Лекция 3. Функции активации. Инициализация весов.

Глубинное обучение

Антон Кленицкий

Recap

Stochastic Gradient Descent

Stochastic gradient descent (SGD) - обновляем веса после каждого примера

$$\theta_{t+1} = \theta_t - \alpha \nabla_{\theta} L(y_i, f(x_i, \theta))$$

- Несмещенная оценка полного градиента
- Если берем примеры из обучающей выборки в случайном порядке!

Mini-batch stochastic gradient descent - обновляем веса после батча из B примеров

$$\theta_{t+1} = \theta_t - \alpha \frac{1}{B} \sum_{i=1}^{B} \nabla_{\theta} L(y_i, f(x_i, \theta))$$

 Можно эффективно использовать матричные вычисления

Stochastic Gradient Descent

Image credit

- Шумная оценка полного градиента
- Может проскочить мимо неудачного локального минимума или седловой точки

Backpropagation

$$\hat{y} = w_3 \sigma(w_2 \sigma(w_1 x + b_1) + b_2) + b_3;$$
 $L(y, \hat{y}) = (y - \hat{y})^2$

$$f_{1} = w_{1}x + b_{1}$$

$$\frac{\partial L}{\partial f_{3}} = 2(f_{3} - y)$$

$$h_{1} = \sigma(f_{1})$$

$$\frac{\partial L}{\partial h_{2}} = \left(\frac{\partial L}{\partial f_{3}}\right) \frac{\partial f_{3}}{\partial h_{2}}$$

$$f_{2} = w_{2}h_{1} + b_{2}$$

$$h_{2} = \sigma(f_{2})$$

$$f_{3} = w_{3}h_{2} + b_{3}$$

$$\frac{\partial L}{\partial h_{1}} = \left(\frac{\partial L}{\partial f_{3}} \frac{\partial f_{3}}{\partial h_{2}} \frac{\partial h_{2}}{\partial f_{2}}\right) \frac{\partial f_{2}}{\partial h_{1}}$$

$$\frac{\partial L}{\partial h_{1}} = \left(\frac{\partial L}{\partial f_{3}} \frac{\partial f_{3}}{\partial h_{2}} \frac{\partial h_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial h_{1}}\right) \frac{\partial f_{1}}{\partial f_{1}}$$

$$\frac{\partial L}{\partial f_{1}} = \left(\frac{\partial L}{\partial f_{3}} \frac{\partial f_{3}}{\partial h_{2}} \frac{\partial h_{2}}{\partial f_{2}} \frac{\partial f_{2}}{\partial h_{1}}\right) \frac{\partial h_{1}}{\partial f_{1}}$$

Backpropagation

$$\begin{split} \frac{\partial L}{\partial f_3} &= 2(f_3 - y) \\ \frac{\partial L}{\partial h_2} &= \left(\frac{\partial L}{\partial f_3}\right) \frac{\partial f_3}{\partial h_2} \\ \frac{\partial L}{\partial f_2} &= \left(\frac{\partial L}{\partial f_3}\right) \frac{\partial f_3}{\partial h_2} \\ \frac{\partial L}{\partial f_2} &= \left(\frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial h_2}\right) \frac{\partial h_2}{\partial f_2} \\ \frac{\partial L}{\partial h_1} &= \left(\frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial h_2} \frac{\partial h_2}{\partial f_2}\right) \frac{\partial f_2}{\partial h_1} \\ \frac{\partial L}{\partial f_1} &= \left(\frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial h_2} \frac{\partial h_2}{\partial f_2} \frac{\partial f_2}{\partial h_1}\right) \frac{\partial h_1}{\partial f_1} \\ \end{split}$$

Backpropagation summary

Image credit

- Нейросеть граф вычислений
- Градиенты распространяются в обратную сторону по графу
- Умножаем на производную выхода по входу для каждого узла графа

Vanishing / exploding gradients

В процессе обратного распространения по сети градиенты могут «затухать» или «взрываться»

$$\frac{\partial L}{\partial f_1} = \left(\frac{\partial L}{\partial f_3} \frac{\partial f_3}{\partial h_2} \frac{\partial h_2}{\partial f_2} \frac{\partial f_2}{\partial h_1}\right) \frac{\partial h_1}{\partial f_1}$$

