```
import numpy as np
import pandas as pd

import os

import matplotlib.pyplot as plt
import seaborn as sns
```

Load File

```
df = pd.read_csv('/content/Datsset.csv')
df.head()
```

	Certification Course	Gender	Department	Height(CM)	Weight(KG)	10th Mark	12th Mark	colle ₍ ma
0	No	Male	BCA	100.0	58.0	79.0	64.0	80
1	No	Female	BCA	90.0	40.0	70.0	80.0	70
2	Yes	Male	BCA	159.0	78.0	71.0	61.0	55
3	Yes	Female	BCA	147.0	20.0	70.0	59.0	58
4	No	Male	BCA	170.0	54.0	40.0	65.0	30

Next steps: Generate code with df View recommended plots

Explore Data

df.shape
 (235, 19)

df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 235 entries, 0 to 234
Data columns (total 19 columns):

Data #	columns (total 19 columns): Column	Non-Null Count	Dtype
0	Certification Course	235 non-null	object
1	Gender	235 non-null	object
2	Department	235 non-null	object
3	Height(CM)	235 non-null	float64
4	Weight(KG)	235 non-null	float64
5	10th Mark	235 non-null	float64
6	12th Mark	235 non-null	float64
7	college mark	235 non-null	float64
8	hobbies	235 non-null	object
9	daily studing time	235 non-null	object
10	prefer to study in	235 non-null	object
11	salary expectation	235 non-null	int64
12	Do you like your degree?	235 non-null	object
13	willingness to pursue a career based on their degree	235 non-null	object
14	social medai & video	235 non-null	object
15	Travelling Time	235 non-null	object
16	Stress Level	235 non-null	object
17	Financial Status	235 non-null	object
18	JoinedProgram	235 non-null	object
	es: float64(5), int64(1), object(13)		
memo	ry usage: 35.0+ KB		

df.describe()

```
10th
                                                       12th
                                                               college
                                                                              salarv
                                                                                        Ħ
            Height(CM) Weight(KG)
                                           Mark
                                                       Mark
                                                                  mark expectation
             235.000000
                          235.000000 235.000000 235.000000
                                                             235.000000
                                                                         2.350000e+02
     count
      mean
             157.402128
                           60.803830
                                       76.848511
                                                   68.775872
                                                              70.660553 3.248168e+04
               21.510805
                            14.895844
                                       13.047560
                                                   11.018192
                                                                        1.113146e+05
       std
                                                              15.727446
                4.500000
                            20.000000
                                        7.400000
                                                   45.000000
                                                                         0.000000e+00
      min
                                                               1.000000
      25%
                           50.000000
                                       70.000000
                                                                         1.500000e+04
             152.000000
                                                   60.000000
                                                              60.000000
      50%
              160.000000
                           60.000000
                                       80.000000
                                                   69.000000
                                                              70.000000
                                                                         2.000000e+04
      75%
              170.000000
                            70.000000
                                       86.250000
                                                   76.000000
                                                              80.000000
                                                                         2.500000e+04
             192.000000
                          106.000000
                                                             100.000000
                                                                         1.500000e+06
      max
                                       98.000000
                                                   94.000000
df.isnull().sum()
     Certification Course
                                                                     0
     Gender
                                                                     0
    Department
     Height(CM)
     Weight(KG)
                                                                     0
     10th Mark
                                                                     0
     12th Mark
                                                                     0
     college mark
                                                                     0
     hobbies
                                                                     a
     daily studing time
                                                                     0
     prefer to study in
                                                                     0
     salary expectation
                                                                     0
     Do you like your degree?
                                                                     0
    willingness to pursue a career based on their degree
     social medai & video
                                                                     0
     Travelling Time
                                                                     0
     Stress Level
                                                                     0
     Financial Status
                                                                     0
     JoinedProgram
                                                                     0
     dtype: int64
```

∨ Let's tidy up some columns

```
df.columns
```

```
Index(['Certification Course', 'Gender', 'Department', 'Height(CM)',
             'Weight(KG)', '10th Mark', '12th Mark', 'college mark', 'hobbies', 'daily studing time', 'prefer to study in', 'salary expectation',
             'Do you like your degree?',
             'willingness to pursue a career based on their degree ', 'social medai & video', 'Travelling Time ', 'Stress Level ',
             'Financial Status', 'JoinedProgram'],
            dtype='object')
'daily studing time', 'prefer to study in', 'salary expectation',
        'Do you like your degree?',
        'willingness to pursue a career based on their degree ', 'social medai & video', 'Travelling Time ', 'Stress Level ',
        'Financial Status', 'JoinedProgram']
'daily_studing_time', 'prefer_to_study_in', 'salary_expectation',
        'Do_you_like_your_degree?',
        'willingness_to_pursue_a_career_based_on_their_degree',
'social_medai_&_video', 'Travelling_Time', 'Stress_Level',
        'Financial_Status', 'JoinedProgram']
df.rename(columns=dict(zip(old_names, new_names)), inplace=True)
df.columns
     Index(['Certification_Course', 'Gender', 'Department', 'Height(CM)',
              'Weight(KG)', '10th_Mark', '12th_Mark', 'college_mark', 'hobbies',
             'daily_studing_time', 'prefer_to_study_in', 'salary_expectation',
             'Do_you_like_your_degree?',
             'willingness_to_pursue_a_career_based_on_their_degree',
'social_medai_&_video', 'Travelling_Time', 'Stress_Level',
```

'Financial_Status', 'JoinedProgram'],
dtype='object')

Explore with some visuals

• females are generally doing better than their male counterparts

	Height(CM)	Weight(KG)	10th_Mark	12th_Mark	college_mark	\blacksquare
Gender						ıl.
Female	150.348101	50.468354	78.974684	71.715190	76.870886	
Male	160.974359	66.037821	75.771795	67.287372	67.515577	

df.groupby(['Gender'])[['Gender']].value_counts().plot(kind='pie',autopct='%1.1f%',ylabel="")
plt.title('Gender Distribution')

Text(0.5, 1.0, 'Gender Distribution')

Gender Distribution

→ How is stress imparting performance?

df.groupby('Stress_Level')[['Gender']].value_counts()

Stress_Level	Gender			
Awful	Male	14		
	Female	5		
Bad	Male	45		
	Female	23		
Good	Male	89		
	Female	48		
fabulous	Male	8		
	Female	3		
Name: count,	dtype: into	64		

df.groupby('Stress_Level')[['Gender']].value_counts().plot(kind='pie',autopct='%1.1f%',ylabel="")
plt.title('Stress Distribution among Gender')

Text(0.5, 1.0, 'Stress Distribution among Gender')

Stress Distribution among Gender

df['Stress_Level'].value_counts().plot(kind='bar')

		Weight(KG)	10th_Mark	12th_Mark	college_mark	\blacksquare
Stress_Level	Gender					ıl.
Awful	Female	48.600000	85.600000	75.200000	75.000000	
	Male	67.571429	75.400000	66.000000	68.571429	
Bad	Female	48.391304	76.139130	65.004348	73.260870	
	Male	65.133333	75.933333	65.346667	66.451111	
Good	Female	52.104167	80.995833	75.716667	79.850000	
	Male	66.482022	75.930337	68.238539	67.057640	
fabulous	Female	43.333333	57.333333	53.333333	60.000000	
	Male	63.500000	73.750000	69.875000	76.750000	

df.groupby(['Stress_Level', 'Gender'])[['10th_Mark']].mean().plot(kind='bar')
plt.title('Stress vr Performance')

Text(0.5, 1.0, 'Stress vr Performance')

Financial status of participants

df.Financial_Status.unique()

array(['Bad', 'good', 'Awful', 'Fabulous'], dtype=object)

df.groupby('Financial_Status')[['Gender']].value_counts().plot(kind='pie',autopct='%1.1f%',ylabel="")
plt.title('Distribution of Financial status among gender')

Text(0.5, 1.0, 'Distribution of Financial status among gender')

Distribution of Financial status among gender

More Males are engaged in part-time jobs

df.groupby('JoinedProgram')[['Gender']].value_counts().plot(kind='pie',autopct='%1.1f%%',ylabel="")
plt.title('Gender participation in Part-time Job')

Text(0.5, 1.0, 'Gender participation in Part-time Job')

Gender participation in Part-time Job


```
df.daily_studing_time.unique()
     array(['0 - 30 minute', '30 - 60 minute', '1 - 2 Hour', '2 - 3 hour', '3 - 4 hour', 'More Than 4 hour'], dtype=object
def convert_to_minutes(time_range):
    if 'More Than' in time_range:
        return 240 # Assuming "More Than 4 hour" is equivalent to 240 minutes
    else:
        hours, _, _ = time_range.partition('-')
         hours = int(hours.strip())
         return hours * 60
# Apply the function to the column and create a new column
df['daily_studing_time_minutes'] = df['daily_studing_time'].apply(convert_to_minutes)
df.Travelling Time.unique()
     array(['30 - 60 minutes', '0 - 30 minutes', '1 - 1.30 hour', '2 - 2.30 hour', '1.30 - 2 hour', 'more than 3 hour', '2.30 - 3 hour'], dtype=object)
df['social_medai_&_video'].unique()
     array(['1.30 - 2 hour', '1 - 1.30 hour', 'More than 2 hour', '30 - 60 Minute', '1 - 30 Minute', '0 Minute'], dtype=object)
def convert_social_medai_video_to_minutes(time_range):
    if 'More than' in time_range:
        return 180 # Assuming "more than 3 hour" is equivalent to 180 minutes
    else:
        parts = time_range.split('-')
         if len(parts) == 2:
             start, end = parts
             start_time, end_time = map(float, [start.strip().split()[0], end.strip().split()[0]])
             if 'hour' in time_range:
                  return (end_time - start_time) * 60
             else:
                  return end_time - start_time
         else:
             return float(time_range.split()[0])
# Apply the function to the column and create a new column with minutes
df['social_media_Minutes'] = df['social_medai_&_video'].apply(convert_social_medai_video_to_minutes)
def convert_travelling_time_to_minutes(time_range):
    if 'more than' in time_range:
        return 180 # Assuming "more than 3 hour" is equivalent to 180 minutes
    else:
         parts = time_range.split('-')
         if len(parts) == 2:
             start, end = parts
             start_time, end_time = map(float, [start.strip().split()[0], end.strip().split()[0]])
             if 'hour' in time_range:
```

```
return (end_time - start_time) * 60
else:
    return end_time - start_time
else:
    return float(time_range.split()[0])
```

Apply the function to the column and create a new column with minutes
df['Travelling_Time_Minutes'] = df['Travelling_Time'].apply(convert_travelling_time_to_minutes)

df.drop(columns=['daily_studing_time','social_medai_&_video', 'Travelling_Time'], inplace=True)

df.groupby('Gender')[['daily_studing_time_minutes','social_media_Minutes','Travelling_Time_Minutes']].mean()

	daily_studing_time_minutes	social_media_Minutes	Travelling_Time_Minutes	\blacksquare
Gender				ılı
Female	540.000000	46.075949	30.075949	
Male	732.692308	49.211538	36.500000	

- Students turn to social media and videos when they are stressed.
 - · One can notice that, when stress level is worst, students spend more time on social media than studying

 $\label{limiting_time_minutes','social_media_Minutes','Travelling_Time_Minutes']].mean (all of the content of$

		daily_studing_time_minutes	<pre>social_media_Minutes</pre>	Travelling_Time_Minutes	
Stress_Level	Gender				ıl.
Awful	Female	372.000000	84.000000	30.000000	
	Male	561.428571	47.428571	29.142857	
Bad	Female	751.304348	44.956522	27.913043	
	Male	986.666667	57.022222	36.266667	
Good	Female	480.000000	43.687500	30.875000	
	Male	651.910112	47.426966	38.089888	
fabulous	Female	160.000000	29.666667	34.000000	
	Male	502.500000	28.250000	33.000000	

ax=sns.barplot(df[['Stress_Level', 'daily_studing_time_minutes','social_media_Minutes']],x='Stress_Level', y='social_media_M sns.lineplot(df[['Stress_Level', 'daily_studing_time_minutes','social_media_Minutes']],x='Stress_Level', y='daily_studing_time_title('Impart of Stress on Study and Social Media')

Text(0.5, 1.0, 'Impart of Stress on Study and Social Media')


```
catCols = [col for col in df.columns if df[col].dtypes=='object']
catCols

['Certification_Course',
    'Gender',
    'Department',
    'hobbies',
    'prefer_to_study_in',
    'Do_you_like_your_degree?',
    'willingness_to_pursue_a_career_based_on_their_degree',
```

numCols = df.select_dtypes(include=['int64', 'float64']).columns.tolist()
numCols

```
['Height(CM)',
  'Weight(KG)',
  '10th_Mark',
  '12th_Mark',
  'college_mark',
  'salary_expectation',
  'daily_studing_time_minutes',
  'social_media_Minutes',
  'Travelling_Time_Minutes']
```

'Stress_Level',
'Financial_Status',
'JoinedProgram']

how do the numerical columns corelate?

df[numCols].corr()

	Height(CM)	Weight(KG)	10th_Mark	12th_Mark	college_mark	salary_expectation	daily_studing_time
Height(CM)	1.000000	0.275948	0.019938	-0.119618	-0.018535	-0.010708	
Weight(KG)	0.275948	1.000000	0.062977	-0.019133	-0.014901	-0.087787	
10th_Mark	0.019938	0.062977	1.000000	0.473254	0.465861	-0.055794	
12th_Mark	-0.119618	-0.019133	0.473254	1.000000	0.424828	-0.085623	
college_mark	-0.018535	-0.014901	0.465861	0.424828	1.000000	-0.103034	
salary_expectation	-0.010708	-0.087787	-0.055794	-0.085623	-0.103034	1.000000	
daily_studing_time_minutes	-0.160902	0.032652	0.023114	0.016854	-0.031191	-0.073046	
social_media_Minutes	0.012591	0.158480	-0.005240	0.008511	-0.029986	-0.025266	
Travelling_Time_Minutes	0.051755	0.051249	0.095286	0.035975	0.027092	-0.004790	

```
sns.heatmap(data=df[numCols].corr(), annot=True)
plt.title('Correlation Map')
```

Text(0.5, 1.0, 'Correlation Map')

