강좌명: 정보통신입문설계

Digital Logic 개요

Yoon-Seok Nam

Dept. of Electronics, Information and Communications Engineering
Dongguk University at Gyeongju

123 Dongdae-ro, Gyeongju-City, Gyeongsangbuk-Do, 38066, Republic of Korea Phone: 054-770-2273(Lab), 054-770-2608(Office), 054-770-2605(fax), 010-7641-5004(CP)

Email: ysnam@dongguk.ac.kr

1. 집적회로(Integrated Circuit)

제조공정 Wafer Chip DIP (Dual in Package) 다수의 회로 PGA(Pin Grid Array)

■ 다양한 형태의 집적회로(IC: Integrated Circuit)

- ◆ DIP(dual-in-line package) 타입
- ◆ 표면실장 형(surface-mount package) 타입
- PGA(Pin Grid Array)
- BGA(Ball Grid Array)

(b) SMD Type

(c) PGA Type

(d) BGA Type

- 현재 디지털 회로에 널리 사용되고 있는 집적회로
 - TTL(Transistor-Transistor Logic) 타입
 - 일반적으로 74로 시작하는 이름을 가짐.
 - ◆ CMOS(Complementary Metal Oxide Semiconductor) 타입
 - 40으로 시작하는 이름을 가짐.
 - > 장점
 - ✓ TTL 타입에 비해 전력을 적게 소모됨.
 - ▶ 단점
 - ✓ 상대적으로 동작속도가 느림.
 - ✓ 정전기에 의해 쉽게 파괴될 수 있음.

dongguk \

IC 칩의 핀 번호는 칩 위쪽에서 볼 때 홈이 파여 있거나 모서리가 깎인 부분을 기준으로 하여 반시계 방향으로 차례대로 번호가 붙음.

① 제조회사	② 시리즈 명	③ 회로타입	④ 고유번호	⑤ 패키지 외형
SN: Texas Instrument MC: Motorola DM: National Semiconductor HD: Hitach HY: Hyundai GD: GoldStar K-: Samsung	74 : TTL 40 : CMOS	S: high speed Schottky L: Low Power LS: Low Power Schottky H: High Speed F: Fast HC: High Speed CMOS HCT: High Speed CMOS TTL AC: Advanced AS: Advanced Schottky ALS: Advanced Low Power Schottky	00 : NAND 02 : NOR 04 : NOT 08 : AND 32 : OR	N : Plastic DIP J : Ceramic DIP W : Flat Pack

칩 내부 회로도와 TTL 패밀리 이름 규칙

논리 레벨과 펄스파형

TTL 디지털 IC

전압 레벨과 논리값 관계

논리 레벨과 펄스파형

□ 디지털 시스템에서 두 개의 전압레벨은 2진 숫자(binary digit)인 0과 1을 나타냄.

전압레벨(Volt Level)	정논리(positive logic)	부논리(negative logic)
+5 V	High = 1	High = 0
0V	Low = 0	Low = 1

정논리와 부논리

펄스파형

- □ 디지털 시스템에서 사용되는 파형
 - 주기 펄스(periodic pulse) : 일정한 구간에서 파형이 반복
 - 비주기 펄스(non-periodic pulse) : 주기를 갖지 않는 파형

이상적인 펄스파형(Ideal Pulse Shape)

펄스파형

□ 실제적인 펄스의 모양은 High에서 Low로 또는 Low에서 High로 순간 적으로 변화하지 않음.

실제 펄스파형(Real Pulse Shape)

2. Gates

AND / OR / NOT Gate

입력2

0

입력1

0

입력1	$\overline{\mathbf{A}}$		* 21
입력2	1	/	- 출력

입력1	입력2	출력(OR)
0	0	0
0	1	1
1	0	1
1	1	1

출력(AND)

0

0

0

입력	> —≨ ₫
	L

입력	출력(NOT)
0	1
1	0

AND 게이트

- 모든 논리 기능을 형성하기 위해 조합될 수 있는 기본 게이트 중 하나
- □ 두 개 또는 그 이상의 입력을 가질 수 있는 논리 곱셈을 수행
- □ 두 개 또는 그 이상의 입력과 하나의 출력으로 구성
- □ 모든 입력이 High일 때만 High 출력을 발생

논리식 $F=A\cdot B$

or

$$F = AB$$

진리표(Truth Table)

