ARTIC186 X.25 ISA/PCI Adapter Technical Reference Version 1.2

RadiSys Corporation

5445 NE Dawson Creek Drive

Hillsboro, OR 97124

(503) 615-1100

FAX: (503) 615-1150

www.radisys.com 07-0082-04 EPC and RadiSys are registered trademarks of RadiSys Corporation. All other trademarks, registered trademarks, service marks, and trade names are the property of their respective owners. July 1999 Copyright © 1999 by RadiSys Corporation All rights reserved.

Table of Contents

Before You Begin	. 1
About This Manual	. 1
Guide Contents	. 1
Notational Conventions	. 2
Where to Get More Information	. 2
Chapter 1: Product Description	5
Introducing the ARTIC186 X.25 ISA/PCI Adapter	5
Memory Space	. 6
Programmable Read-Only Memory (PROM)	. 6
Dynamic Random-Access Memory	. 7
80C186 Microprocessor	. 7
Serial Communications Controller	. 7
Counter/Timer and Parallel I/O Unit	. 8
Watchdog Timer	. 8
Dual-Port Memory Controller	. 8
PCI Target Interface Chip	. 9
Communications Capabilities	. 9
Support Functions	. 9
Chapter 2: Programming Considerations	
Memory and I/O Maps	
80C186XL Microprocessor	
Physical Characteristics	
Programming Considerations	
Interrupt Lines	
Interrupt Register Addresses	
DMA Channel Allocation and Registers	
80C186 Resource Allocation	
Peripheral Control Block	
Memory	
Programmable Read-Only Memory (PROM)	
Dynamic Random-Access Memory (DRAM)	
PCI Interface	
Serial EPROM	
PCI-Interface Chip Registers	
Vendor Identification Register (VID)	
Device Identification Register (DID)	
PCI Command Register (PCICMD)	
PCI Status Register (PCISTS)	22
Revision Identification Register (RID)	23

Class Code Register (CLCD)	24
Cache Line Size Register (CALN)	
Latency Timer Register (LAT)	26
Header Type Register (HDR)	27
Built-in Self-Test Register (BIST)	28
Base Address Registers (BADR0 - 5)	29
Subsystem Vendor Identification Register (SVID)	31
Subsystem Identification Register (SSID)	32
Expansion ROM Base Address Register (XROM)	33
Interrupt Line Register (INTLN)	34
Interrupt Pin Register (INTPIN)	35
Minimum Grant Register (MINGNT)	36
Maximum Latency Register (MAXLAT)	37
AMCC S5920Q Add-On Pass-Thru Address and Data Registers	38
Pass-Thru Address Register Summary	
Pass-Thru Data Register Summary	38
Dual-Port Memory Controller	
Physical Characteristics	40
Performance	40
Programming Considerations	41
Register and Command Descriptions	41
Memory Mapping	45
Option Registers	
Zilog Z8030 Serial Communications Controller	
Functions	
SCC Registers	48
Write Registers	
Read Registers	
Programming the SCC	
Diagnostic Subroutine Support	
PROM Services	
Programming Considerations	
Zilog Z8036 Counter/Timer and Parallel I/O Unit	
Functions	
CIO Registers	
Programming the CIO	
Diagnostic Subroutines	
PROM Services	
Programming Considerations	
CIO Port Assignments and Description	
Watchdog Timer	53
Chapter 3: External Interface	55
General Connections	55
X.21 Interface	57
X.21 bis/V.24 Interface (EIA-232)	58
X.21 bis/V.35 Interface	59
Cables and Connectors	60
Cable Identification	60
D-37 Connector	61

X.21 Interface Cable	62
X.21 bis/V.24 Interface Cable	63
X.21 bis/V.35 Interface Cable	64
Local Loopback-Test Plugs	64
D-37 Wrap Plug	65
D-15 Wrap Plug	65
D-25 Wrap Plug	
M/34 Wrap Plug	66
Chapter 4: Adapter Characteristics	67
Physical Characteristics	67
Adapter Size	67
Adapter Technology	67
Adapter Connectors	67
Electrical Characteristics	68
Environmental Characteristics	68
Thermal	68
Cooling	68
Heat Output	
Usability Characteristics	
·	
Chapter 5: PROM Microcode Support	69
Support Provided	
Power-On Self-Test	69
Errors	70
Unrecoverable Errors	70
Recoverable Errors	71
No Errors	71
Diagnostic Subroutines	74
List of Diagnostic Subroutines	
General Invocation	74
General Error Handling	74
Test DRAM Subroutine	75
Checksum Subroutine	76
Get Memory Size Subroutine	77
Test Microprocessor Subroutine	
Test CIO Subroutine	
Test SCC Subroutine	80
Test Dual-Port Memory Controller Subroutine	81
Get Communications Port Identity Subroutine	82
Configure CIO Port Subroutine	
Configure SCC Port Subroutine	
Configure DMA Channel Subroutine	
Configure CIO Timers Subroutine	89
Configure Watchdog Timer Subroutine	
Switch Interrupt Priorities Subroutine	
Get X.25 Electrical Interface Assembly Identifier Subroutine	
Get Base Card ID Subroutine	
PROM Services	
General Invocation	95

Dist of I Roll Bel (lees	95
Interrupt System Unit Subroutine	96
Reset an SCC Port Subroutine	97
Access SCC Registers Subroutine	98
Access CIO Registers Subroutine	100
CIO Timer Support Subroutine	102
Connect DMA Channel(s) Subroutine	104
Set Up and Start DMA Channel Subroutine	106
Access DMA Channel Registers Subroutine	109
Stop DMA Channel Subroutine	111
Convert Logical to Physical Address Subroutine	112
Convert Segment to Page Subroutine	113
Convert Page to Segment Subroutine	114
Pointer to EBCDIC-ASCII Tables	115
Convert EBCDIC String to ASCII Subroutine	116
Convert ASCII String to EBCDIC Subroutine	117
Add Element to Intrasegment Ring Subroutine	118
Remove Element From Intrasegment Ring Subroutine	
Add Element to Intersegment Ring Subroutine	
Remove Element From Intersegment Ring Subroutine	
Bootstrap Loader Subroutine	122
Dump Facility	122
Dump1 Subroutine	123
Dump2 Subroutine	124
Appendix A: Dual-Port Memory Controller	125
Design Changes	125
Design Methodology and Technology	
Design Methodology and Technology Bus Interface Descriptions	127
· · · · · · · · · · · · · · · · · · ·	127 127
Bus Interface Descriptions	
Bus Interface Descriptions 80186-Bus Interface	
Bus Interface Descriptions 80186-Bus Interface DRAM-Bus Interface	
Bus Interface Descriptions 80186-Bus Interface DRAM-Bus Interface ISA-Bus Interface	
Bus Interface Descriptions 80186-Bus Interface DRAM-Bus Interface ISA-Bus Interface Resets Dual-Port Memory Controller FPLD Registers	
Bus Interface Descriptions 80186-Bus Interface DRAM-Bus Interface ISA-Bus Interface Resets Dual-Port Memory Controller FPLD Registers	
Bus Interface Descriptions 80186-Bus Interface DRAM-Bus Interface ISA-Bus Interface Resets Dual-Port Memory Controller FPLD Registers Control-Alt-Delete Registers (CAD2, CAD1, CAD0)	
Bus Interface Descriptions 80186-Bus Interface DRAM-Bus Interface ISA-Bus Interface Resets Control-Alt-Delete Registers (CAD2, CAD1, CAD0) Command Register (COMREG) CPU Page Register (CPUPG) Data Register (DREG)	
Bus Interface Descriptions 80186-Bus Interface DRAM-Bus Interface ISA-Bus Interface Resets Control-Alt-Delete Registers (CAD2, CAD1, CAD0) Command Register (COMREG) CPU Page Register (CPUPG)	
Bus Interface Descriptions 80186-Bus Interface DRAM-Bus Interface ISA-Bus Interface Resets Control-Alt-Delete Registers (CAD2, CAD1, CAD0) Command Register (COMREG) CPU Page Register (CPUPG) Data Register (DREG)	
Bus Interface Descriptions 80186-Bus Interface DRAM-Bus Interface ISA-Bus Interface Resets Dual-Port Memory Controller FPLD Registers Control-Alt-Delete Registers (CAD2, CAD1, CAD0) Command Register (COMREG) CPU Page Register (CPUPG) Data Register (DREG) Gate Array Identification (GAID) Internal DMA Allocation Register (IDAL) Initialization Register 0 (INITREG0)	
Bus Interface Descriptions 80186-Bus Interface DRAM-Bus Interface ISA-Bus Interface Resets Dual-Port Memory Controller FPLD Registers Control-Alt-Delete Registers (CAD2, CAD1, CAD0) Command Register (COMREG) CPU Page Register (CPUPG) Data Register (DREG) Gate Array Identification (GAID) Internal DMA Allocation Register (IDAL)	
Bus Interface Descriptions 80186-Bus Interface DRAM-Bus Interface ISA-Bus Interface Resets Dual-Port Memory Controller FPLD Registers Control-Alt-Delete Registers (CAD2, CAD1, CAD0) Command Register (COMREG) CPU Page Register (CPUPG) Data Register (DREG) Gate Array Identification (GAID) Internal DMA Allocation Register (IDAL) Initialization Register 0 (INITREG0)	
Bus Interface Descriptions 80186-Bus Interface DRAM-Bus Interface ISA-Bus Interface Resets Dual-Port Memory Controller FPLD Registers Control-Alt-Delete Registers (CAD2, CAD1, CAD0) Command Register (COMREG) CPU Page Register (CPUPG) Data Register (DREG) Gate Array Identification (GAID) Internal DMA Allocation Register (IDAL) Initialization Register 0 (INITREG1)	
Bus Interface Descriptions 80186-Bus Interface DRAM-Bus Interface ISA-Bus Interface Resets Dual-Port Memory Controller FPLD Registers Control-Alt-Delete Registers (CAD2, CAD1, CAD0) Command Register (COMREG) CPU Page Register (CPUPG) Data Register (DREG) Gate Array Identification (GAID) Internal DMA Allocation Register (IDAL) Initialization Register 1 (INITREG1) Initialization Register 2 (INITREG2)	127 127 129 129 130 132 133 134 135 137 138 140 144 144
Bus Interface Descriptions 80186-Bus Interface DRAM-Bus Interface ISA-Bus Interface Resets Dual-Port Memory Controller FPLD Registers Control-Alt-Delete Registers (CAD2, CAD1, CAD0) Command Register (COMREG) CPU Page Register (CPUPG) Data Register (DREG) Gate Array Identification (GAID). Internal DMA Allocation Register (IDAL) Initialization Register 0 (INITREG0) Initialization Register 1 (INITREG1) Initialization Register 2 (INITREG2) Location Registers (LOCREG1, LOCREG0)	127 127 129 129 130 132 133 134 135 137 138 140 142 144 146
Bus Interface Descriptions 80186-Bus Interface DRAM-Bus Interface ISA-Bus Interface Resets Dual-Port Memory Controller FPLD Registers Control-Alt-Delete Registers (CAD2, CAD1, CAD0) Command Register (COMREG) CPU Page Register (CPUPG) Data Register (DREG) Gate Array Identification (GAID) Internal DMA Allocation Register (IDAL) Initialization Register 0 (INITREG0) Initialization Register 1 (INITREG1) Initialization Register 2 (INITREG2) Location Registers (LOCREG1, LOCREG0) NMI Mask Register (NMIMASK)	127 127 129 129 130 132 133 134 135 137 138 140 142 144 146 147
Bus Interface Descriptions 80186-Bus Interface DRAM-Bus Interface ISA-Bus Interface Resets Dual-Port Memory Controller FPLD Registers Control-Alt-Delete Registers (CAD2, CAD1, CAD0) Command Register (COMREG) CPU Page Register (CPUPG) Data Register (DREG) Gate Array Identification (GAID) Internal DMA Allocation Register (IDAL) Initialization Register 0 (INITREG0) Initialization Register 1 (INITREG1) Initialization Registers (LOCREG1, LOCREG0) NMI Mask Register (NMIMASK) NMI Status Register (NMISTAT)	127 127 129 129 130 132 133 134 135 137 138 140 144 146 147 149
Bus Interface Descriptions 80186-Bus Interface DRAM-Bus Interface ISA-Bus Interface Resets Dual-Port Memory Controller FPLD Registers Control-Alt-Delete Registers (CAD2, CAD1, CAD0) Command Register (COMREG) CPU Page Register (CPUPG) Data Register (DREG) Gate Array Identification (GAID) Internal DMA Allocation Register (IDAL) Initialization Register 0 (INITREG0) Initialization Register 1 (INITREG1) Initialization Registers (LOCREG1, LOCREG0) NMI Mask Register (NMIMASK) NMI Status Register 0 (OPTION0)	127 127 129 129 130 132 133 134 135 137 140 142 144 146 147 151

Dual-Port Memory Controller FPLD Commands	157
General End Of Interrupt Command (GEOI)	158
Interrupt Command (INTCOM)	159
Interrupt Sharing Enable Command (ISEC)	160
I/O Signals	161
Packaging and Pin Information	168
Miscellaneous Signals Timing Diagrams	173
AR(15:1) Timing	173
AS#, CSn, RDIDnn#, R/W#, and SRDY Timing	
DRQn Timing.	
AS#, DS# and INTA1R# Timing	
Dual-Port Memory Controller FPLD's Miscellaneous Glue Control Signals	
Appendix B: Configuration	179
Creating an ICAPARM.PRM File	
Example 1 – For One Co-Processor Adapter	179
Example 2 – For Multiple Co-Processor Adapters	
Changing Your CONFIG.SYS File	
Ctrl-Alt-Del Reset Considerations	
Appendix C: Communications	181
Concepts of Packet-Switched Data Networks	
DSEs, DTEs, and DCEs	181
Levels of X.25	
Physical Level	183
Link Level	183
Packet Level	
Data Packets	187
Logical Channels	188
Types of Logical Channels	
Glossary	191
Index	199

Figures

1-1.	Block Diagram of the ARTIC186 X.25 ISA/PCI Adapter Co-Processor	6
2-1.	PCI Configuration Space Header	. 18
3-1.	Connecting the Adapter to an X.25 Public Packet-Switched Network	. 55
3-2.	X.21 Interface Control	. 57
3-3.	X.21 bis/V.24 Interface Control	58
3-4.	X.21 bis/V.35 Interface Control	59
3-5.	Cable ID (X.21 bis/V.24 Interface Cable Connected)	60
3-6.	X.25 Network Interface Connector	61
3-7.	X.21 Interface Cable	62
3-8.	X.21 Bis/V.24 Interface Cable	63
3-9.	X.21 Bis/V.35 Interface Cable	64
3-10.	D-37 Wrap Plug Pin Assignment	65
3-11.	D-15 Wrap Plug Pin Assignment	65
3-12.	D-25 Wrap Plug Pin Assignment	66
3-13.	M/34 Wrap Plug Pin Assignment	66
	ARTIC186 X.25 ISA/PCI Adapter	
	PROM Error Counters	
A-1.	Dual-Port Memory Controller FPLD-Bus Interfaces	128
A-2.	Mapping DRAM into ISA Memory-Address Space	131
A-3.	AR(15:1) Timing	173
A-4.	AS#, CSn, RDIDnn#, R/W# and SRDY Timing	174
A-5.	DRQn Gating by Dual-Port Memory Controller FPLD	175
A-6.	AS#, DS# and INTA1R# Timing	176
	ABT543 Wiring	
C-1.	Elements of a Packet-Switched Data Network	182
C-2.	Control Byte (Modulo 8)	184
C-3.	General Pack Format	185
C-4.	Establishing a Switched Virtual Circuit	
C-5.	Clearing a Switched Virtual Circuit	186
C-6.	DTE Initiated Reset	
C-7.	DCE Initiated Reset	186
C-8.	Data Packet with Modulo 8	187
C-9.	Data Packet with Modulo 128	187

Tables

2-1.	80C186 Memory Map	. 12
	80C186 I/O Map	
	Interrupt Controller Register Model	
2-4.	DMA Register Addresses	. 15
2-5.	80C186 Microprocessor Interrupts	. 15
2-6.	80C186 Microprocessor Counter/Timers	. 15
2-7.	80C186 Microprocessor DMA Channels	. 15
2-8.	Z8036 CIO Timers	. 15
2-9.	Peripheral Interface Register Addresses.	. 16
2-10.	EEPROM Values	. 17
2-11.	Register Addresses and Initial Values	. 42
2-12.	Command Addresses and Initial Values	. 43
2-13.	SCC Write Register Addresses and Usage	. 49
	SCC Read Register Addresses and Usage	
2-15.	Diagnostic Subroutines	. 49
2-16.	PROM Services	. 50
2-17.	CIO Main Control Registers	. 51
2-18.	Frequently Accessed Registers of the CIO	. 51
2-19.	CIO Counter/Timer Registers	. 51
2-20.	CIO Port 0 Specification Registers	. 52
	CIO Port 0 Specification Register	
2-22.	Diagnostic Subroutines	. 52
2-23.	PROM Services	. 52
2-24.	CIO Bit Assignments, Port 0	. 53
2-25.	CIO Bit Assignments, Port 1	. 53
2-26.	LED Operation	. 54
2-27.	Watchdog Timer Description	. 54
3-1.	Cable and Wrap Plug Identification	60
4-1.	Power Requirements	. 68
4-2.	Environmental Classification Ratings	. 68
5-1.	POST Error Codes	. 71
5-2.	POST Error Codes	. 71
5-3.	CIO Port Registers	. 83
5-4.	CIO Timers	. 89
5-5.	Watchdog Timer	. 90
5-6.	Port 2 Registers	. 90
A-1.	Memory Access Wait States with 14.74 MHz CLKIN	130
A-2.	Memory Access Wait States with 20 MHz CLKIN	
A-3.	Memory Access Wait States with 25 MHz–29.49 MHz CLKIN	130
	Register Names and Addresses	
	Input Signals ENPCI, C8, C4, C2, C1, and Base I/O Addresses	

A-6.	Input Signals L4, L2, and L1	143
A-7.	ENPCI, ED, LOCREG1, BW, and Data-Bus Width Addressing	145
A-8.	Input Signals C8, C4, C2, C1, and Base I/O Addresses	152
A-9.	Input Signals L4, L2, and L1	153
A-10.	Pointer Register Values	155
A-11.	Dual-Port Memory Controller FPLD Commands	157
A-12.	Dual-Port Memory Controller ISA-Bus Interface Signals	161
A-13.	Dual-Port Memory Controller 80186-Bus Interface Signals	162
A-14.	Dual-Port Memory Controller DRAM-Bus Interface Signals	163
A-15.	Dual-Port Memory Controller Miscellaneous Signals	164
A-16.	Signals and Physical Pin Number	168

Before You Begin

This technical reference manual describes the ARTIC186 X.25 ISA/PCI Adapter.

The reader is assumed to have some knowledge of telecommunication protocols, although an introduction to X.25 packet-switched data networks is contained in Appendix C.

About This Manual

The information in this publication is both introductory and reference. It is intended for hardware and software designers, programmers, engineers, and those with a knowledge of electronics and/or programming who need to understand the operation of the ARTIC186 X.25 ISA/PCI Adapter.

The ARTIC186 X.25 ISA/PCI Adapter is the combination of the popular X.25 ISA and the X.25 PCI Adapters.

This dual adapter plugs into a single I/O slot in PCI or ISA compliant systems, allowing complete compatibility with existing applications running on the two current X.25 Adapters. It also allows the system unit to communicate over an X.25 packet-switched network. The adapter has its own microprocessor and memory, thus allowing it to carry out most of the communications work that would otherwise be done by the system unit.

Guide Contents

Chapter		Description
1	Product Description	This chapter describes the adapter hardware and how it operates; it also relates the adapter to other IBM communications co-processors.
2	Programming Considerations	This chapter provides programming considerations and a detailed description of the adapter microprocessor, PCI interface, dual-port memory controller, serial communications controller, and counter/timer and parallel I/O unit.
3	External Interface	This chapter describes the network interface, covering details about the X.21 interface, the X.21 bis/V.24 interface, and the X.21 bis/V.35 interface.
4	Adapter Characteristics	This chapter describes the physical and electrical characteristics of the adapter.
5	PROM Microcode Support	This chapter describes the power-on self-test and all the support subroutines resident in the adapter PROM.

Appendixes

The appendices provide additional information about the ARTIC186 X.25 ISA/PCI Adapter.

Appendix	Description	
A Dual-Port Memory Controller	This appendix contains information about the dual-port memory controller design changes, bus interface descriptions, FPLD commands, and register details.	
B Configuration	This appendix contains information about special considerations needed when configuring and operating a system with the adapter installed.	
C Communications	This appendix provides an overview of X.25 packet-switched networks.	
Glossary	This section contains definitions of special terms and abbreviations used in this manual.	

Notational Conventions

This manual uses the following conventions:

- Nondecimal numbers are represented with a trailing letter, such as an h or b. The
 trailing h identifies the number as a hexadecimal value; the trailing b identifies the
 number as a binary value. Numbers without a trailing letter are assumed to be decimal
 values.
- Bit 0 is the low-order bit. If a bit is set to 1, the associated description is true unless otherwise stated.
- KB = 1024 bytes
- MB = 1,048,576 bytes
- Data structures and syntax strings appear in this typeface.

Where to Get More Information

One or more of the following publications might be needed for reference when using this technical reference manual:

IBM Disk Operating System (DOS), Version 3.3 or later

IBM Macro Assembler, Version 2.0 or IBM Macro Assembler/2

IBM Operating System/2(TM) (OS/2(TM)), Version 2.0 or later (Standard or Extended Edition)

The technical reference manual for your system unit

Intel iAPX 86/88, 186/188: User's Manual Hardware Reference

Intel 80C186/C188 80C186XL/C188XL Microprocessor User's Manual, 272164

PCI Local Bus Specification, Revision 2.1, June 1, 1995

AMCC S5920Q Databook, Section 2, 1998

Zilog Serial Communications Controllers Databook, DC 8316

Zilog 8030/Z8530 Serial Communications Controller Technical Manual

Zilog Z8036 CIO Counter/Timer and Parallel I/O Unit Technical Manual, 00-2091

ARTIC OS/2 Support User's Guide

ARTIC DOS Support User's Guide

ARTIC Dual-Port, ARTIC Multiport, and ARTIC Multiport/2 Technical Reference

ETSI Standards:

- NET 1 Approval requirements for data terminal equipment to connect to circuit switched public data networks and leased circuits using CCITT Recommendation X.21 interface
- NET 2 Approval requirements for data terminal equipment to connect to packet switched public data networks using CCITT Recommendation X.25 interface

CCITT Blue Book, Recommendations:

- X.1 International user classes of service in public data networks and integrated services digital networks (ISDNs)
- X.21 Interface between data terminal equipment (DTE) and data circuit-terminating equipment (DCE) for synchronous operation on public data networks
- X.21 bis Use on public data networks of data terminal equipment (DTE) which is designed for interfacing to synchronous V-Series modems
- X.25 Interface between data terminal equipment (DTE) and data circuit-terminating equipment (DCE) for terminals operating in the packet mode and connected to public data networks by dedicated circuit
- X.28 DTE/DCE interface for a start-stop mode data terminal equipment accessing the packet assembly/disassembly facility (PAD) in a public data network situated in the same country
- X.150 Principles of maintenance testing for public data networks using data terminal equipment (DTE) and data circuit-terminating equipment (DCE) test loops
- V.10 Electrical characteristics for unbalanced double-current interchange circuits for general use with integrated circuit equipment in the field of data communications
- V.24 List of definitions for interchange circuits between data terminal equipment (DTE) and data circuit-terminating equipment (DCE)
- V.28 Electrical characteristics for unbalanced double-current interchange circuits

ANSI and EIA Standards:

ANSI/EIA/TIA-232-E - Interface Between Data Terminal Equipment and Data Circuit-Terminating Equipment Employing Serial Binary Data Interchange

- EIA-422-A Electrical Characteristics of Balanced Voltage Digital Interface Circuits
- EIA-423-A Electrical Characteristics of Unbalanced Voltage Digital Interface Circuits

ISO Standards:

ISO 2110 - Information Technology - Data Communication - 25-Pole DTE/DCE Interface Connector and Contact Number Assignments

ISO 4903 - Data Communication - 15-pin DTE/DCE Interface Connector and Pin Assignments

X.25 Interface for Attaching SNA Nodes to Packet-Switched Data Networks, General Information Manual, GA27-3345

X.25 Interface for Attaching IBM SNA Nodes to Packet-Switched Data Networks, General Information, SC30-3409

Safety Standards:

Underwriters' Laboratory Specification UL2943

Underwriters' Laboratory Specification UL2464

Product Description

This chapter describes the ARTIC186 X.25 ISA/PCI Adapter hardware and how it operates.

Introducing the ARTIC186 X.25 ISA/PCI Adapter

The ARTIC186 X.25 ISA/PCI Adapter is a single-slot, half-card adapter for use in PCI or ISA interface bus compliant systems. The adapter contains:

- 1 MB of dynamic random-access memory (DRAM)
- 16 KB of programmable read-only memory (PROM)
- An 80C186-20 microprocessor
- A serial communications controller (SCC)
- A counter/timer and parallel I/O unit (CIO)
- A dual-port memory controller
- AMCC S5920Q PCI Target Interface chip (AMCC)
- Interface line drivers and receivers to support the X.25 layer

The major components of the adapter are shown in the following figure.

Figure 1-1. Block Diagram of the ARTIC186 X.25 ISA/PCI Adapter Co-Processor

Memory Space

Adapter memory consists of 16 KB of programmable read-only memory (PROM) and 1 MB of dynamic random-access memory (DRAM).

Programmable Read-Only Memory (PROM)

PROM contains microcode that provides the following support:

- Bootstrap loader
- Power-on self-test
- Diagnostic test subroutines
- · PROM services.

The adapter read-only memory cannot be read by tasks running on the system unit. See Chapter 5 "PROM Microcode Support" on page 69 for more information.

Dynamic Random-Access Memory

Tasks running on the 80C186 microprocessor can access all 1 MB of DRAM. Tasks running on the system unit can access adapter DRAM through an 8 KB memory window. The window starts on an 8 KB boundary. Although not recommended, the size and location of this shared storage window can be dynamically changed by tasks running on the system unit and the adapter. The window is controlled by registers in the dual-port memory controller.

80C186 Microprocessor

Processing power is provided by an 80C186XL microprocessor running at 7.37MHz or 14.32MHz.

A switch on the card selects the processor operating speed.

The microprocessor can be used for the following:

- Communications-related processing (relieving the system unit of this burden)
- Preparing and processing inbound and outbound data
- Processing of application tasks
- Control of memory and peripheral chips, including:
 - **Timers**
 - Direct memory access (DMA) channels
 - Serial communication controller
 - Counters
 - I/O ports
 - Parallel I/O unit
 - Dual-port memory controller

Serial Communications Controller

The serial communications controller (SCC) provides the following:

- Two independent full-duplex channels
- **HDLC** support
- DMA capability

The SCC provides bit-transparency and error detection for the X.25 communications interfaces. After being initialized by the Realtime Control Microcode (RCM) and support software, the SCC performs a major portion of the X.25 level-1 communications workload. Before it can perform X.25 functions, an application must be loaded on the adapter. Application code is not shipped with this adapter.

Counter/Timer and Parallel I/O Unit

The counter/timer and parallel I/O unit (CIO) provides the following:

- Three independent 16-bit timers
- Two independent, 8-bit, double-buffered, bidirectional I/O ports
- A special purpose, 4-bit I/O port

The two 8-bit ports are used to control the flow of data through the X.25 interfaces. The watchdog timer uses one timer and the 4-bit I/O port. The remaining two 16-bit timers are available for user tasks.

Watchdog Timer

After the watchdog timer is activated, it counts down towards zero and must be continually monitored by software to prevent reaching zero. If the watchdog timer actually does reach zero, the CIO does the following:

- Lights a light-emitting-diode (LED) on the edge of the adapter
- Sends an interrupt to the 80C186 microprocessor
- Sends an interrupt to the system unit

Dual-Port Memory Controller

The dual-port memory controller is an IBM CMOS gate array with 10000 gates that provides a convenient and flexible way of passing data and control bytes between the 80C186 bus and the system unit bus. The chip adapts to both 8-bit and 16-bit data buses on the system bus. The basic purpose of the VLSI gate array is to provide a high-performance interface between the co-processor adapter and the system. All data communications between the system and the co-processor adapter go through this interface. The dual-port memory controller provides this communication using the following functions:

- 8 KB Page Selection from the system
- Interrupt Handling
- Watchdog Timer Errors
- Initialization Conditions
- System Unit Lost Refresh Condition

See "Dual-Port Memory Controller" on page 39 for more information.

PCI Target Interface Chip

The AMCC S5920Q chip provides all the function needed by the ARTIC186 X.25 ISA/ PCI Adapter to interface to the PCI bus. The PCI Target Interface Chip provides three physical bus interfaces:

- PCI bus
- ISA bus (interface to the dual-port memory controller)
- Optional external non-volatile memory

Communications Capabilities

The adapter provides any one of the following X.25 interfaces (see Chapter 3. "External Interface" on page 55 for more information):

- X.21
- X.21 bis/V.24 (RS-232)
- X.21 bis/V.35

The adapter provides direct memory access (DMA) between adapter memory and the serial communications controller (SCC) channels.

The adapter hardware provides no specific X.25 protocol function, other than HDLC. The X.25 packet level must be provided by application software running on the adapter.

Support Functions

The adapter provides the following support functions through the PROM microcode and the RCM:

- Multiple task management for up to 253 tasks with priorities
- Interface functions between the adapter and the system unit
- First-level interrupt handlers
- Diagnostic subroutines
- Bootstrap loader
- Resource management for:
 - User queues
 - Memory
 - Hardware timers
 - Software timers
 - Communications ports
 - DMA channels
 - Interrupt vectors

Programming Considerations

This chapter describes the individual components of the ARTIC186 X.25 ISA/PCI Adapter Co-Processor. A block diagram of the adapter is in Figure 1-1 on page 6. Each major component is described in terms of its function, physical characteristics, and special features. Programming information is provided, or referenced, for those components that are programmable.

Applications can use this information to directly program the hardware or they can selectively use the supplied support packages. Available programming support includes:

- Operating system device drivers
- On-card realtime operating system
- On-card communications support
- Programming language support

Operating System Device Drivers:

- **ARTIC DOS Support**
- ARTIC OS/2 Support
- ARTIC NT Support
- **ARTIC WIN98 Support**
- ARTIC AIX Support

ARTIC186 Microcode:

Realtime Control Microcode (RCM)

On-Card Communications WAN Support:

Realtime Interface Co-Processor Extended Services

Programming Language Support:

- Realtime Interface Co-Processor C Language Support
- Realtime Interface Co-Processor Developer's Kit

Memory and I/O Maps

The 80C186 memory map is shown in the following table.

Table 2-1. 80C186 Memory Map

Address	Size	Use
FC000-FFFFFh	16 KB	80C186 '-UCS' - PROM
F0000-FBFFFh	48 KB	80C186 '-UCS' - PROM (Shadow)
00000-EFFFFh	960 KB	DRAM

Note: -UCS is the Upper Memory Chip Select on the 80C186.

The I/O map is shown in the following table.

Table 2-2. 80C186 I/O Map

I/O Address	Size	Use
FF00-FFFFh	256 Bytes	80C186 PCB
0900-FEFFh	61.5 KB	Reserved
0800-08FFh	256 Bytes	Dual-Port Memory Controller Select 8
0700-07FFh	256 Bytes	Dual-Port Memory Controller Select 7
0600-06FFh	256 Bytes	Dual-Port Memory Controller Select 6
0500-05FFh	256 Bytes	Dual-Port Memory Controller Select 5
0400-04FFh	256 Bytes	Dual-Port Memory Controller Select 4
0282-03FFh	126 Bytes	Reserved
0280-0281h	2 Bytes	Reserved
0202-027Fh	126 Bytes	Reserved
0200-0201h	2 Bytes	Reserved
0180-01FFh	128 Bytes	Dual-Port Memory Controller Select 2 - CIO0
0100–017Fh	128 Bytes	Dual-Port Memory Controller Select 1 - SCC
00F8-00FFh	8 Bytes	80187 decode - Reserved
0088-00F7h	112 Bytes	Reserved
0084-0087h	4 Bytes	Dual-Port Memory Controller registers
0080-0083h	4 Bytes	Dual-Port Memory Controller registers
001A-007Fh	102 Bytes	Reserved
0000-0019h	26 Bytes	Dual-Port Memory Controller registers

PROM and DRAM do not require wait states but are programmed by the RCM to accept an external ready line controlled by the dual-port memory controller. All peripheral devices are programmed for one wait state and to accept an external ready.

80C186XL Microprocessor

Physical Characteristics

The main features of the 80C186XL microprocessor are:

- 16-bit architecture
- 7.3728 MHz and 14.32 MHz operating frequencies
- Typical 542.4-nanosecond bus cycle time (0 wait states)
- Maximum 814-nanosecond bus cycle time (2 wait states)
- Three programmable 16-bit timers (reserved for the Realtime Control Microcode)

- Internal programmable interrupt controller
- Internal clock generator
- Two independent high-speed DMA channels
- Storage and peripheral chip selects
- Internal programmable wait state generator
- 16-bit data bus
- 20-bit address bus
- Twice the performance of the 8086 microprocessor

Programming Considerations

Programming of the 80C186 microprocessor is described in detail in the Intel literature. This section deals with special considerations when programming the 80C186 microprocessor for the ARTIC186 X.25 ISA/PCI Adapter.

Interrupt Lines

The 80C186 microprocessor has five interrupt lines; only NMI, INT0, and INT1 are used. NMI and INT0 are driven by the dual-port memory controller. INT1 is driven by the SCC and CIO. Nonmaskable interrupts can be masked by appropriately setting the NMIMASK register in the dual-port memory controller.

The dual-port memory controller issues edge-triggered interrupts on INT0 in fully nested mode. The SCC and CIO issue level-triggered interrupts on INT1 in cascade mode.

The interrupt vectors for NMI and INT0 are provided internally by the 80C186 microprocessor. The interrupt vectors for INT1 are provided by the Zilog Z8030 Serial Communications Controller and the Zilog Z8036 Counter/Timer and Parallel I/O unit.

The SCC and CIO select which device supplies the vector during the interrupt acknowledgment cycle. The SCC has a higher interrupt priority than the CIO.

After a hardware interrupt, the nonspecific end-of-interrupt (EOI) command, 8000h, must be written to the EOI register to re-enable interrupts. Interrupts are enabled at the same or lower priority as the previous interrupt.

EOI is the only command a task should issue to the interrupt controller. Any other command or change could cause unpredictable results.

