JOURNEY การทำงานกับข้อมูลชุดดังกล่าว

1. กำหนดคำสั่งที่เกี่ยวข้องกับการทำงาน โดย import คำสั่ง เช่น pandas, seaborn, numpy, matplotlib เป็นต้น

Mini-Project >> ทิศทางราคาค่าไฟฟ้าและปัจจัยที่เกี่ยวข้อง

2. ดึงข้อมูล dataset ค่า Ft จากไฟล์ชื่อ "Ft.csv" เพื่อทำการวิเคราะห์ ซึ่งเป็นรายละเอียดค่า Ft (Unit: Strang/Kwh) ตั้งแต่ปี 2002-2022 แต่เมื่อเขียน code เพื่ออ่านข้อมูล เกิด UnicodeDecodeError ตาม ภาพข้างต้น

UnicodeDecodeError: 'utf-8' codec can't decode byte 0xa0 in position 86: invalid start byte

จึงแก้ไขด้วยการกำหนด encoding= 'unicode_escape'

```
In [2]: ft = pd.read_csv('Ft.csv', header= 0,
                                                  encoding= 'unicode_escape')
             ft.info()
             ft
             <class 'pandas.core.frame.DataFrame'>
             RangeIndex: 21 entries, 0 to 20
             Data columns (total 13 columns):
             # Column Non-Null Count Dtype
             0 Year 21 non-null
1 Jan 21 non-null
2 Feb 21 non-null
3 Mar 21 non-null
4 Apr 21 non-null
5 May 21 non-null
6 June 21 non-null
7 July 21 non-null
8 Aug 21 non-null
9 Sep 21 non-null
10 Oct 21 non-null
11 Nov 21 non-null
12 Dec 21 non-null
dtypes: float64(4), int64(1
                                                          int64
                                                          float64
                                                         float64
                                                        float64
object
                                                         object
                                                         obiect
                                                         object
                                                          object
                                                          object
                                                          object
             dtypes: float64(4), int64(1), object(8)
             memory usage: 2.3+ KB
```

3. ทำการ Cleansing data และจัดระเบียบตารางข้อมูลด้วยการ Melt Column รวมทั้ง กำหนดค่า แสดงผลที่จำเป็น โดยเลือก Index Column : Year และ Value : Jan - Dec

4. นำข้อมูลที่เหลือมา Plot กราฟเส้น โดยเลือกค่าเดือน ม.ค.(Jan) และ ต.ค. (Oct) ซึ่งเป็นตัวแทนข้อมูล ในช่วงต้นปีและปลายปีมา Plot เนื่องจาก ค่า Ft มีแนวโน้มเท่ากันทุกๆ 4 เดือนในทุกปี จากตัวอย่าง raw data ปี 2022 ข้างต้น

	Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec
(2022	1.39	1.39	1.39	1.39	24.77	24.77	24.77	24.77	93.43	93.43	93.43	93.43

จะทำให้ได้กราฟเทียบเดือน ม.ค. และ ต.ค. ดังนี้

5. เพิ่มเติมการอ่านข้อมูล dataset จากไฟล์ชื่อ "การใช้ไฟฟ้าของทั้งประเทศ (จำแนกตามสาขา)"

การใช้ไฟฟ้าของทั้งประเทศ (จำแนกตาม Sector)

In [8]:			y_Usage y_Usage	= pd.read_csv('การใ	ช่ไฟฟ้าของทั้ง:	ประเท
Out[8]:		Year	Month	Sector	Quantity	UNIT
	0	2002	January	Residential	1524.085177	GWh
	1	2002	February	Residential	1597.466131	GWh
	2	2002	March	Residential	1842.061202	GWh
	3	2002	April	Residential	2048.720372	GWh
	4	2002	May	Residential	1989.872169	GWh
	1724	2022	July	Industrial	7635.906273	GWh
	1725	2022	July	Government & Non-Profit	18.779860	GWh
	1726	2022	July	Agriculture	29.637428	GWh
	1727	2022	July	Other	364.262411	GWh
	4700	2022	Ir da e	From of Observe	226 602602	OWN

