CALCULO GRADO EN INGEN. INFORM. DEL SOFTWARE. 2020-21 TEMA 1. FUNCIONES REALES DE UNA VARIABLE REAL

1.2: Funciones reales de una variable real.

Nociones preliminares.

Se llama función real de variable real a toda aplicación $f: D \subset R \to R$, donde D es un conjunto de números reales denominado *dominio* de la función. Designaremos por x a un elemento de D y por y = f(x) a su *imagen* por la aplicación f.

Dom
$$f = \{x \in R \mid f(x) \in R\}$$
, Im $f = \{y \in R \mid \exists x \in D, f(x) = y\} = f(D)$

Ejemplos:

$$f(x) = x^{2} \qquad Dom \ f = R \qquad Im \ f = [0, +\infty)$$

$$f(x) = \sqrt{x+4} \qquad Dom \ f = [-4, +\infty) \qquad Im \ f = [0, +\infty)$$

$$f(x) = \frac{1}{x-1} \qquad Dom \ f = R - \{1\} \qquad Im \ f = R - \{0\}$$

El conjunto de todos los puntos del plano (x, f(x)) con $x \in D$ forman la gráfica de f

Ejemplos:

$$f(x) = |x|$$

$$f(x) = |x+1|$$

$$2$$

$$-2$$

Función monótona.

Sea $f: D \subset R \to R$ una función real de variable real, y $S \subset D$.

$$f$$
 es monótona creciente en S $\Leftrightarrow: \forall x_1, x_2 \in S \ x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$ f es monótona decreciente en S $\Leftrightarrow: \forall x_1, x_2 \in S \ x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$ f es estrictamente creciente en S $\Leftrightarrow: \forall x_1, x_2 \in S \ x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$ f es estrictamente decreciente en S $\Leftrightarrow: \forall x_1, x_2 \in S \ x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$

Ejemplos:

 $f(x) = x^2$ es estrictamente creciente en $[0,+\infty)$ y estrictamente decreciente en $(-\infty,0]$. $f(x) = x^3$ es estrictamente creciente en todo R.

Función acotada.

Sea $f: D \subset R \to R$ una función real de variable real, y $S \subset D$.

f está acotada superiormente en $S \Leftrightarrow : \exists M \in R \, / \, f(x) \leq M \quad \forall x \in S$, es decir, si el conjunto imagen $f(S) = \{f(x) \, / \, x \in S\}$ es un conjunto acotado superiormente. f está acotada inferiormente en $S \Leftrightarrow : \exists m \in R \, / \, f(x) \geq m \quad \forall x \in S$, es decir, si el conjunto imagen $f(S) = \{f(x) \, / \, x \in S\}$ es un conjunto acotado inferiormente.

f está acotada en $S \Leftrightarrow : f$ está acotada superiormente e inferiormente en $S \Leftrightarrow \exists K \in R^+ \ / \ |f(x)| \le K \quad \forall x \in S$, es decir, si el conjunto imagen $f(S) = \{f(x) \ / \ x \in S\}$ es un conjunto acotado.

Ejemplos:

$$f(x) = x^2$$
 está acotada inferiormente en R y no está acotada superiormente en R ya que $\operatorname{Im} f = [0, +\infty)$. Por tanto $\inf_{x \in R} f(x) = 0 = \min_{x \in R} f(x)$, $\sup_{x \in R} f(x)$ y $\max_{x \in R} f(x)$ no existen.

$$f(x) = x^2$$
 está acotada en el intervalo $[-5, 9]$ ya que $\text{Im } f = [0, 81]$. Por tanto $\inf_{x \in [-5, 9]} f(x) = 0 = \min_{x \in [-5, 9]} f(x)$, $\sup_{x \in [-5, 9]} f(x) = 81 = \max_{x \in [-5, 9]} f(x)$

$$f(x) = x^2$$
 está acotada en el intervalo $(-5,9)$ ya que Im $f = [0,81)$. Por tanto $\inf_{x \in (-5,9)} f(x) = 0 = \min_{x \in (-5,9)} f(x)$, $\sup_{x \in (-5,9)} f(x) = 81$, $\max_{x \in (-5,9)} f(x)$ no existe.

Función par e impar: Simetrías.

