Lösung Aufgabe 11

Gegeben sei das das GF(4)

+	0	1	2	3		0	1	2	3
0	0	1	2	3	0	0	0	0	0
1	1	0	3	2	1	0	1	2	3
2	2	3	0	1	2	0	2	3	1
3	3	2	1	0	3	0	3	1	2

und das Polynom

$$g(Q) = Q^2 + 1$$

über diesem GF(4).

a.) Untersuchen Sie, ob g(Q) zur Erzeugung eines zyklischen quaternären Codes mit der Codewortlänge N= 4 geeignet ist. Falls ja, wieviele Informationsstellen K und welche Coderate hat der zugehörige quaternäre Code? Wie lautet das zugehörige Checkpolynom h(Q) ?

 $Q^4 + 1 = (Q^2 + 1) \cdot (Q^2 + 1) \Rightarrow g(Q)$ ist ein geeignetes Generatorpolynom für einen zyklischen quaternären Code.

N-K = grad
$$\{g(Q)\}\ = 2 \Rightarrow N-K = 2 \Rightarrow K = 2$$

R = K/N = 0,5
h(Q) = (Q² + 1)

b.) Vervollständigen Sie die nachfolgende Syndromtabelle

e_i		$e_i(Q)$	$S_i(Q) = e_i(Q) \bmod$	$g(Q)$ S_i
0 0 0	1	1	1	0 1
0 0 0	2	2	2	0 2
0 0 0	3	3	3	0 3
0 0 1	0	Q	Q	1 0
0 0 2	0	2Q	2Q	2 0
0 0 3	0	3 <i>Q</i>	3Q	3 0
0 1 0	0	Q^2	1	0 1
0 2 0	0	$2Q^2$	2	0 2
0 3 0	0	$3Q^2$	3	0 3
1 0 0	0	Q^3	Q	1 0
2 0 0	0	$2Q^3$	2Q	2 0
3 0 0	0	$3Q^3$	3Q	3 0
		l		

Lassen sich alle Einzelsymbolfehler erkennen? Ja.

Lassen sich alle Einzelsymbolfehler korrigieren? Nein, Syndrome sind nicht eindeutig.

Wie groß ist die Distanz t des Codes? t=2.

c.) Berechnen Sie, falls möglich, das systematische Codewort für $a(Q) = Q^2 + 2Q + 1$.

Nicht möglich, da grad $\{a(Q)\} = K = 2$

d.) Berechnen Sie das systematische Codewort für a(Q) = 2Q + 3.

$$Q^{N-K} \cdot a(Q) = Q^2 \cdot a(Q) = Q^2 \cdot (2Q + 3) = 2Q^3 + 3Q^2$$

$$(Q^{N-K} \cdot a(Q)) \mod g(Q) = (2Q^3 + 3Q^2) \mod (Q^2 + 1) = 2Q + 3$$

$$x(Q) = 2Q^3 + 3Q^2 + 2Q + 3$$

e.) Überprüfen Sie das unter d.) ermittelte Codewort auf seine Gültigkeit.

$$x(Q) \mod g(Q) = (2Q^3 + 3Q^2 + 2Q + 3) \mod (Q^2 + 1) = 0$$

f.) Es wir das fehlerbehaftete Codewort

$$y(Q) = 3Q^2 + 2Q + 3$$

empfangen. Dekodieren Sie dieses Codewort unter Verwendung der Syndromtabelle aus Aufgabenteil b.). Wie lautet das korrigierte Codewort?

$$S(Q) = y(Q) \mod (g(Q) = 2Q \implies e_1(Q) = 2Q$$

$$\Rightarrow$$
 e₂(Q) = 2Q³

$$\Rightarrow x_1(Q) = 3Q^2 + 3$$

$$\Rightarrow$$
 $x_2(Q) = 2Q^3 + 3Q^2 + 2Q + 3$