Tugas Kecil 3 IF 2211 Strategi Algoritma Semester II Tahun 2021/2022

Penyelesaian Persoalan 15-Puzzle dengan Algoritma Branch and Bound

DISUSUN OLEH

Kevin Roni

13520114

SEKOLAH TEKNIK ELEKTRO DAN INFORMATIKA PROGRAM STUDI TEKNIK INFORMATIKA INSTITUT TEKNOLOGI BANDUNG BANDUNG 2022

BAB I ALGORITMA BRANCH AND BOUND

Deskripsi

Algoritma *Branch and Bound* biasanya digunakan untuk menyelesaikan persoalan berupa optimisasi. Singkatnya, *Branch and Bound* atau yang biasa disingkat B&B adalah algoritma BFS (*Breath First Search*) yang digabungkan dengan *least cost search*. Jika BFS dilakukan pencarian berdasarkan urutan masuk (FIFO), maka B&B berdasarkan cost yang dimiliki tiap simpul. Ekspansi dilakukan berdasarkan simpul yang memiliki cost terbesar/terkecil (tergantung persoalan maksimasi/minimasi)

Algoritma Branch and Bound

Pada dasarnya, algoritma *Branch and Bound* memiliki ide untuk membuat antrian (priority queue) berdasarkan cost dan membangkitkan anak simpul sesuai urutan pada antrian. Secara detail, program yang saya buat dapat dijelaskan melalui langkah-langkah sebagai berikut:

- 1. Mula-mula, program akan membaca file input dan mengkonversi file input menjadi matriks yang disimpan di memori internal program
- 2. Program kemudian akan mencari nilai $\sum_{i=1}^{16} KURANG(i) + X$
- 3. *KURANG(i)* adalah jumlah sel bernomor j sehingga ada j < i dan posisi posisi(j) > posisi(i). Sedangkan X akan bernilai 1 apabila nilai kolom dan baris pada sel kosong berbeda ganjil-genapnya.
- 4. Jika bernilai genap, maka tujuan dapat dicapai. Jika ganjil, maka tujuan tidak dapat dicapai
- 5. Jika tujuan dapat dicapai berdasarkan poin 4, maka program akan memasukkan simpul matriks mula-mula ke dalam antrian (*priority queue*) pq sebagai simpul akar
- 6. Jika pq kosong, maka program berhenti
- 7. Jika pq tidak kosong, maka program akan mengambil simpul i dengan cost paling kecil (melakukan metode pop karena sudah terurut berdasarkan cost)
- 8. Cost yang dimaksud adalah panjang lintasan dari simpul akar ke simpul i ditambah dengan taksiran panjang lintasan terpendek dari p ke simpul solusi. Taksiran dapat dilakukan dengan menghitung banyaknya sel bukan kosong yang tidak berada pada tempat seharusnya berdasarkan susunan akhir
- 9. Jika simpul i adalah solusi, maka program akan berhenti dan mencetak langkahlangkah untuk mencapai simpul solusi dari simpul akar
- 10. Jika bukan solusi, maka simpul i akan membangkitkan semua anak-anak yang mungkin dan tidak repetitive
- 11. Yang mungkin berarti jika sel kosong sudah berada pada sel paling kanan berarti tidak menggeser sel kosong ke kanan dan begitu pula untuk 3 arah lain yang mungkin (bawah, kiri, dan atas). Tidak repetitif berarti tidak melakukan kebalikan arah dari simpul I (jika simpul i adalah hasil pergerakan ke bawah, maka simpul anaknya tidak boleh bergerak ke atas lagi)
- 12. Semua anak-anak yang dibangkitkan akan dimasukkan ke dalam pq
- 13. Ulangi langkah 6

