Grading Rubric for Project 1

Team members:	
---------------	--

Total possible points: 100

- * Please do not include your names in the source files.
- * No collaboration between different teams is allowed.

Project structure:

1. [/4] All files submitted:

system_call.c context_switch.c makefile report.pdf

- * Make sure you test it on the C4 lab linux machines before you submit!!
- 2. [/4] Makefile has the following targets:
 - a. *make* compiles the source code
 - b. runsc runs the system calls test
 - c. runcs runs the context switch test
 - d. clean removes generated files

At a high-level, programs do what they are supposed to do:

- 3. [/4] source code compiles and runs in the C4 lab without errors
- 4. [/10] system call.c measures the time of a context switch
- 5. [/10] context_switch.c measures the time of a context switch
- 6. [/4] tests are non-interactive (should not ask for user-input)
- 7. [/4] code is organized and commented

Source file system_call.c:

- 8. [/8] uses either gettimeofday, clock_gettime, rdtsc, or some other valid method to measure time
- 9. [/4] invokes a system call correctly
 - * E.g. if you decide to measure the time of read(), you will also need to use open() and close().
- 10. [/8] calculates the average time of a system call using a sufficiently large number of samples

* Pay special attention to time units, data types, and removing unnecessary code between measurements.

Source file context_switch.c:

- 11. [/8] forces a context switch using pipes or some other valid method
- 12. [/4] sets the machine to use a single processor
- 13. [/8] calculates the average time of a context switch using a sufficiently large number of samples

The report.pdf:

- 1 [/2] introduces the problem
- * Describe what you are trying to do.
 - 2 [/2] motivates the reader
- * Why is the problem important?
 - 3 [/4] describes your approach
 - 4 [/4] shows code output and explains results
 - 5 [/6] mentions limitations and challenges
- * Consider issues such as: accuracy, variability of context switch times, issues on multiprocessor architectures, etc.
 - 6 [/2] concludes with summary and final thoughts
- *One paragraph is enough.