FUNKSJONER FRA R" -> R"

- $A: A \to \mathbb{R}$ $f'(\vec{a}, \vec{r}) = \nabla f(\vec{a}) \cdot \vec{r}$ (4 deinerbar : 2)

 RETNINGIDERIVERT

 $\nabla f(\vec{a})$ pelæ i den retningen der f volkser raskest i \vec{a} .

2012

(2)
$$4(x,y) = x^5y^7 - 4x^2 + y$$

Vi skal finne $\frac{\partial f}{\partial x}$:

$$\frac{2}{3x} = y^{7.5}x^{4} - 8x + 0$$

$$= 5x^{4}y^{7} - 8x$$

4) I punktet $\vec{a} = (0, 1, 5)$, shal vi fine history $(x, y, z) = e^{2xy} - \frac{1}{2}e^{xz}$

· Fundisjonen of voluser rashest i retning Vol (a).

$$\frac{\partial}{\partial x} = e^{2xy} \cdot 2y - \frac{1}{2}e^{x^2} \cdot 2$$

$$\frac{\partial f}{\partial y} = e^{2xy} \cdot 2x$$

$$\frac{\partial z}{\partial x}(0,1,5) = e^{2.0.1} \cdot 2.1 - \frac{1}{2}e^{0.5} \cdot 5 = 2 - \frac{5}{2} = -\frac{1}{2}$$

$$\frac{\partial y}{\partial t}(0,1,5) = e^{2\cdot 0\cdot 1} \cdot 2\cdot 0 = 0$$

$$\frac{\partial z}{\partial z}(0,1/2) = -\frac{1}{2}e^{0.5}.0 = 0$$

$$\nabla \left\{ (0,15) = (-\frac{1}{2},0,0) \right\}$$

Funksjonen of volume i (0,1,5) rashest i retning (-½,0,0)

5)
$$f(x,y) = x^{2}y - xy^{2}$$
 $\mathbb{R}^{2} \rightarrow \mathbb{R}$
Shal finne den retning solvive te $f(\vec{a},\vec{r})$
der $\vec{a} = (4,1)$ og $\vec{r} = (1,1)$.
Vi vet at $f((\vec{a},\vec{r})) = \nabla f(\vec{a}) \cdot \vec{r}$
Mai finne $\nabla f(\vec{a})$:
 $\frac{\partial f}{\partial x} = 2xy - y^{2}$ $\frac{\partial f}{\partial x} (4,1) = 2\cdot 4\cdot 1 - 1^{2} = 7$
 $\frac{\partial f}{\partial y} = x^{2} - 2xy$ $\frac{\partial f}{\partial y} (4,1) = 4^{2} - 2\cdot 4\cdot 1 = 8$
 $\nabla f(4,1) = (7,8)$
 $f'(\vec{a},\vec{r}) = \nabla f(4,1) \cdot \vec{r} = (7,8) \cdot (1,1) = 7+8 = 15$

H 2013
$$\int (x, y, z) = Z + actan(xy + 1)$$
Vi dual finne $\frac{\partial f}{\partial x}$:
$$\frac{\partial f}{\partial x} = \frac{1}{1 + (xy + 1)^2} \left(\frac{\partial (xy + 1)}{\partial x}\right)$$

$$= \frac{4}{1 + (xy + 1)^2}$$

- 2) $\vec{r} = (1,0)$ $\vec{a} = (1,1)$ Stud bestemme hillen funksjon som har retningsdenvet $f(\vec{a};\vec{r})=0$. (A) J(v,u) = X $\nabla f(\vec{a}) \cdot \vec{r}$
 - A) d(x,y) = x $\nabla f = (1,0)$ (for alle \vec{a}) $\nabla f (1,1) \cdot \vec{c} = (1,0) \cdot (1,0) = 1 \neq 0$.

