Comparação de métodos de imputação de dados ausentes sob diferentes mecanismos

true true 28 de fevereiro de 2019

Contents

1 INTRODUÇÃO

Problemas de dados faltantes em bancos de dados são recorrentes, e interferem diretamente nas inferências e tomada de decisões decorrentes do estudo do banco de dados. Um exemplo seriam perguntas constrangedoras como o consumo de drogas ilícitas, infração de leis de trânsito e doenças sexualmente transmissíveis.

Assim temos a principal questão: como inferir informações dos valores ausentes? Vários métodos foram propostos para solucionar este problema como a Análise de Casos Completos (ACC) e Imputação Múltipla, sendo a última o foco dessa pesquisa. Essa abordagem, prosposta por Little e Rubin (1987) e aprimorada por outros pesquisadores como Schafer (1997) e Van Buuren e Groothuis-Oudshoorn (2011), que consiste em preencher os dados faltantes aleatoriamente com valores candidatos baseados nos valores observados.

2 METODOLOGIA

Para esse estudo aplicamos a metodologia de três diferentes mecanismos de geração de dados ausentes, são eles: Perda Completamente Aleatória (PCA), Perda Aleatória (PA) e Perda Não Aleatória (PNA). Sendo que na PCA o motivo pelo qual os dados estão ausentes não está relacionado às variáveis do estudo; já na PA a razão para um valor estar ausente está relacionada às outras variáveis observadas, mas não está relacionada à variável em que há valores ausentes; e por fim na PNA o motivo pelo qual os dados estão ausentes está diretamente relacionado aos valores não observados da variável de interesse.

Após gerar os dados ausentes aplicamos a metodologia da Imputação Múltipla, que consiste em gerar valores (m vezes) para os dados faltantes, sendo que ela cria uma matriz com todas as M imputações. Para realização das imputações utilizamos o pacote Multivariate Imputation With Chained Equations (MICE). A função que realiza a imputação chama-se mice, e nesse estudo realizamos a imputação 5 vezes (m=5). A aplicação dessa função requer um método e esse método varia de acordo com o tipo de escala da variável de interesse, no pacote existem os seguintes tipos de escala: numérico, fator, fator de dois níveis, fator acima de 2 níveis e qualquer tipo de escala. Para os tipos de escala númericos existem os seguintes métodos: Predictive mean matching (pmm), Bayesian linear regression (norm), Linear regression, non-Bayesian (norm.nob), Unconditional mean imputation (mean) e Two-level linear model (2l.norm). Já para os tipos de escala fator existem os seguintes métodos: Logistic regression (logreg), Polytomous (unordered) regression (polyreg) e Linear discriminant analysis (lda). E por fim para qualquer tipo de escala existe o método Random sample from the observed data (sample).

Como a variável de interesse desse estudo é numérica portanto optamos por um método em que o tipo de escala é numérico, assim o método escolhido foi o *Predictive mean matching (pmm)*.

2.1 Predictive mean matching (pmm)

O método da p
mm consiste em escolher valores possíveis para as observações faltantes base
ando-se nas obsevações que possuem valores completos, a escolha dos valores variam entre 3, 5 ou 10 possíveis candidatos com valores completos, que são chamados de doadores.

Os doadores são escolhidos aleatoriamente e assumindo que a distribuição das observações com valores ausentes segue a mesma distribuição das observações com valores completos.

O método é bastante robusto para transformações da variável de interesse, que será o caso nessa pesquisa, e também é válido para variáveis discretas presentes no banco de dados. Como o método é baseado nas observações completas, os valores gerados são bastante realistas e não serão imputados valores fora da amplitude dos dados.

