PATENT ABSTRACTS OF JAPAN

(11)Publication number:

06-264199

(43)Date of publication of application: 20.09.1994

(51)Int.Cl.

C22C 45/10

(21)Application number: 05-051964

(71)Applicant: MASUMOTO TAKESHI

INOUE AKIHISA UNITIKA LTD

TEIKOKU PISTON RING CO LTD

(22)Date of filing:

12.03.1993

(72)Inventor: MASUMOTO TAKESHI

INOUE AKIHISA AMITANI KENJI

NISHIYAMA NOBUYUKI

YOSHII ISAMU

(54) TI SERIES AMORPHOUS ALLOY

(57)Abstract:

PURPOSE: To develop a Ti series amorphous alloy having a supercooled soln. range with a wide temp. width and excellent in strength by adding a specified amt. of Fe, Co or the like to a Ti-Cu-Ni series alloy having a specified compsn. and rapidly solidifying it from the molten state. CONSTITUTION: The molten metal of a Ti alloy having a compsn. expressed by the formula; Ti100-X-Y-ZCuXNiYMZ (wherein M denotes one or two kinds of Fe and Co, and as for X, Y and Z, by atomic %, 5≤X≤40, 0≤Y≤40, 2≤Z≤40 and 30≤X+Y+Z≤70) is melted in an atmosphere of an inert gas such as Ar and is sprayed on the surface of a roll made of Cu rotating at a high speed, which is rapidly cooled and solidified to form a Ti alloy thin film having an amorphous structure on the surface of a roll made of Cu. Thus, the objective amorphous Ti series alloy having high strength of ≥1200MPa and a wide supercooled soln. range of ≥50°C can be obtd.

LEGAL STATUS

[Date of request for examination]

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's

decision of rejection]
[Date of extinction of right]

(19)日本国特許庁 (JP) (12) 公開特許公報(A)

(11)特許出願公開番号

特開平6-264199

(43)公開日 平成6年(1994)9月20日

(51) Int.Cl.⁵

識別記号 庁内整理番号

FΙ

技術表示箇所

C 2 2 C 45/10

審査請求 未請求 請求項の数1 OL (全 5 頁)

(21)出願番号

特願平5-51964

(71)出願人 592039196

増本 健

(22)出願日

平成5年(1993)3月12日

宮城県仙台市青葉区片平2丁目1-1 東

北大学金属材料研究所内

(71)出願人 592039200

井上 明久

宮城県仙台市青葉区片平2丁目1-1 東

北大学金属材料研究所内

(71)出願人 000004503

ユニチカ株式会社

兵庫県尼崎市東本町1丁目50番地

(74)代理人 弁理士 青山 葆 (外2名)

最終頁に続く

(54) 【発明の名称】 Ti系非晶質合金

(57)【要約】

【目的】 過冷却液体領域の広い温度幅を有し、かつ、 実用に耐えうる強度を有するTi系非晶質合金材料を提 供する。

【構成】 式:Ti100-x-y-, Cu. Niy M.

[式中、MはCoおよびFeよりなる群から選択される1 種または2種の元素、x、yおよびzは、それぞれ、原 子%を表し、 $5 \le x \le 40$ 、 $0 \le y \le 40$ 、 $2 \le x \le 4$ 0および $30 \le x + y + z \le 70$ を満足する] で示され る組成を有する非晶質合金。

【特許請求の範囲】

【請求項1】 式: Ti100-r-y-, Cur Niy M.

