4 文件系统管理

PRINCIPLE OF WINDOWS AND ITS APPLICATIONS

School of CS

Jicheng Hu

jicheng @ yahoo . com

https://gitee.com/wuhanuniversity/

outlines

4.1 Introduction to Widows File System

4.2 FAT File System

4.3 NTFS File System

4.4 CDFS and UDF

4.5 支持文件系统的磁盘结构

4.6 管理文件与文件夹的访问许可权

4.7 共享文件夹

File Systems in Windows

- > File systems in Windows are implemented as file system drivers working above the storage system.
- Every system-supplied file system in Windows is designed to provide reliable data storage with varying features to meet the user's requirements.
- > Standard file systems available in Windows include NTFS, ReFS, ExFAT, UDF, and FAT32.

文件系统是操作系统用于明确存储设备(常见的是磁盘,也有基于 NAND Flash的固态硬盘)或分区上的文件的方法和数据结构;即在存储设备上组织文件的方法。

文件系统由三部分组成

- > 文件系统的接口
- > 对对象操纵和管理的软件集合
- > 对象及属性

从系统角度来看,文件系统是对文件存储设备的空间进行组 织和分配,负责文件存储并对存入的文件进行保护和检索的 系统。具体地说,它负责为用户建立文件,存入、读出、修 改、转储文件,控制文件的存取,当用户不再使用时撤销文 件等。

FALL 2020

Windows支持的文件系统

- **FAT**
- NTFS. ReFS
- CDFS
- UDF

FALL 2020

File system filter drivers

- > A file system filter driver intercepts requests targeted at a file system or another file system filter driver.
- ➤ By intercepting the request before it reaches its intended target, the filter driver can extend or replace functionality provided by the original target of the request. Examples of filter drivers include:
 - Anti-virus filters
 - Backup agents
 - Encryption products

https://github.com/Microsoft/Windows-driver-samples

Windows Azure Active Directory

- ➤ Windows Azure Active Directory提供了云端的身份和访问管理
- ➤ 本质上Windows Azure Active Directory让用户通过认证来使用一 些服务
 - 例如Exchange Online邮箱
- ➤ Windows Azure Active Directory 有免费、基础和高级版本

https://azure.microsoft.com/zh-cn/services/active-directory/

FALL 2020

Azure Active Directory功能

- ➤ 简化单一登录, Azure AD 支持超过 2,800 个预先集成的软 件即服务 (SaaS) 应用程序
- > 通过单一登录,使用户可以在任何平台上从任何位置无缝 访问应用,自动化用户生命周期和预配工作流,借助自助服 务管理,节省时间和资源,了解单一登录的详细信息
- > 实施强身份验证和条件访问策略来保护用户凭据通, 过确 保正确的人员有权访问所需的资源,有效地管理标识
- > 通过一个标识提供者为外部用户获取灵活、可缩放的标识 和访问管理,自定义用户旅程并简化访问应用程序的身份验

https://azure.microsoft.com/zh-cn/services/active-directory/

FALL 2020

FAT 文件系统简介

- > FAT16
 - DOS、Windows 95使用的文件系统
 - 最大可以管理4GB的分区
 - 每个分区最多只能有65525个簇
- **≻** FAT32
 - 支持2TB (2048G) 的分区
 - 使用的簇比FAT16小

FAT 文件系统的优点

- > 文件系统所占容量与计算机的开销少
- > 支持各种操作系统 —— 可移植
- > 方便的用于传送数据

FAT 文件系统的缺点

- ▶容易受损害
 - FAT文件系统损坏时, 计算机就要瘫痪或者不正常关机
- ▶单用户
 - 不保存文件的权限信息; 只包含隐藏、只读等公共属性
- ▶非最佳更新策略
 - 在磁盘的第一个扇区保存其目录信息
- ▶没有防止碎片的最佳措施
- ▶文件名长度受限
 - 8.3模式

New Technology File System

- ➤ 日志类的文件系统,使用NTFS日志记录数据
- > 文件夹或者目录最多可以使用 255 个字符
- ➤ 可以管理最大256TB的单个文件大小
- > 支持文件的安全、存储和容错功能
- 设计目标是在大容量的硬盘上能够很快地执行读、写和搜索等标准的文件操作,包括文件系统恢复等高级操作
- > 支持对于关键数据、重要的数据访问控制和私有权限
- > 可以为单个文件设定权限

