

24AA00/24LC00/24C00 24AA014/24LC014 24AA02/24LC02B 24AA024/24LC024 24AA04/24LC04B 24AA16/24LC16B 24AA64/24LC64

24C02C 24AA025/24LC025 24AA08/24LC08B 24AA32A/24LC32A 24AA128/24LC128/24FC128

24AA01/24LC01B

24C01C

24AA256/24LC256/24FC256 24AA512/24LC512/24FC512

# I<sup>2</sup>C<sup>™</sup> 串行 EEPROM 系列数据手册

### 特征:

- 容量从 128 位到 512 千位
- 24AAXX 器件单电源供电,工作电压低至 1.8V
- 低功耗 CMOS 技术:
  - 1 mA 典型工作电流
  - 1 μA 典型待机电流 (工业级温度)
- 2 线串行接口总线, 兼容 I<sup>2</sup>C™
- 施密特触发器输入以抑制噪声
- •输出斜率控制以消除接地反弹
- 兼容 100 kHz (1.8V) 和 400 kHz (≥ 2.5V) 两 种传输速率
- 24FCXX 器件工作频率为 1 MHz
- 自定时擦/写周期(包括自动擦除)
- 页写入缓冲器
- 大部分器件具有硬件写保护功能
- 具有工厂编程 (QTP) 功能
- 静电保护电压 > 4,000V
- 擦写次数可达 1,000,000 次
- 数据保存超过 200 年
- 8 引脚 PDIP、SOIC、 TSSOP 和 MSOP 封装
- 5 引脚 SOT-23 封装 (大部分容量为 1 到 16 千位的 器件)
- 提供 8 引脚 2x3mm 和 5x6mm DFN 封装
- 扩展工作温度范围:
  - 工业级 (I): -40°C 到 +85°C
  - 汽车级 (E): -40°C 到 +125°C

### 概述:

美国徽芯科技公司(Microchip Technology Inc.)生产的电擦写式只读存储器系列 24CXX、 24LCXX、24AAXX 和 24FCXX(24XX\*)容量范围为 128 位到 512 千位。该系列器件支持 2 线串行接口,以 x8 位存储器块进行组合。低电压设计允许工作电压最低可至 1.8V(适用 24AAXX 器件),待机电流和工作电流分别为 1 μA 和 1 mA。容量为 1 千位以及超过 1 千位的器件具有页写入能力。功能性地址线允许连接到同一条总线上的器件数目最多可达 8 个。整个 24XX 系列产品提供标准的 8 引脚 PDIP、表面贴片 SOIC、TSSOP 和MSOP 封装。大部分容量为 128 位到 16 千位的器件还提供 5 引脚 SOT-23 封装。另外还提供 DFN 封装(2x3mm 或 5x6mm)。所有封装皆为无铅(雾锡)封装。

### 封装类型 (1)



<sup>\*</sup> 本文档中用 24XX 作为 24 串行器件的通用器件编号。例如, 24XX64 代表 64 千位器件的所有电压。

表 1-1: 器件选择表

| <u> </u> | かけ とけ     |                        |          |          |             |         |                       |
|----------|-----------|------------------------|----------|----------|-------------|---------|-----------------------|
| 器件型号     | Vcc 范围    | 最大时钟<br>频率             | 页大小      | 写保护方案    | 功能性<br>地址引脚 | 温度范围    | 封装 <sup>(5)</sup>     |
| 128 位器件  |           |                        |          |          |             |         |                       |
| 24AA00   | 1.8-5.5V  | 400 kH <sup>(1)</sup>  |          |          |             | C, I    | P, SN, ST, OT, MC     |
| 24LC00   | 2.5-5.5V  | 400 kHz <sup>(1)</sup> | _        | 无        | 无           | C, I    |                       |
| 24C00    | 4.5-5.5V  | 400 kHz                |          |          |             | C, I, E |                       |
| 1千位器件    |           | l                      |          |          |             |         |                       |
| 24AA01   | 1.8-5.5V  | 400 kHz <sup>(2)</sup> | o 中世     | あな人 ひたてけ | т:          | I       | P, SN, ST, MS, OT, MC |
| 24LC01B  | 2.5-5.5V  | 400 kHz                | 8 字节     | 整个阵列     | 无           | I, E    |                       |
| 24AA014  | 1.8-5.5V  | 400 kHz <sup>(2)</sup> | 10 🗢 🕆   | あな人 ひたてけ | AO A4 AO    | I       | P, SN, ST, MS, MC     |
| 24LC014  | 2.5-5.5V  | 400 kHz                | 16 字节    | 整个阵列     | A0, A1, A2  | I       |                       |
| 24C01C   | 4.5V-5.5V | 400 kHz                | 16 字节    | 无        | A0, A1, A2  | C, I, E | P, SN, ST, MC         |
| 2 千位器件   |           |                        |          |          |             |         |                       |
| 24AA02   | 1.8-5.5V  | 400 kHz <sup>(2)</sup> | 8 字节     | 整个阵列     | 无           | I       | P, SN, ST, MS, OT, MC |
| 24LC02B  | 2.5-5.5V  | 400 kHz                | <b>0</b> | 金十四川     | 儿           | I, E    |                       |
| 24AA024  | 1.8-5.5V  | 400 kHz <sup>(2)</sup> | 16 字节    | 整个阵列     | A0, A1, A2  | I       | P, SN, ST, MS, MC     |
| 24LC024  | 2.5-5.5V  | 400 kHz                | 10 7 11  | 金十件列     | A0, A1, A2  | I       |                       |
| 24AA025  | 1.8-5.5V  | 400 kHz <sup>(2)</sup> | 16 字节    | 无        | A0, A1, A2  | I       | P, SN, ST,MS, MC      |
| 24LC025  | 2.5-5.5V  | 400 kHz                | 10 7 1   | 儿        | A0, A1, A2  | I       |                       |
| 24C02C   | 4.5-5.5V  | 400 kHz                | 16 字节    | 阵列上半部分   | A0, A1, A2  | C, I, E | P, SN, ST, MC         |
| 4 千位器件   |           |                        |          |          |             |         |                       |
| 24AA04   | 1.8-5.5V  | 400 kHz <sup>(2)</sup> | 16 字节    | 整个阵列     | 无           | 1       | P, SN, ST, MS, OT, MC |
| 24LC04B  | 2.5-5.5V  | 400 kHz                |          |          |             | I, E    |                       |
| 8 千位器件   |           |                        |          |          |             |         |                       |
| 24AA08   | 1.8-5.5V  | 400 kHz <sup>(2)</sup> | 16 字节    | 整个阵列     | 无           | 1       | P, SN, ST, MS, OT, MC |
| 24LC08B  | 2.5-5.5V  | 400 kHz                | 10 17 11 | 金   件列   | 儿           | I, E    |                       |
| 16 千位器件  |           |                        |          |          |             |         |                       |
| 24AA16   | 1.8-5.5V  | 400 kHz <sup>(2)</sup> | 16 字节    | 整个阵列     | 无           | I       | P, SN, ST, MS, OT, MC |
| 24LC16B  | 2.5-5.5V  | 400 kHz                | 10 1 12  | 金工件が     | 儿           | I, E    |                       |
| 32 千位器件  |           |                        |          |          |             |         |                       |
| 24AA32A  | 1.8-5.5V  | 400 kHz <sup>(2)</sup> | 32 字节    | 整个阵列     | A0, A1, A2  | I       | P, SN, SM, ST, MS, MC |
| 24LC32A  | 2.5-5.5V  | 400 kHz                | 92 1 1   | 正 1 門7月  | Λυ, Αι, ΑΣ  | I, E    |                       |
| 64 千位器件  |           |                        |          |          |             |         |                       |
| 24AA64   | 1.8-5.5V  | 400 kHz <sup>(2)</sup> | 32 字节    | 整个阵列     | A0, A1, A2  | I       | P, SN, SM, ST, MS, MC |
| 24LC64   | 2.5-5.5V  | 400 kHz                | 02 T N   | 正 1 1十21 | 70, 71, 72  | I, E    |                       |

- 注 1: Vcc <4.5V,频率为 100 kHz。
  - 2: Vcc <2.5V, 频率为 100 kHz。
  - **3:** Vcc <2.5V,频率为 400 kHz。
  - 4: MSOP 型封装 24XX128 和 24XX256 器件的引脚 A0 和 A1 没有连接。
  - **5:** P = 8-PDIP, SN = 8-SOIC(150 mil JEDEC), ST = 8-TSSOP, OT = 5 或 6-SOT23, MC = 2x3mm DFN, MS = 8-MSOP, SM = 8-SOIC(200 mil EIAJ), MF = 5x6mm DFN, ST14 = 14-TSSOP。

表 1-1: 器件选择表 (续)

| <u>~~ · · · · · · · · · · · · · · · · · · </u> | HH 11 43-11             | *** \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ |        |       |                              |      | -                      |  |  |  |
|------------------------------------------------|-------------------------|-----------------------------------------|--------|-------|------------------------------|------|------------------------|--|--|--|
| 器件型号                                           | Vcc 范围                  | 最大时钟<br>频率                              | 页大小    | 写保护方案 | 功能性<br>地址引脚                  | 温度范围 | 封装 <sup>(5)</sup>      |  |  |  |
| 128 千位器件                                       |                         |                                         |        |       |                              |      |                        |  |  |  |
| 24AA128                                        | 1.8-5.5V                | 400 kHz <sup>(2)</sup>                  |        |       |                              | - 1  | P, SN, SM, ST, MS, MF, |  |  |  |
| 24LC128                                        | 2.5-5.5V                | 400 kHz                                 | 64 字节  | 整个阵列  | A0, A1,<br>A2 <sup>(4)</sup> | I, E | ST14                   |  |  |  |
| 24FC128                                        | 1.8-5.5V                | 1 MHz <sup>(3)</sup>                    |        |       | 7 12                         | I    |                        |  |  |  |
| 256 千位器件                                       | 256 千位器件                |                                         |        |       |                              |      |                        |  |  |  |
| 24AA256                                        | 1.8-5.5V                | 400 kHz <sup>(2)</sup>                  |        |       |                              | I    | P, SN, SM, ST, MS, MF, |  |  |  |
| 24LC256                                        | 2.5-5.5V                | 400 kHz                                 | 64 字节  | 整个阵列  | A0, A1,<br>A2 <sup>(4)</sup> | I, E | ST14                   |  |  |  |
| 24FC256                                        | 1.8-5.5V                | 1 MHz <sup>(3)</sup>                    |        |       | 72.                          | I    |                        |  |  |  |
| 512 千位器件                                       |                         |                                         |        |       |                              |      |                        |  |  |  |
| 24AA512                                        | 1.8-5.5V                | 400 kHz <sup>(2)</sup>                  |        |       |                              | I    | P, SM, MF, ST14        |  |  |  |
| 24LC512                                        | 2.5-5.5V                | 400 kHz                                 | 128 字节 | 整个阵列  | A0, A1, A2                   | I, E |                        |  |  |  |
| 24FC512                                        | 1.8-5.5V <sup>(3)</sup> | 1 MHz                                   |        |       |                              | I    |                        |  |  |  |

- 注 1: Vcc <4.5V,频率为 100 kHz。
  - 2: Vcc <2.5V,频率为 100 kHz。
  - 3: Vcc <2.5V,频率为 400 kHz。
  - 4: MSOP 型封装 24XX128 和 24XX256 器件的引脚 A0 和 A1 没有连接。
  - **5:** P = 8-PDIP,SN = 8-SOIC(150 mil JEDEC),ST = 8-TSSOP,OT = 5 或 6-SOT23,MC = 2x3mm DFN,MS = 8-MSOP,SM = 8-SOIC(200 mil EIAJ),MF = 5x6mm DFN,ST14 = 14-TSSOP。

### 2.0 电气特性

### 绝对最大额定值(†)

| Vcc              | 6.5V             |
|------------------|------------------|
| 相对于 Vss 的所有输入和输出 | 0.6V 到 Vcc +1.0V |
| 存储温度             | 65°C 到 +150°C    |
| 环境温度 (使用电源时)     | 40°C 到 +125°C    |
| 所有引脚静电保护         | ≥ 4 kV           |

