Patterns in Program Executions

There are many interesting patterns within programs executions

use-def pairs

```
.*; def(x); [-def(x)]*; use(x)
```

• api usage

```
[- open(f)]*; (open(f); (read(f)|write(f))*; close(f))*
```

where . matches any symbol, ; denotes sequencing, | denotes disjunction, * denotes zero-closure, and [-x] means everything except x.

Encoding Patterns as Automata

A deterministic finite-state *property* automaton is

$$P = (\Sigma, S, \delta, A, s_0, s_{trap})$$

where

 Σ is the alphabet of the property,

 $S = \{s_0, s_1, \dots, s_k\}$ is the set of property automaton states that represent equivalence classes of strings over Σ ,

 $\delta: S \times \Sigma \to S$ is the total state transition function,

 $A \subseteq S$ is the set of accepting states,

 $s_0 \in S$ is the unique start state, and

 $s_{trap} \in S$ is the unique trap state.

An Example Property Automaton

$$S = \{1, 2, 3, 4\}, A = \{1, 2, 3\}, s_0 = 1, s_{trap} = 4$$

 $\delta = \{(1, \text{invalid}, 1), (1, \text{valid}, 2), (1, \text{transaction}, 4), \ldots\}$

Questions about Patterns

One can formulate a variety of questions about how a pattern corresponds to the set of program paths

- Do all terminating paths correspond to the pattern?
- Does some path reaching a program point correspond to a pattern?
- If a pattern matches a path, what are the points on the path where the match occured?

These can be answered using variations of a state propagation flow analysis.

State Propagation - Program to Property Mapping

Let $\mathit{label}(l)$ map statements onto $\Sigma \cup \uparrow$, where \uparrow means that there is no label in Σ for l.

- e.g., $label([x := ...]^l) = def(x)$
- e.g., $label([...]^l) = valid$ if l is the first node in the true branch of [if (isValid())].

State Propagation - Summarizing Paths

A state, $s\in S$, of a property automaton symbolically encodes the set of sequences $\sigma\in \Sigma^*$ such that $\Delta(s_0,\sigma)=s$.

• where $\Delta(s_0, \sigma)$ is the composition of δ applied to the symbols in σ .

For the example, if $\sigma = \text{invalid}$, valid, transaction

• $\Delta(s_0, \sigma) = \delta(\delta(\delta(s_0, \text{invalid}), \text{valid}), \text{transaction}) = 3$

State Propagation Lattice

- $\mathcal{P}(S)$ $\bullet \sqsubseteq = \subseteq$
 - ullet $\sqcup = \cup$
 - $\bullet \perp = \emptyset$

So, we are working with a complete lattice

State Propagation Transfer Functions

Let

$$f(l,s) = \begin{cases} \Delta(s, \textit{label}(l)) & \textit{if } \textit{label}(l) \in \Sigma \\ s & \textit{if } \textit{label}(l) \notin \Sigma \end{cases}$$

then the transfer function for l is

$$f_l(S) = \bigcup_{s \in S} f(l, s)$$

Why do we use Δ and not δ in f_l ?

State Propagation as a Framework Instance

- $L = \mathcal{P}(S)$
- <u>_</u>=_
- ullet $\sqcup = \cup$
- $\bullet \perp = \emptyset$
- $\iota = \{s_0\}$
- ullet $E = \{init(G)\}$, where G is the flow graph
- F = flow(G) (forward flow problem)
- $\mathcal{F} = \{f_l : L \to L \mid \forall l \in \mathsf{Lab}_* \text{as defined above} \}$

Function space properties

Basic requirements

- ullet Contains the identity function (self-loop in Δ or $label(l)=\uparrow$)
- ullet is closed under composition ($\Delta(\Delta(s,a),b)=\Delta(s,ab)$)

Distributivity

$$\forall f \in F \forall l_1, l_2 \in L : f(l_1 \cup l_2) = f(l_1) \cup f(l_2)$$

Since f operates component-wise on ${\cal L}$

This is a slight reformulation and improvement on the result in the paper.

Recording Selected History - Lattice

Distinguish certain symbols as *label generators* and when those are encountered add the label to propagated state

- $L = \mathcal{P}(S \times (\mathsf{Lab}_* \cup \uparrow))$ (propagate pairs)
- \bullet $\sqsubseteq = \subseteq$
- $\bullet \sqcup = \cup$
- $\bullet \perp = \emptyset$
- $\iota = \{(s_0,\uparrow)\}$

Recording Selected History - Transfer Functions

$$f(l,s) = \begin{cases} (\Delta(\pi_1(s), \mathit{label}(l), l) & \text{if } \mathit{label}(l) \in \Sigma \land \\ & \mathit{label}(l) \in \text{generators} \end{cases}$$

$$f(l,s) = \begin{cases} (\Delta(\pi_1(s), \mathit{label}(l), \pi_2(s)) & \text{if } \mathit{label}(l) \in \Sigma \\ & \mathit{label}(l) \not \in \text{generators} \end{cases}$$

$$s & \text{if } \mathit{label}(l) \not \in \Sigma$$

where π_i projects the i^{th} component from a tuple.

Multiple Pattern Matching

Consider the *use-def* pair pattern

- Write down the property automaton
- How would you define *generators* to record the label of the definition for each use that is reached?

Can you define a variant of this analysis to calculate *use-def* pairs for all program variables?