## — HIGHER INSTITUTE OF TECHNOLOGICAL STUDIES OF BIZERTE

AY: 2022-2023 M1-S2: Dept. of Electrical Engineering

MIDTERM EXAM | AI-ECUE221 Teacher: A. Mhamdi

13/04/23 (09:00→10:00) Time Limit: 1h

This document contains 5 pages numbered from 1/5 to 5/5. As soon as it is handed over to you, make sure that it is complete. The 3 tasks are independent and can be treated in the order that suits you.

The following rules apply:

- **No document** is allowed in the examination room.
- **2** Any electronic material, except basic calculator, is prohibited.
- **8 Round results** to the nearest <u>thousandth</u> (i.e., third digit after the decimal point).
- Mysterious or unsupported answers will not receive full credit.
- **6** Task  $N_{-3}^{0}$ : Each correct answer will grant a mark with no negative scoring.



## Task Nº1

25mn | (7 points)

Consider the following matrix of features X and the corresponding target vector y:

$$\mathbf{X} = \begin{bmatrix} 0.25 & 1 \\ 3 & -1 \\ 2 & -0.5 \\ 1 & 0.5 \end{bmatrix} \quad \text{and} \quad \mathbf{y} = \begin{bmatrix} 1.075 \\ -1.05 \\ -0.425 \\ 0.525 \end{bmatrix}$$

We suppose that y is linearly dependent on features in X to which we need to add a bias.

Using the **stochastic gradient descent** algorithm (**SGD**), determine the parameter vector  $\theta$  which maps X to y. The initial value of  $\theta$  is  $\begin{bmatrix} 0.1 & 0 & -0.1 \end{bmatrix}^T$ . The learning rate is set at 0.1. Reproduce and fill in the following table on your paper.

| k                              |                                                      | 1         | 2          | 3         | 4         |
|--------------------------------|------------------------------------------------------|-----------|------------|-----------|-----------|
| $h_{\theta}\left(x_{k}\right)$ |                                                      | 0         | 0.281      | -0.740    | 0.141     |
|                                | $\left[\begin{array}{c} \theta_1 \end{array}\right]$ | [ 0.208 ] | [ 0.0744 ] | [ 0.106 ] | [ 0.172 ] |
| $\theta =$                     | $\theta_2$                                           | 0.027     | -0.372     | -0.31     | -0.243    |
|                                | $\left[\begin{array}{c} \theta_3 \end{array}\right]$ | 0.007     | 0.140      | 0.125     | 0.158     |

Task N<sup>0</sup>2

15mn | (6 points)

What will be the output of cell #5 after code showing hereafter is being executed.

```
[1]: using DataFrames, MLJ
```

```
[2]: Xdf = DataFrame(A=rand(-5:.2:3, 4), B=-1:2, C=rand(100:7:1000, 4))
```

```
В
                               С
[2]:
          Float64
                     Int64
                             Int64
            2.2
                      -1
                              639
      1
      2
            2.8
                              632
                       0
      3
            -2.0
                              345
                       1
            2.2
                       2
                              639
```

```
[3]: describe(Xdf, :min, :max, :mean, :std)
```

```
variable
                      min
                            max
                                     mean
                                                std
[3]:
                                             Float64
           Symbol
                     Real
                            Real
                                   Float64
                                             2.21811
                     -2.0
                             2.8
                                     1.3
      2
                                             1.29099
              В
                      -1
                              2
                                     0.5
                                             145.871
      3
              С
                      345
                             639
                                    563.75
```

```
[4]: schema(Xdf)
```

```
[4]: names scitypes types
```

```
A Continuous Float64
B Count Int64
C Count Int64
```

```
[5]: sc = Standardizer(count=true)
Xsc = machine(sc, Xdf) |> fit! |> MLJ.transform
```

