ATmega328P

Narendiran S

July 28, 2020

article

 $[a4paper,\,bottom=0.5in,\,top=0.5in,\,left=0.5in,\,right=0.5in]\\ geometry\,\,wrapfig\,\,natbib\,\,url\,\,xcolor\,\,caption\,\,hyperref\,\,\,bytefield$

amsfonts float enumitem

graphicx

ATmega328P Basics Narendiran S July 28, 2020

0.1 Features

- 8 bit CMOS μ C with RISC Architecture
- 32 x 8-bit General purpose registers
- 32 KByte of flash program memory
- 1 KByte EEPROM
- 2 KByte of internal SRAM
- On-chip 2-cycle multiplier
- Optional boot code section with independent lock bits
 - In-system programming by on-chip boot program
 - True read-while-write operation
- Two 8-bit Timer/Counter with separate prescaler and compare mode
- One 16-bit Timer/Counter with separate prescaler, compare mode and capture mode
- Real time counter with separate oscillator
- Six PWM channels
- 6/8(DEPENDING ON PACKAGE) channel 10 bit ADC Also with Temperature measurement
- $\bullet\,$ Programmable serial USART
- 2-wire serial interface (Phillips I2C compatible)
- Programmable watchdog timer with separate on-chip oscillator
- On-chip analog comparator
- Interrupt and wake-up on pin change
- Power-on reset and programmable brown-out detection
- External and internal interrupt sources
- Six sleep modes: Idle, ADC noise reduction, power-save, power-down, standby and external standby
- 2.7V to 5.5V for ATmega328P

0.2. BLOCK DIAGRAM

3

0.2 Block Diagram

blockDiagram.png

0.3 Pins

0.3.1 Power Pins

VCC, Gnd - 2.7V to 5.5V

0.3.2 PORTB - PB7:PB0

- Bidirection I/O with internal pull-up resistor(selectable for each bit)
- Tristate when reset
- Depending on the clock selection fuse settings,
 - PB6 input of inverting oscillator amplifier and input to internal clock operating circuit
 - PB7 output of inverting oscillator amplifier
- If internal calibrated RC oscillator is used as clock source, PB7 and PB6 is used as TOSC2 and TOSC1 input for Timer/Counter2

0.3.3 PORTC - PC5:PB0

- Bidirection I/O with internal pull-up resistor(selectable for each bit)
- Tristate when reset

$0.3.4 \quad PC6/\overline{RESET}$

- Low level on this pin will gnerate reset, even if no clock running.
- RSTDIBL fuse == programmed(0) PC6 is input pin.
- RSTDIBL fuse == unprogrammed(1) PC6 is reset pin.

0.3.5 PORTD - PD7:PD0

- Bidirection I/O with internal pull-up resistor(selectable for each bit)
- Tristate when reset

0.3.6 AV_{CC}

- Supply voltage pin for A/D converter
- Connected to External Vcc when not used
- Connected to Vcc through LPF when used

0.3.7 AREF

Analog reference pin of A/D Converter

0.3.8 ADC7:ADC6

Analog input to ADC(10bit ADC)

0.4 Modes

0.4.1 Idle Mode

Stops the CPU while allowing SRAM, TImer/Counters, USART, 2-wire serial interface, SPI port and interrupt system to continue functioning.

0.4.2 Power-Down Mode

Saves the register contents but freezes the oscillator, disabling all other chip functions untill next interrupt or hardware reset.

0.5. AVR CPU CORE 5

0.4.3 Power-Save Mode

The asynchonous timer continues to run, allowing user to maintain timer base while reset of devices is sleeping.

0.4.4 ADC Noise reduction mode

Stops CPU and all I/O modules except asynchonous timer and ADC to minimize switching noise during ADC conversions.

