Raman Spectroscopy

Not ramen....

Chandrasekhara Venkata Raman He got the Nobel prize for this in 1930. This will be even more impressive at the end

What is Raman Spectroscopy?

- Nonlinear interaction between light and the matter being probed
 - What's a nonlinear interaction?
- Only works on molecules that are polarizable
 - What materials are polarizable?

Raman scattering

- Classically, the Raman and Rayleigh effects can be described by the polarizability of a molecule
- The induced dipole μ can be written $\mu = \alpha E$; (1)

 α is the polarizability of the molecule: $(\alpha_0 + \beta \sin 2\pi v_R t)$ E is the applied field: $(E_0 \sin 2\pi v_t)$

• If E is a travelling light wave at frequency ν , and amplitude E₀, then $\mu = (\alpha_0 + \beta \sin 2\pi \ \nu_R t)$ Eo $\sin 2\pi \ \nu t$ (2) where ν_R is the vibrational frequency of the molecule.

Raman scattering

- Using common trigonometric relations, Eq. (2) can be written as;
- $\mu = \alpha_0 E_0 \sin 2\pi \nu t + 1/2\beta_0 E_0 \{\cos 2\pi (\nu + \nu_{\text{vibr}}) t \cos 2\pi (\nu + \nu_{\text{vibr}}) t \}$
- Vibr is species specific, and so is the Raman shift

Alright what's the point of this?

- Many materials have identifiable Raman "fingerprints"
- You can use it to shift lights wavelength to something else

What's the catch?

- Raman scattering is incredibly weak
- Raman scattering is almost a thousand times weaker than Rayleigh scattering
- It can often be overwhelmed by the fluorescence spectrum of the analyte
- You need very sensitive detectors, spectrometers often use ICCDS and or cool the detector to lower thermal noise

Simple setup

