CS-E3190 Principles of Algorithmic Techniques

05. Greedy Algorithms – Tutorial Exercise

1. **Maximum weight matching.** Consider a graph G=(V,E), where |V|=n, and |E|=m. Suppose that the graph is weighted i.e. each edge $e\in E$ is assigned a weight $w(e)\in \mathbb{N}$. Recall that a matching $M\subseteq E$ is a set of edges such that none of them share an endpoint. A matching is called maximal if no edges can be added to it.

The goal is to design a greedy 2-approximation algorithm for finding a maximum weight matching that runs in O(m).

(a) Give a greedy algorithm algorithm that fits the goal.

Hint: you can assume that the input graph is given as a list of edges, sorted in a decreasing weights order.

Solution.

By slight abuse of notation, assume $E = (e_1, \ldots, e_m) = (\{u_1, v_1\}, \ldots, \{u_m, v_m\})$ is the list of edges ordered by weight in descending order. For a set of edges $A \subseteq E$ let V(A) be the set of vertices covered by the edges in A.

Algorithm 1: Greedy algorithm for maximum weight matching

```
Initialize matching M = \emptyset
for i = 1, \dots, m do

| if e_i \cap V(M) = \emptyset then
| Add e_i to M
end
end
return M
```

(b) Prove that this algorithm is correct (returns a matching that has a maximal number of edges) and that it gives a 2-approximation of a maximum matching.

Solution.

We need to show that the algorithm returns a valid matching (corectness) and that the weight of this matching is at least 1/2 of the optimum (2-approximation).

Correctness. By induction on $i \in \{1, ..., m\}$, M is a matching. Indeed,

- The initial set $M = \emptyset$ is a matching.
- Assume that M is a matching after processing edge e_i . During the $(i+1)^{th}$ step, the edge e_{i+1} is only added to M if $e_i \cap M = \emptyset$. Hence after processing e_{i+1} the set M is still a matching.

Approximation. Let w(M) be the weight of M and let M^* be a maximum weight matching. We want to show that $w(M^*) \leq 2 \cdot w(M)$.

If $M = M^*$, we are done. Otherwise, $\exists e^* \in M^* \setminus M$.

• We will first show that $\exists e \in M \text{ s.t. } w(e) \geq w(e^*) \text{ and } e \cap e^* \neq \emptyset \text{ by contradiction.}$ Suppose there is no such edge. Then $\forall e \in M, w(e) < w(e^*) \text{ or } e \cap e^* = \emptyset.$ If $\forall e \in M, e \cap e^* = \emptyset, e^* \text{ would be added to } M \text{ by the algorithm which is impossible since } e^* \in M^* \backslash M.$ Hence, $\exists e \in M \text{ s.t. } e \cap e^* \neq \emptyset.$ Suppose that $\forall e \in M \text{ s.t. } e \cap e^* \neq \emptyset, w(e) < w(e^*).$ Since the algorithm runs over a descending weight list of edges, this means that when the algorithm considers e^* , there is no intersection between the end points of e^* and the vertices in M, ie. $e^* \cap V(M) = \emptyset$. So if e^* is free then the algorithm must add e^* to M before considering the edges $e \in M$, s.t. $e \cap e^* \neq \emptyset$. This is impossible since $e^* \in M^* \backslash M$.

Hence for each $e^* \in M^*$, there exists an edge $e \in M$ s.t. $w(e) \ge w(e^*)$ and $e \cap e^* \ne \emptyset$.

• Let us now prove that M is a 2-approximation. For $e^* \in M^*$, let $f(e^*)$ be an edge in M as described above. Then,

$$w(M^*) = \sum_{e \in M \cap M^*} w(e) + \sum_{e^* \in M^* \setminus M} w(e^*) \le \sum_{e \in M \cap M^*} w(e) + \sum_{e^* \in M^* \setminus M} w(f(e^*))$$

Note that two edges e' and e'' in M^* can have f(e') = f(e'') but not three or more (more than two edges in M^* cannot be adjacent to the same edge without violating the fact that M^* is a matching). Let F be the set of edges $e \in M$ s.t. $\exists e^* \in M^* \backslash M$ and $e = f(e^*)$. The previous observation implies that,

$$\sum_{e^* \in M^* \setminus M} w(e^*) \le 2 \cdot \sum_{e \in F} w(e).$$

Hence,

$$w(M^*) = \sum_{e \in M \cap M^*} w(e) + \sum_{e^* \in M^* \setminus M} w(e^*) \le \sum_{e \in M \cap M^*} w(e) + 2 \cdot \sum_{e \in F} w(e) \le 2 \cdot w(M).$$

(c) Assuming a sorted array, prove that it runs in time O(m).

Solution.

There are exactly m iterations since the algorithms goes through the ordered list of nodes exactly once. Hence, we need to show that each iteration can be performed in constant time i.e. $(e \cup M = \emptyset)$ can be tested in constant time.

To show this, we will give a practical encoding of M. Let U_i denote the i^{th} element of $U \in \{0,1\}^n$ s.t.

$$U_i = \begin{cases} 0 & \text{if } u_i \notin V(M) \\ 1 & \text{otherwise} \end{cases}$$

If U is up to date, checking whether $e = \{u_i, u_j\}$ can be added to M is done by checking that both U_i and U_j are zero, which is done in constant time.

Moreover, maintaining U up to date requires setting $U_i = U_j = 1$ after adding $\{u_i, u_j\}$, which is also done in constant time.

Finally, U can be initialized in O(m) time since $n \leq 2m$. Hence it is possible to initialize such a structure before going through all the edges, using O(m) time to initialise, O(m) time to go though all iterations that are all performed in constant time.