Sea
$$f: D \subset R \to R$$
 tal que $-x \in D$ si $x \in D$

$$f$$
 es par \Leftrightarrow : $f(-x) = f(x)$ $\forall x \in D$
 f es impar \Leftrightarrow : $f(-x) = -f(x)$ $\forall x \in D$

La gráfica de una función par es simétrica respecto al eje de ordenadas y la grafica de una función impar es simétrica respecto al origen de coordenadas.

Ejemplos:

$$f(x) = x^4$$
 es par , $f(x) = x^7$ es impar

Función periódica.

Sea $f: D \subset R \to R$ una función real de variable real.

f es periódica \Leftrightarrow : existe $h \in R^+$ tal que $f(x) = f(x+h) \ \forall x \in D$

El período p de una función periódica es el valor más pequeño de h que verifica la igualdad anterior.

Ejercicio:

Sea f(x) = [x] función parte entera de x, es decir, la función que a cada número real le asigna el mayor entero que sea menor o igual a él (función floor en Matlab). Comprobar que la función g(x) = x - f(x) = x - [x] es periódica de período uno.

Operaciones con funciones.

Sean f y g dos funciones reales de variable real tales que $Dom \ f = Dom \ g = D$. Definimos la función suma de la forma siguiente:

$$f + g: D \subset R \to R$$
 tal que $(f + g)(x) = : f(x) + g(x) \ \forall x \in D$

La función nula $0_f: R \to R$ tal que $0_f(x) = 0 \ \forall x \in R$ verifica $f + 0_f = f$

La función opuesta de f, $-f:D\subset R\to R$ tal que (-f)(x)=:-f(x) $\forall x\in D$ verifica $f+(-f)=0_f$

Definimos la función producto $fg: D \subset R \to R$ tal que $(fg)(x) = : f(x)g(x) \quad \forall x \in D$

La función unidad $1_f: R \to R$ tal que $1_f(x) = 1 \ \forall x \in R$ verifica $f 1_f = f$

La función reciproca de f, $\frac{1}{f}$: $D_1 \subset R \to R$ tal que $\left(\frac{1}{f}\right)(x) = : \frac{1}{f(x)} \ \forall x \in D_1$ siendo $D_1 = \left\{x \in D \mid f(x) \neq 0\right\}$, verifica $f\left(\frac{1}{f}\right) = 1_f$.

Definimos la función cociente $\frac{f}{g}$: $D_2 \subset R \to R$ tal que $\left(\frac{f}{g}\right)(x) = : \frac{f(x)}{g(x)} \ \forall x \in D_2$ siendo $D_2 = \{x \in D \ / \ g(x) \neq 0\}.$

Nota: Si $Dom f \neq Dom g$ con $Dom f \cap Dom g \neq$ conjunto vacio, entonces:

$$Dom(f+g) = Dom(fg) = Dom \ f \cap Dom \ g$$
$$Dom(f/g) = (Dom \ f \cap Dom \ g) - \{x / g(x) = 0\}$$

Ejemplos:

*
$$f(x) = x^2$$
 $g(x) = \frac{x}{x-1}$ $Dom \ f = R \ Dom \ g = R - \{1\}$

$$(f+g)(x) = x^2 + \frac{x}{x-1} = \frac{x^3 - x^2 + x}{x-1}$$
 $Dom(f+g) = R - \{1\}$

$$(fg)x) = \frac{x^3}{x-1}$$
 $Dom(fg) = R - \{1\}$

* $f(x) = \begin{cases} x & \text{si } x \le 0 \\ -1 & \text{si } x > 0 \end{cases}$ $g(x) = \begin{cases} -x & \text{si } x < 1 \\ x^2 & \text{si } x \ge 1 \end{cases}$

$$(f+g)(x) = \begin{cases} 0 & \text{si } x \le 0 \\ -1 - x & \text{si } 0 < x < 1 \\ -1 + x^2 & \text{si } x \ge 1 \end{cases}$$
 $(fg)(x) = \begin{cases} x & \text{si } 0 < x < 1 \\ -x^2 & \text{si } x \le 0 \le 1 \end{cases}$

Composición de funciones y función inversa.

