MAT20306 - Advanced Statistics

Lecture 6: Multiple linear regression

Biometris

Simple Linear Regression

Overview:

- 1) Define the model
- 2) Estimate the model
- 3) Inference on model parameters (by means of t-test and C.I.)
- 4) Test the model: ANOVA table
- 5) Checking model assumptions
- 6) Prediction by using the model

O&L Chapter 11 (11.1-11.6)

5. Checking model assumptions

To check assumptions look at

residuals

$$e_i = y_i - \hat{y}_i = y_i - (b_0 + b_1 x_i)$$

- Graphical checks are made, by plotting residuals in different ways:
 - Plot residuals versus expected quantiles of normal distribution to check normality assumption (check of 2): QQ – plot (Quantile – Quantile plot);
 - Plot residuals versus predicted values to check constant variance assumption (check of 3);
 - Plot residuals versus x to check linearity assumption (check of 4).
- Independence assumption cannot be checked by using the data.
 It should follow from a proper experimental set-up or study design.

Example fish storage, checking model assumptions

• In SPSS, store residuals and predicted values...

Normal QQ-plot: points approximately on straight line, so the assumption of normality is reasonable

Scatterplot of residuals on y-axis v.s. predicted values on x-axis: variation of residuals is approximately constant at different levels of the predicted value, so assumption of constant variance is reasonable.

	Delay	Quality	PRE_1	RES_1
1	0	8.5	8.460	.040
2	0	8.4	8.460	060
3	3	7.9	8.035	135
4	3	8.1	8.035	.065
5	6	7.8	7.610	.190
6	6	7.6	7.610	010
7	9	7.3	7.185	.115
8	9	7.0	7.185	185
9	12	6.8	6.760	.040
10	12	6.7	6.760	060
44	3333	250-1	2000	5

Scatterplot of residuals (y-axis) v.s. regressor x (x-axis): residuals are approximately evenly spread around 0; they show no curve, so the assumption of a linear relationship is reasonable.

The last two plots are essentially identical, because $\hat{y} = (b_0 + b_1 x)$ and x differ only by a shift and multiplicative factor. This will change in multiple regression, later on.

Inference for mean response μ_y when $x=x^*$

- simple linear regression model: $y = \mu_y + \varepsilon = \beta_0 + \beta_1 x + \varepsilon$
- Expected / mean response at a specific level x* is

$$E(y | x^*) = \mu_y = \beta_0 + \beta_1 x^*$$

• Estimated mean response and standard error (replacing unknown β_0 and β_1 with estimates):

$$\hat{\mu}_{y} = \hat{\beta}_{0} + \hat{\beta}_{1}x^{*}, \quad se(\hat{\mu}_{y}) = s_{\varepsilon}\sqrt{\frac{1}{n} + \frac{(x^{*} - \overline{x})^{2}}{S_{xx}}}$$

Confidence interval for mean response at x*:

$$\left(\hat{\mu}_{y} \pm t_{\alpha/2, n-2} se(\hat{\mu}_{y})\right)$$

Inference for future individual response when $x=x^*$

• (Unknown) response at a specific level x^* is

$$y_{x^*} = \mu_y + \varepsilon = \beta_0 + \beta_1 x^* + \varepsilon$$

• Predicted individual response (replacing β_0 and β_1 by estimates, and replacing ε by its expected value 0):

$$\hat{y}_{x^*} = \hat{\beta}_0 + \hat{\beta}_1 x^*$$

the same as the estimated mean response on the previous slide

Prediction interval for future individual response

$$(\hat{y}_{x^*} \pm t_{\alpha/2, n-2} se(\hat{y}_{x^*})) = \hat{y}_{x^*} \pm t_{\alpha/2, n-2} se(\hat{y}_{x^*}) + \frac{1}{n} + \frac{(x^* - x)^2}{S_{xx}}$$

the extra term 1, compared to se of estimated mean response, is due to the extra ε in observation y

The two intervals in one plot

The two intervals in one plot

Fish storage, continued SPSS output

x = delay (h) of fish storage in ice,

y = quality after subsequent 7-day storage in ice.

