Notas de aula: Análise Funcional Prof. Bruno Braga

github.com/dan-gc/analysis-impa

Este documento contém as notas das aulas do curso ministrado pelo Prof. Bruno Braga no Programa de Verão do IMPA, 2024.

Índice

1	Espaços de Banach	3
	1.1 Transformações lineares	6
	1.2 Normas equivalentes	9
	1.3 Espaços duais	10
	1.4 Completamentos	14
	1.5 Cardinalidades de bases de Hamel	16
2	Espaços cocientes	16
3	Teorema de Hahn-Banach	20
4	Reflexivilidade	26
5	Topologia fraca e fraca*	27
6	Formas geometricas de Hahn-Banach	31
7	Teorema de Banach-Steinhaus	35
8	Krein-Milman	41
9	Teorema da aplicação aberta	43
10	Teorema do gráfico fechado	45
11	Espaços complementados	45
12	Operadores adjuntos	47
13	Universalidade	48
14	Teorema de representação	49
15	Teorema de convexidade de Lyapunov	56
16	Grupos amenos	60

17 Espaços de Hilbert 17.1 Desigualdade de Bessel	61 63
17.2 Igualdade de Parseval	. 66
17.3 Teorema de representação	
17.4 Exemplo e conjuntos ortonormais em L_2	
18 Bases de Schauder 18.1 Construindo sequências basicas	74 78
19 Técnica de descomposição de Pełcyński	80
20 Algebras de Banach	80
21 Teoria espectral	82
22 Exponencial de elementos em álgebras de Banach	89
23 Teorema espectral para operadores compactos	90
24 Teorema espectral para operadores compactos e autoadjuntos	101
25 As melhores coisas na matemática	104
Plano do curso	
Provas:	
• 29 de fevereiro.	
• 1 de março.	
Tópicos:	
1. Espaços de Banach	
2. Operadores.	
3. Espaço dual	
4. Topologia fraca e fraca*.	
5. 4 teoremas:	
(a) Hahn-Banach.	
(b) Banach-Alaglou.	
(c) Banach-Steinhouse.	
(d) Aplicação aberta.	
6. Espaços de Hilbert.	

7. Teoria espectral de operadores compactos.

1 Espaços de Banach

Definição. Seja X un espaço vetorial sobre $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. Uma função $\| \ \| : X \to [0, \infty)$ é uma *norma* se

- 1. $||x|| = 0 \iff x = 0$.
- 2. $\|\lambda x\| = |\lambda| \|x\| \ \forall \lambda \in \mathbb{K}, \ \forall x \in X.$
- 3. $||x + y|| \le ||x|| + ||y|| \quad \forall x, y \in X$.

O par $(X, \| \|)$ é um *espaço normado*. $(X, \| \|)$ é um espaço métrico normado com a métrica $d(x, y) = \|x - y\|$.

No caso em que (X, || ||) é completo, chama-se um *espaço de Banach*.

Exemplo.

- 1. $\ell_p = \{(x_n) \in \mathbb{K}^{\mathbb{N}} : \sum_{n=1}^{\infty} |x_n|^p < \infty\}$ com a norma $\|(x_n)\|_p = (\sum_{n=1}^{\infty} |x_n|^p)^{1/p}$ é um espaço de Banach.
- 2. $\ell_{\infty} = \{(x_n) \in \mathbb{K}^{\infty} : \sup |x_n| < \infty\} \text{ com a norma } \|(x_n)\|_{\infty} = \sup |x_n|.$
- 3. $c_0 = \{(x_n) \in \ell_\infty : \lim_n x_n = 0\}$, com a norma de ℓ_∞ .
- 4. Seja K um compacto Housdorff, $C(K)=\{f:K\to K:f$ é contínua $\}$, com a norma $\|f\|=\sup_{x\in K}|f(x)|$. Então $(C(K),\|\ \|)$ é de Banach.
- 5. Seja (X,\mathcal{A},μ) um espaço de medida. O conjunto das clases de equivalença de funções $f:X\to\mathbb{K}$ tais que

$$||f|| = \left(\int_K |f|^p d\mu\right)^{1/p} < \infty$$

é Banach.

Exercício 1.0.1. Vamos mostrar que ℓ_p é Banach.

Demostração. $\| \cdot \|_p$ é uma norma. Se p=1 já está. Suponha que $1 \in (0,\infty)$.

Afirmação 1.1 (Desigualdade de Young). Sejam a,b numeros reais no negativos e p,q numeros reais maiores que 1 tais que 1/p + 1/q = 1. Então

$$ab \le \frac{a^p}{p} + \frac{b^p}{q}.$$

Demostração. (Prova por figura disponível em Narici p. 110.) A idea é que as integrais da função $f(x) = x^{p-1}$ e da sua inversa sumam uma área maior do que a área do rectángulo de lados a, b.

Afirmação 1.2 (Desigualdade de Hölder). Sejam $p,q \in (1,\infty)$ tais que 1/p + 1/q = 1, $(x_n) \in \ell_p$, $(y_n) \in \ell_q$. Temos que $(xy) \in \ell_1$.

$$||(x_n y_n)||_1 \le ||(x_n)||_p ||(y_n)||_q$$

Demostração. Suponha $||(x_n)|| = ||(y_m)||_q = 1$. Aplicando a desigualdade de Young, temos que

$$\sum_{n=1}^{N} |x_n y_n| \le \sum_{n=1}^{N} \frac{|x_n|^p}{p} + \frac{|y_n|^q}{q} \le \frac{1}{p} + \frac{1}{q} = 1.$$

E se os vetoreis não são de norma 1 também está tranquilo pois podemos tomar $\tilde{x}_m = \frac{x_m}{\|x\|_p}$ é $\tilde{y}_m = \frac{y_m}{\|y\|_q}$. Nesse caso podemos factorizar os números $\|(x_n)\|_p$ e $\|(y_n)\|_p$ para obter que $\|(\tilde{x}_n)\|_p = \|(\tilde{y}_n)\|_q = 1$ e aplicar o passo anterior.

Afirmação 1.3 (Desigualdade de Minkowsky). Sejam $(x_n), (y_n) \in \ell_p$. Então $(x_n) + (y_n) \in \ell_p$ e

$$||(x_n + y_n)||_p \le ||x_n||_p + ||y_n||_p.$$

Demostração. Em geral, se a,b>0, então $(a+b)^p \le 2^{p-1}(a^p+b^p)$?. De fato, $(a+b)^p \le (2\max\{a,b\})^p \le 2^p(a^p+b^p)$. Logo $\|(x_n+y_n)\|_p \le 2^p(\|x_n\|_p+\|y_n\|_p)$, assim $(x_n+y_n) \in \ell_p$.

$$\begin{aligned} \|(x_n + y_n)\|_p^p &= \sum_{n=1}^\infty |x_n + y_n|^p \\ &= \sum_{n=1}^\infty |x_n + y_n||x_n + y_n|^{p-1} \\ &\leq \sum_{n=1}^\infty |x_n||x_n + y_n|^{p-1} + \sum_{n+1}^\infty |y_n||x_n + y_n|^{p-1} \\ &= \|(x_n)(x_n + y_n)^{p/q})\|_1 + \|(y_n)x_n + y_n)^{p/q})\|_1 \qquad \left(p - 1 = \frac{p}{q}\right) \\ &\leq \|(x_n)\|_p \|(x_n + y_n)^{p/q}\|_q + \|(y_n)\|_p \|(x_n + y_n)^{p/q}\|_q \quad (\text{H\"older}) \\ &= (\|(x_n)\|_p + \|(y_n)\|_p) \|(x_n + y_n)\|_p^{p/q} \\ &= (\|(x_n)\|_p + \|(y_n)\|_p) \frac{\|(x_n + y_n)\|_p^p}{\|(x_n + y_n)\|_p^p} \end{aligned}$$

Usando que (p-1)q = pq - q = p. Dividindo entre $\|?\|$ obtemos

$$\|(x_n + y_n)\|_p^q \le \|(x_n)\|_p + \|(y_n)\|_p$$

Finalmente,

$$||(x_n + y_n)||_p \le ||x_n||_p + ||y_n||_p.$$

Afirmação 1.4. $\| \|_p$ é completa.

Demostração. Seja (x_n) uma sequência de Cauchy em ℓ_p .

Note que $\forall k \in \mathbb{N}$,

$$|x_n^k - x_m^k| \le ||x_m - x_m||$$

Assim, $(x_n^k)_k$ é Cauchy para toda $k \in \mathbb{N}$. Defina

$$x = (x^k) = \left(\lim_{n \to \infty} x_n^k\right)$$

Objetivo: $x \in \ell_p$ e $x_n \to x$. Defina $M = \sup_{n \in \mathbb{N}} \|x_n\|$ pois (x_n) é Cauchy, assim é limitada. Temos para $N \in \mathbb{N}$:

$$\left(\sum_{n=1}^{N} |x_n^k|^p\right)^{1/p} \le \left(\sum_{n=1}^{N} |x_n^k|^p + |x_m^k|^p\right)^{1/p} + \left(\sum_{n=1}^{N} |x_n^k|^p\right)^{1/p}$$

$$\le \left(\sum_{n=1}^{N} |x_n^k - x_m^k|^p\right)^{1/p} + M$$

issto é, "uniformemente finito". Tomando m >> 1,

$$\left(\sum_{n=1}^{N} |x_n|^p\right)^{1/p} \le \varepsilon + M \quad \forall N, \forall$$

Logo $||x|| \leq M$.

Logo,

$$\sum_{n=1}^{N} |x_n - x_m|^p = \lim_{m} \sum_{n=1}^{N} |x_m(c) - x_m(x)|^p$$

$$\leq \lim_{n \to \infty} |x_m - x_n|^p$$

A partir daqui está bem: Como (x_n) é Cauchy, existe $n_0 \in \mathbb{N}$ t.q. $m, n > n_0$ implica $||x_n - x_m||^p < \varepsilon^p$.

Logo, seja $n > n_0$,

$$\sum_{k=1}^{N} |x^k - x_n^k|^p \le \varepsilon^p \quad \forall N \in \mathbb{N}$$

Issto é, $||x - x_n|| < \varepsilon \quad \forall m > n_0$.

Observação 1.1.

- 1. $\ell_p \leq \ell_q, p \leq q$.
- 2. (X, μ) medida finita, $L_q \leq L_p$, $p \leq q$.
- 3. $c_{00} = \{(x_n) \in K^{\mathbb{N}} : \exists n_0 \in \mathbb{N} \text{ t.q. } x_n = 0, \ \forall m > n_0 \}.$

1.1 Transformações lineares

Sejam X,Y espacos normados. Uma função $T:X\to Y$ é *linear* se

1.
$$T(\alpha x + \beta y) = \alpha T(x) + \beta T(y) \quad \forall \alpha, \beta \in \mathcal{K}, x, y \in X.$$

Observação 1.2. Num espaço linear de dimensão finita os operadores lineares sempre são contínuos.

Proposição 1.1. Sejam X,Y espaços vetorias normados e $T:X\to Y$ linear. São equivalentes:

- 1. T é continua em $x_0 \in X$.
- 2. T é continua.
- 3. T é limitada, issto é,

$$||T|| := \sup_{x \in B_X} ||Tx|| < \infty$$

onde $B_X = \{x \in X : ||x|| \le 1\}.$

4. $\exists C > 0$ tal que $||Tx|| \le C||x||$ para todo $x \in X$. Além disso,

$$||T|| = \inf\{C \ge 0 : ||Tx|| \le C||x|| \ \forall x \in X\}.$$

5. *T* é uniformemente contínua.

Demostração. $(1 \implies 2)$. Seja $x_n \to x$. Note que

$$(x_n - x + x_0)_n \rightarrow x_0$$

de forma que

$$T(x_0) = \lim_{n} T(x_n - x + x_0) = \lim_{n} T(x_n) - T(x) + T(x_0).$$

 $(2 \implies 3)$ Caso contrário, $\exists (x_n) \subset B_X$ tal que $\lim ||Tx_n|| \to \infty$. Logo

$$\left(\frac{x_n}{\|Tx_n\|}\right)_n \to 0.$$

então,

$$\left\| T\left(\frac{x_n}{\|Tx_n\|}\right) \right\| \to 0,$$

que é impossível já que

$$\left\| T\left(\frac{x_n}{\|Tx_n\|}\right) \right\| = \frac{1}{\|Tx_n\|} \|T(x_n)\| = 1.$$

 $(3 \implies 4)$. Pegue C = ||T||. De fato, se $x \neq 0$,

$$\frac{x}{\|x\|} \in B_X \implies T\left(\frac{x}{\|x\|}\right) \le \|T\| \implies \|Tx\| \le \|T\|\|x\|.$$

Issto mostra que $||T|| \in \{C \ge 0 : ||Tx|| \le C||x|| \ \forall x \in X\}$, de forma que

$$\inf\{C \geq 0: \|Tx\| \leq C\|x\|\} \leq \|T\| = \sup_{x \in B_X} \|Tx\|.$$

Para ver a outra desigualdade, basta ver que $\inf\{C \geq 0: \|Tx\| \leq C\|x\| \ \forall x \in X\}$ é uma cota superior do conjunto $\{\|Tx\|: x \in B_X\}$. De fato, se $x \in B_X$, para cualquer $C \in \{C \geq 0: \|Tx\| \leq C\|x\| \ \forall x \in X\}$ temos que $\|Tx\| \leq C\|x\| \leq C$, pois $\|x\| \leq 1$. Issto implica que $\|Tx\|$ é uma cota inferior do conjunto $\{C \geq 0: \|Tx\| \leq C\|x\| \ \forall x \in X\}$, porém

$$||Tx|| \le \inf\{C \ge 0 : ||Tx|| \le C||x||\}$$
 $\forall x \in B_X$.

 $(4 \implies 5)$ Lembre que T é unformemente contínua se

$$\forall x \in X \forall \varepsilon > 0 \exists \delta > 0 : ||x - x_0|| < \delta \implies ||Tx - Tx_0|| < \varepsilon.$$

Tendo (4), observe que tomando $\delta = \varepsilon/C$ temos a continuidade em 0, que podemos trasladar a todo punto de X como em $(1 \Longrightarrow 2)$.

$$(5 \implies 1)$$
 Imediato.

Definição. Sejam X e Y espaços normados. Denotarmos por

$$\mathcal{L}(X,Y) = \{T : X \to Y : T \text{ limitado}\}\$$

Exercício 1.1.1 (Tareia).

- 1. $||T|| = \sup_{x \in B_X} ||Tx||$ é uma norma em $\mathcal{L}(X, Y)$.
- 2. Se Y for Banach, então $\mathcal{L}(X,Y)$ é Banach.
- 3. $||T|| = \sup_{x \in \partial Bx} ||Tx||$ onde $\partial B_X = \{x \in X : ||x|| = 1\}.$

Teorema 1.2. Todo espaço de dimensão finita é Banach.

Para isto vamos provar um lemma muito importante para muitas coisas.

Lema 1.3 (Riesz). Seja X um espaço normado, $Y \subset X$ subespaço próprio fechado, $a \in (0,1)$. Então existe un $x \in \partial B_X$ tal que $d(x,Y) \geq a$.

Demostração. Seja $x\in X\backslash Y.$ Como $\frac{d(x,Y)}{a}>d(x,Y)$, podemos pegar um $y\in Y$ tal que $\|x-y\|\leq \frac{d(x,Y)}{a}.$ Defina $z=\frac{x-y}{\|x-y\|}.$ Seja $w\in Y$

$$||w - z|| = \left| \left| w - \frac{x - y}{||x - y||} \right| \right|$$

$$= \frac{1}{||x - y||} ||||x - y||w + y - x||$$

$$\ge \frac{d(x, Y)}{||x - y||}$$

$$\ge a$$

pois $||x - y|| w + y \in Y$ por ser Y um espaço vetorial.

Prova de que todo espaço de dimensão finita é Banach. Incompleta! Seja $n=\dim X$. Se $X=\mathbb{K}$ terminhamos. Fazendo indução, suponha certo para n e mostraremos para n+1. Seja $Y\subseteq X$ espaço de dimensão n. Por hipótesis de indução, Y é fechado. Pegamos $x\in X\backslash Y$ com d(x,Y)>1/2. Para todo $y\in Y$ e para todo $x\in X$ no span $\{x\}$.

$$||y + z|| = ||y + ||z|| \frac{1}{||y||} ||$$

$$= ||z|| + ||\frac{y}{||y||} + \frac{z}{||y||} ||$$

$$\geq \frac{||z||}{z}$$

O que estou falando aquim? Temos que $X=Y\oplus Z$, $\pi_Y:Y\to Z$, $\pi_Z:X\to Z$. Logo

$$\|\pi_Z(x_n)\| \le z\|(x_n)\|$$

Logo π_Y) Id $-\pi_Z$?

Ahora seja $(x_n)_n \subseteq X$ de Cauchy. Logo $(\pi_Y(x_n))_n$), $(\pi_Z(x_n))_n$ são Cauachy, logo $x_Y = \lim \pi_Z(x_n)$ e

$$x_n = \lim \pi_Z(x_n)$$

existe, logo

$$\pi_Z(x_n) + \pi_Y(y_n) \to x_Z + x_Y.$$

Proposição 1.4. Seja $T:X\to Y$ um operador entre espaços normados. Se $\dim(X)<\infty$ então T é contínua.

Demostração. Fazemos indução. Caso n=0 é fácil. Suponha verdade para $n\in\mathbb{N}$. Pegue $Z\subseteq X$ com $\dim Z=n-1$ e $w\in X\setminus Z$. Seja $W=\operatorname{span}\{w\}$. Então temos que $X=Z\oplus W$. Se

$$\pi_Y = X \to Z \quad \mathbf{e} \quad \pi_W : X \to W$$

são as projeções canónicas, então

$$\mathrm{Id}_X = \pi_Z + \pi_W$$

e ambas são contínuas, terminhamos. Como $T = T \circ \pi_Z + T \circ \pi_W$.

Teorema 1.5. Um espaço normado X tem dimensão finita se e somente se B_X for compacto.

 $Demostração.\ (\Longrightarrow)$ Defina $n=\dim X.$ Fixe um isomorfismo $algébrico\ T:\mathbb{K}^n o X.$ Munindo \mathbb{K}^n com sua norma , é imediato que $B_{\mathbb{K}^n}$ é compacto. En consequência, $T(B_{\mathbb{K}^n})$ é compacto.

Note que $B_X \subseteq N$. $T(B_{\mathbb{K}^n})$ para N grande. Seja $e_1, \ldots, e_n \in X$ uma base, e para cada $i \leq n$ seja um mapa

$$f_i: X \mapsto \mathbb{K}^n$$
$$\sum_{j=1}^n a_j e_j \mapsto a_i$$

Agora observe que

$$\left\| T^{-1} \left(\sum_{j=1}^{n} a_{j} e_{j} \right) \right\| \leq \| T^{-1} \| \left\| \sum_{j=1}^{n} a_{j} e_{j} \right\|$$

$$\leq \max_{j} \| e_{j} \| \| T^{-1} \| \left(\sum_{j} | a_{j} | \right)$$

$$\leq \max \| e_{j} \| \| T^{-1} \| \left(\sum_{j} \| f_{j} \| \right) \left\| \sum_{j} e_{j} \right\|.$$

De forma que $\exists L > 0$ tal que $||T^{-1}(x)|| \le L||x||$ para toda $x \in X$.

(\iff) Suponha que $\dim X = \infty$. Por indução, existe (usando o lema de Riesz muitas vezes e o fato de que cualquer subespaço linear de dimensão finita é fechado) $(x_n)_n \subseteq \partial B_X$ tal que $||x_n - x_m|| > 1/2$.

1.2 Normas equivalentes

Definição. Seja X um espaço vetorial e $\| \ \|, \| \ \|$ normas em X. Diremos que $\| \ \|$ e $\| \ \|$ são *equivalentes* se existe L>0 tal que

$$\frac{1}{L}||x|| \le ||x|| \le L||x|| \qquad \forall x \in X.$$

Equivalentemente, se

$$\mathrm{Id}:(X,\|\ \|)\to(X,\|\ \|)$$

for um homeomorfismo.

Observação 1.3.

- 1. Se X tiver dimensão finita todas as nomas são equivalentes.
- 2. Seja $T:(X,\|\ \|) \to (X,\|\ \|)$ limitado. Então

$$||x|| = ||x|| + ||T(x)||$$

nos da uma norma equivalente, pois $||x|| \le ||x|| \le (1 + ||T||)||x||$.

Definição.

1. Sejam X e Y espaços normados e $T:X\to Y$ um operador bijetivo. T é um *isomorfismo* se T e T^{-1} forem contínuas.

- 2. Se T for contínuo, injetivo e $T^{-1}: \operatorname{img}(X) \to X$ for contínua, T é um *mergulho isomórfico*.
- 3. Se T for uma bijeção linear e

$$||T(x)|| = ||x|| \qquad \forall x \in X,\tag{1}$$

T é uma equivalencia isomórfica.

4. Se *T* for linear e eq. (1) vale, *T* é uma *isometría*.

Observação 1.4. T é um mergulho isomórfico se e somente se $\exists L > 0$ tal que

$$\frac{1}{L} \|x\|_X \le \|T(x)\|_Y \le L \|x\|_X \qquad \forall x \in X.$$

1.3 Espaços duais

Relembrando, anteriormente definimos

$$\mathcal{L}(X,Y) = \{T: X \to Y: T \text{ linear e contínuo}\}$$

com a norma

$$||T|| = \sup_{x \in B_X} ||T(x)||.$$

Denotamos $\mathcal{L}(X) := \mathcal{L}(X, X)$ e $X^* = \mathcal{L}(X, \mathbb{K})$.

Definição. X^* é o dual (topológico) de X.

Duais de ℓ_p e c_0 ($p < \infty$)

Teorema 1.6. Se $p,q\in(1,\infty)$ com $\frac{1}{p}+\frac{1}{q}=1$, $\ell_p^*=\ell_q$.

Demostração. Definamos $\phi: \ell_q \to \ell_p^*$ por

$$\phi(y)(x) = \sum_{n=1}^{\infty} x_n y_n$$

para $y=(y_n)\in \ell_q$ e $x=(x_n)\in \ell_p$. Observe que, pela desigualdade de Hölder, $\phi(y)(x)$ é uma série convergente, pois a convergencia absoluta

$$\sum_{n=1}^{\infty} |x_n y_n| \le ||x||_p ||y||_q$$

implica a convergencia em espaços completos.

(ϕ é uma isometria.) Temos que $\|\phi(y)\|_{\ell_p^*} \leq \|y\|_{\ell_q}$ usando Hölder novamente:

$$\|\phi(y)\|_{\ell_p^*} = \sup_{x \in B_{\ell_p}} |\phi(y)(x)| = \sup_{x \in B_{\ell_p}} \left| \sum_{n=1}^{\infty} x_n y_n \right| \le \|y\|_q.$$

 $E \|\phi(y)\|_{\ell_q^*} \ge \|y\|_{\ell_q}.$

Defina $x \in \ell_p$ como

$$x_n = \operatorname{sign}(y_n) \frac{|y_n|}{\|y\|_{\ell_q}^{q/p}}.$$

Temos que

$$||x||_{\ell_p}^p = \sum |x_n|^p$$

$$= \sum \frac{|y_n|^{pq-p}}{||y||_{\ell_q}^q}.$$

Logo

$$\phi(y)(x) = \sum \frac{\operatorname{sign}(y_n)|y_n|^{q-1}}{\|y\|_{\ell_q}^{q/p}} y_n$$
$$= \frac{\|y\|_{\ell_q}^q}{\|y\|_{\ell_q}^{q/p}}.$$

(ϕ
é sobrejetiva.) Seja $f \in \ell_p^*.$ Para cada $n \in \mathbb{N},$ defina

$$y = f(e_n)$$
 é $y = (y_n)_n$.

Vamos ver que $y \in \ell_q$. Para cada $k \in \mathbb{N}$, defina

$$z_n = \sum_{n=1}^k y_n e_n = (y_1, y_2, \dots, y_k, 0, \dots, 0, \dots)$$

Para $n \le k$, $x_n = \operatorname{sign}(y_n)|y_n|^{q-1}$,

$$||z_k||_{\ell_q}^p = \sum_{n=1}^k |y_n|^q$$

$$= \sum_{n=1}^k y_n \operatorname{sign}(y_n) |y_n|^{q-1}$$

$$= f\left(\sum_{n=1}^k x_n e_n\right)$$

$$\leq ||f|| \left\|\sum_{n=1}^k x_n e_n\right\|_{\ell_p}$$

Agora computamos a norma desse cara:

$$\left\| \sum_{n=1}^{k} x_n e_n \right\|_{\ell_p} = \sum_{n=1}^{k} |y_n|^{(q-1)p}$$

$$= \left(\sum_{n=1}^{k} |y_n|^q \right)^{1/p}$$

$$\leq \left(\|y\|_{\ell_q}^q \right)^{1/p}$$

$$\leq \|z_k\|_p^{q/p}$$

Assim que a desigualdade anterior termina em que

$$||z_k||_{\ell_q}^q \le ||f|| ||z_k||_{\ell_q}^{q/p}$$

de forma que $||z_k||_{\ell_q} \leq ||f||$.

Teorema 1.7. Sejam $p,q\in(1,\infty)$ com $\frac{1}{p}+\frac{1}{q}=1.$ O mapa $\phi:\ell_p\to\ell_q^*$ dado por

$$\phi(y)(x) = \sum_{n=1}^{\infty} x_n y_n$$

para $y=(y_n)_n\in \ell_q$ e todo $x=(x_n)_n\in \ell_p$ é uma isometría sobrejetiva.

Exemplos.

- 1. $c_0^* \equiv \ell_1$.
- 2. $\ell_1^* \equiv \ell_{\infty}$.
- 3. $\ell_{\infty}^* \not\equiv \ell_1$ (entenda o problema na prova).
- 4. Se $p \in (1, \infty)$, $\ell_p^{**} \equiv \ell_p$.

Lembre que $c_0 \subseteq \ell_{\infty}$, e que $\ell_p \subseteq \ell_q$ quando $p \le q$.

Pergunta. Considere a inclução $I:\ell_p \to \ell_q.$ Será que existe L>0 tal que

$$\frac{1}{L} \le ||I(x)||_q \le L||x|| ?$$

Observe que para cada $n \in \mathbb{N}$, $s_n = e_q + \ldots + e_n = (1,1,\ldots,1,0,0,\ldots)$ é tal que $\|x_n\|_p = n^{1/p}$ e que $\|I(s_n)\|_q = \|x_n\|_q = n^{1/q}$ assim que essa inclução boba não é uma isometría.

Teorema 1.8 (Pitt). Sejam $p, q \in (1, \infty)$ com $p \neq q$. Não existe um mergulho isomórfico $\ell_p \to \ell_q$.

Definição. Seja X um espaço normado. Uma sequência $(x_n)_n \subseteq X$ converge fracamente a $x \in X$ se $f(x_n) \to f(x)$ para todo $f \in X^*$.

Exemplo. $(e_n)_n \subseteq \ell_p$, $p \in (1, \infty)$, $e_n \xrightarrow{w} 0$. Quando pegamos $f \in \ell_p^*$, sabemos que $f = \phi(y)$ para algum $y \in \ell_q$. Logo $f(e_n) = y_n$.

Observação 1.5. Se $T: X \to Y$ é limitado e $(x_n)_n \subseteq X$ tal que $x_n \stackrel{w}{\to} x$, $x \in X$, então $T(x_n) \stackrel{w}{\to} T(x)$.

Demostração. Queremos mostrar que para cualquer $f \in Y^*$, temos que $f(T(x_n)) \to f(T(x))$. Seja $f \in Y^*$ cualquer e considere o seu *pullback* baixo T, ie. o funcional

$$T^*f: X \to \mathbb{K}$$
$$(T^*f)(x) = f(T(x))$$

De fato, T^*f é linear e contínuo se T é linear e contínuo. Como $x_n \xrightarrow{w} x$, é concluimos que $f(T(x_n)) \to f(T(x))$.

Definição. Dado $p \in [1, \infty]$, o funcional

$$e_n^*: \ell_p^* \to \mathbb{K}$$

$$\sum_{j=1}^{\infty} x_j e_j \mapsto x_n$$

é tal que $||e_n^*|| = 1$ e que $e_n^*(e_m) = \delta_{nm}$.

Prova do teorema de Pitt. Suponha que $T:\ell_p\to\ell_q$ é um mergulho isomórfico. Suponha p>q. Como $e_n\stackrel{w}{\to} 0$ em ℓ_p , $T(e_n)\stackrel{w}{\to} 0$ em ℓ_q .

Passando para uma subsequência podemos supor que $(\operatorname{supp}(T(x_n)))_n$ são "disjuntos". Pode tentar, lembre que $\operatorname{supp} = \{i \in \mathbb{N} | y_i \neq 0\}$.

Note que se $(y_n)_n \subseteq \ell_q$ é tal que $\operatorname{supp}(y_n) \cap \operatorname{supp}(y_m) \neq \emptyset$ quando $n \neq m$, então

$$\left\| \sum_{n=1}^{\infty} y_n \right\|_q = \left(\sum_{n=1}^{\infty} \|y_n\|^q \right)^{1/q}$$

É para vocês analizar quais são os épsilons.

