

PAPER CODE	EXAMINER	DEPARTMENT	TEL
CPT210	Jianjun Chen	Computing	81889137

2nd SEMESTER 2022/23 RESIT EXAMINATION

Undergraduate – Year 3

Microprocessor Systems

TIME ALLOWED: 2 Hours

INSTRUCTIONS TO CANDIDATES

- 1. This is a closed-book examination.
- 2. Total marks available are 100.
- 3. Answer all questions.
- 4. Only English solutions are accepted.

PAPER CODE: CPT210/2022-23/S2 RESIT EXAM Page 1 of 6

西交利物浦大学

Page 2 of 6

Condition codes

Code	Suffix	Flags	Meaning
0000	EQ	Z set	equal
0001	NE	Z clear	not equal
0010	cs	C set	unsigned higher or same
0011	СС	C clear	unsigned lower
0100	МІ	N set	negative
0101	PL	N clear	positive or zero
0110	VS	V set	overflow
0111	vc	V clear	no overflow
1000	н	C set and Z clear	unsigned higher
1001	LS	C clear or Z set	unsigned lower or same
1010	GE	N equals V	greater or equal
1011	LT	N not equal to V	less than
1100	GT	Z clear AND (N equals V)	greater than
1101	LE	Z set OR (N not equal to V)	less than or equal
1110	AL	(ignored)	always

PAPER CODE: CPT210/2022-23/S2 RESIT EXAM

Question A (20 Marks)

1. Convert -28.75 into IEEE 754 single-precision format and explain how this number is stored on a little-endian platform. Please write down all intermediate steps clearly for the conversion and write down each byte (in hexadecimal) along with its corresponding memory address. The most significant byte of this number should be stored at 0x8000004D.

(10 marks)

2. Explain what is one's complement encoding and compare it against two's complement encoding, what are its advantages (or disadvantages)?

(5 marks)

3. Convert -72 into sign and magnitude encoding and two's complement encoding. Assume that one byte is used to store this number. Please write down the conversion steps.

(5 marks)

PAPER CODE: CPT210/2022-23/S2 RESIT EXAM Page 3 of 6

Question B (20 Marks)

1. Assume that the following registers initially hold the values given:

r0 : 0xFB32C76D
r1 : 0x0D796B7C
r2 : 0x79C286A4

What values are held in registers r4, r5, r6, and r7 after the following ARM instructions are executed?

- a. SUB r4, r0, #0x00000078
- b. EOR r5, r1, #0x0008C000
- c. BIC r6, r2, r0
- d. ADD r7, r1, r2, LSL #4

(4 * 2 = 8 marks)

2. The instruction STM supports several addressing modes:

Answer the following questions:

a. Explain the behaviour of STM under these addressing modes.

(4 marks)

b. What is the result of executing "stmia sp!, {r0, r1, r2}" given the following register status? Please write down the status of the stack as well as the value of SP after execution.

(4 marks)

R0 = 0xAA

R1 = 0xBB

R2 = 0xCC

SP = 0xFF000000

3. A "branch and link" instruction uses a special register called a link register. What is the purpose of the link register? How does a "branch and link" instruction differ from a simple branch instruction?

(4 marks)

Question C (30 Marks)

- 1. Write an ARM assembly language program to zip two 8-bit unsigned numbers stored in R0 and R1 and store the result into R3. Zipping means:
 - i. Place the 0th bit (the most significant bit) of R0 as 0th bit of R3
 - ii. Then place 0th bit of R1 as 1st bit of R3
 - iii. Then place 1st bit of R0 as 2nd bit of R3
 - iv. Then place 1st bit of R1 as 3rd bit of R3

v. ...

R3 16 bits total

$R0_0$	$R1_0$	$R0_1$	$R1_1$	$R0_2$	$R1_2$	$R0_3$	$R1_3$	 $R0_8$	$R1_8$	
										l

Example 1:

 $R0 = 0b \ 1 \ 0 \ 1 \ 0 \ 1 \ 1 \ 1$

R1 = 0b 11110000

R3 = 0b 1 1 0 1 1 1 0 1 1 0 1 0 1 0 1 0

Example 2:

 $R0 = 0b \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$

R1 = 0b 1 1 1 1 1 1 1 1

 $R3 = 0b \ 0 \ 1 \ 0$

Question D (30 marks)

Given the following piece of ARM code and also assume a three-stage pipeline:

	mov	r1, #0
	mov	r2, #2
L1	add	r1, r1, #1
	add	r3, r3, r1, LSL r2
	cmp	r1, r2
	blt	L1
	mov	r8, r3

Note the following instruction cycle times:

Processing Type	Cycles	
Any unexecuted (condition code fails)	S	
Normal Data Processing	S	
Data Processing with register specified shift	I + S	
Data Processing with PC written	N + 2S	
Data Processing with register specified shift and PC written	I + N + 2S	
LDR	N + I + S	
LDR into PC	N+I+N+2S	
STR	N + N	

Draw the pipeline diagrams of this ARM program. Please clearly indicate the status of each clock cycle and the number of cycles needed for the whole process. (30 marks)

END OF EXAM PAPER

PAPER CODE: CPT210/2022-23/S2 RESIT EXAM Page 6 of 6