

Systemnahe Programmierung SS 2024

Die Programmierumgebung

Helmut Lindner

Struktur eines C-Programms

Erstes C-Programm

Compilieren eines C-Programms

Compilieren eines C-Programms

Der C-Compiler

Der C-Compiler ist standardmäßig als cc Befehl verfügbar:

```
cc ex1.c
```

Der Compiler ruft auch den Linker auf und erzeugt so gleich eine ausführbare Datei mit dem Default-Namen a.out.

Mit dem Flag -o wird der Name der ausführbaren Datei angegeben:

```
cc ex1.c -o luftballon
```

Nützliche Compiler-Flags

- -Wall ...alle Warnings anzeigen
- -00 ... alle Optimierungen deaktivieren
- -g ... Debuginformationen erzeugen
- -1 ... zusätzliche Bibliothek einbinden

Default Einstellungen des Compilers anzeigen:

```
cc -v -x c -E /dev/null
```

Struktur eines C-Programms

Header Dateien

stdio.h ist ein Teil der C Standard Bibliothek

weitere wichtige Headerdateien:

ctype.h, math.h, stdlib.h, string.h, time.h

Die Header-Dateien müssen sich im Include-Pfad befinden. Dieser zeigt normalerweise auf /usr/include und Unterverzeichnisse.

Mit dem Compiler-Flag -I<Pfad> können weitere Include-Verzeichnisse angegeben werden.

Dokumentation der GNU C Library:

```
https://www.gnu.org/software/libc/manual/html_node/index.html
```

Übersichtliche Funktionsreferenz:

```
https://www.tutorialspoint.com/c_standard_library/index.htm
```

Allgemeines

Programmierumgebung und Tools

Ein virtuelle Maschine (Oracle VirtualBox) mit allen benötigten Tools steht zum Download unter

https://fhjoanneum-my.sharepoint.com/:u:/g/personal/helmut_lindner_fh-joanneum_at/EcuYYEVI5otHg8SnHrPucsUBniR6fkJMYi6B2Q50UurhGw?e=NeoLfh

bereit.

Ich empfehle diese VM zu verwenden, grundsätzlich können sie auch ihr eigenes Linux verwenden.

Wir verwenden folgende Tools:

- gcc GNU C-Compiler
- make
- Texteditor oder IDE (nach Vorliebe)

Installation

Tools installieren (ubuntu Linux)

Compiler und Tools installieren

sudo apt install build-essential

Splint – statische Checks

sudo apt install splint

Valgrind – Laufzeit Prüfung

sudo apt install valgrind

man Pages

Manpages installieren

```
sudo apt-get install manpages-dev
```

Wichtige Abschnitte:

```
SYNOPSIS
```

```
Beschreibt die Funktionssignatur und notwendige Include-Dateien.
Beispiel:
    #include <unistd.h>
    ssize t write(int fd, const void *buf, size t count);
```

DESCRIPTION

RETURN VALUE – wichtig, was wird zurückgegeben (Datentyp!)

ERRORS – Wie wird errno im Fehlerfall gesetzt.

SEE ALSO – Referenz zu ähnlichen Funktionen

Übung

Programm compilieren

1. Erstellen sie das erste C-Programm im Moodle VPL und compilieren Sie es.

COMPILED MY C COD

9 LINES OF CODE, 37 ERRO

Verändern sie das Programm so, dass es anstelle der Luftballons die

Quadratwurzel der Zahl 3638 berechnet und ausgibt.

Verwenden sie dazu die Bibliotheksfunktion sgrt().

Verwenden sie

man sqrt

um die Definition der sqrt() Funktion zu sehen.

Verwenden sie als Ausgabeformat (printf): %.21f Ausgabe: Die Wurzel von 3638 ist <Ergebnis>

2. Compilieren sie das Programm lokal auf ihrem Rechner und führen sie es aus.