Bevezetés a Bioinformatikába Fehérjék

Kozlovszky Miklós kozlovszky.miklos@nik.uni-obuda.hu 4. Előadás

Méretek a világban

Az "omics" világ

✓ Proteomics

- Vizsgálja, hogy hol keletkeznek, valamint milyen szerepet játszanak a fehérjék az élő szervezetben
- Structural proteomics
 - Szekvenciákból térszerkezetet vizsgál/jósol, fehérjéket osztályokba sorol, stb.

Genomics

- Foglalkozik:
 - génstruktúrákkal
 - szabályozó szekvenciákkal
 - nem kódolódó részekkel

Megpróbálja leírni az élőlényt a genom szekvenciája alapján

Transcriptomics

Az átírás törvényszerűségeit vizsgálja

Metabolomics

Az élő sejt számára fontos kis molekulasúlyú molekulák vizsgálata

Fehérjeszerkezet megismerési metodikák

Fehérje alkotók mennyiségi meghatározása

• MALDI - Matrix-Assisted Laser Desorption Ionization

3D fehérjeszerkezet

- https://youtu.be/QuCRBxjk3fg
- https://youtu.be/fZ0m8wustVk

Szekvencia-struktúra deficit

- Nagy projektek/programok szerepe
- Nagy információs deficit
- Jó lenne "jósolni"
 - •Jellemzőket, struktúrát, stb.

Szekvencia<?>struktúra Szent grál keresése

CASP

- Aminosav szekvenciából struktúra jóslás
- Két évente rendezik a versenyt: http://predictioncenter.org/
- Népszerű verseny (sok algoritmus)
- A verseny nyílt, az algoritmusokat többféle szempont alapján rangsorolják
- Jól lehet tanulni a konferencia előadásokból:

http://www.predictioncenter.org/casp8/docs.cgi?view=presentationsés a cikkekből :

http://predictioncenter.org/index.cgi?page=proceedings

Szekvencia<?>struktúra Szent grál keresése

CASP 2020

- Covid-19 verseny zajlik jelenleg
- eredmények novemberben
- https://predictioncenter.org/caspcommons/index.cgi
- File minta:
- https://predictioncenter.org/caspcommons/models_QAresults.cgi

CASP14 (2020)

- Mennyire hasonlít a modell a valósághoz?
 - Domain orientációk, interakciók modellezése pontos?
 - Távolságok és kapcsolódások erőssége pontos?
 - Tudunk a modellel kérdéseket megválaszolni?

CASP14 (2020)

- Negyedleges szerkezetek jóslása (TS)
 - Template alapú modellezés
 - Template nélküli modellezés
 - Oldalláncok, hurkok és aktív kötőhelyek analizálása (ha a struktúra gerince ismert)

CASP (folyt.)

- Egyéb jóslási kategóriák
 - Reziduum-reziduum kapcsolat fehérjékben (RR)
 - Struktúrálatlan régiók meghatározása (disordered regions - DR).
 - Funkciók jóslása kötőhelyek jóslása (FN).
 - Modellek minőségének és megbízhatóságának meghatározása (QA)

CASP15 (2022)

- Most volt a jelentkezési határidő
- https://predictioncenter.org/casp15/index.cgi
- Decemberben lesz a verseny
 - Terv: megcsinálni mintha versenyeznénk
 - MI + kvantumszámítási infrastruktúra
 - Összehasonlítani a versenyeredményekkel

Másodlagos struktúrajóslás pontosság mérése

- Q₃ mérőszám
 - N-aminosavak száma a láncban
- $Q3 = \frac{N_{r3}}{N} *100$

-	~
Right-handed helix	Н
Strand	E
Left-handed helix	Н
Pandom coil	C

O3 classification

Interpretation

- N_{r3}-helyesen jósolt struktúra (alfa-hélix, stb.)
- Sov mérőszám (Segment overlap score)
 - (Burkhard Rost et al.)
 - Erősebb mint a Q₃
 - Büntetőpontokat ad ha nem összefüggő a szekvencia (lukakért)
 - Megjegyzés

Native:

- Legyünk mindig konzervatívak, érdemes átlagos értékekkel számolni,
- Egyszerű statisztikák, nincs bennük "fontossági" mérőszám

Megoldások, eszközök I.

- Első generációs megoldások (70-es évek) egyszerű aminosav sorrenden alapultak:
 - Chou & Fasman (1974) (Aminosav táblázatból)
 - Lim (1974)
 - Garnier, Osguthorpe & Robson (1978)
 - Q3 pontosság kb: 50-55%
- Második generációs megoldások (80-as évek)
 Peptid szegmenseken alapulnak:
 - GOR III (1987) ismert aminosav sorrendből felállított struktúrák alapján gyakoriságot vizsgál
 - Neurális hálózatokkal: Qian & Sejnowski (1988)
 - Korábbi algoritmusokból kapott tudást MI-vel megtámogatták
 - Q3 pontosság kb: 60-65%

Megoldások, eszközök II.

