«УТВЕРЖДАЮ» Директор ФГБНУ «Федеральный институт педагоги усеких измерений»

. А. Решетникова « (д. » каздья 2020 г. «СОГЛАСОВАНО»
Председатель
Научно-методического совета
ФГБНУ «ФИПИ» по физике

М.Н. Стриханов « 10 % год для 2020 г.

Единый государственный экзамен по ФИЗИКЕ

Демонстрационный вариант

контрольных измерительных материалов единого государственного экзамена 2021 года по физике

подготовлен Федеральным государственным бюджетным научным учреждением

«ФЕДЕРАЛЬНЫЙ ИНСТИТУТ ПЕДАГОГИЧЕСКИХ ИЗМЕРЕНИЙ»

Демонстрационный вариант ЕГЭ 2021 г.

ФИЗИКА, 11 класс 2/36

Единый государственный экзамен по ФИЗИКЕ

Пояснения к демонстрационному варианту контрольных измерительных материалов 2021 года по ФИЗИКЕ

При ознакомлении с демонстрационным вариантом контрольных измерительных материалов 2021 г. следует иметь в виду, что задания, включённые в демонстрационный вариант, не отражают всех вопросов содержания, которые будут проверяться с помощью вариантов КИМ в 2021 г. Полный перечень вопросов, которые могут контролироваться на едином государственном экзамене 2021 г., приведён в кодификаторе элементов содержания и требований к уровню подготовки выпускников образовательных организаций для проведения единого государственного экзамена 2021 г. по физике.

В демонстрационном варианте представлены конкретные примеры заданий, не исчерпывающие всего многообразия возможных формулировок заданий на каждой позиции варианта экзаменационной работы.

Назначение демонстрационного варианта заключается в том, чтобы дать возможность любому участнику ЕГЭ и широкой общественности составить представление о структуре будущих КИМ, количестве и форме заданий, об уровне их сложности. Приведённые критерии оценки выполнения заданий с развёрнутым ответом, включённые в этот вариант, дают представление о требованиях к полноте и правильности записи развёрнутого ответа.

Эти сведения позволят выпускникам выработать стратегию подготовки и сдачи $E\Gamma$ Э.

КИМ

Демонстрационный вариант контрольных измерительных материалов единого государственного экзамена 2021 года по ФИЗИКЕ

Инструкция по выполнению работы

Для выполнения экзаменационной работы по физике отводится 3 часа 55 минут (235 минут). Работа состоит из двух частей, включающих в себя 32 задания.

В заданиях 1–4, 8–10, 14, 15, 20, 25 и 26 ответом является целое число или конечная десятичная дробь. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже <u>образцу</u> в бланк ответа № 1. Единицы измерения физических величин писать не нужно.

Ответ: -2,5 м/с². -2,5

Ответом к заданиям 5–7, 11, 12, 16–18, 21, 23 и 24 является последовательность цифр. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже <u>образцу</u> без пробелов, запятых и других дополнительных символов в бланк ответов \mathbb{N} 1.

Ответ: A Б Бланк

Ответом к заданию 13 является слово (слова). Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённому ниже <u>образцу</u> в бланк ответов № 1.

Ответ: вправо ВПРАВО Бланк

Ответом к заданиям 19 и 22 являются два числа. Ответ запишите в поле ответа в тексте работы, а затем перенесите по приведённым ниже <u>образцам, не разделяя числа пробелом</u>, в бланк ответов \mathbb{N} 1.

Заряд ядра Z	Массовое число ядра А	
38	94	3894

Ответ к заданиям 27–32 включает в себя подробное описание всего хода выполнения задания. В бланке ответов \mathbb{N} 2 укажите номер задания и запишите его полное решение.

При вычислениях разрешается использовать непрограммируемый калькулятор.

Все бланки ЕГЭ заполняются яркими чёрными чернилами. Допускается использование гелевой или капиллярной ручки.

© 2021 Федеральная служба по надзору в сфере образования и науки

При выполнении заданий можно пользоваться черновиком. Записи в черновике, а также в тексте контрольных измерительных материалов не учитываются при оценивании работы.

Баллы, полученные Вами за выполненные задания, суммируются. Постарайтесь выполнить как можно больше заданий и набрать наибольшее количество баллов.

После завершения работы проверьте, чтобы ответ на каждое задание в бланках ответов № 1 и № 2 был записан под правильным номером.

Желаем успеха!

Ниже приведены справочные данные, которые могут понадобиться Вам при выполнении работы.

Десятичные приставки

Наимено-	Обозначение	Множитель	Наимено-	Обозначение	Множитель
вание			вание		
гига	Γ	10 ⁹	санти	С	10^{-2}
мега	M	10^{6}	милли	M	10^{-3}
кило	К	10^{3}	микро	МК	10^{-6}
гекто	Γ	10^{2}	нано	Н	10^{-9}
деци	д	10^{-1}	пико	П	10^{-12}

Константы	
число π	$\pi = 3,14$
ускорение свободного падения на Земле	$g = 10 \text{ m/c}^2$
гравитационная постоянная	$G = 6.7 \cdot 10^{-11} \text{ H} \cdot \text{m}^2/\text{kg}^2$
универсальная газовая постоянная	R = 8.31 Дж/(моль·К)
постоянная Больцмана	$k = 1,38 \cdot 10^{-23}$ Дж/К
постоянная Авогадро	$N_{\rm A} = 6 \cdot 10^{23} {\rm моль}^{-1}$
скорость света в вакууме	$c = 3 \cdot 10^8 \text{ m/c}$
коэффициент пропорциональности в законе Кулона	$k = \frac{1}{4\pi\varepsilon_0} = 9 \cdot 10^9 \text{ H} \cdot \text{m}^2/\text{K}\pi^2$
модуль заряда электрона	$e = 1,6 \cdot 10^{-19} \text{ Кл}$
(элементарный электрический заряд)	•
постоянная Планка	$h = 6.6 \cdot 10^{-34} \text{Дж} \cdot \text{с}$

Соотношения между различными единицами			
температура	$0 \text{ K} = -273 ^{\circ}\text{C}$		
атомная единица массы	1 а.е.м. = $1,66 \cdot 10^{-27}$ кг		
1 атомная единица массы эквивалентна	931,5 МэВ		
1 электронвольт	$1 \mathrm{9B} = 1.6 \cdot 10^{-19} \mathrm{Дж}$		
1 астрономическая единица	1 a.e. ≈ 150 000 000 км		
1 световой год	1 св. год $\approx 9,46 \cdot 10^{15}$ м		
1 парсек	1 пк ≈ 3,26 св. года		

Масса частиц

электрона 9,1· 10^{-31} кг $\approx 5,5\cdot 10^{-4}$ а.е.м. протона 1,673· 10^{-27} кг $\approx 1,007$ а.е.м. нейтрона 1,675· 10^{-27} кг $\approx 1,008$ а.е.м.

