Algèbre linéaire et bilinéaire $I-TD_3$ 27 Septembre 2022

Exercice 1 : Sous-espace vectoriel

Vrai ou Faux. Les espaces suivants sont-ils des sous-espaces vectoriels de $E = \mathscr{F}([-1,1],\mathbb{R})$?

- 1. F_1 l'ensemble des fonctions bornées sur [-1, 1];
- 2. F_2 l'ensemble des fonctions bornées par la constante 1 sur [-1,1];
- 3. F_3 l'ensemble des fonctions telles que f(1) = 0;
- 4. F_4 l'ensemble des fonctions telles que f(1) = 1;
- 5. F_5 l'ensemble des fonctions paires;
- 6. F_6 l'ensemble des fonctions impaires;
- 7. F_7 l'ensemble des fonctions paires ou impaires;
- 8. F_8 l'ensemble des fonctions croissantes sur [-1, 1];
- 9. F_9 l'ensemble des fonctions monotones sur [-1, 1];
- 10. F_{10} l'ensemble des fonctions f qui vérifient $\lim_{x\to 1^-} f(x) = 0$.

Exercice 2 : Sous-espace vectoriel

Soit E un \mathbb{K} -espace vectoriel. Soient E_1 , E_2 et E_3 3 sous-espaces vectoriels de E.

1. Comparer pour l'inclusion

$$E_1 + (E_2 \cap E_3)$$
 et $(E_1 + E_2) \cap (E_1 + E_3)$.

2. A quelle condition suffisante a-t-on égalité?

Exercice 3 : Génératrice

1. Soit $a \in \mathbb{R}$, montrer que la famille

$$(x \mapsto (x-a)^n)_{n \in \mathbb{N}}$$

est une famille génératrice de l'ensemble des fonctions polynomiales noté E.

- 2. Déterminer dans $\mathscr{C}^0(\mathbb{R},\mathbb{R})$, $\operatorname{Vect}(\{f \in \mathscr{C}^0(\mathbb{R},\mathbb{R}), f \geq 0\})$.
- 3. Soit F un sous-espace vectoriel de E, que dire de

$$Vect(E \setminus F)$$
?

Exercice 4 : Somme directe

Soit E un \mathbb{K} -espace vectoriel, $(E_i)_{i\in I}$ et $(E'_i)_{i\in I}$ deux familles de sous-espaces vectoriels de E, tels que :

$$\forall i \in I, E'_i \subset E_i.$$

Montrer que:

$$\bigoplus_{i \in I} E_i = \bigoplus_{i \in I} E'_i \implies \forall i \in I, E_i = E'_i.$$

Exercice 5 : Somme directe et Supplémentaire

Soit $E = \mathscr{F}(\mathbb{R}, \mathbb{R})$ l'ensemble des fonctions réelles et :

$$F = \{y : x \mapsto ax + b, \ (a, b) \in \mathbb{R}^2\},\$$

$$G_1 = \{f \in E, \ f(0) = 0\},\$$

$$G_2 = \{f \in E, \ f(0) = f(1) = f(-1) = 0\},\$$

$$G_3 = \{f \in E, \ f(0) = f(1) = 0\}.$$

- 1. Justifier que F, G_1 , G_2 , G_3 sont des sous-espaces vectoriels de E.
- 2. Montrer que $F + G_1 = E$. La somme est-elle directe?
- 3. Montrer que $F + G_2$ est directe. La somme vaut-elle E?
- 4. Montrer que F et G_3 sont supplémentaires dans E.

Exercice 6 : Somme directe et Supplémentaire

Soit E un \mathbb{K} -espace vectoriel et F, G et H trois sous-espaces vectoriels de E. On suppose que :

$$E = F + G$$
, $H \cap F = \{0_E\}$ et $G \subset H$.

- 1. Montrer que $E = F \oplus G$.
- 2. Montrer que H = G.

Exercice 7 : Somme directe et Supplémentaire

Soit E l'ensemble des fonctions $u: \mathbb{R}_+ \to \mathbb{R}$ qui admettent une limite finie en $+\infty: \exists \ell \in \mathbb{R}$, $\lim_{x \to +\infty} u(x) = \ell$.

- 1. Justifier que E est un \mathbb{R} -espace vectoriel.
- 2. Soit F le sous-espace vectoriel de E constitué des fonctions $f: \mathbb{R}_+ \to \mathbb{R}$ qui sont constantes : $\exists c \in \mathbb{R}, \ \forall x \in \mathbb{R}, \ f(x) = c$ et soit G le sous-espace vectoriel de E constitué des fonctions $g: \mathbb{R}_+ \to \mathbb{R}$ qui tendent vers 0 en $+\infty: \lim_{x \to +\infty} g(x) = 0$. Montrer que $E = F \oplus G$.

Exercice 8 : Supplémentaire

Dans cet exercice, on se place dans le \mathbb{R} -espace vectoriel $E = \mathscr{C}^1(\mathbb{R}, \mathbb{R})$.

- 1. Soit $F = \{ f \in E : f(0) = f'(0) = 0 \}.$
 - (a) Trouver une fonction $g \in E$ telle que g(0) = 0 mais $g'(0) \neq 0$ puis trouver une fonction $h \in E$ telle que $h(0) \neq 0$ mais h'(0) = 0.
 - (b) En déduire un supplémentaire de F dans E.
- 2. Soit $H = \{ f \in E : f(0) = f(1) = 0 \}$. En s'inspirant de la question précédente, donner un supplémentaire de H dans E.