

Operações com Matrizes

Apontamentos sobre a adição, subtração e produto de matrizes Page

Adição

- Somam-se os elementos homólogos de cada uma das matrizes
- Só se podem somar matrizes da mesma ordem

Subtração

- Igual à adição, só que em vez da operação entre elas ser a soma é a subtração.
- Também só se podem subtrair matrizes da mesma ordem

Propriedades da soma (subtração) de matrizes

- Uma subtração pode ser vista como uma soma, considerando:
 - A B = A + (-B)
- Propriedade Comutativa
 - A + B = B + A
- Propriedade Associativa
 - (A + B) + C = A + (B + C)

- Existência de Elemento Neutro (Matriz Nula)
 - A + O = O + A = A
- Existência de Oposta
 - A + (-A) = 0

Produto

Produto de um escalar por uma matriz

- Multiplica-se o número real por cada elemento da matriz
- A matriz obtida é do mesmo tipo que a inicial

Produto de matrizes

 Obtém-se fazendo o produto interno das linhas da primeira matriz pelas colunas da segunda matriz

Exemplo:

- Na maioria dos casos, a multiplicação de matrizes não goza da propriedade comutativa
 - $A \times B \neq B \times A$
 - Exceto em matrizes permutáveis. Se C e D são permutáveis então:
 - $C \times D = D \times C$
- Propriedade Associativa
 - $(A \times B) \times C = A \times (B \times C)$
- Propriedade Distributiva do produto em relação à adição
 - $A \times (B + C) = A \times B + A \times C$
- Propriedade Homogénea
 - $k \times (A \times B) = (k \times A) \times B = A \times (k \times B)$
- Existência de Elemento Neutro (Matriz Identidade)
 - A x I = A (I \rightarrow Matriz Identidade)
 - I x A = A
- Existência de Elemento Absorvente
 - A x $[0] = [0] ([0] \rightarrow Matriz Nula)$
- Matriz Inversa

 $A \times A^{-1} = A^{-1} \times A = I$

Combinação Linear