Ejercicios de Lógica

Héctor Olvera Vital

2 de octubre de 2023

7.7

Como A, B, C, D son los únicos proposiciones, existen 2^4 modelos.

a) *B* ∨ *C*

В	\mathbf{C}	$B \lor C$
V	V	V
V	F	V
\mathbf{F}	V	V
\mathbf{F}	F	F

Hay 3 modelos que satisface la fórmula. Como A y D no aparecen en la formula, entonces en total hay $3*2^2=12$ modelos en total.

b)
$$\neg A \lor \neg B \lor \neg C \lor \neg D$$

La fórmula es equivalente a $\neg (A \land B \land C \land D)$.

Si un modelo no satisface la fórmula, entonces satisface $A \wedge B \wedge C \wedge D$, entonces el modelo es s(A) = T, s(B) = T, s(C) = T y s(D) = T

Por lo que, todos los demás modelos satisfacen la fórmula. En total $2^4-1=15$

c)
$$(A \to B) \land A \land \neg B \land C \land D$$

Supongamos que \boldsymbol{s} una asignación de verdad que satisface la fórmula. Entonces,

$$s(A \rightarrow B) = T$$

$$s(A) = T$$

$$s(\neg B) = T$$

$$s(C) = T$$

$$s(D) = D$$

Pero s(A) = T y $s(\neg B) = T$, por lo que $s(A \to B) = F$. Lo cual es una contradicción.

Por lo tanto no existe la asignación.

Entonces existen 0 modelos para la fórmula.

7.4

a) $False \models True$

Verdadero.

 $\{False, \neg True\}$ no es satisfactible.

b) $True \models False$

Falso. $\{True, \neg False\}$ es satisfactible. Sea $w = \{\}, I(True \land \neg False, w) = 1$

c) $A \wedge B \models A \leftrightarrow B$

Verdadero.

Sea w un modelo. Si $I(A \wedge B, w) = 1$, entonces I(A, w) = 1 y I(B, w) = 1. Por lo tanto, $I(A \leftrightarrow B, w) = 1$.

d) $A \leftrightarrow B \models A \lor B$

Falso. $\{A \leftrightarrow B, \neg (A \lor B)\}$ es satisfactible.

Sae $w = \{A : F, B : F\}$. Entonces $I(A \leftrightarrow B, w) = 1$ y $I(A \lor B, w) = 0$. Por lo tanto, $I(\neg(A \lor B), w) = 1$ y el conjunto es satisfactible.

e) $A \leftrightarrow B \models \neg A \lor B$

Verdadero.

Veamos que $\{A \leftrightarrow B, \neg(\neg A \lor B)\}$ no es satisfactible.

Si $I(\neg(\neg A \lor B), w) = 1$, entonces $I(A \land \neg B, w) = 1$. Por lo que, I(A, w) = 1 y I(B, w) = 0. Entonces $I(A \leftrightarrow B, w) = 0$.

Por lo que, el conjunto no es satisfactible.

f) $(A \wedge B) \rightarrow C \models (A \rightarrow C) \vee (B \rightarrow C)$

Verdadero.

Veamos que $\{(A \land B) \to C, \neg((A \to C) \lor (B \to C))\}$ no es satisfactible.

Sea w un modelo. Si $I(\neg((A \to C) \lor (B \to C)), w) = 1$, entonces $I(\neg(A \to C), w) = 1$ y $I(\neg(B \to C), w) = 1$.

Entonces, $I(A \land \neg C, w) = 1$ y $I(B \land \neg C, w) = 1$. Por lo tanto, I(A, w) = 1, I(B, w) = 1 y I(C, w) = 0.

Entonces $I((A \wedge B) \to C) = 0$. Por lo tanto el conjunto no es satisfactible.

g) $C \vee (\neg A \wedge \neg B) \equiv A \rightarrow C \wedge B \rightarrow C$

Sae w tal que $I(C \vee (\neg A \wedge \neg B), w) = 1$. Entonces, I(C, w) = 1 o $I(\neg A \wedge \neg B, w) = 1$

Si I(C, w) = 1, $I(A \to C, w) = 1$ y $I(B \to C, w) = 1$. Por lo que, $I(A \to C \land B \to C, w) = 1$.

