Machine Learning Techniques for Data Mining

Eibe Frank
University of Waikato
New Zealand

PART II

Input: Concepts, instances, attributes

Preparing for learning

- Components of the input:
 - Concepts: kinds of things that can be learned
 - * Aim: intelligible and operational concept description
 - Instances: the individual, independent examples of a concept
 - * Note: more complicated forms of input are possible
 - ◆ Attributes: measuring aspects of an instance
 - * We will focus on nominal and numeric ones
- Practical issue: a file format for the input

What's a concept?

- Styles of learning:
 - ◆ Classification learning: predicting a discrete class
 - Association learning: detecting associations between features
 - ◆ Clustering: grouping similar instances into clusters
 - ◆ Numeric prediction: predicting a numeric quantity
- Concept: thing to be learned
- Concept description: output of learning scheme

Classification learning

- Example problems: weather data, contact lenses, irises, labor negotiations
- Classification learning is supervised
 - Scheme is being provided with actual outcome
- Outcome is called the class of the example
- Success can be measured on fresh data for which class labels are known (test data)
- In practice success is often measured subjectively

Association learning

- Can be applied if no class is specified and any kind of structure is considered "interesting"
- Difference to classification learning:
 - ◆ Can predict any attribute's value, not just the class, and more than one attribute's value at a time
 - Hence: far more association rules than classification rules
 - ◆ Thus: constraints are necessary
 - * Minimum coverage and minimum accuracy

Clustering

- Finding groups of items that are similar
- Clustering is unsupervised
 - ◆ The class of an example is not known
- Success of clustering often measured subjectively
- Example problem: iris data without class

	Sepal length	Sepal width	Petal length	Petal width
1	5.1	3.5	1.4	0.2
2	4.9	3.0	1.4	0.2

Numeric prediction

- Like classification learning but with numeric "class"
- Learning is supervised
 - Scheme is being provided with target value
- Success is measured on test data (or subjectively if concept description is intelligible)
- Example: modified version of weather data

Outlook	Temperature	Humidity	Windy	Play-time
Sunny	85	85	False	5
Sunny	80	90	True	0

What's in an example?

- Instance: specific type of example
 - ◆ Thing to be classified, associated, or clustered
 - ◆ Individual, independent example of target concept
 - ◆ Characterized by a predetermined set of attributes
- Input to learning scheme: set of instances/dataset
 - ◆ Represented as a single relation/flat file
- Rather restricted form of input
 - ◆ No relationships between objects
- Most common form in practical data mining

A family tree

10/25/2000

Family tree represented as a table

Name	Gender	Parent1	parent2
Peter	Male	?	?
Peggy	Female	?	?
Steven	Male	Peter	Peggy
Graham	Male	Peter	Peggy
Pam	Female	Peter	Peggy
lan	Male	Grace	Ray
Pippa	Female	Grace	Ray
Brian	Male	Grace	Ray
Anna	Female	Pam	lan
Nikki	Female	Pam	lan

10/25/2000

The "sister-of" relation

First person	Second person	Sister of?
Peter	Peggy	No
Peter	Steven	No
Steven	Peter	No
Steven	Graham	No
Steven	Pam	Yes
lan	Pippa	Yes
Anna	Nikki	Yes
		• • •
Nikki	Anna	yes

First person	Second person	Sister of?
Steven	Pam	Yes
Graham	Pam	Yes
lan	Pippa	Yes
Brian	Pippa	Yes
Anna	Nikki	Yes
Nikki	Anna	Yes
All	the rest	No