Logo, escolhendo a subsequência de $(T(x_n))_n$ de forma apropriada, podemos escolher $L \ge 1$ tal que

$$\left\| \sum_{n=1}^{k} T(x_n) \right\|_{q} \ge \frac{1}{L} \left(\sum_{n=1}^{k} \| T(e_n) \|^{q} \right)^{1/q}$$

$$\ge \frac{a}{L} n^{1/q}.$$

onde $a = \inf_n ||T(e_n)||$.

Por outro lado

$$\left\| \sum_{n=1}^{k} T(e_n) \right\| = \left\| T\left(\sum_{n=1}^{k} e_n\right) \right\|_q$$

$$\leq \|T\| \left\| \sum_{n=1}^{k} e_n \right\|_p$$

$$= \|T\| k^{1/p}.$$

Em conclusão,

$$\frac{a}{L}k^{1/q} \le ||T||k^{1/p} \qquad \forall k \in \mathbb{N},$$

que não é possível.

Observação 1.6. Vamos ver que

- 1. $\ell_p \hookrightarrow \ell_\infty$ para toda $p \in [1, \infty)$.
- 2. $\ell_p \not\hookrightarrow \ell_1$ para toda $p \neq 1$.
- 3. Nossa prova não serve para ver que $\ell_1 \not\hookrightarrow \ell_p$, p > 1. O problema ta no momento de escolher a sequência e_n , que converge fracamente em ℓ_p . O enunciado é verdadeiro, só precisa mais um pouco de cuidado.
- 4. Por curiosidade, tem o seguinte resultado:

Teorema 1.9. Se $X \not\hookrightarrow \ell_q$.

1.4 Completamentos

Definição. Sejam (X,d) e (\tilde{X},\tilde{d}) espaços métricos. \tilde{X} é um *completamento* de X se

- 1. X é um subespaço métrico de \tilde{X} , ie., $X \subseteq \tilde{X}$ e $d = \tilde{d}|_{X \times X}$.
- 2. \tilde{X} é completo, ie. $\bar{X} = \tilde{X}$.

Se $(X, \|\ \|)$ e $(\tilde{X}, \|\ \|)$ forem espaços normados, $(\tilde{X}, \|\ \|)$ é um completamento de $(X, \|\ \|)$ se

- 1. $(X, || ||) \subseteq (\tilde{X}, ||| |||)$.
- 2. $\overline{X} = \tilde{X}$.

Teorema 1.10. Os completamentos existem e são únicos. Seja $(X, \|\ \|)$ um espaço normado. Existe $(\tilde{X}, \|\ \|)$ Banach tal que

- 1. $(X, || ||) \subseteq (\tilde{X}, ||| |||)$.
- $2. \ \overline{X}^{\parallel \ \parallel} = \tilde{X}.$
- 3. $(\tilde{X}, || || ||)$ é Banach.

(Equivalentemente, existe uma isometria $I: X \to \tilde{X}$ tal que $I(X) = \tilde{X}$.)

Demostração. Considere

$$\tilde{\tilde{X}} = \{(x_n) \in X^{\mathbb{N}} : (x_n) \text{ \'e Cauchy}\},$$

que têm uma estructura vetioral bacana. Defina uma relação de equivalencia em $\hat{\tilde{X}}$, como

$$(x_n) \sim (y_m) \iff \lim_{n \to \infty} ||x_n - y_n|| = 0.$$

Defina

$$\tilde{X} = \tilde{\tilde{X}}/\sim$$

e ainda defina as operações

$$\alpha[(x_n)] + \beta[(y_n)] = [(\alpha x_n + \beta_n)],$$

que estão bem definidas. Finalmente defina a norma

$$|||[(x_n)]||| = \lim_{n \to \infty} ||x_n||,$$

que também está bem definida.

Para mostrar 1., basta notar que o mapa que manda cada ponto para a sequência constante,

$$x \in X \mapsto [(x)] \in \tilde{X},$$

é uma isometria linear.

Para ver 2., fixe $[(x_n)] \in \tilde{X}$ e $\varepsilon > 0$. Então existe $n_0 \in \mathbb{N}$ tal que $\forall n, m \geq n_0$, temos $||x_n - x_m|| \leq \varepsilon$. Logo

$$|||[(x_{n_0})] - [(x_n)]||| < \varepsilon.$$

Ahora vejamos que \tilde{X} é Banach. Pegue uma sequência de Cauchy $([(x_n^k)])_k$ em \tilde{X} . Passando para uma subseqência se é necessário, podemos pegar (x^k) em X tal que

$$|||[(x_n^m)] - [(x^k)]||| < 1/k$$

para $m \geq k$. Issto é, usando a densidade de X podemos avanzar na sequência e achar para cada $k \in \mathbb{N}$ um elemento de X que fique muito perto. Queremos que a sequência resultante seja de Cauchy e ainda que seja o límite da sequência com a qual começamos.

Note que (x^k) é Cauchy em X, pois

$$\begin{split} \|x^k - x^m\| &= \left\| \left| [(x^k)] - [(x^n)] \right\| \quad \text{(sequências constantes)} \\ &\leq \left\| \left| [(x^k)] - [(x^m_n)] \right\| + \left\| \left| [(x^m_n)] - [(x^m)] \right\| \right| \\ &\leq 1/k + 1/m \leq 2/k \end{split}$$

escolhendo $m \ge k$.

Finalmente note que

$$[(x^n)] = \lim_{m \to \infty} [(x_n^m)],$$

pois

$$\lim_{m \to \infty} \| [(x^n)_n] - [(x_n^m)_n] \| = \lim_{m \to \infty} \lim_{n \to \infty} \|x^n - x^m\| = 0.$$

Deixamos provar a unicidade como exercício.

1.5 Cardinalidades de bases de Hamel

Proposição 1.11. Seja X um espaço de Banach com dimensão infinita. Então sua base de Hamel é não numerável.

Observação 1.7. E necésario pedir que espaço sea Banach na proposição anterior.

Demostração. Seja X um espaço de Banach separável de dimensão infinita. Então a cardinalidade de suas bases de Hamel é a mesma de \mathbb{R} . Além disso, dim X = #X.

2 Espaços cocientes

Dado um espaço vetorial X, cualquer subespaço Y é um subgrupo normal do grupo aditivo (X,+). Gente quer ver que o espaço cociente é normado se X for normado, e é Banach se X for Banach.

Seja $(X, \|\ \|)$ normado e $Y\subseteq X$ subespaço. Denotemos [x]=x+Y, e temos a relação de equivalencia no cociente dada por $x\sim y\iff x-y\in Y$. As operações de suma e produto escalar estão bem definidas. Defina uma norma em X/Y como

$$||x + Y||_{X/Y} = d(x, Y) = \inf\{||x - y|| : y \in Y\}.$$

que está bem definida pois a distancia de cualquer ponto na clase de x para o kernel é igual. Para ver-o note que $\forall z \in x + \ker T$, temos que $z - x + y \in \ker T$, de modo que

$$d(z,K) = \inf_{y \in K} \|z - y\| \le \|z - (z - x + y)\| = \inf_{y \in K} \|x - y\|$$

e a desigualdade contrária é análoga.

Vejamos que de fato $\| \|_{X/Y}$ é uma norma:

- 1. $\|\lambda x + Y\| = |\lambda| \|x + Y\|$ é clara.
- 2. $||x+z+Y|| = \inf\{||x+z+y|| : y \in Y\}$. Pegue sequências (x_n) e (z_n) em Y tais que

$$||x + Y|| = \lim_{n} ||x + x_n|| \qquad ||z + Y|| = \lim_{n} ||z + z_n||.$$

Então, $||x+z+Y|| \le ||x+x_n|| + ||z+z_n||$ para toda n, e de fato $||x+z+Y|| \le ||x+Y|| + ||z+Y||$.

- 3. Para provar que $||x+Y|| = 0 \implies x+Y = 0 \iff x \in Y$, temos que supor que Y é fechado. Então, $\exists (y_n) \subseteq Y$ tal que $\lim_{n \to \infty} ||x-y_n|| = 0$, assim, $y_n \to x$ e $x \in Y$.
- 4. Finalmente suponhamos que X é Banach e Y fechado, e peguemos $(x_n + Y)$ uma sequência de Cuachy em X/Y. Queremos achar outra sequência em X na mesma clase de equivalencia, mais que seja Cauchy. Pegue uma subsequência tal que

$$||x_n - x_{n+1} + Y|| < 2^{-n}.$$

Pegue $(w_n) \subseteq Y$ tal que

$$||x_n - x_{n+1} - w_n|| < 2^{-n}.$$

Defina (z_n) como

- $z_1 = x_1$.
- $z_2 = x_2 + w_1$.

:

• $z_n = x_n + w_{n-1} + \ldots + w_1$.

Temos então que

$$||z_n - z_{n+1}|| = ||x_n - x_{n-1} - w_n|| < 2^n.$$

Logo (z_n) é Cauchy e $z_n \in x_n + Y$. Defina $z = \lim_{n \to \infty} z_n$. Agora vejamos que $||z - x_n + Y|| \to 0$. Temos que

$$||z - x_n + Y|| = ||z - z_n + Y|| \le ||z - z_n|| \to 0.$$

Temos mostrado que

Teorema 2.1. Seja $(X, \| \|)$ um espaço normado e $Y \subseteq X$ um subespacço fechado. Então $(X/Y, \| \|_{X/Y})$ é um espaço normado e se X for Banach, X/Y também.

Ahora vamos mostrar que a projeção canónica é um operador de norma 1. De fato, escolhendo o vetor 0 pode ver que $\|Q\| \le 1$, e usando o Lema de Riesz pode ver pegar uma sequência $(x_n) \subset B_X$ tal que $d(x_n,Y) \ge 1 - \frac{1}{n}$, o que implica que $\|Q\| = \sup_{x \in B_X} d(x,Y) \ge 1$.

Teorema 2.2 (Primer teorema de isomorfismo). Existe um único $T': X/T \to Y$ tal que

comuta, ou seja, $T = T' \circ Q$.

Exercício. ||T'|| = ||T||.

Demostração. Temos que

$$\begin{split} \|T'\| &= \sup \left\{ \|T(x + \ker T)\| : x + \ker T \in B_{X/\ker T} \right\} \\ &= \sup \left\{ \|Tz\| : z \in x + \ker T \text{ para algum } x + \ker T \in B_{X/\ker T} \right\} \end{split}$$

de tal forma que fixando $x + \ker T \in B_{X/\ker T}$, temos para cualquer $z \in x + \ker T$ que

$$||T'|| \le ||T|| ||z||,$$

assim que bastaria achar um representante z em B_X . Note que como $\|x + \ker T\| = d(x, \ker T) = \inf_{y \in Y} \|x - y\|$, para cualquer $n \in \mathbb{N}$ podemos achar $y_n \in \ker T$ tal que

$$||x - y_n|| < \inf_{y \in Y} ||x - y|| + \frac{1}{n}$$

tomando o limite obtemos um ponto $y \in Y$ tal que $||x - y|| \le ||x + \ker T|| \le 1$. Notemos que $z = x - y \in x + \ker T$, pois T(x - y - x) = Ty = 0, assim que de fato $||T'|| \le ||T||$.

A desigualdade contrária e quasi imediata:

$$||Tx|| = ||T'(x + \ker T)|| \le ||T'|| ||x + \ker T|| = ||T'|| \inf_{y \in \ker T} ||x - y|| \le ||T'|| ||x||.$$

Observação 2.1. Se $f \in X^*$, $X/\ker f$ tem dimensão 1, pois $X/\ker f \approx \mathbb{K}$.

Teorema 2.3 (Spoiler, precisa o Teorema da Aplicação Aberta). Se T for sobrejetiva,

$$T': X/\ker T \to Y$$

é um isomorfismo algébrico. Se X e Y forem Banach, é um isomorfismo.

Vimos que X/Y é um espaço de Banach.

Pergunta. Quais espaços de Banach podem ser obtidos como X/Y?

Teorema 2.4. Seja X um espaço de Banach separável (existe um conjunto numerável que é denso). Então existe um subespaço fechado $Y \subseteq \ell_1$ tal que X é linearlmente isométrico a ℓ_1/Y .

Demostração. Basta ver que existe $T: \ell_1 \to X$ linear e surjetiva para obter $T': \ell_1 / \ker T \to X$. Seja X separável. Pegue $(x_n) \subseteq B_X$ denso e defina $T: \ell_1 \to X$ como

$$T\left(\left(\lambda_{n}\right)\right) = \sum_{n=1}^{\infty} \lambda_{n} x_{n}.$$

Note que como $\sum_{n=0}^{\infty} \|\lambda_n x_n\| \leq \sum_{n=1}^{\infty} |\lambda_n| < \infty$, segue-se que $\sum_{n=0}^{\infty} \lambda_n x_n$ converge.

Vejamos que $||T|| \le 1$:

$$||T((\lambda_n))|| = \left\| \sum_{n=1}^{\infty} \lambda_n x_n \right\|$$

$$\leq \sum_{n=1}^{\infty} ||\lambda_n x_n||$$

$$\leq \sum_{n=1}^{\infty} ||\lambda_n||$$

$$= ||(\lambda_n)||_{\ell_1}$$

Vejamos que T é sobrejetiva. Fixe $x \in B_X$ e $\varepsilon \in (0,1)$. Como (x_n) é denso em B_X , existe $y_1 \in B_{\ell_1}$ tal que

$$||x - T(y_1)|| < \varepsilon.$$

Como $\left\| \frac{x - T(y_1)}{\varepsilon} \right\| < 1$, pegue $\tilde{y}_2 \in B_{\ell_1}$ com

$$\left\| \frac{x - T(y_1)}{\varepsilon} - T(\tilde{y}_2) \right\| < \varepsilon.$$

Logo $||x - T(y_1 + \varepsilon \tilde{y}_2)|| < \varepsilon^2$. Agora defina

$$y_2 = \varepsilon \tilde{y}_2$$
.

Por indução, pegamos (y_n) tal que

- 1. $||y_n|| \leq \varepsilon^{n-1}$.
- 2. $||x T(y_1 + \ldots + y_n)|| < \varepsilon^n$.

Como $\|y_n\|<arepsilon^{n-1}$ para toda $n\in\mathbb{N}$, $y=\sum_{n=1}^\infty y_n$ existe. Como T é contínuo,

$$||T(y) - x|| = \lim_{n \to \infty} \left\| \sum_{i=1}^{\infty} T(y_i) - x \right\| = 0$$

Seja $T':\ell_1/\ker(T) \to X$ tal que $\|T'\| = \|T\|$ e tal que

conmuta, ie. $T = T' \circ Q$.

Para concluir falta mostrar que T' é isometria. Para isso lembre que

$$||y|| \le \sum_{n=1}^{\infty} ||y_n|| \le \sum_{n=1}^{\infty} \varepsilon^{n-1} = \frac{1}{1-\varepsilon}$$

por se tratar de uma série geométrica. Agora provaremos que $\forall x \in B_X$ e $\forall \varepsilon \in (0,1)$ existe $y_{x,\varepsilon} \in \ell_1$ tal que

1.
$$||y_{x,\varepsilon}|| \leq \frac{1}{1-\varepsilon}$$
.

2.
$$T(y_{x,\varepsilon}) = x$$
.

Pegue $x \in B_X$ e $y \in \ell_1$ com $T'(y + \ker T) = x$. Logo

$$||y + \ker T|| = \inf\{||y + w|| : w \in \ker T\} = \inf_{\varepsilon > 0} ||y - y + y_{x,\varepsilon}|| = 1.$$

Observação 2.2. ℓ_{∞} não é separável. Considere para $A \subset \mathbb{N}$ a sequência $\chi_A \in \ell_{\infty}$. Note que se $B \neq A$, $\|\chi_A - \chi_B\| = 1$, de forma que $\mathcal{B} = \{B(\chi_A, 1/2) : A \subseteq \mathbb{N}\}$ é uma coleção não numéravel de conjuntos abertos *disjuntos*. Como cualquer conjunto denso de ℓ_{∞} deve intersetar cada bola em \mathcal{B} , não pode ser numérvel.

3 Teorema de Hahn-Banach

Por ahora tomemos $\mathbb{K} = \mathbb{R}$.

Definição. Seja X um espaço vetorial e $p:X\to [0,\infty)$. Dizemos que p é um *funcional sublinear* se

- 1. $p(\alpha x) = \alpha p(x)$ para $\alpha \ge 0$.
- 2. $p(x, y) \le p(x) + p(y)$ para $x, y \in X$.

Teorema 3.1. Seja X um espaço vetorial e $Y\subseteq X$ subespaço. Seja $f:Y\to\mathbb{R}$ linear e $p:X\to\mathbb{R}$ um funcional sublinear tal que

$$f(x) < p(x) \quad \forall x \in Y.$$

Então existe $\tilde{f}: X \to \mathbb{R}$ tal que

- 1. $\tilde{f}|_{Y} = f$.
- 2. $\tilde{f}(x) \leq p(x)$ para todo $x \in X$.

Lema 3.2. Suponha as mesmas hipoteses que no teorema. Seja $x_0 \in X \setminus Y$. Então existe $\tilde{f} : E = \text{span}\{Y \cup \{x_0\}\} \to \mathbb{R}$ linear tal que

- 1. $\tilde{f}|_{Y} = f$.
- 2. $\tilde{f}(x) \leq p(x)$ para todo $x \in X$.

Demostração. Começamos por ver quais são as condições que tiver que satisfacer \tilde{f} se existese, e logo definimos de acordo a isso.

$$\tilde{f}(y) + \tilde{f}(x_0) = \tilde{f}(y + x_0) \le p(y + x_0) \quad \forall y \in Y$$

$$\implies f(y) + \tilde{f}(x_0) = \tilde{f}(y + x_0) \le p(y + x_0) \quad \forall y \in Y$$

então

$$\tilde{f}(x_0) \le p(y + x_0) - f(y) \quad \forall y \in Y.$$

Defina

$$\tilde{f}(x_0) = \inf_{y \in Y} p(y + x_0) - f(y).$$

Temos que ver que está bem definido, ie. que $\tilde{f}(x) \in \mathbb{R}$. Tome $y_1, y_2 \in Y$, assim

$$f(y_1) - f(y_2) = f(y_1 - y_2)$$

$$\leq p(y_1 - y_2)$$

$$= p(y_1 + x_0 - y_2 - x_0)$$

$$\leq p(y_1 + x_0) + p(-y_2 - x_0)$$

Assim,

$$-p(-y_2-x_0)-f(y_2) \le p(y_1+x_0)-f(y_1) \quad \forall y_1,y_2 \in Y,$$

e como definimos $\tilde{f}(x)$ como o ínfimo dos termos na dereita desta desigualdade, temos que

$$-p(-y_2 - x_0) - f(y_2) \le \tilde{f}(x_0) \le p(y_1 + x_0) - f(y_1) \quad \forall y_1, y_2 \in Y.$$

Definamos $\tilde{f}: E \to \mathbb{R}$ como

$$\tilde{f}(y + \alpha x_0) = f(y) + \alpha \tilde{f}(x_0) \quad \forall y \in Y \ \forall \alpha \in \mathbb{R}.$$

Para mostrar 2. queremos ver que

$$\tilde{f}(y + \alpha x_0) \le p(y + \alpha x_0) \quad \forall y \in Y \ \forall \alpha \in \mathbb{R}.$$

Se $\alpha = 0$ tá. Se $\alpha > 0$, podemos fazer

$$\tilde{f}(y + \alpha x_0) = f(y) + \alpha \tilde{f}(x_0)$$

 $\leq f(y) + \alpha (p(y_1 + x_0) - f(y_1)) \quad \forall y_1 \in Y.$

Pegando $y_1 = \frac{y}{\alpha}$ temos

$$\tilde{f}(y + \alpha x_0) \le f(y) + \alpha \left(p \left(\frac{y}{\alpha} + x_0 \right) - f \left(\frac{y}{\alpha} \right) \right) = p(y + \alpha x_0).$$

Finalmente se $\alpha < 0$,

$$\tilde{f}(y + \alpha x_0) = f(y) + \alpha \tilde{f}(x_0)$$

 $\leq f(y) + |\alpha| (p(-y_2 - x_0) - f(y_2)) \quad \forall y_1 \in Y.$

Fazendo $y_2 = \frac{y}{|\alpha|}$ obtemos

$$\tilde{f}(y + \alpha x_0) \le p(y + \alpha x_0).$$

Lema 3.3 (de Zorn). Seja (\mathbb{P}, \leq) um conjunto parcialmente ordenado no vazío. Se toda cadeia $\mathcal{C} \subset \mathbb{P}$ tem um supremo $\mathcal{C} \in \mathbb{P}$, então (\mathbb{P}, \leq) possui um elemento maximal.

Demostração de Hahn-Banach. Defina

$$\mathbb{P} = \{(E, g) : Y \subseteq E \subseteq X, \ g : E \to \mathbb{R} \text{ \'e linear}, g|_Y = f, \ g(x) \le p(x) \ \forall x \in E\}$$

Defna $(E,g) \leq (E',g')$ se "(E',g') é uma extensão mais proxima de resolver o nosso problema", issto é, quando $E \subseteq E'$ e $g'|_E = g$. Claramente as cadeias de $\mathbb P$ tem supremos em $\mathbb P$:

$$F = \bigcup_{g \in \mathcal{C}} g$$

como definen-se as funções em teoria de conjuntos (como conjuntos). Peguemos então pelo lema de Zorn um elemento maximal (E,F).

Afirmação. F é o que procuramos.

Demostração. De fato, temos que E=X, pois caso contrário o lema anterior genera uma contradição a maximalidade de (E,F).

Corolário 3.4. Seja X espaço normado, $Y\subseteq X$ subespaço e $f:Y\to \mathbb{R}$ um funcional linear contínuo. Então existe $F\in X^*$ tal que

- 1. $F|_{Y} = f$.
- 2. ||F|| = ||f||.

Demostração. Defina

$$p(x) = ||f|||x|| \quad \forall x \in X.$$

Por Hahn-Banach, existe um funcional $F: X \to \mathbb{R}$ tal que

- 1. $F|_{Y} = f$.
- 2. $|F(x)| \le ||f|| ||x||$ para todo $x \in X$.

Então, $||F|| \le ||f||$. A outra desigualdade tá dada por ser F uma extensão: $|f(x)| = |F(x)| \le ||F|| ||x||$ quando $x \in Y$.

Corolário 3.5. Seja X espaço normado e $x_0 \in X \setminus \{0\}$. Então existe $F \in X^*$ tal que

- 1. $F(x_0) = ||x_0||$.
- 2. ||F|| = 1.

Demostração. Defina $Y = \text{span}\{x_0\}$ e $f(\alpha x_0) = \alpha ||x_0||$ para toda $\alpha \in \mathbb{R}$. Note que ||f|| = 1, pois

$$|f(\alpha x_0)| = |\alpha| ||x_0|| = ||\alpha x_0||,$$

 $\log \|f\| \leq 1. \ \ \text{Como} \ f\left(\frac{x_0}{\|x_0\|}\right) = 1, \ \text{segue-se que} \ \|f\| = \sup_{x \in B_X} |f(x)| \geq 1 \ \text{e que}$ $f(x_0) = \|x_0\|. \ \ \text{O resultado se obtém aplicando o corolário anterior.} \qquad \square$

Corolário 3.6. Seja X espaço normado e $Y \subseteq X$ subespaço vetorial fechado e $x_0 \in X \setminus Y$. Existe $f \in X^*$ tal que

- 1. $f|_{Y} = 0$.
- 2. $f(x_0) = d(x_0, Y)$.
- 3. ||f|| = 1.

Demostração. Tome $E = \text{span}\{Y \cup \{x_0\}\}$. Defina $f(y + \alpha x_0) = \alpha d \text{ com } d = d(x_0, Y)$. Por Hahn-Banach, precisamos só mostrar que ||f|| = 1.

 $(||f|| \le 1)$ Note que

$$|f(y + \alpha x_0)| = |\alpha|d$$

$$= |\alpha|\inf\{||x_0 - z|| : z \in Y\}$$

$$\leq |\alpha| \left| |x_0 - \frac{y}{\alpha} \right| \qquad (z = -y/\alpha)$$

$$= ||\alpha x_0 + y||.$$

 $(\|f\| \ge 1)$ Pegue $(y_n) \subseteq Y$ tal que $d = \lim_n \|x - y_n\|$. Logo

$$f\left(\frac{x-y_m}{\|x-y_m\|}\right) = \frac{d}{\|x-y_n\|} \to 1.$$

Teorema 3.7. Seja X um espaço de Banach. Se X^* for separável, X é separável.

Demostração. Pegue $(f_m)\subseteq \partial B_{X^*}$ denso. Para cada $n\in\mathbb{N}$, pegue $x_m\in\partial B_X$ tal que $f_n(x_n)\geq 1-\frac{1}{m}$ (a gente não pode garantir que é 1). Defina $Y=\overline{\operatorname{span}\{x_n:n\in\mathbb{N}\}}$.

Afirmação. Y = X.

Demostração. Suponha falso, ie. existe $x \in X \setminus Y$. Pegue $f \in \partial B_{X^*}$ tal que

- 1. $f|_Y = 0$.
- 2. $f(x) \neq 0$. (De fato, esta propriedade não é usada na prova.)

Pegue uma subsequência $(f_{m_k})_k$ de (f_n) tal que $f_{m_k} \xrightarrow{k} f$. Então

$$|f(x_{n_k})| = |f_{n_k}(x_{m_k}) - f_{n_k}(x_{n_k} + f)|$$

logo

$$|f(x_{n_k})| \ge |f_{n_k}(x_{m_k})| - f_{n_k}(x_{n_k} + f)$$

que converge a 1, pois

$$|f_{m_k}(x_{n_k}) - f(x_{n_k})| = |(f_{n_k} - f)(x_{m/k})| \le ||f_{n_k} - f|| \to 0$$

mais isso não é possível pois x_n está em Y.

Teorema 3.8 (Hahn-Banach complexo). Seja X um espaço vetorial complexo, $Y\subseteq X$ subespaço, $f:X\to\mathbb{C}$ linear e $p:X\to[0,\infty)$ tal que

- 1. $p(\alpha x) = |\alpha| p(x)$ para todos $x \in X$ e $\alpha \in \mathbb{C}$.
- 2. $p(x+y) \le p(x) + p(y)$ para todos $x, y \in X$.
- 3. $|f(x)| \le p(x)$ para todo $x \in X$.

Então existe $F:X\to\mathbb{C}$ tal que

- 1. $F|_{Y} = f$.
- 2. $|F(x)| \le p(x)$ para todo $x \in X$.

Demostração.

Exercício. Existem funcionais \mathbb{R} -lineares $f_1, f_2 : X \to \mathbb{R}$ tais que

$$f(x) = f_1(x) + if_2(x) \quad \forall x \in X.$$

Note que a relação entre f_1 e f_2 é que

$$if_1(x) - f_2(x) = if(x)$$

$$= f(ix)$$

$$= f_1(ix) + if_2(ix)$$

Logo

$$f_2(x) = -f_1(ix), \quad \forall x \in Y.$$

Como $|f_1(x)| \leq p(x)$ para toda $x \in Y$, podemos usar Hahn-Banach real para pegar $\tilde{f}: X \to \mathbb{R}$ tal que

- 1. $\tilde{f}|_{Y} = f_1$.
- 2. $|\tilde{f}(x)| \le p(x)$.

Defina $F: X \to \mathbb{C}$ como

$$F(x) = \tilde{f}(x) + i\tilde{f}(ix) \quad \forall x \in X.$$

(F é linear) De fato, temos que F é \mathbb{R} -linear. Resta ver que F(ix)=iF(x) (Exercício). ($F|_Y=f$) Tá certo.

 $(|F(x) \le p(x))$ Fixe $x \in X$ e $\theta \in [0, 2\pi]$.

$$|F(x)| = e^{i\theta}F(x).$$

Note que, denotando $\tilde{f}(x)=F$ e $-\tilde{f}(ix)=F_2$ para que $F=F_1+iF_2$, temos que $F_2(e^{i\theta})=0$. Finalmente

$$|F(x)| = F_1(e^{i\theta}x)$$

$$= \tilde{f}(e^{i\theta}x)$$

$$\leq p(e^{i\theta}x)$$

$$= p(x).$$

Proposição 3.9. Seja X um espaço normado separável. X mergulha-se linermente e isometricámente em ℓ_∞ .

Demostração. Seja $(x_m) \subseteq X$ denso. Pelo teorema de Hahn-Banach existe uma sequência de funcionais $(f_n) \subseteq \partial B_{X^*}$ tal que $f_n(x_n) = \|x_n\|$. Logo, o mapa

$$T: X \to \ell_{\infty}$$

 $x \mapsto (f_n(x))$

esta bem definido e é tal que $||T|| \le 1$. Então, $||Tx|| \le ||x||$.

Para ver que T é uma isometria note que, como (x_n) é denso, para cualquer $x \in X$ podemos pegar uma subsequência (x_{n_k}) de (x_n) tal que $x_{n_k} \to x$. Então

$$||Tx|| = \sup_{n \in \mathbb{N}} |f_n(x)|$$

$$\geq |f_n(x)| \quad \forall n \in \mathbb{N}$$

$$\geq ||f_{n_k}(x_{n_k})| - |f_{n_k}(x_{n_k}) - f_{n_k}(x)||$$

$$= |||x_{n_k}|| - |f_{n_k}(x_{n_k} - x)|| \xrightarrow{k} ||x||.$$

4 Reflexivilidade

Notemos que, entre aspas, $X\subseteq X^{**}$. Considere o mapa $J:X\to X^{**}$ como (Jx)f=fx para toda $x\in X$ e $f\in X^*$.

