Tasa de variación media

Para hacer los ejercicios es imprescindible visualizar los siguientes vídeos:

https://youtu.be/rizvkuUmYpc https://youtu.be/OhMEDNMusTM https://youtu.be/5rtsFfoFycc

1.- Calcular la tasa de variación media en el intervalo [3, 9] de las funciones:

a)
$$f(x) = x^2 + 2x$$
 b) $f(x) = \frac{2}{x^2}$

2.- (**Teoría**) Recordemos que la tangente del ángulo que forma la recta con el eje x es lo que siempre se ha llamado pendiente. Por lo tanto:

La tasa de variación media es la pendiente de la recta secante

- 3.- (**Teoría**) Dada la función f(x) = 3x inventa un intervalo y calcula la TVM en dicho intervalo. Resulta que independientemente del intervalo siempre sale el mismo número. Explica razonadamente este hecho.
- 4.- Dibuja con Desmos o con Geogebra la función:

$$f(x) = x^3 - x^2 - 3x + 2$$

Intenta encontrar un intervalo donde la TVM sea positiva, otro intervalo donde sea negativa y otro donde sea nula. Comprueba tus intuiciones con la fórmula de la tasa de variación media. El signo de la TVM tiene algo que ver con el crecimiento o decrecimiento de la función en dicho intervalo.

5.- Sea la función dependiente del tiempo:

$$s(t) = 5 + 3t + 4t^2$$

Calcula la tasa de variación media entre t = 1 y t = 3 (o lo que es lo mismo, en el intervalo [1,3]). ¿Os recuerda esto a algo de Física?

6.- Sea la función dependiente del tiempo:

$$s(t) = 5 + 3t$$

Comprueba que independientemente del intervalo la TVM siempre sale el mismo número. Da una explicación física de este hecho.

7.- Dada la función $f(x) = 2x^2 + x$ calcula la tasa de variación media entre los siguientes intervalos (tengo que escribir punto y coma para separar los dos números del intervalo):

$$a) [1; 1,1]$$
 $b) [1; 1,01]$ $c) [1; 1,001]$

¿Parece que tiene algún límite cuando la distancia entre los puntos se hace más y más pequeña? Intenta aplicar nuestros conocimientos sobre límites para hallar dicho valor sin usar la calculadora.

Definición de derivada

Para hacer los ejercicios es imprescindible visualizar los siguientes vídeos:

https://youtu.be/AiJ2DNi1PEg https://youtu.be/RwdNamf8VoI https://youtu.be/yteaZdvLYZE

La derivada en un punto es la pendiente de la recta tangente y su fórmula es:

$$f'(a) = \lim \frac{f(a+h) - f(a)}{h}$$

- 1.- Calcula la derivada en el punto x = 3 de la función $f(x) = 3x^2 + 3$. Al hacer derivadas siempre sale una indeterminación del tipo 0/0.
- 2.- Calcula la derivada en el punto x=a de la función $f(x)=3x^2+3$.
- 3.- Calcula la derivada en el punto x = a de la función f(x) = x.
- 4.- Calcula la derivada en el punto x = a de la función $f(x) = x^2$.
- 5.- Calcula la derivada en el punto x = a de la función $f(x) = x^3$.
- 6.- Calcula la derivada en el punto x = a de la función f(x) = 1/x.
- 7.- Calcula la derivada en el punto x = a de la función $f(x) = \sqrt{x}$.
- 8.- Os resumo alguno de los resultados que debéis haber obtenido:

f(x)	f'(a)	Otra forma
X	1	$1 \cdot a^{1-1}$
x^2	2a	$2 \cdot a^{2-1}$
x^3	$3a^2$	$3 \cdot a^{3-1}$
x^{-1}	$-1/a^{2}$	$-1 \cdot a^{-1-1}$
$\sqrt{x} = x^{1/2}$	$\frac{1}{2\sqrt{a}}$	$\frac{1}{2} \cdot a^{1/2-1}$

Ir pensando en una fórmula general que valga para todas las potencias de x.