1.6. Ejercicios

Antes de hacer los ejercicios que se proponen en esta sección, revise los conceptos nuevos que se presentaron en este capítulo.

Conceptos	Página	Conceptos	Página
Ecuación	2	Sistemas equivalentes	8
Solución de una ecuación	2	Sustitución hacia atrás	8, 22
Conjunto solución de una		Matriz del sistema	10
ecuación	2	Matriz de coeficientes	10
n-upla	2	Matriz aumentada del sistema	10
Ecuación lineal	3	Operaciones elementales entre	
Pivote	4	ecuaciones	10
Variable pivotal de una		Operaciones elementales entre	
ecuación	4	filas	11
Sistema de ecuaciones lineales	5	Matrices equivalentes	12
Sistema homogéneo	5	Eliminación de Gauss 13, 14	
Sistema homogéneo asociado	5	Matriz escalonada 13	
Solución de un sistema	6	Columna pivotal 13	
Conjunto solución de un		Variable pivotal de un sistema	
sistema	6	escalonado	16
Conjunto solución infinito	7	Variable libre	16
Conjunto solución vacío	7	Matriz escalonada reducida	25
Conjunto solución unitario	7	Matriz aumentada conjunta 29	
Sistema consistente	8	_	

1. Dadas las siguientes ecuaciones:

(i)
$$4x_1 + 2x_2 + x_3 - 2 = 0$$
 (ii) $3x_1^2 - x_2 + 5x_3 = 2 - x_1$
(iii) $4x_1 - 3x_2 - 1 = x_3 + 5x_5$ (iv) $4x_1 + 2x_2 + x_3 = \frac{3x_2 + 5}{4 - 4x_3}$
(v) $\sqrt{3}x + \pi y - 12z = 7^{2/3}w$ (vi) $x_1 sen \frac{\pi}{3} + \frac{x_2}{4} - 3 = 0$

- a) ¿Cuáles son lineales? ¿Por qué?
- b) ¿Cuáles son homogéneas? ¿Por qué?
- c) ¿Cuáles son los coeficientes y los términos independientes de las ecuaciones que usted identificó como lineales?
- d) Escriba las ecuaciones homogéneas asociadas a las ecuaciones que usted identificó como lineales.
- e) ¿Cuáles de las ternas (-1,2,2), (2,-1,2), (2,2,-1) son solución de la ecuación (i)? ¿Por qué?
- f) ¿Cuáles de las 4-uplas (1,1,1,1), $(\sqrt{3},0,\frac{1}{4},0)$, $(12,0,\sqrt{3},0)$ son solución de la ecuación (v)? ¿Por qué?
- g) ¿Es posible encontrar otras soluciones de la ecuación (i)? De ser posible, halle al menos otra.

- h) ¿Es posible encontrar otras soluciones de la ecuación (v)? De ser posible, halle al menos otra.
- 2. Para cada una de las siguientes ecuaciones, determine sus variables con los respectivos coeficientes, su término independiente y su ecuación homogénea asociada. Determine además, si es posible, dos soluciones y **el conjunto solución.**

(i)
$$4x + 2y - x - 3 = 0$$

(ii) $3x - 2y + z = 2 - x + 2z$
(iii) $4x_1 - 3x_2 - 1 = x_3 + 5x_5$

- 3. Sean a, b números reales y x la variable de la ecuación ax = b.
 - a) ¿Es ésta una ecuación lineal?
 - b) ¿Es siempre posible hallar el valor de x (despejar x) que satisface la ecuación?
- 4. Conteste SI o NO a las siguientes preguntas, dando una breve explicación de su respuesta.
 - a) ¿Es posible encontrar una ecuación lineal que no tenga solución?
 - b) ¿Es posible encontrar una ecuación lineal homogénea que no tenga solución?
- 5. Encuentre todos los valores de a para los cuales cada una de las siguientes ecuaciones

(i)
$$(a-3)x = 5$$
 (ii) $2x = a$
(iii) $(a^2-4)x = 0$ (iv) $(a^2-4)x = a+2$

- a) tiene exactamente una solución.
- b) tiene infinitas soluciones.
- c) no tiene solución (es inconsistente).
- 6. Dados los siguientes sistemas de ecuaciones lineales:

- a) ¿Cuáles son homogéneos? Por qué?
- b) ¿Cuáles son los coeficientes y los términos independientes de los sistemas?
- c) ¿Cuáles de las duplas (4,1), (0,-1), (2,2) son solución del sistema (i)? ¿Por qué?
- d) ¿Cuáles de las duplas (1,1), (-2,4), (3,2) son solución del sistema (ii)? ¿Por qué?
- e) ¿Cuáles de las duplas (1,1), (-2,4), (3,2) son solución del sistema (iii)? ¿Por qué?
- f) ¿Es posible encontrar otras soluciones del sistema (i)? De ser posible, halle al menos otra.
- g) ¿Es posible encontrar otras soluciones del sistema (ii)? De ser posible, halle al menos otra.
- h) Determine cuáles de estos sistemas son consistentes.
- i) Escriba los sistemas de ecuaciones homogéneos asociados a los sistemas de ecuaciones lineales dados.
- 7. Dado el siguiente sistema de ecuaciones lineales

$$3x - 2y - z - 3 = t$$

$$x + 3w - 2t = 1$$

$$-3x - y + 2z - 3w - t = -2$$

$$x + y + z - w = 3 + 2t - w$$

- a) Determine su matriz de coeficientes, sus términos independientes y su matriz aumentada. [AYUDA: Defina un orden para las variables y reescriba cada una de las ecuaciones según este orden]
- b) Determine el sistema de ecuaciones lineales homogéneo asociado.
- c) Determine los pivotes (especifique el tipo de pivotes (del sistema o de cada ecuación) dados en su respuesta).
- 8. Determine, en cada caso, si los sistemas de ecuaciones lineales dados son equivalentes:

(i)
$$x-y = 0 \text{ y} 2u + 3v = -5 \ -x - y = 2 u - 2v = 1$$

(ii)
$$x-y = 0 \text{ y } x-y+z = 0 -x-y = 2 -x-y+z = 2$$

(iii)
$$x_1 - x_2 = 0$$
 $2s + 3t = -5$
 $-x_1 - x_2 = 2$ y $s - 2t = 1$
 $2x_1 - 4x_2 = 2$

$$(iv)$$
 $u + v + w = 1$ $x + y + z = 1$
 $2v - w = 0$ y $2y - z = 0$
 $2x + 3z = 2$

- 9. Dada la ecuación lineal (i) 4x + 2y + 3z = 2, si multiplicamos ambos lados de la ecuación por 3, obtenemos la ecuación (ii) 12x + 6y + 9z = 6.
 - a) Pruebe que la terna $(1, \frac{1}{2}, -1)$ es una solución tanto de la ecuación (i), como de la ecuación (ii).
 - b) Halle otra solución de la ecuación (ii) y muestre que también es solución de la ecuación (i).
 - c) Demuestre que cualquier solución de la ecuación (i) es también solución de la ecuación (ii).
- 10. Dado el sistema de ecuaciones lineales

$$(x-y-z = -1)$$

 $(3x-y+z = 1)$

si a la segunda ecuación del sistema le sumamos la primera multiplicada por -3, obtenemos el sistema de ecuaciones lineales

$$(ii)$$
 $x-y-z = -1$
 $2y+4z = 4$

- a) Verifique que la terna (2, 4, -1) es una solución tanto del sistema de ecuaciones lineales (i), como del sistema de ecuaciones lineales (ii).
- b) Halle otra solución del sistema de ecuaciones lineales (i) y muestre que también es solución del sistema de ecuaciones lineales (ii).

- c) Demuestre que cualquier solución del sistema de ecuaciones lineales (ii) es también solución del sistema de ecuaciones lineales (i).
- d) ¿Cuál o cuáles de los tres resultados anteriores permiten concluir que los dos sistemas de ecuaciones son equivalentes?
- e) Encuentre las matrices aumentadas asociadas a los sistemas de ecuaciones lineales (i) y (ii). Verifique que estas matrices son equivalentes.
- f) Si dos sistemas de ecuaciones lineales son equivalentes, ¿Son sus correspondientes matrices aumentadas también equivalentes? [AYUDA: Analice los sistemas iii) y iv) del Ejercicio 8.]

11. Dada la matriz

$$A = \left(\begin{array}{cccc} 1 & -2 & 1 & 1\\ 0 & 0 & -1/3 & 7/3\\ 0 & 6 & -1 & -5 \end{array}\right),$$

- a) Escriba un sistema de ecuaciones lineales cuya matriz aumentada sea A.
- b) Determine el sistema de ecuaciones lineales homogéneo asociado al sistema de ecuaciones lineales de la parte a).
- 12. Dados los siguientes sistemas de ecuaciones lineales, dibuje la gráfica correspondiente a cada uno de ellos. Determine geométricamente si cada sistema tiene solución y, en caso afirmativo, si la solución es única. Resuelva algebraicamente cada sistema para confirmar su respuesta.

