Прикладные задачи анализа данных

Семинар <u>6</u> Дистрибутивная семантика

Национальныи Исследовательский Университет
Высшая Школа Экономики
Проверочная - https://goo.gl/forms/NNno4k1A3EHp87KF2

22 февраля 2018

Определения — 1

- Word2vec способ обучения представлений для слов.
- В лингвистике существует дистрибутивная гипотеза: похожие слова имеют похожие смыслы, т.е. в чем более похожих контекстах встречаются два слова, тем ближе должны быть соответствующие им вектора.
- Смысл слова распределение над контекстами.

- Мы хотим для каждого слова w из словаря W найти вектор $\vec{w} \in R^d$.
- Пусть дан некоторый текст $x = (w_1, \dots, w_n)$.
- Контекст слова w_j слова, находящиеся от него на расстоянии не более K, т.е. слова w_{i-K},...w_{i-1}, w_i, w_{i+1},..., w_{i+K}.
- Вероятность встретить слово w_i в контексте слова w_i :

$$p(w_i|w_j) = \frac{exp(\langle \vec{w}_i, \vec{w}_j \rangle)}{\sum_{w \in W} exp(\langle \vec{w}, \vec{w}_j \rangle)}$$

Обучение представлений

- Теперь рассмотрим выборку текстов $X = \{x_1, \dots, x_l\}$, где текст имеет длину n_i .
- Можно определить правдоподобие и максимизировать его:

$$\sum_{i=1}^{l} \sum_{j=1}^{n_i} \sum_{k=-K, k \neq 0}^{k=K} \log p(w_{j+k}|w_j) \to \max_{\{\vec{w}\}w \in W}$$

• Этот функционал можно оптимзировать стохастическим градиентным спуском.

Сжатые векторные представления слов

- полезны сами по себе, например, для поиска синонимов или опечаток в поисковых запросах
- используются в качестве признаков для решения самых различных задач:
 - выявление именованных сущностей
 - тэгирование частей речи
 - машинный перевод
 - кластеризация документов
 - ранжирование документов
 - анализ тональности текста

Don't count, predict!

Две модели: Skip-gram и Continuous BOW

Skip-gram и Continuous BOW

 Skip-gram: какова вероятность встретить соседей при условии данного слова

$$p(w_{i-h},\ldots,w_{i+h}|w_i)=\prod_{j=i-h}^{i+h}p(w_j|w_i)$$

• Continuous BOW: какова вероятность встретить слово в окружении соседей

$$p(w_i|w_{i-h},\ldots,w_{i+h})$$

Полезные свойства

Verb tense

Male-Female

Миф word2vec

- Это не Deep Learning! А очень простая нейронная сеть.
- Ассоциация с Deep Learning только потому, что на вход глубоких нейронный сетей подаются эмбеддинги

Известные реализации:

- Оригинальный word2vec
- Medallia/Word2VecJava
- FastText
- Spark MLLib Word2Vec
- Gensim word2vec
- и другие

gensim — пакет для тематического моделирования, включает ряд полезных инструментов (часто в качестве удобной обёртки над готовыми реализациями). Предоставляет интерфейс для работы с оригинальным word2vec.

Пример: word2vec в gensim -1

- Обучем модель на данных английской википедии. ссылка на данные
- Импортируем основные модули:

```
from gensim.corpora import WikiCorpus
from gensim.models import Word2Vec
from gensim.models.word2vec import LineSentence
```

Пример: word2vec в gensim — 2

• Подготовим данные — 100К статей:

Пример: word2vec в gensim — 3

• Обучим модель:

Пример: word2vec в gensim — 4

• Использование модели:

```
model.most_similar('queen', topn=3)
[(u'king', 0.6691948175430298),
 (u'princess', 0.6487438082695007),
 (u'empress', 0.6162152886390686)]
model.most_similar(positive=['woman', 'king'],
                   negative=['man'], topn=2)
[(u'queen', 0.6960216164588928),
 (u'empress', 0.5979048013687134)]
```

Задание семинара

Скачиваем тут

При подготовке семинара использовались

- материалы семинара Мурата Апишева по курсу МО в ШАД
- лекция Анны Потапенко
- лекция Анны Потапенко по курсу АНД на ФКН ПМИ