0.4.5 Standby Mode

The crystall/oscillator is running while reset of devices is sleeping. Allows very fast start-up combined with low power consumption.

he main function of CPU co	re is access memory, per	rform caluclations, o	control peripherals an	d handle interrupts.
CoreBlockDiagram.png				

- For performance and parallelism, the AVR uses Harvard Architecture with seperate memories and buses for program and data.
- Instructions in Program memory are exectued with a single level pipelining.
- The program memory is In-system Reprogrammable Flash memory.
- The register file consist of 32 x 8-bit General Purpose Registers with a single clock cycle assess time.
- One ALU operation uses two operatands from register file and store back the result to register file in one clock cycle.
- Six 32-bit register combine to form the X-, Y- and Z- registers which help in 16-bit indirect address register pointer for data space.
- One of these pointers acts as address pointer for look-up tables in Flash Program Memory.
- Program memory address cotains 16-bit or 32-bit Instructions.
- Program Flash memory space is divided into two sections each section have dedicated lock bits for read/write protection.
 - Boot Program section
 - Application Program section
- I/O memory space contains 64 addresses for CPU peripheral functions as control register, SPI and Other I/O functions as a control register, SPI and Other I/O functions as a control register, SPI and Other I/O functions as a control register, SPI and Other I/O functions as a control register, SPI and Other I/O functions as a control register, SPI and Other I/O functions as a control register, SPI and Other I/O functions as a control register, SPI and Other I/O functions as a control register, SPI and Other I/O functions as a control register, SPI and Other I/O functions as a control register, SPI and Other I/O functions as a control register, SPI and Other I/O functions as a control register, SPI and Other I/O functions as a control register, SPI and Other I/O functions as a control register, SPI and Other I/O functions as a control register, SPI and Other I/O functions as a control register, SPI and Other I/O functions as a control register, SPI and Other I/O functions as a control register file from 0x20 0x5F.
- Has extended I/O space from 0x60 0xFF in SRAM.

0.5.1 Reset and Interrupt vectors

- Interrupts and reset vectors have seperate program vector in program memory space.
- Interrupts maye be disbaled when boot lock bits BLB02 or BLB12 are programmed.
- Lowest ddresses in program memory space are reset and interrupt vectors.
- The lower the addess the higher the priority.
- RESET has the highest followed by INT0(the external interrupt request 0).
- The interrupt vectors can be moved to start of boot flash section by setting *IVSEL* bit of **MCUCR** (MCU control register).
- THe reset can be moved to start of boot flash sectio by programming the BOOTRST fuse.

0.5.2 Interrupt Handling

- The *I-bit* (global interrupt enable bit) of **Status register** must be enabled.
- When a interrupt occurs, I-bit (global interrupt enable bit) is cleared and all interrupts are disabled.
- The user can write logic one to *I-bit* to enable nested interrupts.
- ullet The $I\!-\!bit$ is automatically set when returning from interrupt Instructions.

0.6 AVR Memories

Two main memory spaces - Data memory and Program memory space and a EEPROM memory for data storage.

0.6. AVR MEMORIES 7

0.6.1 In-System Reprogrammable Flash Program Memory

- 32 KBytes on-chip in-system reprogrammable flash memory for program space.
- Since, the Instructions are all 16-bit or 32-bit wide, the flash(program space) is organized as 16K x 16.
- Endurance of atleast 10,000 write/erase cycle.
- For software security, Flash program memory space is divided into
 - Boot Loaded section
 - Application Program section
- The Program Counter is bits wide and thus can address 16K program memory location.

programMemoryFlash.png	

0.6.2 SRAM Data Memory

- The ATmega328P is a complex microcontroller with more peripheral units than can be supported within the 64 locations reserved in the opcode for the IN and OUT instructions.
- For the extended I/O space from 0x60 0xFF in SRAM, only the ST/STS/STD and LD/LDS/LDD instructions can be used.

dataMemorySRAM.png

- The lower 2303(0x08FF) data memory locations addresses both the register files, the I/O memory, extended I/O memory and the internal data SRAM.
 - The first 32 location addresses the register file.
 - The next 64 location addresses the standard I/O memory.
 - The following 160 location address the extended I"O memory.
 - The last 2048 location address the internal data SRAM.

