蛤爾濱工業大學 (深圳)

电子产品硬件电路设计 实验报告

姓名:	李木晗		
学号:	SZ170210119		
专业:	电子信息	_	
		评分:	

批阅老师:

硬件设计

实验所属课程:

实验一 方波发生器的仿真

地点	ī:	K楼	416	_室	实验台	号:	16	_
实验日期与	5时间:	2019.6.	27	_	评	分:		_
批阅教师.					学生加	- 夕.	李木昤	

学生学号: SZ170210119

实验报告需包含:问题的回答、仿真原理图、仿真波形、现象的描述和原因分析

一、实验 1.1

计算的矩形波发生器的频率和仿真的频率是否有差异? 试分析原因。

理论值:
$$T = 2R_3Cln\left(1 + \frac{2R_1}{R_2}\right) = 1.25 ms$$

仿真 Period: 1.32027m

产生此差异的原因可能是由于电阻、电容的非线性或者运放工作状态改变的弛豫时间导致的。

二、实验 1.2

将电容C更改为1nF,求出理论矩形波发生器的频率。并且仿真输出电压波形,分析和C=0.1uF 时波形差异的原因。

试选取其他运放, 使输出波形不出现失真。并结合运放的指标分析原因。

$$T' = 2R_3C'ln\left(1 + \frac{2R_1}{R_2}\right) = 12.5 \ us$$

波形失真。

选取运放: TL082

Period: 17.14353u

The TL08xx JFET-input operational amplifier family is designed to offer a wider selection than any previously developed operational amplifier family. Each of these JFET-input operational amplifiers incorporates well-matched, high-voltage JFET and bipolar transistors in a monolithic integrated circuit. The devices feature high slew rates, low input bias and offset currents, and low offset-voltage temperature coefficient.

根据 TI 网站对 TL082 系列的介绍,这是一种高转换速率的运放。随着电容减小,充放电

周期减小,对转换速率的要求也更高,这时使用 LM2904 就不能满足要求了。

三、实验 1.3

挑选常用的二极管 1N4148,按照原理图 1 搭建电路,仿真,对比使用 1N5819 和 1N4148 仿真的输出电压的差异,并结合网上查阅两种二极管的资料,比较使用两个二极管时,输出波形的差异现象和分析原因。

因为 D7 对电路左边的反馈回路没有影响,因此不改变周期,只改变电压值。

	正向平	反向工作	反向电流	正向电压	正向不重复
	均电流	峰值电压	Ir (μA)	V_F (V)	浪涌电流
	IF(AV) (mA)	V _{RWM} (V)	MAX	MAX	IFSM
1N4148	130	75	5	1	500
1N5819	1000	40	1000	0.6	25

由二管参数可以看出,在由正向转换为反向状态时,由于反向电流 IR 的差异,1N5819 的电位可以迅速下降到约-0.7V,而 1N4148 则不能迅速改变其电位,因此出现了弯曲。

四、实验 1.4

将设计计算中的 R_3 (图 41 中的 R_{43})电阻值更改为 $5k\Omega$,仿真输出电压波形,并结合稳压管资料,比较使用两个不同阻值电阻时,输出波形的差异现象和分析原因。

图中,C4、R16、R15构成了一个对地回路,其中运放输出幅度恒定,则反馈电压是R16、R15的分压, $R_3 = 330$ Ohm 时,其近似等于运放输出;而 $R_3 = 5000$ Ohm 时,则与电容充电状态有较大关系,同时,由于反馈电压减小,周期延长为 1.68814 ms。

五、实验中遇到的问题和解决方法

六、实验体会与建议

蛤爾濱工業大學 (深圳)

电子产品硬件电路设计 实验报告

姓名:		
学号:		
专业:		
) / l	
	评分:	
	批阅老师:	

实验所属课程:

实验二 报警器电路的设计

地 点:	楼	室	实验台号:_	
实验日期与时间:			评 分:_	
实验教师:			学生姓名:_	
			学生学号:_	

实验报告需包含: 设计计算书、仿真原理图、仿真波形图、元器件参数选型过程、型号表、以及原理图

一、实验:

结合前面设计的比较器电路和矩形波发生器电路,将40摄氏度对应3.5V,将0摄氏度对应0.8V,自行设计一个报警电路,实现下面功能:

- a) 当温度高于 40 摄氏度, 亮红灯, 并以3kHz 的频率驱动蜂鸣器发声;
- b) 当温度低于 0 摄氏度,亮黄灯,并以800Hz 的频率驱动蜂鸣器发声。

需要设计计算书、仿真原理图、仿真波形图、元器件参数选型过程、型号表、以及原理图。 其中,蜂鸣器选用无源蜂鸣器。

提示设计要求:

- 1、蜂鸣器上的电压是幅值3V左右的方波,温度高于40摄氏度时,为3kHz的方波电压;温度低于0摄氏度时,为800Hz的方波电压;
- 2、LED设计时需要考虑LED的电流,大致在20mA左右,电流太小,灯不会亮。
- 3、(讲阶)输入信号由温度传感器来替代,请给出计算和设计过程。

原理图部分:

- 1、自行创建或选用软件自带元件封装完成该报警电路的原理图绘制;
- 2、充分考虑到焊接(元件封装类型选择)、调试(预留测试点)、信号干扰(去耦)等方面 要求。
- 3、要求生成整个电路的 BOM 清单,包含元件名称、数量、数值、封装等信息。
- 二、实验中遇到的问题和解决方法
- 三、实验体会与建议