AGE GROUP 9

Problem	Answer	Solution					
1	C	Корените на биквадратното уравнение са 1, (-1), 4 и (-4). Сборът на					
_		двата най- малки е $(-4) + (-1) = -5$.					
		Решенията на неравенството са числата от $(-2; 0] \cup \{3\}$.					
2	C	Броят на целите числа, които са решения на неравенството е 3. Това са					
_		числата (-1), 0 и 3.					
		Лицето на ΔMAD е половината от лицето на Δ ABD . Тогава $S_{ABD}=2$ \times					
		$S_{ADM} = 8.$					
		и от					
		$S_{ABD} = \frac{h \times AB}{2} \Longrightarrow h \times AB = 16.$					
3	В	4					
		За лицето на трапеца получаваме:					
		$S_{ABCD} = \frac{h}{2} \times (AB + CD) = \frac{3hAB}{4} = 12cm^2.$					
		Z T					
4	C	OT $AM = 5 \Rightarrow c - a = 2 \Rightarrow a^2 + 8^2 = (a+2)^2 \Rightarrow a = 15 \Rightarrow$					
		` ,					
		$S_{ABC} = \frac{8 \times 15}{2} = 60 \ cm^2.$					
		$AM = 5 \implies c - a = 2 \implies a^2 + 8^2 = (a+2)^2 \implies a = 15 \implies$					
		$\Rightarrow S_{ABC} = \frac{8 \times 15}{2} = 60 \ cm^2.$					
		От					
		$2x^3 - 9x^2 + 10x - 3 = (2x - 1)(x - 1)(x - 3)$ и					
	В	$-x^2 + x + 2 = -(x+1)(x-2)$					
5		$(2x^3 - 9x^2 + 10x - 3) \times \sqrt{2 + x - x^2} = 0 \Leftrightarrow (2x - 1)(x - 1)(x - 1)$					
		$(3) = 0, (x+1)(x-2) \le 0$					
		или $(x+1)(x-2) = 0 \Leftrightarrow$ корени са числата $\frac{1}{2}$; (-1) ; 1; 2.					
		-					
		Произведението на корените е (-1). Да добавим две еднакви круши и да подредим всички ябълки и круши					
		в редица. Сега да разпределим ябълките така: В първата фруктиера да					
	C	поставим ябълките, които се намират от началото до първата круша,					
6		поставим яоълките, които се намират от началото до първата круша, във втората – ябълките след първата круша до втората, в третата –					
O		във втората – яоълките след първата круша до втората, в третата – останалите ябълки – тези след втората круша.					
		Броят на всички начини ще е равен на възможностите 2 круши да					
		бъдат разположени на 10 места – те са 12 × 11 ÷ 2 = 66 начина.					
	•						
7	C	Отбелязваме, че: $(625^2)^x \times (2^{20})^3 = 5^{8x} \times 2^{60}.$					
		$\begin{bmatrix} (025)^{-1} \times (2^{-2})^2 = 5^{-1} \times 2^{-2} \end{bmatrix}$					

		Ако $x = 8$, тогава							
		$5^{64} \times 2^{60} = 5^4 \times 10^{60} = 625 \ \underline{000 \dots 00}_{60}$							
		т.е. числото се записва с 63 цифри.							
		Aко $x = 9$, тогава							
		$5^{72} \times 2^{60} = 5^{12} \times 10^{60} = 244140625 \underbrace{000 \dots 00}_{60}$							
		т.е. числото се записва с 69 цифри.							
	С	За тройката числа (4, 2, 0) има 6 възможности; за (4, 1, 1) - 3							
8		възможости; за (3, 2, 1) - 6 възможности; за (2, 2, 2) - една възможност.							
		Общо 16 възможности.							
		За да са успоредни правите трябва да нямат общи точки.							
		Само системата уравнения							
9	C	$\begin{vmatrix} y = 2x + 3 \\ y = 2x + 1 \end{vmatrix}$							
		y = 2x + 1							
		няма решение, т.е. двете прави нямат общи точки.							
_		От 1001 до 2016 има 254 числа, които се делят на 4.							
	D	Сред тях обаче са и 10-те числа, които завършват на две нули:1100,							
10		1200, 1300, 1400,, 2000.							
10		Само 1200, 1600 и 2000 се делят на 400, т.е. само тези три години са							
		високосни.							
		Достигаме до отговора: $254 - 10 + 3 = 247$.							
	-12	$-y = -8x + \left(-\frac{9}{2x}\right) \ge 2\sqrt{(-8x) \times \left(-\frac{9}{2x}\right)} = 12 \Longrightarrow y \le -12.$							
11		,							
		Отбелязваме, че $y = -12$, ако $x = 1,5$.							
12	1,5	Диагоналът разделя трапеца на два подобни триъглници. Тогава							
	1.5	бедрата се отнасят, както $9 \div 6 = 3 \div 2 = 1.5$.							
	8	От $\overline{ab} + \overline{ba} = 11 \times (a+b)$, следва, че за да бъде $\overline{ab} + \overline{ba}$ точен							
13		квадрат, а + b трябва да е 11, т.е. търсените числа са всички							
		двуцифрени числа със сбор на цифрите 11:							
		29, 38, 47, 56, 65, 74, 83 и 92.							
	684	Три от 18 точки могат да се изберат по $\frac{18.17.16}{3!}$ = 816 начина.							
14									
		Ако фиксираме върха срещу основата на равнобедрения триъгълник,							
		например A_1 , имаме равнобедрените триъгълници $A_2A_1A_{18}$, $A_3A_1A_{17}$ и							