Example:

```
MOV AX,08000h ;data value for nonspecific EOI
MOV DX,0FF22h ;I/O address of EOI register
OUT DX,AX ;Issue EOI
```

Interrupt Register Addresses

The 15 interrupt controller registers are shown in the following table.

Table 2-3. Interrupt Controller Register Model

Register	Address
INT3 control register	FF3Eh
INT2 control register	FF3Ch
INT1 control register	FF3Ah
INT0 control register	FF38h
DMA1 control register	FF36h
DMA0 control register	FF34h
Timer control register	FF32h
Interrupt status register	FF30h
Interrupt request register	FF2Eh
In-service register	FF2Ch
Priority mask register	FF2Ah
Mask register	FF28h
Poll status register	FF26h
Poll register	FF24h
EOI register	FF22h

DMA Channel Allocation and Registers

The 80C186 microprocessor has two integral DMA channels. The registers that control them are described in Table 2-4 on page 15 and in the Intel literature. The adapter uses a DMA steering multiplexer to allocate the DMA channels to the following four potential requesting sources:

- SCC port 0 transmitter (TxREQA)
- SCC port 1 transmitter (TxREQB)
- SCC port 0 receiver (RxREQA)
- SCC port 1 receiver (RxREQB)

Tasks running on the adapter can write to and read from the internal DMA allocation logic register (IDAL). See "Internal DMA Allocation Register (IDAL)" on page 140 for more information.

When using DMA, first enable the SCC through its WR0 register, then enable the DMA channel through the DMA control word register.

The DMA allocation logic register (IDAL) and the 80C186 microprocessor DMA registers are set by the Connect DMA Channels PROM service subroutine (INT AAh). See "Connect DMA Channel(s) Subroutine" on page 104 for more information.

The DMA registers for DMA channel 0 are located at FFC0h through FFCAh and for DMA channel 1 at FFD0h through FFDAh. The DMA controller registers are shown in Table 2-4 on page 15. PROM Services subroutines can be used to program the DMA so that the DMA control registers do not have to be accessed directly.

Table 2-4. DMA Register Addresses

Register Name	Address Channel 0	Address Channel 1
Control word	FFCAh	FFDAh
Transfer count	FFC8h	FFD8h
Destination pointer (high)	FFC6h	FFD6h
Destination pointer (low)	FFC4h	FFD4h
Source pointer (high)	FFC2h	FFD2h
Source pointer (low)	FFC0h	FFD0h

80C186 Resource Allocation

The following tables show how the various 80C186 resources are allocated.

Table 2-5. 80C186 Microprocessor Interrupts

Signal	Pin No.	Assignment
NMI	46	Parity error, watchdog, NMI command, lost refresh, parity channel
		check, Ctrl-Alt-Del
INT0	45	Dual-port memory controller
INT1	44	SCC and CIO
INT2	42	Reserved
INT3	41	Interrupt acknowledge for SCC and CIO

Table 2-6. 80C186 Microprocessor Counter/Timers

Signal	Pin No.	Assignment
TIMER0	20	For RCM use, offset 50h–56h
TIMER1	21	For RCM use, offset 58h–5Eh
TIMER2	-	For RCM use, offset 60h–66h

Table 2-7. 80C186 Microprocessor DMA Channels

Signal	Pin No.	Assignment
DRQ0	18	Allocated by user task running on adapter, offset C0–CAh
DRQ1	19	Allocated by user task running on adapter, offset D0–DAh

Table 2-8. Z8036 CIO Timers

Signal	Pin No.	Assignment
TIMER1	14	Available for user tasks via RCM
TIMER2	10	Available for user tasks via RCM
TIMER3	21	Watchdog

Peripheral Control Block

The 80C186 microprocessor peripheral control block is set up by the power-on diagnostics. It is located in adapter I/O space at address FF00h through FFFFh. The only areas of the peripheral control block that should be modified are the DMA descriptors and interrupt controller registers described on page 14. Modifying any other register can cause unpredictable results.

Memory

PROM and DRAM do not require wait states but are programmed by the RCM to accept an external ready line controlled by the dual-port memory controller. All peripheral devices are programmed for one wait state and to accept an external ready. The peripheral interface register addresses are shown in the following table.

Table 2-9. Peripheral Interface Register Addresses

Register	Address
UMCS	FFA0h
LMCS	FFA2h
PACS	FFA4h
MMCS	FFA6h
MPCS	FFA8h

Programmable Read-Only Memory (PROM)

16 KB of programmable read-only memory (PROM) contains the PROM microcode which is accessed by the 80C186 on the ARTIC186 X.25 ISA/PCI Adapter. The PROM is not accessible by the system unit.

Programmable read-only memory is provided by two 32-pin 27C256 devices. Each device provides 8 KB of storage with an access time of 200 nanoseconds. Memory decoding of the PROM area is handled by the 80C186 through the -UCS (upper memory chip select) output, which is programmed to a decode range of 64 KB by writing a value of F038h to the UMCS register in the PCB.

A power-on self-test (POST) is included in the PROM microcode. POST performs a checksum verification on PROM. A user task can also call the checksum diagnostic subroutine at any time. A list of the functions performed during POST is shown in "Power-On Self-Test" on page 69.

Dynamic Random-Access Memory (DRAM)

The dual-port memory controller guarantees a DRAM cycle time of 250 nanoseconds. This implies a maximum data transfer rate of 8 Mbps, but the microprocessor cannot access DRAM at this rate. Each access holds DRAM for 250 nanoseconds before releasing it and making it available for another access.

DRAM consists of one 4 MB x 16-bit 50-pin SOIC package with 50 nanosecond access time. The 1 MB of DRAM is organized as 512K 16-bit words.

The DRAM is accessed as a 16-bit device by the 80C186 microprocessor, as an 8-bit or 16-bit device by the system unit and as an 8-bit device by on-card DMA.

The power-on self-test (POST) checks DRAM for size, addressability, and parity. The PROM microcode test subroutines may also be called at any time by user tasks running on the adapter. See "Power-On Self-Test" on page 69 for details.

PCI Interface

The PCI interface on the ARTIC186 X.25 ISA/PCI Adapter is implemented with an AMCC S5920Q PCI Target interface chip. The interface complies with Revision 2.1 of the PCI Local Bus Specification with the following exceptions:

- On burst reads to the card, the card terminates the cycle by activating the STOP# signal in the clock cycle after the first data phase. This violates rule 4 under section 3.3.3.2.1 of the PCI Specification, which states that after a target asserts TRDY# or STOP# it cannot change DEVSEL#, TRDY#, or STOP# until the current data phase completes.
- The card does not terminate cycles as specified in section 3.3.3.3 of the PCI Specification because the timers have been disabled in the AMCC S5920Q chip through bit 0 of EPROM location 45 to fix a bus hang found in some PCI systems.

Each PCI-bus device contains a unique 256-byte configuration header-space region. Portions of this configuration header are mandatory for a PCI card to be in full compliance with the PCI Specification. The following section describes each of these configuration registers including its address, default values, initialization options, and bit definitions.

According to the PCI specification, care must be exercised with registers that have reserved bits to make sure they are handled correctly. On reads, software must use appropriate masks to extract defined bits, and *might not rely on reserved bits being any particular value*. On writes, software must ensure that the values of the reserved bit positions are preserved by first reading the values of these bits and then writing these values back when writing the new values of other bit positions.

Serial EPROM

A serial EPROM interface of three pins is provided to allow automatic configuration of the PCI-interface chip.

The serial EPROM interface is a Microchip 24LC02B 2K bits (1 block of 256x8 bits) EEPROM. Values must be programmed into this chip with the format specified in the following table.

EPROM Values

Table 2-10. EEPROM Values

Table 2-10. EEFROM Values							
Offset	Description	Data					
00-3Fh	unused	FF, , FFh					
40–41h	Vendor ID	14, 10h					
42-43h	Device ID	61, 00h					
44h	unused	FFh					
45h	Target Latency Timer (bit 0)	FEh					
46–47h	unused	FF, FFh					
48h	Revision ID	00h					
49–4Bh	Class Code	00, 80, 07h					
4Ch	unused	FFh					
4Dh	Latency	00h					
4Eh	Header	00h					
4Fh	BIST	00h					
50-53h	BADR0	81, FF, E8, 10h					
54–57h	BADR1	02, E0, FF, BFh					
58–5Bh	BADR2	E1, FF, FF, 7Fh					
5C-5Fh	BADR3	00, 00, 00, 00h					
60–63h	BADR4	00, 00, 00, 00h					
64–67h	BADR5	00, 00, 00, 00h					
68–6Fh	unused	FF, FF, FF, FF, FF, FF, FFh					

Table 2-10. EEPROM Values (Continued)

Offset	Description	Data	
70–73h	External NVRAM	00, 00, 00, 00h	
74–7Bh	unused	FF, FF, FF, FF, FF, FF, FFh	
7Ch	Interrupt Line	FFh	
7Dh	Interrupt Pin	01h	
7Eh	Minimum Grant	00h	
7Fh	Maximum Latency	00h	
80-7FFh	unused	FF, , FFh	

PCI-Interface Chip Registers

A diagram of the PCI Configuration Space Header is shown in the following figure. The registers are described in detail following this diagram.

						PCI	EEP	
31 24	23 16	15 8	7	0		writeable	Write	able
Devi	ce ID	Vendo	Vendor ID			N	Υ	
PCI	Status	PCI C	ommand		04	Υ	N	
	Class Cod	le	Rev	ID	08	N	Y	
BIST	Header Type=0	Latency Timer	Cache Si		0C	Y (1	5:8) N	
	Base Address	Register#0			10	Υ	N	
	Base Address	Register#2 Register#3 Register#4			14	Υ	N	
	Base Address				18	Υ	N	
	Base Address				1 C	Υ	N	
	Base Address				20	Υ	N	
	Base Address				24	Υ	N	
	Reserve				28	N	N	
Subsy	stem ID	Subsystem Vendor ID			2C	N	Y	
Expansion ROM Base Address					30	Υ	N	
	Reserved = '0's					N	N	
	Reserve	d = '0's			38	N	N	
MAXLAT	MINGNT	Interrupt Pin	Inter Li	rupt ie	3C	Y (7	:0) Y	(15:8)

Figure 2-1. PCI Configuration Space Header

Vendor Identification Register (VID)

The Vendor Identification register identifies the manufacturer of the PCI-interface chip. This register is read-only from the PCI interface.

Register Format

```
 \begin{array}{ccc} (PCI \ Address \ Offset = Base + 00h-01h) \ 16\text{-bit read-only} \\ \hline 15 & 0 \\ \hline \hline & Vendor \ ID \\ \hline \end{array}
```

Bit Descriptions

Bits 15-0: Vendor ID

This field identifies the manufacturer as IBM. Its value is 1014h. This register is loaded by the Serial EEPROM at offset 40h.

```
Power-Up Reset - 0001 0000 1001 0100
Command Reset - 0001 0000 0001 0100
```

Device Identification Register (DID)

The Device Identification register identifies the particular device. This register is read-only from the PCI interface.

Register Format

```
(PCI Address Offset = Base + 02h–03h) 16-bit read-only

15

Device ID
```

Bit Descriptions

Bits 15-0: Device ID

This read-only field identifies the device as an ARTIC186 X.25 ISA/PCI Adapter. Its value is 0061. This register is loaded by the serial EEPROM at offset 42h.

```
Power-Up Reset - 0000 0000 0110 0001
Command Reset - 0000 0000 0110 0001
```

PCI Command Register (PCICMD)

The PCI Command register provides the control of the PCI interface.

Register Format

(PCI Address Offset = Base + 04h-05h) 16-bit read/write

15	_	10	9	8	7	6	5 – 3	2	1	0
RE:	SERV	ED	FBE	SDE	WCC	PER	RSVD	BME	MSE	IOSE

Bit Descriptions

Bits 15-10:

These bits are reserved and always read back as 0.

Bit 9: Fast Back-to-Back Enable

This function is not implemented on the co-processor adapter; this bit always reads 0.

Bit 8: -SERR Enable

This bit, when set, enables the co-processor adapter to drive -SERR on the system PCI bus. This bit is reset to 0 with -SRST.

Bit 7: Wait Cycle Control

The co-processor adapter does not implement address/data stepping. This bit is hardwired as 0 and always reads back as 0.

Bit 6: Parity Error Response

When is bit is set to 1, the co-processor adapter is enabled to check parity during system PCI slave transactions. When reset to 0, parity errors are ignored.

Bits 5-3:

These bits are reserved and always read as 0.

Bit 2: Bus Master Enable

This function is not implemented on this adapter; this bit always reads as 0.

Bit 1: Memory Space Enable

When this bit is set to 1, the co-processor adapter is enabled to respond to PCI-bus memory space accesses. This bit is reset to 0 during a PCI-bus RESET.

Bit 0: I/O Space Enable

When this bit is set to 1, the co-processor adapter is enabled to respond to PCI-bus I/O space accesses. This bit is reset to 0 during PCI-bus RESET.

```
Power-Up Reset - 0000 0000 0000 0000
Command Reset - 0000 0000 0000 0000
```

PCI Status Register (PCISTS)

The PCI Status register provides the status of the PCI interface on the co-processor adapter. Bits in the status field can be reset from 1 to 0 by writing a 1 to the corresponding bit position.

Register Format

(PCI Address Offset = Base + 06h–07h) 16-bit read/write

15	14	13	12	11	10 – 9	8	7	6 – 0)
DPE	SSE	RMA	RTA	STA	DEVSEL	DPR	FBC	RESERVED	1

Bit Descriptions

Bit 15: Detected Parity Error

This bit is set to 1 when the co-processor adapter detects a PCI-bus parity error, regardless of the state of the Parity Error Response Bit in the Command Register (PCICMD). A system configuration write of 1 to this bit sets it to 0.

Bit 14: Signaled System Error

This bit is set to 1 whenever the co-processor adapter asserts -SERR on the PCI bus. A system configuration write of 1 to this bit sets it to 0.

Bit 13: Received Master Abort

This bit is set to 1 whenever the co-processor adapter receives a master abort signal. This bit is reserved and always reads as 0.

Bit 12: Received Target Abort

This bit is reserved and always reads as 0.

Bit 11: Signaled Target Abort

This bit is set to 1 whenever the co-processor adapter signals a target abort. A system configuration write of 1 to this bit sets it to 0.

Bits 10-9: Device Select Timing

This read-only field indicates the slowest device select timing of the co-processor adapter on the PCI bus. Device select timing is set to 01b for medium timing.

Bit 8: Data Parity Reported

This function is not implemented on this adapter; this bit always reads as 0.

Bit 7: Fast Back-to-Back Capable

This bit is hardwired to 1, which indicates that the co-processor adapter can accept fast back-to-back cycles as a target.

Bits 6-0:

These bits are reserved and always read as 0.

```
Power-Up Reset - 0000 0010 1000 0000
Command Reset - 0000 0010 1000 0000
```

Revision Identification Register (RID)

The Revision Identification register contains the revision identification number.

Register Format

```
(PCI Address Offset = Base + 08h) 8-bit read-only

7

Revision ID
```

Bit Descriptions

Bits 7-0: Revision ID

This field specifies the silicon revision level of the ARTIC186 X.25 ISA/PCI Adapter. This is a read-only function. This register is loaded by the Serial EPROM at offset 48h

```
Power-Up Reset - Current Revision

Command Reset - Current Revision
```

Class Code Register (CLCD)

The Class Code register defines the base class, sub-class, and programming interfaces for the co-processor adapter.

Register Format

```
(PCI Address Offset = Base + 09h–0Bh) 24-bit read-only

24

Class Code
```

Bit Descriptions

Bits 23-0: Class Code

This field specifies the general function of the AMCC S5920Q PCI-interface chip. This register is loaded by the Serial EEPROM at offset 49h. The value is 078000h, representing:

Base Class = Simple Communication Controllers

SubClass = other communications device

Programming Interface = not defined.

```
Power-Up Reset - 0000 0111 1000 0000 0000 0000 Command Reset - 0000 0111 1000 0000 0000 0000
```

Cache Line Size Register (CALN)

The Cache Line Size register is hardwired to 0. The co-processor adapter does not use the PCI-bus commands Memory Write and Invalidate.

Register Format

Bit Descriptions

Bits 7-0: Reserved

This field is reserved for setting the cache line size. This field reads back all zeroes.

Reset Conditions

Latency Timer Register (LAT)

The Latency Timer register defines the number of PCI-bus clocks that the co-processor adapter uses when it is a master.

Register Format

(PCI Address Offset = Base + 0Dh) 8-bit read-only

Bit Descriptions

Bits 7-0:

These bits are reserved and always read as 0. These bits describe the latency timer value. This function is not supported on the co-processor adapter.

Reset Conditions

Header Type Register (HDR)

The Header Type register describes the format of the device configuration header and whether the co-processor adapter represents a single function or a multifunction PCI-bus agent.

Register Format

(PCI Address Offset = Base + 0Eh) 8-bit read-only

7	6 5	5 4	3	2	1	0
SMF		Re	eser	ved		

Bit Descriptions

Bit 7: Single/Multi Function

This bit defines whether the co-processor adapter represents a single-function (bit 7 = 0) or a multi-function (bit 7 = 1) PCI-bus agent. Only an encoding value of 0 is defined. Other values are reserved.

Bits 6-0: Reserved

These bits are reserved and always read as 0.

Reset Conditions

Built-in Self-Test Register (BIST)

The Built-in Self-Test register permits the implementation of custom, user-specific diagnostics.

Register Format

(PCI Address Offset = Base + 0Fh) 8-bit read-only

Bit Descriptions

Bits 7-0: Reserved

These bits are reserved and always read as 0. This function is not supported on the coprocessor adapter.

Reset Conditions

Base Address Registers (BADR0 - 5)

The Base Address registers are used to assign memory or I/O accesses to the Local Configuration registers and memory access to the Local Address Space for the coprocessor adapter. The actual location is determined by first interrogating these registers to ascertain the size or space desired, then writing the high-order field of each register to place it physically in the system address space. Base Address Register5 is not implemented in the AMCC S5920Q chip.

Register Format

```
(BADR0 PCI Address Offset = Base + 10h) 32-bit read/write

(BADR1 PCI Address Offset = Base + 14h) 32-bit read/write

(BADR2 PCI Address Offset = Base + 18h) 32-bit read/write

(BADR3 PCI Address Offset = Base + 1Ch) 32-bit read/write

(BADR4 PCI Address Offset = Base + 20h) 32-bit read/write

(BADR5 PCI Address Offset = Base + 24h) 32-bit read/write
```

Base Address Register - Memory

31	_	30	29	_	4	3	2 – 1	0
	AOBW		Base	Address Loca	ation	PF	LOC	SI

Base Address Register - I/O

31	_	2	1	0
	Base Address Location		RSV	SI

Bit Descriptions

(Memory)

Bits 31-30: Add-On Bus Width

The decode of these two bits determines the bus size for each of the four add-on bus regions. These bits apply only to BAR1–4.

D31 D30 Add On Bus Width

0	0	Region Disable
0	1	8 bits
1	0	16 bits
1	1	32 bits

Bits 29-4: Base Address Location

This read/write field specifies the starting PCI-bus address space for the ARTIC186 X.25 ISA/PCI Adapter memory space. Except for Base Address Register 0, these bits are individually enabled by the contents sourced from the external boot memory.

Bit 3: Prefetchable

A value of 1 indicates no side effect on reads.

Note: This bit is hardcoded to 0.

Bits 2-1: Location of Register

These two bits define whether the memory space is 32 or 64 bits wide and if the space location is restricted to be within the first megabyte of memory space. The encoding is as follows:

Bits Description

- 2 1
- 0 0 Region is 32 bits wide and can be located anywhere in 32-bit memory space.
- 0 1 Region is 32 bits wide and must be mapped anywhere below the first MB of memory space.
- Region is 64 bits wide and can be mapped anywhere in 64-bit memory space.

 (Not supported by this AMCC chip)
- 1 1 Reserved

Bit 0: Space Indicator

This bit is hardcoded to 0 to indicate a memory space definition.

(I/O)

Bits 31-2: Base Address Location

These bits are used to position the decoded region in I/O space. Bits 31–2 are read/write.

Bit 1: Reserved

This bit is hardcoded to 0.

Bit 0: Space Indicator

This bit is hardcoded to 1 to indicate an I/O space definition.

Subsystem Vendor Identification Register (SVID)

The Subsystem Vendor Identification register can provide a unique add-in board Vendor ID. This register is read-only from the PCI interface. It can be written from the Serial EEPROM.

Register Format

```
(PCI Address Offset = Base + 2Ch-2Dh) 16-bit read-only

15

Subsystem Vendor ID
```

Bit Descriptions

Bits 15-0: Subsystem Vendor ID

This read-only field uniquely identifies the user board or subsystem. It provides a mechanism for add-in card vendors to distinguish with the same Vendor ID and Device ID. This facility is not used on the co-processor adapter.

```
Power-Up Reset - 0000 0000 0000 0000
Boot-Load - 1111 1111 1111 1111
```

Subsystem Identification Register (SSID)

The Subsystem Identification register can provide a unique add-in board Device ID. This register is read-only from the PCI interface.

Register Format

```
(PCI Address Offset = Base + 2Eh–2Fh) 16-bit read-only

15

Subsystem ID
```

Bit Descriptions

Bits 15-0: Subsystem ID

This register is not used on the co-processor adapter.

```
Power-Up Reset - 0000 0000 0000 0000
Boot-Load - 1111 1111 1111 1111
```

Expansion ROM Base Address Register (XROM)

The Expansion ROM Base Address register is set to all zeros to disable the Expansion ROM address of the co-processor adapter in PCI-bus address space.

Register Format

```
(PCI Address Offset = Base + 30h) 32-bit read-only
31 0
Reserved
```

Bit Descriptions

Bits 31-1:

These bits are reserved and always written as 0.

Interrupt Line Register (INTLN)

The Interrupt Line register indicates the interrupt routing for the PCI-interface chip.

Register Format

(PCI Address Offset = Base + 3Ch) 8-bit read/write

7

O

INT LINE

Bit Descriptions

Bits 7-0: Interrupt Line

This read/write field is used for PCI interrupt priority and vector information. Values in this field are system architecture specific.

Reset Conditions

Power-Up Reset - 0000 0000 Command Reset - SSSS SSSS

Interrupt Pin Register (INTPIN)

The Interrupt Pin register identifies which PCI interrupt, if any, is connected to the controller PCI-interrupt pins.

Register Format

(PCI Address Offset = Base + 3Dh) 8-bit read-only $\frac{7}{|NT|PIN}$

Bit Descriptions

Bits 7-0: Interrupt Pin

This read-only field is read as X01 indicating connection to -INTA on the PCI bus. This register is loaded from the serial EEPROM at offset 3Dh. The following values are allowed:

00 = No Interrupt Pin

01 = -INTA

02 = -INTB

03 = -INTC

04 = -INTD

Reset Conditions

Minimum Grant Register (MINGNT)

The Minimum Grant register can be optionally used by bus masters to specify how long a burst period the device needs. This register is not supported in the AMCC S5920Q chip.

Register Format

(PCI Address Offset = Base + 3Eh) 8-bit read-only

7

0

MIN GRANT

Bit Descriptions

Bits 7-0: Minimum Grant

This read-only field is always read as zeros.

Reset Conditions

Maximum Latency Register (MAXLAT)

The Maximum Latency register can be optionally used by the bus masters to specify how often the co-processor adapter needs PCI-bus access. A value of 00h indicates that the bus master has no stringent requirement. This register is not supported in the AMCC S5920Q chip.

Register Format

Bit Descriptions

Bits 7-0: Maximum Latency

This read-only field is always read as zeros.

```
Power-Up Reset - 0000 0000
Command Reset - 0000 0000
```

AMCC S5920Q Add-On Pass-Thru Address and Data Registers

Pass-Thru Address Register Summary

This register stores the address of any active Pass Thru PCI-bus cycle that has been accepted by the AMCC S5920Q chip. The value contained in this register is always on a doubleword boundary. The ARTIC186 X.25 ISA/PCI Adapter uses bits 2 through 13 of this register (enough for the 8 KB memory window) to provide an address to the dual-port memory controller to access the adapter DRAM. The MACH210 chip drives a signal PTADR to the AMCC S5920Q chip to place the address for the current cycle on the adapter DQ data pins. This address value is latched into the three 74ALS373 latch modules. This step is necessary to demultiplex the address and data phases of the current PCI-bus cycle.

Pass-Thru Data Register Summary

This register and the Pass-Thru Address register perform Pass-Thru transfers. When one of the base address decode registers 1–4 encounters a PCI-bus cycle that selects the region defined by it, the address register contains that current cycle's active address and this data register contains the data to be transferred to or from the PCI bus to the card Add-On bus. The DQ pins of the AMCC S5920Q chip are connected directly to the dual-port memory controller. The MACH210 module controls the gating and direction of data between the PCI AMCC S5920Q chip and the dual-port memory controller. The address of this Add-On Data register (2C) is hardwired in logic; this is the only register needed to control the transfer of data. All cycles between the PCI bus and the local Add-On bus are single data phase transfers of 8 or 16 bits.

Dual-Port Memory Controller

The dual-port memory controller provides a convenient and flexible way of passing data and control bytes between the 80C186 bus and the system unit bus. This is accomplished through an IBM CMOS gate array called the dual-port memory controller, which is an array of 10000 gates. The chip adapts to both 8-bit and 16-bit data buses on the system bus. The VLSI gate array's basic purpose is to provide a high-performance interface between the co-processor adapter and the system. All data communications between the system and the co-processor adapter are through this interface. This is accomplished through the following functions performed by the dual-port memory controller.

• 8 KB Page Selection from the System

The system unit can explicitly select any 8 KB page of RAM on the co-processor adapter for writing or reading.

Interrupt Handling

The dual-port memory controller can generate interrupts to the system that are initiated from the co-processor adapter. The dual-port memory controller also can generate interrupts to the co-processor adapter that are initiated from the system.

RAM Contention

The dual-port memory controller interface is a dual-ported dynamic RAM controller that arbitrates RAM accesses by both the system and the on-board 80C186 processor. The arbitration occurs for read/write accesses and for dynamic RAM refresh by the system.

Parity Error Handling

The co-processor adapter does not support parity memories. Therefore, the dual-port memory controller does not generate nor check parity on the DRAM bus interface.

Watchdog Timer Errors

The dual-port memory controller detects watchdog timer expiration and interrupts both the system and the co-processor adapter.

Initialization Conditions

The dual-port memory controller detects system resets and degates the on-board RAM from the system bus to avoid corruption of RAM data. It also resets the co-processor adapter after receiving an appropriate command from the system.

System Unit Lost Refresh Condition

The dual-port memory controller interrupts the co-processor adapter if the system stops refreshing storage.

Physical Characteristics

The co-processor adapter is designed for up to 1 MB of RAM storage. The system views this memory space as 1288-KB pages. Only one page is selected by the system at any given time. The page selector is a single-byte read/write I/O port register on the dual-port memory controller. Accessing this register from either the system or the co-processor adapter maps co-processor RAM storage for the system.

Performance

A 20 MHz clock (CLKIN) provides arbitration for the use of RAM. The dual-port memory controller FPLD contains a simple DRAM arbiter that:

- Gives the 80C186 interface the highest priority access to DRAM
- Gives the next highest priority DRAM access to an internal refresh request
- Gives lowest DRAM access priority to the ISA interface (non-refresh request).

All DRAM cycles occur in three CLKIN periods. The worst case contention to an ISA-bus DRAM request is one 80C186 bus DRAM cycle (three CLKIN periods) plus an internal refresh DRAM cycle (three CLKIN periods). (This is without the advantage of the REFRESH# signal.) The number of ISA-bus wait states depends on the CLKIN frequency and the operating mode of the ISA interface. DRAM accesses from the 80C186 bus normally run with zero wait states, but can result in one 80C186-bus wait state, worst case, if a refresh or ISA-bus DRAM access has already started.

The dual-port memory controller is designed to provide maximum data throughput using a minimum amount of software on the system. Very little synchronous operation is required between the system and the co-processor adapter. This essentially asynchronous interface allows system unit applications to communicate directly with applications on the co-processor adapter through shared-storage space.

The dual-port memory controller has features that support maintenance and service. It monitors a watchdog timer and, upon expiration, the dual-port memory controller subsequently interrupts both the system and the 80C186 processor. Additionally, power-on diagnostics test basic functions and post error information to specific RAM locations.

During power-up sequences, the RAM storage is degated from the system to prevent the system from attempting execution of the RAM-resident data that is mapped into the system address space.

All control, data, and address lines from the system, co-processor adapter, and RAM enter into the dual-port memory controller. Internally, the CPU signals are used to initiate memory cycles to or from the RAM. After the processor is selected internally by the arbitration unit, the appropriate RAM signals are generated and data is transferred (except for a refresh, in which case there is no data involved). The arbitrator then de-selects the processor that is using the RAM, and can then select another processor that is waiting to use the RAM. Whenever the RAM is needed by both processors, one is selected and the other is held in a wait state. A wait state for a processor is a variable integral number of CPU clocks.

A major feature of the co-processor adapter is to relocate the memory and I/O space of the co-processor adapter within the system memory and I/O space, through a value programmed into internal registers of the dual-port memory controller. Because of the

limited space within the system memory map, the co-processor adapter allows an 8 KB window into the co-processor adapter RAM. The co-processor adapter and dual-port memory controller support up to 1MB of RAM. To provide access to all data, the dual-port memory controller contains a register that allows the user to change this window to view different 8 KB portions of RAM. The co-processor adapter has access to all RAM and has no need to use paging.

The dual-port memory controller has an internal refresh counter that refreshes all 1024 row addresses within 16 milliseconds (10x10 addressing) or all 4096 row addresses within 64 milliseconds (12x8 addressing). An external ISA-bus REFRESH# signal is not required but, if supplied, the signal can improve ISA-bus performance by eliminating ISA-bus contention with the asynchronous internal refresh counter. The REFRESH# signal is sampled and, after it is detected active, it is synchronized to the internal refresh cycle counter. If the REFRESH# signal is not detected active again within a 15.6 microsecond period, an internal refresh cycle occurs, which could cause wait states in an ISA-bus DRAM access.

Programming Considerations

Within the dual-port memory controller several registers regulate the communication between the co-processor adapter and the system. The following summarize the internal registers and commands contained within the dual-port memory controller. Detailed descriptions and bit definitions are in Appendix A: "Dual-Port Memory Controller" on page 125.

Register and Command Descriptions

All registers are 8-bit read or read/write registers. However, because of the architecture used in the system, 16-bit I/O writes can be used because the system unit translates them into two 8-bit writes.

Note: When performing a 16-bit I/O write, the lower 8-bits are the even byte and the upper 8-bits are the odd byte.

COMREG

Command Register. COMREG is used to issue commands to reset, interrupt, and control the co-processor adapter.

CAD

Control Alt Delete Register. CAD0, CAD1, CAD2 registers are used to search for a match of some specific address only accessed by the system after a Ctrl+Alt+Del, which indicates a soft system reset to the co-processor. When the address match is satisfied, the dual-port memory controller degates RAM.

CPUPG

CPU Page Register. CPUPG is used for page values by the system to access dynamic RAM on the co-processor adapter. A page is 8 KB.

DREG

Data Register. DREG is a pseudo register used to access various registers pointed to by the PTRREG.

GAID

Gate Array Identification. GAID is used to identify which level of dual-port memory controller is installed.

INITREG

Initialization Registers. INITREG0 and INITREG1 are used to configure the coprocessor dual-port memory controller, system interrupt level, I/O base address, and type of system.

LOCREG

Location Registers. LOCREG0 and LOCREG1 are used to physically locate the co-processor adapter memory space (8 KB) in the system memory map.

NMIMASK

Non-maskable Interrupt Mask Registers. NMIMASK is used to mask the various sources of internal NMIs available.

NMISTAT

Non-maskable Interrupt Status Registers. NMISTAT is used to report which NMI is active.

PTRREG

Pointer Register. PTRREG is used to point to and enable various other registers, which then can be accessed through the pseudo register, DREG.

TREG

Task Register. TREG is used as a mailbox to pass data from the co-processor adapter to the system. Writing to this register causes an interrupt to be generated to the system.

GEOI

Gate Array End of Interrupt Register. GEOI is used to clear the internal interrupt circuitry of the dual-port memory controller after an interrupt is executed by the system.

INITCOM

Interrupt Command Register. INITCOM is used to interrupt the co-processor.

ISEC

Interrupt Sharing Enable Command Register. ISEC is used to clear the internal interrupt circuitry of the dual-port memory controller after an interrupt to the system.

Table 2-11. Register Addresses and Initial Values

Register	Register Description	System Address Offsets (Hex) ^{1,6}	Co-Processor Adapter Address (Hex)	Power-Up Value (Binary) ²
COMREG	Command	06	_	0000 0000
CAD0 ³	Control Alt Delete 0	(0C)	_	0000 0000
CAD1 ³	Control Alt Delete 1	(0D)	_	0000 0000
CAD2 ³	Control Alt Delete 2	(0E)	_	0000 0000
CPUPG	CPU Page	05	14	UUUU UUUU
DREG	Data	03	_	UUUU UUUU
GAID	Data	0F	18	0011 0000

INITREG0 ³	Initialization 0 4	(80)	04	0000 1000
INITREG1	Initialization 1	_	06	0000 0000
LOCREG0	Location 0	00	00	UUUU UUUU
LOCREG1	Location 1	01	02	UUUU UUUU
NMIMASK	NMI Mask	_	08	0011 1111
NMISTAT	NMI Status	_	0A	0000 0000
PTRREG	Pointer	02	_	UUUU UUUU
TREG	Task	04		1111 1111

Table 2-12. Command Addresses and Initial Values

Command	Command Description	System Unit	Co-Processor
Command	(no data involved) ⁵	Address	Adapter
GEOI	Gate array end of cycle		16
INTCOM ³	Interrupt co-processor adapter	(09)	
ISEC	Interrupt sharing enable 3	02F3	
ISEC	Interrupt sharing enable 4	02F4	
ISEC	Interrupt sharing enable 7	02F7	
ISEC	Interrupt sharing enable 9, 2	02F2	
ISEC	Interrupt sharing enable A	06F2	
ISEC	Interrupt sharing enable B	06F3	
ISEC	Interrupt sharing enable C	06F4	
ISEC	Interrupt sharing enable F	06F7	

Notes:

- Values given in parentheses () are pointer register values.
 Values not in parentheses are offsets to the base I/O address defined by INITREGO.
- 2. 0 = Logic level 0; 1 = Logic level 1; U = Undefined.
- 3. Register is accessed using the pointer and data registers.
- 4. System unit can access only a portion of register.
- 5. Default power-up.
- 6. Values are not applicable.

