Lógica y Computabilidad

2do cuatrimestre 2020 - A DISTANCIA

Departamento de Computación - FCEyN - UBA

Computabilidad - clase 6

Teorema de la forma normal, teorema del parámetro, teorema de la recursión y aplicaciones, teorema del punto fijo

Teorema de la Forma Normal

Teorema

Sea $f: \mathbb{N}^n \to \mathbb{N}$ una función parcial computable. Entonces existe un predicado p.r. $R: \mathbb{N}^{n+1} \to \mathbb{N}$ tal que

$$f(x_1,\ldots,x_n) = I\left(\min_{z} R(x_1,\ldots,x_n,z)\right)$$

Demostración.

Sea e el número de algún programa para $f(x_1, \ldots, x_n)$. Recordar que la configuración instantánea se representa como

(número de instrucción, lista representando el estado)

El siguiente predicado $R(x_1, ..., x_n, z)$ es el buscado:

$$STP^{(n)}(x_1, \dots, x_n, e, r(z)) \land$$

$$I(z) = \underbrace{r\left(\mathsf{SNAP}^{(n)}(x_1, \dots, x_n, e, r(z))\right)}_{\mathsf{estado final de } e \mathsf{ con entrada } x_1, \dots, x_n} [1]$$

$$\underbrace{r\left(\mathsf{SNAP}^{(n)}(x_1, \dots, x_n, e, r(z))\right)}_{\mathsf{valor de } \mathsf{la variable } Y \mathsf{ en ese estado final }}$$

Otra caracterización de funciones computables

Teorema

Una función es parcial computable si se puede obtener a partir de las funciones iniciales por un número finito de aplicaciones de

- composición,
- recursión primitiva y
- minimización

Teorema

Una función es computable si se puede obtener a partir de las funciones iniciales por un número finito de aplicaciones de

- composición,
- recursión primitiva y
- minimización propia (del tipo $\min_t q(x_1, \dots, x_n, t)$ donde siempre existe al menos un t tal que $q(x_1, \dots, x_n, t)$ es verdadero)

Eliminando variables de entrada

Consideremos un programa P que usa la entrada X_1 y X_2 :

INSTRUCCIÓN 1
$$\#(I_1)$$
 \vdots Computa la función $f:\mathbb{N}^2 \to \mathbb{N}$ $f(x,y)=\Psi_P^{(2)}(x,y)$ INSTRUCCIÓN k $\#(I_k)$ $\#(P)=[\#(I_1),\dots,\#(I_k)]-1$

Busco número de programa P_0 para $f_0 : \mathbb{N} \to \mathbb{N}, f_0(x) = f(x, 0)$

[A]
$$X_2 \leftarrow X_2 - 1$$
 109
IF $X_2 \neq 0$ GOTO A 110 Computa la función $f_0 : \mathbb{N} \to \mathbb{N}$
INSTRUCCIÓN 1 #(I_1) $f_0(x) = \Psi_{P_0}^{(1)}(x)$
:
INSTRUCCIÓN k #(I_k) #(I_0) = [109, 110, #(I_1), ..., #(I_k)]-1

(Supongo que A no aparece como etiqueta en P; si aparece elijo otro nombre de etiqueta)

Eliminando variables de entrada

Busco número de programa P_1 para $f_1: \mathbb{N} \to \mathbb{N}, f_1(x) = f(x, 1)$

[A]
$$X_2 \leftarrow X_2 - 1$$
 109
IF $X_2 \neq 0$ GOTO A 110
 $X_2 \leftarrow X_2 + 1$ 26
INSTRUCCIÓN 1 # (I_1) $f_1(x) = \Psi_{P_1}^{(1)}(x)$
 \vdots # $(P_1) =$
INSTRUCCIÓN k # (I_k) [109, 110, 26, # $(I_1), \dots, \#(I_k)$] - 1

Busco número de programa P_2 para $f_2 : \mathbb{N} \to \mathbb{N}, f_2(x) = f(x, 2)$

Teorema del Parámetro

Hay un programa P_{x_2} para la función $f_{x_2}(x_1) = f(x_1, x_2)$

La transformación $(x_2, \#(P)) \mapsto \#(P_{x_2})$ es p.r., es decir, existe una función $S : \mathbb{N}^2 \to \mathbb{N}$ p.r. tal que dado x_2 e y = #(P) calcula $\#(P_{x_2})$:

$$S(x_2,y) = \left(2^{109} \cdot 3^{110} \cdot \prod_{j=1}^{x_2} p_{j+2}^{26} \cdot \prod_{j=1}^{|y+1|} p_{j+x_2+2}^{(y+1)[j]}\right) - 1$$

Teorema

Hay una función p.r. $S: \mathbb{N}^2 \to \mathbb{N}$ tal que

$$\Phi_{y}^{(2)}(x_1,x_2) = \Phi_{S(x_2,y)}^{(1)}(x_1).$$

Teorema

Para cada n, m > 0 hay una función p.r. inyectiva $S_m^n : \mathbb{N}^{n+1} \to \mathbb{N}$ tal que

$$\Phi_y^{(n+m)}(x_1,\ldots,x_m,u_1,\ldots,u_n)=\Phi_{S_m^n(u_1,\ldots,u_n,y)}^{(m)}(x_1,\ldots,x_m)$$

