Lecture 8.

Internet Network Layer:

IP Fundamentals

Outline

- → Layer 3 functionalities
- →Internet Protocol (IP) characteristics
- →IP packet (first look)
- →IP addresses
- →Routing tables: how to use
- → ARP

Layer 3 functionalities

- → This layer handles the routing of the data: i.e. delivery data to the correct destination
- → Layer 3 functionalities are spread all over the network
 - ⇒in ad hoc apparatus (*routers*)
 - ⇒in your PC (as routing software)

Circuit Switched Network

Packet Switched Network

Internet routing

Internet Protocol (IP) RFC 791 (1981)

→Connectionless

⇒datagram delivery service

→Best-effort

→Unreliable

- ⇒no guarantees of reception & packet order
- ⇒error-handling algorithm: throw away packet!
 - →Upon buffer congestion
 - →Upon error check failed

IP functions in your PC

→in trasmission:

- Encapsulates data from transport layer into datagrams
- ⇒prepare header (src & dest addresses, etc)
- ⇒apply routing algorithm
- ⇒send datagram to network interface

→ in reception:

- ⇒ check validity of incoming datagrams
- ⇒read header
- ⇒verify whether datagram is to be forwarded
- ⇒if datagram has reached destination, deliver payload to higher layer protocol

IP datagram format

20 bytes header (minimum)

0	3	7	15				31				
V	ersion Hea leng	der T gth	ype of Service TOS	Total Length							
			fication	flags 3 bit	13 bit fragment offset						
	Time to Liv TTL	e	Protocol	Header checksum							
	32 bit source IP address										
	32 bit destination IP address										
	Options (if any) Padding (0s)										
	Data (if any)										

IP address

- →32 bit string
 - ⇒Bit-wise notation
 - ⇒ the <u>natural</u> notation
- →dotted notation:
 - \Rightarrow 4 x 8 bits
 - ⇒each 8 bit = 0:255 integer
 - ⇒ intended for humans

Dotted Notation is often misleading, as it may hide address properties

Notation conversion bin -> dotted

10010011.10100011.00010100.00001001

binary	128	64	32	16	8	4	2	1	decimal	
10010011	1	0	0	1	0	0	1	1	128+16+2+1=147	
10100011	1	0	1	0	0	0	1	1	128+32+2+1 = 163	
00010100	0	0	0	1	0	1	0	0	16+4 = 20	
00001001	0	0	0	0	1	0	0	1	8+1 = 9	

→ 147.163.20.9

(www.diepa.unipa.it)

Notation conversion dotted -> bin

→ 131.175.21.1

(morgana.elet.polimi.it)

decimal	128	64	32	16	8	4	2	1	binary	
131	1	0	0	0	0	0	1	1	128+2+1=10000011	
175	1	0	1	0	1	1	1	1	128+32+8+4+2+1 = 10101111	
21	0	0	0	1	0	1	0	1	16+4+1 = 00010101	
1	0	0	0	0	0	0	0	1	1 = 0000001	

10000011.10101111.00010101.00000001

Need for network name

Need for network name

Need for network name

IP Address Structure partitioned into two fields

Dotted notation: AAA.BBB.CCC.DDD - no physical meaning! A more correct notation should be: NNNNN-HHHHH

Università

IP Address Structure partitioned into two fields

Host Addresses

3-8 means: host 8 on network 3

Dotted notation vs IP address structure

→ Dotted Notation

- ⇒AAA.BBB.CCC.DDD
 - →no physical meaning!
 - →often misleading!
 - it may hide address properties

→ More correct notation:

- ⇒NNNNN-HHHHH
 - →Physical meaning (network prefix, host #)
- ⇒ Prefix size is variable,
- ⇒Not implicit in the IP address (from 1993)

Separator must be provided externally

Example

- → IP address 147.163.22.130
 - ⇒ Bitwise notation:

10010011.10100011.00010110.10000010

- **→** Network prefix:
 - ⇒ Externally provided
 - ⇒ Example: first 22 bits network ID, last 10 bits host ID

10010011.10100011.00010110.10000010

- ⇒ Network prefix notation:
 - \rightarrow /22 (modern notation)
 - → Netmask (traditional notation)

 \rightarrow Netmask \rightarrow dotted decimal: 255.255.252.0

Network Address

Local Host Interface: 147.163.21.9/22

10010011.10100011.00010101.00001001

Network prefix

Hostid

Network Address

10010011.10100011.00010100.00000000

→ Dotted notation for the network address ⇒ 147.163.20.0

Pure Convenience (not only for men)!

Naming in IP: networks

Network name:

Network prefix

0000000000000

Special IP addresses, with all 0's in host part All existing (physical) networks have different names!

