Corrigé 1

- 1. Résoudre dans \mathbb{R} les trois inéquations suivantes :
 - a) $\frac{11}{4}x + \frac{1}{5}(2-3x) \le \frac{1}{3}(7x-1)$, c) $\frac{1-x}{2+x} \le -\frac{2}{3x-4}$.

- b) $\frac{x+2}{2x-4} \le \frac{5-2x}{x-2} + 3$,
- a) L'inéquation $\frac{11}{4}x + \frac{1}{5}(2-3x) \leq \frac{1}{3}(7x-1)$ est définie sur tout \mathbb{R} .

On cherche à se ramener à une inéquation de la forme $a x \leq b$:

$$\frac{11}{4}x + \frac{1}{5}(2 - 3x) \le \frac{1}{3}(7x - 1) \iff \frac{11}{4}x + \frac{2}{5} - \frac{3}{5}x \le \frac{7}{3}x - \frac{1}{3}$$

$$\Leftrightarrow \frac{11}{4}x - \frac{3}{5}x - \frac{7}{3}x \le -\frac{1}{3} - \frac{2}{5}$$

$$\Leftrightarrow \left(\frac{11}{4} - \frac{3}{5} - \frac{7}{3}\right)x \le -\frac{1}{3} - \frac{2}{5}$$

$$\Leftrightarrow \left(\frac{11 \cdot 5 \cdot 3 - 3 \cdot 4 \cdot 3 - 7 \cdot 4 \cdot 5}{4 \cdot 5 \cdot 3}\right)x \le \frac{-5 - 2 \cdot 3}{3 \cdot 5}$$

$$\Leftrightarrow \frac{165 - 36 - 140}{60}x \le -\frac{11}{15}$$

$$\Leftrightarrow -\frac{11}{60}x \le -\frac{11}{15}$$

$$\Leftrightarrow x \ge \left(-\frac{11}{15}\right) \cdot \left(-\frac{60}{11}\right)$$

$$\Leftrightarrow x \ge 4.$$

Soit S l'ensemble solution, $S = [4, +\infty[$.

b) Définition du référentiel : $D_{\text{def}} = \mathbb{R} \setminus \{2\}$.

Résoudre une inéquation rationnelle revient à étudier le signe d'une fraction rationnelle. On se ramène donc à une comparaison à 0:

$$\frac{x+2}{2x-4} - \frac{5-2x}{x-2} - 3 \le 0$$

$$\Leftrightarrow \frac{x+2-2(5-2x)-3(2x-4)}{2x-4} \le 0 \Leftrightarrow \frac{-x+4}{2x-4} \le 0.$$

On étudie le signe de cette fraction rationnelle $\,Q\,$ à l'aide d'un tableau de signe :

$$Q \le 0 \quad \Leftrightarrow \quad x \in]-\infty; 2[\cup [4; +\infty[; S=]-\infty; 2[\cup [4; +\infty[.$$

c) • Domaine de définition

$$D_{\text{déf}} = \{ x \in \mathbb{R} \mid 2 + x \neq 0 \text{ et } 3x - 4 \neq 0 \} = \mathbb{R} \setminus \{-2, \frac{4}{3}\}.$$

• Comparaison à 0

$$\frac{1-x}{2+x} \le -\frac{2}{3x-4} \qquad \Leftrightarrow \qquad \frac{1-x}{2+x} + \frac{2}{3x-4} \le 0$$

$$\Leftrightarrow \qquad \frac{(1-x)(3x-4) + 2(2+x)}{(2+x)(3x-4)} \le 0$$

$$\Leftrightarrow \qquad \frac{-3x^2 + 9x}{(2+x)(3x-4)} \le 0$$

$$\Leftrightarrow \qquad \frac{(-3x)(x-3)}{(2+x)(3x-4)} \le 0.$$

x	_	-2	0 4	/3	3
-3x	+	+ () –	_	_
x-3	_	_	_	_ () +
2+x	_ (+	+	+	+
3x-4	_	_	_ (+	+
\overline{Q}	_	+ (0 –	+ () –

$$Q \le 0 \quad \Leftrightarrow \quad x \in]-\infty, -2[\cup[0, \frac{4}{3}[\cup[3, +\infty[.$$

 $S =]-\infty, -2[\cup [0, \frac{4}{2}]\cup [3, +\infty[.$

2. Résoudre dans $\mathbb R$ l'équation et l'inéquation suivantes par rapport à la variable x en fonction du paramètre réel m.

a)
$$mx - 4 = 2(x - m)$$
, b) $\frac{2}{m-1}x \le x - \frac{1}{m-1}$, $m \ne 1$.

a) Cette équation est définie pour tout x dans \mathbb{R} .

