Chapter 5 Orthogonality

Chapter 5 Orthogonality

Section 5.1 The Dot Product

Lengths of vectors in \mathbb{R}^2 (Discussion 5.1.1.2)

Let $\mathbf{u} = (u_1, u_2)$ be a vector in \mathbb{R}^2 .

Then the length of \boldsymbol{u} is given by

$$||\mathbf{u}|| = \sqrt{u_1^2 + u_2^2}$$

Lengths of vectors in \mathbb{R}^3 (Discussion 5.1.1.2)

Let $\mathbf{u} = (u_1, u_2, u_3)$ be a vector in \mathbb{R}^3 .

Then the length of \boldsymbol{u} is given by

$$||\mathbf{u}|| = \sqrt{u_1^2 + u_2^2 + u_3^2}$$

Distances and angles (Discussion 5.1.1.3)

Let u and v be two vectors in \mathbb{R}^2 or \mathbb{R}^3 and let θ be the angle between u and v.

The distance between \boldsymbol{u} and \boldsymbol{v} is

$$d(\boldsymbol{u},\,\boldsymbol{v})=||\boldsymbol{u}-\boldsymbol{v}||.$$

The cosine rule of trigonometry states that

$$||u - v||^2 = ||u||^2 + ||v||^2 - 2||u|| ||v|| \cos(\theta)$$

U

and hence

$$\theta = \cos^{-1} \left(\frac{||u||^2 + ||v||^2 - ||u - v||^2}{2||u|| ||v||} \right).$$

Distances and angles (Discussion 5.1.1.3)

If
$$\mathbf{u} = (u_1, u_2)$$
 and $\mathbf{v} = (v_1, v_2)$ are vectors in \mathbb{R}^2 ,
then $d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}|| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2}$
and $\theta = \cos^{-1}\left(\frac{||\mathbf{u}||^2 + ||\mathbf{v}||^2 - ||\mathbf{u} - \mathbf{v}||^2}{2||\mathbf{u}|| ||\mathbf{v}||}\right)$
$$= \cos^{-1}\left(\frac{u_1v_1 + u_2v_2}{||\mathbf{u}|| ||\mathbf{v}||}\right).$$

Distances and angles (Discussion 5.1.1.3)

If $\mathbf{u} = (u_1, u_2, u_3)$ and $\mathbf{v} = (v_1, v_2, v_3)$ are vectors in \mathbb{R}^3 , then $d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}|| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + (u_3 - v_3)^2}$ and $\theta = \cos^{-1}\left(\frac{||\mathbf{u}||^2 + ||\mathbf{v}||^2 - ||\mathbf{u} - \mathbf{v}||^2}{2||\mathbf{u}|| ||\mathbf{v}||}\right)$ $= \cos^{-1}\left(\frac{u_1v_1 + u_2v_2 + u_3v_3}{||\mathbf{u}|| ||\mathbf{v}||}\right).$

The dot product (Definition 5.1.2)

Let $u = (u_1, u_2, ..., u_n)$ and $v = (v_1, v_2, ..., v_n)$ be two vectors in \mathbb{R}^n .

1. The dot product (or inner product) of **u** and **v** is defined to be the value

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n$$

2. The norm (or length) of **u** is defined to be

$$||u|| = \sqrt{u \cdot u} = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}$$

Vectors of norm 1 are called unit vectors.

The dot product (Definition 5.1.2)

3. The distance between \boldsymbol{u} and \boldsymbol{v} is

$$d(\mathbf{u}, \mathbf{v}) = ||\mathbf{u} - \mathbf{v}|| = \sqrt{(\mathbf{u} - \mathbf{v}) \cdot (\mathbf{u} - \mathbf{v})}$$
$$= \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}.$$

4. The angle between \boldsymbol{u} and \boldsymbol{v} is

$$\cos^{-1}\left(\frac{\boldsymbol{u}\cdot\boldsymbol{v}}{||\boldsymbol{u}||\,||\boldsymbol{v}||}\right).$$

The angle is well-defined because $-1 \le \frac{u \cdot v}{\|u\| \|v\|} \le 1$. (See Question 5.4(a).)

The dot product & matrix product (Remark 5.1.3)

Let \boldsymbol{u} and \boldsymbol{v} be two vectors in \mathbb{R}^n .

Suppose *u* and *v* are written as row vectors, i.e.

$$\boldsymbol{u} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix}$$
 and $\boldsymbol{v} = \begin{bmatrix} v_1 & v_2 & \cdots & v_n \end{bmatrix}$.

Then

$$\boldsymbol{u} \cdot \boldsymbol{v} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = \boldsymbol{u} \boldsymbol{v}^{\mathsf{T}}.$$

The dot product & matrix product (Remark 5.1.3)

Suppose *u* and *v* are written as column vectors, i.e.

$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix} \quad \text{and} \quad \mathbf{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}.$$

$$\mathbf{u} \cdot \mathbf{v} = \begin{bmatrix} u_1 & u_2 & \cdots & u_n \end{bmatrix} \begin{vmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{vmatrix} = \mathbf{u}^{\mathsf{T}} \mathbf{v}.$$

An example (Example 5.1.4)

Let
$$\mathbf{u} = (1, -2, 2, -1)$$
 and $\mathbf{v} = (1, 0, 2, 0)$.
 $\mathbf{u} \cdot \mathbf{v} = 1 \cdot 1 + (-2) \cdot 0 + 2 \cdot 2 + (-1) \cdot 0 = 5$,
 $||\mathbf{u}|| = \sqrt{1^2 + (-2)^2 + 2^2 + (-1)^2} = \sqrt{10}$,
 $||\mathbf{v}|| = \sqrt{1^2 + 0^2 + 2^2 + 0^2} = \sqrt{5}$,
 $d(\mathbf{u}, \mathbf{v}) = \sqrt{(1 - 1)^2 + (-2 - 0)^2 + (2 - 2)^2 + (-1 - 0)^2} = \sqrt{5}$

and the angle between \boldsymbol{u} and \boldsymbol{v} is

$$\cos^{-1}\left(\frac{5}{\sqrt{10}\sqrt{5}}\right) = \cos^{-1}\left(\frac{1}{\sqrt{2}}\right) = \frac{\pi}{4}.$$

Some basic properties (Theorem 5.1.5)

Let u, v, w be vectors in \mathbb{R}^n and c a scalar.

- 1. $u \cdot v = v \cdot u$
- 2. $(u + v) \cdot w = u \cdot w + v \cdot w$ and $w \cdot (u + v) = w \cdot u + w \cdot v$.
- 3. $(c\mathbf{u}) \cdot \mathbf{v} = \mathbf{u} \cdot (c\mathbf{v}) = c(\mathbf{u} \cdot \mathbf{v})$.
- 4. ||cu|| = |c|||u||.
- 5. $u \cdot u \ge 0$; and $u \cdot u = 0$ if and only if u = 0.

To Prove Part 5: Let $u = (u_1, u_2, ..., u_n)$.

Then
$$\mathbf{u} \cdot \mathbf{u} = u_1^2 + u_2^2 + \dots + u_n^2 \ge 0$$
.

