Combinational and Sequential Logic:

Static vs Dynamic Logic Grotes:

- In static logic gates
 - At every point in time (except during the switching transients) each gate output is connected to either V_{DD} or V_{SS} through a low-impedance path.
 - The outputs of the gates assumes at all times the value of boolean function (i.e. High or Low).
- In dynamic Logic gates
 - This relies on temporary storage of signal values on the capacitance of high-impedance circuit nodes.

Static Complementary CMOS Logic:

- PUN in dual of PDN.

$$\overline{A \cdot B} = \overline{A} + \overline{B}$$

Can be analyze using DeMorgan's Theorem.

PUN and PDN are dual logic network.

Example: NAND gate.

PDN : G = A.B

PUN; $F = \overline{A} + \overline{B} = \overline{A \cdot B}$

$$\overline{G(A,B)} = F(\overline{A},\overline{B})$$

A	B	Out
0	0	1
0	1	1
1	0	1
1	1	0

Truth - table of 2-INPUT NAND gate.

Static CMOS Properties:

- Full rail-to-rail swing; High Noise Margins.
- Logic levels does not depend upon the relative device sizes; ratioless.
- Always a path to VDD or Gind in steady-state; low output impedance.
- Extremely high input resistance; nearly zero steady-state input current.
- No direct path between power and ground in steady state; no static power dissipation.
- Propagation delay is function of load capacitance and resistance of transistors.

