CONSTANTES

Constante de Avogadro = $6.02 \times 10^{23} \text{ mol}^{-1}$ Constante de Faraday (F) = $9.65 \times 10^4 \text{ C mol}^{-1}$ Volume molar de gás ideal = 22.4 L (CNTP)Carga elementar = $1.602 \times 10^{-19} \text{ C}$

Constante dos gases (R) = 8.21×10^{-2} atm L K⁻¹ mol⁻¹ = 8.31 J K^{-1} mol⁻¹ = $62.4 \text{ mmHg L K}^{-1}$ mol⁻¹ = $1.98 \text{ cal mol}^{-1}$ K⁻¹

DEFINIÇÕES

Condições normais de temperatura e pressão (CNTP): 0 °C e 760 mmHg.

Condições ambientes: 25 °C e 1 atm.

Condições-padrão: 25 °C, 1 atm, concentração das soluções: 1 mol L⁻¹ (rigorosamente: atividade unitária das espécies), sólido com estrutura cristalina mais estável nas condições de pressão e temperatura em questão.

(s) ou (c) = sólido cristalino; (l) = (ℓ) = líquido; (g) = gás; (aq) = aquoso; (CM) = circuito metálico; [A] = concentração da espécie química A em mol L⁻¹ e (ua) = unidades arbitrárias.

MASSAS MOLARES

Elemento Químico	Número Atômico	Massa Molar (g mol ⁻¹)	Elemento Químico	Número Atômico	Massa Molar (g mol ⁻¹)
H	1	1,01	Ti	22	47,88
C	6	12,01	Cr	24	52,00
N	7	14,01	Mn	25	54,94
O	8	16,00	Fe	26	55,85
F	9	19,00	Zn	30	65,37
Na	11	22,99	Br	35	79,91
Al	13	26,98	Ag	47	107,87
Si	14	28,09	Sb	51	121,75
P	15	30,97	I	53	126,90
S	16	32,06	Xe	54	131,30
Cl	17	35,45	Ba	56	137,34
Ar	18	39,95	Pt	78	195,09
K	19	39,10	Hg	80	200,59
Ca	20	40,08	Pb	82	207,21

As questões de **01 a 20 NÃO devem ser resolvidas no caderno de soluções**. Para respondê-las, marque a opção escolhida para cada questão na **folha de leitura óptica** e na **reprodução da folha de leitura óptica** (que se encontra na última página do caderno de soluções).

Questão 1. O abaixamento da temperatura de congelamento da água numa solução aquosa com concentração molal de soluto igual a 0,100 mol kg⁻¹ é 0,55 °C. Sabe-se que a constante crioscópica da água é igual a 1,86 °C kg mol⁻¹. Qual das opções abaixo contém a fórmula molecular **CORRETA** do soluto?

$$\begin{array}{lll} \textbf{A}\,(\,\,) & \left[\, \text{Ag}\,(\text{NH}_3) \,\right] \text{Cl} \,. & \textbf{B}\,(\,\,) & \left[\, \text{Pt}\,\big(\text{NH}_3\big)_4 \, \text{Cl}_2 \,\right] \text{Cl}_2 \,. & \textbf{C}\,(\,\,) & \text{Na}\,\big[\, \text{Al}\,\big(\text{OH}\big)_4 \,\big] \,. \\ \textbf{D}\,(\,\,) & K_3 \, \left[\, \text{Fe}\,\big(\text{CN}\big)_6 \,\right] \,. & \textbf{E}\,(\,\,) & K_4 \, \left[\, \text{Fe}\,\big(\text{CN}\big)_6 \,\right] \,. \end{array}$$

Questão 2. Qual das opções apresenta uma substância que ao reagir com um agente oxidante ([O]), em excesso, produz um ácido carboxílico?

 ${f A}$ () 2-propanol. ${f B}$ () 2-metil-2-propanol. ${f C}$ () ciclobutano. ${f D}$ () propanona. ${f E}$ () etanol.

