Các dạng toán về quy tắc đếm

1. Lý thuyết

a) Quy tắc cộng

* Định nghĩa:

Giả sử một công việc A được thực hiện theo k phương án khác nhau.

Phương án A_1 có m_1 cách thực hiện;

Phương án A₂ có m₂ cách thực hiện;

. . .

Phương án A_k có m_k cách thực hiện;

Và mỗi phương án A_i không trùng với bất kì cách thực hiện các phương án A_j (với $j \neq i; i, j \in \{1; 2; ...; k\}$)

Thì có $m_1 + m_2 + ... + m_k$ cách thực hiện A.

* Công thức quy tắc cộng:

Nếu $A_1;\,A_2;\,\dots;\,A_k$ đôi một rời nhau. Khi đó

$$|A_1 \cup A_2 \cup ... \cup A_k| = |A_1| + |A_2| + ... + |A_k|$$

Với $|A_i|$ là số phần tử của tập hợp A_i (với $i \in \{1; 2; ...; k\}$)

 $\left|A_{_1} \cup A_{_2} \cup ... \cup A_{_k}\right|$ là số phần tử của tập hợp $A_{_1} \cup A_{_2} \cup ... \cup A_{_k}$.

b) Quy tắc nhân

Giả sử một công việc A được thực hiện theo k công đoạn liên tiếp.

Công đoạn A₁ có m₁ cách thực hiện;

Công đoạn A_2 có m_2 cách thực hiện;

. . .

Công đoạn A_k có m_k cách thực hiện;

Thì có $m_1.m_2.\dots m_k$ cách thực hiện A.

* Công thức quy tắc nhân:

Nếu A_1 ; A_2 ; ...; A_k đôi một rời nhau. Khi đó $\left|A_1 \cap A_2 \cap ... \cap A_k\right| = \left|A_1\right|.\left|A_2\right|....\left|A_k\right|$

Với $|A_i|$ là số phần tử của tập hợp A_i (với $i \in \{1; 2; ...; k\}$)

 $|A_1 \cap A_2 \cap ... \cap A_k|$ là số phần tử của tập hợp $A_1 \cap A_2 \cap ... \cap A_k$.

c) Cách đếm

- * Đếm trực tiếp:
- Chia các trường hợp có thể xảy ra
- Đếm số phương án thực hiện trong các trường hợp

- Kết quả của bài toán đếm là tổng số phương án đếm được trong các trường hợp trên.
- * Đếm gián tiếp (Đếm phần bù): Dùng khi thực hiện công việc phải chia nhiều trường hợp.

2. Các dạng bài tập

Dạng 1: Bài toán đếm số tự nhiên

Phương pháp giải:

- * Lập số tự nhiên thỏa mãn điều kiện:
- Gọi số tự nhiên có ba chữ số là \overline{abc} với $a,b,c \in \mathbb{N}; 1 \le a \le 9; 0 \le b,c \le 9$.

Gọi số tự nhiên có bốn chữ số là \overline{abcd} với $a,b,c,d \in \mathbb{N}; 1 \le a \le 9; 0 \le b,c,d \le 9$.

Tương tự với số có hai, năm, sáu,... chữ số.

