Class 8: Mini-Project

Allen (A16897142)

Table of contents

ackground	1
ata Import	1
lustering	6
rincipal Component Analysis	11
CA od wisc.data	15
ombining Methods	20
lustering on PCA results	20
rediction	21

Background

This mini-project explores unsupervised learning techniques applied to the Wisconsin Breast Cancer Diagnostic Data Set, which contains measurements of human breast mass cell nuclei. The project guides the user through exploratory data analysis, performing and interpreting Principal Component Analysis (PCA) to reduce the dimensionality of the data while retaining variance, and applying hierarchical clustering with different linkage methods. It also includes a section on K-means clustering for comparison. The ultimate goal is to combine PCA and clustering to better separate benign and malignant cell samples, evaluating the results using metrics like sensitivity and specificity, and finally demonstrating how to predict the classification of new samples using the developed PCA model.

Data Import

The data will be coming from the University of Wisconsin Medical Center

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/WisconsinCancer.csv"
wisc.df <- read.csv(url, row.names=1)
head(wisc.df)</pre>
```

```
diagnosis radius_mean texture_mean perimeter_mean area_mean
842302
                          17.99
                                        10.38
                                                       122.80
                                                                 1001.0
                 М
                 М
                          20.57
                                        17.77
842517
                                                       132.90
                                                                 1326.0
84300903
                 Μ
                          19.69
                                        21.25
                                                       130.00
                                                                 1203.0
84348301
                 Μ
                          11.42
                                        20.38
                                                       77.58
                                                                  386.1
84358402
                 Μ
                          20.29
                                        14.34
                                                       135.10
                                                                 1297.0
843786
                 Μ
                          12.45
                                        15.70
                                                       82.57
                                                                  477.1
         smoothness_mean compactness_mean concavity_mean concave.points_mean
842302
                 0.11840
                                   0.27760
                                                    0.3001
                                                                         0.14710
842517
                 0.08474
                                   0.07864
                                                    0.0869
                                                                         0.07017
84300903
                 0.10960
                                   0.15990
                                                                         0.12790
                                                    0.1974
84348301
                 0.14250
                                   0.28390
                                                    0.2414
                                                                         0.10520
84358402
                 0.10030
                                   0.13280
                                                    0.1980
                                                                         0.10430
843786
                 0.12780
                                   0.17000
                                                    0.1578
                                                                         0.08089
         symmetry_mean fractal_dimension_mean radius_se texture_se perimeter_se
842302
                0.2419
                                        0.07871
                                                   1.0950
                                                               0.9053
                                                                              8.589
842517
                0.1812
                                        0.05667
                                                   0.5435
                                                               0.7339
                                                                              3.398
84300903
                0.2069
                                        0.05999
                                                   0.7456
                                                               0.7869
                                                                              4.585
84348301
                0.2597
                                        0.09744
                                                   0.4956
                                                               1.1560
                                                                              3.445
84358402
                0.1809
                                        0.05883
                                                   0.7572
                                                               0.7813
                                                                              5.438
843786
                0.2087
                                        0.07613
                                                   0.3345
                                                               0.8902
                                                                              2.217
         area se smoothness se compactness se concavity se concave.points se
                       0.006399
842302
          153.40
                                        0.04904
                                                     0.05373
                                                                         0.01587
842517
           74.08
                       0.005225
                                        0.01308
                                                     0.01860
                                                                         0.01340
84300903
           94.03
                       0.006150
                                        0.04006
                                                     0.03832
                                                                         0.02058
           27.23
84348301
                       0.009110
                                        0.07458
                                                     0.05661
                                                                         0.01867
84358402
           94.44
                       0.011490
                                        0.02461
                                                     0.05688
                                                                         0.01885
843786
           27.19
                       0.007510
                                        0.03345
                                                     0.03672
                                                                        0.01137
         symmetry_se fractal_dimension_se radius_worst texture_worst
842302
             0.03003
                                  0.006193
                                                   25.38
                                                                  17.33
                                                   24.99
842517
             0.01389
                                  0.003532
                                                                  23.41
84300903
             0.02250
                                  0.004571
                                                   23.57
                                                                  25.53
84348301
             0.05963
                                  0.009208
                                                   14.91
                                                                  26.50
84358402
             0.01756
                                  0.005115
                                                   22.54
                                                                  16.67
843786
             0.02165
                                  0.005082
                                                   15.47
                                                                  23.75
         perimeter worst area worst smoothness worst compactness worst
842302
                  184.60
                              2019.0
                                                0.1622
                                                                   0.6656
842517
                  158.80
                              1956.0
                                                0.1238
                                                                   0.1866
84300903
                  152.50
                              1709.0
                                                0.1444
                                                                   0.4245
84348301
                   98.87
                               567.7
                                                0.2098
                                                                   0.8663
84358402
                  152.20
                              1575.0
                                                0.1374
                                                                   0.2050
843786
                  103.40
                               741.6
                                                0.1791
                                                                   0.5249
         concavity_worst concave.points_worst symmetry_worst
```

842302	0.7119	0.2654	0.4601
842517	0.2416	0.1860	0.2750
84300903	0.4504	0.2430	0.3613
84348301	0.6869	0.2575	0.6638
84358402	0.4000	0.1625	0.2364
843786	0.5355	0.1741	0.3985
	<pre>fractal_dimension_worst</pre>		
842302	0.11890		
842517	0.08902		
84300903	0.08758		
84348301	0.17300		
84358402	0.07678		
843786	0.12440		

How many patients/samples are in this dataset?