†注:如果器件运行参数超过上述各项最大额定值,可能对器件造成永久性损坏。上述数值为运行条件最大值,我们不建议器件在该规范范围外运行。如果器件长时间在绝对最大额定条件下工作,其稳定性会受到影响。

### 表 2-1: 直流特性

|     | L. English M. |                             |                                                                                                                                                                                        |                    |          |                                                                                                |  |  |  |  |  |  |
|-----|---------------|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------|------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 直流特 | <b>性</b>      |                             | <b>电气特性:</b> 商业级(C):       Vcc = +1.8V 到 5.5V TA = 0°C 到 +70°C         工业级(I):       Vcc = +1.8V 到 5.5V TA = -40°C 到 +85°C         汽车级(E):       Vcc = +2.5V 到 5.5V TA = -40°C 到 125°C |                    |          |                                                                                                |  |  |  |  |  |  |
| 参数号 | 符号            | 参数                          | 最小值                                                                                                                                                                                    | 最大值                | 单位       | 条件                                                                                             |  |  |  |  |  |  |
| D1  | _             | A0、A1、A2、SCL、SDA<br>和 WP 引脚 | _                                                                                                                                                                                      | ı                  |          | _                                                                                              |  |  |  |  |  |  |
| D2  | VIH           | 高电平输入电压                     | 0.7 Vcc                                                                                                                                                                                |                    | V        | _                                                                                              |  |  |  |  |  |  |
| D3  | VIL           | 低电平输入电压                     | _                                                                                                                                                                                      | 0.3 Vcc<br>0.2 Vcc | V<br>V   | Vcc ≥ 2.5V<br>Vcc < 2.5V                                                                       |  |  |  |  |  |  |
| D4  | VHYS          | 施密特输入引脚迟滞电压<br>(SDA、SCL 引脚) | 0.05 Vcc                                                                                                                                                                               | _                  | V        | (注 1)                                                                                          |  |  |  |  |  |  |
| D5  | Vol           | 低电平输出电压                     | _                                                                                                                                                                                      | 0.40               | V        | IOL = 3.0 mA @ Vcc = 2.5V                                                                      |  |  |  |  |  |  |
| D6  | ILI           | 输入泄漏电流                      | _                                                                                                                                                                                      | ±1                 | μΑ       | Vin = Vss 或 Vcc                                                                                |  |  |  |  |  |  |
| D7  | ILO           | 输出泄漏电流                      | _                                                                                                                                                                                      | ±1                 | μΑ       | Vout = Vss 或 Vcc                                                                               |  |  |  |  |  |  |
| D8  | CIN,<br>COUT  | 引脚电容<br>(所有输入/输出)           | _                                                                                                                                                                                      | 10                 | pF       | Vcc = 5.0V (注 <b>1</b> )<br>TA = 25°C, FCLK = 1 MHz                                            |  |  |  |  |  |  |
| D9  | Icc Read      | 工作电流                        | _                                                                                                                                                                                      | 400<br>1           | μA<br>mA | 24XX128, 256, 512: VCC = 5.5V, SCL = 400 kHz<br>除 24XX128、256、512 外: VCC = 5.5V, SCL = 400 kHz |  |  |  |  |  |  |
|     | Icc Write     |                             | _                                                                                                                                                                                      | 3<br>5             | mA<br>mA | Vcc = 5.5V, All except 24XX512<br>Vcc = 5.5V, 24XX512                                          |  |  |  |  |  |  |
| D10 | Iccs          | <b>待机电流</b>                 | _                                                                                                                                                                                      | 1                  | μА       | TA = -40°C 到 +85°C<br>SCL = SDA = Vcc = 5.5V<br>A0、A1、A2, WP = Vss 或 Vcc                       |  |  |  |  |  |  |
|     |               |                             | _                                                                                                                                                                                      | 5                  | μΑ       | TA = -40°C 到 125°C<br>SCL = SDA = Vcc = 5.5V<br>A0、A1、A2、WP = Vss 或 Vcc                        |  |  |  |  |  |  |
|     |               |                             | _                                                                                                                                                                                      | 50                 | μΑ       | 24C01C 和 24C02C only<br>SCL = SDA = Vcc = 5.5V<br>A0、A1、A2、WP = Vss 或 Vcc                      |  |  |  |  |  |  |

注 1: 对此参数周期性采样,未进行完全测试。

### 表 2-2: 交流特性——除 24XX00、24C01C 和 24C02C 外

| 交流特 | 性       |                                  | 电气特性:       工业级(I):       VCC = +1.8V 到 5.5V TA = -40°C 到 +85°C         汽车级(E):       VCC = +2.5V 到 5.5V TA = -40°C 到 125°C |                           |     |                                                                                                     |  |
|-----|---------|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------|-----|-----------------------------------------------------------------------------------------------------|--|
| 参数号 | 符号      | 参数                               | 最小值                                                                                                                         | 最大值                       | 单位  | 条件                                                                                                  |  |
| 1   | FCLK    | 时钟频率                             | _<br>_<br>_<br>_                                                                                                            | 100<br>400<br>400<br>1000 | kHz | 1.8V ≤ VCC < 2.5V<br>2.5V ≤ VCC ≤ 5.5V<br>1.8V ≤ VCC < 2.5V 24FCXXX<br>2.5V ≤ VCC ≤ 5.5V 24FCXXX    |  |
| 2   | Тнідн   | 时钟高电平时间                          | 4000<br>600<br>600<br>500                                                                                                   | <br><br>                  | ns  | 1.8V ≤ VCC < 2.5V<br>2.5V ≤ VCC ≤ 5.5V<br>1.8V ≤ VCC < 2.5V 24FCXXX<br>2.5V ≤ VCC ≤ 5.5V 24FCXXX    |  |
| 3   | TLOW    | 时钟低电平时间                          | 4700<br>1300<br>1300<br>500                                                                                                 |                           | ns  | 1.8V ≤ Vcc < 2.5V<br>2.5V ≤ Vcc ≤ 5.5V<br>1.8V ≤ Vcc < 2.5V 24FCXXX<br>2.5V ≤ Vcc ≤ 5.5V 24FCXXX    |  |
| 4   | TR      | SDA 和 SCL 上升时间<br>( <b>注 1</b> ) | _<br>_<br>_                                                                                                                 | 1000<br>300<br>300        | ns  | 1.8V ≤ Vcc < 2.5V<br>2.5V ≤ Vcc ≤ 5.5V<br>1.8V ≤ Vcc ≤ 5.5V 24FCXXX                                 |  |
| 5   | TF      | SDA 和 SCL 下降时间<br>( <b>注 1</b> ) | _                                                                                                                           | 300<br>100                | ns  | 除 24FCXXX 外<br>1.8V ≤ Vcc ≤ 5.5V 24FCXXX                                                            |  |
| 6   | THD:STA | 起始条件保持时间                         | 4000<br>600<br>600<br>250                                                                                                   | 111                       | ns  | 1.8V ≤ VCC < 2.5V<br>2.5V ≤ VCC ≤ 5.5V<br>1.8V ≤ VCC < 2.5V 24FCXXX<br>2.5V ≤ VCC ≤ 5.5V 24FCXXX    |  |
| 7   | Tsu:sta | 起始条件建立时间                         | 4700<br>600<br>600<br>250                                                                                                   |                           | ns  | 1.8V ≤ Vcc < 2.5V<br>2.5V ≤ Vcc ≤ 5.5V<br>1.8V ≤ Vcc < 2.5V 24FCXXX<br>2.5V ≤ Vcc ≤ 5.5V 24FCXXX    |  |
| 8   | THD:DAT | 数据输入保持时间                         | 0                                                                                                                           | _                         | ns  | (注 2)                                                                                               |  |
| 9   | Tsu:DAT | 数据输入建立时间                         | 250<br>100<br>100                                                                                                           |                           | ns  | 1.8V ≤ Vcc < 2.5V<br>2.5V ≤ Vcc ≤ 5.5V<br>1.8V ≤ Vcc ≤ 5.5V 24FCXXX                                 |  |
| 10  | Tsu:sto | 停止条件建立时间                         | 4000<br>600<br>600<br>250                                                                                                   | _<br>_<br>_<br>_          | ns  | 1.8 V ≤ VCC < 2.5V<br>2.5 V ≤ VCC ≤ 5.5V<br>1.8V ≤ VCC < 2.5V 24FCXXX<br>2.5 V ≤ VCC ≤ 5.5V 24FCXXX |  |
| 11  | Tsu:wp  | WP 建立时间                          | 4000<br>600<br>600                                                                                                          | _<br>_<br>_               | ns  | 1.8V ≤ Vcc < 2.5V<br>2.5V ≤ Vcc ≤ 5.5V<br>1.8V ≤ Vcc ≤ 5.5V 24FCXXX                                 |  |
| 12  | THD:WP  | WP 保持时间                          | 4700<br>1300<br>1300                                                                                                        | _<br>_<br>_               | ns  | 1.8V ≤ Vcc < 2.5V<br>2.5V ≤ Vcc ≤ 5.5V<br>1.8V ≤ Vcc ≤ 5.5V 24FCXXX                                 |  |

- 注 1: 未进行完全测试, CB = 总线上的总计电容, 以 pF 为单位。
  - **2:** 作为发送器,器件必须提供内部最小时间的延迟(最小 300 ns),以便桥接 SCL 下降沿的未定义区域,避免意外的起始或停止条件的产生。
  - **3:** 该参数没有进行测试,但性能可以保证。如需要在特定的应用场合中估计耐用性,请查阅Total Endurance™ Model,它可从下面网址下载: www.microchip.com。
  - 4: 24FCXXX 表示 24FC128、 24FC256 和 24FC512 器件。

### 表 2-2: 交流特性——除 24XX00、24C01C 和 24C02C 外 (续)

| 交流特性 |      |                                             | 电气特性:       工业级(I):       Vcc = +1.8V 到 5.5V TA = -40°C 到 +85°C         汽车级(E):       Vcc = +2.5V 到 5.5V TA = -40°C 到 125°C |                           |     |                                                                                                  |  |
|------|------|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|---------------------------|-----|--------------------------------------------------------------------------------------------------|--|
| 参数号  | 符号   | 参数                                          | 最小值                                                                                                                         | 最大值                       | 单位  | 条件                                                                                               |  |
| 13   | Таа  | 时钟输出有效时间 (注 2)                              | <br> -<br> -                                                                                                                | 3500<br>900<br>900<br>400 | ns  | 1.8V ≤ VCC < 2.5V<br>2.5V ≤ VCC ≤ 5.5V<br>1.8V ≤ VCC < 2.5V 24FCXXX<br>2.5V ≤ VCC ≤ 5.5V 24FCXXX |  |
| 14   | TBUF | 总线空闲时间:在开始新的<br>数据发送前,总线必须保持<br>空闲时间        | 4700<br>1300<br>1300<br>500                                                                                                 |                           | ns  | 1.8V ≤ VCC < 2.5V<br>2.5V ≤ VCC ≤ 5.5V<br>1.8V ≤ VCC < 2.5V 24FCXXX<br>2.5V ≤ VCC ≤ 5.5V 24FCXXX |  |
| 15   | TOF  | 输出从 VIH 最小值下降到 VIL<br>最大值的时间<br>CB ≤ 100 pF | 10 + 0.1CB                                                                                                                  | 250<br>250                | ns  | 除了 24FCXXX (注 1)                                                                                 |  |
| 16   | TSP  | 输入滤波时间以抑制 脉冲干扰 (SDA 和 SCL 引脚)               | _                                                                                                                           | 50                        | ns  | 除了 24FCXXX (注 1)                                                                                 |  |
| 17   | Twc  | 写周期时间 (字节或页)                                | _                                                                                                                           | 5                         | ms  |                                                                                                  |  |
| 18   | _    | 耐用性                                         | 1,000,000                                                                                                                   | _                         | 周期数 | 25°C (注 <b>3</b> )                                                                               |  |

