POLYNOMIAL DETECTION OF MATRIX SUBALGEBRAS

DANIEL BIRMAJER

Abstract. The double Capelli polynomial of total degree 2t is

$$\sum \left\{ (\operatorname{sg} \sigma \tau) x_{\sigma(1)} y_{\tau(1)} x_{\sigma(2)} y_{\tau(2)} \cdots x_{\sigma(t)} y_{\tau(t)} | \sigma, \tau \in S_t \right\}.$$

It was proved by Giambruno-Sehgal and Chang that the double Capelli polynomial of total degree 4n is a polynomial identity for $M_n(F)$. (Here, F is a field and $M_n(F)$ is the algebra of $n \times n$ matrices over F). Using a strengthened version of this result obtained by Domokos, we show that the double Capelli polynomial of total degree 4n-2 is a polynomial identity for any proper F-subalgebra of $M_n(F)$. Subsequently, we present a similar result for nonsplit extensions of full matrix algebras.

1. Introduction

The double Capelli polynomial of total degree 2t is

$$\sum \left\{ (\operatorname{sg} \sigma \tau) x_{\sigma(1)} y_{\tau(1)} x_{\sigma(2)} y_{\tau(2)} \cdots x_{\sigma(t)} y_{\tau(t)} | \sigma, \tau \in S_t \right\}.$$

In this paper we show that the double Capelli polynomial of degree 4n-2 is a polynomial identity for any proper subalgebra of $M_n(F)$. Subsequently, we present a polynomial test for nonsplit extensions of full matrix algebras.

To begin, let F be a field, $M_n(F)$ the algebra of $n \times n$ matrices over F, and $F\{X\} = F\{x_1, x_2, \ldots\}$ the free associative algebra over F in countably many variables. Sometimes we will use other variables x, y, z, x_i, y_i for notation simplicity. A nonzero polynomial $f(x_1, \ldots, x_m) \in F\{X\}$ is a polynomial identity for an F-algebra R if $f(r_1, \ldots, r_m) = 0$ for all $r_1, \ldots, r_m \in R$. A T-ideal is an ideal of $F\{X\}$ which is closed under endomorphisms of $F\{X\}$. If f_1, \ldots, f_t are polynomial identities for R, so is every polynomial f in the T-ideal generated by f_1, \ldots, f_t . In this case we say that the identity f = 0 in R is a consequence of the identities $f_i = 0$, for $1 \le i \le t$.

The standard polynomial of degree t is

$$s_t(x_1, \dots, x_t) = \sum_{\sigma \in S_t} (\operatorname{sg}\sigma) x_{\sigma(1)} x_{\sigma(2)} \cdots x_{\sigma(t)},$$

where S_t is the symmetric group on $\{1, \ldots, t\}$ and $(sg\sigma)$ is the sign of the permutation $\sigma \in S_t$. The standard polynomial s_t is homogeneous of degree t, multilinear and alternating.

The Amitsur-Levitzki theorem asserts that $M_n(F)$ satisfies any standard polynomial of degree 2n or higher. Moreover, if $M_n(F)$ satisfies a polynomial of degree

1

²⁰⁰⁰ Mathematics Subject Classification. 15A24, 15A99, 16R99.

Key words and phrases. polynomial identity, polynomial test, matrix subalgebra, double Capelli polynomial.

2n, then the polynomial is a scalar multiple of s_{2n} (cf. [1]). The Capelli polynomials are

$$c_{2t-1}(x_1, \dots, x_t, y_1, \dots, y_{t-1}) = \sum_{\sigma \in S_t} (sg\sigma) x_{\sigma(1)} y_1 x_{\sigma(2)} y_2 \cdots x_{\sigma(t-1)} y_{t-1} x_{\sigma(t)},$$

and

$$c_{2t}(x_1,\ldots,x_t,y_1,\ldots,y_t) = c_{2t-1}(x_1,\ldots,x_t,y_1,\ldots,y_{t-1})y_t.$$

