Санкт-Петербургский политехнический университет Петра Великого Физико-Механический институт

«Высшая школа прикладной математики»

ОТЧЕТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №5-8

по дисциплине «Математическая статистика»

Выполнил студент: Ярмак Дмитрий Юрьевич группа: 3630102/90101

Проверил:

к.ф.-м.н., доцент Баженов Александр Николаевич

Содержание

1	Пос	танові	ка задачи	6
2	Teo	рия		7
	2.1	_	ерное нормальное распределение	7
	2.2		ляционный момент (ковариация) и коэффициент корреляции	7
	2.3		очные коэффициенты корреляции	
		2.3.1	Выборочные коэффициенты корреляции Пирсона	7
		2.3.2	Выборочный квадратичный коэффцициент корреляции	7
		2.3.3	Выборочный коэффициент ранговой корреляции Спирмена	8
	2.4	Эллип	с рассеивания	8
	2.5	Прост	ая линейная регрессия	8
		2.5.1	Модель простой линейной регресии	8
		2.5.2	Метод наименьших квадратов	Ć
		2.5.3	Расчетные формулы для МНК-оценок	Ć
	2.6	Робаст	гные оценки коэффициентов линейной регрессии	G
	2.7	Метод	к максимального правдоподобия	10
	2.8	Прове	рка гипотезы о законе распределения генеральной совокуп-	
		ности.	Метод хи-квадрат	10
	2.9	Довер	ительные интервалы для параметров нормального распре-	
		делени		11
		2.9.1	Доверительный интервал для математического ожидания	
			т нормального распределения	11
		2.9.2	Доверительный интервал для среднего квадратического от-	
			клонения σ нормального распределения	11
	2.10	Довер	ительные интервалы для математического ожидания m и	
		средне	его квадратического отклонения σ произвольного распреде-	
		ления	при большом объеме выборки. Асимптотический подход	11
		2.10.1	Доверительный интервал для математического ожидания	
			т произвольной генеральной совокупности при большом	
			объёме выборки	11
		2.10.2	Доверительный интервал для среднего квадратического от-	
			клонения σ произвольной генеральной совокупности при	
			большом объёме выборки	12
3	Pea	лизаці	RK	13
4	Рез	ультат	Ы	1 4
	4.1	Выбор	очные коэффициенты корреляции	14
	4.2	Эллип	сы рассеивания	16
	4.3		и Коэффициентов линейно регрессии	18
		4.3.1	Выбока без возмущений	18
		4.3.2	Выбока с возмущениями	19

6	Ссь	ІЛКИ	25
	5.4	Доверительные интервалы для параметров распределения	24
		ности. Метод хи-квадрат	23
	5.3	Проверка гипотезы о законе распределения генеральной совокуп-	
	5.2	Оценка коэффициентов линейной регрессии	23
	5.1	Выборочные коэффициенты корреляции и эллипсы рассеивания.	23
5		уждение	23
		пределения. Асимптотический подход	22
	4.6		
		деления	22
	4.5	Доверительные интервалы для параметров нормального распре-	
		ности. Метод хи-квадрат	20
	4.4	Проверка гипотезы о законе распределения генеральной совокуп-	

Список иллюстраций

1	Двумерное нормальное распределение, $n=20$	16
2	Двумерное нормальное распределение, n = 60	17
3	Двумерное нормальное распределение, n = 100	18
4	Выборка без возмущения	19
5	Выборка с возмущениями	20

Список таблиц

1	Двумерное нормальное распределение, n = 20	14
2	Двумерное нормальное распределение, n = 60	14
3	Двумерное нормальное распределение, n = 100	15
4	Смесь нормальных распределений	15
5	Вычисление Хи квадрата при проверке гипотезы о нормальном	
	законе распределения	21
6	Вычисление Хи квадрата при проверке гипотезы о распределении	
	по Лапласу	21
7	Доверительные интервалы для параметров нормального распре-	
	деления	22
8	Доверительные интервалы для параметров произвольного рас-	
	пределения. Асимптотический подход	22

1 Постановка задачи

1. Сгенерировать двумерные выборки размерами 20, 60, 100 для нормального двумерного распределения $N(x, y, 0, 0, 1, 1, \rho)$.

