PROVA (PARTE 2)

Universidade Federal de Goiás (UFG) - Regional Jataí Bacharelado em Ciência da Computação Teoria da Computação Esdras Lins Bispo Jr.

04 de setembro de 2017

ORIENTAÇÕES PARA A RESOLUÇÃO

- A avaliação é individual, sem consulta;
- A pontuação máxima desta avaliação é 10,0 (dez) pontos, sendo uma das 06 (seis) componentes que formarão a média final da disciplina: quatro testes, uma prova e exercícios;
- \bullet A média final (MF) será calculada assim como se segue

$$MF = MIN(10, S)$$

 $S = (\sum_{i=1}^{4} 0, 2.T_i) + 0, 2.P + 0, 1.EA + EB$

em que

- -S é o somatório da pontuação de todas as avaliações,
- $-T_i$ é a pontuação obtida no teste i,
- P é a pontuação obtida na prova,
- EA é a pontuação total dos exercícios de aquecimentos, e
- EB é a pontuação total dos exercícios-bônus.
- O conteúdo exigido desta avaliação compreende o seguinte ponto apresentado no Plano de Ensino da disciplina: (3) Problemas Decidíveis, (4) Problemas Indecidíveis e (5) Complexidade de Tempo.

3.7		
NT		
IN Om O'		
T TOTTIO.		

Terceiro Teste

1. (5,0 pt) Seja $A = \{\langle R \rangle \mid R$ é uma expressão regular que descreve uma linguagem contendo pelo menos uma cadeia ω que tem 111 como uma subcadeia (i.e., $\omega = x111y$ para alguma x e para alguma y em Σ^*). Mostre que A é decidível.

Resposta: É possível criar um AFD B de forma que L(B) seja a expressão regular $\Sigma^*111\Sigma^*$ (Definição 1.16 e Teorema 1.54). Assim, para que R gere pelo menos uma cadeia ω que tem 111 como uma subcadeia, é necessário garantir que $L(R) \cap L(B) \neq \emptyset$. Por fim, vamos criar um outro AFD C de forma que $L(C) = L(R) \cap L(B)$ (pois a classe de linguagens regulares é fechada sob a operação de interseção) e verificamos se $\langle C \rangle$ é membro de V_{AFD} (Teorema 4.4).

Diante disto, será construído a seguir um decisor M_A para A:

 M_A = "Sobre a entrada $\langle R \rangle$, em que R é uma expressão regular, faça:

- (a) Construa o AFD B conforme descrito anteriormente;
- (b) Construa o AFD C conforme descrito anteriormente;
- (c) Construa a MT X que decide V_{AFD} (Teorema 4.4);
- (d) Rode X sobre $\langle C \rangle$;
 - i. Se X aceita, rejeite;
 - ii. Caso contrário, aceite.

A linguagem A é decidível pois foi possível construir uma máquina de Turing que a decide (Definição 3.6)

2. (5,0 pt) Seja $T = \{(i,j,k) \mid i,j,k \in \mathbb{N}\}$. Mostre que T é contável.

Resposta: Seja $\mathbb{M}=\{x\in\mathbb{N}\mid x \text{ \'e m\'ultiplo de }2,3\text{ ou }5\}.$ Ora, \mathbb{M} \'e contável, pois

- todos elementos de M são distintos entre si, e
- como cada elemento de M é um número natural, é possível estabelecer uma ordem crescente a partir de seus valores.

Ora T tem o mesmo tamanho de \mathbb{M} , pois é possível estabelecer a bijeção $f: T \to \mathbb{M}$ em que $f(i, j, k) = 2^i 3^j 5^k$. Com T tem o mesmo tamanho de \mathbb{M} , T é contável \blacksquare

Quarto Teste

3. (5,0 pt) Mostre que \mathbf{P} é fechada sob operação de complemento.

Prova: Seja A uma linguagem decidível em \mathbf{P} . Seja M_A a máquina de Turing simples (MT) que decide a linguagem A (Definção 3.6) em tempo polinomial. Como A é decidível em tempo polinomial, A pertence a TIME (n^k) (em que k é uma constante positiva). Iremos construir a MT M_{aux} , a partir de M_A , que decide \overline{A} em tempo polinomial. A descrição de M_{aux} é dada a seguir:

 M_{aux} = "Sobre a entrada ω , faça:

- (a) Rode M_A sobre ω .
- (b) Se M_A rejeita, aceite. Caso contrário, rejeite".