Questão 3. Uma solução líquida é constituída de 1,2-dibromo etileno (C₂H₂Br₂) e 2,3-dibromo propeno (C₃H₄Br₂). A 85 °C, a concentração do 1,2-dibromo etileno nesta solução é igual a 0,40 (mol/mol). Nessa temperatura as pressões de vapor saturantes do 1,2-dibromo etileno e do 2,3-dibromo propeno puros são, respectivamente, iguais a 173 mmHg e 127 mmHg. Admitindo que a solução tem comportamento ideal, é **CORRETO** afirmar que a concentração (em mol/mol) de 2,3-dibromo propeno na fase gasosa é igual a

A() 0,40. B() 0,42. C() 0,48. D() 0,52. E() 0,60.

Questão 4.	Uma mistura	de azoteto	de sódio,	$NaN_3(c)$, e	de óxido	de ferro (II	I), $Fe_2O_3(c)$, submetida	a uma	centelha
elétrica reage n	nuito rapidame	nte produzi	ndo, entre	outras substând	cias, nitro	gênio gasoso	e ferro metáli	co. Na reação	entre o	azoteto
de sódio e o óx	ido de ferro (II	I) misturado	os em prop	orções estequio	métricas,	a relação (er	n mol/mol) N	$_{2}(g)/Fe_{2}O$	(c) é i	igual a

$$A() \frac{1}{2}$$
.

$$C() \frac{3}{2}$$
. $D() 3$.

Questão 5. Uma determinada substância cristaliza no sistema cúbico. A aresta da célula unitária dessa substância é representada por z, a massa específica por μ e a massa molar por M. Sendo Nav igual ao número de Avogadro, qual é a expressão algébrica que permite determinar o número de espécies que formam a célula unitária desta substância?

$$\mathbf{A}\,(\)\ \frac{z^3\ \mu}{\overline{M}}\,.$$

$$\mathbf{B}(\)\ \frac{\mathbf{z}^3\ \mathbf{\dot{\overline{M}}}}{\mu}.$$

$$C()\frac{z^3}{\mu}$$
.

$$\mathbf{C}(\) \ \frac{\mathbf{z}^3}{\mu}.$$
 $\mathbf{D}(\) \ \frac{\mathbf{z}^3 \ \overline{\mathbf{M}} \ \mathrm{Nav}}{\mu}.$ $\mathbf{E}(\) \ \frac{\mathbf{z}^3 \ \mu \ \mathrm{Nav}}{\overline{\mathbf{M}}}.$

$$\mathbf{E}(\)\ \frac{\mathbf{z}^3\ \mu\ \text{Nav}}{\overline{\mathbf{M}}}$$

Questão 6. Sabendo que o estado fundamental do átomo de hidrogênio tem energia igual a - 13,6 eV, considere as seguintes afirmações:

- I. O potencial de ionização do átomo de hidrogênio é igual a 13.6 eV.
- A energia do orbital 1s no átomo de hidrogênio é igual a -13,6 eV.
- III. A afinidade eletrônica do átomo de hidrogênio é igual a -13,6 eV.
- IV. A energia do estado fundamental da molécula de hidrogênio, H₂(g), é igual a (2 x 13,6) eV.
- A energia necessária para excitar o elétron do átomo de hidrogênio do estado fundamental para o orbital 2s é menor do que 13.6 eV.

Das afirmações feitas, estão ERRADAS

A () apenas I, II e III.

B() apenas I e III.

C () apenas II e V.

D() apenas III e IV. **E**() apenas III, IV e V.

Questão 7. Qual das substâncias abaixo apresenta o menor valor de pressão de vapor saturante na temperatura ambiente?

A() CCl₄.

 $\mathbf{B}()$ CHCl₃. $\mathbf{C}()$ C₂Cl₆. $\mathbf{D}()$ CH₂Cl₂. $\mathbf{E}()$ C₂H₅Cl.

Questão 8. Considere as seguintes espécies químicas no estado gasoso, bem como os respectivos átomos assinalados pelos algarismos romanos:

Os orbitais híbridos dos átomos assinalados por I, II, III e IV são respectivamente:

A() sp², sp³, dsp³ e d²sp³.

 \mathbf{B} () sp^2 , sp^2 , sp^3 e dsp^3 .

