RIP

- RIP은 Distance Vector Routing Protocol.
- RIP은 v1과 v2가 있다.
- Routing 정보 전송을 위해 UDP 포트 520번 사용
- AD값은 120

<장점>

- 설정이 간단하다.
- 작은 규모의 네트워크나 대형 네트워크의 말단 지점에서 사용하기 좋다.
- 표준 Routing Protocol이기 때문에 모든 회사의 Router에서 사용 가능 (EIGRP 경우에는 Cisco 전용, 때문에 다른 회사의 Router에서는 사용 불가)

RIP

<단점>

- Metric을 Hop-count로 사용한다. (가장 적은 Hop-count를 가진 경로가 최적 경로)
 - → 때문에 경로 결정시 Link의 속도를 반영하지 못한다.
 - → 복잡한 네트워크에서는 비효율적인 Routing 경로가 만들어질 수 있다.
- RIP의 최대 Hop-count가 15, 때문에 대형 네트워크에서는 사용이 불가능. (Hop-count가 16이면 도달 불가능한 네트워크로 간주)
- Routing 정보 전송 방식이 비효율적이다.
 - → Topology에 변화와 상관없이 무조건 30초마다 인접 Router에게 Routing table 내용 전체를 전송한다.

(OSPF, EIGRP, BGP 등의 다른 Dynamic Routing Protocol은 Topology 변화가 생길 경우 바뀐 네트워크의 정보만 전송)

- Hop count metric selects the path
- Routes update every 30 seconds

Distance Vector—Selecting Best Route with Metrics

Information used to select the best path for routing

RIP version

(1) RIP Version 1

- Subnet mask 정보가 없는 Classful 라우팅 프로토콜. (VLSM 미지원)
- 정보 전송 시 Broadcast 주소(255.255.255.255)를 사용. 때문에 RIP이 설정 안된 다른 장비에게도 불필요한 부하가 걸리게 된다.

(2) RIP Version 2

- Subnet mask 정보가 있는 Classiess 라우팅 프로토콜 (VLSM 지원)
- 정보 전송 시 Multicast(224.0.0.9)를 사용한다.
- 각 라우터에서 네트워크 경로 정보에 대한 인증을 할 수 있다. > 보완성 강화
- tag(꼬리표) 사용이 가능
- Auto Summary (자동 축약)를 한다.
- Manual Summary (수동 축약)가 가능하다.

Distance Vector Routing Protocols

- Distance Vector Routing Protocol은 Neighbor Router 에게 주기적으로 Routing Table을 Update. (RIP → 30초, IGRP → 90초)

Distance Vector—Sources of Information and Discovering Routes

Routers discover the best path to destinations from each neighbor

Distance Vector—Sources of Information and Discovering Routes

Routers discover the best path to destinations from each neighbor

Distance Vector—Sources of Information and Discovering Routes

Routers discover the best path to destinations from each neighbor

Convergence (수렴) Time

- Convergence → 네트워크에 변화가 생길 경우 모든 Router가 네트워크 변화 상태에 대한 정확하고 일관된 정보를 유지하는 것.
- Convergence Time → 네트워크에 변화가 생겼을 경우 그 변화된 정보를 서로 인식하고 수정하는 시간
 - → Convergence Time은 각 Routing Protocol별로 다르다.
 - → Convergence Time은 짧을 수록 좋다.
- RIP 같은 경우는 Convergence Time이 30초.
 - * RIP 같은 경우는 Convergence Time이 30초로 느리다. 때문에 Routing Loop 문제가 발생한다.

Routing Table		
10.1.0.0	E0	0
10.2.0.0	S0	0
10.3.0.0	S0	1
10.4.0.0	S0	2

Routing Table		
10.2.0.0	S0	0
10.3.0.0	S1	0
10.4.0.0	S1	1
10.1.0.0	S0	1

Routing Table		
10.3.0.0	S0	0
10.4.0.0	E0	0
10.2.0.0	S0	1
10.1.0.0	S0	2

NDZUGR_ZUS

Routing Table

Routing Table		
10.1.0.0	E0	0
10.2.0.0	S0	0
10.3.0.0	S0	1
10.4.0.0	S0	2

Routing Table		
10.2.0.0	S0	0
10.3.0.0	S1	0
10.4.0.0	S1	1
10.1.0.0	S0	1

Routing Table		
10.3.0.0	S0	0
10.4.0.0	E0	Down
10.2.0.0	S0	1
10.1.0.0	S0	2

CND20GR_206

Router C 의 10.4.0.0 Network 장애발생

Prouter C 는 10.4.0.0 Network의 best path 를 router B 에서 찾음

▶ Router A 는 Router B 로 부터 잘못된 Update를 받음.

