Рубежный контроль №1

Рысьева Елизавета Антоновна

Вариант 15

```
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
sns.set(style="ticks")
from sklearn.impute import SimpleImputer
from sklearn.impute import MissingIndicator
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
from sklearn.preprocessing import MinMaxScaler, StandardScaler,
Normalizer

In [2]:
df = pd.read_csv('rest.csv')
```

Получим общую информацию о датасете.

```
In [3]:
df.head()
0
                                                                                          S
t[
31
                                                                                                   An
    b
                                                                                  Ne
                       b
       bu
                                 bu
                                                                                                   ysi
    u
             bu u us busi
                                       bus
                                            bu
                                                          ins
                                                   busi
                                                                      viola
                                 sin
                          ness
                                       ine
                                            sin
             sin
                  si
                      in
                                                          ре
                                                  ness
                                                               viola
                                                                      tion
                                                                                                   Ne
    n
       ne
                                 ess
                                                          cti
                          _pos
                                       ss_l
                                            ess
             ess
                  n
                      es
    е
                                  _la
                                                  phon
                                                               tion_
                                                                      desc
                                                                                                    ig
                                            _lo
             _ad
                 es
                      S_
                           tal
                                       on
                                                          on
    S
                                  tit
                                                   e_nu
                                                                       ripti
                                                                                  od
                                                                                                   hb
       na
                           cod
            dre
                       st
                                       git
                                            cat
                                                          _ty
    S
                                  ud
                                                  mber
              SS
                  ci
                      at
                                      ude
                                            ion
                                                          ре
                                                                                             D
                                                                                                   ho
                                                                                  (ol
                  ty
                                                                                             t
                                                                                         ri
                                                                                             ri
                                                                                             t
```

1 0 1 1 9 2	Co chi nit a #2	2 Ma rin a Blv d For t Ma son	S a n Fr a n ci sc o	C A	NaN	Na N	Na N	Na N	1.415 043e +10	Ne w O wn ers hi p	NaN	NaN	N a N	Na N	N a N	а	N a N	N a N	Na N
9 7 9 7 5	BR EA DB EL LY	140 8 Cle me nt St	S a n Fr a n ci sc	C A	941 18	Na N	Na N	Na N	1.415 724e +10	Ro uti ne - Un sc he du led	9797 5_20 1907 25_1 0312 4	Inad equa tely clean ed or saniti zed food cont act	M o d er at e Ri sk	Na N	N a N	а	N a N	N a N	Na N
9 2 9 8 2	Gr ea t Go Id Re sta ur an t	316 1 24t h St.	S a n Fr a n ci sc	C A	941 10	Na N	Na N	Na N	NaN	Ne w O wn ers hi p	NaN	NaN	N a N	Na N	N a N	N a N	N a N	N a N	Na N
1 0 1 3 8 9	H O M A GE	214 CA LIF OR NI A ST	S a n Fr a n ci sc o	C A	941 11	Na N	Na N	Na N	1.415 488e +10	Ne w Co nst ru cti on	NaN	NaN	N a N	Na N	N a N	а	N a N	N a N	Na N
8 5 9 8 6	Pr on to Piz za	798 Ed dy St	S a n Fr a n ci sc o	C A	941 09	Na N	Na N	Na N	NaN	Ne w O wn ers hi p	8598 6_20 1610 11_1 0311 4	High risk verm in infes tatio	Hi g h Ri sk	Na N	N a N	а	N a N	N a N	Na N

