Chapitre 3 : Nombres relatifs et écritures fractionnaires

I) Comparaison de nombres relatifs en écriture fractionnaire

1) Quotients inégaux

Propriété: On ne change pas une écriture fractionnaire en multipliant ou en divisant son numétareur et son dénominateur par un même nombre non nul.

Pour tout nombres a, b et k, avec $b \neq 0$ et $k \neq 0$,

$$\frac{a}{b} = \frac{a \times k}{b \times k}$$
 et $\frac{a}{b} = \frac{a \div k}{b \div k}$

Remarque:

$$\frac{-a}{-b} = \frac{a}{b}$$
; $\frac{-a}{b} = \frac{a}{-b} = -(\frac{a}{b})$

Ex.: Donner le résultat sous la forme d'une fraction simplifiée :

$$\frac{-12}{-15} = \frac{12}{15} = \frac{3 \times 4}{3 \times 5} = \frac{4}{5}$$

$$\frac{-45}{20} = \frac{-45 \div 5}{20 \div 5} = \frac{-9}{4}$$

$$\frac{-2,4}{0,7} = \frac{-24}{7}$$

$$\frac{-45}{20} = \frac{-45 \div 5}{20 \div 5} = \frac{-9}{4}$$

$$\frac{-2.4}{0.7} = \frac{-24}{7}$$

2) Produit en croix

Pour tous nombres a, b, c et d $(a\neq 0; b\neq 0; d\neq 0)$

• Si
$$\frac{a}{b} = \frac{c}{d}$$
 alors $a \times d = b \times c$

•
$$a \times d = b \times c$$
 alors $\frac{a}{b} = \frac{c}{d}$

Exemples : Les fractions $\frac{26}{39}$ et $\frac{4}{6}$ sont-elles égales ?

$$39 \times 4 = 156$$
 Et $26 \times 6 = 156$

Les produits en croix sont égaux donc $\frac{26}{39} = \frac{4}{6}$

Les fractions $\frac{23}{45}$ et $\frac{4}{7}$ sont-elles égales ?

$$23 \times 7 = 161$$
 Et $45 \times 4 = 161$

Les produits en croix sont égaux donc $\frac{23}{45} = \frac{4}{7}$

3) Réduction au même dénominateur

Propriété : Pour réduire des nombres en écriture fractionnaire <u>au même dénominateur</u>, on cherche le <u>plus petit dénominateur commun</u> (non nul) aux dénominateurs et on détermine les nombres en écriture fractionnaire ayant ce nombre pour dénominateur.

Ex.

• **Réduire** $A = \frac{2}{7}$ et $B = \frac{3}{8}$ au même dénominateur.

Le plus petit multiple commun à 7 et 8 est : $7 \times 8 = 56$

$$\rightarrow A = \frac{2}{7} = \frac{2 \times 8}{7 \times 8} = \frac{16}{56} \text{ et } A = \frac{3}{8} = \frac{3 \times 7}{8 \times 7} = \frac{21}{56}$$

- **Comparer** $C = \frac{1}{24}$ et $D = \frac{5}{16}$
 - Multiples de 24 : 24 ; <u>48 ;</u> 72 ; 96...
 - Multiples de 16 : 16 ; 32 ; <u>48</u>...
 - $^{\circ}~\rightarrow$ Le plus petit multiple commun à 16 et 24 est 48.

$$C = \frac{1}{24} = \frac{1 \times 2}{24 \times 2} = \frac{2}{48}$$

$$D = \frac{5}{16} = \frac{5 \times 3}{16 \times 3} = \frac{15}{48}$$

$$\rightarrow$$
 Comme $\frac{2}{48} < \frac{15}{48}$, alors $\frac{1}{24} < \frac{5}{16}$.

II. Addition de nombres relatifs en écriture fractionnaire

Propriété: Pour calculer la somme de deux nombres relatifs en écriture fractionnaire de même dénominateur,

- on additionne les numérateurs
- on garde le dénominateur commun.
- \rightarrow Pour tout nombre relatif a, b et c avec c $\neq 0$

$$\frac{a}{b} + \frac{c}{b} = \frac{a+c}{b}$$

Exemples:

$$\frac{8}{10} + \frac{-3}{10} = \frac{8-3}{10} = \frac{5}{10} = \frac{1}{2}$$

$$\frac{-7}{15} + \frac{1}{3} = \frac{-7}{15} + \frac{1 \times 5}{3 \times 5} = \frac{-7}{15} + \frac{5}{15} = \frac{-7+5}{15} = \frac{-2}{15}$$

$$\frac{1}{3} + \frac{5}{8} = \frac{1 \times 8}{3 \times 8} + \frac{5 \times 3}{8 \times 3} = \frac{8}{24} + \frac{15}{24} = \frac{23}{24}$$

