

66 x 102 Dot Matrix LCD Controller/Driver

1. INTRODUCTION

The ST7548T is a driver & controller LSI for graphic dot-matrix liquid crystal display systems. It contains 102 segment and 65 common with 1 ICON driver circuits. This chip is connected directly to a microprocessor, accepts 8-bit parallel interface \cdot 3-line or 4-line serial peripheral interface (SPI) \cdot I²C interface, display data can stores in an on-chip display data RAM of 66 x 102 bits. It performs display data RAM read/write operation with no external operating clock to minimize power consumption. In addition, because it contains power supply circuits to drive liquid crystal, it is possible to make a display system with the fewest components.

2. FEATURES

Single-chip LCD controller & driver

Driver Output Circuits

102 segment / 65 common + 1 ICON

On-chip Display Data ram

Capacity: 66X102=6,732 bits

Microprocessor Interface

- 8-bit parallel bi-directional interface with
 6800-series or 8080-series
- 4-line SPI (serial peripheral interface) available (only write operation)
- 3-line SPI (serial peripheral interface) available
- I²C (Inter-Integrated Circuit) Interface

On-chip Low Power Analog Circuit

 Generation of LCD supply voltage (externally Vout voltage supply is possible)

- Generation of intermediate LCD bias voltages
- Oscillator requires no external components (external clock also possible)
- Voltage converter (x4, x5)
- Voltage regulator(temperature gradient -0.11%/°C)
- Voltage follower
- On-chip electronic contrast control function (128 steps)

External RESB (reset) pin

Supply voltage range:

- V_{DD1} - V_{SS} : 1.7 to 3.3V

- $V_{DD2} - V_{SS}$: 2.4 to 3.3V

- V_{OUTIN} - V_{SS}: 13.5V (max)

Temperature range: -40 to +85 degree

ST7548T-G2	6800 , 8080 , 4-Line , 3-Line interface (without I ² C interface)	(C.D.)
ST7548Ti-G2	I ² C interface	BUS

3. ST7548T-G2 Pad Arrangement (COG)

Chip Size: 8,200 um × 1020 um

Bump Pitch:

PAD NO 1 ~ 11, 12 ~ 147, 207 ~ 230 : 55 um ; PAD NO 11 ~ 12 : 56 um ;

PAD NO 148 ~ 216 : max : 175 um , min : 72 um

Bump Size:

PAD NO 188 ~ 193 : 45 (x)um × 60 (y) um

PAD NO 148 ~ 187, 194 ~ 206 : 55 (x) um \times 60 (y) um

PAD NO 124 ~ 137, 217 ~ 230: 96 (x) um × 37 (y) um

PAD NO 1 ~ 123, 138 ~ 147, 207 ~ 216: 37 (x) um \times 96 (y) um ;

Bump Height: 17 um Chip Thickness: 480 um

Pad Center Coordinates(MY=0)

	umates	
PIN Name	X	Y
COM[41]	3677	371
COM[40]	3622	371
COM[39]	3567	371
COM[38]	3512	371
COM[37]	3457	371
COM[36]	3402	371
COM[35]	3347	371
COM[34]	3292	371
COM[33]	3237	371
COM[32]	3182	371
Reserved	3127	371
SEG[0]	3071	371
SEG[1]	3016	371
SEG[2]	2961	371
SEG[3]	2906	371
SEG[4]	2851	371
SEG[5]	2796	371
SEG[6]	2741	371
SEG[7]	2686	371
SEG[8]	2631	371
SEG[9]	2576	371
SEG[10]	2521	371
SEG[11]	2466	371
SEG[12]	2411	371
SEG[13]	2356	371
SEG[14]	2301	371
SEG[15]	2246	371
SEG[16]	2191	371
SEG[17]	2136	371
SEG[18]	2081	371
	PIN Name COM[41] COM[39] COM[38] COM[37] COM[36] COM[35] COM[34] COM[32] Reserved SEG[0] SEG[1] SEG[1] SEG[5] SEG[5] SEG[6] SEG[7] SEG[7] SEG[8] SEG[10] SEG[10] SEG[11] SEG[11] SEG[12] SEG[13] SEG[14] SEG[15] SEG[15] SEG[15] SEG[16] SEG[17]	PIN Name X COM[41] 3677 COM[40] 3622 COM[39] 3567 COM[38] 3512 COM[37] 3457 COM[36] 3402 COM[36] 347 COM[34] 3292 COM[34] 3292 COM[32] 3182 Reserved 3127 SEG[0] 3071 SEG[1] 3016 SEG[2] 2961 SEG[3] 2906 SEG[4] 2851 SEG[5] 2796 SEG[6] 2741 SEG[7] 2686 SEG[8] 2631 SEG[9] 2576 SEG[10] 2521 SEG[10] 2521 SEG[11] 2466 SEG[12] 2411 SEG[13] 2356 SEG[14] 2301 SEG[15] 2246 SEG[17] 2136

PAD NO.	PIN Name	х	Y
31	SEG[19]	2026	371
32	SEG[20]	1971	371
33	SEG[21]	1916	371
34	SEG[22]	1861	371
35	SEG[23]	1806	371
36	SEG[24]	1751	371
37	SEG[25]	1696	371
38	SEG[26]	1641	371
39	SEG[27]	1586	371
40	SEG[28]	1531	371
41	SEG[29]	1476	371
42	SEG[30]	1421	371
43	SEG[31]	1366	371
44	SEG[32]	1311	371
45	SEG[33]	1256	371
46	SEG[34]	1201	371
47	SEG[35]	1146	371
48	SEG[36]	1091	371
49	SEG[37]	1036	371
50	SEG[38]	981	371
51	SEG[39]	926	371
52	SEG[40]	871	371
53	SEG[41]	816	371
54	SEG[42]	761	371
55	SEG[43]	706	371
56	SEG[44]	651	371
57	SEG[45]	596	371
58	SEG[46]	541	371
59	SEG[47]	486	371
60	SEG[48]	431	371

PAD NO.	PIN Name	Х	Υ
61	SEG[49]	376	371
62	SEG[50]	321	371
63	SEG[51]	266	371
64	SEG[52]	211	371
65	SEG[53]	156	371
66	SEG[54]	101	371
67	SEG[55]	46	371
68	SEG[56]	-9	371
69	SEG[57]	-64	371
70	SEG[58]	-119	371
71	SEG[59]	-174	371
72	SEG[60]	-229	371
73	SEG[61]	-284	371
74	SEG[62]	-339	371
75	SEG[63]	-394	371
76	SEG[64]	-449	371
77	SEG[65]	-504	371
78	SEG[66]	-559	371
79	SEG[67]	-614	371
80	SEG[68]	-669	371
81	SEG[69]	-724	371
82	SEG[70]	-779	371
83	SEG[71]	-834	371
84	SEG[72]	-889	371
85	SEG[73]	-944	371
86	SEG[74]	-999	371
87	SEG[75]	-1054	371
88	SEG[76]	-1109	371
89	SEG[77]	-1164	371
90	SEG[78]	-1219	371

PAD NO.	PIN Name	х	Υ
91	SEG[79]	-1274	371
92	SEG[80]	-1329	371
93	SEG[81]	-1384	371
94	SEG[82]	-1439	371
95	SEG[83]	-1494	371
96	SEG[84]	-1549	371
97	SEG[85]	-1604	371
98	SEG[86]	-1659	371
99	SEG[87]	-1714	371
100	SEG[88]	-1769	371
101	SEG[89]	-1824	371
102	SEG[90]	-1879	371
103	SEG[91]	-1934	371
104	SEG[92]	-1989	371
105	SEG[93]	-2044	371
106	SEG[94]	-2099	371
107	SEG[95]	-2154	371
108	SEG[96]	-2209	371
109	SEG[97]	-2264	371
110	SEG[98]	-2319	371
111	SEG[99]	-2374	371
112	SEG[100]	-2429	371
113	SEG[101]	-2484	371
114	COMS	-2540	371
115	COM[0]	-2595	371
116	COM[1]	-2650	371
117	COM[2]	-2705	371
118	COM[3]	-2760	371
119	COM[4]	-2815	371
120	COM[5]	-2870	371

