Lecture 10: Evaluating Machine Learning Models

Course: Biomedical Data Science

Parisa Rashidi Fall 2018

Disclaimer

The following slides are partially based on:

Important Steps

- 1. Determine relevant features (expert knowledge)
- 2. Collect data
- 3. Split labeled data into training and test datasets
- 4. Use training data to train machine learning algorithm.
- 5. Predict labels of examples in test data,
- 6. Evaluate algorithm.

Test Data

- Remember: if we reuse the same test dataset over and over again during model selection,
 - Test data will become part of our training data and thus the model will be more likely to overfit.
 - The reported performance will not be correct
- Despite this issue, many people still use the test set for model selection, which <u>is NOT</u> a good machine learning practice.

How to Split Data?

- Holdout
 - Training set
 - (validation set)
 - Test set
- K-fold Cross-validation
 - E.g. 10 fold cross validation

Methods of Sampling

- Holdout
 - E.g. Reserve 2/3 for training and 1/3 for testing
- Random subsampling
- Cross validation
 - Partition data into k disjoint subsets
 - k-fold: train on k-1 partitions, test on the remaining one
 - Leave-one-out: k=n
- Stratified sampling
- Bootstrap
 - Sampling with replacement

Cross-Validation

K-fold

- K = 10 is typical
- If working with very small datasets, use leave-one-out (LOO)
 - If data from subjects, leave-one-subject-out
- cross_val_score() in scikit-learn
 - n_jobs can be set to distribute the evaluation across multiple CPUs
 - See Notebook

Stratified k-fold

 The class proportions are preserved in each fold to ensure each fold is representative

Recommended Approach

- Separate your data into three parts
 - training, validation, testing
- Use either
 - Holdout + k-folds cross-validation
 - Nested cross-validation
- Note: once you find satisfactory hyper-parameter values, you can retrain the model on the complete training set and obtain a final performance estimate using the independent test set.

Hold-out + Cross-Validation

5×2 Cross-validation

A form of nested variation

Example of 3*2 nested cross-validation

Consider that we use 3-fold cross-validation and we want to optimize parameter C that takes values "1" and "2".

Important Steps

- 1. Determine relevant features (expert knowledge)
- 2. Collect data
- 3. Split labeled data into training and test datasets
- 4. Use training data to train machine learning algorithm.
- 5. Predict labels of examples in test data
- 6. Evaluate algorithm.

Decision Boundary

We seek to find this boundary

Why Noise?

- Noise might be due to different reasons
 - Imprecision in recording the input data
 - Errors in labeling data
 - We might not have considered additional features (latent, or hidden features)
- When there is noise, the decision boundary becomes more complex

Overfitting

- Data are well described by our model, but the predictions do not generalize to new data.
 - A very rich hypothesis space
 - Training set too small

Overfitting and Underfitting

- Underfitting
 - If your hypothesis is less complex than the actual function
 - Using a linear equation to model data generated by a third order polynomial
- Overfitting
 - If your hypothesis is more complex than the actual function
 - Using a fifth order polynomial to model data generated by a second order polynomial

Over-fitted Decision Boundaries

http://www.kdnuggets.com/2015/06/decision-boundaries-deep-learning-machine-learning-classifiers.html

Bias-Variance

- Variance = consistency of the model for a particular sample if we retrain the model multiple times, e.g. on different subsets of data
 - i.e. we can say the model is sensitive to the randomness in data
- Bias = how far off are the predictions from the correct values (systematic error not due to randomness in data)
- Simple linear model => high bias
- Complex model => high variance

Model Diagnosis Using Learning Curves

- This model has both low training and cross-validation accuracy, which indicates that it underfits the training data.
- We can
 - Increase the number of parameters of the model
 - More features
 - Decreasing regularization

Model Diagnosis Using Learning Curves

- A model that suffers from high variance, which is indicated by the large gap between the training and cross-validation accuracy.
- To address this problem
 - we can collect more training data
 - or reduce the complexity of the model, e.g. more regularization parameter
 - or decrease the number of features via feature selection

Model Diagnosis Using Learning Curves

A good balance

Learning Curve in scikit-learn

- Use the learning_curve() function in sklearn
- See notebook

Validation Curve

- Similar to learning curves
 - Instead of plotting against the sample size, we vary the values of the model parameters, e.g. C in SVM
 - Use validation_curve()

Fine-tune via Grid Search

 You can use Grid Search to automate the process of finding the best parameter values

Important Steps

- 1. Determine relevant features (expert knowledge)
- 2. Collect data
- 3. Split labeled data into training and test datasets
- 4. Use training data to train machine learning algorithm.
- 5. Predict labels of examples in test data
- 6. Evaluate algorithm.

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?
- Methods for Model Comparison
 - How to compare the relative performance among competing models?

Triple Tradeoff

- Complexity of the hypothesis space: C
- Amount of training data: N
- Generalization error on new data: E
- $N \uparrow \rightarrow E \downarrow$
- $C \uparrow \rightarrow first E \downarrow$, then $E \uparrow$

Development Pipeline

Scikit-Learn: Pipeline

- The Pipeline object takes a list of tuples as input
 - first value = an arbitrary identifier string
 - second value = a scikit-learn transformer or estimator.

Combining transformers and estimators in a pipeline

Notes on Paper 5

Study Guidelines & Checklists

- STROBE used in observational studies
- TRIPOD used in predictive model development and validation
- PRISMA-P used in systematic review protocols

Error in Regression

- Mean Absolute Error (MAE)
- Root mean squared error (RMSE)

MAE =
$$\frac{1}{n} \sum_{j=1}^{n} |y_j - \hat{y}_j|$$
 RMSE = $\sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$

- Both are indifferent to the direction of errors
- RMSE gives relatively high weight to large errors

Errors in Forecasting

MAPE: Mean Absolute Percentage Error

$$ext{MAPE} = rac{1}{h} \sum_{j=1}^{h} rac{|y_{t+j} - \hat{y}_{t+j}|}{y_{t+j}}$$

Decision Tree

*Chou, Kuang-Yi, et al. "The Irrelevant Values Problem of Decision Tree in Medical Examination." Journal of Applied Science and Engineering 15.1 (2012): 89r96.

Random Forest

- A random forest is a collection of decision trees
- it searches for the best feature among a random subset of features.

