Labor Market Recoveries Across the Wealth Distribution

Link to most recent version

Daniele Caratelli*

May 31, 2023

Abstract

This paper studies why, even after accounting for standard characteristics, low-wealth workers experience larger falls and slower recoveries in earnings than high-wealth workers do after the onset of recessions. I show that differences in job-switching and job-losing rates are important in explaining these dynamics. To do so, I build a quantitative search and matching model with incomplete markets, on-the-job search, and in which workers who switch jobs experience an increase in the risk of subsequent job-loss, a fact I document empirically. Wages are determined by a generalized alternating offer bargaining protocol that accommodates risk-aversion and wealth accumulation. Using this model, I conclude that cyclical differences in job-switching and job-losing by wealth, which the model can endogenously reproduce, explain 40 percent of the gap in the earnings recovery between low- and high-wealth workers following the Great Recession. I apply the model to study the post-Pandemic behavior of job-switching and show that fiscal stimulus alleviated its fall and sustained its recovery.

^{*}Stanford University. Email: danicara@stanford.edu.

I am especially grateful to Adrien Auclert and Patrick Kehoe for their support and guidance throughout the PhD. This project would not have been possible without them. I am very thankful to Bob Hall and Elena Pastorino for invaluable guidance that greatly improved many aspects of this paper. I also thank Aniket Baksy, Luigi Bocola, Jesper Böjeryd, Nicole Gorton, Basil Halperin, Caroline Hoxby, Pete Klenow, Cedomir Malgieri, Riccardo Masolo, Luigi Pistaferri, Roberto Saitto, Rachel Schuh, Isaak Sorkin, Martin Souchier, Jason Weitze, Nathan Zorzi as well as participants at the Stanford Macro lunch, the Dartmouth trade lunch, and the St. Louis Fed for their insightful comments. I am grateful for the generous support from the E.S. Shaw and B.F. Haley Fellowship for Economics through a grant to SIEPR. All errors are my own.

1 Introduction

Different groups of workers display different labor market outcomes over the business cycle, a fact that has recently sparked the interest of researchers and policymakers alike. While several dimensions of heterogeneity have been explored, including income (e.g. Heathcote, Perri and Violante 2020), sex, age, race, and education (e.g. Elsby, Hobijn and Şahin 2010), little has been said about the labor market experiences of workers with different wealth.

Wealth, however, is a natural variable to look at because it proxies for workers' ability to smooth consumption in the face of adverse shocks. Focusing on wealth, a clear pattern arises: low-wealth workers tend to experience more pronounced and longer lasting labor market downturns than high-wealth workers. After the Great Recession, for instance, workers with below median wealth experienced on average a ten percent decline in real earnings, a fall that took more than four years to recover. In contrast, workers with above median wealth experienced only a small and short-lasting drop in earnings. Because workers use their wealth to smooth consumption, the adversity low-wealth workers experience during recessions is twofold: they not only endure the worst consequences of recessions but they are also worst prepared to confront them.

This paper documents a relationship between wealth and workers' job-switching and job-losing rates. It argues that the different patterns displayed by job-switching and joblosing across the wealth distribution are major contributors to the deeper and more prolonged fall in earnings experienced by low-wealth workers following recessions. I then build a quantitative search-and-matching model with incomplete markets and on-the-job search that can generate these observed patterns in labor market flows in equilibrium. In this model wages are determined according to a generalized version of the alternating offer bargaining protocol in Hall and Milgrom (2008) that accommodates risk-aversion and asset accumulation, two crucial ingredients for the questions I tackle. Additionally, the model includes a salient feature of the data that I document empirically: workers who switch jobs experience a persistent increase in their risk of subsequent job-loss. This ingredient gives rise to two forces which enable the model to (i) explain the cyclical differences in the job-switching and job-losing rates across the wealth distribution, (ii) explain 40 percent of the observed earnings gap between workers in the top and bottom halves of the wealth distribution following the Great Recession, and (iii) rationalize the Great Reallocation that affected the US economy in the post-Pandemic period through the generous fiscal support received by households.

The main force the model gives rise to is the *precautionary job-keeping motive* which implies that low-wealth workers are, all else equal, less willing to switch jobs so they

can avoid the risk of job-loss that switching entails. Because job-switches are associated with earnings increases, this motive hinders the earnings recovery of low-wealth workers. The model's dynamic selection forces give rise to a second force, the *tenure-wealth correlation* which leads low-wealth workers to be more exposed to job-loss because of the lower tenure jobs these workers tend to occupy. This implies that low-wealth workers experience a labor market recovery that is interrupted by more frequent unemployment spells, in turn depressing their earnings growth relative to that of high-wealth workers.

I present empirical facts that motivate the development of this theory. I show that the standard deviations of the cyclical components of the job-switching and job-losing rates at the bottom half of the wealth distribution are twice as large as those at the top half of the wealth distribution. In other words, after a recession hits, the rate at which low-wealth workers switch jobs falls by more relative to the rate for high-wealth workers and the rate at which low-wealth workers lose their jobs increases by more than the rate for high-wealth workers. To establish these facts, I use the Survey of Income and Programs Participation (hereafter SIPP), a representative survey of US individuals that contains rich information on respondents' labor market histories and their financial wealth.

I next develop a model that can speak to these empirical facts. This model integrates an incomplete markets, heterogeneous agent framework into a search and matching model à la Diamond (1982) and Mortensen and Pissarides (1994) (hereafter DMP) with on-the-job search. The model includes three key ingredients: (i) risk-averse workers, (ii) asset accumulation, and (iii) risky job moves.

The first two ingredients, risk-aversion and asset accumulation, are standard in macroe-conomics. However, for technical convenience, they are seldom made by the search and matching literature. Most papers that include these, such as Krusell, Mukoyama and Şahin (2010), do not incorporate job-switches. I consider on-the-job search in an environment with risk-averse workers and asset accumulation and where wages are decided through a generalized alternating offer bargaining protocol between firms and workers.

On-the-job search, a pervasive feature of the US labor market, requires three parties to be involved in the wage negotiations: the worker, the incumbent firm, and the poaching firm. To incorporate this three-party negotiation into the model, I extend the standard alternating offer bargaining protocol which has one firm bargaining with one worker to an environment in which two firms are competing to attract one worker. Additionally, the framework I develop goes beyond the standard bargaining schemes with on-the-job search of Cahuc, Postel-Vinay and Robin (2006) by allowing for risk-averse workers and asset accumulation. My bargaining solution boils down to three cases. If the poacher is significantly less productive than the incumbent, the worker remains attached to the in-

cumbent and no wage renegotiation occurs, if the two firms are similarly productive, they Bertrand-compete for the worker, and if the poacher is significantly more productive than the incumbent, the poacher and worker negotiate a wage one-on-one as in the standard alternating offer bargaining protocol with one worker and one firm.

The third key ingredient of the model, risky job moves, asserts that workers who switch jobs face a persistent increase in probability of job loss. It is well documented (e.g. Martellini, Menzio and Visschers 2021) that workers on average face a probability of job-loss that is decreasing with tenure. I document that a similar pattern holds for job-switchers who, in the months following a job-switch, face a probability of job-loss that is higher than if they had not switched in the first place. To determine the additional risk of job-loss that job-movers face I estimate an event study similar to that in Davis and Von Wachter (2011) in which I compare the probability of job-loss faced by agents who switch jobs to those who do not. I find that the increase in job-loss probability due to job-switching is 6.4 percentage points in the first fifteen months at a new job. This estimate is economically significant given that the typical US worker has, over the same fifteen month period, an 18 percent chance of being laid-off.

This empirical pattern emerges endogenously in the model because, following the seminal work by Jovanovic (1979), when a worker and firm first meet, the idiosyncratic quality of their match is unknown and is only learned with time. In the initial periods of the match, workers with low-quality matches are revealed and laid off while only workers with high-quality matches are retained delivering a probability of job-loss that declines with tenure.

Model Mechanisms. With these three ingredients the model gives rise to the two forces that allow it to match the empirical distributional variation in the cyclical component of the job-switching and job-losing rates. The first of these, the precautionary job-keeping motive, delivers moments for the job-switching rate in line with the data. This force is a causal mechanism that makes low-wealth workers more conservative in their job-switching decisions because they are less willing to bear the risk that switching entails. While high-wealth workers can rely on their assets to help smooth consumption in periods of unemployment, this is not an option for workers with low wealth. This features implies that low-wealth workers will often forgo earnings increases in order to avoid the additional risk of falling into unemployment.

To establish the empirical relevance of precautionary job-keeping I again rely on the SIPP. Cross-sectional evidence from these data allows me to verify that workers with higher wealth-to-income ratios are indeed more likely to switch jobs. Furthermore, the

data show that an increase in wealth has larger effects on the propensity to switch jobs at the bottom than at the top of the wealth distribution. This is in line with the model which, because of concavity in utility, implies that relative to that of high-wealth workers, low-wealth workers' job-switching behavior is much more affected by changes in wealth. These reduced form results are consistent with the findings from a recent experiment in which some individuals in Stockton, California randomly received monthly payments for \$500. West et al. (2021) provide preliminary evidence suggesting that workers who received the transfer were more likely to take on risk to improve their labor market prospects, in particular, they were willing to quit their jobs to accept and search for new positions.

Because recessions lead to loss of wealth, they make workers more sensitive to risk and in turn exacerbate precautionary job-keeping and depress overall job-switching. However, because of the different sensitivity to the precautionary job-keeping motive across the wealth distribution, the fall in the job-switching rate is relatively larger for workers with low wealth. This reasoning explains why the cyclical component of job-switching is more volatile at the bottom of the wealth distribution.

The second force the model gives to, the tenure-wealth correlation, reconciles the empirical moments on the cyclicality of the job-losing rate across the wealth distribution. Unlike precautionary job-keeping, which underscores a causal relationship between wealth and workers' labor market decisions, the tenure-wealth correlation results from the model's dynamic selection forces. The tenure-wealth correlation is the tendency of low-wealth workers to occupy low-tenure jobs. This tendency occurs because some workers are unlucky and experience an unfortunate employment history with long or frequent streaks of unemployment. These unlucky workers not only tend to have low-tenure, having recently exited unemployment and started new jobs, but also tend to have low wealth because they depleted their savings to smooth consumption during unemployment. Hence workers with low wealth tend to be in low-tenure jobs with higher probability of job-loss. This tenure-wealth correlation is exacerbated during recessions because the pool of unemployed workers grows larger. As these workers re-enter the labor market they take up new, low-tenure positions. Having recently exited unemployment, these workers tend to be low-wealth and so this phenomenon implies that low-wealth workers are reshuffled towards low-tenure jobs that are more likely to lead to job loss. In turn, the overall job-loss probability for low-wealth workers increases by more than for highwealth workers. As a consequence, low-wealth workers tend to experience more frequent unemployment spells which contribute to their slower earnings recovery.

Main results. The model is able to match the different cyclical behavior the job-switching and job-losing rates display across the wealth distribution. I show this result relies crucially on the presence of job-switching risk by comparing the benchmark model to a *naïve* version of the model in which the job-loss probability is constant rather than decreasing in tenure. Having a constant job-loss probability eliminates not only the precautionary job-keeping motive, since job-switchers no longer face a higher probability of job-loss after they switch, but also eliminates the tenure-wealth correlation, since tenure is no longer associated with the probability of job-loss.

The two model forces are important not only to make sense of the distributional variation in the volatility of job-switching and job-losing but also because they help understand why, after the onset of recessions, earnings fall by more and recover more slowly for low-wealth workers. Because of the precautionary job-keeping motive, low-wealth workers become more hesitant to switch to new jobs following recessions. While this hesitation spares these workers additional risk of job-loss, it also prevents them for accepting better, higher-paying jobs, and ultimately slows down their earnings recovery. Because of the tenure-wealth correlation, workers with low wealth who tend to be in low-tenure jobs are overall more exposed to unemployment risk after recessions. As a result, low-wealth workers tend to suffer more unemployment spells which limit their participation in the labor market and prevent them from reaching higher-paying jobs. These two phenomena can explain 40 percent of the gap in the earnings recovery experienced by low-wealth workers relative to high-wealth ones following the Great Recession.

Finally, I apply the model to study the Pandemic Recession and argue that the generous fiscal stimulus provided by the US government alleviated the fall and sustained the recovery of job-switching over this period, a phenomenon people have characterized as the "Great Reallocation." According to the model, the large injection of wealth in the US economy alleviated the precautionary job-keeping motive, incentivizing workers, especially low-wealth ones, to switch jobs. Under a counter-factual scenario in which the government does not provide households with fiscal stimulus, I determine the Great Reallocation would not have occurred. Absent the stimulus, the (quarterly) job-switching rate would have dropped to 3.20 percent, rather than the observed 3.60, and even by the end of 2021 it would not have fully recovered to its pre-recession level.

Related literature. This paper contributes to the search and matching literature by considering a new environment with on-the-job search. Unlike the work studying complete markets environments following Merz (1995) and Andolfatto (1996), it is crucial for the questions I tackle to consider an incomplete markets setup. I build on recent work incor-

porating incomplete markets in search and matching models where search is random. Compared to Krusell, Mukoyama and Şahin (2010), one of the pioneering models in this area, my model allows workers to switch jobs. While Lise (2013) also displays jobswitching it does not endogenize the wage offers firms make to the workers.

Recent work has studied on-the-job search in richer economic environments. Fukui (2020), for example, includes risk-averse workers in an environment where firms post wages in the spirit of Burdett and Mortensen (1998). However, wage-posting has features that make it empirically unappealing. Wage-posting does not allow for wage renegotiations, a pervasive feature of US data: according to the NY Fed Survey of Consumer Expectations, roughly half of all workers who receive outside offers try to renegotiate their wages with the incumbent firm. Moscarini and Postel-Vinay (2022) include both risk-aversion and asset accumulation by having firms Bertrand-compete for workers. This solution suffers from two main limitations. First, it does not allow for surplussharing between agents, effectively endowing firms with all the bargaining power, a feature that clashes with existing evidence (for a recent survey of the literature see Card et al. 2018). Second, it leads to unusual wage predictions when workers move from very unproductive to very productive jobs. I consider an environment in which wages are *bargained* over finitely-many periods according to a generalized alternating offer protocol as in Hall and Milgrom (2008).

My model extends and nests Cahuc, Postel-Vinay and Robin (2006), the standard bargaining protocol with on-the-job search, by relaxing their assumptions of linear utility and hand-to-mouth consumption. The first gives rise to a simple surplus-splitting rule, the second allows to ignore workers' consumption-savings problem and in turn the complications arising from having wealth as a state variable. While technically convenient, these assumptions clash with the questions this paper tackles.

This paper extends the existing literature by incorporating job-switching in a search and matching model with incomplete markets and random search in which wages are endogenously determined via bargaining and where workers are both risk-averse and accumulate assets. Additionally, my model introduces risk in switching jobs, a salient feature of the data that I document empirically.

This model is able to match the dispersion across wealth in the volatility of the job-switching and job-losing rates. Krusell et al. (2017) successfully match the cyclical properties in job-switching and job-losing (as well as other labor market flows) in the aggregate but not broken down by wealth. Additionally, they use a search model (with no matching technology) in which the job-finding rate is exogenous. While this is a useful simplification and still allows to study the role labor supply plays in cyclical labor market

dynamics, it abstract from the hiring decisions made by firms, another important factor to consider. In contrast, the model I develop is a full general equilibrium DMP model. While matching these moments across wealth is interesting in of itself, it is also quantitatively important to explain heterogeneous labor market outcomes over the business cycle across workers.

This paper advances our understanding of the heterogeneous business cycle outcomes different workers experience by studying the interaction between job-switching, job-losing, and wealth. In doing so, I complement the large literature that has studied the heterogeneous effects of recessions. Some of these papers look at workers differing by income (e.g. Heathcote, Perri and Violante 2020, Kramer 2022), by demographic characteristics such as race, sex, age, and education (e.g. Elsby, Hobijn and Şahin 2010), and employer characteristics (e.g. Guvenen et al. 2017). Unlike the existing work, my paper looks at wealth as the source of heterogeneity among workers. Wealth is a natural dimension to look at because it proxies for workers' ability to smooth consumption in adverse times and, as such, it is informative of how well workers fare during recessions. The model I develop brings new forces tying wealth to workers' job-switching and job-losing behavior that are quantitatively important to explain the earnings gap experienced across the wealth distribution during and after recessions.

My paper concentrates on the job-switching and job-losing rates rather than job-finding rate. While many papers, most notably Shimer (2012), have stressed the importance of the job-finding rate in explaining aggregate labor market dynamics, there is a large body of evidence suggesting that job-losing (e.g. Elsby, Michaels and Solon 2009) and job-switching (e.g. Moscarini and Postel-Vinay 2017) also play important roles. I complement this work by showing that the job-switching and job-losing rates are not only important to understand aggregate dynamics in the labor market, but also to understand differences in labor market outcomes across the wealth distribution.

Finally, this paper contributes to a substantial literature tying labor market decisions to wealth. Much of this work has concentrated on the labor market decisions of unemployed individuals. Both Chetty (2008) and Krusell, Mukoyama and Şahin (2010) study the channels through which unemployment benefits affect worker welfare. Eeckhout and Sepahsalari (2021) and Huang and Qiu (2022) study how wealth affects the job unemployed workers choose to apply for. My work points out that wealth has a larger role to play in labor market decisions and more generally in workers' labor market allocations. It affects not only the employment decisions of the unemployed but also the job-switching decisions of those already employed, with consequences for workers' earnings and aggregate indicators. While there is specific evidence on job-switching and wealth (see Luo

and Mongey 2019), this paper is the first to study the macroeconomic effects of wealth through its role on workers' job-switching behavior. The mechanisms my model gives rise to suggest that wealth may explain some of the heterogeneity in labor flows across workers that Hall and Kudlyak (2019) and Gregory, Menzio and Wiczer (2021) show persist even after accounting for standard worker characteristics.

