# **Nuclear Fuel Performance**

NE-533

Spring 2025

#### **Last Time**

- Fission gas release
  - experiments fall into post-irradiation annealing, or in-pile
- Showed Booth model equations for post-irradiation annealing and in-pile release
- Forsberg-Massih 2-stage FGR model
- Three components of diffusion
  - intrinsic, RED, RDD
- Swelling/dimensional change
  - densification, thermal expansion, solid/gas fission product swelling, creep

# FUEL SWELLING/DIMENSIONAL CHANGE CONT...

## Creep

- Creep is a general mechanism for plastic deformation that occurs over time when σ
  < σ<sub>ν</sub>
- Consider a heated metal beam so it expands some distance dx
- We then fix it between two walls and let it cool down
- Because  $\sigma < \sigma_v$ , that stress remains constant
- In creep, defect diffusion is induced by the stress to cause permanent deformation and reduce the stress
- Therefore, creep
  - Occurs over time
  - Increases with increasing number of diffusing defects
    - High temperature (thermal creep)
    - Irradiation (irradiation enhanced thermal creep)



x+dx

 $\sigma = E \epsilon$ 

#### Creep

General creep equation:

$$\dot{\epsilon} = \frac{C\sigma^m}{D_{gr}^b} e^{\frac{-Q}{k_b T}}$$

- Creep can be caused by various microstructural mechanisms
- Bulk Diffusion (Nabarro-Herring creep)
  - Atoms diffuse (high T), causing grains to elongate along the stress axis
  - Q = Q(self diffusion), m = 1, and b = 2
- Grain boundary diffusion (Coble creep)
  - Atoms diffuse along grain boundaries to elongate the grains along the stress axis
  - Q = Q(grain boundary diffusion), m = 1, and b = 3
- Dislocation creep (power law creep)
  - Dislocations glide under a high stress
  - Dislocations climb due to defects to avoid obstacles
  - Q = Q(self diffusion), m = 4-6, and b = 0

# Different creep mechanisms are active for different combinations of stress and temperature



#### The behavior of creep changes in irradiated materials



## **Irradiation and Creep**

- Irradiation accelerates creep, causing it to be significant at lower temperatures
- Irradiation typically has little effect on diffusional creep (but can increase defect concentrations)
- Primary impact is accelerating dislocation creep in structural/cladding materials
- The dislocation creep rate can be written as  $\dot{\varepsilon} = \rho_d^m b \mathbf{v}_d$ 
  - $-\rho_d^m$  is the density of mobile dislocations
  - b is the burgers vector
  - v<sub>d</sub> is the dislocation velocity
- Gliding dislocations quickly get pinned by obstacles
- As the dislocations absorb defects created by irradiation, they climb to different slip planes to avoid the obstacles
- More interstitials are absorbed than vacancies due to the higher sink strength for interstitials

## **Fuel Creep**

- Like other materials, the fuel also undergoes creep
- The fuel creep (In UO2) is a combination of diffusion creep and irradiation creep
- It is expected that fuel creep plays a major role in dimensional change in metallic fuels, largely via N-H and Coble creep, but still unproven experimentally and no good creep models exist for metallic fuels



#### **Fracture**

- UO<sub>2</sub> pellets fracture during changes in temperature due to large thermal stresses
- Fracture results in:
  - Increased gap reduction
  - Reduced thermal conductivity
  - Increased avenues for fission gas release
- Fracture has been typically modeled in two ways:
  - Empirical relocation model that is a function of burnup
  - Semi-empirical smeared cracking model
- Modern methods provide means of modeling discrete cracks





- Radial cracks partially penetrate the pellet during temperature increase
- Full cracking occurs when the temperature decreases

#### **Fracture**

- The fracture behavior of the fuel is fairly complicated
- Fracture strength varies with grain size (G)
  - $-\sigma_{frac} = G^{-m}\sigma_{frac, ref}$ , m = 0.04 0.05 (vs. m ~ 0.5 for metal)
  - Increasing grain size from 10  $\mu m$  to 100  $\mu m$  reduces  $\sigma_{\text{frac}}$  by ~10%
- Ductility transition temperature is lower inreactor than in thermal tests
- Fracture strength is ~10 × higher in compression than in tension
- Load-deformation behavior strongly affected by creep under in-reactor conditions



#### **Summary**

- Many materials models for fuel are empirical and correlated to burnup
- Fuel pellets change shape due to
  - Thermal expansion (increase in volume)
  - Densification (decrease in volume)
  - Swelling (increase in volume)
  - Creep (volume stays the same)
- Fracture also decreases the gap, as fractures pieces shift outward

# ZIRCONIUM CLADDING

# Cladding

- The purpose of the cladding is to:
  - Hold the pellets together so that coolant can freely flow past
  - Transport heat from fuel to the coolant
  - Contain fission products
  - Contain fuel fragments
- We would also prefer if the cladding had little to no impact on the neutron transport in the reactor





