Mathematics for Computer Science Linear Algebra (Part 2) Inner Product Spaces

Karl Southern

Durham University

February 10th, 2025

Thanks to Andrei Krokhin and William Moses for use of some slides.

Outline Recap & Plan for Today

- 2 Inner Product Spaces
 - Definition
 - Norm
 - Orthogonality
- Important Examples
 - Weighted Euclidean Inner Product
 - Matrix Inner Product on \mathbb{R}^n
 - Standard Inner Product on \mathbb{P}_n
 - Evaluation Inner Product on \mathbb{P}_n
 - Inner Product on the Space C[a, b]
 - Complex Inner Product
- 4 Standard (In)Equalitie
- Wrapping Things Up

Recap of Last Week

• Matrices A and B are similar if $A = PBP^{-1}$ for some invertible P.

Recap of Last Week

- Matrices A and B are similar if $A = PBP^{-1}$ for some invertible P.
- A is diagonalisable if it is similar to B and B is a diagonal matrix.
- $A = PDP^{-1}$ is an eigendecomposition of A if P is the eigenvectors of A and D is the diagonal matrix of eigenvalues.

Roadmap for Next Few Classes

• End Goal: Application - linear regression.

Roadmap for Next Few Classes

- End Goal: Application linear regression.
- **Using:** QR decomposition.

Roadmap for Next Few Classes

- End Goal: Application linear regression.
- Using: QR decomposition.
- Requires knowledge of some basics: Inner product spaces.

Contents for Today's Class

- Inner product spaces definition, norm, orthogonality.
- Important examples.

- Outline Recap & Plan for Today
- 2 Inner Product Spaces
 - Definition
 - Norm
 - Orthogonality
- 3 Important Examples
 - Weighted Euclidean Inner Product
 - Matrix Inner Product on \mathbb{R}^n
 - Standard Inner Product on \mathbb{P}_n
 - Evaluation Inner Product on \mathbb{P}_n
 - Inner Product on the Space C[a, b]
 - Complex Inner Product
- 4 Standard (In)Equalities
- Wrapping Things Up

- Outline Recap & Plan for Today
- 2 Inner Product Spaces
 - Definition
 - Norm
 - Orthogonality
- Important Examples
 - Weighted Euclidean Inner Product
 - Matrix Inner Product on \mathbb{R}^n
 - Standard Inner Product on \mathbb{P}_n
 - Evaluation Inner Product on \mathbb{P}_n
 - Inner Product on the Space C[a, b]
 - Complex Inner Product
- 4 Standard (In)Equalities
- Wrapping Things Up

Inner Product: The Definition

Recall: The dot product (aka Euclidean inner product) of vectors $\mathbf{u} = (u_1, \dots, u_n)$ and $\mathbf{v} = (v_1, \dots, v_n)$ in \mathbb{R}^n is defined as $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$.

Using it, one can define norm (aka length), distance, angles, orthogonality in \mathbb{R}^n .

Inner Product: The Definition

Recall: The dot product (aka Euclidean inner product) of vectors $\mathbf{u} = (u_1, \dots, u_n)$ and $\mathbf{v} = (v_1, \dots, v_n)$ in \mathbb{R}^n is defined as $\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$.

Using it, one can define norm (aka length), distance, angles, orthogonality in \mathbb{R}^n .

Definition

Let V be a (real) vector space. An inner product on V is a function that associates to each pair $\mathbf{u}, \mathbf{v} \in V$ a real number $\langle \mathbf{u}, \mathbf{v} \rangle \in \mathbb{R}$, satisfying the following properties for all $\mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ and $k \in \mathbb{R}$.

[Symmetry axiom]

[Additivity axiom]

[Homogeneity axiom]

$$\langle \mathbf{v}, \mathbf{v} \rangle \geq 0$$
, and $\langle \mathbf{v}, \mathbf{v} \rangle = 0$ iff $\mathbf{v} = \mathbf{0}$

[Positivity axiom]

- Outline
 Recap & Plan for Today
- 2 Inner Product Spaces
 - Definition
 - Norm
 - Orthogonality
- 3 Important Examples
 - Weighted Euclidean Inner Product
 - Matrix Inner Product on \mathbb{R}^n
 - Standard Inner Product on \mathbb{P}_n
 - Evaluation Inner Product on \mathbb{P}_n
 - Inner Product on the Space C[a, b]
 - Complex Inner Product
- 4 Standard (In)Equalitie
- Wrapping Things Up

Norm and Distance

Generalising from \mathbb{R}^n to an arbitrary inner product space (i.e. a vector space equipped with an inner product), we can define norm and distance as

$$||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$
 and $d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||.$

Norm and Distance

Generalising from \mathbb{R}^n to an arbitrary inner product space (i.e. a vector space equipped with an inner product), we can define norm and distance as

$$||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$
 and $d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||.$

The following properties of norm and distance follow directly from definitions:

- $||\mathbf{v}|| \ge 0$, and $||\mathbf{v}|| = 0$ iff $\mathbf{v} = \mathbf{0}$
- $||k\mathbf{v}|| = |k| ||\mathbf{v}||$
- $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$
- $d(\mathbf{u}, \mathbf{v}) = 0$ iff $\mathbf{u} = \mathbf{v}$.

Norm and Distance

Generalising from \mathbb{R}^n to an arbitrary inner product space (i.e. a vector space equipped with an inner product), we can define norm and distance as

$$||\mathbf{v}|| = \sqrt{\langle \mathbf{v}, \mathbf{v} \rangle}$$
 and $d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}||.$

The following properties of norm and distance follow directly from definitions:

- $||\mathbf{v}|| \ge 0$, and $||\mathbf{v}|| = 0$ iff $\mathbf{v} = \mathbf{0}$
- $||k\mathbf{v}|| = |k| ||\mathbf{v}||$
- $d(\mathbf{u}, \mathbf{v}) = d(\mathbf{v}, \mathbf{u})$
- $d(\mathbf{u}, \mathbf{v}) = 0$ iff $\mathbf{u} = \mathbf{v}$.

