

Universidad Católica del Uruguay

FACULTAD DE INGENIERÍA

Proyecto - Polinomios de Taylor

Cálculo Aplicado

Profesores: Maglis Mujica y Martín Perciante

Autores:

Luis Balduini (4.001.184-9)

Leandro Casaretto (x.xxx.xxx-x)

Juan Manuel Pérez (4.673.899-0)

1. Introducción

El presente informe aborda el uso del **polinomio de Taylor** como herramienta para aproximar modelos físicos y simplificar la resolución de problemas que, de otro modo, requerirían técnicas analíticas avanzadas. Se consideran dos situaciones independientes:

- Parte 1: la variación de la aceleración gravitatoria con la distancia al centro terrestre, basada en la ley de gravitación universal.
- Parte 2: la caída libre vertical con rozamiento lineal (fuerza de arrastre proporcional a la velocidad).

Ambos casos comparten el objetivo de responder: ¿en qué régimen es válido reemplazar la función exacta por un polinomio de baja orden y qué error se comete?

2. Marco Teórico: Polinomios de Taylor

2.1. Definición y Motivación

Sea f una función real de variable real suficientemente diferenciable en un entorno de un punto a. El polinomio de Taylor de grado n de la función f centrado en a se define como:

$$P_n(f, a; x) = \sum_{k=0}^{n} \frac{f^{(k)}(a)}{k!} (x - a)^k.$$

Este polinomio ofrece una aproximación de f cerca de x = a, aprovechando la información de las derivadas de orden inferior.

2.2. Teorema de Taylor con Resto

El Teorema de Taylor establece que, si f es de clase C^{n+1} en un intervalo que contiene a a y x, existe un punto ξ entre a y x tal que:

$$f(x) = P_n(f, a; x) + R_{n+1}(x),$$

donde el resto en forma de Lagrange está dado por:

$$R_{n+1}(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!}(x-a)^{n+1}.$$

Esta expresión cuantifica el error de aproximación cuando se utiliza el polinomio de grado n.

2.3. Propiedades Fundamentales

- Para n = 0, $P_0(f, a; x) = f(a)$; la aproximación es constante.
- Para n = 1, $P_1(f, a; x) = f(a) + f'(a)(x a)$; tangente lineal.
- Si f es polinómica de grado $\leq n$, entonces $R_{n+1}(x) = 0$; la aproximación es exacta.
- El polinomio de Taylor converge a f cuando $n \to \infty$ si $\lim_{n \to \infty} R_{n+1}(x) = 0$ para x en el intervalo.

3. Desarrollo

A continuación se presentan los desarrollos planteados en el informe, divididos en dos partes según los problemas planteados.

3.1. Modelo de Gravitación Universal

Se considera la aceleración gravitatoria como una función de la distancia r al centro de la Tierra, dada por:

$$a(r) = f(r) = -\frac{GM}{r^2}$$

Valores base utilizados para los cálculos

- $G = 6.67430 \times 10^{-11} \text{ Nm}^2/\text{kg}^2$
- $M = 5.972 \times 10^{24} \text{ kg}$
- $R_T = 6.371 \times 10^6 \text{ m}$ (Radio de la Tierra)
- $-GM = 3.986004418 \times 10^{14} \text{ m}^3/\text{s}^2$

3.1.1. Desarrollo con Polinomio de Taylor de orden 1

Se toma la función:

$$f(r) = -\frac{GM}{r^2} \quad \text{con} \quad r_0 = R_T$$

El desarrollo de Taylor de orden 1 alrededor de r_0 es:

$$f(r) \approx f(r_0) + f'(r_0)(r - r_0)$$

$$f(R_T) = -\frac{GM}{R_T^2}$$

Derivamos la función original:

$$f(r) = -\frac{GM}{r^2} \quad \Rightarrow \quad f'(r) = \frac{d}{dr} \left(-GM \cdot r^{-2} \right) = 2GM \cdot r^{-3} = \frac{2GM}{r^3}$$

Evaluando la derivada en $r = R_T$:

$$f'(R_T) = \frac{2GM}{R_T^3}$$

Entonces, el polinomio de Taylor de orden 1 alrededor de R_T es:

$$P_1(r) = f(R_T) + f'(R_T)(r - R_T) = -\frac{GM}{R_T^2} + \frac{2GM}{R_T^3}(r - R_T)$$

