

最优化方法及其 Matlab 程序设计

第七章 非线性最小二乘问题

Back

非线性最小二乘问题是科学与工程计算中十分常见的一类问题、 并在经济学等领域有广泛的应用背景,不但如此,约束优化问题还可 以通过 KKT 条件与非线性方程组建立起重要的关系. 本章, 我们主要 讨论非线性最小二乘问题的一些求解算法及其收敛性质.

§7.1 Gauss-Newton 法

非线性最小二乘问题是求向量 $x \in \mathbb{R}^n$ 使 $||F(x)||^2$ 最小, 其中, 映 射 $F: \mathbb{R}^n \to \mathbb{R}^m$ 是连续可微函数. 非线性最小二乘问题在工程设计、 财政金融等方面的实际问题中有着广泛的应用.

记 $F(x) = (F_1(x), F_2(x), \dots, F_m(x))^T$. 则非线性最小二乘问题可 以表示为

$$\min_{x \in \mathbb{R}^n} f(x) = \frac{1}{2} ||F(x)||^2 = \frac{1}{2} \sum_{i=1}^m F_i^2(x).$$
 (7.1)

Back

显然,该问题本身就是一个无约束优化问题,因此可以套用无约束优 化问题的数值方法如牛顿法、拟牛顿法等方法求解. 基于问题 (7.1) 的特殊性,我们在这些优化算法的基础上,建立更适合本类问题的求 解算法.

对于问题 (7.1), 目标函数 f 的梯度和 Hesse 阵分别为:

$$g(x) \triangleq \nabla f(x) = \nabla \left(\frac{1}{2} ||F(x)||^2\right) = J(x)^T F(x) = \sum_{i=1}^m F_i(x) \nabla F_i(x),$$

$$G(x) \triangleq \nabla^2 f(x) = \sum_{i=1}^m \nabla F_i(x) (\nabla F_i(x))^T + \sum_{i=1}^m F_i(x) \nabla^2 F_i(x)$$
$$= J(x)^T J(x) + \sum_{i=1}^m F_i(x) \nabla^2 F_i(x)$$
$$\triangleq J(x)^T J(x) + S(x),$$

其中

$$J(x) = F'(x) = (\nabla F_1(x), \dots, \nabla F_m(x))^T$$
, $S(x) = \sum_{i=1} F_i(x) \nabla^2 F_i(x)$.
利用牛顿型迭代算法, 我们便得到求解非线性最小二乘问题的迭代算

法:

$$x_{k+1} = x_k - (J_k^T J_k + S_k)^{-1} J_k^T F(x_k).$$

在标准假设下, 容易得到该算法的收敛性质. 缺点是 S(x) 中 $\nabla^2 F_i(x)$ 的计算量较大. 如果忽略这一项. 便得到求解非线性最小二乘问题的 Gauss-Newton 迭代算法:

 $x_{k+1} = x_k + d_k^{GN},$

其中

Back

 $d_k^{GN} = -\left[J_k^T J_k\right]^{-1} J_k^T F(x_k)$

称为 Gauss-Newton 方向. 容易验证 d_k^{GN} 是优化问题

$$\min_{d \in R^n} \frac{1}{2} ||F(x_k) + J_k d||^2$$

的最优解. 若向量函数 F(x) 的 Jacobian 矩阵是列满秩的,则可以保 证 Gauss-Newton 方向是下降方向. 如同牛顿法一样, 若采取单位步长, 算法的收敛性难以保证. 但如果在算法中引入线搜索步长规则, 则可 以得到如下的收敛性定理.

定理 7.1 设水平集 $\mathcal{L}(x_0)$ 有界, J(x) = F'(x) 在 $\mathcal{L}(x_0)$ 上 Lipschitz 连续且满足一致性条件

 $||J(x)y|| > \alpha ||y||, \quad \forall y \in \mathbb{R}^n,$ (7.2)

其中, $\alpha > 0$ 为一常数. 则在 Wolfe 步长规则下

常数. 则在 Wolfe 步长规则下
$$\begin{cases}
f(x_k + \alpha_k d_k) \le f_k + \sigma_1 \alpha_k g_k^T d_k, \\
g(x_k + \alpha_k d_k)^T d_k \ge \sigma_2 g_k^T d_k,
\end{cases} (7.3)$$