0.6.3 EEPROM Data Memory

- 1 K Byte of data EEPROM memory.
- Organized as seperate data space.
- \bullet Endurance of at least 100,000 write/erase cycle.
- EEPROM are accessible in I/O space.
- Specific Write procedure is followed.

0.6.4 I/O Memory

- I/O and peripherals are placed in the I/O spaces.
- All I/O locations are accessed by LD/LDS/LDD and ST/STS/STD instructions.
- The I/O registers withing 0x00 0x1F are directly bit-accessible using SBI and CBI Instructions.

0.7 System Clock and Clock Options

clkDistribution.png

0.7.1 Clock Systems

CPU Clock

- clk_{CPU} is routed to all parts of AVR core.
- General purpose register file, Status register and data memory holding stack pointer.
- Halting CPU clock will inhibts the core from perfrorming general operations and caluclations.

I/O Clock

- $clk_{I/O}$ is used in I/O modules like Timers/Counter, SPI, USART, etc.
- For external interrupt module also but some external interrupts are detected by asynchonous logic and can be used even when I/O clock is halted.

Flash Clock

• clk_{FLASH} controls operation of flash interface.

Asynchronous Timer Clock

- clk_{ASY} allows asynchonous Timer/Counter to be clocked directly from external clock or an external 32 kHz clock crystall.
- This clock allows using Timer/COunter as real-time counter even when device is in sleep mode.

ADC Clock

- \bullet clk_{ADC} haddedicated clock domain
- Gives more accurate ADC conversion result

0.7.2 Clock Sources

Selectable clock sources using flash fuse bits.

CKSEL[3:0]	Device Clocking Option
1111 - 1000	Low power crystall oscillator
0111 - 0110	Full swing crystal oscillator
0101 - 0100	Low frequency crystal oscillator
0011	Internal 128kHz RC oscillator
0010	Calibrated internal RC oscillator
0000	External clock

For fuses, "1" denotes unprogrammed and "0" denotes programmed.

Default Clock Source

- Devices is shipped with interface RC oscillator at 8.0MHz with fuse CKDIV8 programmed meaning ----> the internal oscillator produces a 8.0 Mhz clock but due to CKDIV8 being programmed the system clock gets $\frac{8.0MHz}{8} = 1MHz$.
- The startup time is set to maximum and time-out period enabled.
- Default configuration ---> CKSEL = 0010; SUT = 10; CKDIV8 = 0.

Clock Start Sequence

- Clock Source needs a sufficient V_{CC} and minimum number of oscillating cycles before stablizing.
- To ensure sufficient V_{CC} , the device issues an internal reset with time-out delay (t_{TOUT}) .
- The number of cyles in the dealy is set by SUTx bits and CKSELx fuse bits.
- The main purpose of dealy is to keep AVR in reset until it is supplied with minimal V_{CC} .
- The start-up sequence for the clock includes both the time-out delay and the start-up time when the device starts up from reset.

Clock Output Buffer

- \bullet device can output system clock on the CLKO pin.
- \bullet enabled by CKOUT fuse.
- any clock source can be used to output from this pin.

TIMER/COUNTER OSCILLATOR

- uses the same crystal oscillator for low-frequency oscillator and Timer/Counter oscillator.
- Since, It shares the Timer/Counter oscillator pins *TOSC1* and *TOSC2* pins with *XTAL1* and *XTAL2*, the system clock must be four times the oscillator and so the Timer/Counter oscillator can only be used when the calibrated internal RC oscillator is selected as system clock source.

Low Power Crystall OSscillator

Figure 1: VGA Connector

- XTAL1 and XTAL2 are inputs and outpus of an inverting amplifier which can be configured as on-chip oscillator.
- Either Quartz Crystall or Ceramic resonator can be used.
- Crystal Oscillator is a low power oscillator with reduced voltage swing on the XTAL2 output.
- Not capable of driving other clock inputs.
- C1 and C2 should be of the same values 12pF to 22pF.
- The CKSEL[0] fuse together with the SUT[1:0] fuses select the start-up times as shown in Table below.