[式中、MはCoおよびFeよりなる群から選択される1 種または2種の元素、x、yおよびzは、それぞれ、原 子%を表し、 $5 \le x \le 40$ 、 $0 \le y \le 40$ 、 $2 \le x \le 4$ 0および30 $\leq x+y+z\leq 7$ 0を満足する] で示され る組成を有する非晶質合金。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、広い過冷却液体領域を 10 有する強度特性に優れたTi系非晶質合金に関するもの である。

[0002]

【従来の技術】溶融状態の合金を急冷することにより薄 帯状、フィラメント状、粉粒体状等、種々の形状を有す る非晶質金属材料が得られることはよく知られている。 非晶質金属薄帯は、片ロール法、双ロール法、回転液中 紡糸法等の方法によって容易に製造できるので、これま でにもFe系、Ni系、Co系、Pd系、Cu系あるいはZr 系合金について数多くの非晶質金属薄帯や細線が得られ 20 ている。しかし、前記した製造法によって作製できる非 晶質合金の形状は薄帯や細線に限られており、それらを 用いて最終製品形状へ加工することも困難なことから、 工業的にみてその用途がかなり限定されていた。

【0003】一方、非晶質合金を加熱すると特定の合金 系では結晶化せずに過冷却液体となり、急激な粘性低下 を示すことが知られており、例えばZr-Al-Cu非晶 質合金では、結晶化せずに過冷却液体として存在できる 温度域が120℃程度であることが知られている [Me t. Trans. J I M、Vol. 32 (1991)、1005頁 30 参照]。このような過冷却液体状態では、合金の粘性が 低下しているために閉塞鋳造などの方法により任意形状 の非晶質合金成形体を作製することが可能であり、非晶 質合金からなる歯車なども作製されている(日刊工業新 聞1992年11月12日参照)。 したがって、広い過 冷却液体領域を有する非晶質合金は、優れた加工性を備 えていると言える。このような過冷却液体領域を有する 非晶質合金の中でも、Ti-Ni-Cu合金は50℃以上 の過冷却液体領域の温度幅を有し、耐食性に優れるなど 実用性の高い非晶質合金とされていた [第110回日本 40] 金属学会講演概要(1992)、273頁参照]。

[0004]

【発明が解決しようとする課題】前述したTi-Ni-C u非晶質合金は、50℃以上の過冷却液体領域の温度幅 ~有し、耐食性に優れるなどの種々の特性を備えているも のの、強度は引張り強度で最高1000MPa程度であ り、Ti-6wt%Al-4wt%V等の実用Ti系合金に比 べて強度が低く、実用に耐えうる強度を有しているとは 言えなかった。

[0005]

【課題を解決するための手段】そこで本発明者らは、こ れらの現状に鑑みて、過冷却液体領域の広い温度幅を有 し、かつ、実用に耐えうる強度を有するTi系非晶質合 金材料を提供することを目的として鋭意検討を行った結 果、特定の組成を有するTi-Cu-Ni系に特定量のFe またはCoよりなる群から選択される1種または2種の 元素を添加した合金を溶融し、液体状態から急冷固化さ せることにより、過冷却液体領域の広い温度幅を有し、 かつ、実用に耐えうる強度を有するTi系非晶質合金が 得られることを見い出し、本発明を完成するに至った。

[0006]

すなわち、本発明は、式: Ti100-x-v-x Cu Niv M. [式中、MはCoおよびFeよりなる群から選択される1 種または2種の元素、x、yおよびzは、それぞれ、原 子%を表し、 $5 \le x \le 40$ 、 $0 \le y \le 40$ 、 $2 \le x \le 4$ 0および30≤x+y+z≤70を満足する]で示され る組成を有する非晶質合金を要旨とするものである。

【0007】本発明のTi系非晶質合金において、Cuの 含有量は5原子%以上40原子%以下、好ましくは10 原子%以上30原子%以下である。Cu含有量が5原子 %未満であると過冷却液体領域を示さず、過冷却液体状 態における加工性が悪化する。一方、Cu含有量が40 原子%を越えると、非晶質合金の強度が低下して100 0MPa以上の強度を有するものが得られない。

【0008】Niの含有量は40原子%以下、好ましく は10原子%以上30原子%以下である。Ni含有量が 40原子%以上であると、過冷却液体領域を示さず、過 冷却液体状態における加工性が悪化する。

