Formulae: Statistical Computing

Master in Data Science, Winter Semester 2019/20 Last edit: January 5, 2020

Prof. Tim Downie

1 Data Types

- Descriptive Statistics
 - · Qualitative variables
 - · Nominal
 - · Ordinal
 - · Numeric or Quantitative Variables
 - · Discrete
 - · Continuous
- Object types in R
 - · Factor (Qualitative)
 - · Numeric (Quantitative)
 - · Logical
 - · Character
 - · List

2 Frequency

- Absolute Frequency h_i (table())
- Relative Frequency $f_i = \frac{h_i}{n}$ (prop.table(table()))
- Absolute cumulative frequency $H_i = \sum_{j=1}^i h_j$ (cumsum (table ()))
- Relative cumulative frequency $F_i = \sum_{j=1}^i f_j = \frac{H_i}{n}$ (cumsum (prop.table (table ())))

3 Descriptive Statictics

- Mean (arithmetic mean) $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - If $y_i = ax_i + b$ (a & b constant), then $\overline{y} = a\overline{x} + b$.
 - If $z_i = x_i + y_i$, then $\overline{z} = \overline{x} + \overline{y}$.
- Median $x_{0.5}$

The ordered data values are $x_{(1)}, \ldots, x_{(n)}$

- · odd $n: x_{0.5} = x_{(\frac{n+1}{2})}$
- even $n: x_{0.5} = \frac{1}{2} \left(x_{\left(\frac{n}{2}\right)} + x_{\left(\frac{n}{2}+1\right)} \right)$

- Mode x_D is the most frequent value.
- Variance $s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \overline{x})^2$
- Standard deviation (SD) $s_x = \sqrt{s_x^2}$ If $y_i = ax_i + b$ (a & b constant), then

• Var
$$s_y^2 = a^2 s_x^2$$

· SD
$$s_y = as_x$$

- Range $R=x_{\text{max}}-x_{\text{min}}$
- Interquartile range $IQR = Q_3 Q_1$
- Coefficient of variation $CV = \frac{s}{\overline{x}}$
- First quartile (Q_1)
 - · If n is divisible by 4 $Q_1=x_{0.25}=\frac{1}{2}\left(x_{\left(\frac{n}{4}\right)}+x_{\left(\frac{n}{4}+1\right)}\right)$
 - If n is not divisible by $4 Q_1 = x_{0.25} = x_{\left(\lceil \frac{n}{4} \rceil \right)}$ $\lceil \cdot \rceil$ means round up.
 - \cdot R: quantile (x, 0.25)
- Third quartile (Q_3)
 - · If n is divisible by 4 $Q_3 = x_{0.75} = \frac{1}{2} \left(x_{\left(\frac{3n}{4}\right)} + x_{\left(\frac{3n}{4}+1\right)} \right)$
 - · If n is not divisible by 4 $Q_3=x_{0.75}=x_{\left(\left\lceil\frac{3n}{4}\right\rceil\right)}$
 - \cdot R: quantile(x, 0.75)
- p-quantile
 - · If pn ist an integer $x_p = \frac{1}{2} \left(x_{(pn)} + x_{(pn+1)} \right)$
 - If pn ist not an integer $x_p = x_{(\lceil pn \rceil)}$
 - · R: quantile(x,p)
- Skewness (Symmetry): g_1
 - $g_1 \gg 0$ right-skewed, right-tailed, leaning to the left
 - $g_1 \ll 0$ left-skewed, left-tailed, leaning to the right
 - $g_1 \approx 0$ symmetric.

- Covariance $s_{xy} = \frac{1}{n-1} \sum (x_i \overline{x})(y_i \overline{y})$
- Correlation coefficient

Correlation coefficient
$$r_{x,y} = \frac{\sum (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum (x_i - \overline{x})^2 \sum (y_i - \overline{y})^2}} = \frac{s_{xy}}{s_x.s_y}$$

$$F_n(b) = P(X \leqslant b) = \frac{\#x_i \leqslant b}{n}$$
• R: ecdf(x)

4 Graphics

Histogram

Height of *i*-th Column is the "density" $y_i = \frac{h_i}{b_i \cdot n}$, where h_i is the absolute frequency in the *i*-th interval and b_i is the interval width. R: hist(x)

Box plot

Upper whisker is the largest data value $\leq Q_3 + 1.5IQR$ Lower whisker is the smallest data value $\geqslant Q_1 - 1.5IQR$

R: boxplot (y) or boxplot ($y \sim x$)

5 Normal Distribution

- Let $Z \sim N(0,1)$ be a random variable with the standard normal distribution, $P(Z \leqslant z) = \Phi(z)$ R: pnorm(z)
- Let X have a general normal $N(\mu, \sigma^2)$ distribution. $Z = \frac{X \mu}{\sigma}$ has a standard normal distribution.
- Central limit theorem: Let X_1, X_2, \dots, X_n be an iid. random sample, from an arbitrary distribution with expectation μ and variance σ^2

For large n, the distribution of the random variable $Z = \frac{\overline{X} - \mu}{\sqrt{\sigma^2/n}}$ is well approximated by the standard normal N(0,1) distribution.

$$\Rightarrow \qquad \frac{\overline{X} - \mu}{\sqrt{\sigma^2/n}} \overset{a}{\sim} N(0, 1) \qquad \text{or equivalently} \qquad \overline{X} \overset{a}{\sim} N(\mu, \sigma^2/n)$$

2

6 Regression

Regression line for paired data (x_i, y_i) :

$$y_i = \widehat{a} + \widehat{b}x_i + \widehat{\epsilon}_i,$$

where \widehat{a} is the least squares estimator for the intercept and \widehat{b} is the least squares estimate for the gradient. $\widehat{\epsilon}_i$ is the *i*-th residual or *i*-th error term.

