Chương 2: Giải phương trình phi tuyến

Tính gần đúng nghiệm thực của một phương trình

- 1. Đặt bài toán
- 2. Nghiệm và khoảng cách ly nghiệm
- 3. Phương pháp chia đôi
- 4. Phương pháp lặp đơn
- 5. Phương pháp dây cung
- 6. Phương pháp Newton
- 7. Bài tập

Đặt bài toán

Tìm nghiệm của phương trình phi tuyến:

$$f(x) = 0 (1)$$

với f là hàm liên tục trên một khoảng đóng hoặc mở thuộc \mathbb{R} . Vấn đề: khó tính được nghiệm chính xác của (1), nên ta cần **tìm nghiệm gần đúng**.

Ví dụ: $f(x) = x^3 + \sin(2x) - 2$

Đặt bài toán

Mục tiêu của chương này:

- Tìm hiểu về cách đánh giá sai số của một nghiệm gần đúng của phương trình phi tuyến một ẩn
- Học các nguyên lý xác định nghiệm qua ý nghĩa hình học của các giải thuật
- Biết cách thiết lập các **công thức tính toán** trong các giải thuật
- Biết áp dụng các giải thuật (tính toán bằng tay, và lập trình các chương trình chứa giải thuật)

Nghiệm chính xác của phương trình $f(x) = x^3 + \sin{(2\,x)} - 2 = 0$ là:

$$x = \frac{1}{2} \left(i\sqrt{3} - 1 \right) \left(-\sin(2x) + 2 \right)^{\frac{1}{3}}$$

$$x = \frac{1}{2} \left(-i\sqrt{3} - 1 \right) \left(-\sin(2x) + 2 \right)^{\frac{1}{3}}$$

$$x = \left(-\sin(2x) + 2 \right)^{\frac{1}{3}}$$

(hai giá trị đầu là nghiệm phức, chỉ có nghiệm thứ ba là số thực)

Để dễ tìm giá trị số, trước tiên ta tìm **khoảng cách ly nghiệm**, tức là các khoảng đóng [a,b] (hoặc khoảng mở (a,b)) mà trên đó tồn tại duy nhất nghiệm. Sau đó tìm nghiệm gần đúng trong đó.

Lưu ý: Khoảng cách ly nghiệm càng nhỏ thì sai số của nghiệm gần đúng là càng nhỏ, và càng ít tốn công tìm kiếm.

Ví dụ:

Khoảng cách ly nghiệm là [0.8, 1.3]

Khoảng cách ly nghiệm là [1, 1.1]

Định lý 1 Nếu hàm f(x) liên tục trên đoạn [a,b] và giá trị của hàm trái dấu tại hai đầu mút thì phương trình (1) có nghiệm trong khoảng [a,b]. Thêm nữa, nếu f(x) đơn điệu trên [a,b] thì nghiệm là duy nhất.

Ví dụ: Tìm các khoảng cách ly nghiệm của phương trình f(x)=0 với

Hàm số:
$$f(x) = x^3 - 3x + 1$$

Tính giá tri hàm số ở vài điểm

ta tìm được 3 khoảng cách ly nghiệm:

$$[-2,-1] \text{, } [0,1] \text{, và } [1,2]$$

Đánh giá sai số: ta dựa vào định lý giá trị trung bình của Lagrange:

Định lý 2 Nếu hàm số f(x) liên tục trên [a,b] và có đạo hàm trong (a,b), thì tồn tại một giá trị $c \in (a,b)$ thỏa mãn:

$$f'(c) = \frac{f(b) - f(a)}{b - a} \tag{2}$$

Ý nghĩa hình học:

Tiếp tuyến với đường cong y=f(x) tại điểm (c,f(c)) song song với ab

Áp dụng Định lý 2: gọi p là nghiệm chính xác và x^* là nghiệm gần đúng của f(x) trên [a,b]. Xét trường hợp f(x) có đạo hàm trên (p,x^*) (nếu $p < x^*$) hoặc trên (x^*,p) (nếu $x^* < p$). Theo định lý Lagrange, tồn tại một điểm $c \in (p,x^*)$ (hoặc $c \in (x^*,p)$), sao cho:

$$f'(c) = \frac{f(x^*) - f(p)}{x^* - p}$$

$$\Rightarrow |x^* - p| = \frac{|f(x^*) - f(p)|}{|f'(c)|} = \frac{|f(x^*)|}{|f'(c)|}$$

Nếu có số m thỏa: $\mathbf{0}<\mathbf{m}\leq |\mathbf{f}'(\mathbf{x})|, \forall \mathbf{x}\in [\mathbf{a},\mathbf{b}]$, thì $|f'(c)|\geq m$, do đó: $|x^*-p|\leq \frac{|f(x^*)|}{m}$

Vậy ta có thể chọn sai số tuyệt đối là: $\Delta_{\mathbf{x}^*} = \frac{|\mathbf{f}(\mathbf{x}^*)|}{\mathbf{m}}$.

