Symmetric vs. Sum Capacity of Rayleigh MAC

or

Probability of Achieving Fairness for Free

Elad Domanovitz

February 14th, 2018
2018 Information Theory and Applications Workshop

Channel Model

• MAC:
$$y = \sum_{i=1}^{N} h_i x_i + z$$

- CSI at Rx
- ullet Equal average transmission power per antenna: P=1
- $z \sim \mathcal{CN}(0,1)$
- $h_i \sim \sqrt{\text{SNR}} \cdot \mathcal{CN}(0,1)$ and i.i.d. (symmetric setting)

Definitions

- ullet Sum capacity: $C_{
 m sum} = \log \left(1 + \sum |h_i|^2
 ight)$
- Capacity region:

$$C(\mathbf{h}) = \sum_{i \in S} R_i \le \log \left(1 + \sum_{i \in S} |h_i|^2\right), \ S \subseteq \{1, \dots, N\}$$

Symmetric capacity:

$$C_{\text{sym}} = \max_{\mathbf{R} \in C(\mathbf{h})} \min(R_1, \dots, R_N) = \min_{S \subseteq \{1, \dots, N\}} \frac{1}{|S|} \log \left(1 + \sum_{i \in S} |h_i|^2 \right)$$

$$C_{\Sigma - \text{sym}} = N \cdot C_{\text{sym}}$$

Need to analyze the bottleneck!

- $C_{\Sigma-\mathrm{sym}} = C_{\mathrm{sum}} \Rightarrow$ fairness comes for free!
- But what are the chances of that happening?
- Q1: Probability that $C_{\Sigma-\mathrm{sym}} = C_{\mathrm{sum}} = \log\left(1 + \sum_{i=1}^{N} |h_i|^2\right)$ is?
- ullet We analyze the probability given $\mathcal{C}_{\mathrm{sum}}$
- ullet Let's start with a concrete example: $\mathcal{C}_{\mathrm{sum}}=2$

- $C_{\Sigma-\mathrm{sym}} = C_{\mathrm{sum}} \Rightarrow$ fairness comes for free!
- But what are the chances of that happening?
- **Q1**: Probability that $C_{\Sigma-\text{sym}} = C_{\text{sum}} = \log\left(1 + \sum_{i=1}^{N} |h_i|^2\right)$ is?
- ullet We analyze the probability given $C_{
 m sum}$
- ullet Let's start with a concrete example: $C_{
 m sum}=2$

- $C_{\Sigma-\mathrm{sym}} = C_{\mathrm{sum}} \Rightarrow$ fairness comes for free!
- But what are the chances of that happening?
- Q1: Probability that $C_{\Sigma-\mathrm{sym}} = C_{\mathrm{sum}} = \log\left(1 + \sum_{i=1}^{N} |h_i|^2\right)$ is?
- ullet We analyze the probability given $C_{
 m sum}$
- ullet Let's start with a concrete example: $\mathcal{C}_{\mathrm{sum}}=2$

- $C_{\Sigma-\mathrm{sym}} = C_{\mathrm{sum}} \Rightarrow$ fairness comes for free!
- But what are the chances of that happening?
- Q1: Probability that $C_{\Sigma-\mathrm{sym}} = C_{\mathrm{sum}} = \log\left(1 + \sum_{i=1}^{N} |h_i|^2\right)$ is?
- ullet We analyze the probability given $C_{
 m sum}$
- ullet Let's start with a concrete example: $\mathcal{C}_{\mathrm{sum}}=2$

- $C_{\Sigma-\mathrm{sym}} = C_{\mathrm{sum}} \Rightarrow$ fairness comes for free!
- But what are the chances of that happening?
- Q1: Probability that $C_{\Sigma-\mathrm{sym}} = C_{\mathrm{sum}} = \log\left(1 + \sum_{i=1}^{N} |h_i|^2\right)$ is?
- ullet We analyze the probability given $C_{
 m sum}$
- ullet Let's start with a concrete example: $C_{
 m sum}=2$

Well, there are three faces so... 1/3?

