1.	Al realizar una regresión logística en el análisis de sentimiento, representó cada tweet como un vector de unos y ceros. Sin embargo, su modelo no funcionó bien. Su costo de capacitación fue razonable, pero su costo de prueba simplemente no fue aceptable. ¿Cuál podría ser una posible razón?	1 / 1 punto
	Las representaciones vectoriales son escasas y, por lo tanto, es mucho más difícil para su modelo aprender algo que pueda generalizarse bien al conjunto de prueba.	
	O Probablemente necesite aumentar el tamaño de su vocabulario porque parece que tiene muy pocas funciones.	
	La regresión logística no funciona para el análisis de sentimientos y, por lo tanto, debe buscar otros modelos.	
	Las representaciones dispersas requieren una buena cantidad de tiempo de entrenamiento, por lo que debe entrenar su modelo durante más tiempo.	
2.	¿Cuáles de los siguientes son ejemplos de preprocesamiento de texto?	1 / 1 punto
	Stemming, o el proceso de reducir una palabra a su raíz de palabra.	
	Minúsculas, que es el proceso de eliminar cambiar todas las letras mayúsculas a minúsculas.	
	Eliminación de palabras vacías, puntuación, identificadores y URL	
	Agregar nuevas palabras para asegurarse de que todas las oraciones tengan sentido	
3.	La función sigmoidea se define como $h\left(x^{(yo)}, yo\right) = \frac{1}{1 + y^{-yo^T x^{(yo)}}}$. Cual de los siguientes es verdadero.	1 / 1 punto
	Grandes valores positivos $\det^T X^{(yo)}$ hará h ($x^{(yo)}, yo$)más cerca de 1 y grandes valores negativos $\det^T X^{(yo)}$ hará h ($x^{(yo)}, yo$)cerca de -1.	
	⊚ Grandes valores positivos de $i^T X^{(yo)}$ hará $h(x^{(yo)}, yo)$ más cerca de 1 y grandes valores negativos de $i^T X^{(yo)}$ hará $h(x^{(yo)}, yo)$ cerca de 0.	
	O Pequeños valores positivos $\det^T X^{(yo)}$ hará $h(x^{(yo)}, yo)$ más cerca de 1 y grandes valores positivos $\det^T X^{(yo)}$ hará $h(x^{(yo)}, yo)$ cerca de 0.	
	O Pequeños valores positivos $\det^T X^{(yo)}$ hará $h(x^{(yo)},yo)$ más cerca de 0 y grandes valores negativos $\det^T X^{(yo)}$ hará $h(x^{(yo)},yo)$ cerca de -1.	
4.	La función de costo para la regresión logística se define como $J(\theta) = -\frac{1}{metro} \sum_{yo=1}^{metro} \left[y^{(yo)} \text{ iniciar sesión } h(X^{(yo)}, yo) + (1-y^{(yo)}) \text{ iniciar sesión } (1-h(X^{(yo)}, yo)) \right]$. ¿Cuál de las siguientes es cierta sobre la función de costo anterior? Marca todas las correctas.	1 / 1 punto

	© Correcto Esto es correcto.	
	\square Cuando $y^{(yo)} = 1$, como $h(x^{(yo)}, yo)$ se acerca a 0, la función de costo se aproxima 0.	
	Cuando $y^{(yo)} = 0$, como $h(x^{(yo)}, yo)$ se acerca a 0, la función de costo se aproxima 0 .	
	✓ CorrectoEsto es correcto.	
	☐ Cuando $y^{(yo)} = 0$, como $h(x^{(yo)}, yo)$ se acerca a 0, la función de costo se aproxima ∞ .	
5.	¿Por qué valor $\det^T X$ en la función sigmoidea hace $h\left(x^{(yo)}, yo\right) = 0.5$.	1 / 1 punto
	0	
•	Cologgiano todos los que corresponden. Al realizar una regresión logístico para el gnélicio de continientes utilizando el método.	
0.	Seleccione todas las que correspondan. Al realizar una regresión logística para el análisis de sentimientos utilizando el método enseñado en la lección de esta semana, debe:	1 / 1 punto
	Realización de procesamiento de datos.	
	Cree un diccionario que mapee la palabra y la clase en la que se encuentra esa palabra con la cantidad de veces que esa palabra se encuentra en la clase.	
	Cree un diccionario que mapee la palabra y la clase en la que se encuentra esa palabra para ver si esa palabra aparece en la clase.	
	Para cada tweet, debe crear una función positiva con la suma de recuentos positivos de cada palabra en ese tweet. También debe crear una función negativa con la suma de los recuentos negativos de cada palabra en ese tweet.	
-	Al antenna la regresión la rística, delta gallinar las circuisates appresiones en el arden descodo	
1.	Al entrenar la regresión logística, debe realizar las siguientes operaciones en el orden deseado.	1 / 1 punto
	 Inicializar parámetros, obtener gradiente, clasificar/predecir, actualizar, obtener pérdida, repetir Inicializar parámetros, clasificar/predecir, obtener gradiente, actualizar, obtener pérdida, repetir 	
	Inicializar parámetros, obtener gradiente, actualizar, clasificar/predecir, obtener pérdida, repetir	
	Inicializar parámetros, obtener gradiente, actualizar, obtener pérdida, clasificar/predecir, repetir	
	© Correcto Esto es correcto.	

8. Suponiendo que obtuvimos la clasificación correcta, donde $y^{(yo)} = 1$ para algún ejemplo específico i. Esto significa que $h\left(x^{(yo)}, yo\right) > 0.5$. ¿Cuál de los siguientes tiene que cumplir:

1 / 1 punto

	correspondiente $y^{(yo)}$.
(Nuestra predicción, $h\left(x^{(yo)},yo\right)$ para este ejemplo de entrenamiento específico es menor que $(1-y^{(yo)})$.
(Nuestra predicción, $h(x^{(yo)},yo)$ para este ejemplo de entrenamiento específico es menor que $(1-h(x^{(yo)},yo))$.
(Nuestra predicción, $h(x^{(yo)}, yo)$ para este ejemplo de entrenamiento específico es mayor que $(1 - h(x^{(yo)}, yo))$.
	Correcto Esto es correcto.
9. (¿Cuál es el propósito del descenso de gradiente? Seleccione todas las que correspondan.
١	✓ El descenso de gradiente nos permite aprender los parámetros. i en regresión logística para minimizar la función de pérdida J.
(El descenso de gradiente nos permite aprender los parámetros. ien regresión logística para maximizar la función de pérdida J.
(Descenso de gradiente, $grad_theta$ nos permite actualizar los parámetros i por computación $i = i - a * g r a d _ t h e t a$
	✓ CorrectoEsto es correcto.
(Descenso de gradiente, $grad_theta$ nos permite actualizar los parámetros i por computación $i = i + a * g r a d _ t h e t a$
	¿Cuál es una buena métrica que le permite decidir cuándo dejar de entrenar/tratar de obtener un buen modelo? Seleccione todas las que correspondan.
	Cuando su precisión es lo suficientemente buena en el conjunto de prueba.
	♥ Correcto Esto es correcto.
	Cuando tu precisión es lo suficientemente buena en el juego de trenes.
	Cuando traza el costo versus (# de iteraciones) y ve que su pérdida está convergiendo (es decir, ya no cambia tanto).
	\square Cuando a , el tamaño de su paso no es ni demasiado pequeño ni demasiado grande.