Дизайн систем машинного обучения

6. Оценка качества модели

План курса

- 1) Практическое применение машинного обучения
- 2) Основы проектирования МL-систем
- 3) Обучающие данные
- 4) Подготовка и отбор признаков
- 5) Выбор модели, разработка и обучение модели
- 6) Оценка качества модели Вы находитесь здесь
- 7) Развертывание систем
- 8) Диагностика ошибок и отказов ML-систем
- 9) Мониторинг и обучение на потоковых данных
- 10) Жизненный цикл модели
- 11) Отслеживание экспериментов и версионирование моделей
- 12) Сложные модели: временные ряды, модели над графами
- 13) Непредвзятость, безопасность, управление моделями
- 14) МL инфраструктура и платформы
- 15) Интеграция МL-систем в бизнес-процессы

Система в целом

- Интерфейсы (API, GUI etc.)
- Данные
- ML-модели
- Инфраструктура // обсудим на других лекциях
- Оборудование // обсудим на других лекциях

Качество: Интерфейсы

- API
 - Документация: OpenAPI, самодокументируемые API → →
 - Надежность: логгирование и мониторинг
 - Доступность: потребители смогут подключиться
 - Внутренние сети, старые протоколы, другие операционные системы, медленная сеть
- GUI
 - Удобство в использовании: usability →
 - Надежность
 - Доступность: потребители смогут подключиться
 - Мобильный клиент, старые браузеры, медленная сеть

Пример: FastAPI docs

- https://data.nav.no/digdir-api/openapi.json
- https://fastapi.tiangolo.com/
- https://swagger.io/specification/

```
{"openapi":"3.0.2","info":{"title":"FastAPI","version":"0.1.0"},"servers":[{"url":"/digdir-api"}],"paths":{"/terms":{"get":{"summary":"Get All
Terms","operationId":"get_all_terms_terms_get","responses":{"200":{"description":"Successful
Response","content":{"text/turtle":{"schema":{"type":"string"}}}}}},"/datasets":{"get":
{"summary":"Get All Datasets","operationId":"get_all_datasets_datasets_get","responses":{"200":
{"description":"Successful Response","content":{"text/turtle":{"schema":
{"type":"string"}}}}}},"/apis":{"get":{"summary":"Get All
Apis","operationId":"get_all_apis_apis_get","responses":{"200":{"description":"Successful
Response","content":{"text/turtle":{"schema":{"type":"string"}}}}}}}}
}
```

Пример: FastAPI docs

https://data.nav.no/digdir-api/docs

Пример: FastAPI docs

Качество: Данные

https://greatexpectations.io/

Expectations

Expectations are assertions for data. They are the workhorse abstraction in Great Expectations, covering all kinds of common data issues.

Expectations are declarative, flexible and extensible. They provide a rich vocabulary for data quality.

- expect_column_values_to_not_be_null
- expect_column_values_to_match_regex
- expect_column_values_to_be_unique
- expect_column_values_to_match_strftime_format
- expect_table_row_count_to_be_between
- expect_column_median_to_be_between

Check out the Expectation Gallery

Пример: Great Expectations Validation

https://docs.greatexpectations.io/assets/images/validation_result_example-accd2d0b2640be6bc28fadbcde435273.png

Пример: Great Expectations DataDoc

movie_id (type: int)

O. . antilan

Properties Distinct (n) 1682 Distinct (%) 1.7% Missing (n) 0 Missing (%) 0.0%

Quantiles	
0.05	30
Q1	175
Median	322
Q3	631
0.95	1074

Mean	425.53
Minimum	1.00
Maximum	1682.00

Histogram

Example values

29 40 51 86 222 242 257 265 274 302 346 377 387 451 465 474 785 1014 1042

Пример: Паттерн «Предохранитель»

Data Source Issues

- Table inconsistencies
 - a. Illegitimate values
 - b. Missing values
 - Duplicate Primary keys
- Hard deletes
- Bulk inserts
- Missing updates to CDC column

Data Ingestion Issues

- Uncoordinated upstream changes
 - a. Volume of data
 - b. Change in schema
 - Change in meaning of data
 - d. Upgrade of platform
- No CDC for large tables leading to delayed availability
- Errors in ETL logic
- Timezone inconsistencies
- Duplicate or null records due to ingestion errors

Referential Integrity Issues

- Data elements have different data types and/or meaning in different sources
- Inconsistent data element enums
- Heuristic ID Correlation
- Uncoordinated schema changes
- Dropped updates across data sources

Оценка качества ML-модели

https://arxiv.org/abs/1811.12808 must read

Оценка качества ML-модели

https://arxiv.org/abs/1811.12808 must read

Оценка качества ML-модели

https://arxiv.org/abs/1811.12808 must read

С чем сравнивать

- Случайный бейзлайн
- В соответствии с распределением меток
- Самый частый класс
- Простые эвристики
- Качество оценки человеком
- Существующие решения
- См sample_quality.pdf

Тесты устойчивости

- Perturbation tests
 - Насколько чувствительна модель к шуму?
- Invariant test
 - Что не должно поменять предсказание модели?
- Directional Expectations test
 - Что должно менять предсказание модели?
 - Например
 - в кредитном скоринге: меньше доход → меньше скор
 - Медосмотр: чем старше, тем хуже здоровье

Парадокс Симпсона

https://en.wikipedia.org/wiki/Simpson%27s_paradox

Парадокс Симпсона

https://en.wikipedia.org/wiki/Simpson%27s_paradox

Оценка на подвыборках

- Можно найти кластеры и оценить качество работы на них
- Subgroup Discovery Algorithms: A Survey and Empirical Evaluation
- Automated Data Slicing for Model Validation

см sample_quality.pdf

Дополнительные материалы

- Reducing Pipeline Debt With Great Expectations (blog)
- Effective testing for machine learning systems (blog)
- Microsoft Error Analysis Toolkit (tool, tutorial)
- RAI Toolbox (video)