3 RESULTADOS

3.1 Banco de dados

Para realizar a imputação dos dados utilizamos o banco de dados US Term Life insurance do pacote CASdatasets disponível no software R. As imputações e os resultados foram obtidos utilizando esse mesmo software estatístico. O banco de dados possui 18 variáveis com 500 observações, como pode ser visto abaixo.

```
'data.frame':
                    500 obs. of 18 variables:
##
    $ Gender
                             1 1 1 1 1 1 0 1 1 1 ...
                      : int
                             30 50 39 43 61 34 75 29 35 70 ...
##
    $ Age
##
    $ MarStat
                             1 1 1 1 1 2 0 1 2 1 ...
##
    $ Education
                      : int
                             16 9 16 17 15 11 8 16 4 17 ...
                             3 3 1 1 1 2 1 1 3 1 ...
##
    $ Ethnicity
                       int
    $ SmarStat
##
                             2 1 2 1 2 1 0 2 1 2 ...
                      : int
##
    $ Sgender
                             2 2 2 2 2 2 0 2 2 2 ...
                      : int
##
    $ Sage
                      : int
                             27 47 38 35 59 31 0 31 45 74 ...
                             16 8 16 14 12 14 0 17 9 16 ...
##
      Seducation
                       int
##
    $ NumHH
                             3 3 5 4 2 4 1 3 2 2 ...
                      : int
                             43000 12000 120000 40000 25000 28000 2500 100000 20000 101000 ...
##
    $ Income
                             43000 0 90000 40000 1020000 0 0 84000 0 6510000 ...
##
    $ TotIncome
                      : int
##
    $ Charity
                      : int
                             0 0 500 0 500 0 0 0 0 284000 ...
##
    $ Face
                             20000 130000 1500000 50000 0 220000 0 600000 0 0 ...
                      : int
##
    $ FaceCVLifePol
                             0 0 0 75000 7000000 0 14000 0 0 2350000 ...
                     : int
                             0 0 0 0 300000 0 5000 0 0 0 ...
##
    $ CashCVLifePol
                     : int
##
    $ BorrowCVLifePol: int
                             0 0 0 5 5 0 5 0 0 5 ...
                            0 0 0 0 0 0 0 0 0 0 ...
    $ NetValue
                      : int
```

Porém selecionamos as seguintes variáveis para realizar a pesquisa: Gênero (gênero do entrevistado); Idade (idade do entrevistado); Estado Civil (estado civil do entrevistado); Escolaridade (número de anos de escolaridade do entrevistado); Etnia (etnia do entrevistado); Renda (renda anual da família do entrevistado).

Primeiras observações do banco de dados original:

##	Gender	Age	${\tt MarStat}$	Education	Ethnicity	Income
##	1 Masculino	30	Casado	16	Hispânico	43000
##	2 Masculino	50	Casado	9	Hispânico	12000
##	3 Masculino	39	Casado	16	Branco	120000
##	4 Masculino	43	Casado	17	Branco	40000
##	5 Masculino	61	Casado	15	Branco	25000
##	6 Masculino	34 Morando	Juntos	11	Negro	28000

```
##
             Education2
## 1
        Ensino Superior
##
  2 Ensino Fundamental
##
  3
        Ensino Superior
##
  4
        Ensino Superior
## 5
        Ensino Superior
## 6
          Ensino Médio
```

3.2 Análise Descritiva

Após a escolha das variáveis para esse estudo, iremos realizar uma análise descritiva de cada uma delas, e assim avaliar as relações existentes entre a variável resposta e as covariáveis do banco de dados. Ao final realizaremos um dos principais objetivos dessa pesquisa, que é verificar os possíveis questionamentos sobre a Renda a partir das outras variáveis.

Primeiramente analisaremos as variáveis individualmente, com interesse em suas distribuições e comportamentos. Pelos dados observamos que as variáveis contínuas são: Renda, Idade e Escolaridade, e as variáveis discretas são: Gênero, Estado Civil e Etnia.

Distribuição do Gênero

Distribuição do Estado Civil

Distribuição da Etnia

Para as variáveis discretas temos que o banco de dados possui uma quantidade maior de entrevistados do sexo masculino (413 entrevistados) do que do sexo feminino (87 entrevistadas); para o estado civil temos uma concentração maior de respostas para os entrevistados Casados (333 entrevistados) e a menor quantidade de entrevistados pertence ao estado civil de Morando Juntos (31 entrevistados), sendo que o estado civil Outros possui 136 entrevistados; por fim para a etnia temos uma maior quantidade de entrevistados que possuem

etnia Branco (365 entrevistados), sendo que as outras etnias possuem valores menores de entrevistados no banco de dados: Hispânico (40 entrevistados), Negro (70 entrevistados) e Outros (25 entrevistados).

