■전체보기 (20)

🗏 통계학(statistics) 🔺

느리기초통계학

--- 실생활 통계

--■파이썬 통계

■ 생명과학(biology)

Python

트 기본개념

□ 영어(english)

□ 끄적끄적

파이썬 통계

파이썬(Python)을 이용한 데이터 분석 총정리

2

DOMINO 2021, 4, 4, 20:14

URL 복사

+이웃추가

활동정보

블로그 이웃 2명 글 보내기 0회 글 스크랩 0회

사용중인 아이템 보기

건국대학교 교내 프로그램인 Learning & Sharing을 통해 스터디를 진행하고 있다. 이번주에는 파이썬을 이용해 데이터를 분석하는 방법에 대해서 공부를 해보았다. gitHub를 통해 정리를 해두었다. 자세한 내용은 GitHub를 통해 참고하면 될 듯하다.

(https://github.com/domino721/Python_Statistics)

통계학, 코딩, 생명과학, 영어 삶의 기록

프로필 > 쪽지 >

+ 이웃추가

domino721/Python_Statistics

Contribute to domino721/Python_Statistics d---

github.com

맨 위부터 순서대로 1변량 데이터 꺾은선 그래프, 막대그래프, 바이올린플롯, 산포도, 상자수염그림, 페어플롯, 2변량데이터 히스토그램, 1변량 데이터 히스토그램 이다.

https://github.com/domino721/Python_Statistics/blob/main/Ch.3/3-3_matplotlib%EA%B3%BC%
20seaborn%EC%9D%84%20%EC%9D%B4%EC%9A%A9%ED%95%9C%20%EB%8D%B0%
EC%9D%B4%ED%84%B0%20%EC%8B%9C%EA%B0%81%ED%99%94-Copy1.jpynb

기술통계 및 추측통계 카드뉴스

2021, 04, 01

Learning and Sharing

1. 데이터 집계

수치계산에 사용하는 라이브러리 import

In [9]: import numpy as np import pandas as pd import scipy as sp from scipy import stats

1변량 데이터

1가지 종류의 데이터 ex. 물고기의 몸길이

다변량 데이터

여러 개의 변수를 조합한 데이터 ex. 물고기 종류별 몸길이

2. 데이터 통계량 구하기

1변량 데이터

- scipy 함수 이용하여 통계량 구하기
- 데이터 비교를 쉽게 하기 위해 표준화 사용하기

다변량 데이터

- 깔끔한 데이터: 행하나에 1개의 결과가 나타나도록 정리
- groupby 함수 사용하여 그룹별 통계량 구하기
- 교차분석표
- 공분산은 2개의 데이터의 상관관계를 확인하는 통계량
- 분산-공분산 행렬

$$Cov(x, y) = \begin{bmatrix} \sigma_x^2 & Cov(x, y) \\ Cov(x, y) & \sigma_y^2 \end{bmatrix}$$

- 피어슨 상관계수는 공분산의 절댓값 크기를 1로 제한, 표준화하는 것

3. 데이터 시각화 (그래프 그리기)

그래프를 그리기 위한 라이브러리 import

In []: from matplotlib import pyplot as plt
import seaborn as sns
sns.set()

1변량 데이터

히스토그램 (sns,histplot) : 측청치의 도수 표현

다변량 데이터

 상자수염그림 (sns.boxplot)

 : 다양한 통계량을 나타냄

 바이올린플롯 (sns.violinplot)

 : 커널밀도추정 →

 데이터가 집중된 부분 (도수) 파악

 페어플롯 (sns.pairplot)

 과단[고리병 새용 나는어 그래프 표준

: 카테고리별 색을 나누어 그래프 표현

모집단에서 표본 추출 시뮬레이션

Why?

"Life is too short, You need Python"

파이썬시뮬레이션 -> n번 샘플링 반복 -> n개의 실현값

What?

모집단에서의 표본추출 = 정규분포를 따르는 난수 생성 stats,norm,rvs -> 정규난수 생성 시뮬레이션

How?

```
In []: # 난수씨드 설정
np.random.seed(1)
# (평균4, 표준편차0.8)인 모집단에서 사이즈10인 표본 10000개 추출
for i in range(0, 10000):
stats.norm.rvs(loc=4, scale=0.8, size=10)
```

** 난수씨드 지정하면 매번 같은 데이터가 랜덤하게 선택됨.

표본의 성질

큰 수의 법칙

표본의 크기 커지면 표본평균이 모평균에 가까워짐

중심극한정리

표본의 개수 충분하면 표본 통계량은 정규분포를 따름

- >>> 표본평균의 표준편차 < 모집단의 표준편차 : 극단적 데이터 값들이 배제되기 때문
- >>> 표본분산의 평균값과 모분산의 차이 존재 -> 불편분산 사용하여 편향제거

표본의 분포- t 분포

What?

모집단분포가 정규분포일 때 t값의 표본분포 t 값 = (표본평균 - 모평균) / 표준오차 ** t 분포 형태는 샘플 사이즈에 따른 자유도에 영향 받음.

Why?

모분산을 모르는 상황에서, 표본평균의 분포에 대해 설명

How?

```
In []: # 世수씨도 설정

np.random.seed(1)
# t값을 저장할 변수 설정

t_value_array = np.zeros(10000)
# 정규분포 클래스의 인스턴스

norm_dist = stats.norm(loc=4, scale=0.8)
# 시뮬레이션 실행

for i in range(0,10000):
    sample = norm_dist.rsv(size=10)
    sample_mean = sp.mean(sample)
    sample_std = sp.std(sample, ddof=1)
    sample_se = sample_std/sp.sqrt(len(sample))
    t_value_array[i] = (sample_mean-4)/sample_se
```

정도를 가능하고, 추정결과가 조사에 의미가 있는지 검정

추정

점추정

모수를 어느 1개의 값으로 추정

구간추정

추정값이 '폭'을 가지는 추정 신뢰도와 이를 만족하는 신뢰구간

검정

가설검정 절차

- 1 **가설 수립**: 귀무가설 vs 대립가설
- 2 유의수준 결정: 귀무가설 기각 기준
- 3 기각역 설정: 양측검정 / 단측검정
- 4 통계량계산: 검정통계량
- 5 의사결정:임계치와 비교

공모전 주제 브레인스토밍

노동자의 안전과 건강,

(, 나라 군국이 따는 진병 반병을./ () ex) 경찰 당식 간건, 군인. 소방관.

는 한 경우 (건강) 2. VS (전 이 이 따는 건강. 기사 클릭은. 근무.

小和希腊

3. 대/중 회임간 인건/실병을. + 공기업

4. र्वाष्ट्र कर्मण अर्थेस (अर) असमस्वर्धिः

6 युर्ष युर्प भुषिश्च

1 = 32NEL 1220 (213/113) [HOLEN 98]

8. JUN 03244 - 282 EH184,

多时表化,

かりないりないりる。

马克, 双视地。

3/9/1422/2/3/09-> 2/9/1/1/2. 3/01/1/2. 2/22-01/2