PERIODIC SOLUTIONS OF SECOND-ORDER EQUATIONS

JOSHUA GEORGE

Date: May 24, 2022.

Abstract.

Contents

1. Introduction	2
1.1. Dirac Delta Function [1]	2
1.2. Spectral Theory	2
1.3. Green's Functions	3
2. Solution of $x'' + \lambda^2 x = \delta(t - s)$	4
3. Solution of $x'' = f(t, x(t), x'(t))$	5
4. Degree Theory	6
References	9

1. Introduction

1.1. **Dirac Delta Function** [1]. The dirac delta function δ is a generalized function over the real numbers where it is zero everywhere except at 0. We can construct it using a limit of the *delta*-sequence given below,

$$\delta_n(t) = \begin{cases} \frac{n}{2} & -\frac{1}{n} < t < \frac{1}{n} \\ 0 & \text{otherwise} \end{cases}$$

From the above sequence we can see that $\delta_n(t)$ converges to a spike (as $n \to \infty$) at t = 0 with infinite height and zero width with the property

$$\int_{-\infty}^{\infty} \delta_n(t)dt = 0, \forall n \ge 1$$

Now assume a continuous function f(t). We can write

$$\min_{t \in \left[\frac{-1}{n}, \frac{1}{n}\right]} f(t) \le \int_{-\infty}^{\infty} f(t) \delta_n(t) dt \le \max_{t \in \left[\frac{-1}{n}, \frac{1}{n}\right]} f(t)$$

Since,

$$\lim_{n\to\infty} \min_{t\in\left[\frac{-1}{n},\frac{1}{n}\right]} f(t) = \lim_{n\to\infty} \max_{t\in\left[\frac{-1}{n},\frac{1}{n}\right]} f(t) = f(0),$$

then by the squeeze theorem, we can write

$$\lim_{n \to \infty} \int_{-\infty}^{\infty} f(t) \delta_n(t) dt = f(0).$$

Definition 1. The dirac delta function can be defined by the following equality:

$$\int_{-a}^{a} f(t)\delta(t)dt = f(0)$$

for any a > 0 and any continuous function f. This gives us the following relation,

$$\int_{s-a}^{s+a} f(t)\delta(t-s)d\tau = f(s)$$

(This is also called the Sifting property.)

1.2. Spectral Theory.

Definition 2. (pre-Hilbert) Let X be a complex vector space. A Hermitian inner product on X is a function $\langle \cdot, \cdot \rangle : X \times X \longrightarrow \mathbb{C}$, which is:

- (1) (positive non-degenerate) $(\forall x \in X) \langle x, x \rangle \geq 0, \langle x, x \rangle = 0$ iff x = 0.
- (2) (sesquilinear) $(\forall \alpha, \beta \in \mathbb{C})(\forall x, y, z \in X), \langle \alpha x + \beta y, z \rangle = \alpha \langle x, z \rangle + \beta \langle y, z \rangle$
- (3) (conjugate-symmetric) $(\forall x, y \in X)\langle y, x \rangle = \langle x, y \rangle$

A space is complete if all cauchy sequences converge to a limit . A *Hilbert Space* is a complete inner product space. In fact every Hilbert space is a *Banach Space* but the reverse is not true.

Definition 3. Banach space: Let V be a vector space. A norm is a mapping $\|\cdot\|: V \to [0, \infty)$ that satisfies:

- $(1) ||x+y|| \le ||x|| + ||y||.$
- (2) ||ax|| = a||x|| for all $a \in \mathbb{R}$.
- (3) ||x|| = 0 implies that x = 0.

A complete normed space is called a Banach space.

We can now define an inner product in function space. An inner product in the vector space of continuous functions denoted by $C^0([a,b],\mathbb{C})$ is defined as follows, given two arbitrary functions $u(x), v(x), x \in [a,b]$, introduce the inner product.

$$\langle u, v \rangle = \int_a^b uv^* dx$$
, *: complex conjugation.