# Why Zirconium alloys?

#### **Benefits**

- Low neutron cross section
- Corrosion resistance in 300°C water
- Resistance to void swelling
- Adequate mechanical properties
- Good thermal conductivity
- Affordable cost
- Available in large quantities

#### **Problems**

- Corrosion under high-temperature steam
- Hydride embrittlement
- Anisotropic characteristics lead to creep and growth

#### **Zirconium**

- Pure zirconium was not acceptable due to its oxidation behavior
- Oxygen with water reacted to form an oxide layer
- The oxide layer is brittle and flakes off, allowing more oxidation to occur
- Zr alloys were developed to improve corrosion resistance



# **Commercial Zr Alloys in PWRs**

| Alloy                                      | Sn %    | Nb %    | Fe %       | Cr %      | Ni % | Ο%        |
|--------------------------------------------|---------|---------|------------|-----------|------|-----------|
| PWRs (structural components and fuel rods) |         |         |            |           |      |           |
| Zircaloy-4 (SRA)                           | 1.2-1.7 | +       | 0.18-0.24  | 0.07-0.13 | -    | 0.1-0.14  |
| ZIRLO (SRA)                                | 1       | 1       | 0.1        | -         | -    | 0.12      |
| Optimized<br>ZIRLO (pRXA)                  | 0.7     | 1       | 0.1        | -         | -    | 0.12      |
| M5 (RXA)                                   | -       | 0.8-1.2 | 0.015-0.06 | -         | -    | 0.09-0.12 |
| HPA-45<br>(SRA/RXA)                        | 0.6     | -       | Fe+V       | -         | -    | 0.12      |
| NDA (SRA)                                  | 1       | 0.1     | 0.3        | 0.2       |      | 0.12      |
| MDA (SRA)                                  | 0.8     | 0.5     | 0.2        | 0.1       |      | 0.12      |

# **Alloying Elements**

- The alloying elements impact the microstructure of the material
- The intermetallic precipitates significantly improve the oxidation behavior
- In Zircaloy 2, the precipitates are
  - Zr(Cr, Fe)<sub>2</sub>
  - $-Zr_2(Ni, Fe)$
- In Zircaloy 4, the precipitates are
  - Zr(Cr, Fe)<sub>2</sub>
- Phosphides (Zr<sub>3</sub>P) and silicides (Zr<sub>3</sub>Si) are also occasionally found
- The precipitate distribution, size, morphology, and composition all impact the properties of the material



#### **Zirconium Phases**

- The α-Zr phase has a hexagonal-closepacked (HCP) structure
  - At temperatures below about 863°C
  - Has the most desirable properties
- The β-Zr phase has a body-centered cubic (BCC) structure
  - We try to avoid this phase







#### **Zr Tube Fabrication**

- The cladding tubes are fabricated using various processes that severely deform the material
- The severe plastic deformation causes significant dislocation hardening, that can make the tube material too brittle
- Plastic deformation along slip planes results in reorientation of the grains
- The properties of the material are controlled by heat treatment
- Raising the temperature, but below 863°C, anneals the sample to reduce cold work: SRA
- Raising the temperature above 863°C changes to the  $\beta$  phase. They then quench the sample to create a random texture in the  $\alpha$  phase: RXA or pRXA



FIG. 48. Strain states for various types of fabrication of Zircaloy-2 [109].

# Zr alloy microstructures

Fully recrystallized after quench



Stress-relieved microstructure



## **Zirconium Creep and Growth**

- The cladding undergoes a very large amount of irradiation during its life, the main effects are:
  - Interstitial loops form on prismatic planes
  - Later in the reactor exposure, vacancy loops form on the basal plane
- The overall number of displacements to the cladding can be calculated with the NRT model to be ~ 8 x 10<sup>-8</sup> dpa/s, which, over 3 years exposure gives a total of ~8 dpa (every atom in the solid is displaced on the average eight times)

$$v(T) = \frac{\kappa E_D}{2E_d} = \frac{\kappa (T - \eta)}{2E_d},$$

in-pile Zy4 grid at 325°C



#### **Irradiation Growth**

- Irradiation growth results from material anisotropy
- There is corresponding anisotropy in the defect behavior within the unit cell
- There is also a texture formed in the grain orientations
- Interstitial loops form on pyramidal planes, causing shrinkage along the center axis
- Later, vacancy loops form on basal planes, making it even worse
- The result is a change in shape, shrinking in the 0001 direction and expanding in the pyramidal direction





#### **Irradiation Growth**

- Three stages of irradiation growth
  - Initial rapid growth to small strains defect generation
  - Slow growth defect accumulation, gets skipped in cold worked material
  - Accelerated or breakaway growth, caused by formation of vacancy loops on the basal plane
- Irradiation growth is affected by:
  - Fluence, Cold work, Texture, Irradiation temperature, Material chemistry, Hydrogen effects



#### **Irradiation Growth**

- Higher temperature leads to earlier breakaway and higher growth
- Higher temperature adds mobility to defects, allowing them to diffuse faster, form clusters, and exacerbate the defect cluster induced anisotropic growth