- estimate μ_{v} for delay x = 7 (h) with associated se
- predict y if delay x = 7 (h)
- give 0.95-confidence interval for $\mu_{\rm v}$.
- give 0.95 prediction interval for y

Model: $y = \beta_0 + \beta_1 x + \varepsilon$,

$$\mu_{V} = \beta_{0} + \beta_{1} x$$

which interval will be narrower?

Two ways to proceed:

Hard way: fill in x = 7 in regression equation, calculate standard error and interval.

Easy way: let SPSS do the work:

(1) add an extra line x = 7 to the data

(2)in menu Regression ask for needed quantities and use Save(3)interpret output in datafile

	Delay	Quality	PRE_1	SEP 1	LMCI_1	UMCI_1	LICI_1	UICI_1
1	.0	8.5	8.46	.066	8.31	8.61	8.14	8.78
2	.0	8.4	8.46	.066	8.31	8.61	8.14	8.78
3	3.0	7.9	8.04	.047	7.93	8.14	7.74	8.33
4	3.0	8.1	8.04	.047	7.93	8.14	7.74	8.33
5	6.0	7.8	7.61	.038	7.52	7.70	7.32	7.90
6	6.0	7.6	7.61	.038	7.52	7.70	7.32	7.90
7	9.0	7.3	7.19	.047	7.08	7.29	6.89	7.48
8	9.0	7.0	7.19	.047	7.08	7.29	6.89	7.48
9	12.0	6.8	6.76	.066	6.61	6.91	6.44	7.08
10	12.0	6.7	6.76	.066	6.61	6.91	6.44	7.08
\bigcirc 11	7.0		7.47	.039	7.38	7.56	7.18	7.76
4.00								

Example fish storage in ice, continued

									_
	Delay	Quality	PRE_1	SEP 1	LMCI_1	UMCI_1	LICI_1	UICI_1	
1	.0	8.5	8.46	.066	8.31	8.61	8.14	8.78	_
2	.0	8.4	8.46	.066	8.31	8.61	8.14	8.78	
3	3.0	7.9	8.04	.047	7.93	8.14	7.74	8.33	_
4	3.0	8.1	8.04	.047	7.93	8.14	7.74	8.33	_
5	6.0	7.8	7.61	.038	7.52	7.70	7.32	7.90	_
6	6.0	7.6	7.61	.038	7.52	7.70	7.32	7.90	_
7	9.0	7.3	7.19	.047	7.08	7.29	6.89	7.48	_
8	9.0	7.0	7.19	.047	7.08	7.29	6.89	7.48	_
9	12.0	6.8	6.76	.066	6.61	6.91	6.44	7.08	_
10	12.0	6.7	6.76	.066	6.61	6.91	6.44	7.08	
11	7.0		7.47	.039	7.38	7.56	7.18	7.76	$\bar{>}$
40									_

5. 0.95-pred. int. of quality of an individual fish at delay of 7 h:

(LICI_1,UICI_1) =
=
$$\hat{y}_{x=7} \pm t_8 (0.975) S \hat{E}(\hat{y}_{x=7}) =$$

= (7.18, 7.76)

1. Estimated mean quality of a fish at a delay of 7 h:

PRE_1=
$$\hat{\mu}_{y|x=7} = b_0 + b_1 \times 7 = 7.47$$

2. Also predicted quality of individual fish at delay of 7 h:

PRE_1=
$$\hat{y}_{x=7} = b_0 + b_1 \times 7 + \hat{e} = 7.47 + 0 = 7.47$$

Same as estimated mean response!

4. 0.95-conf. int. of mean quality at delay of 7 h:

(LMCI_1,UMCI_1) =
$$\hat{\mu}_{y|x=7} \pm t_8 (0.975) S \hat{E} (\hat{\mu}_{y|x=7}) =$$

= 7.47 ± 2.31×0.039 = (7.38, 7.56)

3. Standard error of estimator of mean quality at delay of 7 h:

SEP_1=
$$\hat{SE}(\hat{\mu}_{y|x=7})=s_{\varepsilon}\sqrt{\frac{1}{10}+\frac{(7-\bar{x})^2}{S_{xx}}}=0.039$$

Outlier, leverage and influence

Outlier: observation with extreme y-value (compared to other observations with similar x-values)

Outlier, leverage and influence

High leverage point: observation with extreme x-value(s).

