knn

September 13, 2024

```
[1]: # This mounts your Google Drive to the Colab VM.
     from google.colab import drive
     drive.mount('/content/drive', force_remount=True)
     # Enter the foldername in your Drive where you have saved the unzipped
     # assignment folder, e.g. 'cs231n/assignments/assignment1/'
     FOLDERNAME = 'Coursework/ENPM703/assignment1'
     assert FOLDERNAME is not None, "[!] Enter the foldername."
     # Now that we've mounted your Drive, this ensures that
     # the Python interpreter of the Colab VM can load
     # python files from within it.
     import sys
     sys.path.append('/content/drive/My Drive/{}'.format(FOLDERNAME))
     # This downloads the CIFAR-10 dataset to your Drive
     # if it doesn't already exist.
     %cd drive/My\ Drive/$FOLDERNAME/cs231n/datasets/
     !bash get datasets.sh
     %cd /content/drive/My\ Drive/$FOLDERNAME
```

Mounted at /content/drive /content/drive/My Drive/Coursework/ENPM703/assignment1/cs231n/datasets /content/drive/My Drive/Coursework/ENPM703/assignment1

1 k-Nearest Neighbor (kNN) exercise

Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the assignments page on the course website.

The kNN classifier consists of two stages:

- During training, the classifier takes the training data and simply remembers it
- \bullet During testing, kNN classifies every test image by comparing to all training images and transfering the labels of the k most similar training examples
- The value of k is cross-validated

In this exercise you will implement these steps and understand the basic Image Classification pipeline, cross-validation, and gain proficiency in writing efficient, vectorized code.

```
[2]: # Run some setup code for this notebook.
     import random
     import numpy as np
     from cs231n.data_utils import load_CIFAR10
     import matplotlib.pyplot as plt
     # This is a bit of magic to make matplotlib figures appear inline in the
      \rightarrownotebook
     # rather than in a new window.
     %matplotlib inline
     plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
     plt.rcParams['image.interpolation'] = 'nearest'
     plt.rcParams['image.cmap'] = 'gray'
     # Some more magic so that the notebook will reload external python modules;
     # see http://stackoverflow.com/questions/1907993/
      \rightarrow autoreload-of-modules-in-ipython
     %load_ext autoreload
     %autoreload 2
```

```
[3]: # Load the raw CIFAR-10 data.
    cifar10 dir = 'cs231n/datasets/cifar-10-batches-py'
    # Cleaning up variables to prevent loading data multiple times (which may cause_
     →memory issue)
    try:
       del X_train, y_train
       del X_test, y_test
       print('Clear previously loaded data.')
    except:
       pass
    X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
    # As a sanity check, we print out the size of the training and test data.
    # PLEASE DO NOT MODIFY THE MARKERS
    print('|||||||||||)
    print('Training data shape: ', X_train.shape)
    print('Training labels shape: ', y_train.shape)
    print('Test data shape: ', X_test.shape)
    print('Test labels shape: ', y_test.shape)
    # PLEASE DO NOT MODIFY THE MARKERS
    print('''')
```

```
Training data shape: (50000, 32, 32, 3)
   Training labels shape: (50000,)
   Test data shape: (10000, 32, 32, 3)
   Test labels shape: (10000,)
[4]: # Visualize some examples from the dataset.
    # We show a few examples of training images from each class.
    # PLEASE DO NOT MODIFY THE MARKERS
    print('||||||||||)
    classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse',

    ⇔'ship', 'truck']
    num classes = len(classes)
    samples_per_class = 7
    for y, cls in enumerate(classes):
       idxs = np.flatnonzero(y_train == y)
       idxs = np.random.choice(idxs, samples_per_class, replace=False)
       for i, idx in enumerate(idxs):
           plt_idx = i * num_classes + y + 1
           plt.subplot(samples_per_class, num_classes, plt_idx)
           plt.imshow(X_train[idx].astype('uint8'))
           plt.axis('off')
           if i == 0:
              plt.title(cls)
    plt.show()
    print(''''')
```


.....

We would now like to classify the test data with the kNN classifier. Recall that we can break down this process into two steps:

- 1. First we must compute the distances between all test examples and all train examples.
- 2. Given these distances, for each test example we find the k nearest examples and have them vote for the label

Lets begin with computing the distance matrix between all training and test examples. For example, if there are **Ntr** training examples and **Nte** test examples, this stage should result in a **Nte** x **Ntr** matrix where each element (i,j) is the distance between the i-th test and j-th train example.

Note: For the three distance computations that we require you to implement in this notebook, you may not use the np.linalg.norm() function that numpy provides.

First, open cs231n/classifiers/k_nearest_neighbor.py and implement the function compute_distances_two_loops that uses a (very inefficient) double loop over all pairs of (test, train) examples and computes the distance matrix one element at a time.

.....

.....

Inline Question 1

Notice the structured patterns in the distance matrix, where some rows or columns are visible brighter. (Note that with the default color scheme black indicates low distances while white indicates high distances.)

- What in the data is the cause behind the distinctly bright rows?
- What causes the columns?

Your Answer:

Bright Rows: Outliers, indicate test images with high pixel-wise distances from most training images, suggesting they are outliers. This occurs when an image has distinct features, such as a unique background or content, leading to large pixel differences. For example, an image with a white background compared to others with dark backgrounds will result in a bright row.

Bright Columns: Similar Images, represent training images that are similar to many test images, often due to shared features like matching backgrounds or content. For instance, if several images have white backgrounds, a training image with a similar background will have smaller pixel differences, appearing in a bright column.

Conclusion- In summary, bright rows identify outliers, while bright columns highlight images that are more similar to the rest of the dataset. This analysis provides valuable insights into image comparisons and helps identify patterns in the data.*

```
[9]: # Now implement the function predict_labels and run the code below:
# We use k = 1 (which is Nearest Neighbor).
y_test_pred = classifier.predict_labels(dists, k=1)
```

You should expect to see approximately 27% accuracy. Now lets try out a larger k, say k = 5:

Add blockquote

You should expect to see a slightly better performance than with k = 1.

Inline Question 2

We can also use other distance metrics such as L1 distance. For pixel values $p_{ij}^{(k)}$ at location (i, j) of some image I_k ,

the mean μ across all pixels over all images is

$$\mu = \frac{1}{nhw} \sum_{k=1}^{n} \sum_{i=1}^{h} \sum_{j=1}^{w} p_{ij}^{(k)}$$

And the pixel-wise mean μ_{ij} across all images is

$$\mu_{ij} = \frac{1}{n} \sum_{k=1}^{n} p_{ij}^{(k)}.$$

The general standard deviation σ and pixel-wise standard deviation σ_{ij} is defined similarly.

Which of the following preprocessing steps will not change the performance of a Nearest Neighbor classifier that uses L1 distance? Select all that apply. 1. Subtracting the mean μ ($\tilde{p}_{ij}^{(k)} = p_{ij}^{(k)} - \mu$.)

2. Subtracting the per pixel mean μ_{ij} ($\tilde{p}_{ij}^{(k)} = p_{ij}^{(k)} - \mu_{ij}$.) 3. Subtracting the mean μ and dividing by the standard deviation σ . 4. Subtracting the pixel-wise mean μ_{ij} and dividing by the pixel-wise standard deviation σ_{ij} . 5. Rotating the coordinate axes of the data.

Your Answer:

Subtracting the mean μ Subtracting the per-pixel mean μ_{ij} :

Your Explanation:

When preparing data for a Nearest Neighbor classifier that uses L1 distance, some preprocessing steps will change the performance while others won't. Here's the reasoning for each step:

1. Subtracting the mean μ :

This step shifts all pixel values by a constant (the global mean), but it doesn't affect the relative differences between images. L1 distance depends on absolute differences, so subtracting the global mean won't change the classifier's performance. **This step does not change performance**.

2. Subtracting the per-pixel mean μ_{ij} :

This normalizes each pixel value by its own mean across images, which still maintains the relative differences between images at each pixel location. Therefore, the L1 distances between images stay the same, meaning the classifier's performance is unaffected. **This step does not change performance**.

