WHAT IS CLAIMED IS:

1		1.	A system for managing clock adjustment in a storage system,
2	comprising:		
3		a clock	configured to provide a current time, wherein the current time is used
4	to enforce a co	ontent re	etention period;
5		contro	l logic configured to receive a proposed new time for the clock;
5		contro	l logic configured to determine whether the proposed new time is
7	reasonable; ar	ıd	
8		contro	l logic configured to adjust the current time of the clock to the proposed
9	new time if it	is deter	mined that the proposed new time is reasonable.
1		2.	The system of claim 1 further comprising:
2		contro	l logic configured to prevent adjustment of the clock to the proposed
3	new time if it	is deter	mined that the proposed new time is unreasonable.
1		3.	The system of claim 1 wherein the control logic configured to
2	determine who		e proposed new time is reasonable further comprises:
3	determine with		l logic configured to determine whether the proposed new time falls
4	within a speci		
5	within a speci	_	n if the proposed new time falls within the specific range, the proposed
5	new time is de		ed to be reasonable.
,	new time is de		de to be reasonable.
1		4.	The system of claim 3 wherein the specific range is stored in a
2	memory.		
1		5.	The system of claim 3 further comprising:
2		contro	l logic configured to calculate the specific range.
		6	
l S	1	6.	The system of claim 5 wherein the specific range is calculated using a
2	statistical met	noa.	
1		7.	The system of claim 3 wherein the control logic configured to
2	determine who	ether the	e proposed new time falls within the specific range further comprises:
3		contro	l logic configured to calculate a first difference between the proposed
1	new time and	the curr	ent time provided by the clock;

3	control logic configured to calculate a second difference between the current				
6	time provided by the clock and a last adjustment time, the last adjustment time representing				
7	the time which the clock was last adjusted;				
8	control logic configured to select the specific range based on the second				
9	difference; and				
10	control logic configured to compare the first difference and the specific range;				
11	wherein if the first difference is less than or equal to the specific range, the				
12	proposed new time is determined to be reasonable.				
1	8. A storage system comprising:				
2	a clock configured to provide a current time, wherein the current time is used				
3	to enforce a content retention period;				
4	a memory configured to store clock management information; and				
5	a storage access program configured to:				
6	receive a proposed new time for the clock;				
7	determine whether the proposed new time is reasonable using the clock				
8	management information; and				
9	adjust the current time of the clock to the proposed new time if it is				
10	determined that the proposed new time is reasonable.				
1	9. The storage system of claim 8 wherein the storage access program is				
2	further configured to prevent adjustment of the clock to the proposed new time if it is				
3	determined that the proposed new time is unreasonable.				
1	10. The storage system of claim 8 wherein the storage access program is				
2	further configured to determine whether the proposed new time falls within a specific range;				
3	and				
4	wherein if the proposed new time falls within the specific range, the proposed				
5	new time is determined to be reasonable.				
1	11. The storage system of claim 10 wherein the clock management				
2	information includes a table having a plurality of maximum adjustable time ranges; and				
3	wherein the specific range is selected from the plurality of maximum				
4	adjustable time ranges.				

1	12. The storage system of claim 11 wherein the plurality of maximum		
2	adjustable time ranges are calculated using a statistical method.		
1	13. The storage system of claim 11 wherein the clock management		
2	information further includes a last adjustment time, the last adjustment time representing the		
3	time that the clock was last adjusted; and		
4	wherein the storage access program is further configured to determine whether		
5	the proposed new time is reasonable using the last adjustment time, the current time and the		
6	specific range.		
1	14. The storage system of claim 13 wherein the storage access program is		
2	further configured to:		
3	calculate a first difference between the proposed new time and the current		
4	time;		
5	calculate a second difference between the current time and the last adjustment		
6	time; and		
7	select the specific range from the plurality of maximum adjustable time ranges		
8	based on the second difference; and		
9	compare the first difference and the specific range to determine whether the		
10	proposed new time is reasonable;		
11	wherein if the first difference is less than or equal to the specific range, the		
12	proposed new time is determined to be reasonable.		
1	15. The storage system of claim 10 wherein the storage access program is		
2	further configured to calculate the specific range.		
1	16. A storage system comprising:		
2	a clock configured to provide a current time, wherein the current time is used		
3	to enforce a content retention period;		
4	a memory configured to store clock management information, wherein the		
5	clock management information includes a last adjustment time and a plurality of maximum		
6	adjustable time ranges, wherein the last adjustment time represents the time which the clock		
7	was last adjusted; and		
8	a storage access program configured to:		
9	receive a proposed new time for the clock:		

