The Bernstein-Gel'fand-Gel'fand complex and Kasparov theory for $SL(3, \mathbb{C})$

Robert Yuncken

February 15, 2008

Abstract

In the case of the group $SL(3,\mathbb{C})$, we describe how the Bernstein-Gel'fand-Gel'fand complex can be used to construct an element of Kasparov's equivariant K-homology. The resulting construction is a model for the γ -element. The key to the construction is the introduction of a lattice of operator ideals associated to the natural fibrations of the complete flag variety for $SL(3,\mathbb{C})$.

1 Introduction

Kasparov's analytic K-homology is a blend of topology and analysis: a typical source for the construction of a K-homology cycle is an elliptic differential complex. If the elliptic complex is equivariant with respect to the action of a group G, and if moreover the group action satisfies some additional conformality property with respect to some Hermitian metric, then one can construct an element of equivariant K-homology (see [Kas84] for a classic example of this). Unfortunately, if G is a semisimple Lie group of rank greater than one, it seems probable that non-trivial examples of such complexes cannot exist. This paper describes a means of constructing an equivariant K-homology class from the Bernstein-Gel'fand-Gel'fand complex for $SL(3, \mathbb{C})$, a differential complex which is neither elliptic nor conformal, but which satisfies some weaker ('directional') form of these conditions.

The motivation for this construction comes from the Baum-Connes conjecture. Although an understanding of the conjecture is not essential to this paper, it is useful for perspective. The Baum-Connes conjecture (with coefficients) states that the analytic assembly map of [BCH94],

$$\mu_{\mathsf{G},A}: K_j^\mathsf{G}(\underline{E}\mathsf{G};A) \to K_j(A \rtimes_r \mathsf{G}).$$

is an isomorphism, for any coefficient G- C^* -algebra A. See [Hig98] for an overview of the conjecture and its many consequences. One of the major outstanding cases of the conjecture is the case of a simple Lie group of real-rank greater than one, such as the group $G = SL(3, \mathbb{C})$.

Let us recall the method of proof for the real-rank one simple groups. If G is a semisimple Lie group and K its maximal compact algebra, then the conjecture for G with coefficient algebra $A = C_0(G/K)$ is straightforward to

prove. On the other hand, the conjecture with trivial coefficients $A = \mathbb{C}$ implies the conjecture with any other coefficients. It follows that if the algebras $C_0(\mathsf{G}/\mathsf{K})$ and \mathbb{C} are KK^G -equivalent then the Baum-Connes conjecture holds for all closed subgroups of G . Kasparov demonstrated the existence of elements $\alpha \in KK^\mathsf{G}(C_0(\mathsf{G}/\mathsf{K}), \mathbb{C})$ (the 'Dirac element') and $\beta \in KK^\mathsf{G}(\mathbb{C}, C_0(\mathsf{G}/\mathsf{K}))$ (the 'dual-Dirac element') for which $\alpha\beta = 1 \in KK^\mathsf{G}(C_0(\mathsf{G}/\mathsf{K}), C_0(\mathsf{G}/\mathsf{K}))$. The reverse composition, $\beta\alpha$ is a canonical idempotent in $KK^\mathsf{G}(\mathbb{C}, \mathbb{C})$, called γ_G , or just γ .

It has been proven that $\gamma_{\mathsf{G}}=1$ for $\mathrm{SO}_0(n,1)$ in [Kas84], and for $\mathrm{SU}(n,1)$ in [JK95]. Importantly, though, the KK^{G} -cycles representing γ which enable these proofs are built using the compact homogeneous space G/B , where B is the maximal parabolic subgroup, rather than G/K . The following theorem summarizes Kasparov's method for identifying such a model of γ_{G} .

Theorem 1.1. Let $\iota : \mathbb{C} \to C(\mathsf{G}/\mathsf{B})$ be the inclusion of the constant functions. Suppose $\theta \in KK^\mathsf{G}(C(\mathsf{G}/\mathsf{B}),\mathbb{C})$ is such that $\mathrm{Res}_\mathsf{K}^\mathsf{G}(\iota^*\theta) = 1 \in KK^\mathsf{K}(\mathbb{C},\mathbb{C})$. Then $\iota^*\theta = \gamma_\mathsf{G}$.

It was observed by N. Higson that, in each of the rank-one cases, the construction of such a θ was made by using some close variant of the Bernstein-Gel'fand-Gel'fand (BGG) complex for ${\sf G}$. For complex semisimple ${\sf G}$, the BGG complex is described as follows 1.

Theorem 1.2. ([BGG75, Theorem 10.1])

There exists a complex consisting of (smooth section spaces of) direct sums of G-homogeneous line bundles over G/B, and G-equivariant differential operators between them, which resolves the trivial representation of G.

Although the action of G on this elliptic complex is not conformal, it is separately conformal on each line-bundle summand. In juxtaposition with Theorem 1.1, this suggests that the γ -element for a general complex semisimple group might be constructible from the BGG resolution. The purpose of this paper is to demonstrate that this is indeed possible for the group $\mathrm{SL}(3,\mathbb{C})$.

We note from the outset that it is known that $\gamma_{\mathsf{G}} \neq 1$ for any group G which has Kazhdan's property T. Therefore, a direct translation of Kasparov's method cannot prove the Baum-Connes conjecture for simple Lie groups of rank greater than one—some subtle variation of Kasparov's argument would be required. Nevertheless, it is hoped that a construction of this kind will be useful for further study of the Baum-Connes conjecture.

It is instructive to keep in mind the much easier case of the rank two semisimple group $G = SL(2, \mathbb{C}) \times SL(2, \mathbb{C})$. Let us briefly sketch the construction of γ for this group. First, recall that the γ -element for $SL(2, \mathbb{C})$ is obtained by taking the Dolbeault operator for $\mathbb{C}P^1$

$$L^2\Omega^{0,0}\mathbb{C}P^1 \xrightarrow{\overline{\partial}} L^2\Omega^{0,1}\mathbb{C}P^1$$
,

which is precisely the BGG complex for $SL(2,\mathbb{C})$, and replacing the operator $\overline{\partial}$ by its phase (in the sense of polar decomposition of unbounded operators). For

¹Bernstein, Gel'fand and Gel'fand's formulation of this result is purely algebraic. See [ČSS01, Appendix A] for a discussion of the geometric interpretation.

 $\mathsf{G} = \mathrm{SL}(2,\mathbb{C}) \times \mathrm{SL}(2,\mathbb{C})$, the BGG resolution is again the Dolbeault complex for $\mathsf{G}/\mathsf{B} \cong \mathbb{C}P^1 \times \mathbb{C}P^1$, but decomposed into its 'directional' components as follows:

If one replaces each of these four differential operators by its phase, one obtains the starting data for taking the Kasparov product of two copies of the gamma element of $SL(2,\mathbb{C})$. One must now use an application of the Kasparov Technical Theorem to transform this into a genuine Fredholm module. Note that this final step involves in a crucial way the lattice of operator ideals

where \mathcal{B} and \mathcal{K} are the algebras of bounded and compact operators, respectively, on $L^2\Omega^{0,\bullet}\mathbb{C}P^1$. We will not go into the details of this example further, but leave the reader to ponder the analogy with the structures introduced here for $\mathrm{SL}(3,\mathbb{C})$.

The structure of this paper is as follows. In Section 2 we set up notation and recall some basic facts concerning homogeneous line bundles over the flag manifold G/B for $G = SL(3,\mathbb{C})$. Section 3 contains the crucial definitions of a lattice of C^* -ideals associated to the fibrations of G/B. We describe some of the basic properties of these ideals. In Section 4 we study the bounded operators which will take the place of the differential operators of the BGG resolution². In Section 5, we combine the results of the previous sections to give the construction of the γ -element for $SL(3,\mathbb{C})$.

Part of this work appeared in the doctoral dissertation [Yun06]. I thank my thesis adviser, Nigel Higson, for his suggestions. I would also like to thank Erik Koelink for several informative conversations.

2 Notation and Preliminaries

2.1 Lie groups

Throughout this paper G will denote the group $\mathrm{SL}(3,\mathbb{C})$, and we use the following notation for various subgroups: K is the maximal compact subgroup $\mathrm{SU}(3)$; K is the minimal parabolic subgroup of invertible upper triangular matrices; K and K are the nilpotent subgroups of upper and lower triangular unipotent matrices, respectively; K is the group of diagonal matrices with entries of modulus

 $^{^2}$ In this paper, we do not use the BGG resolution itself for the construction, but build the corresponding KK^G -cycle directly using noncommutative harmonic analysis. The BGG resolution serves only as very strong guidance for the construction.

one; A is the group of diagonal matrices with positive real entries; H = MA is the Cartan subgroup. The corresponding Lie algebras are \mathfrak{g} , \mathfrak{k} , \mathfrak{h} , \mathfrak{n} , \mathfrak{g} , \mathfrak{m} , \mathfrak{a} and \mathfrak{h} .

We set

$$X_1 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \quad X_2 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}, \quad X_\rho = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \quad \in \mathfrak{k}_\mathbb{C} \cong \mathfrak{g}.$$

We use X' to denote the conjugate transpose of an element $X \in \mathfrak{k}_{\mathbb{C}}$.

The dual of a complex vector space V will be denoted by V^{\dagger} . By extending the inclusions of \mathfrak{m} and \mathfrak{a} in \mathfrak{h} to \mathbb{C} -linear identifications $\mathfrak{m}_{\mathbb{C}}, \mathfrak{a}_{\mathbb{C}} \cong \mathfrak{h}$, we will identify infinitesimal characters of \mathfrak{m} and \mathfrak{a} with elements of \mathfrak{h}^{\dagger} . Characters of \mathfrak{h} will be denoted by $\chi = \chi_{\mathsf{M}} \oplus \chi_{\mathsf{A}}$ where χ_{M} and χ_{A} are the restrictions of χ to M and A , respectively. Infinitesimal characters of \mathfrak{b} will be identified with their restrictions to \mathfrak{h} .

The set of roots of K will be denoted by Δ . We let $\alpha_1, \alpha_2 \in \mathfrak{h}^{\dagger}$ be the weights of $X_1, X_2 \in \mathfrak{k}_{\mathbb{C}}$, respectively, and fix these as the simple roots. Also put $\rho = \alpha_1 + \alpha_2$. The weight lattice of K is denoted by Λ_W . We use δ_j (j = 1, 2, 3) to denote the characters

$$\delta_j: \begin{pmatrix} t_1 & 0 & 0\\ 0 & t_2 & 0\\ 0 & 0 & t_3 \end{pmatrix} \mapsto t_j$$

of M. Thus, δ_1 and $-\delta_3$ are the fundamental weights for K. The Weyl group of G is denoted W.

2.2 Homogeneous bundles over the flag manifold

Throughout this paper, \mathcal{X} will denote the homogeneous space $\mathcal{X} = \mathsf{G}/\mathsf{B} = \mathsf{K}/\mathsf{M}$. For each weight μ of K , we let E_{μ} denote the G -homogeneous bundle over \mathcal{X} induced from $\mu \oplus \rho$. Thus, sections of E_{μ} are identified with functions $s: \mathsf{G} \to \mathbb{C}$ which satisfy the B -equivariance property

$$s(xb) = e^{-(\mu \oplus \rho)}(b)s(x) \qquad \text{for all } x \in \mathsf{G}, \ b \in \mathsf{B}. \tag{2.1}$$

Equivalently,

$$B_L s = -(\mu \oplus \rho)(B) s$$
 for all $B \in \mathfrak{b}$, (2.2)

where B_L denotes the left-invariant differential operator on G determined by B. The space of continuous sections of E_{μ} will be denoted $C(\mathcal{X}; E_{\mu})$. The group G acts on $C(\mathcal{X}; E_{\mu})$ by pull-back:

$$(g \cdot s)(x) = s(g^{-1}x). \tag{2.3}$$

Thanks to the Iwasawa decomposition G = KAN,

$$\begin{split} C(\mathcal{X}; E_{\mu}) & \cong & \{s \in C(\mathsf{K}) \mid s(km) = e^{-\mu}(m)s(k) \quad \forall k \in \mathsf{K}, \ m \in \mathsf{M}\} \\ & = & \{s \in C(\mathsf{K}) \mid M_L s = -\mu(M)s \quad \forall M \in \mathfrak{m}\}, \end{split}$$

The completion of $C(\mathcal{X}; E_{\mu})$ with respect to the inner product

$$\langle s_1, s_2 \rangle = \int_{\mathsf{K}} \overline{s_1(k)} s_2(k) dk$$

will be denoted $L^2(\mathcal{X}; E_{\mu})$. The pull-back action (2.3) of G on $C(\mathcal{X}; E_{\mu})$ extends to a unitary representation of G on $L^2(\mathcal{X}; E_{\mu})$, which we denote by U_{μ} .

The product of two sections $s \in C(\mathcal{X}; E_{\mu})$ and $t \in C(\mathcal{X}; E_{\nu})$ belongs to $C(\mathcal{X}; E_{\mu+\nu})$, and multiplication by s extends to a bounded linear map

$$s: L^2(\mathcal{X}; E_{\nu}) \to L^2(\mathcal{X}; E_{\mu+\nu}); \qquad t \mapsto st,$$
 (2.4)

whose norm is the L^{∞} -norm of s.