A vector \mathbf{v} with $||\mathbf{v}||=1$ is called a unit vector. Each non-zero vector can be normalised (scaled to become a unit vector): $\mathbf{v}\mapsto \frac{1}{||\mathbf{v}||}\mathbf{v}$.

- Outline
 Recap & Plan for Today
- 2 Inner Product Spaces
 - Definition
 - Norm
 - Orthogonality
- 3 Important Examples
 - Weighted Euclidean Inner Product
 - Matrix Inner Product on \mathbb{R}^n
 - Standard Inner Product on \mathbb{P}_n
 - Evaluation Inner Product on \mathbb{P}_n
 - Inner Product on the Space C[a, b]
 - Complex Inner Product
- 4 Standard (In)Equalities
- Wrapping Things Up

Definition

Vectors **u** and **v** in an inner product space V are called orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

In \mathbb{R}^n with the dot product, this is the same notion as before.

Definition

Vectors **u** and **v** in an inner product space V are called orthogonal if $\langle \mathbf{u}, \mathbf{v} \rangle = 0$.

In \mathbb{R}^n with the dot product, this is the same notion as before.

Definition

Let W be a subspace in an inner product space V. Then the set

$$W^{\perp} = \{ \mathbf{x} \in V \mid \langle \mathbf{u}, \mathbf{x} \rangle = 0 \text{ for all } \mathbf{u} \in W \}$$

is called the orthogonal complement of W.

Definition

Let W be a subspace in an inner product space V. Then the set

$$W^{\perp} = \{ \mathbf{x} \in V \mid \langle \mathbf{u}, \mathbf{x} \rangle = 0 \text{ for all } \mathbf{u} \in W \}$$

is called the orthogonal complement of W.

Definition

Let W be a subspace in an inner product space V. Then the set

$$W^{\perp} = \{ \mathbf{x} \in V \mid \langle \mathbf{u}, \mathbf{x} \rangle = 0 \text{ for all } \mathbf{u} \in W \}$$

is called the orthogonal complement of W.

Example: Take $\mathbf{u}=(2,-3,5,4)$ and $\mathbf{v}=(0,1,-4,7)$ in \mathbb{R}^4 (with the dot product) and let $W=span(\mathbf{u},\mathbf{v})$. Then W^\perp is the solution space of the linear system

$$2x_1 - 3x_2 + 5x_3 + 4x_4 = 0$$
 $(\langle \mathbf{u}, \mathbf{x} \rangle = 0)$
 $x_2 - 4x_3 + 7x_4 = 0$ $(\langle \mathbf{v}, \mathbf{x} \rangle = 0)$

Working with Orthogonal Complement

Theorem

For any subspace W in an inner product space V, the set W^{\perp} is also a subspace.

Working with Orthogonal Complement

Theorem

For any subspace W in an inner product space V, the set W^{\perp} is also a subspace.

Take $\mathbf{u}=(2,-3,5,4)$ and $\mathbf{v}=(0,1,-4,7)$ in \mathbb{R}^4 and let $W=span(\mathbf{u},\mathbf{v})$. If our inner product on \mathbb{R}^4 is the dot product, W^\perp is the solution space of

$$2x_1 - 3x_2 + 5x_3 + 4x_4 = 0$$
 $(\langle \mathbf{u}, \mathbf{x} \rangle = 0)$
 $x_2 - 4x_3 + 7x_4 = 0$ $(\langle \mathbf{v}, \mathbf{x} \rangle = 0)$

Working with Orthogonal Complement

Theorem

For any subspace W in an inner product space V, the set W^{\perp} is also a subspace.

Take $\mathbf{u}=(2,-3,5,4)$ and $\mathbf{v}=(0,1,-4,7)$ in \mathbb{R}^4 and let $W=span(\mathbf{u},\mathbf{v})$. If our inner product on \mathbb{R}^4 is the dot product, W^\perp is the solution space of

$$2x_1 - 3x_2 + 5x_3 + 4x_4 = 0$$
 $(\langle \mathbf{u}, \mathbf{x} \rangle = 0)$
 $x_2 - 4x_3 + 7x_4 = 0$ $(\langle \mathbf{v}, \mathbf{x} \rangle = 0)$

Finding a basis for W^{\perp} = finding a basis in the solution space of linear system.

- Outline
 - Recap & Plan for Today
- 2 Inner Product Spa
 - Definition
 - Norm
 - Orthogonality
- 3 Important Examples
 - Weighted Euclidean Inner Product
 - Matrix Inner Product on \mathbb{R}^n
 - Standard Inner Product on \mathbb{P}_n
 - Evaluation Inner Product on \mathbb{P}_n
 - Inner Product on the Space C[a, b]
 - Complex Inner Product
- 4 Standard (In)Equalities
- Wrapping Things Up

- Outline
 - Recap & Plan for Today
- 2
 - Inner Product Spaces
 - Definition
 - Norm
 - Orthogonality
- 3 Important Examples
 - Weighted Euclidean Inner Product
 - Matrix Inner Product on \mathbb{R}^n
 - \bullet Standard Inner Product on \mathbb{P}_n
 - Evaluation Inner Product on \mathbb{P}_n
 - Inner Product on the Space C[a, b]
 - Complex Inner Product
- 4 Standard (In)Equalities
- Wrapping Things Up

- Let $w_1, \ldots, w_n \in \mathbb{R}$ be arbitrary *positive* numbers, which we'll call *weights*.
- The weighted Euclidean inner product (with weights w_1, \ldots, w_n) on \mathbb{R}^n is defined as follows: for vectors $\mathbf{u} = (u_1, \ldots, u_n)$ and $\mathbf{v} = (v_1, \ldots, v_n)$,

$$\langle \mathbf{u}, \mathbf{v} \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \ldots + w_n u_n v_n.$$

• Easy to check that all four axioms of inner product are satisfied.

