The family of hierarchical classes models: A state-of-the-art overview

Iven Van Mechelen, Eva Ceulemans, Iwin Leenen, and Jan Schepers

University of Leuven

Iven.VanMechelen@psy.kuleuven.be

Overview of the talk

- 1. data
- 2. models
 - 2.1 context
 - 2.2 hierarchical classes models
 - 2.2.1 basic model
 - 2.2.2 justification of the Max operator
 - 2.2.3 the HICLAS family
- 3. research topics
 - 3.1 models
 - 3.2 estimation
 - 3.3 model selection and model checking
 - 3.4 quantification of uncertainty
- 4. references

Overview of the talk

- 1. data
- 2. models
 - 2.1 context
 - 2.2 hierarchical classes models
 - 2.2.1 basic model
 - 2.2.2 justification of the Max operator
 - 2.2.3 the HICLAS family
- 3. research topics
 - 3.1 models
 - 3.2 estimation
 - 3.3 model selection and model checking
 - 3.4 quantification of uncertainty
- 4. references

1. Data

• $I_1 \times I_2 \times ... \times I_N$ N-way N-mode data array $\underline{\mathbf{X}}$ with entries $\mathbf{X}_{i_1 i_2 ... i_N}$

- binary, rating-valued, real-valued
- array-conditionality

Note:

We leave aside:

- (1) structurally incomplete data
- (2) multiblock data

Overview of the talk

- 1. data
- 2. models
 - 2.1 context
 - 2.2 hierarchical classes models
 - 2.2.1 basic model
 - 2.2.2 justification of the Max operator
 - 2.2.3 the HICLAS family
- 3. research topics
 - 3.1 models
 - 3.2 estimation
 - 3.3 model selection and model checking
 - 3.4 quantification of uncertainty
- 4. references

2.1 Context

N-way Tucker model:

$$X_{i_1 i_2 \dots i_N} = \sum_{p_1=1}^{P_1} \sum_{p_2=1}^{P_2} \dots \sum_{p_N=1}^{P_N} \left[\left(\prod_{n=1}^N a_{i_n p_n}^n \right) g_{p_1 p_2 \dots p_N} \right] + e_{i_1 i_2 \dots i_N}$$

with \mathbf{A}^n denoting the $I_n \times P_n$ n^{th} component matrix

and **G** denoting the core array

$$x_{i_1 i_2 \dots i_N} = \sum_{p_1=1}^{P_1} \sum_{p_2=1}^{P_2} \dots \sum_{p_N=1}^{P_N} \left[\left(\prod_{n=1}^N a_{i_n p_n}^n \right) g_{p_1 p_2 \dots p_N} \right] + e_{i_1 i_2 \dots i_N}$$

- options:
 - 1. Aⁿ identity matrix for 1, 2, ..., N-1 component matrices

Tucker
$$N-1$$

Tucker $N-2$ model

...

Tucker 1

- 2. **G** superdiagonal or superidentity
 - → N-way CANDECOMP/PARAFAC

- models studied in research group:
 - (1) primary constraint:
 - \mathbf{A}^n binary for 1, 2, ..., N component matrices
 - \rightarrow overlapping clustering for n^{th} mode
 - (2) operator: Σ or Max (Min)

$$\mathbf{X}_{i_1 \ i_2 \ \dots \ i_N} = \sum_{p_1=1}^{P_1} \sum_{p_2=1}^{P_2} \dots \sum_{p_N=1}^{P_N} \left[\left(\prod_{n=1}^N \mathbf{a}_{i_n \ p_n}^n \right) \mathbf{g}_{p_1 \ p_2 \ \dots \ p_N} \right] + \mathbf{e}_{i_1 \ i_2 \ \dots \ i_N}$$

$$\mathbf{x}_{i_1 i_2 \dots i_N} = \mathbf{Max}_{p_1=1}^{P_1} \mathbf{Max}_{p_2=1}^{P_2} \dots \mathbf{Max}_{p_N=1}^{P_N} \left[\left(\prod_{n=1}^{N} \mathbf{a}_{i_n p_n}^n \right) \mathbf{g}_{p_1 p_2 \dots p_N} \right] + \mathbf{e}_{i_1 i_2 \dots i_N}$$

unifying model: Van Mechelen & Schepers (submitted)

