Вариант 3

Задача 1.

Для булевой функции f, заданной в таблице 1:

- а) найти сокращённую ДНФ; б) найти ядро функции;
- в) получить все тупиковые ДНФ и указать, какие из них являются минимальными;
- г) на картах Карно указать ядро и покрытия, соответствующие минимальным ДНФ.

$x_1 x_2 x_3 x_4$	f
0000	0
0001	0
0010	1
0011	1
0100	0
0101	1
0110	0
0111	1
1000	1
1001	1
1010	1
1011	0
1100	1
1101	1
1110	0
1111	0

Решение.

а) Для построения сокращённой ДНФ заполняем карту Карно функции f всеми возможными покрытиями, кроме тех, которые полностью содержатся в более крупном покрытии.

Карта Карно функции f:

$$K_{1} = 1x0x = x_{1}\overline{x}_{3};$$

$$K_{2} = x010 = \overline{x}_{2}x_{3}\overline{x}_{4};$$

$$K_{3} = 001x = \overline{x}_{1}\overline{x}_{2}x_{3};$$

$$K_{4} = 0x11 = \overline{x}_{1}x_{3}x_{4};$$

$$K_{5} = 01x1 = \overline{x}_{1}x_{2}x_{4};$$

$$K_{6} = x101 = x_{2}\overline{x}_{3}x_{4};$$

$$K_{7} = 10x0 = x_{1}\overline{x}_{2}\overline{x}_{4}.$$

Получили 7 импликант: одна импликанта покрывает 4 клетки и 6 импликант покрывают по 2 клетки. Максимальным покрытием, которое покрывает 4 клетки, является импликанта K_1 =1x0x.

Сокращённая ДНФ:

$$K_1 \vee K_2 \vee K_3 \vee K_4 \vee K_5 \vee K_6 \vee K_7 = x_1 \overline{x}_3 \vee \overline{x}_2 x_3 \overline{x}_4 \vee \overline{x}_1 \overline{x}_2 x_3 \vee \overline{x}_1 x_3 x_4 \vee \overline{x}_1 x_2 x_4 \vee x_2 \overline{x}_3 x_4 \vee x_1 \overline{x}_2 \overline{x}_4.$$

- б) Т.к. на карте Карно элементарные конъюнкции $x_1\overline{x}_2\overline{x}_3x_4$ и $x_1x_2\overline{x}_3\overline{x}_4$ покрыты только одной импликантой K_1 , то $K_1=x_1\overline{x}_3$ ядро.
 - в) Получение тупиковых и минимальных ДНФ.

Пять клеток, содержащих единицу, на карте Карно остаются непокрытыми ядром.

Для них составляем функцию Патрика и раскрываем скобки. В процессе преобразований используется тождество поглощения $K_i \vee K_i K_j = K_i$:

$$(K_2 \vee K_7)(K_2 \vee K_3)(K_3 \vee K_4)(K_4 \vee K_5)(K_5 \vee K_6) =$$

- $=(K_2 \lor K_2 K_3 \lor K_2 K_7 \lor K_3 K_7)(K_3 K_4 \lor K_3 K_5 \lor K_4 \lor K_4 K_5)(K_5 \lor K_6)=$
- $=(K_2 \vee K_3 K_7)(K_4 \vee K_3 K_5)(K_5 \vee K_6)=$
- $=(K_2K_4VK_2K_3K_5VK_3K_4K_7VK_3K_5K_7)(K_5VK_6)=$
- $=K_2K_4K_5VK_2K_3K_5VK_3K_4K_5K_7VK_3K_5K_7VK_2K_4K_6VK_2K_3K_5K_6VK_3K_4K_6K_7VK_3K_5K_6K_7=$
- $= K_2 K_4 K_5 \vee (K_2 K_3 K_5 \vee K_2 K_3 K_5 K_6) \vee (K_3 K_5 K_7 \vee K_3 K_4 K_5 K_7 \vee K_3 K_5 K_6 K_7) \vee K_2 K_4 K_6 \vee K_3 K_4 K_6 K_7 =$
- $=K_2K_4K_5VK_2K_3K_5VK_3K_5K_7VK_2K_4K_6VK_3K_4K_6K_7$

Присоединяем ядро K_1 к каждому полученному члену и получаем 5 тупиковых ДНФ:

- 1) $K_1K_2K_4K_5$: $x_1\overline{x}_3 \vee \overline{x}_2x_3\overline{x}_4 \vee \overline{x}_1x_3x_4 \vee \overline{x}_1x_2x_4$;
- 2) $K_1K_2K_3K_5$: $x_1\overline{x}_3 \vee \overline{x}_2x_3\overline{x}_4 \vee \overline{x}_1\overline{x}_2x_3 \vee \overline{x}_1x_2x_4$;
- 3) $K_1K_3K_5K_7$: $x_1\bar{x}_3 \vee \bar{x}_1\bar{x}_2x_3 \vee \bar{x}_1x_2x_4 \vee x_1\bar{x}_2\bar{x}_4$;
- 4) $K_1K_2K_4K_6$: $x_1\overline{x}_3 \vee \overline{x}_2x_3\overline{x}_4 \vee \overline{x}_1x_3x_4 \vee x_2\overline{x}_3x_4$;
- 5) $K_1K_3K_4K_6K_7$: $x_1\overline{x}_3 \vee \overline{x}_1\overline{x}_2x_3 \vee \overline{x}_1x_3x_4 \vee x_2\overline{x}_3x_4 \vee x_1\overline{x}_2\overline{x}_4$.

Кратчайшими будут первые четыре ДНФ, т.к. они состоят из четырёх элементарных конъюнкций, а последняя – из пяти.

Все кратчайшие ДНФ состоят из одинакового числа литералов. Следовательно, все они являются минимальными.

г) Карта Карно для минимальной ДНФ $x_1\overline{x}_3 \vee \overline{x}_2x_3\overline{x}_4 \vee \overline{x}_1x_3x_4 \vee \overline{x}_1x_2x_4$

x_3, x_4 x_1, x_2	0 0	0 1	1 1	10
0 0			1	1
0 1		1	1	
1 1	1	1		
1 0	1	1		1

Карта Карно для минимальной ДНФ $x_1\overline{x}_3 \vee \overline{x}_2x_3\overline{x}_4 \vee \overline{x}_1\overline{x}_2x_3 \vee \overline{x}_1x_2x_4$

x_3, x_4 x_1, x_2	0 0	0 1	1 1	10
0 0			1	
0 1		1	1	
1 1	1	1		
1 0	1	1		1

Карта Карно для минимальной ДНФ $x_1\overline{x}_3 \vee \overline{x}_1\overline{x}_2x_3 \vee \overline{x}_1x_2x_4 \vee x_1\overline{x}_2\overline{x}_4$

x_3, x_4 x_1, x_2	0 0	0 1	1 1	1 0
0 0			1	
0 1		1	1	
11	$\sqrt{1}$	1		
1 0	1)	1		(1
_				

Карта Карно для минимальной ДНФ $x_1\overline{x}_3 \vee \overline{x}_2x_3\overline{x}_4 \vee \overline{x}_1x_3x_4 \vee x_2\overline{x}_3x_4$

x_3, x_4 x_1, x_2	0 0	0 1	1 1	10
0 0			1	1
0 1		$\lfloor 1 \rfloor$	1	
1 1	1	1		
1 0	1	1		1

Даны функции f (таблица 2) и w (таблица 3).

- а) Вычислить таблицу значений функции f.
- б) Найти минимальные ДНФ функций f и w.
- в) Выяснить полноту системы $\{f, w\}$. Если система не полна, дополнить систему функцией g до полной системы.

Указание. Запрещается дополнять систему константами, отрицанием и базовыми функциями двух переменных (\bigoplus , \lor , \land , \mid , \downarrow и т.д.). Не допускается дополнение функцией, образующей с f или w полную подсистему, кроме случаев, когда иное невозможно.

г) Из функциональных элементов, реализующих функции полной системы $\{f, w\}$ или $\{f, w, g\}$, построить функциональные элементы, реализующие базовые функции $(\mathsf{V}, \mathsf{A}, \overset{-}{}, 0, 1)$.

$$\begin{array}{|c|c|c|c|c|}\hline 3 & (((x_3 \Rightarrow (x_1 \sim x_2)) \oplus (\overline{x}_3 \Rightarrow \overline{x}_1)) \Rightarrow (\overline{x}_2 \,|\, \overline{x}_3) \\\hline 3 & (0, 1, 1, 0, 0, 1, 0, 1) & \hline \end{array}$$

Решение.

