Organizacija datoteka

Indeks-sekvencijalna organizacija datoteke

Struktura, formiranje, traženje, obrada, ažuriranje, primena i ocena

- Indeksne datoteke
- Indeks-sekvencijalna organizacija datoteke
- Indeks-sekvencijalna metoda pristupa

Indeksne datoteke

Karakteristike indeksnih datoteka

- postojanje indeksa
 - pomoćna struktura podataka
 - realizovana u posebnoj datoteci, kao stablo traženja
 - sadrži parove

(vrednost ključa, relativna adresa sloga/bloka)

- za preslikavanje argumenta traženja u adresu sloga
- za brz pristup slučajno odabranom i logički narednom slogu
- smeštanje kompletnih slogova
 - u posebnu datoteku zonu podataka (primarnu zonu)
 - može biti različito organizovana

Indeksne datoteke

Vrste indeksnih datoteka

statičke

- istorijski prve
 - danas ređe u praktičnoj upotrebi
- statička alokacija memorijskog prostora
 - definiše se prilikom projektovanja organizacije
- statički indeks
 - formira se i, nakon formiranja, ne ažurira se

dinamičke

- praktično nezaobilazne u realnim projektima
- dinamička alokacija memorijskog prostora
- dinamički indeks
 - ažurira se paralelno sa ažuriranjem zone podataka
 - održavanje poželjnih karakteristika u vremenu

Indeksne datoteke

Efikasnost organizacija u upotrebi

- sekvencijalne datoteke
 - ideal redosledne obrade i traženja logički narednih slogova
- rasute datoteke
 - ideal direktne obrade i traženja slučajno odabranih slogovaa
- indeksne datoteke
 - struktura kompromisa
 - solidna podrška direktne i redosledne obrade, kao i obe vrste traženja

- Indeksne datoteke
- Indeks-sekvencijalna organizacija datoteke
- Indeks-sekvencijalna metoda pristupa

Statička indeks-sekvencijalna datoteka

- tri memorijske zone ili osnovne organizacije datoteke
 - primarna zona ili zona podataka
 - sekvencijalna organizacija
 - zona indeksa
 - spregnuta organizacija n-arno stablo
 - · zona prekoračenja
 - spregnuta organizacija lanci prekoračilaca

ZONA INDEKSA

PRIMARNA ZONA

A, p						
, ·1	03	p(S ₁)	17	p(S ₂)	23	p(S ₃)

A ₂ ^p						
, 12	25	p(S ₄)	37	p(S ₅)	49	p(S ₆)

Δ ₂ ^p					
A 3	67	p(S ₇)	*		

Primarna zona

- slogovi uređeni saglasno rastućim vrednostima ključa
- slogovi grupisani u blokove
 - poželjan što veći faktor blokiranja
- kreira se u postupku formiranja statičke indekssekvencijalne datoteke
- ciljevi
 - iskoristiti poželjne osobine sekvencijalne organizacije u redoslednoj obradi podataka
 - izbeći efekat loših performansi ažuriranja sekvencijalno organizovane datoteke

Zona indeksa

- puno stablo traženja, spregnuta struktura
 - reda $n (n \ge 2)$
 - visine h
- čvor stabla = blok, sadrži od 1 do n elemenata
 - parovi (k_e, A_e), e ∈ {1,..., n}
 - n faktor blokiranja u zoni indeksa
 - $-k_e = k(S)$ vrednost ključa sloga S
 - A_e je adresa:
 - » bloka primarne zone u kojem je slog S, u slučaju lista, ili
 - » podstabla, tj. drugog čvora stabla traženja koji takođe sadrži $k_{\rm e}$, u slučaju neterminalnog čvora
 - elementi u čvoru uređeni saglasno rastućim vrednostima ključa $k_{\rm e}$
 - čvor je sekvencijalno organizovana struktura

