

Vue d'Ensemble:

Réseaux de Neurones

Deep Learning

Q Learning

Comment ça marche?

Comment choisir nos action?

K-Bandit Machine Problème

P2 = ?

Pk = ?

a1

a2

ak

h tours

Agent

Stratégie = ?

Donc ... Exploration vs Exploitation?

Exploration

Exploitation

- Nécessaire pour découvrir Nécessaire pour optimiser les actions nos actions
- Mais pas optimisé sur le long terme
- Mais risque de s'obstiner sur une action non optimale

Il nous faut une Stratégie!

Horizon Infini avec facteur de réduction:

$$E\left(\sum_{t=0}^{\infty} \gamma^t r_t\right)$$

Approche Récursive => Exponentielle ...

Indices d'Allocation de Gittins => Non Généralisable ...

Stratégies formellement justifiés:

Approche Récursive => Exponentielle ...

Indices d'Allocation de Gittins => Non Généralisable ...

Apprentissage avec automates => Peut converger vers une mauvaise action ...

Greedy Strategie => Erreur quasi-assurée

Random action avec proba p, sinon Greey Strategie! => Le choix random n'est pas optimisé

Stratégies non-justifiés ...:

Greedy Strategie => Erreur quasi-assurée

Random action avec proba p, sinon Greey Strategie! => Le choix random n'est pas optimisé

Random Strategie mais avec les lois de Boltzmann: $P(a) = \frac{e^{ER(a)/T}}{\sum_{i} e^{ER(a')/T}}$

Récompenses différés => Markov Decision Processes (MDP)

- ensemble d'états S
- ensemble d'actions A
- fonction de récompense R: S x A → R
- fonction de transition T: SxA → P(S)

- stratégie : S → A
- valeur d'un état : S → IR
- probabilité de transition : S x A x S → R

Stratégie optimale connaissant le modèle:

- valeur d'un état V:S → IR

$$V^{star}(s) = \max_{\pi} E(\sum_{t=0}^{\infty} \gamma^{t} r_{t})$$

Stratégie optimale connaissant le modèle:

- valeur d'un état V:S → IR

$$V^{star}(s) = \max_{\pi} E(\sum_{t=0}^{\infty} \gamma^{t} r_{t})$$

$$V^{star}(s) = \max_{a} (R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') V^{star}(s'))$$

Stratégie optimale connaissant le modèle:

- valeur d'un état V:S → R

$$V^{star}(s) = \max_{\pi} E(\sum_{t=0}^{\infty} y^{t} r_{t})$$

$$V^{star}(s) = \max_{a} (R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') V^{star}(s'))$$

$$\pi^{star}(s) = \underset{a}{argmax} (R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') V^{star}(s'))$$

Donc on a un algorithme!

- initialiser V arbitrairement
- tant que la stratégie n'est pas assez précise ...
 - pour tous les états s
 - pour toutes les actions a

$$Q(s,a) = R(s,a) + \gamma \sum_{s' \in S} T(s,a,s')V(s')$$

$$-V(s)=\max_{a}Q(s,a)$$

fin

fin

Et quand on connaît pas le modèle?

- valeur d'une action d'un état Q : S x A → IR

$$V^{star}(s) = \max_{a} Q^{star}(s, a)$$

Et quand on connaît pas le modèle?

- valeur d'une action d'un état Q : S x A → IR

$$V^{star}(s) = \max_{a} Q^{star}(s, a)$$

$$Q^{star}(s,a) = R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \max_{a'} Q^{star}(s',a')$$

Et quand on connaît pas le modèle?

- valeur d'une action d'un état Q : S x A → IR

$$V^{star}(s) = \max_{a} Q^{star}(s, a)$$

$$Q^{star}(s,a) = R(s,a) + \gamma \sum_{s' \in S} T(s,a,s') \max_{a'} Q^{star}(s',a')$$

THE Q-Learning rule:

$$Q(s,a)=Q(s,a)+\alpha(r+\gamma(\max_{a'}Q(s',a')-Q(s,a)))$$

La logique du jeu:

- S = l'état du jeu
- A = les actions possibles de l'agent
- R = à nous de le récompenser pour qu'il fasse ce que l'on veut
- T = c'est la logique du jeu ... mais on pas besoin de la connaître!

Pendant la phase d'exploration ...

Après un peu d'entraînement

Après 15 000 matchs d'entraînement ...!

Avantages et Limites

<u>Avantages</u>

Limites

- Pas besoin de coder la logique du jeu
 - Pas besoin de données
 - Très performant
 - Facile d'adapter la performance de l'agent
 - Extrêmement rapide une fois en jeu
 - Continue de s'adapter tout au long de sa vie

- Temps de pré-calculs très importants
- Espace mémoire complètement astronomique
- Demande un univers discret
- Doit pouvoir être simulé, peu adapté à la vie réelle

Vers une amélioration ...!

Exemple d'utilisations dans des jeux :

