CALCULUS – KEY TERMS & MAIN RESULTS

Key terms	Problems with solutions	Exercises - Do yourself
	Chapter 1. Functions and limits:	
Functions domain and range	Find the domain and range of $y = \sqrt{4 - x^2}$ Solution. • Domain: the set of all x-values such that $f(x)$ is defined $4 - x^2 \ge 0 \Leftrightarrow 4 \ge x^2 \Leftrightarrow 2 \ge x \ge -2$	1/ Find the domain and range of the functions: a/ $y = \sqrt{16 - x^2}$ b/ $y = \frac{1}{x^4 + 1} + 3$
	• Range (the set of all y-values): $y = \sqrt{4 - x^2}$ \Rightarrow $\sqrt{4} \ge y \ge 0$	
Odd functions Even functions	Ex1. A function f is called odd if $f(-x) = -f(x)$ for all x in domain. For example, $f(x) = \sin x$. $(f(-x) = \sin(-x) = -\sin(x) = -f(x))$. Suppose f is an odd function and $(-3, 2)$ is a point in the graph of $y = f(x)$. Show that $(3, -2)$ is also a point of the graph of f. Solution. $(-3, 2)$ is a point of the graph of $f(-3) = 2$ f is odd $f(-3) = -f(x) = -f(x)$ f f f f f f f f f f f f f f f f f f f	a/ Suppose f, g are odd functions. Show that $h(x)$ = $f(x) + g(x)$ is also an odd function. b/ Suppose f, g are even functions. Show that $h(x)$ = $f(x) + g(x)$ is also an even function.
composite function	So, $(3, 2)$ is also a point in the graph of f. Given $f(x) = x^3$ and $g(x) = x + 3$, find $f(g(x))$ and $g(f(x))$.	3/ Find $f(g(x))$ and $g(f(x))$ if $f(x) = 1/(x+1)$ and $g(x) =$
(fog)(x) = f(g(x))	Solution. • $f(g(x)) = f(x+3) = (x+3)^3$ • $g(f(x)) = g(x^3) = x^3 + 3$	x ² . 4/ Find (fog)(3), g(f(4)) from the table x 1 2 3 4 f 7 1 5 2 g 2 8 1 4
from $y = f(x)$ to y = $f(x+c)$ and $y =$ f(x) + c	Suppose the graph of y = f(x) is given. Say how the graphs of a) y=f(x) + 3 b) y = f(x+3) c) y = f(x-3) + 2 are obtained. Solution. a. The graph of y = f(x) + 3 is obtained by shifting the given graph 3 units UP. b. The graph of y = f(x+3) is obtained by shifting the given graph 3 units to the LEFT.	5/How to obtain the graph of y = f(x - 3) from the graph of y = f(x)? 6/ How to obtain the graph of y = (x - 3) ² + 1 from the graph of y = x ² ?

	c. The graph of $y = f(x-3) + 2$ is obtained by	
	shifting the given graph 3 units to the RIGHT,	
C' 130 04 C	then 2 units UP.	2 .
find limits of	Find $\lim_{x \to 3^{-}} \frac{x^{2} - 9}{ x - 3 }$ and $\lim_{x \to 3} \frac{x^{2} - 9}{ x - 3 }$ (if any)	7/ Find $\lim_{x\to 2} \frac{x^2-4}{ x-2 }$ (if any)
functions	$\begin{array}{ccc} x \rightarrow 3^{-} x - 3 & x \rightarrow 3 x - 3 \\ \text{Solution.} \end{array}$	$\begin{array}{c} x \rightarrow 2 \mid x - 2 \mid \\ \text{P. Find lim} \left(\sqrt{x^2 + 2x} \right) \end{array}$
	• $x \rightarrow 3^-$ means is near 3 and $x < 3 \Rightarrow x - 3 =$	8/ Find $\lim_{x\to\infty} (\sqrt{x^2 + 2x} - $
		(x)
	$-(x-3) \implies \lim_{x \to 3^{-}} \frac{x^2 - 9}{ x-3 } = \lim_{x \to 3^{-}} \frac{(x-3)(x+3)}{-(x-3)}$	
	$= -\lim(x+3) = -6$	
	• $x \to 3^+$: $ x - 3 = x-3$ and $\lim_{x \to 3^+} \frac{x^2 - 9}{ x - 3 } =$	
	$x \to 3^+ x-3 $	
	$\lim_{x \to 3^+} \frac{(x-3)(x+3)}{(x-3)}$	
	$= \lim(x+3) = 6$	
	$\bullet \lim_{x \to 3^{-}} \frac{x^2 - 9}{ x - 3 } \neq \lim_{x \to 3^{+}} \frac{x^2 - 9}{ x - 3 }$	
	$x \to 3^- x-3 $ $x \to 3^+ x-3 $	
	$\Rightarrow \lim_{x \to 3} \frac{x^2 - 9}{ x - 3 } \text{ does not exist.}$	
	[Trick: try with x near 3, for example, $x = 3.01$,	
	x = 2.99 and consider the results.]	
test for	Given the function $f(x) = \begin{cases} x^2 - x & \text{if } x \leq 3 \\ x - m & \text{if } x > 3 \end{cases}$.	9/ Find all values of a, b
continuity	Given the function $f(x) = \begin{cases} x - m & \text{if } x > 3 \end{cases}$	such that
(at x = a)	Find m such that f is continuous at $x = 3$.	f(x)
	Solution.	$= \begin{cases} \frac{x^2 - 1}{x - 1} & \text{if } x < 1\\ x^2 + a & \text{if } 1 \le x < 2 \end{cases}$
	• $f(3) = 6$	$\begin{vmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{vmatrix}$
	• $\lim_{x \to 3^{-}} f(x) = 3^2 - 3 = 6$	$\int x^2 + a \ if \ 1 \le x < 2$
	$ \bullet \lim_{x \to 3^+} f(x) = 3 - m $	$x+b$ if $x \ge 2$
	• f is continuous at $x = 3 \Leftrightarrow \lim_{x \to 3} f(x) = f(3)$	is continuous at $x = 1$ and
		x=2.
	$\Leftrightarrow \lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = f(3) \Leftrightarrow 3 - m = 6 \Leftrightarrow m = -3$	
	Chapter 2. Derivatives	
differentiable	Example 1. Given $f(x) = \begin{cases} x^2 & \text{if } x \le 2\\ 4x - 4 & \text{if } x > 2 \end{cases}$	10/ Compute dy/dx or y':
	Example 1. Given $f(x) = \{4x - 4 \text{ if } x > 2\}$	$a/y = \frac{3}{1 - \sqrt{x}}$
	Find $f'(2)$ or say it is not differentiable at $x = 2$.	$b/y = \ln(3x) - e^{-2x}$
	Solution.	
	• $\lim \frac{f(x)-f(2)}{2} = \lim \frac{x^2-4}{2} = 4$	11/ Compute $\frac{d^2y}{dx^2}$ or y"
	$x \to 2^ x - 2$ $x \to 2^ x - 2$ f(x) - f(2) $4x - 4 - 4$	$a/y = \frac{3}{1-2x}$
		$b/y = e^{-2x} - 1/x$
	• $\lim_{x \to 2^{-}} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2^{-}} \frac{x^{2} - 4}{x - 2} = 4$ • $\lim_{x \to 2^{+}} \frac{f(x) - f(2)}{x - 2} = \lim_{x \to 2^{+}} \frac{4x - 4 - 4}{x - 2} = 4$ • $f'(2) = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} = 4$	
	Example 2. Given the graph of f	12/ Given the graph of the
	VA	function f. Find the
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	numbers at which f is not
		differentiable.
		$\downarrow \qquad \downarrow \qquad \downarrow$
	-2 0 2 x	
		0
	6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	Find x in which f is not differentiable.	\
	i cina x in which i is not atterentia n te	i III
	This A in which I is not differentiable.	III I

