تمرين پنجم تئوري هوش مصنوعي

سوال اول)

الف) این عبارت درست است. حل معادلات Bellman در روش value iteration، در واقع پیدا کردن مقدار fixed-point برای این معادلات است. با توجه به مطالب تدریس شده، مقدار بدست آمده توسط value iteration همان جواب Bellman equations است که *۷ میباشد. در نتیجه اگر مقدار تابع policy به ازای یک T بزرگ به اندازه کافی تغییر نکند، میتوان مطمئن بود که مقادیر ۷ به *۷ همگرا شدهاست و در نتیجه مقادیر تابع policy نیز همگرا شده است.

ب) این عبارت نادرست است. طبق مطالب گفته شده درون اسلایدها، به ازای انتخاب درست مقدار alpha، حتی به ازای sub-optimal policy، مقادیر Q نهایتا به مقادیر Q برای optimal policy همگرا خواهد شد. در نتیجه، میتوان با استفاده policy نادرست در ابتدا، مقادیر Q را به ازای *pi را یاد گرفت.

ج) اگر learning rate = 1 باشد، این بدین معنیاست که در هر مرحله از Q-learning، مقدار بدست آمده برای sample به جای Q قبلی قرار می گیرد. با توجه به اینکه MDP قطعی است، میانگین گیری از حرکات صورت گرفته خیلی معنا ندارد زیرا به ازای هر دو تایی s,a، میدانیم که یک حرکت رخ میدهد. در نتیجه، در صورت استفاده از alpha = 1 برای یک deterministic MDP، مقادیر Q به مقادیر بهینه همگرا خواهند شد.

د) پیچیدگی زمانی اجرای هر iteration از بخش iterative الگوریتم value iteration از $(|S|^2|A|)$ 0 میباشد. همچنین این پیچیدگی برای اجرای هر iteration الکوریتم iterative الگوریتم policy iteration از $(|S|^2|B|)$ 0 است. حال دقت کنید که جواب این سوال، بستگی به تعریف بخش iteration الگوریتم نظور طراح سوال از iteration در هر دو الگوریتم، مرحله آپدیت کردن ۷ باشد، این گزاره صحیح خواهد بود. اما اگر منظور طراح سوال از iteration برای value iteration، مرحله آپدیت کردن pi باشد، این گزاره نادرست خواهد شد.

ه) نادرست است. فرض کنید در یک grid exploration هستیم که مقدار living reward به طور پیشفرض برابر 1- است. به طور شهودی، محرک تلاش می کند که کمترین زمان را در محیط چرخه بزند و زودتر به پاداش بزرگ برسد. اما اگر همه rewardها را با مقدار 1 جمع کنیم، چرخ زدن در محیط دیگر ضرری به محرک نخواهد زد و در نتیجه محرک از پذیرفتن ریسک گذر از خطر دوری می کند. دقت کنید که تحلیل صورت گرفته برای gridهایی می باشد که دارای state می باشند.

در صورتی که بازی تا ابد ادامه داشته باشد، مقدار ۷ برای تمامی stateها با مقدار ثابت $\frac{c}{1-\gamma} = \frac{c}{1-\gamma}$ جمع میشود. در این صورت، حرکتی که Q(s,a) را قبل از افزایش تمامی rewardها با مقدار Q(s,a) بیشینه میکرد، هنوز هم مقدار Q'(s,a) را بیشینه خواهد کرد. در نتیجه تفاوتی ایجاد نخواهد شد.

Scanned with CamScanner

Value Iteration ~~ VK+1(s) = max s	(ce) (4
V ₀ = 0 0 0 0	حرت من مرت مرا من مرا من مرا من مرا من مرا من مرا من مرا
first iter:	. In an any more out of the by man a common of
N. [11] = wear { 01010} = 0	
24 5177 = man [0/0/0] =0	
2, 51,73 = man {orn (0+0) + 0,1(-0+0) +.	
9/1(-3+0)+ 0/1(0+0)+ 0	
0/1 (0+0) + 0/1 (0+0) + 0/1	
9/1 (0+0) + 9/1 (0+0) + 9/1	
2. /1/1/ = mare for 10+0)+011(0+0)+011(0	
6,1 (0+0) + 0,1 (0+0) + 0,1 (0	
0/1 (0+0) +0/1(0+0) +0/1(
0/1 (0+0) + 0/1(0+0) + 0/1	(0+0) \ - r(-r)
1 - 0 - 0	
Califor.	
Second Her:	
2471,13 = men 10,0000 = 0.	
V+ 1413 = 0,1 (0+ +8) +0,1 (0+0)+0,1 (0+	
24/11/3 = mase { or (0+ F8) + 0,1 (-0+0	
0,1(-0+0)+0,1(0+f8,) + 0/1(0+0),
0,1(0+0)+0,1(0+0)+0	y((-d+o)),
0/1(0+0)+0/1(0+0)+	0,1(0+E8)} = 4,4 h f
V. [Y, Y] = men 3 0, 1 (0+ F8) + 0,1 (2+0)+	- ·/· (0+0),
0,1(d+0) + 0,1(0+E8)	
9/1(0+0)+0/1(0+0)+	
	·1(0+E8)} = 4,44 (-)
- 27 = 1,11 + f,14->0	
0 1,11 0	

