Modern mathematics series

Sergey Strukov

23 сентября 2021 г.

Copyright © Sergey Strukov. All rights reserved. This is a public document. You can freely distribute and use it, providing the authorship and the copyright note is unchanged.

Пределы.

Исторически, теория пределов возникла как часть анализа. Однако, после появления топологии она в обобщённой форме стала естественной частью топологии. В этой статье теория пределов излагается в законченной геометрической форме. Кратко говоря, предел — это продолжение функции по непрерывности на специальных топологических пространствах — фильтрах. Подобная конструкция делает большинство свойств пределов наглядно очевидными.

n.1

 $1)^{def}$ Пусть F — топологическое пространство. F называется фильтром, если все точки F, кроме одной, открыты. Такая точка, тавтологически, определена однозначно. Будем обозначать её ∞_F . Следуя общему правилу, положим $F^{\circ} := F \setminus \{\infty_F\}$.

2) Пусть F — фильтр.

Тогда справедливы следующие утверждения:

 F° открыто, но не замкнуто,

 F° дискретно,

$$\overline{F^{\circ}} = F$$
 , $F^{\circ} \neq \emptyset$,

 ∞_F замкнута,

F недискретно.

 $3)^{def}$ Пусть F — фильтр, X — топологическое пространство, $f:F^{\circ}\to X$ — отображение. Тогда f непрерывно.

Пусть $x \in X, g$ — продолжение f на F, такое, что $g(\infty_F) = x$.

Если g непрерывно, то будем говорить, что $x=\lim_{r}f$.

4) Пусть F — фильтр, $p:X\to Y$ — непрерывное отображение топологических пространств, $f:F^\circ\to X$ — отображение.

Тогда $x = \lim_{F} f^{\overline{}} \Rightarrow p(x) = \lim_{F} p \circ f$.

5) Пусть F — фильтр, X — топологическое пространство, $\{Y_i\}_{i\in I}$ — семейство топологических пространств, $\{p_i:X\to Y_i\}_{i\in I}$ — семейство непрерывных отображений. Пусть топология X порождена семейством $\{p_i\}_{i\in I}$. Пусть $f:F^\circ\to X$, $x\in X$.

семейством $\{p_i\}_{i\in I}$. Пусть $f:F^\circ\to X$, $x\in X$. Тогда, $x=\lim_F f \iff \forall\ i\in I\ p_i(x)=\lim_F p_i\circ f$.

6) Пусть F — фильтр, X — топологическое пространство, $f:F^{\circ} \to X$ — отображение.

Пусть $A \subset X$ замкнуто.

Если $f\left(F^{\circ}\right)\subset A$, $x=\lim_{F}f$, то $x\in A$.

Proof.

 $\overline{\text{Пусть}}\ g$ — непрерывное продолжение f, такое, что $g(\infty_F)=x$.

Тогда $x \in g(F) = g(\overline{F^\circ}) \subset \overline{g(F^\circ)} = \overline{f(F^\circ)} \subset \overline{A} = A$.

Тоже самое по-другому: $F^{\circ} \subset g^{-1}(A) \Rightarrow \overline{F^{\circ}} \subset g^{-1}(A) \Rightarrow \infty_F \in g^{-1}(A) \Rightarrow x \in A$.

7)!!! Пусть F — фильтр, X — **хаусдорфово** топологическое пространство, $f: F^{\circ} \to X$. Тогда \exists не более одного предела $x = \lim_{n \to \infty} f$.

Почему у этого пункта аж три восклицательных знака? Причина в том, что в математике очень часто пределы в хаусдорфовы пространства используются для построения объектов. Например: производная, интеграл, сумма ряда и.т.п. Для этого нужна единственность, обеспеченная этим свойством.

Proof.

 $\overline{\text{Пусть}}\ x,y=\lim_F f$. Тогда $(x,y)=\lim_F (f,f)$, но $(f,f):F^\circ\to X\times X$ отображает F° в диагональ $\Delta_X\subset X\times X$, которая, в силу хаусдорфовости, замкнута в $X\times X$. Значит, $(x,y)\in\Delta_X$, т.е. x=y .

 $1)^{def}$ Пусть F и G — два фильтра. $\tau: F \to G$ — морфизм фильтров, если τ — непрерывное отображение и $\tau^{-1}(\infty_G) = \{\infty_F\}$.

Фильтры и их морфизмы образуют категорию.

