Exercise 1. Consider a diffusion $X = (X_t)_{t \ge 0}$ that lives on a finite interval (l, r), $0 < l < r < \infty$ and satisfies the SDE

$$dX_t = \mu X_t dt + \sigma X_t dW_t.$$

One can easily check that the endpoints l and r are regular. Assume both endpoints are killing. Find the transition density $\Gamma(t, x; T, y)$ of X.

Solution 1. As l and r are regular killing endpoints, we have that

$$\Gamma(t, l; T, y) dy = \Gamma(t, r; T, y) dy = 0.$$

Therefore, we want to operator \mathcal{A} to act on functions which are 0 on the boundary. In this case, we have that $\mu(t, X_t) = \mu x$ and $\sigma(t, x) = \sigma x$, so that

$$\mathcal{A} = \mu x \partial_x + \frac{\sigma^2}{2} x^2 \partial_{xx}.$$

This then gives the following PDE for the Kolomogorov Forward equation

$$\partial_t \Gamma = -\mu x \partial_x \Gamma - \frac{\sigma^2}{2} x^2 \partial_{xx} \Gamma$$
$$\Gamma(t, x, t, \cdot) = \delta_x.$$

The right side of the above equation is an Euler ODE. We'll now find an eigenfunction expansion to the following problem. That is, we want eigenfunctions φ which satisfy

$$\mathcal{A}\varphi = \lambda\varphi$$
$$\varphi(l) = \varphi(r) = 0.$$

To find the eigenfunctions, we write the eigenvalue problem.

$$\frac{\sigma^2}{2}x^2\varphi'' + \mu x\varphi' - \lambda\varphi = 0, \varphi(l) = \varphi(r) = 0$$

which one can notice as an Euler equation. Writing the solution in terms of x^r , we see that r must satisfy

$$\frac{\sigma^2}{2}r(r-1) + \mu r - \lambda = 0$$
$$sr^2 + (\mu - s)r - \lambda = 0,$$

where $s = \sigma^2/2$. We can solve this quadratic as

$$r = \frac{s - \mu \pm \sqrt{(\mu - s)^2 + 4s\lambda}}{2s} = \frac{s - u}{2s} \pm \sqrt{\frac{(\mu - s)^2}{4s^2} + \frac{\lambda}{s}}.$$

In general, this is complex as long as

$$-\frac{(\mu - s)^2}{4s} > \lambda.$$

We'll proceed with this case in mind. Our solution is then of the form

$$\varphi(x) = c_1 x^{\left(\frac{s-\mu}{2s}\right)} \sin\left(\ln(x)\sqrt{\frac{(\mu-s)^2}{4s^2} + \frac{\lambda}{s}}\right) + c_2 x^{\left(\frac{s-u}{2s}\right)} \cos\left(\ln(x)\sqrt{\frac{(\mu-s)^2}{4s^2} + \frac{\lambda}{s}}\right).$$

First, we'll attempt to apply the boundary conditions, we require that $\varphi(r) = 0$, so that

$$\ln r \sqrt{\frac{(\mu - s)^2}{4s^2} + \frac{\lambda_n}{s}} = n\pi$$
$$\lambda_n = -\frac{(\mu - s)^2}{4s} + s\left(\frac{n\pi}{\ln r}\right)^2$$

This allows us to simplify

$$\varphi_n(x) = c_1 x^{(s-\mu)/2s} \sin(\ln x \frac{n\pi}{\ln r}) + c_2 x^{(s-\mu)/2s} \cos(\ln x \frac{n\pi}{\ln r}).$$

This can only satisfy the sin term at x = r so we conclude that $c_2 = 0$. Frankly, I'm a bit unsure how to proceed from here, but I'll show how to finish.