5 rows × 23 columns

```
df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 53973 entries, 0 to 53972
Data columns (total 23 columns):
    Column
                               Non-Null Count Dtype
                               _____
    _____
 0
    business id
                               53973 non-null int64
                               53973 non-null object
    business_name
 1
 2
    business_address
                               53973 non-null object
 3
    business_city
                               53973 non-null object
 4
    business state
                               53973 non-null
                                               object
 5
                               52955 non-null
    business_postal_code
                                               object
 б
    business latitude
                               34417 non-null float64
 7
    business_longitude
                               34417 non-null float64
    business_location
                               34417 non-null object
 8
 9
    business_phone_number
                               17035 non-null float64
 10 inspection_id
                               53973 non-null
                                               object
 11 inspection date
                               53973 non-null
                                               object
 12 inspection_score
                               40363 non-null float64
 13 inspection_type
                               53973 non-null object
 14 violation_id
                               41103 non-null
                                               object
 15 violation_description
                               41103 non-null
                                               object
                               41103 non-null
 16 risk_category
                                               object
 17 Neighborhoods (old)
                               34379 non-null float64
 18 Police Districts
                               34379 non-null float64
 19 Supervisor Districts
                               34379 non-null float64
 20 Fire Prevention Districts 34327 non-null float64
                               34397 non-null float64
 21 Zip Codes
                               34379 non-null float64
 22 Analysis Neighborhoods
dtypes: float64(10), int64(1), object(12)
memory usage: 9.5+ MB
                                                                     In [5]:
def draw_missing(df):
    total = df.isnull().sum().sort_values(ascending=False)
(df.isnull().sum()/df.isnull().count()).sort_values(ascending=False)*100
    missing_data = pd.concat([total, percent], axis=1, keys=['Total',
'Percent'])
    return missing_data
draw_missing(df)
```

Out[5]:		Total	Percent
	business_phone_number	3693 8	68.43792 3
	Fire Prevention Districts	1964 6	36.39968 1
	Analysis Neighborhoods	1959 4	36.30333 7
	Supervisor Districts	1959 4	36.30333 7
	Police Districts	1959 4	36.30333 7
	Neighborhoods (old)	1959 4	36.30333 7
	Zip Codes	1957 6	36.26998 7
	business_latitude	1955 6	36.23293 1
	business_longitude	1955 6	36.23293 1
	business_location	1955 6	36.23293 1
	inspection_score	1361 0	25.21631 2
	violation_description	1287 0	23.84525 6
	risk_category	1287 0	23.84525 6
	violation_id	1287 0	23.84525 6
	business_postal_code	1018	1.886128
	business_id	0	0.000000
	inspection_type	0	0.000000
	business_name	0	0.000000
	inspection_id	0	0.000000
	business_state	0	0.000000
	business_city	0	0.000000

business_address 0 0.000000

inspection_date 0 0.000000

df num = df[num cols]

Выясним в каких типах данных присутствуют пропуски

```
In [6]:
total_count = df.shape[0]
                                                                       In [7]:
# Выберем числовые колонки с пропущенными значениями
# Цикл по колонкам датасета
num_cols = []
for col in df.columns:
    # Количество пустых значений
    temp_null_count = df[df[col].isnull()].shape[0]
    dt = str(df[col].dtype)
    if temp_null_count>0 and (dt=='float64' or dt =='int64') :
        num_cols.append(col)
        temp_perc = round((temp_null_count / total_count) * 100.0, 2)
        print('Колонка {}. Тип данных {}. Количество пустых значений {},
{}%.'.format(col, dt, temp_null_count, temp_perc))
Колонка business_latitude. Тип данных float64. Количество пустых значений
19556, 36.23%.
Колонка business longitude. Тип данных float64. Количество пустых значений
19556, 36.23%.
Колонка business_phone_number. Тип данных float64. Количество пустых
значений 36938, 68.44%.
Колонка inspection_score. Тип данных float64. Количество пустых значений
13610, 25.22%.
Колонка Neighborhoods (old). Тип данных float64. Количество пустых
значений 19594, 36.3%.
Колонка Police Districts. Тип данных float64. Количество пустых значений
19594, 36.3%.
Колонка Supervisor Districts. Тип данных float64. Количество пустых
значений 19594, 36.3%.
Колонка Fire Prevention Districts. Тип данных float64. Количество пустых
значений 19646, 36.4%.
Колонка Zip Codes. Тип данных float64. Количество пустых значений 19576,
36.27%.
Колонка Analysis Neighborhoods. Тип данных float64. Количество пустых
значений 19594, 36.3%.
                                                                       In [8]:
```

