Programmering og Problemløsning Datalogisk Institut, Københavns Universitet Arbejdsseddel 7 - gruppeopgave

Martin Elsman og Jon Sporring

19. oktober - 9. november. Afleveringsfrist: lørdag d. 9. november kl. 22:00.

Some introductory text ...

Emnerne for denne arbejdsseddel er:

- rekursion, pattern matching,
- sum-typer,
- endelige træer.

Opgaverne er opdelt i øve- og afleveringsopgaver. I denne periode skal I arbejde i grupper med jeres afleveringsopgaver. Regler for gruppe- og individuelle afleveringsopgaver er beskrevet i "'Noter, links, software m.m."

"'Generel information om opgaver".

Øveopgaver (in English)

I det efterfølgende skal der arbejdes med sum-typen:

```
type weekday = Monday | Tuesday | Wednesday | Thursday | Friday | Saturday | Sunday
```

som repræsenterer ugens dage.

- 7ø1 Lav en funktion dayToNumber: weekday -> int, der givet en ugedag returnerer et tal, hvor mandag skal give tallet 1, tirsdag tallet 2 osv.
- 7ø2 Lav en funktion nextDay: weekday -> weekday, der givet en ugedag returnerer den næste dag, så mandag skal give tirsdag, tirsdag skal give onsdag, osv, og søndag skal give mandag.

- 7ø3 Lav en funktion numberToDay: n: int -> weekday option, sådan at numberToDay n returnerer None, hvis n ikke ligger i intervallet 1...7, og ellers returnerer ugedagen Some d. Det skal gælde, at numberToDay (dayToNumber d) → Some d for alle ugedage d.
- 7ø4 Ved at benytte biblioteket ImgUtil, som beskrevet i forelæsningen, er det muligt at tegne simpel liniegrafik samt fraktaler, som f.eks. Sierpinski-fraktalen, der kan tegnes ved at tegne små firkanter bestemt af et rekursivt mønster. Koden for Sierpinski-trekanten er givet som følger:

```
open ImgUtil

let rec triangle bmp len (x,y) =
   if len < 25 then setBox blue (x,y) (x+len,y+len) bmp
   else let half = len / 2
        do triangle bmp half (x+half/2,y)
        do triangle bmp half (x,y+half)
        do triangle bmp half (x+half,y+half)</pre>
do runSimpleApp "Sierpinski" 600 600 (fun bmp -> triangle bmp
512 (30,30) |> ignore)
```

Tilpas funktionen således at trekanten tegnes med røde streger samt således at den kun tegnes 2 rekursionsniveauer ned. Hint: dette kan gøres ved at ændre betingelsen len < 25.

7ø5 I stedet for at benytte ImgUtil.runSimpleApp funktionen skal du nu benytte ImgUtil.runApp, som giver mulighed for at din løsning kan styres ved brug af tastaturet. Funktionen ImgUtil har følgende type:

De tre første argumenter til runApp er vinduets titel (en streng) samt vinduets initielle vidde og højde. Funktionen runApp er parametrisk over en brugerdefineret type af tilstande ('s). Antag at funktionen kaldes som følger:

```
runApp title width height draw react init
```

Dette kald vil starte en GUI applikation med titlen title, vidden width og højden height. Funktionen draw, som brugeren giver som 4. argument kaldes initielt når applikationen starter og hver gang vinduets størrelse justeres eller ved at funktionen react er blevet kaldt efter en tast er trykket ned på tastaturet. Funktionen draw modtager også (udover værdier for den aktuelle vidde og højde) en værdi for den brugerdefinerede tilstand, som initielt er sat til værdien init. Funktionen skal returnere et bitmap, som for eksempel kan konstrueres med funktionen ImgUtil.mk og ændres med andre funktioner i ImgUtil (f.eks. setPixel).

Funktionen react, som brugeren giver som 5. argument kaldes hver gang brugeren trykker på en tast. Funktionen tager som argument:

• en værdi svarende til den nuværende tilstand for applikationen, og

• et argument der kan benyttes til at afgøre hvilken tast der blev trykket på. 1

Funktionen kan nu (eventuelt) ændre på dens tilstand ved at returnere en ændret værdi for denne.

Tilpas applikationen således at dybden af fraktalen kan styres ved brug af piletasterne, repræsenteret ved værdierne System. Windows. Forms. Keys. Up og System. Windows. Forms. Keys. Down.

7ø6 Med udgangspunkt i øvelsesopgave 7ø4 skal du i denne opgave implementere en GUI-applikation der kan tegne en version af X-fraktalen som illustreret nedenfor (eventuelt i en dybde større end 2).

Bemærk at det ikke er et krav, at dybden på fraktalen skal kunne styres med piletasterne, som det er tilfældet med Sierpinski-fraktalen i øvelsesopgave 7ø5.

