BSYS ESG Research

How I Learned to Stop Worrying and Love ESG Research

July 27th 2021

BlackRock

Introduction to Double Bottomline

The Dirty Secret of Green

Many **Traditional Alpha Investors Are Still** Skeptical about ESG

Reasons to be Skeptical about ESG Research

List of Challenges Remains High

- Poorly Defined Research Questions
- Assumption Every ESG Idea Will Generate Alpha "In the Future"
- Weak Documentation from 3rd Party Data Providers
 - And little consistency in their ratings
- Standards Based on Industry Surveys or Expert Opinion
 - "Materiality" is often a dodge
- Difficulty Understanding Social Outcomes at Portfolio Level
- Is this just Quality? Already priced in?
- Etc Etc Etc

... Yet the Interest in Improving ESG Remains

https://www.oecd.org/investment/more-efforts-needed-from-governments-regulators-and-business-to-unlock-full-potential-of-sustainable-finance.htm

The Twin Problems of ESG

The Twin Problems of ESG

Stakeholders

- How do we test whether feature that sounds sustainable delivers the social goods?
- Is there a compelling, evidence driven way to capture this?

Shareholders

How do we ensure that the feature also drives results for businesses and shareholders?

How selective should we be when picking features for an ESG portfolio?

Solution: Double Bottom Line

Start with Systematic Research Template

Table of Contents for ERAB Documents

1. Sensibility

- Alpha Hypothesis
- 2. Data Overview
- 3. Signal Construction
- 4. Ancillary Evidence
 - Alpha Channel?
 - Better understanding
- 5. Backtest Results
 - Alpha IR Returns
- 6. Learnings
- 7. Model Limitations

Supports Cross-Platform Research

Insert Double-Bottom Line Requirements

Sustainable outcomes and alpha drivers

Double Bottomline ESG: Additional Requirements to Alpha

1. Sensibility

- Alpha Hypothesis
- Empirical Exploration of Sustainability Issue
- ESG Goals, Standards, and Metrics

4. Ancillary Evidence

- Sustainability Feature of Firm
- Alpha Channel

5. Backtest Results

- Sustainability Outcome in Society
- Alpha IR Returns
- 6. Learnings
- 7. Model Limitations

Implications

Benefits

- Fits Neatly into Systematic Research
- Draws on BSYS Strengths of Data and Modeling
- Evidence Driven for Stakeholders & Shareholders

Drawbacks

- Limits ESG Topics to Issues We Can Measure
- Slows Response in Rapidly Evolving Field
- Investment Thesis Requirement

Examples from Cross-BSYS

Alpha Can Lead to ESG Insight & ESG Can Lead to Alpha

Alpha -> ESG

Doc: IMMIGRANTS Date: July 22, 2021 **Immigrants Make Monumental** Innovation Gains that Result in American beNefiTS Double Bottom Line Addendum (IMMIGRANTS) Ying Chan, Joshua Kazdin, Katharina Schwaiger* First Draft: January 22, 2021 This Draft: July 22, 2021 Presentation Date: March 21, 2021 SDGs: 10.7 *The authors would like to acknowledge valuable feedback from ERAB that prompted this addendum. SAE Research Report, BlackRock Page 1 of 21

ESG -> Alpha

Equities -> Fixed Income

FBSG (Chan, Schwaiger) -> SAE (Kazdin)

SAE (Kimmel, Kazdin)

SAE (Awate, Garvey, Mukund) -> SFI (Kaul)

Sustainable outcomes and alpha drivers

Immigrants Make Monumental Innovation Gains that Result in American beNefiTS (IMMGRANTS)

Data for Companies from US Department of Labor

Tested for Society using Bureau of Labor Statistics Occupational Employment & Wage Statistics

Investment Result. Firms with more H1-B Hiring Have Higher ROA, Gross Profit, and Patent Filings

Sustainable Result. High Skilled Immigration is Positively Associated with General Hiring in US Metropolitan areas, not associated with wage compression, and positively associated with diversity metrics at the firm level.

