Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 002dba45

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 002dba45

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 002dba45

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 002dba45

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 002dba45

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: f224df07

- A. 2
- B. 4
- C. 5
- D. 6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: f224df07

- A. 2
- B. 4
- C. 5
- D. 6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: f224df07

- A. 2
- B. 4
- C. 5
- D. 6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: f224df07

- A. 2
- B. 4
- C. 5
- D. 6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: f224df07

- A. 2
- B. 4
- C. 5
- D. 6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: cb8f449f

$$\frac{1}{2}y = 4$$

$$x - \frac{1}{2}y = 2$$

The system of equations above has solution (x,

- A. 3
- B. 2
- C. 4
- D. 6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: cb8f449f

$$\frac{1}{2}y = 4$$

$$x - \frac{1}{2}y = 2$$

The system of equations above has solution (x,

- A. 3
- B. 2
- C. 4
- D. 6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: cb8f449f

$$\frac{1}{2}y = 4$$

$$x - \frac{1}{2}y = 2$$

The system of equations above has solution (x,

- A. 3
- B. 2
- C. 4
- D. 6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: cb8f449f

$$\frac{1}{2}y = 4$$

$$x - \frac{1}{2}y = 2$$

The system of equations above has solution (x,

- A. 3
- B. 2
- C. 4
- D. 6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: cb8f449f

$$\frac{1}{2}y = 4$$

$$x - \frac{1}{2}y = 2$$

The system of equations above has solution (x,

- A. 3
- B. 2
- C. 4
- D. 6

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear functions		

ID: e62cfe5f

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear functions		

ID: e62cfe5f

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear functions		

ID: e62cfe5f

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear functions		

ID: e62cfe5f

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear functions		

ID: e62cfe5f

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 9b0a4eae

- A. The length is $10\ m$ less than the perimeter, and the width is $8\ m$ less than the perimeter.
- B. The length is 10 m, and the width is 8 m.
- C. The length is 8 m, and the width is 10 m.
- D. The length is $8\ m$ less than the perimeter, and the width is $10\ m$ less than the perimeter.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 9b0a4eae

- A. The length is $10\ m$ less than the perimeter, and the width is $8\ m$ less than the perimeter.
- B. The length is 10 m, and the width is 8 m.
- C. The length is 8 m, and the width is 10 m.
- D. The length is $8\ m$ less than the perimeter, and the width is $10\ m$ less than the perimeter.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 9b0a4eae

- A. The length is $10\ m$ less than the perimeter, and the width is $8\ m$ less than the perimeter.
- B. The length is 10 m, and the width is 8 m.
- C. The length is 8 m, and the width is 10 m.
- D. The length is $8\ m$ less than the perimeter, and the width is $10\ m$ less than the perimeter.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 9b0a4eae

- A. The length is $10\ m$ less than the perimeter, and the width is $8\ m$ less than the perimeter.
- B. The length is 10 m, and the width is 8 m.
- C. The length is 8 m, and the width is 10 m.
- D. The length is $8\ m$ less than the perimeter, and the width is $10\ m$ less than the perimeter.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 9b0a4eae

- A. The length is $10\ m$ less than the perimeter, and the width is $8\ m$ less than the perimeter.
- B. The length is 10 m, and the width is 8 m.
- C. The length is 8 m, and the width is 10 m.
- D. The length is $8\ m$ less than the perimeter, and the width is $10\ m$ less than the perimeter.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 7e3f8363

A.
$$f(x)=28x+34$$

B.
$$f(x) = 3x + 38$$

C.
$$f(x)=4x+3$$

D.
$$f(x) = 7x + 3$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 7e3f8363

A.
$$f(x)=28x+34$$

B.
$$f(x) = 3x + 38$$

C.
$$f(x)=4x+3$$

D.
$$f(x) = 7x + 3$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 7e3f8363

A.
$$f(x)=28x+34$$

B.
$$f(x) = 3x + 38$$

C.
$$f(x)=4x+3$$

D.
$$f(x) = 7x + 3$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 7e3f8363

A.
$$f(x)=28x+34$$

B.
$$f(x) = 3x + 38$$

C.
$$f(x)=4x+3$$

D.
$$f(x) = 7x + 3$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 7e3f8363

A.
$$f(x)=28x+34$$

B.
$$f(x) = 3x + 38$$

C.
$$f(x)=4x+3$$

D.
$$f(x) = 7x + 3$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 0dd6227f

- A. **0**
- B. **1**
- C. **2**
- D. 8

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 0dd6227f

- A. **0**
- B. **1**
- C. **2**
- D. 8

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 0dd6227f

- A. **0**
- B. **1**
- C. **2**
- D. 8

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 0dd6227f

- A. **0**
- B. **1**
- C. **2**
- D. 8

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 0dd6227f

- A. **0**
- B. **1**
- C. **2**
- D. 8

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 7efe5495

$$y = 3x$$
 $2x + y = 12$

The solution to the given system of equations is (x,y). What is the value of 5x?

- A. **24**
- B. **15**
- $\mathsf{C.}\ 12$
- D. **5**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 7efe5495

$$y = 3x$$
 $2x + y = 12$

- A. **24**
- B. **15**
- $\mathsf{C.}\ 12$
- D. **5**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 7efe5495

$$y = 3x$$
 $2x + y = 12$

- A. **24**
- B. **15**
- $\mathsf{C.}\ 12$
- D. **5**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 7efe5495

$$y = 3x$$
 $2x + y = 12$

- A. **24**
- B. **15**
- $\mathsf{C.}\ 12$
- D. **5**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 7efe5495

$$y = 3x$$
 $2x + y = 12$

- A. **24**
- B. **15**
- $\mathsf{C.}\ 12$
- D. **5**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 1087f6c4

24.5x + 24.75y = 641

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 1087f6c4

24.5x + 24.75y = 641

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 1087f6c4

24.5x + 24.75y = 641

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 1087f6c4

24.5x + 24.75y = 641

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 1087f6c4

24.5x + 24.75y = 641

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 71189542

- A. 30
- B. 20
- C. 19
- D. 18

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 71189542

- A. 30
- B. 20
- C. 19
- D. 18

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 71189542

- A. 30
- B. 20
- C. 19
- D. 18

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 71189542

- A. 30
- B. 20
- C. 19
- D. 18

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 71189542

- A. 30
- B. 20
- C. 19
- D. 18

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 9d4270fe

- A. The monthly sales revenue, in dollars, from selling $m{x}$ tape dispensers
- B. The monthly sales revenue, in dollars, from each tape dispenser sold
- C. The monthly cost, in dollars, of creating each tape dispenser
- D. The monthly cost, in dollars, of creating $oldsymbol{x}$ tape dispensers

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 9d4270fe

- A. The monthly sales revenue, in dollars, from selling $m{x}$ tape dispensers
- B. The monthly sales revenue, in dollars, from each tape dispenser sold
- C. The monthly cost, in dollars, of creating each tape dispenser
- D. The monthly cost, in dollars, of creating $oldsymbol{x}$ tape dispensers

