TEMA 2b: Series de números reales

Fernando Soria

Departamento de Matemáticas Universidad Autónoma de Madrid (UAM)

Grado en Matemáticas y doble grado Mat-Ing Inf.

Series de números reales.

Con frecuencia aparece el problema de sumar los términos a_n de una sucesión dada de números reales $a_1+a_2+a_3+\cdots+a_n+a_{n+1}+\ldots$ (Recordemos, p.e., que $1+1+\frac{1}{2!}+\frac{1}{3!}+\cdots+\frac{1}{n!}+\ldots$ nos da el número e).

A este procedimiento lo denominaremos serie (infinita).

Para dar sentido a esto, consideramos sumas parciales, que no es más que ir sumando término a término los a_n 's. Así escribimos

- la suma $s_1 = a_1$;
- la suma $s_2 = a_1 + a_2$;
- la suma $s_3 = a_1 + a_2 + a_3$;
- y en general $s_n = a_1 + a_2 + a_3 + \cdots + a_n$

Estas sumas parciales forman una sucesión $\{s_n\}_n$ que puede tener un límite o no tenerlo.

Series convergentes y criterio de Cauchy

Definición

Se dice que la serie $\sum_n a_n$ es **convergente** si la sucesión formada por las sumas parciales $s_1, s_2, s_3, \ldots, s_N, \ldots$ es convergente. Si $\limsup_{N \to \infty} L$, escribiremos

$$\sum_{n=1}^{\infty} a_n = L.$$

Si la sucesión de sumas parciales $s_1, s_2, s_3, \ldots, s_N, \ldots$ no converge, entonces se dice que la serie $\sum_n a_n$ es divergente.

CRITERIO DE CAUCHY: Recordamos que una sucesión de números reales es convergente si y solo si es de Cauchy. Además observamos que

$$s_p - s_q = \sum_{n=q+1}^p a_n, \quad \operatorname{si} p > q.$$

Por lo tanto se tiene el siguiente criterio, llamado de Cauchy,

F. Soria (UAM) Cálculo I 3/2

Teorema

La serie $\sum_n a_n$ converge si y solo si dado $\epsilon>0$, existe $N\in\mathbb{N}$ de forma que

$$\left|\sum_{n=q+1}^{p} a_n\right| < \epsilon, \quad \operatorname{si} p > q \ge N.$$

Dem.: Para probarlo basta observar que la sucesión de sumas parciales $\{s_n\}_n$ es de Cauchy si y solo si dado ϵ , existe N tal que $|s_p - s_q| < \epsilon$, $\forall p, q \ge N$ y que, como ya se ha dicho anteriormente,

$$|s_p - s_q| = \left| \sum_{n=q+1}^p a_n \right|, \quad \operatorname{si} p > q.$$

F. Soria (UAM) Cálculo I 4

Criterios de convergencia/divergencia

A menudo las sumas parciales no se pueden calcular de forma sencilla, y esto hace necesario recurrir a criterios que nos digan si una serie dada converge o diverge. Una condición NECESARIA para que esto ocurra viene dada por el siguiente

Teorema

Si una serie $\sum_n a_n$ converge, entonces lím $a_n = 0$. El recíproco no es cierto.

Dem.: La demostración se sigue de la identidad

$$a_n = s_n - s_{n-1},$$

y, por tanto, si $\exists \lim_{n\to\infty} s_n$ se tiene

$$\lim_{n\to\infty} a_n = \lim_{n\to\infty} s_n - \lim_{n\to\infty} s_{n-1} = 0.$$

Observación:

De lo anterior SOLO se deduce que si en una serie $\sum_n a_n$, la sucesión de términos $\{a_n\}_n$ no tiene límite, o lo tiene pero lím $a_n \neq 0$, entonces $\sum_n a_n$ diverge.

El recíproco no es cierto en general

Si en una serie $\sum_n a_n$ se tiene lím $a_n = 0$, entonces **hay que usar otros criterios**, porque la serie puede converger o diverger.

