Montículos y filas de prioridad

Dr. J.B. Hayet

CENTRO DE INVESTIGACIÓN EN MATEMÁTICAS

Noviembre 2009

Outline

1 Montículos: definiciones y propiedades

2 Aplicaciones

Previously en la clase

- Isomorfismo entre arboles ordenados y arboles binarios.
- Arboles binarios representados por estructuras ligadas o arreglos.
- Noción de árbol "equilibrado" importante para lograr eficiencia de algoritmos, para arboles de cualquier tipo.

Outline

1 Montículos: definiciones y propiedades

2 Aplicaciones

- push()
- pop()
- top()

8
7
5
5
4
2

- push()
- pop()
- top()

- Objeto asociado con una llave.
- Comportamiento similar a una pila, pero con los datos "ordenados" por su valor.
- Soporta operaciones push(), pop(), top().
- El pop() sale el objeto "más prioritario" de la estructura.
- El top() da una referencia hacia éste.
- ¿ Qué tipo de estructura usar?

<u>Solución 1</u>: usar una <u>secuencia</u> (arreglo, lista ligada) en que todos los valores están ordenados por orden de la llave!

- pop(): en O(1) (el elemento máximo es a la derecha).
- top(): en O(1) (igual).
- push(): en promedio, será O(N), para buscar el lugar del nuevo elemento y mover todos los que están superiores hacia la derecha!

Solución 2: usar una secuencia, y en cada operación de pop() o top() buscar el máximo (la solución "floja")

- pop(): en O(N) (hay que buscar el elemento mas grande).
- top(): en O(N) (igual).
- push(): en O(1).

Un montículo es una estructura de árbol binario:

- completo,
- tal que todos los elementos del ultimo nivel se encuentren en la parte izquierda,
- ordenado en montículo.

Ordenamiento en montículo: para cualquier par de nodo (ν, ν') , si ν' es un hijo de ν entonces $key(\nu') \leq key(\nu)$.

- Por construcción el objeto con llave mas alta esta en la raíz del árbol binario.
- Se puede establecer las definiciones y propiedades para montículos-max o montículos-min.
- Recordamos que:

$$h = |\log_2 N| + 1$$

donde N es el numero de nodos internos.

Ya que es árbol binario completo, es mas interesante usar un arreglo para almacenar los datos!

- Hijos de a[k] en a[2k] y a[2k + 1].
- Padre en de a[k] en a[k/2].
- No espacio desperdiciado: no hoyo, datos contiguos.

Estructura:

```
template <class T, class K=int>
class heap {
public:
 // Constructor
 heap() { data.push_back(std::pair<T, K>(T(), K())); };
 // Add an object o with priority p
 void add(const T& o, const K& p);
 // Remove object with maximum key
 T removeMax();
 // Get reference to object with maximum key
  const T &getMax();
private:
  std::deque < std::pair < T, K > data;
};
```

El arreglo (montículo-max) usado satisface:

$$\begin{cases} 2 \le 2i \le N \Rightarrow a[i] \ge a[2i] \\ 3 \le 2i + 1 \le N \Rightarrow a[i] \ge a[2i + 1] \end{cases}$$

- Orden parcial en el árbol, según caminos de la raíz a las hojas.
- La meta es arreglarse para que estas desigualdades permanezcan mientras el árbol está modificado.

El arreglo (montículo-max) tiene que permitir:

- Investigar el elemento de llave máxima contenido en el montículo.
- Añadir un elemento nuevo, un par (objeto,llave).
- Quitar el elemento de llave máxima de la estructura.

Acceder al máximo en O(1)

<u>Problema 1</u>: al añadir un nuevo elemento en final del arreglo, en a[N+1], ya no tenemos necesariamente $a[N+1] \le a[\frac{N+1}{2}]$, la propiedad de montículo es violada!

<u>Problema 2</u>: mismo tipo de problema al quitar el elemento de llave máxima: ¿qué pongo al lugar de la raíz?