Астрономические величины

средний радиус Земли $R_{\oplus} = 6370 \, \, \text{км}$ радиус Солнца $R_{\odot} = 6,96 \cdot 10^{\, 8} \, \text{м}$ температура поверхности Солнца $T = 6000 \, \, \text{K}$

Плотность		подсолнечного масла	900 кг/м ³
воды	$1000 \ \text{кг/м}^3$	алюминия	$2700 \ \text{кг/м}^3$
древесины (сосна)	$400 \ \text{кг/м}^3$	железа	$7800 \ \text{kg/m}^3$
керосина	800 кг/м ³	ртути	13 600 кг/м ³

Удельная теплоёмкость

воды	4,2·10 ³ Дж/(кг·К)	алюминия	900 Дж/(кг⋅К)
льда	$2,1\cdot10^3$ Дж/(кг·К)	меди	380 Дж/(кг⋅К)
железа	460 Дж/(кг⋅К)	чугуна	500 Дж/(кг⋅К)
свинца	130 Дж/(кг⋅К)		

Удельная теплота

парообразования воды $2,3\cdot10^6$ Дж/кг плавления свинца $2,5\cdot10^4$ Дж/кг плавления льда $3,3\cdot10^5$ Дж/кг

***	105 1	0.00
Нормальные условия:	давление – 10° 11а,	температура – 0 °C

Молярная м					
азота		кг/моль	гелия		кг/моль
аргона		кг/моль	кислорода	$32 \cdot 10^{-3}$	кг/моль
водорода		кг/моль	лития	6.10^{-3}	кг/моль
воздуха		кг/моль	неона	$20 \cdot 10^{-3}$	кг/моль
воды	18.10^{-3}	кг/моль	углекислого газа	44.10^{-3}	кг/моль

Часть 1

Ответами к заданиям 1—24 являются слово (слова), число или последовательность цифр или чисел. Ответ запишите в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерения физических величин писать не нужно.

1 Материальная точка движется прямолинейно с постоянным ускорением вдоль оси Ox. График зависимости её координаты от времени x = x(t) изображён на рисунке. Определите проекцию a_x ускорения этого тела.

Демонстрационный вариант ЕГЭ 2021 г.

-2 -1 0 1 2 t, c

Ответ: м/с

2 На рисунке показаны силы (в заданном масштабе), действующие на материальную точку. Определите модуль равнодействующей этих сил.

Ответ: Н.

Тело движется в инерциальной системе отсчёта по прямой в одном направлении под действием постоянной силы величиной 5 Н. За 4 с импульс тела увеличился и стал равен 35 кг⋅м/с. Чему был равен первоначальный импульс тела?

Ответ: _____ кг · м/с.

4 Каменный блок лежит на горизонтальной кладке стены, оказывая на кладку давление 2500 Па. Площадь грани, на которой лежит блок, равна 740 см². Какова масса блока?

Ответ: _____ кг.

Демонстрационный вариант ЕГЭ 2021 г.

ФИЗИКА, 11 класс 8/36

ФОРМУЛЫ

- 5 Автомобиль массой 2 т проезжает верхнюю точку выпуклого моста, двигаясь с постоянной по модулю скоростью 36 км/ч. Радиус кривизны моста равен 40 м. Из приведённого ниже списка выберите два правильных утверждения, характеризующих движение автомобиля по мосту.
 - 1) Равнодействующая сил, действующих на автомобиль в верхней точке моста, сонаправлена с его скоростью.
 - 2) Сила, с которой мост действует на автомобиль в верхней точке моста, меньше 20 000 Н и направлена вертикально вниз.
 - 3) В верхней точке моста автомобиль действует на мост с силой, равной 15 000 H.
 - 4) Центростремительное ускорение автомобиля в верхней точке моста равно 2.5 m/c^2 .
 - 5) Ускорение автомобиля в верхней точке моста направлено противоположно его скорости.

Ответ:		
--------	--	--

6 Искусственный спутник Земли перешёл с одной круговой орбиты на другую так, что на новой орбите его центростремительное ускорение увеличилось. Как изменились при этом сила притяжения спутника к Земле и скорость его движения по орбите?

Для каждой величины определите соответствующий характер изменения:

- 1) увеличилась
- 2) уменьшилась
- 3) не изменилась

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

J 1	
Сила притяжения	Скорость движения
спутника к Земле	спутника по орбите

Тело массой 200 г движется вдоль оси Ox, при этом его координата изменяется во времени в соответствии с формулой $x(t) = 10 + 5t - 3t^2$ (все величины выражены в СИ).

Установите соответствие между физическими величинами и формулами, выражающими их изменения во времени.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

1) 5-6t

A) проекция $v_r(t)$ скорости тела

- 2) -1,2
- Б) проекция $F_x(t)$ равнодействующей сил, приложенных к телу
- 3) -3 4) 10 + 5t

	A	Б
Ответ:		

8 При уменьшении абсолютной температуры на 600 К средняя кинетическая энергия теплового движения молекул аргона уменьшилась в 4 раза. Какова конечная температура аргона?

Ответ: К

9 На *pT*-диаграмме показан процесс изменения *p* состояния 1 моль одноатомного идеального газа. Газ в этом процессе получил количество теплоты, равное 3 кДж. Определите работу, совершённую газом.

Ответ: _____ кДх

В сосуде, объём которого можно изменять при помощи поршня, находится воздух с относительной влажностью 50%. Поршень медленно вдвигают в сосуд при неизменной температуре. Во сколько раз уменьшится объём сосуда к моменту, когда водяной пар станет насыщенным?

Ответ: в ______ раз(а).