Главное, чтобы градиент хорошо «протекал» по нейросети

Функции активации

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

$$\sigma'(x) = \sigma(x)(1 - \sigma(x))$$

Sigmoid - проблемы

- Насыщение на краях, градиент близок к нулю
- Максимальное значение производной 0.25
- Выход не центрирован вокруг нуля

Использование сигмоиды

По-прежнему используется в отдельных слоях, например:

- На выходе модели для бинарной классификации
- В гейтах (например, LSTM/GRU)

$$h_t = \sigma * h_{t-1} + (1 - \sigma) * h'_t$$

tanh

Гиперболический тангенс

$$tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

$$\tanh(x) = 2\sigma(2x) - 1$$

- Максимальное значение производной 1
- Выход центрирован, в нуле значение 0
- По-прежнему насыщение на краях

ReLU

Rectified Linear Unit

$$f(x) = \max(0, x) = \begin{cases} x, & x \ge 0 \\ 0, & x < 0 \end{cases}$$
$$f'(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

Плюсы

- Нет насыщения, ненулевые градиенты
- Вычислительно очень дешево
- Есть биологические обоснования (разреженность)

ReLU

Rectified Linear Unit

$$f(x) = \max(0, x) = \begin{cases} x, & x \ge 0 \\ 0, & x < 0 \end{cases}$$
$$f'(x) = \begin{cases} 1, & x \ge 0 \\ 0, & x < 0 \end{cases}$$

Минус

- \bullet "Dead neurons" нейроны, для которых всегда x<0
- Проблема может усугубляться при большом learning rate

Модификации ReLU

Leaky ReLU, PReLU

$$f(x) = \begin{cases} x, & x \ge 0 \\ \alpha x & x < 0 \end{cases}$$

ELU

$$f(x) = \begin{cases} x, & x \ge 0\\ \alpha(e^x - 1), & x < 0 \end{cases}$$

Решаем проблему "Dead neurons"

GELU

Gaussian Error Linear Unit

$$f(x) = xP(X \le x),$$

$$X \sim N(0, 1)$$

$$f(x) \approx \begin{cases} 0.5x + \frac{1}{2\pi}x^2, & |x| << 1\\ ReLU(x), & |x| \to \infty \end{cases}$$

Обычно используется в трансформерах

Swish

Swish, он же SiLU (Sigmoid Linear Unit)

$$f(x) = x\sigma(x) = \frac{x}{1 + e^{-x}}$$

$$f'(x) = f(x) + \sigma(x)(1 - f(x))$$

Выводы

- Избегать сигмоиды
- ReLU хороший выбор в большинстве случаев
- Модификации ReLU могут чуть-чуть улучшить качество
- Подбор функции активации не первый приоритет

$$h_1 = a(\theta_{10} + \theta_{11}x)$$

$$h_2 = a(\theta_{20} + \theta_{21}x)$$

$$h_3 = a(\theta_{30} + \theta_{31}x)$$

$$y = \phi_0 + \phi_1 h_1 + \phi_2 h_2 + \phi_3 h_3$$

Image credit

Линейное преобразование + ReLU

Image credit 19

Умножение выходов скрытого слоя на веса на выходном слое

Image credit

Суммирование на выходном слое

Universal approximation theorem

Image credit

Инициализация весов

Инициализация константой

Если попробовать все веса каждого слоя инициализировать одной и той же константой

- При градиентном спуске веса всех нейронов будут меняться одинаково
- Нужно нарушить симметрию между нейронами, чтобы они были разными!

Инициализация случайными значениями

На каждом слое умножаем на матрицу весов и при прямом проходе, и при обратном проходе:

$$f_k = W_k h_{k-1} + b_k$$
$$\frac{\partial f_k}{\partial h_{k-1}} = W_k^T$$

Инициализация случайными значениями

На каждом слое умножаем на матрицу весов и при прямом проходе, и при обратном проходе:

$$f_k = W_k h_{k-1} + b_k$$
$$\frac{\partial f_k}{\partial h_{k-1}} = W_k^T$$

Большие значения весов

- Выходы последних слоев становятся слишком большими
- exploding gradients

Маленькие значения весов

- Выходы последних слоев становятся слишком маленькими
- vanishing gradients

Understanding the difficulty of training deep feedforward neural networks - Glorot, X. & Bengio, Y. (2010)

- Для симметричных функций активации
- Идея дисперсии выходов и градиентов на всех слоях должны быть одинаковыми