	Solution.	
	See the graph and find the points that the graph is not	
	"smooth", or discontinuous.	
	$\Rightarrow x = -2, x = 2.$	
Slope, Tangent	Find an equation of the tangent line to the curve $y =$	13/ Given the curve $y = x^3$
line and	$\sqrt{x^2+3}$ at the point $(1,2)$.	- 2x
linearization of	Solution.	a/ Find the tangent line of
y=f(x) at a:	. 2	the curve at the point (2,
y = f'(a)(x-a) +	$y' = \frac{(x^2+3)'}{2\sqrt{x^2+3}} = \frac{x}{\sqrt{x^2+3}}$	4).
(a)		b/ Find the point on the
	• $y'(1) = \frac{1}{2} // slope$ of the tangent line	graph of the curve at
	• An equation of the tangent line :	which the tangent line has
	$y = f'(x_0)(x - x_0) + f(x_0)$	slope 1.
	$y = f'(x_0)(x - x_0) + f(x_0)$ $y = \frac{1}{2}(x - 1) + 2$	14/ Find the linearization
	1 3	of the function $f(x) = \frac{1}{4}x^4 - \frac{1}{4$
	$y = \frac{1}{2}x + \frac{3}{2}$	1
	-The tangent line $y = \frac{1}{2}x + \frac{3}{2}$ is also called the	5x + 3 at $x = 2$.
	linearization of $y = \sqrt{x^2 + 3}$ at $x = 1$ and we can use	
	this line to approximate the value of $f(x)$ for x near 1.	
	-For example, to approximate $\sqrt{x^2 + 3}$ with $x = 0.98$	
	(near 1), we can use $y = \frac{1}{2}x + \frac{1}{2}$	
	$\frac{3}{2}$ and the result is $\frac{1}{2}0.98 + \frac{3}{2} = 1.99$.	
Find (fog)'(x)	Given $f(u) = \sqrt{u}$, $g(x) = 1 + 3x^2$, find (fog)'(1).	15/ a/ Given $f(u) = u^2$, $g(x)$
By chain rule:	Solution. Solution.	= 1 + 2x.
(fog)'(x) =	• Let $u = g(x)$, then $u'(x) = 6x$	Find (fog)'(2).
f'(g(x)).g'(x)	• $f'(u) = \frac{1}{2}\sqrt{u} = \frac{1}{2}\sqrt{1 + 3x^2}$	b/ Given $F(x) = f(g(x))$,
	2 2	and $f(-2) = 8$, $f'(-2) = 4$,
	• $(fog)'(x) = f'(g(x)).g'(x) = f'(u).u'(x)$	f'(5) = 3, g(5) = -2, g'(5) =
	$=6x\frac{1}{2}\sqrt{1+3x^2}=3\sqrt{1+3x^2}$	6. Find F'(5).
	$\Rightarrow (fog)'(1) = 6$	
		16/ Suppose $H(x) = (2x + 1)^3$
		$(5)^3 - 5$ can be expressed as
		(fogoh)(x), and $f(x) = x -$
		5, $h(x) = 2x + 1$, what is $g(x)$?
find dy/dt (rate of	Example 1. Given $x^2 + y^3 = 12$ and $dx/dt = -3$, find	$\frac{g(x)}{17}$ Given $x^3 + y^3 = 9$ and
y) when given	$\frac{2x \operatorname{dist} p \cdot r}{\operatorname{dy/dt} \text{ when } x = 2.}$	dx/dt = -3, find dy/dt when
dx/dt (rate of x),	Solution.	x = 2.
x and y.	$x^2 + y^3 = 12 \implies y = 2 \text{ if } x = 2$	
	$\Rightarrow \frac{d}{dt}(x^2 + y^3) = \frac{d}{dt}(12)$	18/ A ladder 5m long rests
	ut ut	against a vertical wall. If
	$\Rightarrow 2x \frac{dx}{dt} + 3y^2 \frac{dy}{dt} = 0$	the bottom of the ladder
	$\Rightarrow 2.2.(-3) + 3.(2).\frac{dy}{dt} = 0$	slides away from the wall
	$\Rightarrow \frac{dy}{dt} = 2$	at a rate of ½ m/s, how fast
	Example 2. Each side of a square is increasing at a <i>rate</i>	is the top of the ladder sliding down the wall
	of 6cm/s . At what <i>rate</i> is the area of the square	when the bottom of the
	increasing when the area of the 16cm ² ?	ladder is 3 m from the
	mercusing when the area of the roem:	radder is 5 in from the

differential $\mathbf{dy} = f'(x)dx$ and approximation ζy $\approx f'(x)dx$	Solution. • A: area of square, x : length of a side • Rate of side: $x'(t)$, rate of area $A'(t)$ • $A = x^2$ And $A'(t) = 2x.x'(t) = 2.4.6 = 48 \text{ cm}^2/\text{s}$ The radius of a circular disk is given as 24 cm with a maximum error in measurement of 0.2 cm. Use differentials to estimate the maximum error in the calculated area of the disk. Solution. A: area = πr^2 r: radius = 24cm maximum error of r: $\varsigma r = 0.2 \text{ cm}$ maximum error of area = $\varsigma A \approx A'(r) \varsigma r = 2\pi r \varsigma r \approx 30.15929 \text{ cm}^2$	wall? 19/ The edge of a cube was found to be 30 cm with a possible error in measurement of 0.1 cm. Use differentials to estimate the maximum possible error.
Find dy/dx by implicit differentiation.	Use implicit differentiation to find an equation of the tangent line to the curve $x^2 + xy + y^2 = 3$ at the given point $(1, 1)$. Solution. $\frac{d}{dx}(x^2 + xy + y^2) = \frac{d}{dx}(3)$ $\Rightarrow (x^2)' + (xy)' + (y^2)' = 0$ $\Rightarrow 2x + x'y + xy' + 2y.y' = 0$ $\Rightarrow 2x + y + (x+2y).y' = 0$ $\Rightarrow y' = -(2x+y)/(x+2y)$ $\Rightarrow y'(1) = -3/3 = -1$ Equation of the tangent line : $y = y'(1)(x - x_0) + f(x_0)$ $\Rightarrow y = -(x-1) + 1$ $\Rightarrow y = -x$	20/ Find dy/dx by implicit differentiation. x² + xy - y² + x = 2. 21/ Use implicit differentiation to find an equation of the tangent line to the curve at the given point. x² + 2xy - y² + x = 2, (1, 2)
	Chapter 3. App. Of differentiation	n
critical numbers	Find the <i>critical numbers</i> of the function. $f(x) = 2x^3 + 3x^2 - 36x$ Solution. $f'(x) = 6x^2 + 6x - 36$ $f'(x) = 0 \Leftrightarrow x = 2, x = -3$ critical numbers: 2 and -3	22/ Find the <i>critical</i> numbers of the function. $f(x) = f(x) = x^4 - 2x^2 + 3$
increasing/decre	1/ The graph of the derivative of a function is shown.	23/ The graph of the
asing	$y \uparrow$ $y = f'(x)$	derivative of a function is
local (relative) min/max: 1st derivative test and 2nd derivative test concave upward/downwa rd	a/ On what intervals is f increasing or decreasing? b/ At what values of x does f have a local maximum or minimum? Solution. a/ Based on the graph above, f'(x) < 0 on the intervals (0, 1) and (5, 6) → f is decreasing on (0, 1) and (5, 6); f	shown. a/ On what intervals is increasing or decreasing? b/ At what values of x does have a local maximum or minimum?

