

Robótica Móvel

Descrição espacial e Transformações rígidas

Prof. Douglas G. Macharet douglas.macharet@dcc.ufmg.br

Introdução

- Ciências e engenharias: é essencial identificar e manipular representações matemáticas de quantidades físicas e reais
- Robótica: Posições e Orientações
 - Partes, ferramenta e o próprio robô
 - Demais elementos no ambiente
- É necessário adotar uma convenção geral

Sistema de coordenadas geral

Sistemas de coordenadas locais

Introdução

Fonte: https://gramaziokohler.github.io/compas_fab/latest/examples/01_fundamentals/02_coordinate_frames.html

Introdução

[1] Velodyne, [2] Ladybug3 (actual location: center of camera system),
[3] Ladybug3 Camera 5, [4] Right Riegl, [5] Left Riegl,
[6] Body Frame (actual location: center of rear axle)
[7] Local Frame (Angle between the X-axis and East is known)

Fonte: Pandey G, McBride JR, Eustice RM. Ford Campus vision and lidar data set. The International Journal of Robotics Research. 2011;30(13):1543-1552.

Introdução Objetivos

Representação

Mapeamento

Introdução Notação

- Vetores e Matrizes
 - Letra Maiúscula (P, X, A)

- Escalares
 - Letra Minúscula (p, x, a)

Convenção para nossa disciplina! Você pode encontrar várias outras notações diferentes na literatura.

- Referenciais
 - Sobrescrito e Subscrito antes ou depois $({}^{A}_{B}R, \widehat{X}_{A})$

Posição

Orientação

Referencial

Representação Descrição de posição

- Posição: vetor n-dimensional (tupla de números reais)
 - $P = (x_1, ..., x_n) \in \mathbb{R}^n \rightarrow 2D/3D(\mathbb{R}^2, \mathbb{R}^3)$
- A posição (vetor) deve conter de maneira explícita em relação a qual sistema de coordenadas ela está definido

Representação Descrição de posição

- Um sistema de coordenadas (referencial, frame) é representado por uma letra maiúscula entre chaves
- Vetores unitários que indicam os eixos principais do sistema de coordenadas usam a notação "chapeu"

Representação Descrição de posição

Produto vetorial (produto externo):

$$\hat{X}_A \times \hat{Y}_A = \hat{Z}_A$$

$$\hat{Y}_A \times \hat{Z}_A = \hat{X}_A$$

$$\hat{Z}_A \times \hat{X}_A = \hat{Y}_A$$

Produto escalar (produto interno):

$$\hat{X}_A \cdot \hat{X}_A = \left\| \hat{X}_A \right\| = 1$$

$$\hat{X}_A \cdot \hat{Y}_A = 0$$

$$\hat{X}_A \cdot \hat{Z}_A = 0$$

Representação Descrição de direção

- Vetores também são usados para representar grandezas direcionais, como um deslocamento, direção ou derivada
 - **Deslocamento**: Diferença entre pontos, e.g., ${}^{A}Q {}^{A}P$
 - Possui direção e magnitude
 - Direção: vetor unitário que possui apenas a direção

$$\frac{{}^{A}Q - {}^{A}P}{\|{}^{A}Q - {}^{A}P\|}$$

• **Derivada**: deslocamento infinitesimal $({}^AP'(t) = (p_x(t), p_y(t)))$

Representação Descrição de direção

Direção

Derivada

- Corpo rígido: é importante representar a orientação?
- Descrever completamente um corpo rígido utilizando-se apenas um ponto pode não ser muito representativo

 Descrita a partir de um sistema de coordenadas <u>afixado no</u> <u>próprio corpo</u> em relação a outro sistema de coordenadas

• Matriz de rotação de $\{B\}$ em relação a $\{A\}$

$${}_{B}^{A}R = \begin{bmatrix} {}^{A}\hat{X}_{B} & {}^{A}\hat{Y}_{B} & {}^{A}\hat{Z}_{B} \end{bmatrix} = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

lacktriangle Vetores unitários de $\{B\}$ descritos em termos do sistema $\{A\}$

Descrição de orientação

Cossenos direcionais (diretores)

$${}_{B}^{A}R = \begin{bmatrix} \hat{X}_{B} \cdot \hat{X}_{A} & \hat{Y}_{B} \cdot \hat{X}_{A} & \hat{Z}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{Y}_{A} & \hat{Y}_{B} \cdot \hat{Y}_{A} & \hat{Z}_{B} \cdot \hat{Y}_{A} \\ \hat{X}_{B} \cdot \hat{Z}_{A} & \hat{Y}_{B} \cdot \hat{Z}_{A} & \hat{Z}_{B} \cdot \hat{Z}_{A} \end{bmatrix}$$