В цилиндрическом сосуде, закрытом подвижным поршнем, находится водяной пар и капля воды. С паром в сосуде при постоянной температуре провели процесс $a \rightarrow b \rightarrow c$, pV-диаграмма которого представлена на рисунке. Из приведённого ниже списка выберите два правильных утверждения относительно проведённого процесса.

- 1) На участке $b \rightarrow c$ масса пара уменьшается.
- 2) На участке $a \rightarrow b$ к веществу в сосуде подводится положительное количество теплоты.
- 3) В точке c водяной пар является насыщенным.
- 4) На участке $a \rightarrow b$ внутренняя энергия капли уменьшается.
- 5) На участке $b \rightarrow c$ внутренняя энергия пара уменьшается.

Ответ:

Температура нагревателя идеального теплового двигателя, работающего по циклу Карно, равна T_1 , а коэффициент полезного действия этого двигателя равен η . За цикл рабочее тело двигателя получает от нагревателя количество теплоты Q_1 .

Установите соответствие между физическими величинами и формулами, по которым их можно рассчитать.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

ФОРМУЛЫ

- A) количество теплоты, отдаваемое рабочим телом двигателя за цикл
- $1) \ \frac{T_1}{1-\eta}$

Б) температура холодильника

- 2) $T_1(1-\eta)$
- 3) $Q_1(1-\eta)$
- 4) $Q_1\eta$

Ответ:

A	Б	

13	Куда направлена относительно рисунка (вправо, влево,	$-q$ $_{ullet}$	$_{ullet}^{+q}$
	вверх, вниз, к наблюдателю, от наблюдателя)		
	кулоновская сила \vec{F} , действующая на отрицательный		• "
	точечный заряд $-q$, помещённый в центр квадрата,		-q
	в углах которого находятся заряды: $+q$, $+q$, $-q$, $-q$ (см. рисунок)? Ответ запишите словом (словами).	$-q^{ullet}$	$^{ullet}+q$

Ответ: _____

Демонстрационный вариант ЕГЭ 2021 г.

Восемь одинаковых резисторов с сопротивлением r=1 Ом соединены в электрическую цепь, через которую течёт ток I=4 А (см. рисунок). Какое напряжение показывает идеальный вольтметр?

Ответ: В

15 Определите энергию магнитного поля катушки индуктивностью 0,2 мГн при силе тока в ней 2 А.

Ответ: мДх

16

Катушка № 1 включена в электрическую цепь, состоящую из источника постоянного напряжения и реостата. Катушка № 2 помещена внутрь катушки № 1, и её обмотка замкнута. Вид с торца катушек представлен на рисунке.

Из приведённого ниже списка выберите два правильных утверждения, характеризующих процессы в цепи и катушках при перемещении ползунка реостата *влево*.

- 1) Сила тока в катушке № 1 увеличивается.
- 2) Модуль вектора индукции магнитного поля, созданного катушкой № 1, увеличивается.
- 3) Модуль магнитного потока, пронизывающего катушку № 2, уменьшается.
- 4) Вектор магнитной индукции магнитного поля, созданного катушкой № 2 в её центре, направлен от наблюдателя.
- 5) В катушке № 2 индукционный ток направлен по часовой стрелке.

17

Небольшой предмет расположен на главной оптической оси тонкой собирающей линзы между фокусным и двойным фокусным расстояниями от неё. Предмет начинают удалять от линзы. Как меняются при этом расстояние от линзы до изображения и оптическая сила линзы?

Для каждой величины определите соответствующий характер её изменения:

- 1) увеличивается
- 2) уменьшается
- 3) не изменяется

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Расстояние от линзы до	Оптическая сила
изображения	линзы

Конденсатор идеального колебательного контура длительное время подключён к источнику постоянного напряжения (см. рисунок). В момент t=0 переключатель К переводят из положения 1 в положение 2. Графики A и Б отображают изменения физических величин, характеризующих возникшие после этого электромагнитные колебания в контуре (T- период колебаний).

Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут отображать.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ

- 1) энергия магнитного поля катушки
- 2) сила тока в катушке
- 3) заряд правой обкладки конденсатора
- 4) энергия электрического поля конденсатора

19 В результате ядерной реакции синтеза ${}_{1}^{2}H + {}_{1}^{2}H \rightarrow {}_{Z}^{A}X + {}_{1}^{1}$ р образуется ядро химического элемента ${}_{Z}^{A}X$. Каковы заряд образовавшегося ядра Z (в единицах элементарного заряда) и его массовое число A?

Заряд ядра Z	Массовое число ядра А

В бланк ответов N = 1 перенесите только числа, не разделяя их пробелом или другим знаком.

В вакууме длина волны света от первого источника в 2 раза меньше, чем длина волны света от второго источника. Определите отношение импульсов фотонов $\frac{p_1}{p_2}$, испускаемых этими источниками.

Ответ: .

На рисунке изображена упрощённая диаграмма нижних энергетических уровней атома. Нумерованными стрелками отмечены некоторые возможные переходы Е атома между этими уровнями. Какие из этих переходов связаны с поглощением кванта света наибольшей длины волны и излучением кванта света с наименьшей энергией? Установите соответствие между процессами поглощения и испускания света и стрелками, обозначающими энергетические переходы атома.

К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.

ПРОЦЕССЫ

ЭНЕРГЕТИЧЕСКИЕ

- А) поглощение кванта света наибольшей 1) 1 длины волны
- Б) излучение кванта света с наименьшей энергией

Ответ:

ПЕРЕХОДЫ

22 Чему равно напряжение на лампочке (см. рисунок), если погрешность прямого измерения напряжения на пределе измерения 3 В равна ±0,15 В, а на пределе измерения 6 В равна ±0,25 В?

Ответ: (

В бланк ответов N 1 перенесите только числа, не разделяя их пробелом или другим знаком.

3 Необходимо экспериментально проверить, зависит ли сила Архимеда,

действующая на тело, полностью погружённое в жидкость, от его объёма. Какие две установки следует использовать для проведения такого

исследования?

Запишите в ответе номера выбранных установок.

Ответ:		
--------	--	--

24 На рисунке представлена диаграмма Герцшпрунга – Рессела.

Выберите все верные утверждения о звёздах.

