

证 明

REC'D 17 DEC 2003

WIPO

PCT

本证明之附件是向本局提交的下列专利申请副本

申 请 日： 2002 10 28

申 请 号： 02 1 46614.9

申 请 类 别： 发明

发明创造名称： 一种含稀土 Y 型沸石的石油烃裂化催化剂及其制备方法

申 请 人： 中国石油化工股份有限公司； 中国石油化工股份有限公司
石油化工科学研究院

发明人或设计人： 杜军； 李峥

PRIORITY

DOCUMENT

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

中华人民共和国
国家知识产权局局长

王景川

2003 年 11 月 25 日

Post Available Copy

权利要求书

1、一种含稀土 Y 型沸石的石油烃裂化催化剂，其特征在于所说的稀土 Y 型沸石中，以 RE₂O₃计，晶内稀土含量为 4~15 重%，晶胞常数为 2.450~2.458nm，差热崩塌温度 1000~1056℃。

2、按照权利要求 1 所说的催化剂，其特征在于所说的稀土 Y 型沸石中，以 RE₂O₃计，晶内稀土含量为 6~12 重%，晶胞常数优选 2.452~2.456 nm，硅铝比为 8.3~8.8，氧化钠含量小于 1.0 重%

3、按照权利要求 2 所说的催化剂，其特征在于所说的稀土 Y 型沸石氧化钠含量小于 0.5 重%。

4、按照权利要求 1 所说的催化剂，其特征在于所说的稀土 Y 型沸石含量为 10~50 重%。

5、按照权利要求 4 所说的催化剂，其特征在于所说的稀土 Y 型沸石含量为 15~40 重%。

6、按照权利要求 5 所说的催化剂，其特征在于所说的稀土 Y 型沸石含量为 15~35 重%。

7、按照权利要求 1 所说的催化剂，其特征在于含有与所说的稀土 Y 型沸石重量比为 0.01~0.5 的 MFI 结构沸石。

8、权利要求 1 所述石油烃裂化催化剂的制备方法，其特征在于该方法含有如下步骤：

(1) 将含稀土的 Y 型沸石进行干燥处理，使其水含量低于 10 重% 后，按照四氯化硅：Y 型沸石 = 0.1~0.9:1 的重量比，通入干燥空气携带的四氯化硅气体，在温度 150~600℃ 下，反应 10 分钟至 6 小时，反应后，用干燥空气吹扫 5 分钟至 2 小时，用脱阳离子水洗涤除去沸石中残存的 Na⁺、Cl⁻、Al³⁺ 等可溶性副产物。

(2) 将 10~50 重% 步骤 (1) 得到的稀土 Y 型沸石、10~60 重% 的粘结剂和 2~75 重% 的粘土混合打浆，喷雾干燥成型。

9、按照权利要求 8 所说的方法，其特征在于步骤 (1) 中所说的含稀土的 Y 型沸石选自 REHY、REY 的工业产品或 NaY 沸石经稀土交换后经或不经干燥所得的产物。

10、按照权利要求 9 所说的方法，其特征在于所说的 REHY 工业产品的稀土含量以 RE₂O₃ 计为 6~14 重%，Na₂O 含量大于 4 重%。

11、按照权利要求 9 所说的方法，其特征在于所说的 REY 工业产品的稀土含量以 RE₂O₃ 计为 10~20 重%，Na₂O 含量大于 2 重%。

12、按照权利要求 9 所说的方法，其特征在于所说的 NaY 沸石经稀土交换的过程是：将硅铝比大于 3.5 的 NaY 沸石与氯化稀土水溶液按照 $\text{NaY: REC}_3 \cdot \text{H}_2\text{O} = 1: 0.1 \sim 0.25: 5 \sim 10$ 的重量比，在 $\text{pH} > 3.5$ ，温度 $80 \sim 90^\circ\text{C}$ 的条件下，进行稀土交换 30~60 分钟。

13、按照权利要求 8 所说的方法，其特征在于步骤（1）中所说的含稀土 Y 型沸石进行干燥处理后的水含量低于 5 重%。

14、按照权利要求 8 所说的方法，其特征在于步骤（1）中所说的反应温度为 $200 \sim 500^\circ\text{C}$ 。

15、按照权利要求 8 所说的制备方法，其特征在于所说的稀土 Y 型沸石为 15~40 重%。

16、按照权利要求 8 所说的制备方法，其特征在于所说的粘结剂为 15~40 重%。

17、按照权利要求 8 所说的制备方法，其特征在于所说的粘土为 20~60 重%。

18. 按照权利要求 8 或 16 所说的制备方法，其特征在于所说的粘结剂选自拟薄水铝石、铝溶胶、硅溶胶、磷铝胶之中的一种或其中两种或两种以上的组合。

19、按照权利要求 18 所说的制备方法，其特征在于所说的粘结剂为拟薄水铝石和铝溶胶的双铝粘结剂，它们的重量比为 10~40: 0~30。

20、按照权利要求 19 所说的制备方法，其特征在于所说的拟薄水铝石和铝溶胶的重量比为 15~25: 2~25。

21、按照权利要求 19 或 20 所说的制备方法，其特征在于所说的采用双铝粘结剂时，酸化拟薄水铝石的酸铝重量比为 0.1~0.6。

22、按照权利要求 21 所说的制备方法，其特征在于所说的酸铝重量比为 0.2~0.35。

23、按照权利要求 8 或 17 所说的制备方法，其特征在于所说的粘土为裂化催化剂基质常用的粘土。

24、按照权利要求 23 所说的制备方法，其特征在于所说的粘土选自高岭土、多水高岭土、蒙脱土、硼润土或海泡石中的一种。

说 明 书

一种含稀土 Y 型沸石的石油烃裂化催化剂及其制备方法

技术领域

本发明是关于一种石油烃裂化催化剂及其制备方法，更进一步地说是关于一种含稀土 Y 型沸石的石油烃裂化催化剂及其制备方法。

背景技术

随着原料油的日益变重，环保意识的不断增强，对烃类加工产品质量的要求越来越苛刻。80 年代汽油无铅化的进程促进了催化裂化工艺和催化剂的发展，高硅 Y 型沸石及各种高辛烷值的催化剂和助剂应运而生，把廉价的重油转化成高附加值的轻质产品。