On se ramène à une équation du premier degré en x du type ax = b.

$$mx - 4 = 2(x - m) \Leftrightarrow (m - 2)x = 4 - 2m$$
.

La résolution de cette équation dépend du coefficient $\ m-2$.

- Si $m-2\neq 0$, l'équation devient $(m-2)\,x=4-2m \iff x=\frac{4-2m}{m-2} \iff x=\frac{-2\,(m-2)}{m-2} \iff x=-2\,.$ $S=\{-2\}\,.$
- Si m-2=0, l'équation devient : 0 x = 0. L'équation est alors toujours vérifiée : $S = \mathbb{R}$.

En résumé:

- Si $m \neq 2$, alors $S = \{-2\}$.
- Si m=2, alors $S=\mathbb{R}$.
- b) Définition du référentiel : $D_{\text{def}} = \mathbb{R}$.

Il s'agit d'une inéquation du premier degré en x du type $ax \leq b$.

$$\left(\frac{2}{m-1}-1\right)x \le -\frac{1}{m-1} \iff \frac{3-m}{m-1}x \le -\frac{1}{m-1}.$$

La résolution de cette inéquation dépend du signe du coefficient $\frac{3-m}{m-1}$.

$$\begin{array}{l} \bullet \ \frac{3-m}{m-1} < 0 \quad \Leftrightarrow \quad m \in \]-\infty \,, \ 1 \, [\, \cup \,]\, 3 \,, \ +\infty \, [\,. \\ \\ \text{L'in\'equation devient} : \ x \, \geq \, -\frac{1}{m-1} \cdot \frac{m-1}{3-m} \quad \Leftrightarrow \quad x \, \geq \, \frac{1}{m-3} \,. \\ \\ S = \, \left[\, \frac{1}{m-3} \,, \ +\infty \, \right[\,. \end{array}$$

$$\bullet \ \frac{3-m}{m-1} = 0 \quad \Leftrightarrow \quad m = 3.$$

L'inéquation devient : $0 x \le -\frac{1}{2}$; $S = \emptyset$.

•
$$\frac{3-m}{m-1} > 0 \Leftrightarrow m \in]1, 3[.$$

L'inéquation devient : $x \leq -\frac{1}{m-1} \cdot \frac{m-1}{3-m} \iff x \leq \frac{1}{m-3}$. $S = \left] -\infty \,, \, \frac{1}{m-3} \right]$.

En résumé :

- Si $m \in]-\infty$, $1[\cup]3$, $+\infty[$, alors $S=[\frac{1}{m-3}, +\infty[$.
- Si $m \in [1, 3[$, alors $S =] \infty, \frac{1}{m-3}]$.
- Si m=3, alors $S=\emptyset$.

3. Exercice facultatif

On considère les fonctions f et g définies par $f(x)=\frac{1}{2}\,x-2$ et $g(x)=-3\,x-\frac{11}{2}$.

a) Dans un repère orthonormé (unité = 2 carrés), représenter le graphe de $\ f$ et de g, puis en déduire celui de $\ |f|$.

Déterminer graphiquement les solutions de l'équation |f(x)| = g(x).

b) Interpréter graphiquement, sur l'exemple ci-dessus, l'équivalence suivante

$$|f(x)| = g(x) \Leftrightarrow g(x) \ge 0 \text{ et } \begin{cases} f(x) = g(x) \\ \text{ou} \\ f(x) = -g(x) \end{cases}$$

a) Les graphes de f et g sont des droites.

On obtient le graphe de |f| en symétrisant par rapport à l'axe Ox les points du graphe de f d'ordonnée négative.

