ChumakovNV 28122024-101709

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

На рисунке 1 изображён двойной балансный смеситель. Диоды в этом смесителе представляют собой разрыв при подаче отрицательного напряжения и сопротивление r_i - при положительном смещении. Известно, что $r_1=r_4$ и что сопротивления двух других диодов также равны. Колебание гетеродина переключает диоды из открытого в закрытое состояние и обратно меновенно.

Рисунок 1 – Двойной балансный смеситель

Частота гетеродина 292 МГц, частота ПЧ 46 МГц.

Колебание какой частоты отсутствует на выходе РЧ?

- 876 MΓ_{II}
- 2) 830 MΓ_{II}
- 3) 246 MΓ_{II}
- 4) 200 МГц.

Ко входу РЧ двойного балансного смесителя подключён генератор с внутренним сопротивлением 50 Ом и доступной мощностью плюс 2.6 дБм.

В смесителе использованы диоды с сопротивлением в открытом состоянии 20 Ом. На выходе смесителя путём преобразования на первой гармонике гетеродина получено колебание промежуточной частоты. Мощность колебания промежуточной частоты измерена с помощью анализатора спектра с входным сопротивлением 50 Ом, и получено значение минус 10.1 дБм.

Какова величина потерь в трансформаторе? (Это потери при передаче мощности от генератора с внутренним сопротивлением 50 Ом, подключённого в первичной обмотке, в нагрузку 50 Ом, подключённую к одной из половин вторичной обмотке при условии, что цепь второй половины вторичной обмотки разомкнута. Схема дана на рисунке 2.)

Рисунок 2 – Схема измерения потерь в трансформаторе

- 1) 7.8 дБ 2) 8.4 дБ 3) 9 дБ 4) 9.6 дБ 5) 10.2 дБ 6) 10.8 дБ 7) 11.4 дБ 8) 12 дБ
- 9) 12.6 дБ

Ко входам ПЧ квадратурного смесителя подключён согласованный по всем плечам делитель мощности. Развязанные плечи 2 и 3 делителя подключены соответственно к синфазному и квадратурному входам ПЧ. Известно, что: $s_{21} = -0.38171 - 0.10244i,\ s_{31} = 0.10838 - 0.40385i.$

Внутри смесителя квадратура выдержана идеально точно.

Какой относительный уровень мощности будет иметь нижняя боковая составляющая при преобразовании частоты вверх?

- 1) -29 дБн 2) -31 дБн 3) -33 дБн 4) -35 дБн 5) -37 дБн 6) -39 дБн 7) -41 дБн
- 8) -43 дБн 9) 0 дБн

Ко входу гетеродина двойного балансного смесителя подключён генератор синусоидального колебания частотой 1056 МГц с внутренним сопротивлением 50 Ом и доступной мощностью плюс 15 дБм.

Колебание ПЧ формируется с помощью генератора меандра частотой 287 МГц с внутренним сопротивлением 50 Ом и доступной мощностью первой гармоники минус 1 дБм. Между выходом генератора и входом ПЧ включён фильтр нижних частот, имеющий прямоугольную частотную характеристику с частотой среза 3440 МГц. РЧ выход смесителя подключён в анализатору спектра с входным сопротивлением 50 Ом. Диапазон частот анализа от 726 МГц до 768 МГп.

Какова будет мощность наибольшей побочной составляющей, наблюдаемой на экране анализатора спектра? Варианты ОТВЕТА:

- 1) -91 дБм 2) -94 дБм 3) -97 дБм 4) -100 дБм 5) -103 дБм 6) -106 дБм 7) -109 дБм
- 8) -112 дБм 9) -115 дБм

При преобразовании частоты вверх с использованием двойного балансного смесителя, получен спектр на выходе РЧ, изображённый на рисунке 3. Как известно, в общем случае он содержит комбинационные составляющие вида $|nf_r + mf_{\Pi \Pi}|$ Какой комбинацией $\{n; m\}$ можно было бы объяснить наличие в спектре составляющей, отмеченной маркером 5?

(Значения частот, считываемые с экрана анализатора, округлять до единиц МГц.)

Рисунок 3 – Экран анализатора спектра

- $1) \ \{40; -161\} \quad 2) \ \{26; -97\} \quad 3) \ \{33; -49\} \quad 4) \ \{40; -161\} \quad 5) \ \{40; -65\} \quad 6) \ \{12; -17\}$
- 7) {33; 15} 8) {26; -17} 9) {12; 63}

Для выделения только **нижней** боковой составляющей при преобразовании вверх используются квадратурный смеситель и согласованный по всем плечам делитель мощности. Плечи 2 и 3 делителя развязаны. Известно, что: $s_{21} = s_{31}$.

Плечо 2 подключено непосредственно к синфазному входу ПЧ. Между плечом 3 и квадратурным входом ПЧ включён фазовращатель. В качестве фазовращателя используется симметричный реактивный Т-образный четырёхполюсник, выполненный с помощью сосредоточенных компонентов. Известно, что между синфазным и квадратурным колебаниями гетеродина внутри смесителя существует ошибка квадратуры равная плюс 20 градусов.

Чему равна индуктивность компонента фазовращателя, если частота ПЧ равна 170 МГц?

Варианты ОТВЕТА:

1) 66.9 нГн 2) 51.3 нГн 3) 32.8 нГн 4) 44 нГн