C() sp³, dsp³, d²sp³ e sp³.

 \mathbf{D} () sp³, sp², dsp³ e d²sp³.

 \mathbf{E} () sp, dsp^3 , sp^3 e dsp^3 .

Questão 9. Na pressão de 1 atm, a temperatura de sublimação do CO₂ é igual a 195 K. Na pressão de 67 atm, a temperatura de ebulição é igual a 298 K. Assinale a opção que contém a afirmação CORRETA sobre as propriedades do CO₂.

- A pressão do ponto triplo está acima de 1 atm.
- A temperatura do ponto triplo está acima de 298 K.
- A uma temperatura acima de 298 K e na pressão de 67 atm, tem-se que o estado mais estável do CO₂ é o líquido.
- Na temperatura de 195 K e pressões menores do que 1 atm, tem-se que o estado mais estável do CO₂ é o sólido.
- Na temperatura de 298 K e pressões maiores do que 67 atm, tem-se que o estado mais estável do CO₂ é o gasoso.

Questão 10. Considere os equilíbrios químicos abaixo e seus respectivos valores de pK (pK = -log K), válidos para a temperatura de 25 °C (K representa constante de equilíbrio químico).

Na temperatura de 25 °C e numa razão de volumes ≤ 10, misturam-se pares de soluções aquosas de mesma concentração. Assinale a opção que apresenta o par de soluções aquosas que ao serem misturadas formam uma solução tampão com pH próximo de 10.

- ${\bf A}(\) \quad {\bf C}_6{\bf H}_5{\bf OH(aq)} \ / \ {\bf C}_6{\bf H}_5{\bf NH}_2({\bf aq}) \ . \qquad {\bf B}(\) \quad {\bf C}_6{\bf H}_5{\bf NH}_2({\bf aq}) \ / \ {\bf C}_6{\bf H}_5{\bf NH}_3{\bf Cl(aq)} \ .$
- C() CH₃COOH(aq) / NaCH₃COO(aq). D() NH₃(aq) / NH₄Cl(aq).
- E() NaCH₃COO(aq) / NH₄Cl(aq).

Questão 11. A decomposição química de um determinado gás A(g) é representada pela equação: $A(g) \to B(g) + C(g)$. A reação pode ocorrer numa mesma temperatura por dois caminhos diferentes (I e II), ambos com lei de velocidade de primeira ordem. Sendo v a velocidade da reação, k a constante de velocidade, ΔH a variação de entalpia da reação e $t_{1/2}$ o tempo de meiavida da espécie A, é **CORRETO** afirmar que

$$\mathbf{A}\left(\;\right) \quad \Delta H_{\mathrm{I}} < \Delta H_{\mathrm{II}}. \qquad \qquad \mathbf{B}\left(\;\right) \quad \frac{k_{\mathrm{I}}}{k_{\mathrm{II}}} = \frac{\left(t_{\mathrm{I/2}}\right)_{\mathrm{II}}}{\left(t_{\mathrm{I/2}}\right)_{\mathrm{I}}}. \qquad \qquad \mathbf{C}\left(\;\right) \quad k_{\mathrm{I}} = \frac{\left[\mathbf{B}\right]\!\left[\mathbf{C}\right]}{\left[\mathbf{A}\right]}.$$

$$\mathbf{D}\left(\ \right) \quad \mathbf{v}_{\mathrm{II}} = \mathbf{k}_{\mathrm{II}} \, \frac{\left[\mathbf{B}\right]\!\left[\mathbf{C}\right]}{\left[\mathbf{A}\right]}. \qquad \qquad \mathbf{E}\left(\ \right) \qquad \frac{\mathbf{v}_{\mathrm{I}}}{\mathbf{v}_{\mathrm{II}}} = \frac{\mathbf{k}_{\mathrm{II}}}{\mathbf{k}_{\mathrm{I}}}.$$

Questão 12. Para minimizar a possibilidade de ocorrência de superaquecimento da água durante o processo de aquecimento, na pressão ambiente, uma prática comum é adicionar pedaços de cerâmica porosa ao recipiente que contém a água a ser aquecida. Os poros da cerâmica são preenchidos com ar atmosférico, que é vagarosamente substituído por água antes e durante o aquecimento. A respeito do papel desempenhado pelos pedaços de cerâmica porosa no processo de aquecimento da água são feitas as seguintes afirmações:

- I. a temperatura de ebulição da água é aumentada.
- a energia de ativação para o processo de formação de bolhas de vapor de água é diminuída.
- III. a pressão de vapor da água não é aumentada.
- IV. o valor da variação de entalpia de vaporização da água é diminuído.

