CSE 211 (Theory of Computation) Context Free Languages

Dr. Muhammad Masroor Ali

Professor
Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology
Dhaka-1205, Bangladesh

January 2016

Version: 1.2, Last modified: April 10, 2016

Sipser, 2.1, p-102

- Grammar, *G*₁.

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$\textit{B} \rightarrow \#$$

2/13

- Grammar, G_1 .

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$\textit{B} \rightarrow \#$$

- substitution rules, also called productions.
 - variables.
 - terminals.
 - start variable.

- $A \rightarrow 0A1$
- $A \rightarrow B$
- $B \rightarrow \#$

- Grammar G_1 generates the string 000#111.
- The sequence of substitutions to obtain a string is called a derivation.

Sipser, 2.1, p-102

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

■ A derivation of string 000#111 in grammar G_1 is

$$A \Rightarrow 0A1$$

$$\Rightarrow$$
 00A11

$$\Rightarrow 000B111$$

$$\Rightarrow 000#111$$

Context-Free Grammars — continued

Sipser, 2.1, p-102

- $A \Rightarrow 0A1$
 - $\Rightarrow 00A11$
 - $\Rightarrow 000A111$
 - ⇒ 000*B*111
 - ⇒ 000#111

You may also represent the same information pictorially with a parse tree.

Context-Free Grammars — continued

Sipser, Figure 2.1, p-103

 $A \Rightarrow 0A1$

 $\Rightarrow 00A11$

 $\Rightarrow 000A111$

⇒ 000*B*111

⇒ 000#111

FIGURE **2.1** Parse tree for 000#111 in grammar G_1

Hopcroft, Motwani, and Ullman, 5.1.1, p-170

Let us consider the language of palindromes.

- 1. $P \rightarrow \epsilon$
- $2. \quad P \quad \rightarrow \quad 0$
- $3. \quad P \quad \rightarrow \quad 1$
- 4. $P \rightarrow 0P0$
- $5. P \rightarrow 1P1$

A context-free grammar for palindromes


```
 \langle \text{SENTENCE} \rangle \rightarrow \langle \text{NOUN-PHRASE} \rangle \langle \text{VERB-PHRASE} \rangle   \langle \text{NOUN-PHRASE} \rangle \rightarrow \langle \text{CMPLX-NOUN} \rangle | \langle \text{CMPLX-NOUN} \rangle \langle \text{PREP-PHRASE} \rangle   \langle \text{VERB-PHRASE} \rangle \rightarrow \langle \text{CMPLX-VERB} \rangle | \langle \text{CMPLX-VERB} \rangle \langle \text{PREP-PHRASE} \rangle   \langle \text{PREP-PHRASE} \rangle \rightarrow \langle \text{PREP} \rangle \langle \text{CMPLX-NOUN} \rangle   \langle \text{CMPLX-NOUN} \rangle \rightarrow \langle \text{ARTICLE} \rangle \langle \text{NOUN} \rangle   \langle \text{CMPLX-VERB} \rangle \rightarrow \langle \text{VERB} \rangle | \langle \text{VERB} \rangle \langle \text{NOUN-PHRASE} \rangle   \langle \text{ARTICLE} \rangle \rightarrow \text{a} \mid \text{the}   \langle \text{NOUN} \rangle \rightarrow \text{boy} \mid \text{girl} \mid \text{flower}   \langle \text{VERB} \rangle \rightarrow \text{touches} \mid \text{likes} \mid \text{sees}   \langle \text{PREP} \rangle \rightarrow \text{with}
```



```
\langle SENTENCE \rangle \Rightarrow \langle NOUN-PHRASE \rangle \langle VERB-PHRASE \rangle
                          \Rightarrow \langle CMPLX-NOUN \rangle \langle VERB-PHRASE \rangle
                          \Rightarrow \langle ARTICLE \rangle \langle NOUN \rangle \langle VERB-PHRASE \rangle
                          \Rightarrow a \langle NOUN \rangle \langle VERB-PHRASE \rangle
                          \Rightarrow a boy \langle VERB-PHRASE \rangle
                          \Rightarrow a boy \langle CMPLX-VERB \rangle
                          \Rightarrow a boy \langle VERB \rangle
                          \Rightarrow a boy sees
```


Formal Definition of a Context-Free Grammar

Sipser, Definition 2.2, p-104

DEFINITION 2.2

A *context-free grammar* is a 4-tuple (V, Σ, R, S) , where

- 1. V is a finite set called the variables,
- **2.** Σ is a finite set, disjoint from V, called the *terminals*,
- **3.** *R* is a finite set of *rules*, with each rule being a variable and a string of variables and terminals, and
- **4.** $S \in V$ is the start variable.

Formal Definition of a Context-Free Grammar — continued

- If u, v, and w are strings of variables and terminals, and $A \rightarrow w$ is a rule of the grammar, we say that uAv yields uwv, written $uAv \Rightarrow uwv$.
- Say that u derives v, written $u \stackrel{*}{\Rightarrow} v$, if u = v or if a sequence u_1, u_2, \dots, u_k exists for $k \ge 0$ and $u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow \dots \Rightarrow u_k \Rightarrow v$.
- The language of the grammar is $\{w \in \Sigma * \mid S \Rightarrow w\}$.

Example

Sipser, Example 2.3, p-105

- \blacksquare $G_3 = (\{S\}, \{a, b\}, R, S).$
- The set of rules (R), R, is $S \rightarrow aSb \mid SS \mid \epsilon$.

Sipser, Example 2.4, p-105

- \blacksquare $G_4 = (V, \Sigma, R, \langle \text{EXPR} \rangle).$
- \blacksquare V is {<EXPR>, <TERM>, <FACTOR>},
- \blacksquare and Σ is $\{a, +, \times, (,)\}$.
- The rules are,

$$\rightarrow$$
 + |
 \rightarrow \times |
 \rightarrow () | a

Formal Definition of a Context-Free Grammar

Sipser, Figure 2.5, p-105

FIGURE **2.5**Parse trees for the strings a+a×a and (a+a)×a

