WO03061698

Title: 6-FLUOROBICYCLO[3.1.0]HEXANE DERIVATIVES

Abstract:

Antidepressants containing as the active ingredient compounds having group II metabotropic glutamate receptor antagonism; and 2-amino-3-alkoxy-6-fluorobicyclo [3.1.0]- hexane-2,6-dicarboxylic acid derivatives represented by the general formula [I], pharmaceutically acceptable salts thereof, or hydrates of the salts: [I] wherein R1 and R2 may be the same or different from each other and are each hydroxyl, C1-10 alkoxy, or the like; R3 is C1-10 acyl, C1-6 alkoxy-C1-6 acyl, or the like; and R4 and R5 may be the same or different from each other and are each hydrogen, C1-10 alkyl, or the like

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2003年7月31日 (31.07.2003)

(10) 国際公開番号 WO 03/061698 A1

(51) 国際特許分類7: A61K 45/00, 31/196, 31/381, C07C 229/50, 255/54, C07D 333/16, A61P 25/18, 43/00

(21) 国際出願番号: PCT/JP02/13693

(22) 国際出願日: 2002年12月26日(26.12.2002)

日本語 (25) 国際出願の言語:

(26) 国際公開の言語: 日本語

(30) 優先権データ:

特 顧 2001-395797 2001年12月27日(27.12.2001) JP

(71) 出願人 /米国を除く全ての指定国について): 大正製薬 株式会社 (TAISHO PHARMACEUTICAL CO.,LTD.) [JP/JP]; 〒170-8633 東京都 豊島区 高田 3 丁目 2 4 番 1号 Tokyo (JP).

(72) 発明者: および

(75) 発明者/出願人 (米国についてのみ): 中里 篤郎 (NAKAZATO, Atsuro) [JP/JP]; 〒170-8633 東京都 豊島 区高田3丁目24番1号大正製薬株式会社内 Tokyo (JP). 茶木 茂之 (CHAKI, Shigeyuki) [JP/JP]; 〒170-8633 東京都 豊島区 高田3丁目24番1号大正製薬株式 会社内 Tokyo (JP). 坂上 一成 (SAKAGAMI, Kazunari) [JP/JP]: 〒170-8633 東京都 豊島区 高田 3 丁目 2 4 番 1号 大正製薬株式会社内 Tokyo (JP), ディーン 玲 子 (DEAN, Ryoko) [JP/JP]; 〒170-8633 東京都 豊島区 高田3丁目24番1号大正製薬株式会社内 Tokyo (JP). 太田 裕之 (OHTA, Hiroshi) [JP/JP]; 〒170-8633 東京都 豊島区 高田 3 丁目 2 4 番 1 号 大正製薬 株式会社内 Tokyo (JP), 広田 志帆 (HIROTA,Shiho) [JP/JP]; 〒170-8633 東京都豐島区 高田 3 丁目 2 4 番 1号 大正製薬株式会社内 Tokyo (JP). 安原 明登 (YASUHARA, Akito) [JP/JP]; 〒170-8633 東京都 豊島 区高田3丁目24番1号大正製薬株式会社内 Tokyo (IP)

- (74) 代理人: 北川 富造 (KITAGAWA, Tomizo); 〒170-8633 東京都 豊島区 高田3丁目24番1号 大正製薬株式 会社 知的財産部 Tokyo (JP).
- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU. ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, TJ. TM. TN. TR. TT. TZ. UA. UG. US. UZ. VC. VN. YU. ZA, ZM, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI 特 # (BF, BJ, CF, CG, CI, CM, GA, GN, GO, GW, ML, MR, NE, SN, TD, TG).

添付公開書類: 国際調査報告書

2文字コード及び他の略語については、 定期発行される 各PCTガゼットの巻頭に掲載されている「コードと略語 のガイダンスノート」を参照。

(54) Title: 6-FLUOROBICYCLO[3.1.0]HEXANE DERIVATIVES

[1]

(54) 発明の名称: 6-フルオロビシクロ [3.1.0] ヘキサン誘導体

(57) Abstract: Antidepressants containing as the active ingredient compounds having group II metabotropic glutamate receptor antagonism; and 2-amino-3-alkoxy-6-fluorobicyclo[3,1,0]- hexane-2,6-dicarboxylic acid derivatives represented by the general formula [I], pharmaceutically acceptable salts thereof, or hydrates of the salts: [I] wherein R1 and R2 may be the same or different from each other and are each hydroxyl, C1.10 alkoxy, or the like; R3 is C1.10 acyl, C1.6 alkoxy-C1.6 acyl, or the like; and R4 and R5 may be the same or different from each other and are each hydrogen, C1-10 alkyl, or the like.

(57) 要約:

グループⅡメタボトロピックグルタミン酸受容体拮抗作用を有する化合物を有効 成分とする抗うつ薬、及び式 [I]

[式中、 R^1 及び R^2 は同一又は異なって、水酸基、 C_{1-10} アルコキシ基などを示し、 R^3 は、 C_{1-10} アシル基、 C_{1-6} アルコキシ C_{1-6} アルルキル基などを示し、 R^4 及び R^6 は同一又は異なって、水素原子、 C_{1-10} アルキル基などを示す。]で表される 2 - アミノ - 3 - アルコキシ - 6 - フルオロビシクロ [3 . 1 . 0] ヘキサン - 2 , 6 - ジカルボン酸誘導体、その医薬上許容される塩又はその水和物。

WO 03/061698 PCT/JP02/13693

1 明細書

6-フルオロビシクロ[3.1.0] ヘキサン誘導体

技術分野

本発明は、医薬として有用な2-アミノ-3-アルコキシ-6-フルオロビシクロ[3.1.0] ヘキサン-2,6-ジカルボン酸誘導体に関する。更に詳しくは、統合失調症(精神分裂病)、不安及びその関連疾患、二極性障害、てんかん等の精神医学的障害、並びに、薬物依存症、認知障害、アルツハイマー病、ハンチントン舞踏病、パーキンソン病、筋硬直に伴う運動障害、脳虚血、脳不全、脊髄障害、頭部障害等の神経学的疾患の治療及び予防に有効な新規2-アミノ-3-アルコキシ-6-フルオロビシクロ[3.1.0] ヘキサン-2,6-ジカルボン酸誘導体に関する。

また、本発明は、代謝活性型(メタボトロピック型)グルタミン酸受容体(mG luR)のサブグループⅡに属するmGluR2及びmGluR3のアンタゴニストとして作用する化合物が、うつ症状の治療及び予防効果を奏することに関する。

背景技術

近年、グルタミン酸受容体遺伝子のクローニングが相次ぎ、グルタミン酸受容体には驚異的な数のサブタイプが存在することが明らかとなった。現在、グルミン酸受容体は「受容体がイオンチャネル型構造を持つイオノトロピック型」及び「受容体がGータンパク質と共役しているメタボトロピック型」の2つに大きく分類されている(Science, 258, 597-603, 1992)。そして、イオノトロピック受容体は薬理学的にNーメチルーDーアスパラギン酸(NMDA)、 α -アミノー3ーヒドロキシー5ーメチルイソキサゾールー4ープロピオネート(AMPA)及びカイネートの3種類に分類され(Science, 258, 597-603, 1992)、メタボトロピック受容体はタイプ1~タイプ8の8種類に分類される(J. Neurosci., 13, 1372-1378, 1993:Neuropharmacol., 34, 1-26, 1995)。

また、メタボトロピックグルタミン酸受容体は薬理学的に3つのグループに分類される。この中で、グループII (mGluR2/mGluR3) は、アデニルサイクラーゼと結合し、サイクリックアデノシン1リン酸(cAMP)のホルスコリン刺激性の蓄積を抑制する (Trends Pharmacol. Sci., 14, 13(1993)) ことから、グループⅡメタボトロピックグルタミン酸受容体に拮抗する化合物は急性及び慢性の精神医学的疾患並びに神経学的疾患の治療又は予防に有効であると考えられる。

本発明は、統合失調症(精神分裂病)、不安及びその関連疾患、二極性障害、てんかん等の精神医学的障害の治療及び予防、並びに、薬物依存症、認知障害、アルツハイマー病、ハンチントン舞踏病、パーキンソン病、筋硬直に伴う運動障害、脳虚血、脳不全、脊髄障害、頭部障害等の神経学的疾患の治療効果及び予防効果を有する薬物であって、グループIIメタボトロピックグルタミン酸受容体に拮抗する薬物を存供することを目的とする。

さらに、現在、抗うつ薬としては、セロトニン再取込阻害剤(SSRI)及びノルアドレナリン再取込阻害剤などが知られているが、これらは発症原因に基づいて 創出されたものではない。そのため、こうした薬剤が奏効しない多くの患者が依然 としてうつ病に悩まされ、不自由な日常生活を余儀なくされている。そこで、発症 原因に基づき、うつ症状の根幹に作用する薬物の創出が求められている。

本発明は、既存の薬剤が有効に作用しないうつ症状の治療及び予防にも効果がある新しいタイプの抗うつ薬を提供することを目的とする。

発明の開示

本発明者らは2-アミノ-3-アルコキシ-6-フルオロビシクロ[3.1.0] ヘキサン-2,6-ジカルボン酸誘導体について鋭意検討した結果、グループIIメタボトロピックグルタミン酸受容体に拮抗作用を有する新規2-アミノ-3-アルコキシ-6-フルオロビシクロ[3.1.0]ヘキサン-2,6-ジカルボン酸誘導体を見出すと共に、グループIIメタボトロピックグルタミン酸受容体拮抗作用を有する化合物を被験薬とする動物実験を通し、この種の化合物がうつ症状の治療に極めて有効であるとの知見を得た。 3

すなわち、本発明は、グループⅡメタボトロピックグルタミン酸受容体拮抗作用 を有する化合物を有効成分とする抗うつ薬、及び、グループⅡメタボトロピックグ ルタミン酸受容体に拮抗作用を有する新規2ーアミノー3ーアルコキシー6ーフ ルオロピシクロ[3.1.0] ヘキサンー2,6ージカルボン酸誘導体に関する。 本発明の態様の一つは、グループⅡメタボトロピックグルタミン酸受容体拮抗作 用を有する化合物を有効成分とする抗うつ薬である。

また、本発明の態様の一つは、式「I]

[式中、 R^1 及び R^2 は同一又は異なって、水酸基、 C_{1-10} アルコキシ基、フェノキシ基、ナフチルオキシ基、1若しくは2個のフェニル基で置換された C_{1-6} アルコキシ基、 C_{1-6} アルコキシス基、同一又は異なって1若しくは2個の C_{1-6} アルコキシ C_{1-6} アルコキシム C_{1-6} アルコキシス基、 C_{1-6} アルキル基によって置換されたアミノ基、 C_{1-6} アルキル基によって置換されたアミノ基、 C_{1-6} アルコキシカルボニル C_{1-6} アルキル基によって置換されたアミノ基、 C_{1-6} アルコキシカルボニル C_{1-6} アルキル基、 C_{1-10} アルキル基、 C_{1-10} アルキル基、 C_{1-6} アルキー

R⁶及びR⁷は互いに結合して、メチレン基、エチレン基、又はプロピレン基を形 成する基を示し、互いに結合して環状アミノ基を形成することもできる。R®は水 素原子マはカルボキシル基の保護基を示し、Aは単結合、メチレン基、エチレン基、 又はプロピレン基を示す。) で表される天然型又は非天然型アミノ酸残基を示し、 R^3 は、 C_{1-1} のアシル基、 C_{1-6} アルコキシ C_{1-6} アシル基、ヒドロキシ C_{2-1} の アシル基、C₁₋₆アルコキシカルボニルC₁₋₆アシル基、ヒドロキシカルボニルC₁ _。アシル基、又はR⁹-NH-A-CHR⁷-CO(R⁷、Aは前記と同義であり、R⁹ は水素原子又はアミノ基の保護基を示す。)で表されるアミノ酸残基を示し、R4 及びR⁵は同一又は異なって、水素原子、C₁₋₁。アルキル基、C₂₋₁。アルケニル 基、フェニル基、ナフチル基、ヘテロ原子を1つ以上含む5員複素芳香環、あるい は、ハロゲン原子、C,-,0アルキル基、C,-,0アルコキシ基、トリフルオロメチ ル基、フェニル基、ヒドロキシカルボニル基、アミノ基、ニトロ基、シアノ基及び フェノキシ基からなる群より選ばれる1~5個の置換基で置換されたフェニル基 を示す。さらに、R'及びR5は、互いに結合して環状構造を形成することもできる。] で表される 2-7 ミノー 3-7 ルコキシー 6-7 ルオロビシクロ [3, 1, 0] へ キサン-2.6-ジカルボン酸誘導体、その医薬上許容される塩又はその水和物で ある。

本発明において使用される用語が以下に定義される。

 C_{1-10} アルコキシ基とは、炭素原子を $1\sim10$ 個有する直鎖状又は分岐鎖状の アルコキシ基を指し、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、イソプトキシ基、オンチルオキシ基、イソプトキシ基、オンチルオキシ基、イソプトキシ基、インチルオキシ基などである。

1若しくは2個のフェニル基で置換された C_{1-6} アルコキシ基とは、1又は2個のフェニル基で置換された炭素原子を $1\sim6$ 個有する直鎖状又は炭素原子を $3\sim6$ 個有する分岐鎖状のアルキル基を示し、例えばベンジル基、ジフェニルメチル基、1-7ェニルエチル基、2-7ェニルエチル基などである。

 C_{1-6} アルコキシ C_{1-6} アルコキシ基とは、 C_{1-6} アルコキシ基で置換された C_{1-6} アルコキシ基を示し、例えば、メトキシエトキシ基、エトキシエトキシ基、プロ

ポキシエトキシ基、イソプロポキシエトキシ基、ブトキシエトキシ基、イソプトキ シェトキシ基、tープトキシエトキシ基、ペンチルオキシエトキシ基、イソペンチ ルオキシエトキシ基、メトキシプロポキシ基、エトキシプロポキシ基、プロポキシ プロポキシ基、イソプロポキシプロポキシ基、プトキシプロポキシ基、イソプトキ シプロポキシ基、tープトキシプロポキシ基、ペンチルオキシプロポキシ基、イソ ペンチルオキシプロポキシ基などである。

ヒドロキシC,_6アルコキシ基とは、少なくとも1個のヒドロキシル基で置換さ れたC2-6アルコキシ基を示し、例えば、2-ヒドロキシエトキシ基、3-ヒドロ キシプロポキシ基、2、3-ジヒドロキシプロポキシ基などである。

同一又は異なって1若しくは2個のC₁₋₆アルキル基によって置換されたアミ ノ基とは、例えば、N-メチルアミノ基、N, N-ジエチルアミノ基、N-ブチル N-イソプロピルアミノ基などである。

同一又は異なって1若しくは2個のC,_。アルコキシC,_。アルキル基よって 置換されたアミノ基とは、例えば、N-3-メトキシプロピルアミノ基、N.N- $\forall x (2-x)$ (2-ブトキシブチル) アミノ基、N-(2-y) トキシエチル) -N-(1-y)エトキシプロピル) アミノ基などである。

同一又は異なって1若しくは2個のヒドロキシC,-。アルキル基よって置換され たアミノ基とは、例えば、N-4-ヒドロキシブチルアミノ基、N.N-ビス(3) ーヒドロキシペンタチル) アミノ基、N-(2-ヒドロキシエチル)-N-(1-ヒドロキシペンチル) アミノ基などである。

同一又は異なって1若しくは2個のC1-6アルコキシカルボニルC1-6アルキ ル基よって置換されたアミノ基とは、例えば、N-(3-エトキシカルボニルプロ ピル) アミノ基、N, N-ビス (2-メトキシカルボニルエチル) アミノ基、N-(3-プロポキシカルボニルプロピル)-N-(2-メトキシブチル)アミノ基な どである。

ヒドロキシC1-6アルキル基とは、少なくとも1個のヒドロキシル基によって置 換されたC₁₋₆アルキル基を示し、例えば、ヒドロキシメチル基、1-ヒドロキシ エチル、2-ヒドロキシエチル基、3-ヒドロキシペンチル基、2-ヒドロキシー

2-メチルブチル基などである。

ヒドロキシカルボニル C_{1-6} アルキル基とは、少なくとも1個のヒドロキシカルボニル基によって置換された C_{1-6} アルキル基を示し、例えば、ヒドロキシカルボニルズチル、4-ヒドロキシカルボニルブチル基、2-ヒドロキシカルボニルエチル基、3-ヒドロキシカルボニルプロビル基などである。

フェニル C_{1-6} アルキル基とは、例えば、ベンジル、2 - フェニルエチル基、2 - フェニルプロビル基、1 - メチル - 2 - フェニルプロビル基、1 - メチル - 2 - フェニルペンチル基などである。

ヒドロキシフェニル C_{1-6} アルキル基とは、例えば、4ーヒドロキシベンジル基、2-(4ーヒドロキシフェニル)エチル基、3-(4ーヒドロキシフェニル)プロピル基、4-(4ーヒドロキシフェニル)プチル基などである。

ナフチルC $_{1-6}$ アルキル基とは、例えば、1 ーナフチルメチル基、2 ーナフチル メチル基、2 ー (1 ーナフチル)エチル基、2 ー (2 ーナフチル)エチル基などである。

芳香族複素環 C_{1-6} アルキル基とは、インドール環又はイミダソール環などの芳香族複素環が結合した C_{1-6} アルキル基を示し、例えば、インドールー3-イルメチル基、1H-イミダゾール-4-イルメチル基などである。

 C_{1-6} アルコキシ C_{1-6} アルキル基とは、少なくとも1個の C_{1-6} アルコキシ基によって置換された C_{1-6} アルキル基を示し、例えば、2 - メトキシエチル基、3

7

PCT/JP02/13693

-エトキシペンチル基、3-プロポキシブチル基などである。

アミノ C_{2-6} アルキル基とは、例えば、2-アミノエチル基、3-アミノプロビル基、4-アミノブチル基、5-アミノベンチル基、6-アミノヘキシル基などである。

グアニジノ C_{2-6} アルキル基とは、例えば、2-グアニジノエチル基、3-グアニジノプロピル基、4-グアニジノプチル基、5-グアニジノベンチル基、6-グアニジノヘキシル基などである。

メルカプトC₂₋₆アルキル基とは、例えば、メルカプトメチル基、2-メルカプトエチル基、3-メルカプトプロピル基などである。

 C_{1-6} アルキルチオ C_{1-6} アルキル基とは、メチルチオメチル基、2-メチルチオエチル基、3-メチルチオプロピル基、4-メチルチオブチル基、5-メチルチオペンチル基、6-メチルチオペキシル基などである。

アミノカルボニル C_{1-6} アルキル基とは、少なくとも1個のアミノカルボニル基によって置換された C_{1-6} アルキル基を示し、例えば、アミノカルボニルメチル基、2-アミノカルボニルプロピル基、4-アミノカルボニルブチル基などである。

カルボキシル基の保護基とは、例えば、 C_{1-10} アルキル基、フェニル C_{1-6} アルキル基、ニトロベンジル基、メトキシベンジル基などである(E、Wünsch

"Synthese von Peptiden" in "Houben-Weyl Methoden der Organishen Chemie" Vol. XV/1, 2. 及びE. Gross. J. Meienhofer, "The Peptides" vol. 1∼Vol. 5 参 開日)。

 C_{1-10} アシル基は、炭素原子を $1\sim10$ 個有する直鎖状又は分岐鎖状のアシル基を示し、例えば、ホルミル基、アセチル基、1-メチルプロパノイル基、 \wedge キサノイル基などである。

 C_{1-6} アルコキシ C_{1-6} アシル基とは、少なくとも1個の C_{1-6} アルコキシ基によって置換された C_{1-6} アシル基を示し、例えば、3 - x - x - x +

ヒドロキシ C_{2-10} アシル基とは、少なくとも1個のヒドロキシル基によって置

換された C_{2-10} アシル基を示し、例えば、4 - ヒドロキシブタノイル基、2 - (ヒドロキシメチル) ブタノイル基などである。

 C_{1-6} アルコキシカルボニル C_{1-6} アシル基とは、例えば、3-メトキシカルボニルプロパノイル基、4-エトキシカルボニルプタノイル基などである。

ヒドロキシカルボニル C_{1-6} アシル基とは、例えば、3-ヒドロキシカルボニル-2-メチルブタノイル基、5-ヒドロキシカルボニルプロバノイル基などである。

アミノ基の保護基とは、例えば、 C_{1-1} のアシル基、 C_{1-6} アルコキシ C_{1-6} アシル基、ベンジルオキシカルボニル基、メトキシベンジルオキシカルボニル基などである (E. Wansch, "Synthese von

Peptiden" in "Houben-Weyl Methoden der Organishen Chemie", Vol. XV/1, 2 及7KR. Gross, J. Meienhofer, "The Peptides" vol. 1 ~Vol. 5 参照)。

 C_{2-10} アルケニル基とは、少なくとも1個の二重結合を有する、炭素原子を 2 ~10個有する直鎖状、炭素原子を 3 ~10個有する分岐鎖状、又は、炭素原子を 5 ~10個有する環状アルケニル基を示し、例えば、2-プロベニル基、1-メチルー2-プテニル基、2-メチルー2-ベキセニル基、2-シクロベンテニル基などである。

ヘテロ原子を1つ以上含む5員複素芳香環は、同一又は異なって、少なくとも1個のヘテロ原子を環内にもつ芳香族5員環を示し、例えば、チオフェン、ピロール、フラン、ピラゾール、イソキサゾール、イソチアゾール、イミダゾール、オキサゾール、チアゾール、オキサジアゾール、チアジアゾールなどである。

天然型又は非天然型アミノ酸残基とは、例えば、グリシン、アラニン、パリン、 ロイシン、イソロイシン、プロリン、フェニルアラニン、チロシン、トリプトファ ン、ヒスチジン、セリン、トレオニン、システイン、メチオニン、アスパラギン酸、 アスパラギン、グルタミン酸、グルタミン、リシン、オルニチン、アルギニンなど の残基であり、天然型アミノ酸残基が好ましい。

ハロゲン原子、C₁₋₁₀アルキル基、C₁₋₁₀アルコキシ基、トリフルオロメチル 基、フェニル基、ヒドロキシカルボニル基、アミノ基、ニトロ基、シアノ基、及び ファノキシ基からなる群より選ばれる1~5個の置換基で置換されたフェニル基 9