Understanding the difficulty of training deep feedforward neural networks - Glorot, X. & Bengio, Y. (2010)

- Для симметричных функций активации
- Идея дисперсии выходов и градиентов на всех слоях должны быть одинаковыми

Рассмотрим один нейрон $y = w^T x = \sum_{i=1}^{n_{in}} w_i x_i$

Understanding the difficulty of training deep feedforward neural networks - Glorot, X. & Bengio, Y. (2010)

- Для симметричных функций активации
- Идея дисперсии выходов и градиентов на всех слоях должны быть одинаковыми

Рассмотрим один нейрон $y = w^T x = \sum_{i=1}^{n_{in}} w_i x_i$

В силу независимости и одинаковой распределенности w_i, x_i

$$Var[y] = Var\left[\sum_{i=1}^{n_{in}} w_i x_i\right] = \sum_{i=1}^{n_{in}} Var[w_i x_i] = n_{in} Var[w_i x_i]$$

Understanding the difficulty of training deep feedforward neural networks - Glorot, X. & Bengio, Y. (2010)

- Для симметричных функций активации
- Идея дисперсии выходов и градиентов на всех слоях должны быть одинаковыми

Рассмотрим один нейрон $y = w^T x = \sum_{i=1}^{n_{in}} w_i x_i$

В силу независимости и одинаковой распределенности w_i, x_i

$$Var[y] = Var\left[\sum_{i=1}^{n_{in}} w_i x_i\right] = \sum_{i=1}^{n_{in}} Var[w_i x_i] = n_{in} Var[w_i x_i]$$

$$Var[w_i x_i] = E[x_i]^2 Var[w_i] + E[w_i]^2 Var[x_i] + Var[w_i] Var[x_i] =$$

$$= Var[w_i] Var[x_i]$$

$$Var[y] = n_{in}Var[w_ix_i] = n_{in}Var[w_i]Var[x_i]$$

$$Var[y] = n_{in}Var[w_ix_i] = n_{in}Var[w_i]Var[x_i]$$

Получили условие для forward pass

$$n_{in}Var[w_i] = 1$$

$$Var[y] = n_{in}Var[w_ix_i] = n_{in}Var[w_i]Var[x_i]$$

Получили условие для forward pass

$$n_{in}Var[w_i] = 1$$

Можно получить такое же условие для backward pass

$$n_{out}Var[w_i] = 1$$

$$Var[y] = n_{in} Var[w_i x_i] = n_{in} Var[w_i] Var[x_i]$$

Получили условие для forward pass

$$n_{in}Var[w_i] = 1$$

Можно получить такое же условие для backward pass

$$n_{out}Var[w_i] = 1$$

Как объединить?

$$Var[w_i] = \frac{2}{n_{in} + n_{out}}$$

$$w_i \sim U \left[-\frac{\sqrt{6}}{\sqrt{n_{in} + n_{out}}}, \frac{\sqrt{6}}{\sqrt{n_{in} + n_{out}}} \right]$$

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He, K. et al. (2015)

- Для несимметричных функций активации (ReLU)
- Идея дисперсии выходов или градиентов на всех слоях должны быть одинаковыми

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He, K. et al. (2015)

- Для несимметричных функций активации (ReLU)
- Идея дисперсии выходов или градиентов на всех слоях должны быть одинаковыми

$$Var[w_{i}x_{i}] = E[x_{i}]^{2}Var[w_{i}] + E[w_{i}]^{2}Var[x_{i}] + Var[w_{i}]Var[x_{i}] =$$

$$= E[x_{i}]^{2}Var[w_{i}] + Var[w_{i}]Var[x_{i}]$$

$$= Var[w_{i}] (E[x_{i}]^{2} + Var[x_{i}])) = Var[w_{i}]E[x_{i}^{2}]$$

Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification - He, K. et al. (2015)

