Terceira lista de álgebra linear

Prof.: Max Jáuregui

- 1. Considere o conjunto \mathbb{R}^2 com a definição usual de multiplicação por um número real. Mostre que \mathbb{R}^2 não é um espaço vetorial se a adição é definida por
 - (a) $u + v = (x_1 + x_2, 0)$
 - (b) $u + v = (x_1x_2, y_1y_2)$

para quaisquer $u = (x_1, y_1)$ e $v = (x_2, y_2)$.

- 2. Seja E um espaço vetorial. Usando as propriedades de espaço vetorial e o fato de que $u+v=u+w \Rightarrow v=w$ para quaisquer $u,v,w\in E$, mostre que (-1)v=-v.
- 3. Sejam u = (a, b) e v = (c, d) vetores não-nulos de \mathbb{R}^2 . Mostre que u é um múltiplo de v (u é paralelo a v) se, e somente se, ad bc = 0.
- 4. Mostre que o conjunto S das matrizes simétricas 3×3 é um subespaço do espaço vetorial $M(3\times 3)$ das matrizes 3×3 .
- 5. Mostre que o conjunto P das funções pares $f: \mathbb{R} \to \mathbb{R}$ é um subespaço de $\mathbb{R}^{\mathbb{R}}$.
- 6. Encontre o subespaço gerado pelas funções polinomiais $p_0, p_1, \ldots, p_n : \mathbb{R} \to \mathbb{R}$ definidas por $p_k(x) = x^k, k \in \{0, 1, \ldots, n\}$.
- 7. Mostre que o conjunto $H = \{(x_1, \dots, x_n) \in \mathbb{R}^n : a_1x_1 + \dots + a_nx_n = 0\}$ é um subespaço de \mathbb{R}^n . Esse subespaço é chamado de um hiperplano de \mathbb{R}^n .
- 8. Mostre que o sistema de equações lineares

$$a_{11}x_1 + \dots + a_{1n}x_n = 0$$

$$\vdots$$

$$a_{m1}x_1 + \dots + a_{mn}x_n = 0$$

sempre tem solução (encontre uma solução particular que não depende dos valores dos coeficientes a_{ij}). Além disso, mostre que o conjunto das soluções desse sistema é um subespaço de \mathbb{R}^n (perceba que cada equação do sistema está associada a um hiperplano de \mathbb{R}^n).

9. É possível escrever o vetor (2,3,6) como combinação linear dos vetores (1,2,1) e (0,4,1)?

- 10. Usando o exercício 3 e a regra de Cramer, mostre que se $u,v\in\mathbb{R}^2$ são vetores não-nulos e não-paralelos, então o subespaço gerado por $\{u,v\}$ é \mathbb{R}^2 , ou seja, $\{u,v\}$ é um conjunto de geradores de \mathbb{R}^2 .
- 11. Encontre dois conjuntos de geradores diferentes para o espaço vetorial $E=\{(\alpha,-\alpha)\in\mathbb{R}^2:\alpha\in\mathbb{R}\}$. É possível achar um conjunto de geradores de E que contenha mais de um vetor?