## Quantify uncertainty in soil water storage modelling with a Bayesian linear regression.

### Introduction

A gridded product of daily soil moisture at 250-meter spatial resolution was created by integrating in situ soil moisture from the Kansas Mesonet and a simple soil water storage model as part of my research. The model represented temporal soil moisture dynamics using the following equation:

$$S_{t} = \begin{cases} (S_{t-1} - S_{LL}) \lambda_{t} + S_{LL} + P_{t}, & S_{t} \leq S_{UL} \\ S_{UL}, & S_{t} > S_{UL} \end{cases}$$
(1)

Where  $S_t$  represent the soil water storage in the rootzone at day t,  $\lambda_t$  is a recursive parameter representing the fraction of remaining water storage after the daily storage loss due to the different processes of the water dynamics in soil.  $S_{LL}$  is the lowest limit the soil can reach after it is dry, and  $S_{UL}$  is the maximum amount of water the soil can store,  $S_{t-1}$ , represent the previous state of soil water storage. Finally,  $P_t$  represent the precipitation events. In the current model  $\lambda_t$  is implemented as a function of vapor pressure deficit (VPD).

# Significance of the study



Figure 1.  $\lambda$  as a function of VPD, different markers show different.

Figure 1 shows a correlation between VPD and  $\lambda$ ;, however, the proposed equation does not account for all the possible values that are not represented by the linear regression. Using a Bayesian approach for this problem can lead to more accurate and reliable predictions or inferences by incorporating prior knowledge and will represent the uncertainty.

## Methodology

Using the Bayesian framework, this project aims to quantify the uncertainty during the inference of the soil water storage dry-down in each location by adjusting a Bayesian linear regression model, which will provide a more accurate and reliable prediction of soil moisture dynamics by accounting for all possible values that are not represented by the linear regression equation currently used.

### **Data Dissemination**

The findings of this research will be published as part of my research in a poster at the 2023 ASA-CSA-SSSA annual meeting and a scientific article in the Vadoze Zone Journal. Moreover, the outcomes of this research will be used to develop a Mesoscale Soil Moisture Monitoring tool as one of the Rainfed Agriculture Innovation Network project objectives.