3. Subtracting the mean μ and dividing by the standard deviation σ :

Dividing by the standard deviation scales the entire dataset. Although this doesn't change the ranking of distances, it changes the magnitude of L1 distances, which could affect the classification threshold and performance. This step will change performance.

4. Subtracting the pixel-wise mean μ_{ij} and dividing by the pixel-wise standard deviation σ_{ij} :

Normalizing pixel values individually (both subtracting the mean and dividing by the standard deviation) adjusts the data significantly, changing the relative distances between images. This step will change performance.

5. Rotating the coordinate axes of the data:

L1 distance is sensitive to the specific pixel locations. Rotating the data changes which pixels are compared, altering the L1 distances and thus affecting performance. This step will change performance.


```
# root of the squared sum of differences of all elements; in other words,
      \hookrightarrow reshape
     # the matrices into vectors and compute the Euclidean distance between them.
     difference = np.linalg.norm(dists - dists_one, ord='fro')
     print('One loop difference was: %f' % (difference, ))
     if difference < 0.001:</pre>
         print('Good! The distance matrices are the same')
     else:
         print('Uh-oh! The distance matrices are different')
     # PLEASE DO NOT MODIFY THE MARKERS
     print('''')
     One loop difference was: 0.000000
    Good! The distance matrices are the same
[12]: # PLEASE DO NOT MODIFY THE MARKERS
     print('||||||||||)
     # Now implement the fully vectorized version inside compute distances no loops
     # and run the code
     dists two = classifier.compute distances no loops(X test)
     # check that the distance matrix agrees with the one we computed before:
     difference = np.linalg.norm(dists - dists_two, ord='fro')
     print('No loop difference was: %f' % (difference, ))
     if difference < 0.001:</pre>
        print('Good! The distance matrices are the same')
         print('Uh-oh! The distance matrices are different')
     # PLEASE DO NOT MODIFY THE MARKERS
     No loop difference was: 0.000000
    Good! The distance matrices are the same
[13]: # PLEASE DO NOT MODIFY THE MARKERS
     print('|||||||||||)
     # Let's compare how fast the implementations are
     def time_function(f, *args):
         Call a function f with args and return the time (in seconds) that it took \Box
      \rightarrow to execute.
         11 11 11
         import time
```

```
tic = time.time()
   f(*args)
   toc = time.time()
   return toc - tic
two_loop_time = time_function(classifier.compute_distances_two_loops, X_test)
print('Two loop version took %f seconds' % two_loop_time)
one_loop_time = time_function(classifier.compute_distances_one_loop, X_test)
print('One loop version took %f seconds' % one_loop_time)
no_loop_time = time_function(classifier.compute_distances_no_loops, X_test)
print('No loop version took %f seconds' % no_loop_time)
# You should see significantly faster performance with the fully vectorized
 ⇔implementation!
# NOTE: depending on what machine you're using,
# you might not see a speedup when you go from two loops to one loop,
# and might even see a slow-down.
# PLEASE DO NOT MODIFY THE MARKERS
print('''
```

```
Two loop version took 38.592718 seconds
One loop version took 47.866453 seconds
No loop version took 0.423912 seconds
```

1.0.1 Cross-validation

We have implemented the k-Nearest Neighbor classifier but we set the value k=5 arbitrarily. We will now determine the best value of this hyperparameter with cross-validation.

```
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
# Split the training data into folds
X_train_folds = np.array_split(X_train, num_folds)
y_train_folds = np.array_split(y_train, num_folds)
# pass
# ****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE) ****
# A dictionary holding the accuracies for different values of k that we find
# when running cross-validation. After running cross-validation,
\# k\_to\_accuracies[k] should be a list of length num_folds giving the different
# accuracy values that we found when using that value of k.
k_to_accuracies = {}
\# Perform k-fold cross validation to find the best value of k. For each
# possible value of k, run the k-nearest-neighbor algorithm num folds times,
# where in each case you use all but one of the folds as training data and the #
# last fold as a validation set. Store the accuracies for all fold and all
# values of k in the k_to_accuracies dictionary.
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
# pass
# Perform k-fold cross-validation
# Iterate over each candidate value for k
for k in k_choices:
   # Create an empty list to hold accuracy results for the current k
   k_to_accuracies[k] = []
   # Loop through each fold in the cross-validation process
   for fold in range(num_folds):
       # Initialize a new k-NN classifier for this fold
       knn = KNearestNeighbor()
       # Combine all training folds except the current validation fold
       X_train_combined = np.concatenate(X_train_folds[:fold] +__
 y_train_combined = np.concatenate(y_train_folds[:fold] +__
 ⇔y_train_folds[fold + 1:])
       # Train\ the\ k-NN\ classifier\ on\ the\ combined\ training\ data
       knn.train(X_train_combined, y_train_combined)
```

k = 1, accuracy = 0.263000 k = 1, accuracy = 0.257000 k = 1, accuracy = 0.264000 k = 1, accuracy = 0.278000 k = 1, accuracy = 0.266000 k = 3, accuracy = 0.239000 k = 3, accuracy = 0.249000 k = 3, accuracy = 0.240000 k = 3, accuracy = 0.266000 k = 3, accuracy = 0.254000 k = 5, accuracy = 0.248000 k = 5, accuracy = 0.266000 k = 5, accuracy = 0.280000 k = 5, accuracy = 0.292000 k = 5, accuracy = 0.280000 k = 8, accuracy = 0.262000 k = 8, accuracy = 0.282000 k = 8, accuracy = 0.273000 k = 8, accuracy = 0.290000 k = 8, accuracy = 0.273000 k = 10, accuracy = 0.265000 k = 10, accuracy = 0.296000 k = 10, accuracy = 0.276000 k = 10, accuracy = 0.284000 k = 10, accuracy = 0.280000 k = 12, accuracy = 0.260000 k = 12, accuracy = 0.295000 k = 12, accuracy = 0.279000 k = 12, accuracy = 0.283000 k = 12, accuracy = 0.280000

```
k = 15, accuracy = 0.252000
k = 15, accuracy = 0.289000
k = 15, accuracy = 0.278000
k = 15, accuracy = 0.282000
k = 15, accuracy = 0.274000
k = 20, accuracy = 0.270000
k = 20, accuracy = 0.279000
k = 20, accuracy = 0.279000
k = 20, accuracy = 0.282000
k = 20, accuracy = 0.285000
k = 50, accuracy = 0.271000
k = 50, accuracy = 0.288000
k = 50, accuracy = 0.278000
k = 50, accuracy = 0.269000
k = 50, accuracy = 0.266000
k = 100, accuracy = 0.256000
k = 100, accuracy = 0.270000
k = 100, accuracy = 0.263000
k = 100, accuracy = 0.256000
k = 100, accuracy = 0.263000
```

```
[15]: # PLEASE DO NOT MODIFY THE MARKERS
     print('|||||||||||)
     # plot the raw observations
     for k in k_choices:
         accuracies = k_to_accuracies[k]
         plt.scatter([k] * len(accuracies), accuracies)
     # plot the trend line with error bars that correspond to standard deviation
     accuracies_mean = np.array([np.mean(v) for k,v in sorted(k_to_accuracies.
       →items())])
     accuracies_std = np.array([np.std(v) for k,v in sorted(k_to_accuracies.
      →items())])
     plt.errorbar(k_choices, accuracies_mean, yerr=accuracies_std)
     plt.title('Cross-validation on k')
     plt.xlabel('k')
     plt.ylabel('Cross-validation accuracy')
     plt.show()
     # PLEASE DO NOT MODIFY THE MARKERS
```


......

Inline Question 3

Which of the following statements about k-Nearest Neighbor (k-NN) are true in a classification setting, and for all k? Select all that apply. 1. The decision boundary of the k-NN classifier is linear. 2. The training error of a 1-NN will always be lower than or equal to that of 5-NN. 3. The test error of a 1-NN will always be lower than that of a 5-NN. 4. The time needed to classify a test example with the k-NN classifier grows with the size of the training set. 5. None of the above.

