Mediana: R package for power evaluation in clinical trials with multiplicity adjustment methods

Gautier Paux ¹ Alex Dmitrienko ²

¹Institut de Recherche International Servier

²Center for Statistics in Drug Development Quintiles

ERCIM, 8 December 2014

Context

Mediana R package

Perspectives

Key messages

References

Mediana: R package for power evaluation in clinical trials with multiplicity adjustment methods

Context

Mediana R package

Perspectives

Key messages

References

Context

General problematic

 Clinical trials (CT) should be designed to ensure a high probability to detect an effect if the treatment is effective

Sample size calculations in traditional setting

- Traditional CT with two arms, a single endpoint and no interim looks
- Sample size calculations can be done using closed-form expression
- Example for normally distributed endpoints :

$$n_{pergroup} = \frac{2(z_{\alpha} + z_{\beta})^2 \delta^2}{\sigma^2}$$

Context

Sample size calculations in complex setting

- CT sponsors are often interested in pursuing multiple objectives in Phase II or Phase III clinical trials such as :
 - Multiple doses-control comparisons
 - Multiple endpoints
 - Multiple patients population
 - Multiple interim looks
- Multiple testing procedures should be used to control the overall Type I error rate
- General analytical expressions of the power function do not exist in this case

Context

Problematic

How to evaluate power in clinical trials with complex clinical objectives?

FDA Enrichment strategies for CT

Determining the required sample size that will provide reasonable power to test the different hypotheses while controlling type-I error [...] is challenging

Simulation-based methods

Key features

- Facilitate decision-making process by answering a wide range of key complex questions
- Quantitative assessment of the performance under multiple scenarios
- Facilitate comparison between competing strategies
- Allow sensitivity assessment and what-if scenario analysis

Contex

Mediana R package

Perspectives

Key messages

References

Clinical Scenario Evaluation framework

Overview

- Developed in Benda et al. (2010)
- Decompose the problem of clinical trial simulations into three models

Objectives

- Systematic simulation-based assessment of study designs and analysis methods
- Selection of a robust approach to clinical trial design and analysis which demonstrates optimal performance
- Sensitivity assessment of key parameters

Clinical Scenario Evaluation framework

Key components

- Data model defines the process of generating patient trial data
- Analysis model defines the analysis strategy applied to trial data
- Evaluation model defines the metrics used for evaluating the performance of the analysis strategy

Mediana R package

Objective

 Provide a standard framework for power evaluation in clinical trial with high-dimensional statistical problems

Overview

- Based on the Clinical Scenario Evaluation approach
- Support a broad class of data, analysis and evaluation models
- Flexible framework easily extensible to define custom options in data, analysis and evaluation models

Mediana framework

Data Model

Mediana framework

Data Model

Analysis Model

Mediana framework

Mediana framework

Mediana framework

Data model

Endpoint types

- Single trial endpoint (univariate distributions for continuous, binary, time-to-event and count endpoints)
- Multiple trial endpoints (multivariate distributions)

Measurement types

- Single timepoint
- Longitudinal/repeated measurements

Trial design options

Patient enrollment and dropout modeling

Analysis model

Statistical tests

 Commonly used statistical tests, including parametric tests, nonparametric tests and model-based analysis methods

Descriptive statistics

Commonly used descriptive statistics

Multiplicity adjustments

- Traditional procedures (e.g. Holm, Hochberg)
- Advanced procedures (e.g. gatekeeping procedures)

Evaluation model

Evaluation criteria

Broadly used definitions of "probability of successful outcome"

Examples

- Marginal power, disjunctive and conjunctive power
- Metrics based on statistical and clinical significance

User-specified option

Flexible framework

 Mediana package is easily extended to define custom options in data, analysis and evaluation models

Examples

- New endpoint distributions
- New statistical tests
- New evaluation criteria

High-performance computing

Sequential computations

Simulations are run sequentially on one processor (core)

Parallel computations

- Implemented in Mediana package
- Simulation runs are distributed among multiple processors (cores)
- Substantially reduce computation times
- Easily defined by the user

Reporting

Reproducibility

- Reproducibility is a key point for sponsors and regulators
- Same code will produce the same results

Reporting

- Option to create Word-based summary of simulation results
- Possibility to customize the structure of the summary tables
- Summary data frames allowing graphical representation

When Mediana should be used?

Clinical trials with...

- ...multiple dose-placebo comparisons
- ...multiple clinical endpoints
- ...multiple patients populations (e.g. overall population and marker-positive subpopulation)
- ...interim analysis (currently not supported)

Case studies

Visit package's web site for detailed case studies http://biopharmnet.com/wiki/Mediana_package

Perspectives

Perspectives

Release

- First version is expected to be released in early 2015
- Dmitrienko, A., Paux, G., Brechenmacher, T. (2014). Power calculations in clinical trials with complex clinical objectives. In press

New features for next version

- Support to Bayesian methods and adaptive designs
- Interim analysis decision rules for futility or overwhelming efficacy

Contex

Mediana R package

Perspectives

Key messages

References

Key messages

Take home messages

- New drug development is a time-consuming and expensive process
- Need for more efficient drug development programs with innovative designs and advanced analysis strategies
- Crucial role of quantitative assessments of the performance of these designs and analysis strategies
- Mediana R package provides a turnkey solution to facilitate systematic quantitative assessment of performance for Phase II and III trial designs and analysis methods.

Contex

Mediana R package

Perspectives

Key messages

References

References

- Benda, N., Branson, M., Maurer, W., Friede, T. (2010). Aspects of modernizing drug development using clinical scenario planning and evaluation. *Drug Information Journal*. 44, 299–315.
- Dmitrienko, A., Paux, G., Brechenmacher, T. (2014). Power calculations in clinical trials with complex clinical objectives. *In press*.