## UNIVERSITY OF ABERDEEN

## **SESSION 2016-17**

## **EX3502**

# Degree Examination in EX3502 Separation Processes 1 8<sup>th</sup> May 2017 9 am – 12 am

## PLEASE NOTE THE FOLLOWING

- (i) You **must not** have in your possession any material other than that expressly permitted in the rules appropriate to this examination. Where this is permitted, such material **must not** be amended, annotated or modified in any way.
- (ii) You **must not** have in your possession any material that could be determined as giving you an advantage in the examination.
- (iii) You **must not** attempt to communicate with any candidate during the exam, either orally or by passing written material, or by showing material to another candidate, nor must you attempt to view another candidate's work.
- (iv) You must not take to your examination desk any electronic devices such as mobile phones or other "smart" devices. The only exception to this rule is an approved calculator.

Failure to comply with the above will be regarded as cheating and may lead to disciplinary action as indicated in the Academic Quality Handbook.

Notes: (i) Candidates ARE permitted to use an approved calculator.

- (ii) Candidates ARE NOT permitted to use the Engineering Mathematics Handbook.
- (iii) Candidates ARE NOT permitted to use GREEN or RED pen in their exam booklet.
- (iv) Data sheets are attached to the paper.

Candidates must attempt *ALL* questions. Each question is worth 20 marks.

Answer all parts of this question.

a) Show that for a binary mixture having a constant relative volatility,  $\alpha$ , the mole fraction of the Most Volatile Vomponent (MVC) in the vapour phase,  $y_A$ , is related to the mole fraction of the MVC in the liquid phase,  $x_A$ , by the following equation: [10 marks]

$$y_A = \frac{\alpha x_A}{1 + (\alpha - 1)x_A}$$

State clearly any assumptions made.

- b) A 20 mol% benzene and 80 mol% toluene mixture is heated then passes through a controlled pressure-reducing valve. This causes the stream to flash such that 20% of the feed is vapourised.
  - i) Determine the compositions of the liquid and vapour given that the relative volatility of the system  $\alpha \approx 2.5$ . [8 marks]
  - ii) How might a higher degree of separation be achieved? [2 marks]

## **Question 2**

A gas mixture at 1.0 atm(a) pressure containing air and  $CO_2$  is contacted in a single-stage mixer continuously with pure water at 293 K. The two exit gas and liquid streams reach equilibrium as they are discharged. The inlet gas flow rate is 100 kg mol/h, with a mole fraction of  $CO_2$  of 0.20. The liquid flow rate entering is 300 kg mol water/h. Calculate the amounts and compositions of the two outlet phases. You may assume that water does not vaporize (i.e., no water in the gas phase) and use the Henry's law constant for  $CO_2$  at 293 K in water as  $H = 1.438 \times 10^8$  Pa. [20 marks]

A company is investigating the concentration of orange using the process outlined in Fig. 1. The evaporator must be able to process 1000 kg/h of raw orange juice which has a solids concentration of 7.08% w/w into a 50% w/w solids stream. For this rough design, you may assume that all streams have the same thermodynamic properties as pure water. The raw orange juice is supplied to the evaporator at 20 °C and the evaporator operates at 1 atm(a).



Figure 1: Orange juice concentrator.

a) Determine the flow-rate of all streams.

[3 marks]

b) Determine the duty of the evaporator.

- [6 marks]
- c) The evaporator may be operated at 0.725 bar(g). Update your calculations for this operating condition. Comment if this is a more favourable operating point.

[6 marks]

- d) Size the evaporator assuming that the process is operated at 1 atm(a). You may assume that 1.5 bar(a) steam is available for heating the evaporator and the overall heat transfer coefficient is 1.4 kW/m<sup>2</sup>/K. [3 marks]
- e) How much steam is required to operate this evaporator?

