Worked Examples

3.1 A We are given three different vectors b_1, b_2, b_3 . Construct a matrix so that the equations $Ax = b_1$ and $Ax = b_2$ are solvable, but $Ax = b_3$ is not solvable. How can you decide if this is possible? How could you construct A?

Solution We want to have b_1 and b_2 in the column space of A. Then $Ax = b_1$ and $Ax = b_2$ will be solvable. The quickest way is to make b_1 and b_2 the two columns of A. Then the solutions are x = (1,0) and x = (0,1).

Also, we don't want $Ax = b_3$ to be solvable. So don't make the column space any larger! Keeping only the columns b_1 and b_2 , the question is:

Is
$$Ax = \begin{bmatrix} b_1 & b_2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = b_3$$
 solvable? Is b_3 a combination of b_1 and b_2 ?

If the answer is no, we have the desired matrix A. If the answer is yes, then it is not possible to construct A. When the column space contains b_1 and b_2 , it will have to contain all their linear combinations. So b_3 would necessarily be in that column space and $Ax = b_3$ would necessarily be solvable.

3.1 B Describe a subspace S of each vector space V, and then a subspace SS of S.

 V_1 = all combinations of (1, 1, 0, 0) and (1, 1, 1, 0) and (1, 1, 1, 1)

 V_2 = all vectors perpendicular to u = (1, 2, 1), so $u \cdot v = 0$

 V_3 = all symmetric 2 by 2 matrices (a subspace of M)

 V_4 = all solutions to the equation $d^4y/dx^4 = 0$ (a subspace of F)

Describe each V two ways: "All combinations of ..." "All solutions of the equations..."

Solution V_1 starts with three vectors. A subspace S comes from all combinations of the first two vectors (1, 1, 0, 0) and (1, 1, 1, 0). A subspace SS of S comes from all multiples (c, c, 0, 0) of the first vector. So many possibilities.

A subspace S of V_2 is the line through (1, -1, 1). This line is perpendicular to u. The vector x = (0, 0, 0) is in S and all its multiples cx give the smallest subspace SS = Z.

The diagonal matrices are a subspace S of the symmetric matrices. The multiples cI are a subspace SS of the diagonal matrices.

 V_4 contains all cubic polynomials $y = a + bx + cx^2 + dx^3$, with $d^4y/dx^4 = 0$. The quadratic polynomials give a subspace S. The linear polynomials are one choice of SS. The constants could be SSS.

In all four parts we could take S = V itself, and SS = the zero subspace Z.

Each V can be described as all combinations of and as all solutions of:

 V_1 = all combinations of the 3 vectors V_1 = all solutions of $v_1 - v_2 = 0$

 V_2 = all combinations of (1, 0, -1) and (1, -1, 1) V_2 = all solutions of $u \cdot v = 0$.

 $V_3 = \text{all combinations of } \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$ $V_3 = \text{all solutions } \begin{bmatrix} a & b \\ c & d \end{bmatrix} \text{ of } b = c$

 $V_4 = \text{all combinations of } 1, x, x^2, x^3$ $V_4 = \text{all solutions to } d^4y/dx^4 = 0.$