

위치기반데이터 분석(Location based Data Analytics) 11강_공간통계 분석(1)

ITS 표준노드 링크

ITS 표준노드 링크

• 구축 배경

- 현재 우리나라 교통망 [노드(Node)/링크(Link)] 체계는 지능형교통체계 [이하 "ITS(Intelligent Transportation Systems)"] 사업주체 별로 각기 개발되어 교통정보의 상호교환이 원활하게 이루어지지 못하고 있는 실정임
- 이에 교통정보 산업과 관련된 많은 업계에서는 교통정보의 원활한 교환을 위한 전국 교통망에 대해 단일화된 ID체계를 적용한 표준교통망 DB 구축이 필요

• 구축 목적

- 교통정보 실시간 교환에 기본이 되는 전국단위 표준 노드/링크를 통해 ITS 호환성과 상호연계 운용 효율성을 확보하고, 대국민 교통정보 제공 편의증진

ITS 표준노드 링크 - 네트워크 모델

- 노드: 차량이 도로를 주행함에 있어 속도의 변화가 발생되는 곳을 표현한 곳 (교차로, 교량/고가도로/지하차도/터널 시종점 등)
- <mark>링크</mark>: 속도변화 발생점이 노드와 노드를 연결한 선을 의미하며 실세계에서의 도로(도로, 교량, 고가도로, 지하차도, 터널 등)

노드(Node)테이블

필드명	NODE_ID	NODE_TYPE	NODE_NAME	TURN_P	REMARK
속설명	노트 ID 노트유형 교차로명칭 화전제한유무 비고	노트유령	교차로명칭	화전제한유무	비고

노드

링크를 구분하는 점(링크 시작점,링크 종료점)으로 표준 로드/링크 구축 운영 지침에 따라 도로교차점,도로 시종점, 교통통제점, 도로 구조 변환점,행정구역 변환점, 도로 운영 변환점, 교통 진출입점, 그와에 ITS사업 주체가 필요에 따라 정하는 지점

부가정보(회전제한정보)

회전제한이 존재하는 노도에 한해 회전제한 상세 정보를 입력한 테이블

링크(Link)테이블

필드명	LINK_ID	F_NODE	T_NODE	ROAD_U8E	LANE8	ROAD_RANK	ROAD_TYPE	ROAD_NO
속설명	링크 ID	시작노트 ID	종료노트 ID	도로사용여부	차로수	도로등급	도로유령	도로번호

필드명	ROAD_NAME	MULTILLINK	CONNECT	MAX_8PD	REST_VEH	REST_W	REST_H	REMARK
속설명	도토명	중용구간여부	연결로코드	최고제한속도	등까게 한차량	등까게 한하중	등짜제 한높이	비고

링크

노드와 노드를 이은 도로중심선을 방향별로 일정간격 이격시켜 생성한 선으로서 실제 도로구간에 대한 정보를 담게됨

링크부가정보(중용구간정보)

링크가 중복노선으로 사용되어지는 중용구간인 경우에 한해 해당하는 중용구간 정보를 입력한 테이블

노드/링크 ERD

활용

최단경로 분석

- seoul_network(korea2000).shp 파일 열기
- 공간처리 -> 툴박스 클릭
- 공간처리 툴박스 창에서 네트워크 분석
- 최단경로 (포인트에서 포인트로)

공간통계분석

공간위에서 발생하는 현상들을 통계적인 기법을 활용하여 패턴을 파악하고 현상을 이해하는 분석

공간분석

(Hotspot/Coldspot)

공간상에 값이 있는 객체를 분석하여 공간적분포를 판별 하는데 사용되는 분석기법 예우범지역

패턴분석-Voronghapen (보로노이,티센다각형)

포인트 데이터 기반으로 폴리곤을 생성하는 분석기법 예유역의 평균강우량

분포분석 - 방향분배 (DirectionalDistribution)

지리공간적 특성을 요약하는 표준타원 작성 예)이주 및 이사패턴

공간적 자기상관분석

(Spatial Autocorrelation)

