Funções:

Domínio da função

Uma **função** f é uma lei que associa, a cada elemento x em um conjunto D, exatamente um elemento, chamado f(x), em um conjunto E.

Variável independente

Variável Dependente

O Gráfico de uma função é o conjunto de pontos do plano que atendem sua equação: $\{(x, f(x)) \mid x \in D\}$

Imagem é o conjunto dos valores de f(x), não seu gráfico!

Todo gráfico representa uma função?

Teste da Reta Vertical Uma curva no plano xy é o gráfico de uma função de x se e somente se menhuma reta vertical cortar a curva mais de uma vez.

É possível, mas nem sempre fácil, seguimentar um gráfico que não atenda o teste da reta vertical em partes que atendam.

Por exemplo, um círculo de raio 5 e centro na origem:

Equação implícita

Equação explícita

O gráfico de uma função, ou seja, um gráfico que passa no teste da reta vertical, é o conjunto de pontos que atende a uma equação explícita.

Funções Definidas por Partes:

$$-f(x) = \begin{cases} 1 - x & \text{se } x \le -1 \\ x^2 & \text{se } x > -1 \end{cases}$$

Função Módulo:

$$\sqrt{x^2} = x$$
? Sim ou não?

Não!!!

Por exemplo, se x=-2, então, $\sqrt{(-2)^2}=2$. Logo, $x\neq \sqrt{x^2}$, para x=-2.

Por exemplo, se
$$x = -2$$
, então, $\sqrt{(-2)^2} = 2$. Logo, so
$$\sqrt{x^2} = |x| = \begin{cases} x & \text{se } x \ge 0 \\ -x & \text{se } x < 0 \end{cases}$$

Função Módulo ou Valor Absoluto

Simetria:

Simetria Par

f(-x) = f(x)

Simetria Impar

$$f(-x) = -f(x)$$

EXEMPLO 11 Determine se a função é par, ímpar ou nenhum dos dois.

(a)
$$f(x) = x^5 + x$$

(b)
$$g(x) = 1 - x^4$$

(b)
$$g(x) = 1 - x^4$$
 (c) $h(x) = 2x - x^2$

(a)
$$f(-x) = (-x)^5 + (-x) = (-1)^5 x^5 + (-x)$$
$$= -x^5 - x = -(x^5 + x)$$
$$= -f(x)$$

Portanto, f é uma função ímpar.

(b)
$$g(-x) = 1 - (-x)^4 = 1 - x^4 = g(x)$$

Assim, g é par.

(c)
$$h(-x) = 2(-x) - (-x)^2 = -2x - x^2$$

Como $h(-x) \neq h(x)$ e $h(-x) \neq -h(x)$, concluímos que h não é par nem ímpar.

Funções Crescentes e Decrescentes

Uma função f é chamada **crescente** em um intervalo I se

$$f(x_1) < f(x_2)$$
 quando $x_1 < x_2$ em I .

É denominada decrescente em I se

$$f(x_1) > f(x_2)$$
 quando $x_1 < x_2$ em I .

Domínio

Os logaritmos têm restrições adicionais.

Determinar o domínio de uma função equivale a checar as restrições ao domínio. Para as funções reais comuns*, são duas às retrições ao domínio:

- 1 Não pode haver divisão por zero.
- 2 Não pode haver raiz quadrada* de número negativo.

Ou qualquer raiz índice par.

Raiz quadrada de números negativos levam aos números complexos.

Mas qual o problema da divisão por zero?

A questão é que as funções podem ter comportamentos distintos nesses pontos.

Então não há apenas umas resposta. De modo geral dizemos que é uma indeterminação, que deve ser analizada caso a caso.

Os limites serão a fermenta para analisar o comportamento das funções em torno desses pontos. Veja o comportamento de algumas funções:

Nada de estranho ocorre aqui, mas não poderíamos calcular o valor da função em zero usando sua equação.

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$

Já neste caso, a função alterna indefinidamente entre -1 e 1 a medida que x se aproxima de zero. E quanto mais perto, mais rápido.

$$\lim_{x \to 0} \operatorname{sen} \frac{\pi}{x}$$
 não existe

Neste caso, a função também não tende a um valor, mas há um comportamento expecífico.

$$\lim_{x \to 0} \frac{1}{x^2} = \infty$$

Em suma, teremos de estudar o comportamento de cada função em torno desses pontos que não podem estar no domínio. Mas, para isso, precisamos conhecer bem cada tipo de função.

Função Linear

Ou, Equação do Primeiro Grau, ou Função Afim, ou Equação da Reta.

Estudo de sinal

•
$$f(x) = x - 2$$

$$g(x) = 1 - 2x$$

Função Quadrática

Ou, Função do Segundo Grau, ou Equação da Parábola...

Análise de sinal, $\Delta > 0$:

a > 0

a < 0

a > 0

a < 0

 Δ < 0

Polinômios

(a)
$$y = x^3 - x + 1$$

(b)
$$y=x^4-3x^2+x$$

(c)
$$y=3x^5-25x^3+60x$$

Radicais

(b)
$$f(x) = \sqrt[3]{x}$$

Função Recíproca

Funções Racionais

$$f(x) = \frac{2x^4 - x^2 + 1}{x^2 - 4}$$

Funções Algébricas

(a)
$$f(x) = x \sqrt{x+3}$$

(b)
$$g(x) = \sqrt[4]{x^2 - 25}$$

(c)
$$h(x) = x^{2/3}(x-2)^2$$

Funções Trigonométricas

Funções Exponenciais

Funções Logarítmicas

