Задание на практику 2 курса, осенний семестр

Задача 1

Разложить в ряд Фурье заданную функцию f(x), построить графики f(x) и суммы ее ряда Фурье. Если не указывается, какой вид разложения в ряд необходимо представить, то требуется разложить функцию либо в общий тригонометрический ряд Фурье, либо следует выбрать оптимальный вид разложения в зависимости от данной функции.

1.
$$f(x) = \begin{cases} x, & 0 \leqslant x \leqslant \frac{\pi}{2}, \\ \frac{\pi}{2}, & \frac{\pi}{2} < x \leqslant \pi, \end{cases}$$
 на отрезке $[0; \pi]$ по косинусам кратных дуг.

2.
$$f(x) = \begin{cases} x, & 0 \leqslant x \leqslant \frac{\pi}{2}, \\ \frac{\pi}{2}, & \frac{\pi}{2} < x \leqslant \pi, \end{cases}$$
 на отрезке $[0; \pi]$ по синусам кратных дуг.

- 3. $f(x) = x^2$, на интервале (1; 2) по синусам кратных дуг.
- 4. $f(x) = x^2$, на отрезке [1; 2] по косинусам кратных дуг.

5.
$$f(x) = \begin{cases} 0, & -2 \le x < -1, \\ 1, & -1 \le x < 1, \\ x^2, & 1 \le x \le 2. \end{cases}$$

- 6. $f(x) = \cos x$, на отрезке $[0; \pi]$ по синусам кратных дуг.
- 7. $f(x) = \frac{x-\pi}{2}$ на отрезке $[0;\pi]$ по синусам кратных дуг.
- 8. $f(x) = \frac{x-\pi}{2}$ на отрезке $[0; \pi]$ по косинусам кратных дуг.

9.
$$f(x) = \begin{cases} 0, & -\pi \leqslant x < 0, \\ x^2, & 0 \leqslant x \leqslant \pi. \end{cases}$$

10.
$$f(x) = \begin{cases} 2x, & -\pi \leqslant x \leqslant 0, \\ 3x, & 0 \leqslant x \leqslant \pi. \end{cases}$$

11.
$$f(x) = \begin{cases} 0, & -\pi \leqslant x \leqslant 0, \\ \sin x, & 0 \leqslant x \leqslant \pi. \end{cases}$$

- 12. $f(x) = x^3$ на отрезке $[-\pi; \pi]$.
- 13. $f(x) = |x|^3$ на отрезке $[-\pi; \pi]$.
- 14. f(x) = ch(ax) на отрезке $[-\pi; \pi]$.
- 15. $f(x) = x^2$ на отрезке $[0; 2\pi]$.
- 16. $f(x) = x^{3/2}$ на отрезке $[0; \pi]$.
- 17. $f(x) = \begin{cases} -x^2, & -\pi \le x < 0, \\ x^2, & 0 \le x \le \pi, \end{cases}$ на отрезке $[-\pi; \pi]$
- 18. $f(x) = \sin x$, на отрезке $\left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$.
- 19. $f(x) = \cos x$, на отрезке $\left[-\frac{\pi}{2}; \frac{\pi}{2}\right]$.
- 20. $f(x) = \begin{cases} x, & 0 < x \le 2, \\ 0, & -2 < x \le 0, \end{cases}$ на отрезке [-2; 2].
- 21. $f(x) = \begin{cases} \cos x, & 0 < x \leqslant \frac{\pi}{2}, \\ 0, & \frac{\pi}{2} < x \leqslant \pi, \end{cases}$ по синусам кратных дуг.
- 22. $f(x) = \begin{cases} 0, & 0 < x \le 1, \\ (x-1)^2, & 1 < x \le 2, \end{cases}$ по косинусам кратных дуг.
- 23. $f(x) = \begin{cases} -1 x, & -1 < x \le 0, \\ 1 x, & 0 < x \le 1. \end{cases}$
- 24. $f(x) = \begin{cases} 0, & 0 < x \le 1, \\ (1-x)^2, & 1 < x \le 2, \end{cases}$ по синусам кратных дуг.
- 25. $f(x) = \cos{(4x)}$ на интервале $\left(0; \frac{\pi}{4}\right)$ по синусам кратных дуг.
- 26. $f(x) = \sin(3x)$ на полуинтервале $\left(0; \frac{\pi}{3}\right]$ по косинусам кратных дуг.

27.
$$f(x) = \begin{cases} 1, & -\pi < x \le 0, \\ \cos x, & 0 < x \le \pi, \end{cases}$$

28.
$$f(x) = x \cos x$$
 на отрезке $\left[-\frac{\pi}{2}; \frac{\pi}{2} \right]$

29.
$$f(x) = x \sin 2x$$
 на отрезке $\left[-\frac{\pi}{4}; \frac{\pi}{4}\right]$

30.
$$f(x) = |\{x + 0.5\} - 0.5|$$
 на отрезке $\left[0; \frac{3}{2}\right]$, где x — дробная часть числа x .

Задача 2

Для заданной графически функции y(x) построить ряд Фурье в комплексной форме, изобразить график суммы построенного ряда.

5

6

17

23

24

Задача 3

Найти резольвенту для интегрального уравнения Вольтерры со следующим ядром K(x,t).

1	2	3	4
$\frac{2t^2 - t + 1}{2x^2 - x + 1} 2^{(\operatorname{ch} x - \operatorname{ch} t)}$	$(t-x)e^{(\sin x - \sin t)}, \ \lambda = e^2$	$x^{0.9}t^{1.1}$	$\frac{10 - \sin t}{10 - \sin x} 8^{(t^2 - x^2)}$
5	6	7	$\frac{10 - \sin x}{8}$
$(x-t)2^{(\sin x - \sin t)}, \ \lambda = 4$	$x^{rac{1}{8}}t^{rac{1}{4}}$	$\frac{t^2 + t + 1}{x^2 + x + 1}$	$(t-x)7^{(\sin t - \sin x)}, \ \lambda = 49$
9	10	11	12
$x^2t^2e^{\frac{t^5-x^5}{5}}$	$2^{(\operatorname{sh} t - \operatorname{ch} t)}$	$(x-t)e^{(x-t)}, \lambda = 1$	xt
13	14	15	16
$\frac{2t^2 + t + 1}{2x^2 + x + 1}$	$(t-x)e^{(x^4-t^4)}, \lambda = 1$	$\frac{1 + \operatorname{ch} t}{1 + \operatorname{ch} x} e^{2(x-t)}$ 19	$x^{\frac{1}{3}}t^{\frac{2}{3}}$
17	18	19	20
$xt^2e^{\frac{t^4-x^4}{4}}$	$(x-t)e^{(x^5-t^5)}, \lambda = 1$	$x^2 0.3^{(x^2-t^2)}$	$\frac{t^2 + 2t + 3}{x^2 + 2x + 3}e^{t - x}$
21	22	23	24
$\frac{t^2 + 2t + 3}{x^2 + 2x + 3}e^{(t-x)}$ 25	x^3	$\frac{t^2 - t + 1}{x^2 - x + 1}$	$(x-t)5^{(\cos t - \sin t)}, \ \lambda = 25$
25	26	27	28
$te^{\frac{x^2-t^2}{2}}$	$\frac{3+\sin x}{3+\sin t}$	$3^{(\operatorname{ch} x - \operatorname{ch} t)}$	$x^{rac{1}{2}}t^{rac{1}{3}}$
29	30		
$\frac{t^4+1}{x^4+1}$	$\frac{\operatorname{ch} t - 0.5}{\operatorname{ch} x - 0.5}$		