Φροντιστήριο Μέσης Εκπαίλευσης

🗣 : Δονάτου Δημουλίτσα 1 (Πλατεία Σαρόκο) | 📞 : 26610 40414

ΔΙΑΓΩΝΙΣΜΑΤΑ - 28 Φεβρουαρίου 2019

ΤΜΗΜΑ: ΜΑΘΗΜΑΤΙΚΩΝ ΚΑΘΗΓΗΤΗΣ/ΤΡΙΑ: ΣΠΥΡΟΣ ΦΡΟΝΙΜΟΣ

ΜΑΘΗΜΑΤΙΚΑ ΠΡΟΣΑΝΑΤΟΛΙΣΜΟΥ Γ΄ ΛΥΚΕΙΟΥ

Διαγώνισμα

ΔΙΑΦΟΡΙΚΟΣ ΛΟΓΙΣΜΟΣ - ΜΟΝΟΤΟΝΙΑ - ΑΚΡΟΤΑΤΑ

ΘΕΜΑ Α

A.1 Δίνεται μια συνεχής συνάρτηση $f: \Delta \to \mathbb{R}$. Να δείξετε ότι αν f'(x) > 0 για κάθε εσωτερικό σημείο του Δ τότε η f είναι γνησίως αύξουσα σε όλο το Δ . *Μονάδες 10*

A.2 Να διατυπώσετε το θεώρημα του Fermat.

Μονάδες 5

Α.3 Να χαρακτηρίσετε καθεμία από τις παρακάτω προτάσεις ως **Σωστή** ή **Λανθασμένη**.

- α. Αν μια συνάρτηση είναι συνεχής σε ένα διάστημα Δ , παραγωγίσιμη σε κάθε εσωτερικό σημείο του Δ και είναι γνησίως φθίνουσα στο Δ τότε ισχύει f'(x) < 0 για κάθε $x \in \Delta$.
- β. Αν μια συνάρτηση f είναι ορισμένη και παραγωγίσιμη σε ένα διάστημα $[a, \beta]$ και παρουσιάζει τοπικό μέγιστο στο $x_0 \in [a, \beta]$ τότε ισχύει $f'(x_0) = 0$.
- γ. Για μια συνάρτηση $f:[a,\beta]\to\mathbb{R}$ πιθανές θέσεις ακρότατων είναι τα άκρα του διαστήματος και τα κρίσιμα σημεία της.
- δ. Αν ισχύει $f'(x) \ge 0$ για κάθε $x \in \mathbb{R}$ τότε η f είναι γνησίως αύξουσα στο \mathbb{R} .
- ε. Αν ισχύει f'(x) > 0 για κάθε $x \in \mathbb{R}^*$ τότε η f είναι γνησίως αύξουσα στο \mathbb{R}^* .

Μονάδες 10

ΘΕΜΑ Β

Δίνεται η συνάρτηση

$$f(x) = x^3 + ax - 1 - \eta \mu 2x$$

για την οποία ισχύει ότι f'(0) = 0.

B.1 Να αποδείξετε ότι a=2.

Μονάδες 4

B.2 Να εξετάσετε αν η f έχει ακρότατο στο 0.

Μονάδες 8

B.3 Να βρείτε το σύνολο τιμών της f.

Μονάδες 6

Β.4 Να αποδείξετε ότι η εξίσωση

$$\frac{2017 + \eta \mu 2x}{x^2 + 2} = x$$

έχει μοναδική ρίζα στο \mathbb{R} .

Μονάδες 7

ΘΕΜΑ Γ

Δίνεται παραγωγίσιμη συνάρτηση $f: \mathbb{R} \to \mathbb{R}$, για την οποία ισχύει $f(0) = 2 \ln 3$ και:

$$f'(x) = (4x - 8)e^{-f(x)}$$
, για κάθε $x \in \mathbb{R}$

- **Γ.1** Να δείξετε ότι ο τύπος της f είναι $f(x) = \ln(2x^2 8x + 9)$. Μονάδες 5
- **Γ.2** Να μελετήσετε την f ως προς τη μονοτονία και τα ακρότατα. Μονάδες 7
- **Γ.3** Να βρείτε το σύνολο τιμών της f. Μονάδες 6
- **Γ.4** Να βρείτε τους αριθμούς x και y για τους οποίους ισχύει:

$$f(ye^x - x^2 - yx) + f(y) = 0$$

Μονάδες 7

ΘΕΜΑ Δ

Από ένα φύλλο λαμαρίνας σχήματος τετραγώνου πλευράς 6 μέτρων κατασκευάζεται μια δεξαμενή σχήματος ορθογωνίου παραλληλεπιπέδου, ανοιχτή από πάνω. Από τις γωνίες του φύλλου λαμαρίνας κόβονται τέσσερα ίσα τετράγωνα πλευράς x μέτρων, με 0 < x < 3, και στη συνέχεια οι πλευρές διπλώνονται προς τα πάνω όπως φαίνεται στο παρακάτω σχήμα.

Δ.1 Να αποδείξετε ότι ο όγκος της δεξαμενής ως συνάρτηση του x είναι:

$$f(x) = 4x(3-x)^2$$
, $0 < x < 3$

- Μονάδες 5 Μονάδες 7
- **Δ.2** Να βρείτε για ποια τιμή του x η δεξαμενή έχει το μέγιστο όγκο. **Δ.3** Να βρείτε το όριο $\lim_{x\to 0} \frac{f(x+2)-8}{x}$. **Δ.4** Αν $x_1, x_2 \in \left(0, \frac{\pi}{2}\right)$, με $x_1 < x_2$, να αποδείξετε ότι: Μονάδες 6

$$\frac{\sigma v v x_1}{\sigma v v x_2} > \left(\frac{3 - \sigma v v x_2}{3 - \sigma v v x_1}\right)^2$$

Μονάδες 7

Καλή Επιτυχία!