Classical statistical inference

Regression and Model fitting

Associated notebook:

05-MLE_and_regression/Regression_short.ipynb

Problem: the quantities of interest are parameters of a model, not the RV that you measure

Examples

Observation	Quantity of interest	Model
Position of a star: x(t)	Proper motion (velocity) of the star	V = f(x, t,)
Photometry of an asteroid: mag(t)	P (period of rotation)	mag = f(t, P,)
Transit of a planet: mag(t)	P (period), e (eccentricity), D (dist to star)	Δ m = f (t, P, e, D,)
Spectrum of a QSO: F (λ)	M _{BH} (Black hole mass of QSO)	FWHM = f(M _{BH} , L,)

Problem: You measure $D \equiv (\{y_i\}, \{x_i\})$

Problem: You measure $D \equiv (\{y_i\}, \{x_i\})$

Model: $M(\theta)$

$$y = a * x + b$$

$$\theta$$
 = a, b

How to find a good model?

2

Х

Model: $M(\theta)$

$$y = a * x + b$$

= $f(x | \theta)$

$$\theta$$
 = a, b

Minimize

$$\chi^2 \equiv \sum_{i=1}^n \frac{(y_i - y_{i,mod})^2}{\sigma_i^2}$$

$$\chi^2 \equiv \sum_{i=1}^n \frac{(y_i - y_{i,mod})^2}{\sigma_i^2}$$

If $\sigma_i = 1$: Least square regression

If $\sigma_i \neq 1$: chi-square regression

The χ^2 is called a **merit** function

When uncertainties between variables are correlated, the χ^2 is expressed:

$$\chi^{2} = \sum_{i=1}^{n} \sum_{l=1}^{n} (y_{i} - y_{i,mod}) F_{i,l} (y_{l} - y_{l,mod})$$

Where F is the Fisher matrix

$$[F]^{-1} = [C] = \begin{bmatrix} \sigma_k^2 & \sigma_{kl} \\ \sigma_{kl} & \sigma_l^2 \end{bmatrix}$$

Link between χ^2 and likelihood $L = p(D \mid M(\theta))$

$$L = p(D \mid M(\boldsymbol{\theta}))$$

Case of a straight line: $y_i = heta_0 + heta_1 \, x_i + \epsilon_i$ with $\epsilon_i \sim N(0, \sigma_i)$

For each y_k we have:
$$p(y_k \mid \mu, \sigma) = \frac{1}{\sigma \sqrt{2 \pi}} \, \exp \left[-0.5 \left(\frac{y_k - \mu}{\sigma} \right)^2 \right]$$

Hence, we have for our data set D:

$$L \equiv p(\lbrace y_i \rbrace \mid \lbrace x_i \rbrace, \boldsymbol{\theta}) = \prod_{i=1}^{N} \frac{1}{\sigma_i \sqrt{2\pi}} \exp \left[\left(\frac{-(y_i - (\theta_0 + \theta_1 x_i))^2}{2\sigma_i^2} \right) \right]$$

Link between χ^2 and likelihood

Hence, we have for our data set D:

$$L \equiv p(\lbrace y_i \rbrace \mid \lbrace x_i \rbrace, \boldsymbol{\theta}) = \prod_{i=1}^{N} \frac{1}{\sigma_i \sqrt{2\pi}} \exp \left[\left(\frac{-(y_i - (\theta_0 + \theta_1 x_i))^2}{2\sigma_i^2} \right) \right]$$

$$\ln(L) \propto \sum_{i=1}^{N} \left(\frac{-(y_i - (\theta_0 + \theta_1 x_i))^2}{2 \sigma_i^2} \right) \qquad \chi^2 \equiv \sum_{i=1}^{n} \frac{(y_i - y_{i,mod})^2}{\sigma_i^2}$$

$$\chi^2 \equiv \sum_{i=1}^n \frac{(y_i - y_{i,mod})^2}{\sigma_i^2}$$

Minimizing χ^2 is equivalent to maximizing L

CURVE-FITTING METHODS AND THE MESSAGES THEY SEND

https://xkcd.com/2048/

How to choose a suitable regression method?

