7	
92.	Exercise 2.6
	In optimistic greedy approach, the agent tends to explore more in the initial steps. This is due
	to the dissatisfying newands it necesses is the actual
	rewards received are much less than the optimistic
	action value estimates and hence differents actions are
Lu with	action value estimates and hence different actions are towed. As optimal action would also be chosen, hence in no. of times it is chosen (across several
Calong their	hence in no. of times it is chosen (across several
	nuns) in the initial steps gives spikes.
	(1170)
<u> </u>	The incremental ocule for estimated neward & is given
	by : CD 07
2	$g_{n+1} = g_n + \alpha [R_n - g_n]$
	step size
1 1/2 -	with step size $\beta_{R} = \alpha$, we have $\overline{O}_{R} \text{and} \overline{O}_{R} = \overline{O}_{R-1} + \alpha \left(1 - \overline{O}_{R-1}\right)$
	$Q_{\alpha i} = Q_{\alpha i} \times Q_{\alpha} = Q_{\alpha}$
	$\frac{g_{n+1} = g_n + g_n (R_n - g_n)}{-\beta_n R_n} = \frac{g_n R_n}{\rho_n R_n} + \frac{g_n (R_n - g_n)}{\rho_n R_n}$
	= Bn Rn + (1- Bn). Qn
	= Bn Rn + (1-Bn) (Bn-1+ Bn-1 (Rn-1-Bn-1))
	= \begin{array}{cccccccccccccccccccccccccccccccccccc
	= βn Rn + (1- βn) βn-1 Rn=1 + (1-βn) (1-βn-1) (βn-1)
	<u>r</u>
	= Pn Rn + (1-Bn) (Bn=1 Rn-1)+ T(1-Bi) Q1
	Now as $\overline{D}_0 = 0$: $\overline{D}_1 = 0 + \alpha(1-0) = \alpha$
	β $\beta_1 = 1$
	f(1-a) = n
C-22-1/27	Th (1-β;) = 0 . Initial bias is eliminated
2.35	