1. Find $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ using the definition of derivative, if $f(x) = \sqrt{2x+1}$

- 2. $\lim_{h\to 0} \frac{\sqrt[3]{8+h}-2}{h} =$
- 3. $\lim_{h\to 0} \frac{(2+h)^5-32}{h}$ is
 - (A) f'(5), where $f(x) = x^2$
 - (B) f'(2), where $f(x) = x^5$
 - (C) f'(5), where $f(x) = 2^x$
 - (D) f'(2), where $f(x) = 2^x$
- 4. If f is a differentiable function, then f'(1) is given by which of the following?
 - I. $\lim_{h \to 0} \frac{f(1+h) f(1)}{h}$

 - II. $\lim_{x \to 1} \frac{f(x) f(1)}{x 1}$ III. $\lim_{x \to 0} \frac{f(x+h) f(x)}{h}$
 - (A) I only
- (B) II only
- (C) I and II only
- (D) I and III only
- 5. What is the instantaneous rate of change at x = -1 of the function $f(x) = -\sqrt[3]{x^2}$?
 - (A) $-\frac{2}{3}$ (B) $-\frac{1}{3}$ (C) $\frac{1}{3}$
- (D) $\frac{2}{3}$

- 6. $\lim_{h \to 0} \frac{\frac{1}{2} [\ln(e+h) 1]}{h}$ is
 - (A) f'(1), where $f(x) = \ln \sqrt{x}$
 - (B) f'(1), where $f(x) = \ln \sqrt{x+e}$
 - (C) f'(e), where $f(x) = \ln \sqrt{x}$
 - (D) f'(e), where $f(x) = \ln(\frac{x}{2})$

7. Let
$$f$$
 be the function defined by $f(x) = \begin{cases} mx^2 - 2 & \text{if } x \le 1 \\ k\sqrt{x} & \text{if } x > 1 \end{cases}$. If f is differentiable at $x = 1$, what are the values of k and m ?

$$f(x) = \begin{cases} 1 - 2x, & \text{if } x \le 1 \\ -x^2, & \text{if } x > 1 \end{cases}$$

- 8. Let f be the function given above. Which of the following must be true?
 - I. $\lim_{x \to 1} f(x)$ exists.
 - II. f is continuous at x = 1.
 - III. f is differentiable at x = 1.
 - (A) I only
 - (B) I and II only
 - (C) II and III only
 - (D) I, II, and III
- 9. Let f be the function defined by

$$f(x) = \begin{cases} x+2 & \text{for } x \le 0\\ \frac{1}{2}(x+2)^2 & \text{for } x > 0. \end{cases}$$

- (a) Find the left-hand derivative of f at x = 0.
- (b) Find the right-hand derivative of f at x = 0.
- (c) Is the function f differentiable at x = 0? Explain why or why not.
- (d) Suppose the function g is defined by

$$g(x) = \begin{cases} x+2 & \text{for } x \le 0\\ a(x+b)^2 & \text{for } x > 0, \end{cases}$$

where a and b are constants. If g is differentiable at x = 0, what are the values of a and b?

The graph of a function f is shown in the figure above. Which of the following statements must be false?

(A) f(x) is defined for $0 \le x \le b$.

(B) f(b) exists.

(C) f'(b) exists.

(D) $\lim_{x \to a^{-}} f'(x)$ exists.

11. The graph of a function f is shown in the figure above. At how many points in the interval a < x < j is f' not defined?

(A) 3

(B) 4

(C) 5

(D) 6

12. The equation of the line tangent to the graph of $y = x\sqrt{3} + x^2$ at the point (1,2) is _____

- 13. If $f(x) = (x^3 2x + 5)(x^{-2} + x^{-1})$, then f'(1) =
 - (A) -10
- (B) -6
- (C) $-\frac{9}{2}$ (D) $\frac{7}{2}$

- 14. If $f(x) = \frac{\sqrt{x-1}}{\sqrt{x+1}}$ then f'(x) =
 - (A) $\frac{\sqrt{x}}{(\sqrt{x}+1)^2}$
 - (B) $\frac{x}{(\sqrt{x}+1)^2}$
 - (C) $\frac{1}{\sqrt{x}(\sqrt{x}+1)^2}$
 - (D) $\frac{\sqrt{x}-1}{\sqrt{x}(\sqrt{x}+1)^2}$
- 15. If g(2) = 3 and g'(2) = -1, what is the value of $\frac{d}{dx} \left(\frac{g(x)}{x^2} \right)$ at x = 2?
- 16. If $f(x) = \frac{x}{x \frac{a}{x}}$ and $f'(1) = \frac{1}{2}$, what is the value of a?

