Rayon de convergence

Exercice 1 ★★

Soient $\sum_{n=0}^{+\infty} a_n z^n$ et $\sum_{n=0}^{+\infty} b_n z^n$ des séries entières de rayon de convergence respectifs R_a et

 R_b . On note R le rayon de convergence de la série entière $\sum_{n=0}^{+\infty} (a_n + b_n) z^n$. On suppose de plus que $a_n b_n = 0$ pour tout $n \in \mathbb{N}$. Montrer que $R = \min(R_a, R_b)$.

Exercice 2 ★★★

Règle de Cauchy

Soit $(a_n) \in \mathbb{C}^{\mathbb{N}}$ telle que $\lim_{n \to +\infty} \sqrt[n]{|a_n|} = \ell \in \mathbb{R}_+ \cup \{+\infty\}$. Déterminer le rayon de convergence de la série $\sum_{n \in \mathbb{N}} a_n z^n$.

Exercice 3 ***

Soit $(a_n) \in (\mathbb{R}_+^*)^{\mathbb{N}}$. Pour tout $n \in \mathbb{N}$, on pose $b_n = \frac{a_n}{\sum_{k=0}^n a_k}$. Comparer les rayons des séries entières $\sum_{n \in \mathbb{N}} a_n z^n$ et $\sum_{n \in \mathbb{N}} b_n z^n$.

Exercice 4 **

Mines-Ponts MP 2016

Soit q > 0, on pose $a_n = q^{\sqrt{n}}$ si n est un carré d'entier et $a_n = 0$ sinon. Déterminer le rayon de convergence de la série entière $\sum_{n \in \mathbb{N}} a_n x^n$.

Exercice 5 ★

Règle de d'Alembert

Déterminer le rayon de convergence des séries entières suivantes.

$$1. \sum \frac{(-1)^n z^n}{\sqrt{n}}$$

3.
$$\sum {2n \choose n} z^n$$

$$2. \sum 2^n \ln(n) z^n$$

$$4. \sum (n+2^n i)z^n$$

Exercice 6 ★★

Déterminer le rayon de convergence des séries entières suivantes.

- 1. $\sum \cos(n)z^n$
- $2. \sum \frac{\sin n}{n} z^n$
- 3. $\sum \tan\left(\frac{n\pi}{7}\right)z^n$
- **4.** $\sum_{n\in\mathbb{N}^*} d_n z^n$ où d_n est le nombre de diviseurs positifs de n
- 5. $\sum a_n z^n$ où a_n est la $n^{\text{ème}}$ décimale de π

Exercice 7 ★★

Séries lacunaires

Déterminer le rayon de convergence des séries entières suivantes.

1.
$$\sum z^{n^2}$$

3.
$$\sum \frac{n^n}{n!} z^{3n}$$

2.
$$\sum 2^n z^{2^n}$$

Etude au bord du disque de convergence

Exercice 8 **

CCP MP

On note f(x) la somme de la série entière $\sum_{n \in \mathbb{N}^*} \sin\left(\frac{1}{\sqrt{n}}\right) x^n$.

- 1. Déterminer le rayon de convergence R de cette série entière.
- **2.** Y a-t-il convergence en R et -R?
- 3. Déterminer $\lim_{x\to 1^-} f(x)$.
- **4.** Montrer que $\lim_{x \to 1^{-}} (1 x) f(x) = 0$.

Exercice 9 ★★

CCP MP 2018

Soit $\beta \in \mathbb{R}$. Pour $n \in \mathbb{N}^*$, on pose $r_n = \sum_{k=1}^n \frac{1}{k^{\beta}}$ et $b_n = \frac{1}{r_n}$.

- 1. Déterminer le rayon de convergence R de la série entière $\sum b_n x^n$.
- **2.** Étudier la convergence de la série pour x = R et x = -R.

Exercice 10 ***

Soit (a_n) une suite de premier terme $a_0 > 0$ et telle que $a_{n+1} = \ln(1 + a_n)$ pour tout $n \in \mathbb{N}$.

