A Logo for Narayanpal

G.V.V. Sharma
Department of Electrical Engineering,
Indian Institute of Technology Hyderabad,
Kandi, India 502284
gadepall@ee.iith.ac.in

August 19, 2025

- Abstract
- Question
- Solution
- Plots
- 5 Numerical Area Balancing and Gradient Descent

Abstract

This paper determines the parameter pairs (a,b) for the function $f(t)=e^{-at}u(t)+e^{bt}u(-t)$, subject to normalization, such that these pairs correspond to the endpoints of the latus recta of an associated conic. The work derives the conic equation binding the parameters, applies eigen-decomposition, and uses affine transformations to identify the valid (a,b) values. Additionally, a numerical gradient descent method is proposed to determine symmetric truncation points $\theta=(\theta_0,\theta_1)$ such that the areas under f(t) on either side of t=0 are equal. This approach allows for a flexible choice of the truncation window.

Question 1

Given that

$$f(t) = e^{-at}u(t) + e^{bt}u(-t)$$
 (3.1)

$$u(t) = \begin{cases} 0, & t < 0 \\ \frac{1}{2}, & t = 0 \\ 1, & t > 0 \end{cases}$$
 (3.2)

$$\int_{-\infty}^{\infty} f(t) = 1 \tag{3.3}$$

Find the possible values of (a, b) if these are the end points of the latus recta of the associated conic. Plot f(t) for these values of (a, b).

Normalization: compute the integral

Split the integral:

$$\int_{-\infty}^{\infty} f(t) = \int_{-\infty}^{0} f(t) + \int_{0}^{\infty} f(t)$$
 (4.1)

$$= \int_{-\infty}^{0} e^{bt} + \int_{0}^{\infty} e^{-at}$$
 (4.2)

$$=\frac{1}{b}+\frac{1}{a}\tag{4.3}$$

Normalization \Rightarrow

$$\frac{1}{2} + \frac{1}{b} = 1 \tag{4.4}$$

$$ab - a - b = 0 \tag{4.5}$$

Interpret this as a conic in (a, b) (set x = a, y = b).

Conic as a quadratic form

Write the conic in matrix form

$$g(\mathbf{x}) = \mathbf{x}^{\top} \mathbf{V} \mathbf{x} + 2 \mathbf{u}^{\top} \mathbf{x} + f = 0$$

By Comparsion,

$$\mathbf{V} = \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix}$$

$$\begin{pmatrix} \frac{1}{2} & 0 \end{pmatrix}$$
 $\begin{pmatrix} -\frac{1}{2} \end{pmatrix}$

$$\mathbf{u} = \begin{pmatrix} -\frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$$

$$f = 0$$

Eigen-decompose $V = PDP^{T}$ where

$$\mathbf{V} = \mathbf{P} \mathbf{D} \mathbf{P}^{\mathsf{T}}$$

$$\sqrt{\frac{1}{\sqrt{2}}} \quad \frac{-1}{\sqrt{2}}$$

$$\mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$

$$\mathbf{P} = \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$$
$$\mathbf{D} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{-1}{2} \end{pmatrix}$$

$$\frac{-1}{\sqrt{2}}$$

(4.6)

(4.7)

(4.8)

Convert the conic into a standard conic using affine transformations.

$$\mathbf{y}^{\mathsf{T}} \left(\frac{\mathbf{D}}{f_0} \right) \mathbf{y} = 1 \tag{4.12}$$

$$\mathbf{x} = \mathbf{P}\mathbf{y} + \mathbf{c} \tag{4.13}$$

Where

$$f_0 = \mathbf{u}^\mathsf{T} \mathbf{V}^{-1} \mathbf{u} - f = 1 \tag{4.14}$$

$$\mathbf{c} = -\mathbf{V}^{-1}\mathbf{u} = \begin{pmatrix} 1 \\ 1 \end{pmatrix} \tag{4.15}$$

The eigenvalues of **D** are $\lambda_1 = \frac{1}{2}$, $\lambda_2 = -\frac{1}{2}$. Using a reflection matrix and further transformation, we get the hyperbola in standard form:

$$\mathbf{z}^{\mathsf{T}} \left(\frac{\mathbf{D_0}}{f_0} \right) \mathbf{z} = 1 \tag{4.16}$$

$$j(\mathbf{z}) = \mathbf{z}^{\mathsf{T}} \mathbf{D_0} \mathbf{z} - f_0 = 0 \tag{4.17}$$

$$\mathbf{y} = \mathbf{P}_0 \mathbf{z} \tag{4.18}$$

Here
$$\mathbf{P}_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $\mathbf{D}_0 = \begin{pmatrix} \frac{-1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$.