Zona indeksa

- reprezentativne vrednosti ključa svakog bloka primarne zone propagirane u stablo
 - najmanje ili najveće vrednosti ključa iz svakog bloka primarne zone
- elementi listova stabla
 - sadrže po jednu vrednost ključa iz svakog bloka
- elementi čvorova na višim nivoima hijerarhije stabla
 - sadrže po jednu vrednost ključa iz svakog direktno podređenog čvora
 - vrednosti ključa ponavljaju se u čvorovima na svim nižim nivoima hijerarhije
- nakon kreiranja, ne ažurira se

Zona indeksa

- neterminalni čvor sa m ($1 \le m \le n$) elemenata
 - poseduje m direktno podređenih čvorova
- adresa A_e pokazivač, relativna adresa

Vrste zone indeksa

- zona indeksa s propagacijom najvećih vrednosti ključa iz svakog bloka
 - u slučaju poslednjeg bloka, propagira se ne aktuelna najveća vrednost ključa, već najveća dozvoljena vrednost ključa
- zona indeksa s propagacijom najmanjih vrednosti ključa iz svakog bloka
 - u slučaju prvog bloka, propagira se ne aktuelna najmanja vrednost ključa, već najmanja dozvoljena vrednost ključa

Zona indeksa

 posmatra se list u stablu traženja sa m elemenata (1 ≤ m ≤ n):

$$(k_1, A_1), \dots, (k_{e-1}, A_{e-1}), (k_e, A_e), (k_{e+1}, A_{e+1}), \dots, (k_m, A_m)$$

- A_e , $e \in \{1,...,m\}$ adrese sukcesivnih blokova primarne zone
- ako stablo sadrži najveće vrednosti ključa, slog sa k(S) je u
 - bloku sa adresom A_1 ako je k(S) ≤ k_1
 - bloku sa adresom A_e , ako je k_{e-1} < k(S) ≤ k_e , e ∈ {2,...m}
- ako stablo sadrži najmanje vrednosti ključa, slog sa k(S) je u
 - bloku sa adresom A_m ako je $k(S) ≥ k_m$
 - bloku sa adresom A_e , ako je k_e ≤ k(S) < k_{e+1} , e∈ {1,...m-1}

- Primer indeks-sekvencijalna datoteka D_{insek}
 - propagacija najvećih vrednosti ključa
 - iz svakog bloka primarne zone, osim iz poslednjeg
 - najveća dozvoljena vrednost ključa iz poslednjeg bloka
 - -N = 13 slogova
 - faktor blokiranja u primarnoj zoni f = 3
 - red stabla traženja i faktor blokiranja u zoni indeksa
 n = 2

- Primer indeks-sekvencijalna datoteka D_{insek}
 - propagacija najvećih vrednosti ključa

PRIMARNA ZONA

Δ, ^p						
A_1	03	p(S ₁)	07	p(S ₂)	13	p(S ₃)

$\mathbf{A}_{2}^{\mathbf{p}}$						
7.2	15	p(S ₄)	19	p(S ₅)	23	p(S ₆)
ı						

A ₂ ^p						
, ,3	25	p(S ₇)	27	p(S ₈)	29	p(S ₉)

р						
•4	34	p(S ₁₀)	43	p(S ₁₁)	49	p(S ₁₂)

Δ_p					
A ₅	64	p(S ₁₃)	*		

- Primer indeks-sekvencijalna datoteka D_{insek}
 - propagacija najvećih vrednosti ključa

ZONA INDEKSA

Zona indeksa

- broj čvorova C_i
 - na *i*-tom nivou hijerarhije stabla (*i*=1,...,*h*)

$$C_i = \left\lceil \frac{B}{n^{h-i+1}} \right\rceil$$

- -B − broj blokova u primarnoj zoni ($B \ge 1$)
- visina stabla

$$h = \lceil \log_n B \rceil$$

ukupni broj čvorova stabla C

$$C = \sum_{i=1}^{h} \left\lceil \frac{B}{n^{h-i+1}} \right\rceil$$

Zona indeksa

- kapacitet stabla
 - koliko parova (k_e, A_e) se može upisati u čvorove

$$K = nC$$

 stablo traženja obezbeđuje relativno brz pristup za traženje slučajno odabranog sloga

