ELECTROCATALYTIC CONVERSION OF METHANE TO METHANOL

ABSTRACT

As methane is the primary component of natural gas, it is abundant and widely available. However, transporting methane, especially from remote locations, is challenging and often uneconomical. Converting methane to methanol, a liquid makes it easier and more cost-effective to transport and store. In this research, we will be focusing on the conversion of methane to methanol involving selective oxidation. Methanol is a versatile chemical with wide range of applications such as alternative fuel, chemical feedstock, reduction of flaring and microbial cultivation.

Figure 1: Electrocatalytic cell diagram

Proposed reaction mechanism

Water Splitting

$$* + 2H_2O \rightarrow *OH + H_2O + (H^+ + e^-)$$

 $\rightarrow *O + H_2O + 2(H^+ + e^-)$
 $\rightarrow *OOH + 3(H^+ + e^-)$
 $\rightarrow *+O_2 + 4(H^+ + e^-)$

Methane Oxidation

$$\begin{split} *O + CH_4(g) &\to *O \cdots CH_4 \\ &\to *(OH \cdots CH_3) \\ \\ &\to *CH_3OH \\ \\ &\to *+CH_3OH(g) \end{split}$$

OER free energy diagrams

Figure 3: OER free energy diagram for Metal oxides

Figure 4: OER free energy diagram for MXenes

Figure 5: Limiting potential for Metal Oxides (blue) and MXenes (red)

Figure 6: Rate for methanol production and oxygen evolution

Limitations of the catalysts

- Activate CH4 and form CH3OH
- Avoid O2 evolution
- Avoid CH3OH oxidization to CO2

The activation energy for Methanol and Oxygen evolution:

$$E_{\rm act}^{\rm CH_3OH} = -\frac{1}{2}G_{\rm O} + 2.4$$

$$E_{\rm act}^{\rm O_2}(U) = -\frac{1}{2}G_{\rm O} + 3.2 - eU$$

Rate constant:

$$K_1 = \frac{k_1^+}{k_1^-}$$
 $k_2^+ = \frac{k_B T}{h} \exp \frac{E_{\text{act}}^{\text{CH}_3 \text{OH}}}{k_B T}$ $k_3^+(U) = \frac{k_B T}{h} \exp \frac{E_{\text{act}}^{\text{O}_2}(U)}{k_B T}$

Structure characterization of P-Tri-RhO2 and Rh-NA/RhO2

Figure 7: STEM showing the atomic arrangement of Rh

Figure 8: Zoomed in STEM image

Figure 9: SEM, showing 2d nanosheets morphology

References

1. L Arnarson, PS Schmidt, M Pandey, A Bagger, KS Thygesen, I EL Stephens, J Rossmeisl, "Fundamental limitation of electrocatalytic methane conversion to methanol". Physical Chemistry Chemical Physics, 2018, 20 (16), 11152-11159.

2. Fan, Zhenglong & Liao, Fan & Yujin, Ji & Liu, Yang & Huang, Hui & Wang, Dan & Yin, Kui & Yang, Haiwei & Ma, Mengjie & Zhu, Wenxiang & Wang, Meng & Kang, Z.H. & Li, Youyong & Shao, Mingwang & Hu, Zhiwei & Shao, Qi. (2022). Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H2-production. Nature Communications. 13. 10.1038/s41467-022-33512-5.