Your Answer: 2,4

Your Explanation: 1. The decision boundary of the k-NN classifier is linear.

False. The decision boundary of the k-NN classifier is not linear. If we consider a dataset where classes belong to concentric circles, the decision boundaries will follow the curvature of the concentric circles, making them non-linear.

2. The training error of a 1-NN will always be lower than that of 5-NN.

True. The training error of a 1-NN will always be lower than that of 5-NN because for each training example, its nearest neighbor is always itself, resulting in zero error.

3. The test error of a 1-NN will always be lower than that of a 5-NN.

False. The test error of a 1-NN will not always be lower than 5-NN. The 1-NN might misclassify it with high probability (e.g., 100%), while the 5-NN might correctly classify it with high probability (e.g., 100%). The value of k is data-dependent, and we need to perform cross-validation to determine the best k for our dataset.

4. The time needed to classify a test example with the k-NN classifier grows with the size of the training set.

True. The testing phase of k-NN requires comparisons of each test sample with the entire training set, which grows with the size of the training set. However, we can use Approximate Nearest Neighbor techniques (like k-d trees or ball trees) to improve time complexity. Additionally, the training phase of k-NN, which involves remembering the training set, also grows with the size of the training set.

svm

September 13, 2024

```
[]: # This mounts your Google Drive to the Colab VM.
     from google.colab import drive
     drive.mount('/content/drive', force_remount=True)
     # Enter the foldername in your Drive where you have saved the unzipped
     # assignment folder, e.g. 'cs231n/assignments/assignment1/'
     FOLDERNAME = None
     assert FOLDERNAME is not None, "[!] Enter the foldername."
     # Now that we've mounted your Drive, this ensures that
     # the Python interpreter of the Colab VM can load
     # python files from within it.
     import sys
     sys.path.append('/content/drive/My Drive/{}'.format(FOLDERNAME))
     # This downloads the CIFAR-10 dataset to your Drive
     # if it doesn't already exist.
     %cd drive/My\ Drive/$FOLDERNAME/cs231n/datasets/
     !bash get datasets.sh
     %cd /content/drive/My\ Drive/$FOLDERNAME
```

1 Multiclass Support Vector Machine exercise

Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the assignments page on the course website.

In this exercise you will:

- implement a fully-vectorized loss function for the SVM
- implement the fully-vectorized expression for its analytic gradient
- check your implementation using numerical gradient
- use a validation set to tune the learning rate and regularization strength
- optimize the loss function with SGD
- visualize the final learned weights

```
[]: # Run some setup code for this notebook.
import random
```

1.1 CIFAR-10 Data Loading and Preprocessing

```
[]: # Load the raw CIFAR-10 data.
     cifar10 dir = 'cs231n/datasets/cifar-10-batches-py'
     # Cleaning up variables to prevent loading data multiple times (which may cause_
      →memory issue)
     try:
       del X_train, y_train
       del X_test, y_test
       print('Clear previously loaded data.')
     except:
       pass
     X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
     # As a sanity check, we print out the size of the training and test data.
     print('Training data shape: ', X_train.shape)
     print('Training labels shape: ', y_train.shape)
     print('Test data shape: ', X_test.shape)
     print('Test labels shape: ', y_test.shape)
```

```
idxs = np.flatnonzero(y_train == y)
idxs = np.random.choice(idxs, samples_per_class, replace=False)
for i, idx in enumerate(idxs):
    plt_idx = i * num_classes + y + 1
    plt.subplot(samples_per_class, num_classes, plt_idx)
    plt.imshow(X_train[idx].astype('uint8'))
    plt.axis('off')
    if i == 0:
        plt.title(cls)
plt.show()
```

```
[]: # Split the data into train, val, and test sets. In addition we will
     # create a small development set as a subset of the training data;
     # we can use this for development so our code runs faster.
     num_training = 49000
     num validation = 1000
     num test = 1000
     num_dev = 500
     # Our validation set will be num_validation points from the original
     # training set.
     mask = range(num_training, num_training + num_validation)
     X_val = X_train[mask]
     y_val = y_train[mask]
     # Our training set will be the first num train points from the original
     # training set.
     mask = range(num_training)
     X_train = X_train[mask]
     y_train = y_train[mask]
     # We will also make a development set, which is a small subset of
     # the training set.
     mask = np.random.choice(num_training, num_dev, replace=False)
     X_dev = X_train[mask]
     y_dev = y_train[mask]
     # We use the first num_test points of the original test set as our
     # test set.
     mask = range(num_test)
     X_test = X_test[mask]
     y_test = y_test[mask]
     print('Train data shape: ', X_train.shape)
     print('Train labels shape: ', y_train.shape)
     print('Validation data shape: ', X_val.shape)
     print('Validation labels shape: ', y_val.shape)
```

```
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
```

```
[]: # Preprocessing: reshape the image data into rows
X_train = np.reshape(X_train, (X_train.shape[0], -1))
X_val = np.reshape(X_val, (X_val.shape[0], -1))
X_test = np.reshape(X_test, (X_test.shape[0], -1))
X_dev = np.reshape(X_dev, (X_dev.shape[0], -1))

# As a sanity check, print out the shapes of the data
print('Training data shape: ', X_train.shape)
print('Validation data shape: ', X_val.shape)
print('Test data shape: ', X_test.shape)
print('dev data shape: ', X_dev.shape)
```

```
[]: # Preprocessing: subtract the mean image
     # first: compute the image mean based on the training data
     mean_image = np.mean(X_train, axis=0)
     print(mean_image[:10]) # print a few of the elements
     plt.figure(figsize=(4,4))
     plt.imshow(mean_image.reshape((32,32,3)).astype('uint8')) # visualize the mean_i
      ⇔imaqe
     plt.show()
     # second: subtract the mean image from train and test data
     X_train -= mean_image
     X_val -= mean_image
     X_test -= mean_image
     X_dev -= mean_image
     # third: append the bias dimension of ones (i.e. bias trick) so that our SVM
     # only has to worry about optimizing a single weight matrix W.
     X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
     X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
     X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
     X dev = np.hstack([X dev, np.ones((X dev.shape[0], 1))])
     print(X_train.shape, X_val.shape, X_test.shape, X_dev.shape)
```

1.2 SVM Classifier

Your code for this section will all be written inside cs231n/classifiers/linear_svm.py.

As you can see, we have prefilled the function svm_loss_naive which uses for loops to evaluate the multiclass SVM loss function.

```
[]: # Evaluate the naive implementation of the loss we provided for you:
from cs231n.classifiers.linear_svm import svm_loss_naive
import time

# generate a random SVM weight matrix of small numbers
W = np.random.randn(3073, 10) * 0.0001

loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.000005)
print('loss: %f' % (loss, ))
```

The grad returned from the function above is right now all zero. Derive and implement the gradient for the SVM cost function and implement it inline inside the function svm_loss_naive. You will find it helpful to interleave your new code inside the existing function.