劣质渣油的加工一直是炼油界所关注的问题，如何在加工劣质渣油的基础上，生产出烯烃含量少，硫含量少、环境友好的燃料，这是当前急待解决的重大问题。

自 USP3293192 及 in Society of Chemical Engineering(London) Monograph Molecular Sives, P.186 (1968) by C.V .MC. Daniel and P.K. Maher 提出水热脱铝法制备高硅 Y 型沸石以来，水热法制备高硅 Y 型沸石一直被广泛应用。US3,442,715 提出脱铝 Y 型沸石 (DAY)、US3,449,070 提出超稳 Y 型沸石 (USY)、US4,51,694 和 US4,401,556 提出超稳疏水性 Y 型沸石等等。由于超稳 Y 型沸石 (USY) 硅铝比高、水热稳定性好、氢转移活性低、焦炭选择性好，能加工重油制备高辛烷值催化剂而得到广泛应用和发展。

但是随着重油加工的深入发展，高硅超稳 Y 型沸石仅仅依靠其硅铝比高、水热稳定性好、氢转移活性低的特性，已不能适应重油的日益劣质化，不能满足环境保护对催化裂化清洁燃料的需求。这就迫切需要解决在生产催化剂中，既要沸石水热稳定性好，又要活性水平高，同时又具备良好的氢转移活性及焦炭选择性，而且在加大重油转化能力的同时，能有效降低汽油中的烯烃和硫含量。

为了提高高硅 Y 型沸石的活性水平，US4,840,724 采用稀土离子交换的方法，以有效提高超稳 Y 型沸石中的稀土含量。但是由于水热法制备高硅 Y 型沸石 (USY) 工艺是多次水热交换，多次高温焙烧，在脱铝补硅过程中，产生许多脱铝空穴，而这些空穴又不能及时被骨架上迁移出的硅补上，往往

造成沸石的晶格塌陷，由此所产生的 Si、Al 碎片易堵塞沸石的孔道，不易被清除，至使其稀土离子的交换度不高。经几交几焙高温处理后，稀土超稳 Y 型沸石 REUSY 中，稀土含量以 RE_2O_3 表示，最高 RE_2O_3 含量仅为 3 重% 左右，远远满足不了深度加工劣质原料油的要求。

针对这一缺陷，人们又利用 NaY 沸石交换容量大的特点，采用多次交换稀土离子和多次高温焙烧的方法，来提高沸石中的稀土含量，制备出高稀土含量的 REHY 和 REY，沸石中的 RE_2O_3 含量提高到 8~20 重% 左右，能满足提高沸石氢转移活性的要求。

但是 REHY 和 REY 沸石存在着一个致命的缺陷，就是初始晶胞大，硅铝比低。一般晶胞常数为 2.470nm 左右，造成所制备的催化剂的氢转移初活性高，在装置中易失活，水热稳定性差。在生产过程中往往出现催化剂活性水平迅速下降，氢转移初活性丧失，焦炭选择性差，需要大量不断地增补新鲜剂以维持活性水平。造成催化剂损耗大，焦炭产率高，装置操作不平稳；不能很好的深度加工劣质原料油，达不到生产环境友好燃料及降低汽油中烯烃的目的。

发明内容

本发明的目的是针对上述现有技术的不足，提供一种适合加工劣质原料油，能生产环境友好燃料、降低汽油烯烃含量的含稀土 Y 型沸石的石油烃裂化催化剂并提供该催化剂的制备方法。

本发明提供的含稀土 Y 型沸石的石油烃裂化催化剂，特征在于其中所说的稀土 Y 型沸石，以 RE_2O_3 计，晶内稀土含量为 4~15 重%，晶胞常数为 2.450~2.458nm，差热崩塌温度 1000~1056℃。

本发明提供的催化剂中，所说的稀土 Y 型沸石含量为 10~50 重%，优选 15~40 重%，更优选 15~35 重%。

本发明提供的催化剂中所说的稀土 Y 型沸石，本发明人在申请号为 01115613.9 的申请中对其进行了描述。其以 RE_2O_3 计，晶内稀土含量优选 6~12 重%，晶胞常数优选 2.452~2.456nm，该沸石具有较高的骨架硅铝比，硅铝比为 8.3~8.8，氧化钠含量小于 1.0 重%，最好为 0.5 重%。

本发明提供的催化剂中，所说的稀土 Y 型沸石克服了 REUSY 沸石稀土离子交换度低和 REY、REHY 初始晶胞大的缺陷，不但具有 REUSY 初始晶胞小、硅铝比高、水热稳定性好的优点，而且具有 REY 和 REHY 稀土含量

高、氢转移活性好的优点。

本发明所提供的催化剂中，还可以加入 MFI 结构的沸石作为活性组分，所说的 MFI 结构分子筛为选自 ZSM-5 或与其同属 MFI 结构中的一种或多种的分子筛，如 CN1052290A、CN1058382A、CN1147420A、CN1194181A 中所公开的含稀土的五元环高硅沸石（简记为 ZRP）。该沸石是以含（以氧化物计）稀土 2~23 重% 和含钠低于 5.0 重% 的 REY 或 REHY 沸石为晶种合成的。所说的 MFI 结构沸石的加入量与稀土 Y 型沸石的重量比为 0.01~0.5。

本发明还提供了该含稀土 Y 型沸石的石油烃裂化催化剂的制备方法，其特征在于该方法含有如下步骤：

(1) 将含稀土的 Y 型沸石进行干燥处理，使其水含量低于 10 重% 后，按照四氯化硅：Y 型沸石 = 0.1~0.9：1 的重量比，通入干燥空气携带的四氯化硅气体，在温度 150~600℃ 下，反应 10 分钟至 6 小时，反应后，用干燥空气吹扫 5 分钟至 2 小时，用脱阳离子水洗涤除去沸石中残存的 Na^+ 、 Cl^- 、 Al^{3+} 等可溶性副产物。

(2) 将包括 10~50 重%、优选 15~40 重% 的步骤 (1) 得到的稀土 Y 型沸石，10~60 重%、优选 15~40 重% 的粘结剂和 2~75 重%、优选 20~60 重% 的粘土在内的原料混合打浆，喷雾干燥成型。