Using this family of eigenfunctions, we can compute the solution as

$$\Gamma(t, x; T, y) = m(y) \sum_{n} \exp((T - t)\lambda_n) \varphi_n(y) \varphi_n(x),$$

by Corollary 9.5.5 where m is the speed density given by (pg 153) as

$$m(y) = \frac{2}{\sigma^2} \exp(\frac{2\mu}{\sigma^2} x).$$

Exercise 2. Consider a two-dimensional diffusion process $X = (X_t)_{t\geq 0}$ and $Y = (Y_t)_{t\geq 0}$ that satisfy the SDEs

$$dX_t = dW_t^1$$
$$dY_t = dW_t^2,$$

where W_t^1 and W_t^2 are two independent Brownian motions. Define a function u as follows

$$u(x,y) = \mathbb{E}[\varphi(X_{\tau}) \mid X_t = x, Y_t = y]$$

$$\tau = \inf\{s \ge t \mid Y_s = a\}.$$

- 1. State a PDE and boundary conditions satisfied by the function u.
- 2. Let us define the Fourier transform and the inverse Fourier transform, respectively, as follows

FT:
$$\hat{f}(\omega) = \int e^{-i\omega x} f(x) dx$$

IFT: $f(x) = \frac{1}{2\pi} \int e^{i\omega x} \hat{f}(\omega) d\omega$

Use Fourier transforms and a conditioning argument to derive an expression for u(x, y) as an inverse Fourier transform. Use this result to derive an explicit form for $\mathbb{P}(X_{\tau} \in dz \mid X_t = x, Y_t = y)$ i.e. an expression involving no integrals.

3. Show the expression you derived in part (2) for u(x, y) satisfies the PDE and BCs you stated in part (1).

Solution 2. (1.) Per section 9.6, we see that u must satisfy

$$\mathcal{A}u(x,y) = 0, \quad (x,y) \in \mathbb{R} \times (-\infty, a)$$

 $u(x,a) = \varphi(x),$

where

$$\mathcal{A} = \frac{1}{2}\partial_{xx} + \frac{1}{2}\partial_{xy} + \frac{1}{2}\partial_{yy}$$

This holds since the hitting time τ is almost surely finite. We can rewrite these equations as

$$\frac{1}{2}\partial_{xx}u + \frac{1}{2}\partial_{yy}u = 0,$$
$$u(x, a) = \varphi(x),$$

using that $\sigma(t,x)$ is the identity matrix as the two Brownian motions are independent and μ is the 0 vector.

(2.) We begin by writing X_{τ} in terms of its Fourier transform using IFT

$$\varphi(X_{\tau}) = \frac{1}{2\pi} \int \exp(i\omega X_{\tau}) \hat{\varphi}(\omega) d\omega.$$

Plugging this into the definition of u, we then have that

$$u(x,y) = \mathbb{E}\left[\frac{1}{2\pi} \int \exp(i\omega X_{\tau}) \hat{\varphi}(\omega) d\omega \mid X_{t} = x, Y_{t} = y\right]$$

$$= \frac{1}{2\pi} \int \hat{\varphi}(\omega) \mathbb{E}\left[\exp(i\omega X_{\tau}) \mid X_{t} = x, Y_{t} = y\right] d\omega$$

$$= \frac{1}{2\pi} \int \hat{\varphi}(\omega) \mathbb{E}\left[\mathbb{E}\left[\exp(i\omega X_{\tau}) \mid X_{t} = x, Y_{t} = y\right] \mid X_{t} = x, Y_{t} = y\right] d\omega,$$

where we've used the tower property. Noticing that as X_t is a Brownian motion, we have that $X_{\tau} \sim \text{Norm}(x, \tau - t)$ since $X_t - X_t$ has normal distribution with mean zero and variance $\tau - t$ and $X_t = x$. This allows us to write $\mathbb{E}[\exp(i\omega X_{\tau})]$ as $\exp(i\omega x) \exp(-\frac{1}{2}\omega^2(\tau - t))$, so that

$$u(x,y) = \frac{1}{2\pi} \int \hat{\varphi}(\omega) \exp(i\omega x) \mathbb{E}\left[\exp\left(-\frac{1}{2}\omega^2(\tau - t)\right) \mid X_t = x, Y_t = y\right] d\omega$$

