Financial Markets & Instruments

What is Finance?

- A possible definition:
 - Finance is the study of how people and organizations allocate scarce resources over time, subject to uncertainty.
- Two essential ingredients:
 - Time: Reflected in interest rates, borrowing, and investing
 - Uncertainty: Future asset values, returns, and economic conditions
- These two dimensions are intertwined throughout all financial concepts and models
- Financial markets facilitate:
 - Consumption timing (saving and borrowing)
 - Risk transfer between market participants

Consumption Timing

- Imagine a world without "storage" of money:
 - We would have to consume all income immediately
 - No saving for future needs, no borrowing against future income
- Financial markets allow shifting consumption across time
 - Money markets: Short-term borrowing and lending
 - Capital markets: Long-term investment and financing
- Time value of money: \$1 now is worth more than \$1 in the future
 - Investment opportunities
 - Precautionary cushion against unforeseen needs
- Shifting consumption comes with compensation in the form of interest rates

Shifting Consumption in Time

Figure: Shifting consumption forward and backward in time

Flow Balance Equations

When saving (shifting consumption forward):

$$C_2 = I_2 - L_{2,3}$$

 $C_3 = I_3 + L_{2,3}(1+R)$

where $L_{2,3}$ is the amount saved/lent and R is the interest rate

• When borrowing (shifting consumption backward):

$$C_2 = I_2 + \frac{B_{3,2}}{1+R}$$

 $C_3 = I_3 - B_{3,2}$

where $B_{3,2}$ is the amount to be repaid at t=3

• Alternative expression when borrowing at t = 2:

$$C_2 = I_2 + B_{3,2}^*$$

 $C_3 = I_3 - B_{3,2}^* (1+R)$

where $B_{3,2}^*$ is the amount borrowed at t=2

Uncertainty and Risk

- Financial markets not only deal with time, but also uncertainty
- Sources of financial risk:
 - Market risk: Fluctuations in stock prices, interest rates, etc.
 - Credit risk: Possibility of default on debt obligations
 - Currency risk: Exchange rate fluctuations
 - Inflation risk: Loss of purchasing power
 - Operational risk: Failures in processes, systems, or people
- Risk vs. uncertainty: Risk can be quantified with probabilities
- Risk transfer: Insurance markets, derivatives markets
- Risk management: Identifying, measuring, and controlling risk exposures

Holding Period Return and Gain

• **Definition 1.1 (Holding period return)** Let us consider a holding period [0, T], where the initial asset price is S(0) and the terminal random asset price is $S(T, \omega)$. We define the holding period return as

$$R(\omega) \doteq \frac{S(T,\omega)-S(0)}{S(0)}$$

and the holding period gain as

$$G(\omega) \doteq \frac{S(T,\omega)}{S(0)} = 1 + R(\omega)$$

- \bullet A return of 10% means the stock price was multiplied by a gain factor of 1.10
- Gain (or gross return) vs. return (or net return)
- Term "rate of return" typically reserved for annual returns

Different Types of Returns

- Consider a holding period of two consecutive years:
 - Year 1: Return is +10%
 - Year 2: Return is -10%
 - What is the "average" return?
- Arithmetic mean: $R_a = \frac{0.10 + (-0.10)}{2} = 0$
- But actual gain over two years:

$$G = (1 + 0.10) \times (1 - 0.10)$$

= 0.99 (a loss of 1%)

Geometric average (annualized):

$$(1+0.10) \times (1-0.10) = (1+R_g)^2$$

 $\Rightarrow R_g = -0.5013\%$

• The return depends on the measurement approach

Risk-Free Asset

- A risk-free asset has a predetermined return with certainty
- Example: Safe bank account or high-quality government bonds
- For a risk-free asset:

$$B(T,\omega)=B(0)\cdot(1+R_f)$$

for every state of the world $\omega \in \Omega$

- R_f is the risk-free return; if T is one year, referred to as risk-free rate
- Why invest in risky assets if risk-free ones exist?
 - Risk premium: Compensation for bearing risk
 - Higher expected returns for risky assets
- Risky and risk-free assets form the foundation of many financial models