Now, solve for the endpoints of the latus recta:

$$\mathbf{n} = \sqrt{\lambda_2} \mathbf{p}_1 = \begin{pmatrix} 0\\ \frac{1}{\sqrt{2}} \end{pmatrix} \tag{4.19}$$

$$e = \sqrt{2} \tag{4.20}$$

$$c = \pm \frac{1}{\sqrt{2}} \tag{4.21}$$

$$\mathbf{F} = \pm 2\mathbf{e}_2 \tag{4.22}$$

Equation of latus recta:

$$\mathbf{n}^{\mathsf{T}}\mathbf{x} = \mathbf{n}^{\mathsf{T}}\mathbf{F} \tag{4.23}$$

$$\equiv \mathbf{x} = \mathbf{h} + k\mathbf{m} \tag{4.24}$$

(4.25)

Where,

$$\mathbf{h} = \begin{pmatrix} 0 \\ \pm 2 \end{pmatrix} \tag{4.26}$$

$$\mathbf{m} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \tag{4.27}$$

Let $\hat{\mathbf{z}}$ be the endpoints of the latus recta:

$$k = \pm \sqrt{2} \tag{4.28}$$

$$\therefore \hat{\mathbf{z}} = \begin{pmatrix} \pm \sqrt{2} \\ \pm 2 \end{pmatrix} \tag{4.29}$$

Transforming back to the original conic:

$$\hat{\mathbf{x}} = \mathbf{P} \left(\mathbf{P}_0 \hat{\mathbf{z}} \right) + \mathbf{c} \tag{4.30}$$

Endpoints of latus recta

Which gives:

$$\mathbf{\hat{x}}_1 = \begin{pmatrix} 2 + \sqrt{2} \\ \sqrt{2} \end{pmatrix}$$

$$\mathbf{\hat{x}}_2 = \begin{pmatrix} \sqrt{2} \\ 2 + \sqrt{2} \end{pmatrix}$$

$$\mathbf{\hat{x}}_3 = \begin{pmatrix} 2 - \sqrt{2} \\ -\sqrt{2} \end{pmatrix}$$

$$\mathbf{\hat{x}}_4 = \begin{pmatrix} -\sqrt{2} \\ 2 - \sqrt{2} \end{pmatrix}$$

Only $\hat{\mathbf{x}}_1$ and $\hat{\mathbf{x}}_2$ are valid as negative a or b will not yield a finite f(t).

Conic Plot

Figure: Conic Section

Function f(t) for valid (a, b)

Figure: Function f(t) for valid (a, b)

Numerical Area Balancing and Gradient Descent

We need to find the endpoints (θ_0, θ_1) and truncate the function f(t), such that the the area under f(t) is symmetric about t=0. For this, we will use gradient descent so that we get the closest solution to our guess. Define:

$$A_{L}(\theta_{0}) = \int_{\theta_{0}}^{0} e^{bt} dt = \frac{1 - e^{b\theta_{0}}}{b}$$
 (6.1)

$$A_R(\theta_1) = \int_0^{\theta_1} e^{-at} dt = \frac{1 - e^{-a\theta_1}}{a}$$
 (6.2)

We seek $\theta = (\theta_0, \theta_1)$ such that $A_L(\theta_0) = A_R(\theta_1)$. Rearranging:

$$\frac{1 - e^{b\theta_0}}{b} - \frac{1 - e^{-a\theta_1}}{a} = 0 \tag{6.3}$$

This nonlinear equation cannot be solved analytically in closed form. Thus, we define a cost function:

$$C(\theta) = \left(\frac{1 - e^{b\theta_0}}{b} - \frac{1 - e^{-a\theta_1}}{a}\right)^2 \tag{6.4}$$

We minimize this cost using gradient descent:

$$\frac{d\mathcal{C}}{d\theta_0} = -\left(\frac{1 - e^{b\theta_0}}{b} - \frac{1 - e^{-a\theta_1}}{a}\right)e^{b\theta_0} \tag{6.5}$$

$$\frac{d\mathcal{C}}{d\theta_1} = -\left(\frac{1 - e^{b\theta_0}}{b} - \frac{1 - e^{-a\theta_1}}{a}\right)e^{-a\theta_1} \tag{6.6}$$

The update rule becomes:

$$\theta_{n+1} \leftarrow \theta_n - \eta \cdot \nabla \mathcal{C}(\theta_n) \tag{6.7}$$

where η is a learning rate.

Numerical Result

We initialize θ with a reasonable estimate and iterate until $|\mathcal{C}(\theta)| < 10^{-10}$. The resulting θ yields a numerically balanced integral under f(t) on both sides of the origin.

$$\theta_{(0)} = [-2, 3]^{\mathsf{T}} \to \theta_n = [-0.37815999, 3.00038288]^{\mathsf{T}}$$
 (6.8)

Plot for Truncated function

Figure: Truncated Function f(t)