

ABOUT ME

Currently in Second year pursuing B.E. Electronics and Telecommunication Engineering. I have secured 9.59 CGPA (till 3rd Sem) and have several skills including Python, C, C++, Data Analytics, MATLAB, Multisim, Machine Learning, MySQL, Excel.

I have worked on various personal projects related to Excel and Python.

As I am a fresher it would be great to experience the real challenges of the corporate world and understand how things work. Being a fresher, I think I am very flexible and adaptive to learn new things. I have theoretical knowledge. But I am waiting to use my theoretical knowledge in a practical way. And I believe by putting significant efforts, I will learn.

TABLE OF CONTENTS

About Me

Table Of Contents

Module -1 Project: Data Analytics Process

Module -2 Project: Instagram User Analytics

Module -3 Project: Operation & Metric Analytics

Module -4 Project: Hiring Process Analytics

Module -5 Project: IMDB Movie Analysis

Module -6 Project: Bank Loan Case Study

Module -7 Project: Impact of Car Features

Module -8 Project: ABC Call Volume Trend

Conclusion

Module -1 Project: Data Analytics Process

Data analytics is not just limited to businesses; we unknowingly use it in our daily lives. This project aimed to identify real-life scenarios where data analytics plays a crucial role and explain how structured analytical processes help in decision-making.

The main objective of this project was to explore how data analytics is applied in routine activities and to illustrate the different stages of the data analytics process: Plan, Prepare, Process, Analyze, Share, and Act.

Real-Life Scenarios Explored:

Travel Planning: I demonstrated how data analytics helps in choosing a destination, managing a budget, comparing accommodation options, and ensuring a smooth trip.

Home Renovation & Interior Design: This scenario focused on how data is used to budget for renovations, select materials, optimize space, and achieve the desired aesthetic appeal.

Approach & Tools Used:

The project was documented using Microsoft Word, where I structured real-world examples and explained how data analytics plays a role in improving decision-making.

Conclusion:

Through this project, I gained a deeper understanding of how data analytics simplifies complex decisions. Whether planning a trip or designing a home, following a systematic approach ensures better outcomes and efficient resource utilization

Module -2 Project: Instagram User Analytics

The second project was Instagram user Analytics. This project was based on the queries raised by the product team of Instagram on various issues. They raised various queries and I used different SQL functions to solve and then used MS Office PowerPoint to prepare a detailed report on them.

The following queries were raised by the marketing team: -

- 1. People who have been using platform for the longest time.
- 2. Who are the inactive users.
- 3. Which user has got the most likes on a photo.
- 4. Which are the most popular hashtags on Instagram.
- 5. Which is the best day to launch Ads.

The following queries were raised by the investors: -

- 1. How active are users on Instagram
- 2. Is Instagram crowded with fake and dummy accounts.

I first began with importing the data to SQL database. Then closely went through the data set by analyzing each column and type of values they store. After that I checked for any duplicate or null values or if any data cleaning is required. Then I began with the analysis and found out the answers.

1. People who have been using platform for the longest time.

2. Who are the inactive users.

3. Which user has got the most likes on a photo.

4. Which is the best day to launch Ads.

The following queries were raised by the investors: -

1. How active are users on Instagram

Total no of users on Instagram

Total no of photos

Module -3 Project: Operation & Metric Analytics

The third project was Operation Analytics and investigating metric spikes. Operation Analytics is the analysis done for the complete end to end operations of a company. This helps the company to understand in which areas they can improve. On the other hand, metric spike is done to understand certain trends like daily increase or dip in engagement, sales figures etc.

I first imported the data to SQL database and used certain SQL functions to get desired answers and then prepared a presentation in MS Office PowerPoint with relevant explanation.

There were two different case studies with different data sets for each one – Job Data and Investigating metric spike.

A brief description of both case studies and output required form both of them are given below: -

CASE STUDY 01 (JOB DATA)

- 1. Amount of jobs reviewed over time.
- 2. No. of events happening per second.
- 3. Share of each language for different contents.
- 4. Rows that have same values present in them.

