Métodos Numéricos para la Informática

Métodos numéricos para la resolución de problemas de contorno (III)

I. Arregui

Noviembre, 2014

Métodos numéricos para la resolución de problemas de contorno

Métodos de diferencias finitas para problemas bidimensionales elípticos Métodos de diferencias finitas para problemas bidimensionales parabólicos

Ecuación de Laplace

Sea un dominio $\Omega \subset \mathbb{R}^2$. Buscamos una función u, solución de:

$$\begin{cases} -\Delta u = -\left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}\right) = 0 & \text{en } \Omega \\ u = u_D & \text{en } \partial_D \Omega \\ \frac{\partial u}{\partial \mathbf{n}} = \nabla u \cdot \mathbf{n} = g & \text{en } \partial_N \Omega \end{cases}$$

- Este problema modela, por ejemplo:
 - la distribución estacionaria de temperaturas en el dominio Ω
 - lacktriangle el potencial eléctrico de una placa que ocupa el dominio Ω
- La solución analítica se conoce en casos muy concretos: dominios rectangulares o circulares con condiciones Dirichlet, por ejemplo
- ► En general, es necesario utilizar métodos numéricos

Método de diferencias finitas

Consideremos la ecuación de Laplace, con condiciones Dirichlet, en un dominio rectangular $(0,L_1)\times(0,L_2)$

Dados N > 0 y M > 0, construimos:

$$\Delta x = \frac{L_1}{N+1}, \qquad x_i = i\Delta x, \qquad i = 0, 1, \dots, N+1$$

$$\Delta y = \frac{L_2}{M+1}, \qquad y_j = j\Delta y, \qquad j = 0, 1, \dots, M+1$$

y la malla:

$$\{(x_i, y_j)/i = 0, 1, \dots, N+1, j = 0, 1, \dots, M+1\}$$

Método de diferencias finitas

Aproximamos las derivadas segundas:

$$\begin{split} \frac{\partial^2 u}{\partial x^2}(x_i, y_j) &\approx \frac{u(x_{i+1}, y_j) - 2u(x_i, y_j) + u(x_{i-1}, y_j)}{(\Delta x)^2} \\ \frac{\partial^2 u}{\partial y^2}(x_i, y_j) &\approx \frac{u(x_i, y_{j+1}) - 2u(x_i, y_j) + u(x_i, y_{j-1})}{(\Delta y)^2} \end{split}$$

introducimos las aproximaciones $u_{ij} \approx u(x_i, y_j)$ y sustituimos en la ecuación:

$$-\frac{u_{i+1,j}-2u_{i,j}+u_{i-1,j}}{(\Delta x)^2}-\frac{u_{i,j+1}-2u_{i,j}+u_{i,j-1}}{(\Delta y)^2}=0,$$

$$i=1,\ldots,N, \quad j=1,\ldots,M$$

Sea $\beta = \Delta x/\Delta y$; si multiplicamos la ecuación anterior por $(\Delta x)^2$, obtenemos:

$$-u_{i-1,j} - u_{i+1,j} - \beta^2 u_{i,j-1} - \beta^2 u_{i,j+1} + 2(1+\beta^2)u_{i,j} = 0,$$

$$i = 1, \dots, N, \quad j = 1, \dots, M$$

Se trata de un sistema de $N \times M$ ecuaciones lineales

Método de diferencias finitas

El sistema puede resolverse mediante un método directo, pero un método iterativo puede ser más eficiente.

En el caso particular con $\beta = 1$, cada ecuación es de la forma:

$$-u_{i-1,j} - u_{i+1,j} - u_{i,j-1} - u_{i,j+1} + 4u_{i,j} = 0$$

Multiplicando por $\omega > 0$, y sumando y restando $4u_{i,j}$, obtenemos:

$$4u_{i,j} = 4u_{i,j} + \omega \left(u_{i-1,j} + u_{i+1,j} + u_{i,j-1} + u_{i,j+1} - 4u_{i,j} \right)$$

lo que nos permite plantear:

Dado $u_{i,j}^0$

Para m = 1, 2, ...

$$u_{i,j}^m = u_{i,j}^{m-1} + \frac{\omega}{4} \left(u_{i-1,j}^{m-1} + u_{i+1,j}^{m-1} + u_{i,j-1}^{m-1} + u_{i,j+1}^{m-1} - 4u_{i,j}^{m-1} \right)$$

Consideremos el dominio $\Omega = (0,5) \times (0,10)$, y las condiciones de contorno:

$$u_D = \begin{cases} 100, & \text{si } y = 10 \\ 0, & \text{si } y < 10 \end{cases}$$

Tomaremos, por ejemplo, N = 4 y M = 7; entonces,

$$\Delta x = \frac{5}{N+1} = 1$$
 $\Delta y = \frac{10}{M+1} = \frac{5}{4} = 1,25$

de donde $\beta = \Delta x/\Delta y = 4/5 = 0.8$.

