2 - Advanced Graphics in R03 - Plotting Using Layers

Iowa State University

Outline

- ► Data Sources
- Layers
- ► ggplot() vs. qplot()

Deepwater Horizon Oil Spill

Data Sets

NOAA Data

- National Oceanic and Atmospheric Administration
- Temperature and Salinity Data in Gulf of Mexico
- Measured using Floats, Gliders and Boats

US Fisheries and Wildlife Data

- Animal Sightings on the Gulf Coast
- ► Birds, Turtles and Mammals
- Status: Oil Covered or Not

Both data sets have geographic coordinates for ever observation

Loading NOAA Data

NOAA data is a .rdata file so we need to read it in specially

- ► Download the data from http://www.public.iastate.edu/ ~hofmann/looking-at-data/data/noaa.rdata
- Save the noaa data file from the website to your working directory folder
- ► To figure out your working directory location use getwd()
- ▶ Then use the code below to load the data into R

```
setwd(" - your WD location here - ")
load("noaa.rdata")
options(width=65)
ls()

## [1] "animals" "boats" "floats" "gliders" "rig" "states"
```

Floats

Lets take a peek at the top of the floats NOAA data.

```
##
    callSign Date_Time JulianDay Time_QC Latitude
    Q4901043 7/12/2010 2455390
                                           24.82
## 2 Q4901043 7/12/2010 2455390
                                           24.82
## 3 Q4901043 7/12/2010 2455390
                                           24.82
##
    Longitude Position_QC Depth Depth_QC Temperature
## 1
       -87.96
                                              29.83
                              2
## 2
    -87.96
                              4
                                              29.65
## 3
       -87.96
                              6
                                              29.53
##
    Temperature_QC Salinity Salinity_QC
## 1
                      36.59
                                      1 Float
                                     1 Float
## 2
                      36.58
## 3
                      36.58
                                      1 Float
```

Floats

Gliders

Boats

Layering

This data has the same context - a common time and common place

- Want to aggregate information from different sources onto a common plot
- Start with a common background the lat/long grid
- ► With ggplot2 we will superimpose data onto this grid in layers

Layers

... to give you an idea ...

Layering

- Most maps (and many plots) have multiple layers of data. The layers may be from the same or different datasets.
- ggplot2 build around this same idea. Very easy to add additional layers to the plot. To do this we need to understand a little more about the underlying theory.

What is a Plot?

Any plot is composed of:

- 1. A default dataset
- 2. A coordinate system
- 3. layers of geometric objects (geoms)
- 4. A set of aesthetic mappings (taking information from the data and converting into an attribute of the plot)
- 5. A scale for each aesthetic
- A facetting specification (multiple plots based on subsetting the data)

Floats Decomposed

Data: floats Mappings:

Longitude Latitude color CallSign

Layers:

Geoms: Points

Scales: x & y position discrete color

Faceting: None


```
qplot() vs. ggplot()
```

qplot() stands for "quickplot"

- automatically chooses default settings to make life easier
- less control over plot construction

ggplot() stands for "grammar of graphics plot"

Constructs the plot using components listed in previous slides

qplot() vs. ggplot()

Two ways to construct the same plot for float locations

```
qplot(Longitude, Latitude, colour=callSign, data=floats)
###
ggplot(data=floats,
       aes(x=Longitude, y=Latitude, colour=callSign)) +
  geom_point() +
  scale_x_continuous() +
  scale_y_continuous() +
  scale_colour_discrete ()
###
# But we don't need to be quite so verbose. Scales are
# added automatically and first two aes params are x and y:
ggplot(floats,
       aes(Longitude, Latitude, colour = callSign)) +
  geom_point()
```

Floats Decomposed

Data: floats Mappings:

Longitude Latitude color CallSign

Layers:

Geoms: Points

Scales: x & y position discrete color

Faceting: None

qplot() vs. ggplot()

Data: floats Mappings:

x = CallSign

y = Temperature

Layers:

Geoms: Jittered Points

Boxplots

Scales:

x & y position

Faceting: None

Q490104901049012690126901269012690126901279012790127201273 callSign

```
qplot() vs. ggplot()
```

Again, there are two ways to construct this plot

Your Turn

Find the ggplot() statement that creates this plot

What is a layer?

A layer added to ggplot() can be a geom ...

- ▶ the type of geometric object
- the statistic mapped to that object
- the data set from which to obtain the statistic

... or a position adjustment to the scales

- Changing the axes scale
- Changing the color gradient

Layer Examples

Plot	Geom	Stat
Scatterplot	point	identity
Histogram	bar	bin count
Smoother	line + ribbon	smoother function
Binned Scatterplot	rectangle + color	2d bin count

More geoms described at http://docs.ggplot2.org/current/

Piecing things together

Want to build a map using NOAA data

- Coordinate system (mapping Long-Lat to X-Y)
- Add layer of state outlines
- Add layer of points for float locations
- Add layers for Oil Rig marker and label
- Adjust the range of x and y scales

Piecing things together

Your Turn

- Read in the animal csv data
- ▶ Plot the location of animal sightings on a map of the region
- On this plot try to color points by class of animal and/or status of animal
- Advanced: Could we indicate time somehow?