wrls • https://web.archive.org/web/20201001000309/https://arxiv.org/pdf/2007.11207v3.pdf id id-2075114719914309915 ib id-2075114719914309915 In this paper, we propose multi-scale deep neural networks (MscaleDNNs) using the idea of radial scaling in frequency domain and activation functions with compact support. The radial scaling converts the problem of approximation of high frequency contents of PDEs' solutions to a problem of learning about lower frequency functions, and the compact support activation functions facilitate the separation of frequency contents of the target function to be approximated by corresponding DNNs. As a result, the MscaleDNNs achieve fast uniform convergence over multiple scales. The proposed MscaleDNNs are shown to be superior to traditional fully connected DNNs and be an effective mesh-less numerical method for Poisson-Boltzmann equations with ample frequency contents over complex and singular domains.		doc_1			doc_2	
title Multi-scale Deep Neural Network (MscaleDNN) for Solving Poisson-Boltzmann Equation in Complex Domains volume			Wei Cai Zhi-Qin John Xu	authors	• Liu, Z.	
cases Militarian Equation in Complex Domains Boltzmann Equation in Complex Domains				title	(MscaleDNN) for Solving Poisson- Boltzmann Equation in Complex	
journal source SupportedSources.UNPAYWALL journal Communications in Computational Physics Volume Journal Source SupportedSources.UNPAYWALL journal Communications in Computational Physics Volume Journal Source SupportedSources.UNPAYWALL journal Communications in Computational Physics Volume Journal Source SupportedSources.UNPAYWALL journal Physics Volume Journal Source SupportedSources.UNPAYWALL journal Physics Volume Journal Physics Volume Journal Source SupportedSources.UNPAYWALL Journal Physics Volume Journal Physics Volume Journal Source SupportedSources.UNPAYWALL Journal Physics Volume Journal Physics Volume Journal Journal Physics Volume Journal Physics Volume Journal Physics Volume Journal Physics Volume Journal Physics Journal Physics Volume Journal Physics Journal Physics Volume Journal Physics Journal Phys						
volume doi urls • https://web.archive.org/web/20201001000309/https://arxiv.org/pdf/2007.11207v3.pdf id id-2075114719914309915 In this paper, we propose multi-scale deep neural networks (MscaleDNNs) using the idea of radial scaling in frequency domain and activation functions with compact support. The radial scaling converts the problem of approximation of high frequency contents of PDEs' solutions to a problem of learning about lower frequency functions, and the compact support activation functions facilitate the separation of frequency contents of the target function to be approximated by corresponding DNNs. As a result, the MscaleDNNs achieve fast uniform convergence over multiple scales. The proposed MscaleDNNs are shown to be superior to traditional fully connected DNNs and be an effective mesh-less numerical method for Poisson-Boltzmann equations with ample frequency contents over complex and singular domains.		source	SupportedSources.INTERNET_ARCHIVE	publication_date	None]
doi urls • https://web.archive.org/web/20201001000309/https://arxiv.org/pdf/2007.11207v3.pdf id id-2075114719914309915 In this paper, we propose multi-scale deep neural networks (MscaleDNNs) using the idea of radial scaling in frequency domain and activation functions with compact support. The radial scaling converts the problem of approximation of high frequency contents of PDEs' solutions to a problem of learning about lower frequency functions, and the compact support activation functions frequency contents of PDEs' solutions to a problem of learning about lower frequency functions, and the compact support activation functions frequency contents of the target function to be approximated by corresponding DNNs. As a result, the MscaleDNNs achieve fast uniform convergence over multiple scales. The proposed MscaleDNNs are shown to be superior to traditional fully connected DNNs and be an effective mesh-less numerical method for Poisson-Boltzmann equations with ample frequency contents over complex and singular domains. Journal Physics		journal		source	SupportedSources.UNPAYWALL	
urls • https://web.archive.org/web/20201001000309/https://arxiv.org/pdf/2007.11207v3.pdf id id-2075114719914309915 id id-2075114719914309915 In this paper, we propose multi-scale deep neural networks (MscaleDNNs) using the idea of radial scaling in frequency domain and activation functions with compact support. The radial scaling converts the problem of approximation of high frequency contents of PDEs' solutions to a problem of learning about lower frequency functions, and the compact support activation functions facilitate the separation of frequency contents of the target function to be approximated by corresponding DNNs. As a result, the MscaleDNNs archieve fast uniform convergence over multiple scales. The proposed MscaleDNNs are shown to be superior to traditional fully connected DNNs and be an effective mesh-less numerical method for Poisson-Boltzmann equations with ample frequency contents over complex and singular domains.	cases			journal		DUPLICATES 2
id id-2075114719914309915 In this paper, we propose multi-scale deep neural networks (MscaleDNNs) using the idea of radial scaling in frequency domain and activation functions with compact support. The radial scaling converts the problem of approximation of high frequency contents of PDEs' solutions to a problem of learning about lower frequency functions, and the compact support activation functions facilitate the separation of frequency contents of the target function to be approximated by corresponding DNNs. As a result, the MscaleDNNs achieve fast uniform convergence over multiple scales. The proposed MscaleDNNs are shown to be superior to traditional fully connected DNNs and be an effective mesh-less numerical method for Poisson-Boltzmann equations with ample frequency contents over complex and singular domains. doi 10.4208/cicp.oa-2020-0179		dol	1,, // 1 1, 1, 200010010000001,, // 1, 2000711007.0 10	volume		
abstract In this paper, we propose multi-scale deep neural networks (MscaleDNNs) using the idea of radial scaling in frequency domain and activation functions with compact support. The radial scaling converts the problem of approximation of high frequency contents of PDEs' solutions to a problem of learning about lower frequency functions, and the compact support activation functions facilitate the separation of frequency contents of the target function to be approximated by corresponding DNNs. As a result, the MscaleDNNs achieve fast uniform convergence over multiple scales. The proposed MscaleDNNs are shown to be superior to traditional fully connected DNNs and be an effective mesh-less numerical method for Poisson-Boltzmann equations with ample frequency contents over complex and singular domains.		urls	• https://web.archive.org/web/20201001000309/https://arxiv.org/pdf/2007.1120/v3.pdf	doi	10.4208/cicp.oa-2020-0179	3-
abstract The radial scaling converts the problem of approximation of high frequency contents of PDEs' solutions to a problem of learning about lower frequency functions, and the compact support activation functions facilitate the separation of frequency contents of the target function to be approximated by corresponding DNNs. As a result, the MscaleDNNs achieve fast uniform convergence over multiple scales. The proposed MscaleDNNs are shown to be superior to traditional fully connected DNNs and be an effective mesh-less numerical method for Poisson-Boltzmann equations with ample frequency contents over complex and singular domains.		id	id-2075114719914309915	urls		
abstract compact support activation functions facilitate the separation of frequency contents of the target function to be approximated by corresponding DNNs. As a result, the MscaleDNNs achieve fast uniform convergence over multiple scales. The proposed MscaleDNNs are shown to be superior to traditional fully connected DNNs and be an effective mesh-less numerical method for Poisson-Boltzmann equations with ample frequency contents over complex and singular domains.		abstract				
effective mesh-less numerical method for Poisson-Boltzmann equations with ample frequency contents over complex and singular domains.				id	id1354561614017669330	
				abstract		
versions		versions	checure mesh-less numerical method for roisson-boilemann equations with ample frequency contents over complex and singular dollians.	versions]