2 Background: Labor Market Outcomes and Wealth

One striking feature of the recovery that followed the Great Recession is how uneven it was. Low-wealth workers suffered worse labor market outcomes than high-wealth workers did. While this behavior is true for a variety of labor market indicators it is best summarized by labor earnings. Figure ?? shows the evolution of real labor earnings for low- (red) and high-wealth (blue) workers around the 2001 and the 2007-2009 recessions.

This plot relies on the construction of two variables for each SIPP respondent: labor earnings and wealth. Labor earnings are the (real) gross wages paid by the worker's employer and as such they exclude other forms of income such as government transfers and business income. Furthermore, I construct these series by excluding those currently unemployed or outside of the labor force as well as the self-employed. While unemployment and non-participation also hit workers differently, by defining labor earnings as I do, I can better capture workers' *quality* of employment¹, the primary concern of this paper. I exclude the self-employed because risk factors other than job-loss (e.g. credit risk) are likely to be more relevant for them.

Wealth is measured as net-worth excluding housing constructed as in Kaplan and Violante (2014). This exclusion is a natural benchmark because there is ample evidence that, especially for income shocks that are not too large, workers do not alter their housing consumption (see Postlewaite, Samuelson and Silverman (2008) for an example).² The threshold separating low- and high-wealth workers is median wealth. Workers are dynamically resorted at each period across the time-varying median threshold. I do so because the length of the panel is not long enough for the exercises I perform. For each recession and each group, earnings are normalized to their pre-recession peaks.

The picture painted is striking: following the Great Recession, earnings for workers in the bottom half of the wealth distribution fell by almost 10% and took more than four years to recover to 2007 levels, earnings for workers in the top half of the wealth distri-

¹I use a restrictive definition of the word quality that ignores non-wage amenities.

²In light of this supporting evidence, excluding housing spares me the need to add to the already computationally demanding model a second, illiquid, asset.

bution experienced only a minor, short-lasting decrease.³ Though less extreme, a similar picture can be painted for the 2001 recession which saw low-wealth workers experience a greater and longer-lasting earnings fall. The figure also shows that these patterns hold true not only for the raw data (solid lines) but also when residualizing by standard controls, implying much of this empirical earnings gap remains unexplained.

Real Labor Earnings Evolution

Figure 1: Labor income evolution around recessions, indexed at pre-recession peak. Top half (high-wealth) and bottom half (low-wealth) of net worth distribution excluding housing. Analysis for raw data (solid) and data residualized by a polynomial in age, sex, race, tenure, work type (union, private, govt.), education and industry fixed effects. Soure SIPP and own calculations.

Low-wealth workers are generally worst equipped to confront downturns because they cannot rely on their savings to get by in case they are hit by adverse shocks. In addition, at least following the 2001 and 2007-09 recessions, low-wealth workers also suffered larger and longer-lasting falls in their earnings. What this means is that those workers who are worst equipped to confront recessions also suffer the worst consequences from them. This is why it is so important to understand what drives the heterogeneity in the labor market recoveries of workers with different wealth.

³These data are computed using the Survey of Income and Program Participation. Using the Survey of Consumer Finances indicates even more disparity. According to the SCF, low-wealth workers' income suffered a 15% decline that, even by 2019, was still 6% below 2007 levels. At the top half of the wealth distribution, the fall in income was of about 6% and by 2016 earnings were almost 8% higher than 2007 levels.

To understand where this difference in earnings by wealth comes from, it is natural to look at the labor flows of these workers – after all labor earnings are determined by the job a worker holds. Table 6 displays the standard deviation and persistence of the cyclical component of the job-finding (UE), job-losing (EU), and job-switching (EE) rates computed at a quarterly frequency. In parenthesis are the standard errors for these measures computed by bootstrap following Politis and Romano (1994).

The key point of this table is that the behavior displayed by labor earnings is not unique to it: the cyclical components of the job-switching (EE) and the job-losing (EU) rates are also more volatile for workers in the bottom half of the wealth distribution. Additionally, the job-switching rate is also more persistent for low-wealth workers.⁴ This means that, after a recession, the rate at which low-wealth workers *switch* jobs falls by more and takes longer to recover relative to the rate of high-wealth workers; the rate at which low-wealth workers *lose* their jobs increases by more than for high-wealth workers. At the same time, the cyclical component of the job-finding rate (UE) displays no significant difference across wealth.

	Mean (%)			Stdv.			Persistence		
	all	low-wealth	high-wealth	all	low-wealth	high-wealth	all	low-wealth	high-wealth
UE	55.68	51.16	61.69	5.54 (0.828)	5.04 (0.764)	6.06 (0.960)	0.9641 (0.041)	0.9637 (0.042)	0.9617 (0.039)
EU	3.64	4.80	2.91	1.49 (0.204)	1.81 (0.188)	1.21 (0.172)	0.8827 (0.073)	0.8790 (0.066)	0.8788 (0.069)
EE	4.12	5.07	3.35	0.99 (0.220)	1.20 (0.271)	0.81 (0.192)	0.9105 (0.089)	0.9128 (0.084)	0.9058 (0.093)

Table 1: Quarterly labor market flow rates across the distribution of net worth excluding housing. "All" is entire sample, "low wealth" and "high wealth" are the bottom and top halves of the net worth ex. housing distribution. Standard deviations and persistence parameters are computed on the Hamilton-filtered rates. Persistence is the AR(1) coefficient. Standard deviations for EE and EU are significantly different according to standard errors computed by bootstrap. All data are computed using SIPP 1996-2013.

These differences across wealth persist even when residualizing the data by standard controls.⁵ Gregory, Menzio and Wiczer (2021) also show that large differences in labor flows across workers persist after accounting for standard controls. In fact, low-wealth workers in my model display a similar job-losing behavior as the workers they denote as "gamma" types, indicating that wealth may explain some of what lies behind the statistical classification of workers they document. In the next section I develop a model

 $^{^4}$ While the difference in persistence across wealth in the EE rate is not statistically significant, I will show the model is consistent with this difference.

⁵In Appendix C I show the moments residualized by a polynomial in age, race, sex, education, and work type (union, private, govt.).

that can make sense of the heterogeneity in these labor market flows across the wealth distribution and in turn can speak to the earnings gaps across wealth observed in recent recessions.

3 Model

This model incorporates incomplete markets in the vein of Bewley-Huggett-Ayagari⁶ in a search and matching model à la Diamond (1982) and Mortensen and Pissarides (1994) with random, on-the-job search. There are four key agents in this model: households that can either be employed or unemployed; firms that are either in search of a worker or actively producing goods; capitalists that rent capital to firms; and the government that taxes households to pay for unemployment benefits and government transfers. I go over each of these in detail.

3.1 Households

Households can either be unemployed or employed. If employed, they work for a firm of type $n \in \{1, ..., N\}$ where n indexes the labor market the firm belongs to. All firms in labor market n have productivity p_n that is increasing in n.

Unemployed. Unemployed agents choose how much to consume, c, and save, a', using their gross wealth, (1+r)a, unemployment benefits, b, and a lump sum government transfer, T. Unemployed agents are always in search of a job. They randomly get a chance to search in one out of N possible labor markets. Specifically, they search in labor market n according to the c.d.f. G(n|0) with probability mass function is g(n|0). If searching in labor market n, the agents find a job with probability λ_n^8 , otherwise they remain unemployed. The problem they solve is

$$U(a,z) = \max_{c,a'} u(c) + \beta \mathbb{E} \left[\left(1 - \sum_{n=1}^{N} g(n|0) \lambda_n \right) U(a',z') + \sum_{n=1}^{N} g(n|0) \lambda_n E^u(a',z',n) \right]$$
s.t. $c + a' = (1+r)a + b + T$ and $a' \ge \underline{a}$

⁶Bewley (1977), Huggett (1993), and Aiyagari (1994)

 $^{^{7}}g\left(\cdot\right)$ delivers some parsimony because whenever $g\left(n|0\right)=0$ it is unnecessary to compute wages for unemployed workers ending up in labor market n. A similar logic will later hold for workers switching between n and n' if $g\left(n'|n\right)=0$.

⁸This will be endogenous in equilibrium.

In addition to wealth, all agents have an idiosyncratic productivity z that evolves according to a first order Markov process, $z' \sim F(z'|z)$. This idiosyncratic term affects how productive agents are when engaged in production with a firm. Because the process $F(\cdot)$ is persistent, z affects the value of unemployed workers not contemporaneously but through the continuation value. When an unemployed agent meets a firm, the value from the match is $E^u(\cdot)$, which can be rewritten as

$$E^{u}\left(a',z',n\right) \equiv E\left(a',z',w^{U}\left(a',z',n\right),n,0\right) \tag{2}$$

where 0 indicates the worker starts with no tenure at the new job, n indicates the labor market the agent finds employment in, and $w^U(a',z',n)$ is the wage the firm and worker agree on. This wage, which will be discussed in detail in the following section, depends on the state variables (a',z',n) because so do the worker's and firm's outside options.

Employed. Employed agents choose consumption and savings using their gross wealth, (1 + r)a, after-tax labor income, $(1 - \tau)w$, and government transfers, T. They work for a firm on rung n, earn a pre-established wage w, and have tenure j at their current job.

A crucial ingredient of the model that I later validate in the data is that workers' probability of job loss is decreasing in tenure. That is, the longer a worker is at a firm, the less likely she is to be laid off. Thus, the job-loss probability, denoted $\sigma(j)$, is such that $\sigma(j) \geq \sigma(j+1)$. While I provide a microfoundation for this declining hazard rate at the end of this subsection, assume for now that workers of tenure j separate into unemployment with *exogenous* probability $\sigma(j)$. If they do not fall into unemployment, they either continue the relationship with the current firm or get an offer from a new firm on a different rung. Only a random share s of workers on rung n is allowed to search for a new job in any given period. If searching, the probability of searching on rung n' is g(n'|n). Conditional on being able to search on rung n', the probability of an offer from a firm is $\lambda_{n'}$. If the worker does not get an offer, she stays in her current job, earning the same wage but gaining a period in tenure. If the worker does get an offer, she must decide whether to move to the new firm or stay with the old one. In either case the worker negotiates a new wage contract with the firm she ends up with. The problem the worker faces is

$$E\left(a,z,w,n,j\right) = \max_{c,a'} u\left(c\right) + \beta \mathbb{E}\left\{\sigma\left(j\right) U\left(a',z'\right) + \left(1 - \sigma\left(j\right)\right) \left[\left(1 - s\sum_{n'=1}^{N} g(n'|n)\lambda_{n'}\right) E\left(a',z',w,n,j+1\right)\right\}\right\}$$

$$+s \sum_{n'=1}^{N} g(n'|n) \lambda_{n'} E^{e} \left(a', z', n, n', j\right) \right]$$
s.t.
$$c + a' = Ra + (1 - \tau)w + T$$

$$(3)$$

where the highlighted term $E^{e}(\cdot)$ represents the worker's value in the case she gets an offer from a firm in rung n'. This term can be rewritten as

$$E^{e}(a', z', n, n', j) \equiv \max_{\phi \in \{0,1\}} (1 - \phi) \left\{ E\left(a', z', w_{E}^{\text{stay}}\left(a', z', n, n', j\right), n, j + 1\right) + \eta^{\text{stay}} \right\}$$

$$+\phi \left\{ E\left(a', z', w_{E}^{\text{switch}}\left(a', z', n, n', j\right), n', 0\right) + \eta^{\text{switch}} \right\}$$
(4)

where $\phi = 0$ corresponds to the worker choosing to stay and $\phi = 1$ to switch to firm in labor market n'. Furthermore, when making this decision workers are subject to taste shocks η that are independent and identically distributed according to the extreme value distribution with parameter α^{EV} , that is η^{stay} , $\eta^{\text{switch}} \sim \mathcal{EV}\left(\alpha^{EV}\right)$.

Consider the tradeoff workers face when switching jobs. There is never a benefit of switching to lower productivity firms. The benefit from switching to a higher productivity firm n' > n is clear: because the firm is more productive, it can offer a higher wage to attract the worker than the original firm can. That is, the negotiated wage with firm n' will be higher than the re-negotiated wage with firm n, $w_E^{\text{switch}}(a', z', n, n', 0) > w_E^{\text{stay}}(a', z', n, n', j)$. At the same time, however, workers who switch to a new firm give up their tenure: while by staying at the incumbent firm workers gain a period in tenure, going from j to j+1, by switching to the poaching firm, workers' tenure falls to 0. The cost of this comes in the form of an increased probability of job loss in later periods. In summary, the trade-off workers face when switching jobs is between a higher wage and a less stable job more likely to lead to unemployment. This trade-off will be key to the results that follow in the paper.

Microfounding $\sigma(j)$. The seminal work by Jovanovic (1979) provides a simple microfoundation for the downward-sloping $\sigma(j)$. This work theorizes that workers and firms slowly learn about the quality of their match. When a worker and firm first sign a contract, they do so with limited information. As time goes by the firm learns how good the match with the worker really is and decides whether to keep or lay off the worker.

Assume that in the first J-1 periods of a match the worker is in "training" and is supervised by the firm. The firm observes the worker and forms beliefs about their potential. Worker potential is idiosyncratic to the match and it is high (H) with probability

⁹Other than that provided by the taste shocks which, for sake of argument I ignore here.

 π^H and low (L) with probability $1-\pi^H$. Once the training stops, at J, the worker continues to produce at full capacity if they are high potential but produces no output if they are low potential. In the initial J-2 periods the firm only gets a noisy signal of the unobserved worker potential. It uses this signal to determine whether to keep or lay off the worker. At J-1, the true potential of the worker is revealed and the remaining L workers are laid off.

At $j \geq J$ all workers have a common job-loss probability σ . In the initial periods $j=1,\ldots J-2$, the firm receives one of two possible signals about worker potential. It either spots the worker committing a mistake and thus revealing they have low potential, in which case the firm fires the worker for sure, or it sees no mistake and the worker is laid off with probability σ . The probability a low potential worker actually commits a mistake is α^L . This leads to layoff probabilities

$$\sigma(j) = \begin{cases} (1 - \pi^H) \cdot (1 - \alpha^L)^J \cdot \alpha^L + \sigma & \text{if } j < J \\ \sigma & \text{if } j \ge J \end{cases}$$
 (5)

which, for j < J, is downward-sloping in j.¹⁰

3.2 Firms

Firms can either be vacant or active. Vacant firms are in search of one worker. Active firms engage in production with one worker. Each labor market n is distinguished by its own mass of (identical) vacant and active firms all of which have productivity p_n increasing in n.

Active Firms. Active firms engage in production with one worker. An active firm on rung n has rung-specific productivity p_n and is paired with worker of type (a, z, w, n, j) where w is the wage the two parties negotiated either at the start of the match or the last time the worker had an outside offer. Firms on rung n paired to workers with idiosyncratic productivity z produce according to the constant return to scale technology

$$y_n = F(k_{-1}, L) = Zk_{-1}^{\alpha}L^{1-\alpha}$$

¹⁰An alternative formulation, closer to Jovanovic (1979), would have output directly and contemporaneously affected by worker type and in turn would require the firm evaluating whether keeping the worker is preferred to opening a vacancy. While this would lead to a similar result, it would require the addition of at least one state variable in order to keep track of fluctuating output. Because of the already highdimensionality of the problem I am solving, I do not implement this version quantitatively but rather provide a solution in appendix A.

s.t.
$$L = p_n \cdot z$$

where L are the effective units of labor from the match, Z is aggregate productivity, and k_{-1} is the capital the firm uses in production.

In any given period there is a probability $\sigma(j)$ the match ends. If the match continues, with probability $s \cdot \sum_{n'=1}^N g(n'|n) \lambda_{n'}$ the worker receives an outside offer and with the complementary probability the firm and worker continue the existing contract. The value to the firm is

$$J(a, z, w, n, j) = \underbrace{y_n - r^K k_{-1} - w}_{\text{flow profits}} + \frac{1}{1+r} \mathbb{E} \left[(1 - \sigma(j)) \left(\left(1 - s \sum_{n'=1}^{N} g(n'|n) \lambda_{n'} \right) \underbrace{J(a', z', w, n, j+1)}_{\text{no outside offer}} + s \sum_{n'=1}^{N} g(n'|n) \lambda_{n'} \underbrace{J^{ee}(a', z', n, n', j)}_{\text{outside offer}} \right) + \sigma(j) \underbrace{V(n)}_{\text{match ends}} \right]$$
(6)

Where J^{ee} is the value of the firm on rung n in case its worker is offered a job on rung n'. This value can be rewritten as

$$J^{ee}(\cdot) = \begin{cases} V(n), & \text{if worker switches} \\ J(a', z', w_E^{\text{stay}}(a', z', n, n', j), n, j + 1), & \text{if worker stays} \end{cases}$$
 (7)

If the worker switches, firm n opens a vacancy with value V(n), if the worker stays, they renegotiate a wage $w_E^{\text{stay}}(a', z', n, n', j)$ with the firm.

Vacant Firms. On each rung n there are vacant firms in need of workers in order to start production. These firms pay a fixed cost $\kappa \cdot p_n$ to post a vacancy. Next period they meet a worker with probability q_n , otherwise they remain vacant. The problem they face is

$$V(n) = -\kappa p_n + \frac{1}{1+r} \left[(1 - q_n) V(n) + q_n J_0(n) \right]$$
 (8)

where $J_0(n)$ is the value a newly active firm can expect on rung n

$$J_{0}(n) = \int_{x^{u}} g(n|0) J^{0}(x^{u}, w^{u}(x^{u}; n)) d\Psi^{u}(x^{u})$$

$$+ \int_{x^{e}} \sum_{n'>0} g(n|n') \left[\underbrace{\varphi(x^{e}, n')}_{\text{pr. of poaching}} J^{0}(x^{e}, w^{e}_{\text{switch}}(x^{e}, n')) + (1 - \varphi(x^{e}, n'))V(n) \right] d\Psi^{e}(x^{e})$$

where $x^u \equiv (a, z)$, $x^e \equiv (a, z, n, j)$ and $\Psi^u(x^u)$, $\Psi^e(x^e)$ are distributions over x^u , x^e . $J^0(\cdot)$ is the same as $J(\cdot)$ defined in equation (6) but without allowing the worker to switch in the very first period of the match.

