

# **JORIS CAZÉ**

Doctorant chercheur CNES - IUSTI Ingénieur Mécanique Énergétique

23 ans

Téléphone +33 6 81 11 45 83

**Email** joris.caze@gmail.com

Adresse Marseille

Titulaire d'un permis B (avec véhicule)

## **COMPETENCES**

#### Programmation:

- C/C++, Python, bash
- Fortran, Matlab
- Visual Basic

#### Outils:

- **Paraview**
- Gmsh
- Git
- Open-MPI
- Star-CCM+ (notions)

### Systèmes d'exploitation :

- Unix (Debian, Ubuntu & Kali)
- Mac OS X
- Windows

### Bureautique:

Suite Office et LaTeX

### **LANGUES**

Français: Langue maternelle Anglais:

- Lecture brochure/livre technique
- Conversation courante et technique (C1-C2)
- TOEIC 910/990 points

#### Russe:

Débutant (en cours d'apprentissage)

Espagnol:

Compréhension de conversation courante et expression occasionnelle (Niveau B1)

# **CENTRES D'INTÉRÊTS**

Natation en eau libre en compétition (FFN)



2018

## **FORMATIONS**

Semestre d'échange international 2019

Université du Québec à Chicoutimi (UQAC)

Méthode des éléments finis, volumes finis, compléments de transfert de chaleur, analyse des systèmes (State-Space methods)

### Projets:

- Étude de la phase d'atterrissage du premier étage d'un lanceur
- Développement d'un code de simulation éléments finis déformation d'un treillis 2D quelconque d'un pont
- Développement d'un code de simulation volumes finis transport de polluant d'une usine

#### 2019 Cycle Ingénieur

École Polytechnique universitaire de Marseille

Mécanique Énergétique

#### 2016 Projets:

- Logiciel d'estimation du risque pour laboratoire de tests sur les ondes de chocs en Fortran/Visual Basic
- Initiation à la recherche sur les écoulements en milieux poreux pour le renoyage d'un lit de débris d'un réacteur nucléaire
- Jeu vidéo avec interface graphique en C

## Matières principales :

- Mécanique des fluides (compressibles, incompressibles, réels, appliquée)
- Génie thermique (bilans, transferts, changement de phase)
- Simulation et méthodes numériques (Volumes finis, différences

#### Option « Risques » et « Simulation » :

- Simulation des ondes de détonation
- Rayonnement pour milieux semi-transparent avec Monte-Carlo
- Matières explosives et explosions
- Combustion avancée
- Calcul d'instabilité dans les fluides (Richtmyer-Meshkov)
- Calcul scientifique Haute Performance (HPC)

### Classe préparatoire

Filière Physique et Technologie



2016

2015

## **EXPÉRIENCES**

#### 2019 Stage 3ème année du cycle Ingénieur

Laboratoire IUSTI UMR CNRS 7343

Simulation d'écoulements multiphasiques au sein de turbopompes. Étude théorique et développement en C/C++ de modèles d'écoulements monophasiques/diphasiques compressibles.

#### 2018 Stage 2ème année du cycle Ingénieur

CEA Cadarache – Laboratoire de Modélisation des Accidents Graves Construction d'un jeu de donnée pour la simulation de feux de sodium en nappe dans l'enceinte d'un réacteur, lors d'un accident grave en Réacteur à Neutrons Rapides refroidi au sodium.

Outil de calcul scientifique CONTAIN-LMR

#### 2017 Stage ouvrier de 1ère année du cycle Ingénieur

**Process Poudres Innovations** 

Montage de machines de transfert et de dosage de poudres et granulés pour l'agroalimentaire et le pharmaceutique.