```
nrow(wisc.df)
```

[1] 569

How many of the observations have a malignant diagnosis?

table(wisc.df\$diagnosis)

B M 357 212

```
sum(wisc.df$diagnosis == "M")
```

[1] 212

How many variables/features in the data are suffixed with _mean?

colnames(wisc.df)

```
[11] "fractal_dimension_mean"
                                "radius_se"
[13] "texture_se"
                                "perimeter_se"
[15] "area_se"
                                "smoothness_se"
[17] "compactness_se"
                                "concavity_se"
[19] "concave.points_se"
                                "symmetry_se"
[21] "fractal_dimension_se"
                                "radius_worst"
[23] "texture_worst"
                                "perimeter_worst"
                                "smoothness_worst"
[25] "area_worst"
[27] "compactness_worst"
                                "concavity_worst"
[29] "concave.points_worst"
                                "symmetry_worst"
[31] "fractal_dimension_worst"
```

```
length(grep("mean",colnames(wisc.df),value=T))
```

[1] 10

There is a diagnosis column that represents the clinicians consensus that I want to exclude from any future analysis. We will first our data and then compare with the "diagnosis" later.

```
diagnosis <- as.factor(wisc.df$diagnosis)
head(diagnosis)</pre>
```

[1] M M M M M M M Levels: B M

No we will remove diagnosis from wisc.df

