Review: interchanging integration with limit/sum

Proposition (Exercise 33.9 – Lecture 32)

Suppose (f_n) is a sequence of integrable functions on [a,b], converging uniformly to f. Then $\lim_n \int_a^b f_n$ exists, f is integrable, with $\int_a^b f = \lim_n \int_a^b f_n$.

Uniform convergence cannot, in general, be replaced by pointwise convergence (see examples in Lecture 32).

Corollary

If g_0, g_1, \ldots are integrable on [a, b], and $f = \sum_{n=0}^{\infty} g_n$ converges uniformly, then f is integrable, with $\int_a^b f = \sum_{n=0}^{\infty} \int_a^b g_n$.

Proof. Let $f_k = \sum_{n=0}^k g_n$, then $f_k \to f$ uniformly, hence $\int_a^b f_k \to \int_a^b f$. However, $\int_a^b f_k = \sum_{n=0}^k \int_a^b g_n$.

Interchanging differentiation with limit/sum

Example. It may happen that $f_n \to f$ uniformly, but (f'_n) does not converge at all (not even pointwise).

Take $f_n(x) = \frac{1}{n}\sin(n^2x)$. Then $f_n \to 0$ uniformly on \mathbb{R} . However, $f'_n(x) = n\cos(n^2x)$. If $\frac{x}{\pi}$ is rational, then the sequence $\left(f'_n(x)\right)$ has no real limit. Indeed, write $x = \frac{p}{q}\pi$. If n = mq, then $f'_n(x) = mq\cos(m^2qp\pi) = mq(-1)^{m^2qp}$. $\lim_{m\to\infty} \left|f'_{mq}\left(\frac{p}{q}\pi\right)\right| = +\infty$.

Thus, the sequence (f'_n) does not converge pointwise to any function on any interval. Indeed, for any interval [c,d], $\left[\frac{c}{\pi},\frac{d}{\pi}\right]$ contains a rational $\frac{p}{q}$, hence $x=\frac{p}{q}\pi\in[c,d]$.

Example. $\sum_{n=1}^{\infty} \frac{\sin(n^2x)}{n^2}$ converges uniformly on \mathbb{R} (apply Weierstrass M-test with $M_n = \frac{1}{n^2}$). However, $\sum_{n=1}^{\infty} \left(\frac{\sin(n^2x)}{n^2}\right)'$ does not converge pointwise, on any interval.

Review of power series (§23, Lecture 25)

For a power series $\sum_n a_n x^n$, let $\beta = \limsup |a_n|^{1/n}$. Radius of convergence $R = \frac{1}{\beta}$.

Theorem (26.1)

The power series $\sum_{n=0}^{\infty} a_n x^n$ converges uniformly on $[-R_1, R_1]$ for $R_1 < R$.

Proof. Weierstrass M-test: $\sum_n g_n$ converges uniformly if $|g_n| \leq M_n$, $\sum_n M_n < \infty$. Use $M_n = |a_n| R_1^n$.

Corollary (26.2)

The power series $\sum_{n=0}^{\infty} a_n x^n$ converges to a continuous function on (-R,R).

Proof. The uniform limit of continuous function is continuous, hence $\sum_{n=0}^{\infty} a_n x^n$ is continuous on $[-R_1, R_1]$ for any $R_1 \in (0, R)$.

Differentiation and integration of power series (§26)

Lemma (26.3)

If $\sum_{n=0}^{\infty} a_n x^n$ has radius of convergence R, then the same is true for $\sum_{n=1}^{\infty} n a_n x^{n-1}$ and $\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$.

Proof for $\sum_{n=1}^{\infty} na_n x^{n-1}$. The series $\sum_{n=1}^{\infty} na_n x^{n-1}$ and $x \sum_{n=1}^{\infty} na_n x^{n-1} = \sum_{n=0}^{\infty} na_n x^n$ have the same interval of convergence.

For the latter series, $\limsup \left|na_n\right|^{1/n}=\limsup n^{1/n}|a_n|^{1/n}=\beta$, since $\lim n^{1/n}=1$.

Remark. Intervals of convergence may be different! For instance, take $a_n = \frac{1}{n+1}$.

 $\sum_{n=0}^{\infty} \frac{x^n}{n+1}$ has interval of convergence [-1,1).

 $\sum_{n=1}^{\infty} \frac{n x^{n-1}}{n+1}$ has interval of convergence (-1,1).

