EECS 376: Foundations of Computer Science

Chris Peikert 10 April 2023

Final Feedback

- * Where: Canvas -> Teaching Evaluations
- * When: Now until soon
- * Why:
 - 1. Part of your 2% grade for surveys
 - 2. This is how we learn how to teach you better
- * What to do:
 - 1. Submit your evaluation.
 - 2. Take a snapshot/picture of confirmation screen.

Important!!

3. Upload the snapshot to Gradescope.

Agenda

- * Administrivia
- * Diffie-Hellman recap
- * RSA public-key encryption and signatures

A Mathematical "Lock"

- * Let p be a prime and let $\mathbb{Z}_p^* = \{1, ..., p-1\}$.
- * An integer g is a **generator** of \mathbb{Z}_p^* if, for every $x \in \mathbb{Z}_p^*$, there exists $i \in \mathbb{N}$ such that $g^i \equiv x \pmod{p}$.
- * Example: 3 is a generator of \mathbb{Z}_7^* , but 2 isn't.
- * Fact: \mathbb{Z}_p^* has a generator for *any* prime p.

Discrete Log Conjecture: Given (large) prime p, generator g of \mathbb{Z}_p^* , and $x \in \mathbb{Z}_p^*$, there is no *efficient* algorithm for finding $i \in \mathbb{N}$ such that $g^i \equiv x \pmod{p}$. Probably an "NP-Intermediate" problem.

Diffie-Hellman Protocol

$$x = (g^a \bmod p)$$

$$y = (g^b \bmod p)$$

System parameters: a huge prime p and a generator g of \mathbb{Z}_p^*

Alice chooses secret, random $a \in \mathbb{Z}_p^*$, sends $x = (g^a \mod p)$ to Bob.

Bob chooses secret, random $b \in \mathbb{Z}_p^*$, sends $y = (g^b \mod p)$ to Alice.

Their secret shared key is $k = (g^{ab} \mod p)$.

Alice <u>locally</u> computes: $y^a \equiv (g^b)^a \equiv g^{ba} \pmod{p}$.

Bob <u>locally</u> computes: $x^b \equiv (g^a)^b \equiv g^{ab} \pmod{p}$.

Key: These are equal!

Diffie-Hellman: Security

- * Eve sees p, g, $x = g^a \mod p$, and $y = g^b \mod p$.
- * Eve wants to compute $k = g^{ab} \mod p$.
- * DH Assumption: There is no *efficient* algorithm that given g, p, $(g^a \mod p)$, and $(g^b \mod p)$ finds $(g^{ab} \mod p)$.
- * Best known attack: solve DLog to find a (or b).
- * Upshot: Hard problems are sometimes a good thing!
- * Most modern cryptographic protocols have *conditional* security guarantees: secure if there one-way functions exist, $P \neq NP$, DH/RSA/lattices are hard, etc...

RSA

- * The first public-key encryption/digital signature scheme
- * Invented by Rivest, Shamir, and Adleman in 1977

* Also discovered by Clifford Cocks at British Intelligence in 1973; classified until 1997.

Adi Shamir

Ron Rivest

Len Adleman

Public-Key Encryption

- * Analogy: Give your "lock" to everyone; anyone can lock a "package" meant for you using your lock; only you can unlock.
- * Public key (lock): used by others to encrypt messages to you
- * Private key (key): used by you to decrypt messages

Jiao Tong Tower

North Tower

Central Tower

Encryption ≡ 'Trapdoor' Inversion

- * A cryptosystem consists of:
 - * \mathbb{Z}_n is the set of possible messages (bit strings are numbers!)
 - * E_{ek} is the encryption algorithm (w/ public key ek)
 - * D_{dk} is the decryption algorithm (w/ secret key dk)
- * **Q:** We want $D_{dk}(E_{ek}(m)) = ?$
 - * $D_{dk} \circ E_{ek}$ should be the identity function!
- * Goal: Look for function E_{ek} on \mathbb{Z}_n that is hard to invert, but easy to invert with a 'trapdoor' (decryption key)

