MA311 - Cálculo III

Resumo Teórico

19 de agosto de 2021

Conteúdo

1	Introdução	2
2	Equações Diferenciais Ordinais, E.D.O. 2.1 E.D.O.'s Lineares de 1º Ordem	3 4 4 4 5 5
3	Sequências Infinitas	6
	3.1 Convergência	6
	3.2 Divergência	
	3.3 Ordem de Crescimento	
	3.4 Sequências Monótonas	6
	3.5 Formas Indeterminadas	7
	3.6 Séries Numéricas	7
	3.7 Séries Geométricas	7
4	Testes de Série	9
	4.1 Teste de Divergência	9
	4.2 Teste da Comparação	
	4.3 Teste da Comparação do Limite	
	4.4 Teste da Integral	
	4.5 Teste da Razão	10
	4.6 Teste da Raiz	
	4.7 Convergência Absoluta	11
	4.8 Séries Alternadas	11
	4.9 Teste das Séries Alternadas	11
5	Séries de Potência	12
	5.1 Funções Analíticas	12
	5.2 Método de Séries de Potência	

1. Introdução

Apresentação Neste documento será descrito as informações necessárias para compreensão e solução de exercícios relacionados a disciplina 1.0.0.0. Note que este documento são notas realizadas por Guilherme Nunes Trofino, em 19 de agosto de 2021.

2. Equações Diferenciais Ordinais, E.D.O.

Definição Família de equações construídas a partir de uma função f(t) qualquer e suas derivadas como representada na seguinte equação:

$$f(t) = b_n(t) \cdot y^n(t) + b_{n-1}(t) \cdot y^{n-1}(t) + \dots + b_1(t) \cdot y'(t) + b_0(t) \cdot y(t)$$
(2.0.1)

Onde:

- 1. $b_n(t)$: Representa uma função na variável t;
- 2. $y^n(t)$: Representa a ésima derivada da função y(t);

Tais equações ocorrem com frequência durante a análise e descrita de problemas físicos, visto que várias variáveis são denotadas através da derivação ou integração de uma propriedade. Desta forma, podem-se classificá-las como descrito a seguir:

1. **E.D.O. não Linear não Homogênea de Ordem N:** Quando a função possui $b_n(t) \neq 1$ e $f(t) \neq 0$ como representado pela seguinte equação:

$$f(t) = b_n(t) \cdot y^n(t) + b_{n-1}(t) \cdot y^{n-1}(t) + \dots + b_1(t) \cdot y'(t) + b_0(t) \cdot y(t)$$

2. **E.D.O. não Linear Homogênea de Ordem N:** Quando a função possui $b_n(t) \neq 1$ e f(t) = 0 como representado pela seguinte equação:

$$0 = b_n(t) \cdot y^n(t) + b_{n-1}(t) \cdot y^{n-1}(t) + \dots + b_1(t) \cdot y'(t) + b_0(t) \cdot y(t)$$

3. **E.D.O. Linear não Homogênea de Ordem N:** Quando a função possui $b_n(t) = 1$ e $f(t) \neq 0$ como representado pela seguinte equação:

$$f(t) = 1 \cdot y^{n}(t) + b_{n-1}(t) \cdot y^{n-1}(t) + \dots + b_{1}(t) \cdot y'(t) + b_{0}(t) \cdot y(t)$$

4. **E.D.O. Linear Homogênea de Ordem N:** Quando a função possui $b_n(t) = 1$ e f(t) = 0 como representado pela seguinte equação:

$$0 = 1 \cdot y^{n}(t) + b_{n-1}(t) \cdot y^{n-1}(t) + \dots + b_{1}(t) \cdot y'(t) + b_{0}(t) \cdot y(t)$$

2.1. E.D.O.'s Lineares de 1º Ordem

Definição E.D.O.'s Lineares de 1° Ordem serão equações construídas a partir de uma função f(t) qualquer e sua derivada de 1° Ordem como representada na seguinte equação:

$$f(t) = q(t) \cdot y'(t) + p(t) \cdot y(t)$$
 (2.1.1)

