=> fil hcaplus

FILE 'HCAPLUS' ENTERED AT 07:44:54 ON 20 FEB 2008

USE IS SUBJECT TO THE TERMS OF YOUR STN CUSTOMER AGREEMENT.

PLEASE SEE "HELP USAGETERMS" FOR DETAILS.

COPYRIGHT (C) 2008 AMERICAN CHEMICAL SOCIETY (ACS)

Copyright of the articles to which records in this database refer is held by the publishers listed in the PUBLISHER (PB) field (available for records published or updated in Chemical Abstracts after December 26, 1996), unless otherwise indicated in the original publications. The CA Lexicon is the copyrighted intellectual property of the the American Chemical Society and is provided to assist you in searching databases on STN. Any dissemination, distribution, copying, or storing of this information, without the prior written consent of CAS, is strictly prohibited.

FILE COVERS 1907 - 20 Feb 2008 VOL 148 ISS 8 FILE LAST UPDATED: 19 Feb 2008 (20080219/ED)

New CAS Information Use Policies, enter HELP USAGETERMS for details.

This file contains CAS Registry Numbers for easy and accurate substance identification.

=> d 198 bib abs hitstr retable tot

L98 ANSWER 1 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2007:174928 HCAPLUS Full-text

DN 146:234107

ΤТ CVD growth of carbon nanotube on oxide micro-/

nano-particles with curved surface

IN Ganapathiraman, Ramanath; Agrawal, Saurabh PA Rensselaer Polytechnic Institute, USA

SO U.S. Pat. Appl. Publ., 8pp., Cont.-in-part of U.S. Ser. No. 361,640. CODEN: USXXCO

DT Patent

LA English

PAN.	JNI Z					
	PATENT NO.	KIND	DATE	API	PLICATION NO.	DATE
PI	US 2007035226	A1	20070215	US	2006-384524	20060321 <
	US 2003165418	A1	20030904	US	2003-361640	20030211 <
	US 7189430	B2	20070313			
	US 2007218202	A1	20070920	US	2007-622610	20070112 <
PRAI	US 2002-356069P	P	20020211	<		
	US 2002-385393P	P	20020603	<		
	US 2003-361640	A2	20030211			
	US 2005-663704P	P	20050321			
3 D	The land of a second contract	4 7 4	and the second second	arban	and the second s	and the second s

Hybrid structures include aligned carbon nanotube bundles grown on curved AB surfaces, such as micro- or nano -sized particles (such as silica microspheres) or bulk substrates having micro- or nano-sized protrusions. morphol, of the hybrid structures can controlled by varying the size and packing of the particles or protrusions.

1330-20-7, Xylene, processes

RL: PEP (Physical, engineering or chemical process); PROC (Process)

(carbon source; CVD growth of carbon nanotube on oxide micro-/nano-particles with curved

surface)

1330-20-7 HCAPLUS

CN Benzene, dimethyl- (CA INDEX NAME)

RN

2 (D1-Me)

L98 ANSWER 2 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2004:913684 HCAPLUS Full-text

DN 142:96825

TI Method for synthesizing carbon nanotube by using plasma-enhanced

chemical vapor deposition method Lee, Cheol Jin; Yoo, Jae Eun IN

PA Iljinnanotech Inc., S. Korea

SO Repub. Korean Kongkae Taeho Kongbo, No pp. given

CODEN: KRXXA7

DT Patent LA Korean

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	KR 2001049453	A	20010615	KR 2000-29583	20000531 <
PRAI	KR 1999-30697	A	19990727	<	
AR	A method for pr	enaring a	carbon nano	tube by using a plasma-	enhanced chemi-

A method for preparing a carbon nanotube by using a plasma-enhanced chemical vapor deposition method is provided which mass-produces the carbon nanotubes vertically aligned on a base plate with high purity at low temperature and easily controls the diameter and the length of the carbon manotube. The method comprises steps of: (1) forming a catalytic metal film on a base plate; (2) etching the catalytic metal film by using plasma generated from etching gas to form plural catalytic particles; and (3) synthesizing carbon nanotube on the catalytic particles by a plasma-enhanced chemical vapor deposition method with supplying carbon source gas to the plural catalytic particles formed base plate.

L98 ANSWER 3 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2004:913683 HCAPLUS Full-text

DN 142:96824

TI Method for synthesizing carbon nanotube by using low pressure chemical vapor deposition method

IN Lee, Cheol Jin; Yoo, Jae Eun

Iliinnanotech Inc., S. Korea PΑ

SO Repub. Korean Kongkae Taeho Kongbo, No pp. given

CODEN: KRXXA7

DT Parent

Korean LA

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	KR 2001049398	A	20010615	KR 2000-28005	20000524 <
PRA:	KR 1999-30696	A	19990727	<	

- 3

AB A method for preparing a carbon manotube by using a low pressure chemical vapor deposition method is provided which mass-produces the carbon nanotubes vertically aligned on a base plate with high purity and easily controls the diameter and the length of the carbon nanotube. The method comprises steps of: (1) forming a catalytic metal film on a base plate; (2) etching the catalytic metal film with etching gas to form plural catalytic particle; and (3) synthesizing carbon nanotube on the catalytic particles by a low pressure chemical vapor deposition method with supplying carbon source gas to the plural catalytic particle; formed base plate.

```
L98 ANSWER 4 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
AN 2004:428865 HCAPLUS Full-text
DN 140:409180
TI Production of carbon panctubes and/or nanofibers
IN Kinloch, Iany Singh, Charanjeet; Shaffer, Milo
Sebastian Feter; Koziol, Krzysztof K. K.; Windle, Alan
H.
PA Cambridge University Technical Services Limited, UK
```

PA Cambridge University Technical Services Limited, UK SO PCT Int. Appl., 28 pp.

CODEN: PIXXD2

DT Patent

LA English FAN.CNT 1

AB

	PATENT NO.					KIND DATE			APPLICATION NO.										
PI	WO	2004	0438	58		A1	1 20040527			WO 2003-GB4925						20031113 <			
		w.	AE.	AG.	AL.	AM.	AT.	AU,	A7.	BA.	BB.	BG.	BR.	BW.	BY.	BZ.	CA.	CH.	
								DE,											
								ID,											
								LV,											
								PΤ,										ТJ,	
			TM,	TN,	TR,	TT,	TZ,	UA,	UG,	US,	UΖ,	VC,	VN,	YU,	ZA,	ZM,	zw		
		RW:	BW,	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	AZ,	
			BY,	KG,	KZ,	MD,	RU,	ΤJ,	TM,	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	
			ES,	FI,	FR,	GB,	GR,	HU,	IE,	IT,	LU,	MC,	NL,	PT,	RO,	SE,	SI,	SK,	
			TR,	BF,	BJ,	CF,	CG,	CI,	CM,	GA,	GN,	GO,	GW,	ML,	MR,	NE,	SN,	TD,	TG
	CA	2504	214			A1		2004	0527		CA 2	003-	2504	214		2	0031	113	<
	AU	2003	2835	73		A1		2004	0603	- 1	AU 2	003-	2835	73		2	0031	113	<
	EP	1560	790			A1		2005	0810	1	EP 2	003-	7755	49		2	0031	113	<
		R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,	
			IE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	AL,	TR,	BG,	CZ,	EE,	HU,	SK		
	JP	2006	5063	04		Т		2006	0223		JP 2	004-	5508	31		2	0031	113	<
	IIS	2006	1339	82		A 1		2006	0622	1	IS 2	005-	5349	0.0		2	0051	007	<
DDAT		2002														_		'	
TIMI		2002																	
	wO	2003	-6B4	コムコ		W		2003	1113										

Aligned carbon nanotubes and/or manofibers are produced by CVD by contacting a carbon-containing gas with prefinely divided substrate particles having substantially smooth faces with radii of curvature of > 1 µm and of length and breadth between 1 µm and 5 mm and having a casalyst material on their surface at 650-1250°. The substrate particles are made of silica, alumina, graphite, mica, magnesium oxide, calcium oxide, sodium chloride, aluminum, titanium, or aluminosilicate. The substrate is freshly prepared by colloidal processing, spray-drying, hydrothermal processing, or ball-milling. The caralyst can be iron, cobalt, molybdenum, nickel and can be prepared by decomposition of a precursor, especially ferrocene, nickelocene, cobaltocene, iron pentacarbonyl, or nickel tetracarbonyl. The carbon-containing gas can be CO, benzene, toluene, xylene, cumene, ethylene, paphthalene, phenanthrene, anthracene, methane, ethane, propane, hexane, ethylene, propylene, acetylene, formaldehyde, acetaldehyde, acetone, methanol, ethanol or their mixts. A

4

boron and/or nitrogen-containing compound can be added to the carbon-containing gas. A promoter, such as thiophene, can be added to the carbon-containing gas.

T \$0-00-0, Formaldehyde, reactions 64-17-5, Ethanol, reactions 67-56-1, Methanol, reactions 67-64-1, Acetone, reactions 71-43-2, Benzene, reactions 74-32-8, Methane, reactions 74-84-0, Ethane, reactions 74-85-1, Ethylene, reactions 74-86-2, Acetylene, reactions 74-89-6, Propane, reactions 75-07-0, Acetaldehyde, reactions 85-01-8, Phenanthrene, reactions 91-20-3, Naphthalene, reactions 92-22-6, Cummen 109-41-4, Ethylbenzene, reactions 108-86-3, Toluene, reactions 110-54-3, Hexane, reactions 115-07-1, Propylene, reactions 120-12-7, Anthracene, reactions 630-08-0,

reactions 120-12-7, Anthracene, reactions 630-08-0, Carbon monoxide, reactions 1330-20-7, Xylene, reactions RL: CPS (Chemical process); FEF (Physical, engineering or chemical process); RCT (Peactant); PROC (Process); PACT (Reactant or reagent)

(production of carbon manotubes and/or manofibers) RN -50--00--0 HCAPLUS

CN Formaldehyde (CA INDEX NAME)

H2C==0

RN 64-17-5 HCAPLUS

CN Ethanol (CA INDEX NAME)

H3C-CH2-OH

RN 67-56-1 HCAPLUS

CN Methanol (CA INDEX NAME)

H3C-OH

RN 67-64-1 HCAPLUS

CN 2-Propanone (CA INDEX NAME)

RN 71-43-2 HCAPLUS

CN Benzene (CA INDEX NAME)

5

RN 74-82-8 HCAPLUS CN Methane (CA INDEX NAME)

CH4

RN 74-84-0 HCAPLUS CN Ethane (CA INDEX NAME)

H3C-CH3

RN 74-85-1 HCAPLUS

CN Ethene (CA INDEX NAME)

H2C-CH2

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

нс сн

RN 74-98-6 HCAPLUS

CN Propane (CA INDEX NAME)

H3C-CH2-CH3

RN 75-07-0 HCAPLUS

CN Acetaldehyde (CA INDEX NAME)

H3C-CH-0

RN 85-01-8 HCAPLUS

CN Phenanthrene (CA INDEX NAME)

RN 91-20-3 HCAPLUS

CN Naphthalene (CA INDEX NAME)

RN 98-82-8 HCAPLUS CN Benzene, (1-methylethyl) - (CA INDEX NAME)

RN 100-41-4 HCAPLUS

CN Benzene, ethyl- (CA INDEX NAME)

RN 108-88-3 HCAPLUS

CN Benzene, methyl- (CA INDEX NAME)

RN 110-54-3 HCAPLUS

CN Hexane (CA INDEX NAME)

Me- (CH2)4-Me

RN 115-07-1 HCAPLUS

CN 1-Propene (CA INDEX NAME)

H3C-CH= CH2

RN 120-12-7 HCAPLUS

CN Anthracene (CA INDEX NAME)

RN 630-08-0 HCAPLUS

CN Carbon monoxide (CA INDEX NAME)

C-U+

RN 1330-20-7 HCAPLUS

CN Benzene, dimethyl- (CA INDEX NAME)

2 (D1-Me)

Referenced Author (RAU)	Year VOL PG (RPY) (RVL) (RPG	Referenced Work Referenced (RWK) File
	-+++	+
Huang, S	1999 103 4223	JOURNAL OF PHYSICAL HCAPLUS
Liang, Q	2001 36 471	MATERIALS RESEARCH B
Singh, C	2003 372 860	CHEMICAL PHYSICS LET
Singh, C	2002 106 1091	JOURNAL OF PHYSICAL HCAPLUS
Smalley, R	2000	WO 0017102 A HCAPLUS
Terrones, M	1999 11 655	ADVANCED MATERIALS HCAPLUS
The Board Of Trustees	0 2000	WO 0030141 A HCAPLUS

- L98 ANSWER 5 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2004:342473 HCAPLUS Full-text
- DN 142:208850
- TI Low temperature growth of vertically aligned carbon
 - manofibers in a low frequency inductively coupled plasma reactor
- AU Xu, S.; Tskadze, Z.; Long, J. D.; Ostrikov, K.; Jiang, N.
- CS Plasma Sources and Applications Centre, NIE, Nanyang Technological University, Singapore, 637616, Singapore
- SO COMMAD 2002 Proceedings, Conference on Optoelectronic and Microelectronic

8

Materials and Devices, Sydney, Australia, Dec. 11-13, 2002 (2062), 177-180. Editor(s): Gal, Michael. Publisher: Institute of Electrical and Electronics Engineers, New York, N. Y.

CODEN: 69FHSX; ISBN: 0-7803-7571-8 DT Conference

DI CONTELENC

LA English

AB

Large area, highly uniform, vertically addened C nanofibers (VACNF) were grown between 250-450° using a high d., low frequency, inductively coupled plasma source in an Ar/H2/CH4 discharge. The dynamic growth process was monitored using an in-situ, high resolution optical emission spectroscope. The growth of VACNFs is carried out on lightly doped Si (100) substrates, which were predeposited with manometer layered Ni/Fe/Mn catalysts . The morphol., crystalline structure and chemical states of the VACNFs have a strong dependence on the growth conditions, in particular on the applied substrate bias and pretreatment of the catalysts. The field emission SEM shows that the CNFs grown with externally applied bias are well aligned and orthogonal to the surface of the substrate. The XRD and Raman spectroscopy analyses suggest that the C nanofibers are well graphitized. The growth temperature and externally applied bias play a vital role in the transition from C nanoparticles to vertically aligned nanofibers . This low temperature and large area growth process offer a great opportunity for the realization of VACNF-based devices.

IT 74-82-8, Methane, processes

RL: CPS (Chemical process); NUU (Other use, unclassified); PEF (Physical, engineering or chemical process); PROC (Process); USES (Uses)

(precursor; low temperature growth of vertically aligned carbon aanofibers in low frequency inductively coupled plasma reactor) 74-82-8 HCAPLUS

CN Methane (CA INDEX NAME)

CH4

RN

RETABLE

Referenced Author (RAU)	Year VOL PG (RPY) (RVL) (RPG	, , ,	Referenced File
Boskovic, B	2002 1 165	Nature Mat	HCAPLUS
Bower, C	[2000 [77]2767	Appl Phys Lett	HCAPLUS
Dean, K	1999 85 3832	J Appl Phys	HCAPLUS
Iijima, S	1991 354 56	Nature	HCAPLUS
Jiag, K	2002 419 801	Nature	1
Merkulov, I	2001 79 2970	Appl Phys Lett	1
Qin, L	1997 30 311	Mater Lett	HCAPLUS
Ren, Z	1998 282 1105	Science	HCAPLUS
Xu, S	2001 8 2549	Phys Plasmas	HCAPLUS

L98 ANSWER 6 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN AN 2004:230560 HCAPLUS Full-text

DN 140:239557

TI The growth of aligned carbon nanotubes on FeNiCo

catalyst films

AU Ho, G. W.; Wee, A. T. S.; Lin, J.; Liu, R. CS Department of Physics, National University of Singapore, Singapore, 119260. Singapore

SO International Journal of Nanoscience (2002), 1(1), 79-85 CODEN: IJNNAJ: ISSN: 0219-581X

- PB World Scientific Publishing Co. Pte. Ltd.
- DT Journal
- LA English
- AB Aligned multi-wall nanotubes (MNNT) were grown using hot filament plasma enhanced chemical vapor deposition (HF-PECVD) on a variety of substrates. The growth kinetics of carbon nanotubes is found to be governed by the morphol. of the metal film, the precursor gas composition as well as the temperature of the hot filament. Nanosized grain particles formed on FeNiCo films are optimum for carbon nanotube growth, since it is known that the substrate morphol. has a direct influence on the growth of carbon nanotubes. The aligned MNNT and graphite films were also studied using SIMS and UFS. Bidirectional growth, namely the root and tip growth, takes place during the preparation of the carbon nanotubes using HF-PECVD.
- IT 74-86-2, Acetylene, processes

RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)

(growth of aligned carbon nanotubes on FeNiCo catalyst films)

- RN 74-86-2 HCAPLUS
- CN Ethyne (CA INDEX NAME)

нс сн

Referenced Author (RAU)	(RPY)		(RPG)		Referenced File
Chen, P	11999		2548	Phys Rev Lett	HCAPLUS
Chen, P	11999	1285	191	Science	HCAPLUS
Collins, P	11997	155	19391	Phys Rev B	HCAPLUS
Dean, K	1999	185	13832	J Appl Phys	HCAPLUS
Doyle, J	11997	182	14763	J Appl Phys	HCAPLUS
Hamada, N	11992	168	1579	Phys Rev Lett	HCAPLUS
Ho, G	2001	179	1260	Appl Phys Lett	HCAPLUS
Ho, G	2001	1388	173	Thin Solid Films	HCAPLUS
Iijima, S	1991	354	156	Nature	HCAPLUS
Liu, C	1999	1286	1127	Science	HCAPLUS
Maiti, A	1997	155	16097	Phys Rev B	
Mintmire, J	1992	168	631	Phys Rev Lett	HCAPLUS
Ren, Z	1998	1282	1105	Science	HCAPLUS
Rodriguez, N	1993	18	3233	J Mater Res	HCAPLUS
Salvetat, J	11999	182	1944	Phys Rev Lett	HCAPLUS
Wagner, R	11964	4	18	Appl Phys Lett	1
Yakobson, B	11996	176	2511	Phys Rev Lett	HCAPLUS

- L98 ANSWER 7 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2004:60407 HCAPLUS Full-text
- DN 140:96276
- TI Synthesis of carbon nanotubes by chemical
 - vapor deposition
- IN Shaffer, Milo Sebastian Peter; Windle, Alan H.; Johnson, Brian F. G.; Geng, Junfeng; Shephard, Douglas; Singh, Chalaniet
- PA Cambridge University Technical Services Limited, UK
- SO PCT Int. Appl., 30 pp.
- CODEN: PIXXD2
- DT Patient

LA English

		ENT				KIN)	DATE			APPLICATION NO.								
PI		2004				A1		2004	0122							2	0030	716	<
		W:	ΑE,	AG,	AL,	AM,	AT,	AU,	AZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,	
			CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FΙ,	GB,	GD,	GE,	GH,	
			GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KP,	KR,	KZ,	LC,	LK,	LR,	
			LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NI,	NO,	NZ,	OM,	
			PG,	PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,	TJ,	TM,	TN,	
			TR,	TT,	TZ,	UA,	UG,	US,	UΖ,	VC,	VN,	YU,	ZA,	ZM,	ZW				
		RW:	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	ΑZ,	BY,	
			KG,	ΚZ,	MD,	RU,	TJ,	TM,	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	
			FI,	FR,	GB,	GR,	HU,	ΙE,	IT,	LU,	MC,	NL,	PT,	RO,	SE,	SI,	SK,	TR,	
			BF,	ΒJ,	CF,	CG,	CI,	CM,	GΑ,	GN,	GQ,	GW,	ML,	MR,	ΝE,	SN,	TD,	TG	
	ΑU	2003	2544	65		A1		2004	0202		AU 2	003-	2544	65		2	0030	716	<
	EP	1558	524			A1		2005	0803		EP 2	003-	7640	20		2	0030	716	<
		R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,	
			ΙE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	AL,	TR,	BG,	CZ,	EE,	HU,	SK		
		2005						2005											
		2006						2006				005-	5213.	56		2	0050	808	<
PRAI		2002						2002		<-	-								
	WO	2003	-GB3	086		W		2003	0716										

AB Carbon nanoparticles are produced continuously by fluidizing substrate particles with a flow of a gaseous carbon source, decomposing a transition metal compound on the substrate by heating to 600-1000°, and forming carbon nanotubes by decomposition of the carbon source catalyzed by the formed transition metal. The transition metal compound can be a transition metal formate, oxalate, or carbonyl containing Ni, Fe, and/or Co. The gaseous carbon source is carbon monoxide, or a hydrocarbon, such as methane or acetylene. The gaseous carbon source is mixed with a diluent, especially argon. The substrate particles can be silica, alumina, Casiox, calcia or magnesia. The nanotubes produced are single-walled carbon nanotubes.

IT 74-80-8, Methane, reactions 74-86-2, Acetylene, reactions 630-08-0, Carbon monoxide, reactions

RL: RCT (Peactant); RACT (Reactant or reagent) (synthesis of carbon nanotubes by chemical

vapor deposition)

RN 74-82-8 HCAPLUS

CN Methane (CA INDEX NAME)

CH4

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

НС≡ш СН

RN 630-08-0 HCAPLUS

CN Carbon monoxide (CA INDEX NAME)

12000 1328 1369 | CHEMICAL PHYSICS LET!

```
C -
∭+
```

```
| RETABLE | Referenced Author | Year | VOL | PG | Referenced Work | Referenced | February | Referenced | RAU) | RAU | RA
```

L98 ANSWER 8 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2004:60406 HCAPLUS Full-text

DN 140:79228

Rohmund, F

TI Synthesis of carbon nanomaterials

IN Shaffer, Milo Sebastian Peter; Windle, Alan H.; Kinioch, Jan; Cash, Stephen

PA Cambridge University Technical Services Limited, UK

SO PCT Int. Appl., 20 pp. CODEN: PIXXD2

DT Patent

LA English FAN.CNT 1

	PATENT NO.				KIND DATE				APPLICATION NO.						DATE			
PI	I WO 2004007361			A2 20040122 A3 20040401				WO 2	003-	GB31	15		20030716 <					
	WO		ΑE,	AG,	AL,	AM,	AT,	AU,	AZ,									
			GM,	HR,	HU,	ID,	IL,	DK, IN,	IS,	JP,	KE,	KG,	KP,	KR,	KZ,	LC,	LK,	LR,
			PG,	PH,	PL,	PT,	RO,	MD, RU,	SC,	SD,	SE,	SG,	SK,	SL,	SY,			
		RW:	GH,	GM,	KE,	LS,	MW,	US, MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,			
								TM, IE,										
	AU	2003			CF,	CG, A1		CM, 2004										TG 716 <
PRAI		2002						2002 2003		<-	-							

AB Carbon panematerials are made by preparing a solution of a catalyst or a catalyst precursor in a supercrit. fluid, or of a supercrit. fluid in a catalyst catalyzing the formation of carbon panomaterials from a carbon source or a catalyst precursor, expanding the solution to produce particles of catalyst or catalyst precursor; and heating the catalyst or catalyst precursor particles with a carbon source in a furnace to produce carbon nanomaterials. The carbon source can be CO, benzene, toluene, xylene, cumene, ethylbenzene, naphthalene, phenanthrene, anthracene, methane, ethane, propane, butane, pentane, hexane, cyclohexane, ethylene, propylene, acetylene, formaldehyde, acetaldehyde, acetone, methanol, or ethanol. The catalyst can be manufactured in-situ from a transition metal catalyst precursor which can contain Cu, Cr, Mo, W, Fe, Co, Ni, Ru, Rh, Pd, Os, Ir, Pt, or a metal from the lanthanide or actinide series. The transition metal catalyst precursor can have Me, cyclohexyl, carbonyl, cyclopentadienyl, cyclooctadiene, ethylene, or benzene ligands. The supercrit. fluid can be CO, benzene, toluene, xylene, cumene,

ethylbenzene, naphthalene, phenanthrene, anthracene, methane, ethane, propane, butane, pentane, hexane, cyclohexane, ethylene, propylene, acetylene, formaldehyde, acetaldehyde, acetaldehyde, acetaldehyde, acetone, methanol, ethanol, or preferably CO2. The solution is irradiated with UV light immediately before its expansion. The solution can contain a finely divided substrate material, such as fumed silica or polyhedral oligomeric silsesquioxanes (POSS).

silica or polyhedral oligomeric silsesquioxanes (POSS). 50-00-0, Formaldehyde, reactions 64-17-5, Ethanol, reactions 67-56-1, Methanol, reactions 67-64-1, Acetone, reactions 71-43-2, Benzene, reactions 74-82-8, Methane, reactions 74-84-0, Ethane, reactions 74-85-1, Ethylene, reactions 74-85-2, Acetylene, reactions 74-98-6, Propane, reactions 75-07-0, Acetaldehyde, reactions 85-01-8, Phenanthrene, reactions 91-20-3, Naphthalene, reactions 99-82-8, Cumene 100-41-4, Ethylbenzene, reactions 108-82-3, Toluene, reactions 106-54-3, Hexane, reactions 105-07-1, Propylene, reactions 105-07-1

RN 50-00-0 HCAPLUS

CN Formaldehyde (CA INDEX NAME)

H2C==0

RN 64-17-5 HCAPLUS CN Ethanol (CA INDEX NAME)

H3C-CH2-OH

RN 67-56-1 HCAPLUS CN Methanol (CA INDEX NAME)

нас-он

RN 67-64-1 HCAPLUS

CN 2-Propanone (CA INDEX NAME)

RN 71-43-2 HCAPLUS

CN Benzene (CA INDEX NAME)

13


```
RN 74-82-8 HCAPLUS
CN Methane (CA INDEX NAME)
CH4
RN 74-84-0 HCAPLUS
CN Ethane (CA INDEX NAME)
H3C-CH3
RN 74-85-1 HCAPLUS
CN Ethene (CA INDEX NAME)
H2C-CH2
RN 74-86-2 HCAPLUS
CN Ethyne (CA INDEX NAME)
нс сн
RN 74-98-6 HCAPLUS
CN Propane (CA INDEX NAME)
H3C-CH2-CH3
RN 75-07-0 HCAPLUS
CN Acetaldehyde (CA INDEX NAME)
H3C-CH-0
```

RN 85-01-8 HCAPLUS CN Phenanthrene (CA INDEX NAME)

RN 91-20-3 HCAPLUS

CN Naphthalene (CA INDEX NAME)

RN 98-82-8 HCAPLUS CN Benzene, (1-methylethyl) - (CA INDEX NAME)

RN 100-41-4 HCAPLUS

CN Benzene, ethyl- (CA INDEX NAME)

RN 108-88-3 HCAPLUS

CN Benzene, methyl- (CA INDEX NAME)

RN 110-54-3 HCAPLUS

CN Hexane (CA INDEX NAME)

Me- (CH2)4-Me

RN 115-07-1 HCAPLUS

CN 1-Propene (CA INDEX NAME)

15

H3C-CH= CH2

120-12-7 HCAPLUS RN

CN Anthracene (CA INDEX NAME)

630-08-0 HCAPLUS RN

CN Carbon monoxide (CA INDEX NAME)

Ŭ+

1330-20-7 HCAPLUS

CN Benzene, dimethyl- (CA INDEX NAME)

2 (D1-Me)

L98 ANSWER 9 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2003:892223 HCAPLUS Full-text

DN 139:352259

Aligned carbon nanotube films on porous carriers and a TI

process for producing them Someya, Masao; Fujii, Takashi IN

PA Mitsubishi Gas Chemical Company, Inc., Japan

U.S. Pat. Appl. Publ., 12 pp. CODEN: USXXCO

Patent DT

LA English

FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2003211029	A1	20031113	US 2003-393364	20030321 <
	JP 2004002182	A	20040108	JP 2003-120697	20030320 <
PRAI	JP 2002-83044	A	20020325	<	
AB	Fine catalyst	particles	are loaded	on a sol-gel method por	ous carrier havin

Fine catalyst particles are loaded on a sol-gel method porous carrier having fine pores of $0.1-50~\mathrm{nm}$ and a carbon compound is decomposed to form a carbon panotube film on the carrier that is aligned perpendicular to the carrier

16

surface. The starting sol to be processed by a sol-gel method is a dispersion of fine alumina particles, fine aluminum hydroxide particles, fine silica particles or mixts. thereof. Alternatively, the starting sol may be an aluminum alkoxide, an alkoxysilane, a mixture thereof or a solution of an aluminum alkoxide, an alkoxysilane or a mixture thereof. If desired, a flammable or a thermally decomposable organic compound may be added as a microporous template.

64-17-5, Ethanol, reactions 115-07-1, Propylene, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)

(aligned carbon nanotube films on porous carriers

and a process for producing them)

RN 64-17-5 HCAPLUS

CN Ethanol (CA INDEX NAME)

H3C-CH2-OH

RN 115-07-1 HCAPLUS

CN 1-Propene (CA INDEX NAME)

H3C-CH-CH2

L98 ANSWER 10 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2003:683536 HCAPLUS Full-text

139:372935 DN

ΤI Controlled growth of vertically aligned carbon

nanofibers for applications in nanoscale devices

ΑU Melechko, A. V.; Merkulov, V. I.; Guillorn, M. A.; Zhang, L. A.; Hensley, D. K.; McKnight, T. M.; Subich, T. R.; Lowndes, D. H.; Simpson, M. L.

Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA

SO Proceedings - Electrochemical Society (2002),

2002-12(Fullerenes--Volume 12: The Exciting World of Nanocages and Nanotubes), 466-480 CODEN: PESODO; ISSN: 0161-6374

Electrochemical Society PR

DT Journal

LA English

- AB We report on various aspects of the catalytic growth of vertically aligned carbon nanofibers (VACNFs) by d.c. plasma enhanced chemical vapor deposition (PECVD) that are important for nanoscale device applications. To integrate the VACNFs as functional elements into nanoscale devices their properties, such as height, diameter, sharpness, shape, alignment, chemical composition etc., have to be reproducibly controlled. The process development involves study of the multidimensional parameter space of the PECVD process (temperature, gas mixture, total gas flow, pressure, plasma current and voltage, growth time), as well as the dependence of the results on the substrate and catalyst material, catalyst thickness and lithog, defined pattern, and more subtle but important factors. Some of the issues that are important for the growth on the wafer scale and integration with the other microfabrication processes are also discussed.
- 74-36-2, Acetylene, reactions RL: NCT (Reactant); RACT (Peactant or reagent) (controlled growth of vertically aligned carbon

nanofibers for applications in nanoscale devices)

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

HC=CH

RETABLE

Referenced Author	Year VOL	PG Referenced Work	Referenced
(RAU)	(RPY) (RVL)	(RPG) (RWK)	File
	=+====+	+	+
Alstrup, I		241 Journal of Catalysis	HCAPLUS
Baker, R	1989 27	315 Carbon	HCAPLUS
Baylor, L	2002 91	4602 Journal of Applied P	HCAPLUS
Bower, C	2000 77	2767 Applied Physics Lett	HCAPLUS
Chhowala, M	2001 90	5308 J Appl Phys	1
Cui, H	2000 88	6072 Journal of Applied P	HCAPLUS
Guillorn, M	2001 79	3506 Applied Physics Lett	HCAPLUS
Guillorn, M	2002 91	3824 Journal of Applied P	HCAPLUS
Guillorn, M	2001 19	573 Journal of Vacuum Sc	HCAPLUS
Lee, C	2000 77	3397 Applied Physics Lett	HCAPLUS
Melechko, A	2002 356	527 Chemical Physics Let	HCAPLUS
Merkulov, V	2000 76	3555 Applied Physics Lett	HCAPLUS
Merkulov, V	2001 79	1178 Applied Physics Lett	HCAPLUS
Merkulov, V	2001 79	2970 Applied Physics Lett	HCAPLUS
Merkulov, V	2002 80	476 Applied Physics Lett	HCAPLUS
Merkulov, V	2001 350	381 Chemical Physics Let	HCAPLUS
Ren, Z	1999 75	1086 Applied Physics Lett	HCAPLUS
Ren, Z	1998 282	1105 Science	HCAPLUS
Zhang, L	2002	in press Appl Phys L	1

L98 ANSWER 11 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2003:656961 HCAPLUS Full-text

DN 139:188673

TI Directed assembly of highly-organized carbon manorube

- IN Ajayan, Pulickel M.; Ganapathiraman, Ramanath; Wei, Bingqing; Cao, Anyuan; Jung, Yung Joon
- PA Rensselaer Polytechnic Institute, USA

SO PCT Int. Appl., 53 pp.

CODEN: PIXXD2

architectures

DT Patent

LA English

FAN.	CNT	2																
	PA:	TENT :	.00			KIN	D	DATE			APPL	ICAT:	ION :	NO.		D	ATE	
							-									-		
PI	WO	2003	0690	19		A1		2003	0821		WO 2	003-1	US40	32		2	0030	211 <
		W:	ΑE,	AG,	AL,	AM,	AT,	AU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	ΒZ,	CA,	CH,	CN,
			CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FI,	GB,	GD,	GE,	GH,
			GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KP,	KR,	ΚZ,	LC,	LK,	LR,
			LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NO,	NZ,	OM,	PH,
			PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	TJ,	TM,	TN,	TR,	TT,	TZ,
			UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW						
		RW:	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	AZ,	BY,
			KG,	ΚZ,	MD,	RU,	TJ,	TM,	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,
			FΙ,	FR,	GB,	GR,	HU,	IE,	IT,	LU,	MC,	NL,	PT,	SE,	SI,	SK,	TR,	BF,
			BJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	TG	
	CA	2475	790			A1		2003	0821		CA 2	003-	2475	790		2	0030	211 <

```
AU 2003210961
                       A1 20030904 AU 2003-210961 20030211 <--
A1 20041208 EP 2003-739731 20030211 <--
    EP 1483427
        R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT,
            IE, SI, LT, LV, FI, RO, MK, CY, AL, TR, BG, CZ, EE, HU, SK
                        Т
    JP 2005517537
                             20050616 JP 2003-568124
                                                                 20030211 <--
PRAI US 2002-356069P
                         P
                               20020211 <--
    US 2002-385393P
                        P
                              20020603 <--
    WO 2003-US4032
                        1/7
                               20030211
```

AB A method controllably aligning C nanotubes to a template structure to fabricate a variety of C nanotube containing structures and devices having desired characteristics is provided. The method allows simultaneous, selective growth of both vertically and horizontally controllably aligned nanotubes on the template structure but not on a substrate in a single process step.

RETABLE

Referenced Author	Year VOL PG		Referenced
(RAU)	(RPY) (RVL) (RPG)		File
Brown Chuang Dai Han Jin Zhang	2002 2000	US 6340822 B1 US 6062931 A UJ Phys Chem B US 20010004979 A1 US 6283812 B1 Applied Physics Let	HCAPLUS HCAPLUS HCAPLUS HCAPLUS HCAPLUS

- L98 ANSWER 12 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2003:591110 HCAPLUS Full-text
- DN 139:135544
- TI Plasma synthesis of hollow nanostructures
- IN Shaffer, Milo; Kinloch, Ian; Cash, Stephen; Mckinnon,
- Cambridge University Technical Services Limited, UK PA SO PCT Int. Appl., 23 pp.
- CODEN: PIXXD2
- DT Patent
- LA English

FAN.	CNT	1																
		TENT				KIN	D									D.	ATE	
PI		2003				A1	-	2003			WO 2					2	0030	124 <
											BB,							
											EC,							
											KE,							
											MN,							
											SK,		TJ,	TM,	TN,	TR,	TT,	TZ,
			UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW						
		RW:	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	AZ,	BY,
			KG,	KZ,	MD,	RU,	TJ,	TM,	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,
			FI,	FR,	GB,	GR,	HU,	IE,	IT,	LU,	MC,	NL,	PT,	SE,	SI,	SK,	TR,	BF,
			BJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	TG	
	EP	1513	767			A1		2005	0316		EP 2	003-	7009	24		2	0030	124 <
		R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,
			IE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	AL,	TR,	BG,	CZ,	EE,	HU,	SK	
	JP	2005	5151	46		T		2005	0526		JP 2	003-	5620	34		2	0030	124 <
	US	2005	1180	90		A1		2005	0602		US 2	005-	5023	20		2	0050	124 <
PRAI	GB	2002	-160	0		A		2002	0124	<-	_							
	WO	2003	-GB2	49		W		2003	0124									

A method is described for the continuous production of nanotubes comprising forming a plasma jet, introducing into the plasma jet a metal catalyst or metal catalyst precursor to produce vaporized catalyst metal, directing one or

19

more streams of quenching gas into the plasma to quench the plasma and. Passing the resulting gaseous mixture through a furnace, one or more nanotube forming materials being added whereby nanotubes are formed therefrom under the influence of the metal catalyst and are grown to a desired length during passage through the furnace, and collecting the nanotubes so formed.

