Обучение с подкреплением

Классическое обучение с подкреплением

Про что этот курс?

Что будет на курсе:

- Немного классической теории
- Популярные современные алгоритмы
- Некоторые продвинутые алгоритмы RL, которые будут полезны на практике
- Рассказ о том, где и как применяется RL

Что можно посмотреть:

- Reinforcement Learning: An Introduction (Sutton & Barto)
- Spinning Up in Deep RL (OpenAI)
- Practical RL (Yandex)

Оценка:

- Будет 4 ДЗ
- За каждое ДЗ можно получить от 0 до 10 баллов
- 32+ баллов отлично, 24+ баллов хорошо, 16+ баллов удовлетворительно

Задача обучения с учителем

Обучение с учителем

Обучение с подкреплением

Обучение с подкреплением

Supervised Learning vs Reinforcement Learning

Обучение с учителем:

- Заранее известны ответы
- Есть фиксированный набор данных
- Результат зависит только от текущего решения

Обучение с подкреплением:

- Набора данных нет
- Известных ответов нет
- Распределение получаемых данных сильно зависит от агента
- Результат зависит от последовательности принятых решений

Простой случай: многорукие бандиты

Постановка задачи:

- Эпизод длится ровно t шагов.
- На каждом шаге можно совершить одно из k действий и получить награду, которая распределена случайно и зависит только от действия.
- Хотим максимизировать суммарную награду за эпизод.

Простой случай: многорукие бандиты

Постановка задачи:

- Эпизод длится ровно t шагов.
- На каждом шаге можно совершить одно из k действий и получить награду, которая распределена случайно и зависит только от действия.
- Хотим максимизировать суммарную награду за эпизод.

Простой случай: многорукие бандиты

Определим value действия как математическое ожидание награды:

$$q(a) = \mathbb{E}_{r \sim p(r|a)} r$$

Если мы знаем value каждого действия, то можем просто выбрать то действие, у которого больше всего value.

Ho value мы не знаем, и поэтому будем его приближать с помощью Q(a). Хотим, чтобы Q(a) было как можно ближе к q(a).

Наивный алгоритм

Что будет, если мы будем всегда выбирать лучшее действие в соответствии с приближением, а затем обновлять приближение на основе наблюдений?

Алгоритм:

- 1. Инициализировать Q(a) ← 0
- 2. Инициализировать N(a) ← 0 // Счетчик количества применений действия
- 3. for t in range(T):
 - 1. a = argmax Q(a)
 - 2. r = step(a) // Совершаем действие и получаем награду
 - 3. N(a) += 1
 - 4. Q(a) = r / N(a) + (1 1 / N(a)) Q(a) // Рекуррентная формула среднего

Наивный алгоритм

Что будет, если мы будем всегда выбирать лучшее действие в соответствии с приближением, а затем обновлять приближение на основе наблюдений?

Время, t	Действие, <i>а</i>	Q(1)	Q(2)	Q(3)	Q(4)	Награда, <i>r</i>
1	3	0	0	0	0	1.2050
2	3	0	0	1.2050	0	0.1138
3	3	0	0	0.6594	0	1.5140
4	3	0	0	0.9442	0	1.3417

Что пошло не так?

Epsilon-greedy exploration

Когда мы выбираем действие с наибольшим value, мы используем уже полученные знания (exploit), однако чтобы получить эти знания, нам необходимо исследовать среду (explore).

Как это делать?

Простой ε-greedy алгоритм:

- 1. Инициализировать Q(a) ← 0
- 2. Инициализировать N(a) ← 0 // Счетчик количества применений действия
- 3. for t in range(T):
 - 1. a = argmax Q(a) с вероятностью 1 ε, случайное действие с вероятностью ε
 - 2. r = step(a) // Совершаем действие и получаем награду
 - 3. c(a) += 1
 - 4. Q(a) = r / c(a) + (1 1 / c(a)) Q(a) // Рекуррентная формула среднего

Epsilon-greedy exploration

Посмотрим на результат ε-greedy алгоритма:

Exploration via UCB sampling

Можно ли исследовать среду лучше, чем просто совершая случайные действия с определенной вероятностью?

