Alternating Series Test

Theorem If the alternating series
$$\sum_{n=1}^{\infty} (-1)^{n-1} b_n = b_1 - b_2 + b_3 - b_4 + \cdots$$

(2)
$$\lim_{n\to\infty} b_n = 0$$

Example

The alternating harmonic series

$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots = \frac{\infty}{N^{-1}} \frac{(-1)^{n-1}}{N}$$

Satisfies (1)
$$\frac{1}{n+1} < \frac{1}{n}$$

(2)
$$\lim_{n\to\infty} \frac{1}{n} = 0$$
 so it converges by the alternating series test.

Définition (Absolute Convergence)

A series Zan converges absolutely if

[] (an) converges.

Theorem If Zan converges absolutely,

then $\sum a_n$ converges.

Example The series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$

converges absolutely since $\frac{\infty}{2} \frac{1}{n^2}$ is

a convergent p-series. Therefore,

 $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2}$ also converges.

Example The alternating harmonic series $\frac{\infty}{\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n}}$ converges by the alternating series

test, but it does not converge absolutely since

 $\frac{\infty}{2}$ $\frac{1}{n}$ is a divergent p-series.

Therefore, convergence does <u>not</u> imply absolute convergence.

Definition (conditional Convergence)

A series $\sum a_n$ is conditionally convergent if it converges but not absolutely.

Example The alternating harmonic series is conditionally convergent.

Theorem (Ratio Test)

(1) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L \angle 1$, then $\frac{\infty}{2}$ and is absolutely convergent.

(2) If $\lim_{n\to\infty} \left| \frac{a_{n+1}}{a_n} \right| = L > 1$ (or ∞),

then the series $\sum a_n$ is divergent.

(3) If $\lim_{n\to\infty} \left(\frac{a_{n+1}}{a_n}\right) = 1$, then the ratio test is inconclusive.

Example Consider the series $\sum_{n=1}^{\infty} \frac{(-1)^n n^3}{3^n}$.

Then Since $\left(\frac{(-1)^{n+1}(n+1)^3}{3^{n+1}}\right) = \left(\frac{n+1}{n}\right)^3 \cdot \frac{1}{3}$ $\frac{(-1)^n n^3}{3^n}$

which converges to $\frac{1}{3}$ as $n \to \infty$,

we conclude from the vario test that the series is absolutely convergent.

Exercises

1. Determine if the series
$$\frac{\infty}{n=1} (-1)^{n+1} \frac{n^2}{n^3+1}$$

absolutely converges, conditionally converges, or diverges.

Answer. For absolute convergence, we see if $\sum_{n=1}^{\infty} \frac{n^2}{n^3+1}$ converges.

We can use the limit comparison test with

$$b_n = \frac{1}{n}$$
 and $a_n = \frac{n^2}{n^{3+1}}$.

Then
$$\frac{\alpha n}{bn} = \frac{n^2}{n^2 + 1/n} = \frac{1}{1 + 1/n^3} \implies 1$$
 as $n \Rightarrow \infty$.

Then since $\sum b_n$ diverges, we conclude that

the series
$$\sum_{n=1}^{\infty} (-1)^n \frac{n^2}{n^{3+1}}$$
 is not absolutely convergent.

However, it may still converge, so we must check this.

We have that
$$\frac{n^2}{n^3+1} = \frac{1}{n} \rightarrow 0$$
 as $n \rightarrow \infty$.

Now we need to verify that
$$\frac{(n+1)^2}{(n+1)^3+1} \leq \frac{n^2}{n^3+1}$$

To do this, we let
$$f(x) = \frac{x^2}{x^3 + 1}$$

and we compute
$$f'(x) = (x^3+1)(2x) - x^2(3x^2)$$

$$(x^3+1)^2$$

$$= \frac{2x - x^{4}}{(x^{3} + 1)^{2}} = \frac{x(2 - x^{3})}{(x^{3} + 1)^{2}}.$$

For
$$x > 0$$
, we see that $f'(x) \leq 0$ if

$$2-x^3 \leq 0 \iff x \geq \sqrt[3]{2}$$
.

Therefore, for $x \ge 2$, we have that f(x) is decreasing, so that $f(n+1) = \frac{(n+1)^2}{(n+1)^3+1} \le \frac{n^2}{n^3+1} = f(n)$

when n = 2. Thus, we conclude from the

alternating series test that
$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{n^2}{n^3+1}$$
 is

con ditionally convergent.

2. Same as problem 1, but now for
$$\sum_{n=1}^{\infty} \frac{n^2}{n^2 + n + 1}$$

Answer. Since
$$\frac{n^2}{n^2+n+1} = \frac{1}{1+\frac{1}{n}+\frac{1}{n^2}} \rightarrow 1$$

as $n \to \infty$, the test for divergence tells us that $\sum_{n=1}^{\infty} \frac{n^2}{n^2 + n + 1}$ diverges, so

$$\frac{\infty}{2} \left(-1\right)^{\infty} \frac{n^2}{n^2 + n + 1}$$
 is nut absolutely convergent.

