5/4

1/3

3/4

Mark: 10/20 (total score: 10/20)

+495/1/10+

Veillez à bien noircir les cases. Codez votre numéro d'étudiant ci-contre → et écrivez votre nom et prénom ci-dessous : Nom et prénom : Color Vingle Attention à ne pas vous tromper, toute erreur invalide la copie!	0 0
Statistiques — QCM2 - Règlement — L'épreuve dure 30 minutes. Les téléphones, le Les téléphones portables doivent être éteints et r Toutes les questions, sauf celle sur l'intégrabilité, ont une question. Attention, il y a une question de cours pour	es ordinateurs et les documents sont interdits. rangés. Les calculatrices sont autorisées. e seule bonne réponse. Le barême est indiqué pour chaque
Question 1 [4 points si juste, -1 point si réponse fausse] en particulier de coordonnées indépendantes) de loi commus(X) son écart-type empirique $(s(X)^2)$ est la variance empirion On note comme en cours les fractiles des lois usuelles que 1. z_{β} le fractile de la loi normale standard $\mathcal{N}(0,1)$ vérifia 2. $t(m)_{\beta}$ le fractile de la loi de Student à m degrés de liborale la borne inférieure a d'un intervalle de confiance bilaté théorique m est donné par	ique non-biaisée). L'on trouve dans des tables, c'est-à-dire : ant $F_{\mathcal{N}(0,1)}(z_{\beta})=1-\beta$, pertés vérifiant $F_{T_m}(t(m)_{\beta})=1-\beta$, derail $[a,b]$ de niveau de confiance $1-\alpha$ pour la moyenne $\overline{X}+\frac{s(X)}{\sqrt{n}}z_{\alpha/2}$ $\qquad \qquad a=\overline{X}+\frac{s(X)}{\sqrt{n}}t(n)_{\alpha}$ $\qquad \qquad a=\overline{X}+\frac{s(X)}{\sqrt{n}}t(n)_{\alpha/2}$ $\qquad \qquad a=\overline{X}-\frac{s(X)}{\sqrt{n}}t(n-1)_{\alpha}$ $\qquad \qquad a=\overline{X}-\frac{s(X)}{\sqrt{n}}t(n-1)_{\alpha}$ $\qquad \qquad a=\overline{X}-\frac{s(X)}{\sqrt{n}}t(n)_{\alpha/2}$ $\qquad \qquad a=\overline{X}-\frac{s(X)}{\sqrt{n}}t(n)_{\alpha/2}$ $\qquad \qquad a=\overline{X}-\frac{s(X)}{\sqrt{n}}t(n-1)_{\alpha/2}$ $\qquad \qquad a=\overline{X}-\frac{s(X)}{\sqrt{n}}t(n-1)_{\alpha/2}$ $\qquad \qquad \qquad a=\overline{X}-\frac{s(X)}{\sqrt{n}}t(n-1)_{\alpha/2}$ $\qquad \qquad \qquad$
Question 2 [3 points] Soient N une variable aléatoire décimales, la probabilité $p = \mathbb{P}(N \ge -1)$. $p = 0.692 \qquad p = 0.683 \qquad p = 0.000 \qquad p = 0.000$	de loi normale $\mathcal{N}(0,4)$. Calculer, en arrondissant à trois 0.197 $p=1.000$ $p=0.308$ $p=0.401$ $p=0.383$ eurs, j'ai trouvé $p=$
(et seulement celles-là) :	pour lesquelles l'intégrale $\int_0^{+\infty} \frac{t\sqrt{t}}{(1+t)^{\alpha}} dt$ est convergente $\alpha = \frac{5}{2}$ $\alpha = \frac{1}{2}$ $\alpha = -\frac{1}{2}$ $\alpha = 0$ $\alpha = 0$ de est divergente dans tous les cas.

Question 4 [4 points]

0/4

Soit $c \in \mathbb{R}$. Soit U une variable aléatoire continue de densité g donnée par :

$$g(x) = c \Big(\frac{3}{2}x^2 + \frac{3}{5}x^6\Big) \mathbf{1}_{[0,1]}(x) = \left\{ \begin{array}{ll} c\frac{3}{2}x^2 + c\frac{3}{5}x^6 & \text{si} & 0 \leqslant x \leqslant 1 \\ 0 & \text{sinon} \end{array} \right.$$

Calculer l'espérance E(U) de U :

Question 5 [5 points] On suppose que le poids d'un nouveau né est (approximativement) une variable normale de loi $\mathcal{N}(m, \sigma^2)$ de variance théorique connue valant 0.160. Le poids moyen empirique des 9 enfants nés au mois de janvier 2004 dans l'hôpital de Charleville-Mézières a été de 3.5kg.

