High-Level Program Design

Modern Engineer Accelerator

Scale Engineering Capabilities

Modern Engineer Accelerator

Instructor-Led Onsite or Remote \(\frac{\(\)}{2} \) ~35 Hours

Overview:

Build strong foundations in the key components of modern software engineering. This program builds on coding knowledge to equip participants with knowledge and experience in the next-generation tools and concepts required to build and deploy applications.

Prerequisites:

Working knowledge of software development fundamentals, including Javascript, Node.js, and basic Command Line

Business Outcomes:

- Build engineering capacity within your tech team.
- Accelerate your digital transformation and cloud strategic initiatives
- Transform talent into job-ready software engineers.
- Solve real engineering problems

~35 Hours of Modern Engineering Training					
Cloud Infrastructure	Containerisation	Microservices	Continuous Integration	Test Driven Development	
Dive into twelve-factor design and learn the benefits of adopting a cloud-based infrastructure.	Use Docker and Kubernetes containers and understand how they fit into modern development workflows.	Explain the benefits of microservice architecture and build scalable microservice applications.	Automate testing and deployments by using continuous integration pipelines in Jenkins	Increase test coverage for your code to build and maintain confidence with unit and integration tests.	

Why Modern Engineering Accelerator?

- **Validated tools and approaches** for modern engineering techniques, developed in partnership with top organizations.
- Built with subject matter experts with experience in software development, devops, cloud and cybersecurity
- 40 hours of expert-led, hands-on learning, including:
 - Projects and assignments that mimic real-world tasks and workflows.
 - Case studies and examples that demonstrate how businesses use the concepts.
 - Regular feedback and touchpoints with instructors and peers to ensure students meeting learning goals.

Learner Personas for Modern Engineer Accelerator

This product is specifically designed for the following audience:

- Early to mid level developers and other technical professionals who need to broaden their knowledge of modern engineering practices
- Tenured software engineers/managers who are out of touch with modern practices
- Technical Graduates who are onboarding to a new role within the company

Anatomy of a Modern Engineer Accelerator

Unit	Summary	What's Covered
Unit 1: Command Line Interface with Linux & Bash	Practice working with command line and reinforce Unix Shell fundamentals	 Summarize a basic file system structure, including absolute and relative paths Navigate and modify files / directories via the Terminal window UNIX permissions system
Unit 2: Distributed Version Control with Git & GitHub	Work with both local and remote Git repositories and with features that enable team collaboration like branching and resolving merge conflicts.	 Explain essential git commands like init, add, commit, push, pull & clone Distinguish between local and remote repositories Create, copy, and delete repositories locally, or on GitHub Fork and clone remote repositories
Unit 3: Cloud Infrastructure	Understand the benefits of adopting a cloud-based infrastructure and the different models of delivering cloud services.	 Cloud infrastructure concepts and benefits Distinguishing between cloud service models 12 factor application design

Anatomy of a Modern Engineer Accelerator

Unit	Summary	What's Covered
Unit 4: Containers with Docker and Kubernetes	Use containers and understand how they fit into modern development workflows.	 How Docker works. How Kubernetes works. Deploying applications using Docker and Kubernetes
Unit 5: Microservices Architecture	Explain the benefits of microservice architecture and build scalable microservice applications.	 Microservice vs. monolith architecture. Designing good microservices. Splitting a monolith into microservices Running microservices on Docker

Anatomy of a Modern Engineer Accelerator

Unit	Summary	What's Covered
Unit 6: Continuous Integration with Jenkins	Automate your testing and deployments by using continuous integration pipelines in Jenkins.	 Continuous integration and delivery basics. Integration testing. Building Jenkins pipelines.
Unit 7: Agile and Extreme Programming	Use Agile and XP workflows to manage development workflows more efficiently.	 DevOps introduction. Agile principles and methods. User stories and acceptance criteria. Extreme programming principles.
Unit 8: Test Driven Development	Increase test coverage for your code to build and maintain confidence with unit and integration tests.	 Test driven development principles. Types of application testing. Introduction to Jest

Tools Used in the Course

Tools/Tech Covered:

- OS: Linux
- Kubernetes
- Javascript
- Jenkins
- Node.Js
- Jest

• Git

- Cloud Demo / 'Lab' with
- VS Code

AWS

Docker

Available on Request:

- Azure
- Google Cloud
- Terraform

Tools Used for the Classroom

- Slack for communication
- Github for course materials
- Zoom for class sessions (if remote)

