Problème 1. Polynômes de Legendre.

Pour $n \in \mathbb{N}$, on note

$$U_n = (X^2 - 1)^n$$
 et $L_n = \frac{1}{2^n n!} U_n^{(n)}$.

Les polynômes L_n sont appelés **polynômes de Legendre**.

Dans tout ce problème enfin, m et n désigneront des entiers naturels.

Partie A. Une famille de polynômes scindés simples sur \mathbb{R} .

- 1. Déterminer L_0 et L_1 et vérifier que $L_2 = \frac{1}{2} (3X^2 1)$.
- 2. (a) Quel est le degré de U_n ? Son coefficient dominant? Calculer $U_n^{(2n)}$. Que vaut $U_n^{(k)}$ lorsque k > 2n?
 - (b) Justifier que L_n est de degré n et préciser la valeur de son coefficient dominant.
- 3. (a) Énoncer le théorème de Rolle.
 - (b) Pour $n \in \mathbb{N}^*$, déterminer les racines de U_n , en précisant leur ordre de multiplicité, puis justifier qu'il existe un réel $\alpha \in]-1,1[$ et un réel λ que l'on ne cherchera pas à déterminer, tels que :

$$U'_n = \lambda (X - 1)^{n-1} (X + 1)^{n-1} (X - \alpha).$$

(c) Dans cette question seulement, $n \geq 2$. Soit $k \in [1, n-1]$. On suppose qu'il existe des réels $\alpha_1, \ldots, \alpha_k$ deux à deux distincts dans]-1,1[et un réel μ tels que

$$U_n^{(k)} = \mu(X-1)^{n-k}(X+1)^{n-k}(X-\alpha_1)\cdots(X-\alpha_k).$$

Justifier qu'il existe des réels $\beta_1, \ldots, \beta_{k+1}$ deux à deux distincts dans] -1, 1[et un réel ν tels que

$$U_n^{(k+1)} = \nu(X-1)^{n-k-1}(X+1)^{n-k-1}(X-\beta_1)\cdots(X-\beta_{k+1}).$$

(d) En déduire que si n est non nul, L_n admet n racines simples, toutes dans l'intervalle]-1,1[.

Partie B. Évaluation de L_n en 1 et en -1.

4. À l'aide de la formule de Leibniz, démontrer :

$$L_n = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k}^2 (X+1)^{n-k} (X-1)^k.$$

5. Calculer $L_n(1)$ et $L_n(-1)$.

Partie C. Calcul des nombres $\langle L_n, L_m \rangle$.

Dans cette partie, pour deux polynômes P et Q de $\mathbb{R}[X]$, on notera $\langle P, Q \rangle$ l'intégrale

$$\langle P, Q \rangle = \int_{-1}^{1} P(t)Q(t)dt.$$

Ceci définit un "produit scalaire" sur l'espace vectoriel $\mathbb{R}[X]$ (fin d'année). Ci-dessous, nous prouvons que les L_i sont des polynômes deux à deux "orthogonaux".

6. Pour $k \in [0, n]$, on note

$$\mathcal{P}(k): \langle U_n^{(n)}, U_m^{(m)} \rangle = (-1)^k \langle U_n^{(n-k)}, U_m^{(m+k)} \rangle \times .$$

- (a) (*) En supposant n non nul, à l'aide d'une intégration par parties, démontrer que pour $k \in [0, n-1]$ $\mathcal{P}(k) \Longrightarrow \mathcal{P}(k+1)$.
- (b) Justifier l'égalité

$$\langle L_n, L_m \rangle = \frac{(-1)^n}{2^{n+m} n! m!} \langle U_n, U_m^{(m+n)} \rangle.$$

7. À l'aide de ce qui précède, démontrer que

$$n \neq m \Longrightarrow \langle L_n, L_m \rangle = 0.$$

8. (a) Toujours à l'aide de la question 6 (b), démontrer que

$$\langle L_n, L_n \rangle = \frac{(2n)!}{2^{2n}n!^2} \int_{-1}^{1} (1 - t^2)^n dt.$$

- (b) Pour $k \in \mathbb{N}$, on note $J_k = \int_{-1}^{1} (1 t^2)^k dt$. Intégrer J_k par parties et obtenir une relation entre J_k et J_{k-1} lorsque $k \ge 1$.
- (c) En déduire une expression de J_n , puis que

$$\langle L_n, L_n \rangle = \frac{2}{2n+1}.$$

Problème 2. Exemples de nombres algébriques et de nombres transcendants.

On dit qu'un nombre réel est **algébrique** s'il est racine d'un polynôme non nul et à coefficients entiers. Dans le cas contraire, on dira que ce nombre est **transcendant**.

Dans ce problème, on notera $\overline{\mathbb{Q}}$ l'ensemble des nombres algébriques :

$$\overline{\mathbb{Q}} = \{ x \in \mathbb{R} \mid \exists P \in \mathbb{Z}[X] \setminus \{0\} : P(x) = 0 \}.$$

Partie A. Exemples de nombres algébriques.