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 9d4270fe

- A. The monthly sales revenue, in dollars, from selling $m{x}$ tape dispensers
- B. The monthly sales revenue, in dollars, from each tape dispenser sold
- C. The monthly cost, in dollars, of creating each tape dispenser
- D. The monthly cost, in dollars, of creating $oldsymbol{x}$ tape dispensers

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 9d4270fe

- A. The monthly sales revenue, in dollars, from selling $m{x}$ tape dispensers
- B. The monthly sales revenue, in dollars, from each tape dispenser sold
- C. The monthly cost, in dollars, of creating each tape dispenser
- D. The monthly cost, in dollars, of creating $oldsymbol{x}$ tape dispensers

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 9d4270fe

- A. The monthly sales revenue, in dollars, from selling $m{x}$ tape dispensers
- B. The monthly sales revenue, in dollars, from each tape dispenser sold
- C. The monthly cost, in dollars, of creating each tape dispenser
- D. The monthly cost, in dollars, of creating $oldsymbol{x}$ tape dispensers

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 64c85440

- A. $18 \le n \le 135$
- B. $7.5 \le n \le 9$
- C. $15 \le n \le 135$
- D. $15 \le n \le 18$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 64c85440

- A. $18 \le n \le 135$
- B. $7.5 \le n \le 9$
- C. $15 \le n \le 135$
- D. $15 \le n \le 18$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 64c85440

- A. $18 \le n \le 135$
- B. $7.5 \le n \le 9$
- C. $15 \le n \le 135$
- D. $15 \le n \le 18$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 64c85440

- A. $18 \le n \le 135$
- B. $7.5 \le n \le 9$
- C. $15 \le n \le 135$
- D. $15 \le n \le 18$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 64c85440

- A. $18 \le n \le 135$
- B. $7.5 \le n \le 9$
- C. $15 \le n \le 135$
- D. $15 \le n \le 18$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 7a5a74a6

$$3(2x-6)-11=4(x-3)+6$$

B.
$$\frac{17}{2}$$

$$D_{.} - \frac{15}{2}$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 7a5a74a6

$$3(2x-6)-11=4(x-3)+6$$

B.
$$\frac{17}{2}$$

$$D_{.} - \frac{15}{2}$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 7a5a74a6

$$3(2x-6)-11=4(x-3)+6$$

B.
$$\frac{17}{2}$$

$$D_{.} - \frac{15}{2}$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 7a5a74a6

$$3(2x-6)-11=4(x-3)+6$$

B.
$$\frac{17}{2}$$

$$D_{.} - \frac{15}{2}$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 7a5a74a6

$$3(2x-6)-11=4(x-3)+6$$

B.
$$\frac{17}{2}$$

$$D_{.} - \frac{15}{2}$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 7625073d

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 7625073d

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 7625073d

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 7625073d

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 7625073d

Question ID 968e9e51

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 968e9e51

 $y \le x$

$$y \le -x$$

Which of the following ordered pairs (x,y) is a solution to the system of inequalities above?

- A. (1,0)
- B. (-1,0)
- c. (0,1)
- D. (0, -1)

Question ID 968e9e51

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 968e9e51

 $y \le x$

$$y \le -x$$

Which of the following ordered pairs (x,y) is a solution to the system of inequalities above?

- A. (1,0)
- B. (-1,0)
- c. (0,1)
- D. (0, -1)

Question ID 968e9e51

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 968e9e51

 $y \le x$

$$y \le -x$$

Which of the following ordered pairs (x,y) is a solution to the system of inequalities above?

- A. (1,0)
- B. (-1,0)
- c. (0,1)
- D. (0, -1)

Question ID 968e9e51

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 968e9e51

 $y \le x$

$$y \le -x$$

Which of the following ordered pairs (x,y) is a solution to the system of inequalities above?

- A. (1,0)
- B. (-1,0)
- c. (0,1)
- D. (0, -1)

Question ID 968e9e51

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 968e9e51

 $y \le x$

$$y \le -x$$

Which of the following ordered pairs (x,y) is a solution to the system of inequalities above?

- A. (1,0)
- B. (-1,0)
- c. (0,1)
- D. (0, -1)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: aa85b138

2n+6=14

- A. The number of years it took the tree to double its height
- B. The average number of feet that the tree grew per year
- C. The height, in feet, of the tree when the tree was 1 year old
- D. The average number of years it takes similar trees to grow 14 feet

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: aa85b138

2n+6=14

- A. The number of years it took the tree to double its height
- B. The average number of feet that the tree grew per year
- C. The height, in feet, of the tree when the tree was 1 year old
- D. The average number of years it takes similar trees to grow 14 feet

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: aa85b138

2n+6=14

- A. The number of years it took the tree to double its height
- B. The average number of feet that the tree grew per year
- C. The height, in feet, of the tree when the tree was 1 year old
- D. The average number of years it takes similar trees to grow 14 feet

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: aa85b138

2n+6=14

- A. The number of years it took the tree to double its height
- B. The average number of feet that the tree grew per year
- C. The height, in feet, of the tree when the tree was 1 year old
- D. The average number of years it takes similar trees to grow 14 feet

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: aa85b138

2n+6=14

- A. The number of years it took the tree to double its height
- B. The average number of feet that the tree grew per year
- C. The height, in feet, of the tree when the tree was 1 year old
- D. The average number of years it takes similar trees to grow 14 feet

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 15daa8d6

$$2x + 16 = a(x+8)$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 15daa8d6

$$2x + 16 = a(x+8)$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 15daa8d6

$$2x + 16 = a(x+8)$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 15daa8d6

$$2x + 16 = a(x+8)$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 15daa8d6

$$2x + 16 = a(x+8)$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 12ee1edc

$$(b-2)x = 8$$

- A. 2
- B. 4
- C. 6
- D. 10

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 12ee1edc

$$(b-2)x = 8$$

- A. 2
- B. 4
- C. 6
- D. 10

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 12ee1edc

$$(b-2)x = 8$$

- A. 2
- B. 4
- C. 6
- D. 10

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 12ee1edc

$$(b-2)x = 8$$

- A. 2
- B. 4
- C. 6
- D. 10

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 12ee1edc

$$(b-2)x = 8$$

- A. 2
- B. 4
- C. 6
- D. 10

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 620fe971

A team of workers has been moving cargo off of a ship. The equation below models the approximate number of tons of cargo, *y*, that remains to be moved *x* hours after the team started working.

$$y = 120 - 25x$$

- A. The team will have moved all the cargo in about 4.8 hours.
- B. The team has been moving about 4.8 tons of cargo per hour.
- C. The team has been moving about 25 tons of cargo per hour.
- D. The team started with 120 tons of cargo to move.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 620fe971

A team of workers has been moving cargo off of a ship. The equation below models the approximate number of tons of cargo, *y*, that remains to be moved *x* hours after the team started working.

$$y = 120 - 25x$$

- A. The team will have moved all the cargo in about 4.8 hours.
- B. The team has been moving about 4.8 tons of cargo per hour.
- C. The team has been moving about 25 tons of cargo per hour.
- D. The team started with 120 tons of cargo to move.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 620fe971

