Package 'ZIQ-SIR'

February 18, 2025

1 coldary 10, 2023	
Type Package	
Title ZIQ-SIR package	
Version 0.1.0	
Author Zirui Wang, Wodan Ling and Tianying Wang	
Maintainer Zirui Wang <wzr23@mails.tsinghua.edu.cn></wzr23@mails.tsinghua.edu.cn>	
Description We provide a method to test the relationship between the covariate(s) of interest and zero inflated data.)-
License GPL-2	
Encoding UTF-8	
LazyData true	
Depends R ($>= 3.5.0$),	
Imports MASS, Ime4, splines2, PearsonDS, quantreg RoxygenNote 7.3.2	
R topics documented:	
fKMQR.test	1 2 3
Index	4
Combination Combine the marginal p-values	_
	_

Description

Combine the marginal p-values

2 fKMQR.test

Usage

```
Combination(
   y,
   X,
   taus = c(0.1, 0.25, 0.5, 0.75, 0.9),
   m = 3,
   test_num,
   method = "Chi"
)
```

Arguments

y n*1 vector, the observed outcome for n samples
X n*p matrix, the observed p covariates for n samples

taus k*1 vector, a grid of quantile levels; e.g., 0.5 for the median, 0.75 for the 3rd

quartile; default is c(0.1, 0.25, 0.5, 0.75, 0.9)

m numeric variable, the order of B-spline function; default is 3

test_num a vector, representing the test corresponds to which covariate(s) in X.

method different method for calculating p-value: 'Chi' for large sample cases; 'Pearson'

for small sample cases

Details

- Please choose 'Chi' or 'Pearson' for method, no other options.
- taus must be a subset or equal to the grid used to produce input.

Value

quantiles of a m*k matrix, each row is the estimated quantiles for each new case

fKMQR.test

P-value computation for method 'Pearson'

Description

P-value computation for method 'Pearson'

Usage

```
fKMQR.test(Y, X, tau, m, test_num, score = NULL, K = NULL)
```

Arguments

Y n*1 vector, the observed outcome for inference
X n*p matrix, the observed covariates for inference

tau k*1 vector, a grid of quantile levels; e.g., 0.5 for the median, 0.75 for the 3rd

quartile; default is c(0.1, 0.25, 0.5, 0.75, 0.9)

m numeric variable, the order of B-spline function; default is 3

test_num a vector, representing the test corresponds to which covariate(s) in X.

score 'null' as default K 'null' as default test_stats 3

Value

p-value for method 'Pearson'

test_stats

Test statistic computation for hypothesis testing

Description

Test statistic computation for hypothesis testing

Usage

```
test_stats(Y, X, taus, m, test_num)
```

Arguments

Y n*1 vector, the observed outcome for inference
X n*p matrix, the observed covariates for inference

taus k*1 vector, a grid of quantile levels; e.g., 0.5 for the median, 0.75 for the 3rd

quartile; default is c(0.1, 0.25, 0.5, 0.75, 0.9)

m numeric variable, the order of B-spline function; default is 3

test_num a vector, representing the test corresponds to which covariate(s) in X.

Value

test statistics for method 'Chi'

test_stat_separate

Test statistic computation for hypothesis testing

Description

Test statistic computation for hypothesis testing

Usage

```
test_stat_separate(Y, X, taus, m, test_num)
```

Arguments

Y n*1 vector, the observed outcome for inference
X n*p matrix, the observed covariates for inference

taus k*1 vector, a grid of quantile levels; e.g., 0.5 for the median, 0.75 for the 3rd

quartile; default is c(0.1, 0.25, 0.5, 0.75, 0.9)

m numeric variable, the order of B-spline function; default is 3

test_num a vector, representing the test corresponds to which covariate(s) in X.

Value

test statistics for method 'Pearson'

Index

```
Combination, 1
fKMQR.test, 2
test_stat_separate, 3
test_stats, 3
```