

UNIVERSITÀ DI PISA

DEPARTMENT OF COMPUTER ENGINEERING

Edge Computing Project Documentation

?? Dicembre 2024

Team:

Cavedoni F. Monaci M. Pinna F.

Contents

1	Intr	roduction	1	
	1.1	Problem description		
	1.2	Objectives		
	1.3	Performance indexes		
2	Modeling			
	2.1	Assumptions		
	2.2	Factors description		
3		plementation	į	
	3.1	Modules		
	3.2	Modules' behaviour		
		3.2.1 EdgeComputingNetwork		

1 Introduction

A cellular network is composed of M base stations, placed within a 2D floorplan of size $L \times H$ according to a regular grid. Each base station also has edge computing capabilities, i.e., it can receive computing tasks from cellular network's users and serve them at a rate equal to S instructions per seconds following a First Come First Served (FCFS) policy. Assume that all base stations are interconnected between each other via mesh topology.

1.1 Problem description

We consider N users placed at random locations (x, y) within the same 2D floorplan, where coordinates x and y are random variables to be defined later. Each user generates a new computing task request every T seconds, and each request consists of I instructions to be executed. T and I are exponentially distributed RVs. In particular, a user sends each new task request to its serving base station (i.e., the closest one), which in turn can follow one of methods below:

- a) serve the request locally
- b) forward the request to the less-loaded base station

1.2 Objectives

This project aims to fulfill the following:

- Evaluate the time required to complete a computing task for various values of N comparing method a) against method b)
- Evaluate the following scenarios:

x and y are uniform distributed random variables in range

$$x \in [0, width] \quad y \in [0, height]$$

 ${\tt x}$ and ${\tt y}$ are distributed as a $lognormal\ distribution$ with parameters defined in subsection 2.2

• TODO...

1.3 Performance indexes

- Response time of the system (when a packet leaves the system)
- Response time of each queue
- Packet loss
- TODO...

2 Modeling

Our system is described by the following scheme

Figure 1: Scheme

As shown in Figure 1, each base station is modeled as an M/M/1/k system, as rates λ_i and μ_i are exponentially distributed random variables $\forall i \in [1, M]$.

2.1 Assumptions

We make some assumption in order to simplify the implementation of the system.

- 1. Rerouting propagation delay is constant for each base station.
- 2. Every job entering a queue is destined to be served and cannot exit the queue in any other way.
- 3. Each queue length is *finite* with k slots.
- 4. (work in progress) Width and height of the grid are such that it results in a square area.

2.2 Factors description

- N: number of users
- k: length of each queue
- λ_i : Interarrival rate for base station i
- μ : Service rate for each base station
- μ_{log} : Average of lognormal distribution
- σ_{log} : Standard deviation of lognormal distribution

3 Implementation

3.1 Modules

The following modules have been defined:

- EdgeNetwork: compound module wich represents the system and hosts the following simple modules
 - BaseStation: simple module which receives, precesses and (in case of scenario b)) forwards packets sent by users according to the specified distribution.
 - User: simple module which generates and sends packets (with length dependent by the specified distribution) to the nearest base station.

3.2 Modules' behaviour

3.2.1 EdgeComputingNetwork

• TODO...