а) Таблица значений функции $f\left(x_1,x_2,x_3\right) = ((x_3 \Longrightarrow (x_1 \sim x_2)) \oplus (\overline{x}_3 \Longrightarrow \overline{x}_1)) \Longrightarrow (\overline{x}_2 \mid \overline{x}_3)$:

\mathcal{X}_1	x_2	x_3	\overline{x}_1	\overline{x}_2	\overline{x}_3	$f_1 = (x_1 \sim x_2)$	$f_2 = (x_3 \Longrightarrow f_1)$	$f_3 = (\overline{x}_3 \Longrightarrow \overline{x}_1)$	$f_4 = f_2 \oplus f_3$	$f_5 = (\overline{x}_2 \mid \overline{x}_3)$	$f = (f_4 \Longrightarrow f_5)$
0	0	0	1	1	1	1	1	1	0	0	1
0	0	1	1	1	0	1	1	1	0	1	1
0	1	0	1	0	1	0	1	1	0	1	1
0	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	1	0	1	0	0
1	0	1	0	1	0	0	0	1	1	1	1
1	1	0	0	0	1	1	1	0	1	1	1
1	1	1	0	0	0	1	1	1	0	1	1

б) Карта Карно функции f:

x_1x_2	00	01	11	10
0	1	1	1	
1	1	1/	1	1

Минимальная ДНФ: $f = \overline{x}_1 \lor x_2 \lor x_3$

Карта Карно для функции w = (0, 1, 1, 0, 0, 1, 0, 1).

$x_1x_2x_3$	W
000	0
001	1
010	1
011	0
100	0
101	1
110	0
111	1

x_1x_2	00	01	11	10
0				
1	1)		1	1

Минимальная ДНФ: $w = x_1 x_3 \vee \overline{x}_2 x_3 \vee \overline{x}_1 x_2 \overline{x}_3$.

в) Проверка на полноту системы $\{f, w\}$.

$x_1x_2x_3$	f	W
000	1	0
001	1	1
010	1	1
011	1	0
100	0	0
101	1	1
110	1	0
111	1	1

1. Сохранение 0.

$$f(0,0,0) = 1 \Rightarrow f \notin T_0;$$

$$w\left(0,0,0\right)=0\Rightarrow w\in T_{0}.$$

2. Сохранение 1.

$$f(1,1,1) = 1 \Rightarrow f \in T_1;$$

$$w\left(1,1,1\right)=1\Rightarrow w\in T_{1}.$$

3. Самодвойственность.

$$f(0,0,0) = f(1,1,1) = 1 \Rightarrow f \notin S;$$

$$w(0,1,0) = w(1,0,1) = 1 \Rightarrow w \notin S.$$

4. Монотонность.

Т.к.
$$(0,0,0) < (1,0,0)$$
, но $f(0,0,0) > f(1,0,0) \Rightarrow f \notin M$.

Т.к.
$$(0,0,1) < (0,1,1)$$
, но $w(0,0,1) > w(0,1,1) \Rightarrow w \notin M$.

5. Линейность функций.

Общий вид полинома Жегалкина для функции трёх переменных:

$$f(x_1,x_2,x_3) = a_{123}x_1x_2x_3 \oplus a_{12}x_1x_2 \oplus a_{23}x_2x_3 \oplus a_{13}x_1x_3 \oplus a_{13}x_1 \oplus a_{2}x_2 \oplus a_{3}x_3 \oplus a_{0}.$$

x_1	x_2	x_3	f	
0	0	0	1	$a_0 = 1$
0	0	1	1	$a_0 \oplus a_3 = 1 \Rightarrow 1 \oplus a_3 = 1 \Rightarrow a_3 = 0$
0	1	0	1	$a_2 \oplus a_0 = 1 \Rightarrow a_2 \oplus 1 = 1 \Rightarrow a_2 = 0$
0	1	1	1	$a_{23} \oplus a_2 \oplus a_3 \oplus a_0 = 1 \Rightarrow a_{23} \oplus 0 \oplus 0 \oplus 1 = 1 \Rightarrow a_{23} = 0$
1	0	0	0	$a_1 \oplus a_0 = 0 \Rightarrow a_1 \oplus 1 = 0 \Rightarrow a_1 = 1$
1	0	1	1	$a_{13} \oplus a_1 \oplus a_3 \oplus a_0 = 1 \Rightarrow a_{13} \oplus 1 \oplus 0 \oplus 1 = 1 \Rightarrow a_{13} = 1$
1	1	0	1	$a_{12} \oplus a_1 \oplus a_2 \oplus a_0 = 1 \Rightarrow a_{12} \oplus 1 \oplus 0 \oplus 1 = 1 \Rightarrow a_{12} = 1$
1	1	1	1	$a_{123} \oplus a_{12} \oplus a_{23} \oplus a_{13} \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_0 = 1 \Rightarrow$ $\Rightarrow a_{123} \oplus 1 \oplus 0 \oplus 1 \oplus 1 \oplus 0 \oplus 0 \oplus 1 = 1 \Rightarrow a_{123} = 1$