(i)
$$x - 2y = 1$$
 (ii) $x - 2y = -1$ (iii) $x - 2y = 1$
 $3x + y = -4$ $-3x + 6y = 3$ $-3x + 6y = 0$

13. Dado el sistema de ecuaciones lineales

a) Efectúe operaciones elementales entre las ecuaciones del sistema hasta llevarlo a uno con *patrón escalonado*.

- b) Escriba la matriz de coeficientes y la matriz aumentada asociadas al sistema de ecuaciones lineales.
- c) Describa las operaciones elementales entre filas correspondientes a las operaciones elementales entre ecuaciones efectuadas en la parte a).
- 14. Resuelva cada uno de los siguientes sistemas de ecuaciones lineales.

(i)
$$x + 2y + 3z = 1$$
 (ii) $x_1 - 3x_2 + x_3 = 5$
 $-5y + 2z = 6$ $x_2 - 2x_3 = -1$
 $4z = -8$

$$(iii) \qquad x = -1$$
$$-x + 2y = 5$$
$$3x + 4y + 2z = 14$$

- 15. Resuelva los sistemas de ecuaciones lineales encontrados en el Ejercicio 11.
- 16. Los siguientes sistemas de ecuaciones son no lineales. Encuentre sustituciones de las variables que conviertan cada uno de ellos en un sistema de ecuaciones lineales y utilice este último para resolver el sistema inicialmente dado.

(i)
$$\frac{3}{x} + \frac{2}{y} = 0$$
 (ii) $-2^a + 2(3^b) = 1$ $\frac{4}{x} + \frac{3}{y} = 1$ $3(2^a) - 4(3^b) = 1$

(iii)
$$x^2 - y^2 = 3$$

 $x^2 + 2y^2 = 6$

- 17. Demuestre que, para cada tipo de operación elemental entre filas, existe una operación elemental que **reversa** el procedimiento. En otras palabras, que si la matriz B resulta de aplicar una operación elemental entre filas a la matriz A, existe otra operación elemental entre filas que al aplicársela a la matriz B se obtiene la matriz A.
- 18. Determine, para cada uno de los siguientes casos, si las matrices dadas son equivalentes [AYUDA: Trate de encontrar una secuencia de operaciones elementales entre filas que al aplicárselas a una matriz se obtiene la otra.]

19. Determine cuál o cuáles de las siguientes matrices son escalonadas.

$$(i) \begin{pmatrix} 0 & 0 & 0 \\ 1 & -1 & 0 \\ 0 & 3 & \sqrt{2} \\ 0 & 0 & \pi \end{pmatrix} (ii) \begin{pmatrix} 0 & 3 & 2 & 1 \\ 0 & 0 & 0 & -3 \end{pmatrix} (iii) \begin{pmatrix} 1 & 2 & 3 & 0 \end{pmatrix}$$

20. A cada una de las siguientes matrices, aplique el método de eliminación de Gauss para encontrar una matriz escalonada equivalente a la matriz dada.

$$(i) \begin{pmatrix} 0 & 2 \\ -1 & 3 \\ 7 & -1 \end{pmatrix} \qquad (ii) \begin{pmatrix} 2 & -1 & 4 \\ -4 & 2 & 0 \\ 0 & 3 & -1 \\ 2 & 1 & -3 \end{pmatrix}$$
$$(iii) \begin{pmatrix} 0 & -1 & 3 & -1 \\ 5 & 2 & -1 & 2 \\ 10 & 3 & 0 & 3 \\ 5 & 1 & 1 & 1 \end{pmatrix}$$

21. Dado el sistema de ecuaciones lineales

- a) Determine su matriz aumentada asociada.
- b) Aplique el Algoritmo de Gauss para llevar la matriz encontrada en a) a una matriz escalonada.
- c) Identifique los pivotes de la matriz escalonada.
- d) Identifique las columnas pivotales de la matriz escalonada.
- e) Identifique las variables pivotales del sistema.