It also does not satisfy the assumptions of the alternating series test, so we cannot apply it here. However, since $\frac{n^2}{n^2 + n + 1}$ \longrightarrow 1, this

implies that $(-1)^n \frac{n^2}{n^2 + n + 1}$ does not converge at all, so the test for divergence once again tells us that the series $\sum_{n^2 + n + 1}^{n^2} \frac{n^2}{n^2 + n + 1}$ itself diverges.

3. Same as 1 and 2, but now for $\frac{\infty}{2} (-1)^{n+1} \frac{n^2}{n^3+4}$.

Answer. We have that $\frac{n^2}{n^3+4} = \frac{1/n}{1+4/n^3} \rightarrow 0$ as $n \rightarrow \infty$, so the test for divergence is inconclusive.

By using the limit compaison test with $b_n = \frac{1}{n}$ and $a_n = \frac{n^2}{n^3 + 4}$, we have that $\frac{a_n}{b_n} = \frac{n^2}{n^2 + 4|n} = \frac{1}{1 + 4/n^3} \rightarrow 1$ as $n \rightarrow \infty$,

so since $\sum b_n = \infty$, $\sum a_n = \infty$.

Thus $\sum_{n=1}^{\infty} (-1)^{n+1}$ an is not absolutely convergent.

To see if $\sum_{i=1}^{n+1} a_i$ converges, we apply the alternating series test and use the same trick as in problem 1.

We let $f(x) = \frac{x^2}{x^3+4}$, so

 $f'(x) = (x^3+4)(2x) - x^2(3x^2)$ $(x^3+4)^2$

 $= \frac{8 \times - x^{4}}{(x^{3}+4)^{2}} = \frac{\times (8-x^{3})}{(x^{3}+4)^{2}} < 0$

when x = 2.

Thus anti = an for all n = 2,

so the series $\sum_{i=1}^{n+1} a_i$ is conditionally convergent by the alternating series test. $\sum_{i=1}^{n+1} a_i$

4. Same as
$$1,2,3$$
 but for $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{n^2+4}$

Answer. Since
$$\frac{n}{n^2+4}$$
 $\longrightarrow 0$ as $n \to \infty$,

Let
$$a_n = \frac{n}{n^2 + 4}$$
 and $b_n = \frac{1}{n}$.

Then
$$\frac{\alpha n}{bn} = \frac{n}{n+4|n}$$
 $\longrightarrow 1$ as $n \to \infty$

and
$$\sum b_n = \infty$$
, so $\sum a_n = \infty$ by

Thus
$$\sum_{n=1}^{\infty} (-1)^{n-1}$$
 and is not absolutely convergent.

Let
$$f(x) = \frac{x}{x^2 + 24}$$
. Then

$$f'(x) = \frac{x^2 + 4 - 2x^2}{(x^2 + 4)^2} = \frac{4 - x^2}{(x^2 + 4)^2} = \frac{(2 + x)(2 - x)}{(x^2 + 4)^2} \le 0$$

when $X \stackrel{?}{=} 2$. Thus $\frac{n+1}{(n+1)^2+4} \stackrel{?}{=} \frac{n}{n^2+4}$ for all

n=2, so \(\sum_{(-1)}^n an \) converges conditionally by the alternating series test.

5. Same as 1-4, but for $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{3^n}{2^n n^3}$.

Answer. We use the ratio test.

$$\left| \frac{(-1)^{n} \frac{3^{n+1}}{2^{n+1}(n+1)^{3}}}{(-1)^{n-1} \frac{3^{n}}{2^{n} n^{3}}} \right| = \frac{3}{2} \cdot \left(\frac{n}{n+1}\right)^{3} \longrightarrow \frac{3}{2} \quad \text{as}$$

n > 00. Therefore, by the ratio test,

the series diverges.

(e. Same as 1-5 but for
$$\sum_{n=1}^{\infty} \frac{(-9)^n}{n!}$$
.

Answer Ratio test:
$$\frac{(-9)^{n+1}}{(n+1) \cdot 10^{n+2}} = \frac{9}{10} \frac{n}{n+1} \longrightarrow \frac{9}{10} \text{ as } n \to \infty.$$

Therefore, by the vatio test, the series

converges absolutely.

7. Same or
$$1-10$$
, but for $\sum_{n=1}^{\infty} \frac{n5^{2^n}}{10^{n+1}}$.

Answer
$$\frac{(n+1)5}{10^{n+2}} = \frac{n+1}{n} \cdot \frac{25}{10} - \frac{25}{10}$$

$$\frac{n \cdot 5^{2n}}{10^{n+1}}$$

Therefore, by the ratio test, the series diverges.