# **Discrete Mathematics**

### Exercises 4

Marcelo Fiore Ohad Kammar Dima Szamozvancev

## 4. On induction

#### 4.1. Basic exercises

- 1. Prove that for all natural numbers  $n \ge 3$ , if n distinct points on a circle are joined in consecutive order by straight lines, then the interior angles of the resulting polygon add up to  $180 \cdot (n-2)$  degrees.
- 2. Prove that, for any positive integer n, a  $2^n \times 2^n$  square grid with any one square removed can be tiled with L-shaped pieces consisting of 3 squares.

#### 4.2. Core exercises

- 1. Establish the following:
  - (a) For all positive integers m and n,

$$(2^{n}-1)\cdot\sum_{i=0}^{m-1}2^{i\cdot n}=2^{m\cdot n}-1$$

- (b) Suppose k is a positive integer that is not prime. Then  $2^k 1$  is not prime.
- 2. Prove that

$$\forall n \in \mathbb{N}. \ \forall x \in \mathbb{R}. \ x \ge -1 \implies (1+x)^n \ge 1+n \cdot x$$

- 3. Recall that the Fibonacci numbers  $F_n$  for  $n \in \mathbb{N}$  are defined recursively by  $F_0 = 0$ ,  $F_1 = 1$ , and  $F_{n+2} = F_n + F_{n+1}$  for  $n \in \mathbb{N}$ .
  - a) Prove Cassini's Identity: For all  $n \in \mathbb{N}$ ,

$$F_n \cdot F_{n+2} = F_{n+1}^2 + (-1)^{n+1}$$

b) Prove that for all natural numbers k and n,

$$F_{n+k+1} = F_{n+1} \cdot F_{k+1} + F_n \cdot F_k$$

- c) Deduce that  $F_n \mid F_{l \cdot n}$  for all natural numbers n and l.
- d) Prove that  $gcd(F_{n+2}, F_{n+1})$  terminates with output 1 in n steps for all positive integers n.
- e) Deduce also that:
  - (i) for all positive integers n < m,  $gcd(F_m, F_n) = gcd(F_{m-n}, F_n)$ , and hence that:
  - (ii) for all positive integers m and n,  $gcd(F_m, F_n) = F_{gcd(m,n)}$ .

DISCRETE MATHEMATICS EXERCISES 4

- f) Show that for all positive integers m and n,  $(F_m \cdot F_n) \mid F_{m \cdot n}$  if gcd(m, n) = 1.
- g) Conjecture and prove theorems concerning the following sums for any natural number n:
  - (i)  $\sum_{i=0}^{n} F_{2\cdot i}$
  - (ii)  $\sum_{i=0}^{n} F_{2 \cdot i+1}$
  - (iii)  $\sum_{i=0}^n F_i$

## 4.3. Optional exercises

1. Recall the gcd0 function from §3.3.3. Use the Principle of Mathematical Induction from basis 2 to formally establish the following correctness property of the algorithm:

For all natural numbers  $l \ge 2$ , we have that for all positive integers m, n, if  $m + n \le l$  then gcdO(m, n) terminates.

- 2. The set of *univariate polynomials* (over the rationals) on a variable x is defined as that of arithmetic expressions equal to those of the form  $\sum_{i=0}^{n} a_i \cdot x^i$ , for some  $n \in \mathbb{N}$  and some coefficients  $a_0, a_1, \ldots, a_n \in \mathbb{Q}$ .
  - (a) Show that if p(x) and q(x) are polynomials then so are p(x) + q(x) and  $p(x) \cdot q(x)$ .
  - (b) Deduce as a corollary that, for all  $a, b \in \mathbb{Q}$ , the linear combination  $a \cdot p(x) + b \cdot q(x)$  of two polynomials p(x) and q(x) is a polynomial.
  - (c) Show that there exists a polynomial  $p_2(x)$  such that  $p_2(n) = \sum_{i=0}^n i^2 = 0^2 + 1^2 + \dots + n^2$  for every  $n \in \mathbb{N}$ .

*Hint*: Note that for every  $n \in \mathbb{N}$ ,

$$(n+1)^3 = \sum_{i=0}^n (i+1)^3 - \sum_{i=0}^n i^3$$

(d) Show that, for every  $k \in \mathbb{N}$ , there exists a polynomial  $p_k(x)$  such that, for all  $n \in \mathbb{N}$ ,  $p_k(n) = \sum_{i=0}^n i^k = 0^k + 1^k + \dots + n^k$ .

Hint: Generalise the hint above, and the similar identity

$$(n+1)^2 = \sum_{i=0}^{n} (i+1)^2 - \sum_{i=0}^{n} i^2$$

<sup>&</sup>lt;sup>1</sup>Chapter 2.5 of *Concrete Mathematics* by R.L. Graham, D.E. Knuth and O. Patashnik looks at this in great detail.