# **Television Viewers Segmentation**

#### 1 Problem Statement

To analyze the viewing patterns of television viewers by forming clusters with similar viewers in similar categories to enable us to understand the patterns in viewing channels, genres, duration etc.

#### 2 | Explanation

This case aims to discover television viewing patterns of viewers from large scale data collected from televisions. The data record information that when and which channel users have viewed. Users select programs to watch according to their preferences, but in some cases they habitually watch programs such as certain morning news or a series. Such daily habits may be difficult to find since they are not based on program's popularity or strong preferences but rather on unintentional customs. It is desirable to find such patterns because, for example, commercials that require viewers' full attention are unlikely to be effective during the unintentional viewing.

#### 3 Literature Review

Television industry is experiencing a revolution with the rapid development of multimedia and network communication technologies. More abundant television contents and richer consumption experiences are provided to users. For example, they can time-shift their viewing, watch their favorite shows repeatedly, or switch to the Internet at anytime. The viewing habits of users are becoming more diverse, and thus it is more difficult to capture users' viewing patterns. Television advertisers and service providers face challenges in attracting users in the incredibly competitive market. Efficient delivery of advertising and contents plays a key role in cutting cost and promoting competitiveness for them. In order to accomplish that, how to extract the target consumer group from the large community of users becomes an issue to be solved in television industry.

#### 4 Data

The file tv-audience-dataset.csv contains the data relative to TV watching behaviour.

Source: <a href="http://recsys.deib.polimi.it/?page\_id=76">http://recsys.deib.polimi.it/?page\_id=76</a>



#### Fields are:

channel ID: channel id from 1 to 217.

slot: hour inside the week relative to the start of the view, from 1 to 24\*7 = 168. week: week from 1 to 19. Weeks 14 and 19 should not be used because they contain errors.

genre ID: it is the id of the genre, form 1 to 8. Genre/subgenre mapping is attached below.

subGenre ID: it is the id of the subgenre, from 1 to 114. Genre/subgenre mapping is attached below.

user ID: it is the id of the user.

program ID: it is the id of the program. The same program can occur multiple times (e.g. a tv show).

event ID: it is the id of the particular instance of a program. It is unique, but it can span multiple slots.

duration: duration of the view.

| genre     | genreID subgenre  | subGenreID |
|-----------|-------------------|------------|
| movie     | 3 science fiction | 51         |
| movie     | 3 musical         | 63         |
| movie     | 3 animation       | 17         |
| movie     | 3 dramatic        | 29         |
| movie     | 3 fantastic       | 46         |
| movie     | 3 war             | 67         |
| movie     | 3 funny           | 56         |
| movie     | 3 adventure       | 4          |
| movie     | 3 action          | 34         |
| movie     | 3 comedy          | 3          |
| movie     | 3 thriller        | 28         |
| movie     | 3 cinema          | 7          |
| movie     | 3 romantic        | 45         |
| movie     | 3 biography       | 54         |
| movie     | 3 western         | 19         |
| movie     | 3 erotic          | 82         |
| movie     | 3 short film      | 66         |
| movie     | 3 horror          | 24         |
| movie     | 3 crime           | 42         |
| undefined | 7 undefined       | 47         |

