DUBLIN INSTITUTE OF TECHNOLOGY KEVIN STREET, DUBLIN 8

DT228 BSc Computer Science

YEAR I

SEMESTER I Examination 2013-14

Mathematics 1

Ms Bláthnaid Sheridan Dr. Chris Hills

Wednesday 8th January 2014 4.00pm – 6.00pm

Answer Question 1 and any 2 other questions

Mathematical Tables and Graph paper are available

Q1

- (a) Let A be the set of characters appearing in the string "software", B be the set of characters appearing in the string "network" and C be the set of characters in the string "adobe". List the elements of the following sets:
 - (i) $(A \cup C)$ (ii) $(A \cap B)$ (iii) $(A \cup C) \setminus B$ (iv) $(A \cup C) \cap (A \cup B)$

[5 marks]

(b) Use the properties of logarithms to evaluate the following:

The second secon

- (i) $-2log_3(243) + 2log_7\sqrt{7} + log_5(\frac{1}{25})$
- (ii) $log_6(7776) 3log_5\sqrt{125} log_2(1)$

[5 marks]

(c) Find the inverse of the matrix $\begin{pmatrix} 3 & 3 \\ 6 & -2 \end{pmatrix}$.

Hence or otherwise, solve the following system of equations:

$$3x + 3y = 6$$
$$6x - 2y = 28$$

[5 marks]

(d) Test the following binary relation R on the given set S for reflexivity, symmetry and transitivity

$$S = \{2, 3, 4, 5, 6, 7, 8, 9\}, R = \{(a, b): a + 2b \ge 14\}$$

[5 marks]

(e) Find the mean, median and variance of the following set of data:

[5 marks]

- (f) Let $f: \mathbb{N} \to \mathbb{N}$ be given by f(x) = 2x 4Let $g: \mathbb{N} \to \mathbb{N}$ be given by $g(x) = 3x^2 + 2$ Calculate:
 - (i) $(f \circ g)(2)$
 - (ii) $(g \circ f)(x)$
 - (iii) $(f \circ f)(1)$

[5 marks]

(g) Let $U = \{1,2,3,4,5,6\}$ be the universal set. Represent the set $A = \{3,4,6\}$ with bit strings.

[5 marks]

(h) Use Euclid's Algorithm to find the hcf of 97,020 and 110,250.

[5 marks]

Q2

- (a) Let $A = \{1, 2, 3\}, B = \{c, d\}$ and $C = \{2, 3, 4\}$ be sets. List the elements of the following sets:
 - The symmetric difference of B and C, $B\Delta C$ **(i)**
 - The Cartesian product of A and B, $A \times B$. (ii)
 - The power set of B, P(B)(iii)

[10 marks]

- (b) Let $U = \{10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}$ be the universal set. Let $A = \{10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20\}$ $\{11, 14, 15, 16, 20\}$ and $B = \{10, 14, 15, 18, 19, 20\}$ be sets. Use bit string representation to find the following sets:
 - (i)
 - (ii) $A \cap B$
 - (iii) $A \cup B$

[10 marks]

- (c) Use a truth table to verify if the following are equivalent formulas:
 - (i) $a \wedge (b \vee c) \sim (a \wedge b) \vee (a \wedge c)$
 - $\overline{(a \wedge b)} \sim \overline{a} \vee \overline{b}$ (De Morgan's Law)

[10 marks]

Q3

(a) Use prime factorisation to calculate hcf(6930, 9900).

[8 marks]

(b) Write out the operational tables for \mathbf{Z}_{8} . Use Fermat's Little Theorem to find the inverses of 5 and 7 modulo 8. Check your answers against the multiplication table for Z_8 .

[12 marks]

(c) Use the Euclidean Algorithm to find the multiplicative inverse of 23 in Z_{362}^* .

[10 marks]

Q4

(a) Let
$$A = \begin{pmatrix} 3 & 3 & -1 \\ 2 & 0 & 3 \\ 4 & -1 & 5 \end{pmatrix}$$
, $B = \begin{pmatrix} 2 & 1 & 4 \\ -6 & 2 & 0 \end{pmatrix}$, $C = \begin{pmatrix} 5 & 2 \\ 2 & 5 \end{pmatrix}$ and $D = \begin{pmatrix} 6 & 4 \\ 2 & 0 \\ -1 & 3 \end{pmatrix}$

Evaluate (if possible)

- (i) 2*AD*
- (ii) 3*BC*
- (iii)3*CB* (iv) *C*⁻¹

[6 marks]

(b) A square has vertices $p_1 = (1,1)$, $p_2 = (2,1)$, $p_3 = (2,2)$ and $p_4 = (1,2)$. Determine the image of this square when it is scaled about the origin by factors of 5 in the x-direction and 3 in the y-direction.

[12 marks]

(c) A rectangle having vertices A, B, C and D given in homogenous coordinates

$$A = \begin{pmatrix} 15 \\ -5 \\ 1 \end{pmatrix}, B = \begin{pmatrix} -25 \\ -5 \\ 1 \end{pmatrix}, C = \begin{pmatrix} -25 \\ 15 \\ 1 \end{pmatrix}, D = \begin{pmatrix} 15 \\ 15 \\ 1 \end{pmatrix}$$

is represented by the matrix

$$M = \begin{pmatrix} 15 & -25 & -25 & 15 \\ -5 & -5 & 15 & 15 \\ 1 & 1 & 1 & 1 \end{pmatrix}$$

Find the image of this rectangle under the rotation of the plane through an angle of $\frac{3\pi}{4}$ radians <u>clockwise</u> about the origin.

[12 marks]