```
wisc.data <- wisc.df[,-1]
head(wisc.data)</pre>
```

	radius_mean te	exture_mean	perimeter_mean	area_mean s	smoothness_mean
842302	17.99	10.38	122.80	1001.0	0.11840
842517	20.57	17.77	132.90	1326.0	0.08474
84300903	19.69	21.25	130.00	1203.0	0.10960
84348301	11.42	20.38	77.58	386.1	0.14250
84358402	20.29	14.34	135.10	1297.0	0.10030
843786	12.45	15.70	82.57	477.1	0.12780
	compactness_me	ean concavit	y_mean concave.	.points_mea	n symmetry_mean
842302	0.277	760	0.3001	0.14710	0.2419
842517	0.078	864	0.0869	0.0701	7 0.1812

84300903	0.15990	0.1974		0.12790	0.2069
84348301	0.28390	0.2414		0.10520	0.2597
84358402	0.13280	0.1980		0.10430	0.1809
843786	0.17000	0.1578		0.08089	0.2087
	fractal_dimensio	n_mean radius_se	texture_se	perimeter_se	area_se
842302	0	.07871 1.0950	0.9053	8.589	153.40
842517	0	.05667 0.5435	0.7339	3.398	74.08
84300903	0	.05999 0.7456	0.7869	4.585	94.03
84348301	0	.09744 0.4956	1.1560	3.445	27.23
84358402	0	.05883 0.7572	0.7813	5.438	94.44
843786	0	.07613 0.3345	0.8902	2.217	27.19
	smoothness_se co	mpactness_se con	cavity_se co	oncave.points	_se
842302	0.006399	0.04904	0.05373	0.019	
842517	0.005225	0.01308	0.01860	0.013	340
84300903	0.006150	0.04006	0.03832	0.020	058
84348301	0.009110	0.07458	0.05661	0.018	367
84358402	0.011490	0.02461	0.05688	0.018	385
843786	0.007510	0.03345	0.03672	0.01	137
	symmetry_se frac	tal_dimension_se	radius_wors	st texture_wor	rst
842302	0.03003	0.006193	25.3	38 17	. 33
842517	0.01389	0.003532	24.9	99 23	.41
84300903	0.02250	0.004571	23.5	57 25	. 53
84348301	0.05963	0.009208	14.9	91 26	.50
84358402	0.01756	0.005115	22.5	54 16	. 67
843786	0.02165	0.005082	15.4	17 23	.75
	perimeter_worst	area_worst smoot	hness_worst	compactness_v	worst
842302	184.60	2019.0	0.1622	0	.6656
842517	158.80	1956.0	0.1238	0	. 1866
84300903	152.50	1709.0	0.1444	0	. 4245
84348301	98.87	567.7	0.2098	0	.8663
84358402	152.20	1575.0	0.1374	0	. 2050
843786	103.40	741.6	0.1791	0	.5249
	concavity_worst	concave.points_w	orst symmetr	ry_worst	
842302	0.7119	0.	2654	0.4601	
842517	0.2416	0.	1860	0.2750	
84300903	0.4504	0.	2430	0.3613	
84348301	0.6869	0.3	2575	0.6638	
84358402	0.4000	0.	1625	0.2364	
843786	0.5355	0.	1741	0.3985	
	fractal_dimensio	n_worst			
842302		0.11890			
842517		0.08902			
84300903		0.08758			

84348301	0.17300
84358402	0.07678
843786	0.12440

Clustering

```
kmeans(wisc.data,centers=2)
```

K-means clustering with 2 clusters of sizes 438, 131

