

# Оглавление

| 1 | Осн  | овные понятия                                  | 2  |
|---|------|------------------------------------------------|----|
|   | 1.1  | Метрическое пространство                       | 2  |
|   |      | Топологическое пространство                    |    |
|   | 1.3  | Внутренность и замыкание                       | 6  |
|   | 1.4  | Сравнение топологий                            | 9  |
|   | 1.5  | База топологии                                 | 10 |
|   | 1.6  | Индуцированная топология                       | 11 |
|   | 1.7  | Аксиомы отделимости                            | 12 |
|   | 1.8  | Аксиомы счетности                              | 13 |
|   | 1.9  | Непрерывность                                  | 15 |
|   | 1.10 | Гомеоморфизм                                   | 17 |
|   | 1.11 | Прямое произведение топологических пространств | 18 |
|   | 1.12 | Связность                                      | 21 |
|   | 1.13 | Компактность                                   | 23 |

## Глава 1

## Основные понятия

### 1.1 Метрическое пространство

**Определение.** *Метрикой* на множестве X называют  $\rho: X \to \mathbb{R}$ , удовлетворяющую аксиомам метрики:

- $\rho(x) \ge 0$
- $\rho(x,y) = \rho(y,x)$
- $\rho(x,y) + \rho(y,z) \ge \rho(x,z)$

**Определение.** Пару  $\langle X, \rho \rangle$ , где  $\rho$  — метрика на X, называют метрическим пространством

#### Примеры.

- Стандартная метрика на  $\mathbb{R}^n$ :  $\rho(x,y) = |x,y|_2$ , где  $d_k(x,y) \stackrel{def}{=} |x,y|_k = \sqrt[k]{\sum_{i=1}^n (x_i y_i)^k}$
- $|.,.|_k$  является метрикой на  $\mathbb R$  при любых  $k\geqslant 1$
- $|x,y|_{\infty} = \max_{i=1}^n (x_i y_i)$  метрика на  $\mathbb R$
- $\rho(x,y) = 1$  при  $x \neq y$  и  $\rho(x,y) = 0$  иначе метрика, порождающая дискретное пространство.

 $\Delta$ алее, если не указано, речь идет о метрическом пространстве X

**Определение.** Шаром радиуса r с центром в точке x называется

$$B_r(x) \stackrel{def}{=} \{ y \in X \mid \rho(x, y) < r \}$$

**Определение.** Замкнутым шаром радиуса r с центром в точке x называется

$$\overline{B_r}(x) \stackrel{def}{=} \{ y \in X \mid \rho(x, y) \leq r \}$$

**Определение.** Расстоянием от точки x до множества A называется

$$\rho(x,A) \stackrel{def}{=} \inf_{y \in A} \rho(x,y)$$

Определение. Диаметром множества А называется

$$diam(A) = \sup \{ \rho(x, y) \mid x, y \in A \}$$

**Определение.** В метрическом пространстве *открытыми* называют множества A такие, что

$$\forall x \in A \exists B_r(x) \subset A$$

Иначе говоря, любая точка открытого множества входит в него с некоторым шаром.

**Определение.** Множество A называют ограниченным, если  $\operatorname{diam}(A) < +\infty$ 

**Теорема 1.1.1.** Множество A ограниченно  $\Longleftrightarrow$  его можно вписать в шар

Доказательство.

- $\Longrightarrow$  Пусть m= diam(A). Покажем, что A можно вписать в шар радиуса m+1. Возьмем произвольную точку  $x\in A$ . Тогда  $\forall y\in A\ \rho(x,y)\leqslant m< m+1\Longrightarrow y\in B_{m+1}(x)$
- $\iff$  Пусть  $y,z \in A$  и A можно вписать в шар  $B_r(x)$ . Тогда  $2r > \rho(x,y) + \rho(x,z) \geqslant \rho(y,z) \Longrightarrow \rho(y,z) < 2r \Longrightarrow A$  ограничено.

Теорема 1.1.2.

- Произольное объединение открытых множеств открыто
- Пересечение двух (а значит, и произвольного конечного числа) открытых множеств открыто.

Доказательство.

• Пусть  $\{G_a\}_{a \in A}$  — семейство открытых множеств. Тогда

$$x \in \bigcup_{\alpha \in A} G_{\alpha} \Longrightarrow x \in G_{\alpha} \Longrightarrow \exists U(x) \subset G_{\alpha} \subset \bigcup_{\alpha \in A} G_{\alpha}$$

• Пусть А и В — открытые множества. Тогда

$$x \in A \cap B \Longrightarrow x \in A \land x \in B \Longrightarrow$$
$$\exists B_{r_1}(x) \subset A \land B_{r_2}(x) \subset B \Longrightarrow$$
$$x \in B_{\min(r_1, r_2)}(x) \subset A \cap B$$

**Определение.** Липшицево эквивалентными называют отображения f и g в  $\mathbb{R}$ , такие, что  $\exists c_1, c_2 \colon c_1 f \leqslant g \leqslant c_2 f$ 

**Пример.** В  $\mathbb{R}^n$  метрики  $d_1$  и  $d_2$  липшицево эквивалентны

### 1.2 Топологическое пространство

**Определение.** *Топологией* на множестве X называют  $\Omega \subseteq \mathcal{P}(X)$ , удовлетворяющее следующим свойствам:

- $\emptyset, X \in \Omega$
- $A, B \in \Omega \Longrightarrow A \cap B \in \Omega$
- $\{X_{\alpha} \in \Omega\}_{\alpha \in A} \Longrightarrow \bigcup_{\alpha \in A} X_{\alpha} \in \Omega$

Иными словами, топология замкнута относительно конечных пересечений и произвольных объединений её элементов.

**Определение.** Пара  $(X, \Omega)$ , где  $\Omega$  — топология на X, называется топологическим пространством.

**Определение.** Элементы топологии называются *открытыми множествами*. Дополнения открытых множеств называются *замкнутыми множествами*.

#### Примеры.

- $\Omega = \mathcal{P}(X)$  дискретная топология
- $\Omega = \{\emptyset, X\}$  антидискретная топология
- Все метрические пространства являются топологическими пространствами, порожденными метрикой.
- $\Omega = \emptyset \cup \{$  все дополнения конечных множеств  $\}$

**Определение.** *Метризуемым* называется топологическое пространство, топология которого может быть порождена метрикой.

#### Примеры.

- Дискретная топология метризуема
- Антидискретная топология не метризуема

**Определение.** Окрестностью точки x называют любое открытое множество, содержащее x. Далее окрестность точки x будет обозначаться U(x).

