Home / My courses	/ MATH2002-41001-Fall 2022 / TEST 3 Material / H16
	T
State	Finished
	Tuesday, October 18, 2022, 8:02 PM
	12 mins 9 secs
	21.00/21.00
Grade	10.00 out of 10.00 (100 %)
Question 1 Correct 1.00 points out of 1.00	
Select one: ○ True ✔ ○ False	
Question 2 Correct	
2.00 points out of 2.00	
	space of all $n \times n$ matrices with standard addition and scalar multiplication. The subset of $n \times n$ matrices for greater than or equal to zero is a subspace of this vector space.

■ False

Question 3			
Correct			
2.00 points out of 2.00			
The vector $\ (4,4,5)\ $ is a linear combination of the vectors	(1,2,1) and $(2,0,3)$.		
Select one:			
True ✓			
○ False			
Question 4			
Correct 1.00 points out of 1.00			
1.00 points out of 1.00			
What is required to verify that a subset $oldsymbol{W}$ of a vector space	v imes V is a subspace?		
igcup Verify that W satisfies the commutative and associative	e properties.		
O Verify all 10 properties from the definition of a vector s	space.		
igcup Verify that W has a zero vector and a negative vector.			
igcup Verify that W is in fact a subset of V .			
Verify that the two closure properties hold.	✓		
Question 5			
Correct			
2.00 points out of 2.00			
W is the subset of R^3 consisting of vectors of the form $(a,$ Is W a subspace of R^3 ?	$\left(b,c ight)$ where $c=ab$, with standard addition and scalar multiplication.		
Select one:			
lacksquare No. W is not closed under either vector addition or so	calar multiplication.		
igcup Yes, because W is closed under both vector addition a	nd scalar multiplication.		
igcirc No. While W is closed under vector addition, it is not	closed under scalar multiplication.		
igcup Yes, because W is not closed under either vector addit	ion or scalar multiplication.		
igcup No. While W is closed under scalar multiplication, it is	not closed under scalar addition.		

·
Question 6
Correct
2.00 points out of 2.00
W is the subset of R^3 consisting of vectors of the form (a,b,c) where $c=a+b$, with standard addition and scalar multiplication. Is W a subspace of R^3 ?
Select one: \bigcirc No. While W is closed under vector addition, it is not closed under scalar multiplication.
igcup Yes, because W is not closed under either vector addition or scalar multiplication.
ullet Yes, because W is closed under both vector addition and scalar multiplication.
igcirc No. W is not closed under either vector addition or scalar multiplication.
igcup No. While W is closed under scalar multiplication, it is not closed under scalar addition.
Question 7 Correct 1.00 points out of 1.00
If $S=\{w_1,w_2,\ldots,w_r\}$ is a nonempty set of vectors in a vector space $\textbf{\textit{V}}$, then the set $\textbf{\textit{W}}$ of all possible linear combinations of the vectors in $\textbf{\textit{S}}$ is a subspace of $\textbf{\textit{V}}$.
Select one:
True ✓
○ False
Question 8
Correct
1.00 points out of 1.00
Consider the vector space of all n x n matrices with standard addition and scalar multiplication. The subset of n x n matrices whose trace is zero is a subspace of this vector space. Select one: True ✓
○ False

Question 9

Correct

2.00 points out of 2.00

The vectors $\,(1,-1,1)\,$, $\,(1,0,1)\,$, and $\,(0,0,2)\,$ span $\,{\rm R}^3.$

Select one:

- True
- False

Question 10

Correct

2.00 points out of 2.00

The matrix $\begin{bmatrix} 7 & 10 \\ 0 & -2 \end{bmatrix}$ is a linear combination of the matrices $\begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix}$ and $\begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$ because $\begin{bmatrix} 7 & 10 \\ 0 & -2 \end{bmatrix} = \begin{bmatrix} 5 & \checkmark & \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} -2 & \checkmark & \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix}$.

Question 11

Correct

2.00 points out of 2.00

The polynomial $p=2x^2+11x+1$ is a linear combination of $p_1=2-x$, $p_2=1+x^2$, and $p_3=3x-x^2$ because $p=\begin{bmatrix} -2 & y & p_1+ \end{bmatrix}$ 5 $y=\begin{bmatrix} -2 & y & p_2+ \end{bmatrix}$ 8.

Question 12

Correct

1.00 points out of 1.00

The solution set of a homogeneous linear system Ax = 0 of m equations in n unknowns is a subspace of R^n .

Select one:

- True
- False

Section 3.3 - Using the Projection Theorem

Jump to...

rrect		
00 poi	nts out of 2.00	
	oose V is the set of all ordered pairs with standard addition and scalar multiplication. Let W be the subset of V that just	
cont	ains points on a certain line. W will be a subspace of V if which of the following is true?	
Seled	ct one:	
	The line has a positive y-intercept.	
	The line has a positive slope.	
	The line is vertical.	
	The line goes through the origin.	~
	The line is horizontal.	

Linear Combinations