Data Representation

Muhammad Afzaal m.afzaal@nu.edu.pk

Book Chapter

- "Assembly Language for x86 processors"
- Author "Kip R. Irvine"
- 6th Edition
- Chapter 1
 - Section 1.3

Data Representation

- Four basic data representation techniques
 - Binary (base 2)
 - Octal (base 8)
 - Decimal (base 10)
 - Hexadecimal (base 16)

System	Base	Possible Digits
Binary	2	0 1
Octal	8	01234567
Decimal	10	0123456789
Hexadecimal	16	0123456789ABCDEF

Data Representation

- Binary Integers
 - Addition
- Hexadecimal Integers
- Base Conversions
 - Binary ←→ Decimal conversion
 - Hexadecimal ← → Binary conversion
 - Hexadecimal ←→ Decimal conversion
- Integer Storage Sizes
- Signed Integers and 2's Complement Notation
- Character Storage

Binary Integers (1/2)

- Data is stored on transistors which have two states
- Digits 1 and 0 are used to represent
 - 1 → True
 - 0 → False
- Number stored as

- Leftmost bit is call Most Significant Bit (MSB)
- Rightmost bit is called Least Significant Bit (LSB)

Binary Integers (2/2)

- Each bit either 1 or 0
- Each bit is a power of 2

1	1	1	1	1	1	1	1
27	2 ⁶	2 ⁵	24	2 ³	2 ²	21	20

Values at binary bit positions

2 ⁿ	Decimal Value	2 ⁿ	Decimal Value
20	1	28	256
21	2	2 ⁹	512
2 ²	4	210	1024
2 ³	8	211	2048
24	16	2 ¹²	4096
2 ⁵	32	2 ¹³	8192
2 ⁶	64	214	16384
27	128	2 ¹⁵	32768

Binary Addition

- Starting from LSB, add subsequent pair of bits
- 2 integers in binary system, so four possible outcomes of adding two binary digits
- Adding 1 to 1 generates carry to next higher bit position

0	0	1	1
+ 0	+ 1	+ 0	+ 1
0	1	1	1 0

Hexadecimal Integers

- Used to represent large binary numbers
- Digits 0 to 15 are used in hexadecimal notation
- Commonly used to represent memory addresses
- In Intel Assembly language, hex numbers are denoted by a suffix h or H e.g. '14h'

Base Conversions

- Unsigned binary integers to decimal
- Unsigned decimal integers to binary
- Hexadecimal to binary
- Binary to hexadecimal
- Hexadecimal to decimal
- Decimal to hexadecimal

Binary to Decimal (1/2)

Weighted Positional Notation method

$$Dec = (D_{n-1} \times 2^{n-1}) + (D_{n-2} \times 2^{n-2}) + \ldots + (D_1 \times 2^1) + (D_0 \times 2^0)$$

- D = binary digit
- n = bit position number in binary number

Binary to Decimal (2/2)

4-bit number so
$$n = 4$$

$$D_0 = 1$$

$$D_1 = 1$$

$$D_2 = 1$$

$$D_3 = 0$$

$$Dec = (D_{n-1} \times 2^{n-1}) + (D_{n-2} \times 2^{n-2}) + \dots + (D_1 \times 2^1) + (D_0 \times 2^0)$$

$$= (D_{4-1} \times 2^{4-1}) + (D_{4-2} \times 2^{4-2}) + \dots + (D_1 \times 2^1) + (D_0 \times 2^0)$$

$$= (D_3 \times 2^3) + (D_2 \times 2^2) + \dots + (D_1 \times 2^1) + (D_0 \times 2^0)$$

$$= (0 \times 2^3) + (1 \times 2^2) + (1 \times 2^1) + (1 \times 2^0)$$

$$= 7$$

Decimal to Binary (1/2)

- Repeatedly divide the decimal integer by 2 until the quotient is 0
- The combination of remainders makes the binary number
- The first remainder goes at LSB position and last digit goes at MSB position

Decimal to Binary (2/2)

Convert 25₁₀ into binary

Division	Quotient	Remainder
25/2	12	1
12/2	6	0
6/2	3	0
3/2	1	1
1/2	0	1

First remainder goes to LSB position

Final result is 0001 1001

When quotient is 0, remainder goes at MSB position

Hexadecimal to Binary

- Each hexadecimal integer corresponds to 4 binary bits
- Convert each hexadecimal number to corresponding binary number

Binary to Hexadecimal

 Convert each 4 bits of binary into its corresponding hexadecimal

Hexadecimal to Decimal (1/2)

 Multiply eat hexadecimal digit with its corresponding power of 16

Dec =
$$(D_{n-1} \times 16^{n-1}) + (D_{n-2} \times 16^{n-2}) + \dots + (D_1 \times 16^1) + (D_0 \times 16^0)$$

- D = hexadecimal digit
- n = digit position number in hexadecimal number

Hexadecimal to Decimal (2/2)

$$= (D_{4-1} \times 16^{4-1}) + (D_{4-2} \times 16^{4-2}) + (D_1 \times 16^1) + (D_0 \times 16^0)$$

$$= (D_3 \times 16^3) + (D_2 \times 16^2) + (D_1 \times 16^1) + (D_0 \times 16^0)$$

$$= (3 \times 4096) + (11 \times 256) + (10 \times 16) + (4 \times 1)$$

$$= (12288 + 2816 + 160 + 4) = 15268$$

Decimal to Hexadecimal (1/2)