Fermat's Little Theorem

- * **FLT:** If *p* is prime, then for any $a, k \in \mathbb{Z}$, $a^{1+k(p-1)} \equiv a \pmod{p}$.
- * Example: $a^{11} \mod 11$ is the identity function on \mathbb{Z}_{11}
- * Proof: If p is prime and $a \not\equiv 0 \pmod{p}$, then the set of numbers $\{a, 2a, 3a, ..., (p-1)a\} \pmod{p}$ is the same set as $\{1, ..., p-1\}$.
 - 1) For every $i \in \{1,...,p-1\}$, ia is not a multiple of p since p does not divide either i or a (*Euclid's lemma*). Thus, each $ia \pmod{p} \in \{1,...,p-1\}$.
 - 2) For every $i, j \in \{1, ..., p-1\}$, $i \neq j$, (j-i)a is not a multiple of p. Thus, there are no "collisions": $ia \not\equiv ja \pmod{p}$.
- * Then: Since the sets are the same, their products are too;
 - * $a \cdot 2a \cdots (p-1)a \equiv 1 \cdot 2 \cdots (p-1) \pmod{p}$
 - * Hence $a^{p-1} \equiv 1 \pmod{p}$. $(\{1,...,p-1\} \text{ all have inverses mod } p$, so multiply both sides by $1^{-1} \cdot 2^{-1} \cdots (p-1)^{-1} \pmod{p}$)

Cryptosystem Attempt

Initialization: (p, e)

- * **FLT:** If p is prime, then for any $a, k \in \mathbb{Z}$, $a^{1+k(p-1)} \equiv a \pmod{p}$.
- * Alice picks a large prime p and $e \cdot d = 1 + k(p-1)$, then:
 - * Alice sends (p, e) to Bob but keeps d secret.
 - * Enc: Bob sends $c \equiv m^e \pmod{p}$ to Alice.
 - * Dec: Alice computes $c^d \equiv \left(m^e\right)^d \equiv m^{1+k(p-1)} \equiv m \pmod{p}$.
- * Observation: $e \cdot d = 1 + k(p-1) \iff e \cdot d \equiv 1 \pmod{p-1}$
 - * Alice can choose an e that is coprime to p-1 and run the Extended Euclidean Algorithm (EEA) to efficiently compute its inverse $d \equiv e^{-1} \pmod{p-1}$.
- * Q: Is this secure? Can Eve efficiently recover m from the public information $p, e, m^e \pmod{p}$? (Yes.)

RSA Identity

- * **FLT:** If *p* is prime, then for any $a, k \in \mathbb{Z}$, $a^{1+k(p-1)} \equiv a \pmod{p}$.
- * RSA Identity: If $n = p \cdot q$ is the product of \underline{two} $\underline{distinct}$ primes, then for any $a, k \in \mathbb{Z}$: $a^{1+k(p-1)(q-1)} \equiv a \pmod{n}$. (Proof: holds mod each of p,q.)
- * Example: $a^5 \mod 10$ is an identity function on \mathbb{Z}_{10} * $n = 2 \cdot 5$ so $a^{1+4k} \equiv a \pmod{10}$ by RSA identity
- * Example: Compute $3^{123} \mod 77$
 - * $n = 7 \cdot 11$ so $a^{1+60k} \equiv a \pmod{77}$
- * For encryption we need $e \cdot d = 1 + k(p-1)(q-1)$ $\iff e \cdot d \equiv 1 \pmod{(p-1)(q-1)}$.

