1 Определение и вероятностное описание случайных процессов

Определение 1. Если для каждого значения t зависимая переменная x представляет собой случайную величину, то говорят, что = x(t) есть случайная функция времени или случайный процесс. Случайный процесс по Слуцкому – это однопараметрическое семейство случайных величин

Определение 2.. Случайный процесс (случайная функция времени) x(t) – это есть некое множество детерминированных функций (реализаций случайного процесса) на котором задана вероятностная мера

В определении случайного процесса мы имеем зависимость от времени и ансамбля - случайный процесс является функцией двух переменных. Поэтому в строгой математической литературе используют обозначения $(t,\omega), t\in T, \omega\in\Omega$, где Ω - выборочное пространство рассматриваемого эксперимента (или пространство элементарных событий). – множество индексов времени. непрерывное или дискретное. Тогда для отдельной реализации можно использовать обозначениу: $x(t,\omega_m)$ - детерминированная функция, реализация соответствует событию ω_m из выборочного пространства Ω

 $x(t_1,\omega), x(t_2,\omega)$ – случайные величины, соответствующие значениям случайного процесса в моменты времени t_1 и t_2 , определенные на выборочном пространстве Ω , значения которых и образуют множество элементарных событий или выборочное пространство Ω . Сам случайный процесс записывают как $x(t,\omega)$

Зная статистический ансамбль случайного процесса, можно найти вероятностную меру (частоту появления реализаций). Плотность вероятности является положительнозначной функцией и удовлетворяет условию нормировки $\int_{-\infty}^{\infty} W(x,t) \, dx = 1$ для любого t. Физический смысл W(x,t)как и физический смысл плотности вероятности случайной величины – это вероятность прохождения случайного процесса x(t) через «дельта-ворота», расположенные в точке x и имеющие ширину dx.

Среднее статистическое значение: $\langle x(t) \rangle = \int_{-\infty}^{\infty} x W(x,t) \, dx$ - усреднение по стат. ансамблю Средний квадрат случайного процесса: $\langle x^2(t) \rangle = \int_{-\infty}^{\infty} x^2 W(x,t) dx$

Двумерная плотность вероятности: $W(x_1, t_1; x_2, t_2) = P$ ЛЕЕЕЕНЬ стр 8 Физический смысл двумерной плотности вероятности заключается в том, что она определяет вероятность одновременного прохождения реализаций случайного процесса через пару «ворот», расположенных в точках x_1 и x_2 и имеющих ширину dx_1 и dx_2

Основные свойства п-мерных плотностей вероятности

- 1. Неотрицательность: $W(x_1, t_1; x_2, t_2; ...; x_n, t_n) \ge 0$
- 2. Нормировка: $\int_{-\infty}^{\infty} W(x_1,t_1;x_2,t_2;\ldots;x_n,t_n) dx_1 dx_2 \ldots dx_n = 1$ 3. Симметрия: $W(x_1,t_1;x_2,t_2;\ldots;x_n,t_n) = W(x_2,t_2;x_1,t_1;\ldots;x_n,t_n)$
- 4. Согласованность: $W_m(x_1, t_1; x_2, t_2; ...; x_m, t_m) = \text{ЛЕЕЕЕНЬ стр } 11$