Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Севастопольский государственный университет»

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

к выполнению лабораторной работы №2

по дисциплине

«Обработка изображений»

для студентов всех форм обучения направления подготовки 09.03.02 «Информационные системы и технологии»

Севастополь 2017 Методические указания к выполнению лабораторной работы № 2 по дисциплине «Обработка изображений» для студентов всех форм обучения направления подготовки 09.03.02 «Информационные системы и технологии» /Сост. О.А. Сырых, И.В. Дымченко – Севастополь: СевГУ, 2017. – 7 с.

Методические рекомендации рассмотрены и утверждены на заседании кафедры «Информационные системы» (протокол № 1 от « 29» августа 2016 г.)

Лабораторная работа №2

Исследование алгоритмов изменения характеристик растровых изображений.

Цель:

- изучение алгоритмов построения гистограммы изображения;
- изучение алгоритмов изменения яркости и контрастности изображения.

Время: 6 часов

Лабораторное оборудование: персональные компьютеры, среда программирования

Краткие теоретические сведения

Яркость и контрастность точки.

Яркость точки находится по формуле, коэффициенты которой определяются свойствами человеческого зрения:

Y:=0.3**R*+0.59**G*+0.11**B*

Слабый контраст – наиболее распространенный дефект фотографических, сканерных и телевизионных изображений, обусловленный ограниченностью диапазона воспроизводимых яркостей.

Контрастность — одна из основных характеристик изображения, напрямую связанная с яркостью пикселей. Это безразмерная величина, количественно выражаемая отношением яркости самой светлой области изображения к самой темной.

При увеличении контрастности изображения светлые участки (пиксели) становятся еще светлее, а темные темнее. В результате происходит перераспределение пикселей за счет среднего тонового диапазона. Часть из них переходит в света, а часть в тени.

При уменьшении контрастности изображения, наоборот происходит расширение среднего тонового диапазона за счет пограничных светов и теней. Темные пиксели становятся более светлыми, а светлые более темными и частично переходят в средние тона.

Высококонтрастное изображение вообще может не содержать средние тона. И, наоборот, малоконтрастное изображение будет иметь преимущественно серый цвет.

Гистограммы изображений.

Гистограммой яркости изображения принято называть график, который показывает относительную частоту появления точек (пикселов) различных степеней яркости в изображении.

Например, есть изображение из 16 пикселов. Пусть 8 пикселов имеют яркость 1, 2 пиксела — яркость 4, оставшиеся 6 пикселов — яркость 7. На десятибалльной шкале яркости график такого изображения может выглядеть так, как показано на рис. 1.

В реальных изображениях пикселов обычно гораздо больше, а шкала яркости включает значения от 0 до 255.

Гистограмма изображения позволяет оценить количество и разнообразие оттенков изображения, а также общий уровень яркости изображения. Например, недоэкспонированное изображение будет иметь пик в области малых цветов и иметь спад (или полное отсутствие уровней) в области ярких цветов, переэкспонированное — наоборот.

Изображение с недостаточным динамическим диапазоном будет иметь узкий всплеск яркостей. Считается, что идеальной формой гистограммы изображения является пологая

гауссиана, в которой мало совсем тёмных и совсем ярких цветов, а по мере приближения к средним цветам, их количество увеличивается

Рис. 1. Гистограмма яркости мнимого изображения из шестнадцати пикселов

Программа и порядок выполнения работы

В программный модуль для обработки изображений добавить функции позволяющие:

- построение гистограмм изображений по яркости и трем цветовым каналам;
- построение профиля яркости по трем цветовым каналам
- проводить изменение яркости изображения;
- проводить изменение контрастности изображение;

1. Построение гистограмм изображения

При построении гистограммы изображения по оси абсцисс (т.е. по горизонтальной оси) откладываются значения яркости изображения (либо суммарной, либо по какому-либо из цветовых каналов R, G и B), а по оси ординат (т.е. по вертикальной оси) откладывается относительное количество пикселей с определенной яркостью (рис 2).

Для построения гистограммы необходимо загрузить любое доступное изображение, после чего пройтись по каждому пикселю и рассчитать его яркость, полагая, что она лежит в интервале от 0 до 255. После расчета яркостей нужно посчитать количество каждого вычисленного значения яркости.

Рис. 2. Гистограммы изображения по яркости и трем цветовым каналам

2. Построение профиля яркости

Профиль – отображение графика изменения яркости изображения вдоль выбранной линии.

По вертикальной оси профиля отсчетов яркости изображения откладываются значения яркости пикселей анализируемого среза, по горизонтальной оси - длина профиля в пикселях (рис 3).

Рис. 3. Профиль яркости по трем цветовым каналам

3. Изменение яркости – контрастности изображения.

Повышение/снижение яркости — это, соответственно, сложение/вычитание значения каждого канала с некоторым фиксированным значением (также в пределах от 0 до 255); при этом обязательно необходимо контролировать выход нового значения канала за пределы диапазона 0..255.

Повышение/снижение контрастности — это, соответственно, умножение/деление значения каждого канала на некоторое фиксированное значение (в том числе действительное), что приводит к изменению соотношений между цветами и, соответственно, к более чётким цветовым границам (рис 4).

На практике же существует такой принцип: изменение контрастности не должно приводить к изменению средней яркости по изображению, поэтому пользуются следующей формулой:

$$NY = K*(Y-dY)+dY$$

где NY — новое значение,

K – коэффициент контрастности,

Y – текущее значение,

dY — среднее значение по изображению (таким образом, алгоритм является двухпроходовым).

Рис. 4. Изменение яркости и контрастности изображения

Содержание отчета

Отчет по выполняемой лабораторной работе выполняется каждым студентом индивидуально на листах формата A4 в рукописном или машинном варианте исполнения и должен содержать:

- название работы;
- цель и задачи исследований;
- программный код реализованных алгоритмов;
- выводы по работе.

Контрольные вопросы

- 1. Понятие яркости изображения
- 2. Понятие контрастности изображения
- 3. Профиль яркости
- 4. Понятие гистограммы изображения

Библиография

- 1. Фурман Я. А., Юрьев А. Н. , Яншин В. В. Цифровые методы обработки и распознавания бинарных изображений. Красноярск: Изд-во Краснояр. ун-та, 1992г-248 с.
- 2. Цифровая обработка аэрокосмических изображений. Версия 1.0 [Электронный ресурс] конспект лекций / В. Б. Кашкин, А. И. Сухинин.
- 3. Шовенгердт Р.А. Дистанционное зондирование. Модели и методы обработки изображений.: М.: Техносфера, 2010. 560 с, 32 с. ив. вкл..