T 630-08-0, Carbon monoxide, reactions RL: RCT (Peactant); RACT (Peactant or reagent)

(plasma synthesis of hollow nanostructures)

630-08-0 HCAPLUS

CN Carbon monoxide (CA INDEX NAME)

RN

RETABLE

Referenced Author (RAU)	Year VOL (RPY) (RVL)	(RPG)	Referenced Work Referenced (RWK) File
	=+=====+====	-+=====	=+==============
Nec Corp	1997	1	JP 09188509 A HCAPLUS
Shimizu, Y	1999 75	1929	APPLIED PHYSICS LETT HCAPLUS
Smiljanic, O	2002 356	189	CHEMICAL PHYSICS LET HCAPLUS
Univ Cambridge Tech	12002	1	WO 02092506 A HCAPLUS

L98 ANSWER 13 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2003:16761 HCAPLUS Full-text

DN 139:158831

TI Synthesis of well-aligned carbon nanotubes on MCM-41

AU Chen, Wei; Zhang, Ai Min; Yan, Xuewu; Han, Dongcheng

CS Department of Chemistry, Nanjing University, Nanjing, 210093, Peop. Rep. China

SO Studies in Surface Science and Catalysis (2002), 142B(Impact of Zeolites and Other Porous Materials on the New Technologies at the Beginning of the New Millennium), 1237-1244 CODEN: SSCTDM: ISSN: 0167-2991

PB Elsevier Science B.V.

DT Journal

LA English

AB Well-Aligned carbon nanotubes (CNTs) were fabricated on mesoporous mol. sieves (MCM-41) embedded with iron oxide nanoparticles by CVD. Benzene with 1% thiophene was used as the carbon source. Large pore size MCM-41 was obtained by using 1,3,5-trimethylbenzene (TMB) as swelling agent. The mesoporous MCM-41 is an ideal substrate for growing well-aligned carbon nanotubes.

IT 71-43-2, Benzene, reactions

RL: RCT (Peactant); RACT (Reactant or reagent)

(preparation of well-aligned carbon nanotubes from benzene using iron oxide containing MCM-41 catalyst)

RN 71-43-2 HCAPLUS

CN Benzene (CA INDEX NAME)

RE		

Referenced Author (RAU)	(RPY)	(RVL)	PG (RPG)	(RWK)	Referenced File
Abe, T	1995			J Chem Soc Chem Comm	
Beck, J	11991	1	1	US 505757296	1
Beck, J	1992	1114	10834	J Am Chem Soc	HCAPLUS
Blin, J	12000	16	14229	Langmuir	HCAPLUS
Branton, P	11997	IV	1668	Charact Porous Solid	1
Corma, A	11997	197	12373	Chem Rev	HCAPLUS
De Heer	1997	19	187	Adv Mater	HCAPLUS
De Heer, W	11995	1268	1845	Science	HCAPLUS
Flahaut, E	1999	1300	1236	Chem Phys Lett	HCAPLUS
Frank, S	11998	1280	1744	Science	HCAPLUS
Hanfer, J	2001	177	173	Progress in Biophysi	1
Huang, S	11999	19	1221	J Mater Chem	HCAPLUS
Huo, Q	11996	18	11147	Chem Mater	HCAPLUS
Kong, J	11998		4	Chem Phys Lett	
Kresge, C		1359	710	Nature	HCAPLUS
Kunieda, H	1998			J Phys Chem B	HCAPLUS
Li, W		1274		Science	HCAPLUS
Michael, F	1999	1274	1701	Chem Mater	
Ren, Z	11998	1282	1105		HCAPLUS
Sayari, A	1995	1		209th National Meeti	
Sayari, A		19	2499		HCAPLUS
Suh, J	1999		12047	Applied Physics Lett	HCAPLUS
Zhao, D	11995	1279	548	Science	

- L98 ANSWER 14 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2002:888664 HCAPLUS Full-text
- DN 137:386679
- TI Synthesis of nanoscale carbon materials by controlled thermal decomposition of and carbon deposition from organic compounds and transition metal catalysts
- IN Shaffer, Milo
- PA Cambridge University Technical Services Limited, UK
- SO PCT Int. Appl., 31 pp. CODEN: PIXXD2
- DT Patent
- LA English
- EAN CHT 1

E	MIN	•	CIA	T	1

FAN.	CNT	1															
							APPLICATION NO.										
PT		2002092506			Δ1 20021121		WO 2002-GB2239										
		W:						AU,									
								DK,									
								IN.									
								MD,									
								SE,									
								YU,			UL,	10,	1117	1117	1117	,	14,
		RW:						MZ,			TZ.	HG.	7M.	ZW.	AT.	BE.	CH.
								FR,									
								CM,									
	20.11	2002															514 <
		1390				A1											514 <
		1390								DI Z	002	1211.	20		- 4	0020	314 (
	Lil							ES,		CD	тт	тт	TIT	MI	CP	мс	DT
		r.						RO,				LI,	LU,	ML,	SE,	PIC,	rı,
	TTD	2004				T,						E002				0000	514 <
						_				JP Z	002-	5893	98		2	0020	514 <
	JP	3930	810			BZ		2007	0613								

	AT	342874	T	20061115	AT 2002-727725 20	020514 <
	US	2004234444	A1	20041125	US 2004-477831 20	040423 <
	US	7135159	B2	20061114		
PRAI	GB	2001-11875	A	20010515	<	
	WO	2002-GB2239	W	20020514	<	

AB Preparation of nanoscale carbon materials is carried out by: (1) providing finely divided substrate particles, dispersed in a carrier gas, on which to nucleate a catalyst, (2) providing a catalyst precursor within the carrier gas, (3) decomposing the catalyst precursor to the catalytic metal, which is deposited on the substrate to form a substrate-catalyst mixture in the carrier gas, and (4) adding an organic compound-containing gas that decomps. in the presence of the catalyst to form the nanoscale carbon materials on the substrate. Suitable catalyst precursors are one or more transition metal compds, in the form of a metal carbonyl or metal cyclopentadiene complex. The substrate can be silica, alumina, or a polyhedral oligomeric

The substrate can be silica, alumina, or a polyhedral oligomeric silesequioxane. Decomposition of the catalyst precursor can be stimulated by laser irradiation or plasma discharge.

IT 50-00-0, Formaldehyde, processes 64-17-5, Ethanol, processes 67-55-1, Methanol, processes 67-64-1, Acetone, processes 71-45-2, Benzene, processes 74-82-8, Methane, processes 74-84-0, Ethane, processes 74-85-1, Ethylene, processes 74-86-2, Acetylene, processes 74-96-6, Propane, processes 75-07-0, Acetaldehyde, processes 85-01-9, Phenanthrene, processes 91-20-3, Naphthalene, processes 95-82-8, Cumen 100-41-4,

Ethylbenzene, processes 100-88-3, Toluene, processes 115-07-3, Propylene, processes 120-12-7, Anthracene, processes 1330-20-7, Xylene, processes

RL: CPS (Chemical process); PEP (Physical, engineering or

chemical process); PROC (Process)

(decomposition of; synthesis of nanoscale carbon materials by controlled thermal decomposition of and carbon deposition from organic compds.

and transition metal catalysts)

RN 50-00-0 HCAPLUS

CN Formaldehyde (CA INDEX NAME)

H2C==0

RN 64-17-5 HCAPLUS

CN Ethanol (CA INDEX NAME)

H3C-CH2-OH

RN 67-56-1 HCAPLUS

CN Methanol (CA INDEX NAME)

H3С-ОН

RN 67-64-1 HCAPLUS

CN 2-Propanone (CA INDEX NAME)

RN 71-43-2 HCAPLUS

CN Benzene (CA INDEX NAME)

RN 74-82-8 HCAPLUS

CN Methane (CA INDEX NAME)

CH4

RN 74-84-0 HCAPLUS

CN Ethane (CA INDEX NAME)

H3C-CH3

RN 74-85-1 HCAPLUS

CN Ethene (CA INDEX NAME)

H2C==CH2

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

нс сн

RN 74-98-6 HCAPLUS

CN Propane (CA INDEX NAME)

Hachicea-ce

RN 75-07-0 HCAPLUS

CN Acetaldehyde (CA INDEX NAME)

H3C-CH-0

RN 85-01-8 HCAPLUS

CN Phenanthrene (CA INDEX NAME)

RN 91-20-3 HCAPLUS

CN Naphthalene (CA INDEX NAME)

RN 98-82-8 HCAPLUS

CN Benzene, (1-methylethyl)- (CA INDEX NAME)

RN 100-41-4 HCAPLUS

CN Benzene, ethyl- (CA INDEX NAME)

RN 108-88-3 HCAPLUS

CN Benzene, methyl- (CA INDEX NAME)

115-07-1 HCAPLUS RN

CN 1-Propene (CA INDEX NAME)

H3C-CH-CH2

120-12-7 HCAPLUS RN

CN Anthracene (CA INDEX NAME)

RN 1330-20-7 HCAPLUS

CN Benzene, dimethyl- (CA INDEX NAME)

2 (D1-Me)

Referenced Author (RAU)	(RPY) (RVL) (RPG)		File
	=+====+=====	-+	+
Fan, Y	2000 38 789	CARBON	HCAPLUS
Hyperion Catalysis Int	1999	WO 9906618 A	HCAPLUS
Leland, J	2002	US 6362011 B1	HCAPLUS
Satishkumar, B	1998 293 47	CHEMICAL PHYSICS	LET HCAPLUS
Tda Res Inc	12001 I I	IWO 0138219 A	IHCAPLUS

- L98 ANSWER 15 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2002:878795 HCAPLUS Full-text
- DN 137:341074
- TΙ Plasma-enhanced chemical vapor deposition of
- multiwalled carbon nanofibers ΑU Matthews, Kristopher; Cruden, Brett A.; Chen, Bin; Meyyappan, M.; Delzeit,
- Lance CS NASA Ames Research Center, Moffett Field, CA, USA
- Journal of Nanoscience and Nanotechnology (2002), 2(5), 475-480
- CODEN: JNNOAR
- PB American Scientific Publishers DT Journal
- I.A English
- ΔR Plasma-enhanced chemical vapor deposition is used to grow vertically aligned multiwalled carbon nanofibers (MWNFs). The graphite basal planes in these nanofibers are not parallel as in nanotubes; instead they exhibit a small angle resembling a stacked cone arrangement. A parametric study with varying process parameters such as growth temperature, feedstock composition, and

substrate power was conducted, and these parameters are found to influence the growth rate, diameter, and morphol. The well-aligned MWNFs are suitable for fabricating electrode systems in sensor and device development.

IT 74-85-1, Ethene, reactions

RL: RCT (Reactant); RACT (Peactant or reagent)

(in plasma CVD of multiwalled carbon nanofibers)

RN 74-85-1 HCAPLUS

CN Ethene (CA INDEX NAME)

H2C=CH2

RETABLE					
Referenced Author			PG		Referenced
(RAU)			(RPG)		File
Afanasyeva, N	11996		179	Vib Spectrosc	HCAPLUS
Baker, R	1973		186	J Catal	HCAPLUS
Bower, C	2000		12767	Appl Phys Lett	HCAPLUS
Bower, C	2000		1830	Appl Phys Lett	HCAPLUS
Cassell, A	2001		1266	Langmuir	
Chang, C	11996		1	ULSI Technology	
Chen, Y	1998		1342		HCAPLUS
Chhowalla, M	2001		5308		HCAPLUS
Chieu, T	1982		15867	Phys Rev B: Solid St	
Choi, Y	12000		1864	J Vac Sci Technol, A	.
Cui, H	12000	188	16072	J Appl Phys	HCAPLUS
Delzeit, L	12002	91	16027	J Appl Phys	HCAPLUS
Delzeit, L	12002	106	15629	J Phys Chem B	HCAPLUS
Endo, M	1999	114	4474	J Mater Res	HCAPLUS
Fan, S	1999	283	512	Science	HCAPLUS
Hash, D	12002	1	1	J Appl Phys, submitt	
Kortshagen, U	11996	129	1224	J Phys D: Appl Phys	HCAPLUS
Kutlel, O	1998	173	2113	Appl Phys Lett	
Li, J	12002	189	910	Appl Phys Lett	
Merkulov, V	12000	176	3555	Appl Phys Lett	HCAPLUS
Merkulov, V	2001	179	12970	Appl Phys Lett	HCAPLUS
Nguyen, C	12002	1	12	Nanoletters	
Nishmura, K	12000	15	1213	J Mater Res	
Nolan, D	1998	102	4165	J Phys Chem B	
Okai, M	12000	177	13468	Appl Phys Lett	HCAPLUS
Qin, L	11998	172	13437	Appl Phys Lett	HCAPLUS
Ren, Z	1998	1282	1105	Science	HCAPLUS
Teo, K	2001	179	1534	Appl Phys Lett	HCAPLUS
Tsai, S	1999	174	3462	Appl Phys Lett	HCAPLUS
Vidano, R	1978	61	13	J Am Ceram Soc	HCAPLUS
Zhang, Q	12000	61	1179	J Phys Chem Solids	HCAPLUS

- L98 ANSWER 16 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2002:846404 HCAPLUS Full-text
- DN 138:77197
- TI Synthesis of high purity single-walled carbon nanotubes in high yield
- AU Geng, Junfeng; Singh, Charanjeet; Shephard, Douglas S.; Shaffer, Milo S. P.; Johnson, Brian F. G.; Windle, Alan H.
- CS Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- SO Chemical Communications (Cambridge, United Kingdom) (2002), (22), 2666-2667

- CODEN: CHCOFS; ISSN: 1359-7345
- PB Royal Society of Chemistry
- Journal DT
- LA. English
- A simple method for the synthesis of high purity single-walled carbon AR nanotubes was developed by nickel formate as a precursor for the formation of nearly monodispersed nickel seed-nanoparticles as catalysts in the CVU growth
 - process. 74-82-8, Methane, reactions
 - RL: RCT (Reactant); RACT (Reactant or reagent)

(preparation of high purity single-walled carbon nanotubes in high vield by Ni-catalyzed CVD using)

- RN 74-82-8 HCAPLUS
- CM Methane (CA INDEX NAME)

Referenced Author (RAU)	Year VOI (RPY) (RVI		Referenced Work (RWK)	Referenced File
	-+	+	-+	+
Ajayan, P	2002 296	1705	Science	HCAPLUS
Anon	1 1	1	GB 0216654	l l
Bandow, S	1998 80	13779	Phys Rev Lett	HCAPLUS
Baughman, R	2002 297	1787	Science	HCAPLUS
Cassell, A	1999 103	16484	J Phys Chem B	HCAPLUS
Cheung, C	2002 106	12429	J Phys Chem B	HCAPLUS
Colomer, J	2000 317	183	Chem Phys Lett	HCAPLUS
Dai, H	2000	143	Phys World	HCAPLUS
Edwards, A	1997 101	120	J Phys Chem B	HCAPLUS
Holden, J	1994 220	186	Chem Phys Lett	HCAPLUS
Merck research Laborat	0 2001	1166	The Merck Index,	13t
Su, M	2000 322	321	Chem Phys Lett	HCAPLUS
Xia, B	2001 84	1	J Am Ceram Soc	1

- L98 ANSWER 17 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2002:823849 HCAPLUS Full-text
- DN 138:146536
- TΙ Vertically aligned carbon nanotube growth by pulsed laser deposition and thermal chemical vapor deposition methods
- ΑU Sohn, Jung Inn; Nam, Chunghee; Lee, Seonghoon
- CS Department of Materials Science and Engineering, Kwangju Institute of Science and Technology (K-JIST), Kwangju, 500-712, S. Korea
- Applied Surface Science (2002), 197-198, 568-573 SO CODEN: ASUSEE: ISSN: 0169-4332
 - Elsevier Science B.V.
- PB
- DT Journal
- LA English
 - Vertically aliqued carbon nanotubes were grown on various substrates such as a planar p-type Si(100) wafer, porous Si wafer, SiO2, Si3N4, Al2O3, and Cr by using thermal chemical vapor deposition at 800° using C2H2 gas as a carbon source and Fe catalyst films deposited by a pulsed laser on the substrates. The Fe films were deposited for 5 min by using pulsed laser deposition (PLD). The advantage of Fe deposition by PLD over other deposition methods lies in the superior adhesion of Fe to a Si substrate due to the high kinetic energies of the generated Fe species. SEM images show that vertically well-aligned

carbon manotubes are grown on Fe manoparticles formed from the thermal annealing of the Fe film deposited by PLD on the various substrates. Atomic force microscopy images show that the Fe film annealed at 800° is broken into Fe manoparticles 10-50 nm diameter The appropriate d. of Fe manoparticles formed from thermal annealing of the film deposited by PLD is crucial in growing vertically aligned carbon manotubes. With PLD and a lift-off method, the selective growth of carbon manotubes was done on a patterned Fe-coated Si substrate.

IT 74-86-2, Acetylene, processes

RL: PEF (Physical, engineering or chemical process); PYP

(Physical process); PROC (Process)

(in vertically aligned carbon nanotube growth by using thermal CVD and pulsed laser deposited Fe film catalvst)

RN 74-86-2 HCAPLUS

N Ethyne (CA INDEX NAME)

HC==CH

Referenced Author	Year VOL	PG	Referenced Work	Referenced
(RAU)	(RPY) (RVL)	(RPG)	(RWK)	File
	-+	+=====	+	+========
Choi, W	1999 75	3129	Appl Phys Lett	HCAPLUS
de Heer, W	1995 270	1179	Science	HCAPLUS
Fan, S	1999 283	512	Science	HCAPLUS
Gaskell, D	1995	1	Introduction to the	
Guo, T	1995 243	49	Chem Phys Lett	HCAPLUS
Iijima, S	1991 354	156	Nature	HCAPLUS
Journet, C	1997 388	756	Nature	HCAPLUS
Li, W	1996 274	1701	Science	HCAPLUS
Ren, Z	1998 282	1110	Science	
Rueckes, T	2000 289	194	Science	HCAPLUS
Sohn, J	2001 78	3130	Appl Phys Lett	HCAPLUS
Sohn, J	2001 1	61	Curr Appl Phys	
Tans, S	1998 393	149	Nature	HCAPLUS
Terrones, M	1997 388	52	Nature	HCAPLUS
Zhu, W	1999 75	873	Appl Phys Lett	HCAPLUS

- L98 ANSWER 18 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2002:729706 HCAPLUS Full-text
- DN 137:238223
- TI Synthesis and Characterization of Carbon Nanofibers Produced by the Floating Catalyst Method
- AU Singh, Charanjeet; Quested, Tom; Boothroyd, Chris B.; Thomas, Paul; Kinloch, Tan A.; Abou-Kandil, Ahmed I.; Windle, Alan B.
- CS Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB2 30Z, UK
- SO Journal of Physical Chemistry B (2002), 106(42), 10915-10922 CODEN: JPCBFK; ISSN: 1520-6106
- PB American Chemical Society
- DT Journal
- LA English
- AB A novel method is presented to synthesize herringbone-stacked carbon nanofibers in high selectivity using cobaltocene as the catalytic precursor. Thiophene was essential for carbon nanofiber growth while hydrogen was used as

28

the carrier gas. Selectivity close to 100% was achieved using cobaltocene, thiophene, and hydrogen reacted at 1100 $^{\circ}\mathrm{C}$. The conversion rate of the manofibers collected in the cold trap was approx. 1.5 wt % of the initial products. The effect of the catalytic precursor temperature, thiophene, and acetylene was investigated, with reference to manofiber diameter and selectivity.

REIABLE	137	LITOI	L DC	Referenced Work	1 D. C
(RAU)			(RPG)		File
	-+ ==== 1999				
Andrews, R			1329	Appl Phys Lett	HCAPLUS
Baker, R	11972		51	J Catal	HCAPLUS
Baker, R	11973		186	J Catal	HCAPLUS
Bessel, C	12001		11115	J Phys Chem B	HCAPLUS
Bethune, D	11993		1605	Nature	HCAPLUS
Boellaard, E	1985		481	J Catal	HCAPLUS
Chambers, A	1998		4253	J Phys Chem B	HCAPLUS
Ci, L	12000		1933	Carbon	HCAPLUS
Ci, L	2001		329	Carbon	HCAPLUS
Ebbesen, T		358		Nature	HCAPLUS
Endo, M	1995		1873	Carbon	HCAPLUS
Endo, M	1988		1568	Chemtech	HCAPLUS
Endo, M	1999		4474	J Mater Res	HCAPLUS
Frank, S	1998	1280	1744	Science	HCAPLUS
Iijima, S	1991		156	Nature	HCAPLUS
Iijima, S	11993	1363	1603	Nature	HCAPLUS
Ishioka, M	11992		1865	Carbon	HCAPLUS
Joseyacaman, M	1993	162	657	Appl Phys Lett	HCAPLUS
Kato, T	1992	111	674	J Mater Sci Lett	HCAPLUS
Kim, M	1992	134	253	J Catal	HCAPLUS
Kim, M	1993	143	449	J Catal	HCAPLUS
Kratschmer, W	11990	1347	1354	Nature	i
Krishnankutty, N	11996	1158	217	J Catal	HCAPLUS
Kroto, H	11985	318	1162	Nature	HCAPLUS
Lee, C	2001	1340	1413	J Chem Phys Lett	HCAPLUS
Merkulov, V	12000	176	13555	Appl Phys Lett	HCAPLUS
Park, C	11999	1103	110572	J Phys Chem B	HCAPLUS
Park, C	12000	116	18050	Langmuir	HCAPLUS
Reimer, L	1998	139	1873	Mater Trans	HCAPLUS
Ren, Z	11998		11105	Science	HCAPLUS
Rodriguez, N	11993		116	J Catal	HCAPLUS
Rodriguez, N	11993		193	J Catal	IHCAPLUS
Rodriguez, N	1993		13233	J Mater Res	HCAPLUS
Sandler, J	1999		15967	Polymer	HCAPLUS
Steigerwalt, E	2001		18097	J Phys Chem B	HCAPLUS
Tennent, H	11996		i	US 5578543	HCAPLUS
Terrones, H	12001		241	Chem Phys Lett	HCAPLUS
Thess, A	11996		1483	Science	HCAPLUS
Thomas, P	12001		1179	Ultramicroscopy	HCAPLUS
Treacy, M	11996			Nature	IHCAPLUS
Tunistra, F		153		IJ Chem Phys	ICAE LOS
Vander Wal, R				J Phys Chem B	HCAPLUS
Wong, E	11997		11971	Science	HCAPLUS
wong, E	1199/	14//	119/1	lactence	INCMPLUS

L98 ANSWER 19 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2002:681453 HCAPLUS Full-text

DN 138:238802

TI Carbon nanofiber-reinforced poly(ether ether ketone) composites

AU Sandler, Jan; Werner, Philipp; Shaffer, Milo S. P.; Demchuk, Vitaly; Altstaedt, Volker; Windle, Alan B.

- CS Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB2 3QZ, UK
- SO Composites, Part A: Applied Science and Manufacturing (2002), 33A(8), 1033-1039 CODEN: CASMFJ; ISSN: 1359-835X
- PB Elsevier Science Ltd.
- DT Journal
- LA English
- AB PEEK nanocomposites containing vapor-grown carbon manofibers (CNF) were produced using standard polymer processing techniques. Evaluation of the mech. properties revealed a linear increase in tensile stiffness and strength with CNF loading fraction to 15 vt%, while matrix ductility was maintained to 10 vt%. Electron microscopy confirmed the homogeneous dispersion and alignment of the fibers. An interpretation of the composite performance by short-fiber theory resulted in rather low intrinsic stiffness properties of the vapor-grown CNF. DSC showed an interaction between matrix and the nanoscale filler during processing. Such changes in polymer morphol due to the presence of a nanoscale filler need to be considered when evaluating the mech. properties of

Referenced Author (RAU)	Year VOL (RPY) (RVL) (RPG)		Referenced File
Dan 1 C	++ 1990 21	1383		HCAPLUS
Barlow, C			Composites	
Blundell, D	1983 24	1953	Polymer	HCAPLUS
Carneiro, O	1998 58	401	Compos Sci Technol	
Chou, T	1992	1.	Microstructural des	
Crick, R	1987 22	12094	J Mater Sci	HCAPLUS
David, L	1992 25	4302	Macromolecules	HCAPLUS
Goodwin, A	1997 38	12363	Polymer	HCAPLUS
Hull, D	1981	1	An introduction to	c
Iijima, S	1991 54	156	Nature	
Kuriger, R	2002 33	53	Composites, Part A	1
Lozano, K	2001 79	125	J Appl Polym Sci	HCAPLUS
Ruoff, R	1995 33	1925	Carbon	HCAPLUS
Salvetat, J	1999 11	161	Adv Mater	HCAPLUS
Shaffer, M	1999 11	1937	Adv Mater	HCAPLUS
Thostenson, E	2001 61	1899	Compos Sci Technol	HCAPLUS
Tibbetts, G	1987 20	292	J Phys D: Appl Phys	HCAPLUS
Tibbetts, G	1999	35	Science and applica	tl
Treacy, M	1996 381	1680	Nature	İ
Tsagaropoulos, G	1995 28	16067	Macromolecules	HCAPLUS
Wong, E	11997 277	11971	Science	HCAPLUS
Yakobson, B	11996 76	2511	Phys Rev Lett	HCAPLUS
Yu, M	2000 84	15552	Phys Rev Lett	HCAPLUS
Yu, M	2000 287	1637	Science	HCAPLUS

- L98 ANSWER 20 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2002:679671 HCAPLUS Full-text
- DN 138:26395
- TI Production of aligned carbon nanctubes by the CVD injection method
- AU Singh, Charanjeet; Shaffer, Milo; Kinloch, lan
- ; Windle, Alan
- CS Department of Materials Science and Metallurgy, Cambridge University, Cambridge, CB2 3QZ, UK
- 50 Physica B: Condensed Matter (Amsterdam, Netherlands) (2002), 323(1-4), 339-340 CODEN: PHYBE3; ISSN: 0921-4526
- PB Elsevier Science B.V.

- DT Journal
- LA English
- AB High-purity, aligned multi-walled carbon nanotubes films were grown on quartz substrates by injecting a solution of ferrocene in toluene. The injection chemical vapor deposition (CVD) method allows excellent control of the catalyst to carbon ratio. The nanotube diameter, length and alignment were controlled by varying the reaction parameters. In particular, the effects of temperature, catalyst concentration, and reaction time have been investigated.

RETABLE

Referenced Author	Year VOL PG	Referenced Work	Referenced
(RAU)	(RPY) (RVL) (RPG)) (RWK)	File
	-+++	+	+
Andrews, R	1999 303 467	Chem Phys Lett	1

L98 ANSWER 21 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

- AN 2002:679669 HCAPLUS Full-text
- DN 138:114949
- TI Controlled fabrication of aligned carbon nanotube patterns
- AU Huang, Shaoming; Dai, Liming; Mau, Albert
- CS CSIRO Molecular Science, Clayton South, 3169, Australia
- SO Physica B: Condensed Matter (Amsterdam, Netherlands) (2002), 323(1-4), 333-335
- CODEN: PHYBE3; ISSN: 0921-4526
- PB Elsevier Science B.V.
- DT Journal
- LA English
- AB The authors developed techniques to fabricate aligned carbon asnotubes (CNTs) patterns in large area by photolithog, and soft—lithog, technologies by either pre-patterning catalysts or polymers for substrate-site selective growth of CNTs based on chemical vapor deposition. The resolution of the formed aligned CNTs patterns by photo— and soft—lithog, can be down to micrometer scale and different structural features of the aligned CNTs patterns such as multidimensional patterns can be achieved by controlling the exptl. conditions.
- T 74-86-2, Acetylene, reactions
 - RL: PEP (Physical, engineering or chemical process); PYP
 - (Physical process); RCT (Peactant); PROC (Process);
 - PACT (Reactant or reagent)
 - (microfabrication of perpendicularly aligned carbon
 - nanotube patterns by photolithog, or soft lithog, based on pyrolysis of iron phthalocyanine or hydrocarbon)
- pyrolysis of iron phthalocyanine or hydroc
- RN 74-86-2 HCAPLUS
- CN Ethyne (CA INDEX NAME)

нс сн

Referenced Author	Year	VOL	PG	Referenced Work	Referenced
(RAU)	(RPY)) (RVL)	(RPG)	(RWK)	File
	+====	-+	+=====	+	+
Cassell, A	2001	117	1260	Langmuir	HCAPLUS
Dresselhaus, M	12000	1	1	Carbon Nanotubes:	Syl
Fan, S	11999	1283	512	Science	HCAPLUS
Gao, M	12000	139	13664	Angew Chem Int Ed	HCAPLUS
Huang, S	11999	19	1221	J Mater Chem	HCAPLUS
Huang, S	11999	103	14223	J Phys Chem B	HCAPLUS
Huang, S	12000	1104	12193	J Phys Chem B	IHCAPLUS

Kind, H	1999 11	1285 Adv Mater	HCAPLUS
Li, D	2000 316	349 Chem Phys Lett	HCAPLUS
Yang, Y	1999 121	10832 J Am Chem Soc	HCAPLUS

L98 ANSWER 22 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

2002:338767 HCAPLUS Full-text

DN 137:171812

ΤI Multi-walled carbon nanotubes from ethylene diffusion flames

AU Yuan, Liming; Saito, Kozo; Hu, Wenchong; Chen, Zhi

CS Department of Mechanical Engineering, University of Kentucky, Lexington, KY, 40506, USA

SO. NASA Conference Publication (2001), 210948 (Proceedings of the Sixth Applied Diamond Conference/Second Frontier Carbon Technology Joint Conference, 2001), 810-815 CODEN: NACPDX; ISSN: 0191-7811

PB National Aeronautics and Space Administration

DT Journal

AB

LA English

Multi-walled carbon nanotubes (MWNTs) were synthesized from a laminar ethylene diffusion flame with a stainless steel grid as the substrate. The grid was first oxidized using a premixed propane flame to generate a layer of metal oxide particles (iron oxide, chromium oxide and nickel oxide) which could act as catalyst particles for the nanotube growth. The as-grown nanotubes were entangled and curved with diams. ranging from 10 to 60 nm. Carbon nanofibers were also found; they might grow by thickening the nanotube walls. The maximum growth rate of nanotubes was approx. 2-5um/min and 3 mg /min. A nitrogen-diluted ethylene flame reduced the growth rate of carbon nanofibers, probably by lower concns. of pyrolyzed hydrocarbons due to a lowered flame temperature A cobalt-electrodeposited stainless steel grid produced vertically oriented, well-aligned and well-graphitized carbon nanotubes consisting of each nanotube diameter 20 nm and length 10 µm.

74-85-1. Ethylene, reactions

RL: RCT (Peactant); RACT (Peactant or reagent)

(synthesis of multi-walled carbon nanotubes from ethylene diffusion flames with stainless steel grid as substrate)

RN 74-85-1 HCAPLUS

Ethene (CA INDEX NAME) CM

H2C==CH2

Referenced Author (RAU)	(RPY) (RVL) (RPG)	
		=+===========
Baker, R	1989 27 315	Carbon HCAPLUS
Cassell, A	1999 103 6484	J Phys Chem B HCAPLUS
Ebbesen, T	1997	Carbon nanotubes: pr
Ebbesen, T	1992 358 220	Nature HCAPLUS
Endo, M	1995 33 873	Carbon HCAPLUS
Guo, T	1995 243 49	Chemical Physics Let HCAPLUS
Howard, J	1994 370 603	Nature
Iijima, S	1991 354 56	Nature HCAPLUS
Li, W	2001 335 141	Chemical Physics Let HCAPLUS
Li, W	1996 274 1701	Science HCAPLUS
Matveev, A	2001 137	Carbon
Richter, H	1996 34 427	Carbon HCAPLUS

32

Saito, K	1991 80 103	
Vander wal, R	2000 323 217	Chemical Physics Let HCAPLUS
Yuan, L	2001	Chemical Physics let

- L98 ANSWER 23 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2002:265973 HCAPLUS Full-text
- DN 136:376280
- TI Electrochemical capacitance of nanocomposite films formed by coating aligned arrays of carbon nanotubes with polypyrrole
- AU Hughes, Mark; Shaffer, Milo S. P.; Renouf, Annette C.; Singh, Charanjeet; Chen, George Z.; Fray, Derek J.; Windle, Alan H.
- CS Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB2 3QZ, UK
- SO Advanced Materials (Weinheim, Germany) (2002), 14(5), 382-385 CODEN: ADVMEW; ISSN: 0935-9648
- PB Wiley-VCH Verlag GmbH
- DT Journal
- LA English
 - The supercapacitive properties of an aligned multiwalled nanotube-conducting polymer composite and the benefits conferred by the excellent nanostructural control offered by these films were analyzed. Exptl. studies demonstrate that aligned MWNT-PPy composite films offer a combination of exceptional charge storage capacities and improved device response times relative to pure PPy films. The superior performance of these composites relative to pure PPy films. The superior performance of these composites relative to their component materials is linked to the combination of electrolyte accessibility, reduced diffusion distances, and increased conductivity in the redox pseudocapacitive composite structure. These results suggest that arrays of aligned MWNTs coated with conducting polymer composites are not only well suited to energy storage applications such as supercapacitors and secondary batteries, but also to use in devices such as sensors that would benefit from this desirable combination of properties.