- 17. If $y = x^2 \cdot f(x)$, then y'' =
 - (A) $x^2 f''(x) + x f'(x) + 2f(x)$
 - (B) $x^2 f''(x) + x f'(x) + f(x)$
 - (C) $x^2 f''(x) + 2x f'(x) + f(x)$
 - (D) $x^2 f''(x) + 4x f'(x) + 2f(x)$
- 18. Let $h(x) = x \cdot f(x) \cdot g(x)$. Find h'(1), if f(1) = -2, g(1) = 3, f'(1) = 1, and $g'(1) = \frac{1}{2}$.
- 19. Let $g(x) = \frac{x}{\sqrt{x} 1}$. Find g''(4).

20. If $f(x) = (x^2 - 3x)^{\frac{3}{2}}$, then f'(4) =

21.

If $f(x) = (3 - \sqrt{x})^{-1}$, then f''(4) =

(A) $\frac{3}{32}$ (B) $\frac{3}{16}$ (C) $\frac{3}{4}$

22.

x	f(x)	g(x)	f'(x)	g'(x)
.1	3	2	1	-1
2	-2	1	-1	3
3	1	4	2	3
<u>.4</u>	5	2	1	-2

The table above gives values of f , f' , g , and g' at selected values of x .

(1) Find h'(1), if h(x) = f(g(x)).

(2) Find h'(2), if $h(x) = x f(x^2)$.

(3) Find h'(3), if $h(x) = \frac{f(x)}{\sqrt{g(x)}}$.

(4) Find h'(2), if $h(x) = [f(2x)]^2$

(5) Find h'(1), if $h(x) = (x^9 + f(x))^{-2}$

23. Let $f(x) = xe^x$ and $f^{(n)}(x)$ be the *n*th derivative of f with respect to x. If $f^{(10)}(x) = (x+n)e^x$, what is the value of n?

- 24. If $y = x^x$, then y' =

- (B) $x^{x}(1+\ln x)$ (C) $x^{x}(x+\ln x)$ (D) $\frac{x^{x} \ln x}{x}$
- 25. If $y = e^{\sqrt{x^2 + 1}}$, then y' =
 - (A) $\sqrt{x^2+1} e^{\sqrt{x^2+1}}$
 - (B) $2x\sqrt{x^2+1} e^{\sqrt{x^2+1}}$
 - (C) $\frac{e^{\sqrt{x^2+1}}}{\sqrt{x^2+1}}$
 - (D) $\frac{xe^{\sqrt{x^2+1}}}{\sqrt{x^2+1}}$
- 26. If $y = x^{\ln \sqrt{x}}$, then y' =
 - (A) $\frac{x^{\ln \sqrt{x}} \ln x}{2x}$
 - (B) $\frac{x^{\ln \sqrt{x}} \ln x}{x}$
 - (C) $\frac{2x^{\ln\sqrt{x}}\ln x}{x}$
 - (D) $\frac{x^{\ln\sqrt{x}}(1+\ln x)}{x}$
- 27. If $3xy + x^2 2y^2 = 2$, then the value of $\frac{dy}{dx}$ at the point (1,1) is

- (A) 5 (B) $\frac{7}{2}$ (C) $-\frac{1}{2}$ (D) $-\frac{7}{2}$
- 28. If $3x^4 x^2 y^2 = 0$, then the value of $\frac{dy}{dx}$ at the point $(1, \sqrt{2})$ is

- (A) $\frac{\sqrt{2}}{2}$ (B) $\frac{3\sqrt{2}}{2}$ (C) $\frac{5\sqrt{2}}{2}$

If
$$x^2y + 2xy^2 = 5x$$
, then $\frac{dy}{dx} =$

(A)
$$\frac{5-4xy-4y}{x^2+4xy}$$

(B)
$$\frac{5 - 2xy - 2y^2}{x^2 + 4xy}$$

(C)
$$\frac{5 - 2xy - y^2}{x^2 + 2xy}$$

(D)
$$\frac{5-xy-2y}{x^2-2xy}$$

30.

An equation of the line tangent to the graph of $3y^2 - x^3 - xy^2 = 7$ at the point (1,2) is

(A)
$$y = \frac{3}{4}x - \frac{3}{8}$$

(B)
$$y = \frac{3}{4}x + \frac{1}{2}$$

(A)
$$y = \frac{3}{4}x - \frac{3}{8}$$
 (B) $y = \frac{3}{4}x + \frac{1}{2}$ (C) $y = -\frac{7}{8}x + \frac{3}{2}$ (D) $y = \frac{7}{8}x + \frac{9}{8}$

(D)
$$y = \frac{7}{8}x + \frac{9}{8}$$

31.

