TW10S Laser ranging module specification v2.0

2019.07.21

Product Image

Features Description

- 1. By detecting the phase difference of the laser, the perceived object distance, can reach millimeter resolution;
- 2. Temperature adaptable, less drift amount;
- 3. High signal to noise ratio so that the color of the object, the surface roughness of the material, and less effect on the detection result;
- 4. Small size, easier to use;
- 5. 6PIN 2.54mm double pin / hole or 5PIN 2.54mm single pin / hole convenient way to use embedded on the motherboard.

Electrical wiring diagram

A. 6PIN 2.54mm double row pin / hole interfaces . Wherein the power interface: + 5VDC, GNDUART then

Mouth: 3.3V LVTTL level ,among them RX To receive, TX To transmit; two wire serial interface: CLK is the clock line, SDA data line;

B. 4PIN 2.54mm single pin / hole interface. Wherein the power interface: + 5VDC, GND UART interfaces:

3.3V $\upbegin{tright}{ll} \upbegin{tright}{ll} \upbegin{tright}{ll}$

please contact us FAE communication.

Dimensions

Specifications

Measuring range	0.05 ~ 40m	* (1)	
Resolution	1mm		
measurement accuracy	± (1.5mm + D * 5 extreme) * (2)		
The data output rate	Continuous measurement mode: 1 ~ 10Hz (typically 5Hz) fast continuous		
	measurement mode: from about 10Hz / 20Hz / 30Hz	* (3)	
Laser Type	630 ~ 670nm, Class II, <1mW		
Pilot Light	Red Laser		
Mode of operation	Single data / continuous data / external trigger		
Connector	6PIN 2.54mm double row pin / hole 5PIN		
	2.54mm single pin / hole		
Data interface	UART (3.3V LVTTL)		
letter of agreement	MODBUS_RTU		
	ASCII		
	CUSTOM_HEX		
Power supply	+ 5VDC		

Power	<0.6W
range of working temperature	- 15 ° ~ 50 °
Storage temperature	- 20 ° ~ 60 °
Storage humidity	RH85%

^{* (1)} with highly reflective plate may measure a greater distance. It may be provided through the downlink instruction scale value and the maximum is 80

meters. * (2) in harsh environments, such as outdoors in the sun, the performance will be affected, with target plate may be used to improve performance. * (3)

fast mode, the recycled light signal is weak, the error becomes large, there are certain requirements on the measurement target and the distance. Not suitable for outdoor use during the day.

letter of agreement

Baud Rate: 9600/19200/38400/115200, 38400 default format: 8n1

ASCII text communication protocol format

instruction	Features	
iGET: X	Acquisition parameters	
iSET: X, Y	Setting parameters	
iSM	Single measurement	
iACM	Continuous measurement	
iFACM	Fast continuous measurement	
iHALT	Stop measurement	
iLD: X	Laser on / off	

<CR> <LF>: represents a carriage return "\ r \ n".

Offset distance (iGET: 1 / iSET: 1, X)

² Get offset from Host] [iGET: 1 OFFSET = [L1] X <CR> <LF> OK <CR> <LF>

² Disposed offset from Host]

[iSET: 1, X

[L1] OK <CR> <LF> wherein X Offset distance, in millimeters, the range of -10000 to 10000,

default 0

ü For example

Disposed offset from -10 mm - iSET: 1, -10

Range (iGET: 2 / iSET: 2, X)

