Chapitre 2

Espace de fonctions continues

2.1 Définitions et premières propriétés

Soient (X_1, d_1) et (X_2, d_2) deux espaces métriques. On désigne par

$$\mathcal{B}(X_1,X_2):=\{f\ :\ X_1\to X_2 \text{ t.q. } f(X_1) \text{ est un born\'e de } X_2\}$$

et

$$\mathcal{BC}(X_1, X_2) := \{ f \in \mathcal{B}(X_1, X_2) \text{ t.q. } f \text{ est continue sur } X_1 \}.$$

On munit $\mathcal{B}(X_1, X_2)$ (et donc aussi $\mathcal{BC}(X_1, X_2)$) de la distance (dite distance uniforme)

$$d_u(f,g) := \sup_{x \in X_1} d_2(f(x), f(y)).$$

Lorsque cela ne porte pas à confusion, on note simplement d à la place de d_u . La convergence dans $\mathcal{B}(X_1, X_2)$ ou dans $\mathcal{BC}(X_1, X_2)$ pour d_u est appelée la convergence uniforme. Commençons par la classique

Proposition 2.1. L'espace $\mathcal{BC}(X_1, X_2)$ est fermé dans $\mathcal{B}(X_1, X_2)$. Autrement dit, toute limite uniforme de fonctions bornées continues est bornée continue.

Démonstration. Soit $(f_n)_{n\in\mathbb{N}}$ dans $\mathcal{BC}(X_1,X_2)$ et $f\in\mathcal{B}(X_1,X_2)$ telles que $d(f_n,f)\to 0$ quand $n\to +\infty$. Soit $x\in X_1$ et $(x_m)_{m\in\mathbb{N}}$ dans X_1 tels que $x_m\to x$ lorsque $m\to +\infty$. Montrons que $f(x_m)\to f(x)$ lorsque $m\to +\infty$. Soit $\varepsilon>0$ fixé. Puisque $d(f_n,f)\to 0$, il existe $n(\varepsilon)\in\mathbb{N}$ tel que $d(f_{n(\varepsilon)},f)<\varepsilon/3$. Puisque $f_{n(\varepsilon)}\in\mathcal{BC}(X_1,X_2)$, il existe $\delta>0$ tel que si $d_1(x,y)<\delta$ alors $d_2(f(x),f(y))<\varepsilon/3$. Puisque $x_m\to x$, il existe $m(\delta)\in\mathbb{N}$ tel que $d_1(x_m,x)<\delta$ quel que soit $m\geq m(\delta)$. Dès lors, pour tout $m\geq m(\delta)$ on a

$$d_{2}(f(x), f(x_{m}))$$

$$\leq d_{2}(f(x), f_{n(\varepsilon)}(x)) + d_{2}(f_{n(\varepsilon)}(x), f_{n(\varepsilon)}(x_{m})) + d_{2}(f_{n(\varepsilon)}(x_{m}), f(x_{m}))$$

$$< \frac{\varepsilon}{3} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3} = \varepsilon.$$

Ceci termine la démonstration.

2.2 Complétude

La complétude de \mathcal{B} et \mathcal{BC} ne dépend que de celle de l'espace d'arrivée.

Théorème 2.2. Soient (X_1, d_1) et (X_2, d_2) deux espaces métriques. Si (X_2, d_2) est complet alors il en va de même pour $\mathcal{B}(X_1, X_2)$ et $\mathcal{BC}(X_1, X_2)$.

Démonstration. Remarquons d'abord que puisque \mathcal{BC} est fermé dans \mathcal{B} , il suffit de démontrer la complétude de $\mathcal{B}(X_1, X_2)$.

