Stop word removal as a function

PREREQUISITES

• functions (domain terminology)

This unit illustrates how one might define stop word removal as a mathematical function *del* (read *delete*).

First, we fix some alphabet Σ and let S be some finite set of symbols drawn from Σ . For every such S, we define a deletion function del_S that maps strings over Σ to strings over $\Sigma - S$. In mathematical notation, $del_S : \Sigma^* \to (\Sigma - S)^*$.

This only tells us the domain and co-domain of del_S , but not how exactly inputs and outputs are connected to each other. For any string of the form $u_1 \cdots u_n$ (where $n \ge 0$ and each u_i is a symbol drawn from Σ), we define

$$del_{S}(u_{1}\cdots u_{n}) := \begin{cases} \varepsilon & \text{if } u_{1}\cdots u_{n} = \varepsilon \\ del_{S}(u_{2}\cdots u_{n}) & \text{if } u_{1} \in S \\ u_{1}\cdot del_{S}(u_{2}\cdots u_{n}) & \text{otherwise} \end{cases}$$

Example 1.

Suppose $\Sigma := \{a, b\}$ and $S := \{a\}$. Let s := abba. Then $del_S(s)$ should yield bb. To this end, we compute $del_S(s)$ in a stepwise fashion:

$$del_{S}(s) = del_{S}(abba)$$

$$= del_{S}(bba)$$

$$= b \cdot del_{S}(ba)$$

$$= b \cdot b \cdot del_{S}(a)$$

$$= b \cdot b \cdot del_{S}(\varepsilon)$$

$$= b \cdot b \cdot \varepsilon$$

$$= b \cdot b$$

$$= bb$$

So $del_S(abba) = bb$, as expected.

As you can see, del_S is partially defined in terms of itself: the value of $del_S(abba)$ is inferred from the value of $del_S(bba)$. This is called a **recursive** definition. We can visualize the computation of this recursive function as below:

Every recursive function has one or more **base cases** and a **recursion step**. The base cases are those where the value of the function can be determined without recursion. For del, there is only the base case $del_S(\varepsilon) = \varepsilon$. Notice how in the graph above $del_S(\varepsilon)$ does not contain any further instances of del_S . Instead, we immediately get ε as the output. The recursion step defines the function in terms of the function itself. In the graph above, that's every instance of del_S which has another instance of del_S below it.

Exercise 1.

Here is another recursively defined function.

$$f(x,y) := \begin{cases} x & \text{if } y \le 1\\ x + f(x,y-1) & \text{otherwise} \end{cases}$$

What does this function do? Is there a commonly used name for it?

Exercise 2.

This continues the previous exercise. Draw a diagram like the one above for f(5,4).

EXERCISE 3.

Give a recursive definition of a function that takes two arguments: a string $u := u_1 \cdots u_n$ over alphabet Σ , and a set S of symbols drawn from Σ . The function returns 1 if at least one member of S occurs in u, and 0 otherwise.

Exercise 4.

This continues the previous exercise. Draw a diagram like the one above for

 $f(aaba, \{b\})$ and $f(aaba, \{c, d, e\})$.