			PG		Referenced
(RAU)			(RPG)		File
Albery, W		188		Faraday Discuss	HCAPLUS
Avigal, Y				Appl Phys Lett	HCAPLUS
Cao, A		1335			HCAPLUS
Che, G	11999	15	1750	Langmuir	HCAPLUS
Chen, G	12000	12	1522	Adv Mater	HCAPLUS
Chen, J	2001	173	129	Appl Phys A - Mater	HCAPLUS
Downs, C	11999	11	11028	Adv Mater	HCAPLUS
Frackowiak, E	2001	197-8	1822	J Power Sources	1
Fusalba, F	11999	11	12743	Chem Mater	HCAPLUS
Gao, M	12000	139	13664	Angew Chem Int Ed	HCAPLUS
Hong, W	12000	139	L925	Jpn J Appl Phys	HCAPLUS
Huang, S	11999	103	14223	J Phys Chem B	HCAPLUS
Hughes, M	1	1	1	Chem Mater in press	1
Lee, C	11999	312	1461	Chem Phys Lett	HCAPLUS
Li, W	11996	1274	1701	Science	HCAPLUS
Murakami, H	12000	176	11776	Appl Phys Lett	HCAPLUS
Nerushev, O	2001	11	11122	J Mater Chem	HCAPLUS
Ren, Z	11998	1282	1105	Science	HCAPLUS
Rohmund, F	12000	1328	1369	Chem Phys Lett	HCAPLUS
Wang, X	2001	1340	419	Chem Phys Lett	HCAPLUS
Wen, C	11981	15	1253	Int Metall Rev	1
Xie, S	11999	11	11135	Adv Mater	HCAPLUS
Xu, N	2001	134	11597	J Phys D: Appl Phys	HCAPLUS

- L98 ANSWER 24 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2002:89666 HCAPLUS Full-text
- DN 136:271153
- TI Growth of vertically aligned bamboo-shaped carbon nanotubes
- AU Lee, Cheol Jin; Lee, Tae Jae; Lyu, Seung Chul; Huh, Yoon; Lee, Jeong Yong CS School of Electrical Engineering, Kunsan National University, Kunsan,
- SO Journal of the Korean Physical Society (2001), 39(Suppl. Issue), S59-S62
 - CODEN: JKPSDV; ISSN: 0374-4884
- PB Korean Physical Society

573-701, S. Korea

- DT Journal
- LA English
- AB The vertically aligned uniformed C manotubes (CNTs) on a large area of Ni deposited Si substrates were grown by thermal CVD using C2H2 gas. The diameter of CNTs is as small as .apprx.60 nm and the length is .apprx.50 µm. High-resolution TEM anal. reveals that the CNTs have the uniformed multiwalls, the bamboo structure, and the sharp closed tip. The CNTs have multiwalls with good crystallinity and there are some defects on the wall surface. The base growth model is suitable to bamboo-shaped CNTs using thermal CVD .
- IT 74-86-2, Acetylene, processes
 RL: CPS (Chemical process); NUU (Other use, unclassified);
 PEF (Physical, engineering or chemical process); PROC (Process);
 USES (Uses)
 - (growth of vertically aligned bamboo-shaped carbon nanotubes)
- RN 74-86-2 HCAPLUS
- CN Ethyne (CA INDEX NAME)

HC==CH

RETABLE

Referenced Author	Year	VOL PG	Referenced Work	Referenced
(RAU)	I (RPY) I ((RVL) (RPG)	(RWK)	File
	-++-	+	+	+
Bethune, D	1993 3	363 605	Nature	HCAPLUS
de Heer, W	1995 2	270 1179	Science	HCAPLUS
Delaney, P	1998 3	391 466	Nature	HCAPLUS
Fan, S	1999 2	283 512	Science	HCAPLUS
Iijima, S	1991 3	354 56	Nature	HCAPLUS
Journet, C	1997 3	388 756	Nature	HCAPLUS
Kim, Y	2000 3	37 85	J Korean Phys Soc	HCAPLUS
Kuttel, O	1998 7	73 2113	Appl Phys Lett	HCAPLUS
Lee, C	1999 7	75 1721	Appl Phys Lett	HCAPLUS
Lee, C	12000 13	323 554	Chem Phys Lett	HCAPLUS
Lee, C	12000 13	323 560	Chem Phys Lett	HCAPLUS
Lee, C	12000 13	37 858	J Korean Phys Soc	HCAPLUS
Li, W	1996 2	274 1701	Science	HCAPLUS
Ren, Z	1998 2	282 1105	Science	HCAPLUS
Seifert, G	[2000]3	37 89	J Korean Phys Soc	HCAPLUS
Sung, S	1999 7	74 197	Appl Phys Lett	HCAPLUS
Tans, S	[1997]3	386 474	Nature	HCAPLUS
Tans, S	[1998]3	393 49	Nature	HCAPLUS
Terrones, M	[1997]3	888 52	Nature	HCAPLUS
Thess, A	1996 2	273 483	Science	HCAPLUS

34

Treacy, M | 1996 | 1381 | 1678 | Nature | HCAPLUS | Whitney, T | 1993 | 1261 | 11316 | Science | HCAPLUS

- L98 ANSWER 25 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2002:89653 HCAPLUS Full-text
- DN 136:220608
- TI The role of ammonia treatment in the alignment of the carbon nanotubes synthesized with Ni and Fe via thermal chemical yapor deposition
- AU Choi, K. S.; Cho, Y. S.; Hong, S. Y.; Park, J. B.; Kim, D. J.; Kim, H. J.
- CS Department of Materials Engineering, Chungnam National University, Taejon, 305-764, S. Korea
- SO Journal of the Korean Physical Society (2001), 39(Suppl. Issue),
- CODEN: JKPSDV; ISSN: 0374-4884 PB Korean Physical Society
- DT Journal
 - DI JOUINAL
- LA English
- AB The effects of ammonia on alignment of carbon nanotubes in an atmospheric pressure thermal chemical vapor deposition assisted by Ni and Fe were investigated. It was confirmed that ammonia is critical to the alignment of nanotubes at temps. of 800.apprx.950°. The role of NH3 for the alignment of the carbon nanotubes was preventing a deposit of amorphous carbon on the surface of the metal particles, particularly in its initial stage of the synthesis, and thus allowing a dense growth of the tubes. The structure of vertically aligned carbon nanotubes was also examined by HRTEM and Raman spectroscopy.
- IT 74-86-2, Acetylene, processes
 - RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); RCT (Reactant); PROC (Process);
 - RACT (Feactant or reagent)
 - (ammonia treatment in alignment of carbon nanotubes synthesized with nickel and iron via thermal chemical vapor deposition)
- RN 74-86-2 HCAPLUS
- CN Ethyne (CA INDEX NAME)

нс сн

RETABLE

Referenced Author	Year	VOL	l PG	Referenced Work	Referenced
(RAU)	(RPY)	(RVL)	(RPG)	(RWK)	File
***************************************	+====+	******	+	+======================================	+=========
Chen, X	1999	339	16	Thin Solid Films	HCAPLUS
Fan, S	1999	283	512	Science	HCAPLUS
Jun-Hoi, L	2001	38	199	J Korean Phys Soc	T.
Kyoung, S	2001	39	291	J Korean Phys Soc	I .
Lee, C	1999	312	461	Chem Phys Lett	HCAPLUS
Li, W	1996	274	1701	Science	HCAPLUS
Ren, R	1998	282	11105	Science	1
Seuungwu, H	2001	39	1564	J Korean Phys Soc	1
Tsai, S	1999	74	3462	Appl Phys Lett	HCAPLUS
Yusadaka, M	1995	67	2477	Appl Phys Lett	I .

L98 ANSWER 26 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2002:72356 HCAPLUS Full-text

DN 136:111351

35

- TI Method for making carbon films capable of emitting electrons, by chemical vapor deposition
- IN Semeria, Marie-Noeelle; Baylet, Jacques; Fournier, Adeline
- PA Commissariat a l'Energie Atomique, Fr. SO PCT Int. Appl., 30 pp.

CODEN: PIXXD2

DT Patent

LA French FAN.CNT 1

KIND DATE PATENT NO. APPLICATION NO. WO 2002006559 20020124 WO 2001-FR2304 20010716 <--PΤ A1 W: JP, US RW: AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR FR 2811686 A1 20020118 FR 2000-9309 20000717 <--FR 2811686 B1 20030110

FR 2811686 B1 20030110 PRAI FR 2000-9309 A 20000717 <--

B The invention concerns a method for making a carbon film capable of emitting electrons, under the action of an elec. field, by plasma chemical vapor deposition. It consists in performing the process in a sealed chamber comprising a first electrode supporting a substrate and a second electrode; introducing in the chamber proximate to the second electrode a gas mixture containing a carbonaceous gas, under pressure ranging from 0.13 to 13.33 Pa; heating the substrate to a temperature ranging between 300 to 800 °C, and applying a radiofrequency power to the second electrode to produce a plasma by ionizing the gas mixture and in depositing on the carbon substrate in the form of carbon namostructures curved sheets with radius of curvature ranging between 2 and 50 nm.

IT 74-82-8, Methane, processes

RL: CF6 (Chemical process); PEP (Physical, engineering or chemical process); PROC (Process)

(chemical vapor deposition method for making carbon films capable of emitting electrons)

RN 74-82-8 HCAPLUS

CN Methane (CA INDEX NAME)

CH4

RETABLE

Referenced Author			Referenced Work	
(RAU)	(RPY) (RVL) (RPG)	(RWK)	File
**************	++		-+	+
Chen, Y	1998 73	2119	APPLIED PHYSICS	LETT HCAPLUS
Dorfman, B	2000		US 6080470 A	HCAPLUS
Ito, S	1989		US 4842945 A	HCAPLUS
Masako, Y	1995 67	12477	APPLIED PHYSICS	LETT
Matsushita Electric	Ind 1998		EP 0826791 A	HCAPLUS
Merkulov, V	1999 75	11228	APPLIED PHYSICS	LETT HCAPLUS
Shioya, J	1987		US 4645713 A	HCAPLUS
Yudasaka, M	1994 64	1842	APPLIED PHYSICS	LETT HCAPLUS

L98 ANSWER 27 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2002:55397 HCAPLUS Full-text

DN 136:378177

TI Effects of spatial separation on the growth of vertically aligned carbon nanofibers produced by plasma-enhanced chemical

wapor deposition

- AU Merkulov, Vladimir I.; Melechko, Anatoli V.; Guillorn, Michael A.; Lowndes, Douglas H.; Simpson, Michael L.
- CS Molecular-Scale Engineering and Nanoscale Technologies Research Group, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- SO Applied Physics Letters (2002), 80(3), 476-478 CODEN: APPLAB; ISSN: 0003-6951
- PB American Institute of Physics
- DT Journal
- LA English
- New Yertically aligned C nanofibers (VACNEs) with vastly different spacing were grown by catalytically controlled d.c. glow discharge CVD using Ni catalysts. Both densely packed VACNEs and essentially isolated VACNEs were studied using SEM and x-ray energy dispersive spectroscopy. The morphol. and chemical composition of isolated VACNEs have a strong dependence upon the growth conditions, in particular on the CZHZ/NH3 78s mixture used. This is attributed to the sidewalls of isolated VACNEs being exposed to reactive species during growth. In contrast, the sidewalls of densely packed VACNEs were shielded by the neighboring VACNEs, so that their growth occurred mainly in the vertical direction, by diffusion of C through the catalyst nanoparticle and subsequent precipitation at the nanofiber/ nanoparticle interface. These striking differences in the growth process gave flattened C nanostructures (C nanostriangles) and also are quite important for the realization of VACNE-based devices.
- IT 74-36-2, Acetylene, processes

RL: CPS (Chemical process); NUU (Other use, unclassified); PEF (Physical, engineering or chemical process); PROC (Process); USES (Uses)

(spatial separation effects on growth of vertically aligned carbon nanofibers produced by plasma-enhanced chemical vapor deposition using catalysts)

- RN 74-86-2 HCAPLUS
- CN Ethyne (CA INDEX NAME)

нс Сн

TO THE PER			
Referenced Author	Year VOL PG	Referenced Work	Referenced
(RAU)	(RPY) (RVL) (RPG)	(RWK)	File
	-+++	-+	-+
Baker, R	1989 27 315	Carbon	HCAPLUS
Bower, C	2000 77 830	Appl Phys Lett	HCAPLUS
Chhowala, M	2001 90 5308	J Appl Phys	1
Guillorn, M	2001 79 3506	Appl Phys Lett	HCAPLUS
Huang, Z	1998 73 3845	Appl Phys Lett	HCAPLUS
Merkulov, V	2000 76 3555	Appl Phys Lett	HCAPLUS
Merkulov, V	2001 79 1178	Appl Phys Lett	HCAPLUS
Merkulov, V	2001 89 1933	J Appl Phys	HCAPLUS
Murakami, H	2000 76 1776	Appl Phys Lett	HCAPLUS
Nilsson, L	2000 76 2071	Appl Phys Lett	HCAPLUS
Ren, Z	1999 75 1086	Appl Phys Lett	HCAPLUS
Ren, Z	1998 282 1105	Science	HCAPLUS

- L98 ANSWER 28 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 3002:41137 HCAPLUS Full-text
- DN 136:220593
- TI Self-organized arrays of carbon nanotube ropes

- AU Zhang, Xianfeng; Cao, Anyuan; Li, Yanhui; Xu, Cailu; Liang, Ji; Wu, Dehai; Wei, Bingqing
- CS Department of Mechanical Engineering, Tsinghua University, State Key Laboratory of Automotive Safety and Energy, Beijing, 100084, Peop. Rep. China
- SO Chemical Physics Letters (2002), 351(3,4), 183-188 CODEN: CHPLBC: ISSN: 0009-2614
- PB Elsevier Science B.V.
- DT Journal
- LA English
- AB Aligned carbon resorrabes (CNTs) distributed uniformly on various substrates have been synthesized by chemical vapor deposition (CVD) method. Here, we report that by first depositing a film of amorphous carbon and random canotubes, the aligned CNTs can self-organize into arrays of long macroscopic ropes on this film. The ropes have a uniform diameter (5-30 µm) and their length can reach 0.7 mm in 30 min. The CNTs in each rope are either parallel to or entangled with each other, implying high mech. strength of these ropes, which have potential applications as a composite enhancer or a high-strength respectively.
- IT 1330-20-7, Xylene, processes
 - RL: CPS (Chemical process); PEP (Physical, engineering or
 - chemical process); PROC (Process)
 - (hydrocarbon source; CVD of self-organized arrays of carbon parotube ropes on amorphous carbon-coated quartz sheet substrates)
- RN 1330-20-7 HCAPLUS
- CN Benzene, dimethyl- (CA INDEX NAME)

2 (D1-Me)

Referenced Author (RAU)	Year VC (RPY) (RV	L) (RPG)		Referenced File
Andrews, R			Chem Phys Lett	HCAPLUS
Cao, A	12001 139		Carbon	IHCAPLUS
Cao, A	12001 1335		Chem Phys Lett	IHCAPLUS
Dai, H	11996 384	1 1147	Nature	HCAPLUS
de Heer, W	1995 270	11179	Science	HCAPLUS
de Heer, W	1995 268	1845	Science	HCAPLUS
Delaney, P	1998 391	. 466	Nature	HCAPLUS
Dillon, A	1997 386	1377	Nature	HCAPLUS
Ebbesen, T	1997	191	Carbon Nanotubes:Pro	e
Ebbesen, T	1996 382	154	Nature	HCAPLUS
Frank, S	1998 280	1744	Science	HCAPLUS
Iijima, S	1991 354	156	Nature	HCAPLUS
Kong, J	12000 1287	1622	Science	HCAPLUS
Li, W	1996 274	1701	Science	HCAPLUS
Rao, C	1998	1525	Chem Commun	HCAPLUS
Ren, Z	1998 282		Science	HCAPLUS
Rinzler, A	1995 269	11550	Science	HCAPLUS

38

Schadler, L	1998 73	13842	Appl Phys Lett	HCAPLUS
Tans, S	1998 393	149	Nature	HCAPLUS
Vigolo, B	2000 290	1331	Science	HCAPLUS
Wong, S	1998 394	152	Nature	HCAPLUS

- L98 ANSWER 29 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2001:937656 HCAPLUS Full-text
- DN 136:202602
- TI Sharpening of carbon nanocone tips during plasma-enhanced
- chemical vapor growth
- AU Merkulov, Vladimir I.; Melechko, Anatoli V.; Guillorn, Michael A.; Lowndes, Douglas H.; Simpson, Michael L.
- CS Molecular-Scale Engineering and Nanoscale Technologies Research Group, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- SO Chemical Physics Letters (2001), 350(5,6), 381-385 CODEN: CHPLBC: ISSN: 0009-2614
- PB Elsevier Science B.V.
- DT Journal
- LA English
- AB In situ tip sharpening of vertically aligned carbon manocones (VACNCs) was demonstrated. VACNCs were synthesized on patterned catalyst dots of 100 mm in diameter using d.c. plasma-enhanced chemical vapor deposition. The VACNC tip diameter was found to decrease with growth time. This enables synthesis of ultra-sharp VACNCs even for relatively large catalyst dot sizes, which is quite important for practical applications. We also find that for a given set of growth parameters the diameter of the initially formed catalyst manoparticle dets. the maximum length of the growing VACNC. The mechanism of VACNC growth and sharpening is discussed.

RETABLE

Referenced Author (RAU)	(RPY) (RVL) (RPG)		Referenced File
	+++	-+	+
Bower, C	2000 77 2767	Appl Phys Lett	HCAPLUS
Bower, C	2000 77 830	Appl Phys Lett	HCAPLUS
Chhowala, M	2001 90 5308	J Appl Phys	
Kim, Y	1997 81 944	J Appl Phys	HCAPLUS
Merkulov, V	2000 76 3555	Appl Phys Lett	HCAPLUS
Merkulov, V	2001 79 1178	Appl Phys Lett	HCAPLUS
Merkulov, V	2001 79 2970	Appl Phys Lett	HCAPLUS
Ren, Z	1998 282 1105	Science	HCAPLUS

- L98 ANSWER 30 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2001:935151 HCAPLUS Full-text
- DN 136:394768
- TI Production and derivatisation of carbon nanotubes
- AU Rohmund, F.; Gromov, A.; Morjan, R.-E.; Nerushev, O.; Sato, Y.; Sveningsson, M.; Campbell, E. E. B.
- CS School of Physics and Engineering Physics, Gothenburg University and Chalmers University of Technology, Goeteborg, SE-412 96, Swed.
- SO AIP Conference Proceedings (2001), 591(Electronic Properties of Molecular Nanostructures), 167-170 CODEN: APCPCS: ISSN: 0094-243X
- PB American Institute of Physics
- DT Journal
- LA English
- OS CASREACT 136:394768
- AB Both single-walled (SWNT) and multi-walled carbon nanotubes (MWNT) were produced using transition metal Catalyzed CVD. Carbon shell encapsulated metal nanoparticles were obtained during the production of SWNT material.

Arrays of MWNT were also produced from C60 by the process similar to iron-

catalyzed CVD. The field emission results of the so-produced arrays of MWNT are discussed. Carbon manotubes were etched chemical, providing short multivalled manotube capsules, which are mostly open-ended. Further derivatization on the carbon manotubes was achieved by using the reactivity of the carboxylic groups to build slighed arrays of carbon manotubes (CNT) on a substrate or attach the manotubes to aminotechminated latex beads.

IT 74-86-3, Acetylene, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)

(preparation of carbon manotubes by transition metal catalyzed CVD of acetylene or fullerene C60)

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

нс сн

RETABLE

Referenced Author (RAU)	(RPY)	(RVL)	(RPG)		Referenced File
Bladh, K	2000	[A70	317	Appl Phys	İ
Eklund, P	1995	133	1959	Carbon	HCAPLUS
Morjan, R	2001	1		J Chem Mater, accept	1
Nerushev, O	2001	11	11122	J Mat Chem	HCAPLUS
Rohmund, F	1	1	1	unpublished results	1

- L98 ANSWER 31 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2001:929159 HCAPLUS Full-text
- DN 136:394761
- TI Synthesis of vertically aligned carbon nanotubes on a large area using thermal chemical vapor deposition
- AU Lee, C. J.; Son, K. H.; Lee, T. J.; Lyu, S. C.; Yoo, J. E.
- CS School of Electrical Engineering, Kunsan National University, Kunsan, 573-701, S. Korea
- SO AIP Conference Proceedings (2001), 590(Nanonetwork Materials), 55-58
 - CODEN: APCPCS; ISSN: 0094-243X
- PB American Institute of Physics
- DT Journal
- LA English
- OS CASREACT 136:394761
- AB Vertically well-aligned carbon nanotubes (CNTs) were homogeneously grown on iron deposited silicon oxide substrate by thermal CVD of acetylene. The CNTs have an uniform length of 100 µm and a diameter at 100-200 nm. The CNTs reveal closed tip and very clean surface without any carbonaceous particles. The CNTs have no encapsulated iron particles at the closed tip and a bambous structure in which the curvature of compartment layers is directed to the tip.
- IT 74-36-2, Acetylene, reactions

RL: RCI (Peactant); RACI (Reactant or reagent)

(preparation of vertically aligned carbon nanotubes on iron deposited silicon oxide substrate by thermal

chemical vapor deposition of acetylene)

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

40

HC CH

KEIKDLE				
Referenced Author	Year VOL	PG	Referenced Work	Referenced
(RAU)	(RPY) (RVL)	(RPG)	(RWK)	File
	-+====+=====	+=====	+	+========
Fan, S	1999 283	512	Science	HCAPLUS
Iijima, S	1991 354	156	Nature	HCAPLUS
Journet, C	1997 388	1756	Nature	HCAPLUS
Kasuya, A	1997 78	4434	Phys Rev Lett	HCAPLUS
Lee, C	1999 75	1721	Appl Phys Lett	HCAPLUS
Lee, C	2000 323	1560	Chem Phys Lett	HCAPLUS
Ren, Z	1998 282	1105	Science	HCAPLUS
Terrones, M	1997 388	152	Nature	HCAPLUS
Thess, A	1996 273	483	Science	HCAPLUS

- L98 ANSWER 32 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2001:708966 HCAPLUS Full-text
- DN 135:361457
- ΤI Ethylene flame synthesis of well-aligned multi-walled carbon nanotobes
- AU Yuan, L.; Saito, K.; Hu, W.; Chen, Z.
- CS Department of Mechanical Engineering, University of Kentucky, Lexington, KY, 40506-0108, USA
- SO Chemical Physics Letters (2001), 346(1,2), 23-28 CODEN: CHPLBC; ISSN: 0009-2614
- PR Elsevier Science B.V.
- DT Journal
- LA English
- AR A stainless steel grid baked by a propane-air premixed flame had iron, chromium and nickel oxide deposits on the grid surface. With this grid, entangled and curved shape multi-walled carbon nanotubes (MWNTs) were harvested from an ethylene-air diffusion flame with yield rate of 3 mg/min. Nitrogen addition to the flame was found to straighten the entangled tubes probably by lowering the flame temperature A cobalt-electrodeposited stainless steel grid was finally applied to the nitrogen-diluted ethylene diffusion flame; well-aligned and well-graphitized carbon nanotubes consisting of 20 nm diameter and 10 µm long element tubes were obtained.
- 74-85-1, Ethene, processes
 - RL: PEP (Physical, engineering or chemical process); PROC (Process)

(carbon source; ethylene flame synthesis of well-aligned multi-walled carbon nanotubes on propane flame-baked stainless steel and Co-electrodeposited stainless steel grid substrates)

- RN 74-85-1 HCAPLUS
- CM Ethene (CA INDEX NAME)

H2C==CH2

74-98-6, Propane, processes

RL: PEP (Physical, engineering or chemical process); PROC

(flame, air-mixture, oxidizing atmospheric; ethylene flame synthesis of wellaligned multi-walled carbon parotubes on propane flame-baked stainless steel and Co-electrodeposited stainless steel arid substrates)

- RN 74-98-6 HCAPLUS
- CN Propane (CA INDEX NAME)

H3C-CH2-CH3

RETABLE

Referenced Author			Referenced Work	Referenced
(RAU)	(RPY) (RVL)			File
	.+=====+====	+======	+	+========
Baker, R	1989 27	315	Carbon	HCAPLUS
Ebbesen, T	1997		Carbon Nanotubes:Pre	1
Endo, M	1995 33	1873	Carbon	HCAPLUS
Howard, J	1994 370	1603	Nature	1
Li, W	2001 335	141	Chem Phys Lett	HCAPLUS
Richter, H	1996 34	1427	Carbon	HCAPLUS
Saito, K	1991 80	103	Combust Sci Technol	HCAPLUS
Vander Wal, R	2000 323	217	Chem Phys Lett	HCAPLUS
Yuan, L	2001 340	1237	Chem Phys Lett	HCAPLUS

- L98 ANSWER 33 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2001:474672 HCAPLUS Full-text
- DN 135:51598
- TI Iron particle catalysed CVD growth of carbon nanotubes
- AU Rohmund, Frank; Nerushev, Oleg A.; Sveningsson, Martin; Campbell, Eleanor E. B.
- E. S.

 School of Physics and Engineering Physics, Gothenburg University and Chalmers University of Technology, Goeteborg, S-412 96, Swed.
- SO Physics and Chemistry of Clusters, Proceedings of Nobel Symposium, 117th, Visby, Sweden, June 27-July 2, 2000 (2001), Meeting Date 2000, 303-306. Editor(s): Campbell, Eleanor E. B.; Larsson, Mats. Publisher: World Scientific Publishing Co. Pte. Ltd., Singapore, Singapore. CODEN: 698LP9
- DT Conference
- LA English
- AB Synthesis of nanotube films is achieved by chemical vapor deposition (CVD) of acetylene on silicon substrates. Aligned and non-aligned multi-walled nanotubes (MMNT) are obtained in large amts, by the catalytic activity of supported iron particles. The latter are produced in situ by thermal pyrolysis of iron pentacarbonyl. We present an anal. of the morphol. of the metal particle deposit, the impact on heating such a film to the CVD processing temperature of 750°C as well as the growth of carbon nanotubes on such films.
 - IT 74-86-2, Acetylene, reactions

RL: PEP (Physical, engineering or chemical process); PRP (Properties); RCT (Rescrant); PROC (Process); RACT

(Peactant or reagent)

(iron particle catalyzed CVD growth of

- carbon nanotubes)
- RN 74-86-2 HCAPLUS
- CN Ethyne (CA INDEX NAME)

HC CH

RETABLE

Referenced Author (RAU)	(RPY) (RVL) (RPG)	Referenced Work (RWK)	Referenced File
	-+====+====+=====	-+	=+=======
de Heer, W	1995 268 845	Science	HCAPLUS
Groning, O	2000 18 665	J Vac Sci Technol B	HCAPLUS
Lee, C	1999 312 461	Chem Phys Lett	HCAPLUS
Li, W	1996 274 1701	Science	HCAPLUS
Ren, Z	1998 282 1105	Science	HCAPLUS
Rohmund, F	2000 328 369	Chem Phys Lett	HCAPLUS
Saito, R	1998	Physical properties	1

- L98 ANSWER 34 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- 2001:429101 HCAPLUS Full-text AN
- DN 135:36212
- Carbon nanofibers grown on soda-lime glass at 500°C using TI
- thermal chemical vapor deposition Lee, C. J.; Lee, T. J.; Park, J.
- AU CS
 - School of Electrical Engineering, Kunsan National University, Kunsan, 573-701, S. Korea
- SO Chemical Physics Letters (2001), 340(5,6), 413-418 CODEN: CHPLBC; ISSN: 0009-2614
- PR Elsevier Science B.V.
- Journal DT
- LA English
- AB Carbon nanofibers are grown homogeneously on a large area of nickel-deposited soda-lime glass substrate by thermal chemical vapor deposition of acetylene at 500°. The diams, of carbon manofibers are uniformly distributed in the range between 50 and 60 nm. Most of the carbon nanofibers are curved or bent in shape, but some fractions are twisted. They consist of defective graphitic sheets with a herringbone morphol. The maximum emission c.d. from the carbon manofibers is 0.075 mA/cm2 at 16 V/um, which is sufficient for commercializing the carbon-nanofibers-based field emission displays.
- 74-86-2, Acetylene, processes
 - RL: PEP (Physical, engineering or chemical process); PROC (Process)
 - (in CVD of carbon nanofibers on soda-lime glass)
- RN 74-86-2 HCAPLUS
- CN Ethyne (CA INDEX NAME)

нс сн

Referenced Author		Referenced Work	Referenced
(RAU)	(RPY) (RVL) (RPG)		File
	-+	-+	-+
Ahn, C	1998 73 3378	Appl Phys Lett	HCAPLUS
Anderson, P	2000 12 823	Chem Mater	HCAPLUS
Anderson, P	1999 14 2912	J Mater Res	HCAPLUS
Bai, X	2000 76 2624	Appl Phys Lett	HCAPLUS
Baker, R	1978 14 83	Chemistry and Physi	c
Baker, R	1972 26 51	J Catal	HCAPLUS
Baker, R	1973 30 86	J Catal	HCAPLUS

Chambers,	A	11997	101	1621	J Phys Chem B	HCAPLUS
Chambers,	A	11998	102	12251	J Phys Chem B	HCAPLUS
Chen, Y		11998	173	2119	Appl Phys Lett	HCAPLUS
Kim, M		11991	131	160	J Catal	HCAPLUS
Kim, M		11992	1134	1253	J Catal	HCAPLUS
Lee, C		11999	175	11721	Appl Phys Lett	HCAPLUS
Lee, C		12000	1326	175	Chem Phys Lett	HCAPLUS
Lee, C		2001	1338	113	Chem Phys Lett	HCAPLUS
Lee, C		2001	1337	1398	J Ihm, Chem Phys	Let HCAPLUS
McCulloch,	, D	11994	150	15905	Phys Rev B	HCAPLUS
Menini, C		12000	1104	4281	J Phys Chem B	HCAPLUS
Merkulov,	V	12000	176	13555	Appl Phys Lett	HCAPLUS
Park, C		11998	102	5168	J Phys Chem B	HCAPLUS
Park, C		11999	103	10572	J Phys Chem B	HCAPLUS
Park, C		1999	103	12453	J Phys Chem B	HCAPLUS
Tesner, P		1970	18	1435	Carbon	
Tuinstra,	F	11970	153	11126	J Chem Phys	HCAPLUS
Wilhelm, I	H	11998	184	16552	J Appl Phys	HCAPLUS

L98 ANSWER 35 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

2001:425017 HCAPLUS Full-text AN

DN 135:156541

Controlling growth of aligned carbon nanotubes from

porous silicon templates

Xu, Dongsheng; Guo, Guolin; Gui, Linlin; Tang, Yougi; Shi, Zujin; Jin, AU Zhaoxia; Gu, Zhennan

CS Institute of Physical Chemistry, Peking University, Beijing, 100871, Peop. Rep. China

SO Science in China, Series B: Chemistry (2000), 43(5), 459-465 CODEN: SCBCFO; ISSN: 1006-9291

PB Science in China Press

Journal DT

T.A English

- Fabricating well-aligned C nanotubes, especially, on a Si substrate is very AB important for their applications. An aligned C nanotube array was prepared by pyrolysis of hydrocarbons catalyzed by Ni nanoparticles embedded in porous Si (PS) templates. High-magnification TEM images confirm that the nanotubes are well graphitized. The PS substrates with pore sizes between 10 and 100 nm play a control role on the growth of C nanotubes and the diams. of the tubes increase with the enlargement of the pores of the substrates. However, such a control role cannot be found in the macro-PS substrates.
- 74-85-1, Ethylene, reactions

RL: PCT (Reactant); RACT (Reactant or reagent)

(controlling growth of aligned carbon nanotubes

from porous silicon templates during pyrolysis of hydrocarbons

catalyzed by Ni nanoparticles)

RN 74-85-1 HCAPLUS

CN Ethene (CA INDEX NAME)

H2C-CH2

Referenced Author	Year VOL		Referenced Work	Referenced
(RAU)	(RPY) (RVL	, , , ,	(RWK)	File
	-+====+====	=+====	-+	+
Ajayan, P	1994 265	1212	Science	HCAPLUS
Cullins, P	11996 169	11969	[Appl Phys Lett	1

107 334900										
Cullis, A	1997 82	2 909	J Appl Phys	HCAPLUS						
de Heer, W	1995 2"	70 1179	Science	HCAPLUS						
de Heer, W	1995 26	68 845	Science	HCAPLUS						
Fan, S	1999 28	83 512	Science	HCAPLUS						
Hamada, M	1992 68	8 1579	Phys Rev Lett	1						
Iijima, S	1991 35	54 56	Nature	HCAPLUS						
Li, W	1996 2	74 1701	Science	HCAPLUS						
Mintmire, J	1992 68	8 631	Phys Rev Lett	HCAPLUS						
Rinzler, A	1995 26	69 1550	Science	HCAPLUS						
Saito, Y	1998 6	7 95	Applied Physics, A,	HCAPLUS						
Tans, S	1997 38	86 474	Nature	HCAPLUS						
Tans, S	1998 39	93 49	Nature	HCAPLUS						
Terrones, M	1997 38	88 52	Nature	HCAPLUS						
Wang, Q	1997 70	0 3308	Appl Phys Lett	HCAPLUS						
Wang, Q	1998 72	2 2912	Appl Phys Lett	HCAPLUS						
Xu, D	1999 75	5 481	Appl Phys Lett	HCAPLUS						

L98 ANSWER 36 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2001:376890 HCAPLUS <u>Full-text</u>

DN 134:359597

- TI Field emission display device using vertically-aligned carbon canotubes and economical manufacturing method to achieve good electric contact with conducting polymers
- IN Lee, Cheol-Jin; Yoo, Jae-Eun
- PA Iljin Nanotech Co., Ltd., S. Korea
- SO Eur. Pat. Appl., 10 pp.
- CODEN: EPXXDW
- LA English
- FAN.CNT 1

	PATENT NO.			KIND DATE			APE	APPLICATION NO.					DATE					
							-											
PI	EP	1102	299			A1		2001	0523	EP	2000-	3091	05		2	0001	016	<
		R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB, GE	R, IT,	LI,	LU,	NL,	SE,	MC,	PT,	
			IE,	SI,	LT,	LV,	FI,	, RO										
	KR	2001	0494	52		A		2001	0615	KR	2000-	-2958	1		2	0000	531	<
	JP	2001	1764	31		A		2001	0629	JP	2000-	3210	75		2	0001	020	<
	CN	1302	079			A		2001	0704	CN	2000-	-1303	70		2	0001	102	<
PRAI	KR	1999	-490	20		A		1999	1105	<								
	KR	2000	-295	81		A		2000	0531	<								

- AB In the field-emission display a metal film for a cathode is deposited on the lower substrate. Vertically aligned C nanotubes, acting as field emitter tips, are formed on the metal film. The vertical nanotubes are formed by coating metal catalyst particles on the metal film and CVD. A spacer is then deposited and a 2nd metal film of mesh shape is deposited as a gate contact. A 2nd spacer is formed followed by an upper substrate with a transparent contact and a fluorescent layer.
- IT 74-82-8, Methane, processes 74-85-1, Ethylene, processes
 - 74-86-2, Acetylene, processes 74-98-6, Propane,

processes 115-07-1, Propylene, processes

RL: NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)

(carbon manotube precursor; field emission display device using vertically-aligned carbon manotubes and

economical manufacturing method using)

- RN 74-82-8 HCAPLUS
- CN Methane (CA INDEX NAME)

RN 74-85-1 HCAPLUS CN Ethene (CA INDEX NAME)

H2C== CH2

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

нс сн

RN 74-98-6 HCAPLUS

CN Propane (CA INDEX NAME)

H3C-CH2-CH3

RN 115-07-1 HCAPLUS

CN 1-Propene (CA INDEX NAME)

H3C-CH-CH2

RETABLE

Referenced Author (RAU)	(RPY) (RVL)	(RPG)	Referenced Work (RWK)	Referenced File
de Heer, W	1995 270	11179	SCIENCE	HCAPLUS
Kuttel, O Lee, N	1999 2000	120 124	DEVICE RESEARCH CONF MICROPROCESSES AND N	
Saito, Y	1999	143	MHS '99 PROCEEDINGS	İ

- L98 ANSWER 37 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2001:376889 HCAPLUS Full-text
- DN 134:359596
- TI Field emission display device using vertically-aligned carbon nanotubes and economical manufacturing method to achieve good electric contact with conducting polymers
- IN Lee, Cheol-Jin; Yoo, Jae-Eun
- PA Iljin Nanotech Co., Ltd., S. Korea
- SO Eur. Pat. Appl., 11 pp. CODEN: EPXXDW
- DT Patent
- LA English
- FAN.CNT 1