- 注 1: 未进行完全测试, CB = 总线上的总计电容, 以 pF 为单位。
  - **2:** 作为发送器,器件必须提供内部最小时间的延迟(最小 300 ns),以便桥接 SCL 下降沿的未定义区域,避免意外的起始或停止条件的产生。
  - **3.** 该参数没有进行测试,但性能可以保证。如需要在特定的应用场合中估计耐用性,请查阅Total Endurance™ Model,它可从下面网址下载: www.microchip.com。
  - 4: 24FCXXX 表示 24FC128、 24FC256 和 24FC512 器件。

### 表 2-3: 交流特性—— 24XX00、24C01C 和 24C02C

|                                       | 商业级((   | ?). Vcc      | · = +1 8\/   | / 到 5 5\/ | TA = 0°C 到 +70°C                                    |  |  |
|---------------------------------------|---------|--------------|--------------|-----------|-----------------------------------------------------|--|--|
| 除另有说明外, 所有参数须处在                       | 工业级(1   |              |              |           | TA = -40°C 到 +85°C                                  |  |  |
| 规定范围内。                                | 汽车级(I   |              |              |           | TA = -40°C 到 125°C                                  |  |  |
| 参数                                    | 符号      | 最小值          | 最大值          | 单位        | 条件                                                  |  |  |
| 时钟频率                                  | FCLK    | _            | 100          | kHz       | 4.5V ≤ Vcc ≤ 5.5V (E 级温度范围)                         |  |  |
|                                       |         | _            | 100          |           | $1.8V \le Vcc \le 4.5V$                             |  |  |
|                                       |         | _            | 400          |           | 4.5V ≤ Vcc ≤ 5.5V                                   |  |  |
| 时钟高电平时间                               | THIGH   | 4000         | _            | ns        | 4.5V ≤ Vcc ≤ 5.5V (E 级温度范围)                         |  |  |
|                                       |         | 4000         | _            |           | 1.8V ≤ Vcc ≤ 4.5V                                   |  |  |
| P. F. Jet                             | -       | 600          |              |           | 4.5V ≤ Vcc ≤ 5.5V                                   |  |  |
| 时钟低电平时间                               | TLOW    | 4700         | _            | ns        | 4.5V ≤ Vcc ≤ 5.5V (E 级温度范围)                         |  |  |
|                                       |         | 4700<br>1300 | _            |           | 1.8V ≤ Vcc ≤ 4.5V<br>4.5V ≤ Vcc ≤ 5.5V              |  |  |
| SDA 和 SCL 上升时间                        | TR      | 1300         | 1000         | ne        | 4.5V ≤ Vcc ≤ 5.5V (E 级温度范围)                         |  |  |
| SDA 和 SCL 工开时间<br>  <b>(注 1)</b>      | IK      |              | 1000         | ns        | 4.5V ≤ VCC ≤ 5.5V (E 级温/支担国)<br>  1.8V ≤ Vcc ≤ 4.5V |  |  |
|                                       |         | _            | 300          |           | 4.5V ≤ Vcc ≤ 5.5V                                   |  |  |
| SDA 和 SCL 下降时间                        | TF      | _            | 300          | ns        | (注 1)                                               |  |  |
| 起始条件保持时间                              | THD:STA | 4000         | _            | ns        | <b>4.5V ≤ Vcc ≤ 5.5V</b> (E 级温度范围)                  |  |  |
|                                       |         | 4000         | _            |           | 1.8V ≤ Vcc ≤ 4.5V                                   |  |  |
|                                       |         | 600          | _            |           | 4.5V ≤ Vcc ≤ 5.5V                                   |  |  |
| 起始条件建立时间                              | Tsu:sta | 4700         | _            | ns        | 4.5V ≤ Vcc ≤ 5.5V (E 级温度范围)                         |  |  |
|                                       |         | 4700         | _            |           | $1.8V \le Vcc \le 4.5V$                             |  |  |
|                                       |         | 600          | _            |           | 4.5V ≤ Vcc ≤ 5.5V                                   |  |  |
| 数据输入保持时间                              | THD:DAT | 0            |              | ns        | (注 2)                                               |  |  |
| 数据输入建立时间                              | TSU:DAT | 250          | _            | ns        | 4.5V ≤ Vcc ≤ 5.5V (E 级温度范围)                         |  |  |
|                                       |         | 250          | _            |           | 1.8V ≤ Vcc ≤ 4.5V                                   |  |  |
|                                       | _       | 100          | _            |           | 4.5V ≤ Vcc ≤ 5.5V                                   |  |  |
| 停止条件建立时间                              | Tsu:sto | 4000         | _            | ns        | 4.5V ≤ Vcc ≤ 5.5V (E 级温度范围)                         |  |  |
|                                       |         | 4000<br>600  | _            |           | 1.8V ≤ Vcc ≤ 4.5V<br>4.5V ≤ Vcc ≤ 5.5V              |  |  |
| 时钟输出有效时间                              | TAA     | 000          |              |           |                                                     |  |  |
| 的 押                                   | IAA     |              | 3500<br>3500 | ns        | 4.5V ≤ Vcc ≤ 5.5V (E 级温度范围)<br>  1.8V ≤ Vcc ≤ 4.5V  |  |  |
| (11. 2)                               |         |              | 900          |           | 4.5V ≤ Vcc ≤ 5.5V                                   |  |  |
| 总线空闲时间: 在开始新的数据                       | TBUF    | 4700         | _            | ns        | 4.5V ≤ Vcc ≤ 5.5V (E 级温度范围)                         |  |  |
| 发送前,总线必须保持空闲时间。                       | 1 200   | 4700         | _            | 110       | 1.8V ≤ Vcc ≤ 4.5V                                   |  |  |
|                                       |         | 1300         | _            |           | 4.5V ≤ Vcc ≤ 5.5V                                   |  |  |
| 输出从 VIH 最小值下降到 VIL 最大                 | Tof     | 20+0.1       | 250          | ns        | (注 <b>1</b> ),CB≤100 pF                             |  |  |
| 值的时间                                  |         | CB           |              |           |                                                     |  |  |
| 输入滤波时间以抑制脉冲干扰<br>(SDA 和 SCL 引脚)       | TSP     |              | 50           | ns        | (注 1)                                               |  |  |
| 写周期                                   | TWC     |              | 1            | mo        | 24XX00                                              |  |  |
| 勻川朔                                   | Twc     | _            | 4<br>1.5     | ms        | 24C01C、24C02C                                       |  |  |
| □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ |         | 1 000 000    |              | 国和粉       |                                                     |  |  |
| 耐用性                                   |         | 1,000,000    | _            | 周期数       | (注 3)                                               |  |  |

- 注 1: 未进行完全测试, CB = 总线上的总计电容,单位为 pF。
  - **2:** 作为发送器,器件必须提供内部最小时间的延迟(最小为 300 ns),以便桥接 SCL 下降沿未定义的区域,避免意外的起始或停止条件的产生。
  - **3:** 该参数没有进行测试,但性能可以保证。 如需要在特定的应用场合中估计耐用性,请查阅 Total Endurance™ Model,它可从下面网址下载: www.microchip.com。

### 图 2-1: 总线时序



### 3.0 引脚介绍

表 3-1 介绍了器件的引脚功能。

表 3-1: 引脚功能表

| 引脚名称 | 8 引脚<br>PDIP 和<br>SOIC | 8 引脚<br>TSSOP 和<br>MSOP | 5引脚SOT-23<br>24XX00 | 5 引脚<br>SOT-23,<br>24XX00 除外 | 14 引脚<br>TSSOP         | 8 引脚<br>5x6 DFN 和<br>2x3 DFN | 功能               |  |
|------|------------------------|-------------------------|---------------------|------------------------------|------------------------|------------------------------|------------------|--|
| A0   | 1                      | 1 <sup>(1)</sup>        | _                   | _                            | 1                      | 1                            | 用户可配置的芯片选择引脚 (3) |  |
| A1   | 2                      | 2 <sup>(1)</sup>        | _                   | _                            | 2                      | 2                            | 用户可配置的芯片选择引脚 (3) |  |
| A2   | 3                      | 3                       | _                   | _                            | 6                      | 3                            | 用户可配置的芯片选择引脚 (3) |  |
| Vss  | 4                      | 4                       | 2                   | 2                            | 7                      | 4                            | 接地               |  |
| SDA  | 5                      | 5                       | 3                   | 3                            | 8                      | 5                            | 串行数据             |  |
| SCL  | 6                      | 6                       | 1                   | 1                            | 9                      | 6                            | 串行时钟             |  |
| (NC) | _                      | _                       | 4                   | _                            | 3, 4, 5,<br>10, 11, 12 | _                            | 无连接              |  |
| WP   | 7 <sup>(2)</sup>       | 7 <sup>(2)</sup>        | _                   | 5                            | 13                     | 7                            | 写保护输入引脚          |  |
| Vcc  | 8                      | 8                       | 5                   | 4                            | 14                     | 8                            | 电源输入             |  |

- 注 1: MSOP 型封装 24XX128 和 24XX256 器件的引脚 1 和引脚 2 没有连接。
  - 2: 24XX00、24XX025 和 24C01C 器件引脚 7 未用。
  - 3: 一些器件的引脚 A0、A1 和 A2 未用 (没有内部连接),参见表 1-1 了解相关的详细信息。

### 3.1 A0、A1、A2 芯片地址输入引脚

24XX01 到 24XX16 等器件的引脚 A0、A1 和 A2 未用。器件 24C01C、 24C02C、 24XX014、 24XX024、24XX025 以及 24XX32 到 24XX512 的输入引脚 A0、A1 和 A2 用于多器件工作。将这些输入引脚上的电平与从器件地址中的相应位作比较,如果比较结果为真,则该器件被选中。

仅 MSOP 型封装的 24XX128 和 24XX256 的引脚 A0 和 A1 没有连接。

在对不同的片选位进行组合之后,连接到同一条总线上的器件最多可达八个 (对于 MSOP 型封装 24XX128 和 24XX256 器件 ,最多为两个)。

大部分应用中,片选地址输入引脚 A0、A1 和 A2 直接连到逻辑'0'或逻辑'1'。对于这些引脚由微控制器或其他的可编程器件控制的应用,片选地址输入引脚必须在器件能够继续正常工作之前驱动为逻辑'0'或逻辑'1'。

### 3.2 串行数据 (SDA) 引脚

串行数据引脚为双向引脚,用于把地址和数据输入 / 输出器件。该引脚为漏极开路。因此,SDA 总线要求在该引脚与 Vcc 之间接入上拉电阻 (通常频率为 100 kHz 时该电阻阻值为 10 k $\Omega$ ,频率为 400 kHz 和 1 MHz 时,阻值为 2 k $\Omega$ )。

对于正常的数据传输,只允许在 SCL 为低电平期间改变 SDA 电平。而 SDA 电平在 SCL 高电平期间若发生变化,表明起始和停止条件产生。

#### 3.3 串行时钟 (SCL)

该输入引脚用于数据传输同步。

### 3.4 写保护 (WP) 引脚

该引脚必须连接到 Vss 或者 Vcc。如果连接到 Vss,写操作使能。如果连接到 Vcc,写操作被禁止,但读操作不受影响。参见表 1-1 以了解各个器件的写保护方案。

### 3.5 电源输入(Vcc)引脚

标称条件下,如果 Vcc 低于 1.5V,则 Vcc 阈值检测电路会禁止内部的擦写逻辑。对于 24C00、24C01C 和 24C02C 等器件,标称条件下在 Vcc 低于 3.8V 时,擦写逻辑被禁止。

#### 4.0 功能概述

每一个 24XX 器件都支持双向、2 线数据传输协议。 如果器件被定义为发送器,则该器件发送数据到总线; 如果器件被定义为接收器,则该器件接收来自总线的数据。总线由主器件控制, 24XX 作为从器件。主器件提 供串行时钟 (SCL),控制总线访问和产生起始和停止 条件。主器件和从器件皆可作为发送器或接收器, 但必 须由主器件决定采取何种工作模式。