Полином Жегалкина функции $f: f(x_1, x_2, x_3) = x_1 x_2 x_3 \oplus x_1 x_2 \oplus x_1 x_3 \oplus x_1 \oplus 1$. Так как полином функции f содержит конъюнкции, то $f \notin L$.

$$w(x_1, x_2, x_3) = a_{123}x_1x_2x_3 \oplus a_{12}x_1x_2 \oplus a_{23}x_2x_3 \oplus a_{13}x_1x_3 \oplus a_{1}x_1 \oplus a_{2}x_2 \oplus a_{3}x_3 \oplus a_{0}$$

x_1	x_2	x_3	W	
0	0	0	0	$a_0 = 0$
0	0	1	1	$a_0 \oplus a_3 = 1 \Rightarrow 0 \oplus a_3 = 1 \Rightarrow a_3 = 1$
0	1	0	1	$a_2 \oplus a_0 = 1 \Rightarrow a_2 \oplus 0 = 1 \Rightarrow a_2 = 1$
0	1	1	0	$a_{23} \oplus a_2 \oplus a_3 \oplus a_0 = 0 \Rightarrow a_{23} \oplus 1 \oplus 1 \oplus 0 = 0 \Rightarrow a_{23} = 0$
1	0	0	0	$a_1 \oplus a_0 = 0 \Rightarrow a_1 \oplus 0 = 0 \Rightarrow a_1 = 0$
1	0	1	1	$a_{13} \oplus a_1 \oplus a_3 \oplus a_0 = 1 \Rightarrow a_{13} \oplus 0 \oplus 1 \oplus 0 = 1 \Rightarrow a_{13} = 0$
1	1	0	0	$a_{12} \oplus a_1 \oplus a_2 \oplus a_0 = 0 \Rightarrow a_{12} \oplus 0 \oplus 1 \oplus 0 = 0 \Rightarrow a_{12} = 1$
1	1	1	1	$a_{123} \oplus a_{12} \oplus a_{23} \oplus a_{13} \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_0 = 1 \Rightarrow$ $\Rightarrow a_{123} \oplus 1 \oplus 0 \oplus 0 \oplus 0 \oplus 1 \oplus 1 \oplus 0 = 1 \Rightarrow a_{123} = 0$

$$w(x_1, x_2, x_3) = x_1 x_2 \oplus x_2 \oplus x_3$$

Функция w не является линейной, т.е. $w \notin L$.

Критериальная таблица

	T_0	T_1	S	M	L
f	-	+	-	-	
W	+	+	_	_	_

г) Система $\{f,w\}$ не является функционально полным классом, т.к. обе функции сохраняют константу 1. Дополним систему функцией, которая не сохраняет 1, например, функцией $g(x_1,x_2,x_3)=(1,1,0,1,0,1,0,0)$. Функция g не сохраняет 0, не сохраняет 1, не является монотонной, но является самодвойственной.

$$g(x_1, x_2, x_3) = a_{123}x_1x_2x_3 \oplus a_{12}x_1x_2 \oplus a_{23}x_2x_3 \oplus a_{13}x_1x_3 \oplus a_{11}x_1 \oplus a_{21}x_2 \oplus a_{31}x_3 \oplus a_{12}x_1 \oplus a_{12$$

<i>X</i> ₁	x_2	Х3	g	
0	0	0	1	$a_0 = 1$
0	0	1	1	$a_0 \oplus a_3 = 1 \Rightarrow 1 \oplus a_3 = 1 \Rightarrow a_3 = 0$
0	1	0	0	$a_2 \oplus a_0 = 0 \Rightarrow a_2 \oplus 1 = 0 \Rightarrow a_2 = 1$
0	1	1	1	$a_{23} \oplus a_2 \oplus a_3 \oplus a_0 = 1 \Rightarrow a_{23} \oplus 1 \oplus 0 \oplus 1 = 1 \Rightarrow a_{23} = 1$
1	0	0	0	$a_1 \oplus a_0 = 0 \Rightarrow a_1 \oplus 1 = 0 \Rightarrow a_1 = 1$
1	0	1	1	$a_{13} \oplus a_1 \oplus a_3 \oplus a_0 = 1 \Rightarrow a_{13} \oplus 1 \oplus 0 \oplus 1 = 1 \Rightarrow a_{13} = 1$
1	1	0	0	$a_{12} \oplus a_1 \oplus a_2 \oplus a_0 = 0 \Rightarrow a_{12} \oplus 1 \oplus 1 \oplus 1 = 0 \Rightarrow a_{12} = 1$
1	1	1	0	$a_{123} \oplus a_{12} \oplus a_{23} \oplus a_{13} \oplus a_1 \oplus a_2 \oplus a_3 \oplus a_0 = 0 \Rightarrow$ $\Rightarrow a_{123} \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 1 \oplus 0 \oplus 1 = 0 \Rightarrow a_{123} = 0$

 $g(x_1, x_2, x_3) = x_1 x_2 \oplus x_2 x_3 \oplus x_1 x_3 \oplus x_1 \oplus x_2 \oplus 1.$

Функция g не является линейной, т.е. $g \notin L$.