RSA: Protocol

$$c \equiv m^e \pmod{n}$$

$$c' \equiv (m')^e \; (\bmod \; n)$$

- * picks two <u>large</u>, <u>secret</u> primes p, q and sets n = pq
- * generates matching public/private exponents (e, d)
 - * $e \cdot d \equiv 1 \pmod{(p-1)(q-1)}$ (use EEA)
- * sends Bob (n, e) (public modulus and exponent)
- * To send m to Alice, Bob sends the ciphertext:

$$c \equiv m^e \pmod{n}$$

* After receiving c, Alice computes:

$$c^d \equiv m^{e \cdot d} \equiv m^{1 + k(p-1)(q-1)} \equiv m \pmod{n}$$

Alice initializes

RSA Identity

RSA: Toy Example

- * Set $n = p \cdot q = 3 \cdot 17 = 51$ (the primes are secret, shhh...)
- * Generate matching public/private key pair (e, d) = (3,11)
 - * $e \cdot d \equiv 1 \pmod{32}$
 - * E.g., pick *e* coprime to 32 and compute inverse *d* using EEA
- * Alice sends (n, e) = (51, 3) to Bob
- * To send m = 4, Bob sends the ciphertext:

$$m^e \equiv 4^3 \equiv 13 \pmod{51}$$

* After receiving c = 13, Alice computes:

$$c^d \equiv 13^{11} \equiv 4 \pmod{51}$$

RSA: Security

- * Eve knows public n, exponent e, ciphertext $m^e \pmod{n}$.
- * Eve wants to compute $m \pmod{n}$.
- * RSA Assumption: There is no efficient algorithm to find m, given the above info.
 - * Seems to require knowledge of (p,q), or d, or (p-1)(q-1)
- * Factorization Hardness Assumption: There is no efficient algorithm for integer factorization.
- * Exercise: Show that, given n and (p-1)(q-1), we can determine p and q.

RSA Factoring Challenge

640 bits, 193 digits

```
* In 2005, J. Franke et al. won $20,000 for showing:
n=31074182404900437213507500358885679300373460228427275457201
°61488232064405808150455634682967172328678243791627283803341
54710731085019195485290073377248227835257423864540146917366
02477652346609
is the product of
```

p=163473364580925384844313388386509085984178367003309231218 1110852389333100104508151212118167511579

and

q=190087128166482211312685157393541397547189678996851549366 6638539088027103802104498957191261465571

RSA Factoring Challenge

829 bits, 250 digits

is the product of

```
* In 2020, F. Boudot et al. showed that:
n=214032465024074496126442307283933356300861471514475501779775492088
141802344714013664334551909580467961099285187247091458768739626192
155736304745477052080511905649310668769159001975940569345745223058
932597669747168173806936489469 9871578494975937497937
```

p=6413528947707158027879019017057738908482501474294344720811685963 2024532344630238623598752668347708737661925585694639798853367

and

q=3337202759497815655622601060535511422794076034476755466678452098 7023841729210037080257448673296881877565718986258036932062

Factoring is Hard (?)

1024 bits, 309 digits

- * RSA \$100,000 challenge (defunct): factor the following modulus n into two large primes:
- * n=1350664108659952233496032162788059699388814756 056670275244851438515265106048595338339402871505 719094417982072821644715513736804197039641917430 464965892742562393410208643832021103729587257623 585096431105640735015081875106765946292055636855 294752135008528794163773285339061097505443349998 11150056977236890927563

RSA Signatures

- * Motivation: Ensure that Alice sent m, w/o tampering.
- * Idea: Run RSA "backwards": sign w/secret, verify w/public
- * Setup: public key (n, e) and matching secret key d.
- * Sign a message (hash) $m: s = m^d \mod n$.
- * Verify a signature s for m: check that $s^e \equiv m \pmod{n}$.
- * Correctness follows from the RSA identity.
- * Security from RSA assumption: seems hard to compute "eth root" of a random message hash m.

Quantum Computers, Cryptography and NP-Completeness

- * Quantum Computers can factor integers, compute DLOG efficiently.
 - * So they can break RSA and Diffie-Hellman!
- * (Un)fortunately, Quantum Computers don't (yet) scale up enough to break real crypto... but in 15 years? 25? 50?
 - * "Post-quantum" crypto: usable today, secure(?) vs. quantum
- * If P = NP, then there is "no cryptography".
- * The problems underlying cryptographic protocols (RSA, DH, DLOG, integer factorization, ...) are believed to be hard, but *not* to be **NP**-Hard.
 - * Probably in **NP-Intermediate**: problems in **NP** that are neither in **P** nor **NP-Complete**.

