Introduction Two-Class Logistic Regression Generalized Linear Models Softmax Regression Lecture Summary

Statistical Pattern Recognition Lecture3 Logistic Regression

Dr Zohreh Azimifar

School of Electrical and Computer Engineering

Shiraz University

Fall2014

Table of contents

- Two-Class Logistic Regression
 - Sigmoid Function
 - Maximum Likelihood Estimate
 - Log Likelihood
 - Parameter Learning Using Gradient Ascent Method
 - Linearity of The Model
 - Parameter Learning Using Newton's Method
- Generalized Linear Models
 - Exponential Distribution Family
 - Examples: Bernoulli Distribution
 - Examples: Gaussian Distribution
 - Conditions for General Linear Regression Models
 - Logistics Regression and General Model
 - Linear Regression and General Model
- 4 Softmax Regression
 - Multinomial Distribution
 - General Linear Model
 - I ikelihood Function
- 5 Lecture Summary
 - Summary

Introduction

- Classification: given class labels are discrete values.
- Class: a category of patterns (c classes).
- Goal: mapping from feature vectors to class labels.
- Probabilistic view of classification:

$$y^* = argmax_y P(y|\mathbf{X})$$

- y^* is the class label which maximizes probability of labels given the pattern \mathbf{X} .
- In probabilistic classification we train for this probability density function.

Introduction

• Linear Regression for classification?

Discrete Labels

• In a 2-class problem $(y \in \{0,1\})$, we use probability density to predict class label:

$$P(y = 1 | \mathbf{X}; \boldsymbol{\theta}) = h_{\boldsymbol{\theta}}(\mathbf{X})$$

 $P(y = 0 | \mathbf{X}; \boldsymbol{\theta}) = 1 - h_{\boldsymbol{\theta}}(\mathbf{X})$

therefore:

$$P(y|\mathbf{X};\theta) = h_{\theta}(\mathbf{X})^{y}(1 - h_{\theta}(\mathbf{X}))^{1-y}$$

• Here $h_{\theta}(\mathbf{X})$ is the hypothesis model showing probability for pattern \mathbf{X} to be of class 1.

Sigmoid Function

• Here $h_{\theta}(\mathbf{X})$ is the hypothesis model showing probability for pattern \mathbf{X} to be of class 1

$$h_{m{ heta}}(\mathbf{X}) = g(m{ heta}^T \mathbf{X}) = rac{1}{1 + e^{-m{ heta}^T \mathbf{X}}}$$
 $g(z) = rac{1}{1 + e^{-z}}$

• Function g(.) is called Sigmoid or logistic function:

Maximum Likelihood Estimate

 Model parameters are determined by maximum likelihood (ML) estimate:

$$\begin{split} L(\boldsymbol{\theta}) &= P(\mathbf{y}|X;\boldsymbol{\theta}) \\ &= \prod_{j=1}^{m} P(y^{(j)}|\mathbf{X}^{(j)};\boldsymbol{\theta}) \\ &= \prod_{i=1}^{m} h_{\boldsymbol{\theta}}(\mathbf{X}^{(j)})^{y^{(i)}} (1 - h_{\boldsymbol{\theta}}(\mathbf{X}^{(j)}))^{(1-y^{(j)})} \end{split}$$

• Samples are assumed independently and identically distributed(i.i.d.).

Log Likelihood

In this case maximizing the log likelihood is mathematically easier

$$\begin{split} I(\boldsymbol{\theta}) &= log L(\boldsymbol{\theta}) \\ &= \sum_{j=1}^{m} \{ y^{(j)} log(h_{\boldsymbol{\theta}}(\mathbf{X}^{(j)})) + (1 - y^{(j)}) log(1 - h_{\boldsymbol{\theta}}(\mathbf{X}^{(j)})) \} \end{split}$$

• $I(\theta)$ is to be maximized. Use gradient ascent

$$\boldsymbol{\theta} = \boldsymbol{\theta} + \alpha \nabla_{\boldsymbol{\theta}} I(\boldsymbol{\theta})$$

Discrete Labels
Sigmoid Function
Maximum Likelihood Estimate
Log Likelihood
Parameter Learning Using Gradient Ascent Method
Linearity of The Model