- focus of present talk:
 - (1) \mathbf{A}^n binary for all component matrices
 - → overlapping clustering for all modes
 - (2) operator: Max
 - (3) **G** takes values in \mathbb{R}^+

Overview of the talk

- 1. data
- 2. models
 - 2.1 context
 - 2.2 hierarchical classes models
 - 2.2.1 basic model
 - 2.2.2 justification of the Max operator
 - 2.2.3 the HICLAS family
- 3. research topics
 - 3.1 models
 - 3.2 estimation
 - 3.3 model selection and model checking
 - 3.4 quantification of uncertainty
- 4. references

2.2 Hierarchical classes models

2.2.1 Basic model

two-way two-mode

$$\mathbf{x}_{i_1 i_2} = \underbrace{\max_{p_1=1}^{P_1} \max_{p_2=1}^{P_2} \left(\mathbf{a}_{i_1 p_1}^{1} \mathbf{a}_{i_2 p_2}^{2} \mathbf{g}_{p_1 p_2} \right) + \mathbf{e}_{i_1 i_2}}_{P_2=1} + \mathbf{e}_{i_1 i_2}$$

reconstructed data $\hat{\mathbf{X}}_{i_1 i_2}$

$$\hat{\boldsymbol{x}}_{i_1 \ i_2} = \max_{p_1=1}^{P_1} \max_{p_2=1}^{P_2} \left(a_{i_1 \ p_1}^1 \ a_{i_2 \ p_2}^2 \ \boldsymbol{g}_{p_1 \ p_2} \right)$$

- three cases:
 - 1. **G** binary $(0/1) \Rightarrow$ **G** is identity matrix

$$\hat{\mathbf{x}}_{i_{1} i_{2}} = \underset{p=1}{\overset{P}{\text{Max}}} \left(\mathbf{a}_{i_{1} p}^{1} \mathbf{a}_{i_{2} p}^{2} \right)$$

$$\hat{\mathbf{x}}_{i_{1} i_{2}} = \underset{p=1}{\overset{P}{\bigoplus}} \left(\mathbf{a}_{i_{1} p}^{1} \mathbf{a}_{i_{2} p}^{2} \right) \text{ (Boolean sum)}$$

- 2. **G** rating-valued (i.e., values in {1, 2, ..., *V*})
- 3. **G** real-valued (i.e., values in \mathbb{R}^+)

2.2 Hierarchical classes models

2.2.2 Justification of the Max operator

Three (interrelated reasons):

- representation by component matrices of quasi-orders that can be naturally defined on each of the modes
- 2. substantive interpretation of decomposition rule
- 3. decision rule for overlapping biclusters (triclusters etc.)

- 2.2 Hierarchical classes models
- 2.2.2 Justification of the Max operator

Three (interrelated reasons):

- 1. representation by component matrices of quasi-orders that can be naturally defined on each of the modes
- 2. substantive interpretation of decomposition rule
- 3. decision rule for overlapping biclusters (triclusters etc.)

binary case (**G** is 0/1)
 illustrative example: 7 × 6 feature by object reconstructed data

		O ₁	O ₂	O ₃	O_4	O ₅	O ₆
	F ₁	1	0	0	0	1	0
	F_2	0	1	1	0	1	1
$\hat{X} =$	F_3	0	0	0	1	0	1
/	F_4	0	0	0	1	0	1
	F_5	1	1	1	0	1	1
	F_6	1	1	1	0	1	1
	<i>F</i> ₇	1	1	1	1	1	1

e.g.,
$$F_1 \preccurlyeq F_5$$
, $F_3 \preccurlyeq F_4$, $F_5 \preccurlyeq F_7$

- similar implication relation among objects
- quasi-order: reflexive, transitive
 - → implies partial order on resulting equivalence classes
- graphical representation: (quasi-) Hasse diagram

→ HIERARCHICAL CLASSES !!!

quasi-order on
$$\{F_1, ..., F_7\}$$

as implied by $\hat{\mathbf{X}}$

quasi-order on
$$\{F_1, ..., F_7\}$$

as implied by \mathbf{A}^1

	O_1	O_2	O_3	O_4	O ₅	O_6
F ₁	1	0	0	0	1	0
F_2	0	1	1	0	1	1
F_3	0	0	0	1	0	1
F_4	0	0	0	1	0	1
F_5	1	1	1	0	1	1
F_6	1	1	1	0	1	1
F ₇	1	1	1	1	1	1