- $C_{\Sigma-\mathrm{sym}} = C_{\mathrm{sum}} \Rightarrow$ fairness comes for free!
- But what are the chances of that happening?
- **Q1**: Probability that $C_{\Sigma-\mathrm{sym}} = C_{\mathrm{sum}} = \log\left(1 + \sum_{i=1}^{N} |h_i|^2\right)$ is?
- ullet We analyze the probability given $\mathcal{C}_{\mathrm{sum}}$
- \bullet Let's start with a concrete example: $\textit{C}_{\mathrm{sum}} = 2$

Correct answer, explanation can be improved...

What is Known

- $C_{\Sigma-\mathrm{sym}} \leq C_{\mathrm{sum}}$
- ullet (Implicitly from the MAC-DMT): SNR $o \infty \ \Rightarrow \ \mathit{C}_{\Sigma \mathrm{sym}} \overset{w.h.p.}{ o} \ \mathit{C}_{\mathrm{sum}}$

 \bullet Our goal: analyze the (finite SNR) distribution of $\textit{C}_{\Sigma-\mathrm{sym}}$ given $\textit{C}_{\mathrm{sum}}$

Goal & Applications

Q2: What is
$$\Pr\left(C_{\Sigma-\text{sym}} < R | C_{\text{sum}} = c_{\text{sum}}\right)$$
?

Applications

- Simple MAC transmission protocol
 - Receiver learns channel gains of active users
 - Calculates Symmetric capacity and notifies transmitters to each transmit at rate R/N where $R < C_{\Sigma-\mathrm{sym}}$:
 - Trivial rate allocation
 - Minimal feedback
- Rayleigh open-loop outage probability
 - N active users
 - \triangleright All users (when they are active) transmit at a common target rate R/N
 - Outage probability is then given by $\mathbb{E}_{C_{\mathrm{sum}}}[\Pr(C_{\Sigma-\mathrm{sym}} < R | C_{\mathrm{sum}})]$

Let's recall the DMT of the MAC

Moral 1 from the Symmetric MAC-DMT

Shouldn't be too bad...

Moral 1 from the Symmetric MAC-DMT

Shouldn't be too bad...

Moral 1 from the Symmetric MAC-DMT

But, in our analysis/protocol we know C_{sum} ...

Bottom Line - Two-User Rayleigh MAC

Theorem 1

For a 1×2 Rayleigh MAC with sum capacity C_{sum} :

$$\Pr(C_{\Sigma-\text{sym}} < R | C_{\text{sum}}) = 2 \cdot \frac{2^{R/2} - 1}{2^{C_{\text{sum}}} - 1}; \ 0 \le R \le C_{\text{sum}}$$

$$\begin{split} \Pr(\textit{C}_{\Sigma-\mathrm{sym}} = \textit{C}_{\mathrm{sum}} | \textit{C}_{\mathrm{sum}}) &= 1 - \Pr(\textit{C}_{\Sigma-\mathrm{sym}} < \textit{C}_{\mathrm{sum}} | \textit{C}_{\mathrm{sum}}) \\ &= 1 - 2 \cdot \frac{2^{\textit{C}_{\mathrm{sum}}/2} - 1}{2^{\textit{C}_{\mathrm{sum}}} - 1} \end{split}$$

Sketch of Proof: Two-User Rayleigh MAC

- $h_i \sim \mathcal{CN}(0,\mathsf{SNR})$ and i.i.d $\Rightarrow |h_i|^2 \sim exp(\mathsf{SNR})$
- Normalize $u_i = \frac{1}{\sqrt{2^{C_{\text{sum}}}-1}}h_i$
- Given C_{sum}
 - $|u_1|^2 + |u_2|^2 = 1 \Rightarrow \text{zero-sum game}$
 - $|u_i|^2$ given $|u_1|^2 + |u_2|^2 = 1$ is uniformly distributed over [0,1] (conditioning property of Poisson process)

Sketch of Proof: Two-User Rayleigh MAC

• Recall:
$$C_{\Sigma-\mathrm{sym}} = \min_{S \subseteq \{1,2,...,N\}} \frac{N}{|S|} \log \left(1 + \sum_{i \in S} |h_i|^2\right)$$

