2 Iterative Clovest Point (ICP)

2.2 Linearitation

Given:		Īı	-۲	В	$\delta t = [tx, ty, tz]$
	δR =	1	1	-d	$\int_{i \in \mathbb{R}} r_i^2(\delta R, \delta t) = \left\ n_{e_i}^T((\delta R)P_i' + \delta t - 2i) \right\ ^2, P_i' = R_{P_i}^0 + t^\circ$
	·	-В	ط	1 _	

Find:

$$V_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$$
 $V_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx, ty, tz) = A_i tx + b_i$
 $v_i(x, B, \tau, tx,$

Solution:

$$r_{i}(SR,St) = Nq_{i}^{T}((SR)P_{i}' + St - q_{i}) \rightarrow r_{i}(SR,St) = Nq_{i}^{T}((SR)(R^{0}p_{i} + t^{0}) + St - q_{i})$$

$$r_{i}(SR,St) = Nq_{i}^{T} \begin{bmatrix} 1 & -\gamma & B \\ \gamma & 1 & -\alpha \end{bmatrix} P_{i}' + ty - q_{i}$$

$$r_{i}(SR,St) = Nq_{i}^{T} \begin{bmatrix} \gamma & 1 & -\alpha \\ -\beta & \alpha & 1 \end{bmatrix} P_{i}' + ty - q_{i}$$

$$t_{2}$$

$$r_i(\delta R, \delta t) = [n_{q_1} \quad n_{q_2} \quad n_{q_3}]$$

$$\begin{bmatrix} 1 & -\gamma & B \\ \gamma & 1 & -\alpha \end{bmatrix} \begin{bmatrix} P_i' \\ P_2' \\ P_2' \end{bmatrix} + \begin{bmatrix} t_{\chi} \\ t_{\eta} \end{bmatrix} - \begin{bmatrix} q_2 \\ q_3 \end{bmatrix}$$

$$P_{1}'-YP_{2}'+BP_{3}'+tx-q_{1} = nq_{1}(P_{1}'-YP_{2}'+BP_{3}'+tx-q_{1})$$

$$r_{1}(SR,St) = [nq_{1} nq_{2} nq_{3}] YP_{1}'+P_{2}'-dP_{3}'+ty-q_{2} = nq_{2}(YP_{1}'+P_{2}'-dP_{3}'+ty-q_{2})$$

$$-BP_{1}'+dP_{2}'+P_{3}'+tz-q_{3} = nq_{3}(-BP_{1}'+dP_{2}'+P_{3}'+tz-q_{3}).$$

2.3 Optimization
Given:
$\sum_{i=1}^{n} r(i(x, B, \tau, t_x, t_y, t_z) = \sum_{i=1}^{n} A_i T_x + b_i $
Given: $ \frac{\sum_{i=1}^{n} r_i^{-1}(\alpha, \beta, \tau, t_x, t_y, t_z)}{\sum_{i=1}^{n} A_i ^{\frac{n}{2}}} A_i \left[\frac{\alpha}{t_x} + b_i \right]^{\frac{n}{2}} $
Find: Write down the linear system that provides a closed form solution
delta = (ATA) TATB , A = EAiTAi , b = EAiTbi #
Jolution: delta = (A ^T A) ⁻¹ A ^T b , A = EAi ^T Ai , b = EAi ^T bi # # Note: use -b in Python solvers.

3 Point-based Fusion

3.2 Merge

Given: PER3, W, QER3, W=1

Find: the weight average of the positions in terms of p.q. Rc, tc, w

the weight average of normals in terms of np. Nq, Rc, w

Equation: $W = \frac{\sum_{i=1}^{n} W_i \chi_i}{\sum_{i=1}^{n} W_i}$

Solutions: Wi= (W+1)

Wpasitions = W(P)+1[RcW(q)+tc] #

Wnormals = W(Np) + 1[RW(Nq)] #

3.4 Results

Given: Width= 680, height= 480, # of total points=1,363,469

Find: the compression ratio

Equation: CR = # of total points (H/2 · W/2 · ZOO)

Solution:

CR = 1,363,469 \(\frac{480}{2} \cdot \frac{680}{2} \cdot 200 \) \(\frac{200}{2} \cdot \frac{200}{2} \cdot 200 \)