An equation of the line normal to the graph of $2x^2 + 3y^2 = 5$ at the point (1,1) is

(A)
$$y = \frac{3}{2}x + 1$$

(B)
$$y = \frac{3}{2}x - \frac{1}{2}$$

(B)
$$y = \frac{3}{2}x - \frac{1}{2}$$
 (C) $y = -\frac{2}{3}x + \frac{5}{3}$ (D) $y = -\frac{2}{3}x + \frac{3}{2}$

(D)
$$y = -\frac{2}{3}x + \frac{3}{2}$$

32. Consider the curve given by $x^3 - xy + y^2 = 3$.

(a) Find
$$\frac{dy}{dx}$$
.

- (b) Find all points on the curve whose x-coordinate is 1, and write an equation for the tangent line at each of these points.
- (c) Find the x-coordinate of each point on the curve where the tangent line is horizontal.
- 33. Consider the curve $x^2 + y^2 xy = 7$.

(a) Find
$$\frac{dy}{dx}$$
.

- (b) Find all points on the curve whose x-coordinate is 2, and write an equation for the tangent line at each of these points.
- (c) Find the x-coordinate of each point on the curve where the tangent line is vertical.

- 34. If $y = (\sin x)^{1/x}$, then y' =
 - (A) $(\sin x)^{\frac{1}{x}} \left[\frac{\ln(\sin x)}{x} \right]$
 - (B) $(\sin x)^{\frac{1}{x}} \left\lceil \frac{x \ln(\sin x)}{x^2} \right\rceil$
 - (C) $(\sin x)^{\frac{1}{x}} \left[\frac{x \sin x \ln(\sin x)}{x^2} \right]$
 - (D) $(\sin x)^{\frac{1}{x}} \left[\frac{x \cot x \ln(\sin x)}{x^2} \right]$
- 35. If $f(x) = e^{\tan x}$, then $f'\left(\frac{\pi}{4}\right) =$
- 36. If $f(x) = \ln(\cos x)$, then f'(x) =
- 37. If $f(x) = \ln[\sec(\ln x)]$, then f'(e) =

- (A) $\frac{\cos 1}{e}$ (B) $\frac{\sin 1}{e}$ (C) $\frac{\tan 1}{e}$
- 38. $\lim_{h \to 0} \frac{\cos(\frac{\pi}{3} + h) \frac{1}{2}}{h} =$

 - (A) $-\frac{1}{2}$ (B) $-\frac{\sqrt{3}}{2}$ (C) $\frac{1}{2}$

- 39. $\lim_{h \to 0} \frac{\sin 2(x+h) \sin 2x}{h} =$
 - (A) $2\sin 2x$
- (B) $-2\sin 2x$
- (C) $2\cos 2x$
- (D) $-2\cos 2x$

- 40. If $f(x) = \sin(\cos 2x)$, then $f'(\frac{\pi}{4}) =$
 - (A) 0
- (B) -1
- (C) 1
- (D) -2

- 41. If $y = a \sin x + b \cos x$, then y + y'' =
 - (A) 0
- (B) $2a\sin x$
- (C) $2b\cos x$
- (D) $-2a\sin x$

42.
$$\frac{d}{dx}\sec^2(\sqrt{x}) =$$

(A)
$$\frac{2\sec(\sqrt{x})\tan(\sqrt{x})}{\sqrt{x}}$$

(B)
$$\frac{2\sec^2(\sqrt{x})\tan(\sqrt{x})}{\sqrt{x}}$$

(C)
$$\frac{\sec^2(\sqrt{x})\tan(\sqrt{x})}{\sqrt{x}}$$

(D)
$$\frac{\sec(\sqrt{x})\tan(\sqrt{x})}{\sqrt{x}}$$

43.
$$\frac{d}{dx} \left[x^2 \cos 2x \right] =$$

(A)
$$-2x\sin 2x$$

(B)
$$2x(-x\sin 2x + \cos 2x)$$

(C)
$$2x(x\sin 2x - \cos 2x)$$

(D)
$$2x(x\sin 2x - \cos 2x)$$

44. If
$$f(\theta) = \cos \pi - \frac{1}{2\cos \theta} + \frac{1}{3\tan \theta}$$
, then $f'(\frac{\pi}{6}) =$

x	f(x)	g(x)	f'(x)	g'(x)	
.1	-1/2	3/2	4	$\sqrt{2}$	
$\pi/4$	-2	1	2	3	

45. The table above gives values of f , f^{\prime} , g , and g^{\prime} at selected values of x . Find $h'(\frac{\pi}{4})$, if $h(x) = f(x) \cdot g(\tan x)$.

46. If
$$xy + \tan(xy) = \pi$$
, then $\frac{dy}{dx} =$

(A)
$$-y \sec^2(xy)$$
 (B) $-y \cos^2(xy)$ (C) $-x \sec^2(xy)$ (D) $-\frac{y}{x}$

$$(B) -y\cos^2(xy)$$

(C)
$$-x \sec^2(xy)$$

(D)
$$-\frac{y}{x}$$

Find the value of the constants a and b for which the function

$$f(x) = \begin{cases} \sin x, & x < \pi \\ ax + b, & x \ge \pi \end{cases}$$
 is differentiable at $x = \pi$.

