Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования

САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО

Факультет систем управления и робототехники

Лабораторная работа № 4 "Динамические системы"

по дисциплине Практическая линейная алгебра

Выполнила: студентка гр. R3238

Нечаева А. А.

Преподаватель: Перегудин Алексей Алексеевич

B этой лабораторной мы будем работать c непрерывными $(t \in \mathbb{R})$ и дискретными $(k \in \mathbb{Z})$ линейными динамическими системами второго порядка вида

$$\begin{cases} \dot{x}_1(t) = a_1 x_1(t) + a_2 x_2(t), \\ \dot{x}_2(t) = a_3 x_1(t) + a_4 x_2(t) \end{cases}$$
 (1)

$$\begin{cases} x_1(k+1) = a_1 x_1(k) + a_2 x_2(k), \\ x_2(k+1) = a_3 x_1(k) + a_4 x_2(k) \end{cases}$$
 (2)

в более компактной форме:

$$\dot{x}(t) = Ax(t),\tag{3}$$

$$x(k+1) = Ax(k), (4)$$

где $x(\cdot) \in \mathbb{R}^2$, $\mathbb{R}^{2 \times 2}$.

1 задание. Придумать непрерывное.

Зададимся двумя неколлинеарными векторами $v_1, v_2 \in \mathbb{R}^2$, не лежащими на координатных осях:

$$v_1 = \begin{pmatrix} 1\\4 \end{pmatrix} \qquad v_2 = \begin{pmatrix} 2\\3 \end{pmatrix} \tag{5}$$

Придумаем непрерывные динамические системы:

1.1

Система ассимптотически устойчива, при этом если $x(0) = v_1$, то $x(t) \in Span\{v_1\}$, а если $x(0) = v_2$, то $x(t) \in Span\{v_2\}$ при всех $t \geq 0$.

Обратимся к уравнению $\dot{x}(t) = Ax(t), \ x(0) = x_0$ и к его решению: $x(t) = e^{At}x_0$.

- 1. Система асимптотически устойчива, значит выполнено $\lim_{t \to \infty} x(t) = 0$.
- 2. Выберем матрицу с двумя совпадающими **отрицательными** собственными числами, например:

$$A = \begin{pmatrix} -1 & 0\\ 0 & -1 \end{pmatrix} \tag{6}$$

Собственные числа $\lambda_1=\lambda_2=-1,$ собственные векторы $w_1=\begin{pmatrix} a\\0\end{pmatrix},\,w_2=\begin{pmatrix} 0\\b\end{pmatrix},\,a,b\in\mathbb{R}.$

1.2

Cистема неустойчива, при этом у матрицы A не существует двух неколлинеарных собственных векторов.

$$A = \begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix} \tag{7}$$

Собственные числа: $\lambda_1=4,\ \lambda_2=4,$ собственные векторы соответственно $w_1=\binom{a}{0},\ w_2=\binom{b}{0},\ a,b\in\mathbb{R}.$

1.3

Cистема неустойчива, при этом если $x(0)=v_1,\ mo\lim_{t\to\infty}x(t)=0.$

1.4

Система асимптотически устойчива, при этом матрица $A \in \mathbb{R}^2$ имеет комплексные собственные вектора вида $v_1 \pm v_2 i \in \mathbb{C}^2$.

1.5

Система неустойчива, при этом матрица А имеет такие же слбственные вектора, как в предыдущем пункте.

1.6

Система не является асимптотически устойчивой, но не является и неустойчивой, при этом матрица A имеет собственные векторы такие же, как в пункте 4.

2 задание. Замоделировать непрерывное.

2.1

Система ассимптотически устойчива, при этом если $x(0) = v_1$, то $x(t) \in Span\{v_1\}$, а если $x(0) = v_2$, то $x(t) \in Span\{v_2\}$ при всех $t \geq 0$.

2.2

Cистема неустойчива, при этом у матрицы A не существует двух неколлинеарных собственных векторов.

$$A = \begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix} \tag{8}$$

2.3

Система неустойчива, при этом если $x(0) = v_1$, то $\lim_{t \to \infty} x(t) = 0$.

2.4

Система асимптотически устойчива, при этом матрица $A \in \mathbb{R}^2$ имеет комплексные собственные вектора вида $v_1 \pm v_2 i \in \mathbb{C}^2$.

2.5

Cистема неустойчива, при этом матрица A имеет такие же слбственные вектора, как в предыдущем пункте.

2.6

Cистема не является асимптотически устойчивой, но не является и неустойчивой, при этом матрица A имеет собственные векторы такие же, как в пункте 4.

3 задание. Придумать дискретное.

 Π ридумать дискретные динамические системы, обладающие следующими собственными числами (при этом ни одна из придуманных матриц A не должна быть диагональной:

4 задание. Замоделировать дискретное.