AGC-Drive: A Large-Scale Dataset for Real-World Aerial-Ground Collaboration in

Driving Scenarios

Yunhao Hou¹, Bochao Zou^{1,*}, Min Zhang², Ran Chen¹, Shangdong Yang², Junbao Zhuo¹, Siheng Chen³, Jiansheng Chen¹, Huimin Ma^{1,*}

¹University of Science and Technology Beijing

²Xiamen NEVC Advanced Electric Powertrain Technology Innovation Center ³Shanghai Jiao Tong University

Introduction

Collaborative perception cuts occlusions to boost driving accuracy. Aerial-Ground Collaborative Perception (AGCP) uses UAVs for top-down views that are easy to deploy, cost-effective, and flexible, enhancing blind spot coverage and long-range reasoning—vital for open roads and emergencies. We built AGC-Drive, collecting data with two vehicles and one UAV. It offers:

- First real-world Air-Ground Coordination dataset for driving scenario.
- Large-scale, multi-modal, multi-view dataset across 14 scenario types.
- UAV equipped with a 32-beam vehicle-grade LiDAR.

Mode	Dataset	Year	Source	Agent	Sensor	scenario types	3D boxes	Classes	MvCams	Driving	UAV-L
V2V	OPV2V II	2022	Sim	Veh	C & L	6	230K	1	✓	✓	×
	V2V4Real [2]	2023	Real	Veh	C & L	-	240K	5	✓	✓	×
V2I	DAIR-V2X [6]	2022	Real	Veh & Inf	C & L	-	464K	10	×	✓	×
	V2X-Seq [7]	2023	Real	Veh & Inf	C & L	-	-	9	×	✓	×
	Rcooper [8]	2024	Real	Veh & Inf	C & L	-	-	10	×	✓	×
	TUMTraf-V2X [9]	2024	Real	Veh & Inf	C & L	-	29.3K	8	×	✓	×
	HoloVIC 10	2024	Real	Veh & Inf	C & L	-	11.4M	3	×	✓	×
	V2X-R [11]	2025	Real	Veh & Inf	C & L & R	-	-	5	×	✓	×
	V2X-Sim 3	2022	Sim	Veh & Inf	C & L	-	26.6K	1	✓	✓	×
V2V&I	V2XSet [4]	2022	Sim	Veh & Inf	C & L	5	230K	1	✓	✓	×
	V2X-Real [5]	2024	Real	Veh & Inf	C & L	-	1.2M	10	✓	✓	×
UAV	VisDrone 19	2018	Real	UAV	С	-	10.2K	10	×	×	×
	UAVDT [20]	2018	Real	UAV	C	-	841.5K	3	✓	✓	×
U2U	CoPerception-UAV [13]	2023	Sim	UAV	С	-	1.6M	21	✓	√	×
	UAV3D [14]	2023	Sim	UAV	C	-	3.3M	17	✓	✓	×
V2U	V2U-COO [17]	2024	Sim	Veh & UAV	С	-	-	4	×	✓	×
	CoPeD 16	2024	Real	Veh & UAV	C & L	2	×	1	×	×	×
	Griffin [12]	2025	Sim	Veh & UAV	C & L	4	-	3	✓	✓	×
V2V&U	AGC-Drive(Ours)	2025	Real	Veh & UAV	C & L & R	14	720K	13	✓	✓	✓

System

AGC-Drive features a collaborative platform with 2 vehicles and 1 UAV. The vehicles are fitted with five cameras and one 128-beam LiDAR, while the UAV is equipped with one 32-beam LiDAR and a forward-facing camera, enabling comprehensive multi-view perception across diverse driving scenarios.

Collaborative data collection platform with 2 vehicles and 1 UAV.

Data Acquisition

Spatiotemporal Alignment

AGC-Drive ensures spatiotemporal alignment using unified GPS UTC timestamps for time synchronization and GPS/IMU data for initial ICP point cloud registration, followed by frame-by-frame manual refinement.

Sample error residuals from ICP point cloud registration

Scenario Coverage

The dataset encompasses 14 diverse scenarios, including urban, rural, and highway environments, with 17% dynamic regions featuring vehicle cut-ins, cut-outs, and frequent lane changes.

Distribution of 14 scenario types in AGC-Drive.

Task And Benchmark

Benchmark for V2V 3D object detection

Table 3: 3D Detection Performance (%) on AGC-V2V.

Co-Mode	Model	mAP@0.5	mAP@0.7	
Late	PointPillars[27]	17.7	13.5	
Early	PointPillars[27]	19.6	14.1	
Intermediate	V2VNet [1] Cobevt [28] Where2comm [13] V2X-ViT [4]	18.4 46.1 39.3 44.1	5.7 41.7 31.5 36.6	

Benchmark for VUC 3D object detection

Table 4: 3D Detection Performance (%) on AGC-VUC.

Co-Mode	Model	V	2V	V2U			
Co-Mode	Model	mAP@0.5	mAP@0.7	mAP@0.5	mAP@0.7	Δ_{UAV}	
	V2VNet [1]	30.5	14.6	40.1	27.9	+11.5	
Intermediate	Cobevt [28]	42.3	36.9	42.9	37.5	+0.6	
Intermediate	Where2comm [13]	42.6	30.7	44.2	32.0	+1.5	
	V2X-ViT [4]	38.3	28.7	42.6	33.9	+4.8	

visualization

References

Xu R, Xiang H, Xia X, et al. Opv2v: An open benchmark dataset and fusion pipeline for perception with vehicle-to-vehicle communication[C] //2022 International Conference on Robotics and Automation (ICRA). IEEE, 2022: 2583-2589.

Wang J, Cao X, Zhong J, et al. Griffin: Aerial-ground cooperative detection and tracking dataset and benchmark[J]. arXiv preprint arXiv:2503.06983, 2025.

Yue Hu, Shaoheng Fang, Zixing Lei, Yiqi Zhong, and Siheng Chen. Where2comm: Communication-efficient collaborativeperception via spatial confidence maps. Advances in neural information processing systems, 35:4874–4886, 2022.