BAB II IMPLEMENTASI PROGRAM

solver.py

```
import numpy as np
from heapq import heappush, heappop
import time
nodeCreated = 0 #count the number of node created
def read matrix(filename): #read the matrix from the file
   with open(filename, 'r') as fp:
        lines = fp.readlines()
    lines = [line.strip() for line in lines]
    lines = [line.split(' ') for line in lines]
    lines = [[int(x) for x in line] for line in lines]
    return np.array(lines)
def randomize(): #function to randomize the puzzle
    puzzle = np.arange(1,17)
    puzzle = puzzle.reshape(4,4)
    puzzle = np.random.permutation(puzzle)
    return puzzle
def matrixToList(arr): #convert the matrix to list
    arr1=[]
    for y in arr:
        for x in y:
            arr1.append(x)
    return arr1
def sigmaKurang(arr, listKurang): #function to calculate sigma kurang
    arr1=matrixToList(arr)
    inv count = 0
    for i in range(16):
        curr_count = 0;
        for j in range(i + 1,16):
            if (arr1[i] > arr1[j]):
                inv count+=1
                curr_count+=1
        listKurang[arr1[i]] = curr_count
    return inv_count
def checkEmptyPosition(arr): #check if the empty position value is zero or one
    for i in range(4):
        for j in range(4):
            if (arr[i][j] == 16):
                return int((i\%2 == 0 and j\%2 == 1) or (i\%2 == 1 and j\%2 == 0))
```

```
def sigmaKurangIPlusX(sigmakurang, X): #function to calculate sigma kurang[I]
    return (sigmakurang + X)
def isPossible(sigmakurang, X): #check if the puzzle is possible to solve
    return (sigmakurang + X) % 2 == 0
def calculateCost(mat, final): #function to calculate the estimation step
    count = 0
    for i in range(4):
        for j in range(4):
            if (mat[i][j] != final[i][j] and mat[i][j] != 16):
                count += 1
    return count
def printMatrix(result): #print the matrix
    for row in range(4):
        for col in range(4):
            if result[row][col] == 16:
                if col == 3:
                    print("-", end="\n")
                else:
                    print("-", end="\t")
            else:
                if col == 3:
                    print(result[row][col], end="\n")
                else:
                    print(result[row][col], end="\t")
    print()
def getEmptyPosition(mat): #function to get the empty position
    for i in range(4):
        for j in range(4):
            if (mat[i][j] == 16):
                return (i,j)
def printPath(root): #function to print the path from initial puzzle to final
puzzle
    if root.parent == None:
        return
    printPath(root.parent)
    printMove(root.move)
    printMatrix(root.mat)
    print()
```

```
def copyMatrix(mat): #function to copy the matrix
    newList = [[0 for j in range(4)] for i in range(4)]
    for i in range(4):
        for j in range(4):
            newList[i][j] = mat[i][j]
    return newList
def isIdxValid(X, Y): #check if the index is valid
    return X >= 0 and X < 4 and Y >= 0 and Y < 4
class node: #class for node, used to generate solution tree
    def __init__(self, parent, mat, emptyPos, cost, level, move):
       self.parent = parent
        self.mat = mat
        self.emptyPos = emptyPos
        self.cost = cost
        self.level = level
        self.move = move
    def __lt__(self, nxt): #compare the node based on the cost, so the
prioqueue will be sorted based on cost
        return self.cost < nxt.cost
class priorityQueue: #class for priority queue
    def __init__(self):
       self.heap = []
    def push(self, k):
        heappush(self.heap, k)
    def pop(self):
        return heappop(self.heap)
    def isEmpty(self):
        if not self.heap:
            return True
        else:
            return False
def createNode(mat, emptyPos, emptyPosAfter, level, parent, final, move):
    #function to create a node while moving
    global nodeCreated
    nodeCreated += 1
   newMatrix = copyMatrix(mat)
    x1 = emptyPos[0]
   y1 = emptyPos[1]
   x2 = emptyPosAfter[0]
   y2 = emptyPosAfter[1]
```

```
newMatrix[x1][y1], newMatrix[x2][y2] = newMatrix[x2][y2],
newMatrix[x1][y1] #swap the empty position with the new position
    newlevel = level + 1
    newcost = calculateCost(newMatrix, final) + newlevel
    newNode = node(parent, newMatrix, emptyPosAfter, newcost, newlevel, move)
    return newNode
def move(x): #function to move the empty position, will be added when the
empty position is moved
   if (x == 0):
        return (-1,0)
    elif (x == 1):
        return (0,-1)
    elif (x == 2):
        return (1,0)
    elif (x == 3):
        return (0,1)
def printMove(x):
    #defined in the order of move (0 = up, 1 = left, 2 = down, 3 = right)
    if (x == None):
        print("Initial Matrix")
    elif (x == 0):
        print("Up")
    elif (x == 1):
        print("Left")
    elif (x == 2):
        print("Down")
    elif (x == 3):
        print("Right")
def solve(mat, final):
    emptyPos = getEmptyPosition(mat)
    pq = priorityQueue()
    start = time.time()
    if isPossible(sigmaKurang(mat, [0]*17), checkEmptyPosition(mat)):
        pq.push(node(None, mat, emptyPos, calculateCost(mat, final), 0, None))
#initial node
        while not pq.isEmpty():
            leastCost = pq.pop(); #pop the node with the least cost
            if (leastCost.cost == 0 or leastCost.cost == leastCost.level): #if
the cost estimation is zero, the puzzle is solved
                stop = time.time()
                print("Solution found\n")
                print("Total number of nodes created: " + str(nodeCreated))
                print("Step by step solution: \n")
                printPath(leastCost)
                print("Total time taken: " + str(stop - start))
```

```
return
            else:
                #check if the empty position can be moved in the direction of
                #if the empty position can be moved, create a new node
                #in order to minimize step taken to solve the puzzle
                #program will not do any repetition move, such as move up then
move down
                for i in range(4):
                    if leastCost.move == None or leastCost.move == i:
                        emptyPosChild = leastCost.emptyPos[0] + move(i)[0],
leastCost.emptyPos[1] + move(i)[1]
                        if isIdxValid(emptyPosChild[0], emptyPosChild[1]):
                            pq.push(createNode(leastCost.mat,
leastCost.emptyPos, emptyPosChild, leastCost.level, leastCost, final, i))
                    else:
                        currmove = i%2 #since the move is in the order of up,
left, down, right, the move is categorized (by modulo 2) either 0 or 1
                        parentmove = leastCost.move % 2 #if the modulo result
is the same, the move is repetition
                        if (currmove != parentmove):
                            emptyPosChild = leastCost.emptyPos[0] +
move(i)[0], leastCost.emptyPos[1] + move(i)[1]
                            if isIdxValid(emptyPosChild[0], emptyPosChild[1]):
                                pq.push(createNode(leastCost.mat,
leastCost.emptyPos, emptyPosChild, leastCost.level, leastCost, final, i))
    else:
        print("No Possible Solution")
```

