

Московский государственный университет имени М.В.Ломоносова Факультет вычислительной математики и кибернетики

Кафедра математической статистики

Отчёт по выполнению задания курса «Суперкомпьютерное моделирование и технологии»

Дуань Бихэ

магистратура второго курса 616

Содержание

1	Постановка задачи	9
2	Метод фиктивных областей	10
3	Разностная схема решения	12
4	Метод минимальных невязок	14
5	Краткое описание проделанной работы	15
6	Краткое описание работы ОМР	17
7	Таблица	18
8	Ресунок	19

1 Постановка задачи

Требуется приближенно решить задачу Дирихле для уравнения Пуассона в криволинейной области. Задание необходимо выполнить на ПВС Московского университета IBM Polus.

В области $D\subset R^2$, ограниченной контуром γ , рассматривается дифференциальное уравнение Пуассона:

$$-\Delta u = 1 \tag{1}$$

с граничными условием Дирихле:

$$u(x,y) = 0, x \in \gamma \tag{2}$$

Требуется найти функцию u(x,y), удовлетворяющую уравнению 1 в области D и краевому условию 1 на ее границе.

2 Метод фиктивных областей

Пусть область D принадлежит прямоугольнику $\Pi = \{(x,y) \mid A.x < x < B.x, A.y < y < C.y\}.$ Обозначим границу прямоугольника Π как Γ .

Разность множеств $\hat{D} = \Pi \setminus \bar{D}$ называется фиктивной областью.

В прямоугольнике П рассмотрим следующую задачу Дирихле:

$$-\frac{\partial}{\partial x}\left(k(x,y)\frac{\partial v}{\partial x}\right) - \frac{\partial}{\partial y}\left(k(x,y)\frac{\partial v}{\partial y}\right) = F(x,y) \tag{3}$$

где $v(x, y) = 0, (x, y) \in \Gamma$,

k(x,y) - кусочно-постоянный коэффициент:

$$k(x,y) = \{ 1, (x,y) \in D, \frac{1}{\varepsilon}, (x,y) \in \hat{D}.$$
 (4)

и правая часть:

$$F(x,y) = \{ 1, (x,y) \in D, 0, (x,y) \in \hat{D}.$$
 (5)

Требуется найти непрерывную в Π функцию v(x,y), удовлетворяющую дифференциальному уравнению 3 всюду в $\Pi \setminus \gamma$, равную нулю на границе Γ прямоугольника, и такую, чтобы вектор потока:

$$W(x,y) = -k(x,y) \left(\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y} \right)$$
 (6)

имел непрерывную нормальную компоненту на общей части криволинейной границы области D и прямоугольника $\Pi.$

Последнее означает, что в каждой точке $(x_0,y_0)\in\gamma\cap\Pi$ должно выполняться равенство:

$$\lim_{(x,y)\to(x_0,y_0),(x,y)\in D} \frac{\partial v}{\partial \nu} = \lim_{(x,y)\to(x_0,y_0),(x,y)\in \hat{D}} \frac{\partial v}{\partial \nu}.$$
 (7)

Известно, что функция v(x,y) равномерно приближает решение u(x,y) задачи 1 в области D, а именно,

$$\max_{(x,y)\in \bar{D}} \|v(x,y) - u(x,y)\| \le C\varepsilon, \quad C > 0$$
(8)

Таким образом, решение новой задачи 3 позволяет получить решение исходной задачи 1 с любой наперед заданной точностью $\varepsilon>0$, решая при этом задачу Дирихле с кусочнопостоянным коэффициентом k(x,y), но в прямоугольнике Π , содержащем исходную область, что существенно упрощает вычисления.

3 Разностная схема решения

Для замыкания прямоугольной области Π определим равномерную прямоугольную сетку $\bar{\omega}_h = \bar{\omega}_1 \times \bar{\omega}_2$, где:

$$\bar{\omega}_1 = \{x_i = A.x + ih_1, i = 0, \dots, M\}, \quad h_1 = \frac{B.x - A.x}{M},$$
 (9)

$$\bar{\omega}_2 = \{ y_j = A.y + jh_2, \ j = 0, \dots, N \}, \quad h_2 = \frac{C.y - A.y}{N}.$$
 (10)

Обозначим множество внутренних узлов сетки $\bar{\omega}_h$ как ω_h .

Рассмотрим линейное пространство H функций, определённых на сетке ω_h . Пусть w_{ij} обозначает значение сеточной функции H в узле сетки $(x_i,y_j)\in\omega_h$. Определим скалярное произведение и норму в пространстве сеточных функций H:

$$(u,v) = \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} h_1 h_2 u_{ij} v_{ij}, \quad ||u|| = \sqrt{(u,u)}.$$
(11)

Метод конечных разностей предполагает замену дифференциальной задачи математической физики на конечно-разностную задачу вида:

$$Aw = B, (12)$$

где $A: H \to H$. Дифференциальное уравнение задачи 3 в каждой внутренней точке сетки аппроксимируется разностным уравнением:

$$-\frac{1}{h_1} \left(a_{i+1,j} \frac{\omega_{i+1,j} - \omega_{ij}}{h_1} - a_{i,j} \frac{\omega_{ij} - \omega_{i-1,j}}{h_1} \right) - \frac{1}{h_2} \left(b_{i,j+1} \frac{\omega_{i,j+1} - \omega_{ij}}{h_2} - b_{i,j} \frac{\omega_{ij} - \omega_{i,j-1}}{h_2} \right) = F_{ij},$$
(13)

при $i=1,\dots,M$ и $j=1,\dots,N.$

Коэффициенты рассчитываются следующим образом:

$$a_{ij} = \frac{1}{h_2} \int_{y_j - h_2/2}^{y_j + h_2/2} k(x_i, y) \, dy, b_{ij} = \frac{1}{h_1} \int_{x_i - h_1/2}^{x_i + h_1/2} k(x, y_j) \, dx. \tag{14}$$

Правая часть разностного уравнения определяется как:

$$F_{ij} = \frac{1}{h_1 h_2} F(x, y) \, dx \, dy, \tag{15}$$

где $\Pi_{ij} = \{(x,y) : x_{i-1/2} \le x \le x_{i+1/2}, y_{j-1/2} \le y \le y_{j+1/2}\}, \quad i = 1, \dots, M, j = 1, \dots, N-1.$

Краевые условия Дирихле для задачи 3 аппроксимируются равенством:

$$w_{ij} = w(x_i, y_j) = 0, \quad (x_i, y_j) \in \Gamma.$$
 (16)

Узлы вычисляются как $x_{i\pm 1/2}=x_i\pm 0.5h_1$, $y_{j\pm 1/2}=y_j\pm 0.5h_2$.

Полученная система является линейной по отношению к неизвестным величинам и может быть представлена в виде Aw=B с самосопряженным и положительно определённым оператором A. Разностная схема линейна и имеет единственное решение для любой правой части.

Интегралы a_{ij} и b_{ij} вычисляются аналитически:

$$a_{ij} = h_2^{-1} l_{ij} + \left(1 - h_2^{-1} l_{ij}\right) / \varepsilon, b_{ij} = h_1^{-1} l_{ij} + \left(1 - h_1^{-1} l_{ij}\right) / \varepsilon, \tag{17}$$

где l_{ij} — длина части отрезка $[y_{j-1/2},y_{j+1/2}]$, принадлежащей области D.

Аналогично для b_{ij} , где l_{ij} — длина части отрезка $[x_{i-1/2},x_{i+1/2}]$, принадлежащей области D.

Для вычисления l_{ij} проверяется пересечение соответствующего отрезка интегрирования с прямой, проходящей через вершины трапеции CB.

Правую часть разностной схемы считаем как $F_{ij} = \frac{s}{h_1 h_2}$, где s — площадь части прямоугольника с центром (x_i, y_j) и сторонами $h_1 h_2$, принадлежащей области D.

4 Метод минимальных невязок

Приближенное решение разностной схемы предлагается вычислять методом наименьших невязок. Этот метод позволяет получить последовательность сеточных функций $\omega^{(k)} \in H$, где $k=1,2,\ldots$, которая сходится по норме пространства H к решению разностной схемы:

$$\|\omega - \omega^{(k)}\| \to 0, \quad k \to \infty.$$
 (18)

Начальное приближение $\omega^{(0)}$ выберем равным нулю во всех точках сетки, кроме одной, расположенной в центре. В центральной точке установим значение =1.

Итерация $\omega^{(k+1)}$ вычисляется по предыдущей итерации $\omega^{(k)}$ по формуле:

$$\omega_{ij}^{(k+1)} = \omega_{ij}^{(k)} - \tau_{k+1} r_{ij}^{(k)}. \tag{19}$$

где невязка определяется как $r^{(k)} = A\omega^{(k)} - B$, а итерационный параметр рассчитывается по формуле:

$$\tau_{k+1} = \frac{(Ar^{(k)}, r^{(k)})}{\|Ar^{(k)}\|^2}.$$
 (20)

В качестве критерия останова используется условие:

$$||r^{(k)}|| < \delta, \tag{21}$$

где $\delta>0$ — некоторая положительная константа, задающая точность приближенного решения. Для вычислений была выбрана $\delta=10^{-6}$.

5 Краткое описание проделанной работы

$$-\frac{1}{h_1} \left(a_{i+1,j} \frac{w_{i+1,j} - w_{i,j}}{h_1} - a_{i,j} \frac{w_{i,j} - w_{i-1,j}}{h_1} \right) - \frac{1}{h_2} \left(b_{i,j+1} \frac{w_{i,j+1} - w_{i,j}}{h_2} - b_{i,j} \frac{w_{i,j} - w_{i,j-1}}{h_2} \right) = F_{i,j},$$
(22)

при $i=1,\dots,M-1,\,j=1,\dots,N-1.$

Нетрудно видеть, что если отрезок, соединяющий точки $P_{ij}=(x_{i-1/2},y_{j-1/2})$ и $P_{ij+1}=(x_{i-1/2},y_{j+1/2})$, целиком расположен в области D, то $a_{ij}=1$. Если же указанный отрезок находится в фиктивной области \hat{D} , то $a_{ij}=\frac{1}{\varepsilon}$. В противном случае

$$a_{ij} = h_2^{-1} l_{ij} + \frac{1 - h_2^{-1} l_{ij}}{\varepsilon},$$

где l_{ij} – длина той части отрезка $[P_{ij}, P_{ij+1}]$, которая принадлежит области D. Аналогичным образом вычисляются коэффициенты b_{ij} .

Очевидно, правая часть схемы F_{ij} равна нулю при всех $(i,j):\Pi_{ij}\subset \hat{D}$. Если $\Pi_{ij}\subset D$, то правую часть предлагается приближенно заменить значением $f(x_i,y_j)$. В противном случае, когда прямоугольник Π_{ij} содержит точки оригинальной области D и фиктивной области \hat{D} , величина F_{ij} может быть вычислена приближенно как произведение

$$(h_1h_2)^{-1}S_{ij}f(x_i^*,y_j^*)$$

где (x_i^*, y_j^*) – любая точка пересечения $\Pi_{ij} \cap D$, $S_{ij} = mes(\Pi_{ij} \cap D)$ – площадь пересечения областей, при вычислении которой криволинейную часть границы можно заменить отрезком прямой.

Метод приближенного решения в формате разностей с использованием итерации минимальных невязок:

Итерационный процесс:

Начальное приближение $w^{(0)}$ может быть выбрано произвольно, например, задано нулевым. Формула итерации:

$$w_{ij}^{(k+1)} = w^{(k)} - t_{k+1} \cdot r_{ij}^{(k)}$$

где $r^{(k)} = Aw^{(k)} - B$ — невязка, показывающая ошибку текущего решения.

Итерационный параметр:

Итерационный параметр t_{k+1} рассчитывается по формуле:

$$t_{k+1} = \frac{(r^{(k)}, r^{(k)})}{(Ar^{(k)}, r^{(k)})}$$

Этот параметр регулирует шаг, основываясь на текущем внутреннем произведении невязки, что обеспечивает эффективное обновление на каждом шаге.

Условие сходимости:

Процесс итерации завершается при выполнении условия:

$$||w^{(k+1)} - w^{(k)}||_E < \delta$$

где δ — заданное положительное число, используемое для контроля точности итерационного метода, чтобы изменение в решении оставалось в допустимых пределах.

Сходимость:

Используя этот итерационный метод, последовательность $w^{(k)}$ постепенно сходится к настоящему решению w в норме пространства H, то есть $w-w^{(k)}\to 0$ при $k\to\infty$.

Этот метод особенно эффективен для численного решения линейных систем при решении задач с ЧДУ (частными дифференциальными уравнениями).

6 Краткое описание работы ОМР

В данной программе реализован метод итерационного решения для вычисления значений u_{ij} с использованием параллелизма OpenMP. Основные шаги работы заключаются в следующем:

- 1. **Инициализация переменных**: Создаются необходимые векторы для хранения значений r и Ar, а также переменные для хранения норм и коэффициентов.
- 2. **Параллельное вычисление**: Используется директива pragma omp parallel для распараллеливания циклов. Каждый поток выполняет вычисления в своем локальном контексте, что позволяет уменьшить время выполнения программы.
- 3. **Критическая секция**: Для сбора результатов, таких как локальные суммы R и AR, используется pragma omp critical, чтобы избежать конфликтов при одновременной записи в общие переменные.
- 4. **Обновление значений**: После завершения параллельных вычислений значения u обновляются на основе вычисленных ошибок r.
- 5. **Условие завершения**: Итерации продолжаются до тех пор, пока норма не станет меньше заданной точности.

7 Таблица

Число итерации	Число нитей	Размер сетки	Время (s)	Ускорение
6335	Последовательный вариант	10×10	6	0
67735	Последовательный вариант	20×20	15	0
258732	Последовательный вариант	40×40	153	0
321942	4	40×40	87	0
327626	16	40×40	86	0
460124	Последовательный вариант	80×90	508	0
210720	2	80×90	357	0.70
212766	4	80×90	300	0.59
210494	8	80×90	249	0.490
207520	16	80×90	250	0.492
236473	Последовательный вариант	160×180	1498	0
199641	4	160×180	1381	0.92
187315	8	160×180	1241	0.82
205891	16	160×180	764	0.51
213329	32	160×180	776	0.518

Таблица 1: Таблица с результатами расчётов на разном числе нитей и размерах сетки.

8 Ресунок

Рис. 1: 10*10

Рис. 2: 20*20

Рис. 3: 40*40

Рис. 4: 80*90

Рис. 5: 160*180

Рис. 6: ускорение