WHAT IS CLAIMED IS:

- 1 A method for an optimal one-shot phase and frequency estimation for timing
- 2 acquisition for signals transmitted over a communications channel, the method
- 3 comprising:
- 4 sampling a preamble comprising a known string of data bits;
- 5 estimating the sampled preamble (\vec{Y}) , the estimated preamble further
- 6 comprising an estimated amplitude (\hat{A}), an estimated frequency (\hat{f}), and an
- 7 estimated phase $(\hat{\Phi})$;
- 8 calculating a cost function $(C(\hat{f}, \hat{\Phi}))$ as a function of the estimated frequency
- 9 (\hat{f}) and the estimated phase ($\hat{\Phi}$);
- varying at least one of the estimated frequency (\hat{f}) or estimated phase ($\hat{\Phi}$) to
- 11 calculate a plurality of cost functions; and
- selecting the cost function $(C(\hat{f}, \hat{\Phi}))$ having a minimum value, wherein said
- cost function having the minimum value is a function of an optimal estimated
- frequency (\hat{f}) and an optimal estimated phase ($\hat{\Phi}$).
- 1 2. The method of claim 1, wherein the preamble is sinusoidal.
- 1 3. The method of claim 1, wherein the preamble is sampled once for each data bit in the
- 2 preamble.
- 1 4. The method of claim 1, wherein the sampling comprises the following calculation:
- 2 $\vec{X} = [x_0 \cdots x_N]$ where $x_k = A \sin\left(\Phi + k \cdot f \cdot \frac{\pi}{2}\right) + n_k$, A is an amplitude value, Φ is a
- phase value, f is a frequency value, and n_k is a noise component of a k^{th} sample.
- 1 5. The method of claim 1, wherein the estimating the sampled preamble comprises the
- 2 following calculation:

$$\bar{Y} = [y_0 \cdots y_N] \text{ where } y_k = \hat{A} \sin \left(\hat{\Phi} + k \cdot \hat{f} \cdot \frac{\pi}{2}\right).$$

- 1 6. The method of claim 5, wherein the noise component of the sampled preamble has a
- 2 standard deviation (σ) .
- 1 7. The method of claim 6, wherein the frequency value of the sampled preamble has a
- 2 normal distribution having a standard deviation (σ_i).
- 1 8. The method of claim 7, wherein the calculating comprises the following:

$$C(\hat{f}, \hat{\Phi}) = \hat{A}^{2} \sum_{k=0}^{N-1} \sin^{2} \left(\hat{\Phi} + k \cdot \hat{f} \cdot \frac{\pi}{2}\right) - 2\hat{A} \sum_{k=0}^{N-1} x_{k} \sin \left(\hat{\Phi} + k \cdot \hat{f} \cdot \frac{\pi}{2}\right) + \frac{\sigma^{2} \cdot \left(\hat{f} - \bar{f}\right)^{2}}{\sigma_{f}^{2}}, \text{ where }$$

- \bar{f} is a nominal frequency.
- 1 9. The method of claim 8, wherein each of the plurality of cost functions is calculated
- with a different frequency value (\hat{f}) and a different phase value ($\hat{\Phi}$).
- 1 10. The method of claim 9, wherein the plurality of cost functions are calculated
- 2 substantially simultaneously.
- 1 11. The method of claim 1, wherein selecting the minimum value cost function further
- 2 comprises selecting a plurality of first minimum cost functions such that each of the
- first minimum cost functions has a different estimated frequency (\hat{f}) .
- 1 12. The method of claim 11, wherein selecting the minimum value cost function further
- 2 comprises selecting a second minimum cost function from the plurality of first
- minimum cost functions, and wherein the second minimum cost function is a function
- of an optimal estimated frequency (\hat{f}) and an optimal estimated phase ($\hat{\Phi}$).
- 1 13. The method of claim 1, wherein selecting the minimum value cost function further
- 2 comprises selecting a plurality of first minimum cost functions such that each of the
- first minimum cost functions has a different estimated phase ($\hat{\Phi}$).
- 1 14. The method of claim 13, wherein selecting the minimum value cost function further
- 2 comprises selecting a second minimum cost function from the plurality of first
- 3 minimum cost functions, and wherein the second minimum cost function is a function
- of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$.