Montículo: recuperar el máximo

const T &getMax() {
 if (data.size()<2)
 throw std::out_of_range("Empty_heap");</pre>

```
return data[1]. first;
};
en O(1)...
```

Operación muy sencilla:

Idea básica al introducir un nuevo elemento ν por add:

- Poner el nuevo elemento ν en el primer nodo externo disponible (al final del arreglo).
- Comparar la llave con la de su padre, si está superior a la de su padre, intercambiar con el padre.
- El sub-arbol obtenido respeta el orden de montículo: los nuevos hijos sí tienen llaves inferiores a la del nuevo padre.
- Iterar esta operación de intercambio hasta que se llegue a la raíz o que se llegue a un nodo ν_t tal que $key(\nu) \le key(\nu_t)$.


```
template < class T, class K>
void heap<T,K>::add(const T& o,
                    const K& p) {
  // Put element on last place
  data.push_back(std::pair<T,K>(o,p));
  unsigned int k = data.size()-1;
  while (k>=2 \&\& data[k].second>data[k>>1].second) {
    std::pair<T,K>tmp = data[k>>1];
    data[k>>1] = data[k];
    data[k] = tmp;
    k = k >> 1:
```

```
int main() {
  heap<int> h;
  h.add(5,1); h.add(15,10);
  h.add(12,8); h.add(2,6);
  h.add(2,16); h.add(2,7);
  h.add(2,9);
  h. print();
  return 0:
Nos da:
16 10 9 1 6 7 8
que sí corresponde a un montículo.
```


- Tiempo para todas las operaciones involucradas: $O(\log N)$ en promedio.
- Peor caso como en promedio: $O(\log N)$.
- Mejor caso en O(1).

Mejor que usar un arreglo ordenado pero peor que arreglo normal.

Montículo: quitar elemento máximo

ldea básica al quitar un nuevo elemento ν por removeMax:

- Copiar el ultimo elemento del arreglo en la posición de la raíz y remover el ultimo elemento.
- Comparar la llave de este elemento con la de sus hijos; si uno es de llave superior, intercambiar el de valor máximo entre los hijos con la raíz.
- Así nos aseguramos que todo el árbol excepto el sub-arbol del intercambiado respeta la condición de montículo.
- Iterar hasta que $key(\nu) \ge key(left)$ y $key(\nu) \ge key(right)$.

Quitar el elemento de llave máxima

Quitar el elemento de llave máxima

Quitar el elemento de llave máxima


```
template <class T, class &
T heap<T, K>::removeMax() {
  if (data.size()<2) throw std::out_of_range("Empty_heap");</pre>
  T saved=data[1]. first;
  data[1] = data[data.size()-1]; data.pop_back();
  int k=1:
  while ((2*k < data.size() \&\& data[2*k].second>data[k].second)||
         (2*k+1 < data.size() \&\& data[2*k+1].second > data[k].second))
    if (2*k+1)=data.size() || data[2*k].second>data[2*k+1].second) {
        std::pair < T, K > tmp = data[2*k];
        data[2*k] = data[k];
        data[k] = tmp;
               = 2*k
      else {
        std::pair < T, K > tmp = data[2*k+1];
        data[2*k+1] = data[k];
        data[k] = tmp;
             = 2*k+1;
  return saved:
```

```
while (h.getSize()>0) {
     std::cout << h.getMax() << std::endl;</pre>
    h.removeMax();
    h.print();
Nos da:
16
10 8 9 1 6 7
10
98716
8 6 7 1
7 6 1
```


- Otra vez, operación en $O(\log N)$, ya que al máximo se baja el nuevo elemento raíz según la altura del árbol.
- En total, operaciones de inserción de un nuevo elemento y de supresión del elemento de llave máxima en $O(\log N)$.

Cambiar la llave de un objeto: como hacer?

• Quitar un objeto cualquiera: como hacer?

• Construir la fila de prioridad a partir de N elementos.

- Cambiar la llave de un objeto: como hacer?
 - Si la llave es mas chica, hacerlo bajar! (top-down).
 - Si la llave es mas grande, hacerlo subir! (bottom-up).
 - Todo en O(log N).
- Quitar un objeto cualquiera: como hacer?

- Construir la fila de prioridad a partir de N elementos.

- Cambiar la llave de un objeto: como hacer?
 - Si la llave es mas chica, hacerlo bajar! (top-down).
 - Si la llave es mas grande, hacerlo subir! (bottom-up).
 - Todo en O(log N).
- Quitar un objeto cualquiera: como hacer?
 Remplazar el objeto que remover por el ultimo del montículo y hacerlo bajar o subir, según el valor relativo de la nueva llave!, en O(log N).
- Construir la fila de prioridad a partir de N elementos.

