ASAP: Adaptive Structure Aware Pooling for Learning Hierarchical Graph Representations

Ekagra Ranjan¹, Soumya Sanyal², Partha Talukdar²

¹Indian Institute of Technology Guwahati, ²Indian Institute of Science Bangalore

Graph Pooling

IISc

- summarizing a graph to generate graph embedding.
- **Hierarchical pooling** pooling recursively to form smaller graph. This enables processing of a larger area of the graph with the same compute.

Contributions

- ASAP, a sparse pooling operator capable of capturing local subgraph information hierarchically to learn global features with better edge connectivity in pooled graph.
- Master2Token (M2T), a new self-attention framework, which is better suited for pooling.
- LEConv, a new convolution operator that can learn functions of local extremas in a graph substructure.

Master2Token (M2T) self-attention

Goal: Learn an overall representation of a cluster of nodes by attending to the relevant members using self-attention.

Approach

- Given a cluster, create a master-query m_i which is representative of the constituent nodes within cluster.
- ullet Attend to all constituent nodes using additive-attention to learn the cluster representation ${f x}^c$

$$x_i^c = \sum_{j \in \mathcal{N}_i} \alpha_{i,j} x_j$$

where $\alpha_{i,j} = softmax(\vec{w}^T \sigma(W m_i \parallel x_j))$ and $m_i = \max\{x_{i1}, ..., x_{i|\mathcal{N}_i|}\}$

Advantage

• Attention computed w.r.t. a global query instead of a specific member is more intuitive for set aggregations.

Local Extrema Convolution (LEConv)

Goal: Select clusters corresponding to information local extremas to enable sampling of representative clusters from all parts of the graph.

Formulation

$$\phi_i = \sigma(x_i W_1 + \sum_{i \in \mathcal{N}_i} A_{i,j} (x_i W_2 - x_j W_3))$$

Advantage

- Unlike GCNs, LEConv can learn difference functions.
- Helpful in scoring clusters by considering both its global and local importance through the use of self-loops.

ASAP Overview

Details of **ASAP**

- Input: Graph with N nodes having feature representation $X \in \mathbb{R}^{N \times d}$ and adjacency matrix $A \in \mathbb{R}^{N \times N}$.
- Cluster Membership: Consider clusters of 1-hop neighborhood with each node as a medoid. Use M2T attention to compute node membership in a cluster. Construct the membership matrix $S_{i,j} = \alpha_{i,j}$.
- Cluster Scoring: Score the clusters using LEConv. Darker shade denotes higher score in Figure (c) above.
- Cluster Selection: Select a fraction of top scoring clusters as part of the pooled graph. Recompute the adjacency matrix using the cluster membership matrix of nodes in the selected clusters using $A_{new} = S^T A S$.

Results

Performance on Graph Classification: We report average accuracy and standard deviation for 20 random seeds. We observe that ASAP consistently outperforms all the baselines on all the datasets.

Method	D&D	PROTEINS	NCI1	NCI109	FRANKENSTEIN
SET2SET GLOBAL-ATTENTION SORTPOOL	71.60 ± 0.87 71.38 ± 0.78 71.87 ± 0.96	72.16 ± 0.43 71.87 ± 0.60 73.91 ± 0.72	66.97 ± 0.74 69.00 ± 0.49 68.74 ± 1.07	61.04 ± 2.69 67.87 ± 0.40 68.59 ± 0.67	61.46 ± 0.47 61.31 ± 0.41 63.44 ± 0.65
DIFFPOOL TOPK SAGPOOL	66.95 ± 2.41 75.01 ± 0.86 76.45 ± 0.97	68.20 ± 2.02 71.10 ± 0.90 71.86 ± 0.97	62.32 ± 1.90 67.02 ± 2.25 67.45 ± 1.11	61.98 ± 1.98 66.12 ± 1.60 67.86 ± 1.41	60.60 ± 1.62 61.46 ± 0.84 61.73 ± 0.76
ASAP (Ours)	$\textbf{76.87} \pm \textbf{0.7}$	74.19 ± 0.79	$\textbf{71.48} \pm \textbf{0.42}$	$\textbf{70.07} \pm \textbf{0.55}$	66.26 ± 0.47

Ablation Study

- Effect of M2T Attention:
 Master query is essential for cluster summarization.
- 0.710 (I) 0.705 0.700 0.695 0.690 0.685 S2T T2T M2T
- Effect of LEConv scoring:
 Difference improves performance as it can sample contrastive nodes.

scoring: • Effect of Soft Edge Weights: nance as Membership information is crucial for graph pooling.

Desired Properties in Pooling

Property	DiffPool	TopK	SAGPool	ASAP
Sparse		1	/	1
Node Aggregation	✓			1
Soft Edge Weights	✓			1
Variable number of clusters		/	/	1

- Sparse pooling enables scalability to large graphs
- Node aggregation ensures better summarization of graph neighborhood
- Soft edge weights denote strengths/similarity between clusters
- Variable number of clusters can effectively handle graphs of any size

Source Code

github.com/malllabiisc/ASAP

Contact
ekagra.ranjan@gmail.com
soumyasanyal@iisc.ac.in