Lab3 Protocol

Emily Ruppel, Iljoo Baek, Mengwen He

February 17, 2017

${\bf Contents}$

1	Self	i-Organization	4
	1.1	Gateway	2
		1.1.1 TX (G-Thread-1): Message ID 0x00	
		1.1.2 RX (G-Thread-2): Message ID 0x01	
	1.2	Communication Node	
		1.2.1 RX (N-Thread-1): Message ID 0x00	
		1.2.2 RX (N-Thread-1): Message ID 0x01	
		1.2.3 RX (N-Thread-1): Message ID 0x02	٠
2	IInl	load Light Values	
4	-		4
	2.1	Gateway	
		2.1.1 RX (G-Thread-2): Message ID 0x03	
	2.2	Communication Node	
		2.2.1 RX (N-Thread-1): Message ID 0x03	
		2.2.2 TX (N-Thread-2): Message ID 0x03	1
3	Cor	nfigure Sample Rate [This can be done via broadcast]	6
		Gateway	6
	0.1	3.1.1 TX2 (G-Thread-3): Message ID 0x04	
		3.1.2 RX (G-Thread-2): Message ID 0x05	
	2.0		
	3.2	Communication Node	
		3.2.1 RX (N-Thread-1): Message ID 0x04	
		3.2.2 RX (N-Thread-1): Message ID 0x05	7
4	Mes	essage Protocol	8

1 Self-Organization

1.1 Gateway

1.1.1 TX (G-Thread-1): Message ID 0x00

- 1. Start (re-)organization at time t (default reorganization interval: 5s configurable)
- 2. Clear parent-child list $\{\langle PID, CID \rangle_i\}$
- 3. Increase round count $\rho \leftarrow (\rho + 1)\%256$
- 4. Broadcast an organization message with ρ , and node ID NID:

 Message ID 0x00 [1B], ρ [1B], NID [1B]: e.g. 0x00 0x04 0x00
- 5. goto 1

1.1.2 RX (G-Thread-2): Message ID 0x01

- 1. Get and parse the replied organization message (Message ID 0x01)
 - received round count ρ_R
 - received parent ID PID_R
 - received parent-child pair $\langle PID, CID \rangle_R$
- 2. If $\rho_R \neq \rho$ or $PID_R \neq NID$, then goto 1
- 3. If $PID_R = \langle PID, CID \rangle_R$:: PID, then reply an acknowledge message with ρ , NID:

 Message ID 0x02 [1B], ρ [1B], NID [1B]: e.g. 0x02 0x04 0x00
- 4. Add $\langle PID, CID \rangle_R$ to $\{\langle PID, CID \rangle_i\}$ and refresh the neighbor list of $\langle PID, CID \rangle_R$:: PID node.
- 5. goto 1

1.2 Communication Node

1.2.1 RX (N-Thread-1): Message ID 0x00

- 1. Get and parse the organization message (Message ID 0x00):
 - received round count ρ_R
 - received note ID NID_R
 - RSSI level Φ
- 2. If $\Phi < \Phi^*$ (Φ^* is the minimum required RSSI to build a reliable wireless connection), then goto 1
- 3. If its own round count $\rho = \rho_R$, then goto 1
- 4. Set round count: $\rho = \rho_R$

- 5. Set parent ID: $PID = NID_R$
- 6. Reply an acknowledge message with ρ , PID, and NID: Message ID 0x01 [1B], ρ [1B], PID [1B], < PID, NID > [2B]: e.g. 0x01 0x04 0x01 0x02
- 7. goto 1

1.2.2 RX (N-Thread-1): Message ID 0x01

- 1. Get and parse the replied organization message (Message ID 0x01)
 - received round count ρ_R
 - received parent ID PID_R
 - received parent-child pair $\langle PID, CID \rangle_R$
- 2. If $\rho_R \neq \rho$ or $PID_R \neq NID$, then goto 1
- 3. If $PID_R = \langle PID, CID \rangle_R$:: PID, then reply an acknowledge message with ρ , NID:

 Message ID 0x02 [1B], ρ [1B], NID [1B]: e.g. 0x02 0x04 0x01
- 4. Relay an acknowledge message with ρ , PID, and $< PID, CID>_R$: Message ID 0x01 [1B], ρ [1B], PID [1B], $< PID, CID>_R$ [2B]: e.g. 0x01 0x04 0x00 0x01 0x02
- 5. goto 1

1.2.3 RX (N-Thread-1): Message ID 0x02

- 1. Get and parse the replied organization acknowledge message (Message ID 0x02)
 - received round count ρ_R
 - received parent ID PID_R
- 2. If $\rho_R \neq \rho$ or $PID_R \neq PID$, then goto 1
- 3. Broadcast an organization message with ρ , and NID:

Message ID 0x00 [1B], ρ [1B], NID [1B]: e.g. 0x00 0x04 0x01

2 Upload Light Values

2.1 Gateway

2.1.1 RX (G-Thread-2): Message ID 0x03

- 1. Get and parse the light value message (Message ID 0x03)
 - received round count ρ_R
 - received parent ID PID_R
 - received node ID NID_R
 - received timestamp Sec_R , $NSec_R$
 - received light value L_R
- 2. If $\rho_R \neq \rho$ or $PID_R \neq NID$, then goto 1
- 3. Display light value " Sec_R s + $NSec_R$ nsec : NID_R 's light value is L_R "
- 4. goto 1