These polynomials were introduced by Razmyslov in [9]. The polynomials c_{2t-1} and c_{2t} are multilinear and alternating as a function of x_1, \ldots, x_t . It is clear by a dimension argument that c_{2n^2} is a PI for any proper F-subalgebra of $M_n(F)$. On the other hand, c_{2n^2} is not a PI for $M_n(F)$. To see this, evaluate $c_{2n^2}(x_1, \ldots, x_{n^2}, y_1, \ldots, y_{n^2})$ with

$$(x_1, x_2, \dots, x_n, x_{n+1}, \dots x_{n^2-1}, x_{n^2}) = (e_{11}, e_{12}, \dots, e_{1n}, e_{21}, \dots e_{n(n-1)}, e_{nn}),$$
$$(y_1, \dots, y_n, \dots y_{n^2-1}, y_{n^2}) = (e_{11}, \dots, e_{n2}, \dots e_{(n-1)n}, e_{n1}).$$

where the e_{ij} are the standard matrix units, $y_1 = e_{11}$, $y_{n^2} = e_{n1}$, and $y_2, \dots y_{n^2-1}$ are the unique choices of matrix units such that the monomial with $\sigma = 1$ is nonzero, so c_{2n^2} takes on the value $e_{11} \neq 0$. Based on this example, we introduce the following definition:

Definition 1.1. We will say that a multilinear polynomial $f(x_1, ..., x_t) \in F\{X\}$ is a *polynomial test* for an F-algebra R if it is not a polynomial identity for R but it is an identity for every proper F-subalgebra of R.

Thus, the Capelli polynomial of total degree $2n^2$ is a polynomial test for $M_n(F)$. Moreover, central polynomials for $M_n(F)$ are polynomial tests for $M_n(F)$ (see [6]). In [2], it is proved that the standard polynomial of degree 2n-2 is a polynomial test for the subalgebra of upper triangular matrices of $M_n(F)$. The double Capelli polynomials are

$$h_{2t-1}(x_1, \dots, x_t, y_1, \dots, y_{t-1}) = \sum_{\sigma \in S_t, \tau \in S_{t-1}} (\operatorname{sg} \sigma \tau) x_{\sigma(1)} y_{\tau(1)} x_{\sigma(2)} y_{\tau(2)} \cdots x_{\sigma(t-1)} y_{\tau(t-1)} x_{\sigma(t)},$$

and

$$h_{2t}(x_1, \dots, x_t, y_1, \dots, y_t) = \sum_{\sigma, \tau \in S_t} (sg\sigma\tau) x_{\sigma(1)} y_{\tau(1)} x_{\sigma(2)} y_{\tau(2)} \cdots x_{\sigma(t-1)} y_{\tau(t-1)} x_{\sigma(t)} y_{\tau(t)}.$$

Note that h_{2t-1} and h_{2t} are multilinear and alternate in the x_i and also in the y_j . Formanek pointed out that h_{4n-2} is not a polynomial identity for $M_n(F)$ and asked for the least integer m such that h_m is a polynomial identity for $M_n(F)$. Chang [3] has proved that the double Capelli polynomial h_{2t} is a consequence of the standard polynomial s_t . A different proof that $h_{4n} = 0$ is a polynomial identity for $M_n(F)$, that uses a variation of Rosset's proof of the Amitsur-Levitzki theorem [10], was given by Giambruno-Sehgal in [7]. An elegant one-line proof of Domokos is given in [4], Example 2.2, p. 917.

In [5], Domokos obtained a generalization of Chang's theorem. Since it is important in these notes, the precise statement of Domokos's theorem is included below.

Let $x_1, \ldots, x_d, y_1, \ldots, y_m$ be noncommuting variables over F, and let w_1, \ldots, w_u be monomials in y_1, \ldots, y_m such that w_1, \ldots, w_u is a reordering of y_1, \ldots, y_m . For a subset $\Pi \subseteq S_d$ and a monomial partition $\{w_1, \ldots, w_u\}$ of the set of variables Y we put

$$f_{\Pi}(x_1, \dots, x_d, y_1, \dots, y_m | w_1, \dots, w_u) = \sum_{\sigma} (\operatorname{sg} \mu) x_{\pi(1)} \cdots x_{\pi(d_1)} w_{\rho(1)} x_{\pi(d_1+1)} \cdots x_{\pi(d_1+d_2)} w_{\rho(2)} \cdots \cdots w_{\rho(s)} x_{\pi(d_1+\dots+d_s+1)} \cdots x_{\pi(d_1+\dots+d_{s+1})},$$

where the summation runs over all $\pi \in \Pi$, $\rho \in S_u$, $d_i \geq 1$ for $i = 1, \ldots, s+1$ such that $d_1 + \cdots + d_{s+1} = d$ and sg μ is ± 1 according to the parity of the permutation of the "underlying" variables $x_1, \ldots, x_d, y_1, \ldots, y_m$ in the corresponding term.

