

A. Course Handout

Institute/School/College Name	Chitkara University Institute of Engineering & Technology				
Department/Centre Name	Department of Computer S	Department of Computer Science & Engineering			
Programme Name	Bachelor of Engineering- Computer Science & Engineering (Artificial				
	Intelligence)				
Course Name	Applied Probability and Random Process	Session	2024-25		
Course Code	22AS019	Semester/Batch	4 th /2023		
Lecture/Tutorial (Per Week)	4-0-0 Course Credit 4				
Course Coordinator Name	Dr. Manpreet Kaur				

1. Objectives of the Course

The course offers a broad range of learning and understanding of the subject, the main objectives of the course are:

- To provide the knowledge of random variables including sum of random variables, various probability distributions, and functions of random variables.
- To impart the knowledge about variance and covariance of random variables, generating functions, system of gambling, and central limit theorem with applications.
- To make the student understand and apply the concept of random processes, characterizations, sum processes, counting process, and Poisson processes.
- To teach about the reliability and its failure rate, mean time to failure, mean time between failure, and some system configuration related to reliability.
- To make the student understand and apply the concept of stochastic processes, Markov chain, Markov processes, and basics of Queuing theory.

2. Course Learning Outcomes

At the end of the course, students will be able to:

	Course Outcomes	POs	CL	кс	Sessions
CLO01	To understand the concept of random variables including sum of random variables, various probability distributions, and functions of random variables	PO3,PO4,PO11, PO12	K2	Factual Conceptual	15
CLO02	To interpret variance and covariance of random variables, generating functions, system of gambling, and central limit theorem with applications.	PO1, PO2, PO3,PO4,PO11, PO12	К3	Fundamental Conceptual	14
CLO03	To apply the concept of random processes, their characterizations, sum processes, counting process, and Poisson processes in real life problems.	PO1, PO2, PO3,PO4,PO11, PO12	К3	Conceptual Procedural	22
CLO04	To interpret reliability and its failure rate, mean time to failure, mean time between failure, and some system configuration related to reliability and to apply the concept of stochastic processes, Markov chain, Markov processes, and basics of Queuing theory in real life problems	PO1, PO2, PO3,PO4,PO11, PO12	К3	Conceptual Procedural	9
Total Co	ntact Hours				60

CLO-PO Mapping grid | Program outcomes (POs) are available as a part of Academic Program Guide

Course Learning Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3
CLO01	М	Н									М	М		М	М
CLO02	М	Н		М							М	М		М	
CLO03	М	Н		М							М	М	Н		
CLO04	Н	Н	М	М	Н	М					М	М		М	Н

3. ERISE Grid Mapping

Feature Enablement	Level(1-5, 5 being highest)
Entrepreneurship	2
Research	4
Innovation	3
Skills	5
Employability	4

4. Recommended Books:

- B01: M. Ross, Introduction to Probability and Statistics for Engineers and Scientists, 4th Edition, Academic Press, Elsevier.
- B02: B. V. Ramana, Higher Engineering Mathematics, 6th Edition, Tata McGraw-Hill Education.
- B03: A. Papoulis, S. U. Pillai, Probability, Random Variables, and Stochastic Processes, 4th Edition, Tata McGraw -Hill Education.
- B04: J. Medhi, Stochastic Processes, 3rd Edition, New Age International Publishers.
- B05: L. S. Srinath, Reliability Engineering, 3rd Edition, East-West Press Private Limited.
- B06: W. Feller, An Introduction to Probability Theory and its Applications, Vol. 1, 3rd Edition, John Wiley and Sons.
- B07: R. V. Hogg, J.W. McKean, A. T. Craig, Introduction to Mathematical Statistic, 8th Edition, Pearson.

5. Other readings & relevant websites

S.No.	Link of Journals, Magazines, websites and Research Papers
1.	Probability, Statistics & Random Processes Free Textbook Course (probabilitycourse.com)
2.	Markov process mathematics Britannica
3.	Stochastic Processes - an overview Science Direct Topics
4.	https://tinyurl.com/2rxe9mtd
5.	https://tinyurl.com/y7c2nmx7