Công thức đánh giá sai số tổng quát:

Định lý 3 Giả sử hàm f(x) liên tục trên đoạn [a,b], khả vi trong (a,b). Nếu x^* là nghiệm xấp xỉ của nghiệm chính xác $p \in [a,b]$ và $|f'(x)| \ge m > 0, \forall x \in [a,b]$, thì sai số của x^* thỏa công thức sau:

$$|x^* - p| \le \frac{|f(x^*)|}{m} \tag{3}$$

Ví dụ: xét phương trình $f(x)=x^3-3\,x+1=0$ trong [1.3,2], giả sử tìm được nghiệm gần đúng $x^*=1.5$. Xét đạo hàm:

$$|f'(x)| = |3x^2 - 3| \ge 2.07 = m, \forall x \in [1.3, 2]$$
 (4)

Do đó: $|x^* - p| \le \frac{|f(1.3)|}{|2.07|} \approx 0.34$

Giải thuật:

- Xét đoạn [a,b] là khoảng cách ly nghiệm và f(a)f(b)<0. Đặt $a_0=a,b_0=b$ và $x_0=\frac{b+a}{2}$ (điểm giữa của đoạn [a,b]).
- Làm phép lặp (với k là chỉ số vòng lặp, khởi đầu k=0):
 - Nếu $f(x_k) = 0$ thì dừng lại, xác định x_k là nghiệm.
 - Nếu $\mathbf{f}(\mathbf{x_k})\mathbf{f}(\mathbf{a_k})<0$ (tức là $\mathbf{f}(\mathbf{a_k})$ trái dấu với $f(x_k)$) thì đặt $\mathbf{a_{k+1}}=\mathbf{a_k}, b_{k+1}=x_k, x_{k+1}=\frac{b_{k+1}+a_{k+1}}{2}$.
 - Nếu $\mathbf{f}(\mathbf{x_k})\mathbf{f}(\mathbf{b_k}) < 0$ (tức là $\mathbf{f}(\mathbf{b_k})$ trái dấu với $f(x_k)$), khi đó đặt $a_{k+1} = x_k, \mathbf{b_{k+1}} = \mathbf{b_k}, x_{k+1} = \frac{b_{k+1} + a_{k+1}}{2}$.
 - Tăng k thêm 1: k = k + 1, và lặp lại cách tính toán này.

Kết quả từ giải thuật chia đôi:

- Ta luôn duy trì được $f(a_k)f(b_k) < 0, \forall k$ (trừ khi đạt được nghiệm chính xác). Như vậy $[a_k,b_k]$ luôn là khoảng cách ly nghiệm.
- Sau mỗi bước, khoảng cách ly nghiệm giảm đi một nửa: $b_k a_k = \frac{b_{k-1} a_{k-1}}{2}$.
- Đặt $d_k = b_k a_k$, ta có công thức:

$$d_k = \frac{b_{k-1} - a_{k-1}}{2} = \frac{b_{k-2} - a_{k-2}}{2^2} = \dots = \frac{b_0 - a_0}{2^k} = \frac{b - a}{2^k}$$
 (5)

dễ thấy $\lim_{k\to\infty} d_k = 0$, tức là hai dãy số $\{a_k\}, \{b_k\}$ hội tụ. Do $[a_k, b_k]$ là khoảng cách ly nghiệm nên nếu gọi p là nghiệm thì ta luôn có $a_k \le p \le b_k$, nên các dãy số $\{a_k\}, \{b_k\}$ hội tụ về p.

