- 1. Let (T, X) be a dynamical system.
 - (a) Prove that if $x \in X$ is a fixed point of T, then the basin of attraction of x, A_x , is non-empty.
 - (b) Fix $y \in X$. Prove that if $R \subseteq A_y$, then $T^{-1}(R) \subseteq A_y$. (Recall $T^{-1}(R) = \{w \in X : T(w) \in R\}$ is the inverse image of R under T. T is **not necessarily** invertible.)
- 2. You will prove that under certain conditions, Newton's method converges.
 - Let $f : \mathbb{R} \to \mathbb{R}$ be a twice differentiable function and suppose that f(0) = 0 and that f' and f'' are positive on the interval (0, a]. Let T_f be the function that applies one iteration of Newton's method to its input.
 - (a) Find a function f satisfying the required properties and graph it. Does it look like Newton's method will converge on (0, a]?
 - (b) Show that if $x \in (0, a)$, then $0 \le T_f(x) < a$.
 - (c) The Monotone Convergence Theorem states that if (a_n) is a sequence of real numbers that is bounded below and $a_{n+1} \leq a_n$, then $\lim_{n \to \infty} a_n$ exists and is a real number. Use the Monotone Convergence Theorem to prove that $\lim_{n \to \infty} T_f^n(x)$ converges for all $x \in (0, a]$.
 - (d) A point y is called a fixed point of a function g if g(y) = y. Fix $x_0 \in (0, a]$, and define $\mathbf{x} = \lim_{n \to \infty} T_f^n(x_0)$. Show that \mathbf{x} is a fixed point of T_f . Hint: You may use the fact that if g is a continuous function, then $g(\lim_{n \to \infty} a_n) = \lim_{n \to \infty} g(a_n)$ for any convergent sequence (a_n) .
 - (e) Prove that for any $x \in (0, a]$, $\lim_{n \to \infty} T_f^n(x) = 0$.
 - (f) Combine your results and explain why Newton's method will always converge for f if you pick an initial guess in (0, a].
- 3. Let's prove more about Newton's method! Suppose $f: \mathbb{R} \to \mathbb{R}$ is twice differentiable and f(0) = 0. Further, suppose f' and f'' are both positive on the interval [-a, a] (for some a > 0).
 - (a) Use a picture to argue that Newton's method might not converge for some $x \in [-a, a]$.
 - (b) Show that there is some b > 0 so that for $x \in [-b, a]$, Newton's method always converges.
 - (c) Let $g: \mathbb{R} \to \mathbb{R}$ and define $h: \mathbb{R} \to \mathbb{R}$ by h(t) = g(-t). Prove that if Newton's method converges for g with a starting point of x_0 , then Newton's method converges for h with a starting point of $-x_0$.
 - (d) Prove that if $f: \mathbb{R} \to \mathbb{R}$ satisfies f(0) = 0, and f' < 0 and f'' > 0 on the interval [-a, a], then there exists a b > 0 so that Newton's method converges for f on [-a, b].
- 4. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = x^2 1$ and let T_f be the function that applies Newton's method to its inputs.
 - (a) Find $T_f^{-1}(\{1,2,3\})$ (recall that $T_f^{-1}(\{1,2,3\})$ is the *inverse image* of the set $\{1,2,3\}$ under T_f . It is not the same as applying the *inverse* of T_f , since T_f might not be invertible).
 - (b) Is $T_f(x)$ defined for all $x \in \mathbb{R}$?
 - (c) Find the largest possible domain, $X \subseteq \mathbb{R}$, so that $T_f: X \to X$ is a dynamical system.
 - (d) Prove that $\lim_{n\to\infty} T_f^n(4)$ exists. What value is it?
 - (e) Find all fixed points of T_f .
 - (f) Fore each fixed point of T_f , find its basin of attraction.

- Due: 11:59pm January 26
- 5. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \frac{2}{1+x^2} \frac{5}{4}$ and let T_f be the function that applies Newton's method to its inputs.
 - (a) Is 0 in the domain of T_f ?
 - (b) Find $T_f^{-1}(\{0\})$ (you can use a computer algebra system).
 - (c) Find $T_f^{-2}(\{0\})$ (you can use a computer algebra system).
 - (d) Describe largest possible domain, $X \subseteq \mathbb{R}$, so that $T_f: X \to X$ is a *dynamical system*. How many connected components does this domain consist of? (Use computers to help you!)

_