Formale Grundlagen der Informatik I 2. Übungsblatt

Fachbereich Mathematik Prof. Dr. Martin Ziegler Alexander Kreuzer Carsten Rösnick SS 2011 20.04.11

M	in	ite	ct	١ö	SH	ոզ
141			3.	ᆫ	эu	нч

a) Sei $\Sigma = \{a, b, c\}$. Die Relation $R_1 = \{(v, w) \in \Sigma^* \times \Sigma^* \mid v \text{ ist Pr\"afix von } w\}$ ist \boxtimes reflexiv \square symmetrisch \boxtimes transitiv

Begründung: Reflexiv, da jedes Wort Präfix von sich selbst ist.

Nicht symmetrisch, denn jedes (nicht leere) Wort $a \in \Sigma^*$ ist Präfix von $a \cdot a$, aber nicht umgekehrt. Transitiv, denn wenn u Präfix von v und v Präfix von w ist, dann gilt per Definition $v = u \cdot v'$ für ein Wort v' und $w = v \cdot w'$ für ein Wort w'. Zusammen also $w = u \cdot v' \cdot w'$ und damit ist u auch Präfix von w.

- b) Die Relation $R_2 = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid a \cdot b \neq 0\}$ ist \square reflexiv \boxtimes symmetrisch \boxtimes transitiv *Begründung*: Nicht reflexiv: $(0,0) \notin R_2$. Symmetrie und Transitivität folgen aus der Beobachtung, dass für alle $(a,b) \in R_1$ gilt $a \neq 0$ und $b \neq 0$.
- c) Seien *A* und *B* endliche Mengen und $f: A \rightarrow B$ eine Funktion.
 - Ist *f* injektiv, so folgt stets

 $\boxtimes |A| \leq |B| \quad \Box |A| \geq |B|$

Begründung: Wenn f injektiv ist, dann gibt es für jedes $y \in B$ maximal ein $x \in A$, so dass f(x) = y. Damit kann es nicht mehr Elemente in A geben als in B.

• Ist *f* surjektiv, so folgt stets

 $\square |A| \leq |B| \quad \boxtimes |A| \geq |B|$

Begründung: Wenn f surjektiv ist, dann gibt es für jedes $y \in B$ mindestens ein $x \in A$, so dass f(x) = y. Damit kann A nicht weniger Elemente als B enthalten.

Gruppenübung

Aufgabe G1 (Wahrheitswertetafeln)

Zeigen Sie anhand von Wahrheitswertetafeln, dass die folgenden aussagenlogischen Formeln äquivalent sind:

$$\neg (p \rightarrow q), \quad p \land \neg q, \quad (p \lor q) \land \neg q.$$

1

Aufgabe G2 (Graphhomomorphismen)

Ein gerichteter Graph G = (V, E) besteht aus einer endlichen Menge V von Knoten und einer Teilmenge $E \subseteq V \times V$ von Kanten. Gegeben seien die folgenden fünf gerichteten Graphen:

Der Graph $G_1 = (V_1, E_1)$ ist beispielsweise wie folgt formal gegeben:

$$V_1 = \{a, b, c, d\}$$

$$E_1 = \{(d, a), (d, b), (b, c), (c, d)\}$$

Geben Sie an, zwischen welchen der Graphen Homomorphismen existieren, und geben Sie auch gegebenenfalls einen Homomorphismus an.

Aufgabe G3

Seien X, Y beliebige Mengen und $p: Y \to X$ eine surjektive Abbildung. Zeigen Sie, dass durch

$$y_0 \sim y_1 : \iff p(y_0) = p(y_1)$$

eine Äquivalenzrelation auf Y definiert wird. Zeigen Sie auch, dass es ein Bijektion zwischen Y/\sim und X gibt.

Hausübung

Aufgabe H1 (6 Punkte)

L und M seien Σ -Sprachen.

- (a) Zeigen Sie, dass $L \subseteq L^*$ und $(L \subseteq M^* \Rightarrow L^* \subseteq M^*)$.
- (b) Schließen Sie aus (a), dass $(L^*)^* = L^*$ und $(L \subseteq M \Rightarrow L^* \subseteq M^*)$.
- (c) Zeigen Sie, dass $(L \cup M)^* = (L^*M^*)^*$.

Aufgabe H2 (Isomorphie von Graphen)

(2 Punkte)

Finden Sie zwei Graphen $G_1 = (V_1, E_1)$ und $G_2 = (V_2, E_2)$, so dass es einen bijektiven Homomorphismus $\varphi: V_1 \to V_2$ gibt, ohne dass G_1 und G_2 isomorph sind.

Extra: Kann es zwei Graphen G_1 und G_2 geben, so dass es bijektive Homomorphismen $\varphi: V_1 \to V_2$ und $\psi: V_2 \to V_1$ gibt, ohne dass G_1 und G_2 isomorph sind? Begründen Sie Ihre Antwort!