Full Swing Crystal Oscillator

Figure 2: VGA Connector

- XTAL1 and XTAL2 are inputs and outpus of an inverting amplifier which can be configured as on-chip oscillator.
- Either Quartz Crystall or Ceramic resonator can be used.
- Full-Swing with rail-to-rail swing on the XTAL2 outtput.
- Can drive other clock input

 $\bullet\,$ Power consumption is more than Low power crystal oscillator

• Needs $V_{CC} = 2.7$ to 5.5 V
• C1 and C2 should be of the same values – 12pF to 22pF.
ullet The $CKSEL[0]$ fuse together with the $SUT[1:0]$ fuses select the start-up times as shown in Table below.
startUpTimesLowPowerCrystallOscillator.png

Low Frequency Crystal Oscillator

- $\bullet\,$ To use with 32.765kHz watch crystal
- \bullet Crystal Cap(CL) 6.5,9.0 and 12.5pF
- CKSEL[3:0] == 0101.
- The Start-up Times for the Low-frequency Crystal O scillator Clock Selection

${\tt startUpTimelowFrequencyCrysal0scillator.png}$	

Calibrated Internal RC Oscillator

- \bullet 8.0MHz clock
- $\bullet\,$ Voltage and temperature dependent
- Calibration is done in **OSCCAL**.
- \bullet Default mode shipeed with CKDIV8 prescalar programmed to prescale causing the system clock to be 1.0MHz.
- CKSEL[3:0] == 0010.

14	
	startUpTimeCalibratedInternalRCOscillator.png

128kHz Internal Oscillator

 \bullet low power oscillator with 128kHz frequency

${\tt startUpTimeCalibratedInternalRCOscillator.png}$	

External Clock

 ${\tt externalClockciruit.png}$

- $\bullet\,$ XTAL1 must be connected to external source.
- $\bullet~0$ 16 MHz frequency.
- CKSEL == 0000.

• Start-up times are det	ermined by the SUT	fuses as		
${ t startUpTimeExternalC}$	lock.png			

0.7.3 System Clock Prescalar

- The system clock can be divided by setting the **CLKPR** (Clock Prescale Registers) value.
- Used to decrease the system clock frequency and the power consumption when the requirement for processing power is low.
- Affects the clk_{SYS} , clk_{IO} , clk_{ADC} , clk_{CPU} and clk_{FLASH} .
- \bullet A special write procedure is followed to change ${\it CLKPS}$ bits:
 - (i) Write the clock prescaler change enable (CLKPCE) bit to one and all other bits in CLKPR register to zero.
 - (ii) Within four cycles, write the desired value to *CLKPS* bit while writing a zero to *CLKPCE*.
 - (iii) Interrupt must be disabled.

Register Description

OSCCAL - Oscillator Calibration Register

7	6	5	4	3	2	1	0	
CAL7	CAL6	CAL5	CAL4	CAL3	$\mathrm{CAL2}$	CAL1	CAL0	

- The oscillator calibration register is used to trim the calibrated internal RC oscillator to remove process variations from the oscillator frequency.
- A pre-programmed calibration value is automatically written to this register during chip reset.
- The application software can write this register to change the oscillator frequency.
- If EEPROM is to be used, shouldn't do calibration for more than 8.8 MHz.
- *CAL7* bit detected range of operation of oscillator. Setting zeros gives the Lowest requency range, setting this bit to 1 gives the highest frequency range.
- The CAL[6:0] bits are used to tune the frequency within the selected range. A setting of 0x00 gives the lowest frequency in that range, and a setting of 0x7F gives the highest frequency in the range.

CLKPR - Clock Prescale Register

7	6	5	4	3	2	1	0	
CLKPCE	-	-	-	CLKPS3	CLKPS2	CLKPS1	CLKPS0	

- CLKPCE Cloc k Prescaler Change Enable must be written to logic one to enable change of the CLKPS bits.
- The *CLKPCE* bit is only updated when the other bits in CLKPR are simultaneously written to zero.