- 1 15. A communications channel for an optimal one-shot phase and frequency estimation 2 for timing acquisition for signals transmitted over the communications channel, the 3 communications channel comprising:
 - a sampler for sampling a preamble comprising a known string of data bits;
- a first calculator for estimating the sampled preamble (\vec{Y}) , the estimated preamble further comprising an estimated amplitude (\hat{A}) , an estimated frequency (\hat{f}) , and an estimated phase $(\hat{\Phi})$;
- a second calculator for calculating a plurality of cost functions $(C(\hat{f}, \hat{\Phi}))$ as a function of the estimated frequency (\hat{f}) and the estimated phase $(\hat{\Phi})$ by varying at least one of the estimated frequency (\hat{f}) or estimated phase $(\hat{\Phi})$; and
- 11 a selector for determining the cost function $(C(\hat{f}, \hat{\Phi}))$ having a minimum 12 value, wherein said cost function having the minimum value is a function of an 13 optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$.
 - 1 16. The communications channel of claim 15, wherein the preamble is sinusoidal.
- 1 17. The communications channel of claim 15, wherein the sampler samples the preamble once for each data bit in the preamble.
- 1 18. The communications channel of claim 15, wherein the sampler samples the preamble in accordance with the following calculation:
- 3 $\vec{X} = [x_0 \cdots x_N]$ where $x_k = A \sin\left(\Phi + k \cdot f \cdot \frac{\pi}{2}\right) + n_k$, A is an amplitude value, Φ is a
- 4 phase value, f is a frequency value, and n_k is a noise component of a k^{th} sample.
- 1 19. The communications channel of claim 15, wherein the first calculator estimates the sampled preamble in accordance with the following calculation:

$$\bar{Y} = [y_0 \cdots y_N] \text{ where } y_k = \hat{A} \sin \left(\hat{\Phi} + k \cdot \hat{f} \cdot \frac{\pi}{2}\right).$$

The communications channel of claim 19, wherein the noise component of the
 sampled preamble has a standard deviation (σ).

- 1 21. The communications channel of claim 20, wherein the frequency value of the sampled
- 2 preamble has a normal distribution having a standard deviation (σ_f) .
- 1 22. The communications channel of claim 21, wherein the second calculator calculates
- 2 the plurality of cost functions in accordance with the following:

$$C(\hat{f}, \hat{\Phi}) = \hat{A}^{2} \sum_{k=0}^{N-1} \sin^{2} \left(\hat{\Phi} + k \cdot \hat{f} \cdot \frac{\pi}{2} \right) - 2\hat{A} \sum_{k=0}^{N-1} x_{k} \sin \left(\hat{\Phi} + k \cdot \hat{f} \cdot \frac{\pi}{2} \right) + \frac{\sigma^{2} \cdot \left(\hat{f} - \bar{f} \right)^{2}}{\sigma_{f}^{2}}, \text{ where }$$

- 4 \bar{f} is a nominal frequency.
- 1 23. The communications channel of claim 22, wherein each of the plurality of cost
- functions is calculated with a different frequency value (\hat{f}) and a different phase
- 3 value $(\hat{\Phi})$.
- 1 24. The communications channel of claim 23, wherein the plurality of cost functions are
- 2 calculated substantially simultaneously.
- 1 25. The communications channel of claim 15, wherein the selector determines the
- 2 minimum value cost function by selecting a plurality of first minimum cost functions
- 3 such that each of the first minimum cost functions has a different estimated frequency
- 4 (\hat{f}) .
- 1 26. The communications channel of claim 25, wherein the selector determines the
- 2 minimum value cost function by selecting a second minimum cost function from the
- 3 plurality of first minimum cost functions, and wherein the second minimum cost
- 4 function is a function of an optimal estimated frequency (\hat{f}) and an optimal
- 5 estimated phase $(\hat{\Phi})$.
- 1 27. The communications channel of claim 15, wherein the selector determines the
- 2 minimum value cost function by selecting a plurality of first minimum cost functions
- 3 such that each of the first minimum cost functions has a different estimated phase
- 4 $(\hat{\Phi})$.
- 1 28. The communications channel of claim 27, wherein the selector determines the
- 2 minimum value cost function by selecting a second minimum cost function from the
- 3 plurality of first minimum cost functions, and wherein the second minimum cost