[2 marks]

A methanol/isopropanol (i.e., propan-2-ol) feed is continuously fractionated in a plate column to produce a top product containing 95 mol% methanol and a bottom product containing 10 mol% methanol. The feed, which has a composition 40 mol% methanol, is introduced as liquid at its bubble point temperature and the column operates with a reflux ratio of 4. A blank xy diagram is available in Fig. 3 and VLE data is available in Table 1. The proposed column design utilises a thermosyphon reboiler, which is a total reboiler (i.e., not an equilibrium stage). What is the overall column efficiency if the Murphree stage efficiencies are 80% in the rectifying section and 60% in the stripping section? [20 marks]

Table 1: VLE data for methanol-isopropanol mixtures. The most volatile compound is methanol.

|       |   |       | 0.10  |       |      |      |      |      |      |       |       |      |
|-------|---|-------|-------|-------|------|------|------|------|------|-------|-------|------|
| $y_A$ | 0 | 0.085 | 0.167 | 0.317 | 0.45 | 0.57 | 0.67 | 0.75 | 0.83 | 0.895 | 0.955 | 1.00 |

Note: A blank x-y diagram is available in Fig. 3.

Air is dried by contacting it with a solution of sulphuric acid in a counter-current absorber column. The air enters the absorber with 2.7 mol% of water and leaves with 0.8 mol% of water. Absorbent is supplied to the column at a concentration of 67 mol%  $\rm H_2SO_4$  and 33 mol% water, and exits the column at a concentration of 40 mol%  $\rm H_2SO_4$ . The column is operating at atmospheric pressure (760 mmHg) and at a temperature of  $25~^{\circ}\text{C}$ . You may assume that water is the only component transferred between the phases ( $\rm H_2SO_4$  remains in the liquid phase and no air dissolves). In your workings, use the stream numbering scheme outlined in Fig. 2.



Figure 2: The stream numbering within a multi-stage absorber

- a) Determine the ratio of the flow rate of dry air to the flow rate of  $H_2SO_4$ . [8 marks]
- b) Using the equilibrium data provided in Table 2, determine the number of equilibrium stages required to perform the absorption. Plot your graph in *x-y* coordinates on Fig. 4 and ensure that you adequately capture the curvature of the operating line. [12 marks]

Table 2: Partial pressure data for water over aqueous solutions of sulphuric acid at  $25\ ^{\circ}\text{C}$ .

| Liquid Water Conc. | Partial Pressure of Water |
|--------------------|---------------------------|
| (mol%)             | (mmHg)                    |
| 80                 | 20.8                      |
| 70                 | 17.8                      |
| 60                 | 13.5                      |
| 50                 | 8.45                      |
| 40                 | 3.97                      |
| 30                 | 1.03                      |
| 20                 | 0.124                     |
| 10                 | 0.00765                   |

## **END OF PAPER**

## **DATASHEET**

Conversion from Celsius to Fahrenheit:

$$^{\circ}F = ^{\circ}C \times 1.8 + 32$$

## **Operating lines:**

$$y_{n} = x_{n+1} \frac{R}{R+1} + \frac{x_{D}}{R+1}$$
 Enrichment line (1) 
$$y_{m} = x_{m+1} \frac{L_{m}}{V_{m}} - x_{W} \frac{W}{V_{m}}$$
 Stripping line (2) 
$$y = x \frac{q}{q-1} - \frac{x_{F}}{q-1}$$
 q-line (3) 
$$\frac{y_{A,n+1}}{1-y_{A,n+1}} = \frac{L'}{V'} \frac{x_{A,n}}{1-x_{A,n}} + \frac{y_{A,1}}{1-y_{A,1}} - \frac{L'}{V'} \frac{x_{A,0}}{1-x_{A,0}}$$
 Absorption (4)

## Relative volatility

$$y_A = \frac{\alpha x_A}{1 + (\alpha - 1)x_A} \tag{5}$$

## Rayleigh's equation

$$\ln\left(\frac{L_{final}}{L_{initial}}\right) = \int_{x_{initial}}^{x_{final}} \frac{\mathrm{d}x}{y - x} \tag{6}$$