Companies Which Support Immigration Have Higher ROA, Gross Profit, and Patent Filings, Yr+Ind FE, 11-20

(a) Return On Assets

More Graduate Students in Engineering are International, but Immigration Remains Challenging

Figure 1: NSF: Percentage of graduate and postdoctoral students in engineering on student visas: 1980-2019

Source: National Science Foundation

High Skilled Immigration Is Positively Associated with Broader Labor Market Hiring (10-17) & Diversity (11-20)

Dep. Variable: No. Observations: Time periods: Cov. Estimator:	roa 46609 10 Clustered	R-squared: Entities: Log-likeliho F-statistic (ood	0.4667 5251 $6.308e+04$ 905.62	Dep. Variable: No. Observations: Time periods: Cov. Estimator:	DIVERSE 34113 10 Clustered	R-squared: Entities: Log-likelih F-statistic	ood	0.1680 4251 5485.6 : 156.33	Dep. Variable: No. Observations: Time periods: Cov. Estimator:	overall hiring 267403 8 Clustered	Entities Log-like	s:	-1.935	1264 363 35e+05 51.7
$egin{aligned} ext{Intercept} \ ext{total_h1b_hiring}_{log} \ ext{roa}_{lag} \end{aligned}$	Parameter -0.0288 0.0016 0.6624	Std. Err. 0.0045 0.0002 0.0075	T-stat -6.4231 7.4979 88.247	P-value 0.0000 0.0000 0.0000	$\begin{array}{c} \textbf{Intercept} \\ \textbf{total_h1b_hiring}_{log} \\ \textbf{total_assets}_{log} \\ \textbf{(b) } \textbf{N} \end{array}$	Parameter -0.0888 0.0522 -0.0234 Managerial Div	Std. Err. 0.0477 0.0020 0.0014 versity (DIVERS	-1.8628 26.773 -16.557	P-value 0.0625 0.0000 0.0000	Intercept h1b_hiring loc_quotient total_employment (a)	Parameter -1309.6 0.1718 4.6645 0.0274 Overall Hiring w	Std. Err. 333.54 0.0558 2.0788 0.0030 ithin SOC Co	3.0768 2.2438 9.1432	P-value 0.0001 0.0021 0.0249 0.0000	
$ ext{total}_{_ ext{assets}_{log}}$	0.0024	0.0075	9.0804	0.0000	(-)-		(,		(a)	Overall Hiring w	ithin SOC Co	des		

Source CFPB, FRBNY Consumer CreditPanel/Equifax, Bureau of Labor Statistics

Source:

Sustainable outcomes and alpha drivers

Consumers Being Formally Protected from Boondoggles (CFPB)

Data for Companies from Consumer Financial Protection Agency Complaint Database

Tested for Society using New York Federal Reserve Quarterly Debt-to-Income Vulnerability Indices

Investment Result. Firms with lower complaints tend to have lower non-performing loans to total assets

Sustainable Result. States with lower complaints have households in less vulnerable financial positions

Betting Against Increases in Non-Performing Assets to Total Assets Regressed on Complaints, 2011-2020

DNAPA2A	No Fixed Effects	Year/Ind Fixed Effects
	(1)	(2)
Intercept	-1.607	-0.882
	(-4.441)***	(-1.185)***
Complaints ^a	-0.053	-0.055
	(-1.800)*	(-2.029)**
Deposits ^a	0.138	0.144
	(5.287)***	(6.232)***
DNPA2A Lagged	0.328	0.226
	(59.624)***	(37.085)***
Adj-R2	48.0%	59.3%
df	3	14

Source: SAE, Worldscope, CFPB, FDIC

Federal Reserve Monitors Household Debt-to-Income Since GFC, 2019

Source: FRBNY Consumer CreditPanel/Equifax, Bureau of Labor Statistics

Financial Vulnerability Regressed on Financial Product Complaints, 2011-2020

Mean Debt to Income	No Fixed Effects	State/Year Fixed Effects
	(1)	(2)
Intercept	0.256	1.124
	(25.739)***	(46.264)***
Complaints ^a	0.003	0.019
	(2.924)***	(4.489)***
Mean Debt to Income 1Q Lagged	0.815	0.194
	(153.282)***	(16.903)***
Adj-R2	79.8%	88.7%
df	2	58

^aLog Adjusted

Number of observations = 5,957

(***P < 0.01, **P < 0.05, *P < 0.1)

Source CFPB, FRBNY Consumer CreditPanel/Equifax, Bureau of Labor Statistics

Sustainable outcomes and alpha drivers

Syndication of dirty deals. We are defining Dirty Deals as Rated CCC by MSCI's ESG framework, or UNGC violators.

