Méthode Graphique

MAXIMISER: $Z = 6 X_1 + 4 X_2$

 $\begin{array}{c} 3 \ X_1 + 9 \ X_2 \leq 81 \\ 4 \ X_1 + 5 \ X_2 \leq 55 \\ 2 \ X_1 + 1 \ X_2 \leq 20 \end{array}$

 $X_1, X_2 \ge 0$

Point	Coordonée X (X1)	Coordonée Y (X2)	Valeur de la fonction (Z)
0	0	0	0
A	0	9	36
В	27	0	162
C	4.2857142857143	7.5714285714286	56
D	6.6	6.8	66.8
E	0	11	44
F	13.75	0	82.5
G	7.5	5	65
Н	0	20	80
I	10	0	60

☐ Afficher les résultats sous forme de fractions.

Méthode Graphique

MAXIMISER: $Z = 150 X_1 + 80 X_2$

 $\begin{array}{c} 1 \; X_1 + 0 \; X_2 \geq 20 \\ 1 \; X_1 + 0 \; X_2 \leq 80 \\ 0 \; X_1 + 1 \; X_2 \geq 10 \\ 0 \; X_1 + 1 \; X_2 \leq 30 \\ 1 \; X_1 + 1 \; X_2 \leq 80 \end{array}$

 $X_1, X_2 \ge 0$

Point	Coordonée X (X1)	Coordonée Y (X2)	Valeur de la fonction (Z)
0	0	0	0
Α	20	0	3000
В	20	10	3800
С	20	30	5400
D	20	60	7800
E	80	0	12000
F	80	10	12800
G	80	30	14400
Н	0	10	800
I	70	10	11300
J	0	30	2400
K	50	30	9900
L	0	80	6400

☐ Afficher les résultats sous forme de fractions.

NOTE:
En vert, les points dont on trouve la solution.
En rouge, les points qui ne satisfont pas les contraintes.

La solution optimale pour une semaine est $X1^* = 70 \times 7 = 490$, $X2^* = 10 \times 7 = 70$

<u>PL 1:</u>

Méthode Graphique

MAXIMISER: $Z = 2 X_1 + 2 X_2$

 $9 X_1 + 10 X_2 \ge 45$ $1 X_1 - 3 X_2 \le 3$ $-2 X_1 + 3 X_2 \le 6$ $2 X_1 - 1 X_2 \ge 3$ $X_1, X_2 \ge 0$

Le problème n'est pas borné.

Point	Coordonée X (X1)	Coordonée Y (X2)	Valeur de la fonction (Z)
0	0	0	0
A	0	4.5	9
В	5	0	10
C	4.4594594594595	0.48648648648649	9.8918918918919
D	1.5957446808511	3.063829787234	9.3191489361702
E	2.5862068965517	2.1724137931034	9.5172413793103
F	3	0	6
G	0	2	4
H	3.75	4.5	16.5
I	1.5	0	3

☐ Afficher les résultats sous forme de fractions.

PL 2:

Méthode Graphique

MAXIMISER: $Z = 2 X_1 + 4 X_2$

 $\begin{array}{c} 1 \; X_1 \; \text{--} 1 \; X_2 \geq 3 \\ 3 \; X_1 \; + \; 4 \; X_2 \leq 24 \\ 2 \; X_1 \; + \; 1 \; X_2 \geq 4 \\ \text{--} 2 \; X_1 \; + \; 1 \; X_2 \geq 2 \end{array}$ $X_1, X_2 \ge 0$

Le problème n'a pas de solution.

Point	Coordonée X (X1)	Coordonée Y (X2)	Valeur de la fonction (Z)
0	0	0	0
A	3	0	6
В	5.1428571428571	2.1428571428571	18.857142857143
C	0	6	24
D	8	0	16
E	1.4545454545455	4.9090909090909	22.545454545455
F	0	4	16
G	2	0	4
Н	0.5	3	13
I	0	2	8

☐ Afficher les résultats sous forme de fractions.

PL 3:

Méthode Graphique

MINIMISER: $Z = 2 X_1 - 1 X_2$

 $9 X_1 + 10 X_2 \ge 45$ $1 X_1 - 3 X_2 \le 3$ $-2 X_1 + 3 X_2 \le 6$ $2 X_1 - 1 X_2 \ge 3$ $X_1, X_2 \ge 0$

Le problème n'est pas borné mais comme il s'agit d'un problème de minimisation, est possible de trouver une solution.

Le problème a une infinité de solutions.

