Lógica

Professor: Jomi Fred Hübner

Leituras dos símbolos

\neg	negação
\wedge	e (conjunção)
\vee	ou (disjunção)
\oplus	ou exclusivo
\rightarrow	implicação
\leftrightarrow	bi-implicação
\forall	quantificador universal
3	quantificador existencial
P,Q,	símbolos proposicionais
\top, \bot	constantes (true e false)
$\alpha, \beta, \gamma, \dots$	fórmulas
a,b,c,	constantes
x, y, z, \dots	variáveis
Γ	conjunto de fórmulas

Regras de inferência

regras de iniciencia	
$\frac{\frac{\alpha \beta}{\alpha \wedge \beta} I \wedge}{\frac{\alpha}{\alpha \vee \beta} I \vee}$	$\begin{array}{ c c c c c c }\hline & \frac{\alpha \wedge \beta}{\alpha} E \wedge & \frac{\alpha \wedge \beta}{\beta} E \wedge \\ \hline & \alpha \vee \beta & \alpha \to \gamma & \beta \to \gamma \\ \hline & \alpha \vee \beta & \alpha \to \gamma & \beta \to \gamma \end{array} E \vee \\$
$\frac{\alpha}{\alpha \ \lor \ \beta} \ I \lor$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{\alpha}{\beta \ \lor \ \alpha} \ I \lor$	$\frac{\alpha \vee \beta \neg \alpha}{\beta} \ E \lor (resolução)$
$\frac{\alpha \to \neg \beta \neg \alpha \to \beta}{\alpha \oplus \beta} \ I \oplus$	$\frac{\alpha \oplus \beta \alpha}{\neg \beta} E \oplus$ $\frac{\alpha \oplus \beta \neg \alpha}{\beta} E \oplus$
$\frac{\alpha \to \beta \beta \to \alpha}{\alpha \leftrightarrow \beta} I \leftrightarrow \frac{\alpha}{\neg \neg \alpha} I \neg \neg$	$ \frac{ \begin{array}{ccccccccccccccccccccccccccccccccccc$
$\frac{\alpha}{\neg \neg \alpha} I \neg \neg$	${\alpha}$ $E \neg \neg$
$ \begin{array}{c} [\alpha] \\ \vdots \\ \beta \\ \alpha \to \beta \end{array} I \to $	$\frac{\alpha \to \beta \alpha}{\beta} E \to $ (modus ponens) $\frac{\alpha \to \beta \neg \beta}{E} \to $
	$\neg \alpha$ (modus tolens)
$\begin{bmatrix} \alpha \\ \vdots \\ \frac{\bot}{\neg \alpha} I \neg \end{bmatrix}$	$ \begin{bmatrix} \neg \alpha \\ \vdots \\ \frac{\bot}{\alpha} E \neg \\ \text{(refutação)} $
$\frac{\frac{\alpha \neg \alpha}{\bot} \ I \bot}{\frac{\alpha}{\forall_x \ \alpha[c/x]} \ I \forall}$	$\frac{\perp}{\alpha} E \perp$
$\frac{\alpha}{\forall_x \ \alpha[c/x]} \ I \forall$ c não pode aparecer nas premissas ou suposições. $x \ \text{não existe em } \alpha.$	$\frac{\forall_x \; \alpha}{\alpha[x/c]} \; E \forall$
$\frac{\alpha}{\exists_x \ \alpha[c/x]} \ I \exists$ $x \ \text{n\~ao} \ \text{existe em } \alpha.$ pelo menos uma ocorrência de c precisa ser substituída	$ \begin{array}{c} [\alpha[x/c]] \\ \vdots \\ \frac{\exists_x \; \alpha \beta}{\beta} \; E \exists \\ c \; \text{n\~{a}o pode aparecer em } \alpha, \beta \; \text{e} \\ \text{nem nas premissas ou hip\'oteses.} \end{array} $

Interpretação dos conectivos

P	$Q \mid \neg P$	$P \wedge Q$	$P \vee Q$	$P \to Q$	$P \leftrightarrow Q$	$P\oplus Q$
v	$v \mid f$	v	v	v	v	f
v	$f \mid f$	f	v	f	f	v
f	$v \mid v$	f	v	v	f	v
f	$f \mid v$	f	f	v	v	f

Definições

 $\alpha \equiv \beta$ sss para qualquer interpretação $I,\,I(\alpha) = I(\beta).$

 $\alpha \models \beta$ ss
s sempre que $I(\alpha) = v$ então $I(\beta) = v$.