inflection points	is increasing on $(1, 5)$ because $f'(x) > 0$ on $(1, 5)$. b/ f' changes sign from $(-)$ to $(+)$ at $x = 1 \rightarrow f$ has local	y = f'(x)
	minimum at $x = 1$.	
	f' changes sign from (+) to (-) at $x = 5 \rightarrow f$ has local	
	maximum at $x = 5$.	$\begin{vmatrix} 0 \end{vmatrix}$ $\begin{vmatrix} 2 \end{vmatrix}$ $\begin{vmatrix} 4 \end{vmatrix}$ $\begin{vmatrix} 6 \end{vmatrix}$
	2/ Given $f(x) = 2x^3 + 3x^2 - 36x$ a/ Find the intervals on which is f increasing or	24/ Given $f(x) = x^4 - 2x^2 +$
	decreasing.	3
	b/ Find the local maximum and minimum values of f . c/ On what intervals is f concave upward or concave	a/ Find the intervals on which is f increasing or
	downward?	decreasing.
	d/ Find all inflection points of <i>f</i> . Solution.	b/ Find the local maximum
	• $f'(x) = 6x^2 + 6x - 36$	and minimum values of f .
	$f'(x) = 0 \Leftrightarrow x = 2, x = -3$	c/ On what intervals is f
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	concave upward or concave downward?
		d/ Find all inflection points
	$\begin{bmatrix} x & -\infty & -3 & 2 & \infty \\ f' & + 0 & - 0 & + \end{bmatrix}$	of f .
	a/ f is increasing on $(-\infty, -3)$, and increasing on $(2, \infty)$ f is decreasing on $(-3, 2)$.	
	b/ local max: $f(-3) = 81$, local min: $f(2) = -44$	
	• $f''(x) = 12x + 6$	
	$f''(x) = 0 \Leftrightarrow x = -\frac{1}{2}$	
	sign of f''	
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	c/ f is concave downward on $(-\infty, -\frac{1}{2})$ and concave	
	upward on $(-\frac{1}{2}, \infty)$	
	d/ at $x = -\frac{1}{2}$, f changes from concave downward to	
	concave upward \rightarrow inflection point is (-1/2, f(-1/2)) or (-1/2, 20)	
abs. max/min	Find two numbers whose difference is 40 and product	25/
and	is minimum.	a/ Find two numbers
Optimization	Solution.	whose difference is 20 and
problems	We find x and y such that $x - y = 40$ and x.y is	product is minimum.
	minimum.	b/ Find the absolute
	Let $f(x) = x \cdot y = x \cdot (x-40) = x^2 - 40x$	maximum and minimum
	f'(x) = 2x - 40	of the function $f(x) = \frac{1}{3}x^3 - \frac{1}{3$
	$f'(x) = 0 \Leftrightarrow x = 20$	$2x^2 + 5x - 1$ on [0, 3].
	and $f''(20) = 2 > 0$ $\Rightarrow f(20) = -400$ is minimum value of f.	
	So, $x = 20$ and $y = -20$	
Rolle's theorem	Rolle's Theorem. If a function f satisfies the	26 / Find all numbers c
	following:	satisfying the Rolle's
	• f is continuous on [a, b]	theorem if $f(x) = x^3 - x^2 -$
	• f is differentiable on (a, b)	5x - 11.
	• f(a) = f(b)	
	Then, there exists some numbers c in (a, b)	Í

	such that $f'(c) = 0$.	
	Ex.	
	Find all numbers c satisfying the Rolle's theorem if	
	$f(x) = x^3 - 2x^2 - 7x - 15.$	
	Solution.	
	Based on the theorem, $f'(c) = 0 \iff 3c^2 - 4c - 7 = 0$	
	←→ $c = -1, c = 7/3.$	
$\frac{f(b)-f(a)}{b-a}=f'(c)$	If $f(1) = 10$ and $f'(x) \ge 5$ for all x, how small can $f(4)$	27/ If $f(3) = 7$ and $f'(x) \le 4$
$\frac{-}{b-a}$ - 1 (c)	possibly be?	for all x, how large can
	Solution.	f(8) possibly be?
(Mean value	Based on MVT, there exists c in (1, 4) such that	T(0) possiony be:
theorem)		
	$f'(c) = \frac{f(4) - f(1)}{4 - 1} \implies f(4) - f(1) = 3.f'(c) \ge 3.5$	
	$\Rightarrow f(4) \ge 15 + f(1) = 25$	
	\Rightarrow smallest value of f(4) is 25.	
Newton's	Use Newton's method to find x ₃ to approximate the	28/ Use Newton's method
method:	solution of the equation $x^3 - x = 7$. Choose $x_1 = 2$ and	to find x_3 , the 3^{rd}
find n th	round the result to 2 decimal places.	approximation to the
approximation	Solution.	solution of the equation
to the solution of	• $x^3 - x = 7 \Leftrightarrow x^3 - x - 7 = 0$	$x^3 + 2x = 5$. Choose $x_1 = 1$
an equation $f(x)$	• Let $f(x) = x^3 - x - 7$	and round the result to 2
= 0.	• Let $I(x) = x^2 - x - 7$ $\Rightarrow f'(x) = 3x^2 - 1$	decimal places.
– U.		decimal places.
	• Use the formula: $x_{n+1} = x_n - \frac{f(x_n)}{f(x_n)}$	
	$\mathbf{x}_1 = 2$	
	$x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \approx 2.090909091$	
	$x_3 = x_2 - \frac{f(x_2)}{f'(x_2)} \approx 2.086754310 \approx 2.09$	
		•
position function	A particle is moving on a straight line with acceleration	29/ A particle is moving
s(t)	$a(t) = 12t + 4 \text{ (cm/s}^2).$	on a straight line with
	a/ Find velocity $v(t)$ if $v(0) = 0$.	acceleration $a(t) = 12t + 4$
velocity v(t)	b/ Find position of the particle after 5 seconds if $s(0) =$	(cm/s^2) .
	3.	a/ Find velocity v(t) if v(0)
acceleration a(t)	c/ Find the total distance traveled by the particle after 5	=0.
	seconds.	b/ Find position of the
	Solution.	particle after 5 seconds if
	a/velocity $v(t) = \int a(t)dt = 6t^2 + 4t + C$	s(0) = 3.
	$v(0) = 0 \Leftrightarrow C = 0$	c/ Find the total distance
	So, $v(t) = 6t^2 + 4t$	traveled by the particle
	b/ position = $s(t) = \int v(t)dt = 2t^3 + 2t^2 + C$	after 5 seconds.
	$s(0) = 3 \Rightarrow 2.0^3 + 2.0^2 + C = 3 \Rightarrow C = 3$	
	$\Rightarrow s(t) = 2t^3 + 2t^2 + 3$	
	$\Rightarrow s(t) = 2t + 2t + 3$ $\Rightarrow \text{ position after 5 seconds is: } s(5) = 303 \text{ (cm)}$	
	_	
	c/ total distance = $\int_0^5 v(t) dt = 300$ (cm)	
Find	Find $f(x)$ if $f''(x) = 6x^2 - 4x$ and $f(0) = f(1) = 3$.	30/ Find $f(x)$ if $f''(x) =$
antiderivatives	Solution.	$12x^2 - 2x + 3$ and $f(0) =$
	$f''(x) = 6x^2 - 4x \rightarrow f'(x) = 2x^3 - 2x^2 + C$	f'(0) = 2.
	$\Rightarrow f(x) = \frac{1}{2}x^4 - \frac{2}{3}x^3 + Cx + D$	
	So, $f(0) = D = 3$	
	and $f(1) = -1/6 + C + 3 = 3 \rightarrow C = 1/6$	
	and $I(1) = -1/0 + C + 3 = 3$ 7 $C = 1/0$	