とは、フッ素原子、塩素原子、臭素原子、ヨウ素原子、C1-10アルキル基、環状 C_{3-10} アルキル基、 C_{1-10} アルコキシ基、環状 C_{3-10} アルコキシ基、トリフル オロメチル基、フェニル基、ヒドロキシカルポニル基、アミノ基、ニトロ基、シア ノ基又はフェノキシ基から選択される1から5個の置換基で置換されたフェニル 基を示し、例えば、1つの置換基で置換されたフェニル基としては、2-フルオロ フェニル基、3-フルオロフェニル基、4-フルオロフェニル基、2-クロロフェ 二ル基、3-クロロフェニル基、4-クロロフェニル基、2-プロモフェニル基、 3-プロモフェニル基、4-プロモフェニル基、2-ヨードフェニル基、3-ヨー ドフェニル基、4-ヨードフェニル基、2-メチルフェニル基、3-メチルフェニ ル基、4-メチルフェニル基、2-エチルフェニル基、3-エチルフェニル基、4 - エチルフェニル基、2-イソプロピルフェニル基、3-イソプロピルフェニル基、 4-イソプロピルフェニル基、2-シクロプロピルフェニル基、3-シクロプロピ ルフェニル基、4-シクロプロピルフェニル基、2-シクロヘキシルフェニル基、 3-シクロヘキシルフェニル基、4-シクロヘキシルフェニル基、2-メトキシフ ェニル基、3-メトキシフェニル基、4-メトキシフェニル基、2-イソプロポキ シフェニル基、3-イソプロポキシフェニル基、4-イソプロポキシフェニル基、 2-シクロプチロキシフェニル基、3-シクロプチロキシフェニル基、4-シクロ ブチロキシフェニル基、2-シクロヘキシルオキシフェニル基、3-シクロヘキシ ルオキシフェニル基、4-シクロヘキシルオキシフェニル基、2-トリフルオロメ チルフェニル基、3-フルオロメチルフェニル基、4-トリフルオロメチルフェニ ル基、2-フェニルフェニル基、3-フェニルフェニル基、4-フェニルフェニル 基、2-ヒドロキシカルボニルフェニル基、3-ヒドロキシカルボニルフェニル基、 4-ヒドロキシカルボニルフェニル基、2-アミノフェニル基、3-アミノフェニ ル基、4-アミノフェニル基、2-ニトロフェニル基、3-ニトロフェニル基、4 ーニトロフェニル基、2-シアノフェニル基、3-シアノフェニル基、4-シアノ フェニル基、2-フェノキシフェニル基、3-フェノキシフェニル基、4-フェノ キシフェニル基などであり、例えば2つの置換基で置換されたフェニル基としては、 2. 3-ジフルオロフェニル基、2. 4-ジフルオロフェニル基、2. 5-ジフル

オロフェニル基、2,6-ジフルオロフェニル基、3,4-ジフルオロフェニル基、 3.5-ジフルオロフェニル基、2.3-ジクロロフェニル基、2.4-ジクロロ フェニル基、2.5-ジクロロフェニル基、2.6-ジクロロフェニル基、3,4 - ジクロロフェニル基、3,5-ジクロロフェニル基、2,3-ジプロモフェニル 基、2、4-ジブロモフェニル基、2、5-ジブロモフェニル基、2、6-ジブロ モフェニル基、3、4-ジプロモフェニル基、3、5-ジプロモフェニル基、2、 3-ジョードフェニル基、2、4-ジョードフェニル基、2、5-ジョードフェニ ル基、2、6-ジョードフェニル基、3、4-ジョードフェニル基、3、5-ジョ ードフェニル基、3-クロロ-4-フルオロフェニル基、4-クロロ-3-フルオ ロフェニル基、3 - プロモー4 - フルオロフェニル基、4 - プロモー3 - フルオロ フェニル基、4-プロモー3-クロロフェニル基、3-プロモー4-クロロフェニ ル基、3-クロロ-4-メチルフェニル基、4-クロロ-3-メチルフェニル基、 3-フルオロ-4-メチルフェニル基、4-フルオロ-3-メチルフェニル基、3 - フルオロ-4-メトキシフェニル基、4-フルオロ-3-メトキシフェニル基、 3-ブロモ-4-メトキシフェニル基、4-ブロモ-3-メトキシフェニル基、3 -クロロー4-フェノキシフェニル基、4-クロロー3-フェノキシフェニル基、 3-クロロ-4-ニトロフェニル基、4-クロロ-3-ニトロフェニル基、4-ブ ロモー3-ニトロフェニル基、3-プロモー4-ニトロフェニル基、3-アミノー 4-プロモフェニル基、4-アミノ-3-プロモフェニル基、3-プロモ-4-ヒ ドロキシカルボニル基、4-ブロモー3-ヒドロキシカルボニルフェニル基、4-フルオロー3-ヒドロキシカルボニル基、3-フルオロー4-ヒドロキシカルボニ ルフェニル基、4-フルオロ-3-ヒドロキシカルボニル基、3-シアノ-4-フ ルオロフェニル基、3-シアノ-4-フルオロフェニル基、4-シアノ-3-メチ ルフェニル基、3-シアノ-4-メチルフェニル基、3-シアノ-4-メトキシフ エニル基、4-シアノ-3-メトキシフェニル基などであり、例えば3つの置換基 で置換されたフェニル基としては、2.3.4-トリフルオロフェニル基、3.4、 5-トリフルオロフェニル基、3、4、5-トリクロロフェニル基、3、5-ジク ロロー4-メトキシフェニル基、又は3.5-ジプロモー4-メトキシフェニル基 である。例えば4つの置換基で置換されたフェニル基としては、2,5ージプロモー3,4ージメトキシフェニル基、3,4ージプロモー2,5ージメトキシフェニル基本どがある。例えば5つの置換基で置換されたフェニル基としては、2,3,4.5,6ーベンタフルオロフェニル基などである。

R'及びR'が、互いに結合して環状構造を形成する形態とは、例えば、シクロプロピル基、シクロプチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、シクロペンテニル基、シクロヘキセニル基、シクロヘプチニル基、シクロオクテニル基、オキサシクロプチル基、オキサシクロペンチル基、オキサシクロヘキシル基、オキサシクロヘブチル基、アザシクロインチル基、アザシクロプチル基、アザシクロペンチル基、アザシクロペンチル基、アザシクロペンチル基、アザシクロペンチル基、アザシクロペンチル基、アザシクロペンチル基、アザシクロペンチル基、アザシクロペンチル基、アザシクロペンチル基、アザシクロペンチル基、アザシクロオクチル基などである。

また、本発明における医薬上許容される塩とは、例えば、硫酸、塩酸、燐酸などの鉱酸との塩、酢酸、シュウ酸、乳酸、酒石酸、フマール酸、マレイン酸、メタンスルホン酸、ベンゼンスルホン酸などの有機酸との塩、トリメチルアミン、メチルアミンなどのアミンとの塩、又はナトリウムイオン、カリウムイオン、カルシウムイオンなどの金属イオンとの塩などである。

式 [1] で表される化合物のビシクロ [3. 1. 0] ヘキサン環上には5つの不 斉炭素原子が存在する。本発明の好ましい立体は、式 [I] 及び[II]で表される絶 対構造を有する光学活性体であるが、そのエナンチオマー、ラセミ体などのエナン チオマー混合物として存在しうる。すなわち、本発明の化合物は次の式 [II] 及び [III]で表される化合物の光学活性体、ラセミ体等のエナンチオマー混合物及びジア ステレオマー混合物を全て含むものである。

また、本発明化合物は水或いは有機溶媒の溶媒和物として存在しうる。

さらに、式 [I]、 [II] 又は[III]においてR¹及びR²の一方若しくは双方が 水酸基以外、又はR³が水素原子以外を示すとき、すなわちエステル誘導体及びア ミド誘導体はグループII メタボトロピックグルタミン酸受容体に影響を及ぼさな い。しかし、このエステル誘導体及びアミド誘導体は生体内で加水分解され、グル ープII メタボトロピックグルタミン酸受容体に影響を及ぼす2 ーアミノー3 ーア ルコキシー6ーフルオロピシクロ [3.1.0] ヘキサンー2,6ージカルボン酸 誘導体に変わる。したがって、エステル誘導体およびアミド誘導体はプロドラッグ として機能するため、極めて有用な化合物である。

式 [1] で表される本発明化合物は、以下に示す製造法により供給される(以下の反応式中、R¹、R²、R³、R⁴、R⁵、R⁵、R²、R³及びR¹は前記と同義である。R゚は、メシル基、フェニルスルホニル基、トシル基、トリフルオロメチルスルホニル基などのアリル及びアルキルスルホニル基、ベンゾイル基や4ーニトロベンゾイル基を示す。R¹¹、R¹²、R¹²及びR¹は、同一又は異なって、 C_{1-1} 。アルコキシ基、フェノキシ基、ナフチルオキシ基、1若しくは2個のフェニル基で置換された C_{1-6} アルコキシ基、 C_{1-6} アルコキシ基又はヒドロキシ C_{2-6} アルコキシ基を示す。R¹²はアミノ基、同一又は異なって1若しくは2個の水素原子が C_{1-6} アルコキシとよって置換されたアミノ基、同一又は異なって1若しくは2個の水素原子が C_{1-6} アルコキシと C_{2-6} アルコキシと C_{2-6} アルコキシと C_{2-6} アルコキシと C_{2-6} アルコキシと C_{2-6} アルコキシと C_{2-6} アルコキシカルアミノ基、同一又は異なって1若しくは2個の水素原子が C_{1-6} アルコキシカルボニル C_{1-6} アルキル基よって置換されたアミノ基、同一又は異なって1若しくは2個の水素原子が C_{1-6} アルコキシカルボニル C_{1-6} アルキル基よって置換されたアミノ基、同一又は異なって1若しくは2個の水素原子が C_{1-6} アルコキシカルボニル C_{1-6} アルキル基よって置換されたアミノ基又は、 C_{1-6} アルコキシカルボニル C_{1-6} アルキル基よって置換されたアミノ基又は、 C_{1-6} アルキルボニル C_{1-6} アルキル基よって置換されたアミノ基又は、 C_{1-6} アルキルボニル C_{1-6} アルキル基よって置換されたアミノ基又は、 C_{1-6} アルキルボニル C_{1-6} アルキル基よって置換されたアミノ基又は、 C_{1-6} アルキルボニル C_{1-6} アルキル基よって置換されたアミノ基又は、 C_{1-6} アルキル基よって置換されたアミノ基又は、 C_{1-6} アルキル基よって置換されたアミノ基又は、 C_{1-6} アルキルボニル C_{1-6} アルキル基よって置換されたアミノ基又は、 C_{1-6} アルキル基よって置換されたアミノ基又は、 C_{1-6}

まず、本発明化合物 [I] を合成するために必要な合成中間体 (6) は、下記の ように製造することができる。

工程1:化合物(1)を不活性溶媒中、塩基の存在下、例えば、無水トリフルオロメタンスルホン酸、N-フェニルーピス(トリフルオロメタンスルホンイミド)などのトリフルオロメタンスルホニル化剤と反応することにより、化合物(2)へと導くことができる。ここで、不活性溶媒としては、例えば、ベンゼン、トルエン、ヘキサンなどの炭化水素系溶媒、ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン系溶媒、テトラヒドロフラン、ジエチルエーテル、1,2-ジメトキシエタンなどのエーテル系溶媒、アセトニトリル、又はこれらの混合溶媒等を使用することができる。塩基としては、例えば、トリエチルアミン、N-メチルモルホリン、ジイソプロピルエチルアミン、ピリジン等のアミン類、水素化カリウム、水素化ナトリウム等の無機塩基類、リチウムジイソプロピルアミド、カリウムビス(トリメチルシリル)アミド、リチウムヘキサメチルジシラザン等の金属アミド類、ナリトウム メトキシド、カリウム エープトキシド等の金属アルコラート類を用いることができる。

WO 03/061698 PCT/JP02/13693

14

工程2:化合物(2)を不活性溶媒中、遷移金属触媒存在下、例えば、トリエチルアミン、Nーメチルモルホリン、ジイソプロピルエチルアミン、ピリジン等の有機塩基類、又は炭酸カリウム、炭酸水素ナトリウム等の無機塩基類の存在下、一酸化炭素及びR²OHと反応することによって化合物(3)へと導くことができる(Tetrahedron Letters 26, 1109(1985)参照)。ここで遷移金属触媒とは、例えば0価のパラジウム試薬であり、例えば酢酸パラジウム(II)などの2価のパラジウムとトリフェニルホスフィン、2, 2'ービス(ジフェニルホスフィノ)ー1, 1ービナフチル(BINAP)などの配位子を用いて反応系内で調製することができる。また、テトラキストリフェニルホスフィンパラジウム(0)等の0価のパラジウム試薬を直接用いることもできる。不活性溶媒としては、例えば、ベンゼン、トルエン、ヘキサンなどの炭化水素系溶媒、テトラヒドロフラン、ジエチルエーテル、1, 2ージメトキシエタンなどのエーテル系溶媒、アセトニトリル、N, Nージメチルホルムアミド、又はこれらの混合溶媒等を使用することができる。

工程3:化合物(3)を不活性溶媒中、例えば四酸化オスミウムなどを用いた一般的なジオール化反応(M. Hudlicky, "Oxidations in Organic Chemistry" 参照)やADーmixを試薬とするSharplessの不斉シスージヒドロキシル化反応(Sharpless AD)(Tetrahedron Asymmetry 4, 133(1993)、J. Org. Chem. 57, 2768(1992)、J. Org. Chem. 61, 2582(1996)参照)などを用いてジオールへと酸化し、化合物(4)へ導くことができる。ここで、不活性溶媒とは、例えば tープチルアルコールなどのアルコール系溶媒、ベンゼン、トルエン、ヘキサンなどの炭化水素系溶媒、テトラヒドロフラン、ジエチルエーテル、1, 2ージメトキシエタンなどのエーテル系溶媒、アセトニトリル、アセトン、N, Nージメチルホルムアミド、水、又はこれらの混合溶媒等を使用することができる。

工程4:化合物(4)を例えば、ベンゼン、トルエン、ヘキサンなどの炭化水素 系溶媒、ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン系溶媒、テト ラヒドロフラン、ジエチルエーテル、1,2-ジメトキシエタンなどのエーテル系 溶媒、アセトニトリル、又はこれらの混合溶媒等の不活性溶媒中、トリエチルアミ ン、N-メチルモルホリン、ジイソプロピルエチルアミン、ピリジン等の有機塩基 類、又は炭酸カリウム、炭酸水素ナトリウム等の無機塩基類の存在下あるいは非存在下、塩化チオニルと反応後、ベンゼン、トルエン、ヘキサンなどの炭化水素系溶媒、ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン系溶媒、テトラヒドロフラン、ジエチルエーテル、1,2ージメトキシエタンなどのエーテル系溶媒、アセトニトリル、アセトン、水、又はこれらの混合溶媒等の不活性溶媒中、過酸化水素、オキソン、三塩化ルテニウムーメタ過ヨウ素酸ナトリウム等の一般的な酸化剤(M. Hudlicky, "Oxidations in Organic Chemistry" 参照)にて酸化し、化合物(5)に導くことができる。

工程5:化合物(5)を例えば、テトラヒドロフランなどのエーテル系溶媒、アセトン等のケトン類、N,Nージメチルホルムアミド、水、又はこれらの混合溶媒等の不活性溶媒中、アジ化ナトリウムと反応した後、加水分解することによって化合物(6)に導くことができる(J.Am. Chem. Soc. 110. 7538(1988)参照)。

式[II]で表される相対的立体化学配置を有する本発明化合物を合成するために 必要な合成中間体(9)は、合成中間体(6)のうち、下記に表される相対配置を 有する化合物(7)から下記のように製造することができる。

工程6: R¹及びR²が水酸基以外である化合物(7)の水酸基を例えば、ベンゼン、トルエン、ヘキサン、シクロヘキサンなどの炭化水素系溶媒、ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン系溶媒、テトラヒドロフラン、ジエチルエーテル、1,2ージメトキシエタンなどのエーテル系溶媒、N,Nージメチルホルムアミド、Nーメチルー2ーピロリジノン等のアミド類、ジメチルスルホキシド、又はこれらの混合溶媒等の不活性溶媒中、水素化ナトリウム、水酸化カリウム、炭酸カリウム、炭酸ナトリウム、水酸化ナトリウム、水酸化カリウム等の無機

WO 03/061698 PCT/JP02/13693

16

塩基類、リチウムビス (トリメチルシリル) アミド、リチウムジイソプロビルアミド、ナトリウムアミド等の金属アミド類、トリエチルアミン、ピリジン、ジイソプロビルエチルアミン、4ー (N, Nージメチルアミノ) ビリジン、2,6ージーtーブチルビリジン等の有機塩基類、カリウム tープトキシド等の塩基の存在下、無水トリフルオロメタンスルホン酸、N-フェニルービス (トリフルオロメタンスルホンイミド) などのトリフルオロメタンスルホニル化剤、または塩化メタンスルホン酸、塩化ベンゼンスルホン酸、塩化トルエンスルホン酸などのアルキル及びアリルスルホニル化剤との反応により、化合物(8)へと導くことができる。

工程7:化合物(8)は例えば、ベンゼン、トルエン、ヘキサン、シクロヘキサンなどの炭化水素系溶媒、ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン系溶媒、テトラヒドロフラン、ジエチルエーテル、1,2ージメトキシエタンなどのエーテル系溶媒、N,Nージメチルホルムアミド、Nーメチルー2ーピロリジノン等のアミド類、ジメチルスルホキシド、メタノール、エタノールなどのアルコール系溶媒、水又はこれらの混合溶媒等の不活性溶媒中、クラウンエーテル存在下または非存在下、水酸化カリウム、水酸化ナトリウムなどの水酸化アルカリ、亜硝酸カリウムなどの亜硝酸塩(Tetrahedron Lett.,3183(1975)参照)、超過酸化カリウム(Tetrahedron Lett. 34,8029(1993)参照)と反応することによって中間体(9)へと選くことができる。

さらに、アゾジカルボン酸ジエチルとトリフェニルホスフィンなどの脱水縮合剤 存在下の安息香酸誘導体との光延反応 (D. L. Hughes, OR, 42, 335 (1992)参照) によって、化合物 (7) より直接化合物 (9) へと導くことも出来る。

得られた合成中間体(6)は下記工程8、9及び10によって、本発明化合物である化合物 [1] に導くことができる。

$$_{HO}^{F}$$
 $_{N_{3}}^{COR^{2}}$ $_{N_{3}}^{F}$ $_{COR^{2}}^{COR^{2}}$ $_{N_{10}}^{F}$ $_{COR^{2}}^{COR^{2}}$ $_{N_{12}}^{F}$ $_{COR^{2}}^{COR^{2}}$ $_{N_{12}}^{F}$ $_{CO_{2}H}$ $_{R_{1}}^{F}$ $_{N_{12}}^{F}$ $_{N_{12}}^$

工程8: R¹及びR²が水酸基以外である化合物 (6) の水酸基を例えば、ベンゼン、トルエン、ヘキサン、シクロヘキサンなどの炭化水素系溶媒、ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン系溶媒、テトラヒドロフラン、ジエチルエーテル、1,2-ジメトキシエタンなどのエーテル系溶媒、又はこれらの混合溶媒等の不活性溶媒中、トリフルオロメタンスルホン酸、トリフルオロ酢酸、又は塩化水素等のブレンステッド酸触媒、三フッ化ホウ素・ジエチルエーテル錯体、塩化亜鉛、塩化エズ、又はトリメチルシリルートリフルオロメタンスルホネート等のルイス酸触媒の存在下、Xが、2,2,2ートリクロロアセトイミドイロキシ基である式R⁴R⁵CHXで表される化合物と反応することにより、化合物(10)に導くことができる(J. Chem. Soc. Perkin Trans. 1,2247(1985)、Synthesis,568 (1987)参照)。

さらに、R¹及びR²が水酸基以外である化合物(6)の水酸基を例えば、ベンゼン、トルエン、ヘキサンなどの炭化水素系溶媒、ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン系溶媒、テトラヒドロフラン、ジエチルエーテル、1,2-ジメトキシエタンなどのエーテル系溶媒、N,N-ジメチルホルムアミド、N-メチル-2-ビロリジノン等のアミド類、ジメチルスルホキシド、又はこれらの混合溶媒等の不活性溶媒中、水素化ナトリウム、水素化カリウム、炭酸カリウム、

工程9:化合物(10)は例えば、ベンゼン、トルエン、ヘキサンなどの族化水素系溶媒、ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン系溶媒、テトラヒドロフラン、ジエチルエーテル、1,2ージメトキシエタンなどのエーテル系溶媒、アセトニトリル、アセトン、水、又はこれらの混合溶媒等の不活性溶媒中、亜リン酸トリエチル、トリメチルホスフィン、トリプチルホスフィン、トリフェニルホスフィン等によるスタウンジンガー(Staudinger)反応(Bull. Chem. Soc. Fr.,815(1985)参照)、エタノール、メタノール等のアルコール類、酢酸エチルなどのエステル類、N,Nージメチルホルムアミド、水、又はこれらの混合溶媒等の不活性溶媒中におけるパラジウム/カーボン、パラジウムブラックなどの金属触媒存在下での水素添加、リチウムアミノボロヒドリド等によるヒドリド還元等に代表される一般的なアジド基の還元反応(A. F. Abdel-Magid, "Reductions in Organic Synthesis"参照)によって本発明の化合物(11)に導くことができる。

工程 1 0: 化合物 (1 1) の式COR¹及びCOR²で示される部分を一般的な加水分解反応 (T. W. Greene, P. G. M. Wuts, "Protective Groups in Organic Synthesis" 参照) にてカルボン酸へと変換し、本発明化合物である化合物 (I) 選ぐことができる。

モノエステル誘導体及びモノアミド誘導体である本発明化合物(13)及び(14)は、下記の工程11および12よって、化合物(11)又は(12)より導くことができる。

工程 11: 化合物 (11) の式COR¹で示される部分を、短時間又は、低温に て、一般的な加水分解反応 (T. W. Greene, P. G. M. Wuts, "Protective Groups in Organic Synthesis" 参照) にてカルボン酸へと変換し、本発明化合物 (13) に導くことができる。

工程12: 化合物(12)の6位炭素上のカルボン酸部を、一般的なエステル化反応(T. W. Greene, P. G. M. Wuts, "Protective Groups in Organic Synthesis"参照)又は、R¹⁵ーHで示される化合物と一般的なアミノ酸のペプチド結合生成反応(E. Gross. J. Meienhofer, "The Peptides" 及びJ. P. Greenstein, M. Witntz, "Chemistry of the Amino Acids" 参照)にて、エステル又はアミド結合を生成させることにより、本発明化合物である(14)に導くことができる。

下記の工程13、14、15、16、17及び18よって、化合物(15)又は 化合物(18)より、アミド誘導体(17)及び(22)に導くことができる。 20

工程13: 化合物(15)のアミノ基を例えば、ベンゼン、トルエン、ヘキサンなどの炭化水素系溶媒、ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン系溶媒、テトラヒドロフラン、ジエチルエーテル、1,2ージメトキシエタンなどのエーテル系溶媒、N,Nージメチルホルムアミド、Nーメチルー2ーピロリジノン等のアミド類、ジメチルスルホキシド、又はこれらの混合溶媒等の不活性溶媒中、トリエチルアミン、ピリジン、モルホリン、ジイソプロピルエチルアミン、4ー(N,Nージメチルアミノ)ピリジン、2,6ージーtーブチルピリジン等の有機塩基類存在下または非存在下にて、式R³X又は式R³OR³で表わされる化合物と反応させると化合物(16)に導くことができる。ここでXは脱離基であり例えば、ハロゲン原子、エトキシカルボニルオキシ基、フェノキシカルボニルオキシ基などでる。さらに、式R³OHで示される化合物との一般的なアミド結合生成反応(E. Gross, J. Meienhofer, "The Peptides"及びJ. P. Greenstein, M. Wiintz,

