Micro Rain Radar MRR PRO

Manual

METEK Meteorologische Messtechnik GmbH

Fritz-Strassmann-Strasse 4 25337 Elmshorn Germany

Fon +49 4121 4359-0 Fax +49 4121 4359-20 e-mail info@metek.de internet http://www.metek.de

Copyright: © 2020 METEK GmbH

All Rights reserved. No part of this manual may be reproduced, transmitted, stored in a retrieval system, nor translated into any human or computer language, in any form or by any means, electronic, mechanical, optical, chemical, manual, or otherwise, without the prior written permission of the copyright owner.

Content

1	Gu	Guidelines for Safe Operation (Pls. read this text first)			
2	Hin	Hinweise für den sicheren Betrieb (Bitte zuerst lesen!)			
3	List of Parts				
4	Ins	tallation of Hardware Components and Cabling	. 12		
5	Est	tablishing connection to the MRR Pro	. 13		
	5.1	Settings IPv4 DHCP	. 13		
	5.2	Settings IPv4 Link Local	. 13		
	5.3	User Interface	. 14		
	5.3.1	MRR Pro GUI	. 14		
	5.3.2	Firewall settings	. 16		
	5.3.3	National Instruments Management	. 16		
	5.3.4	Connection via Webbrowser	. 18		
6	Configuration of the MRR Pro		. 20		
	6.1	Measurement	. 20		
	6.2	Data Logging	. 22		
	6.3	FTP Transfer	. 24		
(6.4	Time Synchronization	. 26		
	6.5	Network Settings	. 27		
7	File	e Management	. 28		
8	Data Access		. 29		
	8.1	WebDAV	. 29		
	8.2	Webbrowser	. 30		
	8.3	MRR Pro GUI	. 31		
	8.4	Live data via LAN	. 32		
9	Str	ucture of the measuring data	. 33		

		Micro Rain Radar MRR PRO	Page 5
9.	1	Netcdf	33
9.	2	ASCII	34
10	Ρ	assword change for user accounts	36
11	S	SH Access	36
11	.1	Copy Data	37
11	.2	Change password	38
11	.3	Set system Time	38
11	.4	Reboot the system	38
12	Т	ripod (Option) assembly	39
13 Assessment of MRR concerning radiation exposure		41	

Estimate of the field near the feed horn......41

Technical Data......44

13.1

14

1 Guidelines for Safe Operation (Pls. read this text first)

It is the obligation of the operator of a METEK MRR system to assure that any transportation, set up, operation or dismantling of the MRR system or any other attached technical components at a measuring site is performed exclusively by trained and skilled personnel according to the documentation.

Depending on regional or national laws or rules for the use of electro-magnetic transmitters a frequency permission might be required. The operator of the system is liable for the achievement of such permission. METEK will support the customer with adequate available information.

The system documentation consists of:

- This manual
- To be regarded but not explicitly listed here are the manuals and datasheets of vendor parts (e.g. DELL PC).

It is recommended to train the operational personnel at least every 12 months on all work or actions associated with the transportation, set up, operation or other work at the site or of the METEK MRR system or of other technical components!

Safety risks:

- METEK MRR systems are delivered with a power supply at 230 VAC which provides both, high voltages and high currents, which can be hazardous for staff personnel or for other persons within the vicinity and may cause severe or even fatal injuries!
- The external 230 VAC power outlet connected to the MRR system needs a ground fault circuit interrupter 0,03 A (RCD); fuse 16 A.
- The MRR must not be set into operation unless all set up work and safety installations are done properly! This includes the provision of an earthing peg for grounding of the system.
- For any work at the MRR site which might include installation, operation, repair, maintenance or dismantling the personnel must be aware of further risks which might occur. Some of these risks will become more dangerous in case of poor daylight or at night time. Therefore, any work case under poor daylight or at night time should be avoided or performed with extra care. Such risks are:
 - Slippery surfaces can cause falling of persons when working around the system.
 - Persons can step on cables or trip by cables or guy lines. Flags can be used to mark cables and guy lines to make them more visible. If possible, cables should be hanged up to avoid tripping by them.
 - The grounding nail should be placed beneath antenna, so it is impossible to trip.
- Also related to a safe use of the MRR is the avoidance of misuse of the system or of system components.