 $J_0(n)$ is a weighted average of the value the firm has upon meeting unemployed workers, x^u , and employed workers, x^e . The model calibration will imply unemployed workers always accept the jobs they are offered. However, when a vacant firm meets a worker in labor market n' it only poaches them successfully with probability $\varphi(a,z,n',n,j)$. In this case they negotiate a wage $w^e_{\rm switch}$ and start actively producing, otherwise they do not poach the worker and remain vacant.

Profits. Aggregate profits Π are the sum of flow profits net of vacancy costs from all firms, that is

$$\Pi = \sum_{n=1}^{N} \left[\int_{x^{e}(n)} \left(y_{n} - r^{K} k_{-1} \left(x^{e}(n) \right) - w(x^{e}(n)) \right) d\Psi^{e}(n) - \kappa v_{n} p_{n} \right]$$
(9)

where $x^e(n) \equiv (a, z, w, j; n)$ and the last addend are the vacancy-filling costs in labor market n.

3.3 Capitalist and Government

There are two more agents in this economy: the capitalist and the government. The capitalist rents out capital to the firms, the government transfers resources from some agents to others making sure its budget is always balanced.

Capitalist. There is a representative capitalist who rents out capital to firms and ultimately collects their profits. The capitalist chooses how much capital to bring over into the next period. Her objective is to maximize the discounted stream of profits by choosing the total amount of capital to bring into the following period. This capital investment decision is subject to quadratic adjustment costs. The problem the capitalist faces is

$$(1+r_t) \mathcal{P}(K_{-1}) = \max_{K} D_t + \mathcal{P}(K)$$
(10)

s.t.
$$D_t = \Pi + r^K K_{-1} - \left[K - (1 - \delta) K_{-1} + \frac{1}{2\delta\epsilon_I} \left(\frac{K - K_{-1}}{K_{-1}} \right)^2 K_{-1} \right]$$
 (11)

¹¹This poaching probability is derived from the job-switching problem in equation (4).

where investment $K - (1 - \delta) K_{-1}$ is subject to adjustment costs $\frac{1}{2\delta\epsilon_I} \left(\frac{K - K_{-1}}{K_{-1}}\right)^2 K_{-1}$. From this, the usual Q-theory equations follow for Tobin's Q and its law of motion

$$Q := \mathcal{P}'(K) = 1 + \frac{1}{\delta \epsilon_I} \left(\frac{K - K_{-1}}{K_{-1}} \right)$$
(12)

$$Q_{-1} = \frac{1}{1+r} \mathbb{E} \left[r^K - \frac{K}{K_{-1}} + (1-\delta) - \frac{1}{2\delta\epsilon_I} \left(\frac{K}{K_{-1}} - 1 \right)^2 + \frac{K}{K_{-1}} Q \right]$$
(13)

Government. The government has one role, that of redistributing resources. It taxes all employed agents with an income tax τ to pay for unemployment benefits b and fiscal transfers T. It balances its budget period by period ensuring the following holds

$$\tau \int_{x^e} w(x^E) d\Psi^e = b \int_{x^u} d\Psi^U + T \tag{14}$$

where x^E and x^U are defined as above.

3.4 Aggregation

Matching Technology. There is one matching technology $M(\cdot)$ that is the same for all labor markets. If v_n and $searchers_n$ are the mass of vacancies and the mass of agents searching in labor market n, respectively, the matching function is

$$M(v_n, searchers_n) = \chi v_n^{1-\eta} searchers_n^{\eta}$$

While the mass of vacancies in labor market rung n is v_n , the mass of agents searching on rung n is made up of agents from all labor markets. In particular, the workers searching in n are

searchers_n =
$$g(n|0) \int d\Psi^u + s \cdot \sum_{n'=1}^N g(n|n') \cdot \int_{x^e(n')} d\Psi^e_{n'}$$

where $x^e(n')$ indexes workers in labor market n'. The tightness of labor market n is

$$\theta_n = \frac{v_n}{searchers_n}$$

Because of the CRS matching technology, the vacancy-filling and job-finding rates can then be written as

$$q(\theta_n) = \chi\left(\frac{1}{\theta_n}\right)^{\eta}$$
 $\lambda(\theta_n) = \theta_n \cdot q(\theta_n)$ (15)

Equilibrium. The competitive equilibrium is a set of values for agents and firms $\{U, E, E^u, V, J, J^e\}$, policy functions $\{c^U, c^E, a^U, a^E, \Phi\}$, prices $\{r, r^K, w^U(\cdot), w^E(\cdot)\}$, and labor market tightnesses $\{\theta_n\}$ such that

- 1. Agents and the capitalist maximize their respective objectives. Active firms' values follow 6.
- 2. The government balances its budget (14).
- 3. The asset market clears, that is

$$\underbrace{\int_{x^{u}} a(x^{u}) d\Psi^{u} + \int_{x^{e}} a(x^{e}) d\Psi^{e}}_{\text{HH wealth}} = \underbrace{\mathcal{P}(K)}_{\text{value of capital firm}}$$
(16)

where, in steady state, $\mathcal{P}(K) = \frac{\Pi}{r} + K$.

4. The labor market trivially clears, that is

$$\underbrace{\sum_{n=1}^{N} \int_{x^{e}} z(x^{e}) \cdot p_{n} \, d\Psi^{e}}_{\text{labor supply}} = \underbrace{\sum_{n=1}^{N} \int_{\text{labor demand}} L(k)}_{\text{labor demand}}$$

5. Free entry holds on each rung, that is V(n) = 0, or using 8

$$q(\theta_n) = (1+r)\frac{\kappa p_n}{J_0(n)}$$
(17)

4 Wage Determination

Wages are set using a finite-horizon variant of the alternating offer bargaining protocol developed in Hall and Milgrom (2008). While bargaining with the unemployed agent is a straightforward extension of the environment in Christiano, Eichenbaum and Trabandt (2016), bargaining with job-switchers requires more work. This paper is the first in the search-and-matching literature with random on-the-job search to suggest a bargaining solution for an environment with risk aversion and asset accumulation.

4.1 Unemployed

When an unemployed agent and a firm of type n meet, a negotiation takes place between the two parties. I succinctly describe the basics of the bargaining pointing out the differences with Christiano, Eichenbaum and Trabandt (2016).

Players and Contract. The players are the worker and the firm of type n that the worker meets. The outcome of the bargaining is a wage paid by the firm to the worker in exchange for labor services. This wage persists until either the match dissolves or another firm tries to poach the worker. If at any point an agreement is reached, the worker becomes employed at the firm at the agreed-upon wage and immediately starts production. There are M (odd) sub-periods in which the agent and firm alternate proposing and considering offers. The firm makes offers at odd sub-periods $1, 3, \ldots M$ and the worker at even sub-periods $2, 4, \ldots M - 1$. If no agreement is reached by M, the agent stays unemployed and the firm remains vacant.

Timing Assumptions. There are two complications here that are not present in Christiano, Eichenbaum and Trabandt (2016): agents have curved utility and there are other relevant state variables that affect the negotiations (assets and idiosyncratic productivity). In order to minimize the computational challenges that are due to these complications I make sure that from one sub-period to the next there are no changes in state variables. In order to achieve this I make the following assumptions:

Assumption 1. Shocks are realized at m = 1, interest accrues and the consumption/savings decision is made at m = M.

Assumption 2. If a worker signs a contract with a firm at m, output and wages are paid only for the remaining sub-periods $\frac{M-m+1}{m}$.

The first is a timing assumption that restricts the number of computations needed: I need to solve one rather than M consumption/savings problems. The second states that when a worker joins a new firm they only start working at the moment of the signing of the contract and hence only earn (and produce) for the remaining sub-periods. Specifically, a worker is assigned a task at the moment they sign a contract with a firm. If this occurs at sub-period m then the firm assigns a task that can be completed in the remaining $\frac{M-m+1}{M}$ sub-periods. The value of the task in terms of output and wages is also proportional to the number of remaining sub-periods.

Payoffs. If the worker and firm sign a wage contract w_m^n at sub-period m with a firm of type n, the payoffs for each player are

$$W_{m}^{u}(a,z,w_{m}^{n}) \equiv \max_{c,a'} u(c) + \beta \mathbb{E} \left[\sigma(0) U(a',z') + (1-\sigma(0)) E(a',z',w_{m}^{n},n,0) \right]$$

$$\text{s.t. } c+a' = Ra + (1-\tau) \left[\frac{m-1}{M}b + \frac{M-m+1}{M}w_{m}^{n} \right] + T$$
(18)

$$J_m^u\left(a,z,w_m^n\right) \equiv \frac{M-m+1}{M}\left(zp_n\left[Zf\left(k\right)-r^Kk\right]-w_m^n\right)+\frac{1}{1+r}\mathbb{E}\left[J\left(\psi_a,z',w_m^n,n,0\right)\right]$$
(19)

These equations make clear that production and wages are pro-rated which incentivizes both parties to find an agreement earlier rather than later in the negotiation.

Procedure and Equilibrium Actions. The players can take one of two actions. If it is their turn to do so, they propose a wage, otherwise they either accept or reject the offer made by the other party. Whenever a wage is rejected the bargaining goes on to the next step: if m < M the bargaining continues in the next sub-period; if m = M the bargaining stops and all parties go back to their previous states, unemployment for the worker and vacancy for the firm. At any point a wage is accepted the negotiation is concluded, the worker must provide its labor to the firm at the established wage and production begins.

At m odd the firm makes the offer and the worker faces an outside option denoted by W_{m+1}^{wait} which is the value the worker can expect if they do not agree to the offer made by the firm. The firm will propose the lowest wage possible subject to the worker not refusing it, that is the firm proposes wage w_m^n satisfying

$$W_m^u(a,z,w_m^n) = W_{m+1}^{\text{wait}}$$
 (20)

The worker will accept and the firm will draw value $J_m^u(a,z,w_m^n)$ from the match – this value will then be the relevant outside option J_m^{wait} for the firm at m-1. At m even, it is the worker's turn to propose a wage. The worker makes the firm indifferent between accepting the wage w_m^n and its outside option. This wage solves

$$J_m^u(a,z,w_m^n) = J_{m+1}^{\text{wait}}$$
 (21)

The firm will accept and the worker will draw value $W_m^u(a, z, w_m^n)$ from the match – this value will be the worker's relevant outside option W_m^{wait} for the preceding sub-period m-1. The game is solved backwards and will be resolved with the worker accepting the first wage offered by the firm at m=1.

4.2 Employed

When a worker of type (a, z, w, n, j) gets an offer from firm n' a negotiation takes place between them and the two firms. Unlike the case of the unemployed agent, which is a

¹²Note that at m = M the outside option the worker faces is $W_{m+1}^{\text{wait}} = U\left(a,z\right)$ because the bargaining ends and the agent goes back to being unemployed. Otherwise, W_{m+1}^{wait} is computed by backward induction.

straightforward extension of Christiano, Eichenbaum and Trabandt (2016), this environment, with risk aversion, asset accumulation, and on-the-job search, has not been previously studied. I propose a parsimonious solution to this bargaining problem.

Players and Contract. The key players are the worker, the incumbent firm n, and the poaching firm n'. The three parties bargain to decide which firm the worker will work for and at what wage. The contracted wage is a per-period wage that is paid by the firm to the worker. The wage is set to last until either the match between worker and firm dissolves or a renegotiation takes place.¹³

Additional Assumption. Assumptions 1 and 2 still hold. Assumption 2 takes on new meaning with job-switchers. As was the case for unemployed agents joining a firm, for job-switchers moving to the poaching firm, production and wages are pro-rated. However, when a worker stays with the incumbent, output and wages are paid for the entire period. Recall that the worker is assigned a task by the firm it works for. Because the worker is under contract with the incumbent from the very beginning (m = 1), they will be assigned a task to complete over the entire period and, as long as the worker ultimately decides to stay with the incumbent, the full value of it will be realized. If the worker moves to the poacher, the task assigned is smaller, doable in the remaining $\frac{M-m+1}{M}$ subperiods and its value is proportional to the number of periods the task takes to complete. Assumption 3 states what happens to the task started at the incumbent when the worker switches to the poacher.

Assumption 3. If the worker signs a contract with the poacher at m, the task at the incumbent remains undone and no output or wages from the incumbent are realized.

While this assumption is not crucial, it greatly reduces the number of cases I have to consider. In appendix B I show that by relaxing this assumption the bargaining outcomes would largely remain unchanged.

Procedure. The bargaining takes place over M (odd) sub-periods where the length of each sub-period is fraction $\frac{1}{M}$ of one whole model period. Firms make offers at odd sub-periods $1,3,\ldots M$ and the worker makes offers at even sub-periods $2,4,\ldots M-1$. The players can take one of three actions depending on whose turn it is to make offers: they can make an offer by proposing a wage (or a tuple of wages in the case of the worker), they can accept an offer, or they can reject an offer. When firms make offers to the worker they

¹³Renegotiations occur when the worker gets an outside offer.

simultaneously propose one wage each. The worker can accept at most one of the offers made. If the worker accepts, they sign a binding contract with the firm who made the winning offer. If the worker rejects both offers the game moves on. In particular, if m < M the bargaining continues into the next sub-period m + 1; if m = M the bargaining stops and all parties go back to their previous states: the worker and firm n remain engaged in production at the original wage w, and firm n' remains vacant.

When the worker makes the offers it simultaneously proposes two wages, one to each firm which, in turn, must respond to these offers simultaneously. If both firms accept, the worker chooses which to sign the contract with. If only one firm accepts, the worker must sign a contract with that firm immediately. If both firms reject the game moves on.

Payoffs. If at sub-period m an agreement is reached and the worker signs a contract with firm n at wage w_m^n the payoffs for each party are

- 1. Firm n' remains vacant and has payoff V(n') = 0
- 2. Firm *n* renegotiates the wage with the worker who, having been at the firm the entire period, produces goods for the entire period. The payoff to firm *n* is

$$J_{m}^{n}\left(w_{m}^{n}\right) = \left(y_{n} - r^{K}k - w_{m}^{n}\right) + \frac{1}{1+r}\mathbb{E}\left[\sigma(j)V\left(n\right) + \left(1 - \sigma(j)\right)J\left(\psi_{a}, z', w_{m}^{n}, n, j+1\right)\right] (22)$$

where ψ_a is the asset policy function determined by the household's consumption-savings problem.

3. The worker makes their consumption/savings decision based on the new wage w_m^n and thus their payoff is

$$W_{m}^{n}(w_{m}^{n}) = \max_{c,a'} u(c) + \beta \mathbb{E} \left[\sigma(j) U(a',z') + (1-\sigma(j)) E(a',z',w_{m}^{n},n,j+1) \right]$$
s.t. $c + a' = Ra + (1-\tau)w_{m}^{n} + T$ (23)

Notice that I do not allow workers to be poached right after the signing of a new contract and this will hold true also when the worker joins the poacher.

If at sub-period m an agreement is reached and the worker signs a contract with firm n' at wage $w_m^{n'}$ the payoffs are

4. Firm n' poaches the worker and starts producing from sub-period m onward. Thus,

production and the wage rate paid are pro-rated. The payoff to firm n' is

$$J_{m}^{n'}\left(w_{m}^{n'}\right) = \frac{M-m+1}{M}\left(y_{n'} - r^{K}k - w_{m}^{n'}\right) + \frac{1}{1+r}\mathbb{E}\left[\sigma(0)V\left(n'\right) + (1-\sigma(0))J\left(\psi_{a}, z', w_{m}^{n'}, n', 1\right)\right] (24)$$

- 5. Firm *n* remains vacant and has payoff $V(n) = 0^{14}$
- 6. The worker makes their consumption/savings decision based on the new wage w_m^n but this is only paid for part of the period. Their payoff is

$$W_{m}^{n'}\left(w_{m}^{n'}\right) = \max_{c,a'} u(c) + \beta \mathbb{E}\left[\sigma(0) U(a',z') + (1-\sigma(0)) E(a',z',w_{m}^{n'},n',1)\right]$$
s.t.
$$c + a' = Ra + \frac{M-m+1}{M}(1-\tau)w_{m}^{n'} + T$$
 (25)

These payoffs point to one important difference between the firms: while anytime the worker stays on with firm n she produces for the entire period, when she moves to n' she only produces for the remaining sub-periods. This asymmetry makes it so that the incumbent firm is "patient" while the poacher is "impatient". Specifically, the poacher will be willing to pay the worker a higher wage and sign the contract immediately so as to avoid waiting and suffering a loss in output and profits in the next bargaining sub-period. On the contrary, the incumbent makes the same output regardless of when it signs on the worker.¹⁵

Definitions and Results. Before considering the actions pursued by the players it is useful to consider a few key concepts. The first is the break-even wage a firm is willing to pay the worker at sub-period m.

Definition 4.1. Denote by \overline{w}_m^n and $\overline{w}_m^{n'}$ the *break-even wages* firms n and n' are able to pay the worker at sub-period m. These wages make the firms indifferent between hiring the worker and opening a vacancy and they satisfy

$$J_{m}^{n}\left(\overline{w}_{m}^{n}\right)=V\left(n\right)=0$$
 and $J_{m}^{n'}\left(\overline{w}_{m}^{n'}\right)=V\left(n'\right)=0$

where J_m^n and $J_m^{n'}$ are defined in 22 and 24.

 $^{^{14}}$ Once again, this is due to the assumption that the task started by worker for the incumbent n is worthless unless brought to completion. Assuming instead that output and wages were pro-rated for the first m sub-periods would lead to similar final outcomes but through more computational steps.

