Topic #4: Natural-base Exponential and Logarithmic Functions and Equations

1. Express $3\ln a + \ln b - \ln c$ as a single logarithm.

$$\begin{array}{ll}
A) \ln \left(\frac{a^3b}{c}\right) & 3 \ln a + \ln b - \ln c = \ln a^3 + \ln b - \ln c \\
B) \ln \left(a^3 + b - c\right) & = \ln \left(a^3b\right) - \ln c = \ln \left(\frac{a^3b}{c}\right) \\
D) \ln \left(\frac{3ab}{c}\right) & = \ln \left(a^3b\right) - \ln c = \ln \left(\frac{a^3b}{c}\right)
\end{array}$$

Answer: A

2. Solve for x: $\ln x = \frac{3}{4}$ A) $e^{3/2}$ B) $\ln 3/2$ C) $e^3 - e^2$ D) e^{3-2} $1 \ln x = \frac{3}{4}$ $1 \ln x = \frac{3}{4}$

Answer: A

3. Solve for *x*: $\ln(x+2) - \ln 5 = \ln x$.

4. What is the inverse of $y = e^x$

A)
$$y = e \ln 2$$

B) $y = e^{-x}$
C) $y = \ln x$
D) $y = 1/e^{x}$

$$f(x) = \ln x$$

Answer C

- 5. Solve for x: $e^x = 4$.

taking natural base log on both sides of the equation, we have

lue = lu4 => xlne = lu4

=> x = ln 4

- **Answer D**
- 6. The equation $2 = \ln(y + 1)$ can also be written as ___.
 - A) $y = \frac{2}{\ln(x+1)} 2$ B) $y = e^2 1$ C) y = 2(x+1) 12 > In [] = 2Ly = 2(y = 2) 2= (n(y+1) => 2 lne = ln(y+1) D) $y = \ln 2^{x+1} - 1$ \Rightarrow $e^2 = y + 1$ \Rightarrow $y = e^2 - 1$

Answer B

- 7. Determine an expression for x if $\ln x = \ln a 2 \ln b$.
 - $\ln z = \ln a 2 \ln b = \ln a \ln b^2 = \ln \frac{a}{b^2}$ $\Rightarrow x = \frac{a}{b^2}$

Answer A

- $\ln x^2 = \ln \frac{1}{2}$ 8. Solve for *x*:
- $\Rightarrow \chi^2 = \frac{1}{9} = (\pm \frac{1}{3})^2$ $\begin{array}{ccc}
 & & \\
 & \\
 & \\
 C) \frac{1}{2}
 \end{array} \Rightarrow \qquad \chi = \pm \frac{1}{3}$ D) 3

Answer B

- **9.** If \$5000 is invested in a bank where the amount is compounded **continuously** at a rate of 7% per year, then what is the resultant amount after 3 years?
 - A) \$5001.6 B) \$5117.5 C) \$6168.4 D) \$6164.6 Answer C $= 5000 e^{0.07 \times 3} = 5000 e^{0.21}$
- 10. For an initial balance of \$100 and an annual interest rate of 5% compounded **continuously** over 10 years, calculate the closing balance rounded to the nearest penny.
 - A) \$101.64 B) \$117.51 C) \$168.47 D) \$164.87

 Answer D $A = [00 \times 0.05 \times 10 \times 0.05 \times 10 \times 0.05 \times 10]$ $= [00 \times 0.05 \times 10 \times 0.05 \times 10]$ $= [00 \times 0.05 \times 10 \times 0.05 \times 10]$ $= [00 \times 0.05 \times 10 \times 0.05 \times 10]$ $= [00 \times 0.05 \times 10]$