Programas autoreferentes

- en la demostración del Halting Problem construimos un programa P que, cuando se ejecuta con su mismo número de programa (i.e. #(P)), evidencia una contradicción
- en general, los programas pueden dar por supuesto que conocen su mismo número de programa
- ▶ pero si un programa P conoce su número de programa, podría, por ejemplo, devolver su mismo número, i.e. #(P)

Teorema de la Recursión

Teorema

 $Si\ g: \mathbb{N}^{n+1} \to \mathbb{N}$ es parcial computable, existe un e tal que

$$\Phi_{\mathbf{e}}^{(n)}(x_1,\ldots,x_n)=g(\mathbf{e},x_1,\ldots,x_n)$$

Demostración.

Sea S_n^1 la función del Teorema del Parámetro:

$$\Phi_y^{(n+1)}(x_1,\ldots,x_n,u)=\Phi_{S_n^1(u,y)}^{(n)}(x_1,\ldots,x_n).$$

La función $(x_1, \ldots, x_n, v) \mapsto g(S_n^1(v, v), x_1, \ldots, x_n)$ es parcial computable, de modo que existe d tal que

$$g(S_n^1(v,v),x_1,...,x_n) = \Phi_d^{(n+1)}(x_1,...,x_n,v)$$

= $\Phi_{S_n^1(v,d)}^{(n)}(x_1,...,x_n)$

d está fijo; v es variable. Elegimos v = d y $e = S_n^1(d, d)$.

Teorema de la Recursión

Corolario

Si $g: \mathbb{N}^{n+1} \to \mathbb{N}$ es parcial computable, existen infinitos e tal que

$$\Phi_e^{(n)}(x_1,\ldots,x_n)=g(e,x_1,\ldots,x_n)$$

Demostración.

En la demostración del teorema anterior, existen infinitos d tal que

$$\Phi_d^{(n+1)} = g(S_n^1(v,v), x_1, \ldots, x_n).$$

 $v \mapsto S_n^1(v, v)$ es inyectiva de modo que existen infinitos

$$e = S_n^1(d,d).$$

Quines

Un quine es un programa que cuando se ejecuta, devuelve como salida el mismo programa.

Por ejemplo:

```
char*f="char*f=%c%s%c;main()
{printf(f,34,f,34,10);}%c";
main(){printf(f,34,f,34,10);}
```

Quines

¿Existe e tal que $\Phi_e(x) = e$?

Sí, el programa vacío tiene numero 0 y computa la función constante 0, i.e. $\Phi_0(x) = 0$.

Proposición

Hay infinitos e tal que $\Phi_e(x) = e$.

Demostración.

Considerar la función $g: \mathbb{N}^2 \to \mathbb{N}, g(z,x) = z$.

Aplicando el Teorema de la Recursión, existen infinitos e tal que

$$\Phi_e(x) = g(e, x) = e.$$

Quines

No hay nada especial con que la salida del programa sea su propio número en el resultado anterior. Funciona para cualquier h parcial computable.

¿Existe e tal que $\Phi_e(x) = h(e)$?

Proposición

Hay infinitos e tal que $\Phi_e(x) = h(e)$.

Demostración.

Considerar la función $g: \mathbb{N}^2 \to \mathbb{N}, g(z,x) = h(z)$.

Aplicando el Teorema de la Recursión, existen infinitos e tal que

$$\Phi_e(x) = g(e, x) = h(e).$$

Teorema del Punto Fijo

Teorema

Si $f: \mathbb{N} \to \mathbb{N}$ es computable, existe un e tal que $\Phi_{f(e)} = \Phi_e$.

Demostración.

Considerar la función $g: \mathbb{N}^2 \to \mathbb{N}$,

$$g(z,x)=\Phi_{f(z)}(x).$$

Aplicando el Teorema de la Recursión, existe un e tal que para todo x,

$$\Phi_e(x) = g(e, x) = \Phi_{f(e)}(x)$$

Ejercicio

Probar que $f: \mathbb{N} \to \mathbb{N}$,

$$f(x) = \begin{cases} 1 & \Phi_x \text{ es total} \\ 0 & \text{si no} \end{cases}$$

no es computable.

Supongamos f computable. Puedo definir el siguiente programa P:

[A] IF
$$f(X) = 1$$
 GOTO A

Tenemos

$$\Psi_P^{(2)}(x,y) = g(x,y) = \begin{cases} \uparrow & \Phi_x \text{ es total} \\ 0 & \text{si no} \end{cases}$$

es parcial computable. Por el Teorema de la Recursión, sea e tal que $\Phi_e(y) = g(e, y)$.

- Φ_e es total $\Rightarrow g(e, y) \uparrow$ para todo $y \Rightarrow \Phi_e(y) \uparrow$ para todo $y \Rightarrow \Phi_e$ no es total
- Φ_e no es total $\Rightarrow g(e, y) = 0$ para todo $y \Rightarrow \Phi_e(y) = 0$ para todo $y \Rightarrow \Phi_e$ es total