To check that you have correctly implemented the gradient correctly, you can numerically estimate the gradient of the loss function and compare the numeric estimate to the gradient that you computed. We have provided code that does this for you:

```
[]: # Once you've implemented the gradient, recompute it with the code below
     # and gradient check it with the function we provided for you
     # Compute the loss and its gradient at W.
     loss, grad = svm_loss_naive(W, X_dev, y_dev, 0.0)
     # Numerically compute the gradient along several randomly chosen dimensions, and
     \# compare them with your analytically computed gradient. The numbers should
      \rightarrow match
     # almost exactly along all dimensions.
     from cs231n.gradient_check import grad_check_sparse
     f = lambda w: svm_loss_naive(w, X_dev, y_dev, 0.0)[0]
     grad_numerical = grad_check_sparse(f, W, grad)
     # do the gradient check once again with regularization turned on
     # you didn't forget the regularization gradient did you?
     loss, grad = svm_loss_naive(W, X_dev, y_dev, 5e1)
     f = lambda w: svm_loss_naive(w, X_dev, y_dev, 5e1)[0]
     grad_numerical = grad_check_sparse(f, W, grad)
```

Inline Question 1

It is possible that once in a while a dimension in the gradcheck will not match exactly. What could such a discrepancy be caused by? Is it a reason for concern? What is a simple example in one dimension where a gradient check could fail? How would change the margin affect of the frequency of this happening? Hint: the SVM loss function is not strictly speaking differentiable

YourAnswer: fill this in.

```
[]: # Next implement the function svm_loss_vectorized; for now only compute the older.
```

```
# we will implement the gradient in a moment.

tic = time.time()

loss_naive, grad_naive = svm_loss_naive(W, X_dev, y_dev, 0.000005)

toc = time.time()

print('Naive loss: %e computed in %fs' % (loss_naive, toc - tic))

from cs231n.classifiers.linear_svm import svm_loss_vectorized

tic = time.time()

loss_vectorized, _ = svm_loss_vectorized(W, X_dev, y_dev, 0.000005)

toc = time.time()

print('Vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic))

# The losses should match but your vectorized implementation should be much____

faster.

print('difference: %f' % (loss_naive - loss_vectorized))
```

```
[]: # Complete the implementation of sum loss vectorized, and compute the gradient
     # of the loss function in a vectorized way.
     # The naive implementation and the vectorized implementation should match, but
     # the vectorized version should still be much faster.
     tic = time.time()
     _, grad_naive = svm_loss_naive(W, X_dev, y_dev, 0.000005)
     toc = time.time()
     print('Naive loss and gradient: computed in %fs' % (toc - tic))
     tic = time.time()
     _, grad_vectorized = svm_loss_vectorized(W, X_dev, y_dev, 0.000005)
     toc = time.time()
     print('Vectorized loss and gradient: computed in %fs' % (toc - tic))
     # The loss is a single number, so it is easy to compare the values computed
     # by the two implementations. The gradient on the other hand is a matrix, so
     # we use the Frobenius norm to compare them.
     difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro')
     print('difference: %f' % difference)
```

1.2.1 Stochastic Gradient Descent

We now have vectorized and efficient expressions for the loss, the gradient and our gradient matches the numerical gradient. We are therefore ready to do SGD to minimize the loss. Your code for this part will be written inside cs231n/classifiers/linear_classifier.py.

```
[]: # In the file linear_classifier.py, implement SGD in the function # LinearClassifier.train() and then run it with the code below.

from cs231n.classifiers import LinearSVM

svm = LinearSVM()
```

```
tic = time.time()
    loss_hist = svm.train(X_train, y_train, learning rate=1e-7, reg=2.5e4,
                          num_iters=1500, verbose=True)
    toc = time.time()
    print('That took %fs' % (toc - tic))
[]: | # A useful debugging strategy is to plot the loss as a function of
    # iteration number:
    plt.plot(loss_hist)
    plt.xlabel('Iteration number')
    plt.ylabel('Loss value')
    plt.show()
[]: | # Write the LinearSVM.predict function and evaluate the performance on both the
    # training and validation set
    y_train_pred = svm.predict(X_train)
    print('training accuracy: %f' % (np.mean(y_train == y_train_pred), ))
    y_val_pred = svm.predict(X_val)
    print('validation accuracy: %f' % (np.mean(y_val == y_val_pred), ))
[]: # Use the validation set to tune hyperparameters (regularization strength and
    # learning rate). You should experiment with different ranges for the learning
    # rates and regularization strengths; if you are careful you should be able to
    # get a classification accuracy of about 0.39 on the validation set.
    # Note: you may see runtime/overflow warnings during hyper-parameter search.
    # This may be caused by extreme values, and is not a bug.
    # results is dictionary mapping tuples of the form
    # (learning_rate, regularization_strength) to tuples of the form
    # (training accuracy, validation accuracy). The accuracy is simply the fraction
    # of data points that are correctly classified.
    results = {}
    best_val = -1  # The highest validation accuracy that we have seen so far.
    best_svm = None # The LinearSVM object that achieved the highest validation
     \hookrightarrow rate.
    # TODO:
    # Write code that chooses the best hyperparameters by tuning on the validation #
    # set. For each combination of hyperparameters, train a linear SVM on the
    # training set, compute its accuracy on the training and validation sets, and
    # store these numbers in the results dictionary. In addition, store the best
    # validation accuracy in best_val and the LinearSVM object that achieves this
    # accuracy in best sum.
                                                                                  #
                                                                                  #
    # Hint: You should use a small value for num_iters as you develop your
                                                                                  #
```

```
# validation code so that the SVMs don't take much time to train; once you are #
# confident that your validation code works, you should rerun the validation
# code with a larger value for num_iters.
# Provided as a reference. You may or may not want to change these
→hyperparameters
learning rates = [1e-7, 5e-5]
regularization_strengths = [2.5e4, 5e4]
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
# Print out results.
for lr, reg in sorted(results):
   train_accuracy, val_accuracy = results[(lr, reg)]
   print('lr %e reg %e train accuracy: %f val accuracy: %f' % (
              lr, reg, train_accuracy, val_accuracy))
print('best validation accuracy achieved during cross-validation: %f' %⊔
 ⇔best_val)
```

```
[]: # Visualize the cross-validation results
     import math
     import pdb
     # pdb.set trace()
     x_scatter = [math.log10(x[0]) for x in results]
     y_scatter = [math.log10(x[1]) for x in results]
     # plot training accuracy
     marker_size = 100
     colors = [results[x][0] for x in results]
     plt.subplot(2, 1, 1)
     plt.tight_layout(pad=3)
     plt.scatter(x_scatter, y_scatter, marker_size, c=colors, cmap=plt.cm.coolwarm)
     plt.colorbar()
     plt.xlabel('log learning rate')
     plt.ylabel('log regularization strength')
     plt.title('CIFAR-10 training accuracy')
     # plot validation accuracy
     colors = [results[x][1] for x in results] # default size of markers is 20
```

```
plt.subplot(2, 1, 2)
plt.scatter(x_scatter, y_scatter, marker_size, c=colors, cmap=plt.cm.coolwarm)
plt.colorbar()
plt.xlabel('log learning rate')
plt.ylabel('log regularization strength')
plt.title('CIFAR-10 validation accuracy')
plt.show()
```

```
[]: # Evaluate the best sum on test set
    y_test_pred = best_svm.predict(X_test)
    test_accuracy = np.mean(y_test == y_test_pred)
    print('linear SVM on raw pixels final test set accuracy: %f' % test_accuracy)
```

Inline question 2

Describe what your visualized SVM weights look like, and offer a brief explanation for why they look they way that they do.

YourAnswer: fill this in

softmax

September 13, 2024

```
[]: # This mounts your Google Drive to the Colab VM.
     from google.colab import drive
     drive.mount('/content/drive', force_remount=True)
     # Enter the foldername in your Drive where you have saved the unzipped
     # assignment folder, e.g. 'cs231n/assignments/assignment1/'
     FOLDERNAME = None
     assert FOLDERNAME is not None, "[!] Enter the foldername."
     # Now that we've mounted your Drive, this ensures that
     # the Python interpreter of the Colab VM can load
     # python files from within it.
     import sys
     sys.path.append('/content/drive/My Drive/{}'.format(FOLDERNAME))
     # This downloads the CIFAR-10 dataset to your Drive
     # if it doesn't already exist.
     %cd drive/My\ Drive/$FOLDERNAME/cs231n/datasets/
     !bash get datasets.sh
     %cd /content/drive/My\ Drive/$FOLDERNAME
```

1 Softmax exercise

Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the assignments page on the course website.

