Week 9 Lab: Fibonacci Design

Table of Contents:

- Pseudocode
- Algorithm Efficiency
- Trace Table

Pseudocode:

```
FUNCTION printPrimes(array,num)
    SET string = "\nPrime numbers less than "+str(num)+":\n "
    FOR i in array:
        IF not i == 0
            string += str(i)+" "
    PUT string

GET n from USER

SET arr <- list(range(1,n))

FOR i <- 2 ... floor(sqrt(n))
    FOR a <- i ... arr.length
        IF arr[a] > i and arr[a] % i == 0:
        SET arr[a] <- 0

printPrimes(arr,n)</pre>
```

Algorithm Efficiency:

I am kind of guessing that the algorithm efficiency is $O(n \log n)$, because we have one loop that goes through about $\operatorname{sqrt}(n)$ times (the lab instructions said that this is approximately $O(\log n)$) and then inside the loop we have another loop that goes through a max of 2 less than the length (this would be about O(n)).

<u>This</u> is a chart that shows the number inputted and the count of iterations. It also has a column with an estimated count number based on the value of *n*.

Trace Table:

You can see the live preview of the lab trace <u>here</u>.