- 1) Плотность белых карликов существенно больше средней плотности звёзд главной последовательности.
- «Жизненный цикл» звезды спектрального класса О главной последовательности более длительный, чем звезды спектрального класса М главной последовательности.
- 3) Температура поверхности звёзд спектрального класса G выше температуры поверхности звёзд спектрального класса O.
- 4) Звезда Бетельгейзе относится к голубым звёздам главной последовательности, поскольку её радиус почти в 1000 раз превышает радиус Солнца.
- 5) Звезда Альтаир, имеющая радиус 1,9 R_{\odot} , относится к звёздам главной последовательности.

-		
He	забудьте	перенести

Ответ:

Не забудьте перенести все ответы в бланк ответов № 1 в соответствии с инструкцией по выполнению работы. Проверьте, чтобы каждый ответ был записан в строке с номером соответствующего задания.

Часть 2

Ответом к заданиям 25 и 26 является число. Это число запишите в поле ответа в тексте работы, а затем перенесите в БЛАНК ОТВЕТОВ № 1 справа от номера соответствующего задания, начиная с первой клеточки. Каждый символ пишите в отдельной клеточке в соответствии с приведёнными в бланке образцами. Единицы измерения физических величин писать не нужно.

25 На рисунке изображён вектор напряжённости \vec{E} электрического поля в точке C, которое создано двумя точечными зарядами: q_A и q_B . Каков заряд q_B , если заряд q_A равен +2 нКл? Ответ укажите со знаком.

Ответ: _____ нКл.

Предмет расположен на главной оптической оси тонкой собирающей линзы. Оптическая сила линзы D=5 дптр. Изображение предмета действительное, увеличение (отношение высоты изображения предмета к высоте самого предмета) k=2. Найдите расстояние между предметом и его изображением. Ответ выразите в сантиметрах.

Ответ: см.

Не забудьте перенести все ответы в бланк ответов N=1 в соответствии с инструкцией по выполнению работы. Проверьте, чтобы каждый ответ был записан в строке с номером соответствующего задания.

Для записи ответов на задания 27–32 используйте БЛАНК ОТВЕТОВ № 2. Запишите сначала номер задания (27, 28 и т. д.), а затем решение соответствующей задачи. Ответы записывайте чётко и разборчиво.

27 Лёгкая нить, привязанная к грузу массой m = 0,4 кг, перекинута через идеальный неподвижный блок. К правому концу нити приложена постоянная сила \vec{F} . Левая часть нити вертикальна, а правая наклонена под углом $\alpha = 30^{\circ}$ к горизонту (см. рисунок).

Постройте график зависимости модуля силы реакции стола N от F на отрезке $0 \le F \le 10~$ Н. Ответ поясните, указав, какие физические явления и закономерности Вы использовали для объяснения. Сделайте рисунок с указанием сил, приложенных к грузу.

решение.

Полное правильное решение каждой из задач 28—32 должно содержать законы и формулы, применение которых необходимо и достаточно для решения задачи, а также математические преобразования, расчёты с численным ответом и при необходимости рисунок, поясняющий

- 28 В калориметре находятся в тепловом равновесии вода и лёд. После опускания в калориметр болта, имеющего массу 165 г и температуру –40 °C, 20% воды превратилось в лёд. Удельная теплоёмкость материала болта равна 500 Дж/(кг·К). Какая масса воды первоначально находилась в калориметре? Теплоёмкостью калориметра пренебречь.
- Невесомый стержень AB с двумя малыми грузиками массами $m_1 = 200$ г и $m_2 = 100$ г, расположенными в точках C и B соответственно, шарнирно закреплён в точке A. Груз массой M = 100 г подвешен к невесомому блоку за невесомую и нерастяжимую нить, другой конец которой соединён с нижним концом стержня, как показано на рисунке. Вся система находится в равновесии, если стержень отклонён от вертикали на угол $\alpha = 30^{\circ}$, а нить составляет угол

ФИЗИКА, 11 класс 19 / 36

с вертикалью, равный $\beta=30^\circ$. Расстояние AC=b=25 см. Определите длину l стержня AB. Сделайте рисунок с указанием сил, действующих на груз M и стержень.

В вертикальном цилиндре, закрытом лёгким поршнем, находится бензол (C_6H_6) при температуре кипения $t=80\,^{\circ}\mathrm{C}$. При сообщении бензолу количества теплоты Q часть его превращается в пар, который при изобарном расширении совершает работу A. Удельная теплота парообразования бензола $L=396\cdot10^3~\mathrm{Дж/кr}$, его молярная масса $M=78\cdot10^{-3}~\mathrm{кr/моль}$. Какая часть подведённого к бензолу количества теплоты переходит в работу? Объёмом жидкого бензола пренебречь.

31 Из медной проволоки с удельным сопротивлением $\rho=1,7\cdot 10^{-8}$ Ом·м и площадью поперечного сечения S=0,2 мм² изготовлен прямоугольный контур KLMN с диагональю KM (см. рисунок). Стороны прямоугольника $KL=l_1=20$ см и $LM=l_2=15$ см. Контур подключили за диагональ к источнику постоянного напряжения с ЭДС $\mathcal{E}=1,4$ В и поместили в однородное

параллельной сторонам KN и LM. С какой результирующей силой магнитное поле действует на контур? Сделайте рисунок с указанием сил, действующих на контур. Внутренним сопротивлением источника пренебречь.

32 фотоэффекта опыте изучению мощностью монохроматическое излучение P = 0.21 Brпадает на поверхность катода, в результате чего в цепи возникает ток. График зависимости силы тока I от напряжения U между анодом и катодом приведён на рисунке. Какова частота V падающего света, если в среднем один из 30 фотонов, падающих на катод, выбивает электрон?

магнитное поле с индукцией B = 0.1 Тл.

Проверьте, чтобы каждый ответ был записан рядом с номером соответствующего задания.

Система оценивания экзаменационной работы по физике

Задания 1-26

Правильные ответы на задания 1–4, 8–10, 13–15, 19, 20, 22 и 23 части 1 и на задания 25 и 26 части 2 оцениваются 1 баллом. Эти задания считаются выполненными верно, если правильно указаны требуемое число, два числа или слово (слова).