4		function is a function of an optimal estimated frequency (f) and an optimal
5		estimated phase ($\hat{\Phi}$).
1	29.	A disk drive system for an optimal one-shot phase and frequency estimation for
2	,	timing acquisition for signals transmitted over a communications channel, the system
3		comprising:
4		rotating magnetic media for storing data;
5		a motor for rotating the magnetic media;
6	•	a recording head for transmitting data;
7		an actuator for positioning the recording head; and
8		a communications channel for communicating data to be stored on or read
9		from the recording media, wherein the communications channel further comprises a
10		sampler for sampling a preamble comprising a known string of data bits, a first
11		calculator for estimating the sampled preamble (\vec{Y}), a second calculator for
12		calculating a plurality of cost functions ($C(\hat{f},\hat{\Phi})$) as a function of the estimated
13		frequency (\hat{f}) and the estimated phase ($\hat{\Phi}$) by varying at least one of the estimated
14		frequency (\hat{f}) or estimated phase ($\hat{\Phi}$), and a selector for determining the cost
15		function $(C(\hat{f},\hat{\Phi}))$ having a minimum value, wherein said cost function having the
16		minimum value is a function of an optimal estimated frequency (\hat{f}) and an optimal
17		estimated phase ($\hat{\Phi}$), and wherein the estimated preamble further comprises an
18		estimated amplitude (\hat{A}), an estimated frequency (\hat{f}), and an estimated phase ($\hat{\Phi}$)
l	30.	The system of claim 29, wherein the preamble is sinusoidal.
1	31.	The system of claim 29, wherein the sampler samples the preamble once for each dat
2		bit in the preamble.
1	32.	The system of claim 29, wherein the sampler samples the preamble in accordance
2		with the following calculation:

- 3 $\vec{X} = [x_0 \cdots x_N]$ where $x_k = A \sin(\Phi + k \cdot f \cdot \frac{\pi}{2}) + n_k$, A is an amplitude value, Φ is a
- 4 phase value, f is a frequency value, and n_k is a noise component of a k^{th} sample.
- 1 33. The system of claim 29, wherein the first calculator estimates the sampled preamble in accordance with the following calculation:
- $\vec{Y} = [y_0 \cdots y_N] \text{ where } y_k = \hat{A} \sin \left(\hat{\Phi} + k \cdot \hat{f} \cdot \frac{\pi}{2}\right).$
- 1 34. The system of claim 33, wherein the noise component of the sampled preamble has a standard deviation (σ) .
- 1 35. The system of claim 34, wherein the frequency value of the sampled preamble has a normal distribution having a standard deviation (σ_f) .
- 1 36. The system of claim 35, wherein the second calculator calculates the cost functions in accordance with the following:

$$C(\hat{f}, \hat{\Phi}) = \hat{A}^{2} \sum_{k=0}^{N-1} \sin^{2} \left(\hat{\Phi} + k \cdot \hat{f} \cdot \frac{\pi}{2} \right) - 2\hat{A} \sum_{k=0}^{N-1} x_{k} \sin \left(\hat{\Phi} + k \cdot \hat{f} \cdot \frac{\pi}{2} \right) + \frac{\sigma^{2} \cdot \left(\hat{f} - \bar{f} \right)^{2}}{\sigma_{f}^{2}}, \text{ where}$$

- 4 \bar{f} is a nominal frequency.
- 1 37. The system of claim 36, wherein each of the plurality of cost functions is calculated
- with a different frequency value (\hat{f}) and a different phase value ($\hat{\Phi}$).
- 1 38. The system of claim 37, wherein the plurality of cost functions are calculated
- 2 substantially simultaneously.
- 1 39. The system of claim 29, wherein the selector determines the minimum value cost
- 2 function by selecting a plurality of first minimum cost functions such that each of the
- 3 first minimum cost functions has a different estimated frequency (\hat{f}).
- 1 40. The system of claim 39, wherein the selector determines the minimum value cost
- function by selecting a second minimum cost function from the plurality of first
- 3 minimum cost functions, and wherein the second minimum cost function is a function
- of an optimal estimated frequency (\hat{f}) and an optimal estimated phase ($\hat{\Phi}$).