- Let $w_1, \ldots, w_n \in \mathbb{R}$ be arbitrary *positive* numbers, which we'll call *weights*.
- The weighted Euclidean inner product (with weights w_1, \ldots, w_n) on \mathbb{R}^n is defined as follows: for vectors $\mathbf{u} = (u_1, \ldots, u_n)$ and $\mathbf{v} = (v_1, \ldots, v_n)$,

$$\langle \mathbf{u}, \mathbf{v} \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \ldots + w_n u_n v_n.$$

- Easy to check that all four axioms of inner product are satisfied.
- If all $w_i = 1$, this becomes the standard dot product.

- Let $w_1, \ldots, w_n \in \mathbb{R}$ be arbitrary *positive* numbers, which we'll call *weights*.
- The weighted Euclidean inner product (with weights w_1, \ldots, w_n) on \mathbb{R}^n is defined as follows: for vectors $\mathbf{u} = (u_1, \ldots, u_n)$ and $\mathbf{v} = (v_1, \ldots, v_n)$,

$$\langle \mathbf{u}, \mathbf{v} \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \ldots + w_n u_n v_n.$$

- Easy to check that all four axioms of inner product are satisfied.
- If all $w_i = 1$, this becomes the standard dot product.

Example: Consider \mathbb{R}^2 equipped with the weighted Euclidean inner product with weights $w_1 = 3$, $w_2 = 2$, i.e., define $\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 2u_2v_2$.

- Let $w_1, \ldots, w_n \in \mathbb{R}$ be arbitrary *positive* numbers, which we'll call *weights*.
- The weighted Euclidean inner product (with weights w_1, \ldots, w_n) on \mathbb{R}^n is defined as follows: for vectors $\mathbf{u} = (u_1, \ldots, u_n)$ and $\mathbf{v} = (v_1, \ldots, v_n)$,

$$\langle \mathbf{u}, \mathbf{v} \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \ldots + w_n u_n v_n.$$

- Easy to check that all four axioms of inner product are satisfied.
- If all $w_i = 1$, this becomes the standard dot product.

Example: Consider \mathbb{R}^2 equipped with the weighted Euclidean inner product with weights $w_1 = 3$, $w_2 = 2$, i.e., define $\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 2u_2v_2$.

• The norm of $e_1 = (1,0)$ is $||e_1|| = \sqrt{\langle e_1, e_1 \rangle} = \sqrt{3 \cdot 1^2 + 2 \cdot 0^2} = \sqrt{3}$.

- Let $w_1, \ldots, w_n \in \mathbb{R}$ be arbitrary *positive* numbers, which we'll call *weights*.
- The weighted Euclidean inner product (with weights w_1, \ldots, w_n) on \mathbb{R}^n is defined as follows: for vectors $\mathbf{u} = (u_1, \ldots, u_n)$ and $\mathbf{v} = (v_1, \ldots, v_n)$,

$$\langle \mathbf{u}, \mathbf{v} \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \ldots + w_n u_n v_n.$$

- Easy to check that all four axioms of inner product are satisfied.
- If all $w_i = 1$, this becomes the standard dot product.

Example: Consider \mathbb{R}^2 equipped with the weighted Euclidean inner product with weights $w_1 = 3$, $w_2 = 2$, i.e., define $\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 2u_2v_2$.

- The norm of $e_1 = (1,0)$ is $||e_1|| = \sqrt{\langle e_1, e_1 \rangle} = \sqrt{3 \cdot 1^2 + 2 \cdot 0^2} = \sqrt{3}$.
- $\mathbf{u} = (1, -3)$ and $\mathbf{v} = (2, 1)$ are orthogonal: $\langle \mathbf{u}, \mathbf{v} \rangle = 3 \cdot 1 \cdot 2 + 2 \cdot (-3) \cdot 1 = 0$.

- Let $w_1, \ldots, w_n \in \mathbb{R}$ be arbitrary *positive* numbers, which we'll call *weights*.
- The weighted Euclidean inner product (with weights w_1, \ldots, w_n) on \mathbb{R}^n is defined as follows: for vectors $\mathbf{u} = (u_1, \ldots, u_n)$ and $\mathbf{v} = (v_1, \ldots, v_n)$,

$$\langle \mathbf{u}, \mathbf{v} \rangle = w_1 u_1 v_1 + w_2 u_2 v_2 + \ldots + w_n u_n v_n.$$

- Easy to check that all four axioms of inner product are satisfied.
- If all $w_i = 1$, this becomes the standard dot product.

Example: Consider \mathbb{R}^2 equipped with the weighted Euclidean inner product with weights $w_1 = 3$, $w_2 = 2$, i.e., define $\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 2u_2v_2$.

- The norm of $e_1 = (1,0)$ is $||e_1|| = \sqrt{\langle e_1, e_1 \rangle} = \sqrt{3 \cdot 1^2 + 2 \cdot 0^2} = \sqrt{3}$.
- $\mathbf{u} = (1, -3)$ and $\mathbf{v} = (2, 1)$ are orthogonal: $\langle \mathbf{u}, \mathbf{v} \rangle = 3 \cdot 1 \cdot 2 + 2 \cdot (-3) \cdot 1 = 0$.

Norms, distances and orthogonality depend on the choice of inner product!

