Examenul de bacalaureat national 2020 Proba E. c)

Matematică M_tehnologic BAREM DE EVALUARE ȘI DE NOTARE

Test 14

Filiera tehnologică: profilul servicii, toate calificările profesionale; profilul resurse, toate calificările profesionale; profilul tehnic, toate calificările profesionale

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total acordat pentru lucrare.

(30 de puncte) **SUBIECTUL I**

1.	$\left(2 + \frac{1}{3} - \frac{1}{5}\right) \cdot \frac{15}{16} + \sqrt[3]{-8} = \frac{30 + 5 - 3}{15} \cdot \frac{15}{16} + \left(-2\right) =$	3 p
	$= \frac{32}{15} \cdot \frac{15}{16} - 2 = 2 - 2 = 0$	2p
2.	$f(4) = 0 \Rightarrow -4 + a = 0$	3 p
	a = 4	2p
3.	$2x + 1 = 25 \Rightarrow 2x = 24$	3p
	x = 12, care convine	2p
4.	Mulțimea A are 9 elemente, deci sunt 9 cazuri posibile	2p
	Numerele din mulțimea A care sunt multipli de 6 sunt 30, 60 și 90, deci sunt 3 cazuri favorabile	2p
	$p = \frac{\text{nr. cazuri favorabile}}{\text{nr. cazuri posibile}} = \frac{3}{9} = \frac{1}{3}$	1p
5.	M(5,5)	3 p
	$OM = \sqrt{5^2 + 5^2} = 5\sqrt{2}$	2 p
6.	$\sin^2 x = 1 - \cos^2 x = 1 - \left(\frac{5}{13}\right)^2 = \frac{144}{169} \text{ si, cum } x \in \left(0, \frac{\pi}{2}\right), \text{ obținem } \sin x = \frac{12}{13}$	3 p
	$tg x = \frac{\sin x}{\cos x} = \frac{12}{13} \cdot \frac{13}{5} = \frac{12}{5}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.a)	$\det A = \begin{vmatrix} 1 & 1 \\ -1 & 0 \end{vmatrix} = 1 \cdot 0 - 1 \cdot (-1) =$	3p
	= 0 + 1 = 1	2p
b)	$B \cdot B = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix}$	3p
	$B \cdot B + A = \begin{pmatrix} -1 & -1 \\ 1 & 0 \end{pmatrix} + \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = O_2$	2p
c)	$A \cdot B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, B \cdot A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, A + B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \Rightarrow A \cdot B + B \cdot A - (A + B) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$	2p
	$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} \log_2 x & 0 \\ 0 & \log_3 y \end{pmatrix} \Leftrightarrow \begin{cases} \log_2 x = 1 \\ \log_3 y = 1 \end{cases}, \text{ de unde obținem } x = 2 \text{ şi } y = 3 \text{, care convin}$	3p
2.a)	$2020*5 = 2020 + \frac{5}{5} + 1 =$	3 p

Probă scrisă la matematică *M_tehnologic*

Barem de evaluare și de notare

Ministerul Educației și Cercetării Centrul Național de Politici și Evaluare în Educație

	=2020+1+1=2022	2 p
b)	$x * x = x + \frac{x}{5} + 1 = \frac{6x}{5} + 1$, $(x * x) * x = \left(\frac{6x}{5} + 1\right) * x = \frac{6x}{5} + 1 + \frac{x}{5} + 1 = \frac{7x}{5} + 2$	2p
	$\frac{7x}{5} + 2 = \frac{24}{5} \Leftrightarrow 7x + 10 = 24$, de unde obţinem $x = 2$	3р
c)	$5^{x} + \frac{5^{x+1}}{5} + 1 = 11 \Leftrightarrow 5^{x} + 5^{x} = 10 \Leftrightarrow 2 \cdot 5^{x} = 10$	3p
	$5^x = 5$, de unde obținem $x = 1$	2p

SUBIECTUL al III-lea

(30 de puncte)

1.a)	$f'(x) = -3x^2 + 3 =$	3 p
	$=3(1-x^2)=3(1-x)(1+x), x \in \mathbb{R}$	2p
b)	$\lim_{x \to 2} \frac{f(x) - 7}{x - 2} = \lim_{x \to 2} \frac{f(x) - f(2)}{x - 2} =$	3p
	= f'(2) = -9	2p
c)	$f'(x) = 0 \Leftrightarrow x = -1 \text{ sau } x = 1$	2p
	$x \in [-1,1] \Rightarrow f'(x) \ge 0$, deci f este crescătoare pe $[-1,1]$, $x \in [1,+\infty) \Rightarrow f'(x) \le 0$, deci f	
	este descrescătoare pe $[1,+\infty)$ și, cum $f(1)=11$, obținem $f(x) \le 11$, pentru orice	3p
	$x \in [-1, +\infty)$	
2.a)	$\int_{-1}^{1} f(x) \cdot (x^2 + 1) dx = \int_{-1}^{1} \frac{x}{x^2 + 1} \cdot (x^2 + 1) dx = \int_{-1}^{1} x dx = \frac{x^2}{2} \begin{vmatrix} 1 \\ -1 \end{vmatrix}$	3p
	$= \frac{1}{2} - \frac{1}{2} = 0$	2p
b)	$\int_{0}^{1} (x^{2} + 1)e^{x} f(x) dx = \int_{0}^{1} (x^{2} + 1)e^{x} \cdot \frac{x}{x^{2} + 1} dx = \int_{0}^{1} xe^{x} dx = (x - 1)e^{x} \Big _{0}^{1} =$	3 p
	$=0-(-1)e^0=1$	2p
c)	$\int_{0}^{a} (f(x) - f(-x)) dx = \int_{0}^{a} \left(\frac{x}{x^{2} + 1} - \frac{-x}{x^{2} + 1} \right) dx = \int_{0}^{a} \frac{2x}{x^{2} + 1} dx = \ln(x^{2} + 1) \Big _{0}^{a} = \ln(a^{2} + 1)$	2p
	$\ln(a^2+1) = \ln(2a) \Rightarrow a^2+1=2a$, de unde obținem $a^2-2a+1=0$, deci $a=1$, care convine	3 p