Cluster Analysis

- One side-effect of discriminant analysis: could draw picture of data (if 1st 2 canonical variables told most of story) and see which individuals "close" to each other.
- Discriminant analysis requires knowledge of groups.
- Without knowledge of groups, use *cluster analysis*: see which individuals close, which groups suggested by data.
- Idea: see how individuals group into "clusters" of nearby individuals.
- Base on "dissimilarities" between individuals.
- Or base on standard deviations and correlations between variables (assesses dissimilarity behind scenes).

One to ten in 11 languages

	English	Norwegian	Danish	Dutch	German
1	one	en	en	een	eins
2	two	to	to	twee	zwei
3	three	tre	tre	drie	drei
4	four	fire	fire	vier	vier
5	five	fem	fem	vijf	funf
6	six	seks	seks	zes	sechs
7	seven	sju	syv	zeven	sieben
8	eight	atte	otte	acht	acht
9	nine	ni	ni	negen	neun
10	ten	ti	ti	tien	zehn

One to ten

	French	Spanish	Italian	Polish	Hungarian	Finnish
1	un	uno	uno	jeden	egy	yksi
2	deux	dos	due	dwa	ketto	kaksi
3	trois	tres	tre	trzy	harom	kolme
4	quatre	cuatro	quattro	cztery	negy	nelja
5	cinq	cinco	cinque	piec	ot	viisi
6	six	seis	sei	szesc	hat	kuusi
7	sept	siete	sette	siedem	het	seitseman
8	huit	ocho	otto	osiem	nyolc	kahdeksan
9	neuf	nueve	nove	dziewiec	kilenc	yhdeksan
10	dix	diez	dieci	dziesiec	tiz	kymmenen

Dissimilarities and languages example

- Can define dissimilarities how you like (whatever makes sense in application).
- Sometimes defining "similarity" makes more sense; can turn this into dissimilarity by subtracting from some maximum.
- Example: numbers 1–10 in various European languages. Define similarity between two languages by counting how often the same number has a name starting with the same letter (and dissimilarity by how often number has names starting with different letter).
- Crude (doesn't even look at most of the words), but see how effective.

Two kinds of cluster analysis

- Looking at process of forming clusters (of similar languages): PROC CLUSTER, hierarchical cluster analysis.
 - Start with each individual in cluster by itself.
 - Join "closest" clusters one by one until all individuals in one cluster.
 - Rule to join clusters: single-linkage, complete linkage, Ward's method, etc.
- Know how many clusters: which division into that many clusters is "best" for individuals? PROC FASTCLUS, K-means clustering.

Hierarchical cluster analysis: joining rules

Join the two clusters that are "closest", but how to define? Single-linkage (from http://www.resample.com)

Complete linkage

Also average linkage (obvious?)

Ward's method example

- Easiest to illustrate how Ward's method works by example.
- Data (one variable): 1, 2, 3, 7, 8, 9, 11, 12, 13. Suppose currently have 3 clusters 1,2,3; 7,8,9; 11,12,13. Measure dissimilarity by absolute difference (throw away minus sign).
- Which 2 of these 3 clusters to join together?
- Single-linkage distances: 7 3 = 4, 11 3 = 8, 11 9 = 2; join 2nd and 3rd.
- Complete-linkage distances: 9 1 = 8, 13 1 = 12, 13 7 = 6; also join 2nd and 3rd.

... continued

Suppose join 1st 2 clusters. Joined cluster has mean (1+2+3+7+8+9)/6=5; new sum of squared distances from mean

$$(1-5)^2 + (2-5)^2 + (3-5)^2 + (7-5)^2 + (8-5)^2 + (9-5)^2 = 58.$$

■ Join 1st and 3rd (obviously bad idea): mean now 7, sum of squared distances

$$(1-7)^2 + (2-7)^2 + (3-7)^2 + (11-7)^2 + (12-7)^2 + (13-7)^2 = 154.$$

- Join 2nd and 3rd: mean now 10, sum of squared distances $(7-10)^2 + (8-10)^2 + (9-10)^2 + (11-10)^2 + (12-10)^2 + (13-10)^2 = 28$.
- Smallest of these three sums is 28, so join 1st and 3rd clusters.
- Much computation, especially early with many clusters. But we don't care!

Ward's method in general

- Work out sum of squared distances/dissimilarities from each observation to centre of its current cluster. Like error SS in ANOVA. Call it ESS.
- At start, each point in own cluster, so ESS 0.
- At each stage, join the two clusters that make resulting ESS smallest.
- Favours joining small clusters.
- Like linkage methods, joins "similar" clusters.

Dissimilarity data in SAS

Dissimilarities for language data (first line for reference, not in data file):

```
        en
        no
        dk
        nl
        de
        fr
        es
        it
        pl
        hu
        sf

        en
        0
        2
        2
        7
        6
        6
        6
        7
        9
        9

        no
        2
        0
        1
        5
        4
        6
        6
        7
        8
        9

        dk
        2
        1
        0
        6
        5
        6
        5
        6
        8
        9

        nl
        7
        5
        6
        0
        5
        9
        9
        9
        10
        8
        9

        de
        6
        4
        5
        5
        0
        7
        7
        7
        8
        9
        9

        fr
        6
        6
        6
        9
        7
        0
        2
        1
        5
        10
        9

        es
        6
        6
        5
        9
        7
        1
        1
        0
        4
        10
        8

        pl
        7
        6
        10
        8
        5</td
```

SAS has special type=distance for data like these:

```
data lang(type=distance);
infile "one-ten.dat";
input lang $ en no dk nl de fr es it pl hu sf;
Variable lang has names of languages; variable names given
on input line must match.
```

Doing a hierarchical cluster analysis

- Here, interested in clustering *process* more than final result, so hierarchical analysis appropriate: PROC CLUSTER.
- Choose single-linkage method for combining clusters (that is, combine clusters whose closest members are closest).
- Draw clustering "tree" from output data set. Trees by default vertical and (try to) use fancy graphics.

```
proc cluster method=single outtree=tree;
  id lang;

proc tree horizontal lineprinter;
  id lang;
```