Closed-world assumption

A full representation in one table

First person				Second person				Sister of?
Name	Gender	Parent1	Parent2	Name	Gender	Parent1	Parent2	
Steven	Male	Peter	Peggy	Pam	Female	Peter	Peggy	Yes
Graham	Male	Peter	Peggy	Pam	Female	Peter	Peggy	Yes
lan	Male	Grace	Ray	Pippa	Female	Grace	Ray	Yes
Brian	Male	Grace	Ray	Pippa	Female	Grace	Ray	Yes
Anna	Female	Pam	lan	Nikki	Female	Pam	lan	Yes
Nikki	Female	Pam	lan	Anna	Female	Pam	lan	Yes
All the rest							No	

```
If second person's gender = female and
  first person's parent = second person's parent
  then sister-of = yes
```

10/25/2000

Generating a flat file

- Process of flattening called "denormalization"
 - ◆ Several relations are joined together to make one
- Possible with any finite set of finite relations
- Problematic: relationships without pre-specified number of objects
 - ◆ Example: concept of *nuclear-family*
- Denormalization may produce spurious regularities that reflect structure of database
 - ◆ Example: "supplier" predicts "supplier address"

The "ancestor-of" relation

First person					Second person			Sister of?
Name	Gender	Parent1	Parent2	Name	Gender	Parent1	Parent2	
Peter	Male	?	?	Steven	Male	Peter	Peggy	Yes
Peter	Male	?	?	Pam	Female	Peter	Peggy	Yes
Peter	Male	?	?	Anna	Female	Pam	lan	Yes
Peter	Male	?	?	Nikki	Female	Pam	lan	Yes
Pam	Female	Peter	Peggy	Nikki	Female	Pam	lan	Yes
Grace	Female	?	?	lan	Male	Grace	Ray	Yes
Grace	Female	?	?	Nikki	Female	Pam	lan	Yes
Other positive examples here							Yes	
All the rest							No	

10/25/2000

Recursion

Infinite relations require recursion

```
If person1 is a parent of person2
then person1 is an ancestor of person2
If person1 is a parent of person2 and
and person2 is an ancestor of person3
then person1 is an ancestor of person3
```

- Appropriate techniques are known as "inductive logic programming" (e.g. Quinlan's FOIL)
 - Problems: (a) noise and (b) computational complexity

Multi-instance problems

- Each example consists of several instances
- E.g. predicting drug activity
 - ◆ Examples are molecules that are active/not active
 - ◆ Instances are confirmations of a molecule
 - ◆ Molecule active (example positive)

 at least one of its confirmations (instances) is active (positive)
 - ◆ Molecule not active (example negative)

 all of its confirmations (instances) are not active (negative)
- Problem: identifying the "truly" positive instances

What's in an attribute?

- Each instance is described by a fixed predefined set of features, its "attributes"
- But: number of attributes may vary in practice
 - ◆ Possible solution: "irrelevant value" flag
- Related problem: existence of an attribute may depend of value of another one
- Possible attribute types ("levels of measurement"):
 - ◆ Nominal, ordinal, interval and ratio

Nominal quantities

- Values are distinct symbols
 - ♦ Values themselves serve only as labels or names
 - Nominal comes from the Latin word for name
- Example: attribute "outlook" from weather data
 - ◆ Values: "sunny", "overcast", and "rainy"
- No relation is implied among nominal values (no ordering or distance measure)
- Only equality tests can be performed

Ordinal quantities

- Impose order on values
- But: no distance between values defined
- Example: attribute "temperature" in weather data
 - ◆ Values: "hot" > "mild" > "cool"
- Note: addition and subtraction don't make sense
- Example rule: temperature < hot ⇒ play = yes</p>
- Distinction between nominal and ordinal not always clear (e.g. attribute "outlook")

Interval quantities

- Interval quantities are not only ordered but measured in fixed and equal units
- Example 1: attribute "temperature" expressed in degrees Fahrenheit
- Example 2: attribute "year"
- Difference of two values makes sense
- Sum or product doesn't make sense
 - ◆ Zero point is not defined!

