香港中文大學 The Chinese University of Hong Kong

版權所有 不得翻印 Copyright Reserved

Course Examination 1st Term, 2005-2006

	Course Code & Title: CSC 3130 Formal Languages and Automata Theory				
	Time allowed	:2	hours	minutes	
	Student I.D. No.	:	Seat 1	No. :	
1	(15%) In each of the	following ca	ses, find a string	of minimum length in {0,	,1}* that is not

- 1 (15%) In each of the following cases, find a string of minimum length in $\{0,1\}^*$ that is not in the language of the given regular expression:
 - (a) 1*(01)*0*
 - (b) (0* + 1*)(0* + 1*)(0* + 1*)
 - (c) 0*(100*)*1*
- 2 (10%) Show that every regular language can be accepted by a deterministic PDA with only two states and has no ε-transitions. Explain your answer.
- 3 (16%) For each of the following Post Correspondence Systems, find a solution or show that it has no solutions:
 - (a) A = (aa, bb, abb); B = (aab, ba, b)
 - (b) A = (b, aa, bab, ab); B = (ba, b, aa, ba)
- 4 (27%) Consider the following problem P:

Given an arbitrary Turing machine T_k , determine whether T_k will halt on at least one input string.

- (a) Show that P is recursively enumerable.
- (b) Show that if P is decidable, the classical halting problem is also decidable.
- (c) What can you say about problem P? Is it decidable? Why?
- 5 (32%) Consider the following Turing machine M_1 :

- (a) Suppose the input is $1^a \# 1^b$ where a, b > 0. What will be the output and where will be the tape head when M_1 halts?
- (b) Construct a Turing machine M_2 that compares whether two non-zero unary numbers are the same. For example:

Given an input $1^a \# 1^b$ where a, b > 0, M_2 will write a '0' in front of the first number 1^a and point to it if $a \ne b$; otherwise, it will write a '1' in front of the first number 1^a and point to it, while the two given numbers 1^a and 1^b remain unchanged on the tape.

(c) Make use of M_1 and M_2 to construct a Turing machine M that determines whether a given non-zero unary number is a prime number. For example:

Given an input 1^a where a > 0, M will write a '1' in front of the input 1^a and point to it if a is a prime; otherwise, it will write a '0' in front of the input 1^a and point to it, while the given number 1^a remains unchanged on the tape.

Notice that you can draw M_1 and M_2 as black boxes. For example, the given Turing machine in part (a) can be drawn as:

-- End of Paper --