Frequency distribution of numbers in a sudoku

Because sudokus are fun.

Frequency distribution example (part 1)

5 6	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Number distrib	oution
1:3	
2:2	
3:3	
4:2	
5:3	
6:5	
7:3	
8:5	
9:4	

givens = 30

Freq. distribution

1:0

2:2

3:4

4:1

5:2

Frequency distribution example (part 2)

freq. distribution

1:0

2:2

3:4

4:1

5:2

number of occurences (frequency)

variance = 1.11111...

That's great... now what?

Our hypothesis

We predict that a sudoku with a **balanced frequency distribution** would be **easier** to solve by a SAT solver
than a sudoku with an **unbalanced frequency distribution**, i.e. a **larger variance**.

Ingredients

- 3 sets of sudokus (17, 26, 33 givens)
- Each set contains 3500 sudokus
 - \circ random freq. distribution \rightarrow random variance
- Python implementation of picoSAT
- Magic

For every set of sudokus:

- 1. calculate freq. distribution \rightarrow variance
- 2. solve all sudokus
- 3. calculate runtime
- 4. repeat 2 and 3 and average over runtime

For 17 givens:

variance: occurences

- 0.32:396
- 0.54:1237
- 0.76:1121
- 0.98:694
- 1.20:52

variance : occurences : runtime in ms (average)

0.32: 396: 7.83

0.54: 1237:8.34

0.76: 1121 :8.70

0.98: 694 : 9.57

1.20: 52: 10.4

Does this work for given = 26? and 33?

		(b) Results 26-givens			Table 2: Results 33		ults 33 givens
		-	Variance	Runtime (ms)		0.22	4.71
		-				0.44	4.58
		(0.10	5.04		0.66	4.53
		(0.32	5.28		0.88 1.11	4.60 4.62
		(0.54	5.30		1.11	4.02
(-) D	() D 1, 17 :		0.77	5.31		1.33	4.59
(a) Results 17-givens			0.99			1.55	4.70
				5.37		1.77	4.72
Variance	Runtime (ms)		1.21	5.40		$\frac{2.0}{2.00}$	4.69 4.64
	()		1.43	5.41		2.00 2.22	4.69
0.32	7.83		1.65	5.48		2.22	4.74
0.54	8.34		1.88	5.60		2.44	4.80
0.54	0.04					2.66	4.82
0.77	8.70	4	2.10	5.64		2.88	4.88
0.99	9.57		2.32	5.62		3.11	4.87
		•	2.54	5.57		3.11 3.33	4.77 4.79
1.21	10.4		2.77	5.68		3.33	5.01
						3.55	5.09
			2.99	5.88		3.77	5.10
		:	3.21	5.90		4.00	4.85
		:	3.43	5.40		4.22	4.99
			3.65	6.40		$4.22 \\ 4.44$	5.39 4.69
						4.44	4.69 5.39
			3.88	6.00		4.66	5.60
		4	4.10	5.80		5.11	5.20

Conclusion

We predict that a sudoku with a **balanced frequency distribution** would be **easier** to solve by a SAT solver
than a sudoku with an **unbalanced frequency distribution**, i.e. a **larger variance**.

- 17 givens: effect
- 26 givens: some effect
- 33 givens: minimal effect

• the more decisions, the more it matters

Thank you