NTFS 优点

- 更为安全的文件保障,提供文件加密,能够大大提高信息的安全性
- > 更好的磁盘压缩功能
- ➤ 支持最大达2TB的大硬盘,并且随着磁盘容量的增大,NTFS的性能不像FAT那样随之降低
- 可以赋予单个文件和文件夹权限:对同一个文件或者文件 夹为不同用户可以指定不同的权限;可以为单个用户设置权 限
- ➤ 恢复能力:用户在NTFS卷中很少需要运行磁盘修复程序。 在系统崩溃事件中,NTFS文件系统使用日志文件和复查点信息自动恢复文件系统的一致性

NTFS 优点

- ➤ NTFS文件夹的B-Tree结构使得用户在访问较大文件夹中的 文件时,速度甚至较访问卷中较小文件夹中的文件还快
- ▶ 可以在NTFS卷中压缩单个文件和文件夹。且用户不需要使用解压软件将这些文件展开,而直接读写压缩文件
- ▶ 支持活动目录和域:可以帮助用户方便灵活地查看和控制网络资源
- ➤ 支持稀疏文件:应用程序生成的一种特殊文件,它的文件尺寸非常大,但实际上只需要很少的磁盘空间;NTFS只需要给这种文件实际写入的数据分配磁盘存储空间
- ▶ 支持磁盘配额:可以管理和控制每个用户所能使用的最大磁盘空间

NTFS的安全特性

- ▶ 许可权 —— 定义用户或组可以访问哪些文件或目录,并为不同的用户提供不同的访问等级
- ▶ 审计 —— 可将与NTFS安全有关的事件记录到安全记录中, 可利用"事件查看器"进行查看
- ▶ 拥有权 —— 记住文件的所属关系, 创建文件或目录的用户 拥有对它的全部权限; 管理员或个别具有相应许可的人可以 接受文件或目录的拥有权
- ▶ 可靠的文件清除 —— NTFS会回收未分配的磁盘扇区中的数据,对这种扇区的访问将返回0值

NTFS的安全特性

- > 上次访问时间标记
- ▶ 自动缓写功能 —— 基于记录的文件系统,记录文件和目录的变化,记录在系统失效情况下如何取消 (undo) 和重作 (redo) 这些变更
- ▶ 热修复功能 —— 当扇区发生写故障时,NTFS会自动进行 检测,把有故障的簇加上不能使用标记,并写入新簇;
- > 磁盘镜像功能
- > 有校验的磁盘条带化
- > 文件加密

- CDFS (CD-ROM file system)
 - CD-ROM文件系统
 - 只读文件系统驱动
 - 最大尺寸4GB
 - 最多65535个目录
- ➤ UDF (Universal Disk Format)
 - 主要是用于存储DVD-ROM文件系统

FALL 2020

4.5 支持文件系统的磁盘结构

- ▶扇区和簇
- > 分区和卷
- > 分区引导扇区
- ➤ BIOS参数块
- ➤ 文件分配表FAT
- ➤ 主文件表MFT
- ▶目录
- ▶ 附加的索引

文件系统管理

扇区Sector和簇Cluster

- ▶ 每个扇区512字节
- > 若干扇区聚合在一起组成的分配单元构成簇
- ➤ FAT: 16位寻址, 2¹⁶个簇, 最大个数2¹⁶×512字节 = 32MB, 卷最大4GB
- ➤ FAT32: 32位寻址, 最多2²⁸簇, 卷理论可达8T, 实 际最大32GB
- ➤ NTFS: 64位寻址, 卷理论最大值16EB, 工业标准 卷最大2TB

Default FAT16 Cluster Sizes in Windows

Volume Size	Cluster Size
0–32 MB	512 bytes
33 MB-64 MB	1 KB
65 MB-128 MB	2 KB
129 MB-256 MB	4 KB
257 MB-511 MB	8 KB
512 MB-1023 MB	16 KB
1024 MB-2047 MB	32 KB
2048 MB-4095 MB	64 KB

