Practice 3 (Derivatives)

Exercise 1. Use the definition of a derivative to find:

- a) f'(2), where $f(x) = x^3 2x$
- b) f'(-3), f'(0), where $f(x) = 4 x^2$.

Exercise 2. Find a function f and a number a such that

$$\lim_{h \to 0} \frac{(2+h)^6 - 64}{h} = f'(a).$$

Exercise 3. Find the equation for the tangent to the curve at the given point. Then sketch the curve an tangent together.

- a) $f(x) = 4 x^2$, (-1, 3);
- b) $g(t) = \frac{1}{t^2}, (-1, 1);$
- c) $h(x) = x^3, (-2, -8).$

Exercise 4. At what points do the graph of the function $f(x) = x^2 + 4x - 1$ have horizontal tangents?

Exercise 5. Match the functions graphed (1)-(4) with the derivatives graphed (a)-(d).

Exercise 6. Use the following information to graph the function f over the closed interval [-2, 5].

- \bullet The graph of f is made of closed line segments joined end to end;
- The graph starts at the point (-2,3);
- \bullet The derivative of f is the step function in the figure shown here.

Exercise 7. Compute the right-hand and left-hand derivatives as limits to show that the functions are not differentiable at the point P.

Exercise 8. Find the first and second derivative

a)
$$5t^3 - 3t^5$$
.

b)
$$\frac{1}{3s^2} - 3s^2$$
.

Exercise 9. Find the derivatives of the functions

a)
$$(3-x^2)(x^3-x+1)$$
;

b)
$$\frac{4-3x}{3x^2+x}$$
;

c)
$$\frac{\cos x}{1 + \sin x}$$
;

d)
$$x^3 \sin x \cos x$$
;

e)
$$(4-3x)^9$$
;

f)
$$e^{x^2-x}$$

g)
$$2^{3^{4^x}}$$

h)
$$\sqrt[3]{2r-r^2}$$
;

i)
$$\frac{1}{x}\sin^{-5}x + \frac{x}{3}\cos^3x;$$

j)
$$\cos\sqrt{\sin(\tan\pi x)}$$
;

$$k) \sqrt{x + \sqrt{x + \sqrt{x}}}$$

Exercise 10. Function $s(t) = 6t - t^2$ gives the position of a body moving on a coordinate line, with s in meters and t in seconds.

- a) Find the body's displacement and average velocity for $0 \le t \le 6$.
- b) Find the body's speed and acceleration at the endpoints of the interval.
- c) When, if ever, during the interval does the body change direction?

Exercise 11. A 13 ft ladder is leaning against a house when its base starts to slide away (see figure). By the time the base is 12 ft from the house, the base is moving at the rate of 5 ft/sec.

- a. How fast is the top of the ladder sliding down the wall then?
- b. At what rate is the area of the triangle formed by the ladder, wall, and ground changing then?
- c. At what rate is the angle θ between the ladder and the ground changing then?

