Tutorial 1): Given
$$\{(x_e, y_e)\}_{t=1}^n$$
 & C>0

1. (P) $0,0,0,3$ $\frac{1}{2}||0||^2 + \frac{5}{2} + \frac{5}{2}$

(LS-SVM) Rake $y_e(x_e^T\theta + \theta_0) = 1 - \frac{5}{2}e$

a) Prove that the problem is equivalent to

$$(P^1) \quad \min_{0,0,0,3} \quad \frac{1}{2}||0||^2 + \frac{5}{2} + \frac{5}{2}e^2$$

Pf: Let
$$(\hat{\theta}, \hat{\theta}_0, \hat{S})$$
 be a solution to (P) . It has the least cost &

 $V_{t}(x_t^T \hat{\theta} + \hat{\theta}_0) = 1 - \hat{S}_{t}$, $t = 1, \dots, n$.

x+0+00=y+-5+ t=1,...,n.

(reate a new jet of decision variables (0,00, 2)

The ($\tilde{0},\tilde{0}_{0},\tilde{z}$) how the same cost a_{0} ($\tilde{0},\tilde{0}_{0},\tilde{z}$). Check constraints are satisfied ($\tilde{0},\tilde{0}_{0},\tilde{z}$).

```
This can be written as
  \chi_{\varepsilon}^{T} \stackrel{\sim}{\partial} + \stackrel{\sim}{\partial}_{0} = \chi_{\varepsilon}^{T} \stackrel{\sim}{\partial} + \stackrel{\sim}{\partial}_{0} = y_{\varepsilon} \left( \left| - \stackrel{\sim}{\mathcal{Z}}_{\varepsilon} \right| \right) = y_{\varepsilon} - y_{\varepsilon} \stackrel{\sim}{\mathcal{Z}}_{\varepsilon}
                                                                                                   = yt - 3t.
The (0,00, $) satisfy the contraints (P').
  b) \min_{0,0_0,\overline{5}} \frac{1}{2} \|0\|^2 + \frac{C}{2} \underbrace{\sum_{t} 5_t^2}_{t}
(p^7) \frac{1}{2} \|0\|^2 + \frac{C}{2} \underbrace{\sum_{t} 5_t^2}_{t} \underbrace{\sum_{t} 5_t^2}_{t}
     let at be the lagrange mult. To the th constraint.
  L(0,0_0,3;\alpha) = \frac{1}{2}\|0\|^2 + \frac{5}{2} I_1 3^2 - \frac{1}{4} \alpha_{\epsilon}(0) x_{\epsilon} + 0_0 - y_{\epsilon} + \frac{3}{4}
\nabla_0 L(0, 0_0, 5; \alpha) = 0 - \sum_{t} \alpha_t x_t = 0
\frac{\partial}{\partial 0_0} L(0, 0_0, 5; \alpha) = \sum_{t} \alpha_t = 0
\frac{\partial}{\partial 0_0} L(0, 0_0, 5; \alpha) = \sum_{t} \alpha_t = 0
(Stationarity)
\frac{\partial}{\partial \overline{z}_{t}} L(0,00,5;\lambda) = C5t - \lambda_{t} = 0. 
                     9 xt + 00 - yt + 51 = 0 4t
  \eta = 1, \beta = 0
```

 y_{t} y_{t} $\left(\chi_{t}^{T} \hat{\theta} + \hat{\theta}_{0}\right) = \left(1 - \hat{\xi}_{t}\right), \quad t = 1, \dots, n.$

iii)
$$y = (y_1, ..., y_n)^T$$
 $1 = (1, ..., 1)^T \in \mathbb{R}^n$

$$\left[\begin{array}{cccc} M & 1 \\ 1^T & 0 \end{array} \right] = \left[\begin{array}{c} y \\ 0 \end{array} \right]$$