Theorem 1. (Fredholm Alternative theorem)

For a linear system Ax = b, A^* which is the adjoint satisfying the property $\langle Ax, y \rangle = \langle x, A^*y \rangle$ for all $x, y, \in \mathbb{C}^n$ exactly one is true:

- i) Solution of Ax = b, if it exists, is unique if and only if x = 0 is the only solution of Ax = 0.
- ii) The equation Ax = b has a solution if and only if $\langle b, v \rangle = 0$ for all v satisfying $A^*v = 0$.

Proof: i) Assume that Ax = 0 for $x \neq 0$ and $Ax_0 = b$. Then $A(x_0 + \alpha x) = b$ for all α . Therefore, the solution is not unique. Conversely, if there are two different solutions, x_1 and x_2 , satisfying $Ax_1 = b$ and $Ax_2 = b$, then one has a nonzero solution $x = x_1 - x_2$ such that $Ax = A(x_1 - x_2) = 0$.

ii) Let $A^*v = 0$ and $Ax_0 = b$. Then we have

$$\langle b, v \rangle = \langle Ax_0, v \rangle = \langle x_0, A^*v \rangle = 0$$

For the second part we assume that $\langle b, v \rangle = 0$ for all v such that $A^*v = 0$. Write b as the sum of a part that is in the range of A and a part that in the space orthogonal to the range of $A, b = b_r + b_o$. Then, $0 = \langle b_o, Ax \rangle = \langle A^*b, x \rangle$ for all x. Since $\langle b, v \rangle = 0$ for all v in the nullspace of A^* , then $\langle b, b_o \rangle = 0$ Therefore, $\langle b, v \rangle = 0$ implies that

$$0 = \langle b, b_o \rangle = \langle b_r + b_o, b_o \rangle = \langle b_o, b_o \rangle$$

This means that $b_o = 0$, giving $b = b_r$ is in the range of A. So, Ax = b has a solution.

The same can be said about linear operators, let L be a bounded linear operator on a Hilbert space with adjoint L^{\dagger} . Then exactly one of the following is true:

i) The inhomogeneous problem

$$Lu = f$$

has a unique solution u.

ii) The homogeneous adjoint problem

$$L^{\dagger}u = 0$$

has a non-trivial solution.

Fredholm Alternative theorem is established by taking the inner product of (1.1) with the adjoint null space function v(x) and we obtain,

1.3. **Green's Functions.** The focus of this paper is to construct the appropriate Green's function for the following BVP (A):

$$\left\{ \begin{array}{l} x'' + \lambda^2 x = \delta(t-s) \\ x(0) = x(\omega) \\ x'(0) = x'(\omega) \end{array} \right.$$

We first solve Ly = f, a differential equation with homogenous boundary conditions. The Sifting property mentioned earlier can be written as,

$$\langle f(t), \delta(t-s) \rangle = \int_0^l f(t)\delta(t-s) dt = f(s), \quad t \in [0, l]$$

Now we can consider the following problem.

$$Lu = f$$

$$L^{\dagger}G(t, s) = \delta(t - s)$$

where $x \in [0, l]$ and L^{\dagger} is the adjoint operator with its boundary conditions. G(t, s) is the Greens function. Taking the inner product of Lu = f with respect to G(t, s) we get,

$$\begin{split} \langle Lu,G\rangle &= \left\langle u,L^{\dagger}G\right\rangle = \left\langle f,G\right\rangle \\ \langle u,\delta(t-s)\rangle &= \left\langle f,G\right\rangle \\ u(t) &= \left\langle f,G\right\rangle. \end{split}$$

This gives us

$$u(t) = \int_0^l f(t)G(t,s)dt$$

and thus the inverse operator

$$L^{-1}[f] = \int_0^l f(t)G(t,s)ds$$

can be computed.