Upper-confidence bound алгоритм предлагает повышать вероятность совершить действие, если мы совершаем его слишком редко:

$$a = \arg \max Q(a) + c \cdot \sqrt{\frac{\ln t}{N(a)}}$$

Свойства:

- 1) Совершим каждое действие хотя бы один раз (т.к. в начале N(a) = 0)
- 2) Со временем количество неоптимальных действий убывает
- 3) Можно регулировать то, насколько часто исследуем среду с помощью константы

Exploration via UCB sampling

Сравним два подхода:

Contextual bandits

Предположим, что у распределение наград теперь зависит от некоторого состояния, которое известно в начале.

Старый подход работает плохо. Нужно учитывать контекст.

Можно просто приближать награду для каждого состояния независимо, но есть более сложные алгоритмы.

Применение контекстуальных бандитов

Artwork Personalization as Contextual Bandit

- Environment: Netflix homepage
- Context: Member, device, page, etc.
- Learner: Artwork selector for a show
- Action: Display specific image for show
- Reward: Member has positive engagement

Markov Decision Process

S - множество состояний

А - множество действий

T(s, a): S x A \to S - функция перехода (может быть случайной величиной)

R(s, a, s'): S x A x S \rightarrow R - функция награды (может быть случайной величиной)

D(s): $S \to \{0, 1\}$ - функция, которая определяет, закончился ли эпизод

Задача: максимизировать $\sum\limits_{i=1}^T R(s_{i-1},a_{i-1},s_i)$

Марковский процесс принятия решений (MDP) - это набор (S, A, T, R, D). Чаще всего D присутствует неявно. В таком случае MDP определяется как (S, A, T, R)

Grid World

S: множество возможных положений на сетке

А: {идти вверх, идти налево, идти направо, идти вниз}

T(s, a): сместиться в нужную сторону если есть путь

R(s, a, s'): +1 если в (4, 3), -1 если в (4, 2), иначе θ

D(s): 1 если совершаем любое действие в (4, 3) или в (4, 2), иначе 0

Игру начинаем в (1, 1)

Задача: максимизировать $\sum\limits_{i=1}^T R(s_{i-1},a_{i-1},s_i)$

Markov Decision Process

S - множество состояний

А - множество действий

T(s, a): $S \times A \to S$ - функция перехода (может быть случайной величиной)

R(s, a, s'): $S \times A \times S \to R$ - функция награды (может быть случайной величиной)

 $D(s): S \to \{0, 1\}$ - функция, которая определяет, закончился ли эпизод

Задача: максимизировать
$$\sum\limits_{i=1}^T R(s_{i-1},a_{i-1},s_i)$$

Проблема: можем решать бесконечно долго

Новая задача:
$$\sum\limits_{i=0}^{T} \gamma^i R(s_i,a_i,s_{i+1})$$
, $0<\gamma<1$

Policy

Политика/стратегия $\pi(s):S o A$ - правило, по которому агент принимает решения.

Оптимальная стратегия: $\pi^*(s):\sum_{i=0}^T \gamma^i R(s_i,a_i,s_{i+1}) oundsymbol{ op} \max_a$

На самом деле хотим найти оптимальную политику!

Value Function

Policy Value Function определяет то, какую награду получит агент, который находится в заданном состоянии

$$V_{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \mathbb{E}_{s' \sim T(s,a),r \sim R(s,a,s'))} [r + \gamma V_{\pi}(s')]$$

Действие политики Ожидаемая суммарная награда

Реакция среды на действие

Value Function определяет то, насколько большую суммарную награду мы можем получить если находимся в определенном состоянии

$$V(s) = V_{\pi^*}(s) = \max_{a} \mathbb{E}_{s' \sim T(s,a), r \sim R(s,a,s')} [r + \gamma \cdot V_{\pi^*}(s')]$$

А оптимальную стратегию можно записать как:

$$\pi^*(s) = \arg\max_{a} \mathbb{E}_{s' \sim T(s,a), r \sim R(s,a,s')} [r + \gamma \cdot V_{\pi^*}(s')]$$

23/51

Value Function

Policy Evaluation

Дана политика π . Хотим посчитать value function для нее.