On en déduit graphiquement que l'unique solution de |f(x)| = g(x) est x = -3.

b) Sur le domaine $I = \{ x \in \mathbb{R} \mid g(x) \ge 0 \}$, l'équation f(x) = g(x) n'admet pas de solution, l'équation f(x) = -g(x) admet une unique solution x = -3.

Remarque : il est essentiel de tenir compte de la condition de positivité $g(x) \ge 0$; l'étude du signe de f est alors inutile.

4. Résoudre dans \mathbb{R} les deux équations suivantes :

a)
$$|-x+4| = -\frac{3}{x}$$
, b) $|x^3 - 2x^2 - 4x + 3| = (x^2 + 1)(x - 3)$.

a) Domaine de définition : $D_{\text{def}} = \mathbb{R}^*$.

Cette équation admet d'éventuelles solutions seulement si $-\frac{3}{x} \ge 0$.

$$-\frac{3}{x} \ge 0 \quad \Leftrightarrow \quad x < 0 \quad \text{(condition de positivité)}.$$

Sous cette condition, l'équation devient :

$$-x + 4 = \pm \frac{3}{x}$$
 \Leftrightarrow $x(-x + 4) = \pm 3$ \Leftrightarrow
$$\begin{cases} x^2 - 4x + 3 = 0 & (1) \\ \text{ou} \\ x^2 - 4x - 3 = 0 & (2) \end{cases}$$

(1)
$$\Leftrightarrow$$
 $(x-1)(x-3) = 0$. Sur le référentiel \mathbb{R}_{-}^{*} : $S_1 = \emptyset$.

(2)
$$\Leftrightarrow$$
 $x = 2 \pm \sqrt{7}$. Sur le référentiel \mathbb{R}_{-}^{*} : $S_{2} = \left\{2 - \sqrt{7}\right\}$.
$$S = S_{1} \cup S_{2} = \left\{2 - \sqrt{7}\right\}$$
.

b) Domaine de définition : $D_{\text{def}} = \mathbb{R}$.

Cette équation n'admet d'éventuelles solutions que si $(x^2 + 1)(x - 3) \ge 0$.

$$(x^2+1)(x-3) \ge 0 \quad \Leftrightarrow \quad x-3 \ge 0 \quad \Leftrightarrow \quad x \in [3, +\infty[$$

Sous cette condition (condition de positivité), l'équation devient :

$$x^{3} - 2x^{2} - 4x + 3 = \pm(x^{2} + 1)(x - 3)$$

$$\Leftrightarrow x^{3} - 2x^{2} - 4x + 3 = \pm(x^{3} - 3x^{2} + x - 3)$$

$$\Leftrightarrow \begin{cases} x^{2} - 5x + 6 = 0 & (1) \\ \text{ou} \\ 2x^{3} - 5x^{2} - 3x = 0 & (2) \end{cases}$$

- Résolution de l'équation (1) : $x^2 5x + 6 = 0 \Leftrightarrow (x-3)(x-2) = 0$. Sur le référentiel $[3, +\infty[, S_1 = \{3\}]$.
- Résolution de l'équation (2) : $2x^3 5x^2 3x = 0 \quad \Leftrightarrow \quad x(2x^2 5x 3) = 0 \quad \Leftrightarrow \quad x(2x + 1)(x 3) = 0.$ Sur le référentiel $[3, +\infty[, S_2 = \{3\}]$.

$$S = S_1 \cup S_2 = \{3\}$$
.

5. Résoudre dans \mathbb{R} l'équation suivante par rapport à la variable x en fonction du paramètre m:

$$|mx + m + 2| = x + 3.$$

Expliciter l'ensemble solution pour chaque valeur du paramètre $m \in \mathbb{R}$.

Domaine de définition : $D_{\text{def}} = \mathbb{R}$.

Cette équation n'admet d'éventuelles solutions que si $x + 3 \ge 0$.

Condition de positivité : $x + 3 \ge 0 \iff x \in I = [-3, +\infty[$.