Gradient Ascent Method

$$\frac{\partial}{\partial \theta_i} I(\boldsymbol{\theta}) = \sum_{j=1}^m \{ y^{(j)} \frac{h_{\boldsymbol{\theta}}^{'}(\mathbf{X}^{(j)})}{h_{\boldsymbol{\theta}}(\mathbf{X}^{(j)})} + (1 - y^{(j)}) \frac{-h_{\boldsymbol{\theta}}^{'}(\mathbf{X}^{(j)})}{1 - h_{\boldsymbol{\theta}}(\mathbf{X}^{(j)})} \}$$

where:

$$\begin{split} \frac{\partial}{\partial \theta_i} h_{\boldsymbol{\theta}}(\mathbf{X}^{(j)}) &= h_{\boldsymbol{\theta}}^{'}(\mathbf{X}^{(j)}) \\ &= \frac{x_i^{(j)} e^{-\boldsymbol{\theta}^{\mathsf{T}} \mathbf{X}}}{(1 + e^{-\boldsymbol{\theta}^{\mathsf{T}} \mathbf{X}})^2} = x_i^{(j)} h_{\boldsymbol{\theta}}(\mathbf{X}^{(j)}) (1 - h_{\boldsymbol{\theta}}(\mathbf{X}^{(j)})) \end{split}$$

substitute back:

$$\frac{\partial}{\partial \theta_i} I(\boldsymbol{\theta}) = \sum_{j=1}^m (y^{(j)} - h_{\boldsymbol{\theta}}(\mathbf{X}^{(j)})) x_i^{(j)}$$

$$\theta_i = \theta_i + \alpha \sum_{i=1}^{m} (y^{(i)} - h_{\theta}(\mathbf{X}^{(i)})) x_i^{(i)}$$

Discrete Labels
Sigmoid Function
Maximum Likelihood Estimate
Log Likelihood
Parameter Learning Using Gradient Ascent Method
Linearity of The Model
Parameter Learning Using Newton's Method

Linearity of The Model

- Where does linearity of logistic regression come from?
- Any other choice for the hypothesis function?

$$g(z) = \begin{cases} 1 & \text{if } z > 0 \\ 0 & \text{otherwise} \end{cases}$$

Discrete Labels
Sigmoid Function
Maximum Likelihood Estimate
Log Likelihood
Parameter Learning Using Gradient Ascent Method
Linearity of The Model
Parameter Learning Using Newton's Method

Parameter Learning Using Newton's Method

Parameter Learning Using Newton's Method

• Newton's method finds root of an arbitrary function $f(\theta)$, iteratively:

$$\theta^{(t+1)} = \theta^{(t)} - \frac{f(\theta^{(t)})}{f'(\theta^{(t)})}$$

• Recall, the objective is to determine parameters of likelihood function $I(\theta)$:

$$\theta^{(t+1)} = \theta^{(t)} - \frac{l'(\theta^{(t)})}{l''(\theta^{(t)})}$$

to be generalized for all parameters θ :

$$\boldsymbol{\theta}^{(t+1)} = \boldsymbol{\theta}^{(t)} - H^{-1} \nabla_{\boldsymbol{\theta}} I$$

where H is called Hessian matrix:

$$H_{ij} = \frac{\partial^2 I}{\partial \theta_i \partial \theta_i}$$

Exponential Distribution Family

- Can we extend linear regression and logistic regression to more general models?
- Objective: determine general models for $P(y|\mathbf{X}; \theta)$.
- Define exponential distribution family:

$$P(y; \eta) = b(y) \exp(\eta^T T(y) - a(\eta))$$

where η is Natural Parameter T is Sufficient Statistic T(y) = y

- Different selection of $\{a, b, T, \eta\}$ yields different distributions:
 - Bernoulli Distribution
 - Gaussian Distribution

Bernoulli Distribution

$$P(y = 1; \phi) = 1 - P(y = 0; \phi) = \phi$$

• Special case of the general model?