2. Solution of
$$x'' + \lambda^2 x = \delta(t - s)$$

From the above section we can define the Greens function G(t,s) of \mathcal{L} to be the unique soltion to the problem $\mathcal{L}G = \delta(t-s)$, where \mathcal{L} is the general linear second order differential operator. We now construct the green function for A: From the definition of the dirac delta function, at all points $t \neq s$, $x'' + \lambda^2 x = 0$. Solving this we get homogenous solution is $k \cos(\lambda t) + c \sin(\lambda t)$. Therefore our Greens function is,

(1)
$$G(t,s) = \begin{cases} c_1 \cos(\lambda t) + c_2 \sin(\lambda t) & 0 \le t < s \le \omega \\ c_3 \cos(\lambda t) + c_4 \sin(\lambda t) & 0 \le s < t \le \omega \end{cases}$$

To solve for G(t,s) we have to solve for c_1, c_2, c_3, c_4 , we can do this by solving the following system of equations,

The periodic boundary conditions,

(2)
$$x(0) = x(\omega), k\cos(0) + c\sin(0) = k\cos(\lambda\omega) + c\sin(\lambda\omega)$$

(3)
$$x'(0) = x'(\omega), -k\lambda \sin(0) + c\lambda \cos(0) = -k\lambda \sin(\lambda \omega) + c\lambda \cos(\lambda \omega)$$

At t = s (as G(t, s) is continuous),

$$\lim_{t \to s^{+}} G(t, s) - \lim_{t \to s^{-}} G(t, s) = 0$$

(4)
$$c_3 \cos(\lambda s) + c_4 \sin(\lambda s) - c_1 \cos(\lambda s) - c_2 \sin(\lambda s) = 0$$

and the "derivative" jump of G(t, s),

$$\lim_{t \to s^{+}} G'(t,s) - \lim_{t \to s^{-}} G'(t,s) = 1$$

(5)
$$-c_3\lambda\sin(\lambda s) + c_4\lambda\cos(\lambda s) - (-c_1\lambda\sin(\lambda s) + c_2\lambda\cos(\lambda s)) = 1$$

Remark 1. Why $\lim_{t\to s^+} G'(t,s) - \lim_{t\to s^-} G'(t,s) = 1$?

Consider $\mathcal{L}G = \delta(t-s)$, this is zero when t < s and t > s and δ is infinity when t = s. Which tells us the first derivative must be discontinuous and when we take the second derivative it diverges. Now integrate the given ode from $s - \epsilon$ to $s + \epsilon$ and let $\epsilon \to 0$. We get,

$$\int_{s-\epsilon}^{s+\epsilon} \frac{\partial G}{\partial t^2} dt + \int_{s-\epsilon}^{s+\epsilon} \lambda^2 G = \int_{s-\epsilon}^{s+\epsilon} \delta(t-s) dt = 1$$

The second term on the l.h.s vanishes as $\epsilon \to 0$ as the integrands are finite and so we get,

$$\left. \frac{\partial G}{\partial t} \right|_{t=s^+} - \left. \frac{\partial G}{\partial t} \right|_{t=s^-} = 1$$

Solving (2), (3), (4) and (5) we get our Greens Function.

(6)
$$G(t,s) = \begin{cases} \frac{\sin(\lambda(t-s+\omega)) + \sin(\lambda(s-t))}{2\lambda(1-\cos(\lambda\omega))} & 0 \le t < s \le \omega \\ \frac{\sin(\lambda(s-t+\omega)) + \sin(\lambda(t-s))}{2\lambda(1-\cos(\lambda\omega))} & 0 \le s < t \le \omega \end{cases}$$

(7)
$$G(t,s) = \begin{cases} G_1(t,s) & 0 \le t < s \le \omega \\ G_2(t,s) & 0 \le s < t \le \omega \end{cases}$$

We can verify this as,

$$\lim_{t \to s^{+}} G(t, s) - \lim_{t \to s^{-}} G(t, s) = 0$$

$$\lim_{t \to s^+} G'(t, s) - \lim_{t \to s^-} G'(t, s) = 1$$

$$G(t,s) = G(s,t)$$

3. Solution of
$$x'' = f(t, x(t), x'(t))$$

Consider the following B.V.P (B),

$$\begin{cases} x'' = f(t, x(t), x'(t)) \\ x(0) = x(\omega) \\ x'(0) = x'(\omega) \end{cases}$$

