Nadir Böcekler

PakBlangkon'un evinin etrafında dolaşan 0 ile N-1 arasında indekslenmiş N tane böcek vardır. Her böceğin bir **türü** vardır ve böcek türü 0 ile 10^9 arasında bir tam sayıdır. Birden fazla böcek aynı türe sahip olabilir.

Böceklerin türlerine göre gruplandırıldığını varsayalım. **En sık görülen** böcek türünün eleman sayısı, en fazla böcek sayısına sahip olan gruptaki böcek sayısı olarak tanımlanır. Benzer şekilde, **en nadir** böcek türünün eleman sayısı, en az böcek sayısına sahip olan gruptaki böcek sayısıdır.

Örneğin, türleri [5,7,9,11,11,5,0,11,9,100,9] olan 11 tane böcek olduğunu varsayalım. Bu durumda, **en sık** böcek türünün eleman sayısı 3'dür. En fazla sayıda böcek içeren gruplar, her biri 3 tane böcek içeren ve türleri 9 ve 11 gruplardır. **En nadir** böcek türünün eleman sayısı 1'dir. En az sayıda böcek içeren gruplar, her biri 1 tane böcek içeren ve türleri 7, 0 ve 100 olan gruplardır.

PakBlangkon herhangi bir böceğin türünü bilmemektedir. PakBlangkon'ın böceklerin türleri hakkında bilgi verebilecek tek düğmeli bir makinesi vardır. Başlangıçta, makine boştur. Makineyi kullanmak için üç tip işlem gerçekleştirilebilir:

- 1. Bir böceği makinenin içine taşı.
- 2. Bir böceği makinenin dışına çıkar.
- 3. Makinedeki düğmeye bas.

Her bir işlem türü en fazla $40~000~{\rm kez}$ gerçekleştirilebilir.

Düğmeye her basıldığında, makine yalnızca makinenin içindeki böcekleri dikkate alarak **en sık** böcek türünün eleman sayısını bildirir.

Göreviniz, makineyi kullanarak PakBlangkon'un evindeki tüm N tane böcek arasında **en nadir** böcek türünün eleman sayısını belirlemektir. Ek olarak, bazı alt görevlerde puanınız, belirli bir tipte gerçekleştirilen maksimum işlem sayısına bağlıdır (ayrıntılar için Alt Görevler bölümüne bakın).

Programlama Detayları

Aşağıdaki fonksiyonu kodlamalısınız:

int min_cardinality(int N)

• N: böcek sayısı.

- ullet Bu fonksiyon, PakBlangkon'un evindeki tüm N tane böcek arasında **en nadir** böcek türünün eleman sayısını return etmelidir.
- Bu fonksiyon tam olarak bir kez çağrılır.

Yukarıdaki fonksiyon aşağıdaki fonksiyonları çağırabilir:

```
void move_inside(int i)
```

- i: Makine içinde hareket ettirilecek böceğin indeksi. i değeri 0 ile N-1 arasında olmalıdır (sınırlar dahil).
- Bu böcek zaten makinenin içindeyse, çağrının makinedeki böcek kümesi üzerinde hiçbir etkisi yoktur. Ancak yine de ayrı bir çağrı olarak sayılır.
- Bu fonksiyon en fazla $40\,000$ defa çağrılabilir.

```
void move_outside(int i)
```

- ullet i: makinenin dışına taşınacak böceğin indeksi. i değeri 0 ile N-1 arasında olmalıdır (sınırlar dahil).
- Bu böcek zaten makinenin dışındaysa, çağrının makinedeki böcek kümesi üzerinde hiçbir etkisi yoktur. Ancak yine de ayrı bir çağrı olarak sayılır.
- Bu fonksiyon en fazla 40 000 defa çağrılabilir.

```
int press_button()
```

- Bu fonksiyon, yalnızca makinenin içindeki böcekleri dikkate alarak **en sık** böcek türünün eleman sayısını return eder.
- Bu fonksiyon en fazla 40~000 defa çağrılabilir.
- ullet Değerlendirici **adaptif değildir**. Yani, tüm N böceğin türü, min_cardinalite çağrılmadan önce sabitlenir.

