Faculdades Integradas de Mineiros – FIMES

Gestão da Tecnologia da Informação – GTI

Telecomunicações e Redes de Computadores

Princípios: Justificativa da Disciplina

- •Comunicação eficaz é elemento essencial para o sucesso organizacional.
- •Uma tendência inconfundível das tecnologias de comunição é a de permitir que cada vez mais pessoas enviem e recebam quaisquer tipos de informações por distâncias e velocidades maiores.
- •O uso eficaz das telecomunicações e redes de pode trazer com que uma empresa torne-se ágil, poderosa e criativa, dando a ela uma vantagem competitiva de longa duração.
- •O "Velho Guerreiro", Abelardo Barbosa, o Chacrinha, dizia, do alto da sua sabedoria: "Quem não se comunica, se estrumbica". ...

•

Objetivos

- Ressaltar a importância da disciplina
- Definir os termos comunicação e telecomunicação
- Descreve os componentes envolvidos na comunicação
- Identificar os tipos básicos dos meios de comunicação
- Identificar os vários tipos de hardware
- Identificar as topologias de redes
- Estudo do Modelo OSI
- A Internet
- Serviços da Internet
- Segurança de Redes

Bibliografia

Desafio do Professor

Sensibilizar a importância da disciplina para os alunos, e apresentar o tema de forma que os conhecimentos gerados ajude a retirar o melhor aproveito das Redes de Computadores e da Telecomunicação.

Apresentar o tema de forma clara mas sem perder de vista a consistência das definições e aplicações, para que tanto os alunos de formação afim e não afim consiga caminhar por todo e estudo.

Importância

Nos dias atuais, em que o comércio é rápido e dinâmico, a comunicação eficaz desponta como peça chave para o sucesso organizacional.

A comunicação eficiente é um dos recursos mais valiosos, pois é essa via que uma empresa mantém contato com suas divisões operacionais, clientes, fornecedores, acionista e etc.

Importância

Formas de comunicação:

- Memorandos
- Notas em quadro de aviso
- Apresentações
- Manuais
- Luzes de aviso: Sistema de gerenciamento de temperatura, umidade, incêndio..etc.

Comunicação

Definição: Comunicação é a transmissão, através de um meio, de um sinal que parte de um emissor e atinge um receptor.

O Sinal contém uma mensagem composta por dados e informação e viaja por algum meio de comunicação e viaja por algum meio de comunicação.

Para uma comunicação seja eficaz, tanto o emissor quanto o receptor devem entender os sinais utilizados, mais do que isso ambos devem concordar quanto à interpretação dos sinais.

Classificação da Comunicação

Comunicações Síncronas: o receptor recebe a mensagem instantaneamente, tão logo ocorra o envio. Voz e telefone são exemplos de comunicação síncronas.

Comunicação Assíncronas: o receptor recebe a mensagem depois, as vezes, horas ou dias após o envio. Ex. Enviar a carta pelo correio ou pelo e-mail pela Internet.

Classificação da Comunicação

•Comunicações Orientada a Conexão e Sem Conexão

•Comunicação Confiável e Não Confiável

Comunicação é o processo pelo qual uma informação gerada em um ponto no espaço e no tempo chamado fonte é transferida a outro ponto no espaço e no tempo chamado destino.

Telecomunicações é a transmissão, emissão ou recepção, por fio, radioeletricidade, meios ópticos ou qualquer outro processo eletromagnético, de símbolos, caracteres, sinais, escritos, imagens, sons ou informações de qualquer natureza.

Telecomunicação, é uma forma de estender o alcance normal da comunicação (tele em grego significa "distância") e a palavra comunicação deriva do latim communicare, que significa "tornar comum", "partilhar", "conferenciar"...

Quando o destino da informação está próximo da fonte, a transmissão é direta e imediata, tal como se processa a conversação entre duas pessoas num mesmo ambiente.

Quando a distância entre elas aumenta, no entanto, o processo de comunicação direta se torna mais difícil. Há então a necessidade de um sistema de telecomunicação - um conjunto de meios e dispositivos que permita a fonte e destino se comunicarem a distância.

As Telecomunicações referem-se à transmissão eletrônica de sinais para comunicação e incluem meios como telefone, o rádio e a televisão.

A Telecomunicação têm o poder:

- alterar a natureza do próprio comércio;
- das relações inter-pessoais;

Prof. Msc. Rayner Gomes - rayner@fimes.edu.br

Comunicação de Dados: É um subconjunto especializado das telecomunicações, referênte a:

- Captação dos dados;
- Processamento de dados;
- Distribuição de dados;

Prof. Msc. Rayner Gomes - rayner@fimes.edu.br

Redes de Computadores

Redes de Computadores: é composta pelos meios de comunicação, dispositivos e softwares necessários para a conexão de dois ou mais sistemas computacionais.

Um **sistema computacional** consiste num conjunto de dispositivos eletrônicos (*hardware*) capazes de processar informações de acordo com um programa (*software*).

