1. Ejercicios de Física III.

Profesor Mario D. Melita

Ejercicio 1. Mostrar que las siguientes funciones ψ son soluciones de la ecuación de ondas clásicas. Determinar además la dirección y la velocidad de la onda.

1.
$$\psi(z,t) = (z + vt)^2$$

2.
$$\psi(y,t) = (y-4t)^2$$

3.
$$\psi(z,t) = \frac{A}{(z-vt)^2 + 1}$$

4.
$$\psi(y,t) = A e^{-a(by-ct)^2}$$

Ejercicio 2. Las ondas de presión pueden viajar a aproximadamente $6 \frac{km}{s}$ sobre el acero ¿a qué longitud de onda corresponde una nota D (cuya frecuencia es 290 Hz)?

Ejercicio 3. El perfil de una onda $\psi(x,t)$ se define como $f(x) = \psi(x,t=0)$. Considere el perfil para una onda transversa que se propaga sobre una cuerda a velocidad $v=2.5\,\mathrm{m/sdado}$ por

$$y = (0.1 \,\mathrm{m}) \sin \left(0.707 \,\mathrm{m}^{-1} x\right) \tag{1}$$

Calcular su longitud de onda, periodo, frecuencia y amplitud.

Ejercicio 4. La imagen de la figura representa el perfil de una onda transversa que se propaga sobre una cuerda en la dirección x a 20 m/s. Determinar: a) la longitud de onda, b) la frecuencia

Figure 1: Perfil de una onda transversa sobre una cuerda.