作业四

Noflowerzzk

2025.3.13

P72 T1

- (9) 取 $x_n = \frac{2}{3^n \pi}$, 有 $u_n(x_n) \to 2^n$, $u_n(x)$ 在 $(0, +\infty)$ 不一致收敛到 0, 故函数项级数不一致收敛. 当 $x \ge \delta$ 时, $|u_n(x)| \le \frac{1}{\delta} \frac{2^n}{3^n}$. 由于 $\sum_{i=1}^\infty \frac{1}{\delta} \frac{2^n}{3^n}$ 收敛,故原函数项级数收敛.
- (10) 令 $a_n = \frac{1}{\sqrt{n}}, b_n = \sin x \sin nx$. a_n 对任意固定的 x 单减趋于 $0, \sum_{k=1}^n b_k = \cos \frac{x}{2} \left(\cos \left(n + \frac{1}{2} \right) x \cos \frac{x}{2} \right)$ 有界,故原级数收敛.
- (11) 由于取 $n, m = 2n, x = \frac{1}{\sqrt{n}}$

$$\sum_{k=n}^{m} u_k > \frac{nx^2}{(1+x^2)^{2n}} = \frac{1}{\left(1+\frac{1}{n}\right)^{2n}} > \frac{1}{e^2}$$

由 Cauchy 收敛准则知级数不收敛.

(12) 令 $a_n = \frac{x^2}{(1+x^2)^n}$ 单减收敛到 0, $b_n = (-1)^n$ 构成的部分和序列有界,故原级数一致收敛.

P73 T2

证明. 由于 $\frac{\cos nx}{n^2+1} \le \frac{1}{n^2+1}$ 而 $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ 收敛,故 f(x) 连续.

又说
$$\sigma(x) = \sum_{n=1}^{\infty} \left(\frac{\cos nx}{n^2 + 1}\right)' = -\sum_{n=1}^{n=1} \frac{n\sin nx}{n^2 + 1}.$$

由于 $x \in [2a, 2\pi - 2a]$ 有

$$\left| -\sum_{n=1}^{\infty} \frac{n \sin nx}{n^2 + 1} \right| = \frac{\left| \cos \left(n + \frac{1}{2} \right) x - \cos \frac{1}{2} x \right|}{\left| 2 \sin a \right|} \le \frac{1}{\sin a}$$

故 $-\sum_{n=1}^{\infty} \frac{n \sin nx}{n^2 + 1}$ 在 $(0, 2\pi)$ 上内闭一致收敛. 因此 $\sigma(x)$ 在 $(0, 2\pi)$ 上连续. 又 $f'(x) = \sigma(x)$, f(x) 在 $(0, 2\pi)$ 上有连续导数.

P73 T3

证明. 对任意闭区间 [m,M] 上的 x, 有 $\sum_{n=1}^{\infty} n e^{-nx}$ 收敛, 故 $\sum_{n=1}^{\infty} n e^{-nx}$ 一致收敛, f(x) 连续.

令
$$\sigma_n(x) = \sum_{n=1}^{\infty} (n\mathrm{e}^{-nx})^{(n)}$$
,同理其也一致收敛,即 $\sigma_n(x)$ 一致收敛.有显然 $\sigma(x) = f^{(n)}(x)$ 有 $f(x)$

作业四 2025.3.13

有各阶连续导函数.

P73 T4

证明. 令 $f(x) = \sum_{n=1}^{\infty} \frac{1}{n^x}$. 任意 $[m, M] \subseteq (1, +\infty)$,有 $\sum_{n=1}^{\infty} \frac{1}{n^x} \le \sum_{n=1}^{\infty} \frac{1}{n^m}$ 收敛. f(x) 在 $(1, +\infty)$ 上内闭一致收敛。 f(x) 连续.

闭一致收敛。
$$f(x)$$
 连续. 由于 $\left(\frac{1}{n^x}\right)^{(n)} = (-1)^k \frac{\ln^k n}{n^x}$,同理 $\sum_{n=1}^{\infty} (-1)^k \frac{\ln^k n}{n^x}$ 在 $(0, +\infty)$ 上内闭一致收敛. 故 $f(x)$ 在 $(1, +\infty)$ 上有各阶连续导函数.