O tempo de execução t de M_{aux} é igual a soma do tempo de execução dos passos (a) e (b). Logo, $t = O(n^k) + O(1) = O(n^k)$. Como k é uma constante positiva, $\overline{A} \in \text{TIME}(n^k)$ e, consequentemente, $\overline{A} \in \mathbf{P}$. Logo, podemos afirmar que \mathbf{P} é fechada sob a operação de complemento

4. (5,0 pt) Seja CONEXO = $\{\langle G \rangle \mid G \text{ \'e um grafo simples conexo } \}$. Mostre que CONEXO está em **NP**.

Prova: Se CONEXO \in **NP**, então é possível construir uma máquina de Turing (MT) que a decide em tempo polinomial não-determinístico. Construiremos a MT não-determinística M que decide CONEXO:

M = "Sobre a entrada $\langle G \rangle$, a codificação de um grafo G:

- (a) Selecione o primeiro nó de G e marque-o.
- (b) Repita o seguinte estágio até que nenhum novo nó seja marcado:
 - i. Para cada nó em G, marque-o se ele está ligado por uma aresta a um nó que já está marcado.
- (c) Faça uma varredura em todos os nós de G para determinar se eles estão todos marcados.
- (d) Se eles estão, aceite; caso contrário, rejeite".

O tempo de execução t de M é igual a soma do tempo de execução dos passos (a), (b), (c) e (d). Logo, $t = O(1) + O(n) \times O(n^3) + O(n) + O(1) = O(n^4)$. 4 é um número natural e CONEXO \in NTIME (n^4) . Logo, podemos afirmar que CONEXO \in NP

Teoremas Auxiliares

Definição 1.16: Uma linguagem é chamada de uma linguagem regular se algum autômato finito a reconhece.

Teorema 1.25: A classe de linguagens regulares é fechada sob a operação de união.

Teorema 1.26: A classe de linguagens regulares é fechada sob a operação de concatenação.

Teorema 1.39: Todo autômato finito não-determinístico tem um autômato finito determinístico equivalente.

Teorema 1.49: A classe de linguagens regulares é fechada sob a operação estrela.

Teorema 1.54: Uma linguagem é regular se e somente se alguma expressão regular a descreve.

Definição 3.5: Chame uma linguagem de Turing-reconhecível se alguma máquina de Turing a reconhece.

Definição 3.6: Chame uma linguagem de Turing-decidível ou simplesmente decidível se alguma máquina de Turing a decide.

Teorema 3.13: Toda máquina de Turing multifita tem uma máquina de Turing que lhe é equivalente.

Teorema 3.16: Toda máquina de Turing não-determinística tem uma máquina de Turing determinística que lhe é equivalente.

Teorema 3.21: Uma linguagem é Turing-reconhecível se e somente se algum enumerador a enumera.

Teorema 4.1: A_{AFD} é uma linguagem decidível.

Teorema 4.2: A_{AFN} é uma linguagem decidível.

Teorema 4.3: A_{EXR} é uma linguagem decidível.

Teorema 4.4: V_{AFD} é uma linguagem decidível.

Teorema 4.5: EQ_{AFD} é uma linguagem decidível.

Teorema 4.9: Toda linguagem livre-de-contexto é decidível.

Teorema 4.11: A_{MT} é uma linguagem indecidível.

Definição 4.14: Um conjunto A é contável se é finito ou tem o mesmo tamanho que N.

Teorema 4.15: \mathbb{Q} é contável.

Teorema 4.17: \mathbb{R} é incontável.

Corolário 4.18: Algumas linguagens não são Turing-reconhecíveis.

Teorema 4.22: Uma linguagem é decidível sse ela é Turing-reconhecível e co-Turing-reconhecível.

Corolário 4.23: $\overline{A_{MT}}$ não é Turing-reconhecível.

Teorema 7.8: Seja t(n) uma função, em que $t(n) \ge n$. Então toda máquina de Turing multifita de tempo t(n) tem uma máquina de Turing de um única fita equivalente de tempo $O(t^2(n))$.

Teorema 7.11: Seja t(n) uma função, em que $t(n) \ge n$. Então toda máquina de Turing não-determinística de uma única fita de tempo t(n) tem uma máquina de Turing de um única fita equivalente de tempo $2^{O(t(n))}$.

Definição 7.12: P é a classe de linguagens que são decidíveis em tempo polinomial sobre uma máquina de Turing determinística de uma única fita. Em outras palavras, $\mathbf{P} = \bigcup_k \mathbf{TIME} \ (n^k)$.

Definição 7.19: NP é a classe das linguagens que têm verificadores de tempo polinomial.

Teorema 7.20: Uma linguagem está em **NP** sse ela é decidida por alguma máquina de Turing não-determinística de tempo polinomial. Em outras palavras, $\mathbf{NP} = \bigcup_k \mathbf{NTIME} \ (n^k)$.