Output: cluster history

The CLUSTER Procedure Single Linkage Cluster Analysis

Mean Distance Between Observations 6.672727

Cluster History

				Norm	Т
				Min	i
NCL	Clusters	Joined	FREQ	Dist	е
10	no	dk	2	0.1499	Т
9	fr	it	2	0.1499	Т
8	CL9	es	3	0.1499	
7	en	CL10	3	0.2997	
6	CL8	pl	4	0.4496	
5	CL7	de	4	0.5995	
4	CL5	nl	5	0.7493	T
3	CL4	CL6	9	0.7493	
2	CL3	hu	10	1.1989	Т
1	CL2	sf	11	1.1989	

Summary of clustering history

- Join Norwegian and Danish.
- Join French and Italian.
- Join Spanish to the French-Italian cluster.
- Join English to the Norwegian-Danish cluster.
- Then: German and Dutch joined to Germanic languages cluster, Polish to Romance language cluster (!)
- Then join these two clusters together, and join Hungarian and Finnish to them.

Output from PROC TREE (read from right)

The TREE Procedure Single Linkage Cluster Analysis

Minimum Distance Between Clusters

		1.2 1.1 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0
		++
N	en	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
a	011	**************************************
m	no	***************************************
e	110	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
C	مار. مار	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	UK	
0		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
f	ae	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
	_	XXXXXXXXXXXXXXXXXXXXXX
0	nl	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
b		XXXXXXXXXXXXXXXXXXXX
S	fr	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
е		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
r	it	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
V		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
a	es	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
t		XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
i	pl	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
0		X
n	hu	X
		X
	sf	X
	sf	X

Checking our intuition about languages

- Have a Germanic cluster (English, Norwegian, Danish, German, Dutch)
- Have a Romance cluster (French, Italian, Spanish, maybe Polish)
- Have two odd languages (Hungarian, Finnish).
- Corresponds to linguistics/geography pretty well (for such a crude measure).
- Maybe Dutch joins Germanic cluster late. Dutch number words much like German, but often happen not to start with same letter.
- Clustering method: single linkage may join languages that happen to have words starting with same letter, but not otherwise similar. Ward's method joins clusters that are more "alike". Change "method=" on PROC DISCRIM line.

Tree from Ward's method

The TREE Procedure Ward's Minimum Variance Cluster Analysis

Semi-Partial R-Squared

		0.4					0.15			0
	en	+					+ XXXXXXXX			
							XXXXXXXX			
	no						xxxxxxxxx			
	dk		XXXXX	xxxxxxxx	XXXXXXX	xxxxxxx	xxxxxxxx	XXXXXXX	xxxxxxxx	XXXXX
	nl						xxxxxxxx xxxxxxxx		·xxxx	
	111						XXXXXXXXX			• • • • •
1	de				XXXXXXX	XXXXXXXX	XXXXXXXX	XXXXXXX	XXXXX	
a n	hu			XXXXXXX XXXXXXXX	XXXXXXX	XXXXXXXX	XXXXXXXX			
g			XXXXX	xxxxxxxx	XXXXXXX	xxxxxxx	xxxxxxxx			
	sf		XXXXXX	XXXXXXXX	XXXXXXX	XXXXXXXX	XXXXXXXX			
	fr			xxxxxxx	XXXXXXX	xxxxxxx	xxxxxxxx	XXXXXXX	xxxxxxx	XXXXX
	2.2						XXXXXXXXX			
	it						xxxxxxxxx			
	es						xxxxxxxx			XXXX.
	pl						XXXXXXXXX XXXXXXXXX			

Comparing single-linkage and Ward

- In Ward, Dutch and German get joined earlier (before joining to Germanic cluster).
- Also Hungarian and Finnish get combined earlier.
- Consider which clustering method makes sense for data like these.

Another example

Birth, death and infant mortality rates for 96 countries (variables not dissimilarities):

```
24.7 5.7 30.8 Albania
                          12.5 11.9 14.4 Bulgaria
13.4 11.7 11.3 Czechoslovakia
                          12 12.4 7.6 Former E. Germany
11.6 13.4 14.8 Hungary
                          14.3 10.2 16 Poland
13.6 10.7 26.9 Romania
                         14 9 20.2 Yuqoslavia
                       15.2 9.5 13.1 Byelorussia SSR
17.7 10 23 USSR
46.6 18 111 Bolivia
                       28.6 7.9 63 Brazil
                        27.4 6.1 40 Columbia
23.4 5.8 17.1 Chile
                          28.3 7.3
32.9 7.4 63 Ecuador
                                    56 Guyana
```

. . .

- Want to find groups of similar countries (and how many groups, which countries in each group).
- Tree would be unwieldy with 96 countries.
- More automatic way of finding number of clusters?
- Two countries per line: how to read into SAS?

SAS code and issues

```
data birthrate;
  infile "birthrate.dat";
  input birth death infant country $ @@;

proc cluster method=average ccc standard;
  id country;
```

- In DATA step, @@ means "continue reading on same line".
- Using average linkage.
- "CCC" is "cubic clustering criterion", helps us decide how many clusters.
- "standard" means to use standardized data (scaled to have mean 0 and SD 1) so each variable truly comparable.

Clustering history (a little)

96 lines, just show some:

	/ J								
			Clust	er History	7				
								Norm	Т
								RMS	i
NCL	Clusters	Joined	FREQ	SPRSQ	RSQ	ERSQ	CCC	Dist	е
96	Austria	Canada	2	0.0000	1.00			0.0165	
95	Czechosl	Ukrainia	2	0.0000	1.00			0.0175	
20	CL82	CL34	6	0.0016	.967			0.2664	
19	CL32	CL38	7	0.0018	.965	.952	4.10	0.2709	
18	Bolivia	CL29	6	0.0011	.964	.949	4.53	0.2794	
17	CL21	Oman	6	0.0014	.963	.945	4.87	0.3191	
16	CL23	CL26	16	0.0059	.957	.942	3.84	0.3225	
8	CL12	CL74	24	0.0067	.907	.887	2.16	0.4773	
7	Mexico	Korea	2	0.0026	.904	.873	3.27	0.5037	
6	Afghanis	CL13	8	0.0045	.900	.854	4.47	0.5328	
5	CL15	CL10	45	0.0517	.848	.827	1.57	0.5697	
4	CL9	CL8	42	0.1001	.748	.788	-2.3	0.7742	
3	CL5	CL4	87	0.3980	.350	.723	-12	1.0708	
2	CL3	CL7	89	0.0385	.311	.593	-6.8	1.1662	
1	CL2	CL6	97	0.3114	.000	.000	0.00	1.5693	

Look for large values of CCC compared to neighbours, here 17 clusters or 6. We'll try 6.

