TXS Simulation Documentation

TXS Simulation Workflow	2
File Structure	5
Starting a GitHub Repo	7
Naming Conventions	8

TXS Simulation Workflow

1. Prepare PDBs

a. Prepare a PDB file for the entire TXS-ligand complex:

TXS-lignd/TXS-lignd_start.pdb

- i. Any mutations should be done to the corresponding wild-type TXS-*lignd* start.pdb file
 - 1. Mutations can be done in PyMol Wizard → mutagenesis → protein
 - 2. IMPORTANT: if you are mutating a residue to a histidine or you are mutating a residue next to a histidine (spatially, not only sequentially) you should re-check the histidine protonation states using H++
- ii. Ensure ligand residue names match 3 letter code (i.e., LIG)
 - 1. E.g. in the TXS_txn4_start.pdb we have TXN for all atoms corresponding to taxen-4-yl
- b. **IF RE-DOCKING:** Prepare a separate PDB file for any ligand(s) in the complex: **TXS-ligand/ligand files/ligand.pdb**
 - i. Create the ligand file by copying the associated atoms from TXS-*lignd* start.pdb into a file called *ligand*.pdb
 - ii. Ensure ligand residue names match 3 letter code (i.e., *LIG*)
 - iii. Ensure HETATM and atom positions match that in corresponding TXS-*lignd* start.pdb file
 - iv. Remove any CONECT records at the end of the PDB file
 - v. REMEMBER: All TXS-ligand complexes except GGPP and taxadiene have PPO⁴⁻ as well as their designated intermediate ligand. TXS-taxadiene complexes also have a PPO³⁻ ligand. Repeat steps 1b and 2 for BOTH

2. IF RE-DOCKING: Prepare ligand mol2 files: TXS-lignd/ligand files/LIG.mol2

- a. Create the mol2 file
 - i. Open the ligand(s) in PyMol
 - ii. Using the 'Builder' tool add any double bonds and atom charges
 - iii. Save the molecule as a mol2 file
- b. Correct the mol2 file
 - i. Open TXS-lignd/ligand files/LIG key.mol2
 - ii. Change the atom specifier, atom charges, residue name, and residue number in *LIG*.mol2 to matchD

- 3. Push TXS-ligand complex pdb (and ligand mol2 files if re-docking) to Compute Canada
 - a. git commit TXS-lignd_start.pdb LIG.mol2 PPO.mol2 -m "message"
- 4. Prepare cell-like environment for simulations
 - a. If running locally:
 - i. ./prep_envr.sh /Path_to_amber22
 - b. If running on Compute Canada
 - i. sbatch --account=def-codruta prep env remote.sh
 - c. Outputs:
 - i. TXS-lignd.prmtop, TXS-lignd.inperd
 - 1. Topology and trajectory files for the complex to be used for relaxation and QM/MM MD simulations
 - ii. TXS-lignd solvated.pdb
 - 1. Unrelaxed protein complex solvated
- 5. Relax the structure
 - a. If relaxing locally (very slow):
 - i. ./relax.sh /Path to amber22
 - b. If relaxing on Compute Canada:
 - i. sbatch --account=def-codruta relax remote.sh
 - c. Outputs:

- i. Relaxation/TXS-lignd relaxed.rst7
 - 1. Restart file for TXS-ligang trajectory
- ii. TXS-lignd relaxed.pdb
 - 1. PDB file for relaxed TXS complex
- iii. Other files in Relaxation/
 - 1. Read .out files for steps where relaxation may have had issues

6. Run QM/MM MD simulations

- a. If simulating on Compute Canada:
 - i. sbatch --account=def-codruta run qmmm.sh
- b. Outputs:
 - i. QM MM/TXS-lignd qmmm.mdcrd
 - 1. Can be used in conjunction with TXS-*lignd*.prmtop to display simulation as a movie in Chimera
 - ii. TXS-lignd qmmm.pdb
 - 1. PDB file for TXS complex following QM/MM MD simulation

7. Perform umbrella sampling

- a. Define reaction coordinates using distances between specific atoms (given in WT table) using Chimera
 - i. Example for WT:

Step	Reaction	Start dist.	End dist.
	coordinate		
GGPP ← gerger	O01 (PPO) – C02	C2_O1ini =	C2_O1fin =
(7-gerger-GGPP)			
gerger ← cmbrn15	C02 - C01	C2_C1ini =	C2_C1fin =
(6-cmbrn15-gerger)			
cmbrn15 ← vert12	C11 – C15	C11_C15ini = 1.605	C11_C15fin =4.966
(5-vert12-cmbrn15)			
$vert12 \rightarrow vert8$	C11-H14	C11_H14ini =1.097	$C11_{H14fin} = 4.312$
(1-vert12-vert8)	H14 – C7	$C7_{H14ini} = 2.487$	C7_H14fin = 1.097
$vert8 \rightarrow txn4$	C03 - C08	C3_C8ini =	C3_C8ini =
(2-vert8-txn4)			
$txn4 \rightarrow taxa-4-5$	C05 – H05		
(<i>3-txn4-taxa-4-5</i>)	H05 – O03 (PPO)		
$txn4 \rightarrow taxa-4-20$	C20 – H31		
(4-txn4-taxa-4-20)	H31 – O03 (PPO)		

Package File Structure

- TXS/Simulations
 - *WT*
 - TXS-GGPP
 - Ligand_files
 - GGP.mol2
 - GGPP mol2 file
 - GGP key.mol2
 - GGPP mol2 file with correct atom identifiers
 - GGPP.pdb
 - Prep environment
 - GGPP.in, complex.in
 - Leap input scripts for preparing force fields for GGPP and TXS-GGPP complex
 - Relaxation
 - TXS-GGPP relaxed.rst7
 - Final relaxation restart file (end state of complex)
 - *1min.in 9md.in*
 - Input parameter files for 8-step relaxation process
 - to pdb.in
 - File for converting .prmtop and .inpcrd files into TXS-GGPP relaxed.pdb
 - *QM MM*
 - TXS-GGPP qmmm.rst7
 - Final QM/MM MD restart file (end state of complex)
 - TXS-GGPP qmmm.mdcrd
 - File to be used with TXS-GGPP.prmtop to generate MD movie
 - qmmm.in
 - Input parameter file for QM/MM MD simulation
 - To pdb.in
 - File for converting .prmtop and .inpcrd files into TXS-GGPP qmmm.pdb
 - Prep env.sh
 - Script for prepping TXS-GGPP locally
 - Prep env remote.sh
 - Script for prepping TXS-GGPP remotely
 - Relax.sh
 - Script for relaxing TXS-GGPP locally

- Relax remote.sh
 - Script for relaxing TXS-GGPP remotely
- Run_qmmm.sh
 - Script for running QM/MM MD simulation remotely
- TXS-GGPP start.pdb
 - Initial active TXS docked with GGPP
- TXS-GGPP_solvated.pdb
 - TXS-GGPP with water and NaCl added, no relaxation
- TXS-GGPP relaxed.pdb
 - TXS-GGPP complex following 8-step relaxation process
- TXS-GGPP qmmm.pdb
 - TXS-GGPP complex following QM/MM MD simulation
- TXS-GGPP.prmtop
 - Topology file for TXS-GGPP
- TXS-cmbrn15

TXS-gerger

- ...

TXS-vert12

- TXS-vert8

- ...

- TXS-txn4

- ..

- TXS-taxa-4-5

- ...

- TXS-taxa-4-20

. .

- Umbrella sampling
 - 1-vert12-vert8
 - *MD*
- · md#.in, md#,out
 - Input and output files for each umbrella run associated with constrained atom distance(s) of #
- md#.mdcrd
 - Trajectory file for run associated with md#.in
- dat
 - distances#.dat
 - Distance file for constraint atom distance(s) of #
- umbrella.sh

- Script for making sequential md.in and distance.dat files and using them to perform sequential umbrella runs
- 2-vert8-txn4
- 3-txn4-taxa-4-5
- 4-txn4-taxa-4-20
- 5-vert12-cmbrn15
- 6-cmbrn15-gerger
- 7-gerger-GGPP

Starting a GitHub Repo

1. In the **local** master folder you would like to connect to a repo type:

git init

2. Add all files to the repo

git add *

3. Commit files

git commit -m "message"

- 4. Go to github.com and create new repo
- 5. Connect to repo

git add origin main git@github.com:Username/repo

- 6. Generate an SSH key
- 7. Add SSH key to your github account
- 8. Connect to compute canada and clone the repository

git clone git@github.com:Username/repo.git

Naming Conventions

	Name	Abbreviation	3 Letter Code 'LIG'	Charge
	ʻligand'	'lignd'	LIG	
	Geranylgeranyl	GGPP	GGP	-3
	diphosphate			
A	Geranylgeranyl cation	gerger	GGC	+1
В	Cembren-15-yl cation	cmbrn15	CMB	+1
C	Verticillen-12-yl cation	vert12	VRT	+1
D	Verticillen-8-yl cation	vert8	VRT	+1
E	Taxen-4-yl cation	txn4	TXN	+1
	Taxa-4,5-11,12-diene	taxa-4-5	TAX	0
	Taxa-4,20-11,12-diene	taxa-4-20	TAX	0
	Diphosphate	PPO	PPO	-4
	Diphosphate (H)	PPO_H	PPO	-3