### 原理框图



### 5.0 总线特性

总线协议定义如下:

- 只有在总线空闲时才可启动数据传输。
- 数据传输期间,在时钟线为高电平时,无论何时,数据线都必须保持稳定。在时钟线为高电平时改变数据线将视为起始或停止条件。

图 5-1 中定义了相应的总线条件。

### 5.1 总线空闲(A)

数据线和时钟线同时为高电平。

### 5.2 启动数据传输(B)

时钟(SCL)为高电平时,SDA 从高电平变为低电平表示起始条件产生。起始条件必须先于所有的命令产生。

### 5.3 停止数据传输 (C)

时钟(SCL)为高电平时,SDA 从低电平变为高电平表示停止条件产生。所有操作都必须以停止条件结束。

### 5.4 数据有效 (D)

数据线的状态表明数据何时有效。在起始条件之后,数据线在时钟处于高电平期间保持稳定。

必须在时钟信号为低电平期间改变数据线。一个数据位 对应一个时钟脉冲。

数据的每次传输以起始条件开始,以停止条件结束。在 起始条件和停止条件之间传输的数据字节数目由主器件 决定。

### 5.5 确认信号

每一个被寻址的接收器在接收到每一字节数据后,应发送一个确认位。主器件必须提供一个额外的时钟以传输确认位。

注: 写周期期间, 24XX 不会发出确认信号。

在确认时钟脉冲内,器件确认须拉低 SDA 线。在确认时钟的高电平期间,SDA线以这种方式保持稳定的低电平。当然,还必须考虑建立时间和保持时间。读操作期间,主器件必须发送一个结束信号给从器件,而不是在从器件输出最后一个数据字节之后产生一个确认位。这种情况下,从器件(24XX)将释放数据线为高电平,从而使主器件能够产生停止条件(图 5-2)。





### 5.6 不带功能性地址输入引脚的器件寻址

在起始条件之后,从主器件接收的第一个字节是控制字节(图 5-3)。控制字节以 4 位控制码开始。对于 24XX 器件,这 4 位设置为 '1010'以便进行读 / 写操作。随后的 3 位为存储块选择位 (B2、B1、B0)。主器件用它们来选择将要访问的大小为 256 字的存储块。实际上,这些位是字地址中 3 个最高有效位。应该注意,24XX00、24XX01 和 24XX02 器件中 B2、B1 和 B0 不用考虑。24XX04 器件中 B2 和 B1 不用考虑。 24XX08 器件中 B2 不用考虑。

控制字节的最后一位定义将要进行的操作。设置为'1',选择读操作;设置为'0',选择写操作。在起始条件发生后,24XX器件始终监视SDA总线。一旦接收到'1010'码、存储块选择位和R/W位,从器件输出确认信号到SDA总线。在确认信号之后传输地址字节。



### 5.7 带功能性地址输入引脚的器件寻址

在起始条件之后,从主器件接收的第一个字节是控制字节(图 5-4)。控制字节以 4 位控制码开始。在 24XX 器件,这 4 位设置为 '1010'以便进行读 / 写操作。随后的 3 位 为片选位(A2、A1、A0)。片选位的不同组合允许在同一条总线上使用的 24XX 器件达八个,并用于选择访问哪一个器件。控制寄存器中的片选位必须与相应器件引脚A2、A1 和 A0上的逻辑电平保持一致。实际上这些位是字地址中 3 个最高有效位。

MSOP 型封装 24XX128 和 24XX256 器件的 A0 和 A1 引脚没有连接。在器件寻址时,片选位 A0 和 A1 (图 5-4)应该设置为'0'。只能有两个 MSOP 型封装的 24XX128 或 24XX256 同时连接到同一条总线上。

控制字节的最后一位定义将要进行的操作。设置为 '1',选择读操作;设置为'0',选择写操作。

对于高容量器件(从 24XX32 到 24XX512),之后接收到的两个字节定义了第一个数据字节的地址。并非地址高字节中所有的位都会被使用,这要视器件容量而定。24XX32 器件中 A15、A14、A13 和 A12 不用考虑。24XX64器件中,A15、A14和A13不用考虑。24XX128器件中,A15和 A14不用考虑。24XX256器件中,A15不用考虑。24XX512器件使用所有的地址位。先发送高有效地址位,再发送低有效位。

起始条件发生之后,24XX 器件始终监视 S<u>DA</u> 总线。一旦接收到 '1010'码、器件片选位和 R/W 位,从器件输出确认信号到 SDA 总线。在确认信号之后传输地址字节。



### 5.7.1 多器件连续寻址

同一条总线上 24XX 器件数目增加后(最多可达八个), 片选位 A2、A1 和 A0 可用于扩展连续寻址空间。利用 软件设置控制字节中的这三个位作为地址字节中最高有 效位。例如,在 24XX32 中,软件可设置控制字节的 A0 作为地址位 A12; A1 作为地址位 A13; A2 作为地址 位 A14(表 5-1)。不可以跨越器件边界进行连续读操 作。

表 5-1: 控制字节地址位

|                  | 器件最大数目 | 最大连续寻址<br>空间 | 片 <del>选</del> 位 A2 | 片 <u>选</u> 位 A1 | 片选位 A0 |
|------------------|--------|--------------|---------------------|-----------------|--------|
| 1K (24C01C)      | 8      | 8 Kb         | A10                 | A9              | A8     |
| 1K (24XX014)     | 8      | 8 Kb         | A10                 | A9              | A8     |
| 2K (24C02C)      | 8      | 16 Kb        | A10                 | A9              | A8     |
| 2K (24XX024/025) | 8      | 16 Kb        | A10                 | A9              | A8     |
| 32K (24XX32)     | 8      | 256 Kb       | A14                 | A13             | A12    |
| 64K (24XX64)     | 8      | 512 Kb       | A15                 | A14             | A13    |
| 128K (24XX128)   | 8*     | 1 Mb         | A16*                | A15*            | A14    |
| 256K (24XX256)   | 8*     | 2 Mb         | A17*                | A16*            | A15    |
| 512K (24XX512)   | 8      | 4 Mb         | A18                 | A17             | A16    |

<sup>\*</sup>最多只能有2个MSOP型封装的24XX128或24XX256器件连接到同一条总线,可寻址的最大地址空间分别为256千位或512千位。位A0和A1必须设置为'0'。

### 6.0 写操作

### 6.1 字节写操作

字节写操作以来自于主器件的起始位开始,4位控制码紧随其后(见图 6-1 和图 6-2)。接下来的3位是存储决寻址位(不带地址输入引脚的器件)或片选位(带地址输入引脚的器件)。然后主发送器将R/W位(该位为逻辑低电平)发送到总线。从器件在第九个时钟周期产生一个确认位。

主器件发送的第二个字节是地址字节(128 位到 16 千位器件)或高位地址字节(32-512 千位器件)。对于32-512 千位器件,在高位地址字节之后传送的是低位地址字节。这两种情况下,24XX 器件会对每一个地址字节作出确认,并把地址位锁存进器件内部的地址计数

对于 24XX00 器件,只使用地址字节的低 4 位。高 4 位 可为任意值。

送出最后一个地址字节后, 24XX 器件发出确认信号 ACK。主器件在接收到该确认信号后即发送数据字,该数据字将被写入已寻址的存储器位置。 24XX 器件再次发出确认信号,之后主器件产生停止条件,启动内部写周期。

如果在 WP 引脚保持高电平时进行存储器写操作,器件会确认命令,但不会启动写周期,也不会写入数据,而会立即接受新的命令。写命令为一个字节,在发送写命令后,内部地址计数器增加,指向下一个要寻址的位置。写周期期间,24XX 不会对命令进行确认。





### 图 6-2: 字节写操作: 32 至 512 千位器件



### 6.2 页写入操作

写控制字节、字地址字节和首个数据字节以和写操作字节基本相同的方式发送给 24XX 器件(见图 6-3 和图 6-4)。不同的是,主器件发送的是多至一整页的数据字节 (1),而不是停止条件,这些数据字节临时存储在片内页缓冲器中。在主器件发送停止条件之后,这些数据将被写入存储器。每接收一个字,内部地址计数器加一。如果在停止条件产生前,主器件有超出一页的数据要发送,地址计数器将会翻转,先前写入的数据将被覆盖。对于字节写操作,一旦接收到停止条件,内部写周期开始。在写周期期间, 24XX 器件不会对命令作出确

页写入操作在一页内可以写入任意个数的数据(最多为一页),并且可以在此页中的任意地址开始写入。被寻址的数据只能在该页内变动。

如果在 WP 引脚保持高电平时进行存储器写操作,器件会确认命令,但不会启动写周期,也不会写入数据,而是立即接受新的命令.

**注 1:** 参见表 **1-1** "器件选择表"以了解每一器件的页容量大小。

### 6.3 写保护

通过把 WP 引脚连接到 Vcc,允许用户设置存储器写保护功能。参见表 1-1 "器件选择表"以了解每一个器件的写保护方案。把 WP 引脚连接到 Vss 将禁止写保护功能。对于每个写命令,WP 引脚在停止位之前进行采样(见表 2-1)。在停止位之后改变 WP 引脚电平不会对写周期的执行产生任何影响。

注: 页写入操作仅限于在单个物理页内进行的数据写入,而不管实际上写入的字节数为多少。物理页边界起始于页缓冲器大小(或'页大小')的整数倍地址,终止于[页大小-1]的整数倍地址。如果企图跨越物理页边界进行页写入操作,数据将从目前页的开始地址写入(覆盖了先前写入的数据),而不是被写到所希望的下一页。因此,在应用程序中有必要防止页写入操作跨越页边界进行。





### 图 6-4: 页写入: 32 至 512 千位器件



<sup>\*</sup>参见表 1-1 以了解一页中数据字节的最大数目。

### 7.0 确认查询

在写周期期间器件不会对命令作出确认,这可用来确定写周期何时完成(这个特点可以优化总线的吞吐量,使其最大化)。如果主器件已经发出写命令的停止条件,器件将启动内部定时写周期。可以随时进行确认查询。这包括在主器件发出起始条件后,再发送用于写命令(RW = 0)的控制字节。如果器件仍处在写周期内,则不返回确认信号。一旦没有返回确认信号,起始位和控制字节必须重新发送。如果写周期结束,器件返回确认信号,主器件就可以执行下一个读或写命令。参见流程图(图 7-1)。



### 8.0 读操作

除了控制寄存器的 R/W 位设置为'1'外,读操作与写操作基本相同。有三种基本的读操作: 当前地址的读操作、随机读操作和连续读操作。

### 8.1 当前地址的读操作

24XX 内置一个自动加 '1'地址计数器,该计数器保留最后一次访问的地址。因此,如果先前对地址 'n' (n 为任意合法地址)进行读或写操作,则下一条读操作命令将可能从地址 n+1 访问数据。

接收到 R/W 位设置为 '1'的控制字节后,24XX 发出确认信号,并发送 8 位数据字节。主器件不会对数据传输作出确认,但会产生停止条件,24XX 即停止数据发送(图 8-1)。

#### 当前地址读操作 图 8-1: 起始 总线活动 控制字节 数据字节 止位 主器件 位 SDA 线 Ρ 确 不 总线活动 确 认 认

### 8.2 随机读操作

随机读操作允许主器件以随机方式访问任意存储器。执行该指令前必须先设置地址字节。作为写操作的一部分,通过发送字节地址给 24XX 来完成地址字节的设置 (R/W) 设置为'0')。字节地址发送完后,主器件一接收到确认信号即产生起始条件。内部地址计数器设置完之后写操作即被终止。主器件再次发送控制字节,而该字节中 R/W 位设置为'1'。之后 24XX 会发出确认信号,并发送 8 位数据字节。主器件不会对数据传输作出确认,但会产生停止条件, 24XX 即停止数据发送(图 8-2和图 8-3)。在随机读取命令之后,内部地址计数器加 1 指向下一条地址。