Furthermore,
$$\mathbf{u} \cdot \mathbf{u} = 0 \iff u_1^2 + u_2^2 + \dots + u_n^2 = 0$$

 $\Leftrightarrow u_i = 0 \text{ for } i = 1, 2, ..., n$
 $\Leftrightarrow \mathbf{u} = 0.$

Chapter 5 Orthogonality

Section 5.2 Orthogonal and Orthonormal Bases

Orthogonality (Definition 5.2.1 & Remark 5.2.2)

- 1. Two vector \mathbf{u} and \mathbf{v} in \mathbb{R}^n are called orthogonal if $\mathbf{u} \cdot \mathbf{v} = 0$.
- 2. A set S of vectors in \mathbb{R}^n is called an orthogonal set if every pair of distinct vectors in S are orthogonal.
- 3. A set S of vectors in \mathbb{R}^n is called an orthonormal set if S is an orthogonal set and every vector in S is a unit vector. \longleftarrow A unit vector is a vector of norm 1.

Given two nonzero vector \boldsymbol{u} and \boldsymbol{v} in \mathbb{R}^n ,

$$\mathbf{u} \cdot \mathbf{v} = 0 \implies \cos^{-1} \left(\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|} \right) = \cos^{-1}(0) = \frac{\pi}{2}.$$

The concept of orthogonal in \mathbb{R}^n is the same as the concept of perpendicular in \mathbb{R}^2 and \mathbb{R}^3 .

Examples (Example 5.2.3)

1.
$$(1, 2, 2, -1) \cdot (1, 1, -1, 1)$$

= $1 \cdot 1 + 2 \cdot 1 + 2 \cdot (-1) + (-1) \cdot 1$
= 0.

So (1, 2, 2, -1) and (1, 1, -1, 1) are orthogonal.

2. Let $u_1 = (2, 0, 0)$, $u_2 = (0, 1, 1)$ and $u_3 = (0, 1, -1)$. Since $u_1 \cdot u_2 = 0$,

$$u_1 \cdot u_3 = 0$$

and $u_2 \cdot u_3 = 0$,
 $\{u_1, u_2, u_3\}$ is an
orthogonal set.

Examples (Example 5.2.3)

Let
$$\mathbf{v_1} = \frac{1}{||\mathbf{u_1}||} \mathbf{u_1} = \frac{1}{2} (2, 0, 0) = (1, 0, 0),$$

$$\mathbf{v_2} = \frac{1}{||\mathbf{u_2}||} \mathbf{u_2} = \frac{1}{\sqrt{2}} (0, 1, 1) = \left[0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \right],$$

$$\mathbf{v_3} = \frac{1}{||\mathbf{u_3}||} \mathbf{u_3} = \frac{1}{\sqrt{2}} (0, 1, -1) = \left[0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}} \right].$$

Then
$$||v_i|| = \left\| \frac{1}{||u_i||} u_i \right\| = \frac{1}{||u_i||} ||u_i|| = 1$$
 for all i

and
$$\mathbf{v}_i \cdot \mathbf{v}_j = \left(\frac{1}{\|\mathbf{u}_i\|} \mathbf{u}_i\right) \cdot \left(\frac{1}{\|\mathbf{u}_j\|} \mathbf{u}_j\right) = \frac{1}{\|\mathbf{u}_i\| \|\mathbf{u}_j\|} (\mathbf{u}_i \cdot \mathbf{u}_j) = 0$$
 for $i \neq j$.

Thus $\{v_1, v_2, v_3\}$ is an orthonormal set.

Examples (Example 5.2.3)

The process of multiplying a nonzero vector \mathbf{u} by $\frac{1}{||\mathbf{u}||}$ (so that the resultant vector $\frac{1}{||\mathbf{u}||}\mathbf{u}$ is a unit vector) is called normalizing.

3. Consider the standard basis $E = \{ e_1, e_2, ..., e_n \}$ for \mathbb{R}^n where $e_1 = (1, 0, ..., 0), e_2 = (0, 1, 0, ..., 0), ..., e_n = (0, ..., 0, 1).$

It is easy to check that

$$||\mathbf{e}_i|| = 1$$
 for all i
and $\mathbf{e}_i \cdot \mathbf{e}_j = 0$ for $i \neq j$.

So *E* is an orthonormal set.

Orthogonal sets (Theorem 5.2.4)

Let S be an orthogonal set of nonzero vectors in a vector space. Then S is linearly independent.

Proof: Let
$$S = \{ u_1, u_2, ..., u_k \}$$
.

Consider the vector equation

$$c_1 u_1 + c_2 u_2 + \cdots + c_k u_k = 0.$$
 (*)

For any
$$i = 1, 2, ..., k$$
,

$$(c_1 u_1 + \cdots + c_{i-1} u_{i-1} + c_i u_i + c_{i+1} u_{i+1} + \cdots + c_k u_k) \cdot u_i$$

= $c_1(u_1 \cdot u_i) + \cdots + c_{i-1}(u_{i-1} \cdot u_i) + c_i(u_i \cdot u_i)$

by Theorem 5.1.5 $+ c_{i+1}(\boldsymbol{u_{i+1}} \cdot \boldsymbol{u_i}) + \cdots + c_k(\boldsymbol{u_k} \cdot \boldsymbol{u_i})$

eorem 5.1.5
$$= 0 + \cdots + 0 + c_i(\mathbf{u_i} \cdot \mathbf{u_i}) + 0 + \cdots + 0 \leftarrow \text{Since S is orthogonal,}$$

$$= c_i(\mathbf{u_i} \cdot \mathbf{u_i}).$$

$$= c_i(\mathbf{u_i} \cdot \mathbf{u_i}).$$

Orthogonal sets (Theorem 5.2.4)

Taking dot product on both sides of (*) with u_i , we have

$$c_i(u_i \cdot u_i) = (c_1 u_1 + c_2 u_2 + \cdots + c_k u_k) \cdot u_i = \mathbf{0} \cdot u_i = 0.$$

Given that $u_i \neq 0$, (by Theorem 5.1.5) $u_i \cdot u_i \neq 0$.

So $c_i(\mathbf{u_i} \cdot \mathbf{u_i}) = 0$ implies $c_i = 0$.

Since (*) has only the trivial solution, S is linearly independent.

Orthogonal & orthonormal bases (Definition 5.2.5) & Remark 5.2.6)

A basis S for a vector space is called an orthogonal basis if S is orthogonal.

A basis *S* for a vector space is called an orthonormal basis if *S* is orthonormal.

Suppose *S* is a set of nonzero vectors from a vector space *V*.

If we want to show that S is an orthogonal (respectively, orthonormal) basis for V, then we only need to check

- (i) S is orthogonal (respectively, orthonormal);
- (ii) $|S| = \dim(V)$ (if we know the dimension) or span(S) = V (if we don't know the dimension).

Examples (Example 5.2.7)

- 1. The standard basis $E = \{e_1, e_2, ..., e_n\}$ for \mathbb{R}^n is an orthogonal basis as well as an orthonormal basis.
- 2. Let $u_1 = (2, 0, 0)$, $u_2 = (0, 1, 1)$, $u_3 = (0, 1, -1)$; and $v_1 = (1, 0, 0)$, $v_2 = \left[0, \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right]$, $v_3 = \left[0, \frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right]$.

The set $\{u_1, u_2, u_3\}$ and $\{v_1, v_2, v_3\}$ are orthogonal bases for \mathbb{R}^3 .

The set $\{v_1, v_2, v_3\}$ is an orthonormal basis for \mathbb{R}^3 .