² Get range [Host]

iGET: 2

```
RANGE = [L1] X <CR> <LF> OK <CR> <LF>
      <sup>2</sup> Set the range [Host]
      iSET: 2, X
      [L1] OK <CR> <LF> wherein X Value for the range, in millimeters, of 500 to 80,000, 40,000 default
      (40 m)
      ü For example
      Set the range 60 m - iSET: 2, 60,000
Baud rate (iGET: 3 / iSET: 3, X)
      <sup>2</sup> Set the baud rate
      [Host] iSET: 3, X
      [L1] OK <CR> <LF> wherein X Baud rate, support 9600/19200/38400/57600/115200, default
      38400
      ü For example
      Set the baud rate 9600 - iSET: 3, 9600
Protocol format type (iGET: 4 / iSET: 4, X)
      <sup>2</sup> Get Protocol Type Host] [iGET: 4 [L1] PROTOCOL = X <CR> <LF>
      OK <CR> <LF>
      <sup>2</sup> Set the range [Host]
      iSET: 4, X
      [L1] OK <CR> <LF> wherein X Value protocol format type. 0 = MODBUS RTU protocol; 1 = ASCII protocol; 2 = HEX
        protocol; default is 1 = ASCII protocol;
        NOTE: The parameter influences the power module status L1: Effective the protocol type format, then run on power-up initialization
        completion information output power and automatic measurement mode.
      ü For example
      Setting MODBUS RTU protocol - iSET: 4, 0
Output from a digital format (iGET: 5 / iSET: 5, X)
      <sup>2</sup> Takes the output from the digital format Host] [iGET: 5 DATATYPE =
      [L1] X <CR> <LF> OK <CR> <LF>
      <sup>2</sup> Output from a digital format is provided Host]
      [iSET: 5, X
      [L1] OK <CR> <LF> wherein X It is output from a digital format definition. M bit units, three decimal places = 0; 1 = four decimal places; default
        = 0 to three decimal places;
```

Slave device address (iGET: 6 / iSET: 6, X)

```
<sup>2</sup> Slave device address acquiring Host] [iGET: 6 [L1] ADDRESS = X <CR>
<LF> OK <CR> <LF>
<sup>2</sup> Set Host slave device address []
iSET: 6, X
[L1] OK <CR> <LF> wherein X is (involving MODBUS-RTU protocol) address of the slave device. Range 1 to 247. The factory default is
<sup>1</sup> For example
```

Measuring output rate (iGET: 7 / iSET: 7, X)

Set slave device address 4 - iSET: 6, 4

```
<sup>2</sup> Host obtain measurement output rate] [iGET: 7 FREQUENCY = [L1] X <CR>
<LF> OK <CR> <LF>

<sup>2</sup> Measuring the output rate setting Host]

[iSET: 7, X

[L1] OK <CR> <LF> wherein X To measure the output rate. Support 10/20/30. The factory default is 30, represents the output rate of about 30HZ NOTE: The parameter measured in rapid succession and then the active mode.

ü For example

Measuring the output rate setting 20 - iSET: 7, 20
```

Automatic power measurement identity (iGET: 8 / iSET: 8, X)

Automatic power provided continuous measurement - iSET: 8, 1

```
<sup>2</sup> Get automatic power measurement identity Host] [iGET: 8 AUTMEAS =

[L1] X <CR> <LF> OK <CR> <LF>

<sup>2</sup> Automatically set the power measurement identity Host] [iSET: 8, X

[L1] OK <CR> <LF> wherein X Power measurement is automatically identified. Range = 0 to 2.0 automatic power measurement is invalid; 1 = power measured automatically and continuously; 2 = measured power automatically in rapid succession; factory default is 0. Note: Automatic measuring electrical functions required to set the protocol format type (iSET: 4, X).
```

Single measurement (the iSM)

Continuous measurement (IACM)

```
Ø [Host] request iACM

[L1] D = normal response X m, N # <CR> <LF> E = error response Y <CR>

<LF> Description resolved with a single measurement (the iSM)
```

NOTE: Host instruction sent once only, after the module is responsive L1 continuously measured and output information.