3.1.2. Evaluación en RT+h con h = 8849 m

Dado que $r = R_T + h$, entonces:

$$f(R_T + h) = -\frac{GM}{(R_T + h)^2}$$

Ya habíamos calculado:

$$f(R_T) = -\frac{GM}{R_T^2} = -\frac{3,986004418 \times 10^{14} \text{ m}^3/\text{s}^2}{(6,371 \times 10^6 \text{ m})^2} = -9,82025 \text{ m/s}^2$$

$$f(R_T + h) = -\frac{3,986004418 \times 10^{14} \text{ m}^3/\text{s}^2}{(6,371 \times 10^6 \text{ m} + 8849 \text{ m})^2} = -9,79303 \text{ m/s}^2$$

Calculamos el cambio relativo:

$$\Delta_{\text{rel}} = \frac{f(R_T + h) - f(R_T)}{f(R_T)} = \frac{-GM[(R_T + h)^{-2} - R_T^{-2}]}{-GM \cdot R_T^{-2}} = \left(\frac{1}{(1 + \frac{h}{R_T})^2}\right) - 1$$

$$\frac{h}{R_T} = \frac{8849}{6.371,000} = 1,388 \times 10^{-3} \quad \Rightarrow \quad \Delta_{\rm rel} = (1 + 1,388 \times 10^{-3})^{-2} - 1 = -2,772 \times 10^{-3}$$

Equivalente a 0,277 %

Este pequeño cambio sugiere que, para variaciones de altura como h = 8849 m, el valor de g puede considerarse constante sin pérdida significativa de precisión.

Podemos también aproximar $f(R_T + h)$ usando el polinomio de Taylor de orden 1 calculado previamente:

$$P_1(R_T + h) = -\frac{GM}{R_T^2} + \frac{2GM}{R_T^3} \cdot h$$

3.1.3. Polinomio de Taylor de orden 2 en RT + h

La función que estamos considerando es:

$$f(r) = -\frac{GM}{r^2}$$

Ya se obtuvieron las siguientes derivadas:

$$f'(r) = \frac{2GM}{r^3}, \qquad f''(r) = -\frac{6GM}{r^4}$$

Por lo tanto, el polinomio de Taylor de orden 2 alrededor de $r_0 = R_T$ es:

$$P_2(R_T + h) = f(R_T) + f'(R_T) \cdot h + \frac{1}{2}f''(R_T) \cdot h^2$$

Sustituyendo los valores conocidos:

$$f(R_T) = -\frac{GM}{R_T^2}, \quad f'(R_T) = \frac{2GM}{R_T^3}, \quad f''(R_T) = -\frac{6GM}{R_T^4}$$

$$P_2(R_T + h) = -\frac{GM}{R_T^2} + \frac{2GM}{R_T^3} \cdot h - \frac{1}{2} \cdot \frac{6GM}{R_T^4} \cdot h^2$$

$$\Rightarrow P_2(R_T + h) = -\frac{GM}{R_T^2} + \frac{2GM}{R_T^3} \cdot h - \frac{3GM}{R_T^4} \cdot h^2$$

Al momento de realizar las operaciones, se obtiene:

$$P_2(R_T + h) = -9.82025 + 0.02727 \cdot h - 0.00000569 \cdot h^2 = -9.79304 \text{ m/s}^2$$

Comparación:

Valor exacto: $-9,79303 \text{ m/s}^2$

Polinomio de Taylor de orden 2: $-9,79304 \text{ m/s}^2$

Este polinomio permite una aproximación más precisa de la aceleración gravitatoria a una altura h sobre la superficie terrestre, considerando también el efecto cuadrático del cambio de altura.

3.1.4. Gráfica de r0 = RT y polinomio de Taylor de orden 2

Para analizar el comportamiento del polinomio de Taylor de orden 2 con respecto a la función original de aceleración gravitatoria, se realizó una gráfica que compara ambas expresiones en el rango $[R_T, R_T + 20\,000]$ m, es decir, desde la superficie de la Tierra hasta 20 km de altitud.

