(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平5-281557

(43)公開日 平成5年(1993)10月29日

(51) Int.CL*		識別記号	广内整理番号	k 1	技術表示簡所
G 0 2 F	1/1339	500	7348-2K		
	1/13	101	7348-2K		
	1/1341		7348-2K		

審査請求 未請求 請求項の数4(全 5 頁)

(21)出願番号	持顯平478123	(71)出願人	
(22)出觸日	平成4年(1992)4月1日	(72)発明者	松下電器産業株式会社 大阪府門真市大字門真1006番地 古川 久夫 大阪府門真市大字門真1006番地 松下電器
		(72)発明者	産業株式会社内 久光 伸二
			大阪府門爽市大字門爽1006番地 松下電器 産業株式会社内
		(72)発明者	石原 照久 大阪府門真市大字門真1006番地 松下電器 産業株式会社内
		(74)代瑾人	介理士 松田 正道

(54)【発明の名称】 液晶パネルの製造方法

(57) 【要約】

【目的】スペーサー散布工程を削減すると共に、表示品 位の高い液晶パネルが生産できる方法を提供すること。

【構成】スペーサー11を液晶5に混入し、それを基板 上に摘下することにより、スペーサー散布工程を削減す る。さらに、この液晶5の滴下の際、配向処理方向4 a、4 bによって生ずる交差角が原因となる滴下液晶の 展延形状の縦横比に応じて、滴下間隔6、7を変化させ て基板15に適下する。あるいは、この液晶5を六方対 称を持った形状に滴下する。これらにより、液晶パネル 内にスペーサー11を均一に分散させ、表示品位を向上 させる。また、着色スペーサーを液晶5に混入し、この 液晶 5 を摘下する。これにより、スペーサーの光瀾れ現 象を消滅させ、表示品位を向上させる。

1

【特許請求の範囲】

【請求項1】 配向処理が施された2枚の基板の少なく とも一方の基板上に、スペーサーを混入した液晶を、前 配2枚の基板の各々の配向処理方向によって生ずる交差 角に起因する適下液晶の展延形状に応じて適下間隔を変 えて、滴下した後、前記2枚の基板を対向して重ね合わ せ、その後封止材を硬化することを特徴とする液晶パネ ルの製造方法。

【請求項2】 滴下間隔は、前記滴下液晶の展延形状の **縦横比に応じて変化させられることを特徴とする請求項 10** 1 記載の液晶パネルの製造方法。

2枚の基板の少なくとも一方の基板上 に、スペーサーを混入した液晶を六方対称を持った形状 に滴下した後、前記2枚の基板を対向して重ね合わせ、 その後封止材を硬化することを特徴とする液晶パネルの 製造方法。

【請求項4】 2枚の基板の少なくとも一方の基板上 に、着色スペーサーを混入した液晶を縞下した後、前記 2枚の基板を対向して重ね合わせ、その後封止材を硬化 することを特徴とする液晶パネルの製造方法。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、重卓、ワードプロセッ サなどに搭載されている液晶表示装置の液晶パネルの製 浩方法に関するものである。

[0002]

【従来の技術】液晶表示装置は、薄型、軽盤、低消費電 カなどの利点により、時計、電卓、ワードプロセッサな どに利用されている。また昨今では、情報関連機器の発 がたかまっている。さらに、ディスプレイのカラー化に 伴い表示品位の高い液晶パネルも求められている。

【0003】この液晶表示装置に用いられる液晶パネル は図4に示すような構造であり、透明電極10が形成さ れた基板1a、1bの間に液晶5が封止材3により封入 されている。この墓板1a、1bはスペーサー11によ り一定の間隔(以降、ギャップと記す。)に保たれてお り、一般には $5\sim10\,\mu$ mである。また、このスペーサ ー11は、ポリスチレン系樹脂ボール(例えば、ミクロ 色のものを用いている。

【0004】そのような液晶パネルの製造方法として は、(1) 予め基板1a、1bの開除に封止材3、ス ペーサー11を設けて組み立てたパネルを、減圧状態に ある槽内にて、パネルの封止材3の一部に設けた注入口 に被晶 5 を接するようにし、その後槽内を大気圧に戻し パネル内に被品5を充填する真空注入方法と、(2) 予め封止材3を形成した基板1aと、スペーサー11を 混入した液晶5を滴下した基板1b、とを減圧下で重ね 合わせる方法(特関昭62-89025号公報参照)の 50 め滴下蓋のコントロールが非常に難しいという新たな課