third iter:		
1/1/17 = 0, N (0+Y, NN)	8) + 0,1(0+1,4n8)+0,1(0+0) = 1,4nvn (1) . Engles us - schol	م رضو
	(48)+0/1(0+1/nn8) +0/1(0+0)= 1,49nt (7). Timber in Lo	
V. [47] = max = 0,1 (0	+4,448)+011(-0+0)+011(0+0),	<u>C</u>
0/1/-	0+0)+0/1(0+f, 148)+0/1(0+1,48)	
	+448) + 01 (0+0) + 01(-2+0),	
	-0)+ 0,1(0+t,448)+01(0+1,44)8} = 1,4491(T)	
•	0) + 0,1(0+ f,448) + 91(0+1,408) = f,4044 (+) = t,4044	200
		~
V" = "	149NF -+ 4,4044-+ 0	TO A STATE OF
	THAN KATAL O	
Sien, ~ rue Q	learning itis security i view I was It of one dribdy was. In Off policy Tearning i Possive alearning, cooling on with one	(
	. I Off policy Tearning a Possive alearning concerncy control	
sample = $R(s,a,s')$) +821(8)	(7
VT(8) ← VT	$(cs) + \alpha (sample - v^{T}(s))$	
whi in - Tin	1) (1/1) (1/1) (1/1) (1/1) (U) (U) (U)	~~
	(1) 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1	
V(1	1) - 0+ 0x(0+8x0-0)=0	
	1/1) - 0 + x (0+8x0-0) = 0	
V	(1/1) - + x(2+0/9x0-0) = 0/2	
[m ~ (11)) (yx) (yx)	
	(1) + 0 + x (0 + 8x0) = 0	
v(11) - 0+ a(-2+7x0-0)=-0/2	
	ه معلم على الله مسرحا منوه الله الله عنوه الله الله عنوه الله الله الله الله الله الله الله ال	1601

Ou _ (11) (11) (11)	N-VA
	* 2 4 2 2
V(11) + 0+ x (0+8x0-0)=0	
V(4Y) + 0+0 (-0+8x0-0) = -0/2	- Nerva
And the second s	
[mm ~ (1,1) ~ (1,1) ~ (1,1) ~ (1,1)	
V(41) + 0+ x(0+ xx-0,0-0) = -9.00	
V(1/1) (6,0 + 0x0 + 0,0) = -0,12	
V(Y,Y) - 0 + x (3+8x0-0) = 0,2	
$\mathbf{v}^{\pi}: \mathbf{o} \cdot \mathbf{o} \cdot \mathbf{o}$	
	(iei
ima of Come of	- sous (4
1) $\forall s: V^{*}(s) = \max_{\alpha} Q^{*}(s, \alpha)$	
r) 48,a: Q*(s,a) = { T(s,a,8') { R(s,a,s') + 82 (s') }	
: 2 Jin vi Cpue 4 slee p Col	1.100
Usia: Q'(sia) = ET(siais') R(siais') + Vment Q'(s',a')	
8'	
To provide Q(s,a) or (18/x/Al gin 1) on white Q win a - we we	-10 V V
orne Cype, 1, Cours is in Esp. 2 stems iterative on in white commences of a some	10 10
	1
Theration: Qu. (s.a) - ST(s.a,s') ER(s.a,s') +8 mover Q, (s;a')}	
Heration: Qx, (s,a) + ET(s,a,s') R(s,a,s') + 8 mover Qx (s;a') }	
destion were in fill D T at DI	0
ne specien e le iteration reque cel son se s'ilis UNS R, T gir . Rh de	O // /

$$v^{*}(s_{1}) = \max \left\{ \begin{array}{l} Q^{*}(s_{1},stay), Q^{*}(s_{1},qu) \right\} \\ v^{*}(s_{1}) = 12 + 7 v^{*}(s_{1}) & \longrightarrow v^{*}(s_{1}) = \frac{r_{2}}{1-8} \\ Q^{*}(s_{1},qu) = v_{2} + 7 v^{*}(s_{1}) & \longrightarrow v_{2} = 1 \times v_{2} \times v_{3} = 1 \times v_{3} \times v_{3$$

total reward: (3*(so,a1) = 0+82*(8,). 4 Q (50, a1) = 8/8 v*(s,) = 1+82/*(s,) -= 2/*(s,)= 1/-8 total reward: Q'(so, ar)= 7 + 82 (80) _- - a'(so, ar)= 8/x - I'm a, mous - Q'(so,a,) > Q'(so,ar) ivas, 8/8 (b. 8/1 -cm - 2001) V.(8i) = 0 , Hi 2.(so) = nwx (0+82.(s.), 8) +82.(sr)) = 2, (8,) = 1 24(64)=0 Vn (S1) = 1+8+8+ --- +8" = 1-8" 2/2 (Sr) = 0 ren(so) finds optimal action when - Torn-(si) 1-8 / 8ª