Os atuais sistemas computacionais são **binários** e **digitais**.

Redes de Computadores

Vantagens da Redes de Computadores:

1. Aplicações Comerciais:

Compartilhamento de Recursos;

Vendas;

Facilidade e Rapidez no contato com os clientes e fornecedores;

Redução de custos na comunicação.

2. Aplicações Domésticas:

Acesso a informação remotas

Comunicação entre pessoas;

Entretenimento interativo;

Comércio eletrônico.

Tipos de Tecnologia de Transmissão

- •1. Links de Difusão:
- Difusão BroadCast;
- Difusão MultiCast;

•

- •2. Links ponto a ponto:
- Difusão Unicast;

Topologia

Topologia (do grego *topos*, forma, e *logos*, estudo - "estudo das formas") é a parte da ciência que estuda as várias formas de interligar os dispostivos com o objetivo de conectá-los

1. Barramento: Consiste numa linha comum de onde saem ligações para as outras máquinas (clientes). Tem a aparência de um "varal" onde estão conectadas as máquinas (clientes). Esta topologia é pioneira na era das redes do tipo Ethernet e já está em desuso.

2. Anel: Os computadores são ligados um após o outro numa linha que se fecha em forma de anel. Pode se entender esta rede como um barramento sem começo nem fim. As redes *Token Ring*, da IBM, utilizam este tipo de organização de seus clientes.

3. Estrela: Os computadores estão ligados por um ponto ou nó comum, chamado de *concentrador*. Imagine a rede como um "anel diminuto" com ligações alongadas a cada máquina: esta é a topologia mais utilizada hoje em dia.

4. Híbridas: Redes hibridas são quando uma ou mais topologias de redes estão numa mesma rede. Como o caso abaixo:

5. Malha: Neste tipo de topologia todos os nós estão interligados uns aos outros, portanto reduz drasticamente a perda de pacotes já que um mesmo pacote pode chegar ao endereço destinatário por vários caminhos.

Conceitos Básicos

Sistema Binário: São sistemas que trabalham apenas com bits.

Um bit pode assumir apenas dois valores. Ex. Falso ou Verdadeiro, 0 ou 1, Ligado ou Desligado...etc.

Um agromerado de 8 bits formam 1 Byte.

8 bits 1 Byte

Conceitos Básicos

Quantos bits tem 32 Bytes:

Portanto,
$$X = 8 * 32 = 256$$
 bits

Quantos Bytes tem 512 bits:

Portanto,
$$X = 512 / 8 = 64$$
 Bytes

Unidade de Medidas

Bit = bByte = B

$$10B = Dez Bytes = 80b = 80 bits$$

Nomeclatura

K = Kilo

M = Mega

G = Giga

T = Tera

ATENÇÃO

Armazenamento Dados

$$1 T = 1024 G$$

Rede Transmissão

$$1 M = 1000 K$$

Conceitos Básicos

Quando estivermos falando de armazenamento:

$$50Mb = 50 * 1024 K = (50 * 1024 * 1024)$$
 bits

Quando estivermos falando de transmissão

Um arquivo de 2 MB demora quanto para ser transmitido em um canal de 2 Mbps?

$$(2 * 1024 * 1024 * 8) / (2 * 1000 * 1000) = 8,39 bps$$

Conceitos Básicos

Sistemas Digitais: São sistemas que trabalham com um conjunto finito de Valores.

Os Computadores são digitais e binários, pois trabalham apenas com um conjunto finito de bit.

Por isso, que os componentes do computador possuem como características: 32bits, 64bits,...,etc.

A quantidade máxima que um meio de comunicação ou canal de comunicação suporta transmitir é dados em bps (bits por segundo) ou Bps (Bytes por segundo), ex:

um canal de 4MBps consegue transmitir = 4 * 1000 * 1000 * 8 = 32.000.000 bits por segundo

Canal de comunicação Qtd. Em 1 s

Cabo de Fibra Ótica

Evolução das Redes de Computadores

	1981	2001	Ganho
Processador	4,77 Mhz	2 Ghz	20 * década
Rede	56 Kbps	1Gbps	125 * década

Surpreendente a Evolução da Informática e pricipalmente das Redes de Comunicação!!!!

.... Mas

Bill Gates vs General Motors

Numa recente feira de informática (Comdex), Bill Gates fez uma infeliz comparação da indústria de computadores com a automobilística e declarou:

- Se a GM tivesse evoluído tecnologicamente tanto quanto a indústria de computadores evoluiu, estaríamos todos dirigindo carros que custariam 25 dólares e que fariam 1000 milhas por galão (algo como 420km/l).

