

(11)Publication number:

06-197306

(43)Date of publication of application: 15.07.1994

(51)Int.Cl.

H04N 5/907 G11B 20/10

(21)Application number : 04-319577

(71)Applicant: CANON INC

(22)Date of filing:

30.11.1992

(72)Inventor: HARIGAYA ISAO

TAKAHASHI KOJI

(54) RECORDING/REPRODUCING DEVICE AND REPRODUCING DEVICE

(57)Abstract:

PURPOSE: To enhance the operability while effectively utilizing a recording area by setting the state automatically that the initial recording is reproduced and displayed just after application of power or when a storage medium is loaded in the standby state.

CONSTITUTION: With a power switch closed, the presence of a memory pack 88 is checked by an output of a detection circuit 92. When the memory pack 88 is loaded, the connected memory pack 88 is activated to read a content of an index table and an ID table and the processing is released in the case of the standby mode. Then a pointer representing a storage position of the index table

is initialized and an ID number stored in the index table pointed out by the pointer is stored in an area for variables. Then an address in a data area stored in an ID of the ID table is retrieved and set to a prescribed area of a memory 86. Thus, just after application of power or when the memory pack 88 is newly loaded, the state is set to a ready state in which the initial storage information is at first reproduced.

LEGAL STATUS

[Date of request for examination]

26.11.1999

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12)公開特許公報 (A)

(11)特許出願公開番号

特開平6-197306

(43)公開日 平成6年(1994)7月15日

(51) Int. Cl. 5

識別記号

庁内整理番号

FΙ

技術表示箇所

H04N 5/907

B 7916-5C

G11B 20/10

B 7736-5D

審査請求 未請求 請求項の数6

(全14頁)

(21)出願番号

特願平4-319577

(22) 出願日

平成4年(1992)11月30日

(71)出願人 000001007

キヤノン株式会社

東京都大田区下丸子3丁目30番2号

(72)発明者 針ケ谷 勲

東京都大田区下丸子3丁目30番2号キヤノ

ン株式会社内

(72)発明者 髙橋 宏爾

東京都大田区下丸子3丁目30番2号キヤノ

ン株式会社内

(74)代理人 弁理士 田中 常雄

(54) 【発明の名称】記録再生装置及び再生装置

(57)【要約】

【目的】 操作性を向上する。

【構成】 電源投入動作、及びスタンバイ状態での記録 媒体の装着動作に応じて、記録媒体のデータ領域の空き 領域の先頭にアドレス設定する。また、誤消去防止フラ グが立っているとき、データ領域の先頭にアドレス設定 し、誤消去防止フラグが立っていないとき、データ領域 の空き領域の先頭にアドレス設定する。再生モードの設 定に応じて、データ領域の先頭にアドレス設定し、記録 モードの設定に応じて、データ領域の空き領域の先頭に アドレス設定する。アドレス・ポインタAPに電源オフ 時又は再生ストップ時の再生中断点のアドレス情報を記 憶する。コンティニュー・ボタンにより、記録モードで は、現在位置からの再生又はアドレス・ポイン タAPに記憶されるアドレスからの再生を指定する。

【特許請求の範囲】

【請求項1】 映像及び音声を所定時間毎のデータ・ブ ロック化して着脱自在な記録媒体に記録する記録再生装 置であって、電源投入動作、及び、スタンバイ状態での 当該記録媒体の装着動作に応じて、当該記録媒体のデー 夕領域の空き領域の先頭にアドレス設定することを特徴 とする記録再生装置。

【請求項2】 映像及び音声を所定時間毎のデータ・ブ ロック化して着脱自在な記録媒体に記録する記録再生装 置であって、電源投入動作、及び、スタンバイ状態での 10 当該記録媒体の装着動作並びに誤消去防止フラグに応じ て、当該誤消去防止フラグが立っているとき、当該記録 媒体のデータ領域の先頭にアドレス設定し、当該誤消去 防止フラグが立っていないとき、当該記録媒体のデータ 領域の空き領域の先頭にアドレス設定することを特徴と する記録再生装置。

【請求項3】 映像及び音声を所定時間毎のデータ・ブ ロック化して着脱自在な記録媒体に記録する記録再生装 置であって、再生モードの設定に応じて、当該記録媒体 のデータ領域の先頭にアドレス設定し、記録モードの設 20 定に応じて、当該記録媒体のデータ領域の空き領域の先 頭にアドレス設定することを特徴とする記録再生装置。