Ejemplo: la *serie armónica* $\sum_{n=1}^{\infty} \frac{1}{n}$ cumple $\lim_{n \to \infty} a_n = \lim_{n \to \infty} \frac{1}{n} = 0$, pero *diverge*.

Para demostrar la divergencia, basta comprobar que, para cada $n \in \mathbb{N}$

$$s_{2^n} - s_{2^{n-1}} = \sum_{k=2^{n-1}+1}^{2^n} \frac{1}{k} = \left(\frac{1}{2^{n-1}+1} + \frac{1}{2^{n-1}+2} + \dots + \frac{1}{2^n}\right) \ge \frac{2^{n-1}}{2^n} = \frac{1}{2}$$

Como

$$s_{2^n} = (s_{2^n} - s_{2^{n-1}}) + (s_{2^{n-1}} - s_{2^{n-2}}) + \dots + (s_2 - s_1) + s_1 \geq \frac{1}{2}n,$$

las sumas parciales divergen a ∞ .

4 U P 4 DP P 4 E P 4 E P P Y C P

Ejemplos

HOJA 3 de ejercicios, N. 2:

Demostrar que las series siguientes divergen

$$A \equiv \sum_{k=1}^{\infty} \left(\frac{k+1}{k}\right)^k, \qquad B \equiv \sum_{k=2}^{\infty} \frac{k^{k-2}}{3^k}.$$

En ambos casos el término general no tiende a 0:

A: si
$$a_k = \left(\frac{k+1}{k}\right)^k$$
, se tiene $\lim_{k \to \infty} a_k = e \neq 0$.

B: si
$$b_k = \frac{k^{k-2}}{3^k} = \frac{1}{9} \left(\frac{k}{3}\right)^{k-2}$$
, se tiene $\lim_{k \to \infty} b_k = \infty \neq 0$.

F. Soria (UAM) Cálculo I 7/:

Algunos ejemplos de series

- La serie $\sum_{n=0}^{\infty} \frac{1}{n!}$ es convergente y su valor es e. (Obsérvese el comienzo en n=0 en vez de en n=1; esto es irrelevante para la convergencia).
- La serie geométrica, de razón r, $\sum a r^n$ es convergente \iff |r| < 1. De hecho sabemos que $s_n = \sum_{k=0}^n a\, r^n = a\left(\frac{1-r^{n+1}}{1-r}\right),$ y el lím s_n existe $\iff |r| < 1$. Además, en ese caso, vale $\frac{a}{1-r}$.

• La serie "p-armónica" $\sum_{n=0}^{\infty} \frac{1}{n^p}$ es convergente $\iff p>1$

(lo veremos más adelante)

Series de términos positivos $(a_n \ge 0)$

Si todos los términos a_n son positivos entonces la sucesión $\{s_n\}_n$ es creciente porque $s_{n+1}=s_n+a_{n+1}\geq s_n$. Usando los resultados de convergencia de sucesiones deducimos entonces

Teorema

Si $a_n \ge 0$, $\forall n$, entonces $\sum_n a_n$ converge \iff la sucesión $\{s_n\}_n$ está acotada.

(Esto se debe a que, como ya sabemos, una sucesión monótona tiene límite si y solo si está acotada)

Como consecuencia de lo anterior se obtiene el siguiente:

F. Soria (UAM) Cálculo I 9/2

Términos positivos: Criterio de comparación

CRITERIO DE COMPARACIÓN:

Supongamos que tenemos dos series, $\sum_n a_n$ y $\sum_n b_n$ tal que $b_n \ge a_n \ge 0$, $\forall n$.

- si $\sum_n b_n$ es convergente, entonces $\sum_n a_n$ es convergente;
- si $\sum_{n} a_n$ es divergente, entonces $\sum_{n} b_n$ es divergente.

La demostración se sigue de que si denotamos las sumas parciales de cada serie por

$$S_n = \sum_{k=0}^n a_n, \qquad S_n = \sum_{k=0}^n b_n,$$

entonces las hipótesis nos dan que $s_n \leq S_n$ y, por tanto:

- si S_n está acotada, entonces s_n también lo está;
- si s_n no está acotada, entonces S_n tampoco lo está.