Proposição 4.1. J é uma isometria.

Demostração. Por um lado,

$$||J|| = \sup_{x \in B_X} ||Jx|| = \sup_{x \in B_X} \sup_{f \in B_{X^*}} |fx| \le 1.$$

Seja agora $x \in X \setminus \{0\}$. Pegue $f \in X^*$ com ||f|| = 1 e f(x) = ||x||. Logo

$$||Jx|| \ge |(Jx)f| = |fx| = ||x||.$$

Definição. Se J for sobrejetiva, então X é *reflexivo*.

Exemplos.

- 1. Dimensão finita.
- 2. ℓ_p , $p \in (1, \infty)$. Para comprovar issto tem que comprovar que na nossa prova da dualidade de ℓ_p de fato usamos o mapa J. Considere os mapas

$$\varphi: \ell_p \to \ell_q^* \qquad \psi: \ell_p^* \to \ell_q \qquad \varphi^*: \ell_q^* \to \ell_p^{**}$$

para obter

Definição. Seja $T:X\to Y$ operador contínuo entre espaços normados. O *adjunto* de T é $T^*:Y^*\to X^*$ dado por

$$(T^*y^*)x = y^*(Tx).$$

Exemplos. Não são reflexivos: $C[0,1], c_0, \ell_{\infty}$ usando que se o dual de um espaço é reflexivo, então o espaço é reflexivo.

Exercício. Seja *X* reflexivo e *Y* isomórfico a *X*. Então *Y* é reflexivo.

Demostração. Primeiro mostramos que o diagrama seguinte comuta:

$$X \xrightarrow{\varphi} Y$$

$$J_X \downarrow \qquad \downarrow J_Y$$

$$X^{**} \xrightarrow{(\varphi^*)^{*'}} Y^{**}$$

e logo que, em geral, o operador adjunto de um isomorfismo é um isomorfismo, assim $(\varphi^*)^*$ é um isomorfismo. \Box

Proposição 4.2. Seja X reflexivo e $Y \subseteq X$ subespaço fechado. Então Y é reflexivo.

Demostração. Queremos mostrar que $J_Y:Y\to Y^{**}$ é sobrejetivo. Pegue $\xi\in Y^{**}$ e defina $\bar{\xi}\in X^{**}$ como

$$\bar{\xi}f = \xi f|_Y \quad \forall f \in X^*.$$

Como X é reflexivo, existe $x \in X$ tal que $J_X x = \bar{\xi}$.

 $(x \in Y)$. Caso contrário, como Y é fechado, existe um funcional $f \in X^*$ tal que

1. $fx \neq 0$. (De acordo com o corolário de Hahn-Banach, fx = d(x, Y).)

2.
$$f|Y = 0$$
.

Logo

$$\bar{\xi}f = \xi f|_{Y} = \xi 0 = 0.$$

Mais,

$$\bar{\xi}f = (Jx)f = fx \neq 0.$$

 $(J_Y x = \xi)$. Pegue $g \in Y^*$ e usando Hahn-Banach defina $\bar{g} \in X^*$ extensão de g. Logo

$$(J_Y x)g = gx$$

$$= \bar{g}x$$

$$= (J_X x)\bar{g}$$

$$= \bar{\xi}\bar{g}$$

$$= \xi g$$

Exercício. Se X é reflexivo e $Y \subseteq X$ fechado, então X/Y é reflexivo.

5 Topologia fraca e fraca*

Considere X um conjunto e uma família de mapas $\mathcal F$ de X para alguns espaços topológicos, $X \to (Y,\tau)$. A *topologia fraca* de X em relação a $\mathcal F$, denotada por $\sigma(X,\mathcal F)$, é a menor topologia em X que faz todos elementos de $\mathcal F$ contínuos. Em outras palavras, é a topologia gerada por os conjuntos da forma $f^{-1}(U)$ para $f \in \mathcal F$ e $U \subseteq \operatorname{codom} f$ aberto.

Lembre que uma *base* um espaço topológico é uma coleção de abertos tal que todo aberto da topologia pode se-expresar como união arbitrária de abertos da base. (E ainda, que todo elemento do espaço tem uma *base local*, (todo aberto que contém o punto contém um aberto da base local) de abertos da base.) Uma base para $\sigma(X,\mathcal{F})$ é

$$\bigcap_{i=1}^{n} f_i^{-1}(U_i)$$

para $f_1, \ldots, f_n \in \mathcal{F}$ e $U_i \subseteq \operatorname{codom} f_i$ aberto.

Voltando para espaços vetoriais,

Definição. Se X é um espaço normado, $\sigma(X,X^*)$ é a *topologia fraca de* X. Uma base para $\sigma(X,X^*)$ é

$$\bigcap_{i=1}^{n} \{x \in X : |f_i x_i - f_i x| < \varepsilon\} = \bigcap_{i=1}^{n} f_i^{-1} B(f x_i, \varepsilon) \stackrel{?}{=} \bigcap_{i=1}^{n} f_i^{-1} B(f x_i, \varepsilon_i)$$

para $n \in \mathbb{N}$, $f_1, \ldots, f_n \in X^*$, $x_1, \ldots, x_n \in X$ e $\varepsilon > 0$.

Exercício. Seja $x_0 \in X$. Mostre que

$$\bigcap_{i=1}^{n} \{x \in X : |f_i x_0 - f_i x| < \varepsilon\} = \bigcap_{i=1}^{n} f_i^{-1} B(f x_0, \varepsilon)$$

para $n \in \mathbb{N}$, $f_1, \dots, f_n \in X^*$ é uma base local para essa topologia em x_0 .

Demostração. Pega um conjunto da forma da primeira base e mostra que dentro dele tem um elemento da base local. Consideremos primeiro o caso n=1. Supongamos que

$$x_0 \in f^{-1}B(fx_1, \varepsilon), \quad f \in X^*, \ x_1 \in X, \ \varepsilon > 0.$$

Defina

$$d = d(fx_0, \partial B(fx_1, \varepsilon)) = \min\{|fx_0 - (fx_1 + \varepsilon)|, |fx_0 - (fx_1 - \varepsilon)|\}.$$

Afirmação. $f^{-1}B(fx_0, d/2) \subseteq f^{-1}B(fx_1, \varepsilon)$

De fato, para cualquer $x \in f^{-1}B(fx_0, d/2)$,

$$|fx - fx_1| < |fx - fx_0| + |fx_0 + fx_1| < d/2$$

O concepto de rede ajuda-nos a caracterizar propriedades de espaços topologicos arbitrários:

Definição.

- 1. Lembre que dado (I, \leq) um conjunto parcialmente ordenado, I é *direcionado* se para todos $i, j \in I$ existe $k \in I$ tal que $i \leq k$ e $j \leq k$. Esa definição implica a existencia de um elemento maior do que cualquer cantidade finita de elementos, mais não para uma quantidade infinita.
- 2. $(x_i)_{i \in I}$ é uma *rede* se I é direcionado.

- 3. Sejam (X, τ) um espaço topológico, $(x_i)_{i \in I}$ uma rede e $x \in X$. Decimos que $x_i \to x$ se para todo $O \in \tau$ como $x \in O$ existe $i_0 \in I$ tal que se $i \ge i_0$ então $x_i \in O$.
- 4. Uma rede $(x_i)_{i\in I}$ converge fracamente se para todo $f\in X^*$, $fx_i\to fx$.

k

Definição. Seja X um espaço normado. A topologia $\sigma(X^*,J(X)):=\sigma(X^*,X)$ é a **topologia fraca*** de X^* . Trata-se da menor topologia de X^* tal que Jx é contínuo para todo $x\in X$.

Observação 5.1. Se X for reflexivo, $\sigma(X^*, X^{**}) = \sigma(X^*, X)$.

Uma base de topologia fraca* é

$$\bigcap_{i=1}^{n} \{ f \in X^* : |fx_i - f_i x_i| < \varepsilon \}$$

$$= \bigcap_{i=1}^{n} \{ f \in X^* : |(Jx_i)f - (Jx_i)f_i| < \varepsilon \}$$

para $n \in \mathbb{N}$, $f_1, \ldots, f_n \in X^*$ e $x_1, \ldots, x_n \in X$.

 (f_i) converge fracamente para f se $f_i x \to f x$ para toda $x \in X$.

Denotamos

- 1. $x_i \xrightarrow{w} x$ se (x_i) converge fracamente para x.
- 2. $f_i \xrightarrow{w^*} \operatorname{se}(f_i)$ converge fraca-* para f.

Exemplo.

- 1. Sejam $p \in (1, \infty)$ e $(e_m) \subseteq \ell_p$. Então $e_n \stackrel{w}{\longrightarrow} 0$.
- 2. Mesmo para c_0 .
- 3. Se p = 1, não converge a zero.
- 4. Se $f_n \xrightarrow{w} f$ em X^* então $f_n \xrightarrow{w}$?. O recíproco não é certo, pois.

Teorema 5.1. Seja X um espaço normado. X é reflexivo se e somente se $\sigma(X^*, X) = \sigma(X^*, X^{**})$.

Proposição 5.2. Seja $\xi \in X^{**}$. Se ξ for contínuo para a topologia $\sigma(X^*,X)$, então $\xi \in X$.

Lema 5.3. Sejam $f, f_1, \dots, f_m : X \to \mathbb{R}$ lineares. Se

$$\bigcap_{i=1}^{n} \ker f_i \subseteq f$$

então $f \in \text{span}\{f_i | i \in \{1, \dots, n\}\}.$

Demostração. Tem um truco—defina a seguinte função auxiliar:

$$L: X \to \mathbb{R}^m$$

como $L(x)=(f_1x,\ldots,f_nx)$ para $x\in X$. Como $\bigcap_{i=1}^n \ker f_i\subseteq \ker f$, podemos definir $g:\mathbb{R}^n\to\mathbb{R}$ mediante o diagrama

$$X \xrightarrow{f} \mathbb{R}^n$$

que fica bem definida e é linear pela propriedade dos kernels. Logo, existem $\lambda_1,\dots,\lambda_n\in\mathbb{R}$ tais que

$$g(x_1,\ldots,x_n)$$
) $\sum_{i=1}^n \lambda_i x_i \quad \forall (x_1,\ldots,x_n) \in \mathbb{R}^n.$

E assim,

$$f = \sum_{i=1}^{n} \lambda_i f_i.$$

Prova da proposição. Queremos achar funcionais $\xi_i \approx x_i$ que satisfaiz a condição dos kernels. Como ξ é $\sigma(X^*, X)$ -contínuo,

$$\xi^{-1}(-1,1) \in \sigma(X^*,X).$$

Logo $\xi^{-1}((-1,1))$ é uma vizinhanza de zero na topologia fraca*. Logo existe $\varepsilon>0$, $x_1,\ldots,x_n\in X$ tais que

$$\bigcap_{i=1}^{n} \{ f \in X^* : |f_i x_i| < \varepsilon \} \subseteq ((-1,1))$$

pois

Exercício. Se $f_0 \in X^*$ então

$$\bigcap_{i=1}^{n} \{ f \in X^* : |fx_i - f_i x_i| < \varepsilon \}$$

 $x_1, \ldots, x_n \in X$, $\varepsilon > 0$ é uma base de abertos locais para f_0 . (É o mesmo exercício que o da base local para a topologia fraca.)

Logo,

$$\bigcap \ker(x_i) \subseteq \xi^{-1}((-1,1)).$$

E pela linearidade do kernel e do operador ξ , temos que

$$\bigcap \ker(x_i) \subseteq \ker \xi$$

assim, pelo lema

$$\xi = \sum_{i=1}^{n} \lambda_i x_i$$

 $com x_1, \ldots, x_n \in X$.

Prova do teorema.

(
$$\Longrightarrow$$
). Se X é reflexivo, $X=X^{**}$ e $\sigma(X^*,X)=\sigma(X^*,X^{**})$.

 (\Leftarrow) . Suponha $\sigma(X*,X) = \sigma(X^*,X^{**})$.

$$\begin{split} X^{**} &= \{\xi: X^* \to \mathbb{R}: \xi \text{ \'e linear e cont\'inuo para } \sigma(X^*, X^{**})\} \\ &= \{\xi: X^* \to \mathbb{R}: \xi \text{ \'e linear e cont\'inuo para } \sigma(X^*, X)\} \\ &= X \end{split}$$

6 Formas geometricas de Hahn-Banach

Definição. Sejam X um espaço vetorial e τ uma topologia em X. (X,τ) é um *espaço vetorial topologico (EVT)* se

- 1. $+ e \cdot são \tau$ -contínuas.
- 2. Os pontos são fechados.

Exemplo. (X, || ||), $(X, \sigma(X, X^*))$ e $(X, \sigma(X^*, X))$ são EVT.

Definição. Para (X, τ) EVT,

$$X^* := \{ f : X \to \mathbb{K} \text{ linear e contínuo} \}.$$

Observação 6.1. $(X^*, \sigma(X^*, X))^* = X = JX$.

Definição. Sejam X um espaço vetorial e $A\subseteq X$ um subconjunto. O funcional de Minkowski de A é

$$\mu_A(x) = \inf\left\{t > 0 : \frac{x}{t} \in A\right\}.$$

É que tão longe posso ir na direção de x sem sair de A.

Definição. Seja $A \subseteq X$.

1. A é *absorbente* se $\forall x \in X \ \exists t>0$ tal que $\frac{x}{t} \in A$. (Note que essa condição implica que $0 \in A$.)

2. $A \in balançado$ se $\forall x \in A \ \forall \lambda \in B_{\mathbb{K}}$ temos que $\lambda x \in A$.

Proposição 6.1. Seja $(X, \|\ \|)$ normado e $A = \{x \in X : \|x\| \le 1\}$. Então A é convexo, balanceado, absorbente e $\mu_A = \|\ \|$.

Demostração. Vamos mostrar que $\mu_A = \| \|$. Pegue $x \in X$ e $t > \|x\|$, assim $\frac{x}{t} \in A$. Logo, $\mu_A(x) \le t$ e de fato $\mu_A(x) \le \|x\|$.

Se
$$0 < t < ||x||, \frac{x}{t} \notin A$$
, e logo $t \le \mu_A(x)$.

Proposição 6.2. Sejam X um EVT e $A\subseteq X$ absorbente e conexo. Então μ_A é sublinear e

$$B := \{x \in X : \mu_A(x) < 1\} \subseteq A \subseteq \{x \in X : \mu_A(x) \le 1\} := C$$

e

$$\mu_A = \mu_B = \mu_C.$$

Se A também for balanceado, μ_A é uma pseudonorma.

Demostração. (Sublinearidade). Sejam $x, y \in X$. Pegue $t > \mu_A(x)$ e $s > \mu_A(y)$. Como

$$\frac{x+y}{t+s} = \frac{t}{t+s}t^{-1}x + \frac{s}{t+s}s^{-1}s,$$

 $\frac{x}{t} \in A$ é $\frac{y}{s} \in A$ pois A é convexo. Logo $\mu_A(x+y) \leq t+s$.

(Homogenidade). $\mu_A(\lambda x) = \lambda \mu_A(x)$, $\lambda > 0$. Logo se A for balanceado,

$$\mu_A(\lambda x) = |\lambda| \mu_A(x).$$

 $(B \subseteq A)$. Sai como A é convexo e $0 \in A$.

 $(A \subseteq C)$. Imediato

 $(\mu_A = \mu_B = \mu_C)$ Como $B \subseteq A \subseteq C$, segue que

$$\mu_C \le \mu_A \le \mu_B$$
.

Para ver que $\mu_B \leq \mu_C$, pegue $t > \mu_C(x)$. Logo $t^{-1}x \in C$. Logo $\mu_A(t^{-1}x) \leq 1$. Logo, se s > t,

$$\mu_A(s^{-1}x) = \mu_A(s^{-1}tt^{-1}x)$$
$$= s^{-1}t\mu_A(t^{-1}x)$$
$$< 1,$$

de modo que $s^{-1}x \in B$, e assim $\mu_B(x) \leq s$.

Teorema 6.3 (Primeira forma geométrica de Hahn-Banach.). Sejam X EVT real, $A, B \subseteq X$ convexos e disjuntos. Se A é aberto, existe $f \in X^*$ e $\gamma \in \mathbb{R}$ tal que

$$fx < \gamma \le fy \quad \forall x \in A \text{ e } y \in B.$$

(Interpretamos $f^{-1}\gamma$ como um hiperplano, assim, o conjunto A fica num lado desse hiperplano, e o conjunto B do outro lado. Observe que o fecho deles pode se intersectar.)

Demostração. Pegue $a \in A$ e $b \in B$. Defina $x_0 = a - b$ e

$$C = x_0 + A - B.$$

(C 'e aberto). De fato, pois C 'e uma uni \tilde{a} o de traslações de A por ementos de B.

(C 'e absorbente). Por ser um aberto que contém zero.

(C 'e convexo). Por ser soma de convexos.

Considere μ_C . Note que $x_0 \notin C$ e $E = \operatorname{span}\{x_0\}$. Defina $f: E \to \mathbb{R}$ como $f(\alpha x_0) = \alpha$ $\forall \alpha \in \mathbb{R}$.

Temos $f(\alpha x_0) \leq \mu_X(\alpha x_0) \ \forall \alpha \in \mathbb{R}$. Se $\alpha < 0$, terminhamos. Se $\alpha \geq 0$,

$$f(\alpha x_0) = \alpha \cdot 1$$

$$\leq \alpha \mu_C(x_0)$$

$$= \mu_C(\alpha x_0)$$

Por Hahn-Banach, existe $\tilde{f}:X\to\mathbb{R}$ linear tal que

- 1. $\tilde{f}|_{E} = f$.
- 2. $\tilde{f}(x) \leq \mu_C(x) \ \forall x \in X$.

 $(\tilde{f} \text{ é contínuo})$. Por 2.,

$$\tilde{f}(x) \le \mu_C(x) \le 1 \quad \forall x \in C \cap \{-C\}.$$

Exercício. Sejam X EVT e $f:X\to\mathbb{R}$ linear e limitado em um aberto. Então f é contínuo.

Assim, \tilde{f} é contínuo. Pegue $y \in A$ e $x \in B$. Temos:

$$1 + \tilde{f}(y) - \tilde{f}(x) = \tilde{f}(x_0) + \tilde{f}(y) - \tilde{f}(x)$$
$$= f(x_0 + y + x)$$
$$= \mu_C(x_0 + y - x) < 1$$

Logo $f(y) < \tilde{f}(x)$ para todo $y \in A$ e toda $x \in B$. Defina

$$\gamma = \inf_{x \in B} \tilde{f}(x)$$

Nota que $\tilde{f}(A)$ e $\tilde{f}(B)$ são conexos e, pelo exercício 1 da Lista II, $\tilde{f}(A)$ é aberto. Logo

$$\tilde{f}y<\gamma\quad\forall y\in A.$$

Teorema 6.4 (Segunda forma geometrica de Hahn-Banach). Sejam X EVT, $A, B \subseteq X$ convexos disjuntos, A compacto e B fechado. Então existe $f \in X^*$ tal que

$$\sup_{x \in A} f(x) < \inf_{x \in B} f(x).$$

(Mais uma vez, a f divide o espaço em dois hiperespaços, em cada um dos quais reside um dos conjuntos A ou B. Porém, agora ficam mais distantes um do outro, e seus fechos não irão se intersectar.)

Alternativamente, existem $\alpha, \varepsilon \in \mathbb{R}$ tais que

$$f(a) \le \alpha - \varepsilon < \alpha + \varepsilon \le f(b)$$
 $\forall a \in A \ \forall b \in B.$

Exercício. Construa um conjunto convexo e absorbente $C \subseteq c_0$ com $(\lambda_n) \subseteq (0, \infty)$ $\lambda_n \to 0$ tal que

- 1. $(\lambda_n c_n, 0) \subseteq C$ para toda $n \in \mathbb{N}$.
- 2. Para todo $x \in c_0$ existe λ_x tal que $\lambda x \notin C$ para toda $\lambda > \lambda_x$.

Lema 6.5. Sejam $A,B\subseteq X$ com A compacto e B fechado. Então existe um aberto V contendo zero tal que

$$(A+V)\cap (B+V)=\varnothing.$$

Prova do lemma. Como B^C é aberto e ainda + é contínua, $\forall x \in B^c \ \exists V_x \subseteq X$ aberto, $0 \in V_x$ tal que

$$v + V_x + V_x + V_x + \subseteq B^c$$
.

Trocando V_x por $V_x \cap (-V_x)$, V_x é simétrico. Como A é compacto, existem $x_1, \dots, x_n \in A$ tais que

$$A \subseteq \bigcup_{i=1}^{n} x_i + V_{x_i}.$$

Defina

$$V = \bigcap_{i=1}^{n} V_{x_i}.$$

Vamos mostrar que $(A+V)\cap (B+V)=\varnothing$. Suponha $x\in (A+V)\cap (B+V)$. Como

$$A + V \subseteq \bigcup_{i=1}^{n} x_i + V_{x_i} + V_{x_i}.$$

Então existe $i \leq n$ tal que

$$x \in (x_i + V_{x_i} + V_{x_i}) \cap (B + V_{x_i}).$$

Isso implica que $x \in (x_i + V_{x_i} + V_{x_i} + V_{x_i}) \cap B$, o que contradiz a nossa escolha de V_x . \square

Prova do teorema. Exercício.

Corolário 6.6. Sejam (X, || ||) um espaço normado e $X \subseteq X$ convexo. Temos

$$\overline{C}^{\parallel \parallel} = \overline{C}^w.$$

 $\textit{Demostração}. \ \ \mathsf{Como} \ \sigma(X,X') \subseteq \tau_{\parallel \ \parallel}, \overline{C}^{\parallel \ \parallel} \subseteq \overline{C}^w. \ \mathsf{Pegue} \ x \notin \overline{C}^{\parallel \ \parallel} \ \mathsf{e} \ \mathsf{defina}$

$$A = \{x\}, \quad B = \overline{C}^{\parallel \parallel}.$$

Por Hahn-Banach, existe $f \in X^*$ tal que

$$f(x) < \inf_{y \in \overline{C}^{\parallel}} f(y) = \gamma.$$

Logo

$$x \in f^{-1}((-\infty, \gamma)) \subseteq C^c$$
,

e assim $x \notin \overline{C}^w$.

Pergunta. $\overline{C}^w = \overline{C}^{\parallel \parallel} = \overline{C}^{w^*}$?

Não, $c_0 \subseteq \ell_\infty$ é convexo. Defina para cada $n \in \mathbb{N}$,

$$s_n = e_1 + \ldots + e_n.$$

Exercício. $s_n \xrightarrow{w^*} (1, 1, \ldots) \notin \overline{C}^{\parallel \parallel}$.

7 Teorema de Banach-Steinhaus

Teorema 7.1 (Baire). Seja (M,d) um espaço métrico completo. Considere $\{F_n\}$ uma família de fechados em M tais que

$$M = \bigcup_{i=1}^{n} F_n.$$

Então existe $n_0 \in \mathbb{N}$ tal que

$$\operatorname{int} F_{n_0} = \varnothing.$$

Demostração. Ver Elon.

Teorema 7.2 (Banach-Steinhaus). Sejam $(X, \|\ \|_X)$ um espaço de Banach, $(Y, \|\ \|_Y)$ um espaço normado e $(T_n) \subseteq \mathcal{L}(X,Y)$ tais que para cada $x \in X$ existe $0 < c = c_x < \infty$ tal que

$$||T_n x||_Y \le c_x \quad \forall n \in \mathbb{N}.$$

Então existe c>0 tal que

$$||T_n||_{\mathcal{L}(X,Y)} \le c \quad \forall n \in \mathbb{N}.$$

Demostração. Comencemos definindo os conjuntos

$$X_m^n := \{x \in X : ||T_n x||_Y \le m\}$$

= $(|| || \circ T_n)^{-1} ([0, m]).$

Segue-se que ${\cal X}_m^n$ é fechado. Com isso, conjunto

$$X_m = \bigcap_{n=1}^{\infty} X_m^n \subseteq X$$

é fechado.

Afirmação. $X = \bigcup_{i=1}^{\infty} X_m$.

 $\textit{Demostração}. \subseteq$ é imediato. Recíprocamente, seja $x \in X.$ Então existe $c_x > 0$ tal que

$$||T_n x|| \le c_x \quad \forall n \in \mathbb{N}.$$

Pegue $m_x \in \mathbb{N}$ com $m_x > C$

$$||T_n x||_Y < m_x \quad \forall n \in \mathbb{N}.$$

Ou seja $x \in X_{m_x}^n$ para toda $n \in N$. Logo

$$x \in \bigcap_{i=1}^{\infty} X_{m_x}^n = X_{m_x} \subseteq \bigcup_{i=1}^{\infty} X_m$$

Logo, pelo teorema de Baire, existe $n_0 \in \mathbb{N}$ tal que

int
$$X_{m_0} \neq \emptyset$$
.

Considere $y \in \operatorname{int} X_{m_0}$ e r > 0 tal que

$$B_r^x[y] \subseteq \operatorname{int} X_{m_0}$$
.

Seja $x \in X$ com $||x|| \le 1$. Logo, $z = y + rx \in B_r^x[y]$. Daí,

$$||T_m(z - y)|| = ||T_m z - T_m y||$$

$$\leq ||T_n z|| + ||T_n y||$$

$$\leq m_0 + m_0 = 2m_0$$

Logo,

$$||T_n x|| = ||T_n \left(\frac{rx}{r}\right)|$$

$$= \frac{1}{r} ||T_n(rx)||$$

$$= \frac{1}{r} ||T_n(z-y)||$$

$$\leq \frac{2m_0}{r}$$

Assim, $\|T_nx\| \leq \frac{2m_0}{r}$ para toda $x \in X$ e $\|x\| \leq 1.$

Exemplo (Limitação uniforme "otimo"). Considere

$$X = \{(x_n) \subseteq c_0 : \exists k_0 \in \mathbb{N}, \ x_k = 0 \ \forall k > k_0 \}$$

Exercício. $(X, || \parallel_{\infty})$ não é completo.

Tome $Y = \mathbb{R}$ e defina a sequência de operadores

$$f_n: X \mapsto \mathbb{R}$$

 $x = (x_n) \mapsto f_n(x) = nx_n$

Note que f_n é limitado. Pegando a sequência que vale 1 na n-esima entrada vemos que $\|f_n\|=1$.

Seja $x=(x_k)\subseteq X$, assim existe $k_0\in\mathbb{N}$ tal que $x_k=0$ para $k>k_0$. Desse modo

$$f_n(x) = nx_n = 0 \quad \forall n > k_0.$$

Issto é, $|f_n x| \leq c_x$ para toda $n \in \mathbb{N}$, mas,

$$||f_n|| = n \to \infty,$$

assim que a completude é essencial no teorema.

Corolário 7.3. Sejam X um espaço Banach, Y normado e $(T_n)\subseteq \mathcal{L}(X,Y)$ tais que

$$\lim_{n\to\infty} T_n(x)$$

existe para todo $x \in X$. Então o operador

$$T: X \to Y$$
$$x \to Tx := \lim_{n \to \infty} T_n x$$

é contínuo.

Demostração. De fato,

1. T é linear: para $x \in X$ e $\alpha \in \mathbb{R}$

$$T(\alpha x + y) = \lim_{n \to \infty} T_n(\alpha x + y)$$

$$= \lim_{n \to \infty}$$

$$= \alpha \lim_{n \to \infty} (\alpha T_n x + T_n y)$$

$$= \alpha \lim_{n \to \infty} T_n x + \lim_{n \to \infty} T_n y$$

$$= \alpha T x + T y$$

2. T é contínuo. Seja $x \in X$. Como $(T_n x)$ converge em Y, então $||T_n x||$ converge em \mathbb{R} , assim que é um conjunto limitado. Por Banach-Steinhaus, existe c>0 tal que $||T_n|| \leq c$ para todo $n \in \mathbb{N}$. Assim,

$$||T_n x|| \le ||T_n|| ||x|| \le c||x||.$$

Tomando limite como || || é contínua, terminhamos.

Corolário 7.4. Seja X espaço Banach, Y normado e $(f_n) \subseteq X^*$ tal que $f_n \xrightarrow{w^*} f \in X^*$. Então (f_n) é limitada.

Teorema 7.5 (Banach-Alaoglu-Bourbaki). Seja X um espaço de Banach. Então B_{X^*} é compacta na topologia fraca*.

Demostração. Para cada $x \in X$ defina

$$I_X = [-\|x\|, \|x\|],$$

que é compacto em R. Pelo teorema de Tychonoff, o conjunto

$$I = \prod_{x \in X} I_x$$

é compacto em \mathbb{R}^X . Considere o mapa

$$\varphi: X^* \to \mathbb{R}^X$$

$$f \mapsto \varphi f = (f(x))_{x \in X}$$

Dado $f \in B_{X^*}$,

$$|f(x)| \le ||f|| ||x|| \le ||x|| \implies |f(x)| \in I_x.$$

Logo

$$\varphi(B_{X^*}) \subseteq I$$
.

Afirmação. φ é um homeomorfismo (sobre sua imagem) da topologia fraca* para a topologia produto.