Market Scenario Trees

Figure: A scenario tree: uncertainty unfolding progressively over time

Types of Assets

- An asset is anything that can be transformed into money by its owner
- Key dimensions for classifying assets:
 - Real vs. financial: Physical assets vs. securities/claims
 - Risky vs. risk-free: Uncertain vs. certain future value
 - Liquid vs. illiquid: Ease of selling at fair price
 - Tradable vs. non-tradable: Can be bought/sold in markets
 - Exchange-traded vs. over-the-counter (OTC): Standardized vs. customized
- Main types of financial assets:
 - Stock shares (equity)
 - Bonds and other debt securities
 - Foreign currencies
 - Derivatives: Forwards/futures, options, swaps
 - Hybrid securities

Assets vs. Securities

- Securities are tradable financial assets
 - Readily purchased or sold on financial markets
 - Examples: Stocks, bonds, exchange-traded derivatives
- Not all assets are securities:
 - Insurance policies: Assets but not tradable
 - Human capital: Valuable but not marketable
 - Bank loans: Assets for the bank but not readily tradable
- Securitization: Transforming illiquid assets into tradable securities
 - Example: Mortgages → Mortgage-backed securities (MBS)
 - Pools cash flows from similar assets
 - Creates liquid securities from illiquid assets
- Liquidity depends on both asset type and market conditions

Equity

- Stock shares represent residual claims on the equity of a firm
 - If a firm is liquidated, assets are sold to pay liabilities
 - Any remaining equity is distributed to stockholders
 - This is why stocks are referred to as "equity" investments
- Holding period return for a stock share: $R(\omega) = \frac{S(T,\omega) + D S(0)}{S(0)}$ where D is dividend paid during the holding period (0,T)
 - Dividend timing affects valuation when reinvested
 - Forward-projected dividends should be considered in calculations
- Key features of stock shares:
 - Limited liability assets: stockholders not responsible for firm's illegal behavior
 - ullet Stock prices cannot be negative and worst-case return is -100%
 - Common vs. preferred stock shares with different voting rights and dividend guarantees
 - No defined maturity, unlike bonds or options
 - Stock shares can be created and destroyed (unlike energy in physics)
- Extraordinary events affecting stock prices:
 - Stock splits and reverse splits: create multiple shares from one or vice versa
 - Spinoffs: firm separates into two with corresponding shares
 - Mergers and acquisitions: firms combine with share conversion
 - These events affect price but not market capitalization

Fixed Income

- A bond is a security defined by:
 - Face value F (nominal or par value): amount issuer promises to pay
 - Maturity T (time when face value is paid back)
 - Coupon rate c (interest rate applied to face value for periodic payments)
 - Coupons historically were physical pieces of paper detached for payment
- Types of bonds:
 - Zero-coupon bonds (c = 0): no periodic payments, only face value at maturity
 - ullet Coupon-bearing bonds (c>0): periodic interest payments plus face value
 - Coupon frequency typically twice a year, but can vary
- US Treasury bonds classified as:
 - T-bills: zeros, maturities up to one year
 - T-notes: coupon-bearing, maturities up to ten years
 - T-bonds: coupon-bearing, longer maturities
 - Some long-term zeros created by stripping coupons (unbundling cash flows)
- Bond risk factors:
 - Default risk: issuer may fail to pay coupons or principal
 - Inflation risk: relevant for long-term bonds, erodes purchasing power
 - Foreign-exchange risk: for bonds denominated in foreign currencies
 - Interest rate risk: inverse relationship between rates and bond prices

FOREX Markets

- Foreign exchange (FOREX) markets facilitate currency trading
 - Important for international equity and fixed-income portfolios
 - Also critical for non-financial firms with international operations
- Risk factor: exchange rate between currency pairs
 - Affects international trade and investments
 - Source of both risk and speculative opportunity
- Quotation conventions:
 - Currency pair notation (e.g., EUR/USD = 1.1166)
 - Base currency (left of slash): fixed amount (e.g., EUR 1)
 - Quoted currency (right of slash): variable amount (e.g., USD 1.1166)
 - Means 1 euro can buy 1.1166 US dollars
- Direct vs. indirect quotation:
 - Direct: domestic currency is quoted currency (variable amount)
 - Indirect: domestic currency is base currency (fixed amount)
 - Also called "uncertain for certain" vs. "certain for uncertain"
 - Choice depends on perspective, convenience, and local conventions
- Bid-ask spreads: difference between buying and selling prices
 - Example: EUR/USD 1.1165/67
 - Bank buys base currency (EUR) at bid price (1.1165)
 - Bank sells base currency at ask price (1.1167)
 - "Three Bs rule": market maker Buys the Base currency at the Bid price