PAD NO.	PIN Name	Х	Υ
121	COM[6]	-2925	371
122	COM[7]	-2980	371
123	COM[8]	-3035	371
124	COM[9]	-3981	352
125	COM[10]	-3981	297
126	COM[11]	-3981	242
127	COM[12]	-3981	187
128	COM[13]	-3981	132
129	COM[14]	-3981	77
130	COM[15]	-3981	22
131	COM[16]	-3981	-33
132	COM[17]	-3981	-88
133	COM[18]	-3981	-143
134	COM[19]	-3981	-198
135	COM[20]	-3981	-253
136	COM[21]	-3981	-308
137	COM[22]	-3981	-363
138	COM[23]	-3678	-371
139	COM[24]	-3623	-371
140	COM[25]	-3568	-371
141	COM[26]	-3513	-371
142	COM[27]	-3458	-371
143	COM[28]	-3403	-371
144	COM[29]	-3348	-371
145	COM[30]	-3293	-371
146	COM[31]	-3238	-371
147	Reserved	-3183	-371
148	Т6	-2194	-389
149	Т7	-2075	-389
150	VDD1	-2002	-389

PAD NO.	PIN Name	х	Y
151	VDD1	-1929	-389
152	VDD1	-1856	-389
153	VDD1	-1783	-389
154	PS0	-1710	-389
155	PS1	-1591	-389
156	PS2	-1518	-389
157	BR	-1399	-389
158	VSS	-1326	-389
159	Т8	-1253	-389
160	Т9	-1134	-389
161	СР	-1061	-389
162	T10	-942	-389
163	T11	-869	-389
164	VDD2	-766	-389
165	VDD2	-693	-389
166	VDD2	-620	-389
167	VDD2	-547	-389
168	RESB	-410	-389
169	CSB	-291	-389
170	WR	-218	-389
171	/RD	-99	-389
172	A0	-26	-389
173	VDD1	77	-389
174	D7	150	-389
175	D6	269	-389
176	D5	342	-389
177	D4	461	-389
178	D3	534	-389
179	D2	653	-389
180	D1	726	-389

PAD NO.	PIN Name	Х	Υ
181	D0	845	-389
182	osc	918	-389
183	VSS	1021	-389
184	VSS	1094	-389
185	VSS	1167	-389
186	VSS	1240	-389
187	VRS	1313	-389
188	ТО	1385	-389
189	T1	1534	-389
190	T2	1609	-389
191	Т3	1784	-389
192	T4	1859	-389
193	T5	2034	-389
194	VSS	2108	-389
195	VSS	2181	-389
196	VSS	2254	-389
197	VSS	2327	-389
198	Voutout	2415	-389
199	Vоитоит	2488	-389
200	Voutin	2561	-389
201	Voutin	2634	-389
202	V0	2793	-389
203	V1	2883	-389
204	V2	2956	-389
205	V3	3029	-389
206	V4	3102	-389
207	COMS	3183	-371
208	COM[64]	3238	-371
209	COM[63]	3293	-371
210	COM[62]	3348	-371

PAD NO.	PIN Name	х	Y
211	COM[61]	3403	-371
212	COM[60]	3458	-371
213	COM[59]	3513	-371
214	COM[58]	3568	-371
215	COM[57]	3623	-371
216	COM[56]	3678	-371
217	COM[55]	3981	-363
218	COM[54]	3981	-308
219	COM[53]	3981	-253
220	COM[52]	3981	-198
221	COM[51]	3981	-143
222	COM[50]	3981	-88
223	COM[49]	3981	-33
224	COM[48]	3981	22
225	COM[47]	3981	77
226	COM[46]	3981	132
227	COM[45]	3981	187
228	COM[44]	3981	242
229	COM[43]	3981	297
230	COM[42]	3981	352

Pad Center Coordinates(MY=1)

	iter Cool		
PAD NO.	PIN Name	Х	Υ
1	COM[23]	3677	371
2	COM[24]	3622	371
3	COM[25]	3567	371
4	COM[26]	3512	371
5	COM[27]	3457	371
6	COM[28]	3402	371
7	COM[29]	3347	371
8	COM[30]	3292	371
9	COM[31]	3237	371
10	Reserved	3182	371
11	Reserved	3127	371
12	SEG[0]	3071	371
13	SEG[1]	3016	371
14	SEG[2]	2961	371
15	SEG[3]	2906	371
16	SEG[4]	2851	371
17	SEG[5]	2796	371
18	SEG[6]	2741	371
19	SEG[7]	2686	371
20	SEG[8]	2631	371
21	SEG[9]	2576	371
22	SEG[10]	2521	371
23	SEG[11]	2466	371
24	SEG[12]	2411	371
25	SEG[13]	2356	371
26	SEG[14]	2301	371
27	SEG[15]	2246	371
28	SEG[16]	2191	371
29	SEG[17]	2136	371
30	SEG[18]	2081	371

PAD NO.	PIN Name	х	Y
31	SEG[19]	2026	371
32	SEG[20]	1971	371
33	SEG[21]	1916	371
34	SEG[22]	1861	371
35	SEG[23]	1806	371
36	SEG[24]	1751	371
37	SEG[25]	1696	371
38	SEG[26]	1641	371
39	SEG[27]	1586	371
40	SEG[28]	1531	371
41	SEG[29]	1476	371
42	SEG[30]	1421	371
43	SEG[31]	1366	371
44	SEG[32]	1311	371
45	SEG[33]	1256	371
46	SEG[34]	1201	371
47	SEG[35]	1146	371
48	SEG[36]	1091	371
49	SEG[37]	1036	371
50	SEG[38]	981	371
51	SEG[39]	926	371
52	SEG[40]	871	371
53	SEG[41]	816	371
54	SEG[42]	761	371
55	SEG[43]	706	371
56	SEG[44]	651	371
57	SEG[45]	596	371
58	SEG[46]	541	371
59	SEG[47]	486	371
60	SEG[48]	431	371

PAD NO.	PIN Name	X	Υ
61	SEG[49]	376	371
62	SEG[50]	321	371
63	SEG[51]	266	371
64	SEG[52]	211	371
65	SEG[53]	156	371
66	SEG[54]	101	371
67	SEG[55]	46	371
68	SEG[56]	-9	371
69	SEG[57]	-64	371
70	SEG[58]	-119	371
71	SEG[59]	-174	371
72	SEG[60]	-229	371
73	SEG[61]	-284	371
74	SEG[62]	-339	371
75	SEG[63]	-394	371
76	SEG[64]	-449	371
77	SEG[65]	-504	371
78	SEG[66]	-559	371
79	SEG[67]	-614	371
80	SEG[68]	-669	371
81	SEG[69]	-724	371
82	SEG[70]	-779	371
83	SEG[71]	-834	371
84	SEG[72]	-889	371
85	SEG[73]	-944	371
86	SEG[74]	-999	371
87	SEG[75]	-1054	371
88	SEG[76]	-1109	371
89	SEG[77]	-1164	371
90	SEG[78]	-1219	371

PAD NO.	PIN Name	Х	Υ	
91	SEG[79]	-1274	371	
92	SEG[80]	-1329	371	
93	SEG[81]	-1384	371	
94	SEG[82]	-1439	371	
95	SEG[83]	-1494	371	
96	SEG[84]	-1549	371	
97	SEG[85]	-1604	371	
98	SEG[86]	-1659	371	
99	SEG[87]	-1714	371	
100	SEG[88]	-1769	371	
101	SEG[89]	-1824	371	
102	SEG[90]	-1879	371	
103	SEG[91]	-1934	371	
104	SEG[92]	-1989	371	
105	SEG[93]	-2044	371	
106	SEG[94]	-2099	371	
107	SEG[95]	-2154	371	
108	SEG[96]	-2209	371	
109	SEG[97]	-2264	371	
110	SEG[98]	-2319	371	
111	SEG[99]	-2374	371	
112	SEG[100]	-2429	371	
113	SEG[101]	-2484	371	
114	COMS	-2540	371	
115	COM[64]	-2595	371	
116	COM[63]	-2650	371	
117	COM[62]	-2705	371	
118	COM[61]	-2760 371		
119	COM[60]	-2815	371	
120	COM[59]	-2870	371	

