Course Code	18CSE453T	Course Name	NETWORK ROUTING ALGORITHMS	Course Category	Ε	Professional Elective	L 3	T 0	P 0	C 3	l
		l		l .		-11					

Pre-requisite Courses 18CSC30.	צו	Co-requisite N	Nil	Progressive Courses	
Course Offering Departmen	t Computer Science and	Engineering	Data Book / Codes/Standards	Nil	

				_															
Course Learning Rationale (CLR): The purpose of learning this course is to:			ing						Prog	ram l	Learn	ing O	utco	mes (I	PLO)				
CLR-1: Understand how addressing and routing are tied together and different architectural components are related to routing.	1	2	3		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
CLR-2: Gain knowledge on the need for routers, its functionality and different architectures.																			
CLR-3: Understand fundamental basis of various algorithms in centralized and distributed point of view.	(mo	8	%		e e								논		.	.			
CLR-4: Apply the knowledge of IP addressing in various routing algorithms.	(Bloo	_)tue		edç		lei		Ф				No.		ance				
CLR-5: Understand the various types of key routing protocols used in wireless networks.	d (E	oficienc	Attainment(%)		MO	Sis	velopment	Ľ.	sage	ė			TeamWork	_	inar	ing.			
CLR-6: Gain knowledge on past experiences and prepare for next generation networks and routing	hinking	ij.	ıttai		ក	alys	Vel	esign,	ñ	를	±ing Eing			atio		arı			
	_ ≟	ctedPro			l Ë	ΑN	Ĝ	خ ٽِ	T00	ŞC	mer		9 R	nic	√gt.	Je			
Course Learning Outcomes (CLO): At the end of this course, learners will be able to:	LevelofT	Expecte	Expected		EngineeringKnowledge	ProblemAnalysis	Design&De	Analysis,D Research	용	Society&Culture	Environment. Sustainability	Ethics	Individual &	Communication	ProjectMgt.&F	LifeLongLearning	PS0-1	PS0-2	PS0-3
CLO-1: Acquire the knowledge of how data transfer happens in conventional networks	2	80	85		Н	Μ	-	-	L	-	-	-	-	М	-	Н		-	-
CLO-2: Comprehend Router Architectures and IP Address Lookup Algorithms	2	75	80		Н	Н	М	М	L	-	-	-	-	-	L	Н	-	-	-
CLO-3: Compare routing techniques and protocols	2	85	80		Н	Н	L	М	М	-	-	-	М	-	L	Н	-	-	-
CLO-4: Examine how different dimensions of routing differ for different types of network	2	80	75		Н	Н	Н	Н	Н	L	-	М	М	-	-	Н	-	-	-
CLO-5: Apply various routing algorithms in wireless network scenario.	2	75	85		Н	Н	Н	Н	М	•	-	-	М	-		Н	-	-	-
CLO-6: Understand various routing paradigms in next generation	2	80	85		Н	Н	Н	M-	Μ	L	-	-	-	-	-	Н	-	- 1	- 1

Durati	on (hour)	8	9	9	9	10
S-1		Network Routing: An Introduction to Routing algorithms	Router Architectures: Basic Forwarding Functions	Bellman-Ford algorithm	Routers, Networks, and Routing Information: Some Basics	Routing in Wireless Networks: Internet based mobile ad-hoc networking
3-1	SLO-2	Functions of Router	Routing table versus forwarding table	Distance Vector Approach	Routing Table, Communication of Routing Information	Classifications of routing protocols
S-2	SLO-1	IP addressing- Classful Addressing	Types of router	Dijkstra's Algorithm	Routing Information Protocol, Version 1 (RIPv1)	Table-Driven Routing Protocols: Destination Sequenced Distance-Vector Routing Protocol
	SLO-2	Classless Addressing	Elements of Router	Comparison of Bellman-Ford and Distance Vector Approach	Routing Information Protocol, Version 2 (RIPv2)	Cluster-Head Gateway Switch Routing Protocol
S-3		Protocol architecture stack – OSI Reference Model	Packet Flow	Shortest Path Computation with Candidate Path Caching	Interior Gateway Routing Protocol (IGRP)	On-Demand Routing Protocols: Dynamic Source Routing Protocol
3-3	SLO-2	IP Protocol Stack Architecture	Packet Processing	Widest Path Computation with Candidate Path Caching	Enhanced Interior Gateway Routing Protocol (EIGRP), Route Redistribution	Ad Hoc On-Demand Distance-Vector Routing Protocol
S-4	SLO-1	Network Topology Architecture	Shared CPU architecture, Shared forwarding Engine Architecture	Widest Path Algorithm	OSPF: Protocol Features	Hybrid Routing Protocols: Core Extraction Distributed Ad Hoc Routing Protocol
3-4	SLO-2	Network Management Architecture	Shared Nothing Architectures, Clustered Architectures	k-Shortest Paths Algorithm	OSPF Packet Format	Zone Routing Protocol
S-5	SL0-1	Public Switched Telephone Network	Impact of Addressing on lookup	Routing Protocol, Routing Algorithm, and Routing Table	Integrated IS-IS	Routing Protocols With Efficient Flooding Mechanisms : Preferred Link-Based Routing Protocols
			Longest Prefix Matching	Routing Information Representation and Protocol Messages	Similarities and Differences Between IS-IS and OSPF	Optimized Link State Routing
S-6	SLO-1	Communication Technologies	Naïve Algorithms, Binary Tries	Distance Vector Routing Protocol	IP Traffic Engineering: Traffic, Stochasticity, Delay, and Utilization	Hierarchical Routing Protocols
					Applications' View	Power-Aware Routing Protocols

