# (19)日本国特新庁(JP) (12) 公開特許公報(A)

(11)特許出願公開番号

# 特開平5-219906

(43)公開日 平成5年(1993)8月31日

(51)Int.Cl.<sup>5</sup>

識別記号

庁内整理番号

FΙ

技術表示箇所

A 2 3 L 1/10

F 2121-4B

B 6 5 D 77/08

F 9145-3E

審査請求 未請求 請求項の数1(全 6 頁)

(21)出願番号

特願平4-67867

(22)出題日

平成4年(1992)2月10日

(71)出願人 000006057

三菱油化株式会社

東京都千代田区丸の内二丁目 5番 2号

(71)出願人 591143951

和田化学工業株式会社

東京都千代田区東神田2丁目10番14号

(72)発明者 宇田川 徳征

東京都千代田区東神田二丁目10番14号 和

田化学工業株式会社内

(72)発明者 石井 博

千葉県香取郡栗源町岩部179番地93 和田

化学工業株式会社成田工場内

(74)代理人 弁理士 菊川 貞夫

最終頁に続く

## (54)【発明の名称】 にぎり寿しの包装体

#### (57)【要約】

【目的】 玉子、穴子、いか、たこ、しゃこ等のネタに 限らず、まぐろ、はまち、貝類等の生のネタのにぎり寿 しでさえも電子レンジで鮮度を落さずに解凍できるよう にする。

【構成】 熱可塑性樹脂フイルム層、金属蒸着層、熱可 塑性樹脂フイルム層の積層フイルム1を熱成形して、該 積層フイルム1にサンドイッチされている金属蒸着層が 島構造となっている複数の収納凹部2を有するトレイ容 器3を形成し、このトレイ容器3の収納凹部2には底部 側に寿しのしゃり4 aが存在するようににぎり寿し4を 収納すると共に、該トレイ容器3の開放側を樹脂製蓋5 で封をして成るものである。



## 【特許請求の範囲】

【請求項1】 熱可塑性樹脂フイルム層、金属蒸着層、 熱可塑性樹脂フイルム層の積層フイルムを熱成形して、 該積層フイルムにサンドイッチされている金属蒸着層が 島構造となっている複数の収納凹部を有するトレイ容器 を形成し、このトレイ容器の収納凹部には底部側に寿し のしゃりが存在するようににぎり寿しを収納すると共 に、該トレイ容器の開放側には樹脂製蓋を封着して成る ことを特徴とするにぎり寿しの包装体。

# 【発明の詳細な説明】

#### [0001]

【産業上の利用分野】本発明は、にぎり寿しのネタがま ぐろ、うに、はまち、とり貝、甘海老等の生のものであ っても、電子レンジ (マイクロウェーブ調理器) により 煮えたたせずに生の状態で解凍できるようにしたにぎり **寿し包装体に関する。** 

#### [0002]

【従来の技術】寿しチェーンストアや回転寿しストアに おいては、多量のにぎり寿しが販売されるので、客が来 店してから、その都度寿しを握っていたのでは客を長時 20 間待たせることになる。それ故、鮮度にあまり関係のな い穴子、蒸し海老、玉子、いか、たこ、しゃこ等の握り り寿しを予め多量に握っておき、これをポリプロピレン やポリエチレン製のトレイ容器の収納部に入れ、この容 器の開放側をヒートシール性樹脂蓋でヒートシールして 封をし、これを冷凍しておく。

【0003】そして、客が来たらこのトレイ容器を湯の 中に入れ、解凍(湯煎)する方法が行なわれているが、 まぐろ、いくら、こはだ、はまち、とり貝、あか貝等の ゃり(ご飯)の上にこれらのネタを置き、上記のように して解凍したにぎり寿しと並べて客に供している。

