Omitted variables problem

Foundations of Statistical Learning - Homework 1

Purpose

Set up a Monte Carlo experiment to understand the consequences of the omission of a relevant covariate

Data Generating Process

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon$$

$$\epsilon \sim N(0,1)$$

$$x_1, x_2 \sim N(\underline{0}, \Sigma)$$

scenario 1:
$$\Sigma = \begin{pmatrix} 1 & 0.5 \\ 0.5 & 1 \end{pmatrix}$$

scenario 2:
$$\Sigma = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

Parameters Estimation

Model m0:
$$y_i = \beta_0 + \beta_1 x_{1i} + \epsilon$$

m0 <- lm(y ~ X1)

Model m1:
$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \epsilon$$

m1 <- lm(y ~ X1 + X2)

Experimental results

Number of samples (n_samples): 100

Number of MC simulations (sim_num): 1000

$$\beta_0 = 1$$
 $\beta_1 = -1$ $\beta_2 = 2$

Beta1 (model X1)

Beta1 (model X1+X2)

Beta1 (model X1)

Beta1 (model X1+X2)

Experimental results on suggested dgp params

Number of samples (n_samples): 100

Number of MC simulations (sim_num): 1000

$$\beta_0 = 1$$
 $\beta_1 = 1$ $\beta_2 = -2$