 $^{^{15}}$ Technically, the incumbent prefers postponing the signing because while it produces the same output it can lower its wage offer because the poacher's ability to offer a high wage worsens as m increases.

This leads to the following result

Result 1. The break-even wage the incumbent n can offer is independent of m, the one the poacher n' can offer is *strictly* decreasing in m, that is:

$$\overline{w}^n := \overline{w}_1^n = \dots = \overline{w}_M^n$$
 and $\overline{w}_1^{n'} > \dots > \overline{w}_M^{n'}$

Proof. See appendix B

Once again, this asymmetry between firms stems from the fact that the incumbent firm, n, is "patient": no matter at what sub-period m the firm re-negotiates the contract with the worker, the firm still produces one full period worth of output. This is not true for the poacher n'. Firm n' is "impatient" because by postponing the signing of the contract with the worker, it produces less output and in turn makes lower profits. This asymmetry spills over to the break-even valuations the worker can extract from the firms.

Definition 4.2. Denote by \overline{W}_m^n and $\overline{W}_m^{n'}$ the *break-even valuations* the worker can extract from firms n and n'. They satisfy:

$$\overline{W}_{m}^{n} = W_{m}^{n} (\overline{w}_{m}^{n})$$
 and $\overline{W}_{m}^{n'} = W_{m}^{n'} (\overline{w}_{m}^{n'})$

where $W_m^n(\cdot)$ and $W_m^{n'}(\cdot)$ are defined in 23 and 25.

This leads to the following result

Result 2. The break-even valuation the worker can extract from n are independent of m, the ones it can extract from n' are *strictly* decreasing in m, that is:

$$\overline{W}^n := \overline{W}_1^n = \dots = \overline{W}_M^n$$
 and $\overline{W}_1^{n'} > \dots > \overline{W}_M^{n'}$

Proof. See appendix B

This result just states that while the ability of the incumbent firm n to offer value to the worker is not affected by the bargaining sub-period m, the poacher n' becomes more constrained in the value it can provide the worker as m increases.

Equilibrium Actions. In odd periods m, it is the firms' turn to bid for the worker. The firms bid simultaneously offering the minimal wage that can attract the worker conditional on not paying more than their break-even valuations. Suppose the value the

¹⁶This interpretation corresponds to the firms bidding for the worker in a sealed-bid first price auction.

worker gets by waiting until the next sub-period, m+1, is W_{m+1}^{wait} . If the firms want to attract the worker, they must offer the maximum between the valuation the other firm has for the worker and W_{m+1}^{wait} . A penny less and either the worker accepts the other firm's offer or the worker decides to move to sub-period m+1. However, the firms must also not offer the worker more than their own break-even valuations as they would otherwise prefer posting a vacancy to hiring the worker. This results in these simple rules for the offers made by firms n and n', respectively:

$$W_m^{n,\text{bid}} = \min \left\{ \max \left\{ W_{m+1}^{\text{wait}}, \overline{W}_m^{n'} \right\}, \overline{W}^n \right\}$$
 (26)

$$W_m^{n',\text{bid}} = \min \left\{ \max \left\{ W_{m+1}^{\text{wait}}, \overline{W}^n \right\}, \overline{W}_m^{n'} \right\}$$
 (27)

The inner maximization is required for the firm to attract the worker. The outer minimization is required for the firm to find it profitable to attract the worker. If both arguments of the minimization are equal, the incumbent firm retains the worker.

In even sub-periods m, it is the worker who makes offers to the firms. The worker proposes the highest wages they can that make each firm indifferent between hiring the worker and moving on to the next sub-period.¹⁷ Consider the offer made to the new firm n'. The worker will make the firm indifferent between accepting wage $w_m^{n'}$ and moving on to m+1. If J_{m+1}^{wait} is the value firm n' can expect at m+1, this wage will solve ¹⁸

$$\frac{M - m + 1}{M} \left(y_{n'} - r^{K} k - w_{m}^{n'} \right) + \frac{1}{1 + r} \mathbb{E} \left[J \left(\psi_{a}, z', w_{m}^{n'}, n', 0 \right) \right] = J_{m+1}^{\text{wait}}$$

The value to the worker corresponding to this wage is $W_m^{n'}\left(w_m^{n'}\right)$. If firm n can beat this offer then the worker can actually extract a higher wage from firm n'. The worker extracts the following value from firm n'

$$W_m^{n',\text{bid}} = \min \left\{ \max \left\{ W_m^{n'} \left(w_m^{n'} \right), \overline{W}^n \right\}, \overline{W}_m^{n'} \right\}$$
 (28)

where the inner maximization ensures firm n' attracts the worker and the outer minimization ensures firm n' does not pay the worker more than the break-even valuation.

The scenario is simpler when dealing with firm n. While n' can offer the worker more at m than at m + 1 and in fact compensates the worker for not waiting an extra sub-period, firm n would actually prefer to wait until m + 1 because it would see no loss in output

¹⁷This interpretation is equivalent to the worker first making firm n' indifferent between accepting and moving on to the next period and then asking firm n to match that offer.

¹⁸If n' is not able to peach the worker at m+1, J_{m+1}^{wait} is the value of a vacancy, that is 0, and $w_m^{n'} = \overline{w}_m^{n'}$.

but would have to compete with a weaker offer from firm n' (as per result 2). This means the worker will offer firm n a wage delivering the value

$$W_m^{n,\text{bid}} = \min \left\{ \max \left\{ W_{m+1}^{\text{wait}}, \overline{W}_m^{n'} \right\}, \overline{W}^n \right\}$$
 (29)

Note that the incumbent firm n never gives the worker more than the break-even valuation offered by firm n'. For a more thorough explanation of the strategies see appendix B.

Final Outcomes. The bargaining is resolved in the first sub-period. The allocation rule is simple: the worker chooses the firm *able* to provide them with the highest value.

Result 3 (Allocations). The worker is poached by firm n' if and only if $\overline{W}_1^{n'} > \overline{W}^n$. Otherwise she is retained by firm n.

If there were no tenure the worker would go to the most productive firm as that firm is always able to offer the highest wage and hence the highest value (this is the scenario depicted in the first panel of figure 2). But in this model, in which workers value tenure as well as wages, the allocation rule is not that simple. The new firm n' must pay a premium to the worker in order to poach them. This premium compensates the worker for the loss in tenure. This is shown in the second panel of figure 2. What this means is that workers move to firms that are sufficiently more productive than their current firm because only then can the poacher pay a wage high enough to compensate for the lost tenure.

Figure 2: Allocation rules by productivity in an economy with tenure (first panel) and one without (second panel).

The worker receives values and in turn wages according to the following rule.

Result 4 (Wages). There are four possible scenarios for the wages and values the worker will walk away with:

- (1) if $\overline{W}_{1}^{n'} < W^{n}(w)$, the worker is retained by the incumbent n at the original wage w.
- (2) if $W^n(w) < \overline{W}_1^{n'} \le \overline{W}^n$ the worker is retained by the incumbent n at wage $w^{n,B}$ that delivers the worker the break-even valuation of n', it satisfies $W_1^n(w^{n,B}) = \overline{W}_1^{n'}$.
- (3) if $\overline{W}_{2}^{n'} \leq \overline{W}^{n} < \overline{W}_{1}^{n'}$ the worker is poached by n' at wage $w^{n',B}$ that delivers the worker the break-even valuation of n, it satisfies $W_{1}^{n'}\left(w^{n',B}\right) = \overline{W}_{1}^{n}$.
- (4) if $\overline{W}_2^{n'} > \overline{W}^n$ the worker is poached by firm n' and the wage $w^{n,AOB}$ is agreed upon by one-on-one negotiation between the poacher n' and the worker. This negotiation starts at m=1 and ends at sub-period $m^{\rm end}$, the last sub-period in which the break-even valuation of n' beats the break-even valuation of n. That is, $m^{\rm end}$ satisfies $\overline{W}_{m^{\rm end}}^{n'} > \overline{W}^n \geq \overline{W}_{m^{\rm end}+1}^{n'}$ with \overline{W}^n being the worker's outside option and 0 (i.e. posting a vacancy) the outside option of firm n' at $m^{\rm end}$. If no such $m^{\rm end}$ exists for $m^{\rm end} \in \{1, \ldots M\}$ then $m^{\rm end} = M$.

These outcomes have a simple interpretation which is highlighted in Figure 3.

Figure 3 displays the cases in result (4). In case (1) shown in figure 3a the poaching attempt is irrelevant, in cases (2) and (3) shown in figure 3b the firms follow the standard Bertrand logic, in case (4) shown in figure 3b the poacher and the worker enter a simple one-on-one alternating offer bargaining negotiation.

In case (1), the break-even value the poacher is able to offer the worker is lower than the worker's current contract, denoted W. This leads to no switching and no possible re-negotiation since the worker cannot credibly threaten to leave the incumbent. In case (2) the poacher's break-even value is higher than the worker's current contract but lower than the incumbent's break-even value. This means the worker will stay at the incumbent as long as the incumbent gives the worker a raise. Specifically, the incumbent will offer exactly the break-even value the poacher can offer (as in Bertrand). If it offers less the worker will go to the poacher, if it offers more it is not maximizing its own value. Case (3) works symmetrically to case (2) except the worker is poached and the poacher offers a wage delivering the worker the break-even value the incumbent can afford.

Case (4) is different. The break-even value of the poacher is so much higher than that of the incumbent that even in sub-period m=2 the poacher will win over the worker. This makes the poacher "compete" against time rather than against the incumbent. While in (3) waiting means the poacher loses the worker, in (4) waiting means losing profits but

Figure 3: Bargaining outcomes and cutoffs. (a) Scenario 1 in which current contract beats break-even value poacher can offer. (b) Scenario 2-4 in which break-even value poacher can offer beats current contract beats.

still poaching the worker. This leads the worker and the poacher to negotiate one-on-one. The outside option relevant for this negotiation will be determined backwards starting from the first sub-period after the break-even valuations of the two firms cross. At that $m^{\rm end}$, waiting means the poacher will no longer be able to poach the worker. The bilateral negotiation starts at $m^{\rm end}$ and, if it is the worker's turn to make the offer, it proposes $\overline{w}_{m^{\rm end}}^{n'}$ extracting the break-even wage from n'; if it is the firm's turn to make the offer it proposes a wage delivering the break-even value of the incumbent, \overline{W}^n , to the worker. The negotiation then continues backwards until m=1 as in the standard alternating offer bargaining with two players.¹⁹

Note that substituting Bertrand for case (4) would lead to unrealistic predictions. Under Bertrand a worker moving from a very low productivity firm to a very high productivity firm, as is the case in (4), would receive a relatively small wage since the poacher would only have to offer a wage that matches the break-even value the low-productivity can provide. The alternating bargaining protocol discussed here provides a theoretical foundation for not *always* having wages determined à la Bertrand.

¹⁹The negotiation from now on is very similar to that of the unemployed worker and the firm.

5 Calibration

The model is calibrated to match key moments of the US economy with particular attention to its labor market and the wealth distribution. I start by estimating the set of parameters that pertains to the risk incurred when workers switch jobs.

5.1 Job-Switching Risk Estimation

At the heart of the model lies the risk that workers incur when moving from one job to another. I estimate this risk using the SIPP and show that it is statistically and economically significant. When a worker moves to a new job they face a probability of job loss that, over the first five quarters following the move, is 6.4 percentage points higher than if they had not switched jobs.

I quantify this risk using an event study similar to that of Davis and Von Wachter (2011). The goal of this event study is to capture the *additional* probability that a worker will suffer an unemployment spell after switching jobs. To do this, I follow workers in the SIPP panel, tracking their job switches (by using the identifier of the firms at which they are employed) and their moves from employment into unemployment. The linear probability model I run is

$$\mathbb{1}\left(\mathrm{EU}_{i,t}\right) = \sum_{k=-1}^{14} \frac{\theta_k D_{i,t}^k}{\theta_k D_{i,t}^k} + \underbrace{\alpha_i}_{i\text{-FE}} + \underbrace{\beta_t}_{t\text{-FE}} + \Gamma X_{i,t} + \varepsilon_{i,t}$$
(30)

where $\mathbb{1}$ (EU_{i,t}) are realizations of worker i's moves from employment in period t to unemployment in period t+1, $D_{i,t}^k$ are a series of dummy variables that take on value 1 if worker i at time t switched jobs k months back, α_i and β_t are individual and time fixed effects, respectively, and $X_{i,t}$ are time-varying controls for individual i such as age and industry of occupation. What θ_k captures is the additional probability a worker who switched jobs k periods back faces of falling into unemployment compared to a similar worker who did not switch. Because, as I discuss in the next sub-section, the calibrated model allows workers to only move to higher-paying jobs, I make this same restriction in defining job switches when estimating this regression. Figure 4 illustrates these θ 's, aggregated quarterly, over the five quarters after a job switch.

Two aspects emerge from the results depicted in figure 4. First, the estimates are positive meaning that workers who switch jobs face a higher risk of falling into unemployment compared to similar workers who do not switch jobs. Second, this additional probability of job loss is persistently positive, going to 0 only after fifteen months from the

Figure 4: Change in probability of separation into unemployment after a J2J transitions. Estimated using SIPP, following 30 when restricting job switchers to those that see a strict wage increase in moving from the old to the new job.

start of the new job. The orange dotted line shows the model equivalent when choosing parameters π^H and α^L to most closely match the data.

Beyond being statistically significant, these results are economically significant. Over the first five quarters following a job-to-job transition, the probability of a worker falling into unemployment increases by 6.4 percentage points. ²⁰ Considering that, over the same five quarter interval, the probability the average US worker falls in unemployment is roughly 18%, these estimates indicate a considerable increase in risk: workers who switch jobs face a one third higher likelihood of being hit by an unemployment spell in the fifteen months after the job switch.

In the next section, I study the economic consequences of this increased risk of jobloss through the lens of my model but before doing so I discuss the calibration of the remaining model parameters.

5.2 Aggregate Moments

The other model parameters are calibrated to match key moments of the US economy and in particular the US labor market. Table 2 displays the parameters used in the model.

Utility takes the form of a standard CRRA with risk-aversion parameter $\gamma=2$. In order to match the empirical wealth distribution in the US, I use permanent discount

²⁰The estimates are highest during recessions and for low-wealth workers, as shown in Appendix C.

	Parameter (Quarterly Frequency)	Value		
Household				
<i>u</i> (<i>c</i>)	Utility func.	$\frac{c^{1-\gamma}}{1-\gamma}$, $\gamma=2$		
(eta^L,eta^H)	Discount factor	(0.9565, 0.9835)		
Firm				
α	Capital share	0.3		
δ	Capital depreciation	2.5%		
ϵ_I	Elasticity of <i>I</i> to <i>q</i>	4		
Fiscal				
b	Unemp. benefits	0.2		
T	Lump sum transfer	0		
Labor Mark	Labor Market			
s	On-the-job search intensity	0.35		
g(k+1 k)	Prob. search on next rung	1		
ζ	Vacancy cost	0.8		
η	Matching elasticity	0.5		
χ	Matching efficiency	0.5		
M	Bargaining periods	3		
α^{EV}	Std. of taste shocks	1/100		
π^G	Prob. high potential	0.9424		
α^L	Prob. informative (L) signal	0.39		

Table 2: Model Parameters.

Wealth Share Owned (%)				
Quintile	Model	Data		
Q1	1.92	-1.04		
Q2	5.06	0.68		
Q3	8.80	6.85		
Q4	18.13	18.21		
Q5	66.09	75.30		

Table 3: Wealth share owned by each quintile of the wealth distribution. Wealth is networth excluding housing and business related wealth. The top 1% of the wealth distribution is excluded.

factor heterogeneity as in Krusell and Smith (1998), with two levels $\beta^L = 0.9565$ and $\beta^H = 0.9835$, calibrated to match the quintiles of the wealth Lorenz curve for the US as in table 3.

The production parameters are standard in the literature. I use a capital share $\alpha = 0.3$ and a quarterly depreciation rate of capital $\delta = 2.5\%$. The elasticity of investment to q is set to 4 as in Auclert et al. (2021).

I assume that in steady state the government pays no lump sum transfers to agents (T = 0) but pays unemployment benefits b = 0.2 where this is set to match the empirical ratio of unemployment expenditures to GDP of roughly 0.3%.

The labor market parameters help match quarterly moments of the labor market, specifically the job-finding probability, 56%, the unemployment rate, 5.5%, and the job-switching probability, 6%. The model parameters that are most useful for hitting these targets are the intensity of search when employed, s=0.35, the vacancy posting cost per unit of firm productivity, $\zeta=0.8$, the matching elasticity, $\eta=0.5$, and the matching efficiency, $\chi=0.5$. Furthermore, I impose that agents and firms have three sub-periods, M=3, to bargain over a wage, that is, each month firms and agents alternate in making and considering offers. π^G and α^L , the probability a worker has potential and the probability the firm gets an informative signal, are chosen to match the empirical additional probability of job-loss estimated in the previous sub-section.

5.3 Job-Switching Elasticity

I first test the validity of the calibrated model by checking whether it can replicate a crucial untargated moment from the data. The moment of interest is the elasticity of job-switching to wealth. The precautionary job-keeping motive emerges as a positive relationship between wealth and the probability of switching jobs and should thus be reflected in a positive elasticity. To compute this elasticity of job-switching to wealth in the SIPP, I run the following regression

$$\mathbb{1}(EE_{i,t}) = \beta_0 + \beta_1 \frac{Wealth_{i,t}}{Income_{i,t}} + \vec{\gamma} X_{i,t} + \alpha_i + \delta_t + \varepsilon_{i,t}$$
(31)

On the left-hand side are realizations of job-switches for worker i at time t (1 if the worker switches, 0 otherwise). On the right-hand side are worker i's wealth-to-income ratio at time t, time and individual fixed effects, as well as standard controls.²¹

I run the exact same regression using the model steady state. I simulate individual em-

²¹I control for polynomials in age and tenure, industry, education, race, marital status, family size.

ployment and wealth paths for agents in the model and use them to run regression 31.²² The results of these regressions, both in the SIPP data and using the model-simulated data, for low-wealth and high-wealth separately, are shown in table 4. The model does a good job matching the untargeted empirical elasticities. Just as in the data, a wealth increase equal to one year worth of income is associated with an increased probability of job-switching for low-wealth workers of roughly 0.9 percentage points. On the other hand, the same increase barely changes the job-switching behavior of high-wealth workers. This asymmetry is consistent with the precautionary job-keeping motive, according to which the job-switching behavior of low-wealth workers is sensitive to changes in wealth while that of high-wealth workers is not.

