

SIERRA

MECH 10 Fundamentals of Electronics

- Alternating Current
 - Generation

SIERRA

MECH 10 Fundamentals of Electronics

- Electro Magnetism (induction)
 - Michael Faraday 1831
 - The induced electromotive force or EMF in any closed circuit is equal to the time rate of change of the magnetic flux through the circuit.
 - Voltage = flux x length x relative velocity

4

SIERRA

MECH 10 Fundamentals of Electronics

- Electro Magnetism (induction)
 - Generator action
 - The conversion of mechanical energy (torque) into electrical energy
 - Induced voltage is directly proportional to the number of coil turns and the rate the conductor cuts through magnetic lines of force

$$V_{ind} = N \times \frac{Wb}{s}$$

5

MECH 10 Fundamentals of Electronics

- Alternating Current
 - Sine wave
 - Period (seconds) the time required to complete one alternation cycle
 - Frequency (hertz) one divided by the period

$$f = \frac{1}{P}$$

$$P = \frac{1}{f}$$

SIERRA COLLEGE

MECH 10 Fundamentals of Electronics

- Alternating Current
 - Sine wave
 - Example a sine wave signal takes 20 milli-seconds to complete one alternation. Find the frequency in Hertz.

$$f = \frac{1}{P}$$

$$f = \frac{1}{20 \text{ mS}} = ?? \text{ Hz}$$

10

MECH 10 Fundamentals of Electronics

- Alternating Current
 - Sine wave
 - Example a sine wave signal has a frequency of 1200Hz. Find the period in microseconds.

$$P = \frac{1}{f}$$

$$p = \frac{1}{1200 \text{ Hz}} = ??? \mu S$$

11

SIERRA C®LLEGE

MECH 10 Fundamentals of Electronics

- Alternating Current
 - Phase angle (θ) the degrees of separation between alternating signals (of equal frequency)
 - Measured at peaks, valleys or zero crossings

MECH 10 Fundamentals of Electronics

- Alternating Current
 - Three Phase Power
- •3-phase advantages
 - Less conductor material
 - Constant power transfer
 - Rotating magnetic field

$$I = \frac{E \times \sqrt{3}}{R}$$

$$P = I \times V \times \sqrt{3}$$

SIERRA C®LLEGE

MECH 10 Fundamentals of Electronics

- Alternating Current
 - Phase angle (θ) the degrees of separation between alternating signals
 - Measured at peaks, valleys or zero crossings

14

MECH 10 Fundamentals of Electronics

Alternating Current

Periodic Waveforms

$$V_{RMS} = \frac{V_P}{\sqrt{2}} = V_P \times 0.707$$

$$V_{RMS} {=} V_P {\times} D$$
 For $V_{\min} = 0$

$$V_{RMS} = \frac{V_P}{\sqrt{3}} = V_P \times 0.577$$

$$V_{RMS} = \frac{V_P}{\sqrt{3}} = V_P \times 0.577$$

SIERRA

MECH 10 Fundamentals of Electronics

Alternating Current

- Periodic Waveforms
 - Square Wave Duty Cycle
 - Pulse duration / Cycle duration x 100%
 - Power delivery is directly proportional to duty cycle

$$Duty_Cycle = \frac{t_w}{T} \times 100\%$$

$$V_{AVG} = V_P \times D \qquad \text{For V}_{\min} = \mathbf{0}$$

$$V_{AVG} = V_P \times D$$
 For V_{mi}

18

Where:

 t_w = pulse duration (seconds) \ddot{T} = cycle duration (seconds)

D = duty cycle

SIERRA

MECH 10 Fundamentals of Electronics

Mechatronics

Oscilloscope

- **Trigger Controls**
 - Synchronizes horizontal refresh rate with the measured signal
 - Edge trigger sync to rising or falling edge
 - Threshold trigger sync to signal reaching set value
 - Advanced serial pattern, slew rate...

Jntriggered display.

27

MECH 10 Fundamentals of Electronics

Lab 11 – Oscilloscope

Learning Objectives

- Understand the basic setup for oscilloscope measurements
 Measure AC & DC voltage signals with oscilloscope and DMM

- Calculate RMS voltage from peak voltage
 Calculate frequency from waveform period

		Points Possible
Do cumentatio n	Quality of documentation (neatness, clarity, spelling, grammar), Expected and measured values recorded on schematic diagram	10
DC Voltage	DMM & Scope readings recorded, values compared	5
AC Voltage & Frequency	DMM & Scope readings recorded, values compared	5
	Waveform scatter plot drawn & accurate	5
Dual Trace	Waveform scatter plot drawn & accurate with phase shift labeled	5
Alternate Waveforms	DMM & Scope readings recorded, values compared	5
Conclusions	Questions answered completely & accurately.	5
	Total	40

28

SDG 09/12 14