CASE STUDY 02 (INVESTIGATING METRIC SPIKE)

- 5. To measure the activeness of a user.
- 6. Amount of users growing over time for a product.
- 7. Users getting retained weekly after signing up for a product.
- 8. To measure the activeness of a user weekly.
- 9. Users engaging with the email service.

I went through the data set closely, analyzed every column and checked for any duplicates or if any data cleaning is required. Then I began with finding solutions for above mentioned queries. Solutions to them are as below —

CASE STUDY 01 (JOB DATA)

1. Amount of jobs reviewed over time.

2. No. of events happening per second.

3. Share of each language for different contents.

4. Rows that have same values present in them.

CASE STUDY 02 (INVESTIGATING METRIC SPIKE)

5. To measure the activeness of a user.

6. Amount of users growing over time for a product.

7. Users getting retained weekly after signing up for a product.

8. To measure the activeness of a user weekly.

9. Users engaging with the email service.

After thorough analysis, we found out the answers for every question asked.

Module -4 Project: Hiring Process Analytics

The fourth project I did was hiring process analytics. It is the most important function of a company. Companies get to know about number of hirings, number of resignations, number of rejections, interviews, types of jobs, vacancies etc.

A brief description of the case study and output required is given below: -

- 1. How many males and females are Hired?
- 2. What is the average salary offered in this company?
- 3. Draw the class intervals for salary in the company?
- 4. Draw Pie Chart / Bar Graph (or any other graph) to show proportion of people working different department?
- 5. Represent different post tiers using chart/graph?

Before beginning with the analysis, I first went through the data, tried to understand every column, then checked for any duplicate data or if any data cleaning is required. After verifying all above mentioned processes I began with getting solutions for above mentioned problem statements.

The data was present in excel so performed the analysis in MS Excel and prepared a detailed report in MS PowerPoint. In order to make the report more presentable, used Pivot Tables to draw graphs. The answers are as follows -

1. How many males and females are Hired?

The formula used in excel was as follows: -

- COUNTIFS (C:C,"Hired", D:D,"Male")
- COUNTIFS (C:C,"Hired", D:D, "Female")

2. What is the average salary offered in this company?

3. Draw the class intervals for salary in the company?

4. Draw Pie Chart / Bar Graph (or any other graph) to show proportion of people working different department?

5. Represent different post tiers using chart/graph?

Module -5 Project: IMDB Movie Analysis

This is the fifth project I did. This was based on the movie rating platform IMDB. IMDB collects large amount of data of each movie like actors, directors, producers' names, public rating, budget, earnings, stores them in their databases and then analyses them based on their requirements. This project gives a brief idea about the movie analysis done by IMDB to give ratings based on different criteria.

Output required is given below: -

- 1. Clean the data
- 2. Find the movies with the highest profit?
- 3. Find IMDB Top 250
- 4. Find the best directors
- 5. Find popular genres
- 6. Find the critic-favorite and audience-favorite actors

The data was given in excel format, so I first tried to understand the data and variables stored in each column, then went on with data cleaning and finally beginning with the analysis. I used MS Excel to study and analyze data and then used MS PowerPoint to prepare a detailed report for the same.

The insights drawn from the data sets are as follows –

- 1. Clean the data
- 2. Find the movies with the highest profit?

Ans – Movie with the highest profit is Avatar.

3. Find IMDB Top 250

4. Find the best directors

The top 10 directors are as below: -

director_name	imdb_score	top 10 directors
John Blanchard Average	9.5	John Blanchard Average
John Blanchard	9.5	Frank Darabont Average
Frank Darabont Average	9.3	Francis Ford Coppola Average
Frank Darabont	9.3	John Stockwell Average
Francis Ford Coppola Average	9.2	Christopher Nolan Average
Francis Ford Coppola	9.2	Francis Ford Coppola Average
John Stockwell Average	9.1	Peter Jackson Average
John Stockwell	9.1	Steven Spielberg Average
Christopher Nolan Average	9	Quentin Tarantino Average
Christopher Nolan	9	Sergio Leone Average
Francis Ford Coppola Average	9	
Francis Ford Coppola	9	
Peter Jackson Average	8.9	
T		

