Lecture 18. Learning 3- Synaptic Plasticity and Learning

Professor Christiane Linster

Pre-lecture preparation

- (1) Watch pre-lecture video on fear conditioning
- (2) Review lecture 18
- (3) Read pages 633-635; Figure 18.10

Learning Objectives

To understand the nature of long term potentiation (LTP) and long term depression (LTD)

- (1) Be able to understand how LTP/LTD could be involved in learning
- (2) Be able to suggest experiments to test if LTP/LTD are involved in a specific behavioral learning task
- (3) Be able to relate experimental evidence to brain circuits underlying learning
- (4) Be able to understand original literature
- (5) Understand how classical conditioning and plasticity are present in our daily life

Lecture Outline

- (1) Experiments to study learning in animals use a number of different approaches to investigate how neural processes and learning processes interact and influence each other. Classical fear conditioning is one of these paradigms. Because it is relatively simple, the circuitry involved has been well worked out and we can use it to illustrate the neural processes underlying learning (Figure 18.10 and associated text).
- (2) Investigating learning at the neural level can be done in a number of ways including lesioning of brain areas, activation of pathways, recording of neural activity and more. We will discuss a number of experimental approaches converging on a clear model of how fear conditioning in the amygdale works.
- (3) Learning processes such as fear conditioning affect our daily life; we will discuss several aspects of this

Study Questions

(1) How can experiments in brain slices shed light on behavioral observations such as fear learning?

- (2) What type of evidence could you collect to demonstrate the role of synaptic plasticity in a behavior?
- (3) How could stress hormones for example affect learning?

Lecture 17: Learning at the synaptic level: LTP and LTD

Christiane Linster

CL243@cornell.edu

W247 Mudd Hall

Office hours Wed. 1:30-2:30 or by appointment

Lectures 16-21: Learning and memory

Lecture 16	NMDA receptor allows to "associate" two events at the level of a synapse	
Lecture 17	Learning at the synaptic level: LTP and LTD	
Lecture 18	Learning at the network level: how are LTP and LTD involved in changing networks?	
Lecture 19	Learning while behaving: sequences of events and STDP	
Lecture 20	Remembering: Consolidation of what has been learned	
Lecture 21	What is a memory?	

Lecture 18: Learning 3

Synaptic plasticity and learning

- (1) Be able to understand how LTP/LTD could be involved in learning
- (2) Be able to suggest experiments to test if LTP/LTD are involved in a specific behavioral learning task
- (3) Be able to relate experimental evidence to brain circuits underlying learning
- (4) Be able to understand original literature

Review

Every day leaning

3 Press his haunches while pulling up on the leash.

	POSITIVE (ADDED)	NEGATIVE (SUBTRACTED)
REINFORCEMENT (STRENGTHENS)	•a coach pats you on the back after a good play • a paycheck for working • \$10 for getting an "A" on your report card	You leave early for school to avoid traffic You take Tylenol to remove back pain
PUNISHMENT (WEAKENS)	Touch and hot stove and get burned Getting a ticket for speeding	You lose your driving privileges for breaking curfew Loss of freedom to combat bad behavior

CLASSICAL CONDITIONING AND ADVERTISING

Ways in which classical conditioning helps sell...

- Pairing popular music tagether with products in ads to generate positive feelings
- Consistently advertising a product on an exciting game show may result in the product itself generating excitement
- Christmas music played in a store may trigger happy memories in a consumer's mind per

Before we have heard of a prosplement images (UCS), which plater create pleasant feelings (C

https://slideplayer.com/slide/4282009/

Appetitive and aversive conditioning

Review

This paradigm has been shown to involve LTP

Nictating membrane response and the cerebellum

Nictating membrane response and the cerebellum

Clicker question

A. The air puff is the CS and the tone the US

The air puff is the US and the tone to CS

Nictating membrane response and the cerebellum

Nictating membrane response and the cerebellum

Nictating membrane response and the cerebellum

Clicker question

- A. The air puff is the CS and the tone the US
- B. The air puff is the US and the tone to CS

You are recording from a neuron triggering the membrane response. BEFORE conditioning you expect it to

A Spike in response to the tone Spike in response to the air puff Spike in response to both

You are recording from a neuron triggering the membrane response. AFTER conditioning you expect it to

Spike in response to the tone Spike in response to the air puff Spike in response to both

Nictating membrane response and the cerebellum

We are looking for an area in the brain in which somatosensory and auditory information converges.

Learning in this brain area should NOT interfere with the reflex response

Cerebellum

Cerebellum

What type of evidence can we collect to show that cerebellum is involved in this learning process?

(1) Lesions

(2) Pharmacology

(3) Optogenetics

(4) Recordings

DLS

DMS

https://openi.nlm.nih.gov

Electrical Chemical Mechanical

Researchgate.net

(5) Imaging

Neuromodulation

Temporary inactivation

Agonists

Antagonists

(6) Mapping

Clicker question

Purkinje cell is

Excited by CS after learning Inhibited by CS after learning

Clicker question

Purkinje cell is

Excited by CS after learning Inhibited by CS after learning

The change of response from inhibited to responsive points to

LTD LTP

Clicker question

Purkinje cell is

Excited by CS after learningB. Inhibited by CS after learning

The change of response from inhibited to responsive points to

(1) Puff to eye elicits reflex response

- (1) Puff to eye elicits reflex response
- (2) After pairing tone and puff, puff elicits conditioned response

- (1) Puff to eye elicits reflex response
- (2) After pairing tone and puff, puff elicits conditioned response
- (3) Acquisition of CR:
- Puff → climbing fibers
 Tone → parallel fibers
- LTD -> between parallel fibers and Purkinje cells leads to disinhibition of interpositus nucleus and allows for CR

Fear conditioning and amygdala

Appetitive conditioning in olfactory cortex

Appetitive conditioning in olfactory cortex

Schoenbaum et al. 1999

Appetitive conditioning in olfactory cortex

Plasticity on inhibitory synapses

- A postsynaptic rise in intracellular Ca2+ concentration ([Ca2+]I) is required to induce long-term plasticity at GABAergic synapses.
- (2) (b) In the adult rat hippocampus, NMDA-dependent LTD can be induced at GABAergic synapses. At this later stage, however, activation of AMPA receptors provides the depolarization that leads to the unblocking of NMDA-receptor channels.
- (3) (d) In the adult hippocampus, GABA released from GABAergic terminals activates GABAA receptors on pyramidal cells, and also GABAB receptors located on neighbouring astrocytes. Activation of these GABAB receptors leads to a postsynaptic rise in [Ca2+]i that triggers the release of a retrograde messenger, probably glutamate, leading to an increase in the probability of GABA release.

What you should take away from this lecture and remember

- (1) Difference between appetitive and aversive learning (conditioning)
- (2) Design experiments to test if LTP/LTD are involved in a learning paradigm
- (3) Explain how cerebellar LTD contributes to nictating membrane response
- (4) Explain how fear conditioning to a tone happens in amygdale
- (5) Understand two ways for plasticity on in inhibitory synapses.