We will also occasionally need to refer to the 'nilpotent' (or 'noncompact') picture of E_{μ} . Using the almost everywhere defined decomposition $\mathsf{G} = \mathsf{ZMAN}$, sections of E_{μ} are determined on an open dense subset of \mathcal{X} by their restriction to Z . This restriction yields a trivializing chart for E_{μ} over $\mathsf{Z} \hookrightarrow \mathcal{X}$, and taking G -translates of this chart yields a trivializing atlas.

2.3 The Peter-Weyl transform

Let $\hat{\mathsf{K}}$ denote the set of (equivalence classes of) irreducible unitary representations of K . For each representation $\sigma \in \hat{\mathsf{K}}$, let V^{σ} denote its representation space, and $|\sigma|$ its dimension. Let σ^{\dagger} be the contragredient representation, acting on $V^{\sigma\dagger}$. The pairing of $V^{\sigma\dagger}$ with V^{σ} will be denoted by (\cdot,\cdot) .

For any weight $\mu \in \Lambda_W$, the Peter-Weyl isomorphism

$$\bigoplus_{\sigma \in \hat{\mathsf{K}}} V^{\sigma \dagger} \otimes V^{\sigma} \quad \to \quad L^{2}(\mathsf{K})$$

$$\xi^{\dagger} \otimes \xi \quad \mapsto \quad [k \mapsto |\sigma|^{\frac{1}{2}}(\xi^{\dagger}, \sigma(k)\xi)], \tag{2.5}$$

restricts to an isomorphism

$$L^{2}(\mathcal{X}; E_{-\mu}) \cong \bigoplus_{\sigma \in \hat{\mathsf{K}}} V^{\sigma \dagger} \otimes (V^{\sigma})_{\mu},$$

where $(V^{\sigma})_{\mu}$ is the μ -weight space of σ . We refer to this isomorphism as the Peter-Weyl transform. Under the Peter-Weyl transform, the multiplication operators (2.4) are described in terms of Clebsch-Gordan-type rules for tensor products of SU(3)-representations, while the group representation $U_{-\mu}$ of K becomes $\bigoplus_{\sigma \in \hat{K}} (\sigma^{\dagger} \otimes 1)$. The full representation $U_{-\mu}(G)$ is harder to describe—see Section 3.3.

2.4 K-invariant differential operators

Any element T of the complexified universal enveloping algebra $\mathcal{U}(\mathfrak{k}_{\mathbb{C}})$ defines a left-invariant differential operator on $C^{\infty}(\mathsf{K})$. If T is a homogeneous element of weight β , then T maps smooth sections of $E_{-\mu}$ to sections of $E_{-(\mu+\beta)}$, for any $\mu \in \Lambda_W$. Thus T defines an unbounded operator between the corresponding L^2 -section spaces. Here, let us use the space of K-finite vectors in $L^2(\mathcal{X}; E_{-\mu})$ as the initial domain of definition. Under the Peter-Weyl transform, T acts as $\bigoplus_{\sigma \in \hat{\mathsf{K}}} 1 \otimes \sigma(T)$.

Remark 2.1. It is important to note that while T maps M-equivariant functions of K to M-equivariant functions, it does not, in general, map B-equivariant functions of G to B-equivariant functions. Thus T is a well-defined operator on $L^2(\mathcal{X}; E_{mu})$ only if defined using the compact picture.

The conjugate transpose map $X \to X' \stackrel{\text{def}}{=} \overline{X^t}$, for $(X \in \mathfrak{k}_{\mathbb{C}} \cong \mathfrak{g})$, extends to an algebra anti-automorphism of $\mathcal{U}(\mathfrak{k}_{\mathbb{C}})$. For any $T \in \mathcal{U}(\mathfrak{k}_{\mathbb{C}})$, the operators T and T' are formally adjoint, and the operators T'T on $L^2(\mathcal{X}; E_{-\mu})$, and

$$\begin{pmatrix} 0 & T' \\ T & 0 \end{pmatrix}$$

on $L^2(\mathcal{X}; E_{-\mu} \oplus E_{-(\mu+\beta)})$ are essentially self-adjoint. We use |T| to denote the absolute value of T, and Ph(T) or T to denote the phase, as defined by the polar decomposition, T = T|T|.

3 C^* -algebras associated to the fibrations of $\mathcal X$

3.1 Spectral decompositions of $L^2(\mathcal{X}; E_{\mu})$

Associated to the simple roots α_1 , α_2 are the parabolic subgroups

$$\mathsf{P}_1 = \left\{ \begin{pmatrix} * & * & * \\ * & * & * \\ 0 & 0 & * \end{pmatrix} \right\}, \quad \mathsf{P}_2 = \left\{ \begin{pmatrix} * & * & * \\ 0 & * & * \\ 0 & * & * \end{pmatrix} \right\} \subseteq \mathsf{G},$$

and the corresponding homogeneous spaces $\mathcal{Y}_i = \mathsf{G}/\mathsf{P}_i$ (i=1,2). Let $\mathsf{M}_i = \mathsf{P}_i \cap \mathsf{K}$, so that also $\mathcal{Y}_i = \mathsf{K}/\mathsf{M}_i$. Note that $\mathsf{M}_i = \mathsf{K}_i \times \mathsf{K}_i'$, where

$$\mathsf{K}_1 = \left(\begin{array}{cc} \mathrm{SU}(2) & 0 \\ 0 & 0 & 1 \end{array} \right), \quad \mathsf{K}_1' = \left\{ \left(\begin{array}{cc} \omega.I & 0 \\ 0 & 0 & \omega^{-2} \end{array} \right) \, \middle| \, |\omega| = 1 \right\},$$

and

$$\mathsf{K}_2 = \left(\begin{array}{cc} 1 & 0 & 0 \\ 0 & \mathrm{SU}(2) \\ 0 \end{array}\right), \quad \mathsf{K}_2' = \left\{\left(\begin{array}{cc} \omega^{-2} & 0 & 0 \\ 0 & \omega.I \\ 0 & \omega.I \end{array}\right) \,\middle|\, |\omega| = 1\right\}.$$

Suppose now that ϖ is a representation of K on a Hilbert space H. Fix i=1 or 2. One may decompose H first into isotypical subspaces for the restriction of ϖ to M_i , and then further into isotypical components for the restriction to M . The isotypical subspaces of H for M are, of course, the weight spaces of H, so this double decomposition yields a decomposition of each weight space of H into M_i -types. In fact, for a fixed weight $\mu \in \Lambda_W$, the action of K'_i on the μ -weight space H_μ is fixed, so the decomposition of H_μ can be equivalently given in terms K_i -types. With i=1 or 2, we use π_k throughout to denote the irreducible representation of $\mathsf{K}_i \cong \mathsf{SU}(2)$ with highest weight $k \in \mathbb{N}$.

Definition 3.1. We use $P_k^{(H_\mu,i)}$, or more concisely $P_k^{(i)}$, to denote the orthogonal projection of H_μ onto the component of K_i -type π_k .

For $A \subseteq \mathbb{N}$ we write $P_A^{(i)} = \sum_{k \in A} P_k^{(i)}$. In particular, if $k_1 \leq k_2$, we abbreviate $P_{\{k_1,\ldots,k_2\}}^{(i)}$ as $P_{[k_1,k_2]}^{(i)}$.

The domain H_{μ} will usually be implicitly assumed, and suppressed from the notation.

The most relevant example is $H = L^2(K)$ with ϖ being the right regular representation. Then the weight spaces are the spaces $L^2(\mathcal{X}; E_{-\mu})$, for which we get projections $P_k^{(i)} \in \mathcal{B}(L^2(\mathcal{X}; E_{-\mu}))$.

Remark 3.2. In this case, the projections $P_k^{(i)}$ are precisely the spectral projections of the tangential Hodge-Laplace operators $\Delta_i = X_i' X_i$ on $E_{-\mu}$, tangential along the fibration $\mathcal{X} \to \mathcal{Y}_i$. The analysis that follows can be understood as a study of the simultaneous spectral theory of these non-commuting differential operators.

A section $s \in L^2(\mathcal{X}; E_{-\mu})$ will be said to be of $right \ \mathsf{K}_i$ -type k if it is in the range of $P_k^{(i)}$. Equivalently, s has right K_i -type k if has a Peter-Weyl transform

$$\sum (\xi^* \otimes \xi) \in \bigoplus_{\sigma \in \hat{\mathsf{K}}} V^{\sigma \dagger} \otimes (V^{\sigma})_{\mu}$$

where each ξ_m belongs to an irreducible K_i -subrepresentation of highest weight k.

Any K-homogeneous vector bundle over \mathcal{X} admits a K-equivariant decomposition $E=\oplus_{\mu}E_{\mu}$ into line bundles. We thus define projections $P_k^{(i)}$ on $L^2(\mathcal{X};E)=\bigoplus_{\mu}L^2(\mathcal{X};E_{\mu})$ to be the direct sum of the corresponding projections $P_k^{(i)}$ on each component.

A section of E_0 has K_i -type 0 if and only if, as a function on K, it is invariant under M_i . Thus, $P_0^{(i)}L^2(\mathcal{X}; E_0) = L^2(\mathcal{Y}_i)$. Since $\pi_k \otimes \pi_0 = \pi_k$, for any $k \in \mathbb{N}$, it follows that the spaces $P_k^{(i)}L^2(\mathcal{X}; E_{-\mu})$ are preserved by pointwise multiplication by continuous sections $f \in C(\mathcal{Y}_i)$.

Now let π be an irreducible representation of M_i on a vector space W^{π} , and let $F_{\pi^{\dagger}}$ be the K-homogenous bundle over \mathcal{Y}_i induced from the contragredient representation π^{\dagger} . Thus

$$L^{2}(\mathcal{Y}_{i}; F_{\pi^{\dagger}}) = \{ f \in L^{2}(\mathsf{K}, W^{\pi^{\dagger}}) \mid f(km_{1}) = \pi^{\dagger}(m_{1})^{-1} f(k) \quad \forall k \in \mathsf{K}, m_{1} \in \mathsf{M}_{1} \}.$$
(3.1)

These spaces are, of course, also modules over $C(\mathcal{Y}_i)$. Their relationship with the modules $P_k^{(i)}L^2(\mathcal{X}; E_{-\mu})$ is as follows.

Lemma 3.3. Let π be a representation of M_i whose restriction to K_i is π_k , and let $\mu \in \mathfrak{m}^{\dagger}$ be a weight of M_i appearing with nonzero multiplicity in π . Then $P_k^{(i)}L^2(\mathcal{X}; E_{-\mu})$ is $C(\mathcal{Y}_i)$ -linearly isomorphic to $L^2(\mathcal{Y}_i; F_{\pi^{\dagger}})$.

Proof. By the Peter-Weyl theorem,

$$L^2(\mathsf{K}, W^{\pi\dagger}) \cong \bigoplus_{\sigma \in \hat{\mathsf{K}}} V^{\sigma\dagger} \otimes V^{\sigma} \otimes W^{\pi\dagger} \cong \bigoplus_{\sigma \in \hat{\mathsf{K}}} V^{\sigma\dagger} \otimes \operatorname{End}(W^{\pi}, V^{\sigma}).$$

The M_1 -equivariance condition in (3.1) implies that

$$L^2(\mathcal{Y}_i; F_{\pi}) \cong \bigoplus_{\sigma \in \hat{\mathsf{K}}} V^{\sigma \dagger} \otimes \operatorname{Hom}_{\mathsf{M}_i}(W^{\pi}, V^{\sigma}),$$

where Hom_{M_i} denotes the space of intertwiners of M_i -representations. Let $v \in W^{\pi}$ be of weight μ . The map

$$\operatorname{Hom}_{\mathsf{M}_{i}}(W^{\pi}, V^{\sigma}) \quad \to \quad (V^{\sigma})_{\mu}$$
$$A \quad \mapsto \quad Av$$

is an isomorphism, by the irreducibility of W^{π} . Therefore the map

which is clearly $C(\mathcal{Y}_i)$ -linear, restricts to an isomorphism

$$L^2(\mathcal{Y}_i; F_{\pi^{\dagger}}) \to P_k^{(i)} L^2(\mathcal{X}; E_{-\mu}).$$

This implies the following useful finite generation property.

Corollary 3.4. Fix $\mu \in \Lambda_W$, $k \in \mathbb{N}$. There exists a finite collection of continuous sections $s_1, \ldots, s_n \in P_k^{(i)}C(\mathcal{X}; E_\mu)$ and bounded linear maps $\varphi_1, \ldots, \varphi_n : P_k^{(i)}L^2(\mathcal{X}; E_\mu) \to L^2(\mathcal{Y}_i)$ such that $\sum_{j=1}^n s_j \varphi_j(s) = s$ for all $s \in P_k^{(i)}L^2(\mathcal{X}; E_\mu)$.

