测试用例和测试报告管理

一,缺陷来源

为什么会出现软件缺陷?

- (1) 导致软件缺陷最大的原因是产品说明书。
- (2) 软件缺陷的第二大来源是设计方案。
- (3) 编写代码
- (4) 其他

缺陷类型

缺陷类型编号	缺陷类型	描述	
10	F-功能	如逻辑,指针,循环,递归,功能等缺陷	
20	G-语法	拼写、标点符号、打字	
30	A-赋值	如声明、重复命名,作用域	
40	I-接口	与其他组件、模块或设备驱动程序、调用参数、控制块或参数列表相互影响的缺陷	数
50	B-联编打包	由于配置库、变更管理或版本控制引起的错误	
60	D-文档	需求、设计类文档	
70	U-用户接口	人机交互特性: 屏幕格式 , 确认用户输入 , 功能有效性	
80	P-性能	不满足系统可测量的属性值,如:执行时间,事务处理速率等	\$
90	N-标准	不符合各种标准的要求,如编码标准、设计符号等	
100	E-环境	设计、编译、其他支持系统问题	
∢			•

缺陷严重程度

編号 缺陷严重等级

1	严重缺陷 (Critical)	不能执行正常工作功能或重要功能。
2	较大缺陷(Major)	严重地影响系统要求或基本功能的实现,且没有办法更正。(重新安装或 不属于更正办法)
3	较小缺陷(Minor)	严重地影响系统要求或基本功能的实现,但存在合理的更正办法。(重新: 该软件不属于更正办法)
4	轻微缺陷 (Cosmetic)	使操作者不方便或遇到麻烦,但它不影响执行工作功能或重要功能。
5	其他缺陷 (Other)	其它错误
4		•

二,测试用例管理

什么是黑盒测试

- (1) 黑盒测试法把程序看成一个黑盒子,完全不考虑程序内部结构和处理过程。
- (2) 黑盒测试是在程序接口进行测试,它只是检查程序功能是否按照规格说明书的规 定正常使用。
 - (3) 黑盒测试又称功能测试。

什么是测试用例?

测试用例是为特定的目的而设计的一套测试方案,包括测试环境、操作步骤、测试输入数据和预期的结果,实际结果。

测试用例的特征:

- (1) 最有可能抓住错误的;
- (2) 不是重复的、多余的;
- (3) 一组相似测试用例中最有效的;
- (4) 既不是太简单,也不是太复杂。

为什么做测试用例

完全测试是不可能的

- (1) 输入量太大;
- (2) 输出结果太多;
- (3) 软件实现途径太多:
- (4) 软件说明书没有客观标准。从不同角度看,软件缺陷的标准不同。

设计测试用例的基本准则

我们不可能进行穷举测试,为了节省时间和资源、提高测试效率,必须要从数量极大的可用测试

数据中精心挑选出具有代表性或特殊性的测试数据来进行测试

测试用例的代表性

能够代表并覆盖各种合理的和不合理的、合法的和非法的、边界的和越界的以及极限的输入数

据、操作和环境设置等

测试结果的可判定性

即测试执行结果的正确性是可判定的,每一个测试用例都应有相应的期望结果。

测试结果的可再现性

即对同样的测试用例,系统的执行结果应当是相同的。

黑盒测试内容:

主要针对软件功能、软件界面、外部数据库访问、软件初始化等方面进行测试。

测试用例设计依据:

编写黑盒测试用例时,需要以《软件需求分析文档》为依据

黑盒测试用例主要设计方法:

- (1) 等价类划分
- (2) 边界值分析
- (3) 错误猜测法
- (4) 因果图
- (5) 判定决策表

三,缺陷情况分析

缺陷修复率标准

- (1) 一、二级错误修复率应达到100%
- (2) 三、四级错误修复率应达到80%以上
- (3) 五级错误修复率应达到60% 以上

缺陷分析

(1) 缺陷分布情况分析 按照测试类型统计

按照功能模块分布

按照缺陷类型分布

缺陷趋势图

四,测试报告模板