$$P(y;\phi) = \phi^{y}(1-\phi)^{1-y}$$

$$= \exp(\log(\phi^{y}(1-\phi)^{1-y}))$$

$$= \exp(y\log\phi + (1-y)\log(1-\phi))$$

$$= \underbrace{1}_{b(y)} \times \exp((\log\frac{\phi}{1-\phi})\underbrace{y}_{T(y)} + \underbrace{\log(1-\phi)}_{-a(\eta)})$$

therefore:

$$\eta = \log \frac{\phi}{1 - \phi} \Longrightarrow \phi = \frac{1}{1 + e^{-\eta}}$$

$$a(\eta) = -\log(1 - \phi) = \log(1 + e^{\eta})$$

Gaussian Distribution

$$N(\mu, \sigma^2 = 1) = \frac{1}{\sqrt{2\pi}} exp(\frac{-1}{2}(y - \mu)^2)$$

• Special case of the general model?

$$N(\mu, \sigma^{2}) = \underbrace{\frac{1}{\sqrt{2\pi}} exp(\frac{-1}{2}y^{2})}_{b(y)} \cdot exp(\underbrace{\mu}_{\eta} \underbrace{y}_{T(y)} - \frac{1}{2} \underbrace{\mu^{2}}_{a(\eta) = +\frac{1}{2}\mu^{2} = +\frac{1}{2}\eta^{2}})$$

Conditions for General Linear Regression Models

Three conditions for a model $P(y|\mathbf{X};\theta)$ to be considered a linear model:

- **1** Model $P(y|\mathbf{X}; \boldsymbol{\theta})$ be an exponential distribution with parameter η .
- ② Given feature vector \mathbf{X} , predict $E[T(y)|\mathbf{X}]$. Here, we have $h_{\theta}(\mathbf{X}) = E[T(y)|\mathbf{X}]$

6

$$\left\{ \begin{array}{ll} \boldsymbol{\eta} = \boldsymbol{\theta}^T \mathbf{X} & \quad \text{if } \boldsymbol{\eta} \text{ is a real number} \\ \boldsymbol{\eta}_i = \boldsymbol{\theta}_i^T \mathbf{X} & \quad \text{if } \boldsymbol{\eta} \in \mathbb{R}^k \end{array} \right.$$

Logistics Regression and General Model

Three conditions for logistic regression to be considered a generalized linear model:

•

$$P(y|\mathbf{X};\theta) = h_{\theta}(\mathbf{X})^{y} (1 - h_{\theta}(\mathbf{X}))^{1-y}$$

$$P(y = 1; \phi) = 1 - P(y = 0; \phi) = \phi$$

2

$$\begin{aligned} h_{\boldsymbol{\theta}}(\mathbf{X}) &= P(y=1|\mathbf{X};\boldsymbol{\theta}) \\ &= 1 \times P(y=1|\mathbf{X};\boldsymbol{\theta}) + 0 \times P(y=0|\mathbf{X};\boldsymbol{\theta}) \\ &= E[y|\mathbf{X}] \quad \text{(second condition satisfied)} \\ &= \phi = \frac{1}{1+e^{-\eta}} \\ &= \frac{1}{1+e^{-\theta^T\mathbf{X}}} \quad \text{(third condition satisfied)} \end{aligned}$$

Linear Regression and General Model

Three conditions for linear regression to be considered a generalized linear model:

$$h_{\theta}(\mathbf{X}) = \theta^{T} \mathbf{X}$$

$$= \mu$$

$$= E[y|\mathbf{X}]$$

$$= \eta$$

How do you describe the satisfiability here?

Multinomial Distribution

- Let us extend 2-class problem to c-class classification, *i.e.*, $y \in \{1, \dots, c\}$.
- We assume the class multinomially distributed:

$$P(y = i | \mathbf{X}) = \phi_i \quad (i = 1, 2, \dots, c)$$

here, only determine c-1 parameters, why?