Naming in IP: hosts

3-8 means: host 8 on network 3

Host Addresses

Netid	Hostid
3	0

Network address: 3-0

Host-id field set to 0 means this address is a name for an entire network

(this is network 3, unique name in all the world)

- → Worldwide Unique Network address Assignment
- → Within a network, unique IP address assignment to each host (better: interface)

⇒ CONCLUSION: ALL EXISTING HOSTS HAVE DIFFERENT IP ADDRESSES

Example

→ IP address 147.163.22.130

10010011.10100011.00010110.10000010

→ Network prefix:

⇒ /22 (equivalently: 255.255.252.0)

→ It is an IP address for a HOST

⇒ Simple: not all 0's in host part

10010011.10100011.00010110.10000010

 \rightarrow Which belongs to network 147.163.20.0/22

⇒ Simple: just set 0's in host part

10010011.10100011.00010100.00000000

Naming in IP: broadcast

Netaddr Hostid 3 All 1's

Means: all the hosts on the considered network! Used to send a "broadcast" information (to all the Attached hosts)

- → Example: network 147.163.20.0/22
 - ⇒ What is the IP address to use for broadcasting?
 - ⇒ Simple: just set all 1's in host part

10010011.10100011.00010111.111111111

→ Broadcast address: 147.163.23.255

Test

→147.163.0.128 (prefix: /26)

⇒ Network? Host? Broadcast?

→147.163.0.128 (prefix: /24)

⇒ Network? Host? Broadcast?

→147.163.14.3 (prefix: /30)

⇒ Network? Host? Broadcast?

→174.163.20.255 (prefix: /22)

⇒ Network? Host? Broadcast?

Think in binary! And everything becomes trivial....

Second role of an IP address: routing

Routing = ability to forward packets to destination

- → Routing: based on network addresses
 - ⇒ Key idea: <u>first</u> find the physical network where the host resides, and then find specific host
 - ⇒ routing tables addressing each of 100M+ hosts would be unfeasible

- → A Router (2nd definition): computer with 2+ interfaces
 - ⇒ Connects different networks (hence the name inter-net), eventually with different technologies
 - ⇒ An IP address per each interface
 - ⇒ Task: collect datagrams on one interface and forward on other(s)

Packet Routing (at local host)

Application running at local computer generates a datagram destined to IP address 321-2 [host 2 on network 321]

→ Local host operation:

- ⇒ Knows its IP address NNN-XXX
- ⇒ Thus knows on which network NNN the computer is attached
- ⇒ Hence, knows whether packet 321-2 needs to be forwarded to
 - \Rightarrow A. an host on this same network
 - ⇒B. an host on a different network

Local host runs
IP routing SW
(some people thinks
Routing sw confined
At routers...)

NetAddress computation (Masking)

→ Is on the same network?

Local Host Interface: 147.163.21.9

10010011.10100011.00010101.00001001

Destination IPaddr: 147.163.22.130

10010011.10100011.00010110.10000010

Netaddresses are equal!

 \bigcup

They are on the same network!

How does IP software really work?

NetAddress computation (Masking)

- **→** Network mask
 - ⇒ associated to the network address
 - ⇒ string of 1s in network address, 0s in host address

Local Host Interface: 147.163.21.9

10010011.10100011.00010101.00001001

Netaddress

Hostid

Netmask

1111111111111111111111100.00000000

→ Dotted notation for the netmask

 \Rightarrow 255.255.252.0

NetAddress computation (Masking)

→ Is on the same network?

147.163.21.9 255.255.252.0 147.163.22.130

Destination IPaddr: 147.163.22.130 10010011.10100011.0001011.00010110.10000010

Bitwise AND

Netmask: 255.252.0

1111111111111111111111100.00000000

=

10010011.10100011.00010100.00000000

=?

Network Address: 147.163.20.0

10010011.10100011.00010100.00000000

They are on the same network!

Inside the LAN

Physical transmission: a) resolve IP address in physical network address, b) encapsulate packet in datalink frame, and c) deliver according to local networking technology

Host configuration (Windows)

Possible netmask values "magic netmask numbers"

128	64	32	16	8	4	2	1	
1	0	0	0	0	0	0	0	= 128
1	1	0	0	0	0	0	0	= 192
1	1	1	0	0	0	0	0	= 224
1	1	1	1	0	0	0	0	= 240
1	1	1	1	1	0	0	0	= 248
1	1	1	1	1	1	0	0	= 252
1	1	1	1	1	1	1	0	= 254
1	1	1	1	1	1	1	1	= 255

Examples: $/21 \rightarrow 255.255.248.0$

*/*29 → 255.255.255.248

Going through a Router

Physical transmission: a) resolve IP address in physical network address, b) encapsulate packet in datalink frame, and c) deliver according to local networking technology

Università

Router operation: Direct Forwarding

Router operation: Indirect Forwarding

Università

Layered view

Datagrams travel from router to router (indirect forwarding) until a router is on the same network of dest host (direct forwarding)

Inter - Net example

1 hop = ATM network and switch crossing!

Internet vs specific physical networking technology

→ IP: an overlay networking protocol

- ⇒ interconnection of widely heterogeneous networks
 - → seen by TCP/IP as sub networks
 - →Routers do not care about specific network technology (LAN, WAN, circuit switching, packet switching, ...)
 - →but they NEED to have a specific network interface (Routers with Ethernet interfaces cheap; with FDDI or ATM very expensive...)