Derivatives

- Derivative: financial asset deriving its value from an underlying variable
 - Defined by explicit formula written in contract
 - Typical payoff is $f(S_T)$ for some function $f(\cdot)$ at maturity T
 - More complex derivatives depend on price path until maturity
- Types of underlying variables:
 - Primary financial assets (stocks, bonds)
 - Nonfinancial assets (commodities like gold or oil)
 - Risk factors (interest rates, market indexes, volatility)
 - Weather or other non-price variables
 - Other derivatives (compound options, swaptions)
- Key issues in derivatives:
 - Pricing: determining fair value based on underlying factors
 - Hedging: managing risk exposure of writing derivatives
 - Portfolio management: changing exposure to risk factors
 - Regulatory and accounting issues beyond scope of quantitative models
- Basic derivative families:
 - Forward contracts: obligation to buy/sell at future date
 - Futures contracts: standardized, exchange-traded forwards
 - Options: right but not obligation to buy/sell
 - Plain vanilla vs. exotic derivatives with complex payoffs

Forward Contracts

- Agreement between two counterparties to buy/sell an asset at a prespecified forward price $F(t_0, T)$ at a later date T
 - A private arrangement between counterparties (OTC)
 - Both parties are obligated to fulfill the contract terms
- Long position: agrees to buy the asset at maturity
- Short position: agrees to sell the asset at maturity
- At maturity, spot-forward convergence applies: S(T) = F(T, T)
 - Forward price at maturity equals spot price (law of one price)
 - Otherwise would create arbitrage opportunity
- Payoff for long position: $S(T) F(t_0, T)$
 - Positive when spot price exceeds delivery price
 - Negative when delivery price exceeds spot price
- Payoff for short position: $F(t_0, T) S(T)$
 - Zero-sum game: one party's gain is other's loss
- Forward contracts:
 - Tailored to specific needs (OTC)
 - Less liquid and standardized than futures
 - Subject to counterparty risk (default risk)
 - Initial value is zero, allowing leverage without initial investment
 - Used for both hedging and speculation

Futures Contracts

- Exchange-traded equivalents of forward contracts
 - Delivery of underlying or cash settlement at maturity
- Key features to address issues with forwards:
 - Clearinghouse to reduce counterparty risk
 - Daily marking-to-market instead of single settlement
- Standardization:
 - Limited underlying assets and delivery dates
 - Deep market with easier entry/exit
 - Standard contract sizes (e.g., 100 oz gold)
 - Sometimes allows range of deliverable assets (e.g., bond futures)
- Clearinghouse:
 - Steps between long and short positions as counterparty
 - Assumes counterparty risk from both sides
 - Manages margin accounts for all positions
 - Nets positions to reduce exposure (proved effective in 1987 crash)
- Daily marking-to-market:
 - Daily cash flow settlements based on price changes
 - Margin accounts with initial and maintenance margins
 - Margin calls when account drops below threshold
 - Position liquidated if margin call not met
 - Sum of daily cash flows equals forward contract payoff

Vanilla Options I

- Asymmetric contracts with nonlinear payoffs
 - Two distinct roles: option writer and option holder
 - Option writer creates and sells the option
 - Option holder purchases the right but not obligation
- \bullet Call option: right (not obligation) to buy the underlying asset at strike price ${\cal K}$
 - Profitable when asset price exceeds strike price
 - Maximum loss limited to premium paid
 - Unlimited profit potential as asset price rises
- ullet Put option: right (not obligation) to sell the underlying asset at strike price K
 - Profitable when asset price falls below strike price
 - Maximum loss limited to premium paid
 - Substantial profit potential in market downturns

