МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра	теоретических	основ
компьютерной	безопасности	И
криптографии		

Идеалы полугрупп

ОТЧЁТ ПО ДИСЦИПЛИНЕ «ПРИКЛАДНАЯ УНИВЕРСАЛЬНАЯ АЛГЕБРА»

студентки 3 курса 331 группы специальности 10.05.01 Компьютерная безопасность факультета компьютерных наук и информационных технологий Шуликиной Анастасии Александровны

Преподаватель		
профессор, д.фм.н.		В. А. Молчанов
	полпись, лата	

СОДЕРЖАНИЕ

BI	ЗЕДЕ	СНИЕ	3
1	Целі	ь работы и порядок её выполнения	4
2	Teop	RNG	5
	2.1	Понятия идеалов полугрупп	5
		2.1.1 Алгоритм построения идеалов полугруппы по таблице Кэли	6
	2.2	Понятия и свойства отношений Грина на полугруппах	6
		2.2.1 Алгоритм вычисления отношений Грина и построения	
		«egg-box»-картины	7
	2.3	Код программы, на основе рассмотренных алгоритмов, на язы-	
		ке C++	9

ВВЕДЕНИЕ

В данной лабораторной работе поставлена задача рассмотрения понятие идеалов полугрупп, разбор и реализация алгоритмов их построения, понятия и свойства отношений Грина на полугруппах, разбор и реализация алгоритмов вычисления отношений Грина и построения «egg-box»-картины конечной полугруппы.

1 Цель работы и порядок её выполнения

Цель работы – изучение строения полугрупп с помощью отношений Грина.

Порядок выполнения работы:

- 1. Рассмотреть понятия идеалов полугруппы. Разработать алгоритмы построения идеалов полугруппы по таблице Кэли.
- 2. Рассмотреть понятия и свойства отношений Грина на полугруппах.
- 3. Разработать алгоритмы вычисления отношений Грина и построения «egg-box»-картины конечной полугруппы.

2 Теория

2.1 Понятия идеалов полугрупп

Полугруппа – это алгебра $S=(S,\cdot)$ с одной ассоциативной бинарной операцией \cdot , т.е. выполняется $(x\cdot y)\cdot z=x\cdot (y\cdot z)$ для любых $x,y,z\in S$.

Если полугрупповая операция называется умножением (соответственно, сложением), то полугруппу называют мультипликативной (соответственно, аддитивной).

Пусть S — произвольная полугруппа. Непустое подмножество $I\subset S$ называется правым (соответственно, левым) идеалом полугруппы S, если для любых $x\in I,\,y\in S$ выполняется условие: $xy\in I$ (соответственно $yx\in I$), т.е. $I\cdot S\subset I$ (соответственно, $S\cdot I\subset I$). Если I — одновременно левый и правый идеал полугруппы S, то I называется двустронним идеалом (или просто идеалом) полугруппы S. Ясно, что в коммутативной полугруппе S все эти определения совпадают.

<u>Лемма 1.</u> Множество всех идеалов IdS (соответственно, левых идеалов LIdS или правых идеалов RIdS) любой полугруппы S является системой замыкания.

Пусть X – подмножество полугруппы S. Тогда наименьший правый идеал полугруппы S, содержащий подмножество X, равен $(X] = XS^1 = X \cup XS$, наименьший левый идеал полугруппы S, содержащий подмножество X, равен $[X] = S^1X = X \cup SX$ наименьший идеал полугруппы S, содержащий подмножество X, равен $[X] = S^1XS^1 = X \cup XS \cup SX \cup SXS$.

В частности, любой элемент $a \in S$ определяет наименьшие правый, левый и двусторонний идеалы: $(a] = aS^1, [a) = S^1a$ и $[a] = S^1aS^1$, которые называются главными (соответственно, правыми, левыми и двусторонними) идеалами.

Минимальные относительно теоретико-множественного включения идеалы (соответственно, левые или правые идеалы) называются минимальными идеалами (соответственно, минимальными левыми или правыми идеалами).

<u>Лемма 2</u>. Если полугруппа имеет минимальный идеал, то он является ее наименьшим идеалом и называется ядром полугруппы.

Доказательство. Если I — минимальный идеал полугруппы S, то для любого идеала J полугруппы S непустое множество $IJ \subset I \cap J \subset I$ и, значит, идеал $I \cap J = I, I \subset J$.

Любая конечная полугруппа имеет наименьший идеал, т.е. ядро полугруппы.