Example: Weighted Euclidean Inner Product - Orthogonal Complement

• **Dot Product:** Take $\mathbf{u}=(2,-3,5,4)$ and $\mathbf{v}=(0,1,-4,7)$ in \mathbb{R}^4 and let $W=span(\mathbf{u},\mathbf{v})$. If our inner product on \mathbb{R}^4 is the dot product, W^\perp is the solution space of

$$2x_1 - 3x_2 + 5x_3 + 4x_4 = 0$$
 $(\langle \mathbf{u}, \mathbf{x} \rangle = 0)$
 $x_2 - 4x_3 + 7x_4 = 0$ $(\langle \mathbf{v}, \mathbf{x} \rangle = 0)$

Example: Weighted Euclidean Inner Product - Orthogonal Complement

• **Dot Product:** Take $\mathbf{u}=(2,-3,5,4)$ and $\mathbf{v}=(0,1,-4,7)$ in \mathbb{R}^4 and let $W=span(\mathbf{u},\mathbf{v})$. If our inner product on \mathbb{R}^4 is the dot product, W^\perp is the solution space of

$$2x_1 - 3x_2 + 5x_3 + 4x_4 = 0$$
 $(\langle \mathbf{u}, \mathbf{x} \rangle = 0)$
 $x_2 - 4x_3 + 7x_4 = 0$ $(\langle \mathbf{v}, \mathbf{x} \rangle = 0)$

• Weighted Euclidean Inner Product: If we change the inner product to the weighted Euclidean inner product with weights $w_1 = 2$, $w_2 = 1$, $w_3 = 3$, $w_4 = 1$. Then W^{\perp} is the solution space of

Example: Weighted Euclidean Inner Product - Orthogonal Complement

• Dot Product: Take $\mathbf{u}=(2,-3,5,4)$ and $\mathbf{v}=(0,1,-4,7)$ in \mathbb{R}^4 and let $W=span(\mathbf{u},\mathbf{v})$. If our inner product on \mathbb{R}^4 is the dot product, W^\perp is the solution space of

$$2x_1 - 3x_2 + 5x_3 + 4x_4 = 0$$
 $(\langle \mathbf{u}, \mathbf{x} \rangle = 0)$
 $x_2 - 4x_3 + 7x_4 = 0$ $(\langle \mathbf{v}, \mathbf{x} \rangle = 0)$

• Weighted Euclidean Inner Product: If we change the inner product to the weighted Euclidean inner product with weights $w_1 = 2$, $w_2 = 1$, $w_3 = 3$, $w_4 = 1$. Then W^{\perp} is the solution space of

$$4x_1 - 3x_2 + 15x_3 + 4x_4 = 0$$
 $(\langle \mathbf{u}, \mathbf{x} \rangle = 0)$
 $x_2 - 12x_3 + 7x_4 = 0$ $(\langle \mathbf{v}, \mathbf{x} \rangle = 0)$

- Outline
- - Definition
 - Norm
 - Orthogonality

Important Examples

- Weighted Euclidean Inner Product
- Matrix Inner Product on \mathbb{R}^n
- Standard Inner Product on \mathbb{P}_n
- Inner Product on the Space C[a, b]
- Complex Inner Product

February 10th, 2025

Let A be an <u>invertible</u> $n \times n$ matrix.

Considering vectors in \mathbb{R}^n as column vectors, define

$$\langle \mathbf{u}, \mathbf{v} \rangle = A\mathbf{u} \cdot A\mathbf{v}$$
, (or, equivalently, $\langle \mathbf{u}, \mathbf{v} \rangle = (A\mathbf{v})^T A\mathbf{u} = \mathbf{v}^T A^T A\mathbf{u}$)

where the right-hand side uses the standard dot product in \mathbb{R}^n .

Let A be an <u>invertible</u> $n \times n$ matrix.

Considering vectors in \mathbb{R}^n as column vectors, define

$$\langle \mathbf{u}, \mathbf{v} \rangle = A\mathbf{u} \cdot A\mathbf{v}, \text{ (or, equivalently, } \langle \mathbf{u}, \mathbf{v} \rangle = (A\mathbf{v})^T A\mathbf{u} = \mathbf{v}^T A^T A\mathbf{u})$$

where the right-hand side uses the standard dot product in \mathbb{R}^n .

This is an inner product (can check all axioms), called the inner product on \mathbb{R}^n generated by A.

Let A be an <u>invertible</u> $n \times n$ matrix.

Considering vectors in \mathbb{R}^n as column vectors, define

$$\langle \mathbf{u}, \mathbf{v} \rangle = A\mathbf{u} \cdot A\mathbf{v}$$
, (or, equivalently, $\langle \mathbf{u}, \mathbf{v} \rangle = (A\mathbf{v})^T A\mathbf{u} = \mathbf{v}^T A^T A\mathbf{u}$)

where the right-hand side uses the standard dot product in \mathbb{R}^n .

This is an inner product (can check all axioms), called the inner product on \mathbb{R}^n generated by A.

Examples:

• The dot product on \mathbb{R}^n is the inner product generated by the identity matrix.

Let A be an <u>invertible</u> $n \times n$ matrix.

Considering vectors in \mathbb{R}^n as column vectors, define

$$\langle \mathbf{u}, \mathbf{v} \rangle = A\mathbf{u} \cdot A\mathbf{v}$$
, (or, equivalently, $\langle \mathbf{u}, \mathbf{v} \rangle = (A\mathbf{v})^T A\mathbf{u} = \mathbf{v}^T A^T A\mathbf{u}$)

where the right-hand side uses the standard dot product in \mathbb{R}^n .

This is an inner product (can check all axioms), called the inner product on \mathbb{R}^n generated by A.

Examples:

- The dot product on \mathbb{R}^n is the inner product generated by the identity matrix.
- The weighted Euclidean inner product on \mathbb{R}^n with weights w_1, \ldots, w_n is the inner product generated by $A = diag(\sqrt{w_1}, \ldots, \sqrt{w_n})$.

Let A be an <u>invertible</u> $n \times n$ matrix.