- Do not open the outdoor boxes of antenna electronic or power supply unless in dry weather periods without liquid or solid precipitation.
- When opening the outdoor boxes of antenna electronic or power supply dry or wipe off any rain drops, hail stones or snow on top to avoid that such particles will fall inside the opened box.
- In order to avoid a possibly endangering of personnel by lightning any outdoor installation must not be performed in case of an (approaching) thunderstorm. Regard that a safe abandonment of the working places may take time. Therefore, always observe the weather conditions and act precociously.
- All connecting cables, plugs and couplings of the MRR-2 are not interchangeable to prevent any erroneous assembly. This safety precaution is disabled if other types of plugs are installed by the user. Therefore, any guarantee explicitly expires and METEK accepts no responsibility for injuries to persons, damage of equipment or other consequences connected with not authorized changing of connectors, cables or other parts of the system.

There are no known health hazards originating from the emitted electro-magnetic radiation power of about 50 mW. Nevertheless, the user should take care that everybody keeps out of the beam above the antenna (parabolic dish) when it is in operation. For a detailed assessment of radiation exposure, see chapter 13.

Disclaimer:

METEK GmbH does not take any obligation for any damages of persons, of animals, of materials or any other items which might result from the transportation, set up, operation or dismantling of the MRR system or any other attached technical components or items which are delivered by METEK with the MRR system if the MRR system has not been operated properly according to all above listed instructions or has not been operated within the specified operating conditions!

Moreover METEK limits its obligation for proven damages of persons, of animals, of materials or any other items which might result from the transportation, set up, operation or dismantling of the MRR system or any other attached technical components or items which are delivered by METEK with the MRR system to a maximum amount which equals the price of the purchased items as far as no other laws or directives are applicable.

2 Hinweise für den sicheren Betrieb (Bitte zuerst lesen!)

Es liegt in der Verantwortung des Betreibers des METEK MRR Systems sicherzustellen, dass jeder Transport, Aufbau Betrieb oder Abbau des MRR Systems oder seiner Zubehörteile nur durch geschultes und qualifiziertes Personal entsprechend der Gerätedokumentation erfolgt.

Entsprechend der regionalen oder nationalen Gesetzgebung kann für die Verwendung von elektromagnetischen Sendern eine Frequenzgenehmigung/ Betriebsgenehmigung erforderlich sein. Der Betreiber eines MRR ist für die Einholung einer solchen Genehmigung verantwortlich. METEK bietet hierfür entsprechende Unterstützung an.

Die Dokumentation besteht aus den folgenden Dokumenten:

- MRR Handbuch
- Handbücher und Datenblätter von Zubehörteilen (z.B. Dell PC), auch wenn sie hier nicht explicit genannt sind.

Wir empfehlen, das Bedienpersonal mindestens alle 12 Monate erneut mit den Sicherheitsrichtlinien für den Transport, Aufbau, Betrieb oder Abbau des MRR Systems vertraut zu machen.

Sicherheitsrisiken:

- METEK MRR Systeme werden für den Anschluss an 230 VAC Netzspannung geliefert. Dieser 230 VAC Anschluss stellt hohe Spannungen und Ströme bereit und kann schwere und auch tödliche Verletzungen verursachen.
- Der 230 VAC Anschluss für das MRR System ist mit einem Fehlerstromschutzschalter mit einem Nennfehlerstrom von 30 mA auszurüsten. Als Sicherung sind 16 A zu wählen.
- Das MRR System darf erst dann in Betrieb gesetzt werden, wenn alle Sicherheitsrichtlinien beachtet wurden. Dies schließt die ordnungs-gemäße Installation des Erdungsankers zur Erdung des Systems ein.
- Bei allen Arbeiten am Messplatz wie Installation, Betrieb, Reparatur, Wartung oder Abbau muss dem Personal bewusst sein, dass überall weitere Gefahren lauern. Einige dieser Gefahren können durch schlechte Lichtverhältnisse bei fehlendem Tageslicht oder zur Nachtzeit verursacht werden. Daher sollten Arbeiten bei diesen Verhältnissen nicht oder nur mit besonderer Vorsicht durchgeführt werden. Einige dieser Gefahren sind nachfolgend aufgeführt:
 - Rutschunfälle aufgrund von glatten Oberflächen (insbesondere durch Regen, Schnee oder Eis)
 - Stolperunfälle und Stürze über Kabel, Abspannseilen oder anderen Gegenständen. Es kann daher sinnvoll sein, Kabel und Abspannseile, bzw. Befestigungspunkte z.B. durch Flaggen entsprechend zu markieren. Kabel