Demostração. A injetividade é clara: se $\varphi g=\varphi f$, então g(x)=f(x) para todo $x\in X$. Para a continuidade, considere a projeção

$$\pi_X : \mathbb{R}^X \to \mathbb{R}$$

$$y = (y_\alpha)_{\alpha \in X} \mapsto \pi_x(y) = y_x$$

Daí, observe que para toda $f \in X^*$,

$$(\pi_X \circ \varphi)f = \pi_X(\varphi f)$$

$$= \pi_X((f(y))_{y \in X})$$

$$= f(x)$$

$$= J_x f,$$

e como J_x e contínua, também $\pi_X \circ \varphi$ para todo $x \in X$.

Agora vamos mostrar que $\varphi^{-1}:\varphi(X^*)\to X^*$ é contínua em $\sigma(X^*,X)$. Lembremos que $\varphi:Y\to (X^*,\sigma(X^*,X))$ linear é contínuo se é só se

$$J_x \circ \varphi : Y \to \mathbb{R}$$

é contínua para todo $x \in X$. Assim, mostraremos que

$$(J_x \circ \varphi) = \pi_x|_{\varphi(X^*)}$$

é contínuo.

Com isso, temos que φ é homeomorfismo. Com isso, vamos mostrar que

$$\varphi(B_{X^*}) \subseteq I$$

é fechado. De fato, seja $F=(F_x)\in\overline{\varphi(B_{X^*})}$. Vamos mostrar que existe $f\in B_{X^*}$ tal que $F_x=f(x)$ para todo $x\in X$. Defina

$$f: X \to \mathbb{R}$$
$$x \mapsto f(x) = F_x$$

1. f é linear. Sejam $x,y\in X$ e $\alpha\in\mathbb{R}$. Considere a vizinhança aberta de F dada por

$$V := \{ (w_z)_{z \in X} : w_x - F_x | < \varepsilon, |w_y - F_y| < \varepsilon, |w_{\alpha x + y} - F_{\alpha x + y}| < \varepsilon \}.$$

Como $F \in \overline{\varphi(B_{X^*})}$, temos $V \cap \varphi(B_{X^*}) \neq \emptyset$. Seja $g \in B_{X^*}$ tal que $\varphi g \in V$. Logo, $(g(w))_{w \in X} \in V$, ou seja,

$$|g(x) - F_x| < \varepsilon$$
, $|g(y) - F_y| < \varepsilon$, $|g(\alpha x + y) - F_{\alpha x + y}| < \varepsilon$

Dai,

$$|f(\alpha x + y) - (\alpha f(x) + f(y))| = |F_{\alpha x + y}|$$

$$< (|\alpha| + 2)\varepsilon)$$

2. $f \in B_X$, pois

$$|f(x) = |F_x| \le ||x||$$

pois $F \in I$.

Por tanto,

$$\overline{\varphi(B_{X^*})} = \varphi(B_{X^*}) \subseteq I$$

é compacto. Como φ é um homeomorfismo, temos que $B_{X^*}\subseteq X^*$ é compacto na topologia fraca*. \Box

Corolário 7.6. Seja X Banach. Se X é reflexivo, B_X é compacta na topologia fraca.

Demostração. De fato, como X é reflexivo, então $J(B_X) = B_{X^{**}}$. (De fato, issto caracteriza o espaço ser reflexivo.) Por BAB, $B_{X^{**}}$ é compacto na fraca*, basta mostrar que

$$J^{-1}:X^{**}\to X$$

é contínua da topologia fraca* para fraca. De fato, basta mostrar que

$$f \circ J^{-1}: X^{**} \to \mathbb{R}$$

é contínua para todo $f \in X^*$. Seja $F \in X^{**}$,

$$J^{-1}(F) = x$$

então,

$$(f \circ J^{-1})(F) = f(x) = J_X(f) = f(x) := F(f)$$

Mais a aplicação

$$X^{**} \ni F \stackrel{f}{\mapsto} F(f)$$

é contínua para todo $f \in X^*$. Logo, J^{-1} é contínua.

Teorema 7.7 (Goldstine). Seja X Banach. Então $J(B_X)\subseteq X^{**}$ é denso em $B_{X^{**}}$ na topologia fraca*.

Demostração. Suponha que

$$\overline{B}_X^{w^*} \neq B_{X^{**}}.$$

Então, existe $\xi \in B_{X^{**}} \backslash \overline{B}_X^{w^*}$. Por Hahn-Banach, existe $f \in X^*$ tal que

$$f(\xi) < \inf_{z \in \overline{B}_X^{w^*}} f(z) \le -\|f\|.$$

Logo,

$$||f|| < |f(\xi)| \le ||f|| ||\xi||.$$

Corolário 7.8. *X* é reflexivo se e só se $(B_X, \sigma(X, X^*))$ é compacto.

8 Krein-Milman

Definição. Sejam X um espaço vetorial e $K \subseteq X$ um convexo.

1. Um subconjunto de $L \subseteq K$ é *extremo* em K se para todos $x, y \in K$ e $\lambda \in (0,1)$,

$$\lambda x + (1 - \lambda)y \in L \implies x, y \in L$$

2. Um ponto $x \in K$ é *extremo* se $\{x\}$ for extremo em K. Denotamos por $E(K) := \{x \in K : x \text{ é extremo em } K\}.$

Issto é, não posso escrever um ponto extremo como combinação convexa de dois pontos em K. (O unico jeito de fazer-o é a combinação convexa trivial.)

Exemplos.

- 1. $X=c_0$, então e_1 não é extremo. De fato, $E(B_{c_0})=\varnothing$.
- 2. $E(B_{\ell_{\infty}}) = \{(\varepsilon_n) \in \ell_{\infty} : \varepsilon_n \in \{-1,1\} \ \forall n\}$. Só note que ± 1 são pontos extremos do intervalo $[-1,1] \subseteq \mathbb{R}$. Assim, quando $z_n = \pm 1$ é necessário que $x_n = y_n = z_n$. Pedindo para toda n, os vetores são iguais.
- 3. $E(B_{\ell_1}) = \{ \pm e_n : n \in \mathbb{N} \}$. A contenção \supseteq é análoga ao anterior.
- **4.** $E(B_{\ell_p})=\partial B_{\ell_p}$. Comença com $z,x,y\in\partial B_{\ell_p}$, suponha $z=\lambda x+(1-\lambda)y$, $\lambda\in(0,1)$. Meta: x,y=z. Faiz:

$$1 = ||z|| < \lambda ||x|| + (1 - \lambda)||y|| = 1,$$

de fato, basta comprender que a desigualdade triangular no ℓ_p é igualdade se e só se um é multiplo do outro.

Teorema 8.1 (Krein-Milman). Sejam X um EVT e $K \subseteq X$ compacto e convexo. Então,

$$K = \overline{\operatorname{conv}}(E(K)).$$

Observação 8.1. Lembre que

$$\begin{aligned} \operatorname{conv} A &= \bigcap_{\substack{A \subseteq B \\ B \neq \operatorname{convexo}}} B \\ &= \left\{ \sum_{i=1}^n \lambda_i x_i : n \in \mathbb{N}, x_i \in A, \lambda_i \in [0,1], \sum_i \lambda_i = 1 \right\}. \end{aligned}$$

Demostração. Como K é convexo, a contenção (\supseteq) é clara. Considere

$$\mathbb{P} = \{L \subseteq K : L \neq \varnothing, L \text{ \'e extremo em } K\}.$$

Meta:

$$\forall L \in \mathbb{P} \ \exists x \in E(K) : x \in L,$$

em outras palabras, procuramos $x \in L$ e $\{x\} \in \mathbb{P}$.

Note que \mathbb{P} é um conjunto parcialmente ordenado com a inclução inversa:

$$L < L' \iff L' \subseteq L.$$

Pelo lema de Zorn aplicado a

$$\mathbb{P}_L = \{ L' \in \mathbb{P} : L' \subseteq L \}.$$

Obtemos que $\forall L \in \mathbb{P} \ \exists S_L \subseteq L \ \text{tal que} \ S_L \in \mathbb{P}$.

Afirmação. S_L só tem um elemento.

Suponha $|S_L| \ge 2$, então, por Hahn-Banach existe $f \in X^*$ tal que $f|_{S_L}$ não é constante (pegando dos pontos, cada um como un conjunto compacto). Defina

$$\mu = \sup_{x \in S_L} f(x) = \max_{x \in S_L} f(x)$$

e

$$S_L = \{ x \in S_L : f(x) = \mu \}.$$

Note que como f não é constante em S_L , temos que $S_L \subsetneq S_L$.

Ainda, note que S_f é extremo em K. Para ver issto, suponha que $x,y\in K$, $\lambda\in(0,1)$ e $\lambda x+(1-\lambda)y\in S_f$. Como $S_f\subseteq S_L$ e S_L é extremo em K, então $x,y\in S_L$. Como

$$f(\lambda x + (1 - \lambda)y) = \mu = \max_{z \in S_L} f(z),$$

segue que $f(x) = f(y) = \mu$, logo $x, y \in S_f$. Issto contradiz a minimilaidade de S_L em \mathbb{P}_L , assim $|S_L| = 1$.

Suponha que existe $x_0 \in K \setminus \overline{\text{conv}}(E(K))$. Por Hahn-Banach, existe $f \in X^*$ tal que

$$\sup_{x \in \overline{\text{conv}}(E(K))} f(x) < f(x_0).$$

Vamos mostrar que

$$K_f = \{x \in K : f(x) = \max_{z \in K} f(z)\}$$

é um conjunto extremo em K.

Note que $K_f \in \mathbb{P}$, logo $E(K) \cap K_f \neq \emptyset$. Se $y \in E(K) \cap K_f$,

$$f(y) \le \sup_{x \in E(K)} f(x) < f(x_0) \le f(y).$$

Contradição.

Corolário 8.2. Se X é um espaço de Banach, $E(B_{X^*}) \neq \emptyset$.

Corolário 8.3. Como $E(B_{c_0}) = \emptyset$, c_0 não é dual de um espaço de Banach.

Corolário 8.4. C[0,1] não é um dual, pois $E(C[0,1]) = \{-1,1\}$.

9 Teorema da aplicação aberta

Definição. Seja (X, τ) um espaço topologico e $Y \subseteq X$ um subconjunto.

- 1. Y é denso em lugar nenhum se $\frac{\circ}{Y} = \emptyset$.
- 2. Se $Y=\bigcup_{i=1}^{\infty}Y_n$ e cada Y_n é denso em lugar nenhum, então Y é de *primeria categoria* ou *magro*.
- 3. *Y* e de *segunda categoria* se não for de primeria categoria.

Teorema 9.1 (da aplicação aberta). Sejam X e Y espaços normados com X Banach, T: $X \to Y$ linear e limitado e T(X) de segunda categoria. Então T é uma aplicação aberta. Em particular, se T é sobrejetiva, é aberta.

Demostração. Meta: T(U) é aberto se $U\subseteq X$ é aberto. Note que é suficiente mostrar que

$$0 \in \operatorname{int}(T(rB_X)) \quad \forall r > 0.$$

Pegue $x \in U$, assim existe r > 0 tal que $B_r(x) \subseteq U$. Como $0 \in \operatorname{int} T(rB_X)$, pode pegar $\varepsilon > 0$ tal que $\varepsilon B_Y \subseteq T(rB_X)$. Assim, $T(x) + \varepsilon B_Y \subseteq T(x + rB_X) \subseteq T(U)$.

Afirmação.

$$\operatorname{int} \overline{T(rB_X)} \neq \varnothing \quad \forall r > 0.$$

Demostração. Como $T(X) = \bigcup_{n=1}^{\infty} T(nB_X)$, como T(X) não é magro, existe $n_0 \in \mathbb{N}$ com $\operatorname{int}(\overline{T(n_0B_X)}) \neq \emptyset$.

Afirmação.

$$0 \in \operatorname{int}(\overline{T(rB_X)}) \quad \forall r > 0.$$

Demostração. Note que

$$\overline{T(\frac{r}{2}B_X)} - \overline{T(\frac{r}{2}B_X)} \subseteq \overline{T\left(\frac{r}{2}B_X\right) - T\left(\frac{r}{2}B_X\right)} \subseteq \overline{T(rB_X)}.$$

Pela afirmação anterior, existe um aberto magro não vazío com $U\subseteq \overline{T\left(\frac{r}{2}B_X\right)}$. Logo

$$0 \in U - U \subseteq \overline{T(rB_X)}$$

Afirmação.

$$\overline{T\left(\frac{r}{2}B_X\right)} \subseteq T(rB_X) \quad \forall r > 0.$$

Demostração. Fixe $y \in \overline{T\left(\frac{r}{2}B_X\right)}$. Vamos construir uma sequência (x_n) em X e (y_n) em Y tais que

1.
$$y_1 = y$$
.

2.
$$y_n \in \overline{T\left(\frac{r}{2^n}B_X\right)}$$
.

3.
$$x_n \in \frac{r}{2^n}B_X$$
.

4.
$$y_{n+1} = y_n - T(X_n)$$
.

Suponha $y_1, \ldots y_n$ e x_1, \ldots, x_{n+1} foram escolhidos. Note que

$$y_n - \overline{T\left(\frac{r}{2^{n+1}}B_X\right)}$$

é uma vizinhança de y_n . Issto é, $y_n \in \overline{T\left(\frac{r}{2^{n+1}}B_X\right)}$, asimm existe x_n que aproxima y_n do seguinte jeito:

$$\exists x_n \in \frac{r}{2^n} B_X : T(x_n) \in y_n - \overline{T\left(\frac{r}{2^{n+1}} B_X\right)}.$$

Logo,

$$y_{n+1} = y_n - T(x_n) \in \overline{T\left(\frac{r}{2^{n+1}}B_X\right)}.$$

Como X é Banach,

$$x = \sum_{n=1}^{\infty} x_n$$

converge. Mais ainda, $x \in rB_X$. Como T é contínuo,

$$T(x) = \sum_{n=0}^{\infty} T(x_n)$$

Para calcular isso a gente calcula somas parciais:

$$\sum_{n=1}^{N} T(x_n) = \sum_{n=1}^{N} y_n - y_{n+1}$$
$$= y_1 - y_{N+1}.$$

Como $y_n \to 0$, concluimos que T(x) = y.

Assim, zero tem uma vizinhança em $T(r, B_X)$.

Corolário 9.2. Sejam X e Y espaços de Banach, $T:X\to Y$ operador limitado sobrejetivo. Então T é aberto. Logo, existe c>0 tal que $\forall y\in Y$ existe $x\in X$ tal que

$$Tx = y$$
 e $||x|| \le c||y||$.

Demostração. Teorema de categoría de Baire.

Corolário 9.3. Se ainda T for injetivo, então T^{-1} é limitado.

Corolário 9.4. Seja $(X, \| \ \|)$ espaço de Banach e $(\| \ \| \|)$ uma norma Banach em X. Se $T: (X, \| \ \|) \to (X, \| \ \|)$ for contínua, então $\| \ \| \sim \| \| \|$.

Definição. Sejam X, Y espaços de Banach e $T \in \mathcal{L}(X,Y)$. T é *compacto* se $\overline{T(B_X)}$ for compacto.

Exemplos.

- 1. Se dim $Y < \infty$, T é compacto.
- 2. $K(X,Y) = \{T \in \mathcal{L}(X,Y) : T \text{ \'e compacto}\}\$ é um espaço de Banach.
- 3. Note que " $\ell_{\infty} \subseteq \mathcal{L}(\ell_2)$ " de forma canónica: para $a \in \ell_{\infty}$,

$$(Ta)x = (a_n x_n)_n$$

Note que Ta é compacto se e só se $a \in c_0$.

Corolário 9.5. Se X e Y forem Banach e $\dim Y = \infty$, então nenhum operador compacto $X \to Y$ é sobrejetivo.

10 Teorema do gráfico fechado

Teorema 10.1. Sejam X e Y espaços de Banach e $T:X\to Y$ linear (não necesariamente contínuo). Se

$$graph(T) = \{(x, Tx) : x \in X\}$$

for fechado, então T é limitado.

Demostração. Definimos uma norma $\| \|$ em $X \times Y$ como

$$||(x,y)||_{X\times Y} = ||x||_X + ||y||_Y.$$

Como todas as normas são equivalentes no produto (pois ele é "dimensão 2"), graph T é fecahdo em $(X \times Y, \|\ \|)$. Logo, como T é linear graph T é um espaço vetorial e por ser fechado, é Banach. Para usar o teorema da aplicação aberte precisamos um mapa contínuo: usaremos as projeções.

Note que a projeção $\pi_1:\operatorname{graph} T\to X$ dada por $(x,Tx)\mapsto x$ é contínuo. De fato, trata-se de um operador sobrejetivo, injetivo e contínuo, é um isomorfismo de espaços de Banach, ie. π_1^{-1} é contínua.

Como $T = \pi_2 \circ \pi_1^{-1}$, onde $\pi_2 : X \times Y \to Y$ é a projeção canónica, T é contínuo.

11 Espaços complementados

Definição. Seja X um espaço de Banach e $Y \subseteq X$ um subespaço fechado. Y é *complementado* em X se existe $Z \subseteq X$ subespaço fechado tal que

$$X = Y \oplus X$$
,

ie.,
$$X = Y + Z \notin Z \cap Z = \{0\}.$$

Proposição 11.1.

- 1. Se dim $Y < \infty$, Y é complementado.
- 2. Se Y é fechado e $\operatorname{codim} Y < \infty$, Y é complementado.

Demostração.

1. Seja y_1, \ldots, y_n uma base de Y. Defina $\tilde{y}_1^*, \ldots, \tilde{y}_n^* \in Y^*$ por $\tilde{y}_i^*(y_j) = \delta_{ij}$. Por Hahn-Banach, existem $y_1, \ldots, y_n \in X^*$ extensões. Defina

$$Z = \bigcap_{i=1}^{n} \ker y_i^*.$$

Logo Z é fechado. Mais ainda, $X = Y \oplus Z$. De fato, dado $x \in X$, defina

$$y = \sum_{i=1}^{n} y^*(x)y_i.$$

2. $\operatorname{codim} Y = \dim(X/Y) < \infty$. Seja

$$y_1 + Y, \ldots, y_n + Y$$

uma base para X/Y. Pegue $f_1, \ldots, f_n \in (X/Y)^*$ tais que $f_i(y_i + Y) = \delta_{ij}$. Então, se $\pi: X \to X/Y$ é o mapa quociente, temos

$$Y = \bigcap_{i=1}^{n} \ker(f_i \circ \pi).$$

Defina $Z = \operatorname{span}\{y_1, \dots, y_n\}$. Z é fechado. Como $y_1 + Y, \dots, y_n + Y$ é base de X/Y, $\alpha_1 y_1 + \dots + \alpha_n y_n \in Y \implies \alpha_1, \dots, \alpha_n = 0$. Logo, $Y \cap Z = \{0\}$.

Para ver que X = Y + Z, faça: $x \in X$, escreva

$$\pi(x) = \sum_{i=1}^{n} f_i(\pi x)(y_i + Y),$$

defina

$$z = \sum_{i=1}^{n} f_i(\pi x) y_i \in Z,$$

e obtenha y = x - z.

Observação 11.1. Nem todos os subespaços fechados são complementados: $c_0 \subseteq \ell_\infty$ não é complementado.

Definição. Seja X um espaço de Banach, um operador linear limitado $p:X\to X$ é uma *projeção* se $p^2=p$.

Proposição 11.2. X Banach, $Y\subseteq X$ é complementado se e só se $Y=\operatorname{img} p$ para alguma projeção $p:X\to X$.

Demostração.

 (\Leftarrow) Defina $Z = \operatorname{img}(\operatorname{Id} - p)$. Então $Y = \ker(\operatorname{Id} - p)$ e $Z = \ker p$, que são fechados.

 (\Longrightarrow) Seja $Z\subseteq X$ fechado tal que

$$X = Y \oplus Z$$
.

Definamos $p: X \to X$ como

$$px = y_x$$

onde y_x é o único elemento de X tal que $x - y_x \in Z$.

p é linear.

p é contínuo. Considere o quociente

$$\pi: X = Y \oplus Z \to X/Z.$$

Note que

$$\pi|_Y:Y\to X/Z$$

é uma bijeção. Pelo teorema da aplicação aberta, $(\pi|_Y)^{-1}$ é contínuo. Como $p=(\pi_Y)^{-1}\circ\pi$, p é contínuo. \Box

12 Operadores adjuntos

Definição. Sejam X e Y espaços de Banach e $T:X\to Y$ um operador. O *adjunto* de T é o operador

$$T^*: Y^* \to X^*$$

dado por

$$(Tf)x = f(Tx) \quad \forall f \in Y^*, \ \forall x \in X.$$

Exercício. $||T|| = ||T^*||$.

Demostração. content...

Proposição 12.1. Sejam X e Y espaços de Banach e considere $T: X \to Y$ linear.

T é contínuo $\iff T^*$ e fracamante contínuo.

Demostração. Exer.

Proposição 12.2. Sejam X e Y espaços de Banach e considere $S: Y^* \to X^*$ linear.

$$S$$
 é fraco* contínuo $\iff \exists T \in \mathcal{L}(X,Y) : S = T^*$.

Demostração. (⇐=). Já está.

 (\Longrightarrow) . Queremos: (Sf)x=f(Tx). Para cada $x\in X$, defina

$$\xi_x: Y^* \mapsto \mathbb{R}$$
$$f \mapsto (Sf)x$$

Como S é contínua*, cada ξ_x é contínuo*.

Logo $\forall x \in X$, existe um único $y \in Y$ tal que

$$\xi_x = J_Y y$$
.

Defina Tx = y.

(T é linear.)

$$\begin{split} J_Y(T(\lambda x + y)) &= \xi_{\lambda x + y} \\ &= \lambda \xi_x + \xi_y \\ &= \lambda J_Y(Tx) + J_(Tx) \\ &= J_Y(\lambda Tx + Ty) \end{split}$$

(*T* é limitado)

$$||Tx|| = ||J_Y(Tx)|| = ||\xi_{Tx}|| \le ||\xi|| ||x||$$

$$(S = T^*)$$

$$(T^*f)x = f(Tx) = J_Y(tx)f = \xi_X f = (Sf)x$$

13 Universalidade

Sabemos que para cualquer espaço separável X existe uma isometria de $X \hookrightarrow \ell_{\infty}$. Seria bom ter um mergulho num espaço mais pequeno do que ℓ_{∞} , umo que fosse separável.

Teorema 13.1 (Banach-Mazur). Seja X um espaço de Banach separável. Então existe uma isometria (não necesariamente surjetiva)

$$X \to C(\Delta)$$

onde $\Delta = \{0,1\}^{\mathbb{N}}$.

Observação 13.1. Relembre. Seja K um espaço métrico compacto. Então existe uma sobrejeção contínua $\Delta \to K$.

Demostração. Seja X separável. Por Banach-Alaouglu, $(B_{X^*}, \sigma(X^*, X))$ é compacto. Defina para $x \in X$, $\varphi x \in C(B_{X^*})$ dada por $(\varphi x)f = fx$. Então φ é uma isometria linear.

Como X é separável, $(B_{X^*}, \sigma(X^*, X))$ é metrizável e podemos pegar $\alpha: \Delta \to B_{X^*}$ uma sobrejeção contínua. Defina

$$\psi: C(B_{X^*}) \to C(\Delta)$$

como

$$(\psi \xi)x = \xi(\alpha x) \quad \forall \xi \in C(B_{X^*}) \ \forall x \in \Delta.$$

Então, ψ é uma isometria e em conclução, $\psi \circ \varphi : X \to C(\Delta)$ é a isometria procurada. \square

Exercício. Se X é um espaço metrico compacto, C(X) é separável.

Demostração. Como X é compacto, ele é separável. Seja $(x_n)\subset X$ denso. Defina para cada $n\in\mathbb{N}$ a função $f_n(x)=d(x,x_n)$. Ela é contínua, pois

$$|d(x,x_n) - d(x_n,y)| < d(x,y)$$

pela desigualdade triangular inversa. Ainda, o conjunto de funções geradas por (f_n) e identidade em X e um álgebra que separa pontos pela densidade de (x_n) e contém as constantes. Logo, pelo teorema de Weierstrass, (f_n) é denso em C(K).

14 Teorema de representação

Teorema 14.1. Sejam K compacto e Housdorff e $F \in C(K)^*$. Então existe uma medida de Borel com signal de variação limitada μ em K tal que

$$Ff = \int_{K} f d\mu$$

e

$$||F|| = |\mu|(K).$$

Daqui em diante (X,d) um espaço métrico compacto. Uma σ -álgebra de Borel sobre X é a menor σ -álgebra que contém todos os abertos de X. Uma medida definida sobre (X,\mathcal{B}) é chamada medida Boreliana. Diremos que uma medida de Borel μ é regular se

$$\mu(B) = \sup_{\substack{K \subseteq B \\ \text{compacto}}} \{\mu(K)\}.$$

Uma medida é dita ter signal se asume valores negativos. Definimos a variação total de μ como $|\mu|:\mathcal{B}\to[-\infty,\infty]$ dada por

$$|\mu|(B) = \sup \left\{ \sum_{i=1}^{\infty} |\mu(B_n)| : \{B_n\}_{n=1}^{\infty} \subseteq \mathcal{B} \text{ que particionan a } B \right\}.$$

Sabemos que $|\mu|$ é uma medida positiva finita em (X,\mathcal{B}) . Definimos o seguinte conjunto:

$$M(X) := \{ \mu : \mu \in Boreliana, finita e com signal \}.$$

Definimos $\| \|_M : M(X) \to \mathbb{R}$ dada por

$$\|\mu\|_M = |\mu|(X).$$

Note que $|\mu(B)| \leq |\mu|(B)$.

Exercício. $(M, || ||_M)$ é Banach.

Exemplo. Considere C(X), $\mu \in M(X)$. Defina

$$\varphi: C(X) \to \mathbb{R}$$

$$f \mapsto \int_X f(x)\mu(X)$$

Então φ é linear e

$$|\varphi f| = \left| \int_X f(x) d\mu(x) \right| \leq \int |f(x)| d|\mu|(x) \leq \|f\|_\infty \int_X d|\mu|(x) = \|f\|_\infty |\mu|(X) = \|f\|_\infty \|\mu\|_M.$$

Issto é

$$|\varphi f| \le ||f||_{\infty} ||\mu||_{M}.$$

Daí $\|\varphi\| \leq \|\mu\|_M$. De fato, escolhendo f adequada, obtemos que $\|\varphi\| = \|\mu\|_M$.

Definição. Seja $\varphi \in C(X)^*$. Dizemos que φ é *positivo* se $\varphi f \geq 0$ sempre que $f(x) \geq 0 \ \forall x \in X$.

Observe que

$$|f(x)| \le ||f||_{\infty},$$

assim definimos

$$g_{\pm}(x) = ||f||_{\infty} \pm f(x) \in C(X)$$

de forma que

$$g_{\pm}(x) \geq 0.$$

Assim, φg_{\pm} . Daí

$$||f||_{\infty}\varphi(1) \pm \varphi f \geq .$$

Ou seja

$$|\varphi f| \le \varphi(1) ||f||_{\infty} \quad \forall f \in C(X).$$

Além disso, $||f||_* = \varphi(1)$.

Teorema 14.2. Sejam (X,d) um espaço métrico compacto e $\varphi \in C(X)^*$. Se φ é positivo, então existe uma medida $\mu \in M(X)$ positiva tal que

$$\varphi f = \int_X f(x) d\mu(x) \quad \forall f \in C(X).$$

Demostração. Fixe $\varphi \in C(X)^*$. Seja $A \subseteq X$ aberto. Deja a função

$$r_{\varphi}(A) = \sup \{ \varphi f : \operatorname{supp} f \subseteq A, 0 \le f(x) \le 1 \}.$$

Com isso defina a aplicação

$$\mu_*: \mathcal{P}(X) \to [-\infty, \infty]$$

dada por

$$\mu_*(B) = \inf\{r_{\varphi}(A) : B \subseteq A \text{ e } A \text{ é aberto}\}.$$

Vamos mostrar que μ_* é uma medida exterior em X, ie.,

- 1. $\mu_*(\emptyset) = 0$.
- 2. $\mu_*(B_1) \leq \mu_*(B_2)$ sempre que $B_1 \subseteq B_2$.
- 3. Se $(B_n)_{n=1}^{\infty} \subseteq X$, então

$$\mu_* \left(\bigcup_{n=1}^{\infty} B_n \right) \le \sum_{n=1}^{\infty} \mu_*(B_n).$$

1. Já está. Para 2. considere $B_1 \subseteq B_2$. Para A aberto tal que $B_2 \subseteq A$ temos

$$B_1 \subseteq B_2 \subseteq A$$
,

logo

$$\{r_{\varphi}(A): B \subseteq A \text{ aberto}\} \subseteq \{r_{\varphi}(A): B_1 \subseteq A, \text{ aberto}\}.$$

Assim, $\mu_*(B_1) \le \mu_*(B_2)$.

Para 3. considere $(B_n)_{n=1}^\infty$ uma coleção de abertos e

$$B = \bigcup_{n=1}^{\infty} B_n.$$

Considere $f \in C(X)$ tal que

supp
$$f \subseteq B$$
, $e \quad 0 \le f(x) \le 1$.

