Attrition Assignment - Hitik Panchal

In [5]:

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
%matplotlib inline
import seaborn as sns
```

Reading the Data

In [4]:

```
gen_data=pd.read_csv('general_data.csv')
gen_data.head()
```

Out[4]:

	Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	EducationFie
0	51	No	Travel_Rarely	Sales	6	2	Life Scienc
1	31	Yes	Travel_Frequently	Research & Development	10	1	Life Scienc
2	32	No	Travel_Frequently	Research & Development	17	4	Oth
3	38	No	Non-Travel	Research & Development	2	5	Life Scienc
4	32	No	Travel_Rarely	Research & Development	10	1	Medic

5 rows × 24 columns

Features of the Data

In [6]:

```
gen_data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 4410 entries, 0 to 4409
Data columns (total 24 columns):

Data	columns (total 24 columns	5):	
#	Column	Non-Null Count	Dtype
0	Age	4410 non-null	int64
1	Attrition	4410 non-null	object
2	BusinessTravel	4410 non-null	object
3	Department	4410 non-null	object
4	DistanceFromHome	4410 non-null	int64
5	Education	4410 non-null	int64
6	EducationField	4410 non-null	object
7	EmployeeCount	4410 non-null	int64
8	EmployeeID	4410 non-null	int64
9	Gender	4410 non-null	object
10	JobLevel	4410 non-null	int64
11	JobRole	4410 non-null	object
12	MaritalStatus	4410 non-null	object
13	MonthlyIncome	4410 non-null	int64
14	NumCompaniesWorked	4391 non-null	float64
15	Over18	4410 non-null	object
16	PercentSalaryHike	4410 non-null	int64
17	StandardHours	4410 non-null	int64
18	StockOptionLevel	4410 non-null	int64
19	TotalWorkingYears	4401 non-null	float64
20	TrainingTimesLastYear	4410 non-null	int64
21	YearsAtCompany	4410 non-null	int64
22	YearsSinceLastPromotion	4410 non-null	int64
23	YearsWithCurrManager	4410 non-null	int64
dtype	es: float64(2), int64(14)	, object(8)	
memor	ry usage: 827.0+ KB		

In [8]:

gen_data.shape

Out[8]:

(4410, 24)

In [9]:

```
gen_data.describe()
```

Out[9]:

	Age	DistanceFromHome	Education	EmployeeCount	EmployeeID	JobLe
count	4410.000000	4410.000000	4410.000000	4410.0	4410.000000	4410.000
mean	36.923810	9.192517	2.912925	1.0	2205.500000	2.063
std	9.133301	8.105026	1.023933	0.0	1273.201673	1.106
min	18.000000	1.000000	1.000000	1.0	1.000000	1.000
25%	30.000000	2.000000	2.000000	1.0	1103.250000	1.000
50%	36.000000	7.000000	3.000000	1.0	2205.500000	2.000
75%	43.000000	14.000000	4.000000	1.0	3307.750000	3.000
max	60.000000	29.000000	5.000000	1.0	4410.000000	5.000

```
→
```

In [10]:

```
print(gen_data.columns)
```

Cleaning the Data

In [12]:

```
gen_data.isnull().any()
```

Out[12]:

False Age Attrition False BusinessTravel False False Department DistanceFromHome False Education False EducationField False EmployeeCount False **EmployeeID** False Gender False JobLevel False JobRole False MaritalStatus False MonthlyIncome False NumCompaniesWorked True Over18 False PercentSalaryHike False StandardHours False StockOptionLevel False TotalWorkingYears True TrainingTimesLastYear False YearsAtCompany False YearsSinceLastPromotion False YearsWithCurrManager False dtype: bool

In [13]:

gen_data.fillna(0 , inplace=True)

In [14]:

```
gen_data.isnull().any()
```

Out[14]:

False Age Attrition False BusinessTravel False False Department DistanceFromHome False Education False EducationField False EmployeeCount False **EmployeeID** False Gender False JobLevel False JobRole False MaritalStatus False MonthlyIncome False NumCompaniesWorked False Over18 False PercentSalaryHike False StandardHours False StockOptionLevel False TotalWorkingYears False TrainingTimesLastYear False YearsAtCompany False YearsSinceLastPromotion False YearsWithCurrManager False dtype: bool

In [15]:

gen_data.duplicated()

Out[15]:

0 False 1 False 2 False 3 False 4 False . . . 4405 False 4406 False 4407 False 4408 False 4409 False

Length: 4410, dtype: bool

In [17]:

gen_data.drop_duplicates()

Out[17]:

	Age	Attrition	BusinessTravel	Department	DistanceFromHome	Education	Educatio
0	51	No	Travel_Rarely	Sales	6	2	Life Sci
1	31	Yes	Travel_Frequently	Research & Development	10	1	Life Sci
2	32	No	Travel_Frequently	Research & Development	17	4	
3	38	No	Non-Travel	Research & Development	2	5	Life Sci
4	32	No	Travel_Rarely	Research & Development	10	1	N
4405	42	No	Travel_Rarely	Research & Development	5	4	N
4406	29	No	Travel_Rarely	Research & Development	2	4	N
4407	25	No	Travel_Rarely	Research & Development	25	2	Life Sci
4408	42	No	Travel_Rarely	Sales	18	2	N
4409	40	No	Travel_Rarely	Research & Development	28	3	N