2.2 Communication Node

2.2.1 RX (N-Thread-1): Message ID 0x03

- 1. Get and parse the light value message (Message ID 0x03)
 - received round count ρ_R
 - \bullet received parent ID PID_R
 - received node ID NID_R
 - received timestamp Sec_R , $NSec_R$
 - received light value L_R
- 2. If $\rho_R \neq \rho$ or $PID_R \neq NID$, then goto 1
- 3. Relay light value message with ρ , PID, NID, timestamp $Sec_R + NSec_R$, and L_t to parent:

Message ID 0x03 [1B], ρ [1B], PID [1B], NID_R [1B], Sec_R [4B], $NSec_R$ [4B], L_R [2B] e.g. 0x03 0x04 0x00 0x02 0x19 0x90 0x11 0x23 0x19 0x88 0x10 0x25 0x11 0x23

2.2.2 TX (N-Thread-2): Message ID 0x03

- 1. Sample start at time t (sample rate is controlled by dt ms and is configurable via gateway)
- 2. Get light value L_t
- 3. Send light value message with ρ , PID, NID, timestamp Sec + NSec, and L_t to parent:

Message ID 0x03 [1B], ρ [1B], PID [1B], NID [1B], Sec [4B], NSec [4B], L_t [2B] e.g. 0x03 0x04 0x01 0x02 0x19 0x90 0x11 0x23 0x19 0x88 0x10 0x25 0x11 0x23

3 Configure Sample Rate [This can be done via broadcast]

3.1 Gateway

3.1.1 TX2 (G-Thread-3): Message ID 0x04

- 1. Give a new sample rate dt
- 2. Broadcast a sample rate message with ρ , NID, and dt (ms):

Message ID 0x04 [1B], ρ [1B], NID [1B], dt [4B]: e.g. 0x04 0x04 0x00 0x19 0x90 0x11 0x23

3.1.2 RX (G-Thread-2): Message ID 0x05

- 1. Get and parse the sample rate update message (Message ID 0x05)
 - received round count ρ_R
 - received parent ID PID_R
 - received node ID NID_R
 - received sample rate dt_R
- 2. If $\rho_R \neq \rho$ or $PID_R \neq NID$, then goto 1
- 3. Display sample rate update info " NID_R 's sample rate changes to dt_R "
- 4. goto 1

3.2 Communication Node

3.2.1 RX (N-Thread-1): Message ID 0x04

- 1. Get and parse the sample rate message (Message ID 0x04)
 - received round count ρ_R
 - received parent ID PID_R
 - received sample rate dt_R
- 2. If $\rho_R \neq \rho$ or $PID_R \neq PID$, then goto 1 [No need to check PID_R with PID if using broadcast]
- 3. Set $dt = dt_R$
- 4. Reply a sample rate update message with ρ , PID, NID, and dt (ms): Message ID 0x05 [1B], ρ [1B], PID [1B], NID [1B], dt [4B]: e.g. 0x05 0x04 0x01 0x02 0x19 0x90 0x11 0x23
- 5. Relay a sample rate message with ρ , NID, and dt (ms):

Message ID 0x04 [1B], ρ [1B], NID [1B], dt [4B]: e.g. 0x04 0x04 0x01 0x19 0x90 0x11 0x23

3.2.2 RX (N-Thread-1): Message ID 0x05

- 1. Get and parse the sample rate update message (Message ID 0x05)
 - received round count ρ_R
 - \bullet received parent ID PID_R
 - $\bullet\,$ received node ID NID_R
 - \bullet received light value dt_R
- 2. If $\rho_R \neq \rho$ or $PID_R \neq NID$, then goto 1
- 3. Relay sample rate update message with ρ , PID, NID_R , and dt_R to parent: Message ID 0x05 [1B], ρ [1B], PID [1B], NID_R [1B], dt_R [4B]: e.g. 0x05 0x04 0x00 0x02 0x19 0x90 0x11 0x23
- 4. goto 1

4 Message Protocol

П	ID Code	Length	Note	Directions Need Relay	Need Relay
00x0	$ 000 000 1 , \rho[1], NID[1]$	3	Organization Message	Parent \rightarrow Child	Y
0x01)x01 0x01 [1], ρ [1], PID [1], PID [1], PID [1],	ಬ	Organization Message Reply	Child \rightarrow Parent	Y
0x02	$0x02 \mid 0x02 \mid 1], \ \rho \ [1], \ NID \ [1]$	3	Organization Message Reply Ack Parent \rightarrow Child	$Parent \rightarrow Child$	N
0x03	$0x03 \mid 0x03 \mid 1], \ \rho \ [1], \ PID \ [1], \ NID_{(R)} \ [1], \ Sec_{(R)} \ [4], \ NSec_{(R)} \ [4], \ L_{t/R} \ [2] \ \big $	14	Light Value Message	Child \rightarrow Parent	Y
0x04	$0x04 \mid 0x04 \mid 1], \ \rho \ [1], \ NID \ [1], \ dt \ [4]$	2	Sample Rate Message	Parent \rightarrow Child	Y
0x05	$0 \times 05 + 0 \times 05 \text{ [1]}$, o [1], DID [1], NID_{c} [1], dt_{c} [4]	×	Sample Bate Undated Message	$\mid \mathrm{Child} \to \mathrm{Parent} \mid$	\ \