Afleveringsopgaver

Peg Solitaire er et spil hvor en person skal forsøge at fjerne pinde i et bræt med huller ved at foretage en række træk indtil der kun er en pind tilbage på brættet. I hvert træk kan en pind fjernes ved at en nabopind flyttes over pinden til et ledigt hul. For hvert træk efterlades brættet med en pind færre.

I den klassiske engelske version af spillet Peg Solitaire består brættet af 33 huller, som til at starte med er fyldt med 32 pinde; det midterste hul i brættet er ikke udfyldt og opgaven består i at det netop er det midterste hul, der til slut skal indeholde en pind.

I denne opgave skal der arbejdes mod at få computeren til at finde en løsning til den engelske version af Peg Solitaire. En løsning vil bestå i at computeren udskriver de træk der skal flyttes. Opgaven er delt i tre dele. I den første delopgave arbejdes der mod at implementere et modul til at repræsentere en brætkonstellation samt operationer til at foretage flytninger og derved danne nye brætkonstellationer. I den anden delopgave skal der arbejdes mod at gøre det muligt for en spiller at spille spillet ved brug af fsharpi således at computeren tillader at der foretages træk hvorefter den nye brætkonstellation udskrives. I den tredie delopgave skal der skrives en algoritme, som returnerer en liste af træk, der efterlader en enkelt pind i midten af brættet.

¹Hvis e har typen System.Windows.Forms.KeyEventArgs kan betingelsen e.KeyCode = System.Windows.Forms.Keys.Up benyttes til at afgøre om det var tasten "Up" der blev trykket på.

7g0 Modulet Board.

Hvert hul i brættet er identificeret ved en position (r,c), hvor r er rækken for hullet (se billedet til højre) og c er kolonnen hullet optræder i. Således er positionen for den tomme plads i midten (3,3).

I det følgende skal vi benytte os af 64-bit heltal til at indeholde en komplet brætkonstellation (vi gør kun brug af de 49 mindstbetydende bit).

	0	1	2	3	4	5	6
0			•	•	•		
1			•	•	•		
2	•	•	•	•	•	•	•
3	•	•	•		•	•	•
4	•	•	•	•	•	•	•
5			•	•	•		
6			•	•	•		

I F# kan et bræt således repræsenteres ved brug af typen uint64, der repræsenterer (unsigned) 64-bit heltal:

```
type b = uint64
```

I den første del af opgaven ønskes der implementeret en række funktioner til at operere på brætkonstellationer. Funktionerne ønskes implementeret i et modul Board, som vil kunne bruges både af en rigtig spiller til at spille spillet og af et modul der har til hensigt at finde en løsning til spillet.

Modulet Board skal indeholde følgende typer og funktioner:

```
// board type
type b
type pos = int * int
                              // position type
type dir = Up | Down | Left | Right // move direction
                              // move
type mv = pos * dir
                              // initial board
val init : unit -> b
         val valid
val peg
                              // hole contains a peg
val mv : b -> mv -> b option // returns new board
val pegcount : b -> int
                              // number of pegs
val print : b -> string
                          // string representation
```

Her f
ølger nogle gode r
åd til hvordan ovenst
ående modul implementeres:

- Start med at implementere to hjælpefunktioner seti og geti til henholdsvis at sætte en givet bit i en uint64-værdi samt at undersøge om en givet bit er sat (hertil skal I benytte et udvalg af bit-operationer, inklusiv | | |, &&&, ~~~, >>> og <<<).
- Implementér en hjælpefunktion posi til at omdanne en position (row-column pair) til et bit-index i brætrepræsentationen.
- Funktionen valid skal returnere false hvis positionen ikke repræsenterer en hul-position i et tomt bræt.
- Implementér en funktion neighbor af type pos -> dir -> pos option, som, givet en valid position og en retning, returnerer en valid naboposition, hvis en sådan findes i den specificerede retning, eller værdien None. Et kald neighbor(1,4)Right skal returnere værdien None og et kald neighbor(2,4)Right skal returnere værdien Some(2,5).
- Funktionen mv kan nu implementeres ved brug af funktionerne peg, neighbor, seti og posi. Funktionen skal, givet en brætkonstellation b og et træk (p,d) returnere værdien Some b', hvis (1) p er en position indeholdende en pind ifølge brætkonstellationen b,

- (3) (p,d) er et lovligt træk og (3) brættet b' er den konstellation, der fremkommer ved trækket (p,d). Ellers skal funktionen returnere værdien None.
- For at implementere funktionen print kan der benyttes to nestede rekursive funktioner (eller to nestede for-løkker), som hver itererer over henholdsvis rækkerne og kolonnerne på brættet.

