

Análise de Algoritmos

TÓPICOS ESPECIAIS EM COMPUTAÇÃO II e ESTUDOS ESPECIAIS UFC – Engenharia da Computação – 2023-2

Prof. Fischer Jônatas Ferreira

Modelo de Computação

- Analisar um algoritmo permite prever seu comportamento e desempenho sem que seja necessário implementá-lo.
- A análise de um algoritmo depende do modelo computacional adotado.
- É de acordo com o modelo computacional que se define quais são os recursos disponíveis e quanto custam.
- O Modelo RAM Random Access Machine simula máquinas convencionais.

Modelo RAM

- Composta por um único processador que executa instruções sequencialmente;
- A memória única é infinita;
- As operações são todas executadas sequencialmente, uma única por vez;
- A execução de toda e qualquer operação toma uma unidade de tempo;
 - Operações aritméticas básicas (somas, subtrações, multiplicações e divisões), atribuições e comparações são feitas em tempo constante
- O programa não é armazenado na memória, então o espaço que ele ocupa não é contabilizado no gasto de memória.

Complexidade de tempo e espaço

- A complexidade de tempo não representa tempo diretamente, mas o número de vezes que determinada operação considerada relevante é executada.
- A complexidade de espaço representa a quantidade de memória (numa unidade qualquer) que é necessário para armazenar as estruturas de dados associadas ao algoritmo.
- Usa-se a notação assintótica para representar essas complexidades:
 - O (O grande);
 - Ω (Ômega grande);
 - ⊖ (Teta);
 - o (o pequeno);
 - $-\omega$ (ômega pequeno).

Classes e Comportamento Assintótico

- Em geral, é interessante agrupar os algoritmos em Classes de Comportamento Assintótico, que vão determinar a complexidade inerente do algoritmo
- O comportamento assintótico é medido quando o tamanho da entrada (n) tende a infinito, com isso, as constantes são ignoradas e apenas o comportamento mais significativo da função de complexidade é considerado
- Quando dois algoritmos fazem parte da mesma classe de comportamento assintótico, eles são ditos equivalentes

$$f(n) = O(1)$$

- Algoritmos de complexidade O(1) s\u00e3o ditos de complexidade constante.
- Uso do algoritmo independe de n.
- As instruções do algoritmo são executadas um número fixo de vezes;

 $f(n) = O(\log n)$

- Algoritmos de complexidade O(log n) é dito de complexidade logarítmica.
- Típico em algoritmos que transformam um problema em outros menores.
- A base pouco importa para a análise de complexidade;

$$f(n) = O(n)$$

- Algoritmos de complexidade O(log n) é dito de complexidade linear.
- Em geral, um pequeno trabalho é realizado sobre cada elemento de entrada.
- É melhor situação para um algoritmo que tem de processar/produzir n elementos de entrada/saída;

```
f(n) = O(n log n)
```

Típico em algoritmos que quebram um problema em outros menores. resolve,
 cada um deles independente e ajuntando as soluçõe depois

$$f(n) = O(n^2)$$

- Um algoritmo de complexidade O(n^2) é dito ter complexidade quadrática.
- Ocorrem quando os itens de dados são processados em laço de repetição dentro de outro laço.
- Quando n é mil, o número de operações é da ordem de 1 milhão.
- Úteis para resolver problemas de tamanhos relativamente pequenos;

$$f(n) = O(n^3)$$

- Um algoritmo de complexidade O(n^3) é dito ter complexidade cúbica.
- Ocorrem quando os itens de dados são processados em dois laços de repetição dentro de outro laço.
- Quando n é cem, o número de operações é da ordem de 1 milhão.
- Úteis para resolver problemas de tamanhos relativamente pequenos;

$$f(n) = O(2^n)$$

- Um algoritmo de complexidade O(2^n) é dito ter complexidade exponencial.
- Geralmente não são úteis de ponto de vista prático.
- Ocorrem na solução de problemas quando se usa força bruta para resolver.
- Quando n é 20, o número de operações é da ordem de 1 milhão;

```
f(n) = O(n!)
```

- Um algoritmo de complexidade O(n!) é dito ter complexidade fatorial, bem pior que os exponenciais
- Geralmente não são úteis de ponto de vista prático.
- Ocorrem na solução de problemas quando se usa força bruta para resolver.
- n =20 => 20! 2432902008176640000, um número com 19 dígitos.
- n =40 => un número com 48 dígitos;

Função de custo	Tamanho n					
	10	20	30	40	50	60
n	0,00001	0,00002	0,00003	0,00004	0,00005	0,00006
	s	s	s	s	s	s
n^2	0,0001	0,0004	0,0009	0,0016	0,0.35	0,0036
	s	s	s	s	s	s
n^3	0,001	0,008	0,027	0,64	0,125	0.316
	s	s	s	s	s	s
n^5	0,1	3,2	24,3	1,7	5,2	13
	s	s	s	min	min	min
2^n	0,001	1	17,9	12,7	35,7	366
	s	s	min	dias	anos	séc.
3^n	0,059	58	6,5	3855	10 ⁸	10 ¹³
	s	min	anos	séc.	séc.	séc.

