Lenguajes de Programación

26-6-2014

Nombre: DNI:

 $\underline{\text{NOTA:}}$ Es necesario un mínimo de 3 ptos ptos 1 en la prueba para sumar las prácticas correspondientes. La duración del examen es de 2 horas.

1. (1.5 ptos) Implementar un predicado cart(Conj1, Conj2, Comp) que se verifique sii Comp es el producto cartesiano de Conj1 y Conj2.

NOTA: Podemos suponer que los argumentos son listas sin elementos repetidos.

Ejemplo: Una respuesta a la pregunta cart([3,1], [a,b], X) es X = [[3,a],[3,b],[1,a],[1,b]], pero el programa sería también correcto si facilitase cualquier otra permutación de X.

 $^{^150\%}$ de la puntuación total de teoría.

2. (1'5 ptos) Describir una Máquina de Turing que implemente la resta entera, definida como sigue:

$$m\stackrel{.}{-}n \ := \ \left\{ egin{array}{ll} m-n & {f si} \ m\geq n \ 0 & {f en} \ {f otor \ caso} \end{array}
ight.$$

3. (1'5 ptos) Implementar una función LISP del tipo interseccion(Conj1, Conj2) que devuelva el valor de la intersección de sus argumentos.

 $\underline{\text{NOTA:}}$ Consideraremos que un conjunto es una lista de elementos no repetidos, $\underline{\sin}$ incurrir en efectos colaterales. Podemos suponer que cada uno de los argumentos no contienen, por tanto, elementos repetidos.

4. (1.5 ptos) Explicar cuál es la relació en un árbol de resolución PROLOG.	ón entre la recursividad	l izquierda en las cláusul	as y las ramas infinitas