Das afirmações acima está(ão) ERRADA(S)

$${\bf A}$$
 () apenas I e III. ${\bf B}$ () apenas I, III e IV. ${\bf C}$ () apenas II. ${\bf D}$ () apenas II e IV. ${\bf E}$ () todas.

Questão 13. Considere as seguintes comparações de calores específicos dos respectivos pares das substâncias indicadas.

I. tetracloreto de carbono
$$\left(\ell, 25\,^{\circ}\text{C}\right)$$
 > metanol $\left(\ell, 25\,^{\circ}\text{C}\right)$.

II. água pura $\left(\ell, -5\,^{\circ}\text{C}\right)$ > água pura $\left(s, -5\,^{\circ}\text{C}\right)$.

III. alumina $\left(s, 25\,^{\circ}\text{C}\right)$ > alumínio $\left(s, 25\,^{\circ}\text{C}\right)$.

IV. isopor $\left(s, 25\,^{\circ}\text{C}\right)$ > vidro de janela $\left(s, 25\,^{\circ}\text{C}\right)$.

Das comparações feitas, está(ão) CORRETA(S)

Questão 14. Considere a reação representada pela equação química $3A(g)+2B(g)\rightarrow 4E(g)$. Esta reação ocorre em várias etapas, sendo que a etapa mais lenta corresponde à reação representada pela seguinte equação química: $A(g)+C(g)\rightarrow D(g)$. A velocidade inicial desta última reação pode ser expressa por $-\frac{\Delta[A]}{\Delta t}=5,0$ mol s⁻¹. Qual é a velocidade inicial da reação (mol s⁻¹) em relação à espécie E?

$$A()$$
 3,8. $B()$ 5,0. $C()$ 6,7. $D()$ 20. $E()$ 60.

Questão 15. Indique a opção que contém a equação química de uma reação ácido-base na qual a água se comporta como base.

Questão 16. Dois compartimentos, 1 e 2, têm volumes iguais e estão separados por uma membrana de paládio, permeável apenas à passagem de hidrogênio. Inicialmente, o compartimento 1 contém hidrogênio puro (gasoso) na pressão $P_{\rm H_2,puro}=1$ atm , enquanto que o compartimento 2 contém uma mistura de hidrogênio e nitrogênio, ambos no estado gasoso, com pressão total $P_{\rm mist}=\left(P_{\rm H_2}+P_{\rm N_2}\right)=1$ atm . Após o equilíbrio termodinâmico entre os dois compartimentos ter sido atingido, é **CORRETO** afirmar que:

$$\begin{split} \mathbf{A}\,(\;)\;\; P_{\mathrm{H}_{2},\mathrm{puro}} = 0\;. \\ \mathbf{B}\,(\;)\;\; P_{\mathrm{H}_{2},\mathrm{puro}} = P_{\mathrm{N}_{2},\mathrm{mist}}\;. \\ \mathbf{C}\,(\;)\;\; P_{\mathrm{H}_{2},\mathrm{puro}} = P_{\mathrm{mist}}\;. \\ \mathbf{D}\,(\;)\;\; P_{\mathrm{H}_{2},\mathrm{puro}} = P_{\mathrm{H}_{2},\mathrm{mist}}\;. \\ \mathbf{E}\,(\;)\;\; P_{\mathrm{compartimento}\;2} = 2\;\mathrm{atm}. \end{split}$$

Questão 17. A uma determinada quantidade de dióxido de manganês sólido, adicionou-se um certo volume de ácido clorídrico concentrado até o desaparecimento completo do sólido. Durante a reação química do sólido com o ácido observou-se a liberação de um gás (Experimento 1). O gás liberado no Experimento 1 foi borbulhado em uma solução aquosa ácida de iodeto de potássio, observando-se a liberação de um outro gás com coloração violeta (Experimento 2). Assinale a opção que contém a afirmação **CORRETA** relativa às observações realizadas nos experimentos acima descritos.