Доказательство. Для конечной полугруппы S множество всех идеалов IdS конечно и, значит, его пересечение является наименьшим идеалом S.

2.1.1 Алгоритм построения идеалов полугруппы по таблице Кэли

Вход. Полугруппа S, таблица Кэли размерностью N, выполняющая свойство ассоциативности.

Выход. Множество правых идеалов R, множество левых идеалов L и множество двусторонних идеалов I.

<u>Шаг 1.</u> Строится множество res, состоящее из всех возможных комбинаций элементов полугруппы S (сочетание без повторений): $res = \{\{S_1\}, \{S_2\}, ..., \{S_N\}, ..., \{S_1, S_2\}, \{S_1, S_3\}, ..., \{S_2, S_3\}, ..., \{S_2, S_N\}, ..., \{S_1, S_2, S_N\}\}$

 $\underline{\text{Шаг 2.}}$ Цикл i от 1 по N.

- <u>Шаг 2.1.</u> Проверяем все подмножества множества res на выполнение условия правого идеала: если $\forall res_i \in res : xy \in res_i \forall x \in res_i, y \in S$, если условие выполняется, то res_i добавлем в множество R.
- <u>Шаг 2.2.</u> Проверяем все подмножества множества res на выполнение условия левого идеала: если $\forall res_i \in res: yx \in res_i \forall x \in res_i, y \in S$, если условие выполняется, то res_i добавлем в множество L.
- <u>Шаг 2.3.</u> Для того, чтобы множество res_i являлось двусторонним идеалом, оно должно удовлетворять условия правого и левого идеала. Если все подмножества множества res выполняют эти условия, то res_i добавляем в I.

<u>Шаг 3.</u> Выводится R, L, I.

Трудоемкость алгоритма $O(N^3*M*M_2),\ M$ - размер множества res, M_2 - размер множества $res_i.$

2.2 Понятия и свойства отношений Грина на полугруппах

Отображения $f: a \mapsto [a], f_r: a \mapsto (a], f_l: a \mapsto [a), a \in S$ определяют ядра $\mathscr{J} = kerf, \mathscr{R} = kerf_r, \mathscr{L} = kerf_l$ по формулам:

$$(a,b) \in \mathscr{J} \iff [a] = [b],$$

$$(a,b) \in \mathscr{R} \iff (a] = (b],$$

$$(a,b) \in \mathcal{L} \iff [a) = [b).$$

Все эти отношения, а также отношения $\mathscr{D} = \mathscr{R} \vee \mathscr{L}$, $\mathscr{H} = \mathscr{R} \cap \mathscr{L}$ являются эквивалентностями на множестве S, которые называются отношениями Грина полугруппы S. Классы этих эквивалентностей, порожденные элементом $a \in S$, обозначаются J_a , R_a , L_a , D_a и H_a , соответственно.

<u>Лемма</u>. Отношения Грина полугруппы S удовлетворяют следующим свойствам:

- 1. эквивалентность \mathscr{R} регулярна слева и эквивалентность \mathscr{L} регулярна справа, те. $(a,b)\in\mathscr{R}\Rightarrow (xa,xb)\in\mathscr{R}$ и $(a,b)\in\mathscr{L}\Rightarrow (ax,bx)\in\mathscr{L}$ для любых $x\in S$,
- 2. эквивалентности \mathscr{R}, \mathscr{L} коммутируют,
- 3. $\mathcal{D} = \mathcal{R} \cdot \mathcal{L} = \mathcal{L} \cdot \mathcal{R}$,
- 4. если полугруппа S конечна, то $\mathcal{D} = \mathcal{J}$,
- 5. любой класс D эквивалентности \mathscr{D} можно изобразить с помощью следующей egg-box-диаграммы, клетки которой являются классами эквивалентности \mathscr{H} , лежащими в D.

Рисунок 1 – egg-box-диаграмма

2.2.1 Алгоритм вычисления отношений Грина и построения «egg-box»картины

Вход. Полугруппа S, таблица Кэли размерностью N, выполняющая свойство ассоциативности.

Выход. Отношения Грина $\mathscr{R}, \mathscr{L}, \mathscr{J}, \mathscr{H}, \mathscr{D}$ и «egg-box»-картины.

<u>Шаг 1.</u> Создаем булевую переменную chek = true.

Шаг 2. Цикл i от 1 до N.

 $\underline{\text{Шаг 2.1.}}$ Для каждого i цикл j от 1 до N.

