Relazione esperienza di laboratorio

Gruppo BI: Federica Maria Surace, Marco Cilibrasi

16 novembre 2014

Esercitazione N. 5: Amplificatore e transistor

1 Verifica del punto di lavoro

Abbiamo montato il circuito in figura con $R_1 = 177 \pm 1k\Omega$, $R_2 = 17.9 \pm 0.1k\Omega$, $R_C = 9.92 \pm 0.08k\Omega$, $R_E = 0.983 \pm 0.008k\Omega$, $C_{in} = 219 \pm 9nF$, $C_{out} = 106 \pm 4nF$ (misure effettuate con il multimetro digitale) e $C_E = 100 \pm 20\mu F$ (valore nominale). Il generatore fornisce una tensione $V_{CC} = 19.8 \pm 0.4V$.

Tabella 1: Misura punto di lavoro

\mathbf{r}				
Valori attesi	Valori misurati			
$V_{BE} = 0.695 \pm 0.003V$	$V_{BE} = 0.601 \pm 0.004V$			
$V_B = V_{CC} \frac{R_2}{R_1 + R_2} = 1.82 \pm 0.04V$	$V_B = 1.64 \pm 0.08V$			
$V_E = V_B - V_{BE} = 1.13 \pm 0.04V$	$V_E = 1.08 \pm 0.02V$			
$I_E = \frac{V_E}{R_E} = 1.15 \pm 0.02 mA$	$I_E = \frac{V_E}{R_E} = 1.10 \pm 0.02 mA$			
$I_C \simeq I_E = 1.15 \pm 0.02 mA$	$I_C = \frac{V_C}{R_C} = 1.09 \pm 0.01 mA$			
$V_{CE} = V_{CC} - R_C I_C - R_E I_E = 7.3 \pm 0.6V$	$V_{CE} = V_C - V_E = 7.8 \pm 0.2V$			

Nel calcolo di V_B atteso si è supposto che $I_{R_2}\gg I_B$, cioè che il partitore sia stiff. Abbiamo verificato a posteriori che questa condizione fosse verificata: $I_{R_2}=92\pm 4\mu A$ è il 10% di $I_B=I_{R_1}-I_{R_2}=10\pm 4\mu A$. Il valore di V_{BE} atteso è quello ricavato nell'esperienza precedente. Il valore misurato non è in accordo con quello atteso e questo giustifica le discrepanze degli altri valori, che sono comunque minori del 6%. Si ha quindi che $V_{CE}^Q=7.8\pm 0.2V$ e $I_C^Q=1.09\pm 0.01mA$, cioè il transistor è in fase attiva.

2 Risposta a segnali sinusoidali di frequenza fissa

Abbiamo lavorato alla frequenza di circa 5kHz. Abbiamo misurato il guadagno in tensione in funzione di V_{in} : riportiamo i dati in tabella 2 e nel grafico 1.

La relazione attesa è $A_V = -\frac{R_C}{Z_E + \frac{h_{ie}}{h_{fe}}}$, dove il segno – indica che il segnale in uscita è invertito

(fatto che si verifica sperimentalmente). Si osserva che il guadagno è più alto per piccoli segnali e in prima approssimazione costante. Al crescere di V_{in} il guadagno diminuisce perchè ci avviciniamo alle zone di interdizione e saturazione, raggiunte rispettivamente a circa 780mV con il clipping inferiore (figura 2) e a 960mV con il clipping superiore (figura 3).

Dal fit otteniamo $A_V = 10.06 \pm 0.04$ con $\chi_{red}^2 = 0.1$.

L'impedenza di ingresso del circuito attesa é $R_{IN}=(h_{ie}+h_{fe}R_E)//R_B\simeq (h_{fe}R_E)//R_B\simeq 15k\Omega$, per cui abbiamo scelto $R_S=14.9\pm 0.1k\Omega$. Come richiesto abbiamo misurato V_{out} senza $R_S(V_1=608\pm 8mV)$ e con $R_S(V_2=296\pm 8mV)$. Da qui si ottiene $R_{IN}=\frac{R_S}{\frac{V_1}{V_S}-1}=15.7\pm 0.9k\Omega$.