- Chọn chữ số có điều kiện trước, chữ số không có điều kiện sau (Chẳng hạn chọn chữ số a trước vì có điều kiện $a \neq 0$. Ở bài toán đếm số chẵn, lẻ, chia hết cho 2, 5, 10 thì đếm chữ số hàng đơn vị trước)
- Dùng quy tắc cộng, nhân để đếm số cần lập.
- * Phân biệt cách dùng quy tắc cộng và quy tắc nhân:
- Quy tắc cộng: Một công việc có thể thực hiện được theo các phương án khác nhau, xảy ra phương án 1 thì sẽ không xảy ra phương án 2.
- Quy tắc nhân: Một công việc được hoàn thành khi phải thực hiện liên tiếp các công đoan.
- * Một số dấu hiệu khi lập số
- Dấu hiệu chia hết cho 2: Chữ số tận cùng là 0; 2; 4; 6; 8.
- Dấu hiệu chia hết cho 5: Chữ số tận cùng là 0; 5.
- Dấu hiệu chia hết cho 3: Tổng các chữ số chia hết cho 3.
- Dấu hiệu chia hết cho 9: Tổng các chữ số chia hết cho 9.
- Dấu hiệu chia hết cho 4: Hai chữa số tận cùng chia hết cho 4.
- Dấu hiệu chia hết cho 6: Chia hết cho cả 2 và 3.
- Số tự nhiên chẵn: Chữ số tận cùng là 0; 2; 4; 6; 8.
- Số tự nhiên lẻ: Chữ số tận cùng là 1; 3; 5; 7; 9.

Ví dụ minh họa:

Ví dụ 1. Từ các số $A = \{1; 2; 3; 4; 5; 6; 7\}$; có thể lập được bao nhiều số tự nhiên thỏa mãn:

- a) Số gồm 5 chữ số
- b) Số gồm 5 chữ số khác nhau
- c) Số gồm 5 chữ số khác nhau và chia hết cho 2
- d) Số gồm 5 chữ số lớn hơn 60000.

e) Số gồm 5 chữ số khác nhau, chứa chữ số 2 và chia hết cho 2.

Lời giải

Gọi số có 5 chữ số cần lập là \overline{abcde} với $a,b,c,d,e \in \{1;2;3;4;5;6;7\}$.

a) Số gồm 5 chữ số

Chọn a: có 7 cách chọn

Chọn b: có 7 cách chọn

Chọn c: có 7 cách chọn

Chọn d: có 7 cách chọn

Chọn e: có 7 cách chọn

Vậy có 7⁵ số.

b) Số gồm 5 chữ số khác nhau.

Chọn a từ tập A: có 7 cách chọn

Chọn b từ tập $A\setminus\{a\}$ (có 6 phần tử): có 6 cách chọn

Chọn c từ tập A\ $\{a;b\}$ (có 5 phần tử): có 5 cách chọn

Chọn d từ tập A\{a; b; c} (có 4 phần tử): có 4 cách chọn

Chọn e từ tập $A\setminus\{a;b;c;d\}$ (có 4 phần tử): có 3 cách chọn

Vậy có 7.6.5.4.3 = 2520 số.

c) Số gồm 5 chữ số khác nhau và chia hết cho 2

abcde chia hết cho 2 nên $e \in \{2;4;6\}$

Chon e: có 3 cách chon

Chọn a từ tập A\{e} (có 6 phần tử): có 6 cách chọn

Chọn b từ tập A\{e; a} (có 5 phần tử): có 5 cách chọn

Chọn c từ tập A\{e; a; b} (có 4 phần tử): có 4 cách chọn

Chọn d từ tập $A\setminus\{e; a; b; c\}$ (có 3 phần tử): có 3 cách chọn

Vậy có 3.6.5.4.3 = 1080 số.

d) Số gồm 5 chữ số lớn hơn 60000.

Vì $\overline{abcde} > 60000$

Nên $a \in \{6,7\}$. Chọn a: có 2 cách chọn

Chọn b từ tập $A\setminus\{a\}$ (có 6 phần tử): có 6 cách chọn

Chọn c từ tập $A\setminus\{a;b\}$ (có 5 phần tử): có 5 cách chọn

Chọn d từ tập A\{a; b; c} (có 4 phần tử): có 4 cách chọn

Chọn e từ tập $A\setminus\{a;b;c;d\}$ (có 4 phần tử): có 3 cách chọn

Vậy có 2.6.5.4.3 = 720 số.

e) Số gồm 5 chữ số khác nhau, chứa chữ số 2 và chia hết cho 2.

