CSCI 1311: Problem Set 3

Early Deadline: 15 Feb 2023 Final Deadline: 17 Feb 2023

Instructions:

- You will submit your answers to via gradescope.
- Refer to gradescope to determine which questions or sub-questions are submitted individually.
- For each submission of a question or sub-question, you should submit an image of your answer, which can be a picture of your handwriting, a screenshot of a tablet, an image of something you typed, or a scan of a document. The most important point is that it's legible and clearly marked in gradescope.
- Submission by the *Early Deadline* will receive a 10 point bonus. Submission after the *Final Deadline* will not be accepted.
- You may ask to use your *one time amnesty* for this assignment to receive two additional days past the *Final Deadline*.

Question Weighting

Question:	1	2	3	4	5	6	Total
Points:	10	15	15	20	20	20	100

- 1. **[10 points]** Prove that for any positive integer n, if n is even, then n^3 is even.
- 2. **[15 points]** Prove that for all integers n can, there exists a q such that $n^4 = 8q + 1$ or $n^4 = 8q$.
- 3. **[15 points]** Prove that for all integers n > 4, if n is prime than n = 6q + 1 or n = 6q 1 where $q \ge 1$.
- 4. **[20 points]** Prove that the there does not exists two primes greater than 4 have that have a difference of 3, that is $|p-q| \neq 3$ for all primes p and q greater than 4. (*Hint: There are a few ways to do this, but you can also use the result from the prior question to prove this one)*
- 5. **[20 points]** Prove that, for all integers n > 1 and prime p, p|n if, and only if, $p|n^2$.
- 6. **[20 points]** Prove that $\sqrt{7}$ is irrational. (*Hint: you can use the result from the previous question to prove this one*)