Ответы на задания 5–7, 11, 12, 16–18 и 21 части 1 оцениваются 2 баллами, если верно указаны оба элемента ответа; 1 баллом, если допущена ошибка в указании одного из элементов ответа, и 0 баллов, если допущены две ошибки или ответ отсутствует. Если указано более двух элементов (в том числе, возможно, и правильные), то ставится 0 баллов. Ответ на задание 24 оценивается 2 баллами, если указаны все верные элементы ответа; 1 баллом, если допущена одна ошибка (в том числе указана одна лишняя цифра наряду со всеми верными элементами или не записан один элемент ответа); 0 баллов, если допущены две ошибки или ответ отсутствует. В заданиях 5, 11, 16 и 24 порядок записи цифр в ответе не имеет принципиального значения.

Номер	Правильный	Номер	Правильный
задания	ответ	задания	ответ
1	1	14	2
2	3	15	0,4
3	15	16	12
4	18,5	17	23
5	34	18	13
6	11	19	13
7	12	20	2
8	200	21	13
9	3	22	2,200,15
10	2	23	24
11	24	24	15
12	32	25	-4
13	вправо	26	90

Критерии оценивания выполнения заданий с развёрнутым ответом

Решения заданий 27–32 части 2 (с развёрнутым ответом) оцениваются предметной комиссией. На основе критериев, представленных в приведённых ниже таблицах, за выполнение каждого задания в зависимости от полноты и правильности данного экзаменуемым ответа выставляется от 0 до 2 баллов за выполнение задания 28 и от 0 до 3 баллов за выполнение заданий 27 и 29–32.

Лёгкая нить, привязанная к грузу массой m = 0,4 кг, перекинута через идеальный неподвижный блок. К правому концу нити приложена постоянная сила \vec{F} . Левая часть нити вертикальна, а правая наклонена под углом $\alpha = 30^{\circ}$ к горизонту (см. рисунок).

Постройте график зависимости модуля силы реакции стола N от F на отрезке $0 \le F \le 10$ Н. Ответ поясните, указав, какие физические явления и закономерности Вы использовали для объяснения. Сделайте рисунок с указанием сил, приложенных к грузу.

Возможное решение

1. Если сила \vec{F} достаточно мала, груз покоится относительно стола (эту систему отсчёта будем считать инерциальной). На груз при этом действуют сила тяжести $m\vec{g}$, сила реакции со стороны стола \vec{N} и сила натяжения нити \vec{T} , показанные на рис. 1.

Запишем второй закон Ньютона для груза в проекциях на ось y введённой системы отсчёта: N+T-mg=0 .

Поскольку нить лёгкая, а блок идеальный, модуль силы натяжения нити во всех точках одинаков, поэтому T = F. Отсюда получаем: $N = mg - F \ge 0$ при $F \le mg = 4$ Н.

2. При F > mg = 4 H груз отрывается от стола и движется вдоль оси y с ускорением. На груз при этом действуют только сила тяжести $m\vec{g}$ и сила натяжения нити \vec{T}' , показанные на рис. 2, а модуль силы реакции стола N = 0.

Таким образом: a) при $F \le mg = 4\,\mathrm{H}$ N = mg - F; б) при $F > mg = 4\,\mathrm{H}$ N = 0.

Рис. 2

3. График этой зависимости представляет собой ломаную линию

Критерии оценивания выполнения задания	Баллы
Приведено полное правильное решение, включающее правильный	3
ответ (в данном случае <i>п. 3</i>) и исчерпывающие верные рассуждения	
с прямым указанием наблюдаемых явлений и законов (в данном	
случае: второй закон Ньютона, условие отрыва груза от стола)	
Дан правильный ответ, и приведено объяснение, но в решении	2
имеется один или несколько из следующих недостатков.	
В объяснении не указано или не используется одно из физических	
явлений, свойств, определений или один из законов (формул),	
необходимых для полного верного объяснения. (Утверждение,	
лежащее в основе объяснения, не подкреплено соответствующим	
законом, свойством, явлением, определением и т.п.)	
И (ИЛИ)	
Указаны все необходимые для объяснения явления и законы,	
закономерности, но в них содержится один логический недочёт.	
Й (ИЛИ)	
В решении имеются лишние записи, не входящие в решение	
(возможно, неверные), которые не отделены от решения и не	
зачёркнуты.	
И (ИЛИ)	
В решении имеется неточность в указании на одно из физических	
явлений, свойств, определений, законов (формул), необходимых	
для полного верного объяснения	
Представлено решение, соответствующее одному из следующих	1
случаев.	
Дан правильный ответ на вопрос задания, и приведено объяснение,	
но в нём не указаны два явления или физических закона,	
необходимых для полного верного объяснения.	
ИЛИ	
Указаны все необходимые для объяснения явления и законы,	
закономерности, но имеющиеся рассуждения, направленные на	
получение ответа на вопрос задания, не доведены до конца.	
ИЛИ	
Указаны все необходимые для объяснения явления и законы,	
закономерности, но имеющиеся рассуждения, приводящие	
к ответу, содержат ошибки.	
ИЛИ	
Указаны не все необходимые для объяснения явления и законы,	
закономерности, но имеются верные рассуждения, направленные на	
решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла	
Максимальный балл	3

В калориметре находятся в тепловом равновесии вода и лёд. После опускания в калориметр болта, имеющего массу 165 г и температуру $-40\,^{\circ}\mathrm{C}$, 20% воды превратилось в лёд. Удельная теплоёмкость материала болта равна 500 Дж/(кг·К). Какая масса воды первоначально находилась в калориметре? Теплоёмкостью калориметра пренебречь.

Возможное решение

Так как вода и лёд находятся в тепловом равновесии, то и до опускания болта, и после его нагревания температура в сосуде $t_0 = 0$ °C. Согласно уравнению теплового баланса количество теплоты, выделившееся при замерзании воды, было затрачено на нагревание болта:

 $0,2m\cdot r=cm_1(t_0-t)$, где m — масса воды в сосуде, m_1 — масса болта, c — удельная теплоёмкость болта, r — удельная теплота плавления льда, t — начальная температура болта.

