

PRODUCTION OF MALEIC ANHYDRIDE FROM OXIDATION OF n-BUTANE

Ishty Malhotra

School of Chemical Engineering, Galgotias' University

Background: -

Maleic anhydride is truly a remarkable molecule which possesses two different types of chemical functionality that makes it useful in chemical application. It occurs as colourless or white crystalline flakes having the strong pungent odour. It is also called as 2, 5 furandione, dihydro-2,5-dioxofuran, toxilic anhydride, or *cis*butenedioic anhydride.

Process: -

Maleic anhydride is produced by the reaction of n-butane with molecular oxygen at the optimum temperature. The products formed during the reactions are maleic anhydride, water, carbon dioxide and carbon monoxide.

$$C_4H_{10} + 3.5O_2 \rightarrow C_4H_2O_3 + 4H_2O$$

Butane + Oxygen \rightarrow Maleic Anhydride + Water

$$C_4H_{10} + 5.5O_2 \rightarrow 2CO_2 + 2CO + 5H_2O$$

Butane + Oxygen \rightarrow Carbon Dioxide + Carbon Monoxide + Water

Initially two material steam (S-01 and S-04) containing the n-butane (275.291 k mol/hr) and oxygen (+ nitrogen : - 8770.83 k mol/hr) respectively is mixed in a mixer after gaining an optimum pressure. This mixed stream (S-07) enters the heat exchanger from which the cooling of stream takes place and the desired temperature and pressure for the reaction can be obtained. The temperature for reaction is between 300-500°C and pressure is 275 KPa. Since the conversion reaction has taken place instead of catalyst therefore, the rate of reaction can be slow. After the reaction, absorption (Abs-01) process takes place using the Di-Butyl Phthalate as the absorbent. The absorption is liquid - vapour absorption, from which, the top gases (S-20) mixes with the top gases of distillation and the liquid part of absorber is treated as a feed in distillation tower. The top product of distillation tower contains the gases that further get treated whereas, the bottom product contains the absorbent in maximum concentration and hence has participated in a recycle loop.

Results: -

Master Property Table										
Object	S-14	S-13	S-12	S-08	S-07	S-04	S-01			
Temperature	689.374	695	695	153.432	146.825	25	72	С		
Pressure	270	270	270	285	285	101.325	925	kPa		
Mass Flow	269042	269042	269042	269042	269042	253041	16000.5	kg/h		
Molar Flow	9459.06	9459.06	9459.06	9046.12	9046.12	8770.83	275.291	kmol/h		
Volumetric Flow	77.8759	78.3311	78.3311	31.27	30.7857	59.6028	0.00866721	m3/s		
Mixture Molar Weight	28.4428	28.4428	28.4428	29.7411	29.7411	28.8503	58.1222	kg/kmol		

Master Property Table										
Object	S-25	S-24	S-20	S-18	S-15					
Temperature	416.631	417.37	434.965	440.63	132	С				
Pressure	101.325	101.325	101.325	101.325	90	kPa				
Mass Flow	343912	1001.99	336802	92021.8	269042	kg/h				
Molar Flow	9786.05	3.6	9689.22	330.6	9459.06	kmol/h				
Volumetric Flow	153.854	0.000295228	156.381	4.55484	98.3397	m3/s				
Mixture Molar Weight	35.143	278.33	34.7605	278.348	28.4428	kg/kmol				

References: -

Sajjad Khudhur Abbas, (2015), "PRODUCTION OF MALEIC ANHYDRIDE FROM OXIDATION OF n-BUTANE", Report, The National University of Malaysia