PATENT NO. KIND DATE APPLICATION NO. DATE

	10 / 534900	2
ΡI	EP 1102298 A1 20010523 EP 2000-309088 20001016 < R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO	
	KR 2001049451 A 20010615 KR 2000-29580 20000531 < JP 2001167721 A 20010622 JP 2000-321094 20001020 <	
PRAI	CN 1297218 A 20010530 CN 2000-130372 20001102 < KR 1999-49018 A 19991105 < KR 2000-29580 A 20000531 <	
AB	In the field-emission display a metal film for a cathode is deposited on the lower substrate. Vertically aligned C manosubes, acting as field emitter tips, are formed on the metal film. The vertical nanosubes are formed by coating metal catalyst particles on the metal film and CVD. A spacer is the deposited and an upper substrate with the transparent contact and a fluorescent layer are deposited.	
IT	Thursesemi Layer are deposited. 74-82-9, Methane, processes 74-85-1, Ethylene, processes 74-86-2, Acetylene, processes 74-96-6, Propane, processes 115-07-1, Propylene, processes RL: NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses) (carbon nanotube precursor; field emission display device using vertically-aligned carbon nanotubes and economical manufacturing method using)	
RN CN	74-82-8 HCAPLUS Methane (CA INDEX NAME)	
CH4		
RN CN	74-85-1 HCAPLUS Ethene (CA INDEX NAME)	
H2C=	⇒CH2	
RN CN	74-86-2 HCAPLUS Ethyne (CA INDEX NAME)	

HC==CH

RN 74-98-6 HCAPLUS CN Propane (CA INDEX NAME)

H3C-CH2-CH3

RN 115-07-1 HCAPLUS

CN 1-Propene (CA INDEX NAME)

RETABLE

Referenced Author	Year VOL PO	Referenced World	k Referenced
(RAU)	(RPY) (RVL) (RE	PG) (RWK)	File
	-+++	+	+
Canon Kk	1999	EP 0913508 A	HCAPLUS
Ise Electronics Corp	1999	EP 0905737 A	HCAPLUS
Kuttel, O	1999 120	DEVICE RESEARCH	CONF
Normile, D	11999 1286 1205	6 ISCIENCE	IHCAPLUS

- L98 ANSWER 38 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2001:207319 HCAPLUS Full-text
- DN 134:255704
- TI Growth of carbon panofibers array under magnetic force by chemical vapor deposition
- AU Sun, L. F.; Liu, Z. Q.; Ma, X. C.; Tang, D. S.; Zhou, W. Y.; Zou, X. P.; Li, Y. B.; Lin, J. Y.; Tan, K. L.; Xie, S. S.
- CS Institute of Physics, Center for Condensed Matter Physics, Chinese Academy of Sciences, Beijing, 100080, Peop. Rep. China
- SO Chemical Physics Letters (2001), 336(5,6), 392-396
- CODEN: CHPLBC; ISSN: 0009-2614
 PB Elsevier Science B.V.
- DT Journal
- LA English
- AB The growth of carbon nanofibers arrays by chemical vapor deposition in the presence of and absence of a magnetic force at the same exptl. conditions is reported. The nanofibers are worse in alignment and less in graphitization than those of the nanotubes grown in absence of magnetic field. Two or three nanofibers can be connected together through a catalyst nanoparticity. These connections might be useful, especially in the fabrication of nanoplectronic devices.
 - T 74-86-2, Ethine, processes
 - RL: PEP (Physical, engineering or chemical process); PROC (Process)
 - (effect of magnetic field on growth of carbon nanofibers array by chemical vapor deposition using)
- RN 74-86-2 HCAPLUS
- CN Ethyne (CA INDEX NAME)

нс сн

Referenced Author (RAU)	Year VOL PG (RPY) (RVL) (RPG)		Referenced File
Ajayan, P	1994 265 1212	Science	HCAPLUS
Amelinkx, S	1994 265 635	Science	1
Chico, L	1996 76 971	Phys Rev Lett	HCAPLUS
Dai, H	1996 272 523	Science	HCAPLUS
de Heer, W	1995 268 845	Science	HCAPLUS
Dresselhaus, M	1996	Science of Fullere	ne
Ebbesen, T	1992 358 220	Nature (London)	HCAPLUS
Hamada, N	1992 68 1579	Phys Rev Lett	HCAPLUS
Hu, J	1999 399 48	Nature	HCAPLUS

Iijima, S	1991 354	156	Nature	HCAPLUS
Li, W	1996 274	1701	Science	HCAPLUS
Ma, X	1999 75	3105	Appl Phys Lett	HCAPLUS
Mintmire, J	1992 68	1631	Phys Rev Lett	HCAPLUS
Pan, Z	1999 299	197	Chem Phys Lett	HCAPLUS
Sun, L	1999 74	1644	Appl Phys Lett	HCAPLUS
Sun, L	2000 403	1384	Nature	HCAPLUS
Yao, Z	1999 402	1273	Nature	HCAPLUS
Yokomichi, H	1999 74	11827	Appl Phys Lett	HCAPLUS
Zhang, Y	11999 1285	1719	Science	HCAPLUS

- L98 ANSWER 39 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2001:156294 HCAPLUS Full-text
- DN 134:255698
- TI Growth Model for Bamboolike Structured Carbon Nanotubes Synthesized Using Thermal Chemical Vapor Deposition
- AU Lee, Cheol Jin; Park, Jeunghee
- CS School of Electrical Engineering, Kunsan National University, Kunsan, 573-701, S. Korea
- SO Journal of Physical Chemistry B (2001), 105(12), 2365-2368 CODEN: JPCBFK; ISSN: 1089-5647
- PB American Chemical Society
- DT Journal
- LA English
- AB Carbon canotubes (CNTs) are grown vertically aligned on Fe catalytic particles deposited on a silicon oxide substrate at 550-95°C by thermal CVD of acetylene. All CNTs have a bamboolike structure in which the curvature of compartment layers is directed toward the tip, irresp, of the growth temperature Most of tips are closed and free from the encapsulation of Fe particles. However, the CNTs grown at 550°C sometimes encapsulate the Fe particle at the closed tip. On the basis of exptl. results, we provide a detailed growth model for the bamboolike structured CNTs grown using thermal chemical vacor deposition.
- IT 74-36-2, Acetylene, processes
 - RL: PEP (Physical, engineering or chemical process); PROC (Process)

(1100000)

- (carbon source; thermal CVD growth model for preparation of carbon nanotubes with bamboo-like structure) $\,$
- RN 74-86-2 HCAPLUS
- CN Ethyne (CA INDEX NAME)

нс сн

Referenced Author (RAU)	(RPY) (RVL) (RPG)		Referenced File
Baker, R	1989 27 315	Carbon	HCAPLUS
Baker, R	1986 90 4	J Phys Chem	1
Bethune, D	1993 363 605	Nature	HCAPLUS
Blank, V	2000 38 217	Carbon	1
Cassell, A	1999 103 6484	J Phys Chem	HCAPLUS
Chen, Y	2000 76 2469	Appl Phys Lett	HCAPLUS
Dai, H	1996 384 147	Nature	HCAPLUS
de Heer, W	1995 270 1179	Science	HCAPLUS
Fan, S	1999 283 512	Science	HCAPLUS

Iijima, S Journet, C Kovaleski, V Kukovitsky, E Lee, C Lee, C Lee, C Lee, C Lee, Y Li, D	1991 354 1997 388 1998 36 2000 317 1999 75 2000 323 1997 78 2000 316	56 756 963 65 1721 560 734 349	Nature Nature Carbon Chem Phys Lett Appl Phys Lett Chem Phys Lett Chem Phys Lett, Phys Rev Lett Chem Phys Lett	HCAPLUS HCAPLUS HCAPLUS HCAPLUS HCAPLUS subm
Li, W	1996 274	1701	Science	HCAPLUS
Li, Y	1999	1141	Chem Commun	HCAPLUS
Liu, C	1999 286	1127	Science	HCAPLUS
Louchev, O	1999 74	1194	Appl Phys Lett	HCAPLUS
Murakami, H	12000 176	11776	Appl Phys Lett	HCAPLUS
Okuyama, F	1997 71	1623	Appl Phys Lett	HCAPLUS
Ren, Z	1998 282	1105	Science	HCAPLUS
Saito, Y	1995 33	1979	Carbon	HCAPLUS
Saito, Y	1993 134	1154	J Cryst Growth	HCAPLUS
Saito, Y	1997 389	1554	Nature	HCAPLUS
Terrones, M	1997 388	152	Nature	HCAPLUS
Thess, A	1996 273	1483	Science	HCAPLUS
Wang, Z	1998 102	6145	J Phys Chem B	HCAPLUS

- L98 ANSWER 40 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2001:56376 HCAPLUS Full-text
- DN 134:133672
- TI Well-aligned carbon nanotubes grown on a large-area Si substrate by thermal chemical-vapor deposition
- AU Lee, Cheol Jin; Han, Jong Hun; Yoo, Jae Eun; Kang, Seung Youl; Lee, Jin Ho; Cho, Kyung-Ik
- CS School of Electrical Engineering, Kunsan National University, Kunsan, 573-701, S. Korea
- SO Journal of the Korean Physical Society (2000), 37(6), 858-861 CODEN: JKPSDV; ISSN: 0374-4884
- PB Korean Physical Society
- DT Journal
- LA English
- AB We have grown vertically aligned carbon nanotubes (CNTs) on large areas of Co-Ni codeposited Si substrates by using thermal chemical vapor deposition with C2H2 γas. The CNTs grown by thermal chemical vapor deposition are multiwalled structures, and the wall surfaces of the nanotubes are covered with a defective graphite sheet or carbonaceous particles. The CNTs range from 50 to 120 nm diameter and about 130 μm in length at 950 °C. The grown CNTs have a bamboo structure. As the particle size of the Co-Ni catalyst decreases, the diameter of the CNTs decreases, and the vertical alignment is significantly enhanced. Steric hindrance between nanotubes forces them to align vertically during the initial stage of the growth. The turn-on voltage is about 0.8 V/μm with a c.d. of 0.1 μA/cm2, and the emission-c.d. is about 1.1 μA/cm2 at 4.5 V/μm. The emission current reveals a Fowler-Nordheim mode.
- T 74-86-2, Acetylene, processes
- RL: PEP (Physical, engineering or chemical process); PROC

(Process)

(synthesis of vertically aligned carbon nanotubes on large areas of cobalt-nickel catalyst codeposited silicon substrates using thermal chemical vapor

deposition with acetylene gas)

- RN 74-86-2 HCAPLUS
- CN Ethyne (CA INDEX NAME)

50

нс сн

RE	Т	Α	В	Τ.	Е

Referenced Author (RAU)	Year VOL PG (RPY) (RVL) (RPG	Referenced Work (RWK)	Referenced File
	-+++	+	+
Bethune, D	1993 363 605	Nature	HCAPLUS
Fan, S	1999 283 512	Science	HCAPLUS
Iijima, S	1991 354 56	Nature	HCAPLUS
Iijima, S	1993 363 603	Nature	HCAPLUS
Journet, C	1997 388 756	Nature	HCAPLUS
Lee, C	1999 75 1721	Appl Phys Lett	HCAPLUS
Lee, C	1999 312 461	Chem Phys Lett	HCAPLUS
Lee, C	2000 323 560	Chem Phys Lett	HCAPLUS
Li, W	1996 274 1701	Science	HCAPLUS
Ren, Z	1998 282 1105	Science	HCAPLUS
Sung, S	1999 74 197	Appl Phys Lett	HCAPLUS
Terrones, M	1997 388 52	Nature	HCAPLUS
Thess, A	1996 273 483	Science	HCAPLUS

L98 ANSWER 41 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2000:900565 HCAPLUS Full-text

DN 134:45814

TI Manufacture of aligned, conductive substance filled carbon canotubes on a substrate

IN Gao, Yufei; Liu, Jun

PA Battelle Memorial Institute, USA

SO PCT Int. Appl., 19 pp.

CODEN: PIXXD2

DT Patent LA English

FAN CNT 1

AB

P PAIN.	PATENT NO.				KIND DATE			APPLICATION NO.				DATE						
PI	WO 20	000769	76912 A2			20001221 WO 2000-US16783						20000613 <						
	WO 20	000769	12		A3	A3 20010525												
	W	: AE,	AL,	AM,	AT,	AU,	AZ,	BA,	BB,	BG,	BR,	BY,	CA,	CH,	CN,	CR,	CU,	
		CZ,	DE,	DK,	DM,	EE,	ES,	FI,	GB,	GD,	GE,	GH,	GM,	HR,	HU,	ID,	IL,	
		IN,	IS,	JP,	KE,	KG,	KP,	KR,	ΚZ,	LC,	LK,	LR,	LS,	LT,	LU,	LV,	MA,	
		MD,	MG,	MK,	MN,	MW,	MX,	NO,	NZ,	PL,	PT,	RO,	RU,	SD,	SE,	SG,	SI,	
		SK,	SL,	ΤJ,	TM,	TR,	TT,	TZ,	UA,	UG,	UZ,	VN,	YU,	ZA,	zw			
	F	W: GH,	GM,	KΕ,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZW,	ΑT,	BE,	CH,	CY,	
		DE,	DK,	ES,	FI,	FR,	GB,	GR,	ΙE,	IT,	LU,	MC,	NL,	PT,	SE,	BF,	ВJ,	
		CF,	CG,	CI,	CM,	GΑ,	GN,	GW,	ML,	MR,	ΝE,	SN,	TD,	TG				
	US 20	020041	36		A1		2002	0110	US 1999-333876				1	9990	614 <-			
	US 63	61861			B2		2002	0326										
	AU 20	000782	44		A		2001	0102		AU 2	000-	7824	4		2	0000	613 <-	
	US 20	020550	10		A1		2002	0509		US 2	001-	9965	23		2	0011	128 <-	
	US 70	11771			B2		2006	0314										
PRAI	US 19	99-333	876		A		1999	0614	<-	-								
	WO 20	00-US1	6783		W		2000	0613	<-	_								

The method provides a densely packed carbon nanotube growth perpendicular to the substrate where each parotube is in contact with at least one nearestneighbor manotube and the hollow core of the manotubes contains conductive filler comprising C and Ti, V, and/or Ta. The nanotubes have the length of 1- $2~\mu\text{m}$, the outside diameter of 50--400~nm and the inside diameter of 10--100~nm.

51

The substrate is a conductive material - Ti, TiC, V, or Ta coated with a growth catalyst - Fe or/and FeO, and the conductive filler can be single crystals of carbides formed by a solid state reaction between the substrate material and the growth catalyst. The manufacture includes the steps of (1) depositing a growth catalyst onto the conductive substrate, (2) creating vacuum within the vessel which contains the prepared substrate, (3) flowing H2/inert (e.g. Ar) gas within the vessel to increase and maintain the pressure within the vessel, (4) increasing the temperature of the prepared substrate and changing the H2/Ar gas to the flow of ethylene gas. Addnl., varying the d. and separation of the catalyst particles on the conductive substrate can be used to control the diameter of the nanotubes.

74-85-1, Ethylene, processes

RL: PEP (Physical, engineering or chemical process); PROC

(precursor; precursor in manufacture of aligned, conductive substance filled carbon nanotubes on substrate)

RN 74-85-1 HCAPLUS

Ethene (CA INDEX NAME) CN

H2C=CH2

```
L98 ANSWER 42 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
```

- AN 2000:900254 HCAPLUS Full-text
- 134:58645 DN
- TI
- Low-temperature synthesis of carbon nanotubes using metal catalyst layer for decomposing carbon source gas
- IN Lee, Cheol-Jin; Yoo, Jae-Eun
- PA Iljin Nanotech Co., Ltd., S. Korea
- SO Eur. Pat. Appl., 13 pp.
- CODEN: EPXXDW
- DT Patent
- LA English

FAN			
E LIN	٠	CIAT	

AB

E LIN .	TAT	1																
	PA:	TENT	NO.			KIND D		DATE	DATE A		PLICAT	I NOI	DATE					
														-		-		
PI	EP 1061043				A1 20001220			EP	EP 2000-305079						5 <			
		R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB, GI	R, IT,	LI,	LU,	NL,	SE,	MC, E	Τ,	
			IE,	SI,	LT,	LV,	FI,	RO										
	KR	KR 2001066816			A		2001	0711	KR	2000-	3035	3		2	000060	2 <	-	
	CN	1277	147			A		2000	1220	CN	2000-	1092	11		2	000061	4 <	-
	JP	2001	0200	72		A		2001	0123	JP	2000-	1785	15		2	000061	4 <	-
	JP	3442	033			B2		2003	0902									
PRAI	KR	1999	-224	18		A		1999	0615	<								
	KR	2000	-303	53		Α		2000	0602	<								

In low-temperature synthesis of carbon nanotubes using a metal catalyst layer, the metal catalyst layer is formed over a substrate and etched to form isolated nano-sized catalytic metal particles. Carbon nanotubes, vertically aligned over the substrate, are grown from every isolated nano-sized catalytic metal particle through thermal chemical vapor deposition by decomposing a carbon source gas (e.g., C2H2) at a temperature equal to or lower than the strain temperature of the substrate using the decomposition catalyst layer.

74-85-2, Acetylene, reactions

RL: PEF (Physical, engineering or chemical process); PCT (Reactagt); PROC (Process); PACT (Reactagt or reagent)

(low-temperature synthesis of carbon manutubes using metal

catalyst layer for decomposing carbon source gas)

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

нс сн

RETAE			***					
	(RAU)	(RPY) (E	RVL) (RPG)		File			
Huang				APPLIED PHYSICS LETT				
LI, V	₫				HCAPLUS			
Lee,	C	1999 75	1721	APPLIED PHYSICS LETT	HCAPLUS			
Oin,	L	1998 72	13437	APPLIED PHYSICS LETT	1			
Pan,	Z	1999 29	9 197	CHEMICAL PHYSICS LET	HCAPLUS			
DN TI								
IN	Lee, Cheol-Jin; Yo							
PA	Iljin Nanotech Co.		S. Korea					
so	Eur. Pat. Appl., 1 CODEN: EPXXDW	14 pp.						
DT	Patent							
LA	English							
FAN.	CNT 1							

	PA:	TENT	NO.			KIN	D	DATE		2	APPI	ICAT	ION	NO.		D	ATE		
							-												
PI	EP	1059	266			A2		2000	1213	3	EP 2	2000-	3048	55		20	0000	608	<
	EP	1059	266			A3		2000	1220										
		R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,	
			IE,	SI,	LT,	LV,	FI,	, RO											
	KR	2001	0494	79		A		2001	0615	1	KR 2	-0009	3035	2		20	0000	602	<
	US	6350	488			B1		2002	0226	Ţ	JS 2	2000-	5906	87		20	0000	609	<
	CN	1277	145			A		2000	1220	(CN 2	2000-	1078	05		20	0000	612	<
	JP	2001	0200	71		A		2001	0123		JP :	2000-	1754	98		20	0000	612	<
	JP	3442	032			B2		2003	0902										
PRAI	KR	1999	-218	55		A		1999	0611	<	-								
	KR	1999	-224	19		A		1999	0615	<	-								
	KR	2000	-303	52		A		2000	0602	<	-								

- AB A method of synthesizing high purity carbon nanotubes vertically aligned over a large size substrate by thermal chemical vapor deposition (CVD) is described. In the synthesis method, isolated nano-sized catalytic metal particles are formed over a substrate by etching, and purified carbon nanotubes are grown vertically aligned, from the catalytic metal particles by thermal CVD using a carbon source gas.
- IT 74-86-2, Acetylene, processes

RL: PEP (Physical, engineering or obemical process); PROC (Process)

(mass synthesis method for high purity carbon nanotables vertically aligned over large-size substrate using thermal chemical vapor deposition)

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

53

нс сн

- L98 ANSWER 44 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2000:409885 HCAPLUS Full-text
- DN 133:171370
- TI Growth of well-aligned carbon nanotubes on a large area of Co-Ni co-deposited silicon oxide substrate by thermal chemical vapor deposition
- AU Lee, C. J.; Park, J.; Kang, S. Y.; Lee, J. H.
- CS School of Electrical Engineering, Kunsan National University, Kunsan, 573-701, S. Korea
- SO Chemical Physics Letters (2000), 323(5,6), 554-559 CODEN: CHPLBC; ISSN: 0009-2614
- PB Elsevier Science B.V.
- DT Journal
- LA English
- AB The authors have grown vertically well-aligned multiwalled carbon nanotubes (CNT) on a large area of cobalt-nickel (Co-Ni) co-deposited silicon oxide substrate by thermal CVD using C2H2 gas, at 950°. The diameter of CNTs is at 50-120 nm and the length is .apprx.130 µm. The grown CNTs have a bamboo structure and closed tip with no catalytic particles inside. As the particle size of Co-Ni catalyst decreases, the vertical alignment is enhanced. The CNTs exhibits a low turn-on voltage of 0.8 V/µm with an emission c.d. of 0.1 µA cm-2.
- IT 74-36-2, Acetylene, reactions
 - RL: RCT (Peactant); RACT (Reactant or reagent)
 - (growth of well-aligned carbon nanotubes on Co-Ni co-deposited silicon oxide substrate by thermal chemical vapor deposition)
- RN 74-86-2 HCAPLUS
- CN Ethyne (CA INDEX NAME)

HC CH

RETABLE

Referenced Author	Year	VOL	PG	Referenced Work	Referenced
(RAU)	(RPY)	(RVL)	(RPG)	(RWK)	File
	-+	+====	+=====	+	-+
Bethune, D	11993	1363	1605	Nature	HCAPLUS
Fan, S	11999	1283	512	Science	HCAPLUS
Iijima, S	11991	1354	156	Nature	HCAPLUS
Iijima, S	11993	1363	1603	Nature	HCAPLUS
Journet, C	11997	1388	1756	Nature	HCAPLUS
Kawashima, Y	11999	159	162	Phys Rev B	HCAPLUS
Lee, C	11999	175	1721	Appl Phys Lett	HCAPLUS
Lee, C	11999	312	461	Chem Phys Lett	HCAPLUS
Lee, C	1	1	1	sumitted	1
Li, W	11996	1274	1701	Science	HCAPLUS
Rao, A	11997	1275	1187	Science	HCAPLUS
Ren, Z	11998	1282	11105	Science	HCAPLUS
Saito, R	11999	159	12388	Phys Rev B	HCAPLUS
Saito, Y	11993	1134	1154	J Cryst Growth	HCAPLUS

1 TTOT 1 DO

Sung, S	1999 74	1197	Appl Phys Lett	HCAPLUS
Terrones, M	1997 388	152	Nature	HCAPLUS
Thess, A	1996 273	1483	Science	HCAPLUS

L98 ANSWER 45 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

- AN 1999:443963 HCAPLUS Full-text
- DN 131:207697
- TI Controlling growth and field emission property of aligned carbon
- manetubes on porous silicon substrates
- AU Xu, Dongsheng; Guo, Guolin; Gui, Linlin; Tang, Youqi; Shi, Zujin; Jin,
- Zhaoxia; Gu, Zhennan; Liu, Weimin; Li, Xiulan; Zhang, Guanghua
- CS Institute of Physical Chemistry, Peking University, Beijing, 100871, Peop. Rep. China
- SO Applied Physics Letters (1999), 75(4), 481-483
- CODEN: APPLAB; ISSN: 0003-6951 PB American Institute of Physics
- DT Journal

AB

- LA English
 - An aligned and well-distributed carbon manotubes array was produced by prolysis of hydrocarbons catalysed by nickel nanoparticles embedded in porous silicon (PS) substrates. Scanning electron microscope images show that the nanotubes form an aligned array approx. perpendicular to the surface of the PS substrate and the diams. of most of the tubes within the array are 10-30 mm. High-magnification transmission electron microscopy images confirmed that the nanotubes are well graphitized and typically consist of about 15 concentric shells of carbon sheets. Furthermore, the strong field emission from the aligned carbon nanotubes emitter by prolysis of hydrocarbons was observed
- IT 74-85-1, Ethene, processes
 - RL: PEP (Physical, engineering or chemical process); RCT (Reactant); PROC (Process); RACT (Reactant or reagent)
 - (pyrolysis; controlling growth and field emission property of aligned carbon manotubes on porous silicon substraces)
- RN 74-85-1 HCAPLUS
- CN Ethene (CA INDEX NAME)

H2C==CH2

Referenced Author	Year	VOL PG	Referenced Work	Referenced
(RAU)	(RPY)	(RVL) (RPG)	(RWK)	File
	+====+=	+	-+	+======
Ajayan, P	1994 2	265 1212	Science	HCAPLUS
Bockrath, M	1997 2	275 1922	Science	HCAPLUS
Cullins, P	1996 6	69 1969	Appl Phys Lett	1
De Heer, W	1995 2	270 1179	Science	HCAPLUS
De Heer, W	1995 2	268 845	Science	HCAPLUS
Feng, Z	1994	1	Porous Silicon	1
Fowler, R	1928 1	119 173	Proc R Soc London Se	el .
Frank, S	1998 2	280 1744	Science	HCAPLUS
Hamada, N	1992 6	68 1579	Phys Rev Lett	HCAPLUS
Iijima, S	1991 3	354 56	Nature (London)	HCAPLUS
Li, W	1996 2	274 1701	Science	HCAPLUS
Mintmire, J	1992 6	68 631	Phys Rev Lett	HCAPLUS
Rinzler, A	1995 2	269 1550	Science	HCAPLUS
Saito, Y	1997 3	36 L1340	Jpn J Appl Phys Part	1
Saito, Y	1998 3	37 L346	Jpn J Appl Phys Part	HCAPLUS

Tans, S	1997 386	1474	Nature (London)	HCAPLUS
Terrones, M	1997 388	152	Nature (London)	HCAPLUS
Thess, A	1996 273	1483	Science	HCAPLUS
Wang, Q	1997 70	13308	Appl Phys Lett	HCAPLUS
Wang, Q	1998 72	12912	Appl Phys Lett	HCAPLUS

- L98 ANSWER 46 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 1999:391350 HCAPLUS Full-text
- DN 131:188593
- TI Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene-hydrocarbon mixtures: role of the metal
 - nanoparticles produced in situ Satishkumar, B. C.; Govindaraj, A.; Rao, C. N. R.
- CS Solid State and Structural Chemistry Unit, CSIR Centre of Excellence in
- Chemistry, Indian Institute of Science, Bangalore, India SO Chemical Physics Letters (1999), 307(3,4), 158-162
- CODEN: CHPLBC; ISSN: 0009-2614
- PB Elsevier Science B.V.
- DT Journal

AII

- LA English
- Aligned nanotube bundles were produced by the pyrolysis of ferrocene along with methane, acetylene, or butane. The nanotube bundles are associated with iron nanoparticles 2-13 mm in diameter. These nanoparticles are ferromagnetic, showing low saturation magnetization compared to bulk iron. It is suggested that the ferromagnetism of the transition metal nanoparticles may be responsible for the alignment of the nanotubes. The hydrocarbon used affected the alignment of the bundles. Ferrocene—acetylene mixts. were found to be best among those tested for the production of compact aligned nanotube bundles.
- IT 74-82-8, Methane, processes 74-86-2, Acetylene,
 - processes
 - RL: PEF (Physical, engineering or chemical process); PCT (Reactant); PROC (Process); PACT (Reactant or reagent)
 - (production of bundles of aligned carbon nanotubes by
 - the pyrolysis of ferrocene-hydrocarbon mixts. and the role of metal
- nanoparticles in their alignment)
 RN 74-82-8 HCAPLUS
- CN Methane (CA INDEX NAME)

CH4

- RN 74-86-2 HCAPLUS
- CN Ethyne (CA INDEX NAME)

HC**==** CH

NE TADDE				
Referenced Author	Year	VOL PG	Referenced Work	Referenced
(RAU)	(RPY)	(RVL) (RPG)	(RWK)	File
	++	+	+	+
Che, G	1998	10 260	Chem Mater	HCAPLUS
De Heer, W	1997	9 187	Adv Mater	HCAPLUS
De Heer, W	1996 2	270 1179	Science	
Fan, S	1999 2	283 512	Science	HCAPLUS
Li, W	1996 2	274 1701	Science	HCAPLUS

Pan, Z	11999 1299	97 Chem Phys Lett	IHCAPLUS
	11998 1282		IHCAPLUS
Ren, Z		1105 Science	
Sen, R	1997 267	276 Chem Phys Lett	HCAPLUS
Tans, S	1998 393	49 Nature (London)	HCAPLUS
Terrones, M	1998 285	299 Chem Phys Lett	HCAPLUS
Terrones, M	1997 388	52 Nature (London)	HCAPLUS

L98 ANSWER 47 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 1998:732885 HCAPLUS Full-text

DN 130:16601

TI Synthesis of large arrays of well-aligned carbon canotubes on glass

AU Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, J. H.; Bush, P.; Siegel, M. P.; Provencio, P. N.

CS Mater. Synth. Lab., Nat. Sci. Complex, Dep. Phys. Chem., Cent. Adv. Photon. Electron. Mater., State Univ. New York, Buffalo, NY, 14260-3000, USA

SO Science (Washington, D. C.) (1996), 282(5391), 1105-1107 CODEN: SCIEAS; ISSN: 0036-8075

PB American Association for the Advancement of Science

DT Journal

LA English

AB Free-standing aligned carbon manotubes have previously been grown above 700°C on mesoporous silica embedded with iron manoparticles. Here, carbon manotubes aligned over areas up to several square centimeters were grown on mickel-coated glass below 66°C by plasma-enhanced hot filament chemical vapor deposition. Acetylene gas was used as the carbon source and ammonia gas was used as a catalyst and dilution gas. Nanotubes with controllable diams. from 20 to 400 nm and lengths from 0.1 to 50 µm were obtained. Using this method, large panels of aligned carbon manotubes can be made under conditions that are suitable for device fabrication.

IT 74-86-2, Acetylene, processes

RL: PEP (Physical, engineering or chemical process); PROC (Process)

(carbon source; synthesis of large arrays of well-aligned carbon nanovubes on Ni-coated glass by plasma-enhanced hot filament CVD)

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

НС**шш** СН

Referenced Author (RAU)	Year (RPY)	VOL (RVL)	PG (RPG)	Referenced Work	Referenced File
	-+	+=====	+=====	+	+
Charlier, J	11997	1275	1646	Science	HCAPLUS
Collins, P	11997	1278	100	Science	HCAPLUS
de Heer, W	11995	1270	11179	Science	HCAPLUS
de Heer, W	11995	1268	1845	Science	HCAPLUS
Dillon, A	11997	1386	1377	Nature	HCAPLUS
Ebbesen, T	11997	1	1	Carbon Nanotubes:	Pr
Frank, S	11998	1280	1744	Science	HCAPLUS
Gadd, G	11997	1277	1933	Science	HCAPLUS
Huang, Z	1	1	1	in preparation	1
Iijima, S	11991	1354	156	Nature	HCAPLUS
Journet, C	11997	1388	1756	Nature	HCAPLUS

57

Lapp, L	1	1	product informatio	n
Li, W	1996 274	1701	Science	HCAPLUS
Liu, J	1998 280	1253	Science	HCAPLUS
Rinzler, A	1995 269	1550	Science	HCAPLUS
Terrones, M	1997 388	152	Nature	HCAPLUS
Thess, A	1996 273	1483	Science	HCAPLUS
Wang, Q	11998 172	2912	Appl Phys Lett	HCAPLUS

L98 ANSWER 48 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

- AN 1997:551293 HCAPLUS Full-text
- DN 127:167361
- TI Synthesis of carbon nanotubes over supported catalysts
- AU Fonseca, A.; Hernadi, K.; Piedigrosso, P.; Biro, L. P.; Lazarescu, S. D.; Lambin, Ph.; Thiry, P. A.; Bernaerts, D.; Nagy, J. B.
- CS Institute for Studies in Interface Science, Facultes Universitaires Notre-Dame de la Paix, Namur, B-5000, Belg.
- SO Proceedings Electrochemical Society (3957), 97-14(Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials), 884-906

CODEN: PESODO; ISSN: 0161-6374 PB Electrochemical Society

- DT Journal
- LA English
- AB Catalytic synthesis and physicochem. characterization of multi- and singlewall carbon nanotubes are presented. Supported transition metal catalysts were prepared by different methods and were tested in the production of nariotubes by decomposition of hydrocarbons at 700°C, using a fixed bed flow reactor. The quantities of deposited carbon were measured and the quality of the canotubes was characterized by means of transmission electron microscopy and scanning tunneling microscopy. The inner and outer diams. of the nanogubes were also measured and the diams. distribution histograms were established. The multi-wall straight and coiled nanotubes were found quite regular with an average inner (outer) diameter of 4-7 nm (15-25 nm) and with lengths up to 50 μm . The walls contain concentric cylindrical graphene sheets separated by the graphitic interlayer distance. Concerning the single-wall namotubes, they were found as bundles of hundreds of aligned straight 1 nm diameter sanctubes with lengths up to 1 µm. The influence of various parameters such as the way of catalyst preparation, the nature and the pore size of the support, the nature of the metal, the quantity of catalyst active passicles and the reaction conditions on the nanotubes formation were studied. Following these results, a model of growth mechanism was suggested for the nanotubes obtained by this method.
- IT 74-32-8, Methane, reactions 74-85-1, Ethene, reactions 74-86-2, Acetylene, reactions 115-07-1, Propene,

reactions

RL: RCT (Reactant); RACT (Reactant or reagent) (synthesis of carbon nanotubes over supported catalwats)

RN 74-82-8 HCAPLUS

CN Methane (CA INDEX NAME)

CH4

- RN 74-85-1 HCAPLUS
- CN Ethene (CA INDEX NAME)

H2C==CH2

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

HC==CH

RN 115-07-1 HCAPLUS

CN 1-Propene (CA INDEX NAME)

H3C-CH-CH2

RE			

RETABLE Referenced Author	Year V			Referenced
(RAU)		RVL) (RPG)	(RWK)	File
Ajayan, P	11993 21		Chem Phys Lett	HCAPLUS
Ajayan, P	11993 136			HCAPLUS
Ajavan, P	11993 136			I HCAPLUS
Ando, Y	11993 132		Jpn J Appl Phys	1
Bethune, D	11993 136		Nature	i
Ebbesen, T	11994 124			HCAPLUS
Ebbesen, T	11992 135			HCAPLUS
Ebbesen, T	11994 136		Nature	1
Fonseca, A	11995 33	11759	Carbon	HCAPLUS
Gal'Pern, E	11993 [21			HCAPLUS
Hamada, N	11992 68	11579	Phys Rev Lett	IHCAPLUS
Hatta, N	1994 21	17 398	Chem Phys Lett	HCAPLUS
Hernadi, K	1996 77	7 31	Synthetic Metals	HCAPLUS
Hernadi, K	1996 17	7 416	Zeolites	HCAPLUS
Hiura, H	1995 7	1275	Advanced Materials	HCAPLUS
Hwang, J	1993 5	1643	Adv Mat	HCAPLUS
Iijima, S	1987 91	13466	J Phys Chem	HCAPLUS
Iijima, S	1991 35		Nature	HCAPLUS
Iijima, S	1993 36	3 603	Nature	HCAPLUS
Ivanov, V	1995 33			HCAPLUS
Ivanov, V	1994 22			HCAPLUS
Kroto, H	1984 31		Nature	I
Mintmire, J	1992 68			HCAPLUS
Robertson, D	1992 45		Phys Rev B	I
Seraphin, S	1993 31			HCAPLUS
Seraphin, S	1993 36		Nature	
Smalley, R	1992	161	Proc of The Robert A	
Somorjai, G	1997 11		J Mol Cat A: Chemica	
Takaba, H	1995 3	1449	Microporous Material	
Tanaka, K	1993 1	137	Fullerene Science &	
Thess, A	1996 27	73 483	Science	HCAPLUS

L98 ANSWER 49 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 1997:382760 HCAPLUS Full-text

DN 127:112245

- TI Well-aligned graphitic panofibers synthesized by plasma-assisted chemical vapor deposition
- AU Chen, Yan; Wang, Zhong Lin; Yin, Jin Song; Johnson, David J.; Prince, R.
- CS Department of Physics and Astronomy, York University, North York, Ont., Can.
- SO Chemical Physics Letters (1997), 272(3,4), 178-182
- CODEN: CHPLBC; ISSN: 0009-2614
- PB Elsevier
- DT Journal LA English
- AB Well-aligned graphitic manofibers on a large scale have been grown on Ni(100) wafers by plasma-assisted hot filament chemical vapor deposition using a mixed gas of nitrogen and methane. A two-stage control of the plasma intensity has been used in the nucleation and growth stages of the fibers. The growth direction of the fibers is perpendicular to the substrate surface and the plasma-induced Ni particles serve as a catalyst. The diameter of the fibers is in the range 50-500 mm, mostly between 100-200 mm, controlled by the size of the nickel particles. The growth mechanism of the fibers is described based on structural information provided by SEM and transmission electron microscopy.
 - 74-82-8, Methane, processes
 - RL: PEP (Physical, engineering or chemical process); PROC (Process)
 - (carbon gas; growth of well-aligned graphitic canofibers by plasma-assisted hot-filament CVD on Ni(100) wafers using nitrogen-methane mixed gas)
- RN 74-82-8 HCAPLUS
- CN Methane (CA INDEX NAME)

CH4

Referenced Author (RAU)	(RPY) (RVL)	(RPG)		Referenced File
Ajayan, P	1994 265		Science	HCAPLUS
Amelinckx, S	1994 265	1635	Science	HCAPLUS
Bacon, R	1960 31	1283	J Appl Phys	1
Baker, R	1989 27	315	Carbon	HCAPLUS
Bethune, D	1993 363	1605	Nature	HCAPLUS
Chen, Y	1996 8	L685	J Phys Condens Matte	HCAPLUS
Chen, Y	1997 75	155	Philos Mag Lett	HCAPLUS
Davis, W	1953 171	1756	Nature	HCAPLUS
de Heer, W	1995 268	1845	Science	HCAPLUS
Dresselhaus, M	1992 358	1195	Nature	1
Ebbesen, T	1992 358	1220	Nature	HCAPLUS
Endo, M	1993 54		J Phys Chem Solids	HCAPLUS
Hoffer, L	1955 59		J Phys Chem	1
Iijima, S	1991 354		Nature	HCAPLUS
Iijima, S	1993 69	3100	Phys Rev Lett	1
Ivanov, V	1994 223	1329	Chem Phys Lett	HCAPLUS
Kim, M	1991 131	160	J Catal	HCAPLUS
Li, W	1996 274	1701	Science	HCAPLUS
Matsumoto, M	1982 71	L183	Jpn J Appl Phys	1
Mintmire, J	1992 68		Phys Rev Lett	HCAPLUS
Oberlin, A	1976 32	1335	J Crystal Growth	HCAPLUS

Wang, Z 11996 174 151 |Philos Mag B IHCAPLUS Yudasaka, M |1995 |67 |2477 |Appl Phys Lett HCAPLUS

=> d 199 bib abs hitstr retable tot

L99 ANSWER 1 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2005:1132439 HCAPLUS Full-text

DN 143:397673

TI Carbon nanotube nanoelectrode arrays

IN Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang PA The Trustees of Boston College and Battelle Memorial Institute, USA

U.S. Pat. Appl. Publ., 42 pp., Cont.-in-part of U.S. Ser. No. 424,295. CODEN: USXXCO

Patent

LA English

FAN. CNT 2

	PATENT	NO.	KIND	DATE	API	PLICATION NO.	DATE	
PI	US 200	5230270	A1	20051020	US	2004-17480	20041220	<
	US 200	4058153	A1	20040325	US	2003-424295	20030428	<
PRAI	US 200	2-376132P	P	20020429	<			
	US 200	3-424295	A2	20030428				

AB The present invention relates to microelectrode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biol. sensing, and methods of use. A namoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site d., wherein the carbon nanotubes are sligned with respect to one another within the array; an elec. insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon manotubes extend beyond the elec. insulating layer; a second adhesive elec. insulating layer on the surface of the elec. insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive elec. insulating layer; and a metal wire attached to the catalystsubstrate material.

