...

HIGH-PURITY SILICON CRYSTAL GROWTH INVESTIGATIONS

SOLAR ENERGY RESEARCH INSTITUTE

T. F. Ciszek

Investigators

T. F. Ciszek, Principal Investigator
T. Schuyler, Research Technician
J. L. Hurd, Associate Scientist (through 7/85)
M. Fearheiley, Postdoctoral Scientist (from 8/85)
C. Evans, Master Technician (from 3/86)
R. Elder, Summer Student (1985)

Goals

- * OPTIMIZE DOPANTS & MINORITY-CARRIER LIFETIME IN FZ MATERIAL
- * IMPROVE THE CONTROL OF LIFETIME DEGRADATION MECHANISMS (Impurities, Thermal History, Point Defects, etc.)
- * CHARACTERIZE LIFETIME-RELATED CRYSTALLOGRAPHIC DEFECTS

This work was supported by the U.S. Department of Energy under contracts DOE/JPL-W08762-84-1 & CE-AC02-83CH10093: Sept. 1, 1984 - Mar. 31, 1986.

Topics

- * EVAPORATION AND SEGREGATION CONTRIBUTIONS TO IMPURITY PROFILES OF FZ CRYSTALS
- * HIGH-PURITY SILICON FLOAT ZONING (FZ)
- * MINORITY-CARRIER LIFETIME MEASUREMENT OF **HEAVILY DOPED SILICON CRYSTALS**
- * EFFECT OF SOME CHYSTAL GROWTH PARAMETERS ON MINORITY-CARRIER LIFETIME
 - feed rod cleaning procedures
 - crystal growth cooling rate
 - p-type dopant species and concentration
- * DEFECT INVESTIGATIONS BY X-RAY TOPOGRAPHY
 - dislocation-free FZ silicon
 - silicon ribbons grown by various methods

Comparison of Cz and FZ Growth Methods

Method	CZ	FZ
Production diameter (mm)	150	125
Growth Speed (mm/min)	1 to 2	2 to 4
Crucible?	yes	no
Dislocation-Free?	yes	yes
Oxygen content (atom/cc)	>1x10 ¹⁸	<1x10 ¹⁶
Carbon content (atom/cc)	>1x10 ¹⁷	<1x10 ¹⁶
Metalic impurity content	high	low
Consumable material cost	high	low
Bulk lifetime (microsec.)	50	1000
Relative cell efficiencies	1	1 to 1.2
Heat-up/Cool-down time	large	small
Axial resitivity uniformity	poor	good
Typical # of pulls/crystal	one	two
poly feed form	anycr	ack-free rods
Mechanical strengthening	10 ¹⁸ O	1016 N
Degree of sophistication-	less	more

ORIGINAL PAGE IS OF POOR QUALITY

Crystal: 5032001

No. of passes: 4 (3 in vac.)

Orientation: [100], DF

Resistivity: 0.46 ohm-cm

Traces averaged: 20
Temperature 27° C
Filament lifetime: 205 μ s
Bulk lifetime: 303 μ s

 $(@V_{s}/V = 0.002)$

Crystal: 5041101
No. of passes: 4 (3 in vac.)
Orientation: [100], DF
Resistivity: 0.36 ohm-cm

Traces averaged: 100 Temperature 26° C Filament lifetime: 181 μ s Bulk lifetime: 231 μ s

CLEANING PROCEDURE	RESISTIVITY (ohn:-cm)	'.IFETIME (microsec.)
Cold degreasing	760	7()
NaOH etch	2220	600
3:1:2 mixed acid etch	2540	990
"RCA - clean"	4510	1040

Al, 20 mm dia, poly Si vendor A 20 mm dia, poly Si vendor B AI, 20 mm dia, poly Si vendor A В, 20 mm dia, poly Si vendor B В. Ga, 20 mm dia, poly Si vendor A Ga, 20 mm dia, poly Si vendor B 0 Ga, 34 mm dia, poly Si vendor B C 20 mm dia, poly Si vendor A 20 mm dia, poly Si vendor B \Diamond Experts group best values

RESISTIVITY (ohm-cm)	LIFETIME (microsec.)
1	700
0.5	490
0.2	120
0.1	40

城

Summary and Conclusions

- * EVAPORATION CONTRIBUTES SUBSTANTIALLY TO IMPURITY REDUCTION WHEN 5Z OR COLD-CRUCIBLE GROWTH IS CONDUCTED IN A VACUUM.
- * BORON AND GALLIUM MAY BE MORE FAVORABLE DOPANTS THAN INDIUM OR ALUMINUM FOR OBTAINING HIGH MINORITY-CARRIER LIFETIMES.
- * MINORITY-CARRIER LIFETIMES GRE. THAN 100 microseconds ARE FEASIBLE AT A 2 x 10^{17} cm⁻³ DOPING LEVEL.
- * MINORITY-CARRIER LIFETIME DECREASES WITH INCREASING CRYSTAL COOLING RATE AND ALSO WITH THE PRESENCE OF DISLOCATIONS.
- * THE METHOD USED TO CLEAN SILICON FEED RODS AFFECTS LIFETIME.
- * MICRODEFECT DENSITIES IN DISLOCATION-FREE FZ CRYSTALS APPEAR TO BE LOWER WITH Ga DOPING THAN WITH B DOPING.
- * A VARIETY OF SI RIBBONS WERE EXAMINED BY X-RAY TOPOGRAPHY; A METHOD FOR QUANTIFYING LATTICE PLANE BENDING WAS DEVELOPED.