F. Soria (UAM) Cálculo I 10 / 21

Ejemplos

• La serie p-armónica $\sum_{p} \frac{1}{n^p}$ para p < 1 no es convergente.

Para verlo, basta fijarse en que si p < 1 entonces $\frac{1}{n} \leq \frac{1}{n^p}$. Como las sumas parciales de la serie armónica $\sum_n \frac{1}{n}$ no están acotadas, las de $\sum_n \frac{1}{n^p}$ tampoco lo están, luego es divergente.

• La serie $\sum_{n} \left(\frac{n}{n+1}\right)^{n^2}$ es convegente.

Como
$$\left(1+\frac{1}{n}\right)^n \geq 2, \forall n$$
, se tiene $a_n = \left(\frac{n}{n+1}\right)^{n^2} = \left(\frac{1}{1+\frac{1}{n}}\right)^{n \cdot n} \leq \left(\frac{1}{2}\right)^n$.

La convergencia de $\sum_{n} \frac{1}{2^n}$ y el criterio de comparación nos dan la

convergencia de $\sum a_n$ también.

◆ロト ◆御 ト ◆恵 ト ◆恵 ト ・恵 ・ 夕久で

F. Soria (UAM) Cálculo I 11/2

Términos positivos: Criterio de comparación con límite

Teorema

Supongamos que tenemos dos series, $\sum_n a_n y \sum_n b_n$, tal que $a_n > 0$, $b_n > 0$.

- ① Si existe el límite lím $\frac{a_n}{b_n}=c$, con $c\neq 0$ y $c\neq \infty$, entonces $\sum_n a_n$ y $\sum_n b_n$ son a la vez convergentes, o a la vez divergentes
- ② si lím $\frac{a_n}{b_n} = 0$ y $\sum_n b_n$ converge, entonces $\sum_n a_n$ converge;
- 3 $si \lim_{n \to \infty} \frac{a_n}{b_n} = \infty \ y \sum_n b_n \ diverge, \ entonces \sum_n a_n \ diverge.$

Dem. de 1): Como lím $\frac{a_n}{b_n}=c$ y $c\neq 0,\infty$, podemos encontrar un índice N de forma que $\frac{c}{2}\leq \frac{a_n}{b_n}\leq 2c, \quad \forall n\geq N$. Luego, a partir de este índice, se tiene

 $\frac{c}{2}b_n \le a_n \le 2c b_n$. Por tanto, $\frac{c}{2}\sum_{n=N}^{\infty}b_n \le \sum_{n=N}^{\infty}a_n \le 2c\sum_{n=N}^{\infty}b_n$, lo que nos permite usar el criterio de comparación habitual.

F. Soria (UAM) Cálculo I 12 / 21

Términos positivos: Criterio del cociente

CRITERIO DEL COCIENTE: Si $\sum_n a_n$ cumple

- $\mathbf{0}$ $a_n > 0$ para todo n,
- 2 y existe el límite lím $\frac{a_{n+1}}{a_n} = L$,

entonces

- si L < 1, la serie $\sum_n a_n$ es convergente; dem.: eligiendo L < r < 1, se tiene que la serie $\sum_n a_n$ está mayorada por la serie geométrica $a_N \sum_{k=N}^{\infty} r^{k-N}$ a partir de un índice N, (porque $\frac{a_{n+1}}{a_n} \le r$, $\forall n \ge N$, $\implies a_k \le a_N r^{k-N}$)
- si L>1 o $L=\infty$, la serie $\sum_n a_n$ es divergente; dem.: eligiendo L>R>1, se tiene que la serie $\sum_n a_n$ está minorada por la serie geométrica $a_N \sum_{k=N}^{\infty} R^{k-N}$ a partir de un índice N, (porque $\frac{a_{n+1}}{a_n} \geq R$, $\forall n \geq N$, $\implies a_k \geq a_N R^{k-N}$)
- si L=1 no se puede sacar una conclusión. Ejemplos: tanto $a_n=\frac{1}{n}$ como $a_n=\frac{1}{n^2}$ verifican lím $\frac{a_{n+1}}{a_n}=1$; sin embargo $\sum_n \frac{1}{n}$ diverge y $\sum_n \frac{1}{n^2}$ converge

Términos positivos: Criterio de la raíz

CRITERIO DE LA RAÍZ: Si $\sum_n a_n$ cumple

- \bullet $a_n > 0$ para todo n,
- 2 y existe el límite lím $\sqrt[n]{a_n} = L$,

entonces

- si L < 1, la serie $\sum_n a_n$ es convergente;
- si L > 1 o $L = \infty$, la serie $\sum_n a_n$ es divergente;
- si L = 1 no se puede sacar una conclusión.