其中 $0 < \sigma_1 < \sigma_2 < 1$. Gauss-Newton 算法产生的迭代点列 $\{x_k\}$ 收 敛到 (7.1) 的一个稳定点. 即

$$\lim_{k \to \infty} J(x_k)^T F(x_k) = 0.$$

证明 由 J(x) 在 $\mathcal{L}(x_0)$ 上 Lipschitz 连续可知 J(x) 连续. 由于水 平集 $\mathcal{L}(x_0)$ 有界, 故存在 $\beta > 0$ 使得对任意 $x \in \mathcal{L}(x_0)$, $||J(x)|| \leq \beta$ 成 立. 记 θ_k 为 Gauss-Newton 方向 d_k^{GN} 与负梯度方向 $-g_k$ 的夹角. 利用 **一**致性条件 (7.2), 我们有

$$\cos \theta_k = -\frac{g_k^T d_k^{GN}}{\|g_k\| \|d_k^{GN}\|} = -\frac{F_k^T J_k d_k^{GN}}{\|d_k^{GN}\| \|J_k^T F_k\|}$$
$$= \frac{\|J_k d_k^{GN}\|^2}{\|d_k^{GN}\| \|J_l^T J_k d_l^{GN}\|} \ge \frac{\alpha^2 \|d_k^{GN}\|^2}{\beta^2 \|d_l^{GN}\|^2} = \frac{\alpha^2}{\beta^2} > 0.$$

由于 g(x) 在 $\mathcal{L}(x_0)$ 上 Lipschitz 连续, 则由 (7.3) 的第二式得

$$(\sigma_2 - 1)g_k^T d_k \le [g(x_k + \alpha_k d_k) - g_k]^T d_k \le \alpha_k L \|d_k\|^2.$$

故

证毕.

$$lpha_k \geq rac{\sigma_2-1}{L}rac{g_k^Td_k}{\|d_k\|^2}.$$

将其代入 (7.3) 的第一式得

$$f_k - f_{k+1} \ge -\sigma_1 \alpha_k g_k^T d_k \ge \sigma_1 \frac{1 - \sigma_2}{L} \frac{(g_k^T d_k)^2}{\|d_k\|^2}$$
$$= \sigma_1 \frac{1 - \sigma_2}{L} \|g_k\|^2 \cos^2 \theta_k.$$

两边对
$$k$$
 求级数, 利用 $\{f_k\}$ 单调不增有下界, 得到 ∞

水级数, 利用
$$\{f_k\}$$
 単调小瑁有下乔, 待到 $\sum_{k=1}^\infty \|g_k\|^2 \cos^2 heta_k < \infty.$

$$\sum_{k=1}^{\infty} \|g_k\|^2 \cos^2 \theta_k < \infty.$$

$$\sum_{k=1}^{\infty} ||g_k|| \cos \theta_k < \infty.$$

由此可得

$$\lim a_k = \lim J(x_k)^T F(x_k) = 0.$$

$$x = \lim_{k \to \infty} J(x_k)^T F(x_k) = 0.$$

 $\lim_{k \to \infty} g_k = \lim_{k \to \infty} J(x_k)^T F(x_k) = 0.$

定理 7.2 设单位步长的 Gauss-Newton 算法产生的迭代点列 $\{x_k\}$ 收敛到 (7.1) 的局部极小点 x^* , 而且 $J(x^*)^T J(x^*)$ 正定. 则当 $J(x)^T J(x)$, S(x), $[J(x)^T J(x)]^{-1}$ 在 x^* 的邻域内 Lipschitz 连续时, 对充分大的 k,

有 $||x_{k+1} - x^*|| \le ||[J(x^*)^T J(x^*)]^{-1}|| ||S(x^*)|| ||x_k - x^*|| + O(||x_k - x^*||^2).$

证明 由于 $J(x)^T J(x)$, S(x), $[J(x)^T J(x)]^{-1}$ 在 x^* 的邻域内 Lipschitz

(7.4)

连续, 故存在 $\delta > 0$ 及正数 α, β, γ 使得对任意 $x, y \in N(x^*, \delta)$ 有, $\begin{cases} ||S(x) - S(y)|| \le \alpha ||x - y|| \\ ||J(x)^T J(x) - J(y)^T J(y)|| \le \beta ||x - y||, \\ ||[J(x)^T J(x)]^{-1} - [J(y)^T J(y)]^{-1}|| \le \gamma ||x - y||. \end{cases}$

由于 f(x) 二阶连续可微, $G(x) = J(x)^T J(x) + S(x)$ 在 $N(x^*, \delta)$ 上 Lipschitz 连续, 故对充分大的 k 和模充分小的 $h \in \mathbb{R}^n$, 有 $x_k + h \in$

