http://www.mojvideo.com/vide o-a-i-artificial-intelligence-2001full-movie-online-eng-subs-1-2/de6ed4ec9390a29384a6

3333

Prednáška # 5

Umelé Neuronové siete - základy

Štruktúra prednášky

- Biologická inšpirácia
- topológia neurónových sietí
- Kontrolované verzus nekontrolované učenie NS
- Príznakový priestor a jeho formy ako vstup do NS
- Výstup neurónovej siete a jeho formy
- Perceptron ako jednoduchá neurónová siet
- Metoda spätného sírenia chyby základný princíp
- Univerzálna aproximačná teoréma
- Deep Learning ako komplex neurónových podsietí
- Aplikačný potencial neurónových sietí kedy ich použiť

Biologický neuron

Zaujímavosti o mozgu

- Mozog obsahuje približne 100 miliárd mozgových buniek (neurónov)
- Počas skorých fáz tehotenstva vzniká aj 250 000 neurónov za jedinú minútu
- Viac neurónov je na l'avej strane mozgu (cca o 186 miliónov)
- Celková rozloha mozgovej kôry je 2500 cm štvorcových
- 77 78 percent mozgu tvorí voda
- Asi 4 minúty bez kyslíka vydrží mozog bez vážnejších dôsledkov
- Mozgová hmota v sebe nemá receptory bolesti, mozog teda nemôže cítiť bolesť
- Mozog dokáže spracovať informácie rýchlosťou 120 metrov za sekundu
- Keď človek bdie, jeho mozog produkuje medzi 10 a 23 wattmi energie
- **Prostredie,** v ktorom dieťa vyrastá, má vplyv na výkon mozgu (plus mínus 25 percent) pomáha napríklad aj čítanie nahlas

Topológia neurónových sietí

Toky signálu vrámci neurónovej siete

- 1. Sekvenčný
- 2. Blok Sekvenčný
- 3. Synchronny
- 4. Asynchronny

Čo je to SPIKE – forma šírenia signálu v mozgu

Integrate & Fire

Čo sú to neurónové siete?

Neurón - procesný element

Vstupná funckia

- SIGMA Neuron
- PI NEURON
- Mix typ

Aktivačná funkcia

- 1. Linearna funkcia
- 2. Po častiach lineárna
- 3. Sigmoidalna funkcia
- 4. iné

Piecewise Linear

Iné aktivačné funkcie napr. Gausian ...

Výstupná funcia

Funkcia Identity

alebo iná funkcia

Aká je vhodná funkcia ????

- závisí od topológie
- závisí od dát
- závisí od spôsobu učenia

Čo vraví biológia ??? – Aké aktivačné funcie má biologický neurón?

Základná logika učenia Neurónových sietí

Dáta:

Učenie – Kontrolované učenie – Máme vstupy do systému a k nemu prislúchajúce výstupy

Učenie – Nekontrolované - máme iba vstupy

Čo robí mozog?

Základná logika učenia Neurónových sietí

Dáta:

Učenie – Kontrolované učenie – Máme vstupy do systému a k nemu prislúchajúce výstupy

Učenie – Nekontrolované - máme iba vstupy

Čo robí mozog - kontrolovanom prístupe ???

Kontrolované učenie

Chyba Učenia E \rightarrow 0 Ako a čím to dosiahnúť

Zmena Váh NS

Teda:

Učenie NS je $\delta E / d w \neq 0$ - proces učenia

Život NS je $\delta E / d w = 0$ - proces života

Aká chyba ????