L'impedenza di uscita del circuito attesa é $R_{IN} \simeq R_C$, per cui abbiamo scelto $R_L = 9.93 \pm 0.08 k\Omega$. Come richiesto abbiamo misurato V_{out} senza $R_L(V_1 = 600 \pm 20 mV)$ e con $R_L(V_2 = 304 \pm 8 mV)$. Da qui si ottiene $R_{IN} = R_L \left(\frac{V_1}{V_2} - 1\right) = 9.7 \pm 0.8 k\Omega$.

Tabella 2: Guadagno a frequenza fissa

$V_{in}[mV]$	$\Delta V_{in}[mV]$	$V_{out}[V]$	$\Delta V_{out}[V]$	A_V	ΔA_V
690	20	6.6	0.2	9.6	0.4
640	20	6.2	0.2	9.7	0.4
600	20	5.9	0.2	9.8	0.5
550	20	5.4	0.2	9.8	0.5
510	20	5.0	0.2	9.8	0.5
450	20	4.5	0.2	10.0	0.6
400	20	4.0	0.2	10.0	0.7
348	8	3.56	0.08	10.2	0.3
300	8	3.12	0.08	10.4	0.4
248	8	2.56	0.08	10.3	0.5
200	8	2.08	0.08	10.4	0.6
150	4	1.58	0.04	10.5	0.4
100	4	1.08	0.04	10.8	0.6
76	2	0.82	0.02	10.8	0.4
51	2	0.58	0.02	11.4	0.6
25.6	0.8	0.32	0.008	12.5	0.5

Figura 1: Guadagno a frequenza fissa

Entrambe le misure sono in accordo con il valore atteso entro l'errore. Nel calcolo dei valori attesi non si é tenuto conto della presenza dei condensatori perché alla frequenza considerata la loro impedenza é dell'ordine del $k\Omega$.

TDS 1012C-EDU - 18:02:32 10/11/2014

Figura 2: Clipping inferiore

TDS 1012C-EDU - 18:03:37 10/11/2014

Figura 3: Clipping inferiore e superiore

3 Risposta in frequenza

Nella terza parte dell'esperienza abbiamo misurato la risposta in frequenza del circuito tra circa 10Hz e 10MHz con ampiezza $V_{IN}=0.50\pm0.02V$. I dati presi sono riportati in tabella 3 e nel grafico in figura 4. Dal fit, intersecando le rette, si ricavano (come giá visto in un'esperienza precedente) le frequenze $f_L=57\pm1Hz$ e $f_H=81\pm1kHz$ con un'attenuazione in salita di $18.9\pm0.4dB/decade$ e un'attenuazione in discesa di $-18.5\pm0.2dB/decade$. L'attenuazione per basse frequenze è dovuta alla presenza dei condensatori in ingresso e in uscita. Si ha infatti $\frac{1}{2\pi R_{IN}C_{IN}}\simeq 46Hz$ e $\frac{1}{2\pi R_{OUT}C_{OUT}}\simeq 156Hz$, quindi ci si aspetta di trovare $f_{L1}\simeq \frac{46Hz}{2}=23Hz$ e $f_{L2}\simeq \frac{156Hz}{2}=78Hz$. Tuttavia dal grafico non si riescono a identificare le due rette distinte in salita che ci aspetteremmo (40dB/decade e 20dB/decade) perchè non è stato possibile osservare il comportamento del circuito a frequenze sufficientemente basse. L'attenuazione in discesa è legata alla presenza di una capacità Base-Emettitore di circa 50pF. Il valore di f_H misurato è compatibile se immaginiamo di avere una resistenza del filtro passa-basso di circa $90k\Omega\left(\frac{1}{\pi f_H C_{BE}}\right)$. Questo valore è nell'ordine di grandezza delle resistenze del circuito.

