

CHEMISTRY Chapter 5

ENLACE COVALENTE

Helicomotivación

ENLACE COVALENTE

Es la fuerza que mantiene unidos a los átomos que comparten uno o varios pares de electrones de valencia; generalmente se da entre los No Metales.

CLASIFICACIÓN DE LOS ENLACES COVALENTES

A. POR LA POLARIDAD DEL ENLACE

1. ENLACE COVALENTE NO POLAR (APOLAR)

Se forma entre átomos iguales, donde la diferencia de electronegatividades es igual a cero (Δ E.N.=0). Ejm: Cl_2

2. ENLACE COVALENTE POLAR

Se forma entre <u>átomos</u> diferentes, donde la ∆E.N. ≤ 1,7 Ejm: HCl

B. POR EL ORIGEN DE LOS ELECTRONES COMPARTIDOS

	Simple	Covalente normal	A ° B				
		Covalente dativo	A⊸B				
	Múltiple	Enlace doble	A = B				
		Enlace triple	Α ≅σ Β π				
α: par enlazante sigma π: par enlazante pi							

I.	H₫Ċ:	II. :Ö <u>π</u> Cπö:
II.	$\mathbf{H}^{\mathbf{\sigma}}_{\mathbf{c}_{\overline{\pi}}}\mathbf{c}_{\overline{\pi}}^{\mathbf{\pi}}$	rv. :öặsöö:

C. POR EL NÚMERO DE PARES COMPARTIDOS

1. ENLACE COVALENTE SIMPLE

$$H \cdot + CI \cdot \longrightarrow H \cdot CI \cdot$$

$$H - CI$$

1. ENLACE COVALENTE DOBLE

3. ENLACE COVALENTE TRIPLE

 σ B σ : enlace sigma π : enlace pi

$$A = B$$

$$A^{\frac{\pi}{\sigma}}$$
 B

PROPIEDADES DE LOS COMPUESTOS COVALENTES

- 1. Presentan bajo punto de fusión y ebullición, se encuentran en los tres estados.
- 2. Generalmente son insolubles en solventes polares como el agua, pero solubles en solventes apolares como en el Benceno $_{\rm C6H6}$
- 3. Generalmente son malos conductores de la corriente eléctrica.
- 4. Forman moléculas.

Con respecto a los enlaces covalentes y las sustancias covalentes, escriba verdadero (V) o falso (F) según corresponda.

- Se producen generalmente por la compartición de pares de electrones. (;)
- \succ En los enlaces covalentes apolares, la diferencia de electronegatividad (\triangle EN) generalmente es cero. (\lor)
- \succ Los compuestos covalentes son generalmente solubles en agua. (\digamma)
- Los compuestos covalentes presentan bajos puntos de fusión y ebullición. (V)

A continuación se dan las electronegatividades para los elementos.

Cl	Mg	0	С	Н	K
3,0	1,2	3,5	2,4	2,1	0,8

¿Cuántos de los siguientes compuestos presenta enlace iónico y enlace covalente? I. MgCl₂ II. K₂O III. CO₂

RESOLUCIÓN

I. MgCl2
$$\Delta$$
 E.N.= 3,0-1,2 = 1,8

II.
$$K_2O$$
 Δ E.N.= 3,5-0,8 = 2,7

III.
$$CO_2$$
 Δ E.N.= 3,5-2,4 = 1,1

Determine la cantidad de enlaces sigma (σ) en:

Rpta: 5

Determine la cantidad de enlaces pi (π) en:

RESOLUCIÓN

Rpta: 3

¿Qué especie presenta enlace covalente apolar? A) HCI

B) NH₃

C) NaCl

D) CO

 $E) O_2$

C. polar

C. Apolar

Rpta: E

Indique el número de enlaces sigma (σ) en el siguiente compuesto:

RESOLUCIÓN

Rpta: 8

Determine el número de enlaces sigma (σ) y pi (π) en la siguiente estructura.

RESOLUCIÓN

σ: 13

π: 3

El enlace sigma (σ) se forma entre dos átomos de compuesto covalente, debido a superposición directa o frontal de los orbitales; es más fuerte y determina la geometría de la molécula. El enlace pi (π) se forma después del enlace sigma (σ). Indique cuáles de las siguientes moléculas presentan enlaces pi (π) en estructura.

I. CS₂

II. CH₄

III. HCN

Datos: C \rightarrow 4 e– v, H \rightarrow 1 e– v, S \rightarrow 6 e– v, N \rightarrow 5 e– v

Datos: C \rightarrow 4 e– v, H \rightarrow 1 e– v, S \rightarrow 6 e– v, N \rightarrow 5 e– v

I. CS₂
II. CH₄
III.HCN

I. CS₂

II.CH₄

III.HCN

Rpta: I y III