Appendix 1

A Brief Survey of Vectors and Vector Calculus

A1.1 Introduction

If only one number on an appropriate scale is needed to describe a certain quantity, the quantity is known as a *scalar*. For example, the mass of a body is a scalar described by a single number (e.g., $m = 1.6 \,\mathrm{kg}$).

Some quantities need a single number to describe them at any one point in a region of space; thus they need an infinite set of numbers to describe them at all points of the region with respect to a scale. For example, air pressure or temperature inside a room can be specified at all points of the room. These quantities are scalars, but to distinguish them from ordinary scalars that need just a single number for their measure, we say that they represent a *scalar field*. A scalar field is described mathematically by a function of three spatial coordinates (and possibly of time, as for a changing temperature in a room). For example, the function $T(x, y, z) = T_0(1 + x + y^2 + z^3)$ defines a specific temperature field.

Many quantities need more than one number to describe them. An important class of quantities is that which needs *three* numbers to describe them completely. These are known as *vectors*. For example, a straight path traversed by a person from one point to another is a vector. It is described by its length (the *magnitude* of the

vector), the line along which the motion takes place, and the direction along that line. Other vectors include velocity, acceleration, force, the electric field vector, and the magnetic field vector. In handwriting, vector quantities are denoted by an arrow above the symbol, for example, \vec{s} . In printed text, the boldface type is used much more frequently, for example, \vec{s} . For example, we could write

$$s = New York \rightarrow Chicago,$$

which is unconventional but correct. The magnitude of a vector is denoted by the same symbol, but without the arrow, or not boldface. Sometimes the absolute value sign is used instead, so that s, $|\vec{s}|$, and $|\mathbf{s}|$ mean the same: the magnitude of the vector \mathbf{s} .

Like scalars, many vectors need to be defined by an infinite set of three numbers, e.g., the velocity of all air particles in a region during windy weather. Such vector quantities represent a *vector field*. Vector fields are described mathematically by a *vector function* of coordinates (and possibly of time). For example, in rectangular coordinates, a vector field could take the form $\mathbf{v}(x, y, z, t)$.

Questions and problems: QA1.1 and QA1.2

A1.2 Algebraic Operations with Vectors

Five basic algebraic operations are used for vector quantities: vector addition, vector subtraction, multiplication of a vector with a scalar (resulting in a vector), multiplication of two vectors resulting in a scalar (known as the scalar, or dot, product), and multiplication of two vectors resulting in a new vector (known as the vector, or cross, product).

A1.2.1 ADDITION AND SUBTRACTION OF VECTORS

Let us adopt the straight-line motion from one point to another as the prototype of a vector quantity. The vector **A** that describes this displacement is represented as a straight-line segment from its starting point (point 1) to its end point (point 2) (Fig. A1.1a). The arrowhead is added at the vector endpoint to symbolize its direction. Vector **B**, representing another displacement with a starting point at 2 and the end point at 3, is also shown. The total displacement is as if we moved from point 1 to point 3. Vector **C** in Fig. A1.1a, from point 1 to point 3, is therefore defined as the sum of the vectors **A** and **B**, which is written as

$$\mathbf{C} = \mathbf{A} + \mathbf{B}.\tag{A1.1}$$

The vector in Fig. A1.1a directed from point 2 to point 1 is defined as the *negative* of the vector \mathbf{A} , that is, $-\mathbf{A}$, and that from point 3 to point 2 as the negative of the vector \mathbf{B} , that is, $-\mathbf{B}$. From the definition of vector addition in Eq. (A1.1) it follows that the vector \mathbf{D} in Fig. A1.1a represents the difference between vectors \mathbf{A} and \mathbf{B} :

$$D = A + (-B) = A - B.$$
 (A1.2)

Figure A1.1 (a) Graphical representation of vectors and of vector addition and subtraction. (b) Vector **A** represented as a sum of its three components in the rectangular coordinate system.

Additions and subtractions of more than two vectors are performed two vectors at a time, thus reducing the problem to that of two vectors. A vector in space can always be represented uniquely as a vector sum of three vectors. If these are parallel to the coordinate axes, they are known as the *three vector components* of the vector considered. As an example, vector **A** in Fig. A1.1b is represented by its three vector components in a rectangular coordinate system.

Example A1.1—Sum of vectors forming a polygon. Consider first three vectors forming a triangle in the head-to-tails arrangement. To obtain the sum of the three vectors, we first make the vector sum $\mathbf{A} + \mathbf{B}$ and find that it is equal to $-\mathbf{C}$. Thus the sum of the three vectors is zero.

It is trivial to extend this reasoning to any number of vectors in the head-to-tail arrangement that form a closed polygon. Consider now the limiting case of a polygon with an infinite number of sides formed by differential vector lengths dI in the head-to-tail arrangement. The sum of these differential length vectors is a line integral around the contour *C* they form, and it is equal to zero:

$$\oint_C d\mathbf{l} = 0.$$

Note that the integral of the *magnitudes* of the differential vectors is not zero—it equals the contour length.

A1.2.2 MULTIPLICATION OF A VECTOR WITH A SCALAR

Multiplication of a vector **A** with a scalar s results in a vector of the same direction as **A**, but of magnitude sA. To divide a vector with a scalar amounts to multiplying the vector by the reciprocal of the scalar. For example, $\mathbf{A}/s = (1/s)\mathbf{A}$.

A1.2.3 UNIT VECTORS

Of particular importance is the concept of the *unit vector*. This is a vector of magnitude one and a pure number (with no physical dimensions). Because we know its magnitude, to specify it, we need only two pieces of information: its direction and sense along that direction. Thus a unit vector defines an *oriented direction in space*. Several notations are used for unit vectors. For example, the unit vector in the direction x may be denoted \hat{x} , a_x , i_x , or u_x . In this text, the symbol u ("unit vector") with appropriate subscripts is adopted, and sometimes the symbol v_0 for a unit vector in the direction of a radius vector (a vector directed from a fixed point to any direction).

The unit-vector concept is extremely important and can be used on many occasions. Note that *any* vector can be represented as a product of its magnitude and a unit vector, and that the unit vector in the direction of a vector **A** is obtained by dividing **A** by its magnitude:

$$\mathbf{A} = A\mathbf{u}_{\mathbf{A}}, \qquad \mathbf{u}_A = \frac{\mathbf{A}}{A}. \tag{A1.3}$$

(Relationship between a vector and the unit vector in its direction)

A1.2.4 THE DOT PRODUCT OF TWO VECTORS

The *scalar product*, or *dot product*, of two vectors, such as **A** and **B**, denoted as $\mathbf{A} \cdot \mathbf{B}$, is defined as follows. Let the angle between the two vectors be α , as in Fig. A1.2. Then

$$\mathbf{A} \cdot \mathbf{B} = AB \cos \alpha.$$
 (A1.4) [Definition of dot (scalar) product]

Figure A1.2 The dot (scalar) product of vectors **A** and **B** is defined as $AB \cos \alpha$.

Figure A1.3 The work done by the force **F** in moving the body by Δx is $\mathbf{F} \cdot \Delta x$.

Note that the dot product is a *commutative operation* (i.e., the two vectors in the product can exchange places without affecting the result):

$$\mathbf{B} \cdot \mathbf{A} = BA \cos \alpha = \mathbf{A} \cdot \mathbf{B} = AB \cos \alpha. \tag{A1.5}$$

Finally, the dot product of a vector with itself results in the square of the vector magnitude:

$$\mathbf{A} \cdot \mathbf{A} = A^2. \tag{A1.6}$$

Example A1.2—Work of a force expressed as the dot product. Consider a force **F** acting on a body (Fig. A1.3). Assume that the body is free to move only along the x axis. If the body is moved by a small distance Δx , this displacement can be due only to the projection F_x of the force **F** on the x axis. Therefore the work done by the force **F** is $\Delta A_{\text{of force F}} = F_x \Delta x \cos \alpha$.

According to the definition of the dot product, this can be written in a compact form, $\Delta A_{\text{of force }F} = F \cdot \Delta x$.

Example A1.3—Dot product of a vector with a unit vector. Let **u** be the unit vector in an arbitrary direction. The dot product of a vector **A** with the unit vector **u** is given by

$$\mathbf{A} \cdot \mathbf{u} = \mathbf{u} \cdot \mathbf{A} = A \cos(\mathbf{A}, \mathbf{u}) = A_u,$$

where $cos(\mathbf{A}, \mathbf{u})$ is the cosine of the angle between the two vectors, and A_u is the projection of the vector \mathbf{A} onto the direction of the unit vector \mathbf{u} . This is a simple but important result.

A1.2.5 THE CROSS PRODUCT OF TWO VECTORS

The *cross product* (or vector product) of two vectors **A** and **B** is defined to be a new vector, normal to the plane of vectors **A** and **B**, of magnitude $AB \sin \alpha$ (Fig. A1.4). The cross product is written in the form **A** × **B**. Thus the magnitude of the cross product in Fig. A1.4 is

$$|\mathbf{A} \times \mathbf{B}| = AB \sin \alpha,\tag{A1.7}$$

(Magnitude of cross product of two vectors)

Figure A1.4 Cross product of vectors **A** and **B**, that is, $\mathbf{A} \times \mathbf{B}$. Note that $\mathbf{B} \times \mathbf{A} = -\mathbf{A} \times \mathbf{B}$.

and its direction is as indicated in the figure. It is obtained by the *right-hand rule*: if the first vector (**A** in this case) is rotated to coincide with the second vector (**B** in this case) by the smaller of the two angles made by the two vectors, and we imagine rotating our right hand with it, the direction of the cross product is that of the direction of the thumb (or, equivalently, the progression of a right-hand screw). From Fig. A1.4, we have

$$\mathbf{B} \times \mathbf{A} = -\mathbf{A} \times \mathbf{B},\tag{A1.8}$$

i.e., the cross product is not a commutative operation.

Example A1.4—Moment of force expressed as the cross product. Consider a force **F** acting on a lever of vector length **r** that cannot move but can rotate only about the *z* axis, to which it is normal (Fig. A1.5). In rotating the lever, only the component normal to the lever and to the *z* axis is of interest. The strength with which the lever is forced to rotate is proportional to the lever length and to that force component, and is known as the *moment of force* **F** *with respect to the z axis*. Since this component of the force equals $|\mathbf{F}| \sin \alpha$, where α is the angle between vectors **F** and **r**,

Moment of force **F** with respect to z axis = $|\mathbf{r}|$ $|\mathbf{F}| \sin \alpha = |\mathbf{r} \times \mathbf{F}|$

The moment of force is defined to be a vector,

$$\mathbf{M} = \mathbf{r} \times \mathbf{F},\tag{A1.9}$$

so that by definition, in Fig. A1.5 it is in the direction of the *z* axis.

Figure A1.5 The moment of force **F** with respect to the z axis is defined as $\mathbf{r} \times \mathbf{F}$. It is assumed that **F** is in the plane normal to z.

Figure A1.6 Geometrical illustration of the triple scalar product

A1.2.6 THE TRIPLE SCALAR PRODUCT

We will also need to find products of three vectors. There are two such product types. One is of the form $A \cdot (B \times C)$, and it is called a *triple scalar product*. The triple scalar product has the property that

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}), \tag{A1.10}$$

which can be proved as follows. According to the definition of the cross product, the magnitude of the cross product $\mathbf{B} \times \mathbf{C}$ equals the area of the parallelogram formed by vectors \mathbf{B} and \mathbf{C} (Fig. A1.6). Hence $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$ equals the volume of the parallelepiped formed by the three vectors in Fig. A1.6, because $A \cos \beta$ is the height of the parallelepiped. It can be demonstrated that the volume of the same parallelepiped is obtained by the other two triple scalar products in Eq. (A1.10).

A1.2.7 THE TRIPLE VECTOR PRODUCT

The other product of three vectors has the form $\mathbf{A} \times (\mathbf{B} \times \mathbf{C})$ and is known as a *triple vector product*. This is a vector normal to both vectors \mathbf{A} and $\mathbf{B} \times \mathbf{C}$. Since the vector $\mathbf{B} \times \mathbf{C}$ is normal to the plane of vectors \mathbf{B} and \mathbf{C} , it follows that the vector $\mathbf{A} \times (\mathbf{B} \times \mathbf{C})$ lies in the plane of vectors \mathbf{B} and \mathbf{C} . Therefore, $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = a\mathbf{B} + b\mathbf{C}$, where a and b are scalars to be expressed in terms of vectors \mathbf{A} , \mathbf{B} , and \mathbf{C} . It can be proved (e.g., by expanding the left-hand side and the right-hand side in the rectangular coordinate system) that

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C}) \mathbf{B} - (\mathbf{A} \cdot \mathbf{B})\mathbf{C} = \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - (\mathbf{A} \cdot \mathbf{B})\mathbf{C}. \tag{A1.11}$$

Questions and problems: QA1.3 to QA1.13, PA1.1 to PA1.6

A1.3 Orthogonal Coordinate Systems

When vectors are used in actual calculations, they are usually represented in a convenient coordinate system. Generally speaking, a *coordinate system* is a structure that enables unique definition of a point in space by three variables, known as the coordinates of the point. The lines along which two of the three variables are constant are

known as coordinate lines. If coordinate lines are mutually orthogonal at all points of space, the coordinate system is termed an *orthogonal coordinate system*. We describe three orthogonal coordinate systems most often needed in electromagnetics: the rectangular, the cylindrical, and the spherical. The rectangular system is useful for a rectangular waveguide cavity, for example. The cylindrical system is needed, for example, for a coaxial cable. The spherical system is a natural one to use when dealing with antennas, which radiate in all radial directions in space.

A1.3.1 RECTANGULAR COORDINATE SYSTEM

The rectangular, or cartesian, coordinate system (Fig. A1.7a) is the most commonly used. A point in the rectangular system is defined by coordinates (x, y, z), which represent distances of the point from the planes x = 0, y = 0, and z = 0. A point can also be defined as an intersection of three *coordinate surfaces*—in this case planes (Fig. A1.7b).

The directions of the three axes in a rectangular coordinate system are characterized by three mutually orthogonal unit vectors, \mathbf{u}_x , \mathbf{u}_y , \mathbf{u}_z , known as the *base unit vectors*, shown in Fig. A1.8a. Note that they have the same direction at all points, which is the case only for the rectangular system. A vector represented by its three rectangular components is shown in Fig. A1.8b. The magnitudes of these components, A_x , A_y , and A_z , are known as the *scalar components* of the vector.

Note the sequence of the base unit vectors. It is such that if the first rotates toward the second following the smaller angle between them, the direction of the third is obtained by the right-hand rule. For this reason the rectangular coordinate system is known as a *right-handed coordinate system*. The cylindrical and spherical coordinate systems are also defined so as to be right-handed systems.

We will need the differential lengths dl_1 , dl_2 , and dl_3 corresponding to a small increase in *one* coordinate, with the other two kept constant. In a rectangular coordinate system these differential lengths (Fig. A1.9) evidently are

Figure A1.7 (a) Rectangular coordinates of a point. (b) The definition of a point in a rectangular coordinate system can also be an intersection of three coordinate surfaces.

Figure A1.8 (a) The base unit vectors in a rectangular coordinate system. (b) A vector with a-starting point P decomposed into its three rectangular components.

$$dl_1 = dx, dl_2 = dy, dl_3 = dz.$$
 (A1.12)

(Differential lengths along coordinate lines in rectangular coordinate system)

Example A1.5—Dot product in the rectangular coordinate system. In the rectangular coordinate system, vectors **A** and **B** are represented in terms of their scalar components as

$$\mathbf{A} = A_x \mathbf{u}_x + A_y \mathbf{u}_y + A_z \mathbf{u}_z$$

and

$$\mathbf{B} = B_x \mathbf{u}_x + B_y \mathbf{u}_y + B_z \mathbf{u}_z.$$

Figure A1.9 Illustration of the differential lengths along coordinate lines in a rectangular coordinate system

Since the base unit vectors are mutually orthogonal, the dot product of any two is zero, and the dot product of any of them by itself is unity. So we obtain

$$\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z. \tag{A1.13}$$

(Dot product in the rectangular coordinate system)

Example A1.6—Cross product in the rectangular coordinate system. With the vectors **A** and **B** represented as in Example A1.5, we have

$$\mathbf{A} \times \mathbf{B} = (A_x \mathbf{u}_x + A_y \mathbf{u}_y + A_z \mathbf{u}_z) \times (B_x \mathbf{u}_x + B_y \mathbf{u}_y + B_z \mathbf{u}_z).$$

Note that the cross product of any unit vector with itself is zero (because the angle is zero), and that

$$\mathbf{u}_x \times \mathbf{u}_y = -\mathbf{u}_y \times \mathbf{u}_x = \mathbf{u}_z$$
 $\mathbf{u}_x \times \mathbf{u}_z = -\mathbf{u}_z \times \mathbf{u}_x = -\mathbf{u}_y$ $\mathbf{u}_y \times \mathbf{u}_z = -\mathbf{u}_z \times \mathbf{u}_y = \mathbf{u}_x$,

so that

$$\mathbf{A} \times \mathbf{B} = \mathbf{u}_{x}(A_{y}B_{z} - A_{z}B_{y}) + \mathbf{u}_{y}(A_{z}B_{x} - A_{x}B_{z}) + \mathbf{u}_{z}(A_{x}B_{y} - A_{y}B_{x}). \tag{A1.14}$$

(Cross product in the rectangular coordinate system)

A1.3.2 CYLINDRICAL COORDINATE SYSTEM

In the cylindrical coordinate system (Fig. A1.10a), the coordinates of a point are the distance r from the coordinate origin of the projection of the point onto the plane z = 0, the angle ϕ made by this projection with the x axis, and the z coordinate as in

Figure A1.10 (a) Cylindrical coordinates of a point. (b) The definition of a point in the cylindrical coordinate system as the intersection of three coordinate surfaces.

Figure A1.11 (a) The base unit vectors in a cylindrical coordinate system. (b) A vector with a starting point P decomposed into its three cylindrical components.

the rectangular system. The coordinate surfaces (whose intersection defines a point) are circular cylinders of radius r, half-planes $\phi = \text{constant}$, and planes z = constant (Fig. A1.10b).

The base unit vectors are in the directions of motion *if* the coordinate of interest is given a small positive increment and the other two are kept fixed. Thus the base unit vectors \mathbf{u}_r , \mathbf{u}_ϕ , and \mathbf{u}_z are as in Fig. A1.11a. Note that although the base unit vector \mathbf{u}_z has the same direction at all points, the base unit vectors \mathbf{u}_r and \mathbf{u}_ϕ generally differ from one point to another. Note that the three unit vectors are mutually orthogonal. A vector represented by its three cylindrical components is shown in Fig. A1.11b.

Note that the order of the base unit vectors is again such that if the first rotates toward the second following the smaller angle between them, the direction of the third is obtained by the right-hand rule. Therefore the cylindrical coordinate system is also an orthogonal right-handed system.

The differential lengths dl_1 , dl_2 , and dl_3 along coordinate lines corresponding to a small increase in *one* coordinate with the other two kept constant (Fig. A1.12) have the form

$$dl_1 = dr, dl_2 = r d\phi, dl_3 = dz.$$
 (A1.15)

(Differential lengths along coordinate lines in the cylindrical coordinate system)

A1.3.3 SPHERICAL COORDINATE SYSTEM

The last coordinate system we need is the spherical one. In terms of rectangular coordinates, a point in the spherical system is defined by its distance r from the origin, the angle θ that r makes with the z axis, and the angle ϕ that the projection of r onto

Figure A1.12 Differential lengths in a cylindrical coordinate system

the plane z=0 makes with the x axis (Fig. A1.13a). A point can also be considered as an intersection of three coordinate surfaces, a sphere of radius r, a circular cone of half-angle θ , and a half plane containing the z axis and making an angle ϕ with the x axis, as in Fig. A1.13b.

