Boolean Logic

LOGIC GATES

- George Boole, (1815-1864)
- Did you know?
 George Boole Ir

George Boole Inventor of the idea of logic gates. He was born in Lincoln, England and he was the son of a shoemaker in a low class family.

- □ In the <u>1850s</u> George <u>Boole</u> developed a new form of algebra, now called Boolean algebra in his honour.
- Boolean equations use the binary number system to provide a very precise way of illustrating the logic of computer chips.
- Interesting fact: Boolean equations were <u>used long</u> <u>before computers or</u> <u>even electricity was</u> <u>invented</u>!

Review

- □ 1 in the Binary System represents
 - ON or YES
- 0 in the Binary System represents
 - OFF or NO
- Boolean logic is a part of almost every aspect of COMPUTER ELECTRONICS

 Example: using the + while performing Google Searches A logic gate is a digital circuit which either allows a signal to pass through it or to stop it.

There are seven basic logic gates: AND, OR, XOR, NOT, NAND, NOR, and XNOR.

An OR gate can have two or more inputs.

The output will be positive (True) if at least one input is true.

OR

Α	В	Y (Output)
0	0	0
0	1	1
1	0	1
1	1	1

If either input is 1 (YES) the output is 1 (YES).

Α	В	Y (Output)
0	0	0
0	1	0
1	0	0
1	1	1

Both inputs must be 1(YES) to get a 1(YES) as output.

TO ADD MORE SENSORS TO ALARM

NOT

Α	Y (Output)
0	1
1	0

Output is opposite of input.

NOR

Α	В	Y (Output)
0	0	1
0	1	0
1	0	0
1	1	0

For a value of 1(YES) – both inputs need to be 0(NO). (OPPOSITE OF OR)

XOR

Α	В	Y (Output)
0	0	0
0	1	1
1	0	1
1	1	0

Only one input can be 1(YES) to have a 1(YES) output.

NAND

Α	В	Y (Output)
0	0	1
0	1	1
1	0	1
1	1	0

If both inputs are 1(YES) output is 0(NO).

OPPOSITE OF AND!!

ANSWER: ON

Boolean Expressions

Gate	Symbol	Operator
and	=	• 1
or	D	+
not	->	-
nand		•
nor	D	+
хог		•

$$AND Y = AB$$

 $OR Y = A + B$
 $NOT Y = \overline{A}$

NOR
$$Y = \overline{A + B}$$

$$\begin{array}{ccc}
NAND & Y = A \cdot B \\
XOR & Y = A \oplus B
\end{array}$$

Boolean Algebra Example:

Boolean Algebra Example:

Boolean Algebra Example:

Your answer here would be:

$$(A + B)C$$

Try this one:

Try this one:

Answer: A + (BC) + D'

**The 'means NOT but when you write it on paper, you will use a horizontal bar

Question #	Answer: ON or OFF?
1	Off
2	On
3	Off
4	On
5	Off
6	On
7	On
8	Off
9	Off
10	On