F2 Early Summer Assignment: MC 02

1.
$$a(3-b)+b(3-b)=$$

A.
$$(3+b)(a-b)$$

B.
$$(3-b)(a-b)$$

C.
$$(3-b)(a+b)$$

D.
$$ab(3-b)$$

2. Simplify
$$\frac{32a^2b^3c}{24b^2cd}$$
.

$$\mathbf{A.} \qquad \frac{4a^2b^5}{3d}$$

$$\mathbf{B.} \qquad \frac{4a^2b}{3d}$$

$$\mathbf{C.} \qquad \frac{3d}{4a^2b}$$

$$\mathbf{D.} \qquad \frac{4a^2}{3b^5d}$$

3.
$$\frac{5a^2(y-x)}{3(x-y)} =$$

$$\mathbf{A.} \qquad \frac{5a^2}{3}$$

B.
$$-\frac{5a^2}{3}$$

$$\mathbf{C.} \qquad \frac{5a^2}{3(x-y)^2}$$

D.
$$\frac{5a^2(y-x)^2}{3}$$

4. Simplify
$$\frac{x-2}{x+1} \div \frac{x-1}{x+1}$$
.

A.
$$\frac{(x-2)(x-1)}{(x+1)^2}$$

$$\mathbf{B.} \qquad \frac{x-2}{x+1}$$

$$\mathbf{C.} \qquad \frac{x-1}{x+1}$$

$$\mathbf{D.} \qquad \frac{x-2}{x-1}$$

- Simplify $\frac{y}{x} \frac{x}{y}$.

 - B. $\frac{y^2 x^2}{xy}$ C. $\frac{x^2 y^2}{xy}$
 - D.
- If $4c^5d^6 \times P = 3c^8d^2$, then P =

 - **B.** $\frac{4c^3}{3d^4}$.
 - $\mathbf{C.} \qquad \frac{4d^4}{3c^3}.$
 - **D.** $\frac{3d^4}{4c^3}$.
- 7. If $\frac{z}{x+y} = x y$, which of the following formulas is correct?
 - **A.** $x^2 = z y^2$

 - **B.** $x^2 = z + y^2$ **C.** $y^2 = z + x^2$
 - **D.** $y^2 = -z x^2$
- Simplify $\frac{2x}{x-1} \frac{x-1}{x+1}$.
 - $A. \qquad \frac{3x^2 + 1}{(x 1)(x + 1)}$
 - **B.** $\frac{x^2 + 4x 1}{(x 1)(x + 1)}$
 - $\mathbf{C.} \qquad \frac{3x+1}{(x-1)(x+1)}$
 - **D.** $\frac{x^2 4x + 1}{(x 1)(x + 1)}$