Orthogonal bases (Theorem 5.2.8.1)

Let $S = \{ u_1, u_2, ..., u_k \}$ be an orthogonal basis for a vector space V. Then for any $w \in V$,

$$\mathbf{w} = \frac{\mathbf{w} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{w} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 + \cdots + \frac{\mathbf{w} \cdot \mathbf{u}_k}{\mathbf{u}_k \cdot \mathbf{u}_k} \mathbf{u}_k,$$

i.e.
$$(\mathbf{w})_{S} = \left(\frac{\mathbf{w} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}, \frac{\mathbf{w} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}}, \dots, \frac{\mathbf{w} \cdot \mathbf{u}_{k}}{\mathbf{u}_{k} \cdot \mathbf{u}_{k}}\right)$$

Proof: Let $(w)_S = (c_1, c_2, ..., c_k)$,

i.e.
$$\mathbf{w} = c_1 \mathbf{u_1} + c_2 \mathbf{u_2} + \cdots + c_k \mathbf{u_k}$$
.

Then for i = 1, 2, ..., k,

$$\mathbf{w} \cdot \mathbf{u_i} = (c_1 \mathbf{u_1} + c_2 \mathbf{u_2} + \cdots + c_k \mathbf{u_k}) \cdot \mathbf{u_i} = c_i (\mathbf{u_i} \cdot \mathbf{u_i})$$

and hence $c_i = \frac{\mathbf{w} \cdot \mathbf{u_i}}{\mathbf{u_i} \cdot \mathbf{u_i}}$.

S is orthogonal.

Orthonormal bases (Theorem 5.2.8.2)

Let $T = \{v_1, v_2, ..., v_k\}$ be an orthonormal basis for a vector space V. Then for any $w \in V$,

$$w = (w \cdot v_1)v_1 + (w \cdot v_2)v_2 + \cdots + (w \cdot v_k)v_k$$

i.e. $(w)_S = (w \cdot v_1, w \cdot v_2, ..., w \cdot v_k)$.

Proof: Let
$$(\mathbf{w})_S = (c_1, c_2, ..., c_k)$$
,
i.e. $\mathbf{w} = c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + ... + c_k \mathbf{v_k}$.

Then for any i = 1, 2, ..., k,

$$\mathbf{w} \cdot \mathbf{v_i} = (c_1 \mathbf{v_1} + c_2 \mathbf{v_2} + \cdots + c_k \mathbf{v_k}) \cdot \mathbf{v_i} = c_i (\mathbf{v_i} \cdot \mathbf{v_i}) = c_i.$$

T is orthonormal.

Examples (Example 5.2.9.1)

Let
$$S = \{ v_1, v_2 \}$$
 where $v_1 = \left(\frac{3}{5}, \frac{4}{5}\right)$ and $v_2 = \left(\frac{4}{5}, -\frac{3}{5}\right)$.

Note that S is an orthonormal basis for \mathbb{R}^2 .

For any
$$\mathbf{w} = (x, y) \in \mathbb{R}^2$$
,

$$\mathbf{w} \cdot \mathbf{v_1} = \frac{3x + 4y}{5}$$
 and $\mathbf{w} \cdot \mathbf{v_2} = \frac{4x - 3y}{5}$.

So
$$\mathbf{w} = \frac{3x + 4y}{5} \mathbf{v_1} + \frac{4x - 3y}{5} \mathbf{v_2}$$

and
$$(w)_S = \left(\frac{3x + 4y}{5}, \frac{4x - 3y}{5}\right)$$
.

Examples (Example 5.2.9.2)

Let $S = \{ u_1, u_2, u_3 \}$ where $u_1 = (1, 1, 1), u_2 = (1, 0, -1), u_3 = (1, -2, 1).$

Note that S is an orthogonal basis for \mathbb{R}^3 .

For
$$\mathbf{w} = (1, -1, 0) \in \mathbb{R}^3$$
,

$$(\mathbf{w})_{S} = \left[\frac{\mathbf{w} \cdot \mathbf{u}_{1}}{\mathbf{u}_{1} \cdot \mathbf{u}_{1}}, \frac{\mathbf{w} \cdot \mathbf{u}_{2}}{\mathbf{u}_{2} \cdot \mathbf{u}_{2}}, \frac{\mathbf{w} \cdot \mathbf{u}_{3}}{\mathbf{u}_{3} \cdot \mathbf{u}_{3}}\right]$$
$$= \left[0, \frac{1}{2}, \frac{1}{2}\right].$$

Orthogonality (Definition 5.2.10 & Example 5.2.11.1)

Let V be a subspace of \mathbb{R}^n .

A vector $\mathbf{u} \in \mathbb{R}^n$ is said to be orthogonal (or perpendicular) to V if \mathbf{u} is orthogonal to all vectors in V.

Orthogonality (Example 5.2.11.1)

Let $V = \{ (x, y, z) \mid ax + by + cz = 0 \}$, where not all a, b, c are zero, which is a plane in \mathbb{R}^3 containing the origin. Let n = (a, b, c).

For any vector $\mathbf{u} = (u_1, u_2, u_3) \in V$,

$$\mathbf{n} \cdot \mathbf{u} = au_1 + bu_2 + cu_3 = 0.$$

Thus n is orthogonal to V.

(The vector *n* is called a normal vector of *V*.)

Orthogonality (Remark 5.2.12 & Example 5.2.11.2)

Let $V = \text{span}\{u_1, u_2, ..., u_k\}$ be a subspace of \mathbb{R}^n .

A vector $\mathbf{v} \in \mathbb{R}^n$ is orthogonal to V if only if $\mathbf{v} \cdot \mathbf{u_i} = 0$ for i = 1, 2, ..., k.

Let $V = \text{span}\{u_1, u_2\}$, where $u_1 = (1, 1, 1, 0)$ and $u_2 = (0, -1, -1, 1)\}$, be a subspace of \mathbb{R}^4 .

Let $\mathbf{v} = (w, x, y, z) \in \mathbb{R}^4$.

v is orthogonal to V

- \Leftrightarrow $\mathbf{v} \cdot \mathbf{u_1} = 0$ and $\mathbf{v} \cdot \mathbf{u_2} = 0$
- $\Leftrightarrow \begin{cases} w + x + y = 0 \\ -x y + z = 0 \end{cases}$
- \Leftrightarrow (w, x, y, z) = (-t, -s + t, s, t) for some $s, t \in \mathbb{R}$.

Projections (Definition 5.2.13)

Let V be a subspace of \mathbb{R}^n .

Every $\mathbf{u} \in \mathbb{R}^n$ can be written uniquely as

$$u = n + p$$

where p is a vector in V

and n is a vector orthogonal to V.

The vector p is called the (orthogonal) projection of u onto V.

Examples (Example 5.2.14)

The projection of u = (x, y) onto the x-axis is p = (x, 0). In here, n = (0, y).

The projection of $\mathbf{u} = (x, y, z)$ onto the xy-plane is $\mathbf{p} = (x, y, 0)$. In here, $\mathbf{n} = (0, 0, z)$.

Orthogonal bases & projections (Theorem 5.2.15.1)

Let V be a subspace of \mathbb{R}^n and $\{u_1, u_2, ..., u_k\}$ an orthogonal basis for V.

Then for any $\mathbf{w} \in \mathbb{R}^n$,

$$\frac{w \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{w \cdot u_2}{u_2 \cdot u_2} u_2 + \cdots + \frac{w \cdot u_k}{u_k \cdot u_k} u_k$$

is the projection of w onto V.