- Для несимметричных функций активации (ReLU)
- Идея дисперсии выходов или градиентов на всех слоях должны быть одинаковыми

$$Var[w_{i}x_{i}] = E[x_{i}]^{2}Var[w_{i}] + E[w_{i}]^{2}Var[x_{i}] + Var[w_{i}]Var[x_{i}] =$$

$$= E[x_{i}]^{2}Var[w_{i}] + Var[w_{i}]Var[x_{i}]$$

$$= Var[w_{i}] (E[x_{i}]^{2} + Var[x_{i}])) = Var[w_{i}]E[x_{i}^{2}]$$

Для ReLU

$$E[x_i^2] = \frac{1}{2} Var[y_{prev}]$$

$$Var[y] = n_{in}Var[w_i x_i] = \frac{1}{2}n_{in}Var[w_i]Var[y_{prev}]$$

Либо используем условие для forward pass

$$Var[w_i] = \frac{2}{n_{in}}$$

$$w_i \sim N(0, \sqrt{2/n_{in}})$$

или

$$w_i \sim U\left[-\frac{\sqrt{6}}{\sqrt{n_{in}}}, \frac{\sqrt{6}}{\sqrt{n_{in}}}\right]$$

Либо условие для backward pass

$$Var[w_i] = \frac{2}{n_{out}}$$

Ортогональная инициализация

Ортогональные матрицы - повороты и отражения

$$A^T A = I$$

Столбцы (и строки) ортнормированны: $\sum_i A_{ij} A_{ik} = \delta_{ik}$ Не изменяют длины векторов:

$$||Ax|| = ||x||$$

Поэтому градиенты не будут взрываться и затухать

Задачи и функции потерь

Модель $f(x,\theta)$ определяет параметры распределения вероятности P(y|x):

$$P(y|x) = P(y|f(x,\theta))$$

Модель $f(x,\theta)$ определяет параметры распределения вероятности P(y|x):

$$P(y|x) = P(y|f(x,\theta))$$

Функция правдоподобия:

$$L(\theta) = P(D|\theta) = \prod_{i=1}^{N} P(y_i|f(x_i,\theta))$$

Модель $f(x,\theta)$ определяет параметры распределения вероятности P(y|x):

$$P(y|x) = P(y|f(x,\theta))$$

Функция правдоподобия:

$$L(\theta) = P(D|\theta) = \prod_{i=1}^{N} P(y_i|f(x_i,\theta))$$

Метод максимального правдоподобия (maximum likelihood estimation):

$$\theta = \underset{\theta}{\operatorname{argmax}} L(\theta) = \underset{\theta}{\operatorname{argmax}} \left[\prod_{i=1}^{N} P(y_i | f(x_i, \theta)) \right]$$

$$\theta = \underset{\theta}{\operatorname{argmax}} \left[\log \left(\prod_{i=1}^{N} P(y_i | f(x_i, \theta)) \right) \right]$$

$$\theta = \underset{\theta}{\operatorname{argmax}} \left[\log \left(\prod_{i=1}^{N} P(y_i | f(x_i, \theta)) \right) \right]$$
$$= \underset{\theta}{\operatorname{argmax}} \left[\sum_{i=1}^{N} \log \left(P(y_i | f(x_i, \theta)) \right) \right]$$

$$\theta = \underset{\theta}{\operatorname{argmax}} \left[\log \left(\prod_{i=1}^{N} P(y_i | f(x_i, \theta)) \right) \right]$$

$$= \underset{\theta}{\operatorname{argmax}} \left[\sum_{i=1}^{N} \log \left(P(y_i | f(x_i, \theta)) \right) \right]$$

$$= \underset{\theta}{\operatorname{argmin}} \left[-\sum_{i=1}^{N} \log \left(P(y_i | f(x_i, \theta)) \right) \right]$$

Negative log-likelihood loss:

$$\mathcal{L} = -\sum_{i=1}^{N} \log \left(P(y_i | f(x_i, \theta)) \right)$$

Регрессия

Предположим, что шум распределен нормально с центром в нуле:

$$y = f(x, \theta) + \epsilon, \qquad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

то есть

$$P(y|x, \theta, \sigma) = \mathcal{N}(y|f(x, \theta), \sigma^2)$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[-\frac{(y - f(x, \theta))^2}{2\sigma^2}\right]$$

Регрессия

Предположим, что шум распределен нормально с центром в нуле:

$$y = f(x, \theta) + \epsilon, \qquad \epsilon \sim \mathcal{N}(0, \sigma^2)$$

то есть

$$P(y|x,\theta,\sigma) = \mathcal{N}(y|f(x,\theta),\sigma^2)$$

$$= \frac{1}{\sqrt{2\pi\sigma^2}} exp\left[-\frac{(y-f(x,\theta))^2}{2\sigma^2}\right]$$

$$\mathcal{L} = -\sum_{i=1}^{N} \log \left(\frac{1}{\sqrt{2\pi\sigma^2}} exp \left[-\frac{(y - f(x, \theta))^2}{2\sigma^2} \right] \right)$$
$$= \sum_{i=1}^{N} \left[-\log \left(\frac{1}{\sqrt{2\pi\sigma^2}} \right) + \frac{(y - f(x, \theta))^2}{2\sigma^2} \right] \to (y - f(x, \theta))^2$$