Vanilla Options II

- Option styles:
 - European-style: exercise only at maturity T
 - ullet American-style: exercise at any time before or at expiration date T
 - Bermudan-style: exercise at specific dates before maturity
- Payoffs:
 - European call: $\max\{S(T) K, 0\}$
 - European put: $\max\{K S(T), 0\}$
 - Profit = payoff premium paid
- Option writer (short position) is compensated by option premium
 - May face unlimited losses with written calls
 - Requires risk management strategies
- Option holder (long position) pays premium for potential upside
 - Uses include hedging, speculation, and portfolio enhancement

Hybrid Securities and Securitization

- Financial engineering creates complex assets through:
 - Cash flow bundling and unbundling
 - Adding option-like features to traditional assets
 - Securitization of illiquid assets
- Hybrid securities examples:
 - Convertible bonds: corporate bonds with option to convert to shares
 - Combines debt security with equity option
 - Appeal to issuers when stock price perceived as low
 - Offers investors upside potential with downside protection
 - Callable bonds: bonds that issuer can repurchase
 - Issuer holds call option on their own bonds
 - Advantageous when interest rates fall (refinancing)
 - Cheaper than non-callable bonds due to embedded option
 - Structured bonds: bonds with coupons linked to market indexes
 - Principal repayment guaranteed, coupons linked to index
 - Often used to circumvent derivative restrictions
- Securitization:
 - Creates liquid securities from illiquid assets
 - Example: mortgage-backed securities (MBS)
 - Can involve tranching by risk level
 - Both benefits (enhanced returns, risk distribution) and risks (complexity, correlation)
 - 2008 financial crisis revealed dangers of securitized products

Market Participants and Their Roles

- Commercial vs. investment banks
 - Deposit-taking vs. non-deposit taking institutions
 - Commercial banks: retail and business services, deposit protection
 - Investment banks: underwriting, M&A, capital markets
 - Different capital raising mechanisms (deposits vs. equity/debt)
 - Regulatory separation (Glass–Steagall) and blurring boundaries
 - Leverage ratios impact both returns and bankruptcy risk
 - Systemic risk concerns with interconnected institutions
- Investment funds and insurance companies
 - Mutual funds: active vs. passive management
 - Active: stock-picking and market-timing
 - Passive: index tracking with lower fees
 - Hedge funds: high-risk strategies
 - Partners rather than clients
 - Sophisticated investors only
 - Complex strategies and illiquid assets
 - ETFs: exchange-traded passive funds
 - Lower costs than mutual funds
 - Traded throughout day like stocks
 - Insurance companies and pension funds: asset-liability management
 - Defined-benefit vs. defined-contribution pension plans
 - Longevity and inflation risks

Dealers and Brokers

- Market liquidity providers
 - Essential for functioning financial markets
 - Allow continuous buying and selling of assets
 - Different functions but sometimes within same institution

Brokers:

- Similar to real estate agents connecting buyers and sellers
- Compensated by commission on trades
- No inventory risk exposure
- Primary brokers serve specialized clients like hedge funds

Dealers:

- Maintain inventory of assets they trade
- Buy and sell from own account
- Face inventory risk from price fluctuations
- Compensated by bid-ask spread; reflects liquidity and market conditions
- Bid price: price at which dealer buys from clients
- Ask price: price at which dealer sells to clients

Market frictions:

- Bid-ask spreads represent transaction costs
- Taxes and fees are additional frictions
- Information technology has generally reduced frictions
- But high-frequency trading raises questions about stability

Market Participants' Strategies

Hedgers

- Exposed to risk factors in normal business
- Aim to reduce or eliminate risk exposure
- Example: firms hedging currency risk on international contracts
- Example: bond issuers hedging interest rate risk
- May use derivatives to offset existing exposures
- Willing to sacrifice some return for reduced risk

Speculators

- Have views about market direction
- Willing to take risk for potential returns
- Example: directional bets on asset prices
- May use derivatives for leverage
- Provide liquidity by assuming risk from hedgers
- Often blamed for market volatility

