Midterm Exam 2 – SOLUTIONS

1. Give precise definitions of the following:

(a) n-ary operation on a set A

An *n*-ary operation on a set A is a function, $f:A^n\to A$, with domain A^n and codomain A.

(b) n-ary relation on a set A

An n-ary relation on a set A is a subset of A^n .

(c) algebra or algebraic structure

An algebra or algebraic structure is a pair $\langle A, F \rangle$ consisting of a nonempty set A along with a set F of operations on A.

(d) relational structure

An **relational structure** is a pair $\langle A, R \rangle$ consisting of a nonempty set A along with a set R of relations on A.

$(e) \ \ \mathbf{group} \ \ \mathbf{homomorphism}$

A **group homomorphism** is a function $\varphi: G \to H$ from a group G to a group H satisfying, for all $x, y \in G$, $\varphi(x \cdot y) = \varphi(x) \cdot \varphi(y)$.

(f) normal subgroup

A **normal subgroup** of a group G is a subgroup $N \leq G$ such that any one (hence all) of the following equivalent conditions holds for all $g \in G$:

i.
$$gNg^{-1} = N;$$

ii.
$$gN = Ng$$
;

iii.
$$gng^{-1} \in N$$
, for all $n \in N$.

2. (a) State Lagrange's Theorem about the order of a group and its subgroups. (Be sure to state all assumptions that are needed in order for the theorem to hold.)

Theorem. Let G be a finite group and let H be a subgroup of G. Then |G|/|H| = [G:H] is the number of distinct left cosets of H in G. In particular, the number of elements in H must divide the number of elements in G.

(b) Recall that G is the *internal direct product* of the subgroups H and K if G = HK, and $H \cap K = \{e\}$, and H and K centralize each other (i.e., hk = kh for all $h \in H$ and $k \in K$).

Suppose G has order 28 and subgroups H and K of orders 4 and 7 respectively which centralize each other. Prove that G is the internal direct product of H and K.

Solution: Since we are already given that hk = kh for all $h \in H$ and $k \in K$, we must show that $H \cap K = \{e\}$ and G = HK.

Suppose $x \in H \cap K$, then $x \in H$ implies $\langle x \rangle$ is a subgroup of H so, by Lagrange's Theorem |x| divides |H| = 4. Similarly $x \in K$ implies $\langle x \rangle$ is a subgroup of K so, by Lagrange's Theorem |x| divides |K| = 7. Since |x| divides both 4 and 7, we must have |x| = 1, so x = e. That is $H \cap K = \{e\}$.

Finally, we show that G = HK.¹ Since [G : K] = |G|/|K| = 28/7 = 4, there are four cosets of K in G and, since $H \cap K = \{e\}$, we can list these four cosets using as representatives the four distinct elements of H. That is, the cosets of K in G are K, h_1K, h_2K, h_3K . Since any group is the disjoint union of the cosets of any of its subgroups, we have $G = K \cup h_1K \cup h_2K \cup h_3K = HK$.

¹Note to students: On the actual exam, I left out the condition that G = HK. (Points were not deducted from answers that didn't check this condition.)

- 3. Prove either (a) OR (b) OR (c). If you prove more than one, circle the letter of the one you want graded.
 - (a) If $G \cong H$ and G is cyclic, then H is cyclic.
 - (b) If a group G has a subgroup H of index 2, then H is normal in G. Conclude that $A_n \triangleleft S_n$ for $n \geq 3$.
 - (c) If a group G has exactly one subgroup H of order k, then H is normal in G.

Solution:

(a) Claim: If $G \cong H$ and G is cyclic, then H is cyclic.

Proof: Suppose $G = \langle a \rangle \cong H$ and suppose $\varphi : G \to H$ is an isomorphism. Then $H = \langle \varphi(a) \rangle$. To see this, fix $h \in H$. We will show $h = (\varphi(a))^k$ for some $k \in \mathbb{N}$. Indeed, let $b = \varphi^{-1}(h)$. Since $b \in G = \langle a \rangle$, we must have $b = a^k$ for some $k \in \mathbb{N}$. Also, $\varphi(a^k) = (\varphi(a))^k$, since φ is a homomorphism. Therefore, $(\varphi(a))^k = \varphi(a^k) = \varphi(b) = \varphi(\varphi^{-1}(h)) = h$.

(b) Claim: If a group G has a subgroup H of index 2, then H is normal in G. Conclude that $A_n \triangleleft S_n$ for $n \geq 3$.

Proof: If [G:H]=2, then there are two left cosets of H in G. Pick a $g \in G$ with $g \notin H$. Then the two left cosets of H in G, are H and gH. Recall that the set of left cosets partitions the group into a *disjoint* union. In the present case, $G=H\cup gH$. Similarly, the two right cosets of H in G must be H and Hg, and again we have a partition of G as the *disjoint* union of sets $G=H\cup Hg$. It follows that gH=G-H=Hg.

