

Utilidad de la determinación de cadenas livianas libres en suero en una población de pacientes con Discrasias de Células Plasmáticas del Hospital Provincial Neuquén

Mariana Piaggio Bioquímica Sector Proteínas e Inmunología Hospital Provincial Neuquén

Introducción

- Las gammapatias monoclonales son discrasias de células plasmáticas caracterizadas por la proliferación de un clon de células plasmáticas neoplásicas.
- Asociado a una producción excesiva de proteínas monoclonales compuestas por una inmunoglobulina intacta y/o un incremento en la producción de cadenas livianas libres Kappa o Lambda.

Gammapatías Monoclonales

Mieloma Múltiple

Inmunoglobulina Cadena liviana No Secretor

AL amiloidosis

2003

Guías generales sobre el manejo de MM

Hematology Journal

Myeloma management guidelines: a consensus report from the Scientific Advisors of the International Myeloma Foundation¹

Brian GM Durie^{1*}, Robert A Kyle³, Andrew Belch³, William Bensinger⁴, Joan Bladé³, Mario Boccadoro⁶, J Anthony Child⁷, Raymond Comenzo⁸, Ben Djulbegovic¹, Dorotea Fantl⁹, Gosta Gahrton¹⁰, Jean-Luc Harousseau¹¹, Vania Hungria¹², Douglas Joshua¹³, Heinz Ludwig¹⁴, Jayesh Mehta¹⁵, Angelina Rodriquez-Morales¹⁶, Gareth Morgan¹⁶, Amara Nouel¹⁷, Martin Oken¹⁸, Raymond Powles¹⁹, David Roodman²⁰, Jesus San Miguel²¹, Kazuyuki Shimizu²², Seema Singhal¹⁵, Bhawna Sirohi¹⁹, Pieter Sonneveld²³, Guido Tricot²⁴ and Brian Van Ness²³

Leukemia (2009) 23, 215–224 © 2009 Macmillan Publishers Limited All rights reserved 0887-6924/09 \$32.00

www.nature.com/leu

SPOTLIGHT REVIEW

International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders

A Dispenzieri¹, R Kyle¹, G Merlini², JS Miguel³, H Ludwig⁴, R Hajek⁵, A Palumbo⁶, S Jagannath⁷, J Blade⁸, S Lonial⁹, M Dimopoulos¹⁰, R Comenzo¹¹, H Einsele¹², B Barlogie¹³, K Anderson¹⁴, M Gertz¹, JL Harousseau¹⁵, M Attal¹⁶, P Tosi¹⁷, P Sonneveld¹⁸, M Boccadoro⁶, G Morgan¹⁹, P Richardson¹⁴, O Sezer²⁰, MV Mateos³, M Cavo¹⁷, D Joshua²¹, I Turesson²², W Chen²³, K Shimizu²⁴, R Powles²⁵, SV Rajkumar¹ and BGM Durie²⁶ on behalf of the International Myeloma Working Group²⁷

¹Departments of Hematology/Laboratory Medicine/Pathology, Mayo Clinic, Rochester, MN, USA; ²Department of Biochemistry, University Hospital San Matteo, Italy; ³Department of Hematology, Servicio de Hepatología, Hospital Universitario de Salamanca, CIC, IBMCC (USAL-CSIC), Spain; ⁴1st Medical Department and Oncology, Wilhelminenspital Der Stat Wien, Vienna, Austria; ⁵Czech Myeloma Group & Department of Internal Medicine Fn Brno and LF MM Brno, Czech Republic CR; ⁶Divisione de Ematologia, University of Torino, Torino, Italy; ⁷Department of Medical Oncology/Internal Medicine, St Vincent's Comprehensive Cancer Center, New York, NY, USA; ⁸Department of Hematology, Hospital Clinic, IDIBAPS, Barcelona, Spain; ⁹Hematology

Criterios diagnósticos

- Presencia de Proteínas monoclonales en suero y/u orina.
- Infiltración de células plasmáticas en Médula Ósea > 10% (aspirados y biopsias).
- Criterios CRAB

Herramientas tradicionales para el diagnóstico y monitoreo

- Proteinograma electroforético: me permite comprobar la presencia del componente monoclonal y su comportamiento a medida que transcurre el tratamiento. Limite de detección: 500-2000 g/L.
- Inmunofijación: tipificación del componente monoclonal.
- sFCL: da idea de la concentración de la cadena involucrada y ayuda en el monitoreo del tratamiento. Limite de detección: 0.2 mg/L.

Ensayo CLLs (sFLC)

(Freelite, The binding site Ltd. Birmingham, UK)

- Cuantitativo.
- Son anticuerpos policionales que reaccionan solamente con los epitopes expuestos de las cadenas livianas libres.
- Inmunoturbidimétrico.
- FLC κ = (3.3-19.4) FLC λ =(5.7-26.3)
- Relación κ/λ= 0.26-1.65.