<u>Шаг 2.2.</u> $\forall S_i, S_j \in S$: строим правые идеалы $(S_i], (S_j],$ если $(S_i] = (S_j],$ то добавляем (S_i, S_j) в множество \mathscr{R} .

<u>Шаг 2.3.</u> $\forall S_i, S_j \in S$: строим левые идеалы $[S_i)$, $[S_j)$, если $[S_i) = [S_j)$, то добавляем (S_i, S_j) в множество \mathscr{L} .

<u>Шаг 2.4.</u> $\forall S_i, S_j \in S$: строим двусторонние идеалы $[S_i]$, $[S_j]$, если $[S_i] = [S_j]$, то добавляем (S_i, S_j) в множество \mathscr{J} .

<u>Шаг 2.5.</u> Множество \mathscr{H} строится: $\mathscr{H} = \mathscr{R} \cap \mathscr{L}$.

<u>Шаг 2.6.</u> Множество \mathscr{D} строиться $\mathscr{D} = \mathscr{R} \cup \mathscr{L}$.

Шаг 3. Цикл по k от 0 до D.size.

<u>Шаг 3.1.</u> Проверяются все классы эквивалентности \mathcal{R} , если они совпадают с k-ым элментом множества \mathcal{D} , то они добавляются в res1.

<u>Шаг 3.2.</u> Проверяются все классы эквивалентности \mathcal{L} , если они совпадают с k-ым элментом множества \mathcal{D} , то они добавляются в res2.

<u>Шаг 3.3.</u> Цикл по i от 0 до res1.size, по j от 0 до res2.size, «egg-box»-картина строиться пересечением $res1_i$ и $res2_j$.

<u>Шаг 4.</u> Выводятся отношения Грина $\mathscr{R}, \mathscr{L}, \mathscr{J}, \mathscr{H}, \mathscr{D}$ и «egg-box»-картины.

Трудоемкость алгоритма $O(N^3)$.

 $2.3~{
m Kog}$ программы, на основе рассмотренных алгоритмов, на языке ${
m C}++$

На рисунках 2-3 можно увидеть работу, реализуемой программы, по рассмотренным алгоритмам.

Рисунок 2

```
D:\PUA\for_lab5\Debug\for_lab5.exe
 Левые идеалы: {1} {1 2} {1 2 3} {1 2 3 4} {1 2 4} {1 3} {1 3 4} {1 4} {2} {2 3} {2 3 4} {2 4} {3} {3 4} {4}
Двусторонние идеалы: {1 2 3 4}
      - Построить идеал полугруппы по таблице Кэли
       - Вычислить отношения Грина и построить <<egg-box>>-картины
Введите число элементов в полугруппе S: 4
 Введите элементы полугруппы: 1 2 3 4
 Введите таблицу Кэлли
 Отношения Грина:
      = \{(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4), (3, 1), (3, 2), (3, 3), (3, 4), (4, 1), (4, 2), (4, 3), (4, 4), (4, 1), (4, 2), (4, 3), (4, 4), (4, 1), (4, 2), (4, 3), (4, 4), (4, 1), (4, 2), (4, 3), (4, 4), (4, 1), (4, 2), (4, 3), (4, 4), (4, 1), (4, 2), (4, 3), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), (4, 4), 
              {(1, 1) (1, 2) (1, 3) (1, 4) (2, 1) (2, 2) (2, 3) (2, 4) (3, 1) (3, 2) (3, 3) (3, 4) (4, 1) (4, 2) (4, 3) (4, 4) }
 Классы эквивалентности в R:
\{\{1, 2, 3, 4\}\}
Классы эквивалентности в L:
\{\{1\}, \{2\}, \{3\}, \{4\}\}
 Классы эквивалентности в D:
\{\{1, 2, 3, 4\}\}
   <egg-box>> - картина:
                                              {1}{2}{3}{4}
{1, 2, 3, 4}
                                                                             {1}{2}{3}{4}
```

