Atrial Fibrillation detection

Bohdan Hlovatskyi Signal Processing Course Project

Data

- AF Classification from a Short Single Lead ECG Recording: The PhysioNet/Computing in Cardiology Challenge 2017
- The training set contains 8,528 single lead ECG recordings lasting from 9 s to just over
 60 s
- ECG recordings were sampled as 300 Hz and they have been bandpass filtered by the AliveCor device

Туре	# recording	Time length (s)				
		Mean	SD	Max	Median	Min
Normal	5154	31.9	10.0	61.0	30	9.0
AF	771	31.6	12.5	60	30	10.0
Other rhythm	2557	34.1	11.8	60.9	30	9.1
Noisy	46	27.1	9.0	60	30	10.2
Total	8528	32.5	10.9	61.0	30	9.0

Preliminaries

Figure 1: Extraction of heart period (panel B) based on R-peaks in an ECG (panel A). Note that this is conceptually identical to the extraction of heart period based on systolic peaks in PPG.

KS Test

$$D_{n,m} = \sup_{x} |F_{1,n}(x) - F_{2,m}(x)|,$$

where F1,n, F2,m are the empirical distribution functions of the first and the second sample respectively

Machine Learning

- Logistic regression on raw ECG
- Logistic regression with hand-crafted features
- XGBoost with hand-crafted features

	Classificatio	n Report: precision	recall	f1-score	support
	0 1	0.60 0.36	0.63 0.33	0.61 0.35	1049 657
Logistic regression (baseline)	accuracy macro avg weighted avg	0.48 0.51	0.48 0.52	0.52 0.48 0.51	1706 1706 1706
	Classificatio	on Report: precision	recall	f1-score	support
Logistic regression (add. feat.)	0 1	0.63 0.51	0.76 0.35	0.69 0.42	1011 693
	accuracy macro avg weighted avg	0.57 0.58	0.56 0.60	0.60 0.56 0.58	1704 1704 1704
	Classificatio	on Report: precision	recall	f1-score	support
XGBoost (add. feat.)	0 1	0.71 0.80	0.92 0.45	0.80 0.58	1011 693
	accuracy macro avg weighted avg	0.76 0.75	0.69 0.73	0.73 0.69 0.71	1704 1704 1704

CNNLSTM

```
ECGLSTM(
(conv1): Conv1d(1, 3, kernel size=(3,), stride=(3,))
(conv2): Conv1d(3, 9, kernel size=(3,), stride=(2,))
(bn1): BatchNorm1d(9, eps=1e-05, momentum=0.1, affine=True, track running stats=True)
(conv3): Conv1d(9, 9, kernel size=(3,), stride=(2,))
(conv4): Conv1d(9, 27, kernel size=(3,), stride=(2,))
(conv5): Conv1d(27, 27, kernel size=(3,), stride=(2,))
(conv6): Conv1d(27, 81, kernel size=(3,), stride=(2,))
(bn2): BatchNorm1d(81, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(lstm): LSTM(81, 256, num layers=2, batch first=True, bidirectional=True)
(fc1): Linear(in features=1024, out features=256, bias=True)
(bn3): BatchNorm1d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(fc2): Linear(in_features=256, out_features=2, bias=True)
(dropout): Dropout(p=0.3, inplace=False)
```


Method	F1 Result		
KS Test	0.6		
Logistic Regression	0.48		
Logistic Regression with add. feat.	0.56		
XGBoost	0.69		
CNNLSTM	0.75		

DWT

Conclusion

Atrial fibrillation is one of the most common types of heart arrhythmia. It is dangerous as it **increases the risk of a stroke**. Approximately five percent of the population is diagnosed with heart arrhythmia. Several approaches to Atrial Fibrillation detection were implemented and discussed. They were compared on a dataset provided by **PhysioNet in Cardiology Challenge 2017**. While methods with hand-crafted features give good performance, they require a lot of domain knowledge. Deep learning approaches showed to be superior in terms of accuracy