Поверхностный скользящий разряд.

1. Основные параметры разряда

Поверхностный скользящий разряд		
Параметр	Величина	Размерность
Размеры	30	MM
Параметры газа (давление)	100	Торр
Напряжение	25000	В
Сила тока	1000	Α
Энергия электронов	2,20	еВ
Длительность	300	нс
Радиусс Дебая	1,00E-03	CM
Число электронов в сфере Дебая	100	ед
Плазменная частота	5,6 * 10E11	Гц
Напряженность эл поля	8333	B/cm
Приведенная напряженность	260	Тд
Частота для э-и столкновений	2,1*10E9	1/c
Выравнивание температуры электронов и ионов за время	4,7 * 10E-10	С
Максвеллизация ионов за время	3 * 10E-12	С
Максвеллизация электронов за время	3,9 * 10E-14	С

2. Реакции

Реакции, привозящие к рождению зарядов: 1), 2), 3)

Реакции, приводящие к гибели зарядов: 35), 36), 37), 38), 39),40) - 42).

Скорости реакций:

$$v_1 = 10^{23} \frac{1}{\text{cm}^3 \text{c}}$$

$$v_4 = 7 * 10^{23} \frac{1}{\text{CM}^3 \text{C}}$$

$$v_5 = 2 * 10^{23} \frac{1}{\text{CM}^3 \text{C}}$$

$$v_6 = 5 * 10^{23} \frac{1}{\text{CM}^3 \text{C}}$$

Реакции, приводящие к рождению фотона: 24), 29)

Реакции, приводящие к возбужденному состоянию: 4) - 7), 21), 22)

3. Спектр

Рис. 1 - спектр излучения

4. Максвелловская функция и функция Дрювестейна распределения электронов по энергиям.

5. Определение возбужденных состояний по спектру (рис. 1).

Для $C^3\Pi_u$: 3 возбужденных уровня

Для $B^3\Pi_g$: 8 возбужденных уровней

Для $A^3 \Sigma_u^+:$ 2 возбужденных уровня

6. Расчет колебательной температуры по спектру.

По приведенному спектру определяем интенсивность полос второй положительной системы азота. Далее строим график зависимости ln(I/q) от $\epsilon(v)$.

В результате получились графики с аппроксимирующими линейными зависимостями рис. 2:

Рис. 2 – аппроксимация экспериментальных точек.

Из найденных значений тангенса наклона линейной зависимости определяем колебательную температуру по формуле:

$$T_{v}^{C} = -\frac{hc}{k} \frac{\Delta G\left(v_{C}^{'}\right)}{\Delta \ln \left(\frac{I_{v_{C}v_{B}}^{''}}{q_{v_{C}v_{B}}^{''}v_{C}v_{B}^{''}}\right)}.$$

Далее определяем погрешность измерения: для этого используем погрешность снятия результатов со спектра (50 ед.), далее по формуле косвенных измерений через дифференцирование логарифма находим ошибку In(I/q), далее погрешность тангенса наклона графика, находим погрешность измерения температуры через формулу для косвенных измерений. В результате получаем следующие величины для колебательных температур:

Синий спектр: $T_k = 7520 \pm 544 \, K$

Фиолетовый спектр: $T_k = 8310 \pm 812 \ K$

В результате анализа колебательные температуры в пределах погрешности сходятся.