Projeções do vetor nas direções unitárias do sistema de referência.

$$\widehat{X}_B \cdot \widehat{X}_A = \|\widehat{X}_B\| \|\widehat{X}_A\| \cos \theta = \cos \theta$$

$$\|\widehat{X}_B\| = \|\widehat{X}_A\| = 1$$

- Colunas: vetores unitários de $\{B\}$ em $\{A\}$
- E o que representam as linhas?
 - Vetores unitários $\{A\}$ em $\{B\}$

$${}_{B}^{A}R = \begin{bmatrix} {}^{A}\hat{X}_{B} & {}^{A}\hat{Y}_{B} & {}^{A}\hat{Z}_{B} \end{bmatrix} = \begin{bmatrix} \hat{X}_{B} \cdot \hat{X}_{A} & \hat{Y}_{B} \cdot \hat{X}_{A} & \hat{Z}_{B} \cdot \hat{X}_{A} \\ \hat{X}_{B} \cdot \hat{Y}_{A} & \hat{Y}_{B} \cdot \hat{Y}_{A} & \hat{Z}_{B} \cdot \hat{Y}_{A} \\ \hat{X}_{B} \cdot \hat{Z}_{A} & \hat{Y}_{B} \cdot \hat{Z}_{A} & \hat{Z}_{B} \cdot \hat{Z}_{A} \end{bmatrix}$$

Descrição de orientação

- Matriz ortogonal
 - Colunas (ou linhas) são vetores ortonormais
 - A inversa é igual a sua transposta $\binom{A}{B}R^{A}R^{T} = I$

$${}_{B}^{A}R = {}_{A}^{B}R^{-1} = {}_{A}^{B}R^{T}$$

- Composição: $R(\theta_1)R(\theta_2) = R(\theta_1 + \theta_2)$
- Determinante: $det(R(\theta)) = cos^2 \theta + sin^2 \theta = 1$

Descrição de um referencial (frame)

 Referencial: sistema de coordenadas que, além da orientação, possui o vetor posição da origem em relação a outro frame

$$\{B\} = \{{}_{B}^{A}R, {}^{A}P_{BORG}\}$$

- Posição: frame em que a matriz de rotação é a identidade
- Orientação: frame onde o vetor posição é nulo

Descrição de um referencial (frame)

Descrição de um referencial (frame)

- Trabalhamos com diversos referenciais
 - Sistema de coordenadas do mundo
 - Sistema de coordenadas do robô
 - Sistema de coordenadas de um sensor
 - Sistema de coordenadas de um objeto

• Como descrever a posição de um ponto em relação ao referencial $\{A\}$ dada a descrição dele no referencial $\{B\}$?

Alterar descrições de um referencial para outro referencial

Translação

Rotação

Mapeamento Translação

 Considerando referenciais com a mesma orientação (sem rotação relativa), porém origens diferentes (translação)

$$^{A}P = ^{B}P + ^{A}P_{BORG}$$

• O vetor ${}^AP_{BORG}$ localiza a origem de $\{B\}$ em relação a $\{A\}$

Translação (Exemplo)

■ Dados 2 referenciais $\{A\}$ e $\{B\}$ com mesma orientação, porém a origem de $\{B\}$ está deslocada 7 unidades da origem de $\{A\}$ ao longo do eixo \hat{X}_A e 2 unidades ao longo do eixo \hat{Y}_A . Dado o ponto BP , defina $^AP_{BORG}$ e AP .

$${}^{B}P = [4 \quad 3 \quad 5]^{T}$$
 ${}^{A}P_{BORG} = [7 \quad 2 \quad 0]^{T}$

$${}^{A}P = {}^{B}P + {}^{A}P_{BORG} = \begin{bmatrix} 4 \\ 3 \\ 5 \end{bmatrix} + \begin{bmatrix} 7 \\ 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 11 \\ 5 \\ 5 \end{bmatrix}$$

