Ayudantía 5 Álgebra Lineal

Profesor: Michael Karkulik

Ayudante: Sebastián Fuentes

21 de abril de 2022

Problema 1. Sea V espacio vectorial sobre K.

- 1. Demuestre que si $\mathbf{A} \subseteq \mathbf{V}$ es linealmente independiente entonces todo $\mathbf{S} \subseteq \mathbf{A}$ es linealmente independiente.
- 2. Pruebe que si A es linealmente dependiente entonces todo $S \supseteq A$ es linealmente dependiente.
- 3. Demuestre que si $\mathbf{A} \subseteq \mathbf{V}$ es un conjunto generador de \mathbf{V} y $\mathbf{S} \supseteq \mathbf{A}$ entonces \mathbf{S} es también generador de \mathbf{V} .

Problema 2. Sea **V** espacio vectorial sobre K. Pruebe que **V** es de dimensión infinita si y sólo si existe una sucesión de vectores $\mathbf{v}_1, \mathbf{v}_2, \ldots \in \mathbf{V}$ tales que $\mathbf{v}_1, \ldots, \mathbf{v}_n$ es linealmente independiente para todo $n \in \mathbb{N}$. Considere ahora $\mathbb{R}^{\mathbb{R}}$ el espacio vectorial de las funciones $f : \mathbb{R} \to \mathbb{R}$ junto con las operaciones usuales de suma y multiplicación por escalar de matrices. Muestre que el conjunto $\{e^x, e^{2x}, \ldots, e^{nx}\}$ es linealmente independiente para todo $n \in \mathbb{N}$. Deduzca que el espacio vectorial $C(\mathbb{R})$ de las funciones a valores reales continuas es de dimensión infinita.

Problema 3. El objetivo de este problema es probar algunas propiedades acerca del subespacio generado por un conjunto **A**. Considere **V** espacio vectorial sobre K y $\mathbf{A}, \mathbf{B} \subseteq \mathbf{V}$ subconjuntos.

- 1. Si $\mathbf{A} \subseteq \mathbf{B}$, muestre que span $(\mathbf{A}) \subseteq \operatorname{span} \mathbf{B}$.
- 2. Pruebe que $\operatorname{span}(\mathbf{A}) = \operatorname{span}(\operatorname{span}(\mathbf{A}))$.
- 3. $\operatorname{span}(\mathbf{A} \cap \mathbf{B}) \subseteq \operatorname{span}(\mathbf{A}) \cap \operatorname{span}(\mathbf{B})$

Problema 4. Sean $\{\mathbf{v}_1, \dots, \mathbf{v}_n\}$ linealmente independientes en \mathbf{V} y $\mathbf{w} \in \mathbf{V}$. Pruebe que si $\{\mathbf{v}_1 + \mathbf{w}, \dots, \mathbf{v}_n + \mathbf{w}\}$ es linealmente dependiente entonces $\mathbf{w} \in \text{span}(\{\mathbf{v}_1, \dots, \mathbf{v}_n\})$.

Problema 5. El objetivo de este problema es demostrar la existencia de un subespacio conocido como subespacio complementario. Sea V espacio vectorial de dimensión finita, W_1 subespacio de V. Decimos que $W_2 \leq V$ es subespacio complementario de W_1 si $V = W_1 \oplus W_2$. Pruebe que todo subespacio de V posee un complementario.