Рисунок 3

Листинг программы

```
#include <iostream>
#include <vector>
#include <set>
#include <map>
#include <algorithm>
#include <iomanip>

using namespace std;

set <vector <char>> allel;

int Find1(char k, vector<char> bunch, int n) {
    for (int i = 0; i < bunch.size(); i++)
    if (k == bunch[i])</pre>
```

```
return i;
}
bool Chek ass(vector < vector < char>> res,
vector < char > bunch, int n) {
        for (int a = 0; a < n; a++)
        for (int b = a; b < n; b++)
        for (int c = 0; c < n; c++)
        if (res[Find1(res[a][b], bunch, n)][c]
        != res[a][Find1(res[b][c], bunch, n)])
        return false;
        return true;
}
bool Find (char k, vector < char > bunch, int n) {
        for (int i = 0; i < bunch.size(); i++)
        if (k = bunch | i |)
        return true;
}
bool Ideals (vector <char> a, vector <char> bunch,
vector <vector <char>>> Kel, int s) {
        for (int i = 0; i < a.size(); i++)
        for (int j = 0; j < bunch.size(); j++) {
                 if (s = 1) 
                         if (!Find(Kel[Find1(a[i], bunch,
                         bunch.size())][j], a, a.size()))
                         return false;
                 }
                 else {
                         if (! Find (Kel [j] [Find1 (a [i], bunch,
                         bunch.size())], a, a.size()))
                         return false;
                 }
```

```
return true;
}
set <vector <char>> Make(set <vector <char>> v1,
set < vector < char >> v2) {
         set <vector <char>> res;
         for (vector < char > a : v1)
         for (vector < char > b : v2)
         if (a == b)
         res.insert(a);
         return res;
}
void exit(set <vector <char>>> res) {
         for (vector <char> a : res) {
                  \texttt{cout} << \text{ "}\{\text{ "};
                           for (int j = 0; j < a.size(); j++)
                           if (j = a.size() - 1)
                           cout << a[j];
                           else
                           cout << a [j] << " \ ";
                           cout << "} ";
         }
}
void Ex1() {
         int n, m;
         char t1;
         cout << "Enter the number of
         elements in the semigroup S: ";
         cin >> n;
         vector <char> bunch;
```

```
cout << "Enter semigroup elements: ";</pre>
for (int i = 0; i < n; i++) {
          cin \gg t1;
          bunch.push back(t1);
}
vector <vector <char>>> Kel;
Kel. resize(n);
cout << "Enter Callie table:\n";</pre>
for (int i = 0; i < n; i++) {
          Kel[i].resize(n);
          \  \, \text{for}\  \, (\, i\, n\, t\  \  \, j\  \, =\  \, 0\, ;\  \  \, j\  \, <\  \, n\, ;\  \  \, j\, +\! +)
          cin >> Kel[i][j];
}
if (!Chek ass(Kel, bunch, n)) {
          cout << \text{"} \backslash nSemigroup \ associativity is \\
         NOT satisfied!\n";
          return;
}
for (int i = (1 << n) - 1; i >= 0; i ---) {
          vector <char> res2;
          for (int j = 0; j < n; j++) {
                    if (i & (1 << j)) {
                              res2.push back(bunch[j]);
                    }
          if (res2.size() > 0)
          allel.insert(res2);
}
set <vector <char>> res;
for (vector <char> a : allel)
```

```
if (Ideals (a, bunch, Kel, 1))
        res.insert(a);
        cout << "Right ideals: ";
        exit (res);
        cout << endl;
        set < vector < char>>> res3;
        for (vector <char> a : allel)
        if (Ideals (a, bunch, Kel, 0))
        res3.insert(a);
        cout << "Left ideals: ";
        exit (res3);
        cout << endl;
        cout << "Bilateral ideals: ";</pre>
        set <vector<char>>> res4 = Make(res, res3);
        exit (res4);
        cout << endl;
}
set < pair <char, char>> Comp(set<pair <char, char>> R,
set < pair < char, char >> L) {
        set < pair <char, char>> res;
        for (pair <char, char> a : R)
        for (pair <char, char> b : L)
        if (a.second = b.first)
        res.insert(make pair(a.first, b.second));
        return res;
}
set <pair <char, char>> Peres(set <pair <char, char>> v1,
set < pair < char, char >> v2) {
        set <pair <char, char>> res;
        for (pair < char, char > a : v1)
```

```
for (pair <char, char> b : v2)
        if (a == b)
        res.insert(a);
        return res;
}
vector<int> Per (vector<int> v1, vector<int> v2) {
        vector <int> res;
