RNN and their computational graph

Embeddings = [-2, 5, 1, 9]

$$W_h = -5$$

$$Wx=1$$

$$Wy=-1$$

Elman RNN

Activation is f(x)=xNo bias

Vocab = ['i', 'o', 'c', 'a']
Embeddings = [-2, 5, 1, 9]

$$W_h$$
= -5

$$Wx=1$$

$$Wy=-1$$

Elman RNN
Activation is f(x)=x
No bias

What is the gradient of the loss on h_0 ?

Embeddings = [-2, 5, 1, 9]

$$W_h = -5$$

$$Wx=1$$

$$Wy=-1$$

Embedding
$$W_{h}$$
 - 1 W_{h} - 5 W_{h} - 5 W_{h} - 1 W_{h} - 1 W_{h} - 1

Embeddings = [-2, 5, 1, 9]

$$W_h = -5$$

Embeddings = [-2, 5, 1, 9]

$$W_h = -5$$

$$W_{X}=1$$

$$Wy=-1$$

Embeddings = [-2, 5, 1, 9]

$$W_h = -5$$

$$W_{X}=1$$

$$Wy=-1$$

$$W_h = -5$$

$$W_{X}=1$$

$$Wy=-1$$

$$y = W_{y}$$

$$-1.5$$

$$2y$$

$$=-1$$

$$W_h = -5$$

$$W_{X}=1$$

$$Wy=-1$$

$$W_h = -5$$

$$Wx=1$$

$$Wy=-1$$

Vocab = ['i', 'o', 'c', 'a']

Embeddings = [-2, 5, 1, 9]

$$W_h$$
 = -5

 Wx =1

 Wy =-1

Elman RNN

Activation is $f(x)$ = x

No bias

$$W_h = -5$$

$$Wx=1$$

$$Wy=-1$$

$$W_h = -5$$

$$Wx=1$$

$$Wy=-1$$