Zona prekoračenja

- sadrži kompletne slogove datoteke
 - kao i primarna zona
 - koji se upisuju u zonu prekoračenja pri upisu novih slogova
 - koji se nazivaju prekoračioci
 - svaki blok primarne zone može imati svoje prekoračioce

Zona prekoračenja

- kada blok u primarnoj zoni nije kompletan (m ≠ n)
 - upis novog sloga dovodi samo do pomeranja slogova u bloku
- kada je **blok u primarnoj zoni kompletan** (m = n)
 - upis svakog novog sloga dovodi do upisa jednog od slogova koji pripadaju bloku sa adresom A_e, e∈{1,...m}, u zonu prekoračenja
 - $k_{e(max)}$ trenutno maksimalna vrednost ključa u bloku sa adresom A_{e}
 - ako je $k(S) < k_{e(max)}$
 - novi slog se upisuje u blok a svi slogovi sa vrednošću ključa većom od k(S) pomeraju se za jednu lokaciju ka kraju bloka
 - slog sa vrednošću ključa $k_{e(max)}$ se upisuje u zonu prekoračenja
 - ako je $k(S) > k_{e(max)}$
 - novi slog se upisuje u zonu prekoračenja

Zona prekoračenja

- sprežu se logički neposredno susedni prekoračioci iz jednog bloka, faktor blokiranja $f_z = 1$
 - za svaki blok primarne zone, najviše jedan lanac spregnutih prekoračilaca
 - slogovi u svakom lancu prekoračilaca uređeni su u rastućem (alternativno opadajućem) redosledu
 - dodatno, lanac slobodnih blokova
- Pokazivač na početak lanca dva načina
 - direktno povezivanje sa listom stabla traženja
 - pokazivač na početak lanca smešta se u odgovarajući list
 - indirektno povezivanje sa listom stabla traženja
 - pokazivač na početak lanca smešta se u prateći deo odgovarajućeg bloka u primarnoj zoni

it

Indeks-sekvencijalna organizacija

Struktura zone prekoračenja - indirektni pristup

PRIMARNA ZONA

A_2^p							.10
7.2	15	p(S ₄)	19	p(S ₅)	23	p(S ₆)	*

ZONA PREKORAČENJA

- Indeksne datoteke
- Indeks-sekvencijalna organizacija datoteke
- Indeks-sekvencijalna metoda pristupa

Podržana

- najčešće, sistemima za upravljanje datoteka, ugrađenim u OS mainframe računara
- ređe savremenim SUBP-ovima

Obezbeđuje

- formiranje, traženje, ažuriranje i reorganizaciju
- sekvencijalni, direktni i dinamički način pristupa indeks-sekvencijalnoj datoteci

Formiranje IS datoteke

- program redosledno učitava slogove ulazne sekvencijalne datoteke
- smešta blokove u primarnu zonu IS datoteke
- alternativno, već formirana sekvencijalna datoteka proglašava se primarnom zonom IS datoteke
- formiranje zone indeksa

Formiranje IS datoteke

- formiranje zone indeksa
 - iterativan postupak, po nivoima stabla traženja
 - s dna na gore → s leva na desno
 - prvo se formiraju svi listovi čvorovi nivoa h, zatim čvorovi nivoa h – 1, itd. do čvorova nivoa 1
 - u svaki čvor na *i-*tom nivou hijerarhije (*i=h-*1, *h-*2,...,1)
 - upisuju se najveće (alternativno najmanje) vrednosti ključa iz n sukcesivnih čvorova na nivou hijerarhije i+1
 - propagacija najvećih vrednosti
 - u poslednji element krajnjeg desnog čvora upisuje se maksimalna dozvoljena vrednost ključa
 - propagacija najmanjih vrednosti
 - u prvi element krajnjeg levog čvora upisuje se minimalna dozvoljena vrednost ključa

