Stavební prvky počítačové sítě

- Síťové koncové zařízení (počítač, IP telefon, tiskárna, TV přijímač, atd.)
- Síťové technické prostředky
 - ⇒ Pasivní prvky: data pouze přenášejí kabely, konektory, ukončovací prvky (terminátory), antény, atd.
 - ⇒ Aktivní prvky: přenášená data zesilují, filtrují, převádějí, směrují síťový adaptér, switch, router, brána, atd.
- Síťové programové prostředky síťový operační systém, síťové aplikace a utility.

Stavební prvky počítačové sítě

- části počítačové sítě, které fyzicky zajišťují přenos, data nemění
 - ⇒ kabely s el. vodiči, resp. optickými vlákny (kroucená dvojlinka, koaxiální kabel, optický kabel),
 - ⇒ konektory, zásuvky, spojky, ukončovací prvky (terminátory), redukce, útlumové články,
 - \Rightarrow rozvaděče,
 - \Rightarrow antény.
- nepotřebují pro svůj provoz žádnou elektrickou energii

- šířka pásma množství dat, které lze přenést komunikačním kanálem. Pro digitální signály se používá jednotka (b/s), pro analogové signály nejčastěji (Hz).
- útlum kolikrát se zmenší výkon signálu po průchodu přenosovým médiem jednotkové délky. Udává se v decibelech na jednotku délky (dB/m, dB/100m, nebo dB/km)

Důležité pro návrh sítě

- prvky sítě volíme s výhledem do budoucna
- omezující hledisko je efektivita
- univerzální kabelážní systém

Dokumentace

- pro případné opravy
- další rozšiřování sítě

Měření kabeláže

- provádíme pro to, aby se odhalily závady
- parametry se dokumentují, pro případné měření při pozdějších závadách

Dokumentace sítě příklad

LEGENDA					
S	STOUPAČKA DO VYŠŠÍHO PATRA				
2	STOUPAČKA DO NIŽŠÍHO PATRA				
~	TO – PŘÍPOJNÉ MÍSTO (TELECOMUNICATION OUTLET)				
\neg	TO - NEZAKONČENÉ				
	HORIZONTÁLNÍ LINKA STRUKTUROVANÉ KABELÁŽE				
2x	PRŮCHOD HORIZONTÁLNÍ LINKY PŘES STĚNU (ČÍSLO UDÁVÁ POČET KABELŮ)				
•••	PŘÍPOJKA INFRASTRUKTURY (ELEKTRO,)				
•••	PÁTEŘNÍ SÍŤ (BC), PŘÍVOD INETu				
	DATOVÝ ROZVADĚČ (TC)				

Dokumentace sítě příklad

CD/BD

Telekomunikační vývod (TO)

Rozvodný uzel podlaží (FD)

Rozvodný uzel budovy (BD)

Rozvodný uzel areálu (CD)

Sloučení CD a BD

Sloučení CD, BD a FD

Rozhraní veřejné sítě

Horizontální kabel

Páteřní kabel budovy

Páteřní kabel areálu

(Univerzální kabelážní systém) Strukturovaná kabeláž

- evropská norma ČSN EN 50173-1 ed. 4 Informační technologie -Univerzální kabelážní systémy
- normalizované systémy LAN (norma zajistí nezávislost na výrobci)
- definuje konektory, vodiče nenáročné na údržbu a odolné proti vnějším vlivům, rozměry rozvaděčů

(Univerzální kabelážní systém) Strukturovaná kabeláž

- primární úroveň (páteřní kabeláž areálu) (1500m) mezi budovami (podnik) - optika
- sekundární úroveň kabeláže (vertikální, páteřní kabeláž budovy) patra budov - (optika, někdy metalika)
- terciální úroveň kabeláže (horizontální kabeláž) (100m) v patrech - mezi zásuvkami (metalika, někdy optika)
- kabeláž pracoviště propojení datové zásuvky s koncovým zařízením (PC, telefon, IP kamera) pomocí propojovacího kabelu (patch cord)

(Univerzální kabelážní systém) Strukturovaná kabeláž

(Univerzální kabelážní systém) Strukturovaná kabeláž - terciální úroveň kabeláže (horizontální kabeláž)

- maximální vzdálenost 100 m
- hvězdicová topologie
- každá zásuvka má svůj kabel
- zásuvky vedeny do patch panelů uvnitř raku (rozvaděče) zde možnost přepojit koncovou zásuvku

(Univerzální kabelážní systém) Pasivní prvky počítačové sítě Strukturovaná kabeláž - terciální úroveň kabeláže (horizontální kabeláž)

