Tight and non-fillable contact manifolds are everywhere

Josua Kugler results by Bowden¹, Gironella², Moreno³, Zhou⁴

Heidelberg University

¹University of Regensburg

²University of Nantes

³Heidelberg University

⁴Morningside Center of Mathematics, CAS

Background

Contact topology: The study of contact manifolds, up to isotopy.

Contact topology: The study of contact manifolds, up to isotopy.

Fillability: *fillable* contact mflds are boundaries of symplectic mflds.

Contact topology: The study of contact manifolds, up to isotopy.

Fillability: *fillable* contact mflds are boundaries of symplectic mflds.

Fillability question

Which contact manifolds are **fillable**?

Contact topology: The study of contact manifolds, up to isotopy.

Fillability: *fillable* contact mflds are boundaries of symplectic mflds.

Fillability question

Which contact manifolds are fillable?

Eliashberg, Borman-Eliashberg-Murphy:

Dichotomy: Rigidity vs. Flexibility.

- tight (rigid/geometric);
- overtwisted (flexible/topological).

Contact topology: The study of contact manifolds, up to isotopy.

Fillability: *fillable* contact mflds are boundaries of symplectic mflds.

Fillability question

Which contact manifolds are fillable?

Eliashberg, Borman–Eliashberg–Murphy:

Dichotomy: Rigidity vs. Flexibility.

- tight (rigid/geometric);
- overtwisted (flexible/topological).

Theorem (Eliashberg–Gromov)

Fillable contact manifolds are tight.

Converse is false (Etnyre–Honda, Massot–Niederkrueger–Wendl).

Contact structures on spheres

Standard contact structure

The standard contact structure is $(S^{2n-1}, \xi) = \partial(B^{2n}, \omega_{std})$.

Contact structures on spheres

Standard contact structure

The standard contact structure is $(S^{2n-1}, \xi) = \partial(B^{2n}, \omega_{std})$.

Theorem (Eliashberg, '91)

On S³, it is the unique tight contact structure.

In particular, no tight and non-fillable contact structures on S^3 .

Tight and non-fillable structures in dim ≥ 5

Theorem (Bowden-Gironella-Moreno-Zhou '22-'24)

For every $n \ge 2$, the sphere \mathbb{S}^{2n+1} admits a tight, non-fillable contact structure that is homotopically standard.

Tight and non-fillable structures in dim ≥ 5

Theorem (Bowden-Gironella-Moreno-Zhou '22-'24)

For every $n \ge 2$, the sphere \mathbb{S}^{2n+1} admits a tight, non-fillable contact structure that is homotopically standard.

By connected sum with such an "exotic" sphere, we conclude

Theorem (Bowden-Gironella-Moreno-Zhou '22-'24)

In dim \geqslant 7, if M admits a tight structure, it also admits a tight and non strongly-fillable structure, in the same almost contact class.

Tight and non-fillable structures in dim ≥ 5

Theorem (Bowden-Gironella-Moreno-Zhou '22-'24)

For every $n \ge 2$, the sphere \mathbb{S}^{2n+1} admits a tight, non-fillable contact structure that is homotopically standard.

By connected sum with such an "exotic" sphere, we conclude

Theorem (Bowden-Gironella-Moreno-Zhou '22-'24)

In dim \geqslant 7, if M admits a tight structure, it also admits a tight and non strongly-fillable structure, in the same almost contact class. In dim = 5, the same holds, if the first Chern class vanishes.

Tight and non-fillable spheres

Geometric construction: We now construct a tight and non-fillable contact structure on \mathbb{S}^{2n+1} .

Geometric construction: We now construct a tight and non-fillable contact structure on \mathbb{S}^{2n+1} .

• Milnor A_k open book on $\mathbb{S}^{2n-1} \leadsto$ Bourgeois manifold on $\mathbb{S}^{2n-1} \times \mathbb{T}^2 \leadsto$ two 1-surgeries = $\mathbb{S}^{2n-1} \times \mathbb{S}^2 \leadsto$ one 2-surgery = \mathbb{S}^{2n+1} .

Geometric construction: We now construct a tight and non-fillable contact structure on \mathbb{S}^{2n+1} .

- Milnor A_k open book on $\mathbb{S}^{2n-1} \leadsto$ Bourgeois manifold on $\mathbb{S}^{2n-1} \times \mathbb{T}^2 \leadsto$ two 1-surgeries = $\mathbb{S}^{2n-1} \times \mathbb{S}^2 \leadsto$ one 2-surgery = \mathbb{S}^{2n+1} .
- If $n \ge 3$, surgeries are *subcritical* \leadsto by 'Eliashberg's' h-pple, Weinstein cobordism \leadsto contact manifold ($\mathbb{S}^{2n+1}, \xi_{ex}$).

Geometric construction: We now construct a tight and non-fillable contact structure on \mathbb{S}^{2n+1} .