本发明所提供的制备方法中，步骤 (1) 为所说的稀土 Y 型沸石的制备过程，本发明人在申请号为 01115612.0 的申请中对该过程进行了描述，该过程是利用 SiCl_4 气相化学法，充分发挥了气态物质易于扩散的特性，将动力学半径为 0.687nm 的 SiCl_4 以气态形式引入沸石孔道内，有效结合 NaY 沸石离子交换容量大的特性进行脱铝补硅同晶取代反应。

在步骤 (1) 中所说的含稀土的 Y 型沸石原料，可以是工业上普遍采用的 REY 和 REHY 沸石，也可以是 NaY 沸石经稀土交换后所得的产物。

一般地说，所说的 REHY 沸石，其稀土含量以 RE_2O_3 计为 6~14 重%， Na_2O 含量大于 4 重%；所说的 REY 沸石，其稀土含量以 RE_2O_3 计为 10~18 重%， Na_2O 含量大于 2 重%；所说的 NaY 沸石经稀土交换的过程如下：采用硅铝比大于 3.5 的 NaY 沸石与氯化稀土水溶液按照 $\text{NaY} : \text{REC}_{13} : \text{H}_2\text{O} = 1 : 0.1 \sim 0.25 : 5 \sim 15$ 的重量比，在 $\text{pH} > 3.5$ ，温度 80~90℃ 的条件下，进行稀土交换 30~60 分钟，经或不经干燥得到。

本发明所说的催化剂的制备方法中，步骤 (1) 中所说的稀土 Y 型沸石所

用的 REHY、REY 原料或经氯化稀土水溶液交换后的 NaY 沸石，它们在反应前都须经过干燥处理，使其水含量<10 重%，最好为<5 重%。

本发明提供的催化剂的制备方法中，步骤（2）中所说的粘结剂选自拟薄水铝石、铝溶胶、硅溶胶、磷铝胶中的一种或是以其中两个或两个以上的组合，其中优选双铝粘结剂，其中的拟薄水铝石与铝溶胶的重量比例为 10~40:0~30，优选 15~25: 2~25。在使用双铝粘结剂时，酸化拟薄水铝石的酸铝重量比为 0.1~0.6: 1、优选 0.2~0.35: 1，一般为加入盐酸酸化，在 40~90℃老化 0.5~6 小时，经酸化老化后，拟薄水铝石可与铝溶胶或磷铝胶混合使用。

本发明提供的催化剂的制备方法中，所说的粘土是裂化催化剂基质常用的粘土，如高岭土、多水高岭土、蒙脱土、膨润土或海泡石等。

本发明提供的制备方法中，所说的催化剂是将包括沸石、粘土、粘结剂等在内的原料，经常规方法混合打浆，均质后，在入口温度 550~600℃、出口温度 250~300℃条件下，喷雾干燥成型的。

本发明提供的催化剂，与现有技术采用 REUSY、REHY、REY 以及 P-REHY 为活性组分的催化剂相比，具有活性好、水热稳定性高、重油转化能力强，汽油、干气、焦炭选择性好的特点；由于具有良好的氢转移活性，所得产物汽油中的烯烃含量可有效降低；较现有技术制备的用于重油和降烯烃催化剂，可降低 5~25% 的沸石用量。

本发明提供的催化剂可用于加工各种原料油，特别是用于对劣质原料油的加工。

附图说明

图为催化剂经老化后 BET 比表面变化图。

具体实施方式

下面的实例将对本发明作进一步的说明。

在实例中，样品的 RE_2O_3 、 Al_2O_3 含量用荧光分析法测定；比表面和孔体积是用低温氮吸附法测定。

轻油微反评价以 235~335℃大港轻柴油为原料，剂油比 3.2，重量空速 16h^{-1} ，温度为 460℃。

重油微反评价条件为：反应温度 482℃ 剂油比 4。

实例 1~5 说明本发明提供的催化剂中的稀土 Y 型沸石的制备过程和物化参数。

实例 1

将固含量为 85% 的 NaY 沸石(齐鲁石化公司周村催化剂厂, 硅铝比为 4.0, 晶胞常数为 2.473nm, 氧化铝为 24.8%, 氧化钠为 16%), 在 80—90℃ 条件下, 按 $\text{NaY:RECl}_3:\text{H}_2\text{O}=1:0.21:10$ 的比例, 进行稀土交换 60 分钟, 干燥为含水量为<10%, 使 RE_2O_3 的含量为 16%, 其中 La_2O_3 为 4.16%, Ce_2O_3 为 8.16%, 其它稀土氧化物的含量为 3.68%。按 $\text{NaY: SiCl}_4=1: 0.4$ 的比例, 用干燥空气携带 SiCl_4 于 450℃ 反应 120 分钟, 用干燥空气吹扫 20 分钟后, 洗涤过滤, 以除去沸石中的 Cl^- 和 Na^+ , 得到样品, 编号为 RHSY—1。其物化性质列于表 1 中。

实例 2

将固含量为 75% 的 NaY 沸石(齐鲁石化公司周村催化剂厂, 硅铝比为 5.05, 晶胞常数为 2.466nm, 氧化铝为 21.2%, 氧化钠为 15.8%), 在 80—95℃ 条件下, 按 $\text{NaY:RECl}_3:\text{H}_2\text{O}=1:0.25:10$ 的比例, 进行稀土交换 40 分钟, 过滤、洗涤, 干燥、脱水。按 $\text{NaY: SiCl}_4=1: 0.25$ 的比例, 用干燥空气携带 SiCl_4 于 550℃ 反应 60 分钟, 用干燥空气吹扫 120 分钟后, 洗涤过滤, 得到样品, 编号 RHSY—2。其物化性质列于表 1 中。

实例 3

取 REHY (齐鲁石化公司周村催化剂厂, RE_2O_3 含量 13.4%, 其中 La_2O_3 为 12.7 重%, Ce_2O_3 为 2.7 重%, 其它稀土氧化物的含量为 1.9 重%, 沸石的晶胞常数为 2.469nm, 差热差热崩塌温度为 985℃, Na_2O 含量为 4.4 重%) 放入反应器中, 干燥至水含量小于 5%, 按 $\text{REHY: SiCl}_4=1: 0.7$ 的比例, 用干燥空气携带 SiCl_4 于 350℃ 反应 3 小时, 用干燥空气吹扫 60 分钟后, 洗涤过滤, 得到样品, 编号 RHSY—3。其物化性质列于表 1 中。