Default Cluster Sizes for FAT32 Volumes

4 KB
8 KB
16 KB
32 KB

Default Cluster Sizes for NTFS Volumes

Volume Size	Default Cluster Size
512 MB or less	512 bytes
513 MB-1024 MB (1 GB)	1 KB
1025 MB-2048 MB (2 GB)	2 KB
Greater than 2048 MB	4 KB

分区引导扇区

- ▶ 分区引导扇区:第一个扇区
- ➤ 前16个字节
 EB 3C 90 4D 53 44 4F 53 35 2E 30 00 02 04 01 00 . < . MSDOS5.0 。。。
- > BIOS BPB
- ➤ 扩展BPB

表 3 FAT32 分区上 DBR 中各部 分的位置划分						
字节位 移	字段长度	字段名	对应图8颜色			
0x00	3 个字节	跳转指令				
0x03	8 个字节	厂商标志 和 os 版本 号				
0x0B	53 个字节	BPB				
0x40	26 个字节	扩展 BPB				
0x5A	420 个字节	引导程序 代码				
0x01FE	2 个字节	有效结束 标志				

FAT BPB - 1

- 每扇区字节数
- 每簇扇区数
- FAT表开始前保留的扇区数
- FAT表副本的数量
- 根目录中项目的最大数量
- 扇区数量
- 介质描述符
- 每个FAT表的扇区数

FAT BPB - 2

- > 每个磁道的扇区数
- > 扇区总数
- > 驱动器类型
- > 特殊标志
- > 磁盘签名
- > 卷的序列号
- > 传统卷标
- > 文件系统描述符

FAT32 BPB - 1

- > 每扇区的字节数
- > 每簇的扇区数
- > 保留的扇区数
- ➤ FAT表的数量
- ▶ 根目录的最大项数
- > 小扇区数
- ▶ 介质描述符
- ➤ 每个FAT表含有的扇区数 (00 00)

FAT32 BPB - 2

- > 每个磁道的扇区数
- > 隐藏的扇区数
- > 扇区总数
- ➤ 每个FAT表含有的扇区数
- ▶ 标志位
- > 文件系统版本号
- ▶ 根目录所在簇
- > 文件系统信息扇区

FAT32 BPB - 3

- > 引导扇区备份
- > 保留域
- > 驱动器类型
- > 特殊标志
- > 签名
- > 卷序列号
- ▶卷标
- > 文件系统

FAT结构

	Boot File allocation sector table 1	File allocation table 2 (duplicate)	Root directory	Other directories and all files	
--	-------------------------------------	---	-------------------	---------------------------------	--

FAT表结构

- ▶ 文件分配表FAT
- > FAT描述了卷中文件的布局和结构

2字节为一项,表示一个簇号

FFFF 文件的结尾

FFF8 坏簇

FFF5 保留簇

- ➤ FAT32簇映射
- > 每项四个字节
- > F7FFFFF FFFFFFF FFFFFOF FFFFFFFF
- ➤ FFFFFF0F: 表示文件结束标记
- ➤ FAT用目录作为索引
 - 每项都代表一个文件或者子目录
 - 含有与FAT相应的簇号

FALL 2020

- ➤ FAT/FAT32目录列表
 - 文件名
 - 属性
 - 保留
 - 日期和时间戳记
 - 文件长度
- ➤ FAT/FAT32文件记录
 - 文件内容记录

FALL 2020

FAT文件分配表举例

FAT目录项举例

➤ The quick brown fox

NTFS以及相关组件

NTFS数据结构

NTFS结构

- ➤ 主文件表MFT: 文件和目录都用MFT中的记录表示
- ➤ MFT是一个数据库而不是简单的簇映射
- ➤ MFT的项目比FAT表包含更多的信息,用更多的方式索引
- > 分类
 - 文件记录
 - 目录记录
 - 混合记录