Arbitrageurs

- Exploit price inconsistencies between related assets
- Help keep prices in line with fundamental values
- Example: ensuring ETF prices match underlying index
- Example: options pricing vs. theoretical models
- Vital role in market efficiency
- Face practical limitations from transaction costs and liquidity

Market Structure and Trading Strategies

- Primary vs. secondary markets
 - Primary: where securities are first traded
 - IPOs (initial public offerings) for stocks
 - Seasoned offerings for additional equity
 - Auctions for government bonds
 - Underwritten by investment banks
 - Secondary: where securities trade after issuance
 - Majority of trading volume
 - Provides liquidity to investors
 - Continuous price discovery
- OTC vs. exchange-traded derivatives
 - OTC: tailored but less liquid
 - Customized to specific hedging needs
 - Negotiated directly between counterparties
 - Harder to unwind positions
 - Pricing transparency issues
 - Exchange-traded: standardized and liquid
 - Easily bought and sold
 - Price transparency
 - Reduced counterparty risk

Auction Mechanisms and the Limit Order Book

- Limit order book structure
 - Electronic system recording all pending orders
 - Two columns: buy orders (left) and sell orders (right)
 - Buy orders sorted by decreasing price
 - Sell orders sorted by increasing price
 - Top entries are "inside quotes" (highest bid, lowest ask)
- Order types:
 - Limit orders: specify maximum buy or minimum sell price
 - Market orders: execute at best available price
 - Trade occurs when limit prices cross
- Price-contingent orders:
 - Stop-loss order: sell when price falls below threshold
 - Limit-sell order: sell when price rises above threshold
 - Limit-buy order: buy when price falls below threshold
 - Stop-buy order: buy when price rises above threshold
- Market liquidity indicators:
 - Bid-ask spread size
 - Order book depth (quantity at each price level)
 - Trading volume and frequency

Margin Trading and Leverage

- Buying on margin: borrowing money to buy assets
 - Assets serve as collateral plus cash buffer
 - Balance sheet view: assets, liabilities, and equity
 - Initial margin requirement (e.g., 50% or 60%)
 - Maintenance margin requirement (e.g., 25% or 30%)
 - Margin ratio: equity divided by asset value
 - Margin calls when ratio falls below maintenance threshold
 - Position may be liquidated if margin call not met
- Effect of leverage:
 - Boosts both profit and loss potential
 - ROE (return on equity) amplified compared to ROA (return on assets)
 - Interest on borrowed funds reduces net return
 - Example: 50% leverage can nearly double returns
 - Increased bankruptcy risk with excessive leverage
 - LTCM collapse demonstrated dangers of extreme leverage
- Feedback effects in illiquid markets
 - Margin calls can force asset sales
 - Price drops may trigger more margin calls
 - Asset liquidation in thin markets depresses prices further
 - Vicious cycle can lead to market crashes
 - Particularly dangerous with illiquid assets

Example of Margin Trading

Initial scenario:

- Boom Corp stock price: \$100 per share
- Buy 100 shares (\$10,000 total)
- Borrow \$4,000 from broker
- Initial margin ratio: $\frac{\$6,000}{\$10,000} = 60\%$
- Maintenance margin: 30%

Balance sheet representation:

Assets

Stock \$10,000

If price falls to \$70:

Assets

Stock \$7,000

Margin ratio: $\frac{\$3,000}{\$7,000} = 43\%$

Liabilities

Loan from broker \$4,000

Equity \$6,000

Liabilities

Loan from broker \$4,000

Equity \$3,000

Example 1.14: Margin Trading (cont.)

