

CICLO DIAGNÓSTICO - MATEMÁTICA

TURMA IME-ITA

2022

1ª QUESTÃO

Sejam P(n) e S(n) o produto e a soma, respectivamente, dos dígitos do número inteiro n. Por exemplo, P(23)=6 e S(23)=5.

Suponha que N seja um número de dois dígitos tal que N = P(N) + S(N).

Determine todos os possíveis valores de N de acordo com as condições enunciadas.

SIMULADO ITA OBJETIVO - CICLO 05

QUESTÃO 01

Considere um número $z\in\mathbb{C}$ tal que: $\frac{z}{1+2i}=-1+2i$. Dessa forma, assinale a sua forma trigonométrica:

A() $3cis(\pi)$

 \mathbf{B} () $3cis(2\pi)$

 $\mathbf{C}(\)$ $4cis(\frac{\pi}{2})$

 \mathbf{D} () $5cis(\pi)$

E() $4cis(\frac{3\pi}{2})$

Gabarito: D

SOLUÇÃO:

QUESTÃO 02

ITA-5 OBJ MATEMÁTICA Q??

Para facilitar suas aulas de Análise Combinatória, Santanelli deseja pintar as faces de um tetraedro regular com cores distintas em cada uma, dispondo para isso 8 cores diferentes. Qual o total de maneiras em que Santanelli poderá pintar as faces do poliedro citado?

- a) 140
- b) 210
- c) 560
- d) 420
- e) 1680

SOLUÇÃO: QUESTÃO 03

ITA-5 OBJ MATEMÁTICA Q??

Considere as afirmativas: I. Um conjunto finito T de números naturais é chamado de egoísta se o seu tamanho pertence a T. Por exemplo, T=2,3,7 é egoísta, pois o tamanho de T é 3 e $3\in T$. Então a quantidade total de subconjuntos egoístas de $1,2,\cdots,10$ é 512. II. Sejam os conjuntos A=1,2,3,4 e B=5,6,7, a probabilidade de escolher, aleatoriamente, um par ordenado do produto cartesiano $B\times A$ em que a soma das suas coordenadas seja um número par, sabendo que a sua ordenada é par, é $\frac{1}{6}$. III. A área da região limitada por $x\geq 0,\,y\leq 0$ e a função $f:\mathbb{R}\to\mathbb{R}$ dada por f(x)=|x-1|-1 é de 2 unidades de área. Marque a alternativa que contém todas as afirmações corretas:

- a) $I \in III$
- b) *II*
- c) $I, II \in III$
- d) I
- e) II e III

SOLUÇÃO: QUESTÃO 04

ITA-5 OBJ MATEMÁTICA Q??

Considere as afirmativas a respeito da Geometria Espacial: I. Por um ponto exterior a um plano passa apenas uma reta paralela ao plano. II. Duas retas cuja interseção é vazia não necessariamente são paralelas. III. Se dois planos são paralelos, então toda reta de um deles é paralela ao outro. IV. Duas retas distintas paralelas a um plano são paralelas entre si. Estão corretas:

- a) II e III
- b) $I \in II$
- c) II, III e IV
- d) III e IV
- e) Todas.

SOLUÇÃO: QUESTÃO 05

ITA-5 OBJ MATEMÁTICA Q??

Sejam as funções $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$ definidas por $f(x) = \frac{2^x + 2^{-x}}{2}$ e $g(x) = \frac{2^x - 2^{-x}}{2}$. Pode-se afirmar que:

- a) f é crescente e g é decrescente.
- b) $f \in g$ se interceptam para x = 0.
- c) f(0) + g(0) = 0.
- d) $(f(x))^2 (g(x))^2 = 1$.

e) $f(x) \ge 0$ e $g(x) \ge 0$	≥ 0 , para todo x real.
SOLUÇÃO: QUESTÃO 06	
	ITA-5 OBJ MATEMÁTICA Q??
Qual o valor de:	
(4c)	$\cos^2 9^{\circ} - 1\right) \left(4\cos^2 27^{\circ} - 1\right) \left(4\cos^2 81^{\circ} - 1\right) \left(4\cos^2 243^{\circ} - 1\right)?$
a) 0	
b) 1	
c) -1	
d) $\frac{1}{2}$	
e) $\frac{\sqrt{2}}{2}$	
SOLUÇÃO:	
QUESTÃO 07	ITA-5 OBJ MATEMÁTICA Q??
Ordrands ave u5	
Sabendo que x^{-1}	= 1, calcule o valor numérico de: x^2 x^3 x^4
	$\frac{x}{1+x^2} + \frac{x^2}{1+x^4} + \frac{x^3}{1+x} + \frac{x^4}{1+x^3}.$
a) 0	
b) 1	
c) 2	
d) -1	
e) -2	
SOLUÇÃO: QUESTÃO 08	
QUESTAC 00	

ITA E OD I MATEMÁTICA COO				
ITA-5 OBJ MATEMÁTICA Q??				
Se: $3\sin^{-1}\left(\frac{2x}{1+x^2}\right) - 4\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) + 2\tan^{-1}\left(\frac{2x}{1-x^2}\right) = \frac{\pi}{3},$				
então qual o valor de x ?				
a) $\frac{1}{2}$				
b) 1				
c) -1				
d) $\frac{1}{\sqrt{2}}$				
e) $\frac{1}{\sqrt{3}}$				
SOLUÇÃO: QUESTÃO 09				
ITA-5 OBJ MATEMÁTICA Q??				
Considere o sistema tridimensional de coordenadas cartesianas e um segmento de comprimento l , localizado no primeiro octante, com uma das extremidades na origem. Se o segmento determinada ângulos α , β e γ com os eixos coordenados x , y e z , respectivamente, então calcule: $\cos 2\alpha + \cos 2\beta + \cos 2\gamma$. a) 1 b) l c) $2l$ d) -1 e) l^2-3				
QUESTÃO 10				
ITA-5 OBJ MATEMÁTICA Q??				
Sabendo que $x^3=303^3+404^3+505^3$, então determine o valor de: $\sqrt{\frac{x}{6}-1}$.				
a) 4				
b) 10				
c) 1				
d) 2				
e) 12				
SOLUÇÃO: QUESTÃO 11				

ITA-5 OBJ MATEMÁTICA Q??					
Considere a função quadrática definida nos reais tal que $f(x)=x^2-6x+12$. Se $f\left(f(a)\right)=259$, qual a soma dos módulos dos possíveis valores de a ?					
a) 6					
b) 7					
c) 1					
d) 8					
e) 10					
·					
SOLUÇÃO: QUESTÃO 12					
ITA-5 OBJ MATEMÁTICA Q??					
Qual a soma dos quadrados das inclinações das retas que passam por $(8,15)$ e são tangentes à parábola $y=x^2-6x$?					
a) 20					
b) 400					
c) 208					
d) 304					
e) 40					
SOLUÇÃO: SIMULADO ITA DISCURSIVO - CICLO 05 QUESTÃO 01					
ITA-5 OBJ MATEMÁTICA Q01					
Seja a função f , definida em $\mathbb{R}-rac{-d}{c}$, expressa por:					
$f(x) = \frac{ax+b}{cx+d},$					
com a,b,c e d reais não nulos. Sabendo que $f(19)=19,f(97)=97$ e $f\left(f(x)\right)=x,$ determine os valores de a,b,c e d .					
SOLUÇÃO: QUESTÃO 02					

			,
ITA C	ΔDI		
HA-D	UDJ	WAICINIA	ATICA Q07

Calcule os valores dos inteiros n e p de modo que:

$$\frac{\binom{n}{p}}{1} = \frac{\binom{n}{p+1}}{2} = \frac{\binom{n}{p+2}}{3}.$$

SOLUÇÃO: QUESTÃO 08

ITA-5 OBJ MATEMÁTICA Q08

Considere a matriz quadrada: \begin{pmatrix} 1 & 1 \\ a & b \\ \end{pmatrix} em que a e b são números reais. (a) Denotando a transposta da matriz A por A^t , determine todos os valores de a e b tais que: $A^tA = AA^t$. (b) Adotando a = b = 2, determine todos os possíveis valores de $\tan \theta$ na equação matricial:

$$Av = \lambda v$$

em que v é a matriz coluna para $v=(\cos\theta,\sin\theta)$ e λ e θ são números reais.

