EECS 106B/206B Discussion 7

GSI: Valmik Prabhu

Action Items

- Concurrent Enrollment lab access?
- Homework 2 due this weekend
- Lab Due in 5 days!!!!

Intro to Grasping

Problems with grasping:

- Perceiving and identifying objects
- Designing end effectors
- Grasp planning (will the grasp work) ******
 - Shape
 - Density
 - Material
- Grasp execution (how do we know it worked?) ***
 - Applying forces
 - Manipulating objects
 - Regrasping

Finger Contacts

How do we measure the effect of a multifingered grasp?

$$F_{c_i} = B_{c_i} f_{c_i}$$
 $f_{c_i} \in FC_{c_i}$.

Grasps with Friction

$$FC_{c_i} = \{ f \in \mathbb{R}^3 : \sqrt{f_1^2 + f_2^2} \le \mu f_3, f_3 \ge 0 \}.$$

Torsional Friction

$$FC_{c_i} = \{ f \in \mathbb{R}^4 : \sqrt{f_1^2 + f_2^2} \le \mu f_3, f_3 \ge 0, |f_4| \le \gamma f_3 \},$$

Multiple Fingers: Grasp Maps

Having multiple fingers means we should use the world frame, rather than individual contact frames. So we use the Adjoint:

$$F_o = \operatorname{Ad}_{g_{oc_i}^{-1}}^T F_{c_i} = \begin{bmatrix} R_{oc_i} & 0 \\ \widehat{p}_{oc_i} R_{oc_i} & R_{oc_i} \end{bmatrix} B_{c_i} f_{c_i}, \qquad f_{c_i} \in FC_{c_i}.$$

First, we define a contact map G:

$$G_i := \operatorname{Ad}_{g_{oc_i}^{-1}}^T B_{c_i}.$$

This maps the contact basis to a wrench in the world frame.

Combining multiple fingers

The net force on the object is:

$$F_o = G_1 f_{c_1} + \cdots + G_k f_{c_k} = egin{bmatrix} G_1 & \cdots & G_k \end{bmatrix} egin{bmatrix} f_{c_1} \ dots \ f_{c_k} \end{bmatrix}$$

We can redefine the array $\begin{bmatrix} G_1 & \cdots & G_k \end{bmatrix}$ as a new mapping:

$$G = \left[\operatorname{Ad}_{g_{oc_1}^{-1}}^T B_{c_1} \quad \cdots \quad \operatorname{Ad}_{g_{oc_k}^{-1}}^T B_{c_k} \right] \qquad F_o = Gf_c \qquad f_c \in FC$$

This is the grasp map, which maps an entire hand to a wrench in the world frame.

Force Closure

Proposition 5.3. Convexity conditions for force-closure grasps Consider a fixed contact grasp which contains only frictionless point contacts. Let $G \in \mathbb{R}^{p \times m}$ be the associated grasp matrix and let $\{G_i\}$ denote the columns of G. The following statements are equivalent:

- 1. The grasp is force-closure.
- 2. The columns of G positively span \mathbb{R}^p .
- 3. The convex hull of $\{G_i\}$ contains a neighborhood of the origin.
- 4. There does not exist a vector $v \in \mathbb{R}^p$, $v \neq 0$, such that for $i = 1, \ldots, m, v \cdot G_i \geq 0$.

Force Closure Alternate Definition

Line between contacts is within both friction cones.

Why? This is in the next HW.

Limitations of Force Closure

- Assumes you can move fingers in any direction
- Assumes you can exert as much as infinite force
- Sometimes it's better to execute suboptimal grasps

Approximating the Friction Cone

Why would you do this?

$$f_i = \begin{bmatrix} \mu \cos \frac{2\pi i}{n} \\ \mu \sin \frac{2\pi i}{n} \\ 1 \end{bmatrix}$$

Approximating the Friction Cone

Why would you do this?

You can simplify the constraints to a **Positive** linear combination of facet vectors

$$f_i = \begin{bmatrix} \mu \cos \frac{2\pi i}{n} \\ \mu \sin \frac{2\pi i}{n} \\ 1 \end{bmatrix}$$