- ➤ MFT中的文件记录大小一般是固定的,不管簇的大小是多少, 均为1KB。
- ▶ 文件记录在MFT文件记录数组中物理上是连续的,且从0开始编号,所以,NTFS是预定义文件系统。
- ➤ MFT仅供系统本身组织、架构文件系统使用,这在NTFS中称为元数据(metadata,是存储在卷上支持文件系统格式管理的数据。它不能被应用程序访问,只能为系统提供服务)。
- ➤ 其中最基本的前16个记录是操作系统使用的非常重要的元数据文件。这些元数据文件的名字都以"\$"开始,所以是隐藏文件,在Windows 2000/XP中不能使用dir命令(甚至加上/ah参数)像普通文件一样列出。

NTFS BPB

- > 每扇区的字节数
- > 每簇的扇区数
- > 保留
- ➤ FAT表的数量 (00)
- ▶ 根目录中的最多项数 (00 00)
- ▶ 小扇区数 (00 00)
- ▶ 介质描述符
- ▶ 每个FAT表含有的扇区数 (00 00)
- > 每磁道的扇区数
- > 隐藏的扇区数

NTFS BPB

- ▶ 扇区总数 (00 00 00 00)
- ➤ 每个FAT表含有的扇区数 (80 00 80 00)
- > 扇区总数
- > 主文件表的逻辑簇编号
- > MFT镜像的逻辑簇编号
- ➤ 每个MFT记录占用的簇数
- ➤ MFT索引占用的簇数
- > 卷序列号
- ▶ 校验和

MFT元数据记录

- >\$ MFT
- >\$ MFTMirr
- >\$ LogFile
- >\$ Volume
- >\$ AttrDef
- >\$\
- ➤\$ BitMap
- >\$ Boot

- >\$ BadClus
- >\$ Secure
- >\$ UpCase
- >\$ Extend
- >\$ Quota
- >\$ ObjID
- >\$ Reparse
- >UsnJrn1

• NTFS元数据文件

元文件	功能
\$MFT	主控文件表本身
\$MFTMirr	主控文件表的部分镜像
\$LogFile	日志文件
\$Volume	巻文件
\$AttrDef	属性定义列表文件
\$Root	根目录
\$Bitmap	位图文件,记录了卷种簇的分配情况
\$Boot	引导文件,记录了用于系统引导的数据情况
\$BadClus	卷的坏簇列表文件
\$Quota (NTFS4)	在早期的NT系统中此文件为磁盘配额信息
\$Secure	安全文件
-\$UpCase	大小写字符转换表文件
\$ Extend metadata	扩展元数据目录
\$Exechat&Reparse	重解析点文件
\$Extend\\$UsnJrnl	加密日志文件
\$Extend\\$Quota	配额管理文件
\$Extend\\$ObjId	对象ID文件

NTFS属性

- ➤ MFT是一个面向对象的数据库
- > 对象由包含特定属性的类派生
- ▶ 所有属性都分为两部分:
 - 属性头部分
 - ✓属性的字节数、属性各部分字节数、数据部分的偏移地址、时间戳记、标志位
 - 数据部分
 - ✓包含了属性设计时所要求保存的信息

属性头

- ▶属性的类型号(4字节)
- ▶属性的总字节数 (4字节)
- ▶保留(8字节)
- ▶属性的数据部分的字节数 (4字节)
- ▶属性头到属性数据部分的偏移地址 (2字节)
- ▶特殊标志位和属性(10字节)
- ▶时间戳记 (32字节)
- ▶属性本身专有的定位信息(26字节)

属性部分

- ▶常驻属性 \$AttrDef
- ▶非常驻属性
 - 运行(run):数据保存在相邻簇
 - 不连续的运行:每个运行在MFT记录中有一个指针
 - 指针: 起始逻辑簇序号LCN 起始虚拟簇序号VCN 簇的数量

MFT属性

- >\$ Standard Information
- >\$ Attribute List
- >\$ File_Name
- >\$ Object_ID
- >\$ Security Descriptor
- >\$ Volume Name
- >\$ Volume Information
- ➤\$ Data

MFT属性

- >\$ Index_Root
- >\$ Index_Allocation
- ➤\$ Bitmap
- >\$ Reparse_point
- >\$ Ea_Information
- >\$Ea
- >\$ Logged_Utility_Stream