Formiranje IS datoteke

- formiranje zone prekoračenja
 - alocira se prazna zona prekoračenja
 - svi blokovi sprežu se u lanac slobodnih blokova
 - početak lanca upisuje se u zaglavlje zone prekoračenja

Traženje logički narednog sloga

- vrši se kombinovanom primenom
 - metode linearnog traženja i
 - metode traženja praćenjem pokazivača
- počinje u prvom bloku primarne zone
 - svako naredno traženje se nastavlja od tekućeg sloga datoteke u bloku primarne zone
 - linearna metoda
 - po dolasku do poslednjeg sloga bloka traženje se nastavlja u lancu prekoračilaca, ako postoji
 - metoda praćenja pokazivača
 - indirektno povezivanje prekoračilaca nastavak traženja direktno u zoni prekoračenja
 - direktno povezivanje prekoračilaca pristup direktno nadređenom listu i nastavak traženja u zoni prekoračenja

Traženje logički narednog sloga

- direktno povezivanje prekoračilaca
 - pristupa se blokovima primarne zone, prekoračiocima i listovima stabla traženja
 - broj pristupa R i pri uspešnom i pri neuspešnom traženju jednog logički narednog sloga

$$0 \le R \le B + \left\lceil \frac{B}{n} \right\rceil + Z - (i+j+k)$$

- Z ukupni broj slogova u zoni prekoračenja
- i redni broj tekućeg bloka datoteke u odnosu na početak primarne zone
- $-j=\lceil i/n \rceil$ redni broj tekućeg lista stabla traženja
- -k broj slogova zone prekoračenja kojima se već pristupilo

Traženje logički narednog sloga

- indirektno povezivanje prekoračilaca
 - broj pristupa R i pri uspešnom i pri neuspešnom traženju jednog logički narednog sloga

$$0 \le R \le B + Z - (i + k)$$

traženje logički narednog sloga je efikasnije

Traženje slučajno odabranog sloga

- praćenjem pokazivača u stablu pristupa
 - započinje u korenu i stiže do lista u stablu traženja
 - uvažava organizaciju sa propagacijom maksimalnih ili minimalnih vrednosti ključa iz svakog bloka

direktno povezivanje prekoračilaca

- dolaskom do odgovarajućeg elementa u listu odluka o nastavku traženja
 - u bloku primarne zone ili
 - praćenjem lanca prekoračilaca, u zoni prekoračenja

indirektno povezivanje prekoračilaca

- prati se pokazivač odgovarajućeg elementa u listu i prelazi se u blok podataka u primarnoj zoni
- po potrebi, nastavlja se traženje praćenjem lanca prekoračilaca

Traženje slučajno odabranog sloga

- direktno povezivanje prekoračilaca
 - broj pristupa R i pri uspešnom i pri neuspešnom traženju jednog slučajno odabranog sloga

$$h+1 \le R \le h+z$$

- indirektno povezivanje prekoračilaca
 - broj pristupa R i pri uspešnom i pri neuspešnom traženju jednog slučajno odabranog sloga

$$h+1 \le R \le h+1+z$$

- z dužina lanca prekoračilaca za jedan blok primarne zone
- nešto efikasnije traženje u datoteci s direktnim povezivanjem prekoračilaca

Obrada IS datoteke

- moguća efikasna obrada i
 - u režimu redosledne obrade i
 - u režimu direktne obradne
- pogodne za korišćenje u ulozi vodeće datoteke u oba režima
- redosledna obrada putem vodeće datoteke od N_{ν} slogova odvija se
 - naizmeničnim pristupanjem blokovima primarne zone i njihovim lancima prekoračilaca
 - adresa prvog bloka primarne zone nalazi se u zaglavlju datoteke