La demostración es semejante a la anterior sobre el cociente

EJEMPLOS (de los criterios del cociente y de la raíz)

- $\sum \frac{(k!)^2}{(2k)!}$: converge por criterio del cociente.
- $\sum k \left(\frac{2}{3}\right)^k$: converge por criterio de la raíz.
- $\sum \frac{n!}{100^n}$: diverge por criterio del cociente (o porque $\frac{n!}{100^n}
 eq 0$, para $n \to \infty$).
- $\sum (\sqrt[n]{n} 1)^n$: converge por el criterio de la raíz.

Términos positivos: Criterio de condensación diádica (de Cauchy)

Si además de ser positivos, los términos a_n forman una sucesión decreciente como en el caso anterior, $a_n \geq a_{n+1}$, entonces se tiene la siguiente estimación en los bloques de índices diádicos $2^k < n \leq 2^{k+1}$

• $2^k a_{2^{k+1}} \le \sum_{n=2^k+1}^{\infty} a_n \le 2^k a_{2^k}$, de donde deducimos el siguiente:

Teorema

Para términos a_n positivos, que forman una sucesión decreciente,

la serie $\sum_n a_n$ converge \iff la serie $\sum_{k=1}^n 2^k a_{2^k}$ converge.

Ejemplo: La serie $\sum_{n=1}^{\infty} \frac{1}{n^2}$ es convergente porque $a_n = \frac{1}{n^2}$ es decreciente y

$$\sum_{k=1}^{\infty} 2^k a_{2^k} = \sum_{k=1}^{\infty} \frac{2^k}{2^{2k}} = \sum_{k=1}^{\infty} \frac{1}{2^k} \text{ es una serie geométrica de razón} < 1.$$

F. Soria (UAM) Cálculo I 15 / 21

MÁS EJEMPLOS

1 La serie p-armónica $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converge $\iff p > 1$ porque $a_n = \frac{1}{n^p}$ es decreciente y $\sum_{k=1}^{\infty} 2^k a_{2^k} = \sum_{k=1}^{\infty} \frac{2^k}{2^{pk}} = \sum_{k=1}^{\infty} \frac{1}{2^{(p-1)k}}$ es una serie geométrica de razón $< 1, \iff p > 1$.

② La serie $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ converge $\iff p > 1$ porque $a_n = \frac{1}{n(\log n)^p}$ es decreciente y $\sum_{k=1}^{\infty} 2^k a_{2^k} = \sum_{k=1}^{\infty} \frac{1}{k^p (\log 2)^p}$ es la serie p-armónica.

3 La serie $\sum_{n=3}^{\infty} \frac{1}{n(\log n)(\log\log n)^p}$ converge $\iff p>1$ porque $a_n = \frac{1}{n(\log n)(\log\log n)^p}$ es decreciente y $\sum_{k=2}^{\infty} 2^k a_{2^k} \sim \sum_{k=2}^{\infty} \frac{1}{k(\log k)^p}$ es como la serie del apartado anterior.

F. Soria (UAM) Cálculo I 16/21

Términos positivos: Criterio de la integral 1

Si cada uno de los términos a_n es la imagen de una función positiva y decreciente f (i.e., $f(n) = a_n$), entonces se tienen las estimaciones

•
$$\int_{1}^{N} f(x)dx \leq \sum_{n=1}^{N} f(n) \leq f(1) + \int_{1}^{N} f(x)dx$$
,

de donde deducimos el siguiente criterio:

Teorema

Si los términos a_n son imágenes $f(n) = a_n$ de una función positiva y decreciente, f, entonces la serie $\sum_n a_n$ converge \iff la integral impropia $\int_1^\infty f(x)dx$ es convergente.

Ejemplo: La serie "p-armónica" $\sum_{n=1}^{\infty} \frac{1}{n^p}$ es convergente si y solo si p>1 porque la integral impropia $\int_{1}^{\infty} \frac{1}{x^p} dx$ es convergente si y solo si p>1.

F. Soria (UAM) Cálculo I 17/21

¹ Este criterio tendrá más sentido cuando veamos el capítulo de integración. Lo vemos ahora por ser muy intuitivo. 🔿 🤉 🕒

Convergencia absoluta y condicional (I)

Los criterios anteriores sólo se usan para series con términos positivos. En el caso en que una serie $\sum_n a_n$ tenga términos de ambos signos, hay que usar otros argumentos.

A veces es posible utilizar el siguiente resultado

Teorema (convergencia absoluta)

Si $\sum_n a_n$ es una serie para la que $\sum_{n=1}^{\infty} |a_n|$ es convergente, entonces la serie original $\sum_n a_n$ también es convergente.

Dem.: Basta usar el criterio de Cauchy, observando que

$$\left|\sum_{n=q+1}^p a_n\right| \leq \sum_{n=q+1}^p |a_n|.$$

F. Soria (UAM) Cálculo I 18/23

Convergencia absoluta y condicional (II)

Definición

Sea $\sum_n a_n$ una serie cuyos términos pueden ser positivos y negativos:

- es absolutamente convergente si $\sum_{n=1}^{\infty} |a_n|$ converge;
- es condicionalmente convergente si $\sum_n a_n$ converge pero no absolutamente.

- Si una serie converge absolutamente, entonces converge;
- Una serie que diverge no converge ni absoluta ni condicionalmente.

F. Soria (UAM) Cálculo I 19 / 21

Criterio de Leibniz

Las series de la forma $\sum_{n} (-1)^{n} a_{n}$, con $a_{n} \geq 0$, se llaman alternadas porque el signo de sus términos va alternando entre positivo y negativo.

Teorema

 $Si \sum_{n} (-1)^n a_n$ es una serie tal que

- $a_n \geq 0$,
- $a_n \geq a_{n+1}$, $\forall n, y$
- $\lim a_n = 0$

entonces la serie $\sum_{n} (-1)^n a_n$ es convergente.

Dem.: Se usa el criterio de Cauchy observando que

$$\begin{vmatrix} \sum_{n=q+1}^{p} (-1)^n a_n \end{vmatrix} = a_{q+1} - a_{q+2} + a_{q+3} - a_{q+4} + a_{q+5} + \dots \pm a_p$$

$$= a_{q+1} - (a_{q+2} - a_{q+3}) - (a_{q+4} - a_{q+5}) + \dots \pm a_p \le a_{q+1} + a_p,$$

debido a la monotonía de la sucesión, y que $a_{q+1} + a_p \leq 2a_{q+1} \stackrel{q \to \infty}{\longrightarrow} 0$.

F. Soria (UAM) Cálculo I 20 / 21

Ejemplo: La sucesión

$$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots,$$

converge ... y su límite vale log 2.

Observación: El error cometido al sustituir $\log 2$ por $\sum_{n=0}^{\infty} (-1)^{n+1} \frac{1}{n}$ es del orden de $\frac{1}{N}$, así que para obtener un valor de log 2 con 3 decimales exactos necesitamos sumar $N=10^4$ términos. Sin embargo, la serie $\sum_{n=1}^{\infty} \frac{1}{n \, 2^n}$ también converge a log 2 con un error, tras sumar N factores, inferior a $\frac{n-1}{(N+1)2^N}$. Luego se obtienen 3 decimales exactos con sumar $(N+1)2^N \ge 10^4$ términos; N=10 es suficiente. (De hecho, $\sum_{n=0}^{\infty} \frac{1}{n 2^n} = 0,693064856150793$ mientra que $\log 2 = 0,693147...$)