2008 - 2009 学年度第一学期期中考试 高二数学试卷

一. 选择题: 本大题共 10 题, 满分 50 分. 请选择你认为最正确的答案(每小题有且只有一个)写在括号内.

1. 答卷前, 考生务必将姓名、班级等填写清楚, 解题时要认真审题, 规范作答.

2. 本试卷共 21 道试题, 满分 150 分, 考试时间 120 分钟.

注意事项:

(C) 充要条件

每是	亟填写正确得 5 分,否则得	0分.				
1.	命题:" 3 数列 $\{a_n\}$ 既是等差数列又是等比数列"是				()
	(A) 特称命题并且是真命题		(B) 全称命题并且是假命题			
	(C) 特称命题并且是假命题		(D) 全称命题并且是真命题			
2.	椭圆 $2x^2 + 3y^2 = 12$ 的两角	焦点之间的距离为			()
	$(A) 2\sqrt{10}$	(B) $\sqrt{10}$	(C) $2\sqrt{2}$	(D) $\sqrt{2}$		
3.	设 p,q 是两个简单命题,若 "¬ p 且¬ q " 的是真命题,则必有)
	(A) p 真 q 真	(B) p 假 q 假	(C) p 真 q 假	(D) p 假 q 真		
4.	如果方程 $x^2 + ky^2 = 2$ 表示焦点在 y 轴上的椭圆,那么实数 k 的取值范围是)
	$(A) (0, +\infty)$	(B) $(0,2)$	$(C)\ (1,+\infty)$	(D) $(0,1)$		
5.	5. 设等比数列 $\{a_n\}$ 的公比 $q=2$,前 n 项和为 S_n ,则 $\dfrac{S_4}{a_2}=$				()
	(A) 2	(B) 4	(C) $\frac{15}{2}$	(D) $\frac{17}{2}$		
6.	· 记等差数列的前 n 项和为 S_n ,若 $S_2=4$, $S_4=20$,则该数列的公差 $d=$)
	(A) 2	(B) 3	(C) 6	(D) 7		
7.	. 在三角形 ABC 中, $AB = 5$, $AC = 3$, $BC = 7$, 则 $\angle BAC$ 的大小为)
	$(A) \frac{2\pi}{3}$	(B) $\frac{5\pi}{6}$	(C) $\frac{3\pi}{4}$	(D) $\frac{\pi}{3}$		
8.	若椭圆的短轴为 AB ,它的一个焦点为 F_1 ,则满足 $\triangle ABF_1$ 为等边三角形的椭圆的离心率是()
	(A) $\frac{1}{4}$	(B) $\frac{1}{2}$	(C) $\frac{\sqrt{2}}{2}$	$(D) \frac{\sqrt{3}}{2}$		
9.	中心在原点,焦点在 x 轴上,焦距等于 6 ,离心率等于 $\frac{3}{5}$,则椭圆的方程是				()
		(B) $\frac{x^2}{100} + \frac{y^2}{64} = 1$				
10.). 若条件 $p: x+1 \le 4$, 条件 $q:x^2 < 5x - 6$, 则 $\neg p$ 是 $\neg q$ 的				()
	(A) 充分条件,但不是必要条件 (B) 必要条件,但不是充分条件		分条件			

(D) 既不是充分条件也不是必要条件

- 11. 给出下列四个命题:
 - ① 若 $a_n = n$,则数列 $\{a_n\}$ 为单调递增数列; ② 若 $a^2 > b^2$,则 |a| > b ;

③椭圆 $\frac{x^2}{4}+\frac{y^2}{3}=1$ 的离心率为 $\frac{\sqrt{3}}{2}$; ④ 在 $\triangle ABC$ 中,若 sinA=sinB ,则 $\angle A=\angle B$. 其中直命题有

- (A) 234
- (B) 114
- (C) 124
- (D) 13

).

- 12. 已知数列 $\{a_n\}$ 满足 $a_1=a, a_2=b, a_{n+2}=a_{n+1}-a_n(n\in N^*)$ S_n 是 $\{a_n\}$ 的前 n 项和, 则 a_{2010} 等于().
 - (A) a + b
- (B) a-b
- (C) -a + b
- (D) -a b
- 二. 填空题: 本大题共 4 题,满分 20 分. 请在横线上方填写最终的、最准确的、最完整的结果. 每题填写正 确得5分,否则一律得0分.
- 14. 已知实数 x, y 满足 $\begin{cases} x y + 1 \ge 0 \\ x + y \ge 0 \end{cases}$, 若 z = x + 2y , 则 z 的范围是______. $x \le 0,$
- 15. 在 $\triangle ABC$ 中, B(-2,0), C(2,0), A(x,y) 给出 $\triangle ABC$ 满足的条件, 就能得到动点 A 的轨迹方程, 下面给出 了一些条件及方程,请你用线段把左边 $\triangle ABC$ 满足的条件及相应的右边 A 点的规矩方程连起来(错一 条连线不得分).
- 16. 若椭圆 $\frac{x^2}{4} + \frac{y^2}{b^2} = 1(0 < b < 2)$ 的左、右焦点分别为 F_1, F_2 是短轴的一个端点,则 $\triangle F_1BF_2$ 的面积的最
- 三. 简答题: 本大题共 6 题, 满分 80 分. 请在题后空处写出必要的推理计算过程.
- 17. 已知 $\{a_n\}$ 是一个等差数列,且 $a_2 = 1, a_5 = -5$.
 - (1) 求 $\{a_n\}$ 的通项 a_n ;
 - (2) 求 $\{a_n\}$ 前 n 项和 S_n 的最大值.

- 18. (12 分) 如图, $\triangle ACD$ 是等边三角形, $\triangle ABC$ 是等腰直角三角形, $\angle ACB = 90^{\circ}$,若 AB = 2.
 - (1) 求 cos ∠CBD 的值;
 - (2) 求 BD 的长.

19. 设 x > 0, y > 0, 且 x + 4y = 1, 求 $\frac{1}{x} + \frac{1}{y}$ 的最小值并求出此时 x 和 y 的值.

20. (12 分) 若命题 r(x): $\sin x + \cos x > m$, s(x): $x^2 + mx + 1 > 0$, 如果对于 $\forall x \in R$, 命题 r(x) 和 s(x) 均 为真命题,求实数 m 的取值范围.

21. (12 分) 设 F_1 , F_2 为椭圆 $\frac{x^2}{9} + \frac{y^2}{4} = 1$ 的两个焦点,P 为椭圆上的一点,若 $\angle F_1 P F_2$ 为直角,且 $|PF_1| > |PF_2|$,求 $\frac{|PF_1|}{|PF_2|}$ 的值。