Механизм внимания – Attention

Seq2seq with attention Attention output Attention Concatenate distribution Attention scores Encoder

Attention output Attention distribution Attention scores Encoder

Обозначим состояния энкодера $\mathbf{h}_1,\dots,\mathbf{h}_N\in\mathbb{R}^k$ и состояния декодера на момент t $\mathbf{s}_t\in\mathbb{R}^k$

Тогда "attention scores" \mathbf{e}^t выражаются следующим образом:

$$\mathbf{e}^t = [\mathbf{s}^T \mathbf{h}_1, \dots, \mathbf{s}^T \mathbf{h}_N]$$

Итоговый вектор – линейная комбинация состояний энкодера

$$\mathbf{a}_t = \sum_{i=1}^N oldsymbol{lpha}_i^t \mathbf{h}_i \in \mathbb{R}^k$$
 , где $oldsymbol{lpha}_t = \operatorname{softmax}(\mathbf{e}_t)$

Attention полезен и для интерпретации результатов

Варианты attention:

- Dot-product attention: $e_i = s^T h_i \in \mathbb{R}$
- Multiplicative attention: $e_i = s^T W h_i \in \mathbb{R}$
 - \bigcirc $W \in \mathbb{R}^{d_2 imes d_1}$ матрица весов
- Additive attention: $e_i = v^T \tanh(W_1 h_i + W_2 s) \in \mathbb{R}$
 - \circ $oldsymbol{W}_1 \in \mathbb{R}^{d_3 imes d_1}, oldsymbol{W}_2 \in \mathbb{R}^{d_3 imes d_2}$ матрицы весов
 - $v \in \mathbb{R}^{d_3}$ вектор весов