Homework 0

Saulo Mendes

December 2020

Kronecker Product

Problem 1 For a randomly generated $\mathbf{A} \in \mathbb{C}^{N \times N}$ and $\mathbf{B} \in \mathbb{C}^{N \times N}$, evaluate the computational performance (run time) of the following matrix inversion formulas:

- (a) for $N \in \{2, 4, 8, 16, 32, 64\}$
 - Method 1: $(\mathbf{A}_{N\times N}\otimes\mathbf{B}_{N\times N})^{-1}$ Solution:

```
N_list = [2, 4, 8, 16, 32, 64]
Method1_times = []

for n in N_list:
    A = randn(n, n)
    B = randn(n, n)
    start_time = time.time()

    A_x_B = kron(A, B)

    A_x_B_inv = inv(A_x_B)
    end_time = time.time()

Method1_times.append(end_time-start_time)
```

• Method 2: $\mathbf{A}_{N\times N}^{-1}\otimes \mathbf{B}_{N\times N}^{-1}$ Solution:

```
N_list = [2, 4, 8, 16, 32, 64]
Method2_times = []

for n in N_list:
    A = randn(n, n)
    B = randn(n, n)
    start_time = time.time()

    A_inv = inv(A)
    B_inv = inv(B)

    A_x_B = kron(A, B)
    end_time = time.time()

Method2_times.append(end_time-start_time)
```

• Comparison of results

The graph below shows the run time difference between the methods

- (b) for $K \in \{2, 4, 6, 8, 10\}$
 - Method 1: $\left(\mathbf{A}_{2\times 2}^{(1)} \otimes \mathbf{A}_{2\times 2}^{(2)} \otimes ... \otimes \mathbf{A}_{2\times 2}^{(K)}\right)^{-1} = \left(\otimes_{i=1}^{K} \mathbf{A}_{2\times 2}^{(i)}\right)^{-1}$ Solution:

```
K_list = [2, 4, 6, 8, 10]
Method1_times = []

for k_value in K_list:

    A_start = randn(2, 2)|
    start_time = time.time()
    for k in range(0, k_value):
        if k == 0:
            A = A_start
        else:
            A = kron(A, A_start)

    A = inv(A)
    end_time = time.time()

Method1_times.append(end_time-start_time)
```

• Method 2: $(\mathbf{A}^{(1)})_{2\times 2}^{-1} \otimes (\mathbf{A}^{(2)})_{2\times 2}^{-1} \otimes ... \otimes (\mathbf{A}^{(K)})_{2\times 2}^{-1} = \bigotimes_{i=1}^{K} (\mathbf{A}^{(i)})_{2\times 2}^{-1}$ Solution:

• Comparison of results

The graph below shows the run time difference between the methods

Problem 2 Let $eig(\mathbf{X})$ be the function that returns the matrix $\Sigma_{K\times K}$ of eigenvalues of \mathbf{X} . Show algebraically that $eig(\mathbf{A}\otimes\mathbf{B})=eig(\mathbf{A})\otimes eig(\mathbf{B})$.

<u>Hint</u>: Use the property

$$(\mathbf{A} \otimes \mathbf{B})(\mathbf{C} \otimes \mathbf{D}) = \mathbf{AC} \otimes \mathbf{BD} \tag{1}$$

Solution: Let $\mathbf{A} \in \mathbb{C}^{M \times M}$ with eigenvector matrix \mathbf{V} and eigenvalue matrix Σ_A , and $\mathbf{B} \in \mathbb{C}^{N \times N}$ with eigenvector matrix \mathbf{U} and eigenvalue matrix Σ_B . Their respective eigendecompositions are:

$$\mathbf{AV} = \mathbf{V}\mathbf{\Sigma}_A \to \mathbf{A} = \mathbf{V}\mathbf{\Sigma}_A \mathbf{V}^{-1} \tag{2}$$

$$\mathbf{B}\mathbf{U} = \mathbf{U}\mathbf{\Sigma}_B \to \mathbf{B} = \mathbf{U}\mathbf{\Sigma}_B\mathbf{U}^{-1} \tag{3}$$

Taking the Kronecker product of \mathbf{A} and \mathbf{B} and applying property (1) and substitutions (2) and (3)

$$\mathbf{A} \otimes \mathbf{B} = (\mathbf{V} \mathbf{\Sigma}_A \mathbf{V}^{-1}) \otimes (\mathbf{U} \mathbf{\Sigma}_B \mathbf{U}^{-1})$$
$$= (\mathbf{V} \mathbf{\Sigma}_A \otimes \mathbf{U} \mathbf{\Sigma}_B) (\mathbf{V}^{-1} \otimes \mathbf{U}^{-1})$$
$$= (\mathbf{V} \otimes \mathbf{U}) (\mathbf{\Sigma}_A \otimes \mathbf{\Sigma}_B) (\mathbf{V}^{-1} \otimes \mathbf{U}^{-1})$$

We can make use of the property $(\mathbf{A} \otimes \mathbf{B})^{-1} = \mathbf{A}^{-1} \otimes \mathbf{B}^{-1}$ to have

$$\mathbf{A}\otimes\mathbf{B}=(\mathbf{V}\otimes\mathbf{U})(\mathbf{\Sigma}_A\otimes\mathbf{\Sigma}_B)(\mathbf{V}\otimes\mathbf{U})^{-1}$$

This is the eigendecomposition of $\mathbf{A} \otimes \mathbf{B}$, where $(\Sigma_A \otimes \Sigma_B)$ is its eigenvalue matrix $\Sigma_{\mathbf{A} \otimes \mathbf{B}}$. Thus, $eig(\mathbf{A} \otimes \mathbf{B}) = eig(\mathbf{A}) \otimes eig(\mathbf{B})$.