melyy Max flow - Min cut s-t Cut: st of edges whose removal disconnects s, t. SEV p.t. DES, tES=VS $(S,S) = S(C,S) : CS, S \in S$ - Every (S, S) is a set of edges whose lemoral disconnects & from t. - For every subset of edges that disconcils, t let S = votrèes reachable from s after then (S,\overline{S}) is an S-t cut. (S,\overline{S}) SF. - if set of edges is minimum (least weigt) $(S,\overline{S}) = F.$ (Menger): wax of edge-disjoint s+ paths = min s+ cut G= (Y,E) Capacities Cij >0 s,t. O & fij & Cij, flor conservation at u = s,t. Claim $f \leq c(S,\overline{S}) + S: \lambda \in S, t \notin S.$ f= f(A,V)-f(V,A), C(S,S)=Cop (S,S)-

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho) = f$$

$$\frac{f}{f} \cdot f(A, V) - f(V, \rho)$$

1m.	A flow this maximum if & f-augmenting parts.
7-	If I f-augmenting Balton p,
	then we can send some more flow
	from stot.
	Suppose no f-arg path.
	Let S= {u: } and pollt from s to u }
	$+(i,j) \in (S,\overline{S})$ $f_{ij} = C_{ij}$
	$\forall (i,j) \in (S,S)$ $f_{ij} = 0$
	$f(S,\overline{S}) - f(\overline{S},S) = C(S,\overline{S})$
	=) f is maximum.
Afa	south C-n
	- Start with f=0
	- Gid fame bath (logs?)
Ro	pest - Augment f
	71019/10101
The	Max flow = Min cut
P.C.	paxflor & min out.
	Let f be wax flow. I has no f-oug paths-
	Let T / C VOCA Day
	:. 7 at (S,3) st. f= C(S,3)-

Does algorithe lerrinate? 0.2 How to choose / find any paths? A1. with integer capacities and starting f =0 (or integral) fuerais intégral after every augrentation so process terminates. But could take *many * iterations. With orbitrary starling flow, algorithm might you forever and nover reach mansflow! How to fing dug. paths. Res(f) is a graph based on a, f Cij+fij f; >0, f; =0 Capacity(i,i) = flow that can now be sent. Augmenting path for f = Directed path stat in Res(G).

Firding one path is lasy! Which one to pick? - wax carpacity - shortest Agrithm: Augment on vox capacity f-augmenting pats.

(Can we find this? YES). Lena: Any flow of can be decomposed into flow on at most in paths and cycles. PF. Find any s-t flow path, reduce f by max flow on this path; some edge capacity gres to 0, delete the edge. This can be refeated at most in times, after which only cycles survive. Leng. For a flow of, there is a path of Capacity > f*-f in Res(f), where f* is the way floor. Pf. I flow of value ft-f in Res (f). i. I a path of capacity > f*-f.

1/2	. # arganutation of max capacity = O(m log n U)
	Hagnutation of max capacity = O(m logn U) Where V = max Cij.
<u>R</u> .	After reaching floor f, consider
	all augmentations of capacity $\geq \frac{f'-f}{zm}$
	Atmost 2m such augmentations.
	After these augmentation, max ap any path
	$=) \text{ Amaining } \text{ for } \leq \frac{f^{+} - f}{2m}$
(So remaining flow halves every O(m) iterations. total # iteratures \(\int \) 2m log_2 (nV).
۲	total # iterations $\leq 2m \log_2(nV)$.
	Sice f < nV.
	Time = O(m² log n V). polynomial? FRI: Shortest oug path.
	swall and by