- \mathbf{A} () No Experimento 1, ocorre formação de $H_2(g)$.
- ${\bf B}$ () No Experimento 1, ocorre formação de $O_2(g)$.
- C () No Experimento 2, o pH da solução aumenta.
- **D**() No Experimento 2, a concentração de iodeto na solução diminui.
- E () Durante a realização do Experimento 1, a concentração de íons manganês presentes no sólido diminui.

Questão 18. Duas soluções aquosas (I e II) contêm, respectivamente, quantidades iguais (em mol) e desconhecidas de um ácido forte, K >> 1, e de um ácido fraco, $K \cong 10^{-10}$ (K = constante de dissociação do ácido). Na temperatura constante de 25 °C, essas soluções são tituladas com uma solução aquosa 0,1 mol L^{-1} de NaOH. A titulação é acompanhada pela medição das respectivas condutâncias elétricas das soluções resultantes. Qual das opções abaixo contém a figura com o par de curvas que melhor representa a variação da condutância elétrica (Cond.) com o volume de NaOH (V_{NaOH}) adicionado às soluções I e II, respectivamente?

Questão 19. Num cilindro, provido de um pistão móvel sem atrito, é realizada a combustão completa de carbono (grafita). A temperatura no interior do cilindro é mantida constante desde a introdução dos reagentes até o final da reação. Considere as seguintes afirmações:

- I. A variação da energia interna do sistema é igual a zero.
- II. O trabalho realizado pelo sistema é igual a zero.
- III. A quantidade de calor trocada entre o sistema e a vizinhança é igual a zero.
- IV. A variação da entalpia do sistema é igual à variação da energia interna.

Destas afirmações, está(ão) CORRETA(S)

 ${\bf A}$ () apenas I. ${\bf B}$ () apenas I e IV. ${\bf C}$ () apenas I, II e III. ${\bf D}$ () apenas II e IV. ${\bf E}$ () apenas III e IV.

Questão 20. Considere o elemento galvânico mostrado na figura ao lado. O semi-elemento A contém uma solução aquosa, isenta de oxigênio, 0,3 mol L⁻¹ em Fe²⁺ e 0,2 mol L⁻¹ em Fe³⁺. O semi-elemento B contém uma solução aquosa, também isenta de oxigênio, 0,2 mol L⁻¹ em Fe²⁺ e 0,3 mol L⁻¹ em Fe³⁺. M é um condutor metálico (platina). A temperatura do elemento galvânico é mantida constante num valor igual a 25 °C. A partir do instante em que a chave "S" é fechada, considere as seguintes afirmações:

- I. O sentido convencional de corrente elétrica ocorre do semi-elemento B para o semi-elemento A.
- II. Quando a corrente elétrica for igual a zero, a relação de concentrações [Fe³⁺(aq)] / [Fe²⁺(aq)] tem o mesmo valor tanto no semi- elemento A como no semi- elemento B.
- III. Quando a corrente elétrica for igual a zero, a concentração de Fe²⁺ (aq) no semi-elemento A será menor do que 0,3 mol
- IV. Enquanto o valor da corrente elétrica for diferente de zero, a diferença de potencial entre os dois semi-elementos será maior do que 0,118 log (3/2).
- V. Enquanto corrente elétrica fluir pelo circuito, a relação entre as concentrações [Fe³⁺(aq)] / [Fe²⁺(aq)] permanece constante nos dois semi-elementos.

Das afirmações feitas, estão CORRETAS

 ${f A}$ () apenas I, II e III. ${f B}$ () apenas I, II e IV. ${f C}$ () apenas III e V. ${f E}$ () todas.

As questões dissertativas, numeradas de 21 a 30, devem ser respondidas no caderno de soluções.