Theorem 1.2. [5] The polynomial $f_{S_d}(x_1, \ldots, x_d, y_1, \ldots, y_m | w_1, \ldots, w_u)$ is contained in the T-ideal generated by the standard polynomial s_d .

Corollary 1.3. [5] We have the strengthened version of the result of [3] and [7] we mentioned above:

$$\sum_{\sigma \in S_{2n}, \tau \in S_{2n-1}} (\operatorname{sg} \sigma \tau) x_{\sigma(1)} y_{\tau(1)} \cdots y_{\tau(2n-1)} x_{\sigma(2n)} = 0,$$

is a polynomial identity for $M_n(F)$, moreover, it is a consequence of the standard identity $s_{2n} = 0$.

To see that h_{4n-2} is not a polynomial identity for $M_n(F)$, consider the substitution (double staircase)

$$x_1 = e_{11}, y_1 = e_{12}, x_2 = e_{22}, y_2 = e_{23}, \dots, x_n = e_{nn}$$

 $y_n = e_{nn}, x_{n+1} = e_{n(n-1)}, y_{n+1} = e_{(n-1)(n-1)}, \dots, x_{2n-1} = e_{21}, y_{2n-1} = e_{11}$

where the e_{ij} are the standard matrix units. The only nonzero monomials in $h_{4n-2}(x_i, y_i)$ are the 2n-1 even cyclic permutations of $x_1y_1 \dots x_{2n-1}y_{2n-1}$, and they all have positive sign. Thus

$$h_{4n-2}(x_1,\ldots,x_{2n-1},y_1,\ldots,y_{2n-1})=2I-e_{11}.$$

We finish this section with two useful properties of the double Capelli polynomials.

Proposition 1.4. (a) h_{q+r} is a linear combination, with coefficients being 1 or -1 of evaluations of $h_q h_r$.

(b) The polynomial h_t is a consequence of the identity h_s for any $t \geq s$.

Proof. To prove (a) we show an explicit formula, where for simplicity we consider the following statement: $h_{2(q+r)-2}$ is a linear combination with coefficients being 1 or -1 of evaluations of $h_{2q-1} h_{2r-1}$. Let t = q + r - 1 We partition the set of permutations S_t by defining the equivalence relation $\sigma_1 \sim_q \sigma_2$ if the images of the interval [1,q] under σ_1 and σ_2 are the same set. Similarly, We partition the set of permutations S_t by defining the equivalence relation $\tau_1 \sim_r \tau_2$ if the images of the

interval [1, q-1] under τ_1 and τ_2 are the same set. Then we have

$$h_{2t}(x_1, \dots, x_t, y_1, \dots, y_t) = \sum_{\substack{\bar{\sigma} \in S_t/\sim_q \\ \bar{\tau} \in S_t/\sim_p}} (\operatorname{sg}\sigma\tau) \, h_{2q-1}(x_{\sigma(1)}, \dots, x_{\sigma(q)}, y_{\tau(1)}, \dots, y_{\tau(q-1)})$$

$$h_{2r-1}(y_{\tau(1)},\ldots,y_{\tau(t)},x_{\sigma(q+1)},\ldots,x_{\sigma(t)}).$$

The assertion in (b) follows immediately from (a).

2. A POLYNOMIAL TEST FOR THE FULL MATRIX ALGEBRA

The main goal of this section is to prove that h_{4n-2} is a polynomial test for $M_n(F)$. Before proceeding to the proof of this theorem we need some preliminaries and notation (cf. [8]). Let ℓ, m be positive integers such that $\ell + m = n$ and set

$$E_{(\ell,m)}(F) = \begin{bmatrix} M_{\ell}(F) & M_{\ell \times m}(F) \\ 0 & M_{m}(F) \end{bmatrix},$$

an F-subalgebra of $M_n(F)$.

