Assignment: Project 2

Name 1: Jonathan Smoley

Name 2: Samuel Sovi

GitHub Name: JT2M0L3Y

1. State the theorem that we called Extended Euclid.

Let *a*, *b* be integers with at least one of *a*, *b* non-zero

Then \exists integers s, t such that as + bt = gcd(a)

In particular, if a,b are relatively prime, as + bt = 1

2. We said in class that any positive integer > 1 can be written uniquely in canonical form. Write 34720 in canonical form.

Canonical form: factorization of a number into primes.

Factorization:

34720

2 * 17360

2 * 2 * 8680

2 * 2 * 2 * 4340

2 * 2 * 2 * 2 * 2170

2 * 2 * 2 * 2 * 2 * 1085

2 * 2 * 2 * 2 * 2 * 5 * 217

2 * 2 * 2 * 2 * 2 * 5 * 7 * 31

Therefore, the canonical form of 34720 is $2^5 * 5 * 7 * 31$.

3. Define congruence exactly as we defined it in class.

Let n be a positive integer

two integers a, b are said to be congruent modulo n written $a \equiv b \mod(n)$

if a - b = kn for some integer k

4. Suppose n = 1! + 2! + 3! + ... + 100!

Use congruence to find the remainder when n is divided by 12. This requires an argument, not a calculator. Show your work.

Let a be an integer where a > 4

As such, a! = 1 * 2 * 3 * 4 * ... * a

Thus $a \mod (12) \equiv 0$ because a! has factors 3 and 4 which have a product of 12 which shows that a is a multiple of 12

Now let b, c be integers such that b and c are multiples of 12.

This means that b can be written as 12 * d and c can be written as 12 * e for some integers d, e

As such,
$$b + c = 12d + 12e$$

$$12d + 12e = 12(d + e)$$

Thus,
$$(b + c) \mod 12 \equiv 0$$

By this reasoning, $(1! + 2! + 3! + ... + 100!) \mod 12 \equiv (1! + 2! + 3! + 4!) \mod 12 + 0$

Since 4! also contains factors 3 and 4 which have a product of 12, $4! \ mod \ (12) \equiv 0$ as well

Thus
$$(1! + 2! + 3! + 4!) \mod 12 \equiv (1! + 2! + 3!) \mod 12 \equiv (1 + 2 + 6) \mod 12 \equiv 9$$

Therefore, since $n \mod (12) \equiv 9$, the remainder when n is divided by 12 is 9

5. Use Extended Euclid to prove Euclid's Lemma: if a|bc with a and b relatively prime, then a|c

From Extended Euclid, gcd(a, b) = as + bt.

Since a and b are relatively prime, as + bt = 1.

By multiplying both sides with c, c = c(as + bt) = cas + cbt.

The above lemma assumes a|bc, so we can say a|cas and a|cbt.

Thus, a|(cas + cbt) too.

Because cas + cbt = c, then a|c.

6. Prove that any two integers are congruent mod 1

Let a, b be integers.

1 is the smallest positive integer and any number divided by 1 leaves a remainder of 0.

Thus, a and b are congruent $mod\ 1$ for all a, b since their remainder when divided by 1 will always be equivalent (0).

7. Prove that any two integers are congruent mod 2 if both are even or both are odd

Let a belong to the set of positive integers and b belong to the set of negative integers.

$$a = 2n$$

$$b = 2n + 1$$

Isolating n in both equations, we get

$$\frac{a}{2} = n$$

$$\frac{b}{2} = n + \frac{1}{2}$$

If a is the set of negative integers and b is the set of positive integers, then a similar case is produced.

$$a = 2n + 1 = \frac{a}{2} = n + \frac{1}{2}$$

$$b = 2n \implies \frac{b}{2} = n$$

So, a and b cannot be equal if their signs are different.

Thus, any two integers can be congruent $mod\ 2$ only if a, b > 0 or if a, b < 0.

8. Prove the Modulus Addition Theorem

Let
$$x, y, p, n$$
 be integers with $n > 0$
if $x \equiv y \pmod{n}$, then $x \equiv (y + pn) \pmod{n}$

By definition of congruence, $x \equiv (y + pn)(mod n)$ shows that x - (y + pn) = kn for some integer k x - (y + pn) = kn

$$x - (y + pn) = \kappa n$$

$$\Rightarrow x - (y) - pn = kn$$

$$\Rightarrow x - (y) = kn + pn$$

$$\Rightarrow x - (y) = n(k + p)$$

Since (k + p) is the sum of two integers, (k + p) must also be an integer

As such, $x \equiv (y) \pmod{n}$

Therefore, if $x \equiv (y) \pmod{n}$, then $x \equiv (y + pn) \pmod{n}$ where x,y,p,n are integers with n > 0.

9. Use properties of congruence and the principle of mathematical inductions to show that for any positive integer, k,

$$if \ a \equiv b \pmod{n} then \ a^k \equiv b^k \pmod{n}$$

$$k = 1$$

So, n|(a - b) such that $(a - b) \mod n = 0$.

Thus, $a^1 - b^1 \equiv (a - b) \pmod{n}$ such that $a^1 \equiv b^1$.

$$k = m + 1$$

Assume $a^m \equiv b^m \pmod{n}$.

By induction, $a^{m+1} = a^m * a = b^m * b$.

By congruence, $(a - b) \mod n = 0$.

As such, $(a^m * a - b^m * b) \mod n => (a^m - b^m) * (a - b) \pmod n = 0) * (mod n = 0)$

Therefore, $a^{m+1} \equiv b^{m+1} \mod n$.

Thus, $a^k \equiv b^k \pmod{n}$ for any positive integer k.

10. Use the result from 9 (plus other properties of congruence) to show that 41 divides 2^{20} - 1

$$2^5 mod(41) \equiv 32 mod(41) \equiv -9$$

By the property proven in question 9, $(-9)^2 \equiv 2^{10} mod(41)$

$$81 \equiv 2^{10} mod(41)$$

$$81 + 1 \mod(41) \equiv 2^{10} \mod(41) + 1 \mod(41)$$

$$82 \equiv (2^{10} + 1) \mod(41)$$

$$82 = 2 * 41, \text{ so } 82 \mod(41) \equiv 0$$

$$(2^{10} + 1) \mod(41) \equiv 0$$

$$(2^{10} - 1)(2^{10} + 1) \mod(41) \equiv 0$$
Therefore $(2^{20} - 1) \mod(41) \equiv 0$