排列组合

DonQ

目录

1	基本计数原理	2
	1.1 加法原理和分类计数法	2
	1.2 乘法原理和分步计数法	2
2	排列组合	2
	2.1 排列	2
	2.2 组合	2
3	二项式定理	2
	3.1 二项式系数的关系	3
	3.2 系数	3
4	排列组合常用解法	4
	4.1 分析总纲	4
	4.2 元素受限法	4
	4.3 位置受限法	4
	4.4 "捆绑"法	4
	4.5 "插空"法	4
	4.6 先组后排法	5
	4.7 "去杂"法	5
	4.8 "插挡板"法	5
	4.9 "集合"法	5
	4.10 "概率"法	5
	4.11 "住店"法	6
	4.12 "查字典"法	6
	4.13 "消序"法	6
	4.14 "逆向"法	6
5	综合例题	7
6	环形涂色问题	9
7	练习	10

1 基本计数原理

1.1 加法原理和分类计数法

- 1) 加法原理: 做一件事,完成它可以有n类办法,在第一类办法中有 m_1 种不同的方法,在第二类办法中有 m_2 种不同的方法,...,在第n类办法中有 m_n 种不同的方法,那么完成这件事共有 $N=m_1+m_2+m_3+\cdots+m_n$ 种不同方法.
- 2) 分类的要求:每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同 (即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)

1.2 乘法原理和分步计数法

- 1) 乘法原理: 做一件事,完成它需要分成 n 个步骤,做第一步有 m_1 种不同的方法,做第二步有 m_2 种不同的方法,…,做第 n 步有 m_n 种不同的方法,那么完成这件事共有 $N = m_1 \times m_2 \times m_3 \times \cdots \times m_n$ 种不同的方法.
- 2) 合理分步的要求:任何一步的一种方法都不能完成此任务,必须且只须连续完成这 n 步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同.

2 排列组合

2.1 排列

排列的定义:从 n 个不同元素中,任取 m ($m \le n, m$ 与 n 均为自然数,下同)个元素按照一定的顺序排成一列,叫做从 n 个不同元素中取出 m 个元素的一个排列;从 n 个不同元素中取出 m ($m \le n$) 个元素的所有排列的个数,叫做从 n 个不同元素中取出 m 个元素的排列数,用符号 A_n^m 表示.

计算公式:

$$A_n^m = n(n-1)(n-2)(n-3)\cdots(n-m+1) = \frac{n!}{(n-m)!}$$

其中: $n! = n(n-1)(n-2)\cdots 1$. 此外规定: 0! = 1.

2.2 组合

组合的定义: 从n个不同元素中,任取m($m \le n$)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合; 从n个不同元素中取出m($m \le n$)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。用符号 C_n^m 表示. 计算公式:

$$C_n^m = \frac{A_n^m}{m!} = \frac{n!}{m!(n-m)!}$$

根据公式可得 $C_n^m = C_n^{n-m}$.

3 二项式定理

$$(a+b)^n = C_n^0 a^n + C_n^1 a^{n-1} b + \dots + C_n^r a^{n-r} b^r + \dots + C_n^n b^n \ (n \in \mathbb{N}).$$

其中 C_n^k 叫做二项式系数,用 T_{k+1} 表示通项,即 $T_{k+1} = C_n^k a^{n-k} b^k$.

3.1 二项式系数的关系

- 1) 和首尾两端等距离的二项式系数相等;
- 3) 二项式展开式中所有二项式系数总和为 2^n ,即 $C_n^0 + C_n^1 + C_n^2 + C_n^3 + \cdots + C_n^n = 2^n$
- 4) 二项式展开式中奇数项和偶数项总和相同,都是 2^{n-1} ,即 $\begin{cases} C_n^1 + C_n^3 + C_n^5 + \cdots + C_n^{2k-1} + \cdots = 2^{n-1} \\ C_n^0 + C_n^2 + C_n^4 + \cdots + C_n^{2k} + \cdots = 2^{n-1} \end{cases}$;

3.2 系数

- 1) $(a+bx)^n$ 的展开式中的各项系数和为 g(1);
- 2) $(a + bx)^n$ 展开式中的奇数项的系数和为 $\frac{g(1) + g(-1)}{2}$;
- 3) $(a+bx)^n$ 展开式中的偶数项的系数和为 $\frac{g(1)-g(-1)}{2}$.