El sistema de ecuaciones lineales que obtenemos es:

$$i = 1, j = 1, -u_{0,1} - u_{2,1} - \beta^2 u_{1,0} - \beta^2 u_{1,2} + 2(1 + \beta^2) u_{1,1} = 0$$

$$i = 2, j = 1, -u_{1,1} - u_{3,1} - \beta^2 u_{2,0} - \beta^2 u_{2,2} + 2(1 + \beta^2) u_{2,1} = 0$$

$$i = 3, j = 1, -u_{2,1} - u_{4,1} - \beta^2 u_{3,0} - \beta^2 u_{3,2} + 2(1 + \beta^2) u_{3,1} = 0$$

$$i = 4, j = 1, -u_{3,1} - u_{5,1} - \beta^2 u_{4,0} - \beta^2 u_{4,2} + 2(1 + \beta^2) u_{4,1} = 0$$

$$i = 1, j = 2, -u_{0,2} - u_{2,2} - \beta^2 u_{1,1} - \beta^2 u_{1,3} + 2(1 + \beta^2) u_{1,2} = 0$$

$$i = 2, j = 2, -u_{1,2} - u_{3,2} - \beta^2 u_{2,1} - \beta^2 u_{2,3} + 2(1 + \beta^2) u_{2,2} = 0$$

$$i = 3, j = 2, -u_{2,2} - u_{4,2} - \beta^2 u_{3,1} - \beta^2 u_{3,3} + 2(1 + \beta^2) u_{3,2} = 0$$

$$i = 4, j = 2, -u_{3,2} - u_{5,2} - \beta^2 u_{4,1} - \beta^2 u_{4,3} + 2(1 + \beta^2) u_{4,2} = 0$$

$$i = 1, j = 3, -u_{0,3} - u_{2,3} - \beta^2 u_{1,2} - \beta^2 u_{1,4} + 2(1 + \beta^2) u_{1,3} = 0$$

$$i = 2, j = 3, -u_{1,3} - u_{3,3} - \beta^2 u_{2,2} - \beta^2 u_{2,4} + 2(1 + \beta^2) u_{2,3} = 0$$

$$\dots$$

$$i = 4, j = 7, -u_{3,7} - u_{5,7} - \beta^2 u_{4,6} - \beta^2 u_{4,8} + 2(1 + \beta^2) u_{4,7} = 0$$

y, teniendo en cuenta las condiciones de contorno,

$$i = 1, j = 1, \qquad -0 - u_{2,1} - \beta^2 0 - \beta^2 u_{1,2} + 2(1 + \beta^2) u_{1,1} = 0$$

$$i = 2, j = 1, \qquad -u_{1,1} - u_{3,1} - \beta^2 0 - \beta^2 u_{2,2} + 2(1 + \beta^2) u_{2,1} = 0$$

$$i = 3, j = 1, \qquad -u_{2,1} - u_{4,1} - \beta^2 0 - \beta^2 u_{3,2} + 2(1 + \beta^2) u_{3,1} = 0$$

$$i = 4, j = 1, \qquad -u_{3,1} - u_{5,1} - \beta^2 0 - \beta^2 u_{4,2} + 2(1 + \beta^2) u_{4,1} = 0$$

$$i = 1, j = 2, \qquad -0 - u_{2,2} - \beta^2 u_{1,1} - \beta^2 u_{1,3} + 2(1 + \beta^2) u_{1,2} = 0$$

$$i = 2, j = 2, \qquad -u_{1,2} - u_{3,2} - \beta^2 u_{2,1} - \beta^2 u_{2,3} + 2(1 + \beta^2) u_{2,2} = 0$$

$$i = 3, j = 2, \qquad -u_{2,2} - u_{4,2} - \beta^2 u_{3,1} - \beta^2 u_{3,3} + 2(1 + \beta^2) u_{3,2} = 0$$

