Chapter: 17. PERIMETER AND AREA OF PLANE FIGURES

Exercise: 17A

Question: 1

Find the area of

Solution:

Given: Base = 24 cm

Height = 14.5 cm

We know that,

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

$$= 1/2 \times 24 \text{ cm} \times 14.5 \text{ cm}$$

$$= 174 \text{ cm}^2$$

Question: 2

Find the area of

Solution:

Given: Side 1 = a (let) = 42 cm

Side
$$2 = b$$
 (let) = 34 cm

Side
$$3 = c$$
 (let) = 20 cm

We know that,

Area of a scalene triangle = $\sqrt{(s(s-a) (s-b) (s-c))}$

Where,
$$s = \frac{a+b+c}{2}$$

$$s \, = \frac{42 \, + \, 34 \, + \, 20}{2} cm$$

$$\Rightarrow$$
 s = $\frac{96}{2}$ cm

 \Rightarrow s = 48 cm

Now,

Area of a scalene triangle = $\sqrt{(48 \text{cm} \times (48-42) \text{cm} \times (48-34) \text{cm} \times (48-20) \text{cm})}$

 $= \sqrt{(48\text{cm} \times 6\text{cm} \times 14\text{cm} \times 28\text{cm})}$

 $= \sqrt{112896} \text{ cm}^2$

 $= 336 \text{ cm}^2$

Clearly,

Length of longest side = 42 cm

Now,

We know that,

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

$$\Rightarrow$$
 336 cm² = 1/2 × 42 cm × Height

$$\Rightarrow$$
 336 cm² = 21 cm × Height

$$\Rightarrow$$
 Height = $\frac{336 \text{ cm}^2}{21 \text{ cm}}$

 \Rightarrow Height = 16 cm

Question: 3

Find the area of

Solution:

Given: Side 1 = a (let) = 18 cm

Side
$$2 = b$$
 (let) $= 24$ cm

Side
$$3 = c$$
 (let) = 30 cm

We know that,

Area of a scalene triangle = $\sqrt{(s(s-a)(s-b)(s-c))}$

Where,
$$s = \frac{a+b+c}{2}$$

$$s\,=\,\frac{18\,+\,24\,+\,30}{2}\,cm$$

$$\Rightarrow s = \frac{72}{2} cm$$

$$\Rightarrow$$
 s = 36 cm

Now,

Area of a scalene triangle = $\sqrt{(36\text{cm} \times (36\text{-}18)\text{cm} \times (36\text{-}24)\text{cm} \times (36\text{-}30)\text{cm})}$

$$= \sqrt{(36\text{cm} \times 18\text{cm} \times 12\text{cm} \times 6\text{cm})}$$

 $= \sqrt{46656} \text{ cm}^2$

 $= 216 \text{ cm}^2$

Clearly,

Length of smallest side = 18 cm

Now,

We know that,

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

$$\Rightarrow$$
 216 cm²= 1/2 × 18 cm × Height

$$\Rightarrow$$
 216 cm²= 9 cm × Height

$$\Rightarrow \text{ Height} = \frac{216 \text{ cm}^2}{9 \text{ cm}}$$

$$\Rightarrow$$
 Height = 24 cm

Question: 4

The sides of a tr

Solution:

Given: Ratio of Sides = 5:12:13

Perimeter = 150 cm

Let the sides be,

a = 5x cm

b = 12x cm

c = 13x cm

We know that,

Perimeter of a triangle = a + b + c

$$\Rightarrow 150 \text{ cm} = 5x \text{ cm} + 12x \text{ cm} + 13x \text{ cm}$$

$$\Rightarrow$$
 150 cm = 30x cm

$$\Rightarrow x = \frac{150 \text{ cm}}{30 \text{ cm}}$$

$$\Rightarrow x = 5$$

Therefore,

$$a = 5x cm = 5 \times 5 cm = 25 cm$$

$$b = 12x cm = 12 \times 5 cm = 60 cm$$

$$c = 13x cm = 13 \times 5 cm = 65 cm$$

Now,

We know that,

Area of a scalene triangle = $\sqrt{(s(s-a)(s-b)(s-c))}$

Where,
$$s = \frac{a+b+c}{2}$$

$$s \, = \frac{25 \, + \, 60 \, + \, 65}{2} cm$$

$$\Rightarrow \ s \, = \, \frac{150}{2} cm$$

$$\Rightarrow$$
 s = 75cm

Now,

Area of a scalene triangle = $\sqrt{(75 \text{cm} \times (75-25) \text{cm} \times (75-60) \text{cm} \times (75-65) \text{cm})}$

$$= \sqrt{(75 \text{cm} \times 50 \text{cm} \times 15 \text{cm} \times 10 \text{cm})}$$

$$= \sqrt{562500} \text{ cm}^2$$

$$= 750 \text{ cm}^2$$

Question: 5

The perimeter of

Solution:

Given: Ratio of Sides = 25:17:12

Perimeter = 540 m

Let the sides be,

$$a = 25x m$$

$$b = 17x m$$

$$c = 12x m$$

We know that,

Perimeter of a triangle = a + b + c

$$\Rightarrow$$
 540 m = 25x m + 17x m + 12x m

$$\Rightarrow$$
 540 m = 54x m

$$\Rightarrow x = \frac{540 \text{ m}}{54 \text{ m}}$$

$$\Rightarrow x = 10$$

Therefore,

$$a = 25x m = 25 \times 10 m = 250 m$$

$$b = 17x m = 17 \times 10 m = 170 m$$

$$c = 12x m = 12 \times 10 m = 120 m$$

Now,

We know that,

Area of a scalene triangle = $\sqrt{(s(s-a)(s-b)(s-c))}$

Where,
$$s = \frac{a+b+c}{2}$$

$$s \, = \frac{250 \, + \, 170 \, + \, 120}{2} \, m$$

$$\Rightarrow \ s \, = \, \frac{540}{2} m$$

$$\Rightarrow$$
 s = 270 m

Now,

Area of a scalene triangle =

 $\sqrt{(270 \text{m} \times (270-250) \text{m} \times (270-170) \text{m} \times (270-120) \text{m})} = \sqrt{(270 \text{m} \times 20 \text{m} \times 10 \text{m} \times 150 \text{cm})}$

 $= \sqrt{81000000} \text{ m}^2$

 $= 9000 \text{ m}^2$

Now,

The cost of ploughing $100 \text{ m}^2 = \text{Rs } 40$

Therefore, The cost of ploughing 1 m² = Rs $\frac{40}{100}$

Therefore, The cost of ploughing 9000 m² = Rs $\frac{40}{100}$ × 9000

= Rs 3600

Question: 6

The perimeter of

Solution:

Given: Perimeter = 40 cm

Hypotenuse = 17 cm

The diagram is given as:

Let the sides be a, b and c(hypotenuse).

Therefore, a + b + c = 40 cm

$$\Rightarrow$$
 a + b + 17 = 40 cm

$$\Rightarrow$$
 a + b = 40 - 17 cm

$$\Rightarrow$$
 a + b = 23 cm

$$\Rightarrow$$
 a = (23-b) cm

Now we know that,

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

$$\Rightarrow$$
 a² + b² = c²

$$\Rightarrow (23-b)^2 + b^2 = 17^2$$

$$\Rightarrow 23^2 + b^2 - 46b + b^2 = 289$$

$$\Rightarrow 529 + b^2 - 46b + b^2 = 289$$

$$\Rightarrow 2b^2 - 46b + 240 = 0$$

$$\Rightarrow$$
 b²-23b + 120 = 0

$$\Rightarrow$$
 b²-8b-15b + 120 = 0

$$\Rightarrow$$
 b(b-8)-15(b-8) = 0

$$\Rightarrow$$
 (b-8)(b-15) = 0

This gives us two equations,

$$i. b-8 = 0$$

$$\Rightarrow$$
 b = 8

ii.
$$b-15 = 0$$

$$\Rightarrow$$
 b = 15

Let b = 8 cm

$$\Rightarrow$$
 a = (23-b) cm

$$\Rightarrow$$
 a = (23-8) cm

$$\Rightarrow$$
 a = 15 cm

Now,

Area of triangle = $1/2 \times base \times height$

$$= 1/2 \times 8 \times 15$$

$$= 60 \text{ cm}^2$$

Question: 7

The difference be

Solution:

Let the sides at right angles be a and b

And, the third side be c.

Given: a-b = 7 cm

Area of triangle = 60 cm^2

Now, since a-b = 7

$$\Rightarrow$$
 a = b + 7

Now we know that,

Area of triangle = $1/2 \times base \times height$

$$\Rightarrow 60 = 1/2 \times b \times (b + 7)$$

$$\Rightarrow$$
 60 × 2 = b² + 7b

$$\Rightarrow b^2 + 7b = 120$$

$$\Rightarrow$$
 b² + 7b - 120 = 0

$$\Rightarrow$$
 b² + 15b - 8b - 120 = 0

$$\Rightarrow$$
 b(b + 15) - 8(b + 15) = 0

$$\Rightarrow$$
 (b + 15)(b-8) = 0

This gives us two equations,

i.
$$b - 8 = 0$$

$$\Rightarrow$$
 b = 8

ii.
$$b + 15 = 0$$

$$\Rightarrow$$
 b = -15

Since, the side of the triangle cannot be negative

Therefore, b = 8 cm

$$\Rightarrow$$
 a = (b + 7) cm

$$\Rightarrow$$
 a = $(8 + 7)$ cm

$$\Rightarrow$$
 a = 15 cm

Now we know that,

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

$$\Rightarrow$$
 a² + b² = c²

$$\Rightarrow 15^2 + 8^2 = c^2$$

$$\Rightarrow$$
 c² = 225 + 64

$$\Rightarrow$$
 c² = 289

$$\Rightarrow$$
 c = 17

Now,

Perimeter of triangle = a + b + c

- \Rightarrow Perimeter of triangle = 15 + 8 + 17
- ⇒ Perimeter of triangle = 40 cm

Question: 8

The lengths of th

Solution:

Let the sides at right angles be a and b

And, the third side be c.