Notice the above ODE can be written as,

(8)
$$x'' + \lambda^2 x(t) = \lambda^2 x(t) + f(t, x(t), x'(t))$$

Note: The solution to the differential equation $x'' + x = \delta(t - s)$ is the Greens function we obtained above. I claim the solution to the above differential equation (20) is,

(9)
$$x(t) = \int_0^\omega G(t,s) \left\{ f(s,x(s),x'(s)) + \lambda^2 x(s) \right\} ds$$

Why so? Existence discussed later

Proof: Need to show x(t) satisfies the BVP (B),

$$x(t) = \int_0^\omega G(t,s) \left\{ f(s,x(s),x'(s)) + \lambda^2 x(s) \right\} ds$$

$$x'(t) = \frac{d}{dt} \int_0^\omega G(t,s)h(s)ds, \quad h(s) = \left\{ f(s,x(s),x'(s)) + \lambda^2 x(s) \right\}$$

$$= \frac{d}{dt} \int_0^{t^-} G_2(t,s)h(s)ds + \frac{d}{dt} \int_{t^+}^\omega G_1(t,s)h(s)ds$$

$$= G_2(t,t^-)h(t^-) + \int_0^{t^-} \frac{\partial G_2(t,s)}{\partial t}h(s)ds - G_1(t,t^+)h(t^+) + \frac{d}{dt} \int_{t^+}^\omega \frac{\partial G_1(t,s)}{\partial t}h(s)ds$$

$$= \int_0^{t^-} \frac{\partial G_2(t,s)}{\partial t}h(s)ds + \int_{t^+}^\omega \frac{\partial G_1(t,s)}{\partial t}h(s)ds$$