→ Router duties:

- ⇒ just select destination (end or intermediate router)!
- ⇒ then map IPaddr in physical network address
- ⇒ IP datagrams tunneled into underlying network data units
- ⇒ specific physical network routing may be extremely complex (router sees this as single hop)

Routing table

Three cases: 1) direct forwarding

2) Indirect forwarding (explicit)

3) Indirect forwarding via default router (when available)

Routing table lookup

Route print (DOS,unix) shows routing table of your PC

(remember: your PC is a simple IP router)

Active Routes:				
Network Destination	n Netmask	Gateway	Interface	Metric
0.0.0.0	0.0.0.0	10.163.57.1	10.163.57.77	1
10.163.57.0	255.255.255.0	10.163.57.77	10.163.57.77	1
10.163.57.77	255.255.255.255	127.0.0.1	127.0.0.1	1
10.255.255.255	255.255.255.255	10.163.57.77	10.163.57.77	1
127.0.0.0	255.0.0.0	127.0.0.1	127.0.0.1	1
224.0.0.0	224.0.0.0	10.163.57.77	10.163.57.77	1
255.255.255.255	255.255.255.255	10.163.57.77	10.163.57.77	1
Default Gateway:	10.163.57.1			

Classful IP Addressing

Originally (from 1981) a rigid two-level address structure

Primary Address Classes 3 standardized classes

Class A - /8 network prefix

0 NET ID (7bit) HOST ID (24 bit)

Class B - /16 network prefix

1 0 NET ID (14bit) HOST ID (16 bit)

Class C - /24 network prefix

1 1 0 NET ID (21bit) HOST ID (8 bit)

/xx notation: modern notation in principle not necessary for classful IP addressing

Additional classes

Class D: IP multicasting

1	1	1	0	Multicast Group ID (28 bit)

Class E: reserved for experimental use

1 1 1 1 reserved	
------------------	--

Dotted Decimal Ranges

Address Class	Dotted Decimal ranges
Class A	1.xxx.xxx.xxx through 126.xxx.xxx.xxx
Class B	128.0.xxx.xxx through 191.255.xxx.xxx
Class C	192.0.0.xxx through 223.255.255.xxx
Class D (mcast)	224.xxx.xxx.xxx through 239.xxx.xxx.xxx
Class E (exper)	240.xxx.xxx.xxx through 255.xxx.xxx.xxx

Examples

Addressing networks

→All 0s host ID = reserved for network name.

→Examples:

⇒CLASS A network: 13.0.0.0

⇒CLASS B network: 131.175.0.0

⇒CLASS C network: 193.32.43.0

→Test:

→188.66.32.0 = ???

 \rightarrow 122.0.0.0 = ???

Special Addresses

→all 1s host id: broadcast address (all hosts in the network)

→es. 131.175.255.255 =all hosts attached to the 131.175 net

→0.0.0.0 = THIS host on THIS network (0.x.x.x also reserved)

→e.g. to boot diskless WS (BOOTP)

- → 127.x.x.x used for loopback (es. 127.0.0.1=localhost)
- \rightarrow all 1s = 255.255.255.255 = limited broadcast

→all nodes on *THIS* local network

Address blocks for private Internets (RFC 1918)

IANA-Allocated, Non-Internet Routable, IP Address Schemes

Class	Network Address Range	
A	10.0.0.0 - 10.255.255.255	
В	172.16.0.0 - 172.31.255.255	
C	192.168.0.0 - 192.168.255.255	

To be used by private organizations not connected to the Internet No need to ask to IANA or InterNIC for these addresses.

Use Network Address Translator (NAT) when external connectivity needed

Network Address Translator

→ Map external address with Internal ones (may be a subset)

Università

Counting up

→32 bit IP address:

 \Rightarrow 2³² = 4.294.967.296 theoretical IP addresses

→ class A:

 \Rightarrow 2⁷-2 = 126 networks [0.0.0.0 and 127.0.0.0 reserved]

 \Rightarrow 2²⁴-2 = 16.777.214 maximum hosts

→2.113.928.964 addressable hosts (49,22% of max)

→ class B

 \Rightarrow 2¹⁴=16.384 networks

 \Rightarrow 2¹⁶-2 = 65.534 maximum hosts

→1.073.709.056 addressable hosts (24,99% of max)

→ class C

 \Rightarrow 2²¹=2.097.152 networks

 \Rightarrow 28-2 = 254 maximum hosts

→**532.676.608** addressable hosts (12,40% of max)

Routing table lookup

Net Address computation (Masking)

→class mask:

⇒ Depends on first bits of address (which specify class)

 \rightarrow Class A mask: 255.0.0.0

→Class B mask: 255.255.0.0

 \rightarrow Class C mask: 255.255.255.0

DEST IP address:

10011111 01100100 00001001 00010010 159.100.9.18

class B

Bitwise AND

Class B Mask: 00000000 0000000

255.255.0.0

1111111 11111111

Net address

10011111 01100100 00000000 0000000 159,100,0,0