2.1.1. Teorema da Existência e da Unicidade

Definição E.D.O.'s Lineares de 1° Ordem existirão se, e somente se, atendem as condições enunciadas a seguir. Primeiramente, considera-se as seguintes equações:

$$f(t) = \begin{cases} f(x, y(x)) = y', & \text{Equação Geral} \\ y(a) = b, & \text{Condição Inicial} \end{cases}$$
 (2.1.2)

Onde:

- Se f(x, y(x)) é contínua em uma região R qualquer contida em R^2 então existe solução em R;
- Se $f_y(x,y(x))$ é contínua em uma região R qualquer contida em R^2 então a solução em R é única;

Caso a equação atenda a estes requisitos, então as seguintes classificações serão válidas:

2.1.2. E.D.O. Linear não Homogênea

Definição Função possui $q_n(t) = 1$ e $f(t) \neq 0$ como representado pela seguinte equação:

$$f(t) = 1 \cdot y'(t) + p(t) \cdot y(t) \tag{2.1.3}$$

Resolução E.D.O.'s Lineares e Homogêneas de 1º Ordem são solucionadas através da aplicação do Fator Integrante apresentado na seguinte equação:

$$u(t) = e^{\int p(t) \, \mathrm{d}t}$$

Quando este termo é apicado a equação a mesma pode ser simplificada através da derivada do produto como demonstrado a seguir:

$$\frac{\mathrm{d}[u(t) \cdot y(t)]}{\mathrm{d}t} = u(t) \cdot f(t)$$

Quando o problema valores iniciais será necessário realizar substituições para obter a constante correspondente. Consequentemente a solução de tal E.D.O. será:

$$y(t) = \frac{\int f(t) \cdot u(t) \, dt + C}{u(t)}$$
(2.1.4)

2.1.3. E.D.O. Separável

Definição Função possui $y'(x) = f(x) \cdot g(y)$, isto é, quando x e y são variáveis separáveis em funções independentes como mostrado pela seguinte equação:

$$y'(x) = f(x) \cdot g(y) \tag{2.1.5}$$

Resolução E.D.O.'s Separáveis são diretas e consequentemente a solução será:

$$\left| \int \frac{1}{g(y)} dy = \int f(x) dx \right| \tag{2.1.6}$$

2.1.4. E.D.O. Exata

Definição Função F(x,y) será exata quando puder ser rescrita como combinação linear de funções obtidas a partir das derivadas da função F(x,y) como monstrado pela seguinte equação:

$$M(x,y) dx + N(x,y) dy = 0$$
 (2.1.7)

Onde:

- 1. $F_x(x,y) = M(x,y)$
- 2. $F_{y}(x,y) = N(x,y)$

Resolução Caso $M_y \neq N_x$ a equação não seria exata, sendo necessário aplicar um Fator Integrante para torná-la exata. Há dois casos possíveis para tal fator, sendo eles:

$$u(x) \text{ ou } u(y) = \begin{cases} e^{\int \frac{M_y - N_x}{N} \, \mathrm{d}x} & \text{se depende de x;} \\ e^{\int \frac{N_x - M_y}{M} \, \mathrm{d}y} & \text{se depende de y;} \end{cases}$$

Caso $M_y(x,y) = N_x(x,y)$, então a equação F(x,y) será exata e sua solução poderá ser encontrada pela aplicação do Fator Integrante método que segue:

$$F(x,y) = \begin{cases} \int M(x,y) \, \mathrm{d}x = F_0(x,y) + g(y) & N(x,y) = F_{0y}(x,y) + g'(y) \\ \int N(x,y) \, \mathrm{d}y = F_0(x,y) + g(x) & M(x,y) = F_{0x}(x,y) + g'(x) \end{cases}$$
(2.1.8)