• Try to fit a generalized linear model into this *c*-class problem.

$$\mathbf{T}(1) = egin{bmatrix} 1 \ 0 \ 0 \ \vdots \ 0 \end{bmatrix}, \quad \mathbf{T}(2) = egin{bmatrix} 0 \ 1 \ 0 \ \vdots \ 0 \end{bmatrix}, \cdots, \mathbf{T}(c-1) = egin{bmatrix} 0 \ 0 \ \vdots \ 0 \ 1 \end{bmatrix}, \quad \mathbf{T}(c) = egin{bmatrix} 0 \ 0 \ \vdots \ 0 \ 0 \end{bmatrix} \in \mathbb{R}^{c-1}$$

Define indicator function

$$\begin{cases} 1\{True\} = 1 \\ 1\{false\} = 0 \end{cases}$$

can represent value of the i^{th} element in T:

$$T(y)_i = 1\{y = i\}$$

$$P(y|\mathbf{X};\phi) = \phi_1^{1\{y=1\}} \phi_2^{1\{y=2\}} \cdots \phi_c^{1\{y=c\}}$$

$$= \phi_1^{T(y)_1} \phi_2^{T(y)_2} \cdots \phi_{c-1}^{T(y)_{c-1}} \phi_c^{1-\sum_{j=1}^{c-1} T(y)_j}$$

$$= \exp(T(y)_1 \log(\phi_1) + T(y)_2 \log(\phi_2) + \cdots$$

$$\cdots + T(y)_{c-1} \log(\phi_{c-1}) + (1 - \sum_{j=1}^{c-1} T(y)_j) \log(\phi_c))$$

$$= \exp(T(y)_1 \log(\frac{\phi_1}{\phi_c}) + T(y)_2 \log(\frac{\phi_2}{\phi_c}) + \cdots$$

$$\cdots + T(y)_{c-1} \log(\frac{\phi_{c-1}}{\phi_c}) + \log(\phi_c))$$

$$= b(y) \exp(\eta^T T(y) - a(\eta))$$

Aligning with the parameters of exponential distribution:

$$oldsymbol{\eta} = egin{bmatrix} log(rac{\phi_1}{\phi_c}) \ dots \ log(rac{\phi_{c-1}}{\phi_c}) \end{bmatrix} \in \mathbb{R}^{c-1}$$

$$a(\eta) = -\log(\phi_c)$$
$$b(y) = 1$$

therefore:

$$\phi_i = rac{e^{\eta_i}}{1 + \sum_{i=1}^{c-1} e^{\eta_i}} \qquad (i = 1, \cdots, c-1)$$

$$h_{\boldsymbol{\theta}}(\mathbf{X}) = E[T(y)|\mathbf{X};\boldsymbol{\theta}] = E\begin{bmatrix} 1\{y=1\} \\ \vdots \\ 1\{y=c-1\} \end{bmatrix} |\mathbf{X};\boldsymbol{\theta}] = \begin{bmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_{c-1} \end{bmatrix}$$

$$= \begin{bmatrix} \frac{e^{\eta_1}}{1+\sum_{j=1}^{c-1} e^{\eta_j}} \\ \vdots \\ \frac{e^{\eta_{c-1}}}{1+\sum_{j=1}^{c-1} e^{\eta_j}} \end{bmatrix} \quad \text{(second condition)}$$

$$= \begin{bmatrix} \frac{e^{\theta_1^T \mathbf{X}}}{1+\sum_{j=1}^{c-1} e^{\theta_j^T \mathbf{X}}} \\ \vdots \\ \frac{e^{\theta_{c-1}^T \mathbf{X}}}{1+\sum_{j=1}^{c-1} e^{\theta_j^T \mathbf{X}}} \end{bmatrix} \quad \text{(third condition } \eta_i = \boldsymbol{\theta}_i^T \mathbf{X} \text{)}$$

Likelihood Function for Softmax Regression

- $\phi_i = \frac{e^{\theta_i^T \mathbf{x}}}{1 + \sum_{j=1}^{i-1} e^{\theta_j^T \mathbf{x}}}$ shows the probability for **X** being of class *i*.
- How many parameters does this model need to learn?
- Assuming *i.i.d.* sampels, the likelihood function is:

$$L(\theta) = \prod_{j=1}^{m} P(y^{(j)}|\mathbf{X}^{(j)};\theta)$$

$$= \prod_{i=1}^{m} \phi_1^{1\{y^{(i)}=1\}} \phi_2^{1\{y^{(i)}=2\}} \cdots \phi_c^{1\{y^{(i)}=c\}}$$

• Set derivative to zero and learn the parameters.

Introduction Two-Class Logistic Regression Generalized Linear Models Softmax Regression Lecture Summary

Summary

Summary

_

۵