5. Find popular genres

genres	imdb_score	top 10 genres
Comedy	9.5	Comedy Average
Comedy Average	9.5	Crime Drama Average
Crime Drama	9.3	Drama Average
Crime Drama Average	9.3	Action Average
Crime Drama	9.2	Action Crime Drama Thriller Average
Crime Drama Average	9.2	Crime Drama Thriller Average
Drama	9.1	Biography Drama History Average
Drama Average	9.1	Western Average
Drama	9.1	Action Adventure Sci-Fi Thriller Average
Drama Average	9.1	Action Adventure Drama Fantasy Average
Action	9.1	
Action Average	9.1	
Action Crime Drama Thriller	9	
Action Crime Drama Thriller Average	n	

6. Find the critic-favorite and audience-favorite actors

4	В	C	D	E	F	G	H	1	j
	Meryl Streep	Leonardo DiCaprio	Brad Pitt	Combined column (appended)				help column	actor_1_name
	It's ComplicatedÂ	TítanicÂ	The Curious Case of Benjamin ButtonÂ	It's ComplicatedÂ				CCH Pounder:1	CCH Pounder
3	The River WildÂ	The Great GatsbyÂ	TroyÂ	The River WildÂ				Johnny Depp:1	Johnny Depp
1	Julie & JuliaÂ	InceptionÂ	Ocean's TwelveÂ	Julie & JuliaÂ				Christoph Waltz:1	Christoph Waltz
	The Devil Wears PradaÂ	The RevenantÂ	Mr. & Mrs. SmithÂ	The Devil Wears PradaÂ				Tom Hardy:1	Tom Hardy
2	Lions for LambsÅ	The AviatorÅ	Spy GameÂ	Lions for LambsÂ				Doug Walker:1	Doug Walker
7	Out of AfricaÂ	Django UnchainedÂ	Ocean's ElevenÂ	Out of AfricaÂ				Daryl Sabara:1	Daryl Sabara
	Hope SpringsÅ	Blood DiamondÂ	FuryÂ	Hope SpringsÅ				J.K. Simmons:1	J.K. Simmons
	One True ThingÂ	The Wolf of Wall StreetÂ	Seven Years in TibetÂ	One True ThingÂ				Brad Garrett:1	Brad Garrett
0	Florence Foster JenkinsÂ	Gangs of New YorkÂ	Fight ClubÂ	Florence Foster JenkinsÂ				Chris Hemsworth:1	Chris Hemsworth
1	The HoursÂ	The DepartedÂ	Sinbad: Legend of the Seven SeasÂ	The HoursÂ				Alan Rickman:1	Alan Rickman
2	The Iron LadyÂ	Shutter IslandÂ	Interview with the Vampire: The Vampire ChroniclesÂ	The Iron LadyÂ				Henry Cavill:1	Henry Cavill
3	A Prairie Home CompanionÂ	Body of LiesÂ	The Tree of LifeÅ	A Prairie Home CompanionÂ				Kevin Spacey:1	Kevin Spacey
4	JuliaÃ	Catch Me If You CanÂ	The Assassination of Jesse James by the Coward Robert FordÂ	JuliaÂ				Giancarlo Giannini:1	Giancarlo Giannini
5		The BeachÂ	BabelÂ	TitanicÂ				Johnny Depp:2	Johnny Depp
6		Revolutionary RoadÂ	By the SeaÂ	The Great GatsbyÂ				Johnny Depp:3	Johnny Depp
7		The Man in the Iron MaskÂ	Killing Them SoftlyÅ	InceptionÂ				Henry Cavill:2	Henry Cavill
8		J. EdgarÂ	True RomanceÂ	The RevenantÂ				Peter Dinklage:1	Peter Dinklage
9		The Quick and the DeadÂ	Johnny SuedeÅ	The AviatorÂ				Chris Hemsworth:2	Chris Hemsworth
0		Marvin's RoomÂ		Django UnchainedÂ				Johnny Depp:4	Johnny Depp
1		Romeo + JulietÂ		Blood DiamondÂ				Will Smith:1	Will Smith
2		The Great GatsbyÅ		The Wolf of Wall StreetÅ				Aidan Turner:1	Aidan Turner

This completes our analysis as all questions have now been answered.