Получим: $m = \frac{cm_1(t_0 - t)}{0.2r} = \frac{500 \cdot 0.165 \cdot 40}{0.2 \cdot 3.3 \cdot 10^5} = 0.05 \text{ кг.}$

Ответ: m = 0.05 кг

•	
Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	2
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: условие теплового	
равновесия воды и льда, формулы для расчёта количества теплоты	
при нагревании и кристаллизации, уравнение теплового баланса);	
II) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений, используемых в условии	
задачи, и стандартных обозначений величин, используемых при	
написании физических законов);	
III) представлены необходимые математические преобразования	
и расчёты (подстановка числовых данных в конечную формулу),	
приводящие к правильному числовому ответу (допускается решение	
«по частям» с промежуточными вычислениями);	
1 2	
IV) представлен правильный ответ с указанием единиц измерения	
искомой величины	

Правильно записаны все необходимые положения теории,	1
физические законы, закономерности, и проведены преобразования,	
направленные на решение задачи, но имеется один или несколько из	
следующих недостатков.	
Записи, соответствующие пункту II, представлены не в полном	
объёме или отсутствуют.	
И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение,	
которые не отделены от решения и не зачёркнуты.	
И (ИЛИ)	
В необходимых математических преобразованиях или вычислениях	
допущены ошибки, и (или) в математических преобразованиях/	
вычислениях пропущены логически важные шаги.	
И (ИЛИ)	
Отсутствует пункт IV, или в нём допущена ошибка	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1 или 2 балла	
Максимальный балл	2

Невесомый стержень AB с двумя малыми грузиками массами $m_1 = 200$ г и $m_2 = 100$ г, расположенными в точках C и B соответственно, шарнирно закреплён в точке A. Груз массой M = 100 г подвешен к невесомому блоку за невесомую и нерастяжимую нить, другой конец которой соединён с нижним концом стержня, как показано на рисунке. Вся система находится в равновесии, если стержень отклонён от вертикали на угол $\alpha = 30^\circ$, а нить составляет угол с вертикалью, равный $\beta = 30^\circ$. Расстояние

AC = b = 25 см. Определите длину l стержня AB. Сделайте рисунок с указанием сил, действующих на груз M и стержень.

Возможное решение

1. Систему отсчёта, связанную с Землёй, считаем инерциальной. Введём декартову систему координат xOy, как показано на рисунке. Поскольку груз находится в равновесии, согласно второму закону Ньютона

$$T_1 - Mg = 0. (1)$$

2. На стержень с грузами m_1 и m_2 действуют силы $m_1 \vec{g}$ и $m_2 \vec{g}$, а также сила натяжения нити \vec{T}_2 . Поскольку нить невесома, то $\left|\vec{T}_1\right| = \left|\vec{T}_2\right| = T$. Кроме того, на стержень действует сила \vec{F} со стороны шарнира. Запишем условие равенства нулю суммы моментов этих сил относительно оси вращения, проходящей через точку A — точку шарнирного закрепления стержня:

$$m_1 g \cdot b \sin \alpha + m_2 g \cdot l \sin \alpha - T \cdot AD = 0$$
. (2)

3. Решая систему уравнений (1) и (2), с учётом $AD = l\sin\varphi = l\sin(\alpha + \beta)$

получим:

$$l = \frac{m_1 \cdot b \sin \alpha}{M \sin (\alpha + \beta) - m_2 \sin \alpha} = \frac{200 \cdot 25 \frac{1}{2}}{100 \frac{\sqrt{3}}{2} - 100 \frac{1}{2}} \approx 68,3 \text{ cm}.$$

$100 \frac{1}{2} - 100 \frac{1}{2}$	
Otbet: <i>l</i> ≈ 68,3 cm	
Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: условия равновесия	
твёрдого тела в инерциальной системе отсчёта: равенство нулю	
суммы внешних сил, действующих на тело, и моментов внешних сил	
относительно выбранной оси вращения);	
II) сделан правильный рисунок с указанием сил;	
III) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений величин, используемых	
в условии задачи, и стандартных обозначений величин,	
используемых при написании физических законов);	
IV) представлены необходимые математические преобразования	
и расчёты (подстановка числовых данных в конечную формулу),	
приводящие к правильному числовому ответу (допускается	
решение «по частям» с промежуточными вычислениями);	
V) представлен правильный ответ с указанием единиц измерения	
искомой величины	
Правильно записаны все необходимые положения теории,	2
физические законы, закономерности, и проведены необходимые	
преобразования, но имеется один или несколько из следующих	
недостатков.	
Записи, соответствующие пунктам II и III, представлены	
не в полном объёме или отсутствуют.	
И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение	
(возможно, неверные), которые не отделены от решения	
и не зачёркнуты.	
И (ИЛИ)	
В необходимых математических преобразованиях или вычислениях	
допущены ошибки, и (или) в математических преобразованиях/	
вычислениях пропущены логически важные шаги.	
И (ИЛИ)	
Отсутствует пункт V, или в нём допущена ошибка (в том числе	
в записи единиц измерения величины)	

Представлены записи, соответствующие одному из следующих случаев.	1	
Представлены только положения и формулы, выражающие		
физические законы, применение которых необходимо для решения		
данной задачи, без каких-либо преобразований с их		
использованием, направленных на решение задачи.		
ИЛИ		
В решении отсутствует ОДНА из исходных формул, необходимая		
для решения данной задачи (или утверждение, лежащее в основе		
решения), но присутствуют логически верные преобразования		
с имеющимися формулами, направленные на решение задачи.		
или		
В ОДНОЙ из исходных формул, необходимых для решения данной		
задачи (или в утверждении, лежащем в основе решения), допущена		
ошибка, но присутствуют логически верные преобразования		
с имеющимися формулами, направленные на решение задачи		
Все случаи решения, которые не соответствуют вышеуказанным	0	
критериям выставления оценок в 1, 2, 3 балла		
Максимальный балл	3	

В вертикальном цилиндре, закрытом лёгким поршнем, находится бензол (C_6H_6) при температуре кипения t = 80 °C. При сообщении бензолу количества теплоты Q часть его превращается в пар, который при изобарном расширении совершает работу А. Удельная теплота парообразования бензола $L = 396 \cdot 10^3$ Дж/кг, его молярная масса $M = 78 \cdot 10^{-3}$ кг/моль. Какая часть подведённого к бензолу количества теплоты переходит в работу? Объёмом жидкого бензола пренебречь.

