1. В файле 3-0.xls приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц. Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Таблица «Магазин» содержит информацию о местонахождении магазинов. На рисунке приведена схема указанной базы данных.

Используя информацию из приведённой базы данных, определите общую стоимость (в рублях) продуктов, поставленных за указанный период компанией Экопродукты в магазины Октябрьского района.

2. (Е. Джобс) В файле 3-3.xls приведён фрагмент базы данных «Оператор» об оказанных услугах. База данных состоит из трёх таблиц. Таблица «Клиенты» содержит записи об абонентах, которым были оказаны услуги. О каждом абоненте содержится следующая информация: район, в котором проживает абонент, адрес (улица и дом) и фамилия с инициалами. Таблица «Услуги» содержит записи об оказываемых оператором услугах - наименование и цена оказанной услуги. Таблица «Оказанные услуги» содержит информацию о том когда (поле дата), кому (ID клиента) и какая услуга (ID услуги) была оказана. На рисунке приведена схема базы данных.

Используя информацию из приведённой базы данных, суммарную выручку оператора за оказанные услуги в Центральном и Речном районе в период с 4 по 9

августа (включительно). В ответе запишите только число.

3. В файле 3-78.xls приведён фрагмент базы данных «Продукты» о поставках товаров в магазины районов города. База данных состоит из трёх таблиц. Таблица «Движение товаров» содержит записи о поставках товаров в магазины в течение первой декады июня 2021 г., а также информацию о проданных товарах. Поле Тип операции содержит значение Поступление или Продажа, а в соответствующее поле Количество упаковок, шт. занесена информация о том, сколько упаковок товара поступило в магазин или было продано в течение дня. Таблица «Товар» содержит информацию об основных характеристиках каждого товара. Таблица «Магазин» содержит информацию о местонахождении магазинов. На рисунке приведена схема указанной базы данных.

Используя информацию из приведённой базы

данных, определите на сколько увеличилось количество упаковок колбасы всех сортов, имеющихся в наличии в магазинах Октябрьского района, за период с 3 по 8 июня включительно.

4. По каналу связи передаются сообщения, содержащие только буквы A, B, C, D. Для передачи используется двоичный код, допускающий однозначное декодирование. Для букв A, B, C используются такие кодовые слова:

Укажите кратчайшее кодовое слово для буквы D, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.

- **5.** По каналу связи передаются сообщения, содержащие только четыре буквы: A, Б, B, Γ ; для передачи используется двоичный код, удовлетворяющий условию Фано. Для букв A и Б используются такие кодовые слова: A-1; B-011. Укажите сумму длин кратчайших кодовых слов для букв B и Γ , при котором код будет допускать однозначное декодирование.
- **6.** (А.Н. Носкин) Для кодирования некоторой последовательности, состоящей из букв А, Б, В, Г, Д, решили использовать неравномерный двоичный код, удовлетворяющий условию Фано. Для букв А, Б, В, Г использовали соответственно кодовые слова 011, 010, 001, 0001. Укажите возможное кодовое слово для буквы Д, при котором код будет допускать однозначное декодирование. Если таких кодов несколько, укажите код с наименьшим числовым значением.
- 7. (А.М. Кабанов) Автомат обрабатывает натуральное число N<256 по следующему алгоритму:
- 1) Строится восьмибитная двоичная запись числа N.
- 2) Инвертируются все разряды исходного числа (0 заменяется на 1, 1 на 0).
- 3) К полученному двоичному числу прибавляют единицу.
- 4) Полученное число переводится в десятичную систему счисления.

Чему равен результат работы алгоритма для N = 95?

- **8.** (Е. Джобс) Алгоритм получает на вход натуральное число N > 1 и строит по нему новое число R следующим образом:
- 1) Строится двоичная запись числа N.
- 2) В этой записи последний ноль заменяется на первые две цифры полученной записи. Если нуля нет, алгоритм аварийно завершается.
- 3) Запись записывается справа налево (в обратную сторону).
- 4) Результат переводится в десятичную систему счисления.

Для какого минимального значения N в результате работы алгоритма получится число 123?

- 9. (Е. Джобс) Автомат обрабатывает десятичное натуральное число N по следующему алгоритму:
- 1) В шестеричной записи числа N дублируется последняя цифра.
- 2) Получившееся число переводится в двоичное представление.
- 3) В получившейся записи дублируется последняя цифра.
- 4) Полученное в результате этих операций число переводится в десятичную систему счисления. Пример. Дано число 13. Оно преобразуется следующим образом:

$$13 \rightarrow 21_6 \rightarrow 211_6 \rightarrow 1001111_2 \rightarrow 10011111_2 \rightarrow 159.$$

Укажите максимальное число, меньшее 344, которое может являться результатом выполнения алгоритма.