实例 4

将固含量为 85% 的 NaY 沸石(齐鲁石化公司周村催化剂厂, 硅铝比为 4.0, 晶胞常数为 2.473nm, 氧化铝为 24.8%, 氧化钠为 16%), 在 80—90℃条件下, 按 $\text{NaY}:\text{RECl}_3:\text{H}_2\text{O}=1:0.21:10$ 的比例, 进行稀土交换 60 分钟, 干燥为含水量为<7%, 使 RE_2O_3 的含量为 16%, 其中 La_2O_3 为 4.16%, Ce_2O_3 为 8.16%, 其它稀土氧化物的含量为 3.68%。按 $\text{NaY}:\text{SiCl}_4=1:0.5$ 的比例, 用干燥空气携带 SiCl_4 于 300℃反应 5 小时, 用干燥空气吹扫 20 分钟后, 洗涤过滤, 得到样品, 编号 RHSY-4。其物化性质列于表 1 中。

实例 5

将固含量为 85% 的 REY 沸石(齐鲁石化公司周村催化剂厂生产, RE_2O_3 含量 18.8%, 其中 La_2O_3 为 14.8 重%, Ce_2O_3 为 2.9 重%, 其它稀土氧化物的含量为 1.1 重%, 沸石的晶胞常数为 2.469nm, 差热差热崩塌温度为 980℃, Na_2O 含量为 2.7 重%), 放入反应器中, 干燥至水含量小于 5%, 按 $\text{REY}:\text{SiCl}_4=1:0.8$ 的比例, 用干燥空气携带 SiCl_4 于 350℃反应 120 分钟, 用干燥空气吹扫 20 分钟后, 洗涤过滤, 得到样品, 编号 RHSY-5。其物化性质列于表 1 中。

表 1

实例	沸石 编号	晶胞常数 nm	RE_2O_3 w%	Na_2O w%	DTA ℃
1	RHSY-1	2.450	4	0.48	1010
2	RHSY-2	2.455	7	0.43	1020
3	RHSY-3	2.455	8.9	0.35	1016
4	RHSY-4	2.457	10	0.49	1018
5	RHSY-5	2.454	11.8	0.43	1020

以下实例说明本发明提供的催化剂的制备过程。

实例 6

将苏州高岭土 2.0 公斤(中国高岭土公司生产, 固含量 83%)加入到 10.7 公斤脱阳离子水中, 搅拌 1.5 小时, 再加入拟薄水铝石(山东铝厂生产, 固

含量 65%) 0.8 公斤搅拌 1 小时, 加入 0.036L HCl(工业级)搅拌 10 分钟, 升温 60℃, 老化 1 小时, 再加入 2 公斤的铝溶胶(山东齐鲁公司催化剂厂生产, Al₂O₃ 含量为 21.5%), 搅拌 1 小时, 加入实例 1 中制备的稀土 Y 型沸石 RHSY-1 1.8 公斤(固含量 80%), 搅拌 0.5 小时, 喷雾干燥成型, 催化剂样品记为 RC-1。催化剂性能列于表 2 中。

对比例 1

本对比例说明 Y 型分子筛为 REUSY 时催化剂的制备过程。

将苏州高岭土 2.1 公斤(中国高岭土公司生产, 固含量 83%)加入到 10.7 公斤脱阳离子水中, 搅拌 1.5 小时, 再加入拟薄水铝石(山东铝厂生产, 固含量 65%) 0.65 公斤搅拌 1 小时, 加入 0.036L HCl(工业级)搅拌 10 分钟, 升温 60℃, 老化 1 小时, 再加入 2 公斤的铝溶胶(山东齐鲁公司催化剂厂生产, Al₂O₃ 含量为 21.5%), 搅拌均匀, 加入混合氯化稀土溶液 (RE₂O₃ 浓度 285g/l), 加入氨水调 PH 为 3 左右, 搅拌 0.5 小时, 加入分子筛 REUSY(山东齐鲁公司催化剂厂生产, 晶胞常数为 2.450nm, RE₂O₃ 为 3w%, Na₂O 为 1.0w%, 固含量 78%), 1.3 公斤, 混合搅拌 0.5 小时, 喷雾干燥成型, 催化剂样品记为 DM-1。催化剂性能列于表 3 中。

实例 7

将苏州高岭土 1.9 公斤(中国高岭土公司生产, 固含量 83%)加入到 20 公斤脱阳离子水中, 搅拌 1.5 小时, 再加入拟薄水铝石(山东铝厂生产, 固含量 65%) 1.5 公斤搅拌 1 小时, 加入: 0.036L 的 HCl (工业级), 搅拌 10 分钟, 升温 60℃, 老化 1 小时, 加入实例 2 制备的 1.9 公斤稀土 Y 型沸石 RHSY-2 (固含量 75%), 搅拌 0.5 小时, 喷雾干燥成型, 催化剂样品记为 RC-2。催化剂性能列于表 2 中。

对比例 2

本对比例说明 Y 型分子筛为 REHY 和 REUSY 时催化剂的制备过程。

将苏州高岭土 9.3 公斤(中国高岭土公司生产, 固含量 83%)加入到 16 公斤脱阳离子水中, 搅拌 1 小时, 再加入拟薄水铝石(山东铝厂生产, 固含量 65%) 1.2 公斤搅拌 1 小时, 加入 0.16L HCl(工业级)搅拌 10 分钟, 升温 60℃, 老化 1 小时, 再加入 1.9 公斤的铝溶胶(山东齐鲁公司催化剂厂生产,

Al_2O_3 含量为 21.5%），搅拌 0.5 小时，加入 5.1 公斤水热法制备并交换制得的分子筛 REHY（山东齐鲁公司催化剂厂生产，晶胞常数为 2.469nm， RE_2O_3 为 8.8w%， Na_2O 为 4.2w%），再加入 2.7 公斤分子筛 REUSY（山东齐鲁公司催化剂厂生产，晶胞常数为 2.450nm， RE_2O_3 为 3w%， Na_2O 为 1.0w%，固含量 78%），混合搅拌 0.5 小时，喷雾干燥成型，用脱阳离子水洗涤后，催化剂样品记为 DM-2。催化剂性能列于表 3 中。

