□ (814)380-8601 | ■ aclheexn1346@g.ucla.edu | □ aclheexn1346/aclheexn1346.github.io | U.S. Citizen

Education.

University of California Los Angeles (UCLA)

PHD CANDIDATE IN STATISTICS

GPA: 4.0/4.0

Pennsylvania State University

DOUBLE MAJOR IN DATA SCIENCE AND STATISTICS

GPA: 3.83/4.0

Los Angeles, California Expected Graduation Date: December 2025

University Park, Pennsylvania Graduation Date: May

2020

Skills

Programming R, Python, SQL, SAS, Docker, MongoDB, Tableau, Excel, Data Structures and Algorithms

High-Performance Cluster parallel computing, RShiny, AWS, C, C++

Notable Graduate Classes Taken Causal Inference, Graphical Models, Monte-Carlo Optimization, Machine Learning

Experience

Machine Learning Research Intern

Informatics and Predictive Sciences (IPS) Internship at Bristol Myers Squibb

Seattle, Washington June 2024 - Present

- **Developed innovative computational methods:** Identified over 10 potential gene regulators for distinguishing T-cell states and designed a method for integrating multiple single-cell RNA-seq datasets into one consensus causal graph, supporting target identification from gene networks. Developed R package and work to be submitted and published in selected journal.
- Advanced CAR T cell therapy development: Collaborated with IPS colleagues to analyze causal graphs, identifying new drivers of T-cell exhaustion. Directly contributed to improving therapeutic strategies by leading discussions and presenting findings at team and division-wide meetings with stakeholders.
- Continuing work to enhance causal graph estimation: Post-internship collaboration to incorporate context-specific data such as eQTL information, refining methods for greater biological accuracy and therapeutic relevance.

PhD ResearchUCLA Causality Gaussian DAGs from Network Data with Dr. Qing Zhou

Los Angeles, California June 2021 - Present

- Causal Inference on Network Data: Led NSF-funded research to develop an algorithm for causal inference in dependent data, improving accuracy by 20-50% compared to standard methods. This work has direct applications for industry in fields with data dependencies, such as marketing analytics for customer segmentation, financial data modeling and behavioral prediction. *Submitted to AISTATS 2025
- RNA-seq Clustering and Causal Network Detection: Implemented unsupervised cell clustering techniques on single-cell RNA-seq data, leading to significant improvements in identifying gene regulatory network structures.

Data Science Internship

DATABASE AND MACHINE LEARNING INTERN AT GENIE AERIAL WORK PLATFORMS

Redmond, Washington June 2021 - Sept. 2021

- Outlier Detection and Usage Modeling: Continuously pulled and merged IoT sensor data from AWS Redshift using SQL and Python, modeling fault detection and analyzing user usage time to create live dashboards for real-time monitoring in manufacturing that reduced downtime and operational costs. A/B testing revealed 22% increase in dashboard engagement after including fault detection feature.
- Recommendation System for Client Purchases: Implemented a collaborative filtering recommendation system in R, enabling the sales team to optimize sales strategies for major clients and increasing business performance.

Projects/Awards

NLP and Knowledge Graph Extraction, Developed a pipeline to segment and analyze Yelp reviews. Stored over 300,000 reviews in MongoDB, finetuning LLM(GPT-40) for semantic understanding and Neo4j for analysis

1st Place Overall & Best Insight Award – PSU DataFest Competition, Analyzed Indeed job market UX/UI data to uncover temporal trends in job postings and salary fluctuations across regions. Proposed new features for Indeed's platform, including a metric comparing job salaries to local cost of living, enhancing user decision-making for job seekers. Delivered data-driven insights that led to strategic recommendations, recognized for innovation and practical impact on improving the user experience.