Logical Foundations of Cyber-Physical Systems

André Platzer

aplatzer@cs.cmu.edu Computer Science Department Carnegie Mellon University, Pittsburgh, PA

http://symbolaris.com/

- CPS are Multi-Dynamical Systems
 - Hybrid Systems
 - Hybrid Games
 - Stochastic Hybrid Systems
 - Distributed Hybrid Systems
- 2 Differential Dynamic Logic
- Proofs for CPS
 - Differential Invariants
 - Differential Invariants
- 4 Applications
- Summary

Can you trust a computer to control physics?

Can you trust a computer to control physics?

Rationale

- Safety guarantees require analytic foundations
- Poundations revolutionized digital computer science & society
- Need even stronger foundations when software reaches out into our physical world

Cyber-physical Systems

CPS combine cyber capabilities with physical capabilities to solve problems that neither part could solve alone.

How can we provide people with cyber-physical systems they can bet their lives on?

— Jeannette Wing

Report CPS are Multi-Dynamical Systems

CPS Dynamics

CPS are characterized by multiple facets of dynamical systems.

CPS Compositions

CPS combine multiple simple dynamical effects.

Tame Parts

Exploiting compositionality tames CPS complexity.

Representation of the CPS are Multi-Dynamical Systems

HS = discrete + ODE

SHS = HS + stochastics

DHS = HS + distributed

HG = HS + adversary

hybrid games

Family of Differential Dynamic Logics

differential dynamic logic

$$d\mathcal{L} = DL + HP$$

stochastic differential DL

$$\mathsf{Sd}\mathcal{L} = \mathsf{DL} + \mathsf{SHP}$$

quantified differential DL

 $Qd\mathcal{L} = FOL + DL + QHP$

differential game logic

 $dG\mathcal{L} = GL + HG$

P Differential Dynamic Logic: Axiomatization

$$[:=]$$
 $[x := \theta] \phi(x) \leftrightarrow \phi(\theta)$

equations of truth

[?]
$$[?H]\phi \leftrightarrow (H \rightarrow \phi)$$

$$['] \quad [x' = f(x)]\phi \leftrightarrow \forall t \ge 0 [x := y(t)]\phi \qquad (y'(t) = f(y))$$

$$[\cup] \quad [\alpha \cup \beta]\phi \leftrightarrow [\alpha]\phi \wedge [\beta]\phi$$

[;]
$$[\alpha; \beta]\phi \leftrightarrow [\alpha][\beta]\phi$$

[*]
$$[\alpha^*]\phi \leftrightarrow \phi \land [\alpha][\alpha^*]\phi$$

$$\mathsf{K} \quad [\alpha](\phi \to \psi) \to ([\alpha]\phi \to [\alpha]\psi)$$

I
$$[\alpha^*](\phi \to [\alpha]\phi) \to (\phi \to [\alpha^*]\phi)$$

$$\mathsf{C} \quad [\alpha^*] \forall \mathsf{v} > \mathsf{0} \, (\varphi(\mathsf{v}) \to \langle \alpha \rangle \varphi(\mathsf{v} - 1)) \to \forall \mathsf{v} \, (\varphi(\mathsf{v}) \to \langle \alpha^* \rangle \exists \mathsf{v} \leq \mathsf{0} \, \varphi(\mathsf{v}))$$

Propertial Invariants for Differential Equations

Propertial Invariants for Differential Equations

Propertial Invariants for Differential Equations

R Successful CPS Proofs

ICFEM'09, JAIS'14, CAV'08, FM'09, HSCC'11, HSCC'13

R Successful CPS Proofs

R Successful CPS Proofs

15-424/624 Foundations of Cyber-Physical Systems students

Particularly successful applications:

- Parametric systems
- Structured systems
- Linear/nonlinear
- Dimension $\approx 1 \dots 20$ or ∞
- Principled system designs
- Systems understood by parts

More challenging if:

- System ill-structured
- Magic numbers in the models that are ill-understood
- Arithmetic becomes intangible

- Education & professional training
 - → make a big difference
- Tame curse of dimensionality
 - \rightarrow not as big an issue in symbolic methods but ultimately happens
- Combine sound reasoning with aggressive optimizations
- Gradual verification
- Formal proofs for nonlinear real arithmetic
- Augment system structures to simplify V&V
- Leverage designer insights during V&V
 - → Analysis is part of the design, not a separate afterthought

Logical Foundations of Cyber-Physical Systems

André Platzer.

Logics of dynamical systems.

In LICS [13], pages 13-24. doi:10.1109/LICS.2012.13.

André Platzer.

Foundations of cyber-physical systems.

Lecture Notes 15-424/624, Carnegie Mellon University, 2013.

URL: http:

//www.cs.cmu.edu/~aplatzer/course/fcps13/fcps13.pdf.

André Platzer.

Logical Analysis of Hybrid Systems: Proving Theorems for Complex Dynamics.

Springer, Heidelberg, 2010.

doi:10.1007/978-3-642-14509-4.

André Platzer.

A complete axiomatization of quantified differential dynamic logic for distributed hybrid systems.

Logical Methods in Computer Science, 8(4):1–44, 2012. Special issue for selected papers from CSL'10. doi:10.2168/LMCS-8(4:17)2012.

André Platzer.

Stochastic differential dynamic logic for stochastic hybrid programs. In Nikolaj Bjørner and Viorica Sofronie-Stokkermans, editors, *CADE*, volume 6803 of *LNCS*, pages 431–445. Springer, 2011. doi:10.1007/978-3-642-22438-6_34.

André Platzer.

A complete axiomatization of differential game logic for hybrid games. Technical Report CMU-CS-13-100R, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, January, Revised and extended in July 2013.

André Platzer.

Differential dynamic logic for hybrid systems.

J. Autom. Reas., 41(2):143-189, 2008. doi:10.1007/s10817-008-9103-8.

André Platzer.

The complete proof theory of hybrid systems.

In LICS [13], pages 541-550. doi:10.1109/LICS.2012.64.

André Platzer.

Differential-algebraic dynamic logic for differential-algebraic programs. J. Log. Comput., 20(1):309–352, 2010.

doi:10.1093/logcom/exn070.

André Platzer and Edmund M. Clarke.

Computing differential invariants of hybrid systems as fixedpoints.

Form. Methods Syst. Des., 35(1):98–120, 2009.

Special issue for selected papers from CAV'08.

doi:10.1007/s10703-009-0079-8.

André Platzer.

The structure of differential invariants and differential cut elimination.

Logical Methods in Computer Science, 8(4):1–38, 2012. doi:10.2168/LMCS-8(4:16)2012.

A differential operator approach to equational differential invariants. In Lennart Beringer and Amy Felty, editors, *ITP*, volume 7406 of *LNCS*, pages 28–48. Springer, 2012. doi:10.1007/978-3-642-32347-8_3.

Proceedings of the 27th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2012, Dubrovnik, Croatia, June 25–28, 2012. IEEE, 2012.