Other default power-up conditions include:

- System unit side of co-processor adapter RAM is deactivated.
- System unit side of co-processor adapter I/O is deactivated.
- CAD feature is disabled.
- Internal refresh counters and circuits are cleared.
- Internal co-processor adapter interrupt circuits are cleared.
- Internal system unit interrupt circuits are cleared.

Two initialization register bits in INITREG1 deserve special attention. Bit 0 and bit 1 represent edge connector (ED) jumper options and bus width (BW) respectively.

Note: These switches are disabled when the co-processor adapter is used as a PCI device.

In an 8088-based system unit, the ED bit should equal 1 and the BW bit should be 0. Using an 8088-based system imposes the following restrictions:

- The I/O bus is 8 bits wide.
- Interrupt levels 10, 11, 12, and 15 are unavailable.
- A maximum of 1 MB of system RAM/ROM space is available for locating (or mapping) co-processor adapter memory.

Within an 80286-based system, multiple options are available through different settings of ED and BW. The 80286 RAM/ROM memory region where a page of co-processor adapter memory is mapped can be treated as either an 8-bit memory region or a 16-bit memory region, and might be predefined by another adapter. Any one of the following three conditions can exist:

• The 80286 memory region is predefined as an 8-bit region.

The co-processor adapter is set up in the following way:

Set
$$ED = 0$$
, $BW = 0$, and $LOCREG1 = 00h$

The 80286 memory region is predefined as a 16-bit region.

The co-processor adapter can be set up in one of the following ways:

```
Set ED = 0 and BW = 1
or
Set ED = 0 and LOCREG1 > 00h
```

The 80286 memory region is undefined as either an 8-bit or a 16-bit region.
 The co-processor is defining the region. Care must be exercised when operating multiple devices in the same region.

Within an 80286-based system, the memory space can be divided into 128 sixteen-bit regions, with each region being 128 KB wide and sometimes difficult to determine. The first 512 KB of system RAM is four 16-bit regions. Having one edge connector defines the adapter as an 8-bit device. The original monochrome adapter and color/graphics adapter had only one edge connector. Therefore, A0000h to BFFFFh is an 8-bit region if either of these adapters is installed.

The region C0000h to DFFFFh has been predefined as an 8-bit region. The region E0000h to FFFFFh is a 16-bit region. Other regions must be determined based on the desired configuration. If the device uses the -MEMCS16 signal (pin D1 on the 36-pin planar connector), the device is probably a 16-bit device.

Memory Mapping

Memory mapping is that process of translating a system unit memory access within the window to the proper co-processor adapter location based partly on the system unit address and the page register.

The dual-port memory controller provides this capability through use of the CPUPG, LOCREG0, and LOCREG1 registers.

The system unit can view dynamic RAM storage on the co-processor adapter by mapping a given 8 KB-page of RAM memory into an 8 KB page of its own address space (normally, unused ROM space in the system unit is used).

This process is accomplished by:

- Setting up the LOCREG0-1 to point to the desired 8 KB memory block boundary in the system unit.
- Setting up the CPUPG register to point to one of the 8 KB dynamic RAM pages.

The following diagram illustrates the logical linkages required to map RAM page N into the system memory block M. The system unit then can address the RAM space using its own internal addressing.

Either the system unit or the 80C186 can select the active 8 KB-page of RAM by storing the relative page number (0-3Fh) into the CPUPG register. Usually, the system unit controls the active page except in the case of diagnostics or system restart initiated from the 80C186. The page selector is a single-byte read/write I/O port on the system unit and the co-processor adapter.

Either the system unit or the 80C186 can select the location at which the 8 KB-page of RAM is mapped into the system unit storage space by storing the relative block number of the system desired address location into the LOCREG 0 and 1 registers (0-7Fh and 0-Fh respectively).

Accessing a page selector register (by either CPU) gates (connects, enables) the dynamic RAM storage to the system unit.

Address space on the co-processor adapter is represented by the following range.

8 KB Page Addresses	RAM Size
0–3Fh	512 KB
0–7Fh	1 MB

Accessing a non-RAM location due to the use of too large a page value can cause a parity error.

Option Registers

Two option registers interface to the 80C186 bus. The registers provide buffers for retention of option switch settings. The option switches specify interrupt levels, and bus conventions. The address switch specifies the system unit I/O address.

Note: These switches are disabled when the co-processor adapter is used as a PCI device.

The registers, OPTION0 (at address 0080h) and OPTION1 (at address 0082h), can be read at any time. The following diagrams show the option registers format and subsequent discussion defines each bit.

Option 0		I/O Ad	ldress =	00080h				
	7	6	5	4	3	2	1	0
	C7	C4	C2	C1	XX	L4	L2	L1
Option 1		I/O Ad	ldress =	00082h				
	7	6	5	4	3	2	1	0
	Reserved					BW	ED	

Zilog Z8030 Serial Communications Controller

Functions

The primary function of the Z8030 serial communications controller (SCC) is to provide control for the two independent serial communication channels. Each channel supports communications through the X.25 network interface. Each channel has a transmitter and a receiver and may be run in full-duplex or half-duplex mode.

After initial configuration of the SCC by the Realtime Control Microcode and applications software, a major portion of the serial communications work load is taken from the 80C186 microprocessor and performed by the SCC.

The SCC provides:

- Two independent full-duplex ports
- Support for HDLC protocols
- Automatic synchronization and address search for HDLC
- · Parity checking and generation
- Break/abort detection and generation
- Overrun and underrun detection
- Internal signal wrapping
- · Interrupt vectoring
- Full-duplex DMA operation

The SCC is a 44-pin plastic chip carrier package and is programmed to satisfy HDLC protocol.

SCC Registers

Sixteen 8-bit registers for each port must be programmed before the SCC can be used.

Nine read registers (RR) for each port contain data and the status of the SCC. These are RR0 through RR3, RR8, RR10, RR12, RR13 and RR15.

Fourteen write registers (WR) for each port are used for control. These are WR0, WR1, WR3 through WR8, and WR10 through WR15.

Two registers, WR2 and WR9, are shared by both ports. They are set up by the RCM and should not be modified by user tasks.

The base I/O address of the SCC is 100h.

Write Registers

Table 2-13. SCC Write Register Addresses and Usage

Register	Offset Port 0	Offset Port 1	Function
WR0	0020h	0000h	Command register for configuring various modes
WR1	0022h	0002h	Interrupt conditions to specify wait or DMA
WR2	0024h	0004h	Interrupt vector. For adapter use only. If modified, results are unpredictable.
WR3	0026h	0006h	Receiver parameters. These are task controlled.
WR4	0028h	0008h	Transmit/receive parameters
WR5	002Ah	000Ah	Transmit parameters
WR6	002Ch	000Ch	Sync character 1
WR7	002Eh	000Eh	Sync character 2
WR8	0030h	0010h	Transmit data buffer
WR9	0032h	0012h	Master control/reset interrupt. For adapter use only. This register should never be modified by a task.
WR10	0034h	0014h	Miscellaneous transmit/receive control bits
WR11	0036h	0016h	Clock mode control. Always set Bit 7 (no crystal) to zero because no crystal is connected to the receiver clock input.
WR12	0038h	0018h	Time constant low
WR13	003Ah	001Ah	Time constant high
WR14	003Ch	001Ch	Miscellaneous control bits. Bit 2 is transmit DMA request.
WR15	003Eh	001Eh	External status control

Read Registers

Table 2-14. SCC Read Register Addresses and Usage

Register	Offset Port 0	Offset Port 1	Function
RR0	0020h	0000h	Transmit/receive and external status
RR1	0022h	0002h	Special receive status
RR2	0024h	0004h	Interrupt vector
RR3	0026h	-	Ports 0 and 1 Interrupt pending bits
RR8	0030h	0010h	Receive data buffer
RR10	0034h	0014h	Miscellaneous status and parameters
RR12	0038h	0018h	Time constant low
RR13	003Ah	001Ah	Time constant high
RR15	003Eh	001Eh	External status control information

Programming the SCC

The PROM microcode provides several support subroutines to simplify programming the SCC. Descriptions of these routines are in "PROM Microcode Support" on page 69.

Diagnostic Subroutine Support

Table 2-15. Diagnostic Subroutines

	- 3	
INT	Parms	Function
FEh	AH=09h	Reset an SCC port to default configuration.

PROM Services

Table 2-16. PROM Services

INT	Parms	Function	
A2h	-	Reset an SCC port to the hardware default configuration.	
A4h	-	General SCC register read/write	
AAh	-	Assign the two 80C186 microprocessor DMA channels to two of the four	
		SCC DMA requests.	
ACh	-	Configure and initialize DMA transfer types (I/O to memory and so on).	
AEh	-	Read or write a 12-byte table to define DMA transfer source,	
		destination, and byte count.	
B0h	-	Stop DMA transfer.	

Programming Considerations

Consult the Zilog literature when programming the Z8030 SCC. The following are some notes on programming the SCC on the adapter:

- Although the Realtime Control Microcode initializes and manages the SCC, it is
 possible to program the SCC directly to modify the default configuration.
 Programming the SCC invalidates the control provided by the Realtime Control
 Microcode which could affect the registers.
- All functions and features of the SCC are not possible on the adapter. Some of the write register bits must always be set to either 0 or 1 to support DMA and interrupts.
- The SCC must operate in left-shift mode.
- TRxCA must always be programmed as an input.

Zilog Z8036 Counter/Timer and Parallel I/O Unit

The Zilog Z8036 counter/timer and parallel I/O unit (CIO) is a fully programmable device that provides peripheral I/O support and timer functions for hardware and software.

Functions

Some features of the Z8036 CIO are:

- Two independent 8-bit, double-buffered, bidirectional I/O ports
- 4-bit special-purpose I/O port
- Three independent 16-bit counter/timers with four external access lines per counter/timer, programmable as retriggerable or non-retriggerable. The counter/timers can be prescaled.
- Interrupt vectoring
- Pattern recognition

The adapter uses the CIO as follows:

- Bi-directional ports 1 and 2 are available to application tasks running on the adapter.
- The special purpose 4-bit port is used for diagnostics, the affected watchdog timer I/O, and the electrical interface selection. It must not be used by application tasks.

- Ports 0 and 1 are used in peripheral I/O control of data through the X.25 network interface, and as control signals for data transfer to and from the SCC using DMA.
- Timers 3 is the watchdog timer and must not be used by application tasks.

CIO Registers

The main CIO registers are dedicated for use by the RCM only and should not be directly written to by applications. The base I/O address of the CIO is 0180h.

Bit definitions for each register are described in the Zilog Z8036 CIO Counter/Timer and Parallel I/O Unit Technical Manual.

Table 2-17. CIO Main Control Registers

Offset	Access	Function	
0000h	R/W	Master interrupt control register	
0002h	R/W	Master configuration control register	
0004h	R/W	Port 0 interrupt vector	
0006h	R/W	Port 1 interrupt vector	
0008h	R/W	Counter/timer interrupt vector	
000Ah	R/W	Port 2 data path polarity register	
000Ch	R/W	Port 2 data direction register	
000Eh	R/W	Port 2 special I/O control register	

Table 2-18. Frequently Accessed Registers of the CIO

	•	•	
Offset	Access	Function	
0010h	R/W	Port 0 command and status	
0012h	R/W	Port 1 command and status	
0014h	R/W	Counter/timer 1 command and status	
0016h	R/W	Counter/timer 2 command and status	
0018h	R/W	Timer 3 command and status	
001Ah	R/W	Port 0 data register	
001Ch	R/W	Port 1 data register	
001Eh	R/W	Port 2 data register	

Table 2-19. CIO Counter/Timer Registers

Offset	Access	Function	
0020h	R	Counter/timer 1 current count MSB	
0022h	R	Counter/timer 1 current count LSB	
0024h	R	Counter/timer 2 current count MSB	
0026h	R	Counter/timer 2 current count LSB	
0028h	R	Counter/timer 3 current count MSB	
002Ah	R	Counter/timer 3 current count LSB	
002Ch	R/W	Counter/timer 1 time constant MSB	
002Eh	R/W	Counter/timer 1 time constant LSB	
0030h	R/W	Counter/timer 2 time constant MSB	
0032h	R/W	Counter/timer 2 time constant LSB	
0034h	R/W	Counter/timer 3 time constant MSB	
0036h	R/W	Counter/timer 3 time constant LSB	
0038h	R/W	Counter/timer 1 mode specification	
003Ah	R/W	Counter/timer 2 mode specification	
003Ch	R/W	Counter/timer 3 mode specification	
003Eh	R/W	Current vector	

Table 2-20. CIO Port 0 Specification Registers

Offset	Access	Function	
00040h	R/W	Port 0 mode specification. Bits 3–7 must be zeros to keep the port	
		specified as a bit port. The deskew timer function is not supported.	
		Bit 0 is latched on pattern match.	
00042h	R/W	Port 0 handshake specification. (This register is always zero because	
		handshaking is not used.)	
00044h	R/W	Port 0 data path polarity	
00046h	R/W	Port 0 data direction	
00048h	R/W	Port 0 special I/O control	
0004Ah	R/W	Port 0 pattern polarity	
0004Ch	R/W	Port 0 pattern transition	
0004Eh	R/W	Port 0 pattern mask (which bits to test)	

Table 2-21. CIO Port 0 Specification Register

Offset	Access	Function		
00050h	R/W	Port 1 mode specification.		
00052h	R/W	Port 1 handshake specification		
00054h	R/W	Port 1 data path polarity		
00056h	R/W	Port 1 data direction		
00058h	R/W	Port 1 special I/O control		
0005Ah	R/W	Port 1 pattern polarity		
0005Ch	R/W	Port 1 pattern transition		
0005Eh	R/W	Port 1 pattern mask		

Programming the CIO

The PROM microcode provides several support subroutines to simplify programming the CIO. See Chapter 5. "PROM Microcode Support" on page 69 for subroutine descriptions.

Diagnostic Subroutines

Table 2-22. Diagnostic Subroutines

•			
	INT	Parameter	Function
	FEh	AH=08h	Initialize a CIO port.
	FEh	AH=0Bh	Initialize a CIO timer.

PROM Services

Table 2-23. PROM Services

Parameter	Parameter	Function	
A6h	-	Read/write CIO port registers	
A8h	-	Timer1 and timer2 control	

Programming Considerations

The Zilog literature should be consulted when programming the Z8036 CIO. The following are some notes on programming the CIO on the adapter:

- The Z8036 operates in left-shift mode.
- I/O operations to the CIO must be separated by a least one microprocessor instruction because the 80C186 microprocessor can process I/O operations faster than the CIO can handle them.

- The CIO counter/timers are treated as separate devices from the CIO ports to allow flexibility in assigning timer resources to tasks.
- The timers are driven by 3.6864 MHz clock.

CIO Port Assignments and Description

One port and one timer of the CIO are used by the watchdog timer to provide interrupt notification of a runaway CPU. The remaining ports of the CIO are used for the interfaces. Port 0 is used for the X.21 bis/V.24 Interface and the X.21 bis/V.35. Port 1 is used for the X.21 Interface, and port 2 is used for the selection of V.24 or V.35 Interface and the watchdog timer. The following tables show the bit assignments for the CIO.

Table 2-24. CIO Bit Assignments, Port 0

Port 0	Pin No.	Signal	Description	
P0-0	37	DSR	Data set ready	
P0-1	36	Unused	-	
P0-2	35	LLBT	Local loopback test	
P0-3	34	RLBT	Remote loopback test	
P0-4	33	CI	Call indicate	
P0-5	32	TI	Test indicate	
P0-6	31	DTR	Data terminal ready	
P0-7	30	Unused	-	

Table 2-25. CIO Bit Assignments, Port 1

Port 1	Pin No.	Signal	Description	
P1-0	10	IND	Indicate	
P1-1	11	CABLE-0	Cable ID 0	
P1-2	12	CABLE-1	Cable ID 1	
P1-3	13	RXD 1	Receive data	
P1-4	14	SYNC 1	Transmit clock 1	
P1-5	15	RXTXC 1	Receive clock 1	
P1-6	16	CTRL 1	Control	
P1-7	17	X.21 Tx	X.21 transmit enable	

The bit assignments for port 2 are shown in the following watchdog timer section.

Watchdog Timer

The watchdog timer detects runaway tasks. Once activated, the timer must be continually monitored by software to prevent it timing out. If a task running on the adapter has an unrecoverable error, the watchdog timer times out, and the CIO does the following:

• Activates a light-emitting diode (LED) on the adapter.

Sends a nonmaskable interrupt (NMI) to the 80C186 microprocessor (if not masked in the NMIMASK register in the dual-port memory controller).

• Sends an interrupt to the system unit by loading FEh into the task register (TREG) in the dual-port memory controller (if not masked).

Table 2-26. LED Operation

P2-2	P2-0	LED
0	0	On
0	1	On
1	0	Off
1	1	On

The range of the watchdog timer is from 1.1 milliseconds to 72.81659 seconds with a step size of 1.1 milliseconds.

Timer 3 in the CIO is used as the watchdog timer. If the watchdog timer is never initialized, the LED remains lit.

Table 2-27. Watchdog Timer Description

Port 2 (See Note)	Pin No.	Signal	Description
P2-0	19	WDOG	Timer 3 out, watchdog
P2-1	20	T3CLK	Timer 3 clock input 900 Hz.
P2-2	21	WD CNTL	Watchdog LED control.
P2-3	22	V.24/V.35	Selection of V.24 or V.35 interface

Note: Port 2 on the CIO can be programmed by the user.

External Interface

This chapter describes the external interfaces of the ARTIC186 X.25 ISA/PCI Adapter Co-Processor.

General Connections

The general connection of the ARTIC186 X.25 ISA/PCI Adapter Co-Processor to an X.25 public packet-switched network is shown in the following figure.

Figure 3-1. Connecting the Adapter to an X.25 Public Packet-Switched Network

Three network interfaces are available on a common 37-pin D-type male connector on the adapter:

- X.21
- X.21 bis/V.24 (EIA-232)
- X.21 bis/V.35

Note: If the HRS signal is required on the EIA-232 interface, then another cable is required. X.21 bis/V.24 uses the LLBT signal instead of the HRS.

Each interface fully conforms to the CCITT Recommendation X.25 (1984), and to ETSI Standards.

- NET 1 Approval requirements for data terminal equipment to connect to circuit switched public data networks and leased circuits using CCITT Recommendation X.21 interface
- NET 2 Approval requirements for data terminal equipment to connect to packet switched public data networks using CCITT Recommendation X.25 interface

Three cables are available, each connecting one interface to the data circuit-terminating equipment (DCE) of a packet-switched network. Each cable has a D-37 female connector at the adapter end and one of the following at the DCE end:

- D-15 male connector (for X.21)
- D-25 male connector (for X.21 bis/V.24)
- M/34 block male connector (for X.21 bis/V.35)

Using the cables supplied, only one interface can be connected to a DCE at any time.

Two pins on the adapter end of the cables uniquely identify the type of cable as shown in "Cable Identification" on page 60.

X.21 Interface

The X.21 interface consists of synchronous full-duplex, balanced, double-current interchange, digital circuits that can operate at signaling rates of up to 64 kbps. The interface fully conforms to CCITT Recommendation X.27 (equivalent to recommendation V.11). The interface cable conforms to ISO 4903 at the D-15 connector end. The X.27 recommendation is electrically compatible with EIA RS-422-A. Figure 3-2 shows the X.21 interface control detail.

The data path for the X.21 interface is provided by port 1 of the SCC. The control signals for the interface are provided by port 1 of the CIO. An X.21 transmit-enable signal (X21-TX-EN) is derived from P1-7 of the CIO. This signal must be set to logical 1 before transmission of data.

The type of interface cable connected can be identified by reading pins 9 and 15 of the D-37 connector (ID0 and ID1). The identifier for an X.21 interface cable is ID0=0, ID1=1. See Table 3-1 on page 60 for the identifiers of the other types of cable.

Figure 3-2. X.21 Interface Control

X.21 bis/V.24 Interface (EIA-232)

The X.21 bis/V.24 interface consists of unbalanced, double-current interchange circuits that can operate at signaling rates from 2400 to 19200 bits per second. The interface fully conforms to CCITT Recommendation V.28, which is electrically identical to EIA RS-232C. The interface cable conforms to ISO 2110 at the D-25 connector end. Figure 3-3 shows the X.21 bis/V.24 interface control.

The data path for the X.21 bis/V.24 interface is provided by port 0 of the SCC. The control signals for the interface are provided by port 0 of the CIO. A select signal, V24 (not V35) is derived from P2-3 of the CIO. This signal must be set to logical 1 before transmission of data. RTS (pin 4) must be set to logical 1 to enable transmission of data at

The type of interface cable connected can be identified by reading pins 9 and 15 of the D-37 connector (ID0 and ID1). The identifier for an X.21 bis/V.24 interface cable is ID0=0, ID1=0. See Table 3-1 on page 60 for the identifiers of the other types of cable. At power up, if the cable is installed, the PROM code reads the cable ID and sets the select signal appropriately.

Figure 3-3. X.21 bis/V.24 Interface Control

X.21 bis/V.35 Interface

The X.21 bis/V.35 interface consists of balanced and unbalanced, double-current, interchange circuits that can operate at signaling rates of up to 56000 bits-per-second. Data and timing signals are carried by balanced circuits, which fully conform to CCITT Recommendation V.35. The unbalanced circuits are used for control signals and fully conform to CCITT Recommendation V.28, which is electrically identical to EIA RS-232C. The interface cable conforms to ISO 2593 at the M/34 block connector. Figure 3-4 shows the X.21 bis/V.35 interface control.

The data path for the X.21 bis/V.35 interface is provided by port 0 of the SCC. The control signals for the interface are provided by port 0 of the CIO. A select signal V24 (not V35) is derived from P2-3 of the CIO. This signal must be set to logical 0 prior to data transmission. RTS (pin 4) must be set to logical 1 to enable data transmission at pins 35 and 17.

The type of interface cable connected can be identified by reading pins 9 and 15 of the D-37 connector (ID0 and ID1). The identifier for an X.21 bis/V.35 interface cable is ID0=1, ID1=0. See Table 3-1 on page 60 for the identifiers of the other types of cable. At power up, if the cable is installed, the PROM code reads the cable ID and sets the select signal appropriately.

Figure 3-4. X.21 bis/V.35 Interface Control

Cables and Connectors

A D-37 wrap plug is available for the adapter and each type of cable is supplied with a wrap plug for the connector at the DCE end.

Cable Identification

Two pins on the D-37 connector are used as cable identifiers. Pull-up resistors on the adapter hold these pins at +5 volts unless they are pulled to ground by connections in the D-37 female connector, as shown in the following figure.

Figure 3-5. Cable ID (X.21 bis/V.24 Interface Cable Connected)

The following table shows the identifier for the X.21, X.21 bis/V.24, and X.21 bis/V.35 interface cables, and for the D-37 wrap plug.

Table 3-1. Cable and Wrap Plug Identification

Cable	ID0	ID1
X.21 bis/V.24	0	0
X.21	0	1
X.21 bis/V.35	1	0
D-37 Wrap	1	1

To test for the presence of a D-37 wrap plug:

- Look for logical 1 on both ID0 and ID1.
- Reprogram ID0 (P1-1 of the CIO) as an output.
- Write logical 0 to P1-1.
- Read ID1.

If ID1 is logical 0, a wrap plug is connected; otherwise no plug is connected.

D-37 Connector

The connections to the D-37 connector for all three interfaces are shown in the following figure. A wrap plug is supplied to loopback transmitted signals at the D-37 connector. See "D-37 Wrap Plug" on page 65 for more information.

Pin	Signal Name	Abbreviation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37	Reserved Transmitted Data Received Data Request to send Clear to send Data set ready Signal ground Carrier detect Cable ID A Transmitted data (A) Control (A) Received data (A) Indication (A) Transmit clock (A) Cable ID 1 Receive clock (B) Transmitted data (B) Transmitted data (B) Received data (B) Received data (B) Cat terminal ready Remote loopback test Call indicate Reserved Transmit clock Test indicate Receive clock Local loopback test Transmitted data (B) Control (B) Received data (B) Indication (B) Transmit clock (B) Received data (B) Indication (B) Transmit clock (B) Reserved Receive clock (A) Transmitted data (A) Transmit clock (A) Received data (A)	TXD RXD RXD RTS CTS DSR GND CD IDA T (A) C (A) R (A) I (A) S (A) I (B) TXD (B) TX CLK (B) RXD (B) DTR RLBT CI TX CLK TI RX CLK LLBT T (B) C (B) R (B) I (B) S (B) R (B) I (B) S (B) R (B) I (B) RX CLK (A) TXD (A) TXCLK (A) TXD (A) TXCLK (A) RXD (A)

Figure 3-6. X.25 Network Interface Connector

X.21 Interface Cable

The X.21 interface cable is 3 meters long. It has a D-37 female connector at the adapter end and a D-15 male connector at the DCE end. The cable conforms to the Underwriters' Laboratory Specification UL 2943.

The following figure shows the X.21 interface cable. A wrap plug is supplied to perform local loopback tests at the D-15 connector.

Figure 3-7. X.21 Interface Cable

X.21 bis/V.24 Interface Cable

The X.21 bis/V.24 interface cable is 3 meters long. It has a D-37 female connector on the adapter end and a D-25 male connector at the DCE end. The cable conforms to Underwriters' Laboratory Specification UL 2464.

The X.21 bis/V.24 interface cable is shown in the following figure. A wrap plug is supplied to perform local loopback tests at the D-25 connector.

Figure 3-8. X.21 Bis/V.24 Interface Cable

X.21 bis/V.35 Interface Cable

The X.21 bis/V.35 interface cable is 3 meters long. It has a D-37 female connector at the adapter end and a M/34 block connector at the DCE end. The cable conforms to Underwriters' Laboratory Specification UL 2493.

The following figure shows the X.21 bis/V.35 interface cable. A wrap plug is supplied to perform local loopback tests at the M/34 connector.

Figure 3-9. X.21 Bis/V.35 Interface Cable

Local Loopback-Test Plugs

The following wrap plugs are supplied for local loopback tests in accordance with CCITT Recommendation X.150:

- D-37 wrap plug
- D-15 wrap plug
- D-25 wrap plug
- M/34 wrap plug

D-37 Wrap Plug

The D-37 wrap plug is used to test local loopback at the D-37 connector on the adapter. It has a cable identifier of ID0=1, ID1=1. See "Cable Identification" on page 60 for a method of distinguishing between an open circuit and the presence of a D-37 wrap plug.

The pin assignment of the D-37 wrap plug is shown in the following figure.

Signal	Pin No).	Pin No.	Signal	
T (B)	28	-	30	R (B)	x.21
T (A)	10	-	12	R (A)	
C (B)	29	-	31	I (B)	
C (A)	11	-	13	I (A)	
TXD	2	-	3	RXD	X.21bis/V.24
RTS	4	-	5	CTS	
DTR	20	-	6	DSR	
LLBT	27	-	25	TI	
RLBT	21	-	22	CI	
TXD(A)	35	-	37	RXD (A)	X.21bis/V.35
TXD(B)	17	-	19	RXD (B)	
TXCLK0	1	-	26	TM	V.24
RXCLK(B)	16	-	23	TXCLK(B)	v.35,x.21
TXCLK(A)	33	-	34	RXCLK(A)	v.35,x.21
IDO	9	-	15	ID1	Cable ID

Figure 3-10. D-37 Wrap Plug Pin Assignment

D-15 Wrap Plug

The D-15 wrap plug is used to test loopback at the DCE end of the X.21 interface cable. The pin assignment of the D-15 wrap plug is shown in the following figure.

Signal	Pin No).	Pin No.	Signal
T (B) T (A) C (B) C (A)	9 2 10 3	- - -	11 4 12 5	R (B) R (A) I (B) I (A)

Figure 3-11. D-15 Wrap Plug Pin Assignment

D-25 Wrap Plug

The D-25 wrap plug is used to test loopback at the DCE end of the X.21 bis/V.24 interface cable. The pin assignment of the D-25 wrap plug is shown in the following figure.

Signal	Pin No).	Pin No.	Signal
TXD RTS	2 4	-	3 5	RXD CTS
DTR	20	_	6	DSR
LLBT RLBT	18 21	-	25 22	TI CI

Figure 3-12. D-25 Wrap Plug Pin Assignment

M/34 Wrap Plug

The M/34 wrap plug is used to test loopback at the DCE end of the X.21 bis/V.35 interface cable. The pin assignment of the M/34 wrap plug is shown in the following figure.

Signal	Pin No).	Pin No.	Signal
TXD(A)	Р	-	R	RXD(A)
TXD(A) TXD(B)	S	-	Т	RXD(B)
RTS	C	-	D	CTS
DTR	Н	-	E	DSR

Figure 3-13. M/34 Wrap Plug Pin Assignment

Adapter Characteristics

This chapter describes the physical and electrical characteristics of the ARTIC186 X.25 ISA/PCI Adapter hardware.

Physical Characteristics

Adapter Size

The dimensions of the adapter and the positions of the D-37 connector are shown in the following figure.

Figure 4-1. ARTIC186 X.25 ISA/PCI Adapter

Adapter Technology

The adapter consists of the following:

- Two power planes (+5 V, 0 V)
- Six signal planes
- Vias where required
- Predominantly surface-mounted components
- Some pin-in-hole components

Adapter Connectors

The adapter has three I/O connectors:

PCI bus connector. This is a 124-pin edge connector that lets the adapter be plugged into any 5.0 Volt PCI-compliant slot of the system unit.

- ISA bus connector. This is a 98-pin edge connector that lets the adapter be plugged into any 16-bit ISA-compliant slot of the system unit.
- 37-pin D-type (D-37) connector. This is the electrical interface from the adapter to the data network. It must be connected to one of the specific electrical interfaces supported, using a cable with an appropriate socket. See Chapter 3 "External Interface" on page 55 for more information.

Electrical Characteristics

Table 4-1. Power Requirements

Supply voltage	Current (maximum)
+4.8 V dc to +5.25 V dc	0.95 A
+11.3 V dc to +12.7 V dc	10 mA
-11.3 V dc to -12.7 V dc	16 mA

Environmental Characteristics

Table 4-2. Environmental Classification Ratings

Standard Classification	Rating
Acoustic	Class 2
Environmental	Class E
-	G1
-	P1
Vibration and shock	V2/S2
EMI limit (FCC rules)	Class A
CISPR	Class A

Thermal

Air Temperature

Operating: 1 to 52 degrees C

Storage: 1 to 60 degrees C

Shipping -40 to 60 degrees C

Humidity

Operating: 5% through 95%.

Cooling

The adapter is cooled by the existing airflow provided by the system unit. There are no additional cooling requirements.

Heat Output

The heat output of the adapter is 5.1 watts, based on maximum current consumption.

Usability Characteristics

The usability of the adapter with regard to communication and data transfer is dependent on the communication application software running on the adapter and the overall usability of the system unit in which the adapter is installed.

PROM Microcode Support

This chapter describes the details of PROM microcode support for the ARTIC186 X.25 ISA/PCI Adapter.

Support Provided

The PROM microcode provides support for:

- Power-on self-test (POST)
- Diagnostic subroutines
- PROM services
- **Dump routines**
- Bootstrap loader.

Power-On Self-Test

When the system unit is powered on, the PROM microcode performs the following steps:

- 1. Clears the PROM-ready bit in the dual-port memory controller
- 2. Tests the 80186 microprocessor flags and conditional jumps
- 3. Tests the 80186 microprocessor registers
- 4. Tests the 80186 microprocessor chip-select registers and sets their default values
- Tests low DRAM (approximately the lowest 1.3 KB used by the PROM microcode) and sets the adapter primary status byte (PSB) to busy (C0h)
- Tests stack operation and CALL/RETURN instructions

Note: A failure at step 2, 3, 4, or 6 is unrecoverable. A failure at step 5 can be recoverable or unrecoverable.

- 7. Determines the size of installed DRAM and stores the value in TSIZE in the PROM work area
- 8. Puts C9C9h in DBIDS in PROM work area
- 9. Puts ABBAh in ABBA and puts the adapter I/O address in IOADR in the PROM work area
- 10. Sets hardware configuration descriptor (HCD) to 0

- 11. Begins power-on self-test (POST) by doing the following:
 - a. Sets up the entire vector area
 - b. Checks that any errors in the PROM microcode DRAM test were recoverable
 - c. Calls the Test Processor Diagnostic subroutine (to test 80186 microprocessor timers, DMA channels and interrupts)
 - d. Calls the Test Dual-Port Memory Controller diagnostic subroutine (to test dualport memory controller registers)
 - e. Tests DMA allocation register
 - Calls the Checksum Memory Diagnostic subroutine (to checksum PROM)
 - Calls the Test DRAM Diagnostic subroutine (to test DRAM not already tested)
 - Tests the operation of the DRAM parity circuit
 - Calls the Test CIO Diagnostic subroutine (to test basic functions of the CIO)
 - Calls the Test SCC Diagnostic subroutine (to test basic functions of the SCC)
 - k. Turns off the error LED if no errors were detected **Note:** POST terminates immediately when it detects an error, the remaining tests of POST are not run, and the error LED remains lit.
 - Initializes CIO, SCC, 80186 microprocessor, DMA, and timers
 - m. Puts default values in interface block (PSB=C0h)
 - n. Puts size of installed DRAM in TSIZE, puts C9C9h in DBIDS, and HCD in interface block
 - o. Puts extended interface ID in TEMP_IDX in PROM work area
 - p. Puts any POST error data in secondary status area of interface block
 - Sets PSB to 00h (no errors, not busy) or 30h (recoverable error)
 - Sets PROM Ready bit.

Errors

Errors are classed as either unrecoverable or recoverable.

For the POST tests, the primary status area starts at memory location 000414h. The secondary status area starts at memory location 00047Dh.

Unrecoverable Errors

When the PROM microcode detects an unrecoverable error, it immediately terminates the test, disables I/O, and lights the error LED. A failure at any of steps 2, 3, 4, or 6 is unrecoverable.

A failure at step 5 can be unrecoverable or recoverable. The low DRAM test is run four times and the number of failed attempts noted. If all four attempts fail, the error is considered to be unrecoverable. The PROM microcode disables I/O and flashes the error LED rapidly to identify this particular error.

If less than four attempts failed, the error is considered to be recoverable.

Recoverable Errors

When the first recoverable error is detected, POST terminates, and the PROM microcode executes steps 11.1 through 11.r to set up the normal hardware and software environment. Details of the error are logged in a 7-byte table in the secondary status area in the format shown in the following table.

No Errors

If no errors were detected in tests 11.a through 11.r, the PROM microcode sets the primary and secondary status blocks to all zeros and turns off the error LED.