- sollten nicht am Boden verlegt werden, sondern mit geeigneten Pfählen hochgelegt werden.
- Um Stolpern und Stürze über Erdungsanker zu vermeiden, sollte dieser so platziert werden, dass die Stolpergefahr minimiert wird.
- Für die Sicherheit ist der bestimmungsgemäße Betrieb des MRR Systems wichtig, daher ist jede Zweckentfremdung oder fehlerhafte Nutzung des Gerätes oder der Gerätekomponenten unzulässig.
- Öffnen Sie die Gehäuse im Außenbereich nur bei trockener Witterung ohne flüssigen oder festen Niederschlag.
- Entfernen Sie vor dem Öffnen Wassertropfen, Hagel oder Schnee vom Gehäuse, damit kein Wasser in das Gehäuse tropft.
- Arbeiten im Außenbereich sind einzustellen, sobald sich ein Gewitter nähert oder die Gefahr eines Blitzschlages bestehen kann. Beachten Sie, dass für das sichere Verlassen des Arbeitsplatzes genügend Zeit zur Verfügung steht. Beobachten Sie also stets das umgebende Wetter und handeln Sie frühzeitig.

Haftungsausschluss:

METEK GmbH übernimmt keine Haftung für Schäden an Personen, Tieren, Material oder anderen Dingen, die durch den Transport, Aufbau, Betrieb oder Abbau des MRR Systems oder anderen technischen Komponenten, die von METEK mit dem MRR geliefert wurden, entstehen, wenn das MRR System nicht bestimmungsgemäß nach den obigen Anweisungen innerhalb der technischen Spezifikationen betrieben wurde.

Weiterhin beschränkt METEK die Haftung für nachgewiesene Schäden an Personen, Tieren, Material oder anderen Dingen die durch den Transport, Aufbau, Betrieb oder Abbau des MRR Systems oder anderen technischen Komponenten die von METEK mit dem MRR geliefert wurden, auf einen Höchstbetrag, der dem Kaufpreis dieser Waren entspricht, sofern diesem Vorgehen keine gesetzlichen Regelungen entgegenstehen.

3 List of Parts

The Micro Rain Radar MRR Pro consists of the following main components:

- Antenna
 - o Offset-Parabolic-Dish
 - o Option: Antenna Heating 115 VAC or 230 VAC
 - o Radar-Support Shaft
 - Transceiver
 - Round Level
 - RCPD
- Stanchion
- Power Supply
- Option: Tripod

The package further contains:

- USB Stick containing manuals and installer software for MRR Pro GUI
- LAN-Cable (1m)
- LAN-Cable (25m)
- Control Cable (1m)
- Heating Power Cable (1m)
- Power Cable (25m)

The following tools are needed for set up (not included in delivery):

- Screw wrench (13,15,22 mm)
- Hex wrench (5 mm)

- 1 Transceiver
- 2 Round Level
- 3 Antenna Dish
- 4 RCPD
 (Radar Control and Processing Device)
- 5 Stanchion
- 6 Power Supply
- 7 Tripod (Option) with Guy Chains and Pegs (8) and Levelling Feet (9)

Figure 1: Overview

Figure 2: Dimensions

Figure 3: Cable connections to Power Supply

No.	Function	Source	Destination	Cable Type
1	Supply RCPD	Power Supply	RCPD	grey, L=1 m
2	LAN	Power Supply	RCPD	green, L=1 m
3	LAN	Power Supply	LAN External	green, L=25 m
4	Antenna Heating	Power Supply	Antenna Heating	black, L=1 m
5	Power Cable	Power-Socket	Power Supply	black, L=25 m

Table 1: Description of cables

4 Installation of Hardware Components and Cabling

 The Tripod (option) is assembled, set up and secured with the guy chains and pegs.

- 2. The Stanchion of the Offset Parabolic Dish is mounted on the Tripod and secured with screws.
- 3. The Radar Support Shaft with Round Level and RCPD is mounted into the bearing at the Offset Parabolic Dish and secured with screws.
- 4. The Power Supply is fixed with screws to the mounting plate at the Stanchion.
- 5. All cables (Table 1, Figure 2) are plugged in.
 - **Caution:** Connect all cables before you plug in the Power Cable.
- 6. Align the radar for vertical pointing direction using the levelling feet of the Tripod. Check the alignment with the round level.

