# CS2022 COMPUTER ARCHITECTURE Project 2

# MICROCODED INSTRUCTIONS SET PROCESSOR



Submitted To: Mr. Michael Manzke

Submitted By: Kavin Gupta

17317505

The VHDL codes are in filenames given corresponding to the components.

# **COMPONENTS REQUIRED:**

#### 1. Register:

Register.vhd



#### 2. Decoder:

Decoder\_4to9.vhd



## 3. Multiplexer 2 to1

Mux\_2to1.vhd



#### 4. Multiplexer 2 to 16

Mux\_2to16.vhd NO testbench required

#### 5. Multiplexer 2 to 8

Mux2to8.vhd Mux2to8\_TB.vhd



## 6. Multiplexer 3 to 1

Mux\_3to1.vhd

No test bench required as it used in Barrel shifter and it is shown working below.

#### 7. Multiplexer 8to1

Mux8to1.vhd Mux8to1\_TB.vhd



# 8. Multiplexer 9 to 16

Mux9to16.vhd

Mux9to16\_TB.vhd



# 9. Register File

Reg\_file.vhd Regfile\_tb.vhd



Schematic of Register File



10.Full Adder

Full-adder.vhd Fulladder\_tb.vhd



## 11.Ripple Adder

#### Ripple\_adder.vhd

No test bench required as full adders are shown working and ripple adder is shown working below.

#### 12.Barrel Shifter

Barrel\_shifter.vhd



Schematic of Barrel Shifter
No test bench Required as it is shown working below.

#### 13. Arithmetic Logic Unit

ALU\_16bit.vhd Logic\_circuit\_1.vhd Logic\_circuit\_2.vhd



Schematic for Arithmetic Logic Unit

No testbench Required

#### **14.Program Counter**

Program\_counter.vhd Program\_counter\_tb.vhd



## **15.Extended program Counter**

Extended\_program\_counter.vhd

Extended\_program\_counter\_tb.vhd



16.Zero fill

Zero\_fill.vhd

Zero\_fill\_tb.vhd



## 17.Opcode

Instructions.vhd

Instruction\_tb.vhd



#### **18.Control Memory**

Control\_memory.vhd



# 19.Control Address Register

Control\_address\_reg.vhd CAR\_tb.vhd



20.Memory

Memory.vhd Memory\_tb.vhd



## 21.Functional Unit

Functional\_unit.vhd



Schematic for Functional Unit

#### 22.Data path

#### Datapath.vhd Datapath\_tb.vhd



#### Schematic of Datapath



## 23. Microprogram controller

Microprogramer\_controller.vhd



Schematic of Micro Program Control

#### 24.Final

Proj2.vhd Proj\_tb.vhd



#### Schematic Overall



| Name             | Value             | 10 ns                                 | 200 ns      | 400 ns           | 600 ns  | 800 ns           | 1,000 ns   | 1,200 ns         | 1,400 ns |
|------------------|-------------------|---------------------------------------|-------------|------------------|---------|------------------|------------|------------------|----------|
| reg0_q[15:0]     | 0000000000000000  | (WWW)                                 | 00000000000 | 0000             | X       | 000110010010     | 000        | 0000000000       | 000000   |
| reg1_q[15:0]     | 000000000001100   | (MANAGEM )K                           | (           | 0000000000000001 | *       | 0000000000000011 | X          | 0000000000001100 |          |
| ▶ ■ reg2_q[15:0] | 000000000000110   | · · · · · · · · · · · · · · · · · · · | X           | 00000000000      | 010     | )8(              | 0000000    | 00000110         |          |
| ▶ ₹ reg3_q[15:0] | 000000000000011   |                                       | N (         |                  |         | 0000000000000011 |            |                  |          |
| ▶ ₹ reg4_q[15:0] | 11111111111111010 | · · · · · · · · · · · · · · · · · · · | www C       | 000000000        | 0000100 | X                | 1111111111 | 1010             |          |
| ▶ ₹ regS_q[15:0] | 0000000000000101  | · · · · · · · · · · · · · · · · · · · | ········    | X                |         | 000000000000     | 101        |                  |          |
| ▶ ₹ reg6_q[15:0] | 0000000000000110  | ·                                     |             | 00000000000      | (       | 0000000000001101 | 00000      | 0000000000000    | 10       |
| ▶ ■ reg7_q[15:0] | 0000000000000111  | u                                     |             |                  |         | 000000           | 0000000111 |                  |          |
|                  |                   |                                       |             |                  |         |                  |            |                  |          |

This testbench shows the output of registers in the final as the operations are being performed.

The test benches show the result of operands performed by each component with the arithmetic state machine.

With expansion of register file from the previous project, Memory and Control Memory have been added with sized 512X16 and 256X28, each with 16-bit width buses that utilize 9 lest significant bits of addresses provided in order to index to the 512-bit memory size.

Microprogram Operations have been implemented for control memory. Each change and resulting operation in time via the register test bench is reflected by loading, add Immediate operand (ADI), load to register (LDR), increment (INC), store (STR), add (ADD), inverse(NOT), unconditional branch (BCH) and conditional branch (BXX). These pertain to modify the content of registers in memory at given time intervals, and more easily seen in the control memory.