【請求項4】 映像及び音声を所定時間毎のデータ・ブ ロック化して着脱自在な記録媒体に記録する記録再生装 置であって、コンティニュー・ボタンと少なくとも1つ のアドレス・ポインタを具備し、コンティニュー・ボタ ンを操作した後に記録モードにすると、記録した最後の 番地に続いて記録を開始し、コンティニュー・ボタンを 操作した後に再生モードにすると、所定のアドレス・ポ インタに記憶される番地から再生開始することを特徴と 30 する記録再生装置。

【請求項5】 記録媒体に記録された情報を再生する再 生装置であって、所定の再生中止信号に応じて、再生中 止位置に関する複数の情報を所定記憶領域に記憶するこ とを特徴とする再生装置。

【請求項6】 上記所定記憶領域が上記記録媒体に設け られている請求項5に記載の再生装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、映像及び音声を記録媒 40 体に記録又は再生する記録再生装置及び再生装置に関す る。

[0002]

【従来の技術】動画像及び音声を記録する記録システム としては、1/2インチ又は8mm巾の磁気テープを使 用するビデオ・テープ・レコーダが周知である。この記 録システムでは、所望の映像記録位置まで磁気テープを 搬送するのに、頭出し用インデックス信号を用いる早送 りや、高速再生を使用する。磁気テープは所詮、シーケ ンシャルにしかアクセスできないので、検索には時間が 50 ニュー・ボタンを操作した後に再生モードにすると、当

かかる。

[0003]

【発明が解決しようとする課題】これに対して、画像圧 縮技術の向上により、データ量を1/20~1/200 に圧縮しても1/2インチVTR程度の画質を維持でき るようになり、光ディスク、光磁気ディスク、ハード・ ディスク装置、及びフラッシュ・メモリなどの固体メモ リなども、その容量増加もあいまって、動画像の記録媒 体の候補に考えられるようになった。これらは、基本的 にランダム・アクセス能力を具備するので、磁気テープ に比べて、より早く所望の情報の記録場所に到達できる という利点がある。特に固体メモリは、そのアクセス速 度の速さと可動部が無く、衝撃による損傷・破壊のおそ れが低いという利点があるが、ハード・ディスク装置や 光ディスク、光磁気ディスクなどに比べ、容量が小さい という欠点がある。

【0004】本発明は、記録媒体の記録領域を有効活用 しつつ、操作性を高めた記録再生装置及び再生装置を提 示することを目的とする。

【課題を解決するための手段】上記目的に対して、第1 の発明に係る記録再生装置は、映像及び音声を所定時間 毎のデータ・ブロック化して着脱自在な記録媒体に記録 する記録再生装置であって、電源投入動作、及び、スタ ンバイ状態での当該記録媒体の装着動作に応じて、当該 記録媒体のデータ領域の空き領域の先頭にアドレス設定 することを特徴とする。

【0006】第2の発明に係る記録再生装置は、映像及 び音声を所定時間毎のデータ・ブロック化して着脱自在 な記録媒体に記録する記録再生装置であって、電源投入 動作、及び、スタンバイ状態での当該記録媒体の装着動 作並びに誤消去防止フラグに応じて、当該誤消去防止フ ラグが立っているとき、当該記録媒体のデータ領域の先 頭にアドレス設定し、当該誤消去防止フラグが立ってい ないとき、当該記録媒体のデータ領域の空き領域の先頭 にアドレス設定することを特徴とする。

【0007】第3の発明に係る記録再生装置は、映像及 び音声を所定時間毎のデータ・ブロック化して着脱自在 な記録媒体に記録する記録再生装置であって、再生モー ドの設定に応じて、当該記録媒体のデータ領域の先頭に アドレス設定し、記録モードの設定に応じて、当該記録 媒体のデータ領域の空き領域の先頭にアドレス設定する ことを特徴とする。

【0008】第4の発明に係る記録再生装置は、映像及 び音声を所定時間毎のデータ・ブロック化して着脱自在 な記録媒体に記録する記録再生装置であって、コンティ ニュー・ボタンと複数のアドレス・ポインタを具備し、 コンティニュー・ボタンを操作した後に記録モードにす ると、記録した最後の番地から記録を開始し、コンティ

10

該複数のアドレス・ポインタの内の指定のものに記憶さ れる番地から再生開始することを特徴とする。

【0009】第5の発明に係る再生装置は、記録媒体に 記録された情報を再生する再生装置であって、所定の再 生中止信号に応じて、再生中止位置に関する複数の情報 を所定記憶領域に記憶することを特徴とする。

[0010]