Como X é compacto e supp f é fechado (por definição), temos que supp f é compacto. Como supp $f\subseteq B$, a menos de reordenação existem B_1,\ldots,B_n tais que

$$\operatorname{supp} f \subseteq \bigcup_{n=1}^{N} B_n.$$

Considere $\{\eta_n\}_{n=1}^N$ uma partição da unidade para $\{B_1,\ldots,B_N\}$. Issto é, as η_i são funções contínuas em supp f tais que

- 1. $0 < \eta_i(x) < 1 \quad \forall i$.
- 2. supp $\eta_i \subseteq B_i \quad \forall i$.

3.
$$\sum_{i=1}^{N} \eta_i(x) = 1 \quad \forall x \in \text{supp } f.$$

Com isso,

$$\varphi f = \varphi(f * 1) = \varphi\left(f \sum_{i=1}^{N} \eta_i(x)\right) = \varphi\left(f \eta_i(x)\right) = \sum_{i=1}^{N} \varphi(f \eta_i) \le \sum_{i=1}^{N} r_{\varphi}(B_1) \le \sum_{i=1}^{\infty} r_{\varphi}(B_i).$$

Pois, $\operatorname{supp}(f\eta_i) \subseteq B_i$ e $0 \le f\eta_i \le 1$ para toda $i = 1, \dots, N$. Logo,

$$r_{\varphi}(B) \leq \sum_{i=1}^{N} r_{\varphi}(B_i)$$

$$\implies r_{\varphi}\left(\bigcup_{i} B_i\right) \leq \sum_{i} r_{\varphi}(B_i).$$

Como cada B_i é aberto,

$$\mu_* \left(\bigcup_i B_i \right) \le \sum_i \mu_*(B_i).$$

Agora seja $\{x_k\}_{k=1}^{\infty}\subseteq X$ uma coleção de conjuntos. Para cada $k\in\mathbb{N}$ escolha B_k aberto tal que

$$X_k \subseteq B_k$$
 e que $\mu_*(B_k) \le \mu_*(X_k) + \varepsilon 2^{-k}$

que é possivel pela definição dada por um infimo.

Como a $\bigcup_{k=1}^{\infty} X_k \subseteq \bigcup_{k=1}^{\infty} B_k$, pela propriedade 2., temos que

$$\mu_* \left(\bigcup_k X_k \right) \le \mu_* \left(\bigcup_k B_k \right) \le \sum_k \mu_* (B_k) \le \sum_k (\mu_*(x)) + \varepsilon 2^{-k} = \sum_k \mu_* (x_k) + \varepsilon$$

para todo $\varepsilon > 0$.

Logo, μ_* ($\bigcup_{k=1}^{\infty} X_k$) $\leq \sum_{k=1}^{\infty} \mu_*(X_k)$. Portanto, μ_* é uma medida exterior. Vamos probar que μ_* é métrica, ou seja, se $X_1, X_2 \subseteq X$ com $d(X_1, X_2) > 0$, então

$$\mu_*(X_1 \cup X_2) = \mu_*(X_1) + \mu_*(X_2).$$

De fato, sejam $X_1, X_2 \subseteq X$ com $d(X_1, X_2) > 0$. Como X é métrico, existem abertos B_1, B_2 tais que $B_1 \cap B_2 = \emptyset$ e $X_i \subseteq B_i$ para i=1,2. Daí, considerando B um aberto com $X_1 \cup X_2 \subseteq B$, então

$$(B \cap B_1) \sqcup (B \cap B_2) \subseteq B$$
.

Desde que $X_i \subseteq B \cap B_i$ para i = 1, 2, temos que

$$\mu_*(B) \ge \mu_*((B \cap B_1) \sqcup (B \cap B_2))$$

= $\mu_*(B \cap B_1) + \mu_*(B \cap B_2)$
 $\ge \mu_*(X_1) + \mu_*(X_2).$

Logo,

$$\mu_*(B) \ge \mu_*(X_1) + \mu_*(X_2) \quad \forall aberto \ B \supseteq X_1 \cup X_2.$$

assim,

$$\mu_*(X_1 \cup X_2) \ge \mu_*(X_1) + \mu_*(X_2).$$

Como μ_* é exterior,

$$\mu_*(X_1 \cup C_2) \le \mu_*(X_1) + \mu_*(X_2).$$

Portanto,

$$\mu_*(X_1 \cup X_2) = \mu_*(X_1) + \mu_*(X_2).$$

Em conclução, μ_* é uma medida métrica exterior em X. Desse modo, existe uma medida μ em (X,B) finita, tal que $\mu_*|_B=\mu$. Como $\mu(X)=\mu_*(X)=\|\varphi\|_*=\varphi(1)$. Nos resta mostrar que μ representa φ . Considere $f\in C(X)$. Desde que $f(x)=f^+(x)-f^-(x)$, onde f^+ e f^- são as partes positivas e negativas de f. Assuma sem perda de generalidade que $0\le f(x)\le 1$ (usando ainda que f é limitada por ser definida num compacto).

Vamos descompor f da seguinte maneira. Fixe $N \in \mathbb{N}$ e denote $B_0 = X$. Para cada $n \ge 1$, seja

$$B_n = \left\{ x \in X : f(x) > \frac{n-1}{n} \right\}.$$

Temos $B_{n+1} \subseteq B_n$ e $B_{N+1} = \emptyset$. Defina

$$f_N(x) = \begin{cases} \frac{1}{N}, & x \in B_{n+1} \\ f(x) - \frac{n-1}{N}, & x \in B_n \backslash B_{n+1} \\ 0, & x \in X \backslash B_n \end{cases}$$

para cada $n \in \mathbb{N}$ e $f_n \in C(X)$, vale

$$f_n(x) = \sum_{n=1}^{N} f_n(x).$$

Pela definição de f_n , temos

- $N f_n(x) = 1 \text{ em } B_{n+1}$.
- $\operatorname{supp}(Nf_n) \subset \overline{B_n} \subseteq B_{n+1}$.
- $0 \le N f_n(x) \le 1$.

Como cada B_n é aberto,

$$\mu(B_{n+1}) \le \varphi(Nf_n) \le \mu(B_{n-1})$$

Por linearidade,

$$\frac{1}{N} \sum_{n=1}^{N} \mu(B_{n+1}) \le \frac{1}{N} \sum_{n=1}^{N} \varphi(N \cdot f_n) \le \frac{1}{N} \sum_{n=1}^{N} \mu(B_{n-1})$$
 (2)

É possível mostrar que

$$\mu(B_{n+1}) \le \int_X N f_n(x) d\mu(x) \le \mu(B_n).$$

Basta observar que

$$\int_X N f_n(x) d\mu(x) = N \int_{B_n \setminus B_{n+1}} f(x) d\mu(x) - (n-1)\mu(B_n \setminus B_{n+1}) + \mu(B_{n+1}).$$

Daí,

$$\frac{1}{N} \sum_{n=1}^{N} \mu(B_{n+1}) \le \frac{1}{N} \sum_{n=1}^{N} \int_{X} N f_n(x) d\mu(x) \le \frac{1}{N} \sum_{n=1}^{N} \mu(B_n)$$
 (3)

Juntando eqs. (2) and (3) podemos obter

$$\left| \varphi f \int_{x} f(x) d\mu(x) \right| \le \frac{2\mu(x)}{N} \quad \forall N > 0.$$

Tomando $N \to \infty$,

$$\varphi = \int_{X} f(x) d\mu(x).$$

Para unicidade, considere $\mu' \in M(X)$ positiva e finita tal que

$$\varphi f = \int_X f(x)d\mu(x) \quad \forall f \in C(X).$$

Como μ, μ' são Borelianas, basta verificar que

$$\mu = \mu'$$
 em abertos.

Considere B aberto e $f \in C(X)$ com $0 \le f(x) \le 1$ e supp $f \subseteq B$. Então

$$\varphi f = \int_X f(x)d\mu'(x) = \int_B f(x)d\mu'(x) \le \int_B d\mu'(x) = \mu'(B).$$

Tomando o supremo sobre f,

$$\mu(B) = \mu_*(B) = r_{\varphi}(B) \le \mu'(B).$$

Recíprocamente, como μ é Boreliana e finita, μ é regular. Assim, dado $\varepsilon>0$, existe $K\subseteq B$ compacto tal que

$$\mu'(B) = \mu'(K) + \varepsilon$$

por definição de supremo.

Como $K \int (X \backslash B) = \emptyset$, considere $f \in C(X)$, com $0 \le f(x) \le 1$, supp $f \subseteq B$ e $f(x) = 1 \ \forall x \in K$. Daí

$$\mu'(B) \le \mu'(K) + \varepsilon$$

$$= \int_X 1d\mu'(x) + \varepsilon$$

$$= \int_X f(x)d\mu!(x) + \varepsilon$$

$$\le \int_X f(x)d\mu'(x) + \varepsilon$$

$$= \varphi f + \varepsilon$$

$$\le \mu(B) + \varepsilon \quad \forall \varepsilon > 0.$$

Logo, $\mu'(B) \leq \mu(B)$.

Proposição 14.3. Sejam (X,d) espaço metrico compacto e $\varphi \in C(X)^*$. Então existem funcionais $\varphi^* \in C(X)^*$ positivos tais que

$$\varphi = \varphi^+ - \varphi^-$$

além disso,

$$\|\varphi\|_* = \varphi^+(1) + \varphi^-(1).$$

Teorema 14.4. Seja (X,d) espaço métrico compacto e $\varphi \in C(X)^*$. Então existe $\mu \in M(X)$ única tal que

$$\varphi f = \int_X f(x)\mu(x) \quad \forall f \in C(X).$$

Além disso,

$$\|\varphi\|_* = \|\mu\|_M \qquad (M(X) \cong C(X)^*).$$

Demostração. Seja $\varphi \in C(X)^*$. Pela proposição anterior, existem funcionais contínuos positivos $\varphi^\pm \in C(X)^*$ tais que $\varphi = \varphi^+ - \varphi^-$. Pelo teorema anterior existem medidas positivas $\mu_\pm \in M(X)$ tais que

$$\varphi^{\pm}f = \int_X f(x)\mu_{\pm}(x).$$

Defina

$$\mu = \mu_{+} - \mu_{-}$$
.

Então $\mu \in M(X)$ é tal que

$$\varphi f = \varphi^+ f - \varphi^- f = \int_X f(x) d\mu(x) - \int_X f(x) d\mu(x) = \int_X f(x) d(\mu_+ - \mu_-)(x) = \int_X f(x) d\mu(x).$$

Além disso,

$$|\varphi f| = \left| \int_X f(x) d\mu(x) \right|$$

$$\leq \int_X |f(x)| d|\mu|(x)$$

$$\leq ||f||_{\infty} |\mu|(X)$$

Assim,

$$\|\varphi\| \le \|\mu|(X) = \|\mu\|.$$

Além disso,

$$|\mu|(X) \le |\mu_{+}|(X) + |\mu_{-}|(X)$$

$$= \varphi^{+}(1) + \varphi^{-}(1)$$

$$= ||\varphi||_{*}$$

$$\implies ||\varphi||_{*} = |\mu|(X) = ||\mu||_{M}.$$

Para provar uncidade, seja $\mu' \in M(X)$ tal que

$$\int_X f(x)d\mu(X) = \varphi f = \int_X f(x)d\mu'(x).$$

Definindo

$$\nu = \mu - \mu'$$

obtemos

$$\int_{X} f(x)d\nu(x) = 0. \tag{4}$$

Definindo

$$\nu = \frac{1}{2}(|\nu| + \nu) - \frac{1}{2}(|\nu| - \nu) = \nu^{+} - \nu^{-},$$

são medidas positivas. Definindo $\psi^{\pm} \in C(X)^*$,

$$\psi^{\pm} f = \int_X f(x) d\nu^{\pm}(x).$$

Por eq. (4) temos que

$$\psi^+ f = \psi^- f, \quad \forall f \in C(X).$$

Pela uncidade da medida $\nu^+ = \nu^-$. Então,

$$\nu = \nu^+ - \nu^- = 0 \implies \mu = \mu'.$$

15 Teorema de convexidade de Lyapunov

Definição. Uma medida com sinal $\mu: \mathcal{A} \to \mathbb{R}$ é *não atômica* se para todo $A \in \mathcal{A}$ com $|\mu|(A) > 0$ existe $B \in \mathcal{A}$ com $B \subseteq A$ e $|\mu|(B) < |\mu|(A)$.

Teorema 15.1. Sejam $\mu_1, \ldots, \mu_n : \mathcal{A} \to \mathbb{R}$ medidas com sinal não atômicas. Então a imagem de $\mu : \mathcal{A} \to \mathbb{R}^n$ dada por

$$\mu(A) = (\mu_1(A), \dots, \mu_n(A))$$

é compacta e convexa. (Issto é, uma medida vetorial de dimensão finita não atômica tem imagem compacta e convexa.)

Observação 15.1. Relembre. Seja (X, \mathcal{A}, μ) um espaço de medida σ -finito. Considere $L_1(\mu)$ e $L_{\infty}(\mu)$. Onde $f \sim g \iff \mu(\{x \in X : f(x) \neq g(x)\}) = 0$. Temos que

$$f \in L_1$$
 se $||f||_1 = \int |f| d\mu < \infty$.

A norma em L_{∞} é o *supremo essencial*,

$$||f||_{\infty} = \inf\{t > 0 : \mu(\{x \in X : |f(x)| > t\}) = 0\}.$$

O dual de $L_1(\mu)$ é $L_\infty(\mu)$ pois asociamos a $f \in L_\infty(\mu)$ e $g \in L_1(\mu)$ o numero $f(g) = \int fgd\mu$. O dual de $L_\infty(\mu)$ são as medidas com sinal *finitamente aditivas* (na verdade não são medidas pois não são numeravelmente adivitas), *absolutamente contínuas* em relação a μ com a norma da variação limitada.

Existe uma correspondença entre funções contínuas $\mathbb{N} \to \mathbb{R}$ limitadas com funções contínuas na compactificação de Stone-Čech dos naturais $\beta\mathbb{N} \to \mathbb{R}$. Assim $\ell_\infty \approx C(\beta\mathbb{N})$. Assim, o seu dual pode ser interpretado mediante o teorema de representação da seção anterior.

Demostração. Defina

$$\nu = |\mu_1| + \ldots + |\mu_n|.$$

e

$$\Lambda: L_{\infty}(0) \to \mathbb{R}^n$$

$$f \mapsto \left(\int f d\mu_1, \dots, \int f \mu_n \right),$$

que é um operador legal entre espaços de Banach.

Afirmação. Λ é fracamente* contínua.

Lembre que

Teorema 15.2 (Radon-Nikodym). Como cada μ_i é absolutamente contínua em relação a ν , existem $f_i \in L_1(\nu)$ tais que

$$\int f d\mu_i = \int f f_i d\nu.$$

A afirmação segue de que ao tomar funcionais e evaluar em elementos de uma rede e simplesmente integrar, assim aplicamos o teorema de Radon-Nikodym.

Para aplicar Krein-Milman, considere o conjunto convexo e fracamente* fechado:

$$K = \{ f \in L_{\infty}(\nu) : 0 \le f \le 1 \}.$$

Exercício. De fato, K e fracamente* fechado. (Pegue uma rede convergente. Ao aplicar um funcional (integrar), se esse funcional não converge vai obter um conjunto de medida positiva onde os valores de f están por arriba de 1, assim comparando as integrais, vai obter uma contradição).

Por B-A, K é convexo e fracamente* compacto. Assim, $\Lambda(K)$ é convexo e compacto.

Afirmação. A imagem da nossa medida é $\Lambda(K)$.

 (\subseteq) . Fixe $A \in \mathcal{A}$. Então,

$$\mu(A) = (\mu_1(A), \dots, \mu_n(A))$$
$$= \left(\int \chi_A d\mu_1, \dots, \int \chi_A d\mu_n \right)$$
$$= \Lambda(\chi_A)$$

e $\chi_A \in K$.

 (\supseteq) . Fixe $\xi \in \Lambda(K)$ e considere

$$K_{\xi} = \Lambda^{-1}(\{\xi\}) \cap K.$$

Como K_{ξ} é convexo e fraco*-compacto, existem pontos extremos, ie. $E(K_{\xi}) \neq \varnothing$.

Seja $f \in E(K_{\xi})$ e vamos mostrar que $f = \chi_A$ para algum $A \in \mathcal{A}$. Caso contrário, existe $A \in \mathcal{A}$ com $\nu(A) > 0$ e r > 0 tal que

$$r \le f(x) \le 1 - r \quad \forall x \in A.$$

Vamos mostrar que é possível "perturbar" f em A. Defina

$$X = L_{\infty}(A, \mu) \subseteq L_{\infty}(\mu).$$

Como ν é não atômica (pois á uma soma de medidas não atômicas), temos que $\dim(X) = \infty$. Como $\operatorname{codim}(\ker \Lambda) < \infty$, temos que $X \cap \ker \Lambda \neq \emptyset$. Pegue $g \in X \cap \ker \Lambda \setminus \{0\}$ com

$$||g||_{\infty} < r$$
.

Logo $f \pm g \in K_{\mathcal{E}} \setminus \{f\}$. Como

$$f = \frac{1}{2}(f+g) + \frac{1}{2}(f-g),$$

f não está em $E(K_{\xi})$.

Teorema 15.3 (Markov-Kakutani). Seja X um espaço de Banach, $K \subseteq X$ convexo e (fracamente) compacto. Considere $\mathcal T$ uma família de mapas (w) contínuos $K \to K$ tais que

1. $T \in \mathcal{T}$ é *afim*, ie.

$$T(\lambda x + (1 - \lambda)y) = \lambda Tx + (1 - \lambda)Ty \quad \forall x, y \in K \ \forall \lambda \in [0, 1].$$

 $2. \ TS = ST \quad \forall S, T \in \mathcal{T}.$

Então existe $x \in K$ tal que Tx = x para toda $T \in \mathcal{T}$.

Demostração. Seja $T \in \mathcal{T}$. Vamos mostrar que T tem um ponto fixo. Defina

$$A = \{(x, x) : x \in K\}$$
$$B = \{(x, Tx) : x \in K\}$$

Note que T tem um ponto fixo se e só se $A\cap B\neq\varnothing$. Suponha $A\cap B=\varnothing$. Considere $X\times X$ com a norma

$$||(x,y)|| = ||x|| + ||y||.$$

Como T é afim, B é convexo. A também, assim, como T é contínua, A e B são compactos. Por Hahn-Banach, existe $f \in (X \times X)^*$ e $\alpha < \beta \in \mathbb{R}$ tais que

$$f(x,x) < \alpha < \beta < f(x,Tx) \quad \forall x \in K.$$

Logo,

$$f(x, Tx) - f(x, x) > \beta - \alpha \quad \forall x \in K.$$

Que pode ser escrito como

$$f(0,Tx) - f(0,x) > \beta - \alpha \quad \forall x \in K.$$

Logo, para toda n e para toda $x \in K$, temos

$$f(0,T^n(x)) - f(0,T^{n-1}(x)) > \beta - \alpha.$$

Usando uma soma telescôpica, obtemos que

$$f(0, T^n x) - f(0, x) > n(\beta - \alpha)$$

ou seja, que f não pode ser limitado em K. Mais f é contínuo em K compacto.

Para o caso de muitos funcionais, consideramos para todo $T \in \mathcal{T}$

$$K_T = \{ x \in K : Tx = x \}.$$

que são compactos e não vazíos. Basta mostrar que a interseção deles e não vazía. Por compacidade, basta mostrar que cualquer quantidade finita deles tem interseção não vazía, ie.

$$\bigcap_{T \in S} K_T \neq \varnothing \quad \forall S \subseteq \mathcal{T} \text{ finito}.$$

Pegue $S = \{T_1, \dots, T_n\}$. Fazemos assim:

Aplica o teorema a $T_1: K \to K$.

Aplica o teorema a $T_2: K_T \to K_T$ $T_1T_2 = T_2T_1$.

$$\emptyset = ((K_{T_1})) \subseteq \bigcap K_T.$$

16 Grupos amenos

Definição. Uma *média* em um conjunto X é um elemento $f \in \ell_{\infty}(X)^*$ tal que f é *positivo* $(F = (F_x)_{x \in X} \in \ell_{\infty}(X) \text{ com } F_x \geq 0 \ \forall x \implies f(F) \geq 0) \text{ e } ||f|| = 1.$

Exercício. f é simplesmente uma medida finitamente aditiva de probablidade em X. μ medida de probabilidade de X, $\mu(F) = \int F d\mu$.

Definição.

1. Se G é um grupo, G age em $\ell_{\infty}(G)$ com

$$g \cdot a(h) = a(g^{-1}h),$$

 $\forall a \in \ell_{\infty}(G) \ \forall h \in G.$

2. Uma média $f \in \ell_{\infty}(G)^*$ é invariante se

$$f(a) = f(g \cdot a) \quad \forall a \in \ell_{\infty}(G) \ \forall g \in G.$$

Issto é,

$$f(\chi_A) = f(g(\chi_A)) = f(\chi_{gA}).$$

3. Um grupo G é *ameno* se existe uma média invariante f em G.

Exemplos.

- 1. Grupos finitos com a medida de contágem promediada.
- 2. \mathbb{F}_n não é ameno para n > 1.

Afirmação. \mathbb{F}_2 não é ameno.

Suponha $\mathbb{F}_2 = \langle a, b \rangle$. Para cada $c \in \{a, b, a^{-1}, b^{-1}\}$, $\mathbb{F}_2^c = \{x \in \mathbb{F}_2 : x = c \dots (\text{começa com } c)\}$. Note que

$$a^{-1}\mathbb{F}_2^a = \mathbb{F}_2^a \sqcup \mathbb{F}_2^b \sqcup \mathbb{F}_2^{b^{-1}} \sqcup \{e\}.$$

Logo,

$$\mu(\mathbb{F}_2^b \sqcup \mathbb{F}_2^{b^{-1}} \sqcup \{e\}) = 0.$$

de forma análoga

$$\mu(\mathbb{F}_2^a\sqcup\mathbb{F}_2^{a^{-1}})=0,$$

mais então $\mu(\mathbb{F}_2) = 0$, que não é possível.

3. \mathbb{Z} é ameno.

Teorema 16.1. Grupos abelianos são amenos.

Demostração. Seja $M(G) \subseteq \ell_{\infty}(G)^*$ o espaço dos mas médias.

Exercício. M(G) é convexo e fracamente* compacto.

Para aplicar o teorema de Markov-Kakutani precisamos uma família de operadores, cujo ponto fixo será a média invariante. Defina para cada $g \in G$, o operador $T_g : G \to G$ como

$$T_g f = f(g \cdot -),$$

Exercício. T_g está bem definido, é fraco* contínuo, afim e $(T_g)_{g \in G}$ comutam.

Por Markov-Kakutani, existe uma média $f \in M(G)$ tal que

$$T_a f = f \quad \forall g \in G.$$

Exercício. f é invariante.

17 Espaços de Hilbert

Definição. Seja X um espaço vetorial sobre $\mathbb{K} \in \{\mathbb{R}, \mathbb{C}\}$. Uma função

$$\langle \cdot, \cdot \rangle : X \times X \to \mathbb{K}$$

é um produto interno se

- 1. $\langle x, x \rangle \ge 0 \ \forall x \in X$.
- 2. $\langle x, x \rangle = 0 \iff x = 0$.
- 3. $\langle x, y \rangle = \overline{\langle x, y \rangle}$
- 4. $\langle \alpha x + y, z \rangle = \alpha \langle x, z \rangle + \langle y, z \rangle \ \forall \alpha \in \mathbb{K} \ \forall x, y, z \in \mathbb{K}$.

Exemplos.

- 1. \mathbb{R}^n . Se $(x_i)_{i=1}^n, y = (y_i)_{i=1}^n \in \mathbb{R}^n$ com o produto interno $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$.
- 2. \mathbb{C}^n . Se $(x_i)_{i=1}^n, y=(y_i)_{i=1}^n\in\mathbb{C}^n$ com o produto interno $\langle x,y\rangle=\sum_{i=1}^n x_i\overline{y_i}$.
- 3. ℓ_2 com $\langle x,y \rangle = \sum_{i=1}^\infty x_i \overline{y_i}$ que é finito por Hölder.
- 4. $C([0,1]) \text{ com } \langle f, g \rangle = \int_0^1 f \bar{g}.$
- 5. $L_2 \operatorname{com} \int f\bar{g}$.

Definição.

- 1. Em um espaço $(X, \langle \cdot, \cdot \rangle)$ um espaço com produto interno, dois elementos $x, y \in X$ são *ortogonais* se $\langle x, y \rangle = 0$ e escrevemos $x \perp y$.
- 2. Definimos $\| \ \| : X \to \mathbb{K}$ como

$$||x|| = \langle x, x \rangle^{1/2}.$$

Proposição 17.1 (Pitágoras). Se $x \perp y$, $||x + y||^2 = ||x||^2 + ||y||^2$.

Proposição 17.2 (Desigualdade de Cauchy-Schwarz). Para todos $x, y \in X$, temos

$$|\langle x, y \rangle| \le ||x|| ||y||.$$

Mais ainda, a igualdade acontece se e só se x e y forem linearmente dependentes.

Demostração. Consideramos a projeção de x em y. Supondo que $y \neq 0$, temos que

$$y \perp \left(x - \frac{\langle x, y \rangle}{\langle y, y \rangle}\right) y.$$

Logo,

$$||x||^2 = \left| \left| x - \frac{\langle x, y \rangle}{\langle y, y \rangle} + \frac{\langle x, y \rangle}{\langle y, y \rangle} \right|^2$$

$$= \left| \left| x - \frac{\langle x, y \rangle}{\langle y, y \rangle} y \right|^2 + \frac{|\langle x, y \rangle|^2}{||y||^2} ||y||^2$$

$$\geq \frac{|\langle x, y \rangle|^2}{||y||^2}.$$

Corolário 17.3. $||x|| = \langle x, x \rangle^{1/2}$ é uma norma.

Observação 17.1.

- 1. $\langle \cdot, \cdot \rangle : X \times X \to \mathbb{K}$ é contínua.
- 2. Se $(X,\langle\cdot,\cdot\rangle_X)$ e $(Y,\langle\cdot,\cdot\rangle_Y)$ foram espaços de produto interno, $X\times Y$ também e munido de

$$\langle (x,y), (x',y') \rangle_{X \times Y} = \langle x, x \rangle_X + \langle y, x \rangle_Y.$$

E de fato, a norma induzida por esse produto interno é $||(x,y)|| = (||x||^2 + ||y||^2)^{1/2}$.

Definição. Um espaço de prouto interno $(X, \langle \cdot, \cdot \rangle)$ é um espaço de Hilbert se $(X, \| \|_{\langle \cdot, \cdot \rangle})$ for Banach.

Exercício 17.0.1. Formule e prove o teorema de completação adequado para espaços de produto interno.

Pergunta. Quando um espaço normado é um espaço de produto interno disforçado? Issto é, quando existe um produto interno $\langle \cdot, \cdot \rangle$ em X tal que $\| \cdot \| = \| \cdot \|_{\langle \cdot, \cdot, \rangle}$?

Teorema 17.4 (Lei do paralelogramo). Uma norma $\| \|$ em um espaço vetorial X é proveniente de um produto interno se e só se

$$||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2 \quad \forall x, y \in X.$$

 $Demostração. \ (\Longrightarrow).$ Escreva.

 (\iff) . Se $\mathbb{K} = \mathbb{R}$, defina

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 + \|x - y\|^2).$$

Se $\mathbb{K} = \mathbb{C}$, defina

$$\langle x, y \rangle = \frac{1}{4} (\|x + y\|^2 - \|x - y\|^2 + i\|x + iy\|^2 - i\|x - iy\|^2).$$

Definição. Seja $(X, \langle \cdot, \cdot \rangle)$ espaço de produto interno.

- 1. Um subconjunto $S \subseteq X$ é *ortogonal* se para todos $x, y \in S$ distintos, $x \perp y$.
- 2. Um subconjunto $S \subseteq X$ é *ortonormal* se for ortogonal e $S \subseteq \partial B_X$.

Proposição 17.5. Se $S\subseteq X$ é ortogonal (ortonormal), então existe $S'\subseteq X$ ortogonal (ortonormal) maximal tal que $S\subseteq S'$.

Demostração. Zorn:

$$\mathbb{P} = \{ S' \subseteq X : S' \text{ \'e ortogonal e } S \subseteq S' \}.$$

Exercício. Seja $S \subseteq X$ ortogonal. S é maximal se e só se para todo $x \in X$ vale

$$\forall y \in S, x \perp y \implies x = 0.$$

17.1 Desigualdade de Bessel

Provaremos que se $(X, \langle \cdot, \cdot \rangle)$ é um espaço de produto interno e $(x_i)_{i \in I} \subseteq X$ um conjunto ortogonal, para todo $x \in X$,

$$\sum_{i \in I} |\langle x, x_i \rangle|^2 \le ||x||^2.$$

Definição. Seja $(X, \| \ \|)$ um espaço normado, $(x_i)_{i \in I} \subseteq X$ e $x \in X$. Dizemos que $(x_i)_{i \in I}$ é $somável\ a\ x$ e escrevemos $\sum_{i \in I} x_i = x$ se $\forall \varepsilon > 0$ existe $I_0 \subseteq I$ finito tal que para todo $J \subseteq I$ finito com $I_0 \subseteq J$ temos

$$\left\| x - \sum_{i \in I} x_i \right\| < \varepsilon.$$

Ou seja, se a rede

$$\left(\sum_{i\in J} x_i\right)_{J\in\mathcal{F}}$$

com $\mathcal{F} = \{J \subseteq I : I \text{ finito}\}\$ converge.