Module -6 Project: Bank Loan Case Study

This project is about a case study relayed to a Bank Loan. We have to carry out an EDA (Exploratory Data Analysis). Based on our analysis, we will get the solution for required questions.

I first analyzed the data. While analyzing, I found out that data had a lot of missing values. So, my first task was to get the missing values by performing mean, median and mode functions as required. So, I began by cleaning the data and then finding the outliers so as to make the data standardized. To perform the analysis, I used MS Excel 2019 for analysis and used MS Word to prepare the report.

So, let's begin with analysis......

1. Present the overall approach of the analysis. Mention the problem statement and the analysis approach briefly

First, we imported the data to excel.

Then, in order to clean data I, highlighted the blank cells first.

2. Identify the missing data and use appropriate method to deal with it. (Remove columns/or replace it with an appropriate value)

I found out the blank percentage and median of the column and filled the empty spaces there. (This is just for one table. Actual cleaning and filling of data is shown in excel file attached for other columns).

3. Identify if there are outliers in the dataset. Also, mention why do you think it is an outlier.

Foe Numerical columns, I found out the outliers and chose the value for the upper whisker as shown below. The credit amount value above 195000 is considered to be an upper whisker.

4. Identify if there is data imbalance in the data. Find the ratio of data imbalance. The ratio of imbalance for Target Table came out to be 91 92.8 07

5. Explain the results of univariate, segmented univariate, bivariate analysis, etc. **in business terms.**

The results of univariate, segmented univariate, bivariate analysis are as follows -

To perform the analysis, I first divided the data into two sets i.e. Target - 0 and Target - 1

AMT_CREDIT

WEEKDAY_APPR_PROCESS_START

***/	<u> </u>	
Target - 1		
WEEKDAY_APPR_PROCESS_START	Count	
Sunday	1283	
Monday	3934	
Tuesday	4501	
Wednesday	4238	
Thursday	4098	
Friday	4101	
Saturday	2670	

Target - 0	
WEEKDAY_APPR_PROCESS_START	Count
Sunday	14898
Monday	46780
Tuesday	49400
Wednesday	47696
Thursday	46493
Friday	46237
Saturday	31182

INSIGHTS – We can conclude that application starting process is less on Saturday and Sunday.

NAME_CONTRACT_TYPE

Target - 1		
NAME_CONTRACT_TYPE	Count	
Cash loans	23221	
Revolving loans	1604	
Target - 0		
NAME_CONTRACT_TYPE	Count	
Cash loans	255011	
Revolving loans	27675	
NAME_CONTRACT_TYPE	Count	Target
Cash loans	255011	1
Revolving loans	27675	1
Cash loans	23221	0
Revolving loans	1604	0

INSIGHTS – We can conclude that people prefer cash type loans more than other. People take more cash loans.

NAME_HOUSING_TYPE

_	_
Target	- 1
NAME_HOUSING_TYI	Count
House / apartment	21272
Co-op apartment	89
Municipal apartment	955
Office apartment	172
Rented apartment	601
With parents	1736
Target	- 0
NAME_HOUSING_TY	Count
House / apartment	251596
Co-op apartment	1033
Municipal apartment	10228
Office apartment	2445
Rented apartment	4280
With parents	13104

NAME_HOUSING_TY	Count	Target		
House / apartment	21272	1		
Co-op apartment	89	1		
Municipal apartment	955	1		
Office apartment	172	1		
Rented apartment	601	1		
With parents	1736	1		
House / apartment	251596	0		
Co-op apartment	1033	0		
Municipal apartment	10228	0		
Office apartment	2445	0		
Rented apartment	4280	0		
With parents	13104	0		
Sum of Count	Column Labels 🔻			
Row Labels	0	1	Grand Total	
Co-op apartment	1033	89	1122	
House / apartment	251596	21272	272868	
Municipal apartment	10228	955	11183	
Office apartment	2445	172	2617	
Rented apartment	4280	601	4881	
With parents	13104	1736	14840	
Grand Total	282686	24825	307511	

INSIGHTS – We can conclude that people living in houses fall in both the category of default loans and non-default loans.

