

Algorithms: Design and Analysis, Part II

Approximation Algorithms for NP-Complete Problems

Analysis of a Greedy Knapsack Heuristic

Performance Guarantee

Theorem: Value of the 3-step greedy algorithm's solution is always $\geq 50\%$ value of an optimal solution.

Thought experiment: What if we were allowed to fill fully the knapsack using a suitable "fraction" (like 70%) of item (k+1)? [The value of which is "pro-rated"]

⇒ Will call this the "greedy fractional solution"

Example:
$$W=3$$
, $v_1=3$, $v_2=2$, $w_1=w_2=2$ get 100%

⇒ Greedy fractional solution has value 4

Quiz

Question: Let F = value of greedy fractional solution and OPT = value of optimal (non-fractional) solution. Which of the following is true?

- A) F = OPT for every knapsack instance
- B) F > OPT for every knapsack instance
- C) $F \leq OPT$ for every instance, and can be strict
- C) $F \ge OPT$ for every instance, and can be strict

Proof Sketch

Claim: Greedy fractional solution at least as good as every non-fractional feasible solution.

- (1) Let S =an arbitrary feasible solution
- (2) Suppose I units of knapsack filled by S with items not packed by the greedy fractional solution
- (3) Must be at least I units of knapsack filled by greedy fractional solution not packed by S
- (4) By greedy criterion, items in (3) have larger bang-per-buck v_i/w_i than those in (2) [i.e., more valuable use of space]
- (5) Total value of greedy fractional solution at least that of S

Analysis of Greedy Heuristic

In Step 2, suppose our greedy algorithm picks the 1st k items (sorted by v_i/w_i).

```
Value of 3-step greedy algorithm \geq \downarrow total value of 1st k items also is \geq value of (k+1)th item \Rightarrow 2 \cdot (\text{value of 3-step greedy}) \geq \text{total value of 1st } (k+1) \text{ items} \geq \text{total value of greedy fractional soln} \geq \text{optimal knapsack solution}
```

by step 3

QED!

Analysis is Tight

```
Example: W = 1000

v_1 = 502 v_2 = v_3 = 500

w_1 = 501 w_2 = w_3 = 500
```

- \Rightarrow 3-step greedy solution has value 502
- \Rightarrow optimal solution has value 1000

A Refined Analysis

Suppose: Every item *i* has size $w_i \le 10\%$ knapsack capacity W.

Consequence: If greedy algorithm fails to pack all items in Step 2, then the knapsack is $\geq 90\%$ full.

⇒ Value of 2-step greedy algorithm

 $\geq 90\%$ · value of greedy fractional solution

 $\geq 90\%$ · value of an optimal solution.

[In general, if $\max_i w_i \leq \delta W$, then 2-step greedy value is $\geq (1 - \delta)$ -optimal]