3.2Spectrally proper and spectrally finite operators

Definition 3.5. Let $\alpha = \alpha_i$ be a simple root of K. Let $\mu, \nu \in \Lambda_W$, and let $T: L^2(\mathcal{X}; E_{\mu}) \to L^2(\mathcal{X}; E_{\nu})$ be a bounded operator. The α -support of T is defined as

$$\alpha\text{-}\operatorname{Supp} T = \{(k,k') \mid P_k^{(i)}TP_{k'}^{(i)} \neq 0\} \quad \subseteq \quad \mathbb{N} \times \mathbb{N}.$$

(In this, and other similar expressions, we use the domain and range of the operator T to specify the domains of the projections $P_k^{(i)}$ and $P_{k'}^{(i)}$.) Recall that a subset S of $\mathbb{N} \times \mathbb{N}$ is *proper* if for every $k \in \mathbb{N}$, the sets

$$\{k' \in \mathbb{N} \mid (k, k') \in S\}$$

and

$$\{k' \in \mathbb{N} \mid (k', k) \in S\}$$

are finite.

Definition 3.6. A bounded operator $T: L^2(\mathcal{X}; E_{\mu}) \to L^2(\mathcal{X}; E_{\nu})$ is

- spectrally proper for α if α -Supp T is a proper subset of $\mathbb{N} \times \mathbb{N}$.
- spectrally finite for α if α -Supp T is finite.

Definition 3.7. With the above notation, set

$$\mathcal{A}_i(E_\mu, E_\nu) = \overline{\{T : L^2(\mathcal{X}; E_\mu) \to L^2(\mathcal{X}; E_\nu) \text{ spectrally proper for } \alpha_i\}}^{\|\cdot\|}$$

$$\mathcal{K}_i(E_\mu, E_\nu) = \overline{\{T : L^2(\mathcal{X}; E_\mu) \to L^2(\mathcal{X}; E_\nu) \text{ spectrally finite for } \alpha_i\}}^{\|\cdot\|}$$
.

(Closures are taken in the operator norm.) Define also

$$\mathcal{A}(E_{\mu}, E_{\nu}) = \mathcal{A}_1(E_{\mu}, E_{\nu}) \cap \mathcal{A}_2(E_{\mu}, E_{\nu}),$$

and

$$\mathcal{K}(E_{\mu}, E_{\nu}) = \mathcal{K}_1(E_{\mu}, E_{\nu}) \cap \mathcal{K}_2(E_{\mu}, E_{\nu}).$$

In Proposition 3.17 we will see that $\mathcal{K}(E_{\mu}, E_{\nu})$ is in fact the space of compact operators from $L^2(\mathcal{X}; E_{\mu})$ to $L^2(\mathcal{X}; E_{\nu})$, justifying the notation.

In the case $\mu = \nu$, the spectrally proper operators for α_i form an algebra, and the spectrally finite operators for α_i form an ideal in that algebra. Their norm-closures are therefore a C^* -algebra and a C^* -ideal, respectively. If μ and ν are allowed to vary, it is convenient to think of Definition 3.7 as defining C^* -categories A_i , K_i , A and K. (For definitions and properties of C^* -categories, we refer the reader to [Mit02].) We similarly use the notation $\mathcal{B}(E_{\mu}, E_{\nu})$ to denote the set of bounded linear operators between section spaces $L^2(\mathcal{X}; E_{\mu})$ and $L^2(\mathcal{X}; E_{\nu})$.

Remark 3.8. The reader familiar with Roe algebras will recognize spectral properness as a propagation condition—the same as that which would appear in the definition of the Roe algebra of the spectrum \mathbb{N} if it were endowed with the indiscrete coarse structure (Example 2.8 of [Roe03]). From this point of view, \mathcal{K}_i should be compared with the ideal of that Roe algebra which is associated to the subspace $\{0\}$ of \mathbb{N} , as in [HRY93, Section 5].

In the previous section it was noted that the projections $P_k^{(i)}$ can be defined on section spaces of K-homogeneous vector bundles of \mathcal{X} of arbitrary dimension. Using this allows one to extend the definition of the above C^* -categories in a similar fashion. Equivalently, a bounded operator between L^2 sections of $E = \bigoplus_{\mu} E_{\mu}$ and $E' = \bigoplus_{\nu} E_{\nu}$ belongs to $\mathcal{A}_i(E, E')$ if and only if each of the entries in its matrix representation with respect to those direct sums belongs to $\mathcal{A}_i(E_{\mu}, E_{\nu})$, for the appropriate μ and ν . The analogous statement also holds for the other C^* -categories defined above.

We now describe some alternative characterizations of these C^* -categories.

Lemma 3.9. Let i=1 or 2 and let $T: L^2(\mathcal{X}; E_{\mu}) \to L^2(\mathcal{X}; E_{\nu})$ be a bounded linear map. The following are equivalent:

- (i) $T \in \mathcal{K}_i$,
- (ii) $(P_{[0,k]}^{(i)})^{\perp}T \to 0 \text{ and } T(P_{[0,k]}^{(i)})^{\perp} \to 0 \text{ in norm as } k \to \infty,$
- (iii) $P_{[0,k]}^{(i)}TP_{[0,k]}^{(i)} \to T \text{ in norm as } k \to \infty.$

Proof. Property (ii) is immediate if T is spectrally finite for α_i , and hence holds for all $T \in \mathcal{K}_i$ by density. The implications (ii) \Rightarrow (iii) and (iii) \Rightarrow (i) are straightforward.

Lemma 3.10. Let i=1 or 2 and let $T: L^2(\mathcal{X}; E_{\mu}) \to L^2(\mathcal{X}; E_{\nu})$ be a bounded linear map. The following are equivalent:

- (i) $T \in \mathcal{A}_i$,
- (ii) For any $k \in \mathbb{N}$, $(P_{[0,l]}^{(i)})^{\perp}TP_{[0,k]}^{(i)} \to 0$ and $P_{[0,k]}^{(i)}T(P_{[0,l]}^{(i)})^{\perp} \to 0$ in norm as $l \to \infty$,
- (iii) T is a multiplier of K_i , ie TK and KT are in K_i for all $K \in K_i$ (when appropriately composable).

Proof. If T is spectrally proper for α_i then (ii) is immediate, so by density, (ii) holds for all $T \in \mathcal{A}_i$. If T satisfies (ii), then TK and KT satisfy (ii) of Lemma 3.9 for any K which is spectrally finite for α_i , from which (iii) follows by density again.

Finally, let T be a multiplier of \mathcal{K}_i . We will show that for any $\epsilon > 0$, we can approximate T within ϵ in norm by an operator S which is spectrally proper for α_i . We construct S by an inductive process: starting with $S_0 = T$, we will construct multipliers S_n of \mathcal{K}_i such that

$$||S_n - S_{n-1}|| < \epsilon \cdot 2^{-n}, \tag{3.2}$$

as well as a strictly increasing sequence $(a_n) \subseteq \mathbb{N}$ such that

$$(P_{[0,a_k]}^{(i)})^{\perp} S_n P_{[0,k]}^{(i)} = 0 (3.3)$$

and

$$P_{[0,k]}^{(i)} S_n(P_{[0,a_k]}^{(i)})^{\perp} = 0, \tag{3.4}$$

for each $0 \le k \le n-1$. The norm-limit of these S_n will then be the desired approximating operator S.

Suppose we have defined S_{n-1} . Both $S_{n-1}P_{[0,n]}^{(i)}$ and $P_{[0,n]}^{(i)}S_{n-1}$ are in \mathcal{K}_i , so by Lemma 3.9 there is an integer a_n (larger than a_{n-1}) such that the operators

$$U_n = (P_{[0,a_n]}^{(i)})^{\perp} S_{n-1} P_{[0,n]}^{(i)}$$

and

$$V_n = P_{[0,n]}^{(i)} S_{n-1} (P_{[0,a_n]}^{(i)})^{\perp},$$

have norm less than $\epsilon \cdot 2^{-n-1}$. If we now put

$$S_n = S_{n-1} - U_n - V_n,$$

one can directly check the properties (3.2), (3.3) and (3.4).

3.3 Multiplication operators and group representations

Proposition 3.11. Let $s \in C(\mathcal{X}; E_{-\lambda})$, for some weight λ . For any $\mu \in \Lambda_W$, the multiplication operator $s : L^2(\mathcal{X}; E_{-\mu}) \to L^2(\mathcal{X}; E_{-(\mu+\lambda)})$ belongs to \mathcal{A} .

Proof. Fix i = 1 or 2. Suppose first that $s(k) = (\xi^{\dagger}, \sigma(k)\xi)$, is a matrix unit, with $\sigma \in \hat{K}$, $\xi^{\dagger} \in V_{\sigma}^{\dagger}$ and $\xi \in (V_{\sigma})_{\lambda}$. Suppose further that ξ is of K_i -type j. For each $k \in \mathbb{N}$, the K_i -types appearing in $\pi_j \otimes \pi_k$ lie between |k - j| and k + j. Thus,

$$\alpha\text{-}\operatorname{Supp}(s) \subseteq \{(k, k') \mid |k - k'| \le j\},\$$

which is proper. Such s span a dense subspace of $C(\mathcal{X}; E_{\lambda})$, so we are done.

To prove the analogous result for the group representations we need a realization of the operators $U_{-\mu}(g)$ ($g \in G$) under the Peter-Weyl transform. If $g = k \in K$ this is immediate: $U_{-\mu}(k)$ is given by the left-regular representation of K on $L^2(K)$, so it preserves right K_i -types for both i = 1 and 2, and hence lies in A. Thanks to the decomposition, G = KAK, it now suffices to understand the operators $U_{-\mu}(a)$, for $a \in A$. It is easier to work with the infinitesimal operators $U_{-\mu}(A)$ with $A \in \mathfrak{a}$.

Let $s(k) = (\xi^{\dagger}, \sigma(k)\xi)$ in $L^2(\mathcal{X}; E_{-\mu})$ be a matrix unit. Using the Iwasawa decomposition, we define functions κ , a and n by

$$g = \kappa(g) \mathsf{a}(g) \mathsf{n}(g) \in \mathsf{KAN}.$$

For $a \in A$, the B-equivariance property of (2.1) gives

$$\begin{array}{lcl} U_{-\mu}(a)s(k) & = & s(k\;k^{-1}a^{-1}k) \\ & = & e^{-\rho}(\mathsf{a}(k^{-1}a^{-1}k))\;s(k\;\kappa(k^{-1}a^{-1}k)) \\ & = & e^{-\rho}(\mathsf{a}(k^{-1}a^{-1}k))\;(\xi^\dagger,\sigma(k)\sigma(\kappa(k^{-1}a^{-1}k))\xi), \end{array}$$

for any $k \in K$. Now put $a = \exp(tA)$, and take the derivative with respect to t at t = 0. We get

$$U_{-\mu}(A)s(k) = \rho(\operatorname{da}_{e}(\operatorname{Ad} k^{-1}(A))) (\xi^{\dagger}, \sigma(k)\xi) - (\xi^{\dagger}, \sigma(k)\sigma(\operatorname{d} \kappa_{e}(\operatorname{Ad} k^{-1}(A)))\xi).$$
 (3.5)

The derivatives $d\kappa_e$ and $d\mathbf{a}_e$ at the identity $e \in \mathsf{G}$ are the projections of \mathfrak{g} onto the \mathfrak{k} and \mathfrak{a} parts, respectively, of the decomposition $\mathfrak{g} = \mathfrak{k} \oplus \mathfrak{a} \oplus \mathfrak{n}$, respectively. However, the formula (3.5) uses $d\kappa_e$ and $d\mathbf{a}_e$ only on the real subspace \mathfrak{p} of self-adjoint matrices in \mathfrak{g} , since $A \in \mathfrak{p}$ and the adjoint representation preserves \mathfrak{p} . This observation allows us to replace the maps $d\kappa_e$ and $d\mathbf{a}_e$, which are only \mathbb{R} -linear on \mathfrak{g} , by more convenient \mathbb{C} -linear maps, which we now describe.

For each root α , let us denote by X_{α} the elementary matrix in the α -root space of $\mathfrak{k}_{\mathbb{C}}$, ie, in the notation of Section 2.1, $X_{\alpha_1} = X_1$, $X_{-\alpha_1} = X_1'$, etc. The roots of K divide into positive and negative, and we define $\mathrm{sign}(\alpha)$ to be +1 or -1 accordingly. Let $H_1, H_2 \in \mathfrak{a}$ be a basis for the Cartan subalgebra \mathfrak{h} . Denote by X_{α}^{\dagger} , H_j^{\dagger} the elements of the basis of \mathfrak{g}^{\dagger} dual to the above.

Lemma 3.12. On the subspace $\mathfrak{p} \subseteq \mathfrak{g}$, $d\kappa_e$ and $d\mathsf{a}_e$ agree with the maps

$$-\sum_{\alpha\in\Delta}\operatorname{sign}(\alpha)X_{\alpha}\otimes X_{\alpha}^{\dagger}\quad\in\quad\mathfrak{g}\otimes\mathfrak{g}^{\dagger}=\operatorname{End}(\mathfrak{g})$$

and

$$\sum_{i=1,2} H_i \otimes H_i^{\dagger} \quad \in \quad \mathfrak{g} \otimes \mathfrak{g}^{\dagger} = \operatorname{End}(\mathfrak{g}),$$

respectively.

Proof. One can this check directly on the basis

$$\begin{array}{ll} X_{\alpha} + X_{-\alpha}, & (\alpha \in \Delta^+) \\ iX_{\alpha} - iX_{-\alpha}, & (\alpha \in \Delta^+) \\ H_i & (i = 1, 2). \end{array}$$

for \mathfrak{p} .

