$$I^{G}(J^{PC}) = 0^{+}(4^{+})$$

OMITTED FROM SUMMARY TABLE

This entry was previously called $U_0(2350)$. Contains results mostly from formation experiments. For further production experiments see the Further States entry. See also $\rho(2150)$, $f_2(2150)$, $\rho_3(2250)$, $\rho_5(2350)$.

$f_4(2300)$ MASS

$\overline{p}p \rightarrow \pi\pi \text{ or } \overline{K}K$

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use the	e following data for average	es, fits,	limits, e	etc. • • •
~ 2314	HASAN	94	RVUE	$\overline{p}p \rightarrow \pi\pi$
~ 2300	¹ MARTIN	80 B	RVUE	
~ 2300	¹ MARTIN	80 C	RVUE	
~ 2340	² CARTER			$0.7-2.4 \ \overline{p} p \rightarrow K^- K^+$
~ 2330	DULUDE	78 B	OSPK	$1-2 \overline{p}p \rightarrow \pi^0 \pi^0$
~ 2310	³ CARTER	77	CNTR	0.7 – $2.4 \overline{p} p \rightarrow \pi \pi$
$^{1}I(J^{P})=0(4^{+})$ from	n simultaneous analysis of μ	$o\overline{p} \rightarrow$	$_{\pi^-\pi^+}$	and $\pi^0\pi^0$.
$^{2}I(J^{P})=0(4^{+})$ from	n Barrelet-zero analysis.			
$3I(J^P) = 0(4^+)$ from	amplitude analysis.			

S-CHANNEL $\overline{p}p$ or $\overline{N}N$

• • • We do not use the following data for averages, fits, limits, etc. • • • $ 2283\pm17 \\ \sim 2380 \\ 2345\pm15 \\ 2359\pm2 $ • • • We do not use the following data for averages, fits, limits, etc. • • • • $ 2283\pm17 \\ \sim 4 \text{ ANISOVICH} \\ 000 \text{ SPEC} \\ 788 \text{ CNTR } 0.97-3 \overline{p}p \rightarrow \overline{N}N \\ 77 \text{ CNTR } 0.7-2.4 \overline{p}p \rightarrow \overline{p}p \\ 5,7 \text{ ALSPECTOR } 73 \text{ CNTR } \overline{p}p \text{ S channel} $	VALUE (MeV)	DOCUMENT ID	TECIV COMMENT	
\sim 2380 5 CUTTS 78B CNTR 0.97–3 $\overline{p}p \rightarrow \overline{N}N$ 2345 \pm 15 5,6 COUPLAND 77 CNTR 0.7–2.4 $\overline{p}p \rightarrow \overline{p}p$	• • • We do not use the fo	following data for averages	es, fits, limits, etc. • •	
5.6 COUPLAND 77 CNTR 0.7 – 2.4 \overline{p} $p \rightarrow \overline{p}$ p	2283 ± 17			
	\sim 2380	⁵ CUTTS	78B CNTR 0.97–3 $\overline{p}p \rightarrow \overline{N}N$	V
2359 ± 2 5.7 ALSPECTOR 73 CNTR $\overline{p}p$ S channel	2345 ± 15			,
	2359 ± 2	^{5,7} ALSPECTOR	73 CNTR $\overline{p}p$ S channel	
2375 ± 10 ABRAMS 70 CNTR S channel \overline{N} N	2375 ± 10	ABRAMS	70 CNTR S channel $\overline{N}N$	

DOCUMENT ID

$\pi^- p \rightarrow \eta \pi \pi n$

VALUE (MeV)	DOCUMENT ID	TE	CN COM	MENT	
• • • We do not use the fo	llowing data for averages,	fits, lim	its, etc. •	• •	
$2330 \pm 20 \pm 40$	AMELIN	00 VE	S 37 π	- _p →	$n\pi^+\pi^-n$

Created: 5/30/2017 17:21

⁴ From the combined analysis of ANISOVICH 99C and ANISOVICH 99F on $\overline{p}p \to \eta \pi^0 \pi^0$, $\pi^0\pi^0$, $\eta\eta$, $\eta\eta'$, $\pi^+\pi^-$. 5 Isospins 0 and 1 not separated.

 $[\]frac{6}{2}$ From a fit to the total elastic cross section.

⁷ Referred to as U or U region by ALSPECTOR 73.

pp CENTRAL PRODUCTION

VALUE (MeV) DOCUMENT ID COMMENT

2320 ± 60 OUR ESTIMATE

• • • We do not use the following data for averages, fits, limits, etc. • • •

 2332 ± 15

BARBERIS

00F 450 $pp \rightarrow p_f \omega \omega p_s$

f₄(2300) WIDTH

$\overline{p}p \rightarrow \pi\pi \text{ or } \overline{K}K$

<i>VALUE</i> (MeV)	DOCUMENT ID		TECN	COMMENT
• • • We do not use t	he following data for average	s, fits,	limits, e	etc. • • •
~ 278	HASAN	94	RVUE	$\overline{p}p \rightarrow \pi\pi$
~ 200			RVUE	
~ 150	⁹ CARTER	78 B	CNTR	$0.7-2.4 \ \overline{p}p \rightarrow K^-K^+$
~ 210	¹⁰ CARTER	77	CNTR	0.7 – $2.4 \overline{p} p \rightarrow \pi \pi$
$8I(J^P) = 0(4^+)$ fro	om simultaneous analysis of p	$\overline{p} \rightarrow$	$\pi^-\pi^+$	and $\pi^0\pi^0$.
$9I(J^P) = 0(4^+)$ fro	om Barrelet-zero analysis.			
	om amplitude analysis.			