**Определение.** Точка x называется *внутренней* для множества A, если она входит в него с некоторой окрестностью:

$$\exists U(x): U(x) \subset A$$

**Определение.** Точка x называется *граничной* точкой множества A, если любая окрестность точки x имеет непустое пересечение как с A, так и с его дополнением:

$$\forall U(x) \ A \cap U(x) \neq \emptyset \land (X \setminus A) \cap U(x) \neq \emptyset$$

**Определение.** Точка x называется внешней точкой A, если

$$\exists U(x) \ A \cap U(x) = \emptyset$$

**Определение.** Точка x называется точкой прикосновения (предельной точкой) множества A, если

$$\forall U(x) \ A \cap U(x) \neq \emptyset$$

**Замечание.** Точка прикосновения и внешняя точка — формальные отрицания друг друга.

#### Теорема 1.2.1.

- $\emptyset$ , X замкнуты
- A, B замкнуты  $\Longrightarrow A \cup B$  замкнуто
- если  $C_{\alpha}$  замнкнуты, то  $\bigcap_{\alpha \in A} C_{\alpha}$  замкнуто

Доказательство.

- $X = X \setminus \emptyset$  замкнуто по опделелению. Аналогично  $\emptyset = X \setminus X$
- $A \cup B$  замкнуто  $\iff X \setminus (A \cap B)$  открыто  $\iff (X \setminus A) \cup (X \setminus B)$  открыто  $\iff (X \setminus A)$ ,  $(X \setminus B)$  открыты  $\iff A, B$  замкнуты.
- Аналогично іі

**Теорема 1.2.2.** A открыто, B замкнуто. Тогда

- $A \setminus B$  открыто
- $B \setminus A$  замкнуто

- $A \setminus B = A \cap (X \setminus B)$  открыто
- $B \setminus A = B \cap (X \setminus A)$  замкнуто

### 1.3 Внутренность и замыкание

**Определение.** *Внутренностью* множества *А* называют наибольшее по включению открытое множество, содержащееся в *А*, иначе говоря:

$$\operatorname{Int}(A) \stackrel{def}{=} \bigcup_{\substack{U \subseteq A \\ open_X(U)}} U$$

**Определение.** Замыканием множества A называют наименьшее по включению замкнутое множество, сожержащее A, иначе говоря:

$$Cl(A) \stackrel{def}{=} \bigcap_{\substack{C \supseteq A \\ cl_X(C)}} C$$

**Теорема 1.3.1.** (Свойства Int)

- Int(A) открыто
- $Int(A) \subseteq A$
- $open_X(B), B \subseteq A \Longrightarrow B \subseteq Int(A)$
- $Int(A) = A \iff open_x(A)$
- Int(Int(A)) = A
- $A \subseteq B \Longrightarrow \operatorname{Int}(A) \subseteq \operatorname{Int}(B)$
- $Int(A \cap B) = Int(A) \cap Int(B)$
- $\operatorname{Int}(A \cup B) \supseteq \operatorname{Int}(A) \cup \operatorname{Int}(B)$

Доказательство.

- Int(A) открыто как объединение открытых
- В объединения входят только подмножества A, поэтому  $Int(A) \subseteq A$
- В по определению войдет в объединение
- ⇒ по пункту (i). ← по пункту (iii)
- см. пункт (iv)
- Все открытые подмножества А являются открытыми подмножествами В
- $A \cap B \subseteq A$ ,  $A \cap B \subseteq B \Longrightarrow$  $Int(A \cap B) \subseteq Int(A)$ ,  $Int(B) \Longrightarrow Int(A \cap B) \subseteq Int(A) \cap Int(B)$

 $\operatorname{Int}(A) \cap \operatorname{Int}(B) \subseteq \operatorname{Int}(A) \subseteq A$ , аналогично  $\operatorname{Int}(A) \cap \operatorname{Int}(B) \subseteq B$ , поэтому  $\operatorname{Int}(A) \cap \operatorname{Int}(B) \subseteq A \cap B \Longrightarrow \operatorname{Int}(\operatorname{Int}(A) \cap \operatorname{Int}(B)) = \operatorname{Int}(A \cap B) \Longrightarrow \operatorname{Int}(A) \cap \operatorname{Int}(B) \subseteq \operatorname{Int}(A \cap B)$ 

Теорема 1.3.2. (Свойства Cl)

- Cl(A) замкнуто
- $Cl(A) \supseteq A$
- $cl_X(B)$ ,  $B \supseteq A \Longrightarrow B \supseteq Cl(A)$
- $Cl(A) = A \iff cl_X(A)$
- Cl(Cl(A)) = A
- $A \subseteq B \Longrightarrow Cl(A) \subseteq Cl(B)$
- $Cl(A \cup B) = Cl(A) \cup Cl(B)$
- $Cl(A \cap B) \subseteq Cl(A) \cap Cl(B)$

Доказательство. Можно доказать аналогично предыдущей теореме, а можно доказать, пользуясь переходом к дополнению в предыдущей теореме. ■

**Теорема 1.3.3.** (Связь Int и Cl)

- $X \setminus Int(A) = Cl(X \setminus A)$
- $X \setminus Cl(A) = Int(X \setminus A)$

Доказательство.

 $X \setminus \operatorname{Int}(A) \stackrel{def}{=} X \setminus \left(\bigcup_{\substack{U \subseteq A \\ open_X(U)}} U\right) = \bigcap_{\substack{U \subseteq A \\ open_X(U)}} X \setminus U \stackrel{def}{=} \operatorname{Cl}(X \setminus A)$ 

так как множества вида  $X \setminus U$  суть замкнутые множества, содержащие A

• Аналогично

Определение. Границей множества А называется

$$\operatorname{Fr}(A) \stackrel{def}{=} \operatorname{Cl}(A) \setminus \operatorname{Int}(A)$$

**Теорема 1.3.4.** (Свойства Fr)

- Fr(A) замкнуто
- $Fr(A) = Fr(X \setminus A)$
- A замкнуто  $\iff$   $Fr(A) \subseteq A$
- A открыто  $\iff$   $Fr(A) \cap A = \emptyset$

Доказательство.

- Очевидно в свете предыдущих теорем
- A замкнуто  $\iff$   $Cl(A) = A \iff$   $Cl(A) \setminus Int(A) \subseteq A$
- A открыто  $\iff$   $Int(A) = A \iff$   $Fr(A) = Cl(A) \setminus A \iff$   $Fr(A) \cap A = \emptyset$

Теорема 1.3.5. (Характеризация внутренности)

Int(A) — множество всех внутренних точек A.

