Ejercicios en clase: Notación asintótica

Análisis y Diseño de Algoritmos

13 de abril de 2020

Ejercicio 1. Demostrar, usando las definiciones que

(a)
$$n^2 + 10n + 2 = O(n^2)$$

(b)
$$\lceil n/3 \rceil = O(n)$$

(c)
$$\lg n = O(\log_{10} n)$$

$$(d) \ n = O(2^n)$$

(e)
$$\lg n$$
 no es $\Omega(n)$

(f)
$$n/100$$
 no es $O(1)$

$$(g)$$
 $n^2/2$ no es $O(n)$

Ejercicio 2. Demostrar o dar un contraejemplo

(a)
$$\lg \sqrt{n} = O(\lg n)$$

(b) Si
$$f(n) = O(g(n))$$
 y $g(n) = O(h(n))$ entonces $f(n) = O(h(n))$

(c) Si
$$f(n) = O(g(n))$$
 y $g(n) = \Theta(h(n))$ entonces $f(n) = \Theta(h(n))$

(d) Si
$$f(n) = O(g(n))$$
 entonces $2^{f(n)} = O(2^{g(n)})$

(e)
$$o(g(n)) \cap \omega(g(n)) = \emptyset$$

$$(f) \max\{f(n), g(n)\} = \Theta(f(n) + g(n))$$

$$(g)$$
 $(n+a)^b = \Theta(n^b)$, donde $a, b \in \mathbb{R}$ y $b > 0$.

Ejercicio 3. (a) Usando la aproximación de Stirling, muestre que lg $n! = \Theta(n \lg n)$. También, pruebe que $n! = \omega(2^n)$ y $n! = o(n^n)$

(b) Muestre que
$$a^{\log_b c} = c^{\log_b a}$$

(c) Muestre que si
$$k \ln k = \Theta(n)$$
 entonces $k = \Theta(n/\ln n)$

(d) Verdadero o falso:
$$\lceil \lg n \rceil! = O(n)$$

(d) Muestre que
$$\sum_{i=1}^n i^k = \Theta(n^{k+1})$$