FORMALE SPRACHEN UND AUTOMATEN

MTV: Modelle und Theorie Verteilter Systeme

SoSe 2022

Hausaufgabe

Name: Jannik Leander Hyun-Ho Novak

Matrikelnummer: 392210

(optional) Name: Pete Schimkat

(optional) Matrikelnummer: 403246

Je 4 erreichte Hausaufgabenpunkte entsprechen einem Portfoliopunkt.

Korrektur:

AUFGABE	1	2	3	\sum
PUNKTE	16	16	8	40
ERREICHT				
Korrektur				
Portfoliopunkte:				

Erklärung über Arbeitsteilung

ermit versichern wir, dass wir alle Au d die vorliegenden Lösungen zu je gl	, ,
Novak, Jannik Leander Hyun-Ho	Ort, Datum
Schimkat, Pete	Ort, Datum

Aufgabe 1: Beweismethoden

16 Punkte

1a) Wir bezeichnen im Folgenden das i-te Element der Menge M mit m_i , $i \in \mathbb{N}$. **Induktionsanfang**

 $m_0 \mod 2 = 5 \cdot (2 \cdot 0 + 1) \mod 2 = 5 \mod 2 = 1$

Induktionsvorraussetzung

Fuer ein beliebiges aber festes $n \in \mathbb{N}$ gelte: $m_n \mod 2 = 1$.

Induktionsschritt

 $m_{n+1} \bmod 2$

 $= 5 \cdot (2(n+1)+1) \mod 2$

 $= (10n + 15) \bmod 2$

 $= ((10n \mod 2) + (15 \mod 2)) \mod 2$

 $= (0+1) \mod 2$

 $= 1 \bmod 2$

= 1

Somit gilt $\forall m \in M.m \mod 2 = 1$.

7.5 Punkte

1b)
$$\neg((\exists x P_1(x) \to \neg P_2(x)) \to (\exists y \neg (P_2(y) \land P_1(y))))$$

Def. Elimination der Implikation
$$\equiv \neg(\neg(\exists x P_1(x) \rightarrow \neg P_2(x)) \lor (\exists y \neg(P_2(y) \land P_1(y))))$$
Def. DeMorgansche Regel

 $\stackrel{\text{Def. DeMorgansche Regel}}{\equiv} \neg\neg(\exists x P_1(x) \to \neg P_2(x)) \wedge \neg(\exists y \neg (P_2(y) \wedge P_1(y)))$

Def. Negierter Existenzquantor $\equiv \neg\neg(\exists x P_1(x) \to \neg P_2(x)) \land (\forall y \neg\neg(P_2(y) \land P_1(y)))$

Def. Doppelte Negation
$$\equiv (\exists x P_1(x) \to \neg P_2(x)) \land (\forall y P_2(y) \land P_1(y))$$

2 Punkte

1c) Widerspruchsannahme:

$$(\exists x P_1(x) \to \neg P_2(x)) \land (\forall y P_2(y) \land P_1(y))$$

 $(Z1): \bot$

(A1): $\exists x P_1(x) \rightarrow \neg P_2(x)$

(A2): $\forall y P_2(y) \wedge P_1(y)$

Sei x beliebig aber fest.

(A3):
$$P_1(x) \to \neg P_2(x)$$

Waehle $y \triangleq x$ in A2.

(A4):
$$P_2(x) \wedge P_1(x)$$

Aus A4 folgen A5 und A6.

(A5): $P_2(x)$

(A6): $P_1(x)$

Aus A6 und A3 folgt A7.

(A7): $\neg P_2(x)$

Aus A7 und A5 folgt Z1(Widerspruch).

Also gilt $(\exists x P_1(x) \rightarrow \neg P_2(x)) \rightarrow (\exists y \neg (P_2(y) \land P_1(y))).$

5.5 Punkte

1d) Kontraposition:

$$\neg(\exists y \neg(P_2(y) \land P_1(y)) \to \neg(\exists x P_1(x) \to \neg P_2(x))$$

1 Punkte

2a) R_1 ist nicht rechtstotal, da $1 \in B$ aber $1 \notin R_1$.