	1								
		т.н. до $A_9A_1A_{11}$; те са 8. Така получаваме 18. 8 = 144 триъгълника. Ср тях има 6 равностранни, които са броени по 3 пъти. Следователно							
		равнобедрените триъгълници са $144 - 2.6 = 132$. Неравнобедрените са $816 - 132 = 684$.							
	0 или 1	Ако $a = 0$, тогава корен е само числото 2.							
15		Ако а $a \neq 0$, тогава уравнението е квадраттно и дискриминантата							
		$D = 64 - 64a = 0 \Longrightarrow a = 1.$							
		Търсените числа са цели. Нека ги представим във вида $6p + q$, където							
		$0 \le q < 6.$							
		Тогава:							
	-21	$\left[\frac{6p+q}{2}\right] + \left[\frac{6p+q}{3}\right] = 6p+q \Leftrightarrow \left[\frac{q}{2}\right] + \left[\frac{q}{3}\right] = p+q \Leftrightarrow p$							
		$= -q + \left[\frac{q}{2}\right] + \left[\frac{q}{3}\right]$							
16		Тогава Възможните стойности на х са:							
10		Ако $q = 0 \implies p = 0 \implies x = 0$.							
		Ако $q = 1 \implies p = -1 \implies x = -5$.							
		Ако $q=2 \implies p=-1 \implies x=-4$.							
		Ако $q = 3 \implies p = -1 \implies x = -3$.							
		Ако $q = 4 \implies p = -1 \implies x = -2$.							
		Ако $q = 5 \implies p = -2 \implies x = -7$.							
		Сборът на числата е (-21).							
		$ \mathbf{r} = \frac{12}{12} + \mathbf{v} + \mathbf{r} \mathbf{r} \mathbf{r} $							
	6	$\begin{vmatrix} x = \frac{12}{x} + y, \\ y = \frac{24}{y} + x, \end{vmatrix} \begin{vmatrix} x^2 - xy = 12, \\ y^2 - xy = 24 \end{vmatrix}$ $\Rightarrow (x - y)^2 = 36 \Rightarrow x - y = 6.$							
17		$y = \frac{1}{y} + \lambda$, $y = \lambda y = 21$							
		$\Rightarrow (x-y)^2 = 36 \Rightarrow x-y = 6.$							
18		Пресечната точка на двете прави има координати: абсциса 1 > 0;							
		ордината $\sqrt{3} + \sqrt{2} > 0$.							
	72	Точните квадрати от 1 до 200 са: 1; 4; 9; 16; 25; 36; 49; 64; 81; 100, 121,							
		144, 169, 196, 225, 256, 289.							
		Тогава сред търсените числа са 2, 8, 18, 32, 50, 72, 98, 128.							
19		Точните кубове от 1 до 300 са 1; 8; 27; 64; 125; 216.							
		Тогава сред търсените числа са 9, 72.							
		Тогава 72 е числото, което е общо и за двете редици от числа (2, 8, 18,							
		32, 50, 72, 98, 128) и (9, 72).							

	48	Двете лица са съответно 25π и 12π .
20		Тогава търсеният процент е
		$12\pi \div \frac{25\pi}{100} = 48.$

1/									
Клас Задача	1	2	3	4	5	6	7	8	9
1	1	2	5	90	27	6	0	9	-5
2	22	7	Борил	60	20,21	1	7	81	3
3	0	56	6	3	4107	-3	24	2	12
4	Вторник	6	5	4	18	-3	0,75	1	60
5	2	5	0	28	5	10	3	1	-1
6	30	18	118	4	25	6	84	36	66
7	2	45	18	546	9	37	1	28	9
8	3	56	4	2	сряда	39	1	80	16
9	8	47	72	19	44	9	7	8	y=2x+1
10	7	17	10	0 или 2	12	4	60	27	247
11	3	18	10	11	3072	1/2	505	72	-12
12	3	6	18	10699	375	3	162	162	1,5 1.5
13	9	1	7	16	1	5	- 5	2	8
14	3	3	14	2500	3	0	10	2	684
15	4 или 6	15	5	2	50148	-7	3	40	0 или 1
16	13	3	5	108	150	24	80	3334	-21
17	1	3	81	23	2	- 5	15	42	6
18	1	0	3	1	7	10	1 или 3	9	1
19	2	8	7	25	0,3	2020	0	16	72
20	5	8	48	24	103	15	3	$\frac{3\sqrt{2} + 2\sqrt{3}}{2}$	48