EAS 5830: BLOCKCHAINS

ZCash

Professor Brett Hemenway Falk

Zcash

- Founded in 2016
- Based on ZeroCoin (2013)
- Based on Bitcoin
 - Proof of Work
 - UTXO model
- Peak market cap \$2.5 B (January 2018)
- Market cap \$475 M (November 2023)

Zcash protocol upgrades

- Sapling 2018
- Blossom 2019
- Heartwood 2020
- Canopy 2020
- <u>NU5</u>

Account types

- Transparent
 - t-addresses have the same privacy as Bitcoin (none)
- Shielded
 - o z-addresses are private

Zcash

Basic ZEC Spend Types

	Public	Private
Sender	X	
Receiver	X	
Amount	X	

	Public	Private
Sender	X	
Receiver		X
Amount	X	

	Public	Private
Sender		X
Receiver		X
Amount		X

Private

	Public	Private
Sender		X
Receiver	X	
Amount	X	

Most transactions are public

- Only 6% Z-to-Z
- 85% T-to-T

Founders reward

- Miners receive 80% of ZEC mined
 - Initially 20% split between "<u>founders fund</u>" and core development
 - Now, <u>20% split between ECC</u>,
 <u>ZCash Foundation and Grants</u>
 - Cumulative ZEC worth about
 ~\$250M distributed via this
 mechanism

Distribution of rewards pre November 2020

Distribution of rewards after November 2020

Proof of Work

- Zcash is built on Bitcoin, and uses Proof-of-Work consensus
- Zcash uses equihash PoW (unlike Bitcoin)
- Equihash requires more memory than Bitcoin PoW
 - Designed to be "ASIC-resistant"
 - Bitmain released Equihash ASICs in 2021
- Several other coins use equihash (including Bitcoin Gold)

How does ZCash work?

Private transactions - Notes and Nullifiers

- Private transactions in Zcash are based on "notes" and "nullifiers"
 - Note is like an encrypted UTXO
 - Nullifier is a receipt that note has been spent
- Note: (*PK*, *v*, *r*)
 - \circ *PK* = receiver's public key
 - \circ v = value
 - \circ r = randomly generated serial number (required to spend the note)
- Nullifier: Hash(r)
 - \circ "Nullifies" (spends) the note with serial number r

- Miners maintain an append-only list of
 - Committed notes
 - Nullifier hashes

Notes	Nullifiers
$\operatorname{Com}(pk_1, v_1, r_1)$	H(<i>r</i> ₃)
$\operatorname{Com}(pk_{2},v_{2},r_{2}^{})$	
Com(pk_3 , v_3 , r_3)	
$\operatorname{Com}(pk_{\scriptscriptstyle{4'}},v_{\scriptscriptstyle{4'}},r_{\scriptscriptstyle{4}}^{})$	

- To send v_2 from pk_2 to pk_5
 - \circ Create a new note owned by $pk_{\scriptscriptstyle 5}$

Notes	Nullifiers
$\operatorname{Com}(pk_1, v_1, r_1)$	H(<i>r</i> ₃)
Com(pk ₂ , v ₂ , r ₂)	
Com(pk ₃ , v ₃ , r ₃)	
Com(pk ₄ , v ₄ , r ₄)	
$\operatorname{Com}(pk_{\scriptscriptstyle{5}},v_{\scriptscriptstyle{5}},r_{\scriptscriptstyle{5}})$	

- To send v_2 from pk_2 to pk_5
 - \circ Create a new note owned by pk_5
 - Nullify existing note

Notes	Nullifiers
$Com(pk_{\scriptscriptstyle{1}},v_{\scriptscriptstyle{1}},r_{\scriptscriptstyle{1}})$	H(<i>r</i> ₃)
$Com(pk_2, v_2, r_2)$	H(r ₂)
$Com(pk_{\scriptscriptstyle{3}},v_{\scriptscriptstyle{3}},r_{\scriptscriptstyle{3}})$	
$Com(pk_{\scriptscriptstyle{4}},v_{\scriptscriptstyle{4}},r_{\scriptscriptstyle{4}})$	
$Com(pk_{\scriptscriptstyle{5}},v_{\scriptscriptstyle{5}},r_{\scriptscriptstyle{5}})$	

- To send v_2 from pk_2 to pk_5
 - \circ Create a new note owned by pk_5
 - Nullify existing note

