New Modalities in Radiation Oncology

Simon N. Powell MD PhD

Memorial Sloan-Kettering Cancer Center Radiation Oncology Department & Molecular Biology Program

New Modalities

- > Altered fractionation schemes tested in the clinic
- > Intensity Modulated RT: dose-volume effects
- Radiosurgery: new biology?
- Charged Particles
- ➤ (Do Neutrons have life?)
- Radio-immunotherapy
- > Targeted Radio-sensitization

Modifying Fractionation

Hyper-fractionation

Increased total dose, same (or slightly longer) treatment time, more fractions. Reduces late effects.

Typical schedule: 80.5 Gy in 70 fractions (1.15 Gy bid) over 7 weeks

Accelerated treatment

Reduced total dose, reduced treatment time, fractions? Reduces repopulation in tumors. Increase in late effects.

Very accelerated: 54 Gy in 36 fx (1.6 Gy tid) over 12 days; Moderately accelerated: 72 Gy in 42 fx (concomitant boost)

Hypo-fractionation

Reduced total dose, but larger fraction doses. Tumor has low α/β ratio. Increases late effects (requires coning down of tumor and treatment volumes)

EORTC hyperfractionation trial in oropharynx cancer (N = 356)

Oropharyngeal Ca T2-3, N0-1

Horiot 1992

80.5 Gy - 70 fx - 7 wks vs control: 70 Gy - 35-40 fx - 7-8 wks

RTOG 90-03, comparison of fractionation schedules (N = 1113)

Conventional

Hyperfractionated

81.6 Gy - 68 fx - 7 wks

Accelerated with split

Accelerated with concomitant boost

72 Gy - 42 fx - 6 wks

RTOG 90-03: Loco-regional control

RTOG 90-03: Survival

RTOG 90-03: Adverse effects

Acute

Maximum toxicity per patient	Conventional	Hyperfract	Concom boost	Acc + split
Grade 1	5%	3%	4%	7%
Grade 2	57%	39%	36%	41%
Grade 3	35%	54%	58%	49%
Grade 4	0%	1%	1%	2%

Late (> 90 days)

Maximum toxicity per patient	Conventional	Hyperfract	Concom boost	Acc + split
Grade 1	11%	8%	7 %	16%
Grade 2	50%	56%	44%	50%
Grade 3	19%	19%	29%	20%
Grade 4	8%	9%	8%	7%
Grade 5	1%	0%	1%	1%

Altered fractionation in head and neck cancer: meta-analysis

Randomized trials 1970-1998 (no postop RT) 15 trials included (6515 patients, individual data)

Survival benefit: 3% (36% \rightarrow 39% at 5 years, p = 0.003)

Loco-regional control benefit: 7% (46% \rightarrow 53% at 5 years, p < 0.0001)

	loco-regional control benefit	survival benefit
Very accelerated with		
reduction of total dose	3% (n.s.)	2% (n.s.)
Moderately accelerated	7%	1% (n.s.)
Hyperfractionated	9%	9%

Standard vs Hypo-fractionated Whole Breast

RT: Canadian Trial

Conclusions to Fractionation

- Altered fractionation can be of benefit
- Addition of chemotherapy or biological therapies requires readjustment of radiotherapy schedule
- In principle, tumors should be treated for an overall treatment time that is as short as possible consistent with acceptable acute morbidity, but with a dose per fraction that does not compromise late responding normal tissues, or total dose.
- Avoid treatment breaks and treatment prolongation

The Experience with Prostate Cancer IMRT at MSKCC

	Safety	Percer Dose	t		Pationts
	Toxicity	Cure			- Culonius
Conventional	20 mm 3.5%	<u>≤ 70 Gy</u> 44%			428
Radiotherapy		> 70 Gy	174		6.9%
IMRT	6 mm	81 - 86.4 Gy	838	1.4%	88%

IMRT provided proof-in-principle that reduction of normal tissue safety margins enables tumor dose escalation and increased local cure

The Experience with Prostate Cancer IGRT-IMRT at MSKCC

IMRT

- Only 4 randomized trials of IMRT vs conventional XRT 2 head and neck*, breast**, prostate***
 - Endpoints for all four were toxicity and QoL
 - Head and neck better salivary function and QoL IMRT
 - Breast less moist desquamation and better QoL IMRT
 - Prostate less acute and late GI and GU toxicity IMRT

^{*}Pow EH et al. Int J Radiat Oncol Biol Phys 66:981-991, 2006

^{*}Kam et al. J Clin Oncol 25:4873-4879, 2007

^{**} Pignol J-P et al. JCO 2085-2092, 2008

^{***} Al-Mamgani et al. Int J Radiat Oncol Biol Phys 73:685-691,2009

Radiation Oncology: Technology Assessment

RO history is one of continuous change when new technology becomes available. These changes were implemented with very few prospective, randomized trials.