Considering vectors in \mathbb{R}^n as column vectors, define

$$\langle \mathbf{u}, \mathbf{v} \rangle = A\mathbf{u} \cdot A\mathbf{v}$$
, (or, equivalently, $\langle \mathbf{u}, \mathbf{v} \rangle = (A\mathbf{v})^T A\mathbf{u} = \mathbf{v}^T A^T A\mathbf{u}$)

where the right-hand side uses the standard dot product in \mathbb{R}^n .

This is an inner product (can check all axioms), called the inner product on \mathbb{R}^n generated by A.

Examples:

- The dot product on \mathbb{R}^n is the inner product generated by the identity matrix.
- The weighted Euclidean inner product on \mathbb{R}^n with weights w_1, \ldots, w_n is the inner product generated by $A = diag(\sqrt{w_1}, \ldots, \sqrt{w_n})$. For the earlier example of a weighted inner product on \mathbb{R}^2 ,

$$\langle \mathbf{u}, \mathbf{v} \rangle = 3u_1v_1 + 2u_2v_2 = \begin{pmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} u_1 \\ u_2 \end{pmatrix} \cdot \begin{pmatrix} \sqrt{3} & 0 \\ 0 & \sqrt{2} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

- Outline
 - Recap & Plan for Today
- 2
 - Inner Product Spaces
 - Definition
 - Norm
 - Orthogonality
- 3 Important Examples
 - Weighted Euclidean Inner Product
 - Matrix Inner Product on \mathbb{R}^n
 - Standard Inner Product on \mathbb{P}_n
 - Evaluation Inner Product on \mathbb{P}_n
 - Inner Product on the Space C[a, b]
 - Complex Inner Product
- 4 Standard (In)Equalitie
- Wrapping Things Up

Example: Standard Inner Product on \mathbb{P}_n

Recall: \mathbb{P}_n is the space of all polynomials of degree at most n.

For vectors
$$\mathbf{p} = a_0 + a_1 x + \ldots + a_n x^n$$
 and $\mathbf{q} = b_0 + b_1 x + \ldots + b_n x^n$ in \mathbb{P}_n , define

$$\langle \mathbf{p}, \mathbf{q} \rangle = a_0 b_0 + a_1 b_1 + \ldots + a_n b_n.$$

This is an inner product, called the standard inner product on \mathbb{P}_n .

Example: Standard Inner Product on \mathbb{P}_n

Recall: \mathbb{P}_n is the space of all polynomials of degree at most n.

For vectors $\mathbf{p} = a_0 + a_1 x + \ldots + a_n x^n$ and $\mathbf{q} = b_0 + b_1 x + \ldots + b_n x^n$ in \mathbb{P}_n , define

$$\langle \mathbf{p}, \mathbf{q} \rangle = a_0 b_0 + a_1 b_1 + \ldots + a_n b_n.$$

This is an inner product, called the standard inner product on \mathbb{P}_n .

- It is easy to see that each vector $\mathbf{p} = a_0 + a_1 x + \ldots + a_n x^n \in \mathbb{P}_n$ can be identified with the corresponding vector $(a_0, a_1, \ldots, a_n) \in \mathbb{R}^{n+1}$.
- Then the standard inner product on \mathbb{P}_n = the dot product on \mathbb{R}^{n+1} .

- Outline
 - Recap & Plan for Today
- 2
 - Inner Product Spaces
 - Definition
 - Norm
 - Orthogonality
- 3

Important Examples

- Weighted Euclidean Inner Product
- Matrix Inner Product on \mathbb{R}^n
- Standard Inner Product on \mathbb{P}_n
- Evaluation Inner Product on \mathbb{P}_n
- Inner Product on the Space C[a, b]
- Complex Inner Product
- 4 St
- 4) Standard (In)Equalities
- 5 Wrapping Things Up

February 10th, 2025

Fix <u>distinct</u> points $x_0, x_1, \dots, x_n \in \mathbb{R}$ (called *sample points*).

For vectors $\mathbf{p} = p(x)$ and $\mathbf{q} = q(x)$ in \mathbb{P}_n , define

$$\langle \mathbf{p}, \mathbf{q} \rangle = p(x_0)q(x_0) + p(x_1)q(x_1) + \ldots + p(x_n)q(x_n).$$

Fix <u>distinct</u> points $x_0, x_1, \dots, x_n \in \mathbb{R}$ (called *sample points*).

For vectors $\mathbf{p} = p(x)$ and $\mathbf{q} = q(x)$ in \mathbb{P}_n , define

$$\langle \mathbf{p}, \mathbf{q} \rangle = \rho(x_0)q(x_0) + \rho(x_1)q(x_1) + \ldots + \rho(x_n)q(x_n).$$

- It is easy to see that one can identify each vector $\mathbf{p} = p(x) \in \mathbb{P}_n$ with the corresponding vector $(p(x_0), p(x_1), \dots, p(x_n)) \in \mathbb{R}^{n+1}$.
- Then the evaluation inner product on \mathbb{P}_n = the dot product in \mathbb{R}^{n+1} .

Fix <u>distinct</u> points $x_0, x_1, \dots, x_n \in \mathbb{R}$ (called *sample points*).

For vectors $\mathbf{p} = p(x)$ and $\mathbf{q} = q(x)$ in \mathbb{P}_n , define

$$\langle \mathbf{p}, \mathbf{q} \rangle = \rho(x_0)q(x_0) + \rho(x_1)q(x_1) + \ldots + \rho(x_n)q(x_n).$$

- It is easy to see that one can identify each vector $\mathbf{p} = p(x) \in \mathbb{P}_n$ with the corresponding vector $(p(x_0), p(x_1), \dots, p(x_n)) \in \mathbb{R}^{n+1}$.
- Then the evaluation inner product on \mathbb{P}_n = the dot product in \mathbb{R}^{n+1} .
- One subtlety: need to check that $\langle \mathbf{p}, \mathbf{p} \rangle = 0$ iff $\mathbf{p} = 0$.