4410 rows × 24 columns

In [20]:

gen_data1=gen_data[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompanies
Worked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtComp
any','YearsSinceLastPromotion', 'YearsWithCurrManager']].describe()
gen_data1

Out[20]:

	Age	DistanceFromHome	Education	MonthlyIncome	NumCompaniesWorked
count	4410.000000	4410.000000	4410.000000	4410.000000	4410.000000
mean	36.923810	9.192517	2.912925	65029.312925	2.683220
std	9.133301	8.105026	1.023933	47068.888559	2.499737
min	18.000000	1.000000	1.000000	10090.000000	0.000000
25%	30.000000	2.000000	2.000000	29110.000000	1.000000
50%	36.000000	7.000000	3.000000	49190.000000	2.000000
75%	43.000000	14.000000	4.000000	83800.000000	4.000000
max	60.000000	29.000000	5.000000	199990.000000	9.000000

In [21]:

gen_data1=gen_data[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompanies
Worked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtComp
any','YearsSinceLastPromotion', 'YearsWithCurrManager']].median()
gen_data1

Out[21]:

Age	36.0
DistanceFromHome	7.0
Education	3.0
MonthlyIncome	49190.0
NumCompaniesWorked	2.0
PercentSalaryHike	14.0
TotalWorkingYears	10.0
TrainingTimesLastYear	3.0
YearsAtCompany	5.0
YearsSinceLastPromotion	1.0
YearsWithCurrManager	3.0
dtype: float64	

In [22]:

```
gen_data1=gen_data[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompanies
Worked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtComp
any','YearsSinceLastPromotion', 'YearsWithCurrManager']].mode()
gen_data1
```

Out[22]:

	Age	DistanceFromHome	Education	MonthlyIncome	NumCompaniesWorked	PercentSalar
0	35	2	3	23420	1.0	_

→

In [23]:

gen_data1=gen_data[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompanies
Worked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtComp
any','YearsSinceLastPromotion', 'YearsWithCurrManager']].var()
gen_data1

Out[23]:

Age	8.341719e+01
DistanceFromHome	6.569144e+01
Education	1.048438e+00
MonthlyIncome	2.215480e+09
NumCompaniesWorked	6.248686e+00
PercentSalaryHike	1.338907e+01
TotalWorkingYears	6.069855e+01
TrainingTimesLastYear	1.661465e+00
YearsAtCompany	3.751728e+01
YearsSinceLastPromotion	1.037935e+01
YearsWithCurrManager	1.272582e+01
dtype: float64	

In [24]:

gen_data1=gen_data[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompanies
Worked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtComp
any','YearsSinceLastPromotion', 'YearsWithCurrManager']].skew()
gen_data1

Out[24]:

Age	0.413005
DistanceFromHome	0.957466
Education	-0.289484
MonthlyIncome	1.368884
NumCompaniesWorked	1.029836
PercentSalaryHike	0.820569
TotalWorkingYears	1.113489
TrainingTimesLastYear	0.552748
YearsAtCompany	1.763328
YearsSinceLastPromotion	1.982939
YearsWithCurrManager	0.832884
dtype: float64	

In [25]:

```
gen_data1=gen_data[['Age','DistanceFromHome','Education','MonthlyIncome', 'NumCompanies
Worked', 'PercentSalaryHike','TotalWorkingYears', 'TrainingTimesLastYear', 'YearsAtComp
any','YearsSinceLastPromotion', 'YearsWithCurrManager']].kurt()
gen_data1
```

Out[25]:

-0.405951
-0.227045
-0.560569
1.000232
0.015084
-0.302638
0.909606
0.491149
3.923864
3.601761
0.167949

Inference

- All the above variables show positive skewness; while Age & Mean_distance_from_home are leptokurtic and all other variables are platykurtic.
- The Mean_Monthly_Income's IQR is at 54K suggesting company wide attrition across all income bands.
- Mean age forms a near normal distribution with 13 years of IQR

Outliers

There's no regression found while plotting Age, MonthlyIncome, TotalWorkingYears, YearsAtCompany, etc., on a scatter plot

7/18/2020 Day 7 Assignment

In [26]:

```
box_plot=gen_data.Age
plt.boxplot(box_plot)
```

Out[26]:

Age is normally distributed without any outliers

7/18/2020 Day 7 Assignment

In [27]:

```
box_plot=gen_data.MonthlyIncome
plt.boxplot(box_plot)
```

Out[27]:

Monthly Income is Right skewed with several outliers

In [28]:

```
box_plot=gen_data.YearsAtCompany
plt.boxplot(box_plot)
```

Out[28]:

Years at company is also Right Skewed with several outliers observed.

In []: