Monday, April 7, 2025 7:21 PM Hyperplane in a voeter Space Let's look at TR $\mathcal{H} = \frac{1}{3}x : \frac{1}{3}x = \frac{1}{3}$ for fixed $a \in \mathbb{R}^n$, $a \neq 0$ and be 12 Hyperplane It 18 an affine Set. Hence it is conven. (2) Solution Set of a nontrovial linear equation Affine Set how associated with it a subspace. & Substace is ax=0 => Null space of a. (2) mile & A hyperplane in R is a point.

1) (1 R is a line

1 R is a plane normal reather hyperblane)

11011 27 ASPRO CO O PE in the direction of the a rector

Is b < 0 => Off set is in the opposite direction
of the a regre.
Half Space: 3rc. ar [E]b] is a closed half space. Space.
half space. Space.
gx: axt=los is a closed half space
A hyperplane cuts In to two half Speces
Half Space is a convex Set.
$Exi : D = 0$ $Q = \begin{bmatrix} 0 \\ 0 \end{bmatrix} (1x, +0)x_2 = 0 \text{Treb} Q$
Exi : D = 0
a = [0] (1x,+01x2=0 &TXED) a
$() \qquad \qquad ()$
0=1
119112
$Ex2$: $Q = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$
b = 3 X

131 b= -3 Ex3. $Q = \begin{bmatrix} -1 \\ -1 \end{bmatrix}$ AxxbPolytope Poly hedron Solution set of a finite number of linear Equations ositilespeni lano $P = \frac{3}{3}x = \frac{3}{3}x = \frac{5}{3}$ one of this is one of this a half space interspond Intersection of a Firste number of half Epaces and probablance. Bounded polyhedron one Called polytopes. Polyhedra are convex sets.

Every convex hull is nothing but a polyhedron
Fact: Intersection of Convex Sets (finite or
infinite) glues rise to a Convex sex
Let Q E A and let S d be convex windering set
NSa is Cenner.
Polyhedon - It is convex because it is
intersection of hyperplanes (affine; convex) and
half Spaces (Conux).
$Ex1:$ $S = \begin{cases} x \in \mathbb{R}^{n} : \left \sum_{k=1}^{\infty} x_{k} cos(ut) \right \leq 1 ; t \leq \pi 3 \end{cases}$
IS S a Conver set?
$S = \left\{ x : -1 \leq \sum_{u=1}^{\infty} x_u \cos(ut) \leq 1; t \leq \pi_{3} \right\}$
$S = \begin{cases} x : \sum_{u=1}^{m} x_u \cos(ut) \leq 1, & \sum_{u=1}^{m} x_u \cos(ut) \approx 1, \end{cases}$ $(41 \leq \pi)_3$
for a fixed to that a half spece

where $c_{t} = \{cos(t), cos(2t), -, cos(mt)\}$ $S_{t}^{t} = \{x : c_{t}^{t} x \leq 1\}$ $S_{t}^{t} = \{x : c_{t}^{t} x \leq 1\}$ $S_{t}^{t} = \{x : c_{t}^{t} x \leq 1\}$ $S_{t}^{t} = \{x : c_{t}^{t} x \geq 1\}$

Ex2: Vector Space of Symmetric metrices S

Stor a Sixed Z

SX ES: ZX Z = 0] => Inver Sunction of X

in Sh => halfspace in S

Space of positive semi definite

No X ES: ZX Z > 0 S

metrices

=> Set of PSD metrices is correct

Comments

(09)

Convex Ophinisohon in Standard Form:

 $min \quad f_0(x)$

Subject to

1.0

Subject to

m, -, l=j, $0 \ge (x)j \neq 0$

 $h_{i}(x) = 0$, i = 1 - - , p

<- · /

(Po) is a convex optimization problem is

(x) 20(x) is convex

Donain et tre proppen

12 Conver

€ don to is convex Sout is convex down h; is convex

3 Constraint set

 $C = \begin{cases} x : \beta_i(x) \ge 0, i = 1, -m, h_i(x) \ge 0, i \ge 1, -m \end{cases}$

is convex

This requires that

(i) The equality constraints are linear

i.e. hi(x) = aix for Some ai

			($\sim 0.7 \sim 1$
1	$A \times = 0$	where	P=	/— 0,7— /
	1 (× = 0			1 7 1
				r-ab-

(ii) The inequality constraint functions must be convex-

Remember: $S_{i} = \frac{1}{3}x$: $\frac{1}{3}i(x) \ge 0$ and $\frac{1}{3}i(x)$ $\frac{1}{3}i(x) \ge 0$ and $\frac{1}{3}i(x)$

Fact: Sublevel sets of convex functions are

Summany: (Po) is Convex if

1 20 18 Conver

@ 7;'s our Convers

(3) his are linear (3) Ax=0

Ex: Win Xi+xi

5.7. (1+x,2) = 0 Not Convex

 $(2c, +x_2)^2 = 0$

La Not linear

But note that

But note that

 $\frac{\chi_1}{(1+\chi_1^2)} \leq 0 \iff \chi_1 \leq 0$ $(\chi_1 + \chi_2)^2 = 0 \iff \chi_1 + \chi_2 = 0$ $\chi_1^2 + \chi_2^2$ $\chi_1 \leq 0$ $\chi_1 + \chi_2 = 0$ $\chi_1 + \chi_2 = 0$

Class Notes Page 8