Коэффициент корреляции ρ взять равным 0, 0.5, 0.9. Каждая выборка генерируется 1000 раз и для нее вычисляются: среднее значение, среднее значение квадрата и дисперсия коэффициентов корреляции Пирсона, Спирмена и квадратичного коэффициента корреляции. Повторить все вычисления для смеси нормальных распределений:

$$f(x,y) = 0.9N(x,y,0,0,1,1,0.9) + 0.1N(x,y,0,0,10,10,-0.9)$$

Изобразить сгенерированные точки на плоскости и нарисовать эллипс равновероятности.

- 2. Найти оценки коэффициентов линейной регрессии $y_i = a + bx_i + e_i$, используя 20 точек на отрезке [-1.8; 2] с равномерным шагом равным 0.2. Ошибку e_i считать нормально распределённой параметрами (0,1). В качестве эталонной зависимости взять $y_i = 2 + 2x_i + e_i$. При построении оценок коэффициентов использовать два критерия: критерий наименьших квадратов и критерий наименьших модулей. Проделать то же самое для выборки, у которой в значения y_1y_{20} вносятся возмущения 10 и -10.
- 3. Сгенерировать выборку объёмом 100 элементов для нормального распределения N(x, 0, 1). По сгенерированной выборке оценить параметры μ и σ нормального закона методом максимального правдоподобия. В качестве основной гипотезы H_0 будем считать, что сгенерированное распределение имеет вид $N(x, \hat{\mu}, \hat{\sigma})$. Проверить основную гипотезу, используя критерий согласия χ^2 . В качестве уровня значимости взять $\alpha=0.05$. Привести таблицу вычислений χ^2 . Исследовать точность (чувствительность) критерия χ^2 сгенерировать выборки равномерного распределения и распределения Лапласа малого объема (например, 20 элементов). Проверить их на нормальность.
- 4. Для двух выборок размерами 20 и 100 элементов, сгенерированных согласно нормальному закону N(x, 0, 1), для параметров положения и масштаба построить асимптотически нормальные интервальные оценки на основе точечных оценок метода максимального правдоподобия и классические интервальные оценки на основе статистик χ^2 и Стьюдента. В качестве параметра надёжности взять $\gamma = 0.95$.

2 Теория

2.1 Двумерное нормальное распределение

Двумерная случайная величина (X, Y) называется распределённой нормально (или просто нормальной), если её плотность вероятности определена формулой

$$N(x, y, \overline{x}, \overline{y}, \sigma_x, \sigma_y, \rho) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} *exp(-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\overline{x})^2}{\sigma_x^2} - 2\rho\frac{(x-\overline{x})(y-\overline{y})}{\sigma_x\sigma_y} + \frac{(y-\overline{y})^2}{\sigma_y^2}\right])$$

$$\tag{1}$$

Компоненты X, Y двумерной случайной величины также распределены нормально с математическими ожиданиями $\overline{x}, \overline{y}$ и средними квадратическими отклонениями σ_x, σ_y соответственно. Параметр ρ называется коэффициентом корреляции.

2.2 Корреляционный момент (ковариация) и коэффициент корреляции

Корреляционный момент, иначе говоря, ковариация, двух случайных X и Y:

$$K = cov(X, Y) = M[(X - \overline{x})(Y - \overline{y})]. \tag{2}$$

Коэффициент корреляции ρ двух случайных величин X и Y:

$$\rho = \frac{K}{\sigma_x \sigma_y}. (3)$$

2.3 Выборочные коэффициенты корреляции

2.3.1 Выборочные коэффициенты корреляции Пирсона

Выборочный коэффициент корреляции Пирсона:

$$r = \frac{\frac{1}{n} \sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\frac{1}{n} \sum (x_i - \overline{x})^2 \frac{1}{n} \sum (y_i - \overline{y})^2}} = \frac{K}{s_X s_Y}$$
(4)

где K, s_X^2, s_Y^2 - выборочные ковариации и дисперсии с.в. X и Y.