The directions of the base unit vectors at a point in a spherical coordinate system are obtained if one coordinate at a time is given as a small positive increment, the other two being kept constant (Fig. A1.14a). Note that they are mutually orthogonal and that the direction of *all three* varies from point to point. A vector decomposed into its three spherical components is shown in Fig. A1.14b. The sequence of the base unit vectors (\mathbf{u}_r , \mathbf{u}_θ , \mathbf{u}_ϕ) is again such that the defined spherical coordinate system is a right-handed system.

Figure A1.13 (a) Spherical coordinates of a point. (b) The definition of a point in spherical coordinate system as the intersection of three coordinate surfaces.

Figure A1.14 (a) The base unit vectors in a spherical coordinate system. (b) A vector with a starting point *P* decomposed into its three spherical components.

Figure A1.15 Differential lengths along coordinate lines in a spherical coordinate system

The differential lengths dl_1 , dl_2 , and dl_3 along the three coordinate lines in a spherical coordinate system (Fig. A1.15) are

$$dl_1 = d$$
, $dl_2 = r d\theta$, $dl_3 = r \sin \theta d\phi$. (A1.16) (Differential lengths along coordinate lines in the spherical coordinate system)

Questions and problems: QA1.14 to QA1.27, PA1.7 to PA1.24

A1.4 Elements of Vector Calculus

Vector calculus deals with various forms of differentiations and integrations of vector functions. The bases for most of the conclusions are the definitions of three types of

"derivatives" (actually, a combination of derivatives with respect to the three coordinates) that can be associated with scalar and vector fields. The first of these is the gradient. It operates on a scalar field and yields a vector field. The second is the divergence. It operates on a vector field, resulting in a scalar field. The third is the curl. It also operates on a vector field, but the result is a new vector field.

These basic operations can be combined to give second-order operations such as divergence of a gradient, divergence of a curl, curl of a gradient, and gradient of a scalar product of two vector fields.

A1.4.1 GRADIENT

The values of the function describing a scalar field in the neighborhood of a point are generally not the same. If we move in various directions from the point considered, in some directions the values of the function gradually decrease, and in some they gradually increase. The *gradient* is a *vector* function of coordinates pointing in the direction of the *most rapid increase* of these gradual variations (hence the name) of the scalar field in the neighborhood of a point. For example, a temperature inside a room generally differs from one point to another. The gradient of temperature at a point will be directed toward the warmest neighboring points.

Let a scalar field be described by the function $f(c_1, c_2, c_3)$, where $(c_1, c_2, \text{ and } c_3)$ are the coordinates in any coordinate system (rectangular, cylindrical, spherical, or any other). Consider a point A in the field and assume that an axis ζ passes through that point, as in Fig. A1.16. Let the value of the function at A be f, and at a very close point B on the ζ axis let a distance $d\zeta$ from the point A in the reference axis direction be $f + df_{\zeta}$. The expression

$$\frac{(f + \mathrm{d}f_{\zeta}) - f}{\mathrm{d}\zeta} = \frac{\mathrm{d}f_{\zeta}}{\mathrm{d}\zeta}$$

is evaluated as the ordinary derivative of a function of a single unknown, ζ . Becuase it is associated with a specific direction (that of the ζ axis), it is known as the *directional derivative*. If we multiply this expression by the unit vector \mathbf{u}_{ζ} along the ζ axis, we obtain a vector with the following properties: (1) the magnitude of the vector equals the directional derivative of f in the ζ axis direction, and (2) the direction of the vector coincides with that of the ζ axis. Thus, instead of giving the value of the directional derivative and of explaining in which direction it was obtained, we specify

Figure A1.16 A ζ axis in a scalar field described by a function f

just one vector, which contains all the information we need. This vector is known as the *component of the gradient of the function f in the direction of the \zeta axis and is denoted as \operatorname{grad}_{\zeta} f = \nabla_{\zeta} f*:

$$\nabla_{\zeta} f = \frac{\mathrm{d} f_{\zeta}}{\mathrm{d} \zeta} \mathbf{u}_{\zeta}. \tag{A1.17}$$

(Component of the gradient in the direction of a ζ axis)

This procedure can be used to obtain the component of the gradient in any direction, and thus also along the three local coordinate axes defined by the base unit vectors. Of course, the derivatives will be partial derivatives, because in determining the derivative in Eq. (A1.17) in such a case we change only one coordinate at a time. The total vector ∇f , as any vector, is obtained as a sum of these three components. Note that in Eq. (A1.17) the ζ coordinate is assumed to be a *length coordinate*, so that the increment $\mathrm{d}\zeta$ is also a differential length.

That the vector ∇f is in the direction of the maximal increase of the function f at a point is almost obvious: if we make a vector sum of the rate of increase of f in three orthogonal directions, the result will be the direction of the maximal increase of f in space.

We know differential length elements in rectangular, cylindrical, and spherical coordinate systems. In a rectangular coordinate system, from Eqs. (A1.17) and (A1.12) we obtain the following expression for the gradient of the function f(x, y, z):

$$\nabla f(x,y,z) = \frac{\partial f(x,y,z)}{\partial x} \mathbf{u}_x + \frac{\partial f(x,y,z)}{\partial y} \mathbf{u}_y + \frac{\partial f(x,y,z)}{\partial z} \mathbf{u}_z. \tag{A1.18}$$
(Gradient in the rectangular coordinate system)

Note that the *del operator*, or *nabla operator*, is defined in the rectangular system as

$$\nabla = \frac{\partial}{\partial x} \mathbf{u}_x + \frac{\partial}{\partial y} \mathbf{u}_y + \frac{\partial}{\partial z} \mathbf{u}_z.$$
 (A1.19)
(Definition of del operator)

Although defined in a rectangular coordinate system, the symbol ∇f is used frequently to denote the gradient in *any* coordinate system.

The differential lengths along coordinate lines in the cylindrical and spherical coordinate systems are given in Eqs. (A1.15) and (A1.16). From Eq. (A1.17) the ex-

pressions for the gradient in the two systems are

$$\nabla f(r,\phi,z) = \frac{\partial f(r,\phi,z)}{\partial r} \mathbf{u}_r + \frac{1}{r} \frac{\partial f(r,\phi,z)}{\partial \phi} \mathbf{u}_\phi + \frac{\partial f(r,\phi,z)}{\partial z} \mathbf{u}_z. \tag{A1.20}$$
(Gradient in the cylindrical coordinate system)

and

$$\nabla f(r,\theta,\phi) = \frac{\partial f(r,\theta,\phi)}{\partial r} \mathbf{u}_r + \frac{1}{r} \frac{\partial f(r,\theta,\phi)}{\partial \theta} \mathbf{u}_\theta + \frac{1}{r \sin \theta} \frac{\partial f(r,\theta,\phi)}{\partial \phi} \mathbf{u}_\phi.$$
(A1.21)
(Gradient in the spherical coordinate system)

A1.4.2 DIVERGENCE

The *divergence* of a vector field is a *scalar* function indicating integrally how much the field "diverges," i.e., originates, from a small closed surface enclosing a point in the field. For example, if we imagine a point in air from which there is a permanent outflow of air, the divergence at that point would be a positive number. If there is an inflow of air at the point, the divergence would be a negative number. At points with no outflow or inflow, the divergence is zero. The divergence of a vector function \mathbf{F} is denoted as $\nabla \cdot \mathbf{F}$.

To represent this explanation mathematically, consider a point in the vector field described by a vector function $\mathbf{F}(c_1, c_2, c_3)$ of three arbitrary orthogonal coordinates c_1 , c_2 , and c_3 . Let ΔS be a small surface enclosing the point, and let Δv be the volume enclosed by ΔS . The divergence of $\mathbf{F}(c_1, c_2, c_3)$ at that point is then defined as

$$\nabla \cdot \mathbf{F}(c_1, c_2, c_3) = \lim_{\Delta v \to 0} \frac{1}{\Delta v} \oint_{\Delta S} \mathbf{F} \cdot d\mathbf{S},$$
(A1.22)
(Definition of divergence of a function **F**)

The product $\mathbf{F} \cdot d\mathbf{S}$ is known as the *flux* of the vector \mathbf{F} through the differential surface $d\mathbf{S}$. Note that only the component of \mathbf{F} *normal* to $d\mathbf{S}$ contributes to the flux.

If we have a differential volume in the form of a parallelepiped (box) defined by three differential length elements in a coordinate system, we have to integrate over its six sides. Pairs of opposite parallelepiped surfaces are normal to one of the three base unit vectors. Therefore the flux through such a pair will be due to only one component of the vector. For example, the flux through the sides 1 and 1' in Fig. A1.17 is due only to the component \mathbf{F}_1 of the vector function \mathbf{F} .

Figure A1.17 A pair of differential surfaces corresponding to fixed values of the second and third coordinate, c_2 and c_3 , for two values, c_1 and $c_1 + dc_1$, of the first coordinate

There is only one problem that remains to be solved. How can we determine the flux of the vector function $\mathbf{F}_1(c_1, c_2, c_3)$ when it is given as a *general* function of the coordinates? Let this be the value of the function on side 1 in Fig. A1.17. The flux through side 1 (note that it is an inward flux, i.e., negative) is then

Flux through side $1 = -F_1(c_1, c_2, c_3) dl_2 dl_3$.

To obtain the outward, i.e., positive flux through side 1', we need to consider the *flux through side* 1, and not only the function $F_1(c_1, c_2, c_3)$, as a function of the coordinate c_1 . This is necessary because the size of the side 1' is also a function of c_1 . So

Flux through side
$$1' = F_1(c_1, c_2, c_3) dl_2 dl_3 + \frac{\partial [F_1(c_1, c_2, c_3) dl_2 dl_3]}{\partial c_1} dc_1$$
.

Adding the two fluxes, we obtain that the flux through the pair of surfaces 1 and 1' in Fig. A1.17 is

Flux through sides 1 and 1' =
$$\frac{\partial [F_1(c_1, c_2, c_3) \, dl_2 \, dl_3]}{\partial c_1} \, dc_1$$

The flux through the other two pairs is obtained in exactly the same way. When we sum the three fluxes and divide by the differential volume, $dl_1 dl_2 dl_3$, we obtain a general expression for the divergence:

$$\nabla \cdot \mathbf{F} = \frac{1}{\mathrm{d}l_1 \, \mathrm{d}l_2 \, \mathrm{d}l_3} \left[\frac{\partial (F_1 \, \mathrm{d}l_2 \, \mathrm{d}l_3)}{\partial c_1} \, \mathrm{d}c_1 + \frac{\partial (F_2 \, \mathrm{d}l_1 \, \mathrm{d}l_3)}{\partial c_2} \, \mathrm{d}c_2 + \frac{\partial (F_3 \, \mathrm{d}l_1 \, \mathrm{d}l_2)}{\partial c_3} \, \mathrm{d}c_3 \right],\tag{A1.23}$$

(Divergence in orthogonal coordinates c_1 , c_2 , and c_3)

where

$$\mathbf{F} = \mathbf{F}(c_1, c_2, c_3) = F_1(c_1, c_2, c_3)\mathbf{u}_1 + F_2(c_1, c_2, c_3)\mathbf{u}_2 + F_3(c_1, c_2, c_3)\mathbf{u}_3.$$

Using this formula and the expressions for differential lengths in rectangular, cylindrical, and spherical coordinate systems and noting that the coordinates are independent variables, we obtain directly the expressions for the divergence in rectangular, cylindrical, and spherical coordinate systems. In a rectangular system $c_1 = x$, $c_2 = y$, $c_3 = z$, so that

$$\nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_x}{\partial \mathbf{g}} + \frac{\partial F_x}{\partial \mathbf{z}}.$$
 (A1.24)

(Divergence in a rectangular coordinate system)

In a cylindrical system $c_1 = r$, $c_2 = \phi$, $c_3 = z$, and the expression in Eq. (A1.23) becomes

$$\nabla \cdot \mathbf{F} = \frac{1}{r} \frac{\partial (rF_r)}{\partial r} + \frac{1}{r} \frac{\partial F_{\phi}}{\partial \phi} + \frac{\partial F_z}{\partial z}.$$
 (A1.25)

(Divergence in a cylindrical coordinate system)

In a spherical system $c_1 = r$, $c_2 = \theta$, $c_3 = \phi$, so that Eq. (A1.23) takes the form

$$\nabla \cdot \mathbf{F} = \frac{1}{r^2} \frac{\partial (r^2 F_r)}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\sin \theta F_\theta)}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial F_\phi}{\partial \phi}.$$
 (A1.26)

(Divergence in a spherical coordinate system)

A1.4.3 CURL

In the velocity vector field of air, for example, you will notice that a light feather is not only being translated but usually also rotates. This is due to different air velocities normal to the main motion of air, resulting in miniature whirlwinds all over the vector field. This property of any vector field (not necessarily describing a motion), of having different magnitude at close points transverse to the field lines, is described by a vector quantity known as the *curl* of the vector field. It is a vector normal to the plane in which this curling action of the field at a point is maximal, and is denoted as $\nabla \times \mathbf{F}$.

As a vector quantity, the curl can be obtained as a sum of its three components. So we define first the component of the curl of a vector function **F** in the direction of a unit vector **n**, as in Fig. A1.18. Assume a small surface of area ΔS bounded by a contour ΔC , *normal* to **n**. Let the direction around the contour be connected with the direction of the unit vector **n** by the right-hand serew rule. The component of $\nabla \times \mathbf{F}$ in the direction of the unit vector **n**, that is, $\mathbf{n} \cdot \nabla \times \mathbf{F}$, is then defined as

$$\mathbf{n} \cdot \nabla \times \mathbf{F} = \lim_{\Delta S \to 0} \frac{1}{\Delta S} \oint_{\Delta C} \mathbf{F} \cdot \mathbf{dl}.$$
 (A1.27)

[Component of curl of vector \mathbf{F} in the direction of unit vector \mathbf{n} (Fig. A1.18)]

Figure A1.18 A surface ΔS bounded by the contour ΔC normal to unit vector **n**

Using this definition, it is not difficult to obtain a general expression for the curl in orthogonal coordinate systems. Again let the vector field be described by a vector function $\mathbf{F}(c_1, c_2, c_3)$, where (c_1, c_2, c_3) are any orthogonal coordinates. Let us find the expression for the c_1 component of $\nabla \times \mathbf{F}$, Fig. A1.19.

In calculating the integral around the rectangular contour ΔC in Fig. A1.19, we have four terms. Since the dot product is integrated, we need only components of vector **F** along the rectangle sides. Omitting for simplicity the dependence on coordinates (c_1, c_2, c_3) , the contribution to the integral around ΔC along sides 2 and 2′ is

$$\int_{\text{side 2}} \mathbf{F} \cdot d\mathbf{l} + \int_{\text{side 2}'} \mathbf{F} \cdot d\mathbf{l} = F_2 dl_2 - \left[F_2 dl_2 + \frac{\partial (F_2 dl_2)}{\partial c_3} dc_3 \right] = \frac{\partial (F_2 dl_2)}{\partial c_3} dc_3.$$

Similarly, the contribution to the integral along sides 3 and 3' is

$$\int_{\text{side }3} \mathbf{F} \cdot d\mathbf{l} + \int_{\text{side }3'} \mathbf{F} \cdot d\mathbf{l} = -F_3 dl_3 + \left[F_3 dl_3 + \frac{\partial (F_3 dl_3)}{\partial c_2} dc_2 \right] = \frac{\partial (F_3 dl_3)}{\partial c_2} dc_3.$$

Thus, the area of the rectangle being $dl_2 dl_3$, according to the definition in Eq. (A1.27) the c_1 component of $\nabla \times \mathbf{F}$ is

$$\mathbf{u}_1 \cdot \nabla \times \mathbf{F} = \frac{1}{\mathrm{d}l_2 \, \mathrm{d}l_3} \left[\frac{\partial (F_3 \, \mathrm{d}l_3)}{\partial c_2} \, \mathrm{d}c_2 - \frac{\partial (F_2 \, \mathrm{d}l_2)}{\partial c_3} \, \mathrm{d}c_3 \right].$$

The c_2 and c_3 components of the curl are obtained in the same manner, so that the final general expression for the curl of vector \mathbf{F} in any orthogonal coordinate

Figure A1.19 Determination of the c_1 component of $\nabla \times \mathbf{F}$

system is

$$\nabla \times \mathbf{F} = \mathbf{u}_{1} \frac{1}{\mathrm{d}l_{2} \, \mathrm{d}l_{3}} \left[\frac{\partial (F_{3} \, \mathrm{d}l_{3})}{\partial c_{2}} \, \mathrm{d}c_{2} - \frac{\partial (F_{2} \, \mathrm{d}l_{2})}{\partial c_{3}} \, \mathrm{d}c_{3} \right]$$

$$+ \mathbf{u}_{2} \frac{1}{\mathrm{d}l_{1} \, \mathrm{d}l_{3}} \left[\frac{\partial (F_{1} \, \mathrm{d}l_{1})}{\partial c_{3}} \, \mathrm{d}c_{3} - \frac{\partial (F_{3} \, \mathrm{d}l_{3})}{\partial c_{1}} \, \mathrm{d}c_{1} \right]$$

$$+ \mathbf{u}_{3} \frac{1}{\mathrm{d}l_{1} \, \mathrm{d}l_{2}} \left[\frac{\partial (F_{2} \, \mathrm{d}l_{2})}{\partial c_{1}} \, \mathrm{d}c_{1} - \frac{\partial (F_{1} \, \mathrm{d}l_{1})}{\partial c_{2}} \, \mathrm{d}c_{2} \right]. \tag{A1.28}$$

$$(Curl in orthogonal coordinates c_{1}, c_{2}, and c_{3})$$

Because we know the length elements in rectangular, cylindrical, and spherical coordinate systems, using this general formula we easily find the expression for the curl in the three systems. In a rectangular system, where $c_1 = x$, $c_2 = y$, and $c_3 = z$, we obtain

$$\nabla \times \mathbf{F} = \mathbf{u}_x \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) + \mathbf{u}_y \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) + \mathbf{u}_z \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right). \tag{A1.29}$$

$$(Curl in a rectangular coordinate system)$$

In a cylindrical system, $c_1 = r$, $c_2 = \phi$, $c_3 = z$, and the expression in Eq. (A1.28) results in

$$\nabla \times F = \mathbf{u}_r \left(\frac{1}{r} \frac{\partial F_z}{\partial \phi} - \frac{\partial F_\phi}{\partial z} \right) + \mathbf{u}_\phi \left(\frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r} \right) + \mathbf{u}_z \frac{1}{r} \left[\frac{\partial (rF_\phi)}{\partial r} - \frac{\partial F_r}{\partial \phi} \right].$$
(A1.30) (Curl in a cylindrical coordinate system)

In a spherical system, $c_1 = r$, $c_2 = \theta$, $c_3 = \phi$, so that according to Eq. (A1.28) the curl becomes

$$\nabla \times F = \mathbf{u}_{r} \frac{1}{r \sin \theta} \left[\frac{\partial (\sin \theta F_{\phi})}{\partial \theta} - \frac{\partial F_{\theta}}{\partial \phi} \right] + \mathbf{u}_{\theta} \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial F_{r}}{\partial \phi} - \frac{\partial (rF_{\phi})}{\partial r} \right] + \mathbf{u}_{\phi} \frac{1}{r} \left[\frac{\partial (rF_{\theta})}{\partial r} - \frac{\partial F_{r}}{\partial \theta} \right]. \tag{A1.31}$$

$$(Curl in a spherical coordinate system)$$

Example A1.7—Divergence of the cross product of two vector functions. Consider the expression $\nabla \cdot (\mathbf{A} \times \mathbf{B})$, where \mathbf{A} and \mathbf{B} are vector functions. This is a legitimate operation, since the cross product of two vectors is again a vector. Because the del operator is a differential operator, we have to treat this expression as a derivative of a product. So we have

$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \nabla \cdot (\mathbf{A} \times [\mathbf{B}]) + \nabla \cdot ([\mathbf{A}] \times \mathbf{B}).$$

where the brackets indicate that the vector function in the particular operation should be considered as a constant.