Sean dos funciones f y g tales que Im $g \cap Dom f \neq$ conjunto vacío. Definimos la función "g compuesta con f" y se denota $f \circ g$ de la siguiente forma:

$$(f \circ g)(x) =: f(g(x))$$
 $\forall x \in Dom \ g \mid g(x) \in Dom \ f$

Análogamente, si Im $f \cap Dom \ g \neq conjunto vacío, se define la función " <math>f$ compuesta con g" y se denota $g \circ f$ de la siguiente forma:

$$(g \circ f)(x) = g(f(x))$$
 $\forall x \in Dom \ f \ / \ f(x) \in Dom \ g$

La composición de funciones verifica la propiedad asociativa, es decir, $(f \circ g) \circ h = f \circ (g \circ h)$ No verifica, en general, la propiedad conmutativa, es decir, $f \circ g \neq g \circ f$. El elemento neutro de la composición es la función *identidad* I, es decir, $f \circ I = f = I \circ f$ siendo I(x) = x $\forall x \in R$

Ejemplo:

$$f(x) = x^{2} + x g(x) = \sqrt[3]{x} Dom f = Dom g = R$$

$$(f \circ g)(x) = f(g(x)) = f(\sqrt[3]{x}) = (\sqrt[3]{x})^{2} + \sqrt[3]{x}$$

$$(g \circ f)(x) = g(f(x)) = g(x^{2} + x) = \sqrt[3]{x^{2} + x}$$

Ejercicio.

Obtener $f \circ g$, $g \circ f$ y sus dominios respectivos en los casos siguientes:

a)
$$f(x) = x^2 + 1$$
, $g(x) = \sqrt{x}$

b)
$$f(x) = \sqrt{x-3}$$
, $g(x) = x^2 + 1$

$$f: D \subset R \to R$$
 es inyectiva $\Leftrightarrow : \forall x_1, x_2 \in D / f(x_1) = f(x_2) \Rightarrow x_1 = x_2$

Ejemplos:

$$f(x) = x(x-1)$$
 no es inyectiva en R ya que $f(0) = f(1)$
 $f(x) = x^3$ es inyectiva.
 $f(x) = x^2$ no es inyectiva en R . Lo es en $[0,+\infty)$ y en $(-\infty,0]$

Si f es una función inyectiva (en cierto dominio) entonces existe una única función g definida sobre la imagen de f, es decir, $g: \operatorname{Im} f \to R$ tal que f(g(x)) = x $\forall x \in \operatorname{Im} f = \operatorname{Dom} g$. Así pues, $\operatorname{Im} g = \operatorname{Dom} f$. A esta función g se le llama inversa de la función f y se denota por f^{-1} . Por tanto

$$f(f^{-1}(x)) = x \quad \forall x \in \text{Im } f$$
, es decir, $f \circ f^{-1} = I$

Se verifica también que $f^{-1}(f(x)) = x$ $\forall x \in Dom f$, es decir, $f^{-1} \circ f = I$

Ejemplos:

$$f(x) = x f^{-1}(x) = x$$

$$f(x) = \frac{1}{x} f^{-1}(x) = \frac{1}{x}$$

$$f(x) = \sqrt[3]{x} f^{-1}(x) = x^{3}$$

$$f(x) = 1 - (x - .2)^{1/3} f^{-1}(x) = (1 - x)^{3} + 2$$

Veamos esto último, $f(f^{-1}(x)) = x \iff 1 - (f^{-1}(x) - 2)^{1/3} = x \iff (f^{-1}(x) - 2)^{1/3} = 1 - x \iff f^{-1}(x) = (1 - x)^3 + 2$

Ejercicio.

Hallar la función inversa de $f(x) = x^2 - x$, $x \in [0.5, \infty)$

Funciones elementales

Función potencial entera

$$f(x) = x^n \quad , \quad n \in N \cup \{0\}$$

 $Dom \ f = R \ , \ \operatorname{Im} \ f = R \quad \operatorname{si} \ n \ \operatorname{es \ impar}, \ \operatorname{Im} \ f = \left[0, +\infty\right) \ \operatorname{si} \ n > 0 \ \operatorname{par}, \ \operatorname{Im} \ f = \left\{1\right\} \ \operatorname{si} \ n = 0 \ .$

Si n es impar entonces f es estrictamente creciente en R.

Función polinomica.

$$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$
 $n \in N \cup \{0\}$ $a_n \neq 0$

Dom f = R. Si n = 1 recta, si n = 2 parábola,...

Función racional.