# [0004]

【発明が解決しようとする課題】冷凍したにぎり寿しが 電子レンジを利用して解凍できないのは、しゃりが解凍 できる時間に照射時間を設定するとネタが煮えすぎてし まい、おいしさが損なわれてしまうからである。また、 湯煎を生のネタのにぎり寿しに利用して解凍できないの は、湯煎によるしゃりの解凍時間ではまぐろや貝類等の 生のネタの鮮度が大幅に低下するからである。

【0005】そこで、本発明の目的は、電子レンジで解 凍できるにぎり寿しの包装体を提供することにある。し かも、ネタが玉子、しゃこ、穴子等の調理済みのものは 勿論のこと、まぐろ、はまち、貝類等の生のネタであっ ても該ネタの鮮度を低下させることなく、しゃり及びネ タとも支障なく解凍できるようにした握り寿しの包装体 を提供することを課題とするものである。

### [0006]

【課題を解決するための手段】上記目的を達成するため に、本発明の特徴とする握り寿しの包装体は熱可塑性樹 50

脂フイルム層、金属蒸着層、熱可塑性樹脂フイルム層の 積層フイルムを熱成形して、該積層フイルムにサンドイ ッチされている金属蒸着層が島構造となっている複数の 収納凹部を有するトレイ容器を形成し、このトレイ容器 の収納凹部には底部側に寿しのしゃりが存在するように にぎり寿しを収納すると共に、該トレイ容器の開放側に は樹脂製蓋を封着して成るものである。

2

#### [0007]

【作用】金属蒸着層をサンドイッチした積層フイルム (図3及び図6を参照)を真空成形、圧空成形、マッチ ドダイ成形等の熱成形法により収納凹部を有するトレイ 容器を形成すると、収納凹部の部分において熱可塑性の 樹脂フイルム層7は引き伸ばされるが、 金属蒸着の島8 (サイズは10~200μm)は延展性が極めて小さい ので面積は変らず、図4、図5に示されるように金属蒸 着の島8′を囲んでいる網目状の樹脂フイルム部分7′ の面積が増加(網目の太さは、太いところ7′ aでは4 0~300 µm、新しく金属蒸着の島を割って形成され た細い部分7′bの太さは5~20μm)し、この網目 状の樹脂フイルム部分の面積の増加によりマイクロウェ ーブの透過量は増大する。

【0008】マイクロウェーブは金属蒸着層の島8′の 部分では遮断され、該金属蒸着層の島8′と島8′の間 の網目状の樹脂フイルム部分7′を通って収納凹部内の 冷凍した握り寿しを暖め解凍する。この際、マイクロウ ェーブの到達距離が近い側にある収納凹部の底部にある しゃりがより遠くにあるネタよりもマイクロウェーブの 照射量を多く受けるので、しゃりが解凍される一方、マ イクロウェーブが到達しにくいネタの解凍はしゃりより 生のネタのにぎり寿しについては、その都度、握ったし 30 も遅れるので沸騰或いは暖かくなるほどの加熱には到ら ない。

> 【0009】したがって、解凍された握り寿しは鮮度を 保った風味を示し、また、金属蒸着層の島8′と島8′ は樹脂フイルム層により隔離され分散しているので、マ イクロウェーブが照射されてもスパークや火花を発生す ることがない。

# [0010]

【実施例】以下、図面を参照しながら本発明を説明す る。図3は熱成形する前の積層フイルム1の断面図であ る。

【OOII】 Taは肉厚が200~1000μmのボリ プロピレン、ポリカーボネート、ポリエチレンテレフタ レート、ポリアミド、ポリフェニレンスルフィド、ポリ フェニレンエーテル、エチレン・酢酸ビニル共重合体の 鹼化物等の融点が145℃以上、好ましくは164℃以 上の熱可塑性樹脂フイルム層、1 bはアルミニウム、 金、銀、ニッケル、錫等の金属蒸着層で、肉厚が200  $\sim 1000$  オングストローム( $\Lambda$ )、好ましくは350 ~500Åのものである。