Finally, since $[S_n : A_n] = 2$ for $n \ge 3$, we have $A_n \triangleleft S_n$.

(c) Claim: If a group G has exactly one subgroup H of order k, then H is normal in G.

Proof: Given a subgroup $H \leq G$, and an arbitrary element $g \in G$, the set $gHg^{-1} := \{ghg^{-1}|h \in H\}$ is also a subgroup of G. Moreover, the function $h \mapsto ghg^{-1}$ is a bijection. Therefore, $|H| = |gHg^{-1}|$. If |H| = k and if H is the only subgroup of order k, then, since $|gHg^{-1}| = k$, we must have $H = gHg^{-1}$. Since g was arbitrary, this proves that H is normal in G.

- **4.** The **center** of a group G is $Z(G) = \{x \in G : xg = gx \text{ for all } g \in G \}$.
 - (a) Show that the center of any group is a normal subgroup.

Solution: Fix arbitrary $z \in Z(G)$ and $a \in G$. Since z belongs to Z(G), it commutes with every element of G. Therefore, $aza^{-1} = aa^{-1}z = ez = z \in Z(G)$, so $Z(G) \triangleleft G$.

(b) The dihedral group D_4 (symmetries of the square) can be described as the permutation group with two generators $\rho = (1234)$ and $\mu = (13)$ satisfying $\rho^4 = e = \mu^2$. Therefore, the elements of D_4 are $\{e, \rho, \rho^2, \rho^3, \mu, \rho\mu, \rho^2\mu, \rho^3\mu\}$.

Calculate $Z(D_4)$, the center of D_4 . [Hint: only one nonidentity element of D_4 commutes with all other elements of D_4 , and finding this element should not require too much calculation.]

Solution: For easy reference we make a table displaying the elements of the group.

Note that $\rho^2 = (13)(24) = (24)(13)$, and ρ^2 commutes with both generators. Indeed,

$$\rho^2 \rho = \rho^3 = \rho \rho^2$$
 and $\rho^2 \mu = (13)(24)(13) = (13)(13)(24) = \mu \rho^2$.

Therefore, ρ^2 commutes with every element of D_4 , so $\rho^2 \in Z(D_4)$.

From the following calculations, we see that none of the other nonidentity elements of D_4 belongs to the center:

$$\mu \rho = (13)(1234) = (12)(34)$$

 $\rho \mu = (1234)(13) = (14)(23) \implies \mu \rho \neq \rho \mu,$

so $\mu \notin Z(D_4)$ and $\rho \notin Z(D_4)$.

$$\rho^{3}\mu = (1432)(13) = (12)(34)$$

$$\mu\rho^{3} = (13)(1432) = (14)(23) \quad \Rightarrow \quad \mu\rho^{3} \neq \rho^{3}\mu,$$

so $\rho^3 \notin Z(D_4)$. From this and the fact that ρ^2 commutes with everything, we also have $\rho^2 \mu \rho = \mu \rho^2 \rho = \mu \rho^3 \neq \rho^3 \mu = \rho \rho^2 \mu$, so $\rho^2 \mu \notin Z(D_4)$.

$$\rho^{3} \cdot \rho \mu = \mu = (13) \quad \text{(since } \rho^{4} = ())$$

$$\rho \mu \cdot \rho^{3} = (1234)(13)(1432) = (24) \quad \Rightarrow \quad \rho^{3} \cdot \rho \mu \neq \rho \mu \cdot \rho^{3},$$

so $\rho\mu \notin Z(D_4)$. Finally,

$$\rho^{3}\mu \cdot \mu = \rho^{3} = (1432)$$
$$\mu \cdot \rho^{3}\mu = (13)(12)(34) = (1234)$$

so $\rho^3 \mu \notin Z(D_4)$.

(c) Is $D_4/Z(D_4)$ cyclic? Explain. [Hint: Recall, G is abelian if G/Z(G) is cyclic.] Since D_4 is nonabelian, $D_4/Z(D_4)$ is not cyclic. **5.** State the First Isomorphism Theorem and use it to prove that every group G is isomorphic to a subgroup of $\operatorname{Sym}(G)$. [Hint: show that a certain function $\lambda: G \to \operatorname{Sym}(G)$ is a homomorphism with trivial kernel.]

First Isomorphism Theorem.

Suppose $\varphi: G \to H$ is a group homomorphism and

$$N := \varphi^{-1}(\{e_H\}) = \{g \in G : \varphi(g) = e_H\}.$$

Then there is a one-to-one group homomrorphism $\psi: G/N \to H$ such that $\psi \pi = \varphi$.

Let $\mathbf{G} = \langle G, \cdot, ^{-1}, e \rangle$ be a finite group of order n. Take the set G (the elements of \mathbf{G}) and consider the group of all permutations of these elements. We will denote this group by $\mathrm{Sym}(G) = \langle S, \circ, ^{-1}, \mathrm{id} \rangle$. Fix an element $a \in G$ and recall that the function $\lambda_a : G \to G$, defined by $\lambda_a(g) = a \cdot g$, is a permutation of the set G. That is, λ_a belongs to the permutation group $\mathrm{Sym}(G)$. The function $\lambda : G \to \mathrm{Sym}(G)$ defined by $a \mapsto \lambda_a$ is a group homomorphism.² To see this, fix $a, b \in G$. We must show that the permutation $\lambda(a \cdot b) = \lambda_{ab}$ is the same as the permutation $\lambda(a) \circ \lambda(b) = \lambda_a \circ \lambda_b$. Indeed, for all $g \in G$,

$$\lambda_{ab}(g) = (a \cdot b) \cdot g = a \cdot (b \cdot g)$$
 (associativity)
= $a \cdot \lambda_b(g) = \lambda_a(\lambda_b(g))$
= $(\lambda_a \circ \lambda_b)(g)$.

Therefore, by the First Isomorphism Theorem, there is a group homomorphism ψ : $G/N \to \operatorname{Sym}(G)$ such that $\psi \pi = \varphi$. Here, $N := \lambda^{-1}(\{\operatorname{id}\}) = \{a \in G : \lambda_a = \operatorname{id}\}$ where id is the identity permutation in $\operatorname{Sym}(G)$, that is $\operatorname{id}(g) = g$. Also note that, since ψ is a group homomorphism, the image of G/N under ψ is a subgroup of $\operatorname{Sym}(G)$.

Now $N = \{a \in G : \lambda_a = \mathrm{id}\} = \{a \in G : ax = x \text{ for all } x \in G\} = \{e\}$. Therefore, $N = \{e\}$, and so $G \cong G/N$. If $\pi : G \to G/N$ denotes this isomorphism, we have $\psi \circ \pi : G \to G/N \to \mathrm{Sym}(G)$. Since ψ and π are both one-to-one in this case, we have an isomorphism between G and the subgroup $(\psi \circ \pi)(G)$ of $\mathrm{Sym}(G)$. That is G is isomorphic to a subgroup of $\mathrm{Sym}(G)$.

²Note that the function is given, for each $a \in G$, by $\lambda(a) = \lambda_a$.

- **6.** Let $\mathbf{S} = \langle S, \cdot \rangle$ and $\mathbf{T} = \langle T, \circ \rangle$ be two semilattices.
 - (a) Say what it means for a function $\varphi: S \to T$ to be a semilattice homomorphism $\varphi: \mathbf{S} \to \mathbf{T}$.

A function $\varphi: S \to T$ is a semilattice homomorphism if $\varphi(x \cdot y) = \varphi(x) \circ \varphi(y)$ holds for all $x, y \in S$.

(b) Let $S = \{a, b, c, d\}$ and $T = \{0, 1, 2\}$, and suppose $\mathbf{S} = \langle S, \cdot \rangle$ and $\mathbf{T} = \langle T, \circ \rangle$ have the Cayley tables given below

The Hasse diagrams of S and T are as follows:

Determine which of the functions φ_i defined below is a homomorphism. In case φ_i is not a homomorphism, give an example of a violation of the definition in Part (a).

\boldsymbol{x}	$\varphi_1(x)$	x	$\varphi_2(x)$
a	0	\overline{a}	0
b	1	\overline{b}	1
c	0	\overline{c}	1
d	1	\overline{d}	2

The function φ_1 is a homomorphism. For all $s \in S$, we have

$$\varphi_1(a \cdot s) = \varphi(a) = 0 = 0 \circ \varphi(s) = \varphi(a) \circ \varphi(s).$$
 Also, $\varphi_1(b \cdot c) = \varphi(a) = 0 = \varphi_1(b) \circ 0 = \varphi_1(b) \circ \varphi_1(c)$, and

$$\varphi_1(b \cdot d) = \varphi(b) = 1 = 1 \circ 1 = \varphi_1(b) \circ \varphi_1(d)$$
, and

$$\varphi_1(c \cdot d) = \varphi(c) = 0 = 1 \circ 1 = \varphi_1(b) \circ \varphi_1(d).$$

These facts, and commutativity, imply that $\varphi(x \cdot y) = \varphi(x) \circ \varphi(y)$ for all $x, y \in S$.

The function φ_2 is not a homomorphism. For example,

$$\varphi(b \cdot c) = \varphi(a) = 0 \neq 1 = \varphi(b) \circ \varphi(c).$$

EXTRA CREDIT

Below I have drawn the subgroup lattice diagrams for the groups \mathbb{Z}_2 , \mathbb{Z}_7 , \mathbb{Z}_{12} , \mathbb{Z}_{16} , \mathbb{Z}_{30} , S_3 , and $D_4/Z(D_4)$ but I've forgotten which diagram go with which group. I was able to label the first diagram correctly. If you think you can help me label the others, go for it. But don't guess.

+1 point for each correct answer, -1/4 point for each incorrect answer.

