Ayodele, David

HW 1

- 1. (6 points) Construct regular expressions for the following languages.
 - a) Strings with an even number of quotes. That is, 'abc', abc''dd, aa'a'a' are legal strings while 'a, 'a'ab'a' are illegal strings. $\Sigma = \{a, b, '\}$.
 - b) Strings with an even number of letters. That is, ϵ , ab, bbba, aaaaaa are legal strings while a, aba are illegal strings. $\Sigma = \{a, b\}$.
- 2. (6 points) Construct DFAs for the following languages.
 - a) All strings that is not the string if. $\Sigma = \{i, f\}$.
 - b) Strings where not all letters in the alphabet Σ appear on the string. That is, ϵ , abab, bccb, a are legal strings while abc, bbcaba are illegal strings. $\Sigma = \{a, b, c\}$.
- 3. (6 points) Using the McNaughton-Yamada-Thompson Algorithm, construct an NFA from the regular expression ($\Sigma = \{0, 1\}$):

$$0((0|1)^*1)^*1$$

- a) Draw a state graph for the NFA.
- b) Construct the state transition table for the NFA taking into consideration ϵ -closures (up to Step 3 of alogrithm on slides).
- 4. (12 points) Convert the above NFA to a DFA.
 - a) Construct the state transition table for the DFA, starting from the start state.
 - b) Draw the state graph for the DFA.
 - c) If necessary, minimize the state graph for the DFA.

The DPA for all strings containing Ea, b, c3 is as follows: Ea, b, c3 is: Hence the DFA for strings not containing (oli)41.

 $\Rightarrow 0[(0|1)^*]^*$ | may be represented as!

(d		٤	0	. (
1)	A		B	,
	B	CJ		
	C	DT EG		
	D	E G		
	E	0((0 1)	F	F
•	P	G		
	G	E		H
	lΗ	I		
	\mathbb{T}	丁		
	J	С		K
	K			

	٤	0	. (
Ą		B	
B	CIDEGI		
C	DIEGT		
D	EG		
E		F	F
P	GE		
G	E		H
lt	IDEGTO		
I	TDEGC		
J	CIGG		K
K			

B B CIDEGI I+K HK F F DIEGT CD/ C 14 F F lt GE F P G E H F IDEGTC HK F H TDEGC I HK_ J CIGG НK K

		٤.	0	,
$\int \Omega \Lambda$	g.	92		
4)	9,			
	g ₂		q_3	
	E,	g ₄		
	6.	85 88 24 96		
	q_s	94 96		
	9.			97
	97	6,		
	98	910		
	Tq.			
	916	B11 814 812		
	Bir	912		
	gn			613
	913	Ga		
	814	6 r 8 16		
	915	E 11		
	9,6		917	
	917	818		
	818			G ₁₉
	9 19	920		
	920	• •		g _U
	921	9(5		
	1			I

4) 6), ()

