Polygone convexe du plan

Dans tout le problème \mathcal{P} désigne un plan affine euclidien.

Le produit scalaire de deux vecteurs \vec{u} et \vec{v} de ce plan est noté $(\vec{u} \mid \vec{v})$ et la norme d'un vecteur \vec{u} est notée $\|\vec{u}\|$.

L'objet de ce problème est d'étudier les polygones convexes du plan.

Tous les demi-plans F considérés dans ce problème seront supposés fermés, c'est à dire incluant leur droite limite $\mathcal D$.

Définitions générales :

On appelle combinaison convexe des points A_1, A_2, \ldots, A_n tout point pouvant s'écrire comme barycentre des points A_1, A_2, \ldots, A_n affectés de masses $\alpha_1, \alpha_2, \ldots, \alpha_n$ avec $\alpha_1, \alpha_2, \ldots, \alpha_n \geq 0$ et $\alpha_1 + \alpha_2 + \cdots + \alpha_n = 1$.

Soit A, B deux points du plan \mathcal{P} . On appelle *segment* d'extrémités A et B l'ensemble [A, B] formé des points M combinaison convexe des points A et B.

Soit $(A_1,A_2,...,A_n)$ (avec $n\in\mathbb{N}^*$) une famille de points du plan \mathcal{P} . On appelle *enveloppe convexe* de la famille de points $(A_1,A_2,...,A_n)$ l'ensemble $Conv(A_1,A_2,...,A_n)$ formé des points M combinaisons convexes des points $A_1,A_2,...,A_n$.

En particulier [A, B] = Conv(A, B).

Soit \mathcal{C} une partie du plan \mathcal{P} . On dit que \mathcal{V} est *convexe* ssi $\forall A, B \in \mathcal{C}, [A, B] \subset \mathcal{C}$.

Partie I

- 1. Premiers exemples de parties convexes.
- 1.a Montrer que tout disque fermé est convexe.
- 1.b Montrer que tout demi-plan du plan \mathcal{P} est convexe.
- 1.c Montrer que tout enveloppe convexe d'une famille de points est convexe.
- 2. Soit C et C' deux convexes du plan P.
- 2.a Montrer que $C \cap C'$ est convexe.
- 2.b Montrer, par récurrence sur $n \in \mathbb{N}^*$, que toute combinaison convexe de n points de \mathcal{C} est encore un point de \mathcal{C} .
- 3. Soit A_1, A_2, A_3 trois points non alignés du plan \mathcal{P} .

 On appelle triangle de sommets A_1, A_2, A_3 l'ensemble $\mathcal{T} = Conv(A_1, A_2, A_3)$.

 On note F_1 le demi-plan délimité par la droite (A_2A_3) et contenant le point A_1 .

 On définit de même, par permutation circulaire, les demi-plans F_2 et F_3 .
- 3.a Justifier que $\mathcal{T} \subset F_1 \cap F_2 \cap F_3$.
- 3.b On introduit le repère affine $\mathcal{R}=(A_1,\overline{A_1}A_2,\overline{A_1}A_3)$ et on note (x,y) les coordonnées des points $M\in\mathcal{P}$. Par quelles inéquations, relatives au repère \mathcal{R} , les demi-plans F_1,F_2 et F_3 sont-ils définis ?
- 3.c Etablir $F_1 \cap F_2 \cap F_3 \subset \mathcal{T}$ et conclure.
- 4. On reprend les notations et les hypothèses de la question 3. On pose O l'isobarycentre des points A_1, A_2, A_3 .
- 4.a Justifier que $O \notin (A_1 A_2) \cup (A_2 A_3) \cup (A_3 A_1)$.

4.b En déduire qu'il existe r > 0 tel que $D(O,r) \subset \mathcal{T}$ (avec D(O,r) le disque de centre O et de rayon r).

Partie II

Dans l'intégralité de cette partie, O désigne un point du plan $\mathcal P$ fixé.

Pour toute partie \mathcal{A} de \mathcal{P} , on note \mathcal{A}^* l'ensemble défini par $\mathcal{A}^* = \left\{ M \in \mathcal{P} / \forall A \in \mathcal{A}, \left(\overrightarrow{OM} \mid \overrightarrow{OA}\right) \leq 1 \right\}$.

Cette partie \mathcal{A}^* est appelé dual de la partie \mathcal{A} en O.

- 1. Soit A et B deux parties du plan P.
- 1.a Montrer que A^* est un convexe contenant O.
- 1.b Etablir l'implication : $A \subset B \Rightarrow B^* \subset A^*$.
- 1.c Justifier $A \subset A^{**}$ où A^{**} se comprend comme étant le dual en O du dual en O de A.
- 2.a Déterminer \mathcal{P}^* puis $\{O\}^*$.
- 2.b Soit r > 0. Etablir: $(D(O,r))^* = D(O,1/r)$.
- 3. Soit H un point du plan \mathcal{P} différent de O.
- 3.a On note $\mathcal{D} = \left\{ M \in \mathcal{P} / \left(\overrightarrow{OM} \mid \overrightarrow{OH} \right) = 1 \right\}$.

