HLA-ProtBERT: Al-Powered HLA Analysis

NMDP Research Team

National Marrow Donor Program

March 2025

- AI model (ProtBERT) for HLA protein analysis
- Captures functional relationships traditional methods miss
- Analyzed 17,109 Class I alleles in 81.57 seconds
- Reveals biological patterns matching HLA classification

Benefits

- Mgmt: Efficient analysis pipeline
- Clinical: Better matching insights
- Tech: Novel functional view

Overview

- HLA Analysis Challenge
- Al-Based Approach
- Key Findings
- Applications

Content for:

- Management
- Clinical Scientists
- Bioinformaticians

NMDP Research Team HLA-ProtBERT March 2025 3 / 17

HLA Complexity

- Thousands of alleles with critical immune function
- Sequence similarity is not equivalent to functional similarity
- Growing database makes manual analysis impossible

Clinical: Better transplant

matching

Mgmt: Efficiency gains

Tech: Novel computational

approach

Key Takeaway

HLA complexity requires advanced methods beyond simple sequence comparison.

ProtBERT: AI for Proteins

- Al model trained on 106+ million proteins
- Pre-trained for protein language understanding
- Captures functional/structural properties
- 16M parameters vs. billions in larger models

Clinical: Finds functionally similar HI As

Mgmt: Leverages existing Al advances

Tech: Transfer learning from

vast protein data

Key Takeaway

ProtBERT understands protein "language" beyond simple sequence similarity.

NMDP Research Team

- Processes HLA sequence while considering all amino acid relationships
- Multiple layers extract increasingly complex patterns ◆□▶ ◆問▶ ◆∃▶ ◆∃▶ 重|= のQ@ HLA-ProtBERT

March 2025

6 / 17

From Complex to Simple

Dimensionality Reduction Techniques

PCAGlobal overview

t-SNE Local clusters UMAP
Balanced view

NMDP Research Team HLA-ProtBERT March 2025 7 / 17

Analysis Overview

- 17,109 Class I alleles analyzed:
 - 5.432 HLA-A
 - 6.526 HLA-B
 - 5.151 HLA-C
- Total processing: 81.57 sec (0.005 sec/allele)
- Clear clustering by functional groups

Clinical: Reveals functional similarities

Mgmt: Demonstrates efficiency at scale

Tech: Effective protein embed-

ding

HLA-A Visualization

- Clear separation between major allele families
- A*01, A*02, A*03 groups form discrete clusters

HLA-A: Multiple Perspectives

Figure: PCA (left), t-SNE (middle), UMAP (right)

Clinical: Helps identify potential cross-reactive epitopes

Tech: Different methods reveal different relationship aspects

HLA-B: Most Diverse

- Most diverse locus (6,526 alleles)
- Complex clustering reflects greater polymorphism

HLA-C: Distinct Patterns

- More compact clusters than A and B loci
- Clearer separation between major groups

Current Applications

Clinical

- Clinical: Better matching prediction
- Clinical: Novel allele classification
- Clinical: Cross-reactivity assessment

Research & Technical

- Tech: Structure-function modeling
- Mgmt: Efficient analysis workflow
- Tech: Evolutionary analysis

Understanding functional relationships between HLA alleles has direct applications in transplantation, disease association, and drug response prediction.

Future Directions

Technical Advancements

- HLA-specific training
- Structural information integration
- Multi-modal models

Data Integration

- Clinical outcome correlation
- Population genetics
- Cross-species analysis

Potential Impact

- Clinical: Improved virtual crossmatching
- Mgmt: Better matching algorithms
- Tech: Novel evolutionary insights

Key Takeaways

- Al embeddings reveal functional HLA relationships
- 2 17,109 alleles analyzed in 81.57 seconds
- 3 Clear functional clustering observed
- Multiple visualization techniques provide complementary views
- 6 Applications span clinical, research, and data domains

Clinical: Explore matching prediction applications

Mgmt: Consider workflow integration

Tech: Explore additional models

References

Technical Details

Model Specifications

- 30 transformer layers
- 16 attention heads
- 1024-dimensional embeddings
- 16M parameters (vs. billions)
- Pre-trained on 106M proteins

Dimensionality Reduction Parameters

- UMAP: n_neighbors=15, min_dist=0.1
- t-SNE: perplexity=30, learning_rate=200
- **PCA**: n_components=2

Implementation

- Hugging Face Transformers
- CUDA GPU acceleration
- Embedding caching
- Batch processing (batch_size=8)