Доказательство. Докажем, что  $x \in Int(A) \Longleftrightarrow x$  — внутренняя точка A

$$\implies x \in \operatorname{Int}(A)$$
 — открыто  $\implies U(x) = \operatorname{Int}(A) \subseteq A \implies x$  — внутренняя точка  $A$ 

 $\longleftarrow x$  — внутренняя для  $A \Longrightarrow \exists U(x) \subseteq A \Longrightarrow x \in Int(A)$  так как по определению Int(A) — это объединение всех открытых множеств, содержащихся в A, в том числе и U(x).

**Следствие 1.3.6.** *A* открыто  $\iff \forall x \in A \ x$  — внутренняя точка *A* 

**Теорема 1.3.7.** (Характеризация замыкания)

Cl(A) — множество всех точек прикосновения A.

Доказательство.

$$X \setminus Cl(A) = Int(X \setminus A) = \{$$
 внешние точки  $A\} = X \setminus \{$  точки прикосновения  $A\}$ 

**Определение.** Множество A называется всюду плотным, если Cl(A) = X.

**Определение.** Топологическое пространство X называют *сепарабельным*, если в нем существует не более чем счетное всюду плотное множество.

Замечание. Всюду плотность множества А эквивалентна

- $\operatorname{Int}(X \setminus A) = \emptyset$ .
- $\forall open_x(D) \ D \cap A \neq \emptyset$ .

- $Int(X \setminus A) = X \setminus Cl(A) = \emptyset$ .
- Если это условие не выполнилось для какого-то непустого D, то любая его точка является внешней для множества A, а значит, не входит в замыкание. Если же это условие выполнилось для всех D, то любая окрестность любой точки пересекается с A (надо взять D = этой окрестности), значит, любая точка является точкой прикосновения A, о есть A всюду плотно.

**Определение.** Множество  $A \subseteq X$  называют *нигде не плотным*, если внутренность его замыкание пуста:  $Int(Cl(A)) = \emptyset$ .

**Замечание.** Нигде не плотность множества A эквивалентна тому, что в любом непустом открытом множестве найдется открытое подмножество, не пересекающееся с A.

**Теорема 1.3.8.** В сепарабельном пространстве не существует более чем счетного дизъюнктного набора непустых открытых множеств.

Доказательство. Пусть  $U_i$  — более чем счетный дизъюнктный набор непустых открытых множеств. Выберем тогда из каждого  $U_i$  точку  $p_i$ , которая лежит в пересечение  $U_i \cap S$ , где S — какое-нибудь счетное всюду плотное множество. Получим, что  $\{p_i\} \subseteq S$ , то есть S более, чем счетно.

### 1.4 Сравнение топологий

**Определение.** Пусть  $\Omega_1$ ,  $\Omega_2$  — топологии на X. Говорят, что топология  $\Omega_1$  слабее топологии  $\Omega_2$ , если  $\Omega_1 \subset \Omega_2$ .

#### **Теорема 1.4.1.** (Сравнение метрических топологий)

Пусть  $d_1, d_2$  — метрики на X, Top(d) — топология, порожденная метрикой d. Тогда  $Top(d_1) \subseteq Top(d_2)$  тогда и только тогда, когда в любом шаре по  $d_1$  содержится шар по  $d_2$  с таким же центром.

Доказательство.

- $\Longrightarrow$  Раз  $Top(d_1) \subseteq Top(d_2)$ , то шар  $B_1(x,r)$  по метрике  $d_1$  открыт в  $Top(d_2)$ , значит любая его точка, включая x, входит в  $B_1(x,r)$  с некоторой окрестностью  $B_2(x,r')$  во второй топологии.
- Проверим, что открытое в первой топологии множество U открыто во второй топологии. Для этого проверим, что все его точки внутренние по второй метрике. U открыто в  $Top(d_1)$  ⇒  $\forall x \in U \exists B_1(x,r) \subseteq U$  ⇒  $\exists B_2(x,r) \subseteq U$ .

Следствие 1.4.2.  $d_1 \leq d_2 \Longrightarrow Top(d_1) \subseteq Top(d_2)$ .

Следствие 1.4.3.  $\exists c > 0: d_1 \leq cd_2 \Longrightarrow Top(d_1) \subseteq Top(d_2).$ 

**Следствие 1.4.4.**  $d_1$ ,  $d_2$  липшицево эквивалентны  $\Longrightarrow Top(d_1) = Top(d_2)$ .

#### 1.5 База топологии

**Определение.** Базой топологии  $\Omega$  называют  $\Sigma \subseteq \Omega$  такое, что

$$\forall U \in \Omega \ \exists \lambda_{\alpha} \in \Sigma \colon \ U = \bigcup \lambda_{\alpha}$$

**Теорема 1.5.1.**  $\Sigma$  — база топологиии  $\Omega$  тогда и только тогда, когда

$$\forall x \in X \ \forall U(x) \ \exists V \in \Sigma \colon x \in V \subseteq U$$

Доказательство.

 $\implies \Sigma$  — база топологии, поэтому

$$\exists \lambda_{\alpha} \in \Sigma \colon \ U(x) = \bigcup \lambda_{\alpha}$$

Поэтому  $\exists \alpha : x \in \lambda_{\alpha}$ .

 $\longleftarrow$  Пусть A открыто, тогда

$$A = \bigcup_{x \in A} V(x)$$

**Определение.**  $\Sigma_x$  называется базой топологии в точке x, если

- $\forall V \in \Sigma_x \ x \in V$ .
- $\bullet \ \forall U \in \Omega \colon \ x \in U \ \exists V \in \Sigma_x \colon x \in V \subseteq U.$

**Замечание.**  $\Sigma$  — база топологии тогда и только тогда, когда

$$\forall x \in X \ \Sigma_x = \{ U \in \Sigma \mid x \in U \}$$
 — база топологии в  $x$ 

**Замечание.**  $\forall x \; \Sigma_x$  — базы в точках, тогда  $\bigcup \Sigma_x$  — база топологии.

**Теорема 1.5.2.**  $\Sigma$  — база некоторой топологии тогда и только тогда, когда

- $X = \bigcup \Sigma$ .
- $\forall U, V \in \Sigma \ U \cap V$  представляется в виде объединения элементов  $\Sigma$ .

- $\Longrightarrow X$  открыто, поэтому обязательно выполнено первое условие. Второе условие выполнено потому, что  $U\cap V$  открыто, то есть по определению должно представляться в виде объединения элементов  $\Sigma$ .
- $\Longleftrightarrow$  Назначим  $\Omega$  как всевозможные объединения множеств из  $\Sigma.$  Проверим, что  $\Omega$  топология.
  - Ø, X ∈  $\Omega$  очевидно.
  - $\bigcup U$  ∈ X по построению.
  - $U\cap V=\left(\bigcup U_i\right)\cap\left(\bigcup V_i\right)=\bigcup U_i\cap V_i.$   $U_i\cap V_i$  открыто по посылке, поэтому  $U\cap V$  открыто.