If the relative volatility is constant:

$$\ln\left(\frac{L_{final}}{L_{initial}}\right) = (\alpha - 1)^{-1} \ln\left(\frac{x_{final}(1 - x_{initial})}{x_{initial}(1 - x_{final})}\right) + \ln\left(\frac{1 - x_{initial}}{1 - x_{final}}\right)$$
(7)

## **Quadratic equation:**

$$a x^{2} + b x + c = 0$$
 
$$x = \frac{-b \pm \sqrt{b^{2} - 4 a c}}{2 a}$$
 (8)

## **Ponchon-Savarit equations:**

$$P_C = (R+1)(h_V(x=x_D) - h_L(x=x_D)) + h_L(x=x_D)$$
(9)

Table 3: Thermodynamic properties of saturated steam by temperature, calculated using the NASA CEA database and the vapour pressure data of Wexler or Wagner and Pruss (1990). The reference state is the triple point of saturated liquid water.

| T    | P       | $C_{p,l}$     | $C_{p,v}$                      | $h_l$       | $h_{lv}$    | $h_v$       | $s_l$         | $s_v$                  |
|------|---------|---------------|--------------------------------|-------------|-------------|-------------|---------------|------------------------|
| (°C) | (bar)   | $(kJ~kg^{-1}$ | $(\mathrm{kJ}\mathrm{kg}^{-1}$ | (kJ         | (kJ         | (kJ         | $(kJ~kg^{-1}$ | $ $ (kJ ${ m kg}^{-1}$ |
|      |         | $K^{-1}$ )    | $K^{-1})$                      | $kg^{-1}$ ) | $kg^{-1}$ ) | $kg^{-1}$ ) | $K^{-1}$ )    | $K^{-1}$ )             |
| 0.01 | 0.00612 | 4.228         | 1.859                          | 0.000       | 2501        | 2501        | 0.000         | 9.155                  |
| 1    | 0.00657 | 4.220         | 1.859                          | 4.182       | 2499        | 2503        | 0.01528       | 9.129                  |
| 2    | 0.00706 | 4.213         | 1.860                          | 8.398       | 2496        | 2505        | 0.03063       | 9.103                  |
| 3    | 0.00758 | 4.207         | 1.860                          | 12.61       | 2494        | 2506        | 0.04591       | 9.077                  |
| 4    | 0.00813 | 4.202         | 1.860                          | 16.81       | 2491        | 2508        | 0.06111       | 9.051                  |
| 5    | 0.00872 | 4.198         | 1.860                          | 21.01       | 2489        | 2510        | 0.07623       | 9.025                  |
| 6    | 0.00935 | 4.194         | 1.860                          | 25.21       | 2487        | 2512        | 0.09129       | 9.000                  |
| 7    | 0.0100  | 4.191         | 1.860                          | 29.40       | 2484        | 2514        | 0.1063        | 8.975                  |
| 8    | 0.0107  | 4.189         | 1.861                          | 33.59       | 2482        | 2516        | 0.1212        | 8.950                  |
| 9    | 0.0115  | 4.187         | 1.861                          | 37.78       | 2480        | 2518        | 0.1361        | 8.925                  |
| 10   | 0.0123  | 4.185         | 1.861                          | 41.97       | 2477        | 2519        | 0.1509        | 8.900                  |
| 12   | 0.0140  | 4.183         | 1.861                          | 50.33       | 2473        | 2523        | 0.1803        | 8.852                  |
| 14   | 0.0160  | 4.182         | 1.862                          | 58.70       | 2468        | 2527        | 0.2096        | 8.805                  |
| 16   | 0.0182  | 4.181         | 1.862                          | 67.06       | 2464        | 2531        | 0.2386        | 8.758                  |
| 18   | 0.0206  | 4.181         | 1.863                          | 75.43       | 2459        | 2534        | 0.2674        | 8.713                  |