The 6 best clusters

- Only purpose for running previous analysis was to get good number of clusters.
- 6 clusters obtained by "chopping the tree" may not be best division of countries into 6 clusters.
- Do better by deciding on 6 (or however many) clusters first, then trying for best division of countries into 6 clusters.
- This is where K-means clustering comes in. Choose best division of individuals (countries) into K (6) clusters so that sum of squared distances from individuals to cluster averages made smallest (over all possible divisions into K clusters).
- Use PROC FASTCLUS (which does not have "standard" option so have to standardize first).

Code

```
proc standard mean=0 std=1;

proc fastclus maxclusters=6 out=clust;
  id country;

proc sort data=clust;
  by cluster;

proc print data=clust;
  by cluster;

Sort data by cluster and print sorted data.
```

Cluster means and SDs

Cluster Means

Cluster	birth	death	infant
1	-0.435769031	 -1.143859869	-0.728110805
2	1.204946595	0.697233337	1.016509747
3	1.301924159	2.117634622	1.866220472
4	-0.219972241	2.111657686	-0.454443499
5	-1.173710389	-0.185637473	-0.953436985
6	0.416099253	-0.516998811	0.264875362

Cluster Standard Deviations

Cluster	birth	death	infant
1	0.3560992452	0.3384785179	0.2086886380
2	0.2838078359	0.3886873578	0.4595354494
3	0.2072519523	0.4982442191	0.4178547653
4	0.2870875322	0.7759545638	0.2767385711
5	0.1523496837	0.3449633244	0.1225870222
6	0.3884813426	0.2398267650	0.4102515861

Cluster membership

		C1	uster=1		
		<u> </u>	dbccr - r		
Obs	birth	death	infant	country	DISTANCE
1	-0.33439	-1.10513	-0.52402	Albania	0.17862
2	-0.62967	-0.52417	-0.63491	Argentin	0.53740
3	-0.43036	-1.08361	-0.82189	Chile	0.18142
4	-0.13508	-1.01906	-0.32399	Columbia	0.42671
5	-0.12770	-1.38485	-0.68709	Venezuel	0.46416
6	-0.06126	-1.51395	-0.84581	Bahrain	0.63514
7	-0.51156	-0.97603	-0.98279	Israel	0.34370
8	-0.17937	-1.85822	-0.85451	Kuwait	0.89881
9	-0.47465	-1.51395	-0.62838	United_A	0.51244
10	-0.59276	-0.88996	-0.49793	China	0.27987
11	-1.29403	-1.27727	-1.06106	Hong_Kon	1.01806
12	0.17496	-1.12665	-0.67187	Malaysia	0.58493
13	-0.84374	-1.21271	-1.03062	Singapor	0.61480
14	-0.58538	-0.99754	-0.77189	Sri_Lank	0.21867
15	-0.51156	-0.67479	-0.58490	Thailand	0.36033

Cluster 2

		Cl	uster=2		
0bs	birth	death	infant	country	DISTANCE
16	0.97958	0.14285	1.15669	Iran	0.53619
17	0.95744	1.00353	1.39368	Banglade	0.73436
18	0.89838	1.24022	1.63285	Cambodia	1.07380
19	0.76551	0.85291	1.58936	Nepal	0.88866
20	1.42249	0.16437	0.26306	Botswana	0.75211
21	1.24533	0.80988	0.39352	Congo	0.53986
22	0.75074	1.28325	1.04580	Gabon	0.86684
23	1.11984	0.48713	0.76314	Ghana	0.12230
24	1.31177	0.09982	0.37178	Kenya	0.67632
25	1.09031	0.27196	1.74156	Namibia	0.92807
26	1.42249	1.02505	1.08928	Nigeria	0.58894
27	1.13460	1.06808	1.15451	Sudan	0.60039
28	1.29700	0.35802	1.37194	Swazilan	0.56207
29	1.69562	1.02505	1.04580	Uganda	0.73647
30	1.57013	0.68078	1.11103	Tanzania	0.49353
31	1.20842	0.72381	0.61095	Zaire	0.30705
32	1.61442	0.61623	0.54572	Zambia	0.54965

Cluster 3 and 4

		Cl	uster=3			
Obs	birth	death	infant	country	DISTANCE	
33	1.28224	1.54146	1.21974	Bolivia	0.97448	
34	0.82456	1.69208	2.75477	Afghanis	1.06314	
35	1.32653	2.01483	1.78505	Angola	0.23936	
36	1.42988	2.12242	1.78505	Ethiopia	0.21566	
37	1.34129	2.27303	1.91550	Gambia	0.09648	
38	1.40773	3.04765	1.63285	Malawi	0.91953	
39	1.16413	1.64904	1.87202	Mozambiq	0.56353	
40	1.40035	2.70337	2.15467	Sierra_L	0.56234	
41	1.54060	2.01483	1.67633	Somalia	0.39955	
		Cl	uster=4			
		<u> </u>	abcci i			
Obs	birth	death	infant	country	DISTANCE	
42	-0.01697	2.66034	-0.25876	Mexico	0.61689	
43		1.56297			0.61689	

