

12

Dynamic Programming

21 January 2024

Prof. Dr. Sebastian Wild

Learning Outcomes

Unit 12: Dynamic Programming

1. Be able to apply the DP paradigm to solve new problems.

Outline

12 Dynamic Programming

- 12.1 Elements of Dynamic Programming
- 12.2 DP & Matrix Chain Multiplication
- 12.3 Greedy as Special Case of DP
- 12.4 The Bellman-Ford Algorithm
- 12.5 Making Change in pre 1971 UK
- 12.6 Optimal Merge Trees & Optimal BSTs
- 12.7 Edit Distance

12.1 Elements of Dynamic Programming

Introduction

applicable to many problems

- ► *Dynamic Programming (DP)* is a powerful algorithm **design pattern** for exact solutions to **optimization** problems
- ► Some commonalities with Greedy Algorithms, but with an element of brute force added in

```
DP = "careful brute force" (Erik Demaine)
```

- often yields polynomial time, but usually not linear time algorithms
- ▶ for many problems the *only* way we know to build efficient algorithms

Naming fun: The term "dynamic programming", due to Richard Bellman from around 1953, does not refer to computer programming; rather to a program (= plan, schedule) changing with time.

It seems to have been at least partly marketing babble devoid of technical meaning . . .

Plan of the Unit

- **1.** Abstract steps of DP (briefly)
- **2.** Details on a concrete example (*matrix chain multiplication*)
- 3. More examples!

6 Steps of Dynamic Programming

- **1.** Define **subproblems** (and relate to original problem)
- **2. Guess** (part of solution) → local brute force
- **3.** Set up **DP recurrence** (for quality of solution)
- 4. Recursive implementation with Memoization
- **5.** Bottom-up **table filling** (topological sort of subproblem dependency graph)
- **6. Backtracing** to reconstruct optimal solution
- ► Steps 1–3 require insight / creativity / intuition; Steps 4–6 are mostly automatic / same each time
- → Correctness proof usually at level of DP recurrence
- running time too! worst case time = #subproblems · time to find single best guess

When does DP (not) help?

- ▶ No Silver Bullet
 DP is the most widely applicable design technique, but can't always be applied
- **1.** Vitally important for DP to be correct:

Bellman's Optimality Criterion

For a correctly guessed fixed part of the solution, any optimal solution to the corresponding subproblems must yield an optimal solution to the overall problem (once combined).

at most polynomial in n

 Also, the total number of different subproblems should be "small" (DP potentially still works correctly otherwise, but won't be efficient.)

12.2 DP & Matrix Chain Multiplication

The Matrix-Chain Multiplication Problem

Consider the following exemplary problem

- ▶ We have a product $M_0 \cdot M_1 \cdot \cdots \cdot M_{n-1}$ of n matrices to compute
- ► Since (matrix) multiplication is associative, it can be evaluated in different orders.
- ► For non-square matrices of different sizes, different order can change costs dramatically
 - ► Assume elementary matrix multiplication algorithm:
 - \rightarrow Multiplying $a \times b$ -matrix with $b \times c$ matrix costs $a \cdot b \cdot c$ integer multiplications
- ▶ **Given:** Row and column counts c[0..n) and r[0..n) with r[i+1] = c[i] for $i \in [0..n-1)$ (corresponding to matrices M_0, \ldots, M_{n-1} with $M_i \in \mathbb{R}^{r[i] \times c[i]}$)
- ► **Goal:** parenthesization of the product chain with minimal cost really a binary tree with *n* leaves!

Matrix-Chain Multiplication – Example

Parenthesization	Cost (integer multiplications)				
$M_0 \cdot (M_1 \cdot (M_2 \cdot M_3))$	1000 + 40 000 + 8000	=	49 000		
$M_0 \cdot ((M_1 \cdot M_2) \cdot M_3)$	8000 + 1600 + 8000	=	17600		
$(M_0 \cdot M_1) \cdot (M_2 \cdot M_3)$	40000 + 1000 + 5000	=	46 000		
$(M_0 \cdot (M_1 \cdot M_2)) \cdot M_3$	8000 + 1600 + 200	=	9800		
$((M_0 \cdot M_1) \cdot M_2) \cdot M_3$	40000 + 1000 + 200	=	41 200		

first or last operation

V

Greedy fails both ways!

