Topic 2: Classification

Eric B. Laber

Department of Statistical Science, Duke University

Statistics 561

On choices

I'd rather be rich than stupid.
—Pierre-Joseph Proudhon

On having to cover classification in two lectures

I needed to think last night. So I galloped into a wooded glen, and after punch dancing out my rage and suffering an extremely long and very painful fall, I realized what has to be done.

-Rod

Warm-up (5 minutes)

- Explain to your group
 - ▶ What is classification? What are come canonical examples?
 - What is the separability problem?
 - What is zero-one loss?
- True or false
 - Regression is a misnomer in 'logistic regression'
 - Classification is in the "inner loop" of many RL algorithms
 - McDonald's is the most prevalent fast-food chain in NC

Classification: quick overview

- Input-output pairs where output is one of finitely many categories
 - High-risk v low-risk for complications in surgery
 - Spam v not spam
 - Handwritten digit recognition
- Example from sex-trafficking classification problem

Setup: binary classification

- ▶ Observe $\{(X_i, Y_i)\}_{i=1}^n$ comprising i.i.d. draws from P
 - ▶ Inputs: $X \in \mathbb{R}^p$
 - Outputs: $Y \in \{-1,1\}$, aka, label
- ▶ Classifier $c: \mathbb{R}^p \to \{-1,1\}$ so that $c(\mathbf{x})$ is the predicted label at input $\mathbf{X} = \mathbf{x}$

0-1 loss

▶ Natural measure of classification performance is 0-1 loss

$$\ell_0(\mathbf{x}, y; c) \triangleq 1_{y \neq c(\mathbf{x})}$$

so that the expected loss (risk) is

$$\tau(c) \triangleq P\ell_0(\boldsymbol{X}, Y, c) = P1_{Y \neq c(\boldsymbol{X})} = P\{Y \neq c(\boldsymbol{X})\}$$

▶ E.g., linear classifier $c(\mathbf{x}; \boldsymbol{\beta}) = \operatorname{sign}(\mathbf{X}^{\mathsf{T}} \boldsymbol{\beta})$ which has loss

$$\tau(\boldsymbol{\beta}) \triangleq P1_{Y \neq \operatorname{sign}(\boldsymbol{X}^{\mathsf{T}}\boldsymbol{\beta})} = P1_{Y\boldsymbol{X}^{\mathsf{T}}\boldsymbol{\beta} < 0}$$

Bayes classifier

Let $\mathcal C$ be class of all (msbl) maps from $\mathbb R^p$ into $\{-1,1\}$ and

$$c^{ ext{opt}} = \arg\min_{c \in \mathcal{C}} au(c) = \arg\min_{c \in \mathcal{C}} P\left\{Y
eq c(oldsymbol{X})
ight\}$$

then

$$c^{ ext{opt}}({m{x}}) = \left\{ egin{array}{ll} 1 & ext{if } P(Y=1|{m{X}}={m{x}}) \geq 1/2 \ -1 & ext{otherwise} \end{array}
ight.$$

i.e.,
$$c^{\text{opt}}(x) = \text{sign} \{2q(x) - 1\} \text{ w} / q(x) \triangleq P(Y = 1 | X = x)$$

Probabilistic classifiers

- Natural approach to classification is to estimate construct an estimator $\widehat{q}_n(\mathbf{x})$ of $q(\mathbf{x}) = P(Y = 1 | \mathbf{X} = \mathbf{x})$
- Logistic regression posits a model of the form

$$q(\mathbf{x}; \mathbf{\beta}^*) = \operatorname{expit}(\mathbf{x}^{\mathsf{T}} \mathbf{\beta}^*) = \frac{\operatorname{exp}(\mathbf{x}^{\mathsf{T}} \mathbf{\beta}^*)}{1 + \operatorname{exp}(\mathbf{x}^{\mathsf{T}} \mathbf{\beta}^*)}$$

Derive log-likelihood for logistic regression

In-class exercise (5 min)

► In your group derive a stochastic gradient descent algorithm for logistic regression: then on to logistic_regression.R

Separability problem

- ► If classes linearly separable estimates diverge
- ► Use ridge with logistic regression¹
- Penalized negative log-likelihood (0-1 coding for simplicity)

$$\ell_n(\boldsymbol{\beta}) = -\mathbb{P}_n\left[\boldsymbol{X}^{\mathsf{T}}\boldsymbol{\beta}\boldsymbol{Y} + \{1 - q(\boldsymbol{X}; \boldsymbol{\beta})\}\right] + \lambda||\boldsymbol{\beta}||^2$$

differentiate wrt β to obtain

$$-\mathbb{P}_n \mathbf{X} \{Y - q(\mathbf{X}; \boldsymbol{\beta})\} + 2\lambda \boldsymbol{\beta}$$

¹That's right, I'm stating this without qualification of any kind. What's it to you? That's what I thought.