Table 5-1. POST Error Codes

Test	0	1	2–3	4–5	6
80186 microprocessor internal devices	01	01	-	-	-
DRAM	01	02	Offset	Segment	Data
PROM checksum	01	03	-	-	-
CIO	01	04	-	-	-
SCC	01	05	-	-	-
Dual-Port Memory Controller	01	06	-	-	-
Parity circuits	01	07	-	-	-
DMA allocation register	01	08	-	-	-

Byte 0 indicates an error during POST. Byte 1 indicates the device that failed.

Bytes 2 through 5 give the location of DRAM failure. If the low DRAM test failed this is the location of the last failure. Byte 6 contains the incorrect bit mask (error bits are 1).

Table 5-2. POST Error Codes

Table 5-2. POST Effor Codes						
POST Error	Primary Status	Secondary Status				
No Error Detected						
NO ERROR DETECTED	0000					
Catastrophic Errors						
PROC INDIC/COND JUMPS	**	** **				
PROC 1ST REG TEST	**	** **				
MCS REG FAILURE	**	** **				
JUMPERS WRONG - M2,M1 = 11	**	** **				
CALL INSTR OR STACK FAILURE	**	** **				
VECTOR AREA RAMTEST FAILURE	**	** **				
80186 Internal Devices						
PERIPHERAL REGISTER FAILURE	0101	01 01				
CPU TIMER FAILURE	0102	01 01				
DMA FAILURE	0103	01 01				
INTERRUPT TEST FAILURE	0104	01 01				
RAM Test						
LOW RAM TEST FAILURE	0201	01 02 ***				
LOW RAM TEST FAILURE	0202	01 02 ***				
LOW RAM TEST FAILURE	0203	01 02 ***				
LOW RAM TEST FAILURE	0204	01 02 ***				
HIGH RAM TEST FAILURE	0205	01 02 ***				
PROM Checksum						
PROM CHECKSUM	0301	01 03				

Table 5-2. POST Error Codes (Continued)

POST Error	Primary Status	Secondary Status
CIO 0 Test		2000
CIO REG FAILURE	0401	01 04
TMR ERR INT OCCURRED	0402	01 04
TMR2 - NO INTERRUPT	0403	01 04
TMR2 CNT LSB NZ AT INTRPT	0404	01 04
TMR2 CNT MSB NZ AT INTRPT	0405	01 04
TMR3 CNT LSB NZ AFT TMOUT	0406	01 04
TMR3 CNT MSB NZ AFT TMOUT	0407	01 04
USART 0 TEST (SCC PORTS 0-1)	1	
USART PORT A (0) ERROR	0501	01 05
USART PORT B (1) ERROR	0503	01 05
Gate Array Test		·
LOC0 REG DATA FAILURE	0601	01 06
LOC1 REG DATA FAILURE	0602	01 06
INIT1 REG DATA FAILURE	0603	01 06
NMIMSK REG DATA FAILURE	0604	01 06
NMISTAT REG BIT WON'T RESET	0605	01 06
INITO REG DATA FAILURE	0606	01 06
INIT3 REG DATA FAILURE	0607	01 06
Parity Checker Test		
UNABLE TO RESET PTY STATUS BIT	0701	01 07
UNEXPECTED PTY INTERRUPT	0702	01 07
PTY ERROR ON WRITE BAD PTY	0703	01 07
DATA CHANGED WITH PTY BIT	0704	01 07
NO PTY ERROR WHEN EXPECTED	0705	01 07
ADRS WRONG IN PTY REG 0,1, OR 2		01 07
UNABLE TO CORRECT BAD PARITY	0707	01 07
DMA Allocation Reg Test (IDAL)		
DMA ALLOCATION REG TEST (IDAL)	0801	01 08
CIO 1 Test		01.00 *
CIO REG FAILURE	0901	01 09 *
TMR ERR INT OCCURRED	0902	01 09 *
TMR2 - NO INTERRUPT	0903	01 09 *
TMR2 CNT LSB NZ AT INTRPT	0904	01 09 *
TMR2 CNT MSB NZ AT INTRPT	0905	01 09 *
TMR3 CNT LSB NZ AFT TMOUT	0906	01 09 *
TMR3 CNT MSB NZ AFT TMOUT	0907	01 09 *
USART 1 TEST (SCC PORTS 2-3)	0.4.04	04.00 *
USART PORT A (2) ERROR	0A01	01 0A *
USART PORT B (3) ERROR	0A03	01 0A *
USART 2 TEST (SCC PORTS 4-5)	0004	04.00 *
USART PORT A (4) ERROR	0B01	01 0B *
USART PORT B (5) ERROR	0B03	01 0B *
USART 3 TEST (SCC PORTS 6-7)	0001	04.00 *
USART PORT A (6) ERROR USART PORT B (7) ERROR	0C01	01 0C *
USANI PUNI D (1) EKKUK	0C03	01 0C *

Figure 5-1. PROM Error Counters

Diagnostic Subroutines

Fifteen diagnostic subroutines are resident in the adapter PROM. They are available for:

- Power-on self-test (POST)
- User-written tasks on the adapter
- Realtime Control Microcode (RCM)

The diagnostic subroutines are independent of the RCM.

List of Diagnostic Subroutines

Function	Interrupt Number
Test DRAM Subroutine	00h
Checksum Subroutine	01h
Get Memory Size Subroutine	02h
Test Microprocessor Subroutine	03h
Test CIO Subroutine	04h
Test SCC Subroutine	05h
Test Dual-Port Memory Controller Subroutine	06h
Get Communications Port Identity Subroutine	07h
Configure CIO Port Subroutine	08h
Configure SCC Port Subroutine	09h
Configure DMA Channel Subroutine	0Ah
Configure CIO Timers Subroutine	0Bh
Configure Watchdog Timer Subroutine	0Ch
Switch Interrupt Priorities Subroutine	0Dh
Get X.25 Electrical Interface Assembly Identifier Subroutine	0Eh
Get Base Card ID Subroutine	14h

General Invocation

The diagnostic subroutines are called by placing the number of the desired subroutine in the AH register and then calling INT FEh. Other registers are used to pass various other parameters.

General Error Handling

The subroutines perform limited error checking and set the carry flag to logical 1 if either of the following conditions exists:

• AH contains an invalid subroutine number

or

• A hardware error is detected.

The calling task should check the carry flag on return to see if an error occurred.

Note: Subroutines do not check that the calling task owns the resource to be tested.

Test DRAM Subroutine

Invocation

INT FEh, AH = 00h

Function

This subroutine tests each byte of a specified block of adapter DRAM for:

- Byte and word addressability
- Pattern retention (address-in-address and inverted address-in-address write and read)
- Zero retention.

If an error is detected, the subroutine terminates immediately.

Notes:

- 1. Resource ownership is not tested; this subroutine assumes the calling task owns the specified memory block.
- This test disables the watchdog timer.

Entry Parameters

AH = 00h

ES = Segment in which to begin testing

CX = Number of paragraphs (16-byte blocks) to test

Exit Parameters

```
Carry flag = 0 if no error
              1 if error
```

Errors

```
ES:DI = Address of detected error
      = bit pattern at error location
```

Registers Affected

ES, AX, BX, CX, DX, SI, DI

Memory Affected

Tested DRAM

```
;assumes memory block 0 allocated before call
MOV AH,00h ;parameter required for DRAM test
MOV BX,CS:STOROSEG ;test segment of memory block 0, set by RCM
MOV ES,BX ;store in ES
                ;test paragraph 1 of memory block 0
MOV CX,01h
                 request for service;
INT OFEh
JC ERROR_HAN ;if error, AL=error bits
                  ;and ES:DI=error address
```

Checksum Subroutine

Invocation

INT FEh, AH = 01h

Function

This subroutine performs a byte-additive checksum on a specified area of adapter DRAM. A 16-bit checksum value must be placed in the last two bytes of the specified area. This value is compared with the least significant 16 bits of the sum of all the other bytes. If the two values are not identical, the carry flag is set to 1. This is a cumulative test, no specific error indicators are returned.

Notes:

- 1. Resource ownership is not tested; this subroutine assumes the calling task owns the specified DRAM.
- 2 This test disables the watchdog timer.

Entry Parameters

AH = 01h

ES = Segment in which to begin checksum

CX = Number of bytes to checksum (64 KB maximum)

Exit Parameters

```
Carry flag = 0 if no error
1 if error
```

Errors

Checksum failed if carry flag = 1

Registers Affected

None

Memory Affected

None

Get Memory Size Subroutine

Invocation

INT FEh, AH = 02h

Function

This subroutine returns the size of the installed DRAM in paragraphs (16-byte blocks). The value is read from the PROM work area variable TSIZE at location 0408h. TSIZE is calculated during POST.

Entry Parameters

AH = 02h

Exit Parameters

AX = Number of paragraphs (16-byte blocks) of installed DRAM

Carry flag = 0

Errors

None. Carry flag is always reset to zero.

Registers Affected

AX

Memory Affected

None

```
MOV AH,02h ;parameter required
INT OFEh
            ;request for service
            ;after int., AX=size of installed DRAM in paragraphs
```

Test Microprocessor Subroutine

Invocation

INT FEh, AH = 03h

Function

This subroutine tests the basic function of the timers, DMA channels and interrupts of the 80186 microprocessor. The calling task must provide a 128-byte block of DRAM for the DMA channel tests. Before terminating, the subroutine reconfigures the microprocessor to its default state.

This is not an exhaustive test. If any error is detected, the subroutine sets the carry flag and terminates immediately. No specific error indicators are returned.

Notes:

- 1. This subroutine destroys the entire setup of the 80186 microprocessor and must only be called in a diagnostic environment. The adapter must be reinitialized before resuming normal operation.
- 2. This subroutine disables the watchdog timer.

Entry Parameters

```
AH = 03h
```

Segment pointer to 128-byte block to be used for DMA test SI = Offset pointer to 128-byte block to be used for DMA test

Exit Parameters

```
Carry flag = 0 if no error
              1 if error
```

Errors

A basic function failed if carry flag = 1

Registers Affected

None

Memory Affected

128-byte block used for DMA test

```
;assumes memory block zero allocated before call
MOV AH,03h ; parameter required for processor test
MOV BX,CS:STOROSEG ;DRAM block for DMA test
MOV DS,BX
MOV SI,0
                    ;Offset 0 within segment
INT OFEh
                    ;request for service
JC
    ERROR_HAN
                    ; if error, processor test failed
```

Test CIO Subroutine

Invocation

INT FEh, AH = 04h

Function

This subroutine tests the basic functions of the CIO. If a failure is detected, the subroutine terminates immediately. Before terminating, the subroutine reconfigures the CIO to its default state.

Notes:

- 1. This subroutine destroys the entire setup of the CIO; it must only be called in a diagnostic environment.
- 2. This subroutine disables the watchdog timer.

Entry Parameters

```
AH = 04h
AL = 00h
```

Exit Parameters

```
Carry flag = 0 if no error
              1 if error
```

Errors

A basic function failed if carry flag = 1

Registers Affected

None

Memory Affected

None

```
MOV AH,04h ;parameter required MOV AL,00h ;parameter required INT OFEh ;request for service
        ERROR_HAN ;if error, CIO test failed
JC
```

Test SCC Subroutine

Invocation

INT FEh, AH = 05h

Function

This subroutine tests the basic functions of the SCC. If an error is detected, the subroutine terminates immediately. Before terminating, the subroutine reconfigures the SCC and the CIO to their default states.

This subroutine uses both DMA channels and the PROM work area. The DMA allocation registers must be reinitialized before commencing normal operation.

Notes:

- 1. This subroutine destroys the entire setup of the SCC and CIO; it must only be used in a diagnostic environment.
- 2. This subroutine disables the watchdog timer.

Entry Parameters

```
AΗ
     = 05h
AL
     = 00h
```

Exit Parameters

```
Carry flag = 0 if no error
              1 if error
```

Errors

A basic function failed if carry flag = 1

Registers Affected

None

Memory Affected

PROM work area 0:0416h to 0:041Bh

```
MOV
      AH,05h
                ;parameter required
VOM
      AL,00h
                ;test SCC
INT
                ;request for service
      0FEh
JC
      ERROR HAN ; if error, SCC test failed
```

Test Dual-Port Memory Controller Subroutine

Invocation

INT FEh, AH = 06h

Function

This subroutine tests access to the registers of the dual-port memory controller. If an error is detected, the subroutine terminates immediately.

Notes:

- 1. This subroutine destroys the setup of the dual port memory controller chip. This can
 - The RCM
 - Application tasks executing on the system unit
 - Application tasks executing on the adapter
- 2. The adapter must be reconfigured to its power-on self-test (POST) state after executing this subroutine.
- 3. This subroutine disables the watchdog timer.

Entry Parameters

AH = 06h

Exit Parameters

```
Carry flag = 0 if no error
              1 if error
```

Errors

A basic function failed if carry flag = 1

Registers Affected

None

Memory Affected

None

```
MOV AH,06h ;parameter required INT 0FEh ;request for service
JC
    ERROR_HAN ; if error, test failed
```

Get Communications Port Identity Subroutine

Invocation

INT FEh, AH = 07h

Function

This subroutine is provided for compatibility with other ARTIC adapters where it returns the identity of the ports on the electrical interface assembly fitted to the adapter. On this adapter, the subroutine returns C9h as the identifier for both ports. C9h is the identifier of the X.25 electrical interface assembly.

Entry Parameters

AH = 07h

Exit Parameters

CH = C9hCL = C9h

Carry flag = 0

Errors

None. Carry flag is always reset to zero.

Registers Affected

CX

Memory Affected

None

Example Call

MOV AH,07h ;parameter required INT OFEh ;request for service

Configure CIO Port Subroutine

Invocation

INT FEh, AH = 08h

Function

This subroutine resets and reconfigures either port 0 or port 1 of the CIO. Only the specified port is affected. The port is reconfigured to its normal reset state, except that the following registers are written to as shown in the following table.

Table 5-3. CIO Port Registers

Register	Reconfiguration Value	Remarks
Port Mode Specification	0000 0110	Bit port; OR-PEV mode
Port Handshake Specification	0000 0000	Ignored - bit port
Port Data Path Polarity	1111 1111	All inverting
Port Data Direction	0011 1011	output bits: 7, 6, 2,
		input bits: 5, 4, 3, 1, 0
Port Special I/O Control	0000 0000	All normal
Port Pattern Polarity	0000 0000	All normal
Port Pattern Transition	0000 0000	All disabled
Pattern mask	0000 0000	

The interrupt pending (IP), the interrupt enable (IE) and interrupt under service (IUS) bits are reset. The port interrupt vector registers are unaffected and the specified port is left disabled.

Refer to the Zilog Z8036 CIO Counter/Timer and Parallel I/O Unit Technical Manual for further details of these registers.

Note: Resource ownership is not tested; this subroutine assumes the calling task owns the specified port.

Entry Parameters

AH = 08h

AL = CIO port (00h for port 0, 01h for port 1)

Exit Parameters

Carry flag = 0

Errors

None. Carry flag is always reset to 0.

Registers Affected

None

Memory Affected

None

Example Call

MOV AH,08h ;parameter required MOV AL,00h ;configure CIO port 0 INT OFEh ;request for service

Configure SCC Port Subroutine

Invocation

INT FEh, AH = 09h

Function

This subroutine reconfigures a specified SCC port. Only the specified port is affected. The port is reconfigured to the normal reset state except that the following registers are written to as shown:

Register	Reconfiguration Value
WR0	0001 0000
WR1	0000 0000
WR2	0010 0000
WR3	1100 0000 8 bits/character, receive disabled
WR4	0100 1100
WR5	0110 0000 8 bits/character, transmit disabled
WR6	0000 0000 Address search character
WR7	0000 0000 Flag character
WR8	0000 0000 Transmit buffer
WR9	0000 1001 Enable master interrupt
WR10	0000 0000 Force NRZ mode
WR11	0101 0000 Rx and Tx clock from Baud Rate Generator
WR12	0000 1010 9600 baud
WR13	0000 0000
WR14	0000 0011 Select and enable Baud Rate Generator
WR15	1100 0000 Enable Bk and Tx underrun

Refer to the Zilog Z8030/Z8530 Serial Communications Controller Technical Manual for further details of these registers.

Note: Resource ownership is not tested; this subroutine assumes the calling task owns the specified SCC port.

Entry Parameters

AH = 09h

AL = SCC port (00h=port 0, 01h=port 1)

Exit Parameters

Carry flag = 0

Errors

None. Carry flag is always reset to 0.

Registers Affected

None

Memory Affected

None

Example Call

MOV AH,09h ;parameter required MOV AL,00h ;configure SCC port 0 INT OFEh request for service

Configure DMA Channel Subroutine

Invocation

INT FEh, AH = 0Ah

Function

This subroutine reconfigures a specified DMA channel of the 80186 microprocessor. Only the specified channel is affected. The selected channel is reconfigured to the following state:

Register	Reconfiguration Value	
Source pointer	0040Dh	(PROM work area)
Destination pointer	0040Dh	(PROM work area)
Transfer count	0000h	(Move 0 bytes)
Control word	FE04h	(Memory-to-memory transfer
		with no increment or decrement;
		transfer count indicated with
		interrupt disabled; no synchronization;
		timer request disabled;
		stop DMA; byte transfers)

For more information, refer to the Intel iAPX 86/88, 186/188: User's Manual Hardware Reference.

Note: Resource ownership is not tested; this subroutine assumes the calling task owns the specified DMA channel.

Entry Parameters

AH = 0Ah

AL = DMA channel number (00h or 01h)

Exit Parameters

Carry flag = 0

Errors

None. Carry flag always reset to zero.

Registers Affected

None

Memory Affected

None

Example Call

MOV AH,0Ah ;parameter required MOV AL,00h ;configure DMA channel 0 INT OFEh ;request for service

Configure CIO Timers Subroutine

Invocation

INT FEh, AH = 0Bh

Function

This subroutine reconfigures either timer 1 or timer 2 of the CIO, without resetting the CIO, or affecting timer 3 or any of the ports. The selected timer is stopped, enabled, and the registers are written to as shown in the following table.

Table 5-4. CIO Timers

Register	Value	Description
Mode Specification	0000 0101	Single-cycle, one-shot, retriggerable
Command/Status	1110 0000	Stop timer, clear IE
Timer Constant MSB	1111 1111	Maximum count
Timer Constant LSB	1111 1111	Maximum count
Command/Status	0010 0000	Clear IP and IUS

The interrupt enabled (IE), the interrupt pending (IP), and the interrupt under service (IUS) flags are reset to zero.

Note: Resource ownership is not tested; this subroutine assumes the calling task owns the specified timer.

Entry Parameters

AH = 0Bh

AL = Timer number (00h for timer 1, 01h for timer 2)

Exit Parameters

Carry flag = 0

Errors

Carry flag always reset to 0.

Registers Affected

None

Memory Affected

None

Example Call

MOV AH,0Bh ;parameter required MOV AL,00h ; configure hardware timer 1 INT OFEh ;request for service

Configure Watchdog Timer Subroutine

Invocation

INT FEh, AH = 0Ch

Function

This subroutine initializes timer 3 (the watchdog timer) and port 2 of the CIO, without resetting the CIO or affecting the other ports or timers. The subroutine disables the watchdog timer and resets any resulting interrupt.

After initialization, timer 3 output enable is off, the timer is not running, and the error LED is off.

For normal operation of the watchdog, timer 3 output enable (EOE) must be set to logical 1 after the timer is started.

The subroutine writes to timer 3 registers as shown in Table 5-5 and to port 2 registers as shown in Table 5-6.

Table 5-5. Watchdog Timer

Register	Value	Description
Command/Status	1110 0000	Stop timer, clear IE
Mode Specification	0010 0101	Single-cycle, one-shot, retriggerable, external count disabled, external output disable
Timer Constant MSB	1111 1111	Maximum count
Timer Constant LSB	1111 1111	Maximum count
Command/Status	0010 0000	

Table 5-6. Port 2 Registers

Register	Value	Description
Data Path Polarity	0000 1111	All inverting
Data Direction	0000 1010	Outputs bits 0 and 2, input bits 1 and 3
Special I/O control	0000 0000	Normal
Port 2 Data Register	0000 0001	LED control bit 2 off, bit 0 on

Entry Parameters

AH = 0Ch

Exit Parameters

Carry flag = 0

Watchdog timer is enabled but stopped.

Error LED is off

Errors

None. Carry flag always reset to zero.

Registers Affected

None

Memory Affected

None

Example Call

AH, OCh ; parameter required MOV OFEh ;request for service INT

;After int, watchdog timer is enabled but stopped

;error LED is off

Switch Interrupt Priorities Subroutine

Invocation

INT FEh, AH = 0Dh

Function

For diagnostic purposes it may be necessary to have the dual-port memory controller interrupt at a higher priority than the SCC/CIO. By default, the SCC and CIO both interrupt at level 0 and the dual-port memory controller interrupts at level 2. This subroutine reverses the interrupt priority levels of the SCC/CIO and the dual-port memory controller.

Entry Parameters

AH = 0Dh

AL =00h SCC/CIO interrupt at level 0, dual-port memory controller interrupts

> 01h dual-port memory controller interrupts at level 0, SCC/CIO interrupt at level 2

Exit Parameters

Carry flag = 0

Errors

None. Carry flag always reset to zero.

Registers Affected

None

Memory Affected

None

Example Call

MOV AH, ODh ;parameter required MOV AL,01 ; give dual-port memory controller higher priority INT OFEh ;request for service

Get X.25 Electrical Interface Assembly Identifier Subroutine

Invocation

INT FEh, AH = 0Eh

Function

This subroutine returns C9h, the identifier of the X.25 electrical interface assembly.

Entry Parameters

AH = 0Eh

Exit Parameters

CX = C9h

Carry flag = 0

Errors

None. Carry flag is always reset to 0.

Registers Affected

CX

Memory Affected

None

```
MOV AH,0Eh ;parameter required
INT OFEh
           request for service
            ;After int:
            ;CX=C9h
```

Get Base Card ID Subroutine

Invocation

INT FEh, AH = 14h

Function

This function returns a case card ID of 04h.

Entry Parameters

AH = 14h

Exit Parameters

AX = 04h

Errors

None. Carry flag is always reset to 0.

Registers Affected

None

Memory Affected

None

Example Call

MOV AH,14h ;parameter required

INT 0FEh ;request for service

JC QUERY_ID ;check base card ID if CF=1
;after int., AL = base card ID

PROM Services

PROM services reside in the adapter read-only storage. These services are accessible to the Realtime Control Microcode (RCM) and adapter tasks.

General Invocation

PROM Services are invoked through interrupt vectors between INT A0h and CCh.

List of PROM Services

Function	Interrupt Number
Interrupt System Unit Subroutine	A0h
Reset an SCC Port Subroutine	A2h
Access SCC Registers Subroutine	A4h
Access CIO Registers Subroutine	A6h
CIO Timer Support Subroutine	A8h
Connect DMA Channel(s) Subroutine	AAh
Set Up and Start DMA Channel Subroutine	ACh
Access DMA Channel Registers Subroutine	AEh
Stop DMA Channel Subroutine	B0h
Convert Logical to Physical Address Subroutine	B2h
Convert Segment to Page Subroutine	B6h
Convert Page to Segment Subroutine	B8h
Pointer to EBCDIC-ASCII Tables	N/A
Convert EBCDIC String to ASCII Subroutine	C2h
Convert ASCII String to EBCDIC Subroutine	C4h
Add Element to Intrasegment Ring Subroutine	C6h
Remove Element From Intrasegment Ring Subroutine	C8h
Add Element to Intersegment Ring Subroutine	CAh
Remove Element From Intersegment Ring Subroutine	CCh

Interrupt System Unit Subroutine

Invocation

INT A0h

Function

This subroutine raises an interrupt request to the system unit. Options are to wait for a response from the system unit, or not. This option should be used with caution. This subroutine may be interrupted only if the option to wait for the system unit response is selected. Otherwise, this subroutine does not enable interrupts. If the Interrupt ID byte (INTID) indicates a prior request still pending, the (new) request is immediately rejected. (INTID is at offset 0441h in the Interface Block on page 0 of adapter memory.)

Note: Waiting for system response while polling may cause long delays.

Entry Parameters

```
AL = Interrupting task number (1 through 255)
AH = xxxx xxxa (bits 1 through 7 not used)
       where: a=0, do not wait for interrupt response from system unit
               a=1, wait for interrupt response by continuous monitoring the
               Interrupt ID (INTID) byte
```

Exit Parameters

```
AH = xxx xxxb (bits 1 through 7 unpredictable)
        where: b=0, interrupt raised to system unit normally
                b=1, request rejected because prior interrupt still in process
```

Errors

None

Registers Affected

AH

```
AL,01h ;task 1 to interrupt system unit
VOM
MOV AH,00h ;don't wait for system INT 0A0h ;request for service TEST AH,01h ;if AH=00, no error; if
                    ;don't wait for system unit response
JNZ
       ERROR_HAN ; AH=01, error and jump
```

Reset an SCC Port Subroutine

Invocation

INT A2h

Function

This subroutine resets a selected SCC port to the normal reset state.

Entry Parameters

AH = SCC port (00h=port 0, 00h=port 1)

Exit Parameters

AH = 00h if no error

AH = 01h if invalid port specified

Registers Affected

AX, DX

Example Call

MOV AH,00h ;reset SCC port 0
INT 0A2h ;request for service
TEST AH,01h ;if AH=00, no error;, if JNZ ERROR_HAN ; AH=01, error and jump

Access SCC Registers Subroutine

Invocation

INT A4h

Function

This subroutine accesses either the read registers or the write registers of a specified SCC port.

The calling task must provide a pointer to a parameter table. The first byte of the table must be the number of registers to be accessed (must not be zero). The remainder of the table consists of pairs of bytes for each register to be accessed.

The first byte of each pair is a pointer to the register to be accessed. If write access is requested, the second byte must contain the value to be written. If read access is requested, the second byte is overwritten with the value that was read.

Notes:

- 1. Registers WR2 (interrupt vector register) and WR9 (master control register) should not be written to, because changing these registers may give unpredictable results. The subroutine does not check for accesses to these registers because this more than doubles the execution time of this subroutine.
- This subroutine does not:
 - Check that the calling task owns the port
 - Check the validity of input parameters
 - Disable or enable the port.

Entry Parameters

AL = SCC port (00h = port 0, 01h = port 1)

Bit 15 of AX = 0 for write access

Bit 15 of AX = 1 for read access

DS = segment pointer to parameter table

SI = offset pointer to parameter table

Exit Parameters

AH = 00h if no error

AH = 01h if invalid port specified

The parameter table contains the values that were read if read access was requested.

Registers Affected

AX, SI, BX, CX, DX

SCC_RDTA DB DB 12,? DB 13,? MOV AL,00h AH,80h iread port 0 registers MOV BX,CS COM file implementation MOV DS,BX iDS=CS
DB 13,? MOV AL,00h ;read port 0 registers MOV AH,80h ;read request MOV BX,CS ;COM file implementation
MOV AL,00h ;read port 0 registers MOV AH,80h ;read request MOV BX,CS ;COM file implementation
MOV AH,80h ;read request MOV BX,CS ;COM file implementation
MOV BX,CS ;COM file implementation
·
MOV DS,BX ;DS=CS
·
MOV SI,OFFSET SCC_RDTA ; place values read in table
INT 0A4h ;request for service
TEST AH,01h ;if AH=00, no error; if
JNZ ERROR_HAN ;AH=01, error and jump

Access CIO Registers Subroutine

Invocation

INT A6h

Function

This subroutine enables, disables, and/or accesses the registers of either port 0 or port 1 of the CIO. All read registers may be read from, and all write registers (except for the Interrupt Vector register and the Command and Status register) may be written to.

The calling task must provide a pointer to a parameter table. The first byte of the table must be the number of registers to be accessed (must not be zero). The remainder of the table consists of pairs of bytes for each register to be accessed.

The first byte of each pair is a pointer to the register to be accessed. If write access is requested, the second byte must contain the value to be written. If read access is requested, the second byte is overwritten with the value that was read.

The pointers do not correspond directly with the Z8036 CIO register address specification. The following list gives the pointers for the registers.

- **00h** Data register
- **01h** Mode specification register
- **02h** Handshake register
- **03h** Polarity register
- **04h** Direction register
- **05h** Special I/O register
- **06h** Pattern polarity register
- 07h Pattern transition register
- **08h** Pattern mask register
- **09h** Command/status register (read-only)
- **0Ah** Interrupt vector register (read-only)

All registers can be read from or written to unless otherwise stated.

This subroutine does not allow write access to a register with a pointer greater than 8, or read access to a register with a pointer greater than 10. If access to an invalid register is requested, the subroutine terminates immediately with the CIO unaffected and AH=01h.

Note: This subroutine does not:

- Check that the calling task owns the port
- Check the table byte count
- Check the validity of input parameters.

Entry Parameters

AL = CIO port (00h for port 0, 01h for port 1)

AH =00xx xxx0 Disable port

01xx xxx0 Enable port10xx xxx0 Disable port and write registers

11xx xxx0 Disable port, write registers and enable port

xxxx xxx1 Read registers

Segment pointer to parameter table SI = Offset pointer to parameter table

Exit Parameters

AH = 00h if no error

01h if invalid port or register specified

The parameter table contains the values read, if read access is requested.

Registers Affected

AX, SI, BX, CX, DX

```
; READ TABLE FOR CIOREGS
                inumber of registers to 00,? ;byte pairs of register 01,? ; offsets and register 02,? ; values to be
CIO_RDTA DB 09
                               ;number of registers to read
          DB
          DB
          DB
          DB
                  03,?
                 04,?
          DB
          DB
                  05,?
                  06,?
          DB
          DB
                 07,?
          DB
                 08,?
VOM
          AL,01h
                                ;select port 1
VOM
          AH,01h
                                ;read port 1 registers
         BX,CS
                                ;COM file implementation
VOM
MOV
          DS,BX
                                ;DS=CS
          SI,OFFSET CIO_RDTA ;place values read in table
VOM
INT
          0A6h
                                ;request for service
TEST
          AH,01h
                               ;if AH=00, no error; if
          ERROR_HAN ; AH=01, error and jump
JNZ
```

CIO Timer Support Subroutine

Invocation

INT A8h

Function

This subroutine performs any combination of the following on timer 1 or timer 2 of the CIO:

- Stop timer
- Start timer
- Trigger/retrigger timer
- Configure/reconfigure timer
- Set timeout value

Reconfiguration of the cycle mode (continuous or single) and/or the timeout value does not occur until the first trigger after the timer is restarted.

Entry Parameters

AL = Selected

AH = xxxx xxx1 Activate bit 2; set single or continuous mode

xxxx x0x1 Stop timer and set single cycle mode

xxxx x1x1 Stop timer and set continuous cycle mode

AH = x1xx xxxx Activate bit 7; set restart or retrigger

01xx xxxx Restart timer (start count from where it left off with same options)

11xx xxxx Retrigger timer (reloads count with new options)

xx1x xxxx Activate bit 4; enable/disable interrupts

xx10 xxxx Disable timer interrupts

xx11 xxxx Enable timer interrupts

AH = xxxx xx1x Read timer count into CX

CX = 0, do not change timeout value

CX <> Set new timeout value from CX (in 543-nanosecond increments)

Note: The bits of register AH may be used in any combination and not all possibilities are shown. For example AH=1111 xx10 with CX = 0 retriggers the timer, enable timer interrupts, and return the current timer count in CX.

Exit Parameters

AH = 00h if no error

AH = 01h if invalid timer specified

CX = Current timer count (when AH=xxxx xx1x)

Otherwise, CX is unchanged

Registers Affected

AL, CX, BX, DX

VOM	AL,01h	;select timer 1	
VOM	AH,0C1h	;set single cycle, and	
		retrigger timer;	
		;with count in CX	
VOM	CX,0500h	<pre>;new timeout=695.04 microsec</pre>	
INT	0A8h	request for service	
TEST	AH,01h	;if AH=00, no error; if	
JNZ	ERROR_HAN	;AH=01, error and jump	
		;If here, CX=time-out value	

Connect DMA Channel(s) Subroutine

Invocation

INT AAh

Function

This subroutine connects either or both of the 80186 microprocessor DMA channels to any of the following:

- SCC port 0 transmitter
- SCC port 0 receiver
- SCC port 1 transmitter
- SCC port 1 receiver

This subroutine enables one DMA channel to be connected without disturbing the other (provided a valid connection is made).

Note: This subroutine does not do the following:

- Stop the target DMA channels
- Check that the calling task owns the resources
- Check the correctness of the channel configuration.

Entry Parameters

```
AH = selected DMA channel (00h=ch 0, 01h=ch 1, FFh=both channels)
```

AL = xxxx aabb

where: When only a single DMA channel is to be connected, aa is ignored.

When both channels are to be connected at the same time, aa refers to

DMA channel 1, and bb refers to DMA channel 0.

Values of aa and/or bb may be:

00: connect DMA channel to SCC port 0 transmitter

01: connect DMA channel to SCC port 0 receiver

10: connect DMA channel to SCC port 1 transmitter

11: connect DMA channel to SCC port 1 receiver

Exit Parameters

AL and AH contain the new and prior value respectively of the 4-bit DMA allocation register.

```
AL = new value = aabb 0000
```

where: aa=DMA channel 1

bb=DMA channel 0

AH =prior value = aabb 0000

where: aa=DMA channel 1

bb=DMA channel 0

Note: If only a single channel is changed, only the bits for that channel are returned.

Registers Affected

AX

Example Call

MOV AH,00h ; connect DMA channel 0 MOV AL,00h ; to SCC port 0 transmitter

INT OAAh ;request for service

;After int:

;AL=New value of DMA allocation register ;AH=Old value of DMA allocation register

Set Up and Start DMA Channel Subroutine

Invocation

INT ACh

Function

This subroutine sets up and starts one of the two DMA channels of the 80186 microprocessor. It sets up all six registers (for the selected channel) in the DMA control block. It writes to the control word register last, so that the desired DMA operation starts immediately after the subroutine terminates.

The transfer can be in one of the following directions:

- I/O to memory (receive)
- Memory to I/O (transmit)
- Memory to memory (move)

I/O to I/O transfer is not supported. The calling task must provide:

- The DMA control word for the selected DMA channel
- I/O address
- A parameter table containing memory address(es) and the number of words to be transferred (maximum 64 KB).

This subroutine optionally converts memory addresses from segment:offset format to the physical address required by the 80186 microprocessor DMA registers.

This subroutine does not check the validity of input parameters. This is the responsibility of the calling task.

