Mathematical Analysis II

Felix Chen

Contents

1 Lebe	esgue differentiation
	rem 0.1 (Fubini's Theorem) $(x,y): \mathbb{R}^{d_1} \times \mathbb{R}^{d_2} \to \mathbb{R}$, and f is integrable on $\mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$.
	$f(x,y)$ as a function of y is integrable on \mathbb{R}^{d_2} for $x \in \mathbb{R}^{d_1} \setminus Z$ with $m(Z) = 0$.
	Let $g(x) = \int_{\mathbb{R}^{d_2}} f(x, y) dy$, for $x \in \mathbb{R}^{d_1} \setminus Z$, where Z is a null set. We have g is integrable on \mathbb{R}^{d_1} .
3.	$\int_{\mathbb{R}^d} f(x,y) = \int_{\mathbb{R}^d} \left(\int_{\mathbb{R}^d} f(x,y) \mathrm{d}y \right) \mathrm{d}x.$

Proof. Let \mathscr{F} be the space consisting of all the integrable functions that satisfy Fubini's theorem.

 \mathscr{F} is a vector space. Furthermore, for non-negative monotone sequence $f_n \in \mathscr{F}$, if $\lim f_n$ is integrable, then $\lim f_n \in \mathscr{F}$ as well.

Proof of the lemma. First notice that $f \in \mathscr{F} \implies cf \in \mathscr{F}$.

0.1 Applications of Fubini's theorem

If $f, g \in \mathcal{F}$, consider f + g:

By our conditions, there exists $X_f, X_g \subset \mathbb{R}^{d_1}$, s.t. f(x,y) integrable on \mathbb{R}^{d_2} , $\forall x \notin X_f$, and g(x,y) integrable on \mathbb{R}^{d_2} , $\forall x \notin X_g$. This implies f(x,y) + g(x,y) integrable on \mathbb{R}^{d_2} for $x \notin X_f \cup X_g$, which proves (1).

$$\int_{\mathbb{R}^{d_2}} f(x, y) + g(x, y) \, \mathrm{d}y = \int_{\mathbb{R}^{d_2}} f(x, y) \, \mathrm{d}y + \int_{\mathbb{R}^{d_2}} g(x, y) \, \mathrm{d}y.$$

So the LHS is integrable on \mathbb{R}^{d_1} (this is (2)), taking the integral we get

$$\int_{\mathbb{R}^{d_1}} \left(\int_{\mathbb{R}^{d_2}} f(x,y) \, \mathrm{d}y \right) \mathrm{d}x + \int_{\mathbb{R}^{d_1}} \left(\int_{\mathbb{R}^{d_2}} g(x,y) \, \mathrm{d}y \right) \mathrm{d}x = \int_{\mathbb{R}^{d_1}} \left(\int_{\mathbb{R}^{d_2}} f(x,y) + g(x,y) \, \mathrm{d}y \right) \mathrm{d}x.$$

Therefore \mathscr{F} is a vector space.

For a monotone non-negative sequence f_n , $\exists X_n \subset \mathbb{R}^{d_1}$ s.t. f_n is integrable with respect to yfor $x \notin X_n$.

CONTENTS Analysis II

Similarly, when $x \notin \bigcup_{n=1}^{\infty} X_n$, as a function of y, by Beppo-Levi (or Dominated convergence),

$$\int_{\mathbb{R}^{d_2}} f(x, y) \, \mathrm{d}y = \lim_{n \to \infty} \int_{\mathbb{R}^{d_2}} f_n(x, y) \, \mathrm{d}y.$$

This equation holds when $\int f(x,y) dy$ is finite, so we need to prove it is finite almost everywhere. For $x \notin \bigcup X_n$, we have:

$$\int_{\mathbb{R}^{d_1}} \left(\int_{\mathbb{R}^{d_2}} f_n(x, y) \, \mathrm{d}y \right) \mathrm{d}x \to \int_{\mathbb{R}^{d_1}} \left(\int_{\mathbb{R}^{d_2}} f(x, y) \, \mathrm{d}y \right) \mathrm{d}x$$
$$\int_{\mathbb{R}^{d_1}} \left(\int_{\mathbb{R}^{d_2}} f_n(x, y) \, \mathrm{d}y \right) \mathrm{d}x = \int_{\mathbb{R}^{d_1 + d_2}} f_n \to \int_{\mathbb{R}^{d_1 + d_2}} f$$

Compare these relations we dedu

$$\int_{\mathbb{R}^{d_1}} \left(\int_{\mathbb{R}^{d_2}} f(x, y) \, \mathrm{d}y \right) \mathrm{d}x = \int_{\mathbb{R}^{d_1 + d_2}} f < +\infty.$$

so $\int_{\mathbb{R}^{d_2}} f(x,y) \, dy$ is finite almost everywhere. This gives (1), and (2), (3) follows immediatedly. \square

Back to the proof of the original theorem, we want to prove $\mathscr{F} = \mathcal{L}^1$.

We prove the indicator function of following sets are in \mathscr{F} :

- Cuboids;
- Finite open sets;
- G_{δ} sets;
- Null sets;
- General measurable sets.