Para as variáveis contínuas temos que a variável Idade está bastante distribuída entre os 20 anos e 70 anos, após 70 anos vemos poucos entrevistados no banco de dados, sendo também que a idade máxima é 85 anos e a idade mínima é 20 anos. A média é 47.164 anos e a mediana 47 anos. O primeiro quantil é de 37 anos, representando a idade que deixa 25% das observações abaixo e 75% acima dessa idade. E o terceiro quantil é de 58 anos, representando a idade que possui 75% das observações abaixo dela e 25% das observações acima dela.

A distribuição da variável Escolaridade possui maior concentração de entrevistados após 10 anos de escolaridade.

E para a variável Renda temos que a renda mínima anual é 260 dólares e a renda máxima anual é 75000000 dólares. A mediana e a média são 54000 dólares e 321021 doláres, respectivamente. O primeiro quantil é de 28000 dólares, representando o valor de renda anual que deixa 25% das observações abaixo dela e 75% acima deela. E o terceiro quantil é de 106000 dólares, representando a renda anual que possui 75% das observações abaixo dela e 25% das observações acima dela. Aplicamos o logarítimo para melhor visualização da distribuição da renda anual através do histograma e percebemos uma aparência com a distribuição normal.

Além da análise da variável Escolaridade em anos, foi realizada também a análise dos anos de escolaridade divididos pelos tipos de ensino existentes, que são: 2-10 anos de escolaridade é o Ensino Fundamental, 11-14 anos de escolaridade é o Ensino Médio e de 15-17 anos de escolaridade é o Ensino Superior, assim obtemos:

Distribuição dos Anos de Escolaridade

Distribuição dos Tipos de Ensino

Avaliando os tipos de ensino percebemos uma maior concentração de entrevistados que possuem o ensino médio e o ensino superior, sendo que quase a metade dos entrevistados possuem ensino superior, esse valor corresponde a 248 entrevistados.

Analisamos também a relação entre a variável resposta (Renda) e as covariáveis presentes no banco de dados escolhido. Assim obtivemos os seguintes resultados:

Para as variáveis discretas temos os boxplots da Log(Renda) com cada uma das variáveis separadamente. Para o gênero observamos um valor de renda maior para o sexo masculino, comparando com o sexo feminino; já a variável Estado Civil os entrevistados casados possuem uma renda maior, sendo que a mediana da renda dos que moram juntos com o parceiro(a) e outros estão bastante próximas, porém são inferiores aos valores de renda dos entrevistados casados. Na comparação entre a Log(Renda) e a Etnia percebemos uma amplitude da renda maior para as etnias Branco e Outros, entretanto, como foi observado anteriormente, essas etnias correspondem a 73% e 5%, respectivamente, do total do banco de dados.

Para a relação entre as variáveis Log(Renda) e a Idade temos o gráfico de dispersão acima, nele percebemos uma pequena inclinação no ajuste da curva quando ocorre o aumento das idades dos entrevistados, o que indica um possível ganho de renda anual maior para os entrevistados a medida que aumenta a idade.

Gráfico dos Anos de Escolaridade e a Idade

Analisando as variáveis Anos de Escolaridade e a Idade, percebemos uma inclinação quando aumenta os anos de escolaridade e as idades dos entrevistados, ou seja, os entrevistados possuem maior anos de escolaridade à medida que aumentam as idade, o que condiz com a realidade dos ensinos visto anteiormente. Embora quantidades de anos de escolaridade maior possuem grande concentração de pessoas em diversas idades, para os anos de escolaridade entre 2-10 percebemos a presença de variabilidade.

Boxplot dos Tipos de Ensino e a Log(Renda)

Avaliando a relação entre as variáveis Log(Renda) e a recodificação da variável Anos de Escolaridade, variável separada em tipos de ensino para melhor visualização da relação existente, temos que o tipo de ensino influencia na renda dos entrevistados. Assim observamos valores de renda maiores para o Ensino Superior, que possui de 15-17 anos de escolaridade.

Após a apresentação das variáveis individualmente e em pares com a variável de interesse renda anual, realizamos a análise das variáveis em trios, como por exemplo a Log(Renda), Idade e o Gênero. As análises da relação dessas variáveis permitem fazer suposições sobre os modelos a serem estudados e verificar a influência de cada covariável na variável resposta.