6. Course Plan

Lecture	Topics	Recommended		
Number		Books		
1-2	Prerequisite: Review of mathematical probability: sample spaces; events; independence; conditional probability, the law of total probability, and Bayes' theorem.	B01		
3-4	Probability distributions: binomial, poisson, and normal distributions. Random variables: Types of random variables, sum of random variables (discrete and	B01		
	continuous).			
5-6	Jointly distributed random variables, independent random variables, and conditional distributions.	B01		
7-9	7-9 Discrete uniform distributions, exponential distributions, and continuous uniform distributions with applications.			
	FA-1			
10-12	Function of one, two, and <i>n</i> random variables.	B02		
13-14	Expectation: definition and properties of the expected value, expected values of sums of random variables with applications.	B02		
15-17	Covariance functions and their properties, variance and covariance of sum of random variables	B02		
18-20	Moment generating function and joint moment generating function.	B02		
	ST-1	ı		
21-24	Characteristic function, joint characteristic function, chebyshev's and markov inequality, and the law of large numbers (strong and weak).	B03		
25-26	Convergence concept in sequence of random variables.	B03		
27-30	The idea and applications of the central limit theorem. System of gambling and the Borel-Cantelli lemma (statement only).	B03		
31-34	Random processes: stationarity and ergodicity. Strict sense and wide sense stationary processes. Characterization and classification of a random process.	B03		
35-38	Discrete-time processes: sum process, binomial counting process. Poisson and some of associated random processes.	B03		
39-42	Introduction and definition of Reliability. Failure data analysis, mean failure rate, mean time to failure (MTTF).	B03		
	ST-2			
43-46	Mean time between failure (MTBF), reliability in terms of hazard rate and failure density.	B03		
47-50	Stochastic processes, Stationarity and Ergodicity.	B04		
51-53	Random walks and Markov chains, Probability vectors, Stochastic matrices, Fixed points and regular stochastic matrices.	B04		
54-55	Higher transition probabilities and the Chapman-Kolomogrov equation.	B04		
	FA-2	1		
56-58	Classification of states, stationary distribution and limiting probabilities, transition states and absorption probabilities.	B04		
59-60	Markov processes and basics of queuing theory including networks in queues.	B04		
	ST-3			

END TERM	

7. <u>Delivery/Instructional Resources</u>

Session Number	Topics	PPT (link of ppts on the central server)	Web References	Audio-Video
1-2	Prerequisite: Review of mathematical probability: sample spaces; events; independence; conditional probability, the law of total probability, and Bayes' theorem. Probability distributions: binomial, poisson, and normal distributions.	https://tinyurl.co m/y979n7x6	https://tinyurl .com/yr5a25u b	https://tinyurl.com/39 k79um5
3-4	Random variables: Types of random variables, sum of random variables (discrete and continuous).	https://tinyurl.co m/35cspdk4	https://tinyurl .com/244h7w au	https://tinyurl.com/yc 5hwdre
5-6	Jointly distributed random variables, independent random variables, and conditional distributions.		https://tinyurl .com/2p8eym aj	
7-9	Discrete uniform distributions, exponential distributions, and continuous uniform distributions with applications.	https://tinyurl.co m/3236c5xd	https://tinyurl .com/7dycmy 9c	https://tinyurl.com/5b 3sbafm
10-12	Function of one, two, and <i>n</i> random variables.	https://tinyurl.co m/38rsvavb		https://tinyurl.com/3tx 4nxne
13-14	Expectation: definition and properties of the expected value, expected values of sums of random variables with applications.	https://tinyurl.co m/ycy3ahsj	https://tinyurl .com/2sh7znnj	https://tinyurl.com/4c 2pjywz
15-17	Covariance functions and their properties, variance and covariance of sum of random variables	https://tinyurl.co m/5f8ud54e		
18-20	Moment generating function and joint moment generating function.	https://tinyurl.co m/2nzk7kch	https://tinyurl .com/2nj8kjsa	https://tinyurl.com/73 vzuudy

21-24	Characteristic function, joint characteristic function, chebyshev's and markov inequality, and the law of large numbers (strong and weak).		https://tinyurl .com/2s3s7w6 w	
25-26	Convergence concepts.			https://tinyurl.com/2p 9e2zzp
27-30	The idea and applications of the central limit theorem. System of gambling and the borel-cantelli lemma (statement only).	https://tinyurl.co m/53sekm9y	https://tinyurl .com/34kw47 vd	https://tinyurl.com/ycy rwuf4
31-34	Random processes: stationarity and ergodicity. Strict sense and wide sense stationary processes. Characterization and classification of a random process.	https://tinyurl.co m/j3naytwr	https://tinyurl .com/2s4bas9 2	https://tinyurl.com/4zc vmkn4
35-38	Discrete-time processes: sum process, binomial counting process. Poisson and some of associated random processes.	https://tinyurl.co m/yc8h6tem	https://tinyurl .com/ms6nsy9 k	https://youtu.be/3z- M6sbGIZ0
39-42	Introduction and definition of Reliability. Failure data analysis, mean failure rate, mean time to failure (MTTF).	https://tinyurl.co m/49xktnkp	https://tinyurl .com/3vsb532 n	https://tinyurl.com/2h arjtmf
43-46	Mean time between failure (MTBF), reliability in terms of hazard rate and failure density.		https://tinyurl .com/yc6htk2 e	https://tinyurl.com/yc 8kb42y
47-50	Stochastic processes, Stationarity and ergodicity.	https://tinyurl.co m/5ydbudwf	https://tinyurl .com/muhp4v rj	https://tinyurl.com/yx 5xaw4z
51-53	Random walks and Markov chains, probability vectors, stochastic matrices, fixed points and regular stochastic matrices.		https://tinyurl .com/bddnxuu <u>S</u>	
54-55	Higher transition probabilities and the Chapman-Kolomogrov equation.	https://tinyurl.co m/bdfzhbkj	https://tinyurl .com/2b2vtrys	https://tinyurl.com/ms 9wzfkk
56-58	Classification of states, stationary distribution and limiting probabilities, transition states and absorption probabilities.	https://tinyurl.co m/yvezywpb	https://tinyurl .com/2p8vtfaj	