A team of workers has been moving cargo off of a ship. The equation below models the approximate number of tons of cargo, *y*, that remains to be moved *x* hours after the team started working.

$$y = 120 - 25x$$

- A. The team will have moved all the cargo in about 4.8 hours.
- B. The team has been moving about 4.8 tons of cargo per hour.
- C. The team has been moving about 25 tons of cargo per hour.
- D. The team started with 120 tons of cargo to move.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 620fe971

A team of workers has been moving cargo off of a ship. The equation below models the approximate number of tons of cargo, *y*, that remains to be moved *x* hours after the team started working.

$$y = 120 - 25x$$

- A. The team will have moved all the cargo in about 4.8 hours.
- B. The team has been moving about 4.8 tons of cargo per hour.
- C. The team has been moving about 25 tons of cargo per hour.
- D. The team started with 120 tons of cargo to move.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 620fe971

A team of workers has been moving cargo off of a ship. The equation below models the approximate number of tons of cargo, *y*, that remains to be moved *x* hours after the team started working.

$$y = 120 - 25x$$

- A. The team will have moved all the cargo in about 4.8 hours.
- B. The team has been moving about 4.8 tons of cargo per hour.
- C. The team has been moving about 25 tons of cargo per hour.
- D. The team started with 120 tons of cargo to move.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 17d80dc3

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 17d80dc3

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 17d80dc3

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 17d80dc3

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 17d80dc3

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 6e6a3241

$$x+5y=5$$

$$2x - y = -4$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 6e6a3241

$$x+5y=5$$

$$2x - y = -4$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 6e6a3241

$$x+5y=5$$

$$2x - y = -4$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 6e6a3241

$$x+5y=5$$

$$2x - y = -4$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 6e6a3241

$$x+5y=5$$

$$2x - y = -4$$

Question ID af711d1b

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: af711d1b

Distance (kilometers)	Average time (minutes)
0.32	8
0.56	14
0.68	17

The table gives the average time t, in minutes, it takes Carly to travel a certain distance d, in kilometers. Which equation could represent this linear relationship?

A.
$$t=4d$$

B.
$$t=rac{1}{25}d$$

C.
$$t=25d$$

D.
$$t=rac{1}{4}d$$

Question ID af711d1b

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: af711d1b

Distance (kilometers)	Average time (minutes)
0.32	8
0.56	14
0.68	17

The table gives the average time t, in minutes, it takes Carly to travel a certain distance d, in kilometers. Which equation could represent this linear relationship?

A.
$$t=4d$$

B.
$$t=rac{1}{25}d$$

C.
$$t=25d$$

D.
$$t=rac{1}{4}d$$

Question ID af711d1b

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: af711d1b

Distance (kilometers)	Average time (minutes)
0.32	8
0.56	14
0.68	17

The table gives the average time t, in minutes, it takes Carly to travel a certain distance d, in kilometers. Which equation could represent this linear relationship?

A.
$$t=4d$$

B.
$$t=rac{1}{25}d$$

C.
$$t=25d$$

D.
$$t=rac{1}{4}d$$

Question ID af711d1b

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: af711d1b

Distance (kilometers)	Average time (minutes)
0.32	8
0.56	14
0.68	17

The table gives the average time t, in minutes, it takes Carly to travel a certain distance d, in kilometers. Which equation could represent this linear relationship?

A.
$$t=4d$$

B.
$$t=rac{1}{25}d$$

C.
$$t=25d$$

D.
$$t=rac{1}{4}d$$

Question ID af711d1b

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: af711d1b

Distance (kilometers)	Average time (minutes)
0.32	8
0.56	14
0.68	17

The table gives the average time t, in minutes, it takes Carly to travel a certain distance d, in kilometers. Which equation could represent this linear relationship?

A.
$$t=4d$$

B.
$$t=rac{1}{25}d$$

C.
$$t=25d$$

D.
$$t=rac{1}{4}d$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 5cf1bbc9

- A. Each game costs \$25.
- B. The video game system costs \$100.
- C. The video game system costs \$25.
- D. Each game costs \$100.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 5cf1bbc9

- A. Each game costs \$25.
- B. The video game system costs \$100.
- C. The video game system costs \$25.
- D. Each game costs \$100.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 5cf1bbc9

- A. Each game costs \$25.
- B. The video game system costs \$100.
- C. The video game system costs \$25.
- D. Each game costs \$100.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 5cf1bbc9

- A. Each game costs \$25.
- B. The video game system costs \$100.
- C. The video game system costs \$25.
- D. Each game costs \$100.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 5cf1bbc9

- A. Each game costs \$25.
- B. The video game system costs \$100.
- C. The video game system costs \$25.
- D. Each game costs \$100.

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 9c7741c6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 9c7741c6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 9c7741c6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 9c7741c6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 9c7741c6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 018a2704

- A. **16**
- B. **23**
- $\text{C. } \mathbf{30}$
- D. **38**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 018a2704

- A. **16**
- B. **23**
- $\text{C. } \mathbf{30}$
- D. **38**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 018a2704

- A. **16**
- B. **23**
- $\text{C. } \mathbf{30}$
- D. **38**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 018a2704

- A. **16**
- B. **23**
- $\text{C. } \mathbf{30}$
- D. **38**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 018a2704

- A. **16**
- B. **23**
- $\text{C. } \mathbf{30}$
- D. **38**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: ed92fb68