2.3.2 Выборочный квадратичный коэффцициент корреляции

Выборочный квадратичный коэффициент корреляции

$$r_Q = \frac{(n_1 + n_3) - (n_2 + n_4)}{n} \tag{5}$$

где n_1, n_2, n_3, n_4 - количества точек с координатами (x_i, y_i) , попавшими соответсвенно в определенные квадранты декартовой системы с осями x' = x - medx, y' = y - medy и с центром в точке с координатами (medx, medy).

2.3.3 Выборочный коэффициент ранговой корреляции Спирмена

Обозначим ранги, соответствующие значениям переменной X, через u, а ранги, соответствующие значениям переменной Y, - через v.

Выборочный коэффициент ранговой корреляции Спирмена:

$$r_S = \frac{\frac{1}{n} \sum (u_i - \overline{u})(v_i - \overline{v})}{\sqrt{\frac{1}{n} \sum (u_i - \overline{u})^2 \frac{1}{n} \sum (v_i - \overline{v})^2}}$$
(6)

где подчеркнутые переменные - суть средние значения рангов.

2.4 Эллипс рассеивания

Уравнение проекции эллипса рассеивания на плоскость хОу:

$$\frac{(x-\overline{x})^2}{\sigma_x^2} - 2\rho \frac{(x-\overline{x})(y-\overline{y})}{\sigma_x \sigma_y} + \frac{(y-\overline{y})^2}{\sigma_y^2} = const$$
 (7)

Центр эллипса находится в точке с координатами $(\overline{x}, \overline{y})$; оси симметрии эллипса составляют с осью Ох углы, определяемые уравнением

$$tg2\alpha = \frac{2\rho\sigma_x\sigma_y}{\sigma_x^2 - \sigma_y^2} \tag{8}$$

2.5 Простая линейная регрессия

2.5.1 Модель простой линейной регресии

Регрессионную модель описания данных называют простой линейно регрессией, если

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, i = \overline{1, n} \tag{9}$$

где иксы - заданные числа, а игрики - наблюдаемые значения отклика. Эпсилоны - независимые, нормально распределенные $N(0,\sigma)$ с нулевым математическим ожиданием и одинаковой дисперсией случайные величины (наблюдаемые); бетты - неизвестные параметры, подлежащие оцениванию.

2.5.2 Метод наименьших квадратов

Метод наименьших квадратов (МНК):

$$Q(\beta_0, \beta_1) = \sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 \to min$$
 (10)

2.5.3 Расчетные формулы для МНК-оценок

МНК-оценки параметров бетта:

$$\hat{\beta}_1 = \frac{\overline{x}\overline{y} - \overline{x} * \overline{y}}{\overline{x^2} - (\overline{x})^2} \tag{11}$$

$$\hat{\beta}_0 = \overline{y} - \overline{x}\hat{\beta}_1 \tag{12}$$

2.6 Робастные оценки коэффициентов линейной регрессии

Метод наименьших модулей:

$$\sum_{i=1}^{n} |y_i - \beta_0 - \beta_1 x_i| \to min \tag{13}$$

$$\hat{\beta_{1R}} = r_Q \frac{q_y^*}{q_x^*} \tag{14}$$

$$\hat{\beta_{0R}} = medy - \hat{\beta_{1R}}medx \tag{15}$$

$$r_Q = \frac{1}{n} \sum_{i=1}^n sgn(x_i - medx)sgn(y_i - medy)$$
 (16)

$$q_y^* = \frac{y_{(j)} - y_{(l)}}{k_q(n)}, q_x^* = \frac{x_{(j)} - x_{(l)}}{k_q(n)}$$

$$l = \begin{cases} \left[\frac{n}{4}\right] + 1 & \text{при n/4 дробном} \\ \frac{n}{4} & \text{при n/4 целом} \end{cases}$$

$$j = n - l + 1$$

$$sgnz = \left\{ egin{array}{ll} 1 & \mbox{при z} > 0 \\ 0 & \mbox{при z} = 0 \\ -1 & \mbox{при z} < 0 \end{array} \right.$$