Matrix-Chain Multiplication – How about Brute Force?

If Greedy doesn't give optimal parenthesization, maybe just try all?

- ▶ parenthesizations for n matrices = binary trees with n leaves = binary trees with n 1 (internal) nodes
- ► How many such trees are there?
 - ▶ Let's write m = n 1;

$$ightharpoonup C_0 = 1, C_1 = 1, C_2 = 2, C_3 = 5$$

$$C_m = \sum_{r=1}^m C_{r-1} \cdot C_{m-r} \qquad (m \ge 1)$$

generating functions / combinatorics / guess (OEIS!) & check \dots

Can show
$$C_n = \frac{1}{n+1} {2n \choose n} \sim \frac{1}{\sqrt{\pi}} \cdot \frac{4^n}{n^{3/2}}$$

 \rightarrow exponentially many trees (almost 4^n)

$$C_{20} = 6564120420$$
, $C_{30} = 3814986502092304$

- → A brute-force approach is utterly hopeless
- → Dynamic programming to the rescue!

Matrix-Chain Multiplication – Step 1: Subproblems

- ▶ Key ingredient for DP: Problem allows for recursive formulation
- ▶ Often requires to solve a more general problem
- ► Here: **Subproblems** = Ranges of matrices [i..j) $0 \le i \le j \le n$ i. e., optimal parenthesization for each range $M_i, M_{i+1}, \dots, M_{i-1}$
- \rightarrow Original problem = range [0..n]

- 1. Subproblems
- 2. Guess!
- **3.** DP Recurrence
- 4. Memoization
- **5.** Table Filling
- 6. Backtrace

► Intuition:

- ► Any subtree in binary multiplication tree covers some range [i..j) (matrix multiplication is not commutative → left-right order has to stay)
- ▶ left and right factors of a multiplication don't "see/influence" each other

Matrix-Chain Multiplication – Step 2: Guess

- Usually, any subproblem can be split into smaller subproblems in different ways
- ▶ Which way to decompose gives best solution not known a priori
- → Assuming we can correctly *guess* this part; how to solve problem?
- ▶ Here: **Guess** last multiplication / root of binary tree
- \rightarrow index $k \in [i+1..j)$ so that [i..j) computed with **last** multiplication $(M_i \cdot \cdots \cdot M_{k-1}) \cdot (M_k \cdot \cdots \cdot M_{j-1})$
- \leadsto optimal parenthesization of M_i, \dots, M_{k-1} and M_k, \dots, M_{j-1} computed recursively (corresponds to subproblems [i..k) and [k..j))

- 1. Subproblems
- 2. Guess!
- **3.** DP Recurrence
- 4. Memoization
- 5. Table Filling
- 6. Backtrace

Matrix-Chain Multiplication – Step 3: DP Recurrence

- With subproblems and guessed part fixed, we try to express total value/cost of solution recursively
- → We ignore the actual solution and just compute its cost!
- ▶ Often good to prove correctness at level of recurrence

- 1. Subproblems
- 2. Guess!
- 3. DP Recurrence
- 4. Memoization
- **5.** Table Filling
- **6.** Backtrace
- ► Here: **Recurrence** for m[i, j] = total number of integer multiplications use in best parenthesization of [i..j]
- → Set up recurrence, including any base cases.

$$m[i,j] = \begin{cases} 0 & \text{recursive cost} & \text{cost of last multiplication} & \text{if } j-i \leq 1 \\ \min \left\{ \frac{m[i,k] + m[k,j] + r[i] \cdot r[k] \cdot c[j-1]}{m[i,k] + m[i,k] + r[i] \cdot r[k] \cdot c[j-1]} : k \in [i+1..j) \right\} & \text{otherwise} \end{cases}$$

Matrix-Chain Multiplication - Step 4: Memoization

- ► Write **recursive** function to compute recurrence
- ▶ But *memoize* all results!
- → First action of function: check if subproblem known
 - ► If so, return cached optimal cost
 - ▶ Otherwise, compute optimal cost and remember it!