6. นำข้อมูลการใช้ไฟฟ้ามา Groupby ค่า 'Year', 'Month', 'Sector' กับ 'Quantity' โดยแสดงผลในรูปแบบ ค่าเฉลี่ย

7. ทำการจัดรูปแบบตารางใหม่ด้วยการใช้ Pivot Table

8. และทำการ Plot Heatmap เพื่อแสดงความสัมพันธ์ระหว่าง Year และ 7 Sectors เช่น ภาค เกษตรกรรม (Agriculture), ภาคธุรกิจ (Business), ภาคพิเศษ (Free of Charge), หน่วยงานภาครัฐและ Non-Profit (Government & Non-Profit), ภาคอุตสาหกรรม (Industrial), ที่พักอาศัย (Residential) และอื่นๆ (Other) เป็นต้น

9. Merge และ Aggregate dataset "Ft" และ "การใช้ไฟฟ้าของทั้งประเทศ (จำแนกตามสาขา)" ด้วย Column Year เพื่อหาความสัมพันธ์ของทั้ง 2 datasets

	Year	Jan	Feb	Mar	Apr	May	June	July	Aug	Sep	Oct	Nov	Dec	Agriculture	Business		Government & Non-Profit	Inc
0	2022	1.39	1.39	1.39	1.39	24.77	24.77	24.77	24.77	93.43	93.43	93.43	93.43	35.868516	3806.570659	328.220005	18.039581	7448
1	2021	-15.32	-15.32	-15.32	-15.32	-15.32	-15.32	-15.32	-15.32	-15.32	-15.32	-15.32	-15.32	33.162915	3460.739000	316.148993	16.712601	7202
2	2020	-11.60	-11.60	-11.60	-11.60	-11.60	-11.60	-11.60	-11.60	-12.43	-12.43	-12.43	-12.43	34.737636	3662.484869	298.828108	16.987290	6846
3	2019	-11.60	-11.60	-11.60	-11.60	-11.6	-11.60	-11.60	-11.60	-11.60	-11.60	-11.60	-11.60	38.985509	4094.026985	284.153418	17.581790	7175
4	2018	-15.90	-15.90	-15.90	-15.90	-15.90	-15.90	-15.90	-15.90	-15.90	-15.90	-15.90	-15.90	30.440770	3896.966927	271.242715	17.025103	7319
5	2017	-37.29	-37.29	-37.29	-37.29	-24.77	-24.77	-24.77	-24.77	-15.90	-15.9	-15.90	-15.90	24.852801	3758.335222	261.232127	16.486802	7314
6	2016	-4.80	-4.80	-4.80	-4.80	-33.29	-33.29	-33.29	-33.29	-33.29	-33.29	-33.29	-33.29	22.276942	3719.914985	246.887949	16.765389	7239
7	2015	58.96	58.96	58.96	58.96	49.61	49.61	49.61	49.61	46.38	46.38	46.38	46.38	32.223202	3538.806859	228.616534	14.916272	6998
8	2014	59.00	59.00	59.00	59.00	69	69	69	69	69	69	69	69	34.528433	3335.489500	215.193333	12.653881	6885
9	2013	52.04	52.04	52.04	52.04	46.92	46.92	46.92	46.92	54	54	54	54	29.468391	3239.457702	198.236785	12.404053	6765

10. จากนั้นทำการ Drop Column Sectors ย่อย หลังจากทำการ Sum Sectors เป็นค่ารวมเรียบร้อยแล้ว

