International IOR Rectifier

IRLML2502GPbF

HEXFET® Power MOSFET

- Ultra Low On-Resistance
- N-Channel MOSFET
- SOT-23 Footprint
- Low Profile (<1.1mm)
- Available in Tape and Reel
- Fast Switching
- Lead-Free
- Halogen-Free

Description

These N-Channel MOSFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET® power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in battery and load management.

A thermally enhanced large pad leadframe has been incorporated into the standard SOT-23 package to produce a HEXFET Power MOSFET with the industry's smallest footprint. This package, dubbed the Micro3™, is ideal for applications where printed circuit board space is at a premium. The low profile (<1.1mm) of the Micro3 allows it to fit easily into extremely thin application environments such as portable electronics and PCMCIA cards. The thermal resistance and power dissipation are the best available.

Absolute Maximum Ratings

	Parameter	Max.	Units
V _{DS}	Drain- Source Voltage	20	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 4.5V	4.2	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 4.5V	3.4	Α
I _{DM}	Pulsed Drain Current ①	33	
P _D @T _A = 25°C	Power Dissipation	1.25	W
P _D @T _A = 70°C	Power Dissipation	0.8	l vv
	Linear Derating Factor	0.01	W/°C
V _{GS}	Gate-to-Source Voltage	± 12	V
T _J , T _{STG}	Junction and Storage Temperature Range	-55 to + 150	°C

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Maximum Junction-to-Ambient®	75	100	°C/W

Electrical Characteristics @ T_{.1} = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	20	_		٧	$V_{GS} = 0V, I_D = 250uA$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.01		V/°C	Reference to 25°C, I _D = 1.0mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		0.035	0.045	Ω	V _{GS} = 4.5V, I _D = 4.2A ②
			0.050	0.080		V _{GS} = 2.5V, I _D = 3.6A ②
V _{GS(th)}	Gate Threshold Voltage	0.60		1.2	٧	V V I 050A
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-3.2		mV/°C	$V_{DS} = V_{GS}, I_D = 250\mu A$
gfs	Forward Transconductance	5.8			S	$V_{DS} = 10V, I_{D} = 4.0A$
I _{DSS}	Drain-to-Source Leakage Current		_	1.0	υΑ	$V_{DS} = 16V, V_{GS} = 0V$
			_	25		$V_{DS} = 16V, V_{GS} = 0V, T_{J} = 70^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage		_	100	nA	V _{GS} = 12V
	Gate-to-Source Reverse Leakage		_	-100	IIA	V _{GS} = -12V
Q_g	Total Gate Charge		8.0	12		I _D = 4.0A
Q _{gs}	Gate-to-Source Charge		1.8	2.7	nC	V _{DS} = 10V
Q_{gd}	Gate-to-Drain ("Miller") Charge		1.7	2.6		V _{GS} = 5.0V ⊘
t _{d(on)}	Turn-On Delay Time		7.5			$V_{DD} = 10V$
t _r	Rise Time		10	—	no	I _D = 1.0A
t _{d(off)}	Turn-Off Delay Time		54		ns	$R_G = 6\Omega$
t _f	Fall Time		26			$R_D = 10\Omega$ ②
C _{iss}	Input Capacitance		740			$V_{GS} = 0V$
C _{oss}	Output Capacitance		90		pF	V _{DS} = 15V
C _{rss}	Reverse Transfer Capacitance		66			f = 1.0MHz

Source-Drain Rating and Characteristics

Courte-Drain Hatting and Characteristics						
	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			1.3		MOSFET symbol
	(Body Diode)			1.0	A	showing the
I _{SM}	Pulsed Source Current			33	_ ^	integral reverse
	(Body Diode) ①			33		p-n junction diode.
V_{SD}	Diode Forward Voltage			1.2	V	$T_J = 25^{\circ}C, I_S = 1.3A, V_{GS} = 0V \oslash$
t _{rr}	Reverse Recovery Time		16	24	ns	T _J = 25°C, I _F = 1.3A
Q _r	Reverse Recovery Charge		8.6	13	nC	di/dt = 100A/µs ⊘

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
- ② Pulse width \leq 300 μ s; duty cycle \leq 2%.

International TOR Rectifier

IRLML2502GPbF

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

4

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient

International **TOR** Rectifier

Fig 11. On-Resistance Vs. Gate Voltage

Fig 12. On-Resistance Vs. Drain Current

Fig 13. Threshold Voltage Vs. Temperature

Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS						
SYMBOL	MILLIM	ETERS	INCHES			
STIVIDOL	MIN	MAX	MIN	MAX		
Α	0.89	1.12	0.035	0.044		
A1	0.01	0.10	0.0004	0.004		
A2	0.88	1.02	0.035	0.040		
b	0.30	0.50	0.012	0.020		
С	0.08	0.20	0.003	0.008		
D	2.80	3.04	0.110	0.120		
E	2.10	2.64	0.083	0.104		
E1	1.20	1.40	0.047	0.055		
е	0.95	BSC	0.037	BSC		
e1	1.90	BSC	0.075	BSC		
L	0.40	0.60	0.016	0.024		
L1	0.54	REF	0.021	REF		
L2	0.25	BSC	0.010	BSC		
0	0	8	0	8		

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
 3. CONTROLLING DIMENSION MILLIMETER.
 ADATUM PLANE HIS LOCATED AT THE MOLD PARTING LINE.
 ADATUM PLANE HIS LOCATED AT THE MOLD PARTING LINE.
 AD LINES AND BY THE REPORT OF THE MOLD PROPERTY OF THE MOLD PROTRUSIONS OR INTERLEAD FLASH. MOLD PROTRUSIONS OR INTERLEAD FLASH. MOLD PROTRUSIONS OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM (0.010 INCH) FER SIDE.
 ADMENSION, IS THE LEAD LEASTH FOR SOLDERING TO A SUBSTRATE.
 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO 236 AB.

Micro3 (SOT-23/TO-236AB) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/ www.irf.com

International

TOR Rectifier

Micro3™ Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 101N. Sepulveda blvd, El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information, 09/2012