Homework Set 1

Chemistry 553, Spring 2021 Instructor: Lutz Maibaum Student: Coire Gavin-Hanner

Due Friday, April 9th

Problem 1. In this problem we will explore some basic concepts of random numbers.

(a) Consider a random variable \hat{X} that us uniformly distributed on the interval [0, 1], i.e., its probability distribution is

$$p(x) = \begin{cases} 1 & \text{if } 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

Calculate the mean and the variance of \hat{X} .

$$p(x) = P(\{x \in \Omega : \hat{X}(x) = x\}) = \begin{cases} 1 & \text{if } 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

This says that when $0 \le x \le 1$, $\hat{X}(\omega) = \omega$, so we can solve for the mean and variance by the following:

$$\begin{aligned} \text{mean} &= \left\langle \hat{X} \right\rangle = \int_{\Omega} \hat{X}(x) p(x) \, dx \\ &= \int_{o}^{1} x p(x) \, dx = \left. \frac{x^2}{2} \right|_{0}^{1} = \frac{1}{2} \end{aligned}$$

Variance =
$$var(\hat{X}) = \langle \hat{X}^2 \rangle - \langle \hat{X} \rangle^2$$

= $\int_0^1 \hat{X}(x)^2 p(x) dx - \langle \hat{X} \rangle^2$
= $\int_0^1 x^2 p(x) dx - \langle \hat{X} \rangle^2$
= $\frac{x^3}{3} \Big|_0^1 - \frac{1}{4} = \frac{1}{12}$

(b) Now consider two such random variable, \hat{X}_1 and \hat{X}_2 , each distributed uniformly on [0,1]. Assume these random variables are independent. We can calculate the average of \hat{X}_1 and \hat{X}_2 :

$$\hat{S} = \frac{1}{2} \left(\hat{X}_1 + \hat{X}_2 \right),$$

which is itself a random variable. Calculate the probability distribution, the mean, and the variance of \hat{S} .

Probability distribution: ?

mean =
$$\langle \hat{S} \rangle = \frac{1}{2} \left(\langle \hat{X}_1 \rangle + \langle \hat{X}_2 \rangle \right) = \frac{1}{2}$$

$$var(\hat{S}) = \left\langle \hat{S}^2 \right\rangle - \left\langle \hat{S} \right\rangle^2$$

$$= \left\langle \left(\frac{1}{2} \left(\hat{X}_1 + \hat{X}_2 \right) \right)^2 \right\rangle - \left\langle \hat{S} \right\rangle^2$$

$$= \frac{1}{4} \left(\left\langle \hat{X}_1^2 \right\rangle + \left\langle \hat{X}_2^2 \right\rangle + 2 \left\langle \hat{X}_1 \right\rangle \left\langle \hat{X}_2 \right\rangle \right) - \left\langle \hat{S} \right\rangle^2$$

$$= \frac{1}{24}$$

(c) We can also take the average of N independent, uniformly distributed random variables,

$$\hat{S} = \frac{1}{N} \sum_{i=1}^{N} \hat{X}_i.$$

Based on what you found in part (a), what would you expect the probability distribution of \hat{S} to be if N is large? What about its expectation value and its variance? If N is large, by the Central Limit Theorem, the probability density of \hat{S} will be the Gaussian distribution that has parameters μ and σ^2 for the mean and variance, respectively. The mean will be equal to the mean of each individual \hat{X}_i and the variance will be $\frac{1}{N}$ times the variance of each individual \hat{X}_i

(d) Work through the posted "Random Numbers" Jupyter Notebook on random numbers. Do you find your expectations confirmed? Modify the last command block in that notebook to obtain the distribution of \hat{S} for N=100. On the same plot, graph the Gaussian normal distribution with the mean and variance that you would expect for that value of N, and compare the two. Yes everything is what I expect. Please excuse the pixelated plot below.

Problem 2. Consider a quantum-mechanical harmonic oscillator, which has states enumerated by a quantum number $n = 0, 1, 2, \ldots$ As we will see later, the probability that the oscillator is in the n-th state is

$$P(n) = \frac{1}{Z} e^{-\beta E_n}$$

where β is a positive number, $E_n = \hbar\omega(n+1/2)$ is the energy of the *n*-th state, and Z is a normalization constant. Find this normalization constant, i.e., find the expression of Z such that

$$\sum_{n=0}^{\infty} P(n) = 1.$$

You can use the following result for the geometric series:

$$\sum_{n=0}^{\infty} x^n = \frac{1}{1-x}$$

for all |x| < 1.

$$\sum_{n=0}^{\infty} P(n) = \sum_{n=0}^{\infty} \frac{1}{Z} e^{-\beta\hbar\omega (n+1/2)} = 1$$

$$= \frac{1}{Z} \sum_{n=0}^{\infty} e^{-\beta\hbar\omega n} e^{-\frac{1}{2}\beta\hbar\omega} = 1$$

$$= \frac{e^{-\frac{1}{2}\beta\hbar\omega}}{Z} \sum_{n=0}^{\infty} \left(e^{-\beta\hbar\omega}\right)^n = 1$$

$$= \frac{e^{-\frac{1}{2}\beta\hbar\omega}}{Z} \frac{1}{1 - e^{\beta\hbar\omega}} = 1$$

$$Z = \frac{e^{-\frac{1}{2}\beta\hbar\omega}}{1 - e^{\beta\hbar\omega}}$$

Problem 3. Show that the Gaussian normal distribution

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}},$$

where μ and σ are two parameters, is normalized. In other words, show that

$$\int_{-\infty}^{\infty} p(x) \mathrm{d}x = 1.$$

It might help to first show that

$$\frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx = 1$$

by calculating

$$\left(\int_{-\infty}^{\infty} e^{-\frac{x^2}{2}} dx\right)^2,$$

which you can do by solving a two-dimensional integral in polar coordinates.

$$\left(\int_{-\infty}^{\infty} e^{-\frac{x^2}{2\sigma^2}} dx \right)^2 = \int_{-\infty}^{\infty} e^{-\frac{x^2}{2\sigma^2}} dx \int_{-\infty}^{\infty} e^{-\frac{y^2}{2\sigma^2}} dy$$

we then use u-substitution to get x' and y':

$$= 2\sigma^2 \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-(x'^2 + y'^2)} dx' dy'$$

$$= 2\sigma^2 \int_{0}^{2\pi} \int_{0}^{\infty} e^{-r^2} r dr d\Theta$$

$$= 4\pi\sigma^2 \int_{0}^{\infty} r e^{-r^2} dr \text{ we use u-substitution again}$$

$$= 2\pi\sigma^2 \int_{0}^{\infty} e^s ds = 2\pi\sigma^2$$

Now we can say that $\frac{1}{\sqrt{2\pi\sigma^2}}\int_{-\infty}^{\infty} \mathrm{e}^{-\frac{x^2}{2\sigma^2}}\mathrm{d}x = 1$ The only difference between this and the gaussian distribution is the μ term in the exponent of the gaussian. This does not change the integral. We are integrating over all real numbers so a translational shift in the position of the curve along the x-axis has no impact on the integral. Therefore, we can say that $\int_{-\infty}^{\infty} p(x)\mathrm{d}x = 1$