Sur ce référentiel restreint I, l'équation devient équivalente au système suivant :

$$|mx+m+2| = x+3 \Leftrightarrow \begin{cases} mx+m+2 = x+3 & (a) \\ \text{ou} \\ mx+m+2 = -(x+3) & (b) \end{cases}$$

Résolution de l'équation (a):

$$mx + m + 2 = x + 3 \Leftrightarrow (m-1)x = -m + 1$$

- si m=1, l'équation devient 0 x=0, elle est vérifiée pour tout x dans I, $S_a=I=[-3\,,\,+\infty\,[\,,$
- si $m \neq 1$, l'équation devient $x = \frac{-m+1}{m-1}$ \iff x = -1, or $-1 \in I$ donc $S_a = \{-1\}$.

Résolution de l'équation (b):

$$m x + m + 2 = -(x+3) \Leftrightarrow (m+1) x = -m-5,$$

- si m=-1, l'équation devient 0 x = -4, elle n'est jamais vérifiée, $S_b = \emptyset$,
- si $m \neq -1$, l'équation devient $x = \frac{-m-5}{m+1}$.

Mais $x = \frac{-m-5}{m+1}$ n'est solution que s'il appartient à l'intervalle I:

$$\frac{-m-5}{m+1} \geq -3 \quad \Leftrightarrow \quad \frac{2(m-1)}{m+1} \geq 0 \quad \Leftrightarrow \quad m \in]-\infty, -1[\cup [1, +\infty[, -\infty[]]] + \infty[]$$

donc si $m \in]-\infty, -1[\cup [1, +\infty[alors S_b = \{-\frac{m+5}{m+1}\}].$

Détermination de l'ensemble solution S de l'équation initiale en fonction de $m \in \mathbb{R}$:

$$S = S_a \cup S_b$$
.

o si
$$m \in]-\infty, -1[\cup]1, +\infty[$$
 alors $S = \{-1, -\frac{m+5}{m+1}\},$
o si $m \in [-1, 1[$ alors $S = \{-1\},$
o si $m = 1$ alors $S = [-3, +\infty[.$

- **6.** Résoudre dans \mathbb{R} les inéquations suivantes :

a)
$$|x^2 + 3x - 1| \ge |x^2 + x + 1|$$
, c) $|2(x+3) - |x - 1| \le |x - 1|$,

b)
$$\left| \frac{x-1}{x+1} \right| < x-1,$$

d)
$$\frac{1-x}{2+x} \le 1 - \left| 1 + \frac{2}{3x-4} \right|$$
.

a) Domaine de définition : $D_{\text{def}} = \mathbb{R}$.

On utilise l'équivalence suivante :

$$|x^2 + 3x - 1| \ge x^2 + x + 1 \quad \Leftrightarrow \quad \begin{cases} x^2 + 3x - 1 \ge x^2 + x + 1 \\ \text{ou} \\ x^2 + 3x - 1 \le -(x^2 + x + 1) \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x - 2 \ge 0 & (1) \\ \text{ou} \\ 2x^2 + 4x \le 0 & (2) \end{cases}$$

• Résolution de l'inéquation (1) :

$$2x - 2 \ge 0 \quad \Leftrightarrow \quad x \ge 1, \qquad S_1 = [1, +\infty[$$

• Résolution de l'inéquation (2) :

$$2x^2 + 4x \le 0 \quad \Leftrightarrow \quad 2x(x+2) \le 0, \qquad S_2 = [-2, 0].$$

• Conclusion:

$$S = S_1 \cup S_2 = [-2, 0] \cup [1, +\infty[$$

- Domaine de définition : $D_{\text{def}} = \mathbb{R} \setminus \{-1\}$. b)
 - On utilise l'équivalence suivante :

$$\left| \frac{x-1}{x+1} \right| < x-1 \quad \Leftrightarrow \quad \begin{cases} \frac{x-1}{x+1} < x-1 & (1) \\ \text{et} & \\ \frac{x-1}{x+1} > -(x-1) & (2) \end{cases}$$