48.

An equation of the line normal to the graph of $y = \tan x$, at the point $(\frac{\pi}{6}, \frac{1}{\sqrt{3}})$ is

(A)
$$y - \frac{1}{\sqrt{3}} = -\frac{1}{4}(x - \frac{\pi}{6})$$

(B)
$$y - \frac{1}{\sqrt{3}} = \frac{1}{4}(x - \frac{\pi}{6})$$

(C)
$$y - \frac{1}{\sqrt{3}} = -\frac{3}{4}(x - \frac{\pi}{6})$$

(D)
$$y - \frac{1}{\sqrt{3}} = \frac{3}{4}(x - \frac{\pi}{6})$$

49.

If $x + \sin y = y + 3$, then $\frac{d^2y}{dx^2} =$

(A)
$$\frac{-\sin y}{(1-\cos y)^2}$$
 (B) $\frac{-\sin y}{(1+\cos y)^2}$ (C) $\frac{-\sin y}{(1-\cos y)^3}$ (D) $\frac{-\sin y}{(1+\cos y)^3}$

(B)
$$\frac{-\sin y}{(1+\cos y)^2}$$

(C)
$$\frac{-\sin y}{(1-\cos y)^3}$$

(D)
$$\frac{-\sin y}{(1+\cos y)}$$

Let f and g be functions that are differentiable everywhere. If g is the inverse function of f and if g(3) = 4 and $f'(4) = \frac{3}{2}$, then g'(3) =

- (A) $\frac{1}{4}$ (B) $\frac{1}{3}$ (C) $\frac{2}{3}$

If f(-3) = 2 and $f'(-3) = \frac{3}{4}$, then $(f^{-1})'(2) =$

- (A) $\frac{1}{2}$ (B) $\frac{4}{3}$ (C) $\frac{3}{2}$

If $f(x) = x^3 - x + 2$, then $(f^{-1})'(2) =$

- (A) $\frac{1}{2}$ (B) $\frac{2}{3}$
- (C) 4
- (D) 6

If $f(x) = \sin x$, then $(f^{-1})'(\frac{\sqrt{3}}{2}) =$

- (A) $\frac{1}{2}$
- (B) $\frac{2\sqrt{3}}{3}$ (C) $\sqrt{3}$
- (D) 2

If $f(x) = 1 + \ln x$, then $(f^{-1})'(2) =$

- (A) $-\frac{1}{e}$ (B) $\frac{1}{e}$ (C) -e

- (D) e

55.

x	f(x)	f'(x)	g(x)	g'(x)
-1	3	-2	2	6
Ω	-2	-1	0	-3
.1	0	1	-1	2
2	-1	4	3	-1

The functions f and g are differentiable for all real numbers. The table above gives the values of the functions and their first derivatives at selected values of x.

- (a) If f^{-1} is the inverse function of f, write an equation for the line tangent to the graph of $y = f^{-1}(x)$ at x = -1.
- (b) Let h be the function given by h(x) = f(g(x)). Find h(1) and h'(1).
- (c) Find $(h^{-1})'(3)$, if h^{-1} is the inverse function of h.

$$56. \ \frac{d}{dx}(\arcsin x^2) =$$

57. If
$$f(x) = \arctan(e^{-x})$$
, then $f'(-1) =$

58. If
$$f(x) = \arctan(\sin x)$$
, then $f'(\frac{\pi}{3}) =$

59. If
$$f(x) = \cos(\sin^{-1} x)$$
, then $f'(x) =$

- 60. Let f be the function given by $f(x) = x^{\tan^{-1} x}$.
 - (a) Find f'(x).
 - (b) Write an equation for the line tangent to the graph of f at x = 1.
- 61. Some values of differentiable function f are shown in the table below. What is the approximation value of f'(3.5)?

х	3.0	3.3	3.8	4.2	4.9
f(x)	21.8	26.1	32.5	38.2	48.7

- (A) 8
- (B) 10
- (C) 13
- (D) 16

Month	1	2	3	4	5	6
Temperature	-8	0	25	50	72	88

The normal daily maximum temperature $\,F\,$ for a certain city is shown in the table above.

- (a) Use data in the table to find the average rate of change in temperature from t = 1 to t = 6.
- (b) Use data in the table to estimate the rate of change in maximum temperature at t = 4.
- (c) The rate at which the maximum temperature changes for $1 \le t \le 6$ is modeled by $F(t) = 40 52\sin(\frac{\pi t}{6} 5)$ degrees per minute. Find F'(4) using the given model.