Notice the conditional expectation now depends only on the hitting time τ starting from $Y_t = y$. Since Y_t is also a Brownian motion, we can shift the Brownian motion so that $Z_0 = Y_t - y$ and $Z_{\tau-t} = Y_{\tau} - y = a - y$. Under Z_t , we have that

$$\mathbb{E}\left[\exp\left(-\frac{1}{2}\omega^{2}(\tau-t)\right)\mid X_{t}=x,Y_{t}=y\right]=\exp\left(-\left|a-y\right|\sqrt{\omega^{2}}\right)=\exp(-\left|y-a\right|\left|\omega\right|)$$

after applying theorem 7.5.2. MLN. This leaves us with the following formula for u(x,y)

$$u(x,y) = \frac{1}{2\pi} \int \hat{\varphi}(\omega) \exp(i\omega x - |y - a| |\omega|) d\omega$$
$$= \frac{1}{2\pi} \int \hat{\varphi}(\omega) \exp(-|y - a| |\omega|) \exp(i\omega x) d\omega.$$

We now have the inverse Fourier Transform of a product of functions, which will give us a convolution going backwards. This means that

$$\begin{split} u(x,y) &= \frac{1}{2\pi} \int \mathcal{F}[\varphi(x)] \left[\exp\left(-\left|y-a\right|\left|\omega\right|\right) \right] \exp\left(i\omega x\right) \mathrm{d}\omega. \\ &= \mathcal{F}^{-1} \left(\mathcal{F}[\varphi(x)] \left[\exp\left(-\left|y-a\right|\left|\omega\right|\right) \right] \right) \\ &= \int_{-\infty}^{\infty} \varphi(u) \mathcal{F}^{-1} \left[\exp\left(-\left|y-a\right|\left|\omega\right|\right) \right] (x-u) \mathrm{d}u, \end{split}$$

where \mathcal{F} denotes the Fourier transform. All that remains is to compute the inverse transform of the inside term. Individually, these have inverse Fourier transform

$$\mathcal{F}^{-1} \left[\exp \left(-|y-a| |\omega| \right) \right] (x) = \frac{|y-a|}{|y-a|^2 + x^2}$$

Plugging this into the previous equation, we get that

$$u(x,y) = \int_{-\infty}^{\infty} \varphi(u) \frac{|y-a|}{|y-a|^2 + (x-u)^2} du.$$

We can turn this into a conditional probability by picking φ to be an indicator function $\mathbf{1}_{X_{\tau}=z}$. Therefore, we have that

$$\mathbb{P}(X_{\tau} \in dz \mid X_{t} = x, Y_{t} = y) = \int_{-\infty}^{\infty} \varphi(u) \frac{|y - a|}{|y - a|^{2} + (x - u)^{2}} du$$
$$= \frac{|y - a|}{|y - a|^{2} + (x - z)^{2}}.$$

Differentiating this equation with respect to x and y shows that this indeed satisfies Lapalace's equation. Further, we see that this satisfies the boundary condition as the above probability is zero when y = a unless z = x.

Exercise 3. Consider a continuous-time (n+1)-state Markov process X(t), $X \in \mathcal{S} = \{0,1,2,\cdots,n\}$, with transition rates g(i,j). Let state 0 be an absorbing state, e.g., all g(0,j)=0, $1 \leq j \leq n$. Let τ_k be a hitting time:

$$\tau_k := \inf \{ t \ge 0 : X(t) = 0, X(0) = k \}.$$

(a) Show that

$$\sum_{1 \le k \le n} g(j, k) \mathbb{E}[\tau_k] = -1.$$

- (b) Derive a system of equations relating $\mathbb{E}[\tau_k^2]$ to $\mathbb{E}[\tau_i]$, $1 \leq j, k \leq n$.
- (c) Now if both states 0 and n are absorbing, let u_k be the probability of X(t), starting with X(0) = k, being absorbed into state 0 and $1 u_k$ be the probability being absorbed into state n. Derive a system of equations for u_k .

