Name:	Roll No:
1 tuille.	1011 1 10.

Q1. In the following directed graph, vertices indicate courses and edges indicate a prerequisite relationship between courses. E.g. if there is an edge directed from C2 towards C5 then C2 is a prerequisite for C5. Determine the **minimum** number of semesters needed to complete the **entire** coursework. Assume that all courses are offered in each semester and there is no limit on the number of courses that can be taken per semester. [5 marks]

Minimum number of semesters needed to complete the entire coursework _____4____ Mention **which courses** should be taken in the following semesters.

Semester-1: C1, C2, C8, C9	Semester-2: C4, C5	Semester-3: C3, C7
Semester-4: C6	Semester-5:	Semester-6:
Semester-7:	Semester-8:	Semester-9:

Q2. Run Depth-First-Search on the following directed graph G. **Start DFS from node 4.** During DFS, when there is choice for next vertex to explore, **pick the lower numbered one**. Write pre and post numbers for each vertex in the table. [7 marks]

How many strongly connected components are there in G? 4

How do pre/post numbers help you in determining the **sink** strongly connected components? **Explain briefly and clearly.**

Run DFS on G^{Reverse} and detemine the pre and post numbers. Now, run undirected connected components algorithm on G and during DFS process vertices in **decreasing order** of their post numbers.