Suji Shin November 20, 2018 TP1

TP1 Part 1: Project Proposal

Project Description [5 pts]

<u>Title</u>: The Immune System

Description:

For the term project, I will be creating an interactive, educational game on the immune response, which is the body's response caused by its immune system being activated by antigens on pathogenic invaders. Our immune system is composed of many different types of immune cells and different types of immune responses, which act as subsequent lines of defense. General mechanism and immune cells interactions of Innate and Adaptive immune responses to bacterial infection will be illustrated. A user will be able to navigate through different steps of the immune responses with different types of immune cells that interact with each other to fight off a bacterial infection. in addition, the user will be able to learn how innate immune response bridges adaptive immune response through the game. The end goal of the game is to prevent pathogenic invader, or bacteria, from destroying our cells.

Competitive Analysis [5 pts]:

- 1. Immune System Game (Author: Critter2002)
- -Source: https://www.newgrounds.com/portal/view/478787
 - This project was created by a user named Critter2002 on NewGrounds.com. The author
 made the project features three educational mini-game based on the immune system in
 the human body.
 - Game 1: Three Lines of Defence
 - A geometry wars type shooting game. It is set inside the human body where
 T-cells must defend the body against invading pathogens.
 - Game 2: Drag and Drop
 - A timed quiz, where the user must correctly sort diseases into contagious and non-contagious categories.
 - Game 3: The Black Plague
 - A maze type game where the use must navigate a villager through a village infected with the plague.
- 2. Conflict: Immunity (Author: BioMan Biology)
- -Source: https://biomanbio.com/HTML5GamesandLabs/Physiogames/conflictimmunityhtml5page.html
 - The game was created by BioMan Biology, a website dedicated for learning Biology through games, review games, etc. It employs a simple model of a type of immune

response. The objective is to use different types of immune cell, such as macrophage, Helper T-cell, B-cell, Killer T-cell, and memory cell, to fight against bacteria.

- 3. *The Immune System* (Author: Science Learning Hub)
- -Source: https://www.sciencelearn.org.nz/embeds/13-the-immune-system
 - Unlike the other two games mentioned above, The Immune System is an interactive learning module that layouts the immune system in animation.

	Dimension 1	Dimension 2	Dimension 3	Dimension 4	Dimension 5
1. Immune	The first part	Before the start	This game is	Quiz mode is	The game
System	of the game	of the game, a	composed of	not	contains the
Game	that involves	player must	three parts and	comprehensive	third part, which
	immune	answer a short	only a fraction	enough as an	is similar to
	system is set	fill-in-the-blank	of the immune	educational	Pacman, where
	inside the	questionnaire. It	system is	game. It only	the player must
	human body	is succinct and	represented and	includes four	run through the
	where T-cells	describes the	it is more like an	questions,	maze to
	must defend	immune system	entertainment	which are not	navigate
	against	clearly to help	game, rather	particularly	through a village
	invading	play the game	than an	interesting or	infected with a
	pathogens.	more easily. The	educational	help educate	black plague. I
	The objective	fill-in-the-blank	game as it	the player about	thought this was
	is to shoot	page also	advertises.	the immune	unnecessary
	pathogens	includes		system.	and didn't see
	with using T-	"instructions",			how this could
	cells, along	"main menu",			be an
	with	and "play"			educational
	antibodies and	options for			game.
	B-cells. The	users.			
	player can				
	change				
	ammunition				
	type to				
	different types				
	of B-cells that				
	corresponds to				
	the matching				
	pathogen.				
2. Conflict:	Able to choose	Help Mode:	During quiz	The first part of	Includes a
Immunity	different	Legend of	mode, B plasma	the game is the	feature to turn
	immune cell	different	cell icon can be	tutorial mode,	on or off
	types to	immune cell	moved using	which allows	background
	interact with	types that users	arrow keys to	the user to	music
	bacteria in a	can refer to.	select the	easily learn how	
	cascade	Each immune	correct answer	to play the	
	manner	cell's function		game.	

		and description			
		are included.			
3. The	Includes	Although it is	One of the	Total four	The game is
Immune	intricate	not an	mode "Immune	modes users can	semi-
System	diagram	interactive	System"	choose:	interactive. The
	showing each	game, anyone	graphically	Introduction,	user can choose
	parts of the	who is	shows different	Immune	which mode to
	body involved	interested in	types of	System, Virus	view, but each
	in the immune	learning about	immune cells	Immune	view is only
	response,	the immune	and foreign	Response, and	consisted of
	which allows	system can	invaders. Any	Bacteria	animation
	users to follow	easily use this to	type of cell can	Immune	illustrating what
	the material	learn.	be clicked for	Response. Each	is happening in
	more easily.	Descriptions are	description of	mode explains	each mode.
		detailed and	the cell and its	the mechanism,	
		accompanied	function. Cells	involved cell	
		animations/grap	are divided into	types, and	
		hics allow the	three groups,	descriptions,	
		user to	each indicating	using animation	
		comprehend	different	and narration.	
		more easily.	location each		
			cell is found		
			within the body,		
			such as inside		
			lymph vessel		
			and inside blood		
			vessel.		