Analisando a relação entre as variáveis Log(Renda), Idade e Gênero percebemos o quanto a idade e o gênero influenciam nos valores da renda anual. O gráfico possui o ajuste das retas e mostra claramente o que foi discutido anteriormente, sobre os valores de renda anual para o sexo masculino serem maiores que o do sexo feminino; podemos perceber também uma inclinação na reta, à medida que aumenta a idade, para o sexo masculino, entretanto para as mulheres essa inclinação é muito pequena ou inexistente.

Para a análise entre as variáveis Log(Renda), Idade e Estado Civil, podemos observar que os entrevistados casados possuem uma quantidade maior de renda e através da inclinação da reta podemos concluir que a renda aumenta através da idade, já para os entrevistados que estão morando junto e os outros tipos de estado civil as retas e a inclinação estão quase juntas, sendo que possuem pequenas diferenças em algumas idades; o gráfico acima também mostra como está a distribuição por estado civil dos entrevistados.

Analisando a relação entre as variáveis Log(Renda), Idade e a Etnia, vemos que as retas pertencentes as etnias Branco, Negro e Outros partem quase do mesmo valor de renda, entretanto, ao longo das idades, possuem comportamentos diferentes para a inclinação da reta, sendo que para a etnia Negro a renda decresce a medida que aumenta a idade. Observamos maior renda para a etnia Outros, os Hispânicos, que começam a reta abaixo das outras etnias, intercepta a etnia Negro entre as idades 40-50 anos. Pelo gráfico da distribuição percebemos que a etnia Hispânico estão concentrados em torno do Log(Renda) igual a 10, e que a etnia Negro possue valores de renda bastante dispersos a medida que aumenta a idade.

Para a análise entre as variáveis Log(Renda), Idade e os Tipos de Ensino, confirmamos a conlusão anterior sobre o Ensino Superior possuir renda maior que os outros tipos de ensino. Sendo que nas idades mais jovens a renda para o Ensino Fundamental e o Ensino Médio estão muito próximas quando analisamos a inclinação da reta, entretanto a partir dos 30 anos as retas desses dois tipos de ensino começam a se distanciar; assim há um aumento de renda para o Ensino Médio enquanto o Ensino Fundamental apresenta declínio.

3.3 Imputação

3.3.1 Perda Completamente Aleatória (PCA)

No mecanismo de PCA utilizamos uma *Distribuição Bernoulli* com probabilidade de sucesso (p) de 0,20 para gerar os dados ausentes na variável Renda, e fixamos uma semente ao gerar os números aleatórios. Ao final obtivemos um banco de dados com 96 observações ausentes das 500 observações existentes no banco de dados.

Pelos box-plots abaixo podemos verificar os valores da Renda do banco de dados original, do banco de dados gerado com valores ausentes (através do mecanismo PCA) e as cinco imputações geradas.

Dados originais, Observados com NA e imputações

Nos box-plots acima percebemos que as cinco imputações geradas seguem de modo semelhante a distribuição do banco com os valores ausentes. Temos também que os valores originais e os valores imputados estão bastante próximos. Podemos verificar também através da distribuição do banco de dados original com os bancos de dados das imputações através do gráfico abaixo:

Pelo gráfico de dispersão acima, confirmamos que os valores orignais e os valores imputados estão bastante próximos.

Para realizar a adequação do modelo temos o gráfico QQ-plot abaixo:

QQ-plot das imputações

Pelo QQ-plot podemos checar a adequação do modelo dos dados com as observações faltantes com as imputações realizadas. Nele vemos que os valores estão bastante concentrados indicando que os valores imputados são adequados.

3.3.2 Perda Aleatória (PA)

Para gerar os dados ausentes do mecanismo de PA avaliamos a perda da variável Renda conjuntamente com as variáveis Gênero e Tipo de Ensino.

3.3.2.1 Gênero

Para gerar os dados ausentes na renda, pelo caso de PA conjuntamente com o gênero, utilizamos uma Distribuição Bernoulli com probabilidade de sucesso (p) de 0,10 para o sexo feminino e 0,30 para o sexo

masculino, e fixamos uma semente ao gerar os números aleatórios. Ao final obtivemos um banco de dados com 127 observações ausentes das 500 observações existentes no banco de dados.

Os box-plots abaixo indicam como estão a distribuição dos valores da renda para o banco de dados original, o banco de dados com valores ausentes na renda e as cinco imputações:

Dados originais, Observados com NA e imputações

Pelos box-plots podemos verificar que há pequenos desvios entre eles, porém as imputações possuem bastante proximidade com o banco de dados original.