【作用】上記手段により、電源投入直後、又はスタンバ イ状態で記録媒体を装着した時に、最初の記録を再生表 示できる状態に自動設定されるので、操作感が向上す る。また、誤消去防止フラグに応じて適したアドレスに 設定する。更には、記録モード又は再生モードの設定に 応じて適切なアドレスを選択するので、迅速に次の動作 に移行でき、これも操作感の向上に寄与する。

【0011】また、コンティニュー・ボタン及び少なく とも1つのアドレス・ポインタにより、記録開始位置及 び再生開始位置を容易な操作で指定でき、操作性が向上 する。

[0012]

【実施例】以下、図面を参照して本発明の実施例を説明 20 する。

【0013】先ず、本発明を適用する映像・音声記録シ ステムの概略を説明する。図1はその概略構成ブロック 図を示す。

【0014】図1において、入力端子10,12には、 ステレオ音声信号のLチャンネル及びRチャンネルがそ れぞれ入力し、A/D変換器14,16によりディジタ ル信号に変換される。音声処理回路18,20は、A/ D変換器14,16の出力データに雑音除去及びダイナ ミック・レンジの制限などの一般的な音声信号処理を施 30 す。

【0015】音声圧縮回路22が、音声処理回路18, 20から出力されるLチャンネル及びRチャンネルの音 声データを圧縮符号化する。例えば、L/Rの相関を用 いた2チャンネル混合でのベクトル符号化、又は、MP EG (Moving Picture Expert Group)で討議されている適応変換符号化(ATA C, ASPEC等) や帯域分割符号化 (MUSICA M, SB/ADPCMなど) などを利用できる。

【0016】他方、入力端子24には映像信号が入力 し、A/D変換器26によりディジタル信号に変換され て映像処理回路28に印加される。映像処理回路28 は、音声処理回路18,20と同様に、雑音除去やダイ ナミック・レンジの制限などの一般的な処理を行なっ て、映像圧縮回路30に供給する。

【0017】映像圧縮回路30は、映像処理回路28か らの映像データを、データ量で1/20から1/200 に圧縮符号化する。例えば、MPEGで提案されたMP EG-Iと呼ばれる圧縮アルゴリズムを使用する。これ は、フレーム間相関、動きベクトル補償、及び両側予測 50 ID (番号) は、図3に示すように、例えば初期値0か

フレーム間圧縮を適宜に組み合わせたものであり、1/ 2インチVTRの標準画質程度を維持できる。

【0018】音声圧縮回路22は、圧縮音声データをデ ータ合成回路32に、音質のモード及び音声データ長に 関する情報をID発生回路34に供給する。映像圧縮回 路30は、圧縮映像データをデータ合成回路32に、画 質のモード及び映像データ長に関する情報をID発生回 路34に供給する。詳細は後述するが、データ合成回路 34は、一定時間To (例えば、1秒、即ち30フレー ム)毎の圧縮映像データ及び圧縮音声データをまとめ、 これにID発生回路34からのIDデータを付加してマ スメモリ36に印加する。マスメモリ36はフラッシュ、 メモリ、DRAM、SRAMなどからなる大容量の固体 メモリ回路である。

【0019】メモリ制御回路38は、マスメモリ36の データの書込み及び読出しを制御し、システム制御回路 40は、操作キー42の操作に応じてメモリ制御回路3 8、その他を制御する。システム制御回路40はまた、 表示装置44により動作状態及び日時などの各種の情報 を表示する。

【0020】映像及び音声の記録では、通常、2つのタ イムコードを使用する。第1に、記録媒体又は映像音声 プログラムの冒頭からの経過時間やカメラ撮影の累積時 間であり、第2に、記録又は撮影時の年月日時刻情報で ある。システム制御回路40は前者のタイムコードをS MPTE形式で発生し、ID発生回路34に印加する。 カレンダクロック46が後者のタイムコードを発生し、 ID発生回路34に供給する。

【0021】アドレス情報発生回路48は、メモリ制御 回路38からのアドレス情報から、記録情報のデータ量 や先頭アドレスに関する情報を発生し、ID発生回路3 4に供給する。

【0022】ID発生回路34は、回路22,30,4 0,46,48からの情報を所定フォーマットに成形し て、データ合成回路32に印加する。データ合成回路3 2は、一定時間To(例えば、1秒)内に音声圧縮回路 22及び映像圧縮回路30が生成する音声及び映像の圧 縮データを合成し、ID発生回路34からのIDデータ を付加して、1つのデータ・プロックとする。

【 0 0 2 3 】 I D発生回路 3 4 の出力データ・フォーマ ットを図2に示す。図2に示すように、ID発生回路3 4による合成データ列又はデータ・ブロックは、固定長 のIDデータ領域、可変長の音声データ領域及び可変長 の映像データ領域からなる。