 β_1 : job-switching elasticity

	low-wealth	high-wealth
Data	9.0e-3	5.7e-5
	(2.2e-3)	(1.0e-5)
Model	9.26e-3	1.65e-3
	(3.7e-8)	(7.75e-10)

Table 4: Job-switching elasticity to wealth-to-income ratio in the data (SIPP) and the calibrated model. The regression is run only on workers employed at *t*. Standard errors in parenthesis.

To interpret these numbers it is useful to note that the average wealth-to-income ratio fell from 6.7 to 5.47 during the Great Recession and increased from 6.49 to 8.25 after the Pandemic.

6 Mechanisms and Matching the Business Cycle Moments

In this section I detail how having a job-loss probability that is declining in tenure gives rise to two novel mechanisms: the precautionary job-keeping motive and the tenure-wealth correlation. I then show how these mechanisms in turn help the model match the empirical cyclical moments of the job-switching and job-losing rates across the wealth distribution.

6.1 Precautionary Job-Keeping

The precautionary job-keeping motive is the causal mechanism that enables the model to match the volatility and persistence of the cyclical component of the job-switching rate

²²I only control for tenure and individual fixed effects when running the regression in the model.

across the wealth distribution. At the heart of this mechanism is the trade-off between wages and job-stability that all workers face when switching jobs. However, high- and low-wealth workers respond differently to this trade-off, with low-wealth workers valuing job-stability relatively more. This results in low-wealth workers being, all else equal, less willing to switch jobs. In a recession in which wealth falls, this mechanism is amplified and further depresses the job-switching rate for low-wealth workers.

Equation 4 displays the trade-off workers face when switching jobs: they may get higher wages when they start working for a higher productivity firm but this comes at the cost of lost tenure and consequently lost job security.²³ With low tenure comes higher unemployment risk which low-wealth workers are more sensitive to as they have fewer savings and hence limited insurance in case they are indeed subject to an unemployment spell. To see why this is, consider a worker who falls into unemployment. The worker can use unemployment benefits and her previously accumulated savings towards consumption. A high-wealth worker will fare better than a low-wealth worker throughout the unemployment spell simply because her wealth allows her to afford higher (and smoother) consumption. Thus, low-wealth workers are more sensitive to the increase in unemployment risk they face when switching jobs and have a stronger precautionary incentive to stay at their jobs.

Figure 5 is useful to understand different workers' propensity to the precautionary job-keeping motive in my model. It plots the value functions of a particular worker faced with the choice of switching to a new firm (green dashed) and staying at the old firm (orange solid) as the worker's wealth varies. For high levels of wealth, switching to the new firm dominates: for this worker the income increase upon switching outweighs the loss in job security. On the contrary, for low levels of wealth, staying at the old firm dominates: this worker prefers the relatively higher job security granted by the old firm to the higher wage received at the new firm. In particular, for every worker type (z, w, n, j) there exists an asset threshold $a^* \in [a, \infty]$ such that the worker moves to the new firm only if her wealth exceeds this threshold $(a \ge a^*)$.

In principal, aggregating the individual policy functions across all workers in the economy delivers a probability of switching jobs that is increasing in assets. However, there is a small caveat to this assertion in the quantitative model. As highlighted earlier, workers are subject to taste shocks when choosing whether to stay or switch jobs. As wealth increases these taste shocks become relatively more important and, as assets grow very large the probability of switching is completely determined by the taste shock.²⁴

²³Wages at the new firm n' > n are greater than wages at the old firm n but tenure at the new firm starts over from 0 while by staying at the old firm it increases to j + 1.

²⁴The probability of switching goes to $\frac{1}{2}$ as assets $a \to \infty$.

Figure 5: Model value functions for stayers and switchers.

However, for all practical purposes, all but the very wealthiest agents in the model face an upward-sloping probability of switching jobs as shown in figure 6.

Figure 6 further displays the steady state distribution of workers across assets (green dashed line). As emphasized by the vertical green dotted line which separates the bottom half from the top half of the wealth distribution, workers in the bottom of the wealth distribution face a much steeper probability of switching jobs than workers in the top of the wealth distribution. This is entirely a reflection of diminishing marginal utility: while on the one hand even a considerable change in wealth does little to affect the probability of switching jobs for wealthy workers, on the other hand, the probability of switching jobs is very sensitive to changes in wealth for low-wealth workers.

When a recession hits the economy it depletes workers' wealth. The distribution of workers following a recession is depicted in figure 6 (red dashed line). An important effect of this shift is that low-wealth workers, who face the steep side of the probability of switching curve, experience a large fall in their probability of switching. On the contrary, high-wealth workers, who face the flat side of the probability of switching curve, do not see a noticeable change in their job-switching probability. These forces explain the higher volatility of the job-switching rate at the bottom of the wealth distribution relative to that at the top.

Precautionary Job-Keeping in the Aggregate

Figure 6: Model derived job-switching, steady state distribution (green), and recession distribution (red). Dotted lines indicate median wealth thresholds.

6.2 Tenure-Wealth Correlation

The tenure-wealth correlation is the mechanism that allows the model to match the volatility and persistence of the cyclical component of the job-losing rate across the wealth distribution. Unlike precautionary job-keeping, which *causally* links workers' wealth to their job-switching behavior, the tenure-wealth correlation links workers' wealth to their risk of job loss through the model's dynamic selection forces.

The tenure-wealth correlation manifests itself as a correlation between workers' wealth and their tenure which, in turn, implies a correlation between wealth and the probability of job-loss. As I explain in detail below, at the heart of this mechanism are two facts: recessions tend to reshuffle workers towards lower tenure jobs, and this reshuffling overwhelmingly affects low-wealth workers. This leads low-wealth workers to be more likely to lose their jobs since low-tenure implies a higher job-loss probability. Low-wealth workers then, as the economy recovers, cycle between low-tenure jobs and unemployment until they are able to break this vicious cycle by gaining enough tenure at their job.

After recessions hit an economy, the unemployment pool grows. This is in part due to a decrease in the job-finding rate and in part to an increase in the job-losing rate. As the economy recovers the large pool of unemployed workers slowly re-enters the labor market but these workers, because they are newly employed, occupy low-tenure jobs.

This translates into a shift in the distribution of workers towards lower tenure jobs with higher probability of job loss. In panel A of figure 7 I show that this reshuffling is present in the data, with higher tenure jobs losing employment share to lower tenure jobs.²⁵

Low-wealth workers are overwhelmingly subject to this redistribution because they make up a larger share of the unemployment pool, especially during recessions. There are two reasons for this. The first is that during a recession the duration of unemployment increases and hence the unemployed run down their savings more than in normal times. The second is that, in any given period, low-wealth workers make up a larger share of job-losers because they tend to occupy a larger share of low-tenure jobs.

The fact that low-wealth workers make up a greater share of low-tenure jobs, may seem puzzling. After all, it is low-wealth workers who, because they are more susceptible to the precautionary job-keeping motive, value tenure the most. However, this logic is trumped by the model's dynamic selection forces as panel B and C of figure 7 show in the model and the data. While it is true that low-wealth workers are more susceptible to precautionary job-keeping, these workers tend to have low wealth precisely because they have had an unfortunate labor market history. Workers' wealth is the cumulation of their earnings (net of consumption) which are determined by their labor market histories. As a consequence, wealth will depend on three factors: how many periods a worker has spent in employment versus unemployment, the quality of jobs the worker has had, and the idiosyncratic productivities the worker has been subject to. As such, low-wealth workers must have either suffered frequent or long unemployment spells, have not switched to better jobs, or have experienced long streaks of low idiosyncratic productivity. The first of these leads to the correlation between wealth and tenure.

Low-wealth workers tend to have experienced more frequent unemployment spells. This mechanically makes *employed* low-wealth workers more likely to be in relatively newer jobs with low tenure. These dynamics are shown in figure 8 which displays steady state model simulations. Panel A shows how many unemployment spells a worker has suffered over the previous four years. On average only 40 percent of low-wealth workers have suffered no unemployment spells in the past four years compared to 80 percent for high-wealth workers. Panel B shows tenure histories over the past four years: low-wealth workers have disproportionately occupied lower tenure jobs than high-wealth workers.

 $^{^{25}}$ This fact in of itself, abstracting from distributional aspects, has a significant implication for the cyclicality of the job-separation rate. Roughly five percent fo the workforce experiences a fall in tenure. According to the estimates of the separation probability by tenure, this redistribution of workers along tenure implies roughly a 0.15 percentage point increase in the monthly separation probability. Given the average monthly separation probability is roughly 1%, this is not an insignificant increase. This 0.15 percentage point increase represents roughly one fourth of the total increase in the separation probability experienced during the Great Recession, which went from 1.2% to 1.8%.

Figure 7: Worker tenure distribution in model and data. Panel A shows the change in the empirical tenure distribution over recessions and booms. There is more concentration in low-tenure jobs than high-tenure jobs. Panels B and C show the steady state (model) and the full-sample (data) distribution of workers over tenure by wealth. Both these plots make clear that low-wealth workers have more weight in lower tenure positions.

The two panels are linked: low-wealth workers tend to occupy low tenures because they tend to have entered the labor market more recently.

Figure 8: Worker unemployment and tenure history in steady state. Each plot shows the frequency of unemployment spells (panel A) and of tenure states (panel B)

In sum, because low-wealth workers are reshuffled towards low-tenure jobs that are likelier to lead to layoffs, these workers see a larger increase in their probability of falling into unemployment following recessions. Furthermore, because workers with low-tenure are not just more likely to experience an immediate unemployment spell but also one in

the near future,²⁶ this increase in job-loss probability is not only larger but also longer-lasting.

6.3 Empirical Moments

The first success of the model is its ability to match the cyclical moments of the job-switching (EE) and job-losing (EU) rates across the wealth distribution.

To do so, I postulate a joint stochastic process for productivity, Z, and common job-loss probability, σ , that is a level shift in every workers' job-loss probability. These processes are

$$\sigma_t - \sigma^* = \rho^{\sigma} \left[\sigma_{t-1} - \sigma^* \right] + \epsilon_t^{\sigma} \tag{32}$$

$$\log(Z_t) - \log(Z^*) = \rho^Z [\log(Z_{t-1}) - \log(Z^*)] + \epsilon_t^Z$$
(33)

where

$$\begin{pmatrix} \epsilon_t^{\sigma} \\ \epsilon_t^{Z} \end{pmatrix} \sim \mathcal{N} \begin{pmatrix} \vec{0}, \Sigma = \begin{pmatrix} Var(\sigma) & Cov(\sigma, Z) \\ Cov(\sigma, Z) & Var(Z) \end{pmatrix} \end{pmatrix}$$
(34)

Using the sequence-space Jacobian approach developed in Auclert et al. (2021), I compute transitional dynamics for the model and estimate these processes to match the headline standard deviations and persistence of the job-switching, job-losing, and unemployment rates. With these estimates at hand, I compute the same moments for the bottom and top of the wealth distribution separately using simulation. In table 5 I show the standard deviations in the data, in the model, and in a "naïve" model. The naïve model is exactly the same model I described above with the same calibration except there is no decreasing job-loss probability in tenure. Instead, the naïve model has a constant $\sigma(j) = \sigma$ that is calibrated to match the unemployment rate in the benchmark model. Table 5 shows that the benchmark model does a good job matching the dispersion in the EU and EE rates across the wealth distribution. Just as in the data, the volatilities of the EE and EU rates are almost double for low-wealth workers than they are for high-wealth workers. On the contrary, the naïve model is unable to match these moments. The naïve model is doomed to fail when it comes to the job-losing rate (EU) since, by construction, the model

²⁶Workers who suffer an unemployment spell now will fill low-tenure, high-separation probability jobs once they re-enter the labor market.

²⁷I also try a version matching the job-finding rather then the unemployment rate. This still delivers reasonable results for the dispersion across wealth in the estimates for job-switching and job-losing, the main goal of this exercise, but it delivers quite poor results for the job-finding rate. This is because my model, as is, does not resolve the Shimer puzzle Shimer (2005).

has a constant job-loss probability for all workers. However, even in the case of the job-switching rate (EE), the naïve model displays little difference between volatility for low-and high-wealth workers and nothing compared to the dispersion seen in the data.²⁸

Standard Deviation (by wealth)									
		Data		Model			Naïve Model		
	all	low	high	all	low	high	all	low	high
EE	0.99	1.20	0.81	0.87	1.41	0.55	0.85	0.88	0.82
EU	1.49	1.81	1.21	0.86	1.29	0.57	1.12	1.12	1.12
и	1.57	2.45	1.03	1.13	1.21	1.09	1.35	1.36	1.35

Table 5: Standard deviations of job-switching and job-losing rates across the distribution of net worth excluding housing. The table reports the moments for the standard deviations computed on the Hamilton-filtered rates. All data are computed using SIPP 1996-2013.

In the next section I show why capturing these moments is important to understand aggregate economic dynamics in the labor market.

7 Results

Precautionary job-keeping and the low-tenure trap contribute to the slower earnings recoveries experienced by low-wealth workers relative to high-wealth workers. Taken together, these two mechanisms explain 40% of the earnings gap dynamics observed after the Great Recession. In addition, through precautionary job-keeping, the model provides a possible explanation to the Great Reallocation, the sudden increase in job-switching the US labor market experienced following the Pandemic, via the large government stimulus issued over this period.

7.1 Great Recession Earnings Recovery

The 2007-2009 recession was the largest to hit the United States since the Great Depression. However, this recession did not affect all workers equally: labor earnings for low-wealth workers fell by more and recovered more slowly than for high-wealth workers. Here I assess how well the model I developed can speak to the heterogeneous earnings dynamics across the wealth distribution.

²⁸The little difference that come out of the model is due to bunching at the top of the job ladder that is more prevalent among high-wealth workers.

I start by estimating paths of shocks for productivity, Z_t , and for the common job-loss probability experienced by all workers, σ_t , to exactly match the output and unemployment dynamics observed during the Great Recession. The targeted paths for unemployment and output are shown in Figure 9. Subjecting the model to these shocks I compute labor earnings for low- and high-wealth workers.

Figure 9: Model unemployment and output for Great Recession experiment. Model subject to productivity and common shocks to match empirical change in unemployment and output fall during great recession.

Figure 10 plots the empirical²⁹ (solid) and model-implied (dashed) earnings dynamics for high- (blue) and low-wealth workers (red). The lines are shown relative to steady state for the model and relative to earnings in 2007:Q4 for the data. The model does a good job at matching the empirical dynamics in earnings by wealth even without directly targeting earnings.³⁰

The question now is how much of the model-implied earnings gap is due to the novel forces in my model? The answer is that 40 percent of the empirical earnings gap can be explained by the novel features of my model. To arrive at this number I compare the benchmark model to the naïve model introduced earlier. This is shown in Figure 11 which plots the earning gaps, whereas Figure 10 plots the level dynamics for low- and high-wealth workers separately. In the solid black is the empirical earnings gap, in the

²⁹Earnings are de-trended using the Hamilton filter and kept constant once the new cycle begins.

 $^{^{30}}$ The model also does a good job at capturing the wealth evolution during the Great Recession. See appendix $\mathbb C$ for details.

Labor Earnings post Great Recession

Figure 10: Great Recession earnings dynamics for low- (red) and high-wealth (blue) workers in the data (solid) and the model (dashed).

dashed orange is the earnings gap implied by the benchmark model, and in dotted green is the earnings gap implied by the naïve model. The area between the green dotted and orange dashed lines indicates how much of the earnings gap the novel mechanisms of my model can explain. This area corresponds to 40 percent of the empirical earnings gap.

The naïve model (green dotted line) can explain 25 percent of the empirical earnings gap. Interestingly, it predicts a shrinking gap in the initial periods of the recession: as workers lose their jobs it is the high-earners, who also tend to be high-wealth, who suffer the largest declines in earnings³¹, leading to a shrinking earnings gap. After this initial period, the naïve model's selection forces lead to the earnings gap displayed simply by having "lucky" workers, those who find jobs and climb the job ladder, earn high wages and accumulate wealth. The benchmark model explains an additional 40 percent of the empirical earnings gap relative to the naïve model, in total explaining 65 percent of the earnings gap experienced after the Great Recession.

³¹Low-earners fall but high-earners fall from higher up and hence see larger earnings falls.

Labor Earnings post Great Recession

Figure 11: Great Recession earnings gap in the data (solid black), in the benchmark model (dashed orange), in the naïve model (dotted green), and the component due to precautionary job-keeping (purple shaded).

7.2 Great Reallocation

The US economy behaved very differently following the Pandemic Recession than it did following the Great Recession. While the model I develop in this paper is not crafted to speak to the exceptional behavior of the US economy during the Pandemic, it can still shed light on what was behind the unusual behavior of job-switching in this period. Unlike after the Great Recession in which the aggregate job-switching rate stagnated and took years to recover, the recovery to the Pandemic Recession saw a relatively small fall followed by a fast recovery in the job-switching rate which actually jumped above prerecession levels. This behavior was so noteworthy it is referred to as the *Great Reallocation*. ³²

One of the main factors that sets the Pandemic apart from previous recessions is the size of the fiscal response. According to the IMF,³³ the three main fiscal stimulus bills passed by Congress, the CARES act, the CAA, and the ARP injected roughly 20% of GDP into the economy in the form of direct transfers, extended and increased unemployment

³²This term, used in the popular press as well as among the academy, refers to quits broadly: quits into retirement, quits into non-participation, and, what the discussion here is concerned with, quits into new employment.

