ESAME CALCOLO NUMERICO PROVA DI LABORATORIO LAUREA IN INFORMATICA TERZO APPELLO 25/08/2021

Consegna Compito: saranno visibili solo i files consegnati in tempo tramite moodle.

Tempo di svolgimento: 90 minuti.

Esercizio 1. Per ogni $m > l \ge 1$ interi e $t \in [-1/2, 1/2]$ sia A(t) una matrice tridiagonale (i.e., tutti gli elementi tranne quelli diagonali, sulla prima sopra o sotto diagonale sono nulli) di ordine m con la prima sopradiagonale e la prima sottodiagonale costantemente pari ad 1, ed elementi diagonali $A_{i,i}(t)$ pari a t se i = 1, 2, ..., l e pari a 1 se i = l + 1, ..., m. Sia $b \in \mathbb{R}^m$ con

$$b_i = \begin{cases} 1 & \text{se } i = 1 \\ 2 & \text{se } i \in \{2, 3, \dots, l\} \cup \{m\} \\ 3 & \text{se } i \in \{l+1, \dots, m-1\} \end{cases}$$

Sia $x(t) \in \mathbb{R}^m$ la soluzione di A(t)x(t) = b per ogni $t \in [-1/2, 1/2] \setminus \{0\}$, si noti che tale soluzione è ben definita perchè A(t) è sempre di rango massimo (dunque invertibile) per $t \in [-1/2, 1/2] \setminus \{0\}$. Vogliamo provare a prolungare per continuità¹ in 0 tale soluzione utilizzando l'interpolazione polinomiale.

A tal fine si scriva uno script Esercizio1.m che implementi le seguenti operazioni:

- (i) (5 pt.) definisca i parametri m=18, l=3 ed un anonymous function A= $\mathbb{Q}(t)$... definita come sopra (suggerimento: usare diag con il secondo parametro d'ingresso opzionale).
- (ii) (5 pt.) Verifichi che la matrice A(0) non è invertibile e stampi a video un messaggio, **obbligatorio:** usare la fattorizzazione LU.
- (iii) All'interno di un ciclo for per i valori del grado di interpolazione polinomiale $n=1,3,5,\ldots,29$
 - (6 pt.) crei punti di interpolazione t_1, \ldots, t_{n+1} di Chebyshev-Lobatto di grado n in [-1/2, 1/2] e valuti, il vettore soluzione $x(t_i)$ per ciascuna i, **obbligatorio:** si usi a tal fine la fattorizzazione LU, e si risolvano i sistemi triangolari con il backslash,
 - (7 pt.) per ogni componente $x_k(t)$, $k=1,\ldots,m$, del vettore soluzione calcoli il polinomio $\hat{x}_k^{(n)}(\cdot)$ di grado al più n interpolante le coppie $(t_i,x_k(t_i))$ $i=1,2,\ldots,n+1$, lo valuti su una griglia equispaziata di 100 punti in [-1/2,1/2] e produca una figura con il grafico di tutti gli $\hat{x}_k^{(n)}(\cdot)$, la figura deve contenere i polinomi dello stesso grado ed essere sovrascritta ad ogni iterazione del ciclo for dopo una pausa di 1 secondo,
- (4 pt.) calcoli $\hat{x}^{(n)} := (\hat{x}_1^{(n)}(0), \dots, \hat{x}_m^{(n)}(0))^T$, e la norma del residuo $r^{(n)} := ||A(0)\hat{x}^{(n)} b||_2$. (iv) (3 pt.) Crei un grafico semilogaritmico del residuo al variare del grado di interpolazione polinomiale.

(Punti extra) Perchè questo approccio funziona? Che relazione c'è tra b ed A(0)? Stampare a video le risposte.

Trovare cioè un valore \hat{x} tale per cui la funzione $\tilde{x}(t)$ che vale x(t) per $t \neq 0$ e vale \hat{x} per t = 0 risulti continua