Question 12

- (a) Given $\emptyset \in \{\emptyset\}$. $\{\emptyset\}$ is a set containing only the \emptyset , therefore, the given statement is **True**.
- (b) Given $\emptyset \in \{\emptyset, \{\emptyset\}\}\$. \emptyset is an element of $\{\emptyset, \{\emptyset\}\}\$, therefore, the given statement is **True**.
- (c) Given $\{\emptyset\} \in \{\emptyset\}$. $\{\emptyset\}$ is not an element of $\{\emptyset\}$, therefore, the given statement is **False**.
- (d) Given $\{\emptyset\} \in \{\{\emptyset\}\}\$. $\{\emptyset\}$ is an element of $\{\{\emptyset\}\}\$, therefore, the given statement is **True**.
- (e) Given $\{\emptyset\} \subset \{\emptyset, \{\emptyset\}\}\$. Every element in $\{\emptyset\}$ is also an element of $\{\emptyset, \{\emptyset\}\}\$, therefore the given statement is **True**.
- (f) Given $\{\{\emptyset\}\}\subset\{\emptyset,\{\emptyset\}\}$. Every element in $\{\{\emptyset\}\}$ is also an element of $\{\emptyset,\{\emptyset\}\}$, therefore the given statement is **True**.
- (g) Given $\{\{\emptyset\}\}\subset \{\{\emptyset\}, \{\emptyset\}\}\}$. Every element in $\{\{\emptyset\}\}$ is also an element of $\{\{\emptyset\}, \{\emptyset\}\}\}$. However, the sets are equal, therefore the given statement is **False**.