Homework 3 + Lab 1 • Graded

Student

周洛君

Total Points

88 / 90 pts

Question 1

Question 1 8 / 8 pts

- + 6 pts A minor mistake
- + 4 pts A major mistake or two minor mistakes
- + 2 pts Some reasonable effort
- + 0 pts Totally wrong or empty

Question 2

Question 2 8 / 8 pts

- +7 pts 1 mistake
- + 6 pts 2 mistakes
- + 5 pts 3 mistakes
- + 4 pts 4 mistakes
- + 3 pts 5 mistakes
- + 2 pts 6 mistakes
- + 1 pt 7 mistakes
- + 0 pts Totally wrong

Question 3 Pd / 16 pts

- - + 6 pts 3.1. A minor mistake
 - + 4 pts 3.1. A major mistake or two minor mistakes
 - + 2 pts 3.1. Some reasonable effort
 - + 0 pts 3.1. Totally wrong or empty
 - + 8 pts 3.2. Correct
- → + 6 pts 3.2. A minor mistake
 - + 4 pts 3.2. A major mistake or two minor mistakes
 - + 2 pts 3.2. Some reasonable effort
 - + 0 pts 3.2. Totally wrong or empty
- The next-state table is wrong.

Question 4

Question 4 28 / 28 pts

- - + 16 pts Only CLA seems to work
 - + 12 pts Only RCA seems to work
 - + 0 pts Empty or seems not to work (need demo?)
 - 4 pts Using gates (modules) that not in gate.v, adder.v
 - 4 pts Using non-gate-level implementation

Question 5

Question 5 12 / 12 pts

- - +8 pts A minor mistake
 - + 4 pts A major mistake
 - + 0 pts Totally wrong or empty

Question 6 8 / 8 pts

- - + 8 pts Correct (not the deafult answer)
 - + 6 pts Almost correct
 - + 4 pts Partially correct
 - + 2 pts Some reasonable effort
 - + 0 pts Totally wrong or empty

Question 7

Question 7 10 / 10 pts

- **✓** + **10 pts** Correct $(2 \log_2 n)$
 - + 8 pts Almost correct
 - **+ 6 pts** One minor mistake ($\log_2 n$)
 - + 4 pts One major mistake or two minor mistakes
 - + 2 pts Some reasonable effort
 - + 0 pts Totally wrong or empty

Questions assigned to the following page: $\underline{1}$ and $\underline{2}$

Digital System Design and Lab: HW3

Lo Chun, Chou R13922136

April 26, 2025

1

By lecture slide LEC-09 p.10-11, we knew that using two three-state buffers with one inverter could do data selection, and is equivalent to a 2-to-1 MUX:

So, we can use the two 4-to-1 MUXs and this setting to implement the 8-to-1 MUX as follows:

2

First, observe that part of the given circuit is a $\bar{S} - \bar{R}$ latch:

Questions assigned to the following page: $\underline{2}$ and $\underline{3}$

with the inputs:

$$\bar{S} = (AB)' = A' + B'$$

$$\bar{R} = (AB')' = A' + B$$

Thus, we can form the truth table of this latch by checking the values of $\bar{S}, \, \bar{R}$ and Q in the table above:

A	В	\bar{S}	\bar{R}	Q	Q^+
0	0	1	1	0	0
0	0	1	1	1	1
0	1	1	1	0	0
0	1	1	1	1	1
1	0	1	0	0	0
1	0	1	0	1	0
1	1	0	1	0	1
1	1	0	1	1	1

3

The following is the different cases of the latch:

(1)

From the above cases, we can see that when R=1 and H=0, $P=1\neq Q'=0.$ Therefore, we should not let:

$$R = 1$$
 and $H = 0$

(2)

The next-state table is shown below:

R	Н	Q	Q+
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	X
1	0	1	1
1	1	0	X
1	1	1	1

And we can construct the K-map as follows:

HOR	0	1	
0 0	0	X	
o	0	J	
ιĮ	1		
ما	0	*	

Which would give us the characteristic equation:

$$Q^+ = R + H \cdot Q$$

(1)

Questions assigned to the following page: $\underline{4}$, $\underline{5}$, and $\underline{6}$

(2)

5

I use Surfer instead of GTKWave to present the waveform:

6

We can find the maximum delay and one of the transition from the attached terminal output screenshots.