This exercise is analogous to the SVM exercise. You will:

- implement a fully-vectorized loss function for the Softmax classifier
- implement the fully-vectorized expression for its analytic gradient
- check your implementation with numerical gradient
- use a validation set to tune the learning rate and regularization strength
- optimize the loss function with SGD
- visualize the final learned weights

```
[]: import random import numpy as np
```

```
[]:|def_get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000,
      \rightarrownum dev=500):
         11 11 11
         Load the CIFAR-10 dataset from disk and perform preprocessing to prepare
         it for the linear classifier. These are the same steps as we used for the
         SVM, but condensed to a single function.
         11 11 11
         # Load the raw CIFAR-10 data
         cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
         # Cleaning up variables to prevent loading data multiple times (which may)
      → cause memory issue)
         try:
            del X_train, y_train
            del X_test, y_test
            print('Clear previously loaded data.')
         except:
            pass
         X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
         # subsample the data
         mask = list(range(num_training, num_training + num_validation))
         X_val = X_train[mask]
         y_val = y_train[mask]
         mask = list(range(num_training))
         X_train = X_train[mask]
         y_train = y_train[mask]
         mask = list(range(num_test))
         X_test = X_test[mask]
         y_test = y_test[mask]
         mask = np.random.choice(num_training, num_dev, replace=False)
         X_dev = X_train[mask]
```

```
y_dev = y_train[mask]
    # Preprocessing: reshape the image data into rows
   X_train = np.reshape(X_train, (X_train.shape[0], -1))
   X_val = np.reshape(X_val, (X_val.shape[0], -1))
   X_test = np.reshape(X_test, (X_test.shape[0], -1))
   X_dev = np.reshape(X_dev, (X_dev.shape[0], -1))
    # Normalize the data: subtract the mean image
   mean_image = np.mean(X_train, axis = 0)
   X train -= mean image
   X_val -= mean_image
   X_test -= mean_image
   X_{dev} = mean_{image}
   # add bias dimension and transform into columns
   X_train = np.hstack([X_train, np.ones((X_train.shape[0], 1))])
   X_val = np.hstack([X_val, np.ones((X_val.shape[0], 1))])
   X_test = np.hstack([X_test, np.ones((X_test.shape[0], 1))])
   X_dev = np.hstack([X_dev, np.ones((X_dev.shape[0], 1))])
   return X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev
# Invoke the above function to get our data.
X_train, y_train, X_val, y_val, X_test, y_test, X_dev, y_dev =_
 ⇔get_CIFAR10_data()
print('Train data shape: ', X_train.shape)
print('Train labels shape: ', y_train.shape)
print('Validation data shape: ', X_val.shape)
print('Validation labels shape: ', y_val.shape)
print('Test data shape: ', X_test.shape)
print('Test labels shape: ', y_test.shape)
print('dev data shape: ', X_dev.shape)
print('dev labels shape: ', y_dev.shape)
```

1.1 Softmax Classifier

Your code for this section will all be written inside cs231n/classifiers/softmax.py.

```
[]: # First implement the naive softmax loss function with nested loops.
# Open the file cs231n/classifiers/softmax.py and implement the
# softmax_loss_naive function.

from cs231n.classifiers.softmax import softmax_loss_naive
import time
```

```
# Generate a random softmax weight matrix and use it to compute the loss.
W = np.random.randn(3073, 10) * 0.0001
loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0)

# As a rough sanity check, our loss should be something close to -log(0.1).
print('loss: %f' % loss)
print('sanity check: %f' % (-np.log(0.1)))
```

Inline Question 1

Why do we expect our loss to be close to $-\log(0.1)$? Explain briefly.**

YourAnswer: Fill this in

```
[]: # Complete the implementation of softmax_loss_naive and implement a (naive)
# version of the gradient that uses nested loops.
loss, grad = softmax_loss_naive(W, X_dev, y_dev, 0.0)

# As we did for the SVM, use numeric gradient checking as a debugging tool.
# The numeric gradient should be close to the analytic gradient.
from cs231n.gradient_check import grad_check_sparse
f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 0.0)[0]
grad_numerical = grad_check_sparse(f, W, grad, 10)

# similar to SVM case, do another gradient check with regularization
loss, grad = softmax_loss_naive(W, X_dev, y_dev, 5e1)
f = lambda w: softmax_loss_naive(w, X_dev, y_dev, 5e1)[0]
grad_numerical = grad_check_sparse(f, W, grad, 10)
```

```
[]: # Now that we have a naive implementation of the softmax loss function and its \Box
     ⇔gradient,
     # implement a vectorized version in softmax_loss_vectorized.
     # The two versions should compute the same results, but the vectorized version_
      ⇔should be
     # much faster.
     tic = time.time()
     loss naive, grad naive = softmax loss naive(W, X dev, y dev, 0.000005)
     toc = time.time()
     print('naive loss: %e computed in %fs' % (loss_naive, toc - tic))
     from cs231n.classifiers.softmax import softmax_loss_vectorized
     tic = time.time()
     loss_vectorized, grad_vectorized = softmax_loss_vectorized(W, X_dev, y_dev, 0.
      →000005)
     toc = time.time()
     print('vectorized loss: %e computed in %fs' % (loss_vectorized, toc - tic))
     # As we did for the SVM, we use the Frobenius norm to compare the two versions
```

```
print('Loss difference: %f' % np.abs(loss_naive - loss_vectorized))
    print('Gradient difference: %f' % grad_difference)
[]: # Use the validation set to tune hyperparameters (regularization strength and
    # learning rate). You should experiment with different ranges for the learning
    # rates and regularization strengths; if you are careful you should be able to
    # get a classification accuracy of over 0.35 on the validation set.
    from cs231n.classifiers import Softmax
    results = {}
    best val = -1
    best_softmax = None
    # TODO:
    # Use the validation set to set the learning rate and regularization strength.
    # This should be identical to the validation that you did for the SVM; save
    # the best trained softmax classifer in best softmax.
    # Provided as a reference. You may or may not want to change these
     ⇔hyperparameters
    learning_rates = [1e-7, 5e-7]
    regularization_strengths = [2.5e4, 5e4]
    # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE) *****
    pass
    # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
    # Print out results.
    for lr, reg in sorted(results):
        train_accuracy, val_accuracy = results[(lr, reg)]
        print('lr %e reg %e train accuracy: %f val accuracy: %f' % (
                   lr, reg, train_accuracy, val_accuracy))
    print('best validation accuracy achieved during cross-validation: %f' %L
     ⇔best_val)
[]: # evaluate on test set
    # Evaluate the best softmax on test set
    y_test_pred = best_softmax.predict(X_test)
    test_accuracy = np.mean(y_test == y_test_pred)
    print('softmax on raw pixels final test set accuracy: %f' % (test_accuracy, ))
```

grad_difference = np.linalg.norm(grad_naive - grad_vectorized, ord='fro')

of the gradient.

Inline Question 2 - True or False

Suppose the overall training loss is defined as the sum of the per-datapoint loss over all training examples. It is possible to add a new datapoint to a training set that would leave the SVM loss unchanged, but this is not the case with the Softmax classifier loss.

Your Answer:

Your Explanation:

[]:

two_layer_net

September 13, 2024

```
[]: # This mounts your Google Drive to the Colab VM.
     from google.colab import drive
     drive.mount('/content/drive', force_remount=True)
     # Enter the foldername in your Drive where you have saved the unzipped
     # assignment folder, e.g. 'cs231n/assignments/assignment1/'
     FOLDERNAME = None
     assert FOLDERNAME is not None, "[!] Enter the foldername."
     # Now that we've mounted your Drive, this ensures that
     # the Python interpreter of the Colab VM can load
     # python files from within it.
     import sys
     sys.path.append('/content/drive/My Drive/{}'.format(FOLDERNAME))
     # This downloads the CIFAR-10 dataset to your Drive
     # if it doesn't already exist.
     %cd drive/My\ Drive/$FOLDERNAME/cs231n/datasets/
     !bash get datasets.sh
     %cd /content/drive/My\ Drive/$FOLDERNAME
```

1 Fully-Connected Neural Nets

In this exercise we will implement fully-connected networks using a modular approach. For each layer we will implement a forward and a backward function. The forward function will receive inputs, weights, and other parameters and will return both an output and a cache object storing data needed for the backward pass, like this:

```
def layer_forward(x, w):
    """ Receive inputs x and weights w """
    # Do some computations ...
    z = # ... some intermediate value
    # Do some more computations ...
    out = # the output

cache = (x, w, z, out) # Values we need to compute gradients
    return out, cache
```