4 排列组合常用解法

4.1 分析总纲

- 一套二分
 - (1) 套: 套类型

- 正难则反: 正面较难, 反面思考
- 特殊优先: 特殊元素, 特殊位置优先考虑

4.2 元素受限法

优先考虑(先排)受限特殊元素、后排非受限元素的方法.

例 1: 从 0-9 十个数字中,可以组成多少个没有重复数字的四位数?

解. 先考虑受限元素"0"

- 1) 不含"0": A₀⁴
- 2) 含有 "0": "0" 不在首位: 3 种, 其他元素: A³

共有 $A_0^4 + 3A_0^3$ 种排法

4.3 位置受限法

从特殊位置入手先排,再排非特殊位置.

例 2: 从 8 人中选 3 人站成一排,其中甲不站在首位,有多少种排法?

解. 首先受限位置:有 A_7^1 种,余下的位置有 A_7^2 种,共有 $A_7^1 \times A_7^2$ 种

4.4 "捆绑"法

主要解决某些元素"相邻"的排列问题.

例3:8件不同的商品排成一行,其中甲、乙、丙、丁四件商品一定要排在一起,有多少种排法?

解. 把甲、乙、丙、丁四件"捆"在一起,当做一个元素参与排列,有 A_5^5 种方法,而甲、乙、丙、丁四件 商品的排列有 A_4^4 种排列,共有 $A_5^5A_4^4=2880$ 种排列.

4.5 "插空"法

适用于某些元素"分离"的排列问题(即"不相邻"问题).

例 4: 三名男生与四名女生站成一排,按下列条件各有多少种不同的排法?

1) 男生互不相邻; 2) 男生、女生相间;

- 解. 1) 先将四名女生指定有 A_4^4 种方法,再将五个空档中插入三名男生有 A_5^3 种排列方法,共有 $A_4^4A_5^3 = 1440$ 种方法.
- 2) 男生比女生少一名,四名女生间只有 3 个空档,要使男女相间,只有在三个空档中插入三名男生,有 $A_4^4 A_3^3 = 144$ 种不同的排法.

4.6 先组后排法

即先选取元素后进行排列的方法.

例 5: 从单词 "eguation"中取 5 个不同字母排成一排,含有 "gu"(其中 "gu"相连且顺序不变)的不同排列共有多少个?

解. 从单词中出 "gu" 之外的 6 个字母中选 3 个字母的取法有 C_6^3 种,再将这 3 个字母与 "gu" 排列有 A_4^4 种方法,故有 $C_6^3A_4^4=480$ 个

4.7 "去杂"法

当问题反向思考更简单时,采用此方法,即"正难则反"的思维方式,从整体中去除不符合要求的"事件".

例 6: 若 {a, b, c} \subseteq {-3, -2, -1, 0, 1, 2, 3, 4},求符合条件的二次函数 $y = ax^2 + bx + c$ 的解析式有多少种?解. 八个数字中任选三个数字的排列有 A_8^3 种,但 a = 0 时的 A_7^2 种应去掉,所求解析式应有 $A_8^3 - A_7^2$ 种

4.8 "插挡板"法

例 7: 一个由 10 人组成的球队,他们由七个学校的学生组成,每校至少一人,其分配方案共有多少种? 解. 10 人排成一列,用 6 块挡板分成 7 段,每段至少一人,所以两挡板不相邻,且不在边上,即放在 9 个空档里,有 $C_9^6=84$ 种分配方案.

4.9 "集合"法

运用集合元素的个数及集合运算化难为易.