Entry Parameters

```
AH = cnnx xxxx
where cnn has the following meanings:
x00 not valid
x01 I/O to memory transfer
x10 memory to I/O transfer
x11 memory to memory transfer
Oxx convert memory address(es) to physical address(es)
1xx physical address(es) supplied - no conversion necessary

BX = DMA
CX = I/O
DX = I/O
S = Seg
SI = Off
```

The following parameter table shows each of the possible transfers. The table pointer points to the uppermost parameter.

Configuration **Parameter**

I/O to Memory (segment:offset)

AH=001x xxxx

Table pointer +0Destination offset

Table pointer +2**Destination segment**

Table pointer + 4 Number of bytes/words to transfer

Memory to I/0 (segment:offset)

AH=010x xxxx

Table pointer +0Source offset

Table pointer +2Source segment

Table pointer + 4 Number of bytes/words to transfer

Memory to Memory (segment:offset)

AH=011x xxxx

Table pointer + 0Source offset

Table pointer +2Source segment

Table pointer + 4 Destination offset

Table pointer + 6**Destination segment**

Table pointer + 8 Number of bytes/words to transfer

Configuration **Parameter**

I/O to Memory (physical address)

AH=101x xxxx

Low 16 bits of destination Table pointer + 0

Table pointer +2High 4 bits of destination

Table pointer + 4 Number of bytes/words to transfer

Memory to I/O (physical address)

AH=110x xxxx

Table pointer + 0Low 16 bits of source

Table pointer +2High 4 bits of source

Table pointer + 4 Number of bytes/words to transfer Memory to Memory (physical address)

```
AH=111x xxxx
```

```
Table pointer + 0
                          Low 16 bits of source
Table pointer +2
                          High 4 bits of source
                          Low 16 bits of destination
Table pointer +4
Table pointer + 6
                          High 4 bits of destination
Table pointer + 8
                          Number of bytes/words to transfer
```

Exit Parameters

```
AH = xxxx xxxB (bits 1-7 unpredictable)
       where: B = 0, Normal operation
               B = 1, Request rejected; invalid request parameters in Ah
```

Registers Affected

AX, CX, DX, SI

```
; REQUIRED DECLARATIONS
SCR_BUFF DB 20 DUP(0) ; source buffer
DES_BUFF DB 20 DUP(0) ; destination buffer
;DMA TABLE FOR MEMORY TO MEMORY TRANSFER
DMA0_TBL1 DW
                       OFFSET SRC_BUFF ; source
SET_CS1 DW
                        0
                    OFFSET DES_BUFF ;destination
            DW
       DW 20h ;word com
BX,0D707h ;control word
DX,0FFC0h ;address for DMA port 0
CS ;COM file implementation
DS ;DS=CS
SET_CS2 DW
                                            ;word count
VOM
VOM
PUSH CS
POP
       SI,DMA0\_TBL1 ;pointer to DMA table 0
LEA
       AH,60h ; memory to memory move
VOM
INT 0ACh ;request for service
TEST AH,01h ;if AH=00, no error; if
JNZ ERROR_HAN ;AH=01, error and jump
```

Access DMA Channel Registers Subroutine

Invocation

INT AEh

Function

This subroutine reads from or writes to all registers in the DMA control block for one DMA channel. The calling task must provide a parameter table in the following format:

Table pointer + 0 Lowest 16 bits of source address

Table pointer + 2 Highest 4 bits of source address

Table pointer + 4 Lowest 16 bits of destination address

Table pointer + 6 Highest 4 bits of destination address

Table pointer + 8 Byte or word count (depends on control word value)

Table pointer + 10 control word

The registers are accessed in the following order:

- 1. Source pointer
- 2. Destination pointer
- 3. Transfer count
- 4. Control word

This subroutine does not check the validity of passed parameters. When writing to the registers, the table must contain data precisely as specified in the Intel manuals. (Source and destination must be physical memory and/or I/O addresses).

Entry Parameters

AH bit 7 = 0 write access requested

bit 7 = 1 read access requested

DX = address of DMA channel to be accessed

ES =segment address pointer to parameter table (read requests only)

DI =offset address pointer to parameter table (read requests only)

DS =segment address pointer to parameter table (write requests only)

SI =offset address pointer to parameter table (write requests only)

Exit Parameters

Returned data in read table if read requested; otherwise, none

Registers Affected

DX, SI (if write), DI (if read)

```
; READ TABLE FOR CHANNEL 0
MA0_TBL1
                           ; put values of DMA registers into table
            DW
            DW
            DW
                           ?
            DW
                           ?
                           ?
            DW
                           ?
            DW
            AH,80h ;read DMA registers
DX,0FFC0h ;address for DMA port 0
MOV
VOM
PUSH
            CS
                           ;COM file implementation
POP
            ES
                          ;ES=CS
            DI,DMA0_TBL1 ;pointer to DMA table 0
LEA
INT
            0AEh
                           ;request for service
                           ;After int:
                           ;DMA channel 0 register data read into
                           ;DMA0_TBL1
```

Stop DMA Channel Subroutine

Invocation

INT B0h

Function

This subroutine immediately stops a DMA channel regardless of the type of operation in progress. After a short settling delay, it reads the byte/word count register and returns the value in AX. No parameter checking is done. Unpredictable results may occur if an invalid parameter is passed.

Entry Parameters

DX = port address of DMA channel to stop FFC0h if DMA channel 0 FFD0h if DMA channel 1

Exit Parameters

AX = residual byte count

Registers Affected

AX, DX

Example Call

MOV DX,0FFC0h ;DMA channel 0 selected INT 0B0h ;request for service ;After int:

;AX=residual byte count

Convert Logical to Physical Address Subroutine

Invocation

INT B2h

Function

This subroutine reads a four-byte segment:offset address from memory, converts it into a 20-bit physical address, and overwrites the input with the result. The physical address is also returned in DX and AX.

Entry Parameters

DS = segment of pointer to address to be converted SI = offset of pointer to address to be converted

Exit Parameters

Four bytes changed in memory

AX = Lowest 16 bits of address

DX = Highest 4 bits of address (000xh)

Registers Affected

AX, DX

```
; REQUIRED DECLARATIONS
;BUFFER DW 100 DUP(0)
                                 ;data buffer
;TABLE FOR DMAADDR
BUFFER@
          DW
                 OFFSET BUFFER ;offset of buffer
                                 ; segment of buffer initialized
          DW
                                  ;to CS
PUSH
           CS
                                  ; COM file implementation
                                 ;DS=CS
POP
           DS
VOM
          SI,OFFSET BUFFER@
                                 ;pointer to address
INT 0B2h
                   ;request for service
                    ;After int:
                    ;AX=Lowest 16 bits of result
                    ;DX=Highest 4 bits of result (000xh)
```

Convert Segment to Page Subroutine

Invocation

INT B6h

Function

This subroutine converts a memory address from segment and offset notation to page and offset notation. A page may be 8 KB.

Entry Parameters

ES = Segment to be converted DX = Offset to converted

Exit Parameters

ES = Page numberDX = Offset into page

Registers Affected

AX, BX, DX, ES

```
BX,0200h ; segment to be converted
VOM
POP
     ES,BX ;ES=BX
MOV
     DX,0001h ;offset to be converted
INT
     OB6h ;request for service
               ;After int:
               ;ES=Page number ; DX=Offset into page
```

Convert Page to Segment Subroutine

Invocation

INT B8h

Function

This subroutine converts a memory address from page and offset notation into segment and offset notation. The resulting segment is the value nearest to the converted address relative to the current page size. The returned offset is always less than 16.

Entry Parameters

ES = Page number to be converted (bits 7-15 not used)
DX = Offset to be converted (bits 13-15 not used)

Exit Parameters

ES = Resulting segment DX = Resulting offset

Registers Affected

AX, DX, ES

VOM	BX,0001h	;page to be converted
VOM	ES,BX	;ES=BX
VOM	DX,0001h	;offset to be converted
INT	0B8h	request for service;
		;After int, ES=Segment
		;DX=Offset

Pointer to EBCDIC-ASCII Tables

Invocation

Not applicable

Function

This is not a routine. Absolute location 0:0300h contains a segment:offset pointer to the low-address end of the EBCDIC-ASCII conversion tables in PROM. The pointer may be used directly for EBCDIC-to-ASCII conversion; 256 must be added to the pointer for ASCII-to-EBCDIC conversion. The table layout is as follows:

```
00h to FFh
                          EBCDIC to ASCII
pointer + 0
pointer + 256 00h to 7Fh
                          ASCII to EBCDIC
pointer + 384 80h to FFh
                          ASCII to EBCDIC
```

The two ASCII-to-EBCDIC sections are identical so that the high-order bit of an ASCII character may be ignored when performing ASCII-to-EBCDIC conversions.

Entry Parameters

Not applicable

Exit Parameters

Not applicable

Registers Affected

Not applicable

MOV	AH,42h	read vector call
MOV	AL,0C0h	read interrupt vector COh
		;pointer to EBCDIC-to-ASCII table
INT	56h	;interrupt RCM
		;INT 56 cannot be used until RCM is loaded
JC	ERROR_HAN	;if error, AL=error code
		; If here: ; ES:DX=Pointer to EBCDIC-ASCII
		table

Convert EBCDIC String to ASCII Subroutine

Invocation

INT C2h

Function

This subroutine converts an EBCDIC string from memory to an ASCII string also in memory. The calling task must provide pointers to both source and destination string locations. If the pointers are identical, ASCII bytes overwrite the input EBCDIC bytes.

Entry Parameters

```
CX = Byte count (zero invalid)
```

DS = Segment pointer of source (EBCDIC) string
SI = Offset pointer of source (EBCDIC) string
ES = Segment pointer of destination (ASCII) string
DI = Offset pointer of destination (ASCII) string

Exit Parameters

```
AH = \begin{array}{ll} xxxx \ xxxB \ (Bits \ 1\text{-}7 \ unpredictable) \\ where: \ B = 0 \ if \ normal \ operation; \\ B = 1 \ if \ request \ rejected \ due \ to \ zero \ byte \ count \\ Data \ returned \ in \ destination \ table \end{array}
```

Registers Affected

AX, BX, CX, SI, DI

```
;data strings to be converted
CON_EBCDIC DB 00,01,02,03,04,05,06,07,08,09,10
CON_ASCII DB 11 DUP(?)
;destination table of converted string
MOV CX,11
                             ;string (byte) count
PUSH
      CS
                              ;DS=CS
POP
      DS
                              ;DS:SI points to EBCDIC string
MOV SI, OFFSET CON_EBCDIC
PUSH CS
                              ;ES=CS
POP
      ES
                              ;ES:DI points to destination string
MOV DI,OFFSET CON_ASCII
INT 0C2h
                             ;request for service
TEST AH,01h
                              ;if AH=00, no error;
      ERROR HAN
                              ; if AH=01, error and jump
JNZ
                              ;After int:
                              ;Conversion values returned in
                              ;destination table CONV_ASCII
```

Convert ASCII String to EBCDIC Subroutine

Invocation

INT C4h

Function

This subroutine converts an ASCII string from memory to an EBCDIC string also in memory. The calling task must provide pointers for both source and destination string locations. If both pointers are identical, EBCDIC bytes overwrite the input ASCII bytes

Entry Parameters

CX = Byte count (zero invalid)

DS = Segment pointer of source (ASCII) string SI = Offset pointer of source (ASCII) string

ES = Segment pointer of destination (EBCDIC) string DI = Offset pointer of destination (EBCDIC) string

Exit Parameters

```
AH = xxxx xxxB (Bits 1-7 unpredictable)
       where: B = 0 normal operation;
```

B = 1 error, zero byte count in CX Data returned in destination table

Registers Affected

AX, BX, CX, SI, DI

```
;data strings to be converted
      DB 'This is an ASCII string'
ALPA
CON_EBCDIC DB 23 DUP(?)
;destination table of converted string
MOV
     CX,23
                          ;string (byte) count
PUSH
          CS
                          ;DS=CS
POP
          DS
                          ;DS:SI points to source ASCII string
        SI,OFFSET ALPHA
VOM
PUSH
        CS
                          ;ES=CS
POP
          ES
                          ;ES:DI points to destination string
VOM
        DI,OFFSET CON_EBCDIC
INT
          0C4h
                         request for service
TEST
         AH,01h
                         ;if AH=00, no error; if
          ERROR HAN
                          ; AH=01, error and jump
JNZ
                          ;After int:
                          ; Conversion values returned in
                          destination
                          ;table CONV_EBCDIC
```

Add Element to Intrasegment Ring Subroutine

Invocation

INT C6h

Function

This subroutine adds an element to a ring structure with 16-bit forward and backward pointers. It assumes the existence of one element in the ring. If the ring contains only one element, both the forward and backward pointers for that element point to itself. Register BX is used to indicate the location of the forward pointer within the element. The backward pointer is assumed to be two bytes past the forward pointer (BX+2).

Entry Parameters

BX = Displacement of the forward pointer within the element

DX = Offset of the element before which the new element is to be inserted

DI = Offset of the new element to be inserted

DS = Segment in which the ring is located

Exit Parameters

None

```
;data tables used to set up ring
START_RNG DW
                  $
                               ;Forward pointer
          DW
                  $-2
                               ;Forward pointer
          DW
                  100 DUP(0) ;Data area
SEC_ELM DW
                              ;Forward pointer
                  $
                  $-2
          DW
                               ;Backward pointer
          DW
                  100 DUP(0)
                               ;Data area
MOV
          BX,0000
                               ; pointers at offset 0 in elements
          DX,OFFSET START_RNG ; point to element in ring
MOV
VOM
          DI,OFFSET SEC_ELM
                               ;DI points to next element
PUSH
          CS
                               ;DS=CS=segment in which ring
                               ;element is located
POP
          DS
                  ;INT 0C6h
                               ;request for service
```

Remove Element From Intrasegment Ring Subroutine

Invocation

INT C8h

Function

This subroutine removes an element from a ring structure with 16-bit forward and backward pointers.

Entry Parameters

BX = Displacement of the forward pointer within the element

Offset of the element to remove DS = Segment in which the ring is located

Exit Parameters

Carry flag = 1 if error detected

= 0 if no error

Zero flag = 1 if requested element is the last one in the ring (not an error)

= 0 if more than one element in ring

Errors

Carry flag set if next and/or previous pointers in user element are incorrect.

Registers Affected

None

```
SEC ELM DW
                          ;forward pointer
DW-2
                          ;backward pointer
DW
       100 DUP(0)
                          ;data area
MOV
       BX,0000
                          ;pointers at offset 0 in elements
PUSH
       CS
                         ;DS=CS=segment in which element
                          ;is located
POP
       DS
      DI,OFFSET SEC_ELM ;offset of ring element
MOV
INT
       0C8h
                        request for service
       ERROR_HAN
                          ;if error, handle it
JC
       LAST_ELEMENT
JΖ
                         ; if this is last element
```

Add Element to Intersegment Ring Subroutine

Invocation

INT CAh

Function

This subroutine adds an element to a ring structure with 32-bit forward and backward pointers. It assumes the existence of one element in the ring. If the ring contains only one element, both the forward and backward pointers for that element point to itself. Register BX is used to indicate the location of the forward pointer within the element. The segment of the forward pointer is at BX+2. The offset of the backward pointer is at BX+4 and the segment of the backward pointer is at BX+6.

Entry Parameters

= Displacement of the forward pointer within the element

ES:DX = Location of the element before which the new element is inserted

DS:DI = Location of the new element to insert

Exit Parameters

None

Registers Affected

None

```
;data tables required to set up a ring
START_RNG DW $
                               ;forward pointer offset
           DW
                 0
                               ;forward pointer segment
           DW
                 $-4
                               ;backward pointer offset
           0
                               ;backward pointer segment
DW
          100 DUP(0)
                               ;data area
SEC_ELEM DW $
                               ;forward pointer offset
           0
                               ;forward pointer segment
                               ;backward pointer offset
           $-4
DM
           0
DW
                               ;backward pointer segment
DW
           100 DUP(0)
                               ;data area
MOVBX,0000
                               ;pointers at offset 0 in elements
MOVAX, CS
                               ;DS=CS=segment of next ring element
MOVES, AX
MOVDX, OFFSET START_RNG
                               ;DX=offset of next ring element
                               ;ES=CS=segment of element to add
MOVDS, AX
MOVDI, OFFSET SEC_ELM
                               ;DX=offset of ring element to add
INT0CAh
                               ;request for service
```

Remove Element From Intersegment Ring Subroutine

Invocation

INT CCh

Function

This subroutine removes an element of a ring structure with 32-bit forward and backward pointers.

Entry Parameters

= Displacement of the forward pointer within the element DS:DI = Offset of the element to remove

Exit Parameters

```
Carry flag = 1 if any errors are detected;
             0 if no errors
Zero flag = 1 if requested element was the last one in the ring (not an error)
             0 if more than one element in ring
```

Errors

Carry flag set if next and/or previous pointers in user element are incorrect.

Registers Affected

None

```
SEC_ELM
                $
                               ;forward pointer
                0
           DW
                               ;backward pointer
           DW $-2
           DW 100 DUP(0) ;data area
           MOV BX,0000 ;forward pointer at offset 0
MOV AX,CS ;DS=CS=segment of ring
MOV DS,AX ;element to remove
           DI,OFFSET SEC_ELM ;offset of element to remove
VOM
           0CCh
INT
                             request for service;
           0CCh
ERROR_HAN
JC
                              ;if error, handle it
           LAST_ELEMENT
                              ;if last element in queue
JΖ
```

Bootstrap Loader Subroutine

The bootstrap loader first initializes:

- Interrupt vectors
- **Tables**
- Realtime control microcode (RCM) work area
- Interface block (IB)
- Temporary RCM buffer control block.

It then waits for an interrupt from the system unit. The RCM is task zero. When an interrupt occurs the loader checks the task number of the interrupting task. If the task number is other than zero, the loader:

- Puts invalid task number status in the RCM secondary status field
- Sets ERROR on in the RCM primary status
- Writes FEh in the IC select byte.

The bootstrap loader supports only the Initialization, Load task, Start task, and Free buffer commands. All other commands cause an invalid command error.

Dump Facility

The PROM microcode contains two routines to enable a dump of memory, microprocessor registers, and I/O ports. After using the dump facility, the adapter hardware must be reset and the microcode reloaded before continuing.

Dump1 Subroutine

Dump1 is entered through location FC003h. It performs the following:

- Disables interrupts
- Pushes the contents of all microprocessor registers onto the current stack
- Pushes the contents of memory locations 00000h to 00003h onto the current stack
- Enables system unit access to adapter memory
- Sets adapter memory locations 00000h to 00003h to zero
- Waits until byte location 00000h changes from zero
- Points NMI vector at Dump2 routine
- Enables NMICMD bit in NMI mask register
- Puts current stack pointer in location 00000h
- Puts current stack segment in location 00002h
- Enters single instruction loop.

Dump2 Subroutine

Dump2 is entered through the jump vector at FC006h in PROM. It performs the following:

- Sets adapter memory location 00000h to FFh
- Moves peripheral control block to locations 00300h to 003FFh
- Moves SCC read registers to 00100h to 0013Eh
- Moves CIO registers to 00180h to 001Dh
- Moves dual-port memory controller port 18h to location 002B8
- Moves DMA allocation, M2, M1, BW, XT to 00082h
- Moves adapter ID to locations 00086h, 00200h, 00280h
- Moves word value of SCCREG to 00880h
- Moves byte value of INITREG3 to 002BAh
- Moves PROM version number in ASCII to locations 00004h to 00007h
- Writes 0 to location 00000h
- Enters single instruction loop.

Dual-Port Memory Controller

The dual-port memory controller is a field-programmable logic-device (FPLD) version of the shared-storage interface chip (SSTIC) used on earlier ARCTIC adapters. The dualport memory controller is designed to be code compatible at the application level. However, because some hardware was changed and support for the new DRAM modules was added, adapter BIOS and diagnostic software requires changes.

Design Changes

The following is a list of changes to the dual-port memory controller FPLD design that may cause BIOS or diagnostic code changes.

- CAD0-2 all zeroes value disables ISA address compare function.
- COMREG bit-03 (force parity error) is reserved and is always read as 0.
- COMREG bit-06 (RAM access error) is reserved and is always read as 0.
- DMAPG0-7 registers have been deleted.
- GAID register is always read as 30h.
- INITREG0 is read-only.
- INITREG0 bit 3 (bank number) is always read as 1.
- INITREG1 bits 3–2 (memory bits) are always read as 11b.
- INITREG1 bit 6 (ROS ready) is similar to SSTIC3 but is reset to 0 with Reset command.
- NMIMASK register bit 2 (parity error mask) is reserved and always read as 1.
- NMIMASK register bit 5 (lost refresh mask) is reserved and always read as 1.
- NMIMASK register bit 7 (force parity error) is reserved and always read as 0.
- NMISTAT register bit 2 (parity error) is reserved and always read as 0.
- NMISTAT register bit 4 (lost refresh) is reserved and always read as 0.
- Registers PCPAR(0 and 1) have been removed.
- Registers RICPAR(0-2) have been removed.

The following is a list of changes to the dual-port memory controller FPLD design that save adapter component cost and space.

- Chip Select 1–2, 4–8 (non-encoded) are output signals of the dual-port memory controller FPLD.
- DACK0–7 are not input signals to the dual-port memory controller FPLD.

- Glue logic for AS# and INTA1R# to SCC and CIO has been integrated into the dualport memory controller FPLD.
- HALFCLK is an output signal from the dual-port memory controller FPLD.
- ISA-bus interface can be received and driven directly from the dual-port memory controller FPLD.
- 80186-bus interface can be received and driven directly from the dual-port memory controller FPLD.
- 80186-bus interface address latches are integrated into the dual-port memory controller FPLD.
- OPTION0 register is integrated into the dual-port memory controller FPLD.
- OPTION1 register is integrated into the dual-port memory controller FPLD.

Design Methodology and Technology

The dual-port memory controller FPLD is implemented in an Altera 10K20, 5 volt, 240 pin Quad Flat Pack (QFP) FPLD.

The following is dual-port memory controller FPLD high-level design methodology:

- VHDL design
- RTL level simulation (Synopsys VSS)
- Synopsys Design Compiler
- Altera MAX+PLUS II
- Gate level simulation (Synopsys VSS)
- Gate level timing analysis
- Program 10K20 device
- Functional (lab) testing (test cases)
- Adapter product application code testing
- Masked FPLD

Bus Interface Descriptions

The dual-port memory controller FPLD has three bus interfaces:

- 80186-bus interface
- DRAM-bus interface
- ISA-bus interface

The following figure shows the I/O signals for the dual-port memory controller FPLD's bus interfaces and miscellaneous signal I/O.

Refer to "I/O Signals" on page 161 for a description of each signal.

Figure A-1. Dual-Port Memory Controller FPLD-Bus Interfaces

80186-Bus Interface

Refer to the Intel 80C186/C188 80C186XL/C188XL Microprocessor User's Manual for a description of 80186 microprocessors.

The dual-port memory controller FPLD's 80186-bus interface has 20 bits of address and 16 bits of data. Specific 80186-bus interface CLKOUT frequencies of 7.37 MHz, and 14.32 MHz are supported. 20 MHz timing specification 80186 parts are required for the processor speed of 14.32 MHz. These speeds are switchable on the card.

Certain dual-port memory controller FPLD registers and all but the last 64 kilobytes of DRAM can be accessed from the 80186-bus interface.

The dual-port memory controller FPLD can generate interrupts to the 80186-bus interface that are initiated from the ISA-bus interface or from the dual-port memory controller FPLD itself when a watchdog timeout occurs (WDOG# input signal is detected active).

DRAM-Bus Interface

The basic function of the dual-port memory controller FPLD is to act as a DRAM controller for DRAM read/write access from the 80186-bus interface and the ISA-bus interface. The DRAM-bus interface supports one megabyte of a 1MB by 16-bit memory module with either 10x10 or 12x8 row and column addressing schemes. Examples of the type of DRAM supported are the Hitachi HM5118160 (10x10) and HM5116160 (12x8) series. DRAM access times of 60 ns or less are supported. 50 ns DRAM is required for CLKIN frequencies greater than 25 MHz.

The dual-port memory controller FPLD does not generate or check data parity on the DRAM-bus interface.

The dual-port memory controller FPLD supports the basic read cycles, early write cycles, and RAS-only refresh cycles. The following are not supported:

- Delayed Write Cycle
- Read Modify Write Cycle
- CAS Before RAS Refresh Cycle
- Hidden Refresh Cycle
- All EDO page mode cycles

The dual-port memory controller FPLD has an internal-refresh counter that refreshes all 1024 row addresses within 16 milliseconds (10x10 addressing) or all 4096 row addresses within 64 milliseconds (12x8 addressing). An external ISA-bus interface REFRESH# signal is not required, but if it is supplied, it can improve ISA-bus interface performance by eliminating ISA-bus interface contention with the asynchronous internal-refresh counter. The REFRESH# signal is sampled and, once detected active, is synchronized to the internal refresh cycle counter. If the REFRESH# signal is not detected active again within a 15.6 microsecond period, an internal refresh cycle occurs, which could cause wait states in an ISA-bus interface DRAM access.

The dual-port memory controller FPLD contains a simple DRAM arbiter, giving the 80186-bus interface the highest priority access to DRAM, giving the next highest priority DRAM access to an internal refresh request, and lowest DRAM access priority to the ISA-bus interface (non-refresh request). All DRAM cycles occur in three CLKIN periods. The worst-case contention to an ISA-bus interface DRAM request is one 80186-bus interface DRAM cycle (three CLKIN periods) plus an internal refresh DRAM cycle (three CLKIN periods). (This is without the advantage of the REFRESH# signal.) The number of ISA-bus interface wait states depends on the CLKIN frequency and the ISA-bus interface's mode of operation. DRAM accesses from the 80186-bus interface normally run with zero wait states, but can result in one 80186-bus interface wait state, worst case, if a refresh or ISA-bus interface DRAM access has already started.

The following three tables show the best-case and worst-case wait states for the 80186-bus interface and the ISA-bus interface with different CLKIN frequencies.

Notes:

- 1. ISA-bus interface 16-bit mode wait states are in addition to the default (3 BCLK) ISA-bus interface cycle.
- 2. ISA-bus interface 8-bit mode wait states are in addition to the default (6 BCLK) ISA-bus interface cycle.

Table A-1. Memory Access Wait States with 14.74 MHz CLKIN

DRAM Access	Best-Case Wait States	Worst-Case Wait States
80186-bus interface	0	1
ISA-bus interface 16-Bit Mode	2	5
ISA-bus interface 8-Bit Mode	0	3

Table A-2. Memory Access Wait States with 20 MHz CLKIN

DRAM Access	Best-Case Wait States	Worst-Case Wait States
80186-bus interface	0	1
ISA-bus interface 16-Bit Mode	2	3
ISA-bus interface 8-Bit Mode	0	2

Table A-3. Memory Access Wait States with 25 MHz-29.49 MHz CLKIN

DRAM Access	Best-Case Wait States	Worst-Case Wait States
80186-bus interface	0	1
ISA-bus interface 16-Bit Mode	1	3
ISA-bus interface 8-Bit Mode	0	1

ISA-Bus Interface

Certain dual-port memory controller FPLD registers and all of DRAM can be accessed from the ISA-bus interface. The dual-port memory controller FPLD's ISA-bus interface operates in either 8-bit mode or 16-bit mode, determined by two input signals, ED and BW. (Refer to "Initialization Register 1 (INITREG1)" on page 144 for more information.) All of the dual-port memory controller FPLD registers accessible from the ISA-bus interface are 8-bit targets (IO16# is not asserted). DRAM targets are 8-bit or 16-bit, depending on the ISA-bus interface mode.

The dual-port memory controller FPLD can generate interrupts to the ISA-bus interface that are initiated from the 80186-bus interface or from the dual-port memory controller FPLD itself when a watchdog timeout occurs (WDOG# input signal is detected active).

Memory accesses from the ISA-bus interface occur through a programmable memory mapped window. A memory window maps a contiguous 8 KB block of ISA-bus interface address space to a contiguous 8 KB block of adapter DRAM address space. An 8 KB memory map window of shared DRAM is defined by the contents of dual-port memory controller FPLD registers LOCREG0, LOCREG1, and CPUPG. LOCREG0 and LOCREG1 are programmed with an ISA-bus interface memory base address, and by design, fix the address space range to 8 KB. Any ISA-bus interface memory command to an address within this 8 KB memory address range causes the dual-port memory controller FPLD to respond as a memory slave and to access the corresponding adapter DRAM address within the 8 KB page that is defined by the CPUPG register. These registers can be programmed from either the 80186-bus interface or the ISA-bus interface. The following diagram illustrates the memory mapping of an 8 KB DRAM page (N) into an 8 KB ISA-bus interface memory address space segment (M).

Figure A-2. Mapping DRAM into ISA Memory-Address Space

The upper 64 KB DRAM can be accessed from the ISA-bus interface by setting the CPUPG register to values of 78h-7Fh. However, this DRAM address space cannot be accessed from the 80186-bus.

Resets

Two types of reset conditions affect the dual-port memory controller FPLD.

- An active pulse on the ISA-bus interface input signal RSTIN sets dual-port memory controller FPLD registers to the values defined in the Conditions After Reset section (RSTIN) of each of the following register descriptions. The input signal pin RSTIN is normally tied to the adapter ISA-bus edge connector signal RSTDRV.
- Reset Command occurs from an ISA-bus interface I/O write command that sets COMREG bit-0 to 1, followed by an ISA-bus interface I/O write command that sets COMREG bit-0 to 0. A Reset Command sets dual-port memory controller FPLD registers to the values defined in the Conditions After Reset section (Reset Command) of each of the following register descriptions. Output signal RSTOUT# is driven active low while the Reset Command bit is set to 1. The minimum active duration time for Reset Command is adapter card specific.

Dual-Port Memory Controller FPLD Registers

The following table is a summation of the dual-port memory controller FPLD register mnemonics, register names, and offset addresses.

Table A-4. Register Names and Addresses

Mnemonic	Register Name	ISA-Bus Interface I/O Address ¹	80186-Bus Interface I/O Address	Value After RSTIN ²
CAD0	Control Alt Delete 0 (0Ch) 3		-	0000 0000
CAD1	Control Alt Delete 1	(0Dh) ³	-	0000 0000
CAD2	Control Alt Delete 2	(0Eh) ³	-	0000 0000
COMREG	Command	06h ⁴	-	0000 0000
CPUPG	CPU Page	05h ⁴	0014h	Ouuu uuuu
DREG	Data	03h ⁴	-	uuuu uuuu
GAID	Gate Array Identification	(0Fh) ³	0018h	0011 0000
IDAL	Internal DMA Allocation	-	0084h	0000 0000
INITREG0	Initialization Register0	(12h) ³	0004h	uuuu uuuu
INITREG1	Initialization Register1	(10h) ³	0006h	0000 10uu
INITREG2	Initialization Register2	(08h) ³	-	0000 0uuu
LOCREG0	Location Register0	0h ⁴	00h	Ouuu uuuu
LOCREG1	Location Register1	01h ⁴	0002h	0000 uuuu
NMIMASK	NMI Mask	-	0008h	0011 1111
NMISTAT	NMI Status	-	000Ah	0000 0000
OPTION0	Option Register 0	-	0080h	uuuu uuuu
OPTION1	Option Register 1	-	0082h	0000 00uu
PTRREG	Pointer	02h	-	uuuu uuuu
TREG	Task	04h	0012h	1111 1111

Notes:

- 1. Values given in parentheses () are PTRREG values.
- 2. 0 = Logic level 0; 1 = Logic level 1; u = 0 or 1.
- 3. Register is accessed using the PTRREG and DREG.
- 4. When ENPCI is 1 (ISA mode), this is the value added to the base I/O address, defined by INITREG0 bits 07-04, that forms the register's ISA-bus interface I/O address.

When ENPCI is 0 (PCI mode), this is the value of CpuAD(2:0) that forms the register's ISA-bus interface I/O address.

In the following register description sections:

- Base I/O address is determined by the contents of INITREGO bits 07–04.
- A reset value of *U* means unknown (0 or 1).
- A reset value of S means the value set prior to the reset condition.
- When ENPCI is 1 (ISA mode), the Base I/O Address is defined by INITREG0 bits 07-04.

When ENPCI is 0 (PCI mode), only the value of ISA CpuAD(2:0) is compared for I/O command selection.

Control-Alt-Delete Registers (CAD2, CAD1, CAD0)

The ISA bus has read/write access to these registers through DREG and PTRREG after INITREG0 has been initialized by an I/O write command from the 80186 bus. These registers should be loaded in the order of: CAD0, CAD1, then CAD2. While these registers contain a non-zero value, the dual-port memory controller FPLD monitors the ISA-address bus during memory read and write cycles. When the value in CAD(2–0) matches the memory command address on the ISA bus, DRAM accesses from the ISA bus are disabled until after a write to the CPUPG register. When the CAD registers contain a value of 000000h, the bus monitor function is disabled and DRAM accesses from the ISA bus are allowed, unless blocked by some other means.

I/O Addresses

ISA-bus addresses

CAD2 use DREG with PTRREG set to 0Eh

CAD1 use DREG with PTRREG set to 0Dh

CAD0 use DREG with PTRREG set to 0Ch

80186-bus address = None

Register Format

7	6	5	4	3	2	1	0	
A23	A22	A21	A20	A19	A18	A17	A16	
A15	A14	A13	A12	A11	A10	A09	A08	
A07	A06	A05	A04	A03	A02	A01	A00	

CAD2 CAD1 CAD0

Bit Descriptions

CAD2 Bits 7-0

Address compare bits for A23–A16

CAD1 Bits 7-0

Address compare bits for A15–A08

CAD0 Bits 7-0

Address compare bits for A07–A00

Conditions After Reset

CAD2-0: 7--- ---0 7--- ---0 7--- ---0
RSTIN: 0000 0000 0000 0000 0000 0000
Reset Command: SSSS SSSS SSSS SSSS SSSS SSSS

Command Register (COMREG)

The ISA bus has read/write access to this register after INITREG0 has been initialized by an I/O write command from the 80186 bus. COMREG provides dual-port memory controller FPLD control and status to the ISA bus.

I/O Addresses

ISA-bus address = Base I/O Address + 0006h

80186-bus address = None (See NMISTAT Register)

Register Format

7	6	5	4	3	2	1	0	
0	0	IP	ΙE	0	DG	NC	RC	COMREG

Bit Descriptions

Bit 7: Reserved

This read-only bit is always 0.

Bit 6: Reserved

This read-only bit is always 0.