Questão 21. Quando submersos em "águas profundas", os mergulhadores necessitam voltar lentamente à superficie para evitar a formação de bolhas de gás no sangue.

- i) Explique o motivo da NÃO formação de bolhas de gás no sangue quando o mergulhador desloca-se de regiões próximas à superficie para as regiões de "águas profundas".
- ii) Explique o motivo da NÃO formação de bolhas de gás no sangue quando o mergulhador desloca-se muito lentamente de regiões de "águas profundas" para as regiões próximas da superfície.
- iii) Explique o motivo da FORMAÇÃO de bolhas de gás no sangue quando o mergulhador desloca-se muito rapidamente de regiões de "águas profundas" para as regiões próximas da superfície.

Questão 22. Descreva um processo que possa ser utilizado na preparação de álcool etílico absoluto, 99,5 % (m/m), a partir de álcool etílico comercial, 95,6 % (m/m). Sua descrição deve conter:

- i) A justificativa para o fato da concentração de álcool etílico comercial ser 95,6 % (m/m).
- ii) O esquema da aparelhagem utilizada e a função de cada um dos componentes desta aparelhagem.
- iii) Os reagentes utilizados na obtenção do álcool etílico absoluto.
- iv) As equações químicas balanceadas para as reações químicas envolvidas na preparação do álcool etílico absoluto.
- v) Sequência das etapas envolvidas no processo de obtenção do álcool etílico absoluto.

Questão 23. Determine a massa específica do ar úmido, a 25 °C e pressão de 1 atm, quando a umidade relativa do ar for igual a 60 %. Nessa temperatura, a pressão de vapor saturante da água é igual a 23,8 mmHg. Assuma que o ar seco é constituído por $N_2(g)$ e $O_2(g)$ e que as concentrações dessas espécies no ar seco são iguais a 79 e 21 % (v/v), respectivamente.

Questão 24. A figura ao lado apresenta esboços de curvas representativas da dependência da velocidade de reações químicas com a temperatura. Na Figura A é mostrado como a velocidade de uma reação de combustão de explosivos depende da temperatura. Na Figura B é mostrado como a velocidade de uma reação catalisada por enzimas depende da temperatura. Justifique, para cada uma das Figuras, o efeito da temperatura sobre a velocidade das respectivas reações químicas.

Questão 25. A corrosão da ferragem de estruturas de concreto ocorre devido à penetração de água através da estrutura, que dissolve cloretos e/ou sais provenientes da atmosfera ou da própria decomposição do concreto. Essa solução eletrolítica em contacto com a ferragem forma uma célula de corrosão.

A Figura A, ao lado, ilustra esquematicamente a célula de corrosão formada.

No caderno de soluções, faça uma cópia desta figura no espaço correspondente à resposta a esta questão. Nesta cópia

- i) identifique os componentes da célula de corrosão que funcionam como anodo e catodo durante o processo de corrosão e
- ii) escreva as meia-reações balanceadas para as reações anódicas e catódicas.

A Figura B, ao lado, ilustra um dos métodos utilizados para a proteção da ferragem metálica contra corrosão.

No caderno de soluções, faça uma cópia desta figura, no espaço correspondente à resposta a esta questão. Nesta cópia

- i) identifique os componentes da célula eletrolítica que funcionam como anodo e catodo durante o processo de proteção contra corrosão e
- ii) escreva as meia-reações balanceadas para as reações anódicas e catódicas.

Figura B

Sugira um método alternativo para proteção da ferragem de estruturas de concreto contra corrosão.

Questão 26. Escreva a estrutura de Lewis para cada uma das moléculas abaixo, prevendo a geometria molecular (incluindo os ângulos de ligação) e os orbitais híbridos no átomo central.

(a)
$$XeOF_4$$
 (b) $XeOF_2$ (c) XeO_4 (d) XeF_4

Questão 27. Explique por que a temperatura de hidrogenação de ciclo-alcanos, catalisada por níquel metálico, aumenta com o aumento da quantidade de átomos de carbono presentes nos ciclo-alcanos.