属性名	属性描述			
\$volume_information	卷信息: 仅存在于\$VOLUME 元数据文件中			
\$ VOLUME_NAME	卷名称或卷标识:仅存在于\$VOLUME 元数据文件中			
\$standard_information	标准信息: 这包括基本文件属性,如只读、存档;时间标记,如文件的创建时间和最近一次修改的时间;有多少目录指向本文件(即它的硬链接数(HARD LINK COUNT))			
\$file_name	文件名: 这是以 UNICODE 字符表示的,由于 MS-DOS 不能正确识别 WIN32 子系统创建的文件名,当 WIN32 子系统创建一个文件名时,NTFS 会自动生成一个备用的 MS-DOS 文件名,所以一个文件可以有多种文件名属性			
\$security_descriptor	安全描述符: 这是为了向后兼容而保留的,主要用于保护文件以防止 未授权访问,但是,WINDOWS 2000/XP 已将所有文件的安全描述符存 放在\$SBCURE 元数据文件中,以便于共享(NTFS)的早期版本将安全描述符与文件目录一起存放,这不利于共享)			
\$ data	文件数据: 这是文件的内容(在 NTFS 文件系统中,一个文件除了支持文件数据即未命名的属性外,还可支持其他命名属性,即可以有多个数据属性,目录没有默认的数据属性,但是有可选的命名数据属性)			
\$index_root	索引根			
\$ index_allocation	索引分配			
\$BITMAP	位图			
\$ attribute_list	属性列表: 当一个文件需要使用多个 MFT 文件记录时,这用来表示该文件的属性列表			
\$object_id	对象 ID: 一个具有 64 个字节的标识符,其中最低的 16 个字节对卷来说是唯一的(链接跟踪服务为外壳快捷方式及 OLE 链接源文件赋予对象 ID; NTFS 提供 API 来直接通过这些对象 ID 而不是文件名来打开文件)			
\$ reparse_point	重解析点:存储文件的重解析点数据(NTFS 的软链接与装配点都包括 这个属性)			
S E A	扩充属性: 主要为与 OS/2 兼容,现已使用不多			
\$ea_information	扩充属性信息: 主要为与 OS/2 兼容,现已使用不多			
\$LOGGED_UTILITY_STREAM	EFS 加密属性: 主要为实现 EFS (ENCRYPED FILE SYSTEM) 而存储内关加密信息如解码密钥、合法访问的用户列表等。			

```
File 0
Master File Table ($Mft)
    $STANDARD_INFORMATION (resident)
    $FILE_NAME (resident)
    $DATA (nonresident)
        logical sectors 32-52447 (0x20-0xccdf)
   $BITMAP (nonresident)
        logical sectors 16-23 (0x10-0x17)
File 1
Master File Table Mirror ($MftMirr)
    $STANDARD_INFORMATION (resident)
   $FILE_NAME (resident)
    $DATA (nonresident)
        logical sectors 2048728-2048735 (0x1f42d8-0x1f42df)
File 2
Log File ($LogFile)
    $STANDARD_INFORMATION (resident)
   $FILE_NAME (resident)
    $DATA (nonresident)
        logical sectors 2048736-2073343 (0x1f42e0-0x1fa2ff)
File 3
DASD ($Volume)
    $STANDARD_INFORMATION (resident)
   $FILE_NAME (resident)
    $OBJECT_ID (resident)
    $SECURITY_DESCRIPTOR (resident)
    $VOLUME_NAME (resident)
    $VOLUME_INFORMATION (resident)
    $DATA (resident)
File 4
Attribute Definition Table ($AttrDef)
    $STANDARD_INFORMATION (resident)
   $FILE_NAME (resident)
   $SECURITY_DESCRIPTOR (resident)
    $DATA (nonresident)
        logical sectors 512256-512263 (0x7d100-0x7d107)
```

```
File 5
Root Directory
   $STANDARD_INFORMATION (resident)
   $FILE_NAME (resident)
   $SECURITY_DESCRIPTOR (resident)
   $INDEX_ROOT $130 (resident)
   $INDEX_ALLOCATION $I30 (nonresident)