III) Soustraction de nombres relatifs en écriture fractionnaire

1) Nombres opposés

Exemples:

- L'opposé de $\frac{12}{7}$ est $\frac{-12}{7}$ ou $-\frac{12}{7}$ ou $\frac{12}{-7}$
- L'opposé de $\frac{-4}{9}$ est $\frac{4}{9}$
- L'opposé de $\frac{-4}{-7}$ est $\frac{-4}{7}$

Remarque : La somme de 2 nombres opposés est égale à 0.

$$\frac{-4}{9} + \frac{4}{9} = 0$$
 et $\frac{-4}{-7} + \frac{-4}{7} = 0$

2) Soustraction de nombres relatifs en écriture fractionnaire

<u>Propriété</u>: Soustraire un nombre relatif en écriture fractionnaire, c'est additionner son opposé.

Exemples:

$$\frac{-3}{7} - \frac{12}{7} = \frac{-3}{7} + \frac{-12}{7} = \frac{-15}{7}$$

$$\frac{-18}{-5} - \frac{3}{8} = \frac{18}{5} - \frac{3}{8}$$

V) Quotient de 2 nombres relatifs en écriture fractionnaire

1) Notion d'inverse

Définition : 2 nombres non nuls sont inverses l'un de l'autre si leur produit est égal à 1.

L'inverse de
$$a$$
 est $\frac{1}{a}$ car $a \times \frac{1}{a} = 1$ et l'inverse de $\frac{a}{b}$ est $\frac{b}{a}$ car $\frac{a}{b} \times \frac{b}{a} = 1$

Exemple:

L'inverse de 2 est
$$\frac{1}{2}$$
 ou 0,5 car $2 \times \frac{1}{2} = 1$

L'inverse de
$$\frac{-4}{5}$$
 est $\frac{-5}{4}$ car $\frac{-4}{5} \times \frac{-5}{4} = 1$

Nombre	1	2	4	5	8	10	100	1000
Inverse	1	$\frac{1}{2}$ =0,5	$\frac{1}{4} = 0,25$	$\frac{1}{5} = 0.2$	$\frac{1}{8} = 0,125$	$\begin{array}{c} \frac{1}{10} = \\ 0,1 \end{array}$	$ \frac{1}{100} \\ = 0.01 $	$ \frac{1}{1000} \\ = 0,001 $

Attention : Ne pas confondre « opposé » et « inverse ».

2) Quotient de 2 nombres relatifs en écriture fractionnaire

<u>Propriété</u>: Diviser par un nombre non nul, c'est multiplier par l'inverse de ce nombre.

Pour tout nombre a, b, c, d (c
$$\neq 0$$
, d $\neq 0$ et b $\neq 0$), on a $\frac{a}{b} = a \div b = a \times \frac{1}{b}$

$$\frac{a}{b} \div \frac{c}{d} = \frac{a}{b} \times \frac{d}{c}$$

Exemples:

$$\frac{-2}{0,25}$$
 = $-2 \div 0,25$ = -2×4 = -8

$$\frac{5}{3} \div \frac{7}{2} = \frac{5}{3} \times \frac{2}{7} = \frac{10}{21}$$

$$\frac{2}{5} \div -(\frac{7}{3}) = \frac{2}{5} \times -(\frac{3}{7}) = \frac{-6}{35}$$

$$\frac{\frac{3}{4}}{\frac{5}{8}} = \frac{3}{4} \div \frac{5}{8} = \frac{3}{4} \times \frac{8}{5} = \frac{24}{20} = \frac{6}{5}$$

VI) Exemples de résolution de problèmes

11 p50 a)

Prendre $\frac{2}{9}$ de $\frac{3}{4}$ revient à effectuer $\frac{2}{9} \times \frac{3}{9}$

$$Donc \quad \frac{2}{9} \times \frac{3}{9} = \frac{2 \times 3}{3 \times 3 \times 2 \times 2} = \frac{1}{6}$$

 $\frac{1}{6}$ d'heure est consacré à la publicité, soit 10 minutes.

b)

Les émissions de variété française et celles de variété étrangère représentent l'ensemble des émissions de variété.

$$\frac{7}{12} + \frac{3}{10} = \frac{35}{60} + \frac{18}{60} = \frac{53}{60}$$

53/60 du temps d'antenne est consacré aux émissions de variété.

c)

$$36 \div \frac{2}{3} = \frac{36}{1} \times \frac{3}{2} = 18 \times 3 = 54$$

Cette série compte 54 épisodes.