Đánh giá sai số: cho giải thuật chia đôi được lặp cho đến khi đạt được x_k (tức là điểm giữa của đoạn $[a_k,b_k]$). Ta dùng công thức sai số là:

$$|x_k - p| \le \frac{b - a}{2^{k+1}} \tag{6}$$

(Lưu ý: tại sao ở mẫu số có số mũ k+1? Vì ta có $d_k=\frac{b-a}{2^k}$ theo (5), điểm x_k chia đôi khoảng $[a_k,b_k]$ nên sai số được chia cho 2 nữa)

Ví dụ: giải bài toán $f(x)=x^3+\sin{(2\,x)}-2=0$ bằng phương pháp chia đôi trên đoạn [0,1.5]

Giá trị hàm ở hai đầu: f(a) = -2.0, f(b) = 1.5161

k	a_k	b_k	x_k	$f(x_k)$
0	0.0	1.5	0.75	-0.5806
1	0.75	1.5	1.125	0.2019
2	0.75	1.125	0.9375	-0.2219
3	0.9375	1.125	1.0313	-0.0218
4	1.0313	1.125	1.0781	0.0866

So sánh với nghiệm chính xác: p = 1.0409.

Minh họa các bước giải qua đồ thị:

Bước 1:

Minh họa các bước giải qua đồ thị:

Bước 2:

Minh họa các bước giải qua đồ thị:

Bước 3:

Minh họa các bước giải qua đồ thị:

Bước 4:

Minh họa các bước giải qua đồ thị:

Bước 5:

Ví dụ (tính căn bậc hai của 2): giải bài toán $f(x)=x^2-2=0$ bằng phương pháp chia đôi trên đoạn [0,2]

Giá trị hàm ở hai đầu: f(a) = -2.0, f(b) = 2.0

k	a_k	b_k	x_k	$f(x_k)$
0	0.0	2.0	1.0	-1.0
1	1.0	2.0	1.5	0.25
2	1.0	1.5	1.25	-0.4375
3	1.25	1.5	1.375	-0.1094
4	1.375	1.5	1.4375	0.0664
5	1.375	1.4375	1.4063	-0.0225
6	1.4063	1.4375	1.4219	0.0217

Nghiệm chính xác: p = 1.4142

Đầu tiên, chuyển từ phương trình (1) sang dạng tương đương:

$$x = g(x) \tag{7}$$

Nghiệm của phương trình (7) được gọi là **điểm bất động** của hàm số g(x).

Giải thuật:

- Xét đoạn [a,b] là khoảng cách ly nghiệm. Chọn giá trị đầu $x_0 \in [a,b].$
- Lặp: $x_k = g(x_{k-1})$, với k = 1, 2, ...

Ta sẽ khảo sát phương pháp này có **hội tụ** về nghiệm của bài toán hay không, tùy vào đặc điểm của hàm g(x).

Ý nghĩa hình học:

- ullet Tìm điểm giao của đường thẳng y=x và đồ thị y=g(x).
- Giải thuật lặp: khi có giá trị x_{k-1} , ta lấy điểm đối xứng của điểm $g(x_{k-1})$ qua đường y=x, chiếu xuống trục hoành được x_k .

Hàm số:
$$g(x) = \frac{1}{2} x^2 - \sin(x)$$

Đường y=x

Điểm bắt đầu: x_{k-1}

Điểm tiếp theo: x_k

Định nghĩa: Hàm g(x) được gọi là **hàm co** trong đoạn [a,b] nếu tồn tại một số $q:0\leq q<1$ sao cho:

$$|g(x_1) - g(x_2)| \le q|x_1 - x_2|, \forall x_1, x_2 \in [a, b]$$
(8)

Giá trị q được gọi là **hệ số co**.

Định lý 4 Nếu g(x) là hàm co trên đoạn [a,b], thì nó liên tục trên đó.

Định lý 5 Nếu g(x) liên tục trên đoạn [a,b], khả vi trong (a,b) và $\exists q: 0 \leq q < 1$ sao cho $|g'(x)| \leq q, \forall x \in (a,b)$, thì g(x) là hàm co trên [a,b] với hệ số co là q.

Ví dụ: Xét phương trình f(x)=0 với $f(x)=x^3+x-10$ trên đoạn [0,3], chuyển sang dạng (7), ta được: $g(x)=(-x+10)^{\frac{1}{3}}$.

Ta có:

$$|g'(x)| = \left| -\frac{1}{3(-x+10)^{\frac{2}{3}}} \right| \le \left| -\frac{1}{21} \cdot 7^{\frac{1}{3}} \right| \approx 0.0911 \triangleq q < 1$$

Do đó g(x) là hàm co trên đoạn [0,3].

Định lý sau đây tạo cơ sở cho phương pháp lặp đơn, còn gọi là **nguyên lý ánh xạ co**.