[ Info: Training machine(Standardizer(features = Symbol[], ...), ...).

```
C
                        В
[5]:
         Float64
                    Float64
                               Float64
         0.405751
                    -1.1619
      1
                               0.515868
      2
         0.676252
                   -0.387298
                               0.46788
      3
        -1.48775
                    0.387298
                               -1.49962
         0.405751
                   1.1619
                               0.515868
```

| AY: 2022-2023 M1-S2: Dept. of Electrical Engineering MIDTERM EXAM   AI-ECUE221 13/04/23 (09:00→10:00) Teacher: A. Mhamdi                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                           | 1h                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
| Answe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R SHEET }                                                                                                                                                 |                                                                                                                 |
| <u>Task №3</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                           | 🖫 20mn   (7 points)                                                                                             |
| (a) (½ point) How is Machine Learning  ○ Al focuses on classification ○ Al is form of unsupervised  √ ML is a type of Al that relie ○ ML and Al are the same thi  (b) (½ point) Your ML system is using leader that data to the predicted description of this ML method?  √ Supervised learning ○ Unsupervised learning ○ Semi-supervised learning ○ Semi-reinforcement learning ○ Semi-reinforcement learning ○ One that has been trained permutations in the training ○ One that has been trained that has been trained the permutations in the training ○ One that has a high degree results | while ML is ab ML.  es on learning thing.  abeled examples result, and there  well-fitted model with labeled trace with an exhausing data and tested with | hrough data.  In the model. What is the best the model where the best the data is the set of all conditions and |
| <ul> <li>(d) (½ point) Your data science team was sages. The team has gathered a didentified as spam or not spam. If you call this data set?</li> <li>○ ML algorithm  √ Training set</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                 | atabase of 1000<br>ou are using su                                                                                                                        | 000 messages that have been pervised ML, what would you                                                         |

(e) ( $\frac{1}{2}$  point) Asian user complains that your company's facial recognition model does not properly identify their facial expressions. What should you do? O Retrain your model with updated hyperparameter values.  $\sqrt{}$  Include Asian faces in your training data and retrain your model. O Include Asian faces in your test data and retrain your model. O Retrain your model with smaller batch sizes. (f) ( $\frac{1}{12}$  point) When we discuss "STATE", it is seen a categorical variable. When facing these type of variables - what step is required? Including all columns O Removing all columns. √ Using dummy variables. (g)  $\binom{1}{2}$  point) Which of the following groups are not ML techniques?  $\sqrt{\text{Flux}}$  and MLJ Classification and clustering Anomaly detection and recommendation systems (h)  $\binom{1}{2}$  point) Why is it important for ML algorithms to have access to high-quality data? O It will take too long for programmers to scrub poor data. ○ If the data is high quality, the algorithms will be easier to develop.  $\sqrt{\ }$  If the data is low quality, you will get inaccurate results. O Low-quality data requires much more processing power than highquality data. (i) (1/2 point) The "Regression" technique in ML is a group of algorithms that are used for: O Finding items/events that often co-occur (e.g., grocery items that are usually bought together by a customer).

DO NOT WRITE ANYTHING HERE

a customer will churn or not).

acteristics).

O Predicting a class/category of a case (e.g., a cell is benign or malignant, or

 $\sqrt{}$  Predicting a continuous value (e.g., the price of a house based on its char-

|             |                    | DO NOT WRITE ANYTHING HERE                                                                                                            |
|-------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| ·           |                    |                                                                                                                                       |
|             |                    |                                                                                                                                       |
| <i>(</i> *) | <i>d</i> 1. •      |                                                                                                                                       |
| ())         |                    | t) To predict a quantity value. use "".  sification √ regression ○ clustering ○ dimensionality reduction                              |
| (k)         | · ·                | t) Supervised learning deals with labeled data, while unsupervised learnls with unlabeled data. $\sqrt{\mbox{True}}$ $\bigcirc$ False |
| (1)         | $\frac{1}{2}$ poin | t) In the context of calculus, what is $\frac{df}{dv}$ ?                                                                              |
|             |                    | Equivalent to f divided by x                                                                                                          |
|             | 1                  | The derivative of f wrt x                                                                                                             |
|             | $\subset$          | The prediction function                                                                                                               |
|             | $\subset$          | The derivative of x                                                                                                                   |
| (m)         | $\frac{1}{2}$ poin | t) Which of the below is a popular method to handle missing data in a                                                                 |
|             | given c            | olumn?                                                                                                                                |
|             | C                  | Replace with the standard deviation of the column.                                                                                    |
|             | C                  | Replace with the min or max of the column.                                                                                            |
|             | 1                  | Replace with the mean of the column.                                                                                                  |
| (n)         |                    | t) With traditional programming, the programmer typically inputs com-                                                                 |
|             | mands.             | With ML, the programmer inputs ""                                                                                                     |
|             | C                  | algorithms                                                                                                                            |
|             | 1                  | / data                                                                                                                                |
|             | C                  | supervised learning                                                                                                                   |
|             | C                  | unsupervised learning                                                                                                                 |