CÁLCULO 1

Prof. Dr. Milton Kist

Universidade Federal da Fronteira Sul Curso: Ciência da Computação UFFS – Câmpus Chapecó milton.kist@uffs.edu.br

Limites – Noção Intuitiva

Objetivo: Dada a função y=f(x), verificar qual o comportamento da função quando a variável independente x se aproxima de um valor específico a.

Nesta sessão vamos apresentar os conceitos que envolvem limites de uma função, bem como os métodos de calculá-los.

Limites - Noção Intuitiva

Exemplo 1:

Qual o comportamento da função $F(x)=x^2-x+4$ quando a variável x se aproxima do valor 2 ?

F(x)	5,71	5,9701	5,997001	6	6,003001	6,0301	6,31
X	1,9	1,99	1,999	2	2,001	2,01	2,1

Limites - Noção Intuitiva

Graficamente, quando x se aproxima de 2 a imagem da função se aproxima de 6.

Limites – Noção Intuitiva

Indicamos por:

$$\lim_{x \to 2} (x^2 - x + 4) = 6$$

Limites - Noção Intuitiva

Exemplo 2: Qual o comportamento da função *F(x)* quando a variável *x* se aproxima do valor "**0**"?

$$F(x) = \frac{x}{\sqrt{x+1}-1}$$

F(x)	1,9486	1,99498	1,999499	? → ←	2,0004998	2,004987	2,04880
X	-0,1	-0,01	-0,001	0	0,001	0,01	0,1

Limites – Noção Intuitiva

Indicamos por:

$$\lim_{x \to 0} \frac{x}{\sqrt{x+1}-1} = 2$$

Limites - Noção Intuitiva

Exemplo 3: Qual o comportamento da função *F(x)* quando a variável *x* se aproxima do valor "**0**"?

$$F(x) = \frac{sen(x)}{x}$$

F(x)	0,99833	0,999983	0,99999983	?	0,99999983	0,999983	0,99833
X	-0,1	-0,01	0,001	0	0,001	0,01	0,1

Limites – Noção Intuitiva

Indicamos por:

$$\lim_{x\to 0} f(x) = 1$$

Limites - Noção Intuitiva

Exemplo 4: Qual o comportamento da função *F(x)* quando a variável *x* se aproxima do valor "**0**"?

$$F(x) = sen \frac{1}{x}$$

F(x)	0	0	0	?	0	0	0
X	-0,1	-0,01	-0,001	0	0,001	0,01	0,1

Limites – Noção Intuitiva

Neste caso:

$$\lim_{x\to 0} f(x) = 0 ?$$

Limites – Noção Intuitiva

$$\lim_{x\to 0} f(x) = \text{não existe}$$

Definição Suponha que f(x) seja definido quando está próximo ao número a. (Isso significa que f é definido em algum intervalo aberto que contenha a, exceto possivelmente no próprio a.) Então escrevemos

$$\lim_{x \to a} f(x) = L$$

e dizemos "o limite de f(x), quando x tende a a, é igual a L"

se pudermos tornar os valores de f(x) arbitrariamente próximos de L (tão próximos de L quanto quisermos), tornando x suficientemente próximo de a (por ambos os lados de a), mas não igual a a.

De uma maneira formal, temos:

Seja f(x) definida num intervalo aberto I, contendo a, exceto, possivelmente, no próprio a. Dizemos que o limite de f(x) quando x aproxima-se de a é L e escrevemos

$$\lim_{x\to a}f(x)=L$$

se, para todo $\varepsilon > 0$, existe um $\delta > 0$, tal que $|f(x) - L| < \varepsilon$ sempre $0 < |x - a| < \delta$.

Ilustração gráfica da definição formal de limite

$$\lim_{x \to a} f(x) = L$$

Interpretação do conceito de limite

$$\lim_{x \to c} f(x) = L$$

Interpretação do conceito de limite

Existe
$$\lim_{x\to 2} f(x)$$

P1) O limite da função identidade f(x) = x, quando x tende a "a", é igual a "a".

$$\lim_{x \to a} x = a$$

Exemplo:
$$\lim_{x \to 3} x = 3$$

P2) O limite de uma função constante f(x) = K, quando x tende a "a", é igual a própria constante:

$$\lim_{x \to a} K = K$$

Exemplo:
$$\lim_{x\to 2} 4 = 4$$

P3) O limite da soma é igual a soma dos limites (caso esses limites existam):

$$\lim_{x \to a} [f(x) + g(x)] = \lim_{x \to a} f(x) + \lim_{x \to a} g(x)$$

$$\lim_{x \to 2} (x^2 + 3x + 5) = \lim_{x \to 2} x^2 + \lim_{x \to 2} 3x + \lim_{x \to 2} 5 = \lim_{x \to 2} x^2 + 3\lim_{x \to 2} x + \lim_{x \to 2} 5 = 2^2 + 3 \cdot 2 + 5 = 15$$

P4) O limite da diferença é igual a diferença dos limites (caso esses limites existam):

$$\lim_{x \to a} [f(x) - g(x)] = \lim_{x \to a} f(x) - \lim_{x \to a} g(x)$$

$$\lim_{x \to 2} (2x^2 - x) = \lim_{x \to 2} 2x^2 - \lim_{x \to 2} x$$

$$2\lim_{x \to 2} x^2 - \lim_{x \to 2} x = 2 \cdot 2^2 - 2 = 6$$

P5) O limite do produto é igual ao produto dos limites (caso esses limites existam):

$$\lim_{x \to a} [f(x).g(x)] = \lim_{x \to a} f(x).\lim_{x \to a} g(x)$$

$$\lim_{x \to 3} (x^2) = \lim_{x \to 3} x.x = \lim_{x \to 3} x. \lim_{x \to 3} x = 3.3 = 9$$