        logical sectors 2073416-2073423 (0x1fa348-0x1fa34f)
    $BITMAP $130 (resident)
File 6
Volume Bitmap ($BitMap)
   $STANDARD_INFORMATION (resident)
   $FILE_NAME (resident)
    $DATA (nonresident)
        logical sectors 2073424-2073675 (0x1fa350-0x1fa44b)
File 7
Boot Sectors ($Boot)
    $STANDARD_INFORMATION (resident)
    $FILE_NAME (resident)
    $SECURITY_DESCRIPTOR (resident)
    $DATA (nonresident)
        logical sectors 0-15 (0x0-0xf)
File 8
Bad Cluster List ($BadClus)
    $STANDARD_INFORMATION (resident)
    $FILE_NAME (resident)
    $DATA (resident)
    $DATA $Bad (nonresident)
```

```
File 9
Security ($Secure)
    $STANDARD_INFORMATION (resident)
    $FILE_NAME (resident)
    $DATA $SDS (nonresident)
        logical sectors 2073932-2074447 (0x1fa54c-0x1fa74f)
       logical sectors 523160-523163 (0x7fb98-0x7fb9b)
    $INDEX_ROOT $SDH (resident)
    $INDEX_ROOT $SII (resident)
    $INDEX_ALLOCATION $SDH (nonresident)
        logical sectors 1876152-1876159 (0x1ca0b8-0x1ca0bf)
    $INDEX_ALLOCATION $SII (nonresident)
        logical sectors 24-31 (0x18-0x1f)
    $BITMAP $SDH (resident)
    $BITMAP $SII (resident)
File 10
Upcase Table ($UpCase)
    $STANDARD_INFORMATION (resident)
    $FILE_NAME (resident)
    $DATA (nonresident)
        logical sectors 2073676-2073931 (0x1fa44c-0x1fa54b)
File 11
Extend Table ($Extend)
    $STANDARD_INFORMATION (resident)
    $FILE_NAME (resident)
    $INDEX_ROOT $130 (resident)
File 12
(unknown/unnamed)
    $STANDARD_INFORMATION (resident)
    $SECURITY_DESCRIPTOR (resident)
    $DATA (resident)
```

```
File 13
(unknown/unnamed)
    $STANDARD_INFORMATION (resident)
    $SECURITY_DESCRIPTOR (resident)
     $DATA (resident)
File 14
 (unknown/unnamed)
     $STANDARD_INFORMATION (resident)
     $SECURITY_DESCRIPTOR (resident)
     $DATA (resident)
File 15
 (unknown/unnamed)
     $STANDARD_INFORMATION (resident)
    $SECURITY_DESCRIPTOR (resident)
     $DATA (resident)
File 24
\$Extend\$Quota
     $STANDARD_INFORMATION (resident)
    $FILE_NAME (resident)
    $INDEX_ROOT $0 (resident)
     $INDEX_ROOT $Q (resident)
File 25
\$Extend\$ObjId
     $STANDARD_INFORMATION (resident)
     $FILE_NAME (resident)
     $INDEX_ROOT $0 (resident)
File 26 \$Extend\$Reparse
     $STANDARD_INFORMATION (resident)
     $FILE_NAME (resident)
     $INDEX_ROOT $R (resident)
```