Realizamos a análise dos valores da renda no banco original com os valores da renda das imputações, e assim obtemos a seguinte distribuição:

Pelo gráfico de dispersão acima percebemos melhor a distribuição verificada no gráfico dos box-plots anterior, novamente observamos indícios de pequenos desvios entre o banco de dados original e o banco de dados imputação. Nas imputações 2, 3 e 4 percebemos imputações de valores da log(renda) próximos de 5, sendo que no banco de dados original não encontramos tais valores ausentes ao redor do log(renda) igual a 5.

Assim percebemos ainda o indício de pequenos desvios nas imputações comparada com o banco original. Portanto abaixo temos o QQ-plot no intuito de checar a adequação do ajuste:

QQ-plot das imputações

Pelo QQ-plot acima percebemos para valores menores que o log(renda) de 10 e maiores que o log(renda) de 14, um deslocamento maior entre as imputações e a reta de adequação do modelo entre os quantis originais e o quantis imputados da log(renda).

3.3.2.2 Tipo de Ensino

Para gerar os dados ausentes na renda, pelo caso de PA conjuntamente com o tipo de ensino, utilizamos uma Distribuição Bernoulli com probabilidade de sucesso (p) de 0,05 para o ensino fundamental, 0,20 para o ensino médio e 0,40 para o ensino superior, e fixamos uma semente ao gerar os números aleatórios. Ao final obtivemos um banco de dados com 137 observações ausentes das 500 observações existentes no banco de dados.

Os box-plots abaixo estão indicando a distribuição entre os valores da renda com o banco de dados original, o banco de dados com os valores faltantes e as cinco imputações realizadas:

Dados originais, Observados com NA e imputações

Pelos box-plots podemos perceber pequenas variações, a imputação n^{o} 5 que apresentou maior divergência comparada com os outros box-plots, e também confirmamos a variação maior encontrada na imputação n^{o} 5, quando está é comparada com os dados originais da renda.

Como temos o banco de dados com os valores originais da renda, o gráfico abaixo demonstra a distribuição dos pontos para os dados originais e os imputados da renda:

Para analisar as variações mencionadas anteriormente, pelo gráfico de dispersão percebemos que a imputação n^{o} 5 não possui valores imputados para rendas menores, sendo que a original possui valores pequenos de renda, e as outras 4 imputações obtiveram valores imputados para rendas ao redor do valor da log(renda) igual a 5. Percebemos também que somente as imputações de n^{o} 1 e 5 possuem valores altos de renda imputados. É interessante observar o comportamento da imputações de n^{o} 5, dado que não segue exatamente a distribuição das outras imputações, uma vez que não houve imputação de valores para log(renda) ao redor de 5 e houveram imputações para log(renda) ao redor de 15.

Abaixo temos o QQ-plot:

QQ-plot das imputações

O intuito principal do QQ-plot acima é checar a adequação da distribuição. Por ele percebemos deslocamentos do ajuste da reta para valores de log(renda) menores que 8 e acima de 13, indicando que as variações encontradas estão interferindo na adequação do modelo.

3.3.3 Perda Não Aleatória (PNA)

Para gerar os dados ausentes do mecanismo de PNA avaliamos a perda da variável Renda através da função logit:

$$logit(p) = log(\frac{p}{1-p}) = log(p) - log(1-p)$$

Primeiramente retiramos uma observação constatada como um outlier, devido a sua presença influenciar muito as medidas, assim obtemos um banco de dados com 499 observações. Para realizar o mecanismo de PNA nessas observações utilizamos o valor do máximo da log(renda), com probabilidade de sucesso (p) de

0.9 e o valor da média da log(renda), com probabilidade de sucesso (p) de 0.3 e assim solucionar o sistema de equações e encontrar os β 's conforme as equações abaixo:

$$\hat{\beta}_{1} = \frac{log(\frac{0.9}{1 - 0.9}) - log(\frac{0.3}{1 - 0.3})}{m\'{a}ximo - m\'{e}dia}$$

$$\hat{\beta_0} = log(\frac{0,9}{1-0,9}) - \hat{\beta_1} * m\'{a}ximo$$

Após encontrar os β 's, aplicamos nos dados da renda a função inv.logit do pacote boot para gerar as probabilidades de valores ausentes em cada uma das observações, ao utilizar essa função aplicamos um fixador de sementes para a aleatoriedade das probabilidades geradas. Ao final obtivemos um banco de dados com 144 observações ausentes das 500 observações presentes no banco de dados.