SOLUÇÃO: QUESTÃO 09

ITA-5 OBJ MATEMÁTICA Q09

Uma sequência de números reais não nulos (a_1,a_2,\cdots,a_n) é uma progressão harmônica se a sequência formada pelos inversos $\left(\frac{1}{a_1},\frac{1}{a_2},\cdots,\frac{1}{a_n}\right)$ é uma progressão aritmética. Dessa forma, sendo a, b e c termos consecutivos de uma progressão harmônica, demonstre que: $b=\frac{2ac}{a+c}$.

SOLUÇÃO: QUESTÃO 10

ITA-5 OBJ MATEMÁTICA Q10

Considere o triângulo abaixo.

(a) Supondo que o triân-

gulo seja isósceles, determine os possíveis valores para θ . (b) Prove que, se c=2a, então $\beta=90^\circ$.

SOLUÇÃO:

a) 19, 29, 39, 49, 59, 69, 79, 89, 99

Utilizando a representação de um número de dois dígitos na base 10, obtemos:

$$10a + b = ab + a + b$$
$$ab = 9a$$
$$b = 9$$

Dessa forma, o número N de dois algarismos deve terminar com 9. Como o seu primeiro algarismo pode variar, obtemos as seguintes possibilidades:

$$\begin{cases} N = 19 & \Rightarrow P(19) + S(19) = 9 + 10 = 19 \\ N = 29 & \Rightarrow P(29) + S(29) = 18 + 11 = 29 \\ N = 39 & \Rightarrow P(39) + S(39) = 27 + 12 = 39 \\ N = 49 & \Rightarrow P(49) + S(49) = 36 + 13 = 49 \\ N = 59 & \Rightarrow P(59) + S(59) = 45 + 14 = 59 \\ N = 69 & \Rightarrow P(69) + S(69) = 54 + 15 = 69 \\ N = 79 & \Rightarrow P(79) + S(79) = 63 + 16 = 79 \\ N = 89 & \Rightarrow P(89) + S(89) = 72 + 17 = 89 \\ N = 99 & \Rightarrow P(99) + S(99) = 81 + 18 = 99 \end{cases}$$

2ª QUESTÃO

Seja o sistema:

$$\begin{cases} ax + by = 3\\ ax^2 + by^2 = 7\\ ax^3 + by^3 = 16\\ ax^4 + by^4 = 42 \end{cases}$$

Calcule o valor numérico de

- a) a+b
- b) $ax^{5} + by^{5}$

Gabarito

- a) $\frac{49}{38}$
- b) 20

Tomando a primeira equação e multiplicando por (x + y):

$$(ax + by)(x + y) = ax^2 + by^2 + xy(a + b) \Rightarrow 3(x + y) = 7 + xy(a + b)$$

Fazendo o mesmo com a segunda equação:

$$(ax^{2} + by^{2})(x + y) = ax^{3} + by^{3} + xy(ax + by) \Rightarrow 7(x + y) = 16 + 3xy$$

E com a terceira equação

$$(ax^3 + by^3)(x+y) = ax^4 + by^4 + xy(ax^2 + by^2) \Rightarrow 16(x+y) = 72 + 7xy$$

Das duas últimas equações obtidas:

$$\begin{cases} 7(x+y) = 16 + 3xy \\ 16(x+y) = 42 + 7xy \end{cases}$$

Na primeira equação obtida:

$$3(-14) = 7 - 38(a+b) \Rightarrow a+b = \frac{49}{38}$$

3ª QUESTÃO

No retângulo ABCD abaixo, os triângulos ADE, BEF e CDF possuem areas iguais, e a medida do segmento CF é de 2 unidades.

Determine a medida do segmento BF.