| other         |                   |     |
|---------------|-------------------|-----|
| programs      | 8 other           | 112 |
| other         |                   |     |
| programs      | 8 other programs  | 50  |
| other         | 1 0               |     |
| programs      | 8 educational     | 108 |
| other         |                   |     |
| programs      | 8 special events  | 107 |
| other         | •                 |     |
| programs      | 8 shopping        | 96  |
| entertainment | 5 mini series     | 104 |
| entertainment | 5 TV soap         | 102 |
| entertainment | 5 series          | 92  |
| entertainment | 5 science fiction | 65  |
| entertainment | 5 reality show    | 61  |
| entertainment | 5 soap opera      | 64  |
| entertainment | 5 animation       | 71  |
| entertainment | 5 show            | 13  |
| entertainment | 5 dramatic        | 74  |
| entertainment | 5 docu-fiction    | 109 |
| entertainment | 5 theatre         | 8   |
| entertainment | 5 exhibition      | 41  |
| entertainment | 5 talk show       | 80  |
| entertainment | 5 entertainment   | 81  |
| entertainment | 5 quiz            | 95  |
| entertainment | 5 sit com         | 36  |
| entertainment | 5 fiction         | 31  |
| entertainment | 5 game            | 98  |
| society       | 4 cinema magazine | 32  |
| society       | 4 travel magazine | 87  |
| society       | 4 reportage       | 59  |
| society       | 4 nature          | 30  |
| society       | 4 magazine        | 60  |
| society       | 4 topical         | 10  |
| society       | 4 music           | 55  |
| society       | 4 adventure       | 75  |
| society       | 4 fishing         | 93  |
| society       | 4 lifestyle       | 38  |
| society       | 4 society         | 27  |
| society       | 4 technology      | 84  |
| society       | 4 religion        | 52  |
| society       | 4 history         | 26  |
| society       | 4 documentary     | 5   |
| society       | 4 economics       | 111 |
| society       | 4 hobby           | 91  |
| society       | 4 sport           | 99  |
| society       | 4 nature magazine | 48  |
| society       | 4 fashion         | 89  |
| society       | 4 travels         | 23  |
|               |                   |     |

| society  | 4 culture magazine | 25  |
|----------|--------------------|-----|
| society  | 4 communities      | 76  |
| society  | 4 cinema           | 53  |
|          | culture and        |     |
| society  | 4 society          | 69  |
| society  | 4 science magazine | 94  |
| society  | 4 science          | 15  |
| society  | 4 politics         | 62  |
| society  | 4 cooking          | 37  |
| society  | 4 art and culture  | 6   |
| sport    | 2 winter sports    | 79  |
| sport    | 2 other            | 20  |
| sport    | 2 poker            | 58  |
| sport    | 2 hockey           | 22  |
| sport    | 2 cycling          | 21  |
| sport    | 2 wrestling        | 83  |
| sport    | 2 sport            | 43  |
| sport    | 2 soccer           | 16  |
| sport    | 2 equestrian       | 72  |
| sport    | 2 rugby            | 44  |
| sport    | 2 swimming         | 78  |
| sport    | 2 athletics        | 68  |
| sport    | 2 baseball         | 40  |
| sport    | 2 football usa     | 39  |
| sport    | 2 boxe             | 57  |
| sport    | 2 basket           | 2   |
| sport    | 2 motors           | 33  |
| sport    | 2 golf             | 70  |
| sport    | 2 sail             | 97  |
| sport    | 2 skiing           | 14  |
| sport    | 2 tennis           | 12  |
| sport    | 2 volley           | 18  |
| sport    | 2 handball         | 103 |
| kids and |                    |     |
| music    | 1 series           | 85  |
| kids and |                    |     |
| music    | 1 concert          | 106 |
| kids and |                    |     |
| music    | 1 documentary      | 110 |
| kids and |                    |     |
| music    | 1 animation movie  | 105 |
| kids and |                    |     |
| music    | 1 videoclip        | 101 |
| kids and |                    |     |
| music    | 1 dance            | 73  |
| kids and |                    |     |
| music    | 1 magazine         | 77  |
| kids and |                    |     |
| music    | 1 music            | 1   |
|          |                    |     |

1 - 1

| kids and    |                    |     |
|-------------|--------------------|-----|
| music       | 1 games            | 100 |
| kids and    |                    |     |
| music       | 1 cartoons         | 35  |
| kids and    |                    |     |
| music       | 1 educational      | 49  |
| kids and    |                    |     |
| music       | 1 children         | 88  |
| kids and    |                    |     |
| music       | 1 null             | 114 |
| information | 6 news             | 9   |
| information | 6 economics        | 90  |
| information | 6 sport            | 86  |
| information | 6 weather forecast | 113 |
| information | 6 newscast         | 11  |
|             |                    |     |

#### 5 Deliverable

- 1. Code including all processes from ingestion to output
- 2. Output i.e. cluster labels
- 3. Analysis Graphs
- 4. Output cluster graph

#### 6 Evaluation

Evaluation will be done based on silhouette score.