Bit 5: Interrupt Pending (IP)

This bit is read-only. Any write command to TREG or a watchdog timeout error (WDOG# input signal active) sets internal states that make this bit read as a 1. When one of these internal states is set and bit 4 of this register is set to 1, the output signal PCIINT# is latched and driven low and the ISA-bus output signal INTR# is driven low for approximately 480 ns to 800 ns (depending on CLKIN) and then high. A watchdog timeout error is further masked by the NMIMASK register bit 1. This bit reads as a 0 when the internal states are cleared by reading TREG until it reads FFh.

Bit 4: Interrupt Enable (IE)

This bit can be set to 0 or 1 with an ISA-bus I/O write command. Setting this bit to 0 prevents the output signals INTR# and PCIINT# from being driven active. Setting this bit to 1 enables the output signals INTR# and PCIINT# to be driven active when bit 5 of this register is a 1.

Bit 3: Reserved

This read-only bit is always 0.

Bit 2: Degate RAM (DG)

This bit can be set to 0 or 1 with an ISA-bus I/O write command. Setting this bit to 1 prevents the ISA-bus interface from accessing DRAM. Setting the NMIMASK bit 6 to 1 also prevents the ISA-bus interface from accessing DRAM. After an ISA-bus write command of 0 to this bit, it does not read back as a 0 value unless NMIMASK bit 6 is 0. When this bit is read as a 0, ISA-bus DRAM accesses are allowed if the CPUPG register has been initialized and there has not been a CAD address compare.

The following figure represents the degate-RAM logic. ISA-Bus D2 Out ISA-Bus COMREG Read DCD AND ISA-Bus COMREG Write DCD COMREG ISA-Bus D2 In Latch Bit 2 OR NMIMASK ISA-Bus D6 In Latch Bit 6 80186-Bus NMIMASK Write DCD 80186-Bus D6 Out AND 80186-Bus NMIMASK Read DCD Degate ISA/DRAM Access

Bit 01: NMI Command (NC)

CPUPG Uninitialized

CAD/ISA Address Compare

An ISA-bus I/O write command of 1 to this bit location causes the 80186-bus NMI signal to be driven active (if not masked). An ISA-bus I/O write command of 0 to this bit location does not clear this bit. This bit is reset to 0 by an 80186-bus read command of the NMISTAT register. The Reset Command resets this bit to 0. Do not attempt to set this bit to 1 with the same I/O write command that clears Reset Command. Rather, set Reset Command to 0, then issue a separate I/O write command to set this bit to 1.

OR

Bit 00: Reset Command (RC)

This bit can be set to 1 or 0 with an ISA-bus I/O write command. While this bit is 1, the Reset Command is active, the dual-port memory controller FPLD is partially reset, and RSTOUT# is driven active low. Setting this bit to 0 clears the Reset Command. The minimum duration of Reset Command is adapter specific.

Conditions After Reset

COMREG: 7--- ---0 RSTIN: 0000 0000 Reset Command: 0000 0S00

CPU Page Register (CPUPG)

The ISA bus has read/write access to this register after INITREGO has been initialized by an I/O write command from the 80186 bus. The 80186 bus also has read/write access to this register. After RSTIN or after a CAD address compare, the register value is considered not-valid until it is reinitialized with an I/O write command from either bus. The CPUPG register determines which 8 KB segment of adapter DRAM is mapped to the 8 KB memory segment on the ISA bus, which is defined by LOCREG0 and LOCREG1 or input signal ENPCI.

I/O Addresses

ISA-bus address = Base I/O Address + 0005h 80186-bus address = 0014h

Register Format

7	6	5	4	3	2	1	0	
0	A19	A18	A17	A16	A15	A14	A13	CPUPG

Bit Descriptions

Bit 7: Reserved

This read-only bit is always 0.

Bits 6-0: 8 KB DRAM Segment Selector

These bits correspond to the DRAM-bus interface address bits A19 through A13, respectively. A value of 77h maps the last 8 KB segment of the first 960 KB of DRAM. Values above 77h map the last eight 8 KB segments into an area that is not accessible from the 80186 bus.

Conditions After Reset

CPUPG: 7--- ---0

RSTIN: OUUU UUUU (invalid until initialized)

Reset Command: OSSS SSSS

Data Register (DREG)

The ISA bus has read/write access to this register after INITREG0 has been initialized by an I/O write command from the 80186-bus interface. ISA-bus I/O read/write commands to the DREG address are indirect commands to the register addressed by the PTRREG.

I/O Addresses

ISA-bus address = Base I/O Address + 0003h 80186-bus address = None

Register Format

7	6	5	4	3	2	1	0	
D7	D6	D5	D4	D3	D2	D1	D0	DREG

Bit Descriptions

Bits 7-0: Data Bits

Indirect data bits 7–0 can be read from or written to the register selected by PTRREG.

Conditions After Reset

DREG: 7--- ---0 RSTIN: עעעע עעעע Reset Command: SSSS SSSS

Gate Array Identification (GAID)

The ISA bus interface has read-only access to this register through DREG after INITREGO has been initialized by an I/O write command from the 80186 bus. The 80186 bus also has read-only access of this register. The read-only value of 30h identifies the dual-port memory controller FPLD to adapter firmware and device driver.

I/O Addresses

ISA-bus address = Use DREG with PTRREG set to 0Fh 80186-bus address = 0018h

Register Format

	7	6	5	4	3	2	1	0	
Ī	0	0	1	1	0	0	0	0	GAID

Bit Descriptions

Bits 7-0

The gate array identifier for the dual-port memory controller is 30h.

Conditions After Reset

7--- ---0 GAID: 0011 0000 RSTIN: Reset Command: 0011 0000

Internal DMA Allocation Register (IDAL)

The 80186-bus interface has read/write access to this register to select two of four external DMA request input signals to be driven out on two 80186-bus DMA request signals.

I/O Addresses

ISA-bus address = None

80186-bus address = 0084h

Register Format

7	6	5	4	3	2	1	0	
S3	S2	S1	S0	0	0	0	0	IDAL

Bit Descriptions

Bits 7-4: Selectors S3-S0

The following table shows which input signals (RxAREQ#, TxAREQ#, RxBREQ#, or TxBREQ#) are gated to which output signals (DRQ1 and DRQ0). When a DRQ output signal is asserted from a TxAREQ# or TxBREQ# input signal, the dual-port memory controller FPLD degates the DRQ signal during the I/O write command portion of the DMA cycle to the transmit port of the communication controller. Refer to "DRQn Timing" on page 175 for more information

	Sele	ctors		Out	Outputs			
S3	S2	S1	S0	DRQ1	DRQ0			
0	0	0	0	TxAREQ#	TxAREQ#	Not valid		
0	0	0	1	TxAREQ#	RxAREQ#			
0	0	1 0		TxAREQ#	TxBREQ#			
0	0	1	1	TxAREQ#	RxBREQ#			
0	1	0	0	RxAREQ#	TxAREQ#			
0	1	0	1	RxAREQ#	RxAREQ#	Not valid		
0	1	1	0	RxAREQ#	TxBREQ#			
0	1	1	1	RxAREQ#	RxBREQ#			
1	0	0	0	TxBREQ#	TxAREQ#			
1	0	0	1	TxBREQ#	RxAREQ#			
1	0	1	0	TxBREQ#	TxBREQ#	Not valid		
1	0	1	1	TxBREQ#	RxBREQ#			
1	1	0	0	RxBREQ#	TxAREQ#			
1	1	0	1	RxBREQ#	RxAREQ#			
1	1	1	0	RxBREQ#	TxBREQ#			
1	1 1 1 1		1	RxBREQ#	RxBREQ#	Not valid		

Note: DRQ0 and DRQ1 output signals get the inverted input signals selected by S3–S0. For example, when S3–S0 = 0001b, outputs DRQ1 and DRQ0 = 11b when inputs TxAREQ# and RxAREQ# = 00b.

Bits 3-0: Reserved

These read-only bits are always 0.

Conditions After Reset

IDAL: 7--- ---0 RSTIN: 0000 0000 Reset Command: SSSS 0000

Initialization Register 0 (INITREG0)

The ISA-bus interface has read-only access of this register through DREG after INITREG0 has been initialized by an I/O write command from the 80186 bus. After RSTIN, all ISA-bus interface I/O read/write commands to the dual-port memory controller registers are disabled until this register receives an 80186-bus I/O write command with any data value.

I/O Addresses

ISA-bus address = Use DREG with PTRREG set to 12h

80186-bus address = 0004h

Register Format

	0	1	2	3	4	5	6	7
INTREG0	L1	L2	L4	BN	C1	C2	C4	C8

Bit Descriptions

Bits 7-4: Card Setting Inputs (C8-C1)

These read-only bits reflect the logic level of input signals C8, C4, C2 and C1.

When ENPCI is 0 (PCI mode), the input signals C8, C4, C2, and C1 are ignored and any ISA-bus interface I/O command selects the dual-port memory controller as an I/O slave and only CpuAD(2:0) is used to select registers.

When ENPCI is 1 (ISA mode) the input signals C8, C4, C2, and C1 specify the base I/O address for ISA-bus interface accessible registers as follows.

Table A-5. Input Signals ENPCI, C8, C4, C2, C1, and Base I/O Addresses

ENPCI	C8	C4	C2	C1	Base I/O Address
1	0	0	0	0	02A0h
1	0	0	0	1	06A0h
1	0	0	1	0	0AA0h
1	0	0	1	1	0EA0h
1	0	1	0	0	12A0h
1	0	1	0	1	16A0h
1	0	1	1	0	1AA0h
1	0	1	1	1	1EA0h
1	1	0	0	0	22A0h
1	1	0	0	1	26A0h
1	1	0	1	0	2AA0h
1	1	0	1	1	2EA0h
1	1	1	0	0	32A0h
1	1	1	0	1	36A0h
1	1	1	1	0	3AA0h
1	1	1	1	1	3EA0h

Bit 3: Bank Number (BN)

This bit reflects the state of input signal BN. The dual-port memory controller's interface supports 256 KB-by-16 bits (512 KB) or 512 KB-by-16 bits (1 MB) of a 1 MB-by-16 bit DRAM module, depending on the value of input signal BN as follows.

When BN is 0, it indicates one bank of 512 KB DRAM.

When BN is 1, it indicates two banks of 512 KB DRAM.

Bits 2-0: Interrupt Level Inputs (L4, L2, L1)

These read-only bits reflect the logic level of input signals L4, L2, and L1. These input signals indicate which ISA-bus interrupt level the adapter card is operating at, as follows.

Table A-6. Input Signals L4, L2, and L1

L4	L2	L1	Interrupt Level
0	0	0	3
0	0	1	4
0	1	0	7
0	1	1	2 or 9
1	0	0	10
1	0	1	11
1	1	0	12
1	1	1	15

Conditions After Reset

INITREG0: 7--- ---0 RSTIN: UUUU 1UUU Reset Command - SSSS 1SSS

Initialization Register 1 (INITREG1)

The ISA bus has read-only access of this register through DREG after INITREG0 has been initialized by an I/O write command from the 80186 bus. The 80186 bus has read/write access to this register.

I/O Addresses

ISA-bus address = Use DREG with PTRREG set to 10h

80186-bus address = 0006h

Register Format

7	6	5	4	3	2	1	0	
F1	RR	F0	DRI	M2	M1	BW	ED	INITREG1

Bit Descriptions

Bits 7 and 5: Frequency1/0 (F1/F0)

F1 and F0 (bit 5 of this register) are set to indicate the CLKOUT frequency of the 80186 bus. The dual-port memory controller FPLD uses these bits to adjust the refresh counter and other timed signals for optimum accuracy. The 80186 bus has read/write access to these bits. The ISA bus has read-only access of this bit. The following table shows the settings for F1 and F0.

F1	F0	CLKOUT	80C186 Rating
0	0	7.37 MHz to 8.00 MHz	10 MHz
0	1	8.01 MHz to 10.00 MHz	10 MHz
1	0	10.01 MHz to 12.50 MHz	12.5 MHz
1	1	12.51 MHz to 14.74 MHz	20 MHz

Bit 6: ROS Ready (RR)

This 80186-bus read/write bit is adapter-card specific. The ISA bus has read-only access of this bit.

Bit 4: Disable REFRESH In (DRI)

This 80186-bus read/write bit is set to 1 to disable the ISA-bus REFRESH# input signal from causing a DRAM refresh cycle. This bit set to 0 enables the ISA-bus input signal REFRESH# to cause DRAM refresh cycles.

Bits 3-2: Memory (M2, M1)

Always set to 10b (1 MB).

Bit 1: Bus Width Input (BW)

This read-only bit reflects the logic level of the BW signal. This bit is valid only when ED is 0 and ENPCI is 1 (ISA mode). When BW is 0, the dual-port memory controller responds as an 8-bit memory slave on the ISA bus. When BW is 1, the dual-port memory controller responds as a 16-bit memory slave on the ISA bus.

Bit 0: Edge Connector Input (ED)

This read-only bit reflects the logic level of input signal ED. This input signal indicates the type of edge connector in which the adapter is installed. When ED is 0, it indicates that the adapter is installed in a two-edge (62-pin plus 36-pin) bus connector. When ED is 1, it indicates that the adapter is installed in a single-edge (62-pin only) bus connector. ED is valid only when ENPCI is 1 (ISA mode).

The consequences of ED = 0 (two-edge connector) are:

- Certain address areas within the system support only 8-bit devices, and others support only 16-bit devices. Address areas are determined in 128 KB regions on 128 KB boundaries.
- If ENPCI is 0 (PCI mode), the region is defined as 16-bits.
- If ENPCI is 1 (ISA mode), ED is 0, and BW is 1, the region is defined as 16-bits.
- If ENPCI is 1 (ISA mode), ED is 0 and BW is 0, the region is defined as 8-bits.

The consequences of ENPCI = 1 and ED = 1 (one-edge connector) are:

- BW is ignored.
- LOCREG1 is ignored (1 MB addressing).
- Interrupt levels 10, 11, 12, and 15 must not be used by the adapter.

Table A-7. ENPCI, ED, LOCREG1, BW, and Data-Bus Width Addressing

ENPCI	ED	LOCREG1	BW	ISA-Data Bus Width/ Addressing
0	0	=00h	0	8 bits / 1 MB
1	0	=00h	1	16 bits / 1 MB
1	0	>00h	0	8 bits / 16 MB
1	0	>00h	1	16 bits / 16 MB
1	1	not used	not used	8 bits / 1 MB

Conditions After Reset

INITREG1: 7--- ---0 RSTIN: 0000 11UU

Reset Command: SOSS 11SS

Initialization Register 2 (INITREG2)

The ISA bus has read-only access of this register through DREG after INITREG0 has been initialized by an I/O write command from the 80186 bus.

I/O Addresses

ISA-bus address = Use DREG with PTRREG set to 08h

80186-bus address = none

Register Format

7	6	5	4	3	2	1	0	
0	0	0	0	0	L4	L2	L1	INITREG2

Bit Descriptions

Bits 7-3: Reserved

These read-only bits are always 0.

Bits 2-0: Interrupt Level (L4, L2, L1)

These read-only bits reflect the logic level of input signals L4, L2, and L1. These input signals indicate the interrupt level on the ISA bus that the adapter is using. Refer to "Initialization Register 0 (INITREG0)" on page 142 for more information.

Conditions After Reset

INITREG2: 7--- 0

RSTIN: 0000 0UUU

Reset Command: 0000 0SSS

Location Registers (LOCREG1, LOCREG0)

The ISA bus has read/write access to these registers after INITREGO has been initialized by an I/O write command from the 80186 bus. The 80186 bus has read/write access to these registers. When ENPCI is 1 (ISA mode), these registers hold the 8 KB memory base address for ISA-bus memory read/write commands to DRAM. When ENPCI is 0 (PCI mode), the contents of these registers do not affect ISA-bus interface address selection or any other hardware states.

I/O Addresses

ISA-bus address

LOCREGO = Base I/O Address + 0000h

LOCREG0 = CpuAD(2:0) = 000b

LOCREG1 = Base I/O Address + 0001h

LOCREG1 = CpuAD(2:0) = 001b

80186-bus address

LOCREG0 = 0000h

LOCREG1 = 0002h

Register Format

7	6	5	4	3	2	1	0	
0	0	0	0	A23	A22	A21	A20	LOCREG1
0	A19	A18	A17	A16	A15	A14	A13	LOCREG0

Bit Descriptions - LOCREG1

Bits 7-4: Reserved

These read-only bits are always 0.

Bits 3-0: ISA-Bus Interface Memory Address Bits A23-A20

When ENPCI is 1 (ISA mode), these bits must match the corresponding ISA-bus memory address bits A23 through A20 for a DRAM access to occur. These bits must be programmed to 0000b when ED is 1 and ENPCI is 1. When ENPCI is 0 (PCI mode), these bits are ignored by the dual-port memory controller.

Bit Descriptions - LOCREG0

Bit 7: Reserved

This read-only bit is always 0.

Bits 6-0: ISA-Bus Interface Memory Address Bits A19-A13

When ENPCI is 1 (ISA mode), these bits must match the corresponding ISA-bus memory address bits A19 through A13 for a DRAM access to occur. When ENPCI is 0 (PCI mode), these bits are ignored by the dual-port memory controller.

Conditions After Reset

LOCREG1, 0: 7--- ---0 7--- ---0 RSTIN: 0000 UUUU 0UUU UUUU

Reset Command: 0000 SSSS OSSS SSSS

NMI Mask Register (NMIMASK)

The 80186 bus has read/write access to this register. This register is used to prevent DRAM accesses from the ISA bus, and to prevent or allow NMISTAT register conditions to drive the 80186-bus output signal NMI active.

I/O Addresses

ISA-bus address = none (See "Command Register (COMREG)" on page 135.) 80186-bus address = 0008h

Register Format

	0	1	2	3	4	5	6	7
NMIMASK	CADM	WDTM	1	ICCM	NMICM	1	DG	0

Bit Descriptions

Bit 7: Reserved

This read-only bit is always 0.

Bit 6: Degate RAM (DG)

This bit can be set to 1 or 0 with an 80186-bus I/O write command. Setting this bit to 1 prevents the ISA bus from accessing DRAM. Setting COMREG bit 2 to 1 also prevents the ISA bus from accessing DRAM. However, an 80186-bus I/O write command of 0 to this bit does not read back as a 0 unless COMREG bit 2 is 0. When this bit is read as a 0, ISA-bus DRAM accesses are allowed as long as the CPUPG register has been initialized and there has not been a CAD address compare. The following figure represents the Degate RAM Logic.

Bit 5: Reserved

This read-only bit is always 1.

Bit 4: NMI Command Mask (NMICM)

The 80186-bus interface has read/write access to this bit. This bit set to 1 masks (prevents) output signal NMI from being driven active when COMREG bit 1 is set to 1. Setting this bit to 0 and COMREG bit 1 to 1 causes the 80186-bus NMI signal to be driven active.

Bit 3: I/O Channel Check Mask (ICCM)

The 80186 bus has read/write access to this bit. Setting this bit to 1 masks (prevents) the NMI signal from being driven active when the ISA-bus CHCHK# signal has been detected active. If this bit is set to 0 and CHCHK# is driven active, the 80186-bus output signal NMI is driven active.

Bit 2: Reserved

This read-only bit is always 1.

Bit 1: WatchDog Timeout Mask (WDTM)

The 80186-bus interface has read/write access to this bit. Setting this bit to 1 masks (prevents) the output signals INTR# and NMI from being driven active by a watchdog timeout error (WDOG# input signal detected active). Setting this bit to 0 allows 80186-bus output signal NMI to be driven active, a TREG data value of FEh to be saved, and allows the ISA-bus output signal INTR# to be driven active (unless disabled by COMREG bit 4).

Bit 0: CAD Mask (CADM)

The 80186 bus has read/write access to this bit. Setting this bit to 1 masks (prevents) the 80186-bus NMI signal from being driven active when a CAD address compare occurs. Setting this bit to 0 allows the NMI output signal to be driven active when a CAD address compare occurs.

Conditions After Reset

7--- ---0 NMIMASK: RSTIN: 0011 1111 Reset Command: 0011 1111

NMI Status Register (NMISTAT)

The 80186 bus has read-only access to this register. NMISTAT provides status information on the 80186-bus NMI and the ISA-bus interrupt to the 80186 bus.

I/O Addresses

ISA-bus address = none 80186-bus address = 000Ah

Register Format

7	6	5	4	3	2	1	0	
ΙP	ΙE	0	NMICS	ICCS	0	WDTS	CADS	NMISTAT

Bit Descriptions

Bit 7: Interrupt Pending (IP)

This read-only bit reflects the state of COMREG bit 05.

Bit 6: Interrupt Enable (IE)

This read-only bit reflects the state of COMREG bit 04.

Bit 5: Reserved

This read-only bit is always 0.

Bit 4: NMI Command Status (NMICS)

This read-only bit reflects the state of COMREG bit 01.

Bit 3: I/O Channel Check Status (ICCS)

This read-only bit is set to 1 when the dual-port memory controller FPLD detects an active CHCHK# signal on the ISA bus. This bit is reset to 0 by an 80186-bus read command of this register.

Bit 2: Reserved

This read-only bit is always 0.

Bit 1: WatchDog Timeout Status (WDTS)

This read-only bit is set to 1 when the dual-port memory controller FPLD detects an active WDOG# input signal. This bit is reset to 0 by an 80186-bus read command of this register.

Bit 0: CTRL-ALT-DEL Status (CADS)

This read-only bit is set to 1 when the dual-port memory controller FPLD detects a CAD address match. Refer to "Control-Alt-Delete Registers (CAD2, CAD1, CAD0)" on page 134 for more information. This bit is reset to 0 by an 80186-bus read command of this register.

Conditions After Reset

7--- ---0 NMISTAT: RSTIN: 0000 0000 Reset Command: 0000 0000

Option Register 0 (OPTION0)

The 80186 bus has read-only access of this register to read the logic level of certain dualport memory controller input signals.

I/O Addresses

ISA-bus address = none

80186-bus address = 0080h

Register Format

7	6	5	4	3	2	1	0	
C8	C4	C2	C1	BN	L4	L2	L1	OPTION0

Bit Descriptions

Bits 7-4: Card Number Settings (C8-C1)

These read-only bits reflect the logic level of input signals C8, C4, C2 and C1. These input signals specify the base I/O address for ISA-bus accessible registers as follows.

Table A-8. Input Signals C8, C4, C2, C1, and Base I/O Addresses

C8	C4	C2	C1	Base I/O Address
0	0	0	0	02A0h
0	0	0	1	06A0h
0	0	1	0	0AA0h
0	0	1	1	0EA0h
0	1	0	0	12A0h
0	1	0	1	16A0h
0	1	1	0	1AA0h
0	1	1	1	1EA0h
1	0	0	0	22A0h
1	0	0	1	26A0h
1	0	1	0	2AA0h
1	0	1	1	2EA0h
1	1	0	0	32A0h
1	1	0	1	36A0h
1	1	1	0	3AA0h
1	1	1	1	3EA0h

Bit 3: Bank Number (BN)

This bit reflects the state of input signal BN. The dual-port memory controller's interface supports 256 KB-by-16 bits (512 KB) or 512 KB-by-16 bits (1 MB) of a 1 MB-by-16 bit DRAM module, depending on the value of input signal BN as follows.

When BN is 0, it indicates one bank of 512 KB DRAM.

When BN is 1, it indicates two banks of 512 KB DRAM.

Bits 2-0: Interrupt Level (L4, L2, L1)

These read-only bits reflect the logic level of input signals L4, L2, and L1. These input signals indicate which ISA-bus interrupt level the adapter is operating at, as follows.

Table A-9. Input Signals L4, L2, and L1

L4	L2	L1	Interrupt Level
0	0	0	3
0	0	1	4
0	1	0	7
0	1	1	2 or 9
1	0	0	10
1	0	1	11
1	1	0	12
1	1	1	15

Conditions After Reset

OPTION0: 7--- ---0 RSTIN: UUUU 1UUU Reset Command: SSSS 1SSS

Option Register 1 (OPTION1)

The 80186 bus has read-only access of this register to read the logic level of certain dual-port memory controller FPLD input signals.

I/O Addresses

ISA-bus address = none 80186-bus address = 0082h

Register Format

7	6	5	4	3	2	1	0	
0	0	0	0	0	0	BW	ED	OPTION1

Bit Descriptions

Bits 7-2: Reserved

These read-only bits are always 0.

Bit 1: Bus Width (BW)

This read-only bit reflects the logic level of the BW signal. See "Initialization Register 1 (INITREG1)" on page 144 for more information.

Bit 0: Edge Connector (ED)

This read-only bit reflects the logic level of the ED signal. See "Initialization Register 1 (INITREG1)" on page 144 for more information.

Conditions After Reset

OPTION1: 7--- 0000 00UU Reset Command: 0000 00SS

Pointer Register (PTRREG)

The ISA bus has read/write access to this register after INITREG0 has been initialized by an I/O write command from the 80186 bus. It enables other dual-port memory controller FPLD registers to be accessed by ISA-bus I/O read/write commands through DREG.

I/O Addresses

ISA-bus address (ISA mode) = Base I/O Address + 0002hISA-bus address (PCI mode) = CpuAD(2:0) = 010b80186-bus address = none

Register Format

7	6	5	4	3	2	1	0	
PA7	PA6	PA5	PA4	PA3	PA2	PA1	PA0	PTRREG

Bit Descriptions

Bits 7-0: Pointer Address 7-0 (PA7-PA0)

These bits hold the pointer address of the register to be indirectly read from or written to by an ISA-bus I/O read or write command to the DREG I/O address.

Table A-10. Pointer Register Values

PA07-PA00	Function
(00h-07h)	Reserved
(08h)	Select INITREG2
(09h)	Issue INTCOM Command
(0Ch)	Select CAD0
(0Dh)	Select CAD1
(0Eh)	Select CAD2
(0Fh)	Select GAID
(10h)	Select INITREG1
(12h)	Select INITREG0
(0Ah, 0Bh, 11h, 13h-FFh)	Reserved

Conditions After Reset

PTRREG: 7--- ---0 RSTIN: טטטט טטטט Reset Command: SSSS SSSS

Task Register (TREG)

The ISA bus has read/write access to this register after INITREGO has been initialized by an I/O write command from the 80186 bus. The 80186 bus has read/write access to this register. An ISA-bus interface I/O write command to TREG, an 80186-bus interface I/O write command to TREG, or a watchdog timeout error causes the output signals ISAInt and N_PCIINT to be driven active (if enabled by COMREG bit 4). A TREG ISA-bus interface I/O read command or a TREG 80186-bus interface I/O read command clears the interrupt request and sets a value of FFh in this register.

I/O Addresses

```
ISA-bus address (ISA \text{ mode}) = Base I/O Address + 0004h
ISA-bus address (PCI mode) = CpuAD(2:0) = 100b
80186-bus address = 0012h
```

Register Format

7	6	5	4	3	2	1	0	
D7	D6	D5	D4	D3	D2	D1	D0	TREG

Bit Descriptions

Bits 7-0: Task Register D7-D0

Write any task ID value except:

- FFh the reset value
- FEh the watchdog timer error value

I/O write command task data is saved in TREG even when a watchdog timeout error occurs before TREG has been read. After a value of FEh is read, the TREG can be read for the I/O write command task data or the value FFh if none was written.

Curren	Current State					
WDOG# Error	TREG Write Data	TREG Read Data				
No	No	FFh				
No	Yes	D7-D0				
Yes	No	FEh				
Yes	Yes	FEh, then D7-D0				

Conditions After Reset

7--- ---0 TREG: RSTIN: 1111 1111 Reset Command: 1111 1111

Dual-Port Memory Controller FPLD Commands

The following table is a summation of the dual-port memory controller FPLD command mnemonics, names, and addresses.

Table A-11. Dual-Port Memory Controller FPLD Commands

Mnemonic	Command Description	I/O Ad	dresses	
Willemonic	Command Description	ISA Bus	80186 Bus	
GEOI	General End Of Interrupt (INT0)	-	16h	
INTCOM	Interrupt Command	(09h)	-	
ISEC2(or 9)	Interrupt Sharing Enable Command 2 (or 9)	02F2h	-	
ISEC3	Interrupt Sharing Enable Command 3	02F3h	-	
ISEC4	Interrupt Sharing Enable Command 4	02F4h	-	
ISEC7	Interrupt Sharing Enable Command 7	02F7h	-	
ISEC10	Interrupt Sharing Enable Command 10	06F2h	-	
ISEC11	Interrupt Sharing Enable Command 11	06F3h	-	
ISEC12	Interrupt Sharing Enable Command 12	06F4h	-	
ISEC15	Interrupt Sharing Enable Command 15	06F7h	-	
Note: Address in pare	Note: Address in parenthesis are PTRREG values.			

The following sections describe the commands associated with the dual-port memory controller FPLD.

General End Of Interrupt Command (GEOI)

An 80186-bus I/O write command to address 0016h clears the INT0 signal. 80186-bus I/O read commands to address 0016h should not be issued.

I/O Addresses

ISA-bus address = none 80186-bus address = 0016h

Register Format

GEOI is not a register in dual-port memory controller FPLD; it is an I/O address on the 80186 bus used to clear INTO.

Interrupt Command (INTCOM)

The ISA bus has access to this register after INITREGO has been initialized by an I/O write command from the 80186 bus. INTCOM is an ISA-bus I/O write command of data 09h to the PTRREG, which causes the dual-port memory controller FPLD to drive the INTO signal active. INTO remains active until a GEOI command clears it.

I/O Addresses

```
ISA-bus address (ISA mode) = Base I/O Address + 0002h (PTRREG)
ISA-bus address (PCI mode) = CpuAD(2:0) = 010b (PTRREG)
80186-bus address = none
```

Register Format

INTCOM is not a register in the dual-port memory controller FPLD; it is an ISA-bus I/O write command to the PTRREG that is used to set INTO.

Interrupt Sharing Enable Command (ISEC)

The dual-port memory controller FPLD supports interrupt sharing on the ISA bus. The INTR# signal is driven low by the dual-port memory controller FPLD for approximately 480 ns to 800 ns (depending on the CLKIN frequency) and then driven high. Adapter logic drives one of the ISA-bus IRQn lines, depending on the value of the dual-port memory controller FPLD L4, L2, and L1 signals. When the dual-port memory controller FPLD detects its INTR# receiver at a low value, it sets an internal state that prevents it from driving INTR# output active until it receives the proper ISEC command to clear the state. If the internal ISA-bus interrupt request is still active after the internal state is cleared by the ISEC command, the dual-port memory controller FPLD drives its INTR# output low and then high.

The ISA bus has ISEC command access after INITREGO has been initialized by an I/O write command from the 80186 bus. ISEC commands are ISA-bus I/O write commands used to clear ISA-bus shared interrupt request circuits (generally after reading the TREG) depending on the adapter interrupt level. No other interrupts can occur from any adapter on that level until the ISEC command for the corresponding interrupt level is issued.

I/O Addresses

ISA-bus address = (See the following table)

80186-bus address = none

ISEC consists of eight separate commands, one for each interrupt level.

Interrupt Level	ISEC Command	ISEC Address
2 (or 9)	ISEC2	02F2h
3	ISEC3	02F3h
4	ISEC4	02F4h
7	ISEC7	02F7h
10	ISEC10	06F2h
11	ISEC11	06F3h
12	ISEC12	06F4h
15	ISEC15	06F7h

Register Format

None

I/O Signals

The following tables provide a description of each dual-port memory controller FPLD I/O signal. See "Packaging and Pin Information" on page 168 for dual-port memory controller FPLD module pin number information.

Table A-12. Dual-Port Memory Controller ISA-Bus Interface Signals

Name	Type	Description
AEN	1	Address Enable. AEN is an ISA-bus interface input signal that the dual-
		port memory controller FPLD uses to degate I/O address decoding
		during ISA-bus interface DMAC cycles.
BALE	1	Buffered Address Latch Enable. BALE is an ISA-bus interface input
DALL	'	signal that the dual-port memory controller FPLD uses to latch LA(23:17)
		when the input signals ED=0 and BW=1 (16-bit mode).
CHCHK#		
CHCHK#	I	Channel Check #. CHCHK# is an ISA-bus input signal that the dual-
		port memory controller FPLD monitors. If it is detected active, the NMI
211221		signal is driven active unless the NMI is masked.
CHRDY	0	Channel Ready. CHRDY is driven low by the dual-port memory
		controller FPLD to insert additional wait states into ISA-bus default cycle.
INTR#	I/O	Interrupt Request #. INTR# (driver/receiver) is driven low for 480 ns to
		800 ns (depending on the CLKIN frequency). It is then driven high by the
		dual-port memory controller FPLD to allow the adapter logic to assert an
		ISA-bus IRQn signal. The dual-port memory controller FPLD receives
		INTR# to determine if it can drive INTR# active or if it must wait for the
		next valid ISEC command. Refer to "Interrupt Sharing Enable Command
		(ISEC)" on page 160 for details.
IORC#	ı	I/O Read Command #. IORC# is an ISA-bus input signal that the dual-
		port memory controller FPLD uses to determine that an I/O read
		command is occurring.
IOWC#	ı	I/O Write Command #. IOWC# is an ISA-bus input signal that the dual-
1011011	'	port memory controller FPLD uses to determine that an I/O write
		command is occurring.
LA(23:17)	ı	Latchable Address (23:17). LA(23:17) are ISA-bus input signals that
LA(23.17)	'	the dual-port memory controller FPLD uses to determine the 16 MB
		memory address for the associated ISA-bus memory command.
MRDC#	ı	Memory Read Command #. MRDC# is an ISA-bus input signal that the
WINDO#	'	, ,
		dual-port memory controller FPLD uses when the input signals ED=0
		and BW=1 (16-bit mode) to determine that a memory read command is
101770"		occurring.
MWTC#	I	Memory Write Command #. MWTC# is an ISA-bus input signal that the
		dual-port memory controller FPLD uses when the input signals ED=0
		and BW=1 (16-bit mode) to determine that a memory write command is
		occurring.
M16#	0	Memory Size 16 #. M16# is driven low by the dual-port memory
		controller FPLD during ISA-bus memory read and write cycles when the
		input signals ED=0 and BW=1 to indicate a 16-bit memory bus.
REFRESH#	I	Refresh #. REFRESH# is an ISA-bus input signal used by the dual-port
		memory controller FPLD to degate its ISA-bus memory address decode
		logic and synchronize its DRAM refresh cycles.
RSTIN	I	Reset In. RSTIN receives the ISA-bus RSTDRV input signal. RSTIN
		sets the dual-port memory controller FPLD to a reset state, is
		propagated to the output signal RSTOUT#, and prevents dual-port
		memory controller FPLD selection to ISA-bus I/O and memory
		commands until initialized by the 80186 bus.
	<u> </u>	jestimanas ana maanzea sy are es ree bus.

