

Fourth Industrial Summer School

Day 1: Data Analysis Foundations – Afternoon

Data Plotting and Visualization

Session Objectives

- ✓ Exploratory Data Analysis (EDA)
- ✓ Plotting Libraries
 - Matplotlib
 - Panadas
- ✓ Charts
 - Scatter plot
 - Histograms
 - Pie charts
 - Box plots

Exploratory Data Analysis (EDA)

- A process to look at the data and understand it
 - You need to do EDA at the beginning and end of your project.
- Insight of your data
 - Creating visualizations will help you to understand your data
- Generate Hypothesis
- Results presentation
 - Clear and concise results presentation to your audience

Descriptive Statistics

56

"You cannot control what you cannot measure."

--Tom DeMarco

Data Types

Categorical data

- Nominal
- Ordinal

Continuous data

- Interval
- Ratio

7

Categorical - Descriptive statistics

Nominal

- Mode
- Percentage (%)

Ordinal

- Nominal +
- Median
- Interquartile range

Mode

- The mode represents the most commonly occurring sample.
- The mode is well defined if there is only one value that is more common than all others are.
- The mode value is meaningful for the nominal, ordinal, interval and ratio scales.
- As an example we may compute the mode for the data set
 - (1, 1, 2, 4) giving a mode of 1
 - (female, male, male) giving a mode of male

Median

- The median, denoted \bar{x} represents the middle value of a data set.
- The median is calculated by sorting the samples in ascending (or descending) order and picking the middle sample.

position of the median =
$$\frac{n+1}{2}$$

- This is well defined if n is odd. If n is even, the median may be defined
 as the arithmetic mean of the two middle values.
- As an example, we may compute the median for the data set:
 - (1, 1, 2, 3, 4) resulting in $\bar{x} = 2$
 - (1, 1, 2, 4) resulting $\bar{x} = 1.5$

Continuous - Descriptive statistics

Summarize

- Mean, median, and mode
 - Interval. Athematic mean
 - Ratio. Geometric mean
- Standard deviation, interquartile range, and range

Arithmetic Mean

The (arithmetic) mean is calculated as:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

- The mean value is meaningful for the interval and ratio scales.
- In most of the cases, it is used when no significant outliers exist.
- Example
 - we may compute the mean for the data set (1, 1, 2, 4) resulting in $\bar{x} = 2.0$

Geometric Mean

- The Geometric mean is the nth root of the product of n numbers.
 - That means you multiply a bunch of numbers together, and then take the nth root, where n is the number of values you just multiplied

$$\sqrt[n]{\prod_{i=1}^{n} x_i}$$

- The geometric mean is well defined if all samples are nonnegative and meaningful for the ratio scale.
- Example
 - What is the geometric mean of 2, 8 and 4?

Variability (dispersion)

- Measures the level of variation from the central tendency, i.e. to see how spread or concentrated the data is.
- Variability is usually defined in terms of distance
 - How far apart scores are from each other
 - How far apart scores are from the mean
 - How representative a score is of the data set as a whole

Variability (dispersion) measurement

Sample variance is the mean of the square distance from the sample mean.

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \bar{x})^{2}$$

Standard deviation is the measure of the standard distance from the mean

Standard deviation =
$$\sqrt{variance}$$

Range of a data set is the distance between the maximum and minimum data value:

Graphical Visualization

Graphical Visualization

- When describing a data set, quantitative measures of central tendency, dispersion, and dependency, should be combined with graphical visualization techniques.
- Graphs are very illustrative and give an overview of the data.
- One simple but effective graph is the **scatter plot**, where pairwise samples (x_i, y_i) are plotted in two dimensions.
- The scatter plot is good for assessing dependencies between variables.
- By examining the scatter plot, it can be seen how spread or concentrated the data points are

Scatter plot

In this scatter plot there is a linear tendency with a positive correlation

Histograms

- The histogram can be used to give an overview of the distribution density of the samples from one variable.
- A histogram consists of bars with heights that represent the frequency (or the relative frequency) of a value or an interval of values.
- The histogram is thus a graphical representation of a frequency table.
- A plot could provide a first indication whether the data resembles a normal distribution or not.
- The cumulative histogram may be used to give a picture of the probability distribution function of the samples from one variable.