59-60	Markov processes and basics	https://tinyurl.co	https://tinyurl	https://tinyurl.com/4d
	of queuing theory including	m/yc8ck6jf	.com/87vrwt	<u>bjfy6w</u>
	networks in queues.		<u>ma</u>	

8. Action plan for different types of learners

Slow Learners	Average Learners	Fast Learners	
Multiple Remedial Extra Classes	Doubt-sessions	More Practice assignments on	
Encouragement for improvement	Pre-coded algorithms to	real life problems	
using Peer Tutoring	illustrate concepts and notions		
	E-notes and E-exercises to	Engaging students to hold	
	read in addition to pedagogic	hands of slow learners by	
	material	creating a Peer Tutoring Group	
		Participation in Hackathons,	
		competitions.	

9. Evaluation Scheme & Components

Evaluation	Туре	of	No.	of	Weightage of	Mode of
Component	Component		Assessments		Component	Assessment
Component 1	Formative		FA1		10%	Offline
Component 1	assessment					
Component 2	Sessional		ST1		30%	Online
Component 2	Tests(STs)		ST2		30%	Online
	End	Term	01		60%	Offline
	Examination					
Total			100%			•

10. Details of Evaluation Components

Evaluation		Description	١	Syllabus	Timeline	of	Weightage
Component				Covered	Examination		(%)
Component 1		FA1		Upto 15%	Week 5		10%
Component 2		ST1		Upto 40%	Week 6		30%
		ST2		41- 80%	Week 13		30%
		End	Term	100%			60%
		Examination	n*				
Total		100%					

^{*}As per Academic Guidelines minimum 75% attendance is required to become eligible for appearing in the End Semester Examination.

Evaluation Components

Type of Assessment	Timeline of Conduct	Total Marks	Question Paper Format			
			1 Marks	2 Marks	5 Marks	10 Marks
Formative Assessment-I	Week 5	10			2	
Sessional Test 1	Week 6	30	10	5		
Sessional Test 2	Week 18	30	10	5		
End Term Examinati	on	60	10	5	4	2

11. Syllabus of the Course

Subject: Applied Probability and Random Process	Subject Code: 22AI019
---	-----------------------

Lecture NO.	Topic (s)	No. of Lectures	Weightage %
1-9	Prerequisite: Review of mathematical probability: sample spaces, events, independence, conditional probability, the law of total probability, and Bayes' theorem. Probability distributions: binomial, poisson, and normal distributions. Random variables: Types of random variables, sum of random variables (discrete and continuous). Jointly distributed random variables, independent random variables, and conditional distributions. Discrete uniform distributions, exponential distributions, and continuous uniform distributions with applications.	9	11
10-20	Function of one, two, and <i>n</i> random variables. Expectation: definition and properties of the expected value, expected values of sums of random variables with applications. Covariance functions and their properties, variance and covariance of sum of random variables. Moment generating function and joint moment generating function.	11	20
21-46	Characteristic function, joint characteristic function, Chebyshev's and Markov inequality, and the law of large numbers (strong and weak). Convergence concepts. The idea and applications of the central limit theorem. System of gambling and the Borel-Cantelli lemma (statement only). Random processes: stationarity and ergodicity. Strict sense and wide sense stationary processes. Characterization and	26	49

	classification of a random process. Discrete-time processes: sum process, binomial counting process. Poisson and some of associated random processes. Introduction and definition of reliability. Failure data analysis, mean failure rate, mean time to failure (MTTF). Mean time between failure (MTBF), reliability in terms of hazard rate and failure density.		
47-60	Stochastic processes, stationarity and ergodicity. Random walks and markov chains, probability vectors, stochastic matrices, fixed points and regular stochastic matrices. Higher transition probabilities and the Chapman-Kolomogrov equation. Classification of states, stationary distribution and limiting probabilities, transition states and absorption probabilities. Markov processes and basics of queuing theory including networks in queues.	14	20

This document is approved by

Designation	Name	Signature
Course Coordinator	Ms. Manpreet Kaur	
Program Head	Dr Reetu Malhotra	
Dean	Dr Mohit Kumar Kakkar	
Date (DD/MM/YYYY)		