Table A-12. Dual-Port Memory Controller ISA-Bus Interface Signals (Continued)

Name	Туре	Description
SA(19:0)	I	System Address (19:0). SA(19:0) are ISA-bus input signals that the
		dual-port memory controller FPLD uses to determine the I/O address
		and the 1 MB memory address for the associated ISA-bus cycle.
SBHE#	I	System Bus High Enable #. SBHE# is an ISA-bus interface input
		signal that the dual-port memory controller FPLD uses to determine
		whether or not the ISA-bus SD(15:8) contain data.
SD(7:0)	I/O	System Data (7:0). SD(7:0) are ISA-bus input/output signals that the
		dual-port memory controller FPLD uses for transferring the low byte of
		data (even address data) during ISA-bus cycles in 16-bit mode (ED=0,
		BW=1), or for transferring any byte of data during ISA-bus cycles in 8-bit
		mode (ED=1).
SD(15:8)	I/O	System Data (15:8). SD(15:8) are ISA-bus input/output signals that the
		dual-port memory controller FPLD uses for transferring the high byte of
		data (odd address data) during ISA-bus cycles in 16-bit mode (ED=0,
		BW=1).
SMRDC#	I	System Memory Read Command #. SMRDC# is an ISA-bus input
		signal that the dual-port memory controller FPLD uses when the input
		signal ED=1 (8-bit mode) to determine that a memory read command is
010170		occurring.
SMWTC#	I	System Memory Write Command #. SMWTC# is an ISA-bus interface
		input signal that the dual-port memory controller FPLD uses when the
		input signal ED=1 (8-bit mode) to determine that a memory write
		command is occurring.

Table A-13. Dual-Port Memory Controller 80186-Bus Interface Signals

Name	Туре	Description
A(19:16)	I	Address (19:16). A(19:16) are 80186-bus input signals that the dual-port memory controller FPLD uses to determine the four most significant memory addresses for the associated 80186-bus memory command.
AD(15:0)	I/O	Address Data (15:0). AD(15:0) are 80186-bus input/output signals that the dual-port memory controller FPLD uses to determine the lower 64 KB I/O or memory address and to transfer 16 bits of data on during the associated 80186-bus command.
ALE	I	Address Latch Enable. ALE is an 80186-bus input signal that the dual-port memory controller FPLD uses to qualify address decoding during 80186-bus cycles.
BHE#	I	Bus High Enable #. BHE# is an 80186-bus input signal that the dual-port memory controller FPLD uses to determine if the 80186-bus signals AD(15:0) contain data.
CLKIN	I	Clock In. CLKIN is an 80186-bus input signal that is tied to the adapter processor's external clock input (X1). CLKIN is two times the frequency of CLKOUT and is used by the dual-port memory controller FPLD to run all its sequential state machines.
CLKOUT	I	Clock Out. CLKOUT is an 80186-bus input signal that is used by the dual-port memory controller FPLD as an 80186-bus cycle reference, and to generate WDCLK (900 Hz when CLKOUT is 7.37 MHz) and 3MHZCLK (3.68 MHz when CLKOUT is 7.37 MHz) output signals.
DRQ0	0	DMA Request 0. DRQ0 is an 80186-bus output signal that is driven high by the dual-port memory controller FPLD in response to receiving one of four peripheral chip requests. Refer to "Internal DMA Allocation Register (IDAL)" on page 140 for details.

Table A-13. Dual-Port Memory Controller 80186-Bus Interface Signals (Continued)

Name	Type	Description
DRQ1	0	DMA Request 1. DRQ1 is an 80186-bus output signal that is driven
		high by the dual-port memory controller FPLD in response to receiving
		one of four peripheral chip requests. Refer to "Internal DMA Allocation
		Register (IDAL)" on page 140 for details.
INTA1#	I	Interrupt Acknowledge 1 #. INTA1# is an 80186-bus input signal used
		by the dual-port memory controller FPLD to generate an extended
		INTA1R# output signal required by the Zilog SCC and CIO chips. Refer
		to "Miscellaneous Signals Timing Diagrams" on page 173 for details.
INT0	0	Interrupt 0. INT0 is an 80186-bus output signal that is driven high by
		the dual-port memory controller FPLD when an INTCOM command is
		received from the ISA bus. INT0 remains active until a GEOI command
		is received from the 80186 bus.
NMI	0	Non-Maskable Interrupt 0. NMI is an 80186-bus output signal that is
		driven high by the dual-port memory controller FPLD for various reasons
		indicated in the NMISTAT register. NMI remains active until the
		NMISTAT register is cleared by an 80186-bus interface I/O read
		command. Refer to "NMI Status Register (NMISTAT)" on page 151 for details.
RD#	I	Read Strobe. RD# is an 80186-bus input signal that the dual-port
IND#	'	memory controller FPLD uses to determine that an 80186-bus read cycle
		is occurring.
RSTOUT#	0	Reset Out #. RSTOUT# is tied to the adapter processor's RES# input
1101001		and can be used to reset peripheral chips. The dual-port memory
		controller FPLD drives this signal low when RSTIN is active or when
		COMREG bit 0 (Reset Command) is set to1.
SRDY	0	Synchronous Ready. SRDY is an 80186-bus output signal that the
		dual-port memory controller FPLD drives low to insert wait states into
		80186-bus cycles.
S(2:0)#	I	Status (2:0) #. S(2:0)# are 80186-bus input signals that the dual-port
		memory controller FPLD uses to determine the type of bus transaction.
WT#	I	Write Strobe. WT# is an 80186-bus input signal that the dual-port
		memory controller FPLD uses to determine that an 80186-bus write
		cycle is occurring.

Table A-14. Dual-Port Memory Controller DRAM-Bus Interface Signals

Name	Туре	Description
CASL#	0	Column Address Strobe Lower #. CASL# is a DRAM-bus output
		signal that the dual-port memory controller FPLD drives low for one
		CLKIN period to access the lower DRAM data byte RD(7:0).
CASU#	0	Column Address Strobe Upper #. CASU# is a DRAM-bus output
		signal that the dual-port memory controller FPLD drives low for one
		CLKIN period to access the upper DRAM data byte, RD(15:8).
RAS#	0	Row Address Strobe #. RAS# is a DRAM-bus output signal that the
		dual-port memory controller FPLD drives low for two CLKIN periods.
		RAS# is delayed slightly within the dual-port memory controller FPLD to
		guarantee an address-to-RAS#-setup time of 0 ns at the driver outputs,
		assuming identical card capacitance loading.
RA(10:0)	0	Ram Address (10:0). RA(10:0) are DRAM-bus output signals that the
		dual-port memory controller FPLD drives for 10x10 or 12x08 multiplexed
		row and column addressing.
RD(15:0)	I/O	Ram Data (15:0). RD(15:0) are DRAM data-bus input/output signals.
WE#	0	Write Enable #. WE# is a DRAM-bus signal that the dual-port memory
		controller FPLD drives low to indicate a DRAM write cycle.

Table A-15. Dual-Port Memory Controller Miscellaneous Signals

		Description
Name	Туре	Description
BN	I	Bank Number. Bank Number is an input signal to the dual-port
		memory controller that indicates the adapter's memory size. Refer to
		"Initialization Register 0 (INITREG0)" on page 142 for details.
AS#	0	Address Strobe #. AS# is an output signal that is driven low by the
		dual-port memory controller FPLD whenever ALE is active except
		during the second INTA1# cycle of the back-to-back interrupt
		acknowledge cycle for the Zilog SCC and CIO chips. Refer to
		"Miscellaneous Signals Timing Diagrams" on page 173 for details.
AR(15:1)	0	Address Redriven (15:1). 80186-bus input signals A(15:1) are
		transparently latched with ALE and driven on AR(15:1) output signals.
		Refer to "AR(15:1) Timing" on page 173 for details.
BW	I	Bus Width 0. BW is an input signal that is used to indicate the adapter
		card's ISA data-bus width. Refer to "Initialization Register 1
		(INITREG1)" on page 144 for details.
C1	I	Card Number 1. C1 is an input signal that is used to indicate the
		adapter ISA base I/O address. Refer to "Initialization Register 0
		(INITREG0)" on page 142 for details.
C2	I	Card Number 2. C2 is an input signal that is used to indicate the
		adapter ISA base I/O address. Refer to "Initialization Register 0
		(INITREG0)" on page 142 for details.
C4	I	Card Number 4. C4 is an input signal that is used to indicate the
		adapter ISA base I/O address. Refer to "Initialization Register 0
		(INITREG0)" on page 142 for details.
C8	I	Card Number 8. C8 is an input signal that is used to indicate the
		adapter ISA base I/O address. Refer to "Initialization Register 0
		(INITREG0)" on page 142 for details.
CS1	0	Chip Select 1. CS1 is an output signal that is driven high by the dual-
		port memory controller FPLD for 80186-bus I/O command addresses
		0100h to 017Fh (SCC0). Refer to "AS#, CSn, RDIDnn#, R/W#, and
		SRDY Timing" on page 174 for details.
CS2	0	Chip Select 2. CS2 is an output signal that is driven high by the dual-
		port memory controller FPLD for 80186-bus I/O command addresses
		0180h to 01FFh (CIO0). Refer to "AS#, CSn, RDIDnn#, R/W#, and
		SRDY Timing" on page 174 for details.
CS4	0	Chip Select 4. CS4 is an output signal that is driven high by the dual-
		port memory controller FPLD for 80186-bus I/O command addresses
		0400h to 04FFh (SCC1). Refer to "AS#, CSn, RDIDnn#, R/W#, and
		SRDY Timing" on page 174 for details.
CS5	0	Chip Select 5. CS5 is an output signal that is driven high by the dual-
		port memory controller FPLD for 80186-bus I/O command addresses
		0500h to 05FFh (CIO1). Refer to "AS#, CSn, RDIDnn#, R/W#, and
		SRDY Timing" on page 174 for details.
CS6	0	Chip Select 6. CS6 is an output signal that is driven high by the dual-
550		port memory controller FPLD for 80186-bus I/O command addresses
		0600h to 06FFh (SCC2). Refer to "AS#, CSn, RDIDnn#, R/W#, and
		SRDY Timing" on page 174 for details.
CS7	0	Chip Select 7. CS7 is an output signal that is driven high by the dual-
031		port memory controller FPLD for 80186-bus I/O command addresses
		0700h to 07FFh (SCC3). Refer to "AS#, CSn, RDIDnn#, R/W#, and
		SRDY Timing" on page 174 for details.

Table A-15. Dual-Port Memory Controller Miscellaneous Signals (Continued)

Name	Туре	Description
CS8#	0	Chip Select 8#. CS8# is an output signal that is driven low by the dual-port memory controller FPLD for 80186-bus I/O command addresses 0800h to 08FFh (PAL). Refer to "AS#, CSn, RDIDnn#, R/W#, and SRDY Timing" on page 174 for details.
DS#	0	Data Strobe #. DS# is an output signal that is driven low by the dual-port memory controller FPLD for any Zilog SCC or CIO I/O read/write cycle. Refer to "AS#, DS# and INTA1R# Timing" on page 176 for details.
ED	I	Edge. ED is an input signal that is used to indicate the size of the ISA connector. Refer to "Initialization Register 1 (INITREG1)" on page 144 for details.
ENPCI#	I	Enable PCI. ENPCI# is an input signal. When ENPCI = 1 (ISA MODE), the dual-port memory controller compares the contents of the ISA AD bus with its I/O and memory base addresses to be selected. When ENPCI = 0 (PCI mode), the dual-port memory controller is selected by any I/O command or by any memory command with an address in the first 8KB memory address segment. Refer to "Initialization Register 0 (INITREGO)" on page 142 and "Location Registers (LOCREG1, LOCREGO)" on page 147 for details.
GAB#	0	Gate A-to-B #. The GAB# output signal is tied directly to the OEAB# input signal of a 74ABT543 octal transceiver module with registers. Refer to "Dual-Port Memory Controller FPLD's Miscellaneous Glue Control Signals" on page 177 for wiring details. This logic is required on adapters using Zilog SCC and CIO chips with an 80186 CLKOUT greater than 7.37 MHz. It is needed to meet the address-to-AS#-hold time for the Zilog chips. When GAB# is high, the B side driver outputs are in the high impedance state. When GAB# is low, either the A side inputs or the A side latches are gated to the B side outputs, depending on the value of the LEAB output signal.
GBA#	0	Gate B-to-A #. The GBA# output signal is tied directly to the OEBA# input signal of a 74ABT543 octal transceiver module with registers. Refer to "Dual-Port Memory Controller FPLD's Miscellaneous Glue Control Signals" on page 177 for wiring details. This logic is required on adapters using Zilog SCC and CIO chips with an 80186 CLKOUT greater than 7.37 MHz. It is needed to meet the address-to-AS#-hold time for the Zilog chips. When GBA# is high, the A side driver outputs are in the high impedance state. When GBA# is low, the B side inputs are gated to the A side outputs.
HALFCLK	0	Half Clock. HALFCLK# is an output signal from the dual-port memory controller FPLD that is half the frequency of the 80186-bus CLKOUT signal.
INTA1R#	0	Interrupt Acknowledge 1 Redriven #. INTA1R# is an output signal that is created from back-to-back INTA1 cycles for the Zilog SCC and CIO chips. Refer to "AS#, DS# and INT1AR# Timing" on page 176 for details.
INT_BLOCK#	О	Internal_Block #. INT_BLOCK# is an output signal that can be used to externally block the second AS# signal during an INTA1R# cycle, if the path delay through the dual-port memory controller FPLD for AS# is too long. Refer to "AS#, DS# and INTA1R# Timing" on page 176 for details.

Table A-15. Dual-Port Memory Controller Miscellaneous Signals (Continued)

Name	Туре	Description
LEAB	0	Latch Enable A to B. The LEAB output signal is tied to a two-way
		NOR circuit (the other input is ALE). The output of the NOR circuit is
		tied through registers to the LEAB# input at a 74ABT543 octal
		transceiver module. Refer to "Dual-Port Memory Controller FPLD's
		Miscellaneous Glue Control Signals" on page 177 for wiring details.
		This logic is required on adapters using Zilog SCC and CIO chips with
		an 80186 CLKOUT greater than 7.37 MHz. It is needed to meet the
		address-to-AS#-hold time for the Zilog chips.
L1	ı	Level 1. L1 is an input signal that is used to indicate the adapter
		ISA-bus interrupt request level. Refer to "Initialization Register 0
		(INITREG0)" on page 142 for details.
L2	I	Level 2. L2 is an input signal that is used to indicate the adapter
		ISA-bus interrupt request level. Refer to "Initialization Register 0
		(INITREG0)" on page 142 for details.
L4	ı	Level 4. L4 is an input signal that is used to indicate the adapter
		ISA-bus interrupt request level. Refer to "Initialization Register 0
		(INITREG0)" on page 142 for details.
PCIINT#	0	PCI Interrupt. PCIINT# is an output signal that is driven low to signal
		an interrupt request to an ISA/PCI bridge chip on a PCI adapter card
		using the dual-port memory controller. This signal can be tied to the
		ISA/PCI bridge chip's input signal resulting in the assertion of its PCI
		INTA# output signal. PCIINT is like a latched version of the output
		ISAInt and is not affected by the ISEC logic. Refer to "Interrupt Sharing
		Enable Command (ISEC)" on page 160 and "Task Register (TREG)" on
		page 156 for details.
RDID03#	0	Read ID 03 #. RDID03# is an output signal that is driven low by the
		dual-port memory controller FPLD during 80186-bus I/O read cycles to
		addresses 0200h and 0280h. Refer to "AS#, CSn, RDIDnn#, R/W#,
		and SRDY Timing" on page 174 for details.
RDID47#	0	Read ID 47 #. RDID47# is an output signal that is driven low by the
		dual-port memory controller FPLD during 80186-bus I/O read cycles to
		addresses 0086h and 0087h. Refer to "AS#, CSn, RDIDnn#, R/W#,
		and SRDY Timing" on page 174 for details.
R/W#	0	Read/Write #. R/W# is an output signal that is driven low by the dual-
		port memory controller FPLD during 80186-bus I/O write cycles to the
		Zilog SCC or CIO chips. Refer to "AS#, CSn, RDIDnn#, R/W#, and
		SRDY Timing" on page 174 for details.
RxAREQ#	I	Receive A Request#. RxAREQ# is an input signal that the dual-port
		memory controller FPLD redrives out on the 80186-bus interface output
		signals DRQ0 or DRQ1, depending on how the IDAL register is
		programmed. Refer to "Internal DMA Allocation Register (IDAL)" on
		page 140 for details.
RxBREQ#	I	Receive B Request#. RxBREQ# is an input signal that the dual-port
		memory controller FPLD redrives out on the 80186-bus output signals
		DRQ0 or DRQ1, depending on how the IDAL register is programmed.
		Refer to "Internal DMA Allocation Register (IDAL)" on page 140 for
		l r a n
		details.
TxAREQ#	I	Transmit A Request#. TxAREQ# is an input signal that the dual-port
TxAREQ#	I	
TxAREQ#	I	Transmit A Request#. TxAREQ# is an input signal that the dual-port
TxAREQ#	I	Transmit A Request#. TxAREQ# is an input signal that the dual-port memory controller FPLD redrives out on the 80186-bus output signals

Table A-15. Dual-Port Memory Controller Miscellaneous Signals (Continued)

Name	Type	Description
TxBREQ#	I	Transmit B Request#. TxBREQ# is an input signal that the dual-port memory controller FPLD redrives out on the 80186-bus output signals DRQ0 or DRQ1, depending on how the IDAL register is programmed. Refer to "Internal DMA Allocation Register (IDAL)" on page 140 for details.
WDCLK	0	Watchdog Clock. WDCLK is a 900 Hz output signal from the dual-port memory controller FPLD, when the 80186-bus input signal CLKOUT is 7.37 MHz.
WDOG#	I	Watchdog #. WDOG# is an input signal used by the dual-port memory controller FPLD to signal a watchdog timeout error interrupt to the 80186 bus and the ISA bus.

Packaging and Pin Information

The following table is a cross reference between the signal names and the physical module pin number.

Table A-16. Signals and Physical Pin Number

Pin Number	I/O Type	Specification Signal Name
1	1	Reserved
2	I/O	Reserved
3	0	Reserved
4	0	Reserved
5	I	Vcc
6	0	AR2
7	0	AR3
8	I/O	AD3
9	0	AR5
10		Gnd
11	I/O	AD1
12	0	GAB#
13	I/O	SD3
14	I/O	RD12
15	ı, o	A19
16	ı	Vcc
17	I/O	RD9
18		WT#
19	<u>'</u>	S2#
20	<u>'</u> 	S1#
21	ı	A16
22	<u>'</u>	Gnd
23	0	AR6
24	<u> </u>	SA14
25	<u> </u>	SA8
26	<u> </u>	SA15
27	l	Vcc
28	<u> </u>	SA13
29	I/O	SD15
30	0	CHRDY
31	_	RSTIN
32	<u> </u>	
		Gnd
33 34	0	DS# HALFCLK
35	0	RA0 CS4
36	_	
37	1	Vcc
38	0	AR8
39	0	AR10
40	1/0	Reserved
41	1/0	RD5
42	1/0	Gnd
43	1/0	RD8
44	1/0	RD4
45	1/0	RD3
46	I/O	RD1
47	l	Vcc

Table A-16. Signals and Physical Pin Number (Continued)

Pin Number 1/0 Iype Specification Signal Name 48 1/0 RD6 49 O REFRESH# 50 1/0 INTR# 51 I AEN 552 I Gnd 53 I TxBREQ# 54 I IONC# 556 I IONC# 556 I IONC# 557 I Vcc 588 I Reserved 60 I/O Reserved 60 I/O Reserved 61 I TxAREQ# 62 PCIINT# 63 O GBA# 64 I SA2 65 I/O RD15 66 I/O RD0 67 O RA1 68 I SA12 69 I Gnd 70 O RA3 71 Reserved 72 O RA7 73 O AR13 74 I SA3 T75 O AR1 T77 I Vcc T8 O SRDY T9 I/O SD9 81 O RA5 SA10 SA2 SA3 I L1 SA40 SA41 SA50 SA50			cai Pin Number (Continued)
49	Pin Number	I/O Type	Specification Signal Name
SO		I/O	
51 I AEN 52 I Gnd 53 I TXBREQ# 54 I SMRDC# 55 I IOWC# 56 I IOWC# 57 I Vcc 58 I Reserved 59 I Reserved 60 I/O Reserved 61 I TXAREQ# 62 PCIINT# GBA# 63 O GBA# 64 I SA2 65 I/O RD0 67 O RA1 68 I SA12 69 I Gnd 70 O RA3 71 Reserved RA7 73 O AR13 74 I SA3 75 O AR1 76 I SA7 77 I Vcc <			
52 I Gnd 53 I TxBREQ# 54 I SMRDC# 55 I IOWC# 56 I IORC# 57 I Vcc 58 I Reserved 59 I Reserved 60 I/O Reserved 61 I TxAREQ# 62 PCIINT# 63 63 O GBA# 64 I SA2 65 I/O RD0 67 O RA1 68 I SA12 69 I Gnd 70 O RA3 71 Reserved RA7 73 O RA7 73 O AR13 75 O AR1 76 I SA3 75 O AR1 76 I SA7 <td< td=""><td>50</td><td>I/O</td><td></td></td<>	50	I/O	
53 I TxBREQ# 54 I SMRDC# 55 I IOWC# 56 I IORC# 57 I Vcc 58 I Reserved 59 I Reserved 60 I/O Reserved 61 I TxAREQ# 62 PCIINT# 63 63 O GBA# 64 I SA2 65 I/O RD15 66 I/O RD0 67 O RA1 68 I SA12 69 I Gnd 70 O RA3 71 Reserved RA2 72 O RA7 73 O AR13 74 I SA3 75 O AR1 76 I SA7 77 I Vcc	51	I	AEN
53 I TxBREQ# 54 I SMRDC# 55 I IOWC# 56 I IORC# 57 I Vcc 58 I Reserved 59 I Reserved 60 I/O Reserved 61 I TxAREQ# 62 PCIINT# 63 63 O GBA# 64 I SA2 65 I/O RD15 66 I/O RD0 67 O RA1 68 I SA12 69 I Gnd 70 O RA3 71 Reserved RA2 72 O RA7 73 O AR13 74 I SA3 75 O AR1 76 I SA7 77 I Vcc	52	I	Gnd
54 I SMRDC# 55 I IOWC# 56 I IORC# 57 I Vcc 58 I Reserved 59 I Reserved 60 I/O Reserved 61 I TxAREQ# 62 PCIINT# 63 63 O GBA# 64 I SA2 65 I/O RD15 66 I/O RD0 67 O RA1 68 I SA12 69 I Gnd 70 O RA3 71 Reserved RA7 72 O RA7 73 O AR1 75 O AR1 76 I SA7 77 I Vcc 78 I SC 80 I/O SD13 <td< td=""><td></td><td>ı</td><td></td></td<>		ı	
S55		i	
S6		i	
57 I Vcc 58 I Reserved 59 I Reserved 60 I/O Reserved 61 I TxAREQ# 62 PCIINT# 63 O GBA# 64 I SA2 65 I/O RD15 66 I/O RD0 67 O RA1 68 I SA12 69 I Gnd 70 O RA3 71 Reserved 72 O RA7 73 O AR13 74 I SA3 75 O AR1 76 I SA7 77 I Vcc 78 O SRDY 79 I/O SD13 80 I/O SD2 83 I L1 84 I/O SD		<u>'</u>	
S8		<u>'</u>	
Section Sect		l I	
60		!	
61			
62		I/O	
63		l	
64 I SA2 65 I/O RD15 66 I/O RD0 67 O RA1 68 I SA12 69 I Gnd 70 O RA3 71 Reserved 72 O RA7 73 O AR13 74 I SA3 75 O AR1 76 I SA7 77 I Vcc 78 O SRDY 79 I/O SD13 80 I/O SD9 81 O RA5 82 I/O SD2 83 I L1 84 I/O SD4 85 I Gnd 86 I SA10 87 BN SA1 89 I Vcc 90 I SA1 </td <td>62</td> <td></td> <td></td>	62		
65	63	0	GBA#
65	64	I	SA2
66 I/O RD0 67 O RA1 68 I SA12 69 I Gnd 70 O RA3 71 Reserved 72 O RA7 73 O AR13 74 I SA3 75 O AR1 76 I SA7 77 I Vcc 78 O SRDY 79 I/O SD13 80 I/O SD9 81 O RA5 82 I/O SD2 83 I L1 84 I/O SD4 85 I Gnd 86 I SA10 87 BN 88 I/O SD14 89 I Vcc 90 I SA1 I BALE 93 <td></td> <td>I/O</td> <td></td>		I/O	
67 O RA1 68 I SA12 69 I Gnd 70 O RA3 71 Reserved 72 O RA7 73 O AR13 74 I SA3 75 O AR1 76 I SA7 77 I Vcc 78 O SRDY 79 I/O SD13 80 I/O SD9 81 O RA5 82 I/O SD2 83 I L1 84 I/O SD4 85 I Gnd 86 I SA10 87 BN 88 I/O SD14 89 I Vcc 90 I SA1 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#			
68 I SA12 69 I Gnd 70 O RA3 71 Reserved 72 O RA7 73 O AR13 74 I SA3 75 O AR1 76 I SA7 77 I Vcc 78 O SRDY 79 I/O SD13 80 I/O SD9 81 O RA5 82 I/O SD2 83 I L1 84 I/O SD4 85 I Gnd 86 I SA10 87 BN SD14 89 I Vcc 90 I SA1 91 I GLKIN 92 I BALE 93 I Gnd 94 I SA11 </td <td></td> <td></td> <td></td>			
69 I Gnd 70 O RA3 71 Reserved 72 O RA7 73 O AR13 74 I SA3 75 O AR1 76 I SA7 77 I Vcc 78 O SRDY 79 I/O SD13 80 I/O SD9 81 O RA5 82 I/O SD2 83 I L1 84 I/O SD4 85 I Gnd 86 I SA10 87 BN 88 I/O SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 <t< td=""><td></td><td>ī</td><td></td></t<>		ī	
70 O RA3 71 Reserved 72 O RA7 73 O AR13 74 I SA3 75 O AR1 76 I SA7 77 I Vcc 78 O SRDY 79 I/O SD13 80 I/O SD9 81 O RA5 82 I/O SD2 83 I L1 84 I/O SD4 85 I Gnd 86 I SA10 87 BN SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc		<u>'</u>	
71 Reserved 72 O RA7 73 O AR13 74 I SA3 75 O AR1 76 I SA7 77 I Vcc 78 O SRDY 79 I/O SD13 80 I/O SD9 81 O RA5 82 I/O SD2 83 I L1 84 I/O SD4 85 I Gnd 86 I SA10 87 BN 88 I/O SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 9		•	
72 O RA7 73 O AR13 74 I SA3 75 O AR1 76 I SA7 77 I Vcc 78 O SRDY 79 I/O SD13 80 I/O SD9 81 O RA5 82 I/O SD2 83 I L1 84 I/O SD4 85 I Gnd 86 I SA10 87 BN 88 I/O SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 <tr< td=""><td></td><td>U</td><td></td></tr<>		U	
73 O AR13 74 I SA3 75 O AR1 76 I SA7 77 I Vcc 78 O SRDY 79 I/O SD13 80 I/O SD9 81 O RA5 82 I/O SD2 83 I L1 84 I/O SD4 85 I Gnd 86 I SA10 87 BN BN 88 I/O SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE# <td></td> <td></td> <td></td>			
74 I SA3 75 O AR1 76 I SA7 77 I Vcc 78 O SRDY 79 I/O SD13 80 I/O SD9 81 O RA5 82 I/O SD2 83 I L1 84 I/O SD4 85 I Gnd 86 I SA10 87 BN 88 I/O SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#			
75 O AR1 76 I SA7 77 I Vcc 78 O SRDY 79 I/O SD13 80 I/O SD9 81 O RA5 82 I/O SD2 83 I L1 84 I/O SD4 85 I Gnd 86 I SA10 87 BN 88 I/O SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#		0	
76 I SA7 77 I Vcc 78 O SRDY 79 I/O SD13 80 I/O SD9 81 O RA5 82 I/O SD2 83 I L1 84 I/O SD4 85 I Gnd 86 I SA10 87 BN 88 I/O SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#		l	
77 I Vcc 78 O SRDY 79 I/O SD13 80 I/O SD9 81 O RA5 82 I/O SD2 83 I L1 84 I/O SD4 85 I Gnd 86 I SA10 87 BN BN 88 I/O SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#	75	0	
78 O SRDY 79 I/O SD13 80 I/O SD9 81 O RA5 82 I/O SD2 83 I L1 84 I/O SD4 85 I Gnd 86 I SA10 87 BN BN 88 I/O SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#	76	I	SA7
78 O SRDY 79 I/O SD13 80 I/O SD9 81 O RA5 82 I/O SD2 83 I L1 84 I/O SD4 85 I Gnd 86 I SA10 87 BN BN 88 I/O SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#	77	I	Vcc
79 I/O SD13 80 I/O SD9 81 O RA5 82 I/O SD2 83 I L1 84 I/O SD4 85 I Gnd 86 I SA10 87 BN 88 I/O SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#	78	0	
80 I/O SD9 81 O RA5 82 I/O SD2 83 I L1 84 I/O SD4 85 I Gnd 86 I SA10 87 BN 88 I/O SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#		I/O	
81 O RA5 82 I/O SD2 83 I L1 84 I/O SD4 85 I Gnd 86 I SA10 87 BN 88 I/O SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#			
82 I/O SD2 83 I L1 84 I/O SD4 85 I Gnd 86 I SA10 87 BN 88 I/O SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#			
83 I L1 84 I/O SD4 85 I Gnd 86 I SA10 87 BN 88 I/O SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#			
84 I/O SD4 85 I Gnd 86 I SA10 87 BN 88 I/O SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#			
85 I Gnd 86 I SA10 87 BN 88 I/O SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#		-	
86 I SA10 87 BN 88 I/O SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#		1/0	
87 BN 88 I/O SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#		<u>!</u>	
88 I/O SD14 89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#		l l	
89 I Vcc 90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#			
90 I SA1 91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#		I/O	
91 I CLKIN 92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#	89	l I	
92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#	90	I	SA1
92 I BALE 93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#	91	I	CLKIN
93 I Gnd 94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#		I	
94 I SA11 95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#		I	
95 ENPCI# 96 I Vcc 97 O RA15 98 O WE#		i	
96 I Vcc 97 O RA15 98 O WE#		'	
97 O RA15 98 O WE#		ı	
98 O WE#		-	
99 O CS5			
	99	0	CS5

Table A-16. Signals and Physical Pin Number (Continued)

Pin Number	I/O Type	Specification Signal Name
100	1/O Type	SA18
101	I/O	AD6
	1/0	
102		Reserved
103	0	CASL#
104	<u> </u>	Gnd
105	0	NMI
106		Reserved
107		Reserved
108	l	BHE#
109	I/O	AD8
110	I	L2
111	0	CS2
112	[Vcc
113	I/O	AD11
114	I	SA19
115	1	C1
116	I/O	AD13
117		LA18
118	i	LA17
119	I/O	AD7
120	0	AS#
121	U	Reserved
122		Vcc
	l	
123	<u> </u>	Reserved
124	<u> </u>	Reserved
125	<u> </u>	Gnd
126	<u> </u>	RxBREQ#
127	<u> </u>	RxAREQ#
128	I	CHCHK#
129	ı	MWTC#
130	l	Vcc
131		SBHE#
132	I	MRDC#
133	1	SMWTC#
134		Reserved
135	1	Gnd
136	I/O	SD11
137		Reserved
138	I/O	RD14
139	I/O	RD11
140	I	Vcc
141	I/O	RD13
142	I/O	AD14
143	0	CS7
143	0	RSTOUT#
145	<u> </u>	Gnd
146	0	CS6
147	0	DRQ0
148	0	WDCLK
149	0	AR9
150	[Vcc
151	0	AR12

Table A-16. Signals and Physical Pin Number (Continued)

Pin Number		Specification Signal Name
	I/O Type	Specification Signal Name
152	I/O	RD7
153	I	SA16
154	l	LA20
155		Gnd
156	I/O	LA21
157		Reserved
158		Reserved
159	ı	SA17
160	i	Vcc
161	I/O	AD9
162	1/0	A18
163	0	RAS#
	_	
164	I/O	AD12
165	<u> </u>	Gnd
166	0	AR7
167	I/O	AD15
168	I	A17
169	I/O	AD2
170		Vcc
171	I/O	AD5
172	I/O	AD0
173	I	LA22
174		Reserved
175		Reserved
176	ı	Gnd
177	<u>'</u>	
	<u> </u>	Reserved
178	<u>!</u>	Reserved
179	<u> </u>	Reserved
180	l	Reserved
181	0	CS8#
182		INTA1#
183	I	S0#
184	0	LA19
185	I	BW
186	0	RDID47#
187	ı	SA9
188	I/O	AD10
189	l I	Vcc
190	0	RDID30#
191	0	LEAB
	_	
192	<u> </u>	RD#
193	0	CS1
194	l I	C4
195	I/O	AD4
196	l	C8
197	I	Gnd
198	I	C2
199		Reserved
200	I	WDOG#
201	I	SA4
202	0	M16#
203	0	R/W#
200		Ι (/ ۷ / π

Table A-16. Signals and Physical Pin Number (Continued)

Pin Number	I/O Type	Specification Signal Name
204	0	CASU#
205	I	Vcc
206	I/O	MemData2
207		Reserved
208	I	LA23
209	I/O	SD6
210	I	ALE
211	I	CLKOUT
212	I	ED
213	I/O	SD12
214	0	INT_BLOCK#
215	0	DRQ1
216	I	Gnd
217	I/O	SD10
218	0	AR4
219	0	RA9
220	I/O	SD1
221	0	RA2
222	I	SA5
223	I	SA0
224	I	Vcc
225	I/O	SD5
226	I	SA6
227	0	RA6
228	0	AR14
229	I/O	RD10
230	I	L4
231	0	RA4
232	I	Gnd
233	0	RA8
234	0	AR11
235	I/O	SD0
236	I/O	SD8
237	I/O	SD7
238	0	INTA1R#
239	0	INT0
240	0	RA10

Miscellaneous Signals Timing Diagrams

The following timing diagrams show the timings for the dual-port memory controller FPLD output signals, AS#, CSn, DS#, INTA1R#, and R/W#. These signal timings meet the Zilog SCC and CIO chip timing requirements for 80186 CLKOUT frequencies from 7.37 MHz to 14.74 MHz. See "Initialization Register 1 (INITREG1)" on page 144 for frequency settings.

AR(15:1) Timing

The dual-port memory controller FPLD output signals AR(15:1) are the transparent latched input signals AD(15:1). The transparent latches are clocked with ALE during 80186 memory read/write cycles to addresses Fxxxxh.

