MATH-F211 : Topologie TP 8 - Connexité II

Thomas Saillez, Andriy Haydys

Exercice 1. Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction telle que $f^{-1}(\{x\})$ contient exactement deux points pour tout $x \in \mathbb{R}$. Démontrer que f n'est pas continue.

(Conseil: Essayer de dessiner la fonction d'abord.)

Exercice 2. Soit X un ensemble non-vide. Démontrer que la topologie cofinie sur l'ensemble X est connexe ssi X est infini ou X contient un seul point.

Exercice 3. Démontrer que si il existe une surjection de l'ensemble X vers les réels alors X muni de la topologie cofinie est un espace connexe par arcs.

Exercice 4. Soit (X,d) un espace métrique. On dit qu'il est bien enchaîné si pour tous points $x,y \in X$ et tout $\epsilon > 0$ il existe une collection de points a_0, a_1, \ldots, a_n tels que $a_0 = x$, $a_n = y$ et pour tout $i = 1, \ldots, n$ on a l'inégalité $d(a_{i-1}, a_i) \leq \epsilon$. On appellera une telle collection de point une ϵ -chaîne.

(a) Pour $a \in X$ et $\epsilon > 0$, posons

$$A(x,\epsilon) = \{y \in X | \text{ il existe une } \epsilon - \text{chaîne entre } x \text{ et } y \}.$$

Démontrer que $A(x, \epsilon)$ est ouvert.

- (b) Démontrer que $A(x, \epsilon)$ est fermé.
- (c) En déduire que tout espace connexe est bien enchaîné. Démontrer que la réciproque est fausse.

Exercices frigo

Exercice 5. Soit X un espace topologique et $(U_i)_{n\in\mathbb{N}}$ une famille de sousensembles connexes de X. On suppose que pour tout $i\in\mathbb{N},\ U_i\cap U_{i+1}$ est non-vide. Démontrer que $\bigcup_{i=1}^{\infty}U_i$ est un sous-ensemble connexe de X.

Exercice 6. Soit $A \subset \mathbb{R}$ un sous-ensemble strict de \mathbb{R} contenant au moins deux points. Montrer que A est connexe ssi A est un intervalle.