Solution 3. Derive expectation for τ_k , We write that

$$\mathbb{P}(X_t = 0 \mid X(0) = k) = \mathbb{P}(\tau_k \le t) \mathbb{P}(X_t = 0 \mid X(0) = k, \tau_k \le t) + \mathbb{P}(\tau_k > t) \mathbb{P}(X_t = 0 \mid X(0) = k, \tau_k > t).$$

In the cases where $\mathbb{P}(\tau_k \leq t)$, we know the $X_t = 0$ since 0 is absorbing. We then have that

$$\mathbb{P}(X_t = | X(0) = k) = \mathbb{P}(\tau_k \le t) + (1 - \mathbb{P}(\tau_k \le t))\mathbb{P}(X_t = 0 | X(0) = k, \tau_k > t).$$

We can write the expectation as

$$\mathbb{E}[\tau_k] = \int_0^\infty t \frac{d}{dt} p_t(k, 0) dt$$
$$= \int_0^\infty t \sum_i p_t(k, i) g(i, 0) dt.$$

We then have that

$$g(j,k)\mathbb{E}[\tau_k] = \int_0^\infty t \sum_i p_t(k,i)g(j,k)g(i,0)dt$$
$$\sum_{1 \le k \le n} g(j,k)\mathbb{E}[\tau_k] = \int_0^\infty t \sum_k \sum_i g(j,k)p_t(k,i)g(i,0)dt$$
$$= \sum_i g(i,0) \int_0^\infty t \frac{\partial}{\partial t} p_t(j,i)dt$$
$$= -\int_0^\infty \sum_i p_t(j,i)g(i,0)dt,$$

where in last line we've used integration by parts to eliminate t. We can write this using the KFE, so that

$$\sum_{1 \le k \le n} g(j, k) \mathbb{E}[\tau_k] = -\int_0^\infty \sum_i p_t(j, i) g(i, 0) dt$$
$$= -\int_0^\infty \frac{\partial}{\partial t} p_t(j, 0) dt$$
$$= \lim_{t \to \infty} p_0(j, 0) - p_t(j, 0)$$
$$= -1,$$

since 0 is absorbing.

(b) We can write the expectation as

$$\sum_{1 \le k \le n} g(j, k) \mathbb{E}[\tau_k^2] = \int_0^\infty t^2 \frac{d}{dt} p_t(k, 0) dt$$

$$= \cdots$$

$$= -2 \int_0^\infty t \frac{\partial}{\partial t} p_t(j, 0) dt$$

$$= -2 \mathbb{E}[\tau_j].$$

Essentially, we've repeated exactly what we did in part (a) with t^2 instead of t.

(c) We'll define

$$u_k = \lim_{t \to \infty} p_t(k, 0).$$

As 0 and n are the only two absorbing states, we have that

$$1 - u_k = \lim_{t \to \infty} p_t(k, n).$$

We'll now consider the sum

$$\sum_{1 \le k \le n} g(j, k) u_k = \lim_{t \to \infty} \sum_{1 \le k < n} g(j, k) p_t(k, 0)$$
$$= \lim_{t \to \infty} \frac{\partial}{\partial t} p_t(j, 0)$$
$$= 0,$$

since 0 is absorbing.

Exercise 4. This problem is set up in the language of Theorem 9.4.1. and its Corollary 9.4.2, but really is about solving a first-order linear ordinary differential equation (ODE) and carrying out asymptotic evaluation of an integral by Laplace's method.

Consider an Ito process X(t) with boundaries, $X \in (0,1)$:

$$dX(t) = \mu(X)dt + \epsilon dW(t),$$

where ϵ is a small constant, and $\mu(x)$ has a potential function U(x): $\mu(x) = -dU(x)/dx$. The drift $\mu(x)$ has two roots $x_1, x_2 \in [0, 1]$, $x_1 < x_2$, $\mu'_x(x_1) < 0$ and $\mu'_x(x_2) > 0$; they correspond to a local minimum, at x_1 , and a local maximum, at x_2 , of U(x). The backward equation for the expected value of the hitting time, T(x) is

$$\frac{\epsilon^2}{2} \frac{d^2 T(x)}{dx^2} + \mu(x) \frac{dT(x)}{dx} = -1, \ \frac{dT(0)}{dx} = 0, \ T(1) = 0.$$

The boundary condition at x = 0 is understood as "reflecting the process", the boundary at x = 1 is understood as "killing the process".

