TECHNISCHE UNIVERSITÄT BERLIN Institut für Mathematik

Prof. Dr. Yuri B. Suris

Mathematical Physics I - WS 2018/2019

Jan Techter

http://www3.math.tu-berlin.de/geometrie/Lehre/WS18/MP1/

Exercise Sheet 8

Exercise 1: (7 pts)

Consider the following system of ODEs in \mathbb{R}^2 :

$$\begin{cases} \dot{x}_1 = x_1^4 + x_1 x_2, \\ \dot{x}_2 = -2 x_2 - x_1^2 + x_1 x_2^2. \end{cases}$$
 (1)

- (i) Linearize (1) around the fixed point (0,0). What can you say about the stability of (0,0) on the basis of the Poincaré-Lyapunov Theorem?
- (ii) Find the center (linear) space $E^c(0,0)$. Construct an approximation of the center manifold $W^c(0,0)$.
- (iii) Find the first three nonzero terms of the series expansion of the system obtained by reducing (1) on $W^c(0,0)$. What can you say now about the stability of the fixed point (0,0) for system (1)?

Hint: The center manifold is parametrized, in a neighborhood of (0,0), by $x_2 = h(x_1)$ for some function h. An approximation of $W^c(0,0)$ is given by the series expansion – say up to $O(x_1^5)$ – of the function h around $x_1 = 0$.

Consider the following system of ODEs in \mathbb{R}^3 :

$$\begin{cases} \dot{x}_1 = \frac{1}{2}(x_3 - x_1) - x_2 + 2x_2^3, \\ \dot{x}_2 = \frac{1}{2}(x_3 - x_1), \\ \dot{x}_3 = x_3 - x_2^2(x_1 + x_3). \end{cases}$$
 (2)

- (i) Find all fixed points.
- (ii) Linearize system (2) around the fixed point (0,0,0) and discuss the stability of (0,0,0). Write the general solution of the linearized system.
- (iii) Prove that $M := \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 2x_2 + x_3 = 0\}$ is an invariant manifold for (2).
- (iv) Reduce system (2) to M by eliminating the variable x_1 , thus getting a first-order ODE for x_2 and x_3 . Then eliminate the variable x_3 , thus obtaining a second-order ODE for x_2 . Find an integral of motion of the resulting ODE.

Is this an integral of motion of the full system (2)?

()

Exercise 3: (5 pts)

Consider the planar system of ODEs

$$\begin{cases} \dot{x}_1 = x_2 - 2x_1, \\ \dot{x}_2 = \mu + x_1^2 - x_2, \end{cases}$$

with $\mu \geq 0$. Study the bifurcations that occur as μ is varied.