Skript zu Mathematik 1

Analysis

und

Lineare Algebra

von

Dr. Ernst Lenz

Satz

Sei $f:(a,b)\to\mathbb{R}$ n-mal differenzierbar in x_0 , $f^{(1)}=f^{(1)}=f^{(2)}=\cdots f^{(n-1)}=0$ und $f^{(n)}\neq 0$.

- \implies (1) Ist n gerade und $f^{(n)}(x_0) > 0$ [bzw. $f^{(n)}(x_0) < 0$], so ist x_0 ein lokales Minimum [Maximum] von f.
 - (2) Ist n ungerade, so ist x_0 keon lokales Extremum von f.

Zusatz

Es wurde gezeigt, das im Falle von (1) x_0 sogar ein strenges lokales Minimum [Maximum] ist.

D.h.: Es existiert $\delta > 0$, so dass $f(x_0) < f(x)$ $[f(x_0) > f(x)]$ für $|x - x_0| < \delta$.

9.8 Taylorentwicklung

Def.:

Sei $f: I \to \mathbb{R}$ beliebig oft differenzierbar. Sei $x_0 \in I$.

- (1) Ist $x \in I$, so heißt $\sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x-x_0)^k$ Taylorreihe von x_0 im Punkte x. (Gleichgültig ob konvergent oder nicht!)
- (2) Falls $f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x x_0)^k$ für alle $x \in I$, so heißt f in Taylorreihe in x_0 entwickelbar auf I.

Satz 1:

Sei $f: I \to \mathbb{R}$ beliebig oft differenzierbar, Seien $x, x_0 \in I$. Es sind gleichwertig:

(a)
$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \left[= \lim_{n \to \infty} T_{n,x_0,f}(x) \right]$$

(b)
$$R_{n,x_0,f}(x) \xrightarrow[n\to\infty]{} 0$$

Die Logarithmus-Reihe:

Für alle
$$x \in (-1,1]$$
 gilt: $\ln(1+x) = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k}$. Insbesondere gilt: $\ln(2) = \sum_{k=1}^{\infty} (-1)^{k-1} \frac{1}{k} = 1 - \frac{1}{2} + \frac{1}{3} \mp \cdots$

Satz 2:

Sei $f:(a,b)\to\mathbb{R}$ beliebig of differenzierbar und $x_0\in(a,b)$. Falls es Zahlen α,c gibt mit $|f^{(n)}(t)|\leq\alpha c^n$ für alle $t\in(a,b)$, dann folgt:

$$f(x) = \sum_{k=0}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
 für alle $x \in (a, b)$.