例 8: 5人排成一排,甲不在中间,乙不在头,丙不在尾的排法有几种?

解. 设集合 $A = \{ \text{甲在中间的排列} \}, B = \{ \text{乙在头的排列} \}, C = \{ \text{丙在尾的排列} \}, 则符合条件的排列有:$

$$A_5^5 - \left[n(A) + n(B) + n(C) \right] + \left[n(A \cap B) + n(B \cap C) + n(A \cap C) \right] - n(A \cap B \cap C)$$
$$= A_5^5 - 3A_4^4 + 3A_3^3 - A_2^2 = 64$$

4.10 "概率"法

从可能角度考虑问题,采用"概率"思想方法分析解决问题. **例 9:** 6 人站成一排,甲在乙的右边(不定相邻)的排法有几种?

第5页(共12页)

解. 6 人站成一排的全排列有 A_6^6 种,由于不是甲在乙的右边,就是乙在甲的右边,机会均等,故甲在乙的右边的排列有 $\frac{A_6^6}{2}=360$ 种.

4.11 "住店"法

在解决允许重复的排列问题时,要注意区分两类元素,一类元素可以重复,另一类元素不能重复,把不能重复的元素看作"客",能重复的元素看作"店",客可以在任一店中住,再利用分步计数原理直接求解的方法称为"住店法".

例 10: 1) 七名学生争夺五项冠军,获得冠军的可能的种数为 7⁵;

2) 3个班分别从5个风景点中选择1处游览,不同选法种数是53.

4.12 "查字典"法

例 11: 由 0, 1, 2, 3, 4, 5 六个元素可以组成多少个没有重复数字且比 324105 大的数?

解. 要找出比 324105 大的数:

- 1) 查首位: 首位有 4 或 5 共有 $2A_5^5$ 个;
- 2) 查头两位: 有 34 和 35 共有 2A₄ 个;
- 3) 查头三位: 有 325 共有 A³ 个;
- 4) 查头四位: 有 3245 共有 A² 个;
- 5) 查头五位:有 324510 这 1 个;

总计: $2A_5^5 + 2A_4^4 + A_3^3 + A_2^2 + 1 = 297$ 个.

4.13 "消序"法

主要解决"均匀无序分组"的问题,即均匀分成组且组与组之间不存在顺序关系.

例 12: 把 10 本书平均分成 5 堆,每堆 2 本,有多少种不同的分法?

解. 因为五堆之间无顺序关系,也就是 A_5^5 种关系视为一种关系,故有 $\frac{C_{10}^2C_8^2C_6^2C_4^2C_2^2}{A_5^5}=945$ 种分法.

一般情况下,n个元素分成无序的m组,每组r个元素,则分法总数为

$$\frac{C_n^r C_{n-r}^r C_{n-2r}^r \cdots C_r^r}{A_m^m} \not\uparrow r \ (mr = n)$$

4.14 "逆向"法

运用"逆向思维"的方法去分析,解决排列组合应用题.

例 13: 某餐厅供应客饭,每位顾客可以在餐厅提供的菜肴这两个任选2荤2素共4种不同的品种,现在餐厅准备了5种不同的荤菜,若要保证每位顾客有200种以上的不同选择,则餐厅至少还需要准备不同的素菜品种多少种?

解. 设至少需要准备不同的素菜品种 n 种 $(n \ge 2, n \in \mathbb{N})$.

$$C_5^2 C_n^2 > 200$$

$$C_n^2 > 20, \ \frac{n(n-1)}{2} > 20.$$
 $n \ge 7.$

故准备不同的素菜品种至少为7种.

5 综合例题

例 14: 4 个男生、3 个女生排成一排.