| 20   | 0.0234  | 4.182         | 1.863                          | 83.79       | 2454        | 2538        | 0.2960        | 8.668                  |
| 25   | 0.0317  | 4.183         | 1.864                          | 104.7       | 2443        | 2547        | 0.3668        | 8.559                  |
| 30   | 0.0425  | 4.183         | 1.866                          | 125.6       | 2431        | 2557        | 0.4363        | 8.455                  |
| 35   | 0.0563  | 4.183         | 1.867                          | 146.5       | 2420        | 2566        | 0.5048        | 8.356                  |
| 40   | 0.0738  | 4.182         | 1.868                          | 167.4       | 2408        | 2575        | 0.5721        | 8.260                  |
| 45   | 0.0959  | 4.181         | 1.870                          | 188.4       | 2396        | 2585        | 0.6383        | 8.169                  |
| 50   | 0.123   | 4.181         | 1.871                          | 209.3       | 2385        | 2594        | 0.7035        | 8.082                  |
| 55   | 0.158   | 4.181         | 1.873                          | 230.2       | 2373        | 2603        | 0.7677        | 7.998                  |
| 60   | 0.199   | 4.183         | 1.875                          | 251.1       | 2362        | 2613        | 0.8309        | 7.918                  |
| 65   | 0.250   | 4.185         | 1.876                          | 272.0       | 2350        | 2622        | 0.8933        | 7.841                  |
| 70   | 0.312   | 4.188         | 1.878                          | 292.9       | 2339        | 2632        | 0.9547        | 7.767                  |
| 75   | 0.386   | 4.191         | 1.880                          | 313.9       | 2327        | 2641        | 1.015         | 7.696                  |
| 80   | 0.474   | 4.195         | 1.882                          | 334.9       | 2316        | 2650        | 1.075         | 7.628                  |
| 85   | 0.578   | 4.199         | 1.884                          | 355.9       | 2304        | 2660        | 1.134         | 7.562                  |
| 90   | 0.701   | 4.203         | 1.886                          | 376.9       | 2292        | 2669        | 1.192         | 7.499                  |
| 95   | 0.845   | 4.209         | 1.888                          | 397.9       | 2281        | 2679        | 1.250         | 7.439                  |
| 100  | 1.01    | 4.217         | 1.890                          | 419.0       | 2269        | 2688        | 1.307         | 7.381                  |
| 110  | 1.43    | 4.224         | 1.894                          | 461.2       | 2246        | 2707        | 1.418         | 7.271                  |
| 120  | 1.99    | 4.246         | 1.899                          | 503.6       | 2222        | 2726        | 1.527         | 7.169                  |
| 130  | 2.70    | 4.271         | 1.904                          | 546.3       | 2199        | 2745        | 1.634         | 7.075                  |
| 140  | 3.62    | 4.294         | 1.908                          | 589.2       | 2175        | 2764        | 1.739         | 6.987                  |
| 150  | 4.76    | 4.316         | 1.913                          | 632.4       | 2151        | 2783        | 1.842         | 6.906                  |
| 160  | 6.18    | 4.339         | 1.918                          | 675.8       | 2127        | 2802        | 1.943         | 6.830                  |