May influence estimated coefficient(s).

Outlier, leverage and influence

Influential point: observation that strongly influences estimated regression coefficients(s).

Perform an analysis with and without the suspect observation(s) and see how much it matters for the conclusions.

Multiple Linear Regression

Overview:

- 1) Define the model: β_0 , β_1 , β_2 ,..., σ_{ε}
- 2) Estimate the model
- 3) Test the model: ANOVA table
- 4) Inference on model parameters (by means of t-test and C.I.)
- 5) Checking model assumptions
- 6) Prediction by using the model

O&L Sections 12.1, 12.3, 12.4, 12.5 (12.9)

Example Weight Loss of Compound (Example 12.5, p676)

A compound is exposed to air for 4 different exposure times, and 3 different levels of humidity.

Both exposure time and relative humidity are experimental factors, with values fixed by the experimenter, and weight loss is measured.

Response: y =weight loss

Two explanatory variables:

$$x_1$$
 = exposure time (hours)

 x_2 = relative humidity

7.5

2.0

4.0

5.7

6.5

Model:

$$y_{i} = \beta_{0} + \beta_{1}x_{1i} + \beta_{2}x_{2i} + \varepsilon_{i},$$

$$\varepsilon_{i} \text{ 's iid from } N(0, \sigma_{\varepsilon}), i = 1...12$$

.30

.40

.40

Example Weight Loss of a Compound, continued

Scatterplot matrix

1. Multiple linear regression model

Simple linear regression model

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
, ε_i 's iid from $N(0, \sigma_{\varepsilon})$, $i = 1,...,n$

Multiple linear regression model:

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \dots + \beta_k x_{ki} + \varepsilon_i, \quad \varepsilon_i \text{ 's iid from } N(0, \sigma_{\varepsilon})$$

Multiple Linear regression is like simple Linear Regression in several ways:

- In both cases there is **one numerical response** variable *y* which is explained by a *systematic* part and a *random* part.
- Same assumptions for random part (error terms ε_i):
 - 1. independent,
 - 2. normally distributed with mean 0, and
 - 3. constant variance σ^2_{ε}
- The systematic part is linear in the parameters, e.g.

$$\mu_{yi} = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i}$$

Multiple versus simple linear regression

Multiple linear regression is unlike simple linear regression, regarding:

- Interpretation of β_i :
 - effect on the mean response of increasing the j th regressor by 1
 unit, keeping all other regressors constant.
 - β_i is called a partial regression coefficient.

Problem of collinearity: two or more x-variables may be (strongly)
correlated, which makes it difficult to separate the effects of these xvariables.

Example Weight Loss of a Compound, continued

y (weight loss) seems to depend on x₁ (exposure time) and x₂ (relative humidity).
 A possible (first) model is:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \varepsilon$$

Other possible model is e.g.:

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \varepsilon$$

- Choosing a proper model can be difficult.
- Good practice of model building is to be led by:
 - 1. existing theory (knowledge),
 - 2. graphical summaries, and
 - 3. the principle of parsimony: keep the model as simple as possible, yet capturing the essence.

2. Least Squares again

- How do we get estimates for $\beta_0, \beta_1, ..., \beta_k$?
- We use residuals: $e_i = y_i (b_0 + b_1 x_{1i} + ... + b_k x_{ki})$
- Least Squares: find $b_0...b_k$ such that $SSE = \sum_i e_i^2$ is minimal.
 - Regard SSE as a function of unknown parameters $b_0, b_1, ..., b_k$.
 - Set derivatives w.r.t. $b_0, b_1, ..., b_k$ equal to 0.
 - This yields (k+1) equations, with (k+1) unknown parameters, from which the LS estimates $b_0, b_1, ..., b_k$ can be solved.
- These are called the Normal Equations (see 12.3 O&L).

