Aplicação do Manejo da Irrigação Automática por Meio de Sensores de Umidade e Temperatura do Solo Baseados em IoT

Disciplina: Tóp Esp Controle Automação II - IoT Curso: Engenharia de Controle e Automação - UFRJ

Alunos:

- Caio Cesar Leal Verissimo,
- Ian Meirelles de Paula Freitas,
- Leonardo Soares da Costa Tanaka,
- Pedro Nunes Pereira

Introdução

Uvas de mesa: Sabor, textura e valor nutricional.

Irrigação: Essencial para tamanho e doçura das uvas.

Métodos: Gotejamento, aspersão, micro aspersão.

loT na irrigação: Sensores de umidade, estações meteorológicas.

Fazenda Fittipaldi: Irrigação automatizada, uso eficiente da água.

Objetivo

Propor estrutura inteligente para coleta de dados e decisões de irrigação.

Auxiliar mão-de-obra e facilitar monitoramento de umidade e temperatura.

Implementar rede de sensoriamento cobrindo toda a área cultivável.

Controle remoto com dados quantitativos e alta confiabilidade.

Código de otimização para melhor distribuição de dispositivos IoT.

Coleta e processamento de dados precisos e íntegros.

Automação da irrigação com dispositivos de borda.

Terreno

Local: Fazenda Fittipaldi, Petrolina, PE

• Área total: 7,24 hectares

Seções de plantio: 3,71 ha, 3,53 ha, 1,50 ha

Clima de Petrolina: Semi Árido

Temperaturas: 26°C - 28°C

Baixa pluviosidade: ~400 mm/ano

Solos: Neossolos Quartzarênicos

Baixa retenção de água e nutrientes

Irrigação e fertilização essenciais

Sensores sem fio:

Adequados para plantação a céu aberto

Monitoramento eficiente sem risco de danos aos fios

Problema

Método Atual

- Manual e trabalhoso
 - Solo seco: Não forma Capitão
 - Solo úmido: Forma Capitão, sem líquido
 - Solo molhado: Forma Capitão, com líquido
- Limitações
 - Pouca informação detalhada
 - Frequência restrita
 - Irrigação inadequada

Proposta de Melhoria

- Sensores de umidade e temperatura
 - Medição contínua e precisa
 - Dados detalhados e frequentes
 - Melhor gestão da irrigação
 - Uso eficiente da água
 - Monitoramento ambiental.

Frequência de Medições Necessárias

Sensores de Umidade e Temperatura

- Transmissões regulares: a cada 15-30 minutos
- Dados coletados: Umidade, temperatura, necessidade de irrigação
- Benefícios:
 - Medição contínua e precisa
 - Ajustes imediatos na irrigação

Adaptação ao Clima Semiárido

- Local: Fazenda Fittipaldi, Petrolina, PE
- Irrigação de referência: Programada a cada 4 dias,
 6 horas por sessão
- Instalação estratégica: Nas três seções de plantio

Monitoramento de Parâmetros

- Umidade do solo: Determina quantidade de água disponível
- Temperatura do solo: Influencia absorção de água, atividade microbiana e crescimento

Estratégias de Precisão

- 10 amostras por sensor: Identificação de outliers
- Overlap dos sensores: Redundância e validação cruzada

Distribuição de Sensores

- Cobertura por Sensor:
 Área de 10m de raio
- Empacotamento Hexagonal:
 Forma eficiente de distribuição
- Área Coberta por Sensor: 100π m²
- Estimativa para 1,5 Hectares:
 Necessidade de 47 sensores
- Cobertura Real:
 39 sensores suficientes com algumas áreas sem cobertura

Valor dos sensores e componentes

Tabela de Custos - Sensores

Componentes	Valor Aproximado
Módulo Sensor De Umidade De Solo	R\$10,90
STM326031G6U6 - Microcontrolador	R\$21,59
Módulo de comunicação LoraWan	R\$75,34
Bateria do Li-polímero do Li-íon, 802540, 3.7V, 1000mAh*	R\$14,89
Proteção e suporte, a prova de umidade para os componentes eletrônicos	R\$40,00
Total	R\$162,72