$$4x + 5y = 100$$

$$5x + 4y = 62$$

If the system of equations above has solution (x, y),

- A. 0
- B. 9
- C. 18
- D. 38

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: ed92fb68

$$4x + 5y = 100$$

$$5x + 4y = 62$$

If the system of equations above has solution (x, y),

- A. 0
- B. 9
- C. 18
- D. 38

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: ed92fb68

$$4x + 5y = 100$$

$$5x + 4y = 62$$

If the system of equations above has solution (x, y),

- A. 0
- B. 9
- C. 18
- D. 38

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: ed92fb68

$$4x + 5y = 100$$

$$5x + 4y = 62$$

If the system of equations above has solution (x, y),

- A. 0
- B. 9
- C. 18
- D. 38

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: ed92fb68

$$4x + 5y = 100$$

$$5x + 4y = 62$$

If the system of equations above has solution (x, y),

- A. 0
- B. 9
- C. 18
- D. 38

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 606cdce7

\boldsymbol{x}	$oldsymbol{y}$
-6	65
-3	56
3	38
6	29

A.
$$9x+3y=141$$

B.
$$9x + 3y = 3$$

C.
$$3x+9y=141$$

D.
$$3x + 9y = 3$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 606cdce7

\boldsymbol{x}	$oldsymbol{y}$
-6	65
-3	56
3	38
6	29

A.
$$9x+3y=141$$

B.
$$9x + 3y = 3$$

C.
$$3x+9y=141$$

D.
$$3x + 9y = 3$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 606cdce7

\boldsymbol{x}	$oldsymbol{y}$
-6	65
-3	56
3	38
6	29

A.
$$9x+3y=141$$

B.
$$9x + 3y = 3$$

C.
$$3x+9y=141$$

D.
$$3x + 9y = 3$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 606cdce7

\boldsymbol{x}	$oldsymbol{y}$
-6	65
-3	56
3	38
6	29

A.
$$9x+3y=141$$

B.
$$9x + 3y = 3$$

C.
$$3x+9y=141$$

D.
$$3x + 9y = 3$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 606cdce7

\boldsymbol{x}	$oldsymbol{y}$
-6	65
-3	56
3	38
6	29

A.
$$9x+3y=141$$

B.
$$9x + 3y = 3$$

C.
$$3x+9y=141$$

D.
$$3x + 9y = 3$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 19fdf387

- A. 3
- B. 6
- C. 9
- D. 12

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 19fdf387

- A. 3
- B. 6
- C. 9
- D. 12

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 19fdf387

- A. 3
- B. 6
- C. 9
- D. 12

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 19fdf387

- A. 3
- B. 6
- C. 9
- D. 12

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: 19fdf387

- A. 3
- B. 6
- C. 9
- D. 12

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: a775af14

A.
$$f(x)=2x+42$$

B.
$$f(x) = 32x + 36$$

C.
$$f(x)=4x+2$$

D.
$$f(x) = 8x + 2$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: a775af14

A.
$$f(x)=2x+42$$

B.
$$f(x) = 32x + 36$$

C.
$$f(x)=4x+2$$

D.
$$f(x) = 8x + 2$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: a775af14

A.
$$f(x)=2x+42$$

B.
$$f(x) = 32x + 36$$

C.
$$f(x)=4x+2$$

D.
$$f(x) = 8x + 2$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: a775af14

A.
$$f(x)=2x+42$$

B.
$$f(x) = 32x + 36$$

C.
$$f(x)=4x+2$$

D.
$$f(x) = 8x + 2$$

Question ID a775af14

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: a775af14

In the *xy*-plane, the graph of the linear function f contains the points (0,2) and (8,34). Which equation defines f, where y=f(x)?

A.
$$f(x)=2x+42$$

B.
$$f(x) = 32x + 36$$

C.
$$f(x)=4x+2$$

D.
$$f(x) = 8x + 2$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: dae126d7

A.
$$B = 550 + \frac{x}{212}$$

B.
$$B = 550 - \frac{x}{212}$$

C.
$$B = 212 + \frac{x}{550}$$

D.
$$B = 212 - \frac{x}{550}$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: dae126d7

A.
$$B = 550 + \frac{x}{212}$$

B.
$$B = 550 - \frac{x}{212}$$

C.
$$B = 212 + \frac{x}{550}$$

D.
$$B = 212 - \frac{x}{550}$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: dae126d7

A.
$$B = 550 + \frac{x}{212}$$

B.
$$B = 550 - \frac{x}{212}$$

C.
$$B = 212 + \frac{x}{550}$$

D.
$$B = 212 - \frac{x}{550}$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: dae126d7

A.
$$B = 550 + \frac{x}{212}$$

B.
$$B = 550 - \frac{x}{212}$$

C.
$$B = 212 + \frac{x}{550}$$

D.
$$B = 212 - \frac{x}{550}$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: dae126d7

A.
$$B = 550 + \frac{x}{212}$$

B.
$$B = 550 - \frac{x}{212}$$

C.
$$B = 212 + \frac{x}{550}$$

D.
$$B = 212 - \frac{x}{550}$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: bf5f80c6

$$y<-4x+4$$

- A. (-4, 0)
- B. (0, 5)
- C.(2,1)
- D. (2, -1)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: bf5f80c6

$$y<-4x+4$$

- A. (-4, 0)
- B. (0, 5)
- C.(2,1)
- D. (2, -1)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: bf5f80c6

$$y<-4x+4$$

- A. (-4, 0)
- B. (0, 5)
- C.(2,1)
- D. (2, -1)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: bf5f80c6

$$y<-4x+4$$

- A. (-4, 0)
- B. (0, 5)
- C.(2,1)
- D. (2, -1)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: bf5f80c6

$$y<-4x+4$$

- A. (-4, 0)
- B. (0, 5)
- C.(2,1)
- D. (2, -1)

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 80da233d

- A. 400 < w < 600
- B. 565 < w < 930
- C.730 < w < 1.095
- D. 930 < w < 1,295

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 80da233d

- A. 400 < w < 600
- B. 565 < w < 930
- C.730 < w < 1.095
- D. 930 < w < 1,295

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 80da233d

- A. 400 < w < 600
- B. 565 < w < 930
- C.730 < w < 1.095
- D. 930 < w < 1,295

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 80da233d

- A. 400 < w < 600
- B. 565 < w < 930
- C.730 < w < 1.095
- D. 930 < w < 1,295

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: 80da233d

- A. 400 < w < 600
- B. 565 < w < 930
- C.730 < w < 1.095
- D. 930 < w < 1,295

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 271f7e3f

$$f(x) = \frac{(x+7)}{4}$$

- A. 1
- B. 2
- $\frac{1}{4}$
- 9 n 4

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 271f7e3f

$$f(x) = \frac{(x+7)}{4}$$

- A. 1
- B. 2
- $\frac{1}{4}$
- 9 n 4

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 271f7e3f

$$f(x) = \frac{(x+7)}{4}$$

- A. 1
- B. 2
- $\frac{1}{4}$
- 9 n 4

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 271f7e3f

$$f(x) = \frac{(x+7)}{4}$$

- A. 1
- B. 2
- $\frac{1}{4}$
- 9 n 4

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 271f7e3f

$$f(x) = \frac{(x+7)}{4}$$

- A. 1
- B. 2
- $\frac{1}{4}$
- 9 n 4

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 70e29454

$$a(3-x)-b = -1-2x$$

A.
$$a = 2$$
 and $b = 1$

B.
$$a = 2$$
 and $b = 7$

C.
$$a = -2$$
 and $b = 5$

D.
$$a = -2$$
 and $b = -5$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 70e29454

$$a(3-x)-b = -1-2x$$

A.
$$a = 2$$
 and $b = 1$

B.
$$a = 2$$
 and $b = 7$

C.
$$a = -2$$
 and $b = 5$

D.
$$a = -2$$
 and $b = -5$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 70e29454

$$a(3-x)-b=-1-2x$$

A.
$$a = 2$$
 and $b = 1$

B.
$$a = 2$$
 and $b = 7$

C.
$$a = -2$$
 and $b = 5$

D.
$$a = -2$$
 and $b = -5$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 70e29454

$$a(3-x)-b=-1-2x$$

A.
$$a = 2$$
 and $b = 1$

B.
$$a = 2$$
 and $b = 7$

C.
$$a = -2$$
 and $b = 5$

D.
$$a = -2$$
 and $b = -5$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 70e29454

$$a(3-x)-b=-1-2x$$

A.
$$a = 2$$
 and $b = 1$

B.
$$a = 2$$
 and $b = 7$

C.
$$a = -2$$
 and $b = 5$

D.
$$a = -2$$
 and $b = -5$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: b31c3117

$$H = 120p + 60$$

- A. $120 \le H \le 162$
- B. $102 \le H \le 120$
- C. $60 \le H \le 162$
- D. $60 \le H \le 102$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: b31c3117

$$H = 120p + 60$$

- A. $120 \le H \le 162$
- B. $102 \le H \le 120$
- C. $60 \le H \le 162$
- D. $60 \le H \le 102$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: b31c3117

$$H = 120p + 60$$

- A. $120 \le H \le 162$
- B. $102 \le H \le 120$
- C. $60 \le H \le 162$
- D. $60 \le H \le 102$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: b31c3117

$$H = 120p + 60$$

- A. $120 \le H \le 162$
- B. $102 \le H \le 120$
- C. $60 \le H \le 162$
- D. $60 \le H \le 102$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear inequalities in one or two variables	