Os box-plots da renda com o banco de dados original, o banco de dados com os valores ausentes e as cinco imputações realizadas podem ser vistos abaixo:

Dados originais, Observados com NA e imputações

Nos box-plots há indícios de variações entre o banco de dados original e as imputações. Portanto, temos abaixo o gráfico de dispersão para verificar a distribuição dos valores originais da renda, destacando os valores que foram codificados como ausentes, e os valores imputados da renda:

Pelo gráfico de dispersão acima comprovamos alguns indícios de variações, temos que os dados originais não posseum codificação de dados ausentes para log(renda) ao redor de 5, e as imputações obtiveram valores imputados próximos desse valor, vemos também que nas imputações a partir de aproximadamente log(renda) igual a 14 não há mais imputações, sendo que nos dados originais percebemos codificação de variável ausente acima desse valor de renda. Assim percebemos distribuições divergentes entre os dados originais e os dados imputados.

Para a adequação do modelo temos o QQ-plot abaixo:

QQ-plot das imputações

O QQ-plot indica que a adequação do modelo, entre os dados de renda com valores ausentes e os dados de renda imputados, está demonstrando alguns deslocamentos do ajuste da reta.

3.4 Análise de Regressão

Para realizar a análise de regresão ajustamos o seguinte modelo:

 $log(Renda) = \hat{\beta_0} + \hat{\beta_1} * Masculino + \hat{\beta_2} * Idade + \hat{\beta_3} * Morando Juntos + \hat{\beta_4} * Outros + \hat{\beta_5} * Anosde Escolaridade + \hat{\beta_6} * Hispânico + \hat{\beta_6} * Hispânico$

Sendo que as bases são: Gênero Feminino, Estado Civil Casados, Etnia Branco e Tipo de Ensino Fundamental. De acordo com o modelo ajustado acima realizamos o cálculo dos intervalos de confiança para os mecanismos utilizando a função do pacote *mice* denominada *pool*. Com isso obtivemos o gráfico abaixo, que contém os

intervalos de confiança, com nível de confiança (α) de 95%, dos dados originais e dos dados das imputações dos diferentes mecanismos analisados nessa pesquisa.

Intervalos de Confiança dos Coeficientes da Regressão

Com esse gráfico analisamos melhor a influência de cada variável do banco de dados no modelo ajustado. Analisando cada variável separadamente, e seus mecanismos, observamos pouca variabilidade nas variáveis Idade e Anos de Escolaridade, e muita variabilidade no Intercepto, Ensino Médio e Ensino Superior, observando que também possuem os maiores intervalos.

4 CONCLUSÃO

O tratamento das observações faltantes em um banco de dados é muito importante, sendo que nesse estudo analisamos os diferentes mecanismos de dados ausentes. Com o método aprensentado, Imputação Múltipla,

foi possível realizar a análise do banco de dados gerados com valores ausentes. Esse método proposto gerou inferências bastante próximas das geradas pelos dados originais, ou seja, é um dos melhores métodos a ser implementado no estudo de dados ausentes. Futuramente, para medir a acurácia, seria interessante avaliar todos os métodos existentes no banco de dados utilizado nessa pesquisa.

5 REFERÊNCIAS BIBLIOGRÁFICAS

Little, R.J.A. and Rubin, D.B. (1987). Statistical Analysis with Missing Data. John Wiley & Sons, New York.

Schafer, J. L. (1997). Analysis of Incomplete Multivariate Data (Monographs on Statistics and Applied Probability). Chapman & Hall.

Van Buuren, S., Groothuis-Oudshoorn, K. (2011). mice: Multivariate Imputation by Chained Equations in R. Journal of Statistical Software, 45(3), 1-67. linked phrase

Morris TP, White IR, Royston P (2015). Tuning multiple imputation by predictive mean matching and local residual draws. BMC Med Res Methodol. ;14:75.

Frees, E.W. (2011). Regression Modeling with Actuarial and Financial Applications, Cambridge University Press.

Van Buuren, S. (2018). Flexible Imputation of Missing Data. Second Edition. Chapman & Hall/CRC. Boca Raton, FL.