

WQD7005 DATA MININGI/2023/2024

Final exam

Student Name	Student Matric Number
DONG XUE YING	22074835

Dataset:

Customer ID	Unique identifier for each customer.
Gender	Gender of customer
Age	age of the customer
City	Customer's city location
Membership Type	Indicates the membership level (Bronze, Silver, Gold)
Favorite Category	Customer's favorite product category
Total Spend	Total customer expenditure
Items Purchased	Number of items purchased per customer
Average Rating	Average rating of product, service or experience
Discount Applied	Whether discounts are applied
Days Since Last Purchase	Time since customer's last purchase
churn	Indicates whether customers are lost
Satisfaction Level	Customer satisfaction with products and services

Data Preprocessing in talent data preparation

1. Import dataset into talend data preparation.

2. Using taland, add a 'churn' column

First, use the compare rule to set the compare mode to lower than and the value to 30; second, use replace the cells that match to replace 'true' with '0' and 'false' with '1'.

The above figure shows the histogram and box plot of the 'Days since Last Purchase' attribute, from these plots it can be observed that the number of active days is concentrated in the range of 15-38, with a median of 23. The Compare Numbers function is used to evaluate whether the customer is greater than 30 or not, and then convert the value from 'true' to '0' for no churn and 'false' to '1' for churn.

3. Handle missing value by removing vacant values from the data set.

4. Adding a 'favorite category' column

Based on Gender, City, and Membership Type, set up a purchase product type categorization rule, and configure Favorite Category variables for each attribute.

Gender	City	Membership Type	Favorite Category
Male	New York	Gold	Electronics
Female	New York	Gold	Apparel
Male	Los Angeles	Gold	Leisure
Female	Los Angeles	Gold	Health & Beauty
Male	San Francisco	Gold	Electronics
Female	San Francisco	Gold	Apparel
Male	Chicago	Gold	Home Goods
Female	Chicago	Gold	Apparel
Male	Miami	Gold	Leisure
Female	Miami	Gold	Health & Beauty
Male	Houston	Sliver	Home Goods
Female	Houston	Sliver	Apparel
Male	New York	Sliver	Electronics
Female	New York	Sliver	Apparel
Male	Los Angeles	Sliver	Leisure
Female	Los Angeles	Sliver	Health & Beauty
Male	San Francisco	Sliver	Electronics
Female	San Francisco	Sliver	Home Goods
Male	Chicago	Sliver	Home Goods
Female	Chicago	Sliver	Apparel
Male	Miami	Sliver	Leisure

Female	Miami	Sliver	Health & Beauty
Male	Houston	Sliver	Home Goods
Female	Houston	Sliver	Apparel
Male	New York	Bronze	Electronics
Female	New York	Bronze	Apparel
Male	Los Angeles	Bronze	Leisure
Female	Los Angeles	Bronze	Health & Beauty
Male	San Francisco	Bronze	Electronics
Female	San Francisco	Bronze	Home Goods
Male	Chicago	Bronze	Home Goods
Female	Chicago	Bronze	Apparel
Male	Miami	Bronze	Leisure
Female	Miami	Bronze	Health & Beauty
Male	Houston	Bronze	Electronics
Female	Houston	Bronze	Apparel

The final four appropriate types are: Apparel, Leisure, Health & Beauty, and Electronics.

Data Import and Preprocessing: Import your dataset into SAS Enterprise Miner, handle missing values, and specify variable roles.

1. Create new diagram, Create new diagram

2. Import dataset into SAS Enterprise Miner

3. specify variable roles, Set Total spend to target and customer id to ID.

Name	Role	Level	Report	Order	Drop	Lower Limit	Upper Limit
Age	Input	Interval	No		No		
Average_R	aInput	Interval	No		No		
City	Input	Nominal	No		No	-	
Customer_	IIID	Interval	No		No		
Days_Sinc	e Input	Interval	No		No		
Days_Sinc		Interval	No		No		
Discount_	AlInput	Interval	No		No		
Favorite_	CInput	Nominal	No		No		
Gender	Input	Nominal	No		No		
Items_Pur	clInput	Interval	No		No	-	
Membershi	Input	Nominal	No		No		
Satisfact	Input	Nominal	No		No		
Total_Spe	Target	Interval	No	16	No		
churn	Input	Interval	No		No		

4. Handling of outliers

Use the 'filter' node to query and remove outliers

Run the node and find an outlier in the data.