A General Motors, respondendo "na bucha", divulgou o seguinte comentário a respeito dessa declaração:

Se a Microsoft fabricasse carros:

- 1) Toda vez que eles repintassem as linhas das estradas, você teria de comprar um carro novo.
- 2) Ocasionalmente, dirigindo a 100 Km/h, seu carro, de repente, morreria na auto-estrada sem nenhuma razão aparente, e você teria apenas que aceitar isso, religá-lo (desligar o carro, tirar a chave do contato, fechar o vidro, sair do carro, fechar e trancar a porta, abrir e entrar no carro, sentar-se no banco, abrir o vidro, colocar a chave no contato e ligar) e seguir adiante.
- 3) Ocasionalmente, a execução de uma manobra à esquerda poderia fazer com que seu carro parasse e falhasse. Você teria então que reinstalar o motor! Por alguma estranha razão, você aceitaria isso também.

- 4) A Apple faria um carro em parceria com a Sun, confiável, cinco vezes mais rápido e dez vezes mais fácil de dirigir. Mas apenas poderia rodar em 5% das estradas.
- 5) Os indicadores luminosos de falta de óleo, gasolina e bateria seriam substituídos por um simples "Falha Geral ou Defeito Genérico".
- 6) Os novos assentos obrigariam a todos terem o mesmo tamanho default de bumbum.
- 7) Em um acidente, o sistema de air bag perguntaria: "Você tem certeza que quer usar o air bag?", antes de entrar em ação.
- 8) No meio de uma descida pronunciada, quando você ligar o ar-condicionado, o rádio e as luzes ao mesmo tempo, ao pisar o freio apareceria uma mensagem do tipo "Este carro realizou uma operação ilegal e será desligado!"
- 9) Se desligar o seu carro 98 utilizando a chave, sem antes ter desligado o rádio ou o pisca-alerta, quando fosse ligá-lo novamente, ele iria checar todas as funções do carro durante meia hora, e ainda lhe daria uma bronca para não fazê-lo novamente.
- 10) A cada novo lançamento de carro, você teria de reaprender a dirigir, voltar à auto-escola e tirar uma nova carteira de motorista.
- 11) Para desligar seu carro, você teria de apertar o botão "Iniciar" (????)

Características Básicas de um Canal de Comunicação

Canal Simples: canal capaz de transmitir dados em apenas uma direção.

Canal Half-Duplex: canal capaz de transmitir em ambas direções, mas não simultaneamente

Canal Full-Duplex: canal de comunicação capaz de transmitir dados em ambas as direções simultaneamente; portanto, um canal full-duplex é equivalente a dois canais simplex.

Largura de Banda de um Canal

Largura de Banda: espectro de freqüências que um sinal ocupa em um dado meio de transmissão.

Teoria de Shannon: a capacidade de um canal é diretamente proporcional à sua largura de banda.

Banda Larga: canais de comunicação que contam com uma ampla gama (banda) de freqüências para transmissão de informações.

Largura de Banda de um Canal

Canal Banda Base

Canal Banda Larga

Taxa máxima de dados de um canal

Em 1924, Henry Nyquist, um engenheiro da AT&T, percebeu que até um canal perfeito tem capacidade de transmissão.

Taxa máxima de sinais: 2 H Log2 V bits/s

Ex.: um canal de 3KHz sem ruído não pode transmitir sinais binários a uma taxa superior a 6.000 bps.

ATENÇÃO: Como um sinal pode representar mais de um bit então a Taxa máxima de transmissão de dados pode ser superior a taxa máxima de sinais.

Freqüência

Definição:

Grandeza associada a movimentos de característica ondulatória que indica o número de evoluções (ciclos, voltas, oscilações, etc) por unidade de tempo.

Unidades de medida mais usadas

-Hertz (Hz): Corresponde ao número de oscilações por segundo. Nome dado em honra ao físico Alemão Heinrich Rudolf Hertz.

Freqüência/Exemplo

Lâmpada Incandescente: de 60 Hz

Se utilizarmos uma lâmpada para transmitir sinais, nossa taxa máxima de transferência seria de 120 bits por segundo.

Onda/Freqüência

Onda

Definição:

Uma onda em física é uma perturbação oscilante de alguma grandeza física no espaço e periódica no tempo. A oscilação espacial é caracterizada pelo comprimento de onda e a periodicidade no tempo é medida pela freqüência da onda, que é o inverso do seu período. Estas duas grandezas estão relacionadas pela velocidade de propagação da onda.

Tipos de Ondas

- Ondas do mar, que são perturbações que se propagam através da água
- Som Uma onda mecânica que se propaga através dos gases, líquidos e sólidos, que é de uma freqüência detectada pelo sistema auditivo.
- Luz, Ondas de rádio, Raio X, etc. são ondas eletromagnéticas. Neste caso a propagação é possível através do vácuo.

Elementos da Onda

1=Elementos de uma onda

2=Distância

3=Deslocamento

λ=Comprimento de onda

y=Amplitude

Onda Eletromagnética

Radiação eletro-magnética é uma combinação de um campo eléctrico e de um campo magnético que se propagam através do espaço transportando energia. A luz visível é uma das partes da radiação electromagnética.

Foi demonstrada experimentalmente por Heinrich Rudolf Hertz em 1887.

Quando um fio de cobre conduz corrente alternada é emitida radiação electromagnética à mesma frequência que a corrente eléctrica. Dependendo das circunstâncias, esta radiação pode comportar-se como uma onda ou como uma partícula.