	Hence, $f(x) = \frac{1}{2}x^4 - \frac{2}{3}x^3 + x/6 + 3$	
	Chapter 4-6: Integrals	
Integrals and areas, Riemann sum, left endpoint, right endpoint, midpoint	Given $f(x) = 6x^2 - 4x$ a/ Approximate the area under $f(x)$ from $x = 1$ to $x = 4$ using Riemann sum with $n = 6$ and left endpoints. b/ Find the area under $f(x)$ from $x = 1$ to $x = 4$ by computing the integral $\int_1^4 f(x) dx$. Solution. a/ area $\approx \frac{4-1}{6}(f(1) + f(1.5) + f(2) + f(2.5) + f(3) + f(3.5))$ = 77.25000000	31/ Given $f(x) = 3x^2 - 2x$ a/ Approximate the $\int_0^8 f(x) dx$ by computing the area under $f(x)$ using Riemann sum with $n = 4$ and right endpoints. b/ Find the area under $f(x)$ from $x = 0$ to $x = 8$.
$\int_{a}^{b} f(x) dx =$ $F(b) - F(a)$	b/Actual area = $\int_{1}^{4} f(x) dx = \int_{1}^{4} (6x^{2} - 4x) dx = 96$. 1/ Given $f(1) = 3$, f' is continuous and $\int_{1}^{4} f'(x) dx = 7$. Find $f(4)$. Solution. f is an antiderivative of $f' \Rightarrow \int_{1}^{4} f'(x) dx = f(4) - f(1)$ $\Rightarrow f(4) - f(1) = 7 \Rightarrow f(4) = 7 + 3 = 10$ 2/ Suppose h is a function such that h(1) = -2, $h'(1) = 2$, $h''(1) = 3$, $h(2) = 6$, $h'(2) = 5$, h''(2) = 13 and h'' is continuous everywhere. Evaluate $\int_{1}^{2} h''(x) dx$. Solution. h' is an antiderivative of $h'' \Rightarrow \int_{1}^{2} h''(x) dx = h'(2) - h'(1) = 5 - 2 = 3$.	32/ Given $\int_0^b \sqrt{x} dx = \frac{\sqrt{2}}{6}$ Find b. 33/ Compute $\int_0^3 f(x) dx$, where $f(x) = \begin{cases} 5 & \text{if } x < 2 \\ x^2 + 1 & \text{if } x \ge 2 \end{cases}$ Hint: $\int_0^3 f(x) dx = \int_0^2 f(x) dx + \int_2^3 f(x) dx$
Trapezoidal rule and Simpson's rule	Given the table of values of $f(x)$ x 0 2 4 6 8 10 $f(x)$ 0 5 4 2 -3 2 Approximate $\int_0^{10} f(x) dx$ using trapezoidal rule with n = 5 and the given data. Solution. $\int_0^{10} f(x) dx \approx \frac{1}{2} (f(0) + 2f(2) + 2f(4) + 2f(6) + 2f(8) + f(10)) = \frac{1}{2} (0 + 10 + 8 + 4 + (-6) + 2) = 9$.	34/ Use trapezoidal rule with n = 4 to approximate the integral $\int_0^4 f(x) dx$ if: a/ x $f(x)$ 0 2 1 1 2 -1 3 3 4 5 b/ $f(x) = \sqrt{x^4 + 1}$
Average value of	Find the average value of the function $f(x) = 3x^2 - $	35/ Suppose the average

f(x) over [a, b]	2x over [1, 3].	value of f over [1, 5] is
	Solution.	7/2.
		Find $\int_1^5 f(x) dx$
	$f_{\text{ave}} = \frac{\int_{1}^{3} f(x)dx}{3-1} = \frac{\int_{1}^{3} (3x^{2} - 2x)dx}{3-1} = 18/2 = 9$	1
$\int u dv = uv - \int v du$	1/ Find J4xe ^{-2x} dx	36/ Find the integrals:
	Solution.	$a/\int 2xe^{-x}dx$
	Let $u = 4x$, $dv = e^{-2x} dx$ $\rightarrow du = 4dx$, $v = \frac{-1}{2}e^{-2x}$	b/ J4xln(2x)dx Hint:
	So, $\int 4xe^{-2x}dx = \int udv = uv - \int vdu$	u = ln(2x), dv = 4xdx
	$= -2xe^{-2x} + 2\int e^{-2x} dx = -2xe^{-2x} - e^{-2x} + C$	\Rightarrow $du = u'dx$
	$2/$ Find $\int_{1}^{e} 2x \ln x dx$	$=\frac{(2x)'}{2x}dx=dx/x$
	Solution. Let $u = \ln x$, $dv = 2xdx \rightarrow du = dx/x$, $v = x^2$	$c/\int \frac{2x}{\sqrt{x+2}} dx$
	1.0	V 24 1 2
	$\int_{1}^{e} 2x \ln x dx = \int_{1}^{e} u dv = uv \Big _{1}^{e} - \int_{1}^{e} v du$	Hint:
	$= x^2 \ln x \Big _{1}^{e} - \int_{1}^{e} x dx = x^2 \ln x \Big _{1}^{e} - \frac{1}{2} x^2 \Big _{1}^{e}$	$u = 2x$, $dv = \frac{1}{\sqrt{x+2}}dx$
	$= e^2 - \frac{1}{2}(e^2 - 1) = \frac{1}{2}e^2 + \frac{1}{2}$	\Rightarrow v = $2\sqrt{x+2}$
$\int f(x)dx = \int g(t)dt$	$1/ \text{Find } \int 2x(x^2 + 3)^9 dx$	37/ Evaluate the integrals:
by substitution t =	Solution.	$a / \int_0^2 3x^2 \sqrt{x^3 + 1} dx$
u(x)	Let $t = x^2 + 3 \implies dt = 2xdx$	
	So, $\int 2x(x^2+3)^9 dx = \int t^9 dt = \frac{t^{10}}{10} + C$	$b/\int \frac{2}{\sqrt{x}} (1+\sqrt{x})^3 dx$
	$=\frac{(x^2+3)^{10}}{10}+C$	Hint:
	10	$t = 1 + \sqrt{x}$
	$\frac{2}{\text{Find}} \int \frac{\ln x}{x} dx$	
	Solution. Let $t = \ln x \rightarrow dt = dx/x$	
	So, $\int \frac{\ln x}{x} dx = \int t dt = \frac{1}{2}t^2 + C = \frac{1}{2}(\ln x)^2 + C$	
d $cu(x)$	$\frac{30, y}{x} \frac{dx - y}{dx} = \frac{1}{2} (\frac{10x}{2}) + C = \frac{1}{2} (\frac{10x}{2}) + C$	38/ Find the following
$\frac{d}{dx} \left(\int_{v(x)}^{u(x)} f(t) dt \right)$	χ^2	derivatives:
2() (())	$\frac{d}{dx}(\int \sqrt{1+t^2}dt)$	a/
= u'(x).f(u(x)) -	$dx \int_{x}^{\infty} \sqrt{1+t} dt$	d f
v'(x).f(v(x))	Solution.	$\frac{d}{dx}(\int (1+t) dt)$
	$\frac{d}{dx} \left(\int_{x}^{x^{2}} \sqrt{1+t^{2}} dt \right) = (x^{2})^{2} \sqrt{1+x^{4}} - (x)^{2} \sqrt{1+x^{2}}$	sinx
	$\begin{vmatrix} dx & 3x \\ = 2x\sqrt{1 + x^4} - \sqrt{1 + x^2} \end{vmatrix}$	b/ Suppose $\int_{1}^{x} f(t)dt = x\sqrt{x} - 3, \text{ find}$
	$\frac{2}{\text{Find g'}(x) \text{ and g'}(2) \text{ if}}$	$\begin{cases} \int_1^1 f(t)dt - x \sqrt{x} - 3, \text{ find} \\ f(x). \end{cases}$
	$g(x) = \int_{r}^{3x} (1+t) dt$	Hint:
	Solution.	If $g(x) = \int_{1}^{x} f(t)dt$, then
	$g(x) = \int_{r}^{3x} (1+t) dt$	g'(x) = f(x)
	$\Rightarrow g'(x) = \frac{d}{dx} \left[\int_{x^2}^{3x} (1+t) dt \right]$	
	$= 3(1+3x) - 2x(1+x^2)$	
	$= -3(1+3x) - 2x(1+x)$ $= -2x^3 + 7x + 3$	
	Hence, $g'(2) = -1$	
improper	1/ Which of the following integrals are convergent?	39/ Which of the following
integral: Test for	$\int_{1}^{\infty} \frac{1}{x\sqrt{x}} dx$	integrals are convergent?
convergence or divergence	$b / \int_3^\infty \frac{x+3}{x^2+x\sqrt{x}} dx$	$\int_{1}^{\infty} \frac{1}{\sqrt{x}} dx$
urvergence	x^3 $x^2 + x\sqrt{x}$	

