CLAIMS

What is claimed is:

1	1.	An article comprising:	
1		a heat spreader including a die side and a heat-sink side; and	
2		a container barrier disposed on the heat spreader die side, wherein the	
3	contai	ner barrier and the heat spreader form a recess upon the die side.	
1	2.	The article of claim 1, further including:	
2		a first channel through the heat spreader to communicate from the die	
3	side to	o the heat-sink side; and	
4		optionally a first plug disposed in the first channel.	
1	3.	The article of claim 1, further including:	
2		a first channel through the heat spreader to communicate from the die	
3	side to	side to the heat-sink side;	
4		optionally a first plug disposed in the channel;	
5		a second channel through the heat spreader to communicate from the	
6	die sic	die side to the heat-sink side; and	
7		optionally a second plug disposed in the second channel.	
1	4.	The article of claim 1, further including:	
2		a first channel through the container barrier; and	
3		a first plug disposed in the first channel, wherein the plug is gas-	
4	perme	able and liquid-impermeable.	
1	5.	The article of claim 1, further including:	
2		a first channel through the container barrier;	
3		a first plug disposed in the first channel, wherein the first plug is gas-	
4	perme	permeable and liquid-impermeable;	

5	a second channel through the container barrier to communicate from			
6	the die side to the heat-sink side; and			
7	a second plug disposed in the second channel, wherein the second			
8	plug is gas-permeable and liquid-impermeable.			
1	6. The article of claim 1, wherein the container barrier is selected from			
2	a solder, a leaded solder, a lead-free solder, a reactive solder, an indium material, a			
3	tin material, a silver material, a tin-silver material, a tin-silver-indium material, and			
4	combinations thereof.			
1	7. The article of claim 1, wherein the container barrier is selected from			
2	a metal; a polymer-solder hybrid; a polymer matrix and a metal preform; and a			
3	polymer matrix, a metal preform, and a middle heat transfer structure disposed			
4	therebetween.			
1	8. The article of claim 1, further including:			
2	a liquid heat-transfer medium disposed in the recess.			
1	9. The article of claim 1, further including:			
2	a liquid heat-transfer medium disposed in the recess, wherein the			
3	liquid heat-transfer medium is selected from an organic composition, a			
4	metal, and combinations thereof.			
1	10. A package comprising:			
2	a heat spreader including a die side and a heat-sink side;			
3	a container barrier disposed on the heat spreader die side, wherein the			
4	container barrier and the heat spreader forms a recess upon the die side; and			
5	a liquid heat-transfer medium disposed in the recess.			

- 1 11. The package of claim 10, wherein the heat spreader is selected from 2 a heat slug, a heat pipe, and an integrated heat spreader. 1 12. The package of claim 10, wherein the die side of the heat spreader 2 includes a convoluted interface with the liquid heat-transfer medium. 13. The package of claim 10, further including: 1 2 a first channel through the heat spreader to communicate from the die 3 side to the heat-sink side; and optionally 4 a first plug disposed in the first channel. 14. The package of claim 10, further including: 1 2 a first channel through the heat spreader to communicate from the die 3 side to the heat-sink side; 4 optionally a first plug disposed in the first channel; 5 a second channel through the heat spreader to communicate from the 6 die side to the heat-sink side; 7 optionally a second plug disposed in the second channel. 1 15. The package of claim 10, further including: 2 a first channel through the container barrier; 3 optionally a first plug disposed in the first channel. 1 16. The package of claim 10, further including: 2 a first channel through the container barrier; 3 optionally a first plug disposed in the first channel;
 - 17. The package of claim 10, further including:

4 5

1

a second channel through the container barrier; and

optionally a second plug disposed in the second channel.

2		a die in contact with the liquid heat transfer medium.		
1	18.	The package of claim 10, further including:		
2		a die in contact with the liquid heat transfer medium; and		
3		a mounting substrate coupled to the die.		
1	19.	A process comprising:		
2		forming a container barrier upon a heat sink substrate to achieve a		
3	recess	, the recess including:		
4		a recess wall including the container barrier; and		
5		a recess base including the heat sink.		
1	20.	The process of claim 19, wherein forming the container barrier upon		
2	the heat sink is cold forming, selected from rolling, pressing, stamping, and			
3	combinations	thereof.		
1	21.	The process of claim 19, wherein forming the container barrier upon		
2	the heat sink i	includes assembling a polymer-solder hybrid container barrier.		
1	22.	The process of claim 19, further including:		
2		disposing a liquid heat transfer medium in the recess.		
1	23.	A process comprising:		
2		forming a container barrier upon a die to achieve a recess, the die		
3	includ	ing an active surface and a backside surface, and the recess including:		
4		a recess wall including the container barrier; and		
5		a recess base including the die backside surface.		
1	24.	The process of claim 23, wherein forming the container barrier upon		
2	a die includes	assembling a polymer-solder hybrid container barrier.		

1 2	25.	The process of claim 23, further including: assembling the container barrier upon a heat sink.
1	26.	The process of claim 23, further including:
2		disposing a liquid heat transfer medium in the recess.
1	27.	A computing system comprising:
2		a heat spreader including a die side and a heat-sink side;
3		a container barrier disposed on the heat spreader die side, wherein the
4	contain	ner barrier and the heat spreader form a recess upon the die side;
5		a die in contact with the container barrier;
6		a liquid heat-transfer medium disposed in the recess; and
7		at least one of an input device and an output device coupled to the
8	die.	
1	28.	The computing system according to claim 27, wherein the computing
2	system is disp	osed in one of a computer, a wireless communicator, a hand-held

device, an automobile, a locomotive, an aircraft, a watercraft, and a spacecraft.

3 application specific integrated circuit, and a microprocessor.

3