6. Find the top 10 **correlation** for the Client with payment difficulties and all other cases (Target variable).

To find the correlation, we again divide the data into two sets based on Targets and consider Target -1 as defaulters.

NAME_EDUCATION_TYPE

INSIGHTS – We can find that people with education type as Secondary/Secondary Special are more likely to default and people with education type Academic degree default the least.

INSIGHTS – If we sum the total amount for loan in applications, we find that that people mostly take cash loans.

AMT_APPLICATION and AMT_CREDIT

IX.	ی	 U	v
AMT_APPLICATION	AMT_CREDIT		
17145	17145	Correlation Coefficient	
607500	679671	0.975777217	
112500	136444.5		
450000	470790		
337500	404055		
315000	340573.5		
0	0		
0	0		

INSIGHTS – We find that the correlation coefficient is 0.9758 using excel formula =CORREAL.

AMT_INCOME_TOTAL and AMT_ANNUITY

W	Χ	Υ	Z
AMT_INCOME_TOTAL	AMT_ANNUITY		
202500	24700.5		Correlation Coefficient
270000	35698.5		0.191657428
67500	6750		
135000	29686.5		
121500	21865.5		
99000	27517.5		

INSIGHTS – We find that the correlation coefficient is 0.19166 using excel formula =CORREAL.

CONCLUSION – From the above analysis, we can find out what kind of people and can repay loan, what kinds of loan people prefer to take, people taking loans come from what background, what is their source of income, for what type of people, the loan applications are refused and based on which conditions.

RESULTS: -

- 1. People with academic degree have less defaults.
- 2. People prefer cash loans more than any other type.
- 3. People with secondary/secondary special as education type have more chances of defaulting loans.
- 4. People who have less than 5 years of employment have high default rate.
- 5. Focused variable for application file Target.
- 6. Focused variable for Previous application file NAME_CONTRACT_STATUS.
- 7. Important fields to consider for loan repayment are –
- 8. NAME EDUCATION TYPE
- 9. AMT INCOME TOTAL
- 10. DAYS_EMPLOYED
- 11. AMT CREDIT
- 12. People with lower total income are more likely to default.
- 13. People with high Credit amount are less likely to default.

Module -7 Project: Impact of Car Features

The automotive industry has been evolving rapidly, focusing on fuel efficiency, environmental sustainability, and technological innovation. With increasing competition, manufacturers seek to optimize pricing and product development to maximize profitability while meeting consumer demand.

This project analyses various car features that impact manufacturers' pricing decisions. The dataset includes multiple car models with their specifications, such as engine power, transmission type, fuel efficiency, and body style. The objective is to identify key factors influencing car prices and how they vary across manufacturers and market segments.

The dataset used for analysis is available on Kaggle (provided by Cooper College, New York City) and contains **11,813 observations** in **CSV format**. The analysis was performed using **MS Excel 2019**, utilizing pivot tables, formulas, and visualization techniques.

Project Approach and Key Insights:

Q1. How does the popularity of car models vary across different market categories?

- The analysis reveals that **Hatchback and Flex Fuel** cars have the highest number of models, making them the most dominant in the dataset.
- This insight helps manufacturers focus on these market segments for potential growth.

Q2. What is the relationship between a car's engine power and its price?

- A **strong positive correlation** exists between engine power and price.
- High-powered cars generally have higher prices, indicating that performance plays a key role in pricing strategy.

Q3. Which car features most impact a car's price?

- Engine Cylinders have the strongest influence on the Manufacturer's Suggested Retail Price (MSRP).
- Cars with more cylinders tend to have higher prices, as they often offer greater power and performance.

Q4. How does the average car price vary across different manufacturers?

- Bugatti has the highest average car price, significantly above other brands.
- This suggests that premium and luxury car brands set prices based on exclusivity and high-performance features.