$$i = 4, j = 2, \qquad -u_{3,2} - u_{5,2} - \beta^2 u_{4,1} - \beta^2 u_{4,3} + 2(1 + \beta^2) u_{4,2} = 0$$

$$i = 1, j = 3, \qquad -u_{2,3} - \beta^2 u_{1,2} - \beta^2 u_{1,4} + 2(1 + \beta^2) u_{1,3} = 0$$

$$i = 2, j = 3, \qquad -u_{1,3} - u_{3,3} - \beta^2 u_{2,2} - \beta^2 u_{2,4} + 2(1 + \beta^2) u_{2,3} = 0$$

$$\dots \qquad \dots$$

$$i = 4, j = 7, \qquad -u_{3,7} - u_{5,7} - \beta^2 u_{4,6} - \beta^2 100 + 2(1 + \beta^2) u_{4,7} = 0$$

Si pasamos al segundo miembro los términos que no hacen intervenir a ninguna incógnita, tenemos un sistema de la forma:

$$Au = b$$

donde la matriz del sistema toma la forma:

$$A = \begin{bmatrix} B_{4\times4} & -I_{4\times4} & O_{4\times4} & O_{4\times4} & O_{4\times4} & O_{4\times4} & O_{4\times4} \\ -I_{4\times4} & B_{4\times4} & -I_{4\times4} & O_{4\times4} & O_{4\times4} & O_{4\times4} & O_{4\times4} \\ O_{4\times4} & -I_{4\times4} & B_{4\times4} & -I_{4\times4} & O_{4\times4} & O_{4\times4} & O_{4\times4} \\ O_{4\times4} & O_{4\times4} & -I_{4\times4} & B_{4\times4} & -I_{4\times4} & O_{4\times4} & O_{4\times4} \\ O_{4\times4} & O_{4\times4} & O_{4\times4} & O_{4\times4} & -I_{4\times4} & B_{4\times4} & -I_{4\times4} \\ O_{4\times4} & O_{4\times4} & O_{4\times4} & O_{4\times4} & -I_{4\times4} & B_{4\times4} & -I_{4\times4} \\ O_{4\times4} & O_{4\times4} & O_{4\times4} & O_{4\times4} & -I_{4\times4} & B_{4\times4} & -I_{4\times4} \\ O_{4\times4} & O_{4\times4} & O_{4\times4} & O_{4\times4} & O_{4\times4} & -I_{4\times4} & B_{4\times4} \end{bmatrix}$$

$$-\Delta u = 0 \quad \text{en } (0,10) \times (0,15)$$
$$u = \begin{cases} 100, & \text{si } y = 15 \\ 0, & \text{en otro caso} \end{cases}$$
Malla 4×7

$$-\Delta u = 0 \quad \text{en } (0,10) \times (0,15)$$
$$u = \begin{cases} 100, & \text{si } y = 15 \\ 0, & \text{en otro caso} \end{cases}$$

Malla 40×70

$$-\Delta u = 0 \quad \text{en } (0, 10) \times (0, 15)$$

$$u = \begin{cases} 100, & \text{si } y = 15 \\ 0, & \text{si } y = 0 \\ 100x/15, & \text{si } x = 0 \\ 50, & \text{si } x = 10 \end{cases}$$
Malla 40×70

Ecuación del calor, difusión anisótropa

Dada una función matricial

$$\begin{array}{cccc} \mathbf{A}: & \Omega \times [0,T] & \longrightarrow & \mathcal{M}_2 \\ & (x,y,t) & \longrightarrow & \mathbf{A}(x,y,t) \end{array}$$

buscamos una función u = u(x, y, t) solución de:

$$\begin{cases} \frac{\partial u}{\partial t} - \operatorname{div}(\mathbf{A}(x, y, t) \nabla u) = 0 & \text{en } \Omega \times [0, T] \\ u(x, y, t) = u_D(x, y, t) & \text{en } \partial \Omega \times [0, T] \\ u(x, y, 0) = u^0(x, y) & \text{en } \Omega \end{cases}$$

De esta forma, la solución *u* se difunde más, a lo largo del tiempo, en los puntos donde el coeficiente de difusión es más grande

