Cyp = 3-Cyclopentylpropionyl-

FIGURE 1

÷

and the state of the same of

FIGURE 2

FIGURE 3

:

Figure 4

0 1) O2, hv Ph₃P⁺CH₂CH₃ [2)Ac₂O NaH, DMSO MeO ., JM 50% .O MeO MeO 60% .OAc H₂, Pd/C C₆H₆ 98% CH₂OCH₃ 2xMeLi/Et20 ∕^O~, Et₂O Ac₂O, pTsOH △ 50% MeO 40% eO MeO 80 OH OH OH. NaBH₄ CH₂OCH₃ CH2OCH3 CH₂OCH₃ **AcOH** LiNH₃ THF 1-BuOH H₂O MeO 85 MeO 83 Pyr Br₃ H Pyridine HO. CH₂OCH₃ CH₂OCH₃ CH₂OCH₃ [0]* OH, HC (OEt)₃ CH₂CI₂TsOH 96% 88 (CF3CO)2O3H2O H₂O₂, Na₂PO₄ | 98.2% CH₂CI₂ ·CH₂OCH₃ CH₂OCH₃ CH₂OCH₃ 4-BrC₆H₄ NMe₂ AcOH, H₂O Mg, cat. CuCl THE THF 48% 68% 89 . О́Н 90 91

* Yield from 83 to 86is 37%

Figure 5

Figure 6

Figure 7

}

ĻΠ

Figure 8

Figure 9

Figure 10

Figure 11