令 $g(x) = \sum_{n=1}^{\infty} \frac{(-1)^n}{n^x}$, 同理 g(x) 在 $(1, +\infty)$ 上内闭一致收敛,故 g(x) 连续.

由于
$$\left(\frac{(-1)^n}{n^x}\right)^{(k)} = (-1)^{n+1} \frac{\ln^k n}{n^x}$$
. 同理也有其内闭一致收敛,故 $g(x)$ 在 $(1, +\infty)$ 的各阶连续导函数.

P73 T6

证明. (1) 对固定的 x < 1 有 $\frac{1}{n^x}$ 关于 n 单减且小于 1. 由 Abel 判别法, $\sum_{n=1}^{\infty}$ 在 $[0, \delta)$ 上一致收敛. 故和函数连续,即原表达式成立.

(2) 同理有
$$\sum_{n=1}^{\infty} a_n x^n$$
 一致收敛. 因此

$$\int_{0}^{1} \sum_{n=1}^{\infty} a_{n} x^{n} = \sum_{n=1}^{\infty} \frac{a_{n}}{n+1}$$

P73 T7

证明. 由于 $v_n(x)$ 连续. $\sum_{n=1}^{\infty} v_n(x)$, 由 Cauchy 收敛准则,对任意 $\varepsilon > 0$, 存在 N, 任意 m > n > N,

$$\left| \sum_{k=n}^{m} u_k(x) \right| \le \sum_{k=n}^{m} v_k(x) \le \varepsilon, \text{ id } \sum_{k=n}^{m} u_n(x) - \mathfrak{P} \psi \mathfrak{D}.$$

P73 T9

证明. 假设 $\sum_{n=1}^{\infty}$ 在 $(a,a+\delta)$ 上一致收敛. 则由 Cauchy 收敛准则,任意 $\varepsilon>0$,存在 $N, \forall m>n>N$, $\left|\sum_{k=n}^{m}u_{k}(x)\right|\leq \varepsilon.$ 则当 $x\to a$ 时, $\left|\sum_{k=n}^{m}u_{k}(a)\right|\leq \varepsilon$ 与 $\sum_{n=1}^{\infty}$ 发散矛盾! 因此 $\sum_{n=1}^{\infty}$ 在 $(a,a+\delta)$ 上不一致

作业四 2025.3.13

P73 T10

证明. 已知 $\ln\left(1+\frac{x}{n\ln^2 n}\right)$ 在 [-a,a] 上单增. 故

$$\ln\left(1 + \frac{-a}{n\ln^2 n}\right) \le \ln\left(1 + \frac{x}{n\ln^2 n}\right) \le \ln\left(1 + \frac{a}{n\ln^2 n}\right)$$

n 充分大时, $\ln\left(1+\frac{x}{n\ln^2 n}\right)\sim\frac{x}{n\ln^2 n}$ 而 $\lim_{n\to\infty}\sum_{n=2}^{\infty}\frac{\pm a}{n\ln^2 n}$ 收敛. 因此原和函数一致收敛.

P73 T12

(1) 由于 $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^3 + n}}$ 收敛且 $\cos nx$ 有界,则 $\sum_{n=1}^{\infty} \frac{\cos nx}{\sqrt{n^3 + n}}$ 一致收敛,记为 f(x),故 f(x) 连续.

(2)

$$F(x) = \int_0^x f(t)dt$$
$$= \sum_{n=1}^\infty \int_0^x \frac{\cos nx}{\sqrt{n^3 + n}} dt = \sum_{n=1}^\infty \frac{\sin nx}{n\sqrt{n^3 + n}}$$

故

$$F\left(\frac{\pi}{2}\right) = \frac{\sqrt{2}}{2} - \frac{1}{3\sqrt{30}} \sum_{n=3}^{\infty} \frac{(-1)^{n-1}}{(2n-1)\sqrt{(2n-1)^3 + 2n - 1}}$$

因此
$$\frac{\sqrt{2}}{2} - \frac{1}{15} < \frac{\sqrt{2}}{2} - \frac{1}{3\sqrt{30}} < F\left(\frac{\pi}{2}\right) < \frac{\sqrt{2}}{2}$$