Structure des groupes abéliens finis

Colas Bardavid

Ce développement a pour but de prouver que les groupes abéliens finis sont des produits directs de quotients cycliques de \mathbb{Z} .

1 Un lemme intéressant quant à l'obtention d'un supplémentaire

Un groupe abélien est un \mathbb{Z} -module. On peut donc parler à ce titre de somme directe, de supplémentaire pour les sous-groupes. Cependant, on n'a pas tous les résultats de la théorie des espaces vectoriels, notamment quant à l'existence de supplémentaires.

Voilà donc un cas particulier.

Lemme 1 Soient G un groupe abélien et H un sous-groupe de G. On suppose qu'il existe $\varphi \in Hom\left(G,\,K\right)$ tel que φ induise un isomorphisme entre H et $\varphi(G)$. Alors, $H \oplus ker \, \varphi = G$.

Démonstration : Soit $x \in G$. Le but est de prouver qu'il existe un unique $x' \in H$ tel que $x - x' \in \ker \varphi$, ie $\varphi(x) = \varphi(x')$. C'est le cas puisque $\varphi : H \to \varphi(G)$ est bijectif.

2 Exposant d'un groupe abélien

Définition 1 Soit G un groupe fini. On appelle exposant de G le ppcm des ordres de G.

On va montrer qu'il existe que si G est abélien, il existe un élément dont l'ordre est l'exposant de G.

Lemme 2 Soit (G, .) un groupe abélien fini. Si a et b sont deux éléments de G d'ordre n et m premiers entre eux, alors ab est d'ordre nm.

Démonstration : On a d'abord $(ab)^{nm} = (a^n)^m (b^m)^n = e$. Donc $\omega(ab) \mid (nm)$. Par ailleurs, si $(ab)^p = e$, alors $x = a^p = b^{-p}$ appartient à < a > et à < b >, groupes de cardinal respectif n et m. Donc l'ordre de x, divisant n et m, vaut 1. Donc $a^p = e$, et donc $n \mid p$. De même, $m \mid p$, et ainsi, $(nm) \mid p$.

Proposition 1 Soit (G, .) un groupe abélien fini. Alors un élément de G est d'ordre l'exposant de G.

 $D\acute{e}monstration:$ Notons $n=\prod_{i\leq n}p_i^{\alpha_i}$, où les p_i sont distincts et premiers. Alors, par définition de n, il existe un élement x_i de G d'ordre $mp_i^{\alpha_i}$. On vérifie alors que $y_i=x^m$ est d'ordre $p_i^{\alpha_i}$. Enfin, d'après le lemme précédent, on sait que $\prod_{i\leq n}y_i$ est d'ordre n.

3 Caractères d'un groupe abélien

Définition 2 Soit G un groupe abélien; on appelle caractère de G tout morphisme de G dans le groupe (\mathbb{U},\times) des complexes de module 1.

On note \widehat{G} et on appelle groupe dual de G l'ensemble des caractères de G, muni de la multiplication des fonctions à valeurs dans \mathbb{U} .

Lemme 3 (Prolongement des caractères) Soient (G, +) un groupe abélien fini, H un sous-groupe de G et $\varphi \in \widehat{H}$. Alors, il existe un élément de \widehat{G} prolongeant φ .

 $D\acute{e}monstration$: Si H=G, c'est fini. Sinon, on montre que l'on peut prolonger φ à un sous-groupe de G contenant strictement H; en répétant un nombre fini de fois ce processus, on obtient le résultat escompté. Soit donc $x\in G\backslash H$. Soit $K=\mathbb{Z}x+H$ le groupe engendré par x et H.

On considère alors $E = \{k \in \mathbb{Z} \mid kx \in H\}$, qui un sous-groupe non-nul de \mathbb{Z} ; en effet, $\omega(x)$ en est un élément.

On écrit donc $E=m\mathbb{Z}$, où $m\in\mathbb{N}^*$. Soit alors $\gamma\in\mathbb{U}$ / $\gamma^m=\varphi(mx)$. Vérifions que $\psi: K\to\mathbb{U} \atop kx+h\mapsto \gamma^k\varphi(h)$ définit un caractère de K. Si kx+h=k'x+h', alors on a (k-k')=tm et tmx=h'-h. Et,

$$\frac{\gamma^k \varphi(h)}{\gamma^{k'} \varphi(h')} = \gamma^{k-k'} \varphi(h-h') = \gamma^{tm} \varphi(h-h') = \varphi(mx)^t \varphi(h-h') = \varphi(tmx - (h'-h)) = 1.$$

Il est ensuite clair que ψ est à valeurs dans \mathbb{U} , est un morphisme et prolonge φ .

Lemme 4 Soient (G, +) un groupe abélien fini, x d'ordre l'exposant de G. Alors, il existe H un sous-groupe de G tel que $G = H \oplus \mathbb{Z}x$.

 $D\acute{e}monstration$: Notons n l'ordre de x. Soit $\varphi \in \widehat{(\mathbb{Z}x)}$ défini par $\varphi(x) = e^{i\pi/n}$: c'est un isomorphisme. On prolonge φ en $\psi \in \widehat{G}$. On a $\psi(nx) = 1 = \psi(x)^n$ par définition de n. Donc ψ est à valeurs dans $\mathbb{U}_n = \psi(\mathbb{Z}x)$. On est alors dans le cadre du lemme 1.

On a donc $G = \mathbb{Z}x \oplus ker \psi$.

4 Structure des groupes abéliens finis

Théorème 1 (Structure des groupes abéliens finis) Soit G un groupe abélien fini non-nul. Alors, il existe $(n_i)_{i \leq n} \in (\mathbb{N}^* \setminus \{1\})^p$ tels que

$$G \simeq \prod_{i}^{p} \mathbb{Z}/_{n_{i}\mathbb{Z}}.$$

Démonstration : On démontre le résultat par récurrence sur n = |G|.

 $\underline{n=2}$: Alors, $G\simeq \mathbb{Z}/_{2\mathbb{Z}}$.

 $\underline{HR_n \Longrightarrow HR_{n+1}}:$ Notons $d \geq 2$ l'exposant de G et x un élément d'ordre d. D'après le lemme précéde, soit H un sous-groupe de G tel que $G = \mathbb{Z}x \oplus H$. Alors, $\varphi : \frac{G \to \mathbb{Z}/d\mathbb{Z} \times H}{px + h \mapsto (\chi_d(p), h)}$ est un isomorphisme de groupes. Comme $|H| \leq |G| - 1$, l'hypothèse de récurrence permet de conclure.