Fix <u>distinct</u> points $x_0, x_1, \dots, x_n \in \mathbb{R}$ (called *sample points*).

For vectors $\mathbf{p} = p(x)$ and $\mathbf{q} = q(x)$ in \mathbb{P}_n , define

$$\langle \mathbf{p}, \mathbf{q} \rangle = \rho(x_0)q(x_0) + \rho(x_1)q(x_1) + \ldots + \rho(x_n)q(x_n).$$

- It is easy to see that one can identify each vector $\mathbf{p} = p(x) \in \mathbb{P}_n$ with the corresponding vector $(p(x_0), p(x_1), \dots, p(x_n)) \in \mathbb{R}^{n+1}$.
- Then the evaluation inner product on \mathbb{P}_n = the dot product in \mathbb{R}^{n+1} .
- One subtlety: need to check that $\langle \mathbf{p}, \mathbf{p} \rangle = 0$ iff $\mathbf{p} = 0$. This holds because $\langle \mathbf{p}, \mathbf{p} \rangle = [p(x_0)]^2 + [p(x_1)]^2 + \ldots + [p(x_n)]^2 = 0$

$$\implies p(x_0) = p(x_1) = \ldots = p(x_n) = 0 \implies \mathbf{p} = 0$$

Fix <u>distinct</u> points $x_0, x_1, \dots, x_n \in \mathbb{R}$ (called *sample points*).

For vectors $\mathbf{p} = p(x)$ and $\mathbf{q} = q(x)$ in \mathbb{P}_n , define

$$\langle \mathbf{p}, \mathbf{q} \rangle = \rho(x_0)q(x_0) + \rho(x_1)q(x_1) + \ldots + \rho(x_n)q(x_n).$$

This inner product on \mathbb{P}_n is called the evaluation inner product at x_0, x_1, \ldots, x_n .

- It is easy to see that one can identify each vector $\mathbf{p} = p(x) \in \mathbb{P}_n$ with the corresponding vector $(p(x_0), p(x_1), \dots, p(x_n)) \in \mathbb{R}^{n+1}$.
- Then the evaluation inner product on \mathbb{P}_n = the dot product in \mathbb{R}^{n+1} .
- One subtlety: need to check that $\langle \mathbf{p}, \mathbf{p} \rangle = 0$ iff $\mathbf{p} = 0$. This holds because

$$\langle \mathbf{p}, \mathbf{p} \rangle = [p(x_0)]^2 + [p(x_1)]^2 + \dots + [p(x_n)]^2 = 0$$

$$\implies p(x_0) = p(x_1) = \dots = p(x_n) = 0 \implies \mathbf{p} = 0$$

The last implication follows from the fundamental theorem of algebra:

a non-0 polynomial of degree < n can have at most n distinct roots.

Consider \mathbb{P}_2 with evaluation inner product at $x_0 = -2, x_1 = 0, x_2 = 2$, i.e.

$$\langle \mathbf{p}, \mathbf{q} \rangle = p(x_0)q(x_0) + p(x_1)q(x_1) + p(x_2)q(x_2) = p(-2)q(-2) + p(0)q(0) + p(2)q(2)$$

Consider \mathbb{P}_2 with evaluation inner product at $x_0 = -2, x_1 = 0, x_2 = 2$, i.e.

$$\langle \mathbf{p}, \mathbf{q} \rangle = p(x_0)q(x_0) + p(x_1)q(x_1) + p(x_2)q(x_2) = p(-2)q(-2) + p(0)q(0) + p(2)q(2)$$

Consider two vectors $\mathbf{p} = x^2$ and $\mathbf{q} = x + 1$. Then

$$||\mathbf{p}|| = \sqrt{\langle \mathbf{p}, \mathbf{p} \rangle} = \sqrt{[p(x_0)]^2 + [p(x_1)]^2 + [p(x_2)]^2} = \sqrt{[p(-2)]^2 + [p(0)]^2 + [p(2)]^2} = \sqrt{4^2 + 0^2 + 4^2} = 4\sqrt{2}.$$

Consider \mathbb{P}_2 with evaluation inner product at $x_0 = -2, x_1 = 0, x_2 = 2$, i.e.

$$\langle \mathbf{p}, \mathbf{q} \rangle = p(x_0)q(x_0) + p(x_1)q(x_1) + p(x_2)q(x_2) = p(-2)q(-2) + p(0)q(0) + p(2)q(2)$$

Consider two vectors $\mathbf{p} = x^2$ and $\mathbf{q} = x + 1$. Then

$$||\mathbf{p}|| = \sqrt{\langle \mathbf{p}, \mathbf{p} \rangle} = \sqrt{[p(x_0)]^2 + [p(x_1)]^2 + [p(x_2)]^2} = \sqrt{[p(-2)]^2 + [p(0)]^2 + [p(2)]^2} = \sqrt{4^2 + 0^2 + 4^2} = 4\sqrt{2}.$$

$$\langle \mathbf{p}, \mathbf{q} \rangle = p(-2)q(-2) + p(0)q(0) + p(2)q(2) = (4)(-1) + (0)(1) + (4)(3) = 8$$

Consider \mathbb{P}_2 with evaluation inner product at $x_0 = -2, x_1 = 0, x_2 = 2$, i.e.

$$\langle \mathbf{p}, \mathbf{q} \rangle = p(x_0)q(x_0) + p(x_1)q(x_1) + p(x_2)q(x_2) = p(-2)q(-2) + p(0)q(0) + p(2)q(2)$$

Consider two vectors $\mathbf{p} = x^2$ and $\mathbf{q} = x + 1$. Then

$$||\mathbf{p}|| = \sqrt{\langle \mathbf{p}, \mathbf{p} \rangle} = \sqrt{[p(x_0)]^2 + [p(x_1)]^2 + [p(x_2)]^2} = \sqrt{[p(-2)]^2 + [p(0)]^2 + [p(2)]^2} = \sqrt{4^2 + 0^2 + 4^2} = 4\sqrt{2}.$$

$$\langle \mathbf{p}, \mathbf{q} \rangle = p(-2)q(-2) + p(0)q(0) + p(2)q(2) = (4)(-1) + (0)(1) + (4)(3) = 8$$

If we normalise \mathbf{p} , we get vector $\mathbf{p}' = \frac{1}{||\mathbf{p}||} \mathbf{p} = \frac{1}{4\sqrt{2}} x^2 \in \mathbb{P}_2$.