- Cambiar la llave de un objeto: como hacer?
 - Si la llave es mas chica, hacerlo bajar! (top-down).
 - Si la llave es mas grande, hacerlo subir! (bottom-up).
 - Todo en O(log N).
- Quitar un objeto cualquiera: como hacer?
 Remplazar el objeto que remover por el ultimo del montículo y hacerlo bajar o subir, según el valor relativo de la nueva llave!, en O(log N).
- Construir la fila de prioridad a partir de N elementos.
 Introduciendo todos los elementos en un montículo inicialmente vacío: O(N log N)

- Cambiar la llave de un objeto: como hacer?
 - Si la llave es mas chica, hacerlo bajar! (top-down).
 - Si la llave es mas grande, hacerlo subir! (bottom-up).
 - Todo en O(log N).
- Quitar un objeto cualquiera: como hacer?
 Remplazar el objeto que remover por el ultimo del montículo y hacerlo bajar o subir, según el valor relativo de la nueva llave!, en O(log N).
- Construir la fila de prioridad a partir de N elementos. Introduciendo todos los elementos en un montículo inicialmente vacío: $O(N \log N)$

Notar que las operaciones de tipo "monticulización" no dependen de la estructura usada para representar el árbol!

- Finalmente, solo dos primitivas!
- Entonces prever en el caso de mas operaciones, implementar métodos moveUp y moveDown y expresar todas en función de estas dos.

Outline

1 Montículos: definiciones y propiedades

2 Aplicaciones

Aplicación: fila de prioridad

- push(): usando add() del montículo, O(log N).
- pop(): usando removeMax(), O(log N).
- top(): usando getMax(), O(1).

Para un uso "normal" (con inserciones y deleciones) ¡usar un montículo!

Aplicación: fila de prioridad

	Inserción	Quitar máximo	Quitar elemento	Máximo	Cambiar llave
Arreglo	O(1)	O(N)	O(N)	O(N)	O(1)
Lista	O(1)	O(N)	O(1)	O(N)	O(1)
Arreglo ord.	O(N)	O(1)	O(N)	O(1)	O(N)
Lista ord.	O(N)	O(1)	O(1)	O(1)	O(N)
Montículo	$O(\log N)$	$O(\log N)$	$O(\log N)$	O(1)	$O(\log N)$

Aplicación: fila de prioridad

Una aplicación: algoritmo de Dijsktra usando la STL

```
for (int i = 0; i < nodeMax; i++)
   shortDist[i] = std::numeric_limits < int >::max();
std::priority_queue < Node > heap;
heap.push(Node(from, 0));
while (!heap.empty()) {
    Node curNode = heap.top(); heap.pop();
    if (shortDist[curNode.getIndex()] <</pre>
      std::numeric_limits < int >::max())
      continue:
    shortDist[curNode.getIndex()] = curNode.getKey();
    for (Edge *e = edges[curNode.getIndex()];
           e!=NULL; e = e->next)
     heap.push(Node(e->to,
           curNode.getKey()+e->getKey());
```

Aplicación muy directa del montículo: el ordenamiento de tipo HeapSort, cuya idea basica consiste en:

- poner todos los elementos uno a uno en un montículo $(O(N \log N))$ en el caso peor).
- 2 sacar el máximo en un ciclo de iteraciones, $O(N \log N)$.

Pero: requiere el doble de memoria que la estructura, y la construcción del montículo se puede hacer mas eficientemente!

Un código ingenuo:

```
template <class T>
void heapSort(std::vector<T> &v) {
  heap < T, T > h;
  // Fill heap
  for (int i = 0; i < v. size(); i++)
    h.add(v.at(i),v.at(i));
  // Empty heap and get maxs back in v
  int k=0:
  while (h.getSize()>0) {
    v.at(k++)=h.removeMax();
```


Ahora, existe un algoritmo mas sencillo para formar un montículo (en sitio) a partir de un arreglo:

- recorrer todos los nodos a partir de los mas abajo,
- considerar cada uno como una raíz de un montículo,
- si necesario (el nodo es de llave inferior a uno de sus hijos),
 "monticulizar".

Otra manera de verlo, recursivamente hacer montículos:
BottomUpHead(S)

Require: Sequence S with N pairs (Object,Key)

Ensure: A heap T with the pairs in S.

if S is empty then

return empty heap
end if

Remove the first pair (o,k) from S
Split S into two sequences S1 and S2

 $T1 \leftarrow BottomUpHeap(S1)$

 $T2 \leftarrow BottomUpHeap(S2)$

create binary tree T with (o,k) at root, T1 at left, T2 at right If necessary, performs bubbling of (o,k)

return T

Complejidad: supongamos $N = 2^h - 1$ (árbol binario perfecto).