Back

 $N(x^*,\delta)$, 且 $q(x_k + h) = q(x_k) + G(x_k)h + O(||h||^2).$ (7.5)由于 $x_k \to x^*$, 对充分大的 k, 有 $x_k, x_{k+1} \in N(x^*, \delta)$. 令 $e_k = x_k - x^*$, $h_k = x_{k+1} - x_k$, 则 $q(x^*) = q(x_k - e_k) = 0.$ 利用 (7.5), $q(x_k) - G(x_k)e_k + O(||e_k||^2) = 0.$ 即 $J_k^T F_k - (J_k^T J_k + S_k) e_k + O(\|e_k\|^2) = 0.$ 注意到 $J_k^T F_k = -(J_k^T J_k)(x_{k+1} - x_k) = -J_k^T J_k h_k$. 两边同乘 $(J_k^T J_k)^{-1}$, $-h_k - e_k - (J_k^T J_k)^{-1} S_k e_k + (J_k^T J_k)^{-1} O(\|e_k\|^2) = 0.$ Back

所以 $x_{k+1} - x^* = h_k + e_k = -(J_k^T J_k)^{-1} S_k e_k + (J_k^T J_k)^{-1} O(\|e_k\|^2).$ 两边取2范数, $||x_{k+1} - x^*|| \le ||(J_k^T J_k)^{-1} S_k|| ||e_k|| + ||(J_k^T J_k)^{-1}|| \cdot O(||e_k||^2).$ 由于 $[J(x)^T J(x)]^{-1}$ 在 x^* 处连续, 故在 k 充分大时, $||(J_k^T J_k)^{-1}|| \le 2||[J(x^*)^T J(x^*)]^{-1}||.$ (7.6)从而 $||x_{k+1} - x^*|| \le ||(J_k^T J_k)^{-1} S_k|| ||x_k - x^*|| + O(||x_k - x^*||^2).$ (7.7)

由 (7.4), (7.6) 得 $\|(J_k^T J_k)^{-1} S_k - [J(x^*)^T J(x^*)]^{-1} S(x^*)\|$ $\leq \|(J_k^T J_k)^{-1}\| \|S_k - S(x^*)\|$ $+ \|(J_k^T J_k)^{-1} - [J(x^*)^T J(x^*)]^{-1} \|\|S(x^*)\|$ $\leq 2\alpha \|[J(x^*)^T J(x^*)]^{-1}\|\|x_k - x^*\| + \gamma \|S(x^*)\|\|x_k - x^*\|$ $= O(||x_k - x^*||)$. 即 $||(J_k^T J_k)^{-1} S_k|| \le ||[J(x^*)^T J(x^*)]^{-1} S(x^*)||$ + $||(J_k^T J_k)^{-1} S_k - [J(x^*)^T J(x^*)]^{-1} S(x^*)||$ $= \|[J(x^*)^T J(x^*)]^{-1} S(x^*)\| + O(\|x_k - x^*)\|.$ (7.8) Back 将(7.8)代入(7.7)即得本定立的结论.证毕.

注 7.1 若问题 (7.1) 满足定理 7.2 的条件且最优解 x^* 使得目标 函数值取零,则 $S(x^*)=0$,上面的结论表明迭代点列二阶收敛到 x^* . 但当 F(x) 在最优解点的函数值不为 0 时, 由于 $\nabla^2 f(x)$ 略去了不容 忽视的项 S(x), 因而难于期待 Gauss-Newton 算法会有好的数值效果.

§7.2 Levenberg-Marquardt 方法

Gauss-Newton 算法在迭代过程中要求矩阵 $J(x_k)$ 列满秩, 而这一 条件限制了它的应用. 为克服这个困难, Levenberg-Marquardt 方法通 过求解下述优化模型来获取搜索方向

$$d_k = \arg\min_{d \in \mathbb{R}^n} \|J_k d + F_k\|^2 + \mu_k \|d\|^2,$$

其中 $\mu_k > 0$. 由最优性条件知 d_k 满足

$$\nabla(\|J_k d + F_k\|^2 + \mu_k \|d\|^2) = 2[(J_k^T J_k + \mu_k I)d + J_k^T F_k] = 0.$$

Back

求得

$$d_k = -(J_k^T J_k + \mu_k I)^{-1} J_k^T F_k.$$

(7.9)

若 $g_k = J_k^T F_k \neq 0$, 则对任意 $\mu_k > 0$,

 $q_k^T d_k = -(J_k^T F_k)^T (J_k^T J_k + \mu_k I)^{-1} (J_k^T F_k) < 0.$

所以 d_k 是 f(x) 在 x_k 点的下降方向. 这样, 我们便得到求解非线性最

小乘问题的 L-M 方法:

算法 7.1 (全局收敛的 L-M 方法)

步 1 取 ρ , $\sigma \in (0,1)$ 和 $\mu_0 > 0$, $x_0 \in \mathbb{R}^n$. 置 k := 0.

步 2 若 $g(x_k) = 0$, 停算.

