

Target: ECU555-80 (DEV)

Floating Point: single (32 bits) Stacks - FGND: 4096 BGND: 2048 IDLE: 1024 IRQ: 1280

Heap Size: 4096

DLL Filename: BaseEngin 002

SRZ Filename: BaseEngineController_LS_002

App RAM:

MotoHawk Trigger

FGND RTI Period: 5 ms **BGND BASE Period: 5**

Off Delay: 250 ms

Main Power Relay

MotoHawk (RTW) **Fault Manager Definition**

Storage: FLASH X/Y Data Type: uint16 Read Access: 1 Write Access: 1 Clear Access: 1

MotoHawk CAN Definition

Name: CAN 1 Bus: CAN1

Bit Timing: 500 kbaud TX Queue: 16 messages RX Queue: 16 messages

> MotoTune Protocol Enabled City ID: 0x0B (PCM-1)

r Definition

ıs

60 ms (FGND x 10)

7

MotoHawk CAN Definition

Name: CAN_2
Bus: CAN2

Bit Timing: 500 kbaud
 TX Queue: 16 messages
 RX Queue: 16 messages

MotoTune Protocol Enabled City ID: 0x0B (PCM-1)

я

- FGND_RTI_PERIODIC
- FGND_5XRTI_PERIODIC
- FGND_MID_TDC_EVENT
- FGND_20XRTI_PERIODIC

Out

Error

Term

Term

)Term

Hellil

mpTerm

double 1 Out1 1

ln1

Rate Limiter - Limit allowable change in signal per timestep

Reset TasksComplete To False

miterState

SequenceCutMachine

parkEnable [bool]

_		

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

П

boolean(1)

boolean

boolean

boolean

boolean

boolean

/rite ksComplete an

eEquivRatio

Treilli	
BoostControl	
Adapt	
	double

Calibrations BaseAirflowOfstMaxValue % Maximum value that can be adapted into the BaseAirflowOfst table. MotoTune Path:Engine Control | Run | RPM Control | Min Gov | Min Gov Co BaseAirflowOfstMinValue % Minimum value that can be adapted into the BaseAirflowOfst table. MotoTune Path:Engine Control | Run | RPM Control | Min Gov | Min Gov Co

nfig

Calibratable wrapper around the Saturation block

	Fan2ACSw	data	uint8
	Fanzacow	uala	
 	uint8		

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

stedPerCylFuelRate

Enable MAF09[9] DeltaTPS_Mult[9x17] double 2 MAF double DeltaTPS17[17] double TPS in ~= 1 1st-Order Low Pass double boolean out DeltaTPS TransFuel_TPSFilt index_T double 3 Mult **►** ECTIdx ECTIdx **ECT Transient Fueling** DeltaMAP_Mult[9x17] double DeltaMAP17[17]

Calibratable wrapper around the Saturation block

axGovOutput

Move into On State if RPM > EntryCriteria or Target.

Move into Trans State if APP falls below TPS, PID controller is frozen during Trans State, but output is based on APP.

When in AllSpeedGov mode, switch to Trans if AllSpeedGov setpoint is less than MaxGov setpoint minus hyst.

Move from Trans State back to On State if RPM > Target.

Move from Trans State to Off if RPM < Entry Criteria.

1st-Order Ramp Up y[k] = a*x[k] + (1-a)*y[k-1] where a = t/T

1st-Order Ramp Down y[k] = a*x[k] + (1-a)*y[k-1] where a = t/T

Calibratable wrapper around the Saturation block

Determine if RPM is falling

1st-Order Ramp Down y[k] = a*x[k] + (1-a)*y[k-1] where a = t/T

O2CtrlPIDOutLowerLimit = -10
(Calibration) double
O2ControlOutLowerLimit

OutUpperLimit

double double

OutLowerLimit

RichTime

O2FailedRich 50] (Enabled)

2LeanTime

: O2FailedLean f 50] (Enabled)

otActiveTime

t: O2NotActive f 50] (Enabled)

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Sensors

SparkAdvanceLimiter

nol_Spk_Ofst

Ofst

emp_SpkOfst

Fan2ACSw = Disabled (0) uint8 (Calibration)

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

verheat_Warning

(50...5.0...)

