### **Digital Fundamentals**

# CHAPTER 4 Boolean Algebra and Logic Simplification

### **Boolean Operations and Expressions**

### **Boolean Operations and Expressions**

Addition

$$0 + 0 = 0$$

$$0 + 1 = 1$$

$$1 + 0 = 1$$

$$1 + 1 = 1$$



Multiplication

$$0 * 0 = 0$$

$$0 * 1 = 0$$

$$1 * 0 = 0$$



Laws and Rules of Boolean Algebra

- Commutative Laws
- Associative Laws
- Distributive Law

Commutative Law of Addition:

$$A + B = B + A$$

Commutative Law of Multiplication:

$$A * B = B * A$$



Associative Law of Addition:

$$A + (B + C) = (A + B) + C$$



Associative Law of Multiplication:

$$A * (B * C) = (A * B) * C$$



Distributive Law:

$$A(B + C) = AB + AC$$



1. 
$$A + 0 = A$$

**2.** 
$$A + 1 = 1$$

3. 
$$A \cdot 0 = 0$$

**4.** 
$$A \cdot 1 = A$$

5. 
$$A + A = A$$

**6.** 
$$A + \overline{A} = 1$$

7. 
$$A \cdot A = A$$

8. 
$$A \cdot \overline{A} = 0$$

9. 
$$\overline{A} = A$$

10. 
$$A + AB = A$$

11. 
$$A + \overline{A}B = A + B$$

**12.** 
$$(A + B)(A + C) = A + BC$$

## • Rule 1



| Α | В | Χ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

**OR Truth Table** 

## • Rule 2



| Α | В | Χ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

**OR Truth Table** 

### • Rule 3



| Α | В | Χ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

**AND Truth Table** 

### • Rule 4



| Α | В | Χ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

**AND Truth Table** 

## • Rule 5



| Α | В | Χ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

**OR Truth Table** 

### • Rule 6



| Α | В | Χ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 1 |
| 1 | 0 | 1 |
| 1 | 1 | 1 |

**OR Truth Table** 

## • Rule 7



| Α | В | Χ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

**AND Truth Table** 

## • Rule 8



| Α | В | Χ |
|---|---|---|
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |

**AND Truth Table** 

### • Rule 9



• Rule 10: A + AB = A

| A        | В  | AB      | A + AB   | $A \rightarrow \bigcirc$ |
|----------|----|---------|----------|--------------------------|
| 0        | 0  | 0       | 0        |                          |
| 0        | 1  | 0       | 0        | $B \longrightarrow B$    |
| 1        | 0  | 0       | 1        |                          |
| 1        | 1  | 1 1     | 1        | A straight connection    |
| <b>†</b> | ea | ual ——— | <u> </u> |                          |

| Α | В | Χ | Α | В | Χ |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 |

**AND Truth Table OR Truth Table** 

• Rule 11: A + AB = A + B

| A | В | AB | A + AB | A + B | $A \longrightarrow \bigcirc$ |
|---|---|----|--------|-------|------------------------------|
| 0 | 0 | 0  | 0      | 0     |                              |
| 0 | 1 | 1  | 1      | 1     |                              |
| 1 | 0 | 0  | 1      | 1     | A                            |
| 1 | 1 | 0  | 1 1    | 1     | $B \longrightarrow$          |
|   |   |    | equ    | ial   |                              |

| Α | В | Χ | Α | В | Χ |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 |

**AND Truth Table OR Truth Table** 

• Rule 12: (A + B)(A + C) = A + BC

| A | В | С | A + B | A+C | (A+B)(A+C) | ВС    | A + BC   | $A + \Box$            |
|---|---|---|-------|-----|------------|-------|----------|-----------------------|
| 0 | 0 | 0 | 0     | 0   | 0          | 0     | 0        | B + C                 |
| 0 | 0 | 1 | 0     | 1   | 0          | 0     | 0        |                       |
| 0 | 1 | 0 | 1     | 0   | 0          | 0     | 0        | c— $L$                |
| 0 | 1 | 1 | 1     | 1   | 1          | 1     | 1        |                       |
| 1 | 0 | 0 | 1     | 1   | 1          | 0     | 1        | <b>+</b>              |
| 1 | 0 | 1 | 1     | 1   | 1          | 0     | 1        | $A \longrightarrow$   |
| 1 | 1 | 0 | 1     | 1   | 1          | 0     | 1        | $B \longrightarrow A$ |
| 1 | 1 | 1 | 1     | 1 1 | 1          | 1     | 1        |                       |
|   |   |   |       |     | <b>A</b>   |       | <b>†</b> |                       |
|   |   |   |       |     |            | equal |          |                       |