(Univerzální kabelážní systém) Pasivní prvky počítačové sítě Strukturovaná kabeláž - terciální úroveň kabeláže (horizontální kabeláž)

Datový rozvaděč (rack)

- datový rozvaděč představuje tzv. rozvodný uzel. Slouží k instalaci routerů, switchů, klimatizačních jednotek, UPS, serverů, budování strukturované kabeláže, atd.
- rozvaděče mají standardní vnitřní šířky pro umístění vybavení (např. 10", 19", 21", 23"), nejčastěji 19"
- výška rozvaděče se udává v počtech tzv. montážních jednotek (1U = 44,5 mm tj. 1,75 palce)

Datový rozvaděč (rack)

Patch panel (propojovací panel)

konkrétní datovou zásuvku lze přesměrovat pouhým přepojením kabelu v patch panelu k jinému aktivnímu síťovému prvku

Vyvazovací panel – slouží k přehlednému uspořádání propojovacích kabelů v datovém rozvaděči

Napájecí panel – slouží k přívodu elektrické energie do datového rozvaděče

Klimatizační jednotka – slouží k odvedení teplého vzduchu uvnitř rozvaděče do okolí

- používají se pro vytvoření pevně instalovaných datových rozvodů v rámci areálu, budovy a jednotlivých pater
- napevno instalované datové rozvody se používají TP kabely s drátovými vodiči,
- pohyblivé přívody (propojovací kabely) pak TP kabely s lankovými vodiči (Patch cord) - nejčastěji do 10m

Datové kabely

Koaxiální kabel

dnes se sním setkáme jako přívod antény

Dnes se pro rozvod dat v síti LAN nepoužívá. Dřív se používal především pro sběrnicovou topologii LAN, rychlost přenášených dat byla maximálně 10 Mb/s. Vlnová Impedance kabelu je 50 ohm.

Datové kabely

Kroucená dvojlinka

(TP kabel = Twisted Pair, kroucený pár)

zkroucením vodičů se vyzařovaní elektromagnetického pole výrazně zmenší

Datové kabely - kroucená dvoulinka

UTP kabel - Unshielded Twisted Pair nestíněná kroucená dvojlinka

Kabel nemá žádné doplňkové stínění vodičů, omezení elektromagnetického pole se děje pouze vzájemným kroucením párů vodičů.

FTP kabel - Foiled Twisted Pair

Celý kabel obsahuje společné doplňkové stínění všech párů vodičů pomocí kovové fólie nebo kovového opletení.

Datové kabely - kroucená dvoulinka

STP kabel - Shielded Twisted Pair Stíněná kroucená dvojlinka

Každý kroucený pár vodičů je obalen vlastní stínící kovovou fólií.

S/FTP (S/STP) kabel

Kabel je celkově stíněn kovovou fólií nebo opletením (FTP) a zároveň jsou kovovou fólií stíněny jednotlivé kroucené páry vodičů (STP).

Datové kabely - kroucená dvoulinka

- obsahují nejčastěji 4 páry vodičů
- dva páry se využívají pro přenos dat oběma směry (full duplex— TX-transmit-vysílání, RX-receive-příjem)
- zbylé dva páry bývají zpravidla nevyužity
- u tzv. strukturovaných sítí může být další pár vodičů využit např. pro rozvod telefonní linky
- pár vodičů se využívá pro napájení síťového zařízení v místech, kde není přístupné napájení např. z rozvodné sítě (technologie PoE)
- informace přenášená tímto vedením je dána jako rozdíl elektrických potenciálů mezi oběma vodiči krouceného páru
- maximální délka TP kabelu bez obvodů pro zesílení a úpravu signálu je 100 metrů

Datové kabely - kroucená dvoulinka

TP kabely se dále dělí do několika kategorií podle maximální šířky pásma pro přenos elektrického signálu (určuje maximální přenosovou rychlost):

KATEGORIE	ŠÍŘKA PÁSMA	10Base-T	100Base-T	1000Base-Tx	10GBase-T	25GBase-T 40GBase-T
Cat. 3	16 MHz	√ (100 m)	х	x	x	x
Cat. 4	20 MHz	✓ (100 m)	x	x	x	x
Cat. 5	100 MHz	√ (100 m)	✓ (100 m)	x	x	x
Cat. 5E	100 MHz	✓ (100 m)	✓ (100 m)	✓ (100 m) X	x	x
Cat. 6	250 MHz	√ (100 m)	✓ (100 m)	✓ (100 m)	✓ (55 m)	x
Cat. 6A	500 MHz	✓ (100 m)	✓ (100 m)	✓ (100 m)	✓ (100 m)	х
Cat. 7	600 MHz	✓ (100 m)	✓ (100 m)	√ (100 m)	√ (100 m)	x
Cat. 7A	1000 MHz	✓ (100 m)	✓ (100 m)	✓ (100 m)	✓ (100 m)	x
Cat. 8 (třída I., II.)	2000 MHz	✓ (100 m)	✓ (100 m)	√ (100 m)	✓ (100 m)	✓ (30 m)

