LOGIKA I SKUPOVI

LOGIKA

Iskazi su rečenice za koje se zna da li su tačne (T) ili netačne (L). Obeležavaju se malim latiničnim slovima: p, q, r, koja se nazivaju iskazna slova.

Definicije osnovnih logičkih operacija:

Negacija	Konjukcija	Disjunkcija	Implikacija	Ekvivalencija
<u> </u>	<u> </u>	<u> </u>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
⊥ ⊤	$\perp \mid \perp \mid \perp$	$\bot \mid \top \mid \bot$	T T T	⊥ ⊥ ⊤

Rekurzivna definicija iskazne formule:

- (1) Iskazna slova su iskazne formule.
- (2) Ako su A i B iskazne formule, tada su i $(A \wedge B)$, $(A \vee B)$, $(A \Rightarrow B)$, $(A \Leftrightarrow B)$ i A iskazne formule.
- (3) Iskazne formule se mogu dobiti samo konačnom primenom 1. i 2.

Uobičajeno je da se spoljašnje zagrade ne pišu. Kao i da se uzima da su operacije \wedge i \vee prioritetnije. Iskazne formule koje su tačne za sve vrednosti iskaznih slova nazivaju se tautologije.

Primeri tautologija: $p, q, r \in \{\top, \bot\}$

- komutativnost konjukcije i disjunkcije: $\begin{array}{ccc} p \wedge q & \Leftrightarrow & q \wedge p \\ p \vee q & \Leftrightarrow & q \vee p \end{array}$
- asocijativnost konjukcije i disjunkcije: $\begin{array}{ll} p \wedge (q \wedge r) & \Leftrightarrow & (p \wedge q) \wedge r \\ p \vee (q \vee r) & \Leftrightarrow & (p \vee q) \vee r \end{array}$
- distributivnost konjukcije prema disjunkciji i disjunkcije prema konjukciji:

$$\begin{array}{ccc} p \wedge (q \vee r) & \Leftrightarrow & (p \wedge q) \vee (p \wedge r) \\ p \vee (q \wedge r) & \Leftrightarrow & (p \vee q) \wedge (p \vee r) \end{array}$$

- zakon isključenja trećeg: $\begin{array}{ccc} p \wedge \rceil p & \Leftrightarrow & \bot \\ p \vee \rceil p & \Leftrightarrow & \top \end{array}$
- zakon kontrapozicije: $(p \Rightarrow q) \Leftrightarrow (\rceil q \Rightarrow \rceil p)$
- zakon uklanjanja dvojne negacije: $\exists p \Leftrightarrow p$
- $(p \Rightarrow q) \Leftrightarrow \exists p \lor q$

Za iskazivanje tvrđenja osim logičkih operacija, potrebni su i **logički kvantifikatori** \forall (za svako) i \exists (postoji).

1

- $(\forall x) \alpha(x)$: "za svako x tačno je $\alpha(x)$ "
- $(\exists x) \alpha(x)$: "postoji x tako da važi $\alpha(x)$ "

- $(\forall x \in \mathbb{R}) \left((x+1)^2 = x^2 + 2x + 1 \right)$ $(\exists x \in \mathbb{R}) (x+2=5)$

Ako ispred x nije napisan nijedan kvantifikator tada se podrazumeva da stoji \forall .

Takođe se u svim definicijama podrazumeva ako i samo ako što će skraćeno biti zapisivano sa akko.

2

SKUPOVI

Skup je osnovni pojam koji se ne definiše.

Skupovi se obeležavaju sa A, B, C, \dots a elementi skupa sa a, b, c, \dots

Činjenica da je x elemenat skupa S obeležava se sa: $x \in S$ i čita x pripada skupu S, a činjenica da x nije elemenat skupa S obeležava se sa: $x \notin S$ i čita x ne pripada skupu S.

Konačan skup se može definisati nabrajanjem elemenata.

Primer:
$$A = \{1, 2, 3, 4\}$$
 ili $B = \{a, b\}$ ili $C = \{\bullet, \bigcirc, \bullet, \bullet\}$.

Ako je skup S beskonačan, tada se mora pronaći neka osobina π koju imaju elementi skupa S, a koju nema nijedan element koji ne pripada skupu S. Neka $\pi(x)$ znači da x zadovoljava uslov π tada se skup S zapisuje sa $S = \{x | \pi(x)\}$. Ovaj način zapisivanja skupova se može koristiti i za konačne skupove.

Primer:
$$A = \{x | x < 5 \land x \in \mathbb{N}\} \text{ ili } S = \{x | 2x - 3 = 0\}.$$

Skup koji nema elemenata zove se **prazan skup** i obeležava se sa \emptyset ili $\{\}$.

Napomena: $\{\emptyset\}$ - nije prazan skup već skup koji sadrži jedan elemenat (prazan skup).

Skup kome pripadaju svi elementi svih skupova koje posmatramo zove se **univerzalni skup** i obeležava sa \mathcal{U} .

