MLDS 2019 Spring HW4-1 - Policy Gradient

2018/05/25 adlxmlds@gmail.com

Time Schedule

- June 4th 19:30 Deadline
- June 8th 10:30 Deadline

Outline

	HW4-1	HW4-2	HW4-3
Pong	PG		AC
Breakout		DQN	AC
Improved Version			

Outline

Outline

- Introduction
 - Game Playing: Pong
- Deep Reinforcement Learning
 - Policy Gradient
 - Improvements to Policy Gradient
- Training Hints
- Grading & Format
 - Submission

Introduction

Game Playing

- Implement an agent to play Atari games using Deep Reinforcement Learning
- In this homework, you are required to implement
 Policy Gradient
- The Pong environment is used in this homework

Introduction

Environment

Pong

https://gym.openai.com/envs/

Deep Reinforcement Learning

Policy Gradient

```
function REINFORCE
      Initialise \theta arbitrarily
      for each episode \{s_1, a_1, r_2, ..., s_{T-1}, a_{T-1}, r_T\} \sim \pi_{\theta} do
            for t = 1 to T - 1 do
                  \theta \leftarrow \theta + \alpha \nabla_{\theta} \log \pi_{\theta}(s_t, a_t) v_t
            end for
                                                                 s_i: state at time i
                                                                 a_i: action at time i
      end for
                                                                 r_i: reward by a_i
                                                                 \pi_{\theta}(s,a) = P[a|s,\theta]: \theta is your model parameter
      return \theta
                                                                 v_t : long-term value at time t
                                                                 v(s) = E[G_t|s_t = s]
end function
                                                                 G_t = \sum_{k=0}^{\inf} \gamma^k r_{t+k+1}
```

- Update per step → SGD → High Variance
- Update per episode or by mini batch
 - episode: A player win the game (21)
 - mini batch : someone get some points

Deep Reinforcement Learning

REINFORCE Baseline on Pong

Training loop(simplest version):

- a. Play until a game is over(one player gets 21 points) with policy network π_{θ} and store (s,a,r) tuples into memory m.
- b. Discount and normalize rewards in memory into r to reduce variance
- c. Approximate gradient $\nabla_{\theta}J(\theta) \approx \sum_{(s_t,a_t,r_t')\in m} \nabla_{\theta}\log\pi_{\theta}(a_t|s_t)r_t'$ $\theta \leftarrow \theta + \alpha\nabla_{\theta}J(\theta)$
- d. Clear the memory m

Deep Reinforcement Learning

Improvements to Policy Gradient

- Variance Reduction
- Natural Policy Gradient
- Trust Region Policy Optimization
- Proximal Policy Optimization

http://rll.berkeley.edu/deeprlcourse/f17docs/lecture_4_policy_gradient.pdf http://rll.berkeley.edu/deeprlcourse/f17docs/lecture_13_advanced_pg.pdf

Training Hint

Preprocessing for States

- Which is better?
 - rgb channel or gray scale
 - 0.2126 * Red + 0.7152 * Green + 0.0722 * Blue
 - single or residual
 - s'(t) = s(t+1) s(t)
 - represent change of pixel
 - scoreboard yes or no?

RGB vs Gray scale

Residual State

Training Hint

Reward and Action

- Reward normalization
 - More stable
 - http://karpathy.github.io/2016/05/31/rl
 - https://arxiv.org/pdf/1506.02438.pdf
- Action space reduction
- Reset the running add of discounted reward to zero if a player scores (Pong specific)

Action space reduction

```
ACTION_MEANING = {
    0: "NOOP",
    1: "FIRE",
   2: "UP",
    3: "RIGHT",
    4: "LEFT",
    5: "DOWN",
    6: "UPRIGHT",
    7: "UPLEFT",
    8: "DOWNRIGHT",
    9: "DOWNLEFT",
    10: "UPFIRE",
    11: "RIGHTFIRE",
    12: "LEFTFIRE",
    13: "DOWNFIRE",
    14: "UPRIGHTFIRE",
    15: "UPLEFTFIRE",
    16: "DOWNRIGHTFIRE"
    17: "DOWNLEFTFIRE",
```

Reward normalization

Training Hint

Training Plot

- The unit of x-axis is 1000 episode
- Around 6000 episode to reach baseline in "average"
- Mind your preprocessing if your curve differs from this too much
- Baseline Network Structure: Flatten + Two-layer FNN
 - 256 dimension hidden layer
 - output layer (action space size)
- Update per episode (21 point game)

Freeze random seed!

Baseline

- Policy Gradient
 - Getting averaging reward in 30 episodes over **0** in **Pong**
 - Without OpenAl's Atari wrapper & reward clipping
 - Improvements to Policy Gradient are allowed

Code Format

- Please download the sample files from github
- Follow the instructions in README to install required packages
- Four functions you should implement in agent_pg.py
 - 1. __init__(self, env, args)
 - init_game_setting(self)
 - 3. train(self)
 - 4. make_action(self, state, test)
- DO NOT add any parameter in __init__(), init_game_setting() and make_action()
- You can add new methods in the agent_pg.py
- You can add your arguments in argument.py

Submission

- Submit your presentation files to: google drive

Presentation Files

- Describe your Policy Gradient model
- Plot the learning curve to show the performance of your Policy Gradient on Pong
 - X-axis: number of time steps
 - Y-axis: average reward in last 30 episodes
- Implement 1 improvement method on page 8
 - Describe your tips for improvement
 - Learning curve
 - Compare to the vanilla policy gradient
- Github link

Outline

Related Materials

- Course & Tutorial:
 - Berkeley Deep Reinforcement Learning, Fall 2017
 - David Silver RL course
 - Nips 2016 RL tutorial
- Blog:
 - Andrej Karpathy's blog
 - Arthur Juliani's Blog
 - <u>Openai</u>
- Text Book:
 - Reinforcement Learning: An Introduction
- Repo:
 - https://github.com/williamFalcon/DeepRLHacks