April 17, 2019 Name: Micah Hayden Page 1 of 2

Part 1 - Clock Divider

I simulated the clock divider at a frequency of 4.857 MHz, which was the stated clock frequency in Chapter 9. This equates to the following clock period:

$$\text{Clock Period} = \frac{1}{4.857 \times 10^6} = 205.89 ns$$

This produced the below simulation output:

Figure 1: Output waveform of Clock Divider module

Part 2 - HSync Generator

The HSync Generator module was run using the same clock period as the clock divider. There are 309 pixels horizontally, thus, I would expect the simulation to rollover at $t = 309 \cdot 205.89 \, ns = 63.620 \, \mu s$.

Figure 2: Output waveform of HSync module

As seen above, the second vertical line started at time t =

April 17, 2019 Name: Micah Hayden Page 2 of 2

Part 3 - VGA Display

To modify the HSync module to work for a VGA display, I increased the position vectors to 10 bits. I also changed the HSync and VSync timings to match those required for a VGA display, as described in Tables 1 and 2.

Frame	Lines
Visible Area	640
Front Porch	16
Sync Pulse	96
Back Porch	48
Total:	800

Table	1:	Horizontal	Timing
-------	----	------------	--------

Frame	Lines
Visible Area	480
Front Porch	10
Sync Pulse	2
Back Porch	33
Total:	525

Table 2: Vertical Timing

The VGA display needs a 25.175MHz clock, which gives a clock period of $39.722\,ns$. I would expect a whole line (800 pixels) to take

Time per Horizontal Line =
$$800 \cdot clock_{period} = 31.778 \,\mu s$$
 (1)

The simulation of the modified module produced the below output waveform:

Figure 3: Output waveform of modified HSync module for VGA display

This produced the expected results. The first rollover occurred at $t_1 = 31.757739\mu s$, and the second occurred at $t_2 = 63.535339\mu s$. This produces a total time per horizontal line of $t = t_2 - t_1 = 31.7776\mu s$. This time matches the expected time per horizontal line calculated in Equation 1.