L99 ANSWER 2 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2004:411525 HCAPLUS Full-text

DN 140:398106

TI Semiconducting boron-carbon-nitrogen three-component linear

aligned nanotubes and their manufacture

IN Banto, Yoshio; Golberg, Dmitri

PA National Institute for Research In Inorganic Materials, Japan; National Institute of Materials Science

SO Jpn. Kokai Tokkyo Koho, 7 pp.

CODEN: JKXXAF

DT Patent

LA Japanese

FAN. CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PΙ	JP 2004142958	A	20040520	JP 2002-306229	20021021 <
	JP 3616818	B2	20050202		
PF	AI JP 2002-306229		20021021	<	

The canotubes are manufactured by reacting carbon nagotubes, B203, Au203, and N at 1500-2500 K. Preferably, the carbon nanotubes are obtained by CVD. Preferably, a high-frequency induction heating furnace is used in the

61

manufacture. The parotubes with high resistance to oxidation and heat are suitable for semiconductors, flat panel displays, emitters, heat-resistant fillers, catalysts, etc.

```
L99 ANSWER 3 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
AN
    2004:289501 HCAPLUS Full-text
```

DN 140:312403

TI Method for alignment of carbon nanotubes by using

pressure-induced aligned catalysts

IN Yasui, Kosei; Kasahara, Kenji

PA Yaqisawa, Hitoshi, Japan

Jpn. Kokai Tokkyo Koho, 8 pp.

CODEN: JKXXAF DT

LA Japanese

FAN. CNT 1

	PATENT NO.	KIND	DATE	APP	LICATION NO.	DATE	
PI	JP 2004107192	A	20040408	JP	2002-307644	20020913 <-	
PRAI	JP 2002-307644		20020913	<			
AB	The process consist	s of f	orming size	- and	position-controlled	catalysts	(e

The process consists of forming size- and position-controlled catalysts (e.g., Fe, Co) or compound catalysts with substrates on substrates (e.g., Si) with a cancindenter and crystal growth by CVD or MBE from the catalysts as the starting points. Nano-patterned carbon nanotubes are obtained with low cost.

```
L99 ANSWER 4 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
```

- AN 2004:39571 HCAPLUS Full-text
- DN 140:98103
- TI Ion-beam or laser-induced modification of Fe thin film catalyst surface for selective area growth of aligned carbon nanotubes
- IN Wee, Thye Shen Andrew; Gohel, Amarsinh; Chin, Kok Chung
- PA Singapore
- SO U.S. Pat. Appl. Publ., 14 pp.
- CODEN: USXXCO DT Patent
- I.A English
- FAN.CNT 1

	PA:	TENT :	NO.			KIN	D	DATE			APPL	ICAT	ION	NO.		D	ATE		
							_												
ΡI	US	2004	0091	15		A1		2004	0115		US 2	003-	4612	51		2	0030	612 <	-
	WO	2003	1060	30		A1		2003	1224		WO 2	003-	SG14	6		2	0030	612 <	-
		W:	ΑE,	AG,	AL,	AM,	AT,	AU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	ΒZ,	CA,	CH,	CN,	
			CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FI,	GB,	GD,	GE,	GH,	
			GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KP,	KR,	KZ,	LC,	LK,	LR,	
			LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NI,	NO,	NZ,	OM,	
			PH,	PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	TJ,	TM,	TN,	TR,	TT,	
			TZ,	UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW						
		RW:	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	ΑZ,	BY,	
			KG,	ΚZ,	MD,	RU,	ΤJ,	TM,	ΑT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	
			FI,	FR,	GB,	GR,	HU,	IE,	IT,	LU,	MC,	NL,	PT,	RO,	SE,	SI,	SK,	TR,	
			BF,	ΒJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	TG	
	AU	2003	2486	02		A1		2003	1231		AU 2	003-	2486	02		2	0030	612 <	-
PRAI	US	2002	-387	920P		P		2002	0613	<-	-								
	WO	2003	-SG1	46		W		2003	0612										

Catalysis for use in production of carbon massembes are prepared by subjecting a thin film of a cataivtic metal (such as Fe) on a support (such as Si) to selective mech. or electromagnetic modification to enhance the grain size of

the metal. Selective area growth of carbon panetubes on a substrate bearing a catalyst thin film comprises contacting the modified thin film catalyst with a carbon source (such as hydrocarbons, methane or acetylene) under pressure and temperature conditions which promote carbon nanotube synthesis. The surfacemodified deposited carbon nanotubes are suitable for the manufacture of displays (such as field emission displays), electronic and micro-electromech. devices.

74-82-8, Methane, processes 74-85-1, Ethene, processes

74-86-2, Ethyne, processes RL: PEF (Physical, engineering or chemical process); PYP

(Physical process); PROC (Process)

(carbon source; ion-beam or laser-induced modification of Fe thin film catalyst surface for selective area growth of aligned

carbon nanotubes)

74-82-8 HCAPLUS RN

CN Methane (CA INDEX NAME)

RN 74-85-1 HCAPLUS

Ethene (CA INDEX NAME) CN

H2C==CH2

74-86-2 HCAPLUS RN

CN Ethyne (CA INDEX NAME)

нс сн

L99 ANSWER 5 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2003:697124 HCAPLUS Full-text

DN 139:218043

TΙ Direct synthesis of long single-walled carbon nanotube strands

IN Ajayan, Pulickel M.; Wei, Bingqing; Zhu, Hongwei; Xu, Cailu; Wu, Dehai

Rensselaer Polytechnic Institute, USA; Tsinghua University PA

SO PCT Int. Appl., 32 pp.

CODEN: PIXXD2

DT Patent English

LA

FAN.CNT 2

	PA:	TENT I	NO.			KIN	D	DATE			APPL	ICAT	ION	NO.		D	ATE		
							_									-			
PI	WO	2003	0728	59		A1		2003	0904		WO 2	003-	US55	29		2	0030	224 <	_
		W:	ΑE,	AG,	AL,	AM,	AT,	AU,	AZ,	BA,	BB,	BG,	BR,	BY,	BZ,	CA,	CH,	CN,	
			CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FI,	GB,	GD,	GE,	GH,	
			GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KP,	KR,	KZ,	LC,	LK,	LR,	
			LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NO,	NZ,	OM,	PH,	
			PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	TJ,	TM,	TN,	TR,	TT,	TZ,	
			UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW							
		RW:	GH.	GM.	KE.	LS.	MW.	MZ.	SD.	SL.	SZ.	TZ.	UG.	ZM.	ZW.	AM.	AZ.	BY.	

FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR, BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG 20020222 <--CN 1365946 Α 20020828 CN 2002-100684 AU 2003216383 20030909 AU 2003-216383 20030224 <--A1 PRAI CN 2002-100684 Α 20020222 <--US 2002-368230P Ρ 20020328 <--WO 2003-US5529 W 20030224

KG, KZ, MD, RU, TJ, TM, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES,

AB Long, macroscopic nanotube strands or cables, up to several tens of centimeters in length, of aligned single-walled nanotubes are synthesized by the catalytic pyrolysis of n-hexane using an enhanced vertical floating catalyst CVD technique. The long strands of nanotubes assemble continuously from ropes or arrays of nanotubes, which are intrinsically long. These directly synthesized long nanotube strands or cables can be easily manipulated using macroscopic tools.

110-54-3, n-Hexane, reactions

RL: RCT (Peactant); RACT (Reactant or reagent)

(direct synthesis of long single-walled carbon nanotube strands)

RM 110-54-3 HCAPLUS

Hexane (CA INDEX NAME) CN

Me-(CH2)4-Me

RETABLE

Referenced Author (RAU)	Year VOL (RPY) (RVL			Referenced File
	-++	-+	-+	+=======
Baker	1995	1	US 5458784 A	HCAPLUS
Cheng	1998 72	3282	Applied Physics Lett	HCAPLUS
Cheng	1998 289	1602	Chemcial Physics Let	HCAPLUS
Resasco	12001 I	1	IUS 6333016 B1	LHCAPLUS

- L99 ANSWER 6 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2003:696100 HCAPLUS Full-text
- 139:221724 DN
- TΙ Field emission displays, cold cathodes therefor showing uniform emission performance and high field intensity, and manufacture thereof
- IN Inoue, Hiroshi; Muroyama, Masakazu
- PA Sony Corp., Japan
- Jpn. Kokai Tokkyo Koho, 19 pp. SO
- CODEN: JKXXAF
- DT Parent.
- LA Japanese
- FAN.CNT 1

		PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
Ε	PI	JP 2003249162	A	20030905	JP 2002-46647	20020222 <
		JP 3852692	B2	20061206		
	TEGG	TD 0000 10017		20020222		

20020222 <--PRAI JP 2002-46647

The cathodes have, on supports, sequential layers of cathodes and conductive mask layers [of numerical aperture (NA) 10-70%] containing (perpendicularly aligned) nano-sized tubular or fibrous emitters in apertures in good in-plane uniformity. The masks may be coated on surface with catalyst layers (e.g., Ni, Mo, Co, Pt, Fe, their allows) for CVD growth of the emitters (e.g., carbon). After the CVD, a-C deposited at around emitters may be eliminated by plasma discharge in H(q).

```
IT 64-17-5, Ethanol, processes 67-56-1, Methanol, processes
    67-64-1, Acetone, processes 74-82-8, Methane, processes
    74-85-1, Ethylene, processes 74-86-2, Acetylene,
    processes 108-88-3, Toluene, processes
    RL: CPS (Chemical process); PEP (Physical, engineering or
    chemical process); TEM (Technical or engineered material use); PROC
    (Process); USES (Uses)
       (CVD sources; cold cathodes having carbon nano
       -emitters in good in-plane uniformity for field emission displays)
RN 64-17-5 HCAPLUS
CN Ethanol (CA INDEX NAME)
H3C-CH2-OH
RN 67-56-1 HCAPLUS
CN
    Methanol (CA INDEX NAME)
нас-он
RN 67-64-1 HCAPLUS
CN 2-Propanone (CA INDEX NAME)
RN 74-82-8 HCAPLUS
CN Methane (CA INDEX NAME)
CH4
   74-85-1 HCAPLUS
RN
CN Ethene (CA INDEX NAME)
H2C==CH2
RN 74-86-2 HCAPLUS
CN
   Ethyne (CA INDEX NAME)
нс сн
```

CN Benzene, methyl- (CA INDEX NAME)


```
L99 ANSWER 7 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
```

AN 2003:610011 HCAPLUS Full-text

DN 139:119375

TI Controlled alignment of catalytically grown

nanostructures in a large-scale synthesis process

Merkulov, Vladimir I.; Melechko, Anatoli V.; Guillorn, Michael A.; Lowndes, Douglas H.; Simpson, Michael L.

PA UT-Battelle, LLC, USA

SO U.S. Pat. Appl. Publ., 18 pp.

CODEN: USXXCO

DT Patent

LA English FAN.CNT 1

r Alv.	PA	TENT						DATE				ICAT					ATE		
PI	US	2003	1485	77		A1												206 <-	
		6958						2005											
	WO	2004	0000	03		A2		2003	1231		WO 2	003-	US33	87		2	0030	205 <-	
	WO	2004	0000	03		A3		2005	0106										
		W:	ΑE,	AG,	AL,	AM,	AT,	AU,	ΑZ,	BA,	BB,	BG,	BR,	BY,	ΒZ,	CA,	CH,	CN,	
			CO,	CR,	CU,	CZ,	DE,	DK,	DM,	DZ,	EC,	EE,	ES,	FI,	GB,	GD,	GE,	GH,	
			GM,	HR,	HU,	ID,	IL,	IN,	IS,	JP,	KE,	KG,	KP,	KR,	KZ,	LC,	LK,	LR,	
			LS,	LT,	LU,	LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NO,	NZ,	OM,	PH,	
			PL,	PT,	RO,	RU,	SC,	SD,	SE,	SG,	SK,	SL,	TJ,	TM,	TN,	TR,	TT,	TZ,	
			UA,	UG,	US,	UZ,	VC,	VN,	YU,	ZA,	ZM,	ZW							
		RW:	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZM,	ZW,	AM,	AZ,	BY,	
			KG,	KZ,	MD,	RU,	TJ,	TM,	AT,	BE,	BG,	CH,	CY,	CZ,	DE,	DK,	EE,	ES,	
			FI,	FR,	GB,	GR,	HU,	IE,	IT,	LU,	MC,	NL,	PT,	SE,	SI,	SK,	TR,	BF,	
			ВJ,	CF,	CG,	CI,	CM,	GA,	GN,	GQ,	GW,	ML,	MR,	NE,	SN,	TD,	TG		
	AU	2003	2697	99		A1		2004	0106		AU 2	003-	2697	99		2	0030	205 <-	
	EP	1515	700			A2		2005	0323		EP 2	003-	7517	36		2	0030	205 <-	
		R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,	
			IE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	AL,	TR,	BG,	CZ,	EE,	HU,	SK		
	US	2005	1705	53		A1		2005	0804		US 2	005-	8909	8		2	0050	324 <-	
	US	7245	068			B2		2007	0717										
	US	2005	1676	51		A1		2005	0804		US 2	005-	8909	9		2	0050	324 <-	
PRAI	US	2002	-687	95		A		2002	0206	<-	_								
	WO	2003	-US3	387		W		2003	0205										

AB The invention relates to a method for controlled alignment of catalytically grown nanostructures in a large-scale synthesis process. A method includes: generating an elec. field proximate an edge of a protruding section of an electrode, the elec. field defining a vector; and forming an elongated nanostructure located at a position on a surface of a substrate, the position on the surface of the substrate proximate the edge of the protruding section of the electrode, at least one tangent to the elongated nanostructure substantially parallel to the vector defined by the elec. field and substantially non-parallel to a normal defined by the surface of the substrate.

RETABLE

Referenced Author | Year | VOL | PG | Referenced Work | Referenced

(RAU)	(RPY) (RVL)			File
Anon	11998	i	JP 10-203810	IHCAPLUS
Anon	i1999 i	i	IWO 9940812	i
Anon	12000 i	i	IWO 00009443	IHCAPLUS
Anon	[2001]	i	EP 1129990 A1	HCAPLUS
Anon	2001	i	JP 20-01052598	HCAPLUS
Anyuan Cao	2001 36	2519	Materials Research	3
Awano	[2002]	1	US 20020163079 A1	HCAPLUS
Baker	1988 27	315	Carbon	1
Bower	2003	1	US 6630772 B1	HCAPLUS
Chen	12000 76	2469	Applied Physics Lett	HCAPLUS
Cheol Jin Lee	2001 39	1891	Carbon	1
Choi	1999 75	3129	Applied Physics Lett	HCAPLUS
Collins	2001 292	706	www.science.org	HCAPLUS
Cuomo	2004	I	US 6692568 B2	HCAPLUS
Gersonde	2001	I	US 6183817 B1	HCAPLUS
Guillom	2001	1573	Journal of Vacuum Sc	:1
Jackson	[2003]	1	US 6536106 B1	HCAPLUS
Lee	2002	I	US 6447663 B1	HCAPLUS
Lee	2004	I	US 6755956 B2	HCAPLUS
Merkulov	179	2970	Applied Physics Lett	
Merkulov		3555	Applied Physics Lett	
Merkulov		1178	Applied Physics Lett	
Ren		1086	Applied Physics Lett	
Rueckes		194	www.science.org	HCAPLUS
Steven		3453	Applied Physics Lett	
Yeugang Zhang	2001 79	I	Applied Physics Lett	:1

- L99 ANSWER 8 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- 2003:609840 HCAPLUS Full-text
- 139:166506 DN
- Process for producing aligned carbon nanotube films
- IN Someya, Masao; Fujii, Takashi; Hirata, Masukazu; Horiuchi, Shigeo
- PA Mitsubishi Gas Chemical Company, Inc., Japan
- SO U.S. Pat. Appl. Publ., 9 pp.
- CODEN: USXXCO Patent
- DT LA English

E MIN	·CNI Z				
	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2003147801	A1	20030807	US 2002-61218	20020204 <
	US 6967013	B2	20051122		
	JP 2002338221	A	20021127	JP 2001-372026	20011031 <
	JP 3912583	B2	20070509		
PRA	I JP 2001-120357	A	20010314	<	
	JP 2001-372026	A	20011031	<	

AB A process for producing aligned carbon nanotube films, wherein a carbon compound is decomposed using a substrate (e.g., ceramic sheet) that is coated with an element having no catalytic ability by itself and which loads a metallic element having catalytic ability or a compound thereof, thereby forming a film of fine carbon nanotubes on the surface of the substrate which are aligned in a direction perpendicular to the substrate. The element having no Catalytic ability by itself is at least one element of Groups IVA, VA, IIIB and IVB, e.g., Al or Ge. The metallic element having catalytic ability is at least one metallic element of Groups VIA, VIIA and VIII, e.g., Co. 115-07-1, Propylene, reactions

RL: RCT (Reactant); RACT (Reactant or reagent) (process for producing aligned carbon nanotube films on a ceramic support)

RN 115-07-1 HCAPLUS

CN 1-Propene (CA INDEX NAME)

H3C-CH-CH2

RETABLE

Referenced Author (RAU)	Year VOL (RPY) (RVL)	(RPG)	(RWK)	Referenced File
3 1 to 4 to 6	1981	+=====	-+	
Alkaitis		!		HCAPLUS
Bower	2001	!	US 6277318 B1	HCAPLUS
Dai	2001	1	US 6232706 B1	HCAPLUS
Dai	2002		US 6401526 B1	HCAPLUS
Hafner	2002	1	US 20020112814 A1	
Iijima	1998	1	US 5747161 A	HCAPLUS
Iijima	1991 354	156	Nature	HCAPLUS
Iwasaki	2001	1	US 6278231 B1	1
Kind	2000 16	16877	Langmuir	HCAPLUS
Lee	2002	1	US 6350488 B1	HCAPLUS
Lee	2003	1	US 6514113 B1	HCAPLUS
Lee	2000 323	554	Chemical Physics Let	HCAPLUS
Li	1999 75	1367	Applied Physics Lett	HCAPLUS
Li	1996 274	1701	Science	HCAPLUS
Moskovits	2000	1	US 6129901 A	HCAPLUS
Nature	1998 394	631	Nature	1
Ohki	2003	1	US 6545396 B1	HCAPLUS
Ren	[2003]	1	US 20030203139 A1	1
Tennent	1987	1	US 4663230 A	HCAPLUS
Terrones	1997 388	152	Nature	HCAPLUS

- L99 ANSWER 9 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- 2003:421234 HCAPLUS Full-text AN
- DN 138:377530
- TI Process for preparing aligned carbon nanotubes and metal nanolines in the nanotubes
- IN Shr, Han-Jang; Tsai, Shang-Hua; Jau, Jr-Wei; Li, Jau-Lin
- PA Taiwan
- Taiwan, 4 pp. SO
 - CODEN: TWXXA5
- Patient. LA Chinese

DT

AB

- FAN.CNT 1

PATENT NO.		KIND	DATE	APPLICATION NO.	DATE	
PI	TW 444067	В	20010701	TW 1999-88109351	19990605 <	
PRAT	TW 1999-88109351		19990605	<		

Carbon nanotube with internal metallic nanowire is fabricated by using metalcoated metallic compound as a substrate in a microwave plasma and depositing carbon-containing material on its surface by CVD. Multiple carbon manorubes perpendicular to the substrate are formed on the substrate, with metal nanowire in the nanotone. The metal wire can be transition metal or transition metal alloys. The microwave plasma is characterized by microwave power rating of 100 .apprx. 5000W, pressure of 1+10-3 .apprx. 100 to rr and d.c. bias potential of -50 to -100 v. Pb3Si, cobalt carbide and nickel carbide were used as the metallic nanowire percursor. Ethane, propane, acetylene and

benzene or their mixture were used as precursor for carbon nanotube deposition.

71-43-2, Benzene, reactions 74-84-0, Ethane, reactions 74-86-2, Acetylene, reactions 74-98-6, Propane, reactions

RL: RCT (Peactant); RACT (Peactant or reagent) (deposition of carbon nanotubes with internal metallic canowires.)

RN 71-43-2 HCAPLUS

CN Benzene (CA INDEX NAME)

RN 74-84-0 HCAPLUS

CN Ethane (CA INDEX NAME)

H3C-CH3

74-86-2 HCAPLUS RN

CN Ethyne (CA INDEX NAME)

HC CH

74-98-6 HCAPLUS RN

CN Propane (CA INDEX NAME)

H3C-CH2-CH3

L99 ANSWER 10 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

2003:376120 HCAPLUS Full-text AN

DN 138:389465

TΙ Manufacture of fullerenes, carbon nanotubes and micro-cones

using a CVD plasma processing

IN Lynum, Steinar; Hugdahl, Jan; Hox, Ketil; Hildrum, Ragne; Nordvik, Magne

PA Norway

SO U.S. Pat. Appl. Publ., 13 pp., Cont.-in-part of U.S. Ser. No. 400,530, abandoned.

CODEN: USXXCO

DT Patent

LA English

FAN.CNT 1

PATENT NO.		KIND	DATE	APPLICATION NO.	DATE	
PI	US 2003091495	A1	20030515	US 2002-277134	20021022 <	

PRAI US 1999-400530 B2 19990921 <--

The invention relates to a method for producing novel micro-domain graphitic materials by using a plasma process. By micro-domain graphitic material we mean fullerenes, carbon nanotubes, open conical carbon structures (also named micro-cones), preferably flat graphitic sheets, or a mixture thereof. The novel carbon material consists of open carbon micro-cones with total disclination degrees of 60° and/or 120°, corresponding to cone angles of resp. 112.9° and/or 83.6°. Heavy fuel oil was heated to 160° and introduced in the reactor using axial aligned nozzle at a feed rate of 115 kg per h. The reactor pressure was 2 bar. The hydrogen plasma gas feed rate was 450 Nm3/h, while the gross power of supply from the plasma generator was 1005 kW. This resulted in plasma gas enthalpy of 2.2 kWh/Nm3. The time elapsed from the oil was introduced until the polycyclic aromatic hydrocarbons (PAN) left the reactor was approx. 0.16 s. The resulting PAH were reintroduced into the reactor in the plasma-arc zone to produce a micro-domain graphitic material, with a vield >90%.

L99 ANSWER 11 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

2002:823644 HCAPLUS Full-text AN

DN 138:129693

ΤI Nitrogen induced structure control of vertically aligned carbon nanotubes synthesized by microwave plasma enhanced chemical vapor deposition

ΑU Lee, Jeong Young: Lee, Byung Soo

CS Semiconductor Physics Research Center, Department of Semiconductor Science and Technology, Chonbuk National University, Jeonju, 561-756, S. Korea

SO Thin Solid Films (2002), 418(2), 85-88

CODEN: THSFAP: ISSN: 0040-6090 PR Elsevier Science B.V.

DT Journal

LA English

AB Vertically aligned C nanotubes (CNT) were synthesized on Ni/Si substrates using microwave plasma-enhanced CVD, and the effects of N in the gas mixture of CH4+H2+N2 on the growth rate and the diameter of the nanotubes were studied. The growth rate and the diameter of CNT were systematically controlled by controlling the N content in the feed gas. With increasing the N content in the feed gas, the growth rate of the nanotubes increased, whereas the diameter decreased except for the case when N was not introduced. A model of roles of N in terms of etching C and Ni catalyst metal was suggested.

74-82-8, Methane, processes

RL: CP3 (Chemical process); NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)

(precursor; nitrogen induced structure control of vertically aligned carbon nanotubes synthesized by microwave

plasma enhanced chemical vapor deposition)

74-82-8 HCAPLUS RN

CN Methane (CA INDEX NAME)

CH4

Referenced Author (RAU)	Year VOL (RPY) (RVL)	(RPG)	Referenced Work	Referenced File
Choi, Y	2000 76		Appl Phys Lett	HCAPLUS

Fan, S	1999 283	512	Science	HCAPLUS
Jin, S	1994 65	1403	Appl Phys Lett	HCAPLUS
Journet, C	1997 388	1756	Nature	HCAPLUS
Lee, C	1999 75	1721	Appl Phys Lett	HCAPLUS
Li, W	1996 274	1701	Science	HCAPLUS
Ma, X	1999 75	3105	Appl Phys Lett	HCAPLUS
Ma, X	2000 77	4136	Appl Phys Lett	HCAPLUS
Ma, X	2001 78	1978	Appl Phys Lett	HCAPLUS
Muller-Sebert, W	1996 68	1759	Appl Phys Lett	1
Ren, Z	1998 282	1105	Science	HCAPLUS
Terrones, M	1997 388	152	Nature	HCAPLUS
Thess, A	1996 273	1483	Science	HCAPLUS
Tsang, R	1997 6	1247	Diam Relat Mater	HCAPLUS

L99 ANSWER 12 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2002:820613 HCAPLUS Full-text

DN 138:115585

TI Electric-field-aligned growth of single-walled carbon nanotubes on surfaces

AU Ural, Ant; Li, Yiming; Dai, Hongjie

CS Department of Chemistry and Laboratory for Advanced Materials, Stanford University, Stanford, CA, 94305, USA

SO Applied Physics Letters (2002), 81(18), 3464-3466

CODEN: APPLAB; ISSN: 0003-6951

nanotubes for mol. electronics.

PB American Institute of Physics

DT Journal LA English

All Aligned single-walled C nanotubes are grown onto the surfaces of SiO2/Si substrates in elec. fields established across patterned metal electrodes. Calons, of the elec. field distribution under the designed electrode structures, the directing ability of elec. fields, and the prevention of surface van der Waals interactions were used to rationalize the aligned growth. The capability of synthesizing oriented single-walled nanotubes on surfaces shall open up many opportunities in organized architectures of

carbon manotubes on surfaces of silica/silicon substrates)

RN 74-82-8 HCAPLUS

CN Methane (CA INDEX NAME)

CH4

RN 74-85-1 HCAPLUS

CN Ethene (CA INDEX NAME)

H2C==CH2

RETABLE

Referenced Author | Year | VOL | PG | Referenced Work | Referenced

71

	(RAU)			(RPG)	(RWK)	File
Benedict,		11995		8541	Phys Rev B	HCAPLUS
Dai, H		12001	180	129	Carbon Nanotubes	HCAPLUS
Dai, H		12002	1500	1218	Surf Sci	HCAPLUS
Diehl, M		2001	41	1353	Angew Chem Int Ed Er	1
Franklin,	N	12002	81	1913	Appl Phys Lett	HCAPLUS
Kong, J		1998	1395	1878	Nature (London)	HCAPLUS
Li, Y		2001	1105	111424	J Phys Chem	HCAPLUS
Tombler,	T	12000	1405	1769	Nature (London)	HCAPLUS
Zhang, Y		2001	179	3155	Appl Phys Lett	HCAPLUS

- L99 ANSWER 13 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2002:679674 HCAPLUS Full-text
- DN 137:356842
- TI Formation of carbon manofiber films by RF magnetron sputtering method
- AU Honda, S.; Lee, K.-Y.; Fujimoto, K.; Tsuji, K.; Ohkura, S.; Katayama, M.; Hirao, T.; Oura, K.
- CS Graduate School of Engineering, Department of Electronic Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
- SO Physica B: Condensed Matter (Amsterdam, Netherlands) (2002), 323(1-4), 347-349
- CODEN: PHYBE3; ISSN: 0921-4526
- PB Elsevier Science B.V.
- DT Journal
- LA English
- AB Carbon nanofiber thin films were successfully grown by the unique method of RF magnetron sputtering with hot filament which enables us to control the alignment, diameter, and d. of the nanofiber.

RETABLE

Referenced Author (RAU)	Year VOL PG (RPY) (RVL) (RPG)	Referenced Work (RWK)	Referenced File
	-+++	=+=========	==+=======
Avigal, Y	2001 78 2291	Appl Phys Lett	HCAPLUS
Fan, S	2000 8 179	Physica E	HCAPLUS
Iijima, S	1991 354 56	Nature	HCAPLUS

- L99 ANSWER 14 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2002:638162 HCAPLUS Full-text
- DN 137:161728
- TI Process for controlled introduction of defects in elongated nanostructures
- IN Bower, Christopher A.; Jin, Sungho; Zhu, Wei
- PA USA
- SO U.S. Pat. Appl. Publ., 17 pp., Cont.-in-part of U.S. Ser. No. 512,873. CODEN: USXXCO
- DT Patent
- LA English
- FAN.CNT 2

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI	US 2002114949	A1	20020822	US 2002-74128	20020212 <
	CA 2331278	A1	20010825	CA 2001-2331278	20010117 <
	JP 2001262343	A	20010926	JP 2001-45300	20010221 <
PRAT	IIS 2000-512873	Δ2	20000225	<	

AB The invention provides a process capable of providing elongated nanostractures conformably slighed perpendicular to the local surface, while also allowing control over the diameter, length, and location. The process also permits controllably introducing defects at desired locations along the length.

72

Conformably aligned straight sections are grown under the influence of an elec. field and curly defect regions are grown after switching off the field. A preferred embodiment uses high frequency plasma enhanced CVD (PECVD), typically with microwave-ignited plasma. The extraordinarily high extent of conformal alignment-on both flat and nonflat surface-appears to be due to the elec. self-bias imposed on the substrate by the plasma, the field line of which is perpendicular to the substrate surface. In addition to the conformal orientation, by selecting a particular thickness for the catalyst layer, it was possible to obtain manotubes of a desired diameter, while the length of the nanostructure is determined by the duration of the PECVD process. And, by patterning the catalyst metal, it is possible to form nanostructures in particular locations on a substrate.

