## Algoritmos de Alta Performance

# Desenvolvimento de software para auxiliar o acompanhamento médico a partir de arquivos de gravados na nuvem com as informações dos sinais vitais registrados por dispositivo wearable

Entrega: 19/06/2020

Turma: 2ECR

| Integrantes:         | RM:   |
|----------------------|-------|
| Andre Giovannet      | 83939 |
| João Paulo T. do Val | 83615 |
| Luiz Silva           | 82164 |
| Marcelo Soares       | 83561 |
| Matheus Cândido      | 81117 |
| Ricardo Z. Fiorotto  | 75546 |

# Desafio:

### Tarefa 1:

Foi escolhido o método de busca binaria, pois o vetor já está ordenado e busca por chave primaria. A busca binaria possui complexidade O(log(n)), ou seja, é mais rápido que o método sequencial que possui uma complexidade linear O(n).

### Tarefa2:

Foi escolhido o método de busca sequencial exaustiva, pois o vetor não está ordenado, o que impede o uso de métodos como a busca binária, e a função exige que sejam feitas múltiplas buscas de um valor, o que impede o uso do método de busca sequencial não-exaustivo.

### Tarefa 3:

Foram escolhidos dois métodos vistos em sala de aula como candidatos para a tarefa de ordenação das medidas de sinais vitais por ordem decrescente de pulsação: Bubble Sort e Insertion Sort.

Em seguida foram gerados arquivos de medidas com tamanhos diferentes utilizando o Excel e a função RANDBETWEEN(0; 100). Os arquivos foram utilizados em um programa (localizado na pasta "desafio") que mede a duração de cada método de ordernação para cada arquivo gerado.

A partir dessa análise empírica é possivel verificar que o método **Insertion Sort** é mais rápido que o método Bubble Sort em todas as comparações.

| núm medidas | Bubble sort (ms) | Insertion sort (ms) |
|-------------|------------------|---------------------|
| 1440        | 18,364           | 4,94                |
| 8640        | 749,6925         | 219,954             |
| 16000       | 2552,835         | 730,217             |
| 32000       | 14536,75         | 2983,975            |
| 48000       | 27631,9          | 8179,65             |
| 64000       | 49981,35         | 18911,35            |
| 80000       | 73671,4          | 19246               |
| 96000       | 123913           | 36087,95            |
| 128000      | 206325           | 57849,85            |