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de Cauchy dans $\mathcal{B}(X_1,X_2)$. Pour chaque $x_1\in X_1$, puisque pour $n,m\in\mathbb{N}$ on a

$$d_2(f_n(x_1), f_m(x_1)) \le \sup_{x \in X_1} d_2(f_n(x), f_m(x)),$$

il s'ensuit que la suite $(f_n(x_1))_{n\in\mathbb{N}}$ est une suite de Cauchy dans (X_2,d_2) . Par complétude, cette dernière possède une limite dans X_2 que nous appelons $f(x_1)$. Il nous reste à démontrer que la fonction f ainsi définie sur X_1 appartient à $\mathcal{B}(X_1,X_2)$ et que $f_n\to f$ lorsque $n\to+\infty$. Soit $\varepsilon>0$ fixé. Puisque $(f_n)_{n\in\mathbb{N}}$ est de Cauchy, il existe $n(\varepsilon)\in\mathbb{N}$ tel que pour tous $n,n'\geq n(\varepsilon)$, $d(f_n,f_{n'})<\varepsilon$. Par passage à la mimite lorsque $n'\to+\infty$, on obtient ainsi que

$$\forall n \ge n(\varepsilon), \ \forall x \in X_1, \ d_2(f_n(x), f(x)) \le \varepsilon.$$
 (2.2.1)

Puisque $f_{n(\varepsilon)}\in\mathcal{B}(X_1,X_2)$, il existe $x_2\in X_2$ et r>0 tel que $f_{n(\varepsilon)}(X_1)\subseteq B(x_2,r)$. On en déduit que

$$f(X_1) \subseteq B(x_2, r + \varepsilon)$$

et donc que $f \in \mathcal{B}(X_1, X_2)$. Comme $\varepsilon > 0$ était quelconque, (2.2.1) indique alors que $f_n \to f$.

La convergence uniforme implique bien évidemment la convergence simple (i.e. ponctuelle). La réciproque n'est pas vraie, sauf dans quelques cas particuliers dont un est le

Théorème 2.3 (Dini). Soit (X,d) un espace métrique compact et $(f_n)_{n\in\mathbb{N}}$ une suite dans $\mathcal{BC}(X,\mathbb{R})$ telle que pour tout $x\in X$ la suite $(f_n(x))_{n\in\mathbb{N}}$ soit décroissante et minorée.

Alors, si la fonction f définie sur X_1 par

$$f(x) := \lim_{n \to +\infty} f_n(x) = \inf_{n \ge 0} f_n(x), \ \forall x \in X_1$$

est continue, nécessairement

$$f_n \to f$$
 dans $\mathcal{BC}(X, \mathbb{R})$.

Démonstration. Quitte à remplacer f_n par $f_n - f$, on peut supposer sans perte de généralité que f est la fonction identiquement nulle. Par le Lemme 1.27 du chapitre précédent, chaque f_n atteint sa valeur maximale, disons α_n , en au moins un point, disons $x_n \in X$. Par compacité, il existe $x_* \in X$ et une sous-suite

 $(x_{n_k})_{k\in\mathbb{N}}$ de $(x_n)_{n\in\mathbb{N}}$ tels que $x_{n_k}\to x_*$ lorsque $k\to+\infty$. Pour chaque $m\in\mathbb{N}$, on obtient par monotonie

$$\lim_{k \to +\infty} \left(\max_{x \in X} f_{n_k}(x) \right) = \lim_{k \to +\infty} f_{n_k}(x_{n_k})$$

$$\leq \lim_{k \to +\infty} f_m(x_{n_k}) = f_m(x_*).$$

Ainsi, toujours par monotonie et puisque m était quelconque,

$$\lim_{k \to +\infty} \left(\max_{x \in X} f_{n_k}(x) \right) \le \lim_{m \to +\infty} f_m(x_*) = f(x_*) = 0.$$

La conclusion suit.

Remarque 2.4. Lorsque X_1 est compact, toute fonction $f: X_1 \to X_2$ continue est nécessairement bornée. Dans ce cas, on abrège la notation $\mathcal{BC}(X_1, X_2)$ par $\mathcal{C}(X_1, X_2)$.