Table 4 continued: Thermodynamic properties of saturated steam by temperature.

| T    | P     | $C_{p,l}$                        | $C_{p,v}$                        | $h_l$       | $h_{lv}$    | $h_v$       | $s_l$                            | $s_v$                 |
|------|-------|----------------------------------|----------------------------------|-------------|-------------|-------------|----------------------------------|-----------------------|
| (°C) | (bar) | $(\mathrm{kJ}\ \mathrm{kg}^{-1}$ | $(\mathrm{kJ}\ \mathrm{kg}^{-1}$ | (kJ         | (kJ         | (kJ         | $(\mathrm{kJ}\ \mathrm{kg}^{-1}$ | $\mid$ (kJ kg $^{-1}$ |
|      |       | $K^{-1}$ )                       | $K^{-1}$ )                       | $kg^{-1}$ ) | $kg^{-1}$ ) | $kg^{-1}$ ) | $K^{-1}$ )                       | $K^{-1}$ )            |
| 170  | 7.92  | 4.366                            | 1.924                            | 719.5       | 2102        | 2822        | 2.043                            | 6.759                 |
| 180  | 10.0  | 4.398                            | 1.929                            | 763.5       | 2077        | 2841        | 2.140                            | 6.693                 |
| 190  | 12.6  | 4.437                            | 1.934                            | 807.9       | 2052        | 2860        | 2.237                            | 6.632                 |
| 200  | 15.5  | 4.485                            | 1.940                            | 852.9       | 2027        | 2879        | 2.332                            | 6.575                 |
| 250  | 39.8  | 4.861                            | 1.969                            | 1088.       | 1889        | 2977        | 2.799                            | 6.338                 |
| 300  | 85.9  | 5.746                            | 1.999                            | 1354.       | 1723        | 3076        | 3.275                            | 6.163                 |

