

CD4069UB

SCHS054D-NOVEMBER 1998-REVISED FEBRUARY 2016

CD4069UB CMOS Hex Inverter

1 Features

- · Standardized Symmetrical Output Characteristics
- Medium Speed Operation: -t_{PHL}, t_{PLH} = 30 ns at 10 V (Typical)
- 100% Tested for Quiescent Current at 20 V
- Maximum Input Current of 1 μA at 18 V Over Full Package-Temperature Range, 100 nA at 18 V and 25°C
- Meets All Requirements of JEDEC Tentative Standard No. 13B, Standard Specifications for Description of B Series CMOS Devices

2 Applications

- · Logic Inversion
- Pulse Shaping
- Oscillators
- High-Input-Impedance Amplifiers

B Description

The CD4069UB device consist of six CMOS inverter circuits. These devices are intended for all general-purpose inverter applications where the medium-power TTL-drive and logic-level-conversion capabilities of circuits such as the CD4009 and CD4049 hex inverter and buffers are not required.

Device Information⁽¹⁾

PART NUMBER	PACKAGE (PINS)	BODY SIZE (NOM)
CD4069UBE	PDIP (14)	19.30 mm × 6.35 mm
CD4069UBF	CDIP (14)	19.56 mm × 6.67 mm
CD4069UBM	SOIC (14)	8.65 mm × 3.91 mm
CD4069UBNSR	SO (14)	10.30 mm × 5.30 mm
CD4069UBPW	TSSOP (14)	5.00 mm × 4.40 mm

For all available packages, see the orderable addendum at the end of the data sheet.

CD4069UB Functional Diagram

Table of Contents

1	Features 1		8.3 Feature Description	13
2	Applications		8.4 Device Functional Modes	
3	Description 1	9	Application and Implementation	
4	Revision History		9.1 Application Information	
5	Pin Configuration and Functions		9.2 Typical Application	14
6	Specifications4	10	Power Supply Recommendations	16
U	6.1 Absolute Maximum Ratings	11	Layout	16
	6.2 ESD Ratings		11.1 Layout Guidelines	
	6.3 Recommended Operating Conditions		11.2 Layout Example	16
	6.4 Thermal Information4	12	Device and Documentation Support	17
	6.5 Electrical Characteristics – Dynamic		12.1 Device Support	17
	6,6 Electrical Characteristics – Static		12.2 Documentation Support	17
	6.7 Typical Characteristics 8		12.3 Community Resource	17
7	Parameter Measurement Information 9		12.4 Trademarks	17
8	Detailed Description 13		12.5 Electrostatic Discharge Caution	17
•	8.1 Overview		12.6 Glossary	17
	8.2 Functional Block Diagram	13	Mechanical, Packaging, and Orderable Information	17

4 Revision History

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

Changes from Revision C (August 2003) to Revision D

Page

 Added ESD Ratings table, Feature Description section, Device Functional Modes, Application and Implementation section, Power Supply Recommendations section, Layout section, Device and Documentation Support section, and Mechanical, Packaging, and Orderable Information section

5 Pin Configuration and Functions

D, J, N, NS, and PW Packages 14-Pin PDIP, CDIP, SOIC, SO, and TSSOP Top View

Pin Functions

Р	IN	1/0	DESCRIPTION
NAME	NO.	I/O	DESCRIPTION
Α	1	I	A input
В	3	I	B input
С	5	I	C input
D	9	I	D input
Е	11	I	E input
F	13	ı	F input
G = \overline{A}	2	0	G output
H = B	4	0	H output
I = C	6	0	I output
$J = \overline{D}$	8	0	J output
K = Ē	10	0	K output
L = F	12	0	L output
V_{DD}	14	_	Positive supply
V _{SS}	7	_	Negative supply

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)⁽¹⁾

			MIN	MAX	UNIT
V_{DD}	DC supply-voltage (voltages referenced to V_{SS}	-0.5	20	V	
VI	Input voltage, all inputs		–0.5 to V _{DD}	0.5	٧
I _{IK}	DC input current, any one input		-10	10	mA
	Power dissipation per package	-55°C to 100°C		500	mW
P_D		100°C to 125°C	12	200	
	Device dissipation per output transistor	Full range (all package types)		100	mW
	Lead temperature ⁽²⁾			265	°C
TJ	Junction temperature			150	°C
T _{stg}	Storage temperature			150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