【0012】1cは肉厚が8~150µm、好ましくは

10

12~60µmのポリプロピレン、ポリエチレンテレフ タレート、ポリアミド、ポリカーボネート、ポリフェニ レンスルフィド、エチレン・酢酸ビニル共重合体の酸化 物等の融点が145℃以上、好ましくは164℃以上の 熱可塑性樹脂フイルム層で、この熱可塑性樹脂フイルム 層1cは上記熱可塑性樹脂フイルムの各々とエチレン・ 酢酸ビニル共重合体、エチレン・アクリル酸共重合体、 エチレン・メタクリル酸共重合体の金属塩、低密度ポリ エチレン、無水マレイン酸グラフトエチレン・酢酸ビニ ル共重合体等の低融点 (88~134℃) の熱可塑性樹 脂フイルムとの複合層であってもよい。

【0013】金属蒸着層1bは何れか一方の熱可塑性樹 脂フイルム層1a或いは1c側に蒸着させてもよく、必 要によっては、金属蒸着させる前に該樹脂フイルム表面 をプライマー処理してもよい。プライマーとしては、ポ リエチレンイミン、エチレン、尿素、ポリアミドのエピ クロルヒドリン付加物、ポリエステルエーテル・ポリイ ソシアネート、ポリチタネート化合物等が使用できる。 そして、プライマーの塗布量は0.1~8g/m2、好 ましくは0.5~3g/m<sup>2</sup>である。なお、積層フイル 20 ム1の肉厚は300~1100µm、好ましくは400  $\sim 700 \mu$ mである。

【0014】図2は、上記積層フイルフ1を該フイルム の樹脂の融点以上に加熱し、これを溶融軟化させ、熱成 形して得られた収納凹部2を多数有するトレイ容器3の 斜視図であって、図2の場合では熱可塑性樹脂フイルム 層1c側がトレイ容器3の開放側となっているが、これ は熱可塑性樹脂フイルム層1a側が開放側となるように 熱成形してもよい。熱成形法としては、真空成形、圧空 成形、真空併用圧空成形、マッチドダイ成形等が挙げら れる。必要によっては、リングアシストもしくはプラグ アシストすることにより肉厚分布の優れたトレイ容器を 得ることができる。収納凹部2の絞り比(図1のH/ W) は0.3~1.5、好ましくは0.5~1である。 【0015】上述したように、熱成形により収納凹部2 を形成させる際、熱可塑性樹脂フイルム層と金属蒸着層 との延展性の違いにより連続膜であった金属蒸着層は部 分的に引き離されて島の状態となる。金属蒸着層の島の 大きさは金属により異なるが、500Å~3000μ m、好ましくは8~2000 mであり、島の間隔は2  $00A\sim2000\mu$ m、好ましくは $20\sim1000\mu$ m である。なお、図4に後述する実施の具体例に用いたト レイ容器の収納凹部の底部のアルミニウム蒸着層の島構 造の電子顕微鏡写真による拡大図を、また図5に収納凹 部の側壁部のアルミニウム蒸着層の島構造の電子顕微鏡 写真による拡大図をそれぞれ示す。

【0016】図1は、上記トレイ容器3の収納凹部2に にぎり寿し4をしゃり4aが収納凹部2の底部側に、ネ タ4 bがトレイ容器3の開放側となるように収納し、ト レイ容器3の開放側を蓋5で封をしたにぎり寿しの包装 50 底部のアルミニウム蒸着層の島8′,8′.... (大

体6を示す断面図である。 蓋材としては、トレイ容器の 素材樹脂と同一の素材樹脂の方がヒートシールできるこ とから好ましく、異種の樹脂を用いたり、ヒートシール が困難な樹脂を用いるときは、上述した低融点の熱可塑 性樹脂フイルムを積層して用いられ、蓋5の肉厚は8~  $200\mu$ m、好ましくは $18\sim60\mu$ mである。