### 1.6 Индуцированная топология

**Определение.** Пусть X — топологическое пространство,  $Y \subset X$ . Тогда на Y можно завести топологию, которую называют *индуцированной*: множество  $A \subset Y$  открыто тогда и только тогда, когда  $\exists B \in \Omega(X)$ :  $A = B \cap Y$ . В таком случае топологическое пространство  $\langle Y, \Omega(Y) \rangle$  называют *подпространством*.

Теорема 1.6.1. (База подпространства в точке)

Пусть X — топологическое пространство,  $Y \subset X$  — его подпространство,  $y \in Y$  ,  $\Sigma_y$  — база X в точке y . Тогда

$$\{U\cap Y\}_{U\in\Sigma_{\nu}}$$

является базой индуцированной топологии в точке y.

Доказательство. Пусть  $y \in A$  открыто в Y. Тогда по определению индуцированной топологии  $\exists U \in \Omega(X) \colon A = U \cap Y \ni y$ . Тогда по определению базы в точке  $\exists V \in \Sigma_v \colon y \in V \subseteq U$ . Тогда  $y \in V \cap Y \subseteq U \cap Y$ , что и требовалось.

**Следствие 1.6.2.** Пусть  $\Sigma$  — база  $\Omega(X)$ , Y — подпространство X. Тогда

$$\{V \cap Y \mid V \in \Sigma\}$$
 — база  $\Omega(Y)$ 

**Теорема 1.6.3.** Пусть X — т.п.,  $Y \subset X$  — его подпространство,  $A \subseteq Y$ . Тогда

- $open_X(A) \Longrightarrow open_Y(A)$ .
- $cl_{\nu}(A) \iff \exists cl_{\nu}(B) \colon B \cap Y = A$ .
- $cl_{\nu}(A) \Longrightarrow cl_{\nu}(A)$ .
- $open_x(Y) \iff (open_y(A) \iff open_y(A)).$
- $cl_{\nu}(Y) \iff (cl_{\nu}(A) \iff cl_{\nu}(A)).$

Теорема 1.6.4. (О транзитивности индуцирования)

Пусть X — т.п.,  $X \supset Y \supset Z$ , тогда топологии  $Y \to Z$ ,  $X \to Z$  совпадают.

Доказательство.

$$open_{X \to Z}(A) \Longleftrightarrow \exists open_X(U) \colon A = U \cap Z \Longleftrightarrow A = \underbrace{(U \cap Y)}_{open_Y} \cap Z \Longleftrightarrow open_{Y \to Z}(A).$$

Замечание.

- $\operatorname{Cl}_X(A) \cap Y = \operatorname{Cl}_Y(A)$ .
- $\operatorname{Int}_{X}(A) \cap Y \neq \operatorname{Int}_{Y}(A)$  (вообще говоря).

### 1.7 Аксиомы отделимости

**Определение.** Топологическое пространство называется *хаусдорфовым*, если

$$\forall x \neq y \exists U(x), U(y): U(x) \cap U(y) = \emptyset$$

Хаусдорфовость — вторая аксиома отделимости (Т2).

Замечание. Все метрические пространства являются хаусдорфовыми.

**Определение.** Топологическое пространство удовлетворяет первой аксиоме отделимости (T1), если

$$\forall x \neq y \exists U(x) : U(x) \not\ni y$$

**Теорема 1.7.1.** Т.п. X удовлетворяет Т1 тогда и только тогда, когда в нем любое одноточечное множество замкнуто.

Определение. Множества А, В называются отделимыми, если

$$\exists U(A), U(B): U(A) \cap U(B) = \emptyset$$

**Определение.** Топологическое пространство называется *регулярным* (Т3), если в нем выполняются свойства:

- Все одноточечные множества замкнуты (Т1).
- $\forall x \ \forall cl_X(A)$ :  $x \notin A \ x$  отделима от A.

Замечание. Регулярность эквивалентна набору свойств

- Все одноточечные множества замкнуты (Т1).
- $\forall x \ \forall U(x) \ \exists V(x)$ :  $Cl(V) \subset U \ (U, V \ \text{открыты})$ .

Доказательство.

 $\Longrightarrow$  Пусть  $x \in A$  открыто, поэтому  $\overline{A}$  замнкнуто, причем  $x \notin \overline{A}$ . Тогда x отделима от  $\overline{A}$ :

$$\exists U(\overline{A}), U(x): U(\overline{A}) \cap U(x) = \emptyset$$

Тогда можно взять V = U(x):  $Cl(V) \cap \overline{A} = \emptyset$ : если бы  $Cl(V) \cap \overline{A} \ni p$ , то

$$\forall U(p) \ U(p) \cap U(x) \neq \emptyset$$

Но p — внутренняя точка  $U(\overline{A})$ , поэтому входит в нее с некоторой U(p), которая пересекается с U(x), чего быть не может.

 $\longleftarrow$  Снова перейдем к дополнению: множество  $\overline{A}$  открыто, причем  $x \in \overline{A}$ . Тогда

$$\exists V(x) \colon \operatorname{Cl}(V) \subset \overline{A}$$

Тогда можно отделить A и x множествами  $X \setminus Cl(V(x))$  и V(x) соответственно.

**Определение.** Топологическое пространство называется *нормальным* (Т4), если в нем любые два непересекающихся замкнутых множества отделимы.

**Теорема 1.7.2.** (Нормальность метризуемых пространств) Все метризуемые топологические пространства нормальны.

Доказательство. Пусть А, В — непересекающиеся замкнутые множества. Тогда

$$\forall x \in A \ \exists r_x > 0 \colon B(x, r_x) \cap B = \emptyset$$
  
 $\forall y \in B \ \exists r_y > 0 \colon B(y, r_y) \cap A = \emptyset$ 

Здесь мы воспользовались хаусдорфовостью метрических пространств. Положим

$$U = \bigcup_{x \in A} B\left(x, \frac{r_x}{2}\right)$$
$$V = \bigcup_{y \in B} B\left(y, \frac{r_y}{2}\right)$$

Эти множества открыты. Если мы докажем, что они не пересекаются, то множества A и B окажутся отделимыми. Пусть  $U \cap V \neq \emptyset$ , тогда (пусть  $r_x \geqslant r_y$ ):

$$\exists r_x, r_y \colon B\left(x, \frac{r_x}{2}\right) \cap B\left(y, \frac{r_y}{2}\right) \neq 0 \Longrightarrow$$

$$\exists z \colon |xz| < \frac{r_x}{2}, |yz| < \frac{r_y}{2} \Longrightarrow |xy| < \frac{r_x + r_y}{2} \leqslant \max(r_x, r_y) = r_x \Longrightarrow$$

$$B(x, r_x) \ni y$$

Замечание. Т1, Т2, Т3 наследуются подпространством. Т4, вообще говоря, нет.