³³See https://www.imf.org/en/Topics/imf-and-covid19/Policy-Responses-to-COVID-19.

benefits, help to businesses, aid to state and local governments, and more. One of the effects of this stimulus is that, except for an initial drop, wealth actually grew during and following the recession, especially at the bottom of the wealth distribution. This is shown in figure 12 which compares the evolution of net-worth by wealth percentile. Unlike the 2001 and 2007-09 recessions which saw wealth fall, especially at the bottom of the wealth distribution, the Pandemic recession saw rapid increases in wealth especially for low-wealth workers.

Net-Worth ex. Housing Evolution by Wealth Percentile

Figure 12: Evolution of net worth from pre-recession peak by wealth percentiles. Source: Distributional Financial Accounts, Board of the Federal Reserve System.

What does this imply for the precautionary job-keeping motive? Higher wealth should relax precautionary job-keeping and increase the willingness of workers to switch jobs. I test my model vis-à-vis the data by subjecting the calibrated model to two shocks to mimic the fiscal response during the pandemic. The first shock is to government transfers. While transfers are calibrated to be 0 in steady state, I subject the economy to a positive transfers shock for six quarters that cumulates to 3.9% of output, equivalent to what the CARES, CAA, and ARP acts allocated to direct payments. The second shock is to unemployment benefit. Once again, I subject the economy to a six quarter increase in unemployment insurance that cumulates to 2.7% of output, the amount allocated by the three programs to either extra or extended unemployment benefits. Figure 13 shows what the model implies about the evolution of the job-switching rate after the Pandemic

in various counterfactual scenarios.

Figure 13: Evolution of the job-switching rate post-Pandemic. The data (and model shocked to mimic the data) are in gray. Three counterfactual scenarios varying the generosity in fiscal transfers are shown in the dashed, dotted, and dash-dotted lines.

The solid gray line shows the evolution of the job-switching rate in the data as well as in the model (black diamonds) subject to the transfer and unemployment benefits shocks discussed above as well as a series of shocks to the common job-loss probability σ , selected so that the model exactly matches the data counterpart.³⁴ The other lines in figure 13 show the recovery in the job-switching rate in three counterfactual scenarios. In all of these scenarios the economy is subject to the same productivity shocks as the economy depicted in the gray line but the fiscal stimulus varies. The dashed magenta line shows what the evolution of the job-switching rate would have been without additional unemployment benefits but maintaining the direct payments. The dotted orange line shows the flip of that: agents received only extra unemployment benefits but no direct payments. Finally, the blue dash-dotted line shows how the job-switching rate would have evolved if no direct payments nor extra unemployment benefits had been issued.

Figure 13 makes clear that government stimulus had a large role to play in the evolution of the job-switching rate following the Pandemic. The fiscal injection put money

³⁴Note, because the SIPP does not reach this far I use the change in the job-to-job transition rate estimated in Fujita, Moscarini and Postel-Vinay (2020) applied, at a quarterly frequency starting from 2019:Q4. One potential objection is that their estimates are based on the CPS while my steady state estimate is based on SIPP.

in worker's pockets, especially at the bottom of the wealth distribution. This alleviated the precautionary job-keeping motive and helped sustain the recovery in job-to-job transitions.

8 Conclusion

In this paper I ask why workers with different wealth experience such different recoveries in their earnings following economic downturns. This earnings gap, which I document to have been particularly large during the Great Recession, implies that low-wealth workers, who are those worse equipped to confront downturns, are also those hit hardest by them.

To answer this question, I build a search and matching model with incomplete markets and random on-the-job search. A key ingredient of the model are risky job-switches. I document this to be a salient feature of the data: workers who switch jobs experience a persistent increase in their risk of subsequent job-loss. Risky job moves arise because tenure at the job determines workers' layoff probability. This leads worker who switch jobs, moving from higher tenure at their old jobs to no tenure at their new jobs, to suffer an increase in their job-loss probability. I quantify this additional job-loss probability to be economically significant, roughly a 6.4 percentage point increase in the probability of job-loss over the first fifteen months at a new job. To solve the model I develop a generalized alternating offer bargaining protocol to accommodate on-the-job search, risk-aversion, and asset accumulation. The model delivers two forces linking workers' job-switching and job-losing behavior to wealth. Wealth is tied to job-switching through the phenomenon I denote *precautionary job-keeping* and to job-losing through the *tenure-wealth correlation*.

These mechanisms allow the model to make sense of the cyclical distributional variation in the job-switching and job-losing behavior of workers across wealth and in turn help the model explain roughly 40 percent of the earnings gap experienced after the Great Recession between low- and high-wealth workers. In addition, the model provides a rationalization of the Great Reallocation, the strong recovery in job-switching observed following the Pandemic. The model implies that the generous fiscal stimulus that accompanied the recession sustained job-switching and facilitated the Great Reallocation.

References

- **Aiyagari, S Rao.** 1994. "Uninsured idiosyncratic risk and aggregate saving." *The Quarterly Journal of Economics*, 109(3): 659–684.
- **Andolfatto, David.** 1996. "Business cycles and labor-market search." *The american economic review*, 112–132.
- **Auclert, Adrien, Bence Bardóczy, Matthew Rognlie, and Ludwig Straub.** 2021. "Using the sequence-space Jacobian to solve and estimate heterogeneous-agent models." *Econometrica*, 89(5): 2375–2408.
- **Bewley, Truman.** 1977. "The permanent income hypothesis: A theoretical formulation." *Journal of Economic Theory*, 16(2): 252–292.
- **Burdett, Kenneth, and Dale T Mortensen.** 1998. "Wage differentials, employer size, and unemployment." *International Economic Review*, 257–273.
- **Cahuc, Pierre, Fabien Postel-Vinay, and Jean-Marc Robin.** 2006. "Wage bargaining with on-the-job search: Theory and evidence." *Econometrica*, 74(2): 323–364.
- **Card, David, Ana Rute Cardoso, Joerg Heining, and Patrick Kline.** 2018. "Firms and labor market inequality: Evidence and some theory." *Journal of Labor Economics*, 36(S1): S13–S70.
- **Chetty, Raj.** 2008. "Moral hazard versus liquidity and optimal unemployment insurance." *Journal of political Economy*, 116(2): 173–234.
- Christiano, Lawrence J, Martin S Eichenbaum, and Mathias Trabandt. 2016. "Unemployment and business cycles." *Econometrica*, 84(4): 1523–1569.
- **Davis, S J, and Till Von Wachter.** 2011. "Recessions and the Costs ofjob Loss." *Brookings Papers on Economic Activity Fall* 2011, 1.
- **Diamond, Peter A.** 1982. "Aggregate demand management in search equilibrium." *Journal of political Economy*, 90(5): 881–894.
- **Eeckhout, Jan, and Alireza Sepahsalari.** 2021. "The effect of wealth on worker productivity."
- Elsby, Michael WL, Bart Hobijn, and Ayşegül Şahin. 2010. "The Labor Market in the Great Recession." *Brookings Papers on Economic Activity*, 2010(1): 1–48.
- **Elsby, Michael WL, Ryan Michaels, and Gary Solon.** 2009. "The ins and outs of cyclical unemployment." *American Economic Journal: Macroeconomics*, 1(1): 84–110.

- Fujita, Shigeru, Giuseppe Moscarini, and Fabien Postel-Vinay. 2020. "Measuring employer-to-employer reallocation." National Bureau of Economic Research.
- **Fukui, Masao.** 2020. "A theory of wage rigidity and unemployment fluctuations with on-the-job search." *Job Market Paper, Massachusetts Institute of Technology*.
- **Gregory, Victoria, Guido Menzio, and David G Wiczer.** 2021. "The Alpha Beta Gamma of the labor market." National Bureau of Economic Research.
- **Guvenen, Fatih, Sam Schulhofer-Wohl, Jae Song, and Motohiro Yogo.** 2017. "Worker betas: Five facts about systematic earnings risk." *American Economic Review*, 107(5): 398–403.
- **Hall, Robert E, and Marianna Kudlyak.** 2019. "Job-finding and job-losing: A comprehensive model of heterogeneous individual labor-market dynamics." National Bureau of Economic Research.
- **Hall, Robert E, and Paul R Milgrom.** 2008. "The limited influence of unemployment on the wage bargain." *American economic review*, 98(4): 1653–74.
- **Heathcote, Jonathan, Fabrizio Perri, and Giovanni L Violante.** 2020. "The rise of US earnings inequality: Does the cycle drive the trend?" *Review of Economic Dynamics*, 37: S181–S204.
- Huang, Jincheng, and Xincheng Qiu. 2022. "Precautionary Mismatch." Working Paper.
- **Huggett, Mark.** 1993. "The risk-free rate in heterogeneous-agent incomplete-insurance economies." *Journal of Economic Dynamics and Control*, 17(5-6): 953–969.
- **Jovanovic, Boyan.** 1979. "Job matching and the theory of turnover." *Journal of Political Economy*, 87(5, Part 1): 972–990.
- **Kaplan, Greg, and Giovanni L Violante.** 2014. "A model of the consumption response to fiscal stimulus payments." *Econometrica*, 82(4): 1199–1239.
- **Kramer, John.** 2022. "The Cyclicality of Earnings Growth along the Distribution-Causes and Consequences."
- **Krusell, Per, and Anthony A Smith, Jr.** 1998. "Income and wealth heterogeneity in the macroeconomy." *Journal of Political Economy*, 106(5): 867–896.
- **Krusell, Per, Toshihiko Mukoyama, and Ayşegül Şahin.** 2010. "Labour-market matching with precautionary savings and aggregate fluctuations." *The Review of Economic Studies*, 77(4): 1477–1507.
- **Krusell, Per, Toshihiko Mukoyama, Richard Rogerson, and Ayşegül Şahin.** 2017. "Gross worker flows over the business cycle." *American Economic Review*, 107(11): 3447–76.

- **Lise, Jeremy.** 2013. "On-the-job search and precautionary savings." *Review of economic studies*, 80(3): 1086–1113.
- **Luo, Mi, and Simon Mongey.** 2019. "Assets and job choice: Student debt, wages and amenities." National Bureau of Economic Research.
- Martellini, Paolo, Guido Menzio, and Ludo Visschers. 2021. "Revisiting the hypothesis of high discounts and high unemployment." *The Economic Journal*, 131(637): 2203–2232.
- **Merz, Monika.** 1995. "Search in the labor market and the real business cycle." *Journal of monetary Economics*, 36(2): 269–300.
- **Mortensen, Dale T, and Christopher A Pissarides.** 1994. "Job creation and job destruction in the theory of unemployment." *The Review of Economic Studies*, 61(3): 397–415.
- **Moscarini, Giuseppe, and Fabien Postel-Vinay.** 2017. "The relative power of employment-to-employment reallocation and unemployment exits in predicting wage growth." *American Economic Review*, 107(5): 364–68.
- **Moscarini, Giuseppe, and Fabien Postel-Vinay.** 2022. "The job ladder: Inflation vs. reallocation." *Draft, Yale University.*
- **Nagypál, Éva.** 2008. "Worker Reallocation over the Business Cycle: The Importance of Employer-to-Employer Transitions." *Northwestern University manuscript*.
- **Politis, Dimitris N, and Joseph P Romano.** 1994. "The stationary bootstrap." *Journal of the American Statistical association*, 89(428): 1303–1313.
- **Postlewaite, Andrew, Larry Samuelson, and Dan Silverman.** 2008. "Consumption commitments and employment contracts." *The Review of Economic Studies*, 75(2): 559–578.
- **Pries, Michael, and Richard Rogerson.** 2005. "Hiring policies, labor market institutions, and labor market flows." *Journal of Political Economy*, 113(4): 811–839.
- **Shimer, Robert.** 2005. "The cyclical behavior of equilibrium unemployment and vacancies." *American economic review*, 95(1): 25–49.
- **Shimer, Robert.** 2012. "Reassessing the ins and outs of unemployment." *Review of Economic Dynamics*, 15(2): 127–148.
- West, S, AC Baker, S Samra, and E Coltrera. 2021. "Preliminary analysis: SEED's first year. Stockton Economic Empowerment Demonstration."

A Appendix: Model

A.1 Job Market Flows with On-the-Job Search

Because the model is in discrete time, the job-finding and vacancy-filling rates are probabilities rather than arrival rates. Here I define appropriate boundaries for the labor market tightness parameters so that neither the job-finding nor the job-posting probabilities are outside the interval [0,1].

1. For unemployed agents, all of whom are searching we have that the two following conditions must hold

$$0 \le q(\theta_1) \le 1 \iff 0 \le \chi \left(\frac{1}{\theta_1}\right)^{\eta} \le 1$$

$$\Rightarrow \qquad \chi^{\frac{1}{\eta}} \le \theta_1 < \infty$$

$$0 \le \lambda(\theta_1) \le 1 \iff 0 \le \chi \theta_1 \left(\frac{1}{\theta_1}\right)^{\eta} \le 1$$

$$\Rightarrow \qquad 0 \le \theta_1 < \chi^{\frac{1}{\eta - 1}}$$

Because χ < 1, it must be that

$$\theta_1 \in \left[\chi^{\frac{1}{\eta}}, \chi^{\frac{1}{\eta - 1}}\right] \tag{A.1}$$

2. For employed agents, a share *s* of whom are searching we have that the two following conditions must hold

$$0 \le q(\theta_k) \le 1 \iff 0 \le \chi \left(\frac{s}{\theta_k}\right)^{\eta} \le 1$$

$$\Rightarrow s\chi^{\frac{1}{\eta}} \le \theta_k < \infty$$

$$0 \le \lambda(\theta_k) \le 1 \iff 0 \le \chi \theta_k \left(\frac{s}{\theta_k}\right)^{\eta} \le 1$$

$$\Rightarrow 0 \le \theta_k < (s^{\eta}\chi)^{\frac{1}{\eta - 1}}$$

Because χ < 1, it must be that

$$\theta_k \in \left[s\chi^{\frac{1}{\eta}}, (s^{\eta}\chi)^{\frac{1}{\eta - 1}} \right] \tag{A.2}$$

A.2 Walras' Law

I show that Walras' law holds. First aggregating the budget constraint of unemployed workers gives

$$\int_{i} c_{t}(i) + a_{t+1}(i) di = \int (1+r)a_{t}(i) + (1-\tau_{t})b + T_{t} di$$
where the integral is over unemployed agents
$$C_{t}^{U} + A_{t+1}^{U} = (1+r)A_{t}^{U} + ((1-\tau_{t})b + T_{t}) \int di^{U}$$

Doing the same exercise for the employed gives

$$C_t^E + A_{t+1}^E = (1+r)A_t^E + (1- au_t)\int w(i^E) di^E + T_t \cdot \left(1-\int di^E\right)$$

Summing the two gives

$$\left(C_t^U + C_t^E\right) + \left(A_{t+1}^U + A_{t+1}^E\right) = (1+r_t)\left(A_t^U + A_t^E\right) + T_t$$

$$+ (1-\tau_t)b \cdot \int di^U + (1-\tau_t)\int w(i^E) di^E$$

$$C_t + A_{t+1} = (1+r_t)A_t + \int w(i^E) di^E$$

$$+ T_t + (1-\tau_t)b \int di^U - \tau_t \int w(i^E) di^E$$
using the balanced budget equation
$$C_t + A_{t+1} = (1+r_t)A_t + \int w(i^E) di^E + \Pi_t$$

Recall also that the flow of profits of an individual firm is simply

$$\pi = (p_k \cdot \epsilon) \left[f(k) - r^K k \right] - w$$

which, aggregating over all firms and netting out the total vacancy costs gives

$$\Pi_t = \int \left(p_k \cdot \epsilon(i^E) \right) \left[f(k) - r^K k \right] - w(i^E) \ di^E - \xi \cdot \sum_{k=1}^K v = Y_t - \int \left(p_k \cdot \epsilon(i^E) \right) r^K k + w(i^E) \ di^E - \xi \cdot \sum_{k=1}^K v = Y_t - \int \left(p_k \cdot \epsilon(i^E) \right) r^K k + w(i^E) \ di^E - \xi \cdot \sum_{k=1}^K v = Y_t - \int \left(p_k \cdot \epsilon(i^E) \right) r^K k + w(i^E) \ di^E - \xi \cdot \sum_{k=1}^K v = Y_t - \int \left(p_k \cdot \epsilon(i^E) \right) r^K k + w(i^E) \ di^E - \xi \cdot \sum_{k=1}^K v = Y_t - \int \left(p_k \cdot \epsilon(i^E) \right) r^K k + w(i^E) \ di^E - \xi \cdot \sum_{k=1}^K v = Y_t - \int \left(p_k \cdot \epsilon(i^E) \right) r^K k + w(i^E) \ di^E - \xi \cdot \sum_{k=1}^K v = Y_t - \int \left(p_k \cdot \epsilon(i^E) \right) r^K k + w(i^E) \ di^E - \xi \cdot \sum_{k=1}^K v = Y_t - \int \left(p_k \cdot \epsilon(i^E) \right) r^K k + w(i^E) \ di^E - \xi \cdot \sum_{k=1}^K v = Y_t - \int \left(p_k \cdot \epsilon(i^E) \right) r^K k + w(i^E) \ di^E - \xi \cdot \sum_{k=1}^K v = Y_t - \int \left(p_k \cdot \epsilon(i^E) \right) r^K k + w(i^E) \ di^E - \xi \cdot \sum_{k=1}^K v = Y_t - \int \left(p_k \cdot \epsilon(i^E) \right) r^K k + w(i^E) \ di^E - \xi \cdot \sum_{k=1}^K v = Y_t - \int \left(p_k \cdot \epsilon(i^E) \right) r^K k + w(i^E) \ di^E - \xi \cdot \sum_{k=1}^K v = Y_t - \int \left(p_k \cdot \epsilon(i^E) \right) r^K k + w(i^E) \ di^E - \xi \cdot \sum_{k=1}^K v = Y_t - \int \left(p_k \cdot \epsilon(i^E) \right) r^K k + w(i^E) \ di^E - \xi \cdot \sum_{k=1}^K v = Y_t - \int \left(p_k \cdot \epsilon(i^E) \right) r^K k + w(i^E) \ di^E - \xi \cdot \sum_{k=1}^K v = Y_t - \int \left(p_k \cdot \epsilon(i^E) \right) r^K k + w(i^E) \ di^E - \xi \cdot \sum_{k=1}^K v = Y_t - \int \left(p_k \cdot \epsilon(i^E) \right) r^K k + w(i^E) \ di^E - \xi \cdot \sum_{k=1}^K v = Y_t - \int \left(p_k \cdot \epsilon(i^E) \right) r^K k + w(i^E) \ di^E - \xi \cdot \sum_{k=1}^K v = Y_t - \int \left(p_k \cdot \epsilon(i^E) \right) r^K k + w(i^E) \ di^E - \xi \cdot \sum_{k=1}^K v = Y_t - \sum_{k=$$