Алгоритм:

- 1. Инициализируем вектор V
- 2. Пока не сошлись:
 - 1. Для всех состояний $s \in S$:
 - 1. В стохастическом случае

$$V_{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \mathbb{E}_{s' \sim T(s,a),r \sim R(s,a,s'))} [r + \gamma V_{\pi}(s')]$$
 В детерминированном случае

$$V_{\pi}(s) = R(s, a, T(s, a)) + \gamma V_{\pi}(T(s, a))$$

Policy Iteration

Алгоритм:

- 1. Пока политика улучшается:
 - 1. Получаем V с помощью алгоритма Policy Evaluation
 - 2. Для всех состояний $s \in S$:
 - 1. $\pi_{new}(s) = \arg \max \mathbb{E}_{s' \sim T(s,a), r \sim R(s,a,s')}[r + \gamma V_{\pi}(s')]$
 - 2. Если новое дей a ствие отличается от старого, то вернуться к шагу 1.1

Замечание 1:

В алгоритме Policy Evaluation можно инициализировать значение V ранее посчитанными значениями. Для многих сред это значительно ускорит алгоритм.

Замечание 2:

Полученная политика будет оптимальной.

Value Iteration

Алгоритм:

- 1. Инициализируем вектор значений функции **V**
- 2. В течении **Т** шагов:
 - 1. Для каждого состояния среды **s**:

$$V(s) = \max_{a} \mathbb{E}_{s' \sim T(s,a), r \sim R(s,a,s')} [r + \gamma V_{\pi}(s')]$$

Замечание 1:

Политики в явном виде нигде нет. Ее можно получить с помощью argmax

Замечание 2:

Обычно мы не хотим считать мат. ожидание честно, поэтому давайте от него избавимся

Value Iteration

Алгоритм:

- 1. Инициализируем вектор значений функции **V**
- 2. В течении **Т** шагов:
 - 1. Для каждого состояния среды **s**:

$$V(s) = (1 - \alpha) \cdot V(s) + \alpha \max_{a} [R(s, a, T(s, a))) + \gamma V_{\pi}(T(s, a))]$$

Learning rate

Здесь используются семплы из распределения

Замечание 1:

Политики в явном виде нигде нет. Ее можно получить с помощью argmax

Замечание 2:

Теперь нет никакого мат. ожидания. В случае стохастической среды приближение может быть не точным, но алгоритм работает значительно быстрее.

Ограничения

Алгоритм:

- 1. Инициализируем вектор значений функции **V**
- 2. В течении **Т** шагов:
 - 1. Для каждого состояния среды s:

$$V(s) = (1 - \alpha) \cdot V(s) + \alpha \max_{a} [R(s, a, T(s, a))) + \gamma V_{\pi}(T(s, a))]$$

Learning rate

Здесь используются семплы из распределения

Ограничения:

- 1. Должны знать T и R
- 2. Должны уметь перебирать все состояния
- 3. Должны уметь перебирать все действия

Перерыв

Value Iteration

Алгоритм:

- 1. Инициализируем вектор значений функции **V**
- 2. В течении **Т** шагов:
 - 1. Для каждого состояния среды s:

$$V(s) = (1 - \alpha) \cdot V(s) + \alpha \max_{a} [R(s, a, T(s, a))) + \gamma V_{\pi}(T(s, a))]$$

Ограничения:

- 1. Должны знать T и R
- 2. Должны уметь перебирать все состояния
- 3. Должны уметь перебирать все действия

First-visit Monte Carlo method

Дана политика π . Хотим посчитать value function для нее. Динамика среды не известна

Алгоритм:

- 1. Инициализируем вектор **V**
- 2. Инициализируем вектор массивов **G** пустыми массивами
- 3. В течении **N** итераций:
 - 1. Получаем эпизод au следуя политике π
 - 2. Для каждого состояния **s** в τ :
 - 1. Добавить в **G[s]** суммарную дисконтированную награду для этого состояния, полученную начиная с первого посещения этого состояния
 - 2. V[s] = mean(G[s])

Value Function

Policy Value Function определяет то, какую награду получит агент, который находится в заданном состоянии

$$V_{\pi}(s) = \mathbb{E}_{a \sim \pi(s)} \mathbb{E}_{s' \sim T(s,a), r \sim R(s,a,s')} [r + \gamma V_{\pi}(s')]$$

