2301482 Queueing Theory

2301482 ทฤษฎีคิว

- 1. ทฤษฎีคิวคืออะไร
- 2. ตัวอย่างของตัวแบบคิว
- 3. เนื้อหาที่เรียน
- 4. ตัวอย่างข้อสอบ

- ทฤษฎีคิว = การวิเคราะห์ทางคณิตศาสตร์กับระบบที่การ ปรากฎและขนาดของแถวคอยอธิบายได้ด้วยความน่าจะ เป็น
 - เป็นสาขาหนึ่งของการประยุกต์ทฤษฎีความน่าจะเป็น
 - ชื่อที่ปรากฏ traffic theory, congestion theory, the theory of mass service, the theory of stochastic service system

ตัวอย่างเช่น ระบบโทรศัพท์บ้าน ระบบจราจร ณ แยกหนึ่ง แยก ระบบการใช้งานเครือข่าย ระบบการประมวลผลภายใน คอมพิวเตอร์ที่มีการประมวลผลหลายซีพียุ

นามธรรมของคิว

Servers

Queueing system

ทฤษฎีคิวตอบคำถาม

- ปริมาณโดยเฉลี่ยของผู้ใช้คู่สาย ณ เวลาใด ๆ
- สัดส่วนของผู้โทรที่ไม่สามารถติดต่อได้เนื่องจากสายไม่ว่าง
- ปริมาณโดยเฉลี่ยรถแท็กซี่ที่อยู่บนถนนของกรุงเทพ ๆ ณ วันหนึ่ง ๆ
- ปริมาณเตียงผู้ป่วยของโรงพยาบาลที่ควรมี ทฤษฎีคิวสนใจ
- ตัวอย่างเช่น ระบบโทรศัพท์บ้าน
- เป็นระบบที่เชื่อมโยงการสื่อสารระหว่างลูกค้าต่างสถานที่
- เป็นระบบที่ใช้การเชื่อมต่อร่วมกันของคนในสังคม

ทฤษฎีคิว ตัวอย่าง

• การสื่อสารผ่านการเชื่อมต่อระหว่างสองเมือง

แนวคิดการวิเคราะห์

• การสื่อสารผ่านการเชื่อมต่อระหว่างสองเมือง

- ullet j < s.อัตราการเปลี่ยนสถานะจาก ${
 m E}_{_{i}}
 ightarrow {
 m E}_{_{i+1}}$ คำนวณได้เป็น $\lambda P_{_{i}}$
- ullet j = s: เนื่องจากสถาน E_{s+1} ไม่เกิดขึ้นแน่ ๆ ดังนั้นอัตราการเปลี่ยน สถานะจาก $E_{\varsigma}
 ightarrow E_{\varsigma+1}$ คือ 0
- สรุปได้ว่า

rate of
$$E_j \rightarrow E_{j+1} = \begin{cases} \lambda P_j & \text{if } j = 0, 1, ..., s-1 \\ 0 & \text{Otherwise} \end{cases}$$

สร้างระบบสมการ

- ullet อัตราการเปลี่ยนสถานะจาก $\mathbf{E}_{j+1} oldsymbol{
 ightarrow} \mathbf{E}_{j}$
- ullet เวลาเฉลี่ยที่ถูกใช้ (ระยะเวลาเฉลี่ยที่ผู้โทรใช้บริการ) คือ au
 - ullet ถ้าคู่สายแรกไม่ว่าง จำนวนครั้งที่ผู้โทรใช้บริการเสร็จในช่วง $oldsymbol{ au}$ คือ 1 กล่าว ได้ว่าอัตราการเลิกใช้บริการของหนึ่งการโทรคือ 1/ $oldsymbol{ au}$
 - ในทำนองเดียวกัน ถ้ามีสองสายกำลังใช้บริการอยู่ จำนวนครั้งที่ผู้โทรใช้ บริการเสร็จในช่วง $m{ au}$ คือ 2 กล่าวได้ว่าอัตราการเลิกใช้บริการของสองการ โทรคือ $2/m{ au}$
 - ullet ด้วยเหตุผลเดียวกัน อัตราการเลิกใช้บริการของ j+1 การโทรคือ (j+1)/au
- ullet เนื่องจากสถานะ E_{j+1} มีโอกาสเกิด \mathbf{P}_{j+1} ได้ว่า $\mathbf{E}_{j+1} o \mathbf{E}_j$ คือ $(j+1) au^{-1}P_j$