| Α | В | Χ | Α | В | Χ |
|---|---|---|---|---|---|
| 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 0 | 0 | 1 | 1 |
| 1 | 0 | 0 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 1 |

**AND Truth Table OR Truth Table** 

## **DeMorgan's Theorem**

#### **DeMorgan's Theorems**

Theorem 1

$$\overline{XY} = \overline{X} + \overline{Y}$$

Theorem 2

$$\overline{X + Y} = \overline{X}\overline{Y}$$



#### **Remember:**

"Break the bar, change the sign"

Figure 4–16

A logic circuit showing the development of the Boolean expression for the output.



Figure 4–16

A logic circuit showing the development of the Boolean expression for the output.



**Standard Forms of Boolean Expressions** 

#### **Standard Forms of Boolean Expressions**

The sum-of-product (SOP) form
 Example: X = AB + CD + EF

The product of sum (POS) form

Example: X = (A + B)(C + D)(E + F)

Figure 4–18 Implementation of the SOP expression AB + BCD + AC.



Figure 4–19 **This NAND/NAND implementation is equivalent to the AND/OR in Figure 4–18.** 



Figure 4–19 **This NAND/NAND implementation is equivalent to the AND/OR in Figure 4–18.** 





### The Karnaugh Map



3-Variable Example 3-Variable Karnaugh Map

#### The Karnaugh Map



**4-Variable Example** 

Figure 4–23 Adjacent cells on a Karnaugh map are those that differ by only one variable. Arrows point between adjacent cells.



Figure 4–24 **Example of mapping a standard SOP expression.** 



















Figure 4–35 **Example of mapping directly from a truth table to a Karnaugh map.** 



Figure 4–36 **Example of the use of "don't care" conditions to simplify an expression.** 

| Inputs      | Output |             |              |        |          |                           |
|-------------|--------|-------------|--------------|--------|----------|---------------------------|
| ABCD        | Y      |             |              |        |          |                           |
| 0 0 0 0     | 0      |             |              |        |          |                           |
| 0 0 0 1     | 0      |             |              |        |          |                           |
| 0 0 1 0     | 0      |             |              |        |          |                           |
| 0 0 1 1     | 0      |             |              |        |          |                           |
| 0 1 0 0     | 0      |             |              |        |          |                           |
| 0 1 0 1     | 0      |             | $AB^{CD}$ 00 | 01     | 11       | 10                        |
| 0 1 1 0     | 0      |             | AB 00        | T      | 1        |                           |
| 0 1 1 1     | 1      |             | 00           |        |          |                           |
| 1000        | 1      |             |              |        |          |                           |
| 1 0 0 1     | 1      |             | 01           |        |          | $-\bar{A}B$               |
| 1010        | X      |             |              |        |          | BC                        |
| 1 0 1 1     | X      |             | 11 X         | X      | X        | X                         |
| 1 1 0 0     | X      | Don't cares | 11 ] A       | Δ.     |          | Α                         |
| 1 1 0 1     | X      |             | 10           |        | 37       | v                         |
| 1 1 1 0     | X      |             | 10 1         |        | X        | x                         |
| 1111        | X      |             | 1            |        | 1        | 100                       |
|             |        |             | ABC          |        | A        |                           |
| a) Truth ta | ble    |             | (b) Without  | "don't | cares" 1 | $V = AB\bar{C} + \bar{A}$ |

Figure 4–37 **Example of mapping a standard POS expression.** 













(b) Standard SOP:  $\overrightarrow{ABCD} + \overrightarrow{ABCD} + \overrightarrow{ABC$ 



(c) Minimum SOP:  $AC + BC + BD + \overline{BCD}$ 

## The Karnaugh Map



5-Variable Karnaugh Mapping

Figure 4–43 Illustration of groupings of 1s in adjacent cells of a 5-variable map.