4

【0017】蓋5により密封されたにぎり寿しの包装体 6は冷凍されることにより鮮度が保たれる。これを電子 レンジ (マイクロウェーブ調理器) で解凍するには、包 装体6を収納凹部2側が上側に、蓋5側が下側となるよ うに電子レンジの回転皿の上に載せ、次いで、マイクロ ウェーブを2~5分間照射させることにより、ネタ4 b は解凍されるが冷たいまま、しゃり4aは解凍され、若 干、暖かい状態ににぎり寿しは解凍される。次に、蓋5 をトレイ容器3より引き剥がし、寿しの飯台、または盆 上にトレイ容器3より取り出したにぎり寿しを並べる。 【0018】トレイ容器3に収納されるにぎり寿し4 は、同一のものが解凍時間をそのネタにあった最適時間 に設定できるので好ましいが、異なったネタのにぎり寿 し4を収納した場合は、3~4分間マイクロウェーブを 照射後、蓋5を取り去り、トレイ容器3より飯台または 皿、もしくは盆ににぎり寿しを載せた後、3~5分放置 して未解凍のネタを自然解凍した後、客に供すればよ W.

【0019】以下に、実施の具体例を説明する。コロナ 放電処理された無延伸のポリプロピレンフイルム(融点 が約164~167℃、肉厚が25µm)の表面に、ポ リエステルポリオール・ポリイソシアネートプライマー を1.2g/m<sup>2</sup>となるように塗布して乾燥し、、次い で、この乾燥したプライマー表面にアルミニウム蒸着を 施し、380Åのアルミニウム蒸着層を形成させた。 【0020】ポリプロピレン(融点が約164~167 ℃)を押出し機で溶融混練し、280℃でダイよりフイ ルム (肉厚が500μm) 状に押し出し、この表面をオ ゾン処理した後、オゾン処理したポリプロピレンフイル ム面と、アルミニウム蒸着層が対向するように蒸着ポリ プロピレンフイルムを導き、次いで、ロールで溶融ラミ ネートして熱成形用積層フイルム (積層フイルム)を得 た。このフイルムのアルミニウム蒸着島8の分散状態を

【0021】そして、熱成形用積層アイルムを220~ 230℃に加熱して溶融軟化させ、次いで、プラグアシ スト真空併用圧空成形 (-350 mm H g 減圧、圧空 3.0kg/cm<sup>2</sup>G)し、図2に示す収納凹部を12 個有する縦が210mm、横が300mm、深さが36 mmのトレイ容器を成形した。収納凹部の大きさは縦が 40mm、横が86mm、深さが36mmで、絞り比は 0.9である。

図6に示す。

【0022】図4に成形されたトレイ容器の収納凹部の

きさは10~330µm、島8'と島8'とを隔てる網 目状の樹脂フイルム部分7′の大きさは10~300μ m)の分散状態を、図5に収納凹部の側壁部のアルミニ ウム蒸着層の島8′,8′.... (大きさは18~4 00µm、島8′と島8′とを隔てる網目状の樹脂フイ ルム部分7′の大きさは10~220μm)の分散状態 をそれぞれ示す。収納凹部の底部の光線透過率(JIS K-6714)は2%であり、側壁部の光線透過率は4 %であった。

【0024】トレイ容器13個のうち、12個(No. 1~No. 12) についてはそれぞれ12ある収納凹部 12箇所に同一種類のにぎり寿し、即ち玉子、しゃこ、 蒸し海老、穴子、いか、たこ、あわび、まぐろ、はま ち、赤貝、とり貝、鯛をネタとするものを各々12個収 容させ、残りの一つのトレイ容器 (No. 13) には、 上記12種類のにぎり寿しを各々1個づつ、計12個セ ット収容させ(しゃりの方が収容四部の底部側) た後 \* \*肉厚18µmのポリプロピレンフイルムを蓋材としてと ートシールし、密封してにぎり寿しの包装体 (図1を参 照)を得た。