หลักอนุรักษ์การไหล

- จากหลักอนุรักษ์การไหล ณ ภาวะสมดุล
- สำหรับดัชนี*j*
 - ullet อัตราการเปลี่ยนขึ้น $\mathbf{E}_j o \mathbf{E}_{j+1}$ ต้องเท่ากับอัตราการเปลี่ยน av $\mathbf{E}_{j+1} o \mathbf{E}_j$
 - สมการในภาวะสมดุลย์เชิงสถิติคือ

$$\lambda P_{j} = (j+1) \tau^{-1} P_{j+1}, (j=0,1,...,s-1)$$

 ullet กลุ่มของสมการดังกล่าวหาผลเฉลยได้ในเทอมของ $P_{_0}$ คือ

$$P_{j} = \frac{(\lambda \tau)^{j}}{j!} P_{0}(j=1,2,...,s)$$

หลักอนุรักษ์การไหล

• ได้ว่า

$$P_0 = \left(\sum_{k=0}^{s} \frac{(\lambda \tau)^k}{k!} P_0\right)^{-1}$$

- ullet สำหรับดัชนีj
 - ullet สัดส่วนของ $\mathbf{P}_{_{_{I}}}$ ที่ j คู่สายไม่ว่างคือ

$$P_{j} = \frac{(\lambda \tau)^{j} / j!}{\sum_{k=0}^{s} (\lambda \tau)^{k} / k!} (j=0,1,2,...,s)$$

- ullet ข้อสังเกตุ การคำนวณค่า P_j จะขึ้นกับอัตราการเข้ารับบริการ λ และเวลา เฉลี่ยที่ใช้บริการ ${oldsymbol{ au}}$
- ullet และอยู่ในรูปของผลคูณระหว่าง λau เป็นค่าวัดความต้องการของระบบเรียก โหลดเสนอ (offered load) ใช้สัญลักษณ์ $a=\lambda au$ ค่าดังกล่าวมีหน่วยเป็น เออร์แลง (erlang)

หลักอนุรักษ์การไหล

• ได้ว่า

$$P_0 = \left(\sum_{k=0}^{s} \frac{(\lambda \tau)^k}{k!} P_0\right)^{-1}$$

- ullet สำหรับดัชนีj
 - ullet สัดส่วนของ $\mathbf{P}_{_{_{I}}}$ ที่ j คู่สายไม่ว่างคือ

$$P_{j} = \frac{(\lambda \tau)^{j} / j!}{\sum_{k=0}^{s} (\lambda \tau)^{k} / k!} (j=0,1,2,...,s)$$

- ullet ข้อสังเกตุ การคำนวณค่า P_j จะขึ้นกับอัตราการเข้ารับบริการ λ และเวลา เฉลี่ยที่ใช้บริการ ${oldsymbol{ au}}$
- ullet และอยู่ในรูปของผลคูณระหว่าง λau เป็นค่าวัดความต้องการของระบบเรียก โหลดเสนอ (offered load) ใช้สัญลักษณ์ $a=\lambda au$ ค่าดังกล่าวมีหน่วยเป็น เออร์แลง (erlang)

เนื้อหา

- ขอบเขตและลักษณะของทฤษฎีคิว ทบทวนทฤษฎีความน่าจะเป็น และกระบวนการสโทแคสติก
- กระบวนการเกิด-ดับ
- ความน่าจะเป็น-ฟังก์ชันก่อกำเนิด
- สัญกรณ์เคนดัล
- กระบวนการปัวซง ความสัมพันธ์ระหว่างการแจกแจงที่ผู้สังเกตุ-การณ์ภายนอกเห็นกับการแจกแจงที่ลูกค้าพบ
- ตัวแบบคิว ระบบเอร์แลงสอสและระบบเอร์แลงดีเลย
- ตัวแบบคิว M/G/1 และระบบคิวบุริมภาพ
- เครื่อข่ายคิว

ตัวอย่างข้อสอบกลางภาค

- 4. (10 points) Consider M/M/ ∞ queue with the arrival rate λ if the system has *i* customers and the average service time is τ for all servers. Your solution must be in the term of λ and τ .
 - 4.1 Determine the probability distribution for p_i where p_i is the probability that there are i customers in the system.
 - 4.2 Determine the proportion of customer loss of this system.
 - 4.3 Find E[N] and V[N] where N is the number of the customers in the system.

Note that
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$
 and $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$

Solution: This is a Birth-and-Death process.

Let p_i be the probability that there are i customers in the system.

From (1), $p_1 = \lambda \tau p_0$ and from (2), $p_2 = \lambda \tau p_1/2 = \lambda^2 \tau^2 p_0/2!$, ..., from (n), $p_n = \lambda \tau p_{n-1}/n = \lambda^n \tau^n p_0/n!$.

