Laboratorio di Fisica - A.A. 2020/2021

Docenti: A. Garfagnini - M. Lunardon

Fotodiodo

Cerrone Vanessa 1200361 vanessa.cerrone@studenti.unipd.it Cigagna Simone 1193992 simone.cigagna@studenti.unipd.it Lai Nicolò 1193976 nicolo.lai@studenti.unipd.it

1 Introduzione

Si vuole analizzare lo spettro dei fotoni emessi dall'Americio-241 con un rivelatore al Silicio tipo PIN, dotato di preamplificatore di carica. L'hardware, cioè i moduli di elettronica, sono stati pre-impostati in condizioni standard, con shaping time pari a 3μ s, in modo da ottimizzare il rapporto segnale rumore. Preliminarmente, tramite il software di acquisizione, si registra uno spettro per identificare i picchi principali, a 60keV e 14-18keV.

Nella Sez. 3 si analizzerà il picco a 59.5keV in presenza di materiali di diverso spessore, al fine di calcolare i relativi coefficienti di assorbimento. Nella