Limitaciones:

- Variación lote a lote. Variable reactividad inmunológica.
- Dilución no lineal en alguna CLL. Sobreestimación.
- Exceso de Antigeno. Bajos valores de FLC.
- Polimerización. Sobreestimación de CLL.

Sensibilidad diagnóstica Freelite en suero vs. IFE urinaria

Katzmann Clin Chem 2009;55:1517-22

objetivos

- Verificar la sensibilidad diagnóstica de pruebas para GM y la contribución del ensayo de CLL.
- Evaluar la importancia del ensayo de CLL en suero en el monitoreo de los pacientes en terapia.

Métodos

- De septiembre 2017 a Junio 2018 se incorporaron 35 pacientes de los cuales 29 fueron MM (19 MM inmunoglobulina intacta, 5 MM cadena ligera, 5 MGUS).
- Las determinaciones de CLL (Freelite) fueron realizadas sobre los sueros que contaban con datos de EPS e IFE.

Resultados Screening

Detección: 9 nuevos casos de GM.

Se detectó 1 paciente por el análisis de CLLs que no hubiese sido identificado por los métodos de EPS e IFE, caracterizado como MM de cadenas livianas que sólo presentaba alterada la relación de κ/λ libres en suero.

Monitoreo

- Debido al tiempo de vida medio corto de las CLLs en comparación con las inmunoglobulinas intactas, la determinación de las CLLs permite examinar prácticamente en tiempo real los niveles antes y después de cada ciclo de Quimioterapia.
- La determinación de las CLLs en la monitorización del tratamiento es importante porque permite:
 - 1) evaluar la eficiente eliminación de las CLLs durante la diálisis.
 - 2) analizar la eficiencia de la quimioterapia durante el tratamiento, permitiendo reajustar la pauta terapéutica en caso de necesidad.
 - 3) determinar el momento en que el paciente recupera su función renal, empezando de nuevo a metabolizar las CLLs.
 - 4) adelantar el diagnóstico de las recidivas.

Resultados

De los pacientes en monitoreo analizados, el ensayo de CLLs permitió una correcta evaluación de la respuesta en 9 casos, donde las técnicas electroforéticas no lograron detectar proteína monoclonal. En los casos restantes, se debieron realizar cambios en el tratamiento ya que los pacientes tenían mala respuesta al mismo, así mismo, demostrado por el aumento o mantenimiento en los valores de CLLs.

Conclusión

- La incorporación de CLLs ha ido en aumento en los últimos años.
- En 2009, el IMWG recomendó la incorporación de la prueba en el esquema inicial de diagnóstico de pacientes con sospecha de GM y sugirió su importancia en el monitoreo y pronóstico.
- En 2014 la incorporación de los biomarcadores de MM con el objetivo de favorecer un diagnóstico temprano volvió a fortalecer el uso del ensayo de CLL haciéndolo una práctica de rutina en muchas instituciones.

- En nuestra institución, es la primera vez que se incorpora la medición de CLLs κ y λ al esquema de diagnóstico y seguimiento de los pacientes con GM.
- Nuestros resultados preliminares muestran mayor sensibilidad diagnóstica al incluir CLL al panel tradicional de GMs (SPE + IFE), logrando, además, incrementar la capacidad de detección de componente monoclonal en el monitoreo del tratamiento de los pacientes.

UTILIDAD DE LA DETERMINACIÓN DE CADENAS LIVIANAS LIBRES EN SUERO EN PACIENTES CON GAMMAPATÍAS MONOCLONALES EN EL HOSPITAL PROVINCIAL NEUQUÉN

Piaggio MA¹, Gonzalez LA¹, Albornoz Sanchez NH¹, Torres HT¹, Rios Sant F², Vazquez MM², Diaz GE², Delgado F³.

1.Laboratorio de Proteínas, Hospital Provincial Neuquén, 2. Servicio de Hematología, Hospital Provincial Neuquén. 3. The Binding Site, Argentina.

Bibliografía

- Dispenzieri A, Kyle R, Merlini G, et al. International Myeloma Working Group guidelines for serum-free light chain analysis in multiple myeloma and related disorders. Leukemia 2009; 23: 215–24
- Dimopoulos M, Kyle R, Fermand JP, et al. Consensus recommendations for standard investigative workup: report of the International Myeloma Workshop Consensus Panel 3. Blood 2011; 117: 4701–4705.
- Katzmann JA, Clark RJ, Abraham RS, et al. Serum reference intervals and diagnostic ranges for free kappa and free lambda immunoglobulin light chains: relative sensitivity for detection of monoclonal light chains. Clin Chem 2002; 48: 1437–1444.
- Rajkumar S et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol 2014; 15: e538–48.
- Malini V Bhole, Ross Sadler and Karthik Ramasamy. Serum-free light-chain assay: clinical utility and limitations. Ann Clin Biochem January 2014.

