Problem:

Griven an array A of n numbers and an index i ($1 \le i \le n$), find the i^{th} smellest element of A.

Fig. It i=1 then the Problem is equivalent to finding the minimum element.

It i=n then it is a maximum element.

Finding Median

A={a1,a2,--an} be set of n elements.

Informally, median is the middle element in

Sorted Set A.

if n is odd median is the i^{th} Smallest element, where $i = \frac{n+1}{3}$.

it is even, there are two medians at the and (i+1) the Smallest elements,

where i= n and i= n+1

Lower median Upper median

For Simplicity, we use "the median" to refer to the lower median.

First Approach:
Sort the entire array A, then
y
olp either $\binom{n+1}{2}^{th}$ element or $\binom{n}{2}^{th}$ element based on the Parity of N.
U
Running time:
Sorting: O(Nlogn)
Olp median: O(1)
O(nlogn

Pratt, Rivest and Tarjan.					

Det: For a Set S of distinct numbers,

we define the rank of an element XES

to be the number & Such that 2 is the

kth Smallest element of S.

$$S = \{ 5, 8, 2, 3 \}$$

$$\gamma_{ank}(5) = 3$$
.

Algorithm to find the ith smallest element of an input array of n distinct elements. SELECT(A, i)

- Divide the n elements of the input array into $\left[\frac{n}{5}\right]$ groups of 5 elements each and one group with n mod 5 elements
- (2) Find the median of each of $\lceil \frac{n}{5} \rceil$ groups.
- (3) Use SELECT recursively to find the median (call it x) of these $\lceil \frac{M}{5} \rceil$ medians.
- B Partition the input array around the median of medians x. Say rank(x) = k

- 3
- · If i=k then return 2
- FISE, if i<k, use SFLECT recursively by Calling SFLECT(A[1,..k-1], i)
- Fise, if i>k use SFLECT recursively by Calling SELECT(A[k+1,...n], i-k)

Lower bound on the numbers of elements that are greaters than 2.

order groups with to their medians.

At least half of the medians found in Step 2 are greater than x.

Thus at least half of the $\lceil \frac{M}{5} \rceil$ groups Contribute at least 3 elements that are greater than 2, except one group that has fewer than 3 elements (if 5+n) and the one group Containing & itself.

of elements greater than X is at less

$$3\left(\left[\frac{1}{2}\left[\frac{\eta}{5}\right]-2\right) \geqslant \frac{3\eta}{10}-6$$

Similarly at least $\frac{3\eta}{10}$ — 6 elements are less than 2e.

Thus, in the worst case Step 5 calls

SELECT recursively on at most $\frac{70}{10}$ +6

Recurrence for the worst Case running time

Steps 1, 2, and 4 take O(n) time

Step 3 takes T([M]) time and

Step 4 Partitioning around & can be done

in O(n) time [Same as Quick SDRT Partitioning]

Step 5 takes time at most $T(\frac{70}{10}+6)$

 $T(m) \leq \begin{cases} 0(1) & \text{if } n < 140 \\ T(m) \leq \begin{cases} T(m) + T(m) + T(m) + T(m) \\ T(m) + T(m) + T(m) + T(m) \end{cases}$ $= \begin{cases} T(m) \leq \frac{1}{5} \\ T(m) \leq \frac{1}{5} \\ T(m) \leq \frac{1}{5} \end{cases}$

Solving the recurrence:

we use substitution method.

Gues: Tm = Om)

ie, T(n) < Cn for Suitable Const C

and all 170.

Assume T(m) < cm, + m<n,

aig Const.

Tm ≤ c [] + c(12+6) +an

< c7+c+ 701 +6c +an

< 9cn + 7c + an

 \leq Cn + $\left(7c + an - \frac{cn}{10}\right)$

 $T(m) \leq cn$ 4 $7c+an-cn \leq 0$

ie, C7,10an when n770

We	am	umed that	7,140,	$\frac{n}{n-70} \leqslant 2$	
	Ċ٥	Choosing	(>, 20a	will satisfy	()
	,	T(n) =	O(n) .		
		,			

Q: In the SELECT algorithm, the input
elements are divided into groups of 5.
will the algorithm work in linear time
if they are divided into @ groups of 7?
6 groups of 3.

Ans group of 7.

2 = median of medians

then the # of elements greater than 2 is

at least

$$4\left(\left\lceil\frac{1}{2}\left\lceil\frac{n}{7}\right\rceil\right\rceil-2\right) \quad \frac{2n}{7} \quad -8$$

Similary at least 29-8 elements are less than 2.

Thus, in the worst case Step 5 (alls SELECT recursively on at most $n - \frac{2n}{7} - 8 = \frac{5n}{7} + 8$

we get
$$T(m) = T([\frac{n}{4}]) + T(\frac{5n}{4}) + O(m)$$

Ans group of 3

2 = median of medians

then the # of elements greater than 2 is at least

$$2\left(\left[\frac{1}{2}\left[\frac{n}{3}\right]\right]-2\right)$$
 $\frac{n}{3}$ $\frac{n}{3}$ $\frac{4}{3}$

Similary at least $\frac{\eta}{3}$ -4 elements are less than χ .

Thus, in the worst case Step 5 (alls SELECT recursively on at most $N-(\frac{\eta}{3}-4)=\frac{2\eta}{3}+4$

we get
$$T(n) = T(\lceil \frac{n}{3} \rceil) + T(\frac{2n}{3} + 4) + O(n)$$

The Solution for above recurrence does not Satisfy T(n) = O(n).

$$T(n) \ge c(\frac{\pi}{3}) \log(\frac{\pi}{3}) + c(\frac{\pi}{3}) \log(\frac{\pi}{3}) + O(n)$$

$$=\frac{cn}{3}(bgn-bg3)+2cn(bgan-bg3)+0(n)$$

=
$$cnbgn - cnbg3 + 2 cnbg2 + O(n)$$