Week 2 Quiz

10 试题

1 point

1.

You are given a unigram language model θ distributed over a vocabulary set V composed of **only** 4 words: "the", "global", "warming", and "effects". The distribution of θ is given in the table below:

w	P(w heta)
the	0.3
global	0.2
warming	0.2
effects	X

What is X, i.e., $P(\text{``effects''}|\theta)$?

- 0.1
- 0.2
- 0
- 0.3

1 point

2.

Assume you are given the same unigram language model as in Question 1. Which of the following is **not** true?

 $\begin{array}{ll} \bullet & P(\text{``global warming''}|\theta) > P(\text{``warming global''}|\theta) \\ \\ & P(\text{``global warming''}|\theta) = 0.04 \\ \\ & P(\text{``text mining''}|\theta) = 0 \\ \\ & P(\text{``the global warming effects''}|\theta) < P(\text{``global warming effects''}|\theta) \end{array}$

1 point

3. Assume that words are being generated by a mixture of two unigram language models, θ_1 and θ_2 , where $P(\theta_1)=0.5$ and $P(\theta_2)=0.5$. The distributions of the two models are given in the table below:

w	$P(w heta_1)$	$P(w \theta_2)$
sports	0.35	0.05
basketball	0.2	0.05
fast	0.3	0.3
computer	0.1	0.4
smartphone	0.05	0.2

Then the probability of observing "computer" from this mixture model is: P(``computer'') =

\bigcirc	0.05
	0.4

0.25

0.45

1 point

4.

Assume the same given as in Question 3. We now want to infer which of the two word distributions, θ_1 and θ_2 , has been used to generate "computer", and would thus like to compute the probability that it has been generated using θ_1 and θ_2 , i.e., $P(\theta_1|$ "computer") and $P(\theta_2|$ "computer"), respectively, then the values of $P(\theta_1|$ "computer") and $P(\theta_2|$ "computer") are:

Hint: Apply Bayes rule.

)	0.1	and	0.9

1 point

5.

Suppose words are being generated using a mixture of two unigram language models θ_1 and θ_2 . Let P(w) denote the probability of generating a word w from this mixture model.

If $P(heta_1)=1$ then which of the following statements is true?

$$\bigcap P(w| heta_1)=0$$
 , for any word w

$$lackbox{lack} P(w) = P(w| heta_1)$$
 , for any word w

$$igcap P(w| heta_2)=0$$
 , for any word w

1 point

variables associated with the words "text", "mining", and "the", respectively. Assume that the probabilities of the random variables are estimated based on a large corpus. Then we should expect $H(X_{text} X_{mining}) > H(X_{text} X_{the})$.		
True		
False		
1 point 7.		
True or false? I(X;Y)=0 if and only if X and Y are independent. False		
True		
1 point		
8. Let w be a word and X_w be a binary random variable that indicates whether w appears in a text document in the corpus. Assume that the probability $P(X_w=1)$ is estimated by Count(w)/N, where Count(w) is the number of documents w appears in and N is the total number of documents in the corpus.		
You are given that "the" is a very frequent word that appears in 99% of the documents and that "photon" is a very rare word that occurs in 1% of the documents. Which word has a higher entropy?		
"the"		
"photon"		
Both words have the same entropy.		

True or false? Let X_{text} , X_{mining} , and X_{the} be binary random

1 point	
	a binary random variable. Which of the following is not lect all that apply.
	H(X) ≤ 1
	If $P(X=0)=1$, then $H(X)=0$
<u> </u>	If P(X=1)=1, then H(X) = 1
✓ I	If P(X=0)=1, then H(X) = 1
biased c	false? An unbiased coin has a higher entropy than any oin. True False
	段(伟臣 沈)了解提交不是我自己完成的作业 将永远不会通过 比课程或导致我的 Coursera 帐号被关闭。 了解荣誉准则的更多信息
	提交测试