2) Пусть F и G — два фильтра. Если $\tau: F \to G$ (морфизм фильтров), то:

$$\tau(F^{\circ}) \subset G^{\circ}$$
,

$$\tau(\infty_F) = \infty_G ,$$

 $\tau^{\circ}: F^{\circ} \to G^{\circ}$ — отображение, индуцированное τ .

- 3) Пусть F и G два фильтра. Пусть $\tau^\circ: F^\circ \to G^\circ$ отображение. Тогда τ° может быть продолжено до морфизма фильтров $\tau: F \to G$ (очевидно, единственным образом) $\Leftrightarrow \infty_G = \lim_F \tau^\circ$.
 - 4) Пусть F и G два фильтра, X топологическое пространство, $\tau:F\to G$, $f:G^\circ\to X$. Тогда если $x=\lim_G f$, то $x=\lim_F f\circ\tau^\circ$.

1) Пусть G — фильтр, F — топологическое пространство, $\tau:F\to G$ — непрерывное **инъективное** отображение.

Тогда F дискретно $\Leftrightarrow \tau^{-1}(\infty_G)$ открыто.

Если F недискретно, то F — фильтр и au — морфизм фильтров.

Proof.

 $\overline{\Pi$ усть $x \in F$. τ инъективно, значит, $\{x\} = \tau^{-1}(\{\tau(x)\})$.

Поэтому если $\tau(x) \neq \infty_G$, то x открыта. Если $\tau(x) = \infty_G$, то $\{x\} = \tau^{-1}(\infty_G)$.

Таким образом, $\tau^{-1}(\infty_G)$ открыто \Rightarrow все точки F открыты $\Rightarrow F$ дискретно.

Если F дискретно, то $\tau^{-1}(\infty_G)$, тавтологически, открыто.

Если F не дискретно, то $\tau^{-1}(\infty_G)$ не открыто. В частности, это множество непусто, значит, состоит из одной точки a. Если $x \neq a$, то x открыта, a не открыта. Т.е. F — фильтр и τ — морфизм фильтров.

2) Пусть G — фильтр, $F \subset G$ — подпространство. Тогда F дискретно $\Leftrightarrow \{\infty_G\} \cap F$ открыто в F. Если F недискретно, то F — фильтр и $F \subset G$ — морфизм фильтров.

Такие F называются подфильтрами.

3) Пусть (F, \mathcal{T}) — фильтр.

Пусть S — более тонкая топология на F , чем $\mathcal T$.

Тогда \mathcal{S} дискретна $\Leftrightarrow \{\infty_F\} \in \mathcal{S}$.

Если \mathcal{S} недискретна, то (F,\mathcal{S}) — фильтр и $(F,\mathcal{S}) \to (F,\mathcal{T})$ — морфизм фильтров.

Такие (F, S) называются более тонкими фильтрами.

 $4)^{def} \ F$ — ультрафильтр, если любой более тонкий фильтр F' = F .

Другими словами, любая, более тонкая топология на F или дискретна, или совпадает с исходной.

5)! Пусть F — фильтр. Тогда \exists более тонкий <u>ультра</u>фильтр.

Proof.

 $\overline{\Pi \text{усть}} \ F = (F, \mathcal{T}) \ .$

 $\Lambda := \{ \mathcal{S} | \mathcal{S} - \text{топология на } F, \mathcal{S} \supset \mathcal{T}, \{ \infty_F \} \notin \mathcal{S} \}$.

Если $\mathcal{S} \in \Lambda$, то (F,\mathcal{S}) есть более тонкий, чем F фильтр, и все такие фильтры получаются этим способом.

 Λ частично упорядочено включением.

Если $\mathcal{S} \in \Lambda$ — максимальный элемент, то (F, \mathcal{S}) и есть требуемый более тонкий ультрафильтр.

Поэтому достаточно доказать, что Λ индуктивно и воспользоваться леммой Цорна.

Пусть $\Sigma \subset \Lambda$ — цепь. $\mathcal{B} := \bigcup \Sigma$.

Тогда, $F \in \mathcal{B}$, $\{\infty_F\} \notin \mathcal{B}$, $A, B \in \mathcal{B} \Rightarrow A \cap B \in \mathcal{B}$.

Значит, \mathcal{B} — мультипликативный базис топологии \mathcal{S} .

Ясно, что $\mathcal{S} \in \Lambda$ и что \mathcal{S} мажорирует Σ .