Sea un modelo de Markov de conjunto de estados Q = $\{1, 2, F\}$ y conjunto de símbolos $\Sigma = \{a, b\}$. Se pide:

a) Sean el vector de probabilidades iniciales (π), matriz de transición entre estados (A) y matriz de generación de símbolos (B):

π	1	2
	0.6	0.4

A	1	2	F
1	0.6	0.3	0.1
2	0.3	0.4	0.3

B	a	\boldsymbol{b}
1	0.3	0.7
2	0.8	0.2

Realiza una traza del algoritmo de Viterbi para la cadena y = aab obteniendo la mejor secuencia de estados.

b) Sean las tres cadenas de símbolos: y1 = bbaa, y2 = abab y y3 = aabbb. Al aplicar el algoritmo de Viterbi con un cierto modelo de Markov M, se obtienen, respectivamente, las siguientes secuencias óptimas de estados: 1122F, 2121F y 22111F. A partir de dichas cadenas y sus respectivas se uen las óptimas de estados, re-estima las probabilidades iniciales (π), de transición (A) y de emisión (B) de M (del mismo modo que se hace en una iteración del algoritmo de re-estimación de Viterbi).

a) Traza del algoritmo de Viterbi para la cadena y = aab:

V	a	a	b	
1	$0.6 \cdot 0.3 = 0.18$	$0.18 \cdot 0.6 \cdot 0.3 = 0.0324$	$0.0324 \cdot 0.6 \cdot 0.7 = 0.0136$	
		$0.32 \cdot 0.3 \cdot 0.3 = 0.0288$	$0.1024 \cdot 0.3 \cdot 0.7 = 0.0215$	
		0.0324 > 0.028 (de 1)	0.0136 < 0.0215 (de 2)	
2	$0.4 \cdot 0.8 = 0.32$	$0.18 \cdot 0.3 \cdot 0.8 = 0.0432$	$0.0324 \cdot 0.3 \cdot 0.2 = 0.0019$	
		$0.32 \cdot 0.4 \cdot 0.8 = 0.1024$	$0.1024 \cdot 0.4 \cdot 0.2 = 0.0082$	
		0.0432 < 0.1024 (de 2)	0.0019 < 0.0082 (de 2)	
F	_	-	-	$0.0215 \cdot 0.1 = 0.0022$
				$0.0082 \cdot 0.3 = 0.0025$
				0.0022 < 0.0025 (de 2)

La secuencia óptima de estados es: 222F

b) La estimación de π , A y B para las cadenas de entrenamiento $y_1 = bbaa$, $y_1 = abab$ y $y_3 = aabbb$ es

 π : El estado 1 se ha utilizado una vez como estado inicial y el estado 2 dos veces.

- La transición 1-1 3 veces, la 1-2 2 veces, la 1-F dos veces
 - La transición 2-1 3 veces, la 2-2 2 vez, la 2-F una vez
- \blacksquare El símbolo ase ha emitido 0 vez en el estado 1 y 6 veces en el estado 2
 - ullet El símbolo b se ha emitido 7 veces del estado 1 y 0 veces del estado 2

Normalizando

A	1	2	F
1	37	$\frac{2}{7}$	2 7
2	1/2	1/3	1 6

B	a	b
1	0.0	1.0
2	1.0	0.0

Sea un problema de clasificación en C clases para objetos representados mediante una característica de tipo contador, $x \in \{0,1,2,\ldots\}$. Para toda clase c, suponemos dadas:

- Su probabilidad a priori, P(c).
- Su función de (masa de) probabilidad condicional, $P(x \mid c)$, la cual es Poisson (λ_c) con λ_c conocida.

- 1. (0.5 puntos) Sea el caso particular: $C=2,\ P(c=1)=P(c=2)=\frac{1}{2},\ \lambda_1=1,\ \lambda_2=2$ y x=2. Determina la probabilidad incondicional de ocurrencia de x=2, P(x=2).
- 2. (0.5 puntos) En el caso particular anterior, halla la probabilidad a posteriori $P(c=2 \mid x=2)$, así como la probabilidad de error si x = 2 se clasifica en la clase c = 2.
- (0.5 puntos) Más generalmente, para cualquier número de clases C y cualesquiera probabilidades a priori, considera el caso en el que, dado un cierto $\tilde{\lambda} \in \mathbb{R}^+$, $\lambda_c = \tilde{\lambda}$ para todo c. En tal caso, existe una clase que no depende de x, c^* , en la que se puede clasificar todo x con mínima probabilidad de error. Determínala.
- 4. (0.5 puntos) En el caso general, prueba que el clasificador de Bayes para este problema puede expresarse como un clasificador basado en funciones discriminantes lineales como sigue (ln indica logaritmo natural):