Si $I(\neg A \land \neg B, w) = 1$, entonces I(A) = 0 y I(B) = 0. Por lo que, $I(A \to C, w) = 1$ y $I(B \to C, w) = 1$. Así, $I(A \to C \land B \to C, w) = 1$.

En ambos casos, $I(A \to C \land B \to C, w) = 1$.

Por lo que, $C \vee (\neg A \wedge \neg B) \models A \rightarrow C \wedge B \rightarrow C$

Sea w tal que $I(A \to C \land B \to C, w) = 1$. Entonces $I(A \to C, w) = 1$ y $I(B \to C, w) = 1$. Por lo que, $I(\neg A \lor C, w) = 1$ y $I(\neg B \lor C, w) = 1$.

Si I(C,w)=1, entonces $I(C\vee(\neg A\wedge \neg B),w)=1$. Si I(C,w)=0, entonces $I(\neg A,w)=1$ y $I(\neg B,w)=1$. Por lo que, $I(C\vee(\neg A\wedge \neg B),w)=1$. En ambos casos $I(C\vee(\neg A\wedge \neg B),w)=1$ Entonces, $A\to C\wedge B\to C\models C\vee(\neg A\wedge \neg B)$ Por lo tanto, $C\vee(\neg A\wedge \neg B)\equiv A\to C\wedge B\to C$

h) $(A \lor B) \land (\neg C \lor \neg D \lor E) \models A \lor B$

Verdadero.

Veamos que $\{(A \vee B) \wedge (\neg C \vee \neg D \vee E), \neg (A \vee B)\}$ no es satisfactible. Sea w un modelo. Si $I((A \vee B) \wedge (\neg C \vee \neg D \vee E), w) = 1$, $I(A \vee B, w) = 1$. Por lo que, $I(\neg (A \vee B), w) = 0$.

Entonces el conjunto no es satisfactible.

i)
$$(A \lor B) \land (\neg C \lor \neg D \lor E) \models (A \lor B) \land (\neg D \lor E)$$

Falso

Sae
$$w = \{A : V, B : V, C : F, D : V, E : F\}.$$

$$\frac{(A \lor B) \land (\neg C \lor \neg D \lor E)}{V V V V V F V F V F V}$$

$$\frac{(A \lor B) \land (\neg D \lor E)}{V V V V F F V F F}$$

i)
$$(A \vee B) \wedge \neg (A \rightarrow B)$$

Verdadero.

Sae
$$w = \{A : V, B : F\}.$$

$$\frac{(A \lor B) \land \neg (A \rightarrow B)}{V V F V V V F F}$$

k)
$$(A \leftrightarrow B) \land (\neg A \lor B)$$

Verdadero.

Sae
$$w = \{A : V, B : V\}.$$

$$\underbrace{(A \leftrightarrow B) \land (\neg A \lor B)}_{V V V V F V V V}$$

1)

Verdadero.

Por inducción sobre el número de símbolos proposicionales adicionales a A, B, C.

Paso base n=0

1 aso base n = 0								
A	B	C	$(A \leftrightarrow B)$	$(A \leftrightarrow B) \leftrightarrow C$				
V	V	V	V	V				
V	V	F	V	\mathbf{F}				
V	F	V	\mathbf{F}	\mathbf{F}				
V	F	F	F	V				
\mathbf{F}	V	V	F	F				
\mathbf{F}	V	F	\mathbf{F}	V				
\mathbf{F}	F	V	V	V				
\mathbf{F}	F	F	V	F				

Existen 4 modelos que satisface $(A \leftrightarrow B)$ y 4 modelos que satisface $(A \leftrightarrow B) \leftrightarrow C$.

H.I.: Supongamos para n = k que tiene la misma cantidad de modelos.

Sean $A_1, A_2, ..., A_k, A_{k+1}$, los símbolos proposicionales adicionales a A, B, C. Por hipótesis de inducción, existen la misma cantidad de modelos para $(A \leftrightarrow B)$ y $(A \leftrightarrow B) \leftrightarrow C$ con $A, B, C, A_1, A_2, ..., A_k$. Al agregar A_{k+1} , se multiplica por 2 la cantidad de modelos posibles. Ya que como A_{k+1} no aparece en $(A \leftrightarrow B)$ ni $(A \leftrightarrow B) \leftrightarrow C$, si w es un modelo que satisface alguna de las dos fórmulas, $w \cup \{A_{k+1} : True\}$ y $w \cup \{A_{k+1} : Falso\}$ son también modelos.