Plugging 1 & 3 into 1 yields

$$\left(\underbrace{\sum_{S=1}^{n} \alpha_S \chi_S}^{N}\right)^T \chi_t + \theta_0 + \frac{\alpha_t}{C} = y_t$$

by the linearity of the inner product

$$\sum_{s=1}^{n} \alpha_s(x_s^T x_t) + \theta_0 + \frac{\alpha_t}{C} = y_t$$

Form matrix MERMM with (s.t) element XFXE+ 185=+>

$$\begin{bmatrix} M & 1 \\ 1 & 0 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \begin{bmatrix} 9 \\ 0 \end{bmatrix}$$

7.1 Linear measurements in emponential noise.

$$p(z) = \begin{cases} \bot & e^{-z/9} \\ 0 & \text{else} \end{cases}$$

Now, we don't know & & X.

MLE:

$$argmax \prod_{i=1}^{n} p_{x,\alpha}(y_i - a_i^T x).$$

=
$$\underset{X \in \mathbb{R}^n}{\operatorname{drgmax}} \sum_{i=1}^n \log \left[\frac{1}{2\alpha} |y_i - q_i^* x_i| \leq \alpha \right].$$

The log-likelihood function to be max over x,x

$$L(x, x) = \begin{cases} n \log \frac{1}{2x} & ||Ax-y||_{\infty} \leq x \\ -\infty & o \cdot w \end{cases}$$
This are set of the set of

Marximize this over x & x >0.

BV 7.3 Probit model

$$y \in \{0,1\}$$
 $y = \{1\}$ $a^{T}u+b+v \leq 0$

$$0 \quad a^{T}u+b+v > 0.$$

ueRn: explanatory variable

$$a,b:$$
 unknown parameters $V \sim N(0,1)$

$$Q(x) = \int_{x}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{t}{2}} dt.$$

$$V \leq -a^{T}u - b$$

$$P_{r}(y=1) = P_{r}(a^{T}u + b + v \leq 0) = Q(a^{T}u + b)$$

$$P_{r}(y=0) = P_{r}(a^{T}u + b + v > 0) = 1 - Q(a^{T}u + b)$$

$$Q(-x) = \Phi(x)$$

$$= \int_{-\infty}^{\infty} \frac{1}{\sqrt{x}} e^{-t/x} dt.$$

$$i = 1, \dots, 0$$

(Ui, yi): explanatory variables & responses.

a, b $i = 1$ (yi) Organiax a, b $i = 1$ (og Pr (yi) Organiax a, b $i = 1$ (og RaTu; +b) + $\sum_{i:y_i = 0} \log (1 - \Omega(aTu_i + b))$ Is this a convex opt. problem? To a concare function? YES Suffice to check that $z \mapsto \log \Omega(z)$ concare.	orgmax	$\prod_{i=1}^{\infty} P_{r}(y_{i})$
organize $\sum_{i=1}^{2} \log R(y_i)$ organize $\sum_{i:y_i=1}^{2} \log Q(a^Tu_i+b) + \sum_{i:y_i=0}^{2} \log (1-Q(a^Tu_i+b))$ Is this a convex opt. problem? Is a concave function? YES		$O(v) = \sqrt{me} c dt$
organex I log & (aTu;+b) + I log (I-Q(aTu;+b)) 1. This a convex opt. problem? I a concave function? YES	OrgMax) (a) (a)
Is this a convex opt. problem? Is a concave function? YES	ط ,9	$= \frac{1}{1-1} \left[0 \right] \left[\frac{1}{1-1} \left(\frac{1}{1-1} \right) \right]$
Is this a convex opt. problem? Is a concave function? YES	Ne oan is	
Is this a convex opt. problem? Is a concave function? YES	a, b	2 log & (atu+b) + 2 log (1-Q(a'u+b)
	10 Hair	(6. 50. 10. 11. 2
	7 /	Convex opt. problem;
Juffice to check that z +> log Q(z) concave.	11	a concave tenction! <u>YES</u>
juffice to check that Z +> log Q(Z) concave.		
Jutlice to check that ZHI log R(Z) Concave.	<u> </u>	
	Juthico	to check that Z +> log Q(Z) concave.