### 8.3 连续读操作

连续读操作的起动过程和随机读操作相同,只是在24XX发送完第一个数据字节后,主器件发出确认信号,而在随机读操作中发送的是停止条件。确认信号指示24XX 器件发送下一个连续地址的数据字节(图 8-4)。在24器件向主器件发送完最后一个字节后,主器件不会产生确认信号,而是产生停止条件。为了可以进行连续读操作,24XX 器件内置了一个地址指针,在每次操作完成后该指针加 1。地址指针允许一次操作连续读取整个存储器的内容。在达到最后一个地址字节后,地址指针将翻转到地址 0x00。



附录 A: 版本历史

版本A

本文档的最初发布版本。综合了串行 EEPROM 24XXX 系列器件的数据手册。

#### 9.0 封装信息

#### 9.1 封装标识信息







|         | 8 引脚 PDIP 封装标识 (无铅) |         |         |        |        |         |         |  |  |  |  |
|---------|---------------------|---------|---------|--------|--------|---------|---------|--|--|--|--|
| 器件      | 第一行标识               | 器件      | 第一行标识   | 器件     | 第一行标识  | 器件      | 第一行标识   |  |  |  |  |
| 24AA00  | 24AA00              | 24LC00  | 24LC00  | 24C00  | 24C00  |         |         |  |  |  |  |
| 24AA01  | 24AA01              | 24LC01B | 24LC01B |        |        |         |         |  |  |  |  |
| 24AA014 | 24AA014             | 24LC014 | 24LC014 |        |        |         |         |  |  |  |  |
|         |                     |         |         | 24C01C | 24C01C |         |         |  |  |  |  |
| 24AA02  | 24AA02              | 24LC02B | 24LC02B |        |        |         |         |  |  |  |  |
| 24AA024 | 24AA024             | 24LC024 | 24LC024 |        |        |         |         |  |  |  |  |
| 24AA025 | 24AA025             | 24LC025 | 24LC025 |        |        |         |         |  |  |  |  |
|         |                     |         |         | 24C02C | 24C02C |         |         |  |  |  |  |
| 24AA04  | 24AA04              | 24LC04B | 24LC04B |        |        |         |         |  |  |  |  |
| 24AA08  | 24AA08              | 24LC08B | 24LC08B |        |        |         |         |  |  |  |  |
| 24AA16  | 24AA16              | 24LC16B | 24LC16B |        |        |         |         |  |  |  |  |
| 24AA32A | 24AA32A             | 24LC32A | 24LC32A |        |        |         |         |  |  |  |  |
| 24AA64  | 24AA64              | 24LC64  | 24LC64  |        |        |         |         |  |  |  |  |
| 24AA128 | 24AA128             | 24LC128 | 24LC128 |        |        | 24FC128 | 24FC128 |  |  |  |  |
| 24AA256 | 24AA256             | 24LC256 | 24LC256 |        |        | 24FC256 | 24FC256 |  |  |  |  |
| 24AA512 | 24AA512             | 24LC512 | 24LC512 |        |        | 24FC512 | 24FC512 |  |  |  |  |

图注: XX...X 器件号或器件号代码

> Υ 年份代号 (年历的最后一位数) ΥY 年份代号 (年历的最后二位数) WW 星期代号 (一月一日的代号为'01') NNN 字母数字追踪代号 (小型封装的两个字母)

(e3) 雾锡(Sn)的无铅 JEDEC 标志

注: 小型封装没有空间标出 JEDEC 无铅标志(e3),只会标在外包装或卷标上。

如果 Microchip 器件编号没有在一行完全标出,它将在下一行继续标出,因此 注: 限制了用户指定信息的可用字符数量。

注: 请访问 www.microchip.com/Pbfree 以获取有关无铅转换的最新信息。







|         | 8 引脚 SOIC 封装标识 (无铅) |         |          |        |         |         |          |  |  |  |  |
|---------|---------------------|---------|----------|--------|---------|---------|----------|--|--|--|--|
| 器件      | 第一行标识               | 器件      | 第一行标识    | 器件     | 第一行标识   | 器件      | 第一行标识    |  |  |  |  |
| 24AA00  | 24AA00T             | 24LC00  | 24LC00T  | 24C00  | 24C00T  |         |          |  |  |  |  |
| 24AA01  | 24AA01T             | 24LC01B | 24LC01BT |        |         |         |          |  |  |  |  |
| 24AA014 | 24AA014T            | 24LC014 | 24LC014T |        |         |         |          |  |  |  |  |
|         |                     |         |          | 24C01C | 24C01CT |         |          |  |  |  |  |
| 24AA02  | 24AA02T             | 24LC02B | 24LC02BT |        |         |         |          |  |  |  |  |
| 24AA024 | 24AA024T            | 24LC024 | 24LC024T |        |         |         |          |  |  |  |  |
| 24AA025 | 24AA025T            | 24LC025 | 24LC025T |        |         |         |          |  |  |  |  |
|         |                     |         |          | 24C02C | 24C02CT |         |          |  |  |  |  |
| 24AA04  | 24AA04T             | 24LC04B | 24LC04BT |        |         |         |          |  |  |  |  |
| 24AA08  | 24AA08T             | 24LC08B | 24LC08BT |        |         |         |          |  |  |  |  |
| 24AA16  | 24AA16T             | 24LC16B | 24LC16BT |        |         |         |          |  |  |  |  |
| 24AA32A | 24AA32AT            | 24LC32A | 24LC32AT |        |         |         |          |  |  |  |  |
| 24AA64  | 24AA64T             | 24LC64  | 24LC64T  |        |         |         |          |  |  |  |  |
| 24AA128 | 24AA128T            | 24LC128 | 24LC128T |        |         | 24FC128 | 24FC128T |  |  |  |  |
| 24AA256 | 24AA256T            | 24LC256 | 24LC256T |        |         | 24FC256 | 24FC256T |  |  |  |  |
| 24AA512 | 24AA512T            | 24LC512 | 24LC512T |        |         | 24FC512 | 24FC512T |  |  |  |  |

**注:** T = 温度范围: I = 工业级, E = 扩展级, (空白) = 商业级

图注: XX...X 器件号或器件号代码

Y 年份代号(年历的最后一位数)
YY 年份代号(年历的最后二位数)
WW 星期代号(一月一日的代号为 '01')
NNN 字母数字追踪代号(小型封装的两个字母)

(e3) 雾锡 (Sn) 的无铅 JEDEC 标志

注: 小型封装没有空间标出 JEDEC 无铅标志 (e3) , 只会标在外包装或卷标上。

注: 如果 Microchip 器件编号没有在一行完全标出,它将在下一行继续标出,因此 限制了用户指定信息的可用字符数量。

注: 请访问 www.microchip.com/Pbfree 以获取有关无铅转换的最新信息。

8 引脚 2x3 DFN

示例:





|         | 8 引脚 2x3mm DFN 封装标识(无铅) |         |              |              |        |              |              |  |  |  |  |
|---------|-------------------------|---------|--------------|--------------|--------|--------------|--------------|--|--|--|--|
| 器件      | 工业级<br>第一行标识            | 器件      | 工业级<br>第一行标识 | 扩展级<br>第一行标识 | 器件     | 工业级<br>第一行标识 | 扩展级<br>第一行标识 |  |  |  |  |
| 24AA00  | 201                     | 24LC00  | 204          | 205          | 24C00  | 207          | 208          |  |  |  |  |
| 24AA01  | 211                     | 24LC01B | 214          | 215          |        |              |              |  |  |  |  |
| 24AA014 | 2N1                     | 24LC014 | 2N4          | 2N5          |        |              |              |  |  |  |  |
|         |                         |         |              |              | 24C01C | 2N7          | 2N8          |  |  |  |  |
| 24AA02  | 221                     | 24LC02B | 224          | 225          |        |              |              |  |  |  |  |
| 24AA024 | 2P1                     | 24LC024 | 2P4          | 2P5          |        |              |              |  |  |  |  |
| 24AA025 | 2R1                     | 24LC025 | 2R4          | 2R5          |        |              |              |  |  |  |  |
|         |                         |         |              |              | 24C02C | 2P7          | 2P8          |  |  |  |  |
| 24AA04  | 231                     | 24LC04B | 234          | 235          |        |              |              |  |  |  |  |
| 24AA08  | 241                     | 24LC08B | 244          | 245          |        |              |              |  |  |  |  |
| 24AA16  | 251                     | 24LC16B | 254          | 255          |        |              |              |  |  |  |  |
| 24AA32A | 261                     | 24LC32A | 264          | 265          |        |              |              |  |  |  |  |
| 24AA64  | 271                     | 24LC64  | 274          | 275          | _      |              |              |  |  |  |  |

图注: XX...X 器件号或器件号代码

 Y
 年份代号(年历的最后一位数)

 YY
 年份代号(年历的最后二位数)

 WW
 星期代号(一月一日的代号为'01')

 NNN
 字母数字追踪代号(小型封装的两个字母)

(e3) 雾锡 (Sn) 的无铅 JEDEC 标志

注: 小型封装没有空间标出 JEDEC 无铅标志 (e3) , 只会标在外包装或卷标上。

注: 如果 Microchip 器件编号没有在一行完全标出,它将在下一行继续标出,因此限制了用户指定信息的可用字符数量。

8 引脚 DFN



示例: 无铅



示例:锡/铅



|                                                                    | 8 引脚 5x6mm DFN 封装标识 |         |         |         |         |  |  |  |  |  |  |
|--------------------------------------------------------------------|---------------------|---------|---------|---------|---------|--|--|--|--|--|--|
| 器件         第一行标识         器件         第一行标识         器件         第一行标识 |                     |         |         |         |         |  |  |  |  |  |  |
| 24AA128                                                            | 24AA128             | 24LC128 | 24LC128 | 24FC128 | 24FC128 |  |  |  |  |  |  |
| 24AA256                                                            | 24AA256             | 24LC256 | 24LC256 | 24FC256 | 24FC256 |  |  |  |  |  |  |
| 24AA512                                                            | 24AA512             | 24LC512 | 24LC512 | 24FC512 | 24FC512 |  |  |  |  |  |  |

注: 温度范围 (T) 列在第二行。I=工业级, E=扩展级

图注: XX...X 器件号或器件号代码

 Y
 年份代号(年历的最后一位数)

 YY
 年份代号(年历的最后二位数)

 WW
 星期代号(一月一日的代号为 '01')

 NNN
 字母数字追踪代号(小型封装的两个字母)

(e3) 雾锡 (Sn) 的无铅 JEDEC 标志

注: 小型封装没有空间标出 JEDEC 无铅标志(e3), 只会标在外包装或卷标上。

注: 如果 Microchip 器件编号没有在一行完全标出,它将在下一行继续标出,因此 限制了用户指定信息的可用字符数量。

5 引脚 SOT-23



示例:



|        | 5 引脚 SOT-23 封装标识(无铅) |           |         |           |           |           |       |           |           |           |  |  |
|--------|----------------------|-----------|---------|-----------|-----------|-----------|-------|-----------|-----------|-----------|--|--|
| 器件     | 商业级<br>标识            | 工业级<br>标识 | 器件      | 商业级<br>标识 | 工业级<br>标识 | 扩展级<br>标识 | 器件    | 商业级<br>标识 | 工业级<br>标识 | 扩展级<br>标识 |  |  |
| 24AA00 | A0NN                 | B0NN      | 24LC00  | LONN      | MONN      | N0NN      | 24C00 | CONN      | D0NN      | E0NN      |  |  |
| 24AA01 | A1NN                 | B1NN      | 24LC01B | L1NN      | M1NN      | N1NN      |       |           |           |           |  |  |
| 24AA02 | A2NN                 | B2NN      | 24LC02B | L2NN      | M2NN      | N2NN      |       |           |           |           |  |  |
| 24AA04 | A3NN                 | B3NN      | 24LC04B | L3NN      | M3NN      | N3NN      |       |           |           |           |  |  |
| 24AA08 | A4NN                 | B4NN      | 24LC08B | L4NN      | M4NN      | N4NN      |       |           |           |           |  |  |
| 24AA16 | A5NN                 | B5NN      | 24LC16B | L5NN      | M5NN      | N5NN      |       |           |           |           |  |  |