Cluster 5

44 -1.23498 0.22892 -0.88060 Bulgaria 0.33826 45 -1.16854 0.18589 -0.94800 Czechosl 0.28590 46 -1.27189 0.33651 -1.02845 Former_E 0.45403 47 -1.30142 0.55168 -0.87190 Hungary 0.66583 48 -1.10211 -0.13687 -0.84581 Poland 0.12899 49 -1.15378 -0.02928 -0.60882 Romania 0.34023 50 -1.12425 -0.39507 -0.75449 Yugoslav 0.35379 51 -0.85112 -0.17990 -0.69361 USSR 0.42007 52 -1.03567 -0.28748 -0.90886 Byelorus 0.23981 53 -1.16854 0.16437 -0.91104 Ukrainia 0.26595 54 -0.82898 -0.26597 -0.71753 Uruguay 0.44895 55 -1.27189 -0.05080 -1.02193 Belgium 0.13118 56 -1	Obs	birth	death	infant	country	DISTANCE
46 -1.27189 0.33651 -1.02845 Former_E 0.45403 47 -1.30142 0.55168 -0.87190 Hungary 0.66583 48 -1.10211 -0.13687 -0.84581 Poland 0.12899 49 -1.15378 -0.02928 -0.60882 Romania 0.34023 50 -1.12425 -0.39507 -0.75449 Yugoslav 0.35379 51 -0.85112 -0.17990 -0.69361 USSR 0.42007 52 -1.03567 -0.28748 -0.90886 Byelorus 0.23981 53 -1.16854 0.16437 -0.91104 Ukrainia 0.26595 54 -0.82898 -0.26597 -0.71753 Uruguay 0.44895 55 -1.27189 -0.05080 -1.02193 Belgium 0.13118 56 -1.18331 -0.15838 -1.06759 Finland 0.13997 57 -1.24236 0.22892 -1.03062 Denmark 0.34609 58 -1.	44	-1.23498	0.22892	-0.88060	Bulgaria	0.33826
47 -1.30142 0.55168 -0.87190 Hungary 0.66583 48 -1.10211 -0.13687 -0.84581 Poland 0.12899 49 -1.15378 -0.02928 -0.60882 Romania 0.34023 50 -1.12425 -0.39507 -0.75449 Yugoslav 0.35379 51 -0.85112 -0.17990 -0.69361 USSR 0.42007 52 -1.03567 -0.28748 -0.90886 Byelorus 0.23981 53 -1.16854 0.16437 -0.91104 Ukrainia 0.26595 54 -0.82898 -0.26597 -0.71753 Uruguay 0.44895 55 -1.27189 -0.05080 -1.02193 Belgium 0.13118 56 -1.18331 -0.15838 -1.06759 Finland 0.13997 57 -1.24236 0.22892 -1.03062 Denmark 0.34609 58 -1.15378 -0.30900 -1.03280 Germany 0.24157 60 -1.	45	-1.16854	0.18589	-0.94800	Czechosl	0.28590
48 -1.10211 -0.13687 -0.84581 Poland 0.12899 49 -1.15378 -0.02928 -0.60882 Romania 0.34023 50 -1.12425 -0.39507 -0.75449 Yugoslav 0.35379 51 -0.85112 -0.17990 -0.69361 USSR 0.42007 52 -1.03567 -0.28748 -0.90886 Byelorus 0.23981 53 -1.16854 0.16437 -0.91104 Ukrainia 0.26595 54 -0.82898 -0.26597 -0.71753 Uruguay 0.44895 55 -1.27189 -0.05080 -1.02193 Belgium 0.13118 56 -1.18331 -0.15838 -1.06759 Finland 0.13997 57 -1.24236 0.22892 -1.03062 Denmark 0.34609 58 -1.15378 -0.30900 -1.03280 Germany 0.24157 60 -1.41214 -0.35204 -0.95452 Greece 0.34233 61 -1.	46	-1.27189	0.33651	-1.02845	Former_E	0.45403
49 -1.15378 -0.02928 -0.60882 Romania 0.34023 50 -1.12425 -0.39507 -0.75449 Yugoslav 0.35379 51 -0.85112 -0.17990 -0.69361 USSR 0.42007 52 -1.03567 -0.28748 -0.90886 Byelorus 0.23981 53 -1.16854 0.16437 -0.91104 Ukrainia 0.26595 54 -0.82898 -0.26597 -0.71753 Uruguay 0.44895 54 -0.82898 -0.26597 -0.71753 Uruguay 0.44895 55 -1.27189 -0.05080 -1.02193 Belgium 0.13118 56 -1.18331 -0.15838 -1.06759 Finland 0.13997 57 -1.24236 0.22892 -1.03062 Denmark 0.34609 58 -1.15378 -0.30900 -1.03280 Germany 0.24157 60 -1.41214 -0.35204 -0.95452 Greece 0.34233 61 -1	47	-1.30142	0.55168	-0.87190	Hungary	0.66583
50 -1.12425 -0.39507 -0.75449 Yugoslav 0.35379 51 -0.85112 -0.17990 -0.69361 USSR 0.42007 52 -1.03567 -0.28748 -0.90886 Byelorus 0.23981 53 -1.16854 0.16437 -0.91104 Ukrainia 0.26595 54 -0.82898 -0.26597 -0.71753 Uruguay 0.44895 55 -1.27189 -0.05080 -1.02193 Belgium 0.13118 56 -1.18331 -0.15838 -1.06759 Finland 0.13997 57 -1.24236 0.22892 -1.03062 Denmark 0.34609 58 -1.15378 -0.30900 -1.03280 Germany 0.24157 60 -1.41214 -0.35204 -0.95452 Greece 0.34233 61 -1.04305 -0.37355 -1.03062 Italy 0.38293 63 -1.18331 -0.48114 -1.03932 Netherla 0.39409 64 -1.	48	-1.10211	-0.13687	-0.84581	Poland	0.12899
51 -0.85112 -0.17990 -0.69361 USSR 0.42007 52 -1.03567 -0.28748 -0.90886 Byelorus 0.23981 53 -1.16854 0.16437 -0.91104 Ukrainia 0.26595 54 -0.82898 -0.26597 -0.71753 Uruguay 0.44895 55 -1.27189 -0.05080 -1.02193 Belgium 0.13118 56 -1.18331 -0.15838 -1.06759 Finland 0.13997 57 -1.24236 0.22892 -1.03062 Denmark 0.34609 58 -1.15378 -0.30900 -1.03280 France 0.23045 59 -1.31618 0.07830 -1.03280 Germany 0.24157 60 -1.41214 -0.35204 -0.95452 Greece 0.34233 61 -1.04305 -0.37355 -1.00362 Italy 0.38293 63 -1.18331 -0.48114 -1.03932 Netherla 0.39409 64 -1.102	49	-1.15378	-0.02928	-0.60882	Romania	0.34023
