

GIMNAZJUM

- 1. W czworokącie wypukłym ABCD przekątne AC i BD są równej długości. Punkty M i N są odpowiednio środkami boków AD i BC. Wykaż, ze prosta MN tworzy równe kąty z przekątnymi AC i BD.
- 2. Punkt M jest środkiem boku AB trójkąta ABC. Na bokach AC i BC trójkąta ABC zbudowano, po jego zewnętrznej stronie, takie trójkąty prostokątne ACK i BCL, że $\angle AKC = \angle BLC = 90^{\circ}$ oraz $\angle CAK = \angle CBL$. Wykaż, że MK = ML.
- 3. Udowodnij, że dla każdej liczby naturalnej n zachodzi równość:

$$1 + 3 + 5 + \dots + (2n - 1) = n^2$$

Wskazówka do zadań 1 i 2: przeczytajcie ostatni numer Kwadratu.

LICEUM

- 1. Wyznacz wszystkie pary (a,b) dodatnich liczb całkowitych, dla których $a^2b=(a-b)^4$.
- 2. W sześciokącie wypukłym ABCDEF zachodzą równości $\angle BCD = \angle EFA = 90^\circ$. Udowodnij, ze obwód czworokąta ABDE jest nie mniejszy od 2·CF.
- 3. Udowodnij, że dla każdej liczby całkowitej dodatniej n liczba $4^n+15n-1$ jest podzielna przez 9.

Wskazówka do zadań 1 i 2: przeczytajcie ostatni numer Kwadratu.