Ch.2 Backing up

September 14, 2023

Game Forms

A Winning Strategy

Nim

A Strictly Competitive Game

Saddle Points

Consider a 2-person win-or-loss game with perfect information G: $W \succ_I L, L \succ_{II} W.$

Game Forms

- In the previous slide, we have the game tree of G, or the extensive form of G.
- ▶ We could also present G's strategic form.
 - Def: Strategy of i is a statement that specifies an action at each of i's decision node.
 - ▶ Player I has 2 decision nodes, and I has 4 pure strategies: ll, lr, rl, rr.
 - How many pure strategies does player II have?

Strategic Form/Normal Form

We'll list 2 players' pure strategies in a matrix form and fill in the results of all strategy profiles.

	II			
		LLL	LLR	
	II	$egin{array}{c} W \ W \ L \ W \end{array}$		
I	lr	W		
	rl	L		
	rr	W		

Solution Concepts

- extensive form: subgame perfect equilibrium (SPE)
- strategic form: Nash equilibrium (NE)
- ► An extensive form reveals more information about the game than a strategic form.
 - ⇒ More requirements can be imposed on players' choices in an extensive form than in a strategic form.
 - $\Rightarrow \{\mathsf{SPE}\} \subseteq \{\mathsf{NE}\}$

Solution Concept: A Winning Strategy

- ▶ Def: If i has a strategy for game H that wins H whatever strategy i's opponent may use, then i's strategy is called his winning strategy.
- ▶ If a player has a winning strategy, he'll surely adopt it.
- Existence of a winning strategy
 - Zermelo developed an algorithm in 1912 to analyze Chess, and confirmed the existence.
- ► Who has a winning strategy?

- ightharpoonup Def: A subgame consists of a node x together with all of the game tree that follows x.
- ▶ 5 subgames of *G*:

▶ Def: Value of the subgame H, v(H) = W, if I has a winning strategy for H, and v(H) = L, if II has a winning strategy for H.

ightharpoonup Existence of a winning strategy $\Leftrightarrow v(G)$ well-defined.

v(G)=?, but ready answers when there remains only one decision node: $v(G1)=L,\,v(G4)=W$

lacktriangle Game G' obtained from G by replacing G1 and G4 with their values

- ightharpoonup Claim: If v(G') = W, then v(G) = W. Proof: If v(G') = W, player I has a winning strategy s' for G', i.e. player I can always direct the game to end w. a node labeled W. If the node corresponds to a subgame G_x of G, then $v(G_x) = W$, and player I has a winning strategy s_r in G_r . The winning strategy s for player I in G consists of playing s' all the way until the subgame G_r is reached, then playing s_r . \square
- ightharpoonup Similarly, if player II has a winning strategy in G' (v(G') = L), then player II has a winning strategy in G(v(G) = L).
- ▶ In sum, if v(G') is well defined, so is v(G) and v(G) = v(G').

- ightharpoonup v(G') well defined?
- further simplifications

- V = v(G''') = V(G'') = v(G') = v(G)
- ▶ A 2-person finite win-or-loss game with perfect information has a value.

Who has the winning strategy?

- ► Nim
 - ► There are several piles of matchsticks.
 - ► Two players alternate in moving.
 - When it is your turn to move, you must select one of the piles and remove at least one matchstick from that pile.
 - ▶ The last player to take a matchstick is the winner.
- Nim is a 2-person finite win-or-loss game with perfect information.
- Nim has a value.

- Who has the winning strategy?

▶ a	binary representation of the game:	5	0	1	0	1	
_		η	9	1	U	U	T
			4	0	1	0	0

- ▶ Def: Nim is balanced if each column has an even number of 1s and unbalanced otherwise.
- The example is unbalanced.

Claim: A player that starts with an unbalanced Nim has a winning strategy.

Proof: (a) A player that starts with a balanced Nim cannot win immediately.

- (b) \forall balanced Nim, every move converts the game back to an unbalanced one.
- (c) \forall unbalanced Nim, there is a move to convert it to a balanced one.

Reconsider the example:

	8	4	2	1
5	0	1	0	1
9	1	0	0	1
4	0	1	0	0

The starting player should take 8 sticks from the 2nd pile. \Box

▶ It is not a win-or-loss game. It could end with a draw D.

$$W \succ_I D \succ_I L$$

$$W \prec_{II} D \prec_{II} L$$

▶ Def: A 2-person game which has k different outcomes, $u_1,...u_k$, is strictly competitive, if

$$u_k \succ_I \dots \succ_I u_1$$

 $u_k \prec_{II} \dots \prec_{II} u_1$

Chess is strictly competitive.

▶ Def: $v(G) = \hat{v}$, if two players can force an outcome no worse than \hat{v} to themselves at the same time, i.e. player I can force an outcome in the set $W = \{u | u \succeq_I \hat{v}\}$ and player II can force an outcome in the set $L = \{u | u \succeq_{II} \hat{v}\}.$

This extends the definition of the value in a win-loss game:

Lemma: Let T be any set of outcomes in a finite 2-person game with prefect information. Either player I can force an outcome in T, or player II can force an outcome in $\sim T$.

Proof: Relablel all outcomes in T with W, and all outcomes in $\sim T$ with L. Then it reduces to showing that any finite win-or-loss game has a value. \square

Theorem: Any 2-person finite strictly competitive game with perfect information w/o chance moves has a value.

Proof: Consider a game, G, with k different outcomes and $u_k \succ_I ... \succ_I u_1$. Define W_{u_k} as follows:

$$\begin{array}{rcl} W_{u_1} & = & \{u_1,...,u_k\} \\ W_{u_2} & = & \{u_2,...,u_k\} \\ & ... \\ W_{u_k} & = & \{u_k\} \end{array}$$

Player I can force an outcome in W_{u_1} .

Let W_{u_j} be the smallest set in which player I can force an outcome. If $j=k,\ v(G)=u_k$. If $j\neq k$, then player I cannot force an outcome in $W_{u_{j+1}}$. From the lemma, player II can force an outcome in $\sim W_{u_{j+1}}$

$$v(G) = u_j$$
. \square

Corollary: Chess has a value.

- ► The concept of value of the game was developed earlier than the concept of NE and SPE.
- They are different:
 - Value is about the outcome.
 - Equilibrium is about the strategy profile.
- But are they related?
 - We'll define a saddle point and find its relation with the value and NE. hence connect the value and NE.

▶ Def: A strategy pair (s,t) is a saddle point of the <u>strategic form</u> of a strictly competitive game if, for I, the outcome v of (s,t) is no worse than any outcome in column t and no better than any outcome in row s.

			t	
			$\preceq_1 v$	
•			:	
	s	$\succeq_1 v$	 v	 $\succeq_1 v$
			:	
			$\preceq_1 v$	

- Corollary: The strategic form of a finite, strictly competitive game of prefect information w/o chance moves has a saddle point (s, t). Proof: \because value exists.
- \blacktriangleright (s,t) is a NE \Leftrightarrow (s,t) is a saddle point.