```
Cluster means:
  radius mean texture mean perimeter mean area mean smoothness mean
     12.55630
                  18.57037
                                 81.12347 496.0619
                                                           0.0948845
2
     19.37992
                  21.69458
                                 128.23130 1185.9298
                                                           0.1012946
  compactness_mean concavity_mean concave.points_mean symmetry_mean
1
        0.09109982
                       0.06243776
                                            0.03343254
                                                           0.1780580
2
        0.14861298
                       0.17693947
                                            0.10069878
                                                           0.1915397
  fractal dimension mean radius se texture se perimeter se area se
1
              0.06345402 0.3041909
                                     1.215153
                                                   2.152881 23.78529
2
              0.06060290 0.7428038
                                      1.222538
                                                   5.250580 95.67817
  smoothness_se compactness_se concavity_se concave.points_se symmetry_se
    0.007173263
                    0.02347469
                                 0.02874551
                                                    0.01063632 0.02061358
1
                    0.03217669
                                 0.04241977
2
    0.006598687
                                                    0.01567398 0.02030397
  fractal_dimension_se radius_worst texture_worst perimeter_worst area_worst
                                          24.70954
           0.003747503
                           14.04390
                                                          91.93751
                                                                     619.6479
1
2
           0.003953389
                           23.70947
                                          28.91267
                                                         158.49618 1753.0229
  smoothness_worst compactness_worst concavity_worst concave.points_worst
1
         0.1299591
                           0.2233118
                                            0.2192149
                                                                0.09132984
2
         0.1404247
                           0.3577577
                                            0.4493061
                                                                0.19243107
  symmetry_worst fractal_dimension_worst
```

0.08328194

0.08616550

Clustering vector:

1

0.2835537

0.3118817

8	42302	842517	84300903	84348301	84358402	843786	844359	84458202
	2	2	2	1	2	1	2	1
8	44981	84501001	845636	84610002	846226	846381	84667401	84799002
	1	1	1	2	2	1	1	1
8	48406	84862001	849014	8510426	8510653	8510824	8511133	851509
	1	2	2	1	1	1	1	2

050550	050604	050760	050704	050070	050004	050404	050640
							853612
2	2	1			2		
85382601						855133	
2	2	2	2	1	_		_
855167	855563	855625		85638502			85715
1	1	2	1	1	2	_	_
857155	857156	857343		857374	857392	857438	85759902
1	1	1		1	2		_
857637	857793	857810	858477	858970	858981	858986	859196
2	1	1	1	1	1	1	1
85922302	859283	859464	859465			859575	859711
1	1	1	1	1	1	2	1
859717	859983	8610175	8610404	8610629	8610637	8610862	8610908
2	1	1	2	1	2	2	1
861103	8611161	8611555	8611792	8612080	8612399	86135501	86135502
1	1	2	2	1	2	1	2
861597	861598	861648	861799	861853	862009	862028	86208
1	1	1	1	1	1	1	2
86211	862261	862485	862548	862717	862722	862965	862980
1	1	1	1	1	1	1	1
862989	863030	863031	863270	86355	864018	864033	86408
1	1	1	1	2	1		
86409	864292	864496			864729	864877	865128