인접해있는 공간단위들이 갖는 값을 비교하여 하나의 값으로 보여주는 글로벌지수를 산출하고, 지수를 분석하여 군집정도를 판정하는 기법 예강도사건수와사건발생원인 사이에상관관계

패턴분석-최근린

(NearestNeighbor)

분석대상 지역내의 객체들을 계산하여 공간패턴을 분석하는 기법

분포분석 - 중심설시

분석대상지역내의 중심을 식별하는 분석기법

예)범죄유형별 분포비교

밀도분석

(KernelDensity)

분석대상지역내 객체들의 point또는 polygon으로부터 단위 면적당 강도를 산출하는 방법 예인구밀집지역 부동산

보간법

(Interpolation)

특정 지점이나 속성값을 이용하여 알려지지 않은 곳의 속성값을 찾는 방법 예서울시전체

분포분석 - 표분계에도

(Standard Distance)

평균 주변의 피처분포를 측정하는 분석기법 예평균중심지의 분포한 범죄유형

군집분석

(GetisOrdGi)

분석지역내 객체의 z-score(통계적으로 의미있는 정도)를 계산하여 높은값과 낮은값들의 집중도를 분석 예)투표 패턴 분석, 소매분석

보간기능고도화-IDW

(Inverse Distance Weighted)

가까이 있는 값에 더 큰 가중값을 주어 보간하여 새로운 값을 결정하는 방법 예서울시전체 대기오염지도

보간기능고도화-TPS

(Thin-plate Spline)

평면상의 점들에서 주어지는 데이터 값을 보간하여 곡면을 찾는 방법

예) 표고점 등 추적

보간법(Interpolation)

알고 있는 데이터 값들을 이용하여 모르는 값을 추정하는 방법

1. IDW(Inverse Distance Weighted)

- 가까이 있는 실측값(Point)에 더 큰 가중 값을 주어 보간하는 방법
- 거리가 가까울수록(거리값이 작을수록) 높은 가중 값이 적용
- 반대로 실측값으로부터 멀어질수록 가중되는 값의 영향력은 줄여

2. 크리깅(Kriging)

- <Kriging> • 관심있는 지점에서 특성치를 알기 위해 이미 그 값을 알고 있는 주위일처 : www.biz-gis.com 서울시 기상관측소 대기오염 수치에 대한 보간 값들의 선형 조합으로 그 값을 예측하는 기법
- 가중치 함수로서 분산도(Variogram)를 사용한 일반화된 최소자승 알고리즘에 기반한 확률성 보간기술

3. TPS(Thin-plate spline)

- 데이터 보간 및 평활화(Smoothing)를 위한 스플라인 기반 기법
- 얇은 금속 시트의 구부러짐을 포함한 물리적인 비유
- * spline : 주어진 복수의 제어점을 통과하는 부드러운 곡선

<IDW>

IDW 분석

최단경로 분석

- seoul_gu_2012.shp, winter_yavrg_tmp.shp, summer_yavrg_tmp.shp (epsg5174) 파일 열기
- 공간처리 툴박스 -> 보간법 -> 역거리 가중(IDW)보간법
- 벡터레이어: winter_yavrg_tmp, 보간속성값 win_tmep, 벡터레이어 속성 유형 창에 + 버튼 클릭으로 추가
- 범위 ... 버튼 클릭하여 지도에서 범위 선택
- 출력 래스터 크기 필셀크기 20m로 설정
- 생성된 출력물 확인
- 래스터 -> 추출 -> 마스크레이어로 래스터 자르기
- 입력출력물: IDW 래스터 자료, 마스크 레이어: seoul_gu_2012 실행

보간법(Interpolation)

역거리 가중(IDW) 보간법

- 잘라낸 출력물에 대해 마우스 오른쪽 버튼 -> 속성 -> 심볼 -> 렌더링 유형 -> 단일 밴드 유사색상
- 레이어 순서등을 정의하여 다음과 같은 서울시 겨울철 온도 지도를 생성
- 앞의 방법과 동일하게 summer_yavrg_tmp.shp 을 통해 여름철 온도지도를 생성

< 겨울철 서울시 온도지도>

< 여름철 서울시 온도지도>

