ROZWIAZANIE WYGENEROWANE PRZEZ CHAT GPT

3. Równanie fali poprzecznej ma postać $y = 6sin(0.05\pi x + 4\pi t)$, gdzie x i t wyrażone są odpowiednio w metrach i sekundach. Oblicz: a) amplitudę, b) długość fali, c) częstotliwość, d) prędkość, e) kierunek rozchodzenia się, oraz f) maksymalną poprzeczną prędkość cząstek liny. g) Oblicz poprzeczne przemieszczenie w punkcie x = 5 m w chwili t = 0.25 s.

Aby rozwiazać to zadanie, zajmiemy sie każda cześcia po kolei, bazujac na podanym równaniu falowym $y=6\sin(0.05\pi x+4\pi t)$.

- a) **Amplituda**: Amplituda fali to współczynnik przy funkcji sinus. W tym przypadku amplituda wynosi 6.
- b) **Długość fali** (λ): Z równania falowego $\sin(kx + \omega t)$, wektor falowy $k = 0.05\pi$. Długość fali λ można obliczyć jako $\lambda = \frac{2\pi}{k} = \frac{2\pi}{0.05\pi} = 40$ m.
- c) **Czestotliwość** (f): Czestość katowa $\omega=4\pi$, zatem $f=\frac{\omega}{2\pi}=\frac{4\pi}{2\pi}=2$ Hz.
- d) **Predkość** (v): Predkość fali (v) to iloraz długości fali i czestotliwości: $v = \lambda f = 40 \times 2 = 80$ m/s.
- e) **Kierunek rozchodzenia sie**: Ponieważ współczynnik przy x w wyrażeniu fazy $0.05\pi x + 4\pi t$ jest dodatni, fala rozchodzi sie w kierunku ujemnym osi x.
- f) **Maksymalna poprzeczna predkość czastek liny**: Maksymalna predkość transwersalna to wartość funkcji sinusoidalnej, obliczana jako $\omega \times$ amplituda. Zatem $\omega = 4\pi$, wiec predkość wynosi $4\pi \times 6 = 24\pi$ m/s.
- g) **Przemieszczenie w punkcie x=5 m w chwili t=0.25 s**: Podstawiamy x=5 i t=0.25 do równania:

$$y = 6\sin(0.05\pi \times 5 + 4\pi \times 0.25)$$

$$y = 6\sin(0.25\pi + \pi)$$

$$y = 6\sin(1.25\pi)$$

Funkcja $\sin(1.25\pi) = -\frac{\sqrt{2}}{2}$ (ponieważ 1.25 π leży w trzeciej ćwiartce, gdzie sinus jest ujemny).

$$y = 6 \times -\frac{\sqrt{2}}{2} = -3\sqrt{2}$$

 \mathbf{m}

Zatem przemieszczenie wynosi $-3\sqrt{2}$ m.