(2) During soldering at distance 1/16 inch ± 1/32 inch (1.59 mm ± 0.79 mm) from case for 10 s maximum

6.2 ESD Ratings

			VALUE	UNIT
.,	Clastrostatic disabaras	Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001 (1)	±500	.,
V _(ESD)	Electrostatic discharge	Charged-device model (CDM), per JEDEC specification JESD22-C101 ⁽²⁾	±200	

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)

		MIN	MAX	UNIT
V_{DD}	Supply voltage	3	18	V
T _A	Operating temperature	– 55	125	°C

6.4 Thermal Information

		CD4069UB					
	THERMAL METRIC ⁽¹⁾	D (SOIC)	J (CDIP)	N (PDIP)	NS (SO)	PW (TSSOP)	UNIT
		14 PINS	14 PINS	14 PINS	14 PINS	14 PINS	
$R_{\theta JA}$	Junction-to-ambient thermal resistance	94.9	_	57.9	91.2	122.1	°C/W
$R_{\theta JC(top)}$	Junction-to-case (top) thermal resistance	56.4	28.5	45.5	48.8	50.8	°C/W
$R_{\theta JB}$	Junction-to-board thermal resistance	49.2	_	37.7	50	63.8	°C/W
ΨЈТ	Junction-to-top characterization parameter	21.1	_	30.6	15	6.3	°C/W
ΨЈВ	Junction-to-board characterization parameter	48.9	_	37.6	49.6	63.3	°C/W
$R_{\theta JC(bot)}$	Junction-to-case (bottom) thermal resistance	N/A	N/A	N/A	N/A	N/A	°C/W

⁽¹⁾ For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.5 Electrical Characteristics – Dynamic

 T_A = 25°C; input t_r , t_f = 20 ns; C_L = 50 pF; R_L = 200 k Ω (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
		V _{DD} (V) = 5		55	110	
t _{PLH} , t _{PHL}	Propagation delay time	V _{DD} (V) = 10		30	60	ns
		V _{DD} (V) = 15		25	50	
		V _{DD} (V) = 5		100	200	
t _{THL} , t _{TLH}	Transition time	V _{DD} (V) = 10		50	100	ns
		V _{DD} (V) = 15		40	80	
C _{IN}	Input capacitance	Any input		10	15	pF

6.6 Electrical Characteristics - Static

 $T_A = 25$ °C; input t_r , $t_f = 20$ ns; $C_L = 50$ pF; $R_L = 200$ k Ω (unless otherwise noted)

PARAMETER	TEST COND	ITIONS	MIN	TYP	MAX	UNIT
		T _A = -55°C			0.25	
		T _A = -40°C			0.25	
	$V_{IN} = 0V \text{ or } 5 \text{ V}$, $V_{DD} = 5 \text{ V}$	T _A = 25°C		0.01	0.25	ı
		T _A = 85°C			7.5	
		T _A = 125°C			7.5	
		T _A = -55°C			0.5	
		T _A = -40°C			0.5	
	$V_{IN} = 0 \text{ or } 10 \text{ V}, V_{DD} = 10 \text{ V}$	T _A = 25°C		0.01	0.5	
		T _A = 85°C			15	
		T _A = 125°C			15	
DDmax Quiescent device current		T _A = -55°C			1	μA
		T _A = -40°C			1	
	$V_{IN} = 0 \text{ or } 15 \text{ V}, V_{DD} = 15 \text{ V}$	T _A = 25°C		0.01	1	
		T _A = 85°C			30	
		T _A = 125°C			30	
		T _A = -55°C			5	
	V _{IN} = 0 or 20 V, V _{DD} = 20 V	T _A = -40°C			5	
		T _A = 25°C		0.02	5	
		T _A = 85°C			150	
		T _A = 125°C			150	
		T _A = -55°C	0.64			
		T _A = -40°C	0.61			
	$V_{O} = 0.4 \text{ V}, V_{IN} = 5 \text{ V},$	T _A = 25°C	0.51	1		
	V _{DD} = 5 V	T _A = 85°C	0.42			
		T _A = 125°C	0.36			
		T _A = -55°C	1.6			
		T _A = -40°C	1.5			
OLmin Output low (sink) current	$V_O = 0.5 \text{ V}, V_{IN} = 10 \text{ V},$	T _A = 25°C	1.3	2.6		mA
OLITHIA COLING COLING COLING	V _{DD} = 10 V	T _A = 85°C	1.1			111/3
		T _A = 125°C	0.9			
		T _A = -55°C	4.2	 ,		
		$T_A = -40^{\circ}C$	4.2			
	V _O = 1.5 V, V _{IN} = 15 V,	T _A = 25°C	3.4	6.8		
	V _{DD} = 15 V	T _A = 85°C	2.8	0.0		
		T _A = 125°C	2.4			

