The algorithm is stated as follow:

Algorithm 1 Algorithm for problem 2

```
Sort the m students by their days a_i in chronological order S_1, S_2 \cdots S_m

Sort the n employees by their interval starting days s_i in chronological order E_1, E_2, \cdots E_n

While select student S_i in reverse chronological order (From S_m to S_1)

While select employee E_j from E_n to E_1

If s_i \leq a_j \leq f_i

Match S_i and E_j

Break

End if

End while

Return the set M of matched pairs.
```

Proof of Correctness (referred to class note): For employees E_1 to E_m corresponding to students S_1 to S_m , we want to prove each s_i is as late as possible. Considering another solution e'_1 to e'_k , we need to prove $s_i \geq s'_i$ by induction on i.

Base case: i = 1: $s_i \ge s'_i$ since it is our rule

Induction: For $i \geq 2$, E' has no more options before s_i , and the algorithm select the latest s_{i+1} . Hence, this algorithm is correct.

Time Complexity Analysis:

```
The complexity of selecting each student is O(m).
For each student, the complexity of selecting each employee is O(n).
m students \times n employees = O(mn)
```