- \blacksquare En azul se presenta la función original: $f(r)=-\frac{GM}{r^2}.$
- \blacksquare En rojo punteado, el polinomio de Taylor de orden 2, centrado en R_T .
- Se incluye una línea vertical verde indicando la altura del Monte Everest (8849 m).

Como se puede observar, el polinomio de Taylor aproxima de forma muy precisa a la función original en el entorno inmediato de R_T . A medida que la altura se incrementa, la diferencia se vuelve levemente más significativa, aunque aún menor al 1 %, validando el uso del polinomio para pequeñas alturas.

Figura 1: Gráfica de $r_0=R_T$ y polinomio de Taylor de orden 2

3.1.5. ¿Cuánto debe alejarse un cuerpo para que g sea 1% menor?

Queremos encontrar la distancia r tal que la aceleración gravitatoria disminuya un 1 % respecto a la que se experimenta en la superficie terrestre. Es decir:

$$|f(R_T)| = \frac{GM}{R_T^2}$$
, y queremos: $\frac{GM}{r^2} = 0.99 \cdot \frac{GM}{R_T^2}$

Cancelando GM en ambos lados de la ecuación:

$$\frac{1}{r^2} = 0.99 \cdot \frac{1}{R_T^2} \quad \Rightarrow \quad r^2 = \frac{R_T^2}{0.99}$$

$$r = \frac{R_T}{\sqrt{0.99}} \approx 6403095 \,\mathrm{m}$$

$$h = r - R_T = 6403095 - 6371000 = 32096 \,\mathrm{m}$$
 (equivalente a 32,1 km)

Aproximación con el desarrollo de Taylor:

Recordando que el cambio relativo en la aceleración se aproxima por:

$$\Delta_{\rm rel} \approx \frac{2h}{R_T} \quad \Rightarrow \quad h = \frac{\Delta_{\rm rel} \cdot R_T}{2}$$

Para $\Delta_{\rm rel} = -0.01$:

$$h \approx \frac{0.01 \cdot R_T}{2} = 0.005 \cdot R_T \approx 31\,855 \,\mathrm{m}$$

Conclusión: Se verifica que un cuerpo debe alejarse aproximadamente 32 km de la superficie terrestre para que la aceleración gravitatoria sea un 1 % menor. Esta estimación es coherente tanto con el cálculo exacto como con la aproximación de Taylor.

3.1.6. Radios 0,01 m y 0,02 m

Analizamos la función de aceleración gravitatoria para radios extremadamente pequeños:

$$f(r) = -\frac{GM}{r^2}$$

Evaluando en $r = 0.01 \,\mathrm{m}$:

$$f(0,01) = -\frac{GM}{(0,01)^2} = -\frac{GM}{1 \cdot 10^{-4}} = -GM \cdot 10^4$$

Evaluando en $r = 0.02 \,\mathrm{m}$:

$$f(0,02) = -\frac{GM}{(0,02)^2} = -\frac{GM}{4 \cdot 10^{-4}} = -\frac{GM \cdot 10^4}{4}$$

$$\Rightarrow f(0.02) = \frac{1}{4} \cdot f(0.01)$$

Se calcula la variación relativa de la aceleración gravitatoria al duplicar el radio desde $0.01\,\mathrm{m}$ a $0.02\,\mathrm{m}$:

$$\Delta_{\text{rel}} = \frac{f(0,02) - f(0,01)}{f(0,01)} = \frac{\left(\frac{1}{4}f(0,01) - f(0,01)\right)}{f(0,01)} = -0.75$$

Interpretación: La aceleración disminuye un 75 % al duplicar el radio.