The del operator is a vector operator, so formally we can make use of the property of the triple scalar product in Eq. (A1.10), to obtain

$$\nabla \cdot (\mathbf{A} \times [\mathbf{B}]) = [\mathbf{B}] \cdot (\nabla \times \mathbf{A}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}), \tag{A1.32}$$

and

$$\nabla \cdot ([\mathbf{A}] \times \mathbf{B}) = [\mathbf{A}] \cdot (\mathbf{B} \times \nabla) = -\mathbf{A} \cdot (\nabla \times \mathbf{B}).$$

So we finally have

$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B}). \tag{A1.33}$$

A1.4.4 LAPLACIAN OF A SCALAR FIELD

Because the gradient is a vector, a legitimate operation is to find the divergence of that vector, i.e., to find $\nabla \cdot (\nabla V)$. This is known as the *Laplacian of V*. Since the gradient implies differentiation and so does the divergence, a combination of second derivatives of the scalar function V results from this operation.

The symbol for the Laplacian of V is denoted by $\nabla^2 V$ (symbolizing the operation $\nabla \cdot (\nabla V)$, or sometimes ΔV . The symbol $\nabla^2 = \nabla \cdot \nabla$ is known as the *Laplacian operator*. In the rectangular coordinate system it has the form

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}.$$
 (A1.34)

(Laplacian operator in rectangular coordinates)

Because we know the gradient and the divergence in rectangular, cylindrical, and spherical coordinate systems, it is not difficult to determine the Laplacian of a scalar function in these systems. For example, in the rectangular system, where we know the Laplacian operator,

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}.$$
 (A1.35)

(Laplacian of a scalar function in a rectangular coordinate system)

A1.4.5 LAPLACIAN OF A VECTOR FIELD

Curl of a curl of a vector function is a legitimate operation because curl of a vector is also a vector. It is again a second-order operation, resulting in a combination of second derivatives of the components of the vector function. It is written as $\nabla \times (\nabla \times F)$. Although it is an operator, ∇ can be considered as a vector, so that the last expression can be expanded using the identity in Eq. (A1.11), to obtain

$$\nabla \times (\nabla \times \mathbf{F}) = \nabla(\nabla \cdot \mathbf{F}) - (\nabla \cdot \nabla)\mathbf{F},\tag{A1.36}$$

from which, recalling that $\nabla \cdot \nabla = \nabla^2$,

$$\nabla^2 \mathbf{F} = \nabla(\nabla \cdot \mathbf{F}) - \nabla \times (\nabla \times \mathbf{F}). \tag{A1.37}$$

(Definition of the Laplacian of a vector function)

The expression on the left-hand side of this equation is known as the *Laplacian* of the vector function **F**, and the right-hand side tells us how it can be evaluated in any coordinate system. In the rectangular system it can be obtained directly from its definition:

$$\nabla^2 \mathbf{F} = \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}\right) (F_x \mathbf{u}_x + F_y \mathbf{u}_y + F_z \mathbf{u}_z).$$

After performing the indicated formal multiplications, this becomes

$$\nabla^{2}\mathbf{F} = \left(\frac{\partial^{2}F_{x}}{\partial x^{2}} + \frac{\partial^{2}F_{x}}{\partial y^{2}} + \frac{\partial^{2}F_{x}}{\partial z^{2}}\right)\mathbf{u}_{x}$$

$$+ \left(\frac{\partial^{2}F_{y}}{\partial x^{2}} + \frac{\partial^{2}F_{y}}{\partial y^{2}} + \frac{\partial^{2}F_{y}}{\partial z^{2}}\right)\mathbf{u}_{x} + \left(\frac{\partial^{2}F_{z}}{\partial x^{2}} + \frac{\partial^{2}F_{z}}{\partial y^{2}} + \frac{\partial^{2}F_{z}}{\partial z^{2}}\right)\mathbf{u}_{x}. \tag{A1.38}$$

Note that F_x , F_y , and F_z are scalar functions (these are scalar components of the vector **F**). Therefore the expressions in the parentheses in the last equation are the Laplacians of the three scalar components of the vector **F**. Thus we finally obtain

$$\nabla^2 \mathbf{F} = (\nabla^2 F_x) \mathbf{u}_x + (\nabla^2 F_y) \mathbf{u}_y + (\nabla^2 F_z) \mathbf{u}_z. \tag{A1.39}$$

(Laplacian of vector F in rectangular coordinate system)

A1.4.6 DIVERGENCE THEOREM

The divergence theorem is a direct consequence of the definition of the divergence in Eq. (A1.22). It states that the volume integral of the divergence of a vector function \mathbf{F} over any volume equals the flux of \mathbf{F} through the surface S enclosing v.

For a small surface ΔS , without going to the limit and multiplying Eq. (A1.22) by Δv , we obtain

$$\nabla \cdot \mathbf{F} \, \Delta v = \oint_{\Delta S} \mathbf{F} \cdot \mathbf{dS}.$$

Imagine now a large domain of volume v, enclosed by a large surface S, subdivided into small volumes Δv enclosed by small surfaces ΔS . For all these small volumes we can write the preceding equation. Adding these equations, the left-hand side becomes the integral over volume v of $\nabla \cdot F \, dv$. The right-hand side represents the sum of the fluxes through all the small closed surfaces pressed one onto another and enclosed by the large surface S.

The flux is evaluated always with respect to the *outward* normal, as indicated in Fig. A1.20. The figure shows the cross section of a few small surfaces in the vicinity of the large surface. The fluxes through shared sides of two small closed surfaces is the same, but of opposite sign. Consequently, the flux through those sides of any small closed surface shared by another small closed surface cancels out. Only the flux through that side of a small surface that is a part of the large surface, *S*, is not canceled out. Therefore the sum of fluxes through all the small surfaces equals the

Figure A1.20 Cross section of a volume v consisting of many small subvolumes near the surface S enclosing v

flux through the large surface. We obtain an identity, often used in electromagnetics, called the *divergence theorem*:

$$\int_{v} \nabla \cdot \mathbf{F} \, \mathrm{d}v = \oint_{S} \mathbf{F} \cdot \mathrm{d}\mathbf{S}. \tag{A1.40}$$
(Divergence theorem)

A1.4.7 STOKES'S THEOREM

Stokes's theorem follows from the definition of the vector component of the curl of a vector function \mathbf{F} in an arbitrary direction, Eq. (A1.29). It states that the flux of $\nabla \times \mathbf{F}$ through any open surface S equals the line integral of \mathbf{F} around the contour bounding S.

To prove the theorem, consider a large open surface S and imagine the surface subdivided into many small surface elements ΔS . Figure A1.21 shows one part of S so subdivided, with a few small surface elements near the contour C bounding S.

Consider Eq. (A1.27) for one small surface ΔS , but without going to the limit. We multiply this equation by ΔS to obtain

$$\nabla \times \mathbf{F} \cdot \Delta \mathbf{S} = \oint_{\Delta C} \mathbf{F} \cdot \mathbf{dl};$$

because the product $\Delta S \mathbf{n}$ is the vector surface element, $\Delta \mathbf{S}$.

By adding such equations for all the surface elements, the left-hand side becomes simply the flux of the vector \mathbf{F} through the surface S. The line integral along any side of a small contour ΔC shared by an adjacent small contour cancels out (Fig. A1.21). We are left with the line integral along segments of the small contours belonging to the large contour C bounding S. Thus, writing $d\mathbf{S}$ instead of $\Delta \mathbf{S}$,

Figure A1.21 Part of the surface *S* consisting of many small subsurfaces, near the contour *C* bounding *S*

$$\int_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S} = \oint_{C} \mathbf{F} \cdot d\mathbf{l}.$$
 (A1.41)

(Stokes's theorem)

THE OWERSANCE * Stokes's theorem has many applications in electromagnetic field theory. We use the two theorems now to derive two important identities of vector calculus.

> **Example A1.8—Divergence of the curl is identically zero.** The operation $\nabla \cdot (\nabla \times \mathbf{A})$ is a legitimate operation, since $\nabla \times \mathbf{A}$ is a vector. In Eq. (A1.47) let $\mathbf{F} = \nabla \times \mathbf{A}$. We have

$$\int_{v} \nabla \cdot (\nabla \times \mathbf{A}) \, \mathrm{d}v = \oint_{S} \nabla \times \mathbf{A} \cdot \mathrm{d}\mathbf{S}. \tag{A1.42}$$

The surface integral on the right side will not be changed if we assume the closed surface to have a miniature hole. However, in such a case we can consider the surface to be an open surface, with the boundary being the hole boundary. So we can apply Stokes's theorem to the right-hand side. The line integral of A around the miniature hole tends to zero as the hole shrinks. Therefore we first find that the following integral identity holds:

$$\oint_{S} \nabla \times \mathbf{A} \cdot d\mathbf{S} \equiv 0. \tag{A1.43}$$

So the left-hand side in Eq. (A1.43) is zero for any volume. This is possible only if the integrand is zero, i.e., if

$$\nabla \cdot (\nabla \times \mathbf{A}) = 0. \tag{A1.44}$$

(Valid for any vector function A)

Example A1.9—Curl of the gradient is identically zero. The operation $\nabla \times (\nabla V)$ is a legitimate operation, since ∇V is a vector. In Eq. (A1.41) let $F = \mathbf{A} = \nabla V$, to obtain

$$\int_{S} \nabla \times (\nabla V) \cdot d\mathbf{S} = \oint_{C} \nabla V \cdot d\mathbf{l}.$$
(A1.45)

The integral on the right-hand side can be written in the form

$$\oint_{C} \nabla V \cdot d\mathbf{l} = \oint_{C} \frac{\partial V}{\partial l} dl = \oint_{C} d_{l}V,$$

where d_iV is the increment of the function V when the point moves from the beginning to the end of the line element dl of the contour C. Since in calculating the integral we start at a point of C, describe the full contour, and return to the starting point, the integration amounts to integrating a function from a point to that same point. We know that the result is zero. So the right-hand side in Eq. (A1.45) is zero,

$$\oint_C \nabla V \cdot \mathbf{dl} \equiv 0. \tag{A1.46}$$

For the left-hand side in Eq. (A1.46) to be zero for any surface S, the integrand must be identically zero. So we have another identity,

$$\nabla \times (\nabla V) = \nabla \times (\nabla V) = 0. \tag{A1.47}$$

(Valid for any scalar function V)

Ouestions and problems: QA1.28 to QA1.41, PA1.25 to PA1.35

QUESTIONS

- **QA1.1.** Classify the following quantities as either scalar or vector quantities: mass, time, weight, course of a ship, position of a point with respect to another point, acceleration, power of an engine, current intensity, voltage.
- **QA1.2.** Classify the following quantities as either scalar or vector fields: temperature in a room, mass density of an inhomogeneous body, weight per unit volume of an inhomogeneous body, velocity of air particles in a room, velocity of water particles in a river.
- **QA1.3.** Discuss whether the definition of subtraction of vectors follows from the definition of vector addition, or whether an additional definition is indispensable.
- **QA1.4.** Sketch the dependence of the dot product of two unit vectors on the angle between them.
- QA1.5. Why is the cross product not commutative?
- QA1.6. Which of the following expressions does not make sense, and why? (1) $\mathbf{A} \times (\mathbf{B} \cdot \mathbf{C})$, (2) $(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}$, (3) $(\mathbf{A} \times \mathbf{B}) \times (\mathbf{C} \cdot \mathbf{D})$, (4) $(\mathbf{A} \cdot \mathbf{B})(\mathbf{C} \times \mathbf{D})$, (5) $[(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}] \times \mathbf{D}$, (6) $[(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C}] \times \mathbf{D}$, (7) $[\mathbf{A} \times (\mathbf{B} \times \mathbf{C})] \cdot \mathbf{D}$
- **QA1.7.** What is the necessary and sufficient condition for three vectors, **A**, **B**, and **C**, to be in the same plane?
- **QA1.8.** Prove that $(A \times B) \cdot A$ and $(A \times B) \cdot B$ are zero.
- **QA1.9.** If $A \cdot C = B \cdot C$, does it mean that A = B? Explain.
- **QA1.10.** If $\mathbf{A} \times \mathbf{C} = \mathbf{B} \times \mathbf{C}$, does it mean that $\mathbf{A} = \mathbf{B}$? Explain.
- **QA1.11.** Can the dot product of two vectors be negative? Can the magnitude of the cross product of two vectors be negative?
- **QA1.12.** In which cases is (1) $\mathbf{A} \cdot \mathbf{B} = 0$, (2) $\mathbf{A} \times \mathbf{B} = 0$, and (3) $(\mathbf{A} \times \mathbf{B}) \cdot \mathbf{C} = 0$?
- **QA1.13.** Explain the meaning of $(A \cdot B)C$. Is this the same as $C(A \cdot B)$?
- **QA1.14.** Which of the following sets of coordinates define a point? (1) x = 2, y = -4, z = 0, (2) r = -4, $\phi = 0$, z = -1, (3) z = 3, $z = -90^\circ$, z = 0
- **QA1.15.** How do you obtain the components of a vector **A** in the direction of the three base unit vectors in any coordinate system?
- QA1.16. Define coordinate lines.
- QA1.17. Define differential lengths along coordinate lines.
- QA1.18. Define orthogonal coordinate systems.

- QA1.19. What is a "right-handed coordinate system"?
- **QA1.20.** A vector is defined by its three orthogonal components. Determine the vector itself and the unit vector in its direction.
- **QA1.21.** A vector is defined by its starting and end points in the rectangular system. Determine its components, the vector itself, and the unit vector in its direction.
- **QA1.22.** A point is defined (a) in a cylindrical coordinate system by its coordinates (r, ϕ, z) , and (b) in a spherical coordinate system by its coordinates (r, θ, ϕ) . Find the rectangular coordinates of the point in both cases.
- **QA1.23.** A point is defined in a rectangular coordinate system by its coordinates (x, y, z). Find the coordinates of the point in (a) cylindrical and (b) spherical coordinate systems.
- **QA1.24.** If \mathbf{u}_x , \mathbf{u}_y , and \mathbf{u}_z are base unit vectors in the rectangular coordinate system, and \mathbf{u}_r that in the cylindrical coordinate system, what are the values of the following products? (1) $\mathbf{u}_r \cdot \mathbf{u}_x$, (2) $\mathbf{u}_r \cdot \mathbf{u}_y$, (3) $\mathbf{u}_r \cdot \mathbf{u}_z$, (4) $\mathbf{u}_r \times \mathbf{u}_x$, (5) $\mathbf{u}_r \times \mathbf{u}_y$, (6) $\mathbf{u}_r \times \mathbf{u}_z$
- **QA1.25.** If \mathbf{u}_{ϕ} is the base unit vector in the cylindrical coordinate system, what are the following products equal to? (1) $\mathbf{u}_{\phi} \cdot \mathbf{u}_{x}$, (2) $\mathbf{u}_{\phi} \cdot \mathbf{u}_{y}$, (3) $\mathbf{u}_{\phi} \cdot \mathbf{u}_{z}$, (4) $\mathbf{u}_{\phi} \times \mathbf{u}_{x}$, (5) $\mathbf{u}_{\phi} \times \mathbf{u}_{y}$, (6) $\mathbf{u}_{\phi} \times \mathbf{u}_{z}$
- **QA1.26.** If \mathbf{u}_{ζ} is the base unit vector in the cylindrical coordinate system in the direction of the z axis, what are the values of the following products? (1) $\mathbf{u}_{\zeta} \cdot \mathbf{u}_{x}$, (2) $\mathbf{u}_{\zeta} \cdot \mathbf{u}_{y}$, (3) $\mathbf{u}_{\zeta} \cdot \mathbf{u}_{z}$, (4) $\mathbf{u}_{\zeta} \times \mathbf{u}_{x}$, (5) $\mathbf{u}_{\zeta} \times \mathbf{u}_{y}$, (6) $\mathbf{u}_{\zeta} \times \mathbf{u}_{z}$
- **QA1.27.** If \mathbf{u}_x , \mathbf{u}_y , and \mathbf{u}_z are base unit vectors in the rectangular coordinate system and \mathbf{u}_r that in the spherical coordinate system, what are the values of the following products? (1) $\mathbf{u}_r \cdot \mathbf{u}_x$, (2) $\mathbf{u}_r \cdot \mathbf{u}_y$, (3) $\mathbf{u}_r \cdot \mathbf{u}_z$, (4) $\mathbf{u}_r \times \mathbf{u}_x$, (5) $\mathbf{u}_r \times \mathbf{u}_y$, (6) $\mathbf{u}_r \times \mathbf{u}_z$
- **QA1.28.** What is the physical meaning of the vector $-\nabla f$, where f is a scalar function?
- **QA1.29.** Vector **r** is the position vector in a scalar field described by a function f. What is the directional derivative of the function f in the direction defined by the vector $\mathbf{r} \times \nabla f$?
- QA1.30. What is the unit of the del operator in the cartesian (rectangular) coordinate system?
- QA1.31. What is the divergence of the velocity field of the water flow in a pipe?
- **QA1.32.** A pipe with a liquid flowing through it has a very small hole through which the liquid leaks out of the pipe. If the surface in the definition of the divergence is assumed to be finite, and if it encloses part of the pipe and the hole, is the divergence of the liquid velocity field nonzero at that point? Explain.
- **QA1.33.** Propose a model in a time-variable flow of a compressible gas for which the divergence of the velocity field might be nonzero. Explain.
- **QA1.34.** A fluid flows through a pipe with a rough wall. Would you expect the curl of the fluid velocity field to be nonzero? Explain.
- **QA1.35.** A small spherical pressured cloud of gas is suddenly freed to disperse. Assuming completely symmetrical gas dispersion, which of the three functions of the gas velocity (a function of coordinates and time), the gradient, the divergence, and the curl, would be zero, and which nonzero? Explain.
- QA1.36. Does the divergence theorem apply to time-dependent fields? Explain.
- **QA1.37.** A volume v is limited by a surface S_0 from outside, but has holes limited by surfaces S_1 , S_2 , and S_3 from inside. Can the divergence theorem be applied to such a domain? If it can, explain in detail the formulation of the theorem in such a case.
- **QA1.38.** Is it possible to apply the divergence theorem to a vector function of the form $F \times G$? Explain.

- QA1.39. Does the Stokes's theorem apply to time-dependent fields?
- **QA1.40.** An open surface S is limited by a large contour C_0 , but has holes limited by small contours C_1 and C_2 . Is it possible to apply Stokes's theorem to such a surface? If so, explain in detail the expression for the theorem in such a case.
- **QA1.41.** Is it possible to apply Stokes's theorem to the vector function of the form $(\mathbf{F} \cdot \mathbf{G})\mathbf{F}$? Explain.