Table 4: Thermodynamic properties of saturated steam by pressure, calculated using the NASA CEA database and the vapour pressure data of Wexler or Wagner and Pruss (1990). The reference state is the triple point of saturated liquid water.

| P     | T    | $C_{p,l}$                        | $C_{p,v}$                        | $h_l$       | $h_{lv}$            | $h_v$       | $s_l$                            | $ s_v $               |
|-------|------|----------------------------------|----------------------------------|-------------|---------------------|-------------|----------------------------------|-----------------------|
| (bar) | (°C) | $(\mathrm{kJ}\ \mathrm{kg}^{-1}$ | $(\mathrm{kJ}\ \mathrm{kg}^{-1}$ | (kJ         | (kJ                 | (kJ         | $(\mathrm{kJ}\ \mathrm{kg}^{-1}$ | $\mid$ (kJ kg $^{-1}$ |
|       |      | $ K^{-1})$                       | $K^{-1}$ )                       | $ kg^{-1})$ | $\mid$ kg $^{-1}$ ) | $kg^{-1}$ ) | $K^{-1}$ )                       | $K^{-1}$ )            |
| 0.01  | 6.97 | 4.191                            | 1.860                            | 29.28       | 2485                | 2514        | 0.1059                           | 8.975                 |
| 0.015 | 13.0 | 4.182                            | 1.862                            | 54.61       | 2470                | 2525        | 0.1953                           | 8.828                 |
| 0.02  | 17.5 | 4.181                            | 1.863                            | 73.33       | 2460                | 2533        | 0.2602                           | 8.724                 |
| 0.025 | 21.1 | 4.182                            | 1.863                            | 88.32       | 2452                | 2540        | 0.3115                           | 8.644                 |
| 0.03  | 24.1 | 4.182                            | 1.864                            | 100.9       | 2445                | 2546        | 0.3539                           | 8.579                 |
| 0.035 | 26.7 | 4.183                            | 1.865                            | 111.7       | 2439                | 2551        | 0.3903                           | 8.524                 |
| 0.04  | 29.0 | 4.183                            | 1.865                            | 121.3       | 2433                | 2555        | 0.4221                           | 8.476                 |
| 0.045 | 31.0 | 4.183                            | 1.866                            | 129.9       | 2429                | 2559        | 0.4504                           | 8.435                 |
| 0.05  | 32.9 | 4.183                            | 1.866                            | 137.7       | 2424                | 2562        | 0.4759                           | 8.397                 |
| 0.055 | 34.6 | 4.183                            | 1.867                            | 144.8       | 2420                | 2565        | 0.4992                           | 8.364                 |
| 0.06  | 36.2 | 4.182                            | 1.867                            | 151.4       | 2417                | 2568        | 0.5206                           | 8.333                 |
| 0.065 | 37.6 | 4.182                            | 1.868                            | 157.6       | 2413                | 2571        | 0.5404                           | 8.305                 |
| 0.07  | 39.0 | 4.182                            | 1.868                            | 163.3       | 2410                | 2574        | 0.5588                           | 8.279                 |
| 0.075 | 40.3 | 4.182                            | 1.868                            | 168.7       | 2407                | 2576        | 0.5761                           | 8.255                 |
| 0.08  | 41.5 | 4.181                            | 1.869                            | 173.8       | 2404                | 2578        | 0.5923                           | 8.232                 |
| 0.085 | 42.7 | 4.181                            | 1.869                            | 178.6       | 2402                | 2580        | 0.6076                           | 8.211                 |
| 0.09  | 43.8 | 4.181                            | 1.869                            | 183.2       | 2399                | 2582        | 0.6221                           | 8.191                 |
| 0.095 | 44.8 | 4.181                            | 1.870                            | 187.6       | 2397                | 2584        | 0.6359                           | 8.173                 |
| 0.12  | 49.4 | 4.181                            | 1.871                            | 206.9       | 2386                | 2593        | 0.6961                           | 8.092                 |
| 0.14  | 52.6 | 4.181                            | 1.872                            | 220.0       | 2379                | 2599        | 0.7365                           | 8.039                 |
| 0.16  | 55.3 | 4.181                            | 1.873                            | 231.5       | 2373                | 2604        | 0.7719                           | 7.993                 |
| 0.18  | 57.8 | 4.182                            | 1.874                            | 241.9       | 2367                | 2609        | 0.8034                           | 7.953                 |
| 0.2   | 60.1 | 4.183                            | 1.875                            | 251.4       | 2362                | 2613        | 0.8318                           | 7.917                 |
| 0.22  | 62.1 | 4.184                            | 1.875                            | 260.1       | 2357                | 2617        | 0.8578                           | 7.884                 |
| 0.24  | 64.1 | 4.185                            | 1.876                            | 268.1       | 2352                | 2620        | 0.8817                           | 7.855                 |
| 0.26  | 65.9 | 4.186                            | 1.877                            | 275.6       | 2348                | 2624        | 0.9039                           | 7.828                 |