S-CHANNEL $\overline{p}p$ or $\overline{N}N$

VALUE (MeV)	DOCUMENT ID		TECN COMMENT
• • • We do not use the follow	wing data for averages	, fits,	limits, etc. • • •
310± 25	11 ANISOVICH	001	SPEC
$135 {+150 \atop -65}$	^{12,13} COUPLAND	77	CNTR 0.7–2.4 $\overline{p}p \rightarrow \overline{p}p$
$165 \frac{+}{-} \begin{array}{c} 18 \\ 8 \end{array}$	¹³ ALSPECTOR	73	CNTR $\overline{p}pS$ channel
~ 190	ABRAMS	70	CNTR S channel $\overline{N}N$
4.4			

 $^{^{11}}$ From the combined analysis of ANISOVICH 99C and ANISOVICH 99F on $\overline{p}p\to~\eta\,\pi^0\,\pi^0$, $_{\pi}^0$, $_{\eta}^0$, $_{\eta}^0$, $_{\eta}^{\eta}$, $_{\eta}^{\eta}$, $_{\pi}^+$, $_{\pi}^-$.

$\pi^- p \rightarrow \eta \pi \pi n$

VALUE (MeV)	DOCUMENT ID		TECN	COMMENT	
ullet $ullet$ We do not use the following	data for averages	s, fits,	limits,	etc. • • •	
$235 \pm 50 \pm 40$	AMELIN	00	VES	$37 \pi^- p \rightarrow \eta \pi^+ \pi^- n$	

pp CENTRAL PRODUCTION

VALUE (MeV) DOCUMENT ID COMMENT

250±80 OUR ESTIMATE

• • We do not use the following data for averages, fits, limits, etc.

260 \pm 57 BARBERIS 00F 450 $pp \rightarrow p_f \omega \omega p_s$

Created: 5/30/2017 17:21

 $^{^{12}\,\}mathrm{From}$ a fit to the total elastic cross section.

 $^{^{13}}$ Isospins 0 and 1 not separated.

$f_4(2300)$ DECAY MODES

	Mode	Fraction (Γ_i/Γ)
$\overline{\Gamma_1}$	ρρ	seen
Γ_2	$\omega \omega$	seen
Γ_3	$\eta\pi\pi$	seen
Γ_4	$\pi \pi$	seen
Γ ₄ Γ ₅	$K\overline{K}$	seen
Γ ₆	NN	seen

f_4 (2300) BRANCHING RATIOS

$\Gamma(ho ho)/\Gamma(\omega\omega)$				Γ_1/Γ_2
VALUE	DOCUMENT ID		COMMENT	
• • • We do not use the follow	ving data for averages	s, fits,	limits, etc. • • •	
$2.8 \!\pm\! 0.5$	BARBERIS	00F	450 $pp \rightarrow p_f \omega \omega p_S$	

$f_4(2300)$ REFERENCES

AMELIN	00	NP A668 83	D. Amelin et al.	(VES Collab.)
ANISOVICH	00J	PL B491 47	A.V. Anisovich et al.	, , , , , , , , , , , , , , , , , , ,
BARBERIS ANISOVICH	00F 99C	PL B484 198 PL B452 173	D. Barberis <i>et al.</i> A.V. Anisovich <i>et al.</i>	(WA 102 Collab.)
ANISOVICH	99F	NP A651 253	A.V. Anisovich <i>et al.</i>	
HASAN	94	PL B334 215	A. Hasan, D.V. Bugg	(LOQM)
MARTIN	80B	NP B176 355	B.R. Martin, D. Morgan	(LOUC, RHEL) JP
MARTIN	80C	NP B169 216	A.D. Martin, M.R. Pennington	(DURH) JP
CARTER	78B	NP B141 467	A.A. Carter	(LOQM)
CUTTS	78B	PR D17 16	D. Cutts et al.	(STON, WISC)
DULUDE	78B	PL 79B 335	R.S. Dulude et al.	(BROW, MIT, BARI) JP
CARTER	77	PL 67B 117	A.A. Carter et al.	(LOQM, RHEL) JP
COUPLAND	77	PL 71B 460	M. Coupland et al.	(LOQM, RHEL)
ALSPECTOR	73	PRL 30 511	J. Alspector <i>et al.</i>	(RUTG, UPNJ)
ABRAMS	70	PR D1 1917	R.J. Abrams et al.	` (BNL)

Created: 5/30/2017 17:21