(i) Associated to $E_{(\ell,m)}(F)$ are canonical F-algebra homomorphisms

$$\pi_{\ell} \colon E_{(\ell,m)}(F) \to M_{\ell}(F)$$
 and $\pi_m \colon E_{(\ell,m)}(F) \to M_m(F)$.

Further identify $M_{\ell}(F)$ and $M_{m}(F)$ with

$$\begin{bmatrix} M_{\ell}(F) & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & M_m(F) \end{bmatrix},$$

respectively.

- (ii) Associated to a subalgebra A of $E_{(\ell,m)}(F)$ are homomorphic image subalgebras A_{ℓ} and A_m in $M_{\ell}(F)$ and $M_m(F)$ respectively.
- (iii) Set

$$T_{(\ell,m)}(F) = \begin{bmatrix} 0 & M_{\ell \times m} \\ 0 & 0 \end{bmatrix},$$

the Jacobson radical of $E_{(\ell,m)}(F)$.

(iv) Recall that every F-algebra automorphism τ of $M_n(F)$ is inner (i.e., there exists an invertible Q in $M_n(F)$ such that $\tau(a) = QaQ^{-1}$ for all $a \in M_n(F)$). We will say that two F-subalgebras A, A' of $M_n(F)$ are equivalent provided there exists an automorphism τ of $M_n(F)$ such that $\tau(A) = A'$.

Lemma 2.1. Let A be a subalgebra of $E_{(\ell,m)}(F)$ such that A_{ℓ} satisfies h_q and A_m satisfies h_r . Then A satisfies $h_{(q+r)}$.

Proof. The hypothesis that A_{ℓ} satisfies h_q implies that the evaluation of h_q on A consists of matrices of the form

$$\begin{pmatrix} 0 & * \\ 0 & * \end{pmatrix}$$
.

Similarly, the hypothesis that A_m satisfies h_r implies that the evaluation of s_r on A consists of matrices of the form

$$\begin{pmatrix} * & * \\ 0 & 0 \end{pmatrix}$$
.

Thus A satisfies $h_q h_r$. Since h_{q+r} is a linear combination of evaluations of $h_q h_r$, A satisfies h_{q+r} .

Theorem 2.2. h_{4n-2} is an identity for any proper subalgebra of $M_n(F)$.

Proof. Let A be a proper subalgebra of $M_n(F)$. If A is simple, then it is a a finite dimensional central simple algebra over its center k. Let K denote the algebraic closure of k; then $A \otimes_k K$ is a simple K-algebra in a natural way (cf. [11], §1.8), with $\dim_K (A \otimes_k K) = \dim_k(A)$. Also, $A \otimes_k K \cong M_t(K)$ for some $t \leq n$. Since A is a proper subalgebra of $M_n(F)$ it follows that t < n. Hence, by the Amitsur-Levitzki theorem, $A \otimes_k K$ satisfies s_{2n-2} . Since h_{4n-5} lies in the T-ideal generated by s_{2n-2} , we have that $h_{4n-5}(A) = 0$. If A is not simple, it can be embedded as F-algebra in $E_{(\ell,m)}(F)$ for some suitable positive integers ℓ and m (with $\ell + m = n$). Since $h_{4\ell-1}$ and h_{4m-1} are identities for $M_\ell(F)$ and $M_m(F)$ respectively, we apply Lemma 2.1 to obtain that h_{4n-2} is an identity for A.

3. A Polynomial test for $E_{(\ell,m)}$

In this section we show that the double Capelli polynomial h_{4n-3} is a polynomial test for the subalgebra $E_{(\ell,m)}$ of $M_n(F)$ for any positive integers ℓ, m such that $\ell+m=n$.

Proposition 3.1. h_{4n-3} is an identity for every proper subalgebra of $E_{(\ell,m)}$.