In [14]: df_merge2 = df_merge.drop(columns=['Agriculture', 'Business', 'Free of Charge', 'Government & Non-Profit', 'Industrial' Out[14]: Year July Aug 0 2022 1.39 1.39 1.39 24.77 24.77 93.43 93.43 93.43 93.43 16598.320157 -15.32 -15.32 -15.32 -15.32 15872 337996 1 2021 -15.32 -15.32 -15.32 -15.32 -15.32 -15.32 -15.32 -15.32 3 2019 -11 60 -11 60 -11 60 -11 60 -11.6 -11.60 -11.60 -11 60 -11 60 -11.60 -11 60 -11 60 4 2018 -15 90 -15 90 -15 90 -15 90 -15 90 -15 90 -15 90 -15 90 -15 90 -15 90 -15 90 -15 90 15652 654930 6 2016 -4 80 -4 80 -4 80 -4 80 -33 29 -33 29 -33 29 -33 29 -33 29 -33 29 -33 29 -33 29 7 2015 58.96 49.61 8 2014 59.00 59.00 59.00 59.00 69 69 69 69 69 69 69 14057 115486 9 2013 52 04 52 04 46 92 46 92 46.92 46 92 54 54 54 13695 092895 52 04 52 04 54 0.00 0.00 30 48 48 48 10 2012 -6 -6 -6 -6 -6 12404 624093 11 2011 86 88 86 88 86 88 86 88 95.81 95.81 -6 **12** 2010 92.55 92.55 92.55 92.55 92.55 92.55 13 2009 92.55 92.55 92.55 92.55 92.55 92.55 92.55 92.55 68.86 68.86 62.85 11293.357243 14 2008 66.11 68.86 68.86 62.85 62.85 62.85

และเริ่มทำการ Plot กราฟ เทียบเดือน ม.ค. และ ต.ค. เช่นเดียวกับกราฟแรกที่ทำผ่านมา เพื่อหา ความสัมพันธ์ของค่า Ft และ Sum Sectors ในแต่ละปี (Year)

11. ทำการดึงข้อมูล datasets เข้ามาเพิ่ม จากไฟล์ชื่อ "Power Generation by Type of Fuel.csv" และ "Import of Electricity.csv" ซึ่งนำมาจัดระเบียบข้อมูลด้วยการ Fillna(0), drop, sort_values และ การเลือก row ด้วยการใช้ .loc เป็นต้น โดยระหว่างทำการ Plot กราฟก็จะเจอปัญหา Error ด้านต่างๆ เช่น การเลือกใช้กราฟที่เหมาะสมในการแสดงผลข้อมูล เนื่องจากกราฟหลายประเภทที่นำมาแสดงผลไม่ เหมาะสม อ่านยาก ตัวแปรไม่แสดงผล และเกิดการทับซ้อนของข้อมูลในการแสดงผล เป็นต้น ดังนี้

```
~\anaconda3\lib\site-packages\seaborn\regression.py in update_datalim(data, x, y, ax, **kws)
   628
   629
           def update_datalim(data, x, y, ax, **kws):
--> 630
             xys = np.asarray(data[[x, y]]).astype(float)
   631
               ax.update_datalim(xys, updatey=False)
   632
              ax.autoscale_view(scaley=False)
ValueError: could not convert string to float: '39,939.96'
           380
                       with np.errstate(all="ignore"):
        --> 381
                            result = func(self.values, **kwargs)
           382
                        return self._split_op_result(result)
        ~\anaconda3\lib\site-packages\pandas\core\ops\array_ops.py in comparison_op(left, right, op)
           282
           283
                    elif is_object_dtype(lvalues.dtype) or isinstance(rvalues, str):
        --> 284
                        res_values = comp_method_OBJECT_ARRAY(op, lvalues, rvalues)
           285
           286
        ~\anaconda3\lib\site-packages\pandas\core\ops\array_ops.py in comp_method_OBJECT_ARRAY(op, x, y)
            71
                       result = libops.vec_compare(x.ravel(), y.ravel(), op)
            72
        ---> 73
                       result = libops.scalar compare(x.ravel(), y, op)
            74
                    return result.reshape(x.shape)
        ~\anaconda3\lib\site-packages\pandas\ libs\ops.pyx in pandas. libs.ops.scalar compare()
```

ก่อนที่จะทำการแก้ไขด้วยการลอง Plot กราฟรูปแบบใหม่ๆ ให้ได้ความสัมพันธ์ที่สอดคล้องและเข้าใจง่ายยิ่งขึ้นไป

TypeError: '<' not supported between instances of 'str' and 'int'