The regression coefficients are calculated using:

$$\blacktriangleright \quad \hat{b} = \frac{\sum (y_i - \overline{y})(x_i - \overline{x})}{\sum (x_i - \overline{x})^2} = \frac{s_{xy}}{s_x^2}$$

The fitted values are $\widehat{y}_i = \widehat{a} + \widehat{b}x_i$. The residuals are $\widehat{\epsilon}_i = y_i - \widehat{y}_i$.

7 Confidence intervals

 \bullet A confidence interval for μ with 95% confidence level, based on the normal distribution

$$\left[\overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}\right],\,$$

estimate σ using s_x if σ is unknown. For other confidence levels $(1-\alpha)$ use qnorm $(1-\alpha)$.

• A confidence interval for μ with 95% confidence level, based on the t distribution

$$\left[\overline{x} \pm t \frac{s_x}{\sqrt{n}}\right]$$

t depends on the confidence level and the sample size qt (1-alpha/2, n-1).

ullet Confidence interval for a proportion p

$$\widehat{p} = \overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
 is an estimate for p .

$$\left[\overline{x} \pm 1.96 \frac{\sqrt{\overline{x}(1-\overline{x})}}{\sqrt{n}} \right]$$

is an approximate 95% confidence interval for p, provided n > 30.

8 Hypothesis tests

One sample t-tests t.test(x)

• Two sided test for an expectation μ with significance level α

$$H_0: \mu = \mu_0 \text{ vs } H_1: \mu \neq \mu_0$$

3

Critical region: H_0 is rejected iff $t_{\rm stat}=\frac{\overline{x}-\mu_0}{s/\sqrt{n}}>t_{cr}$ or $t_{\rm stat}<-t_{cr}$, where t_{cr} is a quantile from the t-distribution qt (1-alpha/2, n-1).

- One sided t-test for an expectation μ with significance level α
 - a) $H_0: \mu \geqslant \mu_0$ vs $H_1: \mu < \mu_0$ Critical region: H_0 is rejected iff $t_{\text{stat}} = \frac{x \mu_0}{s/\sqrt{n}} < -t_{cr}$, t_{cr} is qt (1-alpha, n-1)

b)
$$H_0: \mu \leqslant \mu_0$$
 vs $H_1: \mu > \mu_0$ H_0 is rejected iff $t_{\text{stat}} = \frac{\overline{x} - \mu_0}{s/\sqrt{n}} > t_{cr}$ is qt (1-alpha, n-1)

• p-Value: reject the null hypothesis iff $p < \alpha$ the significance level.

Two sample tests t.test(x,y) t.test(x \sim y)

• For two unpaired samples:

Test statistic:
$$t_{\text{stat}} = \frac{\overline{x} - \overline{y}}{s_p \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}}$$
, with pooled variance $s_p^2 = \frac{(n_x - 1)s_x^2 + (n_y - 1)s_y^2}{n_x + n_y - 2}$.

Degrees of freedom: $m = n_x + n_y - 2$

- For two unpaired samples: Calculate $d_i = x_i y_i$ and carry out a one sample t-test on d_i .
- Critical region for two sided tests $H_0: \mu_x = \mu_y$ vs $H_1: \mu_x \neq \mu_y$ H_0 is rejected iff $t_{\text{stat}} > t_{cr}$ or $t_{\text{stat}} < -t_{cr}$.
- Critical region for one sided tests
 - (a) $H_0: \mu_x \geqslant \mu_y$ vs $H_1: \mu_x < \mu_y$. $\Rightarrow H_0$ is rejected iff $t_{\text{stat}} < -t_{cr}$.
 - (b) $H_0: \mu_x \leqslant \mu_y \text{ vs } H_1: \mu_x > \mu_y. \Rightarrow H_0 \text{ is rejected iff } t_{\text{stat}} > t_{cr}.$

χ^2 Test of independence

For variables X and Y with values X_1, \ldots, X_m and Y_1, \ldots, Y_n . Joint frequency table:

4

The expected frequencies are:
$$e_{ij} = \frac{h_i \cdot h_{\cdot j}}{n}$$

The test statistic is:
$$\chi^2_{\rm stat} = \sum_{i,j} \frac{(h_{ij} - e_{ij})^2}{e_{ij}}$$

Degrees of freedom: $k=(m_X-1)(m_Y-1)$ Critical value is the $1-\alpha$ -quantile from the χ^2_k distribution qchisq(1-alpha,k). H_0 is rejected iff $\chi^2_{\rm stat}>$ critical value.

Test of equality of two variances

The test statistic is
$$f_{stat} = \frac{s_x^2}{s_x^2}$$