Dominação assintótica

- A análise de um algoritmo geralmente conta com apenas algumas operações elementares
- A medida de custo ou medida de complexidade relata o crescimento assintótico da operação considerada
- Definição: Uma função f(n) domina assintoticamente outra função g(n) se existem duas constantes positivas c e n₀ tais que, para n ≥ n₀, temos

$$|g(n)| \le c \times |f(n)|$$

Exemplo:

- Sejam $g(n) = (n+1)^2 e^{-r} f(n) = n^2$
- As funções g(n) e f(n) dominam assintoticamente uma a outra, já que
- $|(n+1)^2| \le 4|(n^2)|$ para $n \ge 1$ e
- $|(n^2)| \le |(n+1)^2| \text{ para } n \ge 0$

Custo Assintótico de Funções

Função de Custo ou Função de Complexidade

- T(n) = medida de custo necessário para executar um algoritmo para um problema de tamanho n
- Se T(n) é uma medida da quantidade de tempo necessário para executar um algoritmo para um problema de tamanho n, então T é chamada função de complexidade de tempo de algoritmo
- Se T(n) é uma medida da quantidade de memória necessária para executar um algoritmo para um problema de tamanho n, então T é chamada função de complexidade de espaço de algoritmo

Observação: TEMPO NÃO É TEMPO!

É importante ressaltar que a complexidade de tempo na realidade não representa tempo diretamente, mas o número de vezes que determinada operação considerada relevante é executada.

Custo Assintótico de Funções

- É interessante comparar algoritmos para valores grandes de n
- O custo assintótico de uma função T(n) representa o limite do comportamento de custo quando n cresce
- Em geral, o custo aumenta com o tamanho n do problema

Observação:

Para valores pequenos de n, mesmo um algoritmo ineficiente não custa muito para ser executado

Melhor Caso:

Menor tempo de execução sobre todas as entradas de tamanho n

Pior Caso:

- Maior tempo de execução sobre todas as entradas de tamanho n.
- Se f é uma função de complexidade baseada na análise de pior caso, o custo de aplicar o algoritmo nunca é maior do que f(n).

Caso Médio:

Média dos tempos de execução de todas as entradas de tamanho n.

Aproveitamentos dos alunos do curso de estudos especiais.

Melhor Caso Caso médio Pior Caso

- Considere o problema de acessar os registros de um arquivo.
- Cada registro contém uma chave única que é utilizada para recuperar registros do arquivo.
- O problema: dada uma chave qualquer, localize o registro que contenha esta chave.
- O algoritmo de pesquisa mais simples é o que faz a pesquisa sequencial.
- Seja f uma função de complexidade tal que f(n) é o número de registros consultados no arquivo (número de vezes que a chave de consulta é comparada com a chave de cada registro).
- Melhor caso: f(n) = 1 (registro procurado é o primeiro consultado);
- Pior caso: f(n) = n (registro procurado é o último consultado ou não está presente no arquivo);
- Caso médio: $f(n) = \frac{n+1}{2}$.

 Considere o problema de encontrar o maior e o menor elemento de um vetor de inteiros A[1 .. n]; n >= 1.

```
procedure MaxMinl (var A: Vetor; var Max, Min: integer);
var i: integer;
begin
   Max := A[1];   Min := A[1];
   for i := 2 to n do
        begin
        if A[i] > Max then Max := A[i];   {Testa se A[i] contém o maior elemento}
        if A[i] < Min then Min := A[i];   {Testa se A[i] contém o menor elemento}
        end;
end;</pre>
```

• Pior caso, melhor caso e caso melhor: f(n) = n

```
INSERTION-SORT(A)
1 for j \leftarrow 2 to comprimento[A]
       do chave \leftarrow A[j]
          ▷ Inserir A[j] na seqüência ordenada A[1..j-1].
          i \leftarrow j-1
          while i > 0 e A[i] > chave
6
             \operatorname{do} A[i+1] \leftarrow A[i]
                 i \leftarrow i - 1
          A[i+1] \leftarrow chave
```

Melhor caso: $O(n^2)$ Pior caso: $\Omega(n)$

Notação assintótica de funções

- Existem três notações principais na análise de assintótica de funções:
 - Notação O ("O" grande)
 - Notação Ω (Ômega)
 - Notação Θ (Teta)

• f(n) = O(g(n))

Seja n um inteiro positivo e sejam f(n) e g(n) funções positivas dizemos que:

$$f(n) = Og(n)$$

se existem constantes positivas C e n0 tais que $f(n) \le c.g(n)$ para todo $n \ge n0$

Limite assintótico superior.