PAD NO.	PIN Name	Х	Υ
121	COM[58]	-2925	371
122	COM[57]	-2980	371
123	COM[56]	-3035	371
124	COM[55]	-3981	352
125	COM[54]	-3981	297
126	COM[53]	-3981	242
127	COM[52]	-3981	187
128	COM[51]	-3981	132
129	COM[50]	-3981	77
130	COM[49]	-3981	22
131	COM[48]	-3981	-33
132	COM[47]	-3981	-88
133	COM[46]	-3981	-143
134	COM[45]	-3981	-198
135	COM[44]	-3981	-253
136	COM[43]	-3981	-308
137	COM[42]	-3981	-363
138	COM[41]	-3678	-371
139	COM[40]	-3623	-371
140	COM[39]	-3568	-371
141	COM[38]	-3513	-371
142	COM[37]	-3458	-371
143	COM[36]	-3403	-371
144	COM[35]	-3348	-371
145	COM[34]	-3293	-371
146	COM[33]	-3238	-371
147	COM[32]	-3183	-371
148	Т6	-2194	-389
149	T7	-2075	-389
150	VDD1	-2002	-389

PAD NO.	PIN Name	х	Υ
151	VDD1	-1929	-389
152	VDD1	-1856	-389
153	VDD1	-1783	-389
154	PS0	-1710	-389
155	PS1	-1591	-389
156	PS2	-1518	-389
157	BR	-1399	-389
158	VSS	-1326	-389
159	Т8	-1253	-389
160	Т9	-1134	-389
161	СР	-1061	-389
162	T10	-942	-389
163	T11	-869	-389
164	VDD2	-766	-389
165	VDD2	-693	-389
166	VDD2	-620	-389
167	VDD2	-547	-389
168	RESB	-410	-389
169	CSB	-291	-389
170	WR	-218	-389
171	/RD	-99	-389
172	A0	-26	-389
173	VDD1	77	-389
174	D7	150	-389
175	D6	269	-389
176	D5	342	-389
177	D4	461	-389
178	D3	534	-389
179	D2	653	-389
180	D1	726	-389

PAD NO.	PIN Name	Х	Υ
181	D0	845	-389
182	OSC	918	-389
183	VSS	1021	-389
184	VSS	1094	-389
185	VSS	1167	-389
186	VSS	1240	-389
187	VRS	1313	-389
188	T0	1385	-389
189	T1	1534	-389
190	T2	1609	-389
191	Т3	1784	-389
192	T4	1859	-389
193	T5	2034	-389
194	VSS	2108	-389
195	VSS	2181	-389
196	VSS	2254	-389
197	VSS	2327	-389
198	Voutout	2415	-389
199	Vоитоит	2488	-389
200	Voutin	2561	-389
201	Voutin	2634	-389
202	V0	2793	-389
203	V1	2883	-389
204	V2	2956	-389
205	V3	3029	-389
206	V4	3102	-389
207	COMS	3183	-371
208	COM[0]	3238	-371
209	COM[1]	3293	-371
210	COM[2]	3348	-371

PAD NO.	PIN Name	х	Y
211	COM[3]	3403	-371
212	COM[4]	3458	-371
213	COM[5]	3513	-371
214	COM[6]	3568	-371
215	COM[7]	3623	-371
216	COM[8]	3678	-371
217	COM[9]	3981	-363
218	COM[10]	3981	-308
219	COM[11]	3981	-253
220	COM[12]	3981	-198
221	COM[13]	3981	-143
222	COM[14]	3981	-88
223	COM[15]	3981	-33
224	COM[16]	3981	22
225	COM[17]	3981	77
226	COM[18]	3981	132
227	COM[19]	3981	187
228	COM[20]	3981	242
229	COM[21]	3981	297
230	COM[22]	3981	352

4. BLOCK DIAGRAM

5. PINNING DESCRIPTIONS

Pin Name	I/O			Description		No. of Pins	
Lcd driver outputs							
		_	LCD segment driver outputs This display data and the M signal control the output voltage of segment				
SEG0 to SEG101		Display data	M (Internal)		ver output voltage		
	0	Н	Н	V ₀	V ₂	102	
0_00 to 0_0.0.		Н	L	V _{SS}	V ₃		
		L	Н	V ₂	V_0		
		L	L	V ₃	V _{SS}		
		Power s	ave mode	V _{SS}	V _{SS}		
		This internal s	er.	and M signal co	ntrol the output voltage of		
		Display data	M(Internal)		y Reverse display		
COM0 to COM64	0	Н			V _{SS}	65	
		Н	L		V ₀		
		L	Н		V ₁		
		L	L		V ₄		
		Power s	Power save mode V _{SS}				
COMS	0	-	Common output for the icons (COMS) The output signals of two pins are same. When not used, this pin should be left open.				
MICROPROCESSOF	RINTERFAC					1	
		Microprocesso	or interface se	lect input pin			
		PS0 PS	1 PS2		State		
		"L" "L		Pin-SPI MPU int			
PS[2:0]	I	"L" "L	- t	Pin-SPI MPU int		3	
		"L" "H			el MPU interface		
		"L" "H			el MPU interface		
			"H" "H" "H" I ² C interface				
CSB	1	Data/instruction is non-active,	Chip select input pins Data/instruction I/O is enabled only when CSB is " L ". When chip select is non-active, DB0 to DB7 is high impedance. There is no CSB pin in I ² C interface, so this pin can fix to " H"				
RESB	ı	Reset input pi	n	ation is executed		1	
	_	It determines whether the data bits are data or a command. A0=" H ": Indicates that D0 to D7 are display data.				1	
A0	I	A0= H: Indicates that D0 to D7 are display data. A0=" L ": Indicates that D0 to D7 are control data.					
					so this pin can fix to "H"	1	

			rite execution c					
		PS2	MPU type	/WR(R/W	Description Read/Write control input pin			
		Н	6800-series	R/W	R/W=" H ": read			
/WR(R/W)					R/W=" L": write	1		
////(//////////////////////////////////	•				Write enable clock input pin	•		
		L	8080-series	/WR	The data on D0 to D7 are latched at the rising edge of the WR			
					signal			
		When in	the serial inter	face must f	ix to " H"			
		Read/W	rite execution c	ontrol pin (PS[0:1]=[L:H])			
		PS2	MPU Type	/RD (E)	Description			
/RD (E)	I	Н	6800-series	E	Read/Write control input pin R/W=" H ": When E is " H ", D0 to D7 are in an output status. R/W=" L ": The data on D0 to D7 are latched at the falling edge of the E signal.	1		
		L	8080-series	/RD	Read enable clock input pin When /RD is " L ", D0 to D7 are in an output status.			
		When in the serial interface must fix to "H"						
			-		ce: 6800 . 8080			
		8-bit bi-directional data bus that is connected to the standard 8-bit microprocessor data bus.						
D7 to D4		When chip select is not active, D0 to D7 is high impedance.						
D1~D3 (SDA) D0(SCLK)		When using serial interface: 4-LINE.3-LINE						
D0(3CLK)		D0: serial input clock (SCLK) D1.D2.D3: serial input data (SDA)						
		D4, D5, D6, D7 : must fix to " H"						
					to D7 is high impedance.			
			sing I ² C interfa					
			al clock input (S al input data (SI					
		D1: serial input data (SDA_IN) D2, D3: (SDA_OUT) serial data acknowledge for the I ² C interface. By						
			. — .		externally, the SDA line becomes fully			
			•	_	ne acknowledge output separated			
	I/O				geous in chip on glass (COG) /here the track resistance from the	8		
D7 (SA1)			-	-	line can be significant, a potential			
D6 (SA0)		divider is generated by the bus pull-up resistor and the ITO track						
D4(X)		resistance. It is possible the during the acknowledge cycle the ST7548T						
D5(X)					gic 0 level. By splitting the SDA_IN			
D3 to D2 (SDA_OUT) D1 (SDA_IN)				•	ne device could be used in a mode			
D0 (SCLK)		that ignores the acknowledge bit. In COG applications where the acknowledge cycle is required, it is necessary to minimize the track						
, ,				-	to the system SDA line to guarantee			
			ow level.	_				
			D3 must be co	nnected to	gether (SDA)			
			nust fix to "H" Is slave addres	s (SAO SA	1), must fix to "H" or "L"			
				•	sed must fix to "H"			