步3 求解下面的方程组

 $(J_{k}^{T}J_{k} + \mu_{k}I)d = -J_{k}^{T}F_{k},$

(7.10)

得 d_k .

步 4 由 Armijio 搜索求步长. 令 m_k 是满足下面不等式的最小非负整数 m:

$$f(x_k + \rho^m d_k) \le f_k + \sigma \rho^m g_k^T d_k. \tag{7.11}$$

步 5 置 $x_{k+1} := x_k + \alpha_k d_k$, k := k+1, 按某种方式更新 μ_k 的值, 转步 2.

下面我们来讨论 L-M 算法的收敛性. 注意到算法 7.1 中搜索方向 d_k 的取值其实是与 μ_k 有关的, 严格意义上讲, d_k 应记为 $d_k(\mu_k)$. 因此 L-M 方法的关键是在迭代过程中如何调整参数 μ_k . 为此我们先给出 如下结论.

引理 7.1 $\|d_k(\mu)\|$ 关于 $\mu>0$ 单调不增,且当 $\mu\to\infty$ 时, $\|d_k(\mu)\|\to0$.

证明 注意到 由 (7.10) 知

故

于是,

 $(J_k^T J_k + \mu I) d_k(\mu) = -J_k^T F_k.$ 对上式两边关于 μ 求导,

 $\frac{\partial d_k(\mu)}{\partial \mu} = -(J_k^T J_k + \mu I)^{-1} d_k(\mu).$

 $\frac{\partial \|d_k(\mu)\|^2}{\partial \mu} = 2d_k(\mu)^T \frac{\partial d_k(\mu)}{\partial \mu}.$

 $d_k(\mu) + (J_k^T J_k + \mu I) \frac{\partial d_k(\mu)}{\partial \mu} = 0.$

 $\frac{\partial \|d_k(\mu)\|^2}{\partial \mu} = -2d_k(\mu)^T (J_k^T J_k + \mu I)^{-1} d_k(\mu) \le 0.$

(7.13)

(7.12)

Back

从而 $\|d_k(\mu)\|^2$ 关于 μ 单调不增. 由 (7.9) 式可以得到命题的第二个结论. 证毕.

从几何直观来看,当矩阵 $J_k^T J_k$ 接近奇异时,由 Gauss-Newton 算法得到的搜索方向的模 $\|d_k^{GN}\|$ 相当地大. 而在 L-M 方法中,通过引入正参数 μ 就避免了这种情形出现. 下面讨论参数 μ 对搜索方向角度的影响.

引理 7.2 $d_k(\mu)$ 与 $-g_k$ 的夹角 θ 关于 $\mu > 0$ 单调不增.

证明 由

$$\cos \theta = \frac{-g_k^T d_k(\mu)}{\|g_k\| \|d_k(\mu)\|}$$

Back

知

$$\frac{\partial \cos \theta}{\partial \mu} \frac{\partial}{\partial \mu} \left(\frac{-g_k^T d_k(\mu)}{\|g_k\| \|d_k(\mu)\|} \right)$$

$$-g_k^T \frac{\partial d_k(\mu)}{\partial \mu} \|g_k\| \|d_k(\mu)\| + g_k^T d_k(\mu) \|g_k\| \frac{\partial \|d_k(\mu)\|}{\partial \mu}$$

$$= \|d_k(\mu)\| \|g_k\| g_k^T (J_k^T J_k + \mu I)^{-1} d_k(\mu)$$

$$-g_k^T d_k(\mu) \|g_k\| d_k(\mu)^T (J_k^T J_k + \mu I)^{-1} d_k(\mu) / \|d_k(\mu)\|$$

$$= \|g_k\| g_k^T [\|d_k(\mu)\| (J_k^T J_k + \mu I)^{-1} d_k(\mu)$$

$$-d_k(\mu) d_k(\mu)^T (J_k^T J_k + \mu I)^{-1} d_k(\mu) / \|d_k(\mu)\|]$$

$$= \frac{\|g_k\|}{\|d_k(\mu)\|} g_k^T \big[\|d_k(\mu)\|^2 I - d_k(\mu) d_k(\mu)^T \big] (J_k^T J_k + \mu I)^{-1} d_k(\mu)$$

$$= -\frac{\|g_k\|}{\|d_k(\mu)\|} g_k^T \big[\|d_k(\mu)\|^2 I - d_k(\mu) d_k(\mu)^T \big] (J_k^T J_k + \mu I)^{-2} g_k$$

$$= -\|g_k\| \|d_k(\mu)\| g_k^T (J_k^T J_k + \mu I)^{-2} g_k$$

$$+ \|g_k\| g_k^T (J_k^T J_k + \mu I)^{-1} g_k g_k^T (J_k^T J_k + \mu I)^{-3} g_k / \|d_k(\mu)\|$$

$$= \frac{\|g_k\|}{\|d_k(\mu)\|} \Big\{ \Big[-g_k^T (J_k^T J_k + \mu I)^{-2} g_k g_k^T (J_k^T J_k + \mu I)^{-2} g_k \Big]$$

$$+ g_k^T (J_k^T J_k + \mu I)^{-1} g_k g_k^T (J_k^T J_k + \mu I)^{-3} g_k \Big\}.$$