Tunable 1st-Order Low-Pass Filter

: NoOil_Fault of 2] (Sticky)

ult: MAP_IR_HI of 50] (Enabled)

:: MAP_IR_LO 50] (Enabled)

AP_STICKING [60] (Enabled)

esLow_Fault (Enabled)

esHigh_Fault (Enabled)

Speed Density - MAP Referenced - Adaptive

Count up to "BARO_Count" samples

Constant Data CylSweptVol double

Cylinder Swept Volume [cm3]1 Constant Data CombEventsPerRev uint8

Number of Combustion Events Per Revolution1

Engine Steady-State Flag

Tolerance [N.m]

eState

PPcnt

uble Request

egRaw∟ uble

lex_T PPldx

7			

2 ETCReqRaw

double

Rate Limiter - Limit allowable change in signal per timestep

TDC_Counter

7			

Alias Protection: Disabled (10-4090], III.10)

Minimum Frequency: 10 Hz

Vardec Name: ClutchSw_Pin

Vardec Name: ClutchSw_Pint16, ADC

Pin: AN15M

Reference: 5V Reference

ClutchSw

ClutchSw

Scramble

Set PseudoRPM from MotoTune to a non-zero value to cause simulated RPM MotoHawk (RTW) **Encoder Definition** uint16 0 boolean Encoder Type: 24 Minus 1 - 4-Stroke - Half-Mo Enable Redundancy: None MotoHawk (RTW) Signal Interface: VR Crank - Digital Can Pseudo-Encoder Crank Synchronization: Rising Edge uint16 PseudoRPM = 0 **►** RPM Crank Pullup: Strong Pullup (Display) Cam Synchronization: Rising Edge Cam Pullup: Strong Pullup Number of Cylinders: 4 TDC Angles: [0 180 360 540 0 0 0 int16 1/16 deg MotoHawk (RTW) Encoder TDC Offset EngineToEncoderOffset = 0 double double TDC Angle Offset: 27 Convert (Calibration) Teeth to ignore before attempting synchroniza Data Type Conversion3 Cam Delay: 0 Gain Calibratable Max Cylinders: 8 Archive: TPU_N_12.a uint8 MotoHawk (RTW) State EncoderState **Encoder State** MotoHawk (RTW) uint8 Fault Encoder Fault Last Encoder Fault **RPMInst Encoder Diagnostics**

oon CAM

m

0]

ation: 6

EngUnitsRaw

al Value

ngUnitsFilt

elseif { }
Action Port

f()

Sample Crank-Synchronous MAP Once at Startup

MotoHawk Read CAN Message

Name: CAN_1

Source Module: UEGO
Interval: 10 ms (100 Hz)

Queue Size: 1

ID: 0x00000180 (STANDARD)

Mask: 0x000007ff

RTR: 0

Message: AEM X-Series UEGO
Description: UEGO Num1

Payload Size: 8

Payload Contents:

Name	Units	LSB	Len	Type	Byte Order	Gain	Offset	
Lambda	Lam	48	16	UNSIGNED	BIG_ENDIAN	1/10000.000	0.000	
OxygenConcentration	용	32	16	SIGNED	BIG_ENDIAN	1/1000.000	0.000	
SystemVolts	V	24	8	UNSIGNED	BIG_ENDIAN	1/10.000	0.000	
HeaterVolts	VI	16	8	UNSIGNED	BIG_ENDIAN	1/10.000	0.000	
SensorDetectedStatus	enum	8	4	UNSIGNED	BIG_ENDIAN	1.000	0.000	
UsingFreeAreCalState	On/Off	13	1	UNSIGNED	BIG_ENDIAN	1.000	0.000	
DataValidState	On/Off	15	1	UNSIGNED	BIG_ENDIAN	1.000	0.000	
SensorStatus	enum	0	5	UNSIGNED	BIG_ENDIAN	1.000	0.000	
SensorFaultState	On/Off	6	1	UNSIGNED	BIG_ENDIAN	1.000	0.000	

D2_EquivRatio_Avg

Cat

MotoHawk Read CAN Message

Name: CAN_1

Source Module: UEGO
Interval: 10 ms (100 Hz)

Queue Size: 1

ID: 0x00000181 (STANDARD)

Mask: 0x000007ff

RTR: 0

Message: AEM X-Series UEGO
Description: UEGO Num2

Payload Size: 8

Payload Contents:

Nam	e Units	LSB	Len	Type	Byte Order	Gain	Offset	
Lambd	a Lam	48	16	UNSIGNED	BIG ENDIAN	1/10000.000	0.000	
OxygenConcentratio	n %	32	16	SIGNED	BIG_ENDIAN	1/1000.000	0.000	
SystemVolt	s V	24	8	UNSIGNED	BIG_ENDIAN	1/10.000	0.000	
HeaterVolt	s V	16	8	UNSIGNED	BIG_ENDIAN	1/10.000	0.000	
SensorDetectedStatu	s enum	8	4	UNSIGNED	BIG_ENDIAN	1.000	0.000	
UsingFreeAreCalStat	e On/Off	13	1	UNSIGNED	BIG_ENDIAN	1.000	0.000	
DataValidStat	e On/Off	15	1	UNSIGNED	BIG_ENDIAN	1.000	0.000	
SensorStatu	s enum	0	5	UNSIGNED	BIG_ENDIAN	1.000	0.000	
SensorFaultStat	e On/Off	6	1	UNSIGNED	BIG_ENDIAN	1.000	0.000	

EST Enable TDC Counter

Volatile Data TDC double

: ETC_Open_Fault of 50] (Enabled)

ETC_Frequency = 2500 double (Calibration)

pHawk (RTW) PWM Output PWMOutput ne: IAC_PPin Pin: (None) sency: 2 (Hz)

pHawk (RTW) PWM Output PWMOutput ne: IAC_SPin Pin: (None) sency: 2 (Hz)

Injector Diagnostics (Inj)

latile Data utdownTimerState poolean

latile Data neShutdownWarning poolean

latile Data ineShutdownAction poolean

MotoHawk (RTW)
PWM Output
Name:WASTEGATE_PWMOutput
VarDec Name: WASTEGATE
Pin: (None)
Minimum Frequency: 2 (Hz)

Always execute Main Power Relay control in the background.

The saving and restoring of non-volatile variables must be called from a background priority task.

ower Relay

wk (RTW) ete Output in: MPRD

ւ Store RD State

After a delay, turn on or off Main Power Relay

NonVolatile Memory Store/Restore Hooks from MotoTune

Post Shutdown two ticks before MPRD off

Delay the rising and falling of a boolean signal

Post Shutdown two ticks before MPRD off

Trigger

Inline Code

Include: Start: Output: while (1);

Loop Forever Causing Watchdog Reset

Save NV Vars one tick before MPRD off

f()

do { ... } while

While new CCP Command

MotoHawk Absolute Override

MotoHawk Relative Override

f()
Trigger

motohawk_sfun_restore_nvmem

MotoHawk (RTW) Code Coverage Test Bit f()
Trigger

motohawk_sfun_store_nvmem

SCIL4

MotoHawk (RTW) Code Coverage Test Bit

Output true once on falling edge of event display variable

Output function-call once on falling edge of event display variable

Function-Call TriggerOut
Generator

motohawk_shutdown_power

f() Trigger

MotoHawk(RTW) Event Call

SCIL4

MotoHawk (RTW) Code Coverage Test Bit

Check how input compares to 'val'

Discrete Derivative

1st-Order Low-Pass Filter

$$y[k] = a*x[k] + (1-a)*y[k-1]$$

where a = t/T

Tunable 1st-Order Low-Pass Filter

Convert a boolean input signal to a more slowly ramping 'alpha' from 0 to 1

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Hi & !Lo => Hi Lo & !Hi => Lo Otherwise, Hold

Discrete Integrator, with output and state saturation.

Output 'In' when between Min and Max, and saturate against limits otherwise.

Calibratable wrapper around the Saturation block

Output the time since enabled, by summing up 'dt'.

If this block is in an enabled subsystem that resets its states, then the count will reset as well.

Otherwise, the count will resume from where it left off.

Note that when the Sample Time of the the 'dt' is non-positive, the block will only output its Initial Value if the enabled subsystem is set to reset its state. This means that the count will immediately 'catch up' if the enabled subsystem holds its states.

Rate Limiter - Limit allowable change in signal per timestep

Rate Limiter - Limit allowable change in signal per timestep

EngUnitsRaw

ysVolt

al Value

ngUnitsFilt

MMA_Current

Final Value

EngUnitsFilt

The outputs of this block are designed to be directly connected to a MotoHawk PWM block.