CLKPS[3:0]	Clock Division Facter
0000	1
0001	2
0010	4
0011	8
0100	16
0101	32
0110	64
0111	128
1000	256

- CLKPS[3:0] Clock Prescaler Select Bits define the division factor between the selected clock source and the internal system clock.
- The *CKDIV8* fuse determines the initial value of the *CLKPS* bits.
 - If *CKDIV8* is unprogrammed, the *CLKPS* bits will be reset to 0000.
 - If CKDIV8 is programmed, CLKPS bits are reset to "0011", giving a division factor of 8 at start up.
- Note that any value can be written to the CCLKPS bits regardless of the CCKDIV8 fuse setting.

0.8 Power Management and Sleep modes

- Sleep modes enable the application to shut down unused modules in the MCU, thereby saving power.
- When enabled, the brown-out detector (BOD) actively monitors the power supply voltage during the sleep periods.
- To further save power, it is possible to disable the BOD in some sleep modes.

0.8.1 Sleep Modes

- To enter any of the six sleep modes, the SE bit in SMCR register must be written to logic one.
- The SM[2:0] bits in the SMCR register select which sleep mode.
- *SLEEP* instruction must be executed.
- If an enabled interrupt occurs while the MCU is in a sleep mode, the MCU wakes up.
- The MCU is then halted for four cycles in addition to the start-up time, executes the interrupt routine, and resumes execution from the instruction following SLEEP.
- The contents of the register file and SRAM are unaltered when the device wakes up from sleep.
- If a reset occurs during sleep mode, the MCU wakes up and executes from the reset vector.
- The Active Clock Domains and Wake-up Sources in the Different Sleep Modes,

sleepModeDomain.png		

Idle Mode

- Stops the CPU but allows the SPI, USART, analog comparator, ADC, 2-wire serial interface, Timer/Counters, watchdog, and the interrupt system.
- Halts clk_{CPU} and clk_{FLASH} and allows other clocks.
- Idle mode enables the MCU to wake up from external triggered interrupts as well as internal ones like the timer overflow and USART transmit complete interrupts.

ADC Noise Reduction Mode

- Stops the CPU but allows ADC, the external interrupts, the 2-wire serial interface address watch, Timer/Counter2 and the watchdog.
- Halts $clk_{I/O}$, clk_{CPU} and clk_{FLASH} and allows other clocks.
- Improves the noise environment for ADC, enabling higher resolution measurement.
- ADC Noise Reduction Mode enables the MCU to wake up from external reset, a watchdog system reset, a watchdog interrupt, a brown-out reset, a 2-wire serial interface address match, a Timer/Counter2 interrupt, an SPM/EEPROM ready interrupt, an external level interrupt on INT0 or INT1 or a pin change interrupt.

Power-down Mode

- Stops the external oscillator but allows the external interrupts, the 2-wire serial interface address watch, and the watchdog.
- Halts all clocks and asynchronous modules only.
- Power-down mode enables the MCU to wake up from an external reset, a watchdog system reset, a watchdog interrupt, a brown-out reset, a 2-wire serial interface address match, an external level interrupt on INT0 or INT1, or a pin change interrupt.

Power-save Mode

- Only diffence from Power-down mode is Timer/Counter2 is enabled and it will run.
- Timer overflow or output compare event from Timer/Counter2 can wake up.

Standby Mode

- Selects the external crystal clock option.
- Identical to power-down except oscillator is running.

External Standby Mode

- Selects the external crystal clock option.
- Identical to power-Save except oscillator is running.

Register Description

SMCR – Sleep Mode Control Register

7	6	5	4	3	2	1	0
-	-	-	-	SM2	SM1	SM0	SE

SM	[2:0]	Sleep Mode		
0	00	Idle		
0	01	ADC Noise Reduction		
0	10	Power-down		
0	11	Power-save		
1	10	Standby		
1	11	External Standby		

• **SE** bit must be written to logic one just before the SLEEP instruction is executed, to make the MCU enter the sleep mode.