Figure A-3. AR(15:1) Timing

AS#, CSn, RDIDnn#, R/W#, and SRDY Timing

- CS1 is generated for 80186 I/O commands to addresses 0100h through 017Fh.
- CS2 is generated for 80186 I/O commands to addresses 0180h through 01FFh.
- CS4 is generated for 80186 I/O commands to addresses 0400h through 04FFh.
- CS5 is generated for 80186 I/O commands to addresses 0500h through 05FFh.
- CS6 is generated for 80186 I/O commands to addresses 0600h through 06FFh.
- CS7 is generated for 80186 I/O commands to addresses 0700h through 07FFh.
- CS8# is generated for 80186 I/O commands to addresses 0800h through 08FFh.
- RDID03# is generated for 80186 I/O read commands to address 0200h and 0280h.
- RDID47# is generated for 80186 I/O read commands to address 0086h and 0087h.

Figure A-4. AS#, CSn, RDIDnn#, R/W# and SRDY Timing

DRQn Timing

When the IDAL register is set to gate input signals TxAREQ# or TxBREQ# to the output signals DRQ0 or DRQ1, the dual-port memory controller FPLD forces the associated DRQn output signal inactive during TW of an 80186 I/O write command to address 0130h for TxAREQ (or address 0110h for TxBREQ) and holds the degated state until the associated TxnREQ goes inactive.

Figure A-5. DRQn Gating by Dual-Port Memory Controller FPLD

AS#, DS# and INTA1R# Timing

The 80186 issues a back-to-back INTA1# cycle for SCC and CIO interrupt acknowledge cycles. The dual-port memory controller FPLD turns the back-to-back INTA1# cycle into an extended INTA1R# cycle. Only one AS# and one DS# are generated.

Figure A-6. AS#, DS# and INTA1R# Timing

Dual-Port Memory Controller FPLD's Miscellaneous Glue Control Signals

The following figure shows the signal connections required between the dual-port memory controller and the glue logic necessary to maintain the proper address hold time, with respect to AS#, for Zilog SCC and CIO chips when the 80C186 and the dual-port memory controller are running at 1X clock rates greater than 7.37 MHz.

Dual-port memory controller output signals GAB# and GBA# are tied directly to the 74 ABT543 module inputs OEAB# and OEBA#, respectively. Dual-port memory controller output signal LEAB is tied to one input of a two-way NOR, whose other input is tied to ALE, and whose output is tied to the LEAB# input of the ABT543 module. ABT543 input signals CEAB#, CEBA#, and LEBA# are tied low.

During microprocessor write commands to the Zilog chips, the microprocessor signal ALE goes high, causing LEAB# to go low. Dual-port memory controller output signals LEAB and GAB# go low and GBA# goes high. This enables the B-side drivers and gates the A-side inputs (Address) to the B-side driver outputs. When ALE goes low, LEAB# goes high, latching the Address into the A-side registers and gating the A-side registers (latched Address) to the B-side driver outputs. After a time that guarantees the Zilog Address to AS# hold time specification to be met, LEAB goes high causing LEAB# to go low, which gates the new A-side inputs (Data) to the B-side driver outputs.

During all microprocessor read cycles of the Zilog chips, GAB# is high and GBA# is low, enabling the A-side drivers and gating the B-side inputs to the A-side driver outputs.

Both GAB# and GBA# go high during T4 of all microprocessor cycles, which tri-states the outputs from both the A- and B-side drivers.

Figure A-7. ABT543 Wiring

Configuration

This chapter provides detailed configuration information for the ARTIC186 X.25 ISA/PCI Adapter.

Creating an ICAPARM.PRM File

After your software is installed, you must create a special parameter file (ICAPARM.PRM) to indicate how to initialize the ARTIC186 X.25 ISA/PCI Adapter. This is the same file used for the ARTIC X.25 ISA adapter and the ARTIC Multiport Model II adapter. (For a detailed description of this file, see the ARTIC OS/2 Support *User's Guide* or the *ARTIC DOS Support User's Guide*.)

ICAPARM.PRM is a small file created with a text editor and contains a single line of parameters for each co-processor installed, including each ARTIC186 X.25 ISA/PCI Adapter Co-Processor adapter. The following two examples – for one adapter installed and for multiple adapters installed – work satisfactorily in most cases. All values are specified in hexadecimal.

Example 1 – For One Co-Processor Adapter

The following example shows an ICAPARM.PRM file that can be used if you have one co-processor adapter installed in your system unit:

	#	02A0	00	60	10	10	10	10	0F	E010	\$
Field Number	1	2	3	4	5	6	7	8	9	10	11

Field

Number	Description
1	Beginning-Record Delimiter. If a # is not present, the line is treated as a comment.
2	Base I/O Address of the ARTIC186 X.25 ISA/PCI Adapter. Range 02A0–3EA0h in 400h (1 KB) increments.
3	Shared Memory Address, Meg value. Range 00-0Fh. (See Field 4).
4	Shared Memory Address, Page Value. Range 60–6Fh. Used with Meg Value (Field 3) to define the shared memory window used by the adapter to communicate with the system unit. The Page Value is the memory offset in 8 KB increments. A Meg Value of 00h and a Page Value of 60h gives a window address of C0000h.
5	Maximum Task Number on the adapter. Range 00–F8h; the default is 10h.

Maximum Task Priority. Range 01–FFh; the default is 10h.

- 7 Maximum Task Queue Number. Range 00–FEh; the default is 10h.
- 8 Maximum Task Timer Number. Range 00–FEh; the default is 10h.
- **9 and 10** System Memory Address to invoke an adapter reset. Use the values shown:

0Fh, E010h

End-Record Delimiter. Value ";" or "\$". If this is the last adapter in the ICAPARM file, then set to "\$"; otherwise set to ";".

Example 2 – For Multiple Co-Processor Adapters

The following example shows an ICAPARM.PRM file for four co-processor adapters:

	#	02A0	00	60	10	10	10	10	0F	E010	;
	#	06A0	00	61	10	10	10	10	0F	E010	;
	#	0AA0	00	62	10	10	10	10	0F	E010	;
	#	0EA0	00	63	10	10	10	10	0F	E010	\$
Field Number	1	2	3	4	5	6	7	8	9	10	11

Field

Number Description

- Base I/O Address of each co-processor adapter. Each adapter must have a different base I/O address.
- 4 Shared Memory Address, Page Value. Each adapter must use a different memory window address. In this case, the four adapters are using C0000h, C2000h, C4000h, and C6000h, respectively.

Note: For an explanation of the other fields, see the field descriptions under "Example 1 – For One Co-Processor Adapter" on page 179.

Changing Your CONFIG.SYS File

If OS/2 and Communications Manager/2 (CM/2) are being used, then one line of the CONFIG.SYS file must be modified (using a text editor) to specify the location of the ICAPARM.PRM file. Change CONFIG.SYS as follows, but substitute your specific drive paths:

Change: DEVICE=C:\CMLIB\ICARICIO.SYS

To: DEVICE=C:\CMLIB\ICARICIO.SYS C:\CMLIB\ICAPARM.PRM

Note: Make this change after CM/2 is configured. Later, if CM/2 is configured again, do not have it replace the CONFIG.SYS file. However, if you must let CM/2 change CONFIG.SYS to add new devices, just edit CONFIG.SYS again to replace the ICAPARM.PRM parameter.

Ctrl-Alt-Del Reset Considerations

The ARTIC186 X.25 ISA/PCI Adapter cannot detect a Ctrl-Alt-Delete occurrence.

Communications

This chapter provides detailed communication information for the ARTIC186 X.25 ISA/ PCI Adapter.

Concepts of Packet-Switched Data Networks

A packet-switched data network (PSDN) is an interconnecting set of intelligent switching nodes that enables subscribers to exchange data using a standard protocol and packetswitching technology. Such a network carries messages divided into parts (packets) over circuits that are shared by many network users.

Because several users simultaneously share the same circuits, a protocol is necessary to ensure that the network correctly routes data to its destination.

In 1976, a protocol for attaching user equipment to a PSDN was defined by the International Telegraph and Telephone Consultative Committee (CCITT) in CCITT Recommendation X.25.

In 1980, a revision of the recommendation was published. This gave firm specifications for many aspects that were previously open to different interpretation. Today, most of the public packet-switched data networks throughout the world are based on CCITT Recommendation X.25.

In 1984 a further revision of the recommendation was published and many X.25 networks are being upgraded to incorporate enhancements and changes defined at this level.

DSEs, DTEs, and DCEs

The CCITT has defined the following terminology:

- Data-switching equipment (DSE): A switching node in a packet-switched data network
- Data-terminal equipment (DTE): A computer that uses the network for communication
- Data circuit-terminating equipment (DCE): A device at the point of access to the network

Every DTE must have an associated DCE.

Note: DTE and DCE are functional definitions. They need not correspond to specific items of equipment. For example, a single device may be a DSE and may also provide multiple DCE interfaces.

CCITT Recommendation X.25 defines a standard protocol for information exchange in packet mode between a DTE and a DCE. The elements of a packetswitched data network are shown in the following figure.

Figure C-1. Elements of a Packet-Switched Data Network

Every DTE is connected to a DCE by a point-to-point, full-duplex link. CCITT Recommendation X.25 describes the physical attachment to this link, the link protocol, and the packet protocol between the DTE and the DCE/DSE. CCITT Recommendation X.25 does not specify the structure of, or the protocols used within, the network itself (that is, traffic between the DSEs).

Levels of X.25

The X.25 interface has three levels:

- Physical level
- Link level
- Packet level

Note: A term commonly used when referring to the X.25 interface at all three levels is the DTE/DCE interface. This term can be misleading because the DCE only supports the physical level. The physical access link is from DTE to DCE to DSE, and it is the DSE that has the intelligence to support link-level and packet-level protocols.

Physical Level

The physical level activates, maintains, and deactivates the physical circuit between a DTE and a DCE.

This level is defined in CCITT Recommendation X.21 and in CCITT Recommendation X.21 bis. CCITT Recommendation X.21 bis defines the connection of a DTE with a V.24 or a V.36 interface to a DCE as used by the ARTIC186 X.25 ISA/PCI Adapter.

Link Level

The link level uses a link access procedure to ensure that data and control information are accurately exchanged over the physical circuit between the DTE and DCE/DSE. Its functions include recovery procedures. The characteristics of this level are based on highlevel data-link control (HDLC).

HDLC defines two link access procedures:

- Link access procedure (LAP)
- Link access procedure balanced (LAPB)

Both procedures are synchronous and full-duplex. Once a link is started, either station can transfer information on its own initiative without waiting for permission from the other.

LAPB is the dominant procedure because it avoids some of the hung situations that can occur with LAP.

In HDLC all commands, responses, and data are transmitted in frames. Each frame has a header containing address and control information, and a trailer containing a frame-check sequence.

There are three frame types:

- I frame
- S frame
- U frame

The format of each frame depends upon its type:

- I (information) frames transfer user data. I frames are numbered sequentially.
- S (supervisory) frames supervise the link performing such functions as:
 - Acknowledging I frames
 - Requesting retransmission of I frames
 - Requesting temporary suspension of transmission of I frames

S frames are numbered sequentially.

U (unnumbered) frames describe the mode of operation. For example, Set Asynchronous Balanced Mode (SABM) and Exchange Identifications Between DTEs (XID).

The general format of a frame is shown in the following table.

FLAG	ADDR	CONTROL	INFORMATION (PACKET)	FCS1	FCS2	FLAG

The flag field is 1 byte and its value is always 7Eh.

The address field is 1 byte in basic mode (modulo 8) and 2 bytes in extended mode (modulo 128) and can be:

- 01 for commands from a DTE to a DCE, or responses from a DCE to a DTE
- 03 for commands from a DCE to a DTE or responses from a DTE to a DCE.

All other values are invalid.

The control field is 1 byte and contains:

- In S and U frames, a command or response
- In I frames, a modulo 8 count of I frames sent and received. This allows up to seven frames to be sent in both directions before a link-level acknowledgment is needed from the other end.

The control byte is shown in the following table. Bit 1 is the lowest order bit and is the first bit to be transmitted.

The information field is only present in I frames.

The Frame-Check Sequence (FCS) field is 2 bytes and provides a check on the integrity of the data transmitted over the link.

Bit	1	2	3	4	5	6	7	8
I Fram	e 0		N(S)		Р	N(R)		
S Fram	e 1	0	S	S	P/F		N(R)	
U Fram	e 1	1	М	М	P/F	М	М	М

Figure C-2. Control Byte (Modulo 8)

N(R) = Receive count

N(S) = Send count

P/F = Poll or Final bit. This bit is a poll bit in a command frame. The receiver must acknowledge a command frame with a response frame carrying this bit as the final bit.

M = more data bit (MDB)

Packet Level

The packet-level protocol specifies how virtual circuits between DTEs are established, maintained, and cleared. This level defines how a single physical channel (the access link) can be treated as a set of multiple logical channels, each providing a virtual circuit.

It also defines the structure of data packets, and of the control packets used to establish and manage a virtual circuit between two DTEs in a PSDN.

The recommendations for the packet level are not as specific as those for the physical and link levels, and network providers have some freedom in implementing the packet level functions. For example, some networks do not support the Diagnostic Code field in the Reset and Clear Indication packets.

A packet is a unit of information transmitted from one DTE to another DTE through the network. It comprises a sequence of data and control elements in a special format that is always transmitted as a whole. The most common (default) packet size is 128 bytes (called octets). (Some networks allow a different default packet size to be specified and/or may allow the packet size to be negotiated at subscription time to the network. It can also be done dynamically on a "per-call" basis.) The maximum packet size can range from 16 to 4096 bytes.

Each packet contains a header and user data and the general format of a packet is shown in the following figure. Bit 1 is the low-order bit and is transmitted first.

Figure C-3. General Pack Format

Each packet is identified by a general format identifier and by a packet type identifier.

The logical channel group number and the logical channel number together are called the logical channel identifier.

Packets are grouped into the following categories, according to type:

- Call establishment
- Data and interrupt
- Flow control and reset
- Restart

Some of the most common control packet exchanges are shown in Figure C-4 through Figure C-7.

Figure C-4. Establishing a Switched Virtual Circuit

Figure C-5. Clearing a Switched Virtual Circuit

Figure C-6. DTE Initiated Reset

Figure C-7. DCE Initiated Reset

Data Packets

In data packets the packet header can be either 3 or 4 bytes, depending on the packet modulo used. The packet headers are shown in Figure C-8 and Figure C-9.

Figure C-8. Data Packet with Modulo 8

packet receive sequence number

P(S) =packet send sequence number

M more data bit (MDB)

Q qualified data bit (Q bit)

D delivery confirmation bit (D bit)

Figure C-9. Data Packet with Modulo 128

P(R) =packet receive sequence number

P(S) =packet send sequence number

M more data bit (MDB)

0 qualified data bit (Q bit)

D delivery confirmation bit (D bit)

See X.25 Interface for Attaching SNA Nodes to Packet-Switched Data Networks, General Information Manual, GA27-3345 or the X.25 Interface for Attaching IBM SNA Nodes to Packet-Switched Data Networks, General Information, SC30-3409 for further information on the various command packet formats.

Logical Channels

A physical circuit between a DTE and a DSE can be multiplexed into several logical channels.

Packet-switched data networks use statistical multiplexing, where time is divided according to the length of a message, and each channel is recognized by a header placed in front of the message. A logical channel can be seen as an independent path that allows data to travel from its origin through the network to its destination.

A physical circuit connecting a DTE to a DCE/DSE can have up to 4096 logical channels assigned to it. A logical channel identifier is used to identify the flow of data between the DTE and the PSDN. By assigning several logical channels to the single physical connection, one DTE can communicate simultaneously with several other DTEs through the PSDN. (If Systems Network Architecture (SNA) protocols are used, there can be multiple SNA sessions on each logical channel.)

A DTE must place a logical channel identifier in the header of the packet before sending it to a DCE/DSE. The logical channel identifier associates the packet with a virtual circuit between two DTEs. The PSDN uses this logical channel identifier to route the packet throughout the network to its destination DTE.

The PSDN administrator assigns a series of logical channel identifiers to each subscriber. These identifiers are composed of a logical channel group number (0 to 15) and a logical channel number (0 to 255).

Types of Logical Channels

The types of logical channels are defined according to the capability of a DTE to initiate a call.

- Permanent channel: Used for a PVC between two DTEs.
- Incoming channel: Used for an SVC where only the remote DTE can initiate a call.
- Two-way channel: Used for an SVC where either the remote or local DTE can initiate a call.
- Outgoing channel: Used for an SVC where only the local DTE can initiate a call. In this type of channel the DTE cannot receive and respond to a call.

A permanent virtual circuit (PVC) is logically similar to a point-to-point leased line. It represents a permanent association between two DTEs and requires no call setup or call clearing by the DTEs.

A switched virtual circuit (SVC) is a temporary association between two DTEs. It is initiated by one DTE sending a Call Request packet to the network. Because SVCs are established and released dynamically, the corresponding logical channels are usually allocated from a pool of such resources defined for each DTE/DCE interface.

Figure C-1 on page 182 shows that a logical channel is defined between a DTE and a DCE/DSE.

A virtual circuit consists of:

A logical channel from the local DTE to the DCE

- An association between a pair of source and destination addresses defined in the network
- A logical channel from the remote DCE to its associated DTE

A virtual circuit can have a different logical channel identifier at each DTE.

The source-destination associations defined in the network can either be permanent or only established when the user makes a call. These two modes define the two types of virtual circuit:

- Permanent virtual circuits
- Switched virtual circuits (virtual calls)

Glossary

B

bis

Describes a secondary recommendation as an alternative to a primary recommendation.

bps

Bits per second. This is used to describe data transfer rates.

C

call accepted packet

The packet type that a DTE transmits after receiving an incoming-call packet to show acceptance of the call.

call request packet

The packet type that the calling DTE transmits to request the network to establish a virtual call to the remote DTE whose network address is specified in the packet.

cause code

A one-byte code present in clear and reset packets.

CCITT

International Telegraph and Telephone Consultative Committee. An organization of common carriers and PTTs that recommends standards for the interconnection of communications equipment.

CIO

Counter/timer and parallel I/O port. The device used on ARTIC186 X.25 ISA/PCI Adapter is the Zilog 8036.

clear indication packet

The packet type a DCE transmits to a DTE to signal that a virtual call has been cleared. Cause code and diagnostic code bytes present on the packet may show the reason for the call clearing.

closed user group

A group of network subscribers that can communicate with one another, but whose access is normally barred to and from all other subscribers of the service. Many networks offer closed user groups with incoming and outgoing access allowed.

communications co-processor

A hardware adapter that controls the physical link to the network. It has intelligence and processing power to support additional communications-related functions.

D

data packet

The packet used for data exchange on a virtual circuit. The logical channel identifier in the data packet header shows the origin or destination of the data. Sequence numbers in the header allow bidirectional flow control and error checking. The Q, D, and M-bits in the packet header perform special control functions.

DCE

Data circuit-terminating equipment. The network equipment that provides the physical connection to which the communications adapter is attached.

delivery confirmation bit (D-bit)

A bit in the data-packet header that instructs the network to wait until delivery to the remote DTE has been confirmed before confirming delivery to the sending DTE. Usually, confirmation is returned to the sending DTE when its packets have been transmitted to the network.

diagnostic code

A one-byte code that may be present on clear or reset request packets.

DMA

direct memory access.

DRAM

dynamic random access memory. The ARTIC186 X.25 ISA/PCI Adapter has 512 KB of DRAM.

DTE

Data terminal equipment. That part of a data station that serves as a data source, data sink, or both.

duplex link

A communications line that can simultaneously send and receive data.

F

flag sequence

A unique bit sequence used to delimit the beginning and ending of a frame. A single flag is sufficient to end one frame and begin another.

frame

The contiguous sequence of eight-bit bytes delimited by beginning and ending flags. Frames are used to perform control functions, data transfers, and transmission checking on the link.

frame level

See X.25 link level (level 2).

H

half-duplex link

A communications line that can transfer data in only one direction at a time.

handshake

Any protocol sequence that must be executed before productive data transfer can take place.

HDLC

High-level data-link control. This is a subset of SDLC.

ı

ΙB

interface block.

incoming call packet

The packet type that the DCE transmits to the DTE to show that a remote DTE has initiated a virtual call. The calling DTE network address may be on the packet. There may also be facility codes and call user data.

ISO

International Organization for Standardization. A voluntary activity of the national standardization organization of each member country.

L

LAP (link access procedures)

The link level elements used for data interchange between data circuit-terminating equipment (DCE) and data terminal equipment (DTE) operating in user classes of service 8 to 11, as specified in CCITT Recommendation X.1.

LAPB (link access protocol - balanced)

A protocol used for accessing an X.25 network at the link level. LAPB is a duplex, asynchronous, symmetric protocol, used in point-to-point communication. It supersedes the earlier LAP protocol.

link level

See X.25 link level (level 2).

logical channel

A channel across which virtual calls are placed. When subscription is made to a network, the number of logical channels needed is specified. Twenty is the maximum supported by the adapter code. Logical channels are assigned statically to permanent virtual circuits or dynamically to virtual calls.

M

more data bit (M-bit)

A bit in a data packet header showing that the next data packet being sent over a logical channel is logically concatenated to the previous data packet transmitted over that channel.

Dual-Port Memory Controller

Dual-Port Memory Controller chip. The specific name given to the gate array on the ARTIC186 X.25 ISA/PCI Adapter.

Ν

network user address (NUA)

A field of up to 15 binary-coded decimal digits showing the DTE. On a call request packet it shows the destination address; on an incoming call packet it shows the originating address.

0

octet

A group of eight bits (also known as a byte).

optional network facilities

Facilities a network user may request when establishing a virtual circuit.

P

packet

A data transmission information unit. A header on the front shows the destination of the packet. Commonly used packet lengths are 128 or 256 bytes.

packet switching

The routing of data packets to the destination DTE. Packet switching differs from circuit switching in that network transmission resources are allocated dynamically as needed for a specific packet transmission.

permanent virtual circuit (PVC)

A permanent virtual circuit is a static point-to-point logical connection between two DTEs. Call establishment and clearing protocol are therefore not required. It is the packet network equivalent of a leased line.

POST

Power-on self-test. These are the adapter diagnostics that are performed when the adapter is reset or powered on.

protocol

A convention or rule governing the format and control of transmission between two programs. Protocols exist to make communications orderly and efficient.

PSDN (packet-switched data network)

A communications network that uses packet switching as a means of transmitting data.

PROM

Programmable read-only memory. This term covers all types of programmable read-only memory. The ARTIC186 X.25 ISA/PCI Adapter has 16 KB of PROM.

PROM services

A local basic input/output system.

PSB

Primary status byte.

PTT

Post Telephone and Telegraph Administration.

Q

qualifier-bit (Q-bit)

A bit in the data packet header showing the type of information contained in the packet; 1 for data and 0 for control information.

R

RCM

Realtime Control Microcode. Firmware supplied with the adapter hardware.

ready state

A logical channel state. A logical channel is in the ready state when no call is established, or is being established, on the logical channel. The logical channel is ready to be assigned to an Incoming Call or a Call Request.

Recommendation X.25

The CCITT document that outlines standards for the connection of processing equipment operating in packet mode to a public data network.

Reset procedure

A procedure, using the reset request and reset confirmation packets, that allows a DTE to reinitialize the flow control procedure on a logical channel. Data and interrupt packets in transit at the time of resetting may be discarded, but the connectivity of the logical channel is preserved.

Restart procedure

A procedure used by the DTE or DCE to clear all virtual calls and reset all permanent virtual circuits.

RM/OSI

Reference model/Open System Interconnection defined by ISO.

S

SCC

Serial communications controller. The device used on the ARTIC186 X.25 ISA/PCI Adapter is the Zilog 8030.

SDLC

Synchronous data-link control. An IBM standard for serial data transmission.

switched virtual circuit (SVC)

See Virtual Call.

T

tariff

The network charges a user for sending packets. The tariff is usually based on the number of packets sent over the network.

V

Virtual Call

In addition to the protocols for transferring data available to a permanent virtual circuit, additional protocols must be followed to allow for the dynamic setting-up and clearing of the virtual call. It is the packet network equivalent of a dialed line; also called "Switched Virtual Circuit (SVC)".

virtual circuit

A virtual circuit is a logical, duplex, point-to-point connection between two DTEs. Data and signals may be transferred on a virtual circuit according to protocols. A virtual circuit only requires network transmission resources when data is actually transmitted.

V.24

A CCITT Recommendation that lists definitions for interchange circuits between Data Terminal Equipment and Data Communicating Equipment.

V.28

A CCITT Recommendation that specifies electrical characteristics for unbalanced double-current interchange circuit.

V.35

A CCITT Recommendation for data transmission at 48 Kbps using 60 to 108 kHz group band circuits.

W

window

The maximum number of frames or packets that the DTE at any given time is authorized to transmit and have outstanding. The window is the basic flow control mechanism in X.25 that protects the network from accepting packets faster than they can be accepted by the remote DTE, or frames faster than they can be accepted by the DCE.

X

X.21

A standard that defines the interface between a DCE and a DTE for synchronous operation on a public data network.

X.21 bis

An interim standard that allows existing V-series equipment to be connected to public data networks.

X.25

See Recommendation X.25.

X.25 link level (level 2)

A part of CCITT Recommendation X.25 that defines the link protocol used to get data accurately and efficiently into and out of the network across the duplex link connections between the subscriber's machine and the network node. LAPB is the link access protocol used by the adapter code.

X.25 network

A service providing packet-switched data transmission that conforms to CCITT Recommendation X.25.

X.25 packet level (level 3)

A part of CCITT Recommendation X.25 that defines the protocol for establishing end-to-end logical connections between two DTEs and for transferring data on these connections.

X.25 physical level (level 1)

A standard that defines the electrical, physical, functional, and procedural methods used to control the physical link running between the DTE and the DCE.

Numerics

1 KB

1024 bytes.

1 Kbps

1000 bits per second.

Index

Numerics	identification 60
80186-bus interface	X.21 bis/V.24 interface 63
dual-port memory controller 129	X.21 bis/V.35 interface 64
80C186 I/O map 12	X.21 interface 62
80C186 memory map 12	cables and connectors 60
80C186 microprocessor 7	changing your CONFIG.SYS file 180
80C186XL microprocessor	characteristics
80C186 resource allocation 15	electrical 68
DMA channel allocation and registers 14	environmental 68
interrupt controller register model 14	power requirements 68
interrupt lines 13	usability 68
interrupt register addresses 14	communications
memory 16	adapter 181
peripheral control block 15	capabilities 9
physical characteristics 12	WAN support 11
programming considerations 13	concepts, packet-switched data networks 181
programming constantiumons 10	CONFIG.SYS file, changing 180
Α	configuration, adapter 179
	connector, D-37 61
adapter	connectors, adapter 67
block diagram 6	conventions, notational 2
characteristics 67	cooling, environmental characteristics 68
communications 181	counter/timer and parallel I/O unit 8
configuration 179	creating an ICAPARM.PRM file 179
connectors 67	Ctrl-Alt-Del reset considerations 180
description 5	
general connections 55	D
physical characteristics 67	D-15 wrap plug
size 67	description 65
technology 67	pin assignment 65
AMCC S5920Q registers	D-25 wrap plug
pass-thru address register summary 38	description 66
pass-thru data register summary 38	pin assignment 66
AR(15:1) timing 173	D-37 connector 61
ARTIC186 X.25 ISA/PCI Adapter description 5	D-37 wrap plug
AS#, CSn, RDIDnn#, R/W#, and SRDY timing 174	description 65
AS#, DS# and INTA1R# timing 176	pin assignment 65
_	description, adapter 5
В	design changes, dual-port memory controller 125
Bootstrap Loader Subroutine 122	device drivers, operating system 11
	diagnostic subroutines. See subroutines, diagnostic
C	diagrams
cables	dual-port memory chip FPLD bus interfaces 128
Cuotos	add port memory emp 11 LD out mendees 120

map DRAM to ISA memory address space 131	errors
X.21 bis/V.24 interface cable 63	classification 70
X.21 bis/V.24 interface control 58	recoverable 71
X.21 bis/V.35 interface cable 64	unrecoverable 70
X.21 bis/V.35 interface control 59	external interface 55
X.21 interface cable 62	
X.21 interface control 57	F
DRAM-bus interface, dual-port memory controller 129	
DRQn timing 175	FPLD commands, dual-port memory controller
DSEs, DTEs, and DCEs 181	GEOI (general end of interrupt) 158
dual-port memory controller	INTCOM (interrupt) 159
80186-bus interface 129	ISEC (interrupt sharing enable) 160
AR(15:1) timing 173	FPLD registers, dual-port memory controller 133
AS#, CSn, RDIDnn#, R/W#, and SRDY timing 174	frame types 183
AS#, DS# and INTA1R# timing 176	G
bus interface descriptions 127	general connections, adapter 55
command addresses and initial values 43	general error handling 74
design changes 125	glossary 191
design methodology and technology 127	glossary 171
diagram, logical memory map linkages 46	Н
DRAM-bus interface 129	
DRQn timing 175	handling, general error 74
FPLD commands	HDLC 183
GEOI (general end of interrupt) 158	heat output, environmental characteristics 68
INTCOM (interrupt) 159	HRS signal 55
ISEC (interrupt sharing enable) 160	
FPLD registers 133	1
I/O signals 161	I frames 183
introduction 8	I/O and memory maps 12
ISA-bus interface 130	I/O signals 161
memory mapping 45	interfaces
miscellaneous glue control signals 177	X.21 bis/V.35 59
miscellaneous signals timing diagrams 173	X.21 bis/V24 58
option registers 47	
packaging and pin information 168	introduction, dual-port memory controller 8
performance 40	ISA-bus interface, dual-port memory controller 130
physical characteristics 40	
programming considerations 41	L
register addresses and initial values 42	LAP/LAPB 183
register and command descriptions 41	list of diagnostic subroutines 74
resets 132	local loopback-test plugs 64
dump facility	logical channels, communications 188
Dump1 Subroutine 123	
Dump2 Subroutine 124	M
	M/34 wrap plug
dynamic random-access memory (DRAM) 7, 16	
F	description 66
E	pin assignment 66
EBCDIC-ASCII tables, pointer 115	memory and I/O maps 12
electrical characteristics, adapter 68	memory space 6
error	microcode support, PROM 69
counters, PROM 73	miscellaneous glue control signals 177
handling, general 74	
error codes, POST 71	

N	K
network interface connector table 61	realtime operating system support 11
no errors detected 71	recoverable errors 71
notational conventions 2	registers, dual-port memory controller
	CAD2, CAD1, CAD0 (Ctrl-Alt-Del registers) 134
0	COMREG (command register) 135
operating system device drivers 11	CPUPG (CPU page register) 137
	INITREG1 (initialization register 1) 144
P	INITREG2 (initialization register 2) 146
packaging and pin information 168	LOCREG1, LOCREG0 (location registers) 147
packet-switched data networks, concepts 181	NMIMASK (NMI mask register) 149
PCI interface 16	NMISTAT (NIM status register) 151
PCI interface chip registers 18	OPTION0 (option register 0) 152
PCI target interface chip 9	OPTION1 (option register 1) 154
pin assignment	overview 41, 42
D-15 wrap plug 65	PTRREG (pointer register) 155
D-25 wrap plug 66	TREG (task register) 156
D-37 connector 61	
D-37 wrap plug 65	S
M/34 wrap plug 66	S frames 183
pointer to EBCDIC-ASCII tables 115	self-test, power-on 69
POST error codes 71	serial communications controller 7
power requirements 68	serial EPROM 17
power-on self-test 69	size, adapter 67
product description 5	subroutines, diagnostic
programmable read-only memory (PROM) 6, 16	Checksum 76
programming considerations, adapter 11	Configure CIO Port 83
programming language support 11	Configure CIO Timers 89
PROM	Configure DMA Channel 87
error counters 73	Configure SCC Port 85
microcode support 69	Configure Watchdog Timer 90
services 95	Get Base Card ID 94
Access CIO Registers 100	Get Communications Port Identity 82
Access DMA Channel Registers 109	Get Memory Size 77
Access SCC Registers 98	Get X.25 Electrical Interface Assembly Identifier
Add Element to Intersegment Ring 120	93
Add Element to Intrasegment Ring 118	Switch Interrupt Priorities 92
CIO Timer Support 102	Test CIO 79
Connect DMA Channel(s) 104	Test DRAM 75 Test Dual-Port Memory Controller 81
Convert ASCII String to EBCDIC 117	Test Microprocessor 78
Convert EBCDIC String to ASCII 116	Test Microprocessor 78 Test SCC 80
Convert Logical to Physical Address 112	support functions 9
Convert Page to Segment 114	support functions <i>y</i> support, type provided
Convert Segment to Page 113	diagnostic subroutines 74
Interrupt System Unit 96	dump routines 123, 124
Remove Element From Intersegment Ring 121	power-on self test 69
Remove Element From Intrasegment Ring 119	PROM services 95
Reset an SCC Port 97	SVC 188
Set Up and Start DMA Channel 106	2.2.20
Stop DMA Channel 111	Т
public packet-switched network, connecting 55	
PVC 188	technology, adapter 67 test plugs, local loopback 64

thermal environmental characteristics 68 timing AR(15:1) 173 AS#, CSn, RDIDnn#, R/W#, and SRDY 174 AS#, DS# and INTA1R# 176 CSn, RDIDnn#, R/W#, and SRDY 174 DRQn 175 timing diagrams, dual-port memory controller 173 types of logical communications channels 189 U U frames 183 unrecoverable errors 70 usability characteristics 68 virtual circuits, communications 188 W watchdog timer 8 wrap plugs D-15 65 D-25 66 D-37 65 identification 60 M/34 66 X X.21 bis/V.24 interface cable 63 X.21 bis/V.24 interface(EIA232) 58 X.21 bis/V.35 interface 59 X.21 bis/V.35 interface cable 64 X.21 interface 57 X.21 interface cable 62 X.25 levels link level 183 packet level 185 physical level 183 Ζ Zilog Z8030 serial communications controller diagnostic subroutine support 49 functions 48 programming considerations 50 programming the SCC 49 PROM services 50 read registers 49 SCC registers 48 write registers 49 Zilog Z8036 counter/timer and parallel I/O unit CIO bit assignments, port 0 53

CIO counter/timer registers 51
CIO port 0 specification registers 52
CIO port assignments and description 53
CIO registers 51
description, watchdog timer 54
frequently accessed registers of the CIO 51
functions 50
LED operation 54
main control CIO registers 51
programming the CIO 52
watchdog timer 53

CIO bit assignments, port 1 53