Table 4 continued: Thermodynamic properties of saturated steam by pressure.

| P     | T    | $C_{p,l}$     | $C_{p,v}$                      | $h_l$       | $h_{lv}$          | $h_v$       | $s_l$          | $s_v$                                         |
|-------|------|---------------|--------------------------------|-------------|-------------------|-------------|----------------|-----------------------------------------------|
| (bar) | (°C) | $(kJ kg^{-1}$ | $(\mathrm{kJ}\mathrm{kg}^{-1}$ | (kJ         | (kJ               | (kJ         | $(kJ kg^{-1})$ | $ $ (kJ kg $^{-1}$                            |
|       |      | $ K^{-1} $    | $K^{-1}$ )                     | $kg^{-1}$ ) | $\dot{k}g^{-1}$ ) | $kg^{-1}$ ) | $K^{-1}$ )     | $\left( \stackrel{.}{K}^{-1} \right)^{\circ}$ |
| 0.28  | 67.5 | 4.187         | 1.877                          | 282.6       | 2344              | 2627        | 0.9245         | 7.803                                         |
| 0.3   | 69.1 | 4.187         | 1.878                          | 289.2       | 2341              | 2630        | 0.9439         | 7.780                                         |
| 0.32  | 70.6 | 4.188         | 1.878                          | 295.5       | 2337              | 2633        | 0.9621         | 7.758                                         |
| 0.34  | 72.0 | 4.189         | 1.879                          | 301.4       | 2334              | 2635        | 0.9793         | 7.738                                         |
| 0.36  | 73.4 | 4.190         | 1.879                          | 307.0       | 2331              | 2638        | 0.9956         | 7.719                                         |
| 0.38  | 74.6 | 4.191         | 1.880                          | 312.4       | 2328              | 2640        | 1.011          | 7.701                                         |
| 0.4   | 75.9 | 4.192         | 1.880                          | 317.6       | 2325              | 2643        | 1.026          | 7.684                                         |
| 0.42  | 77.1 | 4.193         | 1.881                          | 322.5       | 2322              | 2645        | 1.040          | 7.668                                         |
| 0.44  | 78.2 | 4.194         | 1.881                          | 327.3       | 2320              | 2647        | 1.054          | 7.652                                         |
| 0.46  | 79.3 | 4.195         | 1.882                          | 331.8       | 2317              | 2649        | 1.066          | 7.637                                         |
| 0.48  | 80.3 | 4.195         | 1.882                          | 336.2       | 2315              | 2651        | 1.079          | 7.623                                         |
| 0.5   | 81.3 | 4.196         | 1.882                          | 340.5       | 2312              | 2653        | 1.091          | 7.610                                         |
| 0.55  | 83.7 | 4.198         | 1.883                          | 350.5       | 2307              | 2657        | 1.119          | 7.579                                         |
| 0.6   | 85.9 | 4.199         | 1.884                          | 359.9       | 2302              | 2662        | 1.145          | 7.550                                         |
| 0.65  | 88.0 | 4.201         | 1.885                          | 368.5       | 2297              | 2665        | 1.169          | 7.524                                         |
| 0.7   | 90.0 | 4.203         | 1.886                          | 376.7       | 2292              | 2669        | 1.192          | 7.500                                         |
| 0.75  | 91.8 | 4.205         | 1.887                          | 384.4       | 2288              | 2673        | 1.213          | 7.478                                         |
| 0.8   | 93.5 | 4.207         | 1.887                          | 391.7       | 2284              | 2676        | 1.233          | 7.457                                         |
| 0.85  | 95.2 | 4.209         | 1.888                          | 398.6       | 2280              | 2679        | 1.252          | 7.437                                         |
| 0.9   | 96.7 | 4.211         | 1.889                          | 405.1       | 2277              | 2682        | 1.269          | 7.419                                         |
| 0.95  | 98.2 | 4.214         | 1.889                          | 411.4       | 2273              | 2685        | 1.286          | 7.401                                         |
| 1     | 99.6 | 4.216         | 1.890                          | 417.5       | 2270              | 2687        | 1.303          | 7.385                                         |
| 1.1   | 102. | 4.217         | 1.891                          | 428.8       | 2264              | 2692        | 1.333          | 7.355                                         |
| 1.2   | 105. | 4.218         | 1.892                          | 439.3       | 2258              | 2697        | 1.361          | 7.327                                         |
| 1.3   | 107. | 4.220         | 1.893                          | 449.0       | 2253              | 2702        | 1.386          | 7.301                                         |
| 1.4   | 109. | 4.223         | 1.894                          | 458.3       | 2247              | 2706        | 1.410          | 7.278                                         |
| 1.5   | 111. | 4.227         | 1.895                          | 467.0       | 2243              | 2710        | 1.433          | 7.256                                         |
| 1.6   | 113. | 4.231         | 1.896                          | 475.2       | 2238              | 2713        | 1.454          | 7.236                                         |
| 1.7   | 115. | 4.235         | 1.897                          | 483.0       | 2234              | 2717        | 1.475          | 7.217                                         |
| 1.8   | 117. | 4.239         | 1.897                          | 490.5       | 2230              | 2720        | 1.494          | 7.200                                         |
| 1.9   | 119. | 4.243         | 1.898                          | 497.7       | 2226              | 2723        | 1.512          | 7.183                                         |
| 2     | 120. | 4.247         | 1.899                          | 504.5       | 2222              | 2726        | 1.530          | 7.167                                         |
| 2.5   | 127. | 4.264         | 1.902                          | 535.2       | 2205              | 2740        | 1.607          | 7.098                                         |
| 3     | 134. | 4.279         | 1.905                          | 561.4       | 2190              | 2752        | 1.672          | 7.043                                         |
| 3.5   | 139. | 4.292         | 1.908                          | 584.3       | 2178              | 2762        | 1.727          | 6.997                                         |
| 4     | 144. | 4.302         | 1.910                          | 604.8       | 2166              | 2771        | 1.777          | 6.957                                         |
| 4.5   | 148. | 4.312         | 1.912                          | 623.3       | 2156              | 2779        | 1.821          | 6.922                                         |
| 5     | 152. | 4.320         | 1.914                          | 640.3       | 2146              | 2787        | 1.861          | 6.891                                         |
| 6     | 159. | 4.337         | 1.918                          | 670.7       | 2129              | 2800        | 1.932          | 6.839                                         |
| 7     | 165. | 4.352         | 1.921                          | 697.4       | 2114              | 2812        | 1.993          | 6.794                                         |