Fast continuous measurement (iFACM)

```
Ø [Host] request iFACM

[L1] D = normal response X m <CR> <LF>

E = error response Y <CR> <LF> wherein X Distance

information (e.g., one meter -1.000);

Y Fault code (e.g., 258) described in Appendix;

ü For example

D = 1.314m <CR> <LF> It represents a distance of 1.314 m, an amount of return light 520 E = 258 <CR>

<LF> Indicate out of range

NOTE: Host instruction sent once only, after the module is responsive L1, and outputs the measurement information in rapid succession.
```

Stop measurement (iHALT)

```
Ø [Host] request iHALT

[L1] response STOP <CR> <LF> OK <CR> <LF>
```

Continuous measurement or rapid continuous measurement mode, sends the command to stop the measurement, laser off.

Laser On Off (iLD: X)

 \emptyset The laser is turned on

Host] [request iLD: 1

[L1] response LASER OPEN <CR> <LF> OK <CR> <LF>

Ø Laser close

[Host] request iLD: 0

[L1] response LASER CLOSE <CR> <LF> OK <CR> <LF>

MODBUS RTU communication protocol

		Request Frame format		
1Byte	1Byte	2Bytes	2Bytes	2Bytes
address code	function code	initial address	Register number (N)	CRC

Response frame format						
normal	normal					
1Byte	1Byte	1Bytes	2 * N Bytes	2Bytes		
address code	function code	Byte count	Register values	CRC		
abnormal	abnormal					
1Byte	1Byte	1Bytes	2Bytes			
address code	error code	Exception code	CRC			

Exception code definition: 0x01: Error

Function code 0x02: Error start

address 0x03: Error Number Register

0x04: Error register value 0x05: CRC

Error 0x06: Equipment Busy

Example Error Code: 0x83 = Parameter + 0x80

CRC code calculation: the calculation range from the CRC code start address to the end of the bytes of the CRC, the CRC16 of the first 8-bit byte, the upper eight bits after. See Appendix

Measurement distance: register address and data format

F	Register Address Register	Description	Return value data format
(0x00 0x0F	Measure the distance	4Bytes measured distance (high front and low at the rear)

Example:

Read the measured distance

Description Function	code address code starting address register number	CRC
Send: 0x01	0x03 0x00 0x0F 0x00 0x02	0xF4 0x08

Normal response (as measured from 57.505m):

description	Address co	de Function Cod	le 1 byte count	register value of the regi	ster 2 CRC value	
Normal response:	0x01	0x03	0x04	0x00 0x00	0xE0 0xA1	0x72 0x4B

Note (from the entry instruction is 4 bytes, 0x00 0x00 0xE0 0xA1, distance 0x0000E0A1, converted to decimal 57505mm) normal response:

	0x01	0x03	0x04	0x80 0x00	0x01 0x05	0x12 0x60
Note distance (thi	s entry instruct	tion is 4 bytes, 0	x80 0x00 0x01	0x05, the highest bit is	1 indicates a measurement f	ault, the fault code 0
Indicate out o	f range)					
If the start address	ss of an error	response is as	follows:			
description	Address coo	de error code Ex	ception code C	RC		

Note: MODBUS RTU communication protocol details, please contact us

CUSTOM HEX communication protocol

		Request Frame format		
Hea	der	data	check	
1Byte	1Byte	1Byte	1Byte 1Bytes	
Header 1	Header 2	function code Parameter (standby)		BCC
A5	5A	02- single measurement	00	XOR checksum:
		continuous measurement		header + Data
		04- 03- 05- rapid continuous		
		measurement Stop measurement		
		Response frame format		
Hea	der	data		check
1Byte	1Byte	1Byte	4Bytes	1Bytes
Header 1	Header 2	function code Distance values or fault codes		BCC
B4	69	Normal: Function code error: 0x80	Normal: Function code error: 0x80 Endian	
		function code		header + Data

NOTE: CUSTOM HEX communication protocol does not support parameter Gets or sets

Single measurement

 2 Normal response, 00,000,190 distance measurement value, 0x00000190 (hexadecimal) = 400 (X Hexadecimal), that is 400mm.

² Error response, the function code 82 indicates a high level of fault, the fault code is 0x00000102 (hexadecimal

Ltd.) = 258 (decimal), indicates out of range (see Appendix fault code instructions)

Continuous measurement

Function code: 03

[Host] request: A5 5A 03 00 FC

[L1] normal response: B4 69 03 00 00 01 90 4F

Error response: B4 69 83 00 00 01 02 5D resolved with the "single

measurement"

Fast continuous measurement

measurement"

NOTE: As the protocol does not operate parameters, can be measured by the rate set ASCII text protocol.