$$c^*(x) = \arg\max g_c(x)$$
 con $g_c(x) = w_c x + w_{c0}$, $w_c = \ln \lambda_c$ y $w_{c0} = \ln p(c) - \lambda_c$

Solución

1.
$$P(x=2 \mid c=1) = \frac{1}{2e} = 0.1839$$
 $P(x=2 \mid c=2) = \frac{2}{e^2} = 0.2707$

$$P(x = 2) = 0.5 \cdot 0.1839 + 0.5 \cdot 0.2707 = 0.2273.$$

2.
$$P(c=2 \mid x=2) = \frac{P(c=2) \cdot P(x=2|c=2)}{P(x=2)} = \frac{0.5 \cdot 0.2707}{0.2273} = 0.5955.$$

$$P(x=2)$$
 0.2273
 $P(c \neq 2 \mid x=2) = 1 - P(c=2 \mid x=2) = 0.4045.$

$$3. \quad c^*(x) = \arg\max_c P(c) \ P(x \mid c) = \arg\max_c P(c) \ \operatorname{Poisson}(\lambda) = \arg\max_c P(c) \ \rightarrow c^* = \arg\max_c P(c) .$$

4.
$$c^*(x) = \underset{c}{\arg \max} \ln P(c) + \ln P(x \mid c)$$
$$= \underset{c}{\arg \max} \ln P(c) - \lambda_c + x \ln \lambda_c - \ln x!$$
$$= \underset{c}{\arg \max} x \ln \lambda_c + (\ln P(c) - \lambda_c)$$

 $= \{a, b, c\}$; probabili dades estados y de emisión de símbolos conjunto de estados $Q = \{1, 2, F\}$; alfabeto Σ transición ½; y probabilidades de modelo de Markov de Ш niciales M

Viterbi para obtener la secuencia de estados más 75 puntos) Haz una traza del algoritmo Forward para hallar la probabilidad $P_M(x)$ de que Mdel algoritmo de Realiza una traza que M genera x. (0,75 puntos) R $\tilde{q}_M(x)$, con la q

genere x.

r que M genera tados anteriores, еп base en los resultados obtenidos 50 puntos) Con 1 e,

podemos afirmar o falso? Razona b

, y sabiendo que $\bar{q}_M(cb) = "21F"$, reestima los por Viterbi (hasta convergencia) "cb" punto) A partir de las cadenas de entrenamiento x y mediante el algoritmo de reestimación par ámetros de M

α_{qt}	a	c
1	$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$	$\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4} + \frac{1}{8} \cdot \frac{1}{2} \cdot \frac{1}{4} = \frac{1}{64} + \frac{1}{64} = \frac{2}{64}$
2	$\frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}$	$\frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{2} + \frac{1}{8} \cdot \frac{1}{4} \cdot \frac{1}{2} = \frac{1}{16} + \frac{1}{64} = \frac{5}{64}$

$$P_M(x) = \frac{2}{64} \cdot \frac{1}{4} + \frac{5}{64} \cdot \frac{1}{4} = \frac{7}{256}$$

2.

V_{qt}	a	c
1	$\frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4}$	$\max\left(\frac{1}{4} \cdot \frac{1}{4} \cdot \frac{1}{4}, \frac{1}{8} \cdot \frac{1}{2} \cdot \frac{1}{4}\right) = \max\left(\frac{1}{64}, \frac{1}{64}\right) = \frac{1}{64}$
2	$\frac{1}{2} \cdot \frac{1}{4} = \frac{1}{8}$	$\max\left(\frac{1}{4} \cdot \frac{1}{2} \cdot \frac{1}{2}, \frac{1}{8} \cdot \frac{1}{4} \cdot \frac{1}{2}\right) = \max\left(\frac{1}{16}, \frac{1}{64}\right) = \frac{1}{16}$

