1 Invariant Subspaces

Theorem 1.1

If $T \in \text{Hom}(V, V)$ and $W \subseteq V$ is T-invariant, then the characteristic polynomial of T_W , $f_w(t)$, divides the characteristic polynomial of T, f(T).

Proof. Pick an ordered basis $\alpha = \{v_1, v_2, \dots, v_d\}$ of W and extend it to an ordered basis $\beta = \{v_1, \dots, v_n\}$ of V.

Then
$$[T]_{\beta} = \begin{pmatrix} [T_W]_{\alpha} & * \\ & \ddots & \\ 0 & A \end{pmatrix}$$
.

Note that

$$f(t) = \det([T]_{\beta} - tI) \tag{1}$$

$$= \det \begin{pmatrix} [T_W]_{\alpha} - tI_W & * \\ & \ddots & \\ 0 & A - tI_A \end{pmatrix}$$
 (2)

$$= \det([T_W]_{\alpha} - tI) \det(A - tI) = f_W(t) \det(A - tI)$$
(3)

Theorem 1.2

Consider $T \in \text{Hom}(V, V)$ and non-zero $v \in V$, where V is a finite-dimensional vector space. Let W be a T-cyclic subspace generated by v.

Let $d \ge 1$ be the largest integer such that $v, T(v), \ldots, T^{d-1}(v)$ are linearly independent. Then $v, T(v), \ldots, T^{d-1}(v)$ is a basis of W and $d = \dim W$.

Proof. The largest d exists, since $\dim V$ is finite.

Let
$$U = \operatorname{span}(v, T(v), \dots, T^{d-1}(v)) \subseteq W$$
.

Claim. U is T-invariant.

Proof.
$$T(c_0v + c_1T(v) + \dots + c_{d-1}T^{d-1}(v)) = c_0Tv + c_1T^2v + \dots + c_{d-1}T^dv$$

Since d is the largest integer such that $v, T(v), \ldots, T^{d-1}(v)$ are linearly independent, then c_{d-1} is non-zero, and thus $T^d(w) \in U$.

U is T-invariant, and thus if $v \in U$, then $W \subseteq U$, since W is the smallest T-invariant subspace containing v. By definition of U, $U \subseteq W$, and thus U = W.

Theorem 1.3

 $T^d + a_{d-1}T^{d-1}v + \cdots + a_1Tv + a_0v = 0$ and the characteristic polynomial of T_W is

$$f_W(t) = (-1)^d (t^d + a_{d-1}t^{d-1} + \dots + a_0)$$

Proof. Let $\beta = v, T(v), \dots, T^{d-1}(v)$.

Then

$$[T]_{\beta} = \begin{pmatrix} 0 & 0 & \dots & 0 & -a_0 \\ 1 & 0 & & & -a_1 \\ 0 & 1 & & \vdots & -a_2 \\ & \ddots & \ddots & & \vdots \\ & & & 1 & -a_{d-1} \end{pmatrix}$$

Therefore,

$$\det([T]_{\beta} - tI) = \det\begin{pmatrix} -t & 0 & \dots & 0 & -a_0 \\ 1 & -t & & & -a_1 \\ 0 & 1 & & \vdots & -a_2 \\ & \ddots & \ddots & & \vdots \\ & & 1 & -a_{d-1} - t \end{pmatrix}$$

Now we use induction on d.

If
$$d = 1$$
, $\det(-a_0 - t) = -t - a_0 = (-1)(t + a_0)$.

Suppose that the claim is true fr d-1. Consider the claim for d:

$$\det([T]_{\beta} - tI) = \det\begin{pmatrix} -t & 0 & \dots & 0 & -a_0 \\ 1 & -t & & & -a_1 \\ 0 & 1 & \vdots & -a_2 \\ & \ddots & \ddots & & \vdots \\ & & 1 & -a_{d-1} - t \end{pmatrix}$$

$$= (-t) \det\begin{pmatrix} -t & & & -a_1 \\ 1 & \vdots & & -a_2 \\ & \ddots & \ddots & & \vdots \\ & & 1 & -a_{d-1} - t \end{pmatrix} + (-a_0)(-1)^{1+d} \det\begin{pmatrix} 1 & -t & & \\ 0 & 1 & & \vdots \\ & \ddots & \ddots & & \vdots \\ & & & 1 & -a_{d-1} - t \end{pmatrix}$$

$$= -(1)^d (t^d + a_{d-1}t^{d-1} + \dots + a_1t) + (-1)^d a_0,$$

as required. \Box

Example 1.4

$$T: \mathfrak{P}_3(\mathbb{R}) \to \mathfrak{P}_3(\mathbb{R}) \tag{4}$$

$$T(f(x)) = xf'(x) - f(x)$$
(5)