We obtain the following formula for the group representation:

$$U_{-\mu}(A)s(k) = \sum_{i=1,2} \rho(H_i) (H_i^{\dagger}, \operatorname{Ad} k^{-1}(A))(\xi^{\dagger}, \sigma(k)\xi)$$

$$+ \sum_{\alpha \in \Delta} \operatorname{sign}(\alpha) (X_{\alpha}^{\dagger}, \operatorname{Ad} k^{-1}(A)) (\xi^{\dagger}, \sigma(k)\sigma(X_{\alpha})\xi).$$

$$= (\xi^{\dagger} \otimes A, (\sigma \otimes \operatorname{Ad}^{\dagger})(k) \Xi(\xi)), \tag{3.6}$$

where

$$\Xi(\xi) = \sum_{i=1,2} \rho(H_i) \, \xi \otimes H_i^{\dagger} + \sum_{\alpha \in \Delta} \operatorname{sign}(\alpha) \, (X_{\alpha} \xi) \otimes X_{\alpha}^{\dagger} \in V^{\sigma} \otimes \mathfrak{g}^{\dagger}.$$

(We are now suppressing explicit mention of σ for notational convenience.) Thus, in the Peter-Weyl picture, the representation of \mathfrak{a} is described in terms of tensor products with the co-adjoint representation Ad^{\dagger} of K.

In what follows, we will use the trace form

$$B_0(W_1, W_2) = \text{Tr}(W_1 W_2), \qquad (W_1, W_2 \in \mathfrak{g})$$

to identify \mathfrak{g} and \mathfrak{g}^{\dagger} . In particular, X_{α}^{\dagger} corresponds to $X_{-\alpha} = X_{\alpha}'$.

Proposition 3.13. For any $g \in G$, and any weight μ of \mathfrak{k} , $U_{-\mu}(g) \in A$.

Proof. We prove that $U_{-\mu}(g) \in \mathcal{A}_1$. The proof that $U_{-\mu}(g) \in \mathcal{A}_2$ is analogous. Let $A \in \mathfrak{a}$. Given the formula (3.6), the effect of $U_{\mu}(A)$ on right K_1 -types is governed by the maps

$$\Xi:V^{\sigma}\to V^{\sigma}\otimes\mathfrak{q}^{\dagger}$$

above. Suppose $\xi \in V^{\sigma}$ is a vector of K_1 -type k. We will split Ξ into two pieces to be analyzed separately. Let us fix a choice of $H_1, H_2 \in \mathfrak{a}$, namely,

$$H_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \qquad H_2 = \frac{1}{\sqrt{6}} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix},$$

which are orthonormal for the trace form. Note also that H_1 is of K_1 -type 2, and H_2 is of K_1 -type 0.

We first claim that the vector

$$\Xi_1(\xi) = \rho(H_1)\xi \otimes H_1^{\dagger} + (X_1\xi) \otimes X_1^{\dagger} - (X_1'\xi) \otimes (X_1')^{\dagger}$$

has a norm-bound depending only on the K_1 -type of ξ . This is clear since H_1 , X_1 and X_1' all belong to \mathfrak{k}_1 , and hence act with fixed norm on vectors of a given K_1 -type. In fact, if we identify $\mu|_{K_1} = m \in \mathbb{Z}$, then the well-known formulae for irreducible unitary representations of $\mathfrak{su}(2)$ give

$$\|\rho(H_1)\xi\| = \frac{1}{\sqrt{2}}|m|\|\xi\|,$$

$$\|\sigma(X_1)\xi\| = \frac{1}{2}\sqrt{(k-m)(k+m+2)}\|\xi\|,$$

$$\|\sigma(X_1')\xi\| = \frac{1}{2}\sqrt{(k-m+2)(k+m)}\|\xi\|,$$

and hence

$$\|\Xi_1(\xi)\| \le (\frac{1}{\sqrt{2}}k + \frac{1}{2}(k+1) + \frac{1}{2}(k+1))\|\xi\| \le (2k+1)\|\xi\|.$$

So the norm-bound actually depends linearly on k. Note also that the vectors H_1 , X_1 , and X'_1 all have K_1 -type 2. By the fusion rules for $\mathsf{SU}(2)$ -representations, this implies that only possible K_1 -types appearing in the vector $\Xi_1(\xi)$ are k-2, k and k+2.

We remark that this estimate on $\Xi_1(\xi) \in V^{\sigma} \otimes \mathfrak{g}^{\dagger}$ does not immediately carry over to a norm estimate on the corresponding part of $U_{-\mu}(A)s \in L^2(\mathcal{X}; E_{-\mu})$ because of the factor $|\sigma|^{\frac{1}{2}}$ which appears in the Peter-Weyl transform (2.5). However, the irreducible representations σ' appearing in $\sigma \otimes \operatorname{Ad}^{\dagger}$ have dimension $|\sigma'| \geq \frac{1}{18} |\sigma|$, as we will argue shortly. The section $k \mapsto (\xi^{\dagger} \otimes A, (\sigma \otimes \operatorname{Ad}^{\dagger})(k)\Xi_1(\xi))$ therefore has L^2 -norm bounded by $\sqrt{18}(2k+1)||s||$.

To obtain the stated dimension bound, suppose that σ has highest weight $\beta = b_1 \delta_1 - b_2 \delta_3$. Then $|\sigma| = \frac{1}{2}(b_1 + 1)(b_2 + 1)(b_1 + b_2 + 2)$. The highest weight of σ' is $\beta + \alpha$, for $\alpha \in \Delta \cup \{0\}$. Note that these weights α have $\alpha = a_1 \delta_1 - a_2 \delta_3$, with $|a_1|, |a_2| \leq 2$, from which the estimate can be readily deduced.

Next, we claim that the remaining part of $\Xi(\xi)$,

$$\Xi_2(\xi) = \rho(H_2)\xi \otimes H_2 + X_2\xi \otimes X_2' - X_2'\xi \otimes X_2 + X_\rho \xi \otimes X_\rho' - X_\rho' \xi \otimes X_\rho$$

is of K_1 -type k only. For the first term on the right this is immediate, since H_2 has K_1 -type 0. For the latter four terms, a computation must be done. A vector has a unique K_1 -type if and only if it is an eigenvector of the Casimir operator $\Omega_{K_1} = 2X_1'X_1 + \frac{1}{2}H_1^2 + H_1$ for K_1 , and the K_1 -type is then uniquely determined by its eigenvalue. Since we are working in a fixed weight space for K, the element H_1 acts as a fixed scalar, so it suffices to consider the action of $X_1'X_1$.

One can compute

$$(\sigma \otimes \operatorname{ad})(X_{1}'X_{1})(X_{2}\xi \otimes X_{2}' - X_{2}'\xi \otimes X_{2} + X_{\rho}\xi \otimes X_{\rho}' - X_{\rho}'\xi \otimes X_{\rho})$$

$$= X_{1}'X_{1}X_{2}\xi \otimes X_{2}' - X_{1}'X_{1}X_{2}'\xi \otimes X_{2}$$

$$+X_{1}'X_{1}X_{\rho}\xi \otimes X_{\rho}' - X_{1}'X_{1}X_{\rho}'\xi \otimes X_{\rho}$$

$$-X_{1}'X_{2}'\xi \otimes X_{\rho} - X_{1}'X_{\rho}\xi \otimes X_{2}' - X_{1}X_{2}\xi \otimes X_{\rho}' - X_{1}X_{\rho}'\xi \otimes X_{2}$$

$$-X_{2}'\xi \otimes X_{2} + X_{\rho}\xi \otimes X_{2}'. \tag{3.7}$$

The first four terms on the right hand side of (3.7) can be rewritten as

$$X_{2}X'_{1}X_{1}\xi \otimes X'_{2} - X'_{2}X'_{1}X_{1}\xi \otimes X_{2} + X_{\rho}X'_{1}X_{1}\xi \otimes X'_{\rho} - X'_{\rho}X'_{1}X_{1}\xi \otimes X_{\rho} + X'_{1}X_{\rho}\xi \otimes X'_{2} + X'_{\rho}X_{1}\xi \otimes X_{2} + X_{2}X_{1}\xi \otimes X'_{\rho} + X'_{1}X'_{2}\xi \otimes X_{\rho}.$$

Hence, (3.7) equals

$$X_2 X_1' X_1 \xi \otimes X_2' - X_2' X_1' X_1 \xi \otimes X_2 + X_{\rho} X_1' X_1 \xi \otimes X_{\rho}' - X_{\rho}' X_1' X_1 \xi \otimes X_{\rho}.$$

We see that $\Xi_2(\xi)$ is an eigenvector of $X_1'X_1$ with exactly the same eigenvalue as ξ , as claimed.

Therefore, $U_{-\mu}(A)$ satisfies the hypotheses on Q in the following lemma, which will complete the proof.

Lemma 3.14. Fix i = 1 or 2. Let Q be an unbounded skew-adjoint operator on $L^2(\mathcal{X}; E_{\mu})$, such that

- (i) $P_j^{(i)}QP_k^{(i)} = 0$ whenever |j k| > 2, and
- (ii) $P_k^{(i)}QP_{k+2}^{(i)}$ and $P_{k+2}^{(i)}QP_k^{(i)}$ are bounded operators for each $k\in\mathbb{N}$, and their norms are bounded by C(k+1) for some universal constant C.

Then $e^Q \in \mathcal{A}_i$.

Remark 3.15. Such an operator Q has the flavour of a 'discrete wave operator' on the space \mathbb{N} , or more accurately, on the space $\log \mathbb{N}$. The following proof is an obvious generalization of the proof of finite propagation speed for ordinary wave operators.

Proof. We will prove that for any $\epsilon > 0$ and any $k \in \mathbb{N}$, there exists k' > k such that

$$\|(P_{[0,k']}^{(i)})^{\perp}e^{Q}P_{[0,k]}^{(i)}\|<\epsilon.$$

We may also apply this with -Q in place of Q, and thus we will obtain property (ii) of Lemma 3.10 for e^Q .

Fix $k \in \mathbb{N}$ and choose any unit vector $u \in P_{[0,k]}^{(i)}L^2(\mathcal{X}; E_{\mu})$. Put

$$u_s = e^{sQ}u \qquad (0 \le s \le 1).$$

Let $h_n = \sum_{j=1}^n j^{-1}$ be the *n*th harmonic sum, and define $\phi: \mathbb{N} \to [0,1]$ by

$$\phi(n) = \begin{cases} 1, & n \le k \\ \max\{0, 1 - \frac{\epsilon^2}{8C}(h_n - h_k)\}, & n > k \end{cases}.$$

Define an operator on $L^2(\mathcal{X}; E_{\mu})$, diagonal with respect to the K_i -type decomposition, by

$$\Phi = \sum_{n \in \mathbb{N}} \phi(n) P_n^{(i)}.$$

Now we decompose Q into its diagonal and off-diagonal components. For brevity, let us put

$$Q_{m,n} = P_m^{(i)} Q P_n^{(i)}.$$

Then $Q = Q_- + Q_d + Q_+$, where

$$Q_- = \sum_{n \in \mathbb{N}} Q_{n,n+2}, \qquad Q_d = \sum_{n \in \mathbb{N}} Q_{n,n}, \qquad Q_+ = \sum_{n \in \mathbb{N}} Q_{n+2,n}.$$

(Note that all K_i -types appearing nontrivially in $L^2(\mathcal{X}; E_{-\mu})$ have the same parity as $\mu|_{K_i}$.) The diagonal component Q_d commutes with Φ . Meanwhile,

$$||[Q_{n,n+2},\Phi]|| = ||(\phi(n+2) - \phi(n)) Q_{n,n+2}|| \le \frac{\epsilon^2}{4C} \frac{1}{(n+1)} ||Q_{n,n+2}||,$$

so

$$||[Q_-, \Phi]|| = \sup_{n \in \mathbb{N}} ||[Q_{n,n+2}, \Phi]|| \le \frac{1}{4} \epsilon^2.$$

Similarly for Q_+ . Hence, $||[Q, \Phi]|| \leq \frac{1}{2}\epsilon^2$.

We now have

$$\left|\frac{d}{ds}\langle \Phi u_s, u_s \rangle\right| = \left|\langle \Phi Q u_s, u_s \rangle + \langle \Phi u_s, Q u_s \rangle\right| = \left|\langle [\Phi, Q] u_s, u_s \rangle\right| \le \frac{1}{2} \epsilon^2,$$

for all $s \in [0, 1]$. Therefore,

$$\langle \Phi u_1, u_1 \rangle = \langle \Phi u_0, u_0 \rangle + \int_0^1 \frac{d}{ds} \langle \Phi u_s, u_s \rangle ds \ge 1 - \frac{1}{2} \epsilon^2.$$

Let k' be the smallest integer for which $\phi(k') < \frac{1}{2}$. Put $v = P_{[0,k']}^{(i)} u_1$ and $w = (P_{[0,k']}^{(i)})^{\perp} u_1$. Then $||v||^2 + ||w||^2 = 1$, but also,

$$||v||^2 + \frac{1}{2}||w||^2 > \langle \Phi v, v \rangle + \langle \Phi w, w \rangle = \langle \Phi u, u \rangle \ge 1 - \frac{1}{2}\epsilon^2.$$

Therefore, $||w|| = ||(P_{[0,k']}^{(i)})^{\perp} e^Q u|| \le \epsilon$. Since u was arbitrary in $P_{[0,k]}^{(i)} L^2(\mathcal{X}; E_{\mu})$, this proves the claim.