        for (int el1 : v1)
        for (int el2 : v2)
        if (el1 = el2)
        res.push back(el1);
        return res;
}
set < int > Per2(vector < int > v1, vector < int > v2) {
        set < int > res;
        for (int ell : v1)
        for (int el2 : v2)
        if (el1 = el2)
        res.insert(el1);
        return res;
}
vector < vector < int >> Equi(int ** v, int n, char* els) {
        vector < vector < int >> res;
        int* count = new int[n];
        for (int i = 0; i < n; i++) {
                 count[i] = 1;
        }
        for (int i = 0; i < n; i++) {
                 if (count[i]) {
```

```
vector <int> srez;
                              \label{eq:formula} \text{for } (\,i\,n\,t\ j\ =\ i\;;\ j\ <\ n\;;\ j++)\ \{
                                         if (v[i][j] && count[j]) {
                                                   count[j] = 0;
                                                   srez.push back(j);
                                         }
                              count[i] = 0;
                              res.push back(srez);
                    }
          }
          {\tt cout} \; << \; endl \; << \; "\{";
                    for (int i = 0; i < res.size(); i++) {
                    cout << "{";
                    {
m for\ (int\ j=0;\ j< res[i].size();\ j++)\ } \{
                              cout << els[res[i][j]];
                              if (j != res[i]. size() - 1)
                              c\,o\,u\,t \;<<\; "\;,\quad "\;;
                    cout << "}";
          if \quad (i \ != \ res.\, size\, () \ - \ 1)
                   cout << ", ";
cout << "}" << endl;
return res;
void Ex2() {
          int n, m;
          char t1;
          cout << "Enter the number of
          elements in the semigroup S: ";
```

```
cin >> n;
vector <char> bunch;
cout << "Enter semigroup elements: ";</pre>
for (int i = 0; i < n; i++) {
        cin \gg t1;
        bunch.push back(t1);
}
char* a = new char[n];
for (int i = 0; i < bunch.size(); i++) {
        a[i] = bunch[i];
}
vector <vector <char>>> Kel;
Kel. resize(n);
cout << "Enter Callie table \n";
for (int i = 0; i < n; i++) {
        Kel[i].resize(n);
        for (int j = 0; j < n; j++)
        cin \gg Kel[i][j];
}
cout << "\nGreen's relationship:\n";</pre>
/R
set <pair <char, char>> res1;
for (int i = 0; i < bunch.size(); i++)
for (int j = 0; j < bunch.size(); j++) {
        set < char > set 11;
        set11.insert(bunch|i|);
        for (int k = 0; k < Kel[i].size(); k++)
        set11.insert(Kel[i][k]);
        set < char > set 12;
        set12.insert(bunch | j | );
        for (int k = 0; k < Kel[j].size(); k++)
        set12.insert(Kel[j][k]);
```

```
if (set 11 = set 12)
        res1.insert(make pair(bunch[i], bunch[j]));
}
//L
set <pair <char, char>> res2;
for (int i = 0; i < bunch.size(); i++)
for (int j = 0; j < bunch.size(); j++) {
        set <char> set11;
        set11.insert(bunch[i]);
        for (int k = 0; k < n; k++)
        set11.insert(Kel[k][i]);
        set < char > set 12;
        set12.insert(bunch[j]);
        for (int k = 0; k < n; k++)
        set12.insert(Kel[k][j]);
        if (set11 = set12)
        res2.insert(make pair(bunch[i], bunch[j]));
}
//J
set <pair <char, char>> res3;
for (int i = 0; i < bunch.size(); i++)
for (int j = 0; j < bunch.size(); j++) {
        set < char > set 11;
        set11.insert(bunch[i]);
        set < char > set 111;
        for (int k = 0; k < n; k++)
        set111.insert(Kel[k][i]);
        for (char r : set111) {
        for (int k = 0; k < n; k++)
        set11.insert(Kel[Find1(r, bunch,
        bunch.size()) ] [k]);
        set < char > set 12;
```

```
set12.insert(bunch[j]);
         set < char > set 112;
         for (int k = 0; k < n; k++)
         set112.insert(Kel[k][j]);
         for (char r : set112) {
         for (int k = 0; k < n; k++)
         set12.insert(Kel[Find1(r, bunch,
         bunch.size()) | [k]);
         if (\operatorname{set} 11 = \operatorname{set} 12)
         res3.insert(make pair(bunch[i], bunch[j]));
}
cout << "R = {";
         for (pair < char, char > a : res1)
        cout << "(" << a. first << ", "
        << a.second << ") ";
        cout << "}\n";
cout << "L = {";
         for (pair < char, char > a : res2)
        cout << "(" << a. first << ", "
        << a.second << ") ";</pre>
        cout << "}\n";