The Excluded Class Values is ': "HEALTH & BEAUTY" in "Favorite_Category", indicating that this outlier has been excluded.

Decision Tree Analysis: Create a decision tree model in SAS Enterprise Miner to analyse customer behaviour.

1. Using the Data Partitioning node

For model training and evaluation, the dataset is divided into 60% training set and 40% validation

set using Data Partitioning node. The purpose of this allocation is to fully utilize the data to train the model.

The training set accounts for 60% of the overall data, providing enough data for model learning and training. The validation set accounts for 40% of the overall data and is used to evaluate the performance of the model.

1. Creating a Decision Tree

Setting the target variable, The total spend was set as the target variable to analyze the key factors affecting the total spend amount.

Adding Decision Tree Nodes

This decision tree is the original tree, set the attribute 'Total spend' as the target variable

- From the decision tree, we can find that 'membership type' is the biggest factor that affects 'Total spend', when the variable is gold, the total spend is higher; when the variable is When the variable is GOLD, the total spend is more; when the variable is SILVER, BRONZE, the total spend is less.
- With GOLD as the node, the amount of total spend is higher when 'discount applied' <0.5 (0: no discount); 'discount applied' >0.5 (1: with discount), the total amount spent is less.
- SILVER, BRONZE are the second most influential factors. Using sliver, bronze as a node, the total amount spent is higher when the customer class is 'sliver' and lower when it is 'bronze'.
- All other variables have an impact on total spend, but to a lesser extent.

Ensemble Methods: Apply Bagging and Boosting, using the Random Forest algorithm as a Bagging example.

Use sample to randomly sample the data at 70%; add decision tree nodes after each given sample and connect all these decision trees to ensemble, run ensemble to see the fit of the model.

Run ensemble node

Fit			
Statistics	Statistics Label	Train	
ASE	Average Squared Error	98.03	
DIV	Divisor for ASE	146.00	
MAX	Maximum Absolute Error	46.24	
NOBS	Sum of Frequencies	146.00	
RASE	Root Average Squared Error	9.90	
SSE	Sum of Squared Errors	14313.04	

The ASE is 98.03, the maximum absolute error is 46.24, the root mean squared error RASE is 9.90, while the overall sum of squared errors SSE is 14313.04. This indicates that the overall prediction error of the model is relatively small and on average the predicted values of the model are closer to the actual values.

	Number of	Mean	Mean
Depth	Observations	Target	Predicted
5	9	1491.21	1491.21
10	10	1461.50	1461.50
15	5	1416.44	1416.44
20	9	1194.13	1194.13
25	6	1180.80	1180.80
30	15	1144.51	1144.51
40	16	817.76	817.76
50	8	790.20	790.20
55	8	711.65	711.65
60	6	692.18	692.18
65	6	668.63	668.63
70	5	523.47	523.47
75	12	508.67	508.67
80	12	484.42	484.42
90	8	465.50	465.50
95	11	441.77	441.77

The values of depth range from 5 to 95, and the equal values of Mean Predicted and Mean Target indicate a good model fit.

