Nominal Reasoning Techniques in Coq (Work in Progress)

Brian Aydemir
Aaron Bohannon Stephanie Weirich

University of Pennsylvania

16 August 2006

What is nominal reasoning (in Coq)?

Using names for both bound and free variables

$$\lambda x. x y \rightarrow lam (app 0 1)$$

$$lam (app 0 (var y))$$

$$lam x (app (var x) (var y))$$

lacktriangle Using "built-in" equality to represent lpha-equality

$$1 + 1 = 2$$
 $lam x (var x) = lam y (var y)$

Minimizing the need to rename bound variables

How to implement this in Coq?

lam is not injective!

$$lam x (var x) = lam y (var y) \rightarrow x = y$$

◆ Therefore, can't use native inductive datatypes.

```
Inductive tm : Set := | var : tmvar \rightarrow tm | app : tm \rightarrow tm \rightarrow tm | lam : tmvar \rightarrow tm \rightarrow tm.
```

Our solution

- Axiomatize everything.
- Similar in spirit to Gordon-Melham axioms.

Types and constructors:

Parameter tmvar : AtomT.

Parameter tm : Set.

Parameter var : $tmvar \rightarrow tm$.

Parameter app : $tm \rightarrow tm \rightarrow tm$.

Parameter lam : $tmvar \rightarrow tm \rightarrow tm$.

High-level description language may be similar to Fresh O'Caml, $C\alpha ml$, Isabelle/HOL-Nominal

Nominal datatype package for Isabelle/HOL [Berghofer and Urban, 2006]

Today: Nominal reasoning in Coq

Signature in Coq

Types and constructors:

Parameter tmvar : AtomT.

Parameter tm : Set.

Parameter var : $tmvar \rightarrow tm$.

Parameter app : $tm \rightarrow tm \rightarrow tm$.

Parameter lam : $tmvar \rightarrow tm \rightarrow tm$.

Axioms for discrimination:

 \forall x s t, var x \neq app s t

Axioms for injectivity:

 $\forall x x', var x = var x' \rightarrow x = x'$

Properties of lam

Alpha-equivalence:

```
\forall x y t, y \notin fvar t \rightarrow lam x t = lam y ((y,x) • t)
```

• Eliminating an equality:

```
\forall x x' t t', lam x t = lam x' t' \rightarrow
(x = x' \land t = t') \lor
(x \neq x' \land x \neq fvar t' \land t = (x,x') \bullet t')
```

 (y,x) • t denotes a swap, which we take from Nominal Logic.

Properties of lam (cont.)

◆ Free variables:
 ∀ x t, fvar (lam x t) = (fvar t) \ {x}

Swapping:

```
\forall a b x t,
(a,b) • (lam x t) = lam ((a,b) • x) ((a,b) • t)
```

Structural induction

```
\forall (P: tm \rightarrow Prop) (F: aset tmvar), (\forall x, P (var x)) \rightarrow (\forall t u, P t \rightarrow P u \rightarrow P (app t u)) \rightarrow (\forall x t, x \notin F \rightarrow P t \rightarrow P (lam x t)) \rightarrow \forall t, P t.
```

- In the lam case, we only need to consider suitably fresh names x.
- ◆ This is equivalent to the principle that omits F.

Using the signature

- Proofs using this signature seem natural.
- ♦ We can use our induction principle to prove:
 ∀ y x t, y ∉ fvar t → t [y := s] = t
- ◆ Proof: By induction on t.Choose "F" to be {y} ∪ fvar s.

```
y \notin \text{fvar (lam x t)}

x \notin \{y\} \cup \text{fvar s}

y \notin \text{fvar t} \rightarrow \text{t [y := s]} = \text{t}

(\text{lam x t)} [y := s] = \text{lam x t}
```

In the lam case:

```
y \notin fvar (lam x t)

x \neq y \land x \notin fvar s

y \notin fvar t \rightarrow t [y := s] = t

(lam x t) [y := s] = lam x t
```

Next, since:

```
\forall x y t s, x \neq y \rightarrow x \notin fvar s \rightarrow (lam x t) [y := s] = lam x (t [y := s])
```

```
y \notin \text{fvar (lam x t)}

x \neq y \land x \notin \text{fvar s}

y \notin \text{fvar t} \rightarrow \text{t [y := s]} = \text{t}

\text{lam x (t [y := s])} = \text{lam x t}
```

```
Next, recalling that:

\forall x t, fvar (lam x t) = (fvar t) \ {x}
```

```
y \notin (fvar t) \setminus \{x\}

x \neq y \land x \notin fvar s

y \notin fvar t \rightarrow t [y := s] = t

lam x (t [y := s]) = lam x t
```

```
y = x \lor y \notin fvar s

x \neq y \land x \notin fvar s

y \notin fvar t \rightarrow t [y := s] = t

lam x (t [y := s]) = lam x t
```

```
V = X
x \neq y \land x \notin fvar s
y \notin fvar t \rightarrow t [y := s] = t
lam x (t [y := s]) = lam x t
v ∉ fvar t
x \neq y \land x \notin fvar s
y \notin fvar t \rightarrow t [y := s] = t
lam x (t [y := s]) = lam x t
```

Some questions

Given our signature for the untyped λ -calculus:

- 1. Is this signature sound?
- 2. How do we define functions over terms?
- **3.** What should be in this signature?