Data from BLK BCM

Tested for Banks within LEH_CORP Index

Investment Result. Banks involved with higher % of "dirty deals" generally have lower asset quality and can be a leading indicator for deterioration in asset quality over the next 6 months.

Sustainable Result. % of "dirty deals" are generally associated with low esg scores and is a leading indicator of deterioration in esg scores.

% of "dirty deals" is a leading indicator of deterioration in ESG scores.

		OLS Regres:	sion Result	s			
Dep. Variable: Model: Method: Date: Time: No. Observations: Df Residuals: Df Model: Covariance Type:	Le Sat,	ast Squares 17 Apr 2021	Adj. R-sq F-statist	uared: ic: tatistic):	0.806 0.806 1385. 7.92e-238 -731.42 1469. 1482.		
	coef	std err	t	P> t	[0.025	0.975]	
Intercept esg_score_adj pct_dirty	0.8662		49.798	0.000	0.832	0.900	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		34.348 0.000 0.566 3.302		ra (JB):		0.322 38.264 91e-09 68.6	

Private prisons as a case study highlights the sensibility of the insight and pressures controversial names face

Source: BLK/Bloomberg

Banks involved with higher % of "dirty deals" can be a leading indicator for deterioration in asset quality over the next 6 months.

		OLS R	egressi	ion Re	sults		
Dep. Variabl Model: Method: Date: Time: No. Observat Df Residuals Df Model: Covariance T	ions:		0LS ares 2021 7:58 774 772	Adj. F-sta Prob	uared: R-squared: atistic: (F-statistic): .ikelihood:		0.046 0.045 37.57 1.40e-09 -13.182 30.36 39.67
	coef	std err		t	P> t	[0.025	0.975]
Intercept pct_dirty	-0.6216 -0.7256				0.000 0.000	-0.643 -0.958	-0.601 -0.493
Omnibus: Prob(Omnibus Skew: Kurtosis:):	9		Jarqu			0.292 51.300 7.25e-12 13.4

Data Source, Coverage and Trends

BlackRock Capital Markets (BCM) compiles data on syndicated deal (IG+HY) on a daily basis.

- This may be a competitive advantage for us given the scale of the firm and lack of competing data source
- BCM has permissioned SFI a database table for this specific project
- We had to clean historical data but it will be maintained in a standard format going forward
- Total \$ issuance of UNGC Fails or MSCICCC companies has not slowed down. Neither has the count of individual companies needing financing
- Coverage has improved recently and is fairly robust; there are 70 unique banks in the Investment Grade Index.
- Banks represent ~17.5% of LEH_CREDIT.
- Lead (Broker/Dealers) banks are the focus of our analysis that list is significantly smaller, and as it turns out, much more meaningful.
- Datagoes back to 2016

Double Bottomline - Ancillaries & Correlations

- Higher % of dirty deals are associated with lower esg scores but also deterioration in esg scores, governance score
 and higher controversies over the next 12 months.
- Higher % of dirty deals help explain lower npl coverage ratios and quality of management 6M in the future. After adjusting for starting ratios, it still significantly explains quality of management deterioration.
- Signal has a very strong quality tilt wrt spread, bfidef and sigma. Its also positively correlated to good growth suggesting fundamental quality tilt. Finally its also very strongly correlated to sbti signal, which suggests companies that have signed up for reducing their carbon emissions also stay away from syndication of controversial names