Translação (Exemplo)

- Considerando referenciais com a mesma origem (sem translação), porém com orientações (rotação) diferentes
- Componentes são as projeções do vetor sobre os eixos (vetores unitários) de seu sistema de referência (frame)

$${}^{A}p_{x} = {}^{B}\hat{X}_{A} \cdot {}^{B}P$$

$${}^{A}P = {}^{A}p_{y} = {}^{B}\hat{Y}_{A} \cdot {}^{B}P$$

$${}^{A}p_{z} = {}^{B}\hat{Z}_{A} \cdot {}^{B}P$$

$${}^{A}p_{z} = {}^{B}\hat{Z}_{A} \cdot {}^{B}P$$

$${}^{A}P = {}^{A}R {}^{B}P$$

$$R_{\mathbf{x},\theta} = \begin{bmatrix} i_x \cdot i_u & i_x \cdot i_v & i_x \cdot i_w \\ j_y \cdot i_u & j_y \cdot i_v & j_y \cdot i_w \\ k_z \cdot i_u & k_z \cdot i_v & k_z \cdot i_w \end{bmatrix} \qquad R_{\mathbf{x},\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

$$R_{\mathbf{x},\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

$$R_{\mathbf{x},\theta} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \theta & -\sin \theta \\ 0 & \sin \theta & \cos \theta \end{bmatrix}$$

$$R_{y,\theta} = \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix}$$

$$R_{z,\theta} = \begin{bmatrix} \cos \theta & -\sin \theta & 0\\ \sin \theta & \cos \theta & 0\\ 0 & 0 & 1 \end{bmatrix}$$

Rotação (Exemplo)

• Um referencial $\{B\}$ está rotacionado de $\theta = 30^\circ$ em relação ao eixo \hat{Z}_A do referencial $\{A\}$. Dado o ponto BP , defina A_BR e AP .

$${}^{B}P = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \qquad {}^{A}_{B}R = \begin{bmatrix} 0,866 & -0,500 & 0,000 \\ 0,500 & 0,866 & 0,000 \\ 0,000 & 0,000 & 1,000 \end{bmatrix}$$

$${}^{A}P = {}^{A}_{B}R {}^{B}P = \begin{bmatrix} -1,000 \\ 1,732 \\ 0,000 \end{bmatrix}$$

Mapeamento Rotação (Exemplo)

- Translações são fáceis de visualizar
- Rotações não são tão intuitivas
 - Difíceis de descrever e especificar
 - Fechada sobre a multiplicação

$${}_{C}^{A}R = {}_{B}^{A}R {}_{C}^{B}R$$

O resultado da múltiplicação é outra matriz de rotação!

Não é comutativa

$${}_{B}^{A}R{}_{C}^{B}R \neq {}_{C}^{B}R{}_{B}^{A}R$$

$$R_{x}(30)R_{z}(30) = \begin{bmatrix} 0.87 & -0.50 & 0.00 \\ 0.43 & 0.75 & -0.50 \\ 0.25 & 0.43 & 0.87 \end{bmatrix} \qquad R_{z}(30)R_{x}(30) = \begin{bmatrix} 0.87 & -0.43 & 0.25 \\ 0.50 & 0.75 & -0.43 \\ 0.00 & 0.50 & 0.87 \end{bmatrix}$$

- Matriz de rotação 3 × 3
 - Colunas mutualmente ortogonais
 - Colunas com magnitude 1 (vetor unitário)
 - Matriz ortonormal própria (determinante = 1)

- Euler angles: representação mais compacta (3 parâmetros)
 - Definidos a partir de três rotações (encadeadas) em relação aos três eixos principais do sistema de coordenadas local (body)

Rotação (Euler angles / Z-Y-X)

- Também conhecido por roll, pitch e yaw
 - Muito utilizado em aviação, náutica e robótica

Rotação (Euler angles / Z-Y-X)

Iniciar com o referencial $\{B\}$ coincidente com um referencial conhecido $\{A\}$. Primeiro, rotacione $\{B\}$ em torno de \hat{Z}_A de um ângulo α , em seguida em torno de \hat{Y}_A de um ângulo β , e finalmente em torno de \hat{X}_A de um ângulo γ .

