

REPORT DOCUMENTATION PAGE

*Form Approved
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY) 03-24-2004		2. REPORT TYPE Technical Paper (View Graph)		3. DATES COVERED (From - To)	
4. TITLE AND SUBTITLE Polynitrogen Chemistry: Recent Development in Pentazole and Polyazide Chemistry				5a. CONTRACT NUMBER F04611-99-C-0025	
				5b. GRANT NUMBER	
				5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S) Ashwani Vij, Vandana Vij, R. Haiges, Karl O. Christe				5d. PROJECT NUMBER DARP	
				5e. TASK NUMBER A205	
				5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER			
ERC Incorporated 555 Sparkman Drive Huntsville, AL 35816-0000					
9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)			
Air Force Research Laboratory (AFMC) AFRL/PRSB 4 Draco Drive Edwards AFB CA 93524-7160					
		11. SPONSOR/MONITOR'S NUMBER(S) AFRL-PR-ED-VG-2004-088			
12. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution unlimited.					
13. SUPPLEMENTARY NOTES American Chemical Society Meeting (ACS) National Meeting Anaheim, CA 28 Mar – 01 Apr 2004					
14. ABSTRACT					
15. SUBJECT TERMS					
16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT	18. NUMBER OF PAGES	19a. NAME OF RESPONSIBLE PERSON	
				Linda Talon	
a. REPORT Unclassified	b. ABSTRACT Unclassified	c. THIS PAGE Unclassified	A	38	19b. TELEPHONE NUMBER (include area code) (661) 275-5865

Polynitrogen Chemistry: Recent Development in Pentazole and Polyazide Chemistry

Ashwani Vij

Space and Missile Propulsion Division
Air Force Research Laboratory/PRSP
Edwards AFB, CA 93524
ashwani.vij@edwards.af.mil
(661) 275-6278

Inorganic Division; 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

Why Polynitrogen Compounds ?

- Polynitrogen compounds contain only nitrogen atoms and are expected to have unusual properties. Most important among these are:
 - *High endothermicity*
 - *"Green" propellant*
"combustion" product is only gaseous N₂
 - *High density*
 - *High I_{sp} values when compared to other monopropellants or bipropellants*

 High detonation velocity

Geometry of the N_5^+ cation

V-Shaped Geometry

Calculated Structure

Experimental Structure

Resonance Structure

N2 makes contacts at 2.723 and 2.768 Å
N4 contacts are at 2.887 and 2.814 Å

C&E News, 2000, 78, 41

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

3

(In)Compatibility of N_5^+

Attempts to couple N_5^+ with energetic anions can result in explosive reactions !!!

Our goal is the synthesis of an "aromatic" polynitrogen anion with

- A high first ionization potential
- A high activation energy barrier towards decomposition

April 1, 2004

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

4

New Polynitrogen Anions as Counterparts for N_5^+

Pentazole anion (N_5^-)

- Theoretical calculations show that this anion has a 28 kcal/mole activation energy barrier for decomposition and its decomposition to N_3^- and N_2 is only 11 kcal/mol exothermic
- Free pentazole has not been isolated to date. Only aryl substituted pentazoles can be isolated and stabilized at low temperatures. These compounds rapidly decompose above 273K to form aryl azides and N_2 gas

April 1, 2004

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

5

Synthetic Challenge – How do we make These New Anions??

Synthesis of Substituted Pentazoles

Sources for the Pentazole Anion (N_5^-)

Silyl Diazonium Salts

Aryl Diazonium Salts

R = electron releasing group

I. Ugi, Angew. Chem., 1961, 73, 172

April 1, 2004

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

6

Formation and Stability of Silyl Diazonium Salts

- Failed attempts to synthesize silyl diazonium salts

- R_3SiN_2^+ salts are unstable and spontaneously lose N_2

Theoretical calculations support this experimental observation.

April 1, 2004

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

7

Synthesis of Aryldiazonium Salts

Aqueous Media

$\text{R} = \text{H}, \text{OH}, \text{OCH}_3, \text{OC}_6\text{H}_5, \text{OC}_6\text{H}_4\text{N}_2^+, \text{N}(\text{CH}_3)_2$

Non-aqueous Media

April 1, 2004

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

8

Pentazole Formation... Not a Trivial Chore !!!

April 1, 2004

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

9

Identification of Arylpentazoles

Pentazoles can be characterized by low temperature NMR spectral studies using ^{15}N labeled samples.