通用属性类型

- >\$ Standard_Information
- >\$ File_Name
- >\$ Security Descriptor

文件记录和\$Data属性

▶文件记录:

- 三个通用属性
 - √\$ Standard Information
 - ✓\$ File Name
 - √\$ Security Descriptor
- \$ Data属性
 - ✓所有的文件属性至少有一个\$ Data属性
 - ✓如果超出1K,数据部分移动到磁盘上,属性头和一小部分数据部分常驻

\$ Data数据部分

- ▶常驻属性头部分
- ▶常驻数据部分包括
 - 非常驻部分信息
 - 非常驻部分所在运行的指针
 - 簇数
 - 保留
 - 磁盘上的大小
 - 文件大小
 - 标志位
 - 位置指针

多个\$ Data属性

- ➤默认的\$ Data属性没有名字
- ➤额外的\$ Data属性必须有名字
- ▶命名数据流
 - 使用MORE命令将命名数据流通过管道输出
 - C:\more < super.txtIt's a example.

小文件的MFT记录

Master file table			
:			
Stand	dard nation Filename	Data	
intorn	lation rilename	Data	

小型目录的MFT记录

ndard mation Filename	Index root	
	Index of files	
	file1, file2, file3,	Empty

大文件的MFT文件记录

大型目录的MFT文件记录

FALL 2020

普通文件的MFT分析

- ◆ MFT头
- 10H类型属性(标准属性信息)
- 30H类型属性(文件名属性
- 80H类型属性(数据属性)
- MFT结束标志

4.6 管理文件与文件夹的访问许可权

- ▶NTFS文件权限的类型
- ▶设置安全的访问许可权
- ▶文件与文件夹的访问许可冲突
- ▶查看文件与文件夹的访问许可权
- ▶更改文件或文件夹的访问许可权

FALL 2020 66

4.6.1 NTFS文件夹权限的类型

- ▶读取
- ≻写入
- ▶列出文件夹目录
- ▶读取及运行
- ▶修改
- ▶完全控制

4.6.2 设置安全的访问许可权

- ▶对服务器上的所有文件,实施强有力的基于许可的安全措施;
- ▶对中低安全性的安装,除系统卷和引导卷外,所有驱动器上均实施域用户(Domain User)管理,避免使用缺省的每个用户(Everyone)、完全控制(Full control)许可等安全措施;
- ▶对于高安全性安装,去掉所有Everyone、Full control许可权;
- >以机构中的自然关系为基础建立组,按组分配文件许可权;
- >利用第三方的许可审计软件管理复杂环境中的许可权问题。

4.6.3 用户的有效权限(1)

▶权限具有累加性

用户或组	权限
用户A	写入
组Sales	读取
组Manager	读取及运行
用户A最后的有效权限为	写入+读取+运行

69 **FALL 2020**

4.6.3 用户的有效权限(2)

- ▶拒绝权限会覆盖所有其他权限
 - 用户拒绝权限可覆盖改用户、组其他权限
 - 在属性对话框"完全控制"处选择
- >文件权限会覆盖文件夹的权限
 - 文件的设置权限优先
 - 直接利用完整路径或共享文件夹来访问文件

FALL 2020 70

4.6.4 查看文件与文件夹的访问许可权(1)

- ▶ 选定文件或文件夹的图标,单击鼠标右键打开快捷菜单
- ▶ 然后选择"属性"命令
- ▶ 在打开的文件或文件夹 的属性对话框中单击"安 全"标签。

查看文件或文件夹的访问许可权

4.6.4 查看文件与文件夹的访问许可权(2)

没有列出来的用户(属于该选项中列出的某个组) 也可能具有对文件或文件夹的访问许可权。因此,最 好不要把对文件的访问许可权分配给各个用户,而把 许可权分配给组,然后把用户添加到组中。这样需要 更改的时候只需要更改整个组的访问许可权,而不必 逐个修改每个用户。

4.6.5 更改文件或文件夹的访问许可权(3)

- ▶在如图所示的对话框中,选择需要设置的用户或组,简单地选定或取消对应权限后面的复选框;
- ▶单击"安全"标签下单击"高级"按 钮,可以打开访问控制对话框。进一 步设置一些额外的高级访问权限。

设置文件或文件夹的高级访问权限

4.6.5 更改文件或文件夹的访问许可权(4)

- ▶单击"查看/编辑",打开选 定对象的权限项目对话框,
- ▶用户可以通过"应用到"下拉 列表框选择需设定用户或组, 并对选定对象的访问权限进行 更加全面的设置。

4.7 共享文件夹

- ▶共享文件夹概念
- >共享文件夹权限
- ▶添加共享文件夹
- ▶停止共享文件夹
- ▶修改共享文件夹的属性
- ▶映射网络驱动器
- ▶断开网络驱动器

4.7.1 共享文件夹

- ▶概念
- ▶权限

具备的能力	读取	修改	完全控制
查看该共享文件夹内的文件名称、子文件夹名称	V	V	٧
查看文件内数据、运行程序	V	V	V
遍历子文件夹	V	V	V
添加文件、子文件夹		V	٧
修改文件内的数据		V	V
删除文件与子文件夹			٧
修改权限			V
取得所有权			V

77

4.7 共享文件夹

▶步骤一,打开"开始"菜单,选择"程序"/"管理工具"/"计算机管理"命令后,打开"计算机管理" 窗口,然后点击"共享文件夹"/"共享"子节点, 打开如图所示窗口。