"Chemistry of the Amino Acids", Vol. 2. 参照)にて、化合物(1 6)に導く こともできる。

工程14:化合物(16)のエステル部位およびR³が式COCHR⁶NHR⁷である化合物(16)のアミノ基の保護基R⁷を一般的な脱保護反応(T. W. Greene, P. G. M. Wuts, "Protective Groups in Organic Synthesis" 参照)にてカルボン酸及びアミノ基へと変換し、2ーアミド誘導体(17)に導くことができる。工程15:化合物(18)の6位炭素上のエステル結合部を、短時間又は、低温にて、一般的な加水分解反応(T. W. Greene, P. G. M. Wuts, "Protective Groups in Organic Synthesis" 参照)にて、化合物(19)に導くことができる。

工程16:化合物(19)のカルボン酸部位を、式R¹⁵ーHで示される化合物 と一般的なアミノ酸のペプチド結合生成反応(E. Gross, J. Meienhofer, "The Peptides". 及びJ. P. Greenstein, M. Witniz, "Chemistry of the Amino Acids". 参照)にて、化合物(20)に導くことができる。

工程17:化合物(20)は例えば、ベンゼン、トルエン、ヘキサンなどの炭化水素系溶媒、ジクロロメタン、クロロホルム、四塩化炭素などのハロゲン系溶媒、テトラヒドロフラン、ジエチルエーテル、1,2ージメトキシエタンなどのエーテル系溶媒、アセトニトリル、アセトン、水、又はこれらの混合溶媒等の不活性溶媒中、亜リン酸トリエチル、トリメチルホスフィン、トリプチルホスフィン、トリフェニルホスフィン等によるスタウンジンガー(Staudinger)反応(Bull. Chem. Soc. Fr.,815(1985)参照)、エタノール、メタノール等のアルコール類、酢酸エチルなどのエステル類、N、Nージメチルホルムアミド、水、又はこれらの混合溶媒等の不活性溶媒中におけるパラジウム/カーボン、パラジウムブラックなどの金属触媒存在下での水素添加、リチウムアミノボロヒドリド等によるヒドリド還元等に代表される一般的なアジド基の還元反応(A. F. Abdel-Magid "Reductions in Organic Synthesis"参照)によって化合物(21)に導くことができる。

工程18:化合物(21)のエステル結合部を、一般的な加水分解反応(T. W. Greene, P. G. M. Wuts, "Protective Groups in Organic Synthesis" 参照)にて、本発明化合物化合物(22)に導くことができる。

本発明において、グループ II メタボトロビックグルタミン酸受容体拮抗作用を有する化合物とは、mGluR2 EII EII

本発明化合物は1種又は2種以上の医薬的に許容される担体、賦形剤及び希釈剤と組み合わされて医薬的製剤とされうる。前記担体、賦形剤及び希釈剤としては、例えば、水、乳糖、デキストロース、フラクトース、ショ糖、ソルビトール、マンニトール、ポリエチレングリコール、プロピレングリコール、でんぷん、ガム、ゼラチン、アルギネート、ケイ酸カルシウム、リン酸カルシウム、セルロース、水シロップ、メチルセルロース、ポリビニルピロリドン、アルキルパラヒドロキシベンソエート、タルク、ステアリン酸マグネシウム、ステアリン酸、グリセリン、ゴマ油、オリーブ油、大豆油などの各種油が挙げられる。

本発明化合物は、これらの担体、賦形剤又は希釈剤、そして、必要に応じて一般に使用される増量剤、結合剤、崩壊剤、p H 調整剤、溶解剤などの添加剤が混合された上で、常用の製剤技術によって錠剤、丸剤、カブセル剤、顆粒剤、粉剤、液剤、乳剤、懸濁剤、軟膏剤、注射剤、皮膚貼付剤などの経口又は非経口用医薬、特にグループⅡメタボトロピックグルタミン酸受容体拮抗薬として調製される。

本発明の化合物は成人患者に対して0.01~500mgを1日1回又は数回に 分けて経口又は非経口で投与することが可能であるが、使用の容易性及び薬効の点 からみて経口投与することが好ましい。なお、この投与量は治療対象となる疾病の 種類、患者の年齢、体重、症状などにより適宜増減することが可能である。

図面の簡単な説明

図1及び図2は、抗うつ作用を評価するために、既知のグループIIメタボトロビックグルタミン酸受容体拮抗物質LY341495 (Journal of Medicinal Chemistry 1998, 41, 358-378) 及び本発明化合物34をそれぞれ投与したラットを強制水泳させたときの無動化時間を測定したグラフである。

発明を実施するための最良の形態

以下に実施例及び試験例を示し本発明を具体的に説明するが、本発明はこれらに 関定されるものではない。

参考例1

(1R, 2R, 3R, 5R, 6R) - 2-アジド-3-ヒドロキシ-6-フルオロービシクロ[3.1.0] ヘキサン-2, 6-ジカルボン酸 2-ベンジルエステル 6-エチルエステルの合成

mLに溶解し、酢酸パラジウム389mg、トリフェニルホスフィン910mg、ベンジルアルコール12.5g、次いでトリエチルアミン11.7gを加えた後、一酸化炭素雰囲気下、室温にて4.5時間攪拌した。反応溶液に1N塩酸を添加し、ジエチルエーテルにて2回抽出した。有機層を合わせて飽和炭酸水素ナトリウム水溶液にで洗浄後、無水硫酸マグネシウムにで乾燥した。乾燥剤を適別後、濾液を滅圧下濃縮し、残渣をカラムクロマトグラフィー(シリカゲル:ワコウゲルC200(和光純薬製)、展開溶媒:ヘキサンー酢酸エチル=10:1~1:1)にて精製し、(1R,5R,6R)-6-フルオロビシクロ
[3.1.0]ヘキサー2-エンー2,6-ジカルボン酸 2-ベンジルエステル6-エチルエステル6.42gを得た。

mp 90-91℃

(2) t ープタノール 150 mL及び水 150 mL に懸濁した(1R, 5R, 6R) -6 ーフルオロビシクロ [3.1.0] へキサー2 ーエンー 2, 6 ージカルボン酸 2 ーベンジルエステル 6 ーエチルエステル 6 。 3 6 gに AD ー mix $-\beta$ (アルドリッチ社) 29 。 3 g及びメタンスルホンアミド 5 . 9 6 gを加え、4℃にて 5 日間機弁した。反応溶液に亜硫酸水素ナトリウムを加え、室温にて 15 分間機件した後、水を加え、酢酸エチルにて 3 回抽出した。有機層を合わせて飽和塩化ナトリウム水溶液にて洗浄後、無水硫酸マグネシウムにて乾燥した。乾燥剤を濾別後、濾液を滅圧下濃縮し、残渣をカラムクロマトグラフィー(シリカゲル:ワコウゲルC 200、展開溶媒:ヘキサンー酢酸エチル=10:1 ~3:2)にて精製し、(1 R, 2 S, 3 R, 5 R, 6 R) -6 ーフルオロー2, 3 -ジヒドロキシビシクロ [3.1.0] へキサンー 2, 6 ージカルボン酸 2 ーベンジルエステル 6 ーエチルエステル 4, 2 1 g を得た。

¹H-NMR (300MHz, CDC1₃) δ (ppm); 1.29 (3H, t, J=7.2Hz), 2.06-2.21 (2H, m), 2.30 (1H, dd, J=7.6, 2.6Hz), 2.47 (1H, dd, J=7.6, 13.2 Hz), 2.50 (1H, dd, J=1.2, 9.2Hz), 4.02 (1H, s), 4.24 (2H, q, J=7.2Hz), 4.34-4.46 (1H, m), 5.23 (1H, d, J=12.5Hz), 5.28 (1H, d, J=12.5Hz), 7.27-7.42 (5H, m)

MS (ESI) (Pos) m/z: 361 (M+Na) +.

 $[\alpha]_{n}^{29} = -45.8^{\circ} (C = 0.202\%, 000)$

(3) 4でに冷却した(1 R, 2 S, 3 R, 5 R, 6 R) -6-フルオロー2, 3 ージヒドロキシビシクロ[3.1.0] ヘキサンー2, 6ージカルボン酸 2ーベンジルエステル 6ーエチルエステル3.9 6 gのジクロロメタン20 mL 溶液に塩化チオニル1.70 mLを加えた後、40でにて13時間攪拌した。溶媒と過剰の試薬を減圧下留去し、残渣を四塩化炭素12 mL、アセトニトリル12 mL及び水20 mLに溶解した。この溶液にメタ過ヨウ素酸ナトリウム3.76 g及び三塩化ルテニウム水和物500 mgを加え、室温にて20分間攪拌した。反応液に水を加え、ジエチルエーテルにて3回抽出した。有機層を合わせて飽和塩化ナトリウム水溶液にで洗浄後、無水硫酸マグネシウムにて乾燥した。乾燥剤を濾別後、濾液を減圧下濃縮し、残渣をカラムクロマトグラフィー(シリカゲル:ワコウゲルC200、展開溶媒:ヘキサンー酢酸エチル=5:1~2:1)にて精製し、(1R, 1aR, 1bS, 4aR, 5aR) -1-フルオロ-3, 3ージオキソテトラヒドロー2, 4ージオキサー3 λ ⁶ーチアシクロプロパ[a] ベンタレンー1, 1bージカルポン酸 1bーベンジルエステル 1-エチルエステル4.11gを得た。

¹H-NMR (300MHz, CDCl₃) δ (ppm); 1. 29 (3H, t, J=7.2Hz), 2. 53-2. 61 (1H, m), 2. 72 (1H, ddd, J=0.9, 7.6, 15. 2Hz), 2. 78-2. 89 (1H, m), 2. 83 (1H, dd, J=2.3, 7. 2Hz), 4. 19-4. 31 (2H, m), 5. 26 (1H, d, J=12.1Hz), 5. 33 (1H, d, J=12.1Hz), 5. 45 (1H, dt, J=3.8, 7.6Hz), 7. 28-7. 43 (5H, m)

MS (ESI) (Pos) m/z; 423 (M+Na) +

[α]₀³⁰= +31.3° (C=0. 203%, クロロホルム)

(4) N, Nージメチルホルムアミド37mL及び水3.7mLに溶解した(1R, 1aR, 1bS, 4aR, 5aR) ー1ーフルオロー3, 3ージオキソテトラヒドロー2, 4ージオキサー3 λ 6ーチアシクロプロパ[a] ベンタレンー1, 1bージカルボン酸 1bーベンジルエステル 1ーエチルエステル3.73gにアジ化ナトリウム1.09gを加え、50℃にて14時間攪拌した。溶媒を減圧下留去し、残渣をジエチルエーテル187mL及び水5.2mLに溶解した後、20%硫酸15mLを加え、室温にて8時間攪拌した。反応被に水を加え、ジエチルエーテルに

で3回抽出した。有機層を合わせて飽和塩化ナトリウム水溶液にて洗浄後、無水硫酸マグネシウムにて乾燥した。乾燥剤を濾別後、濾液を減圧下濃縮し、残渣をカラムクロマトグラフィー(シリカゲル: ワコウゲルC 2 0 0、展開溶媒: ヘキサンー酢酸エチル= $5:1\sim1:1$)にて精製し、(1 R, 2 R, 3 R, 5 R, 6 R) $-2\sim7$ ジド $-3\sim1$ ドロキシ $-6\sim7$ ルポン酸 $2\sim7$ ジルボン酸 $2\sim7$ ジルエステル $2\sim7$ $1\sim1$ $1\sim1$

MS (ESI) (Pos) m/z: 386 (M+Na) +

5.34 (1H, d, J=12.3Hz), 7.30-7.42 (5H, m)

[α] $_{0}^{30}$ = -50.2° (C=0.212%, クロロホルム)

実施例1

(1R, 2R, 3R, 5R, 6R) - 2-アミノ-3-メトキシ-6-フルオロ ビシクロ [3. 1. 0] ヘキサン-2, 6-ジカルボン酸の合成

(1) ジクロロメタン 0. 5 m L に溶解した (1 R, 2 R, 3 R, 5 R, 6 R) - 2 - アジド - 3 - ヒドロキシー 6 - フルオロビシクロ [3.1.0] ヘキサンー 2, 6 - ジカルボン酸 2 - ベンジルエステル 6 - エチルエステル 5 0 0 mg に 2, 6 - ジー t - ブチルビリジン 1 5 8 mg、メチルトリフルオロメタンスルホネート 1 1 3 mg を加えた後、室温にて 4 日間機拌した。1 N 塩酸に注ぎ、ジエチルエーテルにて 3 回抽出した。有機層を合わせて飽和塩化ナトリウム水溶液にて洗浄後、無水硫酸マグネシウムにて乾燥した。乾燥剤を遮別後、遮液を減圧下濃縮し、残渣をカラムクロマトグラフィー (シリカゲル: ワコウゲル C 2 0 0、展開溶媒: ヘキサンー酢酸エチル=9:1) にて精製し、(1 R, 2 R, 3 R, 5 R, 6 R) - 2 - アジド - 3 - メトキシー 6 - フルオロビシクロ [3.1.0] ヘキサンー2, 6 - ジカルボン酸 2 - ベンジルエステル 6 - エチルエステル 4 2.0 mg を得た。1 H-NMR (300MHz, CDC1 3) δ (ppm): 1.32 (3 H, t, J=7.2 Hz), 2.20-2.50 (4 H, m), 3.32 (3 H, s), 3.78-3.86 (1 H, m), 4.26 (2 H, q, J=7.2 Hz), 5.26 (1 H, d, J=12.3 Hz),

 $MS(ESI)(Pos)m/z: 400(M+Na)^+$

実施例2

(1R, 2R, 3R, 5R, 6R) - 2 - アミノ - 3 - (4 - フルオロベンジルオキシ) - 6 - フルオロビシクロ <math>[3. 1. 0] ヘキサン - 2, 6 - ジカルボン酸2 - ペンジルエステル 6 - エチルエステル及び <math>(1R, 2R, 3R, 5R, 6R) - 2 - アミノ - 3 - (4 - フルオロベンジルオキシ) - 6 - フルオロビシクロ <math>[3.

1. 0] ヘキサン-2, 6-ジカルボン酸の合成

(1) 60%水素化ナトリウム (油性) 79.0 mgをヘキサンで2回洗浄後、ジエチルエーテル1.9 mLに懸濁させ、ジエチルエーテル2.9 mLに溶解した 4 ーフルオロベンジルアルコール2.50gを滴下した。室温にて20分間攪拌後、食塩-水にて冷却下、トリクロロアセトニトリル2.70gを滴下した。この温度で15分間、水冷下15分間、水浴下20分間、更に室温にて20分間攪拌した。反応溶液を減圧下濃縮し、残渣にベンタン1.9 mL及びメタノール75 μ Lを加え、室温にて15分間激しく攪拌した。無機塩を濾別後、濾液を減圧下濃縮し、粗の4ーフルオロベンジルー2,2,2ートリクロロアセトイミデート5.28gを得た。

粗の4-フルオロベンジル-2,2,2-トリクロロアセトイミデート3.40 g及び(1R,2R,3R,5R,6R)-2-アジド-3-ヒドロキシ-6-フ ルオロビシクロ [3. 1. 0] ヘキサンー2, 6ージカルボン酸 2 ーベンジルエステル 6 ーエチルエステル3. 0 4 g をジクロロメタン9. 2 mL及びシクロヘキサン18. 4 mLに溶解した。氷浴にて冷却後、トリフルオロメタンスルホン酸を110 μ L加えた。室温にて16時間攪拌後、無機塩を濾別し、氷冷下、飽和炭酸水素ナトリウム水溶液を添加した。クロロホルムにて2回抽出した後、有機層を合わせて飽和食塩水で洗浄後、無水硫酸ナトリウムにて乾燥した。乾燥剤を濾別後、濾液を滅圧下濃縮し、残渣をカラムクロマトグラフィー(シリカゲル: ワコウゲル C 200、展開溶媒: ヘキサンー酢酸エチル=10:1~5:1)にて精製し、(1R, 2R, 3R, 5R, 6R) -2 ーアジドー3 - (4 ーフルオロベンジルオキシ) - 6 ーフルオロビシクロ [3. 1. 0] ヘキサン - 2, 6 ージカルボン酸 2 ーベンジルエステル 6 - エチルエステル 1 9 4 g を得た。

¹H-NMR (200MHz, CDC1₃) δ (ppm); 1.32 (3H, t, J=7.0Hz), 2.20-2.42 (4H, m), 3.96-4.06 (1H, m), 4.27 (2H, q, J=7.0Hz), 4.40 (1H, d, J=11.5Hz), 4.59 (1H, d, J=11.5Hz), 5.20 (1H, d, J=12.1Hz), 5.34 (1H, d, J=12.1Hz), 6.92-7.37 (9H, m) MS (ESI) (Pos) m/z: 494 (M+Na) *

- (3) テトラヒドロフラン6mL及び水3mLに溶解した(1R, 2R, 3R, 5

R, 6R) -2-アミノ-3-(4-フルオロベンジルオキシ) -6-フルオロビシクロ[3.1.0] ヘキサン-2,6-ジカルボン酸 2-ベンジルエステル 6-エチルエステル304mgに水酸化リチウム水和物72.0mgを加え、室温にて31時間攪拌した。溶媒を減圧下留去した後、残渣をイオン交換樹脂(AG 50W-X8 Resin(H型)、展開溶媒:水、50%テトラヒドロフラン水溶液、10%ピリジン水溶液)にて精製し、(1R,2R,3R,5R,6R)-2-アミノ-3-(4-フルオロベンジルオキシ)-6-フルオロビシクロ[3.1.0] ヘキサン-2,6-ジカルボン酸195mgを得た。

実施例3

 $(1R, 2R, 3R, 5R, 6R) - 2-アミノ-3-((R^*)-1-(ナフタレン-2-イル) エトキシ) - 6-フルオロビシクロ <math>[3.\ 1.\ 0]$ ヘキサン-2, 6-ジカルボン酸 2-ベンジルエステル 6-エチルエステル. $(1R, 2R, 3R, 5R, 6R) - 2-アミノ-3-((S^*)-1-(ナフタレン-2- イル) エトキシ) - 6-フルオロビシクロ <math>[3.\ 1.\ 0]$ ヘキサン-2, 6-ジカルボン酸 2-ベンジルエステル 6-エチルエステル. $(1R, 2R, 3R, 5R, 6R) - 2-アミノ-3-((R^*)-1-(ナフタレン-2-イル) エトキシ) - 6-フルオロビシクロ <math>[3.\ 1.\ 0]$ ヘキサン-2, 6-ジカルボン酸 及び $(1R, 2R, 3R, 5R, 6R) - 2-アミノ-3-((S^*)-1-(ナフタレン-2-イル) エトキシ) - 6-フルオロビシクロ <math>[3.\ 1.\ 0]$ ヘキサン-2. 6-ジカルボン酸の合成

(1) 60%水素化ナトリウム(油性) 23.0mgをヘキサンで2回洗浄後、テトラヒドロフラン0.8mLに懸濁させ、テトラヒドロフラン1.2mLに溶解した1-(ナフタレン-2-イル)エタノール1.00gを滴下した。室温にて20分間攪拌後、食塩-冰にて冷却下、トリクロロアセトニトリル0.58mLを滴下した。この温度で20分間、水冷下20分間、水浴下30分間、更に室温にて50分間攪拌した。反応溶液を減圧下濃縮し、残渣にペンタン5mL、メタノール19μL及びテトラヒドロフラン0.5mLを加え、室温にて10分間激しく攪拌した。無機塩を濾別後、濾液を減圧下濃縮し、粗の1-(ナフタレン-2-イル)エチル

-2、2、2-トリクロロアセトイミデート1.84gを得た。

粗の1-(ナフタレン-2-イル)エチル-2,2,2-トリクロロアセトイミ デート590mg及び (1R, 2R, 3R, 5R, 6R) -2-アジド-3-ヒド ロキシー6-フルオロビシクロ[3.1.0] ヘキサン-2,6-ジカルボン酸 2 ーベンジルエステル 6-エチルエステル450mgをジクロロメタン1.5mL 及びシクロヘキサン3.0mLに溶解し、トリフルオロメタンスルホン酸を 17μ 1.加えた。室温にて1時間機拌後、無機塩を濾別し、氷冷下、飽和炭酸水素ナトリ ウム水溶液を添加した。クロロホルムにて2回抽出した後、有機層を合わせて飽和 食塩水で洗浄後、無水硫酸ナトリウムにて乾燥した。乾燥剤を濾別後、濾液を減圧 下濃縮し、残渣をカラムクロマトグラフィー (シリカゲル:ワコウゲルC200、 GEL SIL D-75-60A (洞海化学工業製)、展開溶媒:ヘキサン-酢 酸エチル=13:1) にて精製し、(1R, 2R, 3R, 5R, 6R) -2-アジ $k-3-((R^*)-1-(t-79\nu)-2-t-7\nu)$ シクロ[3.1.0] ヘキサン-2,6-ジカルボン酸 2-ベンジルエステル 6 - エチルエステル (R f 値: 0.55、展開溶媒: ヘキサンー酢酸エチル=3:1、 TLC:シリカゲル 60F₂₅₄) 271mg及び(1R, 2R, 3R, 5R, 6 R) - 2 - アジド - 3 - ((S*) - 1 - (ナフタレン - 2 - イル) エトキシ) -6-フルオロビシクロ「3.1.0] ヘキサン-2.6-ジカルボン酸 2-ベン ジルエステル 6-エチルエステル (Rf値:0.49、展開溶媒:ヘキサン-酢 酸エチル=3:1、TLC:シリカゲル 60F。sa) 301mgを得た。

(1R, 2R, 3R, 5R, 6R) -2-アジド-3-((R*)-1-(ナフタレン-2-イル) エトキシ) -6-フルオロビシクロ[3.1.0] ヘキサン-2.6-ジカルボン酸 2-ベンジルエステル 6-エチルエステル:

¹H-NMR (200MHz, CDC1₃) δ (ppm); 1.26(3H, t, J=7.3Hz), 1.35(3H, d, J=6.6Hz), 1.92-2.37(4H, m), 3.85-3.95(1H, m), 4.20(2H, q, J=7.3Hz), 4.77(1H, q, J=6.6Hz), 5.27(1H, d, J=12.2Hz), 5.47(1H, d, J=12.2Hz), 7.31-7.85(12H, m) MS (ESI) (Pos) m/s: 540 (M+Na)⁺.