ID: b31c3117

$$H = 120p + 60$$

- A. $120 \le H \le 162$
- B. $102 \le H \le 120$
- C. $60 \le H \le 162$
- D. $60 \le H \le 102$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: f09097b1

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: f09097b1

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: f09097b1

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: f09097b1

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: f09097b1

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: c5082ce3

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: c5082ce3

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: c5082ce3

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: c5082ce3

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Systems of two linear equations in two variables	

ID: c5082ce3

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: c651cc56

х	f(x)
0	-2
2	4
6	16

- A. 6
- B. 7
- C. 8
- D. 9

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: c651cc56

х	f(x)
0	-2
2	4
6	16

- A. 6
- B. 7
- C. 8
- D. 9

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: c651cc56

х	f(x)
0	-2
2	4
6	16

- A. 6
- B. 7
- C. 8
- D. 9

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: c651cc56

х	f(x)
0	-2
2	4
6	16

- A. 6
- B. 7
- C. 8
- D. 9

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: c651cc56

х	f(x)
0	-2
2	4
6	16

- A. 6
- B. 7
- C. 8
- D. 9

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: c22b5f25

A.
$$f(x) = x + 5$$

B.
$$f(x) = \frac{1}{2}x + 4$$

C.
$$f(x) = -\frac{4}{3}x + \frac{1}{3}$$

$$f(x) = -\frac{3}{2}x + 1$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: c22b5f25

A.
$$f(x) = x + 5$$

B.
$$f(x) = \frac{1}{2}x + 4$$

C.
$$f(x) = -\frac{4}{3}x + \frac{1}{3}$$

$$f(x) = -\frac{3}{2}x + 1$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: c22b5f25

A.
$$f(x) = x + 5$$

B.
$$f(x) = \frac{1}{2}x + 4$$

C.
$$f(x) = -\frac{4}{3}x + \frac{1}{3}$$

$$f(x) = -\frac{3}{2}x + 1$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: c22b5f25

A.
$$f(x) = x + 5$$

B.
$$f(x) = \frac{1}{2}x + 4$$

C.
$$f(x) = -\frac{4}{3}x + \frac{1}{3}$$

$$f(x) = -\frac{3}{2}x + 1$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: c22b5f25

A.
$$f(x) = x + 5$$

B.
$$f(x) = \frac{1}{2}x + 4$$

C.
$$f(x) = -\frac{4}{3}x + \frac{1}{3}$$

$$f(x) = -\frac{3}{2}x + 1$$

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear inequalities in one or two variables		

ID: 6cb9bf45

$$y > 7x - 4$$

A.	$oldsymbol{x}$	$oldsymbol{y}$
	3	13
	5	27
	8	48

В.	$oldsymbol{x}$	$oldsymbol{y}$
	3	17
	5	31
	8	52

C.	$oldsymbol{x}$	$oldsymbol{y}$
	3	21
	5	27
	8	52

D.	$oldsymbol{x}$	$oldsymbol{y}$
	3	21
	5	35
	8	56

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear inequalities in one or two variables		

ID: 6cb9bf45

$$y > 7x - 4$$

A.	$oldsymbol{x}$	$oldsymbol{y}$
	3	13
	5	27
	8	48

В.	$oldsymbol{x}$	$oldsymbol{y}$
	3	17
	5	31
	8	52

C.	$oldsymbol{x}$	$oldsymbol{y}$
	3	21
	5	27
	8	52

D.	$oldsymbol{x}$	$oldsymbol{y}$
	3	21
	5	35
	8	56

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear inequalities in one or two variables		

ID: 6cb9bf45

$$y > 7x - 4$$

A.	$oldsymbol{x}$	$oldsymbol{y}$
	3	13
	5	27
	8	48

В.	$oldsymbol{x}$	$oldsymbol{y}$
	3	17
	5	31
	8	52

C.	$oldsymbol{x}$	$oldsymbol{y}$
	3	21
	5	27
	8	52

D.	$oldsymbol{x}$	$oldsymbol{y}$
	3	21
	5	35
	8	56

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear inequalities in one or two variables		

ID: 6cb9bf45

$$y > 7x - 4$$

A.	$oldsymbol{x}$	$oldsymbol{y}$	
	3	13	
	5	27	
	8	48	

В.	$oldsymbol{x}$	$oldsymbol{y}$
	3	17
	5	31
	8	52

C.	$oldsymbol{x}$	$oldsymbol{y}$
	3	21
	5	27
	8	52

D.	$oldsymbol{x}$	$oldsymbol{y}$
	3	21
	5	35
	8	56

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear inequalities in one or two variables		

ID: 6cb9bf45

$$y > 7x - 4$$

A.	$oldsymbol{x}$	$oldsymbol{y}$	
	3	13	
	5	27	
	8	48	

В.	$oldsymbol{x}$	$oldsymbol{y}$
	3	17
	5	31
	8	52

C.	$oldsymbol{x}$	$oldsymbol{y}$
	3	21
	5	27
	8	52

D.	$oldsymbol{x}$	$oldsymbol{y}$
	3	21
	5	35
	8	56

Assessment Test Domain Skill Difficulty

SAT Math Algebra Linear functions

ID: 11e1ab81

A.
$$d = 2m$$

B.
$$d = \frac{1}{2}m$$

C.
$$d = m + 2$$

D.
$$d = 2m + 2$$

Assessment Test Domain Skill Difficulty

SAT Math Algebra Linear functions

ID: 11e1ab81

A.
$$d = 2m$$

B.
$$d = \frac{1}{2}m$$

C.
$$d = m + 2$$

D.
$$d = 2m + 2$$

Assessment Test Domain Skill Difficulty

SAT Math Algebra Linear functions

ID: 11e1ab81

A.
$$d = 2m$$

B.
$$d = \frac{1}{2}m$$

C.
$$d = m + 2$$

D.
$$d = 2m + 2$$

Assessment Test Domain Skill Difficulty

SAT Math Algebra Linear functions

ID: 11e1ab81

A.
$$d = 2m$$

B.
$$d = \frac{1}{2}m$$

C.
$$d = m + 2$$

D.
$$d = 2m + 2$$

Assessment Test Domain Skill Difficulty

SAT Math Algebra Linear functions

ID: 11e1ab81

A.
$$d = 2m$$

B.
$$d = \frac{1}{2}m$$

C.
$$d = m + 2$$

D.
$$d = 2m + 2$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: df78b361

- A. The number of large containers Lily filled
- B. The number of small containers Lily filled
- C. The total number of cups of jam in the large containers
- D. The total number of cups of jam in the small containers