Electrical Characteristics – Static (continued)

 T_A = 25°C; input t_r , t_f = 20 ns; C_L = 50 pF; R_L = 200 k Ω (unless otherwise noted)

	PARAMETER	TEST CON	DITIONS	MIN	TYP	MAX	UNIT
7, 10			$T_A = -55^{\circ}C$	-0.64			
			T _A = -40°C	-0.61			
	$V_{O} = 4.6 \text{ V}, V_{IN} = 0 \text{ V}, V_{DD} = 5 \text{ V}$	T _A = 25°C	-0.51	_1			
	VDD C V	T _A = 85°C	-0.42				
			T _A = 125°C	-036			
			T _A = -55°C	-2			
			T _A = -40°C	-1.8			
		$V_{O} = 2.5 \text{ V}, V_{IN} = 0 \text{ V}, V_{DD} = 5 \text{ V}$	T _A = 25°C	-1.6	-3.2		
		VDD - 0 V	T _A = 85°C	-1.3			
	Outt hink (T _A = 125°C	-1.15			0
l _{OH} min	Output high (source) current		T _A = -55°C	-1.6			mA
			T _A = -40°C	-1.5			
		$V_O = 9.5 \text{ V}, V_{IN} = 0 \text{ V}, V_{DD} = 10 \text{ V}$	T _A = 25°C	-1.3	-2.6		
		VDD - 10 V	T _A = 85°C	-1.1			
			T _A = 125°C	-0.9			
			T _A = -55°C	-4.2			
		T _A = -40°C	-4				
		$V_O = 13.5 \text{ V}, V_{IN} = 0 \text{ V}, V_{DD} = 15 \text{ V}$	T _A = 25°C	-3.4	-6.8		
			T _A = 85°C	-2.8			
			T _A = 125°C	-2.4			
		V _{IN} = 5 V, V _{DD} = 5 V	T _A = 25°C		0	0.05	
			All other temperatures			0.05	
		V _{IN} = 10 V, V _{DD} = 10 V	T _A = 25°C		0	0.05	
V _{OL} max	Low-level output voltage		All other temperatures			0.05	V
			T _A = 25°C		0	0.05	
		V _{IN} = 15 V, V _{DD} = 15 V	All other temperatures			0.05	
			T _A = 25°C	4.95	5		
		$V_{IN} = 0 V, V_{DD} = 5 V$	All other temperatures	4.95			
			T _A = 25°C	9.95	10		
V _{OH} min	High-level output voltage	V _{IN} = 0 V, V _{DD} = 10 V	All other temperatures	9.95			V
			T _A = 25°C	14.95	15		
		V _{IN} = 0 V, V _{DD} = 15 V	All other temperatures	14.95			
		$V_{O} = 4.5 \text{ V}, V_{DD} = 5 \text{ V}, \text{ all te}$	· '			1	
√ _{IL} max	Input low voltage	$V_0 = 9 \text{ V}, V_{DD} = 10 \text{ V}, \text{ all te}$				2	V
			$V_O = 9 \text{ V}, V_{DD} = 10 \text{ V}, \text{ all temperatures}$ $V_O = 13.5 \text{ V}, V_{DD} = 15 \text{ V}, \text{ all temperatures}$			2.5	•
		$V_{O} = 0.5 \text{ V}, V_{DD} = 5 \text{ V}, \text{ all te}$		4		2.0	
V _{IH} min	Input high voltage	$V_0 = 1 \text{ V}, V_{DD} = 10 \text{ V}, \text{ all te}$		8			V
. IU	3 101.090	$V_O = 1.5 \text{ V}, V_{DD} = 15 \text{ V}, \text{ all }$	12.5			٠	