Уравнение регрессии здесь имеет вид

$$y = \hat{\beta_{0R}} + \hat{\beta_{1R}}x \tag{18}$$

2.7 Метод максимального правдоподобия

 $L(x_1,...,x_n,\theta)$ - функция правдоподобия (ФП), рассматриваемая как функция известного параметра θ

$$L(x_1, ..., x_n, \theta) = f(x_1, \theta) f(x_2, \theta) ... f(x_n, \theta)$$
(19)

Оценка максимального правдоподобия:

$$\hat{\theta} = argmaxL(x_1, ..., x_n, \theta) \tag{20}$$

Система уравнений правдоподобия (в случае дифференцируемости функции правдоподобия):

$$\frac{\partial L}{\partial \theta_k} = 0, or \frac{\partial lnL}{\partial \theta_k} = 0, k = \overline{1, m}$$
 (21)

2.8 Проверка гипотезы о законе распределения генеральной совокупности. Метод хи-квадрат

Выдвинута гипотеза H_0 о генеральном законе распределения с функцией распределения F(x). Рассматриваем случай, когда гипотетическая функция распределения F(x) не содержит неизвестных параметров.

Правило проверки гипотезы о законе распределения по методу χ^2

- Выбираем уровень значимости α
- По таблице находим квантиль $\chi^2_{1-\alpha}(k-1)$ распределения хи-квадрат с k 1 степенями свободы порядка $1-\alpha$
- С помощью гипотетической функции распределения F(x) вычисляем вероятности $p_i = P(X \in \Delta_i), i=1,...,k$
- Находим частоты попадания элементов выборки в подмножества
- Вычисляем выборочное значение статистики критерия хи-квадрат:

$$\chi_B^2 = \sum_{i=1}^k \frac{(n_i - np_i)^2}{np_i}$$

• Сравниваем χ_B^2 и квантиль $\chi_{1-\alpha}^2(k-1)$. Если первый меньше второго, то гипотеза на данном этапе проверки принимается, иначе отвергается в пользу альтернативы, а процедура проверки повторяется.

2.9 Доверительные интервалы для параметров нормального распределения

2.9.1 Доверительный интервал для математического ожидания m нормального распределения

Дана выборка $(x_1, x_2, ..., x_n)$ объема n из нормальной генеральной совокупности. На ее основе строим выборочное среднее \overline{x} и выборочное среднее квадратическое отклонение s. Параметры m и σ нормального распределения неизвестны. Доверительный интервал для m c доверительной вероятностью $\gamma = 1 - \alpha$:

$$P(\overline{x} - \frac{sx}{\sqrt{n-1}} < m < \overline{x} + \frac{sx}{\sqrt{n-1}}) = 2F_T(x) - 1 = 1 - \alpha$$
 (22)

$$P(\overline{x} - \frac{st_{1-\alpha/2}(n-1)}{\sqrt{n-1}} < m < \overline{x} + \frac{st_{1-\alpha/2}(n-1)}{\sqrt{n-1}}) = 1 - \alpha$$
 (23)

2.9.2 Доверительный интервал для среднего квадратического отклонения σ нормального распределения

Дана выборка $(x_1, x_2, ..., x_n)$ объёма n из нормальной генеральной совокупности. На её основе строим выборочную дисперсию s^2 . Параметры m и сигма нормального распределения неизвестны. Задаемся уравнением значимости α . Доверительный интервал для сигма с доверительной вероятностью $\gamma = 1 - \alpha$:

$$P(\frac{s\sqrt{n}}{\sqrt{\chi_{1-\alpha/2}^{2}(n-1)}} < \sigma < \frac{s\sqrt{n}}{\sqrt{\chi_{\alpha/2}^{2}(n-1)}}) = 1 - \alpha$$
 (24)

2.10 Доверительные интервалы для математического ожидания σ и среднего квадратического отклонения σ произвольного распределения при большом объеме выборки. Асимптотический подход

При большом объёме выборки для построения доверительных интервалов может быть использован асимптотический метод на основе центральной предельной теоремы.