2.3 Compacité

Le critère le plus important de compacité dans $\mathcal{C}(X_1,X_2)$ est le

Théorème 2.5 (Ascoli). Soit (X_1, d_1) un espace métrique compact et (X_2, d_2) un espace métrique complet. Soit A un sous-ensemble de $C(X_1, X_2)$ tel que

(i) A est une famille uniformément équi-continue :

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall f \in A, \ \forall x, x' \in X_1, \ d_1(x, x') < \delta \Rightarrow d_2(f(x), f(x')) < \varepsilon,$$

(ii) quel que soit $x \in X_1$, l'ensemble $\{f(x)\}_{f \in A}$ est d'adhérence compacte dans X_2 .

Alors A est d'adhérence compacte dans $C(X_1, X_2)$.

Démonstration. Puisque X_2 est supposé complet, il en est de même pour $\mathcal{C}(X_1,X_2)$, et donc aussi pour \bar{A} . En vertu du Théorème 1.29, il suffit donc de démontrer que \bar{A} est totalement borné. Soit $\varepsilon>0$ fixé. Tentons de recouvrir A par un nombre fini de boules $(\mathrm{dans}\ \mathcal{C}(X_1,X_2))$ de rayon au plus égal à 4ε . Pour cet ε , soit $\delta>0$ nous étant fourni par la condition d'uniforme équi-continuité. Puisque X_1 est supposé compact, donc totalement borné, il existe $y_1,\cdots,y_m\in X_1$ tels que

$$X_1 = \cup_{k=1}^m B(y_k, \delta).$$

Pour chaque $k=1,\dots,m$, l'ensemble $\{f(y_k)\}_{f\in A}$ est d'adhérence compacte dans X_2 . Il existe donc $z_{k,1},\dots,z_{k,l(k)}$ tels que

$$\{f(y_k)\}_{f\in A}\subseteq \cup_{j=1}^l(k)B(z_{k,j},\varepsilon).$$

Soit $E_1 := \{1, \dots, m\}$, $E_2 := \{(i, j), 1 \le i \le m, 1 \le j \le l(i)\}$ et notons Γ l'ensemble de toutes les fonctions définies sur E_1 et à valeurs dans E_2 . Notons que $\sharp \Gamma < +\infty$.

Pour chaque $\gamma \in \Gamma$, on définit

$$A_{\gamma} := \{ f \in A \text{ t.q. } d_2(f(y_k), z_{\gamma(k)}) < \varepsilon, \ \forall k = 1, \cdots, m \}.$$

Par construction,

$$A = \bigcup_{\gamma \in \Gamma} A_{\gamma}.$$

Soit $\gamma \in \Gamma$ fixé et $f, f' \in A_{\delta}$. Soit $x \in X_1$ fixé et $k \in \{1, \dots, m\}$ tel que $x \in B(y_k, \delta)$. On a

$$d_2(f(x), f'(x)) \le d_2(f(x), f(y_k)) + d_2(f(y_k), z_{\gamma(k)}) + d_2(z_{\gamma(k)}, f'(y_k)) + d_2(f'(y_k), f'(x)) < 4\varepsilon.$$

Comme x était quelconque, on déduit que

$$A_{\gamma} \subseteq B(f_{\gamma}, 4\varepsilon)$$
 pour un certain $f_{\gamma} \in A_{\gamma}$

et dès lors

$$A \subseteq \cup_{\gamma \in \Gamma} B(f_{\gamma}, 4\varepsilon)$$

ce qui termine la démonstration.

Exercice 2.1. Montrer que l'énoncé du théorème précédent ne nécessite pas la complétude de l'espace X_2 . On pourra par exemple se ramener au cas étudié en considérant le complété de X_2 .

2.4 Séparabilité

Le but principal de cette section est de démontrer le

Théorème 2.6 (Stone Weierstrass). Soit (X, d) un espace métrique compact et A une sous-algèbre de l'espace $\mathcal{C}(X, \mathbb{R})$ telle que

- (i) A contient les fonctions constantes,
- (ii) A sépare les points de X, au sens où

$$\forall x \neq y \in X, \exists f \in A, f(x) \neq f(y).$$

Alors A est dense dans $C(X, \mathbb{R})$.