 $\models \alpha$ s
ss qualquer interpretação $I, I(\alpha) = v$ (tautologia).

 $\models_I \alpha$ sss existe I tal que $I(\alpha) = v$ (satisfatível).

 $\Gamma \vdash \alpha$ sss existe uma prova para α a partir de $\Gamma.$

Principais equivalências lógicas

Frincipals equivalencias logicas							
1.	$\alpha \wedge \beta$	$\neg(\neg\alpha\vee\neg\beta)$	def. ∧				
2.	$\alpha \rightarrow \beta$	$\neg \alpha \lor \beta$	$\mathrm{def.} \rightarrow$				
3.	$\alpha \leftrightarrow \beta$	$(\alpha \to \beta) \land (\beta \to \alpha)$	$\operatorname{def.} \leftrightarrow$				
4.	$lpha \oplus eta$	$\neg(\alpha \leftrightarrow \beta)$	def. \oplus				
5.	$\alpha \vee \alpha$	α	idempotência				
6.	$\alpha \wedge \alpha$	α	idempotência				
7.	$\alpha \leftrightarrow \beta$	$\beta \leftrightarrow \alpha$	comutativa				
8.	$\alpha \wedge \beta$	$\beta \wedge \alpha$	comutativa				
9.	$\alpha \vee \beta$	$\beta \vee \alpha$	comutativa				
10.	$(\alpha \leftrightarrow \beta) \leftrightarrow \gamma$	$\alpha \leftrightarrow (\beta \leftrightarrow \gamma)$	associativa				
11.	$(\alpha \wedge \beta) \wedge \gamma$	$\alpha \wedge (\beta \wedge \gamma)$	associativa				
12.	$(\alpha \vee \beta) \vee \gamma$	$\alpha \vee (\beta \vee \gamma)$	associativa				
13.	$\alpha \wedge (\beta \vee \gamma)$	$(\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$	distributiva				
14.	$\alpha \vee (\beta \wedge \gamma)$	$(\alpha \vee \beta) \wedge (\alpha \vee \gamma)$	distributiva				
15.	$\neg(\alpha \lor \beta)$	$\neg \alpha \land \neg \beta$	De Morgan				
16.	$\neg(\alpha \land \beta)$	$\neg \alpha \lor \neg \beta$	De Morgan				
17.	$\neg(\alpha \leftrightarrow \beta)$	$\alpha \leftrightarrow \neg \beta$					
18.	$\neg(\alpha \oplus \beta)$	$\alpha \oplus \neg eta$					
19.	$\alpha \to (\beta \to \gamma)$	$(\alpha \wedge \beta) \to \gamma$					
20.	$\alpha \to \beta$	$\neg \beta \rightarrow \neg \alpha$	contrapositiva				
21.	α	$\neg \neg \alpha$					
22.	$(\alpha \wedge \beta) \vee \neg \beta$	$\alpha \vee \neg \beta$					
23.	$(\alpha \vee \beta) \wedge \neg \beta$	$\alpha \wedge \neg \beta$					
24.	$\alpha \vee (\alpha \wedge \beta)$	α					
25.	$\alpha \wedge (\alpha \vee \beta)$	α					
26.	$\alpha \vee \neg \alpha$	Τ	tautologia				
27.	$\alpha \land \neg \alpha$	\perp	contradição				
28.	$\alpha \lor \top$	Τ	identidade				
29.	$\alpha \lor \bot$	α	identidade				
30.	$\alpha \wedge \top$	α	identidade				
31.	$\alpha \wedge \bot$	\perp	identidade				
32.	$\forall_x \ \alpha$	$\neg \exists_x \neg \alpha$					
33.	$\exists_x \ \alpha$	$\neg \forall_x \ \neg \alpha$					