Datové kabely - zakončení

RJ (registered jack) rozlišení číslem

RJ 45 - datové přenosy

RJ 11 - analogový telefon

Datové kabely - zakončení RJ45

standard 258A je nejrozšířenější kabelážní infrastruktura UTP

v některých případech musíme křížit TX-RX inteligentní zařízení není nutné křížit - kříženo automaticky uvnitř

Datové kabely - zakončení RJ45

Datové kabely - zakončení RJ45

schéma TIA568B je vhodnější z hlediska rozložení pinů v konektoru, jejich vzdálenosti a rozkrutu s ohledem na vyšší frekvenci přenosového pásma Categorie 6 250MHz

HDPE trubky

High-Density Polyethylen – materiál, ze kterého je vyrobena trubka, která poskytuje neprodyšnou a silnou ochranu instalovaným vláknům. Do této trubky jsou optická vlákna instalována tak, že se pod vysokým tlakem vzduchu zafouknou.

Mikrotrubičky

do HDPE trubky lze zafouknout tenkostěnné mikrotrubičky. Po zafouknutí mikrotrubiček se buď mohou zafouknout jednotlivá vlákna, anebo mikroka-

bely s vlákny.

Mikrotrubičky

Optický mikrokabel

označování trasy optického vlákna markerem

Princip zafukovačky

- pomocí ozubených kol či pásů (ty jsou v kontaktu s pláštěm kabelu) tlačí kabel (vlákno) do trubky
- tělo foukačky je připojené k tlakovému vzduchu a vzduch prochází do trubky - kabel v trubce neleží na stěně trubky, levituje/poletuje uvnitř a tím se výrazně snižuje jeho tření s trubkou
- tělo foukačky a vstupující kabel je dobře utěsněný O kroužky

Princip zafukovačky

Pasivní prvky počítačové sítě

Princip zafukovačky

- spojovací boxy by měly poskytnout dostatečný vnitřní prostor pro pohodlné a bezpečné připojení optických vláken (rezerva délky vlákna)
- bývají výsuvné a hloubkově nastavitelné
- možnost umístění do racku

spojovací box - ukončení kabelu

příklad možnosti ohybu vlákna

Konvertor médií – propojení optických a metalických sítí

 optický konvertor k převodu ze 100Base-TX na optické vlákno

modul k připojení vlákna

- propojení aktivních prvků se provádí pomocí standardizovaných modulů
- výhodou těchto modulů je možnost použití switche jednoho a modulu jiného výrobce
- vždy pro danou barvu a typ vlákna

MiniGBIC modul

SPF modul

Patch panel

Patch cord

optický splitter

WLAN – Wireless Local Area Network

- bezdrátová komunikace v počítačových sítích
- IEEE standardizační institut
- protokoly IEEE802.11b, 802.11g definují 2,4 2,4835 GHz nelicencované pásmo
- zde pracuje mnoho různých zařízení, například bluetooth produkty, ale i mikrovlnné trouby
- označuje se jako ISM (Industrial, Scientific, Medical)

WLAN – Wireless Local Area Network

Jen informativně neučit

Přehled standardů IEEE 802.11

Některé z protokolů 802.11

- 802.11a ... 5GHz
- **802.11c** ... Access Pointy
- 802.11e ... QoS
- 802.11f ... rooming

Prenied Standardu IEEE 6V2.11						
Standard	Označení	Rok vydání	Pásmo [GHz]	Maximální rychlost [Mbit/s]	Fyzická vrstva	
původní IEEE 802.11	-	1997	2,4	2	DSSS a FHSS	
IEEE 802.11a	Wi-Fi 1	1999	5	54	OFDM	
IEEE 802.11b	Wi-Fi 2	1999	2,4	11	DSSS	
IEEE 802.11g	Wi-Fi 3	2003	2,4	54	OFDM	
IEEE 802.11n	Wi-Fi 4	2009	2,4/5	600	MIMO OFDM	
IEEE 802.11y	-	2008	3,7	54		
IEEE 802.11ac	Wi-Fi 5	2013	5	34 66.8	MU-MIMO OFDM	
IEEE 802.11ad	-	2012	60	675 7		
IEEE 802.11ax	Wi-Fi 6	2019	2,4/5/6	10530	MU-MIMO OFDMA	

