

Mathematical Foundations for Machine Learning

MFML Team

S2-22 AIMLCZC416, MFML

Webinar#1

Agenda

Discussion on Solutions of

- **☐** Homework Problems
- **□** Proof

Q1 Let $A_{m\times n}$ be a given matrix with m > n. If the time taken to compute the determinant of a square matrix of size j is j^3 , find upper bound on the

- a) total time taken to find the rank of A using determinants
- b) number of additions and multiplications required to determine the rank using the elimination procedure.

a) total time taken to find the rank of A using determinants

$$\text{Let } A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{k1} & a_{k2} & \dots & a_{kn} \\ & & \vdots & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}_{m^{n}}$$

Since m> n the maximum possible rank of A is n.

Thus, we need to compute all determinates of order k, 1<k<n.

Therefore, Number of Determinants =
$$\sum_{i=1}^{i=\min(m,n)} m_{C_i} *_{n_{C_i}},$$

Where, min(m,n) is maximum size of square matrix in A

 m_{C_i} is the combination of 'i' columns out of m

 n_{C_i} is the combination of 'i' rows out of n

Given that time taken to compute the determinant of a square matrix of size i is i

Hence total time taken to compute determinant of a square matrix is $= \sum_{i=1}^{i=\min(m,n)} {m_{C_i}}^{n_{C_i}}^{n_{C_i}}^{i^3}$

b) number of additions and multiplications required to determine the rank using the elimination procedure.

Solution: Let
$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{k1} & a_{k2} & \dots & a_{kn} \\ \vdots & & & & \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}_{m}$$

The number of multiplications required to make all the entries below a_{11} to zeros is n(m-1)

The number of multiplications required to make all the entries below a_{22} to zeros is (n-1)(m-2)

The number of multiplications required to make all the entries below a_{kk} to zeros is (n-k+1)(m-k)

Therefore, total number of multiplications required is $= n(m-1) + (n-1)(m-2) + \dots$

$$=\sum_{k=1}^{n}(m-k)(n-k+1)$$

Similarly, total number of additions required is $= \sum_{k=1}^{n} (m-k)(n-k+1)$

Hence the total number additions and multiplications required $= 2\sum_{k=1}^{n} (m-k)(n-k+1)$

 $\mathbf{Q}\mathbf{2}$

Let A n×n be a given square matrix. Compute the number of multiplications and additions required to evaluate A²⁸ using

- a) the naive method, $A^{28} = (A \cdot A \cdot \cdot \cdot A) \cdot 28$ times
- b) A^2 , $A^4=A^2\cdot A^2$, etc.

Solution:

Let

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}_{n \times n},$$

Now consider A = A * A

$$=\begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix} \cdot \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}_{n \times n}$$

For multiplying the above matrices, we have

	Number of operations required for		Number of operations required for	
	multiplication of R _i with all columns		addition of Ri with all columns	
	Multiplications required	Number of operations required for multiplication of	Additions required	Number of operations required for addition of
$R_1C_1 = a_{11}a_{11} + a_{12}a_{21} + + a_{1n}a_{n1}$	n		(n-1)	
$R_1C_2 = a_{11}a_{12} + a_{21}a_{22} + + a_{1n}a_{n2}$	n	1st Row with all	(n-1)	1st Row with all
≣	:	columns is n2	:	columns is n(n-1)
$R_1C_n = a_{11}a_{1n} + a_{12}a_{2n} + + a_{1n}a_{nn}$	n		(n-1)	
$R_2C_1 = a_{21}a_{11} + a_{22}a_{21} + \dots + a_{2n}a_{n1}$	n		(n-1)	
$R_2C_2 = a_{21}a_{12} + a_{22}a_{22} + + a_{2n}a_{n2}$	n	2nd Row with all	(n-1)	2nd Row with all
	Ē	columns is n2	<u> </u>	columns is n(n-1)
$R_2C_n = a_{21}a_{1n} + a_{22}a_{2n} + + a_{2n}a_{nn}$	n		(n-1)	
:	:	≣	:	=
$R_{n}C_{1} = a_{n1}a_{11} + a_{n2}a_{21} + + a_{nn}a_{n1}$	n		(n-1)	
$R_n C_2 = a_{n1} a_{12} + a_{n2} a_{22} + + a_{nn} a_{n2}$	n	n th Row with all	(n-1)	nth Row with all
	Ē	columns is n2	<u> </u>	columns is n(n-1)
$R_n C_n = a_{n1} a_{1n} + a_{n2} a_{2n} + + a_{nn} a_{nn}$	n		(n-1)	
Total		$n n^2 = n^3$	nn	$(n-1) = n^2(n-1)$

Thus, the number of multiplications required to multiply the matrix A^2 is $= n^3$

Thus, the number of additions required to multiply the matrix A^2 is $= n^2(n-1)$

a) For multiplication of the form the naive method, $A^{28}=(A \cdot A \cdot \cdot \cdot A)$ 28 times is as fallows

The required number of additions and multiplications to get A^2 is $= n^3 + n^2(n-1)$ The required number of additions and multiplications to get A^3 is $= 2[n^3 + n^2(n-1)]$ And so on...