- 1. Démontrer que $\mathbb{Q} \subset \overline{\mathbb{Q}}$.
- 2. Démontrer que $\sqrt{2} \in \overline{\mathbb{Q}}$.
- 3. Démontrer que $\sqrt{2} + \sqrt{3} \in \overline{\mathbb{Q}}$. Généraliser et prouver que si a et b sont deux entiers naturels, alors $\sqrt{a} + \sqrt{b} \in \overline{\mathbb{Q}}$.
- 4. Soit r un rationnel. Montrer que $\cos(\pi r) \in \overline{\mathbb{Q}}$.

 On pourra faire intervenir un membre d'une famille de polynômes célèbres.
- 5. Soit $x \in \overline{\mathbb{Q}}$.
 - (a) Montrer que $-x \in \overline{\mathbb{Q}}$.
 - (b) Supposons que $x \neq 0$. Montrer que $\frac{1}{x} \in \overline{\mathbb{Q}}$

Partie B. Polynôme minimal d'un nombre algébrique.

On admet que les résultats d'arithmétique de $\mathbb{K}[X]$ exposés dans le cours sont vrais lorsque \mathbb{K} est sous-corps quelconque de \mathbb{C} , ici \mathbb{Q} .

On dit qu'un polynôme de $\mathbb{Q}[X]$ est irréductible sur \mathbb{Q} si ses seuls diviseurs dans $\mathbb{Q}[X]$ sont ses associés et les polynômes constants non nuls.

Soit $x \in \overline{\mathbb{Q}}$, un nombre algébrique. On note $\mathcal{I}_x = \{P \in \mathbb{Q}[X] \mid P(x) = 0\}$. Soit Π_x l'unique polynôme unitaire de \mathcal{I}_x minimal en degré.

- 6. (a) Justifier que Π_x existe et est irréductible sur \mathbb{Q} .
 - (b) Montrer que Π_x divise tous les polynômes de \mathcal{I}_x .
 - (c) Justifier que Π_x est unique.
- 7. On note d le degré de Π .

On pose
$$\mathbb{Q}_{d-1}[x] = \{P(x) \mid P \in \mathbb{Q}_{d-1}[X]\} \text{ et } \mathbb{Q}[x] = \{P(x) \mid P \in \mathbb{Q}[X]\}.$$

- (a) Montrer que $\mathbb{Q}[x] = \mathbb{Q}_{d-1}[x]$.
- (b) Montrer que $\mathbb{Q}_{d-1}[x]$ est un corps.

Les parties C et D sont indépendantes des parties A et B.

Partie C. Un théorème de Liouville.

Soit $x \in \overline{\mathbb{Q}}$ un nombre algébrique.

On considère P un polynôme de $\mathbb{Z}[X]$ non constant dont x est une racine. On note d le degré de P.

Soit un réel $\eta > 0$ tel que $[x-\eta, x+\eta]$ ne contient aucune racine de P autre que x.

- 8. Justifier l'existence de η .
- 9. Prouver l'existence d'une constante K > 0 telle que

$$\forall (a,b) \in [x-\eta, x+\eta] \qquad |P(a) - P(b)| \le K|a-b|.$$

10. Soit $p \in \mathbb{Z}$ et $q \in \mathbb{N}^*$. Montrer que

si
$$\frac{p}{q} \in [x - \eta, x + \eta] \setminus \{x\}$$
 alors $\left| x - \frac{p}{q} \right| \ge \frac{1}{Kq^d}$.

11. Prouver qu'il existe une constante A>0 (qu'on explicitera en fonction de K et η) telle que

$$\forall (p,q) \in \mathbb{Z} \times \mathbb{N}^* \qquad \frac{p}{q} \neq x \quad \Longrightarrow \quad \left| x - \frac{p}{q} \right| \geq \frac{A}{q^d}.$$

Liouville s'est servi de son résultat pour créer un exemple de nombre transcendant : il lui a suffit d'exhiber un nombre qui prend en défaut l'inégalité démontrée dans la dernière question. Ce travail est fait en partie D.

Partie D. La constante de Liouville $\sum_{k=0}^{+\infty} \frac{1}{10^{k!}}$: premier exemple de nombre transcendant.

- 12. Pour $n \in \mathbb{N}$, on note $u_n = \sum_{k=0}^n \frac{1}{10^{k!}}$. Montrer que (u_n) converge.
- 13. Notons ℓ la limite de u. Montrer que

$$\forall n \in \mathbb{N} \quad |\ell - u_n| \le \frac{1}{10^{nn!}}.$$

Indication : on pourra majorer d'abord $|u_p - u_n|$ où $p \ge n$.

14. En utilisant le théorème de Liouville, prouver que ℓ est un nombre transcendant.