AI-3001: Advanced Topics in Machine Learning

Aug-Nov 2022

Lecture 8: Introduction to Online Convex Optimization

Lecturer: Ganesh Ghalme Scribes: Ganesh Ghalme

Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor.

8.1 OCO Setting

Algorithm 1: OCO Setting

Input: Action set: K, Function class: F

for $t = 1, 2, \cdots$ do

- Algorithm plays $x_t \in \mathcal{K}$;
- Environment reveals $f_t \in \mathcal{F}$;
- Algorithm incurs a loss $f_t(x_t) \in \mathbb{R}$;

end

• We are trying to optimize over a function class hence the regret is given as

$$\mathcal{R}_{T}(ALG) = \sup_{f_{1}, f_{2}, \dots f_{T} \in \mathcal{F}} \left[\sum_{t=1}^{T} f_{t}(x_{t}) - \inf_{x \in \mathcal{K}} \sum_{t=1}^{T} f_{t}(x) \right]$$
(8.1)

- It is worth noting that if we fix function class with a single function we recover the actions setting.
- In OCO framework we will focus on setting where K is convex and F is a collection of convex functions.

8.1.1 In this module (6 lectures)

- Online gradient Descent (OGD) and its regret guarantee
- Regret minimization inspired OCO techniques; FTL, FTRL, FTPL (time permitting)
- Online Mirrored Descent (OMD)
- Connection between FTRL and OMD

8.1.2 Today: OGD and its regret guarantee

Algorithm 2: OGD Algorithm

Input: action set: \mathcal{K} , $x_1 \in \mathcal{K}$, step size sequence $\{\eta_t\}$

for $t = 1, 2, \cdots$ do

- Algorithm plays $x_t \in \mathcal{K}$;
- Environment reveals $f_t \in \mathcal{F}$;
- Algorithm incurs a loss $f_t(x_t) \in \mathbb{R}$;
- Update

$$y_{t+1} = x_t - \eta_t \nabla f_t(x_t) \tag{8.2}$$

$$x_{t+1} = \Pi_{\mathcal{K}}(y_{t+1}) \tag{8.3}$$

end

Theorem 8.1 (Pythagorean Theorem). Let $\mathcal{K} \subseteq \mathbb{R}^d$ be a closed, convex set and $\Pi_{\mathcal{K}}(x) \in \mathcal{K}$ denote the projection of point x on \mathcal{K} . Then

$$||\Pi_{\mathcal{K}}(x) - y||^2 \le ||y - x||^2$$
 for every $y \in \mathcal{K}$ for every $x \in \mathbb{R}^d$.

Proof. We begin with the following supporting result.

Claim 8.2. We have

- 1. $\Pi_{\mathcal{K}}(x)$ is a projection of x on set \mathcal{K} iff $\langle x \Pi_{\mathcal{K}}(x), y \Pi_{\mathcal{K}}(x) \rangle \leq 0$ for all $y \in \mathcal{K}$, and
- 2. $\Pi_{\mathcal{K}}(x)$ is unique.

Proof of the claim. Note that $\Pi_{\mathcal{K}}(x) \in \arg\min_{x' \in \mathcal{K}} \frac{1}{2}||x-x'||^2$.

(1) \Rightarrow : Let $y \in \mathcal{K}$ be such that $y \neq \Pi_{\mathcal{K}}(x)$. By convexity of the set \mathcal{K} we have that $(1 - \alpha)\Pi_{\mathcal{K}}(x) + \alpha y = \Pi_{\mathcal{K}}(x) + \alpha (y - \Pi_{\mathcal{K}}(x)) \in \mathcal{K}$.

$$||x - \Pi_{\mathcal{K}}(x)||^{2} \le ||x - (\Pi_{\mathcal{K}}(x) + \alpha(y - \Pi_{\mathcal{K}}(x)))||^{2}$$
 (By definition of $\Pi_{\mathcal{K}}(x)$)
= $||x - \Pi_{\mathcal{K}}(x)||^{2} + \alpha^{2}||y - \Pi_{\mathcal{K}}(x)||^{2} - 2\alpha\langle x - \Pi_{\mathcal{K}}(x), y - \Pi_{\mathcal{K}}(x)\rangle$ (8.4)

$$\implies \langle x - \Pi_{\mathcal{K}}(x), y - \Pi_{\mathcal{K}}(x) \rangle \le \frac{\alpha}{2} ||y - \Pi_{\mathcal{K}}(x)||^2$$
(8.5)

The above result holds for any value of α . Letting $\alpha \downarrow 0$ we have $\langle x - \Pi_{\mathcal{K}}(x), y - \Pi_{\mathcal{K}}(x) \rangle \leq 0$ (1) \Leftarrow : Let $y \in \mathcal{K}$ such that $y \neq \Pi_{\mathcal{K}}(x)$.

$$||x - y||^{2} - ||x - \Pi_{\mathcal{K}}(x)||^{2} = ||(x - \Pi_{\mathcal{K}}(x)) + (\Pi_{\mathcal{K}}(x) - y)||^{2} - ||x - \Pi_{\mathcal{K}}(x)||^{2}$$

$$= ||\Pi_{\mathcal{K}}(x) - y||^{2} - 2\langle x - \Pi_{\mathcal{K}}(x), y - \Pi_{\mathcal{K}}(x)\rangle$$

$$\geq 0 \qquad (\text{since } \langle x - \Pi_{\mathcal{K}}(x), y - \Pi_{\mathcal{K}}(x)\rangle \leq 0.)$$

(2) For contradiction, let x_1 and $x_2 \neq x_1$ are two projections of point x on convex set \mathcal{K} . From (1) we have

$$\langle x_2 - x_1, x - x_1 \rangle \le 0 \tag{8.6}$$

$$\langle x_1 - x_2, x - x_2 \rangle \le 0 \tag{8.7}$$

From above equation we have $\langle x_2 - x_1, x_2 - x_1 \rangle = ||x_2 - x_1||^2 \le 0$. Which is true only when $x_2 = x_1$, a contradiction.

