Bassel El Mabsout

Curriculum Vitae

+1 (857) 939-8769

 \square

bmabsout@bu.edu

https://github.com/bmabsout

Boston, MA, USA

https://bmabsout.com

Google Scholar (Rxv9W98)

EDUCATION

Ph.D. candidate in Computer Science

2018 - Present

Boston University

Advisor: Dr. Renato Mancuso

M.S in Computer Science

2022

Boston University

B.S. in Computer Science

2012 - 2015

American University of Beirut

RESEARCH INTERESTS

Empowering roboticists to faithfully translate high-level intent into reliable robot behaviors on resourceconstrained systems. I develop tools combining programming languages and machine learning to synthesize controllers meant for the real world. Through carefully designed *adaptation* methods and a principled approach to sim-to-real transfer, my work ensures learned controllers remain robust when deployed.

My topics of interest include:

Reinforcement Learning & Embedded Systems & Type Theory & Metaheuristics & Control systems

PUBLICATIONS

Mabsout B.* ♦ Mysore S.* ♦ Saenko K. ♦ Mancuso R.

2021

How to train your quadrotor: A framework for consistently smooth and responsive flight control via reinforcement learning

ACM Trans. Cyber-Phys. Syst., 5(4)

10.1145/3466618

[2] **Mabsout B.*** Mysore S.* Saenko K. Mancuso R. Regularizing Action Policies for Smooth Control with Reinforcement Learning 10.1109/ICRA48506.2021.9561138

2021

ICRA [3] Mysore S. • Mabsout B. • Mancuso R. • Saenko K.

2021

Honey. I Shrunk The Actor: A Case Study on Preserving Performance with Smaller Actors in Actor-Critic RL

IEEE CoG

10.1109/CoG52621.2021.9619008

Mabsout B.

Tree Shaping, a solution to the expression problem showcased via a compiler for a programming language named Puler

Masters Thesis, Boston University

hdl.handle.net/2144/49330

^{*} Authors contributed equally

ONGOING RESEARCH

Population Descent Submitted

A natural-selection based Memetic algorithm which adaptively controls hyperparameter selection via a normalized fitness function – PREPRINT

Sim2Real Adaptation via Anchored Learning

Submitting

Anchors allow for adapting RL-based controllers on the fly while mitigating the issue of catastrophic forgetting. Our method does so by finding controllers which satisfy performance conditions both in simulation and reality – PREPRINT

Safety-critical controller learning

Ongoing

We construct learned bounded Lyapunov functions for maintaining safety under a differential equation and on residual dynamics. Adapting controllers to improve the probability of safety and performance in the real world – SOURCE

State-estimation using Gaussian splatting

Ongoing

The pose of a quadrotor is estimated by combining Gaussian splatting with an onboard camera feed. Estimation occurs in real-time on the embedded system

Multi-objective RL via generalized-mean scalarization

Ongoing

We use the generalized-mean for scalarizing a normalized multi-Q-value function forming a continuous specification in a multi-objective RL setting

RESEARCH EXPERIENCE

Graduate Research Assistant

2018 - Present

Boston University

- Developed novel reinforcement learning algorithms for quadrotor control
- Created frameworks for safety-critical controller learning
- Implemented state estimation using Gaussian splatting

Research Assistant 2016 – 2018

American University of Beirut

- Developed neural-swarm, a collection of experimental optimization algorithms
- Implemented decentralized swarm control systems

TEACHING EXPERIENCE

Course Instructor - CS 654

2023

Boston University

- Created and supervised projects for 24 students
- Mentored students in modeling and controlling AmazingBall System
- Developed curriculum focusing on minimizing sim2real gap

Research Mentor 2021 – Present

RISE Program: Mentored undergraduate researcher in gradient-based optimization BU Spark: Supervised team of 5 students in quadrotor research project Efficient RL: Guided graduate students in power-efficient reinforcement learning

SERVICE & LEADERSHIP

Peer Review Venues

ICLR & ICRA & ROBOT & EMSOFT & COG & DATE & ECRTS & RTSS & TJCA

Academic Service

• [Add department/university service]

SELECTED PROJECTS

Stochastic dynamics learning

BU/MIT

Achieving safer learned model-based control requires accurate models, given most real-world systems are stochastic, we built Generative Adversarial Networks which modeling the distribution of the system's trajectories – SOURCE

Honda Ridesharing SAIL

In collaboration with BU's SAIL and Honda, we worked on privacy preserving (using MPC) preferential ride-sharing. My responsibilities included defining optimization constraints so users with similar preferences get pooled together

Seizure Prediction Machine learning – CS542

A Kaggle competition project which accurately predicted seizure activity in epileptic patients. Utilizing machine learning techniques, we achieved the highest score with a significant margin (AUC score of 0.92) – PREPRINT

Finding a NASH-E Equilibrium

Complexity Theory – CS535

This term paper simplifies an existing proof of the complexity class specifying the run-time of finding approximate Nash equilibria – PREPRINT

Haskell Blog Personal Blog

I created a Haskell blog hosted on IPFS about programming language concepts such as automatic differentiation and dependently typed vector construction which garnered some interest and was featured on Haskell News

TECHNICAL SKILLS

Programming Languages

IMPERATIVE $C \diamond C++ \diamond Go \diamond Java \diamond Python$

FUNCTIONAL Haskell ⋄ F# ⋄ Clojure **THEOREM PROVERS** Rocq ⋄ Lean ⋄ ATS

WEBJavaScript > TypeScript > ElmDEVELOPMENTSQL > Nix > Make > Fish > Bash

GRAPHICS GLSL & WGSL

MARKUP LaTeX

Typst

HTML

CSS

XML

Markdown

Frameworks & Libraries

ML TensorFlow ♦ PyTorch ♦ JAX ♦ Keras

SCIENTIFIC NumPy \diamond SciPy \diamond Pandas

ROBOTICS Spinning Up \diamond PyBullet \diamond Gurobi

WEB React Native ⋄ Firebase

HASKELL Megaparsec ♦ Recursion-Schemes ♦ Polysemy ♦ ImplicitCAD

Tools

DEVELOPMENT Git ♦ Nix ♦ GNU Utils ♦ Make ♦ Docker

 $\textbf{SOFTWARE} \qquad \quad \text{AutoCAD} \diamond \text{GIMP} \diamond \text{Photoshop} \diamond \text{Jupyter Notebook}$

HARDWARE Soldering & Oscilloscope & Multimeter & Lazer Cutter & Embedded Systems