Tinkoff Generation A. Дистанционный тур - 11 Водный Стадион,

Задача А. Очередь

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Казахские всероссы возвращаются. Обратите внимание, что казахи не умеют сортировать задачи по сложности.

Бекжану рассказали об одной интересной очереди. Это очередь в кассу, в которой работает не особо добросовестный кассир. Кассир в этой очереди обслуживает клиента, только когда клиент ругается с ним.

Время от времени кто-то из очереди осознает, что он опаздывает на очень важную встречу, проходит вне очереди, ругается с кассиром, после чего кассир его обслуживает.

Допустим, что человека, прошедшего вне очереди зовут Ануар. Каждый человек, стоявший перед Ануаром в очереди, выразит свое недовольство его поступком в виде какого-то количества слов (фиксированного для каждого говорящего).

Наблюдавшему за очередью Бекжану стало интересно, сколько же нелестных слов в свой адрес услышит каждый, прошедший вне очереди?

Формат входных данных

Первая строка входных данных содержит целое число N $(2\leqslant N\leqslant 5\cdot 10^5)$ — число событий в очереди.

Описание каждого из событий начинается с целого числа $type\ (1 \leqslant type \leqslant 2)$.

Если type=1, то за ним следует целое число w ($1 \le w \le 10^9$). Данный тип запросов означает, что новый человек пришел в очередь. Его номером является наименьшее целое положительное число, не использованное до этого в качестве номера, а количеством слов, которые он будет произносить при каждом недовольстве — число w.

Если type=2, то за ним следует целое число x. Данный тип запросов означает, что человек с номером x проходит вне очереди. Гарантируется, что в момент запроса человек с таким идентификатором присутствует в очереди.

Гарантируется, что хотя бы один человек покинет очередь.

Формат выходных данных

Для каждого прошедшего вне очереди человека выведите, сколько слов возмущения он услышит из очереди.

Система оценки

- 1. $N \leq 20, w \leq 1000$. Стоимость подгруппы: 10 баллов.
- 2. $N \le 10000$. Стоимость подгруппы: 40 баллов.
- 3. $N \leqslant 500000$. Стоимость подгруппы: 50 баллов.

Tinkoff Generation A. Дистанционный тур - 11 Водный Стадион,

Примеры

стандартный ввод	стандартный вывод
2	0
1 1	
2 1	
8	8
1 8	19
1 1	
1 9	
2 2	
1 2	
1 4	
2 5	
1 3	

Замечание

В первом примере человек пришел в очередь, поругался с кассиром и не выслушивал слов ни от кого.

Во втором примере в очередь сначала придут люди, которые скажут 8, 1 и 9 слов недовольства соответственно (и получат номера 1, 2 и 3 соответственно). Затем человек с номером 2 пройдет вне очереди и выслушает недовольство от человека с номером 1 (8 слов). После этого в очередь придут люди с количествами слов 2 и 4, и номерами 4 и 5 соответственно. Затем человек с номером 5 пройдет вне очереди и выслушает недовольство от людей с номерами 1, 3, 4 (19 слов). Последним в очередь придет человек с номером 6 и количеством слов 3

Задача В. Яблоки

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1 секунда Ограничение по памяти: 64 мегабайта

Тима и его N-1 друзей собирали яблоки. Для удобства пронумеруем всех числами от 1 до N. У Тимы номер 1. Тима заметил, что у него яблок больше чем у его друзей, и решил поделиться своими яблоками. Он дал всем остальным столько яблок, сколько у них было. Т.е если у кого-то было X яблок, то Тима дал ему еще X яблок. Затем человек с номером 2 дал всем столько, сколько у них имелось на тот момент. И так далее до N-го человека. И в результате у всех оказалось одинаковое количество яблок. Тима хочет знать сколько яблок было у каждого в начале. Он помнит, что в начале у него было A_1 яблок.

Формат входных данных

В первой строке входных данных записано одно целое число $T(1\leqslant T\leqslant 1000)$ - количество тестов.

В следующих T строках находится по два целых числа N $(1 \le N \le 50), 1 \le A_1 \le 10^{16}$.

Формат выходных данных

Выведите T — строк, в каждой строке выведите -1 если такое случае невозможно. Иначе выведите N чисел $A_1, A_2, ..., A_N$. Если существует несколько возможных ответов, выведите любой из них.

