Exercice 1. Soit f la fonction telle que $f(x) = x^2 - 3x + 1$.

Remplir le tableau suivant :

- L							1.5					
	f(x)	5	2.75	1	-0.25	-1	-1.25	-1	-0.25	1	2.75	5

Placer ces points dans un repère orthonormé.

D'après la courbe obtenue, combien y-a-t'il d'antécédents de 0 par la fonction f? 2

Exercice 2. Soit g la fonction telle que $f(x) = x^3 - 3x^2 - x + 3,1$.

Remplir le tableau suivant :

x	-1	-0.5	0	0.5	1	1.5	2	2.5	3	3.5
f(x)	0.1	2.725	3.1	1.975	0.1	-1.775	-2.9	-2.525	0.1	5.725

Placer ces points dans un repère orthonormé.

D'après la courbe obtenue, combien y-a-t'il d'antécédents de 0 par la fonction g? 3

Exercice 3.

- 1. Vérifier que la fonction h telle que h(x) = 2x + 1 n'a qu'un seul antécédent de 0.
- 2. Faire une hypothèse sur le nombre d'antécédents de 0 par une fonction donnée, dépendant de la plus grande puissance de x apparaissant dans la fonction.

Le nombre d'antécédents de 0 d'une fonction est n si la plus grande puissance de x appariassant dans cette fonction est n.

3. Trouver une fonction qui contredise cette hypothèse. $x \mapsto x^2 + 1$

Exercice 1. Soit f la fonction telle que $f(x) = x^2 - 3x + 1$.

Remplir le tableau suivant :

x	-1	-0.5	0	0.5	1	1.5	2	2.5	3	3.5	4
f(x)	5	2.75	1	-0.25	-1	-1.25	-1	-0.25	1	2.75	5

Placer ces points dans un repère orthonormé.

D'après la courbe obtenue, combien y-a-t'il d'antécédents de 0 par la fonction f? 2

Exercice 2. Soit g la fonction telle que $f(x) = x^3 - 3x^2 - x + 3,1$.

Remplir le tableau suivant :

x	-1	-0.5	0	0.5	1	1.5	2	2.5	3	3.5
f(x)	0.1	2.725	3.1	1.975	0.1	-1.775	-2.9	-2.525	0.1	5.725

Placer ces points dans un repère orthonormé.

D'après la courbe obtenue, combien y-a-t'il d'antécédents de 0 par la fonction q? 3

Exercice 3.

- 1. Vérifier que la fonction h telle que h(x) = 2x + 1 n'a qu'un seul antécédent de 0.
- 2. Faire une hypothèse sur le nombre d'antécédents de 0 par une fonction donnée, dépendant de la plus grande puissance de x apparaissant dans la fonction.

Le nombre d'antécédents de 0 d'une fonction est n si la plus grande puissance de x appariassant dans cette fonction est n.

3. Trouver une fonction qui contredise cette hypothèse. $x \mapsto x^2 + 1$