Quando a radiação eletro-magnética atravessa um condutor elétrico induz uma corrente eléctrica no condutor. Este efeito é utilizado nas antenas.

Exemplos de Ondas Eletromagnéticas

Ondas Eletromagnéticas

Na extremidade da antena existe um fio ligado pelo seu centro a uma fonte alternada (que inverte o sentido a intervalos de tempo determinados). Num certo instante, teremos a corrente num sentido e, depois de alguns instantes, a corrente no outro sentido.

Características das Ondas Eletromagnéticas

Podemos resumir as características das ondas eletromagnéticas no seguinte:

- São formadas por campos elétricos e campos magnéticos variáveis.
- Propagam-se no vácuo com a velocidade "c" .
- Podem propagar-se num meio material com velocidade menor que a obtida no vácuo.

.

$$c = 3 * 10^8 m/s$$

Matemática da Onda

Onde:

Fórmula Clássica:

$$C = F * Y$$

 $C = 3 * 10^8 \text{ m/s}$

F = Frequência (Mhz)

Y = Comprimento (metros)

Matemática da Onda

Por exemplo, ondas de 100 Mhz têm cerca de 3 m de comprimento, ondas de 1Ghz tem 0,3 metros, e ondas de com 0,1 metro têm uma frequência igual a 3000 Mhz.

Qual a frequência de uma onda de 300 cm?

Espectro Eletromagnético

Prof. Msc. Rayner Gomes - rayner@fimes.edu.br

Nomeclaturas da Redes

Distância entre Computadores	Localização	Exemplo	Acrônimo
1 m	Mesa	Rede Pessoal	PAN
10 m	Sala		
100 m	Edifício	Rede Local	LAN
1 km	Campus		
10 km	Cidade	Rede Metropolitana	MAN
100 km	País	Dodo Coograficomento	ente
100 km	Continente	Rede Geograficamente Distribuída	
1000 km	País	DISTIDUIUA	
10.000 km	Planeta	Internet	Internet

Tipos de Meio

- Meios Magnéticos
- Cabo par Trançado
- Cabo Coaxial
- Cabo Fibra Óptica
- Transmissão por Microondas
- Transmissão Celular
- Transmissão Infravermelha

"Nunca subestime a largura de banda de uma caminhonete cheia de fitas voando na estrada"

Prof. Msc. Rayner Gomes - rayner@fimes.edu.br

Fita Ulltrium:

Preço: 7.291,00

R\$ 229,00

	Geração 1	Geração 2	Geração 3	Geração 4
Capacidade nativa	100GB	200GB	400GB	800GB
Taxa de transferência nativa	10 a 20MB/seg	20 a 40MB/seg	40 a 80MB/seg	80 a 160MB/seg

Largura de Banda

Cap. Fita	800	GB
Caixa 60 x 60 x 60	1000	Fitas
Cap. Total	800000	GB
Cap. Total	6250	Tb
Sedex 10	24	Horas/Entrega
Largura de Banda	74,07	Gbps

"Nunca subestime a largura de banda de uma caminhonete cheia de fitas voando na estrada"

Preço de Transporte do nosso Exemplo

Goiânia - São Paulo	1000	km
Custo Km	1	real
Total	1000	reais
Quantidade de Bits	6250	Tb
Valor	0,16	reais

	Valor	GB	Preço GB
Fita DAT	225	800	0,28
HD	220	160	1,38
HD	450	500	0,9
CD-R	2	0,68	2,94
DVD-R	5	4,7	1,06

Qual a desvatagem?

Sequência do Fios

Sequência dos Conectores

T-568A T-568B

Par trançado

São os Tipos mais utilizados em redes locais

Possuem dois tipos: UTP (sem blindagem) e STP (com Blindagem)

O cabo de pares comumente utilizado contém 4 pares de fio (8 fios)

Em redes de até 100Mbps utilizam apenas dois dos pares e outros dois pares ficam sobrando.

Para chegar a 1Gbps todos os pares são utilizados.

Um par trançado pode transportar a comunicação até 100 metros de distância e distâncias maiores exigem repetidores.

Redes com mais de dois computadores, usando par UTP, necessitam de um Hub para fazer as interligações

Os cabos coaxiais são cabos constituídos de 4 camadas: um condutor interno

Prof. Msc. Rayner Gomes - rayner@fimes.edu.br

Os cabos utilizados na Rede de Computadores é o 10Base2.

O "10" na sigla 10Base2, significa que os cabos podem transmitir dados a uma velocidade de até 10 megabits por segundo.

O "Base" significa "banda base" e se refere à distância máxima para que o sinal pode percorrer através do cabo, no caso o "2" que teoricamente significaria 200 metros, mas que na prática é apenas um arredondamento, pois nos cabos 10Base2 a distância máxima utilizável é de 185 metros.

O Cabo coaxial é mais resistente as ERI (Inteferências Eletromagnéticas) do que o UTP.