Similarly, the required number of additions and multiplications to get A^{28} is = $27[n^3 + n^2(n-1)]$

b) For multiplication of the form A^2 , $A^4=A^2\cdot A^2$, etc.

We know that

The number of additions and multiplications to get A^2 is $= n^3 + n^2(n-1)$

The required number of additions and multiplications to get $A^4 = A^2 * A^2$ is $= n^3 + n^2(n-1)$

The required number of additions and multiplications to get $A^8 = A^4 * A^4$ is $= n^3 + n^2(n-1)$

The required number of additions and multiplications to get $A^{16} = A^8 * A^8$ is $= n^3 + n^2(n-1)$

The required number of additions and multiplications to get $A^{28} = A^{16} * A^8 * A^4$ is $= 2[n^3 + n^2(n-1)]$

Thus, the total no of operations required to get A^{28} is $= 6[n^3 + n^2(n-1)]$.

innovate achieve lead

Homework Problem

Q3: Let A_{nxk} and B_{kxk} be two given matrices with rank(B) =k. Estimate the rank of AB in terms of the ranks of A and B. Note that the rank of a matrix is the dimension of the vector space spanned by its rows/ columns.

Consider the spaces

 $C_1 = \{Ax : x \text{ is a vector of length } k\}$

 $C_2 = \{ABy : y \text{ is a vector of length } k\}$

C₁ and C₂ are vector spaces. Let y be any vector of length

k and x = By. Since ABy = Ax belongs to C_1

C₂ is a subspace of C₁

 $dim(C2) \leq dim(C1)$

 $rank (AB) \leq rank(A)$

```
Applying to the transpose

rank(AB)^t = rank(B^tA^t) \le rank(B^t) = rank(B)

Rank(AB) \le rank(B)

Thus

rank(AB) \le min\{rank(A), rank(B)\}
```


Q4: Compute the total number of divisions, multiplications and additions required to perform the forward elimination and back substitution in solving a system of linear equations $A_{nxn} x = b$ using the Gauss elimination method.

Number of divisions required in Gauss climination
$$= \sum_{k=1}^{n-1} (n-k)$$
Number of multiplications and substrations in Gauss climination
$$= 2 \sum_{k=1}^{n-1} (n-k) (n-k+1)$$
Number of operations required
$$= 2 \sum_{k=1}^{n} (n-k) + n$$
Back back substitution
$$= 2 \sum_{k=1}^{n} (n-k) + n$$
Back for back substitution
$$= 2 \sum_{k=1}^{n} (n-k) + n$$
Now
$$= \sum_{k=1}^{n} (n-k) + n$$
Now
$$= \sum_{k=1}^{n} (n-k) (n-k+1)$$

$$= \sum_{k=1}^{n} (n-k) (n-k)$$

$$= \sum_{k=1}^{n} (n-k) (n-k)$$

$$= \sum_{k=1}^{n} (n-k)$$

$$= \sum_{k=1}^{n} (n-k)$$

$$= \sum_{k=1}^{n} (n-k)$$

$$= \sum_{s=1}^{s=n-1} s + 2 \sum_{s=1}^{s=n-1} s(s+1)$$

$$= \frac{(n-1)(n)}{2} + 2 \left[\frac{(n-1)n(2n-1)}{6} + \frac{n(-1)n}{2} \right]$$

