M5S4 - Practice with Cls

Professor Jarad Niemi

STAT 226 - Iowa State University

October 18, 2018

Outline

- Constructing confidence intervals
 - Review
 - ullet When to use z vs t
 - Practice
 - Proportions

Confidence Interval Review

Two methods of constructing confidence intervals for the population mean μ :

$$\overline{x} \pm z_{\alpha/2} \frac{\sigma}{\sqrt{n}} \qquad \text{and} \qquad \overline{x} \pm t_{n-1,\alpha/2} \frac{s}{\sqrt{n}}$$

where

- \bullet \overline{x} is the sample mean,
- \bullet s is the sample standard deviation,
- n is the sample size,
- ullet σ is the known population standard deviation,
- $z_{\alpha/2}$ is the z critical value such that $P(Z>z_{\alpha/2})=\alpha/2$,
- $t_{n-1,\alpha/2}$ is the t critical value such that $P(T_{n-1}>t_{n-1,\alpha/2})$ and n-1 is the degrees of freedom.
- ullet α is the significance (error) level, and
- $100(1-\alpha)\%$ is the confidence level.

The interpretation of a $100(1-\alpha)\%$ confidence interval is that, on average, $100(1-\alpha)\%$ of the intervals constructed with this procedure will cover μ .

Deciding which method to use

Recall that all our confidence interval formulas require the observations be independent and identically distributed. We usually accomplish this by taking a random sample from the population.

Data	σ	Sample size	Interval
Normal	Known	any	z is exact
Normal	Unknown	any	t is exact
Not normal	Known	large	z is approximate
Not normal	Unknown	any	t is approximate

Estimator for a proportion

Let $X_i \stackrel{iid}{\sim} Ber(p)$, then $Y = \sum_{i=1}^n X_i \sim Bin(n,p)$. An estimator for p is

$$\hat{p} = \frac{Y}{n}$$

with

$$E[\hat{p}] = E\left[\frac{Y}{n}\right] = \frac{E[Y]}{n} = \frac{np}{p}$$

thus \hat{p} is an unbiased estimator and

$$Var[\hat{p}] = Var\left[\frac{Y}{n}\right] = \frac{1}{n^2}Var[Y] = \frac{np(1-p)}{n^2} = \frac{p(1-p)}{n}$$

thus

$$SD[\hat{p}] = \sqrt{Var[\hat{p}]} = \sqrt{\frac{p(1-p)}{n}}.$$

Confidence interval for a proportion

To construct a $100(1-\alpha)\%$ confidence interval for p, we use the formula

$$\hat{p} \pm z_{\alpha/2} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

where $SE[\hat{p}] = \sqrt{\hat{p}(1-\hat{p})/n}$, i.e. our estimate of the SD.

It is common in polling to report \hat{p} and the margin of error $z_{\alpha/2}\sqrt{\hat{p}(1-\hat{p})/n}$.

2018 Iowa Governor Poll

In the most recent Des Moines register poll of 555 likely voters

https://www.realclearpolitics.com/epolls/2018/governor/ia/iowa_governor_reynolds_vs_hubbell-6477.html 43% indicated they would vote for Fred Hubbell with a margin of error of 4.2.

Thus a 95% confidence interval for the actual proportion who say they would vote for Fred Hubbell is

$$0.43 \pm 0.042 = (0.388, 0.472) = (38.8\%, 47.2\%).$$

The margin of error calculation is

$$2 \cdot \sqrt{\frac{0.43(1 - 0.43)}{555}} = 0.042 = 4.2\%.$$

The best resource for combining all the information from polls is 538:

https://projects.fivethirtyeight.com/2018-midterm-election-forecast/governor/