Al on Cloud

Al on Cloud

Chapter

การเรียนรู้ของเครื่องจักร Machine Learning

What is Azure Machine Learning?

A cloud-based platform for machine learning

AZUI'e Microsoft Azure

Azure Machine Learning provides the following features and capabilities:

Feature	Capability
Automated machine learning	This feature enables non-experts to quickly create an effective machine learning model from data.
Azure Machine Learning designer	A graphical interface enabling no-code development of machine learning solutions.
Data and compute management	Cloud-based data storage and compute resources that professional data scientists can use to run data experiment code at scale.
Pipelines	Data scientists, software engineers, and IT operations professionals can define pipelines to orchestrate model training, deployment, and management tasks.

Automated Machine Learning

Supply the data and desired *supervised* model type, and let Azure Machine Learning find the best model

Lab1: Automated ML

ทำความรู้จัก Azure Machine Learning

เป้าหมาย: เรียนรู้การใช้ **Automated ML** บน **Azure Machine Learning** เพื่อ train
และ deploy predictive model.

- Tool: Automated ML
- Model: Regression Model (RandomForest และ LightGBM)
- Metric: Normalized root mean squared error

Case Study และ ข้อมูลที่ใช้

Dataset: ข้อมูลจากธุรกิจที่ให้เช่า จักรยานในเมืองๆ หนึ่ง)

Goal: เพื่อพยากรณ์ความต้องการ ในการเช่าจักรยานต่อวัน เพื่อให้ ธุรกิจสามารถวางแผนกำลังคน และ จักรยานให้เช่าได้อย่างเพียงพอ

ทำความเข้าใจข้อมูล

Dataset: https://aka.ms/bike-rentals

day	mnth	year	season	holiday	weekday	workingday	weathersit	temp	atemp	hum	windspeed	rentals
1	1	2011	1	0	6	0	2	0.344167	0.363625	0.805833	0.160446	331
2	1	2011	1	0	0	0	2	0.363478	0.353739	0.696087	0.248539	131
3	1	2011	1	0	1	1	1	0.196364	0.189405	0.437273	0.248309	120
4	1	2011	1	0	2	1	1	0.2	0.212122	0.590435	0.160296	108
5	1	2011	1	0	3	1	1	0.226957	0.22927	0.436957	0.1869	82

- day: วันที่ (1-31)
- month: เดือน (1-12)
- year: Ū (2011, 2012, ...)
- holiday: วันหยุดท่องเทียว?
 (1=ใช่, O=ไม่ใช่)
- weekday: วันในสัปดาห์
 (O=Sunday, 1=Monday, ...)
- workingday: วันทำงาน? (1=
 ใช่, O=ไม่ใช่)

- weathers it: สภาพอากาศ
 - 1: Clear, Few clouds, Partly cloudy, Partly cloudy
 - 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist
 - 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds
 - 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog
- temp: Normalized temperature in Celsius
- atemp: Normalized feeling temperature in Celsius.
- windspeed: Normalized wind speed
- rentals: total rental bikes

ขั้นตอนการทำงาน: สร้างโมเดล

Automated ML

เพื่อพยากรณ์ความต้องการ ในการเช่าจักรยานต่อวัน

การ Train ML model ด้วย Automated ML

Azure ML ให้บริการสร้าง ML Model โดยไม่ ต้องเขียนโปรแกรมโดยผ่านกระบวนการ Automated ML ซึ่งเหมาะสมกับการทำ Machine Learning ประเภท *supervised*

สำหรับ *supervised* Machine Learning การ Training Data ข้อมูลที่นำมาใช้จะต้องถูก Label แล้วเท่านั้น

Automated ML สามารถใช้ Train Model สำหรับ ปัญหาต่างๆ ดังนี้

1. Classification (การจำแนกประเภท ข้อมูล ทำนาย categories หรือ *classes*)

2. Regression
(การวิเคราะห์ความ
ถดถอย ทำนายข้อมูล
ชนิดตัวเลข)

3. Time series forecasting (predicting numeric values at a future point in time)

ขั้นตอนการใช้งาน Automated ML

Compute Resources

สามารถสร้าง compute targets ได้ถึง 4 ประเภท

compute targets	Description
Compute Instances	Development workstations that data scientists can use to work with data and models.
Compute Clusters	Scalable clusters of virtual machines for on-demand processing of experiment code.
Inference Clusters	Deployment targets for predictive services that use your trained models.
Attached Compute	Links to existing Azure compute resources, such as Virtual Machines or Azure Databricks clusters.

<mark>รีวิว: ขั้นตอนการทำงาน: สร้า</mark>งโมเดล

INPUT PROCESS OUTPUT

A Dataset of historical bicycle rental

Model Training

A Predictive Model

เพื่อพยากรณ์ความต้องการ ในการเช่าจักรยานต่อวัน

Next Step: Deploy และนำโมเดลไปใช้งาน

Test the deployed service

- กด Test
- ดูผลลัพธ์แสดง
 Predicted Number
 of Rentals based
 on the input
 features

ข้อมูลสำหรับ Test

```
"Inputs": {
 "data": [
   "day": 1,
   "mnth": 1,
   "year": 2022,
   "season": 2,
   "holiday": 0,
   "weekday": 1,
   "workingday": 1,
   "weathersit": 2,
   "temp": 0.3,
   "atemp": 0.3,
   "hum": 0.3,
   "windspeed": 0.3
"GlobalParameters": 1.0
```


End of Lab1

Thank you