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: df78b361

- A. The number of large containers Lily filled
- B. The number of small containers Lily filled
- C. The total number of cups of jam in the large containers
- D. The total number of cups of jam in the small containers

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: df78b361

- A. The number of large containers Lily filled
- B. The number of small containers Lily filled
- C. The total number of cups of jam in the large containers
- D. The total number of cups of jam in the small containers

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: df78b361

- A. The number of large containers Lily filled
- B. The number of small containers Lily filled
- C. The total number of cups of jam in the large containers
- D. The total number of cups of jam in the small containers

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: df78b361

- A. The number of large containers Lily filled
- B. The number of small containers Lily filled
- C. The total number of cups of jam in the large containers
- D. The total number of cups of jam in the small containers

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear functions		

ID: 4fe4fd7c

$$c(x) = mx + 500$$

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear functions		

ID: 4fe4fd7c

$$c(x) = mx + 500$$

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear functions		

ID: 4fe4fd7c

$$c(x) = mx + 500$$

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear functions		

ID: 4fe4fd7c

$$c(x) = mx + 500$$

Assessment	Test	Domain	Skill	Difficulty	
SAT	Math	Algebra	Linear functions		

ID: 4fe4fd7c

$$c(x) = mx + 500$$

Question ID 0d1b1e35

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 0d1b1e35

A batch of banana milkshakes consists of 4 cups of ice cream and 2 bananas and has 1,114 milligrams (mg) of calcium. There is 276 mg of calcium in 1 cup of the ice cream used to make this batch of milkshakes. How much calcium, in mg, is in 1 banana?

- A. **5**
- B. **10**
- $\mathsf{C.}\ 419$
- D. 1,104

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 0d1b1e35

- A. **5**
- B. **10**
- $\mathsf{C.}\ 419$
- D. **1,104**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 0d1b1e35

- A. **5**
- B. **10**
- $\mathsf{C.}\ 419$
- D. **1,104**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 0d1b1e35

- A. **5**
- B. **10**
- $\mathsf{C.}\ 419$
- D. **1,104**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 0d1b1e35

- A. **5**
- B. **10**
- $\mathsf{C.}\ 419$
- D. **1,104**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 620abf36

- A. -4
- B. **25**
- C. **29**
- D. **33**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 620abf36

- A. -4
- B. **25**
- C. **29**
- D. **33**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 620abf36

- A. -4
- B. **25**
- C. **29**
- D. **33**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 620abf36

- A. -4
- B. **25**
- C. **29**
- D. **33**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 620abf36

- A. -4
- B. **25**
- C. **29**
- D. **33**

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: d62ad380

An artist paints and sells square tiles. The selling price *P*, in dollars, of a painted tile is a linear function of the side length of the tile *s*, in inches, as shown in the table below.

Side length, s (inches)	Price, P (dollars)
3	8.00
6	18.00
9	28.00

A.
$$P = 3s + 10$$

B.
$$P = \frac{10}{3}s + 8$$

$$_{C.}P = \frac{10}{3}s - 2$$

$$D. P = \frac{3}{10} s - \frac{1}{10}$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: d62ad380

An artist paints and sells square tiles. The selling price *P*, in dollars, of a painted tile is a linear function of the side length of the tile *s*, in inches, as shown in the table below.

Side length, s (inches)	Price, P (dollars)
3	8.00
6	18.00
9	28.00

A.
$$P = 3s + 10$$

B.
$$P = \frac{10}{3}s + 8$$

$$_{C.}P = \frac{10}{3}s - 2$$

$$D. P = \frac{3}{10} s - \frac{1}{10}$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: d62ad380

An artist paints and sells square tiles. The selling price *P*, in dollars, of a painted tile is a linear function of the side length of the tile *s*, in inches, as shown in the table below.

Side length, s (inches)	Price, P (dollars)
3	8.00
6	18.00
9	28.00

A.
$$P = 3s + 10$$

B.
$$P = \frac{10}{3}s + 8$$

$$_{C.}P = \frac{10}{3}s - 2$$

$$D. P = \frac{3}{10} s - \frac{1}{10}$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: d62ad380

An artist paints and sells square tiles. The selling price *P*, in dollars, of a painted tile is a linear function of the side length of the tile *s*, in inches, as shown in the table below.

Side length, s (inches)	Price, P (dollars)
3	8.00
6	18.00
9	28.00

A.
$$P = 3s + 10$$

B.
$$P = \frac{10}{3}s + 8$$

$$_{C.}P = \frac{10}{3}s - 2$$

$$D. P = \frac{3}{10} s - \frac{1}{10}$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: d62ad380

An artist paints and sells square tiles. The selling price *P*, in dollars, of a painted tile is a linear function of the side length of the tile *s*, in inches, as shown in the table below.

Side length, s (inches)	Price, P (dollars)
3	8.00
6	18.00
9	28.00

A.
$$P = 3s + 10$$

B.
$$P = \frac{10}{3}s + 8$$

$$_{C.}P = \frac{10}{3}s - 2$$

$$D. P = \frac{3}{10} s - \frac{1}{10}$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 23dedddd

A.
$$f(x)=12x+8$$

B.
$$f(x)=4x$$

C.
$$f(x)=4x+12$$

D.
$$f(x)=4x+8$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 23dedddd

A.
$$f(x)=12x+8$$

B.
$$f(x)=4x$$

C.
$$f(x)=4x+12$$

D.
$$f(x)=4x+8$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 23dedddd

A.
$$f(x)=12x+8$$

B.
$$f(x)=4x$$

C.
$$f(x)=4x+12$$

D.
$$f(x)=4x+8$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 23dedddd

A.
$$f(x)=12x+8$$

B.
$$f(x)=4x$$

C.
$$f(x)=4x+12$$

D.
$$f(x)=4x+8$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: 23dedddd

A.
$$f(x)=12x+8$$

B.
$$f(x)=4x$$

C.
$$f(x)=4x+12$$

D.
$$f(x)=4x+8$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: a91a2b75

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: a91a2b75

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: a91a2b75

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: a91a2b75

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear functions	

ID: a91a2b75

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 4f669597

$$2(p+1)+8(p-1)=5p$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 4f669597

$$2(p+1)+8(p-1)=5p$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 4f669597

$$2(p+1)+8(p-1)=5p$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 4f669597

$$2(p+1)+8(p-1)=5p$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in one variable	

ID: 4f669597

$$2(p+1)+8(p-1)=5p$$

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 431c3038

In an article about exercise, it is estimated that a 160-pound adult uses 200 calories for every 30 minutes of hiking and 150 calories for every 30 minutes of bicycling. An adult who weighs 160 pounds has completed 1 hour of bicycling. Based on the article, how many hours should the adult hike to use a total of 1,900 calories from bicycling and hiking?

A. 9.5

B. 8.75

C. 6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 431c3038

In an article about exercise, it is estimated that a 160-pound adult uses 200 calories for every 30 minutes of hiking and 150 calories for every 30 minutes of bicycling. An adult who weighs 160 pounds has completed 1 hour of bicycling. Based on the article, how many hours should the adult hike to use a total of 1,900 calories from bicycling and hiking?