Proof: Define $p = \frac{w \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{w \cdot u_2}{u_2 \cdot u_2} u_2 + \dots + \frac{w \cdot u_k}{u_k \cdot u_k} u_k \in V$ and n = w - p.

Since w = n + p where p is a vector in V, to show that p is a projection of w onto V, it suffices to show n is orthogonal to V.

Orthogonal bases & projections (Theorem 5.2.15.1)

To show n is orthogonal to V:

For
$$i = 1, 2, ..., k$$
,
 $n \cdot u_i = (w - p) \cdot u_i$
 $= w \cdot u_i - p \cdot u_i$
 $= w \cdot u_i - \left(\frac{w \cdot u_1}{u_1 \cdot u_1} u_1 + \frac{w \cdot u_2}{u_2 \cdot u_2} u_2 + \cdots + \frac{w \cdot u_k}{u_k \cdot u_k} u_k\right) \cdot u_i$
 $= w \cdot u_i - \frac{w \cdot u_1}{u_1 \cdot u_1} (u_1 \cdot u_i) - \frac{w \cdot u_2}{u_2 \cdot u_2} (u_2 \cdot u_i) - \cdots - \frac{w \cdot u_k}{u_k \cdot u_k} (u_k \cdot u_i)$
 $= w \cdot u_i - \frac{w \cdot u_i}{u_i \cdot u_i} (u_i \cdot u_i)$
 $= 0.$

So *n* is orthogonal to *V*.

Orthonormal bases & projections

(Theorem 5.2.15.2 & Remark 5.2.17)

Let V be a subspace of \mathbb{R}^n and $\{v_1, v_2, ..., v_k\}$ an orthonormal basis for V.

Then for any $\mathbf{w} \in \mathbb{R}^n$,

$$(\mathbf{w} \cdot \mathbf{v}_1)\mathbf{v}_1 + (\mathbf{w} \cdot \mathbf{v}_2)\mathbf{v}_2 + \cdots + (\mathbf{w} \cdot \mathbf{v}_k)\mathbf{v}_k$$

is the projection of w onto V.

(Theorem 5.2.8 can be regarded as a particular case of Theorem 5.2.15 when w is contained in V, i.e. w = p and n = 0.)

An example (Example 5.2.16)

Let $V = \text{span}\{ u_1, u_2 \}$ where $u_1 = (1, 0, 1)$ and $u_2 = (1, 0, -1)$.

Note that $\{u_1, u_2\}$ is an orthogonal, basis for V.

For $w = (1, 1, 0) \in \mathbb{R}^3$, the projection of w onto V is

$$\frac{\mathbf{w} \cdot \mathbf{u}_1}{\mathbf{u}_1 \cdot \mathbf{u}_1} \mathbf{u}_1 + \frac{\mathbf{w} \cdot \mathbf{u}_2}{\mathbf{u}_2 \cdot \mathbf{u}_2} \mathbf{u}_2 = \frac{1}{2} (1, 0, 1) + \frac{1}{2} (1, 0, -1) = (1, 0, 0).$$

Projections (Discussion 5.2.18.1)

Let $\{u_1, u_2\}$ be a basis for a vector space V (where V is either \mathbb{R}^2 or a plane in \mathbb{R}^3 containing the origin).

Let $W = \text{span}\{u_1\}$ which is a subspace of V (W is a line through the origin).

The projection of u_2 onto W is $p = \frac{u_2 \cdot u_1}{u_1 \cdot u_1} u_1$.

Let
$$v_1 = u_1$$

and $v_2 = u_2 - p = u_2 - \frac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1$.

Then $\{v_1, v_2\}$ is an orthogonal basis for V.

$$v_{2} = u_{2} - \frac{u_{2} \cdot v_{1}}{v_{1} \cdot v_{1}} v_{1}$$

$$v_{1} = u_{1}$$

$$p = \frac{u_{2} \cdot u_{1}}{u_{1} \cdot u_{1}} u_{1}$$

$$W$$

Projections (Discussion 5.2.18.1)

Let $\{u_1, u_2, u_3\}$ be a basis for \mathbb{R}^3 .

Let $V = \text{span}\{u_1, u_2\}$ which is a subspace of \mathbb{R}^3 (V is a plane containing the origin).

With
$$v_1 = u_1$$
 and $v_2 = u_2 - \frac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1$, $\{v_1, v_2\}$ be an orthogonal basis for V .

The projection of u_3 onto V is

$$p = \frac{u_3 \cdot v_1}{v_1 \cdot v_1} v_1 + \frac{u_3 \cdot v_2}{v_2 \cdot v_2} v_2.$$

Define $v_3 = u_3 - p$.

Then $\{v_1, v_2, v_3\}$ is an orthogonal basis for \mathbb{R}^3 .

Gram-Schmidt Process (Theorem 5.2.19)

Let $\{u_1, u_2, ..., u_k\}$ be a basis for a vector space V.

Let
$$v_1 = u_1$$
,
 $v_2 = u_2 - \frac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1$,
 $v_3 = u_3 - \frac{u_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{u_3 \cdot v_2}{v_2 \cdot v_2} v_2$,
 \vdots
 $v_k = u_k - \frac{u_k \cdot v_1}{v_4 \cdot v_4} v_1 - \frac{u_k \cdot v_2}{v_2 \cdot v_2} v_2 - \dots - \frac{u_k \cdot v_{k-1}}{v_{k-1} \cdot v_{k-1}} v_{k-1}$.

Then $\{v_1, v_2, ..., v_k\}$ is an orthogonal basis for V.

Furthermore, $\left\{\frac{1}{||v_1||}v_1, \frac{1}{||v_2||}v_2, ..., \frac{1}{||v_k||}v_k\right\}$ is an orthonormal basis for V.

An example (Example 5.2.20)

Let
$$u_1 = (1, -1, 2)$$
, $u_2 = (2, 1, 0)$ and $u_3 = (0, 0, 1)$.
 $\{u_1, u_2, u_3\}$ is a basis for \mathbb{R}^3 .
Let $v_1 = u_1 = (1, -1, 2)$,
$$v_2 = u_2 - \frac{u_2 \cdot v_1}{v_1 \cdot v_1} v_1$$

$$= (2, 1, 0) - \frac{1}{6} (1, -1, 2) = \left(\frac{11}{6}, \frac{7}{6}, -\frac{1}{3}\right),$$

$$v_3 = u_3 - \frac{u_3 \cdot v_1}{v_1 \cdot v_1} v_1 - \frac{u_3 \cdot v_2}{v_2 \cdot v_2} v_2,$$

$$= (1, 0, 0) - \frac{2}{6} (1, -1, 2) - \frac{-1/3}{29/6} \left(\frac{11}{6}, \frac{7}{6}, -\frac{1}{3}\right)$$

$$= \left(-\frac{6}{29}, \frac{12}{29}, \frac{9}{29}\right).$$

An example (Example 5.2.20)

Then $\{v_1, v_2, v_3\}$ is an orthogonal basis for \mathbb{R}^3 .