Stop measurement

appendix

CRC check

```
/* CRC High byte value table */ const
u8 auchCRCHi [] = {
0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00,
0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1,
0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81,
0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40,
0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01,
0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80,
0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41,
0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00,
0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0,
```

0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40, 0x01, 0xC0, 0x80, 0x41, 0x00, 0xC1, 0x81, 0x40);

/ * CRC Low byte value table * / const

u8 auchCRCLo [] = {

 $0x00,\ 0xC0,\ 0xC1,\ 0x01,\ 0xC3,\ 0x03,\ 0x02,\ 0xC2,\ 0xC6,\ 0x06,\ 0x07,\ 0xC7,\ 0x05,\ 0xC5,\ 0xC4,\ 0x04,\ 0xCC,$ 0x0C, 0x0D, 0xCD, 0x0F, 0xCF, 0xCE, 0x0E, 0x0A, 0xCA, 0xCB, 0x0B, 0xC9, 0x09, 0x08, 0xC8, 0xD8, 0x18, 0x19, 0xD9, 0x1B, 0xDB, 0xDA, 0x1A, 0x1E, 0xDE, 0xDF, 0x1F, 0xDD, 0x1D, 0x1C, 0xDC, 0x14, 0xD4, 0xD5, 0x15, 0xD7, 0x17, 0x16, 0xD6, 0xD2, 0x12, 0x13, 0xD3, 0x11, 0xD1, 0xD0, 0x10, 0xF0, 0x30, 0x31, 0xF1, 0x33, 0xF1, 0xF10xF3, 0xF2, 0x32, 0x36, 0xF6, 0xF7, 0x37, 0xF5, 0x35, 0x34, 0xF4, 0x3C, 0xFC, 0xFD, 0x3D, 0xFF, 0x3F, 0x3E, 0xFE, 0xFA, 0x3A, 0x3B, 0xFB, 0x39, 0xF9, 0xF8, 0x38, 0x28, 0xE8, 0xE9, 0x29, 0xEB, 0x2B, 0x2A, 0xEA, 0xEE, 0x2E, 0x2F, 0xEF, 0x2D, 0xED, 0xEC, 0x2C, 0xE4, 0x24, 0x25, 0xE5, 0x27, 0xE7, 0xE6, 0x26, 0x22, 0xE2, 0xE3, 0x23, 0xE1, 0x21, 0x20, 0xE0, 0xA0, 0x60, 0x61, 0xA1, 0x63, 0xA3, 0xA2, 0x62, 0x66, 0xA6, 0xA7, 0x67, 0x65, 0x64, 0x64, 0x64, 0x6C, 0xAC, 0xAD, 0x6D, 0xAF, 0x6F, 0x6E, 0xAE, 0xAA, 0x6A, 0x6B, 0xAB, $0x69,\,0xA9,\,0xA8,\,0x68,\,0x78,\,0xB8,\,0xB9,\,0x79,\,0xBB,\,0x7B,\,0x7A,\,0xBA,\,0xBE,\,0x7E,\,0x7F,\,0xBF,\,0x7D,\\$ 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, $0x5C,\,0x5D,\,0x9D,\,0x5F,\,0x9F,\,0x9E,\,0x5E,\,0x5A,\,0x9A,\,0x9B,\,0x5B,\,0x99,\,0x59,\,0x58,\,0x98,\,0x88,\,0x48,\,0x49,\\$ 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, $0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40\}; 0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5, 0xB$ 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, 0x95, 0x94, 0x54, 0x9C, 0x5C, 0x5D, 0x9D, 0x5F, 0x9F, 0x9E, 0x5E, 0x5E0x5A, 0x9A, 0x9B, 0x5B, 0x99, 0x59, 0x58, 0x98, 0x88, 0x48, 0x49, 0x89, 0x4B, 0x8B, 0x8A, 0x4A, 0x4E, 0x8E, 0x8F, 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x84, 0x86, 0x860x41, 0x81, 0x80, 0x40};0xBD, 0xBC, 0x7C, 0xB4, 0x74, 0x75, 0xB5, 0x77, 0xB7, 0xB6, 0x76, 0x72, 0xB2, 0xB3, 0x73, 0xB1, 0x71, 0x70, 0xB0, 0x50, 0x90, 0x91, 0x51, 0x93, 0x53, 0x52, 0x92, 0x96, 0x56, 0x57, 0x97, 0x55, $0x95,\,0x94,\,0x54,\,0x9C,\,0x5C,\,0x5D,\,0x9D,\,0x5F,\,0x9F,\,0x9E,\,0x5E,\,0x5A,\,0x9A,\,0x9B,\,0x5B,\,0x99,\,0x59,\,0x58,\,0x94$ 0x98. 0x88. 0x48. 0x49. 0x89. 0x4B. 0x8B. 0x8A. 0x4A. 0x4E. 0x8E. 0x8F. 0x4F. 0x8D. 0x4D. 0x4C. 0x8C. 0x44. $0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40\}; 0x4E, 0x8E, 0x8F, 0x8$ 0x4F, 0x8D, 0x4D, 0x4C, 0x8C, 0x44, 0x84, 0x85, 0x45, 0x87, 0x47, 0x46, 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, $0x81,\,0x80,\,0x40\}; 0x4E,\,0x8E,\,0x8F,\,0x4F,\,0x8D,\,0x4D,\,0x4C,\,0x8C,\,0x44,\,0x84,\,0x85,\,0x45,\,0x87,\,0x47,\,0x46,\,0x46,\,0x86,\,0x86,\,0x46,\,0x8$ 0x86, 0x82, 0x42, 0x43, 0x83, 0x41, 0x81, 0x80, 0x40};