main.py

```
from solver import *

try:
    print("15 Puzzle Solver Using BNB")
    print("\nChoose your input :\n1. Random By Program\n2. File Input")
    Option = int(input("\nSelect Option : "))
    if Option == 1:
        print("\nRandom By Program may take a while to generate a

solution.\n")
        print("\nContinue? (y/n)\n")
        if input("(y/n) : ") == "y":
            print("\nGenerating random puzzle...")
            puzzle = randomize()
            final = read_matrix("final.txt")
            print("Puzzle To Solve:\n")
            printMatrix(puzzle)
```

```
print("Kurang[i] Value:\n")
            listKurang = [0]*17
            sigmakurang = sigmaKurang(puzzle, listKurang)
            for i in range(1,17):
                print("kurang[" + str(i)+ "] = " + str(listKurang[i]))
            print("\nSigma Kurang[i] + X: "+
str(sigmaKurangIPlusX(sigmakurang, checkEmptyPosition(puzzle)))+ "\n")
            solve(puzzle, final)
        else:
            print("\nProgram dihentikan\n")
            exit()
    elif Option == 2:
        filename = input("\nInput Filename: ")
        file = "../test/" + filename
        puzzle = read matrix(file)
        final = read matrix("final.txt")
        print("Puzzle To Solve:\n")
        printMatrix(puzzle)
        print("Kurang[i] Value:\n")
        listKurang = [0]*17
        sigmakurang = sigmaKurang(puzzle, listKurang)
        for i in range(1,17):
            print("kurang[" + str(i)+ "] = " + str(listKurang[i]))
        print("\nSigma Kurang[i] + X: "+ str(sigmaKurangIPlusX(sigmakurang,
checkEmptyPosition(puzzle)))+ "\n")
        solve(puzzle, final)
    else:
        print("\nInvalid Input. Program Stop\n")
except:
    print("\nInvalid filename input, make sure your test case is already in
test folder. Program Stop\n")
```

BAB III INPUT OUTPUT

Berkas test-case untuk input terlampir

1. tc1.txt

```
15 Puzzle Solver Using BNB
Choose your input :
Puzzle To Solve:
        5
                 4
                          3
2
                          8
                          11
        10
13
                 15
        14
                          12
Kurang[i] Value:
kurang[1] = 0
kurang[2] = 1
kurang[3] = 2
kurang[4] = 3
kurang[5] = 4
kurang[6] = 5
kurang[7] = 0
kurang[8] = 1
kurang[9] = 1
kurang[10] = 1
kurang[11] = 0
kurang[12] = 0
kurang[13] = 1
kurang[14] = 1
kurang[15] = 1
kurang[16] = 9
Sigma Kurang[i] + X: 31
No Possible Solution
```