(1R, 2R, 3R, 5R, 6R) -2-アジド-3-((S*)-1-(ナフタレン-2-イル) エトキシ)-6-フルオロビシクロ[3.1.0] ヘキサン-2.6-ジカルボン酸 2-ベンジルエステル 6-エチルエステル:

¹H-NMR(200MHz, CDCl₃) δ (ppm); 1.27(3H, t, J=7.3Hz), 1.40(3H, d, J=6.4Hz), 2.24-2.49(4H, m), 3.91-4.01(1H, m), 4.22(2H, q, J=7.3Hz), 4.61(1H, q, J=6.4Hz), 5.12(1H, d, J=12.3Hz), 5.32(1H, d, J=12.3Hz), 7.31-7.83(12H, m) MS(SS1)(Pos)m/s: 540(M+Na)⁺

(2) 実施例2の(2) と同様にして、(1R, 2R, 3R, 5R, 6R) - 2 - アジド-3 - ((R*) - 1 - (ナフタレン-2 - イル) エトキシ) - 6 - フルオロビシクロ[3. 1. 0] ヘキサン-2, 6 - ジカルボン酸 2 - ベンジルエステル 6 - エチルエステル 2 6 6 mg 及び(1R, 2R, 3R, 5R, 6R) - 2 - アジド-3 - ((S*) - 1 - (ナフタレン-2 - イル) エトキシ) - 6 - フルオロビシクロ[3. 1. 0] ヘキサン-2, 6 - ジカルボン酸 2 - ベンジルエステル 6 - エチルエステル 2 3 8 mg より(1R, 2R, 3R, 5R, 6R) - 2 - アミノ-3 - ((R*) - 1 - (ナフタレン-2 - イル) エトキシ) - 6 - フルオロビシクロ[3. 1. 0] ヘキサン-2, 6 - ジカルボン酸 2 - ベンジルエステル 6 - エチルエステル 16 4 mg 及び(1R, 2R, 3R, 5R, 6R) - 2 - アミノ-3 - ((S*) - 1 - (ナフタレン-2 - イル) エトキシ) - 6 - フルオロビシクロ[3. 1. 0] ヘキサン-2, 6 - ジカルボン酸 2 - ベンジルエステル 15 3 mg をそれぞれ得た。

(3) 実施例2の(3) と同様にして、(1R, 2R, 3R, 5R, 6R) -2- アミノ-3-((R*)-1-(ナフタレン-2-イル) エトキシ) -6-フルオ ロビシクロ[3.1.0] ヘキサン-2, 6-ジカルポン酸 2-ベンジルエステル 6-エチルエステル158mg及び(1R, 2R, 3R, 5R, 6R) -2-アミノ-3-((S*)-1-(ナフタレン-2-イル) エトキシ) -6-フルオロビシクロ[3.1.0] ヘキサン-2, 6-ジカルポン酸 2-ベンジルエステル 6-エチルエステル148mgより(1R, 2R, 3R, 5R, 6R) -2-アミノ-3-((R*)-1-(ナフタレン-2-イル) エトキシ) -6-フルオ

ロビシクロ [3. 1. 0] ヘキサン-2, 6ージカルボン酸 9 6. 0mg及び(1 R, 2R, 3R, 5R, 6R) -2-アミノ-3-((S*)-1-(ナフタレン-2-イル) エトキシ) -6-フルオロビシクロ [3. 1. 0] ヘキサン-2, 6ージカルボン酸 7 2. 0mgを得た。

実施例4

(1R, 2R, 3R, 5R, 6R) - 2-アミノ-3-プロビルオキシ-6-フ ルオロビシクロ[3.1.0] ヘキサン-2, 6-ジカルボン酸の合成

(1) 水1mLに溶解した(1R, 2R, 3R, 5R, 6R) - 2-アミノ-3-(2-プロペニルオキシ) - 6-フルオロビシクロ[3.1.0] ヘキサン-2,6-ジカルボン酸40mgに、10%パラジウム/カーボン4mgを加えた後、水素雰囲気下、室温にて2日間攪拌した。触媒を濾別し、濾液を減圧下濃縮した後、テトラヒドロフラン1mLを加え、1時間加熱環流した。さらに室温にて3時間攪拌した後、固体を濾取し、イオン交換樹脂(AG 50W-X8 Resin(H型)、展開溶媒:水、50%テトラヒドロフラン水溶液、10%ビリジン水溶液)にて精製し、(1R, 2R, 3R, 5R, 6R) - 2-アミノ-3-プロビルオキシ-6-フルオロビシクロ[3.1.0] ヘキサン-2,6-ジカルボン酸30mgを得た。

実施例5

¹H-NMR (200MHz, CDC1₃) δ (ppm); 1.32 (3 H, t, J = 7.3 Hz), 1.90-2.52 (8 H, m), 3.94-4.14 (1 H, m), 4.27 (2 H, q, J = 7.3 Hz), 4.52-4.79 (1 H, m), 5.15-5.41 (2 H, m), 5.58-5.82 (1 H, m), 5.88-6.04 (1 H, m), 7.30-7.46 (5 H, m).

MS (ESI) (Pos) m/z; 452 (M+Na) +

(2) 酢酸 18mLおよび水6mLに溶解した(1R, 2R, 3R, 5R, 6R) -2-アジド-3-(2-シクロペンテニルオキシ)-6-フルオロビシクロ[3.1.0] ヘキサン-2,6-ジカルボン酸 2-ペンジルエステル 6-エチルエステル331mgに10%パラジウム/カーボン39mgを加えた後、水素雰囲気下、室温にて24時間攪拌した。触媒を濾別し、濾液を減圧濃縮し後、残渣をテトラヒドロフラン7.36mL及び水3.53mLに溶解し、水酸化リチウム水和物80mgを加え、室温にて4時間攪拌した。溶媒を減圧下留去した後、残渣をイオン交換樹脂(AG 50W-X8 Resin(H型)、展開溶媒:水、50%テトラヒドロフラン水溶液、10%ビリジン水溶液)にて精製し、(1R,2R,3R,5R,6R)-2-アミノ-3-シクロペンチルオキシ-6-フルオロビシクロ[3.1.0] ヘキサン-2,6-ジカルボン酸61mgを得た。

実施例6

(1R, 2R, 3R, 5R, 6R) - 2 - アミノ - 3 - (3 - ニトロベンジルオ キシ) - 6 - フルオロビシクロ [3.1.0] ヘキサン - 2, 6 - ジカルボン酸 ジエチルエステル、 <math>(1R, 2R, 3R, 5R, 6R) - 2 - アミノ - 3 - (3 - アミノ ベンジルオキシ) - 6 - フルオロビシクロ [3.1.0] ヘキサン - 2, 6 - ジカルボン酸 ジエチルエステル及び <math>(1R, 2R, 3R, 5R, 6R) - 2 - アミノ - 3 - (3 - アミノ ベンジルオキシ) - 6 - フルオロビシクロ [3.1.0] ヘキサン - 2, 6 - ジカルボン酸の合成

(1) 実施例2の(1) と同様に、3 - ニトロベンジルアルコールより得た粗の3 - ニトロベンジルー2, 2, 2 - トリクロロアセトイミデート562mg及び(1 R, 2R, 3R, 5R, 6R) - 2 - アジド-3 - ヒドロキシー6 - フルオロビシクロ[3.1.0] ヘキサン-2, 6 - ジカルボン酸 ジエチルエステル380mgより(1R, 2R, 3R, 5R, 6R) - 2 - アジド-3 - (3 - ニトロベンジ

ルオキシ) -6-フルオロビシクロ $\begin{bmatrix} 3. & 1. & 0 \end{bmatrix}$ ヘキサンー 2 , 6-ジカルボン 酸 ジエチルエステル 2 7 9 m g を得た。

¹H-NMR(200MHz,CDC1₃) δ (ppm); 1.32 (3 H, t, J = 7.2 Hz), 1.34 (3 H, t, J = 7.2 Hz), 2.22-2.42 (2 H, m), 2.50 (2 H, dd, J = 2.7, 7.8 Hz), 3.94-4.10 (1 H, m), 4.20-4.46 (4 H, m), 4.58 (1 H, d, J = 12.1 Hz), 4.80 (1 H, d, J = 12.1 Hz), 7.44-7.66 (2 H, m), 8.03-8.24 (2 H, m).

MS (ESI) (Pos) m/z; 459 (M+Na) +

- (2) 実施例2の(2) と同様に(1R, 2R, 3R, 5R, 6R) -2-アジド-3-(3-ニトロペンジルオキシ)-6-フルオロビシクロ[3.1.0] ヘキサン-2,6-ジカルボン酸 ジエチルエステル275mgより(1R, 2R, 3R, 5R, 6R) -2-アミノ-3-(3-ニトロペンジルオキシ)-6-フルオロビシクロ[3.1.0] ヘキサン-2,6-ジカルボン酸 ジエチルエステル120mgを得た。
- (3) 酢酸0.21mLに溶解した(1R, 2R, 3R, 5R, 6R) -2-アミノ-3-(3-二トロペンジルオキシ) -6-フルオロビシクロ[3.1.0] ヘキサン-2,6-ジカルボン酸 ジエチルエステル120mgに亜鉛粉末101mgを加えた後、室温にて3時間攪拌した。固体を濾別し、氷冷化飽和炭酸水素ナトリウムを添加した。酢酸エチルにて2回抽出した後、有機屬を合わせて、0.5M炭酸ナトリウム水溶液および飽和食塩水で洗浄後、無水硫酸ナトリウムにて乾燥した。乾燥剤を濾別後、濾液を減圧下濃縮し、残査をカラムクロマトグラフィー(シリカゲル:ワコウゲルC200、展開溶媒:クロロホルム-エタノール=30:1)にて精製し(1R, 2R, 3R, 5R, 6R) -2-アミノー3-(3-アミノベンジルオキシ) -6-フルオロビシクロ[3.1.0] ヘキサン-2,6-ジカルボン酸 ジエチルエステル96mgを得た。
- (4) 実施例2の(3) と同様に(1R, 2R, 3R, 5R, 6R) -2-アミノ -3-(3-アミノベンジルオキシ)-6-フルオロビシクロ[3.1.0] ヘキ サン-2,6-ジカルボン酸 ジエチルエステル90mgより(1R, 2R, 3R, 5R, 6R) -2-アミノ-3-(3-アミノベンジルオキシ)-6-フルオロビ

シクロ [3.1.0] ヘキサン-2, 6-ジカルボン酸60mgを得た。

実施例7

(1R, 2R, 3S, 5R, 6R) - 2-アジド-3-ヒドロキシ-6-フルオロビシクロ[3.1.0] ヘキサン-2, 6-ジカルボン酸 2, 6-ジエチルエステルの合成

(1) 窒素雰囲気下、ジクロロメタン20mLに溶解した(1R, 2R, 3R, 5 R, 6R) - 2 - アジド-3 - ヒドロキシ-6 - フルオロービシクロ[3.1.0] ハキサン-2, 6 - ジカルボン酸 2, 6 - ジエチルエステル120mgに、-75℃にてジクロロメタン0.4mLに溶解したトリフルオロメタンスルホン酸無水物78μLを滴下した後、氷冷下1.5時間攪拌した。- 75℃にて、ピリジン48μLとジクロロメタン0.2mLに溶解したトリフルオロメタンスルホン酸無水物39μLを滴下した後、氷冷下25分間攪拌した。エーテル10mLを加え、固体を濾別後、濾液を減圧下濃縮し、残渣をカラムクロマトグラフィー(シリカゲル:ワコウゲルC200、展開溶媒:ハキサンー酢酸エチル=5:1)にて精製し、(1R, 2R, 3R, 5R, 6R) - 2 - アジド-3 - トリフルオロメタンスルホニルオキシー6 - フルオローピシクロ[3.1.0] ハキサン-2,6 - ジカルボン酸 2、6 - ジエチルエステル166mgを得た。

¹H-NMR (200MHz, CDC1₃) δ (ppm); 1.35 (3 H, t, J = 7.0 Hz), 1.38 (3 H, t, J = 7.0 Hz), 2.35-2.50 (2 H, m), 2.62-2.86 (2 H, m), 4.31 (2 H, q, J = 7.0 Hz), 4.27-4.55 (2 H, m), 4.94-5.10 (1 H, m)

MS (FAB) (Pos) m/z: 434 (M+H) +

(2) N, N-ジメチルホルムアミド6. 9mLに溶解した(1R, 2R, 3R, 5R, 6R)-2-アジド-3-トリフルオロメタンスルホニルオキシー6-フルオロービシクロ[3.1.0]ヘキサン-2,6-ジカルボン酸 2、6-ジエチルエステル701mgに亜硝酸カリウム688mg、18-クラウン-6428mgを加えた後、窒素雰囲気下、室温にて1.5日攪拌後、更に45℃にて3.5日攪拌した。水を添加後、酢酸エチルにて2回抽出した。有機層を合わせて飽和塩

¹H-NMR (200MHz, CDCl₃) & (ppm); 1.34 (3 H, t, J = 7.0 Hz), 1.36 (3 H, t, J = 7.0 Hz), 2.16 (1 H, dd, J = 2.9 Hz, 14.9 Hz), 2.17-2.30 (1 H, m), 2.44 (1 H, dd, J = 3.1 Hz, 8.1 Hz), 2.61 Hz (1 H; dd, J = 12.3 Hz, 16.0 Hz), 2.80-2.99 (1 H, m), 4.29 (2 H, q, J = 7.0 Hz), 4.34 (2 H, q, J = 7.0 Hz), 4.48-4.64 (1 H, m)

MS (ESI) (Pos) m/z: 324 (M+Na)+

 $[\alpha]_{D}^{25}$ =+6.4° (C=0.96%, クロロホルム)

実施例8

(1R, 2R, 3R, 5R, 6R) - 2 - アミノ - 3 - (3、4 - ジクロロベンジルオキシ) - 6 - フルオロビシクロ <math>[3. 1. 0] ヘキサン $-2 \cdot 6 - ジカルボン酸 2, 6 - ジエチルエステル及び <math>(1R, 2R, 3R, 5R, 6R) - 2 - アミノ - 3 - (3、4 - ジクロロベンジルオキシ) - 6 - フルオロビシクロ <math>[3. 1.$

- 0] ヘキサン-2、6-ジカルボン酸 2-エチルエステルの合成
- (1) 実施例2の(1) と同様に、3, 4ージクロロベンジルアルコールより得た 粗の3, 4ージクロロベンジルー2, 2, 2ートリクロロアセトイミデート3. 1 7 g 及び(1 R, 2 R, 3 R, 5 R, 6 R) ー2ーアジドー3ーヒドロキシー6ー フルオロービシクロ[3. 1. 0] ヘキサンー2, 6ージカルボン酸 ジエチルエ ステル1. 9 8 g より(1 R, 2 R, 3 R, 5 R, 6 R) ー2ーアジドー3ー(3, 4ージクロロベンジルオキシ)ー6ーフルオロービシクロ[3. 1. 0] ヘキサン -2,6ージカルボン酸 ジエチルエステル1. 16 g を得た。

¹H-NMR (200MHz, CDC1₃) δ (ppm); 1.31 (3 H, t, J = 7.3 Hz), 1.33 (3H, t, J = 7.3 Hz), 2.22-2.52 (4 H, m), 3.91-4.05 (1 H, m), 4.29 (2 H, q, J = 7.3 Hz).

4.18-4.44 (2 H, m), 4.42 (1 H, d, J = 11.9 Hz), 4.64 (1 H, d, J = 11.9 Hz), 7.06-7.14 (1 H, m), 7.34-7.50 (2 H, m).

MS(ESI) (Pos)m/z: 482 (M+Na)+

- $[\alpha]_{5}^{28} = -12.6^{\circ}$ (C=1.14%, 0
- (2) 実施例2の(2) と同様に(1R, 2R, 3R, 5R, 6R) 2 アジド -3-(3, 4-ジクロロベンジルオキシ) -6-フルオロービシクロ[3.1.
- 0] ヘキサンー 2,6 ージカルポン酸 ジエチルエステル 1. 11gより(1R,2R,3R,5R,6R) ー 2 ーアミノー 3 ー(3,4 ージクロロベンジルオキシ) ー 6 ーフルオロービシクロ [3.1.0] ヘキサンー 2,6 ージカルポン酸 ジエチルエステル 8 7 8 mg を得た。
- (3) テトラヒドロフラン3.5mL及び水1.7mLに溶解した(1R, 2R, 3R, 5R, 6R) 2-アミノ-3-(3、4-ジクロロベンジルオキシ)-6-フルオロビシクロ[3.1.0] ヘキサン-2、6-カルボン酸 2-エチルエステル150mgに水酸化リチウム水和物17.8mgを加え、氷冷下2時間提粋した。1N塩酸0.45mLを加えた後、水で全量50mLに希釈し、イオン交換樹脂(AG 50W-X8 Resin(H型)、展開溶媒:水、50%テトラヒドロフラン水溶液、10%ピリジン水溶液)にて精製し、(1R, 2R, 3R, 5R, 6R)-2-アミノ-3-(3、4-ジクロロベンジルオキシ)-6-フルオロビシクロ[3.1.0] ヘキサン-2、6-カルボン酸 2-エチルエステル107

mgを得た。 実施例 9

(1R, 2R, 3R, 5R, 6R) -2-アミノ-3-(3、4-ジクロロベン ジルイオキシ) -6-フルオロビシクロ[3.1.0] ヘキサン-2、6-カルボン酸 6-エチルエステル塩酸塩の合成

- (1) 実施例2の(3) と同様に(1R, 2R, 3R, 5R, 6R) -2-アミノ-3-(3, 4-ジクロロベンジルオキシ) -6-フルオロービシクロ[3. 1.
- 0] ヘキサン-2,6-ジカルボン酸 ジエチルエステル304mgより(1R, 2R, 3R, 5R, 6R)-2-アミノ-3-(3,4-ジクロロベンジルオキシ)

- 6-フルオロビシクロ [3. 1. 0] ヘキサン- 2,6-ジカルボン酸195mgを得た。

(2) エタノール1. 1mLに溶解した(1R, 2R, 3R, 5R, 6R) -2- アミノ-3- (3, 4-ジクロロベンジルオキシ)-6-フルオロビシクロ [3. 1. 0] ヘキサン-2, 6-ジカルボン酸114mg、窒素雰囲気下、室温にて、塩化チオニル88 μ Lを加えた後、50℃にて1時間攪拌し、固体を濾別した後、濾液を滅圧下濃縮し、残渣にイソプロピルエーテル1.38mLを加え室温にて17時間攪拌し、固体を濾取した。固体をイソプロピルエーテルで洗浄し、(1R, 2R, 3R, 5R, 6R) -2-アミノ-3-(3, 4-ジクロロベンジルオキシ) -6-フルオロビシクロ [3. 1. 0] ヘキサン-2, 6-ジカルボン酸 6-エチルエステル・塩酸塩114mgを得た。

実施例10

(1R, 2R, 3R, 5R, 6R) -2-[(2'S)-(2'-アミノプロピオニル) アミノ]-3-(3、4-ジクロロベンジルオキシ)-6-フルオロビシクロ[3.1.0]へキサン-2、6-ジカルボン酸・塩酸塩の合成

(1) ジクロロメタン6. 9mLに溶解したN-t-プトキシカルボニルーL-ア ラニン316mgに、窒素雰囲気下-14℃にて、N-メチルモルホリン184 μ L及びクロロぎ酸イソブチル218 μ Lを加え1分間攪拌した後、ジクロロメタン6. 9mLに溶解した(1R, 2R, 3R, 5R, 6R)-2-アミノ-3-(3, 4-ジクロロベンジルオキシ)-6-7ルオロービシクロ[3.1.0] へキサン-2, 6-ジカルボン酸 ジエチルエステル691mgを滴下した後、室温にて30分間攪拌した。反応溶液を1N塩酸にて2回洗浄し、無水硫酸ナトリウムにて乾燥した。乾燥剤を濾別後、滤液を減圧下濃縮し、残渣をカラムクロマトグラフィー(シリカゲル: ワコウゲルС200、展開溶媒:ヘキサン- 酢酸エチル=2:1)にて精製し、(1R, 2R, 3R, 5R, 6R)-2-[(2'S)-(2'-t-プトキシカルボニルアミノブロピオニル)アミノ]-3-(3、4-ジクロロベンジルオキシ)-6-7ルオロビシクロ[3.1.0]ヘキサン-2、6-ジカルボン酸ジエチルエステル902mgを得た。

¹H-NMR (200MHz, CDC1₃) δ (ppm); 1.25 (3 H, t, J = 7.1 Hz), 1.28 (3 H, t, J = 7.1 Hz), 1.34 (3 H, d, J = 7.0 Hz), 1.39 (9 H, s), 2.18-2.31 (1 H, m), 2.32-2.54 (2 H, m), 3.08 (1 H, dd, J = 2.9 Hz, 7.9 Hz), 3.86-4.04 (1 H, m), 4.06-4.16 (5 H, m), 4.42 (1 H, d, J = 11.6 Hz), 4.65 (1 H, d, J = 11.6 Hz), 4.76-4.96 (1 H, m), 7.06-7.24 (1 H, m), 7.12 (1 H, dd, J = 2.0 Hz, 8.1 Hz), 7.39 (1 H, d, J = 2.0 Hz), 7.40 (1 H, d, J = 8.1 Hz)

MS(ESI) (Nega) m/z; 630 (M-H) -

- $[\alpha]_{D}^{24} = -33.6^{\circ}$ (C=0.42%, DDD = 0.42)
- (2) テトラヒドロフラン6mL溶解した(1R, 2R, 3R, 5R, 6R) -2 [(2'S) (2'-t-プトキシカルポアミノプロピオニル)アミノ]-3-(3、4-ジクロロベンジルオキシ)-6-フルオロビシクロ[3.1.0]へキサン-2、6-ジカルポン酸 ジエチルエステル45.5mgに2.5M水酸化リチウム水溶液6mLを添加し、室温にて2日間攪拌した。反応溶液を酢酸エチルにて3回抽出し、有機層を合わせ無水硫酸ナトリウムにて乾燥した。乾燥剤を濾別後、濾液を減圧下濃縮し、粗の(1R, 2R, 3R, 5R, 6R) -2-[(2'S)-(2'-t-プトキシカルポニルアミノプロピオニル)アミノ]-3-(3、4-クロロベンジルオキシ)-6-フルオロビシクロ[3.1.0]へキサン-2、6-ジカルポン酸 6-リチウム-2-エチルエステル470mgを得た。

氷冷下にて、残渣に4M塩化水素/酢酸エチル溶液4.6mLを添加し、室温にて 15時間攪拌した。析出した固体を、濾取し固体を酢酸エチルにて洗浄し(1R,

2R、3R、5R、6R) -2- [(2'S) - (2'-アミノプロピオニル) ア ミノ] -3- (3、4-ジクロロベンジルオキシ)-6-フルオロピシクロ[3.1. 0]ヘキサン-2、6-ジカルボン酸・塩酸塩138mgを得た。