The backward pass will receive upstream derivatives and the cache object, and will return gradients with respect to the inputs and weights, like this:

```
def layer_backward(dout, cache):
    """
    Receive dout (derivative of loss with respect to outputs) and cache,
    and compute derivative with respect to inputs.
    """
    # Unpack cache values
    x, w, z, out = cache

# Use values in cache to compute derivatives
    dx = # Derivative of loss with respect to x
    dw = # Derivative of loss with respect to w

return dx, dw
```

After implementing a bunch of layers this way, we will be able to easily combine them to build classifiers with different architectures.

```
[]: # As usual, a bit of setup
     from __future__ import print_function
     import time
     import numpy as np
     import matplotlib.pyplot as plt
     from cs231n.classifiers.fc net import *
     from cs231n.data_utils import get_CIFAR10_data
     from cs231n.gradient check import eval numerical gradient,
      ⇔eval_numerical_gradient_array
     from cs231n.solver import Solver
     %matplotlib inline
     plt.rcParams['figure.figsize'] = (10.0, 8.0) # set default size of plots
     plt.rcParams['image.interpolation'] = 'nearest'
     plt.rcParams['image.cmap'] = 'gray'
     # for auto-reloading external modules
     # see http://stackoverflow.com/questions/1907993/
      \rightarrow autoreload-of-modules-in-ipython
     %load_ext autoreload
     %autoreload 2
     def rel_error(x, y):
       """ returns relative error """
       return np.max(np.abs(x - y) / (np.maximum(1e-8, np.abs(x) + np.abs(y))))
```

```
[]: # Load the (preprocessed) CIFAR10 data.
```

```
data = get_CIFAR10_data()
for k, v in list(data.items()):
   print(('%s: ' % k, v.shape))
```

2 Affine layer: forward

Open the file cs231n/layers.py and implement the affine_forward function.

Once you are done you can test your implementation by running the following:

```
[]:  # Test the affine_forward function
     num_inputs = 2
     input\_shape = (4, 5, 6)
     output dim = 3
     input size = num inputs * np.prod(input shape)
     weight_size = output_dim * np.prod(input_shape)
     x = np.linspace(-0.1, 0.5, num=input_size).reshape(num_inputs, *input_shape)
     w = np.linspace(-0.2, 0.3, num=weight_size).reshape(np.prod(input_shape),_
     →output dim)
     b = np.linspace(-0.3, 0.1, num=output_dim)
     out, _ = affine_forward(x, w, b)
     correct_out = np.array([[ 1.49834967,  1.70660132,  1.91485297],
                             [ 3.25553199, 3.5141327,
                                                         3.77273342]])
     # Compare your output with ours. The error should be around e-9 or less.
     print('Testing affine forward function:')
     print('difference: ', rel_error(out, correct_out))
```

3 Affine layer: backward

Now implement the affine_backward function and test your implementation using numeric gradient checking.

```
[]: # Test the affine_backward function
    np.random.seed(231)
    x = np.random.randn(10, 2, 3)
    w = np.random.randn(6, 5)
    b = np.random.randn(5)
    dout = np.random.randn(10, 5)

dx_num = eval_numerical_gradient_array(lambda x: affine_forward(x, w, b)[0], x,u
    dout)
```

```
dw_num = eval_numerical_gradient_array(lambda w: affine_forward(x, w, b)[0], w,u
dout)

db_num = eval_numerical_gradient_array(lambda b: affine_forward(x, w, b)[0], b,u
dout)

_, cache = affine_forward(x, w, b)
dx, dw, db = affine_backward(dout, cache)

# The error should be around e-10 or less
print('Testing affine_backward function:')
print('dx error: ', rel_error(dx_num, dx))
print('dw error: ', rel_error(dw_num, dw))
print('db error: ', rel_error(db_num, db))
```

4 ReLU activation: forward

Implement the forward pass for the ReLU activation function in the relu_forward function and test your implementation using the following:

```
[]: # Test the relu forward function
    x = np.linspace(-0.5, 0.5, num=12).reshape(3, 4)
    out, _ = relu_forward(x)
    correct_out = np.array([[ 0.,
                                         0.,
                                                     0.,
                                                              0.,
                                                                               ],
                                                       0.04545455, 0.13636364,],
                            [ 0.,
                                          0.,
                            [0.22727273, 0.31818182, 0.40909091, 0.5,
                                                                               11)
    # Compare your output with ours. The error should be on the order of e-8
    print('Testing relu_forward function:')
    print('difference: ', rel_error(out, correct_out))
```

5 ReLU activation: backward

Now implement the backward pass for the ReLU activation function in the relu_backward function and test your implementation using numeric gradient checking:

```
[]: np.random.seed(231)
    x = np.random.randn(10, 10)
    dout = np.random.randn(*x.shape)

    dx_num = eval_numerical_gradient_array(lambda x: relu_forward(x)[0], x, dout)

_, cache = relu_forward(x)
    dx = relu_backward(dout, cache)
```

```
# The error should be on the order of e-12
print('Testing relu_backward function:')
print('dx error: ', rel_error(dx_num, dx))
```

5.1 Inline Question 1:

We've only asked you to implement ReLU, but there are a number of different activation functions that one could use in neural networks, each with its pros and cons. In particular, an issue commonly seen with activation functions is getting zero (or close to zero) gradient flow during backpropagation. Which of the following activation functions have this problem? If you consider these functions in the one dimensional case, what types of input would lead to this behaviour? 1. Sigmoid 2. ReLU 3. Leaky ReLU

5.2 Answer:

[FILL THIS IN]

6 "Sandwich" layers

There are some common patterns of layers that are frequently used in neural nets. For example, affine layers are frequently followed by a ReLU nonlinearity. To make these common patterns easy, we define several convenience layers in the file cs231n/layer utils.py.

For now take a look at the affine_relu_forward and affine_relu_backward functions, and run the following to numerically gradient check the backward pass:

```
[]: from cs231n.layer_utils import affine_relu_forward, affine_relu_backward
     np.random.seed(231)
     x = np.random.randn(2, 3, 4)
     w = np.random.randn(12, 10)
     b = np.random.randn(10)
     dout = np.random.randn(2, 10)
     out, cache = affine_relu_forward(x, w, b)
     dx, dw, db = affine_relu_backward(dout, cache)
     dx_num = eval_numerical_gradient_array(lambda x: affine_relu_forward(x, w,__
      \rightarrowb)[0], x, dout)
     dw num = eval_numerical_gradient_array(lambda w: affine relu_forward(x, w,__
      \rightarrowb)[0], w, dout)
     db_num = eval_numerical_gradient_array(lambda b: affine_relu_forward(x, w,__
      \rightarrowb)[0], b, dout)
     # Relative error should be around e-10 or less
     print('Testing affine relu forward and affine relu backward:')
     print('dx error: ', rel_error(dx_num, dx))
     print('dw error: ', rel_error(dw_num, dw))
     print('db error: ', rel_error(db_num, db))
```

7 Loss layers: Softmax and SVM

Now implement the loss and gradient for softmax and SVM in the softmax_loss and svm_loss function in cs231n/layers.py. These should be similar to what you implemented in cs231n/classifiers/softmax.py and cs231n/classifiers/linear_svm.py.