u16 CRC16 (u8 * Start_Byte, u16 Num_Bytes) {

```
u8 uchCRCHi = 0xFF;
                                                     // CRC high byte initialization
      u8 uchCRCLo = 0xFF;
                                                     // CRC low byte initialization
      u16 uIndex;
                                                     // CRC lookup table pointer
      while (Num_Bytes--) {
             uIndex = uchCRCLo ^ * Start_Byte ++;
                                                                     // CRC calculation
             uchCRCLo = uchCRCHi ^ auchCRCHi [uIndex]; uchCRCHi
          = auchCRCLo [uIndex];}
      return (uchCRCHi << 8 | uchCRCLo);}
BCC XOR checksum
u8 BCC (u8 * dat, u16 len) {
     u8 i; u8 bcc = 0; for (i = 0; i
     <len; i ++) {
           bcc ^ = dat [i];}
     return bcc;}
```

error code					
Decimal	Hex	Explanation			
0	0	No error			
140	8C	CUSTOM HEX protocol function code error			
141	8D	CUSTOM HEX protocol checksum error			
142	8E	CUSTOM HEX protocol parameter error			
252	FC	Temperature is too high			
253	FD	Temperature is too low			
255	FF	Calculation failed or weak reflection			
256	100	Strong reflections			
258	102	Out of range			
285	11D	Abnormal photosensitive device			
286	11E	Laser tube abnormalities			
290	122	Hardware exception			

MODBUS_RTU exception code			
0	No error		
0x01	Function code error		
0x02	Starting address error		
0x03	Register the number of errors		
0x04	Register value error		
0x05	CRC error		
0x06	Heavy equipment		