Proof. We consider all possible proper subalgebras of $E_{(\ell,m)}(F)$. Let first consider a subalgebra A of $E_{(\ell,m)}$ such that A_{ℓ} is a proper subalgebra of $M_{\ell}(F)$. Then $h_{4\ell-2}$ is an identity for A_{ℓ} as established in Theorem 2.2, and h_{4m-1} is an identity for $M_m(F)$. Thus, by Lemma 2.1, h_{4m-3} is an identity for

$$\begin{bmatrix} A_{\ell} & M_{\ell \times m}(F) \\ 0 & M_m(F) \end{bmatrix},$$

and consequently an identity for A. Similarly, h_{4n-3} is an identity for every subalgebra of $E_{(\ell,m)}$ such that A_m is a proper subalgebra of $M_m(F)$. Clearly, h_{4n-4} is an identity for the semisimple case

$$\begin{bmatrix} M_{\ell}(F) & 0 \\ 0 & M_m(F) \end{bmatrix}.$$

It only remains to consider the case when the projections $A \to A_{\ell}$ and $A \to A_m$ are equivalent representations of A, which means that A there is a fixed matrix T such that $TA_{\ell}T^{-1} = A_m$. It easily follows that in this case A is equivalent to the F-subalgebra of the form

$$\left\{ \begin{bmatrix} a & c \\ 0 & a \end{bmatrix} : a, c \in M_{\ell}(F) \right\}.$$

In [2], Proposition 2.5, it is proved that the standard polynomial $s_{2\ell}$ is an identity for this algebra, hence, h_{2n-1} is an identity for A.

Remark 3.2. The polynomial h_{4n-3} is not an identity for $E_{(\ell,m)}$. For instance, if n=3 and $A=E_{(1,2)}$, we have

$$h_9(e_{11}, e_{11}, e_{12}, e_{22}, e_{22}, e_{23}, e_{33}, e_{33}, e_{32}) = 2e_{12}.$$

Remark 3.3. The above ideas can be generalized to prove that the double Capelli polynomial h_{4n-t-1} is a polynomial test for the block upper triangular matrix

algebra

$$\begin{pmatrix} M_{\ell_1}(F) & & & & \\ & M_{\ell_2}(F) & & * & \\ & & \ddots & & \\ & 0 & & & M_{\ell_t}(F) \end{pmatrix}$$

ACKNOWLEDGMENTS

I am indebted to Professor Edward Letzter for his help and guidance. I am also grateful to the referee for many helpful comments and suggestions that have substantially improved these notes.

References

- S. A. Amitsur and J. Levitzki, Minimal identities for algebras. Proc. Amer. Math. Soc. 1, (1950), 449–463.
- 2. Daniel Birmajer, On subalgebras of $n \times n$ matrices not satisfying identities of degree 2n-2. Submitted to Linear Algebra and its Applications (2003).
- 3. Qing Chang, Some consequences of the standard polynomial. Proc. Amer. Math. Soc. 104 (1988), no. 3, 707–710.
- 4. M. Domokos, Eulerian Polynomial Identities and Algebras Satisfying a Standard Identity. Journal of Algebra 169 (1994), 913–928.
- M. Domokos, A generalization of a theorem of Chang, Communications in Algebra 23 (1995), 4333–4342.
- Edward Formanek, Central polynomials for matrix rings. Journal of Algebra 23 (1972), 129– 132.
- 7. A. Giambruno and S. K. Sehgal, On a polynomial identity for $n \times n$ matrices. Journal of Algebra 126 (1989), no. 2, 451–453.
- Edward Letzter, Effective detection of nonsplit module extensions.
 E-print ArXiv http://arxiv.org/math.RA/0206141 (2002).
- Y. P. Razmyslov, The Jacobson radical in PI-algebras, Algebra i Logika 13 (1974), 337-360;
 English transl., Algebra and Logic 13 (1974), 192-204.
- Shmuel Rosset, A new proof of the Amitsur-Levitzki identity, Israel J. Math. 23 (1976), 187-188
- 11. L. H. Rowen, Polynomial identities in ring theory. Academic Press, New York-London, 1980.

Department of Mathematics & Computer Science, Nazareth College, 4245 East Avenue, Rochester, NY 14618

 $E ext{-}mail\ address: abirmaj6@naz.edu}$