After comparing three projects that focus on immune system education, there are certain features that my project should include to be more competitive. First, the project should focus on the general mechanism of the immune system, including innate and adaptive and how they are bridged together. Some of the competitions are either too game-focused or animation-focused without interaction. Instead of focusing on one aspect, the goal is to create a project that educates users on the comprehensive general overview of the immune system in a more interactive, game-style approach.

Conflict: Immunity includes a help mode that illustrates the immune cells involved in the game and their descriptions and functions. It is extremely helpful to have a separate legend that describes different types of cells involved in the immune response. A similar attribute can be added to the project so users can learn about the cells before proceeding to play the game. In addition, although Conflict: Immunity is not the most comprehensive game that is designed as educational purpose, the flow of the game naturally allows users to learn about the sequence of the immune response, by letting users to switch between types of immune cells that react or signal with specific cells or bacteria in a sequence.

Structural Plan [5 pts]

1. Classes

Object Bacteria

attribute name function die function shrink

Object Phagocytes

attribute name function killBacteria

Object Macrophage inherits from Phsagocytes attribute presentAntigen

Object DendriticCell inherits from Phagocytes function presentAntigen function activateAdaptiveImmunity

Object helperTCell

Attribute name function activateBnKT

Object killerTCell

attribute name function recognizeAntigen function secretePerforin function collidesWithBacteria

Object bCell

attribute name function makeMemory function makePlasma

Object bMemoryCell inherits from bCell function storeForFuture

Object bPlasmaCell inherits from bCell function produceAntibody function antibodyKillBacteria

2. Animation

function recognizeAntigen function engulfByPhagocyte function bCellDevelopment with MousePressed function activateTCell function KTCellKills

Algorithmic Plan [5 pts]

First: Generate immune cells classes

- Write class & subclass objects for each immune cell
- Import images drawn on Wacom Tablet for each immune cell file

Second: HELP! (Stage 0 – Start screen)

- Start screen with tutorial that contains short descriptions/images of:
 - o Introduction to immune system
 - Immune cell types involved
 - o Innate immune system
 - o Adaptive immune system

Third: Innate Immune System (Stage 1 – Infection Site)

- Start with a set number of bacteria (e.g. 20 bacteria)
- Phagocytes (Macrophage) is attracted to bacteria and engulf and digest bacteria
- Dendritic cells engulf and digest bacteria and present antigen on the surface
- Some bacteria break the 1st line of defense → keep count of alive bacteria

<u>Fourth</u>: Adaptive Immune System (Stage 2 – Lymph Node)

- Dendritic cells (with antigen) migrate to lymph node (visualization)
 - Antigen on DC activate T-cells
- Activated T-cells replicate
 - When Killer T-cells recognize antigen on bacteria, they destroy bacteria
 - Secrete perforin that makes holes in the infected cell's membrane.
 - Perforin be represented as small dots around T-cells
 - Helper T-cells (secrete cytokines to) activate B-cells and Killer T-cells
- B-cell replicates & matures into:
 - Plasma cell → leaves the lymph node
 - Memory cell → stay in the lymph node

<u>Fifth</u>: Adaptive Immune System Continues (Stage 3 – Infection Site)

- Activated T- and B-cells leave lymph node and migrate to the infection site.
- Plasma cells release antibodies
- Antibodies attach onto bacteria surface to disable & flag for destruction

- Macrophages attracted and engulf & digest bacteria
 - Check if Killer T-cell destroy remaining bacteria

Sixth: Infection Healed or Not? (Stage 4 – End stage)

- If no bacteria left, infection has been healed!
- If some bacteria are left, show Try Again screen

Timeline Plan [5 pts]

*November 20 - TP1 Due

November 22 – Thanksgiving

November 23 – Finish coding class objects (Immune cells)

November 25 – Start coding the innate and adaptive immune system functions

November 26 – Finish coding the innate and adaptive immune system functions

November 27 – Complete the writing portion of TP2 deliverable, if necessary. Otherwise, review the working demo for any possible error/bugs/missing features.

*November 28 – TP2 Due

December 2 – Finish the project code part

December 3 – Start/Finish the writing portion of TP3 deliverable

December 4 – Film the video demo

December 5 – Final review of the project

*December 6 - TP3 Due

Version Control Plan [3 pts]

I will be using Google Drive provided by CMU as the version control plan. I created a folder designated for 15-112 Term project. Under the folder, I created a mock file with a new version uploaded to keep track of updated versions of the file. The picture included below shows how I will be managing different versions and organizing files and documents needed for the project.

Module List [2 pts]

The module I will be using for the project is Python Imaging Library (PIL).