Задача 2. Полоса препятствий.

На горизонтальной поверхности находится шероховатая полоса шириной d=1,5~m. На эту полосу препятствий наезжает шайба массы $m=0,25~\kappa z$ со скоростью \vec{v}_0 , направленной перпендикулярно границе полосы. Коэффициент трения шайбы при движении по полосе равен $\mu=0,65$. За этой полосой находится гладкая полоса такой же ширины d=1,5~m, сила трения при движении шайбы по ней пренебрежимо мала. Во всех частях задачи вам необходимо рассматривать движение шайбы до конца гладкой полосы (т.е. в интервале $x\in[0,2d]$

 $\begin{array}{c|c}
x \\
2d \\
\hline
d \\
\hline
0
\end{array}$

Ускорение свободного падения считать равным $g = 9.8 \frac{M}{c^2}$

Зададим ось X, направленную перпендикулярно полосе, начало отсчета совпадает с началом шероховатой полосы.

Часть 1. Полоса неподвижна.

- **1.1** При каком минимальном значении модуля начальной скорости шайбы $v_{0 \min}$ шайба преодолеет полосу препятствий?
- **1.2** Запишите закон движения шайбы x(t), считая, что шайба попадает на полосу в момент времени t=0. Рассмотрите два случая скорость шайбы меньше $v_{0 \min}$; скорость шайбы больше $v_{0 \min}$.
- **1.3** Постройте графики законов движения шайбы x(t) при $v_0 = 5.0 \frac{M}{c}$ и при $v_0 = 3.0 \frac{M}{c}$. Точно рассчитайте и укажите параметры (координаты x и времена t) всех характерных точек графиков.

Построения выполните на отдельном бланке. Ось времени оцифруйте самостоятельно.

Часть 2. Движущаяся полоса.

В данной части задачи рассмотрим движение шайбы в том случае, когда полоса движется с постоянной скоростью $u=2,5\frac{M}{c}$, как показано на рисунке. Все остальные параметры «установки» остаются прежними. Введем вторую неподвижную ось координат Y, направленную по краю полосы. Начало отсчета этой оси совпадает с точкой, где шайба въезжает на полосу.

2.1 При какой минимальной начальной скорости $v_{0 \min}$ шайба преодолеет полосу в этом случае?

2.2 На отдельном бланке постройте траектории движения шайбы в неподвижной системе отсчета заданной системе координат (x, y) при начальных скоростях шайбы равных

$$v_0 = 5.0 \frac{M}{c}$$
 и $v_0 = 3.0 \frac{M}{c}$.

При решении этого пункта задачи можете проводить промежуточные численные расчеты. Запись окончательных формул не требуется.

Бланк к задаче 9-2.

Бланк к задаче 9-2.