Given: a-b = 2 cm

Area of triangle = 24 cm^2

Now, since a-b=2

$$\Rightarrow$$
 a = b + 2

Now we know that,

Area of triangle = $1/2 \times base \times height$

$$\Rightarrow$$
 24 = 1/2 × b × (b + 2)

$$\Rightarrow$$
 24 × 2 = b² + 2b

$$\Rightarrow b^2 + 2b = 48$$

$$\Rightarrow b^2 + 2b-48 = 0$$

$$\Rightarrow$$
 b² + 8b-6b-48 = 0

$$\Rightarrow$$
 b(b + 8)-6(b + 8) = 0

$$\Rightarrow$$
 (b + 8)(b-6) = 0

This gives us two equations,

i.
$$b + 8 = 0$$

$$\Rightarrow$$
 b = -8

ii.
$$b-6 = 0$$

$$\Rightarrow$$
 b = 6

Since, the side of the triangle cannot be negative

Therefore, b = 6 cm

$$\Rightarrow$$
 a = (b + 2) cm

$$\Rightarrow$$
 a = $(6 + 2)$ cm

$$\Rightarrow$$
 a = 8 cm

Now we know that,

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

$$\Rightarrow$$
 a² + b² = c²

$$\Rightarrow 8^2 + 6^2 = c^2$$

$$\Rightarrow c^2 = 64 + 36$$

$$\Rightarrow$$
 c² = 100

$$\Rightarrow$$
 c = 10

Now,

Perimeter of triangle = a + b + c

 \Rightarrow Perimeter of triangle = 8 + 6 + 10

 \Rightarrow Perimeter of triangle = 24 cm

Question: 9

Each side of an e

Solution:

Given: Side of an equilateral triangle = 10 cm

(i) Area of equilateral triangle = $\frac{\sqrt{3}}{4} \times \text{side}^2$

$$=\frac{\sqrt{3}}{4}\times\,10^2$$

$$=\frac{\sqrt{3}}{4}\times 100$$

$$=\frac{100\sqrt{3}}{4}$$

$$= 25\sqrt{3}$$

$$= 25 \times 1.732$$

$$= 43.3 \text{ cm}^2$$

(ii) Height of equilateral triangle = $\frac{\sqrt{3}}{2} \times a$

$$=\frac{\sqrt{3}}{2}\times 10$$

$$=\frac{10\sqrt{3}}{2}$$

$$= 5\sqrt{3}$$

$$= 5 \times 1.732$$

$$= 8.66 \, \text{cm}^2$$

Question: 10

The height of an

Solution:

Given: Height of an equilateral triangle = 6 cm

Let sides of equilateral triangle be a cm

We know that,

Height of equilateral triangle = $\frac{\sqrt{3}}{2} \times a$

$$\Rightarrow$$
 6 = $\frac{\sqrt{3}}{2}$ × a

$$\Rightarrow$$
 6 × 2 = $\sqrt{3}$ × a

$$\Rightarrow 12 = a\sqrt{3}$$

$$\Rightarrow a = \frac{12}{\sqrt{3}}$$

$$\Rightarrow a = \frac{12}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}}$$

$$\Rightarrow a = \frac{12\sqrt{3}}{3}$$

$$\Rightarrow$$
 a = 4 × 1.73

$$= 6.92 \text{ cm}^2$$

Now,

Area of equilateral triangle = $\frac{\sqrt{3}}{4} \times side^2$

$$=\frac{\sqrt{3}}{4}\times 6.92^2$$

$$=\frac{\sqrt{3}}{4} \times 47.88$$

$$= 11.98\sqrt{3} \text{ cm}^2$$

$$= 20.76 \text{ cm}^2$$

Question: 11

If the area of an

Solution:

Given: Area of an equilateral triangle = $36\sqrt{3}$ cm²

We know that,

Area of equilateral triangle = $\frac{\sqrt{3}}{4} \times side^2$

$$\Rightarrow 36\sqrt{3} = \frac{\sqrt{3}}{4} \times side^2$$

$$\Rightarrow$$
 side² = $36\sqrt{3} \times \frac{4}{\sqrt{3}}$

$$\Rightarrow$$
 side² = 36 × 4

$$\Rightarrow$$
 side = 12 cm

Now,

Perimeter of equilateral triangle = $3 \times \text{side}$

$$= 3 \times 12 \text{ cm}$$

= 36 cm

Question: 12

If the area of an

Solution:

Given: Area of an equilateral triangle = $81\sqrt{3} \text{ cm}^2$

We know that,

Area of equilateral triangle = $\frac{\sqrt{3}}{4} \times \text{side}^2$

$$\Rightarrow 81\sqrt{3} = \frac{\sqrt{3}}{4} \times \text{side}^2$$

$$\Rightarrow$$
 side² = $81\sqrt{3} \times \frac{4}{\sqrt{3}}$

$$\Rightarrow$$
 side² = 81 × 4

$$\Rightarrow$$
 side = 18 cm

Now,

Height of equilateral triangle = $\frac{\sqrt{3}}{2} \times \text{side}$

$$=\frac{\sqrt{3}}{2}\times 18$$

$$= 9\sqrt{3}$$
 cm

Question: 13

The base of a rig

Solution:

Given: Base = 48 cm

Hypotenuse = 50 cm

We know that,

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

 \Rightarrow 48² + Perpendicular² = 50²

 \Rightarrow Perpendicular² = $50^2 - 48^2$

 \Rightarrow Perpendicular² = 2500-2304

 \Rightarrow Perpendicular² = 196 cm²

⇒ Perpendicular = 14 cm

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

 $= 1/2 \times 48 \text{ cm} \times 14 \text{ cm}$

 $= 336 \text{ cm}^2$

Question: 14

The hypotenuse of

Solution:

Given: Base = 60 cm

Hypotenuse = 65 cm

We know that,

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

 \Rightarrow 60² + Perpendicular² = 65²

 \Rightarrow Perpendicular² = 65² - 60²

 \Rightarrow Perpendicular² = 4225-3600

 \Rightarrow Perpendicular² = 625 cm²

 \Rightarrow Perpendicular = 25 cm

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

 $= 1/2 \times 60 \text{ cm} \times 25 \text{ cm}$

 $= 750 \text{ cm}^2$

Question: 15

Find the area of

Solution:

Given: Radius of circle = 8 cm

Altitude = 6 cm

Since, in a right-angled triangle the hypotenuse $% \left\{ \mathbf{r}^{\prime}\right\} =\mathbf{r}^{\prime}$

is the diameter of circumcircle.

Therefore,

 $Hypotenuse = 2 \times Radius$

 $= 2 \times 8 \text{ cm}$

= 16 cm

Now, we consider the hypotenuse as base and the altitude to the hypotenuse as height

So,

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

 $= 1/2 \times 16 \text{ cm} \times 6 \text{ cm}$

 $= 1/2 \times 96 \text{ cm}^2$

 $= 48 \text{ cm}^2$

Question: 16

Find the length o

Solution:

Given: Area = 200 cm

Let the equal sides be a.

We know that,

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

$$\Rightarrow$$
 200 = 1/2 × a × a

$$\Rightarrow 200 = 1/2 \times a^2$$

$$\Rightarrow$$
 a² = 200 × 2

$$\Rightarrow$$
 a² = 400

$$\Rightarrow$$
 a = 20 cm

Now,

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

$$\Rightarrow$$
 20² + 20² = Hypotenuse²

$$\Rightarrow$$
 Hypotenuse² = 400 + 400

$$\Rightarrow$$
 Hypotenuse² = 800 cm²

Now,

Perimeter of triangle = 20 + 20 + 28.2 cm

$$= 68.2 \text{ cm}$$

Question: 17

The base of an is

Solution:

Given: Area of isosceles triangle = 360 cm^2

Base of triangle = 80 cm

Let a be the equal sides of the triangle

We know that,

Area of isosceles triangle = $1/4 \times b\sqrt{4a^2 - b^2}$

$$\Rightarrow 360 = 1/4 \times 80\sqrt{(4a^2 - 80^2)}$$

$$\Rightarrow 360 = 1/4 \times 80\sqrt{4a^2 - 6400}$$

$$\Rightarrow 360 = 20\sqrt{4(a^2 - 1600)}$$

$$\Rightarrow 360 = 20 \times 2\sqrt{(a^2 - 1600)}$$

$$\Rightarrow \frac{360}{20 \times 2} = \sqrt{a^2 - 1600}$$

$$\Rightarrow 9 = \sqrt{(a^2 - 1600)}$$

On squaring both sides we get,

$$\Rightarrow 81 = a^2 - 1600$$

$$\Rightarrow a^2 = 1600 + 81 = 1681$$

Now,

Perimeter of triangle = 41 cm + 41 cm + 80 cm

$$= 162 \text{ cm}$$

 \Rightarrow a = 41 cm

Question: 18

Each of the equal

Solution:

Let height of triangle = h cm

Given: Base of the triangle (b) = 12 cm

Equal sides (a) = h + 2 cm

Now,

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

And,

Area of isosceles triangle = $1/4 \times b\sqrt{(4a^2 - b^2)}$

$$\Rightarrow$$
 1/2 × Base × Height = 1/4 × b $\sqrt{(4a^2 - b^2)}$

$$\Rightarrow 1/2 \times 12 \times h = 1/4 \times 12\sqrt{[4(h+2)^2 - 12^2]}$$

$$\Rightarrow$$
 6h = $3\sqrt{4h^2 + 16h + 16-144}$

$$\Rightarrow$$
 2h = $\sqrt{(4h^2 + 16h-128)}$

On squaring both sides we get,

$$\Rightarrow 4h^2 = 4h^2 + 16h - 128$$

$$\Rightarrow 16h - 128 = 0$$

$$\Rightarrow 16h = 128$$

$$\Rightarrow h = \frac{128}{16}$$

$$\Rightarrow$$
 h = 8 cm

Now,

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

$$= 1/2 \times 12 \text{ cm} \times 8 \text{ cm}$$

$$= 1/2 \times 96 \text{ cm}^2$$

$$= 48 \text{ cm}^2$$

Question: 19

Find the area and

Solution:

Given: Equal sides (i.e., base and perpendicular) = 10 cm

We know that,

Area of a triangle = $1/2 \times \text{Base} \times \text{Height}$

Area of a triangle = $1/2 \times 10 \text{ cm} \times 10 \text{ cm}$

Area of a triangle = 50 cm^2

Now,

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

$$\Rightarrow 10^2 + 10^2 = \text{Hypotenuse}^2$$

$$\Rightarrow$$
 Hypotenuse² = 100 + 100

$$\Rightarrow$$
 Hypotenuse² = 200 cm²

⇒ Hypotenuse=
$$10\sqrt{2}$$
 cm

Now,

Perimeter of triangle = 10 + 10 + 14.1 cm

= 24.1 cm

Question: 20

In the given figu

Solution:

Given:
$$AB = BC = AC = a (let) = 10 cm$$

$$BD = 8 \text{ cm}$$

Now,

Area of an equilateral triangle ($\triangle ABC$) = $\frac{\sqrt{3}}{4} \times a^2$

$$=\frac{\sqrt{3}}{4}\times 10^2$$

$$= 25\sqrt{3} \text{ cm}^2$$

$$= 43.3 \text{ cm}^2$$

Now, in ΔDBC

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

$$\Rightarrow$$
 DC² + DB² = BC²

$$\Rightarrow$$
 DC² = BC²-BD²

$$\Rightarrow$$
 DC² = 10²-8²

$$\Rightarrow$$
 DC² = 100-64

$$\Rightarrow$$
 DC² = 36 cm²

$$\Rightarrow$$
 DC = 6 cm

Now,

Area of a triangle (ΔDBC) = $1/2 \times Base \times Height$

$$= 1/2 \times DC \times BC$$

$$= 1/2 \times 6 \text{ cm} \times 8 \text{ cm}$$

$$= 1/2 \times 48 \text{ cm}^2$$

$$= 24 \text{ cm}^2$$

Now,

Area of shaded region = $\triangle ABC - \triangle DBC$

$$= 43.3 \text{ cm}^2 - 24 \text{ cm}^2$$

$$= 19.3 \text{ cm}^2$$

Exercise: 17B

Question: 1

The perimeter of

Solution:

Given: Perimeter = 80 m

Breadth = 16 m

We know that,

Perimeter of a rectangle = 2(length + breadth)

$$\Rightarrow$$
 80 m = 2(length + 16 m)

$$\Rightarrow \frac{80}{2} m = length + 16 m$$

$$\Rightarrow$$
 40m = length + 16 m

$$\Rightarrow$$
 Length = 40 m - 16 m

$$\Rightarrow$$
 Length = 24 m

Now

Area of rectangle = Length \times Breadth

$$= 24 \text{ m} \times 16 \text{ m}$$

$$= 384 \text{ m}^2$$

Question: 2

The length of a r

Solution:

Given: Length of park (l) = $2 \times breadth(b) = 2b$

Perimeter of park = 840 m

We know that,

Perimeter of a rectangle = 2(length + breadth)

$$\Rightarrow$$
 840 m = 2(2b + b)

$$\Rightarrow \frac{840}{2} m = 2b + b$$

$$\Rightarrow$$
 420 m = 3b

$$\Rightarrow b = \frac{420}{3} m$$

$$\Rightarrow$$
 b = 140m

Now,

$$l = 2b = 2 \times 140 \text{ m} = 280 \text{ m}$$

Hence,

Area of rectangle = Length \times Breadth

$$= 140 \text{ m} \times 280 \text{ m}$$

$$= 39200 \text{ m}^2$$

Question: 3

One side of a rec

Solution:

Given: Breadth (b) = 12 cm

Diagonal = 37 cm

Let length be l cm

We know that,

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

$$\Rightarrow 1^2 + 12^2 = 37^2$$

$$\Rightarrow l^2 = 37^2 - 12^2$$

$$\Rightarrow$$
 l² = 1369 cm² - 144 cm²

$$\Rightarrow$$
 l² = 1225 cm²

$$\Rightarrow 1 = 35 \text{ cm}$$

Now,

Area of rectangle = Length \times Breadth

 $= 35 \text{ cm} \times 12 \text{ cm}$

 $= 420 \text{ cm}^2$

Question: 4

The area of a rec

Solution:

Given: Area = 462 m^2

Length = 28 m

We know that,

Area of rectangle = Length \times Breadth

 \Rightarrow 462 m² = 28 m × Breadth

$$\Rightarrow$$
 Breadth = $\frac{462 \text{ m}^2}{28 \text{ m}}$

 \Rightarrow Breadth = 16.5 m

Now,

Perimeter of a rectangle = 2(length + breadth)

$$= 2(28 m + 16.5 m)$$

 $= 2 \times 44.5 \text{ m}$

= 89 m

Question: 5

A lawn is in the

Solution:

Given: Cost of fencing lawn = Rs 65 per metre.

Area of lawn = 3375 m^2

Length: Breadth = 5:3

Let,

Length = 5x

Breadth = 3x

We know that,

Area of lawn = Length \times Breadth

 \Rightarrow 3375 m² = 5x × 3x

$$\Rightarrow 3375 \text{ m}^2 = 15x^2$$

$$\Rightarrow x^2 = \frac{3375}{15} m^2$$

$$\Rightarrow$$
 x² = 225 m²

$$\Rightarrow$$
 x = 15 m

Therefore,

$$Length = 5x = 5 \times 15 = 75 m$$

Breadth =
$$3x = 3 \times 15 = 45 \text{ m}$$

Now,

Perimeter of lawn = 2(length + breadth)

$$= 2(75 m + 45 m)$$

$$= 2 \times 120 \text{ m}$$

$$= 240 \text{ m}$$

Hence,

Cost of Fencing = $240 \text{ m} \times \text{Rs } 65 \text{ per meter}$

= Rs 15600

Question: 6

A room is 16 m lo

Solution:

Given: Cost of covering = Rs 60 per metre.

Breadth of carpet = 75 cm = 0.75 m

Length of room = 16 m

Breadth of room = 13.5 m

We know that,

Area of room = Length \times Breadth

$$= 16 \text{ m} \times 13.5 \text{ m}$$

$$= 216 \text{ m}^2$$

Now,

$$Length of carpet = \frac{Area of room}{Breadth of carpet}$$

$$=\frac{216 \text{ m}^2}{0.75 \text{ m}}$$

$$= 288 \text{ m}$$

Now,

Cost of covering the floor = $288 \text{ m} \times \text{Rs } 60 \text{ per meter}$

Question: 7

The floor of a re

Solution:

Given: Length of carpet = 2.5 m

Breadth of carpet = 80 cm = 0.8 m

Length of hall = 24 m

Breadth of hall = 18 m

We know that,

Area of hall = Length \times Breadth

$$= 24 \text{ m} \times 18 \text{ m}$$

$$= 432 \text{ m}^2$$

And,

Area of carpet = Length \times Breadth

$$= 2.5 \text{ m} \times 0.8 \text{ m}$$

$$= 2 \text{ m}^2$$

Now,

 $Number of carpets = \frac{Area of hall}{Area of carpet}$

$$=\frac{432 \text{ m}^2}{2 \text{ m}^2}$$

= 216 carpets

Question: 8

A 36-m-long, 15-m

Solution:

Given: Length of verandah = 36 m

Breadth of verandah = 15 m

Length of stones = 6 dm = 0.6 m

Breadth of stones = 5 dm = 0.5 m

We know that,

Area of verandah = Length \times Breadth

$$= 36 \text{ m} \times 15 \text{ m}$$

$$= 540 \text{ m}^2$$

And,

Area of stones = Length \times Breadth

$$= 0.6 \text{ m} \times 0.5 \text{ m}$$

$$= 0.3 \text{ m}^2$$

Now,

 $Number of stones = \frac{Area of verandah}{Area of stones}$

$$= \frac{540 \text{ m}^2}{0.3 \text{ m}^2}$$

= 1800 stones

Question: 9

The area of a rec

Solution:

Given: Area of rectangle = 192 cm^2

Perimeter of rectangle = 56 cm

Let,

Length be l cm

And, breadth be b cm

Now,

Area of rectangle = Length \times Breadth

$$\Rightarrow$$
 192 cm² = 1 cm × b cm

$$\Rightarrow 1 \text{ cm} = \frac{192 \text{ cm}^2}{\text{b cm}}$$

Perimeter of rectangle = 2(length + breadth)

$$\Rightarrow$$
 56 cm = 2(l cm + b cm)

Now, substituting the value of l in this we get,

$$56 = 2\left(\frac{192}{b} + b\right)$$

$$\Rightarrow 56 = 2\left(\frac{192 + b^2}{b}\right)$$

$$\Rightarrow \frac{56}{2} = \frac{192 + b^2}{b}$$

$$\Rightarrow 28 = \frac{192 + b^2}{b}$$

$$\Rightarrow 28b = 192 + b^2$$

$$\Rightarrow$$
 b²- 28b + 192 = 0

$$\Rightarrow$$
 b²- 16 b - 12 b + 192 = 0

$$\Rightarrow$$
 b(b - 16) - 12(b - 16) = 0

$$\Rightarrow$$
 (b - 12) (b - 16) = 0

This gives us two equations,

i.
$$b - 12 = 0$$

$$\Rightarrow$$
 b = 12

ii.
$$b - 16 = 0$$

$$\Rightarrow$$
 b = 16

Let b = 12 cm

$$\Rightarrow 1 \, cm \, = \, \frac{192 \, cm^2}{12 \, cm} \, = \, 16 \, cm$$

Hence,

Length = 16 cm

Breadth = 12 cm

Question: 10

A rectangular par

Solution:

Given:

Length of park = 35 m

Breadth of park = 18 m

Now,

Length to be covered = 35 - (2.5 + 2.5)

= 30 m

Breadth to be covered = 18 - (2.5 + 2.5)

= 13 m

Area of park = Length \times Breadth

$$= 30 \text{ m} \times 13 \text{ m}$$

 $= 390 \text{ m}^2$

Question: 11

A rectangular plo

Solution:

Given:Length of plot = 125 m and Breadth of plot = 78 m. It has a gravel path 3 m wide all around on the outside.**To find:** The area of the path and the cost of gravelling it at RS. 75 per

Solution: Since gravel path is 3 m wide all around,

 \therefore Length of plot with path = 125 + (3 + 3)= 131 m

Breadth of plot with path = 78 + (3 + 3) = 84 m

Now,

Area of the rectangular plot without path= $L \times B \Rightarrow$ Area of the rectangular plot without path = $125 \times 78 = 9750 \text{ m}^2\text{Area}$ of rectangular plot with path = $L \times B \Rightarrow$ Area of the rectangular plot with path = $131 \times 84 = 11004 \text{ m}^2\text{Area}$ of the path = Area of the rectangular plot with path - Area of the rectangular plot without path = 11004 - 9750

= 1254 m²Cost of gravelling 1 m² path = Rs 75Cost of gravelling 1254 m² path = Rs 75 \times 1254 = Rs 94050

Question: 12

A footpath of uni

Solution:

Given:

Length of field = 54 m

Breadth of field = 35 m

Let width of the path be x m

Area of field = Length \times Breadth

 $= 54 \text{ m} \times 35 \text{ m}$

 $= 1890 \text{ m}^2$

Therefore,

Length of field without path = 54 - (x + x)

= 54 - 2x

Breadth of field without path = 35 - (x + x)

= 35 - 2x

Therefore,

Area of field without path = Length without path \times Breadth without path

$$= (54 - 2x) \times (35 - 2x)$$

$$= 1890 - 70x - 108x + 4x^2$$

$$= 1890 - 178x + 4x^2$$

Now,

Area of path = Area of field - Area of field without path

$$\Rightarrow 420 = 1890 - (1890 - 178x + 4x^2)$$

$$\Rightarrow 420 = 1890 - 1890 + 178x - 4x^2$$

$$\Rightarrow 420 = 178x - 4x^2$$

$$\Rightarrow 4x^2 - 178x + 420 = 0$$

$$\Rightarrow 2x^2 - 89x + 210 = 0$$

$$\Rightarrow 2x^2 - 84x - 5x + 210 = 0$$

$$\Rightarrow 2x(x - 42) - 5(x - 42) = 0$$

$$\Rightarrow$$
 (x - 42)(2x - 5) = 0

This gives us two equations,

i.
$$x - 42 = 0$$

$$\Rightarrow x = 42$$

ii.
$$2x - 5 = 0$$

$$\Rightarrow x = \frac{5}{2}$$

Since, width of park cannot be more than breadth of field

Therefore, width of park = 42 m

Question: 13

The length and th

Solution:

Given:

Length: Breadth 9:5

Width of the path = 3.5 m

Area of path = 1911 m^2

Let,

Length of field = 9x

Breadth of field = 5x

Area of field = Length \times Breadth

$$= 9x \times 5x$$

$$= 45 x^2$$

Therefore,

Length of field without path = 9x - (3.5 + 3.5)

$$= 9x - 7$$

Breadth of field without path = 5x - (3.5 + 3.5)

$$= 5x - 7$$

Therefore,

Area of field without path = Length without path \times Breadth without path

$$= (9x - 7) \times (5x - 7)$$

$$= 45x^2 - 35x - 63x + 49$$

$$=45x^2 - 98x + 49$$

Now,

Area of path = Area of field - Area of field without path

$$\Rightarrow$$
 1911 = 45 x² - (45x² - 98x + 49)

$$\Rightarrow$$
 1911 = 45 x^2 - 45 x^2 + 98 x - 49

$$\Rightarrow 1911 = 98x - 49$$

$$\Rightarrow 98x = 1911 + 49$$

$$\Rightarrow 98x = 1960$$

$$\Rightarrow x = 20$$

Hence,

Length of field = $9x = 9 \times 20 = 180 \text{ m}$

Breadth of field = $5x = 5 \times 20 = 100 \text{ m}$

Question: 14

A room 4.9 m long

Solution:

Given:

Length = 4.9 m

Breadth = 3.5 m

Margin = 25 cm = 0.25 m

Breadth of carpet = 80 cm = 0.8 m

Cost = Rs 80 per meter

Now,

Length to be carpeted = 4.9 m - (0.25 + 0.25) m

$$= 4.4 \text{ m}$$

Breadth to be carpeted = $3.5 \text{ m} \cdot (0.25 + 0.25) \text{ m}$

Therefore,

Area to be carpeted = Length to be carpeted \times Breadth to be carpeted

$$= 4.4 \text{ m} \times 3 \text{ m}$$

$$= 13.2 \text{ m}^2$$

Area of carpet = Area to be carpeted = 13.2 m^2

Now,

$$\mbox{Length of carpet} \, = \, \frac{\mbox{Area of carpet}}{\mbox{Breadth of carpet}}$$

$$Length of carpet = \frac{13.2 \text{ m}^2}{0.8 \text{ m}}$$

$$= 16.5 \text{ m}$$

Now,

Cost of 1 m carpet = Rs 80

Therefore,

Cost of 16.5 m carpet = Rs 80×16.5 m

= Rs 1,320

Question: 15

A carpet is laid

Solution:

Given:

Length = 8 m

Breadth = 5 m

Border = 12 m^2

Let the width be x m

Area of floor = Length \times Breadth

$$= 8 \text{ m} \times 5 \text{ m}$$

$$= 40 \text{ m}^2$$

Now,

Length without border = $8 \text{ m} \cdot (x + x) \text{ m}$

$$= (8 - 2x) \text{ m}$$

Breadth without border = $5 \text{ m} \cdot (x + x) \text{ m}$

$$= (5 - 2x) m$$

Therefore,

Area without border = Length without border × Breadth without border

$$= (8 - 2x) \times (5 - 2x)$$

$$= 40 - 16x - 10x + 4x^2$$

Area of border = Area of floor - Area without border

$$\Rightarrow 12 = 40 - (40 - 16x - 10x + 4x^2)$$

$$\Rightarrow 12 = 40 - 40 + 16x + 10x - 4x^2$$

$$\Rightarrow 12 = 26x - 4x^2$$

$$\Rightarrow 4x^2 - 26x + 12 = 0$$

$$\Rightarrow 4x^2 - 24x - 2x + 12 = 0$$

$$\Rightarrow 4x(x-6) - 2(x-6) = 0$$

$$\Rightarrow$$
 (x-6) (4x-2) = 0

This gives us two equations,

i.
$$x - 6 = 0$$

$$\Rightarrow x = 6$$

ii.
$$4x - 2 = 0$$

$$\Rightarrow$$
 x = 1/2

Since,

Border cannot be greater than carpet

Hence, width of border is 1/2 m = 50 cm

Question: 16

A 80 m by 64 m re

Solution:

Given: A 80 m by 64 m rectangular lawn has two roads, each 5 m wide, running through its middle, one parallel to its length and the other parallel to its breadth. **To find:** The cost of gravelling the roads at RS. 40 per m^2 .

Solution:

Length = 80 m

Breadth = 64 m

Width of road = 5 m

Area of horizontal road = $5 \text{ m} \times 80 \text{ m} = 400 \text{ m}^2$

Area of vertical road = $5 \text{ m} \times 64 \text{ m} = 320 \text{ m}^2$

Area of common part to both roads = $5 \text{ m} \times 5 \text{ m} = 25 \text{ m}^2$

Now,

Area of roads to be gravelled = Area of horizontal road + Area of vertical road - Area of common part to both roads $= 400 \text{ m}^2 + 320 \text{ m}^2 - 25 \text{ m}^2$ $= 695 \text{ m}^2$ Cost of gravelling = $695 \text{ m}^2 \times \text{Rs } 40 \text{ per } \text{m}^2$ = Rs 27800 **Question: 17** The dimensions of **Solution:** Given: Length of walls = 14 mBreadth of walls = 10 mHeight of walls = 6.5 mLength of windows = 1.5 mBreadth of windows = 1 mLength of doors = 2.5 mBreadth of doors = 1.2 m $Cost = Rs 35 per m^2$ Now, Area of four walls = $2(\text{Length of walls} \times \text{Height of walls}) + 2(\text{Breadth of walls} \times \text{Height of walls})$ $= 2(14 \times 6.5) + 2(10 \times 6.5)$ $= 182 \text{ m}^2 + 130 \text{ m}^2$ $= 312 \text{ m}^2$ Area of two doors = $2(\text{Length of doors} \times \text{Breadth of doors})$ $= 2(2.5 \times 1.2)$ $= 6 \text{ m}^2$ Area of four windows = $4(\text{Length of windows} \times \text{Breadth of windows})$ $=4(1.5 \times 1)$ $= 6 \text{ m}^2$ Therefore, Area to be painted = Area of 4 walls-(Area of 2 doors + Area of 4 windows) $= 312 \text{ m}^2 - (6 \text{ m}^2 + 6 \text{ m}^2)$ $= 300 \text{ m}^2$ Cost of painting = $300 \text{ m}^2 \times \text{Rs } 35 \text{ per m}^2$ = Rs 10500**Question: 18**

The cost of paint

_

Solution:

Given:

Length = 12 m

Cost per meter = Rs 30

Total cost = Rs 7560

Cost per meter for floor = Rs 25

Total cost for floor = Rs 2700

Let height be h

Now,

 $Area of the floor = \frac{Total cost}{Cost per meter}$

$$=\frac{2700}{25}$$

 $= 108 \text{ m}^2$

 $Breadth = \frac{Area of the floor}{Length}$

$$=\frac{108}{12}$$

= 9 m

 $Area of walls = \frac{Total cost}{Cost per meter}$

$$=\frac{7560}{30}$$

 $= 252 \text{ m}^2$

Area of 4 walls = $2(\text{Length of walls} \times \text{Height of walls}) + 2(\text{Breadth of walls} \times \text{Height of walls})$

$$\Rightarrow 252 = 2(12 \times h) + 2(9 \times h)$$

$$\Rightarrow 252 = 24h + 18h$$

$$\Rightarrow 252 = 42h$$

$$\Rightarrow$$
 h = 6 m

Therefore,

Dimensions = $12 \text{ m} \times 9 \text{ m} \times 6 \text{ m}$

Question: 19

Find the area and

Solution:

Given:

Diagonal = 24 m

Let the side of square be s

Area of square = $1/2 \times Diagonal^2$

$$= 1/2 \times 24^2$$

$$= 288 \text{ m}^2$$

Area of square = $side^2$

$$\Rightarrow$$
 288 m² = s²

$$\Rightarrow$$
 s = $12\sqrt{2}$ m

$$\Rightarrow$$
 s = 16.92 m

Therefore,

Perimeter of square = 4×16.92

$$= 67.68 \text{ m}$$

Question: 20

Find the length o

Solution:

Given:

 $Area = 128 \text{ cm}^2$

Let the side of square be s

Area of square = $1/2 \times Diagonal^2$

$$\Rightarrow 128 = 1/2 \times Diagonal^2$$

$$\Rightarrow$$
 Diagonal² = 2 × 128

$$\Rightarrow$$
 Diagonal² = 256

Area of square = $side^2$

$$\Rightarrow 128 \text{ m}^2 = \text{s}^2$$

$$\Rightarrow$$
 s = $8\sqrt{2}$ cm

$$\Rightarrow$$
 s = 11.28 cm

Therefore,

Perimeter of square = 4×11.28

$$= 45.12 \text{ cm}$$

Question: 21

The area of a squ

Solution:

Given:

Area =
$$8 \text{ hectares} = 0.08 \text{ km}^2$$

Speed = 4 km per hr

Let the side of square be s

Area of square = $1/2 \times Diagonal^2$

$$\Rightarrow 0.08 = 1/2 \times Diagonal^2$$

⇒ Diagonal² =
$$2 \times 0.08$$

⇒ Diagonal
2
 = 0.16

$$Time \ taken \ = \frac{Distance}{Speed}$$

$$= \frac{0.04 \text{ km}}{4 \text{ km per hr}}$$

$$= 0.01 \text{ hr}$$

$$= (0.01 \times 60) \text{ mins}$$

$$= 6 \text{ mins}$$

Therefore,

Time taken = 6 mins

Question: 22

The cost of harve

Solution:

Given:

Rate = Rs 900 per hectare

Total Cost = Rs 8100

Rate of fencing = Rs 18 per metre

Let the side of square field be s

Now,

$$Area = \frac{Total\ Cost}{Rate}$$

$$=\frac{8100}{900}$$

 $= 9 \text{ hectares} = 90000 \text{ m}^2$

 $Area = side^2$

 \Rightarrow 90000 m² = side²

 \Rightarrow side = 300 m²

Now,

Perimeter = $4 \times \text{side}$

 $= 4 \times 300 \text{ m}^2$

 $= 1200 \text{m}^2$

Therefore,

Cost of fencing = $1200 \text{ m}^2 \times \text{Rs } 18 \text{ per metre}$

= Rs 21600

Question: 23

The cost of fenci

Solution:

Given:

Rate = RS. 14 per metre

Total Cost = RS. 28000

Rate of mowing = RS. 54 per 100 m^2

Let the side of square field be \boldsymbol{s}

Now,

$$Perimeter = \frac{Total \, Cost}{Rate}$$

$$=\frac{28000}{14}$$

= 2000 m

Perimeter = $4 \times \text{side}$

$$\Rightarrow$$
 2000 m = 4 × s

$$\Rightarrow$$
 s = $\frac{2000}{4}$

$$\Rightarrow$$
 s = 500 m

Now,

$$Area = side^2$$

$$= (500 \text{ m})^2$$

$$= 250000 \text{ m}^2$$

Therefore,

Cost of mowing $100 \text{ m}^2 = \text{Rs } 54$

Cost of mowing 1 $m^2 = Rs \frac{54}{100}$

Cost of mowing 250000 $m^2 = Rs \frac{54}{100} \times 250000$

= Rs 135000

Question: 24

In the given figu

Solution:

Given:

BD = 24 cm

AL = 9 cm

CM = 12 cm

In ΔADB,

Area of $\triangle ADB = 1/2 \times BD \times AL$

 $= 1/2 \times 24 \text{ cm} \times 9 \text{ cm}$

 $= 108 \text{ cm}^2$

In ΔCDB,

Area of $\triangle CDB = 1/2 \times BD \times CM$

 $= 1/2 \times 24 \text{ cm} \times 12 \text{ cm}$

 $= 144 \text{ cm}^2$

Now,

Area of quadrilateral ABCD = Area of \triangle ADB + Area of \triangle ADB

 $= 108 \text{ cm}^2 + 144 \text{ cm}^2$

 $= 252 \text{ cm}^2$

Question: 25

Find the area of

Solution:

Given:

BC = 26 cm

DC = 26 cm

AD = 24 cm

BD = 26 cm

In ΔBCD,

Area of $\triangle BCD(equilateral) = \frac{\sqrt{3}}{4} \times side^2$

$$=\frac{\sqrt{3}}{4}\times 26^2$$

 $= 292.37 \text{ cm}^2$

In ΔADB,

 $Base^2 + Perpendicular^2 = Hypotenuse^2$ $\Rightarrow AB^2 + AD^2 = DB^2$ $\Rightarrow AB^2 = DB^2 - AD^2$ $\Rightarrow AB^2 = 26^2 - 24^2$ $\Rightarrow AB^2 = 676 - 576$ $\Rightarrow AB^2 = 100$ \Rightarrow AB= 10 cm Area of $\triangle ADB = 1/2 \times AB \times AD$ $= 1/2 \times 10 \text{ cm} \times 24 \text{ cm}$ $= 120 \text{ cm}^2$ Now, Area of quadrilateral ABCD = Area of \triangle ADB + Area of \triangle BCD $= 120 \text{cm}^2 + 292.37 \text{ cm}^2$ $= 412.37 \text{ cm}^2$ And, Perimeter of quadrilateral ABCD = AB + BC + CD + DA= 10 cm + 26 cm + 26 cm + 24 cm= 86 cm**Question: 26** Find the perimete **Solution:** Given: AC = 15 cmAB = 17 cmAD = 9 cmCD = 12 cmIn \triangle ACB (right-angled), $Base^2 + Perpendicular^2 = Hypotenuse^2$ \Rightarrow BC² + AC² = AB² \Rightarrow BC² = AB² - AC² $\Rightarrow BC^2 = 17^2 - 15^2$ \Rightarrow BC² = 289 - 225 \Rightarrow BC² = 64 \Rightarrow BC= 8 cm Area of $\triangle ACB = 1/2 \times BC \times AC$ $= 1/2 \times 8 \text{ cm} \times 15 \text{ cm}$ $= 60 \text{ cm}^2$

In ΔADC,

Area of $\triangle ADC = 1/2 \times AD \times CD$ $= 1/2 \times 9 \text{ cm} \times 12 \text{ cm}$ $= 54 \text{ cm}^2$ Now, Area of quadrilateral ABCD = Area of \triangle ACB + Area of \triangle ADC $= 60 \text{ cm}^2 + 54 \text{ cm}^2$ $= 114 \text{ cm}^2$ And, Perimeter of quadrilateral ABCD = AB + BC + CD + DA= 17 cm + 8 cm + 12 cm + 9 cm=46 cm**Question: 27** Find the area of **Solution:** Given: DB = 20 cmAB = 42 cmAD = 34 cmCD = 29 cmCB = 21 cmIn \triangle ABD(scalene), Area of a scalene triangle = $\sqrt{(s(s-AB)(s-BD)(s-AD))}$ Where, $s = \frac{AB + BD + AD}{2}$ $s = \frac{42 + 20 + 34}{2} cm$ \Rightarrow s = $\frac{96}{2}$ cm \Rightarrow s = 48 cm Now, Area of a scalene triangle = $\sqrt{(48 \text{cm} \times (48-42) \text{cm} \times (48-20) \text{cm} \times (48-34) \text{cm})}$ $= \sqrt{(48 \text{ cm} \times 6 \text{ cm} \times 28 \text{ cm} \times 14 \text{ cm})}$ $= \sqrt{112896} \text{ cm}^2$ $= 336 \text{ cm}^2$ Similarly, In $\triangle BCD$ (scalene), Area of a scalene triangle = $\sqrt{(s(s-BC)(s-CD)(s-BD))}$ Where, $s = \frac{BC + BD + CD}{2}$

 $s = \frac{29 + 20 + 21}{2}$ cm

$$\Rightarrow s = \frac{70}{2} cm$$

$$\Rightarrow$$
 s = 35 cm

Now,

Area of a scalene triangle = $\sqrt{(35 \text{ cm} \times (35\text{-}29)\text{cm} \times (35\text{-}20)\text{cm} \times (35\text{-}21)\text{cm})}$

$$= \sqrt{(35 \text{ cm} \times 6 \text{ cm} \times 15 \text{ cm} \times 14 \text{ cm})}$$

$$= \sqrt{44100} \text{ cm}^2$$

$$= 210 \text{ cm}^2$$

Now,

Area of quadrilateral ABCD = Area of \triangle ABD + Area of \triangle BCD

$$= 336 \text{ cm}^2 + 210 \text{ cm}^2$$

$$= 546 \text{ cm}^2$$

Question: 28

Find the area of

Solution:

Given:

Base = 25 cm

Height = 16.8 cm

Now,

Area of parallelogram = Base \times Height

$$= 25 \text{ cm} \times 16.8 \text{ cm}$$

 $= 420 \text{ cm}^2$

Question: 29

The adjacent side

Solution:

Given:

Longer side = 32 cm

Shorter side = 24 cm

Distance between Longer sides = 17.4 cm

Now,

Area of parallelogram = Longer side × Distance between Longer sides

$$= 32 \text{ cm} \times 17.4 \text{ cm}$$

$$= 556.8 \text{ cm}^2$$

Also,

Area of parallelogram = Shorter side \times Distance between Shorter sides

$$\Rightarrow$$
 556.8 cm² = 24 cm × x cm

$$\Rightarrow x = \frac{556.8}{24}$$

$$\Rightarrow$$
 x = 23.2 cm

Hence,

Distance between Shorter sides = 23.2 cm

Question: 30

The area of a par

Solution:

Given:

Area =
$$392 \text{ m}^2$$

$$Base = b (let)$$

$$Height = 2b$$

Now,

Area of parallelogram = Base \times Height

$$\Rightarrow 392 = b \times 2b$$

$$\Rightarrow 392 = 2b^2$$

$$\Rightarrow$$
 b² = 196

$$\Rightarrow$$
 b = 14 cm

Hence,

Base =
$$14 \text{ cm}$$

Altitude =
$$2 \times 14 = 28$$
 cm

Question: 31

The adjacent side

Solution:

Given:

$$AB = 34 \text{ cm}$$

$$BC = 20 \text{ cm}$$

$$AC = 42 \text{ cm}$$

In \triangle ABC (scalene),

Area of $\triangle ABC = \sqrt{(s(s-AB)(s-BC)(s-AC))}$

Where,
$$s = \frac{AB + BC + AC}{2}$$

$$s \, = \, \frac{42 \, + \, 20 \, + \, 34}{2} \, cm$$

$$\Rightarrow \ s \, = \, \frac{96}{2} cm$$

$$\Rightarrow$$
 s = 48 cm

Now,

Area of a scalene triangle = $\sqrt{(48\text{cm} \times (48\text{-}42)\text{cm} \times (48\text{-}20)\text{cm} \times (48\text{-}34)\text{cm})}$

$$= \sqrt{(48 \text{ cm} \times 6 \text{ cm} \times 28 \text{ cm} \times 14 \text{ cm})}$$

$$= \sqrt{112896} \text{ cm}^2$$

$$= 336 \text{ cm}^2$$

Now,

Area of parallelogram ABCD = $2 \times Area$ of $\triangle ABC$

$$= 2 \times 336 \text{ cm}^2$$

$$= 672 \text{ cm}^2$$

Question: 32

Find the area of

Solution:

Given:

Length of diagonal 1 $(d_1) = 30$ cm

Length of diagonal 2 $(d_2) = 16$ cm

Area of rhombus = $1/2 \times d_1 \times d_2$

$$= 1/2 \times 30 \text{ cm} \times 16 \text{ cm}$$

$$= 240 \text{ cm}^2$$

Now,

Side of rhombus = $1/2 \times \sqrt{(d_1^2 + d_2^2)}$

$$= 1/2 \times \sqrt{(30^2 + 16^2)}$$

$$= 1/2 \times \sqrt{(900 + 256)}$$

$$= 1/2 \times \sqrt{1156}$$

$$= 1/2 \times 34$$

$$= 17 \text{ cm}$$

Therefore,

Perimeter of rhombus = $4 \times \text{Side of rhombus}$

$$= 4 \times 17 \text{ cm}$$

$$= 68 \text{ cm}$$

Question: 33

The perimeter of

Solution:

Given:

Perimeter of rhombus = 60 cm

Length of diagonal 1 $(d_1) = 18$ cm

Let, Length of diagonal 2 be d_2

(i) Perimeter of rhombus = $4 \times \text{side}$

$$\Rightarrow$$
 60 = 4 × side

$$\Rightarrow$$
 side $=\frac{60}{4} = 15 \text{ cm}$

Now,

Side of rhombus = $1/2 \times \sqrt{(d_1^2 + d_2^2)}$

$$\Rightarrow 15 = 1/2 \times \sqrt{(18^2 + d_2^2)}$$

$$\Rightarrow 15 = 1/2 \times \sqrt{(324 + d_2^2)}$$

$$\Rightarrow 15 \times 2 = \sqrt{(324 + d_2^2)}$$

$$\Rightarrow 30 = \sqrt{(324 + d_2^2)}$$

Squaring both sides,

$$\Rightarrow 900 = 324 + d_2^2$$

$$\Rightarrow 900-324 = d_2^2$$

$$\Rightarrow d_2^2 = 576$$

$$\Rightarrow$$
 d₂ = 24

Therefore,

Length of other diagonal = 24 cm

(ii) Area of rhombus =
$$1/2 \times d_1 \times d_2$$

$$= 1/2 \times 18 \text{ cm} \times 24 \text{ cm}$$

$$= 216 \text{ cm}^2$$

Question: 34

The area of a rho

Solution:

Given:

Area of rhombus = 480 cm^2

Length of diagonal 1 $(d_1) = 48$ cm

Let, Length of diagonal 2 be d₂

(i) Area of rhombus = $1/2 \times d_1 \times d_2$

$$\Rightarrow$$
 480 = 1/2 × 48 × d₂

$$\Rightarrow d_2 = \frac{480 \times 2}{48}$$

$$\Rightarrow$$
 d₂ = 20 cm

Therefore,

Length of other diagonal = 20 cm

(ii) Side of rhombus = $1/2 \times \sqrt{(48^2 + 20^2)}$

$$= 1/2 \times \sqrt{(2304 + 400)}$$

$$= 1/2 \times \sqrt{2704}$$

$$= 1/2 \times 52$$

$$= 26 \text{ cm}$$

Therefore,

Side of rhombus = 26 cm

(iii) Perimeter of rhombus = $4 \times \text{side}$

$$= 4 \times 26 \text{ cm}$$

$$= 104 \text{ cm}$$

Therefore,

Perimeter of rhombus = 104 cm

Question: 35

The parallel side

Solution:

Given:

Side
$$1 = 12$$
 cm

Side
$$2 = 9 \text{ cm}$$

Distance between sides = 8 cm

Now,

Area of trapezium = $1/2 \times \text{Sum}$ of parallel sides \times Distance between them

$$= 1/2 \times (12 + 9) \times 8$$

$$= 1/2 \times 21 \times 8$$

$$= 84 \text{ cm}^2$$

Question: 36

The shape of the

Solution:

Given:

Top width = 10 m

Bottom width = 6 m

Area of cross section = 640 m^2

Let the depth be h

Now,

Area of trapezium = $1/2 \times Sum$ of parallel sides \times Distance between them

$$\Rightarrow 640 = 1/2 \times (10 + 6) \times h$$

$$\Rightarrow$$
 640 × 2 = 16 h

$$\Rightarrow h = \frac{640 \times 2}{16}$$

$$\Rightarrow$$
 h = 80 m

Question: 37

Find the area of

Solution:

Given:

$$AB (say) = 11 cm$$

$$DC (say) = 25 cm$$

$$AD (say) = 15 cm$$

$$BC (say) = 13 cm$$

Draw AE ∥ BC

Now the trapezium is divided into a triangle ADE and a parallelogram AECB.