 Montrer que \mathcal{D} est une droite perpendiculaire à (OH) en un point K à préciser.
- 3.b Etablir que $\{H\}^*$ est le demi-plan délimité par \mathcal{D} et contenant le point O. Indice : on pourra introduire un repère orthonormé adapté au problème étudié.
- 4. On étudie maintenant le problème inverse : Soit F un demi-plan contenant le point O et délimité par une droite \mathcal{D} ne passant pas par O. Justifier l'existence d'un point H du plan \mathcal{P} tel que $F = \{H\}^*$.

Partie III

On appelle polyèdre convexe toute partie bornée de \mathcal{P} pouvant s'écrire comme intersection d'un nombre fini de demi-plans.

Soit $n \in \mathbb{N}^*$ et $(F_i)_{1 \le i \le n}$ une famille finie de demi-plans. Pour tout $i \in \{1,2,\ldots,n\}$, on note \mathcal{D}_i la droite délimitant le demi-plan F_i et on considère le polyèdre $\mathcal{C} = \bigcap_{i \in \mathcal{C}} F_i$.

On suppose que C est borné, on dit alors que C est un polygone.

Pour tout $1 \le i \le n$, l'intersection $\mathcal{C} \cap \mathcal{D}_i$, lorsqu'elle est non vide, est un segment du plan.

On l'appelle arête du polygone \mathcal{C} et ses extrémités sont appelés sommets de \mathcal{C} .

Tout point de \mathcal{C} ne figurant pas sur une arête de \mathcal{C} est dit intérieur à \mathcal{C} .

On suppose que de tels points existent, on dit alors que \mathcal{C} est non aplati.

- 1. Soit O un point du polygone $\mathcal C$ et δ une demi-droite d'origine O. On note $I = \left\{i \in \{1,2,\ldots,n\}/\delta \not\subset F_i\right\}$ et $J = \left\{i \in \{1,2,\ldots,n\}/\delta \subset F_i\right\}$.
- 1.a Justifier que $I \neq \emptyset$.
- 1.b Pour $i \in I$, on note A_i le point intersection de δ et \mathcal{D}_i de sorte que $\delta \cap F_i = \left[O, A_i\right]$. On pose $d = \min_{i \in I} OA_i$ et on note $i_0 \in \left\{1, 2, \ldots, n\right\}$ un indice tel que $d = OA_{i_0}$. En distinguant selon que $i \in I$ ou $i \in J$, établir: $\forall i \in \left\{1, 2, \ldots, n\right\}, A_{i_0} \in F_i$.
- 1.c Conclure que $\delta \cap \mathcal{C} = [O, A_{i_0}]$.

- 2. Montrer que l'intersection d'une droite \mathcal{D} et du polygone \mathcal{C} est soit vide, soit égale à un segment dont les deux extrémités appartiennent aux arêtes de \mathcal{C} .
- 3. Notons $P_1, P_2, ..., P_m$ les sommets de \mathcal{C} et formons $\mathcal{C}' = Conv(P_1, P_2, ..., P_m)$ On désire établir que $\mathcal{C} = \mathcal{C}'$.
- 3.a Justifier $C' \subset C$.
- 3.b Justifier que les arêtes de C sont incluses dans C'.
- 3.c Montrer que tout point intérieur à C est aussi dans C' et conclure.
- 4. Soit O un point intérieur à $\mathcal C$. On reprend la notion de dual introduite dans la partie II. On veut montrer que $\mathcal C=\mathcal C^{**}$. Soit $M\not\in\mathcal C$
- 4.a Montrer qu'il existe un demi-plan F_i , avec $i \in \{1, 2, ..., n\}$, tel que $M \notin F_i$.
- 4.b En vertu de l'étude du II.4, on peut introduire un point H tel que $F_i = \left\{H\right\}^*$. Montrer que $H \in \mathcal{C}^*$.
- 4.c En déduire que $M \notin C^{**}$.
- 4.d Conclure.
- 5. Soit $A_1, A_2, ..., A_n$ des points non alignés et $C = Conv(A_1, A_2, ..., A_n)$.
- 5.a Justifier l'existence d'un point O du plan pour lequel il existe r > 0 tel que $D(O, r) \subset \mathcal{C}$. On reprend la notion de dual introduite dans la partie II définie à partir du point précédent.
- 5.b Montrer que $C^* = \bigcap_{1 \le i \le n} \{A_i\}^*$.
- 5.c Etablir que C^* est un polygone convexe.
- 5.d Conclure que C est lui-même un polygone convexe.