

Departamento de Matemáticas 1º Bachillerato

23 - Trigonometría

-1	000 01		1.	1	/ 1	1 1	1
Ι.	pU39eU1	- Expresa e	n radianes	los siguientes	angulos.	dados en	grados:
	100000-		0.0.0 0.0.		01110	000000000000000000000000000000000000000	0-0000

 45° (a) Sol: $\frac{\pi}{4}$

Sol: $\frac{5\pi}{12}$

Sol: $\frac{7\pi}{12}$

(b) 75°

(b)

 230° (d)

Sol: $\frac{23\pi}{18}$

$2.\ p039e02$ - Expresa en grados los siguientes ángulos dados en radianes:

(a) **Sol:** 135

Sol: 300

Sol: 270

Sol: 810

 $\frac{3\pi}{2}$

(c) 105°

(c)

(e)

(d)

Sol: 240

3. p039e05y6 - Demostrar si son verdaderas o falsas las siguientes ecuaciones:

(a)
$$\sec^2 \alpha + \csc^2 \alpha = \sec^2 \alpha \cdot \csc^2 \alpha$$

Sol:
$$\left[\frac{8}{-\cos(4\alpha)+1}, \frac{8}{-\cos(4\alpha)+1}\right] \to \text{True}$$

(b)
$$\frac{\tan \alpha + \tan \beta}{\cot \alpha + \cot \beta} = \tan \alpha \cdot \tan \beta$$

Sol:
$$[\tan(\alpha)\tan(\beta), \tan(\alpha)\tan(\beta)] \rightarrow \text{True}$$

(c)
$$\frac{\sin \alpha \cdot \cos \alpha}{\cos^2 \alpha - \sin^2 \alpha} = \frac{\tan \alpha}{1 - \tan^2 \alpha}$$

Sol:
$$\left[\frac{\tan{(2\alpha)}}{2}, \frac{\tan{(2\alpha)}}{2}\right] \to \text{True}$$

(d)
$$\cot \alpha - \frac{\cot^2 \alpha - 1}{\cot \alpha} = \tan \alpha$$

Sol:
$$[\tan{(\alpha)}, \tan{(\alpha)}] \to \text{True}$$

(e)
$$\frac{\sin \alpha + \cot \alpha}{\tan \alpha + \csc \alpha} = \cos \alpha$$

Sol:
$$[\cos(\alpha), \cos(\alpha)] \to \text{True}$$

(f)
$$\cot^2 \alpha - \cos^2 \alpha = \cot^2 \alpha \cdot \cos^2 \alpha$$

Sol:
$$\left[-\cos^{2}\left(\alpha\right)+\cot^{2}\left(\alpha\right), \cos^{2}\left(\alpha\right)\cot^{2}\left(\alpha\right)\right] \rightarrow True$$

(g) $\sin \alpha \cos \alpha \tan \alpha \cot \alpha \sec \alpha \csc \alpha = 1$

Sol:
$$[1, 1] \rightarrow True$$

(h) $\frac{1+\tan\alpha}{1-\tan\alpha} = \frac{\cos\alpha+\sin\alpha}{\cos\alpha-\sin\alpha}$

Sol:
$$\left[\frac{\tan{(\alpha)}+1}{-\tan{(\alpha)}+1}, \tan{(\alpha+\frac{\pi}{4})}\right] \to \text{True}$$

(i) $\frac{1+\tan^2\alpha}{\cot\alpha} = \frac{\tan\alpha}{\cos^2\alpha}$

Sol:
$$\left[\frac{\tan{(\alpha)}}{\cos^2{(\alpha)}}, \frac{\tan{(\alpha)}}{\cos^2{(\alpha)}}\right] \to \text{True}$$

4. p039e07 - Simplificar las siguientes expresiones:

(a) $\sin \alpha \cdot \frac{1}{\tan \alpha}$

Sol: $\cos(\alpha)$

(b) $\sin^3 \alpha + \sin \alpha \cdot \cos^2 \alpha$

Sol:
$$\sin(\alpha)$$

(c) $\sqrt{(1-\sin\alpha)\cdot(1+\sin\alpha)}$

Sol:
$$\sqrt{\cos^2{(\alpha)}}$$

(d) $\sin^4 \alpha - \cos^4 \alpha$

Sol:
$$-\cos(2\alpha)$$

(e) $\cos^3 \alpha + \cos^2 \alpha \cdot \sin \alpha + \cos \alpha \cdot \sin^2 \alpha + \sin^3 \alpha$