$$= \frac{n^2-n}{2} + 2 \left[\frac{(n^2-n)(2n-1) + 3n^2-3n}{6} \right]$$

$$= \frac{3n^2-3n + 2(2n^3-2n^2-n^2+n+3n^2-3n)}{6}$$

$$= \frac{3n^2-3n + 2(2n^3-3n^2+n+2n^2-3n)}{6}$$

$$= \frac{3n^2-3n + 4n^3+2n-6n}{6}$$

$$= \frac{4n^3}{6} + \frac{3n^2}{6} - \frac{7n}{6}$$

$$f(n) = \frac{2}{3}n^3 + \frac{n^2}{2} - \frac{7}{6}n \implies 0$$

$$= \frac{1}{3}(n^3) = f(n)$$

Now
$$b(n) = 2 \sum_{k=1}^{n} (n-k) + n$$

$$= 2 \left(n \times \sum_{k=1}^{n} 1 - \sum_{k=1}^{n} k \right) + n$$

$$= 2 \left(n \cdot n - n \frac{(n+1)}{2} \right) + n$$

$$= 2 \left(n^2 - \frac{n^2}{2} - \frac{n}{2} \right) + n$$

$$= 2 \left(\frac{n^2}{2} - \frac{n}{2} \right) + n$$

$$= n^2 - n + n$$

$$= n^2 - n + n$$

$$b(n) = n^2$$

For solving AX = B,	[A:B] (nxn+1)	
The number of operati	one required at	- 12
Algorithm	W=1000	n=10,00
Elemenation $f(n) = \frac{2}{3}n^3 + \frac{n^2}{2} - \frac{7}{6}n$	0.6671655 12 0.7 Sec	666.7166 S S 11.1119 n
Back Substitution $b(n) = n^2$	0.001 Sec	0-1 Sec

N=0:100:10000; f=(2/3)*(N.^3)+(1/2)*(N.^2)-(7/6)*(N); %f=(N.^2); for backward sub T=f*10^(-9); plot(N,T,'*')

Theorem: Let V be a finite dimensional vector space.

Then any two bases have the same cardinality.

Proof: Suppose that $B = \{v_1, v_2, ..., v_m\}$ and $C = \{w_1, w_2, ..., w_n\}$ Are two bases of V.

We want to show that m=n.

We may assume that m, n > 0.

Consider the set $B \cup \{w_n\}$. $w_n \in V$ Belongs to the span of

$$v_1, v_2, ..., v_m$$
.

Therefore, we may find r_1, r_2, \ldots, r_m such that

$$W_n = r_1 V_1 + r_2 V_2 + ... + r_m V_m$$
.

ace

lead

Theorem: Let V be a finite dimensional vector space.

Then any two bases have the same cardinality.

 $\mathcal{W}_n \neq 0$ and so at least one of r_1, r_2, \ldots, r_m is non-zero. We may assume that $r_m \neq 0$. In this case

$$v_m = w_n - (r_1v_1 + r_2v_2 + ... + r_{m-1}v_{m-1})/r_m$$

and so v_m is a linear combination of $v_1, v_2, ..., v_m$ and w_n . We know that If v_n is a lnear combination of $v_1, v_2, ..., v_{n-1}$ then span $\{v_1, v_2, ..., v_{n-1}\}$ =span $\{v_1, v_2, ..., v_n\}$ Therefore, $B - \{v_m\} \cup \{w_n\}$ also spans V.
So, now consider $v_1, v_2, ..., v_{m-1}, w_{n-1}$ and w_n .
As $v_1, v_2, ..., v_{m-1}$ and w_n span V it follows that w_{n-1} is a

Theorem: Let V be a finite dimensional vector space. Then any two bases have the same cardinality.

linear combination of $v_1, v_2, ..., v_{m-1}$ and w_n .

$$W_{n-1} = r_1 V_1 + r_2 V_2 + ... + r_{m-1} V_{m-1} + S_n W_n$$

Suppose that every $r_i = 0$. Then w_{n-1} and w_n are dependent, which contradicts the fact that C is a basis. Thus $r_i \neq 0$ some i. Relabelling we may suppose that $r_{m-1} \neq 0$. As before this implies that v_{m-1} is a linear combination of $v_1, v_2, \ldots, v_{m-2}, w_{n-1}$ and w_n . But from the known results $v_1, v_2, \ldots, v_{m-1}, w_{n-1}$ and w_n span V.

We can repeat this process for every vector in C. It follows that $m \le m$. By symmetry $n \le m$. But then m=n.

Product of any two lower triangular matrices is a lower triangular matrix

A=[a_n], B=[b_n] be lower triangular matrices of order n and let C=AB

(i) The diagonal elements of C are given by

$$\forall j \in [1, 2, ..., n] : c_{jj} = a_{jj}b_{jj}$$

(ii) The matrix C is itself lower triangular matrix Proof: From the definition of matrix product, we have

$$\forall i, j \in [1, 2, ...n], c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}. When i = j, c_{jj} == \sum_{k=1}^{n} a_{jk} b_{kj}$$

Now both A and B are lower triangular matrices

Product of any two lower triangular matrices is a lower triangular matrix

Thus:
$$if \ k < j, \ b_{kj} = 0 \ and \ a_{jk}b_{kj} = 0$$

 $if \ k > j, \ a_{jk} = 0 \ and \ a_{jk}b_{kj} = 0$
 $and \ a_{jk}b_{kj} \neq 0 \ when \ j = k$
 $\Rightarrow c_{jj} = \sum_{k=1}^{n} a_{jk}b_{kj} = a_{jj}b_{jj}$

Now if i < j, it follows that either a_{ik} or b_{kj} is zero for all k, and thus $c_{ij} = 0$.

Therefore, C is also a lower triangular matrix.

Thank You