Gabarito

a)
$$1 + \sqrt{5}$$

Considere a medida do segmento CD igual a y unidades e a do segmento BF pedido de x unidades. Obtemos, assim, as seguites áreas apra os triângulos equivalentes:

1.
$$[CDF] = \frac{2y}{2} = y$$

2.
$$[BEF] = y \Rightarrow \frac{BE \cdot x}{2} = y \Rightarrow BE = \frac{2y}{x}$$

3.
$$[ADE] = y \Rightarrow \frac{AD \cdot DE}{2} = y$$

Logo:

$$\frac{(x+2)\left(y - \frac{2y}{x}\right)}{2} = y$$
$$(x+2)(x-2) = 2x$$
$$x^2 - 2x - 4 = 0$$

Assim,

$$x = \frac{2 \pm \sqrt{20}}{2} = 1 \pm \sqrt{5}$$

Como a medida deve ser um valor real positivo, então:

$$BF = x = 1 + \sqrt{5}$$

4ª QUESTÃO

Sejam os inteiros positivos n e k tais que $n \geq 2$ e $1 \leq k \leq n$. Dessa forma, definimos o polinômio P de grau n-1 por:

$$P(x) = \frac{(x+1)(x+2)...(x+n)}{(x+k)}$$

- a) Determine o polinômio correspondente a n=5 e k=3.
- b) Construa todos os possíveis polinômios tais que n=4.
- c) Certo polinômio possui o coeficiente de x^{n-2} igual a 67, determine os valores de n e k para tal polinômio.
- d) Calcule a soma de todos os coeficientes de todos os possíveis polinômios de grau 5.
- e) Para um polinômio de grau n, determine a expressão do menor coeficiente possível de x^{n-3} .

Gabarito

a)
$$x^4 + 12x^3 + 49x^2 + 78x + 40$$

b)
$$\{x^3 + 9x^2 + 26x + 24, x^3 + 8x^2 + 19x + 12, x^3 + 7x^2 + 14x + 8, x^3 + 6x^2 + 11x + 6\}$$

- c) n = 11 e n = 12
- d) 8028

e)
$$\frac{1}{2} \left[\left(\frac{(1+n)n}{2} \right)^2 - \frac{n(n+1)(2n+1)}{6} \right]$$

 $\{=html\} < !-- --> - Substituindo na expressão para <math>P$ obtemos:

$$P(x) = (x+1)(x+2)(x+4)(x+5) = \boxed{x^4 + 12x^3 + 49x^2 + 78x + 40}$$

a) Para n=4, temos a seguinte expressão:

$$P(x) = \frac{(x+1)(x+2)(x+3)(x+4)}{(x+k)}$$

Abrindo nos casos para os valores de k:

$$\begin{cases} k = 1 : P(x) = (x+2)(x+3)(x+4) = x^3 + 9x^2 + 26x + 24 \\ k = 2 : P(x) = (x+1)(x+3)(x+4) = x^3 + 8x^2 + 19x + 12 \\ k = 3 : P(x) = (x+1)(x+2)(x+4) = x^3 + 7x^2 + 14x + 8 \\ k = 4 : P(x) = (x+1)(x+2)(x+3) = x^3 + 6x^2 + 11x + 6 \end{cases}$$

b) Como o polinômio P possui grau n-1, o coeficiente de x^{n-2} é dado pela soma:

$$1 + 2 + \dots + (k-1) + (k+1) + \dots + n = 1 + \dots + n - k = \frac{(1+n)n}{2} - k.$$

Testando os possíveis valores para n que mais aproximam a soma acima de 67:

$$\begin{cases} n = 10 : \frac{11 \cdot 10}{2} - k = 67 \Rightarrow k = -12 \\ n = 11 : \frac{12 \cdot 11}{2} - k = 67 \Rightarrow k = -1 \\ n = 12 : \frac{13 \cdot 12}{2} - k = 67 \Rightarrow k = 11 \\ n = 13 : \frac{14 \cdot 13}{2} - k = 67 \Rightarrow k = 24 \end{cases}$$