Получили обычный метод наименьших квадратов

Регрессия

Image credit

Регрессия - другие варианты

• Можем предсказывать и среднее, и дисперсию:

$$\theta = \underset{\theta}{\operatorname{argmin}} \sum_{i=1}^{N} \left[-\log \left(\frac{1}{\sqrt{2\pi f_2(x,\theta)^2}} \right) + \frac{(y - f_1(x,\theta))^2}{2f_2(x,\theta)^2} \right]$$

- Если использовать распределение Лапласа, то получим МАЕ
- Если использовать распределение Пуассона, то можем предсказывать счетчики событий
- Если использовать бета-распределение, то можем предсказывать пропорции

Бинарная классификация

Бинарная классификация

Распределение Бернулли

$$P(y|\lambda) = \lambda^{y} (1-\lambda)^{1-y} = \begin{cases} \lambda, & y = 1\\ 1-\lambda, & y = 0 \end{cases}$$

Чтобы оценивать λ - вероятность от 0 до 1, используем сигмоиду:

$$f(x,\theta) = \sigma(x,\theta)$$

$$P(y|f(x,\theta)) = f(x,\theta)^y (1 - f(x,\theta))^{1-y}$$

Бинарная классификация

Распределение Бернулли

$$P(y|\lambda) = \lambda^{y} (1-\lambda)^{1-y} = \begin{cases} \lambda, & y = 1\\ 1-\lambda, & y = 0 \end{cases}$$

Чтобы оценивать λ - вероятность от 0 до 1, используем сигмоиду:

$$f(x,\theta) = \sigma(x,\theta)$$

$$P(y|f(x,\theta)) = f(x,\theta)^y (1 - f(x,\theta))^{1-y}$$

Функция потерь - binary cross-entropy

$$\mathcal{L}(\theta) = \sum_{i=1}^{N} \left[-y_i \log f(x_i, \theta) - (1 - y_i) \log(1 - f(x_i, \theta)) \right]$$

Многоклассовая классификация

Softmax:

$$softmax_k(z) = \frac{e^{z_k}}{\sum_{j=1}^K e^{z_j}}$$

$$P(y = k | f(x, \theta)) = softmax_k [f(x, \theta)]$$

Многоклассовая классификация

Softmax:

$$softmax_k(z) = \frac{e^{z_k}}{\sum_{j=1}^K e^{z_j}}$$

$$P(y = k | f(x, \theta)) = softmax_k [f(x, \theta)]$$

Функция потерь - cross-entropy (aka softmax loss)

$$\mathcal{L}(\theta) = -\sum_{i=1}^{N} \log \left(softmax_{y_i} \left[f(x, \theta) \right] \right)$$

Проблема софтмакса

$$softmax_k(z) = \frac{e^{z_k}}{\sum_{j=1}^K e^{z_j}}$$

Из-за численного переполнения

- При больших отрицательных значениях z можем получить 0 в знаменателе
- При больших положительных значениях z можем получить бесконечность

Проблема софтмакса

$$softmax_k(z) = \frac{e^{z_k}}{\sum_{j=1}^K e^{z_j}}$$

Из-за численного переполнения

- При больших отрицательных значениях z можем получить 0 в знаменателе
- При больших положительных значениях z можем получить бесконечность

Трюк:

$$\frac{e^{z_k+c}}{\sum_{j=1}^K e^{z_j+c}} = \frac{e^{z_k}e^c}{\sum_{j=1}^K e^{z_j}e^c} = \frac{e^{z_k}}{\sum_{j=1}^K e^{z_j}}$$
$$z_k \to z_k - \max_j z_j$$

Какие еще бывают функции потерь

- Hinge loss
- Focal loss
- Dice loss
- Triplet loss
- Contrastive loss

И многие другие..

В следующий раз

- Оптимизация в нейросетях
- Адаптивные методы градиентного спуска
- Методы регуляризации для нейросетей