CD DRIVER SUPPL	Υ.					
osc	I	When the on-chip oscillator is used, this input must be connected to VDD. An external clock signal, if used, is connected to this input. If the oscillator and external clock are both inhibited by connecting the OSC pin to VSS the display is not clocked and may be left in a DC state. To avoid this, the chip should always be put into Power Down Mode before stopping the clock.	1			
ower Supply Pins						
V_{SS}	Power	Ground.	9			
•33	Supply					
V_{DD1}	Power Supply	Digital Supply voltage. The 2 supply rails V_{DD1} and V_{DD2} could be connected together. If Digital Option pin is high, must be this level	5			
V_{DD2}	Power Supply	Analog Supply voltage. The 2 supply rails V_{DD1} and V_{DD2} could be connected together.	4			
Voutin	Power Supply	If the internal voltage generator is used, the V _{OUTIN} & V _{OUTOUT} must be connected together. An external supply voltage can be supplied using				
V _{оитоит}	Power Supply	er If the internal voltage generator is used, the V _{OUTIN} & V _{OUTOUT} must be connected together and series one capacitor to VSS				
V0, V1, V2, V3, V4	Power Supply	This is a multi-level power supply for the liquid crystal. V _{OUTIN} ≥V0 ≥V1≥V2≥V3≥V4≥V _{SS} .	5			
VRS	Power Supply	Monitor Voltage Regulator level, must be left open.	1			
Configuration Pins						
CP CP	1	Set Booster stages. (VSS=4X;VDD=5X)	1			
BR	ı	Set LCD bias ratio. (VSS=1/7;VDD=1/9) After reset , the bias ratio will be the setting value.				
Test Pin		· ·				
T0~T11	Т	T0~T7 must floating T9 must connect to VDD T8.T10.T11 must connect to VSS	12			
Reserved	-	All Reserved pins must floating	2			

ST7548T I/O PIN ITO Resister Limitation

PIN Name	ITO Resister
PS[2:0],OSC,CP,BR,T8~T11	No Limitation
T0~T7,VRS, V1 , V2 , V3 , V4	Floating
Vdd1, Vdd2, Vss, V _{outin} , V _{outout}	<100Ω
V0	<500Ω
A0,/WR,/RD,CSB, D0D7	<1ΚΩ
RESB	<10ΚΩ

6. FUNCTIONS DESCRIPTION

MICROPROCESSOR INTERFACE

Chip Select Input

There is CSB pin for chip selection. The ST7548T can interface with an MPU when CSB is "L". When CSB is "H", these pins are set to any other combination, A0, /RD(E), and WR(R/W) inputs are disabled and D0 to D7 are to be high impedance. And, in case of serial interface, the internal shift register and the counter are reset.

Parallel / Serial Interface

ST7548T has five types of interface with an MPU, which are three serial and two parallel interfaces. This parallel or serial interface is determined by PS [0:2] pin as shown in table 1.

Table 1. Parallel/Serial Interface Mode

PS0	PS1	PS2	CSB	A0	State
"L"	"L"	" "	CSB	A0	4 Pin-SPI MPU interface
"L"	" L "	"H	CSB	" * "	3 Pin-SPI MPU interface
"L"	"H"	"L"	CSB	A0	8080-series parallel MPU interface
"L"	" "	" "	CSB	A0	6800-series parallel MPU interface
"H"	" H "	"H"	" * "	" * "	I ² C interface

Parallel Interface

The 8-bit bi-directional data bus is used in parallel interface and the type of MPU is selected by PS2 as shown in table 2. The type of data transfer is determined by signals at A0, /RD (E) and WR(RW) as shown in table 3.

Table 2. Microprocessor Selection for Parallel Interface

PS0	PS1	PS2	CSB	A0	/RD (E)	/WR (R/W)	DB0 to DB7	MPU bus
L	Н	Н	CSB	A0	E	R/W	DB0 to DB7	6800-series
L	Н	L	CSB	A0	/RD	/WR	DB0 to DB7	8080-series

Table 3. Parallel Data Transfer

Common	6800-series		8080-series		
40	Ε	R/W	/RD	WR	Description
AU	A0 (/RD) (/WR) (E) (R/V	(R/W)			
Н	Н	Н	L	Н	Display data read out
Н	Н	L	Н	L	Display data write
L	Н	Н	L	Н	Register status read
L	Н	L	Н	L	Writes to internal register (instruction)

NOTE: When /RD (E) pin is always pulled high for 6800-series interface, it can be used CSB for enable signal. In this case, interface data is latched at the rising edge of CSB and the type of data transfer is determined by signals at A0, WR(R/W) as in case of 6800-series mode.

Serial Interface

Serial Mode	PS0	PS1	PS2	CSB	A0
4-line SPI interface	L	L	L	CSB	Used
3-line SPI interface	L	L	Н	CSB	Not Used Fix to "H"
I ² C interface	Н	Н	Н	Not Used Fix to "H"	Not Used Fix to "H"

PS0=" L ", PS1=" L ", PS2=" L ": 4-line SPI interface

When the ST7548T is active (CSB="L"), serial data (D1) and serial clock (D0) inputs are enabled. And not active, the internal 8-bit shift register and the 3-bit counter are reset. The display data/command indication may be controlled either via software or the Register Select (A0) Pin, based on the setting of PS[2:0]. When the A0 pin is used , data is display data when A0 is high, and command data when A0 is low. When A0 is not used , the LCD Driver will receive command from MCU by default. If messages on the data pin are data rather than command, MCU should send Data direction command to

control the data direction and then one more command to define the number of data bytes will be write. After these two continuous commands are sending, the following messages will be data rather than command. Serial data can be read on the rising edge of serial clock going into D0 and processed as 8-bit parallel data on the eighth serial clock. And the DDRAM column address pointer will be increased by one automatically. The next bytes after the display data string are handled as command data.

PS0=" L ", PS1=" L ", PS2=" H ": 3-line SPI interface

PS0=" H ", PS1=" H ", PS2=" H ": I2C Interface

The I²C interface receives and executes the commands sent via the I²C Interface. It also receives RAM data and sends it to the RAM.

The I²C Interface is for bi-directional, two-line communication between different ICs or modules. The two lines are a Serial Data line (SDA) and a Serial Clock line (SCLK). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

BIT TRANSFER

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse because changes in the data line at this time will be interpreted as a control signal. Bit transfer is illustrated in Fig.4.

START AND STOP CONDITIONS

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P). The START and STOP conditions are illustrated in Fig.5.

SYSTEM CONFIGURATION

The system configuration is illustrated in Fig.6.

- · Transmitter: the device, which sends the data to the bus
- · Receiver: the device, which receives the data from the bus
- · Master: the device, which initiates a transfer, generates clock signals and terminates a transfer
- · Slave: the device addressed by a master
- · Multi-Master: more than one master can attempt to control the bus at the same time without corrupting the message
- · Arbitration: procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted
- · Synchronization: procedure to synchronize the clock signals of two or more devices.

ACKNOWLEDGE

Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. A master receiver must also generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end-of-data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a STOP condition. Acknowledgement on the I²C Interface is illustrated in Fig.7.

I²C Interface protocol

The ST7548T supports command, data write addressed slaves on the bus.

Before any data is transmitted on the I^2C Interface, the device, which should respond, is addressed first. Four 7-bit slave addresses (01111**00**,01111**01**, 01111**10** and 01111**11**) are reserved for the ST7548T. The least significant bit of the slave address is set by connecting the input SA0 and SA1 to either logic 0 (or logic 1 (VDD1). The I^2C Interface protocol is illustrated in Fig.8.

The sequence is initiated with a START condition (S) from the I²C Interface master, which is followed by the slave address. All slaves with the corresponding address acknowledge in parallel, all the others will ignore the I²C Interface transfer. After acknowledgement, one or more command words follow which define the status of the addressed slaves. A command word consists of a control byte, which defines Co and A0, plus a data byte.

