Odd/Even Penmutation + Sign, Transposition
Invension

Monphisms:
$$\sim : S \rightarrow T$$
, $\sim : S \times T$, $(a,b) \in N \Leftrightarrow a \sim b$
 $f: S \rightarrow T$, $f \in S \times T$, $\forall S \in S$, $\exists \text{ unique } t \in T \rightarrow t$
 $(s,t) \in f \Leftrightarrow f(s) = t$
 $\Leftrightarrow S \mapsto t$
 $f: G \rightarrow H$, $f \text{ is a function, } s \mapsto f(ab) = f(a) \cdot f(b)$, $f(s) = 1$
 $f: R \rightarrow S$, $f \text{ is a group homomorphism, } f(ab) = f(a) \cdot f(b)$, $f(s) = 1$

Ring homomorphism

Define
$$\varphi: G_1 \to H$$
 is a group homomorphism ibb
$$\varphi(gh) = \varphi(g) \cdot \varphi(h)$$
Note that $\varphi(1) = 1$

 $f: S \rightarrow J$

Def: - A bijective group homomorphism is called isomorphism

$$\varphi_{\circ} : G_{1} \longrightarrow H$$

$$\alpha \in G_{1}, |\alpha| = n, |\varphi(\alpha)| = n$$