C.Física Moderna: Taller 3

Efecto doppler y mecánica relativista

1. Efecto Doppler

Desde una galaxia A se emite luz a 550 nm (verde). La galaxia A tiene una velocidad relativa a las galaxias B y C de v_B y v_C respectivamente. Sabiendo que las galaxias ven lineas de absorción de 450 nm (azul) y 700 nm (rojo) respectivamente, calcule v_B y v_C . Diga si se están acercando o alejando a la galaxia A.

2. Energía relativa

Dos partículas de masa en reposo m_0 se dirigen al mismo punto con velocidades $v_1 = -v_2$ relativas a un marco de referencia inercial. ¿Cuál es la energía total de una partícula medida desde el marco en reposo de la otra?

3. Colisión totalmente inelástica

Una partícula de masa m y rapidez v colisiona y se queda pegada a una partícula estacionaria de masa M. ¿Cuál es la velocidad final de la partícula compuesta?

Fórmulas útiles

Indice o es para observador y s para fuente(source).

$$\frac{f_s}{f_o} = \frac{\lambda_o}{\lambda_s} = \frac{\sqrt{1+\beta}}{\sqrt{1-\beta}}$$

Adición de velocidades

 u_x es una velocidad medida desdeS y u_x^\prime desde $S^\prime.$

$$u_x = \frac{u_x' + v}{1 + v u_x'/c^2}$$

Momento y energía relativista

Para las siguientes formulas m es la masa en reposo.

$$p = mv\gamma$$

$$E = mc^{2}\gamma$$

$$K = mc^{2}(\gamma - 1)$$

$$E^{2} = (pc)^{2} + (mc^{2})^{2}$$