Tabela de custos - Nós

Componentes	Valor Aproximado
STM326031G6U6 - Microcontrolador	R\$21,59
Módulo de comunicação LoraWan	R\$75,34
Bateria do Li-polímero do Li-íon, 802540, 3.7V, 1000mAh*	R\$14,89
Módulo Wlfi	R\$12,25
Proteção e suporte, a prova de umidade para os componentes eletrônicos	R\$30,00
Total	R\$154,07

^{*}Os sensores, atuadores e nós necessitam de bateria.

Armazenamento dos dados

Solução em Nuvem:

- Google Cloud Platform ou AWS
- Robustez e escalabilidade

Estruturação dos Dados:

 Tabelas específicas no sistema de gerenciamento de banco de dados

Tabela de Dados Coletados:

- ID do sensor
- Timestamp das medições
- Registros de umidade e temperatura
- Indicativo de necessidade de irrigação

Tabela de Dados Enviados:

- ID do atuador
- Timestamp das ações de irrigação
- Respostas do sistema

Tabelas de Sensores e Atuadores:

 ID, área de cobertura, coordenadas geográficas (latitude e longitude)

Visualização dos dados

Importância da Visualização:

- Intuitiva e eficaz para funcionários e proprietários
- Simplifica a interpretação dos dados
- Facilita a tomada de decisões informadas

Gráficos de Séries Temporais:

- Quatro gráficos por ID de sensor
- Histórico de dados detalhado
- Identificação de padrões sazonais e anomalias

Scatterplot Integrado ao Mapa:

- Representação espacial dos sensores
- Cores indicam nível de umidade em tempo real
- Interações detalhadas ao clicar nas bolhas
- Informações adicionais: umidade, temperatura, coordenadas geográficas

Implantação

Módulos Sensores:

- Unidade de sensoriamento, comunicação LoraWan e microcontrolador
- Suporte à prova de umidade
- Acoplados às parreiras em locais estratégicos

Nós Controladores:

- Microcontrolador, comunicação LoraWan e módulo WiFi
- Protegidos por suporte à prova de umidade
- Direcionam o tráfego de informações até a sala de controle

Atuadores:

 Implementação posterior após validação do sistema

Implantação em Ondas:

- Redução de custos iniciais
- Identificação e solução rápida de complicações
- Validação da primeira onda para escalonamento

Estrutura da Rede

Camada de Borda:

- Sensores: coleta e envio de dados
- Futuro: receber sinais de controle para irrigação

Camada Intermediária

- Nós concentradores: memória e trânsito de dados superior
- Comunicação com a nuvem e decisões simples

Camada da Nuvem:

- Armazenamento e processamento de dados
- Análises profundas e controle hierárquico
- Integração com dados externos (ex: previsão do tempo)

Conclusão

Viabilidade e Benefícios:

 Monitoramento preciso e eficiente dos recursos hídricos

Implementação:

- Sensores sem fio em rede hexagonal
- Cobertura otimizada da área cultivável

Infraestrutura em Nuvem:

 Google Cloud Platform ou AWS para armazenamento e processamento de dados

Vantagens:

- Redução do desperdício de água
- Aumento da produtividade
- Melhoria da qualidade das uvas

Automação:

 Decisões baseadas em dados quantitativos, eliminando subjetividade

Visualização de Dados:

Gráficos e mapas intuitivos para monitoramento

Sustentabilidade:

 Contribuição para práticas agrícolas sustentáveis

Implantação Gradual:

Adaptação e expansão conforme necessário

Resiliência Agrícola:

 Solução promissora frente às mudanças climáticas e restrições hídricas

Muito obrigado!