Limit price calculation:

- Margin ratio: $\frac{100P \$4,000}{100P}$
- Setting equal to maintenance margin (30%):

$$\frac{100P - \$4,000}{100P} = 30\%$$

$$100P - \$4,000 = 0.3 \times 100P$$

$$100P - 30P = \$4,000$$

$$70P = \$4,000$$

$$P = \$57.14$$

Leverage effect on returns:

- Asset rises 30%: ROE = $\frac{\$10,000 \times 0.30 \$4,000 \times 0.03}{\$6,000} = 48\%$
- 50% leverage (borrow \$5,000): ROE = $\frac{\$10,000 \times 0.30 \$5,000 \times 0.03}{\$5,000} = 57\%$
- If price falls 30%: ROE = $\frac{-\$10,000\times0.30-\$5,000\times0.03}{\$5,000} = -63\%$

Leverage magnifies both gains and losses

Short-Selling

- Mechanics of short-selling:
 - Borrow asset through dealer/broker
 - Sell asset and deposit proceeds plus margin
 - Close position by buying asset and returning it
 - Profit = initial price (ending price + dividends)
 - Must pay dividends or coupons to lender during borrowing period
- Margin requirements for short positions
 - Margin ratio: equity divided by value of assets owed
 - Initial margin typically 50%
 - Maintenance margin typically 30%
 - Margin calls when price rises too much
 - Balance sheet view: assets (cash), liabilities (borrowed shares), equity
- Risks of short-selling:
 - Potentially unlimited losses (no upper bound on price)
 - Short-squeeze risk (forced to close at unfavorable time)
 - Borrowing costs can be substantial
 - Regulatory restrictions during market distress
 - Controversial practice blamed for market manipulation
- Alternative short positions through derivatives
 - Using futures or options to create synthetic short
 - May be less expensive or restricted than direct shorting

Example of A Short Trade

Initial scenario.

- We are bearish on DotBomb stock (currently \$100)
- Short-sell 1000 shares, generating \$100,000 proceeds
- Initial margin requirement: 50% (\$50,000 in cash/T-bills)
- Total margin account: \$150,000

Balance sheet representation:

Assets		

Cash + T-bills \$150.000

If price falls to \$70:

Close position with \$30,000 profit

If price rises to \$110:

Assets

Cash + T-bills \$150.000

Margin ratio: $\frac{$40,000}{$110,000} = 36\%$

Liabilities

\$100,000 Short position in stock

Equity

\$50.000

Liabilities

Short position in stock

Equity

\$110,000

\$40.000

Example of A Short Trade (cont.)

Limit price calculation:

- Margin ratio: $\frac{\$150,000-1000P}{1000P}$
- Setting equal to maintenance margin (30%):

$$\frac{\$150,000-1000P}{1000P} = 30\%$$

$$\$150,000 - 1000P = 0.3 \times 1000P$$

$$\$150,000 = 1000P + 300P$$

$$\$150,000 = 1300P$$

$$P = \$115.38$$

Key considerations:

- Short-selling can be expensive (borrowing costs)
- Risk of short-squeeze (forced to close at unfavorable prices)
- Theoretically unlimited loss potential (no upper bound on prices)
- Alternatives: futures or options can create synthetic short positions

Market Indexes

- Types of market indexes:
 - Equity indexes (DJIA, S&P500, NASDAQ)
 - Bond market indexes
 - Interest rate indexes (EURIBOR, LIBOR)
 - Volatility indexes (VIX)
 - Geographic scope: national, regional, global (e.g., MSCI)
 - Sector-specific indexes for industries
- Index construction methods:
 - Price-based (e.g., DJIA): equal weighting of price
 - Simple summation of prices divided by divisor
 - Higher-priced stocks have more influence
 - Market-value-weighted (e.g., S&P500): weighted by capitalization
 - Reflects actual economic importance
 - Large companies have more influence
- Mathematical formula: $I = \frac{1}{D} \sum_{k=1}^{m} w_k S_k$
 - ullet w_k are weights (1 for price-based, shares outstanding for market-value)
 - D is divisor (adjusted for continuity)
 - Initially chosen to give "nice" value (e.g., 100 or 1000)
- Index adjustments for corporate actions
 - Stock splits and mergers require divisor changes
 - No adjustments for dividends (affects index value)
 - Different handling in price-based vs. market-value indexes

Example of Price-based vs. Market-value-weighted Indexes

Scenario:

- Stock A: initial price \$25, increases 20% to \$30
 - 20 million shares outstanding (\$500M market cap)
- Stock B: initial price \$100, drops 10% to \$90
 - 1 million shares outstanding (\$100M market cap)

Price-based index (e.g., DJIA):