0.8.2 Power Reduction Register

- To stop the clock to individual peripherals to reduce power consumption.
- The current state of the peripheral is frozen and the I/O registers can not be read or written.
- Peripheral should in most cases be disabled before stopping the clock.
- Wake up peripherals can be done by writing zero to bits in **PRR**.

Register Description

PRR - Power Reduction Register

7	6	5	4	3	2	1	0
PRTWI	PRTIM2	PRTIM0	-	PRTIM1	PRSPI	PRUSART0	PRADC

Bits	Name
PRTWI	Power Reduction TWI
PRTIM2	Power Reduction Timer/Counter2
PRTIM1	Power Reduction Timer/Counter1
PRTIM0	Power Reduction Timer/Counter0
PRSPI	Power Reduction Serial Peripheral Interface
PRUSART0	Power Reduction USART0
PRADC	Power Reduction ADC

0.8.3 Minimizing Power Consumption

- In general, sleep modes should be used as much as possible.
- ADC should be disabled before entering any sleep mode.
- Analog comparator should be disabled in all sleep modes.
- If the brown-out detector is not needed by the application, this module should be turned off by BODLEVEL
 fuses
- If Internal Voltage Reference is not needed and ADC or analog comparator or BOD is not needed, the Internal Voltage Reference can be disabled.
- If the watchdog timer is not needed in the application, the module should be turned off.
- If On-chip Debug System is not needed, can be disabled by DWEN fuse.
- For Port pins,
 - No pins drive resistive loads.
 - Input buffers are disabled when I/O clock and ADC clocks are stopped.
 - If the input buffer is enabled and the input signal is left floating or have an analog signal level close to V CC
 /2, the input buffer will use excessive power.
 - Digital input buffers can be disabled by writing to the digital input disable registers (DIDR1 and DIDR0).

0.9 RESETTING AVR

All I/O registers are set to their intial values and program starts execution form reset vector.

0.9.	RESETTING AVR	21
	resetLogic.png	
0.9.	1 Reset Sources	
(I)	Power-on Reset - MCU resets when supply voltage is below the power-on reset threshold (V_{POT}) .	
(II)	External Reset - MCU resets when low level is present on \overline{RESET} is helow for minimum pulse length.	
(III)	Watchdog System reset - MCU resets when watchdog timer period expires and watchdog system reset enabled.	mode is
(IV)	Brown-out reset - MCU resets when supply voltage V_{CC} is below brown-out threshold (V_{BOT}) and b detected is enabled.	rown-out

Power-on Reset

POR1.png	POR2.png
POR1.png	POR2.png

MCU Start-up, \overline{RESET} Tied to V_{CC}

MCU Start-up, \overline{RESET} Extended Externally

- A power-on reset (POR) pulse is generated by an on-chip detection circuit.
- The POR is activated whenever V_{CC} is below the detection level.
- The POR circuit can be used to trigger the start-up reset, as well as to detect a failure in supply voltage.
- Reaching the power-on reset threshold voltage invokes the delay counter, which determines how long the device is kept in RESET after V_{CC} rise.

External Reset

externalReset.png

- An external reset is generated by a low level on the \overline{RESET} pin.
- Shorter pulses are not guaranteed to generate a reset.

0.9. RESETTING AVR

• When the applied signal reaches the reset threshold voltage – V_{RST} – on its positive edge, the delay counter starts the MCU after the time-out period – t_{OUT} – has expired.

 \bullet The external reset can be disabled by the RSTDISBL fuse.

Brown.	out I	Doto	ation
Brown.	-0117 1	IOTO	·rımı

brownOutReset.png		

- On-chip brown-out detection (BOD) circuit for monitoring the V_{CC} level during operation by comparing it to a fixed trigger level.
- \bullet The trigger level for the BOD can be selected by the ${\color{blue}BODLEVEL}$ fuses.

Watchdog System Reset

watchDogReset.png

- When the watchdog times out, it will generate a short reset pulse of one CK cycle duration.
- \bullet On the falling edge of this pulse, the delay timer starts counting the time-out period t_{OUT} .