

The University of Texas at Austin McCombs School of Business

## **Test 2 Review**

Betsy Greenberg

### What's on Test 2?

Chapters 6-8 and 10, 11

### Skip the following topics:

- Chapter 6 Uniform, Geometric, and Poisson Models Binomial calculations except for mean and standard deviation
- Chapter 7 Continuity correction, Uniform and Exponential Models
- Chapter 8 Stratified, Cluster, Multistage, and Systematic samples
- Chapter 10 don't skip anything
- Chapter 11 Bootstrapping

Mean

$$\mu_X = X_1 P_1 + X_2 P_2 + \dots + X_k P_k$$

Variance

$$\sigma_X^2 = (x_1 - \mu_X)^2 P_1 + (x_2 - \mu_X)^2 P_2 + \dots + (x_k - \mu_X)^2 P_k$$

Standard Deviation

$$\sigma_{\chi} = \sqrt{\sigma_{\chi}^2}$$

### Adding and subtracting random variables:

$$E(X \pm Y) = E(X) \pm E(Y)$$
  
 $Var(X \pm Y) = V(X) + Var(Y)$  (if X and Y are **independent**)

#### Bernoulli

*B* is the number of successes from one trial where *p* is the probability of success E[B] = p and Var(B) = p(1-p)

#### **Binomial**

*X* is the number of successes from *n* independent trials where *p* is the probability of success E[X] = np and Var(X) = np(1-p)

## **Sample Proportion**

 $\hat{p} = \frac{X}{n}$  is the proportion of successes from n independent trials where p is the probability of success

$$E[\hat{p}] = \frac{E[X]}{n} = p \text{ and } Var(\hat{p}) = \frac{Var(X)}{n^2} = \frac{p(1-p)}{n}$$

We did not cover Uniform, Geometric, or Poisson dist

ndom Variables Normal Distribution Sampling Confidence Intervals

#### **Binomial Distributions**

- The total number of observations *n* **is fixed** in advance.
- The outcomes of all *n* observations are statistically **independent**.
- Each observation falls into just one of 2 categories:
   success and failure.
- Same probability of success for each trial

We did not cover calculating Binomial probabilities

## **Normal Distribution**



- 68 95 99.7 rule
- Standardized observations
- Normal distribution calculations:
  - Find areas Forward Calculations
  - Find a value when given an area Backward Calculations

- pnorm(x, mean, standard\_dev) finds areas to the left of x
- qnorm(probability, mean, standard\_dev) finds the value with the specified probability to the left
- Use hist and qqnorm to check if data is normal
- For calculations about the sample mean,  $\bar{x}$ , use  $\frac{s}{\sqrt{n}}$  for standard\_dev

andom Variables Normal Distribution Sampling Confidence Intervals

## Normal approximation for the Binomial



If  $np \ge$  10 and  $n(1-p) \ge$  10 the Binomial distribution is approximately Normal with

$$\mu = np$$

$$\sigma = \sqrt{np(1-p)}$$

We did not cover Uniform or Exponential distributions

tandom Variables Normal Distribution Sampling Confidence Intervals

## Sampling

- Populations
   Parameters describe populations
- Samples
   Statistics describe samples
- We hope that sample data is representative of the population
- Sampling variability sample to sample differences (also called sampling error)
- Non-sampling errors due to voluntary response, non-response, poorly worded questions, etc.

## Big Ideas

- Sample Examine a Part of the whole
- Randomize to avoid bias
- The Sample Size is what matters

Random Variables Normal Distribution Sampling Confidence Intervals

#### Possible causes of Bias

- Voluntary response samples
- Under coverage
- Non-response
- Behavior or appearance of interviewer
- Poorly worded questions
- Interviewer fabrications

## Sampling Distribution of $\hat{p}$



The mean of the sampling distribution is p. The standard deviation is  $\sqrt{\frac{p(1-p)}{n}}$ .

Since p is unknown, we use the standard error instead which is  $\sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$ 

- If  $x_i$  has mean  $\mu$  and standard deviation  $\sigma$ .  $\bar{x} = \sum \frac{x_1 + \dots + x_n}{n}$  has mean  $\mu$
- If the x<sub>i</sub>s are independent, the standard deviation =  $\frac{\sigma}{\sqrt{n}}$
- Since  $\sigma$  is typically unknown, it will be estimated with the sample standard deviation, s
- The standard error is  $\frac{s}{\sqrt{n}}$



#### Checklist for Confidence Intervals:

## Independence:

The sampled values must be independent of each other.

10% condition:

Sample size is less than 10% of the population size.

Randomization:

The sample is a simple random sample from the relevant population.

Sample size condition:

Success\failure condition for proportions
Normal population assumption

### **Specific sample size conditions:**

- Confidence Interval for proportion: Both  $n\hat{p}$  and  $n(1 - \hat{p})$  are at least 10.
- CI for means:
   n is greater than both 10(skewness)<sup>2</sup> and 10|kurtosis-3|

library(moments)
skewness, kurtosis

#### **Confidence Intervals**

A confidence interval has the form:

Estimate  $\pm$  Margin of Error

Estimate  $\pm (z^* \text{ or } t^*) \times \text{Standard Error (SE)}$ 

#### **Confidence Intervals**

- The confidence level *C*, shows how confident we are that the procedure will catch the true population parameter.
- The procedures give confidence intervals that C% of the time will include the true population parameter
- Type of Problems
  - Proportions
  - Means

## **Confidence Intervals for:** Population Proportion, *p*

- Estimate:  $\hat{p} = \frac{X}{n} = \frac{\text{Number of successes}}{\text{number of trials}}$
- Standard Error:  $SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
- Critical Value: z\*
- Margin of Error:  $z^* SE = z^* \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$

## Finding $\pm z^*$ for 95% confidence



qnorm(0.025) and qnorm(0.975)

## **Confidence Intervals for:** Population Mean

- Estimate:  $\bar{x}$  (mean)
- Standard Error:  $SE = \frac{s}{\sqrt{n}}$ where  $s = \sqrt{\frac{\sum (x - \overline{x})^2}{n-1}}$  (sd)
- Degrees of freedom: k = n 1
- Critical Value:  $t^*$  for a distribution t(k)
- Margin of Error:  $t^* SE = t^* \frac{S}{\sqrt{n}}$

## Finding $\pm t^*$ for 95% confidence and df = n - 1



qt(0.025, df) and qt(0.975, df)

#### R functions

ci.prop for confidence interval for poroportion

t.test for inference for means

(ci.prop function and data will be given in an .RData file)

## Determining Sample Size

Since the margin of error is  $z^* \sqrt{p(1-p)/n}$ ,

we can find the sample size using

$$n = \left(\frac{z^*}{\text{Margin of Error}}\right)^2 p(1-p)$$

Obtain an estimate for p using an earlier sample (since we have to choose *n* before collecting data)

Use p = 0.5 to be conservative

ALWAYS ROUND UP for sample size calculations

# Margin of Error = $t^* \frac{s}{\sqrt{n}}$

Determining Sample Size

$$n = \left(\frac{t^*s}{\text{Margin of Error}}\right)^2$$

For a study about  $\mu$  with 95% coverage, find the sample size using

$$n \approx \left(\frac{2s}{\text{Margin of Error}}\right)^2$$