I rapporten skal I beskrive jeres designovervejelser og demonstrere at jeres implementation fungerer som forventet (skriv unit-tests for de implementerede funktioner).

7g1 Modulet Game.

Implementér et modul Game med følgende funktionalitet:

```
val start : unit -> unit
val mv : Board.mv -> unit
```

Modulet skal indeholde en reference til en "nuværende" brætkonstellation. Funktionen start skal sætte den nuværende brætkonstellation til det initielle bræt og udskrive brættet. Funktionen mv skal foretage en flytning (hvis det er lovligt) og udskrive den nye brætkonstellation.

I rapporten skal I demonstrere brugen af modulet Game i fsharpi.

7g2 Modulet Solve.

I denne delopgave skal der skrives en funktion solve, som foretager en udtømmende søgning efter en række træk som vil efterlade brættet i en konstellation med kun en pind, placeret i midten af brættet. Funktionen kan passende have følgende type:

```
type state = Board.b * Board.mv list
val solve : state -> Board.mv -> state option
```

Her består en tilstand af "den nuværende brætkonstellation" samt en liste af de træk der leder frem til denne konstellation (med det seneste træk forekommende først i listen). Funktionen tager yderligere et træk som argument. Ved at det gøres muligt at iterere gennem alle mulige træk (for hver konstellation), fra det første træk ((0,0),Right) til det sidste træk ((6,6),Up), kan vi sikre at alle træk prøves. Funktionen skal benytte sig af rekursion til at foretage den (muligvis) udtømmende søgning. Givet en vilkårlig brætkonstellation samt en kandidat til et træk kan funktionen solve undersøge om trækket vil efterlade brættet i en ny konstellation eller om trækket ikke er gyldigt. Afhængigt af udfaldet kan det enten undersøges (ved eventuelt rekursivt at kalde solve) om den nye brætkonstellation har (eller er) en løsning eller om vi har bedre held med det næste træk i trækordningen (hvis et sådan træk findes).

For at implementere funktionen er det nyttigt først at implementere nogle hjælpefunktioner:

- (a) Skriv en funktion nextdir af type dir -> dir option, som "roterer" en retningsværdi således at Up bliver til Some Right, Right bliver til Some Down, Down bliver til Some Left og Left bliver til None.
- (b) Skriv en funktion nextpos af type pos -> pos option, som returnerer den næste position på et 7 × 7 hullers bræt (row-major). Et kald nextpos(2,5) skal returnere værdien Some(2,6) og et kald nextpos(1,6) skal returnere værdien Some(2,0).

(c) Skriv en funktion nextmv af type mv -> mv option, som passende benytter sig af de to ovenfor specificerede funktioner. Funktionen skal give mulighed for at iterere gennem alle mulige flytninger, startende med flytningen ((0,0),Up). Bemærk at funktionen skal operere uden hensyn til en konkret brætkonstellation og at funktionen ikke skal tage højde for de præcise forekomster af huller i brættet (flytningerne kan senere filtreres blandt andet ved brug af funktionen valid). Således skal et kald nextmv((1,2),Down) returnere værdien Some((1,2),Left), et kald nextmv((1,6),Left) skal returnere værdien Some((2,0),Up). Endelig skal kaldet nextmv((6,6),Left) returnere værdien None.

I rapporten skal I vise koden for jeres implementation af den rekursive funktion solve og argumentere for at den finder en løsning til brætspillet, såfremt en sådan findes. Skriv også kode til at udskrive de fundne træk og vis i rapporten at jeres implementation finder en løsning til spillet i form af en liste af træk.

Rapporten skal også indeholde en beskrivelse af implementationens begrænsninger samt en reflektion over hvordan implementationen kan generaliseres til at finde løsninger til andre brætspecifikationer.

Krav til afleveringen

Afleveringen skal bestå af

- en zip-fil, der hedder 7g_<navn>.zip (f.eks. 7g_jon.zip)
- en pdf-fil, der hedder 7g_<navn>.pdf (f.eks. 7g_jon.pdf)

Zip-filen 7g_<navn>.zip skal indeholde en og kun en mappe 7g_<navn>. I den mappe skal der ligge en src mappe og filen README.txt. I src skal der ligge følgende og kun følgende filer: textAnalysis.fs og testTextAnalysis.fs svarende til hver af delopgaverne. De skal kunne oversættes med fsharpc, og de oversatte filer skal kunne køres med mono. Funktioner skal dokumenteres ifølge dokumentationsstandarden som minimum ved brug af <summary>, <param> og <returns> XML-tagsne. Filen README.txt skal ganske kort beskrive, hvordan koden oversættes og køres. Pdf-filen skal indeholde jeres rapport oversat fra LATEX. Husk at pdf-filen skal uploades ved siden af zip-filen på Absalon.

God fornøjelse.