

23MT2014

THEORY OF COMPUTATION

Topic:

PROPERTIES OF REGULAR LANGUAGE AND PUMPING LEMMA

Session – 9-a

Standard Representations of Regular Languages

We are given a Regular Language $\,L\,$

We mean: Language L is in a standard representation

Elementary Questions

about

Regular Languages

Membership Question

Question:

Given regular language L and string w how can we check if $w \in L$?

Answer:

Take the DFA that accepts L and check if w is accepted

DFA

$$w \in L$$

DFA

$$w \notin L$$

Question:

Given regular language L how can we check if L is empty: $(L = \emptyset)$?

Answer: Take the DFA that accepts L

Check if there is any path from the initial state to a final state

DFA

$$L \neq \emptyset$$

DFA

$$L = \emptyset$$

Given regular language L how can we check if L is finite?

Answer: Take the DFA that accepts L

Check if there is a walk with cycle from the initial state to a final state

DFA

L is infinite

L is finite

Question: Given regular languages L_1 and L_2 Thow can we check if $L_1 = L_2$?

Answer: Find if $(L_1 \cap L_2) \cup (L_1 \cap L_2) = \emptyset$

$$(L_1 \cap L_2) \cup (L_1 \cap L_2) = \emptyset$$

$$L_1 \cap \overline{L_2} = \emptyset$$

and

$$\overline{L_1} \cap L_2 = \emptyset$$

 $L_1 \subseteq L_2$

 $L_2 \subseteq L_1$

$$L_1 = L_2$$

$$(L_1 \cap L_2) \cup (L_1 \cap L_2) \neq \emptyset$$

$$L_1 \cap \overline{L_2} \neq \emptyset$$

or

$$\overline{L_1} \cap L_2 \neq \emptyset$$

 $L_1 \not\subset L_2$

 $L_2 \not\subset L_1$

 $L_1 \neq L_2$

Non-regular languages

Non-regular languages

$$\{a^nb^n: n\geq 0\}$$

$$\{vv^R: v \in \{a,b\}^*\}$$

Regular languages

$$a*b$$

$$b*c+a$$

$$b+c(a+b)*$$

etc...

Flow can we prove that a language L is not regular?

Prove that there is no DFA that accepts $\,L\,$

Problem: this is not easy to prove

Solution: the Pumping Lemma!!!

The Pigeonhole Principle

4 pigeons

3 pigeonholes

A pigeonhole must contain at least two pigeons

n pigeons

m pigeonholes

The Pigeonhole Principle pigeons

m pigeonholes

n > m

There is a pigeonhole with at least 2 pigeons

The Pigeonhole Principle

and

DFAs

DFA with 4 states

in walks of strings: a aa

no state is repeated

aab

a state is repeated

bbaa abbabb abbbabbabb...

If string w has length $|w| \ge 4$:

Then the transitions of string w are more than the states of the DFA

Thus, a state must be repeated

GEORGE GENERAL, for any DFA:

String w has length \geq number of states

A state q must be repeated in the walk of w

w: transitions are pigeons states are pigeonholes walk of w Repeated state CATEGORY 1

The Pumping Lemma:

- \cdot Given a infinite regular language L
- there exists an integer m
- for any string $w \in L$ with length $|w| \ge m$
- we can write w = x y z
- with $|xy| \le m$ and $|y| \ge 1$
- such that: $x y^i z \in L$

 $i = 0, 1, 2, \dots$ CATEGORY 1
UNIVERSITY

43 YEARS OF EDUCATIONAL 29

THANK YOU

Team – TOC

