CORSO DI LAUREA IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II, RECUPERO) 16 LUGLIO 2013

Svolgere i seguenti esercizi, giustificando tutte le risposte. Sui fogli consegnati vanno indicati: nome, cognome, matricola e gruppo di appartenenza. Non è necessario consegnare la traccia.

Esercizio 1. Fornire la definizione di partizione di un insieme.

Sia $S = \{n \in \mathbb{N} \mid n < 10\}$ e siano $A = \{1, 2, 5, 8\}, B = \{0, 3, 9\}$ e $C = \{4, 6, 7\}.$

- (i) $F := \{A, B, C\}$ è una partizione di S?
- (ii) Esiste una relazione di equivalenza σ di S tale che $F = S/\sigma$?
- (iii) Se tale σ esiste, si ha 1 σ 2? Si ha 3 σ 4? Elencare gli elementi di $[0]_{\sigma}$.
- (iv) Quanti (e, nel caso esistano, quali) sono gli insiemi X tali che $\{A, X\}$ sia una partizione di S?

Esercizio 2. In \mathbb{Z}_{10} si definisca l'operazione * ponendo, per ogni $a, b \in \mathbb{Z}_{10}$, $a * b = \bar{5}a + \bar{6}ab$.

- (i) *è commutativa? *è associativa?
- (ii) Si trovino i due elementi neutri a destra in $(\mathbb{Z}_{10}, *)$ [Suggerimento: $\bar{6}$ è un divisore dello zero in $(\mathbb{Z}_{10}, +, \cdot)$]. $(\mathbb{Z}_{10}, *)$ ha elementi neutri?
- (iii) Siano $P = \{[n]_{10} \mid n \text{ è un intero pari}\}\ e\ D = \{[n]_{10} \mid n \text{ è un intero dispari}\}\$. P è una parte chiusa in $(\mathbb{Z}_{10}, *)$? D è una parte chiusa in $(\mathbb{Z}_{10}, *)$?

Esercizio 3. Verificare che la relazione binaria \mathcal{R} definita in \mathbb{N} ponendo, per ogni $a, b \in \mathbb{N}$,

$$a \Re b \iff (a = b \vee a^2 \mid b)$$

è una relazione d'ordine.

- (i) \Re è di ordine totale?
- (ii) Determinare in $(\mathbb{N}, \mathcal{R})$ gli eventuali minimo, massimo, elementi minimali, elementi massimali.
- (iii) Disegnare il diagramma di Hasse di (X, \mathbb{R}) , dove $X = \{0, 1, 2, 7, 8, 20, 250, 6400\}$.
- (iv) (X, \mathcal{R}) è un reticolo? Se lo è, è distributivo? È complementato?

Esercizio 4. Determinare l'insieme di tutte le soluzioni (in \mathbb{Z}) dell'equazione congruenziale

$$30x \equiv_{38} 6.$$

Esercizio 5. Si trovi, se possibile, un polinomio monico $f \in \mathbb{Z}_5[x]$ di terzo grado che abbia $\bar{0}$, $\bar{1}$ e $-\bar{1}$ come radici. Tale f è unico?

- (i) $f + (x + \overline{1})$ è multiplo di $x + \overline{1}$ in $\mathbb{Z}_5[x]$?
- (ii) $f + (x + \overline{1})$ è irriducibile in $\mathbb{Z}_5[x]$?
- (iii) $f + (x + \overline{2})$ è irriducibile in $\mathbb{Z}_5[x]$? (Suggerimento: basta stabilire se $\overline{2}$ è o non è radice di questo polinomio; come mai?)
- (iv) Determinare l'insieme degli $a \in \mathbb{Z}_5$ tali che f + a sia irriducibile in $\mathbb{Z}_5[x]$.