Procedure followed for PCA:

PCA

- Forward the colour images to pixels after grayscaling and store it in a 2d array of XN
- * Center the data by subtracting the mean.
- * Compute covariance matrix

$$(OV_{2}, 1) \stackrel{\text{EV}}{\underset{N}{\stackrel{\text{}}{=}}} (X - \mu) (X - \mu)^{T} = CoV_{N \times N}$$

Compute the eigen ventors of cov

let v be the eigen vectors of XXT & u for XTX

$$X^T X u = \lambda u$$

 $X \times^{7} v = \lambda v$ Multiply X^{T} on both sides $X^{T} \times (X^{T} V) = \lambda (X^{T} V)$ $X^{T} \times u = \lambda u$

.. u can be replaced by X^TV

- to veconstruction.

· New features: New

New = X . Z = New N x \$N

* For reconstruction multiply the new beatures with ZT.

Old . = New + ZT = Old Nx\$N \$Nxd Nxd

* Mean Square und:

· Add the mean to the Old and Subtract it Prielwise from original x toget mean square eus.

MSE. = = = [old [i][] - x[i][]] N*d

* \$N=32, from the mean square error plot Seemed most appropriate for seconstruction as it has least mse.

For reconstructing images the old matrix must be reshaped into a 3d matrix and converted to image using PIL.

Original images and their corresponding reconstructed images for N=32

1)

6)

x-axis represents the no.of eigenvectors chosen Y-axis represents the mean square error

Mean Square Error Plot

Scatter plot for image clustering in 1D

Scatter plot for image clustering in 2D

Scatter plot for image clustering in 3D