Observação 17.2. No caso dos numeros reais podemos definir

$$x = \sup_{\substack{F \subseteq I \\ F \text{ finito}}} \sum_{i \in F} x_i.$$

Exercício.

1. Se $\sum_{i \in I} x_i = x$ e $\sum_{i \in I} y_i = y$ então

$$\sum_{i \in I} \alpha x_i + y_i = \alpha x + y.$$

2. Seja $(x_n)_n \subseteq X$ uma sequência, então

$$\sum_{n=1}^{\infty} x_n \neq \sum_{n \in \mathbb{N}} x_n.$$

Considere $x_n = \frac{(-1)^n}{n}$. Então $\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$ existe mais $\sum_{n \in \mathbb{N}} \frac{(-1)^n}{n}$ não existe. Considere $I_k = \{2j: j \leq k\}$: resulta que $\lim_{k \to \infty} \sum_{i \in I_k} \frac{(-1)^n}{n} = \sum_{i=1}^{\infty} \frac{1}{2k} = \infty$.

- 3. Se $\sum_{n\in\mathbb{N}} x_n$ existe, então $\sum_{n=1}^{\infty} x_n = \sum_{n\in\mathbb{N}} x_n$.
- 4. O conjunto

$$\{1, \sqrt{2}\cos n\pi x, \sqrt{2}\sin n\pi x\}_{n\in\mathbb{N}}$$

é um *sistema ortonormal maximal* (um conjunto ortonormal maximal) em $L^2(0,1)$.

Proposição 17.6. Se $(x_i)_{i \in I}$ é somável, então

$$|\{i \in I : x_i \neq 0\}| \leq \aleph_0.$$

Demostração. Note que

$${i \in I : x_i \neq 0} = \bigcup_{i=1}^{\infty} {i \in I : ||x_n|| > 1/n}.$$

Vamos mostrar que para todo $\varepsilon > 0$,

$$|\{i \in I : ||x_i|| > \varepsilon\}| < \infty.$$

Como $(x_i)_{i\in I}$ é somável, pegue $x\in X$ com $x=\sum_{i\in I}x_i$. Pegue $I_0\subseteq I$ finito tal que para todo $I_1\subseteq I_0$ finito com $I_1\supseteq I_0$,

$$\left\| x - \sum_{i \in I_1} x_i \right\| < \varepsilon/2.$$

Logo, se $i_0 \notin I_0$,

$$||x_{i_0}|| \le ||x - \sum_{i \in I_0 \cup \{i_0\}} x_i|| + ||x - \sum_{i \in I_0} x_i|| < \varepsilon.$$

Logo, $\{i \in I : ||x_i|| > \varepsilon\} \subseteq I_0$.

Teorema 17.7 (Bessel). Sejam X um espaço de Hilbert e $(x_i)_{i \in I} \subseteq X$ um subconjunto ortonormal.

$$\sum_{i \in I} |\langle x, x_i \rangle|^2 \le ||x||^2 \quad \forall x \in X.$$

Demostração. Exercício. É suficiente mostrar que

$$\sum_{i \in I} |\langle x, x_i \rangle|^2 \le \|x\|^2 \quad \forall J \subseteq I \text{ finito.}$$

Exercício. Seja a>0 e $(x_i)_{i\in I}\subseteq [0,\infty)$. Se $\sum_{i\in J}x_i\leq a$ para todo $J\subseteq I$ finito, então $(x_i)_{i\in I}$ é somável e $\sum_{i\in I}x_i\leq a$.

Demostração. Considere

$$x = \sup_{J \subseteq \mathcal{F}} \sum_{i \in J} x_i \le a$$

onde $\mathcal{F} = \{J \subseteq I : J \text{ \'e finito}\}$. Seja $\varepsilon > 0$. Então existe $I_0 \in \mathcal{F}$ tal que

$$x - \varepsilon < \sum_{i \in I_0} x_i \le x.$$

Mais ainda, se $J\supseteq I_0$ é finito, como $\left(\sum_{i\in J}x_i\right)_{J\in\mathcal{F}}$ é uma rede cresciente e limitada,

$$x - \varepsilon < \sum_{i \in I_0} x_i \le \sum_{i \in J} x_i \le x \implies x - \sum_{i \in J} x_i < \varepsilon.$$

Fixe $J \subseteq I$ finito.

$$0 \le \left\| x - \sum_{i \in J} \langle x, x_i \rangle x_i \right\|^2.$$

Logo,

$$\left\| x - \sum_{i \in J} \langle x, x_j \rangle x_i \right\|^2 = \langle x, x \rangle - \left\langle x, \sum_{i \in J} \langle x, x_j \rangle x_i \right\rangle - \left\langle \sum_{i \in J} \langle x, x_i \rangle x_i, x \right\rangle + \left\langle \sum_{i \in J} \langle x, x_i \rangle x_i, \sum_{i \in J} \langle x, x_i \rangle x_i \right\rangle$$

$$= \|x\|^2 - \sum_{i \in J} \overline{\langle x, x_i \rangle} \langle x, x_i \rangle - \sum_{i \in J} \langle x, x_i \rangle \langle x_i, x \rangle + \sum_{i \in J} \sum_{j \in J} \langle x, x_i \rangle \overline{\langle x, x_j \rangle} \langle x_i, x_j \rangle$$

$$= \|x\|^2 - 2 \sum_{i \in J} |\langle x, x_i \rangle|^2 + \sum_{i \in J} |\langle x, x_i \rangle|^2$$

$$= \|x\|^2 - \sum_{i \in J} |\langle x, x_i \rangle|^2.$$

17.2 Igualdade de Parseval

Agora vamos estudar em qué casos tem a igualdade.

Teorema 17.8. Seja X um espaço de Hilbert e $S \subseteq X$ ortonormal. Então

- 1. $\sum_{y \in S} \langle x, y \rangle y$ existe para todo $x \in X$.
- 2. São equivalentes:

$$\begin{split} S \circ \text{maximal} &\iff \sum_{y \in S} \langle x, y \rangle y = x \quad \forall x \in X \\ &\iff \overline{\operatorname{span}} \{S\} = X \\ &\iff \|x\|^2 = \sum_{y \in S} |\langle x, y \rangle|^2 \quad \forall x \in X \qquad \text{(Parseval)} \end{split}$$

Demostração.

1.

Exercício (Critério de Cauchy). É suficiente mostrar que $\forall \varepsilon > 0$ existe S_0 tal que para todo $S_1 \subseteq S \setminus S_0$ finito temos que

$$\left\| \sum_{y \in S_1} \langle x, y \rangle y \right\| < \varepsilon$$

Nesse caso, por Pitágoras,

$$\left\| \sum_{y \in S_1} \langle x, y \rangle y \right\|^2 = \sum_{y \in S_1} |\langle x, y \rangle|^2.$$

Por Bessel,

$$(|\langle x, y \rangle|^2)_{y \in S}$$

e uma família somável, logo o critério de Cauchy vale.

2. Suponha S maximal. Temos

$$x - \sum_{y \in S} \langle x, y \rangle y \perp S$$

Logo, pelo exercício passado, $x = \sum_{y \in S} \langle x, y \rangle y$.

Para a seguinte, note que se S não é maximal, existe $y_0 \in \partial B_X$ tal que $y \perp S$. Logo, $y_0 \in \bot \overline{\operatorname{span}}\{s\}$, e logo $y_0 \notin \overline{\operatorname{span}}\{s\}$.

Em particular,

$$1 = ||y_0||^2 \neq \sum_{y \in S} |\langle y_0, y \rangle|^2 = 0.$$

Note que se

$$x = \sum_{y \in S} \langle x, y \rangle y$$

então

$$||x||^2 = \sum_{y \in S} |\langle x, y \rangle|^2.$$

Proposição 17.9. Se $S \subseteq X$ é ortonormal, então

$$||x - y|| = \sqrt{2} \quad \forall x, y \in S \text{ distintos.}$$

Logo se X é separável, S é enumerável.

Corolário 17.10. Sejam H e H' espaços de Hilbert e $S \subseteq H$, $S' \subseteq H'$ ortonormais maximais. Seja $j: S \to S'$ uma injeção. Então $T: H \to H'$ dado por

$$T\left(\sum_{y\in S}\langle x,y\rangle y\right) = \sum_{y\in S}\langle x,y\rangle jy$$

é uma isometria. Se j for sobrejetiva, T é uma isometria sobrejetiva.

Demostração. Escreva.

Corolário 17.11. Todo espaço de Hilbert é da forma $\ell_2(S)$ para algúm conjunto S, onde |S| é a cardinalidadde de um subconjunto ortonormal maximal de H.

17.3 Teorema de representação

Definição. Seja H um espaço de Hilbert. Definimos o *conjugado de* H, denotado \overline{H} como sendo H com a ação de H e produto

$$\lambda . x = \bar{\lambda} x \quad \forall \lambda \in \mathbb{K} \ \forall x \in H.$$

Definimos o produto interno

$$\langle x, y \rangle_{\overline{H}} = \langle y, x \rangle_{H}.$$

Proposição 17.12. Seja H um espaço de Hilbert. Então o mapa

$$\phi: \overline{H} \to H^*$$

dado por

$$(\phi x)y = \langle y, x \rangle_H \quad \forall x, y \in \overline{H}$$

é uma isometria.

Demostração. (ϕ é linear).

 $(\|\phi x\| \le \|x\| \ \forall x \in X)$. Por Cauchy-Schwarz.

($\|\phi x\| \ge \|x\| \ \forall x \in X$). Quem é de norma 1?

(ϕ é injetiva). $\langle \cdot, y_1 \rangle = \langle ; y_2 \rangle \implies ||x - y|| = 0$.

 $(\phi$ é sobrejetiva). Seja $f\in H^*.$ Por Zorn, pegue $S\subseteq H$ ortonormal maximal. Defina

$$x = \sum_{y \in S} \overline{f(y)}y.$$

Se x está bem definido, então

$$\phi(x) = f$$

pois

$$\phi(x)(y) = \left\langle z, \sum_{y \in S} \overline{f(y)} y \right\rangle_{H}$$
$$= \sum_{y \in S} f(y) \langle z, y \rangle_{H}$$

Logo

$$f(z) = f\left(\sum_{y \in S} \langle z, y \rangle y\right)$$
$$= \sum_{y \in S} f(y) \langle z, y \rangle.$$

Para ver que de fato trata-se de uma família somável, considere $S_0 \subseteq S$ finito, então

$$||f|| \ge \left| \frac{f\left(\sum_{y \in S_0} \overline{f(y)}y\right)}{\left\|\sum_{y \in S_0} \overline{f(y)}y\right\|} \right|$$

$$= \frac{\sum_{y \in S_0} |g(y)|^2}{\left(\sum_{y \in S_0} |f(y)|^2\right)^{\frac{1}{2}}}.$$

Logo,

$$\left(\sum_{y \in S_0} |f(y)|^2 \le \|gf\|\right).$$

Corolário 17.13. H^* é Hilbert.

$$\langle f, g \rangle_{H^*} = \langle \phi^{-1}(f), \phi^{-1}(g) \rangle_{\overline{H}} = \langle \phi^{-1}(g), \phi^{-1}(f) \rangle_H.$$

Ou seja

$$\langle \langle \cdot, x \rangle, \langle \cdot, y \rangle_{H^*} \rangle = \langle y, x \rangle_H.$$

Corolário 17.14. Todo espaço de Hilbert é reflexivo.

Demostração. Queremos mostrar que

$$J: H \to H^{**}$$

é sobrejetivo. Fixe isometrias sobrejetivas

$$\phi: \overline{H} \to H^*, \quad \psi: \overline{H^*} \to H^*.$$

Defina

$$\overline{\phi}: H \to H^*$$

como

$$\overline{\phi}(x) = \phi(x) \quad \forall x \in H.$$

Queremos mostrar que $J = \psi \circ \overline{\phi}$.

Fixe $x \in H$, $f \in H^*$ e $y \in H$ com $f = \langle \cdot, y \rangle_H$. Logo

$$\psi(\overline{\phi}(x))(f) = \langle f, \langle \cdot, x \rangle_H \rangle_{H^*}$$

$$= \langle \langle \cdot, y \rangle_H, \langle \cdot, x \rangle_H \rangle_{H^*}$$

$$= \langle x, y \rangle_H$$

$$= f(x)$$

$$= J(x)(f).$$

17.4 Exemplo e conjuntos ortonormais em L_2

Proposição 17.15.

$$\left\{\frac{e^{int}}{\sqrt{2\pi}}: n \in \mathbb{Z}\right\}$$

é ortonormal maximal em $L_2[0, 2\pi]$.

 $\textit{Demostração}. \ \, \text{Só veremos maximalidade}. \, \text{Seja} \, f \in L_2[0,2\pi] \, \, \text{tal que}$

$$f \perp S$$
.

Vamos mostrar que f = 0.

Primero sustituimos f por uma função contínua. Defina

$$G(x) = \int_0^x f d\mu.$$

Logo, ela é absolutamente contínua, assim G'=f. Daí,

$$(G+k)' \perp S \quad \forall k.$$

Vamos computar

$$\begin{split} 0 &= \int (G+k)' e^{int} d\mu \\ &= G(2\pi) - G(0) - \int_0^{2\pi} (G+k)(in) e^{int} d\mu \\ &= - \int_0^{2\pi} (G+k)(in) e^{int} d\mu \end{split}$$

assim

$$\int (G+k)e^{int}d\mu = 0 \quad \forall n \in \mathbb{Z} \setminus \{0\}.$$

Escolha $k \in \mathbb{C}$ tal que

$$H = G + k \perp S$$
.

Como H é contínuo, pelo teorema de Weierstrass, para todo $\varepsilon>0$ existe $T\in\operatorname{span}\{s\}$ tal que

$$\sup_{t \in [0,1]} |H(t) - T(t)| < \varepsilon.$$

Logo $H \in \overline{\operatorname{span}}\{s\}$. Como $H \perp S$, H = 0. Mais como H = f, então f = 0.

17.5 Projeções em espaços de Hilbert

Definição. Um espaço de Banach X é *estritamente convexo* se para todo $x, y \in \partial B_X$,

$$\left\| \frac{x+y}{2} \right\| < 1.$$

Exemplos.

- 1. ℓ_p para $p \in (1, \infty)$ é estritamente convexo.
- 2. Se X for Hilbert, sabemos que

$$\left\| \frac{x+y}{2} \right\|^2 + \left\| \frac{x-y}{2} \right\|^2 = 2 \left\| \frac{x}{2} \right\|^2 + 2 \left\| \frac{y}{2} \right\|^2 = 1$$

para $x, y \in \partial B_X$ distintos. Logo,

$$\left\| \frac{x+y}{2} \right\|^2 = 1 - \left\| \frac{x-y}{2} \right\|^2 < 1.$$

Proposição 17.16. Seja H um espaço de Hilbert e $H' \subseteq H$ um subespaço fechado. Para todo $x \in H$, existe um único $y \in H'$ tal que

$$d(x, H') = ||x - y||.$$

Mais ainda, $x - y \perp H'$.

Demostração. Fixe $x \in H$. Como H é reflexivo, y existe. Suponha que $z \neq y$ em H' tal que

$$||x - y|| = ||x - z|| = d(x, H).$$

Então

$$\left\| x - \frac{y+z}{2} \right\| = \left\| \frac{x-y+x-z}{2} \right\| < d(x, H').$$

Agora vejamos que $x-y\perp H'$. Suponha que existe $h\in H'\setminus\{0\}$ que não seja ortogonal, ie. $\langle x-y,h\rangle\neq 0$.

Sem perda de generalidade, assuma que

$$\langle x - y, h \rangle > 0.$$

Para contradizer que y minimza, buscamos un multiplo de h que faça uma menor distancia. Pegue $\lambda \in \mathbb{R}$.

$$||x - y + \lambda h||^2 = ||x - y||^2 + 2\langle x - y, \lambda h \rangle + |\lambda|^2 ||h||^2.$$

Pegue $\lambda < 0$ tal que

$$2\langle x - y, \lambda h \rangle + |\lambda|^2 ||h||^2 > ||x - \lambda h||^2 - ||x - y||^2.$$

Definição. O resultado antérior nos dá um mapa

$$P: H \to H'$$
$$x \mapsto y_x$$

chamado a projeção de H sobre H' tal que

- 1. ||x P(x)|| = d(x, H').
- 2. $x P(x) \perp H'$.

Proposição 17.17. Seja H Hilbert, $H'\subseteq H$ fechado, $S\subseteq H'$ ortonormal maximal. Então

$$P(x) = \sum_{y \in S} \langle x, y \rangle y \quad \forall x \in H.$$

Em particular, P é linear é ||P|| = 1 (o não ser que H' = 0, caso em que a norma é 0).

Demostração. Note que

$$H' \oplus (H')^{\perp} = H$$

Onde

$$(H')^{\perp} = \{ x \in H : x \perp H' \}.$$

Então, como

$$P(x), \sum_{y \in S} \langle y, x \rangle y \in H'.$$

Mais ainda,

$$x - P(x), x - \sum_{y \in S} \langle x, y \rangle y \in (H')^{\perp}.$$

Como

$$x = x - P(x) + P(x)$$

$$x = x - \sum_{y \in S} \langle x, y \rangle y + \sum_{y \in S} \langle x, y \rangle y.$$

Então, para todo $y \in H'$,

$$\langle x - Px + Px, y \rangle = \left\langle x - \sum_{y \in S} \langle x, y \rangle y + \sum_{y \in S} \langle x, y \rangle y, y \right\rangle$$

$$\implies \langle x - Px, y \rangle + \langle Px, y \rangle = \left\langle x - \sum_{y \in S} \langle x, y \rangle y, y \right\rangle + \left\langle \sum_{y \in S} \langle x, y \rangle y, y \right\rangle$$

$$\implies \langle Px, y \rangle = \left\langle \sum_{y \in S} \langle x, y \rangle y, y \right\rangle$$

$$\implies \left\langle Px - \sum_{y \in S} \langle x, y \rangle y, y \right\rangle = 0$$

$$\implies Px = \sum_{y \in S} \langle x, y \rangle y$$

Corolário 17.18. Seja H um espaço de Hilbert e $H' \subset H$ um subespaço fechado. Então H' é complementado em H.

De fato,

Teorema 17.19 (Lindestrauss-Tzafini, 71). Se todo subespaço fechado de um espaço de Banach X for complementado, então X é isomorfo a um espaço de Hilbert.

Teorema 17.20. c_0 não é complementado em ℓ_{∞} .

Definição. Seja $(A_i)_{i \in I}$ uma familía de subconjuntos de um conjunto X. Dizemos que $(A_i)_{i \in I}$ é *quase-disjunto* se

$$|A_i \cap A_j| < \infty$$
 $\forall i, j \in I$ disjuntos.

Proposição 17.21. Existe uma família $(A_i)_{i\in I}$ quase-disjunta de subconjuntos infinitos de \mathbb{N} tal que $|I|=2^{\aleph_0}$.

Demostração. Para cada $i \in \mathbb{R} \backslash \mathbb{Q}$ escolha $(q_n)_n \subseteq \mathbb{Q}$ tal que $q_n^i \to i$.

Fixe uma bijeção $\varphi: \mathbb{Q} \to \mathbb{N}$ e defina

$$A_i = \{ \varphi(q_n^i) : n \in \mathbb{N} \} \quad \forall i \in \mathbb{R} \setminus \mathbb{Q}.$$

Proposição 17.22. Seja $T:\ell_\infty\to\ell_\infty$ um operador limitado tal que $T|_{c_0}=0$. Então existe $A\subseteq\mathbb{N}$ infinito tal que $T|_{\ell_\infty(A)}=0$ (extendedo com zeros para ver $\ell_\infty(A)$ como subconjunto de ℓ_∞).

Demostração. Seja $(A_i)_{i\in I}$ uma família quase-disjunta de subconjuntos infinitos de $\mathbb N$ tal que $|I|=2^{\aleph_0}$.

Afirmação. Existe $i \in I$ tal que $T|_{\ell_{\infty}(A)} = 0$.

Para cada $i \in I$, pegue $x_i \in \partial B_{\ell_{\infty}(A_i)}$ tal que

$$T(x_i) \neq 0.$$

Como $|I|=2^{\aleph_0}$, existe $n\in\mathbb{N}$ tal que

$$|\{i \in I : e_n^*(Tx_i) \neq 0\}| = 2^{\aleph_0}.$$

Sem perda de generalidade, assumamos que

$$\{i \in I : e_n^*(Tx_i) > 0\} | = 2^{\aleph_0}.$$

Mais ainda, existe $\delta > 0$ tal que

$$|\{i \in I : e_n^*(Tx_i) > \delta\}| = 2^{\aleph_0}.$$

Se $F \subseteq J$ for finito,

$$\left\| T\left(\sum_{i \in F} x_i\right) \right\| = \left\| \sum_{i \in F} T(x_i) \right\|$$
$$\geq \sum_{i \in F} e_n^*(Tx_i)$$
$$\geq |F|\delta$$

Como $(A_i)_{i \in I}$ çe quase-disjunto, podemos escrever

$$\sum_{i \in F} x_i = x + y$$

onde

$$|\operatorname{supp} x| < \infty$$
 e $||y|| \le 1$

Logo

$$\left\| T\left(\sum_{i\in I} x_i\right) \right\| = \|Ty\| \le \|T\|$$

Alesindo.

Prova de que c_0 não é complementado. Suponha que existe uma projecção $p:\ell_\infty\to c_0$ (limitada). Logo, $(\mathrm{Id}-p)|_{c_0}\equiv 0$. Pela proposição, existe $A\subseteq \mathbb{N}$ infinito tal que

$$(\operatorname{Id} - p)_{\ell_{\infty}(A)} = 0,$$

assim $p|_{\ell_{\infty}(A)} = \mathrm{Id}_{\ell_{\infty}(A)}$, que é absurdo.

18 Bases de Schauder

Definição. Seja X um espaço de Banach e $(x_n)_n \subseteq X$. Dizemos que $(x_n)_n$ é uma **base de** Schauder de X se para todo $x \in X$ existe uma única sequência $(\alpha_n)_n \subseteq \mathbb{K}$ tal que

$$x = \sum_{n=1}^{\infty} \alpha_n x_n.$$

Exemplos.

- 1. (e_n) é uma base de ℓ_p para todo $p \in [1, \infty)$, e de c_0 .
- 2. Para ℓ_{∞} não, pois todo espaço com base é separável.
- 3. Existem espaços de Banach separávels sem base (Enflo, '73).

Teorema 18.1. Seja X Banach e $(x_n) \subseteq X$. São equivalentes

- 1. (x_n) é uma base de X.
- 2. Existe $(x_n^*) \subseteq X^*$ tal que

$$x_n^*(x_m) = \delta_{nm}$$
 e $x = \sum_{n=1}^{\infty} x_n^*(x) x_n \quad \forall x \in X.$

Demostração. $(2 \implies 1)$. Só baste ver unicidade. Se

$$\sum_{n=1}^{\infty} \alpha_n x_n = \sum_{n=1}^{\infty} \beta_n x_n,$$

então

$$\alpha_k = x^* \left(\sum \alpha_n x_n \right) = x^* \left(\sum \beta_n x_n \right) = \beta_k$$

 $(1\Longrightarrow 2)$. Note segue da unicidade da representação da base que existe uma sequência $(x_n^*)_n$ de funções lineares $x_n^*:\mathbb{K}\to\mathbb{K}$ tais que

$$x = \sum_{n=1}^{\infty} x_i^*(x)x \qquad \forall x \in X.$$

Resta mostrar que $x_n^* \in X^*$ é contínuo para todo $n \in \mathbb{N}$. Defina para cada $N \in \mathbb{N}$

$$S_N(x) = \sum_{n=1}^{N} x_n^*(x) x_n.$$

Como

$$x_n^*(x)x_n = S_n(x) - S_{n-1}(x),$$

basta mostrar que cada S_n é contínuo.

Defina uma norma $\| \| \|$ em X como

$$|||x||| = \sup_{n} ||S_n(x)||.$$

Note que

- 1. Como $S_n(x) \to x$, $||x|| < \infty$.
- 2. $||x|| \le |||x|||$ para todo $x \in X$.
- 3. Se $(X, ||\ ||\)$ é Banach, $||\ ||\ \sim ||\ ||$ e a prova segue.

Afirmação. (X, ||| |||) é Banach.

Seja $(y_n) \subset X$ de Cauchy para $\| \| \|$. Como $\| \| < \| \| \|$, (y_n) é Cauchy para $\| \| \|$. Defina

$$y = \|\cdot\| - \lim_n y_n.$$

Queremos mostrar que $y_n \stackrel{\parallel\!\parallel}{\longrightarrow} y$. Para cada $k \in \mathbb{N}$ defina

$$z_k = \|\cdot\| - \lim_n S_k(y_n).$$

Afirmação. $z_k \stackrel{\parallel\parallel\parallel}{\longrightarrow}$.

Fixe $\varepsilon > 0$. Como (y_n) são || || ||-Cauchy, existe $n_0 \in \mathbb{N}$ tal que $||y_n - y_m|| < \varepsilon$ para todo $n, m > n_0$.

Fixe $m=n_0$. Pegue $k_0\in\mathbb{N}$ tal que $\|S_k(y_m)-y_m\|<\varepsilon$ para toda $k>k_0$. Então,

$$||z_{k} - y|| = \lim_{n} ||S_{k}(y_{n}) - y_{n}||$$

$$\leq \lim_{n} ||S_{k}(y_{n}) - S_{k}(y_{n})|| + ||S_{k}(y_{n}) - y_{m}|| + \lim_{n} ||y_{m} - y_{n}||$$

$$< \varepsilon + \varepsilon + \varepsilon$$

Afirmação. Para todo $n \ge k$, temos

$$S_k(z_m) = z_k$$
.

Como operadores lineares são contínuos em subespaços de dimensão finita, temos

$$z_k = \| \| - \lim_n S_k(y_n)$$

$$= \| \| - \lim_n S_k(S_m(y_k))$$

$$= \| \| - \lim_n S_k|_{\text{span}\{x_i : i \le n\}}$$

$$= S_k(z_m)$$

Em conclusão, $S_k(y) = z_k$, ie. temos unicidade.

Por fim,

$$|||y - y_n||| = \sup_{k} ||S_k(y) - S_k(y_n)||$$

$$= \sup_{k} ||z_k - S_k(y_n)||$$

$$= \sup_{k} \limsup_{m} ||S_k(y_n) - S_k(y_n)||$$

$$\leq \limsup_{n} \sup_{k} ||S_k(y_m) - S_k(y_n)|| \xrightarrow{n \to \infty} 0.$$

Observação 18.1.

- 1. $\sup_n ||S_n|| < \infty$
- 2. $k = \sup_n ||S_n||$ é a constante básica da base (x_n) .
- 3. Se k = 1, dizemos que a base (x_n) e *monótona*.

Definição. Uma sequência $(x_n) \subseteq X$ é *básica* se (x_n) for de Schauder para $\overline{\operatorname{span}}\{x_n : n \in \mathbb{N}\}.$

Proposição 18.2. $(x_n) \subseteq X \setminus \{0\}$ é básica se e só se existe $L \ge 0$ tal que

$$\left\| \sum_{n=1}^{m} \alpha_n x_n \right\| \le L \left\| \sum_{n=1}^{k} \alpha_n x_n \right\|$$

para todo $k \geq m$ e $\alpha_1, \ldots, \alpha_k \in \mathbb{K}$.

Demostração.

 (\Longrightarrow) Segue.

(←) Defina

$$Y = \operatorname{span}\{x_n : n \in \mathbb{N}\}.$$

Para cada $n \in \mathbb{N}$ defina $S_n : Y \to Y$ como

$$S_n\left(\sum_{n=1}^k \alpha_n x_n\right) = \sum_{n=1}^{\min\{n,k\}} \alpha_n x_n.$$

Por hipótese, temos que

$$||S_n|| \le L \quad \forall m.$$

Podemos então estender cada S_n para \overline{Y} .

Note:

- 1. S_n é limitado.
- 2. dim img $S_n = n \ \forall n \in \mathbb{N}$.
- 3. $S_n \circ S_m = S_m \circ S_n = S_{\min\{m,n\}}$.
- 4. $S_n(x) \to x \ \forall x \in X$.

Esas observações implicam que (x_n) é base de \overline{Y} .

Teorema 18.3. Sejam $(x_n) \subset X$ e $(y_n) \subset Y$ básicas. São equivalentes

- 1. $\sum_{n=1}^{\infty} \alpha_n x_n$ converge em X se e somente se $\sum_{n=1}^{\infty} \alpha_n y_n$ em Y.
- 2. Existe um isomorfismo

$$T: \overline{\operatorname{span}}\{x_n : n \in \mathbb{N}\} \to \overline{\operatorname{span}}\{y_n : n \in \mathbb{N}\}$$

tal que

$$Tx_n = y_n \quad \forall n \in \mathbb{N}.$$

Demostração. (←). Segue

 (\Longrightarrow) . Por 1, T está bem definido e é uma bijeção. Falta mostrar que T e T^{-1} são contínuas. Sejam $(z_n)\subset \operatorname{dom} T$ tal que $z_n\to z$ e $Tz_n\to w$. Queremos mostrar que Tz=w. Se $j\in\mathbb{N}$, temos

$$y_j^*(w) = \lim_n y_k^*(Tz_n)$$
$$\lim_n x_j^*(z_n)$$
$$= x_j^*(z)$$
$$= y_j^*(Tz)$$

Definição. Os funcionais (x_n^*) são os *funcionais biortogonais* de (x_n) .