Questions assigned to the following page: $\underline{6}$ and $\underline{7}$

(1)

```
The maximum delay is 23 ticks on transition 000+000+0 --> 000+111+: lab1.v:70: $finish called at 3276800000 (1ps) 3276800 / 000 / 111 / 1 / 1000 / 1111
```

(2)

```
The maximum delay is 20 ticks on transition 000+000+0 --> 000+011+1 lab1.v:70: $finish called at 3276800000 (1ps) 3276800 / 000 / 011 / 1 / 0100 / 2111
```

7

First, since we are assuming a n-bit carry lookahead, we must compute C_1, \ldots, C_n . From the implementation details at p.33 in LAB-01.pdf, we can generalize the equation of C_n as follows:

$$\begin{split} C_1 &= G_0 + \frac{C_0}{C_0} \cdot P_0 \\ C_2 &= G_1 + G_0 \cdot P_1 + \frac{C_0}{C_0} \cdot P_0 \cdot P_1 \\ C_3 &= G_2 + G_1 \cdot P_2 + G_0 \cdot P_1 \cdot P_2 + \frac{C_0}{C_0} \cdot P_0 \cdot P_1 \cdot P_2 \\ &\vdots \\ C_n &= G_{n-1} + G_{n-2} \cdot P_{n-1} + \dots + G_0 \cdot P_1 \cdot \dots \cdot P_{n-1} + \frac{C_0}{C_0} \cdot P_0 \cdot \dots \cdot P_{n-1} \end{split}$$

And C_n can be rewritten as:

$$C_n = \sum_{i=0}^{n-1} \left(G_i \cdot \prod_{j=i+1}^{n-1} P_j \right) + \frac{C_0}{i} \cdot \prod_{j=0}^{n-1} P_j$$

Observe the equation for C_3 , we can see that since we are only allowed to use 2-input gates, for each term, we need:

- G_2 : 0 AND gate
- $G_1 \cdot P_2$: 1 AND gate
- $G_0 \cdot P_1 \cdot P_2$: 2 AND gates
- $C_0 \cdot P_0 \cdot P_1 \cdot P_2$: 3 AND gates

And we need 3 OR gates to sum up all the terms.

Consider the structure of a more complicated example:

We can see that for n=8, for the term that needs the most levels, it needs 4 levels of AND gates, and this happens at $C_0 \cdot \prod_{j=0}^7 P_j$.

Generalizing this to the *n*-bit case, the maximal depth happens at $C_0 \cdot \prod_{j=0}^{n-1} P_j$, and this requires $\lceil \log_2(n+1) \rceil$ levels of AND gates.

The next step is to OR these resulting n+1 terms together, and this is again a binary tree structure, and the depth is also $\lceil \log_2(n+1) \rceil$, the process is similar and shown below:

Last, we did not count the process of generating G_i, P_i as a level, so the total depth is:

$$\lceil \log_2(n+1) \rceil + \lceil \log_2(n+1) \rceil + 1 = 2\lceil \log_2(n+1) \rceil + 1$$

But until now, we have not considered the sum, which has the equation:

$$S_i = A_i \oplus B_i \oplus C_i$$

Thus, for each bit, we need 2 XOR gates $(A_i \oplus B_i, (A_i \oplus B_i) \oplus C_i)$. Observe the following figure, we can see that we only need to compute S_3 by $C_3 \oplus P_3$, so we only need up to C_{n-1} :

Therefore, the sum depth is C_{n-1} (which needs $2\lceil \log_2(n) \rceil + 1$ levels) plus the two XOR levels, which is $2\lceil \log_2(n) \rceil + 3$.

From the same above graph, the number of levels would depend on whether C_4 or S_3 is having the maximal depth, and in our generalized case, it would be:

$$\max\left\{2\lceil\log_2(n+1)\rceil+1,2\lceil\log_2(n)\rceil+3\right\} \qquad \square$$