Intercepts of the Quadratic

 $\triangle = \sqrt{b^2 - 4ac}$ Case1: △>0

Case2: △=0

Example 2.

no p-intercepts.

w(0) = -245 w-intercept.

△=-784<0

However there is a w-intercept.

 $p_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \text{ ac}}}{2a}$ computes the p-intercepts of multiplicity 1. w(0) = c computes the single w-intercept.

Given a quadratic $w(p) = a p^2 + b p + c$ compute its discriminant \triangle :

 $w(p) = p^2 - 2p - 15$ compute its discriminant \triangle : △=64>0 $p_{1,2} = -3,5$ w(0) = -15 w-intercept.

 $p_{1,2} = \frac{-b \pm \sqrt{b^2 - 4 \, ac}}{2a} = \frac{-b \pm 0}{2a} = \frac{-b}{2a} \quad \text{single p-intercept of multiplicity 2.}$

$$w(p) = -3p^2 - 42p - 147$$
 compute its discriminant \triangle : $\triangle = 0$ $p_{1,2} = -7, -7$

Example 3. $w(p) = -4p^2 + 56p - 245$ compute its discriminant \triangle :

-10