- 1) 3 个女同学必须排在一起: $A_5^5 \times A_3^3$ (相邻、捆绑)
- 2) 任意两个女同学不相邻: $A_4^4 \times A_5^3$ (插空)
- 3) 其中甲乙两同学之间恰好有 $3 人: A_5^3 \times A_2^2 \times A_3^3$ (捆绑)
- 4) 甲乙相邻, 但都不与丙相邻: $A_2^2 \times A_4^4 \times A_5^2$ (相邻、插空)
- 5) 女同学从左到右由高到矮按顺序排列
 - $\frac{A_7^7}{A_3^3}$ (取消顺序)
 - $A_4^1 \times A_5^1 \times A_6^1 \times A_7^1$ (逐步插入)
 - A⁴₇(从七个位置中选取四个位置排男生)
 - $A_4^4 \times (C_5^1 + 2 \times C_5^2 + C_5^3)$ (女生占一空、二空、三空)
 - $A_4^4 \times (5+4+3+2+1+4+3+2+1+3+2+1+2+1+1)$ (列举法)
- 6) 甲不在排头、乙不在排尾
 - 乙在排头: A₆
 - 乙不在排头: $A_5^1 \times A_5^1 \times A_5^5$ (特殊位置、分类、分步)
 - $A_7^7 2A_6^6 + A_5^5$ (正难则反)
- 7) 从7名学生中选择5人排列,甲不在排头,乙不在排尾
 - 有甲无乙: $C_5^4 \times A_4^1 \times A_4^4$
 - 有乙无甲: $C_5^4 \times A_4^1 \times A_4^4$
 - 有甲有乙: $C_5^3 \times (A_5^5 2A_4^4 + A_3^3)$

(分类,分步,特殊优先,正难则反)

- 8) 把此 7 人保送到 5 所学校,每校至少 1 人: $C_7^3 \times A_5^5 + \frac{C_7^2 \times C_5^2 \times A_5^5}{A_2^2}$ (人数相同分类 n 类,除以 A_n^n)
- 9) 取 3 人,至少一男一女

- $C_4^1 \times C_3^2 + C_3^1 \times C_4^2$ (一男两女 + 一女两男, 分类)
- C₇³ C₄³ C₃³(正难则反)

6 环形涂色问题

环形涂色问题又称为多边形的涂色问题, 在一般的题型中, 可将题意抽象为环形涂色问题, 该问题的一般化为: 用 $m(m \ge 3)$ 种不同颜色给 n 边形 $A_1, A_2, A_3 \dots A_n$ 各项点涂色, 且相邻项点不同色, 则不同的涂色方案有 a_n 种.

定理 6.1. 设环形涂色的方案数为,则 a_n 的递推公式为:

$$\begin{cases} a_n = m(m-1)^{n-1} - a_{n-1} \\ a_3 = m(m-1)(m-2) \end{cases}$$

证明. 如图所示: 在 A_1 处有 m 种涂色方案,在 A_2 , A_3 ... A_{n-1} 处有 m-1 种涂色方案,此时考虑 A_n 也有 m-1 种涂色方案在此情况下,有两种情况:

- 1) A_n 与 A_1 同色, 此时相当于 A_n 与 A_1 重合, 这时问题转化为 m 种不同颜色给 n-1 边形涂色, 即为 a_{n-1} 种 涂色方案;
- 2) A_n 与 A_1 不同色, 此时问题就转化为用 m 种不同颜色给 n 边形的各项点涂色, 且相邻项点不同色, 即此时的情况就是 a_n 。根据分类原理可知 $m(m-1)^{n-1}=a_n+a_{n-1}$,且满足初始条件: $a_3=m(m-1)(m-2)$ 即 递推公式为:

$$\begin{cases}
 a_n = m(m-1)^{n-1} - a_{n-1} \\
 a_3 = m(m-1)(m-2)
\end{cases}$$