图注: XX...X 器件号或器件号代码

 Y
 年份代号(年历的最后一位数)

 YY
 年份代号(年历的最后二位数)

 WW
 星期代号(一月一日的代号为'01')

 NNN
 字母数字追踪代号(小型封装的两个字母)

(e3) 雾锡 (Sn) 的无铅 JEDEC 标志

注: 小型封装没有空间标出 JEDEC 无铅标志 (e3) ,只会标在外包装或卷标上。

注: 如果 Microchip 器件编号没有在一行完全标出,它将在下一行继续标出,因此 限制了用户指定信息的可用字符数量。

8 引脚 MSOP (150 mil)







|         |        | 8       | 引脚 MSOP 封 | 装标识 (无報 | <del>}</del> ) |         |        |
|---------|--------|---------|-----------|---------|----------------|---------|--------|
| 器件      | 第一行标识  | 器件      | 第一行标识     | 器件      | 第一行标识          | 器件      | 第一行标识  |
| 24AA01  | 4A01T  | 24LC01B | 4L1BT     |         |                |         |        |
| 24AA014 | 4A14T  | 24LC014 | 4L14T     |         |                |         |        |
|         |        |         |           | 24C01C  | 4C1CT          |         |        |
| 24AA02  | 4A02T  | 24LC02B | 4L2BT     |         |                |         |        |
| 24AA024 | 4A24T  | 24LC024 | 4L24T     |         |                |         |        |
| 24AA025 | 4A25T  | 24LC025 | 4L25T     |         |                |         |        |
|         |        |         |           | 24C02C  | 4C2CT          |         |        |
| 24AA04  | 4A04T  | 24LC04B | 4L4BT     |         |                |         |        |
| 24AA08  | 4A08T  | 24LC08B | 4L8BT     |         |                |         |        |
| 24AA16  | 4A16T  | 24LC16B | 4L16T     |         |                |         |        |
| 24AA32A | 4A32AT | 24LC32A | 4L32AT    |         |                |         |        |
| 24AA64  | 4A64T  | 24LC64  | 4L64T     |         |                |         |        |
| 24AA128 | 4A128T | 24LC128 | 4L128T    |         |                | 24FC128 | 4F128T |
| 24AA256 | 4A256T | 24LC256 | 4L256T    |         |                | 24FC256 | 4F256T |

注: T=温度范围: I=工业级, E=扩展级, (空白)=商业级

> 图注: XX...X 器件号或器件号代码

Υ 年份代号 (年历的最后一位数) ΥY 年份代号 (年历的最后二位数) 星期代号 (一月一日的代号为'01') WW NNN 字母数字追踪代号 (小型封装的两个字母)

(e3) 雾锡 (Sn) 的无铅 JEDEC 标志

注: 小型封装没有空间标出 JEDEC 无铅标志(e3) ,只会标在外包装或卷标上。

注: 如果 Microchip 器件编号没有在一行完全标出,它将在下一行继续标出,因此 限制了用户指定信息的可用字符数量。

8 引脚 TSSOP







|         |       | 8       | 引脚 TSSOP 封 |        | <del></del><br>沿) |         |       |
|---------|-------|---------|------------|--------|-------------------|---------|-------|
| 器件      | 第一行标识 | 器件      | 第一行标识      | 器件     | 第一行标识             | 器件      | 第一行标识 |
| 24AA00  | 4A00  | 24LC00  | 4L00       | 24C00  | 4C00              |         |       |
| 24AA01  | 4A01  | 24LC01B | 4L1B       |        |                   |         |       |
| 24AA014 | 4A14  | 24LC014 | 4L14       |        |                   |         |       |
|         |       |         |            | 24C01C | 4C1C              |         |       |
| 24AA02  | 4A02  | 24LC02B | 4L02       |        |                   |         |       |
| 24AA024 | 4A24  | 24LC024 | 4L24       |        |                   |         |       |
| 24AA025 | 4A25  | 24LC025 | 4L25       |        |                   |         |       |
|         |       |         |            | 24C02C | 4C2C              |         |       |
| 24AA04  | 4A04  | 24LC04B | 4L04       |        |                   |         |       |
| 24AA08  | 4A08  | 24LC08B | 4L08       |        |                   |         |       |
| 24AA16  | 4A16  | 24LC16B | 4L16       |        |                   |         |       |
| 24AA32A | 4AA   | 24LC32A | 4LA        |        |                   |         |       |
| 24AA64  | 4AB   | 24LC64  | 4LB        |        |                   |         |       |
| 24AA128 | 4AC   | 24LC128 | 4LC        |        |                   | 24FC128 | 4FC   |
| 24AA256 | 4AD   | 24LC256 | 4LD        |        |                   | 24FC256 | 4FD   |

**注:** T = 温度范围: I = 工业级, E = 扩展级, (空白) = 商业级

图注: XX...X 器件号或器件号代码

 Y
 年份代号(年历的最后一位数)

 YY
 年份代号(年历的最后二位数)

 WW
 星期代号(一月一日的代号为'01')

 NNN
 字母数字追踪代号(小型封装的两个字母)

(e3) 雾锡 (Sn) 的无铅 JEDEC 标志

注: 小型封装没有空间标出 JEDEC 无铅标志 (e3) , 只会标在外包装或卷标上。

注: 如果 Microchip 器件编号没有在一行完全标出,它将在下一行继续标出,因此 限制了用户指定信息的可用字符数量。





|                                                                    | 14 引脚 TSSOP 封装标识 (无铅)                    |         |        |         |        |  |  |  |  |  |  |
|--------------------------------------------------------------------|------------------------------------------|---------|--------|---------|--------|--|--|--|--|--|--|
| 器件         第一行标识         器件         第一行标识         器件         第一行标识 |                                          |         |        |         |        |  |  |  |  |  |  |
| 24AA128                                                            | 128 4A128T 24LC128 4L128T 24FC128 4F128T |         |        |         |        |  |  |  |  |  |  |
| 24AA256                                                            | 4A256T                                   | 24LC256 | 4L256T | 24FC256 | 4F256T |  |  |  |  |  |  |
| 24AA512                                                            | 4A512T                                   | 24LC512 | 4L512T | 24FC512 | 4F512T |  |  |  |  |  |  |

**注:** T = 温度范围: I = 工业级, E = 扩展级, (空白) = 商业级

图注: XX...X 器件号或器件号代码

Y 年份代号 (年历的最后一位数) YY 年份代号 (年历的最后二位数) WW 星期代号 (一月一日的代号为 '01')

NNN 字母数字追踪代号 (小型封装的两个字母)

(e3) 雾锡 (Sn) 的无铅 JEDEC 标志

注: 小型封装没有空间标出 JEDEC 无铅标志 (e3) , 只会标在外包装或卷标上。

注: 如果 Microchip 器件编号没有在一行完全标出,它将在下一行继续标出,因此 限制了用户指定信息的可用字符数量。

### 8 引脚塑料双列直插封装 (P) - 300 mil (PDIP)



|           | 单位   |      | 英寸*  |      | 亳    | <b>玉米</b> |       |
|-----------|------|------|------|------|------|-----------|-------|
|           | 尺寸范围 | 最小值  | 正常值  | 最大值  | 最小值  | 正常值       | 最大值   |
| 引脚数       | n    |      | 8    |      |      | 8         |       |
| 引脚间距      | р    |      | .100 |      |      | 2.54      |       |
| 顶部到底座高度   | Α    | .140 | .155 | .170 | 3.56 | 3.94      | 4.32  |
| 塑模封装厚度    | A2   | .115 | .130 | .145 | 2.92 | 3.30      | 3.68  |
| 底部到底座高度   | A1   | .015 |      |      | 0.38 |           |       |
| 两肩间距      | E    | .300 | .313 | .325 | 7.62 | 7.94      | 8.26  |
| 塑模封装宽度    | E1   | .240 | .250 | .260 | 6.10 | 6.35      | 6.60  |
| 总长度       | D    | .360 | .373 | .385 | 9.14 | 9.46      | 9.78  |
| 引脚顶部到底座高度 | L    | .125 | .130 | .135 | 3.18 | 3.30      | 3.43  |
| 引脚厚度      | С    | .008 | .012 | .015 | 0.20 | 0.29      | 0.38  |
| 引脚上部宽度    | B1   | .045 | .058 | .070 | 1.14 | 1.46      | 1.78  |
| 引脚下部宽度    | В    | .014 | .018 | .022 | 0.36 | 0.46      | 0.56  |
| 总排间距 §    | eB   | .310 | .370 | .430 | 7.87 | 9.40      | 10.92 |
| 塑模顶端锥度    | α    | 5    | 10   | 15   | 5    | 10        | 15    |
| 塑模底端锥度    | β    | 5    | 10   | 15   | 5    | 10        | 15    |

<sup>\*</sup> 控制参数 § 重要特性

注 尺寸 D 和 E1 不包括塑模的毛边或突起。 毛边或突起不得超过每侧 .010 英寸 (0.254mm)。 等同于 JEDEC 号: MS-001 图号: C04-018

### 8 引脚塑料小型封装 (SN) - 窄封装, 150 mil (SOIC)



|        | 单位   |      | 英寸*  |      | 卓    | <b>玉米</b> |      |
|--------|------|------|------|------|------|-----------|------|
|        | 尺寸范围 | 最小值  | 正常值  | 最大值  | 最小值  | 正常值       | 最大值  |
| 引脚数    | n    |      | 8    |      |      | 8         |      |
| 引脚间距   | р    |      | .050 |      |      | 1.27      |      |
| 总高度    | Α    | .053 | .061 | .069 | 1.35 | 1.55      | 1.75 |
| 塑模封装厚度 | A2   | .052 | .056 | .061 | 1.32 | 1.42      | 1.55 |
| 悬空间隙 § | A1   | .004 | .007 | .010 | 0.10 | 0.18      | 0.25 |
| 总宽度    | Е    | .228 | .237 | .244 | 5.79 | 6.02      | 6.20 |
| 塑模封装宽度 | E1   | .146 | .154 | .157 | 3.71 | 3.91      | 3.99 |
| 总长度    | D    | .189 | .193 | .197 | 4.80 | 4.90      | 5.00 |
| 倒角长度   | h    | .010 | .015 | .020 | 0.25 | 0.38      | 0.51 |
| 底脚长度   | L    | .019 | .025 | .030 | 0.48 | 0.62      | 0.76 |
| 底脚倾角   | ф    | 0    | 4    | 8    | 0    | 4         | 8    |
| 引脚厚度   | С    | .008 | .009 | .010 | 0.20 | 0.23      | 0.25 |
| 引脚宽度   | В    | .013 | .017 | .020 | 0.33 | 0.42      | 0.51 |
| 塑模顶部锥度 | α    | 0    | 12   | 15   | 0    | 12        | 15   |
| 塑模底部锥度 | β    | 0    | 12   | 15   | 0    | 12        | 15   |

<sup>\*</sup> 控制参数 § 重要特性

尺寸 D 和 E1 不包括塑模的毛边或突起。 毛边或突起不得超过每侧 .010 英寸 (0.254mm)。 等同于 JEDEC 号: MS-012 图号: C04-057