Dep. Variable Model: Method: Date: Time: No. Observati Df Residuals: Df Model: Covariance Ty	: S ons: pe:	g_score_1 0 Least Squar at, 17 Apr 20 12:59: 6 nonrobu	2m R-squa LS Adj. F es F-stat 21 Prob (40 Log-Li 67 AIC: 64 BIC: 2	ared: R-squared: istic: F-statistic) kelihood:	:	0.78 0.78 1032 2.03e-20 -693.2 1393 1406
Intercept g_score pct_dirty	0.9043 0.8357 -1.0309	0.081 0.019 0.383	11.099 43.802 -2.689	0.000 0.000 0.007	0.744 0.798 -1.784	1.00 0.87 -0.27
Omnibus: Prob(Omnibus)				n-Watson: e-Bera (JB):		
Skew:						
Skew: Kurtosis:	.=======	OLS Rec	gression Re	sults		
Skew: Kurtosis: ======== Dep. Variable	:: ::	OLS Rec	gression Re	sults		 0.0
Skew: Kurtosis: ======== Dep. Variable Model: Method: Date: Time:	: :: S	OLS Reg npl_coverage (Least Squar iat, 17 Apr 26 13:07:	gression Researchers Gm R-squan DLS Adj. Hes F-stan 121 Prob	sults		0.0 0.0 11.: 0.0008 -545.
Skew: Kurtosis:	s cons:	OLS Rec npl_coverage (Least Squar iat, 17 Apr 26 13:07	gression Re:	sults		 0.0
Skew: Kurtosis: Dep. Variable Model: Method: Date: Time: No. Observati Df Residuals: Df Model: Covariance Ty	stons:	OLS Reg npl_coverage_ (Least Squai iat, 17 Apr 26 13:07: t t nonrobu	gression Researches Resquences Festa 1021 Prob 157 Log-L: 179 BIC: 1 st	sults):	0.0 0.0 11.: 0.0008 -545.i 110.
Skew: Kurtosis:	sions: coef -1.4704 -1.8494	OLS Reg npl_coverage. (Least Squar iat, 17 Apr 26 13:07 5 nonrobu	gression Research Gm R-squ DLS Adj. Fees F-star 221 Prob 57 Log-L 881 AIC: 679 BIC: 1 ust -45.816 -3.358	sults ared: R-squared: tistic: (F-statistic) ikelihood: P> t 0.000 0.001	[0.025 -1.533 -1.663	0.0 0.0 11.: 0.0008 -545. 109 110: -0.97

OLS Regression Results

			ression				
Dep. Variable: Model: Mothod: Date: Time: No. Observations Df Residuals: Df Model: Covariance Type:	controve Sat	ersy_score_ Least Squa :, 17 Apr 2 12:59 nonrob	12m R- 0LS Ad res F- 021 Pr :40 Lo 668 AI 665 BI 2	squared: j. R-squar statistic: ob (F-stat g-Likeliho C: C:	ed: istic): od:	0. 0. 14 7.31e- -806 16	812 811 34.
	coe	f stde	rr	t	P> t		0.975]
Intercept controversy_scor pct_dirty	0.197 e 0.896 -0.882	75 0.0 08 0.0 12 0.4	55 18 4 74 -	3.565 9.394 1.859	0.000 0.000 0.063		0.306 0.926 0.049
Omnibus: Prob(Omnibus): Skew: Kurtosis:		195.760 0.000 0.978 11.510	Durbi Jarqu Prob(Cond.	n-Watson: e-Bera (JB JB): No.):	0.402 2122.084 0.00 40.2	
============		OLS Regres					
Dep. Variable: Model: Model: Date: Date: Time: No. Observations Df Residuals: Df Model: Covariance Type:	qlty_(Lea: Sat, 1:	of_mgmt_6m OLS st Squares 7 Apr 2021 13:04:46 769 766 2 nonrobust	R-squa Adj. R F-stat: Prob (I Log-Lil AIC: BIC:	red: -squared: istic: F-statistic kelihood:	;):	0.532 0.531 435.0 6.18e-127 264.24 -522.5 -508.5	
	coef					0.975]	
qlty_of_mgmt pct_dirty	0.7217 -0.2118	0.085	28.177 -2.502	0.000 0.013	0.671 -0.378	0.772 -0.046	
Omnibus: Prob(Omnibus): Skew: Kurtosis:		119.413 0.000 0.392 8.619	Durbin Jarque Prob(J Cond. I	-Watson: -Bera (JB) B): No.	:	0.843 1031.367 1.10e-224 16.5	