The way you will tackle a regression problem may depend on:

- Linearity: is the model linear in its parameters? $f(x \,|\, m{ heta}) = \sum_{p=1}^n \, heta_p g_p(x)$
- **Complexity:** large number of parameters increase complexity and covariance matrix on uncertainties
- Error behaviour: uncertainties on dependent and independent variable and their correlation.

How to choose a suitable regression method?

Frequentist: (this lecture)	Bayes (future lecture):
Optimization with some merit function	Sampling of the likelihood
Search for <i>best</i> (fit) model <i>parameters</i>	PDF on parameters
Often when simple error behaviour	More <i>complex</i> error behaviour

Linear vs non linear regression

A model is **linear** if:
$$f(x \,|\, {\pmb{\theta}}) = \sum_{p=1}^k \, \theta_p g_p(x)$$

 $g_p(x)$ can be a non linear function of x BUT does not depend on any free parameter

In this case, the values of the parameters that yield $\frac{\partial \ln(L)}{\partial \theta_i}=0$ (max. likelihood) can be found "analytically"

When the model is **not linear**, the minimization of the χ^2 has to be performed *numerically*

Linear vs non linear regression

Linear model fitting: See Sect. IV.1

Python implementation: numpy.polyfit(x, y, deg=1, w=1/sigma)

NON Linear model fitting: See Sect. IV.3

Python implementation: scipy.optimize.curvefit()

Go to Sect. IV.1.1 of the Notebook for practical example

Uncertainty on the fitted parameters

The python functions return a covariance matrix (Warning: use arg. cov=True)

The diagonal elements of the matrix give the variance on the parameters (uncertainty²)

$$\Sigma_{ heta} = \left[egin{array}{ccc} \sigma_{ heta_0}^2 & \sigma_{ heta_0} heta_1 \ \sigma_{ heta_0} heta_1 & \sigma_{ heta_1}^2 \end{array}
ight] egin{array}{ccc} ^{8} & \Sigma_{ heta} = \ ^{6} & \Sigma_{ heta} = \$$

Uncertainty on the fitted parameters

$$\Sigma_{ heta} = \left[egin{array}{ccc} + & - \ - & + \end{array}
ight]$$

Uncertainty on the fitted parameters

$$\Sigma_{ heta} = \left[egin{array}{ccc} \sigma_{ heta_0}^2 & \sigma_{ heta_0 heta_1} \ \sigma_{ heta_0 heta_1} & \sigma_{ heta_1}^2 \end{array}
ight]$$

Quality of the regression

I DON'T TRUST LINEAR REGRESSIONS WHEN IT'S HARDER TO GUESS THE DIRECTION OF THE CORRELATION FROM THE SCATTER PLOT THAN TO FIND NEW CONSTELLATIONS ON IT.

Quality of the regression

Your χ^2 is a random variable!

$$Q = \sum_{i=1}^{k} z_i^2 \to p(Q|k) = \frac{1}{(2\Gamma(k/2))} (Q/2)^{k/2-1} \exp(-Q/2)$$

k = degree of freedom = N points - n parameters

If you fit a model with 2 parameters on a set of 100 points => 98 d.o.f.

Expectation $E(\chi^2) = 100 - 2 = 98$

Reduced χ^2 : $\chi^2_{red} = \chi^2_{dof} / d.o.f.$ \Rightarrow Reduced $\chi^2 \equiv 1$. if good fit

See also the Notebook 03-Basic_statistics_and_proba_concepts/Descriptive_statistics_02.ipynb

Quality of the regression

$$p(Q|k) = \frac{1}{(2\Gamma(k/2))} (Q/2)^{k/2-1} \exp(-Q/2)$$

 $p - value = p(Q \ge \chi^2_{obs})$

$$=1-p(Q \le \chi_{\mathrm{obs}}^2)$$

CDF

Typically:

p-value < 0.05 : 🐸

0.05 < p-value < 1: [₩]

p-value close to 1 : $\stackrel{\smile}{\cup}$

1-scipy.stats.chi2.cdf(chi2_data, df= len(data)-nparam)

Go to Sect. IV.1.1 of the Notebook for practical example