実施例11

(1R, 2R, 3R, 5R, 6R) - 2 - アミノ-3 - (3、4 - ジクロロベンジルオキシ) - 6 - [(1'S) - (1'-ヒドロキシカルボニル-3'-メチルブチルカルバモイル)] - 6 - フルオロビシクロ[3.1.0] ヘキサン - 2 - カルボン酸の合成

(1) N, N-ジメチルホルムアミド8.5 mLに溶解した(1R, 2R, 3R, 5R, 6R) -2-アジド-3-(3, 4-ジクロロベンジルオキシ)-6-フルオロービシクロ[3.1.0] ヘキサン-2,6-ジカルボン酸 ジエチルエステル854mg及びロイシン エチエルエステル塩酸塩464mgに、室温にてN-メチルモルホリン261μLを添加後、氷冷下1-ヒドロキシベンゾトリアゾール378mg及び1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド464mgを添加し、室温にて12時間攪拌した。反応溶液に酢酸エチルを加えた後、1N塩酸及び飽和食塩水にて洗浄し、無水硫酸ナトリウムにて乾燥した。乾燥剤を濾別後、濾液を減圧下濃縮した。残渣をカラムクロマトグラフィー(シリカゲル:ワコウゲルC200、展開溶媒:ヘキサン-酢酸エチル=8:1)にて精製し、(1R, 2R, 3R, 5R, 6R)-2-アジド-3-(3、4-ジクロロベンジルオキシ)-6-[(1'S)-(1'-エトキシカルボニル-3'-メチルブチルカルバモイル)]-6-フルオロビシクロ[3.1.0]ヘキサン-2-カルボン酸エチルエステル998mgを得た。

¹H-NMR(200MHz,CDCl₃) δ (ppm); 0.96 (6 H, d, J = 5.5 Hz), 1.29 (3 H, t, J = 7.0 Hz), 1.30 (3 H, t, J = 7.0 Hz), 1.52-1.80 (3 H, m), 2.26-2.57 (4 H, m), 3.86-4.02 (1 H, m), 4.22 (2 H, q, J = 7.0 Hz), 4.10-4.38 (2 H, m), 4.42 (1 H, d, J = 12.2 Hz), 4.50-4.66 (1 H, m), 4.65 (1 H, d, J = 12.2 Hz), 6.79 (1 H, d, J = 8.1 Hz), 7.11 (1 H, dd, J = 2.0 Hz, 8.1 Hz), 7.38 (1 H, d, J = 2.0 Hz), 7.40 (1 H, d, J = 8.1 Hz)

MS(ESI) (Nega) m/z; 571 (M-H) -

- $[\alpha]_{D}^{28} = -20.0^{\circ}$ (C=0.39%, D^{28})
- (2) 実施例 2 の (2) と同様に、(1 R、2 R、3 R、5 R、6 R) -2 7 % ド-3 (3、4 \Im クロロベンジルオキシ) -6 [(1'S) (1'-K) + 2) カルボニル $-3'- \chi$ チルブチルカルバモイル)] -6 7 ルオロビシクロ[3.1.0] ヘキサン -2 7 ルボン酸 エチルエステル -2 7 の -2

MS(ESI) (Nega) m/z; 545 (M-H) -

- [α] $_{D}^{22}$ =+2.4° (C=0.65%, クロロホルム)
- (3) 実施例2の(3) と同様に、(1R, 2R, 3R, 5R, 6R) 2-アミノ-3-(3、4-ジクロロベンジルオキシ)-6-[(1'S)-(1'-エトキシカルボニル-3'-メチルブチルカルバモイル)]-6-フルオロビシクロ[3.1.0]へキサン-2-カルボン酸 エチルエステル400mgより(1R, 2R, 3R, 5R, 6R) 2-アミノ-3-(3、4-ジクロロベンジルオキシ)-6-[(1'S)-(1'-ヒドロキシカルボニル-3'-メチルブチルカルバモイル)]-6-フルオロビシクロ[3.1.0]へキサン-2-カルボン酸250mgを得た。以下、実施例1、2、3、4、5、6、8、9、10及び11に記載の化合物、並びに同様にして得た化合物の構造と物件データを表1に示す。

	42					
	也 玩	実施 例1	実 例1			
	¹ H NMR (D ₂ O) δ (ppm)	2.33-2.44 (3H, m), 2.63 (1H, dd, J=7.9, 13.1 Hz), 3.36 (3H, s), 3.96 (1H, dd, J=7.1, 13.1 Hz).	2.04-2.15 (1H, m), 2.27-2.38 (1H, m), 2.39-2.47 (1H, m), 2.76-2.93 (1H, m), 3.35 (3H, s), 4.28-4.38 (1H, m).			
H P COR!	MS	ESI (Nega) 232 (M-H) ⁻	ESI (Nega) 232 (M-H) ⁻			
	m.p.(°C) decom- position	>199	>171			
	比拉光度 (IN NaOH 木裕液)	[a] _D ²⁴ = -58.0 (C = 0.43%)	$[\alpha]_{D}^{11} = -49.7$ (C = 0.20%)			
	3位絶 対配障	R	s			
E Z	R.	Ħ	н			
	₽4	н	н			
	R³	Ħ	=			
	R ²	но	но			
	R 1	но	но			
	令 秦中	-	. 7			

表1

. . .

報客 4	無 名 名	海 20 20	報 8
0.85 (3H, t, J=7.5Hz), 1.43-1.64 (2H, m), 2.22-2.30 (2H, m), 2.34-2.47 (1H, m), 2.58 (1H, dd, J=7.8, 13.5 Hz), 3.93-3.60 (H, m), 3.99-4.08 (1H, m)	1.38-1.84 (8H, m), 2.22-2.30 (2H, m), 2.32-2.44 (1H, m); 2.54 (1H, dd, J=8.0, 13.6 Hz), 3.97-4.13 (2H, m).	2.22.2.44 (3H, m), 2.58 (1H, dd, J=7.5, 13.6 H2) 4.01-4.10 (3H, m), 5.24 (1H, d, J=10.4Hz), 5.31 (1H, d, J=17.3Hz), 5.81.5.98 (1H, m).	2.24-2.57 (4H, m), 4.04-4.14 (1H, m), 4.56(1H,d,J=11.5H2), 4.62(1H,d,J=11.5Hz), 7.41 (5H, 8).
>165 . ESI (Nega)	ESI (Nega) 286 (M-H) ⁻	ESI (Nega) 258 (M-H) ⁻	ESI (Nega) 308 (M-H)
>165 .	>170	>248	>226
	$[\alpha]_0^{26} = -24.8$ $(C = 0.33\%)$	$[\alpha]_D^{2^2} = .34.1$ (C = 1.01%)	
æ	R	R	×
=	-CH ₂ CH ₂ CH ₂ CH ₂ -	н	Ħ
ğ	-СИ2СН	-CH=CH	\Diamond
	н	Ħ	=
но	НО	но	но
но	100	Но	но
8	4	· vo	٠

	44		
光 21	実 例2	東 例2	実施例2
1.78-1.93 (2H, m), 2.23-2.99 (2H, m), 2.31-2.46 (1H, m), 2.54 (1H, dd, 1= 7.39, 1.34 H3, 2.61-2.72 (1H, m), 3.40-3.61 (2H, m), 3.40-3.61 (2H, m), 7.22-7.43 (5H, m),	2.24-2.27 (2H, m), 2.35 (3H, s), 2.37-2.54 (2H, m), 4.08 (1H, dd, J = 7.6, 12.7 Hz), 4.52 (H, dJ = 11.5Hz), 4.53 (H, dJ = 11.5Hz), 7.20-7.36 (4H, m).	2.20-2.27 (4H, m), 3.84-3.90 (1H, m), 4.46(1H,d,J=11.0Hz), 4.55(1H,d,J=11.0Hz), 7.34-7.58 (9H, m).	2.27-2.57 (4H, m), 4.06-4.19 (1H, m), 4.60-4.76 (2H, m), 7.41-7.74 (9H, m).
336 (M-H) ⁻	ESI (Nega) 322 (M-H) ⁻	ESI (Nega) 384 (M-H) ⁻	ESI (Nega) 384 (M-H) ⁻
>230	>215	>180	>180
[α] _p ²⁶ = -43.4 (C = 0.14%)	$[\alpha]_D^{29} = -21.3$ (C = 0.47%)	$[\alpha]_{D}^{26} = -25.6$ (C = 0.16%)	
æ	×	R	R
#	Ħ	ш.	Ħ
Schrö-	△ -3	8	
m	Ħ	Ħ	Ħ
но	но	но	НО
но	но	но	но
1	œ	6	01

	45
実施 例2	发海202
2.28-2.54 (Ht, m), 4.08-4.15 (Ht, m), 4.62(1H,d,J=12.1Hz), 4.70(1H,d,J=12.1Hz), 7.55-7.71 (4H, m).	2.24-2.46 (3.H, m), 2.51 (1H, dd, J=7.5, 13.6 (Hz), 3.83 (3H, s), 4.09 (1H, dJ, J=5.0, 7.5 Hz), 4.54 (1H, dJ=11.7Hz), 4.61 (1H, dJ=11.7Hz), 6.61 (1H, dJ=11.7Hz), 6.55-7.18 (3H, m), 7.38 (1H, t, J=8.1Hz).
ESI (Nega) 376 (M-H)	338 (M-H) ⁻
>220	>165
$[\alpha]_D^{13} = -12.6$ (C = 0.57%)	(C = 0.07%)
R	æ
Н	ш
\	\$\sqrt{\sq}\sqrt{\sq}}}}}}}}}}}\signtimes\signtifta}\signtifta}\signtifta\sintitex{\sqrt{\sq}}}}}}\signtimes\sqrt{\sintitta}\sintitita}\signtifta\sintitita\sintitita\sintititit{\sintiin}}\signtifta\sintitita\sintiin}\signtifta\sintiin}\sintinititit{\sintiin}}}}}\simt{\sintititit{\sintiin}}}}}\signti
Ħ	Ħ
но	но
но	но
12	113
	OH OH H $\stackrel{\text{(cl)}}{\longrightarrow}$ H $\stackrel{\text{(cl)}}{\longrightarrow}$ H $\stackrel{\text{(cl)}}{\longrightarrow}$ $\stackrel{\text{=}-12.6}{\longrightarrow}$ $\stackrel{\text{(SSI (Nega)}}{\longrightarrow}$ $\stackrel{\text{(SSI (Nega)}}{\longrightarrow}$ $\stackrel{\text{(SSI (Nega)}}{\longrightarrow}$ $\stackrel{\text{(SSI (Nega)}}{\longrightarrow}$ $\stackrel{\text{(SSI (Nega)}}{\longrightarrow}$ $\stackrel{\text{(SSI (Nega))}}{\longrightarrow}$ $\stackrel{\text{(SSI (Nega)}}{\longrightarrow}$ $\stackrel{\text{(SSI (Nega))}}{\longrightarrow}$ $\stackrel{\text{(SSI (Nega)}}{\longrightarrow}$ $\text{(SSI (Neg$

WO 03/061698

	46			
发	夹施例2	海 第20	実 例2	
2.26-2.49 (4H, m), 4.03-4.09 (1H, m), 4.53(H,d,=12.0Hz), 4.61(H,d,=12.0Hz), 7.65-7.26 (6H, m), 7.40-7.48 (3H, m).	2.26-2.54 (4H, m), 4.09-4.13 (1H, m), 4.54(1H, d, J=12.0H2), 4.46(1H, d, J=12.0H2), 7.50(1H, t, J=7.9H2), 7.76(1H, d, J=7.9H2), 7.76(1H, d, J=7.9H2), 7.76(1H, s).	2.25-2.34 (2H, m), 2.36-2.0 (2H, m), 4.04-4.18 (1H, m), 4.57-4.73 (2H, m), 7.40-7.64 (2H, m), 7.83-7.93 (2H, m).	2.24-2.34 (2H, m), 2.36-2.62 (2H, m), 4.08-4.20 (1H, m), 4.64-4.80 (2H, m), 7.64-7.68 (1H, m), 7.75-7.24 (1H, m), 8.18-8.28 (2H, m),	
ESI (Nega) 400 (M-H) -	ESI (Nega) 333 (M-H)-	ESI (Nega) 352 (M-H) ⁻	ESI (Nega) 353 (M-H)	
>180	7184	>195	>234	
$[\alpha]_D^{27} = -9.4$ (C = 0.36%)	[d] _D ³⁸ = -11.8 (C = 0.32%)	[α] ₁ ²⁶ = -13.6 (C = 0.23%)	$[\alpha]_D^{26} = -14.1$ $(C = 0.24\%)$	
æ	æ	R	×	
ш	н	Ħ	#	
	<u></u>	⊘ -8	\$________________\	
m ,	Ħ	æ	#	
НО	но	но	но	
но	но	Ю	но	
41	115	16	17	

		47		
新客	東海 第20	東海 92	実施例2	海路 第2
2.23-2.32 (2H, m), 2.34-2.60 (2H, m), 4.05-4.13 (1H, m), 4.48-4.66 (2H, m), 7.00-7.14 (3H, m), 7.32-7.41 (1H, m).	2.39-2.54 (4H, m), 4.07-4.14 (1H, m), 4.53(1H, d, J=11.5H2), 4.60(1H, d, J=11.5H2), 7.11-7.18 (2H, m), 7.37-7.42 (2H, m).	2.22-2.49 (3H, m), 2.57 (1H, dd, J = 7.5, 13.5 Hz), 4.15-4.21 (1H, m), 4.66-4.82 (2H, m), 7.33-7.50 (4H, m).	2.23-2.56 (4H, m), 4.06-4.13 (1H, m), 4.55(1H,d,J=12.1Hz), 4.63(1H,d,J=12.1Hz), 7.31-7.44 (4H, m).	2.29-2.54 (4H, m), 4.05-4.12 (1H, m), 4.54(1H,d,J=11.7Hz), 4.61(1H,d,J=11.7Hz), 7.35-7.44 (4H, m).
ESI (Nega) 323 (M-H)	ESI (Nega) 326 (M-H) ⁻	ESI (Nega) 342 (M-H) ⁻	ESI (Nega) 342 (M-H)	ESI (Nega) 342 (M-H)
>190	>239	>195	>220	>220
$[\alpha]_{D}^{28} = -19.1$ (C = 0.26%, H ₂ O)	[α] _D ²⁹ = -18.9 (C = 0.61%)		[α] _D ⁷⁷ = -12.5 (C = 0.63%)	$[\alpha]_D^{29} = -8.0$ (C = 0.53%)
×	×	×	æ	×
н	н	Ħ	H	Ħ
	Ø.		<u></u>	
m	=	=	H	H
но	но	НО	НО	но
но	НО	НО	НО	но
82	61	20	21	77

実施例2	実施 例2	無 2 2 2 2	報記	実施 例2
2.20-2.48 (3H, m), 2.51 (1H, dd, J = 7.5, 13.5 Hz), 4.04-4.12 (1H, m), 4.54 (H, d, J = 12.1Hz), 7.30-7.59 (4H, m).	2.29-2.56 (4H, m), 4.09-4.16 (1H, m), 4.63-4.76 (2H, m), 7.14-7.31 (3H, m).	2.22-2.55 (4H, m), 4.10-4.17 (1H, m), 4.60(1H,d,J=11.7Hz), 4.65(1H,d,J=11.7Hz), 6.94-7.02 (2H, m), 7.40-7.48 (1H, m).	2.22-2.57 (4H, m), 4.09-4.15 (1H, m), 4.52-4.74 (2H, m), 7.07-7.24 (3H, m).	2.27-2.53 (4H, m), 4.08-4.15 (1H, m), 4.64-4.77 (2H, m), 6.98-7.07 (2H, m), 7.37-7.47 (1H, m),
FAB (Nega) 386 (M-H)	ESI (Nega) 344 (M-H) ⁻	ESI (Nega) 344 (M-H) ⁻	ESI (Nega) 344 (M-H)	ESI (Nega) 344 (M-H)
>250	>180	>170	>200	>180
$[a]_{D}^{29} = -11.7$ $(C = 0.33\%)$	$[\alpha]_{D}^{26} = -18.9$ (C = 0.21%)	$[\alpha]_{D}^{17} = -8.7$ (C = 0.48%)		$[\alpha]_{D}^{26} = -5.1$ (C = 0.26%)
×	R	R	×	R
Ħ	н	н	н	Ħ
△	<u></u>		, C	"-_
Ħ	Ħ	, ==	н	Ħ
но	но	НО	но	но
но	НО	но	но	но
ĸ	2	25	26	7.2

. .

		**		
发 22	東 例2	東 第 92	実 例2	東 例 例 2
225-246 (3H, m), 128 (Hz), 4.10 (1H, dd, J = 7.8, 4.10 (1H, dd, J = 6.6, 12.8 (Hz), 4.52 (1H, dJ = 11.7Hz), 4.59 (1H, dJ = 11.7Hz), 7.16-7.32 (3H, m).	2.22-2.58 (4H, m), 4.07-4.14 (1H, m), 4.55(1H,d,J=12.7Hz), 4.62(1H,d,J=12.7Hz), 6.87-7.01 (3H, m).	2.28-2.62 (4H, m), 4.13-4.23 (1H, m), 4.70-4.85 (2H, m), 7.31-7.56 (3H, m).	2.28-2.60 (4H, m), 4.13-4.19 (1H, m), 4.62-4.84 (2H, m), 7.37-7.54 (3H, m).	2,22-2.62 (4 H, m), 4,15-4,20 (1 H, m), 4,62-4.85 (2 H, m), 7,32-7.56 (3 H, m).
344 (M-H) [–]	ESI (Nega) 344 (M-H) ⁻	ESI (Nega) 376 (M-H)	ESI (Nega) 376 (M-H) ⁻	ESI (Nega) 376 (M-H) ⁻
>220	>185	>210	>215	>195
[α] _p ²⁷ = -16.0 (C = 1.07%)	[a] _D ²⁷ = -14.4 (C = 1.08%)	$[\alpha]_D^{25} = -37.8$ (C = 0.40%)	$[\alpha]_D^{24} = -21.1$ (C = 0.25%)	
×	×	R	R	¥
н	н	Н	н	н
Ş		Ş-5	Ş	5
. #	Ħ	Ħ	=	=
НО	но	но	НО	НО
НО	Ю	НО	но	но
8	82	30	31	32

海海 32	海 例2	多名2	美 名2
2.22-2.59 (4H, m), 4.17-4.24 (1H, m), 4.76-5.45 (2H, m), 4.96(1H,d.J=10.9Hz), 7.29-7.48 (3H, m).	2.28-2.45 (3H, m), 2.50 (1H, dd, J = 7.6, 13.4 Hz), 4.05-411 (1H, m), 4.52 (1H, d, J=12.1Hz), 4.60 (H, d, J=12.1Hz), 7.26-7.58 (3H, m).	2.06 (IH, dd, J = 4.3, 148 BB), 2.18-2.30 (IH, m), 2.05-2.83 (IH, m), 4-48-4.58 (3H, m), 7.29(IH, d, J=7.942), 7.54(IH, d, J=7.942), 7.56 (IH, s).	2.22-2.55 (4H, m), 4.05-4.12 (1H, m), 4.25(1H, d,)=12.4Hz), 4.60(1H, d,)=12.4Hz), 7.34-7.44 (3H, m).
ESI (Nega) 376 (M-H)	FAB (Nega) 376 (M-H)	ESI (Nega) 376 (M-H)	ESI (Nega) 376 (M-H) ⁻
>195	>230	>243	>180
[α] ²⁶ = -18.9 (C = 0.42%)	[G] _D ⁷⁷ = -10.0 (C = 1.02%)	[a] _b ²⁷ = -28.3 (C = 0.33%)	$[\alpha]_{D}^{27} = -9.4$ (C = 0.38%)
×	×	S	R
Ħ	н	н	н
5—	Ğ−ō	5.5	
æ	Ħ	н	н
НО	но	НО	но
НО	но	но	но
33	34	33	36

	51		
海 22	发 2 2	海 2 2	整8
2.22.2.45 (3H, m), 2.51 (1H, dd, J = 7.6, 13.4 Hz, 4.20 (1H, m), 4.54(1H, d, J=12.1Hz), 4.61(1H, d, J=12.1Hz), 7.13.7.20 (1H, m), 7.22.7.30 (1H, m), 7.44.7.53 (1H, m),	2.33-2.30 (2H m), 2.33-2.46 (1H, m), 2.53 (1H, dd, J= 7.8, 13.7 Hz), 4.06-4.18 (1H, m), 4.62-4.73 (2H, m), 7.16-7.23 (1H, m), 7.35-7.43 (1H, m), 7.45-7.53 (1H, m),	2.28-2.29 (2H, m), 2.36-2.43 (1H, m), 2.50 (1H, dd, J = 13.4, 7.3 Hz), 4.55-4.11 (1H, m), 4.50 (1H,d.)=13.4Hz), 4.50 (1H,d.)=13.4Hz), 7.51 (2H, s).	2.22-2.58 (4H, m), 4.07-4.14 (1H, m), 4.64-4.82 (2H, m).
ESI (Nega) 360 (M-H)	SSI (Nega) 360 (M-H) ⁻ 360 (M-H) ⁻ 410 (M-H) ⁻ 410 (M-H) ⁻		ESI (Nega) 398 (M-H)
>276	>174	>189	>250
$[\alpha]_D^{II} = -8.7$ $(C = 0.43\%)$	$[\alpha]_D^{23} = -17.6$ (C = 0.45%)	$[\alpha]_0^{29} = 4.1$ (C = 0.39%)	·
Я	R	R	R
Ħ	н	н	н
, D	<u></u>	ō 5	r
Ħ	н	Ħ	Ħ
но	НО	но	НО
но	но	но	но
75	38	88	\$

		52	
海 第29	実 第 22	実施例2	英 例 多
2.23-2.48 (4H, m), 4.15-4.21 (1H, m), 5.02(1H,d,j=11.9H2), 5.09(1H,d,j=11.9Hz), 7.50-7.68 (4H, m), 7.94-8.05 (2H, m), 8.15(1H, d, J=8.1Hz).	2.25-2.55 (Ht, m), 4.10-4.19 (IH, m), 4.73-4.84 (2H, m), 7.58-7.61 (3H, m), 7.92-7.99 (4H, m).	2.28-2.51 (4H, m), 4.09-4.13 (1H, m), 4.09-4.13 (1H, m), 7.50(1H,dd, J=7.9Hz), 7.68(1H, d, J=7.9Hz), 7.75(1H, d, J=7.9Hz), 7.76 (1H, s).	0.80-0.94 (3H, m), 1.06-1.16 (3H, m), 1.42-1.23 (3H, m), 2.18-2.30 (3H, m), 2.32-2.48 (1H, m), 2.48-2.60 (1H, m), 3.43-2.63 (1H, m), 4.03-4.18 (1H, m),
ESI (Nega) 358 (M-H) ⁻	ESI (Nega) 358 (M-H) ⁻	ESI (Nega) 314 (M-H) ⁻	ESI (Nega) 288 (M-H)
>185	>210	>217	>170
$[\alpha]_D^{26} = -25.7$ (C = 0.19%)	$[\alpha]_D^{30} = +5.7$ (C = 0.50%)	[a] ₃ ²³ = -11.6 (C = 0.36%)	ı
R	R	×	×
н	н	×	n-Pr
\Diamond		\$	Ме
Ħ	Ħ	#	=
но	но	Ю	НО
НО	НО	НО	но
14	5	8	4

