$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	$\frac{2k^2}{(1+2k^2)^2t_1}$
$\tau_{1}^{\#1}{}_{\alpha}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2k^2t_1}$	$\frac{1}{(1+2k^2)^2t_1}$	0	$-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
8							
$\tau_{1}^{\#1}_{\alpha\beta}$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$\frac{ik}{(1+k^2)^2 t_1}$	$\frac{k^2}{(1+k^2)^2 t_1}$	0	0	0	0
$\sigma_{1}^{\#2}$ $ au_{1}^{\#1}$	$-\frac{\sqrt{2}}{t_1 + k^2 t_1} - \frac{i\sqrt{2} k}{t_1 + k^2 t_1}$	$\frac{1}{(1+k^2)^2 t_1} \qquad \frac{i k}{(1+k^2)^2 t_2}$	$-\frac{ik}{(1+k^2)^2t_1} \left \frac{k^2}{(1+k^2)^2t_1} \right $	0 0	0 0	0 0	0 0
		10	1 ~	0 0 0	0 0 0	0 0 0	0 0 0

_	$\sigma_{2^{+}lphaeta}^{\#1}$	$ au_2^{\#1}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$
$\sigma_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0
$ au_2^{\#1} \dagger^{lphaeta}$	$\frac{2 i \sqrt{2} k}{(1+2 k^2)^2 t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0
$\sigma_{2}^{\#1} \dagger^{lphaeta\chi}$	0	0	$\frac{2}{t_1}$

 $i k t_1$

0

 $\frac{t_1}{\sqrt{2}}$

0

0

0

0

0

0

0

0

0

	$\omega_0^{\sharp 1}$	$f_{0}^{#1}$	$f_{0+}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^{+}}^{\#1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0^{+}}^{#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0}^{#2} \dagger$	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	$k^2 r_2 - t_1$

±1	
ı	:
l	
ı	7
-t ₁	Ţ
	•

 $\sigma_{0^{-}}^{\#1}$

 $\tau_0^{\#2}$

 $\tau_{0}^{\#1}$

0

0

 $i \sqrt{2} k$ (1+2 k^2)² t_1

 $\frac{1}{(1+2k^2)^2t_1}$

 $\sigma_{0}^{\#1}$ †

$\omega_{2}^{\#1}{}_{\alpha\beta}\ f_{2}^{\#1}{}_{\alpha\beta}\ \omega_{2}^{\#1}{}_{\alpha\beta\chi}$	0	0	$\frac{t_1}{2}$
$f_{2}^{\#1}_{\alpha\beta}$	$-\frac{ikt_1}{\sqrt{2}}$	$k^2 t_1$	0
	$\frac{t_1}{2}$	$\frac{ikt_1}{\sqrt{2}}$	0
	$\omega_{2}^{\#1} + \alpha^{eta}$	$f_2^{#1} + \alpha^{\beta}$	$\omega_{2}^{#1} +^{lphaeta\chi}$

0

0

 $\frac{2k^2}{(1+2k^2)^2t_1}$

 $-\frac{i\sqrt{2}k}{(1+2k^2)^2t_1}$

 $\tau_0^{\#1} +$

0

0

0

0

 $\tau_0^{\#2} \uparrow$

 $k^2 r_2 - t_1$

0

0

0

 $\sigma_{0}^{\#1}$ \dagger

	#	Н	1	3	3	3	2	16
Source constraints	SO(3) irreps	$\tau_{0+}^{#2} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$t_1^{\#2}\alpha + 2ik \sigma_1^{\#2}\alpha = 0$	$\tau_{1}^{\#1}{}^{\alpha} == 0$	$\tau_{1+}^{\#1}\alpha\beta + ik \ \sigma_{1+}^{\#2}\alpha\beta == 0$	$\tau_{2+}^{\#1}\alpha\beta - 2\overline{\imath}k\sigma_{2+}^{\#1}\alpha\beta == 0$	Total #:

0	?	
?	$J^P = 0^-$	
	$\bigcirc -$	
?	k^{μ}	
	?	

	Massive partic	le
?	Pole residue:	$-\frac{1}{r_2} > 0$
$J^P = 0^-$	Polarisations:	1
$\overrightarrow{k^{\mu}}$	Square mass:	$\frac{t_1}{r_2} > 0$
?	Spin:	0
	Parity:	Odd

$\overline{}$
$\overline{}$
_
\overline{c}
\mathbf{C}
\neg
\dashv
_
Ω)
77
U)
ľ
<u>~</u>
nassless
ľ
~ .
(I)
$\overline{}$
\sim
par
=
_1
<u></u>
=:
$\overline{\Box}$
es
: =
U)
$\overline{}$

 $_{\lambda}^{\prime}\partial^{\kappa}f^{\prime}_{\prime}+2\,t_{1}\,\,\omega_{\kappa\theta}\,\partial^{\kappa}f^{\prime\theta}-t_{1}\,\,\omega_{\alpha}^{}\,\partial^{\kappa}f^{\prime}_{\kappa}-t_{1}\,\,\omega_{\lambda}^{\lambda}\,\partial^{\kappa}f^{\prime}_{\kappa}+\frac{1}{2}\,t_{1}\,\partial^{\alpha}f^{\lambda}_{\kappa}\,\partial^{\kappa}f_{\lambda}+\frac{1}{2}\,t_{1}\,\partial^{\alpha}f^{\lambda}_{\kappa}$

