Quiz 9: Self Attention Layer

Please enter your name: *

НМ

The Self Attention Layer: Description

We would like to learn contextual embeddings for the words in "Tom a été entarté cet été".

In order to use the attention mechanism, we define the projections of the embeddings (X^t) onto the d_q-dimensional query space, d_k-dimensional key space and d_v-dimensional value space:

$$\mathbb{R}^{d_q} \ni q^t = W_Q^T X^t$$

$$\mathbb{R}^{d_k} \ni k^t = W_K^T X^t$$

$$\mathbb{R}^{d_v} \ni v^t = W_V^T X^t$$

What is the shape of W_Q 1 point $W_Q \in \mathbb{R}^{D imes d_q}$ $W_Q \in \mathbb{R}^{d_q imes D}$ (a) (b)

What condition should be satisfied to calculate the scaled dot product alignment function used in Section 1

 $d_q = d_k$

(a)

 $d_q = d_v$

(c)

 $d_v = d_k$

(b)

Which expression is correct if we use the scaled dot product as an alignment function and the softmax as the distribution function?

1 point

$$A\left(q^3, \{k^{t'}, v^{t'}\}_{1 \leq t' \leq T}\right) = \sum_{t=1}^T \frac{\exp(\frac{q^1.k^t}{\sqrt{d_k}})}{\sum_{t'=1}^T \exp(\frac{q^1.k^{t'}}{\sqrt{d_k}})} v^t$$

 $A\left(q^{3},\{k^{t'},v^{t'}\}_{1 \leq t' \leq T}\right) = \sum_{t=1}^{T} \frac{\exp(\frac{q^{t},k^{t}}{\sqrt{d_{k}}})}{\sum_{t'=1}^{T} \exp(\frac{q^{t},k^{t'}}{\sqrt{d_{k}}})} v^{t}$

(a)

(b)

$$A\left(q^3, \{k^{t'}, v^{t'}\}_{1 \leq t' \leq T}\right) = \sum_{t=1}^T \frac{\exp(q^t, k^t)}{\sum\limits_{t'=1}^T \exp(q^t, k^{t'})} v^t$$

(c)

What is the interpretation of the attention vector:

1 point

$$A\left(q^3,\{k^{t'},v^{t'}\}_{1\leq t'\leq T}
ight)$$

- It represents the contextual embedding of the word "été" in the first position
- It represents the contextual embedding of the word "été" in the second position
- It represents the contextual embedding of the word "été" in both positions

will have the highest value ?	estion "What happened to Tom ?". Which attention weight 1 poin
$lpha_1$	$lpha_4$
(a)	(b)
$lpha_T$	
(c)	

Suppose the query q^3 represents the question "When does that happen to Tom ?". Which attention 1 point weight will be the highest? $lpha_1$ α_4 (a) (b) α_T (c)

Let N be the batch size. After applying the Self Attention Layer to the whole batch, what is the 1 point change in the tensor shape?

$$(N,T,D) o (N,T,d_q)$$

 $(N,T,D) o (N,T,d_v)$

(a)

(b)

$$(N,T,D) o (N,d_k)$$

(c)

The Learning Process

What are the parameters of the previous layer?

1 point

 W_Q, W_K, W_V

 $\{q^t, k^t, v^t\}_{1 \leq t \leq T}$

(a)

(b)

 $\{q_i,k_i,v_i\}_{1\leq i\leq n}$

(c)

$D(d_q+d_k+d_v)$	$d_q+d_k+d_v$
(a)	(b)

Does the Self Attention Layer take into account the sequentiality of the data?

1 point

This content is neither created nor endorsed by Google.

Google Forms