$$\begin{split} x'''(t) &= \frac{\partial G_2(t,t^-)}{\partial t}h(t^-) + \int_0^{t^-} \frac{\partial^2 G_2(t,s)}{\partial t^2}h(s)ds - \frac{\partial G_1(t,t^+)}{\partial t}h(t^+) + \int_{t^+}^{\omega} \frac{\partial^2 G_2(t,s)}{\partial t^2}h(s)ds \\ &= h(t) + \int_0^{t^-} \frac{\partial^2 G_2(t,s)}{\partial t^2}h(s)ds + \int_{t^+}^{\omega} \frac{\partial^2 G_1(t,s)}{\partial t^2}h(s)ds \\ &= h(t) + \lambda^2 x(t) - \lambda^2 x(t) + \int_0^{t^-} \frac{\partial^2 G_2(t,s)}{\partial t^2}h(s)ds + \int_{t^+}^{\omega} \frac{\partial^2 G_1(t,s)}{\partial t^2}h(s)ds \\ &= h(t) + \lambda^2 x(t) + \int_0^{t^-} \frac{\partial^2 G_2(t,s)}{\partial t^2}h(s)ds + \int_{t^+}^{\omega} \frac{\partial^2 G_1(t,s)}{\partial t^2}h(s)ds - \lambda^2 x(t) \\ &= h(t) + \lambda^2 \left(\int_0^{t^-} G_2(t,s)h(s)ds + \int_{t^+}^{\omega} G_1(t,s)h(s)ds\right) + \int_0^{t^-} \frac{\partial^2 G_2(t,s)}{\partial t^2}h(s)ds + \int_{t^+}^{\omega} \frac{\partial^2 G_1(t,s)}{\partial t^2}h(s)ds - \lambda^2 x(t) \\ &= h(t) + \int_0^{t^-} \left(\frac{\partial^2 G_2(t,s)}{\partial t^2} + \lambda^2 G_2(t,s)\right)h(s)ds + \int_{t^+}^{\omega} \left(\frac{\partial^2 G_1(t,s)}{\partial t^2} + G_1(t,s)\right)h(s)ds - \lambda^2 x(t) \\ &= h(t) + \int_0^{t^-} \left(\frac{\partial^2 G_2(t,s)}{\partial t^2} + \lambda^2 G_2(t,s)\right)h(s)ds + \int_{t^+}^{\omega} \left(\frac{\partial^2 G_1(t,s)}{\partial t^2} + G_1(t,s)\right)h(s)ds - \lambda^2 x(t) \\ &= h(t) + \int_0^{t^-} \left(\frac{\partial^2 G_2(t,s)}{\partial t^2} + \lambda^2 G_2(t,s)\right)h(s)ds + \int_{t^+}^{\omega} \left(\frac{\partial^2 G_1(t,s)}{\partial t^2} + G_1(t,s)\right)h(s)ds - \lambda^2 x(t) \\ &= h(t) + \int_0^{t^-} \left(\frac{\partial^2 G_2(t,s)}{\partial t^2} + A^2 G_2(t,s)\right)h(s)ds + \int_{t^+}^{\omega} \left(\frac{\partial^2 G_1(t,s)}{\partial t^2} + G_1(t,s)\right)h(s)ds - \lambda^2 x(t) \\ &= h(t) + \int_0^{t^-} \left(\frac{\partial^2 G_2(t,s)}{\partial t^2} + A^2 G_2(t,s)\right)h(s)ds + \int_{t^+}^{\omega} \left(\frac{\partial^2 G_1(t,s)}{\partial t^2} + G_1(t,s)\right)h(s)ds - \lambda^2 x(t) \\ &= h(t) + \int_0^{t^-} \left(\frac{\partial^2 G_2(t,s)}{\partial t^2} + A^2 G_2(t,s)\right)h(s)ds + \int_{t^+}^{\omega} \left(\frac{\partial^2 G_1(t,s)}{\partial t^2} + G_1(t,s)\right)h(s)ds - \lambda^2 x(t) \\ &= h(t) + \int_0^{t^-} \left(\frac{\partial^2 G_2(t,s)}{\partial t^2} + G_1(t,s)\right)h(s)ds - \lambda^2 x(t) \\ &= h(t) + \int_0^{t^-} \left(\frac{\partial^2 G_1(t,s)}{\partial t^2} + G_1(t,s)\right)h(s)ds - \lambda^2 x(t) \\ &= h(t) + \int_0^{t^-} \left(\frac{\partial^2 G_1(t,s)}{\partial t^2} + G_1(t,s)\right)h(s)ds - \lambda^2 x(t) \\ &= h(t) + \lambda^2 x(t) + \int_0^{t^-} \left(\frac{\partial^2 G_1(t,s)}{\partial t^2} + G_1(t,s)\right)h(s)ds - \lambda^2 x(t) \\ &= h(t) + \lambda^2 x(t) + \int_0^{t^-} \left(\frac{\partial^2 G_1(t,s)}{\partial t^2} + G_1(t,s)\right)h(s)ds - \lambda^2 x(t) \\ &= h(t) + \lambda^2 x(t) + \int_0^{t^-} \left(\frac{\partial^2 G_1(t,s)}{\partial t^2} + G_1(t,s)\right)h(s)ds - \lambda^2 x(t) \\ &= h(t) + \lambda^2 x(t) + \int_0^{t^-} \left(\frac{\partial^2 G_1(t,s)}{\partial t^2} + G_1(t,s$$

Rearranging we get,

$$x'' + \lambda^2 x(t) = \lambda^2 x(t) + f(t, x(t), x'(t)) \implies x'' = f(t, x(t), x'(t))$$

