Communication-Efficient Approaches to Federated Deep Neural Networks

Bachelor's Thesis

By: Adrian Edward Thomas Henkel

adrian.henkel@campus.lmu.de

Supervisor: Reza Nasirigerdeh

reza.nasirigerdeh@tum.de

Advisors: Prof. Dr. Jan Baumbach, and Dr. Josch Pauling

jan.baumbach@uni-hamburg.de josch.pauling@wzw.tum.de

Agenda

- Introduction
 - Deep neural networks
 - Federated learning
- Communication-efficient approaches
- Simulation framework
- Datasets and models
- Results
- Summary and outlook

A typical neural network

Architecture:

- One Input layer
- One or multiple hidden layers
- One output layer

Training process:

- Initiate the model with random weights
- Iteratively update the network to minimize a loss function
- In each iteration:
 - Select a subset of the training data (batch)
 - Find updated weights that optimize the loss function of the batch (backpropagation)

Federated learning

- Multiple clients train a global model under the coordination of a central server
- 1. Each client trains the model on its local data
- Each client shares the updated model with the server
- 3. The **server** computes the global model by taking the weighted average over the updated local models from the clients
- 4. The **server** sends the global model back to the clients
- Repeat step 1-4 until the global model converges

FL - Challenges

- Privacy
 - Reconstruction of the private data from the model parameters is possible in FL
- **Network communication**
 - A huge amount of traffic might be exchanged over the network in FL
- Heterogeneous configurations
 - Clients with various computational and communication speeds
 - Non-IID (Independent and Identically Distributed) data across clients

In this work, we focus on the network communication challenge in deep neural networks.

FL - Network bandwidth usage

K = number of clients

G = number of model parameters

L = size of each model parameter in bits

N = number of iterations (communication rounds)

 π_c = network bandwidth usage

- Communication-efficient approaches
 - Gradient quantification (↓L)
 - Gradient sparsification (↓G)
 - More local updates ([↓]N)

Example:

• K = 50

 $- \pi_C = 2 \cdot K \cdot G \cdot L \cdot N$

- G = 1.000.000
- L = 32
- N = 200

≈ 80GB

Gradient quantification (GQ)

- Default size of a parameter is 32 bits (L=32)
- Reduce the size of each parameter to 16 bits before sending the model
- The gradients are re-transformed into 32-bit representation before training

$$\pi_{GQ} = 2 \cdot K \cdot G \cdot rac{L}{2} \cdot N = rac{\pi_C}{2}$$

Gradient sparsification (GS)

- A model might be over-parameterized
- Calculate the difference between the global model and the updated model
- Eliminate all parameters under a Percentile P and determine their positions from a binary matrix
- Send the sparse model and the binary matrix

Parameter after training
Parameter over the percentile
Old parameters of the global model

More local updates (MU)

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- Typically the number of local updates (E) is one
- Increase of the local updates in one iteration
- Faster convergence of the global model
 - -> less iterations

$$\pi_{MU} = 2 \cdot K \cdot G \cdot L \cdot N' = rac{N'}{N} \cdot \pi_C$$

Simulation framework

+ train_model()

send_local_parameters()obtain_global_parameters()process_batches()sparsity()

+ test()

Repository: https://gitlab.lrz.de/00000000149C8EB/com-eff

Datasets

Fashion-MNIST:

- Created 2017
- Zalando assortment
- 70000 samples
- 28 x 28 px. grayscale
- 10 classes

CIFAR-10

- Created 2009
- Subset of tiny image DB
- 60000 samples
- 32 x 32 px. RGB
- 10 classes

Colorectal Histology Dataset:

- Created 2009
- 4000 samples
- 150 x 150 px. RGB
- 8 classes

Models

2CFNN

- Two convolutional layers
- Two Max-Pooling layers
- Dense layer with 512 neurons as penultimate layer
- Total of 1,633,370 trainable parameters

3CFNN

- Three convolutional layers
- Two Max-Pooling layers
- Dense layer with 1024 neurons as penultimate layer
- Total of 9,878,794 trainable parameters

VGG16

- Five blocks of two or three convolutional layers
- Convolutional layers are ranging from 64 to 512 filters
- Total of 65,087,304

Technische Universität München

Gradient quantification

Technische Universität München

Gradient sparsification

Technische Universität München

More local updates

Technische Universität München

Combinations

Results - Bandwidth usage

Target accuracy Approach	0.84	0.86	0.88	0.90	0.92
P=10	665.35 642.48 3.44	1064.56 1156.46 -8.63	1996.04 1927.43 3.44	3725.95 4240.35 -13.81	11177.85 11179.10 -0.01
P=50	665.35 509.41 23.44	1064.56 815.05 23.44	1996.04 1528.22 23.44	3725.95 2852.68 23.44	11177.85 7437.35 33.46
P=90	665.35 376.34 43.44	$1064.56 \mid 677.41 \mid 36.37$	1996.04 1053.75 47.21	3725.95 1655.89 55.56	11177.85 3989.18 64.31
E=2	665.35 399.21 40.00	$1064.56 \mid 532.28 \mid 50.00$	1996.04 1064.56 46.67	$3725.95 \mid 1996.04 \mid 46.43$	11177.85 7318.83 34.52
E=10	665.35 133.07 80.00	$1064.56 \mid 133.07 \mid 87.50$	$1996.04 \mid 266.14 \mid 86.67$	$3725.95 \mid 665.35 \mid 82.14$	
E=20	665.35 133.07 80.00	1064.56 133.07 87.50	$1996.04 \mid 266.14 \mid 86.67$	$3725.95 \mid 399.21 \mid 89.29$	11177.85 9181.80 17.86
GQ	665.35 399.21 40.00	1064.56 1663.37 -56.25	-	_	-1
GQ + GS(P=50) + MU(E=10)	665.35 50.01 92.48	1064.56 100.01 90.61	1996.04 150.02 92.48	3725.95 200.02 94.63	- 0

