

## Written assessment, January 15, 2024

## Last name, First name

#### Exercise 1 (value 8)

A company that produces m types of cakes can produce between  $L_j$  and  $U_j$  boxes of cake of type  $j, j \in \{1, 2, ..., m\}$ , with the additional constraint that if at least  $T_A$  boxes of cake A are produced, then no more than  $T_B$  boxes of B can be produced.

A set of n ingredients is used for the preparation of the cakes. To prepare a box of cake j, the company uses  $q_{ij}$  gram of ingredient i. The company has in stock  $Q_i$  gram of each ingredient i. If the stock is not enough, the company can buy ingredients on the market with a cost of  $c_i$  per gram for each ingredient i. Producing a box of cake j generates an income of  $r_i$ .

Write a model to help the company to design am optimized production plan that maximized the difference between incomes and costs.

#### Exercise 2 (value 12)

Consider the following PLC problem.

min 
$$12x_1 + 6x_2 - 2x_3$$
$$x_1 + 3x_3 = 15$$
$$3x_1 - 2x_2 + 5x_3 \le 18$$
$$x_1, x_2, x_3 \ge 0$$

- Solve the with the simplex method
- Write the dual of the problem
- Find the optimal dual solution using the complementary slackness conditions
- What happens to the optimal (primal) basis if the objective function coefficient of variable  $x_1$  becomes 14?

#### Exercise 3 (value 7)

Consider the following graph G = (V, A). Find the shortest path from s to 5 using an algorithm of your choice among those seen during the course. Clearly state the name of the algorithm used, show the solving procedure and the final solution with the associated cost.



# Written assessment, January 15, 2024 Solution sketch

#### Exercise 1

#### Variables

- $x_j$ : boxes of cake j produced
- $y_i$ : quantity of ingredient i bought from the market
- $\delta$ : takes value 1 if at least  $T_A$  boxes of A are produced, 0 otherwise

$$\max \sum_{j=1}^{m} r_{j}x_{j} - \sum_{i=1}^{n} c_{i}y_{i}$$

$$\sum_{j=1}^{m} q_{ij}x_{j} \leq Q_{i} + y_{i} \quad i \in \{1, 2, \dots, n\}$$

$$x_{A} \leq T_{A} + (U_{A} - T_{A})\delta$$

$$x_{B} \leq T_{B} + (U_{B} - T_{B})(1 - \delta)$$

$$L_{j} \leq x_{j} \leq U_{j} \text{ integer} \quad j \in \{1, 2, \dots, m\}$$

$$y_{i} \geq 0 \quad i \in \{1, 2, \dots, n\}$$

$$\delta \in \{0, 1\}$$

#### Exercise 2

### Phase 1

| $x_1$ | $x_2$ | $x_3$ | $s_1$ | $a_1$ |     |       |
|-------|-------|-------|-------|-------|-----|-------|
| -1    | 0     | -3    | 0     | 0     | -15 | -z    |
| 1     | 0     | 3     | 0     | 1     | 15  | $a_1$ |
| 3     | -2    | 5     | 1     | 0     | 18  | 1     |

| $x_1$ | $x_2$ | $x_3$ | $s_1$ | $a_1$ |    |       |
|-------|-------|-------|-------|-------|----|-------|
| 0     | -2/3  | -4/3  | 1/3   | 0     | -9 | -z    |
| 0     | 2/3   | 4/3   | -1/3  | 1     | 9  | $a_1$ |
| 1     | -2/3  | 5/3   | 1/3   | 0     | 6  | $x_1$ |

| $x_1$ | $x_2$ | $x_3$ | $s_1$ | $a_1$ |      |       |
|-------|-------|-------|-------|-------|------|-------|
| 0     | 0     | 0     | 0     | 1     | 0    | -z    |
| 0     | 1     | 2     | -1/2  | 3/2   | 27/2 | $x_2$ |
| 1     | 0     | 3     | 0     | 1     | 15   | $x_1$ |