2. tc2.txt

choose your input.					umber of step so	nodes c lution:	reated:	98203
2. File	Input			Up				
Select (Option :	2		5	6 1	- 4	3 8	
Taranak E	:1	4-2 4-4		9	10	7	11	
	ilename: To Solve			13	14	, 15	12	
FUZZIE	IO SOIVE	•						
5	6	4	3					
2	1		8	Left				
9	10	7	11	5		6	3	
13	14	15	12	2	1	4	8	
				9	10	7	11	
Kurang[:	i] Value	:		13	14	15	12	
kurang[:	1] = 0							
kurang[2	2] = 1			Down				
kurang[5	1	6	3	
kurang[4				2		4	8	
kurang[9	10	7	11	
kurang[6				13	14	15	12	
kurang[]								
kurang[8								
kurang[Right				
kurang[:				5	1	6	3	
kurang[:				2	4		8	
kurang[:				9	10	7	11	
kurang[13] = 1				13	14	15	12	
kurang[14] = 1								
kurang[15] = 1								
kurang[16] = 9				Up				
				5	1		3	
Sigma Ku	urang[i]	+ X: 30		2	4	6	8	
				9	10	7	11	
Solution	n found			13	14	15	12	

Right 5 2 9 13	1 4 10 14	3 6 7 15	- 8 11 12	Up - 5 9 13	1 2 10 14	3 4 7 15	8 6 11 12
Down 5 2 9 13	1 4 10 14	3 6 7 15	8 - 11 12	Right 1 5 9 13	- 2 10 14	3 4 7 15	8 6 11 12
Left 5 2 9 13	1 4 10 14	3 - 7 15	8 6 11 12	Right 1 5 9 13	3 2 10 14	- 4 7 15	8 6 11 12
Left 5 2 9 13	1 - 10 14	3 4 7 15	8 6 11 12	Down 1 5 9 13	3 2 10 14	4 - 7 15	8 6 11 12
Left 5 - 9 13	1 2 10 14	3 4 7 15	8 6 11 12	Right 1 5 9 13	3 2 10 14	4 6 7 15	8 - 11 12

Up 1 5 9 13	3 2 10 14	4 6 7 15	- 8 11 12				
Left 1 5	3 2 10	- 6 7	4 8 11				
13 Left	14	15	12	Down 1 5 9	2 6 10	3 7 -	4 8 11
1 5 9	2 10	3 6 7	4 8 11	13	14	15	12
13	14	15	12	Right 1 5	2 6	3 7	4 8
Down 1 5 9	2 - 10	3 6 7	4 8 11	9 13	10 14	11 15	- 12
13	14	15	12	Down 1 5	2 6	3 7	4 8
Right 1 5 9	2 6 10	3 - 7	4 8 11	9	10 14	11 15	12
13	14	15	12	Total	time tak	cen: 3.62	1924638748169

3. tc3.txt

Choose your input : 1. Random By Program			Total nu Step by		nodes colution:	reated:	15357
2. File Input							
			Up				
Select (Option :	2	-	1	2	4	
			3	5	7	8	
-		tc3.txt	10	6	11	12	
Puzzle	To Solve	:	9	13	14	15	
3	1	2 4					
_	5	7 8	Right				
10	6	11 :	1		2	4	
9	13	14 :	3	5	7	8	
			10	6	11	12	
Kurang[i] Value	:	9	13	14	15	
kurang[1	L] = 0						
kurang[2	2] = 0		Right				
kurang[3	3] = 2		1	2		4	
kurang[4	1] = 0		3	5	7	8	
kurang[5] = 0		10	6	11	12	
kurang[6	5] = 0		9	13	14	15	
kurang[7							
kurang[8							
kurang[9			Down				
kurang[1			1	2	7	4	
kurang[1			3	5		8	
kurang[1			10	6	11	12	
kurang[1			9	13	14	15	
kurang[14] = 0							
kurang[1	_		_				
kurang[16] = 11			Left				
			1	2	7	4	
Sigma Ku	urang[i]	+ X: 20	3	-	5	8	
			10	6	11	12	
Solution	n found		9	13	14	15	

_			
Left			
1	2	7	4
1 - 10	3	5	8
10	6	11	12
9	2 3 6 13	7 5 11 14	8 12 15
_			
Hn			
ор	2	7	4
-	2	_	4
1	3	5	8
Up - 1 10 9	2 3 6 13	7 5 11 14	4 8 12 15
9	13	14	15
Right			
		7	4
2 1	3	5	8
10	6	11	12
9	3 6 13	7 5 11 14	4 8 12 15
9	13	14	13
Doug			
Down	-	_	
2 1	3	_	4
1	3 - 6	5	8
10	6	7 5 11 14	4 8 12 15
9	13	14	15
Right			
2	3	7	4
2 1	3 5 6		8
10	6	11	12
10 9	13	11 14	8 12 15