PROBLEMS

- **PA1.1.** Prove that the distributive law is valid for vector addition and for the three types of vector products (product of a vector with a scalar, dot product, and cross product).
- **PA1.2.** Prove that $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A})$.
- **PA1.3.** Prove that $A \times (B \times C) = (A \cdot C)B (A \cdot B)C$.
- **PA1.4.** Let **n** be a unit vector in an arbitrary direction, and \mathbf{r}_0 be the position vector of a point in a plane normal to **n**. What is the equation of the plane (i.e., which equation must be satisfied by the position vector of any point belonging to the plane)?
- **PA1.5.** Let **n** be the unit vector along a ζ axis, and \mathbf{r}_0 be the position vector of the point $\zeta = 0$ on the axis. What is the expression for the position vector, **r**, of a point with a coordinate ζ on the ζ axis?
- **PA1.6.** Two unit vectors, \mathbf{u}_1 and \mathbf{u}_2 , are in the half-plane x > 0 of the z = 0 plane. The unit vector \mathbf{u}_1 makes an angle $\alpha_1 > 0$ with the x axis, and \mathbf{u}_2 an angle α_2 . Find the dot product of the two unit vectors (1) if $\alpha_1 > \alpha_2 > 0$, and (2) if $\alpha_2 < 0$. Do the results remind you of some trigonometric formulas?
- **PA1.7.** Determine the unit vector in the direction of a vector **R**, with the origin at a point M'(x', y', z'), and the tip at a point M(x, y, z).
- **PA1.8.** Express the base unit vectors of the cylindrical coordinate system in terms of those of the rectangular system, and conversely.
- **PA1.9.** A point in the cylindrical coordinate system is defined by the coordinates (r, ϕ, z) . Determine the rectangular coordinates of the point.
- **PA1.10.** A point in the spherical coordinate system is defined by the coordinates (r, θ, ϕ) . Determine the rectangular coordinates of the point.
- **PA1.11.** A point in the rectangular system is defined by the coordinates (x, y, z). Determine the cylindrical and spherical coordinates of the point.
- **PA1.12.** A vector is described at a point $M(r, \phi, z)$ in the cylindrical coordinate system by its rectangular components A_x , A_y , and A_z . Determine the cylindrical components of the vector.
- **PA1.13.** A vector is described at a point $M(r, \theta, \phi)$ in the spherical coordinate system by its rectangular components A_x , A_y , and A_z . Determine the spherical components of the vector.
- **PA1.14.** Given that $\mathbf{A} = A_x \mathbf{u}_x + A_y \mathbf{u}_y + A_z \mathbf{u}_z$ and $\mathbf{B} = B_x \mathbf{u}_x + B_y \mathbf{u}_y + B_z \mathbf{u}_z$, determine the smaller angle between the two vectors.
- **PA1.15.** The *direction cosines* of a vector are cosines of angles between the vector and the base unit vectors. Determine the sum of the squares of the direction cosines.

- **PA1.16.** If l_A , m_A , and n_A are direction cosines of a vector **A**, and l_B , m_B , and n_B are those of a vector **B**, find the cosine of the smaller angle between the two vectors.
- **PA1.17.** A vector **A** is given by its components A_x , A_y , and A_z . Find the angles the vector makes with the three rectangular coordinate axes.
- **PA1.18.** Express the vector product of two vectors given by their rectangular components in the form of a determinant.
- **PA1.19.** Express the triple scalar product of three vectors given by their rectangular components in the form of a determinant.
- **PA1.20.** Given that $\mathbf{A} = 3\mathbf{u}_x 5\mathbf{u}_y + 8\mathbf{u}_z$, $\mathbf{B} = 4\mathbf{u}_x + \mathbf{u}_y 3\mathbf{u}_z$, and $\mathbf{C} = -2\mathbf{u}_x + 3\mathbf{u}_y 4\mathbf{u}_z$, determine: (1) $\mathbf{A} + \mathbf{B} \mathbf{C}$, (2) $\mathbf{A} \cdot \mathbf{B}$, (3) $\mathbf{B} \times \mathbf{C}$, (4) $\mathbf{A} \times \mathbf{C}$, (5) $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$, (6) ($\mathbf{A} \cdot \mathbf{B}$) \mathbf{C} , (7) ($\mathbf{A} \times \mathbf{B}$) $\cdot \mathbf{C}$, and (8) ($\mathbf{A} \times \mathbf{B}$) $\times \mathbf{C}$. Find the smaller angle between \mathbf{A} and \mathbf{B} , and between \mathbf{A} and \mathbf{C} , the magnitudes of the three vectors, and the unit vectors in their direction.
- **PA1.21.** If $\mathbf{A} = 2\mathbf{u}_r \mathbf{u}_\phi + \mathbf{u}_z$, with the origin at the point M(3,0,0) of the cylindrical coordinate system, and $\mathbf{B} = 2\mathbf{u}_r \mathbf{u}_\phi + \mathbf{u}_z$, with the origin at the point $N(5,\pi/2,5)$, determine: (1) $\mathbf{A} + \mathbf{B}$, (2) $\mathbf{A} \cdot \mathbf{B}$, (3) $\mathbf{A} \times \mathbf{B}$, (4) the smaller angle between the two vectors, and (5) their magnitudes.
- **PA1.22.** If $\mathbf{A} = 3\mathbf{u}_r + 2\mathbf{u}_\theta \mathbf{u}_\phi$, with the origin at the point $M(1,\pi/2,0)$ of the spherical coordinate system, and $\mathbf{B} = -2\mathbf{u}_r 4\mathbf{u}_\theta + 2\mathbf{u}_\phi$, with the origin at the point $N(3,\pi/2,\pi)$, determine: (1) $\mathbf{A} + \mathbf{B}$, (2) $\mathbf{A} \mathbf{B}$, (3) $\mathbf{A} \cdot \mathbf{B}$, (4) $\mathbf{A} \times \mathbf{B}$, (5) the smaller angle between the two vectors, and (6) their magnitudes.
- **PA1.23.** If $\mathbf{A} = \mathbf{u}_x + 4\mathbf{u}_y + 3\mathbf{u}_z$, and $\mathbf{B} = 2\mathbf{u}_x + \mathbf{u}_y \mathbf{u}_z$, determine the smaller angle between the vectors, the unit vectors along the two vectors, and the ratio of their magnitudes.
- **PA1.24.** Determine the differential volume and three differential areas normal to the three base unit vectors in rectangular, cylindrical, and spherical coordinate systems.
- **PA1.25.** From questions QA1.9 and QA1.10, we know that the relations $\mathbf{A} \cdot \mathbf{B} = \mathbf{A} \cdot \mathbf{C}$ and $\mathbf{A} \times \mathbf{B} = \mathbf{A} \times \mathbf{C}$, taken separately, do not mean that $\mathbf{B} = \mathbf{C}$. Is this still true if *both* these relations are satisfied?
- **PA1.26.** Determine the gradient of the scalar function $f(x, y, z) = x \cos 3y \exp(-4z)$, and the divergence and curl of the vector function $\mathbf{F}(x, y, z) = (2x^2yz)\mathbf{u}_x + x \sin y \cos z\mathbf{u}_y + (x+y+z)\mathbf{u}_z$.
- **PA1.27.** Prove that the curl of the gradient of the function f(x, y, z) from problem PA1.26 is zero, and that the divergence of the curl of F(x, y, z) is zero.
- **PA1.28.** Prove that the identities $\nabla \times [\nabla V(x, y, z)] = 0$ and $\nabla \cdot [\nabla \times \mathbf{A}(x, y, z)] = 0$ are satisfied for any twice differentiable functions V(x, y, z) and $\mathbf{A}(x, y, z)$.
- **PA1.29.** Let $\mathbf{A}(x, y, z) = xyz\mathbf{u}_x \sin x \cos ye^z\mathbf{u}_y + xy^2z^3\mathbf{u}_z$. (1) Evaluate the line integral of $\mathbf{A}(x, y, z)$ around a rectangular contour in the plane z = 0, with a vertex at the origin, a side a along the x axis and a side b along the y axis; start from the origin along side a. (2) Evaluate the flux of $\nabla \times \mathbf{A}(x, y, a)$ through the contour in the direction of the base unit vector \mathbf{u}_z . Can you conclude that the results you obtained are correct?
- **PA1.30.** Let $\mathbf{A}(x, y, z) = xyz\mathbf{u}_x + x^2y^2z^2\mathbf{u}_y + x^3y^3z^3\mathbf{u}_z$. (1) Evaluate the flux of $\mathbf{A}(x, y, z)$ through a cube with a vertex at the origin, and with sides of length 1 along coordinate lines for $x \ge 0$, $y \ge 0$, and $z \ge 0$. (2) Evaluate the volume integral of $\nabla \cdot \mathbf{A}(x, y, z)$ over the cube. Do you have a simple check for the accuracy of the results?

- **PA1.31.** The identity in Eq. (A1.44), $\nabla \cdot (\nabla \times \mathbf{A}) = 0$, was proved by considering the closed surface *S* having a small hole that shrinks to zero. Prove the identity by considering the closed surfaces to consist of two arbitrary open surfaces with a common boundary *C*.
- **PA1.32.** The gradient of a scalar function f can alternatively be defined in the form very similar to that of the divergence in Eq. (A1.22),

$$\nabla f(c_1, c_2, c_3) = \lim_{\Delta v \to 0} \frac{1}{\Delta v} \oint_{\Delta S} f \, d\mathbf{S}.$$

Using arguments similar to those for deriving the divergence in orthogonal coordinate systems, derive the analogous general expression for the gradient of f.

- PA1.33. From the general formula for the gradient obtained in problem PA1.32, prove that the same expressions for the gradient in rectangular, cylindrical, and spherical coordinate systems are obtained as in section A1.4.1.
- **PA1.34.** The curl of a vector function **F** can alternatively be defined in the form very similar to that of the divergence in Eq. (A1.22),

$$\nabla \times \mathbf{F}(c_1, c_2, c_3) = \lim_{\Delta v \to 0} \frac{1}{\Delta v} \oint_{\Delta S} d\mathbf{S} \times \mathbf{F}.$$

Using arguments similar to those for deriving the divergence in orthogonal coordinate systems, derive the analogous general expression for the curl of **F**.

PA1.35. From the general formula for the curl obtained in problem PA1.34, prove that the same expressions for the curl in rectangular, cylindrical, and spherical coordinate systems are obtained as in section A1.4.3.

Appendix 2

Summary of Vector Identities

In the relationships described in this Appendix, A, B, C, D, and F are vector functions, and V, W, and f are scalar functions of coordinates. It is assumed that they have all necessary derivatives.

ALGEBRAIC IDENTITIES

1.
$$A + B = B + A$$

2.
$$(A + B) + C = A + (B + C)$$

3.
$$\mathbf{A} \cdot \mathbf{B} = AB\cos(\mathbf{A}, \mathbf{B})$$

4.
$$\mathbf{A} \cdot \mathbf{A} = |\mathbf{A}|^2 = A^2$$

5.
$$\mathbf{A} \cdot \mathbf{B} = \mathbf{B} \cdot \mathbf{A}$$

$$6. \ \mathbf{A} \cdot (\mathbf{B} + \mathbf{C}) = \mathbf{A} \cdot \mathbf{B} + \mathbf{A} \cdot \mathbf{C}$$

7.
$$V(\mathbf{A} + \mathbf{B}) = V\mathbf{A} + V\mathbf{B}$$

8. $\mathbf{A} \times \mathbf{B} = AB \sin(\mathbf{A}, \mathbf{B})\mathbf{n}$, where \mathbf{n} is the unit vector normal to the plane of vectors \mathbf{A} and \mathbf{B} , and its direction is determined by the right-hand rule when vector \mathbf{A} is rotated to coincide with vector \mathbf{B} in the shortest way.

9.
$$\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A}$$

10.
$$\mathbf{A} \times (\mathbf{B} + \mathbf{C}) = \mathbf{A} \times \mathbf{B} + \mathbf{A} \times \mathbf{C}$$

11.
$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A})$$

12.
$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C})\mathbf{B} - (\mathbf{A} \cdot \mathbf{B})\mathbf{C}$$

13.
$$(\mathbf{A} \times \mathbf{B}) \cdot (\mathbf{C} \times \mathbf{D}) = \mathbf{D} \cdot [(\mathbf{A} \times \mathbf{B}) \times \mathbf{C})] = \mathbf{C} \cdot [\mathbf{D} \times (\mathbf{A} \times \mathbf{B})] = \dots$$
 (using nos. 11 and 12, several other forms can be obtained)

14. $\mathbf{u}_A = \mathbf{A}/A$ (unit vector in the direction of vector \mathbf{A})

DIFFERENTIAL IDENTITIES

15.
$$\mathbf{u}_x \cdot \nabla V = \partial V / \partial x$$
 (*x*: arbitrary axis)

16.
$$\nabla (V+W) = \nabla V + \nabla W$$

17.
$$\nabla (VW) = V\nabla W + W\nabla V$$

18.
$$\nabla f(V) = f'(V)\nabla V$$

19.
$$\nabla \cdot (\mathbf{A} + \mathbf{B}) = \nabla \cdot \mathbf{A} + \nabla \cdot \mathbf{B}$$

20.
$$\nabla \cdot (V\mathbf{A}) = V\nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla V$$

21.
$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot \nabla \times \mathbf{A} - \mathbf{A} \cdot \nabla \times \mathbf{B}$$

22.
$$\nabla \times (\mathbf{A} + \mathbf{B}) = \nabla \times \mathbf{A} + \nabla \times \mathbf{B}$$

23.
$$\nabla \times (V\mathbf{A}) = (\nabla V) \times \mathbf{A} + V \nabla \times \mathbf{A}$$

24.
$$\nabla \cdot (\nabla \times \mathbf{A}) = 0$$

25.
$$\nabla \cdot (\nabla V) = \nabla^2 V = \Delta V = \text{Laplacian of } V$$

26.
$$\nabla \cdot [\nabla (VW)] = V\nabla \cdot (\nabla W) + 2\nabla V \cdot \nabla W + W\nabla \cdot (\nabla V)$$

27.
$$\nabla \times (\nabla V) = 0$$

28.
$$\nabla \times (\nabla \times \mathbf{A}) = \nabla(\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$

INTEGRAL IDENTITIES

Basic integral identities

$$29. \int_{\mathcal{V}} \nabla f \, \mathrm{d}v = \oint_{\mathcal{S}} f \, \mathrm{d}\mathbf{S}$$

30.
$$\int_{V} \nabla \cdot \mathbf{F} \, dv = \oint_{S} \mathbf{F} \cdot d\mathbf{S}$$
 (the divergence theorem)

31.
$$\int_{v} \nabla \times \mathbf{F} \, dv = \oint_{S} d\mathbf{S} \times \mathbf{F}$$

32.
$$\int_{S} \nabla \times \mathbf{F} \cdot d\mathbf{S} = \oint_{C} \mathbf{F} \cdot d\mathbf{I}$$
 (Stokes's theorem)

Some integral identities derived from basic integral identities

33.
$$\oint_S \nabla \times \mathbf{A} \cdot d\mathbf{S} = 0$$
 (set $\mathbf{F} = \nabla \times \mathbf{A}$ in no. 30, and take into account no. 24)

34.
$$\int_{v} (V\nabla^{2}W + \nabla V \cdot \nabla W) \, dv = \oint_{S} V \frac{\partial W}{\partial n} \, dS$$
 (set $\mathbf{F} = V\nabla W$ in no. 30, and use nos. 20 and 15)

35.
$$\int_{V} (V\nabla^{2}W - W\nabla^{2}V) \, dv = \oint_{S} \left(V \frac{\partial W}{\partial n} - W \frac{\partial V}{\partial n}\right) \, dS$$
(set $\mathbf{F} = V\nabla W - W\nabla V$ in no. 30, and use nos. 20 and 15)

36.
$$\int_{v} [\nabla \times \mathbf{A} \cdot \nabla \times \mathbf{B} - \mathbf{A} \cdot \nabla \times (\nabla \times \mathbf{B})] dv = \oint_{S} (\mathbf{A} \times \nabla \times \mathbf{B}) \cdot d\mathbf{S}$$
 (set $\mathbf{F} = \mathbf{A} \times \nabla \times \mathbf{B}$ in no. 30, and use nos. 20 and 15)

37.
$$\int_{V} \nabla V \cdot \nabla \times \mathbf{A} \, dv = \int_{S} V \nabla \times \mathbf{A} \cdot d\mathbf{S}$$
 (set $\mathbf{F} = V \nabla \times \mathbf{A}$ in no. 30, and use nos. 20 and 24)

$$\mathbf{38.} \ \int_{S} \, \mathrm{d}\mathbf{S} \times \nabla V = \oint_{C} V \, \mathrm{d}\mathbf{1}$$

(set $\mathbf{F} = \mathbf{C}V$ in no. 29, where \mathbf{C} is a constant vector, use nos. 23 and 11, and take C in front of both integrals)

39.
$$\int_{S} (\nabla V \times \nabla W) \cdot d\mathbf{S} = \oint_{C} V \nabla W \cdot d\mathbf{I}$$
 (set $\mathbf{F} = V \nabla W$ in no. 29, and use nos. 23 and 27)

GRADIENT, DIVERGENCE, CURL, AND LAPLACIAN IN ORTHOGONAL COORDINATE SYSTEMS

Rectangular coordinate system

Notation: f = f(x, y, z), $\mathbf{F} = \mathbf{F}(x, y, z)$, $F_x = F_x(x, y, z)$, $F_y = F_y(x, y, z)$, $F_z = F_y(x, y, z)$ $F_z(x, y, z)$

40.
$$\nabla f = \frac{\partial f}{\partial x} \mathbf{u}_x + \frac{\partial f}{\partial y} \mathbf{u}_y + \frac{\partial f}{\partial z} \mathbf{u}_z$$

41.
$$\nabla \cdot \mathbf{F} = \frac{\partial F_x}{\partial x} + \frac{\partial F_y}{\partial y} + \frac{\partial F_z}{\partial z}$$

42.
$$\nabla \times \mathbf{F} = \mathbf{u}_x \left(\frac{\partial F_z}{\partial y} - \frac{\partial F_y}{\partial z} \right) + \mathbf{u}_y \left(\frac{\partial F_x}{\partial z} - \frac{\partial F_z}{\partial x} \right) + \mathbf{u}_z \left(\frac{\partial F_y}{\partial x} - \frac{\partial F_x}{\partial y} \right)$$

43.
$$\nabla^2 f \equiv \nabla \cdot (\nabla f) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2}$$

44.
$$\nabla^2 \mathbf{F} = (\nabla^2 F_x) \mathbf{u}_x + (\nabla^2 F_y) \mathbf{u}_y + (\nabla^2 F_z) \mathbf{u}_z$$

Cylindrical coordinate system

Notation: $f = f(r, \phi, z)$, $\mathbf{F} = \mathbf{F}(r, \phi, z)$, $F_r = F_r(r, \phi, z)$, $F_{\phi} = F_{\phi}(r, \phi, z)$, $F_z = F_z(r, \phi, z)$

45.
$$\nabla f = \frac{\partial f}{\partial r} \mathbf{u}_r + \frac{1}{r} \frac{\partial f}{\partial \phi} \mathbf{u}_\phi + \frac{\partial f}{\partial z} \mathbf{u}_z$$

46.
$$\nabla \cdot \mathbf{F} = \frac{1}{r} \frac{\partial (rF_r)}{\partial r} + \frac{1}{r} \frac{\partial F_{\phi}}{\partial \phi} + \frac{\partial F_z}{\partial z}$$

47. $\nabla \times \mathbf{F} = \mathbf{u}_r \left(\frac{1}{r} \frac{\partial F_z}{\partial \phi} - \frac{\partial F_{\phi}}{\partial z} \right) + \mathbf{u}_{\phi} \left(\frac{\partial F_r}{\partial z} - \frac{\partial F_z}{\partial r} \right) + \mathbf{u}_z \frac{1}{r} \left[\frac{\partial (rF_{\phi})}{\partial r} - \frac{\partial F_r}{\partial \phi} \right]$
48. $\nabla^2 f \equiv \nabla \cdot (\nabla f) = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial f}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 f}{\partial \phi^2} + \frac{\partial^2 f}{\partial z^2}$
49. $\nabla^2 \mathbf{A} = \nabla (\nabla \cdot \mathbf{A}) - \nabla \times (\nabla \times \mathbf{A})$