Sol:
$$\sqrt{2}\sin\left(\alpha + \frac{\pi}{4}\right)$$

(f) $\sin \alpha \cdot \cos \alpha \cdot (\tan \alpha + \frac{1}{\tan \alpha})$

 $(g) \quad \frac{\cos^2 \alpha - \sin^2 \alpha}{\cos^4 \alpha - \sin^4 \alpha}$

Sol: 1

(h) $\frac{\sec^2\alpha + \cos^2\alpha}{\sec^2\alpha - \cos^2\alpha}$

Sol:
$$\frac{\left(-\cos^2{(\alpha)}+1\right)^2+2\cos^2{(\alpha)}}{-\cos^4{(\alpha)}+1}$$

(i) $\frac{\cos^2 \alpha}{1-\sin \alpha}$

Sol:
$$\sin{(\alpha)} + 1$$

 $(j) \quad \frac{\csc \alpha}{1 + \cot^2 \alpha}$

Sol:
$$\sin(\alpha)$$

5. p
039e08 - Calcular las restantes razones trigonométricas de α , conocida:

(a) $\cos \alpha = \frac{4}{5} \land \alpha \in I$

Sol: $\begin{bmatrix} 36,86989764584401, & \frac{3}{5}, & \frac{4}{5}, & \frac{3}{4} \end{bmatrix}$

(b) $\sin \alpha = \frac{3}{5} \land \alpha \in II$

Sol: $\begin{bmatrix} 36,86989764584402, & \frac{3}{5}, & -\frac{4}{5}, & -\frac{3}{4} \end{bmatrix}$

(c) $\tan \alpha = -\frac{3}{4} \wedge \alpha \in II$

Sol: $\begin{bmatrix} 36,86989764584402, & \frac{3}{5}, & -\frac{4}{5}, & -\frac{3}{4} \end{bmatrix}$

(d) $\sec \alpha = 2 \land \alpha \in IV$

Sol:
$$\begin{bmatrix} 60.0, & -\frac{\sqrt{3}}{2}, & \frac{1}{2}, & -\sqrt{3} \end{bmatrix}$$

(e) $\csc \alpha = -2 \wedge \alpha \in III$

Sol:
$$\begin{bmatrix} 30,0, & -\frac{1}{2}, & -\frac{\sqrt{3}}{2}, & \frac{\sqrt{3}}{3} \end{bmatrix}$$

(f) $\cot \alpha = -2 \wedge \alpha \in IV$

Sol:
$$\left[26,56505117707799, -\frac{\sqrt{5}}{5}, \frac{2\sqrt{5}}{5}, -\frac{1}{2}\right]$$

6. p039e09 - Expresa las siguientes razones trigonométricas en función de ángulos del primer cuadrante:

(a) $\sin(-120)$

Sol:
$$\left[60, -\frac{\sqrt{3}}{2} \right]$$

(b) $\sin(2700)$

(c) $\cos(-30)$

Sol:
$$\left[30, \frac{\sqrt{3}}{2}\right]$$

(d) $\cos(3000)$

Sol:
$$[60, -\frac{1}{2}]$$

(e) $\tan(-275)$

Sol:
$$\left[\frac{180 \operatorname{atan}\left(\frac{\cos\left(\frac{\pi}{18}\right)+1}{\cos\left(\frac{4\pi}{9}\right)}\right)}{\pi}, \quad \frac{\cos\left(\frac{\pi}{18}\right)+1}{\cos\left(\frac{4\pi}{9}\right)}\right]$$

(f) $\tan(10330)$

Sol:
$$[70, \tan(\frac{7\pi}{18})]$$

(g) $\cot(-150)$

Sol:
$$[30, \sqrt{3}]$$

(h) $\cot(4500)$

Sol:
$$[0, \quad \tilde{\infty}]$$

(i) $\sec(-25)$

Sol:
$$[25, \sec(\frac{5\pi}{36})]$$

(j) $\sec(745)$

Sol:
$$[25, \sec(\frac{149\pi}{36})]$$

(k) $\csc(-155)$

Sol:
$$[25, -\csc(\frac{5\pi}{36})]$$

(1) $\csc(4420)$

Sol:
$$[80, \csc(\frac{4\pi}{9})]$$