The last control byte is tagged with a cleared most significant bit (i.e. the continuation bit Co). After a control byte with a cleared Co bit, only data bytes will follow. The state of the A0 bit defines whether the data byte is interpreted as a command or as RAM data. All addressed slaves on the bus also acknowledge the control and data bytes. After the last control byte, depending on the A0 bit setting; either a series of display data bytes or command data bytes may follow. If the A0 bit is set to logic 1, these display bytes are stored in the display RAM at the address specified by the data pointer. The data pointer is automatically updated and the data is directed to the intended ST7548T device. If the A0 bit of the last control byte is set to logic 0, these command bytes will be decoded and the setting of the device will be changed according to the received commands. Only the addressed slave makes the acknowledgement after each byte. At the end of the transmission the I²C INTERFACE-bus master issues a STOP condition (P). If the R/W bit is set to logic 1 the chip will output data immediately after the slave address if the A0 bit, which was sent during the last write access, is set to logic 0. If no acknowledge is generated by the master after a byte, the driver stops transferring data to the master.

Data Transfer

The ST7548T uses bus holder and internal data bus for data transfer with the MPU. When writing data from the MPU to on-chip RAM, data is automatically transferred from the bus holder to the RAM as shown in figure 9. And when reading data from on-chip RAM to the MPU, the data for the initial read cycle is stored in the bus holder (dummy read) and the MPU reads this stored data from bus holder for the next data read cycle as shown in figure 10. This means that a dummy read cycle must be inserted between each pair of address sets when a sequence of address sets is executed. Therefore, the data of the specified address cannot be output with the read display data instruction right after the address sets, but can be output at the second read of data.

DISPLAY DATA RAM (DDRAM)

The ST7548T contains a 66X102 bit static RAM that stores the display data. The display data RAM store the dot data for the LCD. It has a 66(8 pageX8 bit +1 pageX1 bit +1 pageX1 bit) X 102 . There is a direct correspondence between X-address and column output number. It is 66-row by 102-column addressable array. Each pixel can be selected when the page and column addresses are specified. The 65 rows are divided into 8 pages of 8 lines (0~63 COM) and 8th page with single line (D0) (64COM) and 9th page with a single line (D0) (COMS for ICON). Data is read from or written to the 8 lines of each page directly through D0 to D7. The display data of D0 to D7 from the microprocessor correspond to the LCD common lines. The microprocessor can read from and write to RAM through the I/O buffer. Since the LCD controller operates independently, data can be written into RAM at the same time as data is being displayed without causing the LCD flicker.

Page Address Circuit

This circuit is for providing a Page Address to Display Data RAM. It incorporates 4-bit Page Address register changed by only the "Set Page" instruction. Page Address 9 is a special RAM area for the icons and display data D0 is only valid.

Line Address Circuit

This circuit assigns DDRAM a Line Address corresponding to the first line (COM0) of the display. Therefore, by setting Line Address repeatedly, it is possible to realize the screen scrolling and page switching without changing the contents of on-chip RAM as shown in figure 10. It incorporates 7-bit Line Address register changed by only the initial display line instruction and 7-bit counter circuit. At the beginning of each LCD frame, the contents of register are copied to the line counter which is increased by CL signal and generates the line address for transferring the 102-bit RAM data to the display data latch circuit. When icon is selected by setting icon page address, display data of icons are not scrolled because the MPU cannot access Line Address of icons.

Column Address Circuit

Column Address Circuit has an 8-bit preset counter that provides Column Address to the Display Data RAM. The display data RAM column address is specified by the Column Address Set command. The specified column address is incremented (+1) with each display data read/write command. This allows the MPU display data to be accessed continuously.

Register MX and MY selection instruction makes it possible to invert the relationship between the Column Address and the segment outputs. It is necessary to rewrite the display data on built-in RAM after issuing MX select instruction.

		SEG Output
SEG Output		
MX	SEG0	SEG101
"0"	seg0	→ Segment Address → seg101
"1"	seg101	← Segment Address ← seg0

ADDRESSING

Data is downloaded in bytes into the RAM matrix of ST7548T. The display RAM has a matrix of 66 by 102 bits. The address pointer addresses the columns. The address ranges are: X 0 to 101 (1100101), Y 0 to 9 (1001) .Addresses outside these ranges are not allowed. In vertical addressing mode (V=1) the Y address increments after each byte. After the last Y address (Y = 8), Y wraps around to 0 and X increments to address the next column. In horizontal addressing mode (V=0) the X address increments after each byte. After the last X address(X = 101) X wraps around to 0 and Y increments to address the next row. After the very last address (X = 101, Y = 8) the address pointers wrap around to address (X = 0, Y = 0)

Data structure

Fig.15 Display Data RAM Map (66 COM)

Oscillator

The on-chip oscillator provides the clock signal for the display system. No external components are required and the OSC input must be connected to VDD. An external clock signal, if used, is connected to this input.

LCD DRIVER CIRCUIT

66-channel common drivers and 102-channel segment drivers configure this driver circuit. This LCD panel driver voltage depends on the combination of display data and M signal.

7. RESET CIRCUIT

Setting RESB to "L" or Reset instruction can initialize internal function.

When RESB becomes "L", following procedure is occurred.

Page address: 0 Column address: 0

Display control: Display blank COM Scan Direction MY: 0 SEG Select Direction MX: 0

DO=0

Oscillator: OFF

Power down mode (PD = 1) Horizontal addressing (V = 0) Normal instruction set (H = 0) Display blank (E = D = 0)

Address counter X [6:0] = 0, Y [3:0] = 0 Bias system (BS [2:0] = BR setting)

V0 is equal to 0; the HV generator is switched off $(V_{OP} [6:0] = 0)$

After power-on, RAM data are undefined

While RESB is "L" or reset instruction is executed, no instruction except read status can be accepted. Reset status appears at DB0. After DB0 becomes "L", any instruction can be accepted. RESB must be connected to the reset pin of the MPU, and initialize the MPU and this LSI at the same time. The initialization by RESB is essential before used.

8. INSTRUCTION TABLE

INCTRUCTION	40	WR			C	OMMA	ND BYT	E			DECODIDEION
INSTRUCTION	A0	(R/W)	D7	D6	D5	D4	D3	D2	D1	D0	DESCRIPTION
H=0 or 1											
NOP	0	0	0	0	0	0	0	0	0	0	No operation
Reserved	0	0	0	0	0	0	0	0	0	1	Do not use
Function set	0	0	0	0	1	MX	MY	PD	V	Н	Power-down; entry mode;
Read status byte	0	1	PD	0	0	D	Е	MX	MY	DO	Read status byte
Write data	1	0	D ₇	D ₆	D ₅	D ₄	D ₃	D ₂	D ₁	D ₀	Write data to RAM

	1											
INCTRUCTION		WR			C	OMMA	ND BYT	Έ			DESCRIPTION	
INSTRUCTION	A0	(R/W)	D7	D6	D5	D4	D3	D2	D1	D0	DESCRIPTION	
H=0												
Reserved	0	0	0	0	0	0	0	0	1	Х	Do not use	
Set V0 range	0	0	0	0	0	0	0	1	0	PRS	V0 range L/H select	
Display control	0	0	0	0	0	0	1	D	0	Е	Sets display configuration	
Reserved	0	0	0	0	0	1	0	0	Х	Х	Do not use	
Set Y address of RAM	0	0	0	1	0	0	Y ₃	Y ₂	Y ₁	Y ₀	Sets Y address of RAM 0≦Y≦9	
Set X address of RAM	0	0	1	X ₆	X ₅	X ₄	X ₃	X ₂	X ₁	X ₀	Sets X address of RAM 0≤X≤101	
H=1	•											
Reserved	0	0	0	0	0	0	0	0	1	Х	Do not use	
Display configuration	0	0	0	0	0	0	1	DO	Х	Х	Set data order	
Bias system	0	0	0	0	0	1	0	BS ₂	BS ₁	BS ₀	Sets bias system (BSx)	
Reserved	0	0	0	1	Х	Х	Х	Х	Х	Х	Do not use(reserved for test)	
Set V0 voltage (Set V _{OP})	0	0	1	V _{OP6}	V _{OP5}	V _{OP4}	V _{OP3}	V _{OP2}	V _{OP1}	V _{OP0}	Write V0 (V _{OP}) voltage to register	

9. INSTRUCTION DESCRIPTION

H="0" or "1"