$\int_{a}^{\infty} \frac{1}{x^{p}} dx$	$c / \int_0^\infty e^{\frac{-x}{2}} dx$ Solution. $a / \int_1^\infty \frac{1}{x\sqrt{x}} dx = \int_1^\infty \frac{1}{x^{3/2}} dx \text{ converges } (p = 3/2 > 1)$ $b / \int_3^\infty \frac{x+3}{x^2+x\sqrt{x}} dx \sim \int_3^\infty \frac{x}{x^2} dx = \int_3^\infty \frac{1}{x} dx \text{ diverges } (p = 1)$ $c / \int_0^\infty e^{\frac{-x}{2}} dx = -2e^{\frac{-x}{2}} \Big _0^\infty = -2(e^{-\infty} - e^0) = -2(0 - 1) = 2$	$b / \int_{2}^{\infty} \frac{x + x\sqrt{x}}{x^{3} + 1} dx$ $c / \int_{0}^{\infty} e^{-2x} dx$
improper integral (type 2)	Evaluate the improper integral or say it diverges $ \int_{1}^{5} \frac{1}{\sqrt{5-x}} dx $ Solution. • $\int_{1}^{t} \frac{1}{\sqrt{5-x}} dx = \int_{1}^{t} \frac{1}{(5-x)^{0.5}} dx = \int_{1}^{t} (5-x)^{-0.5} dx$ $ = -\frac{(5-x)^{-0.5+1}}{-0.5+1} \begin{vmatrix} t \\ 1 \end{vmatrix} = -2\sqrt{5-x} \begin{vmatrix} t \\ 1 \end{vmatrix} $ $ = -2\sqrt{5-t} + 2\sqrt{5-1} \rightarrow 4 \text{ when } t \rightarrow 5 $ • $\int_{1}^{5} \frac{1}{\sqrt{5-x}} dx = 4$	40/ Evaluate each of these improper integrals or say it diverges a/ $\int_1^5 \frac{1}{\sqrt{x-1}} dx$ b/ $\int_0^4 \frac{1}{x^{0.8}} dx$

END OF PART I – CALCULUS

LINEAR ALGEBRA – KEY TERMS & MAIN RESULTS

Key terms	Problems with solutions	Exercises - Do yourself
	Chapter 1. Systems of Linear Equat	tions
Reduced row- echelon form	Ex. Find x and y such that the matrix $ \begin{pmatrix} 1 & 1 & -1 & 3 & 5 \\ 0 & x & 1 & 0 & -2 \\ 0 & y & x & 2 & 1 \end{pmatrix} $ is a reduced row-echelon $ matrix. $ Solution. Consider row 2, two possible cases for x's value: 0 or 1 $ \bullet x = 0 \Rightarrow y = 0, \text{ so the } 3^{rd} \text{ row becomes } [0 \ 0 \ 0 \ 2 \ 1], \text{ which is impossible.} $ $ \bullet x = 1 \Rightarrow y = 0 \text{ and row } 3 \text{ is } [0 \ 0 \ 1 \ 2 \ 1], \text{ which is possible.} $	1/ Find x and y such that the matrix $ \begin{pmatrix} 1 & 1 & -1 & 3 & 5 \\ 0 & y & x & 0 & -2 \\ 0 & 0 & x & 1 & -1 \end{pmatrix} $ is a reduced row-echelon matrix.
Consistent and inconsistent system	Conclusion: x = 1 and y = 0. Ex1. Solve the system x + 2y + 3z = 0 2x + 4y - z = 0 x + 2y - z = 0 Solution. • Step 1. Carry augmented matrix to reduced row-echelon form:	2/ a/ Solve the system x - y + 2z = 0 -x + y - z = 0 b/ Solve the system corresponding to the augmented matrix

$$\begin{pmatrix}
1 & 2 & 3 & 0 \\
2 & 4 & -1 & 0 \\
1 & 2 & -1 & 0
\end{pmatrix}
\xrightarrow{\begin{array}{c}
-2r_1 + r_2 \\
-r_1 + r_3
\end{array}}
\begin{pmatrix}
1 & 2 & 3 & 0 \\
0 & 0 & -7 & 0 \\
0 & 0 & -4 & 0
\end{pmatrix}$$

$$\xrightarrow{\begin{array}{c}
-\frac{1}{7}r_2 \\
-\frac{1}{7}r_2
\end{array}}
\begin{pmatrix}
1 & 2 & 3 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -4 & 0
\end{pmatrix}
\xrightarrow{\begin{array}{c}
4r_2 + r_3 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}}$$

$$\xrightarrow{\begin{array}{c}
-3r_2 + r_1 \\
-3r_2 + r_1
\end{array}}
\begin{pmatrix}
1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0
\end{pmatrix}$$

- Step 2. From the last matrix, the system has infinitely many solution described as below:
 y = t (parameter = any number) // no leading one with respect to y
 z = 0
 - z = 0x = -2t
- Step 3. Conclusion: solution set is {(-2t, t, 0) where t is arbitrary}

Ex2. Find all values of m such that the system

$$\begin{cases} x - y + 2z = 2 \\ -2x + y - z = -1 \\ x + y + mz = 0 \end{cases}$$

has unique solution.

Solution.

$$\begin{bmatrix} 1 & -1 & 2 & 2 \\ -2 & 1 & -1 & 1 \\ 1 & 1 & m & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & -1 & 3 & 5 \\ 0 & 2 & m-2 & -2 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 1 & -3 & -5 \\ 0 & 2 & m-2 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 2 \\ 0 & 1 & -3 & -5 \\ 0 & 0 & m+4 & 8 \end{bmatrix}$$

From the last matrix, the system has unique solution when $m+4\neq 0$

Conclusion: $m \neq -4$.

Rank of a matrix r(A)

Ex. Find the *rank* of the matrix.

$$A = \begin{vmatrix} 0 & -2 & 1 & 3 \\ 1 & -2 & -1 & 1 \\ -2 & 2 & 3 & 1 \end{vmatrix}$$

Solution.

In general, carry A to a row echelon matrix, and

$$\begin{bmatrix} 1 & 0 & -1 & 2 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -2 & 10 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

3/ Find all values of m such that the system

$$\begin{cases} x - y + 2z = -1 \\ -y + z = 1 \\ x - y + mz = 0 \end{cases}$$

has unique solution.

