

Общее описание

Жидкокристаллический модуль MT-20S4M состоит из БИС контроллера управления и ЖК панели. Контроллер управления КБ1013ВГ6, производства OAO «АНГСТРЕМ» (www.angstrem.ru), аналогичен HD44780 фирмы HITACHI и KS0066 фирмы SAMSUNG. Модуль выпускается со светодиодной подсветкой. Внешний вид приведен на рисунке 1. Модуль позволяет отображать 4 строки по 20 символов. Символы отображаются в матрице 5х8 точек. Между символами имеются интервалы шириной в одну отображаемую точку.

Рис. 1

Каждому отображаемому на ЖКИ символу соответствует его код в ячейке ОЗУ модуля.

Модуль содержит два вида памяти — кодов отображаемых символов и пользовательского знакогенератора, а также логику для управления ЖК панелью.

Габаритные размеры модуля приведены на рисунке 7.

Внимание! Недопустимо воздействие статического электричества больше 30 вольт.

Модуль позволяет

- модуль имеет программно-переключаемые две страницы встроенного знакогенератора (алфавиты: русский, украинский, белорусский, казахский и английский; см. табл. 5 и 6).
- работать как по 8-ми, так и по 4-х битной шине данных (задается при инициализации);
- принимать команды с шины данных (перечень команд приведен в таблице 4);
- записывать данные в ОЗУ с шины данных;
- читать данные из ОЗУ на шину данных;
- читать статус состояния на шину данных (см. табл. 4);
- запоминать до 8-ми изображений символов, задаваемых пользователем;
- выводить мигающий (или не мигающий) курсор двух типов;
- управлять контрастностью и подсветкой;

Основные сведения

Модуль управляется по параллельному 4-х или 8-ми битному интерфейсу.

Временные диаграммы приведены на рис. З и 4, динамические характеристики приведены в таблице 2.

Примеры обмена по интерфейсу приведены на рис. 5 и 6.

Программное управление осуществляется с помощью системы команд, приведенной в таблице 4.

Перед началом работы модуля необходимо произвести начальную установку.

Встроенный знакогенератор приведен в таблицах 5 и 6.

Модуль позволяет задать изображения восьми дополнительных символов знакогенератора, использующихся при работе наравне со встроенными. Пример задания дополнительных символов приведен в таблице 3.

Таблица 1. Динамические характеристики модуля.

Название	Обозначе-	U _{cc}	=5B	Ucc	=3B	Единицы измерения	
пазвание	ние	Мин.	Макс.	Мин.	Макс.		
Время цикла чтения/записи	t _{cycE}	500	_	1000	_	ns	
Длительность импульса разрешения чтения/записи	PW _{EH}	230	-	450	_	ns	
Время нарастания и спада	t _{Er} , t _{Ef}	_	20	_	25	ns	
Время предустановки адреса	t _{AS}	40	-	60	-	ns	
Время удержания адреса	t _{AH}	10	_	20	_	ns	
Время выдачи данных	t _{DDR}	-	120	-	360	ns	
Время задержки данных	t _{DHR}	5	_	5	_	ns	
Время предустановки данных	t _{DSW}	80	_	195	_	ns	
Время удержания данных	t _H	10	_	10	_	ns	

Управление контрастностью

Для 5В индикаторов вывод U_O нужно подключать к выводу GND, а для 3В индикаторов вывод U_O нужно оставлять неподключенным.

Для изменения контрастности используется внешний переменный резистор R номиналом 10кОм.

Характеристики модуля по постоянному току

Таблица 2. Характеристики модуля по постоянному току.

Назва	Обозна-		U _{CC} =5B			U _{CC} =3E	Единицы		
Пазва	чение	Мин.	Ном.	Макс.	Мин.	Ном.	Макс.	измерения	
Напряжение питания		U _{CC}	4,5	5,0	5,5	2,7	3,0	3,6	В
Ток потребления		I _{CC}	-	0,6	1,0	_	0,85	1,1	мА
Входное напряжение высокого уровня при	U _{IH}	2,2	_	U _{CC}	2,2	_	U _{CC}	В	
Входное напряжение низкого уровня при I _I	е напряжение о уровня при I _{IL} =0,1мА U _{IL}		-0,3	-	0,6	-0,3	-	0,4	В
Выходное напряжени высокого уровня при	U _{OH}	2,4	_	_	2,0	_	-	В	
Выходное напряжение низкого уровня при I _{OL} =1,2мА		U _{OL}	-	-	0,4	-	-	0,4	В
Ток подсветки при напряжении питания подсветки =U _{CC}	для янтарной и желто-зеленой	I _{LED}	_	150	_	_	150	_	мА
	для голубой и белой	I _{LED}	_	100	_	_	100	_	мА

Рис. 3. Диаграмма чтения

Рис. 4. Диаграмма записи

Диаграмма обмена по 4-х битному интерфейсу

Примечание. В каждом цикле обмена необходимо передавать (читать или писать) все 8 бит — два раза по 4 бита. Передача старших 4-х бит без последующей передачи младших 4-х бит **не допускается**.

Диаграмма обмена по 8-ми битному интерфейсу

Начальная установка модуля

Модуль войдет в нормальный режим работы только после подачи на него следующих команд:

Примечание. Назначение битов указано в таблице 4.После этих действий модуль переходит в рабочее состояние с установленными параметрами.

Распределение ОЗУ

Модуль содержит ОЗУ размером 80 байтов по адресам 0h-27h и 40h-67h для хранения данных (DDRAM), выводимых на ЖКИ. Адреса отображаемых на ЖКИ символов распределены следующим образом:

Nº	Знакоместа	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
	1-я строка	0h	1h	2h	3h	4h	5h	6h	7h	8h	9h	0Ah	0Bh	0Ch	0Dh	0Eh	0Fh	10h	11h	12h	13h
ДA	2-я строка	40h	41h	42h	43h	44h	45h	46h	47h	48h	49h	4Ah	4Bh	4Ch	4Dh	4Eh	4Fh	50h	51h	52h	53h
PEC	3-я строка	14h	15h	16h	17h	18h	19h	1Ah	1Bh	1Ch	1Dh	1Eh	1Fh	20h	21h	22h	23h	24h	25h	26h	27h
	4-я строка	54h	55h	56h	57h	58h	59h	5Ah	5Bh	5Ch	5Dh	5Eh	5Fh	60h	61h	62h	63h	64h	65h	66h	67h

Символы, программируемые пользователем

Модуль содержит память для хранения изображений восьми символов, программируемых пользователем (СGRAM). Коды этих восьми символов показаны в табл. 5. Адреса строк изображений этих символов не зависят от адресов выводимых символов (расположены в отдельном адресном пространстве) и занимают адреса от 0h до 3Fh. Каждый символ занимает 8 байтов (0h–7h, 8h–Fh, 10h–17h, ..., 30h–37h, 38h–3Fh). Нумерация байтов идет в порядке отображения на модуле сверху вниз (первый байт самый верхний, восьмой байт самый нижний). Последняя, восьмая строка используется также для отображения курсора (если выбран курсор в виде подчеркивания). В каждом байте используются только 5 младших битов (4, 3, 2, 1, 0), старшие 3 бита (7,6,5) могут быть любые, на отображение они не влияют. Бит 4 соответствует левому столбцу матрицы символа, бит 0 — правому столбцу символа. Пример см. в таблице 3.

Таблица 3.

Код символа	Адрес в знакогенераторе	Значения в знакогенераторе	
7 6 5 4 3 2 1 0	5 4 3 2 1 0	7 6 5 4 3 2 1 0	
0 0 0 0 0 0 0 0	0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1	* * * 1 1 1 1 0 1 0 1 1 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 1 0 1 0	
0 0 0 0 0 0 0 1	0 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 1 1 1	* * * 1 0 0 0 1 0 1 0 1 0 1 0 1 0 1 0 1	ого символа
	0 0 0 0 0 0 1	* * *	
0 0 0 0 0 1 1 1	1 1 1 1 0 0 1 1 1 1 0 0 1 1 1 1 1	* * *	

^{* -} значение не влияет на отображение

Описание команд модуля

Таблица 4.

Команда	A0	R/W	DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0	Описание	Время выпол- нения
Clear Display	0	0	0	0	0	0	0	0	0	1	Очищает модуль и помещает курсор в самую левую позицию	1,5 мс
Return Home	0	0	0	0	0	0	0	0	1	Х	Перемещает курсор в левую позицию	40 мкс
Entry Mode Set	0	0	0	0	0	0	0	1	ID	SH	Установка направления сдвига курсора (ID=0/1—влево/вправо) и разрешение сдвига дисплея (SH=1) при записи в DDRAM	40 мкс
Display ON/OFF control	0	0	0	0	0	0	1	D	С	В	Включает модуль (D=1) и выбирает тип курсора (C, B), см. примечание 4	40 мкс
Cursor or Display Shift	0	0	0	0	0	1	SC	RL	Х	Х	Выполняет сдвиг дисплея или курсора (SC=0/1—курсор/дисплей, RL=0/1—влево/вправо)	40 мкс
Function Set	0	0	0	0	1	DL	1	0	Р	0	Установка разрядности интерфейса (DL=0/1—4/8 бита) и страницы знакогенератора Р	40 мкс
Set CGRAM Address	0	0	0	1 ACG							Установка адреса для последующих операций (и установка туда курсора) и выбор области CGRAM	40 мкс
Set DDRAM Address	0	0	1				ADD			Установка адреса для последующих операций и выбор области DDRAM	40 мкс	
Read BUSY flag and Address	0	1	BS				AC		Прочитать флаг занятости и содержимое счетчика адреса	0		
Write Data to RAM	1	0			,	WRITE	DATA	,	Запись данных в активную область	40 мкс		
Read Data from RAM	1	1				READ	DATA				Чтение данных из активной области	40 мкс

Примечания:

- 1. Указанное время выполнения команд является максимальным. Его не обязательно выдерживать при условии чтения флага занятости BS как только флаг BS=0, так сразу можно писать следующую команду или данные. Если же флаг BS перед выдачей команд не проверяется необходимо формировать паузу между командами не менее указанного времени для надежной работы модуля.
- 2. При чтении бита статуса никакую паузу делать не надо.
- 3. Большая X любое значение (0 или 1).
- 4. Биты С и В в команде «Display ON/OFF control»:
 - С=0, В=0 курсора нет, ничего не мигает;
 - C=0, B=1 курсора нет, мигает весь символ в позиции курсора;
 - С=1, В=0 курсор есть (подчёркивание), ничего не мигает;
 - С=1, В=1 курсор есть (подчёркивание) и только он и мигает.

Таблица 5. Страница 0 встроенного знакогенератора.

Старшая цифра кода символа (в шестнадцатеричном виде)

Младшая цифра кода символа (в шестнадцатеричном виде)

Таблица 6. Страница 1 встроенного знакогенератора.

Старшая цифра кода символа (в шестнадцатеричном виде)

Младшая цифра кода символа (в шестнадцатеричном виде)

Таблица 7. Назначение внешних выводов.

Вывод	Обозначение	Назначение вывода
1	GND	Общий вывод (0В)
2	Ucc	Напряжение питания (5В/3В)
3	Uo	Управление контрастностью
4	A0	Адресный сигнал — выбор между передачей данных и команд управления
5	R/W	Выбор режима записи или чтения
6	E	Разрешение обращений к модулю (а также строб данных)
7	DB0	Шина данных (8-ми битный режим)(младший бит в 8-ми битном режиме)
8	DB1	Шина данных (8-ми битный режим)
9	DB2	Шина данных (8-ми битный режим)
10	DB3	Шина данных (8-ми битный режим)
11	DB4	Шина данных (8-ми и 4-х битные режимы)(младший бит в 4-х битном режиме)
12	DB5	Шина данных (8-ми и 4-х битные режимы)
13	DB6	Шина данных (8-ми и 4-х битные режимы)
14	DB7	Шина данных (8-ми и 4-х битные режимы) (старший бит)
15	+LED	+ питания подсветки
16	-LED	– питания подсветки
17	UEE	Выход DC-DC преобразователя
18	+LED1	Не используется
19	+LED2	Не используется

Габаритные размеры модуля MT-20S4M

История изменений

Версия документа	Дата	Изменения	Страница
1.0	08/06/2006	Первая редакция документа	
1.1	13/07/2007	Изменён пункт «Управление контрастностью» Расширен диапазон напряжения питания (таблица 2)	2 2

Компания МЭЛТ

Наши координаты

🖂 Адрес: Москва, Андроновское шоссе, д. 26, корп. 5

Т тел/факс: (495) 662–59–14 (многоканальный)

e-mail: sales@melt.com.ru
http://www.melt.com.ru

Авторские права © 2019 МЭЛТ. Все права защищены. Принципиальные схемы и топология печатных плат, описанных в этом документе, не могут быть скопированы или воспроизведены в любой форме или любыми средствами без предварительного письменного разрешения компании МЭЛТ.

Информация, содержащаяся в этом документе, может быть изменена без предварительного уведомления. Компания МЭЛТ не несет ответственности за любые ошибки, которые могут появиться в этом документе, ровно как и за прямые или косвенные убытки, связанные с поставкой или использованием настоящей информации. Самые последние спецификации Вы всегда можете получить на нашем сервере в интернете по адресу http://www.melt.com.ru

Компания МЭЛТ непрерывно работает над улучшением качества и надежности наших изделий. Однако, изделия, содержащие полупроводники, могут частично или полностью потерять свою работоспособность вследствие воздействия статического электричества или механических нагрузок. Поэтому при использовании наших продуктов следует избегать ситуаций, в которых сбой или отказ изделий компании МЭЛТ, могут вызвать потерю человеческой жизни, а также ущерб или повреждение собственности.

Подписано в печать 25 июня 2019 года. Формат A4. Отпечатано в России.