Is our signature sound?

- We model our signature using a locally nameless representation for terms.
- We do require two axioms.
 - 1. Proof irrelevance
 - 2. Extensional equality on functions

```
Parameter tm_rec :
   \forall R : Set,
   \forall fv : tmvar \rightarrow R.
   \forall fa : tm \rightarrow R \rightarrow tm \rightarrow R \rightarrow R,
   \forall fl : tmvar \rightarrow tm \rightarrow R \rightarrow R,
   \forall F : aset tmvar,
   (supports F (fv, fa, f1)) \rightarrow
   (∃ b. (b ∉ F ∧
               \forall x y, b \sharp (fl b x y))) \rightarrow
   (tm \rightarrow R).
```

Return type of the function being constructed.

```
Parameter tm_rec :
   \forall R : Set,
   \forall fv : tmvar \rightarrow R,
   \forall fa : tm \rightarrow R \rightarrow tm \rightarrow R \rightarrow R.
   \forall fl: tmvar \rightarrow tm \rightarrow R \rightarrow R,
   \forall F : aset tmvar,
   (supports F (fv, fa, f1)) \rightarrow
   (∃ b. (b ∉ F ∧
               \forall x y, b \sharp (fl b x y))) \rightarrow
   (tm \rightarrow R).
```

Functions for each case.

```
Parameter tm_rec :
   \forall R : Set,
   \forall fv : tmvar \rightarrow R,
   \forall fa : tm \rightarrow R \rightarrow tm \rightarrow R \rightarrow R,
   \forall fl : tmvar \rightarrow tm \rightarrow R \rightarrow R,
   \forall F : aset tmvar,
   (supports F (fv, fa, fl)) \rightarrow
   (∃ b. (b ∉ F ∧
               \forall x y, b \sharp (fl b x y))) \rightarrow
   (tm \rightarrow R).
```

Side conditions about names. [Pitts, 2006]

```
Parameter tm_rec :
   \forall R : Set,
   \forall fv : tmvar \rightarrow R,
   \forall fa : tm \rightarrow R \rightarrow tm \rightarrow R \rightarrow R,
   \forall fl : tmvar \rightarrow tm \rightarrow R \rightarrow R,
   \forall F : aset tmvar,
   (supports F (fv, fa, f1)) \rightarrow
   (∃ b. (b ∉ F ∧
               \forall x y, b \sharp (fl b x y))) \rightarrow
   (tm \rightarrow R).
```

Final result: A non-dependent function.

An operator for primitive recursion (cont.)

Key property:

```
\forall R fv fa fl F H J,
let g := (tm_rec R fv fa fl F H J) in
\forall x t, x \notin F \rightarrow
g (lam x t) = fl x t (g t).
```

We can always swap names to make this rule apply.

Example: Substitution

```
Defining ( [y := s]):
```

- ◆ Take fl to be (fun x t r \Rightarrow lam x r).
- ♦ Take F to be $\{y\} \cup \text{fvar s.}$

Then

```
\forall x t, x \notin F \rightarrow g (lam x t) = fl x t (g t).
```

becomes

```
\forall x t, x \notin {y} \cup fvar s \rightarrow (lam x t) [y := s] = lam x (t [y := s]).
```

Example: Substitution

```
Defining ( [y := s]):
```

- ◆ Take fl to be (fun x t r \Rightarrow lam x r).
- ♦ Take F to be $\{y\} \cup \text{fvar s.}$

Then

```
\forall x t, x \notin F \rightarrow g (lam x t) = fl x t (g t).
```

becomes

```
\forall x t, x \neq y \to x \notin fvar s \to (\lambda am x t) [y := s] = \lambda am x (t [y := s]).
```

What should be in our signature?

- We need the following:
 - Types and constructors
 - Injection and discrimination theorems
 - Alpha-equivalence
 - Free variables and swapping
 - ◆ Induction principle
 - Recursion operator
- Also include functions like substitution.

- We'll want to automatically generate more.
 - Specialized induction principles
 - Inversion principles for relations

Conclusions

- We've shown how "nominal reasoning" can work in Coq.
 - Using names for bound and free variables
 - No separate α -equivalence relation
 - Minimal need for name swapping
- Definitions and proofs follow informal practice.
- Future work: tool support, dependent swapping