Furthermore, the following is an orthonormal basis for \mathbb{R}^3 :

$$\left\{ \frac{1}{\|\mathbf{v}_1\|} \mathbf{v}_1, \frac{1}{\|\mathbf{v}_2\|} \mathbf{v}_2, \frac{1}{\|\mathbf{v}_3\|} \mathbf{v}_3 \right\} \\
= \left\{ \frac{1}{\sqrt{6}} (1, -1, 2), \frac{1}{\sqrt{29/6}} \left(\frac{11}{6}, \frac{7}{6}, -\frac{1}{3} \right), \frac{1}{\sqrt{9/29}} \left(-\frac{6}{29}, \frac{12}{29}, \frac{9}{29} \right) \right\} \\
= \left\{ \left(\frac{1}{\sqrt{6}}, -\frac{1}{\sqrt{6}}, \frac{2}{\sqrt{6}} \right), \left(\frac{11}{\sqrt{174}}, \frac{7}{\sqrt{174}}, -\frac{2}{\sqrt{174}} \right), \left(-\frac{2}{\sqrt{29}}, \frac{4}{\sqrt{29}}, \frac{3}{\sqrt{29}} \right) \right\}.$$

Chapter 5 Orthogonality

Section 5.3 Best Approximations

Best Approximations (Theorem 5.3.2)

Let V be a subspace of \mathbb{R}^n .

Take any $u \in \mathbb{R}^n$ and let p be the projection of u onto V.

Then

$$d(u, p) \le d(u, v)$$
 for all $v \in V$,

i.e. p is the best approximation of u in V.

Proof of Best Approximation (Theorem 5.3.2)

Proof: Define

$$n = u - p$$

$$\mathbf{w} = \mathbf{p} - \mathbf{v}$$

and x = u - v.

Observe that *n*, *w*

and **x** form a right-angled triangle.

Then
$$||x||^2 = x \cdot x = (w + n) \cdot (w + n)$$

= $w \cdot w + w \cdot n + n \cdot w + n \cdot n$
= $||w||^2 + ||n||^2 \ge ||n||^2$

$$\Rightarrow ||x|| \ge ||n||.$$

Thus $d(u, p) = ||u - p|| = ||n|| \le ||x|| = ||u - v|| = d(u, v)$.

W

An example (Example 5.3.3)

Let $V = \text{span}\{ (1, 0, 1), (1, 1, 1) \}$ which is a plane in \mathbb{R}^3 containing the origin.

Find the (shortest) distance from u = (1, 2, 3) to V.

Solution: The shortest distance from u to V is d(u, p) where p is the projection of u onto V (by Theorem 5.3.2).

First, applying the Gram-Schmidt Process (Theorem 5.2.19), the vectors

$$(1, 0, 1) \text{ and } (1, 1, 1) - \frac{(1, 1, 1) \cdot (1, 0, 1)}{(1, 0, 1) \cdot (1, 0, 1)} (1, 0, 1) = (0, 1, 0)$$

form an orthogonal basis for V.

An example (Example 5.3.3)

Thus (by Theorem 5.2.15)

$$\boldsymbol{p} = \frac{(1, 2, 3) \cdot (1, 0, 1)}{(1, 0, 1) \cdot (1, 0, 1)} (1, 0, 1) + \frac{(1, 2, 3) \cdot (0, 1, 0)}{(0, 1, 0) \cdot (0, 1, 0)} (0, 1, 0)$$
$$= (2, 2, 2)$$

and the distance from **u** to V is

$$d(\mathbf{u}, \mathbf{p}) = ||\mathbf{u} - \mathbf{p}|| = ||(1, 2, 3) - (2, 2, 2)||$$
$$= ||(-1, 0, 1)|| = \sqrt{2}.$$

Fitting experimental data (Remark 5.3.4 & Example 5.3.5)

In analyzing experimental results, scientists always face a problem of fitting experimental data to an equation.

For example, suppose *r*, *s* and *t* are physical quantities that satisfy the rule

$$t = cr^2 + ds + e$$

for some constants c, d and e.

An experiment was conducted in order to find the constants *c*, *d* and *e*.

Six measurements of *t* were taken with various setting of *r* and *s*.

i	1	2	3	4	5	6
r_i	0	0	1	1	2	2
						2
t_i	0.5	1.6	2.8	0.8	5.1	5.9

Fitting experimental data (Example 5.3.5)

If there are no experimental errors, we have

$$\begin{cases} cr_1^2 + ds_1 + e = t_1 \\ cr_2^2 + ds_2 + e = t_2 \\ \vdots & \vdots \\ cr_6^2 + ds_6 + e = t_6 \end{cases} \Leftrightarrow \begin{cases} r_1^2 & s_1 & 1 \\ r_2^2 & s_2 & 1 \\ \vdots & \vdots & \vdots \\ r_6^2 & s_6 & 1 \end{cases} \begin{bmatrix} c \\ d \\ e \end{bmatrix} = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_6 \end{bmatrix}.$$

Let
$$\mathbf{A} = \begin{bmatrix} r_1^2 & s_1 & 1 \\ r_2^2 & s_2 & 1 \\ \vdots & \vdots & \vdots \\ r_6^2 & s_6 & 1 \end{bmatrix}$$
, $\mathbf{x} = \begin{bmatrix} c \\ d \\ e \end{bmatrix}$ and $\mathbf{b} = \begin{bmatrix} t_1 \\ t_2 \\ \vdots \\ t_6 \end{bmatrix}$.

By solving the linear system Ax = b, we can obtain the values c, d and e.

Fitting experimental data (Example 5.3.5)

However, due to experimental errors, we do not expect to get the exact values of t_i 's.

The system Ax = b is usually inconsistent.

We cannot obtain the values *c*, *d*, *e* directly.

The usual scheme is to get the approximate values of *c*, *d*, *e* that minimize the sum of squares of errors (SSE):

$$[t_1 - (cr_1^2 + ds_1 + e)]^2 + [t_2 - (cr_2^2 + ds_2 + e)]^2 + \dots + [t_6 - (cr_6^2 + ds_6 + e)]^2$$

$$= ||\boldsymbol{b} - \boldsymbol{A}\boldsymbol{x}||^2. \leftarrow$$

To minimize the SSE is equivalent to find x that minimize ||b - Ax||.

$$\mathbf{b} - \mathbf{A}\mathbf{x} = \begin{bmatrix} t_1 - (cr_1^2 + ds_1 + e) \\ t_2 - (cr_2^2 + ds_2 + e) \\ \vdots \\ t_6 - (cr_6^2 + ds_6 + e) \end{bmatrix}$$

Least square solutions (Definition 5.3.6 & Discussion 5.3.7)

Let Ax = b be a linear system where A is an $m \times n$ matrix.

A vector $\mathbf{u} \in \mathbb{R}^n$ is called a least square solution to the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ if

$$||\boldsymbol{b} - \boldsymbol{A}\boldsymbol{u}|| \le ||\boldsymbol{b} - \boldsymbol{A}\boldsymbol{v}|| \text{ for all } \boldsymbol{v} \in \mathbb{R}^n.$$
 (#)

Let $V = \{ Av \mid v \in \mathbb{R}^n \}$ and p = Au.

Then (#) is rewritten as

$$d(\mathbf{b}, \mathbf{p}) \le d(\mathbf{b}, \mathbf{w})$$
 for all $\mathbf{w} \in V$,

i.e. p = Au is the best approximation of b onto V.

Least square solutions (Discussion 5.3.7 & Theorem 5.3.8)

Recall that (by Theorem 4.1.16)

 $V = \{ Av \mid v \in \mathbb{R}^n \} = \text{the column space of } A.$

Then $u \in \mathbb{R}^n$ is a least square solution to the linear system Ax = b

if and only if p = Au is the best approximation of b onto the column space of A

if and only if p = Au is the projection of b onto the column space of A (by Theorem 5.3.2).