2.1.5. Substituição Linear

Definição Quando a função possui todos os termos, exceto y'(x), em uma função separável como mostrado na seguinte equação:

$$y'(x) = F(ax + by(x) + c)$$

Substituição Caso seja separável a seguinte substituição deve ser aplicada:

$$V(x) = ax + by(x) + c$$

Como consequência de qualquer substituição será necessário derivá-la para encontrar y'(x) em função da substituição aplicada como mostrado na equação abaixo:

$$y'(x) = \frac{V'(x) - a}{b}$$

Resolução Na sequência será necessário aplicar os resultados obtidos na equação original e resolve-la como mostrado na equação abaixo:

$$V'(x) = bF(V(x)) + a$$
(2.1.9)

2.1.6. Substituição Homogênea

Definição Quando a função possui os termos x e y descritos por quocientes como mostrado na seguinte equação:

$$y'(x) = f(\frac{y}{x})$$

Substituição Caso seja homogênea a seguinte substituição deve ser aplicada:

$$V(x) = \frac{y}{x} \tag{2.1.10}$$

Como consequência de qualquer substituição será necessário derivá-la para encontrar y'(x) em função da substituição aplicada como mostrado na equação abaixo:

$$y'(x) = V(x) + V'(x) \cdot x$$

Resolução Na sequência será necessário aplicar os resultados obtidos na equação original e resolve-la como mostrado na equação abaixo:

$$V(x) + V'(x)x = f(V(x))$$
 (2.1.11)

2.1.7. Substituição de Bernoulli

Definição Quando a função possui um termo $y^n(x)$, com $n \neq 0, 1$, multiplicando f(x) como mostrado na seguinte equação:

$$y'(x) + p(x) \cdot y(x) = f(x) \cdot y^{n}(x)$$

Substituição Caso seja homogênea a seguinte substituição deve ser aplicada:

$$V(x) = y^{n-1}(x)$$

Como consequência de qualquer substituição será necessário derivá-la para encontrar y'(x) em função da substituição aplicada como mostrado na equação abaixo:

$$V'(x) = y'y^n$$

Resolução Na sequência será necessário aplicar os resultados obtidos na equação original e resolve-la como mostrado na equação abaixo:

3. Sequências Infinitas

Definição Funções definidas em $f: Z \to R$ onde $f(n) = a_n$, n é o índice da sequência e a_n é o n-ésimo termo da sequência. Todas as propriedades demonstradas e aprendidas em Cálculo I para Limites podem ser aplicadas no estudo de sequências.

3.1. Convergência

Definição Uma sequência, a_n , converge para L se dado qualquer $\epsilon > 0$ existe $N \ge 0$ tal que $|a_n - L| < \epsilon$ para todo $n \ge N$.

Exemplo:

$$\lim_{n \to \infty} \frac{n-1}{n} \to 1 \tag{3.1.1}$$

Dado $\epsilon>0$ existe Ntal que $|\frac{n-1}{n}-1|<\epsilon$ então $\epsilon>\frac{1}{n}$ logo $N>\frac{1}{\epsilon}.$

Toda sequência convergente é limitada, ou seja, existe K tal que $|a_n| \leq K$. Todavia uma sequência limitada não implica em convergência.

3.2. Divergência

Definição Uma sequência, a_n , diverge se dado qualquer K > 0 existe N tal que $a_n \ge K$ para todo $n \ge N$.

Exemplo:

$$\lim_{n \to \infty} n^2 \to \infty \tag{3.2.1}$$

3.3. Ordem de Crescimento

Definição Considerando duas funções quaisquer f(n) e g(n) pode-se analisar a rapidez de crescimento para inferir o resultado. Tomando o seguinte quociente apenas como suposição:

$$\lim_{n \to \infty} \frac{f(n)}{g(n)} \begin{cases} 0 \\ K \neq 0 \\ \infty \end{cases}$$
 (3.3.1)

Se $\lim_{n\to\infty}\frac{f(n)}{g(n)}=0$ implica que g(n) tende ao infinito mais rapidamente do que f(n).