2.10.1 Доверительный интервал для математического ожидания m произвольной генеральной совокупности при большом объёме выборки

Предполагаем, что исследуемое генеральное распределение имеет конечные математические ожидание и дисперсию. $u_{1-\alpha/2}$ - квантиль нормального распреде-

ления N(0,1). Доверительный интервал с вероятностью $\gamma=1-\alpha$:

$$P(\overline{x} - \frac{su_{1-\alpha/2}}{\sqrt{n}} < m < \overline{x} + \frac{su_{1-\alpha/2}}{\sqrt{n}}) \approx \gamma$$
 (25)

2.10.2 Доверительный интервал для среднего квадратического отклонения σ произвольной генеральной совокупности при большом объёме выборки

Предполагаем, что исследуемая генеральная совокупность имеет конечные первые четыре момента.

 $u_{1-\alpha/2}$ - квантиль нормального распределения N(0,1) порядка $1-\alpha/2$. $E=\frac{\mu^4}{\sigma^4}-3$ - эксцесс генерального распределения, $e=\frac{m_4}{\sigma^4}-3$ - выборочный эксцесс; $m_4=\frac{1}{n}\sum_{i=1}^n(x_i-\overline{x})^4$ - четвертый выборочный центральный момент.

$$s(1+U)^{-1/2} < \sigma < s(1-U)^{-1/2}$$
(26)

или

$$s(1 - 0.5U) < \sigma < s(1 + 0.5U) \tag{27}$$

где $U=u_{1-\alpha/2}\sqrt{(e+2)/n}$ Вышеприведенные формулы дают доверительный интервал для σ с доверительной вероятностью $\gamma=1-\alpha$. Однако вычисление по первой формуле дает более надежный результат, так как в нем меньше грубых приближений.

3 Реализация

Лабораторная работа выполнена при помощи языка программирования Phyton и библиотек numpy, tabulate, scipy в среде программирования PyCharm.

4 Результаты

4.1 Выборочные коэффициенты корреляции

$\rho = 0$	r(4)	$r_s(6)$	$r_Q(5)$
E(z)	-0.009	-0.013	0.0
$E(z^2)$	0.024	0.024	0.04
D(z)	0.049	0.049	0.049
$\rho = 0.5$	r	r_s	r_Q
E(z)	0.511	0.481	0.4
$E(z^2)$	0.261	0.232	0.16
D(z)	0.028	0.031	0.044
$\rho = 0.9$	r	r_S	r_Q
E(z)	0.904	0.878	0.8
$E(z^2)$	0.818	0.771	0.64
D(z)	0.003	0.005	0.027

Таблица 1: Двумерное нормальное распределение, ${\bf n}=20$

$\rho = 0$	r(4)	r_s	r_Q
E(z)	-0.004	-0.004	0.0
$E(z^2)$	0.008	0.008	0.004
D(z)	0.019	0.018	0.016
$\rho = 0.5$	r	r_s	r_Q
E(z)	0.504	0.489	0.333
$E(z^2)$	0.254	0.239	0.111
D(z)	0.01	0.011	0.015
$\rho = 0.9$	r	r_S	r_Q
E(z)	0.902	0.889	0.733
$E(z^2)$	0.814	0.79	0.538
D(z)	0.001	0.001	0.008

Таблица 2: Двумерное нормальное распределение, n=60

$\rho = 0$	r(4)	r_s	r_Q
E(z)	-0.005	-0.002	0.0
$E(z^2)$	0.004	0.004	0.006
D(z)	0.009	0.009	0.01
$\rho = 0.5$	r	r_s	r_Q
E(z)	0.497	0.476	0.32
$E(z^2)$	0.247	0.226	0.102
D(z)	0.006	0.007	0.01
$\rho = 0.9$	r	r_S	r_Q
E(z)	0.902	0.889	0.72
$E(z^2)$	0.813	0.79	0.518
D(z)	0.0	0.001	0.005