1	4Í.	The system of claim 29, wherein the selector determines the cost minimum value
2		function by selecting a plurality of first minimum cost functions such that each of the
,3		first minimum cost functions has a different estimated phase ($\hat{\Phi}$).
1	42.	The system of claim 41, wherein the selector determines the minimum value cost
2		function by selecting a second minimum cost function from the plurality of first
3 ;		minimum cost functions, and wherein the second minimum cost function is a function
4 .		of an optimal estimated frequency (\hat{f}) and an optimal estimated phase ($\hat{\Phi}$).
1	43.	A communications channel for an optimal one-shot phase and frequency estimation
2		for timing acquisition for signals transmitted over the communications channel, the
3		communications channel comprising:
4		a means for sampling a preamble comprising a known string of data bits;
5	,	a means for estimating the sampled preamble ($ar{Y}$), the estimated preamble
6		further comprising an estimated amplitude (\hat{A}), an estimated frequency (\hat{f}), and an
7		estimated phase ($\hat{\Phi}$);
8	1	a means for calculating a plurality of cost functions $(C(\hat{f},\hat{\Phi}))$ as a function of
9		the estimated frequency (\hat{f}) and the estimated phase ($\hat{\Phi}$) by varying at least one of
10		the estimated frequency (\hat{f}) or estimated phase ($\hat{\Phi}$); and
11		a means for selecting the cost function $(C(\hat{f},\hat{\Phi}))$ having a minimum value,
12	•	wherein said cost function having the minimum value is a function of an optimal
13.		estimated frequency (\hat{f}) and an optimal estimated phase ($\hat{\Phi}$).
l	44.	The communications channel of claim 43, wherein the preamble is sinusoidal.
1 .	45.	The communications channel of claim 43, wherein the preamble is sampled once for
2		each data bit in the preamble.
1.	46.	The communications channel of claim 43, wherein the means for sampling samples
2		the preamble in accordance with the following calculation:

- 3 $\vec{X} = [x_0 \cdots x_N]$ where $x_k = A \sin\left(\Phi + k \cdot f \cdot \frac{\pi}{2}\right) + n_k$, A is an amplitude value, Φ is a
- 4 phase value, f is a frequency value, and n_k is a noise component of a k^{th} sample.
- 1 47. The communications channel of claim 43, wherein the means for estimating estimates
- 2 the sampled preamble in accordance with the following calculation:

3
$$\bar{Y} = [y_0 \cdots y_N] \text{ where } y_k = \hat{A} \sin \left(\hat{\Phi} + k \cdot \hat{f} \cdot \frac{\pi}{2}\right).$$

- 1 48. The communications channel of claim 47, wherein the noise component of the
- 2 sampled preamble has a standard deviation (σ).
- 1 49. The communications channel of claim 48, wherein the frequency value of the sampled
- 2 preamble has a normal distribution having a standard deviation (σ_t) .
- 1 50. The communications channel of claim 49, wherein the means for calculating
- 2 calculates the cost function in accordance with the following:

$$C(\hat{f}, \hat{\Phi}) = \hat{A}^{2} \sum_{k=0}^{N-1} \sin^{2} \left(\hat{\Phi} + k \cdot \hat{f} \cdot \frac{\pi}{2}\right) - 2\hat{A} \sum_{k=0}^{N-1} x_{k} \sin \left(\hat{\Phi} + k \cdot \hat{f} \cdot \frac{\pi}{2}\right) + \frac{\sigma^{2} \cdot \left(\hat{f} - \bar{f}\right)^{2}}{\sigma_{f}^{2}}, \text{ where }$$

- 4 \bar{f} is a nominal frequency.
- 1 51. The communications channel of claim 50, wherein each of the plurality of cost
- 2 functions is calculated with a different frequency value (\hat{f}) and a different phase
- 3 value ($\hat{\Phi}$).
- 1 52. The communications channel of claim 51, wherein the plurality of cost functions are
- 2 calculated substantially simultaneously.
- 1 53. The communications channel of claim 43, wherein means for selecting selects the
- 2 minimum value cost function by selecting a plurality of first minimum cost functions
- 3 such that each of the first minimum cost functions has a different estimated frequency
- 4 (\hat{f}) .