74-86-2, Acetylene, processes

RL: CPS (Chemical process); PEP (Physical, engineering or

chemical process); PROC (Process)

(process for controlled introduction of defects in elongated panostructures)

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

нс сн

- L99 ANSWER 15 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2002:631325 HCAPLUS Full-text
- DN 137:327043
- TI Rapid growth of well-aligned carbon nanotube arrays
- AU Zhang, Xianfeng; Cao, Anyuan; Wei, Bingqing; Li, Yanhui; Wei, Jinquan; Xu, Cailu; Wu, Dehai
- CS State Key Laboratory of Auto. Safety and Energy, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, Peop. Rep. China
- SO Chemical Physics Letters (2002), 362(3,4), 285-290 CODEN: CHPLBC: ISSN: 0009-2614
- PB Elsevier Science B.V.
- DT Journal
- LA English
- AB Vertically aligned carbon nanotube arrays with high d. were synthesized on large-area (100 + 40 mm2) quartz substrates by catalytic decomposition of a ferrocene-xylene mixture at 850° in a quartz tube reactor. The nanotubes grow at a high growth rate of .appxx.50 µm/min, and reach 1.5 mm in length in 30 min. SEM and transmission electron microscopy investigations reveal that the nanotubes are high-purity multi-wall carbon nanotubes with well-ordered graphene sheets, and about 30-60 nm in diameter This provides a simple way to synthesize well-aligned carbon nanotubes in large areas. A continuous rapid growth model is suggested for the carbon nanotubes obtained by high growth rate under our exptl. conditions.
- IT 1330-20-7, Xvlene, reactions

RL: CPS (Chemical process); PEP (Physical, engineering or chemical process); RCT (Peactant); PROC (Process);

FACT (Reactant or reagent)

(rapid growth of well-aligned carbon nanotube

arrays by satalytic decomposition of ferrocene-xylene mixture)

RN 1330-20-7 HCAPLUS

CN Benzene, dimethyl- (CA INDEX NAME)

2 (D1-Me)

RETABLE

Referenced Author (RAU)	(RPY) (RVL) (RPG)		Referenced File
Andrews, R	11999 303 467		HCAPLUS
Bower, C	12000 177 1830		HCAPLUS
Cao, A	12001 139 1152		HCAPLUS
Cao, A	2001 335 150		HCAPLUS
Cao, A	12001 1342 1510	Chem Phys Lett	HCAPLUS
de Heer, W	11995 1270 11179	IScience	HCAPLUS
de Heer, W	1995 268 845	Science	HCAPLUS
Delanev, P	1998 391 466	Nature	HCAPLUS
Dillon, A	1997 386 377	Nature	HCAPLUS
Ebbesen, T	1997 191	Carbon Nanotubes: F	r
Ebbesen, T	1996 382 54	Nature	HCAPLUS
Fan, S	1999 283 512	Science	HCAPLUS
Iijima, S	1991 354 56	Nature	HCAPLUS
Kong, J	2000 287 622	Science	HCAPLUS
Li, W	1996 274 1701	Science	HCAPLUS
Pan, Z	1998 394 631	Nature	HCAPLUS
Rao, C	1998 15 1525	Chem Commun	
Ren, Z	1998 282 1105	Science	HCAPLUS
Rinzler, A	1995 269 1550	Science	HCAPLUS
Terrones, M	1997 388 52	Nature	HCAPLUS

- L99 ANSWER 16 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2002:581027 HCAPLUS Full-text
- DN 137:313047
- TI Carbon nanotubes produced by tungsten-based catalyst
- using vapor phase deposition method
- AU Lee, Cheol Jin; Lyu, Seung Chul; Kim, Hyoun-Woo; Park, Jong Wan; Jung, Hyun Min; Park, Jaiwook
- CS Department of Nanotechnology, Hanyang University, Seongdong-gu, Seoul, 133-791, S. Korea
- SO Chemical Physics Letters (2002), 361(5,6), 469-472 CODEN: CHPLBC: ISSN: 0009-2614
- PB Elsevier Science B.V.
- DT Journal
- LA English
- AB We have demonstrated that W-based catalysts can produce carbon manotubes effectively. Well-aligned, high-purity carbon manotubes were synthesized using the catalystic reaction of C2H2 and W(CO)6 mixts. The carbon manotubes had a multiwalled structure with a hollow inside. The graphite sheets of carbon manotubes were highly crystalline but the outmost graphite sheets were defective.
- IT 74-96-2, Acetylene, reactions

RL: CFS (Chemical process); PEF (Physical, engineering or chemical process); PCT (Reactant); PROC (Process);

RACT (Reactant or reagent)

(production of carbon nanotubes from acetylene using

tungsten-based catalyst by vapor phase deposition method)

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

HC==CH

Referenced Author (RAU)		RVL) (RPG)	Referenced Work (RWK)	Referenced File
Andersson, M	2000 1		J Mater Res	HCAPLUS
Andrews, R	11999 3		Chem Phys Lett	HCAPLUS
Bethune, D	1993 3		Nature	HCAPLUS
Cao, A	2001 3	35 150	Chem Phys Lett	HCAPLUS
Chen, P	1999 2	85 91	Science	HCAPLUS
Cheng, H	1998 2	89 602	Chem Phys Lett	HCAPLUS
Dai, H	1996 2	60 471	Chem Phys Lett	HCAPLUS
Dai, H	1996 3		Nature	HCAPLUS
DePablo, P	1999 7-	4 323	Appl Phys Lett	HCAPLUS
de Heer, W	1995 2	70 1179	Science	HCAPLUS
Fan, S	1999 2	83 512	Science	HCAPLUS
Harris, P	1999		Carbon Nanotubes and	
Iijima, S	1991 3		Nature	HCAPLUS
Kiang, C	1996 5			HCAPLUS
Lee, C	1999 7		Appl Phys Lett	HCAPLUS
Lee, C	2000 3		Chem Phys Lett	HCAPLUS
Lee, C	2001 3		Chem Phys Lett	HCAPLUS
Lee, C	2002 3		Chem Phys Lett	HCAPLUS
Lefrant, S	1999 1		Synth Met	HCAPLUS
Liu, C			Science	HCAPLUS
Mayne, M			Chem Phys Lett	HCAPLUS
Ren, Z	1998 2		Science	HCAPLUS
Rohmund, F	2000 3		Chem Phys Lett	HCAPLUS
Saito, Y	1998 2		Chem Phys Lett	HCAPLUS
Saito, Y	1997 3		Nature	HCAPLUS
Satishkumar, B	1999 3		Chem Phys Lett	HCAPLUS
Sen, R	1997 2		Chem Phys Lett	HCAPLUS
Seraphin, S	1994 6		Appl Phys Lett	HCAPLUS
Takizawa, M	12000 13		Chem Phys Lett	HCAPLUS
Wal, R	2001 3		Carbon	
Wei, Y	2000 7		Appl Phys Lett	HCAPLUS
Zhang, Y	1999 1	87 213	Appl Catal A	HCAPLUS

- L99 ANSWER 17 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2002:580994 HCAPLUS Full-text
- DN 138:94048
- TI Growth rate of plasma-synthesized vertically aligned carbon namofibers
- AU Merkulov, Vladimir I.; Melechko, A. V.; Guillorn, M. A.; Lowndes, D. H.; Simpson, M. L.
- CS Molecular Scale Engineering and Nanoscale Technologies Research Group, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- SO Chemical Physics Letters (2002), 361(5,6), 492-498 CODEN: CHPLBC; ISSN: 0009-2614
- PB Elsevier Science B.V.
- DT Journal
- LA English

AB Vertically aligned carbon nanofibers (VACNFs) were synthesized by d.c. plasma enhanced chemical vapor deposition using acetylene and ammonia as the gass source. The mechanisms responsible for changing the nanofiber growth rate were studied and phenomenol. models are proposed. The feedstock for VACNF growth is suggested to consist mainly of radicals formed in the plasma and not the unexcited acetylene gas mols. The growth rate is shown to increase dramatically by changing the radical transport mechanism from diffusive to forced flow, which was accomplished by increasing the gas flow in the direction perpendicular to the substrate.

Referenced Author (RAU)	Year VOL (RPY) (RVL)	(RPG)		Referenced File
Alstrup, I	1988 109	241	J Catalysis	HCAPLUS
Baker, R	1989 27	315	Carbon	HCAPLUS
Baker, R	1980 64	464	J Catalysis	HCAPLUS
Bower, C	12000 77	2767	Appl Phys Lett	HCAPLUS
Bower, C	12000 77	1830	Appl Phys Lett	HCAPLUS
Chhowalla, M	2001 90	5308	J Appl Phys	HCAPLUS
Cui, H	2000 88	16072	J Appl Phys	HCAPLUS
Delzeit, L	2002 91	16027	J Appl Phys	HCAPLUS
Guillorn, M	2001 79	3506	Appl Phys Lett	HCAPLUS
Guillorn, M	2002 91	3824	J Appl Phys	HCAPLUS
Huang, Z	1998 73	3845	Appl Phys Lett	HCAPLUS
Jensen, F	1997	1	Plasma-enhanced Cher	n
Merkulov, V	2000 76	3555	Appl Phys Lett	HCAPLUS
Merkulov, V	2001 79	11178	Appl Phys Lett	HCAPLUS
Merkulov, V	2001 79	2970	Appl Phys Lett	HCAPLUS
Merkulov, V	2001 80	476	Appl Phys Lett	1
Merkulov, V	2002 80	4816	Appl Phys Lett	HCAPLUS
Merkulov, V	2001 350	381	Chem Phys Lett	HCAPLUS
Merkulov, V	1 1	1	J Phys Chem B submit	:
Nolan, D	1998 102	4165	J Phys Chem B	1
Pirio, G	2001 13	1	Nanotechnology	1
Ren, Z	1998 282	1105	Science	HCAPLUS
Teo, K	2001 79	1534	Appl Phys Lett	HCAPLUS

- L99 ANSWER 18 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2002:474524 HCAPLUS Full-text
- DN 137:171827
- TI Large-scale production of aligned carbon nanotubes by
 - the vapor phase growth method
- AU Lee, Cheol Jin; Lyu, Seung Chul; Kim, Hyoun-Woo; Park, Chong-Yun; Yang, Cheol-Woong
- CS Department of Nanotechnology, Hanyang University, Seongdong-gu, Seoul, 133-791, S. Korea
- SO Chemical Physics Letters (2002), 359(1,2), 109-114
- CODEN: CHPLBC; ISSN: 0009-2614
- PB Elsevier Science B.V.
- DT Journal
- LA English
- AB Aligned multiwalled carbon nanotubes have been massively synthesized by pyrolygis of iron pentacarbonyl and acetylene mixts. in a simply designed horizontal quartz tube reactor. The growth rate and the crystallinity of carbon nanotubes were enhanced by increasing the flow rate of Ar carrier gas. The growth rate, by adopting acetylene direct bubbling, was dramatically increased compared with Ar direct bubbling; maximum length of 2000 µm was achieved.
- IT 74-86-2, Acetylene, reactions RL: CPS (Chemical process); PEF (Physical, engineering or

chamical process; RCT (Reactant); PROC (Process); RACT (Reactant or reagent)

(large-scale production of aligned carbon nanotabes by vapor phase growth method using)

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

HC==CH

Referenced Author (RAU)	Year VOL (RPY) (RVL) (Referenced File
Andrews, R	1999 303 4	67 Chem Phys Lett	HCAPLUS
Bethune, D	1998 391 4	66 Nature	1
Chen, P	1999 285 9	1 Science	HCAPLUS
Cheng, H	1998 289 6	02 Chem Phys Lett	HCAPLUS
Dai, H	1996 384 1	47 Nature	HCAPLUS
de Heer, W	1995 270 1	179 Science	HCAPLUS
Delaney, P		66 Nature	HCAPLUS
Fan, S		12 Science	HCAPLUS
Iijima, S		6 Nature	HCAPLUS
Journet, C		56 Nature	HCAPLUS
Kamalakaran, R		385 Appl Phys Lett	HCAPLUS
Lee, C		61 Chem Phys Lett	HCAPLUS
Lee, C		60 Chem Phys Lett	HCAPLUS
Liu, C		.127 Science	HCAPLUS
Mayne, M		.01 Chem Phys Lett	HCAPLUS
Pan, Z		32 Nature	1
Qin, L		437 Appl Phys Lett	HCAPLUS
Ren, Z		.105 Science	HCAPLUS
Rohmund, F		69 Chem Phys Lett	HCAPLUS
Saito, Y		54 Nature	HCAPLUS
Satishkumar, B		.58 Chem Phys Lett	HCAPLUS
Sen, R		76 Chem Phys Lett	HCAPLUS
Terrones, M		2 Nature	HCAPLUS
Thess, A		83 Science	HCAPLUS
Treacy, M		78 Nature	HCAPLUS
Tuinstra, F		.126 J Chem Phys	HCAPLUS
Whitney, T	1993 261 1	.316 Science	HCAPLUS

- L99 ANSWER 19 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2002:473703 HCAPLUS Full-text
- DN 137:225092
- TI Oxygen and ozone oxidation-enhanced field emission of carbon nanotubes
- AU Kung, Sheng-Chin; Hwang, Kuo Chu; Lin, I. Nan
- CS Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan
- SO Applied Physics Letters (2002), 80(25), 4819-4821
 - CODEN: APPLAB; ISSN: 0003-6951
- PB American Institute of Physics
- DT Journal
- LA English
- AB Vertically aligned carbon nanotube (CNT) arrays were grown on p-type silicon wafer using acetylene and iron phthalocyanine as the sources of hydrocarbons and catalysts, resp. The CNT arrays were treated by chemical reagents, such as oxygen (02), ozone (03), bromine, and acids. When treated by 02 and 03,

the emission current of the CNT array was increased .apprx.800% along with a decrease of the onset field emission voltage from 0.8 to 0.6 V/ μ m. Other chemical treatments, e.g., bromination and acid oxidation, lead to poorer field emission performance. The effects of these chemical processes on the field emission properties of CNT arrays will be discussed.

IT 74-86-2, Acetylene, processes

RI: CPS (Chemical process); PEP (Physical, engineering or chemical process); RCT (Reactant); PROC (Process); RACT (Peactant or reagent)

(growing of vertically aligned carbon nanotube

arrays on p-type silicon wafer using acetylene and iron phthalocyanine as hydrocarbon source and catalyst)

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

HC**≡**CH

RETABLE Referenced Author | Year | VOL | PG | Referenced Work | Referenced

(RAU)	(RPY)	(RVL)	(RPG)		File
	+====	+====	+=====		
Anon	12000	13.00	1045	http://www.aip.org/p	
Bonard, J	11999		1245	Appl Phys A: Mater S	
Choi, W				Jpn J Appl Phys Part	
Chung, D		18		J Vac Sci Technol B	
Chung, D	12000		11054	J Vac Sci Technol B	
de Heer, W		1270		Science	HCAPLUS
Deng, J	11997		11033	Fullerene Sci Techno	
Fan, S		1283		Science	HCAPLUS
Hernadi, K		141-1		Solid State Ionics	
Huang, S	1999		14223	J Phys Chem B	HCAPLUS
Kwo, J		19		Diamond Relat Mater	
Lee, C		312		Chem Phys Lett	HCAPLUS
Lee, C		326		Chem Phys Lett	HCAPLUS
Lee, C	2000	323	554	Chem Phys Lett	HCAPLUS
Lee, R	11997	1388	255	Nature	HCAPLUS
Li, D	12000	176	3813	Chem Phys Lett	1
Li, W	11997	170	2684	Appl Phys Lett	HCAPLUS
Li, W	11996	1274	1701	Science	HCAPLUS
Murray, R	11968	1	313	Acc Chem Res	HCAPLUS
Pan, Z	11999	1299	197	Chem Phys Lett	HCAPLUS
Pan, Z	2001	105	1519	J Phys Chem B	HCAPLUS
Rao, A	2000	176	3813	Appl Phys Lett	HCAPLUS
Ren, Z	1998	282	1105	Science	HCAPLUS
Rinzler, A	1995	1269	1550	Science	HCAPLUS
Sung, S	1999	174	197	Appl Phys Lett	HCAPLUS
Tsai, S	11999	174	3462	Appl Phys Lett	HCAPLUS
Wang, W	1997	70	3308	Appl Phys Lett	İ
Yang, Y	1999	121		J Am Chem Soc	HCAPLUS
Yoshida, Y	2000	122	7244	J Am Chem Soc	HCAPLUS

L99 ANSWER 20 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2002:473702 HCAPLUS Full-text

DN 137:97484

TI Controlled alignment of carbon nanofibers in a large-scale synthesis process

AU Merkulov, Vladimir I.; Melechko, A. V.; Guillorn, M. A.; Simpson, M. L.;

- Lowndes, D. H.; Whealton, J. H.; Raridon, R. J.
- CS Molecular Scale Engineering and Nanoscale Technologies (MENT), Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
- SO Applied Physics Letters (2001), 80(25), 4816-4818 CODEN: APPLAB; ISSN: 0003-6951
- PB American Institute of Physics
- DT Journal
- LA English
- AB Controlled alignment of catalytically grown carbon nanofibers (CNFs) at a variable angle to the substrate during a plasma-enhanced chemical vapor deposition process is achieved. The CNF alignment is controlled by the direction of the elec. field lines during the synthesis process. Off normal CNF orientations are achieved by positioning the sample in the vicinity of geometrical features of the sample holder, where bending of the elec. field lines occurs. The controlled growth of kinked CNFs that consist of two parts aligned at different angles to the substrate normal also is demonstrated.

Referenced Author (RAU)	Year VOL PG (RPY) (RVL) (RPG)	Referenced Work (RWK)	Referenced File
Baker, R		Carbon	IHCAPLUS
Bower, C	12000 177 1830	Appl Phys Lett	IHCAPLUS
Chen, Y		Appl Phys Lett	HCAPLUS
Chhowala, M	2001 90 5308	J Appl Phys	
Choi, W	1999 75 3129	Appl Phys Lett	HCAPLUS
Collins, P	2001 292 706	Science	HCAPLUS
Guillorn, M	2001 79 3506	Appl Phys Lett	HCAPLUS
Guillorn, M	2002 91 3824	J Appl Phys	HCAPLUS
Harris, P	1999	Carbon Nanotubes an	nd
Merkulov, V	2000 76 3555	Appl Phys Lett	HCAPLUS
Merkulov, V	2001 79 1178	Appl Phys Lett	HCAPLUS
Merkulov, V	2001 79 2970	Appl Phys Lett	HCAPLUS
Merkulov, V	2002 80 476	Appl Phys Lett	HCAPLUS
Merkulov, V	2001 350 381	Chem Phys Lett	HCAPLUS
Ren, Z	1998 282 1105	Science	HCAPLUS
Rueckes, T	2000 289 94	Science	HCAPLUS
Snow, E	2002 80 2002	Appl Phys Lett	HCAPLUS
Zhang, Y	2001 79 3155	Appl Phys Lett	HCAPLUS

- L99 ANSWER 21 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2002:436050 HCAPLUS Full-text
- DN 137:128615
- TI Tubes on tube a novel form of aligned carbon nanotubes
- AU Tsai, Shang-Hua; Shiu, Chen-Tien; Lai, Shih-Hsiang; Shih, Han-Chang
- CS Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
- SO Carbon (2002), 40(9), 1597-1600
- CODEN: CRBNAH; ISSN: 0008-6223
- PB Elsevier Science Ltd.
- DT Journal
- LA English
- AB The synthesis of highly oriented and multi-branched C nanotubes on Pd deposited Si substrates by microwave plasma enhanced chemical vapor deposition is reported. CH4 gas is used to provide C for the nanotube growth and H2 is the diluent medium. This synthesis has tremendous potential for nanotechnol., since the fabrication of connections between two or more different C nanotubes is an important step in the development of C nanotube-based electronic devices and circuits.
- II 74-82-8, Methane, processes
 RL: CPS (Chemical process); NUU (Other use, unclassified);

PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)

(microwave plasma-enhanced CVD of carbon nanotubes)

RN 74-82-8 HCAPLUS

CN Methane (CA INDEX NAME)

CH

RETABLE

Referenced Author	Year VOL PG	Referenced Work	Referenced
(RAU)	(RPY) (RVL) (RPG)	(RWK)	File
	-++=+	-+	+
Choi, W	1999 75 3129	Appl Phys Lett	HCAPLUS
Collins, P	1997 278 100	Science	HCAPLUS
Deheer, W	1995 270 1179		HCAPLUS
Falvo, M	1997 389 582	Nature (London)	MEDLINE
Fan, S	1999 283 512	Science	HCAPLUS
Li, J	1999 402 253	Nature (London)	HCAPLUS
Mao, J	1998 72 3297	Appl Phys Lett	HCAPLUS
Nagy, P	2000 70 481	Appl Phys A	HCAPLUS
Rao, A	2000 76 3813	Appl Phys Lett	HCAPLUS
Treacy, M	1996 381 678	Nature (London)	HCAPLUS
Treboux, G	1999 103 10378	J Phys Chem B	HCAPLUS
Tsai, S	1999 74 3462	Appl Phys Lett	HCAPLUS
Tsai, S	2000 38 1899	Carbon	HCAPLUS
Wang, Z	1998 102 6145	J Phys Chem B	HCAPLUS
Zhou, D	1995 238 286	Chem Phys Lett	1
Zhu, W	1999 75 873	Appl Phys Lett	HCAPLUS

L99 ANSWER 22 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2002:412822 HCAPLUS Full-text

DN 137:9655

TI Carbon manotube synthesis using mesoporous silica templates

AU Zheng, Feng; Liang, Liang; Gao, Yufei; Sukamto, Johanes H.; Aardahl, Christopher L.

CS Pacific Northwest National Laboratory, Richland, WA, 99352, USA SO Nano Letters (2002), 2(7), 729-732

CODEN: NALEFD; ISSN: 1530-6984

PB American Chemical Society

DT Journal

LA English

AR

Well-aligned carbon nanotubes (CNTs) were grown on mesoporous silica films by CVD. Ethylene was used as the carbon source and CVD was performed at 1023 K and atmospheric pressure. The films were doped with Fe during sol-gel synthesis, and 3 different structure directing agents were used for mesoporous silica preparation: polyoxyethylene (10) cetyl ether (C16E010), Pluronic triblock copolymer (P123), and cetyltriethylammonium chloride (CTAC). A high degree of CNT alignment on C16E010 mesoporous silica films was produced at Fe:Si molar ratio of 1:80. Similar silgnment of CNTs was achieved in the other prepns. but on CTAC-derived films CNTs only grew parallel to the substrate surface because the in-plane arrangement of the CNTs can be controlled by changing the Fe concentration in the mesoporous silica substrate.

IT 74-85-1, Ethylene, reactions

RL: PCT (Reactant); PACT (Reactant or reagent;

(in preparation of carbon manotubes by CVD using mesoporous silica

templates) RN 74-85-1 HCAPLUS

CN Ethene (CA INDEX NAME)

H2C-CH2

RETABLE

Referenced Author		PG Referenced Work RPG) (RWK)	Referenced File
(RAU)	(RPY) (RVL) (
	-++	+	+======
Cassell, A	2001 17 2	60 Langmuir	HCAPLUS
Kukovecz, A	2000 2 3	071 Phys Chem Chem Phys	HCAPLUS
Kyotani, T	1996 8 2	109 Chem Mater	HCAPLUS
Li, W	1996 274 1	701 Science	HCAPLUS
Raman, N	1996 8 1	682 Chem Mater	HCAPLUS
Xie, S	2000 61 1	153 J Phys Chem Solids	HCAPLUS
Xie, S	2000 A286 1	1 Mater Sci Eng	HCAPLUS
Yang, H	1996 379 7	03 Nature	HCAPLUS
Zhang, W	1999 9 1	803 Chem Commun	1
Zhao, D	1998 120 6	024 J Am Chem Soc	HCAPLUS
Zhena, G	12001 113 12	240 Chem Mater	IHCAPLUS

- L99 ANSWER 23 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2002:357823 HCAPLUS Full-text
- DN 137:81010
- TI Direct synthesis of long single-walled carbon nanosube strands
- AU Zhu, H. W.; Xu, C. L.; Wu, D. H.; Wei, B. Q.; Vajtai, R.; Ajayan, P. M.
- CS Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, Peop. Rep. China
- SO Science (Washington, DC, United States) (2002), 296(5569), 884-886
 - CODEN: SCIEAS; ISSN: 0036-8075
- PB American Association for the Advancement of Science
- DT Journal

AB

- LA English
 - In the processes that are used to produce single-walled manotubes (elec. arc, laser ablation, and chemical vapor deposition), the typical lengths of tanged manotube bundles reach several tens of micrometers. We report that long manotube strands, up to several centimeters in length, consisting of aligned single-walled manotubes can be synthesized by the catalytic pyrolysis of n-hexane with an enhanced vertical floating technique. The long strands of manotubes assemble continuously from arrays of manotubes, which are intrinsically long.
- IT 110-54-3, n-Hexane, processes
 - RL: CFG (Chemical process); PEF (Physical, engineering or chemical process); PROC (Process)
 - (direct synthesis of long single-walled carbon nanctube strands by catalytic pyrolysis of n-hexane)
- RN 110-54-3 HCAPLUS
- CN Hexane (CA INDEX NAME)

Me-(CH2)4-Me

Referenced Author (RAU)	(RPY)	(RVL)	(RPG)		Referenced
Andrews, R	11999				HCAPLUS
Baughman, R	11999	1284	1340	Science	HCAPLUS
Cheng, H	11998	172	13282	Appl Phys Lett	HCAPLUS
Cheng, H	1998	1289	1602	Chem Phys Lett	HCAPLUS
Ci, L	2000	138	1933	Carbon	HCAPLUS
Endo, M	1993	54	1841	J Phys Chem Solids	HCAPLUS
Fischer, J	1997	155	R4921	Phys Rev B	HCAPLUS
Forro, L	2001	1	1329	Carbon Nanotubes:Syn	HCAPLUS
Iijima, S	1991	354	156	Nature	HCAPLUS
Launois, P	2001	1	125	J Nanosci Nanotechno	HCAPLUS
Li, F	12000	177	3161	Appl Phys Lett	HCAPLUS
Lu, J	1997	179	1297	Phys Rev Lett	HCAPLUS
Pan, Z	1998	1394	631	Nature	HCAPLUS
Rols, R	1999	10	1263	Eur Phys J B	I
Thess, A	1996	1273	1483	Science	HCAPLUS
Treacy, M	1996	381	1678	Nature	HCAPLUS
Vigolo, B	12000	1290	1331	Science	HCAPLUS
Wong, E	1997	1277	1971	Science	HCAPLUS
Yu, M	12000	84	5552	Phys Rev Lett	HCAPLUS
Zhang, P	1998	81	5346	Phys Rev Lett	HCAPLUS

- L99 ANSWER 24 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2002:257135 HCAPLUS Full-text
- DN 136:313802
- тт Well-aligned carbon nanofibers synthesized by electron cyclotron resonance chemical vapor deposition
- Hoshi, Fumiyuki; Tsugawa, Kazuo; Goto, Akiko; Ishikura, Takefumi; Yamashita, Satoshi; Yumura, Motoo; Hirao, Takashi; Fujiwara, Shuzou; Koga, Yoshinori
- CS FCT Research Laboratory, JFCC, NIMC, Japan
- SO Materials Research Society Symposium Proceedings (2001), 633 (Nanotubes and Related Materials), A6.2.1-A6.2.6 CODEN: MRSPDH; ISSN: 0272-9172
- PB Materials Research Society
- DT Journal
- LA English

AB

Aligned carbon manofibers and hollow carbon manofibers were grown by MW ECR-CVD method using methane and argon mixture gas at the temperature of 550°C. Carbon manofibers and hollow carbon manofibers were deposited perpendicularly on Si substrate and on Si substrate coated with Ni catalyst, resp. Raman spectra of aligned carbon nanofibers and hollow carbon nanofibers showed new bands of 1340 and 1612 cm-1 of the first-order Raman scattering and 2660, 2940 and 3220 cm-1 of the second-order Raman scattering. The second-order Raman scattering bands were assigned to two overtone and one combination bands on the basis of a similar assignment of micro crystal graphite. Combination bands are unusually intense. Field emitter characteristics of the wellaligned carbon nanofibers and hollow carbon nanofibers were investigated and the current densities were 7.25 mA/cm2 and 0.69 mA/cm2 at 12.5 V/µm, resp.

Referenced Author (RAU)	Year VOL (RPY) (RVL		Referenced Work	Referenced
(IGIO)				
Baker, F	1974 7	12105	J Phys D	HCAPLUS
Endo, F	1999 14	14474	J Mater Res	1
Ferrari, A	2000 B61	14095	Phys Rev	1
Iijima, S	1991 354	156	Nature	HCAPLUS
Nemanich, R	1978 B20	1392	Phys Rev	1

Rao, A	1977 275	1187	Science	1
Saito, Y	1998 A67	195	Appl Phys	1
Tan, P	11977 128	1369	LJ Raman Spectr	- 1

L99 ANSWER 25 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2002:218975 HCAPLUS Full-text

DN 136:333701

TI Micropatterned vertically aligned carbon-nanotube

growth on a Si surface or inside trenches

AU Sohn, Jung Inn; Lee, Seonghoon

CS Department of Materials Science and Engineering, Kwangju Institute of Science and Technology (K-JIST), Kwangju, 500-712, S. Korea

SO Applied Physics A: Materials Science & Processing (2002), 74(2), 287-290

CODEN: APAMFC; ISSN: 0947-8396

PB Springer-Verlag

DT Journal

LA English

The good field-emission properties of C nanotubes coupled with their high mech. strength, chemical stability, and high aspect ratio, make them ideal candidates for the construction of efficient and inexpensive field-emission electronic devices. The fabrication process reported here has considerable potential for use in the development of integrated radiofrequency amplifiers or field-emission-controllable cold-electron guns for field-emission displays. This fabrication process is compatible with currently used semiconductor-processing technologies. Micropatterned vertically aligned C nanotubes were grown on a planar Si surface or inside trenches, using CVD, photolithog., pulsed-laser deposition, reactive ion etching, and the lift-off method. This C- nanotube fabrication process can be widely applied for the development of electronic devices using C-nanotube field-emitting electronic devices.

IT 74-86-2, Acetylene, processes

RL: CPS (Chemical process); NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)

(for micropatterned vertically aligned carbonnanotube growth on silicon surface or inside trenches for field emitters)

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

HC CH

Referenced Author	Year VOL PG	1 1	Referenced
(RAU)	(RPY) (RVL) (RPG)		File
Brodie, I	11995 138 1541 11999 175 13129 11995 1270 11179 11999 1283 1512 11999 1286 11127	Int J Electron	
Choi, W		Appl Phys Lett	HCAPLUS
de Heer, W		Science	HCAPLUS
Fan, S		Science	HCAPLUS
Liu, C		Science	HCAPLUS
Rao, A Ren, Z Rinzler, A Ruoff, R Saito, R	2000 76	Appl Phys Lett Science Science Carbon Physical Properties	HCAPLUS HCAPLUS HCAPLUS

Sohn, J	12001 178	1901 Appl Phys Lett	IHCAPLUS
Spindt, C	11997	1200 Tech Dig IVMC '97	
Suh, J	11999 175	12047 Appl Phys Lett	HCAPLUS
Tans, S	1998 393	49 Nature	HCAPLUS
Treachy, M	1996 381	678 Nature	i i
Zhu, W	1999 75	873 Appl Phys Lett	HCAPLUS

- L99 ANSWER 26 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2002:114014 HCAPLUS Full-text
- DN 136:159188
- TI Process for synthesizing one-dimensional nanosubstances by electron cyclotron resonance chemical vapor deposition
- IN Shih, Han-Chang; Sung, Shing-Li; Tsai, Shang-Hua
- PA Taiwan
- SO U.S., 12 pp.
- CODEN: USXXAM
- LA English
- FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PΙ	US 6346303	B1	20020212	US 1999-311598	19990514 <
	TW 452604	В	20010901	TW 1999-88100434	19990111 <
PRAI	TW 1999-88100434	A	19990111	<	

AB The present invention provides a process for synthesizing 1-dimensional nanosubstances. A membrane having channels serves as the host material for the synthesis. The anodic membrane is brought into contact with a microwave excited plasma of a precursor gas using an electron cyclotron resonance CVV (ECR-CVV) system. Parallel aligned nanosubstances can be synthesized in the channels of the membrane over a large area. C nitride nanosubstances are synthesized successfully for the lst time in the present invention.

RETABLE

	Year VOL		eferenced Work (RWK)	Referenced
Anon	1999	JP	411139821 A	L
Borghs	1998	US	5779802 A	HCAPLUS
Miyamoto	2000	US	6157043 A	1
Zettl	12000 I	I IUS	6063243 A	IHCAPLUS

L99 ANSWER 27 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

- AN 2001:935221 HCAPLUS Full-text
- DN 136:265246
- TI Large scale synthesis of carbon nanotubes and their composite
 - materials
- AU Nagy, J. B.; Fonseca, A.; Pierard, N.; Willems, I.; Bister, G.; Pirlot, C.; Demortier, A.; Delhalle, J.; Mekhalif, Z.; Niesz, K.; Bossuot, Ch.; Pirard, J.-P.; Biro, L. P.; Konya, Z.; Colomer, J.-F.; Van Tendeloo, G.; Kiricsi, I.
- CS Facultes Universitaires Notre-Dame de la Paix, Namur, B-5000, Belg.
- SO AIP Conference Proceedings (2061), 591(Electronic Properties of Molecular Nanostructures), 483-488 CODEN: APCPCS; ISSN: 0094-243X
- PB American Institute of Physics
- DT Journal
- LA English
- AB MgO supported transition metal catalysts are systems for possible large-scale synthesis of carbon nanotubes. Indeed, the catalytic decomposition of acetylene at high temps. Leads to the formation of thin multi-wall carbon

nanotubes with inner and outer diams. in the range of 2-4 and 5-9 mm, resp. The decomposition of methane, on the other hand, produces bundles and isolated single-wall nanotubes of high purity. Typically, the diams. of these isolated nanotubes are 1-5 mm. For the single-wall nanotubes aligned in the bundles, the diams. vary between 0.8 and 2 nm. The specimens were characterized by TEM, and high-resolution electron microscopy. The purity of the nanotubes was evaluated by proton induced x-ray emission and by thermal anal. The manotubes were cut mech. in a ball mill, and the introduction of various functional groups was determined by XFS. Finally, a homogeneous mixture of carbon nanotubes and polyacrylonitrile was prepared as a composite.

IT 74-82-8, Methane, reactions 74-36-2, Acetylene, reactions

RL: PCT (Reactant); RACT (Reactant or reagent) (large-scale synthesis of carbon nanotubes by using catalytic decomposition of)

RN 74-82-8 HCAPLUS

CN Methane (CA INDEX NAME)

CH4

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

HC CH

KETHODE				
Referenced Author	Year VO	L PG	Referenced Work	Referenced
(RAU)	(RPY) (RV)	.) L (RPG)	(RWK)	File
(1410)				
			•	•
Bacsa, R	2000 323	1566	Chem Phys Lett	HCAPLUS
Biro, L	2001	1	Electronic Propertion	e l
Bister, G	2001	1	Electronic Propertion	e
Bossuot, C	2001	1	Electronic Propertion	e
Colomer, J	2000 317	183	Chem Phys Lett	HCAPLUS
Dettlaf, U	2001	1	Electronic Propertion	e
Ebbesen, T	1992 358	1220	Nature	HCAPLUS
Ivanov, V	1994 223	1329	Chem Phys Lett	HCAPLUS
Mukhopadhyay, K	1999 303	117	Chem Phys Lett	HCAPLUS
Pierard, N	2001 335	1	Chem Phys Lett	HCAPLUS
Siska, A	2001	1	Electronic Propertion	e
Thess, A	1996 273	1483	Science	HCAPLUS
Willems, I	2000 317	71	Chem Phys Lett	HCAPLUS
Zhang, A	1999 29	1383	Microporous and Mes	o HCAPLUS

- L99 ANSWER 28 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2001:935150 HCAPLUS Full-text
- DN 136:394767
- TI Synthesis and characterization of carbon manotubes
- AU Ritschel, Manfred; Bartsch, Karl; Leonhardt, Albrecht; Graff, Andreas; Taschner, Christine; Fink, Jorg
- CS IFW Dresden, Institute for Solid State Research, Dresden, D-01069, Germany
- 80 AIP Conference Proceedings (2601), 591(Electronic Properties of Molecular Nanostructures), 163-166 CODEN: APCPCS; ISSN: 0094-243X

- PB American Institute of Physics
- DT Journal
- LA English
- OS CASREACT 136:394767
- AB The catalytic CVD (CCVD) is a very promising process with respect to large scale production of different kinds of carbon nanostructures. By modifying the deposition temperature, the catalysm material and the hydrocarbon nanofibers with herringbone structure, multi-walled nanotubes with tubular structure and single-walled nanotubes were deposited. Also, layers of aligned multi-walled nanotubes could be obtained on oxidized silicon substrates coated with thin sputtered metal layers (Co, permalloy) as well as onto WC-Co hardmetals by using the microwave assisted plasma CVD process (MWCVD). The obtained carbon modifications were characterized by scanning (SEM) and transmission (TEM) electron microscopy. The hydrogen storage capability of the nanotibers and nanotubes and the electron field emission of the nanotube layers was investigated.
- IT 71-43-2, Benzene, reactions 74-85-1, Ethylene, reactions
 RL: RCT (Reactant); RACT (Reactant or reagent)

(reactant for preparation of carbon nanotubes by catalytic CVD)

RN 71-43-2 HCAPLUS

CN Benzene (CA INDEX NAME)

RN 74-85-1 HCAPLUS

CN Ethene (CA INDEX NAME)

H2C==CH2

IT 74-82-8, Methane, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)

(reactant for preparation of carbon nanotubes by catalytic

CVD or microwave assisted plasma CVD)

RN 74-82-8 HCAPLUS

CN Methane (CA INDEX NAME)

CH4

Referenced Author			Referenced Work	Referenced
(RAU)	(RPY) (RVL)			File
	-+	+=====	-+	-+
Bonard, J	1	1	Solid State Electron	n
Chambers, A	1998 102	14253	J Phys Chem B	HCAPLUS
Choi, W	1999 75	3129	Appl Phys Letters	HCAPLUS
Dillon, A	1997 386	1377	Nature	HCAPLUS
Rodriguez, N	1993 8	13233	J Mater Res	HCAPLUS

Saito, Y | 1998 | 73 | 1 | Ultramicroscopy | HCAPLUS

- L99 ANSWER 29 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2001:929160 HCAPLUS Full-text
- DN 136:394762
- TI Synthesis of aligned carbon nanotubes by C2H2 decomposition on Fe(CO)5 as a gatalyst precursor
- AU Han, J. H.; Yoo, J. E.; Yoo, S. C.; Lee, C. J.; Lee, K-H.
- CS Nanotechnology Center, Iljin Nanotech Co., Ltd., Seoul, 157-810, S. Korea
- SO AIP Conference Proceedings (2001), 590(Nanonetwork Materials), 59-62
- CODEN: APCPCS; ISSN: 0094-243X PB American Institute of Physics
- DT Journal
- LA English
- AB Aligned carbon nanotubes are simply synthesized in a single step by the thermal decomposition of gaseous mixture of CZH2 and Fe(CO)5 as a catalyst precursor. Multi-walled carbon nanotubes were produced on the most of the heated zone of the furnace with high packing d. The diameter and length is 20-50nm and .apprx.55 µm, resp. The flow rate and temperature plays critical role in the synthesis of carbon magnetubes.
- IT 74-86-2, Acetylene, reactions
 - RL: RCT (Reactant); RACT (Reactant or reagent)
 - (preparation of aligned carbon nanotubes by acetylene decomposition on Fe(CO)5 as a catalyst precursor)
- RN 74-86-2 HCAPLUS
- CN Ethyne (CA INDEX NAME)

нс сн

RETABLE

Referenced Author (RAU)	(RPY) (RVL) (RPG)		Referenced File
Cheng, H Nikolaev, P	1998 72 3282 1999 313 91	Appl Phys Letters	HCAPLUS HCAPLUS
Satishkumar, B	1999 307 158	Chem Phys Letters	HCAPLUS

- L99 ANSWER 30 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2001:876585 HCAPLUS Full-text
- DN 135:379820
- TI Method of growth of branched carbon nanotubes and devices produced from the branched nanotubes
- IN Li, Jing; Papadopoulos, Christo; Xu, Jingming
- PA The Governing Council of the University of Toronto, Can.
- SO U.S., 15 pp. CODEN: USXXAM
- DT Patent
- LA English
- FAN.CNT 1

PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PI US 6325909	B1	20011204	US 1999-453810	19991203 <
PRAT HS 1999-155636P	P	19990924	<	

AB A method of producing Y-junction carbon sanotubes. An alumina template with branched growth channels is produced after which individual Y-junction carbon sanotubes are grown directly by pyrolysis of acetylene using cobalt catalysis.

