	folidays and Oho	26	of course fee withheld.	19	Refund		Si		S C N	
Charles: T: New Year's Day, 20: Martin Luther King Jr.		27		20	~		6 Meet		MON	
es: T: New Year's Day, 20: Ma		28	Complex Analysis Assignment 1	2	4	385	7		TUE	AZC
irtin Luther King Jr	Differential Assignment 2 Due			DŬE	15 Differential Ascignment	Ü	00		WED	AR)
c. Day		30 hard	A Ssignment	3	16	Assignment Start	9 Differential	N	DHT	20
w.ww		2 COOOT	A ECON PODE NODE TO STORY		17	are due	0.	(FRI	020
www.wiki-calendar.com			25	ſ	∞			4	SAT	•

Differential Equations Assistant Pro

He doer part notes (**)

$$| = \tan(9(4) + C)$$
 $| = \tan(2\pi + C)$
 $| = 2\pi + C$

$$\frac{dx}{dt} = 8(x^{2}+1) \quad y = x+1+\frac{C}{x}$$

$$\int \frac{dx}{x^{2}+1} = \int 8dt \quad y(1) = 3$$

$$\tan^{-1}(x) = 8t \quad 3 = 1+1+\frac{C}{1}$$

$$x = \tan(8t+c) \quad 3 = 2+c$$

$$c = 1$$