

IIC1253 — Matemáticas Discretas — 1' 2018

PAUTA TAREA 5

Pregunta 2

Pregunta 2.1

El conjunto S_1 es numerable. Para mostrar esto bastaba entregar la biyección (a_0, c) que relaciona una secuencia en \mathbb{Z}^w con un elemento en $\mathbb{Z} \times \mathbb{Z}$, demostrar que esta era efectivamente biyectiva y finalmente mostrar que $\mathbb{Z} \times \mathbb{Z}$ es numerable. Para esto último podían ocupar el argumento de la pregunta 1.2 con \mathbb{Z} que en clases se vio que es numerable.

Dado lo anterior, el puntaje asignado es el siguiente:

- (0 puntos) Demostración incorrecta o con errores mayores.
- (3 puntos) Demostración con pequeños errores.
- (4 puntos) Demostración correcta con todos los pasos.

Pregunta 2.2

El conjunto S_2 no es numerable. Para mostrar esto, se podía ocupar el argumento de Cantor para un c y un a_0 fijos, representando cada secuencia como una secuencia infinita de + (o 1s) y - (o 0s) (1 si $a_{i+1} = a_i + c$ y 0 si $a_{i+1} = a_i - c$). Luego, usando el argumento de la diagonal se puede mostrar que S_2 no es numerable, notando que dos series de + y - distintas llevan a dos secuencias distintas en \mathbb{Z}^w .

Otra posibilidad, era entregar una biyección de \mathbb{Z}^w con $2^{\mathbb{N}}$, notanto que $2^{\mathbb{N}}$ es no numerable.

Dado lo anterior, el puntaje asignado es el siguiente:

- (0 puntos) Demostración incorrecta o con errores mayores.
- (3 puntos) Demostración con pequeños errores.
- (4 puntos) Demostración correcta con todos los pasos.