Histograms

Pie Chart

 A pie chart shows the relative frequency of the data values divided into a specific number of distinct classes, by constructing segments in a circle with angles proportional to the relative frequency

- A box plot good for visualizing the dispersion and skewedness of samples.
- We can use boxplots:
 - Examine how the data is dispersed
 - Investigate outliers
 - Signs of skewness
 - Compare between groups

- The middle bar in the box m, is the median.
- The lower quartile Iq, is the 25% percentile (the median of the values that are less than m)
- The upper quartile uq is the 75% percentile (the median of the values that are greater than m)
- The length of the box is d = uq lq
- The upper tail ut is uq(q3) + 1.5d [or max]
- The lower tail It is lq(q1) 1.5d [or min]
- Values outside the lower and upper tails are called outliers, and are shown explicitly in the box plot

Programming quiz scores for a class

How to read this box plot?

Comparing box plots

Box plot - Skewness

Left-Skewed Symmetric Right-Skewed $Q_1 \ Q_2 \ Q_3 \ Q_1 \ Q_2 \ Q_3 \ Q_3 \ Q_2 \ Q_3 \$

Software Defect Prediction using Tree-Based Ensembles

Plotting Libraries

Plotting Libraries

- Python popular plotting libraries
 - Matplotlib
 - Pandas
 - Seaborn
 - ggplot
 - Plotly

Matplotlib

- Matpoltlib is a very popular Python library for data visualization.
- Like Pandas, it is not directly related to Machine Learning.
- It particularly used to visualize the patterns in the data.
- It is a 2D plotting library used for creating 2D graphs and plots.
 - a set of functionalities similar to those of MATLAB
 - line plots, scatter plots, bar charts, histograms, pie charts etc.

Link: https://matplotlib.org/

Seaborn

- Seaborn is a Python data visualization library based on matplotlib.
- It provides a high-level interface for drawing attractive and informative statistical graphics.
- It introduces additional plot types.
- It also makes your traditional Matplotlib plots look a bit prettier.
- Similar (in style) to the popular ggplot2 library in R

Link: https://seaborn.pydata.org/

Pandas

- High performance
- Create plots out of a pandas dataframe and series
- Higher level API than Matplotlib

pandas
$$y_{it} = \beta' x_{it} + \mu_i + \epsilon_{it}$$

Link: https://pandas.pydata.org/

Example

Employee.csv

Company employees information

emp_id	Gender	Age	Sales	BMI	Income
1	M	34	123	Normal	350
2	F	40	114	Overweight	450
3	F	37	135	Obesity	169
4	M	30	139	Underweight	189
5	F	44	117	Underweight	183
6	M	36	121	Normal	80
7	M	32	133	Obesity	166
8	F	26	140	Normal	120
9	M	32	133	Normal	75
10	M	36	133	Underweight	40

Import and Read csv file

- First step
 - Import pandas / matplotlib
- Second
 - Read csv file
 - What is the type of data read from the file?

```
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np

df = pd.read_csv('Employee.csv')
type(df)
```

pandas.core.frame.DataFrame

Data information

```
df.info()
 1
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10 entries, 0 to 9
Data columns (total 6 columns):
    Column Non-Null Count Dtype
#
    emp id 10 non-null
                           int64
0
    Gender 10 non-null
                           object
 1
 2
    Age
           10 non-null
                           int64
                           int64
    Sales 10 non-null
           10 non-null
                           object
 4
    BMI
 5
                           int64
    Income 10 non-null
dtypes: int64(4), object(2)
memory usage: 608.0+ bytes
```

