Vox2Cortex: Fast Explicit Reconstruction of Cortical Surfaces from 3D MRI Scans with Geometric Deep Neural Networks

Fabian Bongratz¹, Anne-Marie Rickmann^{1,2}, Sebastian Pölsterl^{1,2}, Christian Wachinger^{1,2} ¹Artificial Intelligence in Medical Imaging, Technical University of Munich, Germany, ²Ludwig-Maximilians-University, Munich, Germany

Ground truth shape

Prediction

FreeSurfer [1]

Chamfer loss

Curv. weighted

Contributions

- ✓ First combination of CNN + GNN for cortical surface reconstruction
- ✓ Guaranteed spherical topology
- Modeled interdependency between inner and outer brain surfaces
- ✓ Novel curvature-weighted Chamfer loss function
- ✓ State-of-the-art brain surfaces with 168,000 vertices per mesh

Loss function

Curvature-weighted Chamfer loss:

$$\mathcal{L}_{C}(\mathcal{M}_{s,c}^{p}, \mathcal{M}_{c}^{gt}) = \frac{1}{|\mathcal{P}_{c}^{gt}|} \sum_{\mathbf{u} \in \mathcal{P}_{c}^{gt}} \kappa(\mathbf{u}) \min_{\mathbf{v} \in \mathcal{P}_{s,c}^{p}} ||\mathbf{u} - \mathbf{v}||^{2}$$

$$+ \frac{1}{|\mathcal{P}_{s,c}^{p}|} \sum_{\mathbf{v} \in \mathcal{P}_{s,c}^{p}} \kappa(\tilde{\mathbf{u}}) \min_{\mathbf{u} \in \mathcal{P}_{c}^{gt}} ||\mathbf{v} - \mathbf{u}||^{2}$$

 $\mathcal{M}_c^{ ext{gt}}$: Ground truth mesh

 $\mathcal{P}_{s,c}^{ ext{p}}$: Predicted points $\mathcal{M}_{s,c}^{p}$: Predicted mesh $\mathcal{P}_c^{ ext{gt}}$: Ground truth points

Total loss function:

$$\mathcal{L}(y^{p}, y^{gt}) = \mathcal{L}_{vox}(y^{p}, y^{gt}) + \mathcal{L}_{mesh}(y^{p}, y^{gt})$$

$$\mathcal{L}_{vox}(y^{p}, y^{gt}) = \sum_{l=1}^{L} \mathcal{L}_{BCE}(B_{l}^{p}, B^{gt})$$

 $\mathcal{L}_{\text{mesh}}(y^{\text{p}}, y^{\text{gt}}) = \mathcal{L}_{\text{mesh}, cons}(y^{\text{p}}, y^{\text{gt}}) + \mathcal{L}_{\text{mesh}, reg}(y^{\text{p}})$

 y^{p} : Predicted mesh & binary segmentation

 $\mathcal{Y}^{\mathrm{gt}}$: Ground-truth mesh & binary segmentation

+ normal loss

Chamfer (point) Surface regularity

Results

		Left WM Surface		Right WM Surface		Left Pial Surface		Right Pial Surface	
Data	Method	ASSD (mm)	HD (mm)						
ADNI large	Vox2Cortex	0.345 ±0.056	0.720 ±0.125	0.347 ±0.046	0.720 ±0.087	0.327 ±0.031	0.755 ±0.102	0.318 ±0.029	0.781 ±0.102
	DeepCSR [3]	$0.422 ~ \pm 0.058$	0.852 ± 0.134	$0.420 ~ \pm 0.058$	0.880 ± 0.156	0.454 ± 0.059	0.927 ± 0.243	0.422 ± 0.053	0.890 ± 0.197
	nnUNet [2]	1.176 ± 0.345	1.801 ± 2.835	1.159 ± 0.242	1.739 ± 1.880	1.310 ± 0.292	3.152 ± 2.374	1.317 ± 0.312	3.295 ±2.387
OASIS	Vox2Cortex	0.315 ±0.039	0.680 ±0.137	0.318 ±0.048	0.682 ±0.151	0.362 ±0.036	0.894 ±0.141	0.373 ±0.041	0.916 ±0.137
	DeepCSR [3]	0.360 ± 0.042	0.731 ± 0.104	$0.335 ~ \pm 0.050$	0.670 ±0.195	0.458 ± 0.056	1.044 ± 0.290	$0.442 ~ \pm 0.058$	1.037 ± 0.294

- ✓ Topologically correct
- ✓ No staircase artifacts
- ✓ No geometric artifacts
- ✓ Fastest

Group comparison of cortical thickness between patients with Alzheimer's disease and healthy controls

[1] B. Fischl. "FreeSurfer". In: Neuroimage 62.2 (2012), pp. 774–781

[2] F. Isensee, P. F. Jaeger, S. A. A. Kohl, J. Petersen, and K. Maier-Hein. "nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation." In: Nature methods (2020) [3] R. S. Cruz, L. Lebrat, P. Bourgeat, C. Fookes, J. Fripp, and O. Salvado. "DeepCSR: A 3D Deep Learning Approach for Cortical Surface Reconstruction". WACV 2021