Действие политики Ожидаемая суммарная награда

Реакция среды на действие

Value Function определяет то, насколько большую суммарную награду мы можем получить если находимся в определенном состоянии

$$V(s) = V_{\pi^*}(s) = \max_{a} \mathbb{E}_{s' \sim T(s,a), r \sim R(s,a,s')} [r + \gamma \cdot V_{\pi^*}(s')]$$

А оптимальную стратегию можно записать как:

$$\pi^*(s) = \arg\max_{a} \mathbb{E}_{s' \sim T(s,a), r \sim R(s,a,s')} [r + \gamma \cdot V_{\pi^*}(s')]$$

33/51

Quality Function

Policy Quality Function определяет то, какую награду получит агент, который находится в заданном состоянии при совершении определенного действия

$$Q_{\pi}(s, a) = \mathbb{E}_{s' \sim T(s, a), r \sim R(s, a, s')}[r + \gamma \mathbb{E}_{a' \sim \pi(s')}Q_{\pi}(s', a')]$$

Реакция среды на действие Ожидаемая суммарная награда Действие политики

Quality Function определяет то, насколько большую суммарную награду мы можем получить если находимся в определенном состоянии совершив действие

$$Q(s, a) = Q_{\pi^*}(s, a) = \mathbb{E}_{s' \sim T(s, a), r \sim R(s, a, s')}[r + \gamma \max_{a'} Q(s', a')]$$

А оптимальную стратегию можно записать как:

$$\pi^*(s) = \arg\max_a Q(s, a)$$

34/51

Q-Function

First-visit Monte Carlo method

Дана политика π . Хотим посчитать value function для нее. Динамика среды не известна

Алгоритм:

- 1. Инициализируем вектор **Q**
- 2. Инициализируем вектор массивов **G** пустыми массивами
- 3. В течении **N** итераций:
 - 1. Получаем эпизод au следуя политике π
 - 2. Для каждого состояния **s** в τ :
 - 1. Добавить в **G[s, a]** суммарную дисконтированную награду для этого состояния, полученную начиная с первого посещения этого состояния
 - 2. Q[s, a] = mean(G[s, a])

Есть ли проблема?

Эбучение с подкреплением

Для большинства пар нет оценки

Эбучение с подкреплением 38/51

First-visit Monte Carlo method

Дана политика π . Хотим посчитать value function для нее. Динамика среды не известна

Алгоритм:

- 1. Инициализируем вектор **Q**
- 2. Инициализируем вектор массивов **G** пустыми массивами
- 3. В течении **N** итераций:
 - 1. Получаем эпизод au следуя политике π
 - 2. Для каждой пары (**s**, **a**) в τ:
 - 1. Добавить в **G[s, a]** суммарную дисконтированную награду для этого состояния, полученную начиная с первого посещения этого состояния
 - 2. Q[s, a] = mean(G[s, a])

Предполагаем, что можем начать эпизод с любой парой (s_0, a_0) с вероятностью больше нуля, либо считаем, что политика имеет ненулевую вероятность достичь любой пары (s, a) (например, является epsilon-greedy)

Эбучение с подкреплением

Monte Carlo Control

Алгоритм:

- 1. Инициализируем вектор **Q**
- 2. Инициализируем вектор массивов **G** пустыми массивами
- 3. В течении **N** итераций:
 - 1. Получаем эпизод au следуя политике π
 - 2. Для каждой пары (**s**, **a**) в τ:
 - 1. Добавить в **G[s, a]** суммарную дисконтированную награду для этого состояния, полученную начиная с первого посещения этого состояния
 - 2. Q[s, a] = mean(G[s, a])
 - 3. Для каждого состояния **s** в τ :
 - 1. Обновить "жадное" действие в политике π

Замечание 1: Используем старые награды. Иногда так делать плохо

Замечание 2: Оценка Q-функции учитывает то, что наша политика epsilon-greedy

Обучение с подкреплением

Q-learning

Алгоритм:

- 1. Инициализируем Q(s, a)
- 2. Инициализируем среду, получаем начальное состояние **s**
- 3. В течении **Т** шагов:
 - 1. $\mathbf{a} := \operatorname{argmax} \mathbf{Q}(\mathbf{s}, .)$
 - 2. Совершаем действие **a**, получаем **s**', **r**, **d** из среды

$$Q(s,a)=(1-lpha)Q(s,a)+lpha(r+\gamma\cdot\max_{a'}Q(s',a'))$$
 3. $\mathbf{s}:=\mathbf{s}'$ если не \mathbf{d} , иначе реинициализируем среду

Рассмотрим 3.3 подробнее:

$$Q(s,a) = (1-lpha)Q(s,a) + lpha(r+\gamma\cdot\max_{a'}Q(s',a'))$$
 Learning rate Получено из среды, знать R не нужно!

