EEG Praktikum

EEG Theory and Hands-on Experience

- Work in groups
 - Setup/installation
 - EEG data pre-processing
 - Event Related Potential (ERP) analysis
- Group presentations
 - Review of established methods
 - Final project presentation
- Key concepts you will learn
 - O Why EEG?
 - EEG experiment design
 - python

Course Design

Jakab Pilaszanovich (PhD)

EEG Theory

Zofia Hołubowska (PhD)

EEG Practice

Prof. Marc Schönwiesner

Tech & Math Support

Paul Friedrich (PhD)

EEG Practice

Hannah Ziesenies MSc

Different analysis methods

Jessie Rademacher (PhD)

ICA analysis

Varvara Kenti (MSc)

- 28 April 9 May (2 weeks) (holidays in between)
- Morning sessions: 10-12h
 - Presentation of theory
 - Code examples
- Afternoon sessions: 13-15h
 - Apply theory to your own project
 - Work in groups
 - Ask for help
- Group presentations on each Friday
 - W1: Methods paper review
 - W2: Final presentation

Room 162

Free Field Lab

Because EEG is cool!

- Understand your data
- python skills
- Learn to run your own project

		MON	TUE	WED	THU	FRI
W1 28.04-2.0 5	10-12h	Introduction & EEG theory & MMN intro	EEG signals in python MNE Introduction	2. Fourier Transform/ Filtering 3. Rereferencing		Presentation (paper reviews)
	13-15h	Freefield Intro & Planning an experiment	WS.1 - MNE python	WS.2 - Filtering & WS. 3 Rereferencing	Catch up	Catch up
			Data collection (Group I.)	Data collection (Group II.)		Catch up
W2 5.05-9.05	10-12h	4. Independent Component Analysis (ICA)	5. Epoching/ Evokeds	6. statistics & How to report EEG results	7. other analysis methods (time-frequency analysis + TRF)	Final Presentation
	13-15h	WS.4 - ICA	WS.5 - Epoching/Evokeds	WS. 6 - t-statistics	Preparation for presentation	Workshop/ Brainstorm

Course Material

- Prerequisites
 - Pycharm (or similar)
 - Motivation
- Learning material day by day
 - Presentations (PDFs)
 - Worksheets (.py files)
- Recommended readings
 - Electroencephalography The Complete Pocket Guide (iMotions, 2019)
 - An Introduction to the Event-Related Potential Technique (Luck, 2005)

Contact

For any questions feel free to reach out to:

holubowska@cbs.mpq.de

or

marcs@uni-leipzig.de