Возможное решение

- 1. В соответствии с первым началом термодинамики подводимое количество теплоты равно сумме изменения внутренней энергии системы и совершённой механической работы: $O = \Delta U + A$. При кипении бензола происходит его изобарное расширение. Работа пара $A = p\Delta V$, где p – атмосферное давление, ΔV – изменение объёма.
- 2. Считая пар идеальным газом, воспользуемся уравнением Клапейрона -Менделеева для определения изменения объёма за счёт испарившегося бензола массой Δm : $p\Delta V = \frac{\Delta m}{M}RT$, где $M = 78\cdot 10^{-3}$ кг/моль — молярная масса бензола, T = 80 + 273 = 353 K — температура кипения бензола. Отсюда $A = \frac{\Delta mRT}{M}$
- 3. Количество теплоты Q, необходимое для испарения массы Δm бензола, пропорционально удельной теплоте парообразования $L: Q = \Delta mL$.

4. Искомая величина определяется отношением

$$\eta = \frac{A}{Q} = \frac{RT}{ML} = \frac{8,31 \cdot 353}{78 \cdot 10^{-3} \cdot 396 \cdot 10^{3}} \approx 0,095.$$

OTRAT: $n \sim 0.005$

Otbet: $\eta \approx 0.095$	
Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: первое начало	
термодинамики, уравнение Клапейрона – Менделеева, выражение	
для теплоты парообразования данной массы вещества, формула	
работы газа);	
II) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений, используемых в условии	
задачи, и стандартных обозначений величин, используемых при	
написании физических законов);	
III) представлены необходимые математические преобразования	
и расчёты (подстановка числовых данных в конечную формулу),	
приводящие к правильному числовому ответу (допускается решение	
«по частям» с промежуточными вычислениями);	
IV) представлен правильный ответ	2
Правильно записаны все необходимые положения теории,	2
физические законы, закономерности, и проведены необходимые	
преобразования, но имеется один или несколько из следующих	
недостатков.	
Записи, соответствующие пункту II, представлены не в полном	
объёме или отсутствуют.	
И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение	
(возможно, неверные), которые не отделены от решения	
и не зачёркнуты.	
И (ИЛИ)	
В необходимых математических преобразованиях или вычислениях	
допущены ошибки, и (или) в математических преобразованиях/	
вычислениях пропущены логически важные шаги.	
И (ИЛИ)	
Отсутствует пункт IV, или в нём допущена ошибка	

Представлены записи, соответствующие одному из следующих	1
случаев.	
Представлены только положения и формулы, выражающие	
физические законы, применение которых необходимо и достаточно	
для решения данной задачи, без каких-либо преобразований с их	
использованием, направленных на решение задачи.	
или	
В решении отсутствует ОДНА из исходных формул, необходимая	
для решения данной задачи (или утверждение, лежащее в основе	
решения), но присутствуют логически верные преобразования	
с имеющимися формулами, направленные на решение задачи.	
ИЛИ	
В ОДНОЙ из исходных формул, необходимых для решения данной	
задачи (или в утверждении, лежащем в основе решения), допущена	
ошибка, но присутствуют логически верные преобразования	
с имеющимися формулами, направленные на решение задачи	
Все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла	
	3

Из медной проволоки с удельным сопротивлением $\rho = 1.7 \cdot 10^{-8}$ Ом·м и площадью поперечного сечения $S = 0.2 \text{ мм}^2$ изготовлен прямоугольный контур *KLMN* с диагональю *KM* (см. рисунок). $KL = l_1 = 20 \text{ cm}$ Стороны прямоугольника и $LM = l_2 = 15$ см. Контур подключили за диагональ к источнику постоянного напряжения с ЭДС $\mathcal{E} = 1,4$ В и поместили в однородное магнитное поле с индукцией B = 0,1 Тл,

ФИЗИКА, 11 класс 31/36

параллельной сторонам KN и LM. С какой результирующей силой магнитное поле действует на контур? Сделайте рисунок с указанием сил, действующих на контур. Внутренним сопротивлением источника пренебречь.

Возможное решение

1. При подключении контура к источнику напряжения по его сторонам и диагонали потекут токи I_1 , I_2 и I_3 (см. рисунок). Проводники KNM, KLM и KM соединены параллельно, следовательно, $I_1 = I_3 = \frac{\mathcal{E}}{R_s}$

и $I_2 = \frac{\mathcal{E}}{R_2}$, где $R_1 = \rho \frac{l_1 + l_2}{S}$ и $R_2 = \rho \frac{l}{S}$ $(KM = l = \sqrt{l_1^2 + l_2^2})$ – сопротивления

соответствующих проводников.

- 2. Со стороны магнитного поля на проводники KL и NM, перпендикулярные индукции магнитного поля, а также на диагональ КМ действуют силы Ампера: $F_1 = F_3 = BI_1l_1$, и $F_2 = BI_2l\sin\alpha$, где $\sin\alpha = \frac{l_1}{l}$. По правилу левой руки силы Ампера параллельны друг другу и направлены к наблюдателю, на проводники KN и ML сила Ампера не действует. Таким образом, результирующая сила $F = 2F_1 + F_2$.
- 3. Выполняя преобразования, получим: $F_1 = \frac{B\mathcal{E}Sl_1}{\rho(l_1 + l_2)}$, и $F_2 = \frac{B\mathcal{E}Sl_1}{\rho\sqrt{l_1^{\ 2} + l_2^{\ 2}}}$.

В итоге:

$$F = 2F_1 + F_2 = 2\frac{B\mathcal{E}Sl_1}{\rho(l_1 + l_2)} + \frac{B\mathcal{E}Sl_1}{\rho\sqrt{l_1^2 + l_2^2}} = \frac{B\mathcal{E}Sl_1}{\rho} \left(\frac{2}{l_1 + l_2} + \frac{1}{\sqrt{l_1^2 + l_2^2}} \right) =$$

$$= \frac{0.1 \cdot 1.4 \cdot 0.2 \cdot 10^{-6} \cdot 0.2}{1.7 \cdot 10^{-8}} \left(\frac{2}{0.2 + 0.15} + \frac{1}{\sqrt{0.2^2 + 0.15^2}} \right) = 3.2 \text{ H}.$$

Ответ: F = 3.2 H

31241. 1 2,211	
Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: принцип	
суперпозиции сил, закон Ома, формулы сопротивления проводника	
и силы Ампера, правило левой руки);	
ІІ) сделан правильный рисунок с указанием сил, действующих на	
контур;	
III) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	
указанных в варианте КИМ, обозначений величин, используемых	
в условии задачи, и стандартных обозначений величин,	

используемых при написании	физических законов);
----------------------------	----------------------

- IV) представлены необходимые математические преобразования и расчёты (подстановка числовых данных в конечную формулу), приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями);
- V) представлен правильный ответ с указанием единиц измерения искомой величины

Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены необходимые преобразования, но имеется один или несколько из следующих недостатков.

