Генерация трехмерного ландшафта на основе шума Перлина

Студент: Тартыков Лев Евгеньевич

Группа: ИУ7-54Б

Научный руководитель: Волкова Лилия Леонидовна

Цель и задачи работы

Цель курсового проекта — разработка программного обеспечения для визуализации трехмерного ландшафта.

Для достижения поставленной цели требуется решить следующие задачи.

- 1. Выполнить формализацию объектов синтезируемой сцены.
- 2. Провести исследование существующих алгоритмов решения поставленной цели.
- 3. Выбрать и описать подходящие алгоритмы для визуализации сцены и поставленной задачи.
- 4. Привести схемы используемых алгоритмов.
- 5. Описать использующиеся структуры данных.
- 6. Определить средства реализации ПО
- 7. Реализовать ПО.
- 8. Выполнить исследование временных характеристик алгоритмов визуализации сцены.

Формализация объектов сцены

Сцена состоит из следующих объектов:

- ландшафт представлен трехмерной моделью. Предусмотрено задание характеристик ландшафта для изменения вида. Доступны настройки изменения размера (длина, ширина);
- источник света представляет собой материальную точку, которая испускает лучи света.

Алгоритмы удаления невидимых линий и поверхностей

Алгоритм Варнока

Алгоритм z-буфер ★

Обратная трассировка лучей

Алгоритмы закраски

Шум Перлина (1)

Шум Перлина — это градиентный шум, состоящий из набора псевдослучайных единичных векторов (направлений градиента), расположенных в определенных точках пространства и интерполированных функцией сглаживания между этими точками.

Для генерации шума Перлина в одномерном пространстве необходимо для каждой точки этого пространства вычислить значение шумовой функции, используя направление градиента (или наклон) в указанной точке.

smoothstep(x) = $6x^5 - 15x^4 + 10x^3 - ф$ ункция сглаживания

G[P[P[i]+j]] - хэш-функция

Шум Перлина (2)

Единичный квадрат

Псевдослучайные градиенты, связанные с узлами сетки

Шум Перлина (3)

$$s = g(x_0, y_0) \cdot ((x, y) - (x_0, y_0))$$

$$t = g(x_1, y_0) \cdot ((x, y) - (x_1, y_0))$$

$$u = g(x_0, y_1) \cdot ((x, y) - (x_0, y_1))$$

$$v = g(x_1, y_1) \cdot ((x, y) - (x_1, y_1))$$

Влияние на узлы сетки

Нахождение средневзвешенного значения между всеми значениями s, t, u, v.

Алгоритм генерации шума Перлина в точке (x, y)

- 1. Нахождение единичного квадрата для точки (x, y).
- 2. Применение функции smoothstep к координате «х».
- 3. Применение функции smoothstep к координате «у».
- 4. Применение хэш-функции к каждой координате единичного квадрата.
- 5. Вычисление взвешенного среднего путем интерполяции скалярных произведений векторов градиента и вектора от углов квадрата до исходной точки (x, y) единичного квадрата.
- 6. Нормализация результата.

Выбор средств реализации

В качестве языка программирования был выбран язык С++ по следующим причинам:

- высокая вычислительная производительность;
- поддержка ООП.

В качестве среды разработки был выбран Qt Creator:

- поддержка фреймворка Qt 5;
- содержит встроенный редактор Qt Design.

Интерфейс программы

Пользователь может изменять вид ландшафта следующим образом:

- при помощи изменения параметров ландшафта (октавы, постоянство, лакунарность); (1)
- для получения новой модели можно задать дополнительный параметр («зерно» и «частота»); (2)
- изменять положение точечного источника света; (3)
- осуществить поворот и масштабирование ландшафта. (4)

_

Визуализация сцены

Число октав 1 Число октав 6

Визуализация сцены

Изменение частоты

Изменение параметров «лакунарность», «постоянство» и «зерно»

Визуализация сцены

Изменение позиции точечного источника освещения

Исследование (1)

Проведено исследование времени отрисовки ландшафта от его линейного размера для квадратной сетки узлов.

Размер	Время
10	0.336509
25	0.32979
50	0.342097
100	0.387329
150	0.468589
250	0.721446
350	1.06574
500	2.02038
700	19.6004

• Сложность отрисовки сцены определяется как $O(n^2)$, где n – линейный размер ландшафта

Исследование (2)

Проведено исследование времени формирования шума Перлина в зависимости от числа октав.

Октавы	Время
1	0.000583146
2	0.00114126
3	0.00153122
4	0.0021004
5	0.00270201
6	0.00337686
7	0.0042514
8	0.00541033

Скорость выполнения программы для 4 октав оказалось медленнее скорости выполнения для 1 октавы в 3,6 раз. Для количества октав 4 и 8 эта разница составляет 2,57 раз.

Заключение

В ходе работы были выполнены следующие задачи:

- 1. выполнена формализация объектов синтезируемой сцены;
- 2. проведено исследование существующих алгоритмов решения поставленной цели;
- 3. выбраны и описаны подходящие алгоритмы для визуализации;
- 4. приведены схемы используемых алгоритмов;
- 5. описаны использующиеся структуры данных;
- 5. определены средства реализации ПО;
- 6. реализовано ПО;
- 7. выполнено исследование временных характеристик алгоритмов визуализации сцены.