5 Establishing connection to the MRR Pro

A LAN interface is used for communication between MRR Pro and a PC. Make sure that the MRR Pro and the PC are in the same IP domain. The default configuration of the MRR Pro LAN interface is "DHCP / Link Local".

Depending on the chosen connection mode some settings are required which are described below.

5.1 Settings IPv4 DHCP

If the MRR Pro shall be integrated into a LAN with DHCP server, it acquires an IP address. The PC, which is planned to connect to the MRR Pro, must be member of the same LAN. No further settings are required.

5.2 Settings IPv4 Link Local

The address range for Link Local connections is 169.254.0.0 to 169.254.0.16. The PC to be connected to the MRR Pro must be configured with a fixed address within this range.

Figure 4: Example for Link Local network settings of the client PC

5.3 User Interface

The MRR Pro offers two possibilities for a user to connect.

- Only for WINDOWS operation systems: The program MRR Pro GUI allows the identification of the MRR Pro residing in the local network, configuration of the MRR Pro and visualization of real time data.
- 2. Independent of operation systems: The MRR Pro includes a web server which allows access to the MRR Pro via web browsers.

5.3.1 MRR Pro GUI

The program **MRR Pro GUI** installation tool comes with delivered USB stick. Installation is possible on PCs with WINDOWS version Windows XP Service Pack 3 or newer.

On start-up of the program MRR Pro devices are identified in the local network using a UDP broadcast. All identified devices are indicated in the panel *Device* with the current IP address and device ID. The search can be repeated by clicking the *Find Devices* button. Connection to a selected device is established by clicking into the *Connect* button. Current data are displayed in the tab *Data Display*. Control- and monitoring options are available in two further tabs.

Note: In case that the connection cannot be established please check your firewall settings, see chapter 5.3.2.

Figure 5: MRR Pro GUI Start Menu

5.3.2 Firewall settings

For a seamless operation of the MRR Pro GUI it is necessary that some firewall settings of the Windows system are modified. Normally this is done during installation of the MRR PRO GUI, but sometimes these settings are not accepted, then the MRR Pro GUI cannot connect to the MRR PRO system.

Modify manually the firewall settings by copying the following lines into a text file with the name "mrrfirewall.bat" and then execute the file as administrator.

```
if %PROCESSOR_ARCHITECTURE%==x86 (

netsh adv firewall add rule name="NI PSP Service Locator" dir=in program=c:\windows\System32\lkads.exe action=allow

) else (

netsh adv firewall add rule name="NI PSP Service Locator" dir=in program=c:\windows\SysWOW64\lkads.exe action=allow

)

netsh adv firewall add rule name="MRR Pro GUI" dir=in program=%1\MRRPROGUI.exe action=allow
```

5.3.3 National Instruments Management

The login to the National Instruments management console is only possible with the Microsoft Internet Explorer with Silverlight extension.

http://(IP address of MRR Pro)

If the IP address of the device is unknown, the local DNS-name of the device can be used:

http://mrrpro(#).local

(#) must be replaced by the device number. Login via the IP address is preferable, because the response times tend to be shorter.

Since the user management is based on National Instruments proprietary software a *National Instruments Login* page appears.

Figure 6: National Instruments Login

There is one user-account with the name "mrruser" available, the default password for this user is "metek". The password can be changed, see chapter 11.2 for details.

After successful login you are transferred to the start page of the web service.

5.3.4 Connection via Webbrowser

The web service for configuring the MRR Pro is to be found under

http://(IP address of MRR Pro):8001/Config/

If the IP address of the device is unknown, the local DNS-name of the device can be used:

http://mrrpro(#).local:8001/Config/

(#) must be replaced by the device number.

On the data display screen, right clicking on the scales opens the context menu that allows changing auto scaling. Changing the values on the scales allows detailed views of different data areas.

Figure 7: Start page of the MRR Pro web service

Figure 8: Live Data Display in web browser

6 Configuration of the MRR Pro

The MRR Pro GUI as well as the web browser allow configuration of system parameters of the following categories.