An example (Example 5.3.9)

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
, $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ and

$$V = \text{the column space of } \mathbf{A} = \text{span} \left\{ \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \right\}.$$

We know that (by Example 5.3.3) the projection of b onto V

is
$$p = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$$
.

An example (Example 5.3.9)

Thus (by Theorem 5.3.8)
$$\mathbf{x} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 is a least square solution

to Ax = b if and only if

$$\begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ 2 \end{bmatrix}$$

which implies
$$\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}$$
.

Least square solutions (Theorem 5.3.10)

Let Ax = b be a linear system.

Then u is a least square solution to the system Ax = b if and only if u is a solution to

$$A^{\mathsf{T}}Ax = A^{\mathsf{T}}b$$
.

Proof: Write $A = \begin{bmatrix} a_1 & a_2 & \cdots & a_n \end{bmatrix}$ where a_j is the jth column of A.

Let V be the column space of A,

i.e.
$$V = \text{span}\{a_1, a_2, ..., a_n\} = \{Av \mid v \in \mathbb{R}^n\}.$$

Least square solutions (Theorem 5.3.10)

u is a least square solution to Ax = b

- \Leftrightarrow **Au** is the projection of **b** onto **V** (by Theorem 5.3.8)
- \Leftrightarrow **b Au** is orthogonal to V (by Definition 5.2.13)
- \Leftrightarrow **b Au** is orthogonal to a_1 , a_2 , ..., a_n (by Remark 5.2.12)

$$\Leftrightarrow a_1 \cdot (b - Au) = 0, \ a_2 \cdot (b - Au) = 0, \ ..., \ a_n \cdot (b - Au) = 0$$

$$\Leftrightarrow a_1^{\mathsf{T}}(b - Au) = 0, \ a_2^{\mathsf{T}}(b - Au) = 0, ..., \ a_n^{\mathsf{T}}(b - Au) = 0$$
(by Remark 5.1.3)

$$\Leftrightarrow \begin{bmatrix} a_1^{\mathsf{T}} \\ a_2^{\mathsf{T}} \\ \vdots \\ a_n^{\mathsf{T}} \end{bmatrix} (b - Au) = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \Leftrightarrow A^{\mathsf{T}}(b - Au) = 0$$
$$\Leftrightarrow A^{\mathsf{T}}b - A^{\mathsf{T}}Au = 0$$
$$\Leftrightarrow A^{\mathsf{T}}Au = A^{\mathsf{T}}b.$$

Examples (Example 5.3.11.1)

Let
$$\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$.

Then a least square solution to Ax = b is a solution to

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 2 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 4 \\ 6 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 2 \end{bmatrix}.$$

Examples (Example 5.3.11.2)

For the example of fitting experimental data (Example 5.3.5), the linear system is

$$\begin{cases} e = 0.5 \\ d + e = 1.6 \\ c + 2d + e = 2.8 \\ c + e = 0.8 \\ 4c + d + e = 5.1 \\ 4c + 2d + e = 5.9 \end{cases} \Leftrightarrow \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 2 & 1 \\ 1 & 0 & 1 \\ 4 & 1 & 1 \\ 4 & 2 & 1 \end{bmatrix} \begin{bmatrix} c \\ d \\ e \end{bmatrix} = \begin{bmatrix} 0.5 \\ 1.6 \\ 2.8 \\ 0.8 \\ 5.1 \\ 5.9 \end{bmatrix}.$$

Examples (Example 5.3.11.2)

Then a least square solution to the linear system is a

solution to

Solution to
$$\begin{bmatrix}
0 & 0 & 1 & 1 & 4 & 4 \\
0 & 1 & 2 & 0 & 1 & 2 \\
1 & 1 & 1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 2 & 1 \\
1 & 0 & 1 \\
4 & 1 & 1 \\
4 & 2 & 1
\end{bmatrix}
\begin{bmatrix}
c \\
d \\
e
\end{bmatrix} = \begin{bmatrix}
0 & 0 & 1 & 1 & 4 & 4 \\
0 & 1 & 2 & 0 & 1 & 2 \\
1 & 1 & 1 & 1 & 1 & 1
\end{bmatrix}
\begin{bmatrix}
0.5 \\
1.6 \\
2.8 \\
0.8 \\
5.1 \\
5.9
\end{bmatrix}$$

$$\begin{bmatrix} c \\ d \\ e \end{bmatrix} = \begin{bmatrix} 47.6 \\ 24.1 \\ 16.7 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} 34 & 14 & 10 \\ 14 & 10 & 6 \\ 10 & 6 & 6 \end{bmatrix} \begin{bmatrix} c \\ d \\ e \end{bmatrix} = \begin{bmatrix} 47.6 \\ 24.1 \\ 16.7 \end{bmatrix} \Leftrightarrow \begin{bmatrix} c \\ d \\ e \end{bmatrix} = \begin{bmatrix} 0.9275 \\ 0.9225 \\ 0.3150 \end{bmatrix}.$$

Examples (Example 5.3.11.3)

We demonstrate how to find the projection using a least square solution.

Let $V = \text{span}\{ (1, -1, 1, -1), (1, 2, 0, 1), (2, 1, 1, 0) \}$. Find the projection of (1, 1, 1, 1) onto V.

Solution: Let
$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix}$$
 and $\mathbf{b} = \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$.

We first find a least square solution u to the linear system Ax = b, then (by Theorem 5.3.8) Au is the projection of b onto V.

Examples (Example 5.3.11.3)

The equation $A^{T}Ax = A^{T}b$ is

$$\begin{bmatrix} 4 & -2 & 2 \\ -2 & 6 & 4 \\ 2 & 4 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 0 \\ 4 \\ 4 \end{bmatrix}$$

which gives us a general solution

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} -t + \frac{2}{5} \\ -t + \frac{4}{5} \\ t \end{bmatrix}$$
 where t is an arbitrary parameter.

Any one of the solutions is a least square solution to the system Ax = b.

Examples (Example 5.3.11.3)

Take
$$\mathbf{u} = \begin{bmatrix} \frac{2}{5} \\ \frac{4}{5} \\ 0 \end{bmatrix}$$
. Then $\mathbf{A}\mathbf{u} = \begin{bmatrix} 1 & 1 & 2 \\ -1 & 2 & 1 \\ 1 & 0 & 1 \\ -1 & 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{2}{5} \\ \frac{4}{5} \\ 0 \end{bmatrix} = \begin{bmatrix} \frac{6}{5} \\ \frac{6}{5} \\ \frac{2}{5} \\ \frac{2}{5} \end{bmatrix}$

So
$$\left(\frac{6}{5}, \frac{6}{5}, \frac{2}{5}, \frac{2}{5}\right)$$
 is the projection of $(1, 1, 1, 1)$ onto V .

(Although in this example, there are infinitely many least square solutions, all of them will give us the same projection vector.)

Chapter 5 Orthogonality

Section 5.4 Orthogonal Matrices

Transition matrices (Discussion 5.4.1)

Let $S = \{ u_1, u_2, ..., u_k \}$ and $T = \{ v_1, v_2, ..., v_k \}$ be two bases for a vector space V.

Recall that the matrix

$$P = [[u_1]_T [u_2]_T \cdots [u_k]_T]$$

is the transition matrix from S to T.

For any $\mathbf{w} \in V$, $[\mathbf{w}]_T = \mathbf{P}[\mathbf{w}]_S$.