As tecnologias que utilizam os cabo 10Base2 pararam de evoluir assim que o UTP se tornou mais econômico.

É permitido ligar até 30 micros no mesmo cabo, pois acima disso, o grande número de colisões de pacotes irá prejudicar o desempenho da rede, chegando ao ponto de praticamente impedir a comunicação entre os micros, em casos extremos.

- •Características:
- •
- São mais caros que os UTP
- São mais pesados que os UTP
- São menos flexívies que os UTP
- Permitem transmissões mais limpas (sem ruídos)
- A rede é mais instável (qualquer quebra em um ponto para toda a rede)

Comparação entre Coaxial x Par trançado

Os cabos de fibra possuem uma grande quantidade de fios extremamentes finos.

A transmissão dos sinais é feito através de feixes de luz de alta intesidade, uso de Lazer ou LEDs.

As fibras são cobertas por um fino revestimento chamado de casco (*cladding*), que funciona como um espelho, impedindo que a luz vaze para fora da fibra.

A fibra óptica transmite luz e por isso é totalmente imune a qualquer tipo de interferência eletromagnética

A luz a ser transmitida pelo cabo é gerada por um LED ou Lazer.

Chegando ao destino, o sinal luminoso é decodificado em sinais digitais por um segundo circuito chamado de foto-diodo. O conjunto dos dois circuitos é chamado de CODEC, abreviação de codificador/decodificador.

Tipos de Fibra:

Os cabos monomodo transmitem mais rápido do que os cabos multimodo, pois neles a luz viaja em linha reta, fazendo o caminho mais curto.

Nos cabos multimodo o sinal viaja batendo continuamente mas paredes do cabo, tornando-se mais lento e perdendo a intensidade mais rapidamente.

Velocidade:

As fibras de modo único disponíveis no momento podem transmitir dados a 50 Gbps por 100Km. (Tanenbaum, Andrew S., 2003)

Aliás, a velocidade de transmissão nas fibras ópticas vem evoluindo bem mais rápido que os processadores, ou outros componentes, por isso é difícil encontrar material atualizado sobre as tecnologias mais recentes.

Cabo de Fibra Ótica

Curiosidade:

Transmissão por fibra óptica atinge novo recorde: 25,6 terabits por segundo Posted on Abril 2, 2007

O recorde mundial de transmissão de dados mais rápida foi recentemente ultrapassado pela Alcatel/Lucent, atingindo a surpreendente marca de 25,6 terabits de dados em um segundo - o recorde anterior era de 14TB/s.

Fonte: http://www.escovandobit.com.br/transmisso-por-fibra-ptica-atinge-novo-recorde-256-terabits-por-segundo/

Cabo de Fibra Ótica

Curiosidade:

Disco SATA2 = 3GBps

Processador Core 2 Due modelo E685 = 1330 * 4 * 64 =

Capacidade de T <u>ranferência</u>	Core 2 Due – E6850		
	> (340480	Mbps
		332.5	Gbps
		0.32	Tbps
		41.56	Gbps

Conclusão: Nem os processadores atuais não conseguem manipular uma quantidade de dados em que uma rede de Fibra de 25 Tbps consegue gerar.

Fibra Óptica vs Fios de Cobre

•Vantagens:

- •
- perdas de transmissão baixa e banda passante grande
- pequeno tamanho e peso
- imunidade a interferências
- isolação elétrica
- segurança do sinal
- matéria-prima abundante

Curiosidade: Mil pares trançados com 1 km de comprimento pesam 8 toneladas . Duas fibras têm a mesma capacidade e pesam apenas 100 Kg.

Fibra Óptica vs Fios de Cobre

•Desvantagem:

- fragilidade das fibras óticas sem encapsulamento: deve-se tomar cuidado ao se lidar com as fibras, pois elas quebram com facilidade.
- dificuldade de conexões das fibras óticas: por ser de pequeníssima dimensão, exigem procedimentos e dispositivos de alta precisão na realização de conexões e junções.
- impossibilidade de alimentação remota de repetidores: requer alimentação elétrica independente para cada repetidor, não sendo possível a alimentação remota através do próprio meio de transmissão. falta de padronização dos componentes óticos: o contínuo
- avanço tecnológico e a relativa imaturidade não tem facilitado e estabelecimento de padrões.
- alto custo de instalação e manutenção.

- As transmissões são enviadas pela atmosfera e pelo espaço.
- Não há custo à instalação de cabos
- Os dispositivos de transmissão são bastantes caros
- A grande vantagem dos sistema de rádio frequência é a possibilidade de chegar a lugares de difícil acesso.
- Em patrimôneos público a passagem de cabos é proíbida.
- Geralmente possuem uma largura de banda maior.