Se $\lim_{n\to\infty}\frac{f(n)}{g(n)}=K$ implica que f(n) e g(n) possuem a mesma ordem de crescimento.

Se $\lim_{n\to\infty}\frac{f(n)}{g(n)}=\infty$ implica que f(n) tende ao infinito mais rapidamente do que g(n).

Assim sendo pode-se ordenar em ordem crescente de crescimento da principais funções, considerando a > 1:

$$\log_a n < n^k < a^n < n! < n^n (3.3.2)$$

3.4. Sequências Monótonas

Definição Sequências cujos termos podem ser comparados com apenas um símbolo serão sequências monótonas. Há subclassificações em função dos diferentes símbolos possíveis, sendo elas:

Sequências Crescentes: Sequências cujos termos podem ser comparados apenas com <.

$$a_1 < a_2 < \dots < a_{n-1} < a_n \tag{3.4.1}$$

Sequências não Decrescentes: Sequências cujos termos podem ser comparados apenas com \leq .

$$a_1 \le a_2 \le \dots \le a_{n-1} \le a_n \tag{3.4.2}$$

Sequências Decrescentes: Sequências cujos termos podem ser comparados apenas com >.

$$a_1 > a_2 > \dots > a_{n-1} > a_n$$
 (3.4.3)

Sequências não Decrescentes: Sequências cujos termos podem ser comparados apenas com \geq .

$$a_1 \ge a_2 \ge \dots \ge a_{n-1} \ge a_n \tag{3.4.4}$$

3.5. Formas Indeterminadas

Definição Há expressões que não são resultados válidos, demandando manipulação. Entre as principais estão $\infty \cdot 0 = \frac{\infty}{\infty}$ e $\frac{0}{0}$ às quais aplica-se L'Hospital. Há também $\infty - \infty$, ∞^0 e 0^{∞} os quais demandam modificação da expressão. Outra forma incomum é 1^{∞} o qual aplica-se e^{ln}

3.6. Séries Numéricas

Definição São consideradas séries numéricas as sequências que envolvem o somatório de uma expressão no infinito.

$$\sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots {3.6.1}$$

Assim como na integração imprópria o infinito é uma impossibilidade, demandando a aplicação de limite tornando-a finita. Durante este processo considera-se a soma parcial, ou seja, até um número qualquer N finito.

$$\sum_{n=1}^{N} a_n = a_1 + a_2 + \dots + a_{N-1} + a_N \tag{3.6.2}$$

Em seguida toma-se o limite de N tendendo ao infinito.

$$\sum_{n=1}^{\infty} a_n = \lim_{N \to \infty} \sum_{n=1}^{N} a_n$$
 (3.6.3)

O limite só poderá ser calculado se a série for estritamente definida, isto é, todos os termos estejam descritos na expressão. Sendo assim, serão necessárias modificações nas exxpressões para que as mesmas estejam propriamente definidas e possam assim ser calculadas.

3.7. Séries Geométricas

Definição Serão séries geométricas aquelas em que a expressão somada é da forma x^n onde n serão os números do domínio e x será uma constante.

$$\sum_{n=1}^{\infty} x^n \tag{3.7.1}$$

Há sequências, em sua maioria, em que a simples atribuição de limite não será suficiente para que a mesma possa ser solucionada. Para torná-la estritamente definida será necessário manipular a expressão da seguinte forma:

$$S_n = x + x^2 + \dots + x^n \tag{3.7.2}$$

$$xS_n = x^2 + x^3 + \dots + x^{n+1} \tag{3.7.3}$$

Note que todos os termos serão comuns a ambas somas parciais com exceção do primeiro e do último, sendo assim a subtração entre tais somas eliminará todos os termos desconhecidos do somatório.