Corolário 18.4. Se (x_n) , (y_n) são basicas, existe L > 0 tal que

$$\frac{1}{L} \left\| \sum_{i=1}^{n} \alpha_i x_i \right\| \le \left\| \sum_{i=1}^{n} \alpha_i x_i \right\| \le L \left\| \sum_{i=1}^{n} \alpha_i y_i \right\|$$

para todos n e $\alpha_1, \ldots, \alpha_n$.

18.1 Construindo sequências basicas

Teorema 18.5. Se $\dim(X) = \infty$, existe uma sequência básica em X.

Teorema 18.6. Se $S\subseteq X$ tal que $0\notin \overline{S}^{\parallel \parallel}$ e $0\in \overline{S}^w$ então existe uma sequência básica em S.

Lema 18.7. Seja X Banach, $E\subseteq X^*$ um subespaço de dimensão finita e $S\subseteq X^*$ tal que tal que $0\notin \overline{S}^{\parallel \ \parallel}$ e $0\in \overline{S}^w$. Então para todo $\varepsilon>0$ existe $x*^{\in}X^*$ tal que

$$||e^* + \lambda x^*|| \ge (1 - \varepsilon)||e^*|| \quad \forall e^* \in E \ \forall \lambda \in \mathbb{R}$$

 $Demostraç\~ao$. Fixe $\varepsilon>0$ e $\delta>0$. Como $\dim E<\infty$, por compacidad a bola é totalmente limitada, assim existe $e_1^*,\ldots,e_n^*\in\partial B_E$ tal que para cualquer $e^*\in\partial B_E$ existe $c\leq n$ tal que $\|e^*-e_i^*\|<\delta$.

Para cada $i \leq n$ pegue $e_i \in X$ tal que

$$e_i^*(e_i) > 1 - \delta.$$

Como $0 \in 0 \in \overline{S}^w$, existe $x^* \in S$ tal que

$$|x^*(e_i)| < \delta \quad \forall i \le n.$$

Vamos estimar

$$||e^* + \lambda x^*||$$
.

Fixe $e^* \in \partial B_E$ e $\lambda \in \mathbb{R}$. Defina $\alpha = \inf_{y^* \in \overline{S}} \|y^*\|$, que é positivo porque $0 \notin \overline{S}$.

- 1. Se $|\lambda| > 2/\alpha$, temos $||e^* + \lambda x^*|| \ge |\lambda| ||x^*|| 1 \ge 1$? $||e^*||$.
- 2. Se $|\lambda| > 2/\alpha$, temos

$$||e^* + \lambda x^*|| \ge ||e_i^* + \lambda x^*|| - \delta \ge 1 - \delta - |\lambda|\delta - \delta \ge 1 - 2\delta - \frac{2\delta}{\alpha}$$

O resultado segue se $2\delta + \frac{2\delta}{\alpha} < \varepsilon$.

Prova do teorema 18.6. Seja $S \subseteq X$ com $0 \notin \overline{S}^{\parallel \parallel}$ e $0 \in \overline{S}^w$. Então, vendo $S \subseteq X^{**}$, temos $0 \notin \overline{S}^{\parallel \parallel}$ e $0 \in \overline{S}^w$. Fixe $\varepsilon > 0$. Pegue uma sequência (δ_n) de numeros positivos tais que

$$\prod_{n} (1 - \delta_n) > \frac{1}{1 + \varepsilon}.$$

Pelo lema, existe $(e_n^*) \subseteq S$ tal que para tod $S n \in \mathbb{N}$ e $a, \ldots, a_n \in \mathbb{R}$,

$$(1 - d_n) \left\| \sum_{n=1}^m a_m e_n^* \right\| \le \left\| \sum_{n=1}^{m+1} a_n e_n^* \right\| \approx \left\| \sum_{n=1}^m a_n e_n^* + a_{m+1} e_{m+1}^* \right\|.$$

Assim, para toda $m \leq k$ e $a_1, \ldots, a_k \in \mathbb{R}$,

$$\left\| \sum_{n=1}^{m} a_n e_n^* \right\| \le \frac{1}{\pi (1 - \delta_n)} \left\| \sum_{n=1}^{k} a_n e_n^* \right\| \le (1 + \varepsilon) \left\| \sum_{n=1}^{k} a_n e_n^* \right\|.$$

Corolário 18.8. Se $(x_n) \subseteq X$ é tal que $x \xrightarrow{w}$ mas $\inf ||x_n|| > 0$, então (x_n) possui uma subsequência basica.

Prova de teorema 18.5. Note que $0 \notin \overline{\partial B_X}^{\parallel \parallel}$ e $0 \in \overline{\partial B_X}^w$. Pata comprovar o segundo, suponha o contrário, ie. que existe $\varepsilon > 0$ e $x_1^*, \dots, x_2^* \in X^*$ tal que

$$\{x \in X : |x_i^*(x_i)\} \cap \partial B_X = \varnothing.$$

Como $\bigcap \ker x_i^* \neq \{0\}$, pegue $x \in \bigcap \ker(x_i^*) \setminus \{0\}$. Logo

$$\frac{x}{\|x\|} \in \{ y \in X : |x_i^*(y) < \varepsilon \} \cap \partial B_X \quad \forall i \le n,$$

que é absurdo.

Pergunta. X, Y espaços de Banach, se $X \hookrightarrow Y$ e $Y \hookrightarrow X$ mergulhos isomófricos, então $X \stackrel{\text{isomor}}{\approx} Y$. Falso. E se pedimos que a sejam mergulhos de espaços complementados? Gouees. Existe espaço de Banach tal que $X \approx X^3$ mais $X \not\approx X^2$.

19 Técnica de descomposição de Pełcyński

Teorema 19.1. Sejam X e Y espaços de Banach e $X \stackrel{\perp}{\hookrightarrow} Y$ e $Y \stackrel{\perp}{\hookrightarrow} X$.

- 1. Se $X \approx X^2$ e $Y \approx Y^2$ então $X \approx Y$.
- 2. Se $X \approx \ell_p(X)$, então $X \approx Y$. ($X \approx c_0(X)$.)

Definição. Seja X um espaço de Banach.

1. $p \in [1, \infty)$.

$$\ell_p(X) = \left\{ (x_n) \in X^{\mathbb{N}} : \sum ||x||^p < \infty \right\}$$

onde

$$||(x_n)|| = \left(\sum_{n=1}^{\infty} ||x_n||^p\right)^{\frac{1}{p}}.$$

2.

$$c_0(X) = \left\{ (x_n) \in \ell_{\infty}(X) : \lim_n ||x_n|| = 0 \right\}$$

com a norma

$$||(x_n)|| = \sup_n x_n.$$

Demostração. Por hipótese existe um subespaço fechado $E \subseteq X$ e $F \subseteq Y$ tais que

$$X = Y \oplus E$$
 e $Y \oplus F$.

1.

$$X \approx Y \oplus E \approx Y \oplus Y \oplus E \approx X \oplus F \oplus Y \oplus E \approx X \oplus F \oplus X \approx X \oplus F \approx Y.$$

2. Suponha $X \approx \ell_p(X)$.

$$Y \approx X \oplus F \approx X \oplus \ell_p(X) \oplus F \approx Y \oplus X.$$

Logo

$$X \approx \ell_p(X) \approx \ell_p(Y \oplus E) \approx \ell_p(Y) \oplus \ell_p(E) \approx Y \oplus \ell_p(Y) \oplus \ell_p(E) \approx Y.$$

20 Algebras de Banach

Definição.

1. Um espaço vetorial sobre \mathbb{K} munido de um produto associativo é uma *álgebra*.

2. Se A é uma álgebra, $\| \ \|$ uma norma em A e

$$||ab|| \le ||a|| ||b|| \quad \forall a, b \in A,$$

A é uma álgebra normada.

- 3. Se uma álgebra normada for completa, é uma álgebra de Banach.
- 4. Se existe um elemento $1 \in A$ tal que

$$a1 = 1a = a \quad \forall a \in A,$$

1 é a unidade de A e A é uma álgebra com unidade.

Exemplos (bobos).

1. Seja K compacto Housdorff, C(K) é uma álgebra de Banach com unidade onde

$$(fg)x = f(x)g(x) \quad \forall x \in K.$$

2. Se *K* é localmente compacto e Housdorff,

$$C_0(K) = \{ f : K \to \mathbb{K} : \forall \varepsilon > 0 \ \exists K' \subseteq K \ \text{tal que} \ | f(x) | \le \varepsilon \ \forall x \notin K' \}$$

não tem unidade a não ser que K for compacto.

- 3. ℓ_{∞} .
- 4. c_0 .
- 5. L_{∞} .
- 6. Se X for Banach, $\mathcal{L}(X)$ é uma álgebra de Banach com unidade (a identidade) que não é conmutativa.

$$||ab|| = \sup_{x \in B_X} ||ab(x)|| \le ||a|| ||b||.$$

- 7. $K(X) = \{T \in \mathcal{L}(X) : T \text{ compacto}\}$ eles são fechados com a composição (de fato a composição com cualquer outro operador), é uma álgebra de Banach não commutativa e sem unidade se $\dim(X) = \infty$.
- 8. $L_1(-\infty,\infty)$ com

$$(f * g)(t) = \int_{-\infty}^{\infty} f(t - x)g(x)dx$$

prove que satisfaz as propriedades.

Definição. Seja A uma álgebra e $I \subseteq A$ um subespaço vetorial.

- 1. I é um *ideal à direita* de A se $ab \in I$ para todos $a \in A$ e $b \in I$.
- 2. I é um *ideal à izquerda* de A se $ab \in I$ para todos $a \in I$ e $b \in A$.
- 3. Se ambos valem, I é um ideal de A.

Exemplos.

1. Se $x_0 \in K$,

$$I_0 = \{ f \in C(K) : f(x_0) = 0 \}$$

 \acute{e} um ideal de C(K).

- 2. K(X) é um ideal de $\mathcal{L}(X)$.
- 3. c_0 é ideal de ℓ_{∞} .

Proposição 20.1. Se A é uma álgebra normada e $I\subseteq A$ é um ideal fechado de A, então A/I é uma álgebra normada com produto

$$(a+I)(b+I) = ab + I.$$

Demostração. (O produto está bem definido.) Seja a + I = a' + I e b + I = b' + I. Temos

$$ab - a'b' = ab - ab' + ab' - a'b'$$

= $a(b - b') + (a - a')b' \in I$

($\| \|$ é compatível como o produto.)

$$\begin{split} \|ab+I\| &= \inf_{c} \|ab+c\| \\ &= \inf_{a',b'\in I} \|ab+ab'+a'b+a'b'\| \\ &= \inf a',b'\in I \|(a+a')(b+b')\| \\ &= \inf a',b'\in I \|a+a'\|\|b+b'\| \\ &= \inf_{a'\in I} \|a+a'\|\inf_{b'\in I} \|b+b'\|. \end{split}$$

Exemplos.

1. ℓ_{∞}/c_0 . Lembre que $\ell_{\infty}=\approx c(\beta\mathbb{N})$ onde $\beta\mathbb{N}$ é o espaço dos ultrafiltros nos naturais.

2. $\mathcal{L}(\ell_2)/K(\ell_2)$, a álgebra de Caltim.

Definição. Se A e B são álgebras, um operador linear $T:A\to B$ é um *homomorfismo* se T(aa')=TaTa'.

Exemplo. Em C(K), o mapa que manda $f \mapsto f(x_0)$ é um homomorfismo.

Observação 20.1. Núcleos de homomorfismos são ideais.

21 Teoria espectral

Definição. Seja A uma álgebra de Banach sobre \mathbb{C} com unidade $1_A \in A$.

1. Inv $A = \{a \in A : a^{-1} \text{ existe}\}.$

2. Se $a \in A$, o *espectro de* a é

$$\sigma(a) = \{\lambda \in \mathbb{C} : a - \lambda \text{ não \'e inversível}\}$$

issto é,

$$\sigma(a) = \{ \lambda \in \mathbb{C} : a - \lambda \notin \text{Inv } A \}$$

Exemplos.

- 1. Inv(A) é um grupo.
- 2. Se K compacto Hausdorff e $f \in C(K)$, então $\sigma(f) = f(K)$.
- 3. Se $f \in \ell_{\infty}$, então $\sigma(f) = \overline{\{x_n : n \in \mathbb{N}\}}$. Ver aqui.
- 4. Ache $\sigma(f)$ para $f \in L_{\infty}$. Acredito que

$$\sigma(f) = \{ \lambda \in \mathbb{K} : f|_F \equiv \lambda \text{ para algum } E \notin N(\mu) \}.$$

Proposição 21.1. Seja $a \in A$ e p um polinômio em \mathbb{C} , então

$$p(\sigma(a)) = \sigma(p(a)).$$

Demostração. Se p for constante, segue. Caso contrário, para cada $\lambda \in \mathbb{C}$ podemos escrever

$$p(z) - \lambda = \lambda_0(z - \lambda_1) \dots (z - \lambda_n)$$

onde $\lambda_0, \ldots, \lambda_n \in \mathbb{C}$ e $\lambda_0 \neq 0$. Logo

$$p(a) - \lambda = \lambda_0(a - \lambda_1) \dots (a - \lambda_n).$$

Como $a-\lambda_1,\ldots,a-\lambda_n$ conmutam, $p(a)-\lambda$ é inversível se somente se cada $a-\lambda_i$ é inversível. Ou bem,

$$\lambda \in \sigma(p(a)) \iff \exists i \leq n \text{ tal que } \lambda_i \in \sigma(a) \iff \exists \mu : \lambda_i \in \mathbb{C} : p(\mu) = \lambda \text{ e } \mu \in \sigma(a).$$

Proposição 21.2. Se $a \in A$ e ||a|| < 1, então $1 - a \in \text{Inv } A$ e $(1 - a)^{-1} = \sum_{n=0}^{\infty} a^n$.

Demostração.

$$\left\| \sum_{n=m}^{n} a^{n} \right\| \leq \sum_{n=m}^{k} \|a^{n}\|$$

$$\leq \sum_{n=m}^{k} \|a\|^{n}$$

$$\leq \frac{\|a\|}{1 - \|a\|}$$

Logo, como A é completo,

$$b = \sum_{n=0}^{\infty} a^n \in A.$$

Segue que

$$(1-a)b = \lim_{k \to \infty} (1-a) \left(\sum_{n=0}^{k} a^n \right)$$

= $\lim_{k \to \infty} (1+a+\ldots+a^k-a-a^2-\ldots-a^{k+1})$
= $\lim_{k \to \infty} 1-a^{k+1} = 1$

Corolário 21.3. Inv A é aberto.

Demostração. Fixe $a \in \text{Inv } A$. Seja ||a - b|| <

$$||1 - ba^{-1}|| = ||(a - b)a^{-1}||$$

 $\leq ||a - b|| ||a^{-1}||$
 < 1

 $\log b^{-1} a \operatorname{Inv}(A) \dots, b \in \operatorname{Inv}(A).$

Teorema 21.4. A função

$$\operatorname{Inv} a \in \operatorname{Inv}(A) \mapsto a^{-1} \in \operatorname{Inv}(A)$$

é diferenciável.

Observação 21.1 (Relembre). Sejam X e Y espaços de Banach e $f: X \to Y$. f é diferenciável en $x \in X$ se existe $L \in \mathcal{L}(X,Y)$ tal que

$$\lim_{h \to 0} \frac{\|f(x+h) - f(x) - L(n)\|}{\|h\|}.$$

Demostração. Vamos mostrar que

$$Inv'(a)(b) = a^{-1}ba^{-1}.$$

Logo

$$\begin{split} \|(a+b)^{-1}-a^{-1}+a^{-1}ba^{-1}\| &= \|(1-a^{-1}b)^{-1}a^{-1}+a^{-1}ba^{-1}\| \\ &\leq \|(1+a^{-1}b)-a^{-1}-a^{-1}b\|\|a^{-1}\| & (\|a^{-1}b\|<1) \\ &= \left\|\sum_{n=0}^{\infty} (-1)^n (a^{-1}b)^n - 1 + a^{-1}b\right\| \|a^{-1}\| \\ &\leq \sum_{n=2}^{\infty} \|a^{-1}b\|^n \|a^{-1}\| \\ &= \frac{\|a^{-1}b\|^2}{1-\|a^{-1}b\|} \|a^{-1}\| \\ &(\|a^{-1}b\|<1/2) \\ &\leq 2\|a^{-1}\|^3 \|b\|^2. \end{split}$$

Logo

$$\lim_{b \to 0} \frac{\|(a+b)^{-1} - a^{-1} + a^{-1}ba^{-1}}{\|b\|} = 0.$$

Teorema 21.5 (Gelfand). $\sigma(a)$ é um compacto não vazío para todo $a \in A$. Mais ainda,

$$\sigma(a) \subseteq \{z \in \mathbb{C} : |z| \le ||a||\} = ||a||B_{\mathbb{C}}.$$

Demostração. (\subseteq) Suponha que $\lambda \in \mathbb{C}$ é tal que $|\lambda^{-1}| > ||a||$. Logo $||\lambda^{-1}a|| < 1$ e portanto

$$1 - \lambda^{-1}a$$

é inversível. Portanto,

 $a - \lambda$ é inversível

e $\lambda \notin \sigma(a)$.

 $(\sigma(a))$ é fechado) Como Inv(A) é aberto em A,

$$\mathbb{C} \setminus \sigma(a) = \{ \lambda \in \mathbb{C} : a - \lambda \in \text{Inv } A \}$$

 \acute{e} aberto em \mathbb{C} .

 $(\sigma(a) \neq \emptyset)$ Suponha $\sigma(a) = \emptyset$. Podemos definir

$$\varphi: \mathbb{C} \to A$$

 $\lambda \mapsto (a - \lambda)^{-1}.$

Como φ é diferenciável, segue que $f \circ \varphi : \mathbb{C} \to \mathbb{C}$ é uma função inteira para todo $f \in A^*$.

Pelo teorema de Liouville, se φ for limitada, então $f\circ \varphi$ seria constante para todo $f\in A^*$. Em particular, teríamos

$$f(\varphi(0)) = f(\varphi(1)) \quad \forall f \in A^*,$$

ou bem,

$$f(a^{-1}) = f((a-1)^n) \quad \forall f \in A^*.$$

Por Hahn-Banach,

$$a^{-1} = (a-1)^{-1} \implies a = a-1$$

que é absurdo.

 $(\varphi$ é limitada) Seja λ com $|\lambda|>2\|a\|.$ Note que

$$\|(1 - \lambda^{-1}a)^{-1} - 1\| \le \sum_{n=1} \infty \|\lambda^{-1}a\| < 1.$$

Logo,

$$\|(1-\lambda^{-1}a)^{-1}\| < 2.$$

Portanto,

$$\|(a-\lambda)^{-1}\| = \|(\lambda^{-1}a-1)\||\lambda^{-1}| \le \frac{2\cdot 1}{2\|a\|} = \frac{1}{\|a\|}.$$

Corolário 21.6. Seja A uma álgebra de Banach com unidade tal que

$$Inv(A) = A \setminus \{0\}.$$

Então

$$A \cong \mathbb{C}$$
.

Definição. Seja $a \in A$. O raio espectral de a é

$$r(a) = \sup_{\lambda \in \sigma(a)} |\lambda|$$

(O radio do menor circulo centrado em zero que contém o espectro.)

Exemplos.

1.
$$f \in C(K), r(f) = ||f||_{\infty}.$$

$$2. \ r \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = 0.$$

3. $r(a) \leq ||a||$.

Teorema 21.7.

$$r(a) = \lim_{n \to \infty} ||a^n||^{1/n} = \inf_{n \in \mathbb{N}} ||a^n||^{1/n}.$$

Demostração. Se $\lambda \in \sigma(a)$, $\lambda^n \in \sigma(a^n)$. Logo $|\lambda^n| \leq \|a^n\|$ para todo $n \in \mathbb{N}$. Temos

$$\lambda \le \|a^n\|^{1/n} \quad \forall n \in \mathbb{N}.$$

Logo,

$$r(a) \le \inf_n \|a^n\|^{1/n}.$$

Resta mostrar que

$$\limsup \|a^n\|^{1/n} \le r(a).$$

Vamos mostrar que se $|\lambda| > r(a)$, então

$$\limsup \|a^n\|^{1/n} \le |\lambda|.$$

Defina

$$\Delta = \{z \in \mathbb{C} : |z| < 1/r(a)\}.$$

Afirmação. Para todo $\lambda \in A$,

$$(\lambda^n a^n)_n$$

é limitada.

Demostração. Dado $f \in A^*$, defina

$$\lambda \in \Delta \mapsto f((1 - \lambda a)^{-1})$$

que está bem definido, pois

$$\lambda < 1/k \iff \lambda^{-1} > k$$
 (...?).

Logo existe $(\lambda_n) \in \text{tal que}$

$$f((a - \lambda a)^{-1}) = \sum_{n=1}^{\infty} \lambda_n \lambda^n.$$

Se $|\lambda| < \frac{1}{\|a\|}$, então

$$(1 - \lambda a)^{-1} = \sum_{n=0}^{\infty} \lambda^n a^n.$$

Logo,

$$f((1 - \lambda a)^{-1}) = \sum_{n=0}^{\infty} f(a^n) \lambda^n.$$

Assim, temos dos séries iguais, de modo que os coeficientes são iguais (usando análise complexa). Logo,

$$f(a^n) = \lambda_n \quad \forall n \in \mathbb{N}.$$

Logo, $(f(a^n)\lambda^n)_n$ é limitada para toda $\lambda \in \Delta$ e para todo $f \in A^*$. Pelo teorema de Banach-Steinhaus, $(\lambda^n a^n)_n$ é limitado. Com isso provamos a afirmação.

Seja $|\lambda|>R(A)$. Logo, $\lambda\in\Delta$. Pela afirmação $(\lambda^na^n)_n$ e limitada. Pegue M>0 tal que

$$\|\lambda^n a^n\| \le M \quad \forall n \in N.$$

Então

$$||a^n||^{1/n} \le M^{1/n} |\lambda^{-1} \longrightarrow |\lambda^{-1}|.$$

Logo

$$\limsup \|a^n\|^{1/n} \le |\lambda^{-1}|.$$

Por fim,

$$\limsup_{n \to \infty} \|a^n\|^{1/n} \le r(a).$$

Exemplo. Considere

$$A = \{ f \in C[0,1] : f \notin C^1 \}$$

normado de

$$||f|| = ||f||_{\infty} + ||f'||_{\infty}.$$

A norma está bem definida e é completa. Então, considerando

$$z:z\in [0,1]\mapsto z\in \mathbb{C}.$$

Temos que

$$||z^n|| = 1 + n \quad \forall n \in \mathbb{N},$$

e assim

$$r(z) = \lim_{n} (1+n)^{1/n} = 1 < 2 = ||z||.$$

Teorema 21.8. Seja A uma álgebra de Banach com unidade e $B \subseteq A$ subalgebra fechada com $1_A \in B$.

- 1. Inv B é fechado e aberto em $B \cap \text{Inv } A$.
- 2. Se $b \in B$, então

$$\sigma_A(b) \subseteq \sigma_B(b)$$
 e $\partial \sigma_B(b) \subseteq \partial \sigma_A(a)$.

3. Se $b \in B$ e $\mathbb{C} \backslash \sigma_A(b)$ é conexo então

$$\sigma_A(b) = \sigma_B(b)$$
.

Demostração.

1. Inv B é aberto em B e Inv A é aberto em A, assim, Inv B é aberto em $B \cap \text{Inv } A$. Para ver que é fechado pegue $(b_n) \subseteq \text{Inv } B$ tal que $b_n \to b \in B \cap \text{Inv } B$. Logo,

$$b_n^{-1} \rightarrow b^{-1}.$$

Como B é fechada, $b^{-1} \in B$, assim $\forall n \in \mathbb{N}, b^{-1} \in B$, e $b \in \text{Inv } B$.

2. Como Inv $B \subseteq \text{Inv } A$,

$$\sigma_A(b) \subseteq \sigma_B(b)$$
.

Se $\lambda \in \partial \sigma_B(b)$ pegue $(\lambda_n) \subseteq \mathbb{C} \setminus \sigma_B(b)$ tal que $\lambda_n \to \lambda$. Logo $(\lambda_n) \subseteq \mathbb{C} \setminus \sigma_A(b)$).

Precisamos mostrar que $\lambda \in \sigma_A(b)$. Suponha que não. Então $(b - \lambda_n) \subseteq \text{Inv}(A)$ e $b - \lambda_n \to b - \lambda \in B \cap \text{Inv } A$. Por 1., $b - \lambda \in \text{Inv } B$, contradição.

3. Por 1. e 2.,

$$\mathbb{C}\backslash\sigma_B(b)\subseteq\mathbb{C}\backslash\sigma_A(b)$$

e $\mathbb{C}\backslash\sigma_B(b)$ é fechado e aberto em $\mathbb{C}\backslash\sigma_A(b)$.

Exercício. Mostre que existe uma álgebra de Banach com unidade A e uma subalgebra B com $1_A \in B$ e $b \in B$ tal que $b^{-1} \in A \backslash B$.

Exemplo. Seja A a álgebra do disco,

$$A = \{ f : \mathbb{D} \to \mathbb{C} | f \in C(\mathbb{D}) \text{ e } f \text{ \'e anal\'itica em } \mathbb{D} \}.$$

Considere o mapa

$$\phi: f \in A \mapsto f|_{\partial \mathbb{D}} \in C(\partial \mathbb{D}).$$

Seja $B = \operatorname{img} \phi$. Note que $B = \operatorname{subalgebra}$ de Banach de $C(\partial \mathbb{D})$ gerada por 1 e z.

Temos que

$$\sigma_{C(\partial \mathbb{D})}(z) = \partial \mathbb{D}$$

e

$$\sigma_A(z) = \sigma_B(z) = \mathbb{D}.$$

22 Exponencial de elementos em álgebras de Banach

Definição. Seja A um álgebra de Banach com unidade. Se $a \in A$, escrevemos

$$e^a = \sum_{n=0}^{\infty} \frac{a^n}{n!}.$$

Teorema 22.1. A álgebra de Banach com unidade.

1. Seja $a \in A$, $f : \mathbb{R} \to A$, f(0) = 1, $f'(t) = af(t) \ \forall t$. Então,

$$f(t) = e^{ta} \quad \forall t \in \mathbb{R}.$$

- 2. $(e^a)^{-1} = e^{-a}$, ie. $(e^a)^{-1}$ é inversível e a sua inversa é e^{-a} .
- 3. $e^{ab} = e^a e^b$ se ab = ba.

Demostração.

1. Primeramente note que $g(t) = e^{ta}$ satisfaz as mesmas propiriedades de f. Exercício (e converge uniformemente, assim pode diferenciar...).

Defina

$$h(t) = g(-t)f(t).$$

A regla da cadiea funçõa igual... usar Hahn-Banach para extender todos os funcionais...?.

Note que

$$h'(t) = -g'(t)f(t) + g(-t)f'(t) = -ae^{-ta}f(t) + e^{-ta}af(g) = a$$

pois as potencias de a comutam.

Logo,

$$e^{-ta}f(t) = 1 \quad \forall t \in \mathbb{R}.$$

Portanto,

$$e^{-ta}e^{ta} = e^{ta}e^{-ta} = 1 \quad \forall t \in \mathbb{R}.$$

Mais ainda,

$$=e^{ta}.$$

- 2. Contido no antérior argumento.
- 3. Defina $g(t)=e^{ta}e^{ta}$ para $t\in\mathbb{R}$. Então
 - g(0) = 1.

•

$$g'(t) = ae^{ta}e^{ta} + e^{ta}be^{tb}$$
$$= (a+b)e^{ta}e^{tb}$$
$$= (a+b)g(t)$$

Por 1, $g(t) = e^{t(a+b)}$.

23 Teorema espectral para operadores compactos

A nossa meta é provar o seguinte:

Teorema 23.1. Seja X um espaço de Banach, $T \in \mathcal{L}(X)$ compacto. Então

- 1. $\sigma(T)$ é enumerável.
- 2. Se $\lambda \in \sigma(T) \setminus \{0\}$, λ é um ponto isolado de $\sigma(T)$.
- 3. Se $\lambda \in \sigma(T) \setminus \{0\}$, λ é um autovalor de T.

Assim, o único ponto de acumulação de um operador compacto é zero.

Exemplos.

- 1. Operadores de posto finito.
- 2. Seja $k \in C([0, 1]^2)$. Defina

$$T_k: C[0,1] \to C[0,1]$$

$$(T_k f) x = \int_0^1 k(x,t) f(y) dy \quad \forall x \in [0,1]$$

(T_k está ben definido) $x, y \in [0, 1], f \in C[0, 1]$, temos

$$|(T_k f)x - (T_k f)y| \le \int_0^1 |k(x,t) - k(y,t)| |f(t)| dt$$

$$\le ||f|| \sup_t |k(x,t) - k(y,t)|.$$

Como k é uniformemente contínua, isso implica que $T_k(f)$ também é.