- 1. Chyba prvého typu Ozaj je to MALE a klasifikuje to ako FEMALE
- 2. Chyba druhého typu NAOZAJ je to FEMALE a klasifikuje to ako MALE

	MUŽ	ŽENA	
Výstup 1	88	6	
Výstup 2	12	94	

Kvantitatívna forma hodnotenia CHYBY

- Jednoduchá odchýlka od chyby na výstupe NS obecne – tzv. Akumulovaná Chyba
- 2. Komplexná kontigenčná tabuľka

Chybová Tabuľka

Image To Be Evaluated							
Reference		Urban	Agriculture	Range	Forest	Water	
	Urban	310	9	18	23	18	378
	Agriculture	61	1051	92	147	12	1363
	Range	12	32	561	86	17	708
	Forest	23	87	218	1202	8	1538
	Water	11	7	12	27	270	327
		417	1186	901	1485	325	3394

Dalšie informácie o mozgu ...

http://magazin.atlas.sk/zdravie/10-naj-prekvapivych-pravd-o-mozgu/807349.html

https://www.youtube.com/watch?v=gcK 5x2KsLA

QUESTION:

"Viete si predstavit klasifikaciu že na vstupe je politik a na výstupe do ake strany patrí ???

Čo robí mozog - nekontrolovanom prístupe ???

Ne-existuje učiteľ

Existuje niečo medzi kontrolovaným a nekontrolovaným učením

https://www.youtube.com/watch?v=GPAfjWsKmmQ

Vstup do Neurónovej siete – príznakový priestor – Dáta

- 1.Realne Data (v prípade obrazu napr. pixely z RGB obrazu)
- 2.Odvodené dáta tzv. Descriptory...
 - (v prípade obrazu texturalne a contexturalne príznaky)

Čo je to digitálny obraz?

Electromagnetic Spectrum

Colorometria

RBG ...

Čo je to digitálny obraz ...

```
10 20 20 20 30 30 35 35 37
10 20 20 20 30 30 35 35 37
10 20 20 20 30 30 35 35 37
10 20 20 20 30 30 35 35 37
10 20 20 20 30 30 35 35 37
10 20 20 20 30 30 35 35 37
10 20 20 20 30 30 35 35 37
10 20 20 20 30 30 35 35 37
```

Pseudo Farby

	R	G	В
10	50	80	100
20	10	0	255
37	255	255	255

Rozmery digitálneho obrazu

```
10 20 20 20 30 30 35 35 37
10 20 20 20 30 30 35 35 37
10 20 20 20 30 30 35 35 37
10 20 20 20 30 30 35 35 37
10 20 20 20 30 30 35 35 37
10 20 20 20 30 30 35 35 37
10 20 20 20 30 30 35 35 37
```

nxm(RBG)

- 1. 640 x 480
- 2. HD 1440 x 1080
- 3. Full HD 1920x 1080
- 4. UHD image 3840 x 2160
- 5. Cinema 4K image 4096 x 3112
 - 6. 8K image 7680 x 4320

Odvodené príznaky

Generate SIFT features

Koniec časti čo je to digitálny obraz

Čo je výstup Neurónovej siete

Napr.: trieda – výsledok klasifikácie

Rôzne formy

- 1. Priama
- 2. Kodovaná

Perceptron – základná neurónová sieť

Perceptron (1957)

Perceptron ... Lineárna klasifikácia

https://www.youtube.com/watch?v=cNxadbrN_al

Teda o čo ide pri perceptrone – aká je úloha??

ČO vieme : (apriorna informácia)

Máme iba dve triedy – FEMALE and MALE Iná trieda NEMOŽE BYŤ

Chceme stroj ktorý sa naučí rozdeľovať mužov a ženy do dvoch tried

Teda ide o rozdelenie príznakového priestoru

Ako meniť tieto váhy ???