- f) Identifique las variables libres del sistema.
- g) Determine el tipo (vacío, unitario o infinito) de conjunto solución del sistema.
- 22. Determine las variables pivotales y las variables libres del sistema de ecuaciones lineales dado en el Ejercicio 7.
- 23. Cada una de las siguientes matrices es una matriz escalonada equivalente a la matriz aumentada asociada a un sistema de ecuaciones lineales.

$$(i) \begin{pmatrix} 2 & -1 & 4 \\ 0 & 1 & 2 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$(ii) \begin{pmatrix} 1 & 3 & -2 & 4 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & -3 \end{pmatrix}$$

$$(iii) \begin{pmatrix} 2 & -1 & 4 & 1 & 0 \\ 0 & 1 & 2 & 3 & -2 \\ 0 & 0 & 0 & 2 & 0 \end{pmatrix}$$

- a) Determine el número de ecuaciones y el número de variables de cada uno de los sistemas.
- b) Identifique las variables pivotales de cada uno de los sistemas.
- c) Identifique las variables libres de cada uno de los sistemas.
- d) Determine el tipo de conjunto solución de cada uno de los sistemas.
- e) Para los sistemas consistentes, encuentre el conjunto solución.
- 24. Dados los siguientes sistemas de ecuaciones lineales:

(i)
$$3x - y = 1$$

 $2y + z = -2$
 $x - 2z = 3$
(ii) $2x_1 - x_2 = x_4$
 $x_3 + x_4 = x_1$
 $x_3 - 2x_4 = x_2$
 $2x_2 + x_3 = x_1$

$$(iii) \quad 2u - v = z + 2$$

$$u + z = v$$

$$v - 5z = 4 - u$$

 a) Resuelva cada uno de ellos, aplicando el método de eliminación de Gauss y sustitución hacia atrás.

- b) Resuelva cada uno de los sistemas de ecuaciones lineales homogéneos asociados.
- c) ¿Existe alguna relación entre los tipos de conjunto solución de un sistema de ecuaciones lineales y su sistema homogéneo asociado?
- 25. Encuentre otra forma de escribir los conjuntos solución de los sistemas de ecuaciones lineales de los Ejemplos 13 y 14.
- 26. Para cada una de las siguientes situaciones, respecto del tamaño del sistema de ecuaciones lineales (número de ecuaciones × número de variables) y el número de variables pivotales, ¿Qué puede decirse sobre el tipo de conjunto solución del sistema? Justifique su respuesta.

Tamaño	Número de	Tamaño	Número de
del sistema	variables pivotales	del sistema	variables pivotales
3×4	3	5×5	3
3×4	4	5×5	4
3×4	2	5×5	5
4×3	3	8×5	5
4×3	4	8×5	4
4×3	2	5×8	6
5×5	2	5×8	4

Trate de generalizar sus respuestas para un sistema de ecuaciones lineales con m ecuaciones, n variables $(m \times n)$ y k variables pivotales.

27. Qué puede decirse del tipo de conjunto solución de un sistema de ecuaciones lineales donde una de sus ecuaciones es

a)
$$0 = 0$$
.

b)
$$0 = 5$$
.

c)
$$4 = 0$$
.

d)
$$3 = 3$$
.

28. Si en el proceso de escalonar la matriz aumentada de un sistema de ecuaciones lineales, se obtiene

$$\left(\begin{array}{cccc|ccc|c}
\sqrt{2} & 0 & 3 & -1 & 4 & 0 \\
0 & 2 & 2 & -\pi & -1 & 1 \\
0 & 0 & 0 & a & 1 & 5 \\
0 & 0 & 0 & 0 & b^2 - b & b
\end{array}\right).$$

a) ¿Es el sistema consistente cuando a=b=0? En caso de serlo, ¿Es la solución única?

- b) ¿Es el sistema consistente cuando a=1 y b=0? En caso de serlo, ¿Es la solución única?
- c) ¿Es el sistema consistente cuando a=0 y b=1? En caso de serlo, ¿Es la solución única?
- d) Si b=2 y $a\neq 0$, ¿Qué puede decirse del conjunto solución?
- e) Si b=1 y $a\neq 0$, ¿Qué puede decirse del conjunto solución?
- f) Si $a \neq 0$, dé un valor de b (diferente de 0), en caso de que exista, para que el sistema sea consistente.
- g) Si $a \neq 0$, ¿Para qué valores de b, el sistema tiene infinitas soluciones?
- h) Si $a \neq 0$, ¿Para qué valores de b, el sistema tiene solución única?
- i) Si $a \neq 0$, ¿Para qué valores de b, el sistema es inconsistente?
- j) Si a=0, ¿Para qué valores de b, el sistema es no tiene solución?