df_nu	m									
Out [8]:	business _latitude	business_l ongitude	business_ph one_number	inspecti on_scor e	Neighb orhood s (old)	Poli ce Dis tric ts	Supe rviso r Distri cts	Fire Preve ntion Distric ts	Zi p C o de s	Analysi s Neighb orhood s
0	NaN	NaN	1.415043e+1 0	NaN	NaN	Na N	NaN	NaN	N a N	NaN
1	NaN	NaN	1.415724e+1 0	96.0	NaN	Na N	NaN	NaN	N a N	NaN
2	NaN	NaN	NaN	NaN	NaN	Na N	NaN	NaN	N a N	NaN
3	NaN	NaN	1.415488e+1 0	NaN	NaN	Na N	NaN	NaN	N a N	NaN
4	NaN	NaN	NaN	NaN	NaN	Na N	NaN	NaN	N a N	NaN
53 96 8	NaN	NaN	NaN	80.0	NaN	Na N	NaN	NaN	N a N	NaN
53 96 9	NaN	NaN	NaN	NaN	NaN	Na N	NaN	NaN	N a N	NaN
53 97 0	NaN	NaN	NaN	92.0	NaN	Na N	NaN	NaN	N a N	NaN
53 97 1	NaN	NaN	NaN	76.0	NaN	Na N	NaN	NaN	N a N	NaN
53 97		NaN	NaN	80.0	NaN	Na N	NaN	NaN	N a	NaN

53973 rows × 10 columns

In [9]:

Ν

for col in df_num:
 plt.hist(df[col], 50)

```
plt.xlabel(col)
plt.show()
```


Для обработки пропусков возьмем колонку Neighborhoods (old). Заметим, что данные распредлены волнами, поэтому для обработки будем использовать более сложную функцию, которая позволяет задавать колонку и вид импьютации

```
In [10]:
strategies=['mean', 'median', 'most_frequent']

def test_num_impute_col(dataset, column, strategy_param):
    temp_data = dataset[[column]]

    indicator = MissingIndicator()
    mask_missing_values_only = indicator.fit_transform(temp_data)

    imp_num = SimpleImputer(strategy=strategy_param)
    data_num_imp = imp_num.fit_transform(temp_data)

    filled_data = data_num_imp[mask_missing_values_only]

    return column, strategy_param, filled_data.size, filled_data[0],
filled_data[filled_data.size-1]

In [12]:
```

```
test_num_impute_col(df, 'Neighborhoods (old)', strategies[0])
Out[12]:('Neighborhoods (old)', 'mean', 19594, 19.048052590244044,
      19.048052590244044)
                                                                       In [13]:
test_num_impute_col(df, 'Neighborhoods (old)', strategies[1])
Out[13] ('Neighborhoods (old)', 'median', 19594, 19.0, 19.0)
                                                                       In [14]:
test_num_impute_col(df, 'Neighborhoods (old)', strategies[2])
/Users/liza/opt/anaconda3/lib/python3.9/site-
packages/sklearn/impute/_base.py:49: FutureWarning: Unlike other reduction
functions (e.g. `skew`, `kurtosis`), the default behavior of `mode`
typically preserves the axis it acts along. In SciPy 1.11.0, this behavior
will change: the default value of `keepdims` will become False, the `axis`
over which the statistic is taken will be eliminated, and the value None
will no longer be accepted. Set `keepdims` to True or False to avoid this
warning.
  mode = stats.mode(array)
Out[14]:('Neighborhoods (old)', 'most_frequent', 19594, 19.0, 19.0)
Заметим, что стратегии распределились одинаково, что было заметно и на графике, поэтому
заполним пропуски медианой
                                                                       In [15]:
df['Neighborhoods (old)'] = df['Neighborhoods
(old)'].fillna(df['Neighborhoods (old)'].median())
                                                                       In [16]:
num_cols = []
for col in df.columns:
    # Количество пустых значений
    temp_null_count = df[df[col].isnull()].shape[0]
    dt = str(df[col].dtype)
    if temp_null_count>0 and dt=='object' :
        num_cols.append(col)
         temp_perc = round((temp_null_count / total_count) * 100.0, 2)
         print('Колонка \{\}. Тип данных \{\}. Количество пустых значений \{\},
{}%.'.format(col, dt, temp_null_count, temp_perc))
Колонка business_postal_code. Тип данных object. Количество пустых
значений 1018, 1.89%.
Колонка business_location. Тип данных object. Количество пустых значений
19556, 36.23%.
Колонка violation_id. Тип данных object. Количество пустых значений 12870,
23.85%.
Колонка violation description. Тип данных object. Количество пустых
значений 12870, 23.85%.
```