	4 ¹ _{•1}	$A_{\bullet 2}^1$	$A_{\bullet 3}^{1}$	
F ₁	1	0	0	•
F_2	0	1	0	
F_3	0	0	1	$= \mathbf{A}^1$
F_4	0	0	1	
F_5	1	1	0	
F_6	1	1	0	
F_7	1	1	1	

quasi-order on
$$\{F_1, ..., F_7\}$$
 as implied by $\hat{\mathbf{X}}$

quasi order-on $\{F_1, ..., F_7\}$ as implied by \mathbf{A}^1

				_
	A _{•1}	$A_{\bullet 2}^1$	$A_{\bullet 3}^{1}$	
$\overline{F_1}$	1	0	0	-
F_2	0	1	0	
F_3	0	0	1	$= \mathbf{A}^1$
F_4	0	0	1	
F_5	1	1	0	
F_6	1	1	0	
<i>F</i> ₇	1	1	1	_

quasi-order on
$$\{O_1, ..., O_6\}$$

as implied by $\hat{\mathbf{X}}$

quasi-order on
$$\{O_1, ..., O_6\}$$

as implied by \mathbf{A}^2

		O ₁	O_2	O_3	O_4	O_5	O_6
-	<i>F</i> ₁	1	0	0	0	1	0
	F_2	0	1	1	0	1	1
=	F_3	0	0	0	1	0	1
	F_4	0	0	0	1	0	1
	F_5	1	1	1	0	1	1
	F_6	1	1	1	0	1	1
	F_7	1	1	1	1	1	1

	$A_{\bullet 1}^2$	$A_{\bullet 2}^2$	$A_{\bullet 3}^3$	
O ₁	1	0	0	•
O_2	0	1	0	
O_3	0	1	0	$= \mathbf{A}^2$
O_4	0	0	1	
05	1	1	0	
06	0	1	1	

quasi-order on
$$\{O_1, ..., O_6\}$$

as implied by $\hat{\mathbf{X}}$

quasi-order on $\{O_1, ..., O_6\}$ as implied by \mathbf{A}^2

F	4 ² •1	$A_{\bullet 2}^2$	$A_{\bullet 3}^3$	
O ₁	1	0	0	
O_2	0	1	0	
O_3	0	1	0	$= \mathbf{A}^2$
O_4	0	0	1	
O_5	1	1	0	
O ₆	0	1	1	

Note: (quasi) Hasse diagram as implied by A¹

Note: (quasi) Hasse diagram as implied by A²

Note: (quasi) Hasse diagrams as implied by A¹ and A²

• Note:

• Note: comprehensive graphical representation of HICLAS model !!!

rating- or positively real-valued case
 illustrative example: 7 × 6 feature by object reconstructed data

		O ₁	O ₂	O ₃	O ₄	O ₅	O ₆
	F ₁	4	1	1	0	4	1
	F_2	0	5	5	0	5	5
$\hat{\mathbf{X}} =$	F_3	0	0	0	2	0	2
X –	F_4	0	0	0	2	0	2
	F_5	4	5	5	0	5	5
	F_6	4	5	5	0	5	5
	<i>F</i> ₇	4	5	5	2	5	5

e.g.,
$$F_1 \preccurlyeq F_5$$
, $F_3 \preccurlyeq F_4$, $F_5 \preccurlyeq F_7$

- generalized implication relation is again a quasi-order
- similar quasi-order on objects
- quasi-orders can be graphically represented by (quasi-) Hasse diagrams

e.g.,

quasi-orders are to be represented by component matrices

quasi-order on
$$\{F_1, ..., F_7\}$$
 as implied by $\hat{\mathbf{X}}$

quasi-order on $\{F_1, ..., F_7\}$ as implied by \mathbf{A}^1

	O ₁	O ₂	O ₃	O_4	O ₅	O ₆
F ₁	4	1	1	0	4	1
F_2	0	5	5	0	5	5
F_3	0	0	0	2	0	2
F_4	0	0	0	2	0	2
F_5	4	5	5	0	5	5
F_6	4	5	5	0	5	5
F ₇	4	5	5	2	5	5