 $\sum_{n=0}^{\infty} \frac{x^{n+1}}{(n+1)^2} = \sum_{k=1}^{\infty} \frac{x^k}{k^2}$ has interval of convergence [-1,1].

Integration of power series

Theorem (26.4 – Interchange of summation and integration)

Suppose a power series $f(t) = \sum_{n=0}^{\infty} a_n t^n$ has radius of convergence R. Then for |x| < R, $\int_0^x f(t) dt = \sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}$.

Proof for
$$0 < x < R$$
. Let $f_k(t) = \sum_{n=0}^k a_n t^n$. $f_k \to f$ uniformly on $[0,x]$. Further, $\int_0^x f_k = \sum_{n=0}^k \frac{a_n}{n+1} x^{n+1}$, hence $\lim_k \int_0^x f_k = \sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1}$. We can interchange integration and uniform limit, hence $\sum_{n=0}^\infty \frac{a_n}{n+1} x^{n+1} = \lim_k \int_0^x f_k = \int_0^x \lim_k f_k = \int_0^x f$.

Example (p. 211):
$$f(t) = \frac{1}{1-t} = \sum_{n=0}^{\infty} t^n$$
, $R = 1$.

$$-\ln(1-x) = \int_0^x f = \sum_{n=0}^\infty \frac{x^{n+1}}{n+1}$$
 for $|x| < 1$.

Let
$$u = -x$$
. $\ln(1+u) = \frac{u}{1} - \frac{u^2}{2} + \frac{u^3}{3} - \dots$ for $|u| < 1$.

Differentiation of power series

Theorem (26.5 – Interchange of summation and differentiation)

Suppose a power series $f(t) = \sum_{n=0}^{\infty} a_n t^n$ has radius of convergence R. Then for |t| < R, $f'(t) = \sum_{n=1}^{\infty} n a_n t^{n-1}$.

Proof. The series $g(t) = \sum_{n=1}^{\infty} n a_n t^{n-1}$ has radius of convergence R. Theorem 26.4: for |x| < R, $\int_0^x g(t) dt = \sum_{n=1}^{\infty} a_n x^n = f(x) - a_0$.

Differentiate both sides, applying Fundamental Theorem of Calculus:

$$f'(x)=g(x).$$

Example (p. 211). $f(t) = \frac{1}{1-t} = \sum_{n=0}^{\infty} t^n$, R = 1.

$$f'(t) = \frac{1}{(1-t)^2} = \sum_{n=1}^{\infty} nt^{n-1}$$
.

Exercise. Compute $\sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{1}{2} + \frac{2}{4} + \frac{3}{8} + \dots$

Use the preceding example, with $t=\frac{1}{2}$: $4=\frac{1}{(1-1/2)^2}=\sum_{n=1}^{\infty}\frac{n}{2^{n-1}}$, hence

$$\sum_{n=1}^{\infty} \frac{n}{2^n} = \frac{1}{2} \sum_{n=1}^{\infty} \frac{n}{2^{n-1}} = \frac{4}{2} = \mathbf{2}.$$

Power series: another example

Exercise. Consider the power series $g(t) = \sum_{n=1}^{\infty} n^2 t^n$.

- (a) Find the interval of convergence of this series.
- (b) Find a closed formula for g.

The radius of convergence is the same as for $\sum_n n^2 t^{n-1}$, which, in turn, is the same as for $\sum_n nt^n$ – that is, 1. For $t=\pm 1$, the series diverges, hence the interval of convergence is (-1,1).

We have $\frac{1}{(1-t)^2} = \sum_{n=1}^{\infty} nt^{n-1}$. Differentiate:

$$\frac{2}{(1-t)^3} = \sum_{n=2}^{\infty} n(n-1)t^{n-2}$$
, hence $\frac{2t^2}{(1-t)^3} = \sum_{n=1}^{\infty} n(n-1)t^n$. We also know that $\frac{t}{(1-t)^2} = \sum_{n=1}^{\infty} nt^n$.

As
$$n^2 = n(n-1) + n$$
,
 $g(t) = \sum_{n=1}^{\infty} (n(n-1) + n) t^n = \sum_{n=1}^{\infty} n(n-1) t^n + \sum_{n=1}^{\infty} n t^n = \frac{2t^2}{(1-t)^3} + \frac{t}{(1-t)^2} = \frac{t+t^2}{(1-t)^3}$.

Theorem (Abel's Theorem, 26.6)

Let $f(x) = \sum_{n=0}^{\infty} a_n x^n$, with radius of convergence R > 0. If the series converges at R(-R), then f is continuous at R (resp. -R).