52 -1.03567 -0.28748 -0.90886 Byelorus 0.23981 53 -1.16854 0.16437 -0.91104 Ukrainia 0.26595 54 -0.82898 -0.26597 -0.71753 Uruguay 0.44895 55 -1.27189 -0.05080 -1.02193 Belgium 0.13118 56 -1.18331 -0.15838 -1.06759 Finland 0.13997 57 -1.24236 0.22892 -1.03062 Denmark 0.34609 58 -1.15378 -0.30900 -1.03280 France 0.23045 59 -1.31618 0.07830 -1.03280 Germany 0.24157 60 -1.41214 -0.35204 -0.95452 Greece 0.34233 61 -1.04305 -0.37355 -1.03062 Ireland 0.31979 62 -1.44167 -0.37355 -1.00236 Italy 0.38293 63 -1.18331 -0.48114 -1.03932 Netherla 0.39409 64 -1.	50	-1.12425	-0.39507	-0.75449	Yugoslav	0.35379
53	51	-0.85112	-0.17990	-0.69361	USSR	0.42007
54 -0.82898 -0.26597 -0.71753 Uruguay 0.44895 55 -1.27189 -0.05080 -1.02193 Belgium 0.13118 56 -1.18331 -0.15838 -1.06759 Finland 0.13997 57 -1.24236 0.22892 -1.03062 Denmark 0.34609 58 -1.15378 -0.30900 -1.03280 France 0.23045 59 -1.31618 0.07830 -1.03280 Germany 0.24157 60 -1.41214 -0.35204 -0.95452 Greece 0.34233 61 -1.04305 -0.37355 -1.03062 Ireland 0.31979 62 -1.44167 -0.37355 -1.00236 Italy 0.38293 63 -1.18331 -0.48114 -1.03932 Netherla 0.39409 64 -1.10211 -0.02928 -1.02410 Norway 0.13492 65 -1.27927 -0.28748 -0.90886 Portugal 0.21422 66 -1.3	52	-1.03567	-0.28748	-0.90886	Byelorus	0.23981
55	53	-1.16854	0.16437	-0.91104	Ukrainia	0.26595
56 -1.18331 -0.15838 -1.06759 Finland 0.13997 57 -1.24236 0.22892 -1.03062 Denmark 0.34609 58 -1.15378 -0.30900 -1.03280 France 0.23045 59 -1.31618 0.07830 -1.03280 Germany 0.24157 60 -1.41214 -0.35204 -0.95452 Greece 0.34233 61 -1.04305 -0.37355 -1.03062 Ireland 0.31979 62 -1.44167 -0.37355 -1.00236 Italy 0.38293 63 -1.18331 -0.48114 -1.03932 Netherla 0.39409 64 -1.10211 -0.02928 -1.02410 Norway 0.13492 65 -1.27927 -0.28748 -0.90886 Portugal 0.21422 66 -1.36785 -0.56721 -1.01758 Spain 0.50927 67 -1.08734 0.05679 -1.07193 Sweden 0.22485 68 -1.23498	54	-0.82898	-0.26597	-0.71753	Uruguay	0.44895
57 -1.24236 0.22892 -1.03062 Denmark 0.34609 58 -1.15378 -0.30900 -1.03280 France 0.23045 59 -1.31618 0.07830 -1.03280 Germany 0.24157 60 -1.41214 -0.35204 -0.95452 Greece 0.34233 61 -1.04305 -0.37355 -1.03062 Ireland 0.31979 62 -1.44167 -0.37355 -1.00236 Italy 0.38293 63 -1.18331 -0.48114 -1.03932 Netherla 0.39409 64 -1.10211 -0.02928 -1.02410 Norway 0.13492 65 -1.27927 -0.28748 -0.90886 Portugal 0.21422 66 -1.36785 -0.56721 -1.01758 Spain 0.50927 67 -1.08734 0.05679 -1.07193 Sweden 0.22485 68 -1.23498 -0.28748 -1.03932 Switzerl 0.21892 69 -1.1537	55	-1.27189	-0.05080	-1.02193	Belgium	0.13118
58 -1.15378 -0.30900 -1.03280 France 0.23045 59 -1.31618 0.07830 -1.03280 Germany 0.24157 60 -1.41214 -0.35204 -0.95452 Greece 0.34233 61 -1.04305 -0.37355 -1.03062 Ireland 0.31979 62 -1.44167 -0.37355 -1.00236 Italy 0.38293 63 -1.18331 -0.48114 -1.03932 Netherla 0.39409 64 -1.10211 -0.02928 -1.02410 Norway 0.13492 65 -1.27927 -0.28748 -0.90886 Portugal 0.21422 66 -1.36785 -0.56721 -1.01758 Spain 0.50927 67 -1.08734 0.05679 -1.07193 Sweden 0.22485 68 -1.23498 -0.28748 -1.03932 Switzerl 0.21892 69 -1.15378 0.14285 -1.01105 U.K. 0.25402 70 -1.05781 </td <td>56</td> <td>-1.18331</td> <td>-0.15838</td> <td>-1.06759</td> <td>Finland</td> <td>0.13997</td>	56	-1.18331	-0.15838	-1.06759	Finland	0.13997
59 -1.31618 0.07830 -1.03280 Germany 0.24157 60 -1.41214 -0.35204 -0.95452 Greece 0.34233 61 -1.04305 -0.37355 -1.03062 Ireland 0.31979 62 -1.44167 -0.37355 -1.00236 Italy 0.38293 63 -1.18331 -0.48114 -1.03932 Netherla 0.39409 64 -1.10211 -0.02928 -1.02410 Norway 0.13492 65 -1.27927 -0.28748 -0.90886 Portugal 0.21422 66 -1.36785 -0.56721 -1.01758 Spain 0.50927 67 -1.08734 0.05679 -1.07193 Sweden 0.22485 68 -1.23498 -0.28748 -1.03932 Switzerl 0.21892 69 -1.15378 0.14285 -1.01105 U.K. 0.25402 70 -1.05781 -0.73934 -1.01975 Austria 0.65632 71 -1.42691 -0.88996 -1.09585 Japan 0.84206	57	-1.24236	0.22892	-1.03062	Denmark	0.34609