				_
	$A_{\bullet 1}^1$	$A_{\bullet 2}^1$	$A_{\bullet 3}^{1}$	
$\overline{F_1}$	1	0	0	
F_2	0	1	0	
F_3	0	0	1	$=\mathbf{A}^{\hat{A}}$
F_4	0	0	1	
F_5	1	1	0	
F_6	1	1	0	
F ₇	1	1	1	

Note:

 $A_{\bullet 1}^{1}$ $A_{\bullet 2}^{1}$ $A_{\bullet 3}^{1}$ F_3 F_6

 \mathbf{A}^1

 $A_{\bullet 1}^2 \quad A_{\bullet 2}^2 \quad A_{\bullet 3}^3$

 \mathbf{A}^2

G

	A _{•1} ²	$A_{\bullet 2}^2$	$A_{\bullet 3}^3$
$A_{\bullet 1}^{1}$	4	1	0
$A_{\bullet 2}^1$	0	5	0
A _{•3}	0	0	2

Note: comprehensive graphical representation of HICLAS model

Note:

Max-operator can be shown to be only operator that allows representations of quasi-orders !!!

- 2.2 Hierarchical classes models
- 2.2.2 Justification of the Max operator

Three (interrelated reasons):

- 1. representation by component matrices of quasi-orders that can be naturally defined on each of the modes
- 2. substantive interpretation of decomposition rule
- 3. decision rule for overlapping biclusters (triclusters etc.)

consider binary (0/1) case

assume (reconstructed) data pertain to person by problem failure/success:

 $\hat{x}_{i_1 i_2} = 0$: person i_1 fails for problem i_2

 $\hat{x}_{i_1 i_2} = 1$: person i_1 succeeds for problem i_2

- underlying mechanism:
 - P (latent) solution strategies
 - person i_1 may master strategy p or not: $a_{i_1 p}^1 = 1$ or 0
 - strategy p may be suitable for solving problem i_2 or not: $a_{i_2 p}^2 = 1$ or 0

•
$$\hat{x}_{i_1 i_2} = \underset{p=1}{\text{Max}} (a_{i_1 p}^1 a_{i_2 p}^2)$$

$$\hat{\mathbf{x}}_{i_1 i_2} = \bigoplus_{p=1}^{P} (\mathbf{a}_{i_1 p}^1 \mathbf{a}_{i_2 p}^2)$$

•
$$\hat{x}_{i_1 i_2} = 1$$
 iff $(\exists p: a_{i_1 p}^1 = 1 \text{ and } a_{i_2 p}^2 = 1)$

person i_1 succeeds iff for problem i_2

there is at least one strategy p that person i_1 masters and that is suitable for solving problem i_2

Note:

existential quantifier → disjunctive model

- 2.2 Hierarchical classes models
- 2.2.2 Justification of the Max operator

Three (interrelated reasons):

- 1. representation by component matrices of quasi-orders that can be naturally defined on each of the modes
- 2. substantive interpretation of decomposition rule
- 3. decision rule for overlapping biclusters (triclusters etc.)

consider positively real-valued (reconstructed) object by variable data

consider the following two models:

$$\hat{\boldsymbol{x}}_{i_1 i_2} = \sum_{p_1=1}^{P_1} \sum_{p_2=1}^{P_2} (a_{i_1 p_1}^1 a_{i_2 p_2}^2 g_{p_1 p_2})$$

$$\hat{\mathbf{x}}_{i_1 i_2} = \max_{p_1=1}^{P_1} \max_{p_2=1}^{P_2} \left(\mathbf{a}_{i_1 p_1}^1 \mathbf{a}_{i_2 p_2}^2 \mathbf{g}_{p_1 p_2} \right)$$

$$\hat{\mathbf{x}}_{i_1 i_2} = \sum_{p_1=1}^{P_1} \sum_{p_2=1}^{P_2} \left(\mathbf{a}_{i_1 p_1}^1 \mathbf{a}_{i_2 p_2}^2 \mathbf{g}_{p_1 p_2} \right) \qquad \hat{\mathbf{x}}_{i_1 i_2} = \max_{p_1=1}^{P_1} \max_{p_2=1}^{P_2} \left(\mathbf{a}_{i_1 p_1}^1 \mathbf{a}_{i_2 p_2}^2 \mathbf{g}_{p_1 p_2} \right)$$