实例 8

将苏州高岭土 1.7 公斤（中国高岭土公司生产，固含量 83%）加入到 15 公斤脱阳离子水中，搅拌 1 小时，再加入 4 公斤的铝溶胶（山东齐鲁公司催化剂厂生产， Al_2O_3 含量为 21.5%），搅拌 1 小时，加入实例 3 制备的 1.4 公斤稀土 Y 型沸石 RHSY-3（固含量 85%， RE_2O_3 为 8.9w%， Na_2O 为 0.48w%，差热崩塌温度 1015°C），搅拌 0.5 小时，喷雾干燥成型，催化剂样品记为 RC-3。催化剂性能列于表 2 中。

实例 9

将苏州高岭土 1.2 公斤（中国高岭土公司生产，固含量 83%）加入到 24 公斤脱阳离子水中，搅拌 1.5 小时，加入拟薄水铝石（山东铝厂生产，固含量 65%）1.2 公斤搅拌 1 小时，加入 0.04L HCl（工业级）搅拌 10 分钟，升温 60°C，老化 1 小时，再加入 1.9 公斤的铝溶胶（山东齐鲁公司催化剂厂生产， Al_2O_3 含量为 21.5%），搅拌 0.5 小时，加入实例 4 制备的 1.5 公斤稀土 Y 型沸石 RHSY-4（固含量 78%），搅拌 1 小时，喷雾干燥成型，催化剂样品记为 RC-4。催化剂性能列于表 2 中。

对比例 3

本对比例说明分子筛为 P-REHY 和 ZRP、粘结剂为铝溶胶和拟薄水铝石的对比催化剂的制备过程。

将苏州高岭土 1.6 公斤（中国高岭土公司生产，固含量 83%）加入到 21 公斤脱阳离子水中，搅拌 1 小时，再加入拟薄水铝石（山东铝厂生产，固含量 65%）1.2 公斤搅拌 1 小时，加入 0.04L HCl（工业级）搅拌 10 分钟，升温 60°C，老化 1 小时，再加入 1.9 公斤的铝溶胶（山东齐鲁公司催化剂厂生产，

Al_2O_3 含量为 21.5%），搅拌 1 小时，加入磷稀土氢 Y 沸石 P-REHY-1（山东齐鲁公司催化剂厂生产，晶胞常数为 2.469nm， RE_2O_3 为 8.2w%， Na_2O 为 1.1w%， P_2O_5 为 2.4w%，固含量 85%）1.8 公斤，再加入 ZRP 择型分子筛 0.09 公斤（山东齐鲁公司催化剂厂生产，固含量 90%， Si/Al 50， $\text{Na}_2\text{O} < 1$ w%）混合搅拌 1 小时，喷雾干燥成型，用脱阳离子水洗涤后，催化剂样品记为 DM-3。催化剂性能列于表 3 中。

实例 10

将苏州高岭土 2.2 公斤（中国高岭土公司生产，固含量 73%）加入到 16.7 公斤脱阳离子水中，搅拌 1 小时，再加入 4.7 公斤的铝溶胶（山东齐鲁公司催化剂厂生产， Al_2O_3 含量为 21.5%），搅拌 1 小时，加入实例 5 制备的 1.1 公斤稀土 Y 型沸石 RHSY-5（固含量 78%），再加入 ZRP 择型分子筛 0.06 公斤（山东齐鲁公司催化剂厂生产，固含量 90%， Si/Al 50， $\text{Na}_2\text{O} < 1$ w%）搅拌 1 小时，喷雾干燥成型，催化剂样品记为 RC-5。催化剂性能列于表 2 中。

对比例 4

本对比例说明分子筛为 P-REHY 和 ZRP 的催化剂的制备过程。

将苏州高岭土 2.2 公斤（中国高岭土公司生产，固含量 73%）加入到 16.7 公斤脱阳离子水中，搅拌 1 小时，再加入 4.7 公斤的铝溶胶（山东齐鲁公司催化剂厂生产， Al_2O_3 含量为 21.5%），搅拌 1 小时，加入磷稀土氢 Y 沸石 P-REHY-2（山东齐鲁公司催化剂厂生产，晶胞常数为 2.467nm， RE_2O_3 为 9w%， Na_2O 为 1.1w%， P_2O_5 为 2.0w%，固含量 85%）2.2 公斤，再加入 ZRP 择型分子筛 0.06 公斤（山东齐鲁公司催化剂厂生产，固含量 90%， Si/Al 50， $\text{Na}_2\text{O} < 1$ w%）搅拌 1 小时，喷雾干燥成型，用脱阳离子水洗涤后，催化剂样品记为 DM-4。催化剂性能列于表 3 中。

实例 11

将苏州高岭土 2 公斤（中国高岭土公司生产，固含量 83%）加入到 15 公斤脱阳离子水中，搅拌 1 小时，加入 3.9 公斤的硅溶胶（北京长虹中学化工厂生产， SiO_2 含量 15.5%），搅拌均匀，加入实例 4 制备的 1.2 公斤稀土 Y 型沸石 RHSY-4（固含量 78%），搅拌 1 小时，喷雾干燥成型，催化剂样品记为 RC-6。催化剂性能列于表 2 中。

实例 12

将苏州高岭土 3.7 公斤（中国高岭土公司生产，固含量 73%）加入到 20 公斤脱阳离子水中，搅拌 1.5 小时，再加入拟薄水铝石（山东铝厂生产，固含量 65%）1.5 公斤搅拌 1 小时，加入 0.25L 的 HCl（工业级），搅拌 10 分钟，升温 60℃，老化 1 小时，加入实例 4 制备的 1.5 公斤稀土 Y 型沸石 RHSY-4（固含量 78%），搅拌 1 小时，喷雾干燥成型，催化剂样品记为 RC—7。催化剂性能列于表 2 中。

实例 13

将苏州高岭土 2.2 公斤（中国高岭土公司生产，固含量 73%）加入到 12 公斤脱阳离子水中，搅拌 1.5 小时，再加入拟薄水铝石（山东铝厂生产，固含量 65%）1.2 公斤搅拌 1 小时，加入 0.19L 的 HCl（工业级），搅拌 10 分钟，升温 60℃，老化 1 小时，加入实例 5 制备的 0.58 公斤稀土 Y 型沸石 RHSY-5（固含量 78%），搅拌 1 小时，喷雾干燥成型，催化剂样品记为 RC—8。催化剂性能列于表 2 中。

