Moore-Pennrose Generalized Inverse

Peter von Rohr 11/27/2017

Disclaimer

This document collects a few facts about how to compute the Moore-Pennrose Generalized Inverse of a matrix.

Introduction

What is shown here comes out of a review study of the book (Searle 1971). Chapter 1 of (Searle 1971) reviews many aspect of generalized inverse matrices pointing out that the Moore-Penrose generalized inverse is unique for any given matrix A.

A Generalized Inverse

Definition

We start with the definition of a generalized inverse matrix G for any given matrix A. The definition is given as follows. Given any matrix A, a generalized inverse matrix G of A is defined as

$$AGA = A \tag{1}$$

Computation

One possible solution for G can be computed using the construction of a diagonal form of A. This diagonal form can be computed as

$$PAQ = \Delta = \begin{bmatrix} D_r & 0 \\ 0 & 0 \end{bmatrix}$$
 (2)

where D_r is a diagonal matrix of order r where r is the rank of A. From the above diagonal form (2), we can also see that

$$A = P^{-1}\Delta Q^{-1} \tag{3}$$

The inverse matrices P^{-1} and Q^{-1} exist, because matrices P and Q are matrices of elementary operations. The matrix Δ^- defined as

$$\Delta^{-} = \begin{bmatrix} D_r^{-1} & 0\\ 0 & 0 \end{bmatrix} \tag{4}$$

is a generalized inverse of Δ satisfying the definition in (1). This is shown by writing the definition in (1) using the matrices Δ and Δ^- , as shown below.

$$\Delta\Delta^{-}\Delta = \left[\begin{array}{cc} D_r & 0 \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} D_r^{-1} & 0 \\ 0 & 0 \end{array}\right] \left[\begin{array}{cc} D_r & 0 \\ 0 & 0 \end{array}\right] = \Delta$$

One possible instance of the matrix G can be computed as

$$G = Q\Delta^{-}P \tag{5}$$

The matrix G given in (6) is indeed a generalized inverse of A, because according to (1), (3) and (4), we can write

$$AGA = P^{-1}\Delta Q^{-1}Q\Delta^{-}PP^{-1}\Delta Q^{-1} = P^{-1}\Delta\Delta^{-}\Delta Q^{-1} = P^{-1}\Delta Q^{-1} = A$$
(6)

The results of (6) and (6) shows us how to come up with a generalized inverse G for any matrix A. Now the question is how to compute such a matrix G efficiently. For that reason it is well worth while to have a closer look at formula (3).

Singular Value Decomposition (SVD)

In (3) the matrix A is decomposed into the product of three matrices P^{-1} , Δ and Q^{-1} . What we know about the three matrices is that the matrix Δ is a diagonal matrix and that matrices P^{-1} and Q^{-1} are invertible. The structure of this decomposition is very similar to the **singular value decomposition** (SVD). The SVD of a matrix A is defined as

$$A = U * D * V^T \tag{7}$$

where D is a diagonal matrix and matrices U and V are orthogonal matrices. Orthogonal matrices are special because their transpose is equal to their inverse, hence $UU^T = U^TU = I$ and $VV^T = V^TV = I$. The diagonal elements in matrix D correspond to the so called singular values of matrix A.

Generalized inverse

When looking at the SVD in (7) and comparing that to the decomposition in (3), we can see that the former decomposition is a special case of the latter one. Hence, we can use the results of the SVD of A to compute the generalized inverse G. As shown in (6), the matrix G is

$$G = Q\Delta^- P$$

According to (4) Δ^- can be computed by inverting all the non-zero diagnoal elements in Δ and Δ corresponds to the matrix D in the SVD of A. The matrices P and Q can also be taken from the SVD of A. The matrix P^{-1} in (3) corresponds to the matrix U in (7) and similarly the matrix Q^{-1} corresponds to the matrix V^T . Taking into account that matrices U and V are orthogonal, we can write

$$G = Q\Delta^{-}P = VD^{-}U^{T} \tag{8}$$

References

Searle, S.R. 1971. $Linear\ Models$. Wiley Classics.