Obrada IS datoteke

- ukupan broj pristupa pri redoslednoj obradi R_{uk}
 - za slučaj direktnog povezivanja

$$R_{uk} = B + Z + \lceil B/n \rceil$$

za slučaj indirektnog povezivanja

$$R_{uk} = B + Z$$

- očekivani broj pristupa pri uspešnom ili neuspešnom traženju jednog logički narednog sloga
 - za slučaj direktnog povezivanja $\overline{R} = \frac{B + Z + \lceil B/n \rceil}{N_v}$
 - za slučaj indirektnog povezivanja $\overline{R} = \frac{B+Z}{N_v}$

Obrada IS datoteke

- redosledna obrada
 - nešto efikasnija kod datoteke sa indirektnim povezivanjem prekoračilaca
- pri uobičajenim vrednostima reda stabla n razlika je neznatna

Obrada IS datoteke

- direktna obrada
 - putem vodeće datoteke od N_v slogova

$$N_{v} = N_{v}^{u} + N_{v}^{n}$$

očekivani ukupni broj pristupa

$$\overline{R}_{uk} = \overline{R}_u N_v^u + \overline{R}_n N_v^n$$

- $-\overline{R}_{u}$ očekivani broj pristupa pri uspešnom traženju
- $-\overline{R}_n$ očekivani broj pristupa pri neuspešnom traženju

Obrada IS datoteke

- direktna obrada
 - putem vodeće datoteke od N_v slogova
 - očekivani broj prekoračilaca po bloku primarne zone

$$\bar{z} = \frac{Z}{B}$$

- za datoteku sa direktnim povezivanjem prekoračilaca
 - ista verovatnoća zaustavljanja traženja na bilo kom slogu

$$\overline{R}_{u} = \overline{R}_{n} = h + \frac{f}{f + \overline{z}} + \frac{\overline{z}}{f + \overline{z}} \sum_{i=1}^{\overline{z}} i \frac{1}{\overline{z}}$$

$$\overline{R}_{u} = \overline{R}_{n} = h + \frac{2f + \overline{z}(\overline{z} + 1)}{2(f + \overline{z})}$$

Obrada IS datoteke

- direktna obrada
 - putem vodeće datoteke od N_v slogova
 - za datoteku sa indirektnim povezivanjem prekoračilaca

$$\overline{R}_{u} = \overline{R}_{n} = h + 1 + \frac{\overline{z}}{f + \overline{z}} \sum_{i=1}^{\overline{z}} i \frac{1}{\overline{z}} = h + 1 + \frac{\overline{z}(\overline{z} + 1)}{2(f + \overline{z})}$$

direktna obrada

 nešto efikasnija kod datoteke sa direktnim povezivanjem prekoračilaca

Ažuriranje IS datoteke

- vrši se u režimu direktne obrade
- upis novog sloga
 - nakon neuspešnog traženja
 - ako se neuspešno traženje zaustavilo u bloku primarne zone
 - vrši se pomeranje slogova sa većom vrednošću ključa od vrednosti ključa novog sloga za jednu lokaciju ka kraju bloka
 - novi slog se upisuje u lokaciju koju je zauzimao slog sa prvom većom vrednošću ključa, a slog sa do tada najvećom vrednošću ključa u bloku upisuje se u zonu prekoračenja
 - prekoračilac se upisuje u lokaciju čiju adresu sadrži indeks slobodnih lokacija i povezuje se sa ostalim prekoračiocima iz bloka

Ažuriranje IS datoteke

- upis novog sloga
 - ako se neuspešno traženje zaustavilo na nekom od prekoračilaca
 - novi slog se upisuje u prvu slobodnu lokaciju
 - uvezuje se sa ostalim prekoračiocima

