Arquivos: Organização X Acesso

Organização Física:

- registros de tamanho variável
- registros de tamanho fixo

Acesso ao Arquivo:

- Sequencial
- Direto

O que influencia:

- o uso que se fará do arquivo
- facilidades da linguagem de programação usada

Para o usuário:

- Foco no conteúdo do arquivo, e não no seu formato;
- Acesso à informação, e não a registros e campos;
- Distância maior entre a organização física e lógica do arquivo

Modelos Abstratos de Dados

 Focar no conteúdo da informação, ao invés de no seu formato físico

 As informações atuais tratadas pelos computadores (som, imagens, documentos, etc.) não se ajustam bem à metáfora de dados armazenados como sequências de registros separados em campos

Modelos Abstratos de Dados

- É mais fácil pensar em dados deste tipo como objetos que representam som, imagens, etc. e que têm a sua própria maneira de serem manipulados
- O termo modelo abstrato de dados captura a noção de que o dado não precisa ser visto da forma como está armazenado ou seja, permite uma visão dos dados orientada à aplicação, e não ao meio no qual eles estão armazenados

Registro Cabeçalho (header record)

- Em geral, é interessante manter algumas informações sobre o arquivo para uso futuro
- Essas informações podem ser mantidas em um cabeçalho no início do arquivo
- A existência de um registro cabeçalho torna um arquivo um objeto auto-descrito
 - O software pode acessar arquivos de forma mais flexível

Registro Cabeçalho (header record)

- Algumas informações típicas
 - Número de registros
 - Tamanho de cada registro
 - Nomes dos campos de cada registro
 - Tamanho dos campos
 - Datas de criação e atualização

Registro Cabeçalho (header record)

Vantagem dessas abordagem

- Podemos criar um programa que lê/escreve um grande numero de arquivos com diferentes características (número de campos por registro, comprimento de campos)
- Quanto mais informações houver no header, menos o o programa precisa saber sobre a estrutura específica de um arquivo em particular

Desvantagem

 Programa que lê/escreve mais sofisticado para interpretar diferentes headers

Metadados

- São dados que descrevem os dados primários em um arquivo
- Exemplo: Formato FITS (Flexible Image Transport System)
- Armazena imagens de astronomia
- Cada imagem é precedida por um cabeçalho FITS: uma coleção de blocos de 2880 bytes contendo registros de 80 bytes ASCII, com dados sobre a imagem: posição do céu, data de captura, telescópio usado, etc. São chamados metadados
- O FITS utiliza o formato ASCII para o cabeçalho e o formato binário para os dados primários

```
SIMPLE = T / Conforms to basic format
BITPIX = 16 / Bits per pixel
NAXIS = 2 / Number of axes
...

DATE = '22/09/1989 ' / Date of file written
TIME = '05:26:53' / Time of file written
END
```


Metadados

- Vantagens de incluir metadados junto com os dados
 - Torna viável o acesso ao arquivo por terceiros (conteúdo auto-explicativo)
 - Portabilidade
 - Define-se um padrão para todos os que geram/acessam certos tipos de arquivo
 - PDF, PS, HTML, TIFF
 - Permite conversão entre padrões

Metadados

- Bom uso para etiquetas e palavras-chave
 - keyword=value
 - Espaço ocupado relativo é muito pequeno em FITS: 0.02%
- Se bem descrito, arquivo pode conter muitos dados de formatos e origens diferentes
 - Acesso orientado a objetos
 - "Extensibilidade"

Suponha que:

- O astrônomo resolvesse associar um documento (notas) com suas observações sobre cada imagem.
- Assim, haveria 3 registros de tamanhos variáveis (header, notas, imagem) associados ao objeto.
- Generaliza-se a noção de keywords para um arquivo de objetos mistos

Uso de Tags

- Cada registro de tamanho variável passa a ser indexado por uma tag
- No caso: header, notas, image
- Nos registros das tags, guardar o nome da keyword, o deslocamento (byte offset) no arquivo daquela informação, e a indicação do seu tamanho em bytes

Um arquivo "tagged"

Tabela de Índices com Tags

Arquivo com dados primários

→ Métodos de leitura/escrita para cada tipo de tag

Exemplos de Formatos com estrutura Tag

- TIFF Tagged Image File Format
- HDF Hierarchical Data Format
- SGML Standard General Markup Language
 - Linguagem para descrever estruturas de documentos e para definir tags usadas nas estruturas (HTML, XML, etc.)

Portabilidade e Padronização

- Formas de codificação de arquivos devem ser "estar de acordo" com a visão de outras pessoas, softwares e computadores
- Fatores que afetam portabilidade
 - Diferenças entre sistemas operacionais
 - Diferenças entre linguagens de programação
 - Diferenças entre arquiteturas de computadores
 - Etc.
- Muitas vezes são necessários conversores de formatos

Organização de arquivos para desempenho

- Organização de arquivos visando desempenho
 - Complexidade de espaço
 - Compressão (tornar menor) e compactação (eliminar espaços vazios) de dados
 - Reuso de espaço
 - Complexidade de tempo
 - Ordenação e busca de dados

Compressão de dados

- A compressão de dados envolve a codificação da informação de modo que o arquivo ocupe menos espaço
 - Transmissão mais rápida
 - Processamento sequencial mais rápido
 - Menos espaço para armazenamento
- Algumas técnicas são gerais, e outras específicas para certos tipos de dados, como voz, imagem ou texto
 - Técnicas reversíveis vs. irreversíveis
 - A variedade de técnicas é enorme