Для факторів x1, x2, x3, x4, x5 та y побудувати в R модель mi: $Im(y\sim xi)$ та виконати наступні завдання (A)-(L):

Побудувати діаграму розсіювання plot(*xi, *y) та накласти регресійну лінію

Перевірити значення *\$r.squared та зробити висновки:

injured - 0.2436819, use_marijuana - 0.1624589 sexual_relation - 0.1646748 bullied - 0.4355967 close_friends - 0.20477

Перевірити sum(*\$residuals^2) та зробити висновки:

injured - 6829.556, use_marijuana - 7563 sexual_relation - 7542.99 bullied - 5096.565 close_friends - 7180.931 Обчислити var(*\$xi): injured - 219.2893, use_marijuana - 75.9257 sexual_relation - 302.8059 bullied - 194.0265 close_friends - 19.05544 Обчислити var(*\$y): suicidal_behaviour - 86.00004 Побудувати hist(*\$xi):

Histogram of srl_injured

Histogram of use_marijuana

Histogram of sexual_relation

Histogram of bullied

Histogram of close_friends

Histogram of attempted_suicide

(H) Побудувати plot(*\$residuals) зробити припущення чи відповідає N(0; 1);

(I) Перевірити mean(*\$residuals);

injured - 2.01097e-16, use_marijuana - 5.655853e-16 sexual_relation - 6.242386e-16 bullied - 3.05835e-16 close_friends - (-6.368072e-16)

(J) Обчислити var(*\$residuals);

injured - 65.04339, use_marijuana - 72.02857 sexual_relation - 71.838 bullied - 48.53871 close_friends - 68.38981

(K) Побудувати hist(*\$residuals) та перевірити чи відповідає N(0; 1):

- (L) Зробити висновок за 3-ма припущеннями для МНК.
- а. Перевірити припущення 1 (лінійний зв'язок між незалежною змінною та залежною "y") srl_injured це майже лінійний зв'язок, якщо прибрати пару викидів use_marijuana це не лінійний зв'язок. sexual_relation це не лінійний зв'язок, схоже більше на графік квадратного корня(вітка параболи).

bullied - це не лінійний зв'язок, схоже більше на якусь криву, що починає загинатись close_friends - мені здається пряма лінія не погано підходить під цей графік, але все таки він не лінійний.

b. Перевірити припущення 2 (гомоскедастичність) srl_injured - якщо прибрати викиди, то це гомоскедастичність use_marijuana - гетероскедастичність sexual_relation - гетероскедастичність bullied - гетероскедастичність close_friends - гетероскедастичність

с. Перевірити припущення 3 (випадкова похибка " $u \in N(0; 1)$ " і u та u незалежні) srl injured -це досить схоже на нормальний розподіл, але все таки гістограма не симетрична. use marijuana -це не є нормальний розподіл. sexual relation - це не є нормальний розподіл bullied - це не є нормальний розподіл close friends - це не є нормальний розподіл # Завдання 2: Аналіз множинною регресії # Побудувати лінійну модель (m1) за не менше ніж 5-ма параметрами srl injured = suicidal behaviours\$Got Seriously injured use_marijuana = suicidal_behaviours\$Use_Marijuana sexual relation = suicidal behaviours\$Had sexual relation bullied = suicidal behaviours\$Bullied close friends = suicidal behaviours\$No close friends attempted_suicide = suicidal_behaviours\$Attempted_suicide mult.mod <- lm(attempted_suicide ~ srl_injured + use_marijuana + sexual_relation + bullied + close_friends, data = suicidal_behaviours) # Визначити з summary() чому дорівнює RSE та порахувати вручну, а також перевірити чи вони співпадають. summary(mult.mod) # RSE = 6.392 on 100 degrees of freedom n <- nrow(suicidal_behaviours) mod summary <- summary(mult.mod) SSR <- sum(mod_summary\$residuals^2) RSE <- sqrt(SSR / (n-2))RSE # 6.268126 # Значення похибки відрізняються на 0.1 # (C) Створити модель (m2) в якої на 1-н параметр менше; # Спробуємо побудувати ще одну множинну регресію, тільки на цей раз з 4 параметрами

mult.mod1 <- lm(attempted_suicide ~ srl_injured + use_marijuana +

sexual_relation + close_friends, data = suicidal_behaviours)

```
# Порівняти моделі (m1) та (m2) за допомогою функцій summary() та
car::compareCoefs(m1, m2) на предмет: R^2, RSE, SE(β і).
# Зробити висновок, яка модель краща.
summary(mult.mod1)
car::compareCoefs(mult.mod, mult.mod1)
# В другій моделі вилучили фактор Bullied. Бачимо, що ефективнісит досить
погіршилась.
# стандартна похибка збільшилась, Adjusted R Squared зменшився, тому
перша модель краще
# Визначити t_кр для моделі (m1):
# Визначити ступені вільності для (m1);
106 - 5 - 1 = 100
#Перевірити t-статистику для кожного з 5-ти коефіцієнтів моделі (m1);
 #Сформулювати гіпотези Н_0 та Н_1;
 #Вказати значення t-статистики (t-value) для відповідного коефіцієнта;
             t value
(Intercept)
               -0.720
srl_injured
               -0.385
use_marijuana 2.756 **
sexual relation 0.515
             5.985 ***
bullied
close_friends 1.754 .
 #Значення р-значення (Pr(>|t|)) для відповідного коефіцієнта:
                Pr(>|t|)
(Intercept)
               0.47313
srl_injured
               0.70113
use_marijuana 0.00695 **
sexual_relation 0.60753
bullied
               3.4e-08 ***
close friends 0.08246.
 #Вказати яка гіпотеза виконується;
    (Intercept) - нульова виконується
    srl_injured - нульова виконується
    use marijuana - не нульова виконується
    sexual_relation - нульова виконується
    bullied - не нульова виконується
```

```
close_friends - нульова виконується
```

#Зробити графічне представлення:

24.19866

#Вказати довірчі інтервали для коефіцієнтів з рівнем надійності 95%, 90% та 99%:

#Виконати масштабування (центрування) моделі (m2) та перевірити чи співпадають коефіцієнти β_1, β_2, β_3, β_4;

```
# Завдання 3: F-статистика
# (A) Обчислити SST, SSR, SSE;
# визначити компоненти
n <- nrow(suicidal_behaviours)# кількість спостережень (рядків)
k <- 5
y_mean <- mean(suicidal_behaviours$Attempted_suicide) # mean для середнього
test-scores
SSR <- sum((fitted(mult.mod) - Csuicidal_behaviours$Attempted_suicide)^2) #
сума квадратів залишків
SST <- sum((suicidal behaviours$Attempted suicide - v mean )^2)# загальна
сума квадратів
SSE <- sum((fitted(mult.mod) - y_mean)^2) # Пояснена сума квадратів
SER <- sqrt(1/(n-k-1) * SSR) # standard error of the regression
Rsq <- 1 - (SSR / SST)# R^2
SSE/SST
adj_Rsq <- 1 - (n-1)/(n-k-1) * SSR/SST# adj. R^2
cof_F <- (SSE/k)/(SSR/(n-k-1))# (Rsq/k)/((1-Rsq)/(n-k-1))
# друк статистики в консоль
c("SER" = SER, "R2" = Rsq, "Adj.R2" = adj_Rsq)
#SER
          R2 Adj.R2
#6.3922595 0.5474976 0.5248725
cof F
```

summary(mult.mod)