3.4 Relationship with compact operators

In this section we will need to make use of the Gel'fand-Tsetlin bases for irreducible representations of SU(3). We a brief overview here for the sake of fixing notation, and refer the reader to [Mol06] for a full introduction.

Integral weights for the Lie group $\mathrm{U}(3)$ are parameterized by triples of integers:

$$\mu = (\mu_1, \mu_2, \mu_3) = \sum_{j=1}^{3} \mu_j \delta_j.$$

Dominant weights are those for which $\mu_1 \geq \mu_2 \geq \mu_3$. We use the same notation for the weights of SU(3), acknowledging now that two triples represent the same weight if their difference is in $\mathbb{Z}(1,1,1)$.

The Gel'fand-Tsetlin basis vectors of an irreducible representation of U(3) with highest weight μ are indexed by patterns of integers

$$M = \left(\begin{array}{cc} m_{31} & m_{32} & m_{33} \\ m_{21} & m_{22} \\ m_{11} \end{array}\right)$$

where $m_{3k} = \mu_k$, and the entries satisfy the 'betweenness conditions' $m_{j+1,k} \ge m_{jk} \ge m_{j+1,k+1}$. We denote the unit vector corresponding to a pattern M by (M). (If M is a pattern which does not satisfy the betweenness conditions, we take (M) to denote the zero vector.) Identifying U(1) and U(2) with the 'upper-left' subgroups

$$\begin{pmatrix} U(1) & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \text{ and } \begin{pmatrix} U(2) & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

of U(3), the Gel'fand-Tsetlin vector (M) is defined, up to phase, by the property that for each j = 1, 2, 3, (M) belongs to an irreducible U(j)-subrepresentation

with highest weight equal to the jth row of M. If S_j is the sum of the entries of the jth row of M (and $S_0 = 0$ by convention), then the weight of (M) is $(S_1 - S_0, S_2 - S_1, S_3 - S_2)$. When working instead with SU(3)-representations, two Gel'fand-Tsetlin patterns describe the same vector if they differ in each entry by an overall constant.

One could also define a Gel'fand-Tsetlin-type basis using the 'lower-right' subgroups

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & U(1) \end{pmatrix} \subseteq \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 \\ 0 & U(2) \end{pmatrix} \subseteq U(3).$$

This is most easily achieved as follows. Let

$$\tilde{w} = \begin{pmatrix} 0 & 0 & -1 \\ 0 & -1 & 0 \\ -1 & 0 & 0 \end{pmatrix} \in \mathsf{G},$$

which is a representative of the Weyl group element

$$w \cdot \mu = (\mu_1, \mu_2, \mu_3) \mapsto (\mu_3, \mu_2, \mu_1)$$

Note that conjugation by \tilde{w} interchanges the upper-left and lower-right subgroups. Given a representation σ of G, let σ' be the representation

$$\sigma'(g) = \sigma(\tilde{w}g\tilde{w}^{-1}),$$

which is isomorphic to σ . The ordinary Gel'fand-Tsetlin basis for σ' is an alternative basis for V^{σ} , whose basis vectors we denote by (M)'. The weight of (M)' is $(S_3 - S_2, S_2 - S_1, S_1 - S_0)$.

Explicit formulae for the irreducible representations of \mathfrak{g} in the Gel'fand-Tsetlin basis can be found, for instance, in [Mol06].

Lemma 3.16. Fix $\mu \in \Lambda_W$. For any finite sets $A, B \subseteq \mathbb{N}$, $P_B^{(2)} P_A^{(1)}$ is a compact operator on $L^2(\mathcal{X}; E_{\mu})$.

Proof. It suffices to prove the result with $A=\{k\}$ and $B=\{l\}$ singleton sets. We begin with the case $\mu=0,\,l=0,$ but k arbitrary.

Suppose $s \in P_k^{(1)}L^2(\mathcal{X}; E_0)$ and $t \in P_0^{(2)}L^2(\mathcal{X}; E_0)$. Under the Peter-Weyl transform, $t \mapsto \sum_p \eta_p^{\dagger} \otimes \eta_p$, with each η_p of weight 0 and K_2 -type 0. The only such vectors are, up to scalar multiple,

$$\eta_{n,0} \stackrel{\text{def}}{=} \left(\left(\begin{array}{cc} n & 0 & -n \\ 0 & 0 \\ 0 & 0 \end{array} \right) \right)' \in V^{(n,0,-n)},$$

with $n=0,1,\ldots$ Likewise, $s\mapsto \sum_p \xi_p^\dagger\otimes \xi_p$, with each ξ_p of weight 0 and K_1 -type k. The Gel'fand-Tsetlin vectors of weight 0 in $V^{(n,0,-n)}$ are

$$\xi_{n,2j} \stackrel{\text{def}}{=} \left(\left(\begin{array}{cc} n & 0 & -n \\ j & -j \\ 0 \end{array} \right) \right),$$

for j = 0, ..., n, and here $\xi_{n,2j}$ is of K_1 -type 2j. In particular, if k is odd then $P_0^{(2)}P_k^{(1)} = 0$ on $L^2(\mathcal{X}; E_0)$. We therefore restrict attention to the even case, k = 2j.

Let us write $\eta_{n,0} = \sum_{j=0}^{n} c_{n,j} \xi_{n,2j}$, for some coefficients $c_{n,j} \in \mathbb{C}$. Being of K_2 -type 0, $\eta_{n,0}$ is annihilated by X_2 . By the Gel'fand-Tsetlin formulae,

$$X_{2}\left(\left(\begin{array}{c}n & 0 & -n\\ j & -j\end{array}\right)\right) = (j+1)\left(\frac{(n-j)(n+j+2)}{(2j+1)(2j+2)}\right)^{\frac{1}{2}}\left(\left(\begin{array}{c}n & 0 & -n\\ j+1 & -j\\ 0\end{array}\right)\right)$$

$$+ j\left(\frac{(n-j+1)(n+j+1)}{2j(2j+1)}\right)^{\frac{1}{2}}\left(\left(\begin{array}{c}n & 0 & -n\\ j & -j+1\\ 0\end{array}\right)\right).$$

Solving for the coefficients $c_{n,j}$ we obtain, up to phase,

$$\eta_{n,0} = \sum_{j=0}^{n} \frac{\sqrt{2j+1}}{n+1} \xi_{n,2j}.$$
 (3.8)

Therefore,

$$|\langle \xi_{n,2j}, \eta_{n,0} \rangle| = \frac{\sqrt{2j+1}}{n+1}.$$

Let $R_N \in \mathcal{B}(L^2(\mathcal{X}; E_0))$ be the projection onto the subspace spanned by sections of K-type (n,0,-n), for $n=0,\ldots,N$. Note that R_N commutes with $P_k^{(1)}$ and $P_0^{(2)}$. If $s \in P_k^{(1)}L^2(\mathcal{X}; E_0)$, $t \in P_0^{(2)}L^2(\mathcal{X}; E_0)$, then by (3.4),

$$|\langle R_N^{\perp}t,s\rangle| \leq \frac{\sqrt{k+1}}{N+1} ||s|| ||t||.$$

Therefore $||R_N^{\perp}P_0^{(2)}P_k^{(1)}|| \leq \sqrt{k+1}/(N+1)$. Since N is arbitrary and R_N is finite rank, this proves that $P_0^{(2)}P_k^{(1)}$ is compact. Now let μ , k and l be arbitrary. Use Lemma 3.4 to find a finite collection of

Now let μ , k and l be arbitrary. Use Lemma 3.4 to find a finite collection of continuous sections $s_j \in P_k^{(1)}C(\mathcal{X}; E_{\mu}), t_{j'} \in P_l^{(2)}C(\mathcal{X}; E_{\mu})$ and bounded linear maps

$$\varphi_j: P_k^{(1)} L^2(\mathcal{X}; E_\mu) \to P_0^{(1)} L^2(\mathcal{X}; E_0),$$

$$\psi_{j'}: P_i^{(2)} L^2(\mathcal{X}; E_\mu) \to P_0^{(2)} L^2(\mathcal{X}; E_0),$$

such that $\sum_j s_j \varphi_j = \operatorname{Id}$, $\sum_{j'} t_{j'} \varphi_{j'} = \operatorname{Id}$. Then

$$P_l^{(2)}P_k^{(1)} = \sum_{j,j'} P_l^{(2)} \psi_{j'}^* P_0^{(2)} \overline{t_{j'}} s_j P_0^{(1)} \varphi_j P_k^{(1)}.$$

For each j, j', we have $\overline{t_{j'}}s_j \in C(\mathcal{X}; E_0) \subseteq \mathcal{A}$. Thus, $\overline{t_{j'}}s_j P_0^{(1)}$ can be approximated arbitrarily well in norm by $P_{k'}^{(1)}\overline{t_{j'}}s_j P_0^{(1)}$, for some $k' \in \mathbb{N}$. Since $P_0^{(2)}P_{k'}^{(1)}$ is compact, the result follows.

Proposition 3.17. The C^* -category $\mathcal{K} = \mathcal{K}_1 \cap \mathcal{K}_2$ is the category of compact operators between the section spaces $L^2(\mathcal{X}; E_{\mu})$.

Proof. For i=1 or 2, the projections $(P_{[0,k]}^{(i)})^{\perp}$ converge strongly to 0 as $k \to \infty$. Thus $(P_{[0,k]}^{(i)})^{\perp}K$ and $K(P_{[0,k]}^{(i)})^{\perp}$ converge to zero in norm for any compact operator K. By Lemma 3.9, the compact operators belong to $\mathcal{K}_1 \cap \mathcal{K}_2$.

If $T_1 \in \mathcal{K}_1(E_\lambda, E_\mu)$ and $T_2 \in \mathcal{K}_2(E_\mu, E_\nu)$, are spectrally finite for α_1 and α_2 , respectively, then for some $k_1, k_2 \in \mathbb{N}$, $T_2T_1 = T_2P_{[0,k_2]}^{(2)}P_{[0,k_1]}^{(1)}T_1$, which is compact by the previous lemma. A density argument completes the proof.

A consequence of Proposition 3.17 is that elements of \mathcal{K}_1 are multipliers of \mathcal{K}_2 . Therefore, by Lemma 3.10, $\mathcal{K}_1 \subseteq \mathcal{A}_2$ and hence $\mathcal{K}_1 \triangleleft \mathcal{A}$. Similarly, $\mathcal{K}_2 \triangleleft \mathcal{A}$. Summarizing, we have the following important lattice of ideals:

4 Normalized differential operators

4.1 Tangential pseudodifferential operators

In this section we will show how the ideals \mathcal{K}_i relate to Connes' foliation C^* -algebra for the fibrations $\mathcal{X}_i \mapsto \mathcal{Y}_i = \mathsf{G}/\mathsf{P}_i$. For background to the material used here, we refer to [MS06].

For i = 1 or 2, let \mathcal{F}_i denote the foliation of \mathcal{X} associated to the fibration $\mathcal{X}_i \mapsto \mathcal{Y}_i$. Let E and E' be bundles over \mathcal{X} . We denote the algebra of order zero pseudodifferential operators from E to E', tangential along \mathcal{F}_i , by $\Psi_i^0(E, E')$. If E = E' we abbreviate this to $\Psi_i^0(E)$. Let $S^*\mathcal{F}_i$ be the cosphere bundle of the foliation \mathcal{F}_i . Recall ([Con79]) that the tangential principal symbol map

$$\operatorname{Symb}_0: \Psi_i^0(E) \to C(S^*\mathcal{F}_i, \operatorname{End}(E))$$

extends to the norm-closure $\overline{\Psi^0_i}(E)$ in $\mathcal{B}(L^2(\mathcal{X};E))$, and yields a short exact sequence of C^* -algebras

$$0 \longrightarrow C_r^*(\mathcal{G}_i) \longrightarrow \overline{\Psi_i^0}(E) \xrightarrow{\operatorname{Symb}_0} C(S^*\mathcal{F}_i, \operatorname{End}(E)) \longrightarrow 0.$$

Here $C_r^*(\mathcal{G}_i)$ is the C^* -algebra of the foliation groupoid \mathcal{G}_i of \mathcal{F}_i , represented on sections of the bundle E.

Since \mathcal{F}_i is in fact a fibration, $C_r^*(\mathcal{G}_i)$ has a realization in terms of Hilbert module operators. The section space $C(\mathcal{X}; E)$ becomes a pre-Hilbert module over $C(\mathcal{Y}_i)$ if we define a $C(\mathcal{Y}_i)$ -valued inner product by L^2 -integration along the fibres. Specifically, in the case $E = E_\mu$ ($\mu \in \Lambda_W$), the inner product is

$$\langle s_1, s_2 \rangle_{C(\mathcal{Y}_i)}(k) = \int_{\mathsf{K}_i} \overline{s_1(kk_1)} s_2(kk_1) dk_1 \qquad (k \in \mathsf{K}),$$

for $s_1, s_2 \in C(\mathcal{X}; E_{\mu})$. Denote the Hilbert module completion by $\mathcal{E}_i(\mathcal{X}; E_{\mu})$. If $E = \bigoplus_{\mu} E_{\mu}$, then $\mathcal{E}_i(\mathcal{X}; E) = \bigoplus_{\mu} \mathcal{E}_i(\mathcal{X}; E_{\mu})$. The algebra $C_r^*(\mathcal{G}_i)$ is precisely the algebra of compact Hilbert-module operators on $\mathcal{E}_i(\mathcal{X}; E)$.