Up 2 1 10 9	3 5 6 13	- 7 11 14	4 8 12 15
Left 2 1 10 9	- 5 6 13	3 7 11 14	4 8 12 15
Left - 1 10 9	2 5 6 13	3 7 11 14	4 8 12 15
Down 1 - 10 9	2 5 6 13	3 7 11 14	4 8 12 15
Right 1 5 10 9	2 - 6 13	3 7 11 14	4 8 12 15

Down 1 5 10 9	2 6 - 13	3 7 11 14	4 8 12 15				
Left 1 5 - 9	2 6 10 13	3 7 11 14	4 8 12 15				
Down 1 5 9	2 6 10 13	3 7 11 14	4 8 12 15				
Right 1 5 9	2 6 10	3 7 11	4 8 12				
13 Right		14	15	Right 1 5 9	2 6 10	3 7 11	4 8 12
1 5 9 13	2 6 10 14	3 7 11 -	4 8 12 15	13	14	15	9040470123291

4. tc4.txt

Sele	ct Option	: 2		
	t Filename le To Solv		txt	
1	2	3	4	
5	6	7	8	
9	12	15	14	
13	11		10	
Kura	ng[i] Valu	e:		
kura	ng[1] = 0			
	ng[2] = 0			
kura	ng[3] = 0			
kura	ng[4] = 0			
kura	ng[5] = 0			
kura	ng[6] = 0			
	ng[7] = 0			
	ng[8] = 0			
	ng[9] = 0			
	ng[10] = 0			
	ng[11] = 1			
	ng[12] = 2			
	ng[13] = 2			
	ng[14] = 3			
	ng[15] = 4			
Kura	ng[16] = 1			
Sigm	a Kurang[i] + X:	14	
Solu	tion found			
	l number o			438

Right 1 5 9 13	2 6 12 11	3 7 15 10	4 8 14 -
Up 1 5 9 13	2 6 12 11	3 7 15 10	4 8 - 14
Left 1 5 9 13	2 6 12 11	3 7 - 10	4 8 15 14
Left 1 5 9	2 6 - 11	3 7 12 10	4 8 15 14
Down 1 5 9 13	2 6 11	3 7 12 10	4 8 15 14

Right 1 5 9 13	2 6 11 10	3 7 12 -	4 8 15 14	
Right 1 5 9 13	2 6 11 10	3 7 12 14	4 8 15 -	
Up 1 5 9 13	2 6 11 10	3 7 12 14	4 8 - 15	Right 1 2 3 4
Left 1 5 9 13	2 6 11 10	3 7 - 14	4 8 12 15	5 6 7 8 9 10 11 12 13 14 - 15 Right
Left 1 5 9 13	2 6 - 10	3 7 11 14	4 8 12 15	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 - Total time taken: 0.0176393985748291

5. tc5.txt

```
1. Random By Program
2. File Input
Select Option : 2
Input Filename: tc5.txt
Puzzle To Solve:
                  4
         3
                            15
                  5
                            12
         6
                  11
                            14
8
                   10
                            13
Kurang[i] Value:
kurang[1] = 0
kurang[2] = 0
kurang[3] = 1
kurang[4] = 1
kurang[5] = 0
kurang[6] = 0
kurang[7] = 1
kurang[8] = 0
kurang[9] = 0
kurang[10] = 0
kurang[11] = 3
kurang[12] = 6
kurang[13] = 0
kurang[14] = 4
kurang[15] = 11
kurang[16] = 10
Sigma Kurang[i] + X: 37
No Possible Solution
```

BAB IV PENUTUP

 $Link\ repository: \underline{https://github.com/jakartasipirok/Using-BNB-to-Solve-15-Words-Puzzle}$

Poin	Ya	Tidak
Program berhasil dikompilasi	V	
2. Program berhasil running	v	
3. Program dapat menerima input dan menuliskan output	V	
4. luaran sudah benar untuk semua data uji	V	
5. Bonus dibuat		v

BAB V LAMPIRAN

https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2021-2022/Tugas-Kecil-3-(2022).pdf https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2020-2021/Algoritma-Branch-and-Bound-2021-Bagian1.pdf

Instansiasi berkas pengujian:

tc1.txt 6 5 4 3 2 1 16 8

9 10 7 11

13 14 15 12

tc2.txt

5643

2 1 16 8

9 10 7 11

13 14 15 12

tc3.txt

3124

16578

10 6 11 12

9 13 14 15

tc4.txt

1234

5678

9 12 15 14

13 11 16 10

tc5.txt

1 3 4 15

2 16 5 12

7 6 11 14

8 9 10 13