(a) Show that the $T(x;\epsilon)$, the solution to the ODE,

$$T(x;\epsilon) = \frac{2}{\epsilon^2} \int_x^1 du \int_0^u \exp\left\{\frac{2}{\epsilon^2} \left[U(u) - U(v)\right]\right\} dv.$$

(b) Using the result in (a) show that $T(x;\epsilon)$, as $\epsilon \to 0$, has an asymptotic expression that is independent of x,

$$T(x;\epsilon) \simeq \frac{2\pi}{\sqrt{U''(x_1)|U''(x_2)|}} \exp\left\{\frac{2}{\epsilon^2} \left[U(x_2) - U(x_1)\right]\right\}.$$

It only has to do with the "barrier height" $U(x_2) - U(x_1)$ and the curvatures at the x_1 and x_2 .

Solution 4. (a) We begin by taking the first derivative of the function above

$$\begin{split} \frac{\mathrm{d}T}{\mathrm{d}x} &= -\frac{2}{\epsilon^2} \int_0^x \exp\left\{\frac{2}{\epsilon^2} \left[U(x) - U(v)\right]\right\} \mathrm{d}v \\ &= -\frac{2}{\epsilon^2} \exp\left\{\frac{2}{\epsilon^2} U(x)\right\} \int_0^x \exp\left\{-\frac{2}{\epsilon^2} U(v)\right\} \mathrm{d}v \end{split}$$

Next, taking the second derivative using product rule, we see

$$\frac{\mathrm{d}^2 T}{\mathrm{d}^2 x} = -\frac{2}{\epsilon^2} - \frac{2}{\epsilon^2} \left(\frac{2}{\epsilon^2} U'(x) \exp\left\{ \frac{2}{\epsilon^2} U(x) \right\} \right) \int_0^x \exp\left\{ -\frac{2}{\epsilon^2} U(v) \right\} \mathrm{d}v$$

Plugging this into the ODE, we have

 $-1 + \left(-U'(x)\frac{2}{\epsilon^2}\exp\left\{\frac{2}{\epsilon^2}U(x)\right\} - \mu(x)\frac{2}{\epsilon^2}\exp\left\{\frac{2}{\epsilon^2}U(x)\right\}\right)\int_0^x \exp\left\{-\frac{2}{\epsilon^2}U(v)\right\} dv = -1,$

where we've used that $\mu = -U'$. $T(x; \epsilon)$ is a solution to the ODE.

(b) We begin by rewriting $T(x;\epsilon)$ as nested integrals

$$T(x;\epsilon) = -\frac{2}{\epsilon^2} \int_0^x \exp\left(\frac{2}{\epsilon^2} U(u)\right) \int_0^u \exp\left(-\frac{2}{\epsilon^2} U(v)\right) dv du.$$

We first will asymptotically evaluate the inner integral in the $\epsilon \to 0$ limit around x_1 which maximizes -U as $(-U)''(x_1) = \mu'(x_1) < 0$ and $\mu(x_1) = 0$, so that

$$T(x;\epsilon) \simeq \frac{2}{\epsilon^2} \left(\sqrt{\frac{2\pi}{\frac{2}{\epsilon^2} |U''(x_1)|}} \exp\left(-\frac{2}{\epsilon^2} U(x_1)\right) \right) \int_0^x \exp\left(\frac{2}{\epsilon^2} U(u)\right) du.$$

We'll repeat this method to asymptotically evaluate the inner integral using that U is maximized at x_2 by similar argument to what we used for x_1 . Using Laplace's method allows us to conclude

$$T(x;\epsilon) \simeq \frac{2}{\epsilon^2} \left(\sqrt{\frac{2\pi}{\frac{2}{\epsilon^2} |U''(x_1)|}} \exp\left(-\frac{2}{\epsilon^2} U(x_1)\right) \right) \left(\sqrt{\frac{2\pi}{\frac{2}{\epsilon^2} U''(x_2)}} \exp\left(\frac{2}{\epsilon^2} U(x_2)\right) \right)$$
$$\simeq \frac{2\pi}{\sqrt{|U''(x_2)| U''(x_1)}} \exp\left(\frac{2}{\epsilon^2} [U(x_2) - U(x_1)]\right).$$

I skipped most of the algebra in the last line, but it's mostly manipulating square roots and combining the exponentials.

