Deux méthodes de gradient

Leçons: 158, 162, 219, 226, 233 (gradient conjugué)

On considère $A \in \mathcal{S}_n^{++}(\mathbb{R})$.

Proposition 1

La résolution de Ax = b équivaut à trouver le point qui minimise la fonctionnelle :

$$\Phi(y) = \frac{1}{2} y^T A y - y^T b.$$

Démonstration. Il est facile de voir que

$$\nabla \Phi(y) = \frac{1}{2} (A^T + A)y - b = Ay - b.$$
 (1)

Et si x est solution du système linéaire, alors $\Phi(y) = \Phi(x + (y - x)) = \Phi(x) + \frac{1}{2}(y - x)^T A(y - x)$ i.e $\frac{1}{2} ||y - x||_A^2 = \Phi(y) - \Phi(x)$, où $||z||_A^2 = z^T Az$ est la norme associée à A que l'on utilisera toujours par la suite.

Définition 2

Une méthode de gradient consiste à partir d'un point $x_0 \in \mathbb{R}^n$ et à construire la suite

$$x_{k+1} = x_k + \alpha_k d_k \tag{2}$$

où $d_k \in \mathbb{R}^n$ est une direction à choisir et $\alpha_k \in \mathbb{R}$.

Une idée naturelle est de choisir α_k de sorte à optimiser $\Phi(x_{k+1})$ dans la direction d_k , c'est à dire tel que $\frac{d}{d\alpha_k}\Phi(x_k+\alpha_kd_k)=-d_k^Tr_k+\alpha_kd_k^TAd_k=0$, où $-r_k:=\nabla\Phi(x_k)=Ax_k-b$. On trouve :

$$\alpha_k = \frac{\langle d_k, r_k \rangle}{\|d_k\|_{\Lambda}^2} \tag{3}$$

(c'est bien défini lorsque $d_k \neq 0$ car $A \in \mathcal{S}_n^{++}(\mathbb{R})$).

Méthode de gradient conjugué

Remarquons que pour tout $k \in \mathbb{N}$:

$$r_{k+1} = r_k - \alpha_k A d_k \tag{4}$$

et α_k est choisi de sorte à ce que

$$\langle r_{k+1}, d_k \rangle = 0. (5)$$

Idée. Construire des directions (d_k) deux à deux A-orthogonales ; ainsi, r_{k+1} sera orthogonal à $\text{Vect}(d_0, \ldots, d_k)$.

Notations. Pour $x, y \in \mathbb{R}^n$, on note $x \perp y$ lorsque x et y sont orthogonaux pour le produit scalaire euclidien et $x \perp_A y$ lorsque x et y sont orthogonaux pour le produit scalaire donné par A. On étend naturellement cette notation à des sous-espaces de \mathbb{R}^n .

On pose $d_0=r_0$ et pour $k\in\mathbb{N},$ on construit d_{k+1} comme l'orthogonalisé de Gram-Schmidt pour le produit scalaire donné par A de r_{k+1} relativement à $Vect(d_k)$:

$$d_{k+1} = r_{k+1} - \beta_k d_k \tag{6}$$

où

$$\beta_k = \frac{\langle r_{k+1}, Ad_k \rangle}{\|d_k\|_A^2} \quad \text{si } d_k \neq 0, \quad \beta_k = 0 \text{ sinon.}$$
 (7)

Remarquons que si $d_k = 0$ alors r_k et d_{k-1} sont colinéaires et comme ils sont aussi orthogonaux par (5), $r_k = 0$.

Lemme 3

Avec le choix (7), les directions (6) vérifient pour tout $k \in \mathbb{N}$ la propriété suivante : si r_0, \ldots, r_k ne sont pas nuls alors,

1 Vect
$$(r_0, ..., r_k)$$
 = Vect $(d_0, ..., d_k)$
2 $r_{k+1} \perp \text{Vect}(d_0, ..., d_k)$
3 $d_{k+1} \perp_A \text{Vect}(d_0, ..., d_k)$

2
$$r_{k+1} \perp \text{Vect}(d_0, \ldots, d_k)$$

$$3 d_{k+1} \perp_A \text{Vect}(d_0,\ldots,d_k)$$

Démonstration. On procède par récurrence sur $k \in \mathbb{N}$. Lorsque k = 0, 1, 2 et 3 sont vrais grâce aux relations $r_0 = d_0$, (5) et (6) et bien sûr $r_0 \neq 0$ sinon il n'y a rien à faire. Supposons donc le résultat vrai au rang k-1, $k \in \mathbb{N}^*$.

1 Par (6), on a :
$$d_k = r_k - \beta_{k-1} d_{k-1}$$
.

- **2** Par (5), on a déjà $r_{k+1} \perp d_k$ et si $j \in \{0, \dots, k-1\}$, la relation (4) couplée à l'hypothèse de récurrence 2 et 3 donne $r_{k+1} \perp d_i$.
- **3** Par (6), on a déjà $d_{k+1} \perp_A d_k$ (c'est la définition) et si $j \in \{0, \dots, k-1\}$, la relation (6) couplée à l'hypothèse de récurrence 3 donne $\langle d_{k+1}, Ad_j \rangle = \langle r_{k+1}, Ad_j \rangle$.