Spherical coordinate system

Notation: $f = f(r, \theta, \phi)$, $\mathbf{F} = \mathbf{F}(r, \theta, \phi)$, $F_r = F_r(r, \theta, \phi)$, $F_\theta = F_\theta(r, \theta, \phi)$, $F_\phi = F_\phi(r, \theta, \phi)$

50.
$$\nabla f = \frac{\partial f}{\partial r} \mathbf{u}_{r} + \frac{1}{r} \frac{\partial f}{\partial \theta} \mathbf{u}_{\theta} + \frac{1}{r \sin \theta} \frac{\partial f}{\partial \phi} \mathbf{u}_{\phi}$$
51.
$$\nabla \cdot \mathbf{F} = \frac{1}{r^{2}} \frac{\partial (r^{2} F_{r})}{\partial r} + \frac{1}{r \sin \theta} \frac{\partial (\sin \theta F_{\theta})}{\partial \theta} + \frac{1}{r \sin \theta} \frac{\partial F_{\phi}}{\partial \phi}$$
52.
$$\nabla \times \mathbf{F} = \mathbf{u}_{r} \frac{1}{r \sin \theta} \left[\frac{\partial (\sin \theta F_{\phi})}{\partial \theta} - \frac{\partial F_{\theta}}{\partial \phi} \right] + \mathbf{u}_{\theta} \frac{1}{r} \left[\frac{1}{\sin \theta} \frac{\partial F_{r}}{\partial \phi} - \frac{\partial (rF_{\phi})}{\partial r} \right] + \mathbf{u}_{\phi} \frac{1}{r} \left[\frac{\partial (rF_{\theta})}{\partial r} - \frac{\partial F_{r}}{\partial \theta} \right]$$
53.
$$\nabla^{2} f \equiv \nabla \cdot (\nabla f) = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} \frac{\partial f}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial f}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} f}{\partial \phi^{2}}$$
54.
$$\nabla^{2} \mathbf{A} = \nabla (\nabla \cdot \mathbf{A}) - \nabla \times (\nabla \times \mathbf{A})$$

Appendix 3

Values of Some Important Physical Constants

Name	Symbol	Value
Velocity of light in a vacuum	c_0	2.99792458 · 10 ⁸ m/s
Absolute value of electron charge	e	$(1.60210 \pm 0.00007) \cdot 10^{-19}$ C
Magnetic moment of electron	_	$(9.2837 \pm 0.0002) \cdot 10^{-32} \text{A} \cdot \text{m}^2$
Mass of electron at rest	m_e	$(9.1083 \pm 0.0003) \cdot 10^{-31} \mathrm{kg}$
Mass of neutron at rest	m_n	$(1.67470 \pm 0.00004) \cdot 10^{-27} \text{ kg}$
Mass of proton at rest	m_v	$(1.67239 \pm 0.00004) \cdot 10^{-27} \mathrm{kg}$
Permeability of a vacuum	μ_0^r	$4\pi \cdot 10^{-7}$ H/m($\pi = 3.14159265$)
Permittivity of a vacuum	ϵ_0	$1/(\mu_0 c_0^2) = 8.85419 \cdot 10^{-12} \text{F/m}$
Standard acceleration of free fall	88	$9.80665\mathrm{m/s^2}$
Gravitational constant	γ	$(6.673 \pm 0.003) \cdot 10^{-11} \text{N} \cdot \text{m}^2/\text{kg}^2$

Appendix 4

Electrical Properties of Some Materials at Room Temperature and Low Frequencies

$\sigma(S/m)$	Comment		
$6.14 \cdot 10^{7}$	oxidizes		
$5.65 - 5.8 \cdot 10^7$	oxidizes		
$4.1\cdot 10^7$	inert		
$3.8 \cdot 10^{7}$	oxidizes		
$1.8 \cdot 10^{7}$	very hard		
$1.74\cdot 10^7$,		
$1.5 \cdot 10^{7}$			
$1.28\cdot 10^7$	$1.28\cdot 10^7$		
$1\cdot 10^7$			
	$6.14 \cdot 10^{7}$ $5.65 - 5.8 \cdot 10^{7}$ $4.1 \cdot 10^{7}$ $3.8 \cdot 10^{7}$ $1.8 \cdot 10^{7}$ $1.74 \cdot 10^{7}$ $1.5 \cdot 10^{7}$ $1.28 \cdot 10^{7}$		

(continued)

Material	ϵ_r	$\sigma(S/m)$	Comment
Iron		$1 \cdot 10^7$	
Steel		$0.5 - 1 \cdot 10^7$	
Tin		$0.87 \cdot 10^{7}$	
Nichrome		$0.1\cdot 10^7$	
Graphite		$7\cdot 10^4$	
Seawater	70	3 - 5	
Wet earth	5 to 15	10^{-2} to 10^{-3}	
Dry earth	2 to 6	10^{-4} to 10^{-5}	
Fresh water			
(lake)	80	10^{-3}	
Distilled water	80	$2 \cdot 10^{-4}$	
Alcohol	25		
Air	1.006		breakdown 3 kV/m
Styrofoam	1.03		
Teflon	2.1		
Polystyrene	2.56		
Rubber	2.5 to 3	10^{-15}	
Paper	2 to 4		
Quartz	3.8		
Glass	4 to 10	10^{-12}	
Mica	5.4		
Porcelain	6	10^{-10}	
Diamond	5 to 6	$2 \cdot 10^{-13}$	good heat conductor
Silicon	11	semiconductor, o	depends on doping level
Gallium arsenide	13	semiconductor, o	depends on doping level
Barium titanate	60 to 3600	anisotropic in cry mechanical co	vstalline form, dependent on additions

Magnetic Properties of Some Materials

Material	μ_r	Comment
Silver	0.999976	diamagnetic
Bismuth	0.999982	diamagnetic
Copper	0.99999	diamagnetic
Gold	0.99996	diamagnetic
Water	0.9999901	diamagnetic
Aluminum	1.000021	paramagnetic
Platinum	1.0003	paramagnetic
Tungsten	1.00008	paramagnetic
Ferrite	1000	e.g. NiO· Fe ₂ O ₃ , insulator
Ferroxcube 3	1500	Mn-Zn ferrite powder
Cobalt	250	ferromagnetic
Nickel	600	ferromagnetic
Steel	2000	ferromagnetic
Iron (0.2 impurity)	5000	ferromagnetic
Silicon iron	7000	ferromagnetic
Purified iron (0.05 impurity)	$2\cdot 10^5$	ferromagnetic
Supermalloy	as high as 10^6	ferromagnetic

Standard (IEC) Multipliers of Fundamental Units

Multiple	Prefix	Symbol	Example
1012	tera	Т	$1.2\mathrm{Tm} = 1.2 \cdot 10^{12}\mathrm{m}$
10^{9}	giga	G	$12 \mathrm{GW} = 12 \cdot 10^9 \mathrm{W}$
106	mega	M	$5\mathrm{MHz} = 5 \cdot 10^6\mathrm{Hz}$
10^{3}	kilo	k	$22 \mathrm{kV} = 22 \cdot 10^3 \mathrm{V}$
10^{2}	hecto	h	$100 hN = 100 \cdot 10^2 N$
10	deca	da	$32 \mathrm{dag} = 320 \mathrm{g}$
10-1	deci	d	$2 dm = 2 \cdot 10^{-1} m$
10^{-2}	centi	С	$75 \text{cm} = 70 \cdot 10^{-2} \text{m}$
10^{-3}	milli	m	$56\mathrm{m}\Omega = 56\cdot 10^{-3}\Omega$
10^{-6}	micro	μ	$25 \mu\mathrm{H} = 25 \cdot 10^{-6}\mathrm{H}$
10^{-9}	nano	n	$56 \mathrm{nA} = 56 \cdot 10^{-9} \mathrm{A}$
10^{-12}	pico	p	$40 \mathrm{pF} = 40 \cdot 10^{-12} \mathrm{F}$
10^{-15}	femto	f	$1.2 \text{fm} = 1.2 \cdot 10^{-15} \text{m}$
10^{-18}	atto	a	$0.16 \mathrm{aC} = 0.16 \cdot 10^{-18} \mathrm{C}$

The Greek Alphabet

Le	etter	Name	Le	etter	Name
A	α	alpha	N	ν	nu
В	β	beta	Ξ	ξ	xi
Γ	γ	gamma	O	o	omikron
Δ	δ	delta	П	π	pi
E	ϵ, ε	epsilon	R	ρ, ϱ	rho
Z	ζ	zeta	Σ	σ	sigma
E	η	eta	T	τ	tau
Θ	θ , ϑ	theta	Υ	υ	upsilon
I	ι	iota	Φ	ϕ , $arphi$	phi
K	κ	kappa	X	χ	chi
Λ	λ	lambda	Ψ	ψ	psi
M	μ	mu	Ω	ω	omega

Theory of Lossless Metallic Waveguides

A8.1 General Theory of Metallic Waveguides

Although waveguides are never lossless, assuming that they have no losses greatly simplifies the analysis. We limit our analysis to cylindrical waveguides, i.e., no bends of waveguides are allowed. Consider a general lossless waveguide with a cross section as shown in Fig. 23.1 (Chapter 23), guiding a time-harmonic wave. Assume that the dielectric in the waveguide has parameters ϵ and μ . Let us write Maxwell's equations in phasor (complex) form for electromagnetic waves propagating in the +z direction along the waveguide.

We know that waves propagating along the waveguide, if represented in phasor (complex) form, generally have a factor $e^{-(\alpha+j\beta)z}=e^{-\gamma z}$. Because the material of the waveguide is lossless, we might be tempted to omit the attenuation coefficient, α . However, as mentioned in the introduction to Chapter 23, below a certain frequency waveguides do not allow wave propagation, i.e., they behave as wave attenuators, so it is necessary to use the complex propagation coefficient, γ .

Because we wish to investigate the types of waves that can propagate along the z axis, the sole dependence of the field vectors on z must be contained in the

propagation factor $e^{-\gamma z}$. So the phasor field components are of the form

$$\mathbf{E}_{\text{tot}}(x, y, z) = \mathbf{E}(x, y)e^{-\gamma z} \quad \text{and} \quad \mathbf{H}_{\text{tot}}(x, y, z) = \mathbf{H}(x, y)e^{-\gamma z}, \quad (A8.1)$$

where $\mathbf{E}(x, y)$ and $\mathbf{H}(x, y)$ are complex values of the two vectors in the plane z = 0.

Complex Maxwell's equations in differential form contain derivatives with respect to coordinates only. The derivatives with respect to coordinates x and y will act on $\mathbf{E}(x, y)$ and $\mathbf{H}(x, y)$ only, and the derivative with respect to z on $e^{-\gamma z}$ only. For example, for the electric field vector the derivatives with respect to x and z are

$$\frac{\partial \mathbf{E}_{\text{tot}}(x, y, z)}{\partial x} = \frac{\partial \mathbf{E}(x, y)}{\partial x} e^{-\gamma z} \quad \text{and} \quad \frac{\partial \mathbf{E}_{\text{tot}}(x, y, z)}{\partial z} = -\gamma \mathbf{E}(x, y) e^{-\gamma z}. \quad (A8.2)$$

Thus the factor $e^{-\gamma z}$ is common to all terms in Maxwell's equations, and can be canceled out, just like we canceled out the factor $e^{j\omega t}$ to obtain the phasor form of the equations. Differentiation with respect to z should be replaced by $-\gamma$. Of course, once we have determined the field vectors in the plane z = 0, that is, $\mathbf{E}(x, y)$ and $\mathbf{H}(x, y)$, the total phasor field vectors are obtained from Eq. (A8.1).

With this in mind, let us write Maxwell's equation in differential form for E = $\mathbf{E}(x, y)$ and $\mathbf{H} = \mathbf{H}(x, y)$ [we omit dependence on (x, y) for brevity]. Using the expressions for curl and divergence in the rectangular coordinate system, the first Maxwell's equation in scalar form becomes

$$\frac{\partial E_z}{\partial y} - \gamma E_y = -j\omega \mu H_x,\tag{Ia}$$

$$-\gamma E_x - \frac{\partial E_z}{\partial x} = -j\omega \mu H_y, \tag{Ib}$$

$$\frac{\partial E_y}{\partial x} - \frac{\partial E_x}{\partial y} = -j\omega\mu H_z. \tag{Ic}$$

Similarly, the second equation takes the form
$$\frac{\partial H_z}{\partial y} - \gamma H_y = \mathrm{j}\omega \epsilon E_x, \tag{IIa}$$

$$-\gamma H_x - \frac{\partial H_z}{\partial x} = j\omega \epsilon E_y,\tag{IIb}$$

$$\frac{\partial H_y}{\partial x} - \frac{\partial H_x}{\partial y} = j\omega \epsilon E_z. \tag{IIc}$$

Finally, the third and fourth equations become

$$\frac{\partial E_x}{\partial x} + \frac{\partial E_y}{\partial y} = \gamma E_z,\tag{III}$$

$$\frac{\partial H_x}{\partial x} + \frac{\partial H_y}{\partial y} = \gamma H_z. \tag{IV}$$

If we substitute H_{ν} from Eq. (Ib) into Eq. (IIa), we obtain an equation in which E_x is expressed in terms of the derivatives of z components of E_z and H_z . Similarly, from Eqs. (Ia) and (IIb) we can express E_y in terms of these derivatives. If next the expression for E_y is substituted in Eq. (Ia), and that for E_x in Eq. (Ib), we can also express H_x and H_y in terms of the derivatives of E_z and H_z . After simple manipulations we obtain the following expressions:

$$E_{x} = -\frac{1}{K^{2}} \left(\gamma \frac{\partial E_{z}}{\partial x} + j\omega \mu \frac{\partial H_{z}}{\partial y} \right), \tag{A8.3}$$

$$E_{y} = -\frac{1}{K^{2}} \left(\gamma \frac{\partial E_{z}}{\partial y} - j\omega \mu \frac{\partial H_{z}}{\partial x} \right), \tag{A8.4}$$

$$H_x = -\frac{1}{K^2} \left(-j\omega \epsilon \frac{\partial E_z}{\partial y} + \gamma \frac{\partial H_z}{\partial x} \right), \tag{A8.5}$$

$$H_{y} = -\frac{1}{K^{2}} \left(j\omega \epsilon \frac{\partial E_{z}}{\partial x} + \gamma \frac{\partial H_{z}}{\partial y} \right), \tag{A8.6}$$

where

$$K^2 = \gamma^2 + \beta^2, \qquad \beta^2 = \omega^2 \epsilon \mu. \tag{A8.7}$$

Note that the propagation coefficient γ (and therefore also the coefficient K) is not known. So there are seven scalar unknowns (the six field components and γ).

A8.2 Quasi-Static Nature of TEM Waves

There is an interesting general conclusion concerning TEM waves. For $H_z = 0$, Eq. (A8.3) simply states that the curl of (transversal) vector $\mathbf{E}(x, y)$ is zero. We know that this means not that $\mathbf{E}(x, y) = 0$, but that $\mathbf{E}(x, y) = -\Delta V(x, y)$, or

$$E_x(x, y) = -\frac{\partial V(x, y)}{\partial x}$$
 and $E_y(x, y) = -\frac{\partial V(x, y)}{\partial y}$. (A8.8)

Substituting these expressions for E_x and E_y into Eq. (III), we obtain (FOR $E_2 = 0$)

$$\frac{\partial^2 V(x,y)}{\partial x^2} + \frac{\partial^2 V(x,y)}{\partial y^2} = 0. \tag{A8.9}$$

So the electric field is derivable from a potential function which at z=0 satisfies Laplace's equation in x and y. Because boundary conditions require that the tangential E on conductor surfaces be zero, we reach the following conclusion: for TEM waves, the electric field in planes where z is constant is the same as the electrostatic field corresponding to the potentials of waveguide conductors at that cross section.

A8.3 Derivation of General Properties of TE Wave Types

For TE waves, $E_z = 0$, so that the expressions for the transversal field components in Eqs. (A8.3) to (A8.6) reduce to

$$E_x = -\frac{j\omega\mu}{K^2} \frac{\partial H_z}{\partial u},\tag{A8.10}$$

$$E_y = \frac{j\omega\mu}{K^2} \frac{\partial H_z}{\partial x},\tag{A8.11}$$

$$H_x = -\frac{\gamma}{K^2} \frac{\partial H_z}{\partial x},\tag{A8.12}$$

$$H_{y} = -\frac{\gamma}{K^{2}} \frac{\partial H_{z}}{\partial y}.$$
 (A8.13)

So, we can find all the field components of a TE wave if we determine H_z . How can we do that? We need an equation in which H_z is a single unknown. This is the Helmholtz equation (21.8). [It could, of course, also be derived from Eqs. (I–IV).] It is a vector equation representing three scalar equations in three components of the vector \mathbf{H} . For $\sigma=0$ and in a rectangular coordinate system, having in mind that

$$\nabla^{2}[\mathbf{H}(x,y)e^{-\gamma z}] = \nabla^{2}[H_{x}(x,y)e^{-\gamma z}]\mathbf{u}_{x} + \nabla^{2}[H_{y}(x,y)e^{-\gamma z}]\mathbf{u}_{y} + \nabla^{2}[H_{z}(x,y)e^{-\gamma z}]\mathbf{u}_{z},$$

the Helmholtz equation for the H_z component becomes

$$\nabla^2 [H_z(x, y) e^{-\gamma z}] + \omega^2 \epsilon \mu H_z(x, y) e^{-\gamma z} = 0.$$

Now, the first term of the last equation is just the Laplacian of the *scalar* function $H_z e^{-\gamma z}$, and we know the Laplacian in rectangular coordinates. Omitting the dependence of H_z on (x, y), and having in mind Eq. (A8.7), we obtain

$$\frac{\partial^2 H_z}{\partial x^2} + \frac{\partial^2 H_z}{\partial y^2} + \gamma^2 H_z + \omega^2 \epsilon \mu H_z = \frac{\partial^2 H_z}{\partial x^2} + \frac{\partial^2 H_z}{\partial y^2} + K^2 H_z = 0. \tag{A8.14}$$

A8.3.1 EXPRESSIONS FOR TE WAVES IN RECTANGULAR WAVEGUIDES

The first step in determining the TE waves is to find solutions of the Helmholtz equation (A8.14), that is, $H_z(x, y)$. Once this has been determined, the field components are obtained from Eqs. (A8.10) to (A8.13).