VO 03/061698			PCT/JP02/13693
海 202 202	概 第 23	製製 	
	ğ ğ, ç	2 222	
ESI (Nega) 322 (M-H)	ESI (Nega) 390 (M-H) ⁻	ESI (Nega) 390 (M-H)	
>190	>186	>167	
1	(C = 0.95%)	$[\alpha]_{D}^{27} = -62.1$ (C = 1.39%)	
×	R	R	
Ме	Me (R*)	Me (S*)	
\Diamond	Ö -ō	, , ,	
ш	Ħ	Ħ	
НО	НО	но	
НО	но	НО	
\$	46	44	

54			
概略	多 83	無 23 超	
0.78 (3H, t, J=7.2Hz), 11.90.1.68 (1H, m), 2.03-2.79 (1H, m), 2.03-2.77 (4H, m), 2.38-2.62 (2H, m), 3.83-3.54 (1H, m), 4.34 (1H, t, J=6.8Hz), 7.26 (1H, d, J=8.2Hz), 7.51 (1H, s), 7.51 (1H, s),	081 GH, t, 1=7.3H2), 1.52-1.70 (H, m), 1.70-1.20 (H, m), 2.06-2.56 (CH, m), 2.70-3.52 (CH, m), 3.70-3.52 (H, m), 4.28 (H, t, 1=6.7Hz), 7.30 (H, d, 1=8.2Hz), 7.51 (H, d, J=8.2Hz),	0.86 (3H, t, J=7.2Hz), 1.127-40 (2H, m), 1.46-1.64 (1H, m), 1.70-1.86 (1H, m), 2.12-2.34 (2H, m), 2.38-2.64 (2H, m), 2.38-2.64 (2H, m), 2.68-3.83 (1H, m), 4.36 (1H, t, J=6.6Hz), 7.30 (1H, t, J=6.6Hz), 7.30 (1H, t, J=6.8Hz), 7.35 (1H, t, J=6.8Hz),	
ESI (Nega) 404 (M-H)	ESI (Nega) 404 (M-H) ⁻	ESI (Nega) 418 (M-H)	
>165	>170	V190	
$[\alpha_1]_0^{23} = +68.4$ $(C = 1.04\%)$	[c] _b ²⁹ =-71.6 (C=1.21%)	[α] _p ²⁸ = -63.3 (C = 1.07%)	
R	×	×	
Et (R*)	Et (S*)	n-Pr (R*)	
2	⁵ √5	₽ 2	
н	Ħ	보	
НО	Ю	но	
но	но	но	
84	49	20	

55				
実施 例3	実施 例2	実施 例2	実施 例2	发 例2
0.84 (3H, t, 1=7.4Hz), 1.04-1.38 (2H, m), 1.42-1.64 (1H, m), 2.00-2.39 (4H, m), 3.83-3.98 (1H, m), 4.42 (1H, t, 1=6.8Hz), 7.27 (1H, d, 1=9.5Hz), 7.50-7.59 (2H, m).	2.23-2.53 (4H, m), 4.01-4.08 (1H, m), 5.61 (1H, s), 7.35-7.44 (1H, m).	2.25-2.42 (4H, m), 3.99-4.06 (1H, m), 5.61 (1H, s), 7.10-7.17 (4H, m), 7.37-7.43 (4H, m).	2.25-2.49 (4H, m), 3.38-4.07 (1H, m), 5.59 (1H, s), 7.34-7.44 (8H, m).	1.98-2.12 (1H, m), 2.14-2.26 (1H, m), 2.29-2.39 (1H, m), 2.55-2.72 (1H, m), 4.46-4.60 (1H, m), 5.58 (1H, 8), 7.33-7.47 (8H, m).
ESI (Nega) 418 (M-H)	ESI (Nega) 384 (M-H) ⁻	ESI (Nega) 420 (M-H)	ESI (Nega) 452 (M-H) ⁻	ESI (Nega) 452 (M-H) ⁻
×1188	>230	>190	>215	>260
$[\alpha]_{b}^{30} = +63.9$ (C = 0.82%)	$[\alpha]_{\mathbf{D}}^{26} = -29.8$ (C = 1.04%)	$[\alpha]_D^{24} = -24.5$ (C = 1.05%)		$[\alpha]_{\mathbf{D}}^{T} = -25.3$ $(C = 0.30\%)$
×	В	R	×	S
п-Рг (3*)	\Diamond		\$	
20	\Diamond	Ø [*]	Ö	Ş
Ħ	Н	н	Ħ	Ħ
но	но	но	но	НО
но	Но	но	но	но
15	23	ß	2%	88

		56	
发 例 2	海路 93	英語 例3	
2.26-2.47 (4H, m), 3.96-4.10 (1H, m), 5.57 (1H, s), 7.31(1H, d, J=8.2Hz), 7.53(1H, d, J=8.2Hz), 7.55 (1H, s).	1.47(3H, d, J=6.4Hz), 12.8 (Hz), 2.10.2.4 (H, m), 2.10.2.4.2.3 (H, m), 3.96 (H, dt, J=5.0, 7.64(B), 7.51.7.60 (3H, m), 7.51.7.60 (3H, m), 7.93.7.98 (3H, m),	1.49(3H, d, J=6.4Hz), 2.20(1H, dd, J=2.0, 7.8Hz), 2.27-2.31(1H, m), 2.45-2.62(2H, m), 2.45-2.62(2H, m), 2.45-2.62(2H, m), 1.25 Hz), 7.57-7.62(3H, m), 7.57-7.62(3H, m), 7.58-8.01(4H, m),	
ESI (Nega) S20 (M-H) ⁻	ESI (Nega) 372 (M-H) [–]	ESI (Nega) 372 (M-H)	
>206	>188	>188	
[α] _D ³¹ =-5.1 (C=0.42%)	[α] _D ²² =+72.4 (C = 0.52%)	[α] _D ²² = -36.1 (C = 0.49%)	
×	R	×	
\$_2	Me (R*)	Me (5*)	
5-5	-🔷	-	
н	ш	Ħ	
но	но	но	
НО	но	но	
99	75	88	

	57
表 名 名	名名
130 GH, L-73HD, 131 GH, L-73HD, 210-229 GH, m) 20-245 GH, m) 368-373 GH, m) 414-42 GH, m) 447 (H-4]-12.HD, 467 (H-4]-12.HB, 19 GH, d, J-8, HB, 18 HB, 737 GH, d, J-8, HB,	1.29 (3H, t, J=6.9Hz), 2.34-2.60 (2H, m), 2.52-2.68 (2H, m), 40.6-4.18 (1H, m), 4.0-4.34 (1H, m), 4.8-4.63 (1H, m), 7.15-7.20 (1H, m), 7.47 (1H, d, J=7.3Hz), 7.52 (1H, s).
ESI (Pos) 434(M+H) ⁺	ESI (Nega) 404 (M-H)
lio lio	>158
(cl _b ²⁶ ±+12.9 (C = 0.60%, CHCl ₃)	(C = 0.24%)
×	×
ш	ш
\$_2	5-5
🛱	ш .
OE	но
OER	OEt
8	60*1

	58
東 超 6	沒施 2011
131 (3H, t, 1=7.3Hz), 2.4 Hz), 2.4 Hz), 2.4 2.5 (H, 4t), 2.4 2.5 (H, 4t), 2.4 2.5 (H, 4t), 2.3 Hz), 2.3 Hz), 4.5 ((H, 4, 1=134, 4.2 4.2 (3H, 4t), 4.2 ((H, 4, 1=134, 4.2 ((H, 4, 1=134,	0.89-0.94 (GR, m), 1.62-1.71 (SR, m), 2.44-2.99 (RR, m), 2.44-2.99 (RR, m), 4.10-4.14 (RR, m), 4.10-4.14 (RR, m), 4.24-3.72 (RR, m), 4.54 (GR, d), 1-1.68 (RR, d), 5.30 (GR, d), 1-1.68 (RR, d), 7.55 (GR, d), 1-8-68 (RR, d), 7.55 (GR, d),
ESI (Nega)	ESI (Nega)
>233	>190
[G] _D ²⁸ = -24.8 (C = 0.35%)	[cd] ²³ = -7.6 (C = 0.46%)
R	. ~
H	Ħ
5-5	\$\sqrt{\sq}}\sqrt{\sq}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}
н	н
OEA	Ю
но	# H H
29	g

59			
減 超 10	実施 例2	海海 多名	
149(3H, d, J=6,8H2), 217-218 (1H, m), 221-236 (1H, m), 275-228 (1H, m), 427-228 (1H, m), 420(H, d)=11,3H2, 470(H, d)=11,3H2, 470(H, d)=11,3H2, 720(H, d, J=7,8H2), 750-738 (H, m).	1.30 (3H, t, J=7.3Hz), 2.06-2.52 (4H, m), 3.64-322 (1H, m), 3.92-4.14 (2H, m), 4.24 (2 H, q, J=7.3 Hz), 5.08-5.37 (4H, m), 5.66-5.85 (1H, m), 7.30-7.48 (5H, m), 7.30-7.48 (5H,	129 (3H t, 1=7.2Hz), 225.2.28 (H, m), 225.2.24 (GH, m), 235.2.24 (GH, m), 276.2.28 (H, m), 276.24 (GH, m), 276.738	
ESI (Nega) 447 (M-H)	ESI (Pos) 400 (M+H)*	ESI (Pos) 450 (M+Na)*	
>260	75	io	
(C = 0.22%)	[a] _b ²⁶ =- 17,4 (C = 0.04%, CHC ₃)		
×	×.	. x	
=	#	ш	
<u></u> 5	-св=св,		
\$\ N	Ħ	. 🛱	
. 🖼 .	OBn	OBn	
НО	OEt	OE	
83*1	2	S	

		60	
東 名 名	海型	実施例2	展 22
1.20-1.38 (6H, m), 2.08-2.48 (4H, m), 3.68-3.85 (1H, m), 4.15-4.40 (4H, m), 4.44-4.65 (2H, m), 7.21-7.42 (5H, m).	1.25-1.39 (GH, m), 1.72-2.70 (SH, m), 3.34-3.70 (3H, m), 4.14-444 (H, m), 7.12-7.34 (5H, m).	1.29 (3H, t, J=7.2Hz), 2.08.2.46 (4H, m), 2.23 (3H, s), 3.74-3.82 (1H, m), 4.23(2H, q, J=7.2Hz), 4.47(1H, d, J=11.7Hz), 5.20(1H, d, J=11.7Hz), 5.30(1H, d, J=12.4Hz), 5.30(1H, d, J=12.4Hz), 5.30(1H, d, J=12.4Hz), 5.39(1H, m).	1.20-1.35 (3H, m), 2.08-2.35 (4H, m), 3.85-4.00 (1H, m), 4.77(2H, q, J=7.2H2), 4.30-4.55 (2H, m), 5.20(1H, q, J=12.2H2), 5.34(1H, q, J=12.2H2), 7.26-7.58 (14H, m).
ESI (Pos) 366 (M+H) ⁺	ESI (Pos) 416 (M+Na) ⁺	ESI (Pos) 464 (M+Na)*	ESI (Pos) 526 (M+Na) ⁺
15	78	ïö	lio
[α] _p ²⁸ = -2.2 (C = 0.31%, CHCl ₃)	[a] _D ²⁴ =. 16.0 (C = 0.47%, CHCl ₃)		
R	×	×	R
н	н	Ħ	Ħ
\Diamond	() _{2(6HO)} .	∑ -\$	
Ħ	н	Ħ	Ħ
OEt	OEt	OBa	OBn
. OEt	OEt	OEt	OEt
99	29	89	9

· 概略	突着 例2	海路 202
1.20-1.33 (3H, m), 2.10-2.30 (4H, m), 3.75-3.88 (1H, m), 4.5 (1H, d) = 11.8 Hz, 4.60 (1H, d) = 11.8 Hz, 4.60 (1H, d) = 12.4 Hz, 5.19 (1H, d) = 12.4 Hz, 5.20 (1H, d) = 12.4 Hz,	122-134 (3H, m), 2.08-2.50 (4H, m), 3.74-3.88 (1H, m), 4.19-4.28 (2H, m), 4.55 (1H, d)=11.7Hz), 4.08 (1H, d)=11.7Hz), 5.20 (1H, d)=11.7Hz), 5.20 (1H, d)=11.24Hz), 7.20-7.62 (4H, m).	1.20-1.35 (3H, m), 2.10-2.45 (4H, m), 3.73-4.85 (1H, m), 4.24(2H, q, 1=7.2 Hz), 4.54(1H, d, 1=12.0 Hz), 5.19(1H, d, 1=12.0 Hz), 5.29(1H, d, 1=12.4 Hz), 7.26-7.51 (9H, m).
ESI (Pos) 526 (M+Na)*	ESI (Pos) 526 (M+Na) [†]	ESI (Pos) 518 (M+Na) [†]
110	IIO .	75
æ	R	R
Ħ	Н	Ħ
		Ş>-5°
=	Ħ	₩ .
OBn	OBn	ОВп
OE	OEt	OE
07	Ľ	22

	62	
鬼鬼 22	海路 例2	実施 例2
120-140 (3H, m), 2.05-2.48 (4H, m), 3.70-3.88 (4H, m), 415-430 (2H, m), 450 (1H, d)=11.7123, 450 (1H, d)=11.7123, 5.20 (1H, d)=12.2123, 6.80-7.40 (8H, m).	130 (3H, t, J = 7.0 Ha), 2.06-2.46 (4H, m), 3.69-3.84 (1H, m), 4.24(2H, q, J=7.0412), 4.60(1H, d, J=12.1H2), 5.14(1H, d, J=12.1H2), 5.23(1H, d, J=12.3H2), 6.76-740 (4H, m).	1.21-1.38 (6H, m), 2.12-2.54 (4H, m), 3.71-3.88 (1H, m), 4.19-4.35 (4H, m), 4.55(1H,d_j=12.5Hz), 7.36.7.62 (4H, m).
ESI (Pos) 480 (M+Na)*	ESI (Pos) 542 (M+Na) ⁺	ESI (Pos) 413 (M+Na) ⁺
75	10	ïë
•		[d] ₂ ⁸ =+10.9 (C=0.41%, CHCl ₃)
×	¥	×
Ħ	ш	Ħ
ØN-O		△ -5
Ħ	量	=
OBn	ОВп	OEt
OE	OEt	OEt
k	74	55

海路 25	光客	報覧
1.24.156 (6H, m), 2.12.229 (2H, m), 2.38.249 (2H, m), 3.70.366 (1H, m), 3.92 (3H, 8), 4.144.24 (3H, m), 4.56(H, 4, l=12.1H2), 4.72(H, 4, l=12.1H2), 7.33.752 (2H, m),	133 (3H, t, 13-7,0Hz), 132 (3H, t, 13-7,0Hz), 242-24 (2H, m), 242-24 (2H, m), 426(2H, g, 13-7,0Hz), 417-44 (2H, m), 462(1H, 13-12,3Hz), 481(1H, 13-12,3Hz), 744-76 (2H, m),	130 (6H, i, j=7.1Hz), 2.26-2.28 (2H, m), 2.32-2.6 (2H, m), 3.68-3.82 (1H, m), 4.14-4.38 (8H, m), 4.44(H.d.j=11.8Hz), 4.55(H.d.j=11.8Hz), 6.53-6.70 (3H, m), 7.02-7.18 (1H, m),
ESI (Pos) 446 (M+Na)*	ESI (Pos) 433 (M+Na)*	ESI (Pos) 403 (M+Na) [†]
iio	₹	II0
[c] _D ⁷⁷ =-6.0 (C = 0.66%, EtOH)	[clp, 2=3.4 (C=0.56%, CHCl ₃)	[G]b=-27.0 (C=0.26%, CHCl ₃)
æ	æ	24
ш	ш	н
antico	<u></u>	<u></u>
. 🗷	ш	Ħ
OE	OE	OEt
) ja	OEt	igo.
92	4	82

64			
英路 例2	東 22	发 名	
1.30 (3H, t, J=7.3Hz), 2.08.2.48 (4H, m), 3.70.3.83 (1H, m), 4.24 (2H,q.)=7.3Hz), 4.46 (1H, d., J=11.5 Hz), 4.59 (1H, d, 1=11.5Hz), 5.31 (1H,d.)=12.4Hz), 5.31 (1H,d.)=12.4Hz), 5.49.7.37 (9H, m).	1.10-1.25 (3H, m), 2.10-2.55 (4H, m), 3.78-3.90 (1H, m), 4.24 (2H, q, J= 7.2 Hz), 4.55-4.70 (2 H, m), 5.19 (1H, d, J=1.24 Hz), 5.29 (1H, d, d, j=1.24 Hz), 7.197-35 (9H, m).	120.135 (3H, m), 370.245 (4H, m), 370.345 (1H, m), 420(H, q), 47.2124, 460(H,d)=12.0182, 460(H,d)=12.0182, 531(H,d)=12.3182, 531(H,d)=12.3182, 531(H,d)=12.3182,	
ESI (Pos) 468 (M+Na) ⁺	ESI (Pos) 484 (M+Na) ⁺	ESI (Pos) 484 (M+Na)*	
lio	110	lio	
×	R	R	
Ħ	Ħ	н	
		<u></u>	
н	н	н	
OBn	OBn	ОВи	
OEt	OEt	061	
79	98	28	

65	
東 202	发 202 202
1.20-1.38 (3H, m), 2.08-2.47 (4H, m), 3.70-3.88 (1H, m), 4.18-4.30 (2H, m), 4.45(1H,d.)=12.0Hz), 5.31(1H,d.)=12.3Hz), 5.31(1H,d.)=12.3Hz), 7.08-7.45 (9H, m).	120-135 (3H, m), 210-250 (4H, m), 42-42H, q, 19-72H2), 45-473 (2H, m), 518(1H,d)=12.4H2), 529(1H,d)=12.4H2), 6.29(7.36 (8H, m).
ESI (Pos) 530 (M+Na)*	ESI (Pos) 464(M+H)*
평	По
A.	×
 #	Ħ
∑ -ă	<u></u>
Щ	ш
OBn	OBn
OEt	OEt
8	2
	OE1 OBn H

	66					
发展 倒2	多数 22	张 8 名 2				
120-135 (3H, m), 2.10-2.50 (4H m), 3.73-3.85 (1H, m), 4.424(2H, q, 1=7.2Hz), 4.45-4.65 (2H, m), 5.27(1H, d, 1=12.4Hz), 5.28(1H, d, 1=12.4Hz), 5.28(1H, d, 1=12.4Hz), 7.21-7.35 (6H, m),	120-135 (3H, m), 2.10-25 (4H, m), 3.75-38 (1H, m), 4.15-430 (2H, m), 4.54(1H,d,)=12.7H3), 5.19(1H,d,)=12.7H3), 5.19(1H,d,)=12.4H3), 6.90-7.37 (8H, m).	1.10-1.33 (3H, m), 2.08-2.48 (4H, m), 3.73-3.88 (1H, m), 4.18-4.28 (2H, m), 4.50(H, d)=12.0H2), 4.73(H, d)=12.0H2), 5.28(H, d, d)=12.3H2), 6.88(2H, d, d)=12.3H2), 6.88(2H, d, d)=12.3H2), 7.20-7.40 (6H, m).				
ESI (Pos) 518(M+H)*	ESI (Pos) 464(M+H)*	ESI (Pos) 486 (M+Na)*				
ijo	llo	\text{\ti}\text{\texi{\text{\tex{\tex				
æ	R	×				
Ħ	ш	ш				
	Ď	<u></u>				
н	Ħ	ш.				
OBn	OBa	OBa				
OEt	OEt	OE				
8	%	8.2				

	67						
海 第22	展 22	海路22	多 22				
1.20-1.35 (3H, m), 2.10-2.50 (4H, m), 3.70-3.80 (1H, m), 4.18-4.60 (2H, m), 5.20 (1H, d)=1.2.3H3, 5.32 (1H, d)=1.2.3H3, 6.33-7.34 (6H, m).	1.18-1.38 (3H, m), 2.09-2.50 (4H, m), 3.68-38 (1H, m), 4.15-4.32 (2H, m), 4.40-4.68 (2H, m), 5.12-5.18 (2H, m), 6.60-6.00 (2H, m), 7.23-7-45 (6H, m),	1.22-1.56 (3H, m), 2.12-2.58 (4H, m), 4.19-4.39 (2H, m), 4.24-70 (2H, m), 5.12-5.35 (2H, m), 7.06-7.43 (8H,	1.19-1.40 (3H, m), 2.10-2.88 (H, m), 3.65-3.90 (1H, m), 4.15-4.35 (2H, m), 4.52-4.58 (2H, m), 5.16(1H.d.J=12.5Hz), 5.30(1H.d.J=12.5Hz), 7.10-7.30 (6H, m).				
ESI (Pos) 486 (M+Na) ⁺	ESI (Pos) 486 (M+Na)*	ESI (Pos) 518 (M+Na)*	ESI (Pos) 496(M+H)				
75	19	75	, ie				
R	R	R	a .				
Н	н	н	н				
<u>~</u>	<u></u>	\$\bigs_{\operatorname{\sigma}}^{\operatorname{\sigma}}\$					
Ħ	· ш	₩	. н				
OBn	ОВа	OBn	OBn				
OEt	OEt	OEt	OEt				
*	88	06	. 91				