Ratio quantities

- Ratio quantities are ones for which the measurement scheme defines a zero point
- Example: attribute "distance"
 - ◆ Distance between an object and itself is zero
- Ratio quantities are treated as real numbers
 - ◆ All mathematical operations are allowed
- But: is there an "inherently" defined zero point?
 - ◆ Answer depends on scientific knowledge (e.g. Fahrenheit knew no lower limit to temperature)

Attribute types used in practice

- Most schemes accommodate just two levels of measurement: nominal and ordinal
- Nominal attributes are also called "categorical", "enumerated", or "discrete"
 - ◆ But: "enumerated" and "discrete" imply order
- Special case: dichotomy ("boolean" attribute)
- Ordinal attributes are called "numeric", or "continuous"
 - ◆ But: "continuous" implies mathematical continuity

Transforming ordinal to boolean

- Simple transformation allows to code ordinal attribute with n values using n-1 boolean attributes
- Example: attribute "temperature"

Better than coding it as a nominal attribute

Metadata

- Information about the data that encodes background knowledge
- Can be used to restrict search space
- Examples:
 - ◆ Dimensional considerations (i.e. expressions must be dimensionally correct)
 - ◆ Circular orderings (e.g. degrees in compass)
 - Partial orderings (e.g. generalization/specialization relations)

Preparing the input

- Denormalization is not the only issue
- Problem: different data sources (e.g. sales department, customer billing department, ...)
 - ◆ Differences: styles of record keeping, conventions, time periods, data aggregation, primary keys, errors
 - ◆ Data must be assembled, integrated, cleaned up
 - ◆ "Data warehouse": consistent point of access
- External data may be required ("overlay data")
- Critical: type and level of data aggregation

The ARFF format

```
% ARFF file for weather data with some numeric features
@relation weather
@attribute outlook {sunny, overcast, rainy}
@attribute temperature numeric
@attribute humidity numeric
@attribute windy {true, false}
@attribute play? {yes, no}
@data
sunny, 85, 85, false, no
sunny, 80, 90, true, no
overcast, 83, 86, false, yes
```

10/25/2000

Attribute types

- ARFF supports numeric and nominal attributes
- Interpretation depends on learning scheme
 - ◆ Numeric attributes are interpreted as
 - ordinal scales if less-than and greater-than are used
 - ratio scales if distance calculations are performed (normalization/standardization may be required)
 - Instance-based schemes define distance between nominal values (0 if values are equal, 1 otherwise)
- Integers: nominal, ordinal, or ratio scale?

Nominal vs. ordinal

Attribute "age" nominal

```
If age = young and astigmatic = no and
  tear production rate = normal then recommendation = soft
If age = pre-presbyopic and astigmatic = no and
  tear production rate = normal then recommendation = soft
```

Attribute "age" ordinal (e.g. "young" < "pre-presbyopic" < "presbyopic")

```
If age ≤ pre-presbyopic and astigmatic = no and
tear production rate = normal then recommendation = soft
```

10/25/2000

Missing values

- Frequently indicated by out-of-range entries
 - ◆ Types: unknown, unrecorded, irrelevant
 - Reasons: malfunctioning equipment, changes in experimental design, collation of different datasets, measurement not possible
- Missing value may have significance in itself (e.g. missing test in a medical examination)
 - ◆ Most schemes assume that is not the case ⇒ "missing" may need to be coded as additional value

Inaccurate values

- Reason: data has not been collected for mining it
- Result: errors and omissions that don't affect original purpose of data (e.g. age of customer)
- Typographical errors in nominal attributes ⇒ values need to be checked for consistency
- Typographical and measurement errors in numeric attributes ⇒ outliers need to be identified
- Errors may be deliberate (e.g. wrong zip codes)
- Other problems: duplicates, stale data

Getting to know the data

- Simple visualization tools are very useful for identifying problems
 - ◆ Nominal attributes: histograms (Distribution consistent with background knowledge?)
 - ◆ Numeric attributes: graphs (Any obvious outliers?)
- 2-D and 3-D visualizations show dependencies
- Domain experts need to be consulted
- Too much data to inspect? Take a sample!