### 8 引脚塑料双列扁平无引脚封装 (MC) 2x3x0.9 mm 主体 (DFN) - 切割分离



|        |       | 单位  |      | 英寸        |      |      | 毫米*       |      |  |
|--------|-------|-----|------|-----------|------|------|-----------|------|--|
|        | 尺-    | 寸范围 | 最小值  | 正常值       | 最大值  | 最小值  | 正常值       | 最大值  |  |
| 引脚数    |       | n   |      | 8         |      |      | 8         |      |  |
| 引脚间距   |       | р   |      | .020 BSC  |      |      | 0.50 BSC  |      |  |
| 总高度    |       | Α   | .031 | .035      | .039 | 0.80 | 0.90      | 1.00 |  |
| 悬空间隙   |       | A1  | .000 | .001      | .002 | 0.00 | 0.02      | 0.05 |  |
| 触点厚度   |       | A3  |      | .008 REF. |      |      | 0.20 REF. |      |  |
| 总长度    |       | D   |      | .079 BSC  |      |      | 2.00 BSC  |      |  |
| 外露垫片长度 | (注 3) | D2  | .055 |           | .064 | 1.39 |           | 1.62 |  |
| 总宽度    |       | E   |      | .118 BSC  |      |      | 3.00 BSC  |      |  |
| 外露垫片宽度 | (注 3) | E2  | .047 |           | .071 | 1.20 |           | 1.80 |  |
| 触点宽度   |       | b   | .008 | .010      | .012 | 0.20 | 0.25      | 0.30 |  |
| 触点长度   |       | L   | .012 | .016      | .020 | 0.30 | 0.40      | 0.50 |  |

### \*控制参数

- 封装两端可能有一个或多个外露的系杆。
   引脚1的可视索引特性可能会不同,但必须位于阴影区域内。
- 3. 外露焊垫尺寸随叶片大小而变化。
- 4. 等同于JEDEC号: MO-229

图号: C04-123 修订于05/24/04

### 8 引脚塑料双列无引脚扁平封装 (MF) 6x5 mm 主体 (DFN-S) - 切割分离



|        | 单位      |      | 英寸       |      |      | 毫米*      |      |
|--------|---------|------|----------|------|------|----------|------|
| 尺、     | <b></b> | 最小值  | 正常值      | 最大值  | 最小值  | 正常值      | 最大值  |
| 引脚数    | n       |      | 8        |      |      | 8        |      |
| 引脚间距   | р       |      | .050 BSC |      |      | 1.27 BSC |      |
| 总高度    | Α       | .033 | .035     | .037 | 0.85 | 0.90     | 0.95 |
| 封装厚度   | A2      | .031 | .035     | .037 | 0.80 | 0.89     | 0.95 |
| 悬空间隙   | A1      | .000 | .0004    | .002 | 0.00 | 0.01     | 0.05 |
| 触点厚度   | A3      | .007 | .008     | .009 | 0.17 | 0.20     | 0.23 |
| 总长度    | E       | .195 | .197     | .199 | 4.95 | 5.00     | 5.05 |
| 外露垫片长度 | E2      | .152 | .157     | .163 | 3.85 | 4.00     | 4.15 |
| 总宽度    | D       | .234 | .236     | .238 | 5.95 | 6.00     | 6.05 |
| 外露垫片宽度 | D2      | .089 | .091     | .093 | 2.25 | 2.30     | 2.35 |
| 引脚宽度   | В       | .014 | .016     | .019 | 0.35 | 0.40     | 0.47 |
| 引脚长度   | L       | .024 |          | .026 | 0.60 |          | 0.65 |

注:

等同于JEDEC号: MO-220

图号: C04-122 修订于 11/3/03

### 5 引脚塑封小型晶体管封装 (OT) (SOT-23)



|            | 单位   |      | 英寸*  |      |      | 毫米   |      |
|------------|------|------|------|------|------|------|------|
|            | 尺寸范围 | 最小值  | 正常值  | 最大值  | 最小值  | 正常值  | 最大值  |
| 引脚数        | n    |      | 5    |      |      | 5    |      |
| 引脚间距       | р    |      | .038 |      |      | 0.95 |      |
| 外部引脚间距(基本) | p1   |      | .075 |      |      | 1.90 |      |
| 总高度        | Α    | .035 | .046 | .057 | 0.90 | 1.18 | 1.45 |
| 塑模封装厚度     | A2   | .035 | .043 | .051 | 0.90 | 1.10 | 1.30 |
| 悬空间隙       | A1   | .000 | .003 | .006 | 0.00 | 0.08 | 0.15 |
| 总宽度        | E    | .102 | .110 | .118 | 2.60 | 2.80 | 3.00 |
| 塑模封装宽度     | E1   | .059 | .064 | .069 | 1.50 | 1.63 | 1.75 |
| 总长度        | D    | .110 | .116 | .122 | 2.80 | 2.95 | 3.10 |
| 底脚长度       | L    | .014 | .018 | .022 | 0.35 | 0.45 | 0.55 |
| 底脚倾角       | ф    | 0    | 5    | 10   | 0    | 5    | 10   |
| 引脚厚度       | С    | .004 | .006 | .008 | 0.09 | 0.15 | 0.20 |
| 引脚宽度       | В    | .014 | .017 | .020 | 0.35 | 0.43 | 0.50 |
| 塑模顶部锥度     | а    | 0    | 5    | 10   | 0    | 5    | 10   |
| 塑模底部锥度     | b    | 0    | 5    | 10   | 0    | 5    | 10   |

\*控制参数

注:

尺寸D和E1不包括塑模毛边或突起。塑模每侧的毛边或突起不得超过.005英寸 (0.127毫米)。

等同于EIAJ号: SC-74A 图号: C04-091

### 8 引脚塑封超小型封装(MS)(MSOP)



|            | 单位   |      | 英寸        |      |      | 毫米*      |      |
|------------|------|------|-----------|------|------|----------|------|
|            | 尺寸范围 | 最小值  | 正常值       | 最大值  | 最小值  | 正常值      | 最大值  |
| 引脚数        | n    |      | 8         |      |      | 8        |      |
| 引脚间距       | р    |      | .026 BSC  |      |      | 0.65 BSC |      |
| 总高度        | Α    | -    | -         | .043 | -    | -        | 1.10 |
| 塑模封装厚度     | A2   | .030 | .033      | .037 | 0.75 | 0.85     | 0.95 |
| 悬空间隙       | A1   | .000 | -         | .006 | 0.00 | -        | 0.15 |
| 总宽度        | E    |      | .193 TYP. |      |      | 4.90 BSC |      |
| 塑模封装宽度     | E1   |      | .118 BSC  |      |      | 3.00 BSC |      |
| 总长度        | D    |      | .118 BSC  |      |      | 3.00 BSC |      |
| 底脚长度       | L    | .016 | .024      | .031 | 0.40 | 0.60     | 0.80 |
| 引脚投影长度(参考) | F    |      | .037 REF  |      |      | 0.95 REF |      |
| 底脚倾角       | ф    | 0°   | -         | 8°   | 0°   | -        | 8°   |
| 引脚厚度       | С    | .003 | .006      | .009 | 0.08 | -        | 0.23 |
| 引脚宽度       | В    | .009 | .012      | .016 | 0.22 | -        | 0.40 |
| 塑模顶部锥度     | α    | 5°   | -         | 15°  | 5°   | -        | 15°  |
| 塑模底部锥度     | β    | 5°   | -         | 15°  | 5°   | -        | 15°  |

\*控制参数

注:

尺寸D和E1不包括塑模毛边或突起。塑模每侧的毛边或突起不得超过.010英寸 (0.254毫米)。

等同于JEDEC号: MO-187

图号: C04-111

### 8 引脚塑封薄型小封装 (ST) - 4.4 mm (TSSOP)



|        | 单位   |      | 英寸   |      |      | 毫米*  |      |
|--------|------|------|------|------|------|------|------|
|        | 尺寸范围 | 最小值  | 正常值  | 最大值  | 最小值  | 正常值  | 最大值  |
| 引脚数    | n    |      | 8    |      |      | 8    |      |
| 引脚间距   | р    |      | .026 |      |      | 0.65 |      |
| 总高度    | Α    |      |      | .043 |      |      | 1.10 |
| 塑模封装厚度 | A2   | .033 | .035 | .037 | 0.85 | 0.90 | 0.95 |
| 悬空间隙 § | A1   | .002 | .004 | .006 | 0.05 | 0.10 | 0.15 |
| 总宽度    | E    | .246 | .251 | .256 | 6.25 | 6.38 | 6.50 |
| 塑模封装宽度 | E1   | .169 | .173 | .177 | 4.30 | 4.40 | 4.50 |
| 塑模封装长度 | D    | .114 | .118 | .122 | 2.90 | 3.00 | 3.10 |
| 底脚长度   | L    | .020 | .024 | .028 | 0.50 | 0.60 | 0.70 |
| 底脚倾角   | ф    | 0    | 4    | 8    | 0    | 4    | 8    |
| 引脚厚度   | С    | .004 | .006 | .008 | 0.09 | 0.15 | 0.20 |
| 引脚宽度   | В    | .007 | .010 | .012 | 0.19 | 0.25 | 0.30 |
| 塑模顶部锥度 | α    | 0    | 5    | 10   | 0    | 5    | 10   |
| 塑模底部锥度 | β    | 0    | 5    | 10   | 0    | 5    | 10   |

# \* 控制参数 § 重要特性

注: 尺寸D和E1不包括塑模毛边或突起。塑模每侧的毛边或突起不得超过.005英寸 (0.127毫米)。

等同于JEDEC号: MO-153 图号: C04-086

### 14 引脚塑封薄型小封装 (ST) - 4.4 mm 主体 (TSSOP)



|        | 单位  | 英寸   |      | 毫米*  |      |      |      |
|--------|-----|------|------|------|------|------|------|
| 尺-     | 寸范围 | 最小值  | 正常值  | 最大值  | 最小值  | 正常值  | 最大值  |
| 引脚数    | n   | 14   |      | 14   |      |      |      |
| 引脚间距   | р   |      | .026 |      |      | 0.65 |      |
| 总高度    | Α   |      |      | .043 |      |      | 1.10 |
| 塑模封装厚度 | A2  | .033 | .035 | .037 | 0.85 | 0.90 | 0.95 |
| 悬空间隙 § | A1  | .002 | .004 | .006 | 0.05 | 0.10 | 0.15 |
| 总宽度    | E   | .246 | .251 | .256 | 6.25 | 6.38 | 6.50 |
| 塑模封装宽度 | E1  | .169 | .173 | .177 | 4.30 | 4.40 | 4.50 |
| 塑模封装长度 | D   | .193 | .197 | .201 | 4.90 | 5.00 | 5.10 |
| 底脚长度   | L   | .020 | .024 | .028 | 0.50 | 0.60 | 0.70 |
| 底脚倾角   | ф   | 0    | 4    | 8    | 0    | 4    | 8    |
| 引脚厚度   | С   | .004 | .006 | .008 | 0.09 | 0.15 | 0.20 |
| 引脚宽度   | В   | .007 | .010 | .012 | 0.19 | 0.25 | 0.30 |
| 塑模顶部锥度 | α   | 0    | 5    | 10   | 0    | 5    | 10   |
| 塑模底部锥度 | β   | 0    | 5    | 10   | 0    | 5    | 10   |

<sup>\*</sup> 控制参数 § 重要特性

注: 尺寸D和E1不包括塑模毛边或突起。塑模每侧的毛边或突起不得超过.005英寸 (0.127毫米)。

等同于JEDEC号: MO-153 图号: C04-087

注:

### MICROCHIP 网站

Microchip 网站(www.microchip.com)为客户提供在 线支持。客户可通过该网站方便地获取文件和信息。只 要使用常用的因特网浏览器即可访问。网站提供以下信 息:

- 产品支持——数据手册和勘误表、应用笔记和样本程序、设计资源、用户指南以及硬件支持文档、最新的软件版本以及存档软件
- 一般技术支持——常见问题 (FAQ)、技术支持请求、在线讨论组以及 Microchip 顾问计划成员名单
- Microchip 业务
   产品选型和订购指南、最新 Microchip 新闻稿、研讨会和活动安排表、 Microchip 销售办事处、代理商以及工厂代表列表

### 变更通知客户服务

Microchip 的变更通知客户服务有助于客户了解 Microchip 产品的最新信息。注册客户可在他们感兴趣 的某个产品系列或开发工具发生变更、更新、发布新版 本或勘误表时,收到电子邮件通知。

欲注册,请登录 Microchip 网站 www.microchip.com, 点击"变更通知客户(Customer Change Notification)"服务后按照注册说明完成注册。