因为 $J_k^T J_k$ 半正定,故存在正交阵 Q 使得

 $Q^T J_k^T J_k Q = \operatorname{diag}\{\lambda_1, \cdots, \lambda_n\}.$

 $Q^{T}(J_{k}^{T}J_{k} + \mu I)^{-1}Q = \operatorname{diag}\left\{\frac{1}{\lambda_{1} + \mu}, \cdots, \frac{1}{\lambda_{n} + \mu}\right\},$

记 $v_i := (Q^T g_k)_i$, 则有

$$g_k^T (J_k^T J_k + \mu I)^{-1} g_k = (Q^T g_k)^T \operatorname{diag} \left\{ \frac{1}{\lambda_1 + \mu}, \cdots, \frac{1}{\lambda_n + \mu} \right\} (Q^T g_k)$$

$$= \sum_{i=1}^{n} \frac{1}{\lambda_i + \mu} v_i^2.$$

$$g_k^T(.$$

$$g_k^T(J_k^TJ_k^TJ_k^T)$$

$$g_k^T (J_k^T J_k + \mu I)^{-2} g_k = \sum_{i=1}^n \frac{1}{(\lambda_i + \mu)^2} v_i^2,$$
$$g_k^T (J_k^T J_k + \mu I)^{-3} g_k = \sum_{i=1}^n \frac{1}{(\lambda_i + \mu)^3} v_i^2.$$

$$-\mu I)^{-3}g_k =$$

$$=\sum_{i=1}^{n} (\lambda_i + \sum_{i=1}^{n} (\lambda_i + \sum_{i=1}^{n$$

$$\frac{1}{(\lambda_i + \mu)^3} v_i^2.$$

$$(-\mu)^2 v_i^2$$

这样(7.14)式的分子等于

$$= \frac{\|g_k\|}{\|d_k(\mu)\|} \sum_{i=1}^n \sum_{j=1}^n \left[\frac{-v_i^2 v_j^2}{(\lambda_i + \mu)^2 (\lambda_j + \mu)^2} + \frac{v_i^2 v_j^2}{(\lambda_i + \mu)(\lambda_j + \mu)^3} \right]$$

$$= \frac{\|g_k\|}{\|d_k(\mu)\|} \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n \frac{v_i^2 v_j^2}{(\lambda_i + \mu)^3 (\lambda_j + \mu)^3} \left[-2(\lambda_i + \mu)(\lambda_j + \mu) + (\lambda_i + \mu)^2 + (\lambda_j + \mu)^2 \right] \ge 0.$$

 $\frac{\|g_k\|}{\|d_k(\mu)\|} \Big[-\Big(\sum_{i=1}^n \frac{v_i^2}{(\lambda_i + \mu)^2}\Big)^2 + \Big(\sum_{i=1}^n \frac{v_i^2}{\lambda_i + \mu}\Big) \Big(\sum_{i=1}^n \frac{v_i^2}{(\lambda_i + \mu)^3}\Big) \Big]$

从而 d_k 与 $-g_k$ 的夹角 θ 关于 $\mu > 0$ 单调不增. 证毕. 可以设想, 当参数 $\mu > 0$ 充分大时, $d_k(\mu)$ 的方向与目标函数的负 梯度方向一致.

引理 7.3 $(J_k^T J_k + \mu I)$ 的条件数关于 $\mu > 0$ 单调不增.

证明 由 $J_k^T J_k$ 为对称半正定矩阵可知, 存在正交阵 Q, 使

$$Q^T J_k^T J_k Q = \operatorname{diag}\{\lambda_1, \cdots, \lambda_n\}, \quad \sharp \, h \, \lambda_1 \geq \cdots \geq \lambda_n \geq 0.$$

所以 $(J_k^T J_k + \mu I)$ 的条件数为

$$\|(J_k^T J_k + \mu I)\|\|(J_k^T J_k + \mu I)^{-1}\| = \frac{\lambda_1 + \mu}{\lambda_2 + \mu}.$$

而

$$\frac{\partial}{\partial u} \left(\frac{\lambda_1 + \mu}{\lambda_n + \mu} \right) = \frac{\lambda_n - \lambda_1}{(\lambda_n + \mu)^2} \le 0,$$

从而 $(J_k^T J_k + \mu I)$ 的条件数关于 $\mu > 0$ 单调不增. 证毕.