Initial value =
$$\frac{25+100}{2}$$
 = 62.5
Final value = $\frac{30+90}{2}$ = 60
Change = -4%

Market-value-weighted index (e.g., S&P500):

Initial value =
$$\frac{25 \times 20M + 100 \times 1M}{10^6} = 600$$

Final value = $\frac{30 \times 20M + 90 \times 1M}{10^6} = 690$
Change = $+15\%$

Example of Index Adjustments

Initial scenario:

- Company A: 50 shares outstanding, price \$2
- Company B: 10 shares outstanding, price \$10
- Price-based index value: 6
- Market-value-weighted index value: 100

Price changes:

- Company A price increases to \$4
- Company B stock splits 2-for-1, price becomes \$5

Price-based index adjustment:

Current divisor
$$D=2$$
 (since $\frac{2+10}{2}=6$)

After A's price change
$$=\frac{4+10}{2}=7$$

New divisor
$$D'$$
 needed : $\frac{4+5}{D'} = 7 \Rightarrow D' = \frac{9}{7}$

Market-value-weighted index:

Current divisor
$$D=2$$
 (since $\frac{2\times50+10\times10}{D}=100$)

No adjustment needed for stock split

New value =
$$\frac{50 \times 4 + 20 \times 5}{2} = 150$$

Example 1.3: The Balance Sheet and Financial Ratios

Assets		Liabilities		
Current assets		Current liabilities		
Cash	\$80M	Accounts payable	\$300M	
Accounts receivable	\$120M	Long-term debt	\$1,800M	
Fixed assets				
Equipment	\$2,500M	Total liabilities	\$2,100M	
Total assets	\$2,700M	Total equity	\$600M	
 Book value per sh 	are (10M shares): $\frac{\$6}{1}$	$\frac{00M}{0M} = \$60$		
• Book-to-market ratio (market price \$40): $\frac{$60}{$40} = 1.5$				

• Total debt ratio: $\frac{\$2,100M}{\$2,700M} \approx 0.78$

Example 1.3: The Balance Sheet and Financial Ratios (cont.)

Assuming net income = \$200M:

- Return on assets (ROA): $\frac{\$200M}{\$2.700M} \approx 7.4\%$
- Return on equity (ROE): $\frac{\$200M}{\$600M} \approx 33\%$
- Earnings per share (EPS): $\frac{$200M}{10M} = 20
- Price-to-earnings (PE): $\frac{$40}{$20} = 2$

Stock classifications:

- Value stocks: Undervalued, low PE and price-to-book ratios
- Growth stocks: Look overvalued but promise growth, higher volatility

Example 1.4: The Liquidity Trap in Thin Markets

In a deep and liquid market, a trade has little impact on prices, but:

- Markets can become thin during stress periods
- Hedge funds often purchase illiquid assets for additional return
- During market stress, flight to quality occurs (selling risky assets)

The vicious feedback cycle:

- Asset values drop, eroding equity of leveraged hedge funds
- Margin requirements force funds to liquidate assets to raise cash
- Selling illiquid assets further reduces market prices
- Lower prices lead to further equity erosion and more margin calls
- Open Potential buyers wait for further price drops

Historical examples:

- LTCM collapse in 1998 (triggered by Russian default)
- Subprime mortgage crisis: Illiquid MBS couldn't be liquidated, forcing investors to sell liquid securities (stocks)

Example 1.5: Are You On-The-Run?

- Treasury bonds are issued at regular intervals to finance government debt
- Most recently issued bonds are called on-the-run
- Older issues are called off-the-run

Liquidity differences:

- On-the-run bonds are more actively traded and more liquid
- This liquidity premium affects their price
- Off-the-run bonds trade at slightly lower prices (higher yields)

Trading opportunities:

- Traders may try to profit from this price differential
- Strategy: Buy cheaper off-the-run bonds and short-sell more expensive on-the-run bonds
- Requires careful risk management of yield curve shifts

Example 1.7: A Long Hedge

Scenario:

- In six months we will need 500 ounces of gold
- Current forward price for delivery in 0.5 years: F(0,0.5) = 1250 /ounce