Including this in the equation above gives

$$C_t + A_{t+1} = (1 + r_t)A_t + \int w(i^E) di^E + Y_t - \int (p_k \cdot \epsilon(i^E)) r^K k + w(i^E) di^E - \xi \cdot \sum_{k=1}^K v(i^E) di^E + V_t - \int (p_k \cdot \epsilon(i^E)) r^K k + w(i^E) di^E - \xi \cdot \sum_{k=1}^K v(i^E) di^E + V_t - \int (p_k \cdot \epsilon(i^E)) r^K k + w(i^E) di^E - \xi \cdot \sum_{k=1}^K v(i^E) di^E + V_t - \int (p_k \cdot \epsilon(i^E)) r^K k + w(i^E) di^E - \xi \cdot \sum_{k=1}^K v(i^E) di^E + V_t - \int (p_k \cdot \epsilon(i^E)) r^K k + w(i^E) di^E - \xi \cdot \sum_{k=1}^K v(i^E) di^E + V_t - \int (p_k \cdot \epsilon(i^E)) r^K k + w(i^E) di^E - \xi \cdot \sum_{k=1}^K v(i^E) di^E - \xi \cdot \sum_{k=1}^K v(i^E$$

$$C_t = Y_t + ((1+r_t)A_t - A_{t+1}) - r^K K_t - \xi \cdot \sum_{k=1}^K v_k$$

Note, asset market clearing implies that $p_t(K_t) = A_t$ and $p_{t+1}(K_{t+1}) = A_{t+1}$, and thus we can rewrite this expression as

$$C_{t} = Y_{t} + \underbrace{(1 + r_{t}) p_{t}(K_{t}) - p_{t+1}(K_{t+1})}_{D_{t}} - r^{K}K_{t} - \xi \cdot \sum_{k=1}^{K} v$$

$$= Y_{t} + \underbrace{(1 + r_{t}) p_{t}(K_{t}) - p_{t+1}(K_{t+1})}_{D_{t}} - r^{K}K_{t} - \xi \cdot \sum_{k=1}^{K} v$$

Substituting the definition of dividends from 11 gives

$$C_{t} = Y_{t} + r_{t}^{K} K_{t} - \left[K_{t+1} - (1 - \delta) K_{t} + \frac{1}{2\delta\epsilon_{I}} \left(\frac{K_{t+1} - K_{t}}{K_{t}} \right)^{2} K_{t} \right] - r^{K} K_{t} - \xi \cdot \sum_{k=1}^{K} v$$

$$C_{t} = Y_{t} - \left[K_{t+1} - (1 - \delta) K_{t} + \frac{1}{2\delta\epsilon_{I}} \left(\frac{K_{t+1} - K_{t}}{K_{t}} \right)^{2} K_{t} \right] - \xi \cdot \sum_{k=1}^{K} v$$
(A.3)

that is, consumption equals output minus investment and capital adjustment costs. In steady state this boils down to the economy-wide resource constraint

$$C = Y - \delta K - \xi \cdot \sum_{k=1}^{K} v$$

A.3 Model DAG and Blocks

Figure 15: Model DAG.

Labor flow rates. Vacancies opened today result in matches tomorrow. The job-finding and vacancy-filling rates are then

$$q_t(0) = \chi \left(\frac{1}{\theta_{t-1}(0)}\right)^{\eta} \tag{A.4}$$

$$\lambda_t(0) = \theta_{t-1}(0) \cdot q_t(0) \tag{A.5}$$

$$q_t(k) = \chi \left(\frac{s}{\theta_{t-1}(k)}\right)^{\eta}$$
 (A.6)

$$\lambda_t(k) = \theta_{t-1}(k) \cdot q_t(k) \tag{A.7}$$

Matching Technology. Computes the vacancies posted by firms at time t given the mass of searchers on each rung, $e_t(k)$

$$v_t(k) = \theta_t(k) \cdot e_t(k) \tag{A.8}$$

Labor + Investment (solved). For labor the standard CRS equation holds:

$$L_t = \left(\frac{Y_t}{Z_t K_{t-1}^{\alpha}}\right)^{\frac{1}{1-\alpha}} \tag{A.9}$$

$$r_t^K = \alpha Z_t \left(\frac{L_t}{K_{t-1}}\right)^{1-\alpha} \tag{A.10}$$

and for investment

$$Q_t = \frac{1}{\delta \epsilon_I} \left(\frac{K_t}{K_{t-1}} - 1 \right) + 1 \tag{A.11}$$

$$Q_{t} = \frac{1}{1+r_{t}} \mathbb{E} \left[r_{t+1}^{K} - \frac{K_{t+1}}{K_{t}} + (1-\delta) - \frac{1}{2\delta\epsilon_{I}} \left(\frac{K_{t+1}}{K_{t}} - 1 \right)^{2} + \frac{K_{t+1}}{K_{t}} Q_{t+1} \right]$$
(A.12)

Dividend. The dividend spits out investment and the dividend

$$\phi(K_t, K_{t-1}) = K_{t-1} \cdot \frac{1}{2\delta\epsilon_I} \left(\frac{K_t}{K_{t-1}} - 1 \right)^2$$
 (A.13)

$$I_t = K_t - (1 - \delta)K_{t-1} + \phi(K_t, K_{t-1})$$
 (A.14)

$$D_t = r_t^K K_{t-1} - I_t (A.15)$$

Capitalist. The dividend is priced such that the (ex-ante) real interest rate is

$$1 + r_t = \frac{\mathbb{E}[p_{t+1} + D_{t+1}]}{p_t} \tag{A.16}$$

Intermediaries. The intermediary blocks sets the deposit rate (that HH take)

$$1 + r_t^a = \frac{D_t + p_t}{p_{t-1}} \tag{A.17}$$

Objectives. And the objective functions are

$$A = p \tag{A.18}$$

$$N = L \tag{A.19}$$

$$Tax_t + \Pi_t - \zeta \left(\sum_{k=0}^K v_t(k) p(k) \right) = (1 - \tau_t) UI_t + T_t$$
 (A.20)

A.4 Micro-founding the Job-Loss Probability

A job-loss probability that is decreasing in tenure can be microfounded differently from the way I do in the body of the paper. Here I including learning on the job about the quality of the match between worker and firm in the spirit of Jovanovic (1979). I develop the problem following Pries and Rogerson (2005).

Setup. The quality of the firm-worker match \overline{y} is not observable, rather the firm observes a noisy version of it

$$y = \overline{y} \cdot \omega \tag{A.21}$$

where ω is noise. The true match-quality can be high, y_H , or low, y_L , with unconditional probabilities π^0 and $1 - \pi^0$, respectively.

For simplicity, assume the true match quality is revealed at j=J, that is, after the match persists long-enough, there is no more uncertainty about its quality. Before it, however, $\omega \neq 0$ is distributed according to a mean zero probability mass function $h(\omega)$ with support $[\underline{\omega}, \overline{\omega}]$ (where $H(\omega)$ is the cdf).

Separation Rate. The match is dissolved whenever the firm prefers its outside option to sticking to the worker. I consider here a worker who previously agreed on a wage *w* with the firm. Worker and firm values depend on the other states of the problem (e.g. assets)

but I suppress them in the following notation for convenience and simply write the firm's value as a function of output and the wage paid, $J(\bar{y}, w)$.

If the realized output y is very low, the firm will think the worker is of low quality and will opt to terminate the relationship. Thus, if the firm observes y from the worker, it will update its prior on the worker being high quality according to Bayes' rule. If π_{j-1} is the probability of the match being of high quality at tenure j-1, the probability at j is

$$\pi_{j} = \frac{\pi_{j-1} Pr(\omega = y^{H} - y_{j})}{\pi_{j-1} Pr(\omega = y^{H} - y_{j}) + (1 - \pi_{j-1}) Pr(\omega = y^{L} - y_{j})}$$

where y_j is the output observed at j. The value the firm expects to extract from the worker is

$$J^{\text{keep}}\left(y_{j},w\right)=\left(y_{j}-w\right)+rac{1}{1+r}\left[\pi_{1}J\left(y^{H},w
ight)+\left(1-\pi_{1}\right)J\left(y^{L},w
ight)
ight]$$

while the value the firm would get by laying off the worker is

$$J^{\text{fire}}(y_j, w) = (y_j - w) + \frac{1}{1+r}V = (y_j - w)$$

where V is the value of vacancy. The firm will then fire the worker whenever $J^{\text{fire}} > J^{\text{keep}}$.

B Appendix: Details on Bargaining with Employed Agents

Proof. (Result 1)

Consider the wage making firm k indifferent between opening a vacancy and accepting the contract with the worker signed at sub-period m. This indifference is:

$$\left(\epsilon p_{k}\left[Zf(k)-r^{K}\kappa\right]-w^{*}\right)+\beta\mathbb{E}\left[J\left(\psi_{a},\epsilon',w^{*},k,j+1\right)\right]=0$$

It is clear that there is no dependence on m and thus the solution $\overline{w}_{m,k}$ will also be independent of m. That is $\overline{w}_k := \overline{w}_{1,k} = \dots \overline{w}_{M,k}$ and $\overline{w}_{m',k}$

Consider the same indifference condition for firm k':

$$\frac{M-m+1}{M}\left(\epsilon p_{k'}\left[Zf(k)-r^{K}\kappa\right]-w^{*}\right)=-\frac{1}{1+r}\mathbb{E}\left[J\left(\psi_{a},\epsilon',w^{*},k',0\right)\right]$$

While the RHS is constant in m, the LHS shifts down as m increases and hence $\overline{w}_{m,k'} > \overline{w}_{m',k'}$ for m' > m as shown in the figure below.

Figure 16: Lemma 1 graphic proofs.

Proof. (Result 2)

From Lemma 1 and the terminal values for the worker defined in 23, it follows immediately that $V_1^k(\overline{w}_{1,k}) = \dots V_M^k(\overline{w}_{M,k})$. From Result 1 and the terminal values for the worker defined in 25, it follows immediately that $V_1^{k'}(\overline{w}_{1,k'}) > \dots > V_M^{k'}(\overline{w}_{M,k'})$.

Strategies. When m is odd, the firms bid for the worker in a sealed bid first price auction. There is complete information and firms know each others' valuations of the worker as well as the outside option of the worker, that is the value the worker receives at m+1 if no agreement is reached at m. These valuations are \overline{V}^k for firm k (recall there is no dependence on m) and $\overline{V}_m^{k'}$ for firm k'. Denote the value the worker receives at m+1 as V^{out} – this is $V^k(w)$ if m=M as the bargaining breaks down and the worker returns to firm k at the original wage. Four possibilities arise:

- 1) If $\overline{V}^k > V^{\text{out}} \geq \overline{V}_m^{k'}$, the maximal offer firm k' can make does not compete with the value the worker receives in the following sub-period. Because the worker can always wait until the next period and earn value V^{out} , no offer $V < V^{\text{out}}$ can be accepted in equilibrium. Firm k' will offer the best it can, $\overline{V}_m^{k'}$ with no hope of poaching the worker, and firm k will offer the minimum value to retain the worker, that is $\max\{V^{\text{out}}, \overline{V}_m^{k'}\} = V^{\text{out}}$. The worker, indifferent between accepting and moving on to the next period, accepts the offer firm k makes and is retained by firm k at the wage w^* satisfying $V^k(w^*) = V^{\text{out}}$.
- 2) If $\overline{V}^k \geq \overline{V}_m^{k'} > V^{\text{out}}$, no offer $V < \overline{V}_m^{k'}$ is made in equilibrium, since both firms k and k' can do better. Firm k offers all it can, $\overline{V}_m^{k'}$. Firm k matches that offer (and offers an infinitesimal more in value) to retain the worker at wage w^* satisfying $V^k(w^*) = \overline{V}_m^{k'}$.
- 3) If $\overline{V}_m^{k'} > \overline{V}^k > V^{\text{out}}$, no offer $V < \overline{V}^k$ is made in equilibrium since both firms k and k' can do better. Firm k offers all it can, \overline{V}^k . Firm k' matches that offer (and offers an infinitesimal more in value) to poach the worker at wage w^* satisfying $V_m^{k'}(w^*) = \overline{V}^k$.
- 4) If $\overline{V}_m^{k'} \geq V^{\text{out}} > \overline{V}^k$, no offer $V < V^{\text{out}}$ is made in equilibrium, otherwise the worker would prefer waiting until m+1. Firm k offers all it can, \overline{V}^k but has no hope of retaining the worker. Firm k' offers the bare minimum in order to hire the worker, that is $\max\{V^{\text{out}}, \overline{V}^k\} = V^{\text{out}}$. k' poaches the worker at wage w^* satisfying $V_m^{k'}(w^*) = V^{\text{out}}$.

When m is even, the worker starts by making an offer to firm k'. It proposes a wage

that makes k' indifferent between accepting the offer and waiting until the next subperiod. The following cases arise:

- 1) Suppose $\overline{V}^k > V^{\text{out}} \geq \overline{V}_m^{k'}$. In this case the worker first makes an offer to worker k' making it indifferent between accepting the wage and waiting until sub-period m+1. Result 2 implies that $\overline{V}^k > V^{\text{out}} \geq \overline{V}_m^{k'} > V_{m+}^{k'} \left(\overline{w}_{m+}^{k'}\right)$. The strategies at m+1 imply firm k' will not be able to poach the worker in the next sub-period and will in fact remain vacant. The worker then extract all the match value from k' by offering $\overline{w}_m^{k'}$ and k' accepts. The worker asks firm k to match her best available offer which is $\max\{V^{\text{out}}, V_{m+}^{k'}\left(\overline{w}_{m+}^{k'}\right)\} = V^{\text{out}}$. Thus, firm k retains the worker at wage w^* satisfying $V^k\left(w^*\right) = V^{\text{out}}$.
- 2) Suppose $\overline{V}^k \geq \overline{V}_m^{k'} > V^{\text{out}}$. Just as before the worker is able to extract the entirety of the value from firm k' by proposing wage $\overline{w}_m^{k'}$ as k' will remain vacant at m+1 if no agreement is reached at m (by result 2). The worker then asks firm k to match the best outside offer the worker has, that is $\max\{V^{\text{out}}, \overline{V}_m^{k'}\} = \overline{V}_m^{k'}$. Firm k will match $\overline{V}_m^{k'}$ in order to avoid having firm k' poach the worker. The new wage firm k and the worker agree on is w^* satisfying $V^k(w^*) = \overline{V}_m^{k'}$.
- 3) Suppose $\overline{V}_m^{k'} > \overline{V}^k \geq V^{\text{out}} \geq \overline{V}_{m+1}^{k'}$, then at m+1 firm k is able to provide the worker more value than firm k'. This is the case because, if the value the worker gets at m+1 is $V^{\text{out}} \geq \overline{V}_{m+1}^{k'}$, this value can only be delivered by firm k as firm k' would prefer posting a vacancy than providing the worker with such high a value³⁵. This means that at m, the outside option of firm k' is to post a vacancy. The worker can then extract all the value from firm k' by proposing wage $\overline{w}_m^{k'}$. Firm k will fail to match this offer since the maximal value it can offer the worker is lower than $\overline{V}_m^{k'}$. The worker is poached by firm k' at wage $\overline{w}_m^{k'}$.
- 4) Suppose $\overline{V}_m^{k'} > \overline{V}_{m+1}^{k'} > V^{\text{out}} \geq \overline{V}^k$, then at m+1 firm k' would still retain the worker as per the strategies described above³⁶. The worker then offers a wage w_m^* making the firm indifferent between accepting and moving on to the next subperiod, that is $\frac{M-m+1}{M}y_{k'} + \frac{1}{1+r}\mathbb{E}\left[J^{k'}\left(w_m^*\right)\right] = J_m^{k'}\left(w_{m+1}^*\right)$.