Routing Table		
10.1.0.0	E0	0
10.2.0.0	S0	0
10.3.0.0	S0	1
10.4.0.0	S0	6

Routing Table		
10.2.0.0	S0	0
10.3.0.0	S1	0
10.4.0.0	S1	5
10.1.0.0	S0	1

Routing Table		
10.3.0.0	S0	0
10.4.0.0	S0	4
10.2.0.0	S0	1
10.1.0.0	S0	2

CND20GR 2

Network 10.4.0.0 의 잘못된 정보가 계속 Update 됨.

Routing Table		
10.1.0.0	E0	0
10.2.0.0	S0	0
10.3.0.0	S0	1
10.4.0.0	S0	16

Routing Table		
10.2.0.0	S0	0
10.3.0.0	S1	0
10.4.0.0	S1	16
10.1.0.0	S0	1

Routing Table		
10.3.0.0	S0	0
10.4.0.0	S0	16
10.2.0.0	S0	1
10.1.0.0	S0	2

ND20GR 21

16 Hop (Hop-Count-Limit)

Packet 은 10.4.0.0으로 가기 위해서 Router B 와 Router C 사이에서 계속 Loop 됨

S₀

1

10.4.0.0

S₀

4

www.cisco.com © 1999, Cisco Systems, Inc. ICND-12-17

S₀

2

- 해결책 -
- 1)Split Horizon
- 2) Route Poisoning, Poison reverse
- 3) Hold Down Timer
- 4) Triggered Update

Solution: Split Horizon

It is never useful to send information about a route back in the direction from which the original packet came

Solution: Route Poisoning

Routers set the distance of routes that have gone down to infinity

Solution: Poison Reverse

Poison Reverse overrides split horizon

Solution: Hold-Down Timers

Router keeps an entry for the network possibly down state, allowing time for other routers to recompute for this topology change

Solution: Triggered Updates

Router sends updates when a change in its routing table occurs

RIP Configuration

Router(config)#router rip

Starts the RIP routing process

Router(config-router)#network network-number

- Selects participating attached networks
- The network number must be a major classful network number

RIP Configuration Example

router rip network 10.0.0.0

Verifying the Routing Protocol—RIP

RouterA#sh ip protocols

Routing Protocol is "rip"

Sending updates every 30 seconds, next due in 0 seconds

Invalid after 180 seconds, hold down 180, flushed after 240

Outgoing update filter list for all interfaces is

Incoming update filter list for all interfaces is

Redistributing: rip

Default version control: send version 1, receive any version

Interface Send Recv Key-chain

Ethernet0 1 12

Serial2 1 1 2

Routing for Networks:

10.0.0.0

172.16.0.0

Routing Information Sources:

Gateway Distance Last Update

10.1.1.2 120 00:00:10

Distance: (default is 120)

Displaying the IP Routing Table

RouterA#sh ip route

Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP

D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area

N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2

E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP

i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, * - candidate default

U - per-user static route, o - ODR

T - traffic engineered route

Gateway of last resort is not set

172.16.0.0/24 is subnetted, 1 subnets

172.16.1.0 is directly connected, Ethernet0

10.0.0.0/24 is subnetted, 2 subnets

R 10.2.2.0 [120/1] via 10.1.1.2, 00:00:07, Serial2

C 10.1.1.0 is directly connected, Serial2

R 192.168.1.0/24 [120/2] via 10.1.1.2, 00:00:07, Serial2

debug ip rip Command

RouterA#debug ip rip

RIP protocol debugging is on

RouterA#

00:06:24: RIP: received v1 update from 10.1.1.2 on Serial2

00:06:24: 10.2.2.0 in 1 hops

00:06:24: 192.168.1.0 in 2 hops

00:06:33: RIP: sending v1 update to 255.255.255.255 via Ethernet0 (172.16.1.1)

00:06:34: network 10.0.0.0, metric 1

00:06:34: network 192.168.1.0, metric 3

00:06:34: RIP: sending v1 update to 255.255.255.255 via Serial2 (10.1.1.1)

00:06:34: network 172.16.0.0, metric 1