

5.3 20. 4. in pinf of To is as follows:

70	0 1	1	2	3	14
P(To)	0.04	0.2	0.37	0.3	0.09

b. 10 = 0.2 + 0.74 to.9 to.36 = 2.2 = 12

C. 0270 = 1.22 X 0.2 + 2.22 X 0.04 + 0.22 X 0.37 + 0.82 X 0.3 + 1.82 X 0.09 = 0.98 = 02

d. Now E(To) = 4 M = 4.4, V(To) = 402 = 1.96

e. P(To=8) = P(4) · P(4) = 0.09 · 0.09 = 0.008/

P(T07,7) = P(T0=7) + P(T0=8) = 0.3.0.09.2 +0.008/ = 0.062/

Pl.a. The probability distribution is as follows:

X		1.5	12	2.5	13	135	129	1
MX)	0.16	0.24	0.25	0.2	0.1	0.04	0.01	

b. P(X 52.5) = 0.85

c. The distribution of Ris shown below:

R	0		2	3	1
P(R)	0.3	0.4	0.22	0.08	10

 $d. P(\bar{\chi} \leq 1.5) = P(1)P(1)P(1)P(1) + P(2)P(1)P(1)P(1) + \dots + P(3)P(1)P(1)P(1)$ $= 6.4^{4} + 4 \times 0.4^{3} \times 0.3 + 6 \times 0.4^{2} \times 0.3^{2} + 4 \times 0.2 \times 0.4^{3} = 0.24$

5.4 46. a. It conters at M=12cm. $\sigma(\bar{X}) = \frac{\sigma}{J_n} = \frac{0.04}{4} = 0.01$ cm

b. Also centers at N= (2cm. o(X') = In = 0.04 = 0.005 cm.

c. (b). The bigger n, the smaller variance

,51. For the first day, we have MX = M = 10, OX = Th = 0.8945

So P(t = 11) = # (11-10) = # (1.113) = 0.8686

Similarly, the later day we have My = M=10, ra' = 0.82

So P(tEIN = \$ (0+2) = \$ (1.22) = 0.8888

Then, P = P(t 511) P(t 511) = 0.772