Logistinen regressio esimerkki:

Kaavakokoelmassa yksi kaava, käytännössä neljä eri vaihtoehtoa. Esim. Frekvenssit äänestyksestä, jossa äänestettiin työpaikan taukotilan maalaamisesta vihreäksi.

	Mies	Nainen
Kyllä	12	15
Ei	8	20

Lasketaan aluksi oddsit, että osataan tulkita tuloksia (tätä ei siis tarvitse tehdä enää kun menetelmä on hallussa!):

Miehen todennäköisyys äänestää kyllä: 12/(12+8) = 0.6

Naisten todennäköisyys äänestää kyllä: 15/(15+20) = 0.428

Odds(Mies-Kyllä): (12/20)/(8/20) = 12/8 = 1.5

Odds(Mies-Ei): $8/12 \approx 0.66$

Odds(Nainen-Kyllä): 15/20 = 0.75Odds(Nainen-Ei): $50/15 \approx 1.33$

OR (mies nainen – Kyllä): 1.5/0.75 = 2

OR (mies nainen- EI): 0.50

Tällaisen raportoiminen olisi hyvin raskasta ja ikävää. Siksi koko informaatio tiivistetään yhteen yhtälöön.

	Mies	Nainen
Kyllä	12	15
Ei	8	20

Esim. referenssiluokka "Mies" ja mallinnetaan Kyllä-vastauksen todennäköisyyttä:

$$b_0 = \ln\left(\frac{12}{8}\right) \approx 0.405$$

$$b_1 = \ln\left(\frac{15/20}{12/8}\right) \approx -0.693$$

 $OR = e^{-0.693} \approx 0.50$ -> "Kyllä"- vastauksen riski puolet naisilla miehiin verrattuna.

Mallin kaava:
$$\ln\left(\frac{p_1}{1-p_1}\right) = 0.405 - 0.693 * x$$

"Ку	llä"-vastauksen riski referenssiluokka "Mies"
bo	0,405
b1	-0,693
OR	0,5 "Kyllä"- vastauksen riski
	puolet naisilla miehiin verrattuna.
"Kyllä"-vastauksen riski referenssiluokka "Nainen"	
bo	-0,288
b1	0,693
OR	2 "Kyllä"-vastauksen riski
	kaksinkertainen miehillä naisiin verrattuna.
"Ei"-vastauksen riski referenssiluokka "Mies"	
bo	-0,405
b1	0,693
OR	2 "Ei"-vastauksen riski
	kaksinkertainen naisilla miehiin verrattuna.
"Ei"-vastauksen riski referenssiluokka "Nainen"	
bo	0,288
b1	-0,693
OR	0,5 "Ei"-vastauksen riski
	puolet miehillä naisiin verrattuna.

Symmetria!

Lasketaan yhtälön avulla alkuperäiset todennäköisyydet:

$$p = \frac{1}{1 + e^{-(0.405 - 0.693 * x)}}$$

Nyt täytyy muistaa, että valitsemme referenssiluokaksi miehen eli x=1 => nainen.

$$p_1 = \frac{1}{1 + e^{-(0.405 - 0.693 \times 1)}} = \frac{1}{1.75} = 0.428$$

Kun x=0 kyseessä on referenssiryhmä eli miehet:

$$p_0 = \ln\left(\frac{1}{1 + e^{-(0.405)}}\right) = \frac{1}{1.572} = 0.6$$

Harjoitellaan:

Laske seuraavalle aineistolle logistisen regression yhtälö. Käytä referenssi ryhmänä Helsinkiläisiä ja mallinna vegaani-ruokavalion todennäköisyyttä.

Määritä logistisen regressioyhtälön avulla Helsinkiläisen todennäköisyys olla vegaani ja Porilaisen todennäköisyys olla ei-vegaani.

Määritä myös helsinkiläisten ja porilaisten välinen OR.

	Helsinki	Pori
Vegaani	19	15
Ei-vegaani	120	200

Vastaus:

	Helsinki	Pori
Vegaani	19	15
Ei-vegaani	120	200

Esim. referenssiluokka "Helsinki" ja mallinnetaan Vegaani-vastauksen todennäköisyyttä:

$$b_0 = \ln\left(\frac{19}{120}\right) \approx -1.84$$

$$b_1 = \ln\left(\frac{15/200}{19/120}\right) \approx -0.747$$

Mallin kaava:
$$\ln\left(\frac{p_1}{1-p_1}\right) = -1.84 - 0.747 * x$$

$$p_{(helsinkil \ddot{a}inen\ on\ vegaani)} = \frac{1}{1 + e^{-(-1.84 - 0.747 * 0)}} = 0.137$$

$$p_{(Porilainen\ on\ vegaani)} = \frac{1}{1 + e^{-(-1.84 - 0.747*1)}} = 0.070$$

$$p_{(Porilainen\ on\ Ei-vegaani)} = 1 - 0.07 = 0.93$$

$$OR = e^{-0.747} \approx 0.47$$
 -> "vegaani"- elämäntavan riski

0.47-kertainen Helsingissä asuvaan verrattuna. Tai toisinpäin 1/0.47 = 2.1 eli Helsinkiläisellä on 2.1-kertainen riski olla vegaani porilaiseen verrattuna.

Tarkistetaan:

	Helsinki	Pori
Vegaani	19	15
Ei-vegaani	120	200

Helsingissä vegaanisuuden todennäköisyys on 19/139 = 13.7 % Porissa Vegaanisuuden todennäköisyys on 15/215= 0.070%

Harjoitus 2)

	Rokotettu	Ei-rokotettu
Vesirokko	5	200
Ei-vesirokkoa	230	120

Esim. referenssiluokka "vesirokko" ja mallinnetaan rokotettu-vastauksen todennäköisyyttä:

$$b_0 = \ln\left(\frac{5}{230}\right) \approx -3.83$$

$$b_1 = \ln\left(\frac{200/120}{5/230}\right) \approx 4.34$$

Mallin kaava:
$$\ln\left(\frac{p_1}{1-p_1}\right) = -3.83 + 4.34 * x$$

$$p_{(rokotettu\ saa\ vesirokon)} = \frac{1}{1 + e^{-(-3.83 + 4.34*0)}} = 0.021$$

$$p_{(rokottamaton \ saa \ vesirokon)} = \frac{1}{1 + e^{-(-3.83 + 4.34 * 1)}} = 0.625$$

$$OR = e^{4.34} \approx 76.7$$

-> Vesirokon riski on 76.7-kertainen jos lasta ei ole rokotettu.