```
from sklearn.datasets import load_iris
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
%matplotlib inline
```

```
data = load_iris()
dfx1 = pd.DataFrame(data.data, columns=data.feature_names)
dfy1 = pd.DataFrame(data.target, columns = ['class'])
df2 = dfx1.join(dfy1)
df2.head()
```

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	class
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0

```
columns = ['Sepal length', 'Sepal width', 'Petal length', 'Petal width', 'Class_labels']
dfx = pd.DataFrame(data.data, columns = data.feature_names)
dfy = pd.DataFrame(data.target, columns = ['class'])
df = dfx.join(dfy)e
df.head(10)
```

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	class
0	5.1	3.5	1.4	0.2	0
1	4.9	3.0	1.4	0.2	0
2	4.7	3.2	1.3	0.2	0
3	4.6	3.1	1.5	0.2	0
4	5.0	3.6	1.4	0.2	0
5	5.4	3.9	1.7	0.4	0
6	4.6	3.4	1.4	0.3	0
7	5.0	3.4	1.5	0.2	0
8	4.4	2.9	1.4	0.2	0
9	4.9	3.1	1.5	0.1	0

df.columns

df.describe()

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	class
count	150.000000	150.000000	150.000000	150.000000	150.000000
mean	5.843333	3.057333	3.758000	1.199333	1.000000
std	0.828066	0.435866	1.765298	0.762238	0.819232
min	4.300000	2.000000	1.000000	0.100000	0.000000
25%	5.100000	2.800000	1.600000	0.300000	0.000000
50%	5.800000	3.000000	4.350000	1.300000	1.000000
75%	6.400000	3.300000	5.100000	1.800000	2.000000
max	7.900000	4.400000	6.900000	2.500000	2.000000

#Flower distribution
print(df.groupby('class').size())

class

0 50

1 50

2 50

dtype: int64

sns.pairplot(df, hue='class') #visualize the dataset

	sepal length (cm)	sepal width (cm)	petal length (cm)	petal width (cm)	class
0	False	False	False	False	False
1	False	False	False	False	False
2	False	False	False	False	False
3	False	False	False	False	False
4	False	False	False	False	False
145	False	False	False	False	False
146	False	False	False	False	False
147	False	False	False	False	False
148	False	False	False	False	False
149	False	False	False	False	False

150 rows × 5 columns

```
df.isnull().sum()
```

sepal length (cm) 0
sepal width (cm) 0
petal length (cm) 0
petal width (cm) 0

class
dtype: int64

sns.heatmap(df.corr(), linecolor = 'white', linewidths = 1)

<matplotlib.axes._subplots.AxesSubplot at 0x7f66bc178510>

sns.heatmap(df.corr(), linecolor = 'white', linewidths = 1, annot = True)

<matplotlib.axes._subplots.AxesSubplot at 0x7f66bc101310>

df.corr(method='pearson')

sepal length (cm) sepal width (cm) petal length (cm) petal width

sepal length (cm)	1.000000	-0.117570	0.871754	0.8
sepal width (cm)	-0.117570	1.000000	-0.428440	-0.3
netal length (cm)	0 871754	-0 428440	1 000000	0.9
from sklearn import mer from sklearn.neighbors from sklearn.linear_mod from sklearn.model_sel	import KNeighborsCi del import Logistic	Regression		
<pre>X = df.drop(['class'], y = df['class'] # print(X.head()) print(X.shape) # print(y.head()) print(y.shape)</pre>	axis=1)			
(150, 4) (150,)				
<pre>X_train, X_test, y_train print(X_train.shape) print(y_train.shape) print(X_test.shape) print(y_test.shape) (90, 4) (90,) (60, 4) (60,)</pre>	in, y_test = train_t	test_split(X, y,	test_size=0.4, rando	m_state=5)
	train) t(X_test) _score(y_test, y_pro 3	es/sklearn/linear	_model/_logistic.py:	818: Conver _{
<u>https://sciki</u> Please also refer <u>https://sciki</u>	t-learn.org/stable/r to the documentation	<pre>modules/preproces on for alternativ modules/linear_modules/</pre>	ve solver options: odel.html#logistic-re	
4				>
<pre>pred1 = logreg.predict pred1</pre>	([[6, 3, 4, 2]])			

/usr/local/lib/python3.7/dist-packages/sklearn/base.py:451: UserWarning: X does not h

"X does not have valid feature names, but" array([1])

from sklearn.metrics import classification_report
print(classification_report(y_test, y_pred))

support	f1-score	recall	precision	
20	1.00	1.00	1.00	0
21	0.98	0.95	1.00	1
19	0.97	1.00	0.95	2
60	0.98			accuracy
60	0.98	0.98	0.98	macro avg
60	0.98	0.98	0.98	weighted avg