You can make sure that the implementations are correct by running the following:

```
[]: np.random.seed(231)
     num_classes, num_inputs = 10, 50
     x = 0.001 * np.random.randn(num_inputs, num_classes)
     y = np.random.randint(num_classes, size=num_inputs)
     dx_num = eval_numerical_gradient(lambda x: svm_loss(x, y)[0], x, verbose=False)
     loss, dx = svm_loss(x, y)
     # Test sum loss function. Loss should be around 9 and dx error should be around
      \hookrightarrow the order of e-9
     print('Testing svm loss:')
     print('loss: ', loss)
     print('dx error: ', rel_error(dx_num, dx))
     dx num = eval_numerical_gradient(lambda x: softmax_loss(x, y)[0], x,__
      ⇔verbose=False)
     loss, dx = softmax loss(x, y)
     # Test softmax loss function. Loss should be close to 2.3 and dx error should
      \hookrightarrow be around e-8
     print('\nTesting softmax_loss:')
     print('loss: ', loss)
     print('dx error: ', rel_error(dx_num, dx))
```

8 Two-layer network

Open the file cs231n/classifiers/fc_net.py and complete the implementation of the TwoLayerNet class. Read through it to make sure you understand the API. You can run the cell below to test your implementation.

```
[]: np.random.seed(231)
N, D, H, C = 3, 5, 50, 7
X = np.random.randn(N, D)
y = np.random.randint(C, size=N)

std = 1e-3
model = TwoLayerNet(input_dim=D, hidden_dim=H, num_classes=C, weight_scale=std)
print('Testing initialization ... ')
```

```
W1_std = abs(model.params['W1'].std() - std)
b1 = model.params['b1']
W2_std = abs(model.params['W2'].std() - std)
b2 = model.params['b2']
assert W1_std < std / 10, 'First layer weights do not seem right'
assert np.all(b1 == 0), 'First layer biases do not seem right'
assert W2_std < std / 10, 'Second layer weights do not seem right'
assert np.all(b2 == 0), 'Second layer biases do not seem right'
print('Testing test-time forward pass ... ')
model.params['W1'] = np.linspace(-0.7, 0.3, num=D*H).reshape(D, H)
model.params['b1'] = np.linspace(-0.1, 0.9, num=H)
model.params['W2'] = np.linspace(-0.3, 0.4, num=H*C).reshape(H, C)
model.params['b2'] = np.linspace(-0.9, 0.1, num=C)
X = np.linspace(-5.5, 4.5, num=N*D).reshape(D, N).T
scores = model.loss(X)
correct_scores = np.asarray(
  [[11.53165108, 12.2917344, 13.05181771, 13.81190102, 14.57198434, 15.
 →33206765, 16.09215096],
   [12.05769098, 12.74614105, 13.43459113, 14.1230412, 14.81149128, 15.
 →49994135, 16.18839143],
   [12.58373087, 13.20054771, 13.81736455, 14.43418138, 15.05099822, 15.
 →66781506, 16.2846319 ]])
scores_diff = np.abs(scores - correct_scores).sum()
assert scores diff < 1e-6, 'Problem with test-time forward pass'
print('Testing training loss (no regularization)')
y = np.asarray([0, 5, 1])
loss, grads = model.loss(X, y)
correct_loss = 3.4702243556
assert abs(loss - correct_loss) < 1e-10, 'Problem with training-time loss'
model.reg = 1.0
loss, grads = model.loss(X, y)
correct_loss = 26.5948426952
assert abs(loss - correct_loss) < 1e-10, 'Problem with regularization loss'
# Errors should be around e-7 or less
for reg in [0.0, 0.7]:
 print('Running numeric gradient check with reg = ', reg)
 model.reg = reg
 loss, grads = model.loss(X, y)
 for name in sorted(grads):
   f = lambda _: model.loss(X, y)[0]
   grad_num = eval_numerical_gradient(f, model.params[name], verbose=False)
   print('%s relative error: %.2e' % (name, rel_error(grad_num, grads[name])))
```

9 Solver

Open the file cs231n/solver.py and read through it to familiarize yourself with the API. You also need to imeplement the sgd function in cs231n/optim.py. After doing so, use a Solver instance to train a TwoLayerNet that achieves about 36% accuracy on the validation set.

10 Debug the training

With the default parameters we provided above, you should get a validation accuracy of about 0.36 on the validation set. This isn't very good.

One strategy for getting insight into what's wrong is to plot the loss function and the accuracies on the training and validation sets during optimization.

Another strategy is to visualize the weights that were learned in the first layer of the network. In most neural networks trained on visual data, the first layer weights typically show some visible structure when visualized.

```
[]: # Run this cell to visualize training loss and train / val accuracy

plt.subplot(2, 1, 1)
plt.title('Training loss')
plt.plot(solver.loss_history, 'o')
plt.xlabel('Iteration')

plt.subplot(2, 1, 2)
plt.title('Accuracy')
plt.plot(solver.train_acc_history, '-o', label='train')
plt.plot(solver.val_acc_history, '-o', label='val')
```

```
plt.plot([0.5] * len(solver.val_acc_history), 'k--')
plt.xlabel('Epoch')
plt.legend(loc='lower right')
plt.gcf().set_size_inches(15, 12)
plt.show()
```

```
[]: from cs231n.vis_utils import visualize_grid

# Visualize the weights of the network

def show_net_weights(net):
    W1 = net.params['W1']
    W1 = W1.reshape(32, 32, 3, -1).transpose(3, 0, 1, 2)
    plt.imshow(visualize_grid(W1, padding=3).astype('uint8'))
    plt.gca().axis('off')
    plt.show()

show_net_weights(model)
```

11 Tune your hyperparameters

What's wrong? Looking at the visualizations above, we see that the loss is decreasing more or less linearly, which seems to suggest that the learning rate may be too low. Moreover, there is no gap between the training and validation accuracy, suggesting that the model we used has low capacity, and that we should increase its size. On the other hand, with a very large model we would expect to see more overfitting, which would manifest itself as a very large gap between the training and validation accuracy.

Tuning. Tuning the hyperparameters and developing intuition for how they affect the final performance is a large part of using Neural Networks, so we want you to get a lot of practice. Below, you should experiment with different values of the various hyperparameters, including hidden layer size, learning rate, numer of training epochs, and regularization strength. You might also consider tuning the learning rate decay, but you should be able to get good performance using the default value.

Approximate results. You should be aim to achieve a classification accuracy of greater than 48% on the validation set. Our best network gets over 52% on the validation set.

Experiment: You goal in this exercise is to get as good of a result on CIFAR-10 as you can (52% could serve as a reference), with a fully-connected Neural Network. Feel free implement your own techniques (e.g. PCA to reduce dimensionality, or adding dropout, or adding features to the solver, etc.).

```
# TODO: Tune hyperparameters using the validation set. Store your best trained \Box
 →#
# model in best model.
                                                            ш
 →#
#
 →#
# To help debug your network, it may help to use visualizations similar to the \Box
# ones we used above; these visualizations will have significant qualitative
# differences from the ones we saw above for the poorly tuned network.
→#
 →#
# Tweaking hyperparameters by hand can be fun, but you might find it useful to \Box
# write code to sweep through possible combinations of hyperparameters
# automatically like we did on thexs previous exercises.
                                                            ш
# *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)*****
pass
# *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE) ****
END OF YOUR CODE
```

12 Test your model!

Run your best model on the validation and test sets. You should achieve above 48% accuracy on the validation set and the test set.

```
[]: y_val_pred = np.argmax(best_model.loss(data['X_val']), axis=1)
    print('Validation set accuracy: ', (y_val_pred == data['y_val']).mean())

[]: y_test_pred = np.argmax(best_model.loss(data['X_test']), axis=1)
    print('Test set accuracy: ', (y_test_pred == data['y_test']).mean())
```

12.1 Inline Question 2:

Now that you have trained a Neural Network classifier, you may find that your testing accuracy is much lower than the training accuracy. In what ways can we decrease this gap? Select all that apply.

- 1. Train on a larger dataset.
- 2. Add more hidden units.
- 3. Increase the regularization strength.
- 4. None of the above.

Your Answer:

Your Explanation:

[]:

features

September 13, 2024

```
[]: # This mounts your Google Drive to the Colab VM.
     from google.colab import drive
     drive.mount('/content/drive', force_remount=True)
     # Enter the foldername in your Drive where you have saved the unzipped
     # assignment folder, e.g. 'cs231n/assignments/assignment1/'
     FOLDERNAME = None
     assert FOLDERNAME is not None, "[!] Enter the foldername."
     # Now that we've mounted your Drive, this ensures that
     # the Python interpreter of the Colab VM can load
     # python files from within it.
     import sys
     sys.path.append('/content/drive/My Drive/{}'.format(FOLDERNAME))
     # This downloads the CIFAR-10 dataset to your Drive
     # if it doesn't already exist.
     %cd drive/My\ Drive/$FOLDERNAME/cs231n/datasets/
     !bash get datasets.sh
     %cd /content/drive/My\ Drive/$FOLDERNAME
```

1 Image features exercise

Complete and hand in this completed worksheet (including its outputs and any supporting code outside of the worksheet) with your assignment submission. For more details see the assignments page on the course website.

