WHAT IS CLAIMED IS:

1	1. A method for making an aluminum oxide component, the method
2	comprising:
3	providing an amount of aluminum oxide in particle form, wherein the aluminum
4	oxide has less than about 100 parts per million of sodium and less than about 600 parts per
5	million of silica;
6	grinding the aluminum oxide with media that comprise aluminum oxide ceramic
7	pieces that have less than about 200 parts per million of sodium to deagglomerate and reduce
8	the particle size of the aluminum oxide;
9	placing the ground aluminum oxide into a slurry;
10	adding a low sodium grade binder to the slurry;
11	drying the slurry to provide an aluminum oxide powder having a sodium content that
12	is less than about 200 parts per million;
13	forming the powder into a certain shape; and
14	thermally treating the formed powder to produce an aluminum oxide component
15	having a low sodium and low silica content.
1	2. A method as in claim 1, wherein the powder is thermally treated at a
2	temperature in the range from about 1580 degrees C to about 1670 degrees C for about 2 to
3	about 10 hours.
1	3. A method as in claim 1, wherein the aluminum oxide component has a
2	dielectric loss value that is less than about 5 X 10(-5).
1	4. A method as in claim 1, wherein the binder comprises polyethylene
2	glycol.
_	
1	5. A method as in claim 1, wherein the slurry is spray dried.
1	6. A method as in claim 1, wherein the aluminum oxide has a purity of at
2	least about 99.8%.
	reast about 55.070.
1	7. A method as in claim 1, wherein the component is selected from a
2	group consisting of a microwave window, a cell phone base, and a semiconductor
3	manufacturing component.

A method as in claim 1, wherein the aluminum oxide in particle form 1 8. 2 is produced from mined bauxite. 9. A method as in claim 1, wherein the ground aluminum oxide is placed 1 into the slurry using a wet mill process having media that comprise aluminum oxide ceramic 2 pieces that have less than about 200 parts per million of sodium. 3 A method as in claim 1, wherein the aluminum oxide has a mean 1 10. particle size in the range from about 0.5 microns to about 4 microns after the grinding step. 2 A ceramic member, comprising: 11. 1 a ceramic component comprising aluminum oxide, wherein the aluminum oxide 2 comprises at least about 99.8% of the ceramic member, wherein the aluminum oxide was 3 formed from aluminum oxide particles having less than about 100 parts per million of sodium 4 and less than about 600 parts per million of silica, and that was ground with media that 5 comprise aluminum oxide ceramic pieces that have less than about 200 parts per million of 6 7 sodium. 12. A ceramic member as in claim 11, wherein the ceramic member 1 2 contains less than about 200 ppm of sodium. A ceramic member as in claim 11, wherein the ceramic member 1 13. contains less than about 1,500 ppm of silica. 2 A ceramic member as in claim 11, wherein the ceramic component is 1 14. 2 fashioned in the shape of a cell phone base station. A ceramic member as in claim 11, wherein the ceramic component is 1 15.

fashioned in the shape of a vacuum chamber cover.

fashioned in the shape of a semiconductor manufacturing part.

16.

2

1

2

3

A ceramic member as in claim 11, wherein the ceramic component is