1	54.	The communications channel of claim 53, wherein the means for selecting selects the
2	-	minimum value cost function by selecting a second minimum cost function from the
3		plurality of first minimum cost functions, and wherein the second minimum cost
4		function is a function of an optimal estimated frequency (\hat{f}) and an optimal
5	N	estimated phase ($\hat{\Phi}$).
1	55.	The communications channel of claim 43, wherein the means for selecting selects the
2		minimum value cost function by selecting a plurality of first minimum cost functions
3		such that each of the first minimum cost functions has a different estimated phase
4	•	$(\hat{\Phi})$.
. 1	56.	The communications channel of claim 55, wherein the means for selecting selects the
2		minimum value cost function by selecting a second minimum cost function from the
3		plurality of first minimum cost functions, and wherein the second minimum cost
. 4		function is a function of an optimal estimated frequency (\hat{f}) and an optimal
5	•	estimated phase ($\hat{\Phi}$).
1	57.	A computer program product containing a program for providing an optimal one-shot
2		phase and frequency estimation for timing acquisition for signals transmitted over a
.3		communications channel, the program comprising:
4		sampling a preamble comprising a known string of data bits;
5		estimating the sampled preamble (\vec{Y}), the estimated preamble further
6		comprising an estimated amplitude (\hat{A}), an estimated frequency (\hat{f}), and an
7		estimated phase ($\hat{\Phi}$);
8		calculating a cost function $(C(\hat{f},\hat{\Phi}))$ as a function of the estimated frequency
9		(\hat{f}) and the estimated phase $(\hat{\Phi})$;
10		varying at least one of the estimated frequency (\hat{f}) or estimated phase ($\hat{\Phi}$) to
11		calculate a plurality of cost functions; and

- selecting the cost function $(C(\hat{f}, \hat{\Phi}))$ having a minimum value, wherein said
- cost function having the minimum value is a function of an optimal estimated
- frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$.
- 1 58. The computer program product of claim 57, wherein the preamble is sinusoidal.
- 1 59. The computer program product of claim 57, wherein the preamble is sampled once for
- 2 each data bit in the preamble.
- 1 60. The computer program product of claim 57, wherein the sampling comprises the
- 2 following calculation:
- 3 $\bar{X} = [x_0 \cdots x_N]$ where $x_k = A \sin \left(\Phi + k \cdot f \cdot \frac{\pi}{2} \right) + n_k$, A is an amplitude value, Φ is a
- phase value, f is a frequency value, and n_k is a noise component of a k^{th} sample.
- 1 61. The computer program product of claim 57, wherein the estimating the sampled
- 2 preamble comprises the following calculation:

$$\bar{Y} = [y_0 \cdots y_N] \text{ where } y_k = \hat{A} \sin \left(\hat{\Phi} + k \cdot \hat{f} \cdot \frac{\pi}{2}\right).$$

- 1 62. The computer program product of claim 51, wherein the noise component of the
- 2 sampled preamble has a standard deviation (σ).
- 1 63. The computer program product of claim 62, wherein the frequency value of the
- 2 sampled preamble has a normal distribution having a standard deviation (σ_r).
- 1 64. The computer program product of claim 63, wherein the calculating comprises the
- 2 following:

$$C(\hat{f}, \hat{\Phi}) = \hat{A}^{2} \sum_{k=0}^{N-1} \sin^{2} \left(\hat{\Phi} + k \cdot \hat{f} \cdot \frac{\pi}{2} \right) - 2\hat{A} \sum_{k=0}^{N-1} x_{k} \sin \left(\hat{\Phi} + k \cdot \hat{f} \cdot \frac{\pi}{2} \right) + \frac{\sigma^{2} \cdot (\hat{f} - \bar{f})^{2}}{\sigma_{f}^{2}}, \text{ where}$$

- 4 \bar{f} is a nominal frequency.
- 1 65. The computer program product of claim 64, wherein each of the plurality of cost
- functions is calculated with a different frequency value (\hat{f}) and a different phase
- 3 value ($\hat{\Phi}$).

Ţ	66.	The computer program product of claim 65, wherein the plurality of cost functions are
2		calculated substantially simultaneously.
1	67.	The computer program product of claim 57, wherein selecting the minimum value
2	-	cost function further comprises selecting a plurality of first minimum cost functions
3		such that each of the first minimum cost functions has a different estimated frequency
4	-	(\hat{f})
1	68.	The computer program product of claim 67, wherein selecting the minimum value
2		cost function further comprises selecting a second minimum cost function from the
3		plurality of first minimum cost functions, and wherein the second minimum cost
4		function is a function of an optimal estimated frequency (\hat{f}) and an optimal
5		estimated phase $(\hat{\Phi})$.
1	69.	The computer program product of claim 57, wherein selecting the minimum value
2		cost function further comprises selecting a plurality of first minimum cost functions
3		such that each of the first minimum cost functions has a different estimated phase
4		$(\hat{\Phi})$.
1 .	70.	The computer program product of claim 69, wherein selecting the minimum value
2	• • •	cost function further comprises selecting a second minimum cost function from the
· 3 ,		plurality of first minimum cost functions, and wherein the second minimum cost
4		function is a function of an optimal estimated frequency (\hat{f}) and an optimal
5		estimated phase ($\hat{\Phi}$).
1	71.	A disk drive system for an optimal one-shot phase and frequency estimation for
2		timing acquisition for signals transmitted over a communications channel, the system
3		comprising:
4	4	means for storing data;
5		means for rotating the means for storing;
6		means for transmitting data to and from the means for storing;
7		means for positioning the means for transmitting data; and
8		means for communicating data to be stored on or read from the means for
9.		storing, wherein said means for communicating further comprises means for sampling