- 1. Déterminer le rayon de convergence de la série entière $\sum_{n\in\mathbb{N}} a_n z^n$.
- 2. Étudier la convergence au bord de l'intervalle de convergence.

Exercice 11 ***

CCINP (ou CCP) MP 2021

1. Déterminer le rayon de convergence de $\sum_{n\geq 1} (-1)^n \ln(n) x^n$.

On note
$$S(x) = \sum_{n=1}^{+\infty} (-1)^n \ln(n) x^n$$
.

2. Montrer que

$$\forall x \in]-1,1[, S(x) = \frac{1}{1+x} \sum_{n=1}^{+\infty} (-1)^{n+1} \ln\left(1 + \frac{1}{n}\right) x^{n+1}$$

3. En déduire que

$$\lim_{x \to 1} S(x) = \frac{1}{2} \sum_{n=1}^{+\infty} (-1)^{n+1} \ln\left(1 + \frac{1}{n}\right)$$

4. Déterminer $\lim_{x\to 1} S(x)$.

Calcul de sommes de séries entières

Exercice 12 ★

Prouver la convergence et calculer la somme de la série suivante $\sum_{n\geq 0} (n+1)3^{-n}$.

Exercice 13 ***

ENS (non PSI) PC 2019

On pose E l'ensemble des suites à valeurs réelles de limite nulle et

$$f_a(x) = \sum_{n=0}^{+\infty} a_n x^n$$

Montrer que:

$$\forall a \in E, \exists \varphi(a) \in E, \forall x \in]0, 1[, f_{\varphi(a)}(x) = \frac{1}{x} \int_0^x \frac{f_a(t)}{1 - t} dt$$

Exercice 14 ★★

Pour $n \in \mathbb{N}$, on pose $a_n = \int_0^{\frac{\pi}{4}} \tan^n t \, dt$.

- 1. Déterminer la limite de la suite (a_n) .
- **2.** Quel est le sens de variation de (a_n) ?
- **3.** Déterminer une relation simple entre a_n et a_{n+2} . En déduire un équivalent de (a_n) .
- **4.** On pose $f(x) = \sum_{n=0}^{+\infty} a_n x^n$. Déterminer le rayon de convergence R de cette série entière.
- **5.** Déterminer f(x) pour $x \in]-R, R[$.

Exercice 15 ★★

Déterminer le rayon de convergence et la somme de $f(x) = \sum_{n=0}^{+\infty} \cos\left(n\frac{\pi}{2}\right) x^n$.

Exercice 16 ★★

CCP MP 2018

1. Montrer que arctan est développable en série entière sur]-1,1[.

- **2.** On considère la série entière $\sum_{k \in \mathbb{N}^*} \frac{(-1)^{k+1}}{(2k+1)(2k-1)} x^{2k+1}$. Donner son rayon de convergence R. On note f(x) la somme.
- 3. Donner une expression simple de f' et de f.
- **4.** Que peut-on dire de la convergence sur [-R, R]?
- 5. Calculer $\sum_{n=1}^{+\infty} \frac{(-1)^{n+1}}{4n^2 1}.$

Exercice 17 ★★★

Mines-Ponts MP 2018

On note
$$a_n = \int_0^1 \frac{\mathrm{d}t}{(2+t^2)^{n+1}}$$
 pour $n \in \mathbb{N}$.

- 1. Donner le rayon de convergence de la série entière $\sum_{n\in\mathbb{N}} a_n x^n$.
- 2. Calculer la somme de cette série entière sur son domaine de convergence.

Exercice 18 ★

Petites Mines PC 2017

Déterminer le rayon de convergence et la somme de la série entière $\sum_{n\in\mathbb{N}}\frac{n^2+4n-1}{n+2}x^n$.