- Entonces, consideraríamos primero los 2^{h−2} montículos del nivel h − 2, y nos costaría al máximo 1 bajada en cada uno.
- Luego, considerar los nodos del nivel arriba, que son 2^{h-3} , y en qué al máximo nos costara 2 bajadas.
- En total, el costo en numero de bajadas es:

$$\sum_{k=1}^{h-1} k 2^{h-1-k} = S_h$$

$$= 2S_{h-1} + (h-1)$$

$$= S_{h-1} + 2^{h-1} - 1.$$

Entonces:

$$S_h = 2^h - h - 1$$

Complejidad: supongamos $N = 2^h - 1$ (árbol binario perfecto).

- Entonces, consideraríamos primero los 2^{h-2} montículos del nivel h-2, y nos costaría al máximo 1 bajada en cada uno.
- Luego, considerar los nodos del nivel arriba, que son 2^{h-3} , y en qué al máximo nos costara 2 bajadas.
- En total, el costo en numero de bajadas es:

$$\sum_{k=1}^{h-1} k 2^{h-1-k} = S_h$$

$$= 2S_{h-1} + (h-1)$$

$$= S_{h-1} + 2^{h-1} - 1.$$

Entonces:

$$S_h = 2^h - h - 1 < N$$
.

Lineal, <2N comparaciones!, dominado por la segunda parte.

Construcción del montículo:

U N B U E N E J E M P L O

U N B U E N E J E M P L O

Construcción del montículo:

U N B U E N E J E M P L O

U N B U E O E J E M P L N

Construcción del montículo:

U N B U E N E J E M P L O

U N B U P O E J E M E L N

Construcción del montículo:

U N B U E N E J E M P L O

U N O U P B E J E M E L N

Construcción del montículo:

U N B U E N E J E M P L O

U U O N P N E J E M E L B

- Una construcción de montículo como explicado se hace en tiempo lineal, contra N log N para el algoritmo ingenuo.
- HeapSort: primera parte en N.
- HeapSort: segunda parte en sitio con sucesión de movidas del elemento final atrás (2N log N).

Aplicación: k elementos mas grandes

Opción 1:

- Construir montículo (< 2N comparaciones).
- Sacar k elementos máximos consecutivamente (< 2k log N comparaciones).

Opción 2:

- Construir montículo-min con los k primeros elementos (< 2k comparaciones).
- Hacer N-k operaciones de inserción-remover mínimo $(< 2(N-k) \log k$ comparaciones).

Tiempo lineal (O(N)) cuando k pequeño o k cerca de N, $O(N \log N)$ sino.

Variaciones

- Usar arboles ternarios... Todo el problema es encontrar un compromiso justo entre el numero de comparaciones que hacer en la monticulización y la altura del árbol
 - En una operación elemental de bajada, en el mejor caso, tres comparaciones en cambio de 2 en el caso binario $(3\log_3 N = \frac{3}{\log_2 3}\log_2 N \approx 1.89\log_2 N \text{ contra } 2\log_2 N)$; no ventaja en añadir un orden mas.
- Mejorar la segunda parte del ordenamiento de HeapSort: el elemento re-bajado desde arriba...

Variaciones: primera versión

```
template < class T, class K>
void heap<T,K>::moveDown(int curr,
                           std::pair<K,T> &paseador) {
int child = 2*curr + 1;
while(child < data.size()) {</pre>
  if (data[child].second < data[child -1].second)
   child --;
  if (data[child].second>paseador.second) {
    data [curr]=data [child], curr=child, child=2*curr+1;
   else break;
if (( child=data.size()) &&
    data [data.size()-1].second>paseador.second)
    data[curr] = data[data.size()-1], curr = data.size()-
data[curr]=paseador;
```

Variaciones: versión mejorada

```
template <class T, class K>
void heap<T,K>::moveDown(int curr,
                            std::pair<K,T> &paseador) {
int memo=vacant;
int child , parent;
int child = 2*curr + 1:
while ( child < data . size ( ) ) {</pre>
  if (data[child].second < data[child -1].second)
    child --:
  data [curr] = data [child], curr=child, child=2*curr+1;
if (( child=data . size ()))
  data[curr] = data[data.size()-1], curr = data.size()-1;
```

Variaciones: versión mejorada

```
int parent= curr/2;
while(curr>memo) {
   if(data[parent].second<paseador.second) {
      data[curr]=data[parent],curr=parent, parent=curr
   } else
      break;
}
data[curr]=paseador;
}</pre>
```

Simple y lleva una ganancia de 25% en promedio