$$\tilde{P}_M(x) = \max\left(\frac{1}{64} \cdot \frac{1}{4}, \frac{1}{16} \cdot \frac{1}{4}\right) = \frac{1}{64}$$

$$\tilde{q}_M(x) = "12F"$$

- 3. Falso, M genera x con probabilidad $P_M(x)$, siguien do la secuencia de estados "12F" $(\bar{q}_M(x))$, "11F", "21F" o "22F". Más precisamente, M genera x mediante "12F" con probabilidad $\tilde{P}_M(x)$; pero también puede generar x mediante una secuencia distinta de "12F", con probabilidad $P_M(x) - \tilde{P}_M(x) = \frac{7}{256} - \frac{1}{64} = \frac{3}{256}$.
- 4. En la primera iteración, debemos hallar la secuencia de estados más probable con la que M genera "ac", así como la secuencia de estados más probable con la que M genera "cb". La primera, obtenida en el apartado segundo, es "12F". La segunda, dada en el enunciado, es "21F". A partir de los pares ("ac", "12F") y ("cb","21F"), obtenemos:

$$\pi_1 = \frac{1}{2}, \quad \pi_2 = \frac{1}{2}$$

A	1	2	F
1	0	1/2	1/2
2	$\frac{1}{2}$	0	$\frac{1}{2}$

En la segunda iteración, partimos de un modelo en el que los símbolos "a" y "b" sólo se emiten en el estado mientras que "c" sólo se emite en el 2. Por tanto, "ac" sólo puede generarse por el camino "12F", y "cb" sólo por "21F". Esto es, obtenemos los mismos pares (cadena-de-entrenamiento, camino-más-probable) que en la primera iteración, por lo que la segunda iteración termina con el mismo modelo que la primera y el algoritmo de re-estimación acaba.

Se tiene un problema de clasificación en dos clases, A y B, de objetos representados mediante cadenas de símbolos en el alfabeto $\Sigma = \{a,b\}$. Las probabilidades a priori de las clases son P(A) = 0.6 y P(B) = 0.4. La

2. (0.5 puntos) Sea $\bar{P}_{M_B}(x)$ la aproximación de Viterbi a $P_{M_B}(x)$. Sabemos que, en general, la aproximación de un ción de probabilidad condicional de la clase A viene caracterizada por un cierto mo delo de Markov M_{A_i} esto $P(x \mid A) = P_{M_A}(x)$. Asimismo, la de la class. B viene dada el modelo de Markov M_B , $P(x \mid B) = P_{M_B}(x)$.

. En general, la aproximación de Viterbi es estrictamente menor que la probabilidad exacta siempre que haya dos o más caminos que generen la cadena con probabilidad no nula. Esto es así en el caso de x ya que M_B	pue de generarla con probabilidad no nula por dos caminos: $001F$ y $011F$.	
ı de Vi eren la	ili dad	
m ación ue gen	probak	
proxi nos q	000	
, la a cami	rarla	
neral más	gene	
En ged	p ne de	

$$P(x) = P(A)P_{M_A}(x) + P(B)P_{M_B}(x) = .6 \cdot .063872 + .4 \cdot .07884 = .0383232 + .031536 = .0698592$$

$$P(A \mid x) = \frac{P(A)P_{M_A}(x)}{P(x)} = \frac{.0383232}{.0698592} = .5486$$

$$P(B \mid x) = \frac{P(B)P_{M_B}(x)}{P(x)} = \frac{.031536}{.0698592} = .4514$$

$$c(x) = \arg\max P(c \mid x) = A$$

 $.567 \cdot .3 \cdot .8 + .054 \cdot .5 \cdot .8 = .15768$ $.567 \cdot .7 \cdot .1 + .054 \cdot 0 \cdot .1 = .03969$

 $7.5 \cdot 7.9 + 0 = .567$ $.9 \cdot .3 \cdot .2 + 0 = .054$

 $1 \cdot .9 = .9$ $0 \cdot .2 = 0$

0

 $P_{M_B}(x) = .03969 \cdot 0 + .15768 \cdot .5 = .07884$

1. (1.5 puntos) Calcula $P_{MB}(x)$ mediante el algoritmo Forward.

Sea x = ``aab''. Se sabe que $P_{M_A}(x) = 0.063872$. Se pi de: