In-Class Quiz 1:

Vectors and vector-valued functions (§11.1-11.6)

Directions: This of	quiz is	due at	t the	end	of i	lecture
----------------------------	---------	--------	-------	-----	------	---------

1.	(3	pts)	A	block	weighin	$\mathbf{g} w$	pound	s resta	s on	a	ramp	with	an	incline	of	30	degrees.	If	\mathbf{F}	is	the
	gra	vitat	iona	al force	e on the	block	then	use th	e pro	oje	ction	formul	a to	o find it	s no	orm	al comp	oner	ıt.		

2. (1 pt) If u and v form two adjacent sides of a parallelogram, then the area of the parallelogram is:

3. (3 pts) Suppose $\mathbf{r}(t) = \langle x_0, y_0, z_0 \rangle + t \langle a, b, c \rangle$ is the equation of the line ℓ passing through the point (x_0, y_0, z_0) and parallel to the vector $\langle a, b, c \rangle$. What is the equation of the projection of ℓ into the zx-plane?

4. (1 pt) A vector-valued function $\mathbf{r}(t)$ is continuous at t=a provided that

$$\lim_{t \to a} \mathbf{r}(t) =$$

5. (2 pts) Let $\mathbf{r}(t) = \langle 1, 2t, 3t^2 \rangle$. Compute $\int \mathbf{r}(t) dt$.