Bayesian Estimation

Foundations of Data Analysis

February 7, 2019

All models are wrong, but some are useful.

— George Box

Frequentist vs. Bayesian Statistics

Frequentist: θ is a parameter

$$L(\theta; x_1, \ldots, x_n) = \prod_{i=1}^n p(x_i; \theta)$$

Bayesian: θ is a random variable

$$p(\theta \mid x_1, \dots, x_n) = \frac{p(x_1, \dots, x_n \mid \theta)p(\theta)}{p(x_1, \dots, x_n)}$$

Why is Random θ Important?

- The prior, $p(\theta)$, let's us use our **beliefs**, **previous** experience, or desires in the model.
- We can make **probabilistic statements** about θ (e.g., mean, variance, quantiles, etc.).
- If θ is one of several competing **hypotheses**, we can assign it a probability.
- We can make **probabilistic predictions** of the next data point, \hat{x} , using

$$p(\hat{x} | x_1, \ldots, x_n) = \int p(\hat{x} | \theta) p(\theta | x_1, \ldots, x_n) d\theta$$

But Bayesian Analysis is *Subjective*, Right?

- Not necessarily (we'll cover noninformative priors)
- Frequentist models make assumptions, too!
- Whether using frequentist or Bayesian models, always check the assumptions you make.
- Sometimes prior knowledge is a good thing.

MLE of Bernoulli Proportion

$$X_1,\ldots,X_n \sim \mathrm{Ber}(\theta)$$

$$L(\theta \mid x_1, \dots, x_n) = \theta^k (1 - \theta)^{n-k}, \text{ where } k = \sum_i x_i$$

$$\begin{split} \frac{dL}{d\theta} &= k\theta^{k-1}(1-\theta)^{n-k} - (n-k)\theta^k(1-\theta)^{n-k-1} \\ &= (k(1-\theta) - (n-k)\theta)\,\theta^{k-1}(1-\theta)^{n-k-1} \\ &= (k-n\theta)\,\theta^{k-1}(1-\theta)^{n-k-1} \end{split}$$

$$\frac{dL}{d\theta}\left(\hat{\theta}\right) = 0 \quad \Rightarrow \quad \hat{\theta} = \frac{k}{n}$$

Bayesian Inference of a Bernoulli Proportion

Let's give θ a uniform prior: $\theta \sim \text{Unif}(0,1)$

$$p(\theta)=1, \quad \text{for } \theta \in [0,1]$$

Posterior:

$$p(\theta \mid x_1, \dots, x_n) = \frac{p(x_1, \dots, x_n \mid \theta)p(\theta)}{p(x_1, \dots, x_n)}$$
$$= \frac{p(x_1, \dots, x_n \mid \theta)}{p(x_1, \dots, x_n)}$$

Bayesian Inference of a Bernoulli Proportion

Just need the denominator (normalizing constant):

$$p(x_1, \dots, x_n) = \int_0^1 p(x_1, \dots, x_n \mid \theta) p(\theta) d\theta$$
$$= \int_0^1 \theta^k (1 - \theta)^{n-k} d\theta$$
$$= \frac{\Gamma(k+1)\Gamma(n-k+1)}{\Gamma(n+2)}$$

Resulting posterior is:

$$p(\theta \mid x_1, \dots, x_n) = \frac{\Gamma(n+2)}{\Gamma(k+1)\Gamma(n-k+1)} \theta^k (1-\theta)^{n-k}$$

Beta Distribution

 $\theta \sim \text{Beta}(\alpha, \beta) \text{ PDF}$:

$$p(\theta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha - 1} (1 - \theta)^{\beta - 1}$$

So, posterior of Bernoulli with Uniform prior is $\theta \mid x \sim \text{Beta}(k+1, n-k+1)$.

Also notice that Beta(1,1) is equivalent to Unif(0,1).

Mode: $\max p(\theta) = \frac{\alpha - 1}{\alpha + \beta - 2}$

Beta pdf

Bernoulli Likelihood with Beta Prior

$$X_1, \ldots, X_n \sim \operatorname{Ber}(\theta)$$

 $\theta \sim \operatorname{Beta}(\alpha, \beta)$

Posterior:

$$p(\theta \mid x_1, \dots, x_n) \propto p(x_1, \dots, x_n \mid \theta) p(\theta; \alpha, \beta)$$
$$\propto \theta^k (1 - \theta)^{n-k} \theta^{\alpha-1} (1 - \theta)^{\beta-1}$$
$$= \theta^{k+\alpha-1} (1 - \theta)^{n-k+\beta-1}$$

So, posterior dist. of θ is $Beta(k + \alpha, n - k + \beta)$.

Conjugate Priors

Definition

Given a family (functional form) of likelihoods, $p(x \mid \theta)$, a **conjugate prior** $p(\theta; \alpha)$ is one in which the resulting posterior $p(\theta | x_1, \dots, x_n; \alpha)$ has the same functional form as the prior.

- Conjugate priors result in closed-form posteriors.
- Often good approximation to what we want to model.
- Sometimes too simplistic, but provide building blocks for multivariate models.

Posterior Prediction for Bernoulli

Start with uniform prior: $\theta \sim \text{Beta}(1,1)$

$$p(\tilde{x} \mid k) = \int_0^1 p(\tilde{x} \mid \theta, k) p(\theta \mid k) d\theta$$
$$= \int_0^1 p(\tilde{x} \mid \theta) p(\theta \mid k) d\theta$$
$$= \int_0^1 \theta p(\theta \mid k) d\theta$$
$$= E[\theta \mid k]$$

$$=\frac{k+1}{n+2}$$

Posterior Prediction for Bernoulli

For general Beta prior: $\theta \sim \operatorname{Beta}(\alpha, \beta)$

$$p(\tilde{x} \mid k) = E[\theta \mid k]$$
$$= \frac{k + \alpha}{n + \alpha + \beta}$$

Bernoulli Likelihood with Beta(1,1) Prior

Bernoulli Likelihood with Beta(2,2) Prior

Bernoulli Likelihood with Beta(10,10) Prior

Bernoulli Likelihood with Beta(10,10) Prior (increased n)

Laplace's Analysis of Birth Rates

Mémoire sur les probabilités (1778)

http://cerebro.xu.edu/math/Sources/Laplace/

Problem: Boys were born at a consistently, but only slightly, higher rate than girls in Paris. Was this a real effect or just due to chance?

Boys:
$$k = 251527$$
 # Girls: $n - k = 241945$

Solution: Model the proportion of boys as the posterior: $\theta \mid k \sim \text{Beta}(251528, 241946)$. Then,

$$P(\theta \le 0.5 \mid k) = F_{\theta \mid k}(0.5) = 1.15 \times 10^{-42}$$