2種類がある。

[0005]

【発明が解決しようとする課題】しかし、このような製 造方法は次のような課題があった。

2

【0006】従来の製造方法(1)では、液晶パネルの **表示面積が大きくなると液晶の充壌に時間がかかり過ぎ** るという課題がある(例えば、12インチサイズの液晶 パネルでは30分以上かかる)。

【0007】一方、従来の製造方法(2)を採った場 合、基板を貼り合わせると同時に液晶を封入することが できるので、製造方法(1)より短時間に充填できる。 また、予め液晶中にスペーサーを混入しているのでスペ ーサー散布工程が削減でき、パネル製造上非常に効果が ある。しかしながら、従来の製造方法(2)において は、液晶滴下形状について余り検討が行なわれていな

【0008】 すなわち、滴下した液晶は、その分子を一 定の方向に配向させるラビング方向に沿って展延する傾 向があり、基板を重ね合わせたときには、図6のように 20 2枚の基板のラビング方向4a、4bの合成ベクトル方 向に液晶 5 が楕円状に広がる。この楕円の長軸方向は2 枚の基板に施したラビング方向4a、4bの交差角のう ち、小さい方の合成ペクトル方向(以降、合成方向Aと 記す。)であり、短軸方向はその大きい方の合成ベクト ル方向(以降、合成方向Bと記す。)である。同様に、 液晶 5 中に混入してあるスペーサー11も楕円状に移動 する。従って、液晶を、図5のように隣接する上下左右 の適下点が等間隔になるような単純格子状(関中、合成 方向Aの適下間隔6と合成方向Bの適下間隔7とは等し 展に伴い大表示容鰲、大表示画面のディスプレイの需要 30 い。)に適下した場合、図7のように液晶5は楕円状に 展延するため、合成方向Bにスペーサー11の存在しな い部分が発生し、パネル内にスペーサー11が均一に分 散されない。その結果、従来の白色スペーサーであれ ば、スペーサーが存在する部分としない部分とにスペー サーからの光漏れの傷りが発生し表示品位が劣ることに なる。すなわち、この光漏れ現象は、液晶が光を偏光さ せるのに対しスペーサーにはその働きがないことから生 じる。例えば、2個分の画案を示す図8のように、液晶 パネルに電圧を印加し囲業9内を黒色表示した場合、ス パール(稜水ファインケミカル(株)製))のような白 40 ペーサー11は電圧を印加しても変化しないので、スペ ーサー11から光が漏れてしまいスペーサー11が白く 目立ってしまうのである。

> 【0009】そして、パネル内にスペーサー11が約一 に分散されていれば実用上余り影響はないが、従来のよ うに不均一であれば表示品位が低下してしまう。

> 【0010】そこで、上記スペーサーの存在しない部分 の発生を防止するには、滴下数を多くし滴下点の間隔を 非常に小さくすればよいのであるが、多数滴下するには 時間がかかり、また、一滴当りの滴下量が小さくなるた

3

題が生じる。

【0011】 本発明はこのような従来の液晶パネルの製 造方法の課題を考慮し、スペーサー散布工程を削減する と共に、表示品位の高い均一な液晶パネルを生産できる 液晶パネルの製造方法を提供することを目的とするもの である。

[0012]

【課題を解決するための手段】本発明は、配向処理が施 された2枚の基板の少なくとも一方の基板上に、スペー サーを混入した液晶を、2枚の基板の各々の配向処理方 10 向によって生ずる交差角に起因する滴下液晶の展延形状 に応じて滴下間隔を変えて、滴下した後、2枚の基板を 対向して重ね合わせ、その後封止材を硬化する液晶パネ ルの製造方法である。

【0013】また、本発明は、2枚の基板の少なくとも 一方の基板上に、スペーサーを混入した液晶を六方対称 を持った形状に滴下した後、2枚の基板を対向して重ね 合わせ、その後封止材を硬化する液晶パネルの製造方法 である。