- Measurement
- Data Logging
- FTP Transfer
- Time Synchronisation
- Network Settings

6.1 Measurement

In MRR Pro GUI the parameter menu is accessed via the panel *Change Parameters* in the tab *Control*. The web browser offers the necessary links in the task line.

Figure 9: "Measurement" Menu in Web Browser.

There are seven parameters in the category Measurement which can be configured:

1. Number of Rangegates:

Controls the number of analyzed range gates. The velocity range is inverse proportional to this number. The following values are possible: 32, 64, 128 and 256 (default 128).

2. Number of Lines in Spectra:

Controls the velocity resolution. The velocity range remains constant. The following values are possible: 16, 32, 64, 128 and 256 (default 64).

3. Averaging Time:

Averaging time of power spectra in s. Minimum is 1 s (default 10 s).

Note! The product of *Number of Lines in Spectra* and *Number of Rangegates* must not exceed 8192.

4. Height Resolution:

Range Resolution in m (default 35 m).

5. Height Above Sea Level:

The height of the installation site above sea level is used to account for the air density in the relation between drop size and fall velocity (default: 0 m).

6. Doppler Shift

Shifts zero Doppler to fraction of Doppler range. Valid values range from 0 to 1. Example: Doppler shift = 0.25 and Doppler range 12 m/s results in minimum Doppler velocity -3 m/s (upwards) and maximum Doppler velocity 9 m/s.

7. Calibration Tuning:

Dimensionless constant. Factory setting is 1. If the current radar sensitivity is observed to be higher (lower) than the factory setting, the deviation can by compensated by a calibration constant lower or higher than 1.

6.2 Data Logging

Figure 10: Menu "Data Logging" as it appears using the web browser.

There are six configurable parameters in the category Data Logging.

1.	Activate Data	Self describing
	Recording:	
2.	Data Format:	NetCDF or ASCII data format can be selected
3.	New Data File Every:	Determines the time interval after which a new file
		is created. The first automatically created file of a
		day always starts at midnight UTC. (default 60 min)
4.	Log Spectra:	Enables logging of power and drop size spectra.
		All other products are logged unconditionally.
4	Select data filtering	"Log all Data" or "Data containing detected Echoes
		only" can be selected.
5.	Site:	Unformatted description of the measuring site. It is
		included in the netCDF data.
6.	Description:	Description of the measured variables. It is
		included in the netCDF data.

6.3 FTP Transfer

Figure 11: Menu "FTP Transfer" as it appears using the web browser.

Daily measuring data can be transferred to a FTP server. For this purpose the address and access data of the desired FTP server must be configured.

1.	Activate FTP	Self describing
	Transfer:	
2.	Server	Address of the destination FTP server. An IP
		address (xxx.xxx.xxx.xxx) or a name can be used
		(e.g. ftp.metek.de).
3.	Directory:	This directory must exist on the server. The MRR
		Pro creates a copy of the internal file structure in this
		directory
4.	Username:	Name which is used by MRR Pro for log-in on the
		FTP server
5.	Password:	Assigned password
6	Transfer Interval	Time interval for ETD transfer (default 60 min)
0	Transier interval	Time interval for FTP transfer (default 60 min)
	(min, from midnight)	
7	Transfer Offset (min)	Time offset (default 5 min)
		Example:
		If Transfer interval is 60 min and Time Offset is 5
		min, data transfer will be executed at 05 min after
		every full hour
8	Transfer Attempts	Number of attempts for FTP file transfer (default 3)

In MRR Pro GUI the menu includes the option to test the connection with the FTP server. During this procedure a test file is transferred to the server and is deleted afterwards.

6.4 Time Synchronization

Figure 12: Menu "Time Synchronization", as it appears using the web browser.

The Time Synchronization is activated by selecting Activate Time Synchronization.

In the panel *Timeservers* up to 4 NTP time servers can be chosen. If it is left empty the NTP server "pool.ntp.org" is used.

6.5 Network Settings

Figure 13: Menu "Network settings", as it appears using the web browser.

In the category Network Settings, the acquisition of the IP address is supported.

The MRR Pro can be operated either in the *DHCP or link local* mode. Thus, it acquires its network settings either from a DHCP server within the local network or, if such server does not exist, an address in the link local area is selected.

If one of the modes *DHCP or link local* is selected, the other panels are ignored. Any change of settings in this menu requires establishment of a new connection.