Large-margin classifiers

- ▶ Decision boundary $\{x : q(x) = 1/2\}$
- ▶ Don't need P(Y|X = x) just sign $\{2q(x) 1\}$, i.e., we don't need to know the boundary just which side we're on
- ▶ Idea! Construct loss functions that penalize distance from correct side of boundary

Surrogate loss functions: laber draws a picture

Surrogate loss functions

- Common surrogate loss functions include
 - ► Squared error loss: $\ell(\mathbf{x}, y; \boldsymbol{\beta}) = (1 y\mathbf{x}^{\mathsf{T}}\boldsymbol{\beta})^2$
 - ► Exponential loss: $\ell(\mathbf{x}, y; \boldsymbol{\beta}) = \exp(-y\mathbf{x}^{\mathsf{T}}\boldsymbol{\beta})$
 - ► Hinge loss: $\ell(\mathbf{x}, y; \boldsymbol{\beta}) = (1 y\mathbf{x}^{\mathsf{T}}\boldsymbol{\beta})_+$
 - ► Logistic loss: $\ell(\mathbf{x}, y : \boldsymbol{\beta}) = \log \{1 + \exp(-y\mathbf{x}^{\mathsf{T}}\boldsymbol{\beta})\}$
- Can also consider penalized versions of these loss functions

Nice and relaxing derivation

▶ Show $\widehat{\boldsymbol{\beta}}_n = \arg\min_{\boldsymbol{\beta}} \mathbb{P}_n \log \{1 + \exp(-Y\boldsymbol{X}^{\mathsf{T}}\boldsymbol{\beta})\}$ recovers the logistic regression estimator

Statistical inference

- Convexity buys you a lot, many derivations much simpler
- High-level overview of assumptions
 - (A1) $\ell(\mathbf{x}, y; \boldsymbol{\beta})$ is convex in $\boldsymbol{\beta}$ for each (\mathbf{x}, y)
 - (A2) $Q(\beta) = P\ell(X, Y; \beta)$ exists and is finite for all β
 - (A3) $\boldsymbol{\beta}^* = \operatorname{arg\,min} Q(\boldsymbol{\beta})$ exists an is unique
 - (A4) $Q(\beta)$ is twice continuously differentiable in a nbrhd of β^* and $H = \nabla^2 Q(\beta^*)$ is positive definite

Theorem

Assume (A1)-(A4) and let $\Omega = P\nabla \ell(\pmb{X},Y;\pmb{\beta}^*)\nabla \ell(\pmb{X},Y;\pmb{\beta}^*)^\intercal$ then

$$\sqrt{n}(\widehat{\boldsymbol{\beta}}_n - \boldsymbol{\beta}^*) \rightsquigarrow \text{Normal}(0, H^{-1}\Omega H^{-1}).$$

Statistical inference cont'd

- Asymptotic normality \Rightarrow we can use standard methods of inference for β^* as in the regression case, e.g., Wald-type intervals etc.
- Unlike regression case, measures of performance are not well-behaved
- Recall our measures of performance
 - ▶ Population-level error: $R \triangleq P1_{YX^T\beta^* < 0}$
 - ► Conditional error: $C(\widehat{\boldsymbol{\beta}}_n) \triangleq P1_{Y\boldsymbol{X}^{\mathsf{T}}\widehat{\boldsymbol{\beta}}_n < 0}$
 - ▶ Average error: $A_n \triangleq \mathbb{E}C(\widehat{\beta}_n)$

Comparing measures of performance

► Fact: the three measures of performance need not coincide even in infinite samples

Thank you.

eric.laber@duke.edu

laber-labs.com

