ÁLGEBRA (Ciencias) – año 2020

PRÁCTICA 2

Conjuntos. Parte I

- 1. Sea $A = \{1, 2, \{1\}, \{2\}, \emptyset\}$, decir si son verdaderas o falsas las siguientes relaciones. Justifique.
 - a) $1 \in A$
- b) $\{1, 2\} \subseteq A$
- c) $\{1, 2\} \in A$

- d) $\{1\} \subseteq A$
- e) $\{\{1\}\}\subseteq A$
- f) $\emptyset \in A$

- g) $\{2\} \subseteq A$
- h) $\emptyset \subseteq A$

i) $\{2\} \in A$

- j $\{1\} \in A$
- $k) \{\emptyset\} \subseteq A$

1) $\{\{2\}\}\subseteq A$

Demostración.

Definición: Dado un conjunto A y un elemento x en A, es equivalente decir "x es un elemento del conjunto A" a

- · "x es miembro de A"
- · "x pertenece a A"
- \cdot "el conjunto A contiene al elemento x"

y se simboliza $x \in A$. Su negación es $x \notin A$ y se lee "x no pertenece a A".

Definición: Un conjunto A está contenido en un conjunto B si todo elemento en A está en B, es decir

$$(\forall x)(x \in A \to x \in B).$$

Se dice que "A está incluido en B" ó "A es un subconjunto de B", etc. se simboliza $A \subseteq B$ o $A \subset B$.

En base a estas definiciones vamos a resolver el ejercicio justificando adecuadamente.

- a) $1 \in A$. V, ya que 1 está como elemento en A.
- b) $\{1,2\} \subseteq A$. V. Por la definición de inclusión debemos ver que todos los elementos del conjunto $\{1,2\}$ son elementos de A. En efecto, 1 es elemento de A y 2 también, por lo que $\{1,2\} \subseteq A$.
- c) $\{1,2\} \in A$. F, ya que el conjunto $\{1,2\}$ no está como elemento en A.
- d) $\{1\} \subseteq A$. V. Nuevamente debemos ver que todos los elementos del conjunto $\{1\}$ son elementos de A. En efecto, 1 es el único elemento en $\{1\}$ y 1 es elemento de A, entonces $\{1\} \subseteq A$.
- e) $\{\{1\}\}\subseteq A$. V. El único elemento del conjunto $\{\{1\}\}$ es $\{1\}$ y como $\{1\}$ es elemento de A entonces $\{\{1\}\}\subseteq A$.
- f) $\emptyset \in A$. V, ya que \emptyset está como elemento en A.
- g) $\{2\} \subseteq A$. V. Como 2 es el único elemento de $\{2\}$ y está en A, entonces $\{2\} \subseteq A$.
- h) $\emptyset \subseteq A$. V, ya que \emptyset está incluido en todo conjunto (ver teoría).
- i) $\{2\} \in A$. V, ya que $\{2\}$ está como elemento en A.
- j) $\{1\} \in A$. V, ya que $\{1\}$ está como elemento en A.
- k) $\{\emptyset\} \subseteq A$. V. El único elemento en $\{\emptyset\}$ es \emptyset y tenemos que \emptyset es elemento de A por lo que $\{\emptyset\} \subseteq A$.
- l) $\{\{2\}\}\subseteq A$. V, ya que el único elemento del conjunto $\{\{2\}\}$ es $\{2\}$ y como $\{2\}$ es elemento de A entonces $\{\{2\}\}\subseteq A$.