• Résolution de l'inéquation (1) :

$$\frac{x-1}{x+1} < x-1 \quad \Leftrightarrow \quad \frac{x-1}{x+1} - (x-1) < 0 \quad \Leftrightarrow \quad \frac{x-1}{x+1} - \frac{(x-1)(x+1)}{x+1} < 0$$

$$\Leftrightarrow \quad \frac{(x-1)\left[1-(x+1)\right]}{x+1} < 0 \quad \Leftrightarrow \quad -\frac{x\left(x-1\right)}{x+1} < 0 \quad \Leftrightarrow \quad \frac{x\left(x-1\right)}{x+1} > 0.$$

Etude du signe de la fraction rationnelle $Q_1 = \frac{x(x-1)}{x+1}$:

x	_	-1	0	1	
\overline{x}	_	_	0 +	-	+
x-1	_	_	_	- 0	+
x+1	_ (+	+	-	+
$\overline{Q_1}$	_	+	0 -	- 0	+

$$Q_1 > 0 \Leftrightarrow x \in]-1, 0[\cup]1, +\infty[, S_1 =]-1, 0[\cup]1, +\infty[.$$

• Résolution de l'inéquation (2) :

$$\frac{x-1}{x+1} > -(x-1) \iff \frac{x-1}{x+1} + (x-1) > 0 \iff \frac{x-1}{x+1} + \frac{(x-1)(x+1)}{x+1} > 0$$

$$\Leftrightarrow \frac{(x-1)[1+(x+1)]}{x+1} > 0 \iff \frac{(x+2)(x-1)}{x+1} > 0.$$

Etude du signe de la fraction rationnelle $Q_2 = \frac{(x+2)(x-1)}{x+1}$:

x	-	-2	-1	-	1
x+2	_	0 +		+	+
x-1	_	_		_ () +
x+1	_	_	0	+	+
Q_2	_	0 +		_ () +

$$Q_2 > 0 \quad \Leftrightarrow \quad x \in]-2, -1[\cup]1, +\infty[, \qquad S_2 =]-2, -1[\cup]1, +\infty[.$$

• Conclusion :
$$S = S_1 \cap S_2$$
,
avec $S_1 =]-1, 0[\cup]1, +\infty[$ et $S_2 =]-2, -1[\cup]1, +\infty[$.
 $S =]1, +\infty[$.

c) Domaine de définition : $D_{\text{def}} = \mathbb{R}$.

Cette inéquation est équivalente au système suivant :

$$\begin{cases} 2(x+3) - |x-1| \le |x-1| \\ \text{et} \\ 2(x+3) - |x-1| \ge -|x-1| \end{cases} \Leftrightarrow \begin{cases} |x-1| \ge x+3 & (1) \\ \text{et} \\ x+3 \ge 0 & (2) \end{cases}$$

(1)
$$\Leftrightarrow$$

$$\begin{cases} x-1 \geq x+3 \\ \text{ou} \\ x-1 \leq -(x+3) \end{cases} \Leftrightarrow \begin{cases} 0 \times 2 & 4 \\ \text{ou} \\ x \leq -1 \end{cases}, \quad S_1 =]-\infty, -1].$$

$$(2) \quad \Leftrightarrow \quad x \ge -3, \qquad S_2 = [-3, +\infty[.$$

En conclusion : $S = S_1 \cap S_2 = [-3, -1]$.

d) • Domaine de définition : $D_{\text{def}} = \mathbb{R} \setminus \{-2, \frac{4}{3}\}$.

•
$$\frac{1-x}{2+x} \le 1 - \left| 1 + \frac{2}{3x-4} \right| \Leftrightarrow \left| 1 + \frac{2}{3x-4} \right| \le 1 - \frac{1-x}{2+x}$$
.

On utilise l'équivalence suivante :

$$\left| 1 + \frac{2}{3x - 4} \right| \le 1 - \frac{1 - x}{2 + x} \quad \Leftrightarrow \quad \begin{cases} 1 + \frac{2}{3x - 4} \le 1 - \frac{1 - x}{2 + x} & (1) \\ \text{et} \\ 1 + \frac{2}{3x - 4} \ge -1 + \frac{1 - x}{2 + x} & (2) \end{cases}$$

• Résolution de l'inéquation (1) :

$$1 + \frac{2}{3x - 4} \le 1 - \frac{1 - x}{2 + x} \quad \Leftrightarrow \quad \frac{1 - x}{2 + x} + \frac{2}{3x - 4} \le 0.$$

On retrouve l'inéquation de l'exercice 1 (c) : $S_1 =]-\infty$, $-2[\cup[0, \frac{4}{3}[\cup[3, +\infty[$.