60 -1.41214 -0.35204 -0.95452 Greece 0.34233 61 -1.04305 -0.37355 -1.03062 Ireland 0.31979 62 -1.44167 -0.37355 -1.00236 Italy 0.38293 63 -1.18331 -0.48114 -1.03932 Netherla 0.39409 64 -1.10211 -0.02928 -1.02410 Norway 0.13492 65 -1.27927 -0.28748 -0.90886 Portugal 0.21422 66 -1.36785 -0.56721 -1.01758 Spain 0.50927 67 -1.08734 0.05679 -1.07193 Sweden 0.22485 68 -1.23498 -0.28748 -1.03932 Switzerl 0.21892 69 -1.15378 0.14285 -1.01105 U.K. 0.25402 70 -1.05781 -0.73934 -1.01975 Austria 0.65632 71 -1.42691 -0.88996 -1.09585 Japan 0.84206	58	-1.15378	-0.30900	-1.03280	France	0.23045
61 -1.04305 -0.37355 -1.03062 Ireland 0.31979 62 -1.44167 -0.37355 -1.00236 Italy 0.38293 63 -1.18331 -0.48114 -1.03932 Netherla 0.39409 64 -1.10211 -0.02928 -1.02410 Norway 0.13492 65 -1.27927 -0.28748 -0.90886 Portugal 0.21422 66 -1.36785 -0.56721 -1.01758 Spain 0.50927 67 -1.08734 0.05679 -1.07193 Sweden 0.22485 68 -1.23498 -0.28748 -1.03932 Switzerl 0.21892 69 -1.15378 0.14285 -1.01105 U.K. 0.25402 70 -1.05781 -0.73934 -1.01975 Austria 0.65632 71 -1.42691 -0.88996 -1.09585 Japan 0.84206	59	-1.31618	0.07830	-1.03280	Germany	0.24157
62 -1.44167 -0.37355 -1.00236 Italy 0.38293 63 -1.18331 -0.48114 -1.03932 Netherla 0.39409 64 -1.10211 -0.02928 -1.02410 Norway 0.13492 65 -1.27927 -0.28748 -0.90886 Portugal 0.21422 66 -1.36785 -0.56721 -1.01758 Spain 0.50927 67 -1.08734 0.05679 -1.07193 Sweden 0.22485 68 -1.23498 -0.28748 -1.03932 Switzerl 0.21892 69 -1.15378 0.14285 -1.01105 U.K. 0.25402 70 -1.05781 -0.73934 -1.01975 Austria 0.65632 71 -1.42691 -0.88996 -1.09585 Japan 0.84206	60	-1.41214	-0.35204	-0.95452	Greece	0.34233
63 -1.18331 -0.48114 -1.03932 Netherla 0.39409 64 -1.10211 -0.02928 -1.02410 Norway 0.13492 65 -1.27927 -0.28748 -0.90886 Portugal 0.21422 66 -1.36785 -0.56721 -1.01758 Spain 0.50927 67 -1.08734 0.05679 -1.07193 Sweden 0.22485 68 -1.23498 -0.28748 -1.03932 Switzerl 0.21892 69 -1.15378 0.14285 -1.01105 U.K. 0.25402 70 -1.05781 -0.73934 -1.01975 Austria 0.65632 71 -1.42691 -0.88996 -1.09585 Japan 0.84206	61	-1.04305	-0.37355	-1.03062	Ireland	0.31979
64 -1.10211 -0.02928 -1.02410 Norway 0.13492 65 -1.27927 -0.28748 -0.90886 Portugal 0.21422 66 -1.36785 -0.56721 -1.01758 Spain 0.50927 67 -1.08734 0.05679 -1.07193 Sweden 0.22485 68 -1.23498 -0.28748 -1.03932 Switzerl 0.21892 69 -1.15378 0.14285 -1.01105 U.K. 0.25402 70 -1.05781 -0.73934 -1.01975 Austria 0.65632 71 -1.42691 -0.88996 -1.09585 Japan 0.84206	62	-1.44167	-0.37355	-1.00236	Italy	0.38293
65 -1.27927 -0.28748 -0.90886 Portugal 0.21422 66 -1.36785 -0.56721 -1.01758 Spain 0.50927 67 -1.08734 0.05679 -1.07193 Sweden 0.22485 68 -1.23498 -0.28748 -1.03932 Switzerl 0.21892 69 -1.15378 0.14285 -1.01105 U.K. 0.25402 70 -1.05781 -0.73934 -1.01975 Austria 0.65632 71 -1.42691 -0.88996 -1.09585 Japan 0.84206	63	-1.18331	-0.48114	-1.03932	Netherla	0.39409
66 -1.36785 -0.56721 -1.01758 Spain 0.50927 67 -1.08734 0.05679 -1.07193 Sweden 0.22485 68 -1.23498 -0.28748 -1.03932 Switzerl 0.21892 69 -1.15378 0.14285 -1.01105 U.K. 0.25402 70 -1.05781 -0.73934 -1.01975 Austria 0.65632 71 -1.42691 -0.88996 -1.09585 Japan 0.84206	64	-1.10211	-0.02928	-1.02410	Norway	0.13492
67 -1.08734 0.05679 -1.07193 Sweden 0.22485 68 -1.23498 -0.28748 -1.03932 Switzerl 0.21892 69 -1.15378 0.14285 -1.01105 U.K. 0.25402 70 -1.05781 -0.73934 -1.01975 Austria 0.65632 71 -1.42691 -0.88996 -1.09585 Japan 0.84206	65	-1.27927	-0.28748	-0.90886	Portugal	0.21422
68 -1.23498 -0.28748 -1.03932 Switzerl 0.21892 69 -1.15378 0.14285 -1.01105 U.K. 0.25402 70 -1.05781 -0.73934 -1.01975 Austria 0.65632 71 -1.42691 -0.88996 -1.09585 Japan 0.84206	66	-1.36785	-0.56721	-1.01758	Spain	0.50927
69 -1.15378 0.14285 -1.01105 U.K. 0.25402 70 -1.05781 -0.73934 -1.01975 Austria 0.65632 71 -1.42691 -0.88996 -1.09585 Japan 0.84206	67	-1.08734	0.05679	-1.07193	Sweden	0.22485
70 -1.05781 -0.73934 -1.01975 Austria 0.65632 71 -1.42691 -0.88996 -1.09585 Japan 0.84206	68	-1.23498	-0.28748	-1.03932	Switzerl	0.21892
71 -1.42691 -0.88996 -1.09585 Japan 0.84206	69	-1.15378	0.14285	-1.01105	U.K.	0.25402
	70	-1.05781	-0.73934	-1.01975	Austria	0.65632
72 -1.08734 -0.76086 -1.03715 Canada 0.67483	71	-1.42691	-0.88996	-1.09585	Japan	0.84206
	72	-1.08734	-0.76086	-1.03715	Canada	0.67483
73 -0.92494 -0.58872 -0.99584 U.S.A. 0.55498	73	-0.92494	-0.58872	-0.99584	U.S.A.	0.55498

