Metaheurística

Práctica 3.b:

Búsquedas por Trayectorias para el Problema del Agrupamiento con Restricciones

Curso 2019-2020

Javier Gálvez Obispo javiergalvez@correo.ugr.es Grupo 2 Jueves 17:30 – 19:30

Índice

1.	Descripción del problema	3
2.	Elementos en común entre los algoritmos	3
	2.1. Esquema de representación de soluciones	3
	2.2. Función objetivo	
	2.2.1. Cálculo de la desviación general	4
	2.2.2. Cálculo de la infeasibility	
	2.2.3. Cálculo de λ	5
	2.3. Generación de soluciones aleatorias	6
3.	Pseudocódigo de los algoritmos	6
	3.1. Búsqueda local	
	3.2. Búsqueda Multiarranque Básica	7
	3.3. Enfriamiento Simulado	
	3.4. Búsqueda Local Reiterada	9
	3.4.1. Mutación	
	3.4.2. Búsqueda Local como algoritmo de búsqueda	
	3.4.3. Enfriamiento Simulado como algoritmo de búsqueda	10
4.	Procedimiento considerado para desarrollar la práctica	11
5.	Experimentos y análisis de resultados	
	5.1. Resultados Enfriamiento Simulado	
	5.2. Resultados Búsqueda Multiarranque Básica	12
	5.3. Resultados Búsqueda Local Reiterada	
	5.3.1. Búsqueda Local como algoritmo de búsqueda	13
	5.3.2. Enfriamiento Simulado como algoritmo de búsqueda	
	5.3.1.1. Esquema de Cauchy	
	5.3.1.2. Esquema proporcional	
	5.4. Resultados generales	16

1. Descripción del problema

Nos encontramos ante un problema de agrupamiento o clustering, donde nuestro objetivo es clasificar los datos que nos dan de acuerdo a posibles caractarísticas comunes entre ellos.

Además, en nuestro caso nos encontramos con restricciones de instancia a la hora de agrupar los datos, es decir, dada un pareja de instancias del conjuto de datos puede, o no, haber una restricción entre ellos del tipo *Must-Link*, los dos elementos deben estar en el mismo cluster, o del tipo *Cannot-Link*, si las dos instancias deben encontrarse en clusters diferentes.

Vamos a tratar estas restricciones como restricciones débiles, lo que quiere decir que nuestro objetivo será minimizar el número de restricciones que no se cumplen en vez de encontrar una solución en la que el número de restricciones incuplidas sea cero.

Nuestro objetivo es resolver este problema dados cuatro conjutos de datos diferentes junto a dos listas de restricciones por conjuto de datos, una con un 10% de restricciones y otra con un 20%.

En esta práctica vamos a resolver este problema utilizando técnicas de búsqueda basadas en trayectorias tanto simples, búsqueda local (BL) y enfriamiento simulado (ES), como compuestas, búsqueda multiarranque basica (BMB) y búsqueda local reiterada (ILS). Probaremos dos ILS distintas, una que haga uso de la BL y otra que utilice ES como algoritmo de búsqueda.

2. Elementos en común entre los algoritmos

2.1. Esquema de representación de soluciones

La representación de una posible solución a nuestro problema se hace mediante un vector de longitud N, tamaño del conjuto de datos, en el que se almacenan enteros entre 0 y k, el número de clusters del problema. Entonces, en la posición i de nuestro vector solución S estará reflejado el cluster c al que pertenece el punto i del conjuto de datos. Cada vector solución se guarda junto con el valor resultado de la función objetivo en un *struct Solución* que facilita el tratamiento de las soluciones.

Struct Solución contains

vector<int> S

float f = -1 // El valor de la función objetivo se inicializa a -1

end

2.2. Función objetivo

La función objetivo se define como:

$$f = \vec{C} + (infeasibility * \lambda)$$

donde \vec{C} es la desviación general de la solución S, *infeasibility* el número de restricciones incumplidas y λ es un parámetro de escalado.

2.2.1. Cálculo de la desviación general

Para calcular la desviación general de una solución primero debemos calcular los centroides μ_i (vector promedio) asociado a cada cluster c_i .

function calcula_centroides

```
Input: Solución S, conjunto de datos X, número de clusters k
```

```
double centroides[k][X[0].size] = [ [0, ..., 0], ..., [0, ..., 0] ]
int puntos_por_cluster[k] = [0, 0, ..., 0]

for i in {0, 1, ..., X.size - 1} do:
    int cluster = S[i]
    puntos_por_cluster[cluster] += 1
    centroides[cluster] = centroides[cluster] + X[i]
end for
return centroides / puntos_por_cluster
```

Calculamos ahora la distancia media intra-cluster, siendo ésta la media de las distancias de las instancias de cada cluster con su centroide asociado.

function calcula_media_intracluster

Input: Solución *S*, conjunto de datos *X*, número de clusters *k*

```
double media_intracluster[k] = [0, 0, ..., 0], centroides[k][X[0].size] = calcula\_centroides(S, <math>X, k) int puntos_por_cluster[k] = [0, 0, ..., 0]
```

```
for i in {0, ..., X.size - 1} do:
    int cluster = S[i]
    puntos_por_cluster[cluster] += 1
    media_intracluster[cluster] += distancia(X[i], centroides[cluster])
    // distancia(x, y) calcula la distancia euclidea entre 2 puntos dados
end for
```

return distancia_media_intracluster / puntos_por_cluster

Y una vez tenemos las distancias medias intra-cluster ya podemos calcular la desviación general de la solución como la media de las distancias recién calculadas.

function *calcula_c*

Input: Solución *S*, conjunto de datos *X*, número de clusters *k*

double c = 0, media_intracluster[k] = $calcula_media_intracluster(<math>S, X, k$)

En el código implementado estas funciones están unidas en una única función

2.2.2. Cálculo de la infeasibility

Para calcular la *infeasibility* debemos contar el número de restricciones incumplidas en la solución S, es decir, las veces que se dan los hechos:

- dos instancias en cluster distintos con una restricción *Must-Link*
- dos instancias en un mismo cluster con una restricción Cannot-Link

```
function calcula infeasibility
```

```
Input: Solución S, conjuto de restricciones R.
```

```
int restricciones_incumplidas = 0
```

```
for i in {0, 1, ..., S.size - 2} do:
    for j in {i+1, i+2, ..., S.size - 1} do:
    if (R<sub>ij</sub> == 1) do:
        Si X[i] y X[j] no están en el mismo cluster => restricciones_incumplidas += 1
    elif (R<sub>ij</sub> == -1) do:
        Si X[i] y X[j] están en el mismo cluster => restricciones_incumplidas += 1
    end for
end for
return restricciones_incumplidas
```

2.2.3. Cálculo de λ

Definimos λ como el cociente entre la distancia de los puntos más alejados del conjuto y el número de restricciones presentes en el problema.

function calcula_lambda

Input: Conjuto de datos *X*, conjuto de restricciones *R*.

```
double max_dist = 0
int num_restricciones = 0
for i in {0, 1, ..., X.size - 2} do:
    for j in {i+1, i+2, ..., X.size - 1} do:
        double distancia = distancia(X[i], X[j])
        if (distancia > max_dist) max_dist = distancia
        if (R[i][j]!= 0) num_restricciones += 1
        end for
```

```
return lambda = max_dist / num_restricciones
```

Entonces, en el código de la función objetivo sólo tenemos que llamar a éstas funciones que acabamos de definir

```
function calcula_f
```

```
Input: Solución S, Conjuto de datos X, conjuto de restricciones R, número de clusters k. return calcula\_c(S, X, k) + calcula\_infeasibility(S, R) * calcula\_lambda(X, R)
```

En el código implementado solo se llama una vez a *calcula_lambda(X, R)* por conjunto de datos.

2.3. Generación de soluciones aleatorias

Para generar una solución aleatoria generamos N, tamaño del conjuto de datos, número aleatorios entre 0 y k, el número de clusters del problema y comprobamos que ninguno de los cluster esté vacio.

```
function generar solución aleatoria
```

```
Input: Tamaño del conjuto de datos N, clusters k.
```

```
Bool cluster_vacio = true
Solución Solución

while cluster_vacio == true do:
    cluster_vacio = false
    int cuenta[k] = [0, ..., 0]

for i in {0, 1, ..., N - 1} do:
    int cluster = random_int(0, k)
        Solución.S[i] = cluster
        cuenta[cluster] += 1
    end for

    if 0 in cuenta then cluster_vacio = true
end while
Solución.f = calcula_f(Solución.S)
return S
```

3. Pseudocódigo de los algoritmos

3.1. Búsqueda local

El pseudocódigo de la búsqueda local utilizada tanto en la búsqueda multiarranque básica como la búsqueda local reiterada es el siguiente.

function BL

Input: Solución *Sol*, Conjuto de datos X, conjuto de restricciones R, número de clusters k, máximo de evaluaciones max_evals .

```
int evaluaciones = 0
bool mejora = True
while evaluaciones < max_evals and mejora == True do:
       mejora = False
       vector <Int, Int> parejas
       for i in \{0, 1, ..., X.size\} do:
           for j in \{0, 1, ..., k\} do:
               if j := Sol.S[i] then
                   parejas.push(<i, j>)
               end if
           end for
       end for
       parejas = shuffle(parejas)
       int indice = 0
       while indice < parejas.size and mejora == False do:
           int antiguo_cluster = Sol.S[parejas[indice].i]
           Sol.S[parejas[indice].i] = parejas[indice].j
           if antiguo_cluster in Sol.S then
               double nueva_f = calcula_f(Sol.S, X, R, k)
               if nueva f < Sol.f then
                   Sol.f = nueva_f
                   mejora = True
               else
                   Sol.S[parejas[indice].i] = antiguo_cluster
               end if
           end if
           indice++
       end for
end while
return Sol
```

3.2. Búsqueda Multiarranque Básica

En la BMB lo único que tenemos que hacer es ejecutar *iters* veces la BL con soluciones iniciales distintas y quedarnos con la que nos de mejor resultado.

function BMB

Input: Conjuto de datos X, conjuto de restricciones R, número de clusters k, número de iteraciones iters, máximo de evaluaciones para la búsqueda local bl_max_evals .

3.3. Enfriamiento Simulado

El esquema de enfriamiento que vamos a implementar es el modelo de Cauchy.

function ES

Input: Conjuto de datos X, conjuto de restricciones R, número de clusters k, máximo de evaluaciones max_evals , valor de μ , valor de ϕ .

```
Solución mejor solución, solución actual
solución_actual = generar_solución_aleatoria(X.size, k)
mejor_solución.f = solución_actual
double t0 = (\mu * solución_actual) / (-log(\phi)), tf = 0.001, t = t0
int max_vecinos = 10 * X.size, max_exitos = 0.1 * max_vecinos, M = max_evals / max_vecinos
double beta = (t0 - tf) / (M * t0 * tf)
int vecinos, exitos = 1, enfriamientos = 0
while enfriamientos < M and exitos > 0 do:
       vecinos = 0, exitos = 0
       while vecinos < max_vecinos and exitos < max_exitos do:
           int i = rand int(0, X.size), cluster antiguo = solución actual.S[i], c = cluster antiguo
           while c == cluster antiguo do:
               c = rand_int(0, k)
           end while
           solución actual.S[i] = c
           if antiguo_cluster in solución_actual.S then
               double nueva_f = calcula_f(Sol.S, X, R, k),
               double delta_f = nueva_f - solución_actual.f
               if nueva f < \text{solución} actual. f or U(0, 1) < \exp(-\text{delta } f / t) then
                   Sol.f = nueva f
                   exitos++
                   if solution.f < best solution.f then
```

```
mejor_solución = solución_actual;
end if
else
solución_actual.S[i] = antiguo_cluster
end if
else
solución_actual.S[i] = antiguo_cluster
end if
vecinos++
end while
t = t / (1 + beta * t), enfriamientos++
end while
return mejor_solución
```

Si queremos implementar el esquema proporcional cambiamos la forma en la que actualizamos t por $t = \alpha t$ y la condición del bucle exterior *enfriamientos* < M se sustituye por *evals* $< max_evals$, *evals* se actualiza cada vez que llamamos a la función objetivo.

3.4. Búsqueda Local Reiterada

3.4.1. Mutación

En la ILS introducimos diversidad mediante el operador de mutación que modifica un segmento de la solución de forma aleatoria. La longitud de éste segmento depende del tamaño del problema, sólo modificaremos un 10% de la solución.

function Mutación-ILS

Input: Solución *Sol*, tamaño del segmento *v*, Conjuto de datos *X*, conjuto de restricciones *R*, número de clusters *k*.

```
bool cluster_vacio = True
Solución mutación
while cluster_vacio == True do:
    cluster_vacio = False
    mutación.S.clear()
    int n = X.size, r = rand_int(0, n), c
    int cuenta[k] = [0, ..., 0]

if (r + v) > n then
    int aux = (r + v) % n
    for i in {0, 1, ..., n} do:
        if i >= r or i < aux then c = rand_int(0, k)
        else c = Sol.S[i]
        mutación.S.push(c), cuenta[c]++
    end for</pre>
```

```
else
    for i in {0, 1, ..., n} do:
        if i >= r and i < (r + v) then c = rand_int(0, k)
        else c = Sol.S[i]
        mutación.S.push(c), cuenta[c]++
    end for
end if

if 0 in cuenta then
        cluster_vacio = True
end if
end while
mutación.f = calcula_f(mutación.S, X, R, k)
return mutación</pre>
```

3.4.2. Búsqueda Local como algoritmo de búsqueda

function ILS-BL

Input: número de iteraciones *iters*, número de evaluaciones de la BL *bl_max_evals*, Conjuto de datos *X*, conjuto de restricciones *R*, número de clusters *k*.

3.4.3. Enfriamiento Simulado como algoritmo de búsqueda

function ILS-ES

Input: número de iteraciones *iters*, número de evaluaciones de la BL *bl_max_evals*, Conjuto de datos *X*, conjuto de restricciones *R*, número de clusters *k*.

```
int v = 0.1 * X.size
Solución mejor_solución, solución
solución_actual = generar_solución_aleatoria(X.size, k)
```

4. Procedimiento considerado para desarrollar la práctica

Para implementar estos algoritmos se ha utilizado C++ empezando desde cero sin hacer uso de ningún framework. Para realizar una prueba de los algoritmos es necesario compilar el código fuente mediante el uso del makefile. Para ejecutar el programa hay que seguir la siguiente sintaxis:

./test dataset porcentaje-de-restricciones numero-de-clusters semilla algoritmo

un ejemplo de ejecución sería "./test ecoli 10 8 11264 es". Los valores que puede tomar *algoritmo* son: es, bmb, ils-ls e ils-es.

5. Experimentos y análisis de resultados

Se han realizado 5 pruebas por algoritmo utilizando siempre las mismas 5 semillas: 11264, 16438, 75645, 79856 y 96867.

5.1. Resultados Enfriamiento Simulado

Se ha ejecutado el algoritmo ES utilizando el esquema de Cauchy, con μ = ϕ =0.3 y un máximo de 100000 evaluaciones.

		Iris			Rand		Ne	wthyroid			Ecoli	
Seed	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea
11264	0.669	0.669	0	0.716	0.716	0	14.054	13.835	6	24.109	21.318	104
16438	0.669	0.669	0	0.716	0.716	0	14.054	13.835	6	24.005	21.697	86
75645	0.669	0.669	0	0.716	0.716	0	15.037	10.795	116	23.919	22.282	61
79856	0.669	0.669	0	0.716	0.716	0	14.054	13.835	6	23.405	19.220	156
96867	0.669	0.669	0	0.716	0.716	0	14.054	13.835	6	24.402	22.283	79
Media	0.669	0.669	0	0.716	0.716	0	14.251	13.227	28	23.968	21.360	97.2

					ES 20	0% res	tricciones	i				
		Iris			Rand		Ne	wthyroid			Ecoli	
Seed	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea
11264	0.669	0.669	0	0.716	0.716	0	15.185	10.889	235	24.004	21.925	155
16438	0.669	0.669	0	0.716	0.716	0	14.287	14.287	0	24.041	21.921	158
75645	0.669	0.669	0	0.716	0.716	0	15.192	10.895	235	23.877	21.838	152
79856	0.669	0.669 0.669 0			0.716	0	15.192	10.895	235	24.041	21.882	161
96867	0.669	0.669	0	0.716	0.716	0	14.287	14.287	0	24.696	21.691	224
Media	0.669 0.669 0 0.716 0.716 0 14.829 12.251 141 24.132 21.851								21.851	170.0		

	Tiempos ES (segundos)														
	Ir	ris	Ra	ınd	Newth	iyroid	Ec	oli							
Seed	10%	20%	10%	20%	10%	20%	10%	20%							
11264	0.14	0.23	0.13	0.17	0.28	0.44	3.99	4.62							
16438	0.17	0.22	0.11	0.10	0.29	1.84	2.62	4.35							
75645	0.17	0.15	0.12	0.17	0.30	0.33	2.37	8.61							
79856	0.15	0.18	0.12	0.17	0.21	0.37	2.90	6.55							
96867	0.14	0.20	0.15	0.14	0.30	2.09	2.02	3.50							
Media	0.15	0.20	0.13	0.15	0.28	1.01	2.78	5.53							

5.2. Resultados Búsqueda Multiarranque Básica

En cada ejecución de la búsqueda multiarranque básica se realizan 10 búsqueda locales con soluciones aleatorias. Cada BL puede realizar como mucho 10000 evaluaciones de la función objetivo.

		Iris			Rand		Ne	wthyroid			Ecoli	
Seed	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea
11264	0.669	0.669	0	0.716	0.716	0	14.054	13.835	6	29.085	23.826	196
16438	0.669	0.669	0	0.716	0.716	0	14.054	13.835	6	25.907	22.821	115
75645	0.669	0.669	0	0.716	0.716	0	14.054	13.835	6	24.603	22.322	85
79856	0.669	0.669	0	0.716	0.716	0	14.054	13.835	6	26.549	21.827	176
96867	0.669	0.669	0	0.716	0.716	0	14.054	13.835	6	25.722	22.449	122
Media	0.669	0.669	0	0.716	0.716	0	14.054	13.835	6	26.373	22.649	138.8

	BMB 20% restricciones														
		Iris			Rand		Ne	wthyroid			Ecoli				
Seed	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea			
11264	0.669	0.669	0	0.716	0.716	0	14.287	14.287	0	25.603	22.370	241			
16438	0.669	0.669	0	0.716	0.716	0	14.287	14.287	0	25.408	22.457	220			
75645	0.669	0.669	0	0.716	0.716	0	14.287	14.287	0	25.791	22.920	214			
79856	0.669	0.669	0	0.716	0.716	0	14.287	14.287	0	24.905	22.598	172			
96867	0.669	0.669	0	0.716	0.716	0	14.287	14.287	0	25.245	21.891	250			
Media	0.669	0.669	0	0.716	0.716	0	14.287	14.287	0	25.390	22.447	219.4			

	Tiempos BMB (segundos)														
	Ir	is	Ra	nd	Newth	iyroid	Ec	oli							
Seed	10%	20%	10%	20%	10%	20%	10%	20%							
11264	0.29	0.38	0.32	0.43	1.26	1.87	10.71	15.65							
16438	0.27	0.38	0.29	0.36	1.12	1.85	11.18	16.49							
75645	0.28	0.41	0.31	0.40	1.12	1.53	11.17	15.54							
79856	0.31	0.43	0.30	0.39	1.18	1.72	10.39	15.45							
96867	0.29	0.42	0.31	0.37	1.13	1.67	10.50	15.64							
Media	0.29	1.73	10.79	15.75											

5.3. Resultados Búsqueda Local Reiterada

5.3.1. Búsqueda Local como algoritmo de búsqueda

En cada ejecución de la ILS-BL se realizan 10 búsqueda locales, la primera será sobre una solución aleatoria y el resto sobre soluciones mutadas. Cada BL puede realizar como mucho 10000 evaluaciones de la función objetivo.

	ILS-BL 10% restricciones														
		Iris			Rand		Ne	wthyroid			Ecoli				
Seed	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea			
11264	0.669	0.669	0	0.716 0.716 0 14.			14.054	13.835	6	23.387	21.079	86			
16438	0.669	0.669	0	0.716	0.716	0	14.368	10.894	95	23.827	21.198	98			
75645	0.669	0.669	0	0.716	0.716	0	14.054	13.835	6	23.547	21.615	72			
79856	0.669	0.669 0.669 0			0.716	0	14.384	10.874	96	23.459	21.715	65			
96867	0.669	0.669	0	0.716	0.716	0	14.427	10.880	97	23.610	22.241	51			
Media	dia 0.669 0.669 0 0.716 0.716 0 14.2							12.063	60	23.566	21.570	74.4			

					ILS-BL	20% r	estriccior	nes				
		Iris			Rand		Ne	wthyroid			Ecoli	
Seed	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea
11264	0.669	0.669	0	0.716	0.716	0	14.287	14.287	0	23.741	21.675	154
16438	0.669	0.669	0	0.716	0.716	0	14.287	14.287	0	23.476	21.759	128
75645	0.669	0.669 0.669 0			0.716	0	14.287	14.287	0	23.557	22.001	116
79856	0.669	0.669	0	0.716	0.716	0	15.066	10.880	229	23.627	21.884	130
96867	0.669 0.669 0			0.716	0.716	0	14.287	14.287	0	23.790	21.925	139
Media	0.669	0.669	0	0.716	0.716	0	14.443	13.606	45.8	23.638	21.849	133.4

			Tiempo	s ILS-BL (s	segundos)			
	Ir	ris	Ra	nd	Newth	ıyroid	Ec	oli
Seed	10%	20%	10%	20%	10%	20%	10%	20%
11264	0.17	0.23	0.18	0.24	0.71	1.17	10.65	15.04
16438	0.17	0.26	0.17	0.25	0.63	1.28	11.10	16.39
75645	0.18	0.26	0.18	0.23	0.61	1.06	10.54	16.35
79856	0.18	0.26	0.17	0.26	0.86	1.07	10.86	15.42
96867	0.16	0.25	0.18	0.27	0.74	1.16	11.00	16.24
Media	0.17	0.25	0.18	0.25	0.71	1.15	10.83	15.89

5.3.2. Enfriamiento Simulado como algoritmo de búsqueda

En cada ejecución de la ILS-ES se realizan 10 enfriamiento simulados, la primera será sobre una solución aleatoria y el resto sobre soluciones mutadas. Debido a que el esquema de Cauchy no conseguía resultados buenos también se han realizado pruebas con el esquema propocional.

5.3.1.1. Esquema de Cauchy

Utilizamos los mismos valores para μ y ϕ que anteriormente. El único parámetro que modificamos es el máximo de evaluaciones, que ahora será 10000.

				ILS	-ES Cau	ichy 10)% restric	cciones				
		Iris			Rand		Ne	wthyroid			Ecoli	
Seed	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea
11264	0.669	0.669	0	0.716	0.716	0	15.062	11.515	97	62.244	36.542	958
16438	0.669	0.669	0	0.716	0.716	0	14.054	13.835	6	63.451	36.031	1022
75645	0.669	0.669 0.669 0			0.731	10	14.054	13.835	6	54.721	33.365	796
79856	0.669	0.669	0	0.716	0.716	0	14.054	13.835	6	63.223	36.743	987
96867	0.669 0.669 0			0.782	0.732	7	14.054	13.835	6	62.708	34.698	1044
Media	0.669	0.669	0	0.746	0.722	3.4	14.256	13.371	24.2	61.269	35.475	961.4

				ILS	S-ES Ca	uchy 2	0% restri	cciones				
		Iris			Rand		Ne	wthyroid			Ecoli	
Seed	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea
11264	0.727	0.689	12	0.716	0.716	0	14.287	14.287	0	57.711	35.282	1672
16438	0.669 0.669 0			0.716	0.716	0	14.287	14.287	0	63.336	36.091	2031
75645	0.723	0.723 0.678 14			0.745	18	15.531	10.814	258	58.632	34.874	1771
79856	0.731	0.674	18	0.782	0.735	13	15.192	10.895	235	61.154	34.687	1973
96867	0.669 0.669 0			0.716	0.716	0	14.287	14.287	0	59.530	34.256	1884
Media	0.704	0.676	8.8	0.748	0.725	6.2	14.717	12.914	98.6	60.073	35.038	1866.2

Como podemos observar los resultados son malos ya que, al ser el valor de max_evals un valor bajo, se realizan muy pocas iteraciones del bucle exterior. Se ha probado ha reducir el valor de max_vecinos y max_exitos pero no se han conseguido buenos resultados porque el algoritmo enfría demasiado rápido.

	Tiempos ILS-ES Cauchy (segundos)											
	Ir	is	Ra	nd	Newth	ıyroid	Ecoli					
Seed	10%	20%	10%	20%	10%	20%	10%	20%				
11264	0.10	0.11	0.09	0.13	0.41	0.51	0.43	0.62				
16438	0.09	0.12	0.10	0.11	0.32	0.59	0.45	0.60				
75645	0.09	0.11	0.08	0.10	0.31	0.49	0.46	0.63				
79856	0.11	0.09	0.09	0.11	0.41	0.67	0.45	0.56				
96867	0.10	0.12	0.10	0.11	0.35	0.56	0.44	0.59				
Media	0.10	0.11	0.09	0.11	0.36	0.56	0.45	0.60				

5.3.1.2. Esquema proporcional

Se han realizado 4 pruebas distintas para el esquema proporcional variando el valor de α y así poder ver cómo varían los resultados obtenidos dependiendo de la velocidad de enfriamiento.

	Comparativa ILS-ES Esquema proporcional 10% restricciones												
		Iris		Rand			Ne	wthyroid	i	Ecoli			
α	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea	
0.90	0.669	0.669	0	0.755	0.725	4.2	14.101	13.874	6.2	24.815	22.282	94.4	
0.92	0.679	0.675	0.6	0.742	0.724	2.4	14.054	13.835	6	25.273	21.630	135.8	
0.95	0.682	0.669	2.0	0.730	0.721	1.2	14.084	13.879	5.6	25.101	24.412	100.2	
0.97	0.669	0.669	0.0	0.746	0.725	2.8	14.148	13.241	24.8	25.869	22.252	134.8	

	Comparativa ILS-ES Esquema proporcional 20% restricciones												
		Iris		Rand			Ne	wthyroid	l	Ecoli			
α	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea	
0.90	0.724	0.682	13.2	0.730	0.721	2.6	14.289	14.106	10	24.844	22.118	203.2	
0.92	0.681	0.674	2.2	0.716	0.716	0	14.288	14.197	5	25.740	22.569	236	
0.95	0.694	0.671	7.2	0.732	0.720	3.2	14.289	14.139	8.2	25.404	22.828	192.0	
0.97								22.490	242.4				

	Tiempos ILS-ES Esquema proporcional (segundos)												
	Iris Rand Newthyroid Ecoli												
α	10%	20%	10%	20%	10%	20%	10%	20%					
0.90	0.18	0.24	0.17	0.24	0.84	1.19	9.26	13.02					
0.92	0.17	0.26	0.18	0.25	0.86	1.28	9.61	13.29					
0.95	0.19	0.27	0.21	0.28	0.96	1.55	10.33	15.44					
0.97	0.22	0.32	0.22	0.31	1.16	1.74	11.02	15.65					

Los resultados son similares para todos los valores de α aunque, para el dataset ecoli, que podriamos considerar el más complicado de los cuatro, vemos que α = 0.9 obtiene los mejores resultados, es decir, el que enfría más rápido de todos, aun así, los resultados no son especialmente buenos.

5.4. Resultados generales

	Resultados globales en el PAR con 10% restricciones												
	Iris			Rand			Newthyroid			Ecoli			
Algoritmo	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea	
Greedy	1.476	0.857	97.6	2.451	1.485	134	X	X	X	51.905	39.724	454	
BL	0.669	0.669	0	0.716	0.716	0	X	X	X	23.929	21.836	78	
ES	0.669	0.669	0	0.716	0.716	0	14.251	13.227	28	23.968	21.360	97.2	
BMB	0.669	0.669	0	0.716	0.716	0	14.054	13.835	6	26.373	22.649	138.8	
ILS-BL	0.669	0.669	0	0.716	0.716	0	14.258	12.063	60	23.566	21.57	74.4	
ILS-ES Cauchy	0.669	0.669	0	0.746	0.722	3.4	1.256	13.371	24.2	61.269	35.475	961.4	
ILS-ES Prop 0.90	0.669	0.669	0	0.755	0.725	4.2	14.101	13.874	6.2	24.815	22.282	94.4	
ILS-ES Prop 0.92	0.679	0.675	0.6	0.742	0.724	2.4	14.054	13.835	6	25.273	21.630	135.8	
ILS-ES Prop 0.95	0.682	0.669	2.0	0.730	0.721	1.2	14.084	13.879	5.6	25.101	24.412	100.2	
ILS-ES Prop 0.97	0.669	0.669	0	0.746	0.725	2.8	14.148	13.241	24.8	25.869	22.252	134.8	

	Resultados globales en el PAR con 20% restricciones													
	Iris				Rand		Newthyroid			Ecoli				
Algoritmo	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea	f	tasa_C	infea		
Greedy	0.842	0.710	41.4	1.163	0.864	82.8	X	X	X	45.667	38.305	549		
BL	0.669	0.669	0	0.716	0.716	0	X	X	X	24.291	22.000	171		
ES	0.669	0.669	0	0.716	0.716	0	14.829	12.251	141	24.132	21.851	170		
BMB	0.669	0.669	0	0.716	0.716	0	14.287	14.287	0	25.390	22.447	219.4		
ILS-BL	0.669	0.669	0	0.716	0.716	0	14.443	13.606	45.8	23.638	21.849	133.4		
ILS-ES Cauchy	0.704	0.676	9	0.780	0.725	6.2	14.717	12.914	98.6	60.073	35.038	1866.2		
ILS-ES Prop 0.90	0.724	0.682	13.2	0.730	0.721	2.6	14.289	14.106	10	24.844	22.118	203.2		
ILS-ES Prop 0.92	0.681	0.674	2.2	0.716	0.716	0	14.288	14.197	5	25.740	22.569	236		
ILS-ES Prop 0.95	0.694	0.671	7.2	0.732	0.720	3.2	14.289	14.139	8.2	25.404	22.828	192.0		
ILS-ES Prop 0.97	0.680	0.669	3.4	0.728	0.720	2.2	14.288	14.197	5	25.742	22.490	242.4		

Lo esperable al comparar éstos algoritmos sería que los de trayectorias simples fuesen peores que los compuestos pero podemos ver que no es el caso, sólo el algoritmo ILS-BL es mejor que el algoritmo de trayectorias simples que utiliza.

Si comparamos los resultados de la BL y la BMB vemos que la segunda obtiene los peores resultados. Ésto se debe a que la búsqueda local se ejecutó con un máximo de 100000 evaluaciones mientras que, en la BMB, el límite son 10000 evaluaciones. Es obvio que el segundo va a obtener peores resultados ya que no le damos tiempo a converger. No ocurre lo mismo con el algorimo ILS-BL ya que éste trabaja sobre la misma solución que muta y mejora en cada iteración aunque el máximo de evaluaciones también sea 10000.

Ya se ha comentado la razón por la que el algoritmo ILS-ES utilizando el esquema de Cauchy obtiene resultados malos, no obstante, el esquema proporcional tampoco supera al enfriamiento simulado simple. En vista de los resultados, no parece una buena idea hibridar ILS con ES, al menos con los

parámetros utilizados, habría que realizar más pruebas para encontrar los valores de éstos que obtienen los mejores resultados posibles.

	Tiempos globales en el PAR (segundos)												
	Ir	ris	Ra	nd	Newth	yroid	Ecoli						
Algoritmo	10%	20%	10%	20%	10%	20%	10%	20%					
Greedy	0.12	0.15	0.13	0.15	X	X	1.08	1.67					
BL	3.81	3.52	3.54	3.73	X	X	164.24	150.95					
ES	0.15	0.20	0.13	0.15	0.28	1.01	2.78	5.53					
BMB	0.29	0.40	0.30	0.39	1.16	1.73	10.79	15.75					
ILS-BL	0.17	0.25	0.18	0.25	0.71	1.15	10.83	15.89					
ILS-ES Cauchy	0.1	0.11	0.09	0.11	0.36	0.56	0.45	0.6					
ILS-ES Prop 0.90	0.18	0.24	0.17	0.24	0.84	1.19	9.26	13.02					
ILS-ES Prop 0.92	0.17	0.26	0.18	0.25	0.86	1.28	9.61	13.29					
ILS-ES Prop 0.95	0.19	0.27	0.21	0.28	0.96	1.55	10.33	15.44					
ILS-ES Prop 0.97	0.22	0.32	0.22	0.31	1.16	1.74	11.02	15.65					