

Order statics

Notes on Order Statistics and Selection Algorithms

1. Order Statistics

- **Definition:** The *i-th order statistic* of a set of nnn elements is the iii-th smallest element.
 - Min = 1st order statistic.
 - Max = nnn-th order statistic.
 - Median = middle element ($\lfloor (n+1)/2(n+1)/2(n+1)/2 \rfloor$ or $\lceil (n+1)/2(n+1)/2(n+1)/2 \rceil$).lecture05_order_statistics

2. The Selection Problem

- Problem statement: Given a set AAA of nnn elements and an integer iii, find the element x∈Ax \in Ax∈A such that xxx is greater than exactly i-1i-1i-1 elements of AAA.lecture05_order_statistics
- Special cases:
 - ∘ i=1i=1i=1: minimum.
 - ∘ i=ni=ni=n: maximum.
 - \circ i=(n+1)/2i=(n+1)/2: median.

3. Finding Min and Max

- Naïve method: Scan the array once, keep track of current best → O(n)O(n)O(n).lecture05_order_statistics
- Both min & max: Can be done in ~3n/23n/23n/2 comparisons by pairing elements.

4. Quickselect

Idea

- Based on **Quicksort's partition**:
 - Partition around a pivot.
 - If pivot lands at position iii: done.
 - If iii is smaller: recurse left.
 - If iii is larger: recurse right.
- Only recurse into one side → less work than Quicksort.lecture05_order_statistics

Why it works

- Each partition places the pivot in its **final correct position**.
- This lets us discard the irrelevant half immediately.

Complexity

- Worst case: pivot always smallest/largest → T(n)=T(n-1)+O(n)T(n) = T(n-1) + O(n)T(n)=T(n-1)+O(n) = O(n2)O(n^2)O(n2).lecture05_order_statistics
- Average case: random pivot → expected geometric shrinkage.
 - o $T(n) \le O(n) + T(3n/4)T(n) \setminus I(3n/4)T(n) \le O(n) + T(3n/4)T(n) \le O(n) + T(3n/4)$.
 - Expands to $n+34n+(34)2n+...=O(n)n + \frac{3}{4}n + \frac{3}{4}n^2n + \frac{3}{4}n^2n + \frac{3}{4}n + \frac{3}{4}n^2n + \frac{3}{4}n + \frac{3}{4}n^2n +$
- **Space:** In-place, so O(1)O(1)O(1) auxiliary memory.

• **Tail recursion:** Quickselect naturally tail-recurses; can be written iterativelylecture05_order_statistics.

5. Heapselect

- Put all elements in a heap.
- Extract min iii times → i-th order statistic.
- Complexity: O(n+ilogn)O(n + i \log n)O(n+ilogn).lecture05_order_statistics
 - Efficient for small iii.
 - Worst case: O(nlogn)O(n \log n)O(nlogn).

6. Introselect

- Hybrid: Quickselect + Heapselect.
- If recursion depth too large (> O(logn)O(\log n)O(logn)), switch to Heapselect.
- Guarantees: O(nlogn)O(n \log n)O(nlogn) worst case, but expected O(n)O(n)O(n).lecture05_order_statistics
- Used in C++ nth_element.

7. Improving Quickselect with Pivot Choice

- Random pivot: reduces chance of worst-case, expected O(n)O(n)O(n).lecture05_order_statistics
- Median of medians: gives deterministic O(n)O(n)O(n).

8. Median of Medians

Process

- 1. Split array into groups of 5.
- 2. Find the median of each group (constant time per group).
- 3. Recursively select the **median of these medians** → pivot MMM.

- 4. Partition array using MMM.
- 5. Recurse into relevant side.lecture05_order_statistics

Why it works (mathematical guarantee)

- At least half of medians ≥ MMM.
- Each such median ≥ 2 other elements in its group → ≥3 elements total ≥ MMM.
- So ≥3n/103n/103n/10 elements ≤ MMM, and ≥3n/103n/103n/10 elements ≥ MMM.lecture05_order_statistics
- Therefore, each partition discards at least 30% of the array.

Complexity

```
T(n) \le T(n/5) + T(7n/10) + O(n).T(n) \setminus T(n/5) + T(7n/10) + O(n).

T(n) \le T(n/5) + T(7n/10) + O(n).
```

By induction, $T(n) \le 10cn = O(n)T(n) \le 10cn = O(n)T(n) \le 10cn = O(n)$. lecture 05_order_statistics

Trade-off

- Guaranteed O(n)O(n)O(n) (worst-case).
- But larger constants than randomized Quickselect, so slower in practice unless adversarial input is likely.

9. Key Comparisons

- Quickselect (random pivot): Expected O(n)O(n)O(n), worst O(n2)O(n^2)O(n2).
- Median of Medians: Guaranteed O(n)O(n)O(n), but slower constants.
- **Heapselect:** O(n+ilogn)O(n+i \log n)O(n+ilogn), good for small iii.
- Introselect: O(n)O(n)O(n) expected, O(nlogn)O(n \log n)O(nlogn) guaranteed.

◆ 10. Core Definitions Recap

- Order Statistic: iii-th smallest element.
- Selection Problem: Find the iii-th order statistic.
- **Tail recursion:** Recursive call at the end → can be converted to loop.
- Why correctness holds: Partitioning guarantees pivot in final place; inductive step ensures recursive side shrinks properly.
- Why complexities hold: Cost expansions always form geometric series (average/randomized case) or guaranteed shrinkage (median of medians).