Phase 2

|       |      | $s_1$ | $x_3$ | $x_2$ | $x_1$ |  |
|-------|------|-------|-------|-------|-------|--|
| -z    | 0    | 0     | -2    | 6     | 12    |  |
| $x_2$ | 27/2 | -1/2  | 2     | 1     | 0     |  |
| $x_1$ | 15   | 0     | 3     | 0     | 1     |  |

| $x_1$ | $x_2$ | $x_3$ | $s_1$ |      |       |
|-------|-------|-------|-------|------|-------|
| 0     | 0     | -50   | 3     | -261 | -z    |
| 0     | 1     | 2     | -1/2  | 27/2 | $x_2$ |
| 1     | 0     | 3     | 0     | 15   | $x_1$ |

|       |     | $s_1$ | $x_3$ | $x_2$ | $x_1$ |  |
|-------|-----|-------|-------|-------|-------|--|
| -z    | -11 | 3     | 0     | 0     | 50/3  |  |
| $x_2$ | 7/2 | -1/2  | 0     | 1     | -2/3  |  |
| $x_3$ | 5   | 0     | 1     | 0     | 1/3   |  |

$$x = (0, 7/2, 5), z_P = 11$$

Dual:

$$\max 15u_1 + 18u_2$$

$$u_1 + 3u_2 \le 12$$

$$-2u_2 \le 6$$

$$3u_1 + 5u_2 \le -2$$

$$u_2 < 0$$

Dual solution through slackness conditions:

$$\begin{cases} (x_1 + 3x_3 - 15)u_1 = 0\\ (3x_1 - 2x_2 + 5x_3 - 18)u_2 = 0\\ (u_1 + 3u_2 - 12)x_1 = 0\\ (-2u_2 - 6)x_2 = 0\\ (3u_1 + 5u_2 + 2)x_3 = 0 \end{cases} \rightarrow \begin{cases} -2u_2 = 6\\ 3u_1 + 5u_2 = -2 \end{cases} \rightarrow \begin{cases} u_2 = -3\\ 3u_1 = 13 \end{cases} \rightarrow \begin{cases} u_2 = -3\\ u_1 = 13/3 \end{cases}$$

$$u = (13/3, -3), z_D = 11$$

The variable  $x_1$  is not in the optimal basis. If  $c_1$  increases from 12 to 14,  $x_1$  becomes less attractive for the optimization and it remains out of the basis. The basis, in turn, does not change.

#### Exercise 3

Since we have arcs with negative costs, we use the Belmann-Ford algorithm.

| Iter |   | f(j) |   |   |   |   |  | pred         |   |              |              |   |              |
|------|---|------|---|---|---|---|--|--------------|---|--------------|--------------|---|--------------|
|      | S | 1    | 2 | 3 | 4 | 5 |  | S            | 1 | 2            | 3            | 4 | 5            |
| 0    | 0 | -    | - | - | - | - |  | S            | - | -            | -            | - | -            |
| 1    | 0 | -    | 2 | 4 | - | 8 |  | $\mathbf{s}$ | - | $\mathbf{s}$ | $\mathbf{s}$ | - | $\mathbf{s}$ |
| 2    | 0 | 2    | 2 | 3 | - | 8 |  | $\mathbf{S}$ | 3 | $\mathbf{s}$ | 2            | - | $\mathbf{S}$ |
| 3    | 0 | 1    | 2 | 3 | 3 | 8 |  | $\mathbf{S}$ | 3 | $\mathbf{S}$ | 2            | 1 | $\mathbf{s}$ |
| 4    | 0 | 1    | 2 | 3 | 2 | 6 |  | $\mathbf{S}$ | 3 | $\mathbf{S}$ | 2            | 1 | 4            |
| 5    | 0 | 1    | 2 | 3 | 2 | 5 |  | $\mathbf{s}$ | 3 | $\mathbf{S}$ | 2            | 1 | 4            |

Optimal path:  $s \to 2 \to 3 \to 1 \to 4 \to 5$ . Cost: 5.