Como k é um inteiro positivo menor ou igual a n, temos que n=12 e k=11

c) Se o grau é 5, então $n-1=5 \Rightarrow n=6$. Dessa forma:

$$P(x) = \frac{(x+1)(x+2)(x+3)(x+4)(x+5)(x+6)}{(x+k)}$$

Observe que, para obter a soma dos coeficientes de um polinômio, basta impor x=1:

$$P(1) = \frac{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7}{(1+k)} = \frac{7!}{(1+k)}.$$

Finalmente, para obter a soma dos coeficientes de todos os possíveis polinômios P, basta variar k de 1 a 6 e ir somando os resultados:

$$7!\left(\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}\right) = \boxed{8028}.$$

d) Sabendo que o polinômio de grau n é representado por:

$$P(x) = \frac{(x+1)(x+2)...(x+n)(x+n+1)}{(x+k)},$$

com $1 \le k \le n+1$. O coeficiente líder corresponde ao monômio x^{n-1} e o coeficiente de x^{n-3} será formado pelo produto dois a dois. Para obter o menor coeficiente possível, basta impor k=n+1:

$$P(x) = (x+1)(x+2)...(x+n).$$

Portanto:

$$1 \cdot 2 + 1 \cdot 3 + \dots + n \cdot (n-1) = \frac{(1+\dots+n)^2 - (1^2 + \dots + n^2)}{2} = \frac{1}{2} \left[\left(\frac{(1+n)n}{2} \right)^2 - \frac{n(n+1)(2n+1)}{6} \right].$$

5ª QUESTÃO

Na escola de Carlos, um conceito A vale 4 pontos, um B vale 3 pontos, um C vale 2 pontos e um D vale apenas 1 ponto. Sua média final nos quatro cursos que ele está matriculado é calculada como a soma total de pontos dividida por 4. Ele tem certeza de que obterá A's em Matemática e em Ciências, e pelo menos um C em Inglês e História. Ele acha que tem uma chance de $\frac{1}{6}$. de obter um A em Inglês e uma chance de $\frac{1}{4}$ de obter um B. Em História, ele tem $\frac{1}{4}$ de chance de conseguir um A e $\frac{1}{3}$ de chance de obter um B, independentemente do que ele recebe em Inglês.

Dessa forma, responda:

- a) Qual a probabilidade de Carlos obter média final igual a 4?
- b) Se para ser aprovado a média final deve ser de ao menos 3,5, qual a probabilidade de Carlos obter aprovação?

Gabarito

- a) $\frac{1}{24}$
- b) $\frac{11}{24}$

Sejam e e h suas respectivas pontuações em Inglês e em História: - Se a média final for de 4 pontos, significa que Carlos obteve conceito A em todos os cursos. Dado que o conceito A já era garantido em Matemática e em Ciências, para que consiga A também em Inglês e em História tem-se:

$$\frac{1}{6} \cdot \frac{1}{4} = \boxed{\frac{1}{24}}.$$

- Para obter aprovação final, de acordo com as condições:

$$\frac{4+4+e+h}{4} \ge 3.5 \Rightarrow e+h \ge 6$$

Portanto, sabendo que Carlos não tirará um D, abrimos em casos:

$$\begin{cases} e=h=3: & \frac{1}{4}\cdot\frac{1}{3}=\frac{1}{12} \text{ de probabilidade}\\ e=4 \text{ e } h=2,3,4: & \frac{1}{6} \text{ de probabilidade}\\ h=4 \text{ e } e=2,3,4: & \frac{1}{4}\cdot\frac{1}{4} \text{ de probabilidade}\\ e=h=3: & \frac{1}{4}\cdot\frac{1}{3}=\frac{1}{12} \text{ de probabilidade} \end{cases}$$

O caso e=h=4 foi contado duas vezes: $\frac{1}{6}\cdot\frac{1}{4}=\frac{1}{24}$ de probabilidade. Logo, obtemos como a probabilidade de a média ser de ao menos 3,5:

$$\frac{1}{12} + \frac{1}{6} + \frac{1}{4} - \frac{1}{24} = \boxed{\frac{11}{24}}$$

12