Entonces, existen la misma cantidad de model para $(A \leftrightarrow B)$ y $(A \leftrightarrow B) \leftrightarrow C$ con $A, B, C, A_1, A_2, ..., A_k, A_{k+1}$.

Por el principio de inducción, el se cumple para toda n.

7.18

$$[(Food \rightarrow Party) \lor (Drinks \rightarrow Party)] \rightarrow [(Food \land Drinks) \rightarrow Party]$$

a)

	[(Food	\rightarrow	Party)	\vee	(Drinks	\rightarrow	Party)]	\rightarrow	[(Food	\wedge	Drinks)	\rightarrow	Party]
	V	V	V	V	V	V		V		V		V	
	V	V	V	V	\mathbf{F}	V		V		F		V	
	V	\mathbf{F}	F	\mathbf{F}	V	\mathbf{F}		V		V		\mathbf{F}	
	V	\mathbf{F}	\mathbf{F}	V	\mathbf{F}	V		V		\mathbf{F}		V	
	\mathbf{F}	V	V	V	V	V		V		F		V	
	\mathbf{F}	V	V	V	\mathbf{F}	V		V		F		V	
	\mathbf{F}	V	\mathbf{F}	V	V	\mathbf{F}		V		F		V	
	F	V	F	V	\mathbf{F}	V		V		F		V	
т.	141: 1_												

Es válida.

b)

$$\begin{split} [(Food \rightarrow Party) \lor (Drinks \rightarrow Party)] \rightarrow [(Food \land Drinks) \rightarrow Party] \\ [(\neg Food \lor Party) \lor (\neg Drinks \lor Party)] \rightarrow [\neg (Food \land Drinks) \lor Party] \\ (\neg Food \lor Party \lor \neg Drinks \lor Party) \rightarrow (\neg Food \lor \neg Drinks \lor Party) \end{split}$$

Se confirma la a) ya que el consecuente de la implicación es el antecedente quitando la redundancia de Party.

c)

Por lo tanto, no es satisfactible.

7.4

a) $\exists x(Parent(Joan, x) \land Female(x))$ b) $\exists^1 x(Parent(Joan, x) \land Female(x))$ c) $\exists^1 x Parent(Joan, x) \land \forall x(Parent(Joan, x) \rightarrow Female(x))$ d) $\exists^1 x(Parent(Joan, x) \land Parent(Kevin, x))$ e) $\exists x(Parent(Joan, x) \land Parent(Kevin, x)) \land \forall x(Parent(Joan, x) \rightarrow Parent(Kevin, x))$

8.10

- a. $Occupation(Emily, Surgeon) \lor Occupation(Emily, Lawyer)$ b. $Occupation(Joe, Actor) \land \exists x(\neg x = Actor \land Occupation(Joe, x))$ c. $\forall x(Occupation(x, Surgeon) \rightarrow Occupation(x, Doctor))$ d. $\forall x(Occupation(x, Lawyer) \rightarrow \neg Customer(Joe, x))$ e. $\exists x(Boss(x, Emily) \land Occupation(x, Lawyer))$ f. $\exists x(Occupation(x, Lawyer) \land \forall y(Customer(y, x) \rightarrow Occupation(y, Doctor))$
- g. $\forall x(Occupation(x, Surgeon) \rightarrow \exists y(Occupation(y, Lawyer) \land Customer(x, y)))$

9.6

a. $\forall x (horse(x) \rightarrow mammal(x)), \forall x (Cow(x) \rightarrow mammal(Cows)), \forall x (pig(x) \rightarrow mammal(Pigs))$ b. $\forall x \forall y (horse(x) \land offspring(y, x) \rightarrow horse(y))$ c. horse(Bluebeard)d. parent(Bluebeard, Charlie)e. $\forall x \forall y (offspring(x, y) \rightarrow parent(y, x)), \forall x \forall y (parent(y, x) \rightarrow offspring(x, y))$ f. $\forall x \exists y (mammal(x) \rightarrow parent(y, x))$