Exercise 5. As a special example of a Lévy process, let Y(t) be the standard Poisson process with probability mass function

$$p_{Y(t)}(n) = \mathbb{P}\{Y(t) = n\} = \frac{t^n e^{-t}}{n!};$$

all jumps in the Poisson process have $\Delta Y = 1$. If one denotes the random times at which the jumps occur sequentially as T_1, T_2, \dots , then $\{T_k\}_{k\geq 1}$ is a positive real-valued, discrete-time stochastic process with independent and stationary increments. This is in contrast to Y(t) which is an integer-valued continuous-time stochastic process with independent and stationary increments. Y_t and T_k are widely called Poisson counting process and Poisson point process, respectively.

- (a) Show that for any $0 \le t_1 < t_2 < t_3 < t_4 < \infty$, $(Y_{t_4} Y_{t_3}) \perp (Y_{t_2} Y_{t_1})$ according to the definition of a Poisson process in Chapter 5; show also that for any $0 \le t_1 < t_2 < \infty$, $(Y_{t_2} Y_{t_1}) \sim Y_{t_2-t_1}$.
- (b) A standard Brownian motion W(t) has independent and stationary increments, between t and $t + \tau$, that are normally distributed:

$$W(t+\tau) - W(t) \sim \mathcal{N}(0,\tau), \quad t, \tau \ge 0.$$

What is the distribution for the stationary increment $Y(t+\tau)-Y(t)$? What is the stationary increment $T_{k+\ell}-T_k$, where ℓ is a positive integer?

(c) Introducing time-changed Poisson process with rate function $\lambda(t) \geq 0$. Assuming that $\lambda(t)$ is uniformly bounded for all time t:

$$\tilde{Y}(t) := Y\left(\int_0^t \lambda(s) \mathrm{d}s\right).$$

Show that in the limit of $t \to \infty$,

$$\lim_{t \to \infty} \mathbb{P}\left(\left|\frac{\tilde{Y}(t)}{t} - \lambda(t)\right| > \epsilon\right) = 0, \ \forall \epsilon > 0.$$

(d) Show that for a continuous time two-state Markov process X(t), $X \in \{-1, +1\}$, with transition rates $g(-1, +1) = g_+$ and $g(+1, -1) = g_-$, can be represented by an integral equation in terms of two independent Poisson processes $Y_1(t)$ and $Y_2(t)$ with time changes:

$$X(t) = X(0) + 2Y_1 \left(g_+ \int_0^t \mathbf{1}_{-1} (X(s)) ds \right) - 2Y_2 \left(g_- \int_0^t \mathbf{1}_1 (X(s)) ds \right).$$

(e) Applying the result in (d), show that

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbb{E}[X(t)] = 2g_{+}P_{-1}(t) - 2g_{-}P_{1}(t),$$

where $P_k(t) = \mathbb{P}(X(t) = k)$

Solution 5. (a) We write that

$$Y_t = \sum_{k=1}^{\infty} \mathbf{1}_{T_k \le t},$$

so that Y_t counts the events which have occurred up to time t. We then have that for $t_1 < t_2 < t_3 < t_3$,

$$Y_{t_4} - Y_{t_3} = \sum_{k=1}^{\infty} \mathbf{1}_{T_k \le t_4} - \mathbf{1}_{T_k \le t_3} = \sum_{k=1}^{\infty} \mathbf{1}_{t_3 < T_k \le t_4}.$$

As the underlying T_k are independent for the differences $Y_{t_4} - Y_{t_3}$ and $Y_{t_2} - Y_{t_1}$ and do not overlap, this representation shows that

$$Y_{t_4} - Y_{t_3}$$
 is independent of $Y_{t_2} - Y_{t_1}$

Additionally, the derived equation for $Y_{t_4} - Y_{t_3}$ shows that the increments is the number of events which have occurred between the two time points as these increments are i.i.d. they must share the same distribution with $Y_{t_4-t_3}$, so that

$$Y_{t_4} - Y_{t_3} \sim Y_{t_4 - t_3}$$
.