$$\hat{\mathbf{x}}_{i_1 i_2} = \sum_{p_1=1}^{P_1} \sum_{p_2=1}^{P_2} \left(\mathbf{a}_{i_1 p_1}^1 \mathbf{a}_{i_2 p_2}^2 \mathbf{g}_{p_1 p_2} \right) \qquad \hat{\mathbf{x}}_{i_1 i_2} = \max_{p_1=1}^{P_1} \max_{p_2=1}^{P_2} \left(\mathbf{a}_{i_1 p_1}^1 \mathbf{a}_{i_2 p_2}^2 \mathbf{g}_{p_1 p_2} \right)$$

$$O_6 \quad 0 \quad 0$$
 $A_1^2 \quad 2 \quad 0$

0
3
$$A_{-2}^{1}$$

0
3
$$A_{•2}^{1}$$

$$\begin{pmatrix} \mathbf{1} \\ \mathbf{1} \\ \mathbf{2} \\ \mathbf{A} \end{pmatrix}$$

$$V_1$$

$$A_{\bullet 2}^2 \mid A$$

$$\hat{\mathbf{x}}_{i_1 \ i_2} = \sum_{p_1=1}^{P_1} \sum_{p_2=1}^{P_2} \left(\mathbf{a}_{i_1 \ p_1}^1 \ \mathbf{a}_{i_2 \ p_2}^2 \ \mathbf{g}_{p_1 \ p_2} \right) \qquad \hat{\mathbf{x}}_{i_1 \ i_2} = \max_{p_1=1}^{P_1} \max_{p_2=1}^{P_2} \left(\mathbf{a}_{i_1 \ p_1}^1 \ \mathbf{a}_{i_2 \ p_2}^2 \ \mathbf{g}_{p_1 \ p_2} \right)$$

$$\hat{\mathbf{x}}_{i_1 \ i_2} = \sum_{p_1=1}^{P_1} \sum_{p_2=1}^{P_2} \left(\mathbf{a}_{i_1 \ p_1}^1 \ \mathbf{a}_{i_2 \ p_2}^2 \ \mathbf{g}_{p_1 \ p_2} \right) \qquad \hat{\mathbf{x}}_{i_1 \ i_2} = \max_{p_1=1}^{P_1} \max_{p_2=1}^{P_2} \left(\mathbf{a}_{i_1 \ p_1}^1 \ \mathbf{a}_{i_2 \ p_2}^2 \ \mathbf{g}_{p_1 \ p_2} \right)$$

$$\hat{\mathbf{x}}_{i_1 i_2} = \sum_{p_1=1}^{P_1} \sum_{p_2=1}^{P_2} \left(\mathbf{a}_{i_1 p_1}^1 \mathbf{a}_{i_2 p_2}^2 \mathbf{g}_{p_1 p_2} \right) \qquad \hat{\mathbf{x}}_{i_1 i_2} = \max_{p_1=1}^{P_1} \max_{p_2=1}^{P_2} \left(\mathbf{a}_{i_1 p_1}^1 \mathbf{a}_{i_2 p_2}^2 \mathbf{g}_{p_1 p_2} \right)$$

$$\hat{\mathbf{x}}_{i_1 i_2} = \sum_{p_1=1}^{P_1} \sum_{p_2=1}^{P_2} \left(\mathbf{a}_{i_1 p_1}^1 \mathbf{a}_{i_2 p_2}^2 \mathbf{g}_{p_1 p_2} \right) \qquad \hat{\mathbf{x}}_{i_1 i_2} = \max_{p_1=1}^{P_1} \max_{p_2=1}^{P_2} \left(\mathbf{a}_{i_1 p_1}^1 \mathbf{a}_{i_2 p_2}^2 \mathbf{g}_{p_1 p_2} \right)$$

$$\hat{\mathbf{x}}_{i_1 i_2} = \sum_{p_1=1}^{P_1} \sum_{p_2=1}^{P_2} \left(a_{i_1 p_1}^1 \ a_{i_2 p_2}^2 \ \mathbf{g}_{p_1 p_2} \right) \qquad \hat{\mathbf{x}}_{i_1 i_2} = \max_{p_1=1}^{P_1} \max_{p_2=1}^{P_2} \left(a_{i_1 p_1}^1 \ a_{i_2 p_2}^2 \ \mathbf{g}_{p_1 p_2} \right)$$