10	determine whether the proposed new time is reasonable using the	
11	current time, the last adjustment time and a specific range selected from the plurality of	
12	maximum adjustable time ranges; and	
13	adjust the current time of the clock to the proposed new time if it is	
14	determined that the proposed new time is reasonable.	
1	17. The storage system of claim 16 wherein the storage access program is	
2	further configured to prevent adjustment of the clock to the proposed new time if it is	
3	determined that the proposed new time is unreasonable.	
1	18. The storage system of claim 16 wherein the storage access program is	
2	further configured to:	
3	calculate a first difference between the proposed new time and the	
4	current time;	
5	calculate a second difference between the current time and the last	
6	adjustment time; and	
7	select the specific range from the plurality of maximum adjustable time	
8	ranges based on the second difference;	
9	wherein if the first difference is less than or equal to the specific range, the	
10	proposed new time is determined to be reasonable.	
1	19. The storage system of claim 16 wherein the plurality of maximum	
2	adjustable time ranges are calculated using a statistical method.	
1	20. A method for managing clock adjustment in a storage system, the	
2	storage system having a clock providing a current time for enforcing a content retention	
3	period, comprising:	
4	receiving a proposed new time for the clock;	
5	determining whether the proposed new time is reasonable; and	
6	adjusting the current time of the clock to the proposed new time if it is	
7	determined that the proposed new time is reasonable.	
1	21. The method of claim 20 further comprising:	
2	preventing adjustment of the clock to the proposed new time if it is determined	
3	that the proposed new time is unreasonable.	

1	22. The method of claim 20 wherein determining whether the proposed			
2	new time is reasonable further comprises:			
3	determining whether the proposed new time falls within a specific range;			
4	wherein if the proposed new time falls within the specific range, the proposed			
5	new time is determined to be reasonable.			
1	23. The method of claim 22 further comprising:			
2	calculating the specific range.			
2	carearang the specific range.			
1	24. The method of claim 23 wherein the specific range is calculated using			
2	a statistical method.			
1	25. The method of claim 22 wherein determining whether the proposed			
2	new time falls within the specific range further comprises:			
3	calculating a first difference between the proposed new time and the current			
4	time provided by the clock;			
5	calculating a second difference between the current time provided by the clock			
6	and a last adjustment time, the last adjustment time representing the time which the clock was			
7	last adjusted;			
8	selecting the specific range based on the second difference; and			
9	comparing the first difference and the specific range;			
10	wherein if the first difference is less than or equal to the specific range, the			
11	proposed new time is determined to be reasonable.			
1	26. A method for managing clock adjustment in a storage system, the			
2	storage system having a clock configured to provide a current time, wherein the current time			
3	is used to enforce a content retention period, and a memory configured to store clock			
4	management information, the method comprising:			
5	receiving a proposed new time for the clock;			
6	determining whether the proposed new time is reasonable using the clock			
7	management information; and			
8	adjusting the current time of the clock to the proposed new time if it is			
9 .	determined that the proposed new time is reasonable.			
1	27. The method of claim 26 further comprising:			

2	preventing adjustment of the clock to the proposed new time if it is determine				
3	that the proposed new time is unreasonable.				
1	28. The method of claim 26 wherein determining whether the proposed				
2	new time is reasonable includes:				
3	determining whether the proposed new time falls within a specific range; and				
4	wherein if the proposed new time falls within the specific range, the proposed				
5	new time is determined to be reasonable.				
1	29. The method of claim 28 wherein the clock management information				
2	includes a table having a plurality of maximum adjustable time ranges; and				
3	wherein the specific range is selected from the plurality of maximum				
4	adjustable time ranges.				
1	30. The method of claim 29 wherein the plurality of maximum adjustable				
2	time ranges are calculated using a statistical method.				
1	31. The method of claim 29 wherein the clock management information				
2	further includes a last adjustment time, the last adjustment time representing the time that the				
3	clock was last adjusted; the method further comprising:				
4	using the last adjustment time, the current time and the specific range to				
5	determine whether the proposed new time is reasonable.				
1	32. The method of claim 31 further comprising:				
2	calculating a first difference between the proposed new time and the current				
3	time;				
4	calculating a second difference between the current time and the last				
5	adjustment time; and				
6	selecting the specific range from the plurality of maximum adjustable time				
7	ranges based on the second difference; and				
8	comparing the first difference and the specific range to determine whether the				
9	proposed new time is reasonable;				
10	wherein if the first difference is less than or equal to the specific range, the				
11	proposed new time is determined to be reasonable.				

1	33. A method for managing clock adjustment in a storage system, the			
2	storage system having a clock providing a current time for enforcing a content retention			
3	period, comprising:			
4	receiving a proposed new time for the clock; and			
5	adjusting the current time of the clock to the proposed new time if the			
6	proposed new time falls within a specific range.			
1	34. The method of claim 33 further comprising:			
2	preventing adjustment of the clock to the proposed new time if the proposed			
3	new time does not fall within the specific range.			