68 東海 第2 東越 海湖 经 4.53(1H,d,J=12.5Hz), 7.10-7.19 (1H, m,), 7.36-7.45 (2H, m). 4.23(2H, q, J=7.2Hz), 4.76(1H,d,J=10.7Hz), 4.87(1H,d,J=10.7Hz), 5.16(1H,d,J=12.4Hz), 5.25(1H,d,J=12.4Hz), 7.15-7.34 (8H, m). 4.43(1H,d,J=12.5Hz), 4.48-4.70 (2H, m), 5.15-5.38 (2H, m), 7.13-7.43 (8H, m). 2.10-2.58 (4H, m), 3.80-3.90 (1H, m), 4.20-4.33 (2H, m), 4.18-4.35 (2H, m), 4.38-4.65 (2H, m), 5.05-5.38 (2H, m), 2.05-2.50 (4H, m), 3.80-3.90 (1H, m), 4.18-4.34 (4H, m), 1.23-1.33 (3H, m), 1.20-1.35 (3H, m), 2.05-2.50 (4H, m), 3.68-3.85 (1H, m), 2.02-2.28 (2H, m), 2.51-2.80 (2H, m), 3.98-4.08 (1H, m), 1.24-1.40 (6H, m) 7.05-7.45 (8Н, ш) ESI (Pos) 496(M+H)⁺ ESI (Pos) 456 (M+Na)* ESI (Pos) 518 (M+Na)* 귱 귱 쩅 귱 [a]_b²²=+11.6 (C = 0.50%, CHCl₃) S × × × Ħ H Ħ H Ħ H H Ħ OBn OBn OEt OBn ă Ġ. ğ OE

g

2

\$

	69				
	海 第25	漢 25	美 例2	強 記	
	1.30 (3H, t, 1=7.3Hz), 2.06-2.54 (4H, m), 3.73-3.92 (1H, m), 4.24 (2H, q, 1=7.3Hz), 4.53-4.72 (2H, m), 5.17 (1H, d ₁)=12.3Hz), 5.30 (1H, d ₁)=12.3Hz), 5.30 (1H, d ₁)=12.3Hz), 6.34-7.40 (6H, m).	1.32 (6H, t, J=7.1Hz), 2.18-2.46 (4H, m), 3.70-3.85 (1H, m), 4.15-4.40 (4H, m), 4.45(1H, d, J=12.3Hz), 4.64(1H, d, J=12.3Hz), 7.29 (1H, s), 7.22 (1H, s),	1.31(3H, t, J=7.3Hz), 2.10.2.48 (4H, m), 4.25(3H, m), 4.25(3H, m), 4.40(1H, d)=12.1Hz), 4.40(1H, d)=12.1Hz), 5.32(H, d)=12.1Hz), 5.32(H, d)=12.1Hz), 6.35(H, d)=12.1Hz), 6.35(H, d)=12.1Hz), 7.28-7.38 (6H, m), 7.28-7.38 (6H, m),	1.20-1.39 (6H, m), 2.10-2.54 (4H, m), 3.70-3.86 (1H, m), 4.16-440 (4H, m), 4.52-4.82 (2H, m).	
	ESI (Pos) 480(M+H)*	ESI (Pos) 490 (M+Na) [†]	ESI (Pos) 480(M+H)*	ESI (Pos) 456(M+H) ⁺	
	ii0	lio .	oil	lio	
	[a] _b ²⁵ =1.5 (C=1.15%, CHCl ₃)		[α] _D ² =+11.9 (C = 1.05%, CHCh)	[α] _D ²⁶ =+4.5 (C=0.44%, CHCl ₃)	
	24 .	R	. B	R	
	Н	н .	н	н	
	Ö -5	5 5	₽		
	ш	н	, #	Ħ	
	OBn	OEt	OBn	OEt	
•	OEt	OEt	OEt	OEt	
	. &	26	. 86	66	

70

70		
英施 例2	東 例2	是 第
120-135 (3H, m), 2.10-2.48 (4H, m), 3.80-3.90 (1H, m), 4.18-4.28 (2H, m), 4.66(1H,d.)=11.8Hz), 4.77(1H,d.)=11.8Hz), 5.20(1H,d.)=11.3Hz), 5.23(1H,d.)=12.3Hz), 7.22-7.82 (12H, m),	1.23-1.40 (6H, m), 2.05-2.45 (4H, m), 3.65-3.85 (1H, m), 4.15-4.45 (4H, m), 4.65-4.85 (2H, m), 6.90-7.00 (2H, m), 7.23-7.33 (1H, m),	0.82-0.94 (3H, m), 1.02-1.10 (3H, m), 1.16-1.46 (10H, m), 2.06-2.44 (4H, m), 3.32-3.78 (2H, m), 4.12-4.40 (4H, m).
ESI (Pos) 500 (M+Na)*	ESI (Pos) 394 (M+Na)*	ESI (Pos) 368 (M+Na) ⁺
ii o	ig	II o
	[α] _D ² =+1.7 (C = 0.42%, CHCt ₃)	ı
æ	×	× .
ш	н	ı.P.
-	ÿ	Me
` =	=	=
OBn	OE	0Et
OEt	OEt	OE
101	102	103
	OER OBR H R R 001 500 (04-Na) 723-753 (12H m), 215-246 (4H m),	OER OER HE S HE S CENTRAL STREET CORPUS HE S CORPUS HE

-

		, , -
发 多 3	展 23	海路 22
1.20-1.35 (6H, m), 2.00-2.40 (4H, m), 3.53-3.70 (1H, m), 4.2(2.H, q, J=7.0HE), 4.67(1H, q, J=6.6HE), 5.21(1H, d, J=12.4HE), 5.38(1H, d, J=12.4HE), 6.39-7.45 (8H, m).	1.22-1.33 (6H, m), 2.08-2.06 (4H, m), 3.48-3.62 (1H, m), 4.24.2H, q, J=7.3H2), 4.36(1H, q, J=6.4H2), 5.15(1H, d, J=12.4H2), 5.31(1H, d, J=12.4H2), 7.04-7.46 (8H, m).	1.20-1.38 (3H, m), 1.91-2.45 (7H, m), 3.44-3.70 (1H, m), 4.06-4.26 (2H, m), 4.30-4.71 (1H, m), 5.11-5.41 (2H, m), 7.13-7.49 (10H, m),
ESI (Pos) 532 (M+Na)*	ESI (Pos) 532 (M+Na)*	ESI (Pos) 464 (M+Na)*
- 5	16	ig.
[d]p 2=+39.9 (C=1.37%, CHCl ₃)	[α] _D ²⁸ =-34.2 (C = 1.12%, CHCl ₃)	
24 .	R	R
Me (R*)	Me (5*)	Me
5-5	⊘ 5	
. #	н	н
OBn	ОВп	ОВп
OEt	OEt	OEt
101	105	106

	72	
张 图 83	被 23	表 第8
0.77 (3H, t, J=7.4Hz), 1.27 (3H, t, J=7.0Hz), 1.36-1.78 (2H, m), 1.92-2.34 (4H, m), 3.40-3.66 (1H, m), 3.40-3.66 (1H, m), 4.37(H, t, J=6.6 Hz), 5.30(H, d, J=1.2.4Hz), 5.30(H, d, J=1.2.4Hz), 6.94-7.03 (1H, m), 7.24-7.90 (7H, m),	0.77 (3H, t, J=7.5Hz), 1.27 (3H, t, J=7.0Hz), 1.43.1.70 (3H, th, J=7.0Hz), 2.08.2.48 (4H, m), 3.41.3.57 (1H, m), 4.21(2H, q, J=7.0Hz), 5.17.5.23 (2H, m), 7.03-7.13 (1H, m), 7.03-7.49 (7H, m),	0.84(3H, t, J = 7.3H2), 1.08-1.59 (7H, m), 2.08-2.50 (4H, m), 3.35-3.58 (1H, m), 4.03-4.34 (3H, m), 5.23 (2H, s), 7.02-7.12 (1H, m), 7.77-7.48 (7H, m),
ESI (Pos)	ESI (Pos) 546 (M+Na)*	ESI (Pos) 560 (M+Na) [†]
5	8	75
[clp ²² =+39.0 (C=1.09%, CHCl ₃)	[α] _D ² =47.7 (C = 1.05%, CHCl ₃)	[α] _p ²⁸ =40.7 (C=1.16%, CHCl ₃)
~ ≃	×	×
Et (R*)	Et (S*)	n-Pr (R*)
5-5	\$\sqrt{5}	_5 5
н	н	н
OBn	OBn	OBn
OEt	OEt	1 <u>3</u> 0
107	108	109

	73		
火施 例3	実路例2	海路 22	
0.84 (3H, t, J=7.0Hz), 1.06.1.46 (7H, m), 1.88.2.36 (4H, m), 3.48.3.72 (1H, m), 4.06.4.28 (2H, m), 4.36.4.27 (1H, m), 5.20 (1H, d, J=1.2.3Hz), 5.40 (1H, d, J=1.2.3Hz), 7.23.7.28 (1H, m), 7.23.7.28 (1H, m),	1.27 (3H, t, 1=7.2Hz), 2.01-2.44 (4H, m), 3.70-3.82 (H, H, 1=7.2Hz), 5.12(H, d, 1=7.2Hz), 5.30(H, d, 1=1.2.4Hz), 5.30(H, d, 1=1.2.4Hz), 5.47 (H, 9), 7.17-7.41 (15H, m).	1.23-1.33 (3H, m), 2.08-2.40 (4H, m), 3.65-3.80 (1H, m), 4.16-4.28 (2H, m), 5.13(1H, d, j=12.3Hz), 5.47 (1H, s), 7.12-7.19 (4H, m), 7.12-7.19 (4H, m),	
ESI (Pos) 560 (M+Na)*	ESI (Pos) 526 (M+Na)*	ESI (Pos) 562 (M+Na)*	
IO	110	78	
[CI] _D ²⁷ =+39.0 (C = 0.96%, CHCl ₃)			
×	×	×	
n-Pr (S*)	\Diamond		
□ □ □	\Diamond		
= .	Ħ	Ħ	
OBn	OBn	OBn	
OEt	OE.	OEt	
011	Ħ	112	

•		74
发 例2	老 22	が と
1.23-1.33 (3H m), 2.05-2.0 (4H m), 3.68-3.76 (1H m), 4.21(2H, q, J=7.2Hz), 5.12(1H,d,J=12.4Hz), 5.28 (1H,d,J=12.4Hz), 5.47 (1H,s), 7.09-7.31 (13H, m).	1.12-1.39 (6H, m), 1.80-2.28 (2H, m), 2.41-2.69 (2H, m), 3.92-4.08 (1H, m), 4.09-4.34 (4H, m), 5.39 (1H, 8), 7.10-7.37 (8H, m).	1.28 (3H, 1, 1=1,3Hz), 2.01.2.51 (4H, m), 3.62-3.80 (1H, m), 4.22(2H, 4, 1=1,3Hz), 5.13((H, 4,1=12,1Hz), 5.25 (1H, 8), 6.92-7.08 (2H, m), 7.20-7.28 (9H, m),
ESI (Pos) 594 (M+Na)*	ESI (Pos) 532 (M+Na)*	ESI (Pos) 640(M+H)*
lio	oil	10
	[a] _D ²⁵ =-19.1 (C = 0.47%, CHCl ₃)	[a] _b ³ =+41.0 (C=0.69%, CHCl ₃)
. 4	8	×
Ş		55
⇔		, 5 -5
ш	н	ш
OBn	OEt	OBn
OEt	OEt	OEt
113	114	115

	75
無 を を	老鬼
1.24 (3H, t, J=7.0Hz), 1.37(3H, m), 1.36-2.37 (4H, m), 3.64-3.75 (1H, m), 4.84(3H, q, J=7.0Hz), 4.84(1H, q, J=6.4Hz), 5.23(1H, d, J=12.3Hz), 7.32-7.84 (12H, m).	1.24 (3H, t, 1=7.0Hz), 1.29 (3H, d, 1=6.6Hz), 2.07-2.53 (4H, m), 3.51-3.62 (1H, m), 4.18(2H, q, 1=7.0Hz), 4.53(1H, q, 1=6.6Hz), 5.18(1H, d, 1=12.4Hz), 5.35(1H, d, 1=12.4Hz), 7.34-7.84 (12H, m).
ESI (Pos) 514 (M+Na) ⁺	ESI (Pos) 514 (M+Na)*
lio	🗑
æ	R
Me (R*)	Me (5*)
	-
н	. ш
OBn	OBn
OE	OE
911	111

41: 塩酸塩

試験例1(被検薬の代謝型グルタメート受容体mGluR2安定発現CHO細胞でのcAMP蓄積に及ぼす効果(拮抗作用))

代謝型グルタメート受容体mGluR2安定発現CHO細胞を、10%透析牛胎 児血清含有ダルベッコ改変イーグル培地[1% proline, 50 units/ml

penicillin, 50 µg/ml streptomycin, 2 mM L-glutamine (用時添加)] を用い て 1. 26×10 4cells/well/0. 3 2 cm²/150 μ 1 の割合で96 穴プレート に播種し、37℃、5%CO2下で2日間培養を行った。その後、L-glutamine free 培地に交換し、4時間後に上清を吸引除去し、150μlのPBS(+)-IBM X (10mM PBS (-), 1mM MgCl2, 1mM CaCl2, 1mM IBMX)を添加して、20分間、37℃、5%CO₂存在下でインキュベーショ ンを行った。再び上清を吸引除去し、60μlの10-5M Forskolin、30μM グルタミン酸、10⁻¹⁰~10⁻⁴Mの被検体を含有したPBS(+)-IBMXを 添加して15分間、37℃で5%CO2存在下インキュベーションを行い、グルタ ミン酸のForskolin刺激 c AMP蓄積量抑制に対する被検薬の拮抗効果の検討を行 った (コントロールは、化合物無添加の条件とする。(Tanabe et al, Neuron, 8, 169-179 (1992))。100 µ1の氷冷エタノールを添付して反応停止し、上清を別 のプレートに全量回収した後、エバボレーターで常温乾固し、-20℃で保存した。 乾問したサンプルは、cAMP EIAkit (アマシャム社)を用いてcAMP量を定 量した。各cAMP量からコントロールの値を差し引いた。10⁻⁵M Forskolin 刺激による c AMP 増加に対する 30 μ Mグルタミン酸の抑制を 50% 拮抗する 被検薬の濃度IC50値を求めた。

本発明化合物式 [I] 中、R'及びR'が水酸基で、R'が水素原子で示される化合物、すなわち表1中の化合物1-58は本試験例に記載の測定において、 IC_{50} 値が500 n M以下の強い拮抗作用を示した。例えば、化合物1、6、22、28、34、42, 52は、それぞれ229 n M、131 n M、29. 1 n M、40. 8 n M、20. 0 n M、22. 7 n M、24. 4 n M 0 1 C_{16} 信を示した。

試験例2(被検薬の代謝型グルタメート受容体mGluR2安定発現CHO細胞での[性]MG80008受容体結合試験に及ぼす効果)

代謝型グルタメート受容体mGluR2安定発現CHO細胞を、10%透析牛胎 児血清含有ダルベッコ改変イーグル培地 [1% proline, 50 units/ml penicillin, 50 μg/ml streptomycin, 2 mM L-glutamine (用時添加)] で Tー 225フラスコに播種し、37℃、5%CO。下で培養を行った。コンフルエント の状態でPBS(-)で2回洗浄してセルスクレーパーで細胞を剥離し、4 $^{\circ}$ 、1000×g、15分間遠心分離を行って細胞を回収した。得られた沈さは、-80℃ で保存した。用時溶解して、50mM Tris-HCl緩衝液 (pH 7.4) に懸濁した。懸 濁液をホモジナイザーで20秒間ホモジナイズ後、4℃、48.000×g、20分 間遠心分離を行って沈さを得た。上記緩衝液で再度懸濁、ホモジナイズ後に37℃、 15分間インキュベートし、4℃、48,000×g、20分間遠心分離を行った。 さらに得られた沈さを、2回遠心洗浄した後に50mM Tris-HC1緩衝液 (2mM MgCl₂、pH 7.4) でホモジナイズして膜画分を得た。受容体結合試験は、膜濃度50 ~200 µg/0.5mlassavの範囲で行った。膜画分に被検薬と3nM 「3H1MGS0008を添 加して、25℃で1時間インキュベーションを行った。Brandel cell harvester を用いて0.3% polvethylenimineに予め浸したWhatman GF/Cフィルター上に吸引 減過することによって反応を停止した。吸引濾過後、フィルターは氷冷50mM Tris-HCl緩衝液 (2mM MgCl₂、pH 7.4) 3 m l で3回洗浄した。得られたフィル ターに10mlのAquasol-2を添加して6時間以上放置して、Beckman LS6000液体シン チレーションカウンターで蛍光活性を測定した。非特異的結合は10 MM LY354740 存在下で測定し、各結合量から差し引いた。溶媒による[3H]MGS0008結合量に対し

本発明化合物式 [I] 中、R'及びR'及が水酸基でR'が水素原子で示される化合物、すなわち表 1 中の化合物 1-5 8 は本試験例に記載の測定において、mGluR2受容体に対し IC_{50} 値が 100 n M以下の強い結合作用を示した。

試験例3 (ラット強制水泳試験による抗うつ作用の評価)

て50%抑制する被検薬の濃度IC50値を求めた。

- (1) 実験動物には雄性SD系ラット(体重220-240g 日本チャールスリバー) を使用した。
- (2) 被験薬物には、下記化合物を使用した。

78

LY341495 (Journal of Medicinal Chemistry 1998, 41, 358-378):
(2S) -2-アミノー2-((1S, 2S) -2-カルボキシシクロプロピー1
-イル) -3-(9-キサンチル)プロピオン酸

((2S)-2-Amino-2-((1S, 2S)-2-carboxycycloprop-1-yl)-3-(9-xanthyl)propanoic acid)

化合物34: (1R, 2R, 3R, 5R, 6R) -2-アミノ-3-(3、4-ジクロロベンジルオキシ) -6-フルオロビシクロ[3.1.0] ヘキサン-2、6-ジカルボン酸

((18, 2R, 3R, 5R, 6R)-2-amino-3-(3, 4-dichlorobenzyloxy)-6-fluorobicyclo[3.1.0]

(3) 強制水泳試験はPorsoltらにより報告された方法に少し修正を加えて実施した(European Journal of Pharmacology 1978, 47, 379-391)。すなわち、ラットを30cmの深さの水の入ったシリンダーに入れ、まず、15分間の強制水泳を実施し、24時間経過後に5分間の強制水泳試験(本試験)を実施した。そして、この本試験における無動化時間を測定し、被験薬物の抗うつ作用を評価した。

なお、投与群には、LY341495及び化合物34の各被験薬を1/15Mの リン酸緩衝液に溶解し、0.3mg/kg、1mg/kg、3mg/kgの割合で 本試験の24時間前及び1時間前に2度腹腔内投与した。また、溶媒群には、1/ 15Mのリン酸緩衝のみを同じように腹腔内投与した。

(4) 図1及び2における記号*及び**は、それぞれダンネット検定により有意 差検定を行ったとき、P<0.05及びP<0.01で1/15Mのリン酸緩衝液 である溶媒群と比較して優位差があることを示している。よって、図1及び2より、溶媒群と比較して、被験薬であるLY341495及び化合物34を腹腔内投与した群は、無動化時間を用量依存的に有意に減少させ、優れた抗うつ作用を奏することが明らかとなった。このことは、グループⅡメタボトロピックグルタミン酸受容 体拮抗作用を有する化合物が抗うつ薬として有用であることを示している。

産業上の利用可能性

本発明により、メタボトロピックグルタミン酸受容体拮抗薬がうつ症状に有効であることが明らかとなり、新しいタイプの抗うつ薬を提供することが可能となった。また、本発明の態様の一つである2ーアミノー3ーアルコキシー6ーフルオロピシクロ[3.1.0]へキサンー2,6ージカルボン酸誘導体、その医薬上許容される塩又はその水和物は、メタボトロピックグルタミン酸受容体の強力な拮抗薬となる。従って、統合失調症(精神分裂病)、不安及びその関連疾患、二極性障害、てんかん等の精神医学的障害の治療及び予防、薬物依存症、認知障害、アルツハイマー病、ハンチントン舞踏病、パーキンソン病、筋硬直に伴う運動障害、脳虚血、脳不全、脊髄障害、頭部障害等の神経学的疾患の治療及び予防に有効な医薬品の提供も可能となった。

80 請求の範囲

グループⅡメタボトロピックグルタミン酸受容体拮抗作用を有する化合物を有効成分とする抗うつ薬。

2. 式[1]

[式中、R¹及びR²は同一又は異なって、水酸基、C₁₋₁₀アルコキシ基、フェノ キシ基、ナフチルオキシ基、1若しくは2個のフェニル基で置換されたC,_sアル コキシ基、C1-6アルコキシC1-6アルコキシ基、ヒドロキシC2-6アルコキシ基、 アミノ基、同一又は異なって1若しくは2個の C_{1-6} アルキル基によって置換され たアミノ基、同一又は異なって1若しくは2個のC,__。アルコキシC,__。アルキル 基によって置換されたアミノ基、同一又は異なって1若しくは2個のヒドロキシC 。--・アルキル基によって置換されたアミノ基、同一又は異なって1若しくは2個の C_{1-6} アルコキシカルボニル C_{1-6} アルキル基によって置換されたアミノ基、ある いは、NR6-CHR7-A-CO,R8(R6及びR7は同一又は異なって、水素原子、ヒ ドロキシC₁₋₆アルキル基、ヒドロキシカルボニルC₁₋₆アルキル基、C₁₋₁₀アル キル基、フェニル基、フェニルC,-。アルキル基、ヒドロキシフェニル基、ヒドロ キシフェニルC₁₋₆アルキル基、ナフチル基、ナフチルC₁₋₆アルキル基、芳香族 複素環 C_{1-6} アルキル基、 C_{1-6} アルコキシ C_{1-6} アルキル基、アミノ C_{2-6} アル キル基、グアニジノC₂₋₆アルキル基、メルカプトC₂₋₆アルキル基、C₁₋₆アル キルチオC1-6アルキル基、アミノカルボニルC1-6アルキル基を示し、あるいは、 R⁶及びR⁷は互いに結合して、メチレン基、エチレン基、又はプロピレン基を形 成する基を示し、互いに結合して環状アミノ基を形成することもできる。 R^s は水 素原子又はカルボキシル基の保護基を示し、Aは単結合、メチレン基、エチレン基、又はプロピレン基を示す。)で表される天然型又は非天然型アミノ酸残基を示し、R s は、 C_{1-10} アシル基、 C_{1-6} アルコキシ C_{1-6} アシル基、ヒドロキシ C_{2-10} アシル基、 C_{1-6} アルコキシカルボニル C_{1-6} アシル基、ヒドロキシカルボニル C_{1-6} アシル基、スは R^s -NH-A-CHR t -CO(R^7 、Aは前記と同義であり、 R^9 は水素原子又はアミノ基の保護基を示す。)で表されるアミノ酸残基を示し、 R^4 及び R^5 は同一又は異なって、水素原子、 C_{1-10} アルキル基、 C_{2-10} アルケニル基、フェニル基、ナフチル基、ヘテロ原子を1つ以上合む5員複素芳香環、あるいは、ハロゲン原子、 C_{1-10} アルキル基、 C_{1-10} アルコキシ基、トリフルオロメチル基、フェニル基、ヒドロキシカルボニル基、アミノ基、ニトロ基、シアノ基及びフェノキシ基からなる群より選ばれる $1\sim5$ 個の置換基で置換されたフェニル基を示す。さらに、 R^t 及び R^5 は、互いに結合して環状構造を形成することもできる。]で表される $2\sim7$ ミノー3 ~7 アルコキシー6 ~7 7カルボン除誘導体、その医薬上許容される $4\sim10$ 0 ~10