- a preamble comprising a known string of data bits, means for estimating the sampled 10 preamble (\vec{Y}) , means for calculating a plurality of cost functions $(C(\hat{f}, \hat{\Phi}))$ as a 11 function of the estimated frequency (\hat{f}) and the estimated phase ($\hat{\Phi}$) by varying at 12 least one of the estimated frequency (\hat{f}) or estimated phase ($\hat{\Phi}$), and means for 13 determining the cost function $(C(\hat{f},\hat{\Phi}))$ having a minimum value, wherein said cost 14 function having the minimum value is a function of an optimal estimated frequency 15 16 (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$, and wherein the estimated preamble further comprises an estimated amplitude (\hat{A}), an estimated frequency (\hat{f}), and an estimated 17 phase ($\hat{\Phi}$) 18
 - 1 72. The system of claim 71, wherein the preamble is sinusoidal.
- 73. The system of claim 71, wherein the means for sampling samples the preamble once
 for each data bit in the preamble.
- 1 74. The system of claim 71, wherein the means for sampling samples the preamble in accordance with the following calculation:
- 3 $\vec{X} = [x_0 \cdots x_N]$ where $x_k = A \sin\left(\Phi + k \cdot f \cdot \frac{\pi}{2}\right) + n_k$, A is an amplitude value, Φ is a
- 4 phase value, f is a frequency value, and n_k is a noise component of a k^{th} sample.
- The system of claim 71, wherein the means for estimating the sampled preamble in accordance with the following calculation:

$$\bar{Y} = [y_0 \cdots y_N] \text{ where } y_k = \hat{A} \sin \left(\hat{\Phi} + k \cdot \hat{f} \cdot \frac{\pi}{2}\right).$$

- 76. The system of claim 75, wherein the noise component of the sampled preamble has a
 standard deviation (σ).
- 1 77. The system of claim 76, wherein the frequency value of the sampled preamble has a normal distribution having a standard deviation (σ_f) .
- The system of claim 77, wherein the means for calculating calculates the cost functions in accordance with the following:

- $C(\hat{f}, \hat{\Phi}) = \hat{A}^{2} \sum_{k=0}^{N-1} \sin^{2} \left(\hat{\Phi} + k \cdot \hat{f} \cdot \frac{\pi}{2} \right) 2\hat{A} \sum_{k=0}^{N-1} x_{k} \sin \left(\hat{\Phi} + k \cdot \hat{f} \cdot \frac{\pi}{2} \right) + \frac{\sigma^{2} \cdot \left(\hat{f} \bar{f} \right)^{2}}{\sigma_{f}^{2}}, \text{ where}$
- 4 \bar{f} is a nominal frequency.
- 1 79. The system of claim 78, wherein each of the plurality of cost functions is calculated
- with a different frequency value (\hat{f}) and a different phase value ($\hat{\Phi}$).
- 1 80. The system of claim 79, wherein the plurality of cost functions are calculated
- 2 substantially simultaneously.
- 1 81. The system of claim 71, wherein the means for selecting determines the minimum.
- 2 value cost function by selecting a plurality of first minimum cost functions such that
- a each of the first minimum cost functions has a different estimated frequency (\hat{f}) .
- 1 82. The system of claim 81, wherein the means for selecting determines the minimum
- 2 value cost function by selecting a second minimum cost function from the plurality of
- first minimum cost functions, and wherein the second minimum cost function is a
- function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$.
- 1 83. The system of claim 71, wherein the means for selecting determines the cost
- 2 minimum value function by selecting a plurality of first minimum cost functions such
- that each of the first minimum cost functions has a different estimated phase $(\hat{\Phi})$.
- 1 84. The system of claim 83, wherein the means for selecting determines the minimum
- 2 value cost function by selecting a second minimum cost function from the plurality of
- 3 first minimum cost functions, and wherein the second minimum cost function is a
- function of an optimal estimated frequency (\hat{f}) and an optimal estimated phase $(\hat{\Phi})$.