【0024】IDデータ領域は、ID(番号)、タイム コード、画質のモード、映像データ長、映像先頭番地、 音質のモード、音声データ長、音声先頭番地及び削除済 みフラグからなる。削除済みフラグは、物理的な記録消 去をせずに、論理的に記録を消去するのに使用される。

5

ら始まり、一定時間To(例えば、1秒)毎にインクリメントされる。図3以降及び以下の説明では、これをIDに続く2桁の数字で表現する。

【0025】音声データ領域は、1秒間の音声信号の圧縮データからなり、具体的には、Lチャンネル及びRチャンネルの初期情報(リセット・データ)と、これに続く可変長符号化された圧縮データとからなる。映像データ領域は、1秒間、即ち30フレームの映像信号の圧縮データからなり、具体的には、例えばフレーム内符号化などによる初期情報(リセット・データ)と、これに続10く可変長符号化された圧縮データとからなる。

【0026】再生系を簡単に説明する。マス・メモリ36から読み出されたデータは、データ分配回路50に印加される。データ分配回路50は、図2に示すデータ・ブロック構造から各領域のデータを分離し、IDデータを検索情報再生回路52に、映像データ・エリアの圧縮映像データを映像伸長回路56に、音声データ・エリアの圧縮音声データを音声伸長回路58に印加する。

【0027】検索情報再生回路52はIDデータに含まれる基本情報を再生し、表示情報生成回路54に出力す 20 る。表示情報生成回路54は、映像表示する情報、例えばタイムコードに対する映像信号を生成する。映像伸長回路56は圧縮映像データを伸長して、映像データを復元し、音声伸長回路58は圧縮音声データを復元して音声データを復元する。

【0028】データ選択回路60は、映像伸長回路56から供給される映像データを加算器62及びビデオ出力端子64に出力し、音声伸長回路58から供給される音声データをD/A変換器66及び音声出力端子68に出力する。加算器62は復元された映像データに、表示情報生成回路54からの映像信号を重畳し、D/A変換器70に出力する。D/A変換器66は音声データをアナログ音声信号に変換し、D/A変換器70は映像データをアナログ映像信号に変換する。アナログ音声信号は音響モニタ(例えば、スピーカ)72に印加され、アナログ映像信号は映像モニタ74に印加される。これにより、記録映像及び記録音声を視聴できる。

【0029】マスメモリ36のメモリ空間を図4に示す。このシステムでは、マスメモリ36のメモリ空間を基本的に3つの領域に区分する。第1は、各撮影シーン 40の最初の記録データのID番号を登録する目次テーブル、第2は、連続する各ID番号のデータ・ブロックの先頭記録アドレスを記憶するIDテーブル、第3は、データを記憶するデータ領域である。更に、目次テーブル上で次の記録を開始する位置を示す数値を記憶するポインタSP、及び次に記録開始する際のID番号を記憶するメモリ・カウンタCCをメモリ空間の所定箇所に設けてある。

【0030】図4では、第1のシーン#1をID0~I ブルの、CCが示すID番号の記憶位置から、データ・D19にわたり記録し、続けて第2のシーン#2をID 50 ブロックの記録開始アドレスが分かり、データ合成回路

20~ID44に記録し、第3のシーン#3をID45 以降に記録するとしている。目次テーブルの各記憶位置 TC(n)には、記録シーン毎にその順番で先頭のID 番号が記録され、IDテーブルの各記憶位置ID(n) にはID番号がnのデータ・ブロックが記録されるデー 夕領域の先頭アドレスX, Yが記録され、データ領域に は、図2に示す構造のデータ・ブロックが空き領域に順 番に記録される。なお、ID番号がnのデータ・ブロッ クがデータ領域に記録完了した時点で、ID(n+1) には、次に記録開始するときの、データ領域のアドレス を予め格納する。

【0031】ちなみに、データ領域を論理的に(X,Y)の二次元で表現しているが、一次元で表現してもよいことはいうまでもない。

【0032】シーン#1, #2, #3の記録に対するSP、CC、目次テーブルCT(n)及びIDテーブルID(n)の変化を表として、図5に示す。最初の記録前の記録ポーズ状態では、SP=0、CC=0であり、ID(0)には、データ領域の先頭アドレス(X0, Y0)がセットされている。

【0033】使用者によるシーン#1の記録開始の指示に応じて、システム制御回路40は、ID発生回路34にCC値に応じたID番号(ここでは、0)を発生させる。このID番号は1秒毎にインクリメントされる。データ合成回路32が順次出力するデータ・ブロックは、ID(0)で示されるデータ領域のアドレス、即ち(X0,Y0)から順次書き込まれていく。

