Aufgabe 1

Lösung 1a

Seien Σ ein Alphabet und $w,v\in\Sigma^*$ und $a\in\Sigma$. Die Anzahl der Vorkommen von a in w sei $|w|_a$.

$$|\epsilon|_a = 0$$

$$|v \cdot x|_a = \begin{cases} |v|_a & x \neq a \\ |v|_a \dots & x = a \end{cases}$$

Lösung 1b

remove_last(ϵ) = ϵ

remove_last($v \cdot a$) = v

Lösung 1c

Lösung 1d

$$\operatorname{equal}(\epsilon, \epsilon) = \operatorname{true}$$

$$\operatorname{equal}(\epsilon, v \cdot a) = \operatorname{false}$$

$$\operatorname{equal}(v \cdot a, \epsilon) = \operatorname{false}$$

$$\operatorname{equal}(w \cdot a, v \cdot b) = \begin{cases} \operatorname{equal}(w, v) & a = b \\ \operatorname{false} & a \neq b \end{cases}$$

Lösung 1e

 $has_prefix(w, p) = true$, wenn p Präfix von w.

 $has_prefix(w, \epsilon) = true$

 $has_prefix(\epsilon, p) = false$

 $has_prefix(w \cdot a, p) = equal(w \cdot a, p) \lor has_prefix(w, p)$

Ausgabe: 17.04.2023

Abgabe: 24.04.2023