对比例 5

本对比例说明分子筛为 REHY 的分子筛的制备过程。

将苏州高岭土 2.3 公斤（中国高岭土公司生产，固含量 73%）加入到 20 公斤脱阳离子水中，搅拌 1 小时，再加入拟薄水铝石 1 公斤（山东铝厂生产，固含量 65%）搅拌 1 小时，加入 0.2L HCl（工业级）搅拌 10 分钟，升温 60℃，老化 1 小时，再加入 2.3 公斤的铝溶胶（山东齐鲁公司催化剂厂生产， Al_2O_3 含量为 21.5%），搅拌 0.5 小时，加入 REHY（山东齐鲁公司催化剂厂生产，固含量 83%，晶胞常数为 2.469nm， RE_2O_3 为 8.2w%， Na_2O 为 4.2w%）2.1 公斤，混合搅拌 1 小时，喷雾干燥成型，用脱阳离子水洗涤后，催化剂样品记为 DM—5。催化剂性能列于表 3 中。

对比例 6

本对比例说明分子筛为 REY 的分子筛的制备过程。

将苏州高岭土 1.6 公斤（中国高岭土公司生产，固含量 85%）加入到 16 公斤脱阳离子水中，搅拌 1 小时，再加入拟薄水铝石（山东铝厂生产，固含

量 65%) 1.2 公斤搅拌 1 小时, 加入 0.16L HCl(工业级)搅拌 10 分钟, 升温 60℃, 老化 1 小时, 再加入 1.9 公斤的铝溶胶(山东齐鲁公司催化剂厂生产, Al₂O₃ 含量为 21.5%), 搅拌 0.5 小时, 加入稀土 Y 泡石 REY(山东齐鲁公司催化剂厂生产, 山东铝厂生产, 固含量 65%, 晶胞常数为 2.467nm, RE₂O₃ 为 15.7w%, Na₂O 为 4.2w%) 2.1 公斤, 混合搅拌 1 小时, 喷雾干燥成型, 脱阳离子水洗涤, 催化剂样品记为 DM-6。催化剂性能列于表 3 中。

实例 14

将苏州高岭土 1.6 公斤(中国高岭土公司生产, 固含量 73%)加入到 15 公斤脱阳离子水中, 搅拌 1 小时, 再加入拟薄水铝石(山东铝厂生产, 固含量 65%) 1.2 公斤搅拌 1 小时, 加入 0.19L HCl(工业级)搅拌 10 分钟, 升温 60℃, 老化 1 小时, 再加入 0.7 公斤的铝溶胶(山东齐鲁公司催化剂厂生产, Al₂O₃ 含量为 21.5%), 搅拌 0.5 小时, 加入实例 3 制备的 RHSY-3 泡石 1.27 公斤, 混合搅拌 1 小时, 喷雾干燥成型, 催化剂样品记为 RC-9。催化剂性能列于表 2 中。

表 2

实例	催化剂	Al ₂ O ₃ w%	RE ₂ O ₃ w%	Na ₂ O w%	比表面 m ² /g	氮吸附		磨损 指数
						孔体积	微孔体积	
6	RC-1	42.9	1.4	0.27	266	0.184	0.094	0.2
7	RC-2	47.9	2.4	0.22	268	0.192	0.087	1.2
8	RC-3	40.9	3.1	0.26	290	0.181	0.110	0.2
9	RC-4	55	3.5	0.14	212	0.171	0.55	1.4
10	RC-5	49	3.6	0.17	254	0.190	0.080	1.6
11	RC-6	48	3.0	0.14	260	0.184	0.094	1.4
12	RC-7	50	2.4	0.26	270	0.190	0.090	1.2
13	RC-8	48	1.8	0.21	265	0.194	0.98	1.7
14	RC-9	46.6	2.8	0.28	303	0.203	0.089	2.0

表 3

对 比 例	催化 剂	Al ₂ O ₃ w%	RE ₂ O ₃ w%	Na ₂ O w%	比表面	氮吸附		磨损 指数
						孔体积	微孔 体积	
1	DM-1	49.5	1.7	0.35	268	0.178	0.083	2.3
2	DM-2	55	2.5	0.38	263	0.210	0.086	2.4
3	DM-3	51	3.2	0.38	272	0.188	0.073	2.3
4	DM-4	50	3.6	0.32	262	0.199	0.073	1.7
5	DM-5	57	3.2	0.22	260	0.199	0.073	1.8
6	DM-6	57	5.5	0.16	242	0.181	0.067	1.9

以下实例说明本发明催化剂用于各种类型石油烃原料油的裂化性能。

实例 15

将本发明催化剂 RC-1、RC-3（稀土 Y 型分子筛含量均为 35 重%）和对比剂 DM-1（分子筛含量为 39 重%）同经 800℃/8h、100%水蒸汽老化处理后，对原料油 I（辽河蜡油，性质见表 5）在反应温度 500℃，空速 12h⁻¹，剂油比 5，注水（占原料）10 重%的条件下，进行固定流化床评价，评价结果见表 6。

表 5

原料油 I	
密度, g/cm ³ (20℃)	0.9275
粘度, mm ² /(50℃)	52.15
(80℃)	14.93
凝固点, ℃	28
残炭, w%	0.25
碱性氮, ppm	795
元素分析, w%	
C	86.6
H	12.04
S	0.32
N	1
族组成, w%	
饱和烃	67.5
芳烃	23
胶质	9.5
沥青质	0
减压馏程, ℃	
初馏点	265
5%	320
10%	343
30%	398
50%	429
70%	455
90%	504

表 6

催化剂编号		RC-3	RC-1	DM-1
产 品 分 布 w%	干气	2.12	2.01	19.0
	液态烃	14.23	13.04	14.05
	汽油	52.38	49.33	47.15
	柴油	17.36	19.57	19.93
	重油	9.57	13.01	13.57
	焦炭	4.24	3.04	3.40
	转化率	73.07	67.42	66.50
	轻质油收率	69.74	68.90	67.08
	液+汽+柴	84.07	81.94	81.13

