

REMARKS

The Abstract has been rewritten to bring it within the 150 word limit stipulated by the Examiner.

The Specification amendments suggested by the Examiner in item 3 on page 2 of the Office action mailed 11 August 2004 have been adopted.

The Specification has also been amended to include the missing drawing reference numerals mentioned by the Examiner in item 4 bridging pages 2 and 3 of the Office action mailed 11 August 2004.

All but one of the Claim amendments suggested by the Examiner in item 5 on page 3 of the Office action mailed 11 August 2004 have been adopted. With respect, replacement of "a" with --said-- in line 12 of claim 1 obviates the need for the same replacement in line 13 of claim 1 since the same "connection" is referenced in line 13—the amendment made to line 12 provides proper antecedent basis for line 13.

In accordance with the foregoing it is submitted that this application is in condition for allowance, which is requested.

Respectfully submitted,

By:

Blake R. Wiggs
Registration No. 29,505
tel: 604.669.3432 ext. 8936
fax: 604.681.4081
e-mail: bwiggs@patentable.com

Vancouver, B.C.
CANADA

CERTIFICATE OF FACSIMILE TRANSMISSION

I hereby certify that this paper is being facsimile transmitted to the Patent and Trademark Office on 20 September 2004.

Blake R. Wiggs Regn. No. 29,505

- 23 -

Abstract of the Disclosure

- A method of adding a new connection (c, d) to a time:space:time switch fabric. The fabric has a set I of k input elements, a set M of m switch elements, and a set O of l output elements.
- 5 Each input element contributes one input to each switch element, and each output element receives one output from each switch element. A state S_m characterizes the switch elements as a set of ordered pairs (i, j) , where $(i, j) \in S_m$ if and only if the j^{th} output element is coupled to the i^{th}
- 10 input element through one of the switch elements. The range of S_m is the set of outputs of S_m such that if $j \in \text{range}(S_m)$ then $(i, j) \in S_m$ for some $i \in I$. The domain of S_m is the set of inputs of S_m such that if $i \in \text{domain}(S_m)$ then $(i, j) \in S_m$ for some $j \in O$.