Nous commençons par démontrer le

Lemme 2.7. Il existe une suite $(P_n)_{n\in\mathbb{N}}$ de polynômes d'une variable à coefficients réels qui converge uniformément sur l'intervalle [0,1] vers la fonction racine carrée.

Démonstration. On définit $P_0(x) \equiv 0$ et ensuite la suite $(P_n)_{n \in \mathbb{N}}$ par récurrence via la formule

$$P_{n+1}(x) = P_n(x) + \frac{1}{2} (x - P_n^2(x)).$$

Si pour $k \in \mathbb{N}$ on a $P_k(x) \leq \sqrt{x}$, $\forall x \in [0, 1]$, alors on a aussi

$$P_{k+1}^{2}(x) = \left(P_{k}(x) + \frac{1}{2}\left(x - P_{k}^{2}(x)\right)\right)^{2}$$

$$= \left(P_{k}(x) + \frac{1}{2}\left(\sqrt{x} - P_{k}(x)\right)\left(\sqrt{x} + P_{k}(x)\right)\right)^{2}$$

$$\leq \left(P_{k}(x) + (\sqrt{x} - P_{k}(x))\right)^{2}$$

$$\leq x,$$

puisque $\sqrt{x} + P_k(x) \le 2\sqrt{x} \le 2$ pour $x \in [0,1]$. On en déduit que $0 \le P_n(x) \le \sqrt{x}$, $\forall x \in [0,1]$, et $\forall n \in \mathbb{N}$. Dès lors $P_{n+1} \ge P_n$, et la suite $(P_n)_{n \in \mathbb{N}}$ est donc monotone croissante. Par ailleurs elle converge simplement vers la fonction racine carrée sur [0,1]. Il suit du Théorème de Dini 2.3 que la convergence est uniforme sur [0,1].

Corollaire 2.8. Sous les hypothèses du Théorème 2.6, si f et g appartiennent à \bar{A} alors il en va de même pour $\max(f,g)$ et $\min(f,g)$.

 $D\'{e}monstration.$ Par continuité de la somme et du produit, remarquons d'abord que si A est une algèbre, alors \bar{A} l'est également. D'autre part,

$$\max(f,g) = \frac{1}{2} \left(f + g + |f - g| \right) \quad \text{et} \quad \min(f,g) = \frac{1}{2} \left(f + g - |f - g| \right).$$

Finalement, au sens de $C(X, \mathbb{R})$,

$$|f - g| = \lim_{n \to +\infty} P_n \left(\frac{(f - g)^2}{\|f - g\|_{\infty}^2} \right) \cdot \|f - g\|_{\infty}^2,$$

de sorte que $|f - g| \in \bar{A}$. La conclusion suit.

Démonstration du Théorème 2.6. Etape 1. Pour tous $y \neq z \in X$ et $\forall \alpha, \beta \in \mathbb{R}$, il existe $f \in \overline{A}$ tel que $f(y) = \alpha$ et $f(z) = \beta$. En effet, si $\alpha = \beta$ il suffit de choisir la fonction constante correspondante, et sinon il existe par hypothèse une fonction $g \in A$ telle que $g(y) \neq g(z)$. Dès lors, la fonction f définie par

$$f(x) := \alpha + \frac{\beta - \alpha}{g(z) - g(y)} \left(g(x) - g(y) \right)$$

appartient à A et vérifie $f(y) = \alpha$ et $f(z) = \beta$.

Etape 2. Soit $h \in \mathcal{C}(X,\mathbb{R})$ et $\varepsilon > 0$. Quel que soit $x \in X$ il existe $f^x \in \bar{A}$ telle que

$$f^x(x) = h(x)$$
 et $f^x(y) < h(y) + \varepsilon$, $\forall y \in X$.