【0034】なお、データ領域へのデータ・ブロックの 書込みに応じて、IDテーブルには、次のデータ・ブロックの先頭記憶アドレスが、そのID番号に相応する記 憶位置に書き込まれる。即ち、ID(n)のデータ・ブロックの書込み終了後、IDテーブルのID(n+1) に、次のデータ・ブロックの書込み開始アドレスが書き 込まれる。

【0035】このようにして、シーン#1の撮影(記録)がID19で終了し、記録ポーズになったとする。この時点で、SPはインクリメントされて1になり、CCには次のID番号である20がセットされる。次のシーンを記録するときには、CCが示すID番号から開始し、SPが示す目次テーブルTC(SP)にそのID番号をセットし、且つ、IDテーブルで、CCが示すID番号に対応する記憶位置に記憶されるアドレスから、データ・ブロックを記録する。

【0036】即ち、次のシーン#2を開始したとき、SP=1でCC=20であるから、目次テーブルのTC(1)にCCが示すID番号(ここでは20)をセットする。ID発生回路34は、20からスタートし、1秒毎にインクリメントするID番号を発生する。IDテーブルの、CCが示すID番号の記憶位置から、データ・ブロックの記録開始アドレスが分かり、データの記録開始アドレスが分かり、データの記録開始アドレスが分かり、データの記録開始アドレスが分かり、データの記録開始アドレスが分かり、データの記録開始アドレスが分かり、データの記録開始アドレスが分かり、データの記録開始アドレスが分かり、データの記録開始アドレスが分かり、データの記録開始アドレスが分かり、データの記録開始アドレスが分かり、データの記録開始アドレスが分かり、データの記録

32により合成されたデータ・ブロックは、そのアドレ スから順にデータ領域に記憶される。IDテーブルに は、シーン#1と同様に、各IDの先頭記憶アドレスが セットされる。

【0037】シーン#2の撮影 (記録) が I D 4 4 で終 了したとすると、この時点で、SPはインクリメントさ れて2になり、CCには次のID番号である45がセッ トされる。

【0038】このシステムでは、各 I Dのデータ・ブロ ックの記憶開始アドレスのみを I Dテーブルに記録する 10 のは、一連のデータ・ブロックをデータ領域に連続記録 するのを前提としているからである。コンピュータの補 助記憶装置における各種のファイル管理システムに見ら れるように、1つのデータ・ブロックが占有するデータ 領域のアドレスをIDテーブル等に記録するようにすれ ば、このような前提が不要になることは明らかである。 【0039】目次テーブルTC(n)には、ID番号の

みでなく、図6に示すように、消去の可否、再生の可否 及びコピーの可否を示す制御情報を含めてもよい。それ ぞれに1ビットで、合計3ビットを割り当てればよ い。"1"は消去、再生又はコピーの不可を示し、" 0"は消去、再生又はコピーの許可を示す。

【0040】なお、目次テーブルに記録するID番号 は、撮影時には各シーンの先頭のID番号であるが、ビ デオ・ソフトウエアからの映像及び音声情報の場合に は、区分したいキャプチャの先頭のID番号にすればよ 11

【0041】次に、マスメモリ36を装置本体から取り 外し自在なメモリ・パック構造とした構成で、電源投入 時又は電源オン状態で当該メモリ・パックを装着した時 30 の動作を説明する。図7は、その構成の概略ブロック図 を示す。

【0042】図7において、80は電源、82は全体を 制御する中央処理装置(CPU)、84は電源80の出 力電圧の立上がり及び立下がりを検出してCPU82に 通知するパワーアップ・クリア回路、86はCPU82 の動作に必要なプログラム、変数及び定数を記憶するメ モリ、88はマスメモリ36を内部に保有し、着脱自在 なメモリ・パック、90はメモリ・パック88のインタ ーフェース、92はメモリ・パック88の装着を検知す 40 る検知回路、94は、電源スイッチの他に、記録、再 生、停止、順送り及び逆送り記録再生に必要な操作キ 一、並びに、同じ動作モードへ復帰した時に当該動作モ ードからの脱出時の状態から継続動作するか否かを指示 するコンティニュー・ボタンなどを具備する操作キー、 96は再生映像及び操作モード等を表示するモニタであ