Submit Documentation Feedback

Copyright © 1998–2016, Texas Instruments Incorporated

Electrical Characteristics – Static (continued)

 $T_A = 25$ °C; input t_r , $t_f = 20$ ns; $C_L = 50$ pF; $R_L = 200$ k Ω (unless otherwise noted)

	PARAMETER	TEST CONDI	TIONS	MIN	TYP	MAX	UNIT
			T _A = -55°C			±01	
		V _{IN} = 0 V to 18 V, V _{DD} = 18 V	T _A = -40°C			±01	
I _{IN} max	Input current		T _A = 25°C		±10 ⁻⁵	±1	μA
			T _A = 85°C			±1	
			T _A = 125°C			±1	

6.7 Typical Characteristics

Typical Characteristics (continued)

7 Parameter Measurement Information

Figure 10. Schematic Diagram of One of Six Identical Inverters

Copyright © 1998–2016, Texas Instruments Incorporated

Parameter Measurement Information (continued)

Figure 11. Quiescent Device Current Test Circuit

Figure 12. Noise Immunity Test Circuit

Figure 13. Input Leakage Current Test Circuit

Parameter Measurement Information (continued)

Figure 14. Dynamic Electrical Characteristics Test Circuit and Waveform

Figure 15. Typical Crystal Oscillator Circuit

Figure 16. High-Input Impedance Amplifier

Copyright © 1998–2016, Texas Instruments Incorporated

Parameter Measurement Information (continued)

Figure 17. Typical RC Oscillator Circuit

Figure 18. Input Pulse Shaping Circuit

Figure 19. Dynamic Power Dissipation Test Circuit

8 Detailed Description

8.1 Overview

The CD4069UB device has six inverter circuits. The recommended operating range is from 3 V to 18 V. The CD4069UB-series types are supplied in 14-pin hermetic dual-in-line ceramic packages (F3A suffix), 14-pin dual-in-line plastic packages (E suffix), 14-pin small-outline packages (M, MT, M96, and NSR suffixes), and 14-pin thin shrink small-outline packages (PW and PWR suffixes).

8.2 Functional Block Diagram

8.3 Feature Description

CD4069UB has standardized symmetrical output characteristics and a wide operating voltage range from 3 V to 18 V with quiescent current tested at 20 V. This has a medium operation speed –t_{PHL}, t_{PLH} = 30 ns (typical) at 10 V. The operating temperature is from –55°C to 125°C. CB4069B meets all requirements of JEDEC tentative standard No. 13B, *Standard Specifications for Description of B Series CMOS Devices*.

8.4 Device Functional Modes

Table 1 shows the functional modes for CD4069UB.

Table 1. Function Table

INPUT A, B, C, D, E, F	OUTPUT G, H, I, J, K, L
Н	L
L	Н

9 Application and Implementation

NOTE

Information in the following applications sections is not part of the TI component specification, and TI does not warrant its accuracy or completeness. TI's customers are responsible for determining suitability of components for their purposes. Customers should validate and test their design implementation to confirm system functionality.

9.1 Application Information

The CD4069UB device has a low input current of 1 μ A at 18 V over full package-temperature range and 100 nA at 18 V, 25°C. This device has a wide operating voltage range from 3 V to 18 V and used in high voltage applications.

9.2 Typical Application

Figure 20. CD4069UB Application

9.2.1 Design Requirements

The CD4069UB device is the industry's highest logic inverter operating at 18 V under recommended conditions. The lower drive capabilities makes it suitable for driving light loads like LED and greatly reduces chances of overshoots and undershoots.