41/51

Есть ли в Q-learning проблема?

Обучение с подкреплением 42/51

Снова не исследуем среду

Эбучение с подкреплением 43/51

Epsilon-greedy Q-learning

Алгоритм:

- 1. Инициализируем Q(s, a)
- 2. Инициализируем среду, получаем начальное состояние **s**
- 3. В течении Т шагов:
 - **1. a** := argmax **Q(s, .)** <u>с вероятностью 1-**eps**, иначе **a** := random(**A**)</u>
 - 2. Совершаем действие **a**, получаем **s'**, **r**, **d** из среды $Q(s,a)=(1-\alpha)Q(s,a)+\alpha(r+\gamma\cdot \max_{a'}Q(s',a'))$
 - 3. s := s' если не d, иначе реинициализируем среду

Замечание 1: Оценка Q не учитывает то, что политика epsilon-greedy

Эбучение с подкреплением 44/51

Cliff World

Обучение с подкреплением 45/5°

Cliff World

Что выучит Q-learning:

Оптимальная epsilon-greedy политика:

Обучение с подкреплением 46/51

SARSA

Алгоритм:

- 1. Инициализируем Q(s, a)
- 2. Инициализируем среду, получаем начальное состояние **s**
- 3. В течении Т шагов:
 - **1. a** := argmax **Q(s, .)** <u>с вероятностью 1-**eps**, иначе **a** := random(**A**)</u>
 - 2. Совершаем действие **a**, получаем **s**', **r**, **d** из среды
 - 3. $Q(s,a)=(1-lpha)Q(s,a)+lpha(r+\gamma\cdot Q(s',a'))$, т.е. смотрим на реальное следующее действие
 - 4. s := s' если не d, иначе реинициализируем среду

Обучение с подкреплением 47/51

On-policy

Off-policy

On-policy

- При обучении агент оценивает реальную суммарную награду
- После обучения агент использует ту же политику, что и во время обучения
- Во время не использует дополнительных методов среды, весь exploration является частью агента

Примеры: SARSA, MG (Sontrol

Off-policy

- При обучении агент оценивает суммарную награду для оптимальной (жадной) политики
- После обучения агент использует жадную политику, убирая дополнительные exploration методы
- Во время обучения использует дополнительные методы исследования среды

Пример: Q-learning

$$r + \gamma \cdot \max_{a'} Q(s', a')$$

Обучение с подкреплением 48/51

Ограничения

- 1) Должны знать T и R
- 2) Дискретное пространство состояний
- 3) Дискретное пространство действий

Пусть все оценки храним во float. Размер 4 байта. Пусть есть 16 Гб оперативной памяти. Сколько всего можем хранить пар состояние-действие?

Обучение с подкреплением 49/51

Ограничения

- 1) Должны знать T и R
- 2) Дискретное пространство состояний
- 3) Дискретное пространство действий

Пусть все оценки храним во float. Размер 4 байта. Пусть есть 16 Гб оперативной памяти. Сколько всего можем хранить пар состояние-действие?

$$rac{16 \cdot 2^{30}}{4} = 4 \cdot 2^{30} pprox 4 \cdot 10^9$$

Сколько всего возможных позиций в игре в шахматы?

Ограничения

- 1) Должны знать Т и R
- 2) Дискретное пространство состояний
- 3) Дискретное пространство действий

Пусть все оценки храним во float. Размер 4 байта. Пусть есть 16 Гб оперативной памяти. Сколько всего можем хранить пар состояние-действие?

$$rac{16 \cdot 2^{30}}{4} = 4 \cdot 2^{30} pprox 4 \cdot 10^9$$

Сколько всего возможных позиций в игре в шахматы?

Оценка сверху (число Шеннона): 10^{43}

После первых 10 ходов (точное число): $69352859712417 \approx 69 \cdot 10^{12}$

Обучение с подкреплением 51/51