1	1	1	1	1	1		
865137	86517			865468			
1	2	2	1	1			
866458	_	866714		86730502	_		
1	2	1	1	1	1		
868223	868682	868826				869218	_
1	1	1		1	2		
869254	_	_	_	_	_	_	871001502
1	1	1		1	1		
8710441	87106	_				871122	
_					0/11210		
0711561	0711002	071001		2			
_							8712729
0740766	2				1		
		87139402					872113
2		1			1		
_		873357				873701	
1	1	1		2	2		
						874858	
1	1						
875099	875263	87556202	875878	875938	877159	877486	877500

1	1	1	1	1	2	2	1
877501	877989	878796	87880	87930	879523	879804	879830
1	2	2	1	1	1	1	2
8810158	8810436	881046502			881094802	8810955	8810987
1	1	2	1	2	1	1	1
8811523	8811779	8811842	88119002	8812816	8812818	8812844	8812877
1	1	_	2	_	_	_	_
8813129	88143502	88147101	88147102	88147202	881861	881972	88199202
1	1	1	1			_	1
88203002	88206102	882488			883263	883270	88330202
1	2	1	1	2	2	1	_
88350402	883539	883852		884180	884437	884448	884626
1	1	1	1	2	1	1	1
88466802	884689	884948	88518501			886226	886452
1	1	_	1	_		2	_
88649001	886776	887181	88725602	887549	888264	888570	889403
2	1	_	1			2	1
889719	88995002	8910251	8910499	8910506	8910720	8910721	8910748
2	2	_					1
8910988	8910996	8911163	8911164	8911230	8911670	8911800	8911834
2	1	2			_		_
8912049	8912055		8912280	8912284	8912521	8912909	8913
2	1	_	1	1			_
8913049	89143601	89143602	8915	891670	891703	891716	891923
1	1	1	1	1	1	1	1
891936	892189	892214		892438	892604		
1	1	1	1	_		2	
89296	893061	89344	89346	893526	893548	893783	89382601
1	1	_	1	_	_	_	_
89382602	893988	894047		894090		894329	894335
1	1	_	1	1	_	1	_
894604	894618	894855					
1	2		2			1	
8953902	895633	896839					89742801
1	1	1	1	1	1	1	2
		897880					
		1					
		898678					
1	1	1 901011	1	1	1	1	1
899987	9010018	901011	9010258	9010259	901028	9010333	901034301
		1					
901034302		9010598					
1	1	1	1	1	2	2	1

9011971	9012000	9012315	9012568	9012795	901288	9013005	901303
2	2	1	1	2	2	1	1
901315	9013579	9013594	9013838	901549	901836	90250	90251
1	1	1		1			1
902727	90291	902975	902976	903011	90312	90317302	
1	-	1		1			-
903507	903516	903554	903811	90401601	90401602	904302	904357
2	2	1	1	1	1	1	1
90439701	904647	904689	9047	904969	904971	905189	905190
2	1	1	1	1	1	1	1
90524101	905501	905502	905520	905539	905557	905680	905686
2	1	1	1	1	1	1	1
905978	90602302	906024	906290	906539	906564	906616	906878
1		1		1			
907145	907367	907409	90745	90769601	90769602	907914	907915
1	1	1	1	1	1	1	1
908194	908445	908469	908489	908916	909220	909231	909410
2	2	1	1	1	1	1	1
909411	909445	90944601	909777	9110127	9110720	9110732	
1	2	1	1	2	1	2	1
911150	911157302	9111596	9111805	9111843	911201	911202	9112085
1	2	1	2	1	1	1	1
9112366	9112367	9112594	9112712	911296201	911296202	9113156	911320501
1	1	1	1	2	2	1	1
911320502	9113239	9113455	9113514	9113538	911366	9113778	9113816
1	1	1	1	2	1	1	1
911384	9113846	911391	911408	911654	911673	911685	911916
1	1	1	1	1	1	1	1
912193	91227	912519	912558	912600	913063	913102	913505
1				1			2
913512	913535	91376701	91376702	914062	914101	914102	914333
1	1	1	2	2	1	1	1
914366	914580	914769	91485	914862	91504	91505	915143
1	1	2	2	1	1	1	2
915186	915276	91544001	91544002	915452	915460	91550	915664
1	1	1	1	1	1	1	1
915691	915940	91594602	916221	916799	916838	917062	917080
	1						
917092	91762702	91789	917896	917897	91805	91813701	91813702
1	2	1	1	1	1	1	1
918192	918465	91858	91903901	91903902	91930402	919537	919555
1	1	4	4	1	2	4	0
	919812		1				2

1	1	1	1	1	1	1	1
922297	922576	922577	922840	923169	923465	923748	923780
1	1	1	1	1	1	1	1
924084	924342	924632	924934	924964	925236	925277	925291
1	1	1	1	1	1	1	1
925292	925311	925622	926125	926424	926682	926954	927241
1	1	1	2	2	2	1	2
92751							
1							

Within cluster sum of squares by cluster:

[1] 28559677 49383423

(between_SS / total_SS = 69.6 %)

Available components:

```
[1] "cluster" "centers" "totss" "withinss" "tot.withinss" [6] "betweenss" "size" "iter" "ifault"
```

hc <- hclust(dist(wisc.data))
plot(hc)</pre>

Cluster Dendrogram

dist(wisc.data) hclust (*, "complete")

Clusters can be extracted from the dendrogram above with the function cutree()

```
grps <- cutree(hc,k=2)</pre>
```

How many individuals in each cluster

```
table(grps)
```

```
grps
1 2
549 20
```

table (diagnosis)

```
diagnosis
B M
357 212
```

Now we can use a cross-table that compares the clusters of grps with diagnosis to see if there are any similarities (are the 20 in grps malignant or not)

table(diagnosis,grps)

```
grps
diagnosis 1 2
B 357 0
M 192 20
```

Principal Component Analysis

The main function for PCA in base R is prcomp() and has a default input parameter of scale=FALSE.

head(mtcars)

```
mpg cyl disp hp drat
                                           wt qsec vs am gear carb
Mazda RX4
                 21.0
                           160 110 3.90 2.620 16.46 0
                                                        1
Mazda RX4 Wag
                 21.0
                           160 110 3.90 2.875 17.02
                                                        1
                                                                  4
Datsun 710
                 22.8
                           108 93 3.85 2.320 18.61
                        4
                                                       1
                                                             4
                                                                  1
Hornet 4 Drive
                 21.4
                           258 110 3.08 3.215 19.44
                                                     1 0
                                                             3
                                                                  1
                        6
                                                                  2
Hornet Sportabout 18.7
                           360 175 3.15 3.440 17.02
                                                             3
                        8
                                                     0 0
Valiant
                 18.1
                           225 105 2.76 3.460 20.22 1 0
                                                             3
                                                                  1
```

A PCA can be done but it could be misleading:

colMeans(mtcars)

disp cyl hp drat qsec mpg 20.090625 6.187500 230.721875 146.687500 3.596563 3.217250 17.848750 amgear carb 3.687500 0.437500 0.406250 2.812500

apply(mtcars,2,sd)

disp cyl hp drat wt mpg 6.0269481 1.7859216 123.9386938 68.5628685 0.5346787 0.9784574 qsec carb ٧s \mathtt{am} gear 1.7869432 0.5040161 0.4989909 0.7378041 1.6152000

Let's scale the data before we conduct PCA to get a better representation and analysis of the columns.

```
mtscale <- scale(mtcars)</pre>
round(colMeans(mtscale))
mpg cyl disp hp drat
                      wt qsec
                                   am gear carb
                               ٧s
  0 0 0 0 0
                       0 0
                                0
                                    0
                                        0
apply(mtscale,2,sd)
mpg cyl disp hp drat
                      wt qsec
                                   am gear carb
                               ٧s
    1
        1
            1
                   1
                      1 1 1 1 1
pc.scale <- prcomp(mtscale)</pre>
```

We can look at the two main results figures from PCA - the "PC plot" (or score plot/PC1 vs PC2 plot). The "loadings plot" or how the original variables contribute to the new PC.

A loadings plot of the unscaled PCA results:

```
library(ggplot2)

ggplot(pc$rotation)+
  aes(PC1,rownames(pc$rotation))+
  geom_col()
```



```
ggplot(pc.scale$rotation)+
aes(PC1,rownames(pc$rotation))+
geom_col()
```


PC plot of scaled PCA results:

```
library(ggrepel)
ggplot(pc.scale$x)+
aes(PC1,PC2,label=rownames(pc.scale$x))+
geom_point()+
geom_text_repel()
```

Warning: ggrepel: 9 unlabeled data points (too many overlaps). Consider increasing max.overlaps

Remember that in general, we will set scale=T when we conudct PCAs.

PCA od wisc.data

Let's check out the SD and mean in wisc.data.

```
wisc.pc <- prcomp(wisc.data,scale=T)</pre>
```

To see how well PCA is doing here in terms f capturing spread, we use summary() to help:

Importance of components:

```
PC1
                                 PC2
                                         PC3
                                                  PC4
                                                          PC5
                                                                  PC6
                                                                          PC7
Standard deviation
                       3.6444 2.3857 1.67867 1.40735 1.28403 1.09880 0.82172
Proportion of Variance 0.4427 0.1897 0.09393 0.06602 0.05496 0.04025 0.02251
Cumulative Proportion 0.4427 0.6324 0.72636 0.79239 0.84734 0.88759 0.91010
                           PC8
                                  PC9
                                         PC10
                                                 PC11
                                                         PC12
                                                                 PC13
                                                                         PC14
Standard deviation
                       0.69037 0.6457 0.59219 0.5421 0.51104 0.49128 0.39624
Proportion of Variance 0.01589 0.0139 0.01169 0.0098 0.00871 0.00805 0.00523
Cumulative Proportion
                       0.92598 \ 0.9399 \ 0.95157 \ 0.9614 \ 0.97007 \ 0.97812 \ 0.98335
                          PC15
                                  PC16
                                          PC17
                                                   PC18
                                                           PC19
                                                                   PC20
                                                                          PC21
Standard deviation
                       0.30681 0.28260 0.24372 0.22939 0.22244 0.17652 0.1731
Proportion of Variance 0.00314 0.00266 0.00198 0.00175 0.00165 0.00104 0.0010
Cumulative Proportion 0.98649 0.98915 0.99113 0.99288 0.99453 0.99557 0.9966
                          PC22
                                  PC23
                                         PC24
                                                 PC25
                                                          PC26
                                                                  PC27
                                                                          PC28
                       0.16565 0.15602 0.1344 0.12442 0.09043 0.08307 0.03987
Standard deviation
Proportion of Variance 0.00091 0.00081 0.0006 0.00052 0.00027 0.00023 0.00005
Cumulative Proportion 0.99749 0.99830 0.9989 0.99942 0.99969 0.99992 0.99997
                          PC29
                                  PC30
Standard deviation
                       0.02736 0.01153
Proportion of Variance 0.00002 0.00000
Cumulative Proportion 1.00000 1.00000
```

Let's make the PC1 vs PC2 figure:

```
ggplot(wisc.pc$x)+
  aes(PC1,PC2, col=diagnosis)+
  geom_point()+
  xlab("PC1(44.38%)")+
  ylab("PC2 (19%)")
```


Q4:From your results, what proportion of the original variance is captured by the first principal components (PC1)?

44.27% is captured by PC1

- Q5. How many principal components (PCs) are required to describe at least 70% of the original variance in the data?
- 3 PCs are required to describe at least 70% of the original variance.
 - Q6. How many principal components (PCs) are required to describe at least 90% of the original variance in the data?
- 7 PCs are required to describe at least 90% of the original variance.
 - Q7. What stands out to you about this plot (biplot)? Is it easy or difficult to understand? Why?

The plot is very messy which makes it difficult to analyze and understand

biplot(wisc.pc)

Q8. Generate a similar plot for principal components 1 and 3. What do you notice about these plots?

Because PC2 caputures a greater amount of variance, there seems to be a better seperation of the diagnosis points in the plot. There was a mixture in the separation when you plotted PC3 instead of PC2.

```
plot(wisc.pc$x[], col = diagnosis,
    xlab = "PC1", ylab = "PC3")
```


Q9. For the first principal component, what is the component of the loading vector (i.e. wisc.pr\$rotation[,1]) for the feature concave.points_mean?

-0.26085376

wisc.pc\$rotation[,1]

perimeter_mean	texture_mean	radius_mean
-0.22753729	-0.10372458	-0.21890244
compactness_mean	${\tt smoothness_mean}$	area_mean
-0.23928535	-0.14258969	-0.22099499
symmetry_mean	concave.points_mean	concavity_mean
-0.13816696	-0.26085376	-0.25840048
texture_se	radius_se	fractal_dimension_mean
-0.01742803	-0.20597878	-0.06436335
smoothness_se	area_se	perimeter_se
-0.01453145	-0.20286964	-0.21132592
concave.points_se	concavity_se	compactness_se
-0.18341740	-0.15358979	-0.17039345
radius_worst	fractal_dimension_se	symmetry_se
-0.22799663	-0.10256832	-0.04249842
area_worst	perimeter_worst	texture_worst
-0.22487053	-0.23663968	-0.10446933

concavity_worst	compactness_worst	smoothness_worst
-0.22876753	-0.21009588	-0.12795256
${\tt fractal_dimension_worst}$	symmetry_worst	concave.points_worst
-0.13178394	-0.12290456	-0.25088597

Q10. What is the minimum number of principal components required to explain 80% of the variance of the data?

5 PCs required to explain 80% of the variance in the data.

Combining Methods

Using our PCA results, we can use them to help us with other analysis such as clustering.

Clustering on PCA results