9.2.2 Detailed Design Procedure

The recommended input conditions for Figure 20 includes rise time and fall time specifications (see $\Delta t/\Delta V$ in Recommended Operating Conditions) and specified high and low levels (see V_{IH} and V_{IL} in Recommended Operating Conditions). Inputs are not overvoltage tolerant and must be below V_{CC} level because of the presence of input clamp diodes to V_{CC} .

The recommended output condition for the CD4069UB application includes specific load currents. Load currents must be limited so as to not exceed the total power (continuous current through V_{CC} or GND) for the device. These limits are located in the *Absolute Maximum Ratings*. Outputs must not be pulled above V_{CC} .

Typical Application (continued)

9.2.3 Application Curves

Figure 23. Variation of Normalized Propagation Delay Time (t_{PHL} and t_{PLH}) With Supply Voltage

10 Power Supply Recommendations

The power supply can be any voltage between the minimum and maximum supply voltage rating located in *Recommended Operating Conditions*.

Each V_{CC} pin must have a good bypass capacitor to prevent power disturbance. For devices with a single supply, TI recommends a 0.1- μ F capacitor. If there are multiple V_{CC} pins, then TI recommends a 0.01- μ F or 0.022- μ F capacitor for each power pin. It is acceptable to parallel multiple bypass capacitors to reject different frequencies of noise. 0.1- μ F and 1- μ F capacitors are commonly used in parallel. The bypass capacitor must be installed as close to the power pin as possible for best results.

11 Layout

11.1 Layout Guidelines

When using multiple bit logic devices, inputs must never float.

In many cases, digital logic device functions or parts of these functions are unused (for example, when only two inputs of a triple-input and gate are used, or only 3 of the 4 buffer gates are used). Such input pins must not be left unconnected because the undefined voltages at the outside connections result in undefined operational states. This rule must be observed under all circumstances specified in the next paragraph.

All unused inputs of digital logic devices must be connected to a high or low bias to prevent them from floating. See the application note, *Implications of Slow or Floating CMOS Inputs* (SCBA004), for more information on the effects of floating inputs. The logic level must apply to any particular unused input depending on the function of the device. Generally, they are tied to GND or V_{CC} (whichever is convenient).

11.2 Layout Example

12 Device and Documentation Support

12.1 Device Support

12.1.1 Third-Party Products Disclaimer

TI'S PUBLICATION OF INFORMATION REGARDING THIRD-PARTY PRODUCTS OR SERVICES DOES NOT CONSTITUTE AN ENDORSEMENT REGARDING THE SUITABILITY OF SUCH PRODUCTS OR SERVICES OR A WARRANTY, REPRESENTATION OR ENDORSEMENT OF SUCH PRODUCTS OR SERVICES, EITHER ALONE OR IN COMBINATION WITH ANY TI PRODUCT OR SERVICE.

12.2 Documentation Support

12.2.1 Related Documentation

For related documentation see the following:

Implications of Slow or Floating CMOS Inputs, SCBA004

12.3 Community Resource

The following links connect to TI community resources. Linked contents are provided "AS IS" by the respective contributors. They do not constitute TI specifications and do not necessarily reflect TI's views; see TI's Terms of Use.

TI E2E™ Online Community TI's Engineer-to-Engineer (E2E) Community. Created to foster collaboration among engineers. At e2e.ti.com, you can ask questions, share knowledge, explore ideas and help solve problems with fellow engineers.

Design Support TI's Design Support Quickly find helpful E2E forums along with design support tools and contact information for technical support.

12.4 Trademarks

E2E is a trademark of Texas Instruments.

All other trademarks are the property of their respective owners.

12.5 Electrostatic Discharge Caution

These devices have limited built-in ESD protection. The leads should be shorted together or the device placed in conductive foam during storage or handling to prevent electrostatic damage to the MOS gates.

12.6 Glossary

SLYZ022 — TI Glossarv.

This glossary lists and explains terms, acronyms, and definitions.

13 Mechanical, Packaging, and Orderable Information

The following pages include mechanical, packaging, and orderable information. This information is the most current data available for the designated devices. This data is subject to change without notice and revision of this document. For browser-based versions of this data sheet, refer to the left-hand navigation.