【0043】メモリ86は、電源80から常時必要電力 を供給されており、電源オフ操作によっても、必要なデ

モリ・パック88内のマスメモリの目次テーブル、ID テーブル、SP及びCCと全く同じデータ、即ちコピー を保持するのが好ましい。メモリ・パック88のデータ 更新時には、同時に、メモリ86のデータも更新する。 【0044】図8は、図7に示す装置で電源スイッチが オンされた時の初期化動作の第1の動作例のフローチャ ートを示す。電源スイッチがオンになると(S1)、検 知回路の出力92によりメモリ・パック88の有無を調 べる(S2)。メモリ・パック88が未装着のときは、 装着を待つ(S2)。未装着で所定時間経過したときに は、低消費電力のスタンバイ・モードになる(S3)。 メモリ・パック88が装着されていると(S2)、接続 するメモリ・パック88に通電して目次テーブル、S P、CC及びIDテーブルの内容を読み込み、スタンバ イ・モードになっていればスタンバイ・モードを解除す る(S4)。

【0045】目次テーブルの記憶位置を示すポインタロ をOで初期化し(S5)、ポインタpが示す目次テーブ ルTC(p)に格納されるID番号を変数idnoに格 20 納する(S6)。そして、IDテーブルのID (idn o) に格納されるデータ領域のXYアドレスを検索し、 メモリ86の所定箇所にセットする(S7)。

【0046】これにより、電源投入直後、又はメモリ・

パック88を新たに装着したときに、最初の記憶情報を 真っ先に再生できる準備が整った状態にセットされる。 これは、接続するメモリ・パック88に仮に何らかの映 像及び音声情報が記録されていても、それを無視し、デ ータ領域の先頭から記録開始する場合に、有益である。 【0047】図9は、電源スイッチがオンされたときの 初期化動作の第2のフローチャートを示す。電源スイッ チがオンになると(S101)、検知回路の出力92に よりメモリ・パック88の有無を調べる(S102)。 メモリ・パック88が未装着のときは、装着を待つ(S 102)。未装着で所定時間経過したときには、低消費 電力のスタンバイ・モードになる(S103)。メモリ パック88が装着されていると(S102)、接続す るメモリ・パック88に通電して目次テーブル、SP、

【0048】目次テーブルの記憶位置を示すポインタp にSP、即ち次の記録の目次位置をセットし(S10 5)、次の記録のID番号を示すCCを変数idnoに 格納し(S106)、IDテーブルのID(idno) に格納されるデータ領域のXYアドレスを読み出し、メ モリ86の所定箇所にセットする(S107)。これに より、次の記録に適したアドレスにセットされる。

CC及びIDテーブルの内容を読み込み、スタンバイ・

モードになっていればスタンバイ・モードを解除する

(S104)。

【0049】何らかの理由でスタンバイ・モードになっ ているときに、メモリ・パック88の交換及び装着を検 ータを記憶保持できる。メモリ86には、装着されたメ 50 知したときも、S104以降に示すように動作する。

【0050】次に、消去フラグに応じて初期状態を変更 する動作例を図10を参照して説明する。電源スイッチ がオンになると(S11)、検知回路の出力92により メモリ・パック88の有無を調べる(S12)。メモリ ·パック88が未装着のときは、装着を待つ(S1 2)。未装着で所定時間経過したときには、低消費電力 のスタンバイ・モードになる(S13)。メモリ・パッ ク88が装着されていると(S12)、接続するメモリ ・パック88に通電して目次テーブル、SP、CC及び IDテーブルの内容を読み込み、スタンバイ・モードに 10 始、順送り及び逆送りなどの操作に応じて、指定のシー なっていればスタンバイ・モードを解除する (S1 4)。

【0051】目次テーブルの消去不可フラグを調べ (S 15)、消去不可の場合には、目次テーブルの記憶位置 を示すポインタpを0で初期化し(S16)、目次テー ブルTC(p)に格納されるID番号を変数idnoに 格納し (S17)、IDテーブルのID (idno) に 格納されるデータ領域のXYアドレスを検索し、メモリ 86の所定箇所にセットする(S18)。

【0052】また、消去不可フラグが消去を許可してい 20 る場合には(S15)、ポインタpをSP-1、即ち最 後に記録されたシーンの目次位置で初期化し(S1 9)、目次テーブルTC(p)に格納されるID番号を 変数 i d n o に格納し (S 2 0) 、 I Dテーブルの I D (idno)に格納されるデータ領域のXYアドレスを 検索し、メモリ86の所定箇所にセットする (S2 1)。

【0053】ここでも、何らかの理由でスタンバイ・モ ードになっているときに、メモリ・パック88の交換及 び装着を検知したときも、S14以降に示すように動作 30

【0054】図10を要約すると、消去防止されている 場合には、最先に記録された情報のアドレスをセットさ れ、消去防止されていない場合には、次の記録に適した アドレスにセットされる。

