

Syntactic Analysis

Building a LR(0) Parser

Copyright 2009, Pedro C. Diniz, all rights reserved.

Students enrolled in the Compilers class at Instituto Superior Técnico (IST/UTL) have explicit permission to make copies of these materials for their personal use.

Key Insights

- Need to Capture State
 - Which portion of a given Production we have seen so far
 - What are the Non-terminal on the Stack

- We have already seen α β_1
- Need to Encode that Knowledge on a Stack for later

Valid Items

Definition: Item A $\rightarrow \beta_1 \bullet \beta_2$ is valid for a *viable prefix* α β_1 if there is a derivation

$$S' \underset{rm}{\overset{*}{\Rightarrow}} \alpha A \omega \underset{rm}{\Rightarrow} \alpha \beta_1 \beta_2 \omega$$

- 1. If $\beta_2 \neq \epsilon$ then the valid item $A \to \beta_1 \bullet \beta_2 \,$ suggest that the action should be a sbift
- 2. If $\beta_2=\epsilon$ then the valid item A $\boldsymbol{\to}$ β_1 * suggest the action should be a reduce

Item captures how much of a given production we have scanned so far

Valid Items - in Pictures

$$S' \stackrel{*}{\Longrightarrow} \alpha A \omega \Longrightarrow \alpha \beta_1 \beta_2 \omega$$

Item A $\rightarrow \beta_1 \bullet \beta_2$ is valid for a viable prefix $\alpha \beta_1$ if there is a derivation

$$S' \stackrel{*}{\underset{rm}{\Longrightarrow}} \alpha A \omega \stackrel{*}{\underset{rm}{\Longrightarrow}} \alpha \beta_1 \beta_2 \omega$$

Sets of Items: Closure

- Algorithm for closure(I)
 - Every item in \boldsymbol{I} is also an item in $\boldsymbol{closure(I)}$
 - If $A \rightarrow \alpha \cdot B \beta$ is in **closure(I)** and $B \rightarrow \cdot \gamma$ is an item, then add $B \rightarrow \cdot \gamma$ to **closure(I)**
 - Repeat until no more new items can be added to closure(I)

Sets of Items: Closure

- Algorithm for closure(I)
 - Every item in ${\bf I}$ is also an item in ${\bf closure}({\bf I})$
 - If $A \rightarrow \alpha \cdot B \beta$ is in **closure(I)** and $B \rightarrow \cdot \gamma$ is an item, then add $B \rightarrow \cdot \gamma$ to **closure(I)**
 - Repeat until no more new items can be added to ${\bf closure}(I)$

The Goto Operation

- On a Reduction which state should the parser go to?
- The new state after consuming a grammar symbol while at the current state
- Algorithm for goto(I, X) where I is a set of items and \mathbf{X} is a grammar symbol

goto(I, X) = closure(
$$\{A \rightarrow \alpha X \cdot \beta \mid A \rightarrow \alpha \cdot X \beta \text{ in I }\}$$
)

• goto is the new set obtained by "moving the dot" over X

LR(0) Items

- Recall: An Item captures how much of a given production we have scanned so far
 - $\langle X \rangle \rightarrow (\langle X \rangle)$
- Represented by 4 items

 - $\begin{array}{cccc}
 & < & \times & \rightarrow & (& < & \times &) \\
 & & & & \times & (& & < & \times &) \\
 & & & & & & (& & \times & \times &) \\
 & & & & & & & (& & \times & \times &) \\
 & & & & & & & & (& & \times & \times &) \\
 \end{array}$


```
Question: Find the Closure

• Find closure(\langle s \rangle \rightarrow \cdot \langle x \rangle \$)

[Items
\langle s \rangle \rightarrow \cdot \langle x \rangle \ast \ast \langle x \rangle \rightarrow \cdot \langle x \rangle \ast (\langle x \rangle)
\langle x \rangle \rightarrow \cdot (\langle x \rangle)
\langle x
```


Building the DFA states Example

- Start with the production <S'> \rightarrow <S> \$
- Create the first state to be $closure(<s'> \rightarrow \cdot <s> *)$
- Pick a state ${f I}$
 - for each $A \rightarrow \alpha \cdot X \beta$ in I
 - find goto(I, X)
 - if goto(I, X) is not already a state, make one
 - Add an edge X from state I to $goto(I,\,X)$ state
- Repeat until no more additions possible

Building the DFA states Example

Start with the production <S'> → · <S> \$
Create the first state to be closure(<S'> → · <S> \$)
Pick a state I
for each A → α · X β in I
find goto(I, X)
if goto(I, X) is not already a state, make one
Add an edge X from state I to goto(I, X) state
Repeat until no more additions possible

Constructing a LR(0) Parse Engine

- Build a DFA
 - DONE
- Construct a parse table using the DFA

Creating the Parse Tables

- For each State
 - Transition to another State using a Terminal Symbol is a shift to that State (shift to sn)
 - Transition to another State using a Non-Terminal is a goto to that State (goto sn)
 - If there is an Item A → α in the State do a Reduction with that Production for all Terminals (reduce k)