Montrons que $Ad_i \in \text{Vect}(r_0, \dots, r_k)$, ce qui conclura grâce aux relations 1 et 2 que l'on vient de prouver. Grâce à la relation (4) avec k=j, il suffit de montrer que $\alpha_j \neq 0$. Or, $\alpha_j = 0 \stackrel{(3)}{\Longleftrightarrow} \langle r_j, d_j \rangle = 0 \stackrel{(6)}{\Longleftrightarrow} r_j = 0 \text{ puisque } \langle r_j, r_j \rangle = \langle d_j, r_j \rangle + \beta_{j-1} \langle d_{j-1}, r_j \rangle = \langle d_j, r_j \rangle \\ \text{selon 2. Donc comme on a supposé } r_j \neq 0, \text{ on a } \alpha_j \neq 0.$

Théorème 4

La méthode de gradient associée aux directions (6) avec le choix (7) converge vers la solution x du problème Ax = b en au plus n itérations.

Démonstration. Les conditions 1 et 2 du lemme précédent assurent que tant que $r_l \neq 0$, la famille $(r_0, ..., r_l)$ est une famille orthogonale donc libre. On est en dimension n donc nécessairement $l+1 \le n$ et si $r_l = 0$, x_l est solution du système.

Méthode de gradient à pas optimal

On choisit pour direction la « plus grande pente » , c'est à dire $d_k = -\nabla \Phi(x_k) = -Ax_k +$ $b=r_k$.

2

Dans ce cas, $d_k \neq 0$ tant que la solution n'est pas atteinte. La convergence découle essentiellement de l'inégalité de Kantorovich :

Lemme 5 (Inégalité de Kantorovich)

En notant $0 < \lambda_1 \leq \ldots \leq \lambda_n$ les valeurs propres de A, on a pour tout $y \in \mathbb{R}^n$,

$$\frac{\|y\|^4}{\|y\|_A^2\|y\|_{A^{-1}}^2} \ge \frac{4\lambda_n\lambda_1}{(\lambda_n + \lambda_1)^2}.$$

Démonstration. On va montrer l'inégalité équivalente :

$$\forall y \in \mathbb{R}^n, \|y\|^4 \le \frac{1}{4} \left(\sqrt{\frac{\lambda_n}{\lambda_1}} + \sqrt{\frac{\lambda_1}{\lambda_n}} \right)^2.$$

On peut même supposer que ||y|| = 1 et commencer par remarquer :

$$1 = ||y||^2 = \langle y, AA^{-1}y \rangle \le ||y||_A ||A^{-1}y||_A = ||y||_A ||y||_{A^{-1}}$$

Et dans une base orthonormale de vecteurs propres :

$$\begin{split} \|y\|_{A}\|y\|_{A^{-1}} &= \sqrt{\left(\sum_{i=1}^{n}\lambda_{i}y_{i}^{2}\right)\!\left(\sum_{i=1}^{n}\frac{1}{\lambda_{i}}y_{i}^{2}\right)} = \sqrt{\frac{\lambda_{1}}{\lambda_{n}}\!\left(\sum_{i=1}^{n}\frac{\lambda_{i}}{\lambda_{1}}y_{i}^{2}\right)\!\left(\sum_{i=1}^{n}\frac{\lambda_{n}}{\lambda_{i}}y_{i}^{2}\right)} \\ &\leq \frac{1}{2}\sqrt{\frac{\lambda_{1}}{\lambda_{n}}}\left(\left(\sum_{i=1}^{n}\frac{\lambda_{i}}{\lambda_{1}}y_{i}^{2}\right) + \left(\sum_{i=1}^{n}\frac{\lambda_{n}}{\lambda_{i}}y_{i}^{2}\right)\right) \\ &\leq \frac{1}{2}\sqrt{\frac{\lambda_{1}}{\lambda_{n}}}\left(\sum_{i=1}^{n}\left(\frac{\lambda_{i}}{\lambda_{1}} + \frac{\lambda_{n}}{\lambda_{i}}\right)y_{i}^{2}\right) \end{split}$$

La fonction $x \mapsto \frac{x}{\lambda_1} + \frac{\lambda_n}{x}$ admet un maximum en λ_1 ou en λ_n et il vaut dans les deux cas : $1 + \frac{\lambda_n}{\lambda_1}$. Ainsi,

$$||y||_A||y||_{A^{-1}} \leq \frac{1}{2} \sqrt{\frac{\lambda_1}{\lambda_n}} \left(\sum_{i=1}^n \left(1 + \frac{\lambda_n}{\lambda_1} \right) y_i^2 \right) \leq \frac{1}{2} \left(\sqrt{\frac{\lambda_n}{\lambda_1}} + \sqrt{\frac{\lambda_1}{\lambda_n}} \right),$$

et le résultat suit en élevant au carré.

Et sachant que cond(A) = λ_n/λ_1 , on obtient le résultat suivant :

Théorème 6

Avec les choix précédents et $d_k = r_k$, la suite (2) converge vers x avec :

$$||x_{k+1} - x||_A \le \frac{\lambda_n - \lambda_1}{\lambda_n + \lambda_1} ||x_k - x||_A.$$

Plus précisément,

$$||x_k - x|| \le \sqrt{\operatorname{cond}(A)} \left(\frac{\operatorname{cond}(A) - 1}{\operatorname{cond}(A) + 1}\right)^k ||x_0 - x||.$$

Démonstration. La première inégalité découle directement de l'inégalité de Kantorovich. Pour la seconde, on remarque que pour tout $y \in \mathbb{R}^n$, $\lambda_1 ||y||^2 \le ||y||_A^2 \le \lambda_n ||y||^2$.

Avec la dernière inégalité, on voit que la convergence peut être lente lorsque la matrice est mal conditionnée.

Référence : Alfio Quarteroni, Ricardo Sacco et Fausto Saleri (2007). *Méthodes numériques : Algorithmes, analyse et applications.* Springer, pp. 138-145.

Merci à Antoine Diez pour ce développement.