• Résolution de l'inéquation (2) :

$$1 + \frac{2}{3x - 4} \ge -1 + \frac{1 - x}{2 + x} \quad \Leftrightarrow \quad \frac{2}{3x - 4} + \frac{x - 1}{2 + x} + 2 \ge 0$$

$$\Leftrightarrow \frac{2(2+x) + (x-1)(3x-4) + 2(3x-4)(2+x)}{(3x-4)(2+x)} \ge 0$$

$$\Leftrightarrow \frac{9x^2 - x - 8}{(3x - 4)(2 + x)} \ge 0 \quad \Leftrightarrow \quad \frac{(9x + 8)(x - 1)}{(3x - 4)(2 + x)} \ge 0$$

Signe de la fraction rationnelle $Q = \frac{(9x+8)(x-1)}{(3x-4)(2+x)}$.

x		-2	$-\frac{8}{9}$		1	$\frac{4}{3}$	
9x + 8	_	_	0	+	+		+
x-1	_	_		_	0 +		+
3x-4	_	_		_	_	0	+
x+2	_	0 +		+	+		+
\overline{Q}	+		0	+	0 -		+

$$Q \ge 0 \quad \Leftrightarrow \quad x \in]-\infty, -2[\cup[-\frac{8}{9}, 1]\cup]\frac{4}{3}, +\infty[.$$

$$S_2 =]-\infty, -2[\cup[-\frac{8}{9}, 1]\cup]\frac{4}{3}, +\infty[.$$

• Conclusion :

$$S = S_1 \cap S_2 =] - \infty, -2[\cup [0, 1] \cup [3, +\infty[.$$

7. Soient a et b deux nombres réels strictement positifs.

On définit la moyenne arithmétique m_a , la moyenne géométrique m_g et la moyenne harmonique m_h de ces deux nombres de la façon suivante :

$$m_a = \frac{1}{2} (a+b)$$
 $m_g = \sqrt{ab}$ $\frac{1}{m_h} = \frac{1}{2} \left(\frac{1}{a} + \frac{1}{b} \right)$

- a) Comparer la moyenne arithmétique m_a et la moyenne géométrique m_g .
- b) Déduire de a) une comparaison entre la moyenne géométrique m_g et la moyenne harmonique m_h .
- a) Comparer deux nombres revient à étudier le signe de leur différence. Etudions le signe de m_a-m_g .

$$m_a - m_g = \frac{1}{2} (a+b) - \sqrt{ab} = \frac{1}{2} \left(a + b - 2\sqrt{a}\sqrt{b} \right) = \frac{1}{2} \left(\sqrt{a} - \sqrt{b} \right)^2$$

Donc $m_a - m_g \ge 0$ et $m_a \ge m_g$.

b) Posons $p = \frac{1}{a}$ et $q = \frac{1}{b}$; d'après a) nous savons que $\frac{1}{2}$ $(p+q) \ge \sqrt{p q}$.

$$\frac{1}{2}\left(\frac{1}{a} + \frac{1}{b}\right) \ge \sqrt{\frac{1}{a} \cdot \frac{1}{b}} \quad \Leftrightarrow \quad \frac{1}{2}\left(\frac{1}{a} + \frac{1}{b}\right) \ge \frac{1}{\sqrt{a\,b}} \quad \Leftrightarrow \quad \frac{1}{m_h} \ge \frac{1}{m_g} \,.$$

Donc $m_g \ge m_h$ car m_g et m_h sont strictement positifs.

En résumé : $m_a \ge m_g \ge m_h$.

Représentation géométrique des moyennes arithmétique m_a , géométrique m_g et harmonique m_h de deux nombres réels a et b strictement positifs :

La représentation de la moyenne géométrique m_g est une conséquence du théorème de la hauteur.

La représentation de la moyenne harmonique m_h se déduit de la relation $m_g^2 = m_a \cdot m_h$ (à vérifier) et du théorème d'Euclide.