Cluster 6

Obs	birth	death	infant	country	DISTANCE
74	-0.04650	-0.63176	0.17609	Brazil	0.47528
75	0.27092	-0.73934	0.17609	Ecuador	0.38853
76	-0.06864	-0.76086	0.02389	Guyana	0.63871
77	0.41118	-0.91148	-0.28050	Paraguay	0.86208
78	0.27092	-0.54569	1.19582	Peru	0.75143
79	0.98696	-0.65327	0.30655	Iraq	0.72179
80	0.71383	-0.95451	-0.23702	Jordan	0.93690
81	0.18234	-0.45962	-0.15005	Lebanon	0.61194
82	1.20842	-0.65327	-0.32399	Oman	1.20413
83	0.95005	-0.69631	0.35003	Saudi_Ar	0.69244
84	-0.00221	-0.52417	0.45875	Turkey	0.31280
85	0.09376	-0.13687	0.78489	India	0.51477
86	-0.04650	-0.30900	0.43700	Indonesi	0.38480
87	0.50714	-0.43810	0.28481	Mongolia	0.26224
88	0.07899	-0.58872	1.14799	Pakistan	0.74443
89	0.29307	-0.67479	-0.21527	Philippi	0.69706
90	0.18972	-0.28748	0.19784	Vietnam	0.32897
91	0.46285	-0.54569	0.41526	Algeria	0.18049
92	0.70645	-0.28748	-0.11961	Egypt	0.71885
93	1.09031	-0.30900	0.58920	Libya	0.81294
94	0.46285	-0.22293	0.58920	Morocco	0.32133
95	0.21187	-0.20142	0.37178	South_Af	0.29044
96	0.13805	-0.76086	-0.06308	Tunisia	0.61470
97	0.92053	-0.11535	0.24132	Zimbabwe	0.73814

Summary of clusters

- Cluster 3 has highest means on all variables; describe as "very poor" countries.
- Cluster 2 also higher than average on all, but not as high as Cluster 3:"poor" but not "very poor".
- Cluster 4 has high death rate but low birth rates and infant mortality rates: "would-be western".
- Cluster 6 has slightly above-average birth and infant mortality rates, and lower-than-average death rate: "third world".
- Cluster 1 has lower-than-average everything, and especially low death rate: "becoming western".
- Cluster 5 also is low on everything, and especially low on birth rate: "western world".
- New variable "distance" shows how far a country is from its cluster average. Small value means "typical of its cluster"; large implies "does not fit any cluster very well". Eg. Afghanistan vs. cluster 3.

Using PROC DISCRIM on clusters

- Summary on previous page took some working out.
- Idea: use output clusters as "grouping" variable for PROC DISCRIM with "can" option: get canonical variables that might shed some light on how clusters differ.
- Code below. Add onto end of previous (uses output data set with cluster membership in it):

```
proc discrim can out=zz;
  class cluster;
  var birth death infant;

proc sort;
  by cluster;

proc print;
  var country birth death infant can1 can2 can3;
  by cluster;
```

Output from discriminant analysis

		The DISC	RIM Proce	edure				
Observations		97	DF To	otal		96		
Varia	ables	3	DF Wi	thin Class	es	91		
Classes		6	DF Be	ses	5			
		Eig	envalues	of Inv(E)*	Н			
		=	CanRsq/(1-CanRsq)				
	Eigenval ⁻	ue Dif	ference	Proporti	on C	umulative		
1	25.203	1 2	20.7304		9	0.8449		
2	4.472	7	4.3181 0.1499			0.9948		
3 0.1546		6		0.005	2	1.0000		
	Test of HO:							
				follow are	zero			
	Likelihood	Appro	ximate					
	Ratio	F	Value	Num DF	Den DF	Pr > F		
1	0.00603979		88.02	15	246.09	<.0001		
2	0.15826107		34.06	8	180	<.0001		
3	0.86611339		4.69	3	91	0.0043		

The canonical variables

3 canonical variables possible, all significant (though eigenvalue for last very small).

	Raw Canonical	l Coefficients	
Variable	Can1	Can2	Can3
birth	2.706578482	-1.095888137	-1.935532844
death	0.683696755	2.777557832	-0.585485143
infant	2.017039026	-0.834166707	2.334460951

- Can1 positive where birth rate and infant mortality rate both high, negative where both low.
- Can2 positive where death rate high, negative where low.
- Can3 positive where infant mortality rate high compared to birth rate, negative where low.