(b) The increments of the counting process are Poisson distributed with

$$Y_{t+\tau} - Y_t \sim \text{Pois}(\tau)$$

$$T_{t+l} - T_t \sim \text{Gamma}(l, 1).$$

The first statement we've proved in 561. The second uses that the between event times are independent exponentials with rate λ as from Thm 5.1.5. Their sum is then Gamma distributed with parameters l and 1.

(c) We start with the transformed Poisson process and write

$$\left| \frac{\tilde{Y}(t)}{t} - \lambda(t) \right| = \left| \frac{1}{t} Y \left(\int_0^t \lambda(s) ds \right) - \lambda(t) \right|.$$

By mean value theorem for integrals, we have that for $s_{\star}(t) \in (0, t)$, we have that

$$\frac{1}{t} \int_0^t \lambda(s) ds = \lambda(s_*).$$

By uniform boundness, we then have that

$$\left| \frac{1}{t} \int_0^t \lambda(s) ds \right| = |\lambda(s_*)| \le M,$$

for some fixed M > 0. We can then write out write out the probability distribution of the time changed Poisson as

$$\mathbb{P}(\tilde{Y}(t) = kt) = (\lambda(s_{\star}))^{kt} \frac{1}{(kt)!} \exp(-\lambda(s_{\star})).$$

We then subtract $\lambda(t)t$ from both sides so that

$$\mathbb{P}([\tilde{Y}(t) - \lambda(t)t] \approx [k - \lambda(t)]t) \le \frac{M^{kt}}{(kt)!} \exp(-\lambda(s_{\star})) \le \frac{M^{kt}}{(kt)!},$$

where we've used that $\lambda(t)$ is non-negative. Yes, we know the distribution is integer valued but we're playing fast and loose with it. For any fixed $k \in \mathbb{N}$ as $t \to \infty$, we have

$$\frac{M^{kt}}{(kt)!} \xrightarrow{t \to \infty} 0,$$

which shows that

$$\mathbb{P}\left(\left|\tilde{Y}(t)/t - \lambda(t)\right| > \epsilon\right) \xrightarrow{t \to \infty} 0.$$

(d)Assuming that Δt is sufficiently, small only one of the integrals can be non-zero, in the case that X(t) = 1

$$X(t + \Delta t) - X(t) = -2Y_2 \left(g_- \int_t^{t+\Delta t} ds \right) = -2Y_2 \left(g_- \Delta t \right)$$

This will match up when Y_1 returns 1, so the conditional probability is then given by

$$\mathbb{P}(X(t + \Delta t) = -1 \mid X(t) = 1) = f_{\text{Pois}}(g_{-}\Delta t, 1)$$
$$= -g_{-}\Delta t \exp(-g_{-}\Delta t)$$
$$= 1 - g_{-}\Delta t + O(\Delta t^{2}),$$

where last line we've used $\exp(-x) \approx 1 - x + x^2$. This then shows the g_- is the generator element corresponding to g(1,-1) using the definition of the generator. We can repeat this argument assuming X(t) = -1 to show that $g(-1,1) = g_+$

$$\mathbb{P}(X(t + \Delta t) = 1 \mid X(t) = -1) = 1 - g_{+}\Delta t + O(\Delta t^{2}).$$

This shows that this representation is equivalent to the original Markov chain.

(e) Taking the expectation of the result in (d), we have that

$$\mathbb{E}[X(t)] = X(0) + 2\mathbb{E}\left[Y_1\left(g_+ \int_0^t \mathbf{1}_{-1}(X(s))ds\right)\right] - 2\mathbb{E}\left[Y_2\left(g_- \int_0^t \mathbf{1}_1(X(s))ds\right)\right]$$
$$= X(0) + 2g_+ \int_0^t \mathbb{E}\mathbf{1}_{-1}(X(s))ds - 2g_- \int_0^t \mathbb{E}\mathbf{1}_1(X(s))ds,$$

where we've interchanged the integral and expectation and then used that the expectation of an indicator event is its probability. Taking the derivative of this equation, gives the result

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbb{E}[X(t)] = 2g_{+}P_{-1}(t) - 2g_{-}P_{1}(t).$$

Exercise 6. Let $P = (P_t)_{t \ge 0}$ be a Poisson process with intensity λ .