US IG Corp Backtest (201601 – 202012)

- The signal does appear to carry some information in it, especially in the higher quality cohorts
- · While the fundamental itself has no real information
- · Signal for Non-Leads is significantly weaker
- In returns space, the signal has a NTC IR of 0.6 with 12bps of return contribution on ~20% capital allocation in a long only setting. While the low sample size and coverage precludes us from adding to a current model, we think that it has interesting implications for our future esg research, which could perhaps be used to improve current signals.

Sensibility	Companies with higher % dirty deals carry lower asset quality and should underperform.
Signal Construction	- Rolling 12M % Dirty Deals/Total Deals
IC	9 %

				L	OVERAL	STATS
run	mean_dd_bps	max_dd_bps	ir	cumret_bps	ann_vol_bps	ann_ret_bps
(ex BM turnover tcost) ACTIVE WTC	-6.18	-27.20	0.48	40.36	17.33	8.35
ACTIVE NTC	-6.18	-27.20	0.48	40.36	17.33	8.35
ACTIVE WTC	-6.18	-27.20	0.48	40.36	17.33	8.35

Sustainable outcomes and alpha drivers

Benefits momentum in Corporates

Data from Axiomatic (SAE). Data sample goes from 201301 to 201908. Coverage steadily increase from 55% to 65% in 2019.

Tested for LEH CORP Index

Investment Result. Companies with increasing/decreasing count in benefits see their profitability measures improve/deteriorate over the next 12M

Sustainable Result. Higher benefit count is generally associated with positive esg profiles and % benefits change is a leading indicator of deterioration in msci s scores.

Companies with increasing/decreasing count in benefits see their social MSCI scores improve/deteriorate over the next 12M

	OL:	Regress	sion Results			
Dep. Variable:	s_sc	ore_12m	R-squared:		0.006	
Model:		0LS	Adj. R-squared	1:	0.006	
Method:	Least 9	Squares	F-statistic:		73.44	
Date:	Sun, 18 Ji	1 2021	Prob (F-statis	stic):	1.58e-32	
Time:	2	1:07:41	Log-Likelihood	i:	-45775.	
No. Observations:		24221	AIC:		9.156e+04	
Df Residuals:		24218	BIC:		9.158e+04	
Df Model:		2				
Covariance Type:	noi	robust				
=======================================						
	coef	std er	r t	P> t	[0.025	0.975]
Intercept	4.0079	0.02	142.877	0.000	3.953	4.063
s_score	0.0744	0.00	12.041	0.000	0.062	0.087
d_benefits_count_6	0.1914	0.09	2.038	0.042	0.007	0.375
Omnibus:		218.055	Durbin-Watson		1.951	
Prob(Omnibus):		0.000	Jarque-Bera (JB):	292.760	
Skew:			Prob(JB):	-,	2.68e-64	
Kurtosis:		3.470			42.2	
=======================================						

The number of benefits provided by a firm have a clear credit quality tilt with BBBs providing the lowest amount of benefits.

Companies with increasing/decreasing count in benefits see their profitability measures improve/deteriorate over the next 12M

Dep. Variable:	pr	of_12m	R-squared:		0.00	4
Model:		OLS	Adj. R-squared	i:	0.00	4
Method:	Least S	quares	F-statistic:		111.	5
Date:	Mon, 19 Ju	1 2021	Prob (F-statis	stic):	4.91e-4	.9
Time:	96	:34:59	Log-Likelihood	i:	66087	
No. Observations:		49622	AIC:		-1.322e+0	5
Df Residuals:		49619	BIC:		-1.321e+0	5
Df Model:		2				
Covariance Type:	non	robust				
	coef	std e	rr t	P> t	[0.025	0.975
Intercept	0.0390	0.0	00 112.770	0.000	0.038	0.04
prof	0.0574	0.0	14.038	0.000	0.049	0.06
d_benefits_count_6	0.0086	0.0	92 5.077	0.000	0.005	0.01
Omnibus:	53	15.202	Durbin-Watson:		2.02	2
Prob(Omnibus):		0.000	Jarque-Bera (J	JB):	41003.32	2
Skew:		0.215	Prob(JB):		0.0	0
Kurtosis:		7.432	Cond No		14.	3