Let us attempt to find the solution of Eq. (A8.14) in the form

$$H_z(x, y) = X(x)Y(y). \tag{A8.15}$$

Substituting this H_z into the Helmholtz equation (A8.14), and assuming nonzero X(x) and Y(y), we obtain

$$\frac{1}{X(x)}\frac{d^2X(x)}{dx^2} + \frac{1}{Y(y)}\frac{d^2Y(y)}{dy^2} + K^2 = 0.$$
 (A8.16)

Partial derivatives are replaced by ordinary derivatives because X(x) is a function of x only, and Y(y) a function of y only. Assume any functions X(x) and Y(y). After performing the indicated differentiations, the first term becomes a function of x alone, for example, f(x), and the second of y alone, for example, g(y). f(x) and g(y) must be such that $f(x) + g(y) + K^2 = 0$ for all x and all y. How can this be achieved, having in mind that x and y are independent and can have any values? There is only one

answer: both f(x) and g(y) must be equal to a constant, for example, $f(x) = k_x^2$ and $g(y) = k_y^2$, and the sum of these constants plus K^2 must be zero. Thus Eq. (A8.16) can be satisfied for all x and all y only if

$$\frac{1}{X(x)} \frac{d^2 X(x)}{dx^2} = k_x^2, \qquad \frac{1}{Y(y)} \frac{d^2 Y(y)}{dy^2} = k_y^2,$$

or

$$\frac{d^2X(x)}{dx^2} = k_x^2 X(x), \qquad \frac{d^2Y(y)}{dy^2} = k_y^2 Y(y), \tag{A8.17}$$

and

$$k_x^2 + k_y^2 = K^2 = \gamma^2 + \omega^2 \epsilon \mu.$$
 (A8.18)

Thus the propagation coefficient of TE waves is

$$\gamma = \sqrt{k_x^2 + k_y^2 - \omega^2 \epsilon \mu} = j\omega \sqrt{\epsilon \mu} \sqrt{1 - \frac{k_x^2 + k_y^2}{\omega^2 \epsilon \mu}}.$$
 (A8.19)

The solutions of Eqs. (A8.17) are well known. They are of the form

$$X(x) = A_x \sin(k_x x) + B_x \cos(k_x x), \tag{A8.20}$$

$$Y(y) = A_y \sin(k_y y) + B_y \cos(k_y y). \tag{A8.21}$$

So the expression for $H_z(x, y)$ becomes

$$H_z(x, y) = [A_x \sin(k_x x) + B_x \cos(k_x x)][A_y \sin(k_y y) + B_y \cos(k_y y)], \tag{A8.22}$$

where A_x, \ldots, B_y, k_x , and k_y are constants to be determined from boundary conditions.

We know that on perfectly conducting waveguide walls in Fig. 23.2, boundary conditions require that $E_{\rm tang} = 0$ and $H_{\rm norm} = 0$. From Eqs. (A8.10) to (A8.13) we see that if one of these conditions is satisfied, the other is satisfied automatically. So we request that $E_y = 0$ for x = 0 (the left wall in Fig. 23.2) and for x = a (the right wall), and that $E_x = 0$ for y = 0 (the bottom wall) and for y = b (the top wall). According to Eqs. (A8.10), (A8.11), and (A8.22) this means that

$$\frac{\partial H_z}{\partial x} = [A_x k_x \cos(k_x x) - B_x k_x \sin(k_x x)][A_y \sin(k_y y) + B_y \cos(k_y y)] = 0$$
for $x = 0$ and $x = a$, (A8.23)

and

$$\frac{\partial H_z}{\partial y} = [A_x \sin(k_x x) + B_x \cos(k_x x)][A_y k_y \cos(k_y y) - B_y k_y \sin(k_y y)] = 0$$
for $y = 0$ and $y = b$. (A8.24)

Eq. (A8.23) can be satisfied if $A_x = 0$ (then the cosine term in the first brackets, which is nonzero for x = 0, vanishes), and if

th is nonzero for
$$x = 0$$
, vanishes), and if $k_x a = m\pi$, or $k_x = \frac{m\pi}{a}$, $m = 1, 2, ...$, (A8.25)

since for x = a and these values of k_x the sine in the first brackets on the right of Eq. (A8.23) is zero.

Similarly, Eq. (A8.24) can be satisfied if $A_y = 0$, and if

$$k_y b = n\pi$$
, or $k_y = \frac{n\pi}{b}$, $n = 1, 2, ...$ (A8.26)

Noting that $\omega = 2\pi f$, the final expression for the propagation coefficient of a TE wave along a rectangular waveguide becomes

$$\gamma = j\beta, \qquad \beta = \omega \sqrt{\epsilon \mu} \sqrt{1 - \frac{f_c^2}{f^2}},$$
 (A8.27)

where, noting that $1/\sqrt{\epsilon\mu} = c$,

$$f_c = \frac{c}{2} \sqrt{\left(\frac{m}{a}\right)^2 + \left(\frac{n}{b}\right)^2}, \qquad e = \frac{1}{\sqrt{\epsilon \mu}}.$$
 (A8.28)

where f_c is the *cutoff frequency*, as explained in Chapter 23. It depends on both the numbers m and n, and on the waveguide dimensions.

Finally, the H_z component in the cross section z = 0 of the waveguide is

$$H_z(x, y) = H_0 \cos\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right) \qquad \text{(at } z = 0\text{)},$$

where H_0 is a constant depending on the level of excitation of the wave in the waveguide. The other components at z = 0 are obtained from Eqs. (A8.10) to (A8.13) (note that $E_z = 0$):

$$E_{x}(x,y) = \frac{j\omega\mu}{K^{2}} \frac{n\pi}{b} H_{0} \cos\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right) \qquad (\text{at } z = 0), \tag{A8.30}$$

$$E_y(x,y) = -\frac{j\omega\mu}{K^2} \frac{m\pi}{a} H_0 \sin\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right) \qquad (\text{at } z = 0), \tag{A8.31}$$

$$H_x(x, y) = \frac{\gamma}{K^2} \frac{m\pi}{a} H_0 \sin\left(\frac{m\pi}{a}x\right) \cos\left(\frac{n\pi}{b}y\right) \qquad (\text{at } z = 0),$$
(A8.32)

$$H_y(x, y) = \frac{\gamma}{K^2} \frac{n\pi}{b} H_0 \cos\left(\frac{m\pi}{a}x\right) \sin\left(\frac{n\pi}{b}y\right) \qquad (\text{at } z = 0). \tag{A8.33}$$

The values of the wave components for any z are obtained by simply multiplying the preceding expressions by $e^{-\gamma z} = e^{-j\beta z}$, where γ and β are given in Eqs. (A8.27), and (23.21).

So we have obtained the expressions for the components of the TE wave propagating in a rectangular waveguide as functions of two integer parameters, $m = \mathfrak{O}_1, 2, \ldots$, and $n = \mathfrak{O}_1, 2, \ldots$. Evidently, not only to the field distributions for different pairs of m and n values differ greatly, but also the propagation coefficient, β , is different for different pairs of numbers m and n. Note that m represents the number of half-waves along the x axis, and x the number of half-waves along the x axis.

We see that there is a double infinite number of TE wave types, corresponding to any possible pair of m and n. The wave determined by a pair of numbers m and n is known as a TE_{mn} mode.

Bibliography

Introductory Level

Attwood, S. S., Electric and Magnetic Fields, John Wiley & Sons, New York, 1958.

Benumof, R., Concepts in Electricity and Magnetism, Holt, Rinehart and Winston, New York, 1961.

Bradshaw, M. D., and W. J. Byatt, *Introductory Engineering Field Theory*, Prentice Hall, Upper Saddle River, NJ, 1967.

Carter, G. W., The Electromagnetic Field in Its Engineering Aspects, American Elsevier, New York, 1967.

Cheng, D. K., Fundamentals of Engineering Electromagnetics, Addison-Wesley, Reading, MA, 1993.

Cheston, W. B., Elementary Theory of Electromagnetic Fields, John Wiley & Sons, New York, 1964.

Coren, R. L., Basic Engineering Electromagnetics: An Applied Approach, Prentice Hall, Upper Saddle River, NJ, 1989.

Corson, D. R., and P. Lorrain, Introduction to Electromagnetic Fields and Waves, W. H. Freeman, San Francisco, 1962.

Coulson, C. A., Electricity, Oliver and Boyd, Edinburgh, 1953.

Durney, C. H., and C. C. Johnson, Introduction to Modern Electromagnetics, McGraw-Hill, New York, 1969.

Guru, B. S., and H. R. Hiziroglu, Electromagnetic Field Theory Fundamentals, PWS Publishing Company, Boston, 1998.

Harrington, R. F., Introduction to Electromagnetic Engineering, McGraw-Hill, New York, 1958.

Hayt, W. H., Jr., Engineering Electromagnetics, McGraw-Hill, New York, 1967.

Holt, C. A., Introduction to Electromagnetic Fields and Waves, John Wiley & Sons, New York, 1966.

Hoole, S. R. H., and P. R. P. Hoole, A Modern Short Course in Engineering Electromagnetics, Oxford University Press, New York, 1996.

Iskander, M. F., Electromagnetic Fields and Waves, Prentice Hall, Upper Saddle River, NJ, 1992.

Johnk, C. T. A., Engineering Electromagnetics Fields and Waves, John Wiley & Sons, New York, 1988, 2nd edition.

Kraus, J. D., Electromagnetics, McGraw-Hill, New York, 1953.

Matveev, A. N., Electricity and Magnetism, Mir Publishers, Moscow, 1986.

Marshall, S. V., R. E. DuBroff, and G. G. Skitek, *Electromagnetic Concepts and Applications*, Prentice Hall, Upper Saddle River, NJ, 1996, 4th edition.

Neff, H. P., Jr., Introductory Electromagnetics, John Wiley & Sons, New York, 1991.

Oatly, C., Electric and Magnetic Fields; An Introduction, Cambridge University Press, Cambridge, 1976.

Owen, G. E., Introduction to Electromagnetic Theory, Allyn and Bacon, Boston, 1963.

Popović, B. D., Introductory Engineering Electromagnetics, Addison-Wesley, Reading, MA, 1971.

Popović, B. D., A Collection of Problems in Electromagnetism (with Solutions), Gradjevinska Knjiga, Belgrade, 1966 (in Serbian).

Purcell, E. M., Electricity and Magnetism, McGraw-Hill, New York, 1985, 2nd edition.

Rao, N. N., Elements of Engineering Electromagnetics, Prentice Hall, Upper Saddle River, NJ, 1977.

Reitz, J. R., and F. J. Milford, Foundations of Electromagnetic Theory, Addison-Wesley, Reading, MA, 1960.

Rogers, W. E., Introduction to Electric Fields, McGraw-Hill, New York, 1954.

Rutledge, D. B., Electromagnetics, Lecture Notes, Caltech, 1990.

Schelkunoff, S. A., Electromagnetic Fields, Blaisdell Publishing Company, New York, 1963.

Schwartz, S. E., Electromagnetics for Engineers, Saunders College Publishing, Philadelphia, 1990.

Shen, L. C., and J. A. Kong, Applied Electromagnetism, PWS Publishing Company, Boston, 1953, 3d edition.

Seely, S., Introduction to Electromagnetic Fields, McGraw-Hill, New York, 1958.

Skilling, H. H., Fundamentals of Electric Waves, John Wiley & Sons, New York, 1948.

Slater, J. C., and N. H. Frank, Electromagnetism, Dover Publications, New York, 1969.

Ulaby, F., Fundamentals of Applied Electromagnetics, Prentice Hall, Upper Saddle River, NJ, 1997.

Walsh, J. B., Electromagnetic Theory and Engineering Applications, The Ronald Press Company, New York, 1960.

Intermediate Level

Adler, R. B., L. J. Su, and R. M. Fano, Electromagnetic Energy Transmission and Radiation, John Wiley & Sons, New York, 1960.

Becker, R., Electromagnetic Fields and Interactions, Dover Publications, New York, 1982.

Bewley, L. V., Flux Linkages and Electromagnetic Induction, Dover Publications, New York, 1964.

Bewley, L. V., Two-Dimensional Fields in Electrical Engineering, The Macmillan Company, New York, 1948.

Bohn, E. V., Introduction to Electromagnetic Fields and Waves, Addison-Wesley, Reading, MA, 1968.

Della Torre, E., and C. V. Longo, The Electromagnetic Field, Allyn and Bacon, Boston, 1969.

Fano, R. M., L. J. Chu, and R. B. Adler, *Electromagnetic Fields, Energy and Forces*, John Wiley & Sons, New York, 1960.

Hallén, E., *Electromagnetic Theory*, John Wiley & Sons, New York, 1962.

Harnwell, G. P., Principles of Electricity and Electromagnetism, McGraw-Hill, New York, 1949.

Javid, M., and P. M. Brown, Field Analysis and Electromagnetics, McGraw-Hill, New York, 1963.

King, R. W. P., Fundamental Electromagnetic Theory, Dover Publications, New York, 1963.

Küpfmüler, K., Einführung in die theoretische Electrotechnik, Springer Verlag, Berlin, 1962.

Langmuir, R. V., Electromagnetic Fields and Waves, McGraw-Hill, New York, 1961.

Magid, L. M., Electromagnetic Fields, Energy, and Waves, John Wiley & Sons, New York, 1972.

Mason, M., and W. Weaver, The Electromagnetic Field, Dover Publications, New York, 1929.

Maxwell, J. C., A Treatise on Electricity and Magnetism, Vols. 1 and 2, Dover Publications, New York, 1954.

Miner, G. F., Lines and Electromagnetic Fields for Engineers, Oxford University Press, New York, 1996.

Moon, P., and D. E. Spencer, Field Theory for Engineers, D. Van Nostrand Company, Princeton, 1961.

Nussbaum, A., Electromagnetic Theory for Engineers and Scientists, Prentice Hall, Upper Saddle River, NJ, 1965.

Plonsey, R., and R. E. Collin, *Principles and Applications of Electromagnetic Fields*, McGraw-Hill, New York, 1961.

Polivanov, K., The Theory of Electromagnetic Field, Mir Publishers, Moscow, 1983.

Ramo, S., J. R. Whinnery, and T. van Duzer, Fields and Waves in Communication Electronics, John Wiley & Sons, New York, 1965, 1st edition, and 1994, 3d edition.

Scott, W. T., The Physics of Electricity and Magnetism, John Wiley & Sons, New York, 1965.

Silvester, P., Modern Electromagnetic Fields, Prentice Hall, Upper Saddle River, NJ, 1968.

Slater, J. C., and N. H. Frank, *Electromagnetism*, McGraw-Hill, New York, 1947.

Surutka, J. V., *Electromagnetics*, Gradjevinska Knjiga, Belgrade, 1966 (in Serbian).

Tamm, I. E., Fundamentals of the Theory of Electricity, Mir Publishers, Moscow, 1979.

Weber, E., Electromagnetic Theory: Static Fields and Their Mapping, Dover Publications, New York, 1965.

Weiss, A. von, and H. Kleinwächter, Übersicht über die theoretische Electrotechnik, Geest & Portig, Leipzig, 1956.

Advanced Level

Abraham, M., and R. Becker, *The Classical Theory of Electricity and Magnetism*, Hafner Publishing Company, New York, 1951.

Batygin, V. V., and I. N. Toptygin, Problems in Electrodynamics, Academic Press, New York, 1964.

Bleaney, B. I., and B. Bleaney, Electricity and Magnetism, Clarendon Press, Oxford, 1965.

Collin, R. E., Field Theory of Guided Waves, IEEE Press, New York, 1991.

DiBartolo, B., Classical Theory of Electromagnetism, Prentice Hall, Upper Saddle River, NJ, 1991.

Durand, E., Electrostatique et Magnétostatique, Masson, Paris, 1953.

Elliot, R. S., Electromagnetics, McGraw-Hill, New York, 1966.

Eyges, L., The Classical Electromagnetic Field, Dover Publications, New York, 1972.

Jackson, J. D., Classical Electrodynamics, John Wiley & Sons, New York, 1962.

Johnson, C. C., Field and Wave Electrodynamics, McGraw-Hill, New York, 1965.

Jordan, E. C., and K. G. Balmain, Electromagnetic Waves and Radiating Systems, Prentice Hall, Upper Saddle River, NJ, 1968.

King, R. W., and Prasad, S., Fundamental Electromagnetic Theory and Applications, Prentice Hall, Upper Saddle River, NJ, 1986.

Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons, New York, 1986.

Landau, L., and E. Lifschitz, The Classical Theory of Fields, Addison-Wesley, Reading, MA, 1951.

O'Rahilly, A., Electromagnetic Theory: A Critical Examination of Fundamentals, Dover Publications, New York, 1965.

Panofsky, W. K. H., and M. Phillips, Classical Electricity and Magnetism, Addison-Wesley, Reading, MA, 1956.

Smythe, W. R., Static and Dynamic Electricity, McGraw-Hill, New York, 1968.

Sommerfeld, A., Electrodynamics, Academic Press, New York, 1952.

Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.

Van Bladel, J., Electromagnetic Fields, McGraw-Hill, New York, 1964.

Weeks, W. L., Electromagnetic Theory for Engineering Applications, John Wiley & Sons, New York, 1964.

Index

Airplanes, electrostatically charged, 74 - 75Algebraic identities, 529–530 Algebraic operations with vectors, 500-505 Alternating current (AC), 245-246 Ammeter, 287-288 Ampère, André Marie, 11 Ampere (A), 142, 185 Ampère currents, 210, 228 macroscopic currents equivalent to, 214-216 Ampère's law, 194-199 differential form of, 214 generalized, 211-214, 362 integral form of, 365 Angles Brewster, 427-428 critical, 423 Antenna feed, 458 Antenna gain, 465 Antenna impedance, 458 Antenna power pattern, 465 Antenna radiation pattern, 463 Antennas, 14–15, 457–476 analysis and design of, 460 aperture, 473

conducting surfaces and, 460-461 dipole, 461 directivity of, 464-466, 474 dish, 470-471, 473 effective area of, 467-468 Friis transmission formula for, 468-471 general concepts related to, 472-474 half-wave dipole, 463–464, 470, 471 Hertzian dipole, 461–464 horn, 473 isotropic, 464 line-of-sight links between, 468-471, 481-482, 483-484 loop, 421, 472, 473 microstrip patch, 473 monopole, 461, 473 receiving, 458, 459-460, 466-468 short dipole, 421 slot, 473 study questions and problems on, 475-476 summary points on, 474 transmitting, 457–459 types of, 472-474 wire dipole, 460, 473 Antiferromagnetic materials, 220

Aperture antennas, 473
Arbitrary functions, 396
Artificial transmission lines, 354
Asynchronous motor, 314
Atmospheric electricity, 160–161
Atmospheric windows, 490, 491
Attenuation, 340
electromagnetic waves and, 478–484
frequency considerations and, 490, 491
of voltage in transmission lines, 340–341
Attractive force, 11

Backward traveling (voltage) wave, 324
Base unit vectors, 506
Batteries, invention of, 9–10
Beamwidth, 472
Bell, Alexander Graham, 341
Biot-Savart law, 186–190, 199, 285, 384
Bloch wall, 219
Boundary conditions
electrostatic, 94–95
for magnetic fields, 216–218
Maxwell's equations for deriving, 364–366
for time-invariant currents, 149–150

