Topic 3: Basic Set Theory

Read: Chpt.2.1, Rosen

Def: A *set* is an unordered collection of objects (*elements*).

Set Representations:

- (1) Use English description.
- (2) List all the elements of the set inside $\{...\}$.
- (3) Use propositional function and set descriptor $S = \{x \mid P(x)\}$, where S contains all elements x satisfying the given predicate P(x).

Example: Different representations of set.

S is the set of positive integers less than 5.

$$S = \{1, 2, 3, 4\}.$$

 $S = \{x \mid x \text{ is an integer, } 0 < x < 5\}.$

 $S = \{x \mid x \text{ is an integer, } 1 \le x \le 4\}.$

Def: If x is an element in a set S, then

- (i) x is a member (element) of S,
- (ii) x belongs to S, and
- (iii) S contains x.

Notations:

 $x \in S$ indicates that x is a member in S,

 $y \notin S$ indicate that y is NOT an element in S.

Two Special Sets:

- 1. *Empty/Null set*: A set contains no element, denoted by \emptyset , or $\{\}$.
- 2. *Universal set*: A set contains all elements during computation, denoted by U.

Def: The *cardinality (order)* of a set S, |S|, is the number of elements in the set.

Def: A set is *finite* if it contains a finite number of elements. Otherwise, it is an infinite set. Hence, for a finite set S, $|S| < \infty$.

Set Comparisons:

1. Equality of Sets:

Def: Two sets A and B are equal iff they contain the same elements, denoted by A = B.

Remark: Observe that the following statements are equivalent:

- (i) A = B.
- (ii) $(\forall x \in A, x \in B) \land (\forall y \in B, y \in A)$.
- (iii) $(x \in A \rightarrow x \in B) \land (y \in B \rightarrow y \in A)$.

Example:

$$A = \{1, 2, 3, 4\},\$$

 $B = \{1, 2, 3, 4\},\$
 $C = \{4, 3, 1, 2\}.$

By the definition of equality of sets, A = B = C.

Remark: Observe that the order in listing the elements in a set is not important when considering the equality of sets.

Q: How about the set $D = \{1, 2, 3, 4, 1, 2, 3, 2, 2\}$?

A: Based on our definition on the equality of sets, A = B = C = D.

Q: How many elements are there in A and D? |A| = 4, |D| = 9 (or 4?).

Q: How can two equal sets having different cardinalities?

Remark: No duplicate elements should be listed in a "simple" set.

2. Simple vs. Multi Sets:

Simple set: Duplicate elements are excluded in the set. If D is a simple set, then A = D.

Multi set: Duplicate elements are allowed in the set. If A and D are multi sets, then $A \neq D$.

Q: How do we distinguish a simple set from a multi set?

A: We need to use a different representation for multi sets.

Let S be a multi set with n elements, among them we have m distinct types of elements $x_1, x_2, ..., x_m$ such that there are

k₁ copies of x₁,
k₂ copies of x₂,
...,
and k_m copies of x_m.

Representation of Multi Sets:

$$S = \{ k_1 \cdot x_1, k_2 \cdot x_2, ..., k_m \cdot x_m \}, \text{ where } n = k_1 + k_2 + ... + k_m.$$

Hence, for previous example, $D = \{2.1, 4.2, 2.3, 1.4\}$.

Some Important Sets and Their Notations:

R— the set of all real numbers,

Z— the set of all integers,

N— the set of all positive integers,

(Alternate Def: The set of all non-negative integers)

Q— the set of all rational numbers

 \mathbf{R}^+ , \mathbf{Z}^+ , \mathbf{Q}^+ —the set of all positive elements in the set

3. Set Inclusion:

Def: Given two sets A and B, A is a *subset of* B, A \subseteq B, if an only if every element of A is also an element of B. If A is a subset of B and A \neq B, then A \subseteq B.

Observation:

Since
$$A \subseteq B \equiv \forall x \in A, x \in B$$
, we have $A = B \equiv (A \subseteq B) \land (B \subseteq A)$.

Example: Given
$$A = \{1, 2, 3, 4\}$$
. Observe that $\{1\} \subseteq A, \{1\} \subset A, 1 \not\subset A, \{1\} \not\in A, 1 \in A, \{1\} \not\in A, 1 \in A, \{2, 1, 4, 3\} \subseteq A, \{1, 2, 3, 4\} \not\subset A, A \subseteq A \text{ and } \emptyset \subseteq A, \emptyset \subset \emptyset \text{ but } \emptyset \not\in \emptyset.$

Def: A set A is a *proper subset* of set B iff $A \subseteq B$, $A \neq B$ and $A \neq \emptyset$.

