Семинар по теме: «Интегралы с параметром»

28 февраля 2019 г.

Ликбез

В приложениях часто приходится работать с так называемой гамма функцией. Она определяется следующей формулой:

$$\Gamma(z) = \int_0^\infty dt t^{z-1} e^{-t}$$

Стоящий в правой части интеграл хорошо определён для z>0. При стремлении z к нулю интеграл логарифмически расходится. Гамма функцию можно рассматривать как продолжение факториала на нецелые аргументы. Действительно, интегрируя по частям, находим:

$$\Gamma(z+1) = -t^z e^{-t} \Big|_0^{\infty} + \int_0^{\infty} z t^{z-1} e^{-t} dt = z \Gamma(z)$$

Поскольку при этом $\Gamma(1) = \int_0^\infty e^{-t} dt = 1$, то видно, что $\Gamma(n+1) = n!$. Кроме того, через гамма функцию выражается гауссов интеграл:

$$\int_{-\infty}^{+\infty} dx e^{-x^2} = 2 \int_0^{\infty} e^{-t} \frac{dt}{2\sqrt{t}} = \sqrt{\pi} = \Gamma\left(\frac{1}{2}\right)$$

Используя найденное реккурентное соотношение и значение $\Gamma\left(\frac{1}{2}\right)$, можно получить, что

$$I = \int_{-\infty}^{+\infty} dx x^{2n} e^{-x^2} = \int_{0}^{\infty} \frac{dt}{\sqrt{t}} e^{-t} t^n = \Gamma\left(n + \frac{1}{2}\right) = \frac{(2n-1)!!}{2^n} \sqrt{\pi}$$

Здесь $(2n-1)!! = 1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)$. Интегралы такого типа часто встречаюстя в классической статистике.

Кроме того, порой приходится иметь дело с интегралами вида:

$$B(p,q) = \int_0^1 t^{p-1} (1-t)^{q-1} dt$$

или интегралами, которые сводятся к интегралам такого вида подстановкой. Это — так называемый бета-интеграл Эйлера или просто бета-функция. Этот интеграл удобно выражается через $\Gamma(z)$ - гамма-функцию Эйлера, значения и свойства которой были разобраны выше; это позволяет просто получать значения этого интеграла при различных значениях параметров:

$$B(p,q) = \frac{\Gamma(p)\Gamma(q)}{\Gamma(p+q)}$$

Добавим еще одно полезное свойство гамма-функции (приводим без доказательства):

$$\Gamma(z)\Gamma(1-z) = \frac{\pi}{\sin \pi z}$$

Кроме того, в задачах этого семинара будет использоваться соотношение:

$$\frac{1}{x^m} = \frac{1}{\Gamma(m)} \int_0^\infty t^{m-1} e^{-tx} dt$$

Задача 1 (интегральные представления и подстановки)

Вычислим интеграл Френеля:

$$I = \int_0^\infty \cos x^2 dx$$

Решение

Перейдем к переменной интегрирования $t=x^2$. Получим:

$$I = \int_0^\infty \cos x^2 dx = \int_0^\infty \frac{\cos t}{2\sqrt{t}} dt$$

Следующий шаг нетривиален. Для взятия этого интеграла удобно воспользоваться "интегральным представлением функции $1/\sqrt{t}$ ". Такие интегральные представления - часто используемый приём, позволяющий брать определённые интегралы; в данном случае в роли этого интегрального представления будет интеграл Гаусса:

$$\frac{1}{\sqrt{t}} = \frac{2}{\sqrt{\pi}} \int_0^\infty e^{-tx^2} dx \Rightarrow I = \frac{1}{\sqrt{\pi}} \int_0^\infty dt \int_0^\infty dx e^{-tx^2} \cos t$$

Теперь возьмем интеграл по t, обозначив подынтегральную функцию как $J(x^2)$. Тогда:

$$J(a) = \int_0^\infty e^{-at} \cos t dt = \operatorname{Re} \int_0^\infty e^{-at+it} dt = \operatorname{Re} \frac{1}{a-i} = \frac{a}{a^2+1}$$

Тем самым, получаем следующий интеграл:

$$I = \frac{1}{\sqrt{\pi}} \int_0^\infty \frac{x^2}{1+x^4} dx$$

Приведём два способа взятия этого интеграла.

"Правильный" способ Получившийся интеграл является интегралом от дробно-рациональной функцией и его можно взять стандартным методом разбиения на элементарные дроби. Он довольно громоздкий, поэтому приведём тут метод, позволяющий вычислить интеграл проще. Сделав замену $x=\frac{1}{t}$, заметим следующее:

$$I = \frac{1}{\sqrt{\pi}} \int_{-\infty}^{0} \left(-\frac{dt}{t^2} \right) \frac{1/t^2}{1 + 1/t^4} = \frac{1}{\sqrt{\pi}} \int_{0}^{\infty} \frac{1}{1 + t^4} dt$$

Беря полусумму двух представлений для интеграла I, получим:

$$I = \frac{1}{2\sqrt{\pi}} \int_0^\infty \frac{1+x^2}{1+x^4} dx$$

Теперь можно перейти к стандарнтой переменной для интегрирования симметрических многочленов $t = x - \frac{1}{x}$; при этом $dt = \left(1 + \frac{1}{x^2}\right) dx$, получим:

$$I = \frac{1}{2\sqrt{\pi}} \int_{-\infty}^{\infty} \frac{dt}{t^2 + 2} = \frac{1}{2\sqrt{2\pi}} \arctan \frac{t}{\sqrt{2}} \Big|_{-\infty}^{\infty} = \frac{1}{2} \sqrt{\frac{\pi}{2}}$$

"Главный" способ Очень полезно научиться сводить такие интегралы к B-функции, о которой было рассказано выше. Перейдем в этом интеграле к переменной $t = \frac{1}{1+x^4} \Rightarrow x = \left(\frac{1-t}{t}\right)^{1/4} \Rightarrow dx = \frac{1}{4} \left(\frac{1-t}{t}\right)^{-3/4} \left(-\frac{dt}{t^2}\right)$. Имеем:

$$I = \frac{1}{\sqrt{\pi}} \int_{1}^{0} \left(\frac{1-t}{t}\right)^{1/2} \cdot t \cdot \frac{1}{4} \left(\frac{1-t}{t}\right)^{-3/4} \left(-\frac{dt}{t^2}\right) = \frac{1}{4\sqrt{\pi}} \int_{0}^{1} t^{-3/4} (1-t)^{-1/4} dt = \frac{1}{4\sqrt{\pi}} B\left(\frac{1}{4}, \frac{3}{4}\right)^{-3/4} \left(\frac{1-t}{t}\right)^{-3/4} \left(\frac{1-t}$$

Используя приведенные выше свойства бета- и гамма-функций, получаем:

$$B\left(\frac{1}{4}, \frac{3}{4}\right) = \frac{\Gamma\left(\frac{1}{4}\right)\Gamma\left(\frac{3}{4}\right)}{\Gamma(1)} = \frac{\pi}{\sin\frac{\pi}{4}} = \pi\sqrt{2} \Rightarrow I = \frac{1}{2}\sqrt{\frac{\pi}{2}}$$

Замечение Заметим, что этот же ответ можно было получить гораздо проще, используя трюк с комплексными переменными и комплексным интегралом Гаусса. Нужно лишь обратить внимание на тонкость, связанную с тем, что $\sqrt{i} = \pm e^{i\pi/4}$, и необходимо выбрать правильный знак:

$$I = \int_0^\infty \cos x^2 dx = \frac{1}{2} \text{Re} \int_{-\infty}^\infty e^{ix^2} dx = \frac{1}{2} \text{Re} \sqrt{\frac{\pi}{-i}} = \frac{\sqrt{\pi}}{2} \text{Re} e^{i\pi/4} = \frac{1}{2} \sqrt{\frac{\pi}{2}}$$

Задача 2 (дифференцирование и интегрирование по параметру)

Возьмём интеграл:

$$I(\alpha, \beta) = \int_0^\infty \frac{\ln(\alpha^2 + x^2)}{\beta^2 + x^2} dx$$

Решение

Заметим, что без логарифма интеграл легко считается. Если мы продиффиренцируем интеграл по α , то логарифм заменится на дробь, а интегралы с дробями считать легче:

$$\frac{\partial I(\alpha,\beta)}{\partial \alpha} = \int_0^\infty \frac{2\alpha}{(\beta^2 + x^2)(\alpha^2 + x^2)} dx$$

Пусть $\alpha \neq \beta$, тогда верно разложение:

$$\frac{1}{(\beta^2 + x^2)(\alpha^2 + x^2)} = \frac{1}{\alpha^2 - \beta^2} \left(\frac{1}{\beta^2 + x^2} - \frac{1}{\alpha^2 + x^2} \right)$$

и каждый полученый интеграл легко считается:

$$\frac{\partial I(\alpha,\beta)}{\partial \alpha} = 2\alpha \int_0^\infty \frac{1}{\alpha^2 - \beta^2} \left(\frac{1}{\beta^2 + x^2} - \frac{1}{\alpha^2 + x^2} \right) dx = \frac{2\alpha}{\alpha^2 - \beta^2} \frac{\pi}{2} \left(\frac{1}{\beta} - \frac{1}{\alpha} \right) = \frac{\pi}{(\alpha + \beta)\beta}$$

На самом деле, при $\alpha = \beta$, эта формула тоже верна:

$$\int_0^\infty \frac{2\alpha}{(\alpha^2 + x^2)^2} \cdot dx = -\frac{\partial}{\partial \alpha} \int_0^\infty \frac{dx}{\alpha^2 + x^2} = -\frac{\partial}{\partial \alpha} \frac{\pi}{2\alpha} = \frac{\pi}{2\alpha^2}$$

Теперь проинтегрируем полученное выражение по α :

$$I(\alpha, \beta) = \frac{\pi}{\beta} \ln(\alpha + \beta) + C(\beta)$$

Тут "постоянная" $C(\beta)$ - произвольная функция, которая не зависит от α . Чтобы найти её подставим в исходный интеграл $\alpha = 0$:

$$I\left(0,\beta\right) = 2\int_{0}^{\infty} \frac{\ln x}{\beta^{2} + x^{2}} dx = \left| \begin{array}{c} x = \beta t \\ dx = \beta dt \end{array} \right| = 2\int_{0}^{\infty} \frac{\ln t + \ln \beta}{\beta(1 + t^{2})} dt = \frac{\pi \ln \beta}{\beta} + 2\int_{0}^{\infty} \frac{\ln t}{1 + t^{2}} dt$$

Последний интеграл равен нулю. Это просто показать, сделав замену $t = e^z$:

$$\int_0^\infty \frac{\ln t}{1+t^2} dt = \int_{-\infty}^\infty \frac{z}{1+e^{2z}} e^z dz = \int_{-\infty}^\infty \frac{z}{e^{-z}+e^z} dz = 0$$

Итого $I(0,\beta)=\frac{\pi \ln \beta}{\beta} \Rightarrow C(\beta)\equiv 0$. Стоит заметить, что в решении мы неявно пользовались тем, что $\alpha,\beta>0$; но поскольку исходный интеграл очевидным образом не чувствителен к изменению их знака, то ответ в общем виде записывается как:

$$I(\alpha, \beta) = \frac{\pi}{|\beta|} \ln(|\alpha| + |\beta|)$$

Задача 3 (составление дифференциальных уравнений)

Вычислим интегралы Лапласа:

$$I_1(a,\omega) = \int_{-\infty}^{\infty} \frac{\cos(\omega x)}{x^2 + a^2} dx$$

$$I_2(a,\omega) = \int_{-\infty}^{\infty} \frac{x \sin(\omega x)}{x^2 + a^2} dx$$

Решение

Обезразмерим интеграл, перейдя к переменной интегрирования x=at и введя "безразмерный" параметр $\alpha=\omega a$; для определенности далее будем считать, что $\alpha>0$. Получим:

$$I_1(a,\omega) = \int_{-\infty}^{\infty} \frac{\cos \alpha x}{x^2 + 1} \cdot \frac{dx}{a} = \frac{1}{a} J(\alpha)$$

Возьмем производную $J(\alpha)$ по α :

$$\frac{\partial}{\partial \alpha} J(\alpha) = \frac{\partial}{\partial \alpha} \int_{-\infty}^{\infty} \frac{\cos \alpha x}{x^2 + 1} dx = -\int_{-\infty}^{\infty} \frac{x \sin \alpha x}{x^2 + 1} dx$$

Получившийся интеграл сходится, однако производная от него уже расходится. В таком случае используем такой трюк:

$$\frac{\partial}{\partial \alpha} J(\alpha) = -\int_{-\infty}^{\infty} \frac{x^2 \sin \alpha x}{x^2 + 1} \cdot \frac{dx}{x} = -\int_{-\infty}^{\infty} \left[1 - \frac{1}{x^2 + 1} \right] \frac{\sin \alpha x}{x} dx = -\pi + \int_{-\infty}^{\infty} \frac{\sin(\alpha x)}{x^2 + 1} \cdot \frac{dx}{x}$$

Тут мы воспользовались табличным значением интеграла $\int_{-\infty}^{\infty} \frac{\sin x}{x} dx = \pi$. Теперь можно вычислять вторую производную, так как получающийся интеграл сходится:

$$\frac{\partial^2}{\partial \alpha^2} J(\alpha) = \frac{\partial}{\partial \alpha} \int_{-\infty}^{\infty} \frac{\sin(\alpha x)}{x^2 + 1} \cdot \frac{dx}{x} = \int_{-\infty}^{\infty} \frac{\cos(\omega x)}{x^2 + a^2} \cdot dx = J(\alpha)$$

Мы получили замкнутое дифференциальное уравнение на функцию $J(\alpha)$. Это уравнение линейно и его коэффициенты постоянны, поэтому оно решается с помощью подстановки

 $J(\alpha) = e^{\lambda \alpha}$. Такая подстановка приводит к алгебраическому уравнению на λ : $\lambda^2 = 1 \Rightarrow \lambda = \pm 1$ и, следовательно, общее решение уравнения записывается как:

$$J(\alpha) = C_1 e^{\alpha} + C_2 e^{-\alpha}$$

Константа C_1 должна быть положена равной нулю. Это связано с тем, что исходный интеграл, очевидно, ограничен: $|J\left(\alpha\right)| \leq \left|\int_{-\infty}^{\infty} \frac{1}{x^2+1} dx\right| = \pi$. Константу C_2 можно найти из значения интеграла при $\alpha=0 \Rightarrow J(0)=\pi$. Значит, наш интеграл записывается как:

$$J(\alpha) = \pi e^{-\alpha}$$

Ответ был получен в предположении $\alpha>0$. Поскольку исходный интеграл зависит лишь от модулей параметров a и ω , то ответ в общем виде записывается как:

$$I_1(a,\omega) = \frac{\pi}{|a|} e^{-|a\omega|}$$

Кроме того, заметим, что:

$$I_2(a,\omega) = -\frac{\partial}{\partial \omega} I_1(a,\omega) = \pi e^{-|\alpha\omega|} \operatorname{sign}\omega$$

Задачи для домашнего решения:

Упражнение 1

Вычислите интеграл

$$J(y) = \int_0^{\pi/2} \ln(y^2 - \sin^2 x) \, dx.$$

при y > 1.

Через J(1) выражается значение следующего интеграла:

$$\int_0^{\pi/2} \ln\left(\cos x\right) dx$$

Его, однако, можно взять более простым способом. Сделайте это и сравните получающиеся ответы.

Упражнение 2

Вычислите интеграл, сведя его к В-функции

$$I(n,m) = \int_0^{\pi/2} \sin^n x \cos^m x dx.$$

Упражнение 3

Вычислите интеграл, сведя его к В-функции

$$I(n, m, k) = \int_0^\infty \frac{x^n}{(x^m + 1)^k} dx.$$

Когда он сходится?

Упражнение 4

Вычислите точно интегралы

$$I_1(\lambda) = \int_0^\infty \frac{x \sin(\lambda x)}{x^2 + 1} dx,$$

$$I_2(\lambda) = \int_0^\infty \frac{x \sin(\lambda x)}{(x^2 + 1)^2} dx.$$

Задача 1

Вычислите сведением к Γ -функции и к B-функции

$$I(m) = \int_0^\infty \frac{\cos x}{x^m} dx$$

при 0 < m < 1.

Задача 2

Распределение Ферми определяется как

$$n_F(\epsilon) = \frac{1}{e^{\epsilon/T} + 1},$$

где T>0 - температура.

Вычислите интеграл, зависящий от двух параметров

$$I(V,T) = \int_{-\infty}^{\infty} d\epsilon \left(n_F(\epsilon - eV) - n_F(\epsilon) \right)$$

Такой интеграл возникает при вычислении электрического тока через туннельный контакт.

Почему не работает следующее рассуждение?

Разобьем интеграл на два:

$$I(V,T) = \int_{-\infty}^{\infty} d\epsilon n_F(\epsilon - eV) - \int_{-\infty}^{\infty} d\epsilon n_F(\epsilon)$$

и сделаем сдвиг в первом интеграле $\epsilon' = \epsilon - eV$. Тогда

$$I(V,T) = \int_{-\infty}^{\infty} d\epsilon' n_F(\epsilon') - \int_{-\infty}^{\infty} d\epsilon n_F(\epsilon) = 0$$

Замечание: если немного подумать, ответ на задачу можно получить совсем без вычислений.