Pravidla adaptácie váh

Dva prípady

Prvý:

- A. Ak na vstupe je X1 (MUZ) a \sum W. X > 0 tak perceptron pracuje dobre nerobím NIC
- B. Ak na vstupe je X2 (ZENA) a ∑ W. X ≤ 0 tak perceptron pracuje dobre nerobím NIC

Pravidla adaptácie váh

Druhý:

A. Ak na vstupe je X1 (MUZ) a \sum W. X \leq 0 - tak perceptron adaptuje váhy

$$W(T+1) = W(T) + X1$$

B. Ak na vstupe je X2 (ZENA) a \sum W. X > 0 - tak perceptron adaptuje váhy

$$W(T+1) = W(T) - X2$$

Čo vlastne pri učení robim

Hľadam rovnicu separačnej priamky

https://goo.gl/7Kqo9X - percetron

https://goo.gl/V6Jp0u - Tensorflow playground

Kultúra programovania

http://cs.stanford.edu/people/karpathy/convnetjs/started.html

QUESTION:

"Čo je to Kinect???

Kinect

Kinect – princíp

Konvergenčná teoréma perceptronu

Predpoklady:

Ak má N rozmerný príznakový priestor kde sú iba dve triedy, ktoré sú LINEÁRNE SEPAROVATEĽNÉ

Potom po K – OMYLOCH, kde K je konečné číslo budem vedieť vytvoriť "stroj", ktorý bude spoľahlivo separovať jednu triedu od druhej – t.z. Perceptron Konverguje

Dôsledok konvergencie

Ak Perceptron konverguje na
N rozmerných
dátach – triedy su LINEÁRNE SEPARABILNE

Samoštúdium o perceptrone ...

https://www.youtube.com/watch?v=bxe2T-V8XRs

https://www.youtube.com/watch?v=1XkjVl-j8MM

Základné princípy metódy spätného šírenia chyby

Čo vlastne robíme v príznakovom priestore ???

Základné princípy metódy spätného šírenia chyby

Metóda Error Back Propagation ...

- Kontrolované učenie AKO VYZERA TRÉNOVACIA MNOŽINA ???
- AKO MENIME Váhy M váh zmena Váhy závisí od Chyby E
- Chybový Priestor

Aké typy výpočtu chyby pozname ???

- Batch Learning
- In Line Learning

Univerzálna Aproximačná Teoréma

Predpoklad:

Ak máme NS s min 1 a max. 2 skrytými vrstvami s sigmoidálnymi Aktivačnými Funkciami v SIGMA Neurónoch

Potom takáto neurónová sieť vie aproximovať ľubovoľnú všade differencovateľnú funkciu

PROBLÉM – počet neurónov, počet vstiev (ale 2 stačia)

Pravidlá pri návrhu topológie:

- Počet neurónov v L1 > L2 > L3
- Doporučuje sa full prepojenie
- Doporučujú sigmoidálne neuróny
- Trénovacia množina dostatočne veľká versus Testovacia
- Problém preučenia neuronovej siete treba riešiť zmenou trénovaciej množiny

Samoštúdium

- https://www.youtube.com/watch?v=bH6VnezBZfl
- https://www.youtube.com/watch?v=6RUwfKNdaV0&ebc=ANyPxKr55 wGe5p5lcnCrzYD077Gu5Xz8luuwYP7FFX2MCYKecjmpT4CwqjuEj75V OBAB2kYtulYg9jNPNsNnUA1CmlpjLXN6Q

QUESTION:

"Viete si predstaviť umelú inteligenciu v odhaľovaní potencionálnej korupcie ???

Reprezentácia znalostí z Dát v Sub-Symbolickom SU

SUB- Symbolické SU

Deep Learning neural network

Predspracovanie Dát – Príprava NOVÉHO Príznakového priestoru

Klasifikácia

prof. Fukushima

https://www.youtube.com/watch?v=rp5p0Cy7ucE

Samoštúdium

https://www.youtube.com/watch?v=PlhFWT7vAEw

(v 24 minute popisuje štrukturu Deep Learningu),,

QUESTION:

"Čo je to robot KIKI ??? "

- https://www.youtube.com/watch?v=Wdrgi550_hw
- https://www.youtube.com/watch?v=K35HUaSTr3g
- https://www.youtube.com/watch?v=Zsmzocmv_u0
- https://www.youtube.com/watch?v=hYsJgmn6M18

Cvičenia ---- výzva na bonusové body ...