$$S_n - xS_n = x - x^{n+1} (3.7.4)$$

$$S_n = \frac{x - x^{n+1}}{1 - x} \tag{3.7.5}$$

Com essa manipulação será possível isolar a soma parcial, obtendo uma série estritamente definida. Isso possibilita a aplicação do limite e consequente solução do somatório inicial.

$$\sum_{n=1}^{\infty} x^n = \lim_{n \to \infty} \frac{x - x^{n+1}}{1 - x}$$
 (3.7.6)

Consequentemente haverão quatro possibilidades a serem analisadas quanto ao valor de x que influenciarão o resultado final do somatório.

$$\lim_{n \to \infty} \frac{x - x^{n+1}}{1 - x} \begin{cases} \frac{\frac{x}{1 - x}; |x| < 1}{-\infty; |x| > 1} \\ \infty; x = 1 \\ Diverge; x = -1 \end{cases}$$
 (3.7.7)

4. Testes de Série

Como as séries possuem a noção de divergência e convergência, explicadas anteriormente, se faz necessário descobrir como se enquadra cada sequência. Para tal existem diversos testes que avaliam, sobre condições especificas, o comportamento da equação trabalhada.

4.1. Teste de Divergência

Teorema: Se a série converge então $\lim_{n\to\infty}a_n=0$, cuja demonstração segue:

$$S_{n-1} = a_1 + a_2 + \dots + a_{n-2} + a_{n-1}, \lim_{n \to \infty} S_{n-1} = S$$
 (4.1.1)

$$S_n = a_1 + a_2 + \dots + a_{n-1} + a_n, \lim_{n \to \infty} S_n = S$$
 (4.1.2)

Note que assumindo que a série seja convergente não deve importar o fim do limite, pois calcular soma no infinito deve tender para o valor da série. Assim pode-se dizer que:

$$\lim_{n \to \infty} (S_n - S_{n-1}) = S - S = 0 \tag{4.1.3}$$

Note que o resultado da subtração será a_n visto que os demais termos são eliminados com a subtração. Assim obtém-se o resultado:

$$\lim_{n \to \infty} a_n = 0, Converge \tag{4.1.4}$$

$$\lim_{n \to \infty} a_n \neq 0, Diverge \tag{4.1.5}$$

4.2. Teste da Comparação

Este testes vem como consequência da comparação de limites do Cálculo I, como sequências nada mais são do que somas de finitas avaliadas no infinito o resultado pode ser estendido para o Cálculo III com os devidos ajustes.

Teorema: Sejam a_n e b_n os termos gerais de duas séries distintas tais que $0 \le a_n \le b_n$ temos que:

Se $\sum b_n$ converge então $\sum a_n$ converge. Claramente se uma série com termo geral com crescimento mais acelerado converge outra série com crescimento semelhante ou inferior deve convergir.

Se $\sum a_n$ diverge então $\sum b_n$ diverge. Claramente se uma série com termo geral com crescimento menos acelerado diverge outra série com crescimento semelhante ou superior deve divergir.

4.3. Teste da Comparação do Limite

Assim como o Teste da Comparação este teste vem como consequência da comparação de limites do Cálculo I, porém este expende o resultado.

Teorema: Sejam $a_n > 0$ e $b_n > 0$ os termos gerais de duas séries distintas tais que:

$$\lim_{n \to \infty} \frac{a_n}{b_n} = p \tag{4.3.1}$$

$$0$$

Em outras palavras, as séries $\sum a_n$ e $\sum a_n$ possuem a mesma ordem de crescimento. Logo existem r e R tais que r implicando em:

$$r < \frac{a_n}{b_n} < R \tag{4.3.3}$$

$$rb_n < a_n < Rb_n \tag{4.3.4}$$

Conclui-se, por meio da comparação, que:

Se $\sum Rb_n$ converge então $\sum a_n$ converge. Claramente se uma série com termo geral com crescimento mais acelerado converge outra série com crescimento semelhante ou inferior deve convergir.

Se $\sum rb_n$ diverge então $\sum a_n$ diverge. Claramente se uma série com termo geral com crescimento menos acelerado diverge outra série com crescimento semelhante ou superior deve divergir.

