

Model Optimization and Tuning Phase Template

Date	March 2024
Team ID	xxxxxx
Project Title	Detection of Autistic Spectrum Disorder: Classification
Maximum Marks	10 Marks

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters


```
Random Forest
                             1 rand_forest = RandomForestClassifier(random_state=42)
                             1 rand_forest.fit(X_train, y_train)
                                  RandomForestClassifier
                                                             0 0
                          RandomForestClassifier(random state=42)
Random Forest
                             1 predictionRF = rand_forest.predict(X_test)
                             3 print('Training set: ',rand_forest.score(X_train, y_train))
                             4 print('Testing set: ',rand_forest.score(X_test, y_test))
                          Training set: 1.0
                          Testing set: 1.0
                             1 accuracy_RF=rand_forest.score(X_test, y_test)
                             print ("Accuracy_RF:",accuracy_RF*100)
                          Accuracy_RF: 100.0
```


	KNN
	<pre>1 from sklearn.neighbors import KNeighborsClassifier 2 knn= KNeighborsClassifier(n_neighbors=5, metric='minkowsk: 3 knn.fit(X_train, y_train)</pre>
IZNINI	<pre>KNeighborsClassifier ① ② KNeighborsClassifier()</pre>
KNN	<pre>1 y_pred = knn.predict(X_test)</pre>
	<pre>1 #Calculate accuracy of the model 2 3 from sklearn.metrics import accuracy_score 4 accuracy_KNN = accuracy_score(y_test, y_pred) 5 print(f'Accuracy_KNN: {accuracy_KNN*100}')</pre>
	Accuracy_KNN: 96.17486338797814

Performance Metrics Comparison Report (2 Marks):

Model	Beline Metric

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	Final Model" in machine learning is the culmination of rigorous
Detection of Autistic	evaluation, selection, and validation processes, aiming to identify the
Spectrum Disorder:	model that best meets performance criteria and practical considerations
Classification	for deployment.