1 Aufgabe A

Betrachten Sie die zweidimensionale Zufallsvariable $\bar{X}=(X_1,X_2)$ mit der gemeinsamen Dichtefunktion

$$f(x_1, x_2) = \frac{1}{2\pi} \cdot e^{-0.5(x_1^2 + x_2^2)} I_{(-\infty, \infty)}(x_1) I_{(-\infty, \infty)}(x_2)$$

- a1) Welcher Verteilung folgen X_1 und X_2 jeweils? Prüfen Sie zudem, ob X_1 und X_2 stochastisch unabhängig sind. (6 Punkte)
- a2) Wie lautet die Verteilung von $\omega X_1 + (1 \omega)X_2$ mit $\omega \in (0,1)$? Geben Sie $Pr(\omega X_1 + (1 \omega)X_2 < 1)$ mit Hilfe der Verteilungsfunktion der Standardnormalverteilung, d.h. $\Phi(\cdot)$ an. (6 Punkte)
- a3) Geben Sie die momenterzeugende Funktion des Produkts X_1, X_2 an. (6 Punkte)

2 Aufgabe B

Es sei $U_1, U_2, ..., U_n$ eine Folge von stochastisch unabhängigen Zufallsvariablen aus einer Normalverteilung mit

$$f(u;\mu,\sigma^2) = \frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{1}{2\sigma^2}(u-\mu)^2}$$

Ferner sei \mathbb{Z}_n das arithmetische Mittel dieser Zufallsvariablen, d.h.

$$Z_n = \frac{1}{n} \sum_{i=1}^n U_i$$

- b1) Zeigen Sie, dass für Z_n Konvergenz im quadratischen Mittel gilt. Geben Sie den Grenzwert an. (4 Punkte)
- b2) Ermitteln Sie die asymptotische Verteilung von Z_n . (4 Punkte)
- b3) Ermitteln Sie die asymptotische Verteilung von $Y_n = e^{(Z_n)}$. (4 Punkte)

3 Aufgabe C

Sei X_1, X_2, X_3 eine unabhängig und identisch verteilte Zufallsstichprobe mit

$$f(x) = x^{-2}I_{(1,\infty)}(x)$$

- c1) Geben Sie die Verteilungsfunktion F(x) an. (6 Punkte)
- c2) Sei $Y = min(X_1, X_2, X_3)$. Bestimmen Sie die Dichtefunktion von Y. (6 Punkte)
- c3) Überprüfen Sie, ob $E[X_1]$ und E[Y] jeweils existieren und geben Sie gegebenfalls die jeweiligen Erwartungswerte an. (6 Punkte)

4 Aufgabe D

Seien X_1 and X_2 zwei Zufallsvariablen mit

$$f(x_1) = e^{-x_1} I_{(0,\infty)}(x_1)$$

$$f(x_2|x_1) = x_1 \cdot e^{-x_1 \cdot x_2} I_{(0,\infty)}(x_1) I_{(0,\infty)}(x_2)$$

- d
1) Geben Sie die gemeinsame Dichtefunktion von X_1 und
 X_2 an. $(\mbox{\it 4 Punkte})$
- d2) Leiten Sie die gemeinsame Dichtefunktion von

$$Y_1 = e^{-X_1}$$
 und $Y_2 = e^{-X_1 \cdot X_2}$

her. Geben Sie dazu zunächst die Umkehrfunktion an
. $(8\ Punkte)$