En effet, x étant fixé, pour chaque $y \in X$ il existe $f_y \in \bar{A}$ tel que $f_y(x) = h(x)$ et $f_y(y) = h(y)$. Par continuité de f_y , il existe r(y) > 0 tel que

$$\forall z \in B(y, r(y)), \ f_y(z) < h(z) + \varepsilon.$$

Du recouvrement $\{B(y, r(y))\}_{y \in X}$ de X, on peut extraire un sous-recouvrement fini $\{B(y_i, r(y_i))\}_{i=1,\dots,l}$. La fonction

$$f^x := \min_{i \in \{1, \cdots, l\}} f_{y_i}$$

appartient à \bar{A} (en vertu du Corollaire 2.8) et vérifie les conditions requises. Etape 3. Soit $h \in \mathcal{C}(X,\mathbb{R})$ et $\varepsilon > 0$. Il existe $f \in \bar{A}$ telle que

$$h(y) - \varepsilon < f(y) < h(y) + \varepsilon, \ \forall y \in X.$$

En effet, pour chaque $x \in X$ il existe r'(x) > 0 tel que

$$\forall y \in B(x, r'(x)), \ f^x(y) > h(y) - \varepsilon.$$

Du recouvrement $\{B(x, r'(x))\}_{x \in X}$ de X, on peut extraire un sous-recouvrement fini $\{B(x_j, r'(x_j))\}_{j=1,\dots,m}$. La fonction

$$f := \max_{j \in \{1, \cdots, m\}} f^{x_j}$$

appartient à \bar{A} et vérifie les conditions requises.

Conclusion. Il suit de l'étape 3 que $\bar{A} = \mathcal{C}(X, \mathbb{R})$, ce qui termine la démonstration.

Corollaire 2.9. Soit F un fermé borné de \mathbb{R}^N . Toute fonction continue $f \in \mathcal{C}(F,\mathbb{R})$ peut être approchée au sens de la convergence uniforme sur F par une suite de polynômes à N variables.

Démonstration. L'algèbre des polynômes à coefficients réels contient les constantes et est clairement séparante dans $\mathcal{C}(F,\mathbb{R})$.

Corollaire 2.10. Soit F un fermé borné de \mathbb{R}^N . Alors $C(F,\mathbb{R})$ est séparable.

 $D\acute{e}monstration$. L'ensemble des polynômes à coefficients rationnels à N variables est dénombrable. La conclusion suit du corollaire précédent et d'un argument direct d'approximation d'un polynôme à coefficients réels par un polynôme à coefficients rationnels.

Corollaire 2.11. Si (X,d) est un espace métrique compact, alors $C(X,\mathbb{R})$ est séparable.

Démonstration. Comme X est compact, il est séparable, nous notons $(x_n)_{n\in\mathbb{N}}$ une suite dénombrable et dense dans X. Notons également par $\mathbb{R}[(y_n)_{n\in\mathbb{N}}]$ l'ensemble des polynômes à une infinité dénombrable de variables y_0, y_1, \cdots . Finalement, définissons

$$A := \{ f \in \mathcal{C}(X, \mathbb{R}), \exists P \in \mathbb{R}[(y_n)_{n \in \mathbb{N}}], f(x) = P(d(x_0, x), d(x_1, x), \cdots) \}.$$

On vérifie sans peine que A est une sous-algèbre séparante de $\mathcal{C}(X,\mathbb{R})$ qui contient les constantes. Par conséquent, $\bar{A} = \mathcal{C}(X,\mathbb{R})$ en vertu du Théorème de Stone Weiertrass. L'ensemble

$$B := \{ f \in \mathcal{C}(X, \mathbb{R}), \exists P \in \mathbb{Q}[(y_n)_{n \in \mathbb{N}}], f(x) = P(d(x_0, x), d(x_1, x), \cdots) \}$$

est dénombrable et dense dans A. La conclusion suit.