Замечание.  $T1 \leftarrow T2 \leftarrow T3 \leftarrow T4$ .

### 1.8 Аксиомы счетности

**Определение.** Топологическое пространство X удовлетворяет *первой аксиоме счетности* (1AC), если для любой точки  $x \in X$  существует не более чем счетная база в этой точке.

**Определение.** Топологическое пространство X удовлетворяет *второй аксиоме счетности* (2AC), если существует не более чем счетная база X.

#### Теорема 1.8.1.

- 2AC  $\Longrightarrow$  пространство сепарабельно.
- Метрическое пространство сепарабельно 
   ⇔ оно удовлетворяет 2АС.

Доказательство.

- Пусть  $\Sigma$  счетная база X. Выберем тогда из каждого элемента  $\Sigma$  по одной точке. Получим не более чем счетное всюду плотное множество.
- Пусть S не более чем счетное всюду плотное множество. Тогда базой топологии можно назначить множество всевозможных шаров с центрами в точках S и радиусами  $\frac{1}{n}$ . Проверим, что это действительно база топологии. Для этого достаточно проверить, что  $\forall x \in X \ \forall U(x) \ \exists V \in \Sigma \colon \ x \in V \subset U.\ U$  открытое множество, поэтому x входит в него с некоторым шаром B(x,r). Пусть  $\frac{1}{n} < \frac{r}{2}$ , тогда поскольку S всюду плотно,  $\exists s \in S \colon \rho(x,s) < \frac{1}{n}$ . Проверим теперь, что  $x \in B\left(s,\frac{1}{n}\right) \subset U.\ x \in B$  потому, что  $\rho(x,s) < \frac{1}{n}$ , из неравенства треугольника нетрудно получить, что  $B \subset B(x,r) \subset U$ .

**Определение.** Покрытием X называется набор множеств  $\mathcal{A} \subseteq 2^X$  такой, что

$$\bigcup \mathcal{A} \supseteq X$$

Определение. Подпокрытием называется подмножество покрытия.

**Теорема 1.8.2.** (Линделёфа) В пространстве со счетной базой из любого открытого покрытия можно выбрать не более чем счетное подпокрытие.

Доказательство. Любой элемент покрытия представляется в виде объединения элементов базы. Для каждого элемента базы поймем, входит ли он в какое-то множество покрытия. Возьмем теперь для каждого элемента базы по одному элементу покрытия, в разложение которой он входит (если такой элемент есть). Получим покрытие, мощность которого не превосходит мощности базы, то есть, не более чем счетное.

### 1.9 Непрерывность

**Определение.** Отображение топологических пространств  $f: X \to Y$  называется *непрерывным*, если прообраз любого открытого множества открыт.

Замечание. Открытость в определении можно заменить на замкнутость.

**Замечание.**  $f: X \to Y$  непрерыно  $\iff \forall B \ f^{-1}(\operatorname{Int}(B)) \subseteq \operatorname{Int}(f^{-1}(B))$ .

Доказательство.

$$\implies f^{-1}(\operatorname{Int}(B)) = \operatorname{Int}(f^{-1}(\operatorname{Int}(B))) \subseteq \operatorname{Int}(f^{-1}(B))$$

 $\longleftarrow$  Пусть U открыто. Тогда  $f^{-1}(U) = f^{-1}(\operatorname{Int}(U)) \subseteq \operatorname{Int}(f^{-1}(U)) \subseteq f^{-1}(U)$ . Поэтому  $f^{-1}(U) = \operatorname{Int}(f^{-1}(U))$ , что и означает, что  $f^{-1}(U)$  открыто.

**Определение.** Отображение называется *открытым*, если образ открытого множества всегда открыт.

**Замечание.**  $f: X \to Y$  открыто  $\iff \forall A \ f(\operatorname{Int}(A)) \subseteq \operatorname{Int}(f(A))$ .

Доказательство. Аналогично подобному замечанию о непрерывных отображениях. ■

**Определение.** Пусть  $X \subset Y, X$  — подпространство Y, тогда отображение

$$in_{X\to Y}: X\to Y, in(x)=x$$

называется вложением X в Y.

Замечание. Вложение непрерывно.

**Теорема 1.9.1.** (Композиция непрерывных отображений)

Пусть  $f: X \to Y$ ,  $g: Y \to Z$  непрерывны. Тогда  $g \circ f: X \to Z$  непрерывно.

Доказательство. Пусть U открыто в Z. Тогда

$$(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U))$$

Открыто.

**Замечание.** Усиление и ослабление топологии оставляют непрерывные отображения непрерывными.

Теорема 1.9.2. (Непрерывность сужения)

Если  $f: X \to Y$  непрерывно,  $Z \subseteq X$  — подпространство X, тогда  $f \mid_Z$  непрерывно.

Доказательство.  $f \big|_Z = f \circ in_{Z \to X}$  непрерывно как композиция непрерывных отображений.

**Теорема 1.9.3.**  $f: X \to Y$  непрерывно  $\iff f(X) \subseteq Z \subseteq Y$ , тогда  $\hat{f}: X \to Z$ ,  $\hat{f}(x) = f(x)$  непрерывно.

Доказательство.

 $\longleftarrow f$  непрерывно как композиция:  $f = in_{Z \to Y} \circ \hat{f}$ .

 $\implies$  Пусть V открыто в Z. Тогда  $V=U\cap Z$ , где U открыто в Y. Поэтому

$$\hat{f}^{-1}(V) = f^{-1}(V) = f^{-1}(U \cap Z) = f^{-1}(U) \cap f^{-1}(Z) = f^{-1}(U)$$
 — открыто в  $X$ 

**Определение.**  $f: X \to Y$  непрерывно в  $x \in X$ , если

$$\forall U(f(x)) \exists V(x) : f(V) \subset U$$

**Теорема 1.9.4.**  $f: X \to Y$  непрерывно  $\iff \forall x \in X \ f$  непрерывно в x.

Доказательство.

- $\implies$  Для любой точки и ее окрестности U можно взять  $V=f^{-1}(U)$ .

$$x \in f^{-1}(U) \Longrightarrow \exists V(x) \colon f(V) \subset U \Longleftrightarrow V \subset f^{-1}(U) \Longrightarrow x$$
— внутренняя точка  $f^{-1}(U)$ 

**Теорема 1.9.5.** (Непрерывность в точке в терминах баз)

Пусть  $f:X\to Y$ ,  $\Sigma_x$  — база топологии в x,  $\Lambda_{f(x)}$  — база топологии в f(x). Тогда

$$f$$
 непрерывна в  $x \Longleftrightarrow \forall U \in \Lambda_{f(x)} \; \exists V \in \Sigma_x \colon f(V) \subset U$ 

Доказательство.

