AMENDMENT

In the Claims:

Please replace the presently pending claims with the following claims:

- 1. (Twice amended) A method for enhancing acoustic reflectivity of a target for ultrasound imaging, the method comprising raising the temperature of liquid nanoparticles bound to said target to produce a measurable enhancement in acoustic reflectivity of the target, wherein said nanoparticles comprise at least one fluorocarbon, said nanoparticles having been administered to said target in a non-gaseous emulsion.
 - 3. The method according to claim 1 wherein the fluorocarbon is perfluoroctane.
- 7. (Twice amended) The method according to claim 1 wherein the nanoparticles comprise at least one liquid fluorocarbon encapsulated with at least one lipid surfactant which comprises at least one ligand that binds to said target.
- 8. The method according to claim 1 wherein the emulsion further comprises a biologically active agent.
- 13. (Twice amended) The method according to claim 1 wherein raising the temperature comprises providing the target with ultrasound or electromagnetic energy or a combination thereof, sufficient to raise the temperature of said nanoparticles, so as to enhance acoustic reflectivity.

Please cancel claims 14-16.

- 17. (Twice amended) The method according to claim 1 wherein changing the temperature comprises changing the temperature of the bound nanoparticles by at least 5°C.
- 18. (Thrice amended) A method for obtaining an image resulting from enhanced acoustic reflectivity of a target for ultrasound imaging, the method comprising changing the

•	temperature of the liquid nanoparticles bound to said target to produce a measurable
c 5	enhancement of acoustic reflectivity of the target, and obtaining an ultrasound image of said
	target, bound to said liquid nanoparticles, wherein said nanoparticles comprise at least one
con.	fluorocarbon, said nanoparticles having been administered to said target in a non-gaseous
	emulsion.
	19. (Twice amended) The method of claim 1 which further comprises (a) measuring
- 1	reflectivity prior to raising the temperature of the bound nanoparticles; (b) measuring reflectivity
Ce	after raising the temperature of the bound nanoparticles; and (c) determining the change in
	reflectivity after raising the temperature of the bound nanoparticles compared to reflectivity prior
	to raising the temperature of the bound nanoparticles.
	The method according to claim 18 wherein the fluorocarbon is perfluoroctane.
_	25. (Twice amended) The method according to claim 18 wherein the nanoparticles
(7	comprise at least one perfluorocarbon encapsulated with at least one lipid surfactant which
	comprises at least one ligand that binds to said target.
	26. The method according to claim 18 wherein the emulsion further comprises a
	biologically active agent.
	31. (Twice amended) The method according to claim 18 wherein changing the
. 0	temperature comprises providing the target with ultrasound or electromagnetic energy or a
CA	combination thereof, sufficient to raise the temperature of said nanoparticles, so as to enhance
	acoustic reflectivity.
	,
	Please cancel claims 32-34.
_	35. (Twice amended) The method according to claim 18 wherein raising the
<u>C9</u>	temperature comprises raising the temperature of the bound nanoparticles by at least 5°C.

68. The method according to claim 7 wherein the ligand is a polypeptide, a peptidomimetic, a polysaccharide, a lipid, or a nucleic acid.

010

- 69. (Amended) The method according to claim 68 wherein the polypeptide is at least a portion of an antibody.
- 70. The method according to claim 25 wherein the ligand is a polypeptide, a peptidomimetic, a polysaccharide, a lipid, or a nucleic acid.

CIL

71. (Amended) The method according to claim 70 wherein the polypeptide is at least a portion of an antibody.

Please add the following new claims:

- 72. (New) The method of claim 1 wherein the target resides in a mammalian subject.
- (12
- 73. (New) The method of claim 72 wherein said subject is human.
- 74. (New) The method of claim 18 wherein the target resides in a mammalian subject.
 - 75. (New) The method of claim 74 wherein said subject is human.
- 76. (New) The method of claim 1 wherein said nanoparticles comprise at least one liquid fluorocarbon encapsulated with at least one lipid surfactant.
- 77. (New) The method of claim 18 wherein said nanoparticles comprise at least one liquid fluorocarbon encapsulated with at least one lipid surfactant.