Then from (1),
$$1 = \sum_{n=0}^{\infty} \frac{(\lambda \tau)^n}{n!} p_0 = e^{\lambda \tau} p_0$$
 implies $p_0 = e^{-\lambda \tau}$.

ตัวอย่างข้อสอบปลายภาค

0

 $\mu=1/\tau$

 $\mu=2/\tau$

- 2. (10 points) Consider the Erlang loss system of M/M/2/2 queue with the arrival rate λ_i if the system has *i* customers and the average service time is τ for both servers. Your solution must be in the term of λ_i and τ .
 - 2.1. Determine the probability distribution for p_i where p_i is the probability that there are i customers in the system.
 - 2.2. Determine the proportion of customer loss of this system.
 - 2.3. Find E[N] and V[N] where N is the number of the customers in the system. Your answer must be the division of two expressions.

Solution: This is a Birth-and-Death process. (2 points)

Let p_i be the probability that there are *i* customers in the system.

Note that
$$p_0 + p_1 + p_2 = 1$$
(1)

$$\lambda_0 p_0 = p_1/\tau$$
(2)
 $\lambda_1 p_1 = 2p_2/\tau$ (3)

From (2), $p_1 = \lambda_0 \tau p_0$ and from (3), $p_2 = \lambda_1 \tau p_1/2 = \lambda_0 \lambda_1 \tau^2 p_0/2$

Then from (1), $p_0(1 + \lambda_0 \tau + \lambda_0 \lambda_1 \tau^2/2) = 1$

4.1. (3 points) so
$$p_0 = 2/(2 + 2\lambda_0\tau + \lambda_0\lambda_1\tau^2)$$
, $p_1 = 2\lambda_0\tau/(2 + 2\lambda_0\tau + \lambda_0\lambda_1\tau^2)$, $p_2 = \lambda_0\lambda_1\tau^2/(2 + 2\lambda_0\tau + \lambda_0\lambda_1\tau^2)$

4.2. (1 point) The proportion of customer loss is $p_2 = \lambda_0 \lambda_1 \tau^2 / (2 + \lambda_0 \tau + 2\lambda_0 \lambda_1 \tau^2)$

4.3. (2 points)
$$E[N] = 0p_0 + 1$$
 $p_1 + 2$ $p_2 = 2\lambda_0\tau/(2 + 2\lambda_0\tau + \lambda_0\lambda_1\tau^2) + 2\lambda_0\lambda_1\tau^2/(2 + 2\lambda_0\tau + \lambda_0\lambda_1\tau^2) = (2\lambda_0\tau + 2\lambda_0\lambda_1\tau^2)/(2 + 2\lambda_0\tau + \lambda_0\lambda_1\tau^2) = 2\lambda_0\tau (1 + \lambda_1\tau)/(2 + 2\lambda_0\tau + \lambda_0\lambda_1\tau^2)$

(2 points) V[N] = E[N²] - (E[N])² = 0² p₀ + 1²p₁ + 2²p₂ - 4
$$\lambda_0^2 \tau^2 (1 + \lambda_1 \tau)^2 / (2 + 2\lambda_0 \tau + \lambda_0 \lambda_1 \tau^2)^2$$

= $(\lambda_0 \tau + 4\lambda_0 \lambda_1 \tau^2) / (2 + 2\lambda_0 \tau + \lambda_0 \lambda_1 \tau^2) - 4\lambda_0^2 \tau^2 (1 + \lambda_1 \tau)^2 / (1 + \lambda_0 \tau + \lambda_0 \lambda_1 \tau^2)^2$

$$\frac{2 \left(\lambda_0^2 \lambda_1 \tau^3 + 4 \, \lambda_0 \lambda_1 \tau^2 + 2 \, \lambda_0 \tau\right)}{\lambda_0^2 \lambda_1^2 \tau^4 + 4 \, \lambda_0^2 \lambda_1 \tau^3 + 4 \left(\lambda_0^2 + \lambda_0 \lambda_1\right) \tau^2 + 8 \, \lambda_0 \tau + 4}$$

ลงทะเบียน 2301482

ช่องทางติดต่อ

Assoc. Prof. Krung Sinapiromsaran

MHVH 1208/6

254 Phayathai Road, Pathumwan,

Bangkok Thailand. 10330

https://math.sc.chula.ac.th/faculty/krung-s/

Email: Krung. S@chula.ac.th

Phone:02-218-7123