インターネットの基本的仕組み

情報社会とセキュリティ 2024 年度前期 佐賀大学理工学部 只木進一

- 階層構造とパケット通信
- ② IP アドレスとネットマスク
- ③ IP ルーティング (routing)
- 4 ドメイン名と DNS
- 5 DHCP: Dynamical Host Configuration Protocol
- 6 アプリケーションとサービス
- IPv4/IPv6
- 8 課題

インターネットの特性: パケットとプロトコル

- 回線を占有しない
 - データを小さな塊 (packets) に分けて送信
 - MTU (Maximum transmission Unit): 1500 bytes
 - パケットには通信情報を示すヘッダがある
- 多様な機器で共通の仕様
 - 階層的プロトコル:機能を限定
 - 階層間インターフェス (interfaces) を規定
 - protocol: a set of rules that control the way data is sent between computers.

インタネットで使用するアドレス

- 二つのアドレス
 - IPv4 アドレス: 153.126.149.71
 - ドメイン名: www.cc.saga-u.ac.jp
 - DNS: 二つを繋ぐサービス
- サブネット: ネットワークアドレス
- ネットワークを相互に繋ぐルータ (routers)

TCP/IP 階層モデル

- ネットワークの物理実装に依存せず、各コンピュータ・通信装置が稼働するように設計
- 各層の機能を限定
- 各層は下の層を信頼 (エラーメッセージを含む)

アプリケーション層
トランスポート層
インターネット層
ネットワーク層

TCP/IP 階層モデル

階層	機能
トランスポート層	TCP または UDP プロトコル通信のパケット化とパケットからの復元
インターネット層	ルーティング、つまり配送経路を制御layer 3 とも言う
ネットワーク層情報社会とセキュリティ	 通常は ethernet プロトコルに相当 同一ネットワーク内の通信を制御 layer 2 とも言う

パケット: packets

- トランスポート層以下では、データはパケットという小さな塊 で送受信
 - 番号が付いている
- 上層から下層
 - 各階層でヘッダ (header)/エンベロープ (envelope) を付ける
- 下層から上層
 - 各階層でヘッダ (header)/エンベロープ (envelope) を剥がす
- ヘッダには、各層の制御に必要な情報
 - 送信元、受信先、サービス番号 (TCP/UDP の場合) など

例: IP datagram

送信元と送信先のIPアドレス、ルータでの転送回数がヘッダにある

IPアドレス: IP addresses

- IP アドレスは、インターネット上の住所
 - 32 ビット (IPv4 の場合)
- 通常は8ビット (octet) 毎にピリオドで区切って表記
 - 例: 133.49.4.7
- ネットワーク部とホスト部で構成
 - ネットワークは、適切な大きさに分割して管理
 - ピリオドの位置で分かれているとは限らない

ネットマスクとネットワークアドレス

- ネットマスクも 32 ビット
 - 上位からあるビットまで1、それより下位は0
- ネットワークアドレス
 - IP アドレスとネットマスクのビット毎の and 演算で算出
 - 送信先が自ネットワークかを判定する際に利用

例: 24ビットネットマスク

10 進	255								255								255								0								
16 進	FF							FF									FF								00								
2 進	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								1	0	0	0	0	0	0	0	0															
10 進				13	33				49									51								12							
2 進	1	0	0	0	0	1	0	1	0	0	1	1	0	0	0	1	0	0	1	1	0	0	1	1	0	0	0	0	1	1	0	0	
2 進	1	0	0	0	0	1	0	1	0	0	1	1	0	0	0	1	0	0	1	1	0	0	1	1	0	0 0 0 0 0 0 0					0		
10 進	133						49							51								0											

3通りのネットワークアドレス標記

- 133.49.51.0/24
- 133.49.51.0/255.255.255.0
- 133.49.51.0/FFFFFF00

例: 22ビットネットマスク

//.	055								255								252								0									
10 進	255								255								252								0									
16 進	FF								FF									FC								00								
2 進	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1 1 1 1 1 0 0						0	0	0	0	0	0	0	0			
10 進				13	33				49									51							12									
2 進	1	0	0	0	0	1	0	1	0	0	1	1	0	0	0	1	0	0	1	1	0	0	1	1	0	0	0	0	1	1	0	0		
2 進	1	0	0	0	0	1	0	1	0	0	1	1	0	0	0	1	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0		
10 進	133						49								48							0												

3通りのネットワークアドレス標記

- 133.49.48.0/22
- 133.49.48.0/255.255.252.0
- 133.49.48.0/FFFFFC00

24 ビットのネットワークが 4 つまとまっている

質問

IP アドレス 133.49.4.1 に対して、16 ビットネットマスクの場合のネットワークアドレスを求めなさい。

ネットワーククラス: Network classes

クラス	アドレス範囲	説明
А	0.0.0.0 - 127.255.255.255	8ビットネットワーク
		アドレス
		先頭は0
В	128.0.0.0 - 191.255.255.255	16 ビットネットワーク
		アドレス
		先頭は10
С	192.0.0.0 - 223.255.255.255	24 ビットネットワーク
		アドレス
		先頭は110