Function Set

Α0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	MX	MY	PD	V	Н

Flag	Description
MX	SEG bi-direction selection
	MY=0:normal direction (SEG0->SEG101)
	MY=1:reverse direction (SEG101->SEG0)
MY	COM bi-direction selection
	See Pad Center Coordinates at page 3~10 when using this register
	All LCD outputs at VSS (display off), bias generator and V0 generator off, VOUT can be
	disconnected, oscillator off (external clock possible), RAM contents not cleared; RAM data
PD	can be written.
	PD=0:chip is active
	PD=1:chip is in power down mode
V	When V = 0, the horizontal addressing is selected.
V	When V = 1, the vertical addressing is selected.
	When H = 0 the commands 'display control', 'set Y address' and 'set X address' can be
	performed, when H = 1 the others can be executed. The commands 'write data' and 'function
Н	set' can be executed in both cases.
	H=0:use basic instruction set
	H=1:use extended instruction set

Read status byte

Indicates the internal status of the ST7548T

	A0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
ſ	0	1	PD	0	0	D	E	MX	MY	DO

Flag	Des	crip	tion					
PD	PD=	=0:ch	nip is active					
PD	PD=	PD=1:chip is in power down mode						
	D E The bits D and E select the display mode.							
	0	0	Display blank					
D,E	0	1	All display segments on					
	1	0	Normal mode					
	1 1 Inverse video mode							
DO	DO:	DO=0:MSB is on top						
DO	DO:	=1:L	SB is on top					

Write data

8-bit data of Display Data from the microprocessor can be written to the RAM location specified by the column address and page address. The column address is increased by 1 automatically so that the microprocessor can continuously write data to the addressed page. During auto-increment, the column address wraps to 0 after the last column is written.

Α0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
1	0				Write	data			

H= "0"

Set V0 range

V0 range L/H select

A0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	1	0	PRS

PRS=0: V0 programming range LOW PRS=1: V0 programming range HIGH

Display Control

This bits D and E selects the display mode.

Ī	Α0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
I	0	0	0	0	0	0	1	D	0	Ε

Flag	Description									
	D	Е	The bits D and E select the display mode.							
	0	0	Display blank							
D,E	1	0	Normal display							
	0	1	All display segments on							
	1	1	Inverse video mode							

Set Y address of RAM

Y [3:0] defines the Y address vector address of the display RAM.

A0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	Y ₃	Y ₂	Y ₁	Y ₀

Y ₃	Y ₂	Y ₁	Y ₀	CONTENT	ALLOWED X-RANGE
0	0	0	0	Page0 (display RAM)	0 to 101
0	0	0	1	Page1 (display RAM)	0 to 101
0	0	1	0	Page2 (display RAM)	0 to 101
0	0	1	1	Page3 (display RAM)	0 to 101
0	1	0	0	Page4 (display RAM)	0 to 101
0	1	0	1	Page5 (display RAM)	0 to 101
0	1	1	0	Page6 (display RAM)	0 to 101
0	1	1	1	Page7 (display RAM)	0 to 101
1	0	0	0	Page8 (display RAM)	0 to 101
1	0	0	1	Page9 (display RAM)	0 to 101

Set X address of RAM

The X address points to the columns. The range of X is 0...101.

A0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	X ₆	X ₅	X_4	X ₃	X_2	X ₁	X ₀

X 6	X ₅	X_4	X ₃	X ₂	X ₁	X ₀	Column address
0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	1
0	0	0	0	0	1	0	2
0	0	0	0	0	1	1	3
:	:	• •	• •	:	:	:	••
1	1	0	0	0	1	0	98
1	1	0	0	0	1	1	99
1	1	0	0	1	0	0	100
1	1	0	0	1	0	1	101

H= "1"

Display configuration

Top/bottom row mode set data order

A0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	1	DO	Х	Х

Flag	Description
DO	DO=0:MSB is on top
DO	DO=1:LSB is on top

See page 22

System Bias

Select LCD bias ratio of the voltage required for driving the LCD.

A0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	0	BS ₂	BS₁	BS₀

BS ₂	BS ₂ BS ₁		Bias	Recommend Duty
0	0	0	11	1:100
0	0	1	10	1:81
0	1	0	9	1:65/1:68
0	1	1	8	1:49
1	0	0	7	1/40:1/36
1	0	1	6	1/24
1	1	0	5	1:18/1:16
1	1	1	4	1:10/1:9/1:8

Set V0 voltage (Set V_{OP})

Α0	WR(R/W)	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	V_{OP6}	V_{OP5}	V_{OP4}	V_{OP3}	V_{OP2}	V_{OP1}	V_{OP0}

The operation voltage V0 (V_{OP}) can be set by software.

$$V0=(a+V_{OP}\times b)$$
 (1)

The maximum voltage that can be generated is depending on the VDD1 voltage and the display load current. Two overlapping V0 ranges are selectable via the command "Set V0 Range". For the LOW (PRS=0) range a=a1 and for the HIGH (PRS=1) range a=a2 with steps equal to "b" in both ranges. Note that the charge pump is turned off if V_{OP} [6;0] and the bit PRS are all set to zero

Table 4 Typical values for parameter for the HV-Generator programming

SYMBOL	VALUE	UNIT
a1	2.94(PRS=0)	V
a2	6.75(PRS=1)	V
b	0.03	V

10. COMMAND DESCRIPTION

Referential Instruction Setup Flow: Initializing with the built-in Power Supply Circuits

Initializing with the Built-in Power Supply Circuits

11. LIMITING VALUES

In accordance with the Absolute Maximum Rating System; see notes 1 and 2.

Parameter	Symbol	Conditions	Unit
Power Supply Voltage	VDD1	-0.5 ~ 5	V
Power supply voltage	VDD2	-0.5 ~ 5	V
Power supply voltage (VDD standard)	V _{OUTIN}	4.5~13.5	V
Power supply voltage (VDD standard)	V1, V2, V3, V4	0.3 to V _{OUTIN}	V
Operating temperature	TOPR	-40 to +85	°C
Storage temperature	TSTR	–65 to +150	°C

Notes

- 1. Stresses above those listed under Limiting Values may cause permanent damage to the device.
- 2. Parameters are valid over operating temperature range unless otherwise specified. All voltages are with respect to V_{SS} unless otherwise noted.
- 3. Insure that the voltage levels of V0,V1, V2, V3, and V4 are always such that

$$V_{\text{OUTIN}} \, \geqq \, V0 \, \geqq \, V1 \, \geqq \, V2 \, \geqq \, V3 \, \geqq \, V4 \, \geqq \, Vss$$

12. HANDLING

Inputs and outputs are protected against electrostatic discharge in normal handling. However, to be totally safe, it is desirable to take normal precautions appropriate to handling MOS devices (see "Handling MOS devices").

13. DC CHARACTERISTICS

 V_{DD1} = 1.7 V to 3.3V; V_{SS} = 0 V; Vout = 3.0 to 13.0V; T_{amb} = -40°C to +85°C; unless otherwise specified.