A. 9.5

B. 8.75

C. 6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 431c3038

In an article about exercise, it is estimated that a 160-pound adult uses 200 calories for every 30 minutes of hiking and 150 calories for every 30 minutes of bicycling. An adult who weighs 160 pounds has completed 1 hour of bicycling. Based on the article, how many hours should the adult hike to use a total of 1,900 calories from bicycling and hiking?

A. 9.5

B. 8.75

C. 6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 431c3038

In an article about exercise, it is estimated that a 160-pound adult uses 200 calories for every 30 minutes of hiking and 150 calories for every 30 minutes of bicycling. An adult who weighs 160 pounds has completed 1 hour of bicycling. Based on the article, how many hours should the adult hike to use a total of 1,900 calories from bicycling and hiking?

A. 9.5

B. 8.75

C. 6

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Algebra	Linear equations in two variables	

ID: 431c3038

In an article about exercise, it is estimated that a 160-pound adult uses 200 calories for every 30 minutes of hiking and 150 calories for every 30 minutes of bicycling. An adult who weighs 160 pounds has completed 1 hour of bicycling. Based on the article, how many hours should the adult hike to use a total of 1,900 calories from bicycling and hiking?

A. 9.5

B. 8.75

C. 6

Question ID e336a1d2

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Area and volume	

ID: e336a1d2

A cube has an edge length of 41 inches. What is the volume, in cubic inches, of the cube?

- $\mathsf{A.}\ \mathbf{164}$
- В. **1,681**
- C. 10,086
- D. **68,921**

Question ID c0586eb5

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Area and volume	

ID: c0586eb5

A cylinder has a diameter of 8 inches and a height of 12 inches. What is the volume, in cubic inches, of the cylinder?

- A. 16π
- В. 96π
- C. 192π
- D. 768π

Question ID 03c6994f

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Area and volume	

ID: 03c6994f

Square A has side lengths that are 246 times the side lengths of square B. The area of square A is k times the area of square B. What is the value of k?

- A. **60,516**
- B. **492**
- $\mathsf{C.}\ \mathbf{246}$
- D. **123**

Question ID 151eda3c

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Area and volume	

ID: 151eda3c

A manufacturing company produces two sizes of cylindrical containers that each have a height of 50 centimeters. The radius of container A is 16 centimeters, and the radius of container B is 25% longer than the radius of container A. What is the volume, in cubic centimeters, of container B?

- A. $16,000 \pi$
- B. $20,000 \pi$
- C. $25,000 \pi$
- D. 31,250 π

Question ID 5a7e3b46

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Right triangles and trigonometry	

ID: 5a7e3b46

In $\triangle ABC$, $\angle B$ is a right angle and the length of \overline{BC} is 136 millimeters. If $\cos A = \frac{3}{5}$, what is the length, in millimeters, of \overline{AB} ?

- A. **34**
- $\mathsf{B.}\ \mathbf{102}$
- $\mathsf{C.}\ 136$
- D. **170**

Question ID a2659088

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Area and volume	

ID: a2659088

A right circular cylinder has a height of 8 meters (m) and a base with a radius of 12 m. What is the volume, $\text{in } m^3$, of the cylinder?

- A. 8π
- B. 20π
- C. 768π
- D. $1{,}152\pi$

Question ID 933fee1a

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Lines, angles, and triangles	

Triangles ABC and DEF are shown above. Which of the

ВС

following is equal to the ratio \overline{AB} ?

A.
$$\frac{DE}{DF}$$

Question ID 2f7c92ad

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Lines, angles, and triangles	

ID: 2f7c92ad

Note: Figure not drawn to scale.

In the figure shown, triangle CAE is similar to triangle CBD. The measure of angle CBD is 57° , and AE=26(BD). What is the measure of angle CAE?

- A. $(26 \cdot 57)^\circ$
- B. $(26 + 57)^{\circ}$
- $C.57^{\circ}$
- D. $26\degree$

Question ID 38517165

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Area and volume	

ID: 38517165

A circle has a circumference of 31π centimeters. What is the diameter, in centimeters, of the circle?

Question ID d3fe472f

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Lines, angles, and triangles	

ID: d3fe472f

Triangle ABC is similar to triangle XYZ, such that A, B, and C correspond to X, Y, and Z respectively. The length of each side of triangle XYZ is $\mathbf{2}$ times the length of its corresponding side in triangle ABC. The measure of side AB is $\mathbf{16}$. What is the measure of side XY?

- A. **14**
- B. **16**
- C. 18
- D. **32**

Question ID 2085e10e

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Lines, angles, and triangles	

ID: 2085e10e

In triangle DEF, the measure of angle D is 47° and the measure of angle E is 97° . In triangle RST, the measure of angle R is 47° and the measure of angle R is 87° . Which of the following additional pieces of information is needed to determine whether triangle R is similar to triangle R?

- A. The measure of angle $oldsymbol{F}$
- B. The measure of angle $oldsymbol{T}$
- C. The measure of angle $oldsymbol{F}$ and the measure of angle $oldsymbol{T}$
- D. No additional information is needed.

Question ID 8e7689e0

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Circles	

ID: 8e7689e0

The number of radians in a 720-degree angle can be written as $a\pi$, where a is a constant. What is the value of a?

Question ID de550be0

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Right triangles and trigonometry	

ID: de550be0

 $\ensuremath{\mathcal{A}}$ Note: Figure not drawn to scale.

For the triangle shown, which expression represents the value of a?

A.
$$\sqrt{21^2-6^2}$$

$$\mathsf{B.}\ 21^2-6^2$$

C.
$$\sqrt{21-6}$$

D.
$$21 - 6$$

Question ID 800e71b8

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Circles	

ID: 800e71b8

Points \overline{M} , \overline{N} , and P lie on the circle shown. On this circle, minor arc $\overline{M}N$ has a length of $\overline{39}$ centimeters and major arc $\overline{M}PN$ has a length of $\overline{195}$ centimeters. What is the circumference, in centimeters, of the circle shown?

- A. **39**
- в. **156**
- C. 195
- D. **234**

Question ID 901e3285

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Lines, angles, and triangles	

ID: 901e3285

In triangle ABC, the measure of angle A is 50° . If triangle ABC is isosceles, which of the following is NOT a possible measure of angle B?

- A. 50°
- B. 65°
- C. 80°
- D. 100°

Question ID 014edcb7

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Lines, angles, and triangles	

ID: 014edcb7

Note: Figure not drawn to scale.

In triangle PQR, \overline{QR} is extended to point S. The measure of $\angle PQR$ is 132° , and the measure of $\angle PRS$ is 163° . What is the measure of $\angle QPR$?

- A. 48°
- В. **31°**
- C. $\mathbf{24}^{\circ}$
- D. 17°

Question ID fc8aa563

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Circles	

ID: fc8aa563

What is the center of the circle in the *xy*-plane defined by the equation $(x-1)^2+(y+7)^2=1$?

