Graphes, coloration et plus courts chemins

INFORMATIQUE COMMUNE - TP nº 2.4 - Olivier Reynet

À la fin de ce chapitre, je sais :

- parcourir un graphe en largeur pour le colorer
- 🕼 coder l'algorithme de Dijkstra
- utiliser une file de priorités

A Coloration gloutonne

On se donne un graphe g sous la forme d'une liste d'adjacence ainsi qu'une liste de couleur utilisables pour colorer une graphe avec les bibliothèques matplotlib et networkx.

```
g = [[1, 3, 14], [0, 2, 4, 5], [1, 5, 7], [0, 4, 8, 13, 14], [1, 3, 5, 8],
        [1, 2, 4, 6, 7], [5, 7], [2, 5, 6], [3, 4, 9, 13], [8, 10, 13], [9, 11, 13],
        [10, 12, 13], [11, 13], [3, 8, 9, 10, 11, 12, 14], [0, 3, 13]]
colors = ["deeppink", "darkturquoise", "yellow", "dodgerblue", "magenta", "
        darkorange", "lime"]
```

L'objectif de cette section est de colorer le graphe à l'aide d'un algorithme glouton et d'un parcours en largeur. La stratégie gloutonne est la suivante : pour chaque sommet découvert, on choisit la première couleur disponible dans la liste.

- A1. Écrire une fonction de prototype next_possible_color (used_colors, colors) dont les paramètres sont la liste des couleurs utilisées par les voisins d'un sommet et la liste de toutes les couleurs. Cette fonction renvoie la première couleur disponible parmi celles qui ne sont pas utilisées par un voisin. S'il n'y en a aucune, elle renvoie None.
- A2. Écrire une fonction de prorotype greedy_color(g, start, colors) qui parcours en largeur un graphe g sous la forme d'une liste d'adjacence à partir du sommet start. Cette fonction renvoie une coloration du graphe sous la forme d'un dictionnaire dont les clefs sont les numéros du sommet et les valeurs les couleurs de ces sommets. Par exemple :

```
color_map = {5: 'deeppink', 1: 'darkturquoise', 2: 'yellow', 4: 'yellow'...}
Les fonction ci-dessous permettent:
```

- 1. de transformer un graphe sous la forme d'une liste d'adjacence en un objet graphe de la bibliothèque networkx,
- 2. de tracer le graphe coloré, le dictionnaire color_map est le résultat de l'algorithme glouton de coloration.

```
import networkx as nx
from matplotlib import pyplot as plt
```

```
def ladj_to_nx(g):
    gx = nx.Graph()
    n = len(g)
    gx.add_nodes_from([i for i in range(n)])
    for i in range(n):
        for v in g[i]:
            gx.add_edge(i, v)
    return gx

def show(g, color_map):
    color_nodes = ["" for _ in range(len(g))]
    for k, v in color_map.items():
        color_nodes[k] = v
        gx = ladj_to_nx(g)
    nx.draw_networkx(gx, node_color=color_nodes, with_labels=True)
    plt.show()
```

A3. En utilisant les fonctions ci-dessus, tracer le graphe coloré par l'algorithme glouton.

B Plus courts chemins : algorithme de Dijkstra

On considère maintenant un graphe non orienté pondéré g représenté par sa liste d'adjacence : les sommets sont des villes et les poids représentent les distances en kilomètres entre les villes. On cherche à calculer les distances les plus courte depuis la ville d'indice 0 vers toutes les directions possibles.

L'algorithme de Dijsktra nécessite une file de priorités. L'implémentation via une liste Python n'est pas optimale en termes de complexité (cf. cours). C'est pourquoi, on utilise la bibliothèque queue qui contient notamment une file de priorités présentant une complexité optimale. Voici un exemple d'utilisation :

```
pq = queue.PriorityQueue()
pq.put((d, s)) # enfiler le sommet s à la distance de d
delta, s = pq.get() # défiler le sommet s le plus proche à la distance d
```

Pour visualiser, on utilise la bibliothèque networkx comme suit :

```
import queue
import matplotlib.pyplot as plt
import networkx as nx
import math
import numpy as np
from matplotlib import cm
```

```
def ladj_to_nx(g):
    gx = nx.Graph()
    n = len(g)
    gx.add_nodes_from([i for i in range(n)])
    for i in range(n):
        for v, d in g[i]:
            gx.add_edge(i, v, weight=d)
    return gx
def show(g):
    n = len(g)
    color_list = list(iter(cm.rainbow(np.linspace(0, 1, n))))
    gx = ladj_to_nx(g)
    pos = nx.spring_layout(gx, seed=7)
    nx.draw_networkx(gx, pos, node_color=color_list, with_labels=True)
    edge_labels = nx.get_edge_attributes(gx, "weight")
    nx.draw_networkx_edge_labels(gx, pos, edge_labels)
    plt.show()
g = [[...], [...], [...], ...]
show(g)
```

- B1. Écrire une fonction de prototype pq_dijkstra(g, start) qui implémente l'algorithme de Dijsktra (cf. algorithme 1). Cette fonction renvoie le dictionnaire des distances les plus courtes depuis le sommet start ainsi que le dictionnaire du parent sélectionné pour chaque sommet afin d'atteindre ces distances minimales.
- B2. Écrire une fonction de prototype build_path(parents, a_to) qui renvoie le chemin le plus court du sommet de départ au sommet a_to. Cette fonction utilise le dictionnaire parents qui a été créé lors de l'exécution de l'algorithme de Dijsktra.
- B3. Écrire une fonction de prototype build_d_graph(g, parents) qui construit le graphe des plus courts chemins, c'est à dire le graphe construit à partir de g où l'on ne conserve que les arêtes sélectionnées par l'algorithme de Dijkstra. Le résultat peu être visualisé sur la figure ??.

Algorithme 1 Algorithme de Dijkstra, plus courts chemins à partir d'un sommet donné

```
\triangleright Trouver les plus courts chemins à partir de a \in V
1: Fonction DIJKSTRA(G = (S, A, w), s_0)
2:
        n \leftarrow nombre de sommets de G
3:
        pq \leftarrow (0, s_0) une file de priorités
                                                                               > contient les tuples (distance, sommet)
4:
        \mathbf{d} \leftarrow \{s_0 : 0\}
                                                    \triangleright le dictionnaire des sommets dont on connaît la distance à s_0
        parents \leftarrow {0:0} un dictionnaire \triangleright parents[s] est le parent de s dans le plus court chemin de s_0 à s
5:
        \forall s \in G, d[s] \leftarrow w(s_0, s)
                                                                  \triangleright w(s_0, s) = +\infty si s n'est pas voisin de s_0, 0 si s = s_0
6:
        tant que pq n'est pas vide répéter
7:
8:
            \delta, u \leftarrow \text{DÉFILER}(pq)
                                                                                                             ▶ Choix glouton!
            pour v \in \mathcal{V}_G(u) répéter
                                                                                                 \triangleright Pour chaque voisin de u
9:
                si d[u] + w(u, v) < d[v] alors
                                                                         ⊳ si la distance est meilleure en passant par u
10:
                     d[v] \leftarrow d[u] + w(u, v)
                                                                                ▶ Mises à jour des distances des voisins
11:
                     ENFILER(pq, (d[v],v))
12:
13:
                    parents[v] \leftarrow u
                                                                       > Pour garder la tracer du chemin le plus court
        renvoyer d, parents
14:
```


FIGURE 1 – Graphe issu de l'algorithme de Dijkstra : seules les arêtes sélectionnées par l'algorithme ont été conservées