• 佐賀大学は 133.49.0.0/16 というクラス B アドレスを保有

グローバルアドレスとプライベートアドレス

- グローバルアドレス (global addresses)
 - インターネット上で唯一 (unique) にしなければならない
 - 日本では JPNIC (Japan Network Information Center) が割り当て業務を担っている

https://www.nic.ad.jp

有料

https://www.nic.ad.jp/ja/ip/member/fee-table-2012. html#fee-table

- プライベートアドレス (private addresses)
 - 組織内で自由に割り当て可能
 - 外部に出してはならない
 - 10.0.0.0/8
 - 172.16.0.0/12
 - 192.168.0.0/16

IPルーティング

- 一つのネットワークには、一つのネットワークアドレス
- ルータ (router): 異なるネットワークを繋ぐ通信機器
- 宛先 IP アドレスから、宛先ネットワークアドレスを計算
 - ネットワークインターフェースのネットマスクを使用
 - 宛先ネットワークに応じて、パケットを送り出すネットワーク インターフェースを選択
- ルーティングテーブル
 - ネットワークアドレス毎に使用するインターフェースを定義
 - デフォルトルート: 知らないネットワークアドレス宛に使用 する

例: クライアントPCなど

- 宛先 IP アドレスから、宛先ネットワークアドレスを計算
 - 自身のネットマスクを使用
- 自身のネットワークでない場合には、デフォルトルートへ
- 自身のネットワークである場合には、イーサーネットプロトコルで通信

- PC1 から Server への通信
 - Server のネットワークアドレス 133.49.4.0 は、自ネットワーク ではない
 - デフォルトルート 192.168.1.254 ヘパケットを送信
- PC1 から PC2 への通信
 - PC2のネットワークアドレス 192.168.1.0 は、自ネットワーク
 - イーサーネットプロトコルで直接通信

ドメイン名

- IP アドレスは覚えられない
- IP アドレスからは、サーバの所属組織や目的が不明
- アプリケーションは、IP アドレスで接続することに注意

ドメイン名

- ドメイン名は重要
 - ac.jp: 高等教育機関 (大学、専門学校等) 限定
 - go.jp: 政府機関限定
 - co.jp: 日本で登記している会社組織
- jpドメイン配下の割り当ては JPRS (Japan Registry Services) が実施
 - https://jprs.co.jp
- 政府機関は、組織のドメインを使用することになっている
 - 政府機関等のサイバーセキュリティ対策のための統一基準群
 - https:
 - //www.nisc.go.jp/policy/group/general/kijun.html

DNS: Domain Name System

- FQDN (Fully Qualified Domain Name) と IP アドレスの対応付け
- DNS Contents Servers
 - 管理するホスト名の情報を提供する
- DNS Cache Servers
 - 組織内のクライアントの問い合わせを受ける
 - 外部の DNS Contents Servers から情報を取得して、クライアントへ提供
 - 一旦取得してデータは、しばらく保有して、問い合わせに備 える

DNSの階層構造

情報社会とセキュリティ 22/29

質問

コマンドラインを開いて、DNSを使って名前解決をしましょう。 コマンドはnslookupです。

- www.cc.saga-u.ac.jp
- www.saga-u.ac.jp
- www.google.co.jp

DHCP: Dynamical Host Configuration Protocol

- インターネット接続のためには、多数の設定が必要
- 正しく設定しないと、接続できない
- 一般ユーザには難しい
- 自動的に設定する方法
- サーバが必要

DHCPが自動で設定する項目

- IP アドレス
- ネットマスク
- デフォルトゲートウェイ
- DNS サーバ
- デバイスのドメイン名

アプリケーションとサービス

- トランスポート層以下は、アプリケーションによらず共通
- TCP/UDP ヘッダには、アプリケーションを区別する番号

主なポート番号

772.□	
番号	サービス
22	ssh (secure shell)
25	smtp (simple mail transfer protocol)
53	dns (domain name system)
80	http (hyper-text transfer protocol)
123	ntp (network time protocol)
443	https (hyper-text transfer protocol over TLS/SSL)

IPv4/IPv6

- IPv4: 従来のプロトコル
 - IP アドレスは 32 ビット: $2^{32} \simeq 4.3 \times 10^9$
 - アドレスの枯渇: アジア太平洋地域は 2011 年に枯渇
- IPv6: アドレス枯渇に対応した新プロトコル

- IPv6 の利点
 - 全てのデバイスに IP アドレスを
 - IP アドレス設定の自動化
- IPv6 の課題
 - IPv4 からの移行の困難: 一斉移行は不可能
 - 共存できるか?
 - IPv6 に対応できない機材の存在
- 主要サイトは IPv6 対応済み
- 佐賀大学総合情報基盤センターのホームページも IPv6

課題

自宅にインターネット環境がある人は、IPアドレスを確認しなさい。