DESKRIPSI MATERI

Pertemuan 10: Fungsi Khusus

Mata Kuliah Matematika Diskrit Dosen Pengampu:

Beberapa Fungsi Khusus:

1. Fungsi Floor dan Ceiling

Misalkan x adalah bilangan riil, berarti x berada di antara dua bilangan bulat.

Fungsi *floor* dari x:

 $\lfloor x \rfloor$ menyatakan nilai bilangan bulat terbesar yang lebih kecil atau sama dengan x

Fungsi ceiling dari x:

 $\lceil x \rceil$ menyatakan bilangan bulat terkecil yang lebih besar atau sama dengan x

Dengan kata lain, fungsi *floor* membulatkan x ke bawah, sedangkan fungsi *ceiling* membulatkan x ke atas.

Contoh 1.

Beberapa contoh nilai fungsi floor dan ceiling:

$\lfloor 3.5 \rfloor = 3$	$\lceil 3.5 \rceil = 4$
$\lfloor 0.5 \rfloor = 0$	$\lceil 0.5 \rceil = 1$
$\lfloor 4.8 \rfloor = 4$	$\lceil 4.8 \rceil = 5$
$\lfloor -0.5 \rfloor = -1$	$\lfloor -0.5 \rfloor = 0$
$\lfloor -3.5 \rfloor = -4$	$\lceil -3.5 \rceil = -3$

Contoh 2.

Di dalam komputer, data dikodekan dalam untaian *byte*, satu *byte* terdiri atas 8 bit. Jika panjang data 125 bit, maka jumlah *byte* yang diperlukan untuk merepresentasikan data adalah $\lceil 125/8 \rceil = 16$ *byte*. Perhatikanlah bahwa $16 \times 8 = 128$ bit, sehingga untuk *byte* yang terakhir perlu ditambahkan 3 bit ekstra agar satu *byte* tetap 8 bit (bit ekstra yang ditambahkan untuk menggenapi 8 bit disebut *padding bits*).

2. Fungsi Modulo

Misalkan a adalah sembarang bilangan bulat dan m adalah bilangan bulat positif. $a \mod m$ memberikan sisa pembagian bilangan bulat bila a dibagi dengan m $a \mod m = r$ sedemikian sehingga a = mq + r, dengan $0 \le r < m$.

Contoh 3.

Beberapa contoh fungsi modulo:

25 mod 7 = 4
3612 mod 45 = 12
0 mod 5 = 5

$$-25$$
 mod 7 = 3 (sebab -25 = 7 · (-4) + 3)

3. Fungsi Faktorial

$$n! = \begin{cases} 1 & , n = 0 \\ 1 \times 2 \times \cdots \times (n-1) \times n & , n > 0 \end{cases}$$

4. Fungsi Eksponensial

$$a^{n} = \begin{cases} 1 & , n = 0 \\ \underbrace{a \times a \times \cdots \times a}_{n} & , n > 0 \end{cases}$$

Untuk kasus perpangkatan negatif,

$$a^{-n}=\frac{1}{a^{n}}$$

5. Fungsi Logaritmik

Fungsi logaritmik berbentuk

$$y = \log x \leftrightarrow x = a^y$$

6. Fungsi Rekursif

• Fungsi f dikatakan fungsi rekursif jika definisi fungsinya mengacu pada dirinya sendiri.

Contoh:
$$n! = 1 \times 2 \times ... \times (n-1) \times n = (n-1)! \times n$$
.

$$n! = \begin{cases} 1 & , n = 0 \\ n \times (n-1)! & , n > 0 \end{cases}$$

Fungsi rekursif disusun oleh dua bagian:

(a) Basis

Bagian yang berisi nilai awal yang tidak mengacu pada dirinya sendiri. Bagian ini juga sekaligus menghentikan definisi rekursif.

(b) Rekurens

Bagian ini mendefinisikan argumen fungsi dalam terminologi dirinya sendiri. Setiap kali fungsi mengacu pada dirinya sendiri, argumen dari fungsi harus lebih dekat ke nilai awal (basis).

- Contoh definisi rekursif dari faktorial:
 - (a) basis:

$$n! = 1$$
, jika $n = 0$

(b) rekurens:

$$n! = n \times (n-1)!$$
, jika $n > 0$

5! dihitung dengan langkah berikut:

(1)
$$5! = 5 \times 4!$$
 (rekurens)

(2)
$$4! = 4 \times 3!$$

(3)
$$3! = 3 \times 2!$$

$$(4) 2! = 2 \times 1!$$

$$(5) 1! = 1 \times 0!$$

(6)
$$0! = 1$$

(6') 0! = 1

(5')
$$1! = 1 \times 0! = 1 \times 1 = 1$$

$$(4') 2! = 2 \times 1! = 2 \times 1 = 2$$

(3')
$$3! = 3 \times 2! = 3 \times 2 = 6$$

(2')
$$4! = 4 \times 3! = 4 \times 6 = 24$$

(1')
$$5! = 5 \times 4! = 5 \times 24 = 120$$

Jadi, 5! = 120.

Contoh 4.

Di bawah ini adalah contoh-contoh fungsi rekursif lainnya:

1.
$$F(x) = \begin{cases} 0 & , x = 0 \\ 2F(x-1) + x^2 & , x \neq 0 \end{cases}$$

2. Fungsi Chebysev

$$T(n,x) = \begin{cases} 1 & ,n = 0\\ x & ,n = 1\\ 2xT(n-1,x) - T(n-2,x) & ,n > 1 \end{cases}$$

3. Fungsi fibonacci:

$$f(n) = \begin{cases} 0, & n = 0 \\ 1, & n = 1 \\ f(n-1) + f(n-2), & n > 1 \end{cases}$$