Now we have to show that the boundary conditions are satisfied, i.e

$$x(0) = x(\omega)$$
$$x'(0) = x'(\omega)$$

Consider $x(0) = x(\omega)$,

(10)
$$x(t) = \int_0^{t^-} G_2(t,s)h(s)ds + \int_{t^+}^{\omega} G_1(t,s)h(s)ds$$
$$x(0) = \int_0^{\omega} G_1(0,s)h(s)ds$$
$$x(\omega) = \int_0^{\omega} G_2(\omega,s)h(s)ds$$

Well $x(0) = x(\omega)$ as we know G(t, s) satisfies the BVP (A). Another way to verify is by just evaluating $G_1(0, s)$ and $G_2(\omega, s)$. Consider $x'(0) = x'(\omega)$,

(11)
$$x'(t) = \int_0^{t^-} \frac{\partial G_2(t,s)}{\partial t} h(s) ds + \int_{t^+}^{\omega} \frac{\partial G_1(t,s)}{\partial t} h(s) ds$$
$$x'(0) = \int_0^{\omega} \frac{\partial G_1(0,s)}{\partial t} h(s) ds$$
$$x'(\omega) = \int_0^{\omega} \frac{\partial G_2(\omega,s)}{\partial t} h(s) ds$$

By a similar argument we get $x'(0) = x'(\omega)$.

Therefore we showed the integral satisfies the ODE.

4. Degree Theory

Let A be a mapping: $A: \bar{U} \subset \mathbb{R}^N \to \mathbb{R}^N$, where U is an open bounded set. We defined the degree of the mapping at p,

$$\deg(A, U, p) = \sum_{x_i \in A^{-1}(p)} \operatorname{sign} \left(\det J_A \left(x_i \right) \right)$$

as long as $A^{-1}(p)$ are regular points. Let $h: \mathbb{R}^N \to \mathbb{R}$ is a smooth function such that

$$\int_{\mathbb{R}^N} h(x)dx = 1,$$

and h(x) = 0 outside of a ball $B_{\varepsilon}(0)$ for some small $\varepsilon > 0$. Here $x = (x_1, \dots, x_N)$ and $dx = dx_1 \cdots dx_N$.

$$\deg(A, U, 0) = \int_{\mathbb{R}^N} h(A(x)) \det J_A(x) dx$$

for $\mathbf{x} = (x_1, \dots, x_n)$. We show the integral is independent of h.

Proof. By induction. For n=1, Let $\eta(x)$ be another function with support in $(-\varepsilon,\varepsilon)$ and

$$\int_{\mathbb{D}} \eta(x) dx = 1$$

Therefore, $\omega = h(x) - \eta(x)$ has the property

$$\int_{\mathbb{R}} \omega(x) dx = 0$$

We show

$$\int_{\mathbb{R}} \{h(A(x)) - \eta(A(x))\} A'(x) dx = 0$$

For simplicity, let us denote $h(A(x)) - \eta(A(x)) A'(x) dx = f(x) dx$. We show, there is g with support in $(-\varepsilon, \varepsilon)$ such that

$$f(x)dx = d(g)(x)$$

It is enough to take q as

$$g(x) = \int_{-\infty}^{x} f(x)dx$$

Therefore, as g has a support in $(-\varepsilon, \varepsilon)$, g vanishes outside any sufficiently large interval in \mathbb{R} by the Fundamental Theorem of Calculus,

$$\int_{\mathbb{D}} f(x)dx = \int_{\mathbb{D}} d(g)(x) = g(\infty) - g(-\infty) = 0$$

and therefore

$$\int_{\mathbb{R}} h(A(x))A'(x)dx = \int_{\mathbb{R}} \eta(A(x))A'(x)dx.$$

For n=2, let $h(x_1,x_2)$ and $\eta(x_1,x_2)$ are real valued functions with support in $B_{\varepsilon}(0)$ such that

$$\int_{\mathbb{R}^2} h(x_1, x_2) dx_1 dx_2 = \int_{\mathbb{R}^2} \eta(x_1, x_2) dx_1 dx_2 = 1$$