- 802.11g, 802.11h, 802.11j, 802.11k ... přístup k radiovým zdrojům
- 802.11i ... zlepšení bezpečnosti (šifrovacího algoritmus)
- 802.11n, 802.11ac, 802.11ax ... MIMO, ax navíc MU-MIMO, sdružování kanálů a prostorový multiplex (zaměření paprsku EMV v prostoru)

Komponenty sítě WLAN

- Distribuční systém
- Přístupový bod (Access point)
- Bezdrátové médium
- Stanice

Sítě WLAN

 Ad-hoc - spojení počítačů mezi sebou na bázi peer-to-peer, kdy všechny počítače jsou si rovnocenné (podmínka: všechny počítače, které spolu mají komunikovat, byly ve vzájemném dosahu)

• <u>Infrastrukturní sítě</u> - sítě vybavené speciálním komunikačním prvkem - Access point (AP)

Hardware pro WiFi sítě Access Points (AP)

- AP komunikuje s bezdrátovými zařízeními ve svém dosahu
- stará se o směřování (routování) provozu mezi bezdrátovými klienty

zpravidla routují provoz nejenom v bezdrátové síti, ale také mají vý-

stup do ethernetu

Hardware pro WiFi sítě Access Points (AP)

Connectivity

Stručný popis přístroje RT-AX82U

1 Síťový LED	7 Vypínač
2 Indikátor LED 2,4GHz	8 Port USB 3.1 1. generace
3 Indikátor LED 5GHz	9 Porty LAN 1 ~ 4
4 Indikátor LED WAN (Internet)	Port WAN (Internet)
5 Vypínač LED	1 WPS tlačítko
6 Napájecí port (DC-IN)	Resetovací tlačítko

Hardware pro WiFi sítě Access Points (AP)

Některé funkce

- Překlad adres a zabezpečení privátní sítě bezpečnostním prvkem většiny levných routerů - vnitřní překlad adres privátní sítě na jednu veřejnou adresu poskytnutou ISP (WAN síť)
- <u>DHCP server</u> <u>automatické přidělování IP adres</u> počítačům v privátní síti (možnost předrezervací - přidělení určité MAC adrese v privátní síti předem vybranou IP adresu) možnost omezení rozsahu IP adres (nedojde ke konfliktu s těmi automaticky přidělenými)
- VPN (virtuální privátní síť) propojení dvou privátních sítí

Další funkce

- Wake On LAN umí probudit vypnutý počítač
- DNS server
- Tiskový server (USB na routeru)
- Webkamera (USB na routeru)
- Vzdálený reproduktor

Zabezpečení

- <u>SSID</u> (představuje jméno AP v síti) lze vypnout broadcast vysílání SSID lze zjistit i tak
- MAC address filtering seznam MAC adres, které s ním mohou komunikovat - lze přenastavit u toho kdo odposlouchává
- <u>WEP</u> (wired equivalent privacy) volitelný šifrovací standard. Využívá sdíleného klíče (shared key) o délce 40b nebo 104b pro autentikaci uživatelů a pro šifrování přenášených dat (a jejich CRC). - nevýhoda: opakovaný stejný a krátký vektor pro šifrování
- <u>WPA</u> (Wi-Fi Protected Access 802.11i) lepší šifrování dat a možnost autentizace uživatele

Přenosové prvky počítačové sítě

Režimy provozu AP

• Režim Router - AP spojuje dohromady drátová a bezdrátová zařízení a vytváří lokální síť LAN

Režim Home Gateway - AP je páteří LAN a bránou k modemu poskytovatele internetových služeb (ISP)

• Režim Access Point - AP je páteří LAN a obsahuje modem do sítě WAN poskytovatele internetových služeb (ISP)

Režim Repeater - rozšíření pokrytí WiFi sítě, přijímá WiFi signál a na stejném kanálu jej posílá dál. (snižuje rychlost)

• <u>všesměrové antény</u> - vyzařují signál horizontálně v rozsahu 360°, to znamená do všech stran

• <u>sektorové antény</u> - vyzařují do určitého úhlu (vykrývají omezené oblasti)

 směrové antény - září pouze do jednoho bodu, často používané pro přípojný bod

Hardware pro WiFi sítě Access Points (AP)

Konektor (antény)

Kabely (antény)

Bleskojistky (venkovní antény)

- bleskojistka slouží k ochraně aktivních prvků bezdrátové sítě před atmosférickou elektřinou
- proti přímému zásahu moc nepomůže, ale je to základní ochrana