A Simple Counting Problem:

How many distinct subsets are there in a set A with n elements?

Example: Given $A = \{1, 2, 3, 4\}$.

There are 16 subsets of A:

Remark: In general, if A is a finite set having n elements, then there are 2ⁿ subsets of A.

Def: The collection of all subsets of a set A is called the *Power Set* of A, P(A).

Example: The power set of $A = \{1, 2, 3, 4\}$ is given by P(A)

$$= \{\emptyset, \{1\}, \{2\}, \{3\}, \{4\}, \{1, 2\}, \{1, 3\}, \{1, 4\}, \{2, 3\}, \{2, 4\}, \{3, 4\}, \{1, 2, 3\}, \{1, 2, 4\}, \{1, 3, 4\}, \{2, 3, 4\}, \{1, 2, 3, 4\}\}.$$

Two Very Important Computational Problems:

- Given a set A, how do we generate all the subsets of A?
- Given an integer k, $1 \le k \le |A|$, how do we generate all those subsets of A with order k?

4. Ordered Sets:

Recall that sets are usually unordered. If linear ordering needs to be defined on the set of objects in A, how do we represent such an ordered set A?

Def: An (*ordered*) *n-tuple*, denoted by $(x_1, x_2, ..., x_n)$, is an ordered set $S = \{x_1, x_2, ..., x_n\}$ with n elements such that x_1 is the first element in S, x_2 is the second element in S, ..., and x_n is the nth element in S.

Equality of Ordered Sets:

Def: Given two ordered n-tuples $A = (a_1, a_2, ..., a_n)$ and $B = (b_1, b_2, ..., b_n)$. A = B iff $a_1 = b_1, a_2 = b_2, ..., a_n = b_n$.

Example:
$$(1, 2, 3, 4) = (1, 2, 3, 4),$$

 $(1, 2, 3, 4) \neq (1, 2, 4, 3),$
 $(1, 2, 3, 4) \neq (1, 2, 3).$

Generalization:

Given an n-tuple $S = (x_1, x_2, ..., x_n)$, each i^{th} element x_i may come from any set S_i , $1 \le i \le n$.

An Important Special Case:

When n = 2, an ordered 2-tuple (x_1, x_2) is called an *ordered pair*.

Def: Given two (simple) sets A and B.

The *Cartesian Product* of A and B is the set of all ordered pairs (x,y) such that $x \in A$ and $y \in B$.

Hence,

$$A \times B = \{(x, y) \mid (x \in A) \land (y \in B)\}.$$

Example: Given
$$A = \{1, 2\}, B = \{a, b, c\}.$$

 $A \times B = \{(1, a), (1, b), (1, c), (2, a), (2, b), (2, c)\}$
 $B \times A = \{(a, 1), (a, 2), (b, 1), (b, 2), (c, 1), (c, 2)\}.$

Warning: In general, $A \times B \neq B \times A$, unless A = B.

Extension:

Given $A_1, A_2, ..., A_n$. The Cartesian product of $A_1, A_2, ..., A_n$ is the set of ordered n-tuples

$$A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_i \in A_i, i = 1, 2, ..., n\}.$$

Example: Given
$$A = \{1, 2\}, B = \{a, b, c\}, C = \{x, y\}.$$

 $A \times B \times C = \{(1, a, x), (1, a, y),$
 $(1, b, x), (1, b, y),$
 $(1, c, x), (1, c, y),$
 $(2, a, x), (2, a, y),$
 $(2, b, x), (2, b, y),$
 $(2, c, x), (2, x, y)\}.$

Q: How many elements are there in $A_1 \times A_2 \times ... \times A_n$? A: $|A_1| * |A_2| * ... * |A_n|$.

Practice HW: Chpt.2.1: 7, 9, 11, 17, 19, 21, 23, 25, 27, 31.

Operations on Sets:

Read: Chpt.2.2, Rosen

Simple Set Operations:

Given (simple) sets A, B, C,

Def: The *union* of A and B:

$$A \cup B = \{x \mid (x \in A) \lor (x \in B)\}.$$

Def: The *intersection* of A and B:

$$A \cap B = \{x \mid (x \in A) \land (x \in B)\}.$$

Def: Two sets A and B are *disjoint* iff $A \cap B = \emptyset$.