Déterminer les bornes du meilleur intervalle de confiance bilatéral [a, b] au niveau de confiance 96% pour le poids moyen d'un nouveau né dans cet hôpital. (On gardera 3 décimales).

0/2

$$\begin{array}{c}
a = 3.266 \quad \Box \quad a = 3.5 \quad \Box \quad a = 3.221 \quad \Box \quad a = 3.173 \quad \Box \quad a = 3.216 \\
\Box \quad a = 3.372 \quad \Box \quad a = 3.160 \quad \bigotimes \quad a = 3.226 \quad \bigoplus \quad a = 3.393 \\
\Box \quad \text{Aucune de ces réponses ne convient, j'ai trouvé } \quad a = \dots \quad \text{(compléter)}
\end{array}$$

$$\begin{array}{c}
b = 3.628 \quad \Box \quad b = 3.607 \quad \bigotimes \quad b = 3.774 \quad \Box \quad b = 3.840 \quad \Box \quad b = 3.784 \\
\Box \quad b = 3.827 \quad \Box \quad b = 3.779 \quad \Box \quad b = 3.734 \quad \Box \quad b = 3.5 \\
\Box \quad \text{Aucune de ces réponses ne convient, j'ai trouvé } \quad b = \dots \quad \text{(compléter)}$$

Fonction de répartition $F(z) = P(Z \le z)$ de la loi normale centrée réduite

Г	z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09		z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
17	0.0	0.5	0.504	0.508	0.512	0.516	0.5199	0.5239	0.5279	0.5319	0.5359		1.5	0.9332	0.9345	0.9357	0.937	0.9382	0.9394	0.9406	0.9418	0.9429	0.9441
1	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753		1.6	0.9452	0.9463	0.9474	0.9484	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
Ш	0.2	0.5793	0.5832	0.5871	0.591	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141		1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
Ш	0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.648	0.6517		1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9699	0.9706
Ш	0.4	0.6554	0.6591	0.6628	0.6664	0.67	0.6736	0.6772	0.6808	0.6844	0.6879		1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.975	0.9756	0.9761	0.9767
Ш	0.5	0.6915	0.695	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.719	0.7224			ĺ									
	0.6	0.7257	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7517	0.7549	1	2.0	0.9772	0.9778	0.9783	0.9788	0.9793	0.9798	0.9803	0.9808	0.9812	0.9817
П	0.7	0.758	0.7611	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852		2.1	0.9821	0.9826	0.983	0.9834	0.9838	0.9842	0.9846	0.985	0.9854	0.9857
Т	0.8	0.7881	0.791	0.7939	0.7967	0.7995	0.8023	0.8051	0.8078	0.8106	0.8133		2.2	0.9861	0.9864	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.989
1	0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.834	0.8365	0.8389		2.3	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
1													2.4	0.9918	0.992	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
	1.0	0.8413	0.8438	0.8461	0.8485	0.8508	0.8531	0.8554	0.8577	0.8599	0.8621		2.5	0.9938	0.994	0.9941	0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
	1.1	0.8643	0.8665	0.8686	0.8708	0.8729	0.8749	0.877	0.879	0.881	0.883		2.6	0.9953	0.9955	0.9956	0.9957	0.9959	0.996	0.9961	0.9962	0.9963	0.9964
	1.2	0.8849	0.8869	0.8888	0.8907	0.8925	0.8944	0.8962	0.898	0.8997	0.9015	t	2.7	0.9965	0.9966	0.9967	0.9968	0.9969	0.997	0.9971	0.9972	0.9973	0.9974
	1.3	0.9032	0.9049	0.9066	0.9082	0.9099	0.9115	0.9131	0.9147	0.9162	0.9177		2.8	0.9974	0.9975	0.9976	0.9977	0.9977	0.9978	0.9979	0.9979	0.998	0.9981
	1.4	0.9192	0.9207	0.9222	0.9236	0.9251	0.9265	0.9279	0.9292	0.9306	0.9319		2.9	0.9981	0.9982	0.9982	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986

Fractiles des lois normales et de Student (notations du cours rappelés à la question 1)

β	0.2	.1	0.05	0.04	0.03	0.025	0.02	0.01	0.005	0.0005
$t(8)_{\beta}$	0.889	1.397	1.860	2.004	2.189	2.306	2.449	2.896	3.355	5.041
$t(9)_{B}$	0.883	1.383	1.833	1.973	2.150	2.262	2.398	2.821	3.250	4.781
$t(10)_{\beta}$	0.879	1.372	1.812	1.948	2.120	2.228	2.359	2.764	3.169	4.587
z_{eta}	0.842	1.282	1.645	1.751	1.881	1.960	2.054	2.326	2.576	3.291