【0055】なお、図11に示すように、電源オン及び メモリ・パック88の装着状態で、記録モードを選択し たときには、マスメモリ36のデータ領域のあき領域の 先頭アドレスを記録開始アドレスとしてセットし、再生 モードを選択したときには、データ領域の最初のアドレ 40 ス(X0、Y0)を再生開始アドレスとしてセットす る。一旦、再生モードに入ったあとは、順送り又は逆送 りにより、所望のシーン又はキャプチャから再生開始で きることはいうまでもない。

【0056】図11を詳細に説明する。記録モードの選 択により(S31)、ポインタpにSP、即ち次の記録 の目次位置をセットし(S32)、次の記録のID番号 を示すCCを変数idnoに格納し(S33)、IDテ ーブルのID (idno)に格納されるデータ領域のX

る (S34)。そして、記録開始操作に応じて、先に説 明したようにデータ・ブロック単位の記録を開始する (S35)。

【0057】また、再生モードの選択により(S3 6)、ポインタpを0で初期化し(S37)、目次テー ブルTC(p)に格納されるID番号を変数idnoに 格納し(S38)、IDテーブルのID (idno)に 格納されるデータ領域のXYアドレスを検索し、メモリ 86の所定箇所にセットする(S39)。以後、再生開 ン又はキャプチャの映像及び音声を再生する (S4

【0058】図11では、記録モード又は再生モードの 選択時に、それぞれの開始アドレスを設定するようにし たが、勿論、電源投入時又はメモリ・パック88の装着 時に、再生開始する記録に関すポインタp、ID番号i dno、及びデータ領域の先頭アドレスを再生制御変数 として記憶すると共に、次の記録に備えた同様の制御情 報を別に記憶するようにしてもよい。

【0059】次に、操作キー94のコンティニュー・ボ タンを活用する動作例を説明する。ここでは、指定の任 意の動作状態で最後にセットされたマスメモリ36のデ ータ領域のアドレスを記憶するアドレス・ポインタAP を具備する。なお、当該アドレス・ポインタAPは、図 12に示すようにマスメモリ36上に配置されている。 【0060】図13は、コンティニュー・ボタンの操作 に対する記録及び再生動作のフローチャートを示す。F CONTは、コンティニュー・ボタンの操作を記憶する フラグである。つまり、コンティニュー・ボタンがオン されていれば、FCONT=1であり、オフならばFC ONT = 0 である。

【0061】記録モードでは (S51)、FCONTが 1であれば(S52)、ポインタpにSP、即ち次の記 録の目次位置をセットし(S53)、次の記録のID番 号を示すCCを変数 i dnoに格納し、(S54)、FC ONTをクリアし(S55)、記録モードを実行する (S56)。このとき、IDテーブルのID (idn o)に格納されるデータ領域のXYアドレスから記録が 開始される。FCONTがOであれば(S52)、現在 のアドレス・ポインタが示すXYアドレスから記録が開 始される(S56)。

【0062】即ち、コンティニュー・ボタンを操作して から記録モードにすると、直前の状態に関わらず、新し いデータは、既存の記録の後に記録される。即ち、追加 記録される。コンティニュー・ボタンを操作せずに記録 モードにすると、現在の位置から記録が開始される。 【0063】再生モードでは(S51)、FCONTが

1であれば(S52)、アクセスしようとするデータ・ ブロックを示す変数idnoにアドレス・ポインタAP Yアドレスを検索し、メモリ86の所定箇所にセットす 50 を代入し(S59)、FCONTをクリアし(S6

11

0)、再生モードを実行する(S61)。FCONTが 0であれば(S58)、ID番号0からのデータ・ブロックから再生される(S61)。

【0064】即ち、コンティニュー・ボタンを操作してから再生モードにすると、直前の状態に関わらず、アドレス・ポインタAPに登録されているデータ・ブロックから再生開始され、コンティニュー・ボタンを操作せずに再生モードにすると、現在の位置から再生が開始される。

【0065】電源オフ時又は再生ストップ操作に応じて、現在のidno値をアドレス・ポインタAPに保存する。これにより、次に再生開始したときに、直前の再生終了点又は再生中断点から再生開始できる。

【0066】図13に示す動作例では、一旦電源オフにした後に電源を投入する場合でも、電源を継続投入していたかのごとく動作させることが可能になる。また、複数のアドレス・ポインタAPを設けて個々の利用者に割り当てておけば、各人が他人の操作状態に影響されずに再生を楽しむことができる。

