Confirmator	y Factoi
Analys	sis

Today . . .

- · Variance of an item
- · Identifiability
- · Goodness of fit indices
- A CFA example

$\sigma_{X_1X_1}^2 = \lambda_{11}^2 + \sigma_{\delta_1}^2$

This reconstruction of the variance for X_1 has its origins in classical measurement theory. If X_1 and ξ_1 are standardized, then λ_{11} is the correlation of X_1 and ξ_1 . The correlation between an observed score and a true score or latent variable is called the <code>index of reliability</code>. It is the square root of the reliability for X_1 . So, λ_{11}^2 is the reliability for X_1 , which is the proportion of variance in X_1 due to ξ_1 . With X_1 in standard score form, λ_{11}^2 is also the true score variance. $\sigma^2_{\delta_1}$ is then the error variance in the classical measurement theory sense.

	•
The "Identification Problem"	
Identification means that there is sufficient information in the data and model to provide unique	
estimation of the free parameters. Identification is obtained by restricting the model in some way.	
Example: There are an infinite number of solutions to the "model": X + Y = 15. A unique solution can only be found by restricting the model in some way. If X	
is restricted to equal 5, then the unique solution for Y is 10. Likewise an equality constraint, X = Y, provides	
for a unique solution.	
Similarly, and with greater complexity, confirmatory	
factor models must have a sufficient number of restrictions before the parameters can be estimated uniquely.	
Note how this is different compared to exploratory	
factor analysis. We impose no constraints in EFA and there are an infinite number of acceptable solutions (i.e., rotations).	
In CFA, models are restricted by either forcing some	
parameters to specific values (usually 0 or 1) or constraining some parameters to be equal to other parameters.	
parameters.	
One important condition for identification is called	
the <u>order condition</u> . This means that the number of parameters estimated in the model is less than or	
equal to the number of distinct values in the variance-covariance matrix (S).	
The number of distinct elements in the S matrix with	
K measures is K(K+1)/2.	

Depending on the number of estimated parameters	
relative to the number of known values (number of unique elements in the variance-covariance matrix):	
• Over-identified models (degrees of freedom > 0)	
 Just-identified models (0 degrees of freedom; trivial perfect fit) 	
Under-identified models (cannot be estimated)	
Chack lackaned measis (calmet be commuted)	
	-
	•
Goodness of fit	
Absolute indices	
Comparative indices	
Parsimony indices	
	-
	•
Absolute indices provide a goodness of fit indication	
without reference to any other model.	
Most common is the χ^2 . If significant, the model does not do an adequate job of reproducing the original covariance matrix.	
Very likely to reject good fitting models as sample	
size increases.	
More useful in comparing nested models.	

Root Mean Square Error of Approximation:	
$RMSEA = \frac{\sqrt{\chi_{proposed}^2 - df_{proposed}}}{\sqrt{df_{proposed}(N-1)}}$	
A close fitting model ≤ .05	
Confidence intervals can be placed around RMSEA and provide an estimate of uncertainty.	
"Probability of close fit" is often reported and should	
be greater than .05, preferably much greater.	
Standardized Root Mean Residual (SRMR):	
SRMR = mean difference between the observed	
correlations and the predicted	

Comparative fit indices provide a goodness of fit indication with reference to another model, most commonly (by default) the null model.

A close fitting model \leq .08.

The null model is not usually a compelling alternative. It is usually defined as assuming all correlations among variables are zero.

Tucker-Lewis (Non-Normed Fit) Index:

TLI or NNFI =
$$\frac{\frac{\chi^{2}_{null}}{df_{null}} - \frac{\chi^{2}_{proposed}}{df_{proposed}}}{\frac{\chi^{2}_{null}}{df_{null}} - 1}$$

A good fitting model \geq .95

Comparative Fit Index:

$$CFI = \frac{(\chi_{null}^2 - df_{null}) - (\chi_{proposed}^2 - df_{proposed})}{\chi_{null}^2 - df_{null}}$$

A good fitting model \geq .95

Parsimony fit indices take model complexity into account in much the same way as the adjusted R^2 in multiple regression.

These are less commonly reported.

The confirmatory approach begins with an explicit model that implies the elements of the key matrices. Some of these parameters are assumed to be fixed (usually at 0 or 1), some are freely estimated, and some may be constrained (e.g., to be equal to other parameters).

These expectations are then built into the model estimation.

Hypothetical data (N = 500) were created for individuals completing a 12-section test of mental abilities. All variables are in standard form.

Number of observations		500		
Mannet of opperations		500		
Number of missing patterns		1		
Estimator		NL	Robust	
Minimum Function Test Statistic		5.498	56.546	
Degrees of freedom		51	51	
P-value (Chi-square)		0.309	0.276	
Scaling correction factor			0.981	
for the Yuan-Bentler correction				
User model versus baseline model:				
User model versus baseline model: Comparative Fit Index (CFI)		0.998	0.997	
		0.998 0.997	0.997 0.996	
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	:			
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)	:			
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI) Root Mean Square Error of Approximation	0.000	0.997	0.996	0.033
Comparative Fit Index (CFI) Tucker-Leuis Index (TLI) Root Mean Square Error of Approximation RMSEA		0.997	0.996	0.033
Tucker-Lewis Index (TLI) Root Mean Square Error of Approximation RMSEA 90 Percent Confidence Interval		0.997 0.013 0.032	0.996 0.015 0.000	0.033