4/ Find the *rank* of the matrix.

$$A = \begin{bmatrix} 1 & -2 & 1 & -3 \\ -2 & 0 & -1 & 1 \\ 2 & 2 & -2 & 3 \end{bmatrix}.$$

T		T
the number of free parameters p = n - r of a	rank(A) = number of leading ones. $ \begin{bmatrix} 0 & -2 & 1 & 3 \\ 1 & -2 & -1 & 1 \\ -2 & 2 & 3 & 1 \end{bmatrix} \xrightarrow{r_1 \leftrightarrow r_2} \begin{bmatrix} 1 & -2 & -1 & 1 \\ 0 & -2 & 1 & 3 \\ -2 & 2 & 3 & 1 \end{bmatrix} $ $ \xrightarrow{\frac{2r_1+r_3}{2}} \begin{bmatrix} 1 & -2 & -1 & 1 \\ 0 & -2 & 1 & 3 \\ 0 & -2 & 1 & 3 \end{bmatrix} \xrightarrow{r_2+r_3} \begin{bmatrix} 1 & -2 & -1 & 1 \\ 0 & -2 & 1 & 3 \\ 0 & 0 & 0 & 0 \end{bmatrix} $ We can see the latest matrix can be carried to a row echelon matrix with <i>2 leading ones</i> . So, rank(A) = 2. Ex. A homogeneous system has the coefficient matrix of rank 8. If there are 11 linear equations involving 13 variables (or unknowns) in the system, then how many <i>free parameters</i> in the solution set of the system?	5/ A homogeneous system has the coefficient matrix of rank 7. If there are 13 linear equations involving
homogeneous	Solution.	15 variables (or
system	p: number of parameters	unknowns) in the system,
	n: number of variables	then how many free
	r = rank of the coefficient matrix $p = n - r = 13 - 8 = 5$.	parameters in the solution set of the system?
	Chapter 2-3. Matrix Algebra	set of the system:
Matrix addition		6/ Find A-1 if
Matrix addition	اً ا	6/ Find A ⁻¹ if
A + B, scalar multiplication (k.A) and transpose A ^T Matrix multiplication A·B Matrix inverse A-1	Ex1. Given $A = A = \begin{bmatrix} -2 & 1/2 & 3 \\ 3/2 & -1 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ -3 & 2 \\ 1 & 5 \end{bmatrix}$ Find $2A - B^{T}$. Solution. $2A = \begin{bmatrix} -4 & 1 & 6 \\ 3 & -2 & 0 \end{bmatrix}$ $B^{T} = \begin{bmatrix} 1 & -3 & 1 \\ 0 & 2 & 5 \end{bmatrix}$ So, $2A - B^{T} = \begin{bmatrix} -4 & 1 & 6 \\ 3 & -2 & 0 \end{bmatrix} - \begin{bmatrix} 1 & -3 & 1 \\ 0 & 2 & 5 \end{bmatrix}$ $= \begin{bmatrix} -5 & 4 & 5 \\ 3 & -4 & -5 \end{bmatrix}$	$A = \begin{bmatrix} -1 & -2 \\ 3 & 3 \end{bmatrix}$ 7/ Find A if
scalar multiplication (k.A) and transpose A ^T Matrix multiplication A·B Matrix inverse	Find $2A - B^T$. Solution. $2A = \begin{bmatrix} -4 & 1 & 6 \\ 3 & -2 & 0 \end{bmatrix}$ $B^T = \begin{bmatrix} 1 & -3 & 1 \\ 0 & 2 & 5 \end{bmatrix}$ So, $2A - B^T = \begin{bmatrix} -4 & 1 & 6 \\ 3 & -2 & 0 \end{bmatrix} - \begin{bmatrix} 1 & -3 & 1 \\ 0 & 2 & 5 \end{bmatrix}$	$A = \begin{bmatrix} -1 & -2 \\ 3 & 3 \end{bmatrix}$

	$A = \begin{bmatrix} -1 & 3 \\ 2 & 3 \end{bmatrix} \Rightarrow 2A = \begin{bmatrix} -2 & 6 \\ 4 & 6 \end{bmatrix}$	
	[]	
	$\Rightarrow (2A)^{-1} = \frac{1}{-36} \begin{bmatrix} 6 & -6 \\ -4 & -2 \end{bmatrix} = \begin{bmatrix} -1/6 & 1/6 \\ 1/9 & 1/18 \end{bmatrix}$	
	Another way.	
	$A = \begin{bmatrix} -1 & 3 \\ 2 & 3 \end{bmatrix} \Rightarrow A^{-1} = \frac{1}{-9} \begin{bmatrix} 3 & -3 \\ -2 & -1 \end{bmatrix}$	
	$\Rightarrow (2A)^{-1} = \frac{1}{2}A^{-1} = \begin{bmatrix} -1/6 & 1/6 \\ 1/9 & 1/18 \end{bmatrix}$	
	Ex3. Find A if $(A^T - 2I)^{-1} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix}$.	
	Solution.	
	$ (A^{T} - 2I)^{-1} = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix} \Leftrightarrow A^{T} - 2I = \begin{bmatrix} 1 & 3 \\ 1 & 4 \end{bmatrix}^{-1} = \begin{bmatrix} 4 & -3 \\ -1 & 1 \end{bmatrix} $	
	$A^{T} = \begin{bmatrix} 4 & -3 \\ -1 & 1 \end{bmatrix} + 2I = \begin{bmatrix} 4 & -3 \\ -1 & 1 \end{bmatrix} + 2\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	
	$A^T = \begin{bmatrix} 6 & -3 \\ -1 & 3 \end{bmatrix}$	
	$\Rightarrow A = \begin{bmatrix} 6 & -1 \\ -3 & 3 \end{bmatrix}$	
Invertible and	Ex. Find all values of x such that the matrix	8/ Find all values of x such
determinant	$\begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$	that the matrix
	$\begin{bmatrix} -1 & 2 & 1 \\ 2 & 0 & -3 \\ 1 & x & 1 \end{bmatrix}$ has an inverse .	$\begin{bmatrix} 1 & -2 & 1 \\ -2 & 0 & 3 \end{bmatrix}$
	$\begin{bmatrix} 1 & x & 1 \end{bmatrix}$	
	Solution.	$\begin{bmatrix} -1 & 2 & x \end{bmatrix}$
	$\begin{bmatrix} -1 & 2 & 1 \end{bmatrix}$	
	$ \det 2 0 -3 = -x - 10$	
	$\det \begin{bmatrix} -1 & 2 & 1 \\ 2 & 0 & -3 \\ 1 & x & 1 \end{bmatrix} = -x - 10$	
	A has an inverse iff $det(A) \neq 0 \Leftrightarrow x \neq -10$.	
Linear	Ex. Let T: $R^2 \rightarrow R^2$ be a linear transformation such	9/ Let T: $R^2 \rightarrow R^2$ be a
transformations	that $T(u) = (-1, 2)$ and $T(v) = (-1, 1)$ Find $T(2u - 3v)$.	linear transformation such that $T(u) = (1, -2)$ and
$T(\vec{au} + \vec{bv})$	Solution.	T(v) = (1, 2)
$= aT(\vec{u}) + bT(\vec{v})$	T(2u - 3v) = 2T(u) - 3T(v) = 2(-1, 2) - 3(-1, 1) = (1, 1).	Find $T(3u - 2v)$.
Determinants of	Ex.	10/ Given
2x2, 3x3, 4x4 matrices		
det(A)		

