

Applied Deep Learning

Dr. Philippe Blaettchen Bayes Business School (formerly Cass)

Preferred Networks

- Founded in 2006 by Daisuke Okanohara and Toru Nishikawa as "Preferred Infrastructure"
- Original focus: search engines and natural-language processing
- Key strength: image analysis → attention from Sony
- Pivot in 2014 to "Preferred Networks"

Strategic positioning

Source: Company documents.

How is the technology operating?

What business model might Preferred Networks use?

In groups, choose one business model for Preferred Networks and prepare arguments to defend your choice.

What are the pros and cons of each business model for a company like Preferred Networks?

What is deep learning?

Deep learning according to the case

The traditional way of extracting features: pre-defined representations

Extract features

hypothesis
$$y = w^T \phi(x)$$

Representation learning: learning the features to extract

Learn $\phi(x)$

Learn
$$w$$

$$y = w^T \phi(x)$$

 \boldsymbol{x}

So what is the magic behind deep learning?

The biological inspiration for "neural networks"

Source: Wikipedia

An abstract model of a neuron

When the combined input signals reach a certain threshold, the neuron emits an output signal

An abstract model of a neuron

When the combined input signals reach a certain threshold, the neuron emits an output signal

So where are the input signals coming from?

An abstract model of a neuron

When the combined input signals reach a certain threshold, the neuron emits an output signal

A (deep) neural network

Source: Liang

Some challenges of deep learning

Application areas

Structured problems

- Most of the examples so far in the programme
- Shallow learning good enough
- Key tool today: Gradient Boosting

Perceptual problems

- Things that humans are good at intuitively, but that are hard to teach to computers
- Shallow learning insufficient
- Key tool today: Neural Networks

Application areas

Structured problems

- Most of the examples so far in the programme
- Shallow learning good enough
- Key tool today: Gradient Boosting

Perceptual problems

- Things that humans are good at intuitively, but that are hard to teach to computers
- Shallow learning insufficient
- Key tool today: Neural Networks

- Image recognition and generation
- Speech recognition and generation
- Translation
- → Let's see it in action!

Learning objectives and modalities

General modalities

Lectures:

- Video and exercise material to study before class (broken up into digestible bits), mostly to introduce new concepts and tools. I will release videos before the live class on Moodle and update you by email
- Two hours of face-to-face lecture every week during the term. This will be **very interactive**, and you will get plenty of chance to practice your coding and learn-by-doing.

Tutorials:

- Three tutorials throughout the term, two hours each
- Focused on repeating difficult parts of the previous lecture(s) and going into more depth

Assessment

Group assignment (50%):

Mid-term project

Individual assignment (50%)

- Final project
- Individual means individual. You have to create your **own solution**. That includes the code you use.
 - If you use code blocks from outside the course materials, make sure you cite it appropriately

Homeworks

- In some weeks. Make sure to complete it in order to follow the content we will move fast!
- In two or three weeks, you can submit your answer to receive a bonus point.

Class norms

Come **prepared** to class: **lectures** learnt, **homework** done, **pre-class materials** completed, **notebooks** downloaded

Please arrive on time – or even a couple of mins ahead of schedule (I know, it's not easy at 9 am)

Please only use your computers for the task at hand: no social media, no browsing

Learning objectives of the module

Goals: Provide you with the knowledge to

- feel comfortable with the key concepts relevant to deep learning
- be aware of the most important deep learning architectures
- know how to use TensorFlow to easily create neural networks in Python
- apply deep learning tools to solve relevant business problems

How will we do this?

- Some theory to understand the most fundamental concepts underlying neural networks
- Hands-on approach to programming neural networks
- Guided use of state-of-the-art frameworks and architectures

A rough outline of the contents

- Introduction
- The necessary background: linear algebra and calculus
- Elements of neural networks
- Learning with neural networks (forward- and back-propagation)
- Using programming frameworks, especially Keras and TensorFlow
- Advanced methods for programming neural networks: gradient descent improvements, regularization, hyperparameter tuning
- Convolutional neural networks: concepts, medical diagnosis
- Convolutional neural networks: content detection, facial recognition, and avoiding bias
- Recurrent neural networks: concepts
- Recurrent neural networks: natural language processing
- Transformers: concepts and natural language processing

Communication and office hours

- Questions about assignments and homework will only be answered on the Q&A forum or during office hours
- Office hours:
- Process: you know the drill
- Time: Monday, 5pm-6pm, Link on Moodle (changes possible in some weeks, so take a look at the Moodle page first)

Sources

- Chollet, 2021, Deep Learning with Python (2nd edition)
- Goodfellow, Bengio, Courville, 2016, The Deep Learning Book: http://www.deeplearningbook.org
- Kireyev, Evgenious, Brandwein, 2019, Preferred Networks: A Deep-Learning Startup Powers the Internet of Things
- Liang, 2016, Introduction to Deep Learning: https://www.cs.princeton.edu/courses/archive/spring16/cos495/
- Wikipedia, n.d., Neuron: https://en.wikipedia.org/wiki/Neuron

