1 Principe

Figure 1: Jambe de SigmaBan. $(\Omega,(x,y,z))$ est le repère attaché à la hanche du robot, Ω est l'intersection des 3 axes de rotation de la hanche. x est orienté vers l'avant, y vers la gauche et z vers le haut. $(C,(\eta,\nu,\mu))$ est le repère attaché au pied du robot.

Entrée : $(C, (\eta, \nu, \mu))$ le repère attaché au pied, donné dans $(\Omega, (x, y, z))$. Dans la suite, on note $\mathcal{B} = (x, y, z)$ la base orthonormée directe de l'espace.

Remarque 1 On cherche $\theta_0 \in [-\pi/2, \pi/2]$.

• Soit $B = C + L_0\mu$. On suppose que B est au dessous de (Ωxy) (i.e. $z_B < 0$).

Soit P le plan contenant Ω , B ainsi que le vecteur η dans sa direction. On suppose que $\overrightarrow{\Omega B}$ et η ne sont pas colinéaires (voir plus loin pour le cas où $\overrightarrow{\Omega B}$ et η sont colinéaires). P détermine alors θ_0 et θ_1 :

- Soit Δ la droite intersection de P et du plan horizontal (Ωxy) . Pour calculer Δ , on choisit φ le vecteur unitaire parallèle à (Ωxy) (i.e. horizontal) combinaison linéaire non nul de $\overrightarrow{\Omega B}$ et η , tel que $\varphi.\overrightarrow{\Omega x} \geq 0$. Δ est alors la droite d'appuyant sur Ω de vecteur directeur φ . On obtient θ_0 par une arc-tangente sur les coordonnées de φ .
- Soit G le projeté orthogonal de B sur Δ . Sachant que θ_1 exerce une rotation autour de Δ , on obtient que θ_1 est l'angle entre \overrightarrow{GB} et $-\overrightarrow{Gz}$.
- La distance ΩB détermine θ_3 (Al Kashi avec L_0 et L_1). On cherche θ_3 dans $[0, \pi]$.

- Soit ω le vecteur obtenu à partir de $-\overrightarrow{\Omega z}$ par rotation d'axe Δ d'angle θ_1 . θ_2 est déterminé par l'angle α formé par ΩB et ω , auquel on ajoute l'angle $\widehat{A\Omega B}$ (obtenu par Al Kashi par exemple). De façon plus précise, α est un angle orienté dont on calcule le signe à partir du signe de $(\overrightarrow{\Omega B} \times \omega).(\operatorname{rot}_{\Delta,\varphi,\theta_1}(\overrightarrow{\Omega y}))$.
- Ensuite, on calcule θ_4 . Soit β l'angle de η avec φ . On trouve $\theta_4 = \beta + \theta_3 \theta_2$.
- Soit τ un vecteur orthogonal à η et orthogonal à P de même sens que $\operatorname{rot}_{\Delta,\varphi,\theta_1}(\operatorname{rot}_{\overrightarrow{\Omega z},\theta_0}(\overrightarrow{\Omega y}))$ (disons $\varphi \times \omega$). On obtient $\theta_5 = \widehat{\tau \nu}$.
- Cas $\overrightarrow{\Omega B}$ et η colinéaires. Dans ce cas on a de la redondance: on peut choisir θ_0 et se servir de θ_5 pour ajuster l'orientation du pied autour de η . TODO.

Remarque 2 (η, ν, μ) peut être donné par angles d'Euler ou directement.

2 Calcul Effectif

- 1. $B = C + L_0 \mu$
- 2. Soit $\varphi' = a' \overrightarrow{\Omega B} + b' \eta$ avec
 - si $\eta_z \neq 0$ alors soit $\varphi'' = a'' \overrightarrow{\Omega B} + b'' \eta$ avec a'' = 1 et $b'' = -\frac{B_z}{\eta_z}$; puis $\varphi' = \frac{\varphi''}{||\varphi''||}$.
 - sinon a' = 0 et $b' = \frac{1}{||\eta||}$.

