The first compiler related tool, the A-0 System, was developed in 1952 by Grace Hopper, who also coined the term 'compiler'. Whatever the approach to development may be, the final program must satisfy some fundamental properties. Expert programmers are familiar with a variety of well-established algorithms and their respective complexities and use this knowledge to choose algorithms that are best suited to the circumstances. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). Ideally, the programming language best suited for the task at hand will be selected. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. He gave the first description of cryptanalysis by frequency analysis, the earliest code-breaking algorithm. Later a control panel (plug board) added to his 1906 Type I Tabulator allowed it to be programmed for different jobs, and by the late 1940s, unit record equipment such as the IBM 602 and IBM 604, were programmed by control panels in a similar way, as were the first electronic computers. Also, specific user environment and usage history can make it difficult to reproduce the problem. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. New languages are generally designed around the syntax of a prior language with new functionality added, (for example C++ adds object-orientation to C, and Java adds memory management and bytecode to C++, but as a result, loses efficiency and the ability for low-level manipulation). The first compiler related tool, the A-0 System, was developed in 1952 by Grace Hopper, who also coined the term 'compiler'. Auxiliary tasks accompanying and related to programming include analyzing requirements, testing, debugging (investigating and fixing problems), implementation of build systems, and management of derived artifacts, such as programs' machine code. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. This can be a non-trivial task, for example as with parallel processes or some unusual software bugs. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. There exist a lot of different approaches for each of those tasks. High-level languages made the process of developing a program simpler and more understandable, and less bound to the underlying hardware. Their jobs usually involve: Although programming has been presented in the media as a somewhat mathematical subject, some research shows that good programmers have strong skills in natural human languages, and that learning to code is similar to learning a foreign language. A study found that a few simple readability transformations made code shorter and drastically reduced the time to understand it. Sometimes software development is known as software engineering, especially when it employs formal methods or follows an engineering design process. However, with the concept of the stored-program computer introduced in 1949, both programs and data were stored and manipulated in the same way in computer memory. Various visual programming languages have also been developed with the intent to resolve readability concerns by adopting non-traditional approaches to code structure and display. Computer programmers are those who write computer software. It affects the aspects of quality above, including portability, usability and most importantly maintainability.