Колонка risk_category. Тип данных object. Количество пустых значений 12870, 23.85%.

In [17]:

						-
<pre>df_num = c df_num</pre>	df[num_cols]					
Out[17]:	business_postal_ code	business_loca tion	violation_id	violation_descriptio n	risk_categ ory	
0	NaN	NaN	NaN	NaN	NaN	
1	94118	NaN	97975_20190725_10 3124	Inadequately cleaned or sanitized food contact	Moderate Risk	
2	94110	NaN	NaN	NaN	NaN	
3	94111	NaN	NaN	NaN	NaN	
4	94109	NaN	85986_20161011_10 3114	High risk vermin infestation	High Risk	
539 68	94107	NaN	89569_20190506_10 3124	Inadequately cleaned or sanitized food contact	Moderate Risk	
539 69	94132	NaN	NaN	NaN	NaN	
539 70	94105	NaN	84541_20190506_10 3133	Foods not protected from contamination	Moderate Risk	
539 71	94112	NaN	91572_20190506_10 3116	Inadequate food safety knowledge or lack of ce	Moderate Risk	
539 72	94107	NaN	89569_20190506_10 3157	Food safety certificate or food handler card n	Low Risk	
53973	rows × 5 columns					

53973 rows × 5 columns

In [18]:

2 NaN

1 Moderate Risk

```
3
                NaN
       4
            High Risk
                                                                          In [19]:
imp2 = SimpleImputer(missing_values=np.nan, strategy='most_frequent')
data_imp2 = imp2.fit_transform(cat_temp_data)
data_imp2
Out[19]:array([['Low Risk'],
              ['Moderate Risk'],
              ['Low Risk'],
              ['Moderate Risk'],
              ['Moderate Risk'],
              ['Low Risk']], dtype=object)
                                                                          In [20]:
np.unique(data_imp2)
Out[20]:array(['High Risk', 'Low Risk', 'Moderate Risk'], dtype=object)
                                                                          In [22]:
col = ['High Risk', 'Low Risk', 'Moderate Risk']
for i in col:
    k = data imp2[data imp2==i].size
    print('Количество вхожденией по {} paвно {}'.format(i, k))
Количество вхожденией по High Risk равно 5983
Количество вхожденией по Low Risk равно 32375
Количество вхожденией по Moderate Risk равно 15615
                                                                          In [23]:
imp3 = SimpleImputer(missing_values=np.nan, strategy='constant',
fill_value='Low Risk')
data_imp3 = imp3.fit_transform(cat_temp_data)
data_imp3
Out[23]:array([['Low Risk'],
              ['Moderate Risk'],
              ['Low Risk'],
              . . . ,
              ['Moderate Risk'],
              ['Moderate Risk'],
              ['Low Risk']], dtype=object)
Так количество пропусков > 10%, поэтому не до конца логично будет заполнять их самой
встречающейся категорией, тк в дольнейшем это может исказить реальную картину данных,
поэтому заполним пропуски Unknown
                                                                          In [24]:
```

df['risk_category'] = df['risk_category'].fillna('unk')