软件质量保证与软件测试

--结构性测试回顾

主讲教师:

Email:

西安文大软件学院

测试的效率

- ■什么时候测试可以停止?多少是足够的测试?
 - 当时间用光时 ——缺少标准
 - 当继续测试没有产生新失效时 基于经验的
 - 当继续测试没有发现新缺陷时
- 当回报很小时——基于分析的方法 当达到所要求的覆盖时——结构化测试的指标
- 7. 当所有缺陷都已经清除时——难以实现

要使用哪些覆盖指标?

在业界实践中最常用的是DD-路径

主要内容

- ■漏洞与冗余
- ■用于方法评估的指标
- ■重温案例研究

漏洞与冗余--三角形问题的传统实现

三角形程序中的路径

这个实现有11条可行路径

路径	节点序列	描述
P1	1-2-3-4-5-6-7-13-16-18-20	等边三角形
P2	1-3-5-6-7-13-16-18-19-15	等腰三角形(b=c)
Р3	1-3-5-6-7-13-16-18-19-12	非三角形(b=c)
P4	1-3-4-5-7-13-16-17-15	等腰三角形(a=c)
P5	1-3-4-5-7-13-16-17-12	非三角形(a=c)
P6	1-2-3-5-7-13-14-15	等腰三角形(a=b)
P7	1-2-3-5-7-13-14-12	非三角形(a=b)
P8	1-3-5-7-8-12	非三角形(a+b≤c)
P9	1-3-5-7-8-9-12	非三角形(b+c ≤ a)
P10	1-3-5-7-8-9-10-12	非三角形(a+c ≤ b)
P11	1-3-5-7-8-9-10-11	不等边三角形

■ 边界值的路径覆盖

				1	
测试用例	a	b	c	预期输出	路径
1	100	100	1	非三角形	р6
2	100	100	2	非三角形	р6
3	100	100	100	等边三角形	p1
4	100	100	199	等腰三角形	р6
5	100	100	200	非三角形	р7
6	100	1	100	非三角形	p4
7	100	2	100	非三角形	p4
8	100	100	100	等边三角形	p1
9	100	199	100	等腰三角形	p4
10	100	200	100	非三角形	р5
11	1	100	100	非三角形	p2
12	2	100	100	非三角形	p2
13	100	100	100	等边三角形	p1
14	199	100	100	等腰三角形	p2
15	200	100	100	非三角形	р3

路径	节点序列
P1	1-2-3-4-5-6-7-13-16-18-20
P2	1-3-5-6-7-13-16-18-19-15
Р3	1-3-5-6-7-13-16-18-19-12
P4	1-3-4-5-7-13-16-17-15
P5	1-3-4-5-7-13-16-17-12
P6	1-2-3-5-7-13-14-15
P7	1-2-3-5-7-13-14-12
P8	1-3-5-7-8-12
P9	1-3-5-7-8-9-12
P10	1-3-5-7-8-9-10-12
P11	1-3-5-7-8-9-10-11

西安文大歌件学

■边界值测试和最坏情况测试对比

	P1	p2	р3	p4	р5	р6	р7	р8	р9	P10	P11
边界值 (15个用例)	3	3	1	3	1	3	1	0	0	0	0
最坏情况 (125个用例)	5	12	6	11	6	12	7	17	18	19	12

- ■边界值测试有漏洞
- ■最坏情况测试有严重冗余

■ 主要内容

- ■漏洞与冗余
- ■用于方法评估的指标
- ■重温案例研究

Downloader: 王博玉

用于方法评估的指标

假设功能性测试技术M生成m个测试用例,并且根据标识被测单元中的s个元素的结构性测试指标S来跟踪这些测试用例。当执行m个测试用例时,会经过n个结构性测试元素。

- **定义1** 方法M关于指标S的**覆盖**是n与s的比值n/s,记作C(M, S)
- **定义 2** 方法M关于指标S的**冗余**是m与s的比值m/s,记作R(M, S)
- **定义3** 方法M关于指标S的**净冗余**是m与n的比值 m/n, 记作NR(M, S)