•

Prof. Msc. Rayner Gomes - rayner@fimes.edu.br

Dados trafegam pelo Espaço

Faixa de Frequência utilizada pelos Satelites e Equipamentos Wireless

vermelho (4.3 ×10¹⁴ Hz), laranja, amarelo,..., verde, azul, violeta (7.5×10¹⁴ Hz)

Ionosphera: Escudo não uniforme entre 92 a 320 km da superfície

Transmissão terrestre (rádio)

- Inclui todo sistema de transmissão a altas frequências junto à superfície terrestre.
- Tipos:
 - HF (High Frequency)
 - Satélites
 - Wireless
 - Infravermelho

• HF (High Frequency):

- Operam com portadoras na ordem de 3 a 30 MHz.
- Primeiro meio de transmissão de rádio usado para dados.
- O processo de transmissão envolve a reflexão das ondas de HF entre a ionosfera (96 a 320 km de altura) e o solo.
- Permite transmissão à longa distâncias com o uso de equipamentos simples e baratos.
- A não uniformidade da ionosfera provoca variações no alcance.

- HF (High Frequency):
 - Problemas devido a falta de uniformidade da ionosfera:
 - Caminhos múltiplos; e
 - Limite da velocidade de transmissão.

O sistema de satélites permite combinar as ondas de rádio para fazer as transmissões de dados à distâncias mais longas.

Cada satélite pode ter de seis a doze transponder.

Transponder – cada transponder tem a finalidade de receber um sinal, amplificá-lo e retransmiti-lo de volta a terra.

Cada transponder responde por uma faixa de freqüência, chamada de canal.

Cada canal pode ser compartilhada entre vários clientes.

• Funcionamento:

- Satélite é uma estão retransmissora.
- Recebe em uma freqüência, amplifica e envia em outra freqüência.
- Órbita geo-estacionária de 35.000 km.
- Usados em transmissão de Tvs, GPS, e redes privadas.

(b) Broadcast link

Satélites Geossíncronos :

- Os satélites geo-estacionários, como também são chamados, são satélites que estão em sincronia com a terra. Estão em uma órbita tal que sua velocidade de rotação é igual a da terra;
- Permite fácil integração de comunicação entre os continentes;
- Sua órbita é de aproximadamente 35 000 km (demora 24 h para dar uma volta na terra);
- Cada satélite deve ficar separado entre 4 e 8 graus, portanto acima do equador cabem somente 45 a 90 satélites;

- Satélites de órbita baixa :
 - Uma segunda categoria de satélites são os satélites de órbita baixa da terra;
 - São satélites que tem órbita apenas em alguns quilômetros da terra.
 Tipicamente entre 320 e 645 km;
 - Esses satélites são mais rápidos que a terra, portanto, não ficam fixo em relação a terra;

Prof. Msc. Rayner Gomes - rayner@fimes.edu.br

	[Tipo	Latência	Satélites Necessários
35.000		GEO	270 ms	
30.000				3
25.000				
20.000	Cinturião de Van Allen Superior			
15.000				
10.000	Cinturião de Van Allen Inferior	MEO	35 - 85 ms	10
5.000		LEO	1 - 7 ms	50
0				

Exemplo de um Satélite MEO (Medium-Earth Orbit)

O sistema de satélites GPS

- •Os 24 satélites que fazem parte do segmento do espaço.
- •Orbitam a aproximadamente mais de 19.300 Km.
- •Estão constantemente, percorrendo duas órbitas completas em menos de 24 horas.
- •Estes satélites viajam a uma velocidade de aproximadamente mais de 11.200 Km/h.
- •Os satélites GPS funcionam com energia solar. Possuem baterias de segurança para mantê-los em funcionamento no caso de um eclipse solar, quando não há energia solar disponível.
- •Pequenos foguetes em cada satélite os mantém percorrendo seu curso correto.

Exemplo de um Satélite MEO (Medium-Earth Orbit)

•Abaixo seguem alguns fatos interessantes sobre os satélites GPS (também chamados NAVSTAR, o nome oficial dado pelo Departamento de Defesa dos EUA para o Sistema de Posicionamento Global – GPS).

•

- O primeiro satélite GPS foi lançado em 1978.
- A constelação de 24 satélites foi concluída em 1994
- Cada satélite é construído para durar aproximadamente 10 anos. Satélites substitutos estão constantemente sendo construídos e colocados em órbita.
- Um satélite GPS pesa aproximadamente 900 kg e tem 5 metros de extensão com os painéis solares estendidos.
- A potência do transmissor é de pouco menos de 50 watts.

Infravermelho

Radiação infravermelha é uma parte da radiação eletromagnética cujo comprimento de onda é maior que o da luz visível ao olho do ser humano, porém menor que o das microondas, consequentemente, tem menor frequência que a da luz visível e maior que a das microondas. O vermelho é a cor de comprimento de onda mais larga da luz visível, compreendida entre 1 milímetro a 700 nanometros.