Let I be a cuboid, $I = I_x \times I_y$, so $\chi_I = \chi_{I_x} \chi_{I_y}$.

$$\int \chi_I = |I| = |I_x||I_y| = \int \chi_{I_x}|I_y| \,\mathrm{d}x = \int \int (\chi_{I_x}\chi_{I_y} \,\mathrm{d}y) \,\mathrm{d}x.$$

Let O be a finite open set, $O = \bigcup_{n=1}^{\infty} I_n$, where I_n are pairwise disjoint cuboids.

$$\chi_O = \lim_{n \to \infty} \chi_{\bigcup_{k=1}^n I_k} \in \mathscr{F},$$

as it's an inceasing sequence.

For $G_{\delta} = \bigcap_{n=1}^{\infty} O_n$, $\chi_{O_n} \setminus \chi_{G_{\delta}}$. $\Longrightarrow \chi_{G_{\delta}} \in \mathscr{F}$. For null set E, if $\chi_E \in \mathscr{F}$, $\forall A \subset E$,

$$0 = \int \chi_E = \int_{\mathbb{R}^{d_1}} \left(\int_{\mathbb{R}^{d_2}} \chi_E \, \mathrm{d}y \right) \mathrm{d}x.$$

hence $\int_{\mathbb{R}^{d_2}} \chi_E \, \mathrm{d}y = 0$, for $x, a.e. \implies \int_{\mathbb{R}^{d_2}} \chi_A \, \mathrm{d}y = 0$ for x, a.e.. Taking the integral with respect to x, we have $\chi_A \in \mathscr{F}$.

Therefore if E is a null set, by taking its equi-measure hull we deduce $\chi_E \in \mathscr{F}$.

Finally, for a general measurable set E, let O be its equi-measure hull, and $E = O \setminus A$. since \mathscr{F} is a vector space, $\chi_E \in \mathscr{F}$.

The rest is trival now: Because all the simple functions are in \mathcal{F} , and any measurable functions can be expressed as limits of increasing simple functions, so $\mathscr{F} = \mathcal{L}^1(\mathbb{R}^{d_1+d_2})$.

Analysis II CONTENTS

Theorem 0.3 (Tonelli's theorem)

Let f be a non-negative measurable function on \mathbb{R}^d .

- f(x,y) is measurable on \mathbb{R}^{d_2} for x almost everywhere;
- $\int_{\mathbb{R}^{d_2}} f(x,y) \, dy$ as a function of x is measurable;
- The integral satisfies:

$$\int_{\mathbb{R}^d} f = \int_{\mathbb{R}^{d_1}} \left(\int_{\mathbb{R}^{d_2}} f(x, y) \, \mathrm{d}y \right) \mathrm{d}x.$$

Proof. Consider the truncation function $f(x,y)\chi_{|x|+|y|< k}\chi_{f< k}$.

Proposition 0.4

Let E be a measurable set on \mathbb{R}^d . For x almost everywhere, $E^x = \{y \mid (x,y) \in E\}$ is measurable on \mathbb{R}^{d_2} .

As a function of x, $m(E^x)$ satisfies

$$m(E) = \int_{\mathbb{R}^{d_1}} m(E^x).$$

Proof. Consider $f = \chi_E$ and use Tonelli's theorem.

§0.1 Applications of Fubini's theorem

Definition 0.5 (Product measure). Let (X, \mathcal{F}, m) and (Y, \mathcal{G}, m) be measure spaces, define a measure on $X \times Y$: The measure m induces an outer measure on $X \times Y$, and complete it to a normal measure by using Caratheodory conditions. This measure is called the **product measure** on $X \times Y$.

Theorem 0.6

Let $\mathbb{R}^d = \mathbb{R}^{d_1} \times \mathbb{R}^{d_2}$, E_1, E_2 are subsets of $\mathbb{R}^{d_1}, \mathbb{R}^{d_2}$, respectively.

- If E_1, E_2 are measurable, then E is measurable as well, and $m(E) = m(E_1)m(E_2)$.
- If E is measurable, then E_1, E_2 are measurable, and $m(E) = m(E_1)m(E_2)$, unless one of E_1, E_2 is null set, which means E is null as well.

Corollary 0.7

Let f(x) be a measurable function on \mathbb{R}^{d_1} , we have g(x,y)=f(x) is measurable on \mathbb{R}^{d_2} .

Proposition 0.8

Let L be a linear map $\mathbb{R}^d \to \mathbb{R}^d$, $E \subset \mathbb{R}^d$ a measurable set, then L(E) is measurable, and

$$m(L(E)) = |\det L| m(E).$$

From this transformation formula we deduce the integral version:

Let f be an integrable function on \mathbb{R}^d , then f(L(x)) is also integrable, and

$$\int f(L(x)) = \frac{1}{|\det L|} \int f(x).$$

Here we require $L \in GL(n)$, since if det L = 0, the function f(L(x)) need not be measurable.

At last we take a look at Fubini's theorem with the convolution product.