• Escrevemos f(n) = O(g(n)) para expressar que g(n) domina assintoticamente f(n). Lê-se f(n) é da ordem no máximo g(n).

- Seja f(n) = (n + 1)2
 - o Logo f(n) é $O(n^2)$, quando n0 = 1 e c = 4, já que

$$(n+1)^2 \le 4n^2$$
 para $n \ge 1$

- Seja f(n) = n e $g(n) = n^2$. Mostre que g(n) não é O(n).
 - Sabemos que f(n) é $O(n^2)$, pois para $n \ge 0$, $n \le n^2$.
 - Suponha que existam constantes c e n0 tais que para todo $n \ge n_0$, $n^2 \le cn$.
 - Assim, c ≥ n para qualquer n ≥ n₀.
 - No entanto, n\u00e3o existe uma constante c que possa ser maior ou igual a n
 para todo n.

- Quando a notação O é usada para expressar o tempo de execução de um algoritmo no pior caso, está se definindo também o limite superior do tempo de execução desse algoritmo para todas as entradas
- Por exemplo, o algoritmo de ordenação por inserção é O(n²) no pior caso
 - Este limite se aplica para <u>qualquer</u> entrada

- Tecnicamente é um abuso dizer que o tempo de execução do algoritmo de ordenação por inserção é O(n²) (i.e., sem especificar se é para o pior caso, melhor caso, ou caso médio)
 - O tempo de execução desse algoritmo depende de como os dados de entrada estão arranjados.
 - Se os dados de entrada já estiverem ordenados, este algoritmo tem um tempo de execução de O(n), ou seja, o tempo de execução do algoritmo de ordenação por inserção no melhor caso é O(n).
- O que se quer dizer quando se fala que "o tempo de execução é O(n²)"
 é que no pior caso o tempo de execução é O(n²)
 - ou seja, não importa como os dados de entrada estão arranjados, o tempo de execução em qualquer entrada é O(n²)

Notação Ômega (notação Ω)

Notação que limita funções inferiormente - Notação Ômega (notação Ω)

 $f(n) = \Omega g(n)$

se existem constantes positivas C e n0 tais que $c.g(n) \le f(n)$ para todo $n \ge n0$

Notação Ômega (notação Ω)

- Quando a notação Ω é usada para expressar o tempo de execução de um algoritmo no melhor caso, está se definindo também o limite (inferior) do tempo de execução desse algoritmo para todas as entradas
- Por exemplo, o algoritmo de ordenação por inserção é Ω(n) no melhor caso
 - O tempo de execução do algoritmo de ordenação por inserção é Ω(n)
- O que significa dizer que "o tempo de execução" (i.e., sem especificar se é para o pior caso, melhor caso, ou caso médio) é Ω(g(n))?
 - O tempo de execução desse algoritmo é pelo menos uma constante vezes g(n) para valores suficientemente grandes de n

Notação Θ (Teta)

• $f(n) = \Theta(g(n))$

Notação Θ (Teta)

Notação que limita funções inferiormente e superiormente comitantemente - Notação Theta (notação Θ)

$$f(n) = \Theta g(n)$$

se existem constantes positivas c1, c2 e n0 tais que c1.g(n) \leq f(n) \leq c2.g(n) para todo n \geq n0

Notação Θ (Teta) - Exemplo

- Mostre que $\frac{1}{2}n^2 3n = \Theta(n^2)$
- Para provar esta afirmação, devemos achar constantes c₁ > 0, c₂ > 0, n₀ > 0, tais que:

$$c_1 n^2 \le \frac{1}{2} n^2 - 3n \le c_2 n^2$$

- para todo n ≥ n₀
- Se dividirmos a expressão acima por n² temos:

$$c_1 \le \frac{1}{2} - \frac{3}{n} \le c_2$$

Bibliografia principal

Cormen, Thomas H., et al. "Algoritmos: teoria e prática." Editora Campus 2 (2002).

Bibliografia alternativa

- Dasgupta, Sanjoy, Christos Papadimitriou, and Umesh Vazirani. Algoritmos.
 AMGH Editora, 2009.
- Ziviani, Nivio. Projeto de algoritmos: com implementações em Pascal e C.
 Vol. 2. Thomson, 2004.
- Lintzmayer, Carla. Análise de Algoritmos e de Estruturas de Dados http://professor.ufabc.edu.br/~carla.negri/cursos/materiais/Livro-Analise.de.Algoritmos.pdf