- $\Longrightarrow$  Пусть  $U\in \Lambda_{f(x)}$ , тогда  $f^{-1}(U)$  открыт, то есть в нем есть элемент базы  $\Sigma_x$ , что нам и нужно.
- = Пусть U открыто в Y, тогда в U есть базовая окрестность  $Λ_i \ni f(x)$ . Для этого элемента по посылке существует базовая окрестность  $Σ_i \ni x \colon f(Σ_i) \subseteq Λ_i$ . Эта  $Σ_i$  и подходит под определение непрерывности в точке.

**Определение.** Липшицевым называется отображение метрических пространств  $f: X \to Y$  такое, что  $\exists C: \forall x_1, x_2 \in X \ \rho_Y(f(x_1), f(x_2)) \leq C \cdot \rho_X(x_1, x_2)$ .

Теорема 1.9.6. Все липшицевы отображения непрерывны.

Доказательство. Зафиксируем базы топологий, состоящие из всевозможных шаров. Тогда

$$\forall \varepsilon > 0 \ \exists \delta = \frac{\varepsilon}{C} \colon f(B_{\delta}(x)) \subseteq B_{\varepsilon}(f(x))$$

Что по теореме о непрерывности в терминах баз дает непрерывность в любой точке, а значит, и непрерывность на X.

**Теорема 1.9.7.** Пусть  $f:\langle X,\Omega\rangle\to\langle Y,\Sigma\rangle,\ x\in X.$  Топологическому пространству  $\langle X,\Omega\rangle$  и точке x сопоставим топологическое пространство  $\langle X,\Omega^x\rangle$ :

$$\Omega^{x} = \{ \emptyset, A \mid \exists U(x) \subseteq A \}$$

Аналогично поступим и для Y и f(x). Тогда f можно понимать как отображение между этими топологическими пространствами  $\hat{f}$ . В таком случае, верно утверждение:

f непрерывно в  $x \iff \hat{f}$  непрерывно.

Доказательство.

 $\Longrightarrow$  Пусть множество  $B\subseteq Y$  открыто в  $\Sigma^{f(x)}$ . В таком случае,  $\exists V(f(x))\subseteq B$  открытое в  $\Sigma$ . Прообраз V открыт по предположению, что f непрерывно в точке, поэтому, раз

$$f^{-1}(V) \subseteq f^{-1}(B)$$

то множество  $f^{-1}(B)$  открыто в  $\Omega^x$ , что и требовалось.

**Следствие 1.9.8.** Пусть f непрерывно в x, g непрерывно в f(x). Тогда  $g \circ f$  непрерывно в x.

### 1.10 Гомеоморфизм

**Определение.** *Гомеоморфизмом* топологических пространств X и Y называют биективное в обе стороны непрерывное отображение этих пространств. Другими словами, отображение сопоставляет открытым множествам открытые (биективно). X и Y в таком случае называют *гомеоморфными*.

**Определение.**  $f: X \to Y$  называется *вложением* X в Y, если оно осуществляет гомеоморфизм между X и f(X).

**Определение.** Покрытие  $\Gamma$  пространства X называется  $\phi$ ун $\partial$ аментальным, если выполнено:

$$\forall A \subseteq X \ [\forall C \in \Gamma \ open_C(A \cap C) \Longrightarrow open_X(A)]$$

**Замечание.** В определении, как всегда, можно везде заменить открытость на замкнутость.

**Теорема 1.10.1.** Пусть  $\Gamma$  — фундаментальное покрытие  $X, f: X \to Y, \forall C \in \Gamma f|_{C}$  непрерывно, тогда f непрерывно на X.

Доказательство. Пусть U открыто в Y. Проверим, что  $f^{-1}(U)$  открыто в X:

$$\forall C \in \Gamma \ f^{-1}(U) \cap C = \left(f \mid_{C}\right)^{-1}(U)$$

Последнее множество открыто в C потому, что  $f|_{C}$  непрерывно. Тогда по самому определению фундаментального покрытия имеем, что  $f^{-1}(U)$  открыто.

#### Теорема 1.10.2.

- Все открытые покрытия фундаментальны.
- Все конечные замкнутые покрытия фундаментальны.
- Все локально конечные замкнутые покрытия фундаментальны.

#### Доказательство.

- $A \cap C$  открыто в C для всех  $C \in \Gamma$ , C открыто в X, поэтому  $A \cap C$  открыто в X. Раз так,  $A = \bigcup A \cap C$  открыто в X.
- Совершенно аналогично первому пункту (за исключением того, что пользуемся определением фундаментальности в терминах замкнутых множеств и того, что объединение только конечного числа замкнутых множеств замкнуто).
- За каждой точкой зафиксируем окрестность  $U_x$ , имеющую пересечение с конечным множеством множеств из  $\Gamma$ .  $U_x$  фундаментальное покрытие X (так как открытое). Пусть теперь  $\forall C \in \Gamma$   $A \cap C$  открыто в C. Тогда  $\forall C \in \Gamma$   $\forall x \in X$   $A \cap C \cap U_x$  открыто в  $C \cap U_x$  по определению индуцированной в  $C \cap U_x$  топологии. Тогда  $(A \cap C) \cap (C \cap U_x)$  открыто в  $C \cap U_x$ , где  $C \cap U_x$  образует конечное замкнутое покрытие  $U_x$  (по построению). Это покрытие фундаментально по второму пункту, поэтому по определению его фундаментальности,  $A \cap U_x$  открыто в  $U_x$ . Применяя снова определение фундаментальности, только уже к покрытию  $U_x$ , получаем открытость A.

## 1.11 Прямое произведение топологических пространств

**Определение.** Пусть  $\langle X, \Omega \rangle$ ,  $\langle Y, \Sigma \rangle$  — топологические пространства. Тогда их прямым произведением называется топологическое пространство с носителем  $X \times Y$ , база топологии которого состоит из всевозможных множеств вида

$$A \times B$$
,  $A \in \Omega$ ,  $B \in \Sigma$ 

**Лемма 1.11.1.** Только что определенная система множеств действительно является базой топологии. Для этого достаточно проверить (теорема 1.5.2), что пересечение элементов базы представляется в виде объединения элементов той же базы:

$$(A \times B) \cap (A' \times B') = (A \cap A') \times (B \cap B')$$

Здесь объединение состоит из одного элемента.