If both *S* and *T* are orthonormal bases, the transition matrix *P* has some interesting properties.

An example (Example 5.4.2)

Let $E = \{ e_1, e_2, e_3 \}$ be the standard bases for \mathbb{R}^3 , i.e. $e_1 = (1, 0, 0), e_2 = (0, 1, 0), e_3 = (0, 0, 1),$ and let $S = \{ u_1, u_2, u_3 \}$ where $u_1 = \frac{1}{\sqrt{3}}(1, 1, 1), u_2 = \frac{1}{\sqrt{2}}(1, 0, -1), u_2 = \frac{1}{\sqrt{6}}(1, -2, 1).$

Both E and S are orthonormal bases for \mathbb{R}^3 .

$$u_{1} = \frac{1}{\sqrt{3}} \mathbf{e}_{1} + \frac{1}{\sqrt{3}} \mathbf{e}_{2} + \frac{1}{\sqrt{3}} \mathbf{e}_{3},$$

$$u_{2} = \frac{1}{\sqrt{2}} \mathbf{e}_{1} - \frac{1}{\sqrt{2}} \mathbf{e}_{3},$$

$$u_{3} = \frac{1}{\sqrt{6}} \mathbf{e}_{1} - \frac{2}{\sqrt{6}} \mathbf{e}_{2} + \frac{1}{\sqrt{6}} \mathbf{e}_{3}.$$

The transition matrix from *S* to *E* is

$$\mathbf{P} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & 0 & \frac{-2}{\sqrt{6}} \\ \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

An example (Example 5.4.2)

As S is an orthonormal basis for \mathbb{R}^3 , (by Theorem 5.2.8)

$$\mathbf{e}_{1} = (\mathbf{e}_{1} \cdot \mathbf{u}_{1})u_{1} + (\mathbf{e}_{1} \cdot \mathbf{u}_{2})u_{2} + (\mathbf{e}_{1} \cdot \mathbf{u}_{3})u_{3} = \frac{1}{\sqrt{3}}\mathbf{u}_{1} + \frac{1}{\sqrt{2}}\mathbf{u}_{2} + \frac{1}{\sqrt{6}}\mathbf{u}_{3},$$

$$\mathbf{e}_{2} = (\mathbf{e}_{2} \cdot \mathbf{u}_{1})u_{1} + (\mathbf{e}_{2} \cdot \mathbf{u}_{2})u_{2} + (\mathbf{e}_{2} \cdot \mathbf{u}_{3})u_{3} = \frac{1}{\sqrt{3}}\mathbf{u}_{1} - \frac{2}{\sqrt{6}}\mathbf{u}_{3},$$

$$\mathbf{e}_{3} = (\mathbf{e}_{3} \cdot \mathbf{u}_{1})u_{1} + (\mathbf{e}_{3} \cdot \mathbf{u}_{2})u_{2} + (\mathbf{e}_{3} \cdot \mathbf{u}_{3})u_{3} = \frac{1}{\sqrt{3}}\mathbf{u}_{1} - \frac{1}{\sqrt{2}}\mathbf{u}_{2} + \frac{1}{\sqrt{6}}\mathbf{u}_{3}.$$

The transition matrix from
$$E$$
 to S is
$$Q = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{6}} & \frac{-2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \end{bmatrix}$$

Note that $Q = P^{T}$. On the other hand, (by Theorem 3.7.5) $Q = P^{-1}$.

Thus $P^{-1} = P^{T}$.

(Definition 5.4.3 & Remark 5.4.4 **Orthogonal matrices** & Example 5.3.5)

A square matrix \mathbf{A} is called orthogonal if $\mathbf{A}^{-1} = \mathbf{A}^{\mathsf{T}}$.

To show that a square matrix **A** is an orthogonal matrix, (by Theorem 2.4.14) we only need to check that $\mathbf{A}\mathbf{A}^{\mathsf{T}} = \mathbf{I}$ (or $\mathbf{A}^{\mathsf{T}}\mathbf{A} = \mathbf{I}$).

The following are some examples of orthogonal matrices:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{-2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \end{bmatrix} \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

$$\begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}$$

Orthogonal matrices (Theorem 5.4.6)

Let \mathbf{A} be a square matrix of order \mathbf{n} .

The following statements are equivalent:

- 1. A is orthogonal.
- 2. The rows of \mathbf{A} form an orthonormal basis for \mathbb{R}^n .
- 3. The columns of A form an orthonormal basis for \mathbb{R}^n .

Proof: We only prove $1 \Leftrightarrow 2$ in the following.

Write
$$A = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_m \end{bmatrix}$$
 where a_i is the i^{th} row of A .

Orthogonal matrices (Theorem 5.4.6)

Observe that

$$AA^{\top} = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} \begin{bmatrix} a_1^{\top} a_2^{\top} \cdots a_n^{\top} \end{bmatrix} = \begin{bmatrix} a_1 a_1^{\top} a_1 a_2^{\top} \cdots a_1 a_n^{\top} \\ a_2 a_1^{\top} a_2 a_2^{\top} \cdots a_2 a_n^{\top} \\ \vdots & \vdots & \vdots \\ a_n a_1^{\top} a_n a_2^{\top} \cdots a_n a_n^{\top} \end{bmatrix}$$

$$= \begin{bmatrix} a_{1} \cdot a_{1} & a_{1} \cdot a_{2} & \cdots & a_{1} \cdot a_{n} \\ a_{2} \cdot a_{1} & a_{2} \cdot a_{2} & \cdots & a_{2} \cdot a_{n} \\ \vdots & & \vdots & & \vdots \\ a_{n} \cdot a_{1} & a_{n} \cdot a_{2} & \cdots & a_{n} \cdot a_{n} \end{bmatrix}.$$

Orthogonal matrices (Theorem 5.4.6)

A is orthogonal

 \Leftrightarrow $\mathbf{A}\mathbf{A}^{\mathsf{T}} = \mathbf{I}$ (by Remark 5.4.4)

$$\Leftrightarrow \begin{bmatrix} a_1 \cdot a_1 & a_1 \cdot a_2 & \cdots & a_1 \cdot a_n \\ a_2 \cdot a_1 & a_2 \cdot a_2 & \cdots & a_2 \cdot a_n \\ \vdots & \vdots & & \vdots \\ a_n \cdot a_1 & a_n \cdot a_2 & \cdots & a_n \cdot a_n \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

- \Leftrightarrow for all i, j, $\mathbf{a}_i \cdot \mathbf{a}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$
- \Leftrightarrow $a_1, a_2, ..., a_n$ are orthonormal
- \Leftrightarrow { a_1 , a_2 , ..., a_n } is an orthonormal basis for \mathbb{R}^n

(by Remark 5.2.6).

Transition matrices (Theorem 5.4.7)

Let *S* and *T* be two orthonormal bases for a vector space and let *P* be the transition matrix from *S* to *T*.

- 1. **P** is orthogonal.
- 2. P^{T} is the transition matrix from T to S.

Proof: Let
$$S = \{ u_1, u_2, ..., u_k \}$$
 and $T = \{ v_1, v_2, ..., v_k \}$.