西安京大批件学师

■ 用于方法评估的指标的解释

- ■覆盖指标C(M, S)处理漏洞问题。如果这个值低于1,则说明该指标在覆盖上存在漏洞。如果C(M, S) = 1,则一定有R(M,S) = NR(M,S)
- ■冗余性指标很明显,取值越大,冗余性越高
- ■净冗余更有用,它指实际经过的元素,而不是要经过的总元素空间
- ■将三种指标集合在一起,可给出一种评估功能性测试有效性方法(特殊值测试除外)关于结构性测试指标的定量方法—
- 然而,我们实际需要的是要知道测试用例关于缺陷种类的有效性。但是,不能得到这类信息
- 通过选择关于我们预期(或最担心)的缺陷种类的结构性 测试指标,可以接近这个目标

西安文大歌件学员

■ 案例:三角形问题

	P1	p2	р3	p4	р5	р6	p 7	p8	р9	P1 0	P11	∑TestCace
边界值	3	3	1	3	1	3	1	0	0	0	0	15
最坏情况	5	12	6	11	6	12	7	17	18	19	12	125

用于三角形程序的指标

方法	m	n	s	C(M, S) = n/s	R(M, S) = m/s	NR(M, S) = m/n
边界值	15	7	11	0.64	1.36	2.14
最坏情况	125	11	11	1.00	11.36	11.36
目标	S	s	s	1.00	1.00	1.00

案例:佣金问题

(DD路径数量为12)

方法	m	n	s	C(M, S) = n/s	R(M, S) = m/s
输出边界值	25	12	12	1	2.08
决策表	3	12	12	1	0.25

输出边界值方法对于于 三个 指标

指标	m	n	s	C(M, S) = n/s	R(M, S) = m/s
DD路径	25	12	12	1	2.08
du-path	25	36	36	1	0.69
片	25	40	40	1	0.625

lownloader: 王博玉

*** ** * * * * *

■ 测试覆盖性数量的趋势线

■下图分别表示的是测试覆盖项(定义中的s)数量的趋势线, 以及将覆盖项标识为结构性测试方法的函数的作用。我们 不再满足于功能性测试方法的折衷考虑,因为这两张图说 明选择合适结构性测试覆盖指标的重要性。

■ 保险金案例代码(1)

Pseudo-code for the Insurance Premium Program

Dim driver Age, points As Integer Dim base Rate, premium As Real

1. Input (base Rate, driver Age, points)

2. premium = 0

3. Select Case driver Age

4. Case 1: $16 \le \text{driver Age} \le 20$

5. age Multiplier = 2.8

6. If points ≤ 1 Then

7. safe Driving Reduction = 50

8. End If

9. Case 2: $20 \le \text{driver Age} \le 25$

10. age Multiplier = 1.8

11 If points < 3 Then

12. safe Driving Reduction = 50

13. End If

■ 主要内容

- ■漏洞与冗余
- ■用于方法评估的指标
- ■重温案例研究

保险金案例代码(2)

```
14. Case 3: 25 \le \text{driver Age} < 45
         age Multiplier = 1.0
         If points < 5 Then
17.
                   safe Driving Reduction = 100
         End If
19. Case 4: 45 \le \text{driver Age} \le 60
        age Multiplier = 0.8
21
         If points < 7 Then
22.
                   safe Driving Reduction = 150
         End If
24. Case 5: 60 \le \text{driver Age} < 100
         age Multiplier = 1.5
26.
         If points < 5 Then
27.
                   safe Driving Reduction = 200
28.
         End If
29. Case 6: Else
         Output ("Driver age out of range")
31. End Select
32. premium = base Rate * age Multiplier – safe Driving Reduction
33. Output (premium)
```