Notes on Order Statistics and Selection Algorithms

1. Order Statistics

- **Definition:** The *i-th order statistic* of a set of nnn elements is the iii-th smallest element.
 - Min = 1st order statistic.
 - Max = nnn-th order statistic.
 - Median = middle element ($\lfloor (n+1)/2(n+1)/2(n+1)/2 \rfloor$ or $\lceil (n+1)/2(n+1)/2(n+1)/2 \rceil$).lecture05_order_statistics

2. The Selection Problem

- Problem statement: Given a set AAA of nnn elements and an integer iii, find the element x∈Ax \in Ax∈A such that xxx is greater than exactly i-1i-1i-1 elements of AAA.lecture05_order_statistics
- · Special cases:
 - ∘ i=1i=1i=1: minimum.
 - ∘ i=ni=ni=n: maximum.
 - \circ i=(n+1)/2i=(n+1)/2: median.

3. Finding Min and Max

- Naïve method: Scan the array once, keep track of current best → O(n)O(n)O(n).lecture05_order_statistics
- Both min & max: Can be done in ~3n/23n/23n/2 comparisons by pairing elements.

4. Quickselect

Idea

- Based on **Quicksort's partition**:
 - Partition around a pivot.
 - If pivot lands at position iii: done.
 - If iii is smaller: recurse left.
 - If iii is larger: recurse right.
- Only recurse into one side → less work than Quicksort.lecture05_order_statistics

Why it works

- Each partition places the pivot in its **final correct position**.
- This lets us discard the irrelevant half immediately.

Complexity

- Worst case: pivot always smallest/largest → T(n)=T(n-1)+O(n)T(n) = T(n-1) + O(n)T(n)=T(n-1)+O(n) = O(n2)O(n^2)O(n2).lecture05_order_statistics
- Average case: random pivot → expected geometric shrinkage.

 - Expands to $n+34n+(34)2n+...=O(n)n + \frac{3}{4}n + \frac{3}{4}n + \frac{3}{4}n^2n + \frac{3}{4}n + \frac{3}{4}n^2n + \dots = O(n).lecture 05_order_statistics$
- Space: In-place, so O(1)O(1)O(1) auxiliary memory.

• **Tail recursion:** Quickselect naturally tail-recurses; can be written iterativelylecture05_order_statistics.

5. Heapselect

- Put all elements in a heap.
- Extract min iii times → i-th order statistic.
- Complexity: O(n+ilogn)O(n + i \log n)O(n+ilogn).lecture05_order_statistics
 - Efficient for small iii.
 - Worst case: O(nlogn)O(n \log n)O(nlogn).

6. Introselect

- Hybrid: Quickselect + Heapselect.
- If recursion depth too large (> O(logn)O(\log n)O(logn)), switch to Heapselect.
- Guarantees: O(nlogn)O(n \log n)O(nlogn) worst case, but expected O(n)O(n)O(n).lecture05_order_statistics
- Used in C++ nth_element.

◆ 7. Improving Quickselect with Pivot Choice

- Random pivot: reduces chance of worst-case, expected O(n)O(n)O(n).lecture05_order_statistics
- Median of medians: gives deterministic O(n)O(n)O(n).

♦ 8. Median of Medians

Process

- 1. Split array into groups of 5.
- 2. Find the median of each group (constant time per group).
- 3. Recursively select the **median of these medians** → pivot MMM.

- 4. Partition array using MMM.
- 5. Recurse into relevant side.lecture05_order_statistics

Why it works (mathematical guarantee)

- At least half of medians ≥ MMM.
- Each such median ≥ 2 other elements in its group → ≥3 elements total ≥ MMM.
- So ≥3n/103n/103n/10 elements ≤ MMM, and ≥3n/103n/103n/10 elements ≥ MMM.lecture05_order_statistics
- Therefore, each partition discards at least 30% of the array.

Complexity

```
T(n) \le T(n/5) + T(7n/10) + O(n).T(n) \setminus T(n/5) + T(7n/10) + O(n).

T(n) \le T(n/5) + T(7n/10) + O(n).
```

By induction, $T(n) \le 10cn = O(n)T(n) \le 10cn = O(n)T(n) \le 10cn = O(n)$. lecture 05_order_statistics

Trade-off

- Guaranteed O(n)O(n)O(n) (worst-case).
- But larger constants than randomized Quickselect, so slower in practice unless adversarial input is likely.

9. Key Comparisons

- Quickselect (random pivot): Expected O(n)O(n)O(n), worst O(n2)O(n^2)O(n2).
- Median of Medians: Guaranteed O(n)O(n)O(n), but slower constants.
- **Heapselect:** O(n+ilogn)O(n+i \log n)O(n+ilogn), good for small iii.
- Introselect: O(n)O(n)O(n) expected, O(nlogn)O(n \log n)O(nlogn) guaranteed.

◆ 10. Core Definitions Recap

- Order Statistic: iii-th smallest element.
- Selection Problem: Find the iii-th order statistic.
- **Tail recursion:** Recursive call at the end → can be converted to loop.
- Why correctness holds: Partitioning guarantees pivot in final place; inductive step ensures recursive side shrinks properly.
- Why complexities hold: Cost expansions always form geometric series (average/randomized case) or guaranteed shrinkage (median of medians).