Örnek

Sırasıyla [5,8,9,5,9,9] türünden oluşan 6 tane böceğin olduğu bir senaryo düşünün. min_cardinality fonksiyonu şu şekilde çağrılır:

```
min_cardinality(6)
```

Fonksiyon move_inside, move_outside, ve press_button 'u aşağıdaki gibi çağırabilir.

Çağırım	Return değeri	Makinedeki böcek	Makinedeki böcek türleri
		{}	
<pre>move_inside(0)</pre>		{0}	[5]
<pre>press_button()</pre>	1	{0}	[5]
move_inside(1)		$\{0,1\}$	[5, 8]
press_button()	1	$\{0,1\}$	[5,8]
move_inside(3)		$\{0, 1, 3\}$	[5, 8, 5]
press_button()	2	$\{0, 1, 3\}$	[5, 8, 5]
move_inside(2)		$\{0,1,2,3\}$	[5, 8, 9, 5]
move_inside(4)		$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]
move_inside(5)		$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
press_button()	3	$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
move_inside(5)		$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
press_button()	3	$\{0,1,2,3,4,5\}$	[5, 8, 9, 5, 9, 9]
move_outside(5)		$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]
press_button()	2	$\{0,1,2,3,4\}$	[5, 8, 9, 5, 9]

Bu noktada, en nadir görülen böcek türünün eleman sayısının 1 olduğu sonucuna varmak için yeterli bilgi bulunmaktadır. Bu nedenle, min_cardinality fonksiyonu 1 return etmelidir.

Bu örnekte, move_inside 7 kez, move_outside 1 kez ve press_button 6 kez çağrılır.

Kısıtlar

• $2 \le N \le 2000$

Alt görevler

- 1. (10 puan) $N \leq 200$
- 2. (15 puan) $N \leq 1000$
- 3. (75 puan) Ek kısıt yoktur.

Test senaryolarının herhangi birinde, move_inside, move_outside, veya press_button fonksiyonlarına yapılan çağrılar, Programlama Detaylarında açıklanan kısıtlamalara uymuyorsa veya min_cardinality 'nin return değeri yanlışsa, bu alt görev için çözümünüz 0 puan alacaktır.

q, şu üç değerin **maksimumu** olsun: move_inside 'a yapılan çağrılarının sayısı, move_outside 'a yapılan çağrılarının sayısı ve press_button 'a yapılan çağrıların sayısı.

Alt görev 3'te kısmi puan alabilirsiniz. Bu alt görevdeki tüm test senaryolarında $\frac{q}{N}$ 'ın maksimum değeri m olsun. Bu alt görev için puanınız aşağıdaki tabloya göre hesaplanır:

Koşul	Puan
20 < m	0 (CMS 'de "Output isn't correct" (çıktı yanlış) olarak belirtilir)
$6 < m \leq 20$	$\frac{225}{m-2}$
$3 < m \le 6$	$81-rac{2}{3}m^2$
$m \leq 3$	75

Örnek Değerlendirici

T, N tane tam sayı içeren bir tamsayı dizisi olsun. Burada, T[i]'ın i böceğinin türüdür.

Örnek değerlendirici, girdiyi aşağıdaki formatta okur:

- \bullet satır 1:N
- satır 2: T[0] T[1] ... T[N-1]

Örnek değerlendirici bir protokol ihlali tespit ederse, örnek değerlendiricinin çıktısı Protocol Violation: <MSG> olur, burada <MSG> aşağıdakilerden biridir:

- invalid parameter: move_inside veya move_outside 'a yapılan çağrıların birinde, i'nin değeri 0 ve N-1 arasında değildir (sınırlar dahil).
- too many calls: move_inside, move_outside, veya press_button 'a yapılan çağrıların herhangi biri $40\ 000$ 'i aşar.

Aksi takdirde, örnek değerlendiricinin çıktısı aşağıdaki formatta olur:

- satır 1: min_cardinality 'nin return değeri
- satır 2: *q*