Ecuación del calor

Podemos reescribir la ecuación en derivadas parciales como:

$$\frac{\partial u}{\partial t} - \operatorname{div} \left[\begin{array}{c} a_{11}(x, y, t) \frac{\partial u}{\partial x} + a_{12}(x, y, t) \frac{\partial u}{\partial y} \\ a_{21}(x, y, t) \frac{\partial u}{\partial x} + a_{22}(x, y, t) \frac{\partial u}{\partial y} \end{array} \right] = 0$$

es decir,

$$\begin{split} \frac{\partial u}{\partial t} - \left(\frac{\partial a_{11}}{\partial x}(x,y,t) + \frac{\partial a_{21}}{\partial y}(x,y,t)\right) \frac{\partial u}{\partial x} - \left(\frac{\partial a_{12}}{\partial x}(x,y,t) + \frac{\partial a_{22}}{\partial y}(x,y,t)\right) \frac{\partial u}{\partial y} - \\ - a_{11}(x,y,t) \frac{\partial^2 u}{\partial x^2} - \left(a_{12}(x,y,t) + a_{21}(x,y,t)\right) \frac{\partial^2 u}{\partial x \partial y} - a_{22}(x,y,t) \frac{\partial^2 u}{\partial y^2} = 0 \end{split}$$

Ecuación del calor: discretización

Y podemos discretizarla de la siguiente manera:

$$\begin{split} &\frac{u_{i,j}^{n+1} - u_{i,j}^{n}}{\Delta t} - \left(\frac{\partial a_{11}}{\partial x}(x_{i}, y_{j}, t^{n+1}) + \frac{\partial a_{21}}{\partial y}(x_{i}, y_{j}, t^{n+1})\right) \frac{u_{i+1,j}^{n+1} - u_{i,j}^{n+1}}{\Delta x} - \\ &- \left(\frac{\partial a_{12}}{\partial x}(x_{i}, y_{j}, t^{n+1}) + \frac{\partial a_{22}}{\partial y}(x_{i}, y_{j}, t^{n+1})\right) \frac{u_{i,j+1}^{n+1} - u_{i,j}^{n+1}}{\Delta y} - \\ &- a_{11}(x_{i}, y_{j}, t^{n+1}) \frac{u_{i-1,j}^{n+1} - 2u_{i,j}^{n+1} + u_{i+1,j}^{n+1}}{\Delta x^{2}} - \\ &- \left(a_{12}(x_{i}, y_{j}, t^{n+1}) + a_{21}(x_{i}, y_{j}, t^{n+1})\right) \frac{u_{i+1,j+1}^{n+1} - u_{i-1,j+1}^{n+1} - u_{i+1,j-1}^{n+1} + u_{i-1,j-1}^{n+1}}{4\Delta x \Delta y} - \\ &- a_{22}(x_{i}, y_{j}, t^{n+1}) \frac{u_{i,j-1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j+1}^{n+1}}{\Delta y^{2}} = 0 \end{split}$$

para
$$i = 1, 2, ..., N, j = 1, 2, ..., M$$

Ecuación del calor: casos particulares

 $\mathbf{A}(x, y, t) = a(x, y, t)\mathbf{I}$

$$\begin{split} \frac{\partial u}{\partial t} - \left(\frac{\partial a}{\partial x}\frac{\partial u}{\partial x} + \frac{\partial a}{\partial y}\frac{\partial u}{\partial y}\right) - a(x,y,t)\Delta u &= 0 \\ \frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} - \left[\frac{\partial a}{\partial x}(x_i,y_j,t^{n+1})\frac{u_{i+1,j}^{n+1} - u_{i,j}^{n+1}}{\Delta x} + \frac{\partial a}{\partial y}(x_i,y_j,t^{n+1})\frac{u_{i,j+1}^{n+1} - u_{i,j}^{n+1}}{\Delta y}\right] - \\ - a(x_i,y_j,t^{n+1})\left[\frac{u_{i-1,j}^{n+1} - 2u_{i,j}^{n+1} + u_{i+1,j}^{n+1}}{\Delta x^2} + \frac{u_{i,j-1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j+1}^{n+1}}{\Delta y^2}\right] = 0 \end{split}$$

► $\mathbf{A}(x, y, t) = a\mathbf{I}$, con *a* constante

$$\frac{\partial u}{\partial t} - a \left(\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} \right) = 0$$

$$\frac{u_{i,j}^{n+1} - u_{i,j}^n}{\Delta t} - a \left[\frac{u_{i-1,j}^{n+1} - 2u_{i,j}^{n+1} + u_{i+1,j}^{n+1}}{\Delta x^2} + \frac{u_{i,j-1}^{n+1} - 2u_{i,j}^{n+1} + u_{i,j+1}^{n+1}}{\Delta y^2} \right] = 0$$