$$\hat{\mathbf{x}}_{i_1 i_2} = \sum_{p_1=1}^{P_1} \sum_{p_2=1}^{P_2} \left(\mathbf{a}_{i_1 p_1}^1 \mathbf{a}_{i_2 p_2}^2 \mathbf{g}_{p_1 p_2} \right) \qquad \hat{\mathbf{x}}_{i_1 i_2} = \max_{p_1=1}^{P_1} \max_{p_2=1}^{P_2} \left(\mathbf{a}_{i_1 p_1}^1 \mathbf{a}_{i_2 p_2}^2 \mathbf{g}_{p_1 p_2} \right)$$

$$\hat{\mathbf{x}}_{i_1 i_2} = \sum_{p_1=1}^{P_1} \sum_{p_2=1}^{P_2} \left(\mathbf{a}_{i_1 p_1}^1 \mathbf{a}_{i_2 p_2}^2 \mathbf{g}_{p_1 p_2} \right) \qquad \hat{\mathbf{x}}_{i_1 i_2} = \max_{p_1=1}^{P_1} \max_{p_2=1}^{P_2} \left(\mathbf{a}_{i_1 p_1}^1 \mathbf{a}_{i_2 p_2}^2 \mathbf{g}_{p_1 p_2} \right)$$

0
3
$$A_{\bullet 2}^{1}$$

$$\hat{\mathbf{x}}_{i_1 i_2} = \sum_{p_1=1}^{P_1} \sum_{p_2=1}^{P_2} \left(\mathbf{a}_{i_1 p_1}^1 \mathbf{a}_{i_2 p_2}^2 \mathbf{g}_{p_1 p_2} \right) \qquad \hat{\mathbf{x}}_{i_1 i_2} = \underbrace{\mathsf{Max}}_{p_1=1}^{P_1} \underbrace{\mathsf{Max}}_{p_2=1}^{P_2} \left(\mathbf{a}_{i_1 p_1}^1 \mathbf{a}_{i_2 p_2}^2 \mathbf{g}_{p_1 p_2} \right)$$

Note:

taxonomic overview of biclustering: see Van Mechelen, Bock, & De Boeck (2004)

2. Models

2.2 Hierarchical classes models

2.2.3 The HICLAS family

- key features:
 - 1. operator = Max

$$\mathbf{x}_{i_1 i_2 \dots i_N} = \max_{p_1=1}^{P_1} \max_{p_2=1}^{P_2} \dots \max_{p_N=1}^{P_N} \left[\left(\prod_{n=1}^{N} \mathbf{a}_{i_n p_n}^n \right) \mathbf{g}_{p_1 p_2 \dots p_N} \right] + \mathbf{e}_{i_1 i_2 \dots i_N}$$

- 2. all $A^n 0/1$
- 3. entries of $\mathbf{G} \in \mathbb{R}^+$
- 4. representation of quasi-orders by \mathbf{A}^n

unconstrained models:

• $N=2 \Rightarrow G=I$

(disjunctive) hierarchical classes model (De Boeck and Rosenberg, 1988)

Notes:

- * dual conjunctive model with Min-operator: Van Mechelen, De Boeck & Rosenberg, 1995)
- * stochastic extension: Bayesian HICLAS (Leenen, Van Mechelen, Gelman & De Knop, submitted)

- N=3
 - * G superidentity (CANDECOMP/PARAFAC case):
 INDCLAS (Leenen, Van Mechelen, De Boeck & Rosenberg, 1999)
 - * **G** general:
 - Tucker3 HICLAS (Ceulemans, Van Mechelen & Leenen, 2003)
 - Tucker2 HICLAS (Ceulemans & Van Mechelen, 2004)
- **G** rating-valued (N=2)
- HICLAS-R (Van Mechelen, Lombardi & Ceulemans, conditionally accepted)

Note:

option to put limit on number of distinct values in **G** ('optimal coarsening')

entries $\mathbf{G} \in \mathbb{R}^+$

real-valued HICLAS (Schepers & Van Mechelen, submitted)

constrained models

taxonomy of constraints (Ceulemans, Van Mechelen & Kuppens, 2004), based on:

- locus: component matrices core
- 2. nature: value (e.g., values from previous study) vs. structure (e.g., Guttman scale, consecutive ones, decomposability, lower bound on number of ones, etc.)
- 3. extent: full vs. partial
- 4. use of external information: no vs. yes

