学习报告

姜钦瀚

2020年3月7日

1 Coefficient Functions

考虑如下的 d 维 sde

$$X_{t} = X_{t_{0}} + \int_{t_{0}}^{t} a(s, X_{s}) ds + \sum_{j=1}^{m} \int_{t_{0}}^{t} b^{j}(s, X_{s}) dW_{s}^{j}$$
 (1)

定义

$$L^{0} = \frac{\partial}{\partial t} + \sum_{k=1}^{d} a^{k} \frac{\partial}{\partial x^{k}} + \frac{1}{2} \sum_{k=1}^{d} \sum_{j=1}^{m} b^{k,j} b^{l,j} \frac{\partial^{2}}{\partial x^{k} \partial x^{l}}$$
 (2)

对于 $j \in 1,...,m$ 定义

$$L^{j} = \sum_{k=1}^{d} b^{k,j} \frac{\partial}{\partial x^{k}}$$
 (3)

对于任意 $\alpha=(j_1,...,j_l)$ 和任意函数 $f\in C^h(R^+\times R^d,R), h=l(\alpha)+n(\alpha)$ 定义 Ito coefficient function

$$f_{\alpha} = \begin{cases} f & : \quad l = 0 \\ L^{j_1} f_{-\alpha} & : \quad l \ge 1 \end{cases}$$
 (4)

2 Hierarchiacal and Remainder Sets

Hierarchical 集 \mathcal{A} 的定义: $\mathcal{A} \in \mathcal{M}$ 满足 $\mathcal{A} \neq \emptyset$ 且 $\sup_{\alpha \in \mathcal{A}} l(\alpha) < \infty$, $-\alpha \in \mathcal{A}$ for each $\alpha \in \mathcal{A} \setminus \{v\}$ 。

对于上述的 A 定义 remainder 集 $\mathcal{B}(A)$ 为

$$\mathcal{B}(\mathcal{A}) = \{ \alpha \in \mathcal{M} \ \mathcal{A} : -\alpha \in \mathcal{A} \}$$

3 Ito-Taylor 展开

考虑 d 维的 Ito 过程

$$X_{t} = X_{t_{0}} + \int_{t_{0}}^{t} a(s, X_{s}) ds + \sum_{j=1}^{m} \int_{t_{0}}^{t} b^{j}(s, X_{s}) dW_{s}^{j}$$
 (5)

这里 $t \in [t_0, T]$, m 代表 Brown 的分量数。

定理 3.1. 设 ρ 和 τ 是两个满足如下条件的停时

$$t_0 \le \rho(\omega) \le \tau(\omega) \le T, a.s.$$

令 $A \subseteq M$ 是一个 hierarchical 集, $f: R^+ \times R^d \to R$, 假设 f 足够光滑, 且下列多重积分存在 Ito-Taylor 展开如下

$$f(\tau, X_{\tau}) = \sum_{\alpha \in \mathcal{A}} I_{\alpha} \left[f_{\alpha} \left(\rho, X_{\rho} \right) \right]_{\rho, \tau} + \sum_{\alpha \in B(\mathcal{A})} I_{\alpha} \left[f_{\alpha} \left(\cdot, X_{\cdot} \right) \right]_{\rho, \tau}$$
 (6)

下面的两个例子体现了 Ito-Taylor 展开与 Taylor 公式和 Ito 公式的联系:

设 $\mathcal{A} = \{v\}$ 则 $\mathbf{B}(\{v\}) = \{(0), (1), \dots, (m)\}$,则由 Ito - Taylor 展开可知

$$f(\tau, X_{\tau}) = I_{v} [f_{v} (\rho, X_{\rho})]_{\rho, \tau} + \sum_{\alpha \in \mathcal{B}(\{v\})} I_{\alpha} [f_{\alpha} (\cdot, X_{\cdot})]_{\rho, \tau}$$

$$= f(\rho, X_{\rho}) + \int_{\rho}^{\tau} L^{0} f(s, X_{s}) ds + \sum_{j=1}^{m} \int_{\rho}^{\tau} L^{j} f(s, X_{s}) dW_{s}^{j}$$
(7)

回顾 L^i 算子的定义,上述公式便是 Ito 公式。接下来考虑 $d=1, f(t,x)=f(x), a=1, b=0, \rho=0, \tau=t$ 则显然 $X_t=t,$ 取 $\Gamma_l=\{\alpha\in\mathcal{M}: l(\alpha)\leq l\}$ 对任意 $\alpha\in\Gamma_l$ 有

$$f_{\alpha} = \begin{cases} f & : \alpha = v \\ f^{(I)} : l \ge 1 \text{ and } j_1 = \dots = j_l = 0 \end{cases}$$

只要有一个 j_i 不为 0, 由于 $b=0,f_\alpha$ 必为 0,且当 $j_1=...=j_l=0$ 时

$$I_{\alpha}[f(X.)]_{t_0,t} = \int_{t_0}^t \cdots \int_{t_0}^{s_2} f(s_1) ds_1 \dots ds_k$$

将上述式子代入 $f(X_t)$ 的 Ito-Taylor 展开中可得

$$f(t) = f(X_{t_0}) + \sum_{\alpha \in \Gamma_k \setminus \{v\}} I_{\alpha} [f_{\alpha}(X_{t_0})]_{t_0,t} + \sum_{\alpha \in \mathcal{B}(\Gamma_k)} I_{\alpha} [f_{\alpha}(X_{\cdot})]_{t_0,t}$$

$$= \sum_{i=0}^k \int_{t_0}^t \cdots \int_{t_0}^{s_2} f^{(i)}(X_{t_0}) ds_1 \dots ds_i + \int_{t_0}^t \cdots \int_{t_0}^{s_2} f^{(k+1)}(X_{s_1}) ds_1 \dots ds_{k+1}$$

$$= f(t_0) + \sum_{i=1}^k \frac{1}{i!} f^{(i)}(t_0) (t - t_0)^i + \int_{t_0}^t \cdots \int_{t_0}^{s_2} f^{(k+1)}(s_1) ds_1 \dots ds_{k+1}$$
(8)

这就是普通的 Taylor 展开

引理 3.1. 设 ρ 和 τ 是两个满足如下条件的停时

$$t_0 \le \rho(\omega) \le \tau(\omega) \le T, a.s.$$

函数 $f: \mathbb{R}^+ \times \mathbb{R}^d \to \mathbb{R}$ 属于 $\mathcal{C}^{1,2}$ 则

$$f(\tau, X_{\tau}) = f(\rho, X_{\rho}) + \sum_{i=0}^{m} I_{(j)} \left[L^{j} f(\cdot, X_{\cdot}) \right]_{\rho, \tau}$$
(9)

当引理中的 $\rho = t_0$, $\tau = T$ 时上式为 Ito 公式。

引理 3.2. 设 ρ 和 τ 是两个满足如下条件的停时

$$t_0 \le \rho(\omega) \le \tau(\omega) \le T, a.s.$$

 $\alpha, \beta \in \mathcal{M}$, 且 $l(\beta) > 0$ 。 $f: R^+ \times R^d \to R$,假设 f 足够光滑,且下列多重积分存在,则

$$I_{\alpha} \left[f_{\beta}(\cdot, X.) \right]_{\rho, \tau} = I_{\alpha} \left[f_{\beta} \left(\rho, X_{\rho} \right) \right]_{\rho, \tau} + \sum_{j=0}^{m} I_{(j)*\alpha} \left[f_{(j)*\beta}(\cdot, X.) \right]_{\rho, \tau}$$
(10)

证明. 关于 $l(\alpha)$ 使用数学归纳法,设 $l(\alpha)=0$ 则 $\alpha=v$,由引理 3.1

$$I_{\alpha} \left[f_{\beta}(\cdot, X.) \right]_{\rho, \tau} = f_{\beta} \left(\tau, X_{\tau} \right)$$

$$= f_{\beta} \left(\rho, X_{\rho} \right) + \sum_{j=0}^{m} I_{(j)} \left[L^{j} f_{\beta}(\cdot, X.) \right]_{\rho, \tau}$$

$$= I_{\alpha} \left[f_{\beta} \left(\rho, X_{\rho} \right) \right]_{\rho, \tau} + \sum_{j=0}^{m} I_{(j)*\alpha} \left[f_{(j)*\beta}(\cdot, X.) \right]_{\rho, \tau}$$

$$(11)$$

接下来设 $l(\alpha) = k \ge 1, \alpha = (j_1, ..., j_k)$,对 $I_{(j_k)} \left[I_{\alpha-} \left[(f_{\beta}(\cdot, X_{\cdot})]_{\rho \cdot} \right]_{\rho, \tau} \right]$ 使用 归纳假设得

$$I_{\alpha} \left[f_{\beta}(\cdot, X.) \right]_{\rho,\tau} = I_{(j_k)} \left[I_{\alpha-} \left[\left(f_{\beta} \left(\cdot, X. \right) \right]_{\rho} \right]_{\rho,\tau} \right]$$

$$= I_{(j_k)} \left[I_{\alpha-} \left[\left(f_{\beta} \left(\rho, X_{\rho} \right) \right]_{\rho} \right]_{\rho,\tau} \right]$$

$$+ \sum_{j=0}^{m} I_{(j_k)} \left[I_{(j)*\alpha-} \left[f_{(j)*\beta} \left(\cdot, X. \right) \right]_{\rho,\tau} \right]_{\rho,\tau}$$

$$= I_{\alpha} \left[f_{\beta} \left(\rho, X_{\rho} \right) \right]_{\rho,\tau}$$

$$+ \sum_{j=0}^{m} I_{(j)*\alpha} \left[f_{(j)\cdot\beta} \left(\cdot, X. \right) \right]_{\rho,\tau}$$

$$(12)$$

对 Ito-Taylor 展开的证明如下:

证明. 对 $l_1(\mathcal{A}) = \sup_{\alpha \in \mathcal{A}} l(\alpha)$ 进行归纳,当 $l_1(\mathcal{A}) = 0$ 时 $\mathcal{A} = \{v\}$,则 $B(\mathcal{A}) = \{(0), (1), \cdots, (m)\}$ 由引理 3.1 可知

$$f(\tau, X_{\tau}) = \sum_{\alpha \in \mathcal{A}} I_{\alpha} \left[f_{\alpha} \left(\rho, X_{\rho} \right) \right]_{\rho, \tau} + \sum_{\alpha \in B(\mathcal{A})} I_{\alpha} \left[f_{\alpha} \left(\cdot, X_{\cdot} \right) \right]_{\rho, \tau}$$
(13)

接下来假设 $l_1(A) = k \ge 1$ 设

$$\mathcal{E} = \{ \alpha \in \mathcal{A} : l(\alpha) \le k - 1 \}$$

显然 \mathcal{E} 是一个 hierarchical 集,由归纳假设

$$f(\tau, X_{\tau}) = \sum_{\alpha \in \mathcal{E}} I_{\alpha} \left[f_{\alpha} \left(\rho, X_{\rho} \right) \right]_{\rho, \tau} + \sum_{\alpha \in \mathcal{B}(\mathcal{E})} I_{\alpha} \left[f_{\alpha} \left(\cdot, X_{\cdot} \right) \right]_{\rho, \tau}$$
(14)

显然 $A \setminus \mathcal{E} \subseteq \mathcal{B}(\mathcal{E})$ 对任意 $\beta = \alpha \in A \setminus \mathcal{E}$ 由引理 3.2 可得

$$f(\tau, X_{\tau}) = \sum_{\alpha \in \mathcal{E}} I_{\alpha} [f_{\alpha} (\rho, X_{\rho})]_{\rho, \tau} + \sum_{\alpha \in \mathcal{A} \setminus \varepsilon} I_{\alpha} [f_{\alpha} (\cdot, X_{\cdot})]_{\rho, \tau} + \sum_{\alpha \in \mathcal{B}(\mathcal{E}) \setminus (\mathcal{A} \setminus \varepsilon)} I_{\alpha} [f_{\alpha} (\cdot, X_{\cdot})]_{\rho, \tau}$$

$$(15)$$

$$= \sum_{\alpha \in \mathcal{E}} I_{\alpha} \left[f_{\alpha} \left(\rho, X_{\rho} \right) \right]_{\rho, \tau}$$

$$+ \sum_{\alpha \in \mathcal{A} \setminus \varepsilon} \left[I_{\alpha} \left[f_{\alpha} \left(\rho, X_{\rho} \right) \right]_{\rho, \tau} + \sum_{j=0}^{m} I_{(j) * \alpha} \left[f_{(j) * \alpha} (\cdot, X_{\cdot}) \right]_{\rho, \tau} \right]$$

$$+ \sum_{\alpha \in \mathcal{B}(\mathcal{E}) \setminus (\mathcal{A} \mid \varepsilon)} I_{\alpha} \left[f_{\alpha} (\cdot, X_{\cdot}) \right]_{\rho, \tau}$$

$$= \sum_{\alpha \in \mathcal{A}} I_{\alpha} \left[f_{\alpha} \left(\rho, X_{\rho} \right) \right]_{\rho, \tau} + \sum_{\alpha \in \mathcal{B}_{1}} I_{\alpha} \left[f_{\alpha} (\cdot, X) \right]_{\rho, \tau}$$
显然 $\mathcal{B}_{1} = \mathcal{B}(\mathcal{A})$

4 模拟随机过程的轨道

4.1 Brown 运动的轨道

对时间剖分 $0=t_0 < t_1 < ... < t_n = T$ 求出 $\Delta t_i, i=1,2..n$,分别生成服从 $N(0,\Delta t_i)$ 的随机数 w_i ,则 Brown 运动在该轨道下 t_i 取值为 $\sum\limits_{i=1}^i w_i$

4.2 其他随机过程

模拟随机过程

$$u(W(t)) = \exp\left(t + \frac{1}{2}W(t)\right) \tag{16}$$

u(W(t)) 的均值为 $e^{9t/8}$, 重复试验 4000 次求其均值, 结果如下

