Clause Features for Theorem Prover Guidance

Jan Jakubův¹ Josef Urban¹
AITP'19, Obergurgl, Austria, April 2019

¹Czech Technical University in Prague, Czech Republic

Outline

Introduction: ATPs & Given Clauses

Enigma: The story so far...

Enigma: What's new?

Experiments: Hammering Mizar

Outline

Introduction: ATPs & Given Clauses

Enigma: The story so far...

Enigma: What's new?

Experiments: Hammering Mizar

Saturation-style ATPs

- Represent axioms and conjecture in First-Order Logic (FOL).
- $T \vdash C$ iff $T \cup \{\neg C\}$ is unsatisfiable.
- Translate $T \cup \{\neg C\}$ to clauses (ex. " $x = 0 \lor \neg P(f(x, x))$ ").
- Try to derive a contradiction.

Basic Loop

```
Proc = \{\}
Unproc = all available clauses
while (no proof found)
   select a given clause C from Unproc
  move C from Unproc to Proc
   apply inference rules to C and Proc
  put inferred clauses to Unproc
```

Clause Selection Heuristics in E Prover

- E Prover has several pre-defined clause weight functions.
 (and others can be easily implemented)
- Each weight function assigns a real number to a clause.
- Clause with the smallest weight is selected.

E Prover Strategy

- E strategy = E parameters influencing proof search (term ordering, literal selection, clause splitting, ...)
- Weight function gives the priority to a clause.
- Selection by several priority queues in a round-robin way

```
(10 * ClauseWeight1(10,0.1,...),
    1 * ClauseWeight2(...),
    20 * ClauseWeight3(...))
```

Outline

Introduction: ATPs & Given Clauses

Enigma: The story so far...

Enigma: What's new?

Experiments: Hammering Mizar

Machine Learning of Given Clause

- Idea: Use machine learning methods to guide E prover.
- Analyze successful proof search to obtain training samples.
- positives: processed clauses used in the proof
- negatives: other processed clauses

Enigma Basics

- Idea: Use fast linear classifier to guide given clause selection!
- ENIGMA stands for...

Enigma Basics

- Idea: Use fast linear classifier to guide given clause selection!
- ENIGMA stands for...

Efficient learNing-based Inference Guiding MAchine

LIBLINEAR: Linear Classifier

- LIBLINEAR: open source library¹
- input: positive and negative examples (float vectors)
- output: model (∼ a vector of weights)
- evaluation of a generic vector: dot product with the model

¹http://www.csie.ntu.edu.tw/~cjlin/liblinear/

Consider the literal as a tree and simplify (sign, vars, skolems).

Features are descending paths of length 3 (triples of symbols).

Collect and enumerate all the features. Count the clause features.

#	feature	count
1	(⊕,=,a)	0
:	:	:
•		•
11	(⊕,=,f)	1
12	(⊕,=,g)	1
13	(=,f,⊛)	2
14	(=,g,⊙)	2
15	(g,⊙,⊛)	1
:	:	:

Take the counts as a feature vector.

#	feature	count
1	(⊕,=,a)	0
:	:	:
•	·	•
11	(⊕,=,f)	1
12	(⊕,=,g)	1
13	(=,f,*)	2
14	(=,g,⊙)	2
15	(g,⊙,⊛)	1
:	:	:

Horizontal Features

Function applications and arguments top-level symbols.

#	feature	count
1	(⊕,=,a)	0
:	:	:
100	=(f,g)	1
101	$f(\circledast,\circledast)$	1
102	$g(\odot,\odot)$	1
103	⊙(⊛)	1
:	:	:

Static Clause Features

For a clause, its length and the number of pos./neg. literals.

#	feature	count/val
103	⊙(⊛)	1
:	:	:
200	len	9
201	pos	1
202	neg	0
:	:	:

Static Symbol Features

For each symbol, its count and maximum depth.

#	feature	count/val
202	neg	0
:	:	:
	•	
300	$\#_{\oplus}(f)$	1
301	# _⊖ (f)	0
:	:	:
310	% _⊕ (⊛)	4
311	% _⊖ (∗)	0
:	:	:

Static Symbol Features

For each symbol, its count and maximum depth.

#	feature	count/val
202	neg	0
:	:	:
•	•	•
300	#⊕(<i>f</i>)	1
301	# _⊖ (f)	0
:	:	:
310	% ⊕(*)	4
310	/ 0 ⊕(⊛)	т
311	%⊖(⊛)	0
:	:	:

Enigma Model Construction

- 1. Collect training examples from E runs (useful/useless clauses).
- 2. Enumerate all the features (π :: feature \rightarrow int).
- 3. Translate clauses to feature vectors.
- 4. Train a LIBLINEAR classifier ($w :: float^{|dom(\pi)|}$).
- 5. Enigma model is $\mathcal{M} = (\pi, w)$.

Conjecture Features

- ullet Enigma classifier ${\mathcal M}$ is independent on the goal conjecture!
- Improvement: Extend Φ_C with goal conjecture features.
- Instead of vector Φ_C take vector (Φ_C, Φ_G) .

