函数的连续性

钟思佳

东南大学数学系

October 20, 2017

间断点及其分类

If f在 x_0 处不连续,则称 x_0 为f的间断点。

例2. 判断
$$f(x) = \begin{cases} \frac{x^2-1}{x-1} & x > 0, \ x \neq 1 \\ 1 & x = 1 \end{cases}$$
 的间断点 $\frac{\sin x}{2x} & x < 0$

三种情况

- f(x)在 x_0 处极限存在,但 $\lim_{x \to x_0} f(x) \neq f(x_0)$, or f在 x_0 处根本 没有定义 ——可去间断点
- f(x)在 x_0 处左右极限都存在,但 $\lim_{x \to x_0^+} f(x) \neq \lim_{x \to x_0^-} f(x)$ ——跳跃间断点
- *f*(*x*)在*x*₀处左右极限至少有一个不存在 ——第二类间断点可去间断点和跳跃间断点都称为第一类间断点

例3. 讨论
$$f(x) = \frac{(x+1)\sin x}{|x|(x^2-1)}$$
的连续性,并指出间断点类型

例4. 试求函数 $f(x) = \lim_{t \to +\infty} \frac{x^3 e^{tx} - x}{e^{tx} - \sin x}$ 的间断点,并指出间断点的类型

闭区间上连续函数的性质

Theorem

若函数 $f \in C_{[a,b]}$,则存在 ξ , $\eta \in [a,b]$,使得 $\forall x \in [a,b]$,有

$$f(\xi) \leq f(x) \leq f(\eta)$$
.

 $f(\xi)$, $f(\eta)$ 分别称为f在区间[a, b]的最大最小值。

条件: 1. 闭区间: 2. 连续: 3. 有限区间

Theorem (零点存在定理)

若函数 $f \in C_{[a,b]}$,且 $f(a) \cdot f(b) < 0$,则存在 $\xi \in (a,b)$,s.t. $f(\xi) = 0$.

 ξ 称为f的零点或者f(x) = 0的根

Theorem (介值定理)

设 $f \in C_{[a,b]}$, $M = \max_{x \in [a,b]} f(x)$, $m = \min_{x \in [a,b]} f(x)$, 则 对 $\forall \mu \in [m,M]$, $\exists \xi \in [a,b]$, s.t. $f(\xi) = \mu$

间断点及其分类 闭区间上**连续函数的性质**

例5. 任何奇数次实系数多项式必有零点。

例6. 证明方程 $x - 2\sin x = a (a > 0)$ 至少有一个正实根