```
wisc.pc.hclust <- hclust(dist(wisc.pc\$x[,1:2]),method="ward.D2")
plot(wisc.pc.hclust)</pre>
```

Cluster Dendrogram

dist(wisc.pc\$x[, 1:2]) hclust (*, "ward.D2")

To cut our tree:

```
pc.grps <- cutree(wisc.pc.hclust, k=2)
table(pc.grps)</pre>
```

```
pc.grps
    1    2
195 374
```

And then to compare cluster groups to expert diagnosis:

```
table(diagnosis, pc.grps)
```

```
pc.grps
diagnosis 1 2
B 18 339
M 177 35
```

Q15. How well does the newly created model with four clusters separate out the two diagnoses?

Better separation of the two diagnosis and can show which cases, and how many are "false positives" or "false negatives"

Q16. How well do the hierarchical clustering models you created in previous sections (i.e. before PCA) do in terms of separating the diagnoses? Again, use the table() function to compare the output of each model (wisc.km\$cluster and wisc.hclust.clusters) with the vector containing the actual diagnoses.

They did really badly initially, but after PCA they were a lot better. The new PCA variables game a better seperation of Malignant vs Benign cases.

Prediction

Q18. Which of these new patients should we prioritize for follow up based on your results?

Based on the results below, I would prioritize patient 2 as they are in the malignant cases. They might have malignant cells you would want to check out.

Our PCA model will be used for an analysis of any data that is "unseen". In this cause it is data from UMich.

```
#url <- "new_samples.csv"</pre>
url <- "https://tinyurl.com/new-samples-CSV"</pre>
new <- read.csv(url)</pre>
npc <- predict(wisc.pc, newdata=new)</pre>
npc
          PC1
                    PC2
                              PC3
                                         PC4
                                                  PC5
                                                             PC6
                                                                       PC7
[1,] 2.576616 -3.135913 1.3990492 -0.7631950 2.781648 -0.8150185 -0.3959098
[2,] -4.754928 -3.009033 -0.1660946 -0.6052952 -1.140698 -1.2189945 0.8193031
                     PC9
           PC8
                              PC10
                                        PC11
                                                 PC12
                                                           PC13
                                                                    PC14
[1,] -0.2307350 0.1029569 -0.9272861 0.3411457 0.375921 0.1610764 1.187882
[2,] -0.3307423 0.5281896 -0.4855301 0.7173233 -1.185917 0.5893856 0.303029
         PC15
                    PC16
                               PC17
                                           PC18
                                                      PC19
                                                                 PC20
[1,] 0.3216974 -0.1743616 -0.07875393 -0.11207028 -0.08802955 -0.2495216
PC23
                                          PC24
                                                     PC25
          PC21
                     PC22
                                                                  PC26
[1,] 0.1228233 0.09358453 0.08347651 0.1223396 0.02124121 0.078884581
[2,] -0.1224776 0.01732146 0.06316631 -0.2338618 -0.20755948 -0.009833238
                                    PC29
                                                PC30
            PC27
                       PC28
[1,] 0.220199544 -0.02946023 -0.015620933 0.005269029
[2,] -0.001134152  0.09638361  0.002795349 -0.019015820
```

```
plot(wisc.pc$x[,1:2], col=diagnosis)
points(npc[,1], npc[,2], col="blue", pch=16, cex=3)
text(npc[,1], npc[,2], c(1,2), col="white")
```