Es cociente de dos funciones polinómicas

$$f(x) = \frac{a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n}{b_0 + b_1 x + b_2 x^2 + \dots + b_m x^m} = \frac{P(x)}{Q(x)} \quad ; \quad Dom \ f = \left\{ x \in R \ / \ Q(x) \neq 0 \right\}$$

Ejemplo:

$$f(x) = \frac{x^3 - 2x^2 + 5x - 1}{(x - 1)(x + 1)(x^2 + 1)} \qquad ; \quad Dom \ f = R - \{-1, 1\}$$

Funciones circulares y sus inversas.

$$f(x) = sen(x)$$
 $Dom f = R$ $Im f = [-1, 1]$

es acotada, impar y periódica de periodo 2π

$$f(x) = arcsen(x)$$

Para definir la función inversa nos restringimos a un dominio donde la función seno sea inyectiva, $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \to R$

Para cada $x \in [-1,1]$ se define arcsen(x) como el único $y \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ tal que sen(y) = x

Dom = [-1,1] Im $= \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ es acotada, creciente e impar

$$f(x) = \cos(x)$$
 $Dom f = R$ $Im f = [-1, 1]$

es acotada, par y periódica de periodo 2π

$$f(x) = \arccos(x)$$

Para definir la función inversa nos restringimos a un dominio donde la función coseno sea inyectiva, $[0,\pi] \to R$

Para cada $x \in [-1,1]$ se define $\arccos(x)$ como el único $y \in [0,\pi]$ tal que $\cos(y) = x$

$$Dom = [-1, 1]$$
 $Im = [0, \pi]$

es acotada y decreciente

$$f(x) = tg(x) = \frac{sen(x)}{\cos(x)}$$

$$Dom f = \left\{ x \in \mathbb{R} / x \neq (2k-1)\frac{\pi}{2}, k \in \mathbb{Z} \right\} \qquad \text{Im } f = \mathbb{R}$$

No es acotada en su dominio. Es impar y periódica de periodo π

Para cada número real x se define arctg(x) como el único $y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ tal que tg(y) = x

$$Dom = R$$
 Im $= \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ es acotada, creciente e impar

$$f(x) = \cot g(x) = \frac{\cos(x)}{sen(x)} = \frac{1}{tg(x)}$$

$$f(x) = \sec(x) = \frac{1}{\cos(x)}$$

$$f(x) = \cos ec(x) = \frac{1}{sen(x)}$$

Se verifica:

$$sen^{2}(x) + \cos^{2}(x) = 1 \qquad sen(2x) = 2sen(x)\cos(x) \qquad \cos(2x) = \cos^{2}(x) - sen^{2}(x)$$

$$sen^{2}(x) = \frac{1 - \cos(2x)}{2} \qquad \cos^{2}(x) = \frac{1 + \cos(2x)}{2}$$

$$sec^{2}(x) = 1 + tg^{2}(x) \qquad \cos ec^{2}(x) = 1 + \cot g^{2}(x)$$

$$\cos(x) = sen\left(\frac{\pi}{2} + x\right) = sen\left(\frac{\pi}{2} - x\right)$$

Función exponencial.

$$f(x) = a^x$$
, $a > 0$
 $Dom = R$ $Im = (0, \infty)$ si $a \ne 1$, $Im = \{1\}$ si $a = 1$

Es estrictamente creciente si a > 1 y estrictamente decreciente si 0 < a < 1

$$a^{0} = 1$$
 $a^{x}a^{y} = a^{x+y}$ $\forall x, y \in R$ $a^{-x} = \frac{1}{a^{x}}$ $\forall x \in R$

Función logarítmica.

Se llama función logarítmica de base a > 0 $(a \ne 1)$, $f(x) = \log_a(x)$, a la inversa de la función exponencial.

$$Dom = (0, \infty)$$
 Im = R

Es estrictamente creciente si a > 1 y estrictamente decreciente si 0 < a < 1.

Si a = e, el logaritmo se llama neperiano o natural y se representa $\log(x)$ ó $l_n(x)$. Si a = 10 se llama decimal.

Se verifica:

$$\log_a(x) = \frac{\log(x)}{\log(a)} \qquad \qquad a^x = e^{x \cdot \log(a)} \qquad \qquad \log_a(1) = 0 \qquad \qquad \log_a(x^n) = n \cdot \log_a(x)$$

$$\log_a(x,y) = \log_a(x) + \log_a(y) \qquad \qquad \log_a(x/y) = \log_a(x) - \log_a(y)$$