【0009】FeおよびCoよりなる群から選択される1 種または2種の元素は、実用に供するための強度を得る ために必要不可欠な元素であり、その含有量は2原子% 以上40原子%以下、好ましくは5原子%以上30原子 %以下である。含有量が2原子%未満であると、非晶質 合金の強度が低下して1000MPa以上の強度を有す るものが得られない。含有量が40原子%を越えると、 過冷却液体領域を示さず、過冷却液体状態における加工 性が悪化して実用に供することができない。

【0010】さらに、本発明においては、CuおよびNi と、FeまたはCoよりなる群から選択される1種または 2種の元素の合計の含有量は30原子%以上70原子% 以下であることが必要である。これらの元素の合計含有 量が30原子%未満あるいは70原子%を越える場合に は、液体状態から急冷固化しても非晶質合金が得られな V1.

【0011】本明細書中、「過冷却液体領域」とは、昇 温速度20K/分~40K/分で示差走査熱量分析を行 うことにより得られるガラス転移温度(Tg)と結晶化 温度 (Tx) の差 (Tx-Tg) で定義されるものであ り、本発明の非晶質合金は50℃以上の過冷却液体領域

50 の温度幅を有する。

3

【0012】本発明のTi系非晶質合金は、溶融状態から種々の方法で冷却固化させることにより得ることができるが、例えば、単ロール法、双ロール法、回転液中紡糸法、高圧ガスアトマイズ法等の生産性に優れた液体急冷法を用いることが望ましい。本発明においてこれらの製造法を用いる場合、従来公知の各製造法で用いられている製造条件により容易に作製することができる。例えば、代表的な単ロール法においては、合金を、石英管中、アルゴン雰囲気下で溶融した後、孔径0.1 mm~1.0 mmの石英製ノズルを用い、真空またはアルゴン雰囲気 10下、1000~4000 rpmで回転している直径20cm程度の銅ロール上に噴出圧0.1~1.0 kg/cm²で噴出し、急冷凝固させることにより得ることができる。

[0013]

【実施例】次に、実施例および比較例により本発明を具体的に説明する。

実施例1~15および比較例1~7

表1に示す各種組成からなる合金を、石英管中、アルゴン雰囲気下で溶融した後、孔径0.5mの石英製ノズル

を用い、アルゴン雰囲気下、3000 rpmで回転している直径 20 cm程度の銅ロール上に噴出圧0.3 kg/cm² で噴出し、急冷凝固させて、幅 3 nm、厚さ 30 μ mの連続した急冷薄帯を作製した。

【0014】次に、作製したこれらの薄帯の組織(非晶質相の同定)、強度および過冷却液体領域の温度幅を測定した。その結果を表1に示す。組織については、X線回折法により非晶質相特有のハローパターンが得られた状態を非晶質と判定した。強度は、インストロン型引張試験を結晶質と判定した。強度は、インストロン型引張試験機を用い、長さ30㎜の急冷薄帯を4.2×10⁻⁴の歪速度で引張試験を行うことにより求めた。過冷却液体領域の温度幅は、昇温速度40K/分で示差走査熱量分析により得られるガラス転移温度(Tg)と結晶化温度(Tx)の差(Tx-Tg)を測定することにより求めた。

[0015]