Given Clause Selection by Enigma

We have Enigma model $\mathcal{M}=(\pi,w)$ and a generated clause C.

- 1. Translate C to feature vector Φ_C using π .
- 2. Compute prediction:

$$\mathsf{weight}(C) = \begin{cases} 1 & \mathsf{iff} \ w \cdot \Phi_C > 0 \\ 10 & \mathsf{otherwise} \end{cases}$$

Enigma Given Clause Selection

- We have implemented Enigma weight function in E.
- ullet Given E strategy ${\mathcal S}$ and model ${\mathcal M}$.
- Construct new E strategy:
- \bullet $\mathcal{S}\odot\mathcal{M}:$ Use \mathcal{M} as the only weight function:

$$(1 * Enigma(\mathcal{M}))$$

• $S \oplus M$: Insert M to the weight functions from S:

```
(23 * Enigma(M),
3 * StandardWeight(...),
20 * StephanWeight(...))
```

Outline

Introduction: ATPs & Given Clauses

Enigma: The story so far...

Enigma: What's new?

Experiments: Hammering Mizar

XGBoost Tree Boosting System

- Idea: Use decision trees instead of linear classifier.
- Gradient boosting library XGBoost.²
- Provides C/C++ API and Python (and others) interface.
- Uses exactly the same training data as LIBLINEAR.
- We use the same Enigma features.
- No need for training data balancing.

²http://xgboost.ai

XGBoost Models

- An XGBoost model consists of a set of decision trees.
- Leaf scores are summed and translated into a probability.

Feature Hashing

- With lot of training samples we have lot of features.
- LIBLINEAR/XGBoost can't handle too long vectors ($> 10^5$).
- Why? Input too big... Training takes too long...
- Solution: Reduce vector dimension with feature hashing.
- Encode features by strings and ...
- ... use a general purpose string hashing function.
- Values are summed in the case of a collision.

Outline

Introduction: ATPs & Given Clauses

Enigma: The story so far...

Enigma: What's new?

Experiments: Hammering Mizar

Experiments: Hammering Mizar

- MPTP: FOL translation of selected articles from Mizar Mathematical Library (MML).
- Contains 57880 problems.
- Small versions with (human) premise selection applied.
- ullet Single good-performing E strategy ${\mathcal S}$ fixed.
- All strategies evaluated with time limit of 10 seconds.

Solved problems: one looping iteration

- Decision trees depth = 9.
- ullet \mathcal{M}^0 is trained on problems solved by $\mathcal{S}.$
- \mathcal{M}^n (n > 0) is trained on problems solved by \mathcal{S} and $\mathcal{S} \odot \mathcal{M}^i$ (for all i < n) and $\mathcal{S} \oplus \mathcal{M}^i$ (for all i < n).

	\mathcal{S}	$\mathcal{S}\odot\mathcal{M}^0$	$\mathcal{S} \oplus \mathcal{M}^0$	$\mathcal{S}\odot\mathcal{M}^1$	$\mathcal{S} \oplus \mathcal{M}^1$
solved	14933	16574	20366	21564	22839
$\mathcal{S}\%$	+0%	+10.5%	+35.8%	+43.8%	+52.3%
$\mathcal{S}+$	+0	+4364	+6215	+7774	+8414
$\mathcal{S}-$	-0	-2723	-782	-1143	-508

Solved problems: more loops

	\mathcal{S}	$\mathcal{S} \oplus \mathcal{M}^0$	$\mathcal{S} \oplus \mathcal{M}^1$	$\mathcal{S} \oplus \mathcal{M}^2$	$\mathcal{S} \oplus \mathcal{M}^3$
solved	14933	20366	22839	23467	23753
$\mathcal{S}\%$	+0%	+35.8%	+52.3%	+56.5%	+58.4
$\mathcal{S}+$	+0	+6215	+8414	+8964	+9274
$\mathcal{S}-$	-0	-782	-508	-430	-454

Solved problems: deeper trees

- Increase tree depth to 12 and 16.
- Train the model on the same data as \mathcal{M}^3 .

	$\mathcal{S}\odot\mathcal{M}^3_{12}$	$\mathcal{S} \oplus \mathcal{M}^3_{12}$	$\mathcal{S}\odot\mathcal{M}_{16}^3$	$\mathcal{S} \oplus \mathcal{M}^3_{16}$
solved	24159	24701	25100	25397
$\mathcal{S}\%$	+61.1%	+64.8%	+68.0%	+70.0%
$\mathcal{S}+$	+9761	+10063	+10476	+10647
$\mathcal{S}-$	-535	-295	-309	-183

Training Statistics: different tree depths

- 1.8 M features (hashed to 2¹⁵).
- Vector dimension is 2¹⁶.
- Input trains file is 38 GB
- ullet ... and contains 63 M training samples (4.2M pos imes 59M neg)
- ... with 5000 M non-zero values (density 0.1%).

depth	error	real time	CPU time	size (MB)	speed
9	0.201	2h41m	4d20h	5.0	5665.6
12	0.161	4h12m	8d10h	17.4	4676.9
16	0.123	6h28m	11d18h	54.7	3936.4

Thank you.

Questions?