Quiz 1, 10 minutes

Question 1: Compute the 2-nn estimator at $x_0 = 2$ based on the data (x_i, y_i) taking values (0, 2), (2, 5), (3, 5), (5, 2), (6, 2).

Question 2: The table below shows 10-fold cv errors and $10^{-1/2}\widehat{se}$ for different k. Which value of k would be selected based on 10-fold cv (**not** using the 1-se rule)?

k	1	2	3	4	5
CV	5	2	3	2.5	5
$10^{-1/2}\widehat{se}$	1	1.5	1.5	2	3

Question 3: Assume you have a sample of size n=20 generated from the model $y_i = f(x_i) + \varepsilon_i$ where ε_i are i.i.d. with variance σ^2 and all x_i are different. Which of the following will always get smaller when k is increased from k=5 to k=10?

- 1. The squared bias of k-nn regression at a fixed x_0 .
- 2. The variance of k-nn regression at a fixed x_0 .
- 3. The MSE of k-nn regression at a fixed x_0 .

Question 4: Which of the following statements are *always* true for k-nn regression with a sample of size n = 50?

- 1. 7-nn regression gives a constant \hat{f} (i.e. $\hat{f}(x_0)$ is independent of x_0).
- 2. 50-nn regression gives a test error of 0.
- 3. 50-nn regression leads to a training error of 0.

Quiz 2, 10 minutes

1. Consider a linear model with 3 predictors, A, B, C. The following table gives the RSS for each combination of predictors in a linear model.

none	Α	В	C	A,B	A,C	B,C	A,B,C
6	5	4	3.5	2	2.5	3	0.5

- 1.1 Which candidate model with 1 predictor is selected by backward stepwise selection?
- 1.2 Assume that additionally $\hat{\sigma}^2 = 0.1$ and $\log n = 5$. Which model will be selected by best subset selection with *AIC*?
- 2. Assume you have 4 predictors. Which statements are true?
 - (a) Forward stepwise selection and backward stepwise selection will always select the same model with $1\ \mathrm{predictor}.$
 - (b) Forward stepwise selection and best subset selection will always select the same model with 1 predictor.
 - (c) Backward stepwise selection and best subset selection will always select the same model with 3 predictors.
- 3. Comparing model selection based on AIC and BIC when $\log n = 33.2$, which of the following statements are true?
 - (1) There are cases when BIC will select models with fewer predictors.
 - (2) Sometimes AIC and BIC will select models with the same number predictors.
 - (3) AIC and BIC will never select the same model.

Quiz 3, 10 minutes

1. The table below gives values for predictors x and response y

X	0	1	2	3	4	5
у	5	2	1	0	6	-2

Assume you run a non-linear regression using step functions with intervals (-2, 3.5], (3.5, 7]. Compute the corresponding value for $\hat{f}(6)$.

- 2. Consider a setting where you have p=500 predictors and n=100 observations. Assume none of the predictors are constant. Which of the following methods will give a unique estimator?
 - (i) Ridge regression with $\lambda = 10$.
 - (ii) Ridge regression with $\lambda = 1$.
 - (iii) A linear model with one predictor that was selected by best subset selection.
- 3. As discussed in lectures piecewise polynomial regression of degree 1 with intervals (1,2],(2,5] can be written in the form

$$g(x) = b_1 f_1(x) + + b_d f_d(x).$$

What are the functions $f_1, ..., f_d$ in this example?

4. How many degrees of freedom does a polynomial spline of degree 2 with two knots have (counting the way we counted in lectures)?

Quiz 4, 10 minutes

1. The table below gives values for predictors x and response y

You run a local constant regression with $K(x) = I\{x \in [0,1]\}$ and span s = 1. What is $\hat{f}(1)$?

- 2. Which of the following will make a model less flexible?
 - (i) Increasing the degree in local polynomial regression while holding the span fixed.
 - (ii) Removing a predictor from a gam model.
- 3. Which of the following will make a model more flexible?
 - (a) Choosing a smaller λ in smoothing splines.
 - (b) Adding an interaction to a gam model.
- 4. Which statements are true for smoothing splines?
 - (1) If $\lambda = 0$ and all x_i are different we get a training error of zero.
 - (2) For very large λ smoothing splines are similar to linear regression.

Quiz 5, 10 minutes

- 1. Which corresponds to making a model more flexible?
 - (1) Adding more leafs to a tree.
 - (2) Increasing the number of trees in boosting.
 - (3) Increasing the interaction depth in boosting while holding everything else fixed.
- 2. Which statements are true for boosting?
 - (a) Choosing an interaction depth of 1 will always lead to the best predictions.
 - (b) A larger learning rate usually leads to better predictions.
- 3. Which of the following can lead to overfitting?
 - (i) Too many trees in a random forest.
 - (ii) Too many trees in boosting.
- 4. Consider the regression tree on the blackboard. What is your prediction for a new observation with X1 = 5, X2 = 3?

Solutions

```
Quiz 1
Q1: (5+5)/2 Q2 k=2 Q3 (2) Q4 none
Quiz 2:
Q1.1 B Q1.2 A,B,C Q2 (b), (c) Q3 (1), (2)
Quiz 3:
Q1: (6-2)/2 Q2 (i), (ii), (iii)
Q3 f_1(x) = I\{x \in (1,2]\}, f_2(x) = xI\{x \in (1,2]\}, f_3(x) = I\{x \in (2,5]\}
f_4(x) = xI\{x \in (2,5]\}
Q43+2
Quiz 4:
Q1: that is just the 4-nn estimator, so the solution is (0+2+1+3)/4
Q2: (ii), Q3: (a), (b), Q4: (1), (2)
Quiz 5:
Q1: (1), (2), (3) Q2: none Q3: (ii)
```