Recall the Gauss integral:

$$2\int_0^\infty e^{-x^2} \, \mathrm{d}x = \sqrt{\pi}.$$

Here we give a different proof:

$$\int e^{-x^2} dx \int e^{-y^2} dy = \iint_{\mathbb{R}^2} e^{-(x^2+y^2)} dx dy$$
$$= \int_0^{+\infty} e^{-r^2} dr^2 \cdot \pi$$
$$= \pi.$$

§1 Lebesgue differentiation

The most important theorem in calculus is no doubt the Fundamental theorem of Calculus (which is also called Newton-Lebniz formula). Since we generalized the integrals, there must be a generalized version of this theorem:

Theorem 1.1 (Lebesgue differentiation theorem, part 1)

If f is integrable on \mathbb{R}^d , for any ball $B \subset \mathbb{R}^d$, we have

$$\lim_{x \in B, |B| \to 0} \frac{1}{m(B)} \int_B f(y) \, \mathrm{d}y = f(x), a.e.$$

This theorem clearly holds for continuous points of f.

Our basic idea is to take a continuous g, such that $||g - f||_{\mathcal{L}^1} < \varepsilon$. and to prove

$$\left\{ x: \limsup_{x \in B, |B| \to 0} \frac{1}{m(B)} \int_{B} |f(y) - f(x)| \, \mathrm{d}y \ge \varepsilon_0 \right\}$$

is a null set.

Now we estimate

$$\frac{1}{m(B)} \int_{B} |f(y) - f(x)| \, \mathrm{d}y \le \frac{1}{m(B)} \int_{B} (|f(y) - g(y)| + |g(y) - g(x)| + |g(x) - f(x)|) \, \mathrm{d}y$$

$$= |f(x) - g(x)| + \varepsilon + \frac{1}{m(B)} \int_{B} |f(y) - g(y)| \, \mathrm{d}y$$

We find that the last term is pretty hard to deal with, so we'll introduce some new tools:

Definition 1.2 (Hardy-Littlewood maximal function). Let f be an integrable function on \mathbb{R}^d . Define

$$Mf(x) = \sup_{x \in B} \frac{1}{m(B)} \int_{B} |f(y)| \, \mathrm{d}y.$$

to be the **maximal function** of f.

Theorem 1.3 (Hardy-Littlewood)

The maximal function Mf satisfies:

- Mf is measurable;
- For x almost everywhere, $|f(x)| \leq Mf(x) < +\infty$.
- There exists a constant C s.t.

$$|\{x: Mf > \alpha\}| \le \frac{C}{\alpha} ||f||_{\mathcal{L}^1}.$$

Proof. First we prove $\{Mf > \alpha\}$ is measurable. If $Mf(x_0) > \alpha$, then exists an open ball $B \ni x_0$,

$$\int_{B} |f(y)| \, \mathrm{d}y > \alpha m(B).$$

This implies that $B \subset \{Mf > \alpha\} \implies \{Mf > \alpha\}$ is an open set.

For the second part, we'll prove for $\forall \varepsilon_0 > 0, N > 0$,

$$m({x : Mf(x) + \varepsilon_0 < |f(x)| \le N}) = 0.$$

Otherwise denote the above set as E, for $\forall 0 < \lambda < 1$, $\exists B \text{ s.t. } |E \cap B| > \lambda |B|$. Thus for $x \in E$,

$$Mf(x) \ge \frac{1}{m(B)} \int_{B} |f(y)| \, \mathrm{d}y$$

$$\ge \frac{1}{m(B)} \int_{E \cap B} |f(y)| \, \mathrm{d}y$$

$$\ge \frac{1}{m(B)} \int_{E \cap B} \varepsilon_0 + Mf(y) \, \mathrm{d}y$$

$$= \frac{m(E \cap B)}{m(B)} \varepsilon_0 + \frac{1}{|B|} \int_{E \cap B} Mf(y) \, \mathrm{d}y.$$

Taking the integral with respect to x:

$$\left(1 - \frac{|E \cap B|}{|B|}\right) \int_{E \cap B} Mf \ge \frac{|E \cap B|^2}{|B|} \varepsilon_0.$$

This implies $(1 - \lambda)N \ge \lambda \varepsilon_0$, which is impossible as $\lambda \to 1$.

Now for the last part, since $\{Mf > \alpha\}$ is open, $\forall x \in \{Mf > \alpha\}$, $\exists B \text{ s.t.}$

$$\int_{B} |f(y)| \, \mathrm{d}y > \alpha m(B).$$

Hence for disjoint balls B_{i_k} ,

$$||f||_{\mathcal{L}^1} \ge \sum_{l=1}^k \int_{B_{i_l}} |f(y)| \, \mathrm{d}y > \alpha \sum_{l=1}^k |B_{i_l}|.$$

If we could select B_{i_l} 's such that their measure achieves say 1% of E, then we're done.

Lemma 1.4

Let B_1, \ldots, B_n be open balls in \mathbb{R}^d . There exists i_1, \ldots, i_k such that B_{i_j} 's are pairwise disjoint, and

$$\bigcup_{i=1}^{n} B_i \subset \bigcup_{j=1}^{k} 3B_{i_j}.$$

Here 3B means to multiply the radius of the ball by 3.