Таблица 3: Двумерное нормальное распределение, n=100

$\rho = 0$	r(4)	r_s	r_Q
E(z)	0.809	0.777	0.6
$E(z^2)$	0.654	0.604	0.36
D(z)	0.014	0.01	0.0039
$\rho = 0.5$	r	r_s	r_Q
E(z)	0.794	0.775	0.6
$E(z^2)$	0.63	0.601	0.36
D(z)	0.04	0.03	0.0011
$\rho = 0.9$	r	r_S	r_Q
E(z)	0.796	0.779	0.6
$E(z^2)$	0.633	0.607	0.36
D(z)	0.03	0.02	0.006

Таблица 4: Смесь нормальных распределений

4.2 Эллипсы рассеивания

Рис. 1: Двумерное нормальное распределение, ${\rm n}=20$

Рис. 2: Двумерное нормальное распределение, ${\bf n}=60$

Рис. 3: Двумерное нормальное распределение, n=100

4.3 Оценки Коэффициентов линейно регрессии

4.3.1 Выбока без возмущений

• Критерий наименьших квадратов:

$$\hat{a} \approx 2.0, \hat{b} \approx 1.93$$

• Критерий наименьших модулей:

$$\hat{a} \approx 1.96, \hat{b} \approx 2.18$$

Рис. 4: Выборка без возмущения

4.3.2 Выбока с возмущениями

• Критерий наименьших квадратов:

$$\hat{a} \approx 2.14, \hat{b} \approx 0.5$$

• Критерий наименьших модулей:

$$\hat{a} \approx 2.44, \hat{b} \approx 1.27$$

Рис. 5: Выборка с возмущениями

4.4 Проверка гипотезы о законе распределения генеральной совокупности. Метод хи-квадрат

Метод максимального правдоподобия:

$$\hat{\mu}\approx 0.01, \hat{\sigma}\approx 0.98$$

Критерий согласия хи-квадрат:

- Количество промежутков k=6.
- Уровень значимости $\alpha=0.05$
- ullet Тогда квантиль из таблицы $\chi^2_{1-lpha}(k-1)=\chi^2_{0.95}(5)$

i	Границы	n_i	p_i	np_i	$n_i - np_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	$[-\inf', -1.01]$	16	0.1487	14.87	1.13	0.09
2	[-1.01, -0.37]	15	0.202	20.2	-5.2	1.34
3	[-0.37, 0.28]	30	0.2577	25.77	4.23	0.69
4	[0.28, 0.92]	24	0.2164	21.64	2.36	0.26
5	[0.92, 1.56]	12	0.1196	11.96	0.04	0
6	$[1.56,\inf]$	3	0.0556	5.56	-2.56	1.18
\sum	_	100	1	100	0	3.56

Таблица 5: Вычисление Хи квадрата при проверке гипотезы о нормальном законе распределения

Исследование на чувствительность

Рассмотрим другую гипотезу, которая гласит, что выборка распределена согласно закону $Laplace(x,\hat{\mu},\frac{\hat{\sigma}}{\sqrt{2}})$ Используем критерий согласия хи-квадрат:

- ullet $\alpha=0.05$ уровень значимости
- n = 20 размер выборки
- ullet k := floor(1+3.3lg20)=floor(5.3)=5 количество промежутков
- Квантиль $\chi^2_{1-\alpha}(k-1) = \chi^2_{0.95}(4)$

i	Границы	n_i	p_i	np_i	$n_i - np_i$	$\frac{(n_i - np_i)^2}{np_i}$
1	$[-\inf, -1.5]$	3	0.072	1.44	1.56	1.69
2	[-1.5, -0.5]	3	0.1743	3.49	-0.49	0.07
3	[-0.5, 0.5]	7	0.457	9.14	-2.14	0.5
4	[0.5, 1.5]	4	0.21	4.2	-0.2	0.01
5	[1.5, inf]	3	0.0867	1.73	1.27	0.92
\sum	_	20	1	20	0	3.19

Таблица 6: Вычисление Xи квадрата при проверке гипотезы о распределении по Лапласу

Сравним табличное [2, с. 358] и полученное значение критерия хи-квадрат. Получаем, что 9.49 > 3.19. Следовательно, гипотезу на данном этапе проверки можно принять. В случае для нормального распеделения 3.56 < 11.07.