Записи, соответствующие пунктам II и III, представлены не в полном объёме или отсутствуют.

И (ИЛИ)

В решении имеются лишние записи, не входящие в решение (возможно, неверные), которые не отделены от решения и не зачёркнуты.

И (ИЛИ)

В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги.

И (ИЛИ)

Отсутствует пункт V, или в нём допущена ошибка (в том числе в записи единиц измерения величины)

Представлены записи, соответствующие <u>одному</u> из следующих случаев.

Представлены только положения и формулы, выражающие физические законы, применение которых необходимо для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи.

ИЛИ

В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.

ИЛИ

В ОДНОЙ из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи

Все случаи решения, которые не соответствуют вышеуказанным 0 критериям выставления оценок в 1, 2, 3 балла

Максимальный балл 3

В опыте по изучению фотоэффекта I, мА монохроматическое излучение мощностью P=0,21 Вт падает на поверхность катода, в результате чего в цепи возникает ток. График зависимости силы тока I от напряжения U между анодом и катодом приведён на рисунке. Какова частота v падающего света, если в среднем один из 30 фотонов, падающих на катод, выбивает электрон?

Демонстрационный вариант ЕГЭ 2021 г.

32

Возможное решение

- 1. По определению силы тока $I = \frac{q}{t}$, где q заряд, прошедший через поперечное сечение проводника за время t.
- 2. Когда ток в цепи достигает насыщения, все фотоэлектроны, выбитые из катода, достигают анода. Тогда за время t через поперечное сечение проводника проходит заряд $q=N_e e t$, где e- модуль заряда электрона, N_e- количество фотоэлектронов, выбитых из катода за 1 с.

Так как $N_e = \frac{1}{30} N_{\Phi}$ (где N_{Φ} – количество фотонов, падающих на катод за 1 c), то $I_{max} = \frac{1}{30} N_{\Phi} e$.

- 3. Так как энергия фотона $E_{\phi} = h v$, то мощность излучения $P = \frac{W}{t} = N_{\Phi} h v = \frac{30 I_{max} h v}{e}$.
- 4. Окончательно получим: $v = \frac{Pe}{30I_{max}h}$. Согласно приведённому графику сила

тока насыщения $I_{max} = 2$ мА,

тогда
$$\nu = \frac{0.21 \cdot 1.6 \cdot 10^{-19}}{30 \cdot 0.002 \cdot 6.6 \cdot 10^{-34}} \approx 8.5 \cdot 10^{14} \ \Gamma$$
ц.

Ответ: $v \approx 8.5 \cdot 10^{14} \, \Gamma$ ц

Критерии оценивания выполнения задания	Баллы
Приведено полное решение, включающее следующие элементы:	3
I) записаны положения теории и физические законы,	
закономерности, применение которых необходимо для решения	
задачи выбранным способом (в данном случае: определение силы	
тока; связь силы тока насыщения с количеством фотонов,	
падающих на катод в единицу времени; выражения для энергии	
фотона и мощности излучения);	
II) описаны все вновь вводимые в решении буквенные обозначения	
физических величин (за исключением обозначений констант,	

указанных в варианте КИМ, обозначений, используемых в условии задачи, и стандартных обозначений величин, используемых при написании физических законов); III) представлены необходимые математические преобразования и расчёты (подстановка числовых данных в конечную формулу), приводящие к правильному числовому ответу (допускается решение «по частям» с промежуточными вычислениями); IV) представлен правильный ответ с указанием единиц измерения искомой величины	
Правильно записаны все необходимые положения теории, физические законы, закономерности, и проведены необходимые преобразования, но имеется один или несколько из следующих недостатков.	2
Записи, соответствующие пункту II, представлены не в полном объёме или отсутствуют. И (ИЛИ)	
В решении имеются лишние записи, не входящие в решение, которые не отделены от решения и не зачёркнуты. И (ИЛИ)	
В необходимых математических преобразованиях или вычислениях допущены ошибки, и (или) в математических преобразованиях/вычислениях пропущены логически важные шаги. И (ИЛИ)	
Отсутствует пункт IV, или в нём допущена ошибка	
Представлены записи, соответствующие <u>одному</u> из следующих случаев.	1
Представлены только положения и формулы, выражающие физические законы, применение которых необходимо и достаточно для решения данной задачи, без каких-либо преобразований с их использованием, направленных на решение задачи. ИЛИ	
В решении отсутствует ОДНА из исходных формул, необходимая для решения данной задачи (или утверждение, лежащее в основе решения), но присутствуют логически верные преобразования с имеющимися формулами, направленные на решение задачи.	
ИЛИ В ОДНОЙ из исходных формул, необходимых для решения данной задачи (или в утверждении, лежащем в основе решения), допущена ошибка, но присутствуют логически верные преобразования	
все случаи решения, которые не соответствуют вышеуказанным	0
критериям выставления оценок в 1, 2, 3 балла Максимальный балл	3

ФИЗИКА, 11 класс 35 / 36

В соответствии с Порядком проведения государственной итоговой аттестации по образовательным программам среднего общего образования (приказ Минпросвещения России и Рособрнадзора от 07.11.2018 № 190/1512, зарегистрирован Минюстом России 10.12.2018 № 52952)

«82. <...> По результатам первой и второй проверок эксперты независимо друг от друга выставляют баллы за каждый ответ на задания экзаменационной работы $E\Gamma$ Э с развёрнутым ответом. <...>

В случае существенного расхождения в баллах, выставленных двумя экспертами, назначается третья проверка. Существенное расхождение в баллах определено в критериях оценивания по соответствующему учебному предмету.

Эксперту, осуществляющему третью проверку, предоставляется информация о баллах, выставленных экспертами, ранее проверявшими экзаменационную работу».

Существенным считается расхождение в 2 или более балла, выставленных экспертами за выполнение любого из заданий 27–32. Третий эксперт проверяет только те ответы на задания, которые вызвали столь существенное расхождение.