- For 1×2 , $C_{\Sigma-\text{sym}} = \min(R(\{1\}), R(\{2\}), C_{\text{sum}})$
- $R({i}) = 2 \log (1 + |u_i|^2 (2^{C_{\text{sum}}} 1))$
- $\Pr\left(C_{\Sigma-\text{sym}} < R | C_{\text{sum}}\right) =$ $\Pr\left(|u_1|^2 < \frac{2^{R/2}-1}{2^{C_{\text{sum}}}-1}\right) + \Pr\left(|u_1|^2 > \frac{2^{C_{\text{sum}}}-2^{R/2}}{2^{C_{\text{sum}}}-1}\right)$
- $\Rightarrow \Pr\left(C_{\Sigma-\text{sym}} < R | C_{sum}\right) = 2\frac{2^{R/2}-1}{2^{C_{\text{sum}}}-1}$

General N: The Bottleneck

- When N > 2:
 - There are more possible bottlenecks to check (but remember the DMT moral...)
 - Need to analyze

$$\begin{split} & \Pr\left(R(\{S\}) < R \big| \mathcal{C}_{\text{sum}}\right) = \\ & \Pr\left(\frac{|S|}{N} \log \left(1 + \left(2^{\mathcal{C}_{\text{sum}}} - 1\right) \sum_{i \in S} |u_i|^2\right) < R \mid \sum |u_i|^2 = 1\right) \end{split}$$

- Possible bottlenecks $\{S\}$ are no longer disjoint
- Tool for analysis
 - Given C_{sum} , u_i can be viewed as elements from a row taken from a unitary matrix drawn from the CUE (Haar measure)
 - Edelman 05' Singular value distribution of a truncated unitary matrix (eigenvalues have Jacobi/MANOVA distribution)
- ⇒ lower and upper bounds

General N: The Bottleneck

Theorem 2 - distribution of a specific set

For a $1 \times N$ Rayleigh MAC with sum capacity C_{sum} , the outage probability for a set $S \subseteq \{1,2,\ldots,N\}$ is

$$\begin{split} & \Pr\left(R(\{S\}) < R|C_{\text{sum}}\right) = \\ & \Pr\left(\frac{|S|}{N}\log\left(1 + (2^{C_{\text{sum}}} - 1)\sum_{i \in S}|u_i|^2\right) < R \mid \sum |u_i|^2 = 1\right) = \\ & \frac{\mathcal{B}(\frac{2^{R|S|/N} - 1}{2^{C_{\text{sum}}} - 1}; |S|, N - |S|)}{\mathcal{B}(1; |S|, N - |S|)} \end{split}$$

where $0 \le R \le C_{\text{sum}}$ and $\mathcal{B}(x; a, b) = \int_0^x u^{a-1} (1-u)^{b-1} du$ is the incomplete beta function.

General N: The Bottleneck

•
$$\Pr\left(C_{\Sigma-\text{sym}} < R | C_{\text{sum}}\right) = \Pr\left(\min_{S \subseteq \{1,2,...,N\}} R(\{S\}) < R | C_{\text{sum}}\right)$$

- All sets with the same cardinality have the same outage probability
- $P_{\mathrm{out}}(k,R) \triangleq \Pr(R(\{|S|=k\} < R|C_{\mathrm{sum}}))$
- Union bound can be used to bound overall probability

Theorem 3 - lower and upper bound for N Rayleigh MAC

For a $1 \times \textit{N}$ Rayleigh MAC with sum capacity $\textit{C}_{\mathrm{sum}}$, the outage probability can be bounded as

$$\max_{k} P_{\text{out}}(k, R) \leq \Pr\left(C_{\Sigma-\text{sym}} < R | C_{\text{sum}}\right) \leq \sum_{k=1}^{N} {N \choose k} P_{\text{out}}(k, R)$$

Upper and Lower Bounds

Figure: Bounds vs. Empirical error probability for 1×4 channel with $\textit{C}_{\mathrm{sum}}/4=2$

Practical Scheme (NOMA): Two-User Example

Figure: ML vs. IF for a two-user i.i.d. Rayleigh fading MAC with $C_{\rm sum}=10$.

Ingredients

Integer-forcing (Rx)

- Beyond this talk
- Use same linear code
- Not sufficient

MAC-DMT (Tx)

- Hollanti, et. al., '11 (uncoded, asymptotic)
- Same linear code ⇒ need to use (different) "space"-time modulation
- Badr, et. al. '08

Slides available by Google my name in scholar