S-7	SLO-1	Standard Committees – International Telecommunication Union	Multi-bit Tries	Link State Routing Protocol	Traffic Engineering: An Architectural Framework	Toward Next Generation Routing:Quality of
3-1	SLO-2	Internet Engineering Task Force, MFA Forum Compressing multi-bit strides			Traffic Engineering: A Four-Node Illustration	Service Routing
S-8	SLO-1	Type Length Value	Search By Length Algorithms		BGP Operations, configuration, faces of BGP	Multiprotocol Label Switching(MPLS)
	SLO-2	Network Protocol Analyzer	Search By value approaches		BGP Decision Process	Generalized MPLS
S-9	SLO-1		Hardware Algorithms	INETWORK FIOW	internal BGP Scalability	Routing and Traffic Engineering with MPLS
3-7	SLO-2		Comparing Different Approaches	Multicommodity Network Flow: Three-Node Example	Protocol Message Format	Routing and Trainc Engineering with Wir LS
S-10	SLO-1 SLO-2					PSTN Call Routing Using the Interne

	1.	D.Medhi and K.Ramasamy, Network Routing: Algorithms, Protocols and Architectures, MorganKaufmann Publishers, First Edition2007.			
Learning Resources	2. 3.	C.Siva Ram Murthy and B.S.Manoj, Adhoc Wireless Networks, Pearson Education, 2007. D.Medhi and K.Ramasamy, Network Routing: Algorithms, Protocols and Architectures, Morgan Kaufmann Publishers, Second Edition 2017.	<i>4. 5.</i>	SteenStrubM,RoutinginCommunicationnetworks,PrenticeHallInternational,1995. InternetworkingTechnologiesHandbook,Inc.CiscoSystems,ILSGCisco	

Learning Ass	sessment													
	Bloom's Continuous Learning Assessment (50% weightage) Final Examinati													
	Level of Thinking	CLA -	1 (10%)	CLA – :	2 (15%)	CLA -	3 (15%)	CLA – 4	(10%)#	FIIIai Examinado	r (50% weightage)			
	Level of Thirtking	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice	Theory	Practice			
Level 1	Remember Understand	40 %	-	30 %	-	30 %	-	30 %	-	30%	-			
Level 2	Apply Analyze	40 %	-	40 %	-	40 %	-	40 %	-	40%	-			
Level 3	Evaluate Create	20 %	-	30 %	-	30 %	-	30 %	-	30%	-			
	Total	100	0 %	100	0 %	10	0 %	100) %	10	0 %			

[#] CLA – 4 can be from any combination of these: Assignments, Seminars, Tech Talks, Mini-Projects, Case-Studies, Self-Study, MOOCs, Certifications, Conf. Paper etc.,

Course Designers			
Experts from Industry	Experts from Higher Technical Institutions	Internal Ex	perts
Mr.T.Bernald , Senior Consulatant , TCS Chennai. <u>bernald.t@tcs.com</u> (waiting for approval)	Dr. S.Anbuchelian, Anna University. anbuchelian@annauniv.edu	1.	Dr.FemildaJosephin J S,SRMIST
		2.	Mr.RajeshBabu,SRMIST
		3.	Mr. J.Godwin,SRMIST