- A. (-1, -7)
- B. (-1,7)
- C. (1, -7)
- D. (1,7)

Question ID 74d8b897

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Circles	

ID: 74d8b897

An angle has a measure of $\frac{9\pi}{20}$ radians. What is the measure of the angle in <u>degrees</u>?

Question ID ee540927

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Circles	

ID: ee540927

$$x^2 + 58x + y^2 = 0$$

In the xy-plane, the graph of the given equation is a circle. What are the coordinates (x,y) of the center of the circle?

- A. (0, 29)
- B. (0, -29)
- C.(29,0)
- D. (-29,0)

Question ID a0cacec1

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Circles	

ID: a0cacec1

An angle has a measure of $\frac{16\pi}{15}$ radians. What is the measure of the angle, in <u>degrees</u>?

Question ID 1c3d613c

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Lines, angles, and triangles	

ID: 1c3d613c

Triangle ABC and triangle DEF are shown. The relationship between the side

lengths of the two triangles is such that $\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF} = 3$. If the measure

of angle *BAC* is 20°, what is the measure, in degrees, of angle *EDF* ? (Disregard the degree symbol when gridding your answer.)

Question ID 2d521ca9

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Circles	

ID: 2d521ca9

The measure of angle Z is 60° . What is the measure, in <u>radians</u>, of angle Z?

- A. $\frac{1}{6}\pi$
- B. $\frac{1}{3}\pi$
- C. $\frac{2}{3}\pi$
- D. 1π

Question ID e9c5bfb2

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Area and volume	

ID: e9c5bfb2

Note: Figure not drawn to scale.

Rectangles ABCD and QRST shown are similar, where A, B, C, and D correspond to Q, R, S, and T, respectively. What is the length, in inches (in), of \overline{AD} ?

- A. **60**
- B. **24**
- C. 17
- D. **10**

Question ID 7a8ad237

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Lines, angles, and triangles	

ID: 7a8ad237

Triangles ABC and DEF are congruent, where A corresponds to D, and B and E are right angles. The measure of angle A is 69° . What is the measure, in degrees, of angle F?

Question ID 856372ca

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Circles	

ID: 856372ca

In the *xy*-plane, a circle with radius 5 has center (-8,6). Which of the following is an equation of the circle?

A.
$$(x-8)^2+(y+6)^2=25$$

B.
$$(x+8)^2+(y-6)^2=25$$

C.
$$(x-8)^2 + (y+6)^2 = 5$$

D.
$$(x+8)^2+(y-6)^2=5$$

Question ID 9c0a0eca

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Area and volume	

ID: 9c0a0eca

A triangle has a base length of 10 centimeters and a corresponding height of 70 centimeters. What is the area, in square centimeters, of the triangle?

- A. **700**
- B. **350**
- $\mathsf{C.}\ 175$
- D. 80

Question ID bf8d843e

Assessment Test Domain Skill Difficulty

SAT Math Geometry and Trigonometry Right triangles and trigonometry

ID: bf8d843e

In $\triangle ABC$ above, what is the

length of \overline{AD} ?

- A. 4
- B. 6
- C. $6\sqrt{2}$
- D. $6\sqrt{3}$

Question ID aef4fd8a

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Area and volume	

ID: aef4fd8a

The length of each side of a square is 94 centimeters (cm). Which expression gives the area, in ${\bf cm}^2$, of the square?

- $\mathsf{A.}\ 2\cdot 94$
- B. $2 \cdot 94 \cdot 94$
- $\text{C.}~\mathbf{4\cdot 94}$
- D. $94 \cdot 94$

Question ID 95ba2d09

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Circles	

ID: 95ba2d09

In the *xy*-plane above, points P, Q, R, and T lie on the circle with center O. The degree measures of angles POQ and ROT are each 30°. What is the <u>radian</u>

measure of angle QOR ?

A.
$$\frac{5}{6}\pi$$

B.
$$\frac{3}{4}\pi$$

c.
$$\frac{2}{3}\pi$$

D.
$$\frac{1}{3}\pi$$

Question ID 6dd463ca

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Lines, angles, and triangles	

ID: 6dd463ca C A Note: Figure not drawn to scale.

In the figure above, segments AE and BD are parallel. If angle BDC measures 58° and angle ACE measures 62° , what is the measure of angle CAE?

- A. 58°
- B. 60°
- C. 62°
- D. 120°

Question ID a71617d3

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Right triangles and trigonometry	

ID: a71617d3

In the triangle shown, what is the value of \boldsymbol{x} ?

Question ID a5aee181

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Right triangles and trigonometry	

ID: a5aee181

The length of a rectangle's diagonal is $5\sqrt{17}$, and the length of the rectangle's shorter side is 5. What is the length of the rectangle's longer side?

- A. $\sqrt{17}$
- B. **20**
- C. $15\sqrt{2}$
- D. **400**

Question ID 13d9a1c3

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Right triangles and trigonometry	

ID: 13d9a1c3

In the right triangle shown above, what is the length of \overline{PQ} ?

Question ID a2e76b60

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Area and volume	

ID: a2e76b60

A cylindrical can containing pieces of fruit is filled to the top with syrup before being sealed. The base of the can has an area of $75~\text{cm}^2$, and the height of the can is 10 cm. If $110~\text{cm}^3$ of syrup is needed to fill the can to the top, which of the following is closest to the total volume of the pieces of fruit in the can?

- A. 7.5 cm^3
- B. 185 cm³
- c. 640 cm³
- D. 750 cm³

Question ID 468613c0

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Area and volume	

ID: 468613c0

A triangle has a base length of 56 centimeters and a height of 112 centimeters. What is the area, in square centimeters, of the triangle?

- A. **168**
- B. **1,568**
- C. **3,136**
- D. **6,272**

Question ID 37dde49f

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Area and volume	

ID: 37dde49f

The glass pictured above can hold a maximum volume of 473 cubic centimeters, which is approximately 16 fluid ounces. What is the value of k, in centimeters?

- A. 2.52
- B. 7.67
- C. 7.79
- D. 10.11

Question ID 82c8325f

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Circles	

ID: 82c8325f

A circle in the *xy*-plane has its center at (-4,5) and the point (-8,8) lies on the circle. Which equation represents this circle?

A.
$$\frac{\text{msup}}{\text{msup}} + (y+5)^2 = 5$$

B.
$$\frac{\text{msup}}{\text{msup}} + (y - 5)^2 = 5$$

C.
$$\frac{\mathsf{msup}}{\mathsf{p}} + (y+5)^2 = 25$$

D.
$$\frac{\mathsf{msup}}{\mathsf{p}} + (y-5)^2 = 25$$

Question ID cf53cb56

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Area and volume	

ID: cf53cb56

In the *xy*-plane shown, square *ABCD* has its diagonals on the *x*- and *y*-axes. What is the area, in square units, of the square?

- A. 20
- B. 25
- C. 50
- D. 100

Question ID b96ff36e

Assessment	Test	Domain	Skill	Difficulty
SAT	Math	Geometry and Trigonometry	Circles	

ID: b96ff36e

In the *xy*-plane, the graph of the equation $(x-3)^2+(y-5)^2=9$ is a circle. The point (6,c), where c is a constant, lies on this circle. What is the value of c?