Finalement

$$\varphi = \left\{ \begin{array}{ll} \varphi' & \text{si } \varphi'.\overrightarrow{\Omega x} > 0 \text{ ou } (\varphi'.\overrightarrow{\Omega x} = 0 \text{ et } \varphi'.\overrightarrow{\Omega y} > 0) \\ -\varphi' & \text{sinon} \end{array} \right.$$

(On oriente toujours la jambe vers l'avant)

3. On obtient alors:

$$\theta_0 = \operatorname{atan2}(\varphi_y, \varphi_x)$$

- 4. φ étant unitaire, on obtient directement $G = \Omega + (\varphi.\overrightarrow{\Omega B})\varphi$.
- 5. Soit $\zeta = -\varphi \times \overrightarrow{\Omega z}$. Alors $(\varphi, \zeta, \overrightarrow{\Omega z})$ forment une base directe orthonormée (notée \mathcal{B}' dans la suite). Et on obtient:

$$\theta_1 = \operatorname{atan2}(\overrightarrow{GB}.\zeta, -B_z)$$

6. Al Kashi donne

$$\Omega B^2 = L_0^2 + L_1^2 - 2L_0L_1\cos(\theta_3)$$

Sachant qu'on cherche $\theta_3 \in [0, \pi]$ on obtient:

$$\theta_3 = \pi - a\cos(\frac{L_0^2 + L_1^2 - \Omega B^2}{2L_0 L_1})$$

Il faut contrôler que $\frac{L_0^2 + L_1^2 - \Omega B^2}{2L_0L_1} \in [-1,1]$. Notons que si ça n'est pas le cas, la configuration n'est pas accessible.

7. Calcul de $\omega = \operatorname{rot}_{\Delta,\varphi,\theta_1}(-\overrightarrow{\Omega z})$. On considère de nouveau la base directe orthonormée $\mathcal{B}' = (\varphi,\zeta,\overrightarrow{\Omega z})$. Dans \mathcal{B}' la matrice de rotation d'angle θ_1 autour de Δ a pour forme:

$$R_{\theta_1} = \begin{pmatrix} 1 & 0 & 0\\ 0 & \cos(\theta_1) & -\sin(\theta_1)\\ 0 & \sin(\theta_1) & \cos(\theta_1) \end{pmatrix}$$

Par ailleurs, $-\overrightarrow{\Omega z}$ a pour coordonnées $\begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$ dans \mathcal{B}' .

On obtient donc

$$\omega = \begin{pmatrix} 0 \\ \sin(\theta_1) \\ -\cos(\theta_1) \end{pmatrix}_{\mathcal{B}'}$$

Soit P la matrice de passage de \mathcal{B}' à \mathcal{B} :

$$P = \begin{pmatrix} \cos(\theta_0) & -\sin(\theta_0) & 0\\ \sin(\theta_0) & \cos(\theta_0) & 0\\ 0 & 0 & 1 \end{pmatrix}$$

On obtient finalement:

$$\omega = \begin{pmatrix} -\sin(\theta_0)\sin(\theta_1) \\ \cos(\theta_0)\sin(\theta_1) \\ -\cos(\theta_1) \end{pmatrix}_{\mathcal{R}}$$

8. $\alpha = (\widehat{\overrightarrow{\Omega B}, \omega})$. On obtient

$$|\alpha| = a\cos(\frac{\overrightarrow{\Omega B}.\omega}{\Omega B})$$

Par ailleurs, le signe de α est celui de $(\overrightarrow{\Omega B} \times \omega).\zeta$

9. On obtient $\widehat{A\Omega B}$ avec Al Kashi:

$$\widehat{A\Omega B} = \mathrm{acos}\big(\frac{L_0^2 + \Omega B^2 - L_1^2}{2.L_0.\Omega B}\big)$$

(Même remarque que précédemment sur l'ensemble de définition de acos)

10. Enfin, on obtient:

$$\theta_2 = \alpha + \widehat{A\Omega B}$$

11. On a $|\beta| = a\cos(\varphi.\eta)$. Et $sign(\beta) = sign((\varphi \times \eta).\zeta)$. On obtient:

$$\theta_4 = \beta + \theta_3 - \theta_2$$

12. Soit $\tau = \varphi \times \omega$. On obtient:

$$|\theta_5| = a\cos(\tau.\nu) \text{ et } sign(\theta_5) = sign((\tau \times \nu).\eta)$$