Figure 4–45 A VHDL program for a 2-input AND gate.

```
entity AND_Gate2 is
  port (A, B: in bit; X: out bit);
end entity AND_Gate2;

architecture LogicFunction of AND_Gate2 is
begin
  X <= A and B;
end architecture LogicFunction;</pre>
```

### **VHDL**

VHDL Operators

VHDL Elements

and

or

not

nand

nor

xor

**xnor** 

entity

architecture

### **VHDL**

Entity Structure

Example:

```
entity AND_Gate1 is
    port(A,B:in bit:X:out bit);
end entity AND_Gate1
```

#### **VHDL**

Architecture

Example:

```
architecture LogicFunction of AND_Gate1 is
begin
    X<=A and B;
end architecture LogicFunction</pre>
```



# **Hardware Description Languages (HDL)**

Boolean Expressions in VHDL

Figure 4–47 Seven-segment display format showing arrangement of segments.



Figure 4–48 **Display of decimal digits with a 7-segment device.** 



Figure 4–49 **Arrangements of 7-segment LED displays.** 



Figure 4–50 Block diagram of 7-segment logic and display.



Figure 4–51 Karnaugh map minimization of the segment-a logic expression.



Figure 4–52

The minimum logic implementation for segment a of the 7-segment display.



# **Summary**

$$A - \bigcirc -\overline{A} \qquad B - \bigcirc -AB \qquad B - \bigcirc -\overline{AB} \qquad A - \bigcirc -\overline{A+B} \qquad B - \bigcirc -\overline{A+B} \qquad A - \bigcirc -\overline{A+B}$$



Figure 4–55. What is the Boolean expression for each of the logic gates?



Figure 4–56. What is the Boolean expression for each of the logic gates?



Figure 4–58. Derive a standard SOP and standard POS expression for each truth table.

|         |         | ABCD X | ABCD X   |
|---------|---------|--------|----------|
|         |         | 0000 1 | 0000 0   |
|         |         | 0001 1 | 0001 0   |
|         |         | 0010 0 | 0010 1   |
|         |         | 0011 1 | 0011 0   |
|         |         | 0100 0 | 0100 1   |
|         |         | 0101 1 | 0101 1   |
|         |         | 0110 1 | 0110 0   |
| ABC X   | ABC X   | 0111 0 | 0111 1   |
| 000 0   | 000 0   | 1000 0 | 1000 0   |
| 001 1   | 001 0   | 1001 1 | 1001 0   |
| 010 0   | 010 0   | 1010 0 | 1010 0   |
| 011 0   | 011 0   | 1011 0 | 1011 1   |
| 100 1   | 100 0   | 1100 1 | 1100 1   |
| 101 1   | 101 1   | 1101 0 | 1101 0   |
| 110 0   | 110 1   | 1110 0 | 1110 0   |
| 111   1 | 111   1 | 1111 0 | 1111   1 |
| )       | (b)     | (c)    | (d)      |

Figure 4–59. Reduce the function in the truth table to its minimum SOP form by using a Karnaugh map.

| Inputs |   |   | Output |
|--------|---|---|--------|
| 4      | В | C | X      |
| 0      | 0 | 0 | 1      |
| 0      | 0 | 1 | 1      |
| 0      | 1 | 0 | 0      |
| 0      | 1 | 1 | 1      |
| 1      | 0 | 0 | 1      |
| 1      | 0 | 1 | 1      |
| 1      | 1 | 0 | 0      |
|        | 1 | 1 | 1      |

Figure 4–62. Example 4-21. Related Problem answer.



Figure 4–63. Example 4-22. Related Problem answer.



Figure 4–64. Example 4-23. Related Problem answer.



Figure 4–65. Example 4-24. Related Problem answer.



Figure 4–66. Example 4-30. Related Problem answer.