Since, AECB is a parallelogram

Therefore, AE = BC = 13 cm

And, AB = EC

$$DE = DC - EC(= AB) = 25 - 11 = 14 \text{ cm}$$

Now,

We know that,

Area of a scalene triangle ($\triangle AED$) = $\sqrt{(s(s-AE)(s-ED)(s-AD))}$

Where,
$$s = \frac{AE + ED + AD}{2}$$

$$s \, = \, \frac{13 \, + \, 14 \, + \, 15}{2} cm$$

$$\Rightarrow s = \frac{42}{2} cm$$

$$\Rightarrow$$
 s = 21 cm

Now,

Area of a scalene triangle = $\sqrt{(21 \text{cm} \times (21\text{-}13)\text{cm} \times (21\text{-}14)\text{cm} \times (21\text{-}15)\text{cm})}$

$$= \sqrt{(21 \text{cm} \times 8 \text{cm} \times 7 \text{cm} \times 6 \text{cm})}$$

$$= \sqrt{7056} \text{ cm}^2$$

$$= 84 \text{ cm}^2$$

Also,

Area of a triangle = $1/2 \times \text{base} \times \text{height}$

$$\Rightarrow$$
 84 = 1/2 × 14 × height

$$\Rightarrow$$
 height = $\frac{84 \times 2}{14}$

$$\Rightarrow$$
 height = 12 cm

Now,

Area of a parallelogram = base \times height

$$= 11 \text{ cm} \times 12 \text{ cm}$$

$$= 132 \text{ cm}^2$$

Now,

Area of Trapezium ABCD = Area of \triangle ADE + Area of a parallelogram ABCE

$$= 84 \text{ cm}^2 + 132 \text{ cm}^2$$

$$= 216 \text{ cm}^2$$

Exercise: MULTIPLE CHOICE QUESTIONS (MCQ)

Question: 1

The length of a r

Solution:

Given: Length of hall (l) = 5 + breadth(b) = 5 + b

Area of hall = 750 m^2

We know that,

Area of rectangle = Length \times Breadth

$$\Rightarrow 750 = (5 + b) \times b$$

$$\Rightarrow 750 = b^2 + 5b$$

$$\Rightarrow b^2 + 5b - 750 = 0$$

$$\Rightarrow$$
 b² + 30b - 25b - 750 = 0

$$\Rightarrow$$
 b(b + 30) - 25(b + 30) = 0

$$\Rightarrow$$
 (b + 30) (b - 25) = 0

This gives us two equations,

i.
$$b + 30 = 0$$

$$\Rightarrow$$
 b = -30

ii.
$$b - 25 = 0$$

$$\Rightarrow$$
 b = 25

Since, the length of the rectangle cannot be negative

Therefore, b = 25 m

$$\Rightarrow$$
 l = (b + 5) m

$$\Rightarrow$$
 l = (25 + 5) m

$$\Rightarrow$$
 1 = 30 m

Question: 2

The length of a r

Solution:

Given: Length of field (l) = 23 + breadth(b) = 23 + b

Perimeter of field = 206 m

We know that,

Perimeter = 2(l + b)

 $\Rightarrow 206 = 2(23 + b + b)$

 $\Rightarrow 206 = 2(23 + 2b)$

 $\Rightarrow 206 = 46 + 4b$

 $\Rightarrow 4b = 206 - 46$

 \Rightarrow 4b = 160

 \Rightarrow b = 40 m

Therefore,

Length of field = 23 + b

= 23 + 40

= 63 m

Now,

Area of rectangle = Length \times Breadth

 $= 63 \times 40$

 $= 2520 \text{ m}^2$

Question: 3

The length of a r

Solution:

Given:

Length = 12 m

Length of diagonal = 15 m

We know that,

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

 $\Rightarrow 12^2 + Perpendicular^2 = 15^2$

 \Rightarrow Perpendicular² = 15² - 12²

 \Rightarrow Perpendicular² = 225-144

 \Rightarrow Perpendicular² = 81

 \Rightarrow Perpendicular² = 9

That is,

Breadth = 9 m

Now,

 $Area = Length \times Breadth$

 $= 12 \text{ m} \times 9 \text{ m}$

 $= 108 \text{ m}^2$

Question: 4

The cost of carpe

Solution:

Given:

Length of room = 15 m

Width of carpet = 75 cm = 0.75 m

Rate = Rs 70

Total cost = Rs 8400

Now,

$$Length of carpet = \frac{Total cost}{Rate}$$

$$= \frac{\text{Rs 8400}}{\text{Rs 70 per m}}$$

= 120 m

Therefore,

Area of carpet = Length of carpet × Width of carpet

$$= 120 \text{ m} \times 0.75 \text{ m} = 90 \text{ m}^2$$

We know that,

Area of room = Area of carpet = 90 m^2

Now,

Area of room = Length of room \times Width of room

$$\Rightarrow$$
 90 m² = 15 m × Width of room

⇒ Width of room =
$$\frac{90 \text{ m}^2}{15 \text{ m}}$$

 \Rightarrow Width of room = 6 m

Question: 5

The length of a r

Solution:

Given: Length of rectangle (l) = $3 \times breadth(b) = 3b$

Diagonal of rectangle = $8\sqrt{10}$ m

We know that,

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

$$\Rightarrow$$
 b² + (3b)² = (8 $\sqrt{10}$)²

$$\Rightarrow$$
 b² + 9b² = 640

$$\Rightarrow 10b^2 = 640$$

$$\Rightarrow b^2 = \frac{640}{10}$$

$$\Rightarrow$$
 b² = 64

$$\Rightarrow$$
 b = 8 cm

Therefore,

$$l = 3b = 24 \text{ cm}$$

Hence,

Perimeter of a rectangle = 2(length + breadth)

$$= 2(24 + 8)$$

$$= 64 \text{ cm}$$

Question: 6

On increasing the

Solution:

Let the length be l

And, breadth be b

Now,

$$Area = l \times b = lb$$

Increase in length = 20% of length + length

$$=\frac{20}{100}1+1$$

$$=\frac{1}{5}l+1$$

$$=\frac{6}{5}l$$

Decrease in breadth = breadth - 20% of breadth

$$=\,b-\frac{20}{100}b$$

$$=b-\frac{1}{5}b$$

$$=\frac{4}{5}b$$

$$Area = \frac{6}{5}l \times \frac{4}{5}b = \frac{24}{25}lb$$

Since,

$$\frac{24}{25}$$
lb < lb

Therefore,

The area is decreased

Now decrease in area $= lb - \frac{24}{25}lb$

$$=\frac{1}{25}lb$$

Decrease% = $\frac{1}{25} \times 100$

= 4%

Hence change in area = 4% decrease

Question: 7

A rectangular gro

Solution:

Given:

Length = 80 m

Breadth = 50 m

Width of the path = 1m

Area of path = 1911 m^2

Length of field with path = 80 + (1 + 1)

= 82 m

Breadth of field with path = 50 + (1 + 1)

= 52 m

Area of field with path = Length of field with path × Breadth of field with path

 $= 82 \text{ m} \times 52 \text{ m}$

 $= 4264 \text{ m}^2$

Area of field without path = Length without path \times Breadth without path

 $= 80 \text{ m} \times 50 \text{ m}$

 $= 4000 \text{ m}^2$

Now,

Area of path = Area of field - Area of field without path

 $= 4264 \text{ m}^2 - 4000 \text{ m}^2$

 $= 264 \text{ m}^2$

Question: 8

The length of the

Solution:

Given:

Length of diagonal = $10\sqrt{2}$ cm

Let the side of square = x cm

We know that,

 $Hypotenuse^2 = Base^2 + Perpendicular^2$

$$\Rightarrow (10\sqrt{2})^2 = x^2 + x^2$$

$$\Rightarrow$$
 200 = 2x²

$$\Rightarrow \ x^2 \, = \, \frac{200}{2}$$

$$\Rightarrow x^2 = 100$$

$$\Rightarrow$$
 x = 10 cm

Now,

Area of a square = $side^2$

$$= (10 \text{ cm})^2$$

$$= 100 \text{ cm}^2$$

Question: 9

The area of a squ

Solution:

Given:

Area of square field = 6050 m^2

Let the side of square = x m

We know that,

Area of a square = side²

$$\Rightarrow 6050 = x^2$$

$$\Rightarrow x = 55\sqrt{2}$$

Now,

 $Hypotenuse^2 = Base^2 + Perpendicular^2$

$$= (55\sqrt{2})^2 + (55\sqrt{2})^2$$

$$= 6050 + 6050$$

$$= 12100 \text{ m}^2$$

Therefore,

Diagonal = $\sqrt{12100}$

Question: 10

The area of a squ

Solution:

Given:

Area of square field = 0.5 hectare = 5000 m^2

Let the side of square = x m

We know that,

Area of a square = $side^2$

$$\Rightarrow 5000 = x^2$$

$$\Rightarrow x = 50\sqrt{2}$$

Now,

 $Hypotenuse^2 = Base^2 + Perpendicular^2$

$$= (50\sqrt{2})^2 + (50\sqrt{2})^2$$

$$= 5000 + 5000$$

$$= 10000 \text{ m}^2$$

Therefore,

 $Diagonal = \sqrt{10000}$

= 100 m

Question: 11

The area of an eq

Solution:

Given:

Area of equilateral triangle = $4\sqrt{3}$ cm²

We know that,

Area of equilateral triangle = $\frac{\sqrt{3}}{4} \times side^2$

$$\Rightarrow 4\sqrt{3} = \frac{\sqrt{3}}{4} \times \text{side}^2$$

$$\Rightarrow$$
 side² = $4\sqrt{3} \times \frac{4}{\sqrt{3}}$

$$\Rightarrow$$
 side² = 4 × 4

$$\Rightarrow$$
 side² = 16

$$\Rightarrow$$
 side = 4 cm

Now,

Perimeter of triangle = $3 \times \text{side}$

$$= 3 \times 4 \text{ cm}$$

$$= 12 \text{ cm}$$

Question: 12

Each side of an e

Solution:

Given:

Side of equilateral triangle = 8 cm

We know that,

Area of equilateral triangle = $\frac{\sqrt{3}}{4} \times side^2$

$$=\frac{\sqrt{3}}{4}\times 8^2$$

$$=\frac{\sqrt{3}}{4}\times 64$$

$$= 16\sqrt{3} \text{ cm}^2$$

Question: 13

Each side of an e

Solution:

Given: Side of an equilateral triangle = $6\sqrt{3}$ cm

Height of equilateral triangle = $\frac{\sqrt{3}}{2} \times \text{side}$

$$=\frac{\sqrt{3}}{2}\times 6\sqrt{3}$$

 $= 9 \text{ cm}^2$

Question: 14

The height of an

Solution:

Given:

Height of equilateral triangle = $3\sqrt{3}$ cm

We know that,

Height of equilateral triangle = $\frac{\sqrt{3}}{2} \times \text{side}$

$$\Rightarrow 3\sqrt{3} = \frac{\sqrt{3}}{2} \times \text{side}$$

$$\Rightarrow$$
 side = $3\sqrt{3} \times \frac{2}{\sqrt{3}}$

$$\Rightarrow$$
 Side = 6 cm

Now,

Area of equilateral triangle = $\frac{\sqrt{3}}{4} \times side^2$

$$=\frac{\sqrt{3}}{4}\times 6^2$$

$$=\frac{\sqrt{3}}{4}\times 36$$

$$= 9\sqrt{3} \text{ cm}^2$$

Question: 15

The base and heig

Solution:

Given:

Base: Height = 3: 4

 $Area = 216 \text{ cm}^2$

Let,

Base = 3x

Height = 4x

We know that,

Area of a triangle = $1/2 \times base \times height$

$$\Rightarrow 216 = 1/2 \times 3x \times 4x$$

$$\Rightarrow 216 \times 2 = 12x^2$$

$$\Rightarrow 12 \text{ } \text{x}^2 = 432$$

$$\Rightarrow x^2 = \frac{432}{12}$$

$$\Rightarrow$$
 x² = 36

$$\Rightarrow$$
 x = 6 cm

Therefore,

Height = 4x

= 24 cm

Question: 16

The length of the

Solution:

Given:

Rate = Rs 9 per m^2

Side a = 20 m

Side b = 21 m

Side c = 29 m

Area of a scalene triangle = $\sqrt{(s(s-a)(s-b)(s-c))}$

Where,
$$s = \frac{a+b+c}{2}$$

$$s \, = \frac{20 \, + \, 21 \, + \, 29}{2} m$$

$$\Rightarrow \ s \, = \, \frac{70}{2} m$$

$$\Rightarrow$$
 s = 35 m

Area of triangular field = $\sqrt{(35 \text{ m} \times (35\text{-}20)\text{m} \times (35\text{-}21)\text{m} \times (35\text{-}29)\text{m})}$

$$= \sqrt{(35 \text{ m} \times 15 \text{ m} \times 14 \text{ m} \times 6 \text{ m})}$$

$$= \sqrt{44100} \text{ m}^2$$

$$= 210 \text{ m}^2$$

Question: 17

The side of a squ

Solution:

Let the side be x

Now,

Area of equilateral triangle = $\frac{\sqrt{3}}{4} \times side^2$

$$=\frac{\sqrt{3}}{4}\times x^2$$

And,

Area of square = $side^2$

$$= x^2$$

Ratio =
$$\frac{\text{Area of square}}{\text{Area of triangle}}$$

$$= \frac{x^2}{\frac{\sqrt{3}}{4} \times x^2}$$

$$=\frac{4}{\sqrt{3}}$$

Therefore, the ratio is $4:\sqrt{3}$

Question: 18

The sides of an e

Solution:

Let the side = radius = x

Now,

Area of circle = πr^2

$$\Rightarrow 154 = \frac{22}{7} \times x^2$$

$$\Rightarrow x^2 = \frac{154 \times 7}{22}$$

$$\Rightarrow$$
 x² = 49

$$\Rightarrow$$
 x = 7 cm

Area of equilateral triangle = $\frac{\sqrt{3}}{4} \times side^2$

$$=\frac{\sqrt{3}}{4}\times 7^2$$

$$= \ 49 \frac{\sqrt{3}}{4} \ cm^2$$

Question: 19

The area of a rho

Solution:

Given:

Area of rhombus = 480 cm^2

Length of diagonal 1 (d₁) = 20 cm

Let, Length of diagonal 2 be $\ensuremath{\mathtt{d}}_2$

Area of rhombus = $1/2 \times d_1 \times d_2$

$$\Rightarrow 480 = 1/2 \times 20 \times d_2$$

$$\Rightarrow d_2 = \frac{480 \times 2}{20}$$

$$\Rightarrow$$
 d₂ = 48 cm

Now,

Side of rhombus = $1/2 \times \sqrt{(48^2 + 20^2)}$

$$= 1/2 \times \sqrt{(2304 + 400)}$$

$$= 1/2 \times \sqrt{2704}$$

$$= 1/2 \times 52$$

$$= 26 \text{ cm}$$

Question: 20

One side of a rho

Solution:

Given:

Side = 24 cm

Length of diagonal 1 $(d_1) = 20$ cm

Let, Length of diagonal 2 be $\ensuremath{\mathtt{d}}_2$

We know that,

Side of rhombus =
$$1/2 \times \sqrt{(d_1^2 + d_2^2)}$$

= $20 = 1/2 \times \sqrt{(24^2 + d_2^2)}$
= $20 \times 2 = \sqrt{(576 + d_2^2)}$
= $40 = \sqrt{(576 + d_2^2)}$
Squaring both sides,
= $1600 = 576 + d_2^2$
= $d_2^2 = 1024$
= $d_2 = 32$ cm
Now.
Area of rhombus = $1/2 \times d_1 \times d_2$
= $1/2 \times 24 \times 32$
= 384 cm²
Exercise: FORMATIVE ASSESMENT (UNIT TEST)
Question: In the given figu
Solution: Given:
AC = 17 cm
BC = 15 cm
BD = 12 cm
CD = 9 cm.
 $\angle ABC = 90^\circ$
 $\angle BDC = 90^\circ$
In $\triangle ABC$,
Using Pythagoras theorem,
 $AB^2 + BC^2 = AC^2$
= $AB^2 = AC^2 \cdot BC^2$
= $AB = \sqrt{(AC^2 \cdot BC^2)}$
= $AB = \sqrt{(AC^2 \cdot BC^2)}$
= $AB = \sqrt{(289 \cdot 225)}$
= $AB = \sqrt{(289 \cdot 225)}$
= $AB = \sqrt{(289 \cdot 225)}$
= $AB = \sqrt{(248 \cdot 225)}$

 \Rightarrow AB = 8 cm

 $= 1/2 \times 8 \times 15$

Area of $\triangle ABC = 1/2 \times AB \times BC$

Therefore,

 $= 60 \text{ cm}^2$

And,

In ΔBDC,

Area of $\triangle BDC = 1/2 \times BD \times DC$

$$= 1/2 \times \times 12 \times 9$$

$$= 54 \text{ cm}^2$$

Therefore,

Area of quadrilateral ABCD = Area of \triangle ABC + Area of \triangle BDC

$$= 60 \text{ cm}^2 + 54 \text{ cm}^2$$

$$= 114 \text{ cm}^2$$

Question: 2

In the given figu

Solution:

Given: ABCD is a trapezium in which AB = 40 m, BC = 15 m, CD = 28 m, AD = 9 m and CE \perp

AB. To find: Area of trap. ABCDSolution:

$$AB = 40 \text{ m}, BC = 15 \text{ m}, AD = 9 \text{ m} \text{ and } CD = 28 \text{ m}.$$

In trapezium ABCD,

Area of trapezium = $1/2 \times \text{sum of parallel sides} \times \text{distance between them}$

$$= 1/2 \times (28 + 40) \times 9$$

$$= 1/2 \times 68 \times 9$$

$$= 306 \text{ m}^2$$

Question: 3

The sides of a tr

Solution:

Given: Ratio of Sides = 12: 14: 25

Perimeter = 25.5 cm

Let the sides be,

$$a = 12x cm$$

$$b = 14x cm$$

$$c = 25x cm$$

We know that,

Perimeter of a triangle = a + b + c

$$\Rightarrow$$
 25.5 cm = 12x cm + 14x cm + 25x cm

$$\Rightarrow$$
 25.5 cm = 51x cm

$$\Rightarrow x = \frac{25.5 \text{ cm}}{51 \text{ cm}}$$

$$\Rightarrow$$
 x = 0.5

Therefore,

$$a = 12x cm = 12 \times 0.5 cm = 6 cm$$

$$b = 14x cm = 14 \times 0.5 cm = 7 cm$$

$$c = 25x cm = 25 \times 0.5 cm = 12.5 cm$$

Clearly largest side is c = 12.5 cm

Question: 4

The parallel side

Solution:

Given:

Side
$$1 = 9.7$$
 cm

Side
$$2 = 6.3$$
 cm

Distance between sides = 6.5 cm

Area of trapezium = $1/2 \times \text{sum of parallel sides} \times \text{distance between them}$

$$= 1/2 \times (9.7 + 6.3) \times 6.5$$

$$= 1/2 \times 16 \times 6.5$$

$$= 52 \text{ cm}^2$$

Question: 5

Find the area of

Solution:

Given:

Side of an equilateral triangle = 10 cm

Area of equilateral triangle = $\frac{\sqrt{3}}{4} \times side^2$

$$=\frac{\sqrt{3}}{4}\times\,10^2$$

$$=\frac{\sqrt{3}}{4}\times 100$$

$$=\frac{100\sqrt{3}}{4}$$

$$= 25\sqrt{3}$$

$$= 25 \times 1.732$$

$$= 43.3 \text{ cm}^2$$

Question: 6

Find the area of

Solution:

Given:

 $Side\ AB = Side\ AC = 13\ cm$

Base = 24 cm

In \triangle ADC (right-angled),

$$DC = 12 cm$$

By Pythagoras theorem,

$$AD^2 + DC^2 = AC^2$$

$$\Rightarrow$$
 AD² = AC² - DC²

$$\Rightarrow AD^2 = 13^2 - 12^2$$

$$\Rightarrow AD^2 = 169 - 144 = 25$$

$$\Rightarrow$$
 AD = 5 cm

Now,

Area of triangle = $1/2 \times \text{base} \times \text{height}$

$$= 1/2 \times BC \times AD$$

$$= 1/2 \times 24 \times 5$$

$$= 60 \text{ cm}^2$$

Question: 7

The longer side o

Solution:

Given:

Length (l) = 24 m

Diagonal = 26 m

Let breadth be b

We know that,

 $Base^2 + Perpendicular^2 = Hypotenuse^2$

$$\Rightarrow 24^2 + b^2 = 26^2$$

$$\Rightarrow$$
 b² = 26² - 24²

$$\Rightarrow$$
 b² = 676 - 576 = 100

$$\Rightarrow$$
 b= 10 m

Area of rectangle = Length \times Breadth

$$= 24 \text{ m} \times 10 \text{ m}$$

$$= 240 \text{ m}^2$$

Question: 8

The length of the

Solution:

Given:

Length of diagonal = 24 cm

Let the side of square = x cm

We know that,

 $Hypotenuse^2 = Base^2 + Perpendicular^2$

$$\Rightarrow 24^2 = x^2 + x^2$$

$$\Rightarrow 576 = 2x^2$$

$$\Rightarrow x^2 = \frac{576}{2}$$

$$\Rightarrow$$
 x² = 288

$$\Rightarrow$$
 x = $12\sqrt{2}$ cm

Now,

Area of a square = $side^2$

$$= (12\sqrt{2} \text{ cm})^2$$

Question: 9

Find the area of

Solution:

Given:

Length of diagonal 1 $(d_1) = 48$ cm

Length of diagonal 2 $(d_2) = 20 \text{ cm}$

Area of rhombus = $1/2 \times d_1 \times d_2$

$$= 1/2 \times 48 \text{ cm} \times 20 \text{ cm}$$

$$= 480 \text{ cm}^2$$

Question: 10

Find the area of

Solution:

Given: Side 1 = a (let) = 42 cm

Side
$$2 = b$$
 (let) = 34 cm

Side
$$3 = c$$
 (let) = 20 cm

We know that,

Area of a scalene triangle = $\sqrt{(s(s-a)(s-b)(s-c))}$

Where,
$$s = \frac{a+b+c}{2}$$

$$s = \frac{42 + 34 + 20}{2} cm$$

$$\Rightarrow s = \frac{96}{2} cm$$

$$\Rightarrow$$
 s = 48 cm

Now,

Area of a scalene triangle = $\sqrt{(48 \text{cm} \times (48\text{-}42) \text{cm} \times (48\text{-}34) \text{cm} \times (48\text{-}20) \text{cm})}$

$$= \sqrt{(48\text{cm} \times 6\text{cm} \times 14\text{cm} \times 28\text{cm})}$$

 $= \sqrt{112896} \text{ cm}^2$

 $= 336 \text{ cm}^2$

Question: 11

A lawn is in the

Solution:

Given: Cost of fencing lawn = Rs 20 per metre.

