李宏毅 (Hung-yi Lee) · HYLEE | Machine Learning (2021)

HYLEE(2021)・课程资料包 @ShowMeAl

视频

课件

筆记

代码

中英双语字幕 一键打句下载 官方笔记翻译

作业项目解析

视频·B站[扫码或点击链接]

nttps://www.bilibili.com/video/BV1fM4y137M4

课件&代码・博客[扫码或点击链接]

http://blog.showmeai.tech/ntu-hylee-ml

机器学习 深度学习

Auto-encoder 生成式对抗网络

学习率 自注意力机

卷积神经网络 GAN

神经网络压缩 强化学习 元学习 Transformer 批次标准化

Awesome Al Courses Notes Cheatsheets 是 ShowMeAl 资料库的分 支系列,覆盖最具知名度的 TOP50+ 门 AI 课程,旨在为读者和学习者提 供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料**包页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者? 回复 [添砖加页]

Hung-yi Lee 李宏毅

You have learned a lot about ML. Training a classifier is not a big deal for you. ©

The results are from: http://proceedings.mlr.press/v37/ganin15.pdf

Domain shift: Training and testing data have different distributions.

Domain adaptation

Transfer learning: https://youtu.be/qD6iD4TFsdQ

Domain Shift

Source Domain (with labeled data)

- Idea: training a model by source data,
 then fine-tune the model by target data
- Challenge: only limited target data, so be careful about overfitting

Source Domain (with labeled data)

Basic Idea Learn to ignore colors

Domain Adversarial Training

Domain Adversarial Training

Domain Adversarial Training

Yaroslav Ganin, Victor Lempitsky, Unsupervised Domain Adaptation by Backpropagation, ICML, 2015

Hana Ajakan, Pascal Germain, Hugo Larochelle, François Laviolette, Mario Marchand, Domain-Adversarial Training of Neural Networks, JMLR, 2016

Limitation

- class 1 (source)
- class 2 (source)
- Target data (class unknown)

......

Decision boundaries learned from source domain

Source and target data are aligned, but

Target data (unlabeled far from boundary)

Considering Decision Boundary

Used in Decision-boundary Iterative Refinement Training with a Teacher (DIRT-T)

https://arxiv.org/abs/1802.08735

Maximum Classifier Discrepancy

https://arxiv.org/abs/1712.02560

Outlook

Partial DA

Open Set DA (Busto et al. 2017)

Open Set DA (Saito et al. 2018)

Universal domain adaptation

https://openaccess.thecvf.com/content_CVPR_2019/html/You_Universal_Domain_Adaptation_CVPR_2019_paper.html

Universal DA

O Source Domain Label Set

Target Domain Label Set

Source Domain (with labeled data)

Source Domain (with labeled data)

Domain Generalization

https://ieeexplore.ieee.org/document/8578664

Training

Testing

Training

Testing

https://arxiv.org/abs/2003.13216

Concluding Remarks

Source Domain (with labeled data)

李宏毅 (Hung-yi Lee) · HYLEE | Machine Learning (2021)

HYLEE(2021)・课程资料包 @ShowMeAl

视频

课件

筆记

代码

中英双语字幕 一键打句下载 官方笔记翻译

作业项目解析

视频·B站[扫码或点击链接]

nttps://www.bilibili.com/video/BV1fM4y137M4

课件&代码・博客[扫码或点击链接]

http://blog.showmeai.tech/ntu-hylee-ml

机器学习 深度学习

Auto-encoder 生成式对抗网络

自注意力机

学习率

神经网络压缩 强化学习 元学习 Transformer 批次标准化

Awesome Al Courses Notes Cheatsheets 是 ShowMeAl 资料库的分 支系列,覆盖最具知名度的 TOP50+ 门 AI 课程,旨在为读者和学习者提 供一整套高品质中文学习笔记和速查表。

点击课程名称, 跳转至课程**资料**包页面, 一键下载课程全部资料!

机器学习	深度学习	自然语言处理	计算机视觉
Stanford · CS229	Stanford · CS230	Stanford · CS224n	Stanford · CS231n

Awesome Al Courses Notes Cheatsheets· 持续更新中

知识图谱	图机器学习	深度强化学习	自动驾驶
Stanford · CS520	Stanford · CS224W	UCBerkeley · CS285	MIT · 6.S094

微信公众号

资料下载方式 2: 扫码点击底部菜单栏 称为 AI 内容创作者? 回复 [添砖加页]