BREAST CANCER CLASSIFICATION

By:

Madhan Chaithanya, MCA.

Problem Statement:

- Breast Cancer the most common cancer among women worldwide.
- Accounting for 25% of all cases.
- 2.1 million people were effected in 2015.
- The chances of survival has significantly increases by early diagnosis.
- Key challenge in cancer detection is to classify:
 - Malignant
 - Benign
- Using of Machine Learning techniques.
- It can dramatically improves the accuracy of diagnosis.

Motivation:

- Research indicates that most experience physicians:
 - Diagnose cancer with 79% accuracy.
- Using of ML techniques:
 - 91% accuracy is achieved by correct diagnosis.
- Our task is to classify tumours into benign or malignant using some features from several images.

Motivation(cont..):

- Using Classification Algorithms of ML:
 - Support Vector Machine
 - K-NN(K-Nearest Neighbours)
 - Decision Tree

• Using CNN (if possible)

<u>Literature Survey:</u> 1:

- Breast Cancer Detection with Reduced Feature Set
- AhmetMert,¹ Niyazi KJlJç,² Erdem Bilgili,¹ and Aydin Akan
- Hindawi Publishing Corporation Computational and Mathematical Methods in MedicineVolume 2015, Article ID 265138, 11 pages (http://dx.doi.org/10.1155/2015/265138)

<u>Literature Survey:</u> 2:

- Support vector machines combined with feature selection for breast cancer diagnosis.-Mehmet Fatih Akay
- Expert Systems with Applications (2009) 3240–3247
- [0957-4174/\$ see front matter 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.eswa.2008.01.009]

<u>Literature Survey:</u> 3:

- Breast Cancer Classification Using Machine Learning
- Meriem AMRANE, Saliha OUKID, Computer Science Department.
- IEEE Conference ©2018.

<u>Literature Survey:</u> <u>4:</u>

- Breast Cancer Diagnosis by using k-Nearest Neighbor with Different Distances and Classification Rules
- [International Journal of Computer Applications (0975 8887)Volume 62 No. 1, January 2013]

Requirements:

- OS: windows 10.
- Coding: Python-3.
- Platform : Anaconda Distribution
 - Jupyter (or)
 - Spyder
- Dataset:
 - https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+%28Diagn-ostic%29

Cancer Diagnosis Procedure:

ML Terms(Dataset):

RADIUS
TEXTURE
PERIMETER
AREA
SMOOTHNESS
COMPACTNESS
CONCAVITY
CONCAVITY_POINTS
SYMMETRY
FRACTIONAL_DIMENSI
ON

Dataset:

- Number of instances: 569
- Class distribution:
 - 212 Malignant
 - 357 Benign

Expected Output:

- Based on this:
 - What we do
 - How we treat the classifier(training it)
 - When teach it how we classify it
- Looking into 30 features from that we are teaching the target class.

Visualizing the Data:

Correlation of Feature Names:

- 0.9

- 0.6

- 0.3

- 0.0

-0.3

--0

Correlation of Feature Mean:

Correlation of Feature Errors:

1.0

- 0.8

- 0.6

- 0.4

- 0.2

Correlation of Features Worst:

Model Training & Testing:

- X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 5)
- print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
- Output:

SVM Results:

Directly applying SVM

<pre>print(classification_report(y_test, y_predict))</pre>				
	precision	recall	f1-score	support
0.0	0.00	0.00	0.00	55
1.0	0.62	1.00	0.76	88
avg / total	0.38	0.62	0.47	143

SVM Results(Cont)

Improving the Model by applying Data Normalization

SVM Results(cont):

- Improving the model by using 'C', 'gamma' parameter through by applying kernel = 'rbf'.
- param_grid = {'C':[0.1,1,10,100], 'gamma':[1,0.1,0.01,0.001], 'kernel':['rbf']}

KNN Results:

• By applying the cross validation score model

[0.894 0.88 0.917 0.906 0.913 0.908 0.91 0.915 0.92]

KNN Results:

- By applying misclassification error.
- Output: The optimal number of neighbors is 9

KNN Results:

By applying grid search of accuracy and recall.

```
# Tuning hyper-parameters for accuracy
{'n_neighbors': 11}
0.923
# Tuning hyper-parameters for recall
{'n_neighbors': 35}
0.97
```

Logistic Regression:

• By applying the default things we get

Logistic Regression:

• By applying the parameter grid for accuracy and recall we get

```
# Tuning hyper-parameters for accuracy
{'C': 1000}
0.958
# Tuning hyper-parameters for recall
{'C': 10}
0.974
```

Project Plan For Final:

- Showing the results by using:
 - Decision Tree Classifier & Random Forest Classifier.
- By tuning the parameters also.
- Lastly providing the comparative best one.

References:

- [1] Breast Cancer Detection with Reduced Feature Set. **AhmetMert,1 Niyazi KJIJç,2 Erdem Bilgili,1 and Aydin Akan2** *1Department of Electrical and Electronics, Piri Reis University, 34940 Istanbul, Turke2Department of Electrical and Electronics, Istanbul University, 34320 Istanbul, Turkey*(Hindawi Publishing Corporation Computational and Mathematical Methods in MedicineVolume 2015, Article ID 265138, 11 pages(http://dx.doi.org/10.1155/2015/265138)
- [2] Breast Cancer Classification Using Machine Learning. Meriem AMRANE1Saliha OUKID 2 Computer Science Department, LRDSI Laboratory, University of Blida 1, Blida, Algeria Ikram GAGAOUA3 Tolga ENSAR 4 Computer Engineering, Istanbul University, Istanbul, Turkey [78-1-5386-5135-3/18/\$31.00 © 2018 IEEE
- [3] Breast Cancer Classification of Image using Convolutional Neural Network.[978-1-5386-3039-6/18/\$31.00©2018 IEEE]
- [4] Breast Cancer Diagnosis by using k-Nearest Neighbor with Different Distances and Classification Rules[International Journal of Computer Applications (0975 8887)Volume 62 No. 1, January 2013]
- [5]Support vector machines combined with feature selection for breast cancer diagnosis. Mehmet Fatih Akay *Department of Electrical and Electronics Engineering, Cukurova University, Adana 01330, Turkey. [0957-4174/\$ see front matter 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.eswa.2008.01.009]
- [6] https://www.cancer.gov/about-cancer/diagnosis-staging/diagnosis
- [7] https://www.cancer.org/treatment/understanding-your-diagnosis/tests/testing-biopsy-and-cytology-specimens-for-cancer/how-is-cancer-diagnosed.html

