Visual Planning with Semi-Supervised
Stochastic Action Representations

Karl Schmeckpeper, David Han, Kostas Daniilidis, Oleh Rybkin

Motivation

Engineering

GRASP LABORATORY

General Robotics, Automation, Sensing & Perception Lab

Semi-Supervised Action Representations

Our model generates stochastic action enbeddings by either encoding the true action and by using a visual encoder. The two representations are pulled together with a Jensen-Shannon divergence loss. This allows to train the model via the visual encoder even when only a portion of the observations have corresponding actions.

Planning

We use our learned forward model with the cross entropy method to plan sequences of actions that reach the goal image.

Experiments

Our model learns to map the action representations z and \hat{z} to the same locations in the latent space, visualized in a two dimensional action latent space

Action encoder

Image to action encoder

Our model learns a representation sufficient to plan executable trajectories for a 2-dof reacher.

Fraction of sequences with action labels

As the amount of sequences with action labels decreases, the performance of our semi-supervised model degrades slower than a fully supervised model

Our model was able to learn to predict future frames of video in a more complicated Mujoco simulation.

Even with only ~500 sequences of data with action labels, our system was able to generate realistic predictions of future frames.