Định lý 6 Giả sử g(x) là hàm co trên đoạn [a,b] với hệ số co là q; đồng thời $\forall x \in [a,b], g(x) \in [a,b]$. Khi đó, với mọi giá trị ban đầu $x_0 \in [a,b]$, dãy lặp $\{x_n\}_{n=1}^{\infty}$ của giải thuật lặp sẽ hội tụ về nghiệm p của phương trình (7).

Sai số thu được:

$$|x_n - p| \le \frac{q^n}{1 - q} |x_1 - x_0| \tag{9}$$

hoặc:

$$|x_n - p| \le \frac{q}{1 - q} |x_n - x_{n-1}|$$
 (10)

Tóm tắt tính chất hội tụ:

- ullet Hàm số là co (hệ số co thỏa mãn q<1)
- ullet Tập hợp [a,b] là *tập giới nội* của hàm số g(x)
- Tốc độ hội tụ phụ thuộc vào giá trị của hệ số co q: q càng nhỏ thì hội tụ càng nhanh (ít bước).

Ví dụ: áp dụng phương pháp lặp để giải $x=g(x)=(-x+10)^{\frac{1}{3}}$ với $x_0=0$

Ví dụ: áp dụng phương pháp lặp để giải $x=g(x)=(-x+10)^{\frac{1}{3}}$ với $x_0=0$

k	x_k	$g(x_k)$	$ x_k - p $
0	0.0	2.1544	2.0
1	2.1544	1.987	0.1544
2	1.987	2.0011	0.013
3	2.0011	1.9999	0.0011
4	1.9999	2.0	0.0001
5	2.0	2.0	0.0

So sánh với nghiệm chính xác: p=2.0

Ví dụ: áp dụng phương pháp lặp để giải $x=g(x)=\cos{(x)}\,$ với $x_0=0$

Ví dụ: áp dụng phương pháp lặp để giải $x=g(x)=\cos{(x)}$ với $x_0=0$

k	x_k	$g(x_k)$	$ x_k - p $
0	0.0	1.0	0.73909
1	1.0	0.5403	0.26091
2	0.5403	0.85755	0.19878
3	0.85755	0.65429	0.11847
4	0.65429	0.79348	0.0848
5	0.79348	0.70137	0.0544
6	0.70137	0.76396	0.03772
7	0.76396	0.7221	0.02487
8	0.7221	0.75042	0.01698

So sánh với nghiệm chính xác: p=0.73909

Xét bài toán (1) trong khoảng cách ly nghiệm [a,b], hàm f(x) là liên tục và f(a).f(b)<0. Ý nghĩa: hai đầu hàm số ở hai bên trục hoành. Giải thuật **lặp** (ở bước thứ k, với $a_0=a,b_0=b$):

- Kẻ đoạn thẳng (*dây cung*) nối hai điểm $(a_k, f(a_k))$ và $(b_k, f(b_k))$ (hai đầu của đồ thị hàm số trong đoạn $[a_k, b_k]$).
- Dây cung giao với trục hoành tại một điểm, thì lấy hoành độ của điểm đó làm x_k .
- Lặp lại việc dựng dây cung với đoạn nhỏ hơn: Nếu $f(a_k).f(x_k) < 0$, thì đặt $a_{k+1} = a_k, \mathbf{b_{k+1}} = \mathbf{x_k}$; nếu $f(x_k).f(b) < 0$, thì đặt $\mathbf{a_{k+1}} = \mathbf{x_k}, b_{k+1} = b_k$.

Minh họa: dây cung của $f(x) = \frac{1}{10} (x-1)^3 e^{(x+1)} - 1$ trên đoạn [1,2] x = 1.4979, f(x) = -0.85, ta có f(x).f(b) < 0, vậy tiếp theo xét trên đoạn [1.4979,2].

Tìm công thức tính giá trị của x_k :

Phương trình của dây cung:

$$y = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$$
(11)

Phương trình của trục hoành: y = 0

Tọa độ của điểm giao giữa dây cung với trục hoành là nghiệm chung của hai phương trình trên. Ta thay y=0 vào phương trình (11):

$$y = 0 \Leftrightarrow f(a) + \frac{f(b) - f(a)}{b - a}(x - a) = 0$$

$$\Leftrightarrow x = a - f(a)\frac{b - a}{f(b) - f(a)}$$

$$\Leftrightarrow x = a - f(a)\frac{a - b}{f(a) - f(b)}$$
(12)

Tìm công thức tính giá trị của x_k , cách khác:

Phương trình của dây cung, **thiết lập theo** f(b):

$$y = f(b) - \frac{f(b) - f(a)}{b - a}(b - x) \tag{13}$$

Phương trình của trục hoành: y = 0

Tọa độ của điểm giao giữa dây cung với trục hoành là nghiệm chung của hai phương trình trên. Ta thay y=0 vào phương trình (13):

$$y = 0 \Leftrightarrow f(b) - \frac{f(b) - f(a)}{b - a}(b - x) = 0$$
$$\Leftrightarrow x = b - f(b) \frac{b - a}{f(b) - f(a)} \tag{14}$$

Lưu ý: cả hai công thức (12) và (14) đều đúng.

Xét mối quan hệ giữa x_{k+1} và x_k :

Theo giải thuật, ta biết rằng hoặc $a_{k+1} = x_k$, hoặc $b_{k+1} = x_k$.

• Nếu $a_{k+1}=x_k$, thì dùng công thức (12), ta được:

$$x_{k+1} = a_{k+1} - f(a_{k+1}) \frac{a_{k+1} - b_{k+1}}{f(a_{k+1}) - f(b_{k+1})}$$

$$\Leftrightarrow x_{k+1} = x_k - \frac{f(x_k)(x_k - b_{k+1})}{f(x_k) - f(b_{k+1})}$$

• Nếu $b_{k+1} = x_k$, thì dùng công thức (14), ta được:

$$x_{k+1} = b_{k+1} - f(b_{k+1}) \frac{b_{k+1} - a_{k+1}}{f(b_{k+1}) - f(a_{k+1})}$$

$$\Leftrightarrow x_{k+1} = x_k - \frac{f(x_k)(x_k - a_{k+1})}{f(x_k) - f(a_{k+1})}$$

Ví dụ: giải bài toán $f(x)=x^3+\sin{(2\,x)}-2=0$ bằng phương pháp dây cung trên đoạn [0,1.5]

Ví dụ: giải bài toán $f(x)=x^3+\sin{(2\,x)}-2=0$ bằng phương pháp dây cung trên đoạn [0,1.5] (nghiệm chính xác: p=1.0409)

k	x_k	$f(x_k)$	$ x_k - p $
0	0.8532	-0.3881	0.1877
1	0.985	-0.1229	0.0559
2	1.0236	-0.0388	0.0172
3	1.0355	-0.0121	0.0054
4	1.0392	-0.0038	0.0017
5	1.0404	-0.0012	0.0005
6	1.0407	-0.0004	0.0002
7	1.0408	-0.0001	0.0001
8	1.0409	-0.0	0.0

Ví dụ: giải bài toán $f(x)=x^3+x-10=0$ bằng phương pháp dây cung trên đoạn [0,3] (nghiệm chính xác: p=2.0)

Ví dụ: giải bài toán $f(x)=x^3+x-10=0$ bằng phương pháp dây cung trên đoạn [0,3] (nghiệm chính xác: p=2.0)

k	x_k	$f(x_k)$	$ x_k - p $
0	1.0	-8.0	1.0
1	1.5714	-4.5481	0.4286
2	1.8361	-1.9739	0.1639
3	1.9407	-0.7506	0.0593
4	1.979	-0.2707	0.021
5	1.9926	-0.0958	0.0074
6	1.9974	-0.0336	0.0026
7	1.9991	-0.0118	0.0009
8	1.9997	-0.0041	0.0003

Tên giải thuật bằng tiếng Anh:

• Secant method: là giải thuật lặp

$$x_{k+1} = x_k - \frac{f(x_k)(x_k - x_{k-1})}{f(x_k) - f(x_{k-1})}$$

giống như phương pháp dây cung nhưng không so sánh dấu của f(x) với hai đầu f(a), f(b) mà tuần tự bỏ đầu a_k rồi b_{k+1} . Giải thuật này có thể hội tụ (tìm được nghiệm) hoặc phân kỳ (không tiến đến nghiệm).

• False position method: là phương pháp dây cung ta học ở đây, luôn đảm bảo có nghiệm, nhờ có kiểm tra dấu của f(x) ở mỗi bước để đảm bảo khoảng tiếp theo vẫn là khoảng cách ly nghiệm.

Còn gọi là Phương pháp tiếp tuyến hoặc Phương pháp Newton-Raphson.

Xét bài toán (1) trong khoảng cách ly nghiệm [a,b], với hàm số f(x) **có đạo hàm** trong [a,b]. Ý nghĩa: đồ thị của f(x) là một đường thẳng hoặc đường cong trơn trong [a,b].