10. Музыкальный фрагмент был записан в формате стерео (двухканальная запись), оцифрован и сохранён в виде файла без использования сжатия данных. Размер полученного файла – 54 Мбайт. Затем тот же музыкальный фрагмент был записан повторно в формате моно и оцифрован с разрешением в 3 раза выше и частотой дискретизации в 4,5 раз меньше, чем в первый раз. Сжатие

данных не производилось. Укажите размер файла в Мбайт, полученного при повторной записи. В ответе запишите только целое число, единицу измерения писать не нужно.

- **11.** Для хранения в информационной системе документы сканируются с разрешением 150 dpi и цветовой системой, содержащей 256 цветов. Методы сжатия изображений не используются. Средний размер отсканированного документа составляет 3 Мбайт. Для повышения качества представления информации было решено перейти на разрешение 300 dpi и цветовую систему, содержащую $2^{24} = 16777216$ цветов. Сколько Мбайт будет составлять средний размер документа, отсканированного с изменёнными параметрами?
- 12. Производится двухканальная (стерео) звукозапись с частотой дискретизации 48 кГц. Запись длится 2 минуты 15 секунд, её результаты записываются в файл без сжатия данных, причём каждый сигнал кодируется минимально возможным и одинаковым количеством бит. Информационный объём полученного файла без учета заголовка не превышает 32 Мбайт. Определите максимальную битовую глубину кодирования звука, которая могла быть использована в этой записи. В ответе запишите только число.
- **13.** Маша составляет 7-буквенные коды из букв A, Й, C, Б, Е, Р, Г. Каждую букву нужно использовать ровно 1 раз, при этом буква Й не может стоять на первом месте и перед гласной. Сколько различных кодов может составить Маша?
- **14.** Василий составляет 4-буквенные коды из букв Б, Е, Р, К, Л, И, Й. Каждую букву можно использовать любое количество раз, при этом код не может начинаться с буквы Й и должен содержать хотя бы одну гласную. Сколько различных кодов может составить Василий?
- **15.** Определите количество семизначных чисел, записанных в девятеричной системе счисления, учитывая, что числа не могут начинаться с цифр 3 и 7 и не должны содержать пары соседних одинаковых цифр (например, 00).
- 16. (ЕГЭ-2022) При регистрации в компьютерной системе каждому объекту присваивается идентификатор, состоящий из 294 символов и содержащий только десятичные цифры и символы из 4550-символьного специального алфавита. В базе данных для хранения каждого идентификатора отведено одинаковое и минимально возможное целое число байт. При этом используется посимвольное кодирование идентификаторов, все символы кодируются одинаковым и минимально возможным количеством бит. Определите объём памяти (в Кбайт), необходимый для хранения 131072 идентификаторов. В ответе запишите только целое число количество Кбайт.
- 17. При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий только символы Е, Г, Э, 2, 0, 1, 3. Каждый такой пароль в компьютерной программе записывается минимально возможным и одинаковым целым количеством байт (при этом используют посимвольное кодирование и все символы кодируются одинаковым и минимально возможным количеством бит). Определите объём памяти в байтах, отводимый этой программой для записи 25 паролей.
- 18. При регистрации в компьютерной системе каждому пользователю выдаётся пароль, состоящий из 15 символов и содержащий только символы из набора, содержащего все латинские буквы (заглавные и строчные) и десятичные цифры. В базе данных для хранения сведений о каждом пользователе отведено одинаковое минимально возможное целое число байт. При этом используют посимвольное кодирование паролей, все символы кодируют одинаковым минимально возможным количеством бит. Кроме, собственно, пароля, для каждого пользователя в системе хранятся дополнительные сведения, для чего выделено целое число байт; одно и то же для всех пользователей. Для хранения сведений о 20 пользователях потребовалось 700 байт. Сколько байт выделено для хранения дополнительных сведений об одном пользователе? В ответе запишите только целое число количество байт.
- 19. (К. Багдасарян) Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки символов.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор.

Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА нашлось (>1) ИЛИ нашлось (>2) ИЛИ нашлось (>*)
ЕСЛИ нашлось (>1)
```

```
ТО заменить (>1, 111>) КОНЕЦ ЕСЛИ ЕСЛИ НАШЛОСЬ (>2) ТО ЗАМЕНИТЬ (>2, 1>) КОНЕЦ ЕСЛИ ЕСЛИ НАШЛОСЬ (>*) ТО ЗАМЕНИТЬ (>*, %2*>) КОНЕЦ ЕСЛИ КОНЕЦ ПОКА КОНЕЦ
```

На вход приведённой выше программе поступает строка, начинающаяся с символа «>», а затем k цифр «1», m цифр «2» и n символов «*», расположенных в произвольном порядке. Известно, что $100 \le k \le 200, \, 100 \le m \le 200, \, 100 \le n \le 200.$ Определите наименьшее значение n, при котором сумма числовых значений цифр строки, получившейся в результате выполнения программы, будет равно 1190.

20. Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки цифр.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w, вторая проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение «истина», в противном случае возвращает значение «ложь». Дана программа для исполнителя Редактор:

На вход приведённой ниже программе поступает строка, начинающаяся с символа «>», а затем содержащая 17 цифр 1, 30 цифр 2 и 28 цифр 3, расположенных в произвольном порядке. Определите сумму числовых значений цифр строки, получившейся в результате выполнения программы. Так, например, если результат работы программы представлял бы собой строку, состоящую из 50 цифр 4, то верным ответом было бы число 200.

21. (А.М. Кабанов) Исполнитель Редактор получает на вход строку цифр и преобразовывает её. Редактор может выполнять две команды, в обеих командах v и w обозначают цепочки символов.

```
1. заменить (v, w)
2. нашлось (v)
```

Первая команда заменяет в строке первое слева вхождение цепочки v на цепочку w. Если цепочки v в строке нет, эта команда не изменяет строку. Вторая команда проверяет, встречается ли цепочка v в строке исполнителя Редактор. Если она встречается, то команда возвращает логическое значение "истина", в противном случае возвращает значение "ложь".

Дана программа для исполнителя Редактор:

```
НАЧАЛО
ПОКА нашлось (11)
заменить (11, 2)
заменить (22, 3)
заменить (33, 1)
КОНЕЦ ПОКА
КОНЕЦ
```

Какая строка получится в результате применения приведённой программы к строке вида 1…12…

23....3 (13 единиц, 13 двоек и 13 троек)?

22. (Е.А. Мирончик) Некоторое число X из десятичной системы счисления перевели в системы счисления с основаниями 16 и 8. Часть символов при записи утеряна. Позиции утерянных символов обозначены символом *:

$$X = 1*0_{16} = 56*_{8}$$
.

Определите число Х.

- **23.** (М.В. Кузнецова) Значение арифметического выражения: $9^7 3^{10} + 3^{21} 9$ записали в системе счисления с основанием 3. Сколько цифр «2» содержится в этой записи?
- **24.** (В. Шелудько) Значение выражения $6.343^{1156} 5.49^{1147} + 4.7^{1153} 875$ записали в системе счисления с основанием 7. Найдите сумму цифр получившегося числа и запишите её в ответе в десятичной системе счисления.
- **25.** На числовой прямой даны два отрезка: P=[5,30] и Q=[14,23]. Укажите наибольшую возможную длину такого отрезка A, что формула

$$((x \in P) \equiv (x \in Q)) \rightarrow (x \notin A)$$

тождественно истинна, то есть принимает значение 1 при любом значении переменной x. **26.** На числовой прямой даны два отрезка: P = [15, 40] и Q = [35, 60]. Найдите наибольшую возможную длину отрезка A, при котором формула

$$(\neg(x \in Q) \lor (x \in P)) \land (x \in A)$$

тождественно ложна, то есть принимает значение 0 при любых х.

27. На числовой прямой даны два отрезка: P=[8;12] и Q=[4;30]. Укажите наибольшую возможную длину такого отрезка A, что формула

$$((x \in P) \equiv (x \in Q)) \rightarrow \neg (x \in A)$$

тождественно истинна, то есть принимает значение 1 при любых х.

- 1.941450
- **2.** 26400
- **3.** 2810
- **4.** 001
- **5.** 5
- **6.** 0000
- **7.** 161
- **8.** 47
- **9.** 331
- **10.** 18
- 11.36
- **12.** 20
- **13.** 3120
- **14.** 1558
- **15.** 1572864
- **16.** 61184
- **17.** 150
- **18.** 23
- **19.** 195
- **20.** 276
- **21.** 123
- **22.** 368
- **23.** 11
- **24.** 13950
- 25. 9