Множественный регрессионный анализ

План:

- Множественный регрессионный анализ
- Интерпретация уравнения регрессии
- з. Пример

Множественный регрессионный анализ

Множественный регрессионный анализ является развитием парного регрессионного анализа применительно к случаям, когда зависимая переменная гипотетически связана с более чем одной независимой переменной

Множественная регрессия

Уравнение регрессии

$$y = \alpha + \beta_1 x + \beta_2 p + u,$$

где х и р – независимые переменные;

у – зависимая переменная;

 ${f a}, {f \beta_1}$ и ${f \beta_2}$ — истинные значения параметров регрессии;

u – случайная составляющая

Проблемы

- При оценке влияния данной независимой переменной на зависимую переменную придется решать проблему разграничения ее воздействия и воздействий других независимых переменных
- 2. Необходимо решить проблему спецификации модели

Пример

Рассмотрим пример

$$y = \alpha + \beta_1 x + \beta_2 p + u,$$

- где у общая величина расходов на питание;
- **x** располагаемый личный доход;
- р цена продуктов питания;
- u случайная составляющая

Рис. б.1. Истинная модель с двумя независимыми переменными: расход как функция дохода и цены

Уравнение регрессии

•
$$Y = 116,7 + 0,112*x - 0,739*p$$

$$R = 0.99; D = 0.98;$$

Интерпретация уравнения регрессии

- При каждом увеличении располагаемого личного дохода на 1 млрд. сум (при сохранении постоянных цен) расходы на питание увеличатся на 112 млн. сум
- На каждую единицу увеличения индекса цен (при сохранении постоянных доходов) эти расходы уменьшатся на 739 млн.сум

Пример

Nº	Бонитет(Х1)	Удобрения(Х2)	Урожайность(Ү)
1	31	75	22
2	34	72	23
3	40	79	23
4	44	81	24
5	51	83	25
6	56	81	25
7	62	90	27
8	64	95	29
9	69	100	31
10	75	95	33
11	81	110	34
12	83	115	36
13	88	110	35
14	95	120	36
15	98	130	37

Проведение множественного регрессионного анализа в программе MS Excel

Рассмотрим пример, который исследован для парной зависимости.

Теперь исследуем зависимость урожайности от двух факторов: качества почвы (балла бонитета) и количества вносимых удобрений. Получим следующее уравнение регрессии:

$$Y = 9.37 + 0.17x_1 + 0.09x_2$$

Полученное уравнение следует интерпретировать следующим образом. При каждом увеличении качества почвы на 1 балл урожайность увеличится на 0,17 ц/га. На каждую единицу увеличения вносимых удобрений урожайность увеличится на 0,09 ц/га. Коэффициент множественной корреляции r = 0.98, то есть связь между исследуемыми факторами и урожайностью хлопка прямая и полная; коэффициент детерминации D = 0.96, то есть изменение значений урожайности на 96% зависит от исследуемых факторов, и на 4% – от других факторов, не включенных в модель

СПАСИБО ЗА ВНИМАНИЕ!

+ 998 71 237 1948

smirzaev@tiiame.uz