a) (i) Zeige, dass die Reihe

$$f(z) := \sum_{n=1}^{\infty} \frac{z^2}{n^2 z^2 + 8} \tag{1}$$

absolut konvergiert für jedes $z \in \mathbb{R}$ und die Funktion $f: z \mapsto f(z)$, die so entsteht, stetig ist auf \mathbb{R} .

- (ii) Gebe (ohne Beweis) die größte offene Menge $U \subseteq \mathbb{C}$ an, so dass die Funktion f durch (??) auf U definiert und dort holomorph ist.
- b) Die komplexen Zahlen $a_1, ..., a_n$ (mit $n \ge 1$) erfüllen $|a_j| = 1$ für j = 1, ..., n. Zeige, dass es einen Punkt $z \in \mathbb{C}$ mit |z| = 1 gibt, so dass das Produkt der Abstände zwischen z und a_j , für j = 1, ..., n mindestens 1 ist.

Hinweis: Betrachte die Funktion $f(z) := (z - a_1) \cdot ... \cdot (z - a_n)$.

Zu a), (i):

Ist z = 0, so ist offensichtlich $f(z) = \sum_{n=1}^{\infty} \frac{0^2}{n^2 \cdot 0^2 + 8} = 0$ (insbesondere konvergiert die vorkommende Reihe absolut).

Andernfalls ist $z \neq 0$ und wir stellen fest:

$$\left| \sum_{n=1}^{\infty} \left| \frac{z^2}{n^2 z^2 + 8} \right| = \sum_{n=1}^{\infty} \frac{z^2}{n^2 z^2 + 8} = \sum_{n=1}^{\infty} \frac{1}{n^2 + \frac{8}{z^2}} \le \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty,$$

wobei wir verwendet haben, dass die Reihe der Form $\sum_{k=1}^{\infty} \frac{1}{k^{\alpha}}$ genau dann konvergiert, wenn $\alpha > 1$ gilt. Damit konvergiert auch in diesem Fall die Reihe in Gleichung (??) absolut.

Dass die Funktion f stetig ist, besagen nun entweder Sätze aus der Vorlesung oder die folgende Argumentation: Betrachte die Folge der Partialsummen $(\sum_{k=1}^n f_k)_{n\in\mathbb{N}}$, wobei $f_n(z):=\frac{z^2}{n^2z^2+8}$. Diese konvergiert gleichmäßig gegen f, denn für jedes $\varepsilon>0$ gibt es wegen der Konvergenz der Folge $(\sum_{k=1}^n \frac{1}{k^2})_{n\in\mathbb{N}}$ ein $N\in\mathbb{N}$ mit $\sum_{k=N}^\infty \frac{1}{k^2}<\varepsilon$ und daher ist für $n>N, n\in\mathbb{N}$

$$|f(z) - f_n(z)| = \left| \sum_{k=n}^{\infty} f_k(z) \right| \le \sum_{k=n}^{\infty} \frac{1}{k^2} < \varepsilon.$$

Aus der (offensichtlichen) Stetigkeit der f_n (für alle $n \in \mathbb{N}$) folgt damit aus der eben gezeigten gleichmäßigen Konvergenz auch die Stetigkeit des punktweise gebildeten Grenzwerts f.

Zu a), (ii):

Im Körper der komplexen Zahl können die Funktion

$$f_n(z) = \frac{z^2}{n^2 \cdot (z - i\frac{2\sqrt{2}}{n}) \cdot (z + i\frac{2\sqrt{2}}{n})}$$

nur noch auf der Menge $\mathbb{C}\setminus\left\{\pm i\frac{2\sqrt{2}}{n}\right\}$ definiert werden. Damit liegt in jeder Umgebung von 0 ein Punkt, an dem f nicht definiert ist. Für $z\not\in A:=\{0\}\cup\left\{\pm i\frac{2\sqrt{2}}{n}\right)\mid n\in\mathbb{N}\right\}$ und $C:=\operatorname{Re}\left(\frac{8}{z^2}\right)$ gilt die Abschätzung

$$\sum_{n=1}^{\infty} \left| \frac{z^2}{n^2 z^2 + 8} \right| = \sum_{n=1}^{\infty} \left| \frac{1}{n^2 + \frac{8}{z^2}} \right| \le \sum_{n=1}^{\infty} \frac{1}{|\operatorname{Re}\left(n^2 + \frac{8}{z^2}\right)|} \le \sum_{n=1}^{\infty} \frac{1}{n^2 + C} < \infty,$$

Damit konvergiert die Reihe (??) für alle $z \in U := \mathbb{C} \setminus A$. Da die f_n gleichmäßig gegen f konvergieren, folgt aus der Holomorphie der f_n auch die Holomorphie von f auf U.

Zu b):

Wir betrachten die Funktion $f: \mathbb{C} \to \mathbb{C}$, wie sie im Hinweis definiert wurde und wollen zeigen, dass es $z \in \mathbb{C}$, |z| = 1 mit $|f(z)| \ge 1$ gibt.

Wir bemerken als erstes $|f(0)| = \prod_{i=1}^n |a_j| = 1$. Andererseits ist $f|_{\mathbb{E}} : \mathbb{E} \to \mathbb{C}$ auf der offenen Einheitskreisscheibe \mathbb{E} holomorph und als Einschränkung einer ganz-holomorphen Funktion auch stetig auf $\partial \mathbb{E}$ fortsetzbar. Nach dem Maximumsprinzip für beschränkte Gebiete gilt

$$1 = |f(0)| \le \max_{z \in \overline{\mathbb{R}}} |f(z)| = \max_{z \in \partial \mathbb{R}} |f(z)|.$$

Es gibt also ein $z \in \partial \mathbb{E}$ (also eine $z \in \mathbb{C}$ mit |z| = 1), für das $|f(z)| \ge 1$ gilt - wie gewünscht.

Hieraus folgt dann

$$1 = |f(z)| \le \prod_{i=1}^{n} |z - a_i|$$

- wie gewünscht.