cout << "J = {"};
        for (pair < char, char > a : res3)
        cout << "(" << a. first << ", "
        << a.second << ") ";</pre>
        cout << "}\n";
set <pair <char, char>> res4 = Peres(res1, res2);
cout << "H = {";
         for (pair < char, char > a : res4)
```

```
cout << "(" << a. first << ", "
         << a.second << ") ";
         cout << " \} \setminus n ";
set < pair < char, char >> res5 = Comp(res1, res2);
cout << "D = \{";
         for (pair < char, char > a : res 5)
         {\tt cout} \; << \; "(" \; << \; a. \; {\tt first} \; << \; " \, , \; "
         << a.second << ") ";
         cout << "}\n";
int** matr1;
matr1 = new int* |n|;
for (int i = 0; i < n; i++) {
         matr1[i] = new int[n];
         for (int j = 0; j < n; j++) {
                  matr1[i][j] = 0;
         }
for (pair < char, char > a : res1) {
         matr1 [Find1 (a. first, bunch, bunch. size ())]
         [Find1(a.second, bunch, bunch.size())] = 1;
cout << \ "\ \ \ n \ Equivalence \ classes \ in \ R:";
vector < vector < int >> r = Equi (matr1, n, a);
int** matr2;
matr2 = new int* |n|;
for (int i = 0; i < n; i++) {
         matr2[i] = new int[n];
         for (int j = 0; j < n; j++) {
                  matr2[i][j] = 0;
         }
}
```

```
for (pair < char, char > a : res2)
        matr2 [Find1 (a. first, bunch, bunch. size ())]
         [Find1(a.second, bunch, bunch.size())] = 1;
cout << "\nEquivalence classes in L:";</pre>
vector < vector < int >> l = Equi (matr2, n, a);
int ** matr 5;
matr5 = new int * [n];
for (int i = 0; i < n; i++) {
        matr5[i] = new int[n];
         for (int j = 0; j < n; j++) {
                  matr5[i][j] = 0;
         }
for (pair < char, char > a : res5) {
         matr5 | Find1 (a. first, bunch, bunch. size ()) |
         [Find1(a.second, bunch, bunch.size())] = 1;
cout << "\nEquivalence classes in D:";</pre>
vector < vector < int >> d = Equi(matr5, n, a);
cout <<"<<egg-box>> - picture:\n";
for (vector < int > cl : d) {
         vector < vector < int >> res 1;
         vector < vector < int >> res r;
         for (\text{vector} < \text{int} > \text{el} : 1) {
                  if (Per(cl, el) = el)
                  res l.push back(el);
         }
         for (vector < int > el : r)
         if (Per(cl, el) = el)
         res r.push back(el);
         cout << setw (15);
```

```
for (vector < int > ans : res l) {
        cout << "{";
        string res = "";
        for (int x : ans) {
        res = res + a[x] + ", ";
        res.pop_back();
        res.pop back();
        res += "}";
        cout << res;
cout << endl;
for (vector < int > ans : res r) {
        cout << "{";
        string res = "";
        for (int x : ans) {
        res = res + a[x] + ", ";
        }
        res.pop back();
        res.pop back();
        res += "}";
        cout << res << setw (14);
        for (vector < int > ans2 : res 1) {
        string res2 = "";
        res2 += "{ "; }
        set < int > k = Per2 (ans, ans2);
        for (int x : k) {
        res2 = res2 + a[x] + ", ";
        }
        res2.pop back();
        res2.pop back();
        res2 += "}";
        cout \ll res2;
        }
```

```
cout << endl;
                 cout << endl;
                 cout << endl;
        }
}
int main() {
        setlocale(LC ALL, "Russian");
        for (;;) {
                 cout \ll "1 - Construct an ideal of
                 a semigroup from the Cayley tableau
                 \n2 - Calculate Green's ratios and
                 build <<egg-box>>-pictures \n";
                 int x;
                 cin >> x;
                 switch(x)
                         case 1:
                         Ex1();
                         cout << endl;
                         break;
                         case 2:
                         Ex2();
                         cout << endl;
                         break;
                         case 0:
                         break;
        }
}
```

ЗАКЛЮЧЕНИЕ

В ходе выполнения лабораторной работы были рассмотрены понятия идеалов полугруппы, понятия и свойства отношений Грина на полугруппах, разобран алгоритм построения «egg-box»-картины конечной полугруппы. А также были реализованы алгоритм построения идеалов полугруппы по таблице Кэли, алгоритм вычисления отношений Грина и алгоритм построения «egg-box»-картины конечной полугруппы.