Table 4 continued: Thermodynamic properties of saturated steam by pressure.

| P     | T    | $C_{p,l}$                        | $C_{p,v}$                        | $h_l$       | $h_{lv}$    | $h_v$       | $s_l$                            | $s_v$                |
|-------|------|----------------------------------|----------------------------------|-------------|-------------|-------------|----------------------------------|----------------------|
| (bar) | (°C) | $(\mathrm{kJ}\ \mathrm{kg}^{-1}$ | $(\mathrm{kJ}\ \mathrm{kg}^{-1}$ | (kJ         | (kJ         | (kJ         | $(\mathrm{kJ}\ \mathrm{kg}^{-1}$ | $ $ (kJ $ m kg^{-1}$ |
|       |      | $K^{-1}$ )                       | $K^{-1}$ )                       | $kg^{-1}$ ) | $ kg^{-1})$ | $kg^{-1}$ ) | $K^{-1}$ )                       | $K^{-1}$ )           |
| 8     | 170. | 4.367                            | 1.924                            | 721.3       | 2101        | 2822        | 2.047                            | 6.757                |
| 9     | 175. | 4.382                            | 1.926                            | 743.0       | 2089        | 2832        | 2.095                            | 6.724                |
| 10    | 180. | 4.397                            | 1.929                            | 763.0       | 2078        | 2841        | 2.139                            | 6.694                |
| 15    | 198. | 4.477                            | 1.939                            | 845.1       | 2031        | 2876        | 2.316                            | 6.584                |
| 20    | 212. | 4.557                            | 1.947                            | 909.2       | 1994        | 2904        | 2.449                            | 6.509                |
| 25    | 224. | 4.636                            | 1.954                            | 962.9       | 1963        | 2926        | 2.557                            | 6.452                |
| 30    | 234. | 4.713                            | 1.959                            | 1010.       | 1936        | 2945        | 2.649                            | 6.406                |
| 35    | 243. | 4.789                            | 1.964                            | 1052.       | 1911        | 2963        | 2.730                            | 6.368                |
| 40    | 250. | 4.865                            | 1.969                            | 1090.       | 1888        | 2978        | 2.803                            | 6.336                |
| 45    | 257. | 4.942                            | 1.973                            | 1125.       | 1867        | 2992        | 2.868                            | 6.308                |
| 50    | 264. | 5.022                            | 1.977                            | 1158.       | 1847        | 3005        | 2.929                            | 6.284                |
| 60    | 276. | 5.192                            | 1.984                            | 1218.       | 1810        | 3028        | 3.039                            | 6.242                |
| 70    | 286. | 5.384                            | 1.991                            | 1273.       | 1775        | 3048        | 3.136                            | 6.208                |
| 80    | 295. | 5.603                            | 1.996                            | 1325.       | 1742        | 3066        | 3.226                            | 6.179                |
| 90    | 303. | 5.854                            | 2.001                            | 1373.       | 1710        | 3083        | 3.309                            | 6.153                |
| 100   | 311. | 6.140                            | 2.006                            | 1420.       | 1678        | 3098        | 3.388                            | 6.131                |
| 120   | 325. | 6.827                            | 2.015                            | 1511.       | 1615        | 3126        | 3.538                            | 6.093                |

Data sheet handout. If submitting answers to the question, ensure you submit this graph as part of your solution.

## Student ID:



Figure 3: A blank chart for plotting VLE/operating-line data on. For use in Q. 4.

Data sheet handout. If submitting answers to the question, ensure you submit this graph as part of your solution.

## Student ID:



Figure 4: Blank graph for the air dryer in Q. 5.