Point	Coordonée X (X1)	Coordonée Y (X2)	Valeur de la fonction (Z)
0	0	0	0
A	0	4.5	-4.5
В	5	0	10
С	4.4594594594595	0.48648648648649	8.4324324324324
D	1.5957446808511	3.063829787234	0.12765957446809
E	2.5862068965517	2.1724137931034	3
F	3	0	6
G	0	2	-2
Н	3.75	4.5	3
I	1.5	0	3

☐ Afficher les résultats sous forme de fractions.

PL 4:

Méthode Graphique

MINIMISER: $Z = 2 X_1 - 3 X_2$

 $\begin{array}{l} -2\; X_1 + 1\; X_2 \leq 8 \\ 1\; X_1 + 2\; X_2 \leq 8 \\ 0\; X_1 + 1\; X_2 \leq 3 \end{array}$

 $X_1, X_2 \ge 0$

Point	Coordonée X (X1)	Coordonée Y (X2)	Valeur de la fonction (Z)
0	0	0	0
A	0	8	-24
В	0	4	-12
С	8	0	16
D	2	3	-5
E	0	3	-9

☐ Afficher les résultats sous forme de fractions.

Min
$$z = 25x1 + 41x2 + 39x3$$
 Min $z = -14x1 + 2x2 + 39$
Sc: Sc: $x1 + x2 + x3 = 1$ $-30x1 + 10x2 \ge -20$ $\Leftrightarrow -8x1 - 8x2 \ge -6, 4$ $x1 \ge 0$, $x2 \ge 0$ $x1 \ge 0$, $x3 \ge 0$

Méthode Graphique

MAXIMISER: $Z = -14 X_1 + 2 X_2$

 $\begin{array}{l} 30 \; X_1 \; \text{--} 10 \; X_2 \leq 20 \\ 8 \; X_1 \; + \; 8 \; X_2 \leq 6.4 \\ X_1, \; X_2 \geq 0 \end{array}$

Point	Coordonée X (X1)	Coordonée Y (X2)	Valeur de la fonction (Z)
0	0	0	0
A	0.6666666666667	0	-9.3333333333333
В	0.7	0.1	-9.6
C	0	0.8	1.6
D	0.8	0	-11.2

☐ Afficher les résultats sous forme de fractions.

NOTE:

En vert, les points dont on trouve la solution.
En rouge, les points qui ne satisfont pas les contraintes

Remarque

il faut ajouter chaque fois 39 à la valeur de fonction Z pour avoir sa valeur exacte.

<u>1)</u>

Méthode Graphique

MAXIMISER: $Z = 2 X_1 + 3 X_2$

 $\begin{array}{l} 1 \ X_1 + 3 \ X_2 \leq 9 \\ 2 \ X_1 + 3 \ X_2 \leq 12 \end{array}$

 $X_1, X_2 \ge 0$

Le problème a une infinité de solutions.

Point	Coordonée X (X1)	Coordonée Y (X2)	Valeur de la fonction (Z)
0	0	0	0
A	0	3	9
В	9	0	18
C	3	2	12
D	0	4	12
E	6	0	12

☐ Afficher les résultats sous forme de fractions

NOTE: En vert, les points dont on trouve la solution. En rouge, les points qui ne satisfont pas les contraintes.

La région des solutions réalisables pour ce PL est un polygone convexe.

Si on prend par exemple, les soultions optimales associées aux sommets C(3,2) et E(6,0) alors leur combinaison linéaire qui est donnée par $CE = \lambda C + (1 - \lambda)E$, $0 \le \lambda \le 1$, $CE = (6 - 3\lambda, 2\lambda)$ satisfait toutes les contraintes:

- $6 3\lambda + 6\lambda = 6 + 3\lambda \le 9$
- $12 6\lambda + 6\lambda = 12 \le 12$
- $6-3\lambda \geq 0$
- $2\lambda \geq 0$

La valeur de la fonction Z dans le point CE est $Z=12-6\lambda+6\lambda=12$ est identique à sa valeur pour les solution C et E.

Méthode Graphique

MAXIMISER: $Z = -1 X_1 - 3 X_2$

 $\begin{array}{c} 1 \ X_1 + 1 \ X_2 \leq 1 \\ 2 \ X_1 + 3 \ X_2 \geq 6 \end{array}$ $X_1, X_2 \ge 0$

Le problème n'a pas de solution.

Point	Coordonée X (X1)	Coordonée Y (X2)	Valeur de la fonction (Z)
0	0	0	0
A	0	1	-3
В	1	0	-1
C	0	2	-6
D	3	0	-3

☐ Afficher les résultats sous forme de fractions.

NOTE:
En vert, les points dont on trouve la solution.
En course les points qui pe estisfant pas les co