If $f(x) = x^3 - 1$, then

$$T(f(x)) = x(3x^2) - (x^3 - 1) = 2x^3 + 1$$
(6)

$$T^{2}(f(x)) = T(2x^{3} + 1) = x(6x^{2}) - (2x^{3} + 1) = 4x^{3} - 1$$
(7)

Note that the first two are linearly independent, while all of three are linearly dependent.

Therefore, the *T*-cyclic subspace W generated by f(x) has a basis $\{x^3 - 1, 2x^3 + 1\}$. So $T^2(f(x)) = 4x^3 - 1 = 4x^3 - 1 = 2f + 1T(f)$, giving the characteristic polynomial of T_W as $t^2 - t - 2$.

2 Cayley-Hamilton Theorem

Theorem 2.1 (Cayley-Hamilton Theorem)

Consider $T \in \text{Hom}(V, V)$ with the characteristic polynomial f(t). Then f(T) = 0.

e.g. For the linear transformation above, the Cayley-Hamilton Theorem says that

$$T_W^2 - T_W - 2I_W = 0$$

.

Proof. We need to show that f(T)v = 0 for all $v \in V$.

Note that f(T) is a linear transformation.

If
$$v = 0$$
, $f(T)(0) = 0$.

If $v \neq 0$, let W be a T-cyclic subspace generated by v with the dimension $d = \dim W$.

By Theorem 1.3, if $v, Tv, \ldots, T^{d-1}v$ is a basis of W, then

$$T^{d}v + a_{d-1}T^{d-1}v + \dots + a_{0}v = 0$$
(8)

and the characteristic polynomial $f_W(t)$ of T_W is such as

$$f_W(t) = (-1)^d (t^d + a_{d-1}t^{d-1} + \dots + a_0)$$

.

By Equation (8) we see that $f_W(T)(v) = 0$.

By Theorem 1.1, $f_W(T)|f(t)$, and thus $f(t)=g(t)f_W(t)$ for some polynomial g(t).

Therefore, $f(T) = g(T)f_W(T)$, which gives

$$f(T)(v) = (g(T)f_W(T))(v) = g(T)(f_W(T)(v)) = 0.$$

Remark 2.2. The Cayley-Hamilton Theorem can also be applied to matrices $A \in$ $M_{n\times n}(\mathbb{F})$, which can be obtained by considering $T=L_A:\mathbb{F}^n\to\mathbb{F}^n$.

Theorem 2.3

Let $T \in \text{Hom}(V, V)$ and $V = W_1 \oplus \cdots \oplus W_k$, each subspace W_i being T-invariant. Then $f(T) = f_1(t) \cdots f_k(t)$, where f(T) is a characteristic polynomial of T and $f_i(T)$ is a characteristic polynomial of T_{W_i} .

Proof. Pick an ordered basis β_i of W_i for $i=1,\ldots,k$, and let $\beta=\beta_1\cup\cdots\cup\beta_k$. Since the sum of W_i is direct, β is a basis of V.

Order β canonically.

Then

$$[T]_{\beta} = \begin{pmatrix} [T_{W_1}]_{\beta_1} & 0 & \cdots & 0\\ 0 & [T_{W_2}]_{\beta_2} & 0 & \cdots & 0\\ & & \ddots & \\ 0 & & \cdots & [T_{W_k}]_{\beta_k} \end{pmatrix}$$
(9)

Therefore,

$$\det[T]_{\beta} = \det \begin{pmatrix} [T_{W_1}]_{\beta_1} - tI_{\beta_1} & 0 & \cdots & 0 \\ 0 & [T_{W_2}]_{\beta_2} - tI_{\beta_2} & 0 & \cdots & 0 \\ & & \ddots & & \\ 0 & \cdots & & [T_{W_k}]_{\beta_k} - tI_{\beta_k} \end{pmatrix}$$
(10)

$$= \prod_{i=1}^{k} \det([T_{W_i}]_{\beta_i} - tI_{\beta_i})$$

$$= \prod_{i=1}^{k} f_i(t)$$
(11)

$$=\prod_{i=1}^{k} f_i(t) \tag{12}$$