•	Circle	the animal antion					
	oncie i	For an inverse of a function to exist, the function must be:					
	•	(One-to-One					
		2. Onto					
		3 One-to-One correspendence					
		4. Neither					
	b.	If function $f: \mathbb{R} \to \mathbb{R}$, where $f(x) = 3x - 5$, then $f^{-1}(x)$ is given by,					
		(D) $1/(3x-5)$					
		 Does not exist since f is not one-to-one 					
		4. None of the above					
	C.	A function $f: X \to Y$ is one-to-one if					
	7.	0,					
		$f(x_1) = f(x_2) \text{ for all } x_1, x_2 \in X. \forall x_1 $					
		(3) $f(x_1) = f(x_2)$ then $x_1 = x_2$ for all $x_1, x_2 \in X$.					
		3. $f(x_1) = f(x_2)$ for all $x_1, x_2 \in X$.					
		None of the above					
	d.	Suppose we have 100 sets: $A_1, A_2,, A_{100}$. If					
		$A_1 \subset A_2, A_2 \subset A_3, \cdots, A_{99} \subset A_{100}$. Suppose the cardinality of set					
		100					
	$ A_k = k + 1. \text{ Then } \left \bigcup_{k=1}^{100} A_k \right \text{ is:}$ $2. 99. 50 \text{ App} = 100 \text{ d.s.}$						
		2. 100.					
		101. ACB - A has less elements than B and those element are in B as each					
	e. 1	let the set be A-Sa b a sa bill the material and those element are in B as each					
		Let the set be A= {a, b, c, {a,b}} then which of the following is false?					
		V2. a∈A.					
		(a) [A] is not an element of A; (element & set) 4. b. C.E.A. its a set					
	f. I	(A is {{0}}, {0, {0}})) then the normal of the					
		If A is $\{\{\emptyset\}, \{\emptyset, \{\emptyset\}\}\}\$, then the power set of A has how many elements?					
		A					
		3. 6. 2 ² 2 ²					
		4 0					
	g. I	et statement S(r v) = "r is a student !					
	- "	Every university in the world has student in y university". Then, the statement					
		Every university in the world has students" is expressed as: 1. $\exists x \exists y S(x, y)$.					
9	-IX	2. $\forall x \exists y S(x,y)$. $\forall y \exists_x S(x,y)$					
		3. $\exists y \forall x S(x,y)$.					

2. [Marks 10] Determine if $(p \land q) \rightarrow (p \lor q)$ is a tautology.

$$(PAQ) \rightarrow (PV2) \equiv 7 (PAQ) \vee (PV2)$$

$$\equiv (7PV7Q) \vee (PV2)$$

$$\equiv (7PVP) \vee (7QVQ)$$

$$\equiv T \vee T$$

[Marks 11]
Use Induction to show that for every positive integer
$$n$$
,
$$\sum_{i=1}^{n} i \cdot (i+1) = \frac{n(n+1)(n+2)}{3}$$
. Show all the details.

4. [Marks 10]

Find the prime factorization of the number 439593.

5. [Marks 10]

Consider the following sequence: $a_1 = 6, a_2 = 3, a_3 = \frac{3}{2}, a_4 = \frac{3}{4}, \dots$ Derive

the formula to determine a_{k} (k-th term) of the sequence. Show all details.

$$a = 6 \cdot r = \frac{1}{2} = 3 \quad a_{r} = 6(\frac{1}{2})^{n-1}$$

6. [Marks 15]

Calculate the summation of $\sum_{i=1}^{10} \sum_{j=1}^{20} (2i-j)$. Show details.

$$\frac{10}{10} \left(\frac{2}{1 - 0} \right) = 2 \sum_{j=1}^{20} \frac{1}{j} - \sum_{j=1}^{20} \frac{1}{j}$$

$$= 2 (201) - \frac{20(21)}{2}$$

$$= 401 - 210$$

$$= 40 \frac{10(11)}{2} - (10)(210)$$

$$= 2200 - 2100 = 100$$

8. [Marks 10]

Determine if the numbers: 22, 35, and 63 are pairwise relatively prime. X

then 22,35 and 63 are not Pairwise relatives prime

9. [Marks 10]

Prove that for any integer n, the integer n(n + 1) is even.

2 K+1

$$n(n+1) = 2k(2k+1)$$

casez: n is odd

$$N(N+1) = (2k+1)(2k+2)$$

$$= 2(2k^{2}+3k+1) = 2M (even)$$

[Marks 10]

In a school, one bell rings every 30 minutes, and the other bell rings every 35 minutes. If both bells ring together at 8:15 am. At what time will they ring fogether again? Argue your point.

the will meet

So the will meet on 11:45 am

so whenever the 35 min-clock reaches X:15 or X:45