From FastQ to Counts

Workshop by Jared Bard jbard@uchicago.edu 230914

Other Resources

https://hbctraining.github.io/main/

http://mcb112.org/

Goals for the Workshop

- Understand the logic of processing raw sequencing data
- Know the tools you can use
- Extract counts from sample data using galaxy

Goals for the Workshop

- Understand the logic of processing raw sequencing data
- Know the tools you can use
- Extract counts from sample data using galaxy

sample_1.fastq.gz sample_2.fastq.gz

Download Class files

bit.ly/workshop230914

For real data, use the command line

- Goal is accuracy and reproducibility
- I recommend: snakemake or nextflow

Documented, reproducible analysis. Easy to modify individual steps for troubleshooting.

For real data, use package managers

- •Rules use conda/mamba to create environments
- https://github.com/mamba-org/mamba

What is RNA-seq?

What is RNA-seq?

What is RNA-seq?

RNA-Seq Workflow

RNA-Seq Workflow

fastq:

RNA-Seq Workflow

https://hbctraining.github.io/DGE_workshop_salmon_online/lessons/01a_RNAseq_processing_workflow.html

Sci Adv. 2022 Nov; 8(47): eade1942.

Published online 2022 Nov 23. doi: 10.1126/sciadv.ade1942

PMCID: PMC9683707 PMID: 36417539

A pleiotropic hypoxia-sensitive *EPAS1* enhancer is disrupted by adaptive alleles in Tibetans

https://pubmed.ncbi.nlm.nih.gov/36417539/

Data and materials availability: Data described in this paper can be found in the Supplementary Materials or in publicly available databases including the UCSC genome browser and Epigenome Roadmap. All sequencing data are deposited in the GEO accession database (www.ncbi.nlm.nih.gov/geo/); accession no. GSE197527 (HAEC ATAC-seq/RNA-seq: GSE197523; teloHAEC RNA-seq: GSE197525; Capture Hi-C: GSE197526), mouse RNA-seq: GSE197524).

Samples (12) GSM5919529 KO3.N
GSM5919530 KO4.N
GSM5919531 KO5.N
GSM5919532 WT4.N
GSM5919533 WT5.N
GSM5919534 WT6.N

Fig. 3. Deletion of ENH5 in endothelial cells results in dampening of transcriptional responses to acute and sustained hypoxia.

Make a galaxy account

Upload data (everything in the zip)

Quality control

fastqc

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Run FastQC

Mapping:

Mapping: pseudoalignment vs genomic alignment

kallisto/salmon https://pachterlab.github.io/kallisto/

- -aligns to transcripts (not genome)
- -better at isoforms

STAR/hisat2

-aligns to genome (splice-aware)

https://github.com/hbctraining/Training-modules/blob/master/DGE-functional-analysis/lessons/AnnotationHub.md

Genome:

https://hbctraining.github.io/Accessing_public_genomic_data/lessons/accessing_genome_reference_data.html

https://github.com/hbctraining/Training-modules/blob/master/DGE-functional-analysis/lessons/AnnotationHub.md

- Genome: Homo_sapiens.GRCh38.dna.chr14.fa
- GFF: Homo_sapiens.GRCh38.110~chr14.gff3

Gene annotation

What can I find? Protein-coding and non-coding genes, splice variants, cDNA and protein sequences, non-coding RNAs.

More about this genebuild

Download FASTA files for genes, cDNAs, ncRNA, proteins

Download GTF or GFF3 files for genes, cDNAs, ncRNA, proteins

Update your old Ensembl IDs

Example gene

Example transcrip

https://github.com/hbctraining/Training-modules/blob/master/DGE-functional-analysis/lessons/AnnotationHub.md

- Genome: Homo_sapiens.GRCh38.dna.chr14.fa
- GFF: Homo_sapiens.GRCh38.110~chr14.gff3
- Transcripts: Homo_sapiens.GRCh38.cdna.chr14.fa
 - cdna = entier transcripts
 - o cds = no UTRs

Index of /pub/release-110/fast:

<u>Name</u>	Last modified	Size Description
Parent Directo	<u>ory</u>	
cdna/	2023-05-04 05:26	-
<u>cus/</u>	ZUZ3-U3-U4 U3.ZU	-
ana/	2023-05-04 05:27	-
dna index/	2023-05-04 05:27	-
ncrna/	2023-05-04 05:27	-
pep/	2023-05-04 05:27	-

https://github.com/hbctraining/Training-modules/blob/master/DGE-functional-analysis/lessons/AnnotationHub.md

- Genome: Homo_sapiens.GRCh38.dna.chr14.fa
- GFF: Homo_sapiens.GRCh38.110~chr14.gff3
- Transcripts: Homo_sapiens.GRCh38.cdna.chr14.fa
 - cdna = entier transcripts
 - cds = no UTRs

https://hbctraining.github.io/Accessing_public_genomic_data/lessons/accessing_genome_reference_data.html

Annotations (mapping transcript IDs to useful names):

https://www.ensembl.org/info/data/biomart/index.html

Try this link for humans:

http://www.ensembl.org/biomart/martview/a89f2939f3bb17d1b733b99c97fb5ff2?VIRTUALSCHEMANAME=default&ATTRIBUTES=hsapiens_gene_ensembl.default.feature_page.ensembl_gene_id_version|hsapiens_gene_ensembl.default.feature_page.ensembl_transcript_id|hsapiens_gene_ensembl.default.feature_page.ensembl_transcript_id_version|hsapiens_gene_ensembl.default.feature_page.ensembl_transcript_id_version|hsapiens_gene_ensembl.default.feature_page.external_gene_name&FILTERS=&VISIBLEPANEL=resultspanel

Running STAR for QC

Use genome file (.dna) from ensembl

Visualize

https://igv.org

Galaxy29-[F

Galaxy29-[RNA_STAR_on_data_8,_data_7,_and_others__mapped.bam].bam

Zoom in to see features

Visualize

Reads in exons = good

Kallisto mapping

Use cdna file (transcriptome)

Strandedness: https://rnabio.org/module-09-appendix/0009/12/01/StrandSettings/

ENST00000487915.6	848	612.764	0	
ENST00000547327.2	2849	2613.76	21.755	
Length: actual length of transc	cript			
Eff_length: "effective length" a	accounting for read le	ength		
Est_counts: "estimated counts	s" how many reads m	apped to th	at transcript	
Tpm: "transcripts per million"	http://mcb112.org/v	v01/w01-led	cture.html	
, ,		-		

Column 3

length

2706

1004

Column 4

eff_length

2470.76

768.764

Column 5

tpm

2202.38

1142.93

45.3784

0

est_counts

998.086

161.159

Column 2

Column 1

target_id

ENST00000250457.9

ENST00000553215.5

Next Time

DESeq2 identifies genes that have statistically significant changes between conditions