2007-2021. High refinancing risk defined by when MBAVREFI Index > 2000

Data Source, Coverage and Trends

- Coverage steadily increase from 55% to 65% in 2019
- The number of benefits provided by a firm have a clear credit quality tilt with BBBs providing the lowest amount of benefits. Across sectors, financials provide the lowest amount of benefits and industrials the highest.
- As expected, there is also a size bias with bigger companies providing the highest number of benefits.
- Across our signals, it has a strong defensive profile with negative correlations with spread, sigma and bfidef.
 Interesting, it has a very high correlation with the dirty deals signals. So firms that are involved in syndication of
 ESG controversial names generally rank low in benefit counts. Benefits also has a high correlation to MSCI esg
 scores.

US IG Corp Backtest (201301 - 201908)

- The signals works better for higher quality firms and works better with negative change in scores which makes it ideal for a screened process. (Alphas capped at 0)
- In a long only setting, using benefits momentum as an alpha signal has a non impressive performance. However, as with priors, a screened version of the alpha works well with a IR of 0.8 and return of 13bps on a 60% asset allocation which translates to 24 bps of returns with a NTC turnover of 100%
- As expected, signal has a defensive profile outperforming in very negative regimes.

Positive Benefits Momentum

Negative Benefits Momentum

Sensibility	Benefits may be one of the first means for companies to express their future cashflow expectations.
Signal Construction	6M % Change in Benefits Count, normalized on standard rating (As, BBBs) and sector buckets. (FIN/INDU/UTIL)

Alpha Backtest

bin_SPX	regime	active_xs_ret_mean
VN	very negative (< -2%)	10.0
N	negative (between -2% and 0)	3.4
Р	positive (between 0 and +2%)	5.2
VP	very positive (> 2%)	-4.4

turnover_pct 258.1

> turnover_pct 110.38

Screened Alpha Backtest

STATS OVERALL						
			ie	may dd bue	mean_dd_bps	run
ann_ret_bps	ann_vol_bps	cumret_bps		max_uu_bps	ilicali_uu_bps	run

bin_SPX	regime	active_xs_ret_mean
VN	very negative (< -2%)	7.6
N	negative (between -2% and 0)	2.8
Р	positive (between 0 and +2%)	2.4
VP	very positive (> 2%)	-1.1

Sustainable outcomes and alpha drivers

Expand access to homeownership through Mortgage backed securities

Data from BLK BCM

Tested for LEH_MBS Index

Investment Result. Tilting towards credit constrained borrowers during heightened refinancing risk periods reduces prepayment risk

Sustainable Result. Bias towards Ginnies, particularly at the expense of 15-year conventional mortgages could help lower rate for lower-income borrowers and reduce racial bias in mortgage credit availability

Higher FICO pools prepay faster than low FICO for the same coupon when there's a spike in the prepay rate

Ginnies show a smaller dispersion in denial rates than other, non-Ginnie loans do.

Source: MS. HDMA Data

During periods of heightened reinvestment risk, tilting towards credit constrained borrowers can help reduce prepayment risk

2007-2021. High refinancing risk defined by when MBAVREFI Index > 2000

Conclusion

Bringing it Home

- I have an ESG metric or idea. How can I tell if it is any good?
 - Sensibility is challenged due to halo effects and wishful thinking
- Our old-school answer: ancillary tests!
 - Good news for skeptics: tests fail, sometimes dramatically (see 2017 Contro paper)
 - Most of this preso will be examples
- Alternatives:
 - ML on returns.
 - Short histories
 - Slow moving metrics. This is almost an ancillary test (Woolies and BWS)
 - Dodge the question
 - Materiality: Pivot to relative value across industries
 - Not all that valuable even if done well (need to flip the sign)
 - Talk about optimization (AQR, PanAgora)