	Find $\begin{vmatrix} a & -2 & 0 \\ 1 & 1 & 0 \\ 2 & 3 & -2 \end{vmatrix}$ Solution. $\begin{vmatrix} a & -2 & 0 \\ 1 & 1 & 0 \\ 2 & 3 & -2 \end{vmatrix} = -2(-1)^{3+3} \det \begin{bmatrix} a & -2 \\ 1 & 1 \end{bmatrix} = -2(a+2)$	$A = \begin{bmatrix} 3 & -2 & 0 \\ 0 & 1 & k \\ 0 & 1 & -3 \end{bmatrix}$ a/ Find det(A). b/ Find k such that A has an inverse.
Properties of determinants	Ex. Suppose A and B are 3x3 matrices such that $ A = 3$, $ B = -6$. a/ Find $ 2AB^{-1} $ b/ Find $ 3A^{T}BA^{-2} $ Solution. a/ $ 2AB^{-1} = 2^{3} A \frac{1}{ B } = \frac{8 \cdot 3}{-6} = -4$ b/ $ 3A^{T}BA^{-2} = 3^{3} A B \frac{1}{ A ^{2}} = \frac{3^{3} \cdot (-6)}{3} = -54$	11/ Suppose A and B are 4x4 matrices such that A = -2, B = 3. a/ Find 2AB ^T b/ Find A ² B ⁻¹ A ⁻¹
(i, j)-cofactor and A ⁻¹ . (-1) ^{i+j} det(delete row i, delete column j)	Ex. Find (2, 3)-cofactor and (3, 1)-cofactor of A if $A = \begin{bmatrix} -1 & 2 & 1 \\ 2 & 0 & -3 \\ 1 & 2 & 1 \end{bmatrix}$ Solution. $(2, 3)\text{-cofactor} = c_{23} = (-1)^{2+3} \det \begin{pmatrix} -1 & 2 \\ 1 & 2 \end{pmatrix} = 4$ $(3, 1)\text{-cofactor} = c_{31} = (-1)^{3+1} \det \begin{pmatrix} 2 & 1 \\ 0 & -3 \end{pmatrix} = -6$	12/ Find (2, 3)-cofactor and (3, 1)-cofactor of A if $A = \begin{bmatrix} -1 & 2 & 5 \\ 2 & 3 & -1 \\ -1 & 0 & 2 \end{bmatrix}$
Adjugate matrix	Ex. Find the first row of the adjugate of $\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & 5 \\ 0 & 1 & -1 \end{bmatrix}$ Solution.	13/ Find the second row of the adjugate matrix of $A = \begin{bmatrix} -1 & 2 & 5 \\ 2 & 3 & -1 \\ -1 & 0 & 2 \end{bmatrix}$

	Find the first row of the adjugate of Solution. The first row of adjugate matrix of A is cofactors c_{11} , c_{21} , c_{31} : $\begin{vmatrix} c_{11} = (-1)^{1+1} \det \begin{pmatrix} 0 & 5 \\ 1 & -1 \end{pmatrix} = -5$	
	$c_{21} = (-1)^{2+1} \det \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix} = 1$ $c_{31} = (-1)^{3+1} \det \begin{pmatrix} -1 & 2 \\ 0 & 5 \end{pmatrix} = -5$ The first row of adj(A) is: [-5 1 -5].	
eigenvalues	Ex. Find all eigenvalues of the matrix of the matrix $\begin{bmatrix} 1 & 1 & -1 \\ 0 & 0 & -1 \\ 0 & 2 & -3 \end{bmatrix}$ Solution. • $\det(xI - A) = \begin{vmatrix} x - 1 & -1 & 1 \\ 0 & x & 1 \\ 0 & -2 & x + 3 \end{vmatrix} = (x - 1)[x(x + 3) + 2]$ $= (x - 1)(x^2 + 3x + 2)$ • $\det(xI - A) = 0 \Leftrightarrow x = 1, x = -1, x = -2.$ • Eigenvalues: 1, -1, -2 * Note that for a multiple choice question: first we can find $\det(A) = 2$. Then, choose options which the product of values is 2 a) 2, 3, 4 b) -3, 3, 4 d) -3, 0, 4 e) -1, -2, 1 e) is the possible option because $\det(A) = 2 = (-1)(-2).1$	14/ Find all eigenvalues of the matrix of the matrix $ \begin{bmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{bmatrix} $ Choose one from options below $ \begin{array}{cccc} (i) & -2, 1, 3 \\ (ii) & 2, -1, -3 \\ (iii) & -1, -2, 3 \\ (iv) & 2, 1, -1 \end{array} $
	Chapter 5. The Vector Space R ^r	
Linear independence, Linear dependence	Ex1. Find all values of x such that the set {(1, 0, -2); (-2, 1, 1); (1, -3, x)} is linearly independent. Solution. • We solve the system for a, b, c a(1, 0, -2) + b(-2, 1, 1) + c(1, -3, x) = (0, 0, 0) Equivalently, in augmented matrix	 15/ Find all values of x such that the set {(1, -1, 2); (-2, 0, 1); (-1, x, 3)} is linearly independent. 16/ Find all values of a such that the set {(1, 1, 0); (2, 1, 3); (-1, 0, a)} is linearly dependent.

[1	-2	1 0
0	1	-3 0
_2	1	$ \begin{array}{c c} 1 & 0 \\ -3 & 0 \\ x & 0 \end{array} $

• Carry the matrix to row-echelon form

$$\begin{bmatrix} 1 & -2 & 1 & | & 0 \\ 0 & 1 & -3 & | & 0 \\ -2 & 1 & x & | & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 1 & | & 0 \\ 0 & 1 & -3 & | & 0 \\ 0 & -3 & x - 2 & | & 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & -2 & 1 & | & 0 \\ 0 & 1 & -3 & | & 0 \\ 0 & 0 & 1 & 1 & | & 0 \end{bmatrix}$$

We want the set is linearly independent, so the system must have solution a = 0, b = 0, c = 0.

$$\Rightarrow$$
 $x - 10 \neq 0$.

Ex2. Find all values of a such that the set $\{(1, -1, 1); (2, 1, 3); (-1, a, 2)\}$ is linearly **dependent**. **Solution.**

Similar to the previous example, solve the system

$$\begin{bmatrix} 1 & 2 & -1 & 0 \\ -1 & 1 & 2 & 0 \\ 1 & 3 & a & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 3 & 1 & 0 \\ 0 & 1 & a+1 & 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & a+1 & 0 \\ 0 & 3 & 1 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & a+1 & 0 \\ 0 & 0 & 1-3(a+1) & 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 2 & -1 & 0 \\ 0 & 1 & a+1 & 0 \\ 0 & 0 & -3a-2 & 0 \end{bmatrix}$$

We need values of a such that the set is linearly **dependent** \rightarrow -3a - 2 = 0 \Leftrightarrow a = -2/3.

Spanning sets, span

Ex. Given $U = \text{span}\{(-1, 0, 1); (2, -1, 1)\}.$ a/ Does the vector (1, -2, 3) belong to U?

b/ Find all values of m such that $(-2, 2, m) \in U$. Solution.

a/ We want to find a, b such that (1, -2, 3) = a(-1, 0, 1) + b(2, -1, 1)Or equivalent,

1 = -a + 2b (1)

-2 = 0a - b (2) 3 = a + b (3)

Solve for a, b from (1), (2) \Rightarrow a = 3, b = 2 \Rightarrow (3) becomes: 3 = 5 (!)

17/ Given U = span{(1, -1, 0); (-2, 1, 1)}.

Find all values of m such that $(0, -1, m) \in U$.