7 File Management

All data are stored locally in the MRR Pro directory /u/data. Here monthly subdirectories are created. The data files are stored in the monthly subdirectories with the name convention

YYYYMM\MMDD_hhmmss.[ext]

YYYY is the year, MM the month, DD the day of the month, and hhmmss hour, minute and second of the day.

The file extension is *nc* for netcdf files and *mrr* for ASCII files.

In addition, a logfile with the name YYYYMMDD.log is created, which contains internal parameters describing the system state of the MRR Pro.

If the free space of the internal memory is less than 10%, the oldest data are deleted. Several weeks of data are maintained for typical MRR Pro settings.

8 Data Access

There are several ways to download data from the internal memory.

- 1. WebDAV
- 2. Webbrowser
- 3. MRR Pro GUI
- 4. Livedata via LAN

Note! If netCDF data recording is selected, the currently created file must not be accessed.

In case of non-incrementally written file formats as netcdf parallel access may corrupt the copied as well as the original file.

8.1 WebDAV

A WebDAV server is installed on MRR Pro. WebDAV is a successor of the well-known FTP and is supported by all popular operation systems.

The simplest way to use WebDAV is to configure as a network drive. Using the menu Connect Network Drive of the respective operation system the folder

http://(IP-Address of the MRR Pro)/files/

must be connected. For access the user accounts described in section 5.3.3 can be used.

Note:

On Microsoft Windows systems the default download limit is set to 50000000 bytes. (47MB). To increase this value please modify the following registry entry:

- 1. Click Start, type regedit in the Start Search box, and then press ENTER.
- Locate and then click the following registry subkey:
 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\WebClient\P
 arameters

- 3. Locate the DWORD FileSizeLimitInBytes
- 4. On the Edit menu, click Modify.
- 5. In the value data box increase the value from 50000000 to the max. value of 4294967295 (byte)
- 6. Exit Registry Editor.
- 7. Restart the Web Client Service

8.2 Webbrowser

The National Instruments configuration tool is accessed either using the MRR Pro IP address or using the local DNS name mrrpro(#).

Figure 14: Start page National Instruments configuration tool.

By selecting the *Log in* panel the log in window is reached. Here are used the same access data as described in chapter 8.

Selecting the panel *Network File Manager* leads to the network file manager window. Here files can be copied between PC and device in both directions.

Figure 15: Network file manager window.

8.3 MRR Pro GUI

The MRR Pro GUI contains the tab *Control* that provides an overview of current files in the local memory. By selecting of files or folders and by clicking the panel *Download Data Files*, all selected data are transferred to the host computer.

The destination folder can be configured, see "Options" -> "Configure"

Figure 16: MRR Pro GUI, Tab Control

8.4 Live data via LAN

The live data connection via LAN provides the fastest access to current measuring data.

The MRR Pro waits for incoming LAN connections on Port 50002. In case of successful connection currently recorded data sets are written to this network port line by line in ASCII format. This is continued as long as the connection is established. In case of interruption of the connection the MRR Pro waits for the next connection establishment.

9 Structure of the measuring data

The MRR Pro provides one data set for each averaging interval. Averaging intervals are counted beginning from the full hour. The time zone used for the time stamps is UTC. The data sets contain the following variables

Short	Description	Unit
Name		
-		
F	Spectrum	$dB\eta$
N	Drop Size Distribution Density	m ⁻³ mm ⁻¹
Z	Radar Reflectivity Factor	dBZ
Za	Attenuated Radar Reflectivity Factor	dBZ
Ze	Equivalent Radar Reflectivity Factor	dBZ
Zea	Attenuated equivalent Radar Reflectivity Factor	dBZ
RR	Rain Rate	mm/h
LWC	Liquid Water Content	g/m ³
W	Fall Velocity	m/s
WIDTH	Width of the Doppler Spectrum	m/s
PIA	Path Integrated Attenuation	
SNR	Signal to Noise Ratio	dB

9.1 Netcdf

netcdf files are created with the suffix .nc and follow the convention CF/radial Version 1.3. A description of the convention can be found on the delivered USB stick. For more information on the data format, visit www.unidata.ucar.edu/netcdf.

