UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING FINAL EXAMINATION, DECEMBER 2001

Third Year – Engineering Science APM 384 H1F - PARTIAL DIFFERENTIAL EQUATIONS Exam Type: C

Examiner N.A. Derzko

Questions have equal value. Total marks - 100

1. Solve the initial-boundary value problem:

$$\partial_t^2 u = \partial_x^2 u - 2u$$
 for $x \in (0, 1)$ and $t \ge 0$;

$$u(0, t) = u(\pi, t) = 0, \quad u(x, 0) = x(\pi - x), \quad \partial_{x}u(x, 0) = 0.$$

where ∂_t means $\partial / \partial t$ etc. Check if the solution remains symmetric about $x = \pi/2$ for t > 0. Briefly describe a physical situation which leads to such a problem.

2. Solve the heat equation $\partial_r u = k \nabla^2 u$ inside a circle of radius a with zero temperature around its entire boundary, if initially $u(r, \theta, \theta) = f(r, \theta)$ is given. Identify any special functions required in your solution.

Briefly analyze
$$\lim_{t\to\infty} u(r, \theta, t)$$
.

3. Solve Laplace's equation $\nabla^2 u = 0$ inside a square with opposite corners at (0, 0) and (π, π) in the xy plane, given that the boundary values are

 $f(x) = 2 \sin x + \sin 3x$ on one side and θ on the on the other three sides.

Evaluate any Fourier coefficients that occur in your solution.

4. Use the method of images to find the Green's function for Poisson's equation $\nabla^2 u = f$ in the unit circle with $u = \theta$ on the boundary. Using this Green's function, derive a formula for the solution of Poisson's equation with given boundary values $h(\theta)$, where θ is the polar angle.