

# FUCO5A - Análise De Circuitos Elétricos 1 Aula 3B

**Prof.: Renan Silva Maciel** 

# Tópicos:

- Resistores;
- Ohmímetro;
- Voltímetros e amperímetros;
- Fontes de tensão e de corrente.

# Regras do laboratório:

- Trajes adequados;
- Itens sobre as bancadas;
- Atenção ao uso dos equipamentos;
  - Multímetro: desligar;
  - Multímetro: fusível;
- Manuseio de equipamentos com cuidado;
- Proibido consumir alimentos no laboratório;
- Identificação de riscos.

### Equipamentos:

Fonte de alimentação;

Multímetro;

- Protoboard.

### Fontes de alimentação:



- Três terminais de saída
- Tensão ajustável e regulada

# • Multimetro:



Matriz de contato (protoboard)



# **AMPERÍMETROS:**

medir a intensidade

da corrente





**VOLTÍMETROS:** medir a diferença de potencial entre dois pontos

#### • RESISTÊNCIA:

- Característica de um corpo com relação à condução de eletricidade;
- Elemento x modelo

Resistência é a oposição ao fluxo de carga através de um circuito elétrico, tem as unidades de ohms  $(\Omega)$ .



# Construção de Resistores (R)



# Construção de Resistores (R)



# Resistores Comerciais (Potência):



#### Tamanho vs Potência

Para estilos e fabricantes específicos, o tamanho de um resistor aumenta de acordo com a potência ou com a especificação de potência.

O tamanho de um resistor não define seu nível de resistência



#### **Resistores Comerciais**

|      | Ohms (Ω) |    |     | Kilohms (kΩ) |    | Megohms (MΩ) |     |      |
|------|----------|----|-----|--------------|----|--------------|-----|------|
| 0,10 | 1,0      | 10 | 100 | 1000         | 10 | 100          | 1,0 | 10,0 |
| 0,11 | 1,1      | 11 | 110 | 1100         | 11 | 110          | 1,1 | 11,0 |
| 0,12 | 1,2      | 12 | 120 | 1200         | 12 | 120          | 1,2 | 12,0 |
| 0,13 | 1,3      | 13 | 130 | 1300         | 13 | 130          | 1,3 | 13,0 |
| 0,15 | 1,5      | 15 | 150 | 1500         | 15 | 150          | 1,5 | 15,0 |
| 0,16 | 1,6      | 16 | 160 | 1600         | 16 | 160          | 1,6 | 16,0 |
| 0,18 | 1,8      | 18 | 180 | 1800         | 18 | 180          | 1,8 | 18,0 |
| 0,20 | 2,0      | 20 | 200 | 2000         | 20 | 200          | 2,0 | 20,0 |
| 0,22 | 2,2      | 22 | 220 | 2200         | 22 | 220          | 2,2 | 22,0 |
| 0,24 | 2,4      | 24 | 240 | 2400         | 24 | 240          | 2,4 |      |
| 0,27 | 2,7      | 27 | 270 | 2700         | 27 | 270          | 2,7 |      |
| 0,30 | 3,0      | 30 | 300 | 3000         | 30 | 300          | 3,0 |      |
| 0,33 | 3,3      | 33 | 330 | 3300         | 33 | 330          | 3,3 |      |
| 0,36 | 3,6      | 36 | 360 | 3600         | 36 | 360          | 3,6 |      |
| 0,39 | 3,9      | 39 | 390 | 3900         | 39 | 390          | 3,9 |      |
| 0,43 | 4,3      | 43 | 430 | 4300         | 43 | 430          | 4,3 |      |
| 0,47 | 4,7      | 47 | 470 | 4700         | 47 | 470          | 4,7 |      |
| 0,51 | 5,1      | 51 | 510 | 5100         | 51 | 510          | 5,1 |      |
| 0,56 | 5,6      | 56 | 560 | 5600         | 56 | 560          | 5,6 |      |
| 0,62 | 6,2      | 62 | 620 | 6200         | 62 | 620          | 6,2 |      |
| 0,68 | 6,8      | 68 | 680 | 6800         | 68 | 680          | 6,8 |      |
| 0,75 | 7,5      | 75 | 750 | 7500         | 75 | 750          | 7,5 |      |
| 0,82 | 8,2      | 82 | 820 | 8200         | 82 | 820          | 8,2 |      |
| 0,91 | 9,1      | 91 | 910 | 9100         | 91 | 910          | 9,1 |      |

# • Identificação comercial de resistores

- Evitar em textos técnicos;
- Exemplos:
  - $1R2 = 1,2 \Omega$
  - $2k2 = 2.2 k\Omega$
  - $1M5 = 1.5 M\Omega$

# Código de cores de resistores:



- 1ª faixa = 1º dígito
- 2ª faixa = 2º dígito
- 3ª faixa = multiplicador (10x)
- 4ª faixa = tolerância (se ausente = 20%)

# • Exemplo:



- 1ª faixa = 1º dígito
- 2ª faixa = 2º dígito
- 3ª faixa = multiplicador (10<sup>x</sup>)
- 4º faixa = tolerância
- (se ausente = 20%)



# • Exemplo:



1ª faixa marrom = 1

2ª faixa vermelho 2

 $3^{\underline{a}}$  faixa laranja =  $3 = 10^3$ 

4ª faixa tolerância ouro

$$= \pm 5\% \times 12000 = 600\Omega$$

• Logo:  $12x10^3 \pm 600 \Omega$ 



# Código de cores de resistores (5 e 6 faixas)





#### Tolerâncias abaixo de 5%:

- marrom =  $\pm 1\%$ ,
- vermelho =  $\pm 2\%$ ,
- $\text{ verde} = \pm 0.5\%$
- azul = ±0,25%, e
- violeta =  $\pm 0,1\%$ .

# Resistores variáveis (reostatos/potenciômetros)



# • OHMÍMETROS:



- Medir a resistência de um elemento individual ou de elementos combinados.
- Detectar situações:
  - 'circuito aberto' (resistência alta)
  - 'curto-circuito' (resistência baixa).
- Verificar a continuidade das conexões de um circuito e identificar fios em um cabo com múltiplas vias.
- Testar alguns dispositivos semicondutores.

# Medições (elemento sem alimentação).





# • RESISTORES EM SÉRIE:



$$R_T = R_1 + R_2 + R_3 + R_4 + \dots + R_N$$

#### • RESISTORES EM SÉRIE:



- quanto mais resistores em série acrescentarmos,
   maior será a resistência, não importando seu valor.
- o maior resistor em uma combinação em série terá o maior impacto sobre a resistência total.

#### RESISTORES EM PARALELO –EQUIVALENTE:



$$\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}$$

$$R_T = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \dots + \frac{1}{R_N}}$$

#### RESISTORES EM PARALELO –EQUIVALENTE:



- a resistência total de resistores em paralelo é sempre menor que o valor do menor resistor.
- se a menor resistência é <u>muito menor</u> que as demais, a resistência total será próxima do menor valor de resistência.