Reactions Of Enolizable Compounds With C-Electrophiles

from chapter(s) _____ in the recommended text

A. Introduction

B. α -Alkylation Of Carbonyl Compounds Under Strongly Basic Conditions

C-Alkylation Of Ketones

nucleophilic strong and non-nucleophilic. hindered alkali

tertiary alcohol

lithium diisopropylamide LDA pKa 35

enolate

It is difficult to

Alkylation Of Hydrazones

thermodynamic

${\mathfrak P}$ \$Silylation and ${\alpha}$ - ** Of Aldehydes And Ketones

strong

O-atoms

disilyl enol ether

carbon.
polar aprotic
O-alkylation
hard electrophiles
concentrated positive

-H+

$$Me_3Si$$
 O^+
 H_2O
 $-H^+$
 $-HOSiMe_3$

C-protonated form

C-protonated form

addition of a PhS+ electrophile

Me
$$_3$$
Si $_{O^+}$ H $_2$ O $_{-H^+}$ -HOSiMe $_3$

acetal; it is

protonation then quench of the oxonium ion with an alcohol

C. α -Alkylation Of Carbonyl Compounds Under Near-neutral Conditions

Enamines From Ketones and Aldehydes

iminium ions

tetrahedral intermediate ammonium intermediate

protonated carbonyl

enamine

4-methyl-3-hexanone

enamine