 R_1 ist nicht linkseindeutig, da aR_14 und bR_14 gelten mit $a \neq b$.

 R_1 ist nicht rechtseindeutig, da bR_14 und bR_15 gelten mit $4 \neq 5$.

 R_2 ist nicht linkstotal, da $4 \in B$ aber $4 \notin R_2$.

 R_2 ist nicht linkseindeutig, da $1R_2a$ und $5R_2a$ gelten mit $1 \neq 5$.

 R_2 ist nicht rechtseindeutig, da $3R_2b$ und $3R_2c$ gelten mit $b \neq c$.

 R_3 ist nicht rechtseindeutig, da cR_3b und cR_3c gelten mit $b \neq c$.

3.5 Punkte

2b) R_4 ist keine totale Ordnung, da R_4 nicht linear ist.

fuer lineare Relationen gilt:

 $\forall a, b \in A : a \neq b \rightarrow (aRb \lor bRa)$

es gilt $a, f \in D$ mit $a \neq f$, jedoch gelten weder aR_4f noch fR_4a .

 R_4 ist reflexiv, da fuer R_4 gilt:

 $\forall d \in D . dR_4 d$

 R_4 ist transitiv, da fuer R_4 gilt:

 $\forall a, b, c \in D : (aR_4b \wedge bR_4c) \rightarrow aR_4c$

 R_4 ist antisymmetrisch, da fuer R_4 gilt:

 $\forall a, b \in D : (aR_4b \wedge bR_4a) \rightarrow a = b$

Somit gilt: R_4 ist eine partielle Ordnung.

4.5 Punkte

2c) **Aequivalenzrelation:** G ist keine Aequivalenzrelation, da die Relation nicht symmetrisch ist.

Es gilt: G ist symmetrisch, falls $\forall x, y \in \mathbb{Z}$. $xRy \rightarrow yRx$

Gegenbeispiel: Wähle x = 5 und y = 10.

Dann ist $(x, y) \in G$.

Fuer (y, x) gilt: 5 = 10 + n mit n = -5

Aber: $n \notin \mathbb{N}$, was einen Widerspruch zur Definition von G darstellt.

Somit gilt: G ist nicht symmetrisch.

partielle Ordnung: Damit G eine partielle Ordnung ist, muss Reflexivitaet, Antisymmetrie und Transitivitaet gezeigt werden.

• Reflexivitaet:

Zu zeigen (Z1): $\forall x \in \mathbb{Z} . (x, x) \in G$

(A1): Sei $x \in \mathbb{Z}$ in (Z1).

Zu zeigen (Z2): $(x, x) \in G$

$$(x,x) \in G \stackrel{\text{Def. } G}{\Leftrightarrow} \exists n \in \mathbb{N}. \ x = x + n.$$

Gilt $\forall x \in \mathbb{Z}$ mit n = 0. Damit ist G reflexiv.

• Antisymmetrie:

Zu zeigen (Z1): $\forall x, y \in \mathbb{Z}$. $(x, y) \in G \land (y, x) \in G \rightarrow x = y$

Sei $x, y \in \mathbb{Z}$

(Z2): $(x,y) \in G \land (y,x) \in G \rightarrow x = y$

(A1): $(x, y) \in G \land (y, x) \in G$

(A1.1): $(x, y) \in G$

(A1.2): $(y, x) \in G$

(Z3): a = b

$$\begin{array}{ccc} (A1.1) \; (x,y) \in G & \overset{\mathrm{Def.}\; G}{\Rightarrow} & \exists n_1 \in \mathbb{N}. \; x = y + n_1 \\ (A1.2) \; (y,x) \in G & \overset{\mathrm{Def.}\; G}{\Rightarrow} & \exists n_2 \in \mathbb{N}. \; y = x + n_2 \\ & \overset{\mathrm{Def.}\; Gleichheit\; von\; y}{\Rightarrow} & \exists n_1, n_2 \in \mathbb{N}. x = (x + n_2) + n_1 \\ & \overset{\mathrm{Def.}\; Assoz\; der\; Addition}{=} \; \exists n_1, n_2 \in \mathbb{N}. x = x + (n_1 + n_2) \\ \end{array}$$