在具体的 L-M 算法中, 我们用类似于调整信赖域半径的策略来 调整参数 μ . 首先, 在当前迭代点定义一个二次函数

$$q(d) = f(x_k) + (J_k^T F_k)^T d + \frac{1}{2} d^T (J_k^T J_k) d.$$

基于当前给出的 μ , 根据 (7.9) 计算 d_k , 然后考虑 q(d) 和目标函数的增量

$$\Delta q(d_k) = q(d_k) - q(0) = (J_k^T F_k)^T d_k + \frac{1}{2} d_k^T (J_k^T J_k) d_k,$$

$$\Delta f(d_k) = f(x_k + d_k) - f(x_k) = f(x_{k+1}) - f(x_k).$$

用 η_k 表示两增量之比

$$\eta_k = \frac{\Delta f(d_k)}{\Delta q(d_k)} = \frac{f(x_{k+1}) - f(x_k)}{(J_k^T F_k)^T d_k + \frac{1}{2} d_k^T (J_k^T J_k) d_k}.$$

在 L-M 算法的每一步, 先给 μ_k 一个初始值, 如取为上一次迭代步的值, 计算 d_k . 然后根据 η_k 的值调整 μ_k , 最后根据调整后的 μ_k 计算 d_k , 并进行线搜索, 进而完成 L-M 算法的一个迭代步. 显然, 当 η_k 接近 1时, 二次函数 q(d) 在 x_k 点拟合目标函数比较好, 用 L-M 方法求解非线性最小乘问题时, 参数 μ 应取得小一些. 换言之, 此时用 Gauss-Newton

Back

法求解更为有效. 反过来, 当 η_k 接近 0 时, 二次函数 q(d) 在 x_k 点拟合目标函数比较差, 需要减小 d_k 的模长. 根据引理 7.1, 应增大参数 μ 的取值来限制 d_k 的模长. 而当比值 η_k 既不接近于 0 也不接近于 1, 则认为参数 μ_k 选取得当, 不做调整. 通常 η 的临界值为 0.25 和 0.75. 据此, 得到算法 7.1 中参数 μ_k 的一个更新规则如下

$$\mu_{k+1} := \begin{cases} 0.1\mu_k, & \text{\cong } \eta_k > 0.75, \\ \mu_k, & \text{\cong } 0.25 \le \eta_k \le 0.75, \\ 10\mu_k, & \text{\cong } \eta_k < 0.25. \end{cases}$$
 (7.15)

下面是 Levenerg-Marquardt 方法的收敛性定理.

定理 7.3 设 $\{x_k\}$ 是由算法 7.1 产生无穷迭代序列, 若 $\{x_k, \mu_k\}$ 的某一聚点 (x^*, μ^*) 满足 $J(x^*)^T J(x^*) + \mu^* I$ 正定, 则

$$\nabla f(x^*) = J(x^*)^T F(x^*) = 0.$$

Back

证明 由于 $\mu_k > 0$, d_k 为下降方向, 存在收敛于 x^* 的子列 x_{k_i} , 满 足 $J_{k_i}^T J_{k_i} \to J(x^*)^T J(x^*), \quad \mu_{k_i} \to \mu^*.$ 由于 $J(x^*)^T J(x^*) + \mu^* I$ 是正定矩阵, 若 $\nabla f(x^*) \neq 0$, 则 $d_{k_i} \to d^* = -[J(x^*)^T J(x^*) + \mu^* I]^{-1} J(x^*)^T F(x^*),$ 而且 d^* 是 x^* 点的下降方向. 所以对 $\rho \in (0,1)$, 存在非负整数 m^* 使得 $f(x^* + \rho^{m^*}d^*) < f(x^*) + \sigma \rho^{m^*} \nabla f(x^*)^T d^*.$ 注意到 $x_{k_i} \rightarrow x^*$, 当 j 充分大时, 由连续性知 $f(x_{k_i} + \rho^{m^*} d_{k_i}) < f(x_{k_i}) + \sigma \rho^{m^*} \nabla f(x_{k_i})^T d_{k_i}.$

由 Armijo 步长规则知 $m^* \geq m_{k_i}$, 所以 $f(x_{k_i+1}) = f(x_{k_i} + \rho^{m_{k_i}} d_{k_i})$ $\leq f(x_{k_i}) + \sigma \rho^{m_{k_j}} \nabla f(x_{k_i})^T d_{k_i}$ $\leq f(x_{k_i}) + \sigma \rho^{m^*} \nabla f(x_{k_i})^T d_{k_i},$ 即对充分大的 i $f(x_{k_i+1}) \le f(x_{k_i}) + \sigma \rho^{m^*} \nabla f(x_{k_i})^T d_{k_i}.$ (7.16)又 $\lim_{i \to \infty} f(x_{k_j+1}) = \lim_{i \to \infty} f(x_{k_j}) = f(x^*).$ 从而对(7.16)两边求极限得

 $f(x^*) \le f(x^*) + \sigma \rho^{m^*} \nabla f(x^*)^T d^*.$

这与 $\nabla f(x^*)^T d^* < 0$ 矛盾. 所以 $\nabla f(x^*) = 0$. 证毕.