- Harmadik generációs megoldások (90-es évek)
 Evolúciós információk alapján, többszörös szekvencia illesztéssel
 - PHD (Q3 ~ 70%)
 - -Rost B, Sander, C. (1993)
 - PSIPRED (Q3 ~ 77%) (PSIPRED 2.6 Q3 score ~ 80.7%)
 - http://bioinf.cs.ucl.ac.uk/psipred/
 - Jones, D. T. (1999)
 - Sok éven át vezette a CASP-ot
- Negyedik generációs megoldások?
 - MI alapú / heurisztikus megoldások
 - AphaFold
 - https://onlinelibrary.wiley.com/doi/10.1002/prot.26257
 - Max felső korlát?

Strukturálatlan részek predikciója

- Viszonylag új terület, kutatási fókuszban
- A genom kb 1/5-e ilyen területeket kódol
- DISOPRED és DISOPRED2 (2004, Ward et al.)
 - http://bioinf.cs.ucl.ac.uk/psipred/?disopred=1
 - https://github.com/psipred/disopred

Domain jóslás

- Domain (1973, Wetlaufer):
 - Általában: fehérje szekvencia részlet, ami önállóan változhat/fejlődhet/struktúrálódhat a fehérje többi részétől függetlenül.(kompakt+funkcionális egység+fejlődik/változik+folding
 - konzerválódott struktúra, hidrofób résszel
 - Régió, közös

Group Predictor	Responsible Responsible	
RR051 ==> BAKER-RosettaDom	David Kim	
RR333 ==> BAKER-DP_HYBRID	David Kim	<u>Key</u>
RR350 ==> BAKER-GINZU	David Kim	Human
RR069 ==> MULTICOM-CMFR RR443 ==> MUProt	Jianlin Cheng Jianlin Cheng	Server
RR453 ==> MULTICOM	Jianlin Cheng	Took part in CASP7
RR118 ==> Oka	Oxana Galzitskaya	with this server
RR229 ==> CBRC-DP_DR	Tamostu Noguchi	Took part in CASP7 but with different server
RR293 ==> LEE-server RR407 ==> LEE	Mina Oh Jooyoung Lee	

Fizikai tulajdonságok és a szekvencia I.

- Aktív területek jóslása
 - http://www.biochem.ucl.ac.uk/bsm/ligplot/ligplot.html
- Naccess (Oldékonyság/oldhatóság)
 - A hozzáférhető molekulákat számolja PDB file-ból
 - http://wolf.bms.umist.ac.uk/naccess/
- Elektrosztatikus potenciál számolás + molekula dinamika+ brown mozgás szimulációk

Struktúra osztályozás

- Adatbankok
 - SCOP (Structural Classification of Proteins)
 - http://scop.mrc-lmb.cam.ac.uk/scop/
 - CATH
 - hasonló a SCOP-hoz, csak más szempontok alapján osztályoz
 - http://www.cathdb.info/

Transzmembrán-hélixek

- Nagyon fontos terület (80-as évektől)
 - (Sejt)membránokhoz/ba kapcsolódás
 - Membránfehérjék szükségesek alapvető dolgokhoz pl.:fotoszintézis,idegi aktiváció,légzés,immunválasz,sejtek közötti jelátvitel, stb.
- Fehérje struktúrákat keresünk, melyek:
 - Adott helyeken hélix szerkezetűek (17-25 aminosav hossz)
 - Meghatározott helyeken hidrofób struktúrájuk van
 - Használható szoftverek
 - TMHMM
 - www.cbs.dtu.dk/services/TMHMM-2.0/
 - TOPPRED2
- Kb. 90-95%-os pontosság

3D Jóslási módszerek általánosságban

- Egyszerűnek tűnik, de nem az...
- Két út
 - Homológia modellezés
 - (Összehasonlítunk ismert dolgokkal)
 - http://salilab.org/modeller/
 - Ab-initio-jóslás
 - (Kezdeti szekvenciából jósolunk)
 - Már a másodlagos szerkezeteknél is gondban vagyunk, hát még ha bonyolítjuk a dolgot! (Samudrala- RAMP)
- Harmadik út...
 - MI és hibrid módszereket alkalmazunk

Protein Folding

- A fehérjék "hajtógatódása"
- Folding@Home
 - Desktop grid alapú/Boinc
 - https://foldingathome.org/
- Lényeges (3D szerkezet):
 - Alzheimer, Parkinson, sok fajta rákos megbetegedés, stb.

What have we done so far?

Modell ellenőrzés

- Fontos, mert messze vagyunk a 100%-tól
 - PROCHECK
 - https://www.ebi.ac.uk/thornton-srv/software/PROCHECK/
 - WHAT IF
 - https://swift.cmbi.umcn.nl/servers/html/index.html

Elterjedtebb bioinformatikai szoftverek

- Open Bioinformatics Foundation (OBF)
 - Nyilt
 - Főbb projektjei
 - BioJava
 - BioPerl
 - Biopython
 - BioRuby
 - BioSQL
 - DAS és Global Sequence Identifiers lista
 - EMBOSS
- Bioconductor R