Notes	Nullifiers
Com(pk_1, v_1, r_1)	H(<i>r</i> ₃)
$Com(pk_2, v_2, r_2)$	H(r ₂)
$Com(pk_{\scriptscriptstyle{3}},v_{\scriptscriptstyle{3}},r_{\scriptscriptstyle{3}})$	
$Com(pk_{\scriptscriptstyle{4}},v_{\scriptscriptstyle{4}},r_{\scriptscriptstyle{4}})$	
$Com(pk_{\scriptscriptstyle{5}},v_{\scriptscriptstyle{5}},r_{\scriptscriptstyle{5}})$	

- To send v_2 from pk_2 to pk_5
 - \circ Create a new note owned by pk_5
 - Nullify existing note
 - Create ZK proof
 - lacktriangleright Prove (in Zero-Knowledge) that r_2 appears in list of committed notes
 - Prove (in Zero-Knowledge) that input value (v_2) equals output value (v_5)

Notes	Nullifiers
$Com(pk_1, v_1, r_1)$	H(r ₃)
$Com(pk_2, v_2, r_2)$	H(r ₂)
$Com(pk_{\scriptscriptstyle{3}},v_{\scriptscriptstyle{3}},r_{\scriptscriptstyle{3}})$	
$Com(pk_{\scriptscriptstyle{4}},v_{\scriptscriptstyle{4}},r_{\scriptscriptstyle{4}})$	
$Com(pk_{\scriptscriptstyle{5}},v_{\scriptscriptstyle{5}},r_{\scriptscriptstyle{5}})$	

- To send v_2 from pk_2 to pk_5
 - \circ Create a new note owned by pk_5
 - Nullify existing note
 - Create ZK proof
 - Prove (in Zero-Knowledge) that r_2 appears in list of committed notes
 - Prove (in Zero-Knowledge) that input value (v_2) equals output value (v_5)
- Validating a transaction
 - Check that $H(r_2)$ is not in the nullifier list
 - Check ZK Proof

Notes	Nullifiers
$Com(pk_1, v_1, r_1)$	H(r ₃)
$Com(pk_2, v_2, r_2)$	H(r ₂)
Com(pk_3 , v_3 , r_3)	
$Com(pk_{\scriptscriptstyle{4}},v_{\scriptscriptstyle{4}},r_{\scriptscriptstyle{4}})$	
$Com(pk_{\scriptscriptstyle{5}},v_{\scriptscriptstyle{5}},r_{\scriptscriptstyle{5}})$	

- To send v_2 from pk_2 to pk_5
 - \circ Create a new note owned by pk_5
 - Nullify existing note
 - Create ZK proof
 - Prove (in Zero-Knowledge) that r_2 appears in list of committed notes
 - Prove (in Zero-Knowledge) that input value (v_2) equals output value (v_5)
- Validating a transaction
 - Check that $H(r_2)$ is not in the nullifier list
 - Check ZK Proof

Notes	Nullifiers
Com(pk_1, v_1, r_1)	H(r ₃)
Com(pk ₂ , v ₂ , r ₂)	H(r ₂)
Com(pk_3, v_3, r_3)	
Com(pk ₄ , v ₄ , r ₄)	
$\operatorname{Com}(pk_5, v_5, r_5)$	

Validators can see you "spent" a note in the list of notes, but not which one

- To send v_2 from pk_2 to pk_5
 - \circ Create a new note owned by pk_5
 - Nullify existing note
 - Create ZK proof
 - Prove (in Zero-Knowledge) that r_2 appears in list of committed notes
 - Prove (in Zero-Knowledge) that input value (v_2) equals output value (v_5)
- Validating a transaction
 - Check that $H(r_2)$ is not in the nullifier list
 - Check ZK Proof

Notes	Nullifiers
$\boxed{\operatorname{Com}(pk_{\scriptscriptstyle 1},v_{\scriptscriptstyle 1},r_{\scriptscriptstyle 1})}$	H(r ₃)
Com(pk ₂ , v ₂ , r ₂)	H(r ₂)
Com(pk_3 , v_3 , r_3)	
$Com(pk_{\scriptscriptstyle{4}},v_{\scriptscriptstyle{4}},r_{\scriptscriptstyle{4}})$	
$Com(pk_{\scriptscriptstyle{5}},v_{\scriptscriptstyle{5}},r_{\scriptscriptstyle{5}})$	

How do you give r_5 to owner of pk_5 ?

Transmitting *r*

- r_5 is needed to spend the new note
- Getting r_5 to owner of pk_5 is complicated
 - \circ Encrypt $r_{\scriptscriptstyle 5}$ under $pk_{\scriptscriptstyle 5}$ and broadcast
 - \circ Sender still knows $r_{\scriptscriptstyle 5}$ and could spend note first
- Exact method changed during different iterations of Zcash