4.5 Доверительные интервалы для параметров нормального распределения

n = 20	m	σ
	-0.27 < m < 0.58	$0.76 < \sigma < 1.46$
n = 100	m	σ
	-0.12 < m < 0.22	$0.78 < \sigma < 1.03$

Таблица 7: Доверительные интервалы для параметров нормального распределения

4.6 Доверительные интервалы для параметров произвольного распределения. Асимптотический подход

n=20	m	σ		
	-0.18 < m < 0.5	$0.83 < \sigma < 1.23$		
n = 100	m	σ		
	-0.12 < m < 0.22	$0.78 < \sigma < 1.06$		

Таблица 8: Доверительные интервалы для параметров произвольного распределения. Асимптотический подход

5 Обсуждение

5.1 Выборочные коэффициенты корреляции и эллипсы рассеивания

- Сравним дисперсии выборочных коэффициентов корреляции.
 - Для двумерного нормального распределения дисперсии выборочных коэффициентов корреляции упорядочены следующим образом: $r < r_S < r_Q$
 - Для смеси нормальных распределений дисперсии выборочных коэффициентов корреляции упорядочены следующим образом: $r_Q < r_S < r$.
- Процент попавших элементов выборки в эллипс рассеивания (95процентная доверительная область) примерно равен его теоретическому значению 95-ти процентов (см. теорию)

5.2 Оценка коэффициентов линейной регрессии

- Критерий наименьших квадратов точнее оценивает коэффициенты линейной регрессии на выборке без возмущений.
- Критерий наименьших модулей точнее оценивает коэффициенты линейной регрессии на выборке возмущениями.
- Критерий наименьших модулей устойчив к редким выбросам.

5.3 Проверка гипотезы о законе распределения генеральной совокупности. Метод хи-квадрат

- По результатам проверки на близость с помощью критерия хи-квадрат можно принять гипотезу H_0 о нормальном распределении $N(x, \hat{\mu}, \hat{\sigma})$ на уровне значимости $\alpha = 0.05$ для выборки, сгенерированной согласно N(x, 0, 1). То есть, если взять в качестве гипотезы нормальное распределение с параметрами сдвига и масштаба равными оценкам максимального правдоподобия для μ , σ , вычисленным по выборке $\approx N(x, 0, 1)$, то критерий отразит эту согласованность. Теоретически это обосновывается состоятельностью оценком максимального правдоподобия.
- Видим так же, что критерий принял гипотезу о том, что 20-элементная выборка, сгенерированная согласно N(x, 0, 1), описывается законом распределения $Laplace(x, \hat{\mu}, \frac{\hat{\sigma}}{\sqrt{2}})$.
- То есть, при малых мощностях выборки критерий хи-квадрат не почувствовал разницы между нормально распределенной случайной величиной и распределенной по Лапласу. Это ожидаемый результат, ведь выборка довольно мала, законы схожи по форме и параметры масштаба и сдвига выбраны тоже так, чтобы законы максимально друг к другу приблизить.

• По исследованию на чувствительность видим, что при небольших объемах выборки уверенности в полученных результатах нет, критерий может ошибиться. Это обусловлено тем, что теорема Пирсона говорит про асимптотическое распределение, а при малых размерах выборки результат не будет получаться достоверным. Статистика критерия χ^2 лишь асимптотически распределена по закону $\chi^2(k-1)$, то есть значение п предполагается достаточно большим.

5.4 Доверительные интервалы для параметров распределения

- Генеральные характеристики (m = 0 и σ = 1) покрываются построенными доверительными интервалами.
- Доверительные интервалы, полученные по большей выборке, являются соответственно более точными, т.е. меньшими по длине.
- Доверительные интервалы для параметров нормального распределения более надёжны, так как основаны на точном, а не асимптотическом распределении.

6 Ссылки

- [1] https://github.com/AvitusCode/AvitusStatistics/Lab58
- [2] Максимов Ю.Д. Математика. Теория и практика по математической статистике. Конспект-справочник по теории вероятностей: учеб. пособие / Ю.Д. Максимов; под ред. В.И. Антонова. СПб.: Изд-во Политехн. ун-та, 2009. 395 с. (Математика в политехническом университете).