- 1. Subproblems
- 2. Guess!
- 3. DP Recurrence
- 4. Memoization
- 5. Table Filling
- 6. Backtrace

```
procedure totalMults(r[i..j), c[i..j))
        if j - i \le 1
                                                                                                                              if i - i < 1
             return ()
                                                         m[i,j] =
3
                                                                      \min \left\{ m[i,k] + m[k,j] + r[i] \cdot r[k] \cdot c[j-1] : k \in [i+1..j) \right\}
                                                                                                                              otherwise
        else
             best := +\infty
5
             for k := i + 1, ..., j - 1
                  m_l := \text{cachedTotalMults}(r[i..k), c[i..k))
                  m_r := \text{cachedTotalMults}(r[k..i], c[k..i])
                                                                        procedure cachedTotalMults(r[i..j), c[i..j))
                  m := m_l + m_r + r[i] \cdot r[k] \cdot c[j-1]
                                                                                //M[0..n)[0..n) initialized to NULL at start
                                                                        14
                  best := min\{best, m\}
                                                                                if M[i][j] == NULL
                                                                        15
10
             end for
                                                                                      M[i][j] := totalMults(r[i..j), c[i..j))
                                                                         16
11
             return best
                                                                                 return M[i, j]
12
                                                                        17
```

Matrix-Chain Multiplication – Example Memoization

$$n = 4$$

 $r[0..n) = [10, 80, 50, 2]$
 $c[0..n) = [80, 50, 2, 10]$

i j	0	1	2	3	4
0	0	0	40000	9600	9800
1	_	0	0	8000	9600
2	_	_	0	0	1000
3	_	_	_	0	0
4	_	_	_	_	0

Matrix-Chain Multiplication – Runtime Analyses

```
procedure totalMults(r[i..i), c[i..i))
        if j - i \le 1
             return ()
        else
             hest := +\infty
 5
             for k := i + 1, ..., j - 1
                  m_l := \text{cachedTotalMults}(r[i..k), c[i..k))
                  m_r := \text{cachedTotalMults}(r[k..j), c[k..j))
                  m := m_l + m_r + r[i] \cdot r[k] \cdot c[j-1]
                  best := min\{best, m\}
10
             end for
11
             return best
12
```

```
13 procedure cachedTotalMults(r[i..j), c[i..j))

14 //M[0..n)[0..n) initialized to NULL at start

15 if M[i][j] == NULL

16 M[i][j] := totalMults(r[i..j), c[i..j))

17 return M[i,j]
```

- ► With memoization, compute each subproblem at most once
- ► nonrecursive cost (totalMults): O(j i) = O(n)
- Number of subproblems [i..j) for $0 \le i \le j \le n$

$$\sum_{0 \le i \le j \le n} 1 = \sum_{i=0}^{n} \sum_{j=i}^{n} 1 = \Theta(n^{2})$$

 \rightsquigarrow total running time $\Theta(n^3)$

Matrix-Chain Multiplication – Step 5: Table Filling

- ► Recurrence induces a DAG on subproblems (who calls whom)
 - Memoized recurrence traverses this DAG
 - We can slightly improve performance by systematically computing subproblems following a fixed topological order
- ▶ **Topological order** here: by **increasing length** $\ell = j i$, then i

```
1. Subproblems
```

- 2. Guess!
- 3. DP Recurrence
- 4. Memoization
- 5. Table Filling
- 6. Backtrace

```
1 procedure totalMultsBottomUp(r[0..n), c[0..n))
       M[0..n)[0..n) // M[i][j] stores m[i, j]
       for \ell = 0, 1, ..., n // iterate over subproblems ...
            for i = 0, 1, ..., n // ... in topological order
                i := i + \ell
                if \ell < 1
                     M[i][j] := 0
                 else
                     M[i][j] := +\infty
                     for k := i + 1, ..., j - 1
10
                          m := M[i][k] + M[k][j] + r[i] \cdot r[k] \cdot c[j-1]
11
                          M[i][j] := \min\{M[i][j], m\}
12
       return M[0..n)[0..n)
13
```

- ► Same Θ-class as memoized recursive function
- In practice usually substantially faster
 - lower overhead
 - predictable memory accesses

Matrix-Chain Multiplication – Step 6: Backtracing

- ► So far, only determine the **cost** of an optimal solution
 - But we also want the solution itself!
- ▶ By *retracing* our steps, we can determine one
- ► Here: output a parenthesized term

```
procedure matrixChainMult(r[0..n), c[0..n))
       M[0..n)[0..n) := totalMultsBottomUp(r[0..n), c[0..n))
       return traceback([0..n))
5 procedure traceback([i..j))
       if i - i = 1
           return Mi
       else
           for k := i + 1, ..., j - 1
                m := M[i][k] + M[k][j] + r[i] \cdot r[k] \cdot c[j-1]
10
                if M[i][j] == m
11
                    return (traceback([i..k))) \cdot (traceback([k..i)))
12
           end for
13
       end if
14
```