We now comlpete the proof of Pythagorean theorem. We have,

$$\begin{split} ||y-x||^2 &= ||\Pi_{\mathcal{K}}(x)-x+y-\Pi_{\mathcal{K}}(x)||^2 \\ &= ||\Pi_{\mathcal{K}}(x)-x||^2 + ||\Pi_{\mathcal{K}}(x)-y||^2 - 2\langle x-\Pi_{\mathcal{K}}(x)\rangle\langle y-\Pi_{\mathcal{K}}(x)\rangle \\ &\geq ||\Pi_{\mathcal{K}}(x)-x||^2 + ||\Pi_{\mathcal{K}}(x)-y||^2 \qquad \qquad \text{(From above claim)} \\ &\geq ||\Pi_{\mathcal{K}}(x)-y||^2 \qquad \qquad \text{(Non-negativity of norm function)} \end{split}$$

Let $G := \sup_{f \in \mathcal{F}} \sup_{x \in \mathcal{K}} ||\nabla f(x)||$ and $D := \sup_{x, x' \in \mathcal{K}} ||x - x'||$.

Theorem 8.3. The OGD algorithm with step size $\eta_t = \frac{D}{G\sqrt{t}}$ gives the following upper bound on regret

$$\mathcal{R}_T(OGD) \le \frac{3}{2}GD\sqrt{T} \tag{8.8}$$

Proof. Let $x^* = \arg\min_{x \in \mathcal{K}} \sum_{t=1}^T f_t(x)$ and $\nabla_t = \nabla f_t(x_t)$. By convexity of f_t we have

$$f_t(x_t) - f_t(x^*) \le \nabla_t^T (x_t - x^*)$$

We now upper bound the RHS.

$$||x_{t+1} - x^*||^2 = ||\Pi_{\mathcal{K}}(x_t - \eta_t \nabla_t) - x^*||^2 \le ||x_t - \eta_t \nabla_t - x^*||^2 = ||x_t - x^*||^2 + \eta_t^2 ||\nabla_t||^2 - 2\eta_t \langle \nabla_t, x_t - x^* \rangle$$

$$\implies 2\nabla_t^T (x_t - x^*) \rangle \le \frac{||x_t - x^*||^2 - ||x_{t+1} - x^*||^2}{\eta_t} + \eta_t ||\nabla_t||^2$$

$$\implies 2\mathcal{R}_T(OGD) = \sum_{t=1}^T 2(f_t(x_t) - f_t(x^*)) \le \sum_{t=1}^T \frac{||x_t - x^*||^2 - ||x_{t+1} - x^*||^2}{\eta_t} + G^2 \sum_{t=1}^T \eta_t$$

$$\le D^2 \sum_{t=1}^T \left(\frac{1}{\eta_t} - \frac{1}{\eta_{t-1}}\right) + G^2 \sum_{t=1}^T \eta_t$$

$$\le D^2 \sum_{t=1}^T \left(\frac{1}{\eta_t} - \frac{1}{\eta_{t-1}}\right) + G^2 \sum_{t=1}^T \eta_t - \frac{||x_{T+1} - x^*||^2}{\eta_T}$$

$$\le \frac{D^2}{\eta_T} + G^2 \sum_{t=1}^T \eta_t$$

$$= DG\sqrt{T} + DG \sum_{t=1}^T \frac{1}{\sqrt{t}}$$
(substituting $\eta_t = \frac{D}{G\sqrt{t}}$)
$$< 3DG\sqrt{T}$$

Theorem 8.4. If the loss function is α -strongly convex then OGD algorithm with $\eta_t = \frac{1}{\alpha t}$ gives the following regret guarantee,

$$\mathcal{R}_T(OGD) \le \frac{G^2}{2\alpha} (1 + \log(T)). \tag{8.10}$$

Proof. From α -strong convexity property we have

$$2(f_t(x_t) - f_t(x^*)) \le 2\nabla_t^T(x_t - x^*) - \alpha||x_t - x^*||^2$$

We will use the upper bound on the first term from previous theorem (obtained in Eq. 8.9). We have

$$2\mathcal{R}_{T}(OGD) = \sum_{t=1}^{T} 2(f_{t}(x_{t}) - f_{t}(x^{*})) \leq \sum_{t=1}^{T} \left(\frac{||x_{t} - x^{*}||^{2} - ||x_{t+1} - x^{*}||^{2}}{\eta_{t}} - \alpha||x_{t} - x^{*}||^{2}\right) + G^{2} \sum_{t=1}^{T} \eta_{t} - \frac{||x_{T+1} - x^{*}||^{2}}{\eta_{T}}$$

$$\leq D^{2} \underbrace{\sum_{t=1}^{T} \left(\frac{1}{\eta_{t}} - \frac{1}{\eta_{t+1}} - \alpha\right)}_{=0} + G^{2} \underbrace{\sum_{t=1}^{T} \eta_{t}}_{=0}$$

$$= \frac{G^{2}}{\alpha} \sum_{t=1}^{T} \frac{1}{t}$$

$$\leq \frac{G^{2}}{\alpha} (1 + \log(T))$$

References

[Bub11] Sébastien Bubeck. Introduction to online optimization. Lecture Notes, 2, 2011.

[Haz19] Elad Hazan. Introduction to online convex optimization, 2019.

[SS⁺12] Shai Shalev-Shwartz et al. Online learning and online convex optimization. Foundations and Trends® in Machine Learning, 4(2):107–194, 2012.