Résumé du cours Analyse de Fourier

1 Série de Fourier

Fonction de classe C^1 par morceaux :

On dit qu'une fonction f est de classe \mathcal{C}^1 par morceaux sur un intervalle I si et seulement :

- 1. f est continue par morceaux,
- 2. sa dérivée f' existe et est continue par morceaux
- 3. et les discontinuités éventuelles de f et f' sont de première espèce (limites à droite et à gauche existent et sont finies).

Les coefficients de Fourier associés à une fonction f périodique, de période T sont :

$$a_0 = \frac{1}{T} \int_{\alpha}^{\alpha + T} f(t) dt \; ; \; b_0 = 0 \; ; \; a_n = \frac{2}{T} \int_{\alpha}^{\alpha + T} f(t) \cos(n\omega t) dt \; ; \; b_n = \frac{2}{T} \int_{\alpha}^{\alpha + T} f(t) \sin(n\omega t) dt \quad (n \in \mathbb{N}^*)$$

avec α un réel quelconque et $\omega = \frac{2\pi}{T}$.

La **série de Fourier** associée à f est la série de fonctions $\sum f_n$ dont le terme général est la fonction f_n définie par : $f_n(t) = a_n \cos(n\omega t) + b_n \sin(n\omega t)$.

Théorème de Dirichlet

Si f est une fonction périodique, de période T, de classe \mathcal{C}^1 par morceaux sur \mathbb{R} , alors la série de Fourier associée à f est convergente pour toute valeur de t et on a, pour tout t dans \mathbb{R} :

$$\frac{1}{2}\Big[f(t^+) + f(t^-)\Big] = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos(n\omega t) + b_n \sin(n\omega t)\right)$$

En particulier, en tout point t_0 , où f est **continue**, la somme de la série de Fourier associée à f est égale à $f(t_0)$:

$$f(t_0) = a_0 + \sum_{n=1}^{\infty} \left(a_n \cos(n\omega t_0) + b_n \sin(n\omega t_0) \right)$$

Rappel: Formules d'Euler: $\cos(\theta) = \frac{e^{i\theta} + e^{-i\theta}}{2}$; $\sin(\theta) = \frac{e^{i\theta} - e^{-i\theta}}{2i}$.

La forme complexe du développement en série de Fourier d'une fonction f réelle, périodique de période T, de classe \mathcal{C}^1 par morceaux sur \mathbb{R} est en tout point $t \in \mathbb{R}$:

$$\frac{1}{2}\Big(f(t^+) + f(t^-)\Big) = \sum_{-\infty}^{+\infty} c_n e^{in\omega t} \quad \text{avec} : c_n = \frac{1}{T} \int_{\alpha}^{\alpha+T} f(t) e^{-in\omega t} dt \quad (n \in \mathbb{Z})$$

Les coefficients de Fourier complexes c_n sont liés aux coefficients de Fourier réels a_n et b_n par les relations suivantes :

$$c_0 = a_0 \; ; \; c_n = \frac{a_n - ib_n}{2} \quad (n \in \mathbb{N}^*) \text{ et } c_{-n} = \bar{c}_n$$

Formule de Parseval:

$$\left| \frac{1}{T} \int_{\alpha}^{\alpha+T} \left| f(t) \right|^2 dt = a_0^2 + \sum_{n=1}^{+\infty} \frac{a_n^2 + b_n^2}{2} = \sum_{-\infty}^{+\infty} |c_n|^2 \right| \quad (\alpha \in \mathbb{R})$$

2 Transformée de Fourier

On note $\mathbb{L}^1 = \Big\{ f \text{ fonction numérique quelconque } \Big/ \int_{-\infty}^{+\infty} |f(t)| dt \text{ converge} \Big\}.$

Pour toute fonction f de l'espace \mathbb{L}^1 , on appelle **transformée de Fourier** de f

la fonction $\lambda \mapsto \widehat{f}(\lambda)$ définie sur \mathbb{R} par : $\widehat{f}(\lambda) = \int_{-\infty}^{+\infty} f(t)e^{-2i\pi\lambda t}dt$ où λ est la fréquence.

Définition : Produit de convolution

Soient f et g deux fonctions de classe \mathcal{C}^1 par morceaux et appartenant à l'espace \mathbb{L}^1 . Le produit de convolution de f et g est la fonction notée f*g définie pour tout $t \in \mathbb{R}$ par :

$$(f * g)(t) = \int_{-\infty}^{+\infty} f(t - x)g(x)dx$$

Propriétés:

- fonction conjuguée : $\widehat{\overline{f}}(\lambda) = \overline{\widehat{f}(-\lambda)}$.
- Multiplication par une exponentielle : $\mathcal{F}(f(t)e^{2i\pi at})(\lambda) = \mathcal{F}(f)(\lambda a)$.
- Transformée d'une translatée : $\mathcal{F}(f(t-a))(\lambda) = e^{-2i\pi a\lambda} \widehat{f}(\lambda)$.
- Théorème de modulation : si $h(t) = f(t)\cos(2\pi at)$ alors $\widehat{h}(\lambda) = \frac{\widehat{f}(\lambda a) + \widehat{f}(\lambda + a)}{2}$.
- Transformée d'une dilatée : $\mathcal{F}(f(kt))(\lambda) = \left|\frac{1}{k}\right| \widehat{f}(\frac{\lambda}{k})$.
- Fonctions paires et impaires :
 - Si f est paire alors $\widehat{f}(\lambda) = 2 \int_0^{+\infty} f(t) \cos(2\pi\lambda t) dt$.
 - Si f est impaire alors $\widehat{f}(\lambda) = -2i \int_0^{+\infty} f(t) \sin(2\pi\lambda t) dt$.
- Dérivation dans le domaine temporel : $\hat{f}'(\lambda) = 2i\pi\lambda \hat{f}(\lambda)$.
- Intégration : On note $F(t) = \int_{-\infty}^{t} f(x)dx$ (primitive de f « s'annulant » en $-\infty$).

On suppose que $\lim_{t\to+\infty} F(t) = 0$. On a : $\widehat{F}(\lambda) = \frac{\widehat{f}(\lambda)}{2i\pi\lambda}$.

- Dérivation dans le domaine fréquentiel : $\frac{d}{d\lambda} \Big(\mathcal{F} \big(f \big) \Big) (\lambda) = \mathcal{F} \big(-2i\pi t f(t) \big) (\lambda).$
- Produit de convolution

• Formule de Plancherel-Parseval :

$$\int_{-\infty}^{+\infty} |f(t)|^2 dt = \int_{-\infty}^{+\infty} |\widehat{f}(\lambda)|^2 d\lambda$$

2