Circuits RC

Règim transitori (càrrega del condensador)

$$\varepsilon = V_R + V_C = RI + \frac{q}{C} = R\frac{dq}{dt} + \frac{q}{C}$$

$$q(t) = \varepsilon C \left\{ 1 - e^{-\frac{t}{\tau_C}} \right\}$$

$$I(t) = \frac{\varepsilon}{R} e^{-\frac{t}{\tau_C}} \quad on \quad \tau_C = RC$$

$$U = \frac{Q^2}{2C'}$$

A l'instant inicial $\rightarrow q = 0 \ i \ I = \varepsilon/R$

A l'instant final $\rightarrow q = \varepsilon C \ i \ I = 0$

Règim transitori (descàrrega del condensador)

$$0 = RI + \frac{q}{C} = R\frac{dq}{dt} + \frac{q}{C} \to R\frac{dq}{dt} = -\frac{q}{C}$$
$$q(t) = Q_0 e^{-\frac{t}{\tau_C}}$$
$$I = -\frac{dq}{dt} = \frac{Q_0}{RC} e^{-\frac{t}{\tau_C}} \quad on \quad \tau_C = RC$$

A l'instant inicial $\rightarrow q=Q0$ i I=I0=Q0/RC

A l'instant final $\rightarrow q = I = 0$

Circuits RL

Règim transitori (amb generador)

$$\varepsilon = V_R + V_L = RI + L \frac{dI}{dt}$$

$$I(t) = \frac{\varepsilon}{R} \left\{ 1 - e^{-\frac{t}{\tau_L}} \right\} \quad on \quad \tau_L = \frac{L}{R}$$

$$U = \frac{1}{2} LI^2$$

Intensitat al assolir el règim estacionari $\rightarrow I = \varepsilon/R$

Règim transitori (sense generador)

$$0 = V_R + V_L = RI + L\frac{dI}{dt}$$

$$I(t) = I_0 e^{-\frac{t}{\tau_L}} \quad on \quad \tau_L = \frac{L}{R}$$

Circuits RCL

$$\varepsilon(t) = \varepsilon_0 \cos(\omega t + \theta)$$

$$\omega = \frac{2\pi}{T} = 2\pi f; \quad f = \frac{1}{T}$$

$$Si X = X_L - X_C > 0 \to Z = R + iX$$

$$Si X = X_L - X_C < 0 \to Z = R - iX$$

Connectat a un generador

$$\varepsilon(t) = \varepsilon_0 \cos(\omega t) = V_R(t) + V_C(t) + V_L(t) =$$

$$= RI(t) + \frac{q(t)}{C} + L \frac{dI(t)}{dt}$$

$$I(t) = I_0 \cos(\omega t - \varphi)$$

Nombres complexos

Notació cartesiana:
$$\bar{z} = x + iy$$

$$x = r \cos \varphi$$
 $y = r \sin \varphi$

Notació polar:
$$\bar{z} = r\varphi$$
 o $r \angle \varphi$

$$r = \sqrt{x^2 + y^2} \quad \varphi = \tan^{-1} \frac{y}{x}$$

Operacions:

Suma (forma cartesiana)

$$\overline{z_1} + \overline{z_2} = (x_1 + x_2) + i(y_1 + iy_2)$$

Resta (forma cartesiana)

$$\overline{z_1} - \overline{z_2} = (x_1 - x_2) + i(y_1 - iy_2)$$

Multiplicació (forma cartesiana)

$$\bar{z_1} \cdot \bar{z_2} = (x_1 + iy_1) \cdot (x_2 + iy_2) =$$

= $(x_1x_2 - y_1y_2) + i(x_1y_2 + x_2y_1)$

Multiplicació (forma polar)

$$\overline{z_1}\cdot\overline{z_2}=r_1\angle\phi_1\cdot r_2\angle\phi_2=r_1r_2\angle(\phi_1+\phi_2)$$

Divisió (forma cartesiana)

$$\frac{\overline{z_1}}{\overline{z_2}} = \frac{x_1 + iy_1}{x_2 + iy_2} = \frac{(x_1x_2 + y_1y_2) + i(x_1y_2 - x_2y_1)}{x_2^2 + y_2^2}$$

Divisió (forma polar)

$$\frac{\overline{z_1}}{\overline{z_2}} = \frac{r_1 \angle \phi_1}{r_2 \angle \phi_2} = r_1 r_2 \angle (\phi_1 - \phi_2)$$

Fasor

$$x(t) = A\cos(\omega t + \theta)$$

$$z(t) = A \angle (\omega t + \theta) \rightarrow A \angle \theta$$

$$Re[z(t)] = x(t)$$

Fasor fem

$$\bar{\varepsilon} = \varepsilon_0 \angle 0^\circ$$

$$Re[\bar{\varepsilon}] = \varepsilon_0 \cos(\omega t)$$

Fasor intensitat

$$\bar{I} = I_0 \angle - \varphi$$

$$Re[\bar{I}] = I_0 \cos(\omega t - \varphi)$$

Equació fasorial

$$i\omega\bar{\varepsilon} = L\omega^2\bar{I} + Ri\omega\bar{I} + \frac{\bar{I}}{C}$$

