Detecting gene subnetworks under polygenic selection

Alexandre Gouy^{1,2}, Laurent Excoffier^{1,2}

¹CMPG, Institute of Ecology and Evolution, University of Bern, 3012 Bern, Switzerland

²Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland

UNIVERSITÄT

INTRODUCTION

- Adaptation is typically viewed as involving selective sweeps at a single locus. But for quantitative traits, we expect to observe modest changes in allele frequencies at many loci.
- Tests to detect selection from genomic data based on single-locus selective sweep models can be challenged by these small allele frequency changes at many loci which may remain below the detection limit of most of these methods.

- This method aims at detecting polygenic selection. The general idea is to search for subnetworks of genes within biological pathways that present unusual features.
- This search is a typical **combinatorial optimization** problem that can be solved using **simulated annealing**. The significance test procedure explicitly takes into account this optimization process.
- We searched evidence for **convergent adaptation to altitude in humans**

WORKFLOW

INPUT

Gene scores

Statistic as a proxy for selection: F_{ST} , PBS, ...

Pathway data

Graphs of genes and their interactions (KEGG, Reactome, NCI)

DATA

- 906,600 SNPs for **Tibetans** and **Andeans** populations living at **high altitude**, from Bigham et al. (2012).
- **Probability of convergent adaptation** estimated for each SNP using a hierarchical Bayesian model, from Foll et al. (2014).
- 17,272 genes in 1,509 pathways have been tested.
- 3 pathways databases: KEGG, Reactome and NCI.
- Pathways with biggest connected components of size < 10 are excluded.

SEARCH ALGORITHM

Background distribution

Generate the **subnetwork scores distributions for each possible network size**by sampling random subnetworks.

High-scoring subnetworks search

Search in each pathway for a high-scoring subnetwork using **simulated annealing**. The **score s is standardized** at each iteration using the background distribution.

Subnetwork score

$$s = \frac{1}{\sqrt{k}} \sum_{i}^{k} g_i$$

$$z = \frac{s - \mu_k}{\sigma_k}$$

 $g_i \leftrightarrow \text{gene score}$ $k \leftrightarrow \text{subgraph size}$ $\mu_k \leftrightarrow \text{mean of background}$ distribution $\sigma_k \leftrightarrow \text{SD of background}$ distribution

SIMULATED ANNEALING

For a graph G(V, E) with V nodes and E edges, N iterations and a temperature function T_i , which decreases geometrically:

- 1. Select a random active subgraph of k_{\min} nodes $v \in V$
- 2. Randomly **pick a node** $v \in V$ from the boundary and bordering genes and **update its state** (active \longleftrightarrow inactive)
- 3. Compute the subgraph normalized score z_{k_i}
- 4. Keep new v with a probability $P = \min(1, \exp\left(\frac{z_{k_i} z_{k_{i-1}}}{T_i}\right))$
- 5. If i < N, go back to 2.
- 6. Return the final subnetwork

PERMUTATION TEST

For each class of connectivity:

- Permute the gene scores;
- Search for high-scoring subnetworks in permuted data;
- Repeat *n* times to generate the high-scores **null distribution used to infer p-values**.

Scores

Empirical p-values

MAIN RESULTS

- **Convergent evolution** of networks of genes involved in **response to hypoxia** in Tibetans and Andeans
- Different types of adaptive responses: vascular (angiogenesis, ...), neural (response to glutamate toxicity, neurogenesis), metabolic (ADH cluster)

STATISTICAL CORRECTIONS

Correction for network overlap

As pathways share some genes, the high-scoring **subnetworks are** also **overlapping**. To correct for this effect, we define **clusters** of subnetworks based on Jaccard's **similarity index**, and only keep the highest scoring subnetwork per cluster.

Correction for multiple tests

We expect to remove autocorrelation among p-values with the overlapping correction, allowing us to perform a multiple testing correction on remaining networks using the **FDR method**.

OUTPUT

For each biological pathway:

- if existing, the high-scoring subnetwork identified (list of genes);
- its **score** and associated empirical **p-value**;
- if the network resists to overlap correction, a **q-value**.

A. HIF-2-alpha pathway TCEB1 ADORAZA ABCG2 APEX1 FIT1 SERPINB FLT1 SERPINB FLT1 SERPINB FLT1 SERPINB FXN SIC11A2 SILC11A2 SILC11A2 SILC1A2 SILC1A2

References

Bigham, A., Bauchet, M., Pinto, D., Mao, X., Akey, J. M., Mei, R., ... & Brutsaert, T. (2010). Identifying signatures of natural selection in Tibetan and Andean populations using dense genome scan data. *PLoS Genet*, 6(9), e1001116. Foll, M., Gaggiotti, O. E., Daub, J. T., Vatsiou, A., & Excoffier, L. (2014). Widespread signals of convergent adaptation to high altitude in Asia and America. The American Journal of Human Genetics,

95(4), 394-407.
Pritchard, J. K., Pickrell, J. K., & Coop, G. (2010). The genetics of human adaptation: hard sweeps, soft sweeps, and polygenic adaptation. Current biology, 20(4), R208-R215.

Contact alexandre.gouy@iee.unibe.ch

Acknowledgments

We would like to thank J. Daub and I. Dupanloup. This project is partially funded by the Swiss NSF.