Circuit theory, 19-27 Boundary surfaces linear, 142 between dielectrics, 132–134 circuit elements and, 20-23 method of images and, 76-78 electrostatic pressure on, 132-135 oscillations in circuits and, 23-25 skin effect and, 382-388 Brewster angle, 427-428 study questions and problems on, study questions and problems on, Broadband antennas, 472 26 - 2779-82 Built-in potential, 98 summary points on, 25–26 summary points on, 78-79 Circuits surface resistance of, 386 Cable TV distribution system, 489–490 magnetic, 223-228, 311-313 time-invariant currents and, 139-140 oscillations in, 23-25 transmission lines and, 436 instrument for finding faults in, 342 Circular polarization, 403 Conservation mutual inductance between, 386 Clouds of electric charge, 144 See also Coaxial cable atmospheric electricity and, 160-161 of magnetic flux, 191 Calculus, vector. See Vector calculus electrostatic induction from, 73-74 Constants Capacitance, 104-121 Coating, electrostatic, 176 charge transfer time constant, 170 capacitors and, 104-113 Coaxial cable dielectric relaxation constant, 170 coefficients of, 115 attenuation of electromagnetic waves effective dielectric constant, 447, 455 of high-voltage coaxial cable, 112 in, 478-479 phase constant, 327, 340 of MOS capacitors, 112-113 capacitance of a high-voltage cable, values of, 533 multibody systems and, 113-116 Constitutive relations, 367 per unit length of coaxial cable, capacitance per unit length of, 110-112 complex form of, 370 energy of a high-voltage cable, 125 Contour integral, 43 study questions and problems on, energy transfer through, 372-373 Cooking with electromagnetic waves, 116-121 instrument for finding faults in, 342 summary points on, 116 magnetic field of, 196-197 Coordinate surfaces, 506 Capacitive stray currents, 321 quality (Q) factor of, 449-450 Coordinate systems, 505–511 Capacitor electrodes, 104 resistance and internal inductance of, cylindrical, 508-509 Capacitors, 8-9, 104, 105-106 defined, 505-506 deflection of electron streams by, self-inductance of, 270-271 rectangular, 506-508 302-303 slotted, 338-339 spherical, 509-511 energy of a charged capacitor, 123-124 Coefficients Corner reflector, 473-474 linear vs. nonlinear, 106 of capacitance, 115 Coronas, 164 MOS (metal-oxide-semiconductor), coupling, 269 Coulomb, Charles de, 6, 10-11 112-113 of electrostatic induction, 114 Coulomb (C), 7 parallel connection of, 106 Fresnel, 424-428 Coulomb's law, 7, 8, 12 parallel-plate, 107-110 of potential, 114 in vector form, 29–30, 37 series connection of, 107 reflection, 331-333, 348 Coupling, magnetic, 242, 271 Carlson, Chester, 168 transmission, 416 Coupling coefficient, 269 Cathode-ray tubes (CRTs), 304-305 Commutative operation, 503 Critical angle, 423 Cavity resonators, 447, 450-452 Commutator, 246 Critical angular frequency, 486 TE₁₀₁ mode in, 451–452 Complex field quantities, 368 Critical frequency, 486 Cellular telephony, 491–492 Complex permeability, 221–222 Cross product Ceramic ferromagnetic materials, 222 Complex (phasor) form moment of force expressed as, 504 Characteristic impedance Maxwell's equations in, 368–370 in rectangular coordinate system, 508 of lossless transmission lines, 328 retarded potentials in, 377 of two vectors, 503-504 of lossy transmission lines, 340 Complex vectors, 369 Crystal structure, 219 Characteristic values, 436 Computers Curie temperature, 219 Charge density, 32 electromagnetic effects in, 495-496 Curl, 516-519 Charge distribution hard disks in, 308-311 divergence of, 523 arbitrary shapes and, 70-71 magnetic storage used by, 306-311 Current density, 141–144 electric scalar potential and, 43-46 Conductance (G), 147 Current elements, 184 equivalent, of dielectrics, 87–88 Conducting wires, 20-23 magnetic forces between, 184–186 Charge transfer time constant, 170 Conductivity, 142 Current field, 139 Charge-coupled device (CCD) camera, four-point probe for measuring, Current intensity, 141–144 174-176 Current loop, 184 Charged bodies, 15 Conductors, 65-82 Current sheets, 198-199 Charged particles arbitrary shapes and charge Current waves, 322 applications related to motion of, distribution on, 70-71 in the complex (phasor) domain, 303-306 behavior of, in electrostatic fields, 327-330 motion of, in electric and magnetic 65 - 70Current-continuity equation, 144-145 fields, 301-303 electrostatic induction and, 66, 71-75 applied to a circuit node, 146

generalized definition of, 274

complex form of, 369

Cheney, Margaret, 187

Current-continuity equation (cont.)	Direct current (dc), 139	time-varying, 241–242
differential form of, 367	electric generator for, 246	unit for measuring, 142
Cutoff frequency, 439, 440, 548	image method for, 150–153	in vacuums, 161–163
Cyclotron, 303–304	Direction cosines, 526	Electric dipole, 39, 84
Cylindrical coordinate system, 508–509	Directional derivatives, 512	Electric dipole antennas, 461–464
curl in, 518	Directional radiation properties, 458	Electric dipole moment, 85
divergence in, 516	Directivity of antennas, 464–466	Electric displacement vector, 90-94, 99
gradient in, 514	relation between effective area and,	Electric energy, 123–124
vector identities and, 531–532	469-471	Electric field lines, 35–36
Cylindrical wire, 387–388	Dish antennas, 470–471, 473	Electric field strength, 30–40
-,	Dispersion, 404–407	electric scalar potential and, 48–50
Damped oscillation, 25	Dispersive structures, 440	field lines for visualizing, 35–36
Data storage, 306–311	Displacement current, 360–362	impressed, 148–149
DC. See Direct current	Displacement current density, 361–362	line charge density and, 34–35
Decibels (dB), 341	Distributed parameters, 321	point charges and, 30–32
Del operator, 49, 513	Distribution	retarded potentials and, 375
Density	of energy in magnetic fields, 281–285	study questions and problems on,
of electric current in conductors,	spatial, of radiation from antennas,	37-40
141–144	463	summary points on, 37
of energy in electrostatic fields,	See also Charge distribution	surface charge density and, 33–34
124–126	Divergence, 514–516	volume charge density and, 32–33
Depletion region, 93	Divergence theorem, 521–522	Electric fields, 13
Derivatives, 512	Dominant mode in waveguides,	bodily effects of power lines and,
Diamagnetic materials, 213–214, 218	442–446, 452	316–317
Dielectric breakdown, 98	Dopants, 93	impressed, 148
Dielectric relaxation constant, 170	Doppler radar, 494–495	induced, 239–242
Dielectric strength, 98	Dot product, 42	motion of charged particles in,
Dielectric waveguides, 432, 481	of two vectors, 502–503	301–306
Dielectrics, 83–103	of three vectors, 505	uniform, 72, 302
boundary surfaces between, 132-134	in rectangular coordinate system,	Electric force, 6–7, 15
density of polarization charges in,	507–508	Electric generators, 148–149
88-90	work of force expressed as, 503	batteries as, 9–10
displacement current density in, 362	•	electromagnetic induction and,
electric displacement vector and,	Earnshow's theorem, 64	244–246
90–94	Earth	Electric induction, 72
electrostatic boundary conditions and,	curvature of, 483–484	Electric motors, 313–315
94–95	finding the capacitance of, 105	Electric pressure, 288
equivalent charge distribution of,	magnetic field of, 300–301	Electric scalar potential, 41–54
87–88	Eddy currents, 247–248	charge distributions and, 43–46
Gauss' law and, 90–94, 96	Edison, Thomas, 172, 315	definition of, 41–43
Laplace's equation and, 96–97	Effective area of receiving antennas,	electric field strength and, 48–50
perfect, 395–399, 412–414, 417–421,	467–468	equipotential surfaces and, 50–51
427	relation between directivity and,	potential difference and, 47–48
Poisson's equation and, 96, 97–98	469–471	study questions and problems on,
polarization of, 83–84	Effective dielectric constant, 447, 455	51–54
polarization vector and, 84–87	Eigenvalues, 436	summary points on, 51
practical properties of, 98	Electric currents, 8–9, 139–158	Electric susceptibility, 87
semiconductor diodes and, 91-94	boundary conditions for, 149–150	Electrical properties of materials,
study questions and problems on,	current-continuity equation and,	535–536
99–103	144–145, 146	Electricity
summary points on, 99	density and intensity of, 141–144	atmospheric, 160–161
uniform plane waves in, 395–399	electric generators and, 148–149	origins of term, 6
Differential identities, 530	in gases, 161–163	Electrodes, grounding, 150–153
Differential permeability, 222	grounding electrodes and, 150–153	Electrodynamic similitude, 380
Digital circuits, 495–496	image method for, 150–153	Electrolysis, 140
Diodes, semiconductor, 91–94, 97–98	Kirchoff's current law and, 145–146	Electrolytic capacitors, 109 Electromagnetic compatibility (EMC)
Dipole antennas, 461	resistors and, 146–147	Electromagnetic devices
half-wave, 463–464	study questions and problems on,	Electromagnetic devices in the home, 4
Hertzian, 461–464	153–158	
short, 421	summary points on, 153	in the office, 2–4 Floatromagnetic fields, 13–15
wire, 460	time-invariant, 139–140, 149–150	Electromagnetic fields, 13–15

Electromagnetic induction, 12, 238–264	induction process in, 71–75	Fields and Waves in Communication
Eddy currents and, 247–248	polarization of dielectrics in, 83–84	Electronics (Ramo et al.), 461, 480
electric generators and, 244–246	practical applications of, 164–177	Flux
Faraday's law and, 242–249	pressure in, 132–135	concept of, 55–57
induced electric fields and, 239–242	study questions and problems on,	divergence and, 514, 515
Lentz's law and, 247	135–138, 178–182	mutual inductance and, 266
skin effect and, 382–383	vacuums and, 161–163	self-inductance and, 268
study questions and problems on,	Electrostatic generators, 177	Forces
251–264	Electrostatic imaging, 168–172	determining from energy, 128–132
summary points on, 250–251	Electrostatic induction, 66, 71–75	electrical, 6–7, 15
superconducting loops and, 248–249	coefficients of, 114	in electrostatics, 126–128
voltage and, 249–250	Electrostatic motors, 177	impressed, 148
Electromagnetic interference (EMI), 4	Electrostatic pollution-control filters,	lifting, of electromagnets, 285–286
Electromagnetic radiation, 457	164–168	magnetic, 10–11, 15, 285–288
Electromagnetic resonators, 447–456	Electrostatic separation, 172–174	between pairs of current elements,
resonant cavities and, 450–452	Electrostatics and its Applications (Moore),	184–186
study questions and problems on, 454,	165	study questions and problems on,
456	Elliptic polarization, 403, 404	135–138
summary points on, 452–453	Energy	Forward bias, 98
transmission-line segments as,	of charged capacitors, 123–124	Forward traveling (voltage) wave, 324
448–450	density of, in electrostatic fields,	Four-point probes, 174–176
Electromagnetic spectrum, 401	124–126	Franklin, Benjamin, 6, 161
Electromagnetic waves, 14, 393, 407	determining electrostatic forces from,	Free space. See Vacuum
choice of frequencies in using,	128–132	Frequencies of electromagnetic waves,
489–493	distribution of, in magnetic fields,	489–493
cooking with, 496	281–285	attenuation and, 490, 491
digital circuits and, 495–496	electric, 123–124	cable TV systems and, 489–490
effects of ionosphere on, 484–489	in magnetic fields, 278–285	satellite links and, 490–491
power attenuation of, 478–484	study questions and problems on,	Frequency domain
practical applications of, 477–498	135–138	lossless transmission lines in, 330-339
radar and, 493–495	transfer of, through coaxial cables,	voltage waves in, 326–327
reflection and refraction of, 411–431	372–373	Frequency modulated (FM) radar, 494
scattering of, 411	E-plane pattern, 463	Fresnel coefficients, 424–428
time-harmonic, 400–402	Equalizer, 490	examples of, 426–428
transverse, 398, 407	Equations	transverse electric, 424–425
uniform plane waves, 393–410	three scalar, 395	transverse magnetic, 425–426
waveguides for, 432–456	transmission-line, 323	Friis transmission formula, 468–471, 493
Electromagnetics	vector, 395, 397	Fuses, 143–144
defined, 1	wave, 324, 393–395	
historical overview of, 5–12	Equiphase planes, 422	Galvani, Luigi, 9
Electromagnets	Equipotential surfaces, 50–51	Gases
lifting force of, 285–286	Equivalence theorem, 76–78	electric currents in, 161–163
See also Magnets	Euler's identity, 368	phase and group velocity in, 406-407
Electromotive force (emf), 148–149, 242	Evanescent modes, 441	Gauss' law, 55–64
inducing in a wire loop, 421	External self-inductance, 270	applications of, 58–60
mutual inductance and, 266–267		concept of flux and, 55–57
self-inductance and, 268–269	Fabry-Perot resonator, 413–414	differential form of, 96, 99
Electrophoresis, 177	Far field, 462–463	explanation of, 57
Electroscope, 39	Farad (F), 105	generalized form of, 90–94, 99
Electrostatic coating, 176	Faraday, Michael, 12, 238	proof of, 60–61
Electrostatic coupling, 113–116	Faraday cage, 72–73	study questions and problems on,
Electrostatic fields, 13, 28, 122–138,	Faraday's law of electromagnetic	61–64
159–182	induction, 12, 238, 242–249, 360	summary points on, 61
atmospheric electricity and, 160–161	See also Electromagnetic induction	General boundary conditions, 364–366
behavior of conductors in, 65–70	Ferrites, 220	Generators
boundary conditions in, 94–95	Ferromagnetic materials, 219–220	electric, 148–149, 244–246
coronas and spark discharges in, 164	in computer hard disks, 308	electrostatic, 177
dielectrics in, 83–103	hysteresis losses in, 282–283	Geometrical velocity, 407
energy density in, 124–126	magnetization curves of, 220–221	Gilbert, William, 6
forces in, 126–132	practical applications of, 223–228	Gradient, 49, 512–514
gases and, 161–163	Field lines, 35–36	curl of, 523–524

Impressed electric field, 148

Laplacian operator, 519 Gravitational potential, 41 Impressed electric field strength, Laws 148-149 Greek alphabet, 541 of conservation of electric charge, 144 Impressed forces, 148 Grounding electrodes, 150-153 Group velocity, 405-407 Incident plane waves, 396, 397 of conservation of magnetic flux, 191 See also specific laws by name of TEmn waves, 440-441 time-harmonic, 401 Left-handed polarization, 404 Incident (voltage) waves, 324, 333 Length coordinate, 513 Index of refraction, 423 Half-wave dipole antennas, 463-464 Lentz's law, 247, 382, 388 Induced electric field, 239–242, 250 directivity of, 466 effective area of, 470 Induced electric field strength, 239 Lifting, electromagnetic, 285–286 Lightning, 74, 160-161 radio communication link with, 471 Inductance, 265–277 Lightning rods, 161 Hall, Edwin, 305 increasing per unit length of cable, Line charge, 34 Hall effect, 305-306 479 - 480internal, 387-388, 389 Line charge density, 34–35 Hall element, 306 mutual inductance, 265-268 electric scalar potential and, 46 Hard disks self-inductance, 265, 268-271 Line integral, 42 how they work, 308-311 Linear capacitors, 106 study questions and problems on, increased capacity of, 306-307 271-277 Linear conductors, 142 Heaviside, Oliver, 479 Linear dielectrics, 87, 91 summary points on, 271 Heisenberg, Werner Karl, 219 Linear magnetic materials, 213 Induction motors, 313–315 Helmholtz coils, 206 Linear polarization, 402 Industrial Electrostatic Precipitation Helmholtz equations, 394 Linear resistors, 147 Helmholtz theorem, 375 (White), 166 Line-of-sight radio links, 468-471 Henry, Joseph, 267 Industrial electrostatic separation, attenuation of electromagnetic waves Henry (H), 267, 269 172 - 174Henry per meter (H/m), 185 Inhomogeneous dielectrics, 87, 88-90 in, 481–482 curvature of the earth and, 483-484 Hertz, Heinrich, 14-15 Inhomogenous materials, 213 multipath fading and, 492 Hertzian dipole antennas, 461-464 Initial magnetization curve, 223 Liquid conductors, 139–140 Initial permeability, 222 directivity of, 465-466 Ink-jet printers, 177 Load impedance, 349 spatial distribution of radiation from, Local area networks (LANs), 490 Input impedance, 350 Loop antennas, 421, 472, 473 Insulators High-directivity antennas, 474 Lorentz condition, 375-376 generalized definition of, 274 High-voltage coaxial cable Lorentz force, 192-194, 301 capacitance of, 112 See also Dielectrics Lorentz potentials, 374-377 Integral identities, 530-531 energy of, 125 Lossless transmission lines, 321, 322-339 Intensity of electric current, 141-144 History Internal inductance, 387-388, 389 current waves on, 327-330 of knowledge about Internal self-inductance, 270, 283–284 impedance of, 333-339 electromagnetism, 5–12 International Electronics Commission reflection coefficient and, 331-333 of magnetic core memories, 307-308 slotted, 338-339 (IEC), 369 Hollow metal tubes Smith chart for solving problems on, standard multipliers of fundamental TEM waves and, 435–436 346-351 waveguides as, 432 units, 539 standing waves on, 337-338 Homogeneous dielectrics, 87, 88 Intrinsic impedance, 398 terminated, 330-339 Ionosphere, 484 Homogenous linear media, 393 transmission coefficient and, 331-333 plane wave propagation through, Homogenous materials, 213, 377 voltage waves on, 324-327 Horizontal polarization, 417 reflection and refraction of plane wavelength along, 327 Horn antennas, 473 Lossy transmission lines, 340–341 waves in, 486-489 H-plane pattern, 463 Lumped capacitor, 354 Human body, effect of power lines on, Isotropic antennas, 464–465 315 - 317Macroscopic currents, 214-216, 229 Joule, James Prescott, 147 Hyperbolic cosine, 423 Ioule's heat, 10 Macroscopic quantities, 14 Hysteresis loops, 221, 282-283 Joule's law, 147 Magnetic circuits, 223–228 complex, 226-227 Ideal transformer, 311–312 in point form, 143 nonlinear, 227-228 Joule's losses, 10, 386 Image method, 76–78 thick, 225-226 for dc currents, 150-153 thin, 224 Kirchoff's current law, 145-146, 323 Imaging, electrostatic, 176–177 transformers as, 311-313 Kirchoff's voltage law, 23-24, 323 Impedance, 398 Magnetic core memories, 307-308 of lossless transmission lines, 328, 346 Laplace's equation, 96-97 Magnetic coupling, 242, 271 of lossy transmission lines, 340 Magnetic field lines, 217–218 Laplace's operator, 97 of terminated transmission lines, Magnetic fields, 13, 183-237, 278-319 333-339 Laplacian, 97 Ampère's law and, 194–199, 211–214 of transmitting antennas, 459-460, 474 of a scalar field, 519-520

of a vector field, 520-521

Biot-Savart law and, 186-190

Magnetic fields (cont.)
boundary conditions for, 216–218
distribution of energy in, 281-285
earth's magnetic field, 300–301
energy in, 278–285
forces in, 184–186, 285–288
Lorentz force and, 192–194
macroscopic currents and, 214–216
magnetic circuits and, 223–228
magnetic field intensity and, 211–214
magnetic flux and, 190–192
magnetic flux density vector and,
186–190
magnetic properties of materials and,
218–223
magnetization vector and, 210–211
in materials, 209–237
motion of charged particles in,
301–306
rotating, 313–315
study questions and problems on,
199–208, 229–237, 289–298, 318–319
summary points on, 199, 228–229,
288–289
time-invariant currents in a vacuum
and, 194–199
in vacuums, 183–208
Magnetic flux, 190–192
Magnetic flux density vector, 13,
186–190, 199
Ampère's law for finding, 195-196
Magnetic force, 10–11, 15, 183, 238,
285–288
building an ammeter using, 287–288
calculating, 286–287
on a point charge, 192–194
between two current elements,
184–186
Magnetic head, 308–310
Magnetic induction vector, 13
Magnetic moment, 189–190, 210
Magnetic poles, 10–11
Magnetic pressure, 288
Magnetic properties of materials,
218–223, 537
Magnetic storage, 306–311
computer hard disks and, 308–311
magnetic core memories and,
307–308
Magnetic susceptibility, 213
Magnetic vector potential, 374
Magnetism
discovery of, 5
early explanations for, 10–11
Magnetite, 5
Magnetization curves
of ferromagnetic materials, 220–221
measurement of, 222–223
Magnetization vector, 210-211, 228
Magnetized material, 209
Magnetomotive force, 224
Magnetosphere, 300