Table 5.1: 2CFNN-FMNIST: Bandwidth usage by the conventional federated training (in MB) | Bandwidth usage by the approach (in MB) | Bandwidth saving of the approach (in percent) to reach the target accuracy

Results - Bandwidth usage

Target accuracy Approach	0.5	0.6	0.68	0.7	0.72	0.733
P=10	7112.73 6868.26 3.44	13435.16 12973.36 3.44	23709.11 20604.73 13.09	26870.32 24420.42 9.12	36353.96 30525.52 16.03	60063.07 54182.78 9.79
P=50	7112.73 5445.69 23.44	$13435.16 \mid 9076.15 \mid 32.44$	$23709.11 \mid 15126.91 \mid 36.20$	$26870.32 \mid 17547.22 \mid 34.70$	36353.96 19967.52 45.07	$60063.07 \mid 25413.21 \mid 57.69$
P=90	7112.73 6655.84 6.42	$13435.16 \mid 10891.38 \mid 18.93$	$23709.11 \mid 16337.06 \mid 31.09$	$26870.32 \mid 18757.37 \mid 30.19$	-	-
E=2	7112.73 4741.82 33.33	$13435.16 \mid 9483.64 \mid 29.41$	$23709.11 \mid 15806.07 \mid 33.33$	$26870.32 \mid 18967.28 \mid 29.41$	$36353.96 \mid 26080.02 \mid 28.26$	-
E=10	7112.73 1580.61 77.78	$13435.16 \mid 2370.91 \mid 82.35$	$23709.11 \mid 6322.43 \mid 73.33$	$26870.32 \mid 14225.46 \mid 47.06$	-	-
E=20	7112.73 790.30 88.89	$13435.16 \mid 1580.61 \mid 88.24$	$23709.11 \mid 11854.55 \mid 50.00$	-	-	_
GQ	7112.73 3556.37 50.00	$13435.16 \mid 6717.58 \mid 50.00$	$23709.11 \mid 11064.25 \mid 53.33$	26870.32 13040.01 51.47	36353.96 16201.22 55.43	60063.07 19757.59 67.11
$\mathrm{GQ} + \mathrm{GS(P}{=}50) + \mathrm{MU(E}{=}2)$	7112.73 1781.89 74.95	13435.16 3563.78 73.47	23709.11 5939.63 74.95	26870.32 6830.57 74.58	36353.96 10097.37 72.22	-

Table 5.2: 3CFNN-CIFAR-10: Bandwidth usage by the conventional federated training (in MB) | Bandwidth usage by the approach (in MB) | Bandwidth saving of the approach (in percent) to reach the target accuracy

Results - Bandwidth usage

Target accuracy Approach	0.55	0.65	0.7	0.72	0.76	0.771
P=10	205.68 202.92 1.34	236.92 262.94 -10.98	-	-	-	-
P=90	205.68 164.93 19.81	.=.	-	-	-	_
E=2	205.68 145.80 29.11	$236.92 \mid 221.30 \mid 6.59$	343.66 27597 19.70	367.09 328.04 10.64	466.03 377506 36 18.99	643.06 387.92 39.68
E=5	205.68 166.62 18.99	$236.92 \mid 221.30 \mid 6.59$	343.66 294.20 14.39	367.09 333.25 9.22	466.03 557.15 -19.55	643.06 577.98 10.12
E=10	205.68 46.86 77.22	$236.92 \mid 78.10 \mid 67.03$	343.66 91.12 73.48	367.09 124.97 65.96	-	-
E=20	205.68 41.66 79.75	$236.92 \mid 67.70 \mid 71.43$	343.66 119.76 65.15	$367.09 \mid 130.17 \mid 64.54$	=	-
GQ	205.68 91.12 55.70	236.92 100.23 57.69	343.66 135.38 60.61	367.09 184.85 49.65	-	-
GQ + GS(P=50) + MU(E=5)	205.68 76.06 63.02	236.92 102.53 56.72	-	-	-	-

Table 5.3: VGG16-CCH: Bandwidth usage by the conventional federated training (in GB) | Bandwidth usage by the approach (in GB) | Bandwidth saving of the approach (in percent) to reach the target accuracy

Summary

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

- All three approaches can significantly save the network bandwidth but also affect the accuracy of the models
- The More local update approach is the most suitable choice taking communication efficiency and accuracy into account
- The More local update approach is the most contributing approach in the combination
- Combining the approaches provides further bandwidth savings in comparison with each individual approach

Outlook

- Gradient sparsification
 - Multi-threaded implementation (one thread per layer) to improve the sparsification speed
 - Server-side sparsification
- Communication-efficient approaches in
 - Non-IID label distributions
 - Imbalanced sample size distributions