Inputs		Output
А	В	F
0	0	0
0	1	0
1	0	0
1	1	1

AND Gate의 기호 및 진리표 그리고 논리식

74LS08 or 74HC08

AND Gate 타이밍도

HIGH = 1 LOW = 0

1 pin		1	0	1	1	0	
	 						i
2 pin		1	1	1	0	0	
3 pin		1	0	1	0	 0 	

(b) 펄스 연산에 대한 출력 파형

TTL 시리즈 7408의 내부도와 펄스연산에 대한 출력파형

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)

Supply voltage, VCC (see Note 1)		7 V
Input voltage: '08, 'S08		5.5 V
Operating free-air temperature range:	SN54'	-55°C to 125°C
	SN74'	0°C to 70°C
Storage temperature range		-65°C to 150°C

recommended operating conditions

		SN5408 SN7408			3		
	MIN NOM MAX MIN NOM		MAX	IAX UNIT			
V _{CC} Supply voltage	4.5	5	5.5	4.75	5	5.25	٧
V _{IH} High-level input voltage	2			2			V
V _{IL} Low-level input voltage			0.8			8.0	٧
IOH High-level output current			- 0.8			- 0.8	mA
IOL Low-level output current			16			16	mA
TA Operating free-air temperature	- 55		125	0		70	°c

전류의 방향 + : IC로 들어오는 전류

전류의 방향 - : IC에서 나가는 전류 표시

OR 게이트

- 모든 논리 기능이 구성될 수 있는 또 다른 기본 게이트
- 두 개 또는 그 이상의 입력을 가질 수 있는 논리 덧셈을 수행
- □ 입력들 중 어느 것이 High일 때 High 출력을 발생

논리식

$$F = A + B$$

진리표(Truth Table)

Inp	uts	Output
A	В	F
0	0	0
0	1	1
1	0	1
1	1	1

OR Gate의 기호 및 진리표 그리고 논리식

OR Gate 타이밍도 HIGH

HIGH = 1 LOW = 0

(b) 펄스 연산에 대한 출력 파형

TTL 시리즈 7432의 내부도와 펄스연산에 대한 출력파형

NOT 게이트

- □ 인버터
- □ 반전 또는 보수화라고 일컫는 연산을 수행
- □ 하나의 논리 레벨을 반대의 레벨로 변경
- □ 한 개의 입력과 한 개의 출력을 갖는 게이트로 논리적인 부정을 발생

기호

논리식

$$F = \overline{A}$$

or

$$F = A'$$

진리표(Truth Table)

Inputs	Output
А	F
0	1
1	0

NOT gate의 기호 및 진리표와 논리식

1 pin 1 0 1 0 0

HIGH = 1

LOW = 0

NOT Gate 타이밍도

2 pin 0 1 0 1 1

(b) 펄스 연산에 대한 출력 파형

TTL 시리즈 7404의 내부도와 펄스연산에 대한 출력파형

NAND 게이트

- □ 만능 게이트로 사용
- □ NAND Gate 조합으로 AND, OR, NOT 등 다양한 Gate를 만들어 사용
- NOT Gate와 AND Gate의 단축어
- □ AND Gate의 보수화 된 출력을 발생

진리표(Truth Table)

Inputs		Output
А	В	F
0	0	1
0	1	1
1	0	1
1	1	0

$$F = \overline{AB}$$

$$F = \overline{AB}$$

$$C = AB$$

$$F = \overline{C} = \overline{AB}$$

or –

F = AB

$$F = \overline{A \cdot B}$$

NAND Gate기호 및 진리표 그리고 논리식

AND Gate 와 NOT Gate의 조합

NAND Gate 타이밍도 HIGH = 1 LOW = 0

(a) 7400의 내부도

(b) 펄스 연산에 대한 출력 파형

TTL 시리즈 7400의 내부도와 펄스연산에 대한 출력파형

NOR 게이트

- □ 만능 논리 소자로 사용
- □ AND, OR, NOT 연산을 수행하기 위해 조합되어 사용
- NOT Gate와 OR Gate의 단축어
- □ 보수화된 OR 출력을 발생

논리식

$$F = \overline{A + B}$$

or

$$F = (A + B)'$$

진리표(Truth Table)

Inp	uts	Output
A	В	F
0	0	1
0	1	0
1	0	0
1	1	0

$$\begin{array}{c}
A \\
B
\end{array}$$

$$\begin{array}{c}
C = A + B
\end{array}$$

$$F = \overline{A + B}$$

$$C = A + B$$

$$F = \overline{C} = \overline{A + B}$$

NOR Gate기호 및 진리표 그리고 논리식

OR Gate 와 NOT Gate의 조합

TTL 시리즈 7402의 내부도와 펄스연산에 대한 출력파형

