Department of Industrial Engineering & Operations Research

IEOR 162 Linear Programming & Network Flows (Fall 2021)

Duality

Formulations

Primal

maximize
$$\sum_{j=1}^{n} c_{j}x_{j}$$
 minimize
$$\sum_{i=1}^{m} b_{i}y_{i}$$
 subject to
$$\sum_{j=1}^{n} a_{ij}x_{j} \leq b_{i}, \quad i=1,2,...,m,$$
 subject to
$$\sum_{i=1}^{m} a_{ij}y_{i} \geq c_{j}, \quad j=1,2,...,n,$$

$$y_{i} \geq 0, \quad j=1,2,...,m.$$

$$y_{i} \geq 0, \quad i=1,2,...,m.$$

Dual

minimize
$$\sum_{i=1}^m b_i y_i$$
 subject to
$$\sum_{i=1}^m a_{ij} y_i \geq c_j, \quad j=1,2,...,n,$$

$$y_i \geq 0, \quad i=1,2,...,m.$$

Example 1: Giapetto Problem

Dual **Primal**

maximize
$$3x_1 + 2x_2$$
 min $100y_1 + 80y_2 + 40y_3$ subject to $2x_1 + x_2 \le 100$ s.t. $2y_1 + y_2 + y_3 \ge 3$ $x_1 + x_2 \le 80$ $y_1 + y_2 \ge 2$ $x_1 \le 40$ $y_1, y_2, y_3 \ge 0$ $x_1, x_2 \ge 0$

Basic Variable	Eq#	\mathbf{z}	x_1	x_2	x_3	x_4	x_5	RHS
z	0	1	0	0	1	1	0	180
x_2	1	0	0	1	-1	2	0	60
x_5	2	0	0	0	-1	1	1	20
$ x_1 $	3	0	1	0	1	-1	0	20

$$\begin{bmatrix} x_1^* & x_2^* & x_3^* & x_4^* & x_5^* \\ 20 & 60 & 0 & 0 & 20 \\ 0 & 0 & 1 & 1 & 0 \\ y_4^* & y_5^* & y_1^* & y_2^* & y_3^* \end{bmatrix} z^* = w^* = 180$$

Example 2

Primal

Maximize
$$3x_1 + 5x_2$$

subject to $x_1 \leq 4$
 $2x_2 \leq 12$
 $3x_1 + 2x_2 \leq 18$
 $x_1, x_2 \geq 0$

The optimal simplex tableau is:

Eq.	B.V.	x_1	x_2	s_1	s_2	s_3	R.H.S
(0)	z	0	0	0	3/2	1	36
(1)	s_1	0	0	1	1/3	-1/3	2
(2)	x_2	0	1	0	1/2	0	6
(3)	x_1	1	0	0	-1/3	1/3	2

$$\begin{bmatrix} x_1^* & x_2^* & s_1^* & s_2^* & s_3^* \\ 2 & 6 & 2 & 0 & 0 \\ 0 & 0 & 0 & \frac{3}{2} & 1 \\ y_4^* & y_5^* & y_1^* & y_2^* & y_3^* \end{bmatrix} z^* = w^* = 36$$

Dual

$$\begin{array}{ll} \min & 4y_1 + 12y_2 + 18y_3 \\ \text{s.t.} & y_1 + 3y_3 \geq 3 \\ & 2y_2 + 2y_3 \geq 5 \\ & y_1, y_2, y_3 \geq 0 \end{array}$$

Dual Optimal Solution

$$(y_1^*, y_2^*, y_3^*) = \left(0, \frac{3}{2}, 1\right)$$

Example 3 (Lecture)

Primal

Maximize
$$3x_1 + 4x_2 + 5x_3 + 4x_4$$

subject to $2x_1 + 5x_2 + 4x_3 + 3x_4 \le 224$
 $5x_1 + 4x_2 - 5x_3 + 10x_4 \le 280$
 $2x_1 + 4x_2 + 4x_3 - 2x_4 \le 184$
 $x_1, x_2, x_3, x_4 \ge 0$

The optimal simplex tableau is:

F	Ξq.	B.V.	x_1	x_2	x_3	x_4	s_1	s_2	s_3	R.H.S
	(0)	z	0	14/5	0	0	6/5	1/15	2/15	312
((1)	x_4	0	1/5	0	1	1/5	0	-1/5	8
$\ $ ((2)	x_1	1	1	0	0	-1/5	2/15	11/30	60
((3)	x_3	0	3/5	1	0	1/5	-1/15	-1/30	20

$$\begin{bmatrix} x_1^* & x_2^* & x_3^* & x_4^* & s_1^* & s_2^* & s_3^* \\ 60 & 0 & 20 & 8 & 0 & 0 & 0 \\ 0 & \frac{14}{5} & 0 & 0 & \frac{6}{5} & \frac{1}{15} & \frac{2}{15} \\ y_4^* & y_5^* & y_6^* & y_7^* & y_1^* & y_2^* & y_3^* \end{bmatrix} z^* = w^* = 312$$

Dual

min
$$224y_1 + 280y_2 + 184y_3$$

s.t. $2y_1 + 5y_2 + 2y_3 \ge 3$
 $5y_1 + 4y_2 + 4y_3 \ge 4$
 $4y_1 - 5y_3 + 4y_3 \ge 5$
 $3y_1 + 10y_2 - 2y_3 \ge 4$
 $y_1, y_2, y_3 \ge 0$

Dual Optimal Solution

$$(y_1^*, y_2^*, y_3^*) = \left(\frac{6}{5}, \frac{1}{15}, \frac{2}{15}\right)$$