 $(T_k \text{ \'e limitado}) |(T_n f)x| \le ||f|| \sup_{x,t} |k(x,t)|.$

(T_k é compacto) $T_k(B_{C[0,1]})\subseteq C[0,1]$ é para compacto. Por Arzelá-Ascoli, basta que $T_k(B_{C[0,1]})$ é equicontínua e pontoalmente limitado. De fato, já mostramos ambas.

Exercício.

- 1. $T \in \mathcal{L}(X,Y)$, $S \in \mathcal{L}(Y,Z)$. Se T ou S forem compactos, a composição deles $S \circ T$ também é compacto.
- 2. K(X) é um ideal fechado de $\mathcal{L}(X)$.
- 3. $K(X) = \mathcal{L}(X)$ se e somente se dim $X < \infty$.
- 4. $T \in K(X,Y)$ se e somente se $T^* \in K(Y^*,X^*)$.

Teorema 23.2. Seja $T \in K(X)$ e $\lambda \in \mathbb{C} \setminus \{0\}$.

- 1. $ker(T \lambda)$ tem dimensão finita.
- 2. $\operatorname{img}(T-\lambda)$ é fechado e $\operatorname{codim}\operatorname{img}(T-\lambda) = \dim\ker(T^*-\lambda)$. Em particular $\operatorname{img}(T-\lambda)$ tem codimensão finita.

Demostração.

- 1. $T|_{\ker(T-\lambda)} = \lambda \operatorname{Id}|_{\ker(T-\lambda)}$. Como T é compacto e $\lambda \neq 0$, $\operatorname{Id}_{\ker(T-\lambda)}$ é compacta, assim $\dim \ker(T-\lambda) < \infty$.
- 2. Como $Z=\ker(T-\lambda)$ tem dimensão finita, $\exists Y\subseteq X$ subespaço fechado tal que $X=Z\oplus Y$.

Note que

$$img(T - \lambda) = img(T - \lambda)|_{Y}.$$

Exercício 23.0.1. Suponha $E \to F$, $\delta > 0$ e $||Sx|| \ge \delta ||x||$, então $\operatorname{img}(S)$ é fechado.

Para obter uma contradição, suponha que as hipóteses do exercício não estão satisfeitas. Então existe uma sequência $(x_n)\subseteq \partial B_Y$ tal que

$$||Tx_n - \lambda x_n|| \to 0.$$

Como T é compacto, podemos supor que (Tx_n) é Cauchy. Como $\lambda \neq 0$, podemos escrever

$$x_n = \frac{1}{\lambda}(Tx_n - (T - \lambda)x_n)$$

e concluir que (x_n) é Cauchy. Defina

$$x = \lim_{n} x_n$$
.

Portanto, $Tx = \lambda x$, e assim $x \in \ker(T - \lambda) = Z$.

Por outro lado, como $(x_n) \subseteq Y$ e Y fechado, $x \in Y$. Assim, x = 0, absurdo pois a sequência está contida em ∂B_Y .

Para comprovar a seguite afirmação em 2., considere o quociente

$$\pi: X \to X/\operatorname{img}(T - \lambda).$$

Afirmação.

$$img \pi^* = \ker(T^* - \lambda).$$

Demostração.

(⊆) Só note que

$$(T^* - \lambda)\pi^*\xi(y) = \pi^*\xi(Ty - \lambda y)$$

= $\xi(\pi(Ty - \lambda y)).$

(⊇) Seja $x^* \in \ker(T^* - \lambda)$. Então

$$x^*|_{\operatorname{img}(T-\lambda)} = 0.$$

Logo, podemos definir um funcional $\xi \in X/\operatorname{img}(T-\lambda)^*$ tal que

$$\pi^*(\xi) = x^*.$$

Como π^* é injetiva,

$$\dim \operatorname{img} \pi^* = \dim(X/\operatorname{img}(T - \lambda)).$$

Portanto,

$$\dim(X/\operatorname{img}(T-\lambda)) = \dim \ker(T^* - \lambda).$$

Definição. Seja $T \in \mathcal{L}(X,Y)$ tal que

- 1. $\dim \ker T < \infty$.
- 2. $\operatorname{codim} \operatorname{img} T < \infty$.

Então T é chamado de um *operador Fredholm*.

Lema 23.3. Seja $T \in K(X)$ e $\lambda \in \mathbb{C} \setminus \{0\}$. Então

1. Existe $m \in \mathbb{N}$ tal que

$$\ker(T-\lambda)^n = \ker(T-\lambda)^{n+1}.$$

2. Existe $n \in \mathbb{N}$ tal que

$$img(T - \lambda)^n = img(T - \lambda)^{n+1}$$

Observação 23.1. $\ker T^n \subseteq \ker T^{n+1}$ e $\operatorname{img} T^n \supseteq \operatorname{img} T^{n+1}$.

Demostração. Suponha falso, ie.

$$\ker(T-\lambda)^n \subseteq \ker(T-\lambda)^{n+1} \quad \forall n \in \mathbb{N}.$$

Pelo lema de Riesz, existe $(x_n) \subseteq \partial B_X$ tal que

- 1. $x_n \in \ker(T \lambda)^n$.
- 2. $d(x_{n+1}, \ker(T-\lambda)^n) > 1/2$.

Afirmação. (Tx_n) não possui uma subsequência convergente.

Note que

$$Tx_n - Tx_m = \lambda x_n + (T - \lambda)x_n - (T - \lambda)x_m - \lambda x_m.$$

Defina

$$z := (T - \lambda)x_n - (T - \lambda)x_m - \lambda x_m.$$

Se n > m,

$$z \in \ker(T - \lambda)^{n-1}$$
.

Como $d(x_n, \ker(T - \lambda)^{n-1}) > 1/2$,

$$||Tx_n - Tx_m|| = ||\lambda x_n + z||$$

$$= |\lambda| \left| |x_n + \frac{z}{\lambda}| \right|$$

$$> |\lambda|/2$$

O item 2, exercício.

Exercício. Se S é Fredholm, o lema anterior vale substituindo $T-\lambda$ por S? Considere o shift.

Definição. Seja $T \in \mathcal{L}(X,Y)$ Fredholm. O *índice* de T é dado por

$$\operatorname{ind}(T) = \dim \ker T - \operatorname{codim} \operatorname{img} T.$$

Teorema 23.4. Se $T \in \mathcal{L}(X,Y)$ e $S \in \mathcal{L}(Y,Z)$ são Fredholm, então

- 1. $S \circ T$ é Fredholm.
- 2. $\operatorname{ind}(ST) = \operatorname{ind} S + \operatorname{ind} T$.

Primeiro vamos provar:

Proposição 23.5. Seja $T \in \mathcal{L}(X,Y)$ tal que existe $Z \subseteq Y$ fechado tal que

$$Y = Z \oplus \operatorname{img} T$$
 (algebricamente).

Então img T é fechado.

Demostração. Substituindo T por

$$\tilde{T}: [x] \in X / \ker T \mapsto Tx \in Y,$$

podemos supor que T é injetivo. Para usar o Teorema da Aplicação Aberta, defina

$$S:X\oplus Z\to Y$$

como

$$S(x,y) = Tx + y.$$

Agora S é uma bijecção contínua, assim pelo Teorama da Aplicação Aberta ele é contínua. Logo, se $x \in X$,

$$||x|| = ||S^{-1}Tx||$$

$$\leq ||S^{-1}|| ||Tx||$$

Pelo exercício 23.0.1, img T é fechada.

Prova do teorema 23.4. Usando as hipóteses e a proposição anterior, sabemos que existem subespaços fechados $Y_1, Y_2, Y_3 \subseteq Y$ tal que

- $\operatorname{img} T = (\ker S \cap \operatorname{img} T) \oplus Y_1$.
- $\ker S = (\ker S \cap \operatorname{img} T) \oplus Y_2$.
- $Y = \operatorname{img} T \oplus Y_2 \oplus Y_3$.

Logo,

$$\dim \ker(ST) = \dim \ker T + \dim S \cap \operatorname{img} T.$$

(Isso segue de que

$$x \in \ker(ST) \mapsto Tx \in \ker S \cap \operatorname{img} T$$

é sobrejetiva.)

Note que

$$img S = S(Y) = S(Y_1) + S(Y_3)$$

e dim $Y_3 < \infty$.

Logo

$$S(Y) = S(T(X)) + S(Y_3)$$

e como $\operatorname{codim} S(Y) < \infty$, segue que

$$\operatorname{codim} ST(X) < \infty.$$

Observação 23.2. Nossa meta é mostrar que

$$\operatorname{ind} ST = \operatorname{ind} T + \operatorname{ind} S$$
,

ou seja

$$\dim \ker(ST) + \operatorname{codim} \operatorname{img} T + \operatorname{codim} \operatorname{img} T$$

= $\operatorname{codim} \operatorname{img}(ST) + \dim \ker T + \dim \ker S$.

O que temos até agora é que

$$\dim \ker(ST) + \operatorname{codim} \operatorname{img} T + \operatorname{codim} \operatorname{img} T$$

 $=\dim \ker T + \dim \ker S \cap \operatorname{img} T + \operatorname{codim} \operatorname{img} T + \operatorname{codim} \operatorname{img} S$

 $= \dim \ker T + \dim \ker S \cap \operatorname{img} T + \dim Y_2 + \dim Y_3 + \operatorname{codim} \operatorname{img} S$

 $= \dim \ker T + \dim Y_2 + \dim Y_3 + \operatorname{codim} \operatorname{img} S$

 $= \dim \ker T + \dim Y_2 + \dim Y_3 + \dim S(Y_3) + \operatorname{codim} \operatorname{img} S$

 $= \dim \ker T + \dim \ker S + \operatorname{codim} \operatorname{img}(ST)$

 $= \operatorname{codim} \operatorname{img}(ST) + \operatorname{dim} \ker T + \operatorname{dim} \ker S.$

Corolário 23.6. Se $T \in \mathcal{L}(X)$ é Fredholm e $n \in \mathbb{N}$, então

$$\operatorname{ind}(T^n) = n \operatorname{ind} T.$$

Teorema 23.7. Sejam $T \in K(X)$ e $\lambda \in \mathbb{C} \setminus \{0\}$.

1.
$$\operatorname{ind}(T - \lambda) = 0$$
.

- 2. (Alternativa de Fredholm.) $T \lambda$ é injetivo se e somente se $T \lambda$ for sobrejetivo.
- 3. Seja $n \in \mathbb{N}$ o menor natural tal que

$$\ker(T-\lambda)^n = \ker(T-\lambda)^{n+1},$$

então

$$X = \ker(T - \lambda)^n \oplus \operatorname{img}(T - \lambda)^n.$$

Demostração.

1. Fixe $m \in \mathbb{N}$ tal que

$$\operatorname{ind}(T - \lambda)^m = \operatorname{img}(T - \lambda)^{m+1}.$$

Pegue i, j distintos e maiores que $\max\{n, m\}$.

Logo,

$$\ker(T-\lambda)^i = \ker(T-\lambda)^j$$

e

$$img(T - \lambda)^i = img(T - \lambda)^j$$
,

assim

$$\operatorname{ind}(T - \lambda)^i = \operatorname{ind}(T - \lambda)^j$$

e

$$\operatorname{ind}(T - \lambda) = j \operatorname{ind}(T - \lambda).$$

Como $i \neq j$,

$$ind(T - \lambda) = 0.$$

- 2. Imediato.
- 3.

Exercício. $img(T - \lambda)^n$ é fechado para todo $n \in \mathbb{N}$.

Afirmação.
$$\ker(T-\lambda)^n \cap \operatorname{img}(T-\lambda)^n = \{0\}.$$

Sponha que x está nessa interseção. Logo existe $y \in X$ tal que

$$x = (T - \lambda)^n y.$$

Mas $(T - \lambda)^n x = 0$, logo

$$(T - \lambda)^{2n} y = 0.$$

Como

$$\ker(T - \lambda)^{2n} = \ker(T - \lambda)^n,$$

e assim
$$(T - \lambda)^n y = 0$$
 e $x = 0$.

Por 1, e pelo corolário anterior,

$$ind(T - \lambda)^n = 0.$$

Logo

$$\dim \ker (T - \lambda)^n = \operatorname{codim} \operatorname{img} (T - \lambda)^n.$$

Como

$$\ker(T-\lambda)^n \cap \operatorname{img}(T-\lambda)^n = \{0\}.$$

Segue que

$$X = \ker(T - \lambda)^n + \operatorname{img}(T - \lambda)^n.$$

Finalmente,

Teorema 23.8 (espectral de operadores compactos). Seja X Banach e $T \in K(X)$.

- 1. Se $\lambda \in \sigma(T) \setminus \{0\}$, então λ é autovalor de T.
- 2. Se $\lambda \in \sigma(T) \setminus \{0\}$, λ é ponto isolado de $\sigma(T)$.
- 3. $\sigma(T)$ é enumerável.

Exercício. Sejam Y e Z Banach e $S_1 \in \mathcal{L}(Y)$ e $S_2 \in \mathcal{L}(Z)$. Defina $X := Y \oplus Z$ e um operador

$$T:(y,z)\in Y\oplus Z=X\mapsto (S_1y,S_2z)\in Y\oplus Z=X.$$

Então

$$\sigma_{\mathcal{L}(X)}(T) = \sigma_{\mathcal{L}(Y)}(S_1) \cup \sigma_{\mathcal{L}(Z)}(S_2).$$

Demostração.

- 1. Como $\lambda \in \sigma(T)$, $T-\lambda$ é não inversível. Como T é compacto e $\lambda \neq 0$, se $T-\lambda$ é injetivo, é também bijetivo. Pelo Teorema da Aplicação Aberta, ele é inversível, que não é possível. Logo $T-\lambda$ não é injetivo, ou seja, λ é autovalor de T.
- 2. Pegue $n \in \mathbb{N}$ tal que

$$X = \underbrace{\ker(T-\lambda)^n}_{Y} \oplus \underbrace{\mathrm{img}(T-\lambda)^n}_{Z}.$$

Note que $T(Y) \subseteq Y$ e $T(Z) \subseteq Z$.

Logo,

$$T = (T|_Y, T_Z) : (y, z) \in Y \oplus Z \mapsto (T|_Y y, T|_Z z) \in Y \oplus Z.$$

Afirmação. $\sigma_{\mathcal{L}(Y)}(T|_Y) = \{\lambda\}.$

Por definição de Y,

$$(T|_Y - \lambda \operatorname{Id}_Y)^n = 0.$$

Como o espectro comuta com polínomios, ie., " $\sigma(p)=p\sigma$ ", considerando

$$p(z) = (z - \lambda)^n,$$

obtemos que

$$p(\sigma(T|_Y)) = \sigma(p(T|_Y)) = \sigma(0) = \{0\},\$$

e assim

$$\sigma(T|_Y) = \{\lambda\}.$$

Note que $(T|_Z - \lambda \operatorname{Id}_Z)^n$ é inversível: segue da definição de $X = Y \oplus Z$ e do Teorema da Aplicação Aberta.

Logo $T|_Z - \lambda \operatorname{Id}_Z$ é inversível, ie.

$$\lambda \notin \sigma_{\mathcal{L}(Z)}(T|_Z).$$

Pelo exercício,

$$\sigma(T)\setminus\{\lambda\}=\sigma_{\mathcal{L}(Z)}(T|_Z).$$

Como $\sigma_{\mathcal{L}(Z)}(T|_Z)$ é fechado, $\{\lambda\}$ é aberto em $\sigma(T)$.

3. Considere a coberta aberta

$$\sigma(T) = \bigcup_{\lambda \in \sigma(T) \setminus \{0\}} \{\lambda\} \cup (B_{1/n} \cap \sigma(T)).$$

Concluir.

Teorema 23.9 (Atkinson). Seja X um espaço de Banach de dimensão infinita e

$$\pi: \mathcal{L}(X) \to \mathcal{L}(X)/K(X)$$

a projeção na álgebra de Calkin. Então $T\in\mathcal{L}(X)$ é Fredholm se e somente se $\pi(T)\in \mathrm{Inv}(X/K(X)).$

Lema 23.10. Seja $T \in \mathcal{L}(X)$ Fredholm. Existe $S \in \mathcal{L}(X)$ tal que

- 1. 1 = ST, 1 TS tem posto finito.
- 2. ind $S = -\operatorname{ind} T$.
- 3. TST = S

Demostração. Como T é Fredholm, existem $X_1, X_2 \subseteq X$ tais que

$$X = X_1 \oplus \ker T$$
 e $X = \operatorname{img} T \oplus X_2$

Defina $S: X \to X$ como

$$S(x_0, x_1) = ((T|_{X_1})^{-1}(x_1), 0) \quad \forall (x_1, x_2) \in \operatorname{img} T \oplus X_2.$$

Prova do teorema 23.9. Suponha $T \in \mathcal{L}(X)$ é Fredholm. Pegue S como no lema. Logo,

$$0 = \pi(1) - \pi(S)\pi(T)$$
 e $0 = \pi(1) - \pi(T)\pi(S)$,

ou seja,

$$\pi(T)^{-1} = \pi(S).$$

Suponga $\pi(T) \in \operatorname{img}(\mathcal{L}(X)(K(X)))$. Logo existe $S \in \mathcal{L}(X)$ tal que

$$\pi(S)\pi(T) = \pi(T)\pi(S) = \pi(1).$$

Portanto,

$$W = 1 - ST$$
 e $W' = 1 - TS$

são compactos.

Note que

$$\ker T \subseteq \ker(W-1)$$
.

Como W é compacto, $\ker(W-1)$ tem dimensão finita, logo, $\dim \ker T < \infty$.

Por outro lado, como

$$img(W-1) \subseteq img T$$
,

segue que

$$\operatorname{codim}(\operatorname{img} T) < \infty.$$

Teorema 23.11. Seja X Banach de dimensão infinita e denote o conjunto de operadores Fredholm em X por Φ .

- 1. Φ é aberto.
- 2. $T \in \Phi \to \operatorname{ind} T \in \mathbb{Z}$ é contínuo.

Demostração.

1. Seja $\pi: \mathcal{L}(X) \to \mathcal{L}(X)/K(X)$ o quociente. Então

$$\Phi = \pi^{-1}(\operatorname{Inv}(\mathcal{L}(X)/K(X))).$$

2. Sejam $T\in\Phi$, $S\in\Phi$ tais que TST=T e $\operatorname{ind} S=-\operatorname{ind} T$, e $T'\in\Phi$ tal que $\|T-T'\|<\|S\|^{-1}$.

Como ||TS - T'S|| < 1,

$$W = 1 - TS + T'S$$

é inversível. Como T = TST,

$$WT = T'ST.$$

Portanto,

$$\operatorname{ind} W + \operatorname{ind} T = \operatorname{ind} T' + \operatorname{ind} S + \operatorname{ind} T.$$

Como ind W = 0, temos que

$$\operatorname{ind} T' = \operatorname{ind} S = \operatorname{ind} T.$$

Corolário 23.12. Seja $T \in \mathcal{L}(X)$ Fredholm e $S \in K(X)$. Então $\operatorname{ind}(T+S) = \operatorname{ind} T$.

Demostração. Primero notemos que pertubar um operador de Fredholm por um compacto é Fredholm, ie.

 $(T + S \in \Phi)$ Como $T \in \Phi$, $\pi(T)$ é inversível. Como $\pi(T) = \pi(T + S)$, $T + S \in \Phi$.

Como $S \in K(X)$, $tS \in K(X) \ \forall t \in \mathbb{R}$. Logo, como

$$t \in \mathbb{R} \mapsto T + tS \in \Phi$$

e

$$W \in \Phi \mapsto \operatorname{ind}(W) \in \mathbb{Z}$$

são contínuas,

$$t \in \mathbb{R} \mapsto \operatorname{ind}(T + ts) \in \mathbb{Z}$$

é constante.

Observação 23.3 (Relembre). A álgebra de Banach com unidade, então e^a existe para todo $a \in A$, ie.

$$e^a = \sum_{n=0}^{\infty} \frac{a^n}{n!}.$$

Pergunta. Quais elementos são a exponencial de alguém? Ou seja, o que é

$$\{e^a:a\in A\}$$
?

Será que é Inv(A)? Em \mathbb{C} é verdade, mais em geral, não.

Corolário 23.13. Seja $X = \ell_p, c_0$ e considere o operador shift:

$$S: X \mapsto X$$
$$e_n \mapsto e_{n+1}.$$

Seja

$$\pi: \mathcal{L}(X) \to \mathcal{L}(X)/K(X)$$

o quociente. Então

$$\pi(S) \notin \{e^a : a \in \mathcal{L}(X)/K(X)\}.$$

Demostração. (S é Fredholm) $\ker S = \{0\}$ e $\operatorname{img} S = \{(x_n) \in X : x_1 = 0\}$. Logo $\operatorname{ind}(S) = -1$.

Afirmação 23.1. Se $T \in Inv(X)$, então $\pi(S) \neq \pi(T)$.

Caso contrário, $S - T \in K(X)$. Logo

$$-1 = \operatorname{ind} S = \operatorname{ind} T = 0.$$

Suponha $\pi(S)=e^a$ para algum $a\in\mathcal{L}(X)/K(X)$. Logo $a=\pi(T)$, $T\in\mathcal{L}(X)$. Portanto

$$\pi(S) = e^{\pi(T)} = \pi(e^T).$$

24 Teorema espectral para operadores compactos e autoadjuntos

Seja H um espaço de Hilbert e $T \in \mathcal{L}(H)$. Para cada $x \in H$, considere

$$y \in H \mapsto \langle Ty, x \rangle \in \mathbb{K}$$
.

Note que ese mapa é um funcional linear. Logo, existe um único $z_x \in H$ tal que

$$\langle y, z_x \rangle = \langle Ty, x \rangle \quad \forall y \in H.$$

Definição. O *adjunto* de T é o operador $T^*: H \to H$ dado por

$$Tx = z_x \quad \forall x \in H.$$

Exercício.

- 1. $T^* \in \mathcal{L}(X)$.
- 2. Qual é a relação entre esse adjunto e o adjunto já introduzido anteriormente?

Proposição 24.1. Seja $T \in \mathcal{L}(H)$ autoadjunto.

- 1. Se $\lambda \in \mathbb{C}$ é autovalor de T, $\lambda \in \mathbb{R}$.
- 2. Sejam $\lambda, \lambda' \in \mathbb{C}$ autovalores distintos con autovetores x e x' respectivamente. Então $x \perp x'$.

Proposição 24.2. Seja $T \in \mathcal{L}(H)$ autoadjunto. Então

$$f(T) = ||T||.$$

Demostração. Exercício.

Corolário 24.3. Se $\sigma(T) = \{0\}, T = 0.$

Demostração. Sabemos que

$$r(T) = \lim_{n} ||T^*||^{1/n}.$$

Note que $||T^*T|| = ||T||^2$, pois

$$\begin{split} \|T\|^2 &= \sup_{x \in B_X} \langle Tx, Tx \rangle \\ &= \sup_{x \in B_X} \langle T^*Tx, Tx \rangle \\ &\leq \|T^*T\|. \end{split}$$

Logo

$$\begin{split} r(T) &= \lim_n \|T^{2n}\|^{1/2n} \\ &= \lim_n \|(T^*)^n - T^n\|^{1/2n} \\ &= \lim_n \|T^{2n}\|^{1/2n} \\ &= \|T\|. \end{split}$$

Teorema 24.4 (Espectral para Operadores Auto-adjuntos Compactos). Se $T \in K(H)$ é auto-adjunto então existe um conjunto maximal ortonormal composto por autovetores de T.

Em particular, existe $(\lambda_n) \subset \mathbb{R}$ e $(x_n) \subset \partial B_X$ tais que

$$Tx = \sum_{n=1}^{\infty} \lambda_n \langle x, x_n \rangle x_n \quad \forall x \in H.$$

Demostração. Para cada $\lambda \in \sigma(T)$, escreva

$$H_{\lambda} \in \ker(T - \lambda).$$

Então,

- 1. $\dim H_{\lambda} < \infty \text{ se } \lambda \neq 0.$
- 2. $H_{\lambda} \perp H_{\lambda'}$, $\lambda \neq \lambda'$.
- 3. $\sigma(T)$ é enumerável.

Defina

$$H' = \bigoplus_{\lambda \in \sigma(T)} H_{\lambda}.$$

Observação 24.1. O produto interno na soma de espaços de Hilbert é soma dos produtos internos.

Resta mostrar que H = H'.

Afirmação. $T(H') \leq H'$.

Isso segue pois

$$T(H_{\lambda}) \subseteq H_{\lambda} \quad \forall \lambda \in \sigma(T).$$

Afirmação. $T((H)^{\perp}) \subseteq (H')^{\perp}$.

Seja $y \ n(H')^{\perp}$ e $x \in H'$. Então

$$\langle Ty, x \rangle = \langle y, Tx \rangle = 0.$$

O que podemos falar sobre

$$T|_{(H')^{\perp}}(H')^{\perp} \to (H')^{\perp}.$$

Como T é compacto e auto-adjunto, $T|_{(H')^{\perp}}$ é compacto e auto-adjunto,

$$\sigma(T|_{(H')^{\perp}}) = \{0\}.$$

Logo

$$T|_{(H')^{\perp}} = 0.$$

Portanto,

$$(H')^{\perp} \subseteq H_0 = \ker T.$$

Logo, $(H')^{\perp} = \{0\}$, ie. H = H'.

25 As melhores coisas na matemática

1. Seja $f \in L^1(\mathbb{R})$. Definimos a transformada de Fourier de f como

$$\mathcal{G}_{f(\xi)} = \hat{f}(\xi) = \int_{\mathbb{R}} e^{-2\pi i \xi x} f(x) dx.$$

- Mostre que $\mathcal{F}: L^1 \to L^\infty$ é contínuo.
- $\mathcal{F}(L^1) \subset C_0(\mathbb{R})$.
- \mathcal{F} é injetiva. \mathcal{F} é surjetiva? Não. Supor que sí, usa aplicação aberta.
- 2. Considere $f\in L^1_{\mathrm{loc}}(0,1)$. (Seguindo a Brezis, $f\in L^1_{\mathrm{loc}}(\Omega)$ quando $f\chi_K\in L^1(\Omega)$ para todo $K\subseteq\Omega$ compacto.) Dizemos que g é a *derivada fraca* de f se

$$\int_0^1 f(x)\varphi'(x)dx = -\int_0^1 g(x)\varphi(x)dx, \quad \forall \varphi \in C_c^1.$$

- Mostre que se a derivada fraca de f existe, ela é única. (Notação: g = f'.)
- Dado $1 \le p \le \infty$, definimos

$$W^{1,p}(0,1) = \{ f \in L^p : f' \text{ existe e } f' \in L^p \}.$$

Então,

$$||f||_{W^{1,p}} = ||f||_p + ||f'||_p.$$

Mostre que $(W^{1,p}, \| \|_{1,p})$ é um espaço de Banach. Se 1 , é reflexivo.

3. Dado $x = (x_n)_n$, definimos a *distribução de* x como

$$\gamma_x : (0, \infty) \mapsto [0, \infty]$$
$$t \mapsto \gamma_x(t) = \#\{n \in \mathbb{N} : |x_n| > t\}$$

Prove que:

- $\gamma_{x+y}(t) \le \gamma_x\left(\frac{t}{2}\right) + \gamma_y\left(\frac{t}{2}\right)$.
- $\gamma_x(t) \le t^{-p} ||x||_{\ell^p}$ para todo $x \in \ell^p$.
- Se $x \in \ell^p$, então

$$||x||_{\ell^p} = p \int_0^\infty \gamma_x(t) t^{p-1} dt.$$

Com isso, definimos o ℓ_w^p como sendo as sequências $x=(x_n)_n$ tais que

$$\sup\{\gamma_x(t)t^p: t>0\} < \infty.$$

Prove que

- $\ell^p \not\subset \ell^p_m$.
- $\ell_w^p \subseteq \ell^q + \ell^r$ para q . Esqueça.

4. Seja $\varphi(t)$ contínua, convexa e crescente em $[0,\infty)$ com $\varphi(0)=0$. Defina o espaço

$$L^{\varphi}(\mathbb{R}) = \left\{ f: \mathbb{R} \to \mathbb{R} : \text{mesruable e } \int_{\mathbb{R}} \varphi\left(\frac{|f(x)|}{C}\right) dx < \infty, \ \, \text{para alguma } C > 0 \right\}$$

e a norma

$$||f||_{\varphi} = \inf_{C>0} \int_{\mathbb{R}} \varphi\left(\frac{|f(x)|}{C}\right) dx.$$

Mostre que

- $(L^{\varphi}, \|\ \|_{\varphi})$ é Banach. (Espaço vetorial, normado, completo.)
- $\varphi(t) = t^p \text{ para } 1 \le p < \infty$,

$$L^{\varphi} = L^p$$
.

- 5. Seja $F \leq C^0([0,1])$ fechado. A suma que $F \subseteq C^1([0,1])$. Prove que
 - $\|f'\|_{\infty} \leq C \|f\|_{\infty}$, para toda $f \in F$ e para algum C > 0.
 - $\dim F = 0$.