Exercice 19 ★★

- 1. Déterminer le rayon de convergence R de la série entière $f(x) = \sum_{n=0}^{+\infty} \frac{x^n}{2n+1}$.
- 2. Déterminer f(x) pour $x \in]-R, R[$.

Equations différentielles

Exercice 20 **

Soit $f: x \in \mathbb{R} \mapsto \operatorname{sh}(\arcsin x)$.

- 1. Déterminer une équation différentielle linéaire d'ordre 2 vérifiée par f.
- **2.** En déduire que f est développable en série entière en 0 et déterminer ce développement en série entière.

Exercice 21 ★★

Soit
$$f: x \in]-1,1[\mapsto \frac{\arcsin x}{\sqrt{1-x^2}}.$$

- 1. Montrer que f vérifie une équation différentielle d'ordre un.
- **2.** En déduire que f est développable en série entière sur]-1,1[et déterminer ce développement en série entière.
- **3.** En déduire que pour tout $n \in \mathbb{N}$,

$$\sum_{k=0}^{n} \frac{1}{2k+1} {2k \choose k} {2n-2k \choose n-k} = \frac{2^{n}(n!)^{2}}{(2n+1)!}$$

Exercice 22 ★★★

On considère la série entière $\sum_{n\in\mathbb{N}}\frac{x^n}{\binom{2n}{n}}$ dont on note S(x) la somme.

- 1. Déterminer le rayon de convergence de cette série entière.
- **2.** Montrer que S est solution sur son intervalle de convergence de l'équation différentielle

(
$$\mathcal{E}$$
): $x(x-4)y' + (x+2)y = 2$

- 3. Résoudre l'équation homogène (\mathcal{E}_H) associée à (\mathcal{E}) sur]0,4[.
- **4.** Vérifier que $x \mapsto 2 \arctan\left(\sqrt{\frac{4-x}{x}}\right) 2\sqrt{\frac{4-x}{x}}$ est une primitive de $x \mapsto \frac{\sqrt{4-x}}{x\sqrt{x}}$ sur]0, 4[.
- 5. En déduire S(x) pour $x \in]0,4[$.
- **6.** Calculer $\sigma = \sum_{n=0}^{+\infty} \frac{1}{\binom{2n}{n}}$.

Exercice 23 ★★

On considère la suite (a_n) définie par $a_0 = a_1 = 1$ et

$$\forall n \in \mathbb{N}, \ a_{n+2} = a_{n+1} + \frac{a_n}{n+2}$$

- 1. Montrer que la suite (a_n) est croissante et diverge vers $+\infty$.
- **2.** Déterminer le rayon de convergence de la série entière $\sum_{n\in\mathbb{N}} a_n x^n$.
- **3.** Déterminer la somme S(x) de la série entière $\sum_{n\in\mathbb{N}}a_nx^n$ à l'aide d'une équation différentielle.
- **4.** En déduire que $a_n \sim n_{n \to +\infty} \frac{n}{e}$.

Produit de Cauchy

Exercice 24 **

Centrale PC

On pose $H_n = \sum_{k=1}^n \frac{1}{k}$ pour $n \in \mathbb{N}^*$. Déterminer le rayon de convergence et la somme de la série entière $\sum_{n \in \mathbb{N}^*}^n H_n x^n$.

Exercice 25 ***

On considère la suite (u_n) définie par $u_0 = 1$ et

$$\forall n \in \mathbb{N}, \ u_{n+1} = \sum_{k=0}^{n} u_k u_{n-k}$$

On note R le rayon de convergence de la série entière $\sum_{n\in\mathbb{N}}u_nx^n$.

1. On suppose que $R = \frac{1}{4}$. Montrer que

$$\forall x \in]-R, R[\setminus \{0\}, S(x) = \frac{1 - \sqrt{1 - 4x}}{2x}$$

- **2.** En déduire u_n pour $n \in \mathbb{N}$.
- 3. Justifier qu'on a bien $R = \frac{1}{4}$.