- Outline
 - Recap & Plan for Today
- 2 lr
 - Inner Product Spaces
 - Definition
 - Norm
 - Orthogonality
- 3 Important Examples
 - Weighted Euclidean Inner Product
 - Matrix Inner Product on \mathbb{R}^n
 - Standard Inner Product on \mathbb{P}_n
 - Evaluation Inner Product on \mathbb{P}_n
 - Inner Product on the Space C[a, b]
 - Complex Inner Product
- 4 Standard (In)Equalities
- Wrapping Things Up

February 10th, 2025

- **Recall:** C[a, b] consists of all functions that are continuous on interval [a, b].
- The operations in C[a, b] are defined point-wise: if $\mathbf{f} = f(x)$ and $\mathbf{g} = g(x)$ then $(\mathbf{f} + \mathbf{g})(x) = f(x) + g(x)$ and $(k\mathbf{f})(x) = kf(x)$.

- **Recall:** C[a, b] consists of all functions that are continuous on interval [a, b].
- The operations in C[a, b] are defined point-wise: if $\mathbf{f} = f(x)$ and $\mathbf{g} = g(x)$ then $(\mathbf{f} + \mathbf{g})(x) = f(x) + g(x)$ and $(k\mathbf{f})(x) = kf(x)$.
- **Recall:** any function continuous on [a, b] is integrable on [a, b].
- For $\mathbf{f} = f(x)$ and $\mathbf{g} = g(x)$ in C[a, b], define

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_a^b f(x)g(x) dx.$$

• This formula defines an inner product on C[a, b], let's check the 4 axioms.

- **Recall:** C[a, b] consists of all functions that are continuous on interval [a, b].
- The operations in C[a, b] are defined point-wise: if $\mathbf{f} = f(x)$ and $\mathbf{g} = g(x)$ then $(\mathbf{f} + \mathbf{g})(x) = f(x) + g(x)$ and $(k\mathbf{f})(x) = kf(x)$.
- **Recall:** any function continuous on [a, b] is integrable on [a, b].
- For $\mathbf{f} = f(x)$ and $\mathbf{g} = g(x)$ in C[a, b], define

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_a^b f(x)g(x) dx.$$

• This formula defines an inner product on C[a,b], let's check the 4 axioms. The first three are straightforward, let's check the last one (positivity): Clearly, $\langle \mathbf{f}, \mathbf{f} \rangle = \int_a^b f^2(x) \, dx \geq 0$. Moreover, the integral is 0 only if f = 0 (because f is continuous on [a,b]).

- **Recall:** C[a, b] consists of all functions that are continuous on interval [a, b].
- The operations in C[a, b] are defined point-wise: if $\mathbf{f} = f(x)$ and $\mathbf{g} = g(x)$ then $(\mathbf{f} + \mathbf{g})(x) = f(x) + g(x)$ and $(k\mathbf{f})(x) = kf(x)$.
- **Recall:** any function continuous on [a, b] is integrable on [a, b].
- For $\mathbf{f} = f(x)$ and $\mathbf{g} = g(x)$ in C[a, b], define

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_a^b f(x)g(x) dx.$$

- This formula defines an inner product on C[a,b], let's check the 4 axioms. The first three are straightforward, let's check the last one (positivity): Clearly, $\langle \mathbf{f}, \mathbf{f} \rangle = \int_a^b f^2(x) \, dx \geq 0$. Moreover, the integral is 0 only if f = 0 (because f is continuous on [a,b]).
- Each polynomial is a continuous function: so \mathbb{P}_n is a subspace of C[a, b], and this inner product works on \mathbb{P}_n too.

Consider \mathbb{P}_2 or C[-1,1] with inner product

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_{-1}^{1} f(x) g(x) dx.$$

Consider \mathbb{P}_2 or C[-1,1] with inner product

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_{-1}^{1} f(x) g(x) dx.$$

Consider two vectors $\mathbf{p} = x$ and $\mathbf{q} = x^2$. Then

$$||\mathbf{p}|| = \sqrt{\langle \mathbf{p}, \mathbf{p} \rangle} = \sqrt{\int_{-1}^{1} xx \, dx} = \sqrt{\int_{-1}^{1} x^2 \, dx} = \sqrt{\frac{2}{3}}$$

Consider \mathbb{P}_2 or C[-1,1] with inner product

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_{-1}^{1} f(x) g(x) dx.$$

Consider two vectors $\mathbf{p} = x$ and $\mathbf{q} = x^2$. Then

$$||\mathbf{p}|| = \sqrt{\langle \mathbf{p}, \mathbf{p} \rangle} = \sqrt{\int_{-1}^{1} xx \, dx} = \sqrt{\int_{-1}^{1} x^2 \, dx} = \sqrt{\frac{2}{3}}$$

$$||\mathbf{q}|| = \sqrt{\langle \mathbf{q}, \mathbf{q} \rangle} = \sqrt{\int_{-1}^{1} x^2 x^2 dx} = \sqrt{\int_{-1}^{1} x^4 dx} = \sqrt{\frac{2}{5}}$$

