ENSAIO COM CIGARRINHAS (LEILA DINARDO MIRANDA IAC)
FATOR A= CULTIVARES (18) DE CANA
FATOR B= COM OU SEM CIGARRINHAS
Z=MEDIDA DA CLOROFILA
Y=PESO DAS PLANTAS

```
OPTIONS NODATE PS=64 LS=78 PAGENO=1;
TITLE1 'EXEMPLO AULA TRANS';
DATA B;
INPUT
                  Z Y;
TR
    FA$ FB$ BL
LN = LOG(Y);
CARDS;
        COM 1 112.4 355.7
1
    C9
2
    C9
         SEM 1
                    148.2 379.9
1
    С9
         COM 3
                    144.3 351.1
2
    C9
        SEM 3
                    160.1 381.8
   C9 COM 4 140.4 360.3
C9 SEM 4 154.8 366.7
C9 COM 5 157.1 363.3
1
2
1
                  139
1
   C9
        COM 2
                         346.8
2
   C9
          SEM 2
                   149 353.8
                  149 353.8
21.4 42.8
51 77.5
    CTC2 COM 1
3
4
    CTC2 SEM 1
                   20.7 49.8
3
    CTC2 COM 2
                   47.2 83.3
4
    CTC2 SEM 2
                  25.1 52.6
3
   CTC2 COM 3
4
    CTC2 SEM 3
                   41.2 68.2
                   33.7 45.1
3
    CTC2 COM 4
4
    CTC2 SEM 4
                    46.9 40.8
                   .
3
    CTC2 COM
              5
                          23
                  44.8 72.1
4
    CTC2 SEM 5
5
    CTC20 COM 1
                   36.4 66.6
6
                   39.8 80.4
    CTC20 SEM 1
5
    CTC20 COM 2
                   28.8 46.2
6
    CTC20 SEM 2
                    39.4 90.2
5
    CTC20 COM 3
                    36.2 45.3
6
    CTC20 SEM 3
                    50.3 84.1
5
    CTC20 COM 4
                   35.7
                         56.5
6
    CTC20 SEM 4
                   40.9 76.2
5
    CTC20 COM 5
                   22.1 59.8
                   49.7 85.5
6
    CTC20 SEM 5
7
    CTC4 COM
                    24.9 46.1
              1
    CTC4 SEM
                    56.3 56.3
8
               1
7
    CTC4 COM
               2
                    23.4 24.8
8
    CTC4 SEM
               2
                   62.5 47
7
    CTC4 COM 3
                   27.5 38.3
8
    CTC4 SEM 3
                   49.4 61.4
7
    CTC4 COM 4
                    40.2 49.8
8
    CTC4 SEM 4
                    44.7 60.5
7
    CTC4 COM 5
                    22.4 41.4
                  40.4 47.5
8
    CTC4 SEM 5
9
     CTC9 COM 1
                    37.8 98.5
10
    CTC9 SEM 1
                  53.4 152.3
     CTC9 COM 2
9
                   31.6 110.3
10 CTC9 SEM 2 44.3 136.9
```

9	CTC9	COM	3	40.6	130.4
10	CTC9	SEM	3	44.8	150.9
9	CTC9	COM	5	34.6	131.4
10	CTC9	SEM	5	44.3	149.6
9	CTC9	COM	4	37.9	117.5
10	CTC9	SEM	4	46.6	146
11	R5054	COM	1	22.1	95.5
12	R5054	SEM	1	48.1	81.2
11	R5054	COM	2	32.2	63.1
12	R5054	SEM	2	47.1	119.4
11	R5054	COM	3	34.4	66.4
12	R5054	SEM	3	46	113.2
11	R5054	COM	4	33.5	112.4
12	R5054	SEM	4	40.9	118.3
11	R5054	COM	5	36.4	75.9
12	R5054	SEM	5	43.7	122.4
13	R5156	COM	1	16	73.7
14	R5156	SEM	1	58	83.4
		COM	3	36.1	
13	R5156				55.3
14	R5156	SEM	3	50.3	101.9
13	R5156	COM	4	18.2	43.8
14	R5156	SEM	4	55.7	77
13	R5156	COM	5	13.8	57.8
14	R5156	SEM	5	49	90.1
13	R5156	COM	2	13.2	80.4
14	R5156	SEM	2	57.1	96.7
15	R5453	COM	1	23.5	23.4
16	R5453	SEM	1	55.6	38.1
15	R5453	COM	2	20.8	36.2
16	R5453	SEM	2	46.8	56.1
15	R5453		3	43.4	31.8
		COM		55.3	
16	R5453	SEM	3	55.3	49.6
15	R5453	COM	4	•	13.8
16	R5453	SEM	4	58.6	35.7
15	R5453	COM	5	•	8.3
16	R5453	SEM	5	64.3	46.2
17	R5536	COM	1		31.8
18	R5536	SEM	1	54	85.4
17	R5536	COM	2		9.5
18	R5536	SEM	2	40	46.5
17	R5536	COM	3		17.7
18	R5536	SEM	3	39.5	59.4
17	R5536	COM	4	03.0	22.8
18	R5536	SEM	4	52.1	39.4