The use of a branched growth channel allows the natural simultaneous formation of a very large number of individual but well-aligned three-port Y-junction carbon nanotubes with excellent uniformity and control over the length (up to several tens µm) and diameter (15-100 nm) of the "stem" and "branches" sep. These Y-junctions offer the nanosectronics community a new base material for mol. scale electronic devices including for example transistors and rectifiers.

IT 74-86-2, Acetylene, processes

RL: PEF (Physical, engineering or chemical process); PCT (Reactant); PROC (Process); RACT (Reactant or reagent)

(growth of branched carbon nanotubes by pyrolysis of) 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

нс==сн

RN

RETABLE

Referenced Author (RAU)	Year VOL		Referenced Work	Referenced
(1010)	-+	+=====	+	+=======
Ajayan	11995 I	i	IUS 5457343	IHCAPLUS
Anon	11998 19	1153	Nano-technology	1
Anon	11996 53	111108		i
Anon	1996 53	2044	Physical Review B	i
Anon	1996 76	1971	Physical Review Lett	:1
Anon	1997 79	4453	Physical Review Lett	:1
Anon	1997 278	100	wwwsciencemag.org	- 1
Baker	1995	1	US 5413866	HCAPLUS
Furneaux	1987	1	US 4687551	HCAPLUS
Iijima	1998	1	US 5747161	HCAPLUS
Iijima	1998		US 5830326	HCAPLUS
Ohta	1996	1	US 5489477	HCAPLUS
Olk	1998		US 5753088	HCAPLUS

- L99 ANSWER 31 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2001:853926 HCAPLUS Full-text
- DN 136:176362
- TI Well-ordered Co nanowire arrays for aligned carbon
- nanotube arrays
- AU Lee, Jin Seung; Gu, Geun Hoi; Kim, Hoseong; Suh, Jung Sang; Han, Intaek; Lee, Nae Sung; Kim, Jong Min; Park, Gyeong-Su
- CS School of Chemistry and Molecular Engineering, Seoul National University, Seoul, 151-747, S. Korea
- SO Synthetic Metals (2001), 124(2-3), 307-310 CODEN: SYMEDZ; ISSN: 0379-6779
- PB Elsevier Science S.A.
- DT Journal
- DI JOURNAL
- LA English

AB

Mell-ordered Co nanowire arrays formed on the porous anodic aluminum oxide (AAO) templates prepared by a two-step anodization technique were used in the fabrication of well-aligned carbon nanotubes. Designed Co nanowire arrays can be made by controlling the pore arrays on AAO templates. By using them as a catalyst it is possible to fabricate the designed carbon nanotube arrays. Carbon nanotubes fabricated by disproportionation of CO were well graphitized, uniform in diameter and aligned vertically with respect to the plane of the template. Probably CO is an ideal precursor in fabrication of carbon nanotubes.

- IT 530-08-0, Carbon monoxide, reactions
 - RL: PCT (Reactant); PACT (Reactant or reagent) (well-ordered cobalt nanowire arrays for aligned carbon nanotube arrays formed on porous anodic alumina templates)
- RN 630-08-0 HCAPLUS
- CN Carbon monoxide (CA INDEX NAME)

Referenced Author (RAU)	Year VO: (RPY) (RV:	L) (RPG)	(RWK)	Referenced File
Ago, H	12000 177			HCAPLUS
Almawlawi, D	11991 170		J Appl Phys	HCAPLUS
Chen, P	1997 35	1495	Carbon	HCAPLUS
Chen, P	2000 38	139	Carbon	HCAPLUS
de Heer, W	1995 270	1179	Science	HCAPLUS
Diggle, J	1969 69	1365	Chem Rev	HCAPLUS
Fan, S	1999 283	512	Science	HCAPLUS
Iijma, S	1991 354	156	Nature	1
Kitiyanan, B	2000 317	1497	Chem Phys Lett	HCAPLUS
Kong, J	1998 395	1878	Nature	HCAPLUS
Marta, G	1994 1	163	Topics Catal	1
Masuda, H	1996 35	L126	Jpn J Appl Phys	HCAPLUS
Pingheng, T	1997 28	1369	J Raman Spectr	1
Ren, Z	1998 282	1105	Science	HCAPLUS
Suh, J	1999 75	12047	Appl Phys Lett	HCAPLUS
Sung, S	1999 74	197	Appl Phys Lett	HCAPLUS
Tan, P	1999 74	1818	Appl Phys Lett	HCAPLUS
Terrones, M	1997 388	152	Nature	HCAPLUS
Treacy, M	1996 381	1678	Nature	HCAPLUS
Tuinstra, F	1970 53	1126	J Chem Phys	HCAPLUS
Walters, D	1999 74	13803	Appl Phys Lett	HCAPLUS
Zhu, W	1999 75	1873	Appl Phys Lett	HCAPLUS

- L99 ANSWER 32 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2001:826223 HCAPLUS Full-text
- DN 136:154955
- TI Growing pillars of densely packed carbon nanotubes on Ni-coated silica
- SIIICa
- AU Wei, B. Q.; Zhang, Z. J.; Ajayan, P. M.; Ramanath, G.
- CS Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- SO Carbon (2002), 40(1), 47-51
- CODEN: CRBNAH; ISSN: 0008-6223
- PB Elsevier Science Ltd.
- DT Journal
- LA English
- AB We report the growth of pillar-like cylindrical structures consisting of densely packed and vertically aligned multi-walled carbon nanotubes by exposing Ni-coated oxidized-Si (001) substrates to a xylene-ferrocene mixture. The nanotube pillars have a diameter between 10 and 100 µm, and lengths of several tens of micrometers. Formation of circular microcracks in the film allows ferrocene and xylene mols. to reach the underlying 5102 layer where

pillars nucleate and grow out of the plane of the film surface. The nanotube pillars are attractive for applications such as energy storage, electrodes, and composite reinforcements.

IT 1330-20-7, Xylene, processes

RL: PEP (Physical, engineering or chemical process); PYP

(Physical process); PROC (Process)

(xylene-ferrocene mixture; growing pillars of densely packed carbon nanotubes on nickel-coated silica)

RN 1330-20-7 HCAPLUS

CN Benzene, dimethyl- (CA INDEX NAME)

2 (D1-Me)

RETABLE

Referenced Author (RAU)	Year VOL PO (RPY) (RVL) (RE	PG) (RWK)	Referenced File
			==+=======
Chou, S	1999 B17 319		I
Dai, H	1996 272 523	3 Science	HCAPLUS
Ebbesen, T	1996 382 54	Nature	HCAPLUS
Fan, S	1999 283 512	2 Science	HCAPLUS
Fruchart, O	1999 83 276	59 Phys Rev Lett	HCAPLUS
Hamada, N	1992 68 15	79 Phys Rev Lett	HCAPLUS
Kong, J	1998 395 878	3 Nature	HCAPLUS
Mintmire, J	1992 68 631	l Phys Rev Lett	HCAPLUS
Ren, Z	1998 282 110	05 Science	HCAPLUS
Saito, R	1992 B46 180	04 Phys Rev	1
Tans, S	1997 386 474	1 Nature	HCAPLUS
Tans, S	1998 393 49	Nature	HCAPLUS
Terrones, M	1997 388 52	Nature	HCAPLUS
Thess, A	1996 273 483	3 Science	HCAPLUS
Wei, B	2000 77 298	35 Appl Phys Lett	HCAPLUS
Zhang, Z	12000 77 1376	54 Appl Phys Lett	HCAPLUS

- L99 ANSWER 33 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2001:691827 HCAPLUS Full-text

DN 135:249736

- TI Method of vertically aligning carbon nanotubes on substrates using thermal chemical vapor deposition with dc bias
- IN Lee, Young-hee; Lee, Nae-sung; Kim, Jong-min
- PA Samsung SDI Co. Ltd., S. Korea
- SO Eur. Pat. Appl., 9 pp.
- CODEN: EPXXDW
- DT Patent
- LA English
- FAN.CNT 1

	PATENT NO.	KIND	DATE	APPLICATION NO.	DATE
PΙ	EP 1134304	A2	20010919	EP 2001-302389	20010315 <
	EP 1134304	7.2	20020402		

EP 1134304 20060823 В1 R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO KR 2001091389 A 20011023 KR 2000-13039 20000315 <--US 2001024633 20010927 US 2001-808011 20010315 <--A1 US 6673392 B2 20040106 JP 2001-73546 JP 2001303250 A 20011031 20010315 <--PRAI KR 2000-13039 20000315 <--A

A method of vertically aligning pure C nanotubes on a large glass or Si substrate at a low temperature using a low pressure d.c. thermal chemical vapor deposition method is provided. In this method, catalytic decomposition with respect to hydrocarbon cases is performed in 2 steps. Basically, an existing thermal chemical vapor deposition method using hydrocarbon gases such as acetylene, ethylene, methane or propane is used. To be more specific, the hydrocarbon gases are primarily decomposed at a low temperature of 400-500° by passing the hydrocarbon cases through a mesh-structure catalyst which is made of Ni, Fe, Co, Y, Pd, Pt, Au or an allow of ≥2 of these materials. Secondly, the catalytically- and thermally-decomposed hydrocarbon gases pass through the space between a C nanotube growing substrate and an electrode substrate made of Ni, Fe, Co, Y, Pd, Pt, Au or an alloy of ≥2 of these materials or an electrode substrate on which Ni, Fe, Co, Y, Pd, Pt, Au or an alloy of ≥2 of these materials is thinly deposited by sputtering or electron-beam evaporation, the space to which d.c. voltage was applied. Thus, C nanotables are vertically aligned at a temperature no grater than the glass m.p. The thus grown large C nanotube substrate can be applied directly to FEDs, lower the turn-on voltage for electron emission, simplify the process of manufacturing an FED, and significantly reduce the manufacturing costs of FEDs. Also, an electrode substrate holder and a C nanotube growing substrate holder are designed to mount several electrode substrates and several C panotube growing substrates simultaneously, whereby the productivity is increased.

IT 67-64-1, Acetone, processes 74-92-8, Methane, processes 74-85-1, Ethylene, processes 74-98-6, Propane, processes RL: PEP (Physical, engineering or chemical process); PROC (Process)

(thermal CVD to vertically aligning carbon

nanotubes on substrates using)

RN 67-64-1 HCAPLUS

CN 2-Propanone (CA INDEX NAME)

RN 74-82-8 HCAPLUS

CN Methane (CA INDEX NAME)

CHA

RN 74-85-1 HCAPLUS

CN Ethene (CA INDEX NAME)

```
74-98-6 HCAPLUS
RN
```

CN Propane (CA INDEX NAME)

H3C-CH2-CH3

L99 ANSWER 34 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2001:654684 HCAPLUS Full-text

DN 135:214880

PECVD process for controlled growth of carbon nanotubes with small size deviations

IN Bower, Christopher Andrew; Jin, Sungho; Zhu, Wei

PA Lucent Technologies Inc., USA

SO Eur. Pat. Appl., 18 pp. CODEN: EPXXDW

DT Patent

LA English

FAN.CNT 2

PATENT NO. KIND DATE APPLICATION NO. DATE --- -----A1 20010905 EP 2000-307617 20000904 <--EP 1129990 PΙ R: AT, BE, CH, DE, DK, ES, FR, GB, GR, IT, LI, LU, NL, SE, MC, PT, IE, SI, LT, LV, FI, RO CA 2331278 A1 20010825 CA 2001-2331278 20010117 <--A 20010926 JP 2001-45300 A 20000225 <--JP 2001262343 20010221 <--

PRAI US 2000-512873

The process provides conformably-aligned nanotubes perpendicular to the local surface of a flat or non-flat substrate , with an average deviation <15°, while also allows control over the nanotube diameter of 10-300 nm, length of 0.5-30 µm, and location. The process uses a high frequency plasma enhanced chemical vapor deposition (PECVD) advantageously with an acetylene-ammonia flow to provide such results, typically with Co, Ni, and/or Fe as a catalyst metal film 0.5-200 nm thick. The substrate material is selected from Si, Hf, SiO2, AlN, Al2O3, Si3N4, and diamond.

74-86-2, Acetylene, processes

RL: PEP (Physical, engineering or chemical process); PROC

(Process)

(PECVD gas mixture component; PECVD process for controlled growth of carbon nanotubes with small size deviations) 74-86-2 HCAPLUS

RN

CN Ethyne (CA INDEX NAME)

HC==CH

Referenced Author	Year VOL	PG	Referenced Wor	rk Referenced
(RAU)	(RPY) (RVL)	(RPG)	(RWK)	File
	+====+====	+		+
Badzian, A	12000 38	11507	CARBON; CARBON	2000 HCAPLUS

10 / 534900 92

			1000	
Bower, C	12000	177	1830	APPLIED PHYSICS LETT HCAPLUS
Cheol, J	1999	312	461	CHEMICAL PHYSICS LET
Choi, Y	12000	18	1864	46TH NATIONAL SYMPOS
Choi, Y	2000	108	159	SYNTHETIC METALS HCAPLUS
Cui, H	2000	1593	139	SYMPOSIUM-AMORPHOUS HCAPLUS
Huang, Z	1998	173	3845	APPLIED PHYSICS LETT HCAPLUS
Kuettel, O	1998	173	2113	APPLIED PHYSICS LETT
Murakami, H	2000	176	1776	APPLIED PHYSICS LETT HCAPLUS
Qin, L	1998	172	13437	APPLIED PHYSICS LETT HCAPLUS
Qing, Z	2000	114	1289	[AMORPHOUS CARBON INT]
Ren, Z	1998	1282	1105	SCIENCE HCAPLUS
Terrones, M	1998	1285	1299	CHEMICAL PHYSICS LET
The Research	Foundation 1999	1	1	WO 9965821 A HCAPLUS
Young, C	12000	176	12367	APPLIED PHYSICS LETT

L99 ANSWER 35 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

ΑN 2001:249470 HCAPLUS Full-text

DN 135:54291

ΤI Fabrication of gated cathode structures using an in situ grown vertically aligned carbon nanofiber as a field emission element

Guillorn, M. A.; Simpson, M. L.; Bordonaro, G. J.; Merkulov, V. I.; AU Baylor, L. R.; Lowndes, D. H.

CS Department of Electrical and Computer Engineering, University of Tennessee, Knoxville, TN, 37996, USA

Journal of Vacuum Science & Technology, B: Microelectronics and Nanometer SO Structures (2001), 19(2), 573-578 CODEN: JVTBD9: ISSN: 0734-211X

PB American Institute of Physics

DT Journal

LA English

AB Vertically aligned C nanofibers (VACNFs) are extremely promising cathode materials for microfabricated field emission devices, due to their low threshold field to initiate electron emission, inherent stability, and ruggedness, and relative ease of fabrication at moderate growth temps. The authors report on a process for fabricating gated cathode structures that uses a single in situ grown C nanofiber as a field emission element. The electrostatic gating structure was fabricated using a combination of traditional micro- and nanofabrication techniques. High-resolution electron beam lithog, was used to define the 1st layer of features consisting of catalyst sites for VACNF growth and alignment marks for subsequent photolithog, steps. Following metalization of these features, plasma enhanced CVD (PECVD) was used to deposit a 1-um-thick interlayer dielec. Photolithog. was then used to expose the gate electrode pattern consisting of 1 µm apertures aligned to the buried catalyst sites. After metalizing the electrode pattern the structures were reactive ion etched until the buried catalyst sites were released. To complete the devices, a novel PECVD process using a d.c. acetylene/NH3/He plasma was used to grow single VACNFs inside the electrostatic gating structures. The issues associated with the fabrication of these devices are discussed along with their potential applications.

74-86-2, Acetylene, reactions

RL: PCT (Reactant); PACT (Reactant or reagent)

(fabrication of gated cathode structures using in situ grown vertically aligned carbon namofiber as field emission element)

RN 74-86-2 HCAPLUS

Ethyne (CA INDEX NAME) CM

RETABLE

Referenced Author (RAU)	(RPY) (RVL) (RPG)	Referenced Work Refer (RWK) File	
Baptist, R	11996 14 2119	J Vac Sci Technol B HCAPLU	
Baylor, L	2001	the 45th Internation	-
Driskill-Smith, A	[1999 75 2845	Appl Phys Lett HCAPLU	S
Felter, T	1999 17 1993	J Vac Sci Technol B HCAPLU	S
Merkulov, V	1998 73 2591	Appl Phys Lett HCAPLU	S
Merkulov, V	1999 75 1228	Appl Phys Lett HCAPLU	S
Merkulov, V	2000 76 3555	Appl Phys Lett HCAPLU	S
Merkulov, V	1998 11 178	International Vacuum	
Merkulov, V	2001 89 1933	J Appl Phys HCAPLU	is
Moritz, H	1985 ED-32 672	IEEE Trans Electron HCAPLU	is
Phillips, P	1995 42 1674	IEEE Trans Electron	
Ren, Z	1999 75 1086	Appl Phys Lett HCAPLU	S
Ren, Z	1998 282 1105	Science HCAPLU	S
Temple, D	1999 24 185	Mater Sci Eng R	
Vaudaine, P	1991 197	International Electr	

L99 ANSWER 36 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2001:150001 HCAPLUS Full-text

DN 134:255697

TI Vertical aligned carbon nanotubes grown on Au film and reduction of threshold field in field emission

AU Cao, A.; Ci, L.; Li, D.; Wei, B.; Xu, C.; Liang, J.; Wu, D.

CS Department of Mechanical Engineering, State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing, 100084, Peop. Rep. China SO Chemical Physics Letters (2001). 335(3.4). 150-154

O Chemical Physics Letters (2001), 335(3,4), 150-154 CODEN: CHPLBC; ISSN: 0009-2614

PB Elsevier Science B.V.

DT Journal

LA English AB Vertica

Vertical aligned carbon nanotubes were synthesized on quartz glass and Au film by cstalytic decomposition of ferrocene and xylene. Morphol differences between aligned nanotubes grown on the two substrates are studied and discussed through SEM images. Field emission testing shows that aligned nanotubes grown on Au have a lower threshold field than those grown on quartz glass. This reduction of threshold field indicates a new way to improve field emission properties through the selection of a highly conductive growth substrate for carbon manotubes.

IT 1330-20-7, Xylene, processes

RL: PEP (Physical, engineering or chemical process); PROC (Process)

(carbon source; growth of vertical-aligned carbon nanotubes on Au film and vitreous silica by catalytic

decomposition of ferrocene and xylene and reduction of threshold field in

emission)

field

RN 1330-20-7 HCAPLUS

CN Benzene, dimethyl- (CA INDEX NAME)

10 / 534900 94

2 (D1-Me)

Referenced Author (RAU)	(RPY) (RVL) (RPG		Referenced File
Andrews, R	1999 303 467	4	HCAPLUS
Bai, X	2000 76 2624		HCAPLUS
Che, G	1998 10 260	Chem Mater	HCAPLUS
Chen, Y	2000 76 2469	Appl Phys Lett	HCAPLUS
Choi, Y	2000 76 12367	Appl Phys Lett	HCAPLUS
Ebbesen, T	1996 382 54	Nature	HCAPLUS
Fan, S	1999 283 512	Science	HCAPLUS
Iijima, S	1991 354 56	Nature	HCAPLUS
Iijima, S	1993 363 603	Nature	HCAPLUS
Kyotani, T	1996 8 2109	Chem Mater	HCAPLUS
Li, W	1997 70 2684	Appl Phys Lett	HCAPLUS
Li, W	1996 274 1701	Science	HCAPLUS
Merkulov, V	2000 76 3555	Appl Phys Lett	HCAPLUS
Murakami, H	2000 76 1776	Appl Phys Lett	HCAPLUS
Nath, M	2000 322 333	Chem Phys Lett	HCAPLUS
Rao, C	1998 1525	Chem Commun	HCAPLUS
Ren, Z	1998 282 1105	Science	HCAPLUS
Rinzler, A	1995 269 150	Science	1

- L99 ANSWER 37 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- 2000:861598 HCAPLUS Full-text AN
- DN 134:30909
- TI Substrate-supported aligned carbon nanotube
 - films
- IN Mau, Albert; Dai, Li-Ming; Shaoming, Huang
- PA Commonwealth Scientific and Industrial Research Organisation, Australia
- SO PCT Int. Appl., 19 pp.
- CODEN: PIXXD2
- DT Patent
- LA English
- FAN.CNT 1

PAIN.	PAN.CNI I																	
	PA:	TENT	NO.			KIN	D	DATE			APPLICATION NO.					DATE		
PI	WO	2000	0732	04		A1		2000	1207		WO 2	000-	AU55	0		2	0000	525 <
		₩:	ΑE,	AG,	AL,	AM,	AT,	AU,	AZ,	BA,	BB,	BG,	BR,	BY,	CA,	CH,	CN,	CR,
			CU,	CZ,	DE,	DK,	DM,	DZ,	EE,	ES,	FI,	GB,	GD,	GE,	GH,	GM,	HR,	HU,
			ID,	IL,	IN,	IS,	JP,	KE,	KG,	KP,	KR,	KZ,	LC,	LK,	LR,	LS,	LT,	LU,
			LV,	MA,	MD,	MG,	MK,	MN,	MW,	MX,	MZ,	NO,	NZ,	PL,	PT,	RO,	RU,	SD,
			SE,	SG,	SI													
		RW:	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZW,	ΑT,	BE,	CH,	CY,
			DE,	DK,	ES,	FΙ,	FR,	GB,	GR,	IE,	IT,	LU,	MC,	NL,	PT,	SE,	BF,	BJ,
			CF,	CG,	CI,	CM,	GA,	GN,	GW,	ML,	MR,	NE,	SN,	TD,	TG			
	EP	1198	414			A2		2002	0424		EP 2	000-	9265	81		2	0000	525 <
		R:	AT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	MC,	PT,	IE,
			SI,	LT,	LV,	FI,	RO,	MK,	CY,	AL								
	JP	2003	5003	25		T		2003	0107		JP 2	000-	6212	80		2	0000	525 <

	AU 759314	B2	20030410	AU	2000-45284	20000525 <
	TW 499395	В	20020821	TW	2000-89110217	20000526 <
PRAI	AU 1999-650	A	19990528	<		
	WO 2000-AU550	W	20000525	<		
2.72	0.1.1.1	2.1				4.4

AB Substrate-supported aligned carbon nanotube films are prepared by synthesizing a layer of aligned carbon nanotubes on a substrate capable of supporting nanotube growth, applying a layer of a second substrate to a top surface of the aligned carbon nanotube layer, and peeling off the substrate capable of supporting nanotube growth, to provide an aligned carbon nanotube film supported on the second substrate.

IT 71-43-2, Benzene, reactions 74-82-8, Methane, reactions

74-86-2, Acetylene, reactions

RL: PEP (Physical, engineering or chemical process); FCT (Reactant); PROC (Process); RACT (Reactant or reagent) (substrate-supported aligned carbon nanotube films)

RN 71-43-2 HCAPLUS

CN Benzene (CA INDEX NAME)

RN 74-82-8 HCAPLUS

CN Methane (CA INDEX NAME)

CH4

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

нс сн

RETABLE

Referenced Author	Year	VOL	PG	Re	eferenced	Work	Referenced
(RAU)	(RPY)	(RVL) (RPG)	1	(RWK)	1	File
	-+	+====	-+	-+==:		+	
Japan Fine Ceramics Cer	n 1999	1	1	EP	0947466	Α Ι.	HCAPLUS
The Research Foundation	11999	1	1	LMO	9965821 1	Δ 1	HCAPLUS

L99 ANSWER 38 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2000:861597 HCAPLUS Full-text

DN 134:30908

T Preparation of patterned carbon nanotube films

IN Mau, Albert; Dai, Li-Ming; Huang, Shaoming; Yang, Yong Yuan; He, Hui Zhu

PA Commonwealth Scientific and Industrial Research Organisation, Australia

SO PCT Int. Appl., 26 pp.

CODEN: PIXXD2

DT Patent

LA English

FAN.		1 TENT	NO.			LTM	n	DA TE			7 DDI	TONT	TOM:	NO.		D	a Tre		
		TENT.				KIN		DAIL				ICAI					AIE		
PI		2000																	<
		W:	ΑE,	AG,	AL,	AM,	AT,	AU,	AZ,	BA,	BB,	BG,	BR,	BY,	CA,	CH,	CN,	CR,	
			CU,	CZ,	DE,	DK,	DM,	DZ,	EE,	ES,	FI,	GB,	GD,	GE,	GH,	GM,	HR,	HU,	
			ID,	IL,	IN,	IS,	JP,	KE.	KG,	KP,	KR,	KZ,	LC,	LK,	LR,	LS,	LT,	LU,	
			LV,	MA,	MD,	MG,	MK,	MN,	MW.	MX,	MZ,	NO,	NZ,	PL,	PT,	RO,	RU.	SD,	
			SE,	SG,	SI,	SK,	SL,	TJ,	TM,	TR,	TT,	TZ,	UA,	UG,	US,	UZ,	VN,	YU,	
			ZA,	ZW															
		RW:	GH,	GM,	KE,	LS,	MW,	MZ,	SD,	SL,	SZ,	TZ,	UG,	ZW,	AT,	BE,	CH,	CY,	
			DE,	DK,	ES,	FI,	FR,	GB,	GR,	IE,	IT,	LU,	MC,	NL,	PT,	SE,	BF,	ВJ,	
			CF,	CG,	CI,	CM,	GA,	GN,	GW,	ML,	MR,	NE,	SN,	TD,	TG				
	EP	1200	341			A1		2002	0502		EP 2	000-	9265	80		2	0000	525	<
		R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,	
			ΙE,	SI,	LT,	LV,	FI,	RO,	MK,	CY,	AL								
	AU	7531	77			B2		2002	1010		AU 2	000-	4528	3		2	0000	525	<
	JP	2003	5003	24		T		2003	0107		JP 2	000-	6212	79		2	0000	525	<
		6811				B1		2004				002-	9797	93		2	0020	315	<
PRAI	AU	1999	-649																
	WO	2000	-AU5	49		M		2000	0525	<-	-								
ΔR	Δ	natte	rnac	lat	or c	of al	inn.	00 01	rhor	10.000	2004-121	202 1	e nr	anar	ad c	n a	enshe	er rost	- 12.

AB A patterned layer of aligned carbon nanotubes is prepared on a substrate by applying a photoresist layer to a portion of a substrate surface capable of supporting nanotube growth, masking a region of the photoresist layer to provide a masked portion and an unmasked portion, and subjecting the unmasked portion to electromagnetic radiation of a wavelength and intensity sufficient to transform the unmasked portion while leaving the masked portion substantially untransformed, where the transformed portion exhibits solubility characteristics different from the untransformed portion. The photoresist layer is developed by contacting with a solvent for a time and conditions sufficient to dissolve one of the transformed and untransformed portions of the photoresist, leaving the other portion attached to the substrate. A layer of aligned carbon nanotubes is synthesized on regions of the substrate to which the remaining photoresist portion is not attached, to provide a patterned layer of aligned carbon nanotubes on the substrate.

T 67-64-1, Acetone, processes RL: NUU (Other use, unclassified); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses)

(preparation of patterned carbon nanotube films) RN 67-64-1 HCAPLUS

CN 2-Propanone (CA INDEX NAME)

нзс**_** С_ снз

IT 71-42-2, Benzene, reactions 74-82-8, Methane, reactions 74-86-2, Acetylene, reactions RL: PEF (Physical, engineering or chemical process); PCT (Reactant); PROC (Process); PACT (Reactant or reagent) (preparation of patterned carbon manorube films)

RN 71-43-2 HCAPLUS

N Benzene (CA INDEX NAME)

RN 74-82-8 HCAPLUS

CN Methane (CA INDEX NAME)

CH4

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

нс Сн

RETABLE

Referenced Author (RAU)	(RPY)	(RVL)	(RPG)	i	eference (RWK))	Reference	
Chuang	12000		,		6062931		HCAPLUS	_
Debe	1998	1	I	IUS	5726524	A	HCAPLUS	
Japan Fine Ceramics	Cen 1998	1	1	IWO	9842620	A	HCAPLUS	
Xu	1999	1	1	IUS	5872422	A	HCAPLUS	
Xu	11999	1	I	IUS	5973444	A	IHCAPLUS	

- L99 ANSWER 39 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2000:847363 HCAPLUS Full-text
- DN 134:89909
- TI Substrate-site selective growth of aligned carbon
- AU Zhang, Z. J.; Wei, B. Q.; Ramanath, G.; Ajayan, P. M.
- CS Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
- SO Applied Physics Letters (2000), 77(23), 3764-3766
- CODEN: APPLAB; ISSN: 0003-6951
- PB American Institute of Physics
- DT Journal
- LA English

AR

- The authors report highly substrate-site selective growth of carbon nanotubes by chemical vapor deposition from precursors of ferroceme and xylene mixts. The technique allows us to grow well- aligned multiwalled carbon nanotubes preferentially on the SiO2 regions of patterned SiO2/Si substrates prepared by conventional lithing. This eliminates the catalyst predeposition step in the fabrication process. This simple approach may also be applied to build large-scale networks of organized manotubes on planar substrates.
- 1330-20-7, Xylene, reactions
- RL: RCT (Peactant); RACT (Reactant or reagent)

(Substrate-site selective growth of aligned carbon nanotubes by CVD using ferrocene and xylene mixts.)

- RN 1330-20-7 HCAPLUS
- CN Benzene, dimethyl- (CA INDEX NAME)

2 (D1-Me)

Referenced Author (RAU)	Year VOL PG (RPY) (RVL) (RPG)		Referenced File
Andrews, R		Chem Phys Lett	HCAPLUS
Batchtold, A	11999 1397 1673	Nature	I IICAE EUS
Cheng, H	11998 172 13282		HCAPLUS
Falvo, M	11997 389 1582		MEDLINE
Fan, S	11999 283 512		IHCAPLUS
Frank, S	11998 1280 11744		IHCAPLUS
Iijima, S	1991 354 56	Nature	HCAPLUS
Iwasaki, T	1999 75 2044	Appl Phys Lett	HCAPLUS
Li, J	1999 75 367	Appl Phys Lett	HCAPLUS
Li, W	1996 274 1701	Science	HCAPLUS
Ren, Z	1999 75 1086	Appl Phys Lett	HCAPLUS
Ren, Z	1998 282 1105	Science	HCAPLUS
Sen, R	1997 267 276	Chem Phys Lett	HCAPLUS
Suh, J	1999 75 2047	Appl Phys Lett	HCAPLUS
Terrones, M	1997 388 52	Nature	HCAPLUS
Wong, E	1997 277 1971	Science	HCAPLUS

- L99 ANSWER 40 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2000:846908 HCAPLUS Full-text
- DN 134:19015
- TI Aligned conical carbon nanotubes
- AU Chen, Yan; Guo, Liping; Patel, S.; Shaw, D. T.
- CS Department of Electrical Engineering, State University of New York at Buffalo, Buffalo, NY, 14260, USA
- SO Journal of Materials Science (2000), 35(21), 5517-5521
- CODEN: JMTSAS; ISSN: 0022-2461
- PB Kluwer Academic Publishers
- DT Journal
- LA English
- AB Aligned conical carbon manotubes (CCNTs) have been synthesized on catalyst-coated Si (100) substrates by a D.C. plasma-assisted hot filament chemical vapor deposition process. The same technique under slightly different deposition conditions has been used to grow aligned conventional carbon manotubes. The conical shape is due to secondary graphitic growth on the main nanotube. This growth results in the formation of a series of inverted lamp shade-type structures stacked over each other, which gives the CNT the appearance of a cone. The CCNT structures are typically 2 µm at the base with an inner diameter of 100 nm and 2000 nm long. Patterned growth, e.g., arrays of 6 µm + 6 µm square, has been achieved. Field emission from CCNTs for use in flat panel displays is also reported.
- IT 74-86-2, Acetylene, reactions
 - RL: PEP (Physical, engineering or chemical process); RCT (Reactant); PROC (Process); RACT (Feactant or reagent)
 - (aligned conical carbon manotubes from
 - plasma-assisted hot-filament CVD)

10 / 534900

99

RN 74-86-2 HCAPLUS CN Ethyne (CA INDEX NAME)

нс сн

RETABLE

VETADDE				
Referenced Author	Year Y	VOL PG	Referenced Work	Referenced
(RAU)	(RPY) (I	RVL) (RPG)	(RWK)	File
	-+====+==	====+=====	+	+========
Augus, J	1988 24	41 887	Science	1
Baker, R	1989 2	7 315	Carbon	HCAPLUS
Chen, Y	1998 73	3 2119	Appl Phys Lett	HCAPLUS
Chen, Y	1997 2	78 178	Chem Phys Lett	1
Chen, Y	1998 19	93 342	J Crystal Growth	HCAPLUS
Chen, Y	1996 8	L685	J Phys Condens Matt	HCAPLUS
Chen, Y	1997 75	5 155	Philo Mag Lett	HCAPLUS
Chen, Y	1 1	1	unpublished	I
Collins, P	1996 69	9 1069	Appl Phys Lett	I
De Heer, W	1995 2	70 179	Science	1
Endo, M	1993 33	3 873	Carbon	I .
Li, W	1996 2	74 1701	Science	HCAPLUS
Matasumoto, S	1982 1	7 3106	J Mater Sci	1
Tibbetts, G	1985 73	3 431	J Crystal Growth	HCAPLUS
Wang, Q	1997 70	0 3308	Appl Phys Lett	HCAPLUS

L99 ANSWER 41 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 2000:657584 HCAPLUS Full-text

DN 133:357173

TI Fabrication of electron field emitters using carbon panetubes

AU Choi, Young Chul; Park, Young Soo; Lee, Young Hee; Choi, Won Bong; Lee, Nae Sung; Kim, Jong Min; Lee, Cheol Jin; Kim, Dae Woon; Lee, Tae Jae

CS Department of Semiconductor Science and Technology, Jeonbuk National University, Jeonju, 561-756, S. Korea

SO International Journal of High Speed Electronics and Systems (2000), 10(1), 5-11 CODEN: IHSSEF, ISSN: 0129-1564

PB World Scientific Publishing Co. Pte. Ltd.

