Chapter 3 Ex 3.12 — Chaotic Pendulum

Yihua Qiang 2013301220058

1 Introduction

A damped driven pendulum is often used as a basic example of a chaotic system. For a chaotic system the future behavior is highly dependent on the exact value of the initial conditions. A tiny change in initial conditions can cause huge changes after a short period of time. In this simulation, we plot the *Poincaré* section to analyze the behavior of the system.

2 Method

The equation of motion for this pendulum with driving force is

$$\frac{d\omega}{dt} = -\frac{g}{l}\sin\theta - q\frac{d\theta}{dt} + F_D\sin(\Omega_D t)$$

$$\frac{d\theta}{dt} = \omega$$
(1)

where ω and θ is the angular velocity and angular displacement of the pendulum, while Ω_D is the angular frequency of the external driving force, which maybe, for example, resulted from an electric field when the bob is charged. q is the damping coefficient.

From reference [1], the difference scheme is

$$\omega_{i+1} = \omega_i + [-(g/l)\sin\theta - q\omega_i + F_D\sin\Omega_D t_i]\Delta t$$

$$\theta_{i+1} = \theta_i + \omega_{i+1}\Delta t$$

$$t_{i+1} = t_i + \Delta t$$
(2)

Note that it is already the Euler - Cromer method.

3 Data & Verification

As a test, first let us repeat the result of [1]. The phase diagram with $F_D=1.2, q=0.5$ is

Figure 1: $F_D=1.2, q=0.5, \omega vs\theta$

Then we get three $Poincar\acute{e}$ sections corresponding to $\Omega_D t = 2n\pi, 2n\pi + \frac{\pi}{2}$ and $2n\pi + \frac{\pi}{4}, (n = 0, 1, 2, ...)$.

Figure 2: $\Omega_D t = 2n\pi$

Figure 3: $\Omega_D t = 2n\pi + \frac{\pi}{2}$

Figure 4: $\Omega_D t = 2n\pi + \frac{\pi}{4}$

Here $0, \frac{\pi}{2}$ and $\frac{\pi}{4}$ are also called $Poincar\acute{e}$ phases.

4 Interpretation & Analysis

Compare the latter two $Poincar\acute{e}$ sections with the first one, one may find the resemblance in the different sections with similar sub-structure all displaying the chaotic feature of the system.

References

[1] Nicholas J. Giordano, Hisao Nakanishi, 2007, Computational Physics.