从表 6 结果可以看出，本发明提供的 RC-1 和 RC-3 催化剂重油转化能力强，未转化重油量均少于对比剂 DM-1，特别是 RC-3 少于对比剂 DM-1 4 个百分点；轻质油收率高于对比剂近 1~2 个百分点，从产品分布看，在相近转化率条件下，汽油、焦炭、干气选择性均好于对比剂，是良好的重油裂化催化剂。

实例 16

将催化剂 RC-1、RC-3 及对比剂 DM-1 同经 800℃/4h、100%水蒸汽老化处理后，在反应温度 500℃，剂油比 5 条件下，进行固定流化床反应，原料油 II（武汉混三掺渣油，性质见表 7），粗切汽油进行色谱 PNOA 法分析，其汽油族组成见表 8。

表 7

原料油 II	
密度, g/cm ³ (20℃)	0.9070
粘度, mm ² /(80℃)	17.17
苯胺点, ℃	95.8
倾直, ℃	43
折光度, 20℃	1.5217
康氏残炭, w%	3.1
碱性氮, ppm	1010
元素分析, w%	
C	86.37
H	12.53
S	0.80
N	0.29
Ni, ppm	7.0
V, ppm	0.8
馏程, ℃	
初馏点	241
10%	347
30%	413
50%	450
70%	493
80%	535
90%	-

表 8

催化剂	正构烷烃 NP	异构烷烃 ZP	烯烃 O	环烷烃 N	芳烃 A	辛烷值 RON
DM-1	5.55	39.41	33.34	8.26	13.34	90.1
RC-1	4.79	51.59	17.3	8.26	18.06	91.4
RC-3	5.51	55.14	12.97	6.26	20.12	90

从表 8 结果可以看出，本发明提供的催化剂 RC-1 和 RC-3 具有明显的降低汽油中的烯烃含量的作用，其汽油中烯烃含量分别可达到 17.3% 和 12.97%，低于对比剂 DM-1 的 33.4%；RC-1 和 RC-3 异构烷烃的含量分别为 51.59% 和 55.14%，高于对比剂的 39.41%，保持了较高的辛烷值，是理想的降烯烃催化剂。

实例 17

将本发明提供的催化剂 RC-2 及对比剂 DM-2 同经 800℃/4h、100%水蒸汽老化处理后，对原料油 III（辽河鞍山蜡油，性质见表 9），在反应温度 510℃，空速 20h⁻¹，剂油比 5 条件下，进行固定流化床评价，评价结果见表 10。

表 9

原料油 III	
密度, g/cm ³ (20℃)	0.9268
粘度, mm ² /(100℃)	9.072
凝固点, ℃	+31
苯胺点, ℃	78.5
残炭, w%	0.27
饱和烃, w%	62.0
芳烃, w%	26.6
胶质, w%	11.3
沥青质, w%	0.1
馏程类型	D1160
元素分析, w%	
C	87.03
H	12.15
S	0.26
N	0.28
碱性氮, ppm	865
初馏点	264
5%	320
10%	350
30%	411
50%	444
70%	468
90%	515

表 10

催化剂编 号 分析项目		RC-2	DM-2
产品分布 w%	干气	2.0	2.0
	液化气	12.8	14.8
	C ₃ =+C ₄ =	8.0	9.2
	汽油	50.5	47.2
	柴油	21.5	22.0
	重油	7.8	9.1
	焦炭	4.9	4.5
	转化率	70.2	68.5
	RON	89.0	89.4
	正构烷	4.23	4.39
	异构烷	43.23	40.49
	烯烃	19.05	25.04
	环烷	8.23	9.43
	芳烃	25.28	20.65
	MA	82	77

从表 10 可以看出, 本发明提供的催化剂 RC-2(分子筛含量为 35 重%) 相比于对比剂 DM-2(两种分子筛, 含量为 41 重%), 重油转化能力强, 轻质油收率高于对比剂近 2.8 个百分点, 在汽油辛烷值相当情况下, 烯烃含量降低了 6 个百分点, 具有降烯烃性能。

实例 18

将本发明提供的催化剂 RC-2、RC-9 及对比剂 DM-2 同经 800℃/12h、100%水蒸汽老化处理后, 在反应温度 500℃, 空速 10h⁻¹, 剂油比 6 条件下, 对一种劣质化的原料油 IV (辽河蜡油:辽河焦蜡:大庆减渣=55:20:25, 性质见表 11), 进行固定流化床评价, 结果见表 12。

将 RC-9、DM-2 催化剂进行固定流化床粗切汽油 PNOA 分析, 见表 13。

表 11

原料油 IV	
密度, g/cm ³ (20 °C)	0.9213
残炭, w%	23
凝固点, °C	33.0
粘度, mm ² /(80 °C)	14.00
折光指数, (70 °C)	1.4974
苯胺点, °C	97.2
元素分析, w%	
C	86.86
H	12.29
S	0.24
N	0.31
族组成, w%	
饱和烃	56.0
芳烃	27.8
胶质	16.2
沥青质	0.0
金属含量, m%	
Fe	5.0
Ni	3.6
Cu	<0.1
V	<0.1
Ca	2.5
减压馏程, °C	
初馏点	212
5%	329
10%	363
30%	422
50%	458
70%	518

表 12

催化剂编号	RC-2	RC-9	DM-2
重时空速, h^{-1}	10.0	9.8	9.8
H ₂ -C ₂	2.01	2.01	1.69
C ₃ -C ₄	14.64	13.91	15.33
汽油(C ₅ -221°C)	54.94	57.80	52.86
柴油(221-300°C)	12.92	11.52	12.97
重油 (重油 °C)	8.15	7.04	9.73
焦炭	7.34	7.72	7.42
转化率, w%	78.93	81.44	77.30
轻质油收率, w%	67.86	69.32	65.83
产品选择性			
H ₂ -C ₂ , 转化率	0.026	0.025	0.022
C ₃ +C ₄ , 转化率	0.185	0.171	0.198
汽油, 转化率	0.696	0.710	0.684
焦炭, 转化率	0.093	0.095	0.096
辛烷值(色谱法)			
MON	78.7	78.1	78.6
RON	89.4	88.6	89.1