Weight loss and SPSS

- Let SPSS solve the normal equations...
- β_0 , β_1 , and β_2 estimated by the Least Squares method.

Coefficients

		Unstandardized Coefficients		Standardized Coefficients		
Model		B	Std. Error	Beta	t	Sig.
1	(Constant)	.667	.694		.960	.362
	Exposure time (h)	1.317	.100	.895	13.191	.000
	Relative humidity	-8.000	1.367	397	-5.853	.000

a. Dependent Variable: Weight Loss (pounds)

Fitted model for the weight loss example:

$$\hat{y} = 0.667 + 1.317 x_1 - 8.00 x_2$$

Weight loss and SPSS

- Let R solve the normal equations...
- β_0 , β_1 , and β_2 estimated by the Least Squares method.

Fitted model for the weight loss example:

$$\hat{y} = 0.667 + 1.317 x_1 - 8.00 x_2$$

The normal equations

In simple regression, residuals *e* were distances to a fitted line. In multiple regression residuals *e* are distances to a fitted plane.

ANOVA table and σ_{ϵ}

Again, ANOVA table shows how the total variation around the mean (TSS)
is split into variation due to the systematic part (SSR) and the random part
(SSE), of the model:

- . Fredictors. (Constant), numia, tin
- b. Dependent Variable: wt_loss

df's are:

$$df_{Regression} = k = 2$$
 (two slopes, instead of one slope),
 $df_{Total} = (n-1) = 12 - 1 = 11$ (same as before),
 $df_{Error} = remaining df = 11 - 2 = 9$ (the difference).

Estimating the Standard Deviation of the Error

Residuals

$$e_i = y_i - \hat{y}_i = y_i - (b_0 + b_1 x_{i1} + \Lambda + b_k x_{ik})$$

Residual (error) sum of squares:

$$SSE = \sum_{i} e_{i}^{2} = \sum_{i} (y_{i} - (b_{0} + b_{1}x_{i1} + \Lambda + b_{k}x_{ik}))^{2}$$

• Residual standard deviation: similar to simple linear regression, but notice residual (error) degrees of freedom $df_F = n - (k + 1)$:

$$\hat{\sigma}_{\varepsilon} = s_{\varepsilon} = \sqrt{MSE} = \sqrt{SSE/df_E}$$

SPSS calls s_{ε} the "Standard Error of the Estimate", we call it: "residual (or error) standard deviation".

MSE can be found in the ANOVA table

Weight loss, continued

ANOVA^b

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	31.124	2	15.562	104.133	.000 ^a
	Residual	1.345	9	.149		
	Total	32.469	11			

- a. Predictors: (Constant), humid, time
- b. Dependent Variable: wt_loss

$$\hat{\sigma}_{\varepsilon}^{2} = s_{\varepsilon}^{2} = MSE = SSE / df_{E} = SSE / (n - (k+1)) = 0.149$$

$$\hat{\sigma}_{\varepsilon} = s_{\varepsilon} = \sqrt{0.149} = 0.386.$$

3. Does the model have any predictive value?

- Do the x-variables together have any predictive value?
- H_0 : $\beta_1 = 0$ and $\beta_2 = 0$ and ... and $\beta_k = 0$ (H_0 : no predictive value) H_a : at least one $\beta_i \neq 0$ (j = 1,...,k).
- Test statistic:

$$F = \frac{\text{MSRegr}}{\text{MSE}} = \frac{\text{SSReg/k}}{\text{SSE/dfE}}$$

- Under H_0 , test statistic F follows an F-distribution with $df_1 = k$, $df_2 = dfE$
- Large values are critical. RR for F is given by: F > F(k, dfE, 0.05).
 With output we prefer to use RPV.
- Output for this F-test can be found in the ANOVA-table.