FALL 2020

4.7.2 添加サラウ件車(2)

4.7.2 添加共享文件夹(3)

- ▶步骤二,在窗口的右边显示出了计算机中所有共享 文件夹的信息。
- ➤如果要建立新的共享文件夹,可通过选择主菜单 "操作"中的"新文件共享"子菜单,或者在右侧 窗口单击鼠标右键选择"共享"菜单,打开如图7-5 所示对话框。输入要共享的文件夹、共享名、共享 描述,在共享描述中可输入一些该资源的描述性信息,以方便用户了解其内容。

4.7.2 添加共享文件夹(4)

创建共享文件夹			×		
创建共享文件 来	Movell N	访问: t Windows(W)	浏览 (2)		
	i ippic ma				
〈上一步®)下一步(图)〉 取消					

创建共享文件夹

4.7.2 添加共享文件夹(5)

▶步骤三,点击"下一步",打开如图8-8所示"创建共享文件夹"对话框。用户可以根据自己的需要设置网络用户的访问权限。或者选择"自定义"自己定义网络用户的访问权限。

4.7.2 添加共享文件夹(6)

创建共享文件夹

4.7.2 添加共享文件夹(8)

另一种方法:

- ▶双击"我的电脑",然后选择要设置为共享文件夹的驱动器并选定文件夹。
- ➤鼠标右键激活快捷菜单,选择"共享"菜单项,打 开如图所示7-7窗口。
- ▶然后进行相应的设置,如更改共享名,设定用户连接数量,点击"权限"按钮,如图7-8所示,设置允许访问的用户权限。

4.7.2 添加共享文件夹(8)

文件夹的共享选项

文件夹的共享许可权限

4.7.3 停止共享文件夹

方法1:

- ▶在"计算机管理"窗口中,选择要停止共享的文件夹;
- ▶点击右键,选择"停止共享";
- ▶在弹出的对话框里,点击"确定"按钮即可。

方法2:

- ▶双击"我的电脑"图标,选定已经设为共享的文件夹;
- ▶右击该文件夹,选择"共享"命令,打开共享"选项卡";
- ▶单击"不共享该文件夹",点击"确定"按钮即可。

4.7.4 修改共享文件夹的属性

- ▶选择共享文件夹,点击右键,选择"属性",打开如图所示对话框;
- ▶在"常规"对话框里,可以设置允许多少用户同时访问该共享文件夹以及缓存设置;
- ▶可以通过选择"共享权限"、"安全"选项卡,修改组和用户的共享访问许可,或该文件/文件夹访问许可的设置;
- ▶点击"确定"按钮即可使配置生效。

4.7.4 修改共享文件夹的属性

public 属性		? ×
常规 共享权限	夏 安全	
共享名(M):	public	
路径(P):	E:\public	
注释(C):		
_用户数限制: -		II
⊙ 允许最多用	户侧	
○ 允许(₩) [→ 个用户 (U)	
	确定 取消 应用	(<u>A</u>)

图7-10 "Public"对话框

4.7.5 映射网络驱动器

- ▶右击"我的电脑",选择"映射网络驱动器",打开如图7-11所示对话框;
- 》在"驱动器"下拉列表框中,选择一个本机没有的盘符作为 共享文件夹的映射驱动器符号。输入要共享的文件夹名及路 径;或者点击"浏览"按钮打开"浏览文件夹"对话框,选 择要映射的文件夹;
- ▶如果需要下次登录时自动建立同共享文件夹的连接,选定 "登陆时重新连接"复选框;
- ▶单击"完成",即可完成对共享文件夹到本机的映射。

4.7.5 映射网络驱动器

映射网络驱动器对话框

4.7.5 映射网络驱动器

▶打开"我的电脑",将发现本机多了一个驱动器符,通过该驱动器符可以访问该共享文件夹,如同访问本机的物理磁盘

通过映射的驱动器访问共享文件夹

4.7.5 断开网络驱动器

▶选择要断开的网络驱动器,点击"确定"即可

上机练习作业

采用文件读写方式,按指定顺序合并某个文件夹中的文本文件集