The clusters

	Class Means on	Canonical Variables	
CLUSTER	Can1	Can2	Can3
1	-3.430124271	-2.092217034	-0.186588012
2	5.788318527	-0.231819353	-0.367431160
3	8.735819354	2.898350402	0.596858239
4	-0.068268900	6.485397951	-1.871461306
5	-5.226778630	1.565961865	0.154681580
6	1.306998818	-2.112942540	0.115662540

- 1. Low on everything (Chile).
- 2. High birth and infant mortality, average death rate (Ghana).
- 3. High (or very high) on everything (Gambia).
- 4. High death rate, high birth rate compared to infant mortality rate (Mexico).
- 5. Very low birth and infant mortality, highish death rate (Canada).
- 6. High birth and infant mortality but low death rate (Algeria).

Final example: a hockey league

- An Ontario hockey league has teams in 21 cities. How can we arrange those teams into 4 geographical divisions?
- Distance data in spreadsheet.
- Take out spaces in team names.
- Save as "text/csv", and use text editor to remove all double-quotes.
- Open new file on Mathlab.
- Copy lines with team names and distances to clipboard, paste into Mathlab file.
- PROC FASTCLUS doesn't work on distance data, so go back to PROC CLUSTER.

A map

My code

```
options linesize=75;
data dist(type=distance);
  infile "ontario-road-distances.dat" delimiter=",";
  input team $ Barrie Belleville Brantford Brockville
    Cornwall Hamilton Huntsville Kingston Kitchener
    London NiagaraFalls NorthBay Ottawa OwenSound
    Peterborough Sarnia SaultSteMarie StCatharines
    ThunderBay Toronto Windsor;
proc cluster method=ward outtree=tree;
  id team;
proc tree horizontal lineprinter;
  id team;
Use same team names in same order as data file. Hope tree
output gives some idea of which teams to place in which
divisions.
```

Clustering history

	C	luster History	•	Norm	Т
				RMS	i
NCL	Clusters	Joined	FREQ	Dist	е
20	NiagaraF	StCathar	2	0.0339	
19	Brantfor	Hamilton	2	0.0678	T
18	CL19	Kitchene	3	0.0864	
17	Bellevil	Kingston	2	0.1271	
16	CL18	Toronto	4	0.1489	
15	Brockvil	Cornwall	2	0.161	
14	London	Sarnia	2	0.1695	
13	CL16	CL20	6	0.1742	
12	CL15	Ottawa	3	0.1782	
11	Barrie	OwenSoun	2	0.2034	
10	Huntsvil	NorthBay	2	0.2203	
9	CL17	Peterbor	3	0.2497	
8	CL14	Windsor	3	0.2977	
7	CL11	CL13	8	0.3246	
6	CL9	CL12	6	0.3842	
5	CL7	CL8	11	0.4606	
4	CL6	CL10	8	0.6431	
3	CL5	CL4	19	0.7445	
2	SaultSte	ThunderB	2	1.1694	
1	CL3	CL2	21	1.9625	

The tree

Average Distance Between Clusters

		2	1.8	1.6	1.4	1.2	1	0.8	0.6	0.4	0.2	0
		+	+	+	+	+	+	+	+	+	+	+
	Barrie	XXΣ	XXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXX	XXXXXX	XXXXXX	XXXX	
		XXΣ	XXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXXX	XXXXXX	XXXXXX	XXXX	
	OwenSoun	XXX	XXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXXX	XXXXXX	XXXXXX	XXXX	
		XXX	XXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXX	XXXXXX	XXXXXX		
	Brantfor	XXΣ	XXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX	х
		XXX	XXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX	X
	Hamilton	XXΣ	XXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX	х
		XXΣ	XXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX	
	Kitchene	XXΣ	XXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX	
		XXΣ	XXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXX	
	Toronto	XXΣ	XXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX.	
		XXX	XXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXX	
	NiagaraF	XXX	XXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX	XX.
		XXX	XXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX	XX
	StCathar	XXX	XXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX	XX.
		XXΣ	XXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXXX	XXXXXX	XΧ		
	London	XXΣ	XXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXXX	XXXXXX	XXXXXX	XXXXX	
		XXΣ	(XXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXXX	XXXXXX	XXXXXX	XXXX	
t	Sarnia	XXΣ	(XXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXXX	XXXXXX	XXXXXX	XXXXX	
е		XXΣ	(XXXXXX	XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXXX	XXXXXX	XXXXXX	ζ	
a	Windsor	XXX	XXXXXX	XXXXXX	XXXXXX	XXXXXX	XXXXX	XXXXXXX	XXXXXX	XXXXXX	ζ	
m		XXX	(XXXXXX	(XXXXXX	XXXXXX	XXXXXXX	XXXXX	XXXXXX				

The rest

Splitting into divisions, 1st try

- Sault Ste Marie and Thunder Bay are very distant from everywhere else.
- Clustering history says 4 clusters between distance 0.6431 and 0.7445, so "chop tree" there, to get:
 - Sault Ste Marie
 - Thunder Bay
 - Belleville, Kingston, Peterborough, Brockville, Cornwall, Ottawa, Huntsville, North Bay (8 teams)
 - the rest (11 teams)
- Divisions of 1 team make no sense, so try splitting big divisions and placing 2 northernmost teams somewhere.

2nd try

- Next split at distance 0.6431 splits Huntsville and North Bay from the eastern teams. Place them in a northern division with Sault Ste Marie and Thunder Bay.
- Next split at distance 0.4606 splits London, Sarnia and Windsor off from the big group. That leaves us with this:
 - (north, 4) Huntsville, North Bay, Sault Ste Marie, Thunder Bay
 - (east, 6) Belleville, Kingston, Peterborough, Brockville, Cornwall, Ottawa
 - (west, 3) London, Sarnia, Windsor
 - (south, 8) Niagara Falls, St Catharines, Brantford,
 Hamilton, Kitchener, Toronto, Barrie, Owen Sound
- That's not too bad. Getting the divisions to be the same size is beyond our scope!

Another map

