Thèse pour obtenir le grade de

Docteur en sciences de l'Université Pierre et Marie Curie

spécialité Informatique

Une approche pour l'estimation fiable des propriétés de la topologie d'Internet

Elie Rotenberg

Rapporteurs

Bertrand Jouve

Examinateurs

Jean-Jacques Pansiot Clémence Magnien

Pascal Mérindol

Philippe Owezarski

Matthieu Latapy

Directeur Co-directeur

Christophe Crespelle

Professeur, Lyon Lumière 2 Professeur émérite, Strasbourg Chargée de recherche, CNRS Maître de conférences, Strasbourg

Directeur de recherches, CNRS

Directeur de recherches, CNRS

Maître de conférences, UCBL

Organisation de l'exposé

- 1. Topologie d'Internet : enjeux et problématiques
- 2. Distribution de degrés au niveau logique
- 3. Distribution de degrés au niveau physique
- 4. Tables de transmission
- 5. Conclusions et perspectives

Topologie d'Internet : enjeux et problématiques

À quoi sert Internet?

Internet est le support de très nombreuses applications : Web, Email, musique, vidéo, achats...

Couche	Exemple
Application	HTTP
Transport	TCP
Réseau	IP
Données-lien	MAC/Ethernet

Toutes ces activités utilisent le même réseau fondamental pour communiquer entre les différentes parties.

Transport d'information sur Internet

Que se passe-t-il lorsqu'on charge une page sur le web ? Par exemple, www.google.com ?

Durée du transfert : 20ms

Transport d'information sur Internet

Que se passe-t-il lorsqu'on charge une page sur le web ? Par exemple, www.google.com ?

Topologie d'Internet

Internet : une boîte noire ?

- Construction extraordinairement complexe
- Histoire longue et décentralisée
- Structure « bottom-up » plutôt que « top-down »
- Pas de carte complète

Milliards d'ordinateurs sur la terre entière

Plus de 40 ans sans gouvernance centrale

N'importe qui peut brancher un terminal

Seulement des fragments parcellaires

Le réseau *fonctionne*, il n'a pas (trop) de pannes, mais ses propriétés précises sont discutées :

- **Diamètre** du réseau (longueur des routes)
- **Plus courts chemins** (routes optimales)
- **Vulnérabilité** aux attaques ciblées
- Résilience aux **pannes**

Des enjeux majeurs

Enjeux industriels

- Toute l'économie numérique repose sur l'intégrité et la fiabilité d'Internet
- Presque toutes les industries utilisent Internet à un niveau ou à un autre
- La mission d'Internet est d'être **le** réseau de télécommunication

Internet est un réseau stratégique pour pratiquement toute activité industrielle en 2015, au moins dans les pays fortement développés.

Enjeux théoriques

- Théorie des graphes
- Métrologie des réseaux complexes
- Emergence et systèmes complexes

Internet est l'un des objets fondamentaux de plusieurs théories, particulièrement de théories au cœur des approches interdisciplinaires.

Approches historiques

1) Cartes basées sur les déclarations des autorités administratives

Approches historiques

2) Graphes générés à partir d'une connaissance *a priori* des éléments du réseau

Réseau généré par simulation, Doar et al., 1996

Approches historiques

3) Cartes déduites de mesures avec des outils de diagnotic (traceroute, tracetree...)

Propriété extraite d'une carte traceroute, DIMES, Shavitt et al., 1999

Limites des approches historiques

- Problèmes techniques
- Passage à l'échelle
- Erreurs d'interprétation
- Biais intrinsèque
- Encore beaucoup de controverses
- Propriétés topologiques fondamentales toujours mal connues

Notre approche

- Description formelle de nos objets et de nos outils
- Mesures précises d'observables topologiques
- Echantillonnage rigoureux du réseau
- Méthode d'inférence validée

Estimation fiable d'une propriété topologique du réseau

Distribution de degrés au niveau logique

Motivation

- Correspond à l'intuition usuelle (« machines connectées »)
- Importance historique
- Niveau d'opération par défaut de ping, traceroute...
- Première tentative de mettre en place notre approche

Description formelle des objets

- Hôtes
- Interfaces
- Topologie logique « L2 » (nœuds, aretes)

Description formelle des outils

traceroute envoie des sondes avec une durée de vie croissante depuis un moniteur *m* vers une cible *t*.

Interprétation classique :

« Les sondes empruntent le chemin $m, r_1, r_2, \dots, r_{d-1}, t.$ »

Description formelle des outils

traceroute envoie des sondes avec une durée de vie croissante depuis un moniteur *m* vers une cible *t*.

Interprétation classique :

« Les sondes empruntent le chemin $m, r_1, r_2, \dots, r_{d-1}, t$. »

Description formelle des outils

traceroute envoie des sondes avec une durée de vie croissante depuis un moniteur *m* vers une cible *t*.

Notre interprétation (restreinte) :

« r_{d-1} est un voisin de t. »

traceroute depuis 1 moniteur vers une cible → 1 voisin de la cible

traceroute depuis N moniteurs vers une cible

→ N voisins de la cible ?