The Silhouette Coefficient is calculated using the mean intra-cluster distance (a) and the mean nearest-cluster distance (b) for each sample. The Silhouette Coefficient for a sample is (b - a) / max(a, b). To clarify, b is the distance between a sample and the nearest cluster that the sample is not a part of. Note that Silhouette Coefficient is only defined if number of labels is  $2 \le n_b$  abels  $n_b$  amples - 1.

## 7 Data Ingestion

Data is ingested in form of pandas dataframe from a csv file.

## 8 Data Analysis

Here data is analyzed and visualized to look for patterns and anomalies using graphs. bar graphs, histograms, scatter plots, etc. will be used.

From small analysis, we take data of first 5000 records. We can see various patterns (which might vary differently as number of records are increased) such as -

- => People usually prefer to see channels between 0 to 25, rarely between 50 to 165 and occasionally channels after 165.
- => People watch genres 4 and 5 the most, 7 after that, 2,3,6 occsionally and rest of them rarely.
- => People usually watch television between 0 to 10 hours and with less frequency beyond 10 hours.
- => The most used slot for watching are 20 and 21 and least are 0 to 5.
- => Genres 0 to 5 are watched for maximum duration of time.
- => There are some users who watch very varied types of channels and genres and very few who watch very less range of programs.
- => Only few channels are being watched very extensively.
- => Genre 5 is most liked by viewers and genre 1 the least. This shows that viewers watch television for entertainment purposes maximum times.
- => Duration for which viewers watch television is maximum for 1 hour and viewing proportion gradually decreases with increase in duration but there is s spike at duration 60 hours which means there are some viewers who watch television all most all the time!
- => From sub-genres, it can be seen that viewers like to watch undefined random things most of the time, then fiction the most, followed by entertainment shows and newscast. The least watched sub-genre are in sports such as cycling, swimming, basketball and also weather forecast, talk shows.











As we see from above plots and their deduction, features are varied and less dependent on each other.

To know a certain pattern of clustering, we can take different features two at a time and create clusters on those features to obtain a certain pattern in television viewing.

For now, we cluster the entire data with all features together to get a certain pattern with all information included.

## 9 Data Munging

On the basis of information of data provided and on based on Data Analysis, data needs to be rearranged, reorganized and made into a proper structure to make it ready for Data modeling process.

Weeks 14 and 19 should not be used because they contain errors. Hence those records were deleted.

```
def Munging_data():
    """
    Rearrange and reorganise the data according to the problems needed to solve so the modelling occurs on proper datasets.

Returns:
    df : pd.Dataframe
        Dataset for further exploration

"""
    df_ = df[-df['week'].isin([14,19])]
    return df_
```

## 10 Data Exploration

The data might contain outliers, missing values and various other things which might cause problems in modeling or might lead to wrong results. These anomalies need to be corrected and data must be cleaned before passing it to modeling.

#### 11 Feature Engineering

Not Required

## 12 | Modeling

The data finally pre-processed and cleaned is now used for clustering and obtaining the results. We use K-Means model and HAC model for prediction and trace as our evaluation metric .

The silhoutte score will be calculated for both. The model performing better will be chosen.

#### 13 Optimization

The hyper-parameters of a model need to be optimized to get best possible score of prediction. For this purpose, we use Random Grid Search.

50 Iterations are performed random combination of parameters for each Kmeans and HAC. The model having best score is chosen from all as our final model for clustering. The silhoutte score for best model will come around 0.70 to 0.75.