Hedging strategy:

- Enter into a long position for 500 ounces to lock in the price
- Note: Real contracts may have standardized sizes (e.g., 100 ounces)

Cash flows at maturity:

- With physical delivery: -1250 \$/ounce \times 500 ounces = -\$625,000
- With cash settlement (if spot price is 1150 \$/ounce):

$$[(1150 - 1250) - 1150]$$
 \$\frac{1}{0} ounce \times 500 ounces = -\\$625,000

The hedger buys at a cheaper spot price, but the savings are offset by a loss on the forward position

Example 1.9: Mechanics of Futures Markets

Initial conditions:

- Day 1: Gold futures price is \$1350 per ounce
- Enter long position for two contracts (100 ounces each)
- Initial margin: \$8000 per contract (total \$16,000)
- Maintenance margin: \$5000 per contract

Day	Settlement price	Daily gain	Cumulative gain	Account balance
1	\$1346	-\$800	-\$800	\$15,200
2	\$1330	-\$3,200	-\$4,000	\$12,000
3	\$1334	\$800	-\$3,200	\$12,800
4	\$1315	-\$3,800	-\$7,000	\$9,000
5	\$1304	-\$2,200	-\$9,200	\$7,800

Example 1.9: Mechanics of Futures Markets (cont.)

Day	Settlement price	Daily gain	Cumulative gain	Account balance
4	\$1315	-\$3,800	-\$7,000	\$9,000
5	\$1304	-\$2,200	-\$9,200	\$7,800
6	\$1320	\$3,200	-\$6,000	\$13,200
7	\$1330	\$2,000	-\$4,000	\$15,200
8	\$1328	-\$400	-\$4,400	\$14,800
9		\$2,000	-\$2,400	\$16,800

Key observations:

- Day 4: Margin call for \$1,000 (account below maintenance margin)
- Day 5: Another margin call for \$2,200
- Day 6-7: Prices recover, improving account balance
- Day 9: Position closed at \$1338, with total loss of \$2,400

Daily marking-to-market ensures losses are recognized immediately, reducing counterparty risk

Example 1.10: A Protective Put

Scenario:

- We hold an asset with current value $S_0 = S(t_0)$
- Concerned about potential loss over holding period $[t_0, T]$

Hedging strategy:

- Buy a put option with strike price K
- Overall portfolio value at maturity:

$$S_T + \max\{K - S_T, 0\} = \max\{K, S_T\}$$

Tradeoffs:

- Protection is not free put option costs money
- Higher strike price = more protection = more expensive option
- Unlike hedging with forwards/futures (zero initial cost), options preserve upside potential
- We give up some profit potential to pay for downside protection

Example 1.11: A Bullish Speculation

Scenario:

- Current asset price $S_0 = 100
- Strong belief price will rise in near future

Strategy 1: Buy the asset

• If price rises to \$120, return = $\frac{120-100}{100} = 20\%$

Strategy 2: Buy a call option (strike price K = \$100, premium \$5)

- If price rises to \$120, return = $\frac{\max\{120-100,0\}-5}{5} = \frac{15}{5} = 300\%$
- If price falls 1% to \$99, return = $\frac{\max\{99-100,0\}-5}{5} = \frac{-5}{5} = -100\%$

Key tradeoff:

- Options provide leverage multiplying both gains and losses
- Limited downside risk (can only lose premium paid)
- But lose entire investment if option expires out of the money

Example 1.12: A Structured Bond

Real-life example of a structured bond:

- Bond maturity: four years
- Face value payment guaranteed at maturity
- Single coupon, paid at maturity (no periodic coupons)
- Coupon linked to monthly average value of basket of 10 telecom stocks
- If average return negative, coupon = 0 (principal protected)

Additional features:

- Option to request anticipated coupon payment every six months (from year 2)
- Option to request early repayment of face value (with reduction)

Underlying structure:

- Zero-coupon bond to ensure principal protection
- Complex option on basket of stocks:

$$\max\left(0, \frac{1}{48} \sum_{i=1}^{48} \sum_{j=1}^{10} S_j(t_i) - K\right)$$

where K is initial basket value