Reg. No.	i i							
			_					

B.Tech. DEGREE EXAMINATION, MAY 2022

Fifth & Sixth Semester

18MAB302T - DISCRETE MATHEMATICS FOR ENGINEERS

(For the candidates admitted from the academic year 2018-2019 to 2019-2020)

Note:

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed (i) over to hall invigilator at the end of 40th minute.
- Part B should be answered in answer booklet (ii)

ii)		Par	t - B should be answ	vered in answer be	ookle	et.				
ne	: 2	½ Ho	ours				Max	. Ma	ırks:	75
				T – A (25 × 1 = Answer ALL Q			Marks	BL	со	РО
	1.	If the	e cardinality of the s	sets A and B are	5 and	3 respectively then the cardinality of	1	2		2
		(A) (C)			(B) (D)	8 15				
	2.	Let A	$A=\{0,1,2,3,4\}, B=\{0\}$ ge of R is equal to	,1,2,3} and aRb is	ff a+l	b=4, R= $\{(1,3),(2,2),(3,1),(4,0)\}$. Then	1	2	, 1	2
		(A)	{1,2,3,0} {1,2,4}		(B) (D)	{1,2,3} {1,3,4}				
	3.	If A	and B are non-empty	sets then $A \cup (A \cup A)$	A-B	3) is	1	2	1	1
		(A) (C)			(B) (D)	A A-B				_
	4.		function $f: z^+ \to z$	$^+$ defined by $f($	x)=	$x^2 + 2$ is	1	2	1	2
		(A) (C)	Bijective Surjective, not injec		(B) (D)	Injective, not surjective Neither injective nor surjective				
	5.	Let f	$f(x) = x^3$ and $g(x)$			ons on R. Then fog is	1	2	1	2
			$4x^3 + 3$ $(4x+3)^3$			$4x^3$ $4x+3$				
	`	-,	(4x+3)			(1d a table is	1	2	2	2

- 6. Number of ways in which 'n' persons can be seated round a table is
 - (A) n!

(B) (n-1)!

(C) (n+1)!

- (D) (n+2)!
- 7. If a and b are any two integers and non-zero then gcd (a,b) is
 - (A) mn+ab

(B) ab divides mn

(C) ma-nb

- (D) ma+nb
- 8. Generalization of pigeonhole principle for n>m is

Page 1 of 4

20MA5&6-18MAB302T

((A)	many b 151200 848		ngs	of le	ngth 10	conta	in atlo (B) (D)) .	t fou 504(720		3						1		2	2	
((A)	rime fa (17²) (7 (17³) (7	23)	atio	on of (5647 is				(17) (23²)								1	2	2	2	2
. ((A)	tual of (p)	(p)	(q)	$) \vee q$	$\equiv T$		(B) (D)		$\exists (p)$	·	<i>p</i> ∧ <i>p</i> ∨	q) $q) $ $q)$) ^ q) ~ q	$\equiv F$			1	2	3		2
tl (4	hen it A)	tatement inverse If a figure not a qual If a figure a squar	e is ure is uadril ure is	not ater	a squ al	are the	en it is	(B)	Ii it Ii	f a fi	iguro ot a	e is squ	not are	a qu	adrila		then	1	2	3		2
13. V	(i) (ii)	p	$p \vee q$ $\vee (p$) → →	$\begin{pmatrix} p \\ q \end{pmatrix}$	osition	is a ta	utolo	gy?	•								1	2	3	1	2
	(iv) A) (p p						(B) (D)	(ii													
14. A (A (C	set o	iii) f formu Contradi Conclusi	iction	I ₁ , F	I2H	m is sai	d to be	` .	iste Ta	-	ogy		nju	nctio	n imj	olies a		1	2	3	1	
15. Se	lect ti (I) (II)	The	e prop e prop) T	osi	tion p	→q is i	F wher	npis (B)	T a (I)	nd q	is F (II) 1	? F						1	2	3	- , 1	
is (A			n elen	nen	t 'i' of	fthe gr		(B)		−i} 1	unde	r th	e us	sual :	multi	plicat	ion	1	2	4	2	
17. T	he nu A) U	mber of Jnique More the			eleme	ents in a		(B) (D)	No	tinc t exi					٠,			1	2	4	2	
		rity che						au ix	0	0 1 1	0 1 1	1 1 0	α	is				1	2	4	2	
((C)	$ \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} $ $ \begin{bmatrix} 0 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix} $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 1 0	o] real	me	Sho	D) [1 0 1	1 1 0 1 0	0 0 1 0	1 0 0	0 1 0 0	i(e)	7							

