CHEM356:	Physical	Chemistry	II
----------	----------	-----------	----

Exam II -	16^{th}	OF APRIL,	2019
-----------	-----------	-----------	------

Name: Name: The exam consist of 5 questions, 25 points each. Only 4 highest score questions will make the final score. Total - $100~{\rm Pts}$.

Problem I 25 Pts

1. Write down the hamiltonial for LiH molecule and identify respective terms. You can write it in atomic units.

- 2. Draw a molecular orbitals diagram and populate it with electrons. Next, write down the electronic wave function in a form of (Single) Slater Determinant.
- 3. Show that the determinant is zero if two electrons occupy same state.
- 4. Calculate the bond orders and molecular term symbols for LiH and LiH^+ species.

CHEM356: Physical Chemistry II	CHEM356:	PHYSICAL	CHEMISTRY	H
--------------------------------	----------	----------	-----------	---

	Ехам	II -	16^{th}	OF	April,	2019
Name:						

Problem II 25 Pts

1. Derive atomic terms for a $3d^2$ electronic configuration (for instance Ti^{2+} cation), including J numbers, and order them according to their energy.

2. What other d-electronic configuration has same term symbols? How does ordering of terms change in this configuration?

Problem III 25 Pts

- 1. Explain the variational princple.
- 2. A trial function for 1s electron in hydrogen atom has a form of $\Phi(r) = e^{-\alpha r^2}$. Derive the normalization constant for the function.
- 3. The expression for energy as a function of α for the H-atom using above trial function is given by:

$$E(\alpha) = \frac{3\hbar^2 \alpha}{2m_e} - \frac{e^2 \alpha^{1/2}}{2^{1/2} \epsilon_0 \pi^{3/2}}$$

Derive α that minimizes the energy and confirm that the variational principle holds.

Two useful relations, remaining integrals you will find in the provided sheet of paper:

$$a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_0e^2}$$

$$a_0 = \frac{4\pi\epsilon_0\hbar^2}{m_ee^2}$$

$$E_H = \frac{m_ee^4}{16\pi^2\epsilon_0^2\hbar^2}$$

Problem IV 25 Pts

1. The first three hydrogen atomic wave functions for s-type electrons are given by following equations:

$$\begin{split} &\Psi_{100} = \frac{1}{\pi^{1/2}} \left(\frac{1}{a_0}\right)^{3/2} e^{-r/a_0} \\ &\Psi_{200} = \frac{1}{4(2\pi)^{1/2}} \left(\frac{1}{a_0}\right)^{3/2} \left(2 - \frac{r}{a_0}\right) e^{-r/2a_0} \\ &\Psi_{300} = \frac{1}{81(3\pi)^{1/2}} \left(\frac{1}{a_0}\right)^{3/2} \left(27 - 18\frac{r}{a_0} + 2\frac{r^2}{a_0^2}\right) e^{-r/3a_0} \end{split}$$

Calculate the position of radial nodes and sketch the probability density, $r^2|\Psi(r)|^2$, of these wave functions.

- 2. Show that Ψ_{100} and Ψ_{200} are orthonormal to each other.
- 3. Compute the average distance from the nucleus for electron at 1s orbital.

Problem V 25 Pts

- 1. Plot a molecular orbital diagram for N_2 molecule.
- 2. Write down the ground-state electronic configuration for a following series of species: N_2^+ , N_2 , N_2^- and N_2^{2-} . Assign the bond order and determine the molecular term symbol.
- 3. Calculate the energy (in wavenubers) of allowed 3d $^2D \rightarrow 2p$ 2P transitions in hydrogen atom. The energies of different terms are:

$$E(2p^{-2}P_{1/2}) = 82258.917 \text{ cm}^{-1}$$

 $E(2p^{-2}P_{3/2}) = 82259.272 \text{ cm}^{-1}$
 $E(3d^{-2}D_{3/2}) = 97492.306 \text{ cm}^{-1}$
 $E(3p^{-2}D_{5/2}) = 97492.342 \text{ cm}^{-1}$

Show that the energies of these states are approximated well with the Rydberg law ($R_H = 109677.581 \text{ cm}^{-1}$).