<u>Impedància</u>

$$\bar{Z} = \frac{\bar{\varepsilon}}{\bar{I}} = R + i\left(\omega L - \frac{1}{C\omega}\right)$$
$$\bar{Z} = R + iX$$
$$X = X_I - X_C$$

$$X_L = \omega L; \quad X_C = \frac{1}{\omega C}$$

Impedància en forma polar

$$\bar{Z} = \frac{\bar{\varepsilon}}{\bar{I}} = \frac{\varepsilon_0 \angle 0^{\circ}}{I_0 \angle - \varphi} = \frac{\varepsilon_0}{I_0} \angle \varphi = Z \angle \varphi$$

$$Z = \sqrt{R^2 + X^2}; \quad \varphi = \tan^{-1}\left(\frac{X}{R}\right) \rightarrow \tan \varphi = \frac{X}{R}$$

Casos particulars:

Si $X_L > X_C$, llavors $X = X_L - X_C > 0$. Per tant $\varphi > 0$ i la intensitat I va retardada respecte la fem ε , i es diu que el circuit és inductiu.

Si $X_L < X_C$, llavors $X = X_L - X_C < 0$. Per tant $\varphi < 0$ i la intensitat I va avançada respecte la fem ε , i es diu que el circuit és capacitiu.

Si $X_L = X_C$, llavors $X = X_L - X_C = 0$. Per tant $\varphi = 0$ i la intensitat I i la fem ε estan en fase, i es diu que hi ha ressonància.

Tensions de cada element

$$\overline{V_R} = \overline{Z_R} \, \overline{I} = RI_0 \angle - \varphi$$

$$\rightarrow V_R(t) = RI_0 \cos(\omega t - \varphi)$$

$$\overline{V_L} = \overline{Z_L} \, \overline{I} = X_L I_0 \angle 90^\circ - \varphi$$

$$\rightarrow V_L(t) = X_L I_0 \cos(\omega t - \varphi + 90^\circ)$$

$$\overline{V_C} = \overline{Z_C} \, \overline{I} = X_C I_0 \angle - 90^\circ - \varphi$$

$$\rightarrow V_C = X_C I_0 \cos(\omega t - \varphi - 90^\circ)$$

 V_L va enderrerida respecte la tensió $I_L \downarrow V_C$ va avançada respecte la tensió $I_C \uparrow$

Valor eficaç

$$V_{ef} = \frac{V_0}{\sqrt{2}}$$

Intensitat eficaç

$$I_{ef} = \frac{I_0}{\sqrt{2}}$$

Circuits de corrent altern

En sèrie: la intensitat sempre és la mateixa

$$\overline{Z_{eq}} = \sum_{i=1}^{N} \overline{Z}_{l}; \quad \overline{V}_{l} = \overline{Z}_{l} \cdot \overline{I}$$

En paral·lel: el voltatge és el mateix

$$\frac{1}{\overline{Z_{eq}}} = \sum_{i=1}^{N} \frac{1}{\overline{Z_i}}; \quad \overline{I} = \frac{\overline{V_i}}{\overline{Z_i}}$$

<u>Potència</u>

Potència instantània

$$P(t) = \varepsilon(t)I(t) = \varepsilon_0 I_0 \cos(\omega t) \cos(\omega t - \varphi)$$

Potència mitjana

$$\begin{split} P(t) &= \varepsilon_{ef} I_{ef} \cos(\varphi) = Z I_{ef}^2 \cos(\varphi) = R I_{ef}^2 \\ \bar{\varepsilon} &= \bar{Z} \cdot \bar{I} \rightarrow \varepsilon_0 = Z \cdot I_0 \rightarrow \varepsilon_{ef} = Z \cdot I_{ef} \end{split}$$

Potència que dona el generador o potència aparent

$$S = \varepsilon_{ef} I_{ef}$$

Potència activa o real, és la que consumeix el circuit

$$P = \varepsilon_{ef} I_{ef} \cos(\varphi); \cos(\varphi) = \frac{P}{S};$$

 $\cos(\varphi) = factor \ de \ potència$

El factor de potència és 1 quan $\overline{Z_{eq}}$ no té part imaginària.

Si la impedància és una resistència pura $\cos \varphi = 1$, i la potència activa és la potència aparent.

Si la impedància és una reactància pura (inductància o capacitat) $\cos \varphi = 0$, i la potència activa és nul·la.