下面分析算法 7.1 的收敛速度.

定理 7.4 设由算法 7.1 产生的迭代序列 $\{x_k\}$ 收敛到 (7.1) 的一个 局部最优解 x^* . 若 $J(x^*)^T J(x^*)$ 非奇异, $\left(\frac{1}{2} - \sigma\right) J(x^*)^T J(x^*) - \frac{1}{2} S(x^*)$ 正定, 且 $G(x) = J(x)^T J(x) + S(x)$ 在 x^* 附近一致连续, $\mu_k \to 0$. 则 当 k 充分大时, $\alpha_k = 1$, 且

$$\limsup_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} \le \|[J(x^*)^T J(x^*)]^{-1}\| \|S(x^*)\|.$$

证明 要证 $\alpha_k = 1$, 只需证对充分大的 k,

$$f(x_k + d_k) - f(x_k) \le \sigma g_k^T d_k.$$

对任意 k > 0, 由中值定理知存在 $\zeta_k \in (0,1)$, 使得

对任息
$$k>0$$
,田中但定理知存任 $\zeta_k\in(0,1)$,便侍
$$f(x_k+d_k)-f(x_k)=g_k^Td_k+\frac{1}{2}d_k^TG(x_k+\zeta_kd_k)d_k.$$

(7.17)

由 (7.9) 式, $-(1-\sigma)g_k^T d_k - \frac{1}{2}d_k^T G(x_k + \zeta_k d_k)d_k$

$$-(1-\sigma)g_k^T d_k - \frac{1}{2}d_k^T G(x_k + \zeta_k d_k) d_k$$

$$= (1-\sigma)d_k^T (J_k^T J_k + \mu_k I) d_k - \frac{1}{2}d_k^T G(x_k + \zeta_k d_k) d_k$$

$$= (1-\sigma)d_k^T J_k^T J_k d_k + (1-\sigma)\mu_k ||d_k||^2 - \frac{1}{2}d_k^T (J_k^T J_k + S_k) d_k$$

$$+ \frac{1}{2}d_k^T [G(x_k) - G(x_k + \zeta_k d_k)] d_k$$

$$= \left(\frac{1}{2} - \sigma\right) d_k^T J_k^T J_k d_k + (1-\sigma)\mu_k ||d_k||^2 - \frac{1}{2}d_k^T S_k d_k$$

$$+ \frac{1}{2}d_k^T [G(x_k) - G(x_k + \zeta_k d_k)] d_k.$$

 $+\frac{1}{2}d_k^T[G(x_k)-G(x_k+\zeta_kd_k)]d_k.$ 由 $x_k \to x^*$ 知 $g_k \to 0$, 从而 $d_k \to 0$. 又 $\mu_k \to 0$, 所以利用 G(x) 的一 致连续性知

$$V_k := (1 - \sigma)\mu_k I + \frac{1}{2}[G(x_k) - G(x_k + \zeta_k d_k)] \to 0.$$

Back

由题设, k 充分大时,

$$-(1 - \sigma)g_k^T d_k - \frac{1}{2} d_k^T G(x_k + \zeta_k d_k) d_k$$

= $d_k^T \Big[\Big(\frac{1}{2} - \sigma \Big) J_k^T J_k - \frac{1}{2} S_k \Big] d_k + d_k^T V_k d_k > 0.$

从而 $\alpha_k = 1$ 成立. 这样,

$$x_{k+1} - x^* = x_k - x^* - (J_k^T J_k + \mu_k I)^{-1} g_k$$

$$= -(J_k^T J_k + \mu_k I)^{-1} \{ [g_k - G_k(x_k - x^*)] - [(J_k^T J_k + \mu_k I)(x_k - x^*) - G_k(x_k - x^*)] \}$$

$$= -(J_k^T J_k + \mu_k I)^{-1} [g_k - g(x^*) - G_k(x_k - x^*)]$$
$$+ (J_k^T J_k + \mu_k I)^{-1} (\mu_k I - S_k) (x_k - x^*)$$

$$= -(J_k^T J_k + \mu_k I)^{-1} \int_0^1 \left[G(x^* + t(x_k - x^*) - G(x_k)) \right] (x_k - x^*) dt$$

$$+ (J_k^T J_k + \mu_k I)^{-1} (\mu_k I - S_k) (x_k - x^*).$$

故

$$||x_{k+1} - x^*|| \le ||(J_k^T J_k + \mu_k I)^{-1}|| \Big[\int_0^1 ||G(x^* + t(x_k - x^*)) - G(x_k)|| dt + ||\mu_k I - S_k|| \Big] ||x_k - x^*||.$$