Система оценки

Система оценки

Данная задача содержит четыре подзадачи:

- 1. $1 \leqslant T \leqslant 50, N = 2, 1 \leqslant A_1 \leqslant 10^6$. Оценивается в 10 баллов.
- 2. $1 \leqslant T \leqslant 50, N = 3, 1 \leqslant A_1 \leqslant 10^9$. Оценивается в 15 баллов.
- 3. $T \leqslant 2, 1 \leqslant N \leqslant 50, 1 \leqslant A_1 \leqslant 10^5$. Оценивается в 30 баллов.
- 4. $1\leqslant T\leqslant 1000, 1\leqslant N\leqslant 50, 1\leqslant A_1\leqslant 10^{16}$. Оценивается в 45 баллов

Пример

стандартный ввод	стандартный вывод
2	13 7 4
3 13	10 6
2 10	
2 10	

Замечание

Первый тест: В начале 13, 7, 4. После 1-го: 2, 14, 8. После 2-го: 4, 4, 16. После 3-го: 8,8,8.

Задача С. Саперы

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 2 секунды Ограничение по памяти: 256 мегабайт

Два сапера должны обезвредить все мины в минном поле. Поле представляет собой таблицу $n \times m$ (n строк и m столбцов), и в каждой клетке этой таблицы находится не больше одной мины. Строки таблицы пронумерованы от 1 до n сверху вниз, столбцы пронумерованы от 1 до m слева направо. Саперы хотят разделить все поле на двоих максимально справедливым образом, так чтобы части были равными (при каком-то повороте они должны совпасть) и разница в количестве мин в частях была минимальной. Делить можно только по границам клеток и части должны быть связными, т.е. из каждой клетки одной части можно дойти до любой другой клетки этой же части передвигаясь только по соседним по стороне клеткам одной части. Вам надо написать программу, которая будет делить поле на две части для саперов максимально справедливым образом. Гарантируется, что m четное число.

Формат входных данных

Первая строка входных данных содержит два целых числа $n(1 \le n \le 1000)$ и $m(1 \le m \le 1000)$. В каждой из следующих n строк следуют по m символов — описание поля. Если символ равен

Формат выходных данных

Выведите n строк по m символов «1» или «2» обозначающее какому саперу достанется текущая клетка.

«.», то текущая клетка пустая. Если символ равен «*», то в этой клетке находится мина.

Система оценки

В данной задаче ровно 100 тестов.

За каждый пройденный тест участник получает 1 балл.

Пример

стандартный ввод	стандартный вывод
5 8	11111111
***	11111111
.	22221111
**	2222222
**	22222222
*	

Задача D. Красивая последовательность

Имя входного файла: стандартный ввод Имя выходного файла: стандартный вывод

Ограничение по времени: 1.5 секунд Ограничение по памяти: 16 мегабайт

Подпоследовательность — это последовательность, которую можно получить из другой последовательности путем удаления некоторых элементов, не меняя порядок оставшихся элементов. Вам даны две последовательности целых неотрицательных чисел размера n: a_1, a_2, \ldots, a_n и размера m: b_1, b_2, \ldots, b_m . Назовем последовательность из k целых чисел c_1, c_2, \ldots, c_k k pacueoù, если выполняются следующие условия:

- к является нечетным.
- $c_{2*j-1} < c_{2*j}$ и $c_{2*j+1} < c_{2*j}$ для всех 1 < 2*j < k.
- Последовательность c_1, c_2, \ldots, c_k является подпоследовательностью последовательности a_1, a_2, \ldots, a_n .
- Последовательность c_1, c_2, \ldots, c_k является подпоследовательностью последовательности b_1, b_2, \ldots, b_m .

Найдите максимальную длину красивой последовательности и количество различных красивых последовательностей максимальной длины по модулю $10^9 + 9$.

Формат входных данных

В первой строке входных данных дано целое положительное число n ($1 \le n \le 10^4$) — размер последовательности a. Вторая строка содержит n целых неотрицательных чисел a_i ($1 \le a_i \le 20000$) — последовательность a. В третьей строке содержится целое положительное число m ($1 \le m \le 10^4$) — размер последовательности b. Четвертая строка содержит m целых неотрицательных чисел b_i ($1 \le b_i \le 20000$) — последовательность b. Числа в обеих последовательностях задаются через одиночный пробел.

Формат выходных данных

Выведите два целых числа ответ на задачу. Если ответа несуществует выведите два нуля.

Система оценки

Данная задача содержит четыре подзадачи:

- 1. $1 \le n \le 20$, $1 \le m \le 10$. Оценивается в 19 баллов.
- 2. $1 \le n \le 1000, 1 \le m \le 20$. Оценивается в 19 баллов.
- 3. $1 \le n \le 500, 1 \le m \le 500$. Оценивается в 28 баллов.
- 4. $1 \le n \le 10^4$, $1 \le m \le 10^4$. Оценивается в 34 баллов.

Tinkoff Generation A. Дистанционный тур - 11 Водный Стадион,

Примеры

стандартный ввод	стандартный вывод
1	0 0
1	
1	
2	
7	3 6
1 5 3 4 2 5 2	
5	
1 3 5 4 2	
4	3 1
1 1 3 2	
4	
1 3 2 2	