Weight loss, continued

- Research question: Does the model have any predictive value? Or : Do time or humidity or both have predictive value? Use α =0.05.
- 1) H_0 : β_1 = 0 and β_2 = 0 versus H_a : at least one $\beta_j \neq 0$, j = 1, 2.
- 2) TS: F= MSRegr / MSE
- 3) Under H_0 , $F \sim F(2,9)$

4/5) Use RPV

- 6) Outcome F = 104.133.
- 7) P-value = $P(F \ge 104.133) = 0.000 < 0.05$, so H₀ is rejected, H_a is proven. It is shown that the model has predictive value.

Can we see in the ANOVA table which variables have predictive value?

ANOVAb Sum of Squares Mean Square Model Regression 31.124 2 15.562 104.133 .000a Residual 1.345 .149 Total 32.469 11

a. Predictors: (Constant), humid, time

b. Dependent Variable: wt_loss

Critical region for F-test

Or step 4/5: Use right-sided RR: F > F(2,9, 0.05) = 4.26. You can find it using e.g. PQRS or table 8 (page 1181)

Or: Rejection Region or Critical region for F is: (4.26, ∞)

Residual Standard Deviation s_{ε} and "raw" standard deviation s_{y}

- Residual standard deviation s_{ε} is a measure of variability of y around it's expectation $\mu = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ...$ from the regression.
- It is an absolute measure how good the regression model explains the variation in *y*: the smaller the better.
- s_y is the (ordinary) standard deviation of y, around estimate \bar{y} for μ , and not around the estimate for $\mu = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \dots$
- So, s_y is just an estimate for the standard deviation of y, as if you did not know the values of $x_1, x_2, ...$
- If s_{ε} is much smaller than s_{y} , apparently the x_{j} 's help to obtain a better prediction for y, than the sample mean \overline{y} .

Weight Loss: compare some models by S_{ϵ}

Let's compare some models by s_{ε} :

1. Only intercept:
$$\mu_y = \beta_0$$

2.
$$\mu_y = \beta_0 + \beta_1 x_1$$

3.
$$\mu_{v} = \beta_0 + \beta_1 x_1 + \beta_2 x_2$$

Descriptive Statistics

$M \circ d \circ l \cdot u = 0$				St d.	Vari-
$Model: \mu_y = \beta_0$	Min.	Max.	Mean	Dev.	ance
Weight Loss	2.00	8.00	5.5083	1.7181	2.952

For intercept-only model: ordinary standard deviation of y = residual standard deviation of y !

 $Model: \mu_{v} = \beta_{0} + \beta_{1}x_{1} + \beta_{2}x_{2}$ $Model: \mu_{v} = \beta_{0} + \beta_{1}x_{1}$

Model Summary

Model	R	R Square	Adjusted R Square	Error of Estimate
1	.979 ^a	.959	.949	.38658

a. Predictors: (Constant), Relative humidity Exposure time (h)

	Model Su	ımmary

		R	Adjusted	Std	. Errer of
Model	R	Square	R Square	the	Estimate
1	.895 ^a	.801	.781		.80405

a. Predictors: (Constant), Exposure time (h)

Extra sums of squares

- If a regressor x enters a regression model, the SSE will decrease and the SSR will increase with the same amount.
- Increase in SSR = decrease in SSE = extra sum of squares due to entering x into a given model.

• Generally, the extra sum of squares depends on the order of model terms, e.g. SS of x_1 first and x_2 after x_1 is generally not the same as SS for x_2 and SS for x_1 after x_2 .

Coefficient of Determination \mathbb{R}^2 , judging the fit of a model

ANOVA table: TSS = SSR + SSE

			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
SSR	Model	Sum of Squares	df	Mean Square	F	Sig.
	1 Regression	→ 31.124	2	15.562	104.133	.000 ^a
	Residual	1.345	9	.149		
Tr a a	Total	→ 32.469	11			
133	a. Predictors: (Cons	tant), humid,	time			

a. Predictors: (Constant), humid, time

b. Dependent Variable: wt_loss

• R^2 is proportion of total variation in y-values (TSS) accounted for by the systematic part of the model (SSR), or

AN OV Ab

 R^2 = proportion variation in y "explained" by the variation in x-variables:

$$R^2 = \frac{SSR}{TSS} \ (=1 - \frac{SSE}{TSS})$$
 $R^2 = \frac{31.234}{32.469} = 0.958$

• 96% of variation in weight loss is "explained" by the variation in relative humidity and exposure time.

