A Parking Guidance and Information System for TinyOS

CSE 521S Project Proposal

By Matthew Lindsay, Patrick McBryde, and Michael Schultz

Background

Some parking garages use inductive loop sensors to sense when a vehicle passes between floors.

We want to be more fine-grained.

Building a PGI System for TinyOS

Project Goals

- Cost effective, easily extensible parking lot management
- Monitor multiple spots' duration and metrics (headlights, engine running, etc.)
- Report back all information to base station and display in an easily readable format.

Method

 Three part project - Mote application/Sensors, networking, base station/software

Mote Application/Sensors

Mote Application

- Monitor parking spaces while minimizing power consumption.
- Maximize sleeps while providing near real-time monitoring performance.

Sensors

- Proximity sensor for detecting vehicles
 - Infrared Distance Sensor
 - Induction Loop Sensor
 - Sonar Proximity Sensor
- Light sensors for detecting headlights
- Heat sensors for detecting car engine (alerting drivers to lights/engine running)

Networking and Communication

We will implement a multi-hop network between motes using the included radio transmitter/receiver Implement Collection Tree Protocol (CTP)

- Develop a standard packet configuration
- Don't need point-to-point, only point-to-sink, so CTP will suffice
- Robust enough to handle missing nodes

Concentrate on real-time vs. power concerns

- Must not drop information, as \$ is involved.
- Must have near real-time information for accurate reporting.

Base Station

Bridge communication between mote network and end user software

Single mote, connected via USB, used to forward received packets to software.

 Will evaluate default base station vs. custom implementation

Presentation Software

- ✓ Collect sensor data
- ✓ Send and aggregate data

Turn data into information!

- Presentation depends on location
 - Far away vehicle wants approximation
 - o Closer vehicles want more specific information
- Visitor or employee?

Equipment Needed

- 6 Tmote Sky/TelosB sensor nodes
 - 2 for Sensor development and testing
 - 4 for network development and a non-trivial topology
- Sensor to detect vehicle
 - Infrared Distance Sensor
 - Induction Loop Sensor
 - Sonar Proximity Sensor

Conclusion and Expected Deliverables

We hope this makes a cost effective, easy-to-deploy solution!

First demo:
Simple prototype

Second demo:
Networked sensors

Final demo: Everything