Q: Given two finite sets A and B. How are |A|, |B|, $|A \cup B|$, $|A \cap B|$ related?

$$|A| + |B| = |A \cup B| + |A \cap B|$$
, or $|A \cup B| = |A| + |B| - |A \cap B|$.

This is the simplest form of the *Principle of Inclusion–Exclusion*.

Graphical Representation of Sets:

Venn diagram: When representing more than one set, all the sets must "intersect" each other in the Venn diagram.

Examples: Venn diagrams representing 2 and 3 sets.

U: universal set containing all objects

HW: Review Venn diagrams in Rosen.

Warning: Venn diagram is merely a graphical tool used in illustration only. You cannot prove any set identity using Venn diagram!!!

Def. The *difference* of A and B:

$$A - B = \{x \mid (x \in A) \land (x \notin B)\}.$$

Observe that, in general, $A - B \neq B - A$.

Def. If the universal set U is specified, we can define the *complement* of A to be

$$\overline{A} = U - A = \{x \mid (x \in U) \land (x \notin A)\}.$$

Def. The *symmetric difference* of A and B is a set of elements x with $x \in A$ or $x \in B$, but NOT both.

$$A \oplus B = \{x \mid (x \in A \land x \notin B) \lor (x \in B \land x \notin A)\},\$$

= $(A - B) \cup (B - A)$

Example: Given $U = \{b, 2, 1, c, a, 6, 7, 8\}$, $A = \{a, 2, 8\}$, $B = \{1, 2, 8, b\}$, $D = \{a, b, c\}$.

$$A - B = \{a\},\ B - A = \{1, b\},\ A \oplus B = \{a, 1, b\},\ \overline{D} = \{1, 2, 6, 7, 8\},\ A \cup B = \{1, 2, 8, a, b\}, |A \cup B| = 5,\ A \cap B = \{2, 8\}, |A \cap B| = 2,\ |A \cup B| = |A| + |B| - |A \cap B| = 3 + 4 - 2 = 5.$$

Q: How do we prove the equality of two set expressions?

Proving Set Identities:

Some Possible Approaches:

- 1. Use set definitions and direct proof technique.
- 2. Use properties of sets and Laws of Logical Equivalence for propositions.
- 3. Use membership (truth) tables.
- 4. Use set identities.

Examples:

1. Prove that $A \cap (A \cup B) = A$ using set definitions and direct proof technique.

Proof: We need to prove that (i) $A \cap (A \cup B) \subseteq A$, and (ii) $A \subseteq A \cap (A \cup B)$.

- (i) Let $x \in A \cap (A \cup B)$. By definition of sets intersection, $x \in A$ and $x \in A \cup B$. Hence, $x \in A$ implying that $A \cap (A \cup B) \subseteq A$.
- (ii) Let $x \in A$. Hence, $x \in A$ and $x \in (A \cup B)$. By definition of sets intersection, $x \in A \cap (A \cup B)$, implying that $A \subseteq A \cap (A \cup B)$.

Since $A \cap (A \cup B) \subseteq A$ and $A \subseteq A \cap (A \cup B)$, $A \cap (A \cup B) = A$.

2. Prove that $A \cap (A \cup B) = A$ using Laws of Equivalence for propositions.

Proof:

$$A \cap (A \cup B)$$

$$= \{x \mid x \in A \cap (A \cup B)\} \qquad \text{Def of } A \cap (A \cup B)$$

$$= \{x \mid (x \in A) \land (x \in (A \cup B))\} \qquad \text{Def of } \cap$$

$$= \{x \mid (x \in A) \land ((x \in A) \lor (x \in B))\} \qquad \text{Def of } \cup$$

$$= \{x \mid x \in A\} \qquad \text{Absorption Law}$$

$$= A$$

3.
$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$$
.