 Det er ihre denne fulsjonen.
 - B $A(x,y) = (x-1)^2 + y^2$ $\nabla A = (2(x-1), 2y)$ $\nabla A(1,1) = (0,2) \cdot (1,0) = (0,2) \cdot (1,0)$ = 0Sa B or righty function !

2014 (1)
$$a(x,y) = x \sin(xy^2)$$

Stud finne af :

 $af = x \cos(xy^2) \cdot af$
 $af = x \cos(xy^2)$

$$P(z) = z^3 + 8$$

 $P(z) = z^3 + 8$ Shad fine reell og leompletus falltonisening.

- Observer at $P(-2) = (-2)^3 + 8 = 0$, sa (z+2) er en faltor.
- · Gjør polynomdivisjon

$$\frac{z^{3} + 8}{-(z^{3} + 2z^{2})} = \frac{z^{2} - 2z + 4}{-2z^{2} + 8}$$

$$\frac{-(-2z^{2} + 8)}{-(4z + 8)}$$

• Sjelder om 2?-22+4 har reelle eller homplehae vother og firmer dem.

$$Z = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \cdot |\cdot 4|^2}}{2}$$

$$= \frac{2 \pm \sqrt{-12}}{2}$$

$$= \frac{2 \pm 2i\sqrt{3}}{2}$$

$$= \frac{1 \pm i\sqrt{3}}{2}$$

Kompleho fultoriseig: $P(z) = (z+2)(z-(1+i\sqrt{3}))(z-(1-i\sqrt{3}))$ Rell fultoriseig: $P(z) = (z+2)(z^2-2z+4)$

Shive om:
$$\frac{1}{2} \int \frac{x-4}{x^2-2x+4} dx$$

$$= \frac{1}{2} \int \frac{2x-8}{x^2-2x+4} dx - \int \frac{3}{x^2-2x+4} dx$$

$$= \frac{1}{2} \int \frac{1}{u} du - 3 \int \frac{1}{(x-1)^2+3} dx$$

$$= \frac{1}{2} \ln \left(\frac{x^2-2x+4}{\sqrt{3}} \right) - \frac{3}{3} \int \frac{1}{\left(\frac{x-1}{\sqrt{3}} \right)^2+1} dx$$

$$= \frac{1}{2} \ln \left(x^2-2x+4 \right) - \sqrt{3} \arctan \left(\frac{x-1}{\sqrt{3}} \right) + C$$

$$\int \frac{x-1}{u^2+1} \cdot \sqrt{3} du$$

$$\int \frac{1}{u^2+1} \cdot \sqrt{3} du$$

H20 II (13)
$$f: (0,\infty) \rightarrow \mathbb{R}$$
 $f: (0,\infty) \rightarrow \mathbb{R}$
 $f: (0,\infty) \rightarrow \mathbb{R}$

b) I fine den drive hil f vi
$$x \neq 1$$
.

$$f(x) = \frac{\ln x}{x-1}$$

$$f(x) = \frac{1}{x}(x-1) - \ln x \cdot 1$$

$$(x-1)^{2}$$

$$= \frac{1-\frac{1}{x}-\ln x}{(x-1)^{2}}$$
2) Shal rise at f as derivebox $i = 1$ og fine $f(i)$ (his trive) $f(i)$ as $f(i)$ and $f(i)$ which $f(i)$ is at $f(i)$ the $f(i)$ and $f(i)$ are $f(i)$ and $f(i)$ are $f(i)$ and $f(i)$ and $f(i)$ and $f(i)$ and $f(i)$ and $f(i)$ are $f(i)$ and $f(i)$ and $f(i)$ and $f(i)$ are $f(i)$ and $f(i)$ are $f(i)$ and $f(i)$ and $f(i)$ are $f(i)$ and $f(i)$ and $f(i)$ are $f(i)$ are $f(i)$ and $f(i)$ are $f(i)$ and $f(i)$ are $f(i)$ are $f(i)$ are $f(i)$ are $f(i)$ and $f(i)$ are $f(i)$ are