Exercice 26 ★★★

Nombre d'involutions

On rappelle qu'une involution d'un ensemble E est une application $f: E \to E$ telle que $f \circ f = \mathrm{Id}_E$. On note I_n le nombre d'involutions de $[\![1,n]\!]$. On convient que $I_0 = 1$.

1. Montrer que pour tout entier $n \ge 2$,

$$I_n = I_{n-1} + (n-1)I_{n-2}$$

- 2. Montrer que le rayon de convergence de la série entière $\sum \frac{I_n}{n!} x^n$ est supérieur ou égal à 1. On note S(x) sa somme.
- **3.** Montrer que

$$\forall x \in]-1,1[, S'(x) = (1+x)S(x)$$

4. En déduire une expression de S(x) puis de I_n .

Développements en série entière

Exercice 27 ***

ENS MP 2011

Soit K un corps fini et $\mathcal P$ l'ensemble des polynômes irréductibles unitaires de K[X]. On pose

$$\zeta(t) = \prod_{P \in \mathcal{P}} \frac{1}{1 - t^{\deg P}}$$

- 1. Montrer que ζ est défini sur un intervalle du type $[0, t_0]$.
- **2.** Montrer que ζ est développable en série entière au voisinage à droite de 0 et déterminer son développement.

Exercice 28 ***

Nombres de Bell

On pose $f(x) = e^{e^x}$ pour $x \in \mathbb{R}$. Montrer que f est développable en série entière en 0 et donner les coefficients A_n de ce développement comme sommes de séries.

Exercice 29 ★★

Déterminer le développement en série entière en 0 de $f: x \mapsto \int_0^{+\infty} e^{-t^2} \sin(tx) dt$.

Exercice 30 ★★

Déterminer le développement en série entière en 0 de $f: x \mapsto \frac{1}{\sqrt{1-x}}$.

Exercice 31 **

Soit $\theta \in \mathbb{R} \setminus \pi \mathbb{Z}$. Développer en série entière $f(x) = \frac{\sin(\theta)}{x^2 - 2x\cos(\theta) + 1}$.

Exercice 32 ★★

Mines-Télécom (hors Mines-Ponts) MP 2021

Développer en série entière $f: x \mapsto \ln(1 - \sqrt{2}x + x^2)$.

Exercice 33 ★★★

Mines-Télécom (hors Mines-Ponts) MP 2021

On pose pour $x \in \mathbb{R}$, lorsque c'est possible : $g(x) = \sum_{n=0}^{+\infty} e^{-n+n^2ix}$.

- **1.** Montrer que g est de classe \mathcal{C}^{∞} sur \mathbb{R} .
- 2. Montrer que g n'est pas développable en série entière.

Exercice 34 ★★

CCINP (ou CCP) MP 2021

Développer en séries entières les fonctions suivantes au voisinage de 0 et préciser le rayon de convergence :

1.
$$f(z) = \frac{1}{6z^2 - 5z + 1}, z \in \mathbb{C}$$

$$2. \ g(x) = \ln\left(\frac{2+x}{1-x}\right), \ x \in \mathbb{R}$$

3.
$$h(x) = \int_0^x \sin(t^2) dt, \ x \in \mathbb{R}$$

Divers

Exercice 35 ★★★★

X MP 2010

Caractériser les suites $(a_n) \in \mathbb{C}^{\mathbb{N}}$ telles que $\sum_{n \in \mathbb{N}} a_n x^n$ soit le développement en série entière en 0 d'une fraction rationnelle.

Exercice 36 ***

Mines-Ponts MP 2017

- **1.** Soit $P \in \mathbb{C}[X]$. Montrer qu'il existe un unique polynôme Q tel que $Q(z) = e^{-z} \sum_{n=0}^{+\infty} \frac{P(n)z^n}{n!}$ pour tout $z \in \mathbb{C}$. On notera ce polynôme u(P).
- **2.** Montrer que u est un automorphisme de $\mathbb{C}[X]$.
- 3. Déterminer les éléments propres de u.

