Note: In solving Problem #1 (and possibly other problems), you may use the formulas

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2} \quad \text{and} \quad \sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

Problem #1 [4 pts] Find the exact value of

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[\left(-2 + \frac{6i}{n} \right)^2 - 3 \left(-2 + \frac{6i}{n} \right) + 2 \right] \left(\frac{6}{n} \right). \tag{\bigstar}$$

First, expand the summand to get

$$\lim_{n \to \infty} \sum_{i=1}^{n} \left[4 - \frac{24i}{n} + \frac{36i^2}{n^2} + 6 - \frac{18i}{n} + 2 \right] \left(\frac{6}{n} \right)$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} \left[\frac{72}{n} - \frac{252i}{n^2} + \frac{216i^2}{n^3} \right].$$

Now break up the sum into pieces as

$$\lim_{n \to \infty} \left[\left(\sum_{i=1}^{n} \frac{72}{n} \right) - \left(\sum_{i=1}^{n} \frac{252i}{n^2} \right) + \left(\sum_{i=1}^{n} \frac{216i^2}{n^3} \right) \right]$$

$$= \lim_{n \to \infty} \left[\frac{72}{n} \left(\sum_{i=1}^{n} 1 \right) - \frac{252}{n^2} \left(\sum_{i=1}^{n} i \right) + \frac{216}{n^3} \left(\sum_{i=1}^{n} i^2 \right) \right].$$

Use the sum formulas shown in the boxes at the top of the page (and the easier fact that $\sum_{i=1}^{n} 1 = n$) to obtain

$$\lim_{n \to \infty} \left[72 - \frac{252}{n^2} \cdot \frac{n(n+1)}{2} + \frac{216}{n^3} \cdot \frac{n(n+1)(2n+1)}{6} \right]$$

$$= \lim_{n \to \infty} \left[72 - 126 \frac{n+1}{n} + 36 \frac{(n+1)(2n+1)}{n^2} \right].$$

By the rules for taking limits of rational functions, this equals $72 - 126 + 36 \cdot 2 = 18$. Alternatively, you can factor this last expression completely as

$$\lim_{n \to \infty} \frac{18(n^2 - n + 2)}{n^2},$$

then use L'Hôpital's rule twice to evaluate the limit; you'll still get 18.

Problem #2 [3 pts] Express the limit (★) as a definite integral.

The expression certainly looks like a Riemann sum. If the integral from which it came is

$$\int_a^b f(x) \ dx,$$

then apparently $\Delta x = 6/n = (b-a)/n$, so b-a=6. The right-hand sum for this integral would be $x_i^* = a + i\Delta x = -2 + 6i/n$, so a=-2, which means b=a+6=4. Finally, the function f would have to be $f(x) = x^2 - 3x + 2$. Putting it all together, the answer is

$$\int_{-2}^{4} (x^2 - 3x + 2) \ dx.$$

Alternatively, you can regard the Riemann sum as coming from the function $g(x) = (x-2)^2 - 3(x-2) + 2$. In this case the limits of integration would be 0 and 6, so the integral is

$$\int_0^6 ((x-2)^2 - 3(x-2) + 2) \ dx.$$

Problem #3 [3 pts] Use the Fundamental Theorem of Calculus to evaluate the integral you wrote down in Problem #2.

The integral in the box is

$$\frac{x^3}{3} - \frac{3x^2}{2} + 2x \bigg]_{-2}^6 = \left(\frac{216}{3} - \frac{108}{2} + 12\right) - \left(\frac{-8}{3} - \frac{12}{2} - 4\right) = \boxed{\frac{128}{3}}.$$

Problem #4. A particle moves along a straight line. Its velocity at time t is v(t) = 2t - 3.

#4a [5 pts] Find the displacement (i.e., change in distance) of the particle between t=0 and t=5. (You may use the Fundamental Theorem of Calculus.)

The displacement is

$$\int_0^5 v(t) dt = \int_0^5 (2t - 3) dt$$

$$= t^2 - 3t \Big]_0^5$$

$$= (25 - 15) - (0 - 0) = \boxed{10}.$$

#4b [5 pts] Find the total distance traveled between t = 0 and t = 5.

The total distance traveled is $\int_0^5 |v(t)| dt$. To evaluate this, we need to know where v(t) is positive and where it is negative—it's not too hard to see that $v(t) \leq 0$ when $t \leq \frac{3}{2}$ and $v(t) \geq 0$ when $t \geq \frac{3}{2}$. Accordingly,

$$\int_0^5 |v(t)| dt = \int_0^{\frac{3}{2}} (-2t+3) dt + \int_{\frac{3}{2}}^5 (2t-3) dt$$

$$= -t^2 + 3t \Big]_0^{\frac{3}{2}} + t^2 - 3t \Big]_{\frac{3}{2}}^5$$

$$= \left(-\frac{9}{4} + \frac{9}{2} \right) + \left((25 - 15) - \left(\frac{9}{4} - \frac{9}{2} \right) \right) = \boxed{\frac{29}{2}}.$$

Note that $|2t-3| \neq 2t+3$; absolute values don't work that way. (Try sketching the graphs of these two functions; you'll see that they are not the same.)

Bonus Problems [3 honors points each] Evaluate each of the following integrals, without using the Fundamental Theorem of Calculus. Your answer should be exact, not approximate.

(a)
$$\int_{2}^{4} xe^{\cos x} dx + \int_{4}^{-2} xe^{\cos x} dx$$

Using Rule #5 (p. 362), this equals

$$\int_{2}^{-2} x e^{\cos x} \, dx$$

and by the unnumbered rule in the middle of p. 361, this in turn becomes

$$\int_{-2}^{2} -xe^{\cos x} \, dx. \tag{4}$$

Let $f(x) = -xe^{\cos x}$. Then $f(-x) = xe^{\cos(-x)} = xe^{\cos x} = -f(x)$; that is, f(x) is an **odd** function. It follows that the integral (\clubsuit) is zero. (This fact is mentioned explicitly as equation (6) on p. 391, but it makes sense in terms of areas—we could break up the integral (\clubsuit) as

$$\int_{-2}^{0} f(x) \, dx + \int_{0}^{2} f(x) \, dx. \tag{\diamondsuit}$$

Because f(x) is odd, the region above the graph and below the x-axis between x = -2 and x = 0 is congruent—to the area below the graph and above the x-axis between x = 0 and x = 2. If the area of this region is A, then the integral (\diamondsuit) equals -A + A = 0.

(b)
$$\int_0^{\pi/3} (2-\sin^2 x) \ dx - \int_{-\pi}^{-2\pi/3} \cos^2 x \ dx$$

Here we first need to use the fact that $\cos x = -\cos(x + \pi)$ (this comes from the periodicity of the cosine function), so $\cos^2 x = \cos^2(x + \pi)$. SO we can change the limits on the second integral to 0 and $\pi/3$ (instead of $-\pi$ and $-2\pi/3$), then use the rules of §5.2 (pp. 361–363):

$$\int_0^{\pi/3} (2 - \sin^2 x) \, dx - \int_{-\pi}^{-2\pi/3} \cos^2 x \, dx = \int_0^{\pi/3} (2 - \sin^2 x) \, dx - \int_0^{\pi/3} \cos^2 x \, dx$$
$$= \int_0^{\pi/3} (2 - \sin^2 x - \cos^2 x) \, dx$$
$$= \int_0^{\pi/3} 1 \, dx$$
$$= [\pi/3.]$$