The next proposition describes the relationship between $C_r^*(\mathcal{G}_i)$ and $\mathcal{K}_i(E, E)$.

Proposition 4.1. Let $\mu, \nu \in \Lambda_W$. If $T : \mathcal{E}_i(\mathcal{X}; E_\mu) \to \mathcal{E}_i(\mathcal{X}; E_\nu)$ is a compact operator in the sense of Hilbert $C(\mathcal{Y}_i)$ -modules, then its extension to an operator $L^2(\mathcal{X}; E_\mu) \to L^2(\mathcal{X}; E_\nu)$ belongs to $\mathcal{K}_i(E_\mu, E_\nu)$.

Proof. If $t_1 \in C(\mathcal{X}; E_{\mu})$, $t_2 \in C(\mathcal{X}; E_{\nu})$ are each of a single \mathcal{K}_i -type, then the 'rank-one' operator

$$s \mapsto \langle t_1, s \rangle_{C(\mathcal{Y}_i)} t_2$$

clearly satisfies condition (iii) of Lemma 3.9. Such operators span a dense subspace of the $C(\mathcal{Y}_i)$ -compact operators, and extension of compact Hilbert module operators to bounded L^2 -operators is continuous with respect to the norm topologies.

4.2 Normalized BGG operators

In this section we prove various properties of the phases X_i^n of the K-invariant differential operators $X_i^n: L^2(\mathcal{X}; E_{-\mu}) \to L^2(\mathcal{X}; E_{-(\mu+n\alpha_i)})$. To begin with, we note that most of the analysis will reduce to the case n=1. This is because $X_i^n=(X_i)^n$, where the right-hand side here denotes the composition of the operators $X_i: L^2(\mathcal{X}; E_{-(\mu+(j-1)\alpha_i)}) \to L^2(\mathcal{X}; E_{-(\mu+j\alpha_i)})$ for $j=1,\ldots,n$.

Fix i = 1 or 2, and fix a weight $\mu \in \Lambda_W$. Let D_i be the essentially self-adjoint tangentially elliptic first-order differential operator

$$D_i = \begin{pmatrix} 0 & X_i' \\ X_i & 0 \end{pmatrix}$$

on sections of $E = E_{-\mu} \oplus E_{-(\mu+\alpha_i)}$. In what follows, we will make use of symbolic calculus, and since the operators $\operatorname{Ph}(D_i)$ are defined using functional calculus, some remarks are in order. Firstly, since the spectrum of D_i is discrete, there is some smooth function $\phi: \mathbb{R} \to [-1,1]$ such that $\operatorname{Ph}(D_i) = \phi(D_i)$. Applying Theorem XII.1.3 of [Tay81] fibrewise, we see that $\operatorname{Ph}(D_i)$ is a tangential pseudodifferential operator of order zero, and moreover that its principal symbol is the order zero homogeneous part of $\phi(\operatorname{Symb}(D_i))$, ie, $\operatorname{Symb}(D_i)|\operatorname{Symb}(D_i)|^{-1}$.

Let N_i (respectively, Z_i) be the element of \mathfrak{n} (respectively, \mathfrak{z}) which is represented by the same matrix as defines X_i (respectively, X_i') in $\mathfrak{k}_{\mathbb{C}}$. Let J denote the operation of multiplication by $\sqrt{-1}$ in \mathfrak{g} . For any $V \in \mathfrak{g}$, let

$$V^h = \frac{1}{2}(V - iJV), \qquad \overline{V^h} = \frac{1}{2}(V + iJV) \in \mathfrak{g}_{\mathbb{C}}.$$

Recall that in Section 3.3 we defined functions κ , a and n by the Iwasawa decomposition: $g = \kappa(g) \mathsf{a}(g) \mathsf{n}(g) \in \mathsf{KAN}$. We abbreviate $\mathsf{an}(g) = \mathsf{a}(g) \mathsf{n}(g)$.

Lemma 4.2. For each $g \in G$, the differential operator $X_i : C^{\infty}(\mathcal{X}; E_{-\mu}) \to C^{\infty}(\mathcal{X}; E_{-(\mu+\alpha_i)})$ satisfies

$$U_{-(\mu+\alpha_i)}(g)X_iU_{-\mu}(g^{-1}) = c_g X_i + d_g,$$

where $c_q(k) = e^{\alpha_i}(\mathsf{a}(g^{-1}k))$ for $k \in \mathsf{K}$, and d_q is some smooth section of $E_{-\alpha_i}$.

Note that c_q is a smooth positive function on \mathcal{X} and is independent of μ .

Remark 4.3. If one puts a holomorphic structure on the bundles E_{μ} by transferring the natural holomorphic structure from the complex Lie group Z, using the nilpotent picture, then both X_i and $U_{-(\mu+\alpha_i)}(g)X_iU_{-\mu}(g^{-1})$ are antiholomorphic differential operators along the complex one-dimensional fibres of \mathcal{F}_i . Granted this, the lemma is then trivial, at least for some positive function c_g . However, the independence of c_g with respect to μ is important to us, so we include a proof which calculates it.

Proof. Let $s \in C^{\infty}(\mathcal{X}; E_{-\mu})$, considered as a B-equivariant function on G. Since $X_i = N_i^h - \overline{Z_i^h}$, and s is N-invariant, we have $X_i s = -\overline{Z_i^h} s$. Recall from Remark 2.1 that to realize the section $X_i s \in C^{\infty}(\mathcal{X}; E_{-(\mu+\alpha_i)})$ on G, one needs to extend $X_i s$ by B-equivariance from K:

$$X_i s(g) = e^{-\rho}(\mathsf{a}(g)) \; X_i s(\kappa(g)).$$

For any $k \in K$ and $g \in G$,

$$\begin{split} (Z_i U_{-\mu}(g^{-1})s)(\kappa(g^{-1}k)) &= \frac{d}{dt} s(g \, \kappa(g^{-1}k)e^{tZ_i})|_{t=0} \\ &= \frac{d}{dt} s(k \, \mathsf{an}(g^{-1}k)^{-1}e^{tZ_i})|_{t=0} \\ &= e^{\rho}(\mathsf{a}(g^{-1}k)) \, (\mathrm{Ad}(\mathsf{an}(g^{-1}k)^{-1})Z_i)s(k). \end{split}$$

For any $a \in A$ and $n \in N$, $Ad(an)Z_i = e^{-\alpha_i}(a)Z_i + B$, for some $B \in \mathfrak{b}$. By the B-equivariance of s, we obtain

$$(Z_i U_{-\mu}(g^{-1})s)(\kappa(g^{-1}k)) = e^{\rho}(\mathsf{a}(g^{-1}k)) e^{\alpha_i}(\mathsf{a}(g^{-1}k)) Z_i s(k) + d_a'(k)s(k)$$

for some smooth function d'_q on K. Therefore,

$$(U_{-(\mu+\alpha_i)}(g)Z_iU_{-\mu}(g^{-1})s)(k) = e^{\alpha_i}(\mathsf{a}(g^{-1}k))\,Z_is(k) \; + \; d_g''(k)s(k),$$

for some smooth d''_g on K. The same is true with JZ_i in place of Z_i (if we replace d''_g by id''_g), and the result follows.

Let $\varphi_{\mu}: \mathbb{Z} \otimes \mathbb{C} \to E_{\mu}$ be the trivializing coordinate patch of E_{μ} given by the nilpotent picture, which is to say $\varphi_{\mu}^* s = s|_{\mathbb{Z}}$ for $s \in C(\mathcal{X}; E_{\mu})$. We refer to φ as the 'standard chart' on E_{μ} . The next lemma describes X_i in these coordinates.

Lemma 4.4. For $s \in C^{\infty}(\mathcal{X}; E_{\mu})$,

$$\varphi_{-(\mu+\alpha_i)}^* X_i s = (-f_0 \overline{Z_i^h} + f_1) \varphi_{-\mu}^* s,$$

for some smooth functions f_0 , f_1 on Z. Moreover, f_0 is everywhere positive, and is independent of μ .

Proof. At the identity in G , $X_i s = -\overline{Z_i^h} s$, as observed in the proof of the previous lemma. In the standard chart, the representation $U_{-\mu}(z)$, with $z \in \mathsf{Z}$, is just left-translation by z. Now apply the preceding lemma to see that the left-invariant vector field $-\overline{Z_i^h}$ is everywhere linearly related to the differential operator X_i in these coordinates.

Proposition 4.5. Fix $\mu, \nu \in \Lambda_W$. Let $s \in C(\mathcal{X}; E_{-\nu})$ define a multiplication operator

$$s: L^2(\mathcal{X}; E_{-\mu} \oplus E_{-(\mu+\alpha_i)}) \to L^2(\mathcal{X}; E_{-(\mu+\nu)} \oplus E_{-(\mu+\nu+\alpha_i)}).$$

Then $sD_i - D_i s \in \mathcal{K}_i$.

Proof. In the standard chart for these bundles, s is multiplication by $\varphi_{-\nu}^* s$ (independent of μ). By Lemma 4.4, the principal symbol of D_i , and hence of $Ph(D_i)$, is the same on both the domain and range of s. Thus, $Symb_0(s Ph(D_i) - Ph(D_i)s) = 0$ on the standard chart, which has dense image.

Proposition 4.6. Let $\mu \in \Lambda_W$. For any $g \in G$,

$$[(U_{-\mu} \oplus U_{-(\mu+\alpha_i)})(g), D_i] \in \mathcal{K}_i.$$

Proof. For brevity, let us write $U = U_{-\mu} \oplus U_{-(\mu+\alpha_i)}$. From Lemma 4.2, $U(g)D_iU(g^{-1}) = c_gD_i + R_g$, for some order zero operator R_g on $E_{-\mu} \oplus E_{-(\mu+\alpha_i)}$. Therefore, the principal symbol of $U(g)\operatorname{Ph}(D_i)U(g^{-1}) = \operatorname{Ph}(U(g)D_iU(g^{-1}))$ is

$$c_g \operatorname{Symb}(D_i) |c_g \operatorname{Symb}(D_i)|^{-1} = \operatorname{Symb}(D_i) |\operatorname{Symb}(D_i)|^{-1} = \operatorname{Symb}(D_i).$$

Thus,
$$U(g) \operatorname{Ph}(D_i) U(g^{-1}) - \operatorname{Ph}(D_i) \in \mathcal{K}_i$$
, and since $U(g) \in \mathcal{A}_i$, we are done. \square

Looking at the matrix entries of D_i , the preceding two lemmas imply that the operators $sX_i - X_i s$ and $U_{-(\mu+\alpha_i)}(g)X_i - X_i U_{-\mu}(g)$ are also in \mathcal{K}_i .

Proposition 4.7. The operator

$$X_i: L^2(\mathcal{X}; E_{-\mu}) \to L^2(\mathcal{X}; E_{-(\mu+\alpha_i)})$$

belongs to A.

