Homework 6 for **MATH 561**, Set Theory

Due: Thursday Mar 29

In the following, *M* is always a countable transitive model of ZFC.

Problem 1 – Generic filters

Show that the following properties are equivalent to being a \mathbb{P} -generic filter over M:

- (a) $G \cap D \neq \emptyset$ for all $D \in M$ which are dense and *open* (i.e. $p \in D$ implies $q \in D$ for all $q \leq p$).
- (b) $G \cap D \neq \emptyset$ for all $D \in M$ which is a *maximal antichain* in \mathbb{P} (i.e. the elements of D are pairwise incompatible, and D is maximal with this property).

Problem 2 – Generics in the ground model

We have seen in class that if the p.o. \mathbb{P} satisfies

$$\forall p \exists q, r \ (q \le p \ \land \ r \le p \ \land \ q \perp r) \tag{*}$$

then any \mathbb{P} -generic over M is not an element of M. Show that if there exists $p \in \mathbb{P}$ for which (*) fails (such p is called an atom of \mathbb{P}) and $\mathbb{P} \in M$, then there exists a filter $G \in M$ with $p \in G$ so that G intersects all dense subsets of \mathbb{P} .

Problem 3 – Not every subset of \mathbb{P} extends a model

Assume that $\mathbb{P} \in M$ and \mathbb{P} is infinite. Show that there exists an $H \subseteq \mathbb{P}$ such that M[H] is not a model of ZF.

Problem 4 - Number of generics

Show that if $\mathbb{P} \in M$ and \mathbb{P} is non-atomic, then

 $\{G: G \text{ is } \mathbb{P}\text{-generic over } M\}$

has cardinality 2^{\aleph_0} .