Wireless Networks

Michael Brodskiy

Professor: E. Bernal Mor

December 6, 2023

- Wireless and Mobile Networks: Context
 - More wireless (mobile) phone subscribers than fixed (wired) phone subscribers (10-to-1 in 2029)
 - More mobile-broadband connected devices than fixed-broadband connected devices (5-1 in 2019)
 - \ast 4G/5G cellular networks now embracing Internet protocol stack, including SDN
 - Two important (but different) challenges
 - * Wireless: communication over wireless link
 - * Mobility: handling the mobile user who changes point of attachment to network
- Wireless Hosts
 - Laptop, smartphone, IoT device, etc.
 - Run applications
 - May be stationary (non-mobile) or mobile
 - * Wireless does not always mean mobility
- Base Station
 - Key element that connects the wireless network to wired networks through the backbone link
 - Relay responsible for sending packets between wired networks and wireless host(s) in its "area"
 - * For examples, cell towers, IEEE 802.11, access points
- Network Infrastructure

- Larger network with which a wireless host may wish to communicate
- Backbone link: connects base station to network infrastructure

• Infrastructure Mode

- Each node is associated to the base station
- Base station connects wireless hosts into the wired network
- Handoff or handover: mobile node changes base station providing connection into wired network (without losing connectivity)

• Operating Modes of a Wireless Network

- Ad Hoc Mode
 - * No base stations
 - * No larger network infrastructure to connect
 - * Nodes can only transmit to other nodes within link coverage
 - * Nodes organize themselves into a network: route among themselves
 - * Development of protocols is challenging

• Wireless Link Characteristics

- Decreased signal strength: radio signal attenuates as it propagates through matter (path loss)
- Interference from other sources: some wireless network frequencies (like 2.4 GHz) are shared by many devices (like WiFi, Bluetooth, garage openers, motors, etc), which cause interference
- Multipath propagation: radio signal reflects off objects and ground, arriving at destination may create different copies of the signal at slightly different times (multipath fading)
- Moreover, nodes in the wireless link (broadcast link) do not receive the same signal

• WiFi: IEEE 802.11 Wireless LAN

- Many different 802.11 Standards:
 - * Link layer and physical layer
 - * Most of the IEEE 802.11 standards have infrastructure mode and ad hoc mode network versions
 - * Common MAC protocol
 - * Common frame format
 - * All offer connectionless reliable service with positive ACK and stop and wait at the link layer

- * Different data rates
- * All (but one) operate in unlicensed spectrum \rightarrow ISM bands (Industrial, Scientific, and Medical bands)
 - · Open frequency bands for non-exclusive usage (no license required)
- Infrastructure Mode
 - Base station is the access point (AP)
 - Wireless host communicates with AP
 - Service set identifier (SSID): AP identifier
 - Basic Service Set (BSS) contains:
 - * Wireless hosts
 - * AP
- IEEE 802.11 MAC Protocol: CSMA/CA
 - IEEE 802.11 Sender
 - 1. If sense channel idle for DIFs, then:
 - * Transmit entire frame (no CD)
 - 2. If sense channel is busy, then:
 - * Wait until channel is idle for DIFS
 - * Start random backoff time using binary exponential backoff
 - * Timer counts down only when channel idle
 - 3. Transmit when timer expires (only occurs when channel idle)
 - * Wait for ACK
 - 4. If ACK received and another frame to send, begin CSMA/CA in step 2
 - 5. If no ACK, increase random backoff interval, repeat step 2
 - IEEE 802.11 Receiver
 - * If frame received OK (no collision and no errors detected)
 - · Return ACK after SIFS
 - Inter-frame spaces
 - * Used to give access priority to different transmissions:
 - · SIFS (Short Inter-Frame Space)
 - · DIFS (Distributed Inter-Frame Space)
 - * The smaller interface space, the higher priority
- IEEE 802.11: RTS/CTS
 - IEEE 802.11 MAC protocol includes an optional reservation scheme to deal with hidden terminal problem

- Idea: sender "reserves" channel for data frames using small reservation packets
 - * Using CSMA/CA, sender transmits a short RTS (Request-To-Send) frame to receiver indicating the total time required to transmit the data frame
 - * After SIFS, receiver broadcasts CTS (Clear-To-Send) in response to RTS, including the reserved time
 - · After receiving the CTS, sender waits SIFS and transmits data frame
 - · Nodes that create collisions in receiver hear CTS and defer transmissions for the reserved time
- RTS may still collide with other RTS, but RTS are short frames
 - * RTS/CTS only worth it for transmission of long data frames
 - * Each node sets an RTS threshold \rightarrow If frame is longer than threshold, then use RTS/CTS
- IEEE 802.11: Reliable, Connectionless
 - MAC Protocol: CSMA/CA
 - Error Detection in link layer: CRC
 - Connectionless: no handshaking between sending and receiving NICs
 - Reliable: receiving NIC sends positive ACKs to sending NIC if frame is received correctly
 - * Implements stop and wait
 - * CSMA/CA: collisions can still happen and can not be detected
 - · Transmitter needs acknowledgements to know if frame was received without collisions
 - * Error detection in link layer to detect bit errors introduced by the physical medium and physical layer
 - · Transmitter needs acknowledgements to know if frame was received correctly or otherwise recover from the error in the link
- Wireless, Mobility: Impact on Higher Layer Protocols
 - Logically, impact on higher layers should be minimal
 - * Best effort service model remains unchanges
 - * TCP and UDP can (and do) run over wireless, mobile
 - Performance-wise:
 - \ast Packet loss/delay due to bit-errors (discarded packets, delays for link-layer retransmissions), and handover loss
 - · TCP interprets loss as congestion, will decrease congestion window unnecessarily
 - · Delay impairments for real-time traffic
 - * Link capacity is a scarce resource for wireless links