Note:

varying amount of required algorithmic adaptations

- 1. data
- 2. models
 - 2.1 context
 - 2.2 hierarchical classes models
 - 2.2.1 basic model
 - 2.2.2 justification of the Max operator
 - 2.2.3 the HICLAS family
- 3. research topics
 - 3.1 models
 - 3.2 estimation
 - 3.3 model selection and model checking
 - 3.4 quantification of uncertainty
- 4. references

3.1 Models

• mathematical properties (e.g., rank) relevant structures: Boolean algebra and tropical semiring $\left(\mathbb{R}^+, \mathsf{Max}, \times\right)$

Notes:

- 1. differences between these structures and common algebras over \mathbb{R} e.g., row, column, and decomposition (Schein) rank may differ e.g., only invertible Boolean matrices are permutation matrices
- 2. even with Σ -operator rank issues considerably change if one or more of the \mathbf{A}^n are constrained to be 0/1 (\neq -1/1)

- identifiability / uniqueness:
 - only invertible Boolean matrices are permutation matrices
 - → less identifiability problems than for common N-way Tucker models
 - → in general only permutational freedom rather than full rotational freedom
 - remaining amount of nonuniqueness pertains to particular decompositions
 - part of remaining nonuniqueness removed by requirement of representation of quasi-order
 - at this moment only sufficient condition for uniqueness in 0/1 case (Van Mechelen, De Boeck & Rosenberg, 1995; Ceulemans & Van Mechelen, 2003)

HICLAS/INDCLAS: presence of all component patterns that contain single 1

Tucker3 HICLAS: idem + no core slice is subset of union of other core slices

model interrelations (Ceulemans & Van Mechelen, 2005):

- 1. data
- 2. models
 - 2.1 context
 - 2.2 hierarchical classes models
 - 2.2.1 basic model
 - 2.2.2 justification of the Max operator
 - 2.2.3 the HICLAS family
- 3. research topics
 - 3.1 models
 - 3.2 estimation
 - 3.3 model selection and model checking
 - 3.4 quantification of uncertainty
- 4. references

3.2 Estimation

•
$$L_1 = \sum_{i_1, i_2, \dots, i_N} |\hat{\mathbf{x}}_{i_1 i_2 \dots i_N} - \mathbf{x}_{i_1 i_2 \dots i_N}|$$

$$L_{2} = \sum_{i_{1}, i_{2}, \dots, i_{N}} \left(\hat{\mathbf{x}}_{i_{1} i_{2} \dots i_{N}} - \mathbf{x}_{i_{1} i_{2} \dots i_{N}} \right)^{2}$$

Note:

in pure 0/1 case $L_1 = L_2$

- evaluation criteria for algorithms:
 - primary: goodness of fit; ?global optimum
 - secondary: goodness of recovery

- types of algorithms under study:
 - alternating least L_1 / L_2
 - simulated annealing (Ceulemans, Van Mechelen & Leenen, submitted)
 - MCMC (Metropolis) (Leenen, Van Mechelen, Gelman, & De Knop, submitted)

algorithmic issues

- parametrization of solution space (and partitioning of parameter vector, if applicable) (Schepers, Van Mechelen & Ceulemans, in press)
- starts
 - * number
 - * nature: rational from data / rational from data + noise / random from data / purely random (Ceulemans, Van Mechelen & Leenen, submitted)
- iterative process
 - choice metaparameters in simulated annealing and MCMC
 - greedy vs. branch and bound in conditional updating of alternating least L_p algorithms (Leenen & Van Mechelen, 2001)

- 1. data
- 2. models
 - 2.1 context
 - 2.2 hierarchical classes models
 - 2.2.1 basic model
 - 2.2.2 justification of the Max operator
 - 2.2.3 the HICLAS family
- 3. research topics
 - 3.1 models
 - 3.2 estimation
 - 3.3 model selection and model checking
 - 3.4 quantification of uncertainty
- 4. references

3.2 Model selection and model checking

- issues
 - model type
 - rank
 - correct representation quasi-orders
 - assumptions about error process
- types of methods under study
 - scree-test based approaches (including extended convex hull methods (Leenen & Van Mechelen, 2001; Ceulemans & Van Mechelen, 2005; see also Ceulemans & Kiers, in press)
 - pseudo AIC approach (Ceulemans & Van Mechelen, 2005)
 - Bayesian approaches with posterior predictive checks (Leenen, Van Mechelen, Gelman & De Knop, submitted)