- 3. 前記式 [I] 中、R¹及びR²が水酸基であり、R³が水素原子である請求の範囲第2項記載の2-アミノ-3-アルコキシ-6-フルオロビシクロ[3.1.0] ペキサン-2、6-ジカルボン酸誘導体、その医薬上許容される塩又はその水和物。
- 4. 前記式 [I] 中、R¹が水酸基であり、R³が水素原子である請求の範囲第2 項記載の2-アミノ-3-アルコキシ-6-フルオロビシクロ [3.1.0] ヘキ サン-2,6-ジカルボン酸誘導体、その医薬上許容される塩又はその水和物。
- 5. 前記式 [I] 中、R²が水酸基であり、R³が水素原子である請求の範囲第2 項記載の2-アミノ-3-アルコキシ-6-フルオロビシクロ [3.1.0] ヘキ サン-2,6-ジカルボン酸誘導体、その医薬上許容される塩又はその水和物。

82

6. 前記式 [I] 中、R¹及びR²が水酸基である請求の範囲第2項記載の2-アミノ-3-アルコキシ-6-フルオロビシクロ[3.1.0] ヘキサン-2,6-ジカルボン酸誘導体、その医薬上許容される塩又はその水和物。

7. 式[I]

[式中、R1及びR2は同一又は異なって、水酸基、C,_,aアルコキシ基、フェノ キシ基、ナフチルオキシ基、1若しくは2個のフェニル基で置換されたC1-6アル コキシ基、 C_{1-6} アルコキシ C_{1-6} アルコキシ基、ヒドロキシ C_{2-6} アルコキシ基、 アミノ基、同一又は異なって1若しくは2個のC1-6アルキル基によって置換され たアミノ基、同一又は異なって1若しくは2個の C_{1-6} アルコキシ C_{1-6} アルキル 基によって置換されたアミノ基、同一又は異なって1若しくは2個のヒドロキシC ₃₋₆アルキル基によって置換されたアミノ基、同一又は異なって1若しくは2個の C1-6アルコキシカルボニルC1-6アルキル基によって置換されたアミノ基、ある いは、NR⁶-CHR⁷-A-CO₂R⁸ (R⁶及びR⁷は同一又は異なって、水素原子、ヒ ドロキシC, -。アルキル基、ヒドロキシカルボニルC1-6アルキル基、C1-10アル キル基、フェニル基、フェニルC1-6アルキル基、ヒドロキシフェニル基、ヒドロ キシフェニルC₁₋₆アルキル基、ナフチル基、ナフチルC₁₋₆アルキル基、芳香族 複素環 C_{1-6} アルキル基、 C_{1-6} アルコキシ C_{1-6} アルキル基、アミノ C_{2-6} アル キル基、グアニジノC₂₋₆アルキル基、メルカプトC₂₋₆アルキル基、C₁₋₆アル キルチオC1-6アルキル基、アミノカルボニルC1-6アルキル基を示し、あるいは、 R⁶及びR⁷は互いに結合して、メチレン基、エチレン基、又はプロピレン基を形 成する基を示し、互いに結合して環状アミノ基を形成することもできる。R®は水 素原子又はカルボキシル基の保護基を示し、Aは単結合、メチレン基、エチレン基、

又はプロピレン基を示す。)で表される天然型又は非天然型アミノ酸残基を示し、 R^s は、 C_{1-10} アシル基、 C_{1-6} アルコキシ C_{1-6} アシル基、ヒドロキシ C_{2-10} アシル基、 C_{1-6} アルボニル C_{1-6} アシル基、ヒドロキシ C_{2-10} アシル基、 C_{1-6} アルボニル C_{1-6} アシル基、ヒドロキシカルボニル C_{1-6} アシル基、ヒドロキシカルボニル C_{1-6} アシル基、スは R^s -NH-A-CH R^t -CO (R^t 、Aは前記と同義であり、 R^s は水素原子又はアミノ基の保護基を示す。)で表されるアミノ酸残基を示し、 R^t 及び R^s は同一又は異なって、水素原子、 C_{1-10} アルキル基、 C_{2-10} アルケニル基、フェニル基、ナフチル基、ヘテロ原子を1つ以上含む5 貝複素芳香環、あるいは、ハロゲン原子、 C_{1-10} アルキル基、 C_{1-10} アルコキシ基、トリフルオロメチル基、フェニル基、ヒドロキシカルボニル基、アミノ基、ニトロ基、シアノ基及びフェノキシ基からなる群より選ばれる1~5個の置換基で置換されたフェニル基を示す。さらに、 R^t 及び R^s は、互いに結合して環状構造を形成することもできる。]で表される2-アミノ-3-アルコキシ-6-フルオロビシクロ [3. 1. 0] へキサン-2, 6-ジカルボン酸誘導体、その医薬上許容される塩又はその水和物。

- 8. 前記式 [II] 中、 R^1 及び R^2 が水酸基であり、 R^3 が水素原子である請求の範囲第7項記載の2-アミノ-3-アルコキシ-6-フルオロビシクロ[3.1.0] ヘキサン-2、6-ジカルボン酸誘導体、その医薬上許容される塩又はその水和物。
- 9. 前記式 [II] 中、R¹が水酸基であり、R³が水楽原子である請求の範囲第7 項記載の2-アミノ-3-アルコキシ-6-フルオロビシクロ[3.1.0] ヘキ サン-2、6-ジカルボン酸誘導体、その医薬上許容される塩又はその水和物。
- 10. 前記式 [II] 中、 R^1 が水酸基であり、 R^3 が水素原子であり、 R^2 が C_{1-1} 。アルコキシ基又は1個のフェニル基で置換された C_{1-6} アルコキシ基である請求の範囲第7項記載の2-アミノ-3-アルコキシ-6-フルオロビシクロ[3.1.0] ヘキサン-2、6-ジカルボン酸誘導体、その医薬上許容される塩又はその水和物。

- 11. 前記式 [Ⅱ] 中、R¹が水酸基であり、R³が水素原子であり、R²がNH-CHR7-CO.Hである請求の範囲第7項記載の2-アミノー3-アルコキシー6 - フルオロビシクロ「3. 1. 0] ヘキサン-2. 6 - ジカルボン酸誘導体、その 医薬上許容される塩又はその水和物。
- 12. 前記式「Ⅱ]中、R²が水酸基であり、R³が水素原子である請求の範囲第 7項記載の2-アミノ-3-アルコキシ-6-フルオロビシクロ[3.1.0]へ キサン-2、6-ジカルボン酸誘導体、その医薬上許容される塩又はその水和物。
- 13. 前記式 [Ⅱ] 中、R²が水酸基であり、R³が水素原子であり、R¹がC₁₋₁ 。アルコキシ基又は1個のフェニル基で置換されたC,-6アルコキシ基である請求 の範囲第7項記載の2-アミノ-3-アルコキシ-6-フルオロビシクロ[3.1. 0] ヘキサン-2.6-ジカルボン酸誘導体、その医薬上許容される塩又はその水 和物。
- 14. 前記式 [II] 中、R²が水酸基であり、R³が水素原子であり、R¹がNH-CHR7-CO。Hである請求の範囲第7項記載の2-アミノ-3-アルコキシ-6 - フルオロビシクロ「3.1.0] ヘキサン-2.6-ジカルボン酸誘導体、その 医薬上許容される塩又はその水和物。
- 15. 前記式 [Ⅱ] 中、R¹及びR²が水酸基である請求の範囲第7項記載の2-アミノー3-アルコキシー6-フルオロビシクロ[3.1.0] ヘキサン-2,6 ジカルボン酸誘導体、その医薬上許容される塩又はその水和物。
- 16. 前記式 [Ⅱ] 中、R¹及びR²が水酸基であり、R³がH₂N-CHR¹-COで ある請求の範囲第7項記載の2-アミノ-3-アルコキシ-6-フルオロビシク ロ[3,1,0] ヘキサン-2,6-ジカルボン酸誘導体、その医薬上許容される 塩又はその水和物。

17. 式 [Ⅲ]

「式中、R1及びR2は同一又は異なって、水酸基、C1-10アルコキシ基、フェノ キシ基、ナフチルオキシ基、1若しくは2個のフェニル基で置換されたC1-6アル コキシ基、 C_{1-6} アルコキシ C_{1-6} アルコキシ基、ヒドロキシ C_{2-6} アルコキシ基、 アミノ基、同一又は異なって1若しくは2個の C_{1-6} アルキル基によって置換され たアミノ基、同一又は異なって1若しくは2個の C_{1-6} アルコキシ C_{1-6} アルキル 基によって置換されたアミノ基、同一又は異なって1若しくは2個のヒドロキシC *-*アルキル基によって置換されたアミノ基、同一又は異なって1若しくは2個の C,-6アルコキシカルボニルC,-6アルキル基によって置換されたアミノ基、ある いは、NR⁶-CHR⁷-A-CO₂R⁸(R⁶及びR⁷は同一又は異なって、水素原子、ヒ ドロキシC₁₋₆アルキル基、ヒドロキシカルボニルC₁₋₆アルキル基、C₁₋₁₀アル キル基、フェニル基、フェニルC1-6アルキル基、ヒドロキシフェニル基、ヒドロ キシフェニルC₁₋₆アルキル基、ナフチル基、ナフチルC₁₋₆アルキル基、芳香族 複素環 C_{1-6} アルキル基、 C_{1-6} アルコキシ C_{1-6} アルキル基、アミノ C_{2-6} アル キル基、グアニジノC₂₋₆アルキル基、メルカプトC₂₋₆アルキル基、C₁₋₆アル キルチオC,_。アルキル基、アミノカルボニルC,_。アルキル基を示し、あるいは、 R6及びR7は互いに結合して、メチレン基、エチレン基、又はプロピレン基を形 成する基を示し、互いに結合して環状アミノ基を形成することもできる。R®は水 素原子又はカルボキシル基の保護基を示し、Aは単結合、メチレン基、エチレン基、 又はプロピレン基を示す。) で表される天然型又は非天然型アミノ酸残基を示し、 R^3 は、 C_{1-10} アシル基、 C_{1-6} アルコキシ C_{1-6} アシル基、ヒドロキシ C_{2-10} アシル基、C₁₋₆アルコキシカルボニルC₁₋₆アシル基、ヒドロキシカルボニルC₁ 。アシル基、又はR®-NH-A-CHR¹-CO(R¹、Aは前記と同義であり、R®

86

は水素原子又はアミノ基の保護基を示す。)で表されるアミノ酸残基を示し、 R^4 及び R^6 は同一又は異なって、水素原子、 C_{1-10} アルキル基、 C_{2-10} アルケニル基、フェニル基、ナフチル基、ヘテロ原子を1つ以上含む5 員複素芳香環、あるいは、ハロゲン原子、 C_{1-10} アルキル基、 C_{1-10} アルコキシ基、トリフルオロメチル基、フェニル基、ヒドロキシカルボニル基、アミノ基、ニトロ基、シアノ基及びフェノキシ基からなる群より選ばれる $1\sim5$ 個の置換基で置換されたフェニル基を示す。さらに、 R^4 及び R^6 は、互いに結合して環状構造を形成することもできる。]で表される2-アミノー3-アルコキシー6-フルオロビシクロ[3.1.0]へキサンー2,6-ジカルボン酸誘導体、その医薬上許容される塩又はその水和物。

- 18. 前記式 [Ⅲ] 中、 R^3 及び R^2 が水酸基であり、 R^3 が水素原子である請求の 範囲第17項記載の2-アミノ-3-アルコキシ-6-フルオロビシクロ[3.1.0] ヘキサン-2, 6-ジカルボン酸誘導体、その医薬上許容される塩又はその水 和物。
- 19. 前記式 [Ⅲ] 中、R¹が水酸基であり、R³が水素原子である請求の範囲第 17項記載の2-アミノ-3-アルコキシ-6-フルオロビシクロ [3. 1. 0] へキサン-2、6-ジカルボン酸誘導体、その医薬上許容される塩又はその水和物。
- 20. 前記式 $[\Pi]$ 中、 R^1 が水酸基であり、 R^3 が水素原子であり、 R^2 が C_{1-1} 。アルコキシ基または1個のフェニル基で置換された C_{1-6} アルコキシ基である請求の範囲第17項記載の2-アミノ-3-アルコキシ-6-フルオロビシクロ[3.1.0] ヘキサン-2, 6-ジカルポン酸誘導体、その医薬上許容される塩又はその水和物
- 2 1. 前記式 [Ⅲ] 中、R¹が水酸基であり、R²が水素原子であり、R²がNH-CHR¹-CO₂Hである請求の範囲第17項記載の2-アミノ-3-アルコキシー6-フルオロビシクロ [3. 1. 0] ヘキサン-2,6-ジカルボン酸誘導体、そ

- の医薬上許容される塩又はその水和物。
- 2 2. 前記式 $[\Pi]$ 中、 \mathbb{R}^2 が水酸基であり、 \mathbb{R}^3 が水素原子である請求の範囲第 1 7項記載の 2 ーアミノー 3 ーアルコキシー 6 ーフルオロビシクロ [3.1.0] へキサンー 2 、6 ージカルボン酸誘導体、その医薬上許容される塩又はその水和物。
- 23. 前記式 $[\Pi]$ 中、 R^2 が水酸基であり、 R^3 が水素原子であり、 R^3 が C_{1-1} 。アルコキシ基または 1 個のフェニル基で置換された C_{1-6} アルコキシ基である請求の範囲第 1 7 項記載の 2 アミノ 3 アルコキシ 6 フルオロビシクロ[3.1.0] へキサン 2, 6 ジカルボン酸誘導体、その医薬上許容される塩又はその水和物。
- 24. 前記式 $[\Pi]$ 中、 R^2 が水酸基であり、 R^3 が水素原子であり、 R^1 がHN-CHR 1 -CO₂Hである請求の範囲第17項記載の2-アミノ-3-アルコキシー6-フルオロビシクロ [3.1.0] ヘキサンー 2, 6-ジカルボン酸誘導体、その医薬上許容される塩又はその水和物。
- 25. 前記式 [Ⅲ] 中、R¹及びR²が水酸基である請求の範囲第17項記載の2 ーアミノー3-アルコキシー6-フルオロビシクロ [3.1.0] ヘキサン-2,6-ジカルボン酸誘導体、その医薬上許容される塩又はその水和物。
- 2 6. 前記式 $[\Pi]$ 中、 R^1 及び R^2 が水酸基であり、 R^3 がN H_2 -CH R^1 -COである請求の範囲第17項記載の2-アミノ-3-アルコキシ-6-フルオロビシクロ [3.1.0] ヘキサン-2, 6-ジカルボン酸誘導体、その医薬上許容される塩又はその水和物。
- 27.1種若しくは2種以上の医薬的に許容される担体、賦形剤又は稀釈剤、及び 請求の範囲第2~26項のいずれかに記載の化合物を含有する医薬的製剤。

88

- 28. 請求の範囲第2~26項のいずれかに記載の化合物を有効成分とする医薬。
- 29. グルーブⅡメタボトロピックグルタミン酸受容体拮抗薬である請求の範囲 第28項に記載の医薬。
- 30. 請求の範囲第2~26項のいずれかに記載の化合物の医薬としての使用。

1/2

図1

2/2

図2

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP02/13693

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁷ A61K45/00, 31/196, 31/381, A61P25/18, 43/00	C07C229/50, 255/54, C0	7D333/16,
According to International Patent Classification (IPC) or to both nat	ional classification and IPC	
B. FIELDS SEARCHED		
Minimum documentation searched (classification system followed b Int.Cl ⁷ A61K45/00, 31/196, 31/381, A61P25/18, 43/00	C07C229/50, 255/54, C0	
Documentation searched other than minimum documentation to the		
Electronic data base consulted during the international search (name CAPLUS (STN), MEDLINE (STN), EMBASE (S	of data base and, where practicable, sear STN), BIOSIS (STN), REGI	rch terms used) STRY (STN)
C. DOCUMENTS CONSIDERED TO BE RELEVANT		
Category* Citation of document, with indication, where app		Relevant to claim No.
X OTANI, S. et al., Dopamine re and II mGluRs cooperate for I induction in rat prefrontal c converging postsynaptic activ. J.Neurosci., 1999, Vol.19, No particularly, abstract	ong-term depression cortex through ation of MAP kinases.,	
& JP 2000-336071 A & CA & AU 9948007 Al & AU	et; Par. No. [0080] 6333428 Bl 2341865 A 746806 B2	2-30 1
X Further documents are listed in the continuation of Box C.	See patent family annex.	1.50
* Special categories of eithed documents: "document defining the general states of the art which is not considered to be of particular relevance "er earlier document but published on or after the international filing "L" document which may throw doubts on priority claim(s) or which is tield to establish the publication due to another calinds on or other special reason (as specialed) document published prior to the international filing date but later than the priority date claimed	"V" document of particular revenues; the claimed invention behavior considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art "&" document member of the same patent family	
Date of the actual completion of the international search 08 April, 2003 (08.04.03)	Date of mailing of the international sear 30 April, 2003 (30	
Name and mailing address of the ISA/ Japanese Patent Office	Authorized officer	
Facsimile No.	Telephone No.	

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP02/13693

C (Continuation). DOCUMENTS CONSIDERED TO BE RELEVANT Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. Category* 2-30 EP 774455 Al (Eli Lilly and Co.), 21 May, 1997 (21.05.97), 1 Α Particularly, Claims; abstract; page 10, lines 7 to 37 & US 5916920 A1 & WO 97/17950 A & JP 2000-500752 A € WO 97/17950 A & CA 2237598 A AU 9677310 A1 & AU 703093 B2 & ZA 9609485 A & CN 1202103 A & TW 427973 B & BR 9611521 A 2-30 US 6107342 A (Hoffmann-La Roche Inc.), Υ 22 August, 2000 (22.08.00), Particularly, Claims; abstract; page 1, lines 7 to 9 & GB 2341179 A1 E DE 19941675 A1 & JP 3340409 B2 & JP 2000-086597 A2 & SE 9903088 A & NL 1012963 A1 & FR 2786768 A1 & AU 9947327 A1 P.X WO 02/00605 Al (Taisho Pharmaceutical Co., Ltd.), 1-30 03 January, 2002 (03.01.02), Particularly, Claims; abstract; page 18, line 9 to page 10, line 3 & AU 2001067854 A5 & EP 1295865 A1

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP02/13693

Box I Observations where certain claims were found unsearchable (Continuation of item 2 of first sheet)
This international search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
 Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 3 of first sheet)
This international Searching Authority found multiple inventions in this international application, as follows: The technical feature of claim 1 is application of compounds having group II metabotropic glutamate receptor antagonism to antidepressant, while the technical feature of claims 2-30 is compounds represented by the general formula [I]. The technical features of the above two inventions are neither the same nor corresponding to each other, and the invention of claim 1 and a group of inventions of claims 2-30 are therefore not considered as relating to a group of inventions so linked as to form a single general inventive concept.
 X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
 As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
 As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
 No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

	属する分野の分類(国際特許分類(IPC)) K45/00, 31/196, 31/381, C07C229/50, 255/54,	C07D333/16, A61P25/18, 43/00	
調査を行った最	7った分野 長小限資料(国際特許分類(IPC)) 1K45/00, 31/196, 31/381, C07C229/50, 255/54,	C07D333/16, A61P25/18, 49/00	
	kの資料で調査を行った分野に含まれるもの		
	月した電子データベース(データベースの名称、 STN), MEDLINE(STN), EMBASE(STN), BIOS		
C. 関連する 引用文献のカテゴリー* X	5と認められる文献 引用文献名 及び一部の簡所が関連すると OTANI, S. et al, Dopamine receptor mGluRs cooperate for long-term de prefrontal cortex through convergin MAP kinases., J. Neurosci., 1999, V 特に、Abstract	rs and groups I and II pression induction in rat ug postsynaptic activation of	関連する 請求の範囲の番号 1
* 引用文献 「A」特に関 りものの 「E」国際後を権 日若献に 「C」「国際出 国際調査を完	画のある文献ではなく、一般的技術水準を示す 順目前の出願または特許であるが、国際出願日 会求されたもの 走張に疑義を提起する文献又は他の文献の発行 (は他の特別な理由を確立するために引用する 理由と付す) よる簡末、使用、展示等に言及する文献 関目前で、かつ極先権の主張の基礎となる出願 了した日 08.04.03	出職と矛属するものではなく、発明の原理は増輸の理解のために引用するもの 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの 「を」同一パテントファミリー文献 国際調査報告の発送日 30.04.03	
日本	の名称及びあて先 国特許庁(ISA/JP) 郵便番号100-8915 都千代田区霞が関三丁目4番3号	特許庁審査官 (権限のある職員) が領 下 / 吉 一 (電話番号 03-3581-1101	内線 3452

国際調査報告	国際出願番号	PCT,	/ J P	02/	1	3	6	9	3
--------	--------	------	-------	-----	---	---	---	---	---

C(続き).	関連すると認められる文献	00 at -b 7
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y A	EP 1110943 A1(Taisho Pharmaceutical Co., Ltd.)2001.06.27 特に、Claims,Abstract,[0080] & WO 00/12464 A1 & US 6333428 B1 & JP 2000-336071 A & CA 2341865 A & AU 9948007 A1 & AU 746806 B2	2-30
Y A	EP 774455 A1(ELLI LILLY AND COMPANY)1997.05.21 特に、Claims,Abstract,第10^->' 第7-37行 & WO 97/17950 A & US 5916920 A1 & JP 2000-500752 A & CA 2237598 A & AU 9677310 A1 & AU 703093 B2 & ZA 9609485 A & CN 1202103 A & BR 9611521 A & TW 427973 B	2-30
Υ	US 6107342 A(Hoffmann-La Roche Inc.)2000.08.22 特に、Claims,Abstract,第1ペーシ 第7-9行 & DE 19941675 A1 & GB 2341179 A1 & JP 2000-086597 A2 & JP 3340409 B2 & SE 9903088 A & FR 2786768 A1 & NL 1012963 A1 & AU 9947327 A1	2-30
PX	WO 02/00605 A1(Taisho Pharmaceutical Co., Ltd.)2002.01.03 特に、Claims,Abstract,第18ページ 第9行-第10ページ 第3行 & AU 2001067854 A5 & EP 1295865 A1	1-30

国際出願番号 PCT/JP02/13693

第1欄 請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き)
が第一条第3条第3項(PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の輸囲の一部について作成しなかった。
1.
2. 前状の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出頭の部分に係るものである。つまり、
3. 目 請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄 発明の単一性が欠如しているときの意見 (第1ページの3の続き)
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。 請求の範囲1の技術的特徴は、グループⅡメタボトロピックグルタミン酸受容体拮抗作用
を有する化合物の抗うつ薬(への用途であり、請求の範囲2-30の技術的特徴は、式、[1]で繋られる化合物であるから、上記2つの発明は、互いに技術的特徴が同一でもなく、対応するものでもないから、単一の一般的発明概念を形成するように連関している一群の発明には当たらない。
1. 出版人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2. <u> </u>
3.
4.
追加調査手数料の異確の申立てに関する注意

様式PCT/ISA/210 (第1ページの統葉 (1)) (1998年7月).