We have seen that we can achieve reasonable performance on an image classification task by training a linear classifier on the pixels of the input image. In this exercise we will show that we can improve our classification performance by training linear classifiers not on raw pixels but on features that are computed from the raw pixels.

All of your work for this exercise will be done in this notebook.

```
[]: import random import numpy as np from cs231n.data_utils import load_CIFAR10 import matplotlib.pyplot as plt
```

1.1 Load data

Similar to previous exercises, we will load CIFAR-10 data from disk.

```
[]: from cs231n.features import color_histogram_hsv, hog_feature
     def get_CIFAR10_data(num_training=49000, num_validation=1000, num_test=1000):
         # Load the raw CIFAR-10 data
         cifar10_dir = 'cs231n/datasets/cifar-10-batches-py'
         # Cleaning up variables to prevent loading data multiple times (which may ...
      ⇒cause memory issue)
         trv:
            del X_train, y_train
            del X_test, y_test
            print('Clear previously loaded data.')
         except:
            pass
         X_train, y_train, X_test, y_test = load_CIFAR10(cifar10_dir)
         # Subsample the data
         mask = list(range(num_training, num_training + num_validation))
         X_val = X_train[mask]
         y_val = y_train[mask]
         mask = list(range(num_training))
         X_train = X_train[mask]
         y_train = y_train[mask]
         mask = list(range(num_test))
         X_test = X_test[mask]
         y_test = y_test[mask]
         return X_train, y_train, X_val, y_val, X_test, y_test
```

```
X_train, y_train, X_val, y_val, X_test, y_test = get_CIFAR10_data()
```

1.2 Extract Features

For each image we will compute a Histogram of Oriented Gradients (HOG) as well as a color histogram using the hue channel in HSV color space. We form our final feature vector for each image by concatenating the HOG and color histogram feature vectors.

Roughly speaking, HOG should capture the texture of the image while ignoring color information, and the color histogram represents the color of the input image while ignoring texture. As a result, we expect that using both together ought to work better than using either alone. Verifying this assumption would be a good thing to try for your own interest.

The hog_feature and color_histogram_hsv functions both operate on a single image and return a feature vector for that image. The extract_features function takes a set of images and a list of feature functions and evaluates each feature function on each image, storing the results in a matrix where each column is the concatenation of all feature vectors for a single image.

```
[]: from cs231n.features import *
     num color bins = 10 # Number of bins in the color histogram
     feature_fns = [hog_feature, lambda img: color_histogram_hsv(img,_
      →nbin=num_color_bins)]
     X_train_feats = extract_features(X_train, feature_fns, verbose=True)
     X val feats = extract features(X val, feature fns)
     X_test_feats = extract_features(X_test, feature_fns)
     # Preprocessing: Subtract the mean feature
     mean_feat = np.mean(X_train_feats, axis=0, keepdims=True)
     X_train_feats -= mean_feat
     X_val_feats -= mean_feat
     X_test_feats -= mean_feat
     # Preprocessing: Divide by standard deviation. This ensures that each feature
     # has roughly the same scale.
     std_feat = np.std(X_train_feats, axis=0, keepdims=True)
     X_train_feats /= std_feat
     X_val_feats /= std_feat
     X_test_feats /= std_feat
     # Preprocessing: Add a bias dimension
     X_train_feats = np.hstack([X_train_feats, np.ones((X_train_feats.shape[0], 1))])
     X_val_feats = np.hstack([X_val_feats, np.ones((X_val_feats.shape[0], 1))])
     X_test_feats = np.hstack([X_test_feats, np.ones((X_test_feats.shape[0], 1))])
```

1.3 Train SVM on features

Using the multiclass SVM code developed earlier in the assignment, train SVMs on top of the features extracted above; this should achieve better results than training SVMs directly on top of raw pixels.

```
[]: # Use the validation set to tune the learning rate and regularization strength
    from cs231n.classifiers.linear_classifier import LinearSVM
    learning_rates = [1e-9, 1e-8, 1e-7]
    regularization_strengths = [5e4, 5e5, 5e6]
    results = {}
    best_val = -1
    best_svm = None
    # Use the validation set to set the learning rate and regularization strength.
    # This should be identical to the validation that you did for the SVM; save
    # the best trained classifer in best_sum. You might also want to play
    # with different numbers of bins in the color histogram. If you are careful
                                                                           #
    # you should be able to get accuracy of near 0.44 on the validation set.
    # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE) *****
    pass
    # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
    # Print out results.
    for lr, reg in sorted(results):
       train_accuracy, val_accuracy = results[(lr, reg)]
       print('lr %e reg %e train accuracy: %f val accuracy: %f' % (
                  lr, reg, train_accuracy, val_accuracy))
    print('best validation accuracy achieved: %f' % best_val)
[]: # Evaluate your trained SVM on the test set: you should be able to get at least
     ⇔0.40
    y_test_pred = best_svm.predict(X_test_feats)
    test_accuracy = np.mean(y_test == y_test_pred)
    print(test_accuracy)
```

visualize the mistakes that it makes. In this visualization, we show examples # of images that are misclassified by our current system. The first column

[]: # An important way to gain intuition about how an algorithm works is to

```
# shows images that our system labeled as "plane" but whose true label is
# something other than "plane".
examples_per_class = 8
classes = ['plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', u
 ⇔'ship', 'truck']
for cls, cls name in enumerate(classes):
    idxs = np.where((y_test != cls) & (y_test_pred == cls))[0]
    idxs = np.random.choice(idxs, examples_per_class, replace=False)
    for i, idx in enumerate(idxs):
        plt.subplot(examples_per_class, len(classes), i * len(classes) + cls +__
 →1)
        plt.imshow(X_test[idx].astype('uint8'))
        plt.axis('off')
        if i == 0:
            plt.title(cls_name)
plt.show()
```

1.3.1 Inline question 1:

Describe the misclassification results that you see. Do they make sense?

Your Answer:

1.4 Neural Network on image features

Earlier in this assignment we saw that training a two-layer neural network on raw pixels achieved better classification performance than linear classifiers on raw pixels. In this notebook we have seen that linear classifiers on image features outperform linear classifiers on raw pixels.

For completeness, we should also try training a neural network on image features. This approach should outperform all previous approaches: you should easily be able to achieve over 55% classification accuracy on the test set; our best model achieves about 60% classification accuracy.

```
[]: # Preprocessing: Remove the bias dimension
    # Make sure to run this cell only ONCE
    print(X_train_feats.shape)
    X_train_feats = X_train_feats[:, :-1]
    X_val_feats = X_val_feats[:, :-1]
    X_test_feats = X_test_feats[:, :-1]
    print(X_train_feats.shape)
```

```
[]: from cs231n.classifiers.fc_net import TwoLayerNet
    from cs231n.solver import Solver

input_dim = X_train_feats.shape[1]
    hidden_dim = 500
```

```
num_classes = 10
   net = TwoLayerNet(input_dim, hidden_dim, num_classes)
   best_net = None
   # TODO: Train a two-layer neural network on image features. You may want to
   # cross-validate various parameters as in previous sections. Store your best
   # model in the best net variable.
   # *****START OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
   pass
   # *****END OF YOUR CODE (DO NOT DELETE/MODIFY THIS LINE)****
[]: # Run your best neural net classifier on the test set. You should be able
   # to get more than 55% accuracy.
   y_test_pred = np.argmax(best_net.loss(data['X_test']), axis=1)
   test_acc = (y_test_pred == data['y_test']).mean()
   print(test_acc)
```