		T
	Conclusion: vector (1, -2, 3) does not belong to U.	
	b/(-2, 2, m) \in U if and only if the system	
	(-2, 2, m) = a(-1, 0, 1) + b(2, -1, 1) has solution a, b.	
	Or equivalent,	
	-2 = -a + 2b (1)	
	2 = 0a - b (2)	
	$m = a + b \qquad (3)$ Solve for a b from (1) (2) \rightarrow a 2 b 2	
	Solve for a, b from (1), (2) \Rightarrow a = -2, b = -2	
	$\Rightarrow (3) \text{ becomes: } m = -4$	
Basis of a vector	Conclusion: $m = -4$	19/ Circa II span (/1 2
	Ex1. Given $U = \text{span}\{(1, 2, 1); (3, 2, 0); (-1, 2, 2)\}.$	18/ Given $U = \text{span}\{(1, 2, 0), (2, 1, 1), (1, 2, 1)\}$
space,	Find the dimension of U (find dim(U)).	0); (-3, 1, 1); (1, 3, -1)}.
Dimension	Solution.	Find the dimension of U
	First, check for independence of the set $\{(1, 2, 1); (3, 2, 2), (1, 2, 2)\}$	(find dim(U)).
	0); (-1, 2, 2)}	10/ Given II = execut(1, 2
	$ \begin{bmatrix} 1 & 3 & -1 & 0 \\ 2 & 2 & 2 & 0 \\ 1 & 0 & 2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 3 & -1 & 0 \\ 0 & -4 & 4 & 0 \\ 0 & -3 & 3 & 0 \end{bmatrix} $	19/ Given $U = \text{span}\{(1, 2, 0, 1), (2, 0, 1), (3, 1, 2), (1, 1, 1)\}$
	2	0, 1); (-3, 0, 1, -2); (1, 1, -
		1, 3)}. Find the dimension
	$\begin{bmatrix} 1 & 0 & 2 & 0 \end{bmatrix} \begin{bmatrix} 0 & -3 & 3 & 0 \end{bmatrix}$	of U (find dim(U)).
	$\begin{bmatrix} 1 & 3 & -1 \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 3 & -1 \\ 0 \end{bmatrix}$	
	$ \rightarrow 0 1 -1 0 \rightarrow 0 1 -1 0 $	
	$ \begin{vmatrix} 1 & 3 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & -3 & 3 & 0 \end{vmatrix} \rightarrow \begin{bmatrix} 1 & 3 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 0 \end{vmatrix} $	
	From the last matrix, the set is NOT INDEPENDENT.	
	Only two vectors make an independent set	
	Two vectors make an independent set \rightarrow Two vectors are chosen to form a basis of U \rightarrow dim(U)	
	= 2.	
	- Z.	
	Ex2. Find all values of x such that $dim(V) = 2$ where V	
	$= span\{(1, -1, 2); (-1, 0, 3); (2, -3, x)\}.$	
	Solution.	
	$\begin{bmatrix} 1 & -1 & 2 & 0 \\ -1 & 0 & -3 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 2 & 0 \\ 0 & -1 & -1 & 0 \end{bmatrix}$	
	$ \ -1 \ 0 \ -3 0 \rightarrow \ 0 \ -1 \ -1 \ \ 0 $	
	$\begin{bmatrix} 2 & 3 & x & 0 \end{bmatrix}$ $\begin{bmatrix} 0 & 5 & x-4 & 0 \end{bmatrix}$	
	$ \begin{bmatrix} 1 & -1 & 2 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & x-9 & 0 \end{bmatrix} $	
	0 0 x-9 0	
	$\dim(V) = 2$ if and only if $x = 9$.	
Column space		20/ Find dim(col(A)) if A
Col(A) and row	Ex. Find dim(col(A)) if $A = \begin{bmatrix} 1 & -2 & 0 & 1 \\ 0 & 1 & -2 & 3 \\ -2 & 6 & -4 & 0 \end{bmatrix}$.	
space row(A)	Ex. Find $\operatorname{dim}(\operatorname{col}(\mathbf{A}))$ if $A = \begin{bmatrix} 0 & 1 & -2 & 3 \end{bmatrix}$.	
<u> </u>	-2 6 -4 0	= 0 1 -2 1 .
		$ = \begin{bmatrix} 1 & 1 & 0 & 2 \\ 0 & 1 & -2 & 1 \\ 2 & -3 & 4 & 2 \end{bmatrix}. $
	Solution.	

$$\begin{bmatrix} 1 & -2 & 0 & 1 \\ 0 & 1 & -2 & 3 \\ -2 & 6 & -4 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 0 & 1 \\ 0 & 1 & -2 & 3 \\ 0 & 2 & -4 & 2 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & -2 & 0 & 1 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 0 & 1 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow \text{Dim}(\text{col}(A)) = \text{rank}(A) = 3.$$

Applications.

Error correction. Hamming code.

1/ First, let consider the **addition mod 2**.

Addition mod 2 is described by the addition rules:

0 + 0 = 0

0 + 1 = 1

1 + 0 = 1

1 + 1 = 0 (because $2 \mod 2 = 0$),

which you can think of as "even plus even is even", "even plus odd is odd," etc.

2/ Hamming codes.

Receiving Coded Message

In 1950, Richard Hamming provided a method to send messages with error-detecting and –correcting. We focus on what is known as the "(7; 4) Hamming code", which takes each group of four bits of the sender's message and encodes it as seven bits.

Suppose the message we wish to send consists of 4 bits x_1 ; x_2 ; x_3 ; x_4 , denoted by a column vector

$$\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

(we will write $[x_1 x_2 x_3 x_4]$ to reduce space)

Three extra bits, called parity bits, are added to these four bits to obtain a 7-bit string. A code generator matrix G, called the parity matrix, is used to construct this 7-bit string.

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}$$

The user sends $G\vec{x}$ (a 7x1 vector) in place of the original message \vec{x} .

The matrix G is chosen precisely so that the first four entries of $G\vec{x}$ are x_1 ; x_2 ; x_3 ; x_4 , and the last three entries are the parity bits $x_1 + x_3 + x_4$; $x_1 + x_2 + x_4$; and $x_2 + x_3 + x_4$ (mod 2).

For example, if the message is $[0\ 1\ 0\ 1]$, then the parity bits are $x_1 + x_3 + x_4 = 0 + 0 + 1 = 1$, $x_1 + x_2 + x_4 = 0 + 1 + 1 = 0 \pmod{2}$, $x_2 + x_3 + x_4 = 1 + 0 + 1 = 0$.

So in this case, the encoded message $G\vec{x}$ would be $[0\ 1\ 0\ 1\ 1\ 0\ 0]$ and it will be sent instead of $[0\ 1\ 0\ 1]$.

Next, if the recipient receives some message of seven bits, call it $\vec{c} = (c_1, c_2, c_3, c_4, c_5, c_6, c_7)$. They expect the original message will just be the first four entries of \vec{c} , but they must check for errors.

The recipient is checking to see if the following three equations are satisfied

 $c_1 + c_3 + c_4 + c_5 = 0$ (in fact, $c_1 + c_3 + c_4 = c_5$ but these two equations are the same in mod 2)

$$c_1 + c_2 + c_4 + c_6 = 0$$

$$c_2 + c_3 + c_4 + c_7 = 0$$
.

The coefficient matrix of the above linear system is

$$P = \left[\begin{array}{cccccc} 1 & 0 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{array} \right],$$

which we will again call the parity check matrix.

Thus, the recipient computes $P\vec{c}$ and obtains one of eight possible outcomes. Each outcome tells the recipient about the correctness of bits received.

For example, if $\vec{c} = [0 \ 1 \ 0 \ 1 \ 1 \ 0 \ 0]$, then $P\vec{c} = [0 \ 0 \ 0]$, it follows that the first four bit of \vec{c} is correct. In general, if the outcome of $P\vec{c}$ is the ith column of P, then the ith bit in \vec{c} is not correct, it must be changed from 0 to 1 or from 1 to 0.

Exercises:

1/

Suppose the original message is [1 0 1 1 0 1 1 0]. What is the encoded message after using the (7,4) Hamming code? (Hint: first divide the message into two parts, each contains four bits).

2/ Suppose you receive a message [0 1 1 0 1 0 0]. Check for the correctness of the first four bits. If there is an error, say which is the incorrect bit?

END OF PART II – LINEAR ALGEBRA