Causal Inference, Time Series and Economic History 5. Narrative Methods

Jason Lennard

Overview

- The narrative approach
 - Introduction
 - Sources
 - Econometrics
 - Applications
 - Strengths and weaknesses
- Class discussion paper: Cloyne, J., 'Discretionary tax changes and the macroeconomy: New narrative evidence from the United Kingdom', American Economic Review, 103 (2013), pp. 1507-28

The Narrative Approach

- The narrative approach is a potential solution to the endogeneity problem
- The approach was pioneered by Friedman and Schwartz (1963)
- Coined by Romer and Romer (1989)
- "Narrative methods involve constructing a series from historical documents to identify the reason and/or the quantities associated with a particular change in a variable" (Ramey, 2016, p. 78)

Sources

- Retrospective accounts might be biased by knowledge of the subsequent outcome (Romer and Romer, 1989)
- Historical documents used for a contemporaneous or real-time account
- Historical sources should be:
 - Relatively consistent
 - Relatively accurate
- Potential sources:
 - Reports from newspapers (Business Week, Economist etc.) and non-governmental organisations (OECD Economic Outlook)
 - Policymakers' statements and speeches
 - Legislative debates, reports and acts

What the Narrative Approach Is Not

- "Narrative" is a buzzword at the moment
- Narrative can be used to describe qualitative economic history
- Narrative economics is about how narratives "go viral" with economic impact (Shiller, 2018)
- The narrative approach is distinct

What the Narrative Approach Is

- 1. Uses qualitative sources to establish causal effects (reverse causality)
- 2. Uses real-time data to control for policymakers' information sets (omitted variables)
- 3. Uses qualitative sources to quantify unobservables (measurement)

Reverse Causality

• Reverse causality occurs when x_t not only affects, but is affected by, y_t :

$$y_t = \alpha + \beta x_t + u_t \tag{1}$$

$$x_t = \delta + \theta y_t + e_t \tag{2}$$

- Consider this simple thought experiment:
- 1. Shock the error term in equation (1), u_t
- 2. y_t changes in equations (1) and (2)
- 3. x_t changes in equations (1) and (2)
- Therefore, there is a correlation between x_t and u_t that violates the zero conditional mean assumption, $Cov(u_t, x_t) = 0$

Reverse Causality and VARs

- In Week 4, we covered the (structural) VAR model, which allows us to understand how x_t affects y_t and how y_t affects x_t by constraining either $\beta = 0$ or $\theta = 0$
- Using theory or institutional knowledge, we shut down one channel of the causality by assumption
- If we constrain $\theta = 0$, for example, we assume that y_t never affects x_t
- This may not be plausible in some contexts

Reverse Causality and the Narrative Approach

- The narrative approach, however, makes a crucial distinction
- It may not be that y_t never affects x_t , but that y_t only sometimes affects x_t
- The key idea is that x_t can be partitioned into an endogenous and an exogenous component

The Econometrics

• Returning to our simple bivariate example:

$$y_t = \alpha + \beta x_t + u_t \tag{3}$$

$$x_t = \delta + \theta y_t + e_t \tag{4}$$

• Inserting equation (4) into (3):

$$y_t = \alpha + \beta(\delta + \theta y_t + e_t) + u_t$$

• It's clear that $Cov(u_t, \delta + \theta y_t + e_t) \neq 0$

The Econometrics

- The narrative approach involves separating variation in x_t due to e_t (exogenous component) from variation in x_t due to y_t (endogenous component)
- The model would then take the form:

$$y_t = \alpha + \beta e_t + u_t$$

- As a result, OLS is unbiased because e_t and u_t are uncorrelated by construction
- Single equation models (FDL, ARDL, LP) are perfectly valid although still common to incorporate narrative shocks in VAR models as the estimates can be more precise in small samples (Cloyne and Hürtgen, 2016)

Applications

- Monetary policy
 - Romer and Romer (1989)
- Fiscal policy
 - Ramey and Shapiro (1998), Romer and Romer (2010, 2016), Ramey (2011), Cloyne (2013), Crafts and Mills (2013, 2015), Hayo and Uhl (2014), Gujarado et al. (2014), Alesina et al. (2015, 2018), Ramey and Zubairy (2018), Cloyne et al. (2018), Hussain and Liu (2018, 2019), Gil et al. (2019), Carrière-Swallow et al. (2021)
- Financial crises
 - Jalil (2015), Kenny et al. (2020), Esteves et al. (2021)
- Oil
 - Hamilton (1985)
- Credit
 - Fieldhouse et al. (2018)
- Among many others

Pros and Cons

Pros

• Possible to establish causality

Cons

- Subjective
- Labour intensive
- Sources taken at face value
- Issues of replicability

What the Narrative Approach Is

- 1. Uses qualitative sources to establish causal effects (reverse causality)
- 2. Uses real-time data to control for policymakers' information sets (omitted variables)
- 3. Uses qualitative sources to quantify unobservables (measurement)

Omitted Variable Bias

- A second, less-common, form of the narrative approach aims to resolve omitted variable bias
- Policymakers use a large set of information when setting policy
- Including all of the relevant information in a vector autoregression is challenging because of the degrees of freedom consumed
- As the number of endogenous variables increase, the degrees of freedom decrease
- The key contribution is to use historical documents to reconstruct policymakers' information sets
- In the first stage, the policymakers' reaction function is estimated, which allows the policy indicator to be separated into an endogenous component and an exogenous component
- In the second stage, an economic outcome is regressed on the exogenous component of the policy indicator

Applications

- Monetary policy
 - Romer and Romer (2004), Cloyne and Hürtgen (2016), Lennard (2018)

What the Narrative Approach Is

- 1. Uses qualitative sources to establish causal effects (reverse causality)
- 2. Uses real-time data to control for policymakers' information sets (omitted variables)
- 3. Uses qualitative sources to quantify unobservables (measurement)

Measurement

- A third form of the narrative approach aims to measure unobservables
- This involves using qualitative sources to construct a variable

Applications

- Financial crises
 - Romer and Romer (2017)
- Inflation expectations
- Uncertainty
- Technology
- Sentiment
- Happiness
- Emotions

Class Discussion Paper: Cloyne (2013)

Research Question

Class Discussion Paper: Cloyne (2013)

Data

- Time trend (*t*)
- Log of real per capita GDP (y_t)
- Log of real per capita consumption (c_t)
- Log of real per capita investment (*i*_t)
- Exogenous changes in projected taxes/GDP (d_t)
- Sample: 1955:I-2009:IV

Class Discussion Paper: Cloyne (2013)

Model

$$\mathbf{X_t} = \mathbf{A_0} + \mathbf{A_1t} + \mathbf{B(L)X_{t-1}} + \mathbf{C(L)}d_t + \mathbf{e_t}$$

- where $\mathbf{X_t} = [y_t, c_t, i_t]'$
- **B**(**L**) is a lag polynomial with 4 lags
- \bullet C(L) is a lag polynomial with the contemporaneous value and 12 lags

Next Class

• Class discussion paper: Velde, F. R., 'Chronicle of a deflation unforetold', Journal of Political Economy, 117 (2009), pp. 591-634

Further Material

- Ramey, 'Macroeconomic shocks and their propagation'
- Romer, 'The narrative approach to establishing causation in macroeconomics'