- 1. data
- 2. models
 - 2.1 context
 - 2.2 hierarchical classes models
 - 2.2.1 basic model
 - 2.2.2 justification of the Max operator
 - 2.2.3 the HICLAS family
- 3. research topics
 - 3.1 models
 - 3.2 estimation
 - 3.3 model selection and model checking
 - 3.4 quantification of uncertainty
- 4. references

3.4 Quantification of uncertainty

issues:

- telling apart strong and weak parts in obtained representations;
 'confidence intervals'
- not only single parameters; also aspects derived from multiple parameters (e.g., classes, hierarchical relations)
- confidence intervals in 0/1 case are tricky!

- types of methods under study
 - nonparametric Bootstrap approach
 - Bayesian approach based on simulated posterior (Leenen, Van Mechelen, Gelman & De Knop, submitted)

- 1. data
- 2. models
 - 2.1 context
 - 2.2 hierarchical classes models
 - 2.2.1 basic model
 - 2.2.2 justification of the Max operator
 - 2.2.3 the HICLAS family
- 3. research topics
 - 3.1 models
 - 3.2 estimation
 - 3.3 model selection and model checking
 - 3.4 quantification of uncertainty
- 4. references

4. References

Ceulemans, E., & Kiers, H.A.L. (in press). Selecting among three-mode principal component models of different types and complexities: A numerical convex hull based method. *British Journal of Mathematical and Statistical Psychology*.

Ceulemans, E., & Van Mechelen, I. (2003). Uniqueness of *N*-way *N*-mode hierarchical classes models. *Journal of Mathematical Psychology*, 47, 259-264.

Ceulemans, E., Van Mechelen, I., & Leenen, I. (2003). Tucker3 hierarchical classes analysis. *Psychometrika*, *68*, 413-433.

Ceulemans, E., & Van Mechelen, I. (2004). Tucker2 hierarchical classes analysis. *Psychometrika*, 69, 375-399.

Ceulemans, E., & Van Mechelen, I. (2005). Hierarchical classes models for three-way three-mode binary data: Interrelations and model selection. *Psychometrika*, *70*, 461-480.

Ceulemans, E., Van Mechelen, I., & Leenen, I. (submitted). The local minima problem in hierarchical classes analysis: An evaluation of a simulated annealing algorithm and various multistart procedures.

De Boeck, P., & Rosenberg, S. (1988). Hierarchical classes: Model and data analysis. *Psychometrika*, *53*, 361-381.

Leenen, I., Van Mechelen, I., De Boeck, P., & Rosenberg, S. (1999). INDCLAS: Individual differences hierarchical classes analysis. *Psychometrika*, *64*, 9–24.

Leenen, I., Van Mechelen, I., & De Boeck, P. (1999). A generic disjunctive/conjunctive decomposition model for *n*-ary relations. *Journal of Mathematical Psychology*, 43, 102-122.

Leenen, I., & Van Mechelen, I. (2001). An evaluation of two algorithms for hierarchical classes analysis. *Journal of Classification*, 18, 57-80.

Leenen, I., Van Mechelen, I., Gelman, A., & De Knop, S. (submitted). Bayesian hierarchical classes analysis.

Schepers, J., & Van Mechelen, I. (submitted). The real-valued model of hierarchical classes.

Schepers, J., Van Mechelen, I., & Ceulemans, E. (in press). Three-mode partitioning. *Computational Statistics and Data Analysis*.

Van Mechelen, I., De Boeck, P., & Rosenberg, S. (1995). The conjunctive model of hierarchical classes. *Psychometrika*, *60*, 505-521.

Van Mechelen, I., Bock, H.-H., & De Boeck, P. (2004). Two-mode clustering methods: A structured overview. *Statistical Methods in Medical Research*, *13*, 363-394.

Van Mechelen, I., Lombardi, L., & Ceulemans, E. (conditionally accepted). Hierarchical classes modeling of rating data. *Psychometrika*.

Van Mechelen, I., & Schepers, J. (submitted). A unifying model involving a categorical and/or dimensional reduction for multimode data.