Some properties of R^2

- The higher R^2 , the better the model fits the data.
- R² has values between 0 and 1.
 - Value 0 means SSR = 0, i.e. model explains nothing (more than intercept already does).
 - Value 1 means SSR = TSS, i.e. the regression model explains all variation of y.
- In simple linear regression R^2 is the square of the correlation coefficient r of y and (single) x.
- In multiple linear regression we have multiple x's, and R^2 equals the square of the correlation coefficient of y and predicted values \hat{y} (called the multiple correlation coefficient).
- Compare R^2 values of different models only on the same data.
 - As in simple regression, when values for x-variables are chosen over a wider range (if this is possible in the design stage), R^2 will increase –
 - dependent on the design

R^2 and Adjusted R^2 (O&L, 13.2)

- *R*² always increases with an extra *x*-variable in the model, even if *x* is unimportant.
- Ideally, the preferred model should be simple / small and fit well.
- We want to take the number k of x-variables (= number of unknown β coefficients) into account as well, and compromise between "parsimony" and "fit".
- This can be done with the adjusted R^2 or R^2_{adi} :

$$R^{2} = \frac{SSR}{TSS} = 1 - \frac{SSE}{TSS}$$

$$R_{adj}^{2} = 1 - \frac{SSE/(n - (k+1))}{TSS/(n-1)} = 1 - \frac{MSE}{MST} = 1 - \frac{s_{\varepsilon}^{2}}{s_{y}^{2}}$$

- R_{adj}^2 will *not* automatically increase with an extra *x*-variable.
- It will *only* increase, when the error mean square $MSE = SSE/df_E = s_{\varepsilon}^2$ (estimator for the residual variance) decreases.

4.1 Inference for a single regression coefficient

• 6.1 Hypothesis test for β_i , e.g. H_0 : $\beta_i = 0$

Test Statistic:

$$t = \frac{\hat{\beta}_j - \mathbf{0}}{se(\hat{\beta}_j)}$$

This zero can be any value, it is the value under the H₀

Under H_0 $t \sim t_{dfF}$ (with dfE = n - k - 1)

Meaning of " $\beta_3 = 0$ ": "Including x_3 after the other x's does not improve the model" or

Keeping $x_1, x_2 \dots$ constant / corrected for effects of changes in $x_1, x_2 \dots$ there's no association of μ_v with x_3 / x_3 has no effect on μ_v .

Example Weight Loss: t-test for β_1 or β_2

Coefficients^a

t-tests for H_0 : $\beta_i = 0$

		Unstandardized Coefficients		Standardized Coefficients			
Model		В	Std. Error	Beta	t	Sig.	
1	(Constant)	.667	.694		.960	.362	
	x1	1.317	.100	.895	13.191	.000	
	x2	-8.000	1.367	397	-5.853	.000	

- a. Dependent Variable: y
- Does extra time increase the mean Weight Loss when humidity is kept constant? (use $\alpha = 0.05$)
- test for e.g. H_0 : $\beta_1 = 0$ versus H_a : $\beta_1 > 0$
- Test Statistic: $t = \frac{\widehat{\beta}_1 0}{se_{\widehat{\beta}_1}}$ under H_0 , $t \sim t_9$
- Under H_a t tends to larger values, so we use RPV.
- $t = \frac{1.317 0}{0.1} = 13.191 > 0$ So RPV = 2-tailed PV / 2 = 0.000/2 < 0.05,
- H_0 is rejected, H_a is proven, it is shown that $\beta_1 > 0$.
- Extra time leads to larger mean Weight Loss ...
- [for time in observed range, and if humidity is kept constant, also within its observed range].