Item	Symbol	Condition		Rating			Units	Applicable
item	Syllibol	Condition		Min.	Тур.	Max.	UTIILS	Pin
Operating Voltage (1)	VDD1			1.7	_	3.3	V	Vss
Operating Voltage (2)	VDD2	(Relative to V _{SS})		2.4	_	3.3	V	Vss
High-level Input Voltage VIHC				0.7 x VDD	_	VDD	V	
Low-level Input Voltage	VILC			vss	_	0.3 x VDD	V	
High-level Output Voltage	VOHC			0.7 x VDD	_	VDD	V	
Low-level Output Voltage	VOLC			VSS	_	0.3 x VDD	V	
Input leakage current	ILI			-1.0	_	1.0	μ A	
Output leakage current	ILO			-3.0	_	3.0	μ A	
Liquid Crystal Driver ON	RON	Ta = 25°C	V _{OUTIN} = 13.0V	_	2.0	3.5	ΚΩ	SEGn
Resistance	RON	(Relative To VSS)	V _{OUTIN} = 8.0V	_	3.2	5.4	10.22	COMn *6
Frame frequency	FR			65.7	73	80.4	Hz	

Item		Symbol	Condition	Rating			Units	Applicable Pin	
				Min.	Тур.	Max.	Office	Applicable Fill	
	Input voltage	VDD1	(Relative To VSS)	1.7	_	3.3	٧		
Internal Power	Supply Step-up output	V _{оитоит}	(Relative To VSS)	_	_	13.5	V	V_{OUTOUT}	
	voltage Circuit								
	Voltage regulator		(Relative To VSS)	-	_	13.5	V		
	Circuit Operating	V_{OUTIN}						V _{OUTIN}	
	Voltage								

Dynamic Consumption Current : During Display, with the Internal Power Supply OFF Current consumed by total ICs (bare die)

Test pattern	Symbol	Condition		Rating	Units	Notes	
rest pattern		Condition	Min.	Тур.	Max.	Ullits	Notes
Diaplay Battern	ISS	VDD = 3.0 V,					
Display Pattern		Booster X4	_	300	_	μ A	*8
SNOW		V0 – VSS = 9.0 V					
Power Down	ISS	Ta = 25°C	_	0.01	2	μ A	

Notes to the DC characteristics

- 1. The maximum possible V0 voltage that may be generated is dependent on voltage, temperature and (display) load.
- 2. Internal clock
- 3. Power-down mode. During power down all static currents are switched off.
- 4. If external V_{OUTIN} , the display load current is not transmitted to I_{DD} .
- 5. V_{OUT} external voltage applied to V_{OUTIN} pin; V_{OUTIN} disconnected from V_{OUTOUT} (no connect)

14. TIMING CHARACTERISTICS

System Bus Read/Write Characteristics 1 (For the 8080 Series MPU)

Figure 26.

 $(VDD = 3.3V , Ta = 25^{\circ}C)$

140.00	Ciamal	Comple of	0	Rating		11:4	
Item	Signal	Symbol	Condition	Min.	Max.	Units	
Address hold time		tAH8		10	_	-	
Address setup time	A0	tAW8		100	_		
System cycle time		tCYC8		400	_		
Enable L pulse width (WRITE)	WR	tCCLW		80	_		
Enable H pulse width (WRITE)	VVR	tCCHW		80	_		
Enable L pulse width (READ)	- RD	tCCLR		140	_	ns	
Enable H pulse width (READ)	, KD	tCCHR		80			
WRITE Data setup time		tDS8		80	_		
WRITE Address hold time	D0 to D7	tDH8		10	_		
READ access time		tACC8	CL = 100 pF	_	70		
READ Output disable time		tOH8	CL = 100 pF	5	50		

(VDD = 2.7 V , Ta = 25°C)

lto m	Cianal	Cumah al	Condition	Rating		Unito
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH8		15		
Address setup time	A0	tAW8		150	_	
System cycle time		tCYC8		600	_	
Enable L pulse width (WRITE)	WD	tCCLW		220		
Enable H pulse width (WRITE)	WR	tCCHW		180	_	
Enable L pulse width (READ)	RD	tCCLR		220		ns
Enable H pulse width (READ)	KD.	tCCHR		180	_	
WRITE Data setup time		tDS8		120	_	
WRITE Address hold time	D0 to D7	tDH8		15	_	
READ access time	ען טו טען	tACC8	CL = 100 pF	_	140	
READ Output disable time		tOH8	CL = 100 pF	10	100	

(VDD = 1.8V, Ta = $25^{\circ}C$)

Item	Signal	Symbol	Condition	Rating		Units	
item	Signal	Syllibol	Condition	Min.	Max.	Office	
Address hold time		tAH8		30	_		
Address setup time	A0	tAW8		200	_		
System cycle time		tCYC8		1000	_		
Enable L pulse width (WRITE)	WR	tCCLW		360	_		
Enable H pulse width (WRITE)	VVK	tCCHW		280	_		
Enable L pulse width (READ)	RD	tCCLR		360	_	ns	
Enable H pulse width (READ)	, KD	tCCHR		280			
WRITE Data setup time		tDS8		200	_		
WRITE Address hold time	D0 to D7	tDH8		30	_		
READ access time	D0 to D7	tACC8	CL = 100 pF	_	240		
READ Output disable time		tOH8	CL = 100 pF	10	200		

^{*1} The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≤ (tCYC8 - tCCLW - tCCHW) for (tr + tf) ≤ (tCYC8 - tCCLR - tCCHR) are specified.

^{*2} All timing is specified using 20% and 80% of VDD as the reference.

^{*3} tCCLW and tCCLR are specified as the overlap between CSB being "L" and WR and RD being at the "L" level.

System Bus Read/Write Characteristics 1 (For the 6800 Series MPU)

Figure 27.

 $(VDD = 3.3 V, Ta = 25^{\circ}C)$

140.00	Cianal	Current al	Condition	Rat	Units	
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH6		10	_	
Address setup time	A0	tAW6		0	_	
System cycle time		tCYC6		240	_	
Enable L pulse width (WRITE)	WR	tEWLW		80	_	
Enable H pulse width (WRITE)	VVIC	tEWHW		80	_	
Enable L pulse width (READ)	RD	tEWLR		80	_	ns
Enable H pulse width (READ)	KD.	tEWHR		140		
WRITE Data setup time		tDS6		80	_	
WRITE Address hold time	D0 to D7	tDH6		10	_	
READ access time	ולם טו טם	tACC6	CL = 100 pF	_	70	
READ Output disable time		tOH6	CL = 100 pF	5	50	

(VDD = 2.7V, Ta = $25^{\circ}C$)

lto	Ciamal	Current al	Condition	Rating		T I : 4 a
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tAH6		15	_	
Address setup time	A0	tAW6		0		
System cycle time		tCYC6		400	_	
Enable L pulse width (WRITE)	WR	tEWLW		220	_	
Enable H pulse width (WRITE)	VVIX	tEWHW		180	_	
Enable L pulse width (READ)	RD	tEWLR		220	_	ns
Enable H pulse width (READ)	KD.	tEWHR		180	_	
WRITE Data setup time		tDS6		120		
WRITE Address hold time	D0 to D7	tDH6		15	_	
READ access time	D0 10 D7	tACC6	CL = 100 pF		140	
READ Output disable time		tOH6	CL = 100 pF	10	100	

(VDD =1.8V , Ta =25°C)

Item	Signal	Symbol (Condition	Rating		Units
item	Signai	Symbol		Min.	Max.	Units
Address hold time		tAH6		30	_	
Address setup time	A0	tAW6		0	_	
System cycle time		tCYC6		640	_	
Enable L pulse width (WRITE)	WR	tEWLW		360	_	
Enable H pulse width (WRITE)	VVK	tEWHW		280		
Enable L pulse width (READ)	RD	tEWLR		360	_	ns
Enable H pulse width (READ)	לאן	tEWHR		280		
WRITE Data setup time		tDS6		200	_	
WRITE Address hold time	D0 to D7	tDH6		30	_	
READ access time	D0 to D7	tACC6	CL = 100 pF	_	240	
READ Output disable time		tOH6	CL = 100 pF	10	200	

^{*1} The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, (tr +tf) ≤ (tCYC6 – tEWLW – tEWHW) for (tr + tf) ≤ (tCYC6 – tEWLR – tEWHR) are specified.

 $^{^{\}star}2$ All timing is specified using 20% and 80% of VDD as the reference.

^{*3} tEWLW and tEWLR are specified as the overlap between CSB being "L" and E.

SERIAL INTERFACE(4-Line Interface)

Fig 28.