Magnets discovery of, 5 electromagnets, 285–286 permanent, 11 Matched transmission line, 329, 350-351 Materials antiferromagnetic, 220 diamagnetic, 218 electrical properties of, 535-536 ferrites, 220 ferromagnetic, 219-221 magnetic properties of, 218-223, 537 magnetic susceptibility of, 213 magnetized, 209 paramagnetic, 218 permeability of, 213-214, 221-222 skin depth for, 385 Maxwell, James Clerk, 13–15 Maxwell's equations, 14, 359–381 complex (phasor) form of, 368-370, 543 differential form of, 366-368, 544 displacement current and, 360-362 general boundary conditions and, 364-366 generalized definition of conductors and insulators, 374 integral form of, 362-366 Lorentz potentials and, 374–377 Poynting's theorem and, 370–373 study questions and problems on, 378-381 summary points on, 377-378 Measurement of magnetization curves, 222-223 of resistivity, 174-176 Memory, magnetic, 307-308 Metal objects grounding, 74-75 hollow, as waveguides, 432 Metallic ferromagnetic materials, 222 Metallic waveguides, 432 general theory of, 543-545 Method of images, 76–78 Microstrip line, 446-447, 455, 473 Microstrip patch antennas, 473 Microwave ovens, 496 Moment, magnetic, 189-190 Monopole antennas, 461, 473 MOS (metal-oxide-semiconductor) capacitor, 112-113 Motors, induction, 313-315 Multipath fading, 492 Multipliers of fundamental units, 539 Mutual inductance, 265–268 examples of, 267-268, 386 Nabla operator, 49, 513 Narrowband antennas, 472

Negative electric charges, 6

semiconductor diodes and, 93

Neper, John, 341 Neper (Np), 341 Nonlinear capacitors, 106 Nonlinear dielectrics, 87 Nonlinear magnetic circuits, 227–228 Nonlinear magnetic materials, 213 Nonpolar molecules, 84 Normal magnetization curve, 220-221 Normal permeability, 222 Normal polarization, 417 Normalized impedance, 346 Normally incident plane waves on the ionosphere, 488 on perfect dielectrics, 412-414 North pole, 10 Nuclear magnetic resonance (NMR), 219 Obliquely incident plane waves on the ionosphere, 488-489 on perfect dielectrics, 417-421 Oersted, Hans Christian, 11 Ohm, 147 Ohm's law, 147 Omnidirectional antennas, 464-465 Open surface, 523 Optical fibers, 481 Orthogonal coordinate systems, 505–511 cylindrical coordinate system, 508-509 rectangular coordinate system, 506-508 spherical coordinate system, 509-511 vector identities and, 531-532 Oscillations in circuits, 23-25 damped, 25 Paper-insulator capacitor, 109 Parallel connection of capacitors, 106 Parallel current sheets, 198-199 Parallel grounded wire, 115–116 Parallel-plate capacitors, 107–110 deflection of electron streams by, electric force and, 127, 130-131, 134 electrostatic pressure and, 134 Paramagnetic materials, 213–214, 218 Perfect dielectrics Fresnel coefficients for, 427 normally incident plane waves on, 412-414 obliquely incident plane waves on, 417-421 uniform plane waves in, 395-399 Permeability of materials, 213, 221–222 of a vacuum, 184 Phase constant, 327, 340

Phase velocity, 405-407

of TE_{mn} waves, 440–441

Photocopy machines, 168–172

Physical constants, values of, 533

		1 1 1 6 1 6 1 1 FO1
Plane of incidence, 417–421	Power lines	laplacian of a vector function in, 521
vectors normal to, 417–420, 424–425	effects of, on the human body, 315–317	vector identities and, 531
vectors parallel to, 420–421, 425–428	See also Transmission lines	wave equations in, 395
Plane waves, 393, 398, 411–431	Poynting vector, 371–372, 464	Rectangular waveguides, 419, 438-441
effects of the ionosphere on, 484-489	Poynting's theorem, 359, 370–373	attenuation of electromagnetic waves
Fresnel coefficients for, 424–428	complex form of, 373	in, 480
obliquely incident, 417–424	examples of, 372–373	expressions for TE waves in, 546–548
phase coefficient for, 402	Practical applications of electromagnetic	TE_{10} mode in, 442 – 446
polarization of 402 404	waves, 477–498	TE waves in, 439–441
polarization of, 402–404	choice of wave frequencies for,	TM waves in, 441
reflection of, 411–428, 486–489		wavelength along, 442
refraction of, 411–412, 421–428,	489–493	Rectifiers, 98
486–489	cooking methods and, 496	
study questions and problems on,	digital circuits and, 495–496	Reference point, 43, 44–45
428-431	effects of ionosphere on, 484–489	Reflected plane waves, 396, 411–428
summary points on, 428	power attenuation of waves and,	elimination of, 428
transmission of, 414–417, 421–428	478–484	polarization of, 427–428
uniform, 393–410	radar and, 493–495	Reflected (voltage) waves, 324
pn diode	study questions and problems on,	Reflection
electric field in, 91–94	496–498	from an inductive load, 342–343
potential distribution in, 97–98	Pressure, electrostatic	of plane waves in the ionosphere,
Point charges	on boundary surfaces, 132-135	486–489
electric field strength of, 30–32	electric vs. magnetic, 288	from a series RL circuit, 344-345
	magnitude of, on dielectric surfaces,	from a short circuit, 343–344
electric scalar potential of, 43–46	134–135	total, 423
electrostatic induction due to, 73		Reflection coefficient, 331–333, 348, 416
Point form of Ohm's law, 143	study questions and problems on,	determining the load impedance
Poisson's equation, 96, 97–98	135–138	from, 349
Polar molecules, 84	Principle of superposition, 30, 94	Refracted waves, 412, 421–424
Polarization	Propagating modes, 441	index of refraction and, 423
circular, 403	Propagation coefficient, 340	
elliptic, 403, 404	of TE waves, 436, 439, 548	Refraction
horizontal, 417	of TEM waves, 434–435	of magnetic field lines, 217–218
linear, 402	of TM waves, 437	of plane waves in the ionosphere,
normal, 417	Proximity effect, 388–389	486–489
of plane waves, 402–404	Pupin, Mihailo, 479	Relative permeability, 213
right- vs. left-handed, 404	•	Reluctance, 224
Polarization angle, 427	Quality factor (Q), 447	Repulsive force, 11
Polarization charges, 99	of coaxial resonator, 449-450	Resistance, 147
Polarization loss, 98	of LC circuit, 448	internal inductance and, 387–388,
Polarization process, 84	Quantum physics, 14	389
Polarization vector, 84–87	Quarter-wave transformers, 335–336	magnetic, 224
Polarized dielectrics	Quasi-static fields, 377	surface, 386–387
density of polarization charges in,	TEM waves and, 434–435	Resistivity, 142
	TENT WAVES and, 101 100	four-point probe for measuring,
88–90	Radar, 493–495	174–176
equivalent charge distribution of,	Radiation field, 462–463	Resistors, 20–23, 146–147
87–88	Radiation pressure, 429	linear, 147
Pollution-control filters, 164–168		Resonant cavities, 450–452
Positive electric charges, 6	Radio communications	TE ₁₀₁ mode in, 451–452
semiconductor diodes and, 93	attenuation and, 481–482	
Potential difference, 47–48	curvature of the earth and, 483–484	Resonant frequency, 447
electromagnetic induction and,	effects of ionosphere on, 484–489	Resonators. See Electromagnetic
249–250	line-of-sight radio links and, 468-471,	resonators
Potentials, 359	481–482, 483–484	Retarded potentials, 374, 375, 377
coefficients of, 114	with submarines, 492–493	Reverse bias, 98
electric scalar, 41–54	Real vectors, 369	Right-handed coordinate system, 506
gravitational, 41	Realistic transformer, 312–313	Right-handed polarization, 404
Lorentz, 374–377	Receiving antennas, 458, 459–460,	Rotating magnetic field, 313–315
magnetic vector, 374	466–468	Rotor, 314
retarded, 374, 375, 377	Rectangular coordinate system, 506–508	
Power	curl in, 518	Satellite links, 490–491
time-averaged, 332	divergence in, 516	Scalar, 499
transmitted along waveguides,	gradient in, 513	multiplying a vector with a, 501
437–438, 445–446	laplacian of a scalar function in, 520	Scalar components of vectors, 506

Scalar field, 499	on capacitance, 116–121	Terminated transmission lines, 330-339
laplacian of, 519–520	on circuit theory, 26–27	impedance of, 333–339
Scalar functions, 520	on conductors, 79–82	Tesla, Man Out of Time (Cheney), 187
Scalar product. See Dot product	on dielectrics, 99–103	Tesla, Nikola, 187, 315
Scalar quantities, 42, 499	on electric currents, 153–158	Tesla (T), 187
Scattered field, 411	on electric field strength, 37–40	Test charge, 30–31
Scatterers, 411, 493	on electric scalar potential, 51–54	Thales of Miletus, 5
Selenium, 169	on electromagnetic resonators, 454,	Thermal conduction, 496
Self-inductance, 265, 268-271	456	Thévenin generator, 459–460
examples of, 269–271	on electrostatic fields, 135–138,	Thévenin's theorem, 336
internal, 283–284	178–182	Thick magnetic circuits, 225–226
total, 284–285	on energy, forces, and pressure,	Thin magnetic circuits, 224, 225
Semiconductors, 140	135–138	Thomson's theorem, 137
pn diodes as, 91–94, 97–98	on Gauss' law, 61–64	Three scalar equations, 395
Separation, electrostatic, 172–174	on magnetic fields, 199–208, 229–237,	Three vector components, 501
Series connection of capacitors, 107	289–298, 318–319	Thunderstorms, 160–161
Shape	on Maxwell's equations, 378–381	Time domain
charge distribution and, 70–71	on plane waves, 428–431	
See also Orthogonal coordinate	on practical applications of	analyzing transmission lines in,
systems	electromagnetic waves, 496–498	342–345
Short dipole antenna, 421	on skin effect, 390–392	voltage waves in, 324–326
Shorted waveguide, 444–445	on transmission lines, 352–358	Time domain reflectometry (TDR), 342,
Sidelobe levels, 472	on uniform plane waves, 407–410	496
Siemens (S), 147		Time-averaged power, 332
Siemens per meter (S/m), 142	on vectors, 524–528	Time-harmonic uniform plane waves
Skin effect, 382–392	on waveguides, 453–456	complex form of, 400–402
proximity effect and, 388–389	Submarines, radio communications	polarization of, 402–404
skin depth and, 385, 389	with, 492–493	Time-invariant electric currents, 139–140
study questions and problems on,	Substrate, 446	boundary conditions for, 149–150
390–392	Superconducting loop, 248–249	in a vacuum, 194–199
	Superconductivity, 248	Time-varying electric and magnetic
summary points on, 389 Slot antennas, 473	Superconductors, 248	field, 239–241, 360
	Superposition principle, 30, 94	potential difference and voltage in,
Slotted coaxial line, 338–339 Smith chart, 346–351	Surface charge, 33	249–250
	Surface charge density, 33–34	TM waves. See Transverse magnetic
Snell's law, 423, 488	electric scalar potential and, 45–46	(TM) waves
example of, 424	polarized dielectrics and, 88–90	Toroidal coil
Solenoids, 197	Surface current, 188	magnetic circuits and, 224–226
magnetic field of, 197–198	Surface current density, 188	magnetic field of, 197
Solid conductors, 139–140	Surface resistance, 386–387	mutual inductance of, 267–268
Spark discharges, 164	Switches, 20–23	self-inductance of, 269
Spatial resonators, 413, 433	Synchronous motor, 313	Total magnetic force, 185
Spherical coordinate system, 509–511	-	Total reflection, 423
curl in, 518	TE_{10} mode in rectangular waveguides,	Total self-inductance, 284–285
divergence in, 516	442–446	Transatlantic telegraphy cable, 479–480
gradient in, 514	excitation of, 444–445	Transformers, 311–313
vector identities and, 532	power transmitted by, 445–446	ideal, 311–312
Squirrel-cage rotor, 314	sketch of the fields of, 443	quarter-wave, 335–336
Standard multipliers of fundamental	surface current distribution on walls	realistic, 312–313
units, 539	of, 443–444	Transistor-transistor logic (TTL), 495
Standing waves, 337–338, 413	X-band waveguides and, 445	Transmission coefficient, 331–333, 416
Standing-wave ratio, 416	TE_{101} mode in resonant cavities,	Transmission lines, 320–358
Static magnetization curves, 223	451-452	analyzing in the time domain, 342–345
Stationary coils, 313	TE waves. See Transverse electric (TE)	artificial, 354
Stepped leader, 161	waves	current waves on, 327–330
Stokes's theorem, 522–524	Television, cable, 489–490	impedance of, 333–339
Storage of data, 306–311	TEM waves. See Transverse	lossless, 321, 322–330, 346–351
Storms, and atmospheric electricity,	electromagnetic (TEM) waves	lossy, 340–341
160–161	TE _{mn} mode in rectangular waveguides,	matched, 329, 350–351
Stray currents, 320–321	439, 548	parameters of, 322
Strip line, 199	complete expression for, 439	reflection coefficient of, 331–333
Study questions and problems	phase and group velocity, 440–441	segments of, as electromagnetic
on antennas, 475–476	Telegraphers' equations, 323	resonators, 448–450

Transmission lines (cont.)	velocity of propagation of, 396,	electromagnetic induction and,
slotted, 338–339	404–407	249–250
Smith chart for solving problems on,	wave equation and, 393–395	potential difference and, 47–48
346-351	Unit vectors, 502	Voltage standing-wave ratio (VSWR),
standing waves on, 337–338		337, 416
study questions and problems on,	Vacuum	Voltage waves
352–358	displacement current density in, 362	in the complex (frequency) domain,
summary points on, 351–352	electric currents in, 161–163	326–327
TEM waves and, 436	magnetic fields in, 183–208	in the time domain, 324–326
terminated, 330-339	permeability of, 184	Volume charge density, 32–33
transmission coefficient of, 331-333	time-invariant currents in, 194–199	electric scalar potential and, 45
voltage waves on, 324-327	velocity of propagation of plane	polarized dielectrics and, 88–90
as waveguides, 432	waves in, 398	_
wavelength along, 327	Values	Wave equations, 324, 393–395
Transmission-line equations, 323	characteristic, 436	examples of, 325–326, 395
Transmitted waves, 412	of important physical constants, 533	Wave impedance, 398
Transmitting antennas, 457–459	Vector calculus, 511–524	of TE waves, 436–437
	curl, 516–519	of TEM waves, 434–435
Transversal planes, 432 Transverse electric (TE) waves, 433,	divergence, 514–516	of TM waves, 437
	divergence theorem, 521–522	Waveguides, 432–447, 452–456
436–437	gradient, 512–514	attenuation of electromagnetic waves
derivation of general properties of,	laplacian of a scalar field, 519–520	in, 480
545–548	laplacian of a vector field, 520–521	dielectric, 432, 481
expressions for, in rectangular		dominant mode in, 442–446, 452
waveguides, 546–548	Stokes's theorem, 522–524	hybrid modes in, 446–447
Fresnel coefficients for, 424–425	Vector equations, 395, 397	metallic, theory of, 543–548
properties of, 436	Vector field, 500	microstrip line and, 446–447
in rectangular waveguides, 439–441	field lines for visualizing, 35–36	power transmitted along, 437–438,
Transverse electromagnetic (TEM)	laplacian of, 520–521	
waves, 398, 407, 432, 434–436	Vector function, 500	445–446
examples of, 435–436	Vector identities, 529–532	rectangular, 419, 438–446, 480
properties of, 434–436	algebraic identities, 529–530	shorted, 444–445
quasi-static nature of, 545	differential identities, 530	study questions and problems on,
Transverse magnetic (TM) waves, 433,	integral identities, 530–531	453–456
437-438	orthogonal coordinate systems and,	summary points on, 452
examples of, 437–438	531–532	TE ₁₀ mode in, 442–446
Fresnel coefficients for, 425-426	Vector product, 505	wave types and, 433–438
properties of, 437	Vector quantities, 368	Wavelength
in rectangular waveguides, 441	Vectors, 499–528	along rectangular waveguides, 442
Triple scalar product, 505	addition and subtraction of, 500-501	along transmission lines, 327
Triple vector product, 505	algebraic operations with, 500-505	of time-harmonic plane waves, 400
Two-wire lines	base unit, 506	Waves
electrostatic coupling and, 115–116	calculus with, 511–524	current, 322, 327–330
force per unit length acting on, 130	cross product of, 503–504	electromagnetic, 14, 393
resistance and internal inductance of,	defined, 499-500	incident, 333
388	dot product of, 502–503	reflected, 411
self-inductance of, 269–270	magnitude of, 499–500, 501	refracted, 412
,	multiplication of, with a scalar, 501	standing, 413
Uniform electric fields	orthogonal coordinate systems and,	transmitted, 412
electrostatic conduction in, 72	505-511	uniform plane, 393–410
motion of charged particles in, 302	scalar components of, 506	voltage, 322, 324–327
Uniform magnetic fields, 303	study questions and problems on,	Weber (Wb), 190
Uniform plane waves, 393–410	524-528	Weiss' domains, 219, 220
dispersion and, 404–407	unit, 502	Wenner array, 181
perfect dielectrics and, 395–399	Velocity	Westinghouse, George, 315
polarization of, 402–404	geometrical, 407	Wire dipole antennas, 460, 473
properties of, 399	group, 405–407	*
study questions and problems on,	phase, 405–407	X-band waveguides, 445
407–410	Volt (V), 9	Xerography, 168–172
summary points on, 407	Volta, Alessandro, 9	0 1 2
time-harmonic, 400–402	Voltage, 9, 322	Yagi-Uda array, 472, 473
mile idilitoric, 400-404		,

Units

Quantity	Symbol	Unit	Approximate practical range
Charge	Q, q*	coulomb (C)	$10^{-19} - 10$
Surface charge density	σ , ρ_s	coulomb per square meter (C/m ²)	$10^{-15} - 10^{-5}$
Voltage, potential	V, v^*	volt (V)	$10^{-9} - 10^{8}$
Electric field strength	E	volt per meter (V/m)	$10^{-6} - 10^{7}$
Displacement vector	D	coulomb per square meter (C/m^2)	$10^{-15} - 10^{-5}$
Current intensity	$I, i^*, -$	ampere (A)	10^{-13} – 10^5
Current density	J	ampere per square meter (A/m^2)	10^{0} – 10^{7}
Capacitance	C	farad (F)	10^{-15} – 10^{0}
Resistance	R	ohm (Ω)	$0-\infty$
Inductance	L	henry (H)	10^{-10} – 10^{1}
Conductivity	σ	siemens per meter (S/m)	see Appendix 4
Permittivity	ϵ	farad per meter (F/m)	see Appendix 4
Resistivity	ho .	ohm per meter $(\Omega/m)(\mathfrak{N}m)$	see Appendix 4
Permeability	μ	henry per meter (H/m)	see Appendix 5
Magnetic flux density	В	tesla (T)	$10^{-15} - 10^0$
Magnetic field strength	\mathbf{H}_{-}	ampere per meter (A/m)	$10^{-8} - 10^{7}$
Magnetic flux	Φ	weber (Wb)	$10^{-15} - 10^0$
Frequency	f	hertz (Hz)	$0-10^{22}$
Force	F	newton (N)	$10^{-9} - 10^5$
Energy, work	W, A	joule (J)	$10^{-15} - 10^{12}$
Power (work per unit time)	<i>P</i> , <i>p</i> ∗	watt (W)	$10^{-12} - 10^{10}$

^{*}In some cases it is customary to use lower-case letters for time-varying quantities.