Types and Recursion

COMP2600 / COMP6260

Dirk Pattinson Australian National University

Semester 2, 2015

Induction and Recursion

The main theme:

- Inductive types
- Recursively defined functions
- Proofs by structural induction

The above are closely linked!

Enumerated Types

Examples:

```
data Temp = Cold | Hot
data Season = Spring | Summer | Autumn | Winter
```

A function from one enumerated type to another:

```
weather :: Season -> Temp
weather Summer = Hot
weather _ = Cold
```

- Note the keyword data
- Enumerated type: finite number of nullary data constructors
- _ is a wildcard: matches everything but binds nothing
- What happens if we swap the last two lines of weather?

Datatypes and Constructors

A voter is distinguished by full name and address

```
data Voter = MkVoter String String
```

MkVoter is a data constructor. It takes 2 arguments and constructs a Voter

```
MkVoter :: String -> String -> Voter
MkVoter "Alan Turing" "Milton Keynes, UK"
```

Voter is a type constructor. It has no arguments.

```
Voter :: *
```

Values have types, and types have *kinds*.

A type which takes no arguments has kind *.

Datatypes with Alternatives

- Which are the type constructors and which are the data constructors?
- When we write functions over types with altenatives, we must remember to handle each case.
- What would happen if we left off the last line of boxArea?

Recursive and Polymorphic Types

Lists are a recursive data type. We could define them as follows:

However, we'd prefer to have lists of any type, not just integers.

Now List is a type constructor which takes another type as its argument.

```
Nil :: List a
Cons :: a -> List a -> List a
```

Kinds

An example value of type String is:

```
"I am a String!"
```

An example value of type List Char is:

```
Cons 'b' (Cons 'r' (Cons 'a' (Cons 'p' Nil)))
```

What is an example value of type List? ... (There isn't one).

A list has to be a list of things of some type

The List type constructor takes a type and returns a new type. It has *kind*:

```
List :: * -> *
```

It is like a *function* in the world of *types*

Haskell List Syntax

Haskell has a special syntax for lists.

The structure is the same, but the names are different.

- [] as a data constructor, is similar to Nil.
- (:) is similar to Cons, but we use it *infix*.
- [] as a type constructor is similar to List, but we use it *outfix*.

This special syntax is an example of *syntactic sugar*.

For example, try the following at a HUGS/GHCi console:

```
:type (:)
```

Lists and Strings

In Haskell:

```
type String = [Char]
```

To the left of a cons is an element, and to the right is another list.

Binary Trees

Binary trees are *multiply recursive*:

```
data Tree a

= Nul | Node a (Tree a) (Tree a)
```


Node 22 (Node 14 Nul Nul) (Node 11 Nul Nul)

Summing the elements of a tree

```
sum :: Tree Int -> Int
sum Nul = 0
sum (Node n t1 t2)
= n + sum t1 + sum t2
```


Using our example tree:

```
sum (Node 22 (Node 14 Nul Nul) (Node 11 Nul Nul))
\implies 22 + \text{sum (Node 14 Nul Nul)} + \text{sum (Node 11 Nul Nul)}
\implies 22 + (14 + \text{sum Nul} + \text{sum Nul)} + (11 + \text{sum Nul} + \text{sum Nul})
\implies 22 + (14 + 0 + 0) + (11 + 0 + 0)
```

Flattening a tree

Or a nicer version, using an accumulator: this avoids multiple uses of (++) which take time proportional to the length of the first list.

Flattening a tree: example

Example of flatten', using 0 for Nul for brevity:

```
flatten' (Node 22 (Node 14 \emptyset \emptyset) (Node 11 \emptyset \emptyset)) [] 

\implies flatten' (Node 14 \emptyset \emptyset) (22 : flatten' (Node 11 \emptyset \emptyset) []) 

\implies flatten' (Node 14 \emptyset \emptyset) (22 : flatten' \emptyset (11 : flatten' \emptyset [])) 

\implies flatten' (Node 14 \emptyset \emptyset) (22 : (11 : [])) 

\implies flatten' \emptyset (14 : flatten' \emptyset (22 : (11 : []))) 

\implies (14 : flatten' \emptyset (22 : (11 : [])))
```

Mapping over Trees

The map function for trees is similar to the list version.

For example, we could map the oddness predicate over a tree of integers to give a tree of Boolean values (with the same structure).

Expression Trees

Expressions in most languages (and compilers) are defined inductively.

The Glasgow Haskell Compiler uses an expression tree in the same spirit as:

Example

An example expression:

```
if (5 * 3) > 14 then (7 - 3) else (2 + 5)
```

Represented as a tree:

Example

The same expression:

if
$$(5 * 3) > 14$$
 then $(7 - 3)$ else $(2 + 5)$

Evaluation

```
evalX :: Exp -> Lit
evalX (XLit 1)
                    = ]
evalX (XPrim OAdd x1 x2)
    = LInt (takeI (evalX \times1) + takeI (evalX \times2))
evalX (XIf x1 x2 x3)
    | takeB (evalX x1) = evalX x2
    | otherwise = eval X x 3
takeI :: Lit -> Int
takeI (LInt i) = i
takeI _ = error "takeI: not an int!"
```

Expression Trees – Rewrites

Many useful compiler optimisations can be represented as local rewrites on the expression tree representing the program.

Here is a rewrite which evaluates a literal addition:

```
shortX :: Exp -> Exp
shortX (XPrim OAdd (XLit (LInt i1)) (XLit (LInt i2)))
= XLit (LInt (i1 + i2))
```

For example, we would like

```
if (5 * 3) > 14 then (7 - 3) else (2 + 5)
```

to rewrite to:

```
if (5 * 3) > 14 then (7 - 3) else 7
```

Applying rewrites in a more general manner

We would prefer not to write code to walk over the tree every time we define a new rewrite.

Solution: use a map function to apply a simple rewrite to all sub-expressions:

Example: see Expression.hs, compare pprX exp1 and pprX exp1r.