CMPT 825 Natural Language Processing

Anoop Sarkar

http://www.cs.sfu.ca/~anoop

n-grams

- A simple model of language
- Computes a probability for observed input
- Probability is likelihood of observation being generated by the same source as the training data
- Such a model is often called a *language* model

An example

• Let's consider an example we've seen before: *spelling correction*

... was called a "stellar and versatile **acress** whose combination of sass and glamour has defined her ...

KCG model best guess is acres

An example

- A language model can take the context into account:
 - ... was called a "stellar and versatile **acress** whose combination of sass and glamour has defined her ...
 - ... was called a "stellar and versatile **acres** whose combination of sass and glamour has defined her ...
 - ... was called a "stellar and versatile **actress** whose combination of sass and glamour has defined her ...
- Each sentence is a sequence $w_1, ..., w_n$. Task is to find $P(w_1, ..., w_n)$.

Another example

physical Brainpower not plant is chief, now a 's asset, firm, a Brainpower not now chief asset firm 's is plant physical, chief a physical, firm not, Brainpower plant is asset 's now not plant Brainpower now physical 's a chief, asset firm, is plant Brainpower is now, not firm a 's physical asset chief physical is 's plant firm not chief. Brainpower now asset, a Brainpower, not physical plant, is now a firm 's chief asset.

Each sentence is a sequence $w_1, ..., w_n$. Task is to find $P(w_1, ..., w_n)$.

How can we compute $P(w_1, ..., w_n)$

- Apply the *Chain rule*
- $P(w_1, ..., w_n) = P(w_1) \cdot P(w_2 \mid w_1) \cdot P(w_3 \mid w_1, w_2)$... $P(w_n \mid w_1, ..., w_{n-1})$
- Each of these probabilities can be estimated (using frequency counts) from *training data*
- **But** we need to apply these probabilities on unseen *test data*
- The curse of dimensionality: sparse data

The Markov Assumption

a stellar and versatile acres whose combination of

```
P(a). P(stellar \mid a). P(and \mid a, stellar). P(versatile \mid a, stellar, and). P(acres \mid a, stellar, and, versatile). P(whose \mid a, stellar, and, versatile, acres)...
```

a stellar and versatile acres whose combination of

P(a). $P(stellar \mid a)$. $P(and \mid a, stellar)$. $P(versatile \mid stellar, and)$. $P(acres \mid and, versatile)$. $P(whose \mid versatile, acres)$...

n-grams

- Oth order Markov model: $P(w_i)$ called a *unigram* model
- 1st order Markov model: $P(w_i \mid w_{i-1})$ called a **bigram** model
- 2nd order Markov model: $P(w_i \mid w_{i-2}, w_{i-1})$ called a *trigram* model

n-grams

- How many possible distinct probabilities will be needed?, i.e. **parameter values**
- Total number of **word tokens** in our training data
- Total number of unique words: word types is our vocabulary size

n-gram Parameter Sizes

- Let V be the vocabulary, size of V is |V|
- $P(W_i = x)$, how many different values for W_i - $|V| = 3x10^3$
- $P(W_i = x \mid W_j = y)$, how many different values for W_i , W_j - $|V|^2 = 9x10^6$
- $P(W_i = x \mid W_k = z, W_j = y)$, how many different values for W_i , W_j , W_k
 - $-|V|^3 = 27x10^9$

Parameter size

Corpus: said the joker to the thief

$$|V| = 5$$

Bigrams: max num of parameters = $|V|^2 = 25$