【表1】

·	<i>5</i>			6
	合金組成	組織	引張強度	過冷却液体領域
	(原子%)		(MPa)	の温度幅(K)
実施例[1	Ti 53Cu 36Ni 15Co2	非晶質	1300	51
実施例2	TísoCusoNissCos	非晶質	1450	51
実施例3	Ti50Cu25Ni15Co10	非晶質	1420	55
実施例4	Ti ₅₀ Cu ₁₀ Ni ₁₀ Co ₃₀	非晶質	1450	55
実施例 5	Ti40Cu10Ni10Co40	非晶質	1400	52
実施例6	TissCusNizoCoto	非晶質	1450	51
実施例7	TisoCusoNizoCoso	非晶質	1400	54
実施例8	TisoCusoNitoCoto	非晶質	1400	58
実施例 9	Ti45Cu40Ni10Co5	非晶質	1300	55
実施例10	Ti ₅₅ Cu ₂₅ Co ₁₀	非晶質	140D	52
実施例11	TieoCuzoNitoCoto	非晶質	1350	56
実施例12	TisoCu ₁₀ Ni ₃₀ Co ₁₀	非晶質	1350	53
実施例13	Ti4sCu10Ni40COs	非晶質	1300	51
実施例14	Ti ₅₀ Cu ₂₅ Ni ₁₅ Co ₃ Fe ₅	非晶質	1400	53
実施例15	TiscCuzaNisaCosaFesa	非晶質	1500	55
比較例 1	TisoCusoNizo	非晶質	960	55
比較例 2	Ti40Cu10Ni5CO45	非晶質	1200	- ∗
比較例3	TiarCuaNizoCo10	非晶質	1250	_
比較例4	Ti4eCu45Ni10Co5	非晶質	900	51
比較例5	Ti4,Cu10Ni45Co5	非晶質	1250	. -
比較例6	Ti ₂₅ Cu ₃₅ Ni ₃₀ Co ₃₀	結晶質	800	
比較例7	Ti75Cu10Ni10Co5	結晶質	900	_

*:過冷却液体領域を示さない(結晶質のものは測定せず)

【0016】表1より明らかなように、実施例1~15 50℃以上の広い過冷却液体領域の幅を有する。これに 対し、比較例1の非晶質合金はCoを含有しないため、 1000MPa以下の強度しか得られない。比較例2の 非晶質合金はCo含有量が40原子%を越えているた め、過冷却領域を示さず、過冷却状態を利用した加工が できない。比較例3の非晶質合金はCu含有量が5原子 %未満であるため、過冷却領域を示さず、過冷却状態を 利用した加工ができない。比較例4の非晶質合金はCu 含有量が40原子%を越えているため、1000MPa 以下の強度しか得られない。比較例5の非晶質合金はN 50 合金と同等以上の高強度Ti系非晶質合金を提供すること

i含有量が40原子%を越えているため、過冷却領域を の非晶質合金は1200MPaを越える強度を有しかつ 40 示さず、過冷却状態を利用した加工ができない。比較例 6 および比較例7 の非晶質合金は、それぞれ、Cu、Ni およびCoの含有量が70原子%を越えているあるいは 30原子%未満であるため、液体状態から急冷固化して も非晶質合金が得られない。

[0017]

【発明の効果】本発明のTi系非晶質合金は1200M Paを越える高強度および50℃以上の広い過冷却液体 領域の幅を有するため、閉塞鋳造等の過冷却液体を利用 した加工法により、任意の形状で強度が現状のTi基実用 7

ができる。

フロントページの続き

(71)出願人 000215785

帝国ピストンリング株式会社 東京都中央区八重洲1丁目9番9号

(72)発明者 増本 健

宫城県仙台市青葉区片平2丁目1-1 東 北大学金属材料研究所内

(72)発明者 井上 明久

宮城県仙台市青葉区片平2丁目1-1 東 北大学金属材料研究所内 (72)発明者 網谷 健児

京都府宇治市宇治小桜23番地 ユニチカ株

式会社中央研究所内

(72)発明者 西山 信行 東京都中央区八重洲1丁目9番9号 帝国 ピストンリング株式会社内

(72)発明者 吉井 勇

宫城県仙台市宮城野区清水沼二丁目13-22

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:
☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
☐ FADED TEXT OR DRAWING
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKÉWED/SLANTED IMAGES
COLOR OR BLACK AND WHITE PHOTOGRAPHS
GRAY SCALE DOCUMENTS
LINES OR MARKS ON ORIGINAL DOCUMENT
\square reference(s) or exhibit(s) submitted are poor quality

IMAGES ARE BEST AVAILABLE COPY.

□ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.