ОП «Политология», 2023-24

Введение в ТВиМС

Совместное распределение (31 января)

А. А. Макаров, А. А. Тамбовцева

Задача 1. X и Y – независимые случайные величины. D(X) = 9, D(Y) = 4.

- (a) Вычислите D(L), где L = 5X + 10.
- (b) Вычислите D(U), где U = 2X + 4Y 1.
- (c) Вычислите D(Q), где Q = -3X 5Y + 10.

Задача 2. X и Y – случайные величины. Известно, что D(X) = 10, D(Y) = 20 и что Cov(X,Y) = 2. Вычислите D(X+Y).

Задача 3. X — число чашек кофе, которое респондент выпивает по утрам, Y — число вещей, которое он забывает сделать утром из-за низкой концентрации внимания. Совместное распределение случайных величин X и Y выглядит следующим образом (одна вероятность пропущена):

$X \setminus Y$	0	1
0	0.1	0.1
1	0.1	0.2
2	0.2	?

- (a) Запишите маргинальные распределения случайных величин X и Y и найдите их математические ожидания.
- (b) Проверьте, можно ли считать величины независимыми.
- (c) Найдите условные вероятности $P(Y = 1 \mid X = 2)$ и $P(Y = 2 \mid X = 0)$.
- (d) Вычислите Cov(X, Y).

Задача 4. Число аистов, которые могут прилететь в гнездо рядом с домом Ёжика, имеет бинарное распределение с параметром p=0.7. Число аистов, которые могут прилететь в гнездо рядом с домом Медвежонка, имеет бинарное распределение с параметром p=0.3.

- (а) Считая, что аисты прилетают к героям независимо, постройте совместное распределение этих двух бинарных величин. Чему равна ковариация между ними?
- (b) Запишите ряд распределения для *общего* числа аистов, которые прилетают к героям.