motilation problem of MLE
Coin thipping Bernoulli 7.4 = { 0=T, 1=H}
ME: A= JEX
Suppose we see: $D=\{1,1,1,0,0,0,0,0\} \Rightarrow f=\frac{3}{7}$
what if $D'=\{1,1,1\}$ only $\frac{1}{11}=1$? (we never see tails)
This is an example of overfitting. Cnot enough samples to get a good estimate of the parameter)
What we can do?
• USE our knowledge: we know the for most coins and we showperate
this knowledge to our estimate of 7.
Bay esian Poram Estimation
- treat 0 as a r.v.
- Framework
-training set $D=\{x_1,\ldots,x_n\}$
- prob density given parameter θ : $P(xil\theta)$
- prior distribution on parameter 0, p10) (added)
Cenude prior beliefs about θ, eg. πχ!
- posterior dist. of 0 given data D.
$\frac{p(0 0)}{p(0 0)} = \frac{p(0 0) \cdot p(0)}{p(0)d\theta} \Rightarrow \text{dengity functions}$
- predictive dist likelihood of new Xxx given data D.
- predictive dist. — likelihood of new X* given date D. $P(X* D) = \int p(X* \theta) p(\theta D) d\theta$ where in the formula.
everage over all 0, neighted by prosterior plo10)
allow different explanations of data"

compared to M2. Payes is influenced by prior pure determined by dota. The problem: how to get prior)

Example: Browsian (known variance)

prior on u: plu) = N(u(No, ai)

prior one given

likelihood of x: p(xlu) = N(x|u, ai)

Dotage: D= (x),---, xu3

Calculate postenion

P(M/D) = [T] p(xi/M)] p(M)

T] p(xi/M)] p(M) du x doesn't depend on M.

I Just look at numerator wrt. u, then normalize later.

product of Gaussian

Can snap $(X=u)^2 = (u-x)^2$ $N(X|a,A) \cdot N(X|b,B) = N(a|b,A+B)N(X|C,C)$ $C = \frac{1}{A+B} \Rightarrow C = \frac{1}{A+B}$ $c = C(\frac{a}{A} + \frac{b}{B})$

first 2 terms

 $p(X_1|\mathbf{n}) \cdot p(X_2|\mathbf{n}) = \mathcal{N}(\mathbf{n}|X_1, \sigma^2) \cdot \mathcal{N}(\mathbf{n}|X_2, \sigma^2)$ $= \mathcal{N}(X_1|X_2, 2\sigma^2) \mathcal{N}(\mathbf{n}|X_1, \sigma^2)$ $\begin{cases} \frac{1}{\sigma^2} = \frac{1}{\sigma^2} + \frac{1}{\sigma^2} = \frac{2}{\sigma^2} \\ \tilde{\mathcal{M}}_2 = \frac{\sigma^2}{2} \left(\frac{X_1}{\sigma^2} + \frac{X_2}{\sigma^2}\right) = \frac{1}{2}|X_1 + X_2\rangle \end{cases}$

> p(XI/M) p(X2/M) & N(M) Mz, a;) (throw away the constant)

Jost 3 tems N (MIM, M;) N(K3)M, Q2) (XN(MIM3, X3)

precision
$$=\frac{1}{3^2} = \frac{1}{3^2} + \frac{1}{3^2} = \frac{3}{3^2}$$

Thereas May $=\frac{3}{3^2} = \frac{3}{3^2} + \frac{1}{3^2} = \frac{3}{3^2} = \frac{3$

$$\frac{1}{\sqrt{N}} p(X_i|N) \propto N(M|M_n, Z_n)$$

$$\frac{1}{\sqrt{N}} = \frac{1}{\sqrt{N}} Z_i X_i = \widehat{M}_{in}$$

$$\frac{1}{\sqrt{N}} = \frac{1}{\sqrt{N}} Z_i X_i = \widehat{M}_{in}$$
be we have

$$OM = \frac{O^2}{N}$$

mul Constant Add prior $N(M|M_n, \widetilde{\sigma}_n^2) N(M|M_0, \widetilde{\sigma}_0^2) 2N(M|\widetilde{M}_n, \widetilde{\sigma}_n^2)$ $\frac{1}{2} = \frac{N}{N^2} + \frac{1}{N^2} \Rightarrow \frac{N^2}{N^2} = \frac{1}{N^2} + \frac{N}{N^2}$

