Rilevazione di Suoni "Anomali"

Ing. Francesco Gargiulo Email. francesco.grg@unina.it Tel. 081 76 83857

Palazzina DIETI - Stanza 3.20

Problema

- Riconoscimento di diverse tipologie di suoni in un contesto reale, in particolare ci concentreremo su:
 - Gun Shot
 - Scream
 - Broken Glasses

Possibili applicazioni e scenari

- Monitoraggio di zone pubbliche come:
 - Stazioni
 - Aeroporti
 - Musei
 - Piazze
 - ...
- Integrazione alla video-sorveglianza

Quali sono le difficoltà?

- Le diverse tipologie di suono sono molto "diverse" tra loro.
- La rilevazione dei suoni è spesso ambigua se la svincoliamo dal contesto.
- La presenza di diversi "Background Noise" complica ulteriormente il problema.

Come Affrontare il problema?

- I passi logici da seguire sono:
 - Raccogliere i dati...
 - Selezionare le feature che caratterizzano i segnali sonori.
 - Valutare se le feature selezionate sono "significative" e/o "sovrabbondanti"
 - Analizzare il problema dal punto di vista della classificazione, e definire delle strategie risolutive.
 - Definire delle metriche di performance per poter confrontare gli approcci ipotizzati.

Raccolta dei dati

- E' fondamentale avere un dataset "pulito", che rappresenti bene il problema in esame.
 - Il caso dei GunShot:

Feature

- Alcuni possibili gruppi di feature utilizzabili sono:
 - Autocorrelation (AC)
 - Discrete Wavelet Tranform (DWT)
 - Fast Fourier Transform (FFT)
 - Mel-Frequency Cepstral Coefficient (MFCC)
 - Spectral Distribution (SD)
 - Zero Crossing Rate (ZCR)

Selezione delle feature

- Questo problema può essere affrontato in due modi diversi in funzione delle scelte architetturali che adotteremo.
 - Selezione "Globale" effettuata su tutte le tipologie di segnale.
 - Selezione "Locale" realizzata su ciascuna tipologia di segnale singolarmente.

Ipotesi-1

- Uso di un classificatore Multi-Classe
 - In questo caso la scelta di un singolo classificatore "multi-classe" è la scelta "quasi" obbligata.
 - Il vettore degli attributi da selezionare per ogni evento sonoro deve essere mappato nello stesso spazio delle feature (Selezione Globale)

Ipotesi-2

- Uso di più classificatori specializzati per i diversi suoni
 - Scelta di diversi classificatori che operano sulle diverse tipologie di suono in esame
 - Possibilità di ottimizzare i classificatori di base ottimizzandoli:
 - A livello di feature utilizzate (Selezione Locale)
 - A livello di tipologie di classificatore
 - A livello di parametri di configurazione

Comparazioni

APPROCCIO	PRO	CONTRO
Multi-Class.	Facile Implementazione	Bassa Modularità
One-Class.	• Modulare	Prestazioni inferioriTuning dei parametri

Rigetto o non Rigetto???

- L'uso dell'opzione di rigetto permette di non classificare i campioni considerati "incerti". Ma cosa presuppone?
 - 1. La definizione di un parametro di affidabilità associata alla classificazione.
 - 2. La valutazione di una o più soglie per poter definire i criteri di "rigettabilità" di un campione.

L'opzione di rigetto.

Pro e Contro del Rigetto

APPROCCIO	PRO	CONTRO
Con Rigetto	 Maggiore affidabilità del sistema 	Configurazione dei parametriGestione dei rigetti
Senza Rigetto	• Esito su tutti i campioni	Minore affidabilità del sistema

I Costi di Classificazione

- Il costo di classificazione è un concetto introdotto per diversificare il peso specifico delle diverse tipologie di errori.
- Il costo di classificazione può essere definito attraverso una matrice dei costi, o, con degli indicatori sintetici.
 - Error Cost (Costo associato ad un errore)
 - Reject Cost (Costo associato ad un rigetto)
 - Correct Gain (Guadagno associato alla corretta classificazione)

Qualche esempio "reale"

Architettura 1 "Multi-class"

* "An ensemble of rejecting classifiers for anomaly detection of audio events", D. Conte, P. Foggia, G. Percannella, A. Saggese, M. Vento, 9th IEEE International Conference on Advanced Video and Signal-Based Surveillance (AVSS), 2012.

Architettura 2 "One-class"

Segnali... Intervalli... Frame

- Il segnale viene suddiviso in intervalli di 1s
- I singoli intervalli sono solitamente partizionati in frame di 200ms sovrapposte per il 50%.
- La frequenza di campionamento del segnale sonoro è 44kHz
- NOTA BENE: Le dimensione ottimali degli intervalli e delle frame possono dipendere dai suoni che si vogliono rilevare:
 - Gunshot (molto brevi)
 - Scream (medio-lunghi)

Dataset in esame...

	Frame (200ms;50% overlapped)	Interval (1s)
Gunshot	36	16
Scream	214	30
Glass	153	24
Background	459	59
Overall	862	129

Implementazioni in KNIME...

Domande???