## 14 Prediction

From best model obtained from hyper-parameter optimization, we predict cluster labels for the data, which will be our prediction for the problem.

## 15 Visual Analysis



As we can see from the scatter plot, the clusters are well formed according to the data space. This leads to conclusion that our model performed good and the clusters can be used for further business purposes.

## 16 Results

K-means outperformed HAC and scored a best silhouette score of 0.68 with 7 clusters.

|    | channel ID | slot | week | genre ID | subGenre ID | user ID | duration | program ID | event ID | Cluster |
|----|------------|------|------|----------|-------------|---------|----------|------------|----------|---------|
| 9  | 46.0       | 19.0 | 1.0  | 5.0      | 81.0        | 1.0     | 5.0      | 202344     | 50880093 | 3       |
| 1  | 46.0       | 20.0 | 1.0  | 5.0      | 81.0        | 1.0     | 15.0     | 202344     | 50880093 | 3       |
| 2  | 46.0       | 20.0 | 1.0  | 3.0      | 28.0        | 1.0     | 41.0     | 254329     | 50880094 | 6       |
| 3  | 1.0        | 19.0 | 1.0  | 6.0      | 11.0        | 2.0     | 11.0     | 109428     | 51094492 | 4       |
| 4  | 1.0        | 19.0 | 1.0  | 6.0      | 86.0        | 2.0     | 5.0      | 6017       | 51094494 | 4       |
| 5  | 1.0        | 19.0 | 1.0  | 5.0      | 98.0        | 2.0     | 12.0     | 6187       | 51094496 | 4       |
| 6  | 4.0        | 19.0 | 1.0  | 5.0      | 13.0        | 2.0     | 1.0      | 142037     | 51092594 | 1       |
| 7  | 46.0       | 19.0 | 1.0  | 5.0      | 81.0        | 2.0     | 1.0      | 202344     | 50880093 | 3       |
| 8  | 46.0       | 19.0 | 1.0  | 5.0      | 81.0        | 2.0     | 5.0      | 202344     | 50880093 | 3       |
| 9  | 46.0       | 20.0 | 1.0  | 5.0      | 81.0        | 2.0     | 15.0     | 202344     | 50880093 | 3       |
| 10 | 46.0       | 20.0 | 1.0  | 3.0      | 28.0        | 2.0     | 41.0     | 254329     | 50880094 | 6       |
| 11 | 7.0        | 6.0  | 1.0  | 6.0      | 11.0        | 3.0     | 2.0      | 109509     | 51094300 | 4       |
| 12 | 4.0        | 6.0  | 1.0  | 6.0      | 11.0        | 3.0     | 2.0      | 128701     | 51092527 | 4       |
| 13 | 7.0        | 6.0  | 1.0  | 6.0      | 9.0         | 3.0     | 9.0      | 171429     | 51094301 | 1       |
| 14 | 7.0        | 7.0  | 1.0  | 6.0      | 9.0         | 3.0     | 17.0     | 171429     | 51094301 | 1       |
| 15 | 6.0        | 7.0  | 1.0  | 6.0      | 9.0         | 3.0     | 1.0      | 244916     | 51097384 | 1       |
| 16 | 1.0        | 7.0  | 1.0  | 5.0      | 31.0        | 3.0     | 2.0      | 53001      | 50824698 | 3       |
| 17 | 1.0        | 7.0  | 1.0  | 5.0      | 31.0        | 3.0     | 1.0      | 197319     | 50824700 | 3       |
| 18 | 16.0       | 7.0  | 1.0  | 7.0      | 47.0        | 3.0     | 1.0      | 1          |          | 0       |
| 19 | 1.0        | 7.0  | 1.0  | 6.0      | 11.0        | 3.0     | 6.0      | 109509     | 51122125 | 4       |
| 20 | 7.0        | 7.0  | 1.0  | 6.0      | 9.0         | 3.0     | 20.0     | 171429     | 51094301 | 1       |