Geometer: Graph Few-Shot Class-Incremental Learning via Prototype Representation

Bin Lu, Xiaoying Gan, Lina Yang, Weinan Zhang, Luoyi Fu, Xinbing Wang Shanghai Jiao Tong University Shanghai, China

Background & Introduction

What is "Graph Few-Shot Class-Incremental Learning" problem?

- Graph evolves with emergence of new nodes and edges.
- Novel classes appear incrementally along with few labeling.
- How to classify unlabeled nodes into base class or novel class?

Challenges:

- Q1: How to find a way out of "forgetting old"?
- Q2: How to overcome unbalanced labeling between base classes and novel classes?
- Q3: How do we capture the dynamic structure as the network evolves?

Methodology

Problem Definition

- Base stage $\mathcal{G}^{\text{base}}$ and T snapshots of $\mathcal{G}^{\text{stream}} = \{\mathcal{G}^1, \dots, \mathcal{G}^T\}$
- Sets of classes $\{C^{\text{base}}, C^1, \dots, C^T\}, C^t = C^{\text{base}} + \sum_i \Delta C^i$
- ΔC^t -way *K*-shot GFSCIL problem

Attention-based Prototype Representation

- Node-level graph attention network
- Class-level multi-head attention

Geometric Metric Learning

- Intra-Class Proximity \mathcal{L}_P : Nodes of same classes should be closely clustered
- Inter-Class Uniformity \mathcal{L}_{U} : Uniformity of different prototypes in metric space
- Inter-Class Separability \mathcal{L}_S : Prototypes of novel classes and old classes should keep a distance

Overview of the proposed Geometer for Graph Few-Shot Class-Incremental Learning.

Experiment

Dataset	Dataset	Field	Nodes	Edges	Features	Class
	Cora-ML	Academic	2,995	16,316	2,879	7
	Flickr	Social Network	7,575	479,476	12,047	9
	Amazon	E-commerce	13,752	491,722	767	10
	Cora-Full	Academic	19,793	126,842	8,710	70

Performance Comparison

→ GAT (FT) → GAT+ (FT)	→ GPN → PN	
Cora-M	1L 	Amazon
ACCURACY (%) 80 (%) 60 40 40 20	Accuracy (%)	
0	20	
Base 1 2	3 4 5	Base 1 2 3 4 5

Case Study: t-SNE visualization of the query node embeddings and prototypes

Tymown own otow Cturdy

Ablation Study: Loss functions

Loss functions				Cora-ML (1-way 5-shot GFSCIL setting)			
\mathcal{L}_P	\mathcal{L}_U	$\mathcal{L}_{\mathcal{S}}$	\mathcal{L}_{KD}	Base Classes	Session 1	Session 3	Session 5
✓			✓	96.21±0.67%	88.25±3.99%	64.89±2.53%	56.21±5.55%
✓	\checkmark		✓	95.85±0.56%	90.41±3.86%	68.26±3.65%	58.72±4.66%
\checkmark		\checkmark	✓	95.71±0.55%	89.21±2.88%	69.57±2.71%	54.28±3.90%
✓	✓	✓		95.74±0.61%	90.40±4.82%	68.16±1.45%	62.41±2.37%
✓	✓	√	✓	96.01±0.92%	89.89±3.97%	72.45±4.01%	64.25±3.60%

Loss functions				Amazon (1-way 5-shot GFSCIL setting)			
\mathcal{L}_{P}	\mathcal{L}_U	$\mathcal{L}_{\mathcal{S}}$	\mathcal{L}_{KD}	Base Classes	Session 1	Session 3	Session 5
/			✓	96.72±0.28%	90.91±0.59%	74.74±2.33%	73.73±3.01%
/	\checkmark		✓	96.72±0.22%	91.39±0.56%	76.55±1.94%	73.97±1.90%
/		\checkmark	✓	96.83±0.32%	91.15±0.35%	75.08±2.61%	73.92±2.60%
/	✓	✓		96.86±0.35%	91.17±0.38%	75.36±1.28%	74.51±2.53%
/	✓	✓	✓	96.50±0.29%	91.44±0.46%	76.74±1.89%	77.66±1.58%

Ablation Study: Prototype representation

Ablation Study: Biased sampling strategy

Conclusion & Future Work

- We are the first to investigate this novel problem: graph few-shot class-incremental learning (GFSCIL).
- With the novel classes popping up, Geometer learns and adjusts the attention-based prototypes based on the geometric relationships of proximity, uniformity and separability of representations.
- Geometer proposes teacher-student knowledge distillation and biased sampling strategy to further mitigate the catastrophic forgetting and unbalanced labeling.

Contact Us

- Bin Lu: robinlu1209@situ.edu.cn
- Intelligent IoT Research Center: http://iiot.sjtu.edu.cn/