Show dataframe

 $1 ext{ df}$

	emp_id	Gender	Age	Sales	BMI	Income
0	1	М	34	123	Normal	350
1	2	F	40	114	Overweight	450
2	3	F	37	135	Obesity	169
3	4	М	30	139	Underweight	189
4	5	F	44	117	Underweight	183
5	6	М	36	121	Normal	80
6	7	М	32	133	Obesity	166
7	8	F	26	140	Normal	120
8	9	М	32	133	Normal	75
9	10	М	36	133	Underweight	40

Descriptive Statistics

1 df.describe()

	emp_id	Age	Sales	Income
count	10.00000	10.000000	10.000000	10.000000
mean	5.50000	34.700000	128.800000	182.200000
std	3.02765	5.121849	9.271222	127.533699
min	1.00000	26.000000	114.000000	40.000000
25%	3.25000	32.000000	121.500000	90.000000
50%	5.50000	35.000000	133.000000	167.500000
75%	7.75000	36.750000	134.500000	187.500000
max	10.00000	44.000000	140.000000	450.000000

Scatter plot (Pandas)

```
scatter_plot = df.plot.scatter(x='Age',y='Sales')
scatter_plot.set_title('Age against Sales')
```

Text(0.5, 1.0, 'Age against Sales')

Scatter plot (Matplotlib)

```
age_list = df['Age']
sales_list = df['Sales']
plt.scatter(age_list,sales_list, label = 'Age against Sales')
plt.xlabel('Age')
plt.ylabel('Sales')
plt.show()
```


Histogram (Pandas)

```
hist_plot = df['Age'].hist(bins = 3)
hist_plot.set_xlabel('Age')
hist_plot.set_ylabel('Number of Employees')
hist_plot.set_title('Age Distribution')
```


Histogram (Matplotlib)

```
1   age_list = df['Age']
2   plt.hist(age_list, label = 'Empolyee age', bins = 3)
3   plt.xlabel('Age')
4   plt.ylabel('Frequency')
5   plt.legend(loc='upper left')
6   plt.title('Empolyees Age')
7   plt.show()
```


Box plot (Pandas)

```
box = df['Income'].plot.box()
box.set_ylabel('Salary')
```


Box plot (Matplotlib)

```
income_list = df['Income']
plt.boxplot(income_list)
plt.xlabel('Income')
plt.ylabel('Salary')
```


Bar Chart (Pandas)

```
sales = df.groupby('Gender').Sales.sum()
sales.plot.bar()
```


Bar Chart (Matplotlib)

```
labels = ('Female','Male')
y_pos = np.arange(len(labels))
sales = df.groupby('Gender').Sales.sum()
plt.bar(y_pos, sales)
plt.xticks(y_pos, labels)
plt.ylabel('Sales')
plt.title('Sales by gender')
plt.show()
```


Bar Chart (Matplotlib)

- Horizontal bar
 - barh function

```
labels =('Female', 'Male')
y_pos = np.arange(len(labels))
sales = df.groupby('Gender').Sales.sum()
plt.barh(y_pos,sales)
plt.yticks(y_pos,labels)
plt.xlabel('Sales')
plt.title('Sales by gender')
plt.show()
```


Pie chart (Matplotlib)

```
sales = df.groupby("Gender").Sales.sum()
plt.pie(sales, labels=["Female", "Male"], autopct="%.2f%%")
plt.title('Sales by Gender')
plt.show()
```

Sales by Gender

Multi-chart plots

```
plt.subplot(2,1,1)
plt.scatter(df['Age'],df['Sales'])
plt.title('Two subplots')
plt.ylabel('Sales')

plt.subplot(2,1,2)
plt.scatter(df['Age'],df['Income'])
plt.ylabel('Income')

plt.show()
```


Hands on session

Problem Solving

More Coding Practice

- https://www.w3resource.com/graphics/matplotlib/
- https://python-graph-gallery.com/
- Python Plotting options with Code
 - https://pythonplot.com/