Redosled elemenata u skupu nije važan, tj. $\{a,b\} = \{b,a\}$.

U skupu $\{a_1, a_2, \dots, a_n\}$ od n elemenata podrazumeva se da su svi elementi tog skupa međusobno različiti.

Kardinalni broj skupa A, je broj elemenata koji pripadaju skupu A, i obeležava se sa Card(A).

Primer:
$$A = \{0, 1\} \Rightarrow Card(A) = 2$$

Skupovne relacije i operacije se definišu preko odgovarajućih logičkih operacija:

- **jednakost** skupova: $A = B \Leftrightarrow (\forall x \in \mathcal{U}) (x \in A \Leftrightarrow x \in B)$
- skupovna **inkluzija** (podskup): $A \subseteq B \Leftrightarrow (\forall x \in \mathcal{U}) (x \in A \Rightarrow x \in B)$

pravi podskup:
$$A \subset B \Leftrightarrow A \subseteq B \land A \neq B$$

Za svaki skup A važi: $A \subseteq A$ i $\emptyset \subseteq A$.

- unija skupova: $A \cup B = \{x | x \in A \lor x \in B\}$
- **presek** skupova: $A \cap B = \{x | x \in A \land x \in B\}$

Skupovi su disjunktni ako je njihov presek prazan skup, tj. ako je $A \cap B = \emptyset$.

- komplement skupa: $\overline{A} = \{x | x \in \mathcal{U} \land x \notin A\}$
- razlika skupova: $A \setminus B = \{x | x \in A \land x \notin B\}$
- simetrična razlika skupova: $A \triangle B = (A \setminus B) \cup (B \setminus A) = (A \cup B) \setminus (A \cap B)$

Osobine skupovnih operacija:

$$\begin{array}{cc}
A \cap \emptyset = \emptyset \\
A \cup \emptyset = A
\end{array}$$

$$A \cap \mathcal{U} = A$$

$$A \cup \mathcal{U} = \mathcal{U}$$

$$A \cap \overline{A} = \emptyset$$

$$A \cup \overline{A} = \mathcal{U}$$

•
$$\overline{\overline{A}} = A$$

• zakon komutativnosti:
$$A \cap B = B \cap A$$

zakon komutativnosti.
$$A \cup B = B \cup A$$

• zakon asocijativnosti:
$$A \cap (B \cap C) = (A \cap B) \cap C$$

 $A \cup (B \cup C) = (A \cup B) \cup C$

LOGIKA I SKUPOVI

3

• zakon distributivnosti: $\begin{array}{l} A\cap (B\cup C) = (A\cap B)\cup (A\cap C) \\ A\cup (B\cap C) = (A\cup B)\cap (A\cup C) \end{array}$

• zakon idempotentnosti: $\begin{array}{l} A \cap A = A \\ A \cup A = A \end{array}$

• zakon apsorpcije: $\begin{array}{ll} A\cap (A\cup B)=A\\ A\cup (A\cap B)=A \end{array}$

• De Morganovi zakoni: $\frac{\overline{A\cap B}=\overline{A}\cup\overline{B}}{A\cup B}=\overline{A}\cap\overline{B}$

Partitivni skup, skupa A, je skup svih podskupova skupa A, tj. $\mathcal{P}(A) = \{X | X \subseteq A\}$.

Napomena: \emptyset i A su uvek elementi skupa $\mathcal{P}(A)$.

Primer: $A = \{1, 2, 3\}$ $\mathcal{P}(A) = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, A\}$

 ${f Particija}$ skupa A, je skup nepraznih podskupova skupa A, od kojih su svaka dva disjunktna, a njihova unija je skup A.

Primer: $A = \{1, 2, 3\}$ Sve particije skupa A su $\{\{1\}, \{2\}, \{3\}\}, \{\{1\}, \{2, 3\}\}, \{\{2\}, \{1, 3\}\}, \{\{3\}, \{1, 2\}\}, \{\{1, 2, 3\}\}.$

Primer: Dati su skupovi $A = \{1, 2, 3, 4, 5\}$ i $B = \{2, 4, 6\}$. Odrediti: Card(A), Card(B), $A \cup B$, $A \cap B$, $A \setminus B$, $B \setminus A$, $\mathcal{P}(B)$ i sve particije skupa B.

Primer: Dati su skupovi $A = \{1, 2, 3, 4\}$, $B = \{x \mid x \in \mathbb{N} \land x \mid 8\}$ i $C = \{x \mid x \in \mathbb{N} \land x \leq 2\}$. Odrediti: $A \cup B$, $A \cup C$, $B \cup C$, $A \cap B$, $A \cap C$, $B \cap C$, $A \setminus B$, $A \setminus C$, $B \setminus A$, $B \setminus C$, $C \setminus A$, $C \setminus B$, P(C), $A \times C$, $C \times B$, C^2 i napisati sve particije skupa C.