由 $\mu_k \to 0$, $x_k \to x^*$ 和 G(x) 的一致连续性,

 $\limsup_{k \to \infty} \frac{\|x_{k+1} - x^*\|}{\|x_k - x^*\|} \le \|[J(x^*)^T J(x^*)]^{-1}\| \|S(x^*)\|.$

证毕.

或

注
$$f$$
 . f . f

 $\mu_k = \theta ||F_k|| + (1 - \theta) ||J_k^T F_k||, \quad \theta \in [0, 1],$ 则可以建立 Levenberg-Marquardt 算法的二阶收敛性质.

§7.3 L-M 算法的 Matlab 程序

本节我们给出 L-M 算法 7.1 的 Matlab 程序, 在某种意义上该程序是通用的.

程序 7.1 利用 LM 方法求解非线性方程组 F(x) = 0, 可适用于未知数的个数与方程的个数不相等的情形.

```
function [x,val,k]=lmm(Fk,JFk,x0)
%功能: 用L-M方法求解非线性方程组: F(x)=0
%输入: x0是初始点, Fk, JFk 分别是求F(xk)及F'(xk)的函数.
%输出: x, val分别是近似解及||F(xk)||的值, k是迭代次数.
maxk=100: %给出最大迭代次数
rho=0.55;sigma=0.4; muk=norm(feval(Fk,x0));
k=0; epsilon=1e-6; n=length(x0);
while(k<maxk)
   fk=feval(Fk,x0): %计算函数值
   jfk=feval(JFk,x0); %计算Jacobi阵
   gk=jfk'*fk;
   dk=-(jfk'*jfk+muk*eye(n))\gk; %计算搜索方向
   if(norm(gk)<epsilon), break; end %检验终止准则
```


30/33

44

>>

√

•

Back

```
m=0; mk=0;
                % 用Armijo搜索求步长
   while(m<20)
       newf=0.5*norm(feval(Fk,x0+rho^m*dk))^2;
       oldf=0.5*norm(feval(Fk,x0))^2;
       if(newf<oldf+sigma*rho^m*gk'*dk)</pre>
          mk=m; break;
       end
       m=m+1;
   end
   x0=x0+rho^mk*dk;
   muk=norm(feval(Fk,x0));
   k=k+1;
end
x=x0;
val=0.5*muk^2;
我们利用上面的程序来求解一个信非线性方程组.
```


Back

例 7.1 用 LM 方法求解非线性方程组求解下列方程组

 $\begin{cases} x_1 - 0.7\sin x_1 - 0.2\cos x_2 = 0, \\ x_2 - 0.7\cos x_1 + 0.2\sin x_2 = 0. \end{cases}$

解 先编制两个函数程序,并将它们作为 m 文件与程序 7.1 一起 存放于当前工作目录下.


```
%Fk.m
function y=Fk(x)
y(1)=x(1)-0.7*sin(x(1))-0.2*cos(x(2));
y(2)=x(2)-0.7*cos(x(1))+0.2*sin(x(2));
y=y(:);
%JFk.m
function JF=JFk(x)
```

JF=[1-0.7*cos(x(1)), 0.2*sin(x(2));

(()}

♦Back

0.7*sin(x(1)), 1+0.2*cos(x(2))];

该问题有解 $x^* \approx (0.52652, 0.50792)^T$. 我们利用程序 7.1, 终止准则取为 $\|\nabla f(x_k)\| \leq 10^{-6}$. 取不同的初始点, 数值结果如下表.

表 7.1 L-M 方法的数值结果.

初始点 (x0)	迭代次数 (k)	目标函数值 $ F(x_k) ^2/2$
$(0.0, 0.0)^T$	7	9.4380×10^{-16}
$(1.0, 1.0)^T$	6	7.4433×10^{-19}
$(1.0, -1.0)^T$	9	4.6783×10^{-19}
$(-1.0, 1.0)^T$	10	7.6358×10^{-22}
$(5.0, 5.0)^T$	14	3.2383×10^{-20}
$(-5.0, -5.0)^T$	20	2.1319×10^{-19}

Back