**Теорема 1.11.2.** Прямое произведение замкнутых *A*, *B* замкнуто в прямом произведении топологий. Замечание: прямое произведение открытых множеств открыто просто по определению.

Доказательство. Покажем, что  $(X \times Y) \setminus (A \times B)$  открыто:

$$(X \times Y) \setminus (A \times B) = (X \setminus A) \times Y \cap X \times (Y \setminus B)$$

**Замечание.** Пусть  $A \subseteq X$ ,  $B \subseteq Y$ . Тогда

- $Cl(A \times B) = Cl(A) \times Cl(B)$ .
- $Int(A \times B) = Int(A) \times Int(B)$ .

Доказательство. Докажем второе утверждение:

$$\operatorname{Int}(A \times B) = \bigcup_{\substack{open_{X \times Y}(C) \\ C \subseteq A \times B}} C = \bigcup_{\substack{open_{X \times Y}(A' \times B') \\ A' \times B' \subseteq A \times B}} A' \times B' = \bigcup_{\substack{A' \subseteq A \\ open_{X}(A')}} A' \times \bigcup_{\substack{B' \subseteq B \\ open_{Y}(B')}} B' = \operatorname{Int}(A) \times \operatorname{Int}(B)$$

Первый переход можно сделать, потому что любое открытое множество C представляется в виде объединения множеств из базы.

Определение. Отображение

$$pr_x: X \times Y \to X, (x, y) \mapsto x$$

называется проекцией  $X \times Y$  на X.

Теорема 1.11.3. Проекция непрерывна.

Доказательство. Пусть U открыто в X. Тогда  $pr_X^{-1}(U) = U \times Y$  — открыто в  $X \times Y$  по определению.

**Теорема 1.11.4.** Пусть X, Y, Z — топологические пространства,  $f: Z \to X \times Y$ , f = (g,h), где  $g: Z \to X$ ,  $h: Z \to Y$ . Тогда

$$f$$
 непрерывно  $\iff$   $g,h$  непрерывны

$$\implies g = pr_X \circ f, h = pr_V \circ f.$$

⇐ Достаточно проверить открытость прообраза на базовых множествах:

$$f^{-1}(U \times V) = g^{-1}(U) \cap h^{-1}(V)$$

**Следствие 1.11.5.** *Координатный слой* гомеоморфен X:

$$X \times \{y_0\} \simeq X$$

Доказательство. Установим гомеоморфизм

$$f: X \to X \times \{y_0\}, x \mapsto (x, y_0)$$

Тогда

$$f^{-1} = p r_X \big|_{X \times \{y_0\}}$$

И оба предъявленных отображения непрерывны.

**Теорема 1.11.6.** Пусть X — т.п.,  $f,g:X\to\mathbb{R}$  непрерывны. Тогда  $f+g,fg,\frac{f}{g}$  (при  $g\neq 0$ ) непрерывны.

Доказательство. Будем пользоваться тем, что арифметические операции непрерывны:

$$X \xrightarrow{(f,g)} \mathbb{R}^2 \xrightarrow{+} \mathbb{R}$$

Здесь отображение  $x \mapsto (f(x), g(x))$  непрерывно по последней теореме.

#### 1.12 Связность

**Определение.** *Связным* называется пространство, которое нельзя разбить на два непустых непересекающихся открытых (замкнутых) множества.

**Замечание.** Связность эквивалентна условию: не существует непрерывного сюрьективного отображения  $f: X \to \{0,1\}$ .

Доказательство.

- $\implies$  Если бы такое отображение существовало, X можно было бы разбить на открытые множества  $f^{-1}(\{1\})$  и  $f^{-1}(\{0\})$ . Они непусты, так как f сюрьективно.
- $\longleftarrow$  Предположим, что пространстно можно разбить на два открытых непустых нерересекающихся множества A, B. Тогда положим

$$f(x) = \begin{cases} 0, & x \in A \\ 1, & x \in B \end{cases}$$

Это отображение непрерывно и сюрьективно, потому что множества A и B открыты и непусты.

**Теорема 1.12.1.** Непрерывный образ связного пространства связен.

Доказательство. Предположим, что это не так, то есть  $f: X \to Y$ , X связно и f непрерывно, но f(X) несвязно. В таком случае, существует непрерывное сюрьективное отображение  $g: f(X) \to \{0,1\}$ . Но тогда отображение  $g \circ f$  непрерывно и сюрьективно, то есть X несвязно:

$$X \xrightarrow{f} f(X) \xrightarrow{g} \{0,1\}$$

**Теорема 1.12.2.** Отрезок [0, 1] связен.

Доказательство. Предположим обратное и разобъем отрезок на два непересекающихся замкнутых множества A и B. Предположим не ограничиваю общности, что  $0 \in A$ . Тогда пусть  $b = \inf B$ . Множества замкнуты, поэтому  $b \in B$  и  $b \neq 0$ . В таком случае  $[0,b) \subseteq A$ , из чего следует, что  $b \in A$ .

**Определение.** Множество  $Y \subseteq X$  называется *связным*, если оно связно как индуцированное топологическое пространство.

**Теорема 1.12.3.** (Характеризация связных множеств на прямой) На прямой связны только интервалы.

 $\implies$  Предположим, что интервал несвязен. Тогда возьмем соответствующее разбиение A, B и пересечем его с [a,b], где a, b взяты из интервала:

$$A' = A \cap [a, b]$$
$$B' = B \cap [a, b]$$

Тем самым мы получили, что [a, b] несвязен, чего быть не может.

Предположим, что Y — не интервал. Тогда по определению интервала сущестуют a, b, c такие, что  $(a,b) \subseteq Y$ ,  $c \notin Y$ . Тогда положим  $A = Y \cap (-\infty,c)$ ,  $B = Y \cap (c,+\infty)$  — разбиение Y (оба множества не пусты из-за наличия в них a и b соответственно). Поэтому Y несвязно.

**Теорема 1.12.4.** (О среднем значении) Пусть X — связное топологическое пространство,  $f: X \to \mathbb{R}$  непрерывно. Тогда  $\forall a, b \in f(X) \ [a, b] \subseteq f(X)$ .

Доказательство. f(X) связно в  $\mathbb{R}$ , поэтому является интервалом, откуда незамедлительно следует утверждение теоремы.

**Лемма 1.12.5.** Замыкание связного множества связно.

Доказательство. Предположим обратное и разобъем замыкание на два непересекающихся непустых открытых в замыкании множества:  $Cl(A) = U \cup V$ . Положим

$$U' = A \cap U$$
$$V' = A \cap V$$

Эти множества открыты в A по определению индуцированной из Cl(A) топологии. Осталось только проверить, что эти множества непусты. Пусть  $p \in U \subseteq A$ , поэтому p — точка прикосновения A, что дает  $\forall U(p)\ U(p) \cap A \neq \emptyset$ , откуда U' непусто. Аналогично получаем, что V' непусто.