- ^1H NMR: AB-type spectrum with H_a and H_b at 8.0 and 7.0 ppm
- ^{14}N NMR: N_1 at ~ -80 ppm
- ^{15}N NMR: N_2/N_5 at ~ -27 ppm and N_3/N_4 at ~ -4 ppm

Note: Qualitative evidence for the presence of a pentazole ring: N_2 gas evolution in solution

April 1, 2004

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

10

Cleavage of the Aryl-Pentazole Bond with Retention of the Pentazole Ring

- Chemical Methods

➤ Ozonolysis does not work! (Ugi, Radziszewski)

V. Benin, P. Kszysinski and G. J. Badziszewski / Org. Chem. 2002, 67, 1251

- Nucleophilic substitution using strong nucleophiles such as the OH^- , OR^- , F^- etc.

- Collisional Fragmentation (ElectroSpray Ion Mass Spectroscopy – ESIMS)

- Electrospray is very gentle and produces high concentration of the parent anion which can be mass selected
- Negative ion detection eliminates interference from neutral or positively charged species.

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
April 1, 2004 Approved for public release, distribution unlimited

11

MSMS of the Parent Ion Peak

Vij et al., Angew. Chem. 2002, 41, 3051

m/z

C&E News, 2002, 80, 8

April 1, 2004

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, Apr 2015
Approved for public release, distribution unlimited

12

Chemical Cleavage of the C-N Bond

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

13

Aryl-pentazole bond cleavage: N_5^- anion in Solution

1BN Labeled HCC64NB in AN/CDC/C12 + TBACH
15N NMR at -30 C, SR = 15576.07

Current Data Parameters	
NAME	Pyrazole
EXPN0	0
PROCNO	1
P2 - Acquisition Parameters	
DATE	20020708
TIME	15:02
TECO	1.00 sec
PROBHD	5 mm BBG BB
PULPROG	90
TD	32768
SOLVENT	CDCl3
NS	31
DS	0
SWH	20395.203 Hz
ETRATES	0.52000 Hz
AQ	0.0041428 sec
RG	4
DW	24.00 usec
DE	6.00 usec
TE	300.0 X
DI	10.0000000 sec
***** CHANNEL 1 *****	
NUC1	15N
FI	12.50 usec
PL1	-1.00 dB
SP1	40.5542317 MHz
P2 - Processing parameters	
SI	16384
SF	40.5604931 MHz
WDW	ZH
SSB	0
LB	0.25 Hz
GS	0
PC	1.00

April 1, 2004

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

14

Subsequent Decomposition of the Pentazole Anion

Pentazoles with Heterocyclic Substituents

- Tetrazolyl system is unstable above -70 °C and the pentazole ring rapidly decomposes to liberate N₂ gas.

A. Hammerl and T. M. Kläpoetke, *Inorg. Chem.* 2002, 41, 906-912

- In comparison, the pentazole ring derived from 2-amino-4,5-dicyanoimidazole shows higher thermal stability (-30 °C)

^{15}N NMR of 2-pentazolyl-4,5-dicyano-imidazole

^{15}N NMR recorded in a mixture of methanol and acetonitrile at -30°C , nitromethane used as an external reference (0 ppm)

April 1, 2004

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

17

Pentazolate Anion in Solution ?

➤ ^{15}N NMR shows a peak at ~ -10 ppm (-30°C) upon addition of base, which slowly decomposes to form N_2 and azide ion.

➤ This peak is also observed upon adding a base to the solution of arylpentazoles at -30°C .

April 1, 2004

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

18

Chronology of the Pentazolate Anion

➤ ESIMS of *para*-hydroxyphenylpentazole

Vij, Pavlovich, Wilson, Vij, Christe, Angew. Chem. Int'l. Ed. Engl 2002, 41, 3051
Submitted: April 30, 2002; accepted July 3, 2002

➤ ^{15}N NMR studies showing a peak at -10.2 ppm (-40 °C) due to the Pentazole anion resulting from cleavage of *para*-methoxyphenylpentazole which slowly decomposes to form N₂ and azide ion. Upon standing for several days, all peaks disappear!

Butler, Stephens & Burke, Chem. Commun. 2003, 1016
Submitted: February 6, 2003; accepted February 27, 2003

➤ Laser Desorption Ionization (LDI) time-of-flight (TOF) mass spectrometry of solid *para*-*N,N*-dimethylaminophenylpentazole shows peaks at m/z: 70 (N_5^-) and -42 (N_3^-). Peak at 70 confirmed by ^{15}N labeling experiment.

Ostmark, Wallin, Brinck, Carlqvist, Claridge, Hedlund & Yudina, Chem. Phys Lett., 2003, 379, 539
Submitted: Jun. 27, 2003; accepted August 27, 2003

April 1, 2004

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

19

What are “normal” N-N distances in azides?

April 1, 2004

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

20

Abnormalities in azide distances: Artifacts or Structural Contaminants?

