Lin_Algorithms

Frances Lin
June 2021

Algorithm 1: Simulations of HPP

Input λ , t_{max}

- 1. Initialize t, t_{vector}
- 2. while $(t \leq t_{max})$
- 3. Generate $u \sim U(0,1)$
- 4. Set $t_{current} = t + w$ where $w \sim exp(\lambda^* = \lambda)$
- 5. if $(t_{current} \leq t_{max})$
- 6. | Add $t_{vector} = c(t_{vector}, t_{current})$
- 7. else
- 8. | **return** $\{t_k\}_{k=0,1,...}$

Algorithm 2: Simulations of Hawkes Process via Thinning Algorithm

Imput μ , α , β

- 1. Simulate a HPP using Algorithm 1
- 2. Create a $\lambda(t)$ function where the function = $\mu + \sum_{i:T_i < t} g(t t_i)$
- 3. Set $\lambda^* = \text{apply the } \lambda(t)$ function to the HPP
- 4. Generate $u \sim U(0,1)$
- 5. if $(u < min(\frac{\lambda^*}{\lambda}, 1))$
- 6. | Keep
- 7. else
- 8. | **return** $\{t_k\}_{k=0,1,...}$