Since T is an orthonormal basis for \mathbb{R}^3 , (by Theorem 5.2.8)

$$u_{1} = (u_{1} \cdot v_{1})v_{1} + (u_{1} \cdot v_{2})v_{2} + \cdots + (u_{1} \cdot v_{k})v_{k},$$

$$u_{2} = (u_{2} \cdot v_{1})v_{1} + (u_{2} \cdot v_{2})v_{2} + \cdots + (u_{2} \cdot v_{k})v_{k},$$

$$\vdots$$

$$u_{k} = (u_{k} \cdot v_{1})v_{1} + (u_{k} \cdot v_{2})v_{2} + \cdots + (u_{k} \cdot v_{k})v_{k}.$$

Transition matrices (Theorem 5.4.7)

Thus the transition matrix from S to T is

$$P = \begin{bmatrix} u_1 \cdot v_1 & u_2 \cdot v_1 & \cdots & u_k \cdot v_1 \\ u_1 \cdot v_2 & u_2 \cdot v_2 & \cdots & u_k \cdot v_2 \\ \vdots & \vdots & & \vdots \\ u_1 \cdot v_k & u_2 \cdot v_k & \cdots & u_k \cdot v_k \end{bmatrix}.$$

Similarly, the transition matrix from T to S is

$$Q = \begin{bmatrix} v_1 \cdot u_1 & v_2 \cdot u_1 & \cdots & v_k \cdot u_1 \\ v_1 \cdot u_2 & v_2 \cdot u_2 & \cdots & v_k \cdot u_2 \\ \vdots & \vdots & & \vdots \\ v_1 \cdot u_k & v_2 \cdot u_k & \cdots & v_k \cdot u_k \end{bmatrix}.$$

Transition matrices (Theorem 5.4.7)

The transition matrix from
$$S$$
 to T :
$$P = \begin{bmatrix} u_1 \cdot v_1 & u_2 \cdot v_1 & \cdots & u_k \cdot v_1 \\ u_1 \cdot v_2 & u_2 \cdot v_2 & \cdots & u_k \cdot v_2 \\ \vdots & & \vdots & & \vdots \\ u_1 \cdot v_k & u_2 \cdot v_k & \cdots & u_k \cdot v_k \end{bmatrix}$$

The transition matrix from
$$T$$
 to S :
$$Q = \begin{bmatrix} v_1 \cdot u_1 & v_2 \cdot u_1 & \cdots & v_k \cdot u_1 \\ v_1 \cdot u_2 & v_2 \cdot u_2 & \cdots & v_k \cdot u_2 \\ \vdots & \vdots & & \vdots \\ v_1 \cdot u_k & v_2 \cdot u_k & \cdots & v_k \cdot u_k \end{bmatrix}$$

For all i, j, by Theorem 5.1.5.1 the (i, j)-entry of $P = u_j \cdot v_i = v_i \cdot u_j =$ the (j, i)-entry of Q.

Thus the transition matrix from T to S is $Q = P^{T}$.

On the other hand, (by Theorem 3.7.5) P^{-1} is the transition matrix from T to S.

So $P^{-1} = P^{T}$ and hence P is orthogonal.

Rotation of xy-coordinates (Example 5.4.8.1)

Let $E = \{e_1, e_2\}$ be the standard bases for \mathbb{R}^2 where $e_1 = (1, 0)$ is in the same direction as the *x*-axis, $e_2 = (0, 1)$ is in the same direction as the *y*-axis.

Consider a new x'y'-coordinate system obtained by rotating the original xy-coordinates anti-clockwise about the origin through an angle θ .

Let u_1 and u_2 be the unit vectors such that

 u_1 is in the direction of the x'-axis, u_2 is in the direction of the y'-axis.

 $S = \{ u_1, u_2 \}$ is an orthonormal basis for \mathbb{R}^2 .

Rotation of xy-coordinates (Example 5.4.8.1)

$$\begin{aligned} \mathbf{u}_1 &= (\cos(\theta), \sin(\theta)) \\ &= \cos(\theta) \, \mathbf{e_1} + \sin(\theta) \, \mathbf{e_2}, \\ \mathbf{u}_2 &= (-\sin(\theta), \cos(\theta)) \\ &= -\sin(\theta) \, \mathbf{e_1} + \cos(\theta) \, \mathbf{e_2}. \end{aligned}$$

The transition matrix from *S* to *E* is

$$\mathbf{P} = \begin{bmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{bmatrix}.$$

Thus (by Theorem 5.4.7) the transition matrix from *E* to *S* is

$$\mathbf{P}^{\mathsf{T}} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}.$$

Rotation of xy-coordinates (Example 5.4.8.1)

Let
$$\mathbf{v} = (x, y) \in \mathbb{R}^2$$

and let $(\mathbf{v})_S = (x', y')$.

In here, (x', y') is the coordinates of \mathbf{v} using the new x'y'-coordinate system.

Since the transition matrix from E to S is P^T ,

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = [\mathbf{v}]_{S} = \mathbf{P}^{T}[\mathbf{v}]_{E} = \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

So
$$x' = x \cos(\theta) + y \sin(\theta)$$
,
 $y' = -x \sin(\theta) + y \cos(\theta)$.

An example (Example 5.4.8.2)

Let $S = \{ u_1, u_2, u_3 \}$, where

$$u_1 = \frac{1}{\sqrt{3}}(1, 1, 1), \quad u_2 = \frac{1}{\sqrt{2}}(1, 0, -1), \quad u_3 = \frac{1}{\sqrt{6}}(1, -2, 1),$$

and $T = \{ v_1, v_2, v_3 \}$, where

$$\mathbf{v_1} = (0, 0, 1), \ \mathbf{v_2} = \frac{1}{\sqrt{2}}(1, -1, 0), \ \mathbf{v_3} = \frac{1}{\sqrt{2}}(1, 1, 0).$$

Both S and T are orthonormal based for \mathbb{R}^3 .

$$u_{1} = (u_{1} \cdot v_{1})v_{1} + (u_{1} \cdot v_{2})v_{2} + (u_{1} \cdot v_{3})v_{3} = \frac{1}{\sqrt{3}}v_{1} + \frac{2}{\sqrt{6}}v_{3},$$

$$u_{2} = (u_{2} \cdot v_{1})v_{1} + (u_{2} \cdot v_{2})v_{2} + (u_{2} \cdot v_{3})v_{3} = \frac{-1}{\sqrt{2}}v_{1} + \frac{1}{2}v_{2} + \frac{1}{2}v_{3},$$

$$u_{3} = (u_{3} \cdot v_{1})v_{1} + (u_{3} \cdot v_{2})v_{2} + (u_{3} \cdot v_{3})v_{3} = \frac{1}{\sqrt{6}}v_{1} + \frac{3}{\sqrt{12}}v_{2} + \frac{-1}{\sqrt{12}}v_{3}.$$

An example (Example 5.4.8.2)

The transition matrix form

S to T is

$$\mathbf{P} = \begin{bmatrix} \frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} \\ 0 & \frac{1}{2} & \frac{3}{\sqrt{12}} \\ \frac{2}{\sqrt{6}} & \frac{1}{2} & \frac{-1}{\sqrt{12}} \end{bmatrix}$$
The transition matrix form T to S is
$$\mathbf{P}^{T} = \begin{bmatrix} \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}.$$

$$\mathbf{P}^{\mathsf{T}} = \begin{bmatrix} \frac{1}{\sqrt{3}} & 0 & \frac{2}{\sqrt{6}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{\sqrt{6}} & \frac{3}{\sqrt{12}} & \frac{-1}{\sqrt{12}} \end{bmatrix}.$$