6

【0025】この包装体13個(No.1~No.1 3)を-10℃の冷凍室に1昼夜保管して冷凍した。そ して、冷凍したNo. 1~No. 13のにぎり寿しの包 装体を冷凍室より取り出し、次いで、これらを電子レン ジに蓋が下側(しゃりが上側でネタが下側)になるよう に置き、それぞれ次表に示す時間マイクロウェーブを上 10 方から照射し、解凍を行なった。照射後、蓋を取り、に ぎり寿しを皿上に載せ、モニター10人に試食させたと ころ(No. 13のものについては、解凍後5分間放置 してモニターに供した)、8割以上のモニターが寿し屋 のカウンターで寿しを握りながら食べるにぎり寿しの味 と変わりがないと答えた。

[0026]

[表1]

| 試食番号 | ネタ   | 照射時間  | ネタの解凍状態 | しゃりの解凍状態       | モニター試食結果 |
|------|------|-------|---------|----------------|----------|
| 1    | 玉子   | 23}   |         | 良              | 10人が良好   |
| 2    | しゃこ  | 25}   | 解凍されてい  | П              | n        |
| 3    | 蒸し海老 | 25}   | るが、暖かく  | n              | n        |
| 4    | 穴子   | 25}   | なっていない  | п              | п        |
| 5    | いか   | 1分45秒 |         | п              | 9人が良好    |
| 6    | たこ   | 2分    |         | n              | 10人が良好   |
| 7    | あわび  | 1分40秒 |         | n              | 8人が良好    |
| 8    | まぐろ  | 1分30秒 |         | п              | 9人が良好    |
| 9    | はまち  | 1分40秒 |         | π              | n        |
| 10   | 赤貝   | 1分30秒 |         | п              | 8人が良好    |
| 11   | とり貝  | 1分30秒 |         | п              | 9人が良好    |
| 12   | ے    | 1分45秒 |         | n              | . "      |
| 13   | セット  | 1分30秒 | 1部未解凍あり | D. Vind replay | 8人が良好    |

注:しゃりの解凍状態は若干なま暖かくなっている。

# [0027]

【発明の効果】本発明は上記の如くであって、玉子、穴 子、いか、たこ、しゃこ等のネタに限らず、まぐろ、は まち、貝類等の生のネタのにぎり寿しでさえも電子レン ジで鮮度を落さずに解凍できる。また、客に冷凍したま※50 0秒~3分の解凍時間で行なうことができる。

※ま家に持ち帰って貰い、家庭で、好みの時間に電子レン ジにより解凍して鮮度良く食することができる。更にま た、従来の湯煎での解凍に10~15分間を要していた のが、本発明の包装体では電子レンジを利用して1分3

【図面の簡単な説明】

【図1】本発明に係るにざり寿しの包装体を示す断面図

【図2】図1の包装体に用いるトレイ容器の断面図であ

【図3】図2のトレイ容器の素材である積層フイルムの 断面図である。

【図4】トレイ容器の収納凹部の底部における金属蒸着 層の島の分散構造を示す拡大図 (倍率40倍)である。

【図5】トレイ容器の収納凹部の側壁部における金属蒸 10 4 aはしゃり 着層の島の分散構造を示す拡大図 (倍率40倍)であ る.

【図6】熱成形する前の積層フイルムの表面における金 属蒸着層の島の分散構造を示す拡大図 (倍率40倍)で

ある。

【符号の説明】

1は積層フイルム

1 aは熱可塑性樹脂フイルム層

8

1 bは金属蒸着層

1 c は熱可塑性樹脂フイルム層

2は収納凹部

3はトレイ容器

4はにぎり寿し

4 bはネタ

5は蓋

6はにぎり寿司しの包装体

【図1】 【図4】







【図5】



【図6】



フロントページの続き

(72)発明者 宮崎 長生

三重県四日市市東邦町1番地 三菱油化株 式会社四日市総合研究所内