 $t_1 \, \partial_\kappa f^\lambda$

 $_{\alpha}^{\lambda}\partial^{\kappa}f_{\lambda\kappa} + \frac{1}{3}r_{2}\partial_{\kappa}\omega^{\alpha\beta\theta}\partial^{\kappa}\omega_{\alpha\beta\theta} +$

 $\frac{1}{2}t_1 \partial_k f_{\theta}^{\ \lambda} \partial^k f_{\lambda}^{\ \theta} + \frac{1}{2}t_1 \partial_k f^{\lambda}_{\ \theta} \partial^k f_{\lambda}^{\ \theta} - t_1 \partial^{\alpha} f^{\lambda}_{\ \alpha} \partial^k f_{\lambda k} + \frac{1}{3}r_2 \partial_k \omega$ $\frac{2}{3}r_2 \partial_k \omega^{\theta \alpha \beta} \partial^k \omega_{\alpha \beta \theta} - \frac{2}{3}r_2 \partial^{\beta} \omega^{\alpha \lambda}_{\ \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{\ \lambda} + \frac{2}{3}r_2 \partial^{\beta} \omega^{\lambda \alpha}_{\ \alpha} \partial_{\lambda} \omega_{\alpha \beta}^{\ \lambda}$

 $\omega_{1}^{\#1} \;\; \omega_{1}^{\#2} \;\; \omega_{1}^{\#2} \;\; f_{1}^{\#1} \;\; \omega_{1}^{\#1} \;\; \omega_{1}^{\#2} \;\; g_{1}^{\#1} \;\; f_{1}^{\#2}$

0

0

0

0

 $-\frac{i k t_1}{\sqrt{2}}$

 $-\frac{t_1}{\sqrt{2}}$

- <u>t</u>1

 $\omega_1^{\#1} +^{\alpha\beta}$

0

0

0

0

0

0

 $-\frac{t_1}{\sqrt{2}}$

 $\omega_1^{\#2} + ^{\alpha \beta}$

0

0

0

0

0

0

 $\frac{i\,k\,t_1}{\sqrt{2}}$

 $f_1^{\#1} + \alpha^{\beta}$

 $\frac{1}{3}r_2\,\partial_\theta\omega_{\alpha\beta}^{\kappa}\partial_\kappa\omega^{\alpha\beta\theta} - \frac{2}{3}r_2\,\partial_\theta\omega_{\alpha\beta}^{\kappa}\,\partial_\kappa\omega^{\theta\alpha\beta} - \frac{1}{2}t_1\,\partial^\alpha f_{\kappa}\,\partial^\kappa f_{\alpha}^{\theta} - \frac{1}{2}t_1\,\partial^\alpha f_{\kappa\theta}\,\partial^\kappa f_{\theta}^{\theta} - \frac{1}{2}t_1\,\partial^\alpha f_{\kappa\theta}^{\theta}\partial^\kappa f_{\theta}^{\theta} - \frac{1}{2}t_2\,\partial^\alpha f_{\kappa\theta}^{\theta}\partial^\kappa f_{\theta}^{\theta} - \frac{1}{2}t_3\,\partial^\alpha f_{\kappa\theta}^{\theta}\partial^\kappa f_{\theta}^{\theta} - \frac{1}{2}t_3\,\partial^\alpha f_{\kappa\theta}^{\theta}\partial^\kappa f_{\theta}^{\theta} - \frac{1}{2}t_3\,\partial^\alpha f_{\theta}^{\theta}\partial^\kappa f_{\theta}^{\theta} - \frac{1}{2}t_3\,\partial^\alpha f_{\theta}^{\theta}\partial^\alpha f_{\theta}^{\theta} - \frac{1}{2}t$

 $\frac{1}{2}t_1\partial^\alpha f^\lambda_{\ \ \kappa}\partial^\kappa f_{\alpha\lambda} + t_1\ \omega_{\kappa\alpha}^{\ \ \alpha}\,\partial^\kappa f'_{\ \ \prime} + t_1\ \omega_{\kappa\lambda}^{\ \ \lambda}\,\partial^\kappa f'_{\ \ \prime} + 2\,t_1\,\partial^\alpha f_{\kappa\alpha}\,\partial^\kappa f'_{\ \ \prime} -$

Lagrangian density

 $_{\kappa}^{\chi}\partial_{\theta}\omega_{\alpha\beta}^{}$ -

$-\frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ikt_1$	
0	0	0	0	
0	0	0	0	
0	0	0	0	
$\omega_{1^{-}}^{\#1} \dagger^{\alpha}$	$\omega_1^{\#2} +^{\alpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_1^{\#2} + \alpha$	

r_2	<	0	&&	t_1	<	0
-------	---	---	----	-------	---	---