Критериальная таблица:

	T_0	T_1	S	M	L
f	-	+	_	_	-
W	+	+	_	_	_
g	_	_	+	_	_

г) Система $\{f, w, g\}$ является функционально полным классом.

$x_1x_2x_3$	f	W	g
000	1	0	1
001	1	1	1
010	1	1	0
011	1	0	1
100	0	0	0
101	1	1	1
110	1	0	0
111	1	1	0

1.Отрицание.

 $g \notin T_0$ и $g \notin T_1$ \Rightarrow отрицание строим из функции g, т.к. g(0,0,0) = 1 и g(1,1,1) = 0. $g(x,x,x) = \overline{x}$.

2. Константа 1.

$$f \notin T_0$$
 и $f \in T_1$ ⇒ константу 1 строим из функции f . $f(0,0,0) = f(1,1,1) = 1$. Следовательно, $f(x,x,x) \equiv 1$.

3. Константа 0.

Для построения константы 0 возьмём отрицание от функции f(x,x,x).

$$\overline{f(x,x,x)} = g(f(x,x,x), f(x,x,x), f(x,x,x)) \equiv 0.$$

Проверка:

$$g(f(0,0,0), f(0,0,0), f(0,0,0)) = g(1,1,1) = 0;$$

 $g(f(1,1,1), f(1,1,1), f(1,1,1)) = g(1,1,1) = 0.$

4. Для построения дизъюнкции из функции $f = \overline{x}_1 \lor x_2 \lor x_3$ зафиксируем переменную $x_1 = 1$, и обозначим $x_2 \to x$, $x_3 \to y$.

Тогда
$$f(1, x, y) = \overline{1} \lor x \lor y = 0 \lor x \lor y = x \lor y$$
.

Выражение для дизьюнкции: $d(x, y) = f(1, x, y) = f(f(x, x, x), x, y) = x \lor y$

Проверка:

$$d(0,0) = f(f(0,0,0),0,0) = f(1,0,0) = 0;$$

$$d(0,1) = f(f(0,0,0),0,1) = f(1,0,1) = 1;$$

$$d(1,0) = f(f(1,1,1),1,0) = f(1,1,0) = 1;$$

$$d(1,1) = f(f(1,1,1),1,1) = f(1,1,1) = 1.$$

5. Для построения конъюнкции из функции $w = x_1 x_3 \lor \overline{x}_2 x_3 \lor \overline{x}_1 x_2 \overline{x}_3$ зафиксируем переменную $x_3 = 0$, и обозначим $\overline{x}_1 \to x$, $x_2 \to y$.

Тогда
$$w(x_1, x_2, 0) = x_1 x_3 \vee \overline{x}_2 x_3 \vee \overline{x}_1 x_2 \overline{x}_3 = x_1 \cdot 0 \vee \overline{x}_2 \cdot 0 \vee \overline{x}_1 x_2 \cdot 1 = \overline{x}_1 x_2 = xy$$
.

Выражение для конъюнкции:

$$k(x,y) = w(\overline{x},y,0) = w(g(x,x,x),y,g(f(x,x,x),f(x,x,x),f(x,x,x))) = xy \, .$$

Проверка:

 $k(0,0) = w(g(0,0,0),0,g(f(0,0,0),f(0,0,0),f(0,0,0))) = w(1,0,g(1,1,1)) = w(1,0,0) = 0; \\ k(0,1) = w(g(0,0,0),1,g(f(0,0,0),f(0,0,0),f(0,0,0))) = w(1,1,g(1,1,1)) = w(1,1,0) = 0; \\ k(1,0) = w(g(1,1,1),0,g(f(1,1,1),f(1,1,1),f(1,1,1))) = w(0,0,g(1,1,1)) = w(0,0,0) = 0; \\ k(1,1) = w(g(1,1,1),1,g(f(1,1,1),f(1,1,1),f(1,1,1))) = w(0,1,g(1,1,1)) = w(0,1,0) = 1.$