Clustering

Victor Kitov

v v kit ov@yandex ru

Table of Contents

- Clustering introduction
- 2 K-means
- 3 Hierarchical clustering

Aim of clustering

- Clustering is partitioning of objects into groups so that:
 - inside groups objects are very similar
 - objects from different groups are dissimilar
- Unsupervised learning
- No definition of "similar"
 - different algorithms use different formalizations of similarity

Clustering demo

Applications of clustering

- data summarization
 - feature vector is replaced by cluster number
- feature extraction
 - cluster number, cluster average target, distance to native cluster center / other clusters
- customer segmentation
 - e.g. for recommender service
- community detection in networks
 - nodes people, similarity number of connections
- outlier detection
 - outliers do not belong any cluster

Clustering algorithms comparison

We can compare clustering algorithms in terms of:

- computational complexity
- do they build flat or hierarchical clustering?
- can the shape of clustering be arbitrary?
 - if not is it symmetrical, can clusters be of different size?
- can clusters vary in density of contained objects?
- robustness to outliers

Table of Contents

- Clustering introduction
- 2 K-means
- Hierarchical clustering

K-means algorithm

- Suppose we want to cluster our data into K clusters.
- Cluster i has a center μ_i , i=1,2,...K.
- Consider the task of minimizing

$$\sum_{n=1}^{N} \|x_n - \mu_{z_n}\|_2^2 \to \min_{z_1, \dots z_N, \mu_1, \dots \mu_K}$$
 (1)

where $z_i \in \{1, 2, ...K\}$ is cluster assignment for x_i and $\mu_1, ...\mu_K$ are cluster centers.

- Direct optimization requires full search and is impractical.
- K-means is a suboptimal algorithm for optimizing (1).

K-means algorithm

```
Initialize \mu_j, j=1,2,...K.
WHILE not converged:
     FOR i = 1, 2, ...N:
           find cluster number of x_i:
           z_i = \arg\min_{i \in \{1,2,...K\}} ||x_i - \mu_i||_2^2
     FOR j = 1, 2, ...K:
           \mu_{j} = \frac{1}{\sum_{n=1}^{N} \mathbb{I}[z_{n}=i]} \sum_{n=1}^{N} \mathbb{I}[z_{n}=j] x_{i}
```

K-means properties

Convergence conditions:

- maximum number of iterations reached
- cluster assignments $z_1, ... z_N$ stop to change (exact)
- $\{\mu_i\}_{i=1}^K$ stop changing significantly (approximate)

Initialization:

• typically $\{\mu_i\}_{i=1}^K$ are initialized to randomly chosen training objects

K-means properties

Optimality:

- criteria is non-convex
- solution depends on starting conditions
- may restart several times from different initializations and select solution giving minimal value of (1).

Complexity: O(NDKI)

- K is the number of clusters
- I is the number of iterations.
 - usually few iterations are enough for convergence.

Gotchas

• K-means assumes that clusters are convex:

- It always finds clusters even if none actually exist
 - need to control cluster quality metrics

K-means for non-convex clusters

K-means for data without clusters

Table of Contents

- Clustering introduction
- 2 K-means
- 4 Hierarchical clustering
 - Top-down hierarchical clustering
 - Bottom-up hierarchical clustering

Motivation

- Number of clusters K not known a priory.
- Clustering is usually not flat, but hierarchical with different levels of granularity:
 - sites in the Internet
 - books in library
 - animals in nature

Hierarchical clustering

Hierarchical clustering may be:

- top-down
 - hierarchical K-means
- bottom-up
 - agglomerative clustering

Clustering - Victor Kitov
Hierarchical clustering
Top-down hierarchical clustering

- 3 Hierarchical clustering
 - Top-down hierarchical clustering
 - Bottom-up hierarchical clustering

Clustering - Victor Kitov
Hierarchical clustering
Top-down hierarchical clustering

Algorithm

INPUT:

data D, flat clustering algorithm A leaf selection criterion, termination criterion

Initialize tree ${\cal T}$ to root, containing all data

REPEAT

based on selection criterion, select leaf L using algorithm A split L into children $L_1,...L_K$ add $L_1,...L_K$ as child nodes to tree T **UNTIL** termination criterion

Comments

- Leaf selection criterion:
 - split leaf most close to the root
 - result: balanced tree by height
 - split leaf with maximum elements
 - result: balanced tree by cluster size
- Building hierarchy top-down is more natural for a human

Clustering - Victor Kitov
Hierarchical clustering
Bottom-up hierarchical clustering

- 4 Hierarchical clustering
 - Top-down hierarchical clustering
 - Bottom-up hierarchical clustering

Bottom-up clustering demo

Algorithm

initialize distance matrix $M \in \mathbb{R}^{N \times N}$ between singleton clusters $\{x_1\}, ... \{x_N\}$

REPEAT:

- 1) pick closest pair of clusters i and j
- 2) merge clusters i and j
- 3) delete rows/columns i,j from M and add new row/column for merged cluster

UNTIL 1 cluster is left

RETURN hiearchical clustering of objects

- Early stopping is possible when:
 - K clusters are left
 - distance between most close clusters ≥threshold

Agglomerative clustering - distances

- Consider clusters $A = \{x_{i_1}, x_{i_2}, ...\}$ and $B = \{x_{j_1}, x_{j_2}, ...\}$.
- We can define the following natural distances
 - single link (nearest neighbour)

$$\rho(A,B) = \min_{a \in A, b \in B} \rho(a,b)$$

complete-link (furthest neighbour)

$$\rho(A,B) = \max_{a \in A, b \in B} \rho(a,b)$$

group average link

$$\rho(A,B) = \operatorname{mean}_{a \in A, b \in B} \rho(a,b)$$

closest centroid

$$\rho(A,B)=\rho(\mu_A,\mu_B)$$
 where $\mu_U=\frac{1}{|U|}\sum_{x\in U}x$ or $m_U=\textit{median}_{x\in U}\{x\}$