Area of lawn = 3375 m^2

Length : Breadth = 5:3

Let,

Length = 5x

Breadth = 3x

We know that,

Area of lawn = Length \times Breadth

$$\Rightarrow 3375 \text{ m}^2 = 5x \times 3x$$

$$\Rightarrow 3375 \text{ m}^2 = 15x^2$$

$$\Rightarrow x^2 = \frac{3375}{15} m^2$$

$$\Rightarrow$$
 x² = 225 m²

$$\Rightarrow$$
 x = 15 m

Therefore,

Length =
$$5x = 5 \times 15 = 75 \text{ m}$$

Breadth =
$$3x = 3 \times 15 = 45 \text{ m}$$

Now,

Perimeter of lawn = 2(length + breadth)

$$= 2(75 m + 45 m)$$

$$= 2 \times 120 \text{ m}$$

$$= 240 \text{ m}$$

Hence,

Cost of Fencing = $240 \text{ m} \times \text{Rs } 20 \text{ per meter}$

= Rs 4800

Question: 12

Find the area of

Solution:

Given:

Length of diagonal 1 $(d_1) = 24$ cm

Side = 20 cm

Let, Length of diagonal 2 be $\ensuremath{\mathtt{d}}_2$

We know that,

Side of rhombus = $1/2 \times \sqrt{(d_1^2 + d_2^2)}$

$$\Rightarrow 20 = 1/2 \times \sqrt{(24^2 + d_2^2)}$$

$$\Rightarrow 20 \times 2 = \sqrt{(576 + d_2^2)}$$

$$\Rightarrow 40 = \sqrt{(576 + d_2^2)}$$

Squaring both sides,

$$\Rightarrow 1600 = 576 + d_2^2$$

$$\Rightarrow d_2^2 = 1600-576$$

$$\Rightarrow d_2^2 = 1024$$

$$\Rightarrow$$
 d₂ = 32 cm

Now,

Area of rhombus = $1/2 \times d_1 \times d_2$

$$= 1/2 \times 24 \times 32$$

$$= 384 \text{ cm}^2$$

Question: 13

Find the area of

Solution:

Given:

$$AB (say) = 11 cm$$

$$DC (say) = 25 cm$$

$$AD (say) = 15 cm$$

$$BC (say) = 13 cm$$

Draw AE ∥ BC

Now the trapezium is divided into a triangle ADE and a parallelogram AECB.

Since, AECB is a parallelogram

Therefore, AE = BC = 13 cm

And, AB = EC

$$DE = DC - EC(= AB) = 25 - 11 = 14 \text{ cm}$$

Now,

We know that,

Area of a scalene triangle ($\triangle AED$) = $\sqrt{(s(s-AE)(s-ED)(s-AD))}$

Where,
$$s = \frac{AE + ED + AD}{2}$$

$$s \, = \frac{13 \, + \, 14 \, + \, 15}{2} cm$$

$$\Rightarrow$$
 s = $\frac{42}{2}$ cm

$$\Rightarrow$$
 s = 21 cm

Now,

Area of a scalene triangle = $\sqrt{(21\text{cm} \times (21\text{-}13)\text{cm} \times (21\text{-}14)\text{cm} \times (21\text{-}15)\text{cm})}$

$$= \sqrt{(21\text{cm} \times 8\text{cm} \times 7\text{cm} \times 6\text{cm})}$$

$$= \sqrt{7056} \text{ cm}^2$$

$$= 84 \text{ cm}^2$$

Also,

Area of a triangle = $1/2 \times \text{base} \times \text{height}$

$$\Rightarrow$$
 84 = 1/2 × 14 × height

$$\Rightarrow height = \frac{84 \times 2}{14}$$

$$\Rightarrow$$
 height = 12 cm

Now,

Area of a parallelogram = base \times height

$$= 11 \text{ cm} \times 12 \text{ cm}$$

$$= 132 \text{ cm}^2$$

Now,

Area of Trapezium ABCD = Area of \triangle ADE + Area of a parallelogram ABCE

$$= 84 \text{ cm}^2 + 132 \text{ cm}^2$$

$$= 216 \text{ cm}^2$$

Question: 14

The adjacent side

Solution:

Given:

$$AB = 34 \text{ cm}$$

$$BC = 20 \text{ cm}$$

$$AC = 42 \text{ cm}$$

The diagonal of a parallelogram divides it into two equal triangles.

Therefore,

Area of ABCD = $2 \times \text{Area of } \Delta ABC$

Now,

We know that,

Area of a scalene triangle = $\sqrt{(s(s-AC)(s-AB)(s-BC))}$

Where,
$$s = \frac{AC + AB + BC}{2}$$

$$s \, = \frac{42 \, + \, 34 \, + \, 20}{2} cm$$

$$\Rightarrow$$
 s = $\frac{96}{2}$ cm

$$\Rightarrow$$
 s = 48cm

Now,

Area of a scalene triangle = $\sqrt{(48 \text{cm} \times (48-42) \text{cm} \times (48-34) \text{cm} \times (48-20) \text{cm})}$

$$= \sqrt{(48\text{cm} \times 6\text{cm} \times 14\text{cm} \times 28\text{cm})}$$

$$= \sqrt{112896} \text{ cm}^2$$

$$= 336 \text{ cm}^2$$

Therefore,

Area of ABCD = $2 \times 336 \text{ cm}^2$

$$= 672 \text{ cm}^2$$

Question: 15

The cost of fenci

Solution:

Given:

Rate = RS. 14 per metre

Total Cost = RS. 2800

Rate of mowing = RS. 54 per 100 m^2

Let the side of square field be s

Now,

$$Perimeter = \frac{Total Cost}{Rate}$$

$$=\frac{2800}{14}$$

$$= 200 \text{ m}$$

Perimeter = $4 \times \text{side}$

$$\Rightarrow$$
 200 m = 4 × s

$$\Rightarrow$$
 s = $\frac{200}{4}$

$$\Rightarrow$$
 s = 50 m

Now,

 $Area = side^2$

$$= (50 \text{ m})^2$$

$$= 2500 \text{ m}^2$$

Therefore,

Cost of mowing $100 \text{ m}^2 = \text{Rs } 54$

Cost of mowing 1
$$m^2 = Rs \frac{54}{100}$$

Cost of mowing 2500 m² = Rs
$$\frac{54}{100}$$
 × 2500

$$= Rs 1350$$

Question: 16

Find the area of

Solution:

Given:

$$DB = 20 \text{ cm}$$

$$AB = 42 \text{ cm}$$

$$AD = 34 \text{ cm}$$

$$CD = 29 \text{ cm}$$

$$CB = 21 \text{ cm}$$

In \triangle ABD(scalene),

Area of a scalene triangle = $\sqrt{(s(s-AB)(s-BD)(s-AD))}$

Where,
$$s = \frac{AB + BD + AD}{2}$$

$$s \, = \, \frac{42 \, + \, 20 \, + \, 34}{2} cm$$

$$\Rightarrow$$
 s = $\frac{96}{2}$ cm

$$\Rightarrow$$
 s = 48 cm

Now,

Area of a scalene triangle = $\sqrt{(48 \text{cm} \times (48\text{-}42) \text{cm} \times (48\text{-}20) \text{cm} \times (48\text{-}34) \text{cm})}$

$$= \sqrt{(48 \text{ cm} \times 6 \text{ cm} \times 28 \text{ cm} \times 14 \text{ cm})}$$

$$= \sqrt{112896} \text{ cm}^2$$

$$= 336 \text{ cm}^2$$

Similarly,

In ΔBCD (scalene),

Area of a scalene triangle = $\sqrt{(s(s-BC)(s-CD)(s-BD))}$

Where,
$$s = \frac{BC + BD + CD}{2}$$

$$s\,=\,\frac{29\,+\,20\,+\,21}{2}cm$$

$$\Rightarrow \ s \, = \, \frac{70}{2} cm$$

$$\Rightarrow$$
 s = 35 cm

Now,

Area of a scalene triangle = $\sqrt{(35 \text{ cm} \times (35\text{-}29)\text{cm} \times (35\text{-}20)\text{cm} \times (35\text{-}21)\text{cm})}$

$$= \sqrt{(35 \text{ cm} \times 6 \text{ cm} \times 15 \text{ cm} \times 14 \text{ cm})}$$

$$= \sqrt{44100} \text{ cm}^2$$

$$= 210 \text{ cm}^2$$

Now,

Area of quadrilateral ABCD = Area of \triangle ABD + Area of \triangle BCD

$$= 336 \text{ cm}^2 + 210 \text{ cm}^2$$

$$= 546 \text{ cm}^2$$

Question: 17

A parallelogram a

Solution:

Given:

Diagonal 1 (d_1) of rhombus = 120 m

Diagonal 2 (d_2) of rhombus = 44 m

Side of parallelogram = 66 m

Area of rhombus = $1/2 \times d_1 \times d_2$

$$= 1/2 \times 120 \text{ m} \times 44 \text{ m}$$

$$= 2640 \text{ m}^2$$

Now.

Area of parallelogram = Base \times Height

$$\Rightarrow$$
 2640 m² = 66 m × Height

$$\Rightarrow$$
 Height = $\frac{2460}{66}$

$$\Rightarrow$$
 Height = 40 m

Question: 18

The diagonals of

Solution:

Given:

Length of diagonal 1 $(d_1) = 48cm$

Length of diagonal 2 $(d_2) = 20$ cm

Side of rhombus = $1/2 \times \sqrt{(d_1^2 + d_2^2)}$

$$= 1/2 \times \sqrt{(48^2 + 20^2)}$$

$$= 1/2 \times \sqrt{(2304 + 400)}$$

$$= 1/2 \times \sqrt{2704}$$

$$= 1/2 \times 52$$

$$= 26 \text{ cm}$$

Therefore,

Perimeter of rhombus = $4 \times \text{Side of rhombus}$

$$= 4 \times 26 \text{ cm}$$

$$= 104 \text{ cm}$$

Question: 19

The adjacent side

Solution:

Given:

Longer side = 36 cm

Shorter side = 27 cm

Distance between Shorter sides = 12 cm

Let, Distance between Longer sides = x cm

Now,

Area of parallelogram = Shorter Side × Distance between Longer sides

$$= 27 \text{ cm} \times 12 \text{ cm}$$

$$= 324 \text{ cm}^2$$

Also,

Area of parallelogram = Longer side \times Distance between Longer sides

$$\Rightarrow$$
 324 cm² = 36 cm × x cm

$$\Rightarrow x = \frac{324}{36}$$

$$\Rightarrow$$
 x = 9 cm

Hence,

Distance between Shorter sides = 9 cm

Question: 20

In a four sided f

Solution:

Given:

BD = 128 m

CF = 22.7 m

AE = 17.3 m

Now,

In ΔABD,

Area of a triangle = $1/2 \times base \times height$

 $= 1/2 \times BD \times AE$

 $= 1/2 \times 128 \times 17.3$

 $= 1107.2 \text{ m}^2$

Similarly,

In ΔCBD,

Area of a triangle = $1/2 \times base \times height$

 $= 1/2 \times BD \times FC$

 $= 1/2 \times 128 \times 22.7$

 $= 1452.8 \text{ m}^2$

Now,

Area of field = $\Delta ABD + \Delta CBD$

 $= 1107.2 \text{ m}^2 + 1452.8 \text{ m}^2$

 $= 2560 \text{ m}^2$