Desarrollo con polinomio de Taylor (orden 2) alrededor de $r_0=0.01\,\mathrm{m}$

$$f(r) = -\frac{GM}{r^2}$$
$$f'(r) = \frac{2GM}{r^3}$$
$$f''(r) = -\frac{6GM}{r^4}$$
$$f^{(3)}(r) = \frac{24GM}{r^5}$$

Aplicando el polinomio de Taylor de segundo orden:

$$P_2(r_0 + h) = f(r_0) + f'(r_0)h + \frac{f''(r_0)}{2}h^2$$

Para $h = 0.01 \,\text{m}$:

$$P_2(2r_0) = -\frac{GM}{r_0^2} + \frac{2GM}{r_0^3} \cdot r_0 + \frac{-6GM}{2r_0^4} \cdot r_0^2$$

$$P_2(2r_0) = -\frac{GM}{r_0^2} + \frac{2GM}{r_0^2} - \frac{3GM}{r_0^2} = -\frac{2GM}{r_0^2}$$

La aceleración predicha por Taylor de segundo orden a $r = 2r_0$ da una variación del $-0.25 \cdot f(r_0)$, es decir, una caída del 25 %, lo cual difiere del valor real (75 %), evidenciando que el desarrollo de segundo orden no es suficiente para intervalos grandes.

Partimos del desarrollo de Taylor de orden 3 centrado en $r_0 = 0.01 \,\mathrm{m}$:

$$P_3(r_0 + h) = f(r_0) + f'(r_0)h + \frac{f''(r_0)}{2}h^2 + \frac{f^{(3)}(r_0)}{6}h^3$$

Sabemos que:

$$f(r) = -\frac{GM}{r^2}$$
$$f'(r) = \frac{2GM}{r^3}$$
$$f''(r) = -\frac{6GM}{r^4}$$
$$f^{(3)}(r) = \frac{24GM}{r^5}$$

Entonces, con $h = r_0$, se tiene:

$$P_3(2r_0) = -\frac{GM}{r_0^2} + \frac{2GM}{r_0^2} - \frac{3GM}{r_0^2} + \frac{4GM}{r_0^2} = \frac{2GM}{r_0^2}$$

Interpretación: El resultado obtenido al aplicar el polinomio de Taylor de orden 3 da un valor que cuadruplica el módulo del valor original de $f(r_0)$, lo que indica que este desarrollo no es adecuado para estimar el valor de la función en un intervalo tan grande (de r_0 a $2r_0$). Este error significativo resalta que el desarrollo de Taylor tiene buena precisión únicamente en una cercanía al punto r_0 . También se observa que en el desarrollo de Taylor de orden 3, cambia de signo por lo cual se puede decir que en lugar de atraer, rechaza a los cuerpos, lo cual es físicamente incorrecto.

3.1.7. Graficar r0 = 0.01 m para Polinomio de Taylor de orden 2 y 3

Figura 2: Gráfica de Taylor Orden 2 y 3 para $r_0=0{,}01~\mathrm{m}$

Parte 2 - Caída con rozamiento

- 1. Desarrollo de Taylor O(2) de y(t); se discute la aceleración inicial y el caso $\gamma \to 0$.
- 2. Simulación numérica y superposición de curvas para los tres γ (hormiga, persona, auto) y las seis combinaciones .
- 3. Obtención analítica de la velocidad terminal $v_T = -\frac{g}{\gamma}$ y verificación en las simulaciones.
- 4. Criterio basado en $\gamma t \ll 1$ para descartar la resistencia.

Los resultados se comentan sobre cada gráfico generado por caida_con_rozamiento.py.

4. Conclusiones

 \blacksquare Los polinomios de Taylor orden 1 y 2 son suficientes para aproximar la ley , $-GM/r^2$ a menos de 0.3

- En el modelo con rozamiento lineal, el término adicional $\frac{1}{2}\gamma v_0 t^2$ delimita la validez de la aproximación.La condición $\gamma t < 0.3$ (¡10 práctico en todas las simulaciones.
- El uso del Taylor permitió justificar algebraicamente cuándo las curvas con y sin aire se separan, antes de siquiera integrar numéricamente el sistema.

5. Referencias

- Suárez, J. E., & González, M. A. (2018). Polinomios de Taylor: teoría y aplicaciones. Revista Iberoamericana de Matemática, 35(2), 123–145.
- 2. Serway, R. Física para ciencias e ingeniería. Cengage Learning.
- 3. Notas de curso de Cálculo Aplicado UCU (2024).

6. Referencias

Suárez, J. E., & González, M. A. (2018). Polinomios de Taylor: teoría y aplicaciones. *Revista Iberoamericana de Matemática*, 35(2), 123–145.

Stewart, J. (2015). Cálculo de una variable (7ª ed.). Cengage Learning.