Potència reactiva

$$Q = S\sin(\varphi) = \varepsilon_{ef}I_{ef}\sin(\varphi) = \sqrt{S^2 - P^2}$$

Casos:

Si $X=X_L-X_C>0$ el circuit és inductiu, l'element a connectar en paral·lel amb la impedància del circuit és un condensador.

Si $X=X_L-X_C<0$ el circuit és capacitiu, l'element a connectar en paral·lel amb la impedància del circuit és una bobina.

Si es vol afegir en **sèrie** un element pur de forma que la intensitat resultant estigui en fase amb el potencial del generador, cal que la impedància conjunta resultant sigui real $X_L = X_C$

Factor de potència en paral·lel

$$X' = -\frac{Z^2}{X}$$

Ressonància

$$X = X_L - X_C = 0 \rightarrow \omega = \frac{1}{\sqrt{LC}} \rightarrow f = \frac{1}{2\pi\sqrt{LC}}$$

A la ressonància la impedància és igual a la resistència (X=0) i la intensitat és màxima $I_{ef}=\varepsilon_{ef}/R$. A més, com la intensitat està en fase amb la fem del generador, el factor de potència és 1 i la potència és màxima.

Filtres

Circuits passa altes – Cas: RC (també es pot fer amb RL $\rightarrow V_{out} = \frac{Z_L}{Z}V_{in}$)

$$\bar{Z}=R+iX\rightarrow Z=\sqrt{R^2+X_C^2}=\sqrt{R^2+\frac{1}{\omega^2C^2}}$$

$$\bar{I}=\frac{\bar{V}_{in}}{\bar{Z}}$$

$$\bar{V}_{out} = \bar{Z}_R \bar{I} = \frac{\bar{Z}_R}{\bar{Z}} \bar{V}_{in} \rightarrow V_{out} = \frac{R}{\sqrt{R^2 + \frac{1}{\omega^2 C^2}}} V_{in}$$

Funció de transferència $\rightarrow H(\omega) = \frac{V_{out}}{V_{in}} = \frac{R}{\sqrt{R^2 + \frac{1}{c^2 C^2}}}$

Si
$$\omega \uparrow \rightarrow \frac{1}{\omega C} \rightarrow 0 \rightarrow H(\omega) \rightarrow 1$$

Si
$$\omega \downarrow \rightarrow \frac{1}{\omega C} \rightarrow \infty \rightarrow H(\omega) \rightarrow 0$$

El filtre deixa passar senyals d'alta freqüència i elimina els de baixa.

Circuits passa baixes — Cas: RC (també es pot fer amb RL $\rightarrow V_{out} = \frac{Z_R}{Z} V_{in}$)

$$\bar{V}_{out} = \bar{Z}_C \bar{I} = \frac{\bar{Z}_C}{\bar{Z}} \bar{V}_{in} \rightarrow V_{out} = \frac{\frac{1}{\omega C}}{\sqrt{R^2 + \frac{1}{\omega^2 C^2}}} V_{in}$$

Funció de transferència $\rightarrow H(\omega) = \frac{V_{out}}{V_{in}} = \frac{\frac{1}{\omega C}}{\sqrt{R^2 + \frac{1}{\omega^2 C^2}}}$

$$Si\ \omega\ \uparrow \rightarrow \frac{1}{\omega C} \rightarrow\ 0 \rightarrow\ H(\omega) \rightarrow\ 0$$

$$Si \omega \downarrow \rightarrow \frac{1}{\omega C} \rightarrow \infty \rightarrow H(\omega) \rightarrow 1$$

El filtre deixa passar senyals de baixa freqüència i elimina els d'alta.

 $\varepsilon = \text{Fem o font de tensió (V) Volts}$ $\theta = \text{Fase (rad) Radians}$ V_R = Voltatge de la resistència (V) Volts T = Període (s) Segons V_C = Voltatge del condensador (V) Volts f = Freqüència (Hz) Hertz o Cicles $R = \text{Resistència}(\Omega) \text{ Ohms}$ $\varphi = \text{Fase o angle (rad) Radians o (°) Graus}$ I = Intensitat (A) Ampersi = Unitat imaginària q = Carrega (C) Coulombsz = Número complexC = Capacitat (F) Faradayx = Nombre realt = Temps (s) Segons y = Nombre imaginari τ_C = Constant de temps $Z = Impedància (\Omega) Ohms$ $Q_0 = \text{Carrega inicial (C)}$ $X = \text{Reactancia}(\Omega) \text{ Ohms}$ V_L = Tensió de la bobina (V) Volts $X_L = \text{Reactancia inductiva } (\Omega) \text{ Ohms}$ L = Coeficient d'autoinducció (H) Henrys X_C = Reactància capacitiva (Ω) Ohms τ_L = Constant de temps V_{ef} = Valor eficaç (V) Volts $\omega = \text{Pulsació o freqüència angular (rad/s)}$

Radians/Segons

 I_{ef} = Intensitat eficaç (A) Ampers