Q5. What is the relationship between fuel efficiency and the number of cylinders in a car's engine?

- Fuel efficiency decreases as the number of cylinders increases.
- Cars with 4 cylinders offer the best fuel efficiency, making them ideal for consumers prioritizing mileage over power.

Dashboard Insights & Data Visualization:

Task 1: Distribution of car prices by brand and body style

• Chevrolet and Mercedes-Benz contribute the most to the overall car price distribution.

Task 2: Which brands have the highest and lowest average MSRPs, and how does this vary by body style?

• Bugatti (Coupe style) and Maybach (Convertible style) have the highest average prices.

Task 3: Impact of transmission type on MSRP across body styles

• Automated convertible and automated manual coupes contribute significantly to high MSRPs.

Task 4: Fuel efficiency trends over time

• Fuel efficiency (**Highway MPG**) has improved over time, highlighting advancements in automotive technology.

Task 5: How horsepower, MPG, and price vary across different brands

As engine horsepower increases, highway MPG decreases, and prices rise accordingly.

Final Results & Recommendations:

- Coupe body style has the highest contribution to MSRP.
- **Automated Manual Transmission** significantly impacts pricing due to its dual benefits of manual and automatic gear systems.
- **Fuel efficiency is a crucial factor** for affordability; manufacturers should focus on balancing power and mileage.
- Companies should prioritize fuel-efficient models to cater to a broader market while maintaining profitability.

Module -8 Project: ABC Call Volume Trend

This project is based on call volume report analysis of a call center. ABC is a call center which has a separate team for voice process. In this project we are provided with dataset having details of agents, call duration, time duration, details on calls answered, abandoned and transferred. Data set also contains customer phone number, queue time, IVR time, date and time of call.

Here we have to analyze the rate of call which went unanswered and how many more agents are required to answer the call in both day and night shifts.

In this dataset, I first went through the data set to understand the details of the different variables and columns. I checked for any null values, missing or blank cells, duplicate data or if any data cleaning is required. After checking all these fields, I went up to perform the data analysis and answer the required questions. To perform the analysis, I used MS Excel 2019 for analysis and used MS Word to prepare the report.

Q1.) Calculate the average call time duration for all incoming calls received by agents (in each Time_Bucket).

- Average of call time duration answered by agents is 198.62 seconds.
- Average of call duration is highest between 10 to 11 am and 7 to 8 pm.

Q2.) Show the total volume/ number of calls coming in via charts/ graphs [Number of calls v/s Time]. You can select time in a bucket form (i.e. 1-2, 2-3,)

• The number of calls increases from 9 am to 12 noon and then decreases.

Q3.) As you can see current abandon rate is approximately 30%. Propose a manpower plan required during each time bucket [between 9am to 9pm] to reduce the abandon rate to 10%. (i.e. You have to calculate minimum number of agents required in each time bucket so that at least 90 calls should be answered out of 100.)

•		
Description	unit	
Total no of working days per week	days	6
Total unplanned leaves per month	days	4
Total working hours	hrs	9
Time spent in lunch and snacks	hrs	1.5
Actual working hours	perc	60%
Avg time agent is occupied		
(60% of 7.5 hrs) daily	hrs	4.5
Total no. of days in a month	days	30

Time taken on average to answer calls (sec)	199.314176
Time requirement to answer 90% of the calls (hrs)	255.6204308
Total working person required per day	57

Day Calls	Avg answered calls	total calls	total calls in %	No. of agents required
09_10	199.0691057	9588	8.13%	5
10_11	203.3310302	13313	11.28%	6
11_12	199.2550234	14626	12.40%	7
12_13	192.8887829	12652	10.72%	6
13_14	194.7401744	11561	9.80%	6
14_15	193.6770755	10561	8.95%	5
15_16	198.8889175	9159	7.76%	4
16_17	200.8681864	8788	7.45%	4
17_18	200.2487831	8534	7.23%	4
18_19	202.5509677	7238	6.13%	3
19_20	203.4060725	6463	5.48%	3
20_21	202.845993	5505	4.67%	3
Average	199.314176		100.00%	57