Downloader: 王博玉

保险金案例的程序图

■ 保险金程序中的路径

■ 保险金程序程序图的复杂度是V(G)=11,有11条可行程序执行路径,如表所示

路径	节点序列
P1	1 - 2 - 3 - 4 - 5 - 6 - 8 - 31 - 32 - 33
P2	1 - 2 - 3 - 4 - 5 - 6 - 7 - 8 - 31 - 32 - 33
Р3	1 - 2 - 3 - 9 - 10 - 11 - 13 - 31 - 32 - 33
P4	1 - 2 - 3 - 9 - 10- 11 - 12 - 13 - 31 - 32 - 33
P5	1 - 2 - 3 - 14 - 15 - 16 - 18 - 31 - 32 - 33
P6	1 - 2 - 3 - 14 - 15 - 16 - 17 - 18 - 31 - 32 - 33
P7	1 - 2 - 3 - 19 - 20 - 21 - 23 - 31 - 32 - 33
P8	1 - 2 - 3 - 19 - 20 - 21 - 22 - 23 - 31 - 32 - 33
P9	1 - 2 - 3 - 24 - 25 - 26 - 28 - 31 - 32 - 33
P10	1 - 2 - 3 - 24 - 25 - 26 - 27 - 28 - 31 - 32 - 33
P11	1 - 2 - 3 - 29 - 30 - 31 - 32 - 33

西安文大教件学员

保险金程序中的功能性测试用例

功能性测试方法路径覆盖

■ 如果花一些时间研究第8章各种功能性测试用例 集合(上一页图),就会得到如表所示的结果

图号	方法	测试用例	所覆盖的路径
8-7	边界值	25	p1, p2, p7, p8, p9, p10
8-8	最坏情况边界值	273	p1, p2, p3, p4, p5, p6, p7, p8, p9, p10
8-9	弱等价类	5	p2, p4, p6, p8, p9
8-9	强等价类	25	p1, p2, p3, p4, p5, p6, p7, p8, p9, p10
8-10	决策表	10	p1, p2, p3, p4, p5, p6, p7, p8, p9, p10
8-11	混合	25	p1, p2, p3, p4, p5, p6, p7, p8, p9, p10, p11

■其中的漏洞和冗余问题很明显,只有通过混合方法 得到的测试用例才能够产生完全的路径覆盖

Downloader: 王博玉

西安文大软件学院

练习

- 针对保险金程序,给出:
 - DD-路径
 - ■定义-使用路径
 - ■片

|保险金案例 | 结构性测试

■基于路径的测试

由于程序图是无环路的,因此只存在有限条路径,对于这个例子是11。最佳选择是保留 执行每条路径的测试用例,自然会达到语句和DD-路径覆盖要求。复合条件谓词意味着多条件覆盖,这只能通过最坏情况边界值测试用例和混合测试用例实现,不能使用其他基于路径的覆盖指标。

■数据流测试

这个问题的数据流测试很枯燥,driver Age、points 和safe Driving Reduction变量都出现在六个定义清除的定义-使用路径中。driver Age和points的"使用"都是谓词使用。第10章曾经提到过,全路径准则意味着全低层数据流覆盖。

西安文大软件学院

保险金案例—结构性测试

■片测试

片测试也没有提供多少启发。有四个有意思的片(没有列出End If):

S (safe Driving Reduction, 32) = {1,3,4,6,7,9,11,12,14,16,17,19,21,22,24,26,27,31}

S (age Multiplier, 32) = {1, 3, 4, 5, 9, 10, 14, 15, 19, 20, 24, 25, 31}

S (base Rate, 32) = $\{1\}$

 $S (Premium, 31) = \{2\}$

这些片的并(加上End If语句)是整个程序。通过基于片的测试得到的仅有启发,如果失效发生在第32行,safe Driving Reduction和age Multiplier上的片将程序分解为两个不相交的片,这会简化缺陷隔离工作。

■总结

- ■结构性测试都有哪些方法?
- ■有哪些评估指标?

Downloader: 王博玉

■讨论

- □除了结构化的覆盖率指标外,还有其它的覆盖率指标吗?
 - 需求覆盖率:需求覆盖率=至少被测试用例覆盖一次的需求数/系统总需求数
 - 测试用例覆盖率:测试用例覆盖率=计划执行的测试用例数/测试用例总数
 - 测试用例执行率: 测试用例执行率=实际执行的测试用例数/计划执行的测试用例数
 - 测试用例通过率:测试用例通过率=(实际执行的测试用例数-测试执行不通过的测试用例数)/实际执行的测试用例数
 - 缺陷修正率: 缺陷修正率=发布前已修正的缺陷数/ 发布前已知的缺陷总数
 - 等等

5安文大教件学院