Page 34

Each file contains attributes

Attribute	Value
Title	METEK MRR Data
	METER MICH BACK
Institution	
References	
Source	
History	
Comment	
Instrument_name	METEK MRR Pro, ID: , Software:
Site_name	
Field_names	Za,Z,Zea,Za,RR,LWC,PIA,VEL,WIDTH,SNR,spectrum_reflect ivity,N

These attributes can be edited by the user. Site and Comment can be set online using the Parameters on the Data Acquisition tabs.

The field_names attribute contains the names of the variables containing the measurement data described above. There are several other variables that contain time and range information described in the convention.

9.2 ASCII

ASCII files are created with the suffix .mrr. The entries are separated by semicolons. The first line of each data set begins with the identifier *MRR* and a time stamp with the format YYYYMMDDhhmmss. YYYY is the year, MM the month, DD the day of the month, and hhmmss hour, minute and second of the day. The rest of the line contains various parameters of the measurement. The subsequent lines contain the output variables. Each line begins with an identifier consisting of a short name of the output variable and in case of spectra of a three-digit line number.

10 Password change for user accounts

The password for a user account is changed using the National Instruments configurator which can be accessed through a Web Browser. Enter either the IP address of the MRR Pro or the local DNS name mrrpro(#) ("(#)" must be replaced by the number of the device.). This leads to the start page of the National Instruments configuration tool as shown in Figure 12. By clicking the panel *Log in* you can log in. On the left side is the panel "Safety Configuration". In the corresponding menu you can open a dialog for password change by clicking the panel *Change password*. After confirmation of the change you are transferred back to the start page of the NI System Configurator, where you can log in with the new password.

Figure 17: NI System Configurator, Safety Configuration.

11 SSH Access

The MRR Pro allows connecting per SSH (Port 22). This access can be used to

- copy data
- change the password
- set the system time
- reboot the system

The required access data are the same which are used for the web service.

Windows 10 Version 1803 or newer offers native SSH support, otherwise you have to use freeware tools like Putty (http://www.putty.org) and WinSCP (https://winscp.net).

11.1 Copy Data

Winscp offers a scripting language and it is possible to automate the transfer process of the MRR-PRO data files to the PC. Here you find an example script:

```
# Open scp connection, user=mrruser, password=metek
open scp://mrruser:metek@IP-Address of the MRR-PRO

# change local directory (PC)
lcd d:\Data\MRRPro\

# change remote directory (MRR-PRO)
cd /u/data

# Synchronize the local PC directory with remote directory
# include "*.log" and "*.nc" files
# exclude latest hidden data file ("|.*.nc")
# Criteria=filesize, needed to sync the changing *.log file
synchronize local d:\Data\MRRPro /u/data -criteria=size -
filemask="*.log; *.nc; |.*.nc"

# Close connection and exit WinSCP
close
exit
```

Save this script to a text file, e.g. "mrrcopy.script", then test the script with

winscp.com /script=mrrcopy.script

Page 38

If the test is successful, you can automate this process with the windows task

scheduler.

11.2 Change password

To change the password please login via ssh and the username "mrruser" and the

default password "metek"

Then type

passwd

11.3 Set system Time

In normal operation mode the system time is synchronized with ntp (network time

protocol). In case that the time servers are not available and system time is wrong

you can manually set the system time. The timezone of the MRR Pro is always UTC,

that cannot be changed

To change the system time please login with ssh and the username "mrruser" and

the default password "metek"

Then enter the correct UTC date and time information with the command

sudo date -s YYYY.MM.DD-hh:mm[:ss]

The command

date

displays the current system time.

11.4 Reboot the system

To reboot the system please login with ssh and the username "mrruser" and the

default password "metek"

Then type

sudo reboot

It takes approx. 2 minutes to reboot.

12 Tripod (Option) assembly

The assembly is shown below without the tripod itself and with only one chain. This is purely done for a better view on the single parts. Please assemble the tripod legs and the pipe first and follow this instruction afterwards. Always perform all steps with all three chains!

Figure 18: Contents: peg, chain with carbines and turnbuckle, pipe from tripod, inlet with eyebolt (left to right).

Attach the chain with the snap hook to the eye-bolt of the inlet. Use the side of the chain without tightener. Insert the 3 chains into the inlet as shown in figure 2.

Figure 19: Chain attached to eye-bolt (left) and inserted into inlet (right).

Finally fix the inlet to the pipe with three set screws and attach the peg to the other end of the chain (see figure 3).