DT Journal

LA English

DAS Carbon nanotube (CNT)-based field-emission displays (FEDs) have been fabricated using well-aligned nanotubes on substrates in situ grown by thermal chemical vapor deposition (CVD), and paste squeeze and surface rubbing techniques. Although the former seems to be an ultimate approach for CNT-based FED, a large area synthesis and uniform field emission over the entire area is not yet easily accessible. On the other hand, the latter is fully scalable on glass substrates and shows very high luminance of 1800 cd/m2 at 4 V/µm. The degradation of emission currents for single-wall carbon nanotubes was less than 10% in elec. aging tests. Large field-enhancement factors (23,000-46,000) and low turn-on voltages (1.5-3 V/µm) were attributed to well-aligned carbon nanotubes on substrates and a large number d. of carbon sanotubes of 5-10 µm-2, which was confirmed by high-resolution SEM.

IT 74-85-1, Ethylene, reactions

RL: PEP (Physical, engineering or chemical process); RCT (Reactant); PROC (Process); PACT (Reactant or reagent)

(carbon nanotube-based field-emission displays fabricated using well-aligned nanotubes on substrates

RN 74-85-1 HCAPLUS

CN Ethene (CA INDEX NAME)

H2C==CH2

RETABLE

Referenced Author			Referenced Work	Referenced
(RAU)			(RWK)	File
				+
Bethune, D	1993 363	1605	Nature	HCAPLUS
Brodie, I			Advances in Electron	n
Chalamala, B			IEEE Spectrum	1
Collins, P	1996 69	1969	Appl Phys Lett	1
Collins, P	1997 55	19391	Phys Rev B	HCAPLUS
de Heer, W	1995 270	1179	Science	HCAPLUS
Ebbesen, T	1997	1	Carbon Nanotubes	1
Fan, S	1999 283	512	Science	HCAPLUS
Gadzuk, B	1974 278	1659	Acad Sci B	1
Iijima, S	1991 354	156	Nature	HCAPLUS
Kong, J	1998 395	1878	Nature	HCAPLUS
Lee, C	1999	1	Chem Phys Lett (in s	3
Li, W	1998 274	1701	Science	1
Liu, J	1998 280	1253	Science	HCAPLUS
Ren, Z	1998 282	1105	Science	HCAPLUS
Saito, Y	1997 36	L1340	Jpn J Appl Phys	1
Tans, S	1998 393	149	Nature	HCAPLUS
van Veen, G	1994 12	1655	J Vac Sci Technol B	HCAPLUS
Wang, Q	1998 72	2912	Appl Phys Lett	HCAPLUS

L99 ANSWER 42 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

- AN 2000:537230 HCAPLUS Full-text
- DN 133:245518
- TI An enhanced CVD approach to extensive nanotube networks with directionality
- AU Franklin, Nathan R.; Dai, Hongjie
- CS Department of Chemistry, Stanford University, Stanford, CA, 94305, USA
- SO Advanced Materials (Weinheim, Germany) (2000), 12(12), 890-894
 - CODEN: ADVMEW: ISSN: 0935-9648
- PB Wiley-VCH Verlag GmbH DT Journal
- LA English
- Single-walled carbon nanotube (SWNT) networks have been prepared by CVD on a special silicon substrate having multiple tower-like protuberances. Flowing precursor gases are first passed through a special conditioning catalyst and activated. The SWNTs grow attached to the silicon towers, held by van der Waals interactions, to form a highly directional suspended matrix. Longer SWNTs .apprx. 30 µm sometimes stretch from a tower directly to the substrate, but only those with length .apprx. 100 µm exhibit alignment with the gas flow direction. Nanotube yield can be affected by altering the catalyst composition Mass spectral anal. of the effluent gas indicates the presence of benzene, which is formed in the conditioning catalyst from the hydrogen and methane precursors. Possibly, the presence of benzene enhances nanotube growth activation.
- IT 74-82-8, Methane, reactions
 RL: RCT (Reactant): RACT (Reactant or reagent)

10 / 534900

101

(CVD nanotube precursor; enhanced CVD approach to extensive namotube networks with directionality)

74-82-8 HCAPLUS RN

CN Methane (CA INDEX NAME)

71-43-2, Benzene, processes RL: FMU (Formation, unclassified); PEP (Physical, engineering or chemical process); FORM (Formation, nonpreparative); PROC (Process) (byproduct of CVD nanotube growth; enhanced CVD approach to extensive nanotube networks with directionality)

71-43-2 HCAPLUS RN

CN Benzene (CA INDEX NAME)

IT 64-17-5, Ethanol, processes RL: CAT (Catalyst use); PEP (Physical, engineering or chemical process); PROC (Process); USES (Uses) (catalyst component; enhanced CVD approach to extensive nanotube networks with directionality) 64-17-5 HCAPLUS RN

CN Ethanol (CA INDEX NAME)

H3C-CH2-OH

RETABLE

REINDHE				
Referenced Author	Year VOL	PG	Referenced Work	Referenced
(RAU)	(RPY) (RVL) (RPG)	(RWK)	File
	-++	-+	+	+
Cassell, A	1999 121	17975	J Am Chem Soc	HCAPLUS
Cassell, A	1999 103	16484	J Phys Chem	HCAPLUS
Dai, H	1999 103	11246	J Phys Chem	HCAPLUS
Dresselhaus, M	1996	1	Science of Fullerer	ne
Fan, S	1999 283	512	Science	HCAPLUS
Kind, H	1999 11	11285	Adv Mater	HCAPLUS
Kong, J	1998 292	1567	Chem Phys Lett	HCAPLUS
Kong, J	1998 395	1878	Nature	HCAPLUS
Liu, S	1999 181	1175	J Catal	HCAPLUS
Ren, Z	1998 282	1105	Science	HCAPLUS
Wang, L	1993 21	135	Catal Lett	HCAPLUS
Yang, P	1998 282	12244	Science	HCAPLUS

L99 ANSWER 43 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

2000:533659 HCAPLUS Full-text AN

DN

TI Carbon nanotube synthesized on metallic substrates

- AU Emmenegger, C.; Mauron, P.; Zuttel, A.; Nutzenadel, C.; Schneuwly, A.; Gallay, R.; Schlapbach, L.
- CS Institut de Physique, Universite de Fribourg, Perolles, Fribourg, CH-1700, Switz.
- SO Applied Surface Science (2000), 162-163, 452-456 CODEN: ASUSEE; ISSN: 0169-4332
- PB Elsevier Science B.V.
- DT Journal LA English
- AB Well-aligned C renotubes films were synthesized by a pyrolytic method with Al and Si as substrates. The substrate was coated with a thin film of Fe(NO3)3. This film was transformed by subsequent heating into Fe2O clusters with a diameter of a few nm. Nanotubes were synthesized from acetylene at a temperature at 630-750°. The nanotubes observed are multi-wall type with a

diameter of a few nm. Nanobubes were synthesized from acetylene at a temperature at 630-750°. The nanobubes observed are multi-wall type with a length of 1-10 µm and a diameter of 5-100 nm. The growth of the nanobubes is a function of the film thickness of deposited Fe(NO3)3 film as well as the temperature The nanobubes deposited on Al exhibit excellent properties as electrode material in electrochem. double layer capacitors (ECDLs).

IT 74-86-2, Acetylene, reactions

RL: PCT (Reactant); PACT (Reactant or reagent)

(vapor deposition precursor; carbon nanotube synthesized on metallic substrates)

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

нс==сн

Referenced Author (RAU)	Year VOL (RPY) (RVL) (RPG)		Referenced File
Anon	=+====+==== 1997	=+==== 	-+====================================	-+
Bachtold, A	11999 1397	1673	Nature	HCAPLUS
Dai, H	11996 384	1147	Nature	HCAPLUS
Dai, H	11996 384	1147	Nature	HCAPLUS
Ebbesen, T	11992 1358	1220	Nature	IHCAPLUS
Endo, M	1993 54	11841	J Phys Chem Solids	HCAPLUS
Fan, S	1999 283	1512	Science	HCAPLUS
Hafner, J	1999 398	1761	Nature	HCAPLUS
Hamada, N	1992 68	1579	Phys Rev Lett	HCAPLUS
Iijima, S	1991 354	156	Nature	HCAPLUS
Kibi, Y	1996 60	219	J Power Source	HCAPLUS
Kuttel, O	1998 73	15	Appl Phys Lett	
McEuen, P	1998 393	16	Nature	1
Morito, T	1996 60	1239	J Power Source	1
Niu, C	1997 70	11	Appl Phys Lett	1
Ren, Z	1998 282	1105	Science	HCAPLUS
Saito, R	1992 60	12204	Appl Phys Lett	HCAPLUS
Tans, S	1997 386	1474	Nature	HCAPLUS
Tans, S	1998 393	149	Nature	HCAPLUS

- L99 ANSWER 44 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 2000:145710 HCAPLUS Full-text
- DN 132:258623
- TI A novel form of carbon nitrides: well-aligned carbon nitride nanotubes and their characterization
- AU Sung, S. L.; Tsai, S. H.; Liu, X. W.; Shih, H. C.

- CS Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 300, Taiwan
- SO Journal of Materials Research (2000), 15(2), 502-510 CODEN: JMREEE; ISSN: 0884-2914
- PB Materials Research Society
- DT Journal
- LA English
- AB Well-aligned C nitride nanotubes were prepared with a porous Al203 membrane as a template when using electron cyclotron resonance (ECR) plasma in a mixture of C2H2 and N2 as the precursor with an applied neg, bias to the graphite sample holder. The hollow structure and good alignment of the nanogumes were verified by field-emission SEM. C nitride nanotubes were transparent when viewed by TEM, which showed that the nanotubes were hollow with a diameter of .apprx.250 nm and a length of .apprx.50-80 µm. The amorphous nature of the mandtubes was confirmed by the absence of crystalline phases arising from selected-area diffraction patterns. Both Auger electron microscopy and XPS spectra indicated that these nanotubes are composed of N and C. The total N/C ratio is 0.72, which is considerably higher than other forms of C nitrides. No free-C phase was observed in the amorphous C nitride nanotubes. The absorption bands at 1250-1750 cm-1 in FTIR spectroscopy provided direct evidence for N atoms, effectively incorporated within the amorphous C network. Such growth of well-aligned C nitride nanotubes can be controlled by tuning the ECR plasma conditions and the applied neg. voltage to the Al2O3 template.
 - T 74-86-2, Acetylene, processes RL: PEP (Physical, engineering or chemical process); RCT
 - (Peactant); PROC (Process); RACT (Reactant or reagent)
 (preparation and characterization of well-aligned carbon nitride
 nanctubes)
- RN 74-86-2 HCAPLUS
- CN Ethyne (CA INDEX NAME)

HC==CH

RETABLE

Referenced Author	Year	VOL	PG	Referenced Work	Referenced
(RAU)	(RPY)	(RVL)	(RPG)	(RWK)	File
	-+	+====	+=====	+	+
Amaratunga, G	11996	168	12529	Appl Phys Lett	HCAPLUS
Amaratunga, G	11996	1198-2	611	J Non-Cryst Solids	HCAPLUS
Barber, M	11973	169	551	J Chem Soc Faraday T	HCAPLUS
Brodie, I	11992	183	1	Adv Electron Electro	HCAPLUS
Brodies, I	1994	182	11006	Proc IEEE	
Casanovas, J	11996	118	8071	J Am Chem Soc	HCAPLUS
de Heer, W	11997	19	187	Adv Mater	HCAPLUS
de Heer, W	1995	1270	11179	Science	HCAPLUS
de Heer, W	11995	1268	1845	Science	HCAPLUS
Ebbesen, T	11992	1358	1220	Nature	HCAPLUS
Endo, M	11992	196	16941	J Phys Chem	HCAPLUS
Fan, S	11999	1283	512	Science	HCAPLUS
Geis, M	11995	167	1328	Appl Phys Lett	HCAPLUS
Geis, M	11996	168	2294	Appl Phys Lett	HCAPLUS
Geis, M	1991	138	619	IEEE Trans Electron	HCAPLUS
Gelius, U	1970	12	170	Phys Scr	HCAPLUS
Givargizov, E	11996	174	12030	J Vac Sci Technol B	
Gulyaev, Y	11995	13	1435	J Vac Sci Technol B	HCAPLUS
Heilmann, A	11998	10	1398	Adv Mater	HCAPLUS
Himpsel, F	11979	120	1624	Phys Rev B	HCAPLUS

10 / 534900 104

Hsu, W	11996		161	Chem Phys Lett	HCAPLUS
Iijima, S	11991	354	156	Nature	HCAPLUS
Jaskie, J		21	159	MRS Bull	HCAPLUS
Jessensky, O	11998	172	1173	Appl Phys Lett	HCAPLUS
Journet, C	11997	1388	1756	Nature	HCAPLUS
Kaufman, J	11989	139	13053	Phys Rev B	HCAPLUS
Kawaguchi, M	1997	19	615	Adv Mater	HCAPLUS
Kusunoki, M	11997	71	12620	Appl Phys Lett	HCAPLUS
Li, W	11996	1274	1701	Science	HCAPLUS
Marton, D	1994	173	1118	Phys Rev Lett	HCAPLUS
Okano, K	11996	381	1140	Nature	HCAPLUS
Pate, B	11986	165	183	Surf Sci	HCAPLUS
Ren, Z	11998	1282	1105	Science	HCAPLUS
Rinzler, A	11995	1268	1550	Science	1
Shin, I	11999	117	1690	J Vac Sci Technol B	HCAPLUS
Silva, S	11997	71	11477	Appl Phys Lett	HCAPLUS
Suenaga, K	1999	1300	1695	Chem Phys Lett	HCAPLUS
Sung, S	1999	174	1197	Appl Phys Lett	HCAPLUS
Terrones, M	1999	11	1655	Adv Mater	HCAPLUS
Terrones, M	1997	1388	152	Nature	HCAPLUS
Tsai, S	11999	174	13462	Appl Phys Lett	HCAPLUS
Tsai, S	11999	12	1247	Electrochem Solid-St	HCAPLUS
Tsai, T	11997	19	11154	Adv Mater	HCAPLUS
Tsai, T	11997	i .	ì	PhD Thesis of NTHU	i
Vien, D	11991	i .	ì	The Handbook of Infr	·i
Wagner, C	11981	13	211	Surf Interface Anal	
Xu, N	11993	129	11596	Electron Lett	HCAPLUS

L99 ANSWER 45 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN

AN 1999:811170 HCAPLUS Full-text DN

132:39343

TI Synthesis of free-standing and aligned carbon nanotubes

IN Ren, Zhifeng; Huang, Zhongping; Wang, Jui H.; Wang, Dezhi

PA The Research Foundation of State University of New York, USA SO PCT Int. Appl., 68 pp.

CODEN: PIXXD2

DT Patent LA English

FAN.	CNT	1																	
	PA:	TENT :	NO.			KIN	D	DATE			APPL	ICAT	ION :	NO.		D	ATE		
							_												
ΡI	WO	9965	821			A1		1999	1223		WO 1	.999-	US13	648		1	9990	618	<
		W:	CA,	JP,	KR,	MX													
		RW:	ΑT,	BE,	CH,	CY,	DE,	DK,	ES,	FI,	FR,	GB,	GR,	IE,	IT,	LU,	MC,	NL,	
			PT,	SE															
	CA	2335	449			A1		1999	1223		CA 1	999-	2335	449		1	9990	618	<
	EP	1089	938			A1		2001	0411		EP 1	999-	9287	35		1	9990	618	<
		R:	ΑT,	BE,	CH,	DE,	DK,	ES,	FR,	GB,	GR,	IT,	LI,	LU,	NL,	SE,	MC,	PT,	
			IE,	FI															
	JP	2002	5182	80		T		2002	0625		JP 2	2000-	5546	54		1	9990	618	<
	US	2003	2031	39		A1		2003	1030		US 1	999-	3361	26		1	9990	618	<
	US	6863	942			B2		2005	0308										
	MX	2000	PA12	681		A		2002	0225		MX 2	-000	PA12	681		2	0001	218	<
PRAI	US	1998	-899	65P		P		1998	0619	<-	_								
	US	1998	-997	08P		P		1998	0910	<-	_								
	WO	1999	-US1	3648		W		1999	0618	<-	-								

AB One or more highly-oriented, multi-walled carbon nanotubes are grown on an outer surface of a substrate initially disposed with a catalyst film or catalyst nano-dot by plasma enhanced hot filament chemical vapor deposition of a carbon source gas (C2H2) and a catalyst gas (NH3) at 300-3000°C. The carbon 10 / 534900

105

manosubes have diameter 4-500 nm and length 0.1-50 µm depending on growth conditions. Carbon manosube d. can exceed to 104 manosubes/mm2. Plasma intensity, carbon source gas to catalyst gas ratio and their flow rates, catalyst film thickness, and temperature of chemical vapor deposition affect the length, diameter, d., and uniformity of the carbon nanosubes. The carbon nanosubes are useful in electrochem. applications as well as in electron emission, structural composites, material storage, and microelectrode applications.

IT 71-43-2, Benzene, processes 74-35-1, Ethylene, processes 74-96-2, Acetylene, processes

RL: PEP (Physical, engineering or chemical process); PROC (Process)

(synthesis of free-standing and aligned carbon nanotubes)

RN 71-43-2 HCAPLUS

CN Benzene (CA INDEX NAME)

RN 74-85-1 HCAPLUS

CN Ethene (CA INDEX NAME)

H2C==CH2

RN 74-86-2 HCAPLUS

CN Ethyne (CA INDEX NAME)

нс сн

Referenced Author (RAU)	Year VOL PG (RPY) (RVL) (RPC	Referenced Work G) (RWK)	Referenced File
Chang	1999	US 5916642 A	HCAPLUS
DEBE	1998	US 5726524 A	HCAPLUS
Du Pont	1995	WO 009510481 A1	HCAPLUS
Fine Ceramics Center	1998	JP 410265208 A	
Green	1994	US 5346683 A	HCAPLUS
ISIS Innovation	1996	WO 009609246 A1	HCAPLUS
NEC Corp	1995	JP 407061803 A	1
Nolan	1998	US 5780101 A	HCAPLUS
Tanaka	1997	US 5648056 A	HCAPLUS

- L99 ANSWER 46 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 1999:729904 HCAPLUS Full-text
- DN 131:331009
- TI Polymerized carbon nanobelis and their field-emission properties
- AU Ma, Xucun; Wang, Enge; Zhou, Wuzong; Jefferson, David A.; Chen, Jun; Deng,

- Shaozhi; Xu. Ningsheng; Yuan, Jun
- CS Institute of Physics and Centre for Condensed Matter Physics, State Key Laboratory for Surface Physics, Chinese Academy of Science, Beijing, 100080, Peop. Rep. China
- Applied Physics Letters (1999), 75(20), 3105-3107 SO CODEN: APPLAB; ISSN: 0003-6951
- PB American Institute of Physics
- Journal
- LA English
- Aligned N-containing C nanofibers consisting of polymerized nanobells have AB been grown on a large scale using microwave plasma-assisted CVD with a mixture of methane and N. A greater part of the fiber surface consists of open ends of the graphitic sheets. A side-emission mechanism is proposed. A lowthreshold field of 1.0 V/µm and a high-emission c.d. of 200 mA/cm2 for an applied field of 5-6 V/um were achieved, implying that the materials have a high potential for future application as electron field emitters, especially in flat-panel displays.

DETABLE

Referenced Author (RAU)	(RPY) (RV	L) (RPG)		File
Bonard, J			Phys Rev Lett	HCAPLUS
Casanovas, J			J Am Ceram Soc	HCAPLUS
Chen, Y	11998 173		Appl Phys Lett	HCAPLUS
de Heer, W	11995 1270		IScience	HCAPLUS
Fan, S	11999 283	1512	Science	HCAPLUS
Iijima, S	1991 354	156	Nature (London)	HCAPLUS
Krishnan, A	1997 388	1451	Nature (London)	HCAPLUS
Kuttel, O	1998 73	2113	Appl Phys Lett	HCAPLUS
Latham, R	1986 19	219	J Phys D	HCAPLUS
Li, W	1996 274	11701	Science	HCAPLUS
Novak, B	1993 5	1422	Adv Mater	HCAPLUS
Rinzler, A	1995 269	1550	Science	HCAPLUS
Saito, Y	1997 389	1554	Nature (London)	HCAPLUS
Sen, R	1998 287	1671	Chem Phys Lett	HCAPLUS
Terrones, M	1996 257	1576	Chem Phys Lett	HCAPLUS
Wang, Q	1997 70	13308	Appl Phys Lett	HCAPLUS
Wang, Q	1998 72	2912	Appl Phys Lett	HCAPLUS
Wu, K	1998 83	1702	J Appl Phys	HCAPLUS
Xu, N	1986 19	477	J Phys D	HCAPLUS

- L99 ANSWER 47 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- 1999:712201 HCAPLUS Full-text AN
- DN 132:87219
- ΤI Large arrays of well-aligned carbon nanotubes
- AII Ren, Z. F.; Huang, Z. P.; Xu, J. W.; Wang, D. Z.; Wang, J. H.; Calvet, L. E.; Chen, J.; Klemic, J. F.; Reed, M. A.
- CS Department of Chemistry, State University of New York at Buffalo, Buffalo, NY, 14260-3000, USA
- AIP Conference Proceedings (1999), 486 (Electronic Properties of Novel Materials -- Science and Technology of Molecular Nanostructures), 263-267
 - CODEN: APCPCS; ISSN: 0094-243X
- PB American Institute of Physics
- DT Journal
- T.A. English
 - Large arrays of well-aligned carbon nanotubes on glass, silicon, nickel, platinum, etc. were successfully synthesized by plasma enhanced CVD at temps. <500°. Either a uniform layer of nickel made by magnetron sputtering or patterns of nickel dots made by e-beam lithog, and e-beam evaporation or

thermal evaporation was used as the catalyst. Acetylene and ammonia gases were used as the carbon source and dilution gas. Ammonia was also found to act as catalyst . Without ammonia, there was no growth of carbon nanotubes at that low temperature. The diams, of the carbon panotabes range from a few nanometers to a few hundred nanometers depending on the catalytic nickel size. The length is in a range of a few thousand angstroms to a few hundred micrometers depending on the growth time. In the case of uniform nickel layer used for catalyst, the site d. of carbon nanotubes range between 109 to 1012/cm2 depending on the diams, of the nanotubes. Whereas in the case of patterned nickel dots used for catalyst, the site d. can be controlled at any number

ТТ 74-86-2, Acetylene, reactions

RL: RCT (Reactant); RACT (Reactant or reagent)

(preparation of large arrays of well-aligned carbon

napotubes on glass, silicon and metal surfaces sputtered with nickel by acetylene decomposition)

RN 74-86-2 HCAPLUS

Ethyne (CA INDEX NAME) CN

HC-CH

Referenced Author (RAU)	(RPY) (RVL) (RPG	, , , ,	Referenced File
Fan, S	+====+====+==== 1999 283 512	+	HCAPLUS
Huang, Z	1998 73 3845	Appl Phys Lett	HCAPLUS
Iijima, S	1991 354 56	Nature	HCAPLUS
Li, W	1996 274 1701	Science	HCAPLUS
Ren, Z		(unpublished result	s
Ren, Z	1 1 1	Appl Phys Lett (sul	mc
Ren, Z	11998 1282 11105	IScience	IHCAPLUS

- L99 ANSWER 48 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- 1999:254746 HCAPLUS Full-text AN
- DN 131:22274
- ΤI Continuous production of aligned carbon nanotubes: a
- step closer to commercial realization
- ΑIJ Andrews, R.; Jacques, D.; Rao, A. M.; Derbyshire, F.; Qian, D.; Fan, X.; Dickey, E. C.; Chen, J.
- CS Center for Applied Energy Research, University of Kentucky, Lexington, KY, 40506, USA
- SO Chemical Physics Letters (1999), 303(5,6), 467-474 CODEN: CHPLBC: ISSN: 0009-2614
- PB Elsevier Science B.V.
- DT Journal
- LA English
- ΔR High-purity aligned multi-walled carbon nanotubes (MWNTs) were synthesized through the catalytic decomposition of a ferrocene-xylene mixture at .apprx.675°C in a quartz tube reactor and over quartz substrates, with a conversion of .apprx.25% of the total hydrocarbon feedstock. Under the exptl. conditions used, scanning electron microscope images reveal that the MWNT array grows perpendicular to the quartz substrates at an average growth rate of .apprx.25 µm/h. A process of this nature which does not require preformed substrates, and which operates at atmospheric pressure and moderate temps., could be scaled up for continuous or semi-continuous production of MWNTs.
- 1330-20-7, Xylene, processes

RL: PEF (Physical, engineering or chemical process); PROC (Process)

(carbon source; continuous production of aligned multi-walled carbon sanctubes through the catalytic decomposition of a ferrocene-xylene mixture)

RN 1330-20-7 HCAPLUS

CN Benzene, dimethyl- (CA INDEX NAME)

2 (D1-Me)

RETABLE Peferenced Author | Ivear | WOI | PG | Peferenced Work | Peferenced

Referenced Willion				Kererenced Mork	Keleteuced
(RAU)	(RPY)	(RVL)	(RPG)	(RWK)	File
	-+====	+====	+=====	+	+========
Anon	11999	177	31	Chem and Eng News	I
Anon	11992	1	1	Merck Index	1
Anon	11998	281	1940	Special section in S	I .
Baker, R	11978	14	183	Formation of Filamen	I .
Che, G	11998	393	346	Nature	HCAPLUS
Cheng, H	11998	1289	1602	Chem Phys Lett	HCAPLUS
Dai, H	11996	1260	471	Chem Phys Lett	HCAPLUS
Derbyshire, F	11975	13	111	Carbon	HCAPLUS
Derbyshire, F	11975	13	189	Carbon	HCAPLUS
Endo, M	11997	1	135	Carbon Nanotubes	HCAPLUS
Endo, M	11998	1	1	Proc of the NATO-Adv	1
Guo, T	11995	1243	149	Chem Phys Lett	HCAPLUS
Kiang, C	11998	81	11869	Phys Rev Lett	HCAPLUS
Kong, J	11998	1395	1878	Nature	HCAPLUS
Li, W	11996	1274	11701	Science	HCAPLUS
Pan, Z	11998	1299	197	Chem Phys Lett	I
Pan, Z	11998	394	631	Nature	HCAPLUS
Qin, L	11998	172	13437	Appl Phys Lett	HCAPLUS
Rao, C	11998	1	1525	Chem Commun	HCAPLUS
Ren, Z	11998	1282	1105	Science	HCAPLUS
Terrones, M	11997	1388	152	Nature	HCAPLUS

- L99 ANSWER 49 OF 49 HCAPLUS COPYRIGHT 2008 ACS on STN
- AN 1994:592735 HCAPLUS Full-text
- DN 121:192735
- TI Low-energy, ion-enhanced etching of III-V's for nanodevice
 - applications
- AU Pearton, S. J.
- CS Univ. Florida, Gainesville, FL, 32611, USA
- 50 Journal of Vacuum Science & Technology, A: Vacuum, Surfaces, and Films (1994), 12(4, Pt. 2), 1966-72 CODEN: JVTAD6, ISSN: 0734-2101
- DT Journal
- LA English
- AB High-d. (55 + 1011 cm-3) magnetically enhanced discharges operated at low pressure (1 mtorr) with low addni. RF-induced d.c. bias (5-100 V) on the sample enable self-aligned dry etch fabrication of a wide variety of III-V

devices and circuits for light-wave digital and microwave applications. In many cases the obmic metal contacts are used as the etch masks to minimize parasitic resistances and capacitances resulting from the lateral separation of these contacts. Applications range from formation of shallow mesas ($\leq 400~\textrm{\AA})$ on high electron mobility transistors to etching of through-wafer vias (.apprx.100 $\mu\textrm{mh})$. The chemistries employed for these fabrication steps are reviewed, together with examples of processing sequences for heterojunction bipolar transistors and novel microdisk lasers that may form the basis of future electronic and microphotonic circuits.

IT 74-82-8, Methane, processes

RL: PEP (Physical, engineering or chemical process); ECT (Reactant); PROC (Process); RACT (Reactant or reagent)

(low-energy and ion-enhanced etching of III-V compds. for

nanodevice applications)

RN 74-82-8 HCAPLUS

CN Methane (CA INDEX NAME)

CH4

=> d his

L15

```
(FILE 'HOME' ENTERED AT 06:55:59 ON 20 FEB 2008)
SET COST OFF
```

E E14+ALL 94528 S E1+NT

```
FILE 'HCAPLUS' ENTERED AT 06:56:11 ON 20 FEB 2008
1.1
              1 S US20060133982/PN OR (US2005-534900# OR GB2002-26590)/AP.PRN
                E KINLOCH/AII
L2
              44 S E26-E30
                E SINGH/AU
               4 S E3
                E SINGH C/AU
            700 S E3-E23
1.4
L5
             63 S E65-E66, E68-E71
                E CHARAN/AII
                E CHARANJ/AU
              2 S E4
L6
                E SHAFFER/AU
                E SHAFFER M/AU
L7
             31 S E3, E10, E11
L8
             62 S E44-E47
                E K OZTOL/AII
                E KOZIOL/AU
1.9
             33 S E77-E79, E87-E89
                E KRZYSZTOF/AU
L10
              1 S E3
                E WINDLE/AU
L11
            307 S E4-E10
                E NANO/CT
          31199 S E205-E223
          39335 S E232-E234
                E E205+ALL
          50051 S E2+OLD, NT
L14
```

```
E E11+ALL
L16
         39414 S E6+OLD
               E E10+ALL
        123878 S L12-L16
L18
          6597 S B82B/IPC, IC, ICM, ICS
L19
         471602 S NANO?/CW,CT,BI
L20
         473736 S L17-L19
L21
        167400 S L20 AND PY<=2002 NOT P/DT
L22
         30161 S L20 AND (PD<=20021114 OR PRD<=20021114 OR AD<=20021114) AND P
L23
         197561 S L21, L22
                E VAPOR DEPOSITION/CT
1.24
           4732 S L23 AND E9-E44
             68 S L23 AND E5-E8
                E E5+ALL
L26
             70 S L23 AND E1+OLD
                E E1
                E E7+ALL
           7043 S L23 AND E9+OLD, NT
L27
L28
           7064 S L24-L27
L29
           1347 S L23 AND C01B031/IPC, IC, ICM, ICS
L30
           1142 S L23 AND C01B031-02/IPC, IC, ICM, ICS
                E CARBON FIBER/CT
L31
           193 S L23 AND E64
L32
           217 S L23 AND E65
L33
            12 S L23 AND E67
L34
            284 S L23 AND E15(L)PREP+NT/RL
L35
           1709 S L29-L34
L36
           291 S L35 AND L28
L37
             36 S L36 AND ?ALIGN?
L38
             4 S L36 AND ?CURV?
L39
             38 S L37, L38
L40
             33 S L1-L11 AND L23
L41
             4 S L40 AND L28
L42
             6 S L40 AND L35
L43
             8 S L41, L42
L44
             1 S L40 AND L39
L45
             8 S L43, L44
L46
             4 S L40 AND ?ALIGN?
L47
             1 S L40 AND ?CURV?
L48
             10 S L45-L47
L49
             37 S L39 NOT L48
L50
            47 S L48, L49 AND L1-L49
L51
            35 S L50 AND ?CATALY?
L52
            12 S L50 NOT L51
L53
            10 S L52 NOT L1-L11
T.54
             41 S L50-L53 AND (CVD OR ?CHEM?(L)(?VAPOR? OR ?VAPOUR?)(L)DEPOS? O
L55
             47 S L50-L54
     FILE 'REGISTRY' ENTERED AT 07:28:55 ON 20 FEB 2008
L56
             21 S 630-08-0 OR 71-43-2 OR 108-88-3 OR 1330-20-7 OR 98-82-8 OR 10
     FILE 'HCAPLUS' ENTERED AT 07:29:11 ON 20 FEB 2008
L57
           7884 S L56 AND L23
           2225 S L57 AND L56(L)RACT+NT/RL
L58
L59
           1940 S L57 AND L56(L)PEP+NT/RL
L60
           3794 S L58, L59
L61
           183 S L60 AND ALIGN?
L62
             6 S L61 AND ?CURV?
L63
           106 S L61 AND L28
```

L64

32 S L61 AND L35

```
L65
           21 S L63 AND L64
L66
           51 S L55, L62, L65
L67
          158 S L61, L63, L37 NOT L66
L68
          158 S L67 AND ?ALIGN?
L69
           43 S L66 AND ?ALIGN?
L70
             8 S L66 NOT L69
L71
            51 S L69, L70, L66
L72
          158 S L68 NOT L71
L73
          158 S L72 AND L57
L74
           99 S L72 AND L58
L75
           74 S L72 AND L59
L76
           15 S L74 AND L75
            66 S L71.L76
L78
           143 S L73-L76 NOT L77
               SEL AN 6 9 10 12 13 26-28 43 44 46 53 58-60 62-64 69 70 85 97 9
L79
            32 S L78 AND E1-E64
L80
            98 S L77, L79
            98 S L80 AND ?NANO?
L81
L82
            90 S L81 AND ?ALIGN?
L83
            8 S L81 AND ?CURV?
L84
             2 S L81 AND ?SPHER?
L85
           42 S L81 AND (?PARTICLE? OR ?PARTICULAT?)
L86
           10 S L80 AND L1-L11
L87
           49 S L83-L86
L88
           41 S L87 AND L56
           39 S L87 AND (GAS? OR CVD OR ?CHEM?(L)(?VAPOR? OR ?VAPOUR?)(L)DEPO
L89
L90
           49 S L86, L88, L89
L91
           49 S L80-L89 NOT L90
L92
           49 S L90 AND L1-L55, L57-L91
L93
           49 S L91 AND L1-L55, L57-L92
L94
           41 S L92 AND (CAT/RL OR ?CATAL?)
L95
           36 S L93 AND (CAT/RL OR ?CATAL?)
L96
            36 S L92 AND (SUBSTRATE OR SUPPORT)
L97
            30 S L93 AND (SUBSTRATE OR SUPPORT)
L98
            49 S L92, L94, L96
L99
            49 S L93, L95, L97
```

FILE 'HCAPLUS' ENTERED AT 07:44:54 ON 20 FEB 2008

=>