UNIVERSITÀ DEGLI STUDI DI PADOVA – SCUOLA DI INGEGNERIA – SETTORE INFORMAZIONE

Prova scritta di Fisica Generale I

Padova, 9/02/2017

cogno	me	Nome	MatricolaCanale					
Proble	ema 1							
Un blocco di massa $m=10$ Kg è sospeso ad un filo inestensibile arrotolato intorno ad un cilindro di raggio $r=10$ cm, incollato a sua volta ad un disco coassiale al cilindro di raggio $R=40$ cm, come mostrato in figura. Intorno al disco è arrotolato un secondo filo anch'esso inestensibile, nel cui estremo A viene applicata una forza orizzontale F. Il momento d'inerzia del corpo rigido costituito dal cilindro e dal disco rispetto all'asse di rotazione passante per il centro fisso O, intorno al quale il disco può ruotare senza attrito, è $I=0,32$ Kg·m ² . Determinare:								
a)	l'intensità della forza F	affinché il sistema sia in equilibrio:	F =					
b)	l'accelerazione del blocco se F=30 N, e la tensione T del filo che lo sostiene:							
		<i>a</i> =	, T =					
		è fermo e la forza F=30 N viene applio isco, rimanendovi attaccato. Determina	cata per t= 3 s; in quell' istante il blocco are:					
c) d)	_	e del sistema subito prima dell'urto: el disco dopo l' urto, considerando il bl	$E_k = \dots$ occo come un oggetto puntiforme:					

e) l' impulso $\mathbf{J}=(J_x,J_y)$ applicato dal vincolo in O durante l' urto.

Problema 2

Un recipiente chiuso superiormente da un pistone di massa trascurabile ed area S=0,01 m² contiene n= 0,2 moli di gas ideale biatomico alla temperatura T_0 =250 K. Il pistone è inizialmente bloccato nella posizione z_0 = 0 (vedi figura), ad un'altezza h=0,8 m dalla base del recipiente. Al di sopra del pistone, in una intercapedine in cui è stato fatto il vuoto, è appoggiata una molla di costante elastica k=1000 N/m, che inizialmente ha la sua lunghezza di riposo. Il gas viene posto a contatto termico con un serbatoio a temperatura $T_1 > T_0$, ed il pistone viene sbloccato. Il pistone non ha attriti con le pareti del cilindro. Si osserva che all' equilibrio termico il pistone si porta nella posizione z_1 =0.4 m. Determinare:

a)	La pressione	iniziale (prima	dello sblocco	del pistone)	e la temperatura	finale del gas:
----	--------------	-----------------	---------------	--------------	------------------	-----------------

$$p_0$$
=, T_1 =

b) la variazione di energia interna del gas ed il calore scambiato nella trasformazione:

$$\Delta U = \dots Q = \dots Q = \dots$$

c) la variazione di entropia del gas e del serbatoio:

Soluzione problema 1:

a)
$$F = mgr/R = 24.5 \text{ N}$$

b)
$$FR - Tr = I\alpha = Ia/r$$

$$T - mg = m a$$

$$\Rightarrow a = (F R/r - mg) / (m + I/r^2) = 0.52 m/s^2$$
, $T = m(g+a) = 103.2 N$

c)
$$v=a t=1,56 \text{ m/s}$$
 $\omega=v/r=15,6 \text{ rad/s}$ $E_k=mv^2/2+I\omega^2/2=51,8 \text{ J}$

d)
$$I\omega + mvr = I'\omega'$$
, $I' = I + mR^2 = 0.42 \text{ Kg m}^2 \implies \omega' = 3.41 \text{ rad/s}$

e)
$$J_x = \Delta P_x = mv'_x = m\omega'R\cos\theta = 13.2 \text{ N s}$$
, $J_y = m\omega'R\sin\theta - m\omega r = -12.2 \text{ N s}$, $\sin\theta = r/R = 0.25$

Soluzione problema 2:

a)
$$p_0=nRT_0/V_0=51937 Pa$$

$$p_1 = kz_1/S = 40000 \text{ Pa}$$
 $T_1 = p_1V_1/n \text{ R} = 288.8 \text{ K}$

b)
$$Q -W = Q + W_{el} = \Delta U = Q = nc_V \Delta T + kz_1^2/2 = 241,2 J$$

 $\Delta U = nc_V \Delta T = 161,2 J$

c)
$$\Delta S^{gas} = nc_V \ln(T_1/T_0) + nR \ln(V_1/V_0) = 1,273 \text{ J/K}$$

$$\Delta S^{serb} = -Q/T_1 = -0.835 \text{ J/K}$$