Лабораторная работа № 2. Многомерный нормальный закон распределения Срок сдачи до <u>04.11.2021</u>.

По результатам выполнения лабораторной работы необходимо подготовить отчет.

Основные задания (на 4 балла)

- 0. Загрузить 4-хмерную выборку из файла "VarN.csv", где N номер варианта, он же номер в списке подгруппы (см. таблицу с текущим рейтингом). Объем выборки 400 наблюдений.
- 1. По выборке оценить вектор математического ожидания μ и ковариационную матрицу Σ (можно использовать смещенные оценки).
- 2. Оценить коэффициенты корреляции между всеми парами переменных.

Бонусные задания

Проверка о принадлежности выборки к нормальному закону распределения

- 3. (0,5 балла) Постройте гистограммы для каждой переменной из выборки. Похожи ли гистограммы на плотность распределения нормального закона?
- 4. (**1 балл за первый тест** + **0,5 за каждый следующий**) Для каждой переменой проверить гипотезы согласия о принадлежности выборки к нормальному закону распределения. Рекомендуемые тесты: Хи-квадрат Пирсона, Колмогорова-Смирнова, Шапиро-Уилка (можно использовать другие тесты согласия). Сделать вывод.
- 5. (1 балл за уникальный пример) Как известно, в общем случае из того факта, что все одномерные маргинальные распределения являются нормальными не следует, что и совместное распределение случайного вектора тоже является нормальным? Приведите пример двумерного вектора, у которого каждая компонента по-отдельности имеет нормальный закон распределения, но совместное распределение не является нормальным.

Эллипсы концентрации

- 6. (**0,5 балла**) Изобразить диаграмму рассеяния первой и второй переменной выборки (по оси x откладывать значения X_1 , а по оси $y X_2$ или наоборот).
- 7. (**1 балл**) На том же графике изобразить несколько эллипсов концентрации малого, среднего и большого радиуса (эллипсоид концентрации для многомерного нормального закона изолиния, вдоль которой плотность распределения не изменяется). Вместо точных значений математического ожидания и ковариационной матрицы используйте соответствующие оценки.
- 8. (0,5 балла) Повторите шаги 6-7 для первой и третьей и первой и четвертой переменных выборки. Как изменяются эллипсы концентрации, что можно сказать об их форме?

Линейные преобразования нормальных случайных величин

9. (**2 балл**) Пусть $y_1 = k_1 \cdot x_1 + k_3 \cdot x_3$, $y_2 = k_2 \cdot x_1 + k_4 \cdot x_4$. Какой закон распределения будет у вектора (y_1, y_2) ? Найдите математическое ожидание и ковариационную матрицу нового вектора 2-мя способами: а) эмпирически: сгенерируйте новую двумерную выборку, для которой постройте соответствующие оценки; б) по формулам $\mu_{\text{New}} = C\mu$, $\Sigma_{\text{New}} = C\Sigma C^{\text{T}}$, где C – матрица линейного преобразования. Вместо точных значений математического ожидания и ковариационной матрицы используйте соответствующие оценки. Коэффициенты k_1 , k_2 , k_3 и k_4 представлены в таблице в конце файла.

Смесь распределений.

- 10. (0,5 балла) Сгенерировать новую переменную по следующему правилу: $x_5 = \alpha x_1 + (1-\alpha)x_2$, где α случайная величина Бернулли с вероятностью успеха π (выбрать самостоятельно из диапазона от 0.2 до 0.4). Оценить математическое ожидание и дисперсию новой случайной величины.
- 11. (**0.5 балла**) Построить гистограмму для переменной x_5 .
- 12. (1 балл) Найти формулы вычисления математического ожидания и дисперсии смеси распределений и вычислить для своей смеси. Сравнить полученные теоретические моменты с оценками, построенными в пункте 10.

- Рекомендуемая литература: 1) Харин Ю.С., Зуев Н.М., Жук. Е.Е. Теория вероятностей, математическая и прикладная статистика.
 - 2) Стоянов Й. Контрпримеры в теории вероятностей.

№ варианта	k_1	k_2	k_3	k_4
1	1	8	6	10
2	8	10	9	4
3	1	6	9	9
4	6	3	6	6
5	5	6	9	10
6	1	4	3	1
7	4	10	3	2
9	7	6	6	10
10	4	5	4	2
11	2	3	2	1
12	7	1	7	6
13	4	2	2	3
14	4	7	3	5
15	8	8	3	7
16	9	4	5	9