Métodos Numéricos

http://www.famaf.unc.edu.ar/~serra/metodos_numericos.html

Guía 3

Mayo de 2015

Problema 1: Para las siguientes funciones f(x), y siendo $x_0 = 0$, $x_1 = 0.6$ y $x_2 = 0.9$, construya los polinomios de interpolación de grado 1 y 2 que aproximan la función en x = 0.45, y encuentre el error absoluto y relativo correspondiente.

- **a)** $f(x) = \ln(x+1)$
- **b)** $f(x) = \sqrt{x+1}$

Grafique en un archivo postscript ambas funciones, sus polinomios interpolantes y la aproximación de Taylor de grado 2 (entorno a x_o) en el rango dado.

Problema 2: Construya el polinomio interpolante usando el algoritmo de Lagrange para las siguientes funciones. De una cota del error absoluto en el intervalo $[x_0, x_n]$.

- a) $f(x) = \exp(2x)\cos(3x)$, $x_0 = 0, x_1 = 0.3, x_2 = 0.6, n = 2$.
- **b)** $f(x) = \ln(x)$, $x_0 = 1$, $x_1 = 1.1$, $x_2 = 1.3$, $x_3 = 1.4$, n = 3.

Problema 3: Se desea aproximar $\cos(x)$ en el intervalo [0,1] con un error absoluto menor a 1×10^{-7} para todo $x \in [0,1]$. Usando el teorema del error de la interpolación polinomial, encuentre la cantidad mínima de puntos de interpolación. Verifique graficando (con *gnuplot* y *xmgrace*, salvando ambos archivos) el error absoluto en el intervalo para tres casos particulares de $\{x_i\}$.

Problema 4: Error de la interpolación polinomial para puntos equiespaciados: Usando el teorema dado en el teórico, demuestre el siguiente

corolario: Sea $f(x) \varepsilon C_{[a,b]}^{(n+1)}$ tal que su derivada n+1 es acotada en [a,b]: $\exists M>0/|f^{(n+1)}(x)|< M \ \forall x \varepsilon [a,b]$. Definimos $x_i=a+i$; $i=0,\cdots,n$ donde h=(b-a)/n. Sea $P_n(x)$ es el polinomio interpolante a f(x): $P_n(x_i)=f(x_i)$, $i=0,\cdots,n$, entonces $\forall x \varepsilon [a,b]$ se tiene

$$|f(x) - P_n(x)| \le \frac{M}{4(n+1)} \left(\frac{b-a}{n}\right)^{n+1}$$

Problema 5: Sea $F(x) = xe^x$. Evalúe f'(2) mediante la fórmula centrada de tres puntos

$$f'(x) = \frac{f(x+h) - f(x-h)}{2h} + \mathcal{O}(h^2)$$

para distintos valores de h y calcule el incremento óptimo h_o teniendo en cuenta los errores de truncamiento y redondeo. Grafique el error (usando el valor exacto de la derivada) versus h (elija $h = 10^{-k}$, con k entero, y grafique usando escala log-log).

Problema 6: Algoritmo de derivada numérica de 5 puntos. Muestre que si Si f(x) es cinco veces diferenciable en x = c

a) muestre que se puede obtener aproximaciones a f'(c) y f''(c) como:

$$f'(c) = \frac{1}{12h} \left(f(c-2h) - 8f(c-h) + 8f(c+h) - f(c+2h) \right) + O(h^4)$$

$$f''(c) = \frac{1}{12h^2} \left(-f(c-2h) + 16f(c-h) - 30f(c) + 16f(c+h) - f(c+2h) \right) + O(h^4)$$

b) muestre que estos algoritmos dan las derivadas primera y segunda exactas para polinomios de grado ≤ 4 .

Problema 7: Derivada segunda: Deduzca el algoritmo centrado equiespaciado de tres puntos para la derivada segunda $f''(x_0)$. Incluya una cota para el error absoluto.

Problema 8: Interpolación y diferenciación: Se conoce el valor de f(x) en tres puntos x_0, x_1, x_2 . Escriba el polinomio interpolante $P_2(x)$ en la forma de Lagrange. Asuma que aproximamos $f'(x_i)$ por $P'_2(x_i)$,

- a) Muestre que si tomamos $x_0 = c h$, $x_1 = c$, $x_2 = c + h$ obtenemos la expresión del algoritmo centrado de tres puntos para f'(c).
- b) Muestre que, en general, esta proximación arroja el algoritmo de tres puntos. Re-obtenga la fórmula dada en el teórico para $x_0 = c h_1$, $x_1 = c$, $x_2 = c + h_2$. Obtenga una expresión para las derivadas en extremos del intervalo [a,b], f'(a) con $x_0 = a$, $x_1 = a + h$, $x_2 = a + 2h$ y f'(b) con $x_0 = b$, $x_1 = b h$, $x_2 = b 2h$.
- c) Generalice a 5 puntos y re-obtenga el algoritmo centrado y equiespaciado en este caso.

Problema 9: Use los algoritmos hacia adelante, centrado y de 5 puntos para calcular las derivadas de $\cos x$ y e^x , en x = 0.1, 1. y 100.

- a) Escriba en archivo el valor de la derivada y el error relativo, E, en función de h. Elija valores del paso h entre 0.1 y ϵ_m .
- b) Haga un gráfico log-log de E versus h, y verifique si el número de cifras decimales que obtiene coincide con las estimaciones hechas en el teórico.
- c) Identifique las regiones donde domina el error del algoritmo y el error de redondeo, respectivamente. Las pendientes que se observan, corresponden a las predichas en el teórico?