Introdução à Ciência da Computação

Paulo de Tarso Guerra

paulodetarso@ufc.br

2020

O que é Ciência da Computação?

O que é um computador?

Por que um computador?

Breve história dos computadores

Ábaco

Pascalina (Blaise Pascal)

Cartões Perfurados (Joseph M. Jacquard)

Arithmometers (Charles X. Thomas de Colmar)

Máquina Analítica (Charles Babbage)

Máquina Analítica (Charles Babbage)

Babbage, em 1822, apresentou um modelo de máquina capaz de resolver equações polinômicas através de diferenças entre números, e assim, de efetuar os cálculos necessários para construir tabelas de logaritmos.

A máquina teria a capacidade de receber dados, processá-los, armazená-los e exibi-los. Graças a ela Babbage ficou conhecido como o pai do computador.

A máquina de Babbage só foi construída em 1991.

Ada Lovalace

Ada Augusta Byron King, matemática e escritora inglesa e reconhecida principalmente por ter escrito o primeiro algoritmo processado por uma máquina, a máquina analítica de Babbage.

Ada desenvolveu algoritmos que permitiriam à máquina computar os valores de funções matemáticas. Por esse trabalho é considerada a primeira programadora de toda a história. (*Wikipedia*)

George Boole

Máquina de tabulação - Censo 1880

(Herman Hollerith)

Herman Hollerith - Tabulating Machine Co.

IBM (Hollerith e Watson)

Computadores Primitivos

- Baseado em relés mecânicos
 - 1940: Stibitz em Bell Laboratories
 - 1944: Mark I: Howard Aiken e IBM em Harvard

MARK I (Harvard & IBM)

Bell Labs

Computadores Primitivos

- Baseado em tubos de vácuo
 - 1937-1941: Atanasoff-Berry na Iowa State
 - 1940s: Colossus: decodificador do código Nazista
 - 1940s: ENIAC: Mauchly & Eckert na U. of Penn.

UNIVAC I

Válvulas

Válvulas

Transistors

Transfer / resistor

Novos componentes

Vacuum tubes: slow, expensive, fragile Transistors: much simpler, much smaller, much cheaper, more reliable, no warm up, much faster.

Integrated circuits: miniaturization added to all the existing benefits, enabled unthought-of possibilities

IBM 650

Apple II

HP Compaq Presario V2000

(Pentium M 745 1.8-GHz, 512MB RAM, 40GB HD)

Samsung S20

(SAMSUNG Exynos 990, Octa-core 2x2.73 GHz Mongoose M5 & 2x2.50 GHz Cortex-A76 & 4x2.0 GHz Cortex-A55, 8GB RAM, 128 GB SSD)

O que estuda Ciência da Computação?

Computação ≠ Computadores

Ciência da Computação

- A ciência dos algoritmos
- Oriundo de assuntos diversos, como
 - Matemática
 - Engenharia
 - Administração
 - Psicologia

Questões centrais da Ciência da Computação

- Que problemas podem ser resolvidos por processos algorítmicos?
- Como tornar mais fácil a descoberta de algoritmos?
- Como as técnicas de representação e comunicação de algoritmos podem ser melhoradas?
- Como as características de diferentes algoritmos podem ser analisadas e comparadas?

Questões centrais da Ciência da Computação

- Como algoritmos podem ser usados para manipular informações?
- Como algoritmos podem ser usados para produzir comportamento inteligente?
- Como a aplicação de algoritmos afeta a sociedade?

O papel central dos algoritmos na Ciência da Computação

Esboço do nosso estudo

- Visão geral da área:
 - Algoritmos
 - Engenharia de Software
 - Redes de computadores
 - Inteligência Artificial
- Profissão e futuro
- Avanços recentes em pesquisa

Repercussões Sociais

- Avanços na Ciência da Computação levanta novas questões:
 - No direito: questões sobre direito e responsabilidades
 - No governo: questões sobre regulação
 - No ambiente de trabalho: questões profissionais
 - Na sociedade: questões sobre comportamentos

Repercussões Sociais

- Avanços na Ciência da Computação levanta novas questões:
 - No direito: questões sobre direito e responsabilidades
 - No governo: questões sobre regulação
 - No ambiente de trabalho: questões profissionais
 - Na sociedade: questões sobre comportamentos