Sempre em relação ao *body* frame!

$${}_{B}^{A}R = {}_{B'}^{A}R {}_{B''}^{B'}R {}_{B}^{B''}$$

Rotação (Euler angles / Z-Y-X)

$$\begin{aligned}
{}^{A}_{B}R_{Z'Y'X'}(\alpha,\beta,\gamma) &= R_{Z}(\alpha) R_{Y}(\beta) R_{X}(\gamma) \\
&= \begin{bmatrix} c\alpha & -s\alpha & 0 \\ s\alpha & c\alpha & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} c\beta & 0 & s\beta \\ 0 & 1 & 0 \\ -s\beta & 0 & c\beta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & c\gamma & -s\gamma \\ 0 & s\gamma & c\gamma \end{bmatrix}
\end{aligned}$$

$${}_{B}^{A}R_{Z'Y'X'}(\alpha,\beta,\gamma) = \begin{bmatrix} c\alpha c\beta & c\alpha s\beta s\gamma - s\alpha c\gamma & c\alpha s\beta c\gamma + s\alpha s\gamma \\ s\alpha c\beta & s\alpha s\beta s\gamma + c\alpha c\gamma & s\alpha s\beta c\gamma - c\alpha s\gamma \\ -s\beta & c\beta s\gamma & c\beta s\gamma \end{bmatrix}$$

Rotação (Euler angles / Z-Y-X)

- Problema inverso
 - Como obter os ângulos a partir da matriz?

$${}_{B}^{A}R_{Z'Y'X'}(\alpha,\beta,\gamma) = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$\cos\beta = \sqrt{r_{11}^2 + r_{21}^2}$$

$$\beta = \operatorname{atan2}(-r_{31}, c\beta)$$

$$\alpha = \operatorname{atan2}\left(\frac{r_{21}}{c\beta}, \frac{r_{11}}{c\beta}\right)$$

$$\gamma = \operatorname{atan2}\left(\frac{r_{32}}{c\beta}, \frac{r_{33}}{c\beta}\right)$$

Rotação (Euler angles / Z-Y-X)

Problema inverso – Casos Especiais

$$\beta = 90^{\circ}$$

$$\alpha = 0$$

$$\gamma = \operatorname{atan2}(r_{12}, r_{22})$$

$$\beta = -90^{\circ}$$

$$\alpha = 0$$

$$\gamma = -\operatorname{atan2}(r_{12}, r_{22})$$

Mapeamento Representações de orientação

Formato	P arâmetros	Singularidade	Composição
Matriz de rotação	9	Não	Multiplicação
Roll-pitch-yaw	3	Sim	Não trivial
Quatérnio unitário*	4	Não	Multiplicação

^{*}Número hipercomplexo

Mapeamento Translação e Rotação

- Referenciais com <u>origens</u> e <u>orientações</u> diferentes.
 Considera-se duas etapas:
 - Descrever o ponto BP em relação a um referencial intermediário, mesma origem mas a orientação de $\{A\}$
 - Somar a diferença (deslocamento) entre as origens

$$^{A}P = {}^{A}_{B}R^{B}P + {}^{A}P_{BORG}$$
 (transformação rígida)

Translação e Rotação (Exemplo)

• Seja $\{B\}$ um referencial rotacionado $\theta=30^\circ$ em torno de \hat{Z}_A e transladado 10 unidades em \hat{X}_A e 5 unidades em \hat{Y}_A . Dado BP , defina $^AP_{BORG}$, A_BR e AP .

$${}^{B}P = \begin{bmatrix} 3 \\ 7 \\ 0 \end{bmatrix} \qquad {}^{A}P_{BORG} = \begin{bmatrix} 10 \\ 5 \\ 0 \end{bmatrix} \qquad {}^{A}_{B}R = \begin{bmatrix} 0,866 & -0,500 & 0,000 \\ 0,500 & 0,866 & 0,000 \\ 0,000 & 0,000 & 1,000 \end{bmatrix}$$

$${}^{A}P = {}^{A}_{B}R^{B}P + {}^{A}P_{BORG} = \begin{bmatrix} 9,098\\12,562\\0,000 \end{bmatrix}$$

Translação e Rotação (Exemplo)

Considerações finais

- Composição de translação e rotação se torna complexa ao agrupar operações considerando muitos referenciais
- Exemplo:

■ Como resolver? → Transformações homogêneas