从表 12 结果看，在催化剂载体相同，本发明提供的催化剂 RC-2、RC-9 分子筛含量（分别为 34% 和 35%）低于 DM-2（41%）的情况下，其重油裂化能力均强于对比剂 DM-2，且轻质油收率高于对比剂近 2~3.5 个百分点，汽油和焦炭选择性均好于对比剂。

表 13

催化剂 \ 汽油族组成, w%	烷烃	烯烃	环烷烃	芳烃
DM-2	38.49	26.12	10.30	25.09
RC-9	42.55	22.59	9.65	25.21

从表 13 可以看出，本发明提供的催化剂在原料油劣质化条件下也具有烃降烯烃性能。

实例 19

将本发明提供的催化剂 RC-4 及对比剂 DM-5、DM-6 同经 800℃/4h、100%水蒸汽老化处理后，在温度 520℃；空速 30h⁻¹，剂油比 4 反应条件下对原料油 V（大庆常渣：阿曼=20: 80）进行固定流化床评价，结果见表 14。

表 14

分析项目		催化剂编号	RC-4	DM-5	DM-6
分子筛 w%	类型	RHSY	REHY	REY	
	相对含量, %	35	35	35	
	RE ₂ O ₃ , w%	3.5	2.8	5.5	
	干气	1.6	2.0	1.9	
	液态烃	12.0	12.4	11.7	
	汽油	49.2	48.2	49.0	
	柴油	21.4	20.8	21.1	
	重油	9.6	9.5	9.0	
	焦炭	5.7	6.6	6.7	
	转化率	68.5	69.2	69.3	
产品分布		汽+柴	70.6	69	70.1
		汽+柴+液	82.6	81.4	81.8
		RON	88.3	89.5	89.9
		烯烃	25.82	27.65	23.69

从表 14 结果看出，本发明提供的催化剂与含 REHY 的 DM-5 和含 REY 的 DM-6 相比，在转化率基本相同情况下，在轻质油收率较高，具有降烯烃性能，其突出特点是焦炭选择性好。

实例 20

将本发明提供的催化剂 RC-4 及对比剂 DM-3（专用降烯烃催化剂）同经 800℃/8h、100%水蒸汽老化处理后，在反应温度 500℃，空速 30h⁻¹，剂油比 4 条件下，对原料油 VI（大庆常渣，性质见表 15），进行固定流化床评价，结果见表 16。

表 15

原料油 VI	
密度, g/cm ³ (20°C)	0.8906
粘度, mm ² /(80°C)	44.18
mm ² / (80°C)	24.84
凝固点, °C	43
苯胺点, °C	>105
康氏残炭, w%	4.3
碳氧比, mol/mol	0.55
溴价, gBr/100g	3.6
折光指数, n _D ²⁰	1.4957
元素分析, w%	
C	86.54
H	13.03
S	0.3
N	0.13
族组成, w%	
饱和烃	51.2
芳烃	29.7
胶质	18.3
沥青质	0.8
馏程, °C	
初馏点	
5%	282
10%	351
30%	370
50%	482
70%	353

表 16

分析项目 催化剂编号	RC-4	DM-4
RE ₂ O ₃ , w%	3.2	3.6
液态烃	11.2	15.5
汽油	51.9	50.1
柴油	19.5	19.1
重油	8.9	7.3
焦炭	7.6	7.5
转化率	71.1	73.1
汽油+柴油	71.4	69.2
RON	86.3	89.0
正构烷	5.30	4.28
异构烷	45.61	43.05
烯烃	28.33	33.95
环烷	10.64	9.70
芳烃	10.12	9.03
MA	69	73

从表 16 看，表明本发明催化剂 RC-4 在分子筛含量低于对比剂 DM-4 5 个百分点且不含 ZRP 分子筛的情况下，其重油转化能力强，轻质油收率高于对比剂近 2 个百分点，烯烃含量较对比剂降低 5 个百分点，具有降烯烃性能。

实例 21

将本发明催化剂 RC-5、RC-6、RC-7 及对比剂 DM-3 同经 800℃/17h、100%水蒸汽老化处理后，经重油微反评价，结果见表 17。

表 17

催化剂编号 分析项目		RC-5	RC-6	RC-7	DM-3
分子筛含量(相对值)		0.60	0.75	0.60	基准*
产品分布 w%	气体	19.8	19.5	19.0	23.4
	汽油	53.0	53.2	54.8	47.5
	柴油	187.4	16.9	16.6	17.1
	焦炭	1.6	1.6	1.7	1.5
	重油	8.2	8.8	7.9	10.5
	转化率	74.4	74.3	75.5	72.4
轻质油收率		70.4	70.1	71.4	64.6
$C_4^0/C_4^=$		1.19	1.05	1.0	0.81

*：基准为 40%。

从表 17 的结果表明，本发明提供的催化剂，在沸石含量明显低于对比剂时，仍有好的重油转化能力，轻质油收率高于对比剂 5.5~6.8 个百分点，特别是氢转移活性指数 $\Sigma C_4^0/\Sigma C_4^=$ 均高于对比剂，这表明本发明催化剂的降烯烃性能优于常规的降烯烃催化剂。

实例 22

将本发明提供的催化剂 RC-1、RC-9 与对比剂 DM-4 在同一条件下 800℃ /4h、800℃/8h、800℃/17h、100%水蒸汽老化处理后，经氮吸附 BET 比表面测定结果作图。

从附图可以看到，本发明催化剂比表面保留度高，表明本发明催化剂具有好的水热稳定性。

实例 23

将本发明提供的催化剂 RC-1、RC-3、RC-4、RC-8 与对比剂 DM-1、DM-5、DM-6 同在 800℃/17h、100%水蒸汽老化处理后，用 X 光衍射仪测定催化剂中沸石的晶胞常数，结果见表 18。

表 18

催化剂编号	RC-1	RC-3	RC-4	RC-8	DM-2	DM-5	DM-6
轻油微反活,MAT	69	65	66	64	56	59	58
晶胞常数, nm	2.436	2.432	2.433	2.430	2.424	2.426	2.427

从表 18 结果看出，本发明提供的催化剂晶胞常数均大于 2.430nm，而对比剂的晶胞常数均 < 2.430nm，表明本发明提供的催化剂具有好的水热稳定性和结构稳定性。

说 明 书 附 图

图

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.