Proof:

$$\overline{(A \cup B)}$$

$$= \{x \mid \neg(x \in A \lor x \in B)\}$$
 Def of $(A \cup B)$

$$= \{x \mid \neg(x \in A) \land \neg(x \in B)\}$$
 De Morgan(log. eq.)

$$= \{x \mid x \notin A \land x \notin B\}$$
 Def of negation

$$= \{x \mid x \in \overline{A} \land x \in \overline{B}\}$$
 Def of set complement

$$= \overline{A} \cap \overline{B}.$$
 Def of set intersection

4.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
.
 $A \cap (B \cup C)$

$$= \{x \mid (x \in A) \land x \in (B \cup C)\} \quad \text{Def of } A \cap (B \cup C)$$

$$= \{x \mid (x \in A) \land ((x \in B) \lor (x \in C))\} \quad \text{Def of } B \cup C$$

$$= \{x \mid ((x \in A) \land (x \in B)) \lor ((x \in A) \land (x \in C))\} \quad \text{Distrib. Law (log. eq.)}$$

$$= \{x \mid (x \in A \cap B) \lor (x \in A \cap C)\}$$
Def of set intersection
$$= (A \cap B) \cup (A \cap C) \quad \text{Def of set union}$$

Observe that above proofs are based on the information of whether an arbitrarily given element belongs to a set. Hence, we can prove these identities using a membership table, which is similar to a truth table but with the following modifications.

Truth Table	Membership Table
Proposition	Set
T	1
F	0

5.
$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$$
.

A	В	\overline{A}	\overline{B}	$A \cup B$	$\overline{(A \cup B)}$	$\overline{A} \cap \overline{B}$
1	1	0	0	1	0	0
1	0	0	1	1	0	0
0	1	1	0	1	0	0
0	0	1	1	0	1	1

6.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$

A	В	C	$\mathbf{B} \cup \mathbf{C}$	A∩B	$A \cap C$	$A \cap (B \cup C)$	$(A \cap B) \cup (A \cap C)$
1	1	1	1	1	1	1	1
1	1	0	1	1	0	1	1
1	0	1	1	0	1	1	1
1	0	0	0	0	0	0	0
0	1	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	0	1	1	0	0	0	0
0	0	0	0	0	0	0	0

Some Useful Set Identities:

1.
$$A \cup \emptyset = A$$

 $A \cap U = A$

Identity Laws

2.
$$A \cup U = U$$

 $A \cap \emptyset = \emptyset$

Domination Laws

3.
$$A \cup A = A$$

 $A \cap A = A$

Idempotent Laws

4.
$$(\overline{\overline{A}}) = A$$
.

Involution Law

5.
$$A \cup \overline{A} = U$$

 $A \cap \overline{A} = \emptyset$

Complement Laws

6.
$$A \cup (B \cup C) = (A \cup B) \cup C$$
 Associative Laws $A \cap (B \cap C) = (A \cap B) \cap C$

7.
$$A \cup B = B \cup A$$

 $A \cap B = B \cap A$

Commutative Laws

8.
$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
 Distributive Laws $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

9.
$$A \cup (A \cap B) = A$$

 $A \cap (A \cup B) = A$

Absorption Laws

10.
$$\overline{(A \cup B)} = \overline{A} \cap \overline{B}$$
$$\overline{(A \cap B)} = \overline{A} \cup \overline{B}$$

De Morgan's Law

Remark: The Associative, Commutative, and De Morgan's Laws can be generalized and extended to multiple sets.

Generalized De Morgan's Law

$$\overline{(A \cap B \cap C \cap ...)} = \overline{A} \cup \overline{B} \cup \overline{C} \cup ...$$

$$\overline{(A \cup B \cup C \cup ...)} = \overline{A} \cap \overline{B} \cap \overline{C} \cap ...$$

Remark:

The set identities above can be obtained from the corresponding laws of logical equivalence by the following transformation.

Logical Equivalence	Set Identity
Proposition	Set
\wedge	\cap
V	U
T	U
F	Ø
Negation	Complement

More Examples in Using Set Identities:

1. A
$$\cup$$
 $\overline{(A \cap B)} = U$

$$A \cup \overline{(A \cap B)}$$

 $= A \cup (\overline{A} \cup \overline{B})$ De Morgan's Law
 $= (A \cup \overline{A}) \cup \overline{B}$ Associative Law
 $= U \cup \overline{B}$ Complement Law
 $= U$ Domination Law

2.
$$(\overline{A} \cup B) \cup \overline{(A \cap B)} = U$$

$$(\overline{A} \cup B) \cup \overline{(A \cap B)}$$

 $= (\overline{A} \cup B) \cup (\overline{A} \cup \overline{B})$ De Morgan's Law
 $= (\overline{A} \cup \overline{A}) \cup (B \cup \overline{B})$ Gen. Associative Law
 $= \overline{A} \cup U$ Complement Law
 $= U$ Domination Law

Practice HW: Chpt.2.2: 7, 9, 13, 17, 19, 25, 27, 29, 31, 37, 39.

9/8/17