Note that in case 4. firm k is irrelevant. How then is the outside option of firm k' determined? The worker and firm k' alternate making offers that make the other party indifferent between accepting and waiting until the next sub-period, until, at some m^*

 $[\]overline{^{35}}$ In fact, it can be shown that in this scenario $V^{\mathrm{out}} = \overline{V}^k$

 $^{^{36}}$ It can be shown that $V^{\mathrm{out}} \geq \overline{V}^k$, otherwise firm k would be able to offer \overline{w}^k to the worker and dominate the outside offer which would in itself imply V^{out} is not the outside offer.

firm k' cannot count on retaining the worker at $m^* + 1$. This occurs when $V_m^{k'}\left(\overline{w}_{m^*}^{k'}\right) > \overline{V}^k \geq V^{\text{out}} \geq V_{m^*+1}^{k'}\left(\overline{w}_{m^*+1}^{k'}\right)$. At this m^* the strategy is exactly as described in case 3) for both m odd or even. Firm k' poaches the worker but must match the total value k can offer the worker. In the previous sub-periods $m < m^*$ firm k' and the worker negotiate bilaterally knowing what will happen at m^* .³⁷

Example with M = 3. Consider the case with M = 3. I solve the problem backwards and compute the possible scenarios reflected in 4.

m=3 It is the firms' turn to make offers through a sealed-bid first-price auction. If the worker accepts neither of the offers made, she will stick to the old firm k at the original wage w. The value from doing so is V(w). The firms offer values according to 26 and 27 rewritten below with $V^{\text{out}} = V(w)$ for convenience:

$$\begin{array}{ll} V_3^{k,\mathrm{bid}} &=& \min\left\{\max\left\{V(w),\overline{V}_3^{k'}\right\},\overline{V}^k\right\} \\ V_3^{k',\mathrm{bid}} &=& \min\left\{\max\left\{V(w),\overline{V}^k\right\},\overline{V}_3^{k'}\right\} = \min\left\{\overline{V}^k,\overline{V}_3^{k'}\right\} \end{array}$$

Notice that at m=M, the worker's waiting option $V^{\text{out}}=V(w)$ and so the inner maximization when k' bids is always equal to the valuation of the worker by firm k, \overline{V}^k . The following cases arise:

(a) if $V(w) \geq \overline{V}_3^{k'}$, that is the current contract's value is greater than what the new firm k' can deliver, it must also be that $\overline{V}^k > V(w) \geq \overline{V}_3^{k'}$. This results in bids:

$$V_3^{k,\mathrm{bid}} = V(w) > V_3^{k',\mathrm{bid}} = \overline{V}_3^{k'}$$

Firm k retains the worker at wage w.

(b) if $\overline{V}^k \geq \overline{V}_3^{k'} > V(w)$ the old firm still has a higher valuation for the worker but the new firm's valuation is higher than the current contract. Here a renegotiation is in order. The bids will result in

$$V_3^{k,\text{bid}} = \overline{V}_3^{k'} \geq V_3^{k',\text{bid}} = \overline{V}_3^{k'}$$

The worker stays at the old firm but re-negotiates a higher wage delivering her the valuation the new firm k' had for the worker.

(c) if $\overline{V}_3^{k'}>\overline{V}^k>V(w)$ the old firm has a higher valuation for the worker. The

 $[\]overline{^{37}}$ If no such m^* exists, $m^* = M$ and the firm offers the worker exactly what firm k is able to offer.

bids will be

$$V_3^{k,\mathrm{bid}} = V_3^k \left(\overline{w}^k\right) < V_3^{k',\mathrm{bid}} = \overline{V}^k(+\epsilon)$$

The worker moves to the new firm at wage w_3^* delivering her the valuation the old firm k had for the worker, that is satisfying

$$V_3^{k'}(w_3^*) = \overline{V}^k \tag{A.22}$$

- m=2 It is the worker's turn to make the offer to the firms. It tries to extract all it can from firm k'. Depending on the scenarios delineated above (a-c) there are two cases:
 - (a-b) In these cases firm k' will be vacant at m=3 and so the worker can extract all of its value by proposing the wage $\overline{w}_2^{k'}$ making firm k' indifferent between accepting and posting a vacancy. In order to retain the worker firm k must be able to offer the worker at least $\max\{V(w), \overline{V}_2^{k'}\}$. There are then three cases:
 - A. $V\left(\overline{w}^k\right) > V^k(w) \geq \overline{V}_2^{k'}$ in which case firm k matches the best offer the worker has. That best offer happens to be the current contract. k retains the worker at the original wage w.
 - B. $V\left(\overline{w}^k\right) \geq \overline{V}_2^{k'} > V^k(w) \left(> \overline{V}_3^{k'}\right)$ in which case firm k matches the offer by k' by offering wage w^* such that $V^k\left(w^*\right) = \overline{V}_2^{k'}$.
 - C. $\overline{V}_2^{k'} > V\left(\overline{w}^k\right)$ in which case firm k canont match the offer by k' which poaches the worker at wage $\overline{w}_2^{k'}$.
 - D. If scenario (c) is realized at m=3, it must be that, using result 2, $\overline{V}_2^{k'}>\overline{V}_3^{k'}>\overline{V}_3^{k'}>\overline{V}_3^{k'}$. In this case the worker cannot extract all the value from the firm because if the firm waits it will still retain the worker. The worker then offers a wage w_2^* satisfying

$$\frac{2}{3} \left(\epsilon p_{k'} \left[Zf(k) - r^K \kappa \right] - w_2^* \right) + \frac{1}{1+r} \mathbb{E} \left[J \left(\psi_a, \epsilon', w_2^*, k', 0 \right) \right] = \\
= \frac{1}{3} \left(\epsilon p_{k'} \left[Zf(k) - r^K \kappa \right] - w_3^* \right) + \frac{1}{1+r} \mathbb{E} \left[J \left(\psi_a, \epsilon', w_3^*, k', 0 \right) \right]$$

where w_3^* is defined in equation (A.22). Note $w_2^* > w_3^*$ because firm k' is eager to start working so as to not miss out on production and profits (see the 2/3 vs. 1/3 multiplying flow profits). Denote the value the worker gets in this case as $V_2^{k'}(w_2^*)$.

m=1 It is again the firms' turn to bid for the worker. The same rules apply as for m=3 but the outside option of the worker has changed from V(w) to V^{out} . The firms offer values according to 26 and 27 rewritten below:

$$\begin{array}{ll} V_{1}^{k, \mathrm{bid}} & = & \min \left\{ \max \left\{ V^{\mathrm{out}}, \overline{V}_{1}^{k'} \right\}, \overline{V}^{k} \right\} \\ V_{1}^{k', \mathrm{bid}} & = & \min \left\{ \max \left\{ V^{\mathrm{out}}, \overline{V}^{k} \right\}, \overline{V}_{1}^{k'} \right\} \end{array}$$

Depending on the outside option the worker has there are several cases:

- 1. If A holds at m=2, that is if $V\left(\overline{w}^k\right)>V^k(w)\geq \overline{V}_2^{k'}$, the value the worker gets by waiting until m=2 is V(w). Depending on whether $V_1^{k'}\left(\overline{w}_1^k\right)$ is greater or less than $V^k(w)$ there are two cases:
 - α . If $V^k(w) > V_1^{k'}\left(\overline{w}_1^k\right)$ the bid values are:

$$V_1^{k,\mathrm{bid}} = V^k(w)$$
 and $V_1^{k',\mathrm{bid}} = \overline{V}_1^{k'}$

The worker is retained by k at the original wage w.

 β . If $V_1^{k'}\left(\overline{w}_1^k\right) > V^k(w)$ the bid values are

$$V_1^{k,\mathrm{bid}} = V_1^{k'}(\overline{w}_1^{k'})$$
 and $V_1^{k',\mathrm{bid}} = \overline{V}_1^{k'}$

The worker is still retained by the firm but at wage w^* satisfying $V^k(w^*) = \overline{V}_1^{k'}$.

2. If scenario B is realized at m=2, the outside option of the worker is $\overline{V}_2^{k'}$ delivered by firm k. From case B it is know that this value is less than \overline{V}^k . This leads to the bid values

$$V_1^{k, \text{bid}} = \min \left\{ \overline{V}_1^{k'}, \overline{V}^k \right\}$$

$$V_1^{k', \text{bid}} = \min \left\{ \overline{V}^k, \overline{V}_1^{k'} \right\}$$

Two cases arise depending on how the valuation firm k can provide compares to that firm k' can provide at m = 1:

- $\gamma.$ $\overline{V}_1^{k'}>\overline{V}^k$ in which case firm k' poaches the worker offering it a wage w_1^* satisfying $V_1^{k'}\left(w_1^*\right)=\overline{V}^k$
- δ . $\overline{V}^k \geq \overline{V}_1^{k'}$ in which case firm k retains the worker offering it a wage w^*

satisfying
$$V^{k}\left(w^{*}\right)=\overline{V}_{1}^{k'}$$

3. If C holds at m=2, that is if $V\left(\overline{w}^k\right) < \overline{V}_2^{k'}$, the worker is able to extract all value from k' and has as outside option $V^{\text{out}} = \overline{V}_2^{k'}$. Substituting this in the bid expressions and noticing that by results 2, $\overline{V}_1^{k'} > \overline{V}_2^{k'} > \overline{V}^k$, gives

$$V_1^{k,\mathrm{bid}} = \overline{V}^k$$
 and $V_1^{k',\mathrm{bid}} = \overline{V}_2^{k'}$

- ϵ . Because $V_1^{k', \mathrm{bid}} = \overline{V}_2^{k'} > V_1^{k, \mathrm{bid}} = \overline{V}^k$ the worker is poached by k' at wage $\overline{w}_2^{k'}$ proving the worker with value $\overline{V}_2^{k'}$.
- 4. If case D holds at m=2, that is if $\overline{V}_2^{k'}>V\left(\overline{w}^k\right)$, the worker at m=2 is still poached by k' at value $V_2^{k'}\left(w_2^*\right)$ where w_2^* is defined above. By result 2 $\overline{V}_1^{k'}>\overline{V}_2^{k'}$ and so the bids become

$$V_1^{k,\mathrm{bid}} = \overline{V}^k$$
 and $V_1^{k',\mathrm{bid}} = \overline{V}_2^{k'}$

Summing up there are four main cases:

- 1. $V^k(w) \ge \overline{V}_1^{k'}$. This comprises case α above. The new firm k' cannot compete with the existing contract. This leads to no re-negotiation with the original firm k which retains the worker.
- 2. $\overline{V}^k \geq \overline{V}_1^{k'} > V^k(w)$. This comprises cases β and δ above. The new firm can still not compete with the old firm but forces it to re-negotiate its wage contract since that k' can beat. The worker is retained by k which has to offer a wage delivering $\overline{V}_1^{k'}$.
- 3. $\overline{V}_1^{k'} > \overline{V}^k \ge \overline{V}_2^{k'}$. This comprises case γ above. The new firm can compete with the new firm which would otherwise dominate at m=2. The new firm k' offers the worker the valuation of firm k, that is a wage that delivers the worker value \overline{V}^k .
- 4. $\overline{V}_1^{k'} > \overline{V}_2^{k'} > \overline{V}^k$. This comprises case ϵ . The new firm's valuation of the worker is considerably higher than the valuation of the original firm. Simply providing the worker with the valuation of the old firm is not an option because the worker would then be better off waiting until m = 2 and threatening the new firm with a vacancy. In order to avoid this firm k' offers the worker value $\overline{V}_2^{k'}$.

This last case is the only one that grows more complicated as *M* increases. In that case the outside option is determined backwards starting from the first sub-period in which the valuations of the two firms cross.

Taste Shocks. As stated in equation 4, workers are subject to taste shocks when they choose whether to stay or switch jobs. Here I assume that taste shocks have no role when firms n and n' Bertrand-compete for the worker. They play a role solely when the worker negotiates the wage one-on-one with the firm. In this case, the negotiated wages are determined as spelled out above. The value and the allocation probability the worker gets are derived using the standard formulas for extreme-value (type I) errors.

 $^{^{38}}$ If I allowed for taste shocks here the worker would go to the incumbent and poacher with the same probability $\frac{1}{2}$.

C Appendix: Data

All the empirics (with one exception) are done using SIPP. The exception is the use of CPS-implied data from Fujita, Moscarini and Postel-Vinay (2020) when studying the aggregate job-switching rate in the post-Pandemic period.

C.1 SIPP

I closely follow Nagypál (2008) when constructing labor market variables. I use data from the 1996 survey through the 2008 survey, that is data from 1996 to 2013 inclusive. I use these data because a significant redesign occurred in 1996. The survey adopted a larger sample as well as a longer panel dimension (48 rather than 32 months). The survey responses were more consistent because of the adoption of computer-assisted interviewing which included a series of consistency checks. Finally, the post-1996 surveys followed better sampling practices. I, for now, exclude data post-2014 because the SIPP went through a second major redesign then. This redesign has the stated goal of reducing costs and did so in part by surveying respondents annually rather than quarterly. I will include post-2014 data in future analysis. I only consider prime-aged workers (15-55 years of age) and only either the head of the household or their spouse.

Labor Variables in SIPP. As Nagypál (2008), I categorize workers' employment status and workers' firm identifier based on what they report for the last week of each month. A small share of workers have multiple jobs. I restrict attention to their "main" job which is the job they worked the most hours at. The earnings I consider throughout the paper, as well as all job-specific variables, are those for this "main job".

Using these same employment status and firm ID I construct labor flows. Movements from employment to unemployment in consecutive months are recorded as EU transitions. Movements from unemployment to employment in consecutive months are recorded as UE transitions. When a worker is employed in two consecutive months (i.e. with no intermediate unemployment spell), they see a change in their firm identifier, and this ID is not listed in the workers' history of firm IDs, then I record such an event as an EE transition. I exclude recall to previous employment because the job-switches I have in mind are ones in which the quality of the firm-worker match is unknown; when workers go back to firms they previously worked for, the quality of the firm-worker match is known.

Wealth in SIPP. The benchmark wealth measure is net-worth excluding housing. To construct this I follow Kaplan and Violante (2014). The components that go into the asset side are: (i) savings and checkings, (ii) US savings bonds, (iii) Equity in investments, (iv) value of 401K and IRA, (v) value of interest-earnings accounts, (vi) value of stocks and funds, (vii) business equity, (viii) value of vehicles. To these I detract liabilities corresponding to: (i) credit-card and store bills debt, (ii) amount owed for loans, (iii) debt on stocks/funds, (iv) vehicle debt, (v) business debt, (vi) other debt. All \$ values (for wealth but also earnings) are deflated using the CPI and are in 2010USD.

C.2 Workers Out of the Labor Force

	Mean (%)				Stdv.			Persistence		
	all	low-wealth	high-wealth	all	low-wealth	high-wealth	all	low-wealth	high-wealth	
UE	55.68	51.16	61.69	5.54 (0.828)	5.04 (0.764)	6.06 (0.960)	0.9641 (0.041)	0.9637 (0.042)	0.9617 (0.039)	
EU	3.64	4.80	2.91	1.49 (0.204)	1.81 (0.188)	1.21 (0.172)	0.8827 (0.073)	0.8790 (0.066)	0.8788 (0.069)	
EE	4.12	5.07	3.35	0.99 (0.220)	1.20 (0.271)	0.81 (0.192)	0.9105 (0.089)	0.9128 (0.084)	0.9058 (0.093)	
EN	5.76	7.74	4.58	2.22 (0.339)	2.73 (0.374)	1.82 (0.299)	0.8970 (0.073)	0.8906 (0.068)	0.8962 (0.077)	
NE	15.74	14.80	16.77	1.24 (0.216)	1.26 (0.229)	1.20 (0.171)	0.9582 (0.042)	0.9585 (0.040)	0.9525 (0.036)	

Table 6: Quarterly labor market flow rates across the distribution of net worth excluding housing. "All" is entire sample, "low wealth" and "high wealth" are the bottom and top halves of the net worth ex. housing distribution. Standard deviations and persistence parameters are computed on the Hamilton-filtered rates. Persistence is the AR(1) coefficient. Standard deviations for EE and EU are significantly different according to standard errors computed by bootstrap. All data are computed using SIPP 1996-2013.

C.3 Residualized Moments

The labor income recoveries and job-flow moments residualized by a polynomial in age, sex, race, work type (union, private, govt.), and education fixed effects are shown in figure ?? and table 7, respectively. The fall in earnings are noticeably smaller except in the case of low-wealth workers after the Great Recession.

		Stdv.		Half-life			
	all	low-wealth	high-wealth	all	low-wealth	high-wealth	
UE	5.11 (0.825)	4.70 (0.731)	5.71 (0.880)	0.9640	0.9636	0.9615	
EU	1.23 (0.095)	1.41 (0.164)	1.09 (0.076)	0.8924	0.9008	0.8864	
EE	46.72 (8.43)	77.85 (19.27)	33.99 (4.13)	0.8666	0.8843	0.8612	

Table 7: Quarterly labor market flow rates across the distribution of net worth excluding housing residualized by polynomial in age, race, sex, industry FE, and education FE. "All" is entire sample, "low wealth" and "high wealth" are the bottom and top halves of the net worth ex. housing distribution. Standard deviations and half-lives are computed on the Hamilton-filtered rates. All data are computed using SIPP 1996-2013.

C.4 Event Study Robustness

I run two robustness tests for the event study in 30. The first is without the restriction that job-switches are only towards higher wage jobs, this is shown in figure 17; the second is restricting to low-wealth workers only, this is shown in figure 18. The first restriction makes little difference, in part because more than two-thirds of all job-switches actually are to higher wage jobs. The second restriction highlights a stronger effect still of job-switching on unemployment probability for low-wealth workers.

Figure 17: Change in probability of (involuntary) separation into unemployment after a J2J transitions. Estimated using SIPP, following 30.

Figure 18: Change in probability of separation into unemployment after a J2J transitions. Estimated using SIPP, following (30) when restricting job switchers to those that see a strict wage increase and restricting the sample to those who fall in the bottom half of the wealth distribution.

C.5 Wealth Evolution During Great Recession

Figure 19 shows the evolution of wealth in the model (light green) and data (orange) during and after the Great Recession. The model curve is aggregate wealth in the model subject to the exogenous job-loss and productivity shocks that mimic the dynamics of output and unemployment during the Great Recession. The data curve is net-worth excluding housing aggregated and excluding the top 1% of the distribution.

Figure 19: Evolution of wealth during and after the Great Recession in the data (orange) and model (green) compared to pre-recession levels (2007:Q4 indexed at 100).