Energy 250 keV cobalt linear accelerators

Conformality 2D 3DCRT IMRT IGRT

Clinicians rely extensively on the physics and mathematics used for treatment comparisons

Local Control Oligometastatic Tumors The MSKCC Series of SD-IGRT, 2008

Patients with metastatic breast, colorectal, lung, head and neck, liver, pancreatic, sarcoma, melanoma and other tumors

Lipid Signaling controls Vascular Collapse in Tumors

SDRT induces micro-vascular dysfunction in the tumor bed

Lipid Signaling via Ceramide and Acid Sphingomyelinase governs Vascular Collapse and Tumor Cell DNA Repair

The loss of Acid Sphingomyelinase results in no observable apoptosis and no tumor cell sensitization

Microvascular dysfunction inhibits DSB repair

Microvascular dysfunction inhibits DSB repair

The Two-Target Model in Single-Dose Radiotherapy

- High dose radiation engages both tumor stem cells and the microvascular endothelium as a linked target system in effecting depletion of the stem cell compartment
- Engagement of the endothelial component has a threshold at 8-10Gy
- Transient micro-vascular dysfunction regulates the repair of repopulating tumor stem cells DNA dsb, converting potentially repairable damage into lethal lesions

Single Dose IGRT Differs Mechanistically from Classical Fractionated Radiotherapy

SINGLE DOSE IGRT	FRACTIONATED RADIOTHERAPY	
Linked stem cell / endothelial target	Stem cell target; no endothelial component	
Activated at 8-10 Gy; optimal range 22-25 Gy	Daily 1.8-2.0 Gy escalated to tolerance	
Microvascular dysfunction represses DNA dsb repair	Based on more efficient dsb repair in normal tissues compared to tumors during inter-fractional intervals Fractionation	
IGRT required to exclude normal tissues, thus removing the barrier for delivery of tumoricidal dose levels	enables tumor dose buildup with reduced normal tissue toxicity	
≥90% local control with ≥24 Gy regardless of tumor phenotype	Rank ordering of tumor curability by phenotypic inherent radiosensitivity	

Arguments against the use of SD/Hypo-Frac Radiotherapy

- The 4R paradigm of classical radiobiology features a requirement for dose fractionation to overcome hypoxic tumor cell resistance via interfractional re-oxygenation
- Assuming a 20% hypoxic fraction and the classical linear quadratic α/β model with adjustment for high dose exposure, the predicted single dose required for an iso-effect of 30x2Gy is ~40 Gy
- The predicted ultra-high SD doses required for human tumor cure with SD/HF mandate maximal exclusion of normal tissues, raising issues of biological uncertainties relative to microscopic tumor spread beyond GTV

SD-Radiotherapy: New Biology?

Brown, Brenner and Carlson, 2013

Why Proton Beam Radiotherapy?

- Tumorcidal radiation treatment, from photons or protons, can be administered to ~ 50% of all cancer patients.
- Many radiation treatment advances have focused on minimizing dose to normal tissues.
- Proton beam radiotherapy has superior (exit) dose precision, but currently availability is limited due to cost and logistical difficulties.

Therapeutic Ratio

Advantages of Proton Therapy

- Compared to photons, particles deliver, on average, less than half the dose to normal tissues: therefore, particles provide
 - reduced acute and late morbidities
 - increased target dose
 - or both

Robert Wilson Ph.D

 "I am fascinated by the unique distribution of ionization by protons compared to x-rays. This might be of interest to the radiological community for the treatment of tumors"

• "....the medical application of protons would give me atonement for involvement in the development of the bomb at Los Alamos."

> Radiological Use of Protons: A J Radiology 47:487-491,1946

X-ray Beam

Proton Beam

Outcome Measures: Radiation Therapy

Local control and survival rates

Tumor control with acceptable morbidity

Children represent a challenge to further reduce treatment related morbidities to historically low levels

Commons Statements about Proton Therapy:

- The biology is not understood
- Proton therapy is experimental
- Photon delivery technology is so advanced that it has superceded the need of protons
- Dose distribution is so conformal that 'margin failures' will be seen
- Secondary neutrons will increase risk of secondary tumor formation
- Protons are too expensive

Commons Myths of Proton Therapy

- The biology is not understood FALSE (mostly)
- Proton therapy is experimental FALSE (mostly)
- Photon delivery technology is so advanced that it has superseded the need of protons – FALSE (probably)
- Dose distribution is so conformal that 'margin failures' will be seen - FALSE
- Secondary neutrons will increase risk of secondary tumor formation - FALSE
- Protons are too expensive partially true in 2013

