Mechanistic Interpretability 101

Episode 1

Linear Algebra

Data Representation

Cartesian Coordinate System

René Descartes

Vectors and Matrices

Vector Spaces

Addition:

1.
$$\mathbf{u} + \mathbf{v}$$
 is in V .

2.
$$u + v = v + u$$

3.
$$u + (v + w) = (u + v) + w$$

- V has a zero vector 0 such that for every u in V, u + 0 = u.
- For every u in V, there is a vector in V denoted by -u such that u + (-u) = 0.

Scalar Multiplication:

- 6. *cu* is in *V*.
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 8. $(c + d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- 9. $c(d\mathbf{u}) = (cd)\mathbf{u}$
- 10. $1(\mathbf{u}) = \mathbf{u}$

Closure under addition

Commutative property

Associative property

Additive identity

Additive inverse

Closure under scalar multiplication

Distributive property

Distributive property

Associative property

Scalar identity

Linear Transformations Folding Squishing Stretching

Linear Transformations

Matrix multiplication as Composition

Basis

Basis: A set of n vectors, {v₁, v₂,... v□}, is a basis of some space S if:

1. {v₁, v₂, ...v□} are linearly independent
 2. {v₁, v₂,...v□} span the set S. In other words, Span{v₁,v₂,...v□}=S

Rank

For example, the matrix A given by

$$A = egin{bmatrix} 1 & 2 & 1 \ -2 & -3 & 1 \ 3 & 5 & 0 \end{bmatrix}$$

can be put in reduced row-echelon form by using the following elementary row operations:

$$\begin{bmatrix} 1 & 2 & 1 \\ -2 & -3 & 1 \\ 3 & 5 & 0 \end{bmatrix} \xrightarrow{2R_1 + R_2 \to R_2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 3 & 5 & 0 \end{bmatrix} \xrightarrow{-3R_1 + R_3 \to R_3} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & -1 & -3 \end{bmatrix}$$
$$\xrightarrow{R_2 + R_3 \to R_3} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix} \xrightarrow{-2R_2 + R_1 \to R_1} \begin{bmatrix} 1 & 0 & -5 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \end{bmatrix}.$$

The final matrix (in reduced row echelon form) has two non-zero rows and thus the rank of matrix A is 2.

Trace

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

$$tr(A) = a_{11} + a_{22} + a_{33}$$

Determinant

Determinant

Change of Basis

Change of Basis

Earth Point =
$$x(1,0,0) + y(0,1,0) + z(0,0,1)$$

Alien Point =
$$a(1,1,0) + b(0,1,1) + c(1,0,1)$$

Suppose their basis vectors in our system are described as:

•
$$(1,1,0) = x_1(1,0,0) + y_1(0,1,0) + z_1(0,0,1)$$

•
$$(0,1,1) = x_2(1,0,0) + y_2(0,1,0) + z_2(0,0,1)$$

•
$$(1,0,1) = x_3(1,0,0) + y_3(0,1,0) + z_3(0,0,1)$$

$$egin{bmatrix} x \ y \ z \end{bmatrix} = B^{-1} \cdot egin{bmatrix} a \ b \ c \end{bmatrix}$$

Where,
$$B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Eigenvectors & Eigenvalues

Transformation

matrix Eigenvalue

$$A\vec{\mathbf{v}} = \lambda \bar{\mathbf{v}}$$

Eigenvector

 Data Representation Vectors and Matrices Vector Spaces Span Rank Trace Transpose Determinant Change of Basis Eigenvectors and Eigenvalues