- Características:
- •
- ·Custo reduzido
- ·Curtas distâncias (1-3 metros)
- ·Nenhuma sensibilidade à EMI
- ·Taxa de transferência de 1-2 Mbps

Redes sem Fio - Wireless

- Transmissão na Faixa de frequência de 2.Ghz Uso Liberado
- Taxa de Transmissão padrão de 54Mbps
- Soluções Proprietárias N-Draft de 300Mbps
- Alcance indoor de 100m
- Alcance outdoor de 300m
- Baixo custo
- Flexibilidade da montagem (Eventos)
- Permite a Mobilidade

Componentes da Rede Wireless

Componetes de Rede Cabeada

Host

- •São computadores com:
- •
- Interface de rede;
- Sistema Operacional com suporte a Rede

Placa de Rede

- A placa de rede é o hardware que permite aos micros conversarem entre sí através da rede. Sua função é controlar todo o envio e recebimento de dados através da rede.
- Cada arquitetura de rede exige um tipo específico de placa de rede;
- Quanto à taxa de transmissão, temos placas Ethernet de 10 mbps, 100 mbps e
 1Gbps
- Placas Ethernet de 10 mbps por exemplo, devemos utilizar cabos de par trançado de categoria 3 ou 5, ou então cabos coaxiais.
- Usando uma placas de 100 mbps o requisito mínimo a nível de cabeamento são cabos de par trançado nível 5.
- Usando uma placas de 10000 mbps o requisito mínimo a nível de cabeamento são cabos de par trançado nível 5e.

Numa rede com topologia de estrela, o Hub funciona como a peça central, que recebe os sinais transmitidos pelas estações e os retransmite para todas as demais.

HUB

Existem dois tipos de hubs, os hubs passivos e os hubs ativos:

Os **hubs passivos** limitam-se a funcionar como um espelho, refletindo os sinais recebidos para todas as estações a ele conectadas. Como ele apenas distribui o sinal, sem fazer qualquer tipo de amplificação, o comprimento total dos dois trechos de cabo entre um micro e outro, passando pelo hub, não pode exceder os 100 metros permitidos pelos cabos de par trançado.

Os **hubs ativos** por sua vez, além de distribuir o sinal, serve como um repetidor, reconstituindo o sinal enfraquecido e retransmitindo-o. Enquanto usando um Hub passivo o sinal pode trafegar apenas 100 metros somados os dois trechos de cabos entre as estações, usando um hub ativo o sinal pode trafegar por 100 metros até o hub, e após ser retransmitido por ele trafegar mais 100 metros completos.

SWITCH

Um Hub simplesmente retransmite todos os dados que chegam para todas as estações conectadas a ele, como um espelho. Isso faz com que o barramento de dados disponível seja compartilhado entre todas as estações e que apenas uma possa transmitir de cada vez.

De maneira geral a função do switch é muito parecida com a de um bridge, com a excessão que um switch tem mais portas e um melhor desempenho. Usando bridges ou switches todos os segmentos interligados continuam fazendo parte da mesma rede. As vantagens são apenas a melhora no desempenho e a possibilidade de adicionar mais nós do que seria possível unindo os hubs diretamente.

Roteadores

O roteador (ou router) é um equipamento utilizado em redes de maior porte. Ele é mais "inteligente" que o switch, pois além de poder fazer a mesma função deste, também tem a capacidade de escolher a melhor rota que um determinado pacote de dados deve seguir para chegar em seu destino. É como se a rede fosse uma cidade grande e o roteador escolhesse os caminhos mais curtos e menos congestionados. Daí o nome de roteador.

Existem basicamente dois tipos de roteadores:

Estáticos: este tipo é mais barato e é focado em escolher sempre o menor caminho para os dados, sem considerar se aquele caminho tem ou não congestionamento;

Dinâmicos: este é mais sofisticado (e conseqüentemente mais caro) e considera se há ou não congestionamento na rede. Ele trabalha para fazer o caminho mais rápido, mesmo que seja o caminho mais longo. De nada adianta utilizar o menor caminho se esse estiver congestionado.

Os roteadores são capazes de interligar várias redes e geralmente trabalham em conjunto com hubs e switchs.

Roteadores

Os roteadores por sua vez são ainda mais avançados que os switchs, pois permitem interligar várias redes diferentes, criando a comunicação, mas mantendo-as como redes distintas.

Servidores

• Seguem o modelo Cliente/Servidor

- •Tipos de Servidores:
- Servidor de Impressão
- Servidor de Páginas
- Servidor de Email
- Servidor de Arquivos
- Servidor de Autenticação
- Servidor de Aplicativos

Transmissão de Dados na Rede de Telefonia Pública

- Redes DialUp
- Redes ISDN
- Redes xDSL (ADSL)
- Tronco T1

Transmissão de Dados na Rede de Telefonia Pública

Redes DialUP

Características

Limite de 56kbps Rede alto índice de erros Custo da Ligação por minuto / chamada telefônica A linha telefônica fica ocupada