Proof. We prove the case i=1, the other case being analogous. Since X_1 preserves K_1 -types, it is clearly in \mathcal{A}_i , and we need only show that it belongs to \mathcal{A}_2 . For this, we begin with a specific computation showing that, for the operator $X_1:L^2(\mathcal{X};E_0)\to L^2(\mathcal{X};E_{\alpha_1})$, given any $\epsilon>0$ there is $k'\in\mathbb{N}$ such that

$$\|(P_{[0,k']}^{(2)})^{\perp} X_1 P_0^{(2)}\| < \epsilon. \tag{4.1}$$

Let $V^{(\mu_1,\mu_2,\mu_3)}$ denote V^{σ} , where σ is the irreducible representation of K with highest weight (μ_1,μ_2,μ_3) . Put

$$\xi_{n,j} = \left(\left(\begin{array}{cc} n & 0 & -n \\ j & -j \\ 0 \end{array} \right) \right) \quad \text{and} \quad \eta_{n,j} = \left(\left(\begin{array}{cc} n & 0 & -n \\ j & -j \\ 0 \end{array} \right) \right)',$$

which are the Gel'fand-Tsetlin vectors in $(V^{(n,0,-n)})_0$ of K_1 -type 2j and K_2 -type 2j, respectively (see Section 3.4). Similarly, we have two Gel'fand-Tsetlin bases for the weight spaces $(V^{(n,0,-n)})_{\alpha_1}$, comprised respectively of the vectors

$$\xi'_{n,j} = \left(\left(\begin{array}{cc} n & 0 & -n \\ j & -j \\ 1 \end{array} \right) \right) \quad \text{and} \quad \eta'_{n,j} = \left(\left(\begin{array}{cc} n & 0 & -n \\ j-1 & -j \\ 0 \end{array} \right) \right)',$$

for j = 1, ..., n. We begin by estimating the quantity $\langle \eta'_{n,j}, X_1 \eta_{n,0} \rangle$. From Equation (3.8),

$$\eta_{n,0} = \frac{1}{n+1} \sum_{a=0}^{n} \sqrt{2a+1} \, \xi_{n,j}$$

(up to phase³). From the Gel'fand-Tsetlin formulae,

$$X_1 \xi_{n,a} = \sqrt{a(a+1)} \, \xi'_{n,a} = \sqrt{a(a+1)} \, X_1 \xi_{n,a}.$$

The automorphism $g \mapsto \tilde{w}g\tilde{w}^{-1}$, which was used to define the 'lower-right' Gel'fand-Tsetlin basis in Section 3.4, interchanges X_1' and X_2 . Therefore, using the Gel'fand-Tsetlin formula for the action of X_2 ,

$$\langle \eta'_{n,b}, X_1 \eta_{n,0} \rangle = \frac{1}{n+1} \sum_{a=0}^{n} \sqrt{2a+1} \langle \eta'_{n,b}, X_1 \xi_{n,a} \rangle$$

$$= \frac{1}{n+1} \sum_{a=0}^{n} \sqrt{\frac{2a+1}{a(a+1)}} \langle X'_1 \eta'_{n,b}, \xi_{n,a} \rangle$$

$$= \frac{1}{n+1} \sum_{a=0}^{n} \sqrt{\frac{2a+1}{a(a+1)}} \sqrt{\frac{b}{2}(n-b+1)(n+b+1)}$$

$$\times \left(\frac{1}{\sqrt{2b+1}} \langle \eta_{n,b}, \xi_{n,a} \rangle + \frac{1}{\sqrt{2b-1}} \langle \eta_{n,b-1}, \xi_{n,a} \rangle \right)$$

$$= \frac{1}{n+1} \sqrt{\frac{b}{2}(n-b+1)(n+b+1)} \sum_{a=0}^{n} \frac{(2a+1)}{\sqrt{a(a+1)}} (x_{n,a,b} - x_{n,a,b-1}), (4.2)$$

where we have put $x_{n,a,b} = (2a+1)^{-\frac{1}{2}}(2b+1)^{-\frac{1}{2}}\langle \eta_{n,b}, \xi_{n,a} \rangle$. Let us now estimate $x_{n,a,b}$ for large n.

By the Gel'fand-Tsetlin formulae,

$$a(a+1)x_{n,a,b}$$

$$= (2a+1)^{-\frac{1}{2}}(2b+1)^{-\frac{1}{2}}\langle X_1'X_1\xi_{n,a}, \eta_{n,b}\rangle$$

$$= (2a+1)^{-\frac{1}{2}}(2b+1)^{-\frac{1}{2}}\langle \xi_{n,a}, X_1'X_1\eta_{n,b}\rangle$$

$$= \frac{b(n-b+1)(n+b+1)}{2(2b+1)}x_{n,a,b-1} + \frac{1}{2}(n(n+2)-b(b+1))x_{n,a,b}$$

$$+ \frac{(b+1)(n-b)(n+b+2)}{2(2b+1)}x_{n,a,b+1}.$$

This yields the recurrence relation

$$b(n-b+1)(n+b+1) x_{n,a,b-1} + (2b+1)(n(n+2) - b(b+1) - 2a(a+1)) x_{n,a,b} + (b+1)(n-b)(n+b+2) x_{n,a,b+1} = 0, (4.3)$$

which can solved, in principle, from the initial condition $x_{n,a,0} = (n+1)^{-1}$ of Equation (3.8). (One initial condition suffices since when b = 0, the first term in

³To avoid repeating this phrase throughout we may adjust the phase of the highest-weight vector in the 'lower right' Gel'fand-Tsetlin basis to correct the phase error.

(4.3) vanishes.) However, if n is large in comparison with b (and a is arbitrary), then after dividing by n^2 , (4.3) is well approximated by

$$b x_{n,a,b-1} + (2b+1)(1 - 2n^{-2}a(a+1)) x_{n,a,b} + (b+1) x_{n,a,b+1} = 0.$$
 (4.4)

The solution to (4.4) is $x_{n,a,b} = (-1)^b (n+1)^{-1} P_b (1-2n^{-2}a(a+1))$, where P_b is the bth Legendre polynomial.

Therefore,

$$\lim_{n \to \infty} \sum_{a=0}^{n} \frac{(2a+1)}{\sqrt{a(a+1)}} x_{n,a,b} = (-1)^b \int_0^1 2P_b (1-2t^2) dt = (-1)^b \frac{2}{2b+1}.$$

By (4.2), then,

$$\lim_{n\to\infty} |\langle \eta_{n,b}', X_1 \eta_{n,0} \rangle| = \sqrt{\frac{b}{2}} \left(\frac{2}{2b-1} - \frac{2}{2b+1} \right) = \sqrt{\frac{1}{(2b-1)^2} - \frac{1}{(2b+1)^2}}.$$

So, for any $k' \in \mathbb{N}$,

$$\lim_{n \to \infty} \|(P_{[0,k']}^{(2)})^{\perp} X_1 \eta_{n,0}\|^2 = \lim_{n \to \infty} \left(\|X_1 \eta_{n,0}\|^2 - \sum_{b=0}^{k'} |\langle \eta'_{n,b}, X_1 \eta_{n,0} \rangle|^2 \right)$$

$$= \frac{1}{(2k'-1)^2}.$$
(4.5)

Looking now to sections, we note that a section s in $P_0^{(2)}L^2(\mathcal{X}; E_0)$ has Peter-Weyl transform $\sum_n \beta_n^\dagger \otimes \eta_{n,0}$, for some vectors $\beta_n^\dagger \in V^{(n,0,-n)\dagger}$. Therefore, $X_1 s = \sum_n \beta_n^\dagger \otimes X_1 \eta_{n,0}$. Let R_N denote the finite-rank projection onto the subspace of $L^2(\mathcal{X}; E_{-\alpha_1})$ spanned by sections of K-type (n,0,-n), for $n=0,\ldots,N$. By the above computation, for any $\epsilon>0$, one can choose N and k' large enough such that $\|(R_N)^\perp(P_{[0,k']}^{(2)})^\perp X_1 P_0^{(2)}\| < \epsilon$ on $L^2(\mathcal{X}; E_0)$. But the K-representation of type (n,0,-n) contains K₂-types only up to 2n, so if we enlarge k' to be greater than 2N, we have $\|(P_{[0,k']}^{(2)})^\perp X_1 P_0^{(2)}\| < \epsilon$ on $L^2(\mathcal{X}; E_0)$, as claimed.

With this base case completed, we now let $\mu \in \Lambda_W$, and $k \in \mathbb{N}$ be arbitrary. Choose sections $s_j \in P_k^{(2)}C(\mathcal{X}; E_{-\mu})$ and maps $\phi_j : P_k^{(2)}L^2(\mathcal{X}; E_{-\mu}) \to P_0^{(2)}L^2(\mathcal{X}; E_0)$ as in Lemma 3.4. Then

$$X_1 P_k^{(2)} = \sum_j X_1 s_j P_0^{(2)} \phi_j P_k^{(2)}$$
$$= \sum_j (s_j X_1 + [X_1, s_j]) P_0^{(2)} \phi_j P_k^{(2)}$$

Let $\epsilon > 0$. Choose k' satisfying (4.1). By Propositions 3.11 and 4.5, we can also find k'' sufficiently large such that $\|(P_{k''}^{(2)})^{\perp}s_jP_{k'}^{(2)}\| < \epsilon$ and $\|(P_{k''}^{(2)})^{\perp}[X_1,s_j]\| < \epsilon$, for each j. Thus, as an operator from $L^2(\mathcal{X};E_0)$ to $L^2(\mathcal{X};E_{-(\mu+\alpha_1)})$,

$$\begin{split} \|(P_{k''}^{(2)})^{\perp}(s_{j}X_{1} + [X_{1}, s_{j}])P_{0}^{(2)}\| \\ &\leq \|(P_{k''}^{(2)})^{\perp}s_{j}P_{k'}^{(2)}X_{1}P_{0}^{(2)}\| + \|(P_{k''}^{(2)})^{\perp}s_{j}(P_{k'}^{(2)})^{\perp}X_{1}P_{0}^{(2)}\| \\ &+ \|(P_{k''}^{(2)})^{\perp}[X_{1}, s_{j}]P_{0}^{(2)}\| \\ &< (\|s_{j}\| + 2)\epsilon, \end{split}$$

and hence, as an operator from $L^2(\mathcal{X}; E_{-\mu})$ to $L^2(\mathcal{X}; E_{-(\mu+\alpha_1)})$.

$$\|(P_{k''}^{(2)})^{\perp} X_1 P_k^{(2)}\| < C\epsilon,$$

for some constant C.

The same kind of estimates can be proven for $X_1' = X_1^*$ in place of X_1 . (The analogue of (4.5) for X_1' can be most easily obtained by switching the representations $V^{(n,0,-n)}$ with their (unitarily equivalent) contragredient representations, which transforms X_1' to $-X_1$. The rest of the argument goes through by a mere substitution of X_1' for X_1 .) Therefore, by Lemma 3.9, $X_1 \in \mathcal{A}(E_{-\mu}, E_{-(\mu+\alpha)})$ for each $\mu \in \Lambda_W$.

Proposition 4.8. Let i = 1 or 2, $\mu, \nu \in \Lambda_W$, and $n \in \mathbb{N}$. For any $s \in L^2(\mathcal{X}; E_{\nu})$, and any $g \in \mathfrak{g}$, the 'commutators'

$$X_i^n s - s X_i^n : L^2(\mathcal{X}; E_{-\mu}) \to L^2(\mathcal{X}; E_{-(\mu+\nu+n\alpha)}),$$

and

$$X_i^n U_{-\mu} - U_{-(\mu+\alpha_i)} X_i^n : L^2(\mathcal{X}; E_{-\mu}) \to L^2(\mathcal{X}; E_{-(\mu+\alpha)})$$

belong to K_i .

Proof. Expand $X_i^n s - s X_i^n = \sum_{j=1}^n X_i^{j-1} (X_i s - s X_i) X_i^{n-j}$, and apply Lemma 4.5. The group representation case follows in a similar fashion from Lemma 4.6.

We conclude this section by remarking that Lemma 5.5 of [AS68] applies to tangential pseudodifferential operators:

Lemma 4.9. Let $A \in \mathfrak{g}$. The one-parameter family of operators

$$t \mapsto U_{-(\mu+n\alpha_i)}(\exp(tA))X_iU_{-\mu}(\exp(-tA))$$

is continuous in the norm topology.

In the language of Kasparov, X_i is G-continuous.

4.3 Weyl commutation relations

The representations U_{μ} are unitary principal series representations of G. The representation U_{μ} is irreducible for any $\mu \in \Lambda_W$. Moreover, two such representations, U_{μ} and $U_{\mu'}$ are unitarily equivalent if and only if μ and μ' are in the same orbit of the Weyl group. If $\mu' = w_i \cdot \mu$, where $w_i \in W$ is the reflection associated to the simple root α_i , then the intertwining operator between the two representations can be described explicitly.

Proposition 4.10. Suppose $\mu' = w_i \cdot \mu$, and let n be the integer such that $\mu - \mu' = n\alpha_i$. The unitary intertwiner

$$I = I_{\mu,\alpha_i} : L^2(\mathcal{X}; E_{-\mu}) \to L^2(\mathcal{X}; E_{-\mu'})$$

is
$$I = X_i^n$$
 if $n \ge 0$, and $I = (X_i')^n$ if $n \le 0$.

These intertwining operators satisfy the 'commutation relation'

$$I_{w_2w_1\mu,\alpha_1}I_{w_1\mu,\alpha_2}I_{\mu,\alpha_1} = I_{w_1w_2\mu,\alpha_2}I_{w_2\mu,\alpha_1}I_{\mu,\alpha_2},\tag{4.6}$$

for any $\mu \in \Lambda_W$ ([KS61]). In particular,

$$X_1 X_2^2 X_1 = X_2 X_1^2 X_2 : L^2(\mathcal{X}; E_\rho) \to L^2(\mathcal{X}; E_{-\rho}).$$
 (4.7)

Note that the weights $\pm \rho$ defining the domain and range are crucial in this identity. Nevertheless, if the domain is changed, a weaker commutation property still holds.

Proposition 4.11. As an operator from $L^2(\mathcal{X}; E_0)$ to $L^2(\mathcal{X}; E_{-2\rho})$,

$$X_1X_2^2X_1 - X_2X_1^2X_2 \in \mathcal{K}_1 + \mathcal{K}_2.$$

Proof. Using a trivializing partition of unity for E_{ρ} , one can find a finite collection of sections $s_1, \ldots, s_2 \in C(\mathcal{X}; E_{\rho})$ such that $\sum_{j=1}^n \overline{s_j} s_j = 1 \in C(\mathcal{X})$. Then, as an operator from $L^2(\mathcal{X}; E_0)$ to $L^2(\mathcal{X}; E_{-2\rho})$,

$$X_1 X_2^2 X_1 = \sum_{j=1}^n X_1 X_2^2 X_1 \overline{s_j} s_j$$

$$= \sum_{j=1}^n \overline{s_j} X_1 X_2^2 X_1 s_j \quad \text{(modulo } \mathcal{K}_1 + \mathcal{K}_2\text{)},$$

by repeatedly applying Proposition 3.11. In this last equation, $X_1X_2^2X_1$ is an operator from $L^2(\mathcal{X}; E_{\rho})$ to $L^2(\mathcal{X}; E_{-\rho})$, so is equal to $X_2X_1^2X_2$. Reversing the same process, we see that

$$X_1 X_2^2 X_1 = X_2 X_1^2 X_2 : L^2(\mathcal{X}; E_0) \to L^2(\mathcal{X}; E_{-2\rho})$$

modulo $\mathcal{K}_1 + \mathcal{K}_2$.