4.2 Confidence interval for β_i

Coeffi ci ents^a

		Unstandardized Coefficients		Standardized Coefficients		
Model		В	Std. Error	Beta	t	Sig.
1	(Constant)	.667	.694		.960	.362
	x1	1.317	.100	.895	13.191	.000
	x2	-8.000	1.367	397	-5.853	.000

- a. Dependent Variable: y
- Table above gives the point estimates for β_i
- What about (1α) confidence intervals for β_i ?
- Two sided (1-lpha) CI : $\hat{eta}_j \pm t_{dfE(lpha/2)} imes se_{\widehat{eta}_j}$
- Give a two sided (1- α) CI for β_1 :
- Limits are: $1.317 \pm t_9(0.025) * 0.100$

Or: $1.317 \pm 2.262 * 0.100 \rightarrow (1.09, 1.54)$

Example Weight Loss: t-test for β_1 or β_2

```
call:
lm(formula = y \sim x1 + x2)
Residuals:
    Min 10 Median 30
                                     Max
-0.73333 -0.17083 -0.04167 0.33750 0.46667
coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.66667 0.69423 0.960 0.361994
    1.31667 0.09981 13.191 3.43e-07 ***
x1
x2 -8.00000 1.36677 -5.853 0.000243 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 0.3866 on 9 degrees of freedom
Multiple R-squared: 0.9586, Adjusted R-squared: 0.9494
F-statistic: 104.1 on 2 and 9 DF, p-value: 5.993e-07
```

Confidence interval for β_1

Coefficients^a

		Unstandardized Coefficients		Standardized Coefficients			95.0% Confidence Interval for B	
Mode	I	В	Std. Error	Beta	t	Sig.	Lower Bound	Upper Bound
1	(Constant)	.667	.694		.960	.362	904	2.237
	Time	1.317	.100	.895	13.191	.000	1.091	1.542
	Humidity	-8.000	1.367	397	-5.853	.000	-11.092	-4.908

a. Dependent Variable: Weight_loss

0.95-confidence interval for β_1 : (1.317 ± 2.262 * 0.100) = (1.09, 1.54)

use t-distribution

$$\alpha / 2 = 0.025$$
,

$$df = 12 - (2+1) = 9$$

5. Checking model assumptions

- Assumptions for ε_i 's:
 - 1. Correct systematic part of model. ◆
 - 2. Constant variance: $Var(\varepsilon) = \sigma_{\varepsilon}^2$
 - 3. Normality of ε 's
 - 4. Independence

Note: mean of residuals *e* is always 0 (when there is an intercept in the model), even when the model fits poorly.

- Assumptions in short: ε_i iid from N(0, σ)
- 2. Constant variance

Plot residuals against \hat{y} . Cloud of points without structure is OK.

Some patterns, e.g. loudspeaker form, indicate that constant variance assumption is possibly violated, e.g. variance increases with the mean.

Same plots also may show outliers. Correct any obvious errors.

• Check if observations, including high leverage points, have no undue influence upon your conclusions. Only with good reason, leave out an observation.

Checking model assumptions, continued

Correct systematic part of model

Plot residuals against x_1 , x_2 , etc. separately.

A pattern in the mean vs one of the *x*-variables (e.g x_1) indicates that the model could be improved, e.g. by adding a squared term (x_1^2).

Normality

Q-Q plot of residuals.

Should look like a straight line (always some stragglers at the ends of the plot).

Equal Variances

By plotting residuals versus predicted values;

Independence

In general: can only be achieved by design, randomization, proper sampling.

Weight Loss, checking model assumptions

Check assumptions:

- 1) normality
- 2) equal variances
- 3) linearity
- 4) independence

First ask for residuals and predicted values.

Then check

- normality by QQ-plot: points approximately on straight line? Strange observation?
- equal variances by plotting residuals versus predicted values; evidence for non-constant variance in plot?
- linearity in x 's by plotting residuals versus individual x 's; curvature in plot versus humidity! relationship of y with humidity does not seem to be linear
- independence; cannot be checked graphically, should follow from study design we lack information in this example.