(V_{DD} =3.3V,Ta=25 $^{\circ}$ C)

Item	Signal	Symbol	Condition	Rati	Units	
item	Signal	Symbol	Condition	Min.	Max.	Units
Serial Clock Period		tSCYC		150	_	
SCL "H" pulse width	SCL	tSHW		75	_	
SCL "L" pulse width		tSLW		75	_	
Address setup time		tSAS		20	_	
Address hold time	A0	tSAH		100	_	ns
Data setup time	SI	tSDS		20	_	
Data hold time	31	tSDH		10	_	
CS-SCL time	CSB	tCSS		20	_	
CS-SCL time	CSB	tCSH		140	_	

(V_{DD} =2.7V,Ta=25 $^{\circ}$ C)

ltem	Signal	Symbol	Condition	Rating		Unito
item	Signal	Symbol	Condition	Min.	Max.	Units
Serial Clock Period		tSCYC		300	_	
SCL "H" pulse width	-	tSHW		150	_	
SCL "L" pulse width		tSLW		150	_	
Address setup time	A0	tSAS		30	_	
Address hold time	AU	tSAH		150	_	ns
Data setup time	SI	tSDS		30	_	
Data hold time	31	tSDH		20	_	
CS-SCL time	CSB	tCSS		30	_	
CS-SCL time	CSB	tCSH		200	_	

(V_{DD}=1.8V,Ta=25°C)

Item	Signal	Symbol	Condition	Rating		- Units
item	Signal	Syllibol	Condition	Min.	Max.	Units
Serial Clock Period		tSCYC		500	_	
SCL "H" pulse width	SCL	tSHW		250	_	
SCL "L" pulse width		tSLW		250	_	
Address setup time	- A0	tSAS		60	_	
Address hold time	Au	tSAH		250	_	ns
Data setup time	- SI	tSDS		60	_	
Data hold time	31	tSDH		50	_	
CS-SCL time	- CSB	tCSS		40	_	
CS-SCL time	CSB	tCSH		350	_	

^{*1} The input signal rise and fall time (tr, tf) are specified at 15 ns or less.

 $^{^{\}ast}2$ All timing is specified using 20% and 80% of VDD as the standard.

SERIAL INTERFACE(3-Line Interface)

Fig 28.

(V_{DD}=3.3V,Ta=25°€)

Item	Gianal	Symbol	Condition	Rati	Units	
item	Signal	Symbol	Condition	Min.	Max.	Ullits
Serial Clock Period		tSCYC		150	_	
SCL "H" pulse width	SCL	tSHW		75	_	
SCL "L" pulse width		tSLW		75	_	
Data setup time	SI	tSDS		20	_	ns
Data hold time	51	tSDH		10	_	
CS-SCL time	CSB	tCSS		20	_	
CS-SCL time	CSB	tCSH		140	_	

(V_{DD}=2.7V,Ta=25 $^{\circ}$ C)

Item	Signal	Symbol	Condition	Rating		Units
item	Signal	Symbol	Condition	Min.	Max.	Units
Serial Clock Period		tSCYC		300	_	
SCL "H" pulse width		tSHW		150	_	
SCL "L" pulse width		tSLW		150	_	
Data setup time	SI	tSDS		30	_	ns
Data hold time	SI	tSDH		20	_	
CS-SCL time	CSB	tCSS		30	_	
CS-SCL time	CSB	tCSH		200	_	

(V_{DD}=1.8V,Ta=25°€)

Item	Signal	Symphol	Condition	Rating		Units
item	Signal	Symbol	Condition	Min.	Max.	Ullits
Serial Clock Period		tSCYC		500	_	
SCL "H" pulse width	SCL	tSHW		250	_	
SCL "L" pulse width		tSLW		250	_	
Data setup time	SI	tSDS		60	_	ns
Data hold time	Si	tSDH		50	_	
CS-SCL time	CSB	tCSS		40	_	
CS-SCL time	CSB	tCSH		350	_	

^{*1} The input signal rise and fall time (tr, tf) are specified at 15 ns or less.

SERIAL INTERFACE(I²C Interface)

(V_{DD} =3.3V,Ta=25 $^{\circ}$ C)

16	0:	al Symbol	0	Rating		11
Item	Signal	Symbol	Condition	Min.	Max.	Units
SCL clock frequency	SCL	FSCLK		-	400	kHZ
SCL clock low period	SCL	TLOW		1.3	-	us
SCL clock high period	SCL	THIGH		0.6	_	us
Data set-up time	SI	TSU;Data		100	-	ns
Data hold time	SI	THD;Data		0	0.9	us
SCL,SDA rise time	SCL	TR		20+0.1Cb	300	ns
SCL,SDA fall time	SCL	TF		20+0.1Cb	300	ns
Capacitive load represented by each bus line		Cb		-	400	pF
Setup time for a repeated START condition	SI	TSU;SUA		0.6	_	us
Start condition hold time	SI	THD;STA		0.6	-	us
Setup time for STOP condition		TSU;STO		0.6	-	us
Tolerable spike width on bus		TSW		-	50	ns
BUS free time between a STOP and START condition	SCL	TBUF		1.3		us

 $^{^{\}star}2$ All timing is specified using 20% and 80% of VDD as the standard.

15. RESET TIMING

Fig 29.

 $(VDD = 3.3V , Ta = -40 to 85^{\circ}C)$

Item	Cianal	Cumbal	Condition	Rating	Units		
item	Signal	Symbol	Condition	Min.	Тур.	Max.	Ullits
Reset time		tR		_	_	1	us
Reset "L" pulse width	RESB	tRW		1	_	_	us

(VDD = 2.7V , Ta = -40 to $85^{\circ}C$)

Item	Signal	Symbol	Condition		Rating		Units
item	Signal	Symbol	Condition	Min.	Тур.	Max.	UIIIIS
Reset time		tR		_	_	2.0	us
Reset "L" pulse width	RESB	tRW		2.0	_	_	us

 $(VDD = 1.8V , Ta = -40 to 85^{\circ}C)$

Item	Signal Symbol	Symbol	Condition	Rating			Unito
item	Signal	Symbol	Condition	Min.	Тур.	Max.	Units
Reset time		tR		_	_	3.0	us
Reset "L" pulse width	RESB	tRW		3.0	_	_	us

APPICATION NOTE

ST7548T (MY=0) Resolution: 66(65COM+ICON)*102(SEG) Interface: 6800 series Internal analog circuit Internal OSC Booster: X5 Bias ratio default: 1/9 (bias ratio can be changed by instruction) C=1.0 uF	OSC: Vdd T8: Vss T9: Vdd T10: Vss T11: Vss PS0: Vss PS1: Vdd PS2: Vdd CP: Vdd BR: Vdd
--	---

ST7548T (MY=0)	OSC: Vdd T8: Vss
Resolution: 66(65COM+ICON)*102(SEG)	T9: Vdd
Interface: 8080 series	T10: Vss
Internal analog circuit	T11: Vss
Internal OSC	PS0: Vss
Booster: X5	PS1: Vdd
Bias ratio default: 1/9	PS2: Vss
(bias ratio can be changed by instruction)	CP: Vdd
C=1.0 uF	BR: Vdd

ST7548T (MY=0)	OSC: Vdd T8: Vss
Resolution: 66(65COM+ICON)*102(SEG)	T9: Vdd
Interface: 4-Line	T10: Vss
Internal analog circuit	T11: Vss
Internal OSC	PS0: Vss
Booster: X5	PS1: Vss
Bias ratio default: 1/9	PS2: Vss
(bias ratio can be changed by instruction)	CP: Vdd
C=1.0 uF	BR: Vdd

ST7548T (MY=0)	OSC: Vdd T8: Vss
Resolution: 66(65COM+ICON)*102(SEG)	T9: Vdd
Interface: 3-Line	T10: Vss
Internal analog circuit	T11: Vss
Internal OSC	PS0: Vss
Booster: X5	PS1: Vss
Bias ratio default: 1/9	PS2: Vdd
(bias ratio can be changed by instruction)	CP: Vdd
C=1.0 uF	BR: Vdd

ST7548T (MY=0)

Resolution: 66(65COM+ICON)*102(SEG) OSC: Vdd Interface: I2C **T8**: Vss Internal analog circuit T9: Vdd Internal OSC T10: Vss Booster: X5 T11: Vss PS0: Vdd Bias ratio default: 1/9 (bias ratio can be changed by instruction) PS1: Vdd SA[1:0]:(0,0) PS2: Vdd (SA[1:0] are slave address of I2C) CP: Vdd C=1.0 uF; R=10K ohm BR: Vdd

ST7548T

History

Version	History	Date
1.0 C	Compatible to ST7548	
1.1 A Fi	Change Part Number to ST7548T-G2 (thickness 480um) Add Frame Rate Range Fix some font cannot be read Fix page number error Solve V _{LCD} , V0 & V _{OP} mix-up: => V _{OUT} for Booster, V0 for Regulator; V _{OP} for register value.	2006/1/24