Learning Job Run-Times in HPC Systems

Valentin Reis

LIG, AMA Team.
Under supervision of: Eric Gaussier and Denis Trystram.

June 16, 2014

Resource Management in HPC Systems

High Performance Computing is:

- Complex architectures.
- Uncertain data.

Jobs

This is a job:

Jobs

This is a job on a system:

Objectives

- $\sum_{i=0}^{i=n} C_i$ (Minsum)
- $\max_{i=0}^{i=n} C_i$ (Makespan)
- $\sum_{i=0}^{i=n} C_i r_i$ (Flow Time)
- $\sum_{i=0}^{i=n} \frac{C_i r_i}{C_i \sigma(i)}$ (Sum Stretch)
- $\max_{i=0}^{i=n} \frac{C_i r_i}{C_i \sigma(i)}$ (Max Stretch)
- Many others
- And their combinations!

Objectives

- $\sum_{i=0}^{i=n} C_i$ (Minsum)
- $\max_{i=0}^{i=n} C_i$ (Makespan)
- $\sum_{i=0}^{i=n} C_i r_i$ (Flow Time)
- $\sum_{i=0}^{i=n} \frac{C_i r_i}{C_i \sigma(i)}$ (Sum Stretch)
- $\max_{i=0}^{i=n} \frac{C_i r_i}{C_i \sigma(i)}$ (Max Stretch)
- Many others
- And their combinations!

And: functional constraints. no starvation, please!

Offline Scheduling, a.k.a. strip packing?

Offline Scheduling

Offline Scheduling

Offline Scheduling, a.k.a. strip packing?

Offline Scheduling, a.k.a. strip packing? – no

- Offline Scheduling, a.k.a. strip packing? no
- Online Scheduling?

Online Scheduling

Online Scheduling

Uncertainty in Run-times

: Marginal

: Ratio

- Offline Scheduling, a.k.a. strip packing? no
- Online Scheduling?

- Offline Scheduling, a.k.a. strip packing? no
- Online Scheduling? no

- Offline Scheduling, a.k.a. strip packing? no
- Online Scheduling? no
- Online Scheduling under Uncertainty

- Offline Scheduling, a.k.a. strip packing? no
- Online Scheduling? no
- Online Scheduling under Uncertainty yes!

Online Scheduling under Uncertainty

Online Scheduling under Uncertainty

Robust Optimization

 $\begin{array}{ll} \textbf{Robust Optimization} & \textbf{Stochastic Programming} \\ & + \textbf{Input Modeling} \end{array}$

Robust Optimization

Stochastic Programming + Input Modeling

Robust Optimization

Stochastic Programming + Input Modeling

The FCFS algorithm

The FCFS algorithm

FCFS with EASY(conservative) backfilling

Runtime Prediction

Problem Statement: How to best Predict the Runtime of a job on a given system?

Nature of the Prediction

- Single-valued?
- Probability distribution?
- Confidence Interval?

Nature of the Prediction

- Single-valued
- Probability distribution
- Confidence Interval

Hypotheses on the Runtime

- Independent and identically distributed?
- Is it dependent on job characteristics?

Hypotheses on the Runtime

- Independent and identically distributed? No.
- Is it dependent on job characteristics? Yes.

State of the Art

A very popular predictor:

$$p_i^u = \frac{p_{i-1}^u + p_{i-2}^u}{2}$$

Baseline for evaluating our method.

Our Approach

Machine Learning: Regression problem.

Machine Learning: Regression problem.

Build vectors containing:

Machine Learning: Regression problem.

Build vectors containing:

Job characteristics (e.g., required time and nodes)

Machine Learning: Regression problem.

Build vectors containing:

- Job characteristics (e.g., required time and nodes)
- Status of the system (e.g., day of the week)

Machine Learning: Regression problem.

Build vectors containing:

- Job characteristics (e.g., required time and nodes)
- Status of the system (e.g., day of the week)
- Characteristics of the last jobs of this user (e.g., the baseline)

Machine Learning: Regression problem.

Build vectors containing:

- Job characteristics (e.g., required time and nodes)
- Status of the system (e.g., day of the week)
- Characteristics of the last jobs of this user (e.g., the baseline)

Perform Regression using the Random Forest algorithm.

Random Forests

- Training:
 - Randomly partition the training data.
 - Learn a decision tree on each subset.

Decision Tree Learning

$$X = \begin{pmatrix} x \\ y \end{pmatrix}, (\alpha, \beta, a, b, c) \in \mathbb{R}^5$$
 $x \le \alpha \qquad x > \alpha$
 $y > \beta \qquad y \le \beta$

Figure: A decision tree for predicting the value of X.

Random Forests

- Training:
 - Randomly partition the training data.
 - Learn a decision tree on each subset.
- Predict a value by averaging the results from all the decision trees.

Experiments

On the CURIE log:

The features are extracted with the SimPy discrete event simulation package.

The RF is trained on the CURIE log using the first 80% of the jobs, using the Scikit-Learn package.

Results: Absolute Error Distribution

Results: metrics

Measure	Baseline	Random Forest
MSE	$1.98497515 imes 10^8$	1.58202218×10^{8}
MAE	4.680836×10^3	5.551237×10^3
Standard Error	5.312812×10^{1}	4.512378×10^{1}

Perspectives

- Online Algorithm
- More datasets, more features.
- Sensitivity analysis, objective/cost functions.

Thank you!