- + Số có 5 chữ số khác nhau và chia hết cho 2 có 1080 số (câu c)
- + Ta lập số có 5 chữ số khác nhau, chia hết cho 2 và không chứa chữ số 2:

abcde chia hết cho 2 và không chứa 2 nên $e \in \{4;6\}$

Chọn e: có 2 cách chọn

Chọn a từ tập $A\setminus\{2; e\}$ (có 5 phần tử): có 5 cách chọn

Chọn b từ tập $A\setminus\{2; e; a\}$ (có 4 phần tử): có 4 cách chọn

Chọn c từ tập $A\setminus\{2; e; a; b\}$ (có 3 phần tử): có 3 cách chọn

Chọn d từ tập $A\setminus\{2; e; a; b; c\}$ (có 2 phần tử): có 2 cách chọn

Như vậy có 2.5.4.3.2 = 240 số có 5 chữ số khác nhau, chia hết cho 2 và không chứa chữ số 2.

Vậy có 1080 - 240 = 840 số có 5 chữ số khác nhau, chia hết cho 2 và chứa chữ số 2.

Ví dụ 2: Từ các số 0; 1; 2; 3; 4; 5 có thể lập được bao nhiều số tự nhiên thỏa mãn:

- a) Số lẻ có 5 chữ số khác nhau
- b) Số có 5 chữ số khác nhau và chia hết cho 5

Lời giải

a) Gọi số có 5 chữ số cần lập là \overline{abcde} với $a \neq 0$, các chữ số được lấy từ $A = \{0; 1; 2; 3; 4; 5\}$.

abcde là số lẻ nên $e \in \{1;3;5\}$. Chọn e: có 3 cách chọn

Chọn a từ tập A\{0; e} (có 4 phần tử): có 4 cách chọn

Chọn b từ tập A\{e; a} (có 4 phần tử): có 4 cách chọn

Chọn c từ tập A\{e; a; b} (có 3 phần tử): có 3 cách chọn

Chọn d từ tập A\{e; a; b; c} (có 2 phần tử): có 2 cách chọn

Vậy có 3.4.4.3.2 = 288 số lẻ có 5 chữ số khác nhau.

b) Gọi số có 5 chữ số cần lập là \overline{abcde} với $a \neq 0$, các chữ số được lấy từ $A = \{0; 1; 2; 3; 4; 5\}$.

abcde chia hết cho 5 nên $e \in \{0,5\}$

+ Trương hợp 1: e = 0

Chọn a từ tập A $\{0\}$ (có 5 phần tử): có 5 cách chọn

Chọn b từ tập $A\setminus\{0; a\}$ (có 4 phần tử): có 4 cách chọn

Chọn c từ tập $A\setminus\{0; a; b\}$ (có 3 phần tử): có 3 cách chọn

Chọn d từ tập $A\setminus\{0; a; b; c\}$ (có 2 phần tử): có 2 cách chọn

Như vậy có 5.4.3.2 = 120 số.

+ Trường hợp 2: e = 5

Chọn a từ tập A $\{0; 5\}$ (có 4 phần tử): có 4 cách chọn

Chọn b từ tập $A\setminus\{5; a\}$ (có 4 phần tử): có 4 cách chọn

Chọn c từ tập A\{5; a; b} (có 3 phần tử): có 3 cách chọn

Chọn d từ tập $A \setminus \{5; a; b; c\}$ (có 2 phần tử): có 2 cách chọn

Như vậy có 4.4.3.2 = 96 số.

Vậy có tất cả 120 + 96 = 216 số có 5 chữ số khác nhau và chia hết cho 5.

Dạng 2: Bài toán đếm trong thực tế, phân công công việc

Phương pháp giải:

Sử dụng quy tắc cộng và quy tắc nhân.

Ví dụ minh họa:

Ví dụ 1. Từ thành phố A đến thành phố B có 3 con đường, từ thành phố B đến thành phố C có 4 con đường. Có bao nhiều cách đi từ thành phố A đến thành phố C, biết phải đi qua thành phố B.