Transmissão de Dados na Rede de Telefonia Pública

Redes ISDN – Integrated Services Digital Network

Características

Limite de 128kbps Rede Digital Transmissão Simultânea de Dados e Voz

Transmissão de Dados na Rede de Telefonia Pública

Redes xDSL – Asymmetric Digital Subscriber Line

Rede Telefônica

Modem ADSL

Características

Limite de 8Mbps DownLoad e 768Kbps UpLoad VDSL – Limite de 54Mbps Rede Digital Transmissão Simultânea de Dados e Voz Loop Local de 7Km da central, acima disso

somente com uso de repetidor

Transmissão de Dados na Rede de Telefonia Pública

Tronco T1

- •Link de 1.544 Mbps
- •Dividido em 24 canais de 64Kbps
- •Cada canal pode ser usado para voz ou dados

Estratégias de Processamento

- •Processamento Centralizado
- •Processamento Descentralizado
- Processamento Distribuído

Centralizado

Todos os dados e aplicações em um único computador Facilidade de Gerenciamento Indicado onde necessita de alto nível de segurança Se o servidor parar tudo para.

Descentralizado

Processamento encontra-se disposta em localização distintas e remotas

Não se comunicam uns com os outros

Atividade independente, se um parar o outro não percebe

Distribuído

Oferece

Alta Disponibilidade (Redundância) Alta Performance (*Cluster*)

Telecomunicação e Aplicações

- Correio de Voz
- Distribuição Eletrônica de Software
- Distribuição Eletrônica de Documentos
- Telecomutação (Telnet, Terminal Server, ssh)
- Videoconferência
- Intercâmbio Eletrônico de Dados (EDI)

O Modelo OSI

Quando as redes de computadores surgiram, as soluções eram, na maioria das vezes, proprietárias, isto é uma determinada tecnologia só era suportada por seu fabricante. Não havia a possibilidade de se misturar soluções de fabricantes diferentes. Dessa forma um mesmo fabricante era responsável por construir praticamente tudo na rede.

Para facilitar a interconexão de sistemas de computadores a ISO (International Standards Organization) desenvolveu um modelo de referência chamado OSI (Open Systems Interconnection), para que os fabricantes pudessem criar protocolos a partir desse modelo.

Notem que a ordem numérica das camadas e decrescente.

Conexão Física

GOLDMAN: LAN

FIG. 14-05

Internet

- Definição
- Arquitetura
- Serviços
- Funcionamento
- Números

Internet

- Um conjunto de redes interligadas
- Não possui dono
- Interligação Planetária
- A comunicação ocorre devido há um padrão de protocolos
- A Internet baseada na Arquitetura TCP/IP

Internet = Rede de Redes

Arquitetura TCP/IP

Serviços na Internet

- Divulgação das Empresas;
- Comércio Eletrônico;
- Pesquisa de Preço;
- Sistemas de Notícias
- Inscrições de Vestibular;
- Conferência;
- Transmissão de Arquivos;
- Vídeo e Áudio sobre Demanda
- Serviços Bancários;
- Pagamentos de Contas;
- Sites de Relacionamento;
- WEB 2
- E outras coisas imagináveis.

Um breve vídeo sobre a Internet

Internet - Crescimento

Alguns números que impressionam:

Em Outubro de 2006 a Internet possui 142,805,398 sites

Média de crescimento de 7.6 milhões de site por mês

Internet

Pesquisas do IDC (*Information and Data*) mostraram que a Web terá 988 exabytes em 2010, seis vezes mais do que hoje. Os 988 exabytes são o mesmo que 988.000.000.000.000.000.000 bytes.

Internet – Quantidade de Hosts

Internet Domain Survey Host Count

Em Janeiro de 2006 a Internet possuia 394,991,600 hosts

Fonte: www.isc.org

Internet – Pesquisas

Tempo de Navegação

Publicado em 20.04.2006, às 14h47 - UOL

Os internautas domésticos brasileiros bateram, em março, dois recordes: o tempo de navegação e o número de usuários, que chegou a 14,1 milhões. No mês passado, cada internauta residencial passou cerca de 19 horas e 24 minutos conectado - até então, o período máximo registrado eram 18 horas e 42 minutos (outubro de 2005).

Internet – Pesquisas

Brasil é 11º país em número de internautas

Terça, 6 de março de 2007, 09h41

O Brasil tem quase 15 milhões de pessoas com acesso à Internet, contingente que deixa o país como o 11º do mundo em quantidade de usuários da rede, segundo uma pesquisa global divulgada nesta terça-feira pela consultora comScore Networks.

Internet – Pesquisas

Número de internautas no Brasil se aproxima dos 40 milhões

by Laura Tresca — last modified 2007-06-26 14:59

Estudo inédito divulgado pelo IAB (*Interactive Advertising Bureau*) Brasil mostra que os programas de inclusão digital do governo federal são responsáveis por boa parte do crescimento de 67% no número de internautas, nos últimos quatro anos.

O instituto prevê que até o fim de 2007 o número de internautas deve atingir a marca dos 37 milhões. Isso significa um crescimento de 12% no número de acessos à internet, em relação ao primeiro trimestre deste ano, incluindo residências, escolas, cibercafés e empresas. No mesmo período do ano passado, esse crescimento foi de 2,3%, registrando um aumento de 757 mil internautas.

Serviços