Questão 28. O tempo de meia-vida $(t_{1/2})$ do decaimento radioativo do potássio 40 $\binom{40}{19}$ K) é igual a 1,27 x 10⁹ anos. Seu decaimento envolve os dois processos representados pelas equações seguintes:

I.
$$^{40}_{19} \text{K} \rightarrow ^{40}_{20} \text{Ca} + ^{0}_{-1} e$$

II.
$$^{40}_{19}$$
 K + $^{0}_{-1}$ e \rightarrow $^{40}_{18}$ Ar

O processo representado pela equação I é responsável por 89,3 % do decaimento radioativo do $^{40}_{19}$ K , enquanto que o representado pela equação II contribui com os 10,7 % restantes. Sabe-se, também, que a razão em massa de $^{40}_{18}$ Ar e $^{40}_{19}$ K pode ser utilizada para a datação de materiais geológicos.

Determine a idade de uma rocha, cuja razão em massa de $^{40}_{18}$ Ar/ $^{40}_{19}$ K é igual a 0,95. Mostre os cálculos e raciocínios utilizados.

- **Questão 29**. Os seguintes experimentos foram realizados para determinar se os cátions Ag⁺, Pb²⁺, Sb²⁺, Ba²⁺ e Cr³⁺ eram espécies constituintes de um sólido de origem desconhecida e solúvel em água.
- A) Uma porção do sólido foi dissolvida em água, obtendo-se uma solução aquosa chamada de X.
- B) A uma alíquota de X foram adicionadas algumas gotas de solução aquosa concentrada em ácido clorídrico, não sendo observada nenhuma alteração visível na solução.
- C) Sulfeto de hidrogênio gasoso, em quantidade suficiente para garantir a saturação da mistura, foi borbulhado na mistura resultante do Experimento B, não sendo observada nenhuma alteração visível nessa mistura.
- D) A uma segunda alíquota de X foi adicionada, gota a gota, solução aquosa concentrada em hidróxido de amônio. Inicialmente, foi observada a turvação da mistura e posterior desaparecimento dessa turvação por adição de mais gotas da solução de hidróxido de amônio.

A respeito da presença ou ausência dos cátions Ag^+ , Pb^{2+} , Sb^{2+} , Ba^{2+} e Cr^{3+} , o que se pode concluir após as observações realizadas no

- i) Experimento B?
- ii) Experimento C?
- iii) Experimento D?

Sua resposta deve incluir equações químicas balanceadas para as reações químicas observadas e mostrar os raciocínios utilizados. Qual(ais) dentre os cátions Ag⁺, Pb²⁺, Sb²⁺, Ba²⁺ e Cr³⁺ está(ão) presente(s) no sólido?

Questão 30. Um elemento galvânico, chamado de I, é constituído pelos dois eletrodos seguintes, separados por uma membrana porosa:

- IA. Chapa de prata metálica, praticamente pura, mergulhada em uma solução 1 mol L⁻¹ de nitrato de prata.
- IB. Chapa de zinco metálico, praticamente puro, mergulhada em uma solução 1 mol L⁻¹ de sulfato de zinco.

Um outro elemento galvânico, chamado de II, é constituído pelos dois seguintes eletrodos, também separados por uma membrana porosa:

- IIA. Chapa de cobre metálico, praticamente puro, mergulhada em uma solução 1 mol L⁻¹ de sulfato de cobre.
- IIB. Chapa de zinco metálico, praticamente puro, mergulhada em uma solução 1 mol L⁻¹ de sulfato de zinco.

Os elementos galvânicos I e II são ligados em série de tal forma que o eletrodo IA é conectado ao IIA, enquanto que o eletrodo IB é conectado ao IIB. As conexões são feitas através de fíos de cobre. A respeito desta montagem

- i) faça um desenho esquemático dos elementos galvânicos I e II ligados em série. Neste desenho indique:
- ii) quem é o elemento ativo (aquele que fornece energia elétrica) e quem é o elemento passivo (aquele que recebe energia elétrica),
- iii) o sentido do fluxo de elétrons,
- iv) a polaridade de cada um dos eletrodos: IA, IB, IIA e IIB e
- v) as meia-reações eletroquímicas balanceadas para cada um dos eletrodos.