Consider \mathbb{P}_2 or C[-1,1] with inner product

$$\langle \mathbf{f}, \mathbf{g} \rangle = \int_{-1}^{1} f(x) g(x) dx.$$

Consider two vectors $\mathbf{p} = x$ and $\mathbf{q} = x^2$. Then

$$||\mathbf{p}|| = \sqrt{\langle \mathbf{p}, \mathbf{p} \rangle} = \sqrt{\int_{-1}^{1} xx \, dx} = \sqrt{\int_{-1}^{1} x^2 \, dx} = \sqrt{\frac{2}{3}}$$

$$||\mathbf{q}|| = \sqrt{\langle \mathbf{q}, \mathbf{q} \rangle} = \sqrt{\int_{-1}^{1} x^2 x^2 \, dx} = \sqrt{\int_{-1}^{1} x^4 \, dx} = \sqrt{\frac{2}{5}}$$

$$\langle \mathbf{p}, \mathbf{q} \rangle = \int_{-1}^{1} xx^2 \, dx = \int_{-1}^{1} x^3 \, dx = 0$$

In particular, $\mathbf{p} = x$ and $\mathbf{q} = x^2$ are orthogonal w.r.t. this inner product.

- Outline
 - Recap & Plan for Today
- 2
 - Inner Product Spaces
 - Definition
 - Norm
 - Orthogonality
- 3 Ir

Important Examples

- Weighted Euclidean Inner Product
- Matrix Inner Product on \mathbb{R}^n
- Standard Inner Product on \mathbb{P}_n
- Evaluation Inner Product on \mathbb{P}_n
- Inner Product on the Space C[a, b]
- Complex Inner Product
- 4 Standard (In)Equalities
- Wrapping Things Up

February 10th, 2025

Hermitian conjugation

For a complex vector \mathbf{v} , the Hermitian conjugation of \mathbf{v} , denoted \mathbf{v}^{\dagger} is the conjugate transpose of the vector, i.e. $\mathbf{v}^{\dagger} = \overline{(\mathbf{v}^{\top})}$.

A complex square matrix A is a Hermitian matrix if it is equal to its own conjugate transpose. i.e.

$$A=A^\dagger=\overline{A^ op}$$

or

$$a_{i,j} = \overline{a_{j,i}}$$

The matrix $A = \begin{pmatrix} 1 & 2-i \\ 2+i & 3 \end{pmatrix}$ is a Hermitian matrix.

Inner Product on \mathbb{C}^n

Considering vectors in \mathbb{C}^n as column vectors, the Hermitian Inner product is defined as:

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^{\dagger} \mathbf{v}$$
.

Examples:

- If the vectors u and v are real, then this is the dot product.
- For $\mathbf{u} = (1+i, 5, 3+2i), \mathbf{v} = (2, 7, 3+4i)$

$$\langle \mathbf{u}, \mathbf{v} \rangle = \mathbf{u}^{\dagger} \mathbf{v} = 2(1-i) + 5(7) + (3-2i)(3+4i) = 54+4i$$

- Outline
 - Recap & Plan for Today
- 2
 - Inner Product Spaces
 - Definition
 - Norm
 - Orthogonality
- 3 Important Examp
 - Weighted Euclidean Inner Product
 - Matrix Inner Product on \mathbb{R}^n
 - Standard Inner Product on \mathbb{P}_n
 - Evaluation Inner Product on \mathbb{P}_n
 - Inner Product on the Space C[a, b]
 - Complex Inner Product
- 4 Standard (In)Equalities
- Wrapping Things Up

Standard (In)Equalities

The standard (in)equalities for the dot product work for general inner products (and the proofs are the same):

Theorem (Pythogoras' theorem)

If \mathbf{u} and \mathbf{v} are orthogonal vectors in an inner product space then $||\mathbf{u} + \mathbf{v}||^2 = ||\mathbf{u}||^2 + ||\mathbf{v}||^2$.

Theorem (Cauchy-Schwarz inequality)

If **u** and **v** are vectors in an inner product space then $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| \, ||\mathbf{v}||$.

Corollary (Triangle inequality)

If \mathbf{u} and \mathbf{v} are vectors in an inner product space then $||\mathbf{u} + \mathbf{v}|| \le ||\mathbf{u}|| + ||\mathbf{v}||$.

Standard (In)Equalities

Theorem (Cauchy-Schwarz inequality)

If **u** and **v** are vectors in an inner product space then $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| ||\mathbf{v}||$.

Standard (In)Equalities

Theorem (Cauchy-Schwarz inequality)

If **u** and **v** are vectors in an inner product space then $|\langle \mathbf{u}, \mathbf{v} \rangle| \leq ||\mathbf{u}|| ||\mathbf{v}||$.

Example: Cauchy-Schwarz inequality in C[a, b]:

$$|\int_a^b f(x)g(x)\,dx| \leq \sqrt{\int_a^b f^2(x)\,dx}\,\sqrt{\int_a^b g^2(x)\,dx}.$$

Outline

Recap & Plan for Today

Inner Product Spaces

- Definition
- Norm
- Orthogonality

Important Examples

- Weighted Euclidean Inner Product
- Matrix Inner Product on \mathbb{R}^n
- Standard Inner Product on \mathbb{P}_n
- Evaluation Inner Product on Pr
- Inner Product on the Space C[a, b]
- Complex Inner Product

Standard (In)Equalities

Wrapping Things Up

Example Exam question

Consider the weighted Euclidean inner product with weights (a, b, a + b). Let $v_1 = (1, 2, 3)$ and $v_2 = (3, 4, -2)$. Find values for a and b such that v_1 and v_2 are orthogonal, and $||v_1|| = \sqrt{59}$.

Wrapping Things Up

Today:

- Inner product spaces
- Norm and orthogonality in these spaces
- Important examples

Next time:

- The Gram-Schmidt orthogonalisation process
- QR decomposition of matrices

The End