Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский университет ИТМО»

Факультет Информационных технологий и программирования

Типовой расчет по математической статистике

«Ковариация и регрессия. Построение выборочного уравнения

линии регрессии»

Вариант 4

Васильков Дмитрий Алексеевич M3215

Санкт-Петербург 2024 г.

Исходные данные:

y_j^*	21	31	36	41
16	0	0	30	80
26	0	55	20	0
36	15	0	0	0

Ход работы:

Приступим к выполнению задания.

Сначала, при обработке нашей выборки предварительно проведем группировку значений X и Y подобно тому, как мы это делали в ТР1. При этом, для частичных интервалов $\Delta x_i = [x_{i-1}, x_i, i=1, ..., k]$ и $\Delta y_j = [y_{j-1}, y_j, j=1, ..., m]$ определим число элементов выборки n_{ij} , попавших в прямоугольник $\Delta x_i \times \Delta y_j$, и вычислим середины интервалов по формулам $x_i^* = \frac{x_{i-1} + x_i}{2}, y_j^* = \frac{y_{j-1} + j}{2}$. Все элементы выборки, попавшие в прямоугольник

 $\Delta x_i \times \Delta y_j$, будем считать равными (x_i^*, y_j^*) , причем количество значений x_i^* будет равно $n_i = \sum_{j=1}^m n_{ij}$, а количество значений y_j^* будет равно $n_j = \sum_{i=1}^k n_{ij}$.

Объем выборки равен $n_i = \sum_{i=1}^k n_i = \sum_{j=1}^m n_j = \sum_{i=1}^k \sum_{j=1}^m n_{ij}$.

Занесем эти данные в таблицу:

y_j^* x_i^*	21	31	36	41	n_i
X_l	21	- 31	30	41	101
16	0	0	30	80	110
26	0	55	20	0	75
36	15	0	0	0	15
n_{j}	15	55	50	80	n=200

Теперь, выполним построение выборочного уравнения линии линейной регрессии по нашей таблице группированных данных.

Формула выборочного уравнения линии регрессии:

$$y(x) = \overline{Y}_n + r_n(X, Y) \frac{\sigma_n(Y)}{\sigma_n(X)} (x - \overline{X}_n). \tag{4}$$

Для расчета коэффициентов в выборочном уравнении линии регрессии (4) используют формулы:

$$\overline{X}_n = \frac{1}{n} \sum_{i=1}^k n_i x_i^*, \qquad \overline{Y}_n = \frac{1}{n} \sum_{j=1}^m n_j y_j^*, \qquad (5)$$

$$\sigma_n(X) = \sqrt{\frac{l}{n} \sum_{i=1}^k n_i (x_i^*)^2 - \overline{X}_n^2}, \qquad \sigma_n(Y) = \sqrt{\frac{1}{n} \sum_{j=1}^m n_j (y_j^*)^2 - \overline{Y}_n^2}, \qquad (6)$$

$$r_n(X,Y) = \frac{\sum_{i=1}^k \sum_{j=1}^m n_{ij} x_i^* y_j^* - n \cdot \overline{X}_n \cdot \overline{Y}_n}{n \cdot \sigma_n(X) \cdot \sigma_n(Y)}.$$
 (7)

По формулам (5) находим:

$$\overline{X_{200}} = 21,25$$

$$\overline{Y_{200}} = 35,5$$

По формулам (6) находим:

$$\sigma_{200}(X) = 6.320$$

$$\sigma_{200}(Y) = 5,788$$

По формуле (7) находим:

$$r_{200}(X,Y) = -0.9193$$

Подставив найденные величины в формулу (4), получим искомое выборочное уравнение линейной регрессии Y на X:

$$y = 35.5 - 0.9193 \cdot \frac{5.788}{6.320} (x - 21.25)$$

Или окончательно:

$$y = 53,3907 - 0,841916 x$$
 (8)

Сравним оценки условных математических ожиданий, вычисленные:

- а) на основе последнего уравнения
- б) по данным таблицы 7, полагая, как и ранее, $P(y_i^*) = p_i^* = n_{ij}/n_i$

Например, возьмем $x_i^* = 16$:

a)
$$E(Y|X = 16) = 53,3907 - 0,841916 * 16 = 39,920$$

б)
$$E(Y|X = 16) = (30 * 36 + 80 * 41) / 110 = 39,636$$

Как видно, соответствие удовлетворительное.

Заметим, что уравнения линейной регрессии (3) и выборочной линейной регрессии (4), (8) являются уравнениями, задающими прямую линию. На этом выполнение типового расчета №2 закончено.