- Repeatedly divide the decimal integer by 16 until last quotient is 0
- Each remainder is a hex digit
- First remainder goes at least significant position and last remainder goes at most significant position

Decimal to Hexadecimal (2/2)

Convert 2895₁₀ into hexadecimal

				First remainder goes
D	ivision	Quotient	Remainder	to LS position
28	895 / 16	180	F	
18	80 / 16	11	4	
11	1 / 16	0	В	
		·	remainder	
	goes	s at MS po	sition	<u> </u>
				B 4 F ₁₆

• So
$$2895_{10} = \mathbf{B} \cdot \mathbf{4} \cdot \mathbf{F}_{16}$$

Integer Storage System (1/2)

- Byte is the basic storage unit in x86 architecture
- Byte is composed of 8 bits

Integer Storage System (2/2)

- Some larger measurements units
 - One kilobyte = 2^{10} bytes = 1024 bytes
 - One megabyte = 2^{20} bytes = 1,048,576 bytes
 - One gigabyte = 2^{30} bytes = 1,073,741,824 bytes
 - One terabyte = 2^{40} bytes = 1,099,511,627,776 bytes
 - One petabyte = 2^{50} bytes = 2^{40} kilobytes
 - One exabyte = 2^{60} bytes = 2^{10} petabytes
 - One zettabyte = 2^{70} bytes = 2^{30} terabytes
 - One yottabyte = 2^{80} bytes = 2^{20} exabytes

Signed Integers

- Signed integers are either positive or negative
- Not possible to stick negative sign to a number in binary numbers
- When explicitly mentioned as signed integer, then MSB decides the +ve and –ve sign
- In signed binary/octal/hex integers
 - $MSB = 1 \rightarrow integers is negative$
 - $MSB = 0 \rightarrow integers is positive$
- Negative integers are represented using 2's complement notation

Range of Signed Numbers

 A certain number of bits can store only a fixed number of signed integers

Bits	Range	Total Numbers
8	-128 to +127	256
16	-32768 to +32767	65,536
32	-2,147,483,648 to +2,147,483,647	4,294,967,296
64	-9,223,372,036,854,775,808 to +9,223,372,036,854,775,807	18,446,744,073,709,551,616

Range of Unsigned Numbers

 Total numbers in signed integers is exactly equal to the total numbers in unsigned integers in the same size of bits

Bits	Range	Total Unsigned Numbers
8	0 to 255	256
16	0 to 65,535	65,536
32	0 to 4,294,967,295	4,294,967,296
64	0 to 18,446,744,073,709,551,615	18,446,744,073,709,551,616

2's Complement Notation

- Useful for processors to perform subtraction with addition operation
- A fixed number of bits are used to represent the numbers
- The leftmost bit is called sign bit
- 2's complement notation is used to represent both +ve and –ve numbers

How to calculate 2's complement

- How to get 2's complement of a binary number?
 - Take 1's complement of that number(invert all its bits)
 - Add 1 into the inverted binary number
 - ... and the result is 2's complement of that number

2's Complement of Hexadecimal

- Invert all bits of hex number
- All bits of hex numbers can be inverted simply by subtracting the number from F₁₆
- Add 1 into the inverted hex number and the result is the 2's complement
- Calculate 2's complement of (B 4 F)₁₆

Converting Signed Binary to Decimal

- If MSB is 0, then number is +ve and convert it into decimal in usual way
- If MSB is 1, then the number is in 2's complement notation and follow these steps
 - Calculate its 2's complement again
 - Convert this new number into decimal and add a –ve sign with it

- As the number was negative
 - So in decimal it is __1 0 6

106

Converting Signed Decimal to Binary

- Convert absolute value of decimal into binary
- If original decimal number is –ve, calculate 2's complement of the binary number
- Convert -35 to binary

Convert Signed Decimal to Hexadecimal

- Convert absolute value of decimal to hex
- If decimal integer is –ve, create 2's complement of hexadecimal integer
- Convert -2895 to hexadecimal

Converting Signed Hex to Decimal (1/3)

- In signed hex number, if MSB=1, the number is -ve
- To convert it into decimal, follow these steps
 - Create its 2's complement
 - Convert the 2's complemented hex to decimal
 - Attach –ve sign to the decimal number

Converting Signed Hex to Decimal (2/3)

- Determine if Signed 8C₁₆ is +ve or –ve
- By converting into binary
 - If MSB = 1, then number is -ve
 - $8C_{16} = (1000 \ 1100)_2$
 - Since MSB = 1, so $8C_{16}$ is -ve
- Another method
 - If leftmost digit > 7, then number is -ve
 - Since leftmost digit i.e. 8 > 7
 - 8C₁₆ is –ve

Converting Signed Hex to Decimal (3/3)

Convert Signed A3₁₆ into decimal

$$A 3$$
 $A > 7 \Rightarrow A3 \text{ is } -ve$

2's complement of A3 = 5D

Binary Subtraction

- Big advantage of signed number is to use same circuit for addition and subtraction
- To perform A B
 - Calculate –B by taking 2's complement of B
 - Perform A+(-B)

Next Week Lectures

- Basic Computer Organization
- IA-32 Architecture
- Instruction Execution Cycle
- Intel Microprocessors