9.
$$\frac{2}{x^2 - 2x} + \frac{1}{x^2 + x} =$$

$$\mathbf{A.} \qquad \frac{3x+2}{x(x-2)(x+1)}$$

$$\mathbf{B.} \qquad \frac{3x}{(x-2)(x+1)}$$

$$\mathbf{C.} \qquad \frac{3}{(x-2)(x+1)}$$

D.
$$\frac{3}{x(x-2)(x+1)}$$

10. Make x the subject of the formula p(x-1) = q.

$$\mathbf{A.} \qquad x = \frac{p+q}{p}$$

$$\mathbf{B.} \qquad x = \frac{p - q}{p}$$

$$\mathbf{C.} \qquad x = \frac{1+q}{p}$$

$$\mathbf{D.} \qquad x = \frac{-p - q}{p}$$

11. If $\frac{1}{a} + \frac{1}{b} = \frac{1}{x}$, then x =

A.
$$\frac{ab}{a+b}$$

B.
$$\frac{a+b}{ab}.$$

C.
$$\frac{a-b}{ab}$$
.

$$\mathbf{D.} \qquad \frac{a+b}{a-b} \, .$$

12.
$$(m-n)^2 - 4(m-n) =$$

$$\mathbf{A.} \qquad (m-n)(m-n-4)$$

B.
$$(m-n)(m-n+4)$$

C.
$$(m-n)(m-n+1)$$

D.
$$4(m-n)(m-n-1)$$

13. Factorize $4a^2 - 9b^2$.

A.
$$(2a-3b)^2$$

B.
$$(2a-9b)(2a+b)$$

C.
$$(4a-9b)(4a+9b)$$

D.
$$(2a-3b)(2a+3b)$$

- 14. Factorize $x^2 4xy + 4y^2$.
 - **A.** $(x-4y)^2$
 - **B.** (x+2y)(x-2y)
 - C. $(x + 2y)^2$
 - **D.** $(x-2y)^2$
- 15. $9(x+y)^2-4=$
 - **A.** (9x + 9y 2)(9x + 9y + 2)
 - **B.** (3x+3y+2)(3x+3y-2)
 - C. (x+y+2)(x+y-2)
 - **D.** (x+y-4)(x+y-1)
- 16. $\frac{(x+y)^2}{9} \frac{y^2}{25} =$
 - **A.** $(\frac{5x-2y}{15})(\frac{5x-8y}{15})$
 - **B.** $(\frac{5x+2y}{15})(\frac{5x-8y}{15})$
 - C. $(\frac{5x-2y}{15})(\frac{5x+8y}{15})$
 - **D.** $(\frac{5x+2y}{15})(\frac{5x+8y}{15})$
- 17. Factorize $x^4 16y^4$.
 - **A.** $(x^2 + 4y^2)(x 2y)^2$
 - **B.** $(x+4y)^2(x+2y)(x-2y)$
 - C. $(x^2 + 4y^2)(x + 2y)(x 2y)$
 - **D.** $(x^2-4y^2)(x+2y)(x-2y)$
- 18. Factorize $a^2 b^2 ax + bx$.
 - $\mathbf{A.} \qquad (a-b)(a+b-x)$
 - **B.** (a-b)(a-b-x)
 - $\mathbf{C.} \qquad (a-b)(a-b+x)$
 - **D.** (a+b)(a-b-x)
- 19. $4(x+y)^2 12(x+y) + 9 =$
 - **A.** $(4x+4y-3)^2$
 - **B.** $(2x+2y-9)^2$
 - C. (2x+2y-3)(2x+2y+3)
 - **D.** $(2x+2y-3)^2$

- 20. Refer to the figure above. Express a in terms of b, c and d.
 - **A.** a = b c + d
 - **B.** a = -b c + d
 - C. a = b + c + d
 - **D.** a = -b + c d

- 21. Refer to the figure above. Express ϕ in terms of y.
 - **A.** $\phi = 180^{\circ} 4y$
 - **B.** $\phi = 180^{\circ} 2y$
 - C. $\phi = 3y$
 - **D.** $\phi = 2y$

- 22. Which of the following conditions makes AOE a straight line?
 - **A.** $x + y = 90^{\circ}$
 - **B.** $2x + y = 45^{\circ}$
 - C. $2x + 3y = 70^{\circ}$
 - **D.** $x + 2y = 80^{\circ}$

- 23. Which of the following is the reason for $\triangle ABC \cong \triangle ABD$?
 - **A.** A.A.S.
 - **B.** A.S.S.
 - **C.** S.A.S.
 - **D.** R.H.S.

- 24. In the figure, AB = AC and AD = AE. How many pairs of congruent triangles are there in the figure?
 - **A.** 2
 - **B.** 3
 - **C.** 4
 - **D.** 5

- 25. In the figure below, QRS is a straight line. Find \angle PRS.
 - **A.** 114°
 - **B.** 132°
 - **C.** 138°
 - **D.** 156°

- 26. Given that $\triangle PAG \sim \triangle SBQ$, which of the following is/are correct?
 - I. $\angle AGP = \angle SQB$
 - II. $\frac{AG}{BQ} = \frac{PG}{SQ}$
 - III. $PA \cdot GP = SB \cdot SQ$
 - **A.** II only
 - **B.** I and II only
 - C. II and III only
 - **D.** I, II and III
- 27. In the figure, $\triangle ABC$ is a congruent triangle. CD = AE and AD and BE intersect at F. $\angle BFD =$

- **A.** 45°.
- **B.** 50° .
- C. 55°.
- **D.** 60° .

- B D C
- 28. Refer to the figure below. Which of the following pairs are similar triangles?
 - **A.** $\Delta PQR \sim \Delta ABR$
 - **B.** $\Delta RPQ \sim \Delta RBA$
 - C. $\Delta PRQ \sim \Delta BAR$
 - **D.** $\triangle PQR \sim \triangle RBA$

29. In the figure, which of the following cannot prove that \triangle ADE and \triangle ACB are similar?

B.
$$\frac{AD}{AC} = \frac{AE}{AB} = \frac{DE}{CB}$$

$$\mathbf{C.} \qquad \frac{\mathbf{AD}}{\mathbf{AC}} = \frac{\mathbf{AE}}{\mathbf{AB}}$$

D.
$$x = \angle B$$

- 30. In the figure, PQ = SR, $\angle PQR = \angle SRQ$ and PR intersects QS at T.
 - Which of the following is/are correct?

I.
$$\Delta PTQ \cong \Delta STR$$

II.
$$\triangle PQR \cong \triangle SRQ$$

III.
$$\triangle QSP \cong \triangle RPS$$

IV.
$$\triangle PTS \sim \triangle QTR$$

C. III and IV only

D. I, II, III and IV

