

Background

- Currently token completion suggestion can only be done using the FTS5 vocab table
 - All tokens are stored with their number of occurrence there
 - No relations
 - No classification of tokens
- Doing an auto-suggest for tokens based on more than the available information takes a lot of time consuming algorithm and data crunching
- Idea: Let the Artificial Intelligence find out what the best suggestion is

Auto Suggest FTS token

Background

- FTS5 vocab table example
- Even if we would add priorities or other "importance factors" to tokens we still would need to come up with a certain idea "how"
- Still the tokens are/would not be related to each other → context has no influence on suggestion

Term	Occurences
10th	10.000
new	1000
york	50
main	800
st	100.000

St L[ouis]	VS	St Loui[siana]	→ Subtoken violation
California Los A[ngeles]	VS	California Los A[lamos]	→ Hierarchy violation
Virginia V[ictoria]	VS	Virginia V[irginia]	→ Redundancy violation

Neural Networks

Solution approach

- Leave query string processing to Neural Network (NN):
 - Tokenization
 - NN input is full user string, not just last term:

– NN Input: "New York C"

– Old FTS Input: "C"

- Categorization
 - NN categorizing hierarchy classes before completion, so actually:

User Input: "California Palo A"

- NN Input: "California Palo A" \rightarrow ["California"]_{STATE} ["Palo A"]_{CITY}

- Suggestion
 - NN returns probability distribution for following characters:

• suggest(["California"]_{STATE} ["Palo A"]_{CITY}) = $\begin{bmatrix} l & p = 0.3 \\ n & p = 0.1 \end{bmatrix} \begin{bmatrix} t & p = 0.5 \\ a & p = 0.1 \end{bmatrix} \begin{bmatrix} o & p = 0.3 \\ e & p = 0.2 \end{bmatrix}$

Architecture

Solution approach

Demonstrator

- Road FTS North America database with full road coverage
 - Using classification of COUNTRY, STATE, CITY, ROAD
 - About 44,000 cities and total of 9,448,382 roads
- Tensorflow in Python to train neural network models
 - Classifier: 2-way LSTM-RNN (forward, backward), ~ 400K neurons
 - Completer/Suggester: 1 LSTM-RNN, ~600K neurons
 - Trained model size: ~ 10 MB
- Python Webservice to showcase prediction

Demo

Demonstrator

Deep Spell: Neural FTS Suggestions for NDS

deepsp_discr-v2_na_lr003_dec50_bat3072_fw128-128_bw128 / deepsp_extra-v2_na_lr003_dec50_bat2048_256-256

Enter your query

California Los

California Los Angeles

Predicted Categories

California Los STSTSTSTSTSTSTSTSTRORORORO

Completion

Angeles Dr
tCldusir\$Se\$
sPrtoe tsRoi
eRvaipayiCaa
aSunanszaAuc
hMgilalc-Pie
uBmchmoneL u
kLdsrgy vBdo

Next Steps

- Running Demonstrator Server on Raspberry Pi 3
- Category prediction and completion wall-time measurement
 - 100-500 ms, depending on prefix length
- Lots of optimization potential
 - 1.2 GHz*4 CPU only, no GPU/TPU acceleration
 - No Neural Network State/Result Caching
 - Python

Next Steps

Per-category assessment of completion performance

- Samples generated by randomly (at least 2 characters prefix) truncating last token postfix from sequence of North American address tokens.
- Greedy completion precision is measured as percentage of correctly completed characters of last token. Only respects first completion result -> Greedy!

Category	Identification-Recall	Identification-Precision	Identification-F1	Greedy Completion Precision
CITY	82%	78%	80%	36%
ROAD	94%	23%	37%	31%
COUNTRY	20%	19%	19%	100%
STATE	84%	65%	73%	97%
ZIP	65%	65%	65%	12%

Category	Identification-Recall	Identification-Precision	Identification-F1	Greedy Completion Precision
CITY	82%	78%	80%	36%
ROAD	94%	23%	37%	31%
COUNTRY	20%	19%	19%	100%
STATE	84%	65%	73%	97%
ZIP	65%	65%	65%	12%

Remarks

- Low Identification of (truncated) country names reflects low presence of countries in randomized addresses -> Network does not expect people to enter countries
- Low Completion precision of ZIP Codes is not bad (we want the network to generalize address language model)
- Precision-Recall tradeoff for ROAD class means Network over-expects roads

Open Questions & Possible next steps

Next Steps

- Combine with database content to improve suggestions?
- How to implement an interface for this in NDS?
 - Virtual Table in SQLite?
 - Support different frameworks for DeepLearning?