5 Construction of the gamma element

Let $n \in \mathbb{Z}^+$ and $\mu \in \Lambda_W$. Using the standard formulae for irreducible representations of $\mathfrak{sl}(2,\mathbb{C})$, it is readily observed that the operators $X^n: L^2(\mathcal{X}; E_{-\mu}) \to L^2(\mathcal{X}; E_{-(\mu+n\alpha_i)})$ and $X^m: L^2(\mathcal{X}; E_{-(\mu+n\alpha_i)}) \to L^2(\mathcal{X}; E_{-\mu})$ are inverses modulo \mathcal{K}_i , since their product in either order equals $P_{[0,k]}^{(i)}$ for some k. Let us define operators

$$T_{1} = -X_{1}^{2}X_{2}X_{1}': L^{2}(\mathcal{X}; E_{-\alpha_{1}}) \to L^{2}(\mathcal{X}; E_{-(2\alpha_{1}+\alpha_{2})}),$$

$$T_{2} = -X_{2}^{2}X_{1}X_{2}': L^{2}(\mathcal{X}; E_{-\alpha_{2}}) \to L^{2}(\mathcal{X}; E_{-(\alpha_{1}+2\alpha_{2})}).$$

Thanks to Proposition 4.11, these operators are defined precisely so that each of the four diamonds

in the diagram

anticommutes modulo $\mathcal{K}_1 + \mathcal{K}_2$.

Let $\Upsilon = \{w \cdot (-\rho) + \rho \mid w \in \mathsf{W}\} \subseteq \Lambda_W$. These are the negatives of the weights appearing in the diagram above. Recall that there is a length function $l : \mathsf{W} \to \mathbb{N}$ on the Weyl group, defined by letting l(w) be the length of the shortest word in simple reflections which represents w. We partition Υ according to the length of the Weyl group elements: $\Upsilon_p = \{w \cdot (-\rho) + \rho \mid w \in \mathsf{W}, \ l(w) = p\}$. Let H_p denote the Hilbert space

$$H_p = \bigoplus_{\mu \in \Upsilon_p} L^2(\mathcal{X}; E_{-\mu}),$$

and let $H = \bigoplus_{p=0}^{3} H_p$, endowed with the $\mathbb{Z}/2\mathbb{Z}$ -grading coming from the parity of p.

If $\mu, \nu \in \Upsilon$, we identify an operator in $\mathcal{B}(E_{-\mu}, E_{-\nu})$ with the operator on H obtained by extending it trivially on each $L^2(\mathcal{X}; E_{-\mu'})$ for $\mu' \neq \mu$. Let $\mathcal{A}(H), \mathcal{K}_1(H), \mathcal{K}_2(H), \mathcal{K}(H)$ denote the above defined C^* -algebras of operators on $H = \bigoplus_{\mu \in \Upsilon} L^2(\mathcal{X}; E_{-\mu})$.

Denote by Q_{μ} the projection onto a component $L^{2}(\mathcal{X}; E_{-\mu})$ of H. Let the continuous functions $f \in C(\mathcal{X})$ act 'diagonally' as multiplication operators on each component of H, and let group elements be represented on H by $U(g) = \bigoplus_{\mu \in \Upsilon} U_{-\mu}(g)$.

The following is a simple generalization of a key step in the construction of the Kasparov product (see [HR00, Proposition 9.2.5]).

Lemma 5.1. There exist positive operators, $M_1, M_2 \in \mathcal{B}(H)$ with $M_1^2 + M_2^2 = 1$, such that

- (i) $M_i \mathcal{K}_i(H) \subseteq \mathcal{K}(H)$ for i = 1, 2,
- (ii) M_1 and M_2 commute, modulo $\mathcal{K}(H)$, with all multiplication operators $f \in C(\mathcal{X})$, all representations of group elements U(g) for $g \in G$, and all operators appearing in the normalized BGG complex (5.1).
- (iii) M_1 and M_2 commute on the nose with the representation of the compact group $U(\mathsf{K})$, and with the projections Q_{μ} .

Proof. Let $S \subseteq \mathcal{B}(H)$ be the set consisting of all multiplication operators $f \in C(\mathcal{X})$, all U(g) for $g \in G$, all operators appearing in the normalized BGG complex, and all projections Q_{μ} for $\mu \in \Upsilon$. With i = 1, 2, let $\mathcal{K}_{i}^{0}(H)$ be the smallest C^{*} -subalgebra of $\mathcal{B}(H)$ which contains the projections $P_{k}^{(i)}$ and

is derived by S, ie, such that $[S, \mathcal{K}_i^0(H)] \subseteq \mathcal{K}_i^0$ for all $S \in S$. Note that this is a separable C^* -algebra, and that $\mathcal{K}_i^0(H) \subseteq \mathcal{K}_i(H)$. Moreover, $\mathcal{K}_i^0(H)\mathcal{K}_i(H)$ contains all operators which are spectrally finite for α_i , and hence is dense in $\mathcal{K}_i(H)$. So it suffices to prove property (i) with the algebras $\mathcal{K}_i^0(H)$ in place of $\mathcal{K}_i(H)$.

By the Kasparov Technical Theorem ([HR00, Theorem 3.8.1]), there exists a self-adjoint operator $Z \in \mathcal{B}(H)$, with $0 \leq Z \leq 1$, such that $Z \cdot \mathcal{K}_1^0(H) \subseteq \mathcal{K}(H)$, $(1-Z) \cdot \mathcal{K}_2^0(H) \subseteq \mathcal{K}(H)$, and $[Z, \mathcal{S}] \subseteq \mathcal{K}(H)$. Standard averaging tricks, as in the proof of [HR00, Proposition 9.2.5] ensure that we can choose Z satisfying the on-the-nose commutation properties of (iii). Now put $M_1 = Z^{\frac{1}{2}}$, $M_2 = (1-Z)^{\frac{1}{2}}$.

Amend the diagram (5.1) as follows:

Let F denote the operator on H obtained by adding together all the operators of this diagram, plus their adjoints.

Theorem 5.2. The operator F on the graded Hilbert space H, together with the multiplication representation of $C(\mathcal{X})$ and the unitary representation $U(\mathsf{G})$, defines a cycle θ of $KK^\mathsf{G}(C(\mathcal{X}),\mathbb{C})$.

Proof. Since $[X_i, f]$, $[X_i, U(g)] \in \mathcal{K}_i(H)$ for all $f \in C(\mathcal{X})$, $g \in G$, it is straightforward to see that each component of F commutes with each f and U(g) modulo compact operators. The diamonds in (5.2) anti-commute modulo $\mathcal{K}(H)$, and hence the components of F^2 which alter the degree p are all compact. We consider now those components which preserve the degree. Let \sim denote equality modulo compact operators.

- The component of F^2 preserving $H_0=L^2(\mathcal{X};E_0)$ is $X_1'M_1^2X_1+X_2'M_2^2X_2 \sim M_1^2\left(X_1'X_1-1\right)+M_2^2\left(X_2'X_2-1\right)+1 \sim 1.$
- The component preserving $H_1 = L^2(\mathcal{X}; E_{\alpha_1}) \oplus L^2(\mathcal{X}; E_{\alpha_2})$ is given by a 2×2 -matrix. Modulo compacts, the component mapping $L^2(\mathcal{X}; E_{\alpha_1})$ to itself is

$$M_1^2 X_1 X_1' + M_2^4 X_2^2 {X_2'}^2 + M_1^2 M_2^2 T_1' T_1 \ \sim \ M_1^2 + M_2^4 + M_1^2 M_2^2 = 1.$$

and the component mapping $L^2(\mathcal{X}; E_{\alpha_1})$ to $L^2(\mathcal{X}; E_{\alpha_2})$ is

$$\begin{split} &M_1 M_2 X_2 X_1' + M_1^3 M_2 {X_1'}^2 T_1 + M_1 M_2^3 T_2' X_2^2 \\ &= M_1^2 (M_1 M_2 (X_2 {X_1'} + {X_1'}^2 T_1)) + M_2^2 (M_1 M_2 (X_2 {X_1'} + T_2' X_2^2)) \sim 0. \end{split}$$

The other two components can be computed similarly, with the result that the diagonal components equal 1 and off-diagonal components equal 0 modulo compacts.

• On H_2 and H_3 , analogues of the above calculations similarly show that F^2 equals the identity modulo compact operators.

Finally, by Lemma 4.9, F is G-continuous.

Proposition 5.3. The K-equivariant index of θ is 1, and hence, by Theorem 1.1, it is a model for $\gamma \in KK^{\mathsf{G}}(\mathbb{C},\mathbb{C})$.

Proof. The operator F is K-equivariant on the nose, so its K-index is the sum of the K-indices of each K-isotypical component. Since these components are all finite-dimensional, this amounts to simply determining the graded dimension of each component of H. These graded dimensions can be deduced immediately by observing that, as $U(\mathsf{K})$ -representations, the spaces $L^2(\mathcal{X}; E_{-\mu})$ appearing in (5.2) are exactly the same as (the L^2 -completions of) those appearing in the BGG resolution of the trivial representation for G .

Remark 5.4. If one does not wish to appeal to the BGG resolution, one can instead make a direct computation of the graded dimensions by using the Weyl character formula or the more elementary remarks of [FH91, p. 184].

References

- [AS68] M. F. Atiyah and I. M. Singer. The index of elliptic operators. I. Ann. of Math. (2), 87:484–530, 1968.
- [BCH94] P. Baum, A. Connes, and N. Higson. Classifying space for proper actions and K-theory of group C*-algebras. In C*-algebras: 1943–1993 (San Antonio, TX, 1993), volume 167 of Contemp. Math., pages 240–291, Providence, RI, 1994. Amer. Math. Soc.
- [BGG75] I. Bernstein, I. Gel'fand, and S. Gel'fand. Differential operators on the base affine space and a study of g-modules. In *Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971)*, pages 21–64, New York, 1975. Halsted.
- [Con79] Alain Connes. Sur la théorie non commutative de l'intégration. In Algèbres d'opérateurs (Sém., Les Plans-sur-Bex, 1978), volume 725 of Lecture Notes in Math., pages 19–143. Springer, Berlin, 1979.
- [ČSS01] Andreas Čap, Jan Slovák, and Vladimír Souček. Bernstein-Gelfand-Gelfand sequences. Ann. of Math. (2), 154(1):97–113, 2001.
- [FH91] W. Fulton and J. Harris. Representation theory, volume 129 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1991. Readings in Mathematics.

- [Hig98] Nigel Higson. The Baum-Connes conjecture. In *Proceedings of the International Congress of Mathematicians, Vol. II (Berlin, 1998)*, pages 637–646, 1998.
- [HR00] N. Higson and J. Roe. *Analytic K-Homology*. Oxford Mathematical Monographs. Oxford University Press, Oxford, 2000.
- [HRY93] N. Higson, J. Roe, and G. Yu. A coarse mayer-vietoris principle. Math. Proc. Cambridge Philos. Soc., 114(1):85–97, 1993.
- [JK95] P. Julg and G. Kasparov. Operator K-theory for the group SU(n, 1). J. Reine Angew. Math., 463:99–152, 1995.
- [Kas84] G. Kasparov. Lorentz groups: K-theory of unitary representations and crossed products. Dokl. Akad. Nauk SSSR, 275(3):541–545, 1984.
- [KS61] R. A. Kunze and E. M. Stein. Uniformly bounded representations. II. Analytic continuation of the principal series of representations of the $n \times n$ complex unimodular group. Amer. J. Math., 83:723–786, 1961.
- [Mit02] P. Mitchener. C^* -categories. Proc. London Math. Soc. (3), 84(2):375–404, 2002.
- [Mol06] A. I. Molev. Gel'fand-Tsetlin bases for classical lie algebras. In M. Hazewinkel, editor, *Handbook of algebra. Vol. 4*, pages 109–170. Elsevier, 2006.
- [MS06] Calvin C. Moore and Claude L. Schochet. Global analysis on foliated spaces, volume 9 of Mathematical Sciences Research Institute Publications. Cambridge University Press, New York, second edition, 2006.
- [Roe03] J. Roe. Lectures on Coarse Geometry, volume 31 of University Lecture Series. American Mathematical Society, Providence, RI, 2003.
- [Tay81] Michael E. Taylor. Pseudodifferential operators, volume 34 of Princeton Mathematical Series. Princeton University Press, Princeton, N.J., 1981.
- [Yun06] R. Yuncken. Analytic Structures for the Index Theory of $SL(3, \mathbb{C})$. PhD thesis, Penn State University, 2006.