```
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
# Importing the dataset
\label{eq:df} \texttt{df} = \texttt{pd.read\_csv("https://raw.githubusercontent.com/PROxZIMA/Academic-Codes/master/Semester%206/DSBDAL/A6/iris.csv")}; \\ \texttt{df} = \texttt{pd.read\_csv("https://raw.githubusercontent.com/PROxZIMA/Academic-Codes/master/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semester/Semeste
df.info()
          <class 'pandas.core.frame.DataFrame'>
          RangeIndex: 150 entries, 0 to 149
         Data columns (total 6 columns):
           # Column
                                               Non-Null Count Dtype
                  -----
                                                -----
           0 Id
                                               150 non-null
                                                                              int64
                  SepalLengthCm 150 non-null
           1
                                                                              float64
                  SepalWidthCm 150 non-null
                                                                              float64
                  PetalLengthCm 150 non-null
                                                                               float64
           4 PetalWidthCm 150 non-null
                                                                              float64
                  Species
                                               150 non-null
                                                                              object
         dtypes: float64(4), int64(1), object(1)
         memory usage: 7.2+ KB
df.describe()
                                       Id SepalLengthCm SepalWidthCm PetalLengthCm PetalWidthCm
            count 150.000000
                                                     150.000000
                                                                               150.000000
                                                                                                            150.000000
                                                                                                                                      150.000000
                          75.500000
                                                        5.843333
                                                                                   3.054000
                                                                                                               3.758667
                                                                                                                                          1.198667
           mean
              std
                          43.445368
                                                        0.828066
                                                                                   0.433594
                                                                                                               1.764420
                                                                                                                                          0.763161
                                                        4 300000
                                                                                   2 000000
                                                                                                               1.000000
                                                                                                                                          0.100000
             min
                            1 000000
             25%
                          38.250000
                                                        5.100000
                                                                                   2.800000
                                                                                                               1.600000
                                                                                                                                          0.300000
             50%
                          75.500000
                                                        5.800000
                                                                                   3.000000
                                                                                                               4.350000
                                                                                                                                          1.300000
                                                        6.400000
                                                                                   3.300000
                        112.750000
                                                                                                               5.100000
                                                                                                                                          1.800000
             75%
                        150.000000
                                                        7.900000
                                                                                   4.400000
                                                                                                               6.900000
                                                                                                                                          2.500000
X = df.iloc[:, :4].values
Y = df['Species'].values
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size = 0.2, random_state = 0)
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test)
print(f'Train Dataset Size - X: {X_train.shape}, Y: {Y_train.shape}')
print(f'Test Dataset Size - X: {X_test.shape}, Y: {Y_test.shape}')
         Train Dataset Size - X: (120, 4), Y: (120,)
         Test Dataset Size - X: (30, 4), Y: (30,)
from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB()
{\tt classifier.fit(X\_train,\ Y\_train)}
predictions = classifier.predict(X_test)
mapper = {'setosa': 0, 'versicolor': 1, 'virginica': 2}
predictions_ = [mapper[i] for i in predictions]
fig, axs = plt.subplots(2, 2, figsize = (12, 10), constrained_layout = True);
_ = fig.suptitle('Regression Line Tracing')
for i in range(4):
       _ = sns.regplot(x = X_test[:, i], y = predictions_, ax=axs[x, y])
       \_ = axs[x, y].scatter(X_test[:, i][::-1], Y_test[::-1], marker = '+', color="white")
       _ = axs[x, y].set_xlabel(df.columns[i + 1][:-2])
```

▼ GaussianNB GaussianNB()

setosa	1.00	1.00	1.00	11
versicolor	1.00	1.00	1.00	13
virginica	1.00	1.00	1.00	6
accuracy			1.00	30
macro avg	1.00	1.00	1.00	30
weighted avg	1.00	1.00	1.00	30

df.shape

[→ (150, 6)

df.isnull().sum()

Id 0
SepalLengthCm 0
SepalWidthCm 0
PetalLengthCm 0
PetalWidthCm 0
Species 0
dtype: int64

df.tail()

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	7
145	146	6.7	3.0	5.2	2.3	virginica	
146	147	6.3	2.5	5.0	1.9	virginica	
147	148	6.5	3.0	5.2	2.0	virginica	
148	149	6.2	3.4	5.4	2.3	virginica	
149	150	5.9	3.0	5.1	1.8	virginica	

df.head()

	Id	SepalLengthCm	SepalWidthCm	PetalLengthCm	PetalWidthCm	Species	1
0	1	5.1	3.5	1.4	0.2	setosa	
1	2	4.9	3.0	1.4	0.2	setosa	
2	3	4.7	3.2	1.3	0.2	setosa	
3	4	4.6	3.1	1.5	0.2	setosa	
4	5	5.0	3.6	1.4	0.2	setosa	

Colab paid products - Cancel contracts here