,	IX.		-	141	14
Count of Duratio	n(hh:r Call Status	▼			
Days	▼ abandon		answered	transfer	Grand Total
⊞ 01-Jan		684	3883	77	4644
⊞ 02-Jan		356	2935	60	3351
⊕ 03-Jan		599	4079	111	4789
⊕ 04-Jan		595	4404	114	5113
⊞ 05-Jan		536	4140	114	4790
⊕ 06-Jan		991	3875	85	4951
⊕ 07-Jan		1319	3587	42	4948
⊞ 08-Jan		1103	3519	50	4672
⊕ 09-Jan		962	2628	62	3652
⊞ 10-Jan		1212	3699	72	4983
⊞ 11-Jan		856	3695	86	4637
⊞ 12-Jan		1299	3297	47	4643
⊞ 13-Jan		738	3326	59	4123
⊞ 14-Jan		291	2832	32	3155
⊞ 15-Jan		304	2730	24	3058
⊞ 16-Jan		1191	3910	41	5142
⊞ 17-Jan		16636	5706	5	22347
⊞ 18-Jan		1738	4024	12	5774
⊕ 19-Jan		974	3717	12	4703
⊞ 20-Jan		833	3485	4	4322
⊞ 21-Jan		566	3104	5	3675
⊞ 22-Jan		239	3045	7	3291
⊞ 23-Jan		381	2832	12	3225
Grand Total		34403	82452	1133	117988
		1496	3585	49	5130
		29.16%	69.88%	0.96%	
		30.00%	70%	1%	

- Total agents required to answer 90% of calls per day is 57.
- The amount of answered calls are 70%, abandon are 30% and transferred are 1% approximately.

Q4.) Let's say customers also call this ABC insurance company in night but didn't get answer as there are no agents to answer, this creates a bad customer experience for this Insurance company. Suppose every 100 calls that customer made during 9 Am to 9 Pm, customer also made 30 calls in night between interval [9 Pm to 9 Am] and distribution of those 30 calls are as follows:

```
| Distribution of 30 calls coming in night for every 100 calls coming in between 9am - 9pm (i.e. 12 hrs slot) | 9pm- 10pm | 10pm - 11pm | 11pm- 12am | 12am- 1am | 1am - 2am | 2am - 3am | 3am - 4am | 4am - 5am | 5am - 6am | 6am - 7am | 7am - 8am | 8am - 9am | 3 | 3 | 2 | 2 | 1 | 1 | 1 | 3 | 4 | 4 | 5 |
```

Now propose a manpower plan required during each time bucket in a day. Maximum Abandon rate assumption would be same 10%.

rjania di santa di s	_	
Call volume daily (9 AM - 9pm)	5130	
If we provide support in night, (9 PM - 9 AM)	1539	
Additional hours required	76.68613	
Additional HC	17	
Total HC	74	
Note - all values are taken from previous sheet		
4.5 - avg time agent is occupied - taken from prev sheet		

Nights Call	Calls Distribution	Time Distribution	Agents Required
21_22	3	10%	2
22_23	3	10%	2
23_24	2	7%	1
00_01	2	7%	1
01_02	1	3%	1
2_3	1	3%	1
3_4	1	3%	1
4_5	1	3%	1
5_6	3	10%	2
6_7	4	13%	2
7_8	4	13%	2
8_9	5	17%	3
	30	100%	17

- First calculated the Time Distribution by dividing each calls distribution by total calls i.e. 30.
- Total agents required to answer 90% of calls at night is 17.

CONCLUSION

After performing all the projects, I came to know about the real-world application of this data. I came to know how these big product companies use data driven insights to get best results in minimum time. I came to know about the various applications and importance of tools like SQL, MS Excel, MS Word, MS PowerPoint, use of formulas, logics, commands, Pivot Tables, graphs etc. I also came to understand how meaningful results can be drawn form such huge amount of data if they are properly sorted and cleaned. They can give the most accurate insights about the operations of a company and what improvements can be made in order to grow.

THANK YOU!