Lời giải

Cách 1: Làm bằng cách liệt kê các con đường đi:

Căn cứ vào sơ đồ trên, ta có các con đường đi là: 1a, 1b, 1c, 1d, 2a, 2b, 2c, 2d, 3a, 3b, 3c, 3d. Vậy có 12 con đường.

Cách 2: Sử dụng quy tắc nhân

Đi từ A đến B có 3 con đường

Đi từ B đến C có 4 con đường

Vậy để đi từ A đến C có 3.4 = 12 con đường.

Ví dụ 2: Trong một lớp có 18 học sinh nam và 12 học sinh nữ. Hỏi có bao nhiều cách chon

- a) Một bạn phụ trách lớp trưởng?
- b) Hai bạn, trong đó có 1 bạn nam và 1 bạn nữ?

Lời giải

a) Chọn 1 bạn phụ trách lớp trưởng

Trường hợp 1: Chọn 1 bạn nam: có 18 cách chọn

Trường hợp 2: Chọn 1 bạn nữ: có 12 cách chọn

Vậy có 18 + 12 cách chọn.

b) Chọn 2 bạn, trong đó có 1 bạn nam và một bạn nữ

Chọn 1 bạn nam: có 18 cách chọn

Chon 1 ban nữ: có 12 cách chon

Vậy có 18.12 = 216 cách chọn.

Dạng 3: Bài toán hình học

Phương pháp giải:

- * Sử dụng quy tắc cộng và quy tắc nhân
- * Chú ý:
- Đếm vectơ: Hai điểm đầu và cuối khác nhau (Tức là vectơ AB và vectơ BA tính 2 lần đếm khác nhau).
- Đếm đoạn thẳng: Hai đầu mút có vai trò như nhau (Tức là đoạn thẳng AB và đoạn thẳng BA chỉ tính 1 lần đếm)

Ví dụ minh họa:

Ví dụ 1. Cho hai đường thẳng song song d, d'. Trên d lấy 10 điểm phân biệt, trên d' lấy 15 điểm phân biệt. Hỏi có bao nhiều tam giác mà đỉnh của nó được chọn từ 25 đỉnh nói trên?

A. 1050

B. 675

C. 1725

D. 708750

Lời giải

Chon C

+ Trường hợp 1: Chọn 2 điểm từ d và 1 điểm từ d'

Chọn điểm thứ nhất từ d: có 10 cách chọn

Chọn điểm thứ hai từ d: có 9 cách chọn

Vì thay đổi thứ tự lấy điểm không tạo ra cách chọn mới nên số cách chọn 2 điểm từ

đường thẳng d là $\frac{9.10}{2}$ = 45 cách chọn.

Chọn 1 điểm từ d': có 15 cách chọn

Như vậy có 45.15 = 675 cách chọn tam giác từ 2 điểm thuộc d và 1 điểm thuộc d'.

+ Trường hợp 2: Chọn 2 điểm từ d' và 1 điểm từ d

Chọn điểm thứ nhất từ d': có 15 cách chọn

Chọn điểm thứ hai từ d': có 14 cách chọn

Vì thay đổi thứ tự lấy điểm không tạo ra cách chọn mới nên số cách chọn 2 điểm từ

đường thẳng d' là $\frac{15.14}{2} = 105$ cách chọn.

Chon 1 điểm từ d: có 10 cách chon.

Như vậy có 105.10 = 1050 cách chọn tam giác từ 2 điểm thuộc d' và 1 điểm thuộc d.

Vậy có 675 + 1050 = 1725 tam giác được tạo ra.

Câu 10. Có bao nhiều cách sắp xếp 3 nữ sinh, 3 nam sinh thành một hàng dọc sao cho

Câu 11. An muốn qua nhà Bình để cùng Bình đến chơi nhà Cường. Từ nhà An đến nhà Bình có 4 con đường đi, từ nhà Bình tới nhà Cường có 6 con đường đi. Hỏi An có

C. 720

D. 144

các bạn nam và nữ ngồi xen kẽ?

B. 72

A. 6