- 1. Subproblems
- 2. Guess!
- 3. DP Recurrence
- 4. Memoization
- 5. Table Filling
- 6. Backtrace

- backtracing through M has at most the same complexity as computing M
- ► speedup possible by remembering correct guess *k* for each subproblem

12.3 Greedy as Special Case of DP

Dynamic Greedy

- Every Greedy Algorithm can also be seen as a DP algorithm without guessing
- → For new problems, it can help to first follow the DP roadmap and then check if we can select the "correct" guess without local brute force
- ▶ If so, we then recurse on a single branch of subproblems
- Greedy Algorithm doesn't need memoization or bottom-up table filling, but can do direct recursion instead

Recall Unit 11

The Activity selection problem

- Activity Selection: scheduling for single machine, jobs with fixed start and end times pick a subset of jobs without conflicts
 Formally:
 - ▶ **Given:** Activities $A = \{a_0, \dots, a_{n-1}\}$, each with a start time s_i and finish time f_i $(0 \le s_i < f_i < \infty)$
 - ▶ Goal: Subset $I \subseteq [0..n)$ of tasks such that $i, j \in I \land i \neq j \implies [s_i, f_i) \cap [s_j, f_j) = \emptyset$ and |I| is maximal among all such subsets
 - ▶ We further assume that jobs are sorted by finish time, i. e., $f_0 \le f_1 \le \cdots \le f_{n-1}$ (if not, easy to sort them in $O(n \log n)$ time)

31

DP Algorithm for Activity Selection

- **1. Subproblems:** $A_{i,j} = \{a_{\ell} \in A : s_{\ell} \ge f_i \land f_{\ell} \le s_j\}$ (after a_i finishes and before a_j begins)
- **2.** Guess: Task $k \in I^*$

- 1. Subproblems
- 2. Guess!
- 3. DP Recurrence
- 4. Memoization
- 5. Table Filling
- 6. Backtrace
- **3. DP Recurrence:** Denote $c[i, j] = I^*(A_{i,j}) = \text{maximum #independent tasks in } A_{i,j}$

$$\sim c[i,j] = \begin{cases} 0, & \text{if } A_{i,j} = \emptyset; \\ \max\{c[i,k] + c[k,j] + 1 : a_k \in A_{i,j}\} & \text{otherwise.} \end{cases}$$

- **4.−6.** *Omitted* (can be done following the standard scheme)
 - **4.** Problem-specific insight from Unit 11 \leadsto Can always use $k = \min\{k : a_k \in A_{ij}\}$ (earliest finish time)

No guess needed!

12.4 The Bellman-Ford Algorithm

Back to Shortest Paths!

- ► Consider again the single-source shortest path problem (SSSPP) on weighted digraphs
- ▶ We left open how to deal with negative-weight edges (in general graphs)!

Shortest Paths as DP

12.5 Making Change in pre 1971 UK

Pre-Decimal English Coins

Making Change by DP

Exact Knapsack Solution by DP

Pseudopolynomial Algorithms

12.6 Optimal Merge Trees & Optimal BSTs

Recall Unit 4

Good merge orders

- Let's take a step back and breathe.
- ► Conceptually, there are two tasks:
 - **1.** Detect and use existing runs in the input $\rightsquigarrow \ell_1, \ldots, \ell_r$ (easy)
 - 2. Determine a favorable order of merges of runs ("automatic" in top-down mergesort)

Merge cost = total area of

= total length of paths to all array entries $- \sum_{z \in Set} det(zz) denth(zz)$

$$= \sum_{w \text{ leaf}} weight(w) \cdot depth(w)$$

well-understood problem with known algorithms

optimal merge tree \downarrow = optimal binary search tree for leaf weights ℓ_1, \ldots, ℓ_r (optimal expected search cost)

29

Optimal Alphabetic Trees

Optimal Binary Search Trees

The Bisection Heuristic

12.7 Edit Distance

Edit Distance

Edit Distance Example

Dynamic Programming – Summary