29. Conteste FALSO o VERDADERO y diga POR QUÉ, a cada una de las siguientes afirmaciones

- a) Si un sistema de ecuaciones lineales tiene solución, entonces cualquier otro sistema de ecuaciones lineales con la misma matriz de coeficiente también tiene solución.
- b) Si un sistema de ecuaciones lineales tiene solución única, entonces su sistema de ecuaciones lineales homogéneo asociado también tiene solución única.
- c) Un sistema de ecuaciones lineales tiene solución siempre que su sistema de ecuaciones lineales homogéneo asociado tenga solución.
- d) El tipo de conjunto solución de un sistema de ecuaciones lineales y el del sistema de ecuaciones lineales homogéneo asociado siempre es el mismo
- e) Todo sistema de ecuaciones lineales con 10 variables y 7 ecuaciones tiene infinitas soluciones.
- f) Todo sistema de ecuaciones lineales con 20 variables y 20 ecuaciones tiene solución única.
- g) Ningún sistema de ecuaciones lineales con 14 variables y 10 ecuaciones tiene solución única.

- h) Un sistema de ecuaciones lineales con 27 variables y 13 ecuaciones puede no tener solución.
- i) Un sistema de ecuaciones lineales con 100 variables y 300 ecuaciones puede tener solución única.
- j) Todo sistema de ecuaciones lineales homogéneo con 10 variables y 7 ecuaciones tiene infinitas soluciones.
- k) Todo sistema de ecuaciones lineales homogéneo con 20 variables y 20 ecuaciones tiene solución única.
- l) Ningún sistema de ecuaciones lineales homogéneo con 14 variables y 10 ecuaciones tiene solución única.
- m) Un sistema de ecuaciones lineales homogéneo con 27 variables y 13 ecuaciones puede no tener solución.
- n) Un sistema de ecuaciones lineales homogéneo con 100 variables y 300 ecuaciones puede tener solución única.
- \tilde{n}) Todo sistema de ecuaciones lineales consistente con 10 variables y 7 ecuaciones tiene infinitas soluciones.
- o) Todo sistema de ecuaciones lineales consistente con 20 variables y 20 ecuaciones tiene solución única.
- p) Ningún sistema de ecuaciones lineales consistente con 14 variables y 10 ecuaciones tiene solución única.
- q) Un sistema de ecuaciones lineales consistente con 27 variables y 13 ecuaciones puede tener solución única.
- r) Un sistema de ecuaciones lineales consistente con 100 variables y 300 ecuaciones puede tener solución única.
- 30. Resuelva los siguientes sistemas de ecuaciones lineales

$$2x - 4z = -1 2x_1 - 4x_3 = 0$$
a)
$$x + y - w = 1 x_1 + x_2 - x_4 = 2$$

$$y + z - 2w = 0 x_2 + x_3 - 2x_4 = 4$$

$$2r - 4t = 6 2z_1 - 4z_3 = 3$$

$$r + s - u = 0 z_1 + z_2 - z_4 = -1$$

$$s + t - 2u = -2 z_2 + z_3 - 2z_4 = 2$$

$$u - 2v + w = x_o$$

$$2u - v - w = y_o$$

$$-3u + 3w = 0$$

donde $(x_o, y_o, 0)$ es una solución del primer sistema.

[AYUDA: Observe que, en cada caso, los sistemas dados tienen la misma matriz de coeficientes.]

- 31. Utilice un paquete (MatLab, MuPad, Mathematica, etc.) o programa de computador para resolver los siguientes sistemas de ecuaciones lineales.
 - a) Ejercicio 7
 - b) Ejercicio 13
 - c) Ejercicio 24
 - d) Ejercicio 30
 - e) $A = (a_{ij}), \ a_{ij} = \frac{1}{i+j}, \ i, j = 1, 2, \dots, n \ y \ \mathbf{b} = (b_i), \ b_i = \sum_{j=1}^n a_{ij}, \ i = 1, 2, \dots, n \ \text{para} \ n = 3, 5, 10, 20^{13}$

 $^{^{13}\}mathrm{La}$ matriz definida en este ejercicio se conoce con el nombre de Matriz de $\mathit{Hilbert}$