P6) O limite do quociente é igual ao quociente dos limites (caso esses limites existam):

$$\lim_{x \to a} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to a} f(x)}{\lim_{x \to a} g(x)}$$

$$\lim_{x \to 3} \left[\frac{x - 5}{x^3 - 7} \right] = \frac{\lim_{x \to 3} (x - 5)}{\lim_{x \to 3} (x^3 - 7)} = \frac{3 - 5}{27 - 7} = \frac{-1}{10}$$

P7) O limite da raiz de uma função, é a raiz do limite da função, se o limite existe e é maior ou igual a zero:

$$\lim_{x \to a} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to a} f(x)}$$

$$\lim_{x \to -2} \sqrt{x^4 - 4x + 1} = \sqrt{\lim_{x \to -2} (x^4 - 4x + 1)} = \sqrt{(-2)^4 - 4(-2) + 1} = 5$$

Teorema: Se $f(x) \le h(x) \le g(x)$ para todo x em um intervalo aberto contendo a, exceto possivelmente em x=a, e se:

$$\lim_{x \to a} f(x) = L = \lim_{x \to a} g(x)$$

Então,

$$\lim_{x \to a} h(x) = L$$

Exemplo 1: Se $|f(x)| \le x^4$, então $\lim_{x \to 0} \frac{f(x)}{x^2} = 0$

De fato, se $|f(x)| \le x^4$, então: $-x^4 \le f(x) \le x^4$.

Multiplicando por $(\frac{1}{x^2})$, obtemos: $-x^2 \le \frac{f(x)}{x^2} \le x^2$

Pelo teorema do confronto: $\lim_{x\to 0} -x^2 \le \lim_{x\to 0} \frac{f(x)}{x^2} \le \lim_{x\to 0} x^2$

$$0 \le \lim_{x \to 0} \frac{f(x)}{x^2} \le 0 \qquad \therefore \lim_{x \to 0} \frac{f(x)}{x^2} = 0$$

Exemplo 2: Mostre que $\lim_{x\to 0} x^2 * sen(\frac{1}{x}) = 0$

Algebricamente: Para x≠0,

$$-1 \le sen(\frac{1}{x}) \le 1$$

Multiplicando por x^2 , obtemos:

$$-x^2 \leq x^2 sen \frac{1}{x} \leq x^2$$

Aplicando o Teorema do Confronto:

$$\lim_{x \to 0} -x^2 \le \lim_{x \to 0} x^2 sen \frac{1}{x} \le \lim_{x \to 0} x^2$$

$$\Rightarrow \lim_{x \to 0} x^2 sen \frac{1}{x} = 0$$

Objetivo: Dada a função y = f(x), queremos verificar qual é o comportamento da função quando a variável independente x se aproxima de um valor **a** pela esquerda e pela direita.

Simbolicamente:

$$\lim_{x \to a^{-}} f(x)$$

$$\lim_{x \to a^+} f(x)$$

Definição Escrevemos

$$\lim_{x \to a^{-}} f(x) = L$$

e dizemos que o limite à esquerda de f(x) quando x tende a a [ou o limite d ef (x) quando x tende a a pela esquerda] é igual a L se pudermos tornar os valores de f(x) arbitrariamente próximos de L, para x suficientemente próximo de a e x menor que a.

De maneira semelhante, se exigirmos que x seja maior que a, obtemos "o **limite a direita de** f(x) **quando** x **tende ao** a" e se este limite for igual a L, escrevemos

$$\lim_{x \to a^+} f(x) = L$$

Dessa forma:

- (a) o símbolo " $x \rightarrow a^{-}$ " indica que estamos considerando somente x < a;
- (b) o símbolo " $x \rightarrow a^{+}$ " indica que estamos considerando somente x > a.

Essas definições estão ilustradas na Figura 9.

(a)
$$\lim_{x \to a^{-}} f(x) = L$$

(b)
$$\lim_{x \to a^{+}} f(x) = L$$

Comparando as definições de limite de uma função num ponto e os limites laterais de uma função num ponto, chegamos a seguinte conclusão:

$$\lim_{x \to a} f(x) = L \quad \text{se e somente se} \quad \lim_{x \to a^{-}} f(x) = L \quad \text{e} \quad \lim_{x \to a^{+}} f(x) = L$$

Exemplo 1: Analise se o seguinte limite existe

$$\lim_{x\to 0}\frac{|x|}{x}$$

Limite a esquerda no ponto zero "0"

$$\lim_{x \to 0^{-}} \frac{|x|}{x} = -1$$

Limite a direita no ponto zero "0"

$$\lim_{x \to 0^+} \frac{|x|}{x} = 1$$

Vamos analisar o limite o ponto zero "0"

$$\lim_{x \to 0} \frac{|x|}{x} = \text{não existe}$$

O gráfico de uma função *g* é apresentado na Figura abaixo. Use-o para estabelecer os valores (caso existam) dos seguintes limites:

(a)
$$\lim_{x \to 2^{-}} g(x)$$

(b)
$$\lim_{x \to 2^+} g(x)$$

(c)
$$\lim_{x\to 2} g(x)$$

(d)
$$\lim_{x \to 5^{-}} g(x)$$

(e)
$$\lim_{x \to 5^+} g(x)$$

(f)
$$\lim_{x\to 5} g(x)$$

