Contrôle continu 1

Durée : 45 minutes (plus 15 minutes pour m'envoyer par mail

Exercice 1. Un segment initial d'un ensemble totalement ordonné (E, <) est un sous-ensemble I de E tel que

$$\forall x \in I \, \forall y \in E \, (y < x \to y \in I).$$

Un segment initial propre de (E, <) est un segment initial distinct de E.

- 1. Donner un exemple d'ensemble totalement ordonné isomorphe à un de ses segments initiaux propres.
- 2. Trouver un exemple de deux ensembles totalement ordonnés non isomorphes mais tels que chacun est isomorphe à un segment initial propre de l'autre.

- 1. Par exemple \mathbb{R} , qui est isomorphe à $(-\infty, 0)$.
- 2. Par exemple [0,1) et [0,1]. Notons que [0,1] est isomorphe à $[0,\frac{1}{2}]$ qui est un segment initial propre de [0,1).

Exercice 2. Soit < un ordre sur un ensemble A. On définit $<^*$ sur A par : $x <^* y$ si et seulement si y < x. Supposons maintenant que < est un bon ordre sur A. Montrer que A est fini si et seulement si $<^*$ est aussi un bon ordre sur A.

Notons que $<^*$ est un ordre total : pour tous les x, y, x < y ou x = y ou y < x; alors $y <^* x$ ou y = x ou $x <^* y$. Maintenant, si A est fini, alors $(A, <^*)$ est un fini ordre total, donc un bon ordre.

Pour l'autre direction, si A est infini, alors on a une extension $(\mathbb{N}, <) \longrightarrow (A, <)$, et donc $(\mathbb{N}, <^*) \longrightarrow (A, <^*)$. Mais $(\mathbb{N}, <^*)$ n'est pas bien ordonné.

Exercice 3. On rappelle qu'un réel α est algébrique s'il existe un polynôme P(X) à coefficients entiers tel que $P(\alpha) = 0$.

- 1. Montrer que l'ensemble des nombres algébriques est dénombrable.
- 2. En déduire qu'il existe un réel α qui n'est pas algébrique.

- 1. Tout d'abord, on note que l'ensemble des polynômes sur \mathbb{Z} est dénombrable, parce que Pour chaque $P \in \mathbb{Z}[X]$ on peut associer la suite (c_0, \ldots, c_n) des entiers tel que $P = \sum_{i \leq n} c_i X^i$. Deuxièmement, pour chaque P, il existe un ensemble fini Z(P) de racines de P. Alors, on obtient une fonction injectif $\{\alpha \mid \alpha \text{ est algébrique}\} \longrightarrow \bigcup_{P \in \mathbb{Z}[X] \setminus \{0\}} Z(P)$. Ce dernier ensemble est dénombrable.
- 2. Puisque l'ensemble \mathbb{R} n'est pas dénombrable, on a que $\mathbb{R} \setminus \{\alpha \mid \alpha \text{ est algébrique}\}$ n'est pas vide.