Medical/Bio Research Topics II: Week 15 (10.12.2024)

Comprehensive Assessment and Course Summary

종합 평가 및 과정 요약

Practical Implementation of Al Models (1): Stroke Lesion Segmentation

- Stroke lesion
 - Area of damaged brain tissue caused by interrupted blood flow (stroke)
 - Types:
 - Ischemic lesions: caused by blocked blood vessels
 - Hemorrhagic lesions: caused by bleeding in the brain

– Characteristics:

- Appears as abnormal tissue on brain scans
- Can vary in size and location
- May be visible on CT or MRI
- Can be acute (new) or chronic (old)

– Clinical significance:

- Indicates the location and extent of stroke damage
- Helps determine stroke severity
- Used to predict potential recovery outcomes
- Guides treatment decisions

FLAIR

Diffusion-weighted

[https://www.mayoclinic.org/diseases-conditions/stroke/diagnosis-treatment/drc-20350119]

Stroke lesion displayed as altered signals in MRI

- Stroke lesion segmentation
 - Process of identifying and delineating (outlining) stroke lesions
 - Key purpose: separating stroke lesions from healthy brain tissue
 - Critical in stroke rehabilitation research
 - For the quantification of lesion burden
 - For accurate image processing
 - Still faces challenges and difficulties primarily due to variations of lesions in terms of shape, size, and location
 - Manual segmentation remains the gold standard, but it is timeconsuming, subjective, and requires neuroanatomical expertise

Anatomical Tracings of Lesions After Stroke (ATLAS) v2.0

[https://fcon_1000.projects.nitrc.org/indi/retro/atlas.html]

- Released in 2021 by expanding upon and replacing ATLAS v1.2 released in 2018
- Includes T1-weighted structural MRI (sMRI) scans and manually segmented lesion masks (n = 1,271)
- Practice dataset
 - ATLAS v2.0 dataset for training (n = 655)
 - T1-weighted sMRI scans and lesion masks
 - Training set: n = 600
 - Test set: n = 55

Segmentation Abnormality analysis sMRI

T1-weighted MRI scan

Lesion mask

1 mm:

Dimensions: 197 × 233 × 189

Voxel size: $1.0 \text{ mm} \times 1.0 \text{ mm} \times 1.0 \text{ mm}$

2 mm:

Dimensions: $98 \times 116 \times 94$

Voxel size: $2.0 \text{ mm} \times 2.0 \text{ mm} \times 2.0 \text{ mm}$

T1-weighted sMRI scan and its associated lesion mask

Model architectures

- CNN-based (2015-)
 - U-Net-style (encoder-decoder with skip connections): U-Net, U-Net++,
 Attention U-Net
 - ResNet-backbone: DeepLab series, PSPNet
- Transformer-based (2020-)
 - SETR
 - SegFormer
 - SwinUNet

SegResNet architecture

Performance on test set

Practical Implementation of AI Models (2): Brain Age Estimation

- Brain age
 - Biological age estimated from information usually derived from brain MRI data
 - Sums up the progression of ageing processes in the brain
 - Reflects relatively advanced or delayed brain maturation, while all individuals' brains undergo the general progression such as grey matter atrophy

[https://www.brainkey.ai/blog/brain-age-how-we-calculate-it-and-what-it-means]

Typical brain images for young (22 years) and old (83 years) individuals

- Brain age gap (BAG, also called brain-predicted age difference, delta, etc.)
 - Difference between brain age and chronological age: BAG = estimated brain age chronological age
 - Indicates whether an individual's brain appears to have aged more or less than the population average for their actual chronological age
 - BAG > 0: advanced or premature brain ageing
 - BAG < 0: delayed or resilient brain ageing

MCI, mild cognitive impairment AD, Alzheimer's disease FTD, frontotemporal dementia DLB, dementia with Lewy bodies

[Lee et al., 2022]

Brain age estimation

- Process of predicting an individual's brain age based on brain features usually extracted from brain MRI data
- Key purpose: estimating an individual's brain age relative to their chronological age
- Models brain age using neuroimaging features through supervised learning algorithms to predict chronological age

- Human Connectome Project (HCP)
 - Launched in 2009 as a Blueprint Grand Challenge by the National Institutes of Health in the US
 - HCP Lifespan 2.0
 - Released in 2021
 - Includes imaging and behavioural data
 - HCP Aging (HCP-A, n = 725 aged 36-100 years)
- Practice dataset
 - HCP-A dataset (n = 722)
 - Maps from sMRI and diffusion-weighted MRI (dMRI) data
 - Training set: n = 660
 - Test set: n = 62

Brain

GM

1 mm:

Dimensions: $157 \times 189 \times 156$

Voxel size: $1.0 \text{ mm} \times 1.0 \text{ mm} \times 1.0 \text{ mm}$

2 mm:

Dimensions: $79 \times 95 \times 79$

Voxel size: $2.0 \text{ mm} \times 2.0 \text{ mm} \times 2.0 \text{ mm}$

Maps from sMRI data

1 mm:

Dimensions: $157 \times 189 \times 156$

Voxel size: $1.0 \text{ mm} \times 1.0 \text{ mm} \times 1.0 \text{ mm}$

2 mm:

Dimensions: $79 \times 95 \times 79$

Voxel size: $2.0 \text{ mm} \times 2.0 \text{ mm} \times 2.0 \text{ mm}$

Maps from dMRI data

Model architectures

- CNN-based (2012-)
 - ResNet (skip connection)
 - DenseNet (dense connection)
 - SENet (channel attention)
 - EfficientNet (compound scaling)
- Transformer-based (2017-)
 - ViT
 - Swin Transformer

[Peng et al., 2021]

Performance on test set

in the

Practical Implementation of Al Models (3): Sex Classification

- Sex
 - Refers to biological traits, unlike gender's social/cultural aspects
 - Based on biological and physical characteristics
 - Typically categorized as females and males
 - Not changeable without medical intervention
 - Independent of personal identity or expression

Sex classification

- Process of categorising an individual's brain sex based on brain features usually extracted from brain MRI data
- Key purpose: predicting an individual's brain sex score along the male-female spectrum as well as their binary sex category
- Models brain sex using neuroimaging features through supervised learning algorithms to predict sex assigned at birth

UK Biobank

- Launched in 2006 as a large-scale prospective cohort study by the Medical Research Council and Wellcome Trust in the UK
- Recruited around half a million participants aged 40-69 years across the UK
- Includes imaging data for a subset of participants

Practice dataset

- Part of UK Biobank (n = 498)
 - Brain networks and network metrics from resting state functional MRI (fMRI) data and dMRI data
 - Training set: n = 450
 - Test set: n = 48

Functional brain network and network metrics from resting state fMRI data

Structural brain network and network metrics from dMRI data

- Model architectures
 - Early spatial-based (2009-)
 - Spectral-based (2013-)
 - ChebNet
 - GCN
 - Modern spatial-based (2017-)
 - MPNN
 - GraphSAGE
 - GAT
 - Transformer-based (2020-)
 - Graph Transformer
 - Graphormer

Performance on test set

Accuracy = 0.761 ± 0.110

[Vijayan and Mohler, 2018]