Using Gradient Boosting Nodes

Combining decision tree predictions will iteratively fit weak learners to the residuals of previous iterations, gradually improving the overall model performance. To create a predictive model

0bs	NAME	LABEL	NRULES	IMPORTANCE	VIMPORTANCE	RATIO
1	Items_Purchased		54	1.00000	1.00000	1.00000
2	Average_Rating		18	0.37267	0.35246	0.94579
3	Days_Since_Last_Purchase		25	0.23094	0.22043	0.95448
4	City	City	20	0.21136	0.20469	0.96846
5	Satisfaction_Level		6	0.19934	0.19391	0.97277
6	Age	Age	7	0.14612	0.13560	0.92806
7	Customer ID		5	0.02148	0.00058	0.02690

Items_Purchased:NRULES: 54, IMPORTANCE: 1.00000, VIMPORTANCE: 1.00000, RATIO (Relative Importance to the Most Important Variable): 1.00000, Since Items_ Purchased has the highest IMPORTANCE and VIMPORTANCE, it is the most important variable in the model. This indicates that the number of items purchased plays a key role in the decision making of the model.

Average_Rating:NRULES: 18, IMPORTANCE: 0.37267, VIMPORTANCE: 0.35246, RATIO: 0.94579, Average_Rating has a relatively high importance in the model, but its importance is low compared to Items Purchased.

Days_Since_Last_Purchase: NRULES: 25, IMPORTANCE: 0.23094, VIMPORTANCE: 0.22043, RATIO: 0.95448, Days_Since_Last_Purchase also contributes to the model's predictions, but is relatively low.

City: NRULES: 20, IMPORTANCE: 0.21136, VIMPORTANCE: 0.20469, RATIO: 0.96846, City is an important feature in the model and has an impact on the prediction goal.

Satisfaction_Level:NRULES: 6, IMPORTANCE: 0.19934

VIMPORTANCE: 0.19391, RATIO: 0.97277, Satisfaction_Level also has some impact on the output of the model and its importance is high.

Age:NRULES: 7, IMPORTANCE: 0.14612, VIMPORTANCE: 0.13560

RATIO: 0.92806, Age contributes to the prediction of the model but is relatively not the most

important variable.

Assessm	ent Score Rankin	gs		100000000000000000000000000000000000000	ranganira ing pagamang pagamang na pag		=Total_Spend Target Label=Total :	•
Data Ro	le=TRAIN Target	Variable=To	tal_Spend Target Label=Total Spend		Number of	Mean	Mean	
			40 110 T T T T T T T T T T T T T T T T T	Depth	Observations	Target	Predicted	
	Number of	Mean	Mean					
Depth	Observations	Target	Predicted	5	8	1488.90	1468.38	
				10	9	1483.61	1463.56	
5	12	1476.93	1469.45	15	4	1405.35	1429.44	
10	13	1475. 73	1463. 83	20	7	1320.34	1354.18	
15	7	1431.86	1438.05	25	7	1189.37	1180.21	
20	12	1188.30	1205.30	30	10	1148.48	1135.69	
25	13	1160.63	1153.51	35	5	824.81	823.92	
30	6	1147.17	1141.72	40	6	799.00	804.10	
35	10	1112.53	1106.91					
40	16	820.86	820. 78	45	7	790.30	794. 70	
45	7	807.94	803.85	50	9	793.57	793.14	
50	8	790. 20	793. 89	55	5	706.40	710.69	
55	14	708.97	710. 36	60	7	699.03	706.80	
60	7	691.99	693.02	65	7	674.63	674.45	
65	17	585. 24	584.66	70	9	671.41	669.56	
70	7	505. 75	508. 25	75	8	500.00	508.61	
75	13	497.25	496. 97	80	5	497.38	497.03	
80	5	497.31	496.65	85	6	498.72	496.65	
85 90	16	469.19	468. 76	90	9	466.62	461.26	
95	5 11	458.50 438.99	454. 31 451. 08	95	7	436.53	450.97	
100	9	438.99	49.73	100	4	430.83	450.07	

Based on the results of the evaluation score ranking, the performance of the model on TRAIN and VALIDATE can be observed for different Depths. In the training set, when the depth is 5 and 10, the model performs better and the predicted values are less different from the actual values. However, as the depth increases, the performance of the model on the training set becomes progressively worse and overfitting occurs, which is manifested as an overfitting to the training set and a relatively poor performance on the validation set. In the validation set, the model also performs better at depths of 5 and 10, but after a depth of 15, the model's performance gradually deteriorates.