Multivariate Linear Regression

Notation:

• *n*: number of features

• $x^{(i)}$: input of *i*-th training example

• $x_{j}^{(i)}$: value of feature j in i-th training example

Hypothesis:

$$h_{\theta}(x) = \theta_0 + \theta_1 x_1 + \theta_2 x_2 + \ldots + \theta_n x_n$$

• For convenience of notation, define $x_0 := 1$. $(x_0^{(i)} = 0)$

$$\mathbf{x} = egin{bmatrix} x_0 \ x_1 \ x_2 \ dots \ x_n \end{bmatrix} \in \mathbb{R}^{n+1} \qquad oldsymbol{ heta} = egin{bmatrix} heta_0 \ heta_1 \ heta_2 \ dots \ heta_n \end{bmatrix} \in \mathbb{R}^{n+1}$$

• Then:

$$h_{ heta} = oldsymbol{ heta}^T \mathbf{x}$$

• Multivariate Linear Regression.

Gradient Descent for Multiple Variables

• Cost function:

$$J(oldsymbol{ heta}) = rac{1}{2m} \sum_{i=1}^m ig(h_ heta(x^{(i)}) - y^{(i)}ig)^2$$

• Gradient descent:

o Repeat:

$$\theta_j := \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\boldsymbol{\theta})$$

(simultaneously update for every $j = 0, 1, \dots, n$).

$$heta_j := heta_j - lpha rac{1}{m} \sum_{i=1}^m ig(h_ heta(x^{(i)}) - y^{(i)}ig) x_j^{(i)}$$

Feature Scaling

Idea: make sure features are on a similar scale.

E. g.:

• x_1 : size (0 - 2000 squared feet)

• x_2 : number of bedrooms (1-5)

They can rescaled to:

•
$$x_1$$
: $\frac{\text{size (sq. feet)}}{2000}$;
• x_2 : $\frac{\text{num. of bedrooms}}{5}$.

Get every feature into approximately a $-1 \le x_i \le 1$ range.

Mean Normalization

Replace x_i with $x_i-\mu_i$ to make features have approximately zero mean. (Do not apply to $x_0=1$.)

E. g.:

•
$$x_1$$
: $\frac{\text{size} - 1000}{2000}$;
• x_2 : $\frac{\text{\# bedrooms} - 2}{5}$.
 $\Rightarrow -0.5 \le x_1 \le 0.5, -0.5 \le x_1 \le 0.5$.

Generally:

$$x_i := rac{x_i - \mu_i}{S_i},$$

where μ_i is the average value for the feature and S_i , the range of values (maximum minus minimum).

Learning Rate

- Making sure gradient descent is working correctly:
 - \circ Plot $\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$ against the number of iterations;
 - $J(\theta)$ should decrease after every iteration!
 - \circ Otherwise, try using a smaller α .
- For a sufficiently small α , $J(\theta)$ should decrease on every iteration;
 - \circ But if α is too small, gradient descent can be slow to converge.

Features and Polynomial Regression

Example:

Housing prices prediction:

$$h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 \cdot \text{frontage} + \theta_2 \cdot \text{depth}$$

Defining new features...

$$h_{\theta}(x) = \theta_0 + \theta_1 \cdot x$$

where x is the land area (i. e., frontage times depth).

Adding non-linear features:

$$h_{\theta}(\mathbf{x}) = \theta_0 + \theta_1 \cdot x_1 + \theta_2 \cdot x_2 + \theta_3 \cdot x_3$$

= $\theta_0 + \theta_1 \cdot (\text{size}) + \theta_2 \cdot (\text{size})^2 + \theta_3 \cdot (\text{size})^3$

(Only adding the quadratic term would imply that, with a sufficiently large value for size, the price would go down.)

Feature scaling becomes even more crucial:

size
$$\in [1, 1000] \Rightarrow (\text{size})^2 \in [1, 10^6], (\text{size})^3 \in [1, 10^9]$$

• An alternative non-linear version:

$$h_{ heta}(\mathbf{x}) = heta_0 + heta_1(ext{size}) + heta_2\sqrt{(ext{size})}$$

Normal Equation

Method to solve $\min_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$ for $\boldsymbol{\theta}$ analytically.

• Intuition: for one dimension ($\theta \in \mathbb{R}$):

$$\frac{\partial}{\partial \theta}J(\theta) = \frac{\partial}{\partial \theta}(a\theta^2 + b\theta + c) := 0$$

• $\theta \in \mathbb{R}^{n+1}$:

$$egin{aligned} rac{\partial}{\partial heta_j} J(heta_0, heta_1, \dots heta_m) &= rac{\partial}{\partial heta_j} igg(rac{1}{2m} \sum_{i=1}^m ig(h_ heta(x^{(i)}) - y^{(i)}ig)^2igg) := 0, \ orall j \in \{0, 1, \dots, m\} \end{aligned}$$

Example:

x_0	Size (sq. ft.) x_1	# of bedrooms x_2	# of floors x_3	Age of home x_4	Price in \$ 1000s (<i>y</i>)
1	2104	5	1	45	460
1	1416	3	2	40	232
1	1534	3	2	30	315
1	852	2	1	36	178

$$X = \begin{bmatrix} 1 & 2104 & 5 & 1 & 45 \\ 1 & 1416 & 3 & 2 & 40 \\ 1 & 1534 & 3 & 2 & 30 \\ 1 & 852 & 2 & 1 & 36 \end{bmatrix} \qquad y = \begin{bmatrix} 460 \\ 232 \\ 315 \\ 178 \end{bmatrix}$$

Then:

$$\boldsymbol{\theta} = (X^T X)^{-1} X^T y$$

Generally:

- ullet m examples: $(x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\ldots,(x^{(m)},y^{(m)})$;
- *n* features:

$$x^{(i)} = egin{bmatrix} x_0^{(i)} \ x_1^{(i)} \ x_2^{(i)} \ dots \ x_n^{(i)} \end{bmatrix} \in \mathbb{R}^{n+1} \quad \Rightarrow \quad X = egin{bmatrix} -(x^{(1)})^T - \ -(x^{(2)})^T - \ dots \ -(x^{(m)})^T - \end{bmatrix} \quad y = egin{bmatrix} y^1 \ y^2 \ dots \ y^m \end{bmatrix}$$

where $X_{m \times (n+1)}$ is called a design matrix.

So, $oldsymbol{ heta}$ can be computed as: $oldsymbol{ heta} = (X^TX)^{-1}X^Ty$.

• When using the normal equation, feature scaling is not necessary.

Comparison:

Gradient Descent	Normal Equation	
Need to choose $lpha$	No need to choose $lpha$	
Needs many iterations	Don't need to iterate	
Works well even when the number of features (n) is large, $\emph{e. g.}$, $n \geq 10^4$	Slow if n is very large (due to $(X^TX)^{-1}$)	

- What if X^TX is non-invertible?
 - Redundant features (linearly dependent):
 - $E. g.: x_1:$ size in sq. ft., $x_2:$ size in m^2 ;
 - Delete one the features.
 - Too many features (e. g., $m \le n$):
 - Delete some features, or use regularization.