Particles vs. Photons

Chordoma: PET Verification of Proton Dose Distribution

Planned dose

Proton Therapy

- Biology Gy for Gy essentially the same as photons?
- Reducing the dose outside the desired target volume is:
 preferable
 desirable
 logical
 sensible
 cost-effective
- In trials where "higher than standard dose" is being delivered, patients are required to be on IRB approved, prospective, clinical trials (chordoma, nasopharynx, liver, pancreas, prostate)

Limitations of Clinical Data: Proton Therapy at the MGH

- Nearly 30 years of experience at HCL
- Low energy and fixed beam limited sites of treatment (e.g. skull base, eye)
- Data for some endpoints (secondary tumors)
 contaminated with at least 20% of
 treatments being conformal x-rays
- Clinical results still compelling, however

Limitations of Clinical Data: Proton Therapy at the MGH

- Clinical results still compelling, however
 - ->95% LC uveal melanoma at 15 years
 - 80% LC paraspinal sarcomas at 5 years
 - 80% LC paranasal sinus scc without visual injury
 - Reduced early and late effects pediatric tumors

Local Tumor Control

Chordoma (adults)

LC = 75 % at 5 yrs.

= 55 % at 10 yrs.

Chondrosarcoma

LC = 98 % at 5 yrs.

= 95 % at 10, 15 yrs.

Protons

Dose (cGy)

Photons

Secondary Malignancies Following Proton/Photon Therapy at HCL/MGH

- 503 proton patients
- 1591 matched photon patients from SEER registry
- Observation times >5 years
- Matched for age, gender, age at treatment
- 6.4% of proton patients developed SMs
- 12.8% of photons patients developed SMs
- No pediatric patient has developed secondary tumor
- Conclusions

Photons radiation therapy was associated with significant increase risk of SMs compared to photons (Adjusted Hazard Ratio of 2.73, p<0.0001)

Particle Therapy: Summary

Neutron Therapy: a short history

- Neutrons have high-LET and increased RBE
- Clinical trials were initially limited by low energy, which made dose distribution less favorable
- Is the RBE higher for tumors or normal tissues?
- Conclusions:
 - Late effects of neutrons were excessive, but volume restriction not optimized.

Convection-Enhanced Delivery (CED) of Theranostic ¹²⁴I-8H9 Antibody *Pre-clinical Results*

Focus 120 microPET Images following 10-μCi (10 μl) Infusion into Cerebellum of Normal Rat

1st two of five serial images thru 7 d pi

A = Injection site, B CSF space, C = Thyroid*

* Thyroid not blocked with SSKI

Convection-Enhanced Delivery (CED) of Theranostic ¹²⁴I-8H9 Antibody *Pre-clinical Results*

microPET-derived Kinetics and Dosimetry following 10-μCi (10 μl) Infusion into Cerebellum of Normal Rat

^{*} The term, "'Hot' Brain," refers to CSF space remote from injection site.

Convection-Enhanced Delivery (CED) of Theranostic ¹²⁴I-8H9 Antibody *Pre-clinical vs Clinical Results*

Serial PET Images (coronal) in Normal Rat (left) and Pontine Glioma Patient (right)

Injection site $T_{1/2} = 35 \text{ hr}$ D = 440rad/mCi

Theranostic Approaches CNS Cancers

EGFR inhibition

Cetuximab :

- inhibition of EGFR kinase activity
- inhibition of cell cycle progression
- increase of radio-induced apoptosis
- anti-angiogenic effect
- ADCC (antibody dependent cellular toxicity)
- inhibition of DNA repair (via DNA-PKcs)

Targeting EGFR in Head and Neck Cancer

Ras inhibition

Oncogene RAS mutated in 20% of cancers

Ras controls proliferation, survival, differentiation, migration and angiogenesis

- Activation of Ras leads to radioresistance
- Inhibition of Ras activity by siRNA or farnesyl transferase inhibitor increases radiosensitivity

HDAC inhibitors

- 16 HDAC inhibitors
- radiosensitization in vitro
- not well known mechanisms.
- differential effect tumor/normal tissues
- > 100 clinical trials on going
- one published trial with pelvic radiation therapy (PRAVO)

Histone deacetylase (HDAC)

regulation of chromatin structure, gene transcription, and radiosensitivity?

HDAC overexpression is oncogenic

→ 4 phase I trials on going (pancreas, lung, prostate, esophagus, HN) and 1 phase II/III trial (glioblastoma)

New Modalities

- ➤ Altered fractionation schemes tested in the clinic
- ➤ Intensity Modulated RT: dose-volume effects
- Radiosurgery: new biology?
- Charged Particles
- Radio-immunotherapy
- > Targeted Radio-sensitization