For $\omega = h - \eta$,

$$\int_{\mathbb{R}^2} \omega(x) dx = 0$$

For $f(x_1, x_2) = \{h(A(x_1, x_2)) - \eta(A(x_1, x_2))\} \det J_A(x_1, x_2)$, we show there is an expression

$$g := g_1(x_1, x_2) dx_1 + g_2(x_1, x_2) dx_2,$$

with support in $B_{\varepsilon}(0)$ such that

$$dg(x_1, x_2) = f(x_1, x_2) dx_1 dx_2$$

If we are able to show that, then

$$\int_{\mathbb{R}^{2}} f(x_{1}, x_{2}) dx_{1} dx_{2} = \int_{\mathbb{R}^{2}} dg(x_{1}, x_{2}) = 0.$$

as g, ω have compact support. Define g

$$g(x_1, x_2) = \int_{-\infty}^{x_1} \left\{ f(t, x_2) - \left(\int_{-\infty}^{\infty} f(x_1, x_2) dx_1 \right) \tau(x_1) \right\} dt$$

where $\tau(x_1)$ is a function with the property

$$\int_{-\infty}^{\infty} \tau\left(x_1\right) dx_1 = 1$$

It is simply seen that $g(\infty, y) = g(x, \infty) = 0$. We have

$$\frac{\partial g_1}{\partial x_1} + \left(\int_{-\infty}^{\infty} f(x_1, x_2) dx_1 \right) \tau(x_1) = f(x_1, x_2)$$

Let us denote $g_3(x_2)$ by

$$g_3(x_2) = \int_{-\infty}^{\infty} f(x_1, x_2) dx_1.$$

This is a function of a single variable x_2 and thus, there is $g_4(x_2)$ such that

$$g_3\left(x_2\right) = dg_4\left(x_2\right),\,$$

and therefore

$$f(x_1, x_2) = \frac{\partial g_1}{\partial x_1} + \frac{\partial (g_4(x_2) \tau(x_1))}{\partial x_2}$$

Now assume for integral is independent of h for n=N. This means in \mathbb{R}^N there exists an $\omega=f(x)dx$ such that $\int_{\mathbb{R}^N}\omega(x)dx=0$ with support in some $B_{\varepsilon}(0)$ and there exists a g with support in $B_{\varepsilon}(0)$ such that $\omega=d(g)$.

We show the property is true for n = N + 1. Let $x_1 = t$, $(t, x) = (t, x_2 \dots x_{N+1})$. Consider,

$$g(t,x) = \int_{-\infty}^{t} (f(s,x) - \tau(s)r(x))ds$$

where $\tau(s)$ has the property,

$$\int_{-\infty}^{\infty} \tau(t)dt = 1$$

and set

$$r(x) = \int_{-\infty}^{\infty} f(t, x) dt$$

This is a function of N dimensions. By induction hypothesis, $\int r(x)dx = 0$ and there exist g_1, \ldots, g_N such that

$$r(x) = \sum_{j=1}^{N} \frac{\partial g_j}{\partial x_j}$$

and each g_j are supported in $B_{\varepsilon}(0)$. Now

$$g(t,x) = \int_{-\infty}^{t} \left(f(s,x) - \tau(s) \sum_{j=1}^{N} \frac{\partial g_j}{\partial x_j} \right) ds$$

This integral vanishes in t as g has support in $B_{\varepsilon}(0),$ Thus

$$\frac{\partial g(t,x)}{\partial x_t} = f(t,x) - \tau(t)r(x)$$

which gives us

$$f\left(t,x\right) = \frac{\partial g(t,x)}{\partial x_t} + \sum_{j=1}^{N} \frac{\partial (g_j(x)\tau(t))}{\partial x_j}$$

References

- [1] Niksirat, Mohammad. Introduction to Ordinary Differential Equations (2022). https://sites.ualberta.ca/~niksirat/
- [2] Runde, Volker. MATH 217/317—Advanced Honors Calculus, I and II (Fall 2021 and Winter 2022) (2022). https://sites.ualberta.ca/~vrunde/files/notes217-317.pdf.