【0014】また、本発明は、2枚の基板の少なくとも 20 品位の向上した液晶パネルが得られる。 一方の基板上に、着色スペーサーを混入した液晶を滴下 **した後、2枚の基板を対向して重ね合わせ、その後封止** 材を硬化する液晶パネルの製造方法である。

[0015]

【作用】本発明によれば、スペーサーを混入した液晶を 対向基板の各々の配向処理方向によって生ずる交差角に 起因する滴下液晶の展延形状に応じて滴下間隔を変化さ せる、あるいは液晶の滴下形状を大方対称を持った形状 にすることで、スペーサーの分散具合いの傷りが改善さ きる。従って、スペーサーの光縁れの偏りが大幅に改善 され表示品位が向上する。

【0016】また、液晶に電圧を印加し画案内を遮光し た場合でも着色されたスペーサーを使用することによっ て、スペーサーの光漏れ現象を防止し液晶パネルの表示 品位をより向上させることができる。

[0017]

【実施例】以下、本発明の一実施例の微晶パネルの製造 方法について関節を用いて説明する。

【0018】 (実施例1) 図1 (a)、(b) のよう 40 に、透明電極(図中省略)が形成されている2枚のガラ ス基板1a、1bの透明電板上に配向膜2としてボリイ ミド樹脂を形成し、その表面にラピング処理を各々施 す。ラピング方向4a、4bは、図1 (c) のように2 枚の基板を貼り合わせたとき交差角の小さい方が60° になるようにする。

【0019】その後、一方のガラス基板1aに長方形状 に紫外線硬化型樹脂を用いた封止材3を形成する。

【0020】また、球径6.0µmの自色樹脂スペーサ

ガラス基板1bに、図1(d)のように、ラビング方向 の合成方向Aの滴下間隔6を8.0mにし、また合成方 向Bの適下間隔7を7、5㎜に設定して格子状に滴下す る。その滴下間隔は、対向するガラス基板 1 a、 1 bの 各々の配向処理方向によって生ずる交差角に起因する適

【0021】次に前記2枚のガラス基板1a、1bを減 圧下で貼り合わせ、前配封止材3に紫外線を照射して硬 化し、液晶パネルとする。

下液晶の展延形状の縦横比に応じたものである。

【0022】従来のように、スペーサーを混入した液晶 を単純格子状に滴下した場合、上述した図7のように、 液晶が楕円状に広がると共にスペーサーも楕円状に移動 し、合成方向Bにスペーサーの存在しない部分ができる ためスペーサーの分散具合いに偏りが生じ、表示晶位が 低下していた。しかし、本実施例により作製した液晶パ ネルでは、上述のように、合成方向Bの適下間隔を予め 狭くして滴下しているため、図1 (e) のようにスペー サー11の分散具合いが改善され、スペーサー11がほ ぼ均一にパネル内に分散する。その結果、従来より表示

【0023】なお、合成方向Aの適下関隔6と合成方向 Bの滴下間隔?については、本実施例に限るものではな く、液晶の展延状態は対向基板の各々の配向処理方向に よって生ずる交差角に応じて変化するため、配向処理条 件、滴下液晶盤などにより適切に設定することが望まし

【0024】(実施例2)実施例1と同様の工程につい ては説明を省く。

【0025】実施例1と同様の作業をして製造したガラ れ、パネル内にスペーサーを均一に分散させることがで 30 ス基板1bに、スペーサーとして球径6.0μmの白色 樹脂スペーサー11を液晶に対し0.3xt%混入した液 品5を、図2(a)のように六方対称を持った形状に適 下する。本実施例では、隣接する滴下点の間隔14、1 5、16を7、0mmとする。その後、実施例1と同様に 基板を貼り合わせ液晶パネルとする。

> 【0026】その結果、本実施例により作製した液晶バ ネルにおいても、図2(5)のようにスペーサー11が 従来に比べ均一にパネル内に分散し、表示品位が大幅に 改善された。

【0027】なお、さらに、実施例1と同様に、対向基 板の各々の配向処理方向によって生ずる交差角に起因す る滴下液晶の展延形状の縦横比に応じて滴下間隔を変え て適下すれば、その効果は単なる六方対称を持った形状 に滴下する場合より一層向上する。