4.4. Teste da Integral

Teorema: Considere uma função f(x) decrescente e positiva, isto é $f(x) \ge 0$, com $\lim_{x\to\infty} f(x) = 0$, então temos:

 $\sum_{n=1}^{\infty} a_n \text{ converge se e somente se } \int_1^{\infty} f(x) dx \text{ convergir.}$

 $\sum_{n=1}^{\infty} a_n$ diverge se e somente se $\int_1^{\infty} f(x) dx$ divergir.

4.5. Teste da Razão

Teorema: Sejam $\sum_{n=1}^{\infty} a_n$ e $a_n > 0$ define-se L como:

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = L \tag{4.5.1}$$

Se L < 1 então $\sum a_n$ converge.

Se L > 1 então $\sum a_n$ diverge.

Note que o teorema não estabelece nenhuma conclusão para L=1, assim não é possível inferir nada sobre a sequência.

4.6. Teste da Raiz

Teorema: Sejam $\sum_{n=1}^{\infty} a_n$ e $a_n > 0$ define-se L como:

$$\lim_{n \to \infty} \left(a_n \right)^{\frac{1}{n}} = L \tag{4.6.1}$$

Se L < 1 então $\sum a_n$ converge.

Se L > 1 então $\sum a_n$ diverge.

Este teste é normalmente aplicado quando todos os termos da sequência estão elevados a n, possibilitando simplificar drasticamente a equação.

4.7. Convergência Absoluta

Definição Uma série $\sum a_n$ converge absolutamente se sua série absoluta equivalente, $\sum |a_n|$, converge.

Teorema:

4.8. Séries Alternadas

Definição Uma será alternada se seus termos possuírem sinais alternados ao longo de toda a sequência, formalmente descrito como:

$$\sum_{n=1}^{\infty} (-1)^n a_n \tag{4.8.1}$$

$$\sum_{n=1}^{\infty} (-1)^{n+1} a_n \tag{4.8.2}$$

4.9. Teste das Séries Alternadas

Teorema: Considerando uma série alternada da forma $\sum (-1)^n a_n$ será convergente se a_n for decrescente e:

$$\lim_{n \to \infty} a_n = 0 \tag{4.9.1}$$

5. Séries de Potência

Definição Será uma série de potência aquela que puder ser representada como:

$$\sum_{n=1}^{\infty} c_n (x - x_0)^n = c_0 + c_1 (x - x_0) + \dots + c_n (x - x_0)^n$$
(5.0.1)

Analisando o somatório nota-se como a constante é atribuída:

$$f(x) = \sum_{n=1}^{\infty} c_n (x - x_0)^n = \sum_{n=1}^{\infty} \frac{f^n(x_0)}{n!} x^n$$
 (5.0.2)

Geralmente considera-se no caso geral a translação de x em x_0 , entretanto pode-se, por conveniência, analisar séries dessa forma em $x_0 = 0$. Nota-se que estas funções podem ser infinitamente diferenciáveis.

$$\sum_{n=1}^{\infty} c_n x^n \tag{5.0.3}$$

5.1. Funções Analíticas

Definição Uma função f(x) é analítica em $x \in J$, onde J é um intervalo simétrico aberto qualquer, se sua Série de Taylor converge em J.

O intervalo de convergência pode ser obtido pelo teste da razão:

$$\lim_{n \to \infty} \frac{c_{n+1}|x|^{n+1}}{c_n|x|^n} \tag{5.1.1}$$

$$|x| = \lim_{n \to \infty} \frac{c_{n+1}}{c_n} \tag{5.1.2}$$

$$\underbrace{\lim_{n \to \infty} \frac{c_{n+1}}{c_n}}_{I} \tag{5.1.3}$$

Segundo o teste da razão sabe-se que para $|x| \neq 0$ deve-se analisar I.

5.2. Método de Séries de Potência