Exercice 37 ★★★

Centrale MP 2018

Soit $(a_n)_{n\geq 2}$ une suite de réels. On pose $D=\{z\in\mathbb{C},\ |z|<1\}$ et on suppose que

$$f: z \mapsto z + \sum_{n=2}^{+\infty} a_n z^n$$

est définie et injective sur D.

- **1.** Montrer que $\forall z \in D, z \in \mathbb{R} \iff f(z) \in \mathbb{R}$.
- **2.** Montrer que $\forall z \in D$, $\text{Im}(z) > 0 \iff \text{Im}(f(z)) > 0$.
- **3.** Soient $r \in]0,1[$ et $n \in \mathbb{N}^*$. Calculer en fonction de r et n l'intégrale

$$I_n(r) = \int_0^{\pi} Im(f(re^{i\theta})) \sin(n\theta) d\theta$$

4. En remarquant que $|\sin(n\theta)| \le n\sin(\theta)$ pour $\theta \in [0, \pi]$, montrer que $|a_n| \le n$ pour tout $n \in \mathbb{N}^*$.

Exercice 38 ★★★

Mines-Ponts MP 2017

E est un ensemble à n éléments. On appelle *dérangement* une permutation de E sans point fixe. On note D_n le nombre de dérangements de E. On pose $D_0 = 1$.

1. Montrer l'égalité $n! = \sum_{k=0}^{n} \binom{n}{k} D_k$.

On definit $f: x \mapsto \sum_{n=0}^{+\infty} \frac{D_n}{n!} x^n$.

- **2.** Justifier que f est définie sur]-1,1[.
- 3. Montrer que pour x dans $]-1,1[, f(x)=\frac{e^{-x}}{1-x}.$
- **4.** En déduire l'égalité $D_n = n! \sum_{k=0}^n \frac{(-1)^k}{k!}$.
- **5.** Montrer que, lorsque $n \in \mathbb{N}^*$, D_n est la partie entière de $\frac{n!}{e} + \frac{1}{2}$.

Exercice 39

Mines-Télécom (hors Mines-Ponts) PSI 2019

On cherche à résoudre l'équation

(E)
$$\forall x \in \mathbb{R}_+, \ u(x) = 1 + \int_0^x u\left(\frac{t}{2}\right) dt$$

avec $u \in \mathcal{C}^0(\mathbb{R}_+, \mathbb{R})$.

1. Soit la suite (u_n) de fonctions définie par $u_0 = 1$ et, pour tout $n \in \mathbb{N}$,

$$\forall x \in \mathbb{R}_+, \ u_{n+1}(x) = 1 + \int_0^x u_n\left(\frac{t}{2}\right) dt$$

Montrer par récurrence que,

$$\forall x \in \mathbb{R}_+, \ 0 \le u_{n+1}(x) - u_n(x) \le \frac{x^{n+1}}{(n+1)!}$$

En déduire que la suite (u_n) converge vers une certaine fonction u.

- **2.** Montrer que u est solution de (E).
- **3.** Donner les fonctions développables en série entière dont la restriction à \mathbb{R}_+ est solution de (E).

Exercice 40 ★★

CCINP (ou CCP) MP 2021

Soit $t \in \mathbb{R}$. On pose $\forall n \in \mathbb{N}$, $f_n(t) = \frac{(t^2 - 1)^{n+1}}{n+1}$.

- 1. Donner le domaine de convergence D de $\sum f_n$.
- 2. Calculer $\sum_{n=0}^{+\infty} f_n(t)$.
- 3. Étudier la convergence normale de $\sum f_n$ sur [0,1].
- **4.** Étudier la convergence uniforme de $\sum f_n$ sur [0,1].
- 5. Quelle est la nature de la série $\sum u_n$, avec $u_n = \int_0^1 \frac{(t^2-1)^{n+1}}{n+1} dt$?
- **6.** Calculer $\sum_{n=0}^{+\infty} u_n$.