**Теорема 1.12.6.** Объединение попарно пересекающихся связных множеств связно.

Доказательство. Пусть  $A = \bigcup A_i$  несвязно, тогда разобъем его:  $A = U \cup V$ . Пусть теперь  $p \in U$ ,  $p \in A_i$ ,  $q \in V$ ,  $q \in A_j$ . Поскольку  $A_i$  связно,  $A_i \cap V = \emptyset$  (иначе бы получилось разбиение  $A_i = (A_i \cap U) \cup (A_i \cap V)$ ). Аналогично  $A_j \cap U = \emptyset$ , откуда  $A_i \cap A_j = \emptyset$ , что противоречит условию.

**Определение.** *Компонентой связности* точки p называется объединение всех связных множеств, содержащих p.

**Лемма 1.12.7.** (Свойства компонент связности)

- Компоненты связности замкнуты.
- Компоненты связности не пересекаются, то есть X разбивается на компоненты связности.

•  $p \sim q \iff \exists$  связное  $A: p \in A, q \in A$  — отношение эквивалентности.

Доказательство.

- Множество всегда можно замкнуть увеличив его (если оно не замкнуто) и сохранив при этом связность.
- Если бы компоненты пересекались, их можно было бы объединить в одну, сохранив связность и увеличив при этом множество.
- Следует из предыдущих утверждений.

#### 1.13 Компактность

**Определение.** Топологические пространство называется *компактным*, если из любого его открытого покрытия можно выбрать конечное подпокрытие.

**Теорема 1.13.1.** Отрезок в  $\mathbb{R}$  компактен.

Доказательство. Предположим противное: пусть  $U_i$  — покрытие отрезка открытыми множествами, из которого нельзя выбрать конечное. Разделим отрезок пополам. Для одной из половин нельзя будет выбрать конечное покрытие. Заменим отрезок на эту половину и продолжим этот процесс (отрезок на k-м шаге обозначим  $I_k$ ). Из аксиомы Кантора найдется точка  $p \in \bigcap I_k$ . Пусть  $p \in U_{i_0}$ , тогда при больших k получаем, что  $I_k \subseteq U_{i_0}$ , что дает конечное покрытие для  $I_k$ .

Теорема 1.13.2. Любое замкнутое подмножество компакта — компакт.

Доказательство. Пусть  $A \subseteq X$  замкнуто,  $U_i$  — открытое покрытие A. Тогда  $U_i \cup \overline{A}$  — открытое покрытие X. Выберем из него конечное подпокрытие (X компакт). Выкинем из этого подпокрытия  $\overline{A}$ , если оно туда попало. Получим конечное подпокрытие для A.

Замечание. Конечное объединение компактов компакт.

**Теорема 1.13.3.** Прямое произведение компактов компакт.

Доказательство. Для доказательства достаточно рассмотреть покрытие  $X \times Y$  базовыми окрестностями  $U \times V$ .  $Y \simeq \{x_0\} \times Y$  — компакт, поэтому можно выбрать конечное подпокрытие этого множества:

$$\{x_0\} \times Y \subseteq \bigcup_{k=1}^n U_k \times V_k$$

Рассмотрим теперь покрытие X множествами  $W_{x_0} = \bigcap_{k=1}^n U_k$ , где  $U_k$  взяты из покрытия соответствующего  $\{x_0\} \times Y$ . Выберем из получившегося покрытия конечное:

$$X \subseteq \bigcup_{k=1}^m W_{x_k}$$

Получается, что  $\forall x \in X \ W_x \times Y$  покрывается конечным набором множеств покрытия, поэтому

$$X\times Y\subseteq \bigcup_{k=1}^m W_{x_k}\times Y$$

Есть конечное покрытие  $X \times Y$ .

**Теорема 1.13.4.** (Характеризация компактов в  $\mathbb{R}^m$ )

В  $\mathbb{R}^m$  компактность равносильна замкнутости и ограниченности.

Доказательство.

- ⇒ Накроем компакт всевозможными шарами, вытащим оттуда конечное покрытие, получит ограниченность. Замнкутость доказывается в следующей теореме.
- $\longleftarrow$  По последней теореме имеем, что [a, b] компактен в  $\mathbb{R}^m$ . Любое ограниченное множество можно вписать в подобный параллелепипед, поэтому это множество замкнутое подмножество компакта, то есть компакт.

**Теорема 1.13.5.** В хаусдорфовом пространстве компакты замкнуты.

Доказательство. Докажем открытость дополнения компакта K. Пусть  $x \notin K$ . Покажем, что x входит в  $K^c$  с некоторой окрестностью. Для каждой точки  $y \in K$  из хаусдорфовости построим окрестности

$$\exists U(y), U(x): U(y) \cap U(x) = \emptyset$$

U(y) образуют конечное покрытие K. Выберем из него конечное:

$$K \subseteq \bigcup_{k=1}^n U(y_k)$$

Тогда  $\bigcap U_k(x)$  открыто как конечное пересечение открытых, причем по построению  $\bigcap U_k(x) \cap K = \emptyset$ , поэтому x лежит в  $K^c$  с этой окрестностью.

Теорема 1.13.6. Любое хаусдорфово компактное пространство регулярно.

Теорема 1.13.7. Любое хаусдорфово компактное пространство нормально.

Доказательство. Последние две теоремы доказываются по очереди так же, как и теорема о замкнутости, только в каждой следующей теореме надо пользоваться предыдущей. ■

#### **Теорема 1.13.8.** (Вейерштрасс)

Пусть X — хаусдорфово топологическое пространство,  $f: X \to \mathbb{R}$  непрерывно, тогда  $\exists \max f, \min f$ .

Теорема 1.13.9. Теперь очевидно.

**Теорема 1.13.10.** Пусть X — компакт, Y — хаусдорфово т.п.,  $f: X \to Y$  — непрерывная биекция, тогда f гомеоморфизм.

Доказательство. Все, что надо доказать, чтобы f стало гомеоморфизмом, это то, что  $f^{-1}$  непрерывно. Проверим, что под действием  $f^{-1}$  прообразы замкнутых множеств замкнуты. Пусть  $A \subseteq X$  — замкнуто, то есть и компактно. Прообраз этого множества под действием  $f^{-1}$  в точности совпадает с f(A) — непрерывным образом компакта, то есть компактом, то есть замкнутым множеством, что и требовалось.

**Следствие 1.13.11.** Непрерывное инъективное отображение компакта в хаусдорфово пространство всегда является топологическим вложением.