BIOS 635: Bootstrap

Kevin Donovan

3/2/2021

Review

- Homework 5 due on 3/5 at 11PM through GitHub Classroom
- Article Evaluation 2 assigned, due on 3/2 through GitHub Classroom
- Last lecture: cross validation

Data partitioning

- Recall: can generate training and testing datasets using
 - Holdout method
 - K-fold cross validation

1) Training: 1-4, Testing: 5
2) Training: 1-3+4, Testing: 4
3) Training: 1-2+4-5, Testing: 3
4) Training: 1+3-5, Testing: 2
5) Training: 2-5, Testing: 1

Bootstrap

- Another method: resampling via bootstrap
- lacktriangle Idea: generate multiple samples from data by sampling with replacement m times
 - ullet Repeat process B times o B samples of size m each created
 - ullet Calculate statistic in each B samples $o \{\hat{lpha}_1,\ldots,\hat{lpha}_B\}$
 - Use $\{\hat{lpha}_1,\ldots,\hat{lpha}_B\}$ to assess sample variability of \hat{lpha}

Bootstrap

- Simple example: computing sample mean
- lacksquare Suppose sample of variable X observed: X_1,\ldots,X_n for n=100
- $lacktriangleq ext{We know sample mean } ar{X} \sim ext{Normal}(\mu, \sigma^2/n) ext{ by Central Limit Theorem}$
- lacksquare Suppose $\mu=0$ and $\sigma^2=1.$ Let's look at the distribution of $ar{X}$ via bootstrap

3/2/2021 BIOS 635: Bootstrap (1)

Approx. of sample mean distribution

Sample mean across samples

Bootstrap sample mean distribution Mean=0.11, SD=0.09

Sample mean across bootstrap samples

Bootstrap

- Can see variance of bootstrap sample means pprox sample mean variance $1/\sqrt{100}$
 - Recall: also called **standard error** of statistic
- Can use to create confidence interval or do hypothesis testing as well
- lacktriangle Sampling with replacement ightarrow row can be included more then once
 - Idea: mimics independent random sampling
 - ullet Ex. three observations, computing statistic \hat{lpha}

Bootstrap algorithm

Suppose Z denotes the dataset with n rows (obs) and p columns (variables)

- I. Randomly select n obs from Z, creating **bootstrap dataset** Z_1
- Selection done with replacement
 - 2. Using Z_1 calculate statistic of interest, denoted \hat{lpha}_1
 - 3. Repeat I and 2 B times, creating set of estimates: $\{\hat{\alpha}_1,\ldots,\hat{\alpha}_B\}$
 - 4. Can estimate SE of statistic $\hat{\alpha}$ using bootstrap sample SE

$$\hat{SE}_B(\hat{lpha}) = \sqrt{rac{1}{B-1}\sum_{r=1}^B(\hat{lpha}_r - ar{\hat{lpha}})^2}$$

where $ar{\hat{lpha}} = rac{1}{B} \sum_{r=1}^{B} \hat{lpha}_r$ denotes bootstrap sample mean

ullet Can show $\hat{SE}_B(\hat{lpha})pprox SE(\hat{lpha})$

Bootstrap visual

Bootstrap with clustered data

- Suppose some obs in sample are correlated
 - Denoted as clusters
- How does this change the bootstrap sampling?

Bootstrap and prediction

- Using bootstrap for data partitioning
 - Use bootstrap as testing and original as training? (or vice versa)
 - **Issue**: Bootstrap as significant overlap with sample ($pprox rac{2}{3}$)
 - → bootstrap error estimate biased downward
 - What about for tuning? Sometimes used (train in caret uses by default)
- K-fold CV forces separate training and testing sets at each iteration
 - ullet o always use CV instead
 - Possible solution with bootstrap: use out-of-bag (OOB) sample
 - OOB discussed with random forests later on