

多元回归分析模型

主讲人: 泰山教育 小石老师

背景

回归分析定义:

回归分析是一种统计学上分析数据的方法,目的在于了解两个或多个变量间是否相关、相关方向与强度,并建立数学模型以便观察特定变量来预测研究者感兴趣的变量。

回归分析思想:

回归分析的基本思想是: 虽然自变量和因变量之间没有严格的、确定性的函数关系, 但可以设法找出最能代表它们之间关系的数学表达形式。

多元回归分析的由来:

在自变量很多时,其中有的因素可能对应变量的影响不是很大,而且x之间可能不完全相互独立的,可能有种种互相作用的关系。 在这种情况下可用逐步回归分析,进行x因子的筛选,这样建立的多元回归模型预测效果会更好。

应用范围举例

收入水平与受教育程度、所在行业、工作年限、工作种类的关系。

公路客运量与人口增长量、私家车保有量、国民生产总值、国民收入、工农业总产值、基本建设投资额、城乡居民储蓄额、铁路和水运客运量等因素的关系。

多元回归分析模型应用举例

以陕西省长武地区1984~1995年的烟蚜 传毒病情资料、相关虫情和气象资料为例, 建立蚜传病毒病情指数的逐步回归模型, 说明逐步回归分析的具体步骤。影响蚜传 病毒病情指数的虫情因子和气象因子一共 有21个,通过逐步回归,从中选出对病情 指数影响显著的因子,从而建立相应的模 型。

多元回归分析模型应用举例

y: 历年病情指数

x1: 前年冬季油菜越冬时的蚜量(头/x12: 5月份降水量

株) x13: 6月份均温

x2: 前年冬季极端气温 x14: 6月份降水量

x3: 5月份最高气温 x15: 第一次蚜迁高峰期百株烟

x4: 5月份最低气温 草有翅蚜量

x5: 3~5月份降水量 x16: 5月份油菜百株蚜量

x6: 4~6月份降水量 *x17*: 7月份降水量

x7: 3~5月份均温 x18: 8月份降水量

x8: 4~6月份均温 *x19*: 7月份均温

x9: 4月份降水量 x20: 8月份均温

x10: 4月份均温 x21: 元月均温

x11: 5月份均温

输入/移去的变量^a

間がクラム町文革						
模型	输入的变量	移去的变量	方法			
1	x15		步进(准则: F-to-enter 的概率 <= .150, F-to-remove 的概率 >= .200)。			
2	x4	•	步进(准则: F-to-enter 的概率 <= .150, F-to-remove 的概率 >= .200)。			
3	x7	٠	步进(准则: F-to-enter 的概率 <= .150, F-to-remove 的概率 >= .200)。			
4	x5		步进(准则: F-to-enter 的概率 <= .150, F-to-remove 的概率 >= .200)。			

系数

2\3X							
		非标准化系数		标准系数			
模型		В	标准 误 差	试用版	t	Sig.	
1	(常量)	047	.114		414	.687	
	x15	.009	.000	.993	27.061	.000	
2	(常量)	163	.118		-1.386	.199	
	x15	.009	.000	1.008	30.058	.000	
	x4	.036	.019	.064	1.916	.088	
3	(常量)	.966	.577		1.674	.133	
	x15	.009	.000	1.016	34.600	.000	
	x4	.034	.016	.060	2.070	.072	
	x7	118	.059	057	-1.988	.082	
4	(常量)	2.492	.652		3.821	.007	
	x15	.009	.000	.979	40.466	.000	
	x4	.034	.011	.062	3.005	.020	
	x7	235	.057	114	-4.101	.005	
	x5	003	.001	094	-3.000	.020	

在统计假设检验中,公认的小概率事件的概率值被称为统计假设检验的显著性水平,对同一量,进行多次计量,然后算出平均值。对于偏离平均值的正负差值,就是其不确定度。其差值越大,则计量的不确定性越大

Anova

模型		平方和	df	均方	F	Sig.
1	回归	18.555	1	18.555	732.287	.000a
	残差	. 253	10	.025		
	总计	18.808	11			
2	回归	18.628	2	9.314	465.793	.000b
	残差	.180	9	.020		
	总计	18.808	11			
3	回归	18.688	3	6.229	413.702	.000c
	残差	.120	8	.015		
	总计	18.808	11			
4	回归	18.755	4	4.689	622.720	.000d
	残差	.053	7	.008		
	总计	18.808	11			

泰山教育版权所有 淘宝ID:liuxingma123

系数

オペダ 大							
		非标准化系数		标准系数			
模型		В	标准 误差	试用版	t	Sig.	
1	(常量)	047	.114		414	.687	
	x15	.009	.000	.993	27.061	.000	
2	(常量)	163	.118		-1.386	.199	
	x15	.009	.000	1.008	30.058	.000	
	x4	.036	.019	.064	1.916	.088	
3	(常量)	.966	.577		1.674	.133	
	x15	.009	.000	1.016	34.600	.000	
	x4	.034	.016	.060	2.070	.072	
	x7	118	.059	057	-1.988	.082	
4	(常量)	2.492	.652		3.821	.007	
	x15	.009	.000	.979	40.466	.000	
	x4	.034	.011	.062	3.005	.020	
	x7	235	.057	114		.005	
	x5	003	.001	094	-3.000	.020	

$$y = 2.492 + 0.009x_{15} + 0.034x_4 - 0.235x_7 - 0.003x_5$$

由回归方程式可以看出,在陕西长武烟草蚜传病毒病8月份的病情指数(y)与x4(5月份最低气温)、x15(第一次蚜迁高峰期百株烟草有翅蚜量)呈显著正相关,而与x5(3~5月份降水量)和x7(3~5月份均温)呈显著负相关。

Thank You !