Figure 20: Fixed inlet (left) and fixed peg (right)

Now you can fix the pegs to the ground with a sledgehammer. The chains can be tightened with the help of the tightener at the end of the chain. In case the chain is to long for the desired location, simply use the carabiners on a different chain link.

Important:

The tripod must always be secured with the chains and pegs, otherwise the MRR-PRO can fall over in strong winds.

13 Assessment of MRR concerning radiation exposure.

The **S**pecific **A**bsorption **R**ate $SAR_{whole_body_limit}$ is 80 mW/kg according to EN 50360, Recomm. ICNIRP, Recomm. European Counsel 1999/519/EG Appendix II Table 1.

Since *P* < *SAR*_{whole_body_limit} ×12,5 the assessment of *SAR*_{whole_body_limit} can be excluded according to EN 50392:2004 Appendix B Table B.1

The assessment of local *SAR* with a body phantom is applicable for distances between radiating surface and phantom of less than 40 cm. For the undisturbed MRR operation persons must maintain a distance oat least 1 m to the rim of the parabolic antenna. Therefore, *SAR*_{local} limits are also not applicable.

The MRR-beam axis is directed vertically.

In horizontal direction the EIRP is less than 1 mW for all azimuths.

In vertical direction the EIRP is 500 W.

The worst case is a person in the beam at less than 2 m distance from the antenna. A conservative approximation for the power density S in this region is achieved by assuming a plane wave, which is limited by the effective aperture A_{eff} of the parabolic antenna

$$S = \frac{P}{A_{eff}}$$

With $P=50~\rm mW$, $A_{eff}=0.25~\rm m^2$ one obtains $S=0.2~\rm Wm^{-2}$. This value is small compared to the limit exposure of $10~\rm Wm^{-2}$ (Draft CNIRP Guidelines for limiting exposure to time-varying electric, magnetic and electromagnetic fields (100 kHz TO 300 GHz), 11 July 2018). The maximum field a person can be exposed in case of improper handling of the MRR occurs at the aperture of the antenna feed horn. The field is there $195~\rm Vm^{-1}$ (corresponding to 10% of the power density of natural sun light). At a distance of $8~\rm cm$ the field falls below the basic limit of $61~\rm Vm^{-1}$ (see chapter 13.1).

13.1 Estimate of the field near the feed horn

The power density on the beam axis of a radiator with transmit power P and gain G at a distance x from the phase center is

$$S = \frac{P}{4\pi x^2} G_f$$

or with r_0 distance of the phase center and r distance of the measuring point from the aperture plane:

$$S = \frac{P}{4\pi(r+r_0)^2}G_f$$

The gain is related to the aperture A by

$$G_f \cong \frac{10A}{\lambda^2}$$

The position r_0 of the phase center relative to the aperture plane is estimated from the condition of consistence for the power density P/A in the aperture plane:

$$\frac{P}{A} = \frac{P}{4\pi r_0^2} \frac{10A}{\lambda^2}$$

 \rightarrow

$$r_0 = \sqrt{\frac{10}{4\pi}} \frac{A}{\lambda}$$

With $A=4.86~\mathrm{cm^2}$ and $\lambda=1.24~\mathrm{cm}$ one obtains $\ r_0=3.5~\mathrm{cm}.$

In the figure below the field $E=\sqrt{PZ_0}$ (with Z_0 vacuum impedance) is displayed as function of r. E falls below the limit of $61~{\rm Vm^{-1}}$ at $r=7.6~{\rm cm}$.

14 Technical Data

RCPD with Radar module

Operating Frequency 24.230 GHz

Operating Mode FMCW

Modulation 0.5 - 15 MHz

Output Power 50 mW (+17 dBm) (antenna foot point)

OoB and Spurious Emission < -80 dBm/MHz (antenna foot point)

2nd Harmonic -37 dBm

ITU-Designation 40M0F3N

Antenna

Type parabolic offset antenna

Diameter 600 mm

3 dB Beamwidth approx. 1.5°

Gain 40.1 dBi

Antenna Heating (Option)

Power Supply 115 **or** 230 VAC (50 .. 60 Hz)

Power approx. 500 W

Power Supply

Input Voltage 110 .. 240 VAC (50 .. 60 Hz)

Output Voltages 24 VDC; 5 ... 8 VDC; ±15 VDC