### 客户支持

Microchip 产品的用户可通过以下渠道获得帮助:

- 代理商或代表
- 当地销售办事处
- · 应用工程师 (FAE)
- 技术支持
- 开发系统信息热线

客户应联系其代理商、代表或应用工程师(FAE)寻求 支持。当地销售办事处也可为客户提供帮助。本文档后 附有销售办事处的联系方式。

## 也可通过 http://support.microchip.com 获得网上技术支持

此外,我们还设有一条开发系统信息热线,列出了 Microchip 开发系统软件产品的最新版本。此热线还向 客户提供如何取得当前可用的升级软件包的信息。

#### 开发系统信息热线号码为:

1-800-755-2345 ——美国和加拿大大部分地区

800-820-6247——中国免费技术咨询热线

1-480-792-7302——其他国家或地区。

### 读者反馈表

我们努力为您提供最佳文档,以确保您能够成功使用 Microchip 产品。如果您对文档的组织、条理性、主题及其他有助于提高文档质量的方面有任何意见或建议,请填写本反馈表并传真给我公司 TRC 经理,传真号码为 86-21-5407-5066。请填写以下信息,并从下面各方面提出您对本文档的意见。

| 致: | TRC 经理               | 总页数                            | <u> </u> |
|----|----------------------|--------------------------------|----------|
| 关于 | F: 读者反馈              |                                |          |
| 发自 | ]: 姓名                |                                |          |
|    |                      |                                |          |
|    | 地址                   | нт А                           |          |
|    |                      | 邮編                             |          |
| 应且 |                      |                                |          |
|    | 希望收到回复吗?是 <u> </u>   | 否                              |          |
|    |                      | <br>//24FCXX 文献编号: DS21930A CN |          |
|    |                      | 7241 CXX                       |          |
| 问是 | <u>火</u>             |                                |          |
| 1. | 本文档中哪些部分最有           | 特色?                            |          |
|    |                      |                                |          |
| 2  |                      |                                |          |
| ۷. | <b>本</b> 乂档是省满足 J 您的 | 软硬件开发要求?如何满足的?                 |          |
|    |                      |                                |          |
| 3. | 您认为本文档的组织结           | 构便于理解吗?如果不便于理解,那么问题何在?         |          |
|    |                      |                                |          |
|    |                      |                                |          |
| 4. | 您认为本文档应该添加           | 哪些内容以改善其结构和主题?                 |          |
|    |                      |                                |          |
|    |                      |                                |          |
| 5. | 您认为本文档中可以删           | 减哪些内容,而又不会影响整体使用效果?            |          |
|    | _                    |                                | _        |
| 6  | <b>大</b> 立松山且不方左烘!!  |                                |          |
| 0. | 平义归中定百什住相民           | 以庆守信息: 如米什住,周佰田定门公信息及兵兵件贝数。    |          |
|    |                      |                                |          |
| 7. | 您认为本文档还有哪些           | 方面有待改进?                        |          |
|    |                      |                                |          |
|    |                      |                                |          |
|    |                      |                                |          |

### 产品标识体系

欲订货,或获取价格、交货等信息,请与我公司生产厂或各销售办事处联系。



- 24C00/P: 128 位,商业级温度, 5V, PDIP 封装
- 24AA014-I/SN: 1 千位, 工业级温度, 1.8V, SOIC 封装
- 24AA02T-I/OT: 2 千位,工业级温度, 1.8V, SOT-23 封装, 卷带式
- 24LC16B-I/P: 16 千位, 工业级温度, 2.5V, PDIP 封装
- 24LC32A-E/MS: 32 千位,扩展级温度, 2.5V,MSOP 封装
- 24LC64T-I/MC: 64 千位, 工业级温度, 2.5V, 2x3 mm DFN 封装, 卷带式
- 24LC256-E/STG: 256 千位,扩展级温 度, 2.5V, TSSOP 封装, 无铅
- 24FC512T-I/SM: 512 千位, 工业级温度, 1 MHz, SOIC 封装, 卷带式

注 1: 自 2005 年 1 月起,生产的绝大多数产品将用雾锡 (无铅)电镀。 2005年1月以前生产的产品,大部分是用63%的锡和37%的铅(锡铅)材料电镀的。 请访问 www.microchip.com/Pbfree 以获取有关无铅转换的最新信息,包括转换日期的代码。

#### 销售和技术支持

#### 数据手册

初始数据手册中所述的产品可能会有一份勘误表,其中描述实际运行与数据手册中记载内容之间存在的细微差别以及 建议的变通方法。要了解是否存在某一器件的勘误表,可通过以下方式联系我们:

- Microchip 在当地的销售办事处
- 2. Microchip 美国总部的文献中心,传真: 1-480-792 7277
- Microchip 网站 (www.microchip.com)

请说明您所使用的器件型号、硅片版本和数据手册版本 (包括文献编号)。

#### 最新信息客户通知系统

欲及时获知 Microchip 产品的最新信息,请到我公司网站 www.microchip.com 上注册。

注:

#### 请注意以下有关 Microchip 器件代码保护功能的要点:

- Microchip 的产品均达到 Microchip 数据手册中所述的技术指标。
- Microchip 确信: 在正常使用的情况下, Microchip 系列产品是当今市场上同类产品中最安全的产品之一。
- 目前,仍存在着恶意、甚至是非法破坏代码保护功能的行为。就我们所知,所有这些行为都不是以 Microchip 数据手册中规定的操作规范来使用 Microchip 产品的。这样做的人极可能侵犯了知识产权。
- Microchip 愿与那些注重代码完整性的客户合作。
- Microchip 或任何其他半导体厂商均无法保证其代码的安全性。代码保护并不意味着我们保证产品是"牢不可破"的。

代码保护功能处于持续发展中。 Microchip 承诺将不断改进产品的代码保护功能。任何试图破坏 Microchip 代码保护功能的行为均可视为违反了《数字器件千年版权法案(Digital Millennium Copyright Act)》。如果这种行为导致他人在未经授权的情况下,能访问您的软件或其他受版权保护的成果,您有权依据该法案提起诉讼,从而制止这种行为。

提供本文档的中文版本仅为了便于理解。Microchip Technology Inc. 及其分公司和相关公司、各级主管与员工及 事务代理机构对译文中可能存在的任何差错不承担任何责任。 建议参考 Microchip Technology Inc. 的英文原版文档。

本出版物中所述的器件应用信息及其他类似内容仅为您提供便利,它们可能由更新之信息所替代。确保应用符合技术规范,是您自身应负的责任。Microchip 对这些信息不作任何明示或暗示、书面或口头、法定或其他形式的声明或担保,包括但不限于针对其使用情况、质量、性能、适销性或特定用途的适用性的声明或担保。Microchip 对因这些信息及使用这些信息而引起的后果不承担任何责任。未经 Microchip 书面批准,不得将 Microchip 的产品用作生命维持系统中的关键组件。在 Microchip 知识产权保护下,不得暗中或以其他方式转让任何许可证。

#### 商标

Microchip 的名称和徽标组合、Microchip 徽标、Accuron、dsPIC、KEELOQ、microID、MPLAB、PIC、PICmicro、PICSTART、PRO MATE、PowerSmart、rfPIC 和SmartShunt 均为 Microchip Technology Inc. 在美国和其他国家或地区的注册商标。

AmpLab、FilterLab、Migratable Memory、MXDEV、MXLAB、PICMASTER、SEEVAL、SmartSensor 和 The Embedded Control Solutions Company 均为 Microchip Technology Inc. 在美国的注册商标。

Analog-for-the-Digital Age、Application Maestro、dsPICDEM、dsPICDEM.net、dsPICworks、ECAN、ECONOMONITOR、FanSense、FlexROM、fuzzyLAB、In-Circuit Serial Programming、ICSP、ICEPIC、Linear Active Thermistor、MPASM、MPLIB、MPLINK、MPSIM、PICkit、PICDEM、PICDEM.net、PICLAB、PICtail、PowerCal、PowerInfo、PowerMate、PowerTool、rfLAB、rfPICDEM、Select Mode、Smart Serial、SmartTel、Total Endurance 和 WiperLock 均为 Microchip Technology Inc. 在美国和其他国家或地区的商标。

SQTP 是 Microchip Technology Inc. 在美国的服务标记。

在此提及的所有其他商标均为各持有公司所有。

© 2005, Microchip Technology Inc. 版权所有。

QUALITY MANAGEMENT SYSTEM

CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip 位于美国亚利桑那州 Chandler 和 Tempe 及位于加利福尼亚州 Mountain View 的全球总部、设计中心和晶侧生产厂均于2003 年10月通过了ISO/TS-16949:2002 质量体系认证。公司在PICmicro® 8 位单片机、KEELOo® 跳码器件、串行EEPROM、单片机外设、非易失性存储器和模拟产品方面的质量体系流程均符合ISO/TS-16949:2002。此外,Microchip 在开发系统的设计和生产方面的质量体系也已通过了ISO 9001:2000 认证。



### 全球销售及服务网点

### 美洲

公司总部 Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 1-480-792-7200 Fax: 1-480-792-7277

技术支持:

http://support.microchip.com 网址: www.microchip.com

亚特兰大 Atlanta Alpharetta, GA Tel: 1-770-640-0034 Fax: 1-770-640-0307

波士顿 Boston Westborough, MA Tel: 1-774-760-0087 Fax: 1-774-760-0088

芝加哥 Chicago Itasca II

Tel: 1-630-285-0071 Fax: 1-630-285-0075

达拉斯 **Dallas** Addison, TX Tel: 1-972-818-7423

Tel: 1-972-818-7423 Fax: 1-972-818-2924

底特律 Detroit Farmington Hills, MI Tel: 1-248-538-2250 Fax: 1-248-538-2260

科科莫 **Kokomo** Kokomo, IN Tel: 1-765-864-8360 Fax: 1-765-864-8387

洛杉矶 Los Angeles Mission Viejo, CA Tel: 1-949-462-9523 Fax: 1-949-462-9608

圣何塞 San Jose Mountain View, CA Tel: 1-650-215-1444 Fax: 1-650-961-0286 加拿大多伦多 Toronto

Mississauga, Ontario, Canada Tel: 1-905-673-0699 Fax: 1-905-673-6509

### 亚太地区

中国 - 北京 Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

中国 - 成都

Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

中国 - 福州 Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

中国 - 香港特别行政区 Tel: 852-2401-1200 Fax: 852-2401-3431

中国 - 上海 Tel: 86-21-5407-5533

Fax: 86-21-5407-5066 中国 - 沈阳 Tel: 86-24-2334-2829

Fax: 86-24-2334-2393 中国 - 深圳

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

中国 - 青岛 Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

台湾地区 - 高雄 Tel: 886-7-536-4818 Fax: 886-7-536-4803

台湾地区 - 台北 Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

台湾地区 - 新竹 Tel: 886-3-572-9526 Fax: 886-3-572-6459

### 亚太地区

澳大利亚 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

印度 India - Bangalore Tel: 91-80-2229-0061 Fax: 91-80-2229-0062

印度 India - New Delhi Tel: 91-11-5160-8631 Fax: 91-11-5160-8632

日本 **Japan - Kanagawa** Tel: 81-45-471- 6166 Fax: 81-45-471-6122

**韩国 Korea - Seoul** Tel: 82-2-554-7200 Fax: 82-2-558-5932 或 82-2-558-5934

马来西亚 Malaysia - Penang Tel:011-604-646-8870 Fax:011-604-646-5086

菲律宾 **Philippines - Manila** Tel: 011-632-634-9065 Fax: 011-632-634-9069

新加坡 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

#### 欧洲

奥地利 Austria - Weis Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

丹麦 **Denmark - Ballerup** Tel: 45-4450-2828 Fax: 45-4485-2829

法国 France - Massy Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

德国 Germany - Ismaning Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

意大利 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

荷兰 **Netherlands - Drunen** Tel: 31-416-690399 Fax: 31-416-690340

英国 England - Berkshire Tel: 44-118-921-5869 Fax: 44-118-921-5820

04/20/05