Parameter estimate	ss:					
Information				Observed		
Standard Errors		,	lobust . hub	er.white		
	Estinate	Std.err	Z-value	P(> z)	Std.17	Sti.al
Latent variables:						l
Verbal =						
Grammar	1.000				0.716	0.73
Prgrph_Cmprhn	1.065	0.080	13.256	0.000	0.762	0.718
Vocabulary	0.960	0.370	13.772	0.000	0.687	0.68
Sentnc_Cmpltn	1.108	0.079	13.940	0.000	0.793	0.73
Math ="						l
Geometry	1.000				0.669	D.G8
Algebra	1.002	0.082	12.225	0.000	0.670	0.69
Numercl_Pzzls	0.994	0.080	12.357	0.000	0.664	0.672
Series_Cmpltn	1.031	0.079	13.081	0.000	0.689	0.716
Reasoning ="						
Protol_Prbl_S	1.000				0.650	0.698
Symbol Mnpltn	1.030	0.381	12.652	0.000	0.670	0.690
Anlytcl_Ablty	1.097	0.085	12.899	0.000	0.713	0.72
Formal_Logic	1.143	0.090	12.647	0.000	0.744	3.73
Covariances:						
Verbal						
Math	0.199	0.029	6.782	0.000	0.417	0.417
Reasoning	0.215	0.029	7.442	0.000	0.461	0.46
Math ~~						
Reasoning	0.176	0.026	6.759	0.000	0.405	0.408

R-Square:	
Grammar	0.539
Paragraph_Compreh	ension 0.515
Vocabulary	0.474
Sentence_Completi	on 0.534
Geometry	0.467
Algebra	0.487
Numerical_Fuzzles	0.452
Series_Completion	0.512
Practical_Problem	_Solving 0.484
Symbol_Manipulati	on 0.476
Analytical_Abilit	y 0.527
Formal_Logic	0.536

The R-Square reported by lavaan is the proportion of variance in each variable accounted for by the model. Sound familiar?

The chosen model fits the data quite well. How would other models do?

A complete confirmatory analysis would not only test the preferred model but also examine alternative models to assess how easily they could account for the data.

To the extent that reasonable alternatives exist, the preferred model must be considered with more caution.

mental.r	nodel.2 <- '
Verbal =	<pre>=~ Grammar + Paragraph_Comprehension + Vocabulary + Sentence Completion</pre>
Math =~	Geometry + Algebra + Numerical_Puzzles + Series Completion
Reasonii	ng =~ Practical_Problem_Solving + Symbol_Manipulation + Analytical_Ability + Formal_Logic
Verbal '	~~ 0*Math
Verbal '	~~ 0*Reasoning
Math ~~	0*Reasoning

Number of observations		500		
Number of missing patterns		1		
Estimator		ML	Robust	
Minimum Function Test Statistic	21	14.022	216.879	
Degrees of freedom		54	54	
P-value (Chi-square)		0.000	0.000	
Scaling correction factor			0.987	
for the Yuan-Bentler correction				
User model versus baseline model: Comparative Fit Index (CFI)		0.916	0.915	
	3	0.916 0.897	0.915 0.896	
Comparative Fit Index (CFI)	-			
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI)				
Comparative Fit Index (CFI) Tucker-Lewie Index (TLI) Root Mean Square Error of Approximation:	0.066	0.897	0.896	0.089
Comparative Fit Index (CFI) Tucker-Lewis Index (TLI) Root Mean Square Error of Approximation:		0.897	0.896	0.08
Comparative Fit Index (CFI) Tucker-Leuis Index (TLI) Root Mean Square Error of Approximation: RMSEA 90 Percent Confidence Interval		0.897 0.077 0.088	0.896 0.078 0.067	0.08

Is one model a better fit than the other?

When models are nested, the difference in their chisquare tests is also chi-square distributed, with degrees of freedom equal to the difference in degrees of freedom. Models are nested when constraining one will produce the other.

anova(CFA_Fit_1, CFA_Fit_2)

Scaled Chi Square Difference Test (nethod = "satorra.bentler.2001")

Df AIC BIC Chisq Chisq diff Df diff Pr(>Chisq)

CFA_Fit_1 51 15099 15263 55.5

CFA_Fit_2 54 15252 15403 214.0 147 3 <2c-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' 1

By constraining the latent variable correlations to 0, we produce a model that is a significantly worse fit than the original model.

Λ=	λ11 λ21 λ31 λ41 λ61 λ61 λ71 λ81 λ91 λ10,1	Θ_{δ} =	$\begin{bmatrix} \theta_{11}^2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 0 \\ 0 \\ \theta_{33}^2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ \theta_{444}^2 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	0 0 0 0 0 9 ² 55 0 0 0 0	$\begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \theta_{88}^2 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Φ	λ _{12,1} = [1]									$\bigcap_{\delta_1} \mathbb{I}$	δ ₂ δ ₃	Λ 1 1 1 1 δ ₄ δ, δ ₆	δ, δ, ε	ί, δ ₁₀ δ ₁₁ δ ₁₂

mental.mode	
Ability =~	Grammar + Paragraph_Comprehension Vocabulary + Sentence_Completion + Geometry + Algebra + Numerical_Puzzles+Series_Completion + Practical_Problem_Solving + Symbol_Manipulation Analytical_Ability + Formal_Logic

and so a nested model comparison is possible.

Robust	
Dahmet	
848.990	
54	
0.000	
0.908	
0.585 0.493	
0.172	
0.161	0.183
0.000	
	0.000

Next time . . .

- Scaling of latent variables
- Correlation versus covariance matrices
- Model modification ("exploratory" confirmatory factor analysis)
- Relation to measurement theory
- Measurement invariance (cross-validation)

1	4