n-1)$ $\chi^{2} \leqslant \chi_{1-\alpha}^{2}(n-1)$ $\chi^{2} \geqslant \chi_{\alpha/2}^{2}(n-1)$ 或 $\chi^{2} \leqslant \chi_{1-\alpha/2}^{2}(n-1)$	$\chi_0^2 = \frac{(n-1)s^2}{\sigma_0^2}$	$P(\chi^{2}(n-1) \ge \chi_{0}^{2})$ $P(\chi^{2}(n-1) \le \chi_{0}^{2})$ $2 \min(p_{0}, 1 - p_{0}) (其中$ $p_{0} = P(\chi^{2}(n-1) \le \chi_{0}^{2}))$