

UM MÉTODO E UMA FERRAMENTA PARA

Definir, Analisar, Projetar e Validar arquiteturas de sistema de hardware e de software

Apoiando a Colaboração Eficiente em Engenharia

Validando/Justificando soluções em relação às Necessidades dos Stakeholder facilitando as Análises de Impacto

Compatível com a maioria dos processos top-down, bottom-up, iterativo, legacy-based, misto...

Análise das Necessidades dos Stakeholders

O que os usuários do sistema precisam realizar

- ✓ Definir capacidades operacionais
- ✓ Realizar a análise de necessidades

Análise das Necessidades para o Sistema (HW/SW)

O que o sistema precisa realizar para os usuários

- ✓ Realizar a análise das capacidades
- ✓ Realizar análise funcional e não funcional
- ✓ Formalizar e consolidar os requisitos

Arquitetura Conceitual

Como o sistema funcionará para atender às expectativas

- ✓ Definir drivers de arquitetura e viewpoints
- ✓ Desdobrar arquitetura em componentes
- ✓ Selecionar a melhor arquitetura

Arquitetura Realizada / Arquitetura Concreta

Como o sistema será desenvolvido e construído

- ✓ Definir padrões de arquitetura
- ✓ Considerar a reutilização de elementos existentes
- ✓ Projetar uma arquitetura física de referência
- ✓ Verificar e Validar o sistema

Contratos de Desenvolvimento

O que se espera de cada projetista/subcontratado

- ✓ Definir uma estratégia de IVVQ (Integrar, Verificar, Validar e Qualificar)
- ✓ Estratégia de EAP e definição de cadeia produtiva

CONCEITOS DESCRIÇÃO

- Capacidades Operacionais
- Atores, entidades operacionais
- Atividades de atores
- Interações entre atividades e atores
- Informações usadas em atividades e interações
- Atividades de encadeamento de processos operacionais
- Cenários para dinâmica do comportamento
- Atores e sistema, capacidades
- Funções do sistema e dos atores
- Fluxo de dados de trocas entre funções
- Fluxo de dados de cadeias funcionais
- Informações usadas em funções e trocas, modelo de dados
- Cenários para dinâmica do comportamento
- Modos e Estados

MESMOS CONCEITOS DAS OUTRAS ETAPAS, ALÉM DE:

- Componentes
- Portas de componentes e interfaces
- Relações entre componentes
- Alocação de funções em componentes
- Justificativa da interface de componente através da alocação das relações entre funções

MESMOS CONCEITOS DAS OUTRAS ETAPAS, ALÉM DE:

- Componentes de comportamento para refinar a implementação funcional nos componentes físicos
- Componentes para alocação de comportamentos
- Relações entre os componentes a serem desenvolvidos
- Árvore de configuração de itens
- Código das peças e quantidades
- Contrato de desenvolvimento (comportamento esperado, interfaces, cenários, consumo de recursos, propriedades não propriedades...)

Fluxo de dados:

relações entre funções e atividades operacionais

Cenários:

atores, sistema, interações e trocas de componentes

Cadeia funcional e processos por mapeando funções e atividades

Diagrama de detalhamento de funções e componentes

Modos e Estados de atores, sistema, componentes

Interligação de componentes: todos os tipos de componentes

Alocação

interfaces

de atividades para atores, de funções para componentes, de componentes comportamentais para implementação de componentes, de fluxos de dados para interfaces, de elementos para itens de configuração

Verificação e Validação da solução em relaão aos requisitos e premissas para industrialização

Etapas do método	Exemplos de desempenho	Exemplos de segurança
ANÁLISE DE NECESSIDADES DOS STAKEHOLDERS	Tempo máximo de reação à ameaça	Eventos indesejados
ANÁLISE DE NECESSIDADES FUNCIONAIS E NÃO FUNCIONAIS	Cadeia funcional (CF) para reagir à ameaça. Latência máxima permitida na CF	Cadeias funcionais críticas associadas aos eventos
PROJETO DE ARQUITETURA CONCEITUAL	Complexidade de processamento e suas relações	Caminhos de redundância protegendo cadeias funcionais
PROJETO DE ARQUITETURA FÍSICA	Consumo de recursos na CF. Latência computacional resultante	Modos de falha comuns. Propagação de falhas em CF
PROJETO DE ARQUITETURA CONCRETA	Recursos alocados para satisfazer a latência	Nível de confiabilidade necessário

- ✓ Custos e Cronograma
- ✓ Interfaces
- ✓ Desempenho

- ✓ Manutenibilidade
- ✓ Segurança/Proteção
- /

- ✓ IVVQ
- ✓ Política do produto