- Milnor A_k open book on $\mathbb{S}^{2n-1} \leadsto$ Bourgeois manifold on $\mathbb{S}^{2n-1} \times \mathbb{T}^2 \leadsto$ two 1-surgeries = $\mathbb{S}^{2n-1} \times \mathbb{S}^2 \leadsto$ one 2-surgery = \mathbb{S}^{2n+1} .
- If $n \ge 3$, surgeries are *subcritical* \leadsto by 'Eliashberg's' h-pple, Weinstein cobordism \leadsto contact manifold ($\mathbb{S}^{2n+1}, \xi_{ex}$).

Claim: $(\mathbb{S}^{2n+1}, \xi_{ex})$ is tight and non-fillable.

Facts:

 1-ADC binding of open book ⇒ algebraically tight Bourgeois manifold.

- 1-ADC binding of open book ⇒ algebraically tight Bourgeois manifold.
 - ▶ 1-ADC is an *index-positivity* condition (Lazarev, Zhou).

- 1-ADC binding of open book ⇒ algebraically tight Bourgeois manifold.
 - 1-ADC is an index-positivity condition (Lazarev, Zhou).
 - ▶ E.g. Milnor A_k open book has 1-ADC binding.

- 1-ADC binding of open book ⇒ algebraically tight Bourgeois manifold.
 - 1-ADC is an index-positivity condition (Lazarev, Zhou).
 - ▶ E.g. Milnor A_k open book has 1-ADC binding.
- Algebraic tightness is preserved under surgeries.

- 1-ADC binding of open book ⇒ algebraically tight Bourgeois manifold.
 - 1-ADC is an index-positivity condition (Lazarev, Zhou).
 - ▶ E.g. Milnor A_k open book has 1-ADC binding.
- Algebraic tightness is preserved under surgeries.
- Algebraically tight ⇒ tight.

Facts:

- 1-ADC binding of open book ⇒ algebraically tight Bourgeois manifold.
 - 1-ADC is an index-positivity condition (Lazarev, Zhou).
 - ▶ E.g. Milnor A_k open book has 1-ADC binding.
- Algebraic tightness is preserved under surgeries.
- Algebraically tight ⇒ tight.

Milnor A_k open book is 1-ADC $\Rightarrow (\mathbb{S}^{2n+1}, \xi_{ex})$ is *tight*.

Observation: Bourgeois manifolds have convex decomposition

$$\textbf{\textit{M}}\times\mathbb{T}^2=(\textbf{\textit{M}}\times\mathbb{S}^1)\times\mathbb{S}^1=\textbf{\textit{V}}_+\times\mathbb{S}^1\cup_\phi\overline{\textbf{\textit{V}}}_-\times\mathbb{S}^1,$$

with $V_{\pm} = \Sigma \times D^* \mathbb{S}^1$, $\Sigma =$ page of the open book, $\phi =$ monodromy.

Observation: Bourgeois manifolds have convex decomposition

$$\textbf{\textit{M}}\times\mathbb{T}^2=(\textbf{\textit{M}}\times\mathbb{S}^1)\times\mathbb{S}^1=\textbf{\textit{V}}_+\times\mathbb{S}^1\cup_\phi\overline{\textbf{\textit{V}}}_-\times\mathbb{S}^1,$$

with $V_{\pm} = \Sigma \times D^* \mathbb{S}^1$, $\Sigma =$ page of the open book, $\phi =$ monodromy.

Theorem (Bowden-Gironella-Moreno)

 $M = V \times \mathbb{S}^1 = V_+ \times \mathbb{S}^1 \cup_{\phi} \overline{V_-} \times \mathbb{S}^1$ with convex decomposition, $N = \partial V_{\pm}$ dividing set. If W is a symplectic filling of M, then

$$H_*(N) \rightarrow H_*(V_{\pm}) \rightarrow H_*(W),$$

induced by inclusion. Then second map is injective on image of the first.

Namely, if a homology class in N survives in V_{\pm} , then it survives in the filling.

Fact:

• If dim \geqslant 7, subcritical surgeries on $\mathbb{S}^{2n-1} \times \mathbb{T}^2$ can be pushed away from dividing set to V_+ .

$$\Rightarrow$$
 (\mathbb{S}^{2n+1} , ξ_{ex}) still has a dividing set N ,

with
$$H_n(N) \neq 0$$
.

Fact:

• If dim \geqslant 7, subcritical surgeries on $\mathbb{S}^{2n-1} \times \mathbb{T}^2$ can be pushed away from dividing set to V_+ .

$$\Rightarrow (\mathbb{S}^{2n+1}, \xi_{ex})$$
 still has a dividing set N ,

with $H_n(N) \neq 0$.

4 Homological obstruction theorem persists under surgery away from dividing set (capping cobordisms).

Figure: Capping cobordism.

End of the proof: *W* filling of $(\mathbb{S}^{2n+1}, \xi_{ex}) \Rightarrow$ Homological obstruction:

$$0 \neq H_n(N) \hookrightarrow H_n(W)$$
.

However, this factors as

$$0 \neq H_n(N) \to H_n(\mathbb{S}^{2n+1}) = 0 \to H_n(W),$$

contradiction.

Thank you!