- ✓ A large number of crystal structures reported in Cambridge/Inorganic CSD report unusually short $N_{\alpha}\text{-}N_{\beta}$ (0.8- 1.0 Å) and long $N_{\beta}\text{-}N_{\gamma}$ (1.2-1.4) distances.

According to VB theory, in covalently bonded azides,
 $N_{\alpha}\text{-}N_{\beta} > N_{\beta}\text{-}N_{\gamma}$

Wolfgang, F. and Klapoetke, T. In *Inorganic Chemistry Highlights*; Meyer, G., Naumann, D. and Wesemann, L. Eds.; Wiley-VCH: Weinheim, 2002, Chapter 16 and references therein

- ✓ In most cases, these derivatives were prepared from metal chloride salts and/or recrystallized from chlorinated solvents

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

21

Reactivity of hexachloroantimonate (VI) with Trimethylsilylazide

- ✓ The substitution of all the six chlorine atoms in SbCl_6^- by the azide groups could not be accomplished in a single step, as reported in literature. The stepwise substitution gives a good insight into the substitution mechanism.

- ✓ Total substitution was achieved after four “refreshment” cycles of the reagents. During the intermediate cycles, the azide content gradually increased from two to five.

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

22

The tetraphenylarsonium antimonychloride azide case

April 1, 2004

Inorganic Division - Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

23

Summary

- Synthesized aryl pentazoles: hydroxy group at the *para*-position on the aryl ring gives the best results as observed during this study.
- Demonstrated selective cleavage of C-N bond by ESIMS with retention of pentazole ring. Results confirmed studying ^{15}N labeled pentazoles.
- Experimental detection of pentazolate anion in solution using different substrates.
- Offers potential pathway for bulk synthesis of N_5^- salts
- Chloride ion cause abnormalities in N-N bonds in azides

April 1, 2004

Inorganic Division - Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

24

Acknowledgments

Dr. Karl Christe, Dr. William Wilson, Ms. Vandana Vij (ERC Inc.)

Dr. Gregory Drake (AFRL)

Dr. Ralf Haiges (USC)

Dr. Fook Tham (UC Riverside)

Dr. James Pavlovich (UCSB)

Dr. Robert Corley, Dr. Ronald Channell, Mr. Michael Huggins (AFRL)

\$\$\$

Dr. Don Woodbury, Dr. Arthur Morrish (DARPA)

Dr. Michael Berman (AFOSR)

April 1, 2004

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

25

BACKUP

April 1, 2004

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

26

Recipe for Synthesizing Neutral Polynitrogen Compounds

- Combine a polynitrogen cation with a polynitrogen anion to form a neutral polynitrogen compound.

ONLY TWO STABLE POLYNITROGEN IONS KNOWN TO EXIST IN BULK

N_5^+ cation
(discovered in 1999, AFRL, Christe)

N_3^- anion
(discovered in 1890, Curtius)

April 1, 2004

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004

Approved for public release, distribution unlimited

33

Episode I...Generation of the starting material

April 1, 2004

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004

Approved for public release, distribution unlimited

34

**Episode II....cis- or trans- disubstitution
with azide groups?**

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

35

**Episode III...Substitution of 3rd chlorine...
fac- or mer- isomer ???**

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

36

Episode VI...Complete substitution of chlorine atoms

No crystal structure obtained yet. However, IR and Raman spectroscopy shows that Sb-Cl bonds are absent i.e., complete substitution by the azide groups.

April 1, 2004

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

27

ESIMS of para-Phenoxypentazole

Observed peaks in the MSMS of 162

Vij, Pavlovich, Wilson, Vij & Christe, *Angew. Chem. Int. Ed.* 2002, 41, 3051-3054
Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

April 1, 2004

28

**Episode V: Synthesis of
Chloropentaazidoantimonate(VI) Anion**

The Structure of $\text{Ph}_4\text{PSbCl}(\text{N}_3)_5$

- ✓ The crystals grown from CH_3CN
- ✓ Triclinic space group $P-1$
- ✓ Cell constants: $a = 11.134(3)\text{ \AA}$, $b = 11.663(3)\text{ \AA}$, $c = 13.754(4)\text{ \AA}$; $\alpha = 104.314(5)^\circ$; $\beta = 97.914(5)^\circ$; $\gamma = 115.807(4)^\circ$
- ✓ $Z = 2$
- ✓ $R = 0.0762$
- ✓ All azide distances "normal" except $\text{N}10-\text{N}11-\text{N}12$

April 1, 2004

J, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

37

Reaction with Trimethylsilyl Azide

X= N, O

No pentazoles were isolated !!!

Reactions carried out in acetonitrile at -30 °C

Inorganic Division – Main Group Chemistry, 227th National ACS Meeting, Anaheim-CA, April 1, 2004
Approved for public release, distribution unlimited

April 1, 2004

38