19.	A code can detect a set of at most 5 errors if	ff the	minimum distance between any two) 1	2		4 .
	code words is						
	(A) Attends o		Atmost 6 Atmost 11				
	(C) Atleast 11	,2)	7111100111		2		
20.	The weight of the word 1101001 is	~	_	I			† 2
	(A) 1	(B) (D)	3				
	(C) 4	ָע	,				
21.	If G=(V,E) is an undirected graph with 5 ed	lges t	$ \operatorname{hen} \sum_{i} \operatorname{deg}(Vi) = $	1	2		
		` '	5				
		(D)	W		2	_	,
22.	The maximum number of edges in a simple	disco	onnected graph G with n vertices and	1	2	,	2
	k components is	(B)	(n-k)(n-k+1)				
	(A) $\frac{(n+k)(n-k+1)}{2}$	D	$\frac{(n-k)(n-k+1)}{2}$ $\frac{(n-k)^2}{2}$				
	(C) $n(n-k+1)$ (ന)	, ,,2				
	(C) $n(n-k+1)$		$(n-k)^{-}$				
	2		2				
23.	A connected graph contains an Euler circuit			1	2	5	1
			Odd degree Neither odd nor even				
24	,			1	2	5	1
24.	The chromatic number of a planar graph is a (A) 3	not gi (B)		1	2	3	1
		(D)					
25.	A tree with 100 vertices has			1	1	5	2
	, ,		96 edges				
			99 edges				
	$PART - B (5 \times 10 = 5)$ Answer ALL Que		•	Marks	BL	СО	PO
26 a	If f:A→B and g:B→C are invertible function			10	3	1	1
20. a.	and prove that $(gof)^{-1}=f^{-1} og^{-1}$.	, iii , iii	ien prove gor.xx -70 is also invertible				
	(OR)						
		0 (1]				
	Find the transitive closure of $M_R = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0 \end{bmatrix}$	0	1				
b.i.	Find the transitive closure of $M_R = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$		1.	6	3	1	2
	0 0	, 0					
	[0 0) ()	1]				
ii.	Draw the Hesse discrem representing the		D ((a b a divides b)	4	3	1	2
	Draw the Hasse diagram representing the p on {1,2,3,4,6,8,12} starting from the diagra						
	on {1,2,3,4,0,8,12} starting from the diagra	ipn of	tP.				
27. a.i.	There are 3 piles of identical red, blue and g	reen	balls, where each pile contains atleast	6	3	2	2
	10 balls. In how many ways 10 balls be sele	ected					
	(1) If there is no restriction?(2) If atmost one red ball is selected	חנ					
ií				4	3	2	2
***	Of any 5 points chosen within an equilateral that atleast two points are within a distance	l triar	ngle whose sides are of length 1, show	7	,	2	-
	r are within a distance	of 1/	2 OI Each other.				
	(OP)						

- b. Use the Euclidean algorithm to find gcd(12345, 54321) and express the gcd as a linear 10 3 2 combination m,n of the given numbers and also find m and n.
- 28/a.i. Determine whether the following implication is a tautology, by using truth table $\begin{pmatrix} 6 & 3 & 3 \\ & & 1 \end{pmatrix}$ technique. $p \to (p \to r) \Rightarrow (p \to q) \to (p \to r)$.
 - ii. Prove the equivalence without using truth table. 4 3 3 2 $p \to (q \to p) \equiv \neg p \to (p \to q).$
 - b. Using rules of inference construct an argument to show that the following premises 10 3 3 imply the conclusion "It rained". "If it does not rain or if there is no traffic dislocation, then the sports day will be held and the cultural programme will go on"; "If the sports day is held, the trophy will be awarded" and "the trophy was not awarded".
- 29. a. State and prove the necessary and sufficient condition for a subset of a group G to be 10 3 4 1 a subgroup of G.
 - b. Given the generator matrix $G = \begin{bmatrix} 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$ corresponding to the $\begin{bmatrix} 10 & 3 & 4 & 2 \\ 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$

encoding function $e: B^3 \to B^6$, find the corresponding parity check matrix and use it to decode the following received words and hence, to find the original message. Are all the words decoded uniquely?

- (i) 110101
- (ii) 001111
- (iii) 111111
- 30/a. Find the minimum spanning tree for the weighted graph using Kruskal's algorithm.

(OR)

- b.i. Give an example of a graph which contains
 - (1) An Eulerian circuit and a Hamiltonian circuit that are distinct
 - (2) Neither an Eulerian circuit nor a Hamiltonian circuit
- ii. By using circuits, prove that the two graphs G_1 and G_2 are isomorphic.