【0028】 (実施例3) 実施例1と同様の工程につい ては説明を省く。

【0029】実施例1と同様の作業を行った基板1b に、スペーサーとして黒色に着色された球径6、0μm の樹脂スペーサーを液晶中に 0.3 wt %混入して、図 5 一を、液晶に対し0.3mt%混入した液晶5を、他方の 50 のような単純格子状(合成方向Aの滴下関隔6、合成方

õ

向Bの腐下間隔7を各々8.0mにする。)に滴下した後、実施例1と同様に基板を貼り合わせ液晶パネルとする。

【0030】従来のように、スペーサーとして白色のものを使用してパネルを作製した場合はスペーサーが均一に分散していないと表示品位は低下していた。しかし、本実施例により作製した液晶パネルにおいては、図3(2個分の商素を示す。)のように黒色スペーサー8を使用しているため、囲業9を黒表示してもスペーサ8からの光漏れがなく、表示品位は大幅に向上する。

【0031】なお、着色する色については本実施例に限るものではなく、スペーサーが目立ちにくい色であれば、例えば濃紺色、焦茶色などであっても同様の効果が得られる。

【0032】また、請求項1の本発明の液晶の滴下間隔は、上記実施例1では、展延形状の縦横比に応じて変えているが、これに限らず、展延形状に応じて変えられるもので有りさえすれば良い。

[0033]

【発明の効果】以上述べたところから明らかなように、 請求項1の本発明によれば、スペーサーを混入した液晶 を、2枚の基板の各々の配向処理方向によって生ずる交 差角に起因する滴下液晶の展延形状に応じて滴下間隔を 変えるので、滴下するスペーサーがパネル内により均一 に分散され、表示品位の高い均一な液晶パネルを生産で きる

【0034】また、欝求項3の本発明によれば、スペーサの混入した液晶を六方対称を持った形状に篱下するので、滴下するスペーサーがパネル内により均一に分散され、表示晶位の高い均一な液晶パネルを生産できる。

【0035】また、謝求項4の本発明によれば、スペーサーを着色することにより、スペーサーの光淵れ現象の発生を防止し、液晶パネルの表示品位を従来より向上させることができる。

【0036】すなわち、各発明は、表示品位を損なうことなくスペーサー散布工程を削減でき、液晶パネルの製造コストを大幅に改善できるものである。

 \hat{o}

【図面の簡単な説明】

【図1】本発明の一実施例における液晶パネルの製造工 程の説明図である。

【図2】(a) は本発明の一実施例における滴下工程の 滴下パターン図である。(b) はその実施例における液 晶展延状態及びスペーサーの分散状態を示す平面図であ 10 る。

【図3】本発明の一実施例における着色スペーサーを使用した場合の電圧印加状態でのスペーサー光漏れ現象を 説明するための2個の商素の図である。

【図4】従来の液晶パネルの断面図である。

【図5】従来の液晶滴下パターンを示す図である。

【図6】液晶の展延状態を示す説明図である。

【図7】従来の液晶滴下バターンにおける液晶展延状態 及びスペーサーの分散状態を示す平面図である。

【図8】従来の被晶パネルの製造方法(2)における鑑 20 圧印加状態でのスペーサー光濁れ現象を説明するための 2個の演奏の段である。

【符号の説明】

1a. 1b	基板
2	配向膜
3	封止材
4a, 4b	ラビング方向
5	液晶
6	合成方向Aの滴下間隔
7	合成方向Bの滴下問隔
8	着色スペーサー
9	秦 豳
1.0	透明電極
11	白色スペーサー
14, 15, 16	滴下点の間隔

(M3) (M4) (M5)

* * * * *

5: 費依スペーサー 5: 関案

2 10 : 20 H 2 10

[図1] [图2] **含碳方泡A** 合成方向 B (a) B:台級方向Aの数字級級 (b) 2 ?:会蔵方向Bの摘下瀬編 11:白色スペーサー (b) 合成方的品 (c) 含烷方衡点 **煮燥お寝**人 14、14、16:漢下点の謝騰 含碳为海鱼 合线方向A [88] (d) (e) [图6] [图7] 合成方海 B 合成方海县 含磁方向A

台廣方向 A