$$\hat{M}_{n} = \frac{1}{\alpha_{0}^{2} + \lambda} \left(\frac{\hat{M}_{ML}}{\alpha_{0}^{2}} + \frac{u_{0}}{\alpha_{0}^{2}} \right) \frac{mul}{\alpha_{0}^{2}\alpha_{0}^{2}}$$

$$\hat{M}_{n} = \left(\frac{N \alpha_{0}^{2}}{\alpha_{1}^{2} + N \alpha_{0}^{2}}\right) \hat{M}_{n} + \left(\frac{\alpha_{2}^{2}}{\alpha_{2}^{2} + N \alpha_{0}^{2}}\right) M_{0}$$

$$\hat{T}_{n} = \left(\frac{N \alpha_{0}^{2}}{\alpha_{1}^{2} + N \alpha_{0}^{2}}\right) \hat{M}_{n} + \left(\frac{\alpha_{2}^{2}}{\alpha_{2}^{2} + N \alpha_{0}^{2}}\right) M_{0}$$

$$\hat{T}_{n} = \left(\frac{N \alpha_{0}^{2}}{\alpha_{1}^{2} + N \alpha_{0}^{2}}\right) \hat{M}_{n} + \left(\frac{\alpha_{2}^{2}}{\alpha_{2}^{2} + N \alpha_{0}^{2}}\right) M_{0}$$

$$\hat{T}_{n} = \left(\frac{N \alpha_{0}^{2}}{\alpha_{1}^{2} + N \alpha_{0}^{2}}\right) \hat{M}_{n} + \left(\frac{\alpha_{2}^{2}}{\alpha_{2}^{2} + N \alpha_{0}^{2}}\right) M_{0}$$

$$\hat{T}_{n} = \left(\frac{N \alpha_{0}^{2}}{\alpha_{1}^{2} + N \alpha_{0}^{2}}\right) \hat{M}_{n} + \left(\frac{\alpha_{2}^{2}}{\alpha_{2}^{2} + N \alpha_{0}^{2}}\right) M_{0}$$

$$\hat{T}_{n} = \left(\frac{N \alpha_{0}^{2}}{\alpha_{1}^{2} + N \alpha_{0}^{2}}\right) \hat{M}_{n} + \left(\frac{\alpha_{2}^{2}}{\alpha_{2}^{2} + N \alpha_{0}^{2}}\right) \hat{M}_{0}$$

What does it mean?
interpret botween MLF Sol and prior Mo
Data Size
mean $N=0 \Rightarrow 0 \Rightarrow$
Uandrice $N=0 \Rightarrow \hat{\sigma}_n^2 = \sigma_0^2$ $N \rightarrow N \Rightarrow \hat{\sigma}_n^2 \rightarrow 0 \leftarrow Converge to single value.$
$\sigma_0^2 >> \alpha^2 => \alpha = \Rightarrow n = n = n = n = n = n = n = n = n = n$
$\Delta^{2} = \Delta \delta^{2} \Rightarrow \lambda = \frac{N}{N+1} \Rightarrow \hat{M}_{n} = \frac{1}{N+1} (N \cdot \hat{M}_{ML} \cdot M_{0})$ $= \frac{1}{N+1} (\sum_{i} \chi_{i} + M_{0})$
add a virtual Sample ort No, then compute the mean
- for small N, more the posterio toronds No
IThis is a form of regularization

Example Gausian

Approximate posterior as a delta function:

Bayeson Regression Same setup as before:

$$f(x) = \phi(x)^{T}\theta$$

$$U = f(x) + S, S \sim N(0, \Omega^{2})$$

$$\Rightarrow p(y|x,\theta)$$

$$= 11(14|f(x), 0^2)$$

Introduce proor on 9: plo) = N(010, RI) Scaled identity

Covernance matrix MAP estimate $\hat{\theta} = \underset{\theta}{\operatorname{argmax}} \log p(\theta) + \log p(\theta)$ = argmax 7 /0g/(yi/xi, 0) + (0g/(0)) tutonal argmin | y- \$\P\|^2 + \(\lo \|^2 \) = (\overline{\Phi} + \lambda \overline{\Phi} + \phi \overline{\Phi} - constant <- Controls regularization · regulanted · shrnkage weight decay ill-conditioned eigenvalues of $\Phi\Phi^{T}$

Csidenote:

(A+al)x=ax Ay = xx AX+ alx= >x $AX = (X - \alpha I)X$