Da es sich bei n_1 und n_2 um natürliche und somit nicht-negative Zahlen handelt, kann diese Gleichung nur für $n_1 = n_2 = 0$ gelten. Einsetzen in (A1.1):

$$\exists n_1 \in \mathbb{N}. \ x = y + n_1$$
 $\overset{\text{Def. } n_1 = 0}{\Rightarrow}$ $x = y + 0$ $\overset{\text{Def. } Addition}{\Rightarrow}$ $x = y$ Somit ist G antisymmetrisch.

• Transitivitaet

Zu zeigen (Z1):
$$\forall x, y, z \in \mathbb{Z}$$
 . $(x,y) \in G \land (y,z) \in G \rightarrow (x,z) \in G$
Sei $x, y, z \in \mathbb{Z}$
(Z2): $(x,y) \in G \land (y,z) \in G \rightarrow (x,z) \in G$
(A1): $(x,y) \in G \land (y,z) \in G$
(A1.1): $(x,y) \in G$
(A1.2): $(y,z) \in G$
(Z3): $(x,z) \in G$

$$(A1.1)(x,y) \in G \overset{\mathrm{Def.}\,G}{\Longrightarrow} \exists n_1 \in \mathbb{N}. \ x = y + n_1$$

$$(A1.2)(y,z) \in GG \\ \exists n_2 \in \mathbb{N}. \ y = z + n_2$$

$$\overset{\mathrm{Def.}\,Gleichheit\ von\ y}{\Longrightarrow} \ \exists n_1, n_2 \in \mathbb{N}. \ x = (z + n_2) + n_1$$

$$\overset{\mathrm{Def.}\,Assoz.der\,Addition}{\Longrightarrow} \ \exists n_1, n_2 \in \mathbb{N}. \ x = z + (n_1 + n_2)$$

Da die Summe von zwei natürlichen Zahlen immer eine natürliche Zahl ist, gilt nach Def. von G: $(x, z) \in G$. Somit ist G transitiv. Somit gilt: G ist eine partielle Ordnung.

8 Punkte

Aufgabe 3: Kardinalität

8 Punkte

Behauptung: Wir geben eine Bijektion $f:M\to\mathbb{N}$ an.

$$x \mapsto \frac{x}{41} - 3$$

Wir geben eine weitere Funktion $g: \mathbb{N} \to M$ an.

$$x\mapsto 41x+123$$

(Z1): Bijektion(f)

Wenn $f \circ g = \Delta_{\mathbb{N}}$ und $g \circ f = \Delta_M$, dann ist laut FS 0.7.8 f eine Bijektion.

(Z1.1):
$$\forall x \in \mathbb{N} : f \circ g(x) = \Delta_{\mathbb{N}}$$

Sei $x \in \mathbb{N}$ beliebig aber fest.

$$f \circ g(x) \stackrel{\text{Def. o}}{=} \circ f(g(x)) \stackrel{\text{Def. g}}{=} f(41x + 123) \qquad f(41x + 123)$$

(Z2.1): $\forall x \in M : g \circ f(x) = \Delta_M$

Sei $x \in M$ beliebig aber fest.

$$g \circ f(x)$$
 $\stackrel{\text{Def. } \circ}{=} g(f(x))$ $\stackrel{\text{Def. } f}{=} g(\frac{x}{41} - 3)$ $\stackrel{\text{Def. } g}{=} g(\frac{x}{41} - 3)$ $\stackrel{\text{Def. } g}{=} g(\frac{x}{41} - 3)$ $\stackrel{\text{Def. } \circ}{=} \Delta_M$

Da wir Z1.1 und Z2.1 gezeigt haben, gilt: f ist eine Bijektion. Somit gilt die Aussage.