【0067】本実施例では、記録媒体自体にアドレス・20ポインタAPを設けたが、個々の記録媒体を識別できる場合には、このアドレス・ポインタを別の記録媒体上に記憶してもよいことはいうまでもない。

【0068】なお、本明細書、特に特許請求の範囲で、 記録再生装置は、特に他を排除することが明らかな場合 を除き、記録専用装置、再生専用装置及び記録再生兼用 装置を包含するものである。

【0069】固体メモリを記録媒体又は記憶媒体とする 実施例を説明したが、本発明は、ハード・ディスク装 置、光ディスク、光磁気ディスクなどのその他の記録媒 30 体の利用を排除するものではない。

[0070]

【発明の効果】以上の説明から容易に理解できるように、本発明によれば、より操作性のよい映像及び音声の記録システムを提供できる。

【図面の簡単な説明】

【図1】 本発明を適用する記録再生システムの概略構成ブロック図である。

【図2】 データ・ブロック構造を示す図である。

【図3】 時間と共に変化するID番号の説明図であ

る。

【図4】 マスメモリ36のメモリ空間の説明図である。

12

【図5】 一連の記録に対するメモリ36の内容変化の 説明図である。

【図6】 目次テーブルの詳細な構造図である。

【図7】 本発明の一実施例の概略構成ブロック図である。

【図8】 電源投入時及びメモリ・パック装着時の初期 10 化動作の第1動作例のフローチャートである。

【図9】 電源投入時及びメモリ・パック装着時の初期 化動作の第2動作例のフローチャートである。

【図10】 電源投入時及びメモリ・パック装着時の消去フラグに応じて初期状態を変更する動作例のフローチャートである。

【図11】 記録モード及び再生モードの選択に対する 動作のフローチャートである。

【図12】 マスメモリ36上ににアドレス・ポインタAPを配置したメモリ空間の説明図である。

0 【図13】 コンティニュー・ボタンの操作に対する記録及び再生動作のフローチャートである。

【符号の説明】

10,12:入力端子 14,16:A/D変換器 18,20:音声処理回路 22:音声圧縮回路 24:入力端子 26:A/D変換器 28:映像処理回路 30:映像圧縮回路 32:データ合成回路 34:I D発生回路 36:マスメモリ 38:メモリ制御回路 40:システム制御回路 42:操作キー 44:表示装置 46:カレンダクロック 48:アドレス情報発生回路

50:データ分配回路 52:検索情報再生回路 54:表示情報生成回路

56:映像伸長回路 58:音声伸長回路 60:データ選択回路 62:加算器 64:ビデオ出力端子 66:D/A変換器 68:音声出力端子 70:D/A変換器 72:音響モニタ 74:映像モニタ 80:電源 82:中央処理装置 (CPU) 84:パワーアップ・クリア回路 86:メモリ 88:メモリ・パック 90:インターフェース 92:メモリ・パック検知回路 94:操作キー 96:モニタ

【図2】

11		1	声		
固定	.長	न इ	发長	可変長	
タイムコード 四質モード ロロード	音質モード 音質データ長	L ch リセット	データ	映像リセット	データ

【図3】

【図1】

【図6】

[図4]

【図5】

目次テープル	TC(0) 0	TC(1) 20	TC(2) 45				SP	8	
	ID(0) X0Y0	ID(1) X0Y3	ID(2) X0Y7			ID(19) X1Y15	ID(20) X1Y18		Ì
I Dテープル					D(44) X3Y0	ID(45) X3Y3			
データ領域	(C)		IDO1;						χo
				7//// ->#\					X1
				~~~~~ - `#2	H				X2
		<u> </u>	<del></del>	シーンボ	3	.,,,,,,	77777	77777	хз
	777777								i
ĺ		i			, , <del>.</del>				
	Y0	Y3				•••••	Y18	Y19	

ı	モード	SP	CC	目次テーブル	I Dテープル	データ領域
▼時間	記録 ポーズ	0	0		X0Y0	
	配棒	0		TC(0)に0をセットし、1秒毎に TC(0)のID番号を インクリメント	録画中、1 秒毎 にデータ領域の アドレスを書き 込む	ID0-19を記録
	記録 ポーズ	7	20		X1Y18	
	記録	1	-	TC(1)に20をセットし、1秒毎に TC(1)のID番号を インクリメント	録画中、1 秒毎 にデータ領域の アドレスを書き 込む	ID20-44を記録
	記録 ポーズ	2	45		X9Y3	

【図7】



[図12]



【図8】



【図9】



【図10】



【図11】



【図13】