			5	JZ • I	19.5
17	R5536	COM		•	
18	R5536	SEM	5	26.2	36.3
19	R5744	COM	1	26.3	69.5
20	R5744	SEM	1	50	174.2
19	R5744	COM	2	21	37.8
20	R5744	SEM	2	56	184
19	R5744	COM	3	21	45.7
20	R5744	SEM	3	47.2	121.2
19	R5744	COM	5	25.8	39.1
20	R5744	SEM	5	57	174.5
19	R5744	COM	4	25.3	47.4
20	R5744	SEM	4	52.2	171.7
21	R6928	COM	1	16.7	56.7
Z T	110920	COM	Τ.	10.7	30.7

22	R6928	SEM	1	41.9	75.3
21	R6928	COM	2		56.4
22	R6928	SEM	2	47.7	94.5
21	R6928	COM	3	27.3	61.2
22	R6928	SEM	3	46	65.9
21	R6928	COM	4	49.6	90.8
22	R6928	SEM	4	65.1	97.2
21	R6928	COM	5	12.4	58.2
22	R6928	SEM	5	43.9	69.7
23	R7515	COM	1	12.2	29.2
24	R7515	SEM	1	39.4	40.7
23	R7515	COM	2	31.7	19.5
24,	R7515	SEM	2	35.8	40.5
23	R7515	COM	3		8.7
24	R7515	SEM	3	42.8	43.2
23	R7515	COM	4	16.4	15.3
24	R7515	SEM	4	41	39.8
23	R7515	COM	5		10.2
				• 4 E O	
24	R7515	SEM	5	45.2	35.7
25	RB579	COM	2	30.2	80.4
26	RB579	SEM	2	40.8	109.2
25	RB579	COM	3	11.9	52
26	RB579	SEM	3	51.8	66.3
25	RB579	COM	4	32.6	80.7
26	RB579	SEM	4	44.2	100.5
25	RB579	COM	5		39.9
26	RB579	SEM	5	36	100.7
25	RB579	COM	1	21.8	46.8
26	RB579	SEM	1	43.1	67.2
27	S1049	COM	1	11.9	29.9
28	S1049	SEM	1	49.1	63.9
27	S1049	COM	3	21.7	66.7
28	S1049	SEM	3	51.9	61.3
27	S1049	COM	4	43.1	54.7
28	S1049	SEM	4	56.5	60.7
27	S1049	COM	5	29.7	40.3
28	S1049	SEM	5	35.6	94.9
27	S1049	COM	2	13.2	9.8
28	S1049	SEM	2	46.6	82.7
29	S1816	COM	1	29	82.4
30	S1816	SEM	1	58.1	94.3
29	S1816	COM	3	33.5	70.3
30	S1816	SEM	3	44.4	85.6
29	S1816	COM	4	35.4	64.4
30	S1816	SEM	4	37.8	80.1
29	S1816	COM	5	30.6	59.7
					77.2
30	S1816	SEM	5	43.2	
29	S1816	COM	2	24.3	46.2
30	S1816	SEM	2	30.9	92.6
31	S1842	COM	1	33.5	57.2
32	S1842	SEM	1	52	51
31	S1842	COM	2	39.8	25.8
32	S1842	SEM	2	48.3	66.8
31	S1842	COM	3	31.5	35.4
32	S1842	SEM	3	47.4	102.3
31	S1842	COM	4	41.9	52.9
32	S1842	SEM	4	54.2	59.3

```
31 S1842 COM 5 34.8 40.5
     S1842 SEM 5 45.2 62.5
32
33
    S3250 COM 1
                        34
                                61
     S3250 COM 1 34 61
S3250 SEM 1 53.6 96.8
34
33
    S3250 COM 2 32.6 44.9
34
    S3250 SEM 2 44 88.8
33
   S3250 COM 3 42.3 67.8
34
   S3250 SEM 3
                       58.3 85.6
                       48.4 74.4
33
      S3250 COM 4
                       60.8 97.2
      S3250 SEM 4
34
                     40.1 84.3
45.6 106.4
35.6 68.8
52 72.3
      $3250 COM 5
$3250 SEM 5
33
34
3.5
    S3280 COM 1
36
   S3280 SEM 1

      S3280 COM
      3
      36.8
      75.2

      S3280 SEM
      3
      44.3
      88.8

35
36
     S3280 COM 4 43.5 45.6
S3280 SEM 4 49.5 59.6
35
36
35 S3280 COM 5 44.2 55.1
36 S3280 SEM 5 45.9 97.5
35 S3280 COM 2 36.3 54.4
36 S3280 SEM 2 43 68.3
proc print;
RUN:
**** VERIFICAÇÃO DA HOMOCEDASTIDIDADE;
* MEDIA E VARIANCIA DE Y, POR TRATAMENTO;
PROC MEANS DATA=B MEAN MIN MAX VAR;
VAR Y Z;
CLASS TR;
RUN:
* TESTE - BOX-COX (EXIGE VALOES POSITIVOS);
PROC TRANSREG DATA=A;
MODEL BOXCOX(Y) = IDENTITY(TR);
RUN;
PROC TRANSREG DATA=A;
MODEL BOXCOX(Z) = IDENTITY(TR);
PROC TRANSREG DATA=A;
MODEL BOXCOX (LN) = IDENTITY (TR);
RUN:
*CRIANDO OS RESÍDUOS;
PROC GLM data=B;
CLASS tr
                  b1
MODEL Y Z LN =bl TR /ss3;
output out = saida2 R= R Y R Z R LN ;
run;
PROC PRINT DATA=SAIDA2; RUN;
*GRAFICOS DOS RESÍDUOS; *OBS: VER VALOR DISCREPANTE NO TRAT 20;
PROC GPLOT DATA=SAIDA2;
PLOT R Y*TR;
RUN;
```

```
PROC GPLOT DATA=SAIDA2;
PLOT R_LN*TR;
RUN;

*TESTES DE NORMALIDADE DOS RESÍDUOS;

** TESTES NORMALIDADE DOS ERROS;
PROC UNIVARIATE NORMAL PLOT DATA=SAIDA2;
VAR Y Z LN R_Y R_Z R_LN ;
RUN;
,
```