实验二预习报告

应用 Multisim 软件工具设计电路验证网络定理

预习任务:

- 1, 复习基尔霍夫定理
- 2, 复习叠加定理
- 3, 复习戴维南定理
- 4, 确定实验电路及参数
- V1 V2 同时作用

只有 V1 作用

只有 V2 作用

基尔霍夫定理、叠加定理的验证

状态	测量电路							
	U1(V)	U2(V)	U3(V)	11(A)	12(A)	13(A)		
V1V2 同时	3.963	5.963	6.037	8.431m	0.012	0.02		
仅有 V1	7.133	-2.867	2.867	0.015	-5.622m	9.556m		
仅有 V2	-3.17	8.83	3.17	-6.746m	0.017	0.011		
叠加后	3.963	5.963	6.037	8.254m	0.011	0.021		

由测量结果知,在误差允许范围内,基尔霍夫定理、叠加定理成立。

戴维南定理的验证

把 R3 断开, 测量开路电压为 10.959

把 R3 短路,测量短路电流为 0.045

故等效电阻为

设计表格:

2441 4418							
	R3 的电流(A)	R3 的电压(V)					
在原来的电路条件下							
在戴维南化简后的条件下							

5, 查找资料, 了解二极管特性。

2.1.1 数字电路中的半导体器件

1) 二极管

二极管由P型半导体、N型半导体、一个PN结、电极引线和管壳封装而成。将P型半导体与N型半导体制作在同一块半导体(硅Si或锗Ge)基片上,在交界面上会形成PN结。

(a) 二极管的特性

图2-2 二极管伏安特性

- ▶ PN结外加正向电压: P区接正极, N区接负极, 称为正偏
- ➤ PN结外加反向电压: P区接负极, N区接正极, 称为反偏
- ▶ PN结正偏: 容易导电
- ➤ PN结反偏: 不容易导电

图2-1 二极管结构与符号

▶ 正向特性

外加正向电压时,若正向电压很小,不 足以克服PN结内电场的阻挡作用,正向电流 几乎为零,这一段称为死区;

当正向电压大于阈值电压*U_{th}*(开启电压),正向电流开始明显增大;当大于导通电压,二极管处于完全导通状态,此时两端电压变化很小。硅(锗)管的开启电压为0.6(0.2)V,导通电压为0.7(0.3)V。

▶ 反向特性

外加反向电压不超过一定范围时,会形成反向电流,二极管处于<mark>截止状态;</mark>

反向电流很小($i \approx -I_s$),且几乎不变,称 I_s 为反向饱和电流。

▶ 反向击穿特性

外加反向电压超过某一数值时,反向电流会突然增大,这称为<mark>电击穿</mark>;二极管的反向击穿电压 $U_{\rm BR}$ 一般在几十伏以上。

▶ 静态开关特性

加正向电压时导通,电压降很小(≈0.7 V),近似看做是一闭合 开关:

外加反向电压时二极管截止,反向电流很小($<1\,\mu A$),故近似看做是一断开开关。

▶ 动态开关特性

二极管在动态过程中其内部电荷的建立和消散都需要时间,此时间虽短(约为几纳秒),但毕竟存在,故影响二极管的开关速度。

> 理想二极管

当管子正向偏置时,其电压降为零伏;而当管子反向偏置时,其 电阻为无穷大,电流为零。

设计表格:

WI WH.									
状态	测量电路								
	U1(V)	U2(V)	U3(V)	11(A)	12(A)	13(A)			
V1V2 同时									
仅有 V1									
仅有 V2									
叠加后									

思考题:

①电流表的内阻参数默认值为 $1n\Omega$, 电压表的内阻参数默认值为 $1M\Omega$, 本实验中他们是否需要重新设置? 应如何考虑他们对电路测试结果的影响。

电压表内阻远大于被测电阻, 而电流表内阻远小于被测电阻, 所以电压表分流和电流表分压都很小, 所以误差可以忽略。

②分析实验过程中测量值出现负值的原因。

若该支路的电流实际为由左向右, 当电流表为左正右负时, 电流表测量值为正, 当电流表为左负右正时, 电流表测量值为负; 同理, 电压表也是如此。所以这与参考方向, 与正方向以

及电压表和电流表的正负接法有关。