- 1. What is the Levy measure ν of P?
- 2. Let $dX_t = dP_t$. Define $u(t, x) = \mathbb{E}[\varphi(X_T) \mid X_t = x]$. Find u(t, x) and verify that it solves the Kolmogorov Backward Equation.

Solution 6. (1.) Using definition 10.1.6 and 10.17, we can write the Levy measure of P as

$$u(U) = \mathbb{E}N(1, U) = \mathbb{E}\left[\sum_{s: 0 < s < 1} \mathbf{1}_{\Delta P_s \in U}\right].$$

We'll now compute the probability distribution of ΔP_s , we have that

$$N_{t+dt} - N_t \sim \text{Pois}(\lambda dt),$$

so that jumps can only of size one since this depends on powers of λdt . We then have that the number of jumps of size one in U depends on whether or not U contains 1. We can express this as:

$$\nu(U) = \mathbb{E}\left[\sum_{n=1}^{P_1} \mathbf{1}_{1 \in U}\right] = \begin{cases} \lambda = \mathbb{E}\left[P_1\right], & 1 \in U \\ 0, & 1 \notin U. \end{cases}$$

We can write the full measure as

$$\nu(U) = \lambda \mathbf{1}_{1 \in U} \text{ or } \nu(x) = \lambda \delta(x-1).$$

(2.) As a pure jump process, we can write P_t in the form

$$P_{t} = \int_{|z|<1/2} z\tilde{N}(t, dz) + \int_{|z|\geq1/2} zN(t, dz)$$
$$= \int_{|z|>1/2} zN(t, dz) = N(t, dz)$$

where we've used that the Poisson process has jumps of size 1. In short, this allows us to write

$$\mathrm{d}P_t = \lambda t + \int_{\mathbb{R}} z \tilde{N}(t, \mathrm{d}z).$$

Following the notes, we have that

$$u(t,x) = \frac{1}{2\pi} \int_{\mathbb{R}} \exp(i\xi x + (T-t)\psi(\xi))\hat{\varphi}(\xi).$$

We can find the characteristic exponent ψ as

$$\psi(\xi) = \lambda(\exp(i\xi) - 1),$$

following the derivation on pg 175 (MLN). Plugging this in, we have that

$$u(t,x) = \frac{1}{2\pi} \int_{\mathbb{R}} \exp(i\xi x + (T-t)\lambda(\exp(i\xi) - 1))\hat{\varphi}(\xi)d\xi.$$

page 186 We'll show that this satisfies the KBE with generator

$$\mathcal{A} = \lambda \partial_x + \int_{\mathbb{R}} \lambda \delta_1(z) (\theta_z - 1 - z \partial_x)$$
$$= \lambda \partial_x + \lambda \theta_1 - \lambda - \lambda \partial_x$$
$$= \lambda (\theta_1 - 1).$$

We then have that

$$\mathcal{A}u = \lambda[u(t, x+1) - u(t, x)]$$

$$= \frac{1}{2\pi} \int_{\mathbb{R}} \lambda(\exp(i\xi) - 1) \exp(i\xi x + (T-t)\lambda(\exp(i\xi) - 1))\hat{\varphi}(\xi) d\xi.$$

Also notice that after interchanging the integral and derivative with respect to t, we have that

$$\partial_t u = -\frac{1}{2\pi} \int_{\mathbb{R}} \lambda(\exp(i\xi) - 1) \exp(i\xi x + (T - t)\lambda(\exp(i\xi) - 1)) \hat{\varphi}(\xi) d\xi.$$

Therefore, u satisfies the KBE

$$Au + \partial_t u = 0.$$

We can also check the boundary condition is satisfied as

$$u(T, x) = \frac{1}{2\pi} \int_{\mathbb{D}} \exp(i\xi x) \hat{\varphi}(\xi) d\xi = \varphi(x).$$