SISTEMA MEDICO DE MONITOREO VITAL

ANDREA CAROLINA CAMELO BOGOYA JESUS BLADIMIR SOLARTE CONCHA

Docente: HAROLD ADRIAN BOLAÑOS RODRIGUEZ

UNIVERSIDAD COOPERATIVA DE COLOMBIA FACULTAD DE INGENIERÍA PROGRAMA DE INGENIERÍA DE SISTEMAS SANTIAGO DE CALI- COLOMBIA 2019

TABLE DE CONTENIDO

1.VISION	3
2. SKETCH DIAGRAM	3
3. PREOCUPACIONES	3
4. VISTAS	5
4.1. Vista Conceptual	5
4.2. Vista de Ejecución	6
4.3. Vista de Implementación	
5.ASPECTOS TECNOLOGICOS	8
5.1. Tecnologías	8
5.2. Herramienta	8
5.3. Framework	ε
5.4. Equipos	ε
6. RECOMENDACIONES	8

1.VISION

Monitorear los signos vitales de los pacientes a través de un software con alarmas de situaciones adversas o fuera de los limites deseados, con transmisión de información al gobierno a una base datos *blockchain* público.

2. SKETCH DIAGRAM

diagrama que Refleja la visión del proyecto en un contexto común para los stakeholders.

Sketch

Version 1.0

Bladimir- Carolina created on 13/09/2019. Last modified 15/11/2019

Figure 1: Sketch

3. PREOCUPACIONES

Preocupaciones	Alcance	Tácticas de Arquitectura	Decisiones	Pro y Contras
Disponibilidad	99%	detección de fallas,	debe ser	El sistema permite transmitir
		recuperación de fallas y		datos constantes.
		prevención de fallas		
Modificabilidad	99%	Reducir tamaños de los	Puede ser	
		módulos, incrementar la		
		cohesión, bajo		
		acoplamiento y		
		aplazamiento de enlace		
Escalable	80%	Control de la demanda	debe ser	Los recursos siempre van a
		de recurso y manejo de		estar activos.
		recursos		

Seguridad	97%	Detectar, resistencia, reaccionar y recuperar de ataques	deber ser	Se maneja datos sensibles de los pacientes.
Integridad	99%	Reducir tamaños de los módulos, incrementar la cohesión, bajo acoplamiento y aplazamiento de enlace	Puede ser	Perdida de información.
Multiplataforma	80%	Control de la demanda de recurso y manejo de recursos	Puede ser	se puede ejecutar en cualquier sistema operativo, navegador.
Tolerancia de fallos	90%	detección de fallas, recuperación de fallas y prevención de fallas	debe ser	El sistema permite transmitir datos constantes.
Eficiencia	97%	utilización de recursos, comportamiento del tiempo	Puede ser	
Usabilidad	90%	soporte a usuario inicial, Sistema de apoyo inicial	Puede ser	el fácil aprendizaje de los clientes.

4. VISTAS

4.1. Vista Conceptual

InteractionOverview diagram in package 'Vista Conceptual'

 $vista\ conceptual \\ Version\ 1.0 \\ Bladimir\ -\ Carolina\ created\ on\ 15/11/2019.\ Last\ modified\ 15/11/2019$

Figure 2: vista conceptual

4.2. Vista de Ejecución

Deployment diagram in package 'Vista Ejecución'

Deployment View Version 1.0 Bladimir- Carolina created on 15/11/2019. Last modified 16/11/2019

Figure 3: Deployment View

4.3. Vista de Implementación

InteractionOverview diagram in package 'Vista Implementacion'

Dynamic View Version 1.0 Bladimir - Carolina created on 15/11/2019. Last modified 16/11/2019

Figure 4: Dynamic View

5.ASPECTOS TECNOLOGICOS

5.1. Tecnologías

- Java EE
- Java SE
- Web service
- BLOCKCHAIN
- Servidor wildfly
- Oracle 11g

5.2. Herramienta

- UML
- Power bi

5.3. Framework

Primefaces

5.4. Equipos

- Equipo de cómputo Windows
- Televisor con conexión HDMI

6. RECOMENDACIONES

- Sistema operativo Windows 7 adelante.
- canal de red dedicado.
- creación de tablas pivote para almacenar históricos de los registros de los signos vitales.
- correr plan de ejecución antes de ejecutar una consulta directamente en producción.