Giải thuật **lặp** (với điểm ban đầu $x_0 \in [a, b]$):

- \bullet Từ điểm có hoành độ x_{k-1} trên đồ thị của đường cong f(x), ta kẻ tiếp tuyến với đường cong.
- Đường tiếp tuyến giao với trục hoành tại một điểm, thì lấy hoành độ của điểm đó làm x_k .

Phương trình của tiếp tuyến là:

$$y - f(x_{k-1}) = f'(x_{k-1})(x - x_{k-1})$$

Điểm giao của đường này với trục hoành là khi y=0, tức là:

$$\mathbf{x_k} = \mathbf{x_{k-1}} - \frac{\mathbf{f}(\mathbf{x_{k-1}})}{\mathbf{f}'(\mathbf{x_{k-1}})}, \ \forall k = 1, 2, 3, \dots$$
 (15)

Định lý về sự hội tụ của phép lặp này:

Định lý 7 Giả sử hàm f(x) có đạo hàm đến cấp hai liên tục và các đạo hàm f'(x) và f''(x) không đổi dấu trên đoạn [a,b]. Khi đó nếu chọn x_0 thỏa điều kiện Fourier: $f(x_0)f''(x_0) > 0$, thì dấy lặp $\{x_n\}_{n=1}^{\infty}$ xác định theo công thức (15) sẽ hội tụ về nghiệm của bài toán (1).

Lưu ý:

- Hệ số góc của tiếp tuyến là giá trị của đạo hàm tại điểm ta vẽ $(f'(x_{k-1}))$. Khi hệ số góc bằng 0 tức là đường tiếp tuyến song song với trục hoành (sẽ không tồn tại điểm giao), giải thuật thường được điều chỉnh bằng cách bỏ đi điểm c có f'(c) = 0 và dùng lại một trong hai nửa đoạn [a,c] hoặc [c,b].
- Điều kiện Fourier chỉ là điều kiện đủ, không phải là điều kiện cần.
 Nghĩa là giải thuật cũng có thể hội tụ mà không thỏa điều kiện Fourier.
- Đánh giá sai số của phương pháp Newton theo công thức sai số tổng quát (3).

Minh họa (tính ln(5)): tiếp tuyến của $f(x)=e^x-5$ với $x_0=2$ $x_1=1.6767$, $f(x_1)=0.3478$, nếu tiếp tục kẻ tiếp tuyến với hàm f ở điểm này thì ta có điểm rất gần với nghiệm (phương pháp Newton thường hội tụ nhanh trong lân cận của nghiệm)

Ví dụ: tìm nghiệm của $f(x)=e^x-5$ bằng phương pháp Newton với $x_0=2$ (nghiệm chính xác: p=1.6094)

k	x_k	$f(x_k)$	$ x_k - p $
0	2.0	2.3891	0.3906
1	1.6767	0.3478	0.0672
2	1.6116	0.0111	0.0022
3	1.6094	0.0	0.0
4	1.6094	0.0	0.0

Ví dụ: tìm nghiệm của $f(x)=x^3+x-10$ bằng phương pháp Newton với $x_0=0$ (nghiệm chính xác: p=2.0)

Ví dụ: tìm nghiệm của $f(x)=x^3+x-10$ bằng phương pháp Newton với $x_0=0$ (nghiệm chính xác: p=2.0)

k	x_k	$f(x_k)$	$ x_k - p $
0	0.0	-10.0	2.0
1	10.0	1000.0	8.0
2	6.67774	294.45305	4.67774
3	4.49299	85.19298	2.49299
4	3.10911	23.16361	1.10911
5	2.33699	5.10044	0.33699
6	2.0436	0.57823	0.0436
7	2.00086	0.01112	0.00086
8	2.0	0.0	0.0

Bài tập

- Viết rõ công thức để thực hiện các giải thuật đối với các ví dụ trong bài này (phục vụ tính toán bằng tay)
- Dùng máy tính cầm tay để thực hiện các giải thuật nhằm giải các ví dụ, so sánh với kết quả trong bài học
- Làm các bài tập 1-7 trong chương 2, sách "Giáo trình phương pháp tính" (Lê Thái Thanh)
- Lập trình các thuật toán (thành các file hàm .m trên Octave) theo các phương pháp:
 - PP chia đôi, PP dây cung
 - PP lặp đơn, PP Newton

