- Um circuito XOR tem a expressão x = AB + AB. Sua saída x será nível ALTO apenas quando as entradas A e B estiverem
 em níveis opostos.
- Um circuito XNOR tem a expressão x = AB + AB. Sua saída x será nível ALTO apenas quando as entradas A e B estiverem no mesmo nível lógico.
- Todas as portas básicas (AND, OR, NAND e NOR) podem ser usadas para habilitar ou desabilitar a passagem de um sinal lógico da entrada para a saída.
- As principais famílias de CIs digitais são as famílias TTL e CMOS. Os CIs digitais estão disponíveis em uma ampla gama de complexidade (portas por CI), desde as funções lógicas básicas até as de alta complexidade.
- Para realizar uma manutenção básica é necessário, pelo menos, saber como o circuito funciona, ter conhecimento sobre
 os tipos de falhas possíveis, um diagrama completo de conexão do circuito lógico e uma ponta de prova lógica.
- Um dispositivo de lógica programável (PLD) é um CI que contém um grande número de portas lógicas, cujas interconexões podem ser programadas pelo usuário para gerar as relações lógicas desejadas entre entradas e saídas.
- 10. Para programar um PLD, é necessário um sistema de desenvolvimento, que consiste em um computador, um software de desenvolvimento para PLD e um programador, que realiza a programação do PLD.
- 11. O sistema da Altera permite técnicas de projeto hierárquico adequadas, usando qualquer forma de descrição de hardware.
- 12. Os tipos dos objetos de dados precisam ser especificados para que o compilador HDL saiba o intervalo de números a serem representados.
- 13. Tabelas-verdade podem ser fornecidas diretamente no arquivo fonte, usando os recursos de HDL.
- 14. As estruturas de controle lógico como IF, ELSE e CASE podem ser usadas para descrever o funcionamento de um circuito lógico, o que torna o código e a análise de defeitos muito mais simples.

TERMOS IMPORTANTES

agrupamento de quadros	exclusive-OR (XOR)	ponta de prova lógica
atribuição de sinal selecionada	geração de paridade	PROCESS
bibliotecas	habilitar/desabilitar	produto-de-somas
BIT_VECTOR	IF/THEN	programador
CASE	índice	projeto hierárquico
complementar metal-óxido-	integer	sequencial
semicondutor (CMOS)	ISP	soma-de-produtos
concatenação	JEDEC	soquete ZIF
concorrente	JTAG	SSI, MSI, LSI, VLSI, ULSI, GSI
condição de irrelevância	lista de sensibilidade	STD LOGIC
contenção	literais	STD LOGIC VECTOR
dual-in-line package (DIP)	lógica transistor-transistor (TTL)	tensão indeterminada
ELSE	macrofunção	top-down
ELSIF	mapa de Karnaugh (mapa K)	verificação de paridade
entrada flutuante	matriz de bits	vetor de bits
estrutura de controle de decisão	maxplus2	vetores de teste
exclusive-NOR (XNOR)	objetos	

PROBLEMAS²

SECÕES 4.2 E 4.3

OLÇOLO	7.2 L 4.3		
B 4.1*	Simplifique as seguintes expressões usando a		(g) $y = (\overline{C} + \overline{D}) + \overline{A}C\overline{D} + A\overline{B}\overline{C} + \overline{A}\overline{B}CD +$
	álgebra booleana.		$AC\overline{D}$
	(a) $x = ABC + \overline{A}C$		(h) $x = AB(\overline{CD}) + \overline{A}BD + \overline{B} \overline{C} \overline{D}$
	(b) $y = (Q + R)(\overline{Q} + \overline{R})$	B 4.2	Simplifique o circuito mostrado na Figura 4.65
	(c) $w = ABC + A\overline{B}C + \overline{A}$		usando a álgebra booleana.
	(d) $q = \overline{RST}(\overline{R} + S + \overline{T})$	B 4.3*	Troque cada porta no circuito do Problema 4.2
	(e) $x = \overline{A} \overline{B} \overline{C} + \overline{A}BC + ABC + A\overline{B} \overline{C} + A\overline{B}C$		por uma porta NOR e simplifique o circuito,
	(f) $z = (B + \overline{C})(\overline{B} + C) + \overline{A} + B + \overline{C}$		usando a álgebra booleana.

² As respostas às questões assinaladas com um asterisco encontram-se no final do livro.

FIGURA 4.65 Problemas 4.2 e 4.3.

D 4.8

SEÇÃO 4.4

B, D 4.4* Projete o circuito lógico correspondente à tabela-verdade mostrada na Tabela 4.11.

B, D 4.5 Projete um circuito lógico cuja saída seja nível ALTO apenas quando a maioria das entradas A, B e C for nível BAIXO.

D 4.6 Uma fábrica precisa de uma sirene para indicar o fim do expediente. A sirene deve ser ativada quando ocorrer uma das seguintes condições:

- Já passou das cinco horas e todas as máquinas estão desligadas.
- É sexta-feira, a produção do dia foi atingida e todas as máquinas estão paradas.

Projete um circuito lógico para controle da sirene. (Sugestão: use quatro variáveis lógicas de entrada para representar as diversas condições; por exemplo, a entrada A será nível ALTO apenas quando for 5 horas ou mais.)

D 4.7* Um número de quatro bits é representado como $A_3A_2A_1A_0$, em que A_3 , A_2 , A_1 e A_0 são os bits individuais e A_0 é o LSB. Projete um circuito lógico

que gere um nível ALTO na saída sempre que o número binário for maior que 0010 e menor que 1000.

A Figura 4.66 mostra um diagrama para um circuito de alarme de automóvel usado para detectar determinada condição indesejada. As três chaves são usadas para indicar, respectivamente, o estado da porta do motorista, da ignição e dos faróis. Projete um circuito lógico com essas três chaves como entrada, de modo que o alarme seja ativado sempre que ocorrer uma das seguintes condições:

- Os faróis estão acesos e a ignição está desligada.
- A porta está aberta e a ignição está ligada. Implemente o circuito do Problema 4.4 usando apenas portas NAND.

Implemente o circuito do Problema 4.5 usando apenas portas NAND.

TABELA 4.11

4.9*

4.10

A	В	С	X	
0	0	0	1	
0	0	1	0	
0	1	0	1	
0	1	1	1	
1	0	0	11	
1	0	1	0	
1	1	0		
1	1	1	1	