Corrigé exercice 79

1. On commence par étudier les variations de f qui est définie sur $[-6; +\infty[$ et dérivable sur $]-6; +\infty[$. on a alors : $f'(x) = \frac{1}{2\sqrt{6+x}} > 0$ pour tout x appartenant à $]-6; +\infty[$. On obtient le tableau de variations suivant.

x	-6	$+\infty$
f'(x)	+	
f	0	+∞

Ce tableau de variations restreint à [0; 3] devient :

x	0 3
f'(x)	+
f	$\sqrt{6}$ 3

On en déduit que l'intervalle [0; 3] est stable par f.

Montrons par récurrence que (u_n) est croissante et majorée par 3. **Initialisation** : $u_0 = 0$ et $u_1 = \sqrt{6}$ donc on a bien $u_0 \le u_1 \le 3$.

La propriété est donc vraie au rang n = 0.

HR : Supposons qu'à rang k quelconque on ait $u_k \leq u_{k+1} \leq 3$.

Hérédité: Partant de $u_k \leq u_{k+1} \leq 3$. On applique alors la fonction f à cette inégalité. Il y a conservation de l'ordre puisque f est croissante sur [0;3]. On obtient donc $f(u_k) \leq f(u_{k+1}) \leq f(3)$, c'est-à-dire $u_{k+1} \leq u_{k+2} \leq 3$. Il y a donc hérédité.

Conclusion: La propriété est vraie pour n = 0 et elle est héréditaire. Par principe de récurrence, la suite (u_n) est croissante et majorée par 3.

- 2. La suite (u_n) est croissante et majorée, elle est donc convergente.
- 3. Cette suite converge donc vers un point fixe de f. Les solutions de f(x) = x sont les solutions de l'équation $x^2 x 6 = 0$ qui appartiennent à [0;3]. Les solutions sont -2 et 3. La suite (u_n) converge donc vers 3 puisque -2 n'appartient pas à [0;3].

Corrigé exercice 80

- 1. Il s'agit de la fonction définie par $f(x) = \frac{x^2}{5}$.
- 2. f est dérivable sur \mathbb{R} . On a $f'(x) = \frac{2x}{5}$, d'où le tableau de variations suivant.

x	$-\infty$		0		$+\infty$
f'(x)		_	0	+	
f	+∞		0		$+\infty$

- 3. L'équation f(x) = x implique $\frac{x^2}{5} = x \Leftrightarrow x(x-5) = 0$. Les solutions de cette équation sont x = 0 et x = 5.
- 4. Prouvons par récurrence que (u_n) est décroissante et positive, c'est-à-dire que, pour tout n, on a $0 \le u_{n+1} \le u_n$.

Initialisation: $u_0 = 4$ et $u_1 = 3,2$ donc on a bien $0 \le u_1 \le u_0$.

HR: supposons qu'au rang k on ait $0 \le u_{k+1} \le u_k$. **Hérédité** La fonction f est croissante sur $[0; +\infty[$ et f(0) = 0. On a donc $f(0) \le f(u_{k+1}) \le f(u_k)$, c'est-à-dire $0 \le u_{k+2} \le u_{k+1}$. Il y a donc bien hérédité.

Conclusion: La propriété est vraie au rang n = 0 et il y a hérédité. Par principe de récurrence, la propriété est vraie pour tout entier naturel n.

5. La suite est décroissante et minorée, elle est donc convergente. Comme $u_{n+1} = f(u_n)$ avec f continue et que $f([0; +\infty[) \subset [0; +\infty[$, la suite converge donc vers une solution de l'équation f(x) = x, c'est-à-dire 0 ou 5 d'après la question 3. Comme la suite est décroissante, elle est majorée par son premier terme $u_0 = 4$. La suite ne peut donc pas converger vers 5. On en déduit qu'elle converge vers 0.