Ažuriranje IS datoteka

- brisanje sloga
 - logičko brisanje češće

$$R_d = R_u + 1$$

- lokacija logički izbrisanog sloga može se upotrebiti za upis novog sloga u specijalnom slučaju
 - » kada se vrednost ključa novog sloga nalazi tačno u odgovarajućim granicama
- fizičko brisanje
 - zahteva pomeranje slogova sa ažuriranjem lanca prekoračilaca
 - zahteva veći broj pristupa datoteci

- Ažuriranje IS datoteke
 - modifikacija sadržaja postojećeg sloga
 - nakon uspešnog traženja
 - potreban samo jedan pristup da bi se modifikovani slog upisao u datoteku

Reorganizacija IS datoteke

- značajna degradacija performansi traženja slogova i obrade datoteke u vremenu
 - usled upisa slogova u zonu prekoračenja i
 - logičkog brisanja slogova
- periodična reorganizacija datoteke
 - uklanjanje negativnih posledica ažuriranja
- postupak
 - ponovno formiranje primarne zone
 - redoslednom obradom traženjima logički narednih slogova u postojećoj primarnoj zoni i zoni prekoračenja
 - generisanje novog stabla traženja
 - formiranje nove, prazne zone prekoračenja

Reorganizacija IS datoteke

- interval vremena između dve reorganizacije može biti
 - fiksan
 - npr. jednom mesečno
 - dinamički određeni
 - na osnovu stepena popunjenosti zone prekoračenja
 - npr. kada se zona prekoračenja popuni do 80% svog obima, a dimenzionisana je da primi npr. 10% slogova prim. zone
- distribuirani slobodni prostor
 - ublažava problem degradacije performansi obrade zbog upisa novih slogova
 - blokovi podataka se pri formiranju datoteke popunjavaju samo delimično (npr. 60% ili 80%)
 - time se obezbeđuje prostor za upis novih slogova
 - produžava se interval vremena između dve reorganizacije

Oblasti primene i ocena karakteristika

- prednosti
 - kada iste podatke treba obrađivati i u režimu redosledne i u režimu direktne obrade
 - intenzivno se koristi u paketnoj obradi
 - može se koristiti i u interaktivnoj obradi
- performanse redosledne obrade
 - u početku ne zaostaju za performansama redosledne obrade sekvencijalne datoteke
- performanse direktne obrade
 - ne zaostaju značajnije za performansama direktne obrade rasute datoteke

Oblasti primene i ocena karakteristika

- glavni nedostatak
 - upis slogova u zonu prekoračenja dovodi do degradacije performansi obrade
 - jedino rešenje: periodično reorganizovanje datoteke
 - nepogodno, ako se mora često sprovoditi u slučaju datoteka velikog obima

Oblasti primene i ocena karakteristika

- FSP zasnovane na statičkoj IS organizaciji
 - intenzivno korišćene u mrežnim sistemima baza podataka
 - relacioni i objektno-relacioni SUBP ih retko podržavaju
- ponekad se ističe više njihov istorijski značaj
 - nazivaju se i klasičnim indeks-sekvencijalnim datotekama
 - preteča modernih indeksnih datoteka s B-stablima
- osnovna ideja za primenu IS datoteka
 - kada se podaci ne ažuriraju intenzivno i u većem obimu
 - kada je potrebno obezbediti vrlo efikasnu redoslednu obradu i, u isto vreme, solidne performanse direktne obrade
 - brz pristup slučajno odabranom slogu u sekvencijalnoj strukturi vrši se korišćenjem stabla traženja kao funkcije koja preslikava vrednost ključa u adresu

Sadržaj

- Indeksne datoteke
- Indeks-sekvencijalna organizacija datoteke
- Indeks-sekvencijalna metoda pristupa

Literatura

- Pavle Mogin: Strukture podataka i organizacija datoteka
 - Glava 12

Pitanja i komentari

Indeks-sekvencijalna organizacija datoteke

Struktura, formiranje, traženje, obrada, ažuriranje, primena i ocena