定理 6.2. 设环形涂色的方案数为 a_n , 则 a_n 的通项公式为 $a_n = (m-1)^n + (-1)^n (m-1)$

证明. 根据定理一的递推公式,有:

$$a_n = m(m-1)^{n-1} - a_{n-1}$$

$$= (m-1+1)(m-1)^{n-1} - a_{n-1}$$

$$= \frac{(m-1)^n}{(m-1)^{n-1}} - a_{n-1}$$

所以

$$a_n - (m-1)^n = -[a_{n-1} - (m-1)^{n-1}]$$

$$= [m(m-1)(m-2) - (m-1)^3](-1)^{n-3}$$

$$= (m-1)(-1)^n$$

所以

$$a_n = (m-1)^n + (-1)^n (m-1)$$

7 练习

1.	将 2 名老师、4 名学生分成 教师和 2 名学生组成,不同		1、乙两个地方参加社会实	践活动,每个小约	祖由 1 (名)
	(A) 12 种	(B) 10 种	(C) 9 种	(D) 8 种		
2.	5 名志愿者分到 3 所学校支	ට 教,每个学校至少有一名	3志愿者,则不同的分法共	有	()
	(A) 150 种	(B) 180 种	(C) 270 种	(D) 540 种		
3.	A, B, C, D, E 五个人并排 有	站成一排,如果 B 必须站	在 A 的右边 (A, B 可以不相	泪邻),那么不同的	的排法 (共)
	(A) 24 种	(B) 60 种	(C) 90 种	(D) 120 种	(,
4.	在数字 1, 2, 3, 4, 5 组成的			43521 的数共有	()
•••	(A) 56 个	(B) 57 个	(C) 58 个	(D) 60 个	(,
5.	某小型节目由 6 个节目组成 丙必须排在最后一位,则不		7必须排在前面两位,节目	乙不能排在第一位	位,节 (目)
	(A) 36	(B) 42	(C) 48	(D) 54		
6.	12 名同学合影,站成前排 相对顺序不变,则不同的记	4 人后排 8 人,现摄影师 周整方案的总数是	要求从后排8人中抽2人	调整到前排,若其	其他人 (的)
	(A) $C_8^2 A_6^6$	(B) $C_8^2 A_3^2$	(C) $C_8^2 A_6^2$	(D) $C_8^2 A_5^2$		
7.	3 位男生和 3 位女生共 6 位 同的排法的种数是	立同学站成一排,若男生甲	甲不站两端,3位女生有且	只有2位女生相邻	郊,则 (不)
	(A) 360	(B) 288	(C) 216	(D) 96		
8.	小明和父母、爷爷奶奶一 人与他相邻,则不同的坐浴		的现场录制,5 人坐成一排	丰. 若小明的父母至	至少有 (_)
	(A) 60	(B) 72	(C) 84	(D) 96		
9.	甲、乙、丙、丁、戊五人	非成一排,甲和乙都排在丙	5的同一侧,排法种数为		()
	(A) 12	(B) 40	(C) 60	(D) 80		
10	. 在手绘涂色本上的某页上 条鱼只能涂一种颜色,两					
	为				()
	(A) 14	(B) 16	(C) 18	(D) 20		
11.	. $(x^2 + x + y)^5$ 的展开式中	, x ⁵ y ² 的系数为			()
	(A) 10	(B) 20	(C) 30	(D) 60		
12	. 在 $\left(\sqrt{x} + \frac{2}{x}\right)^n$ 的二项式展	开式中,若常数项为 60,	则 n 等于		()
	(A) 3	(B) 6	(C) 9	(D) 12		

- 31. 已知 $(5x-1)^n$ 的展开式中,各项系数和与各项二项式系数的和之比为 64:1,则 n=_____.
- 32. 已知 $(1-x)^5 = a_0 + a_1x + a_2x^2 + a_3x^3 + a_4x^4 + a_5x^5$,则 $(a_0 + a_2 + a_4)(a_1 + a_3 + a_5)$ 的值等于______.
- 33. 用 0,1,2,3,4,5 这 6 个数能组成多少个满足下列条件的无重复的数字:
 - (1)6位奇数;
 - (2) 个位数字不是5的六位数;
 - (3) 不大于 4310 的四位偶数.