Momentum Practice

Fill in the blanks in these sentences.

Use the words N, momentum, velocity, resultant force, second, multiply.

__ measures how hard it is to start or stop something moving.

If a trolley has $100\,\mathrm{kg}$ m/s of momentum, then it will need a 100

to stop it in one _____.

To calculate the momentum, you _____ the mass by the _____

2 Calculate the momentum of a 0.15 kg tennis ball served at 40 m/s.

- 3 Calculate the momentum of a $150\,000$ kg whale swimming at 6 m/s.
- 4 Calculate the momentum of
 - (a) a 75 kg jogger running at 2.5 m/s,
 - (b) a 25 kg child running at 2.5 m/s,
 - (c) a 75 kg cyclist riding at 7.0 m/s.
- Look at your answers to question 4 and complete these sentences. Use the words mass, velocity, harder, easier, higher and lower.
 - (a) The cyclist is to stop than the jogger because they have a
 - (b) The child is _____ to stop than the jogger because they have a _____
- 6 For each pair, work out which one is harder to stop in terms of force.
 - (a) A 250 kg tiger running at 20 m/s or an 3000 kg elephant walking at 0.6 m/s.
 - (b) A $3000 \ \text{kg}$ jet at $500 \ \text{m/s}$ or a $20\,000\,000 \ \text{kg}$ ship at $11 \ \text{m/s}$.
 - (c) A 300 kg horse at 15 m/s or a 90 kg ski jumper at 25 m/s.

7	A loaded supermarket trolley requires a 45 N force to stop it in one second.
	(a) Write down the momentum of the trolley when it was moving.
	(b) The mass is 15 kg. Work out the velocity of the trolley using an equation momentum (kg m/s) $=$ mass (kg) \times velocity (m/s) $=$ 15 \times
8	A rising fish has 18 kg m/s of momentum. (a) If its mass is 12 kg, how fast is it going?
	(b) How much resultant force was needed to start the motion in one second?
9	A loaded supermarket trolley requires a 60 N force to stop it in one second.
9	A loaded supermarket trolley requires a 60 N force to stop it in one second. (a) Write down the momentum of the trolley when it was moving.
9	(a) Write down the momentum of the trolley when it was moving. (b) The velocity was $0.8\mathrm{m/s}$. Work out the mass of the trolley using an equation
9	(a) Write down the momentum of the trolley when it was moving.
9	(a) Write down the momentum of the trolley when it was moving. (b) The velocity was $0.8\mathrm{m/s}$. Work out the mass of the trolley using an equation
	(a) Write down the momentum of the trolley when it was moving. (b) The velocity was 0.8 m/s. Work out the mass of the trolley using an equation momentum $(kg m/s) = mass (kg) \times velocity (m/s) = 0.8$
9	(a) Write down the momentum of the trolley when it was moving. (b) The velocity was 0.8 m/s. Work out the mass of the trolley using an equation momentum (kg m/s) = mass (kg) × velocity (m/s)

$$\mathsf{force} = \boxed{ \div}$$

- 12 A 75 kg passenger is riding in a tram at 6 m/s.
 - (a) How much force is needed to stop them in one second?
 - (b) How much force would be needed to stop them in two seconds?