Tabella 3: Risposta in frequenza

f[Hz]	$V_{out}[mV]$
10.1 ± 0.1	0.94 ± 0.02
12.7 ± 0.1	1.20 ± 0.04
15.8 ± 0.2	1.46 ± 0.04
17.1 ± 0.2	1.58 ± 0.04
19.8 ± 0.2	1.80 ± 0.04
25.1 ± 0.3	2.22 ± 0.08
30.9 ± 0.3	2.60 ± 0.08
39.9 ± 0.4	3.08 ± 0.08
50.1 ± 0.5	3.48 ± 0.08
56.9 ± 0.6	3.72 ± 0.08
63.0 ± 0.6	3.88 ± 0.08
79.1 ± 0.8	4.2 ± 0.2
100 ± 1	4.4 ± 0.2
178 ± 2	4.7 ± 0.2
320 ± 3	4.9 ± 0.2

ALTT 1	T T T T T T T
f[Hz]	$V_{out}[mV]$
563 ± 6	4.9 ± 0.2
1000 ± 10	4.9 ± 0.2
1780 ± 20	4.9 ± 0.2
3100 ± 30	4.9 ± 0.2
5670 ± 60	4.9 ± 0.2
10000 ± 100	4.9 ± 0.2
17700 ± 200	4.8 ± 0.2
31500 ± 300	4.6 ± 0.2
56600 ± 600	4.2 ± 0.2
99900 ± 1000	3.40 ± 0.08
181000 ± 2000	2.32 ± 0.08
315000 ± 3000	1.42 ± 0.08
560000 ± 6000	0.83 ± 0.04
1020000 ± 10000	0.47 ± 0.02

Figura 4: Risposta in frequenza

4 Aumento del guadagno

Abbiamo inserito la resistenza $R_{ES} = 99.1 \pm 0.8\Omega$ e il condensatore $C_E = 100 \pm 20 \mu F$ (valore nominale) nel circuito e abbiamo misurato il guadagno a una frequenza fissa di circa 5kHz. Di seguito riportiamo le misure in tabella 4 e nel grafico 5. Ci aspettiamo un guadagno di $|A_V| = \frac{R_C}{Z_E + \frac{h_{ie}}{h_{fe}}} \simeq 89$ dove

 $Z_E \simeq R_{ES}$ e $\frac{h_{ie}}{h_{fe}}$ non é piú trascurabile, quindi non funziona la semplice formula $|A_V| = \frac{R_C}{Z_E}$. Dal fit per $V_{in} < 65mV$ otteniamo $A_V = 85 \pm 1$ con $\chi^2_{red} = 0.51$. Il risultato é in accordo con il valore atteso all'interno del 5%. Per il fit non abbiamo tenuto conto dei valori grandi di V_{IN} perché si perde la

linearitá, in quanto il transistor sta uscendo dalla zona attiva. (Questo si puó anche notare guardando il grafico di I_C in funzione di V_{CE} per il transistor e tracciando la retta di carico).

Tabella 4: Aumento del guadagno

		3
$V_{in}[mV]$	$V_{out}[V]$	A_V
77 ± 2	6.6 ± 0.2	86 ± 3
72 ± 2	6.2 ± 0.2	86 ± 4
66 ± 2	5.8 ± 0.2	88 ± 4
60 ± 2	5.4 ± 0.2	90 ± 4
55 ± 2	5.0 ± 0.2	91 ± 5
50 ± 2	4.7 ± 0.2	94 ± 5
45 ± 2	4.4 ± 0.2	98 ± 6
40 ± 2	3.9 ± 0.2	98 ± 7
33.6 ± 0.8	3.36 ± 0.08	100 ± 3
30.0 ± 0.8	3.08 ± 0.08	103 ± 4
25.2 ± 0.8	2.68 ± 0.08	106 ± 5
20.0 ± 0.8	2.24 ± 0.08	112 ± 6
15.8 ± 0.4	1.86 ± 0.04	118 ± 4
10.2 ± 0.4	1.40 ± 0.04	137 ± 7
6.5 ± 0.2	1.00 ± 0.04	154 ± 8

Figura 5: Aumento del guadagno