Using molecular dynamics simulations to elucidate a role for bacterial ceramides

Anushriya Subedy Klein and Brannigan labs

Background

- Caulobacter crescentus is an oligotrophic Gram-negative bacterium.
- Adapts to phosphate starvation by elongating and producing stalks

1 mM phosphate

1 µM phosphate

How are the cells able to elongate with limited phosphate?

Lipid Composition:

Background

- Caulobacter crescentus is an oligotrophic Gram-negative bacterium.
- Adapts to phosphate starvation by elongating and producing stalks

1 mM phosphate

1 μM phosphate

Phosphatidyl glycerol

HO

Stankeviciute G, et al,. mbio 2019

Caulobacter produces sphingolipids!

• Produces glycosphingolipids only in low phosphate condition

Antibiotic sensitivity

- ccbF: gene involved in the first step of ceramide synthesis
- Caulobacter deficient in ceramides is resistant to PMX

Phage sensitivity

Caulobacter without ceramide show more phage binding!

Ceramide and phage resistance

What does Ceramide do in the membrane?

Gram negative bacterial outer membrane Periplasmic space -Peptidoglycan Outer membrane (lipopolysaccharide and protein **Gram Negative** O- antigen **LPS** Core Lipid A Phospholipids Smooth LPS Rough LPS (sLPS)

(rLPS)

Our computational approach

- Difficult to study membrane conformational changes experimentally
- Molecular Dynamics as computational microscope
- Coarse-Grained MD
- E. coli LPS

Membrane compositions

Outer leaflet:

1:1:0.5 rLPS:sLPS:POPG

Inner leaflet: 95:5 POPG:PODG

 Simulations are set up with ceramide concentration ranging from 5-40%
O-antigen

Core

Lipid A Ceramid 20% ceramide simulation - Extracellular view:

Observations from the simulations

Flexibility of O-antigen

No ceramide

5% ceramide

Flexibility of O-antigen

Preliminary data: one simulation for each condition Simulation run for 30µs

Ceramide may prefer to be in close to sLPS instead of rLPS

Ceramides might interact with lipid A at specific sites.

E.coli Lipid A structure

Lipid A, with double acyl chains colored in green and red.

Summary

- Ceramides are common, not unique to Caulobacter.
- Ceramides are modified in very diverse manners
- From the simulations:
 - O-antigen is flexible
 - Ceramide may prefer to interact with specific sites on lipid A
 - Ceramide may have a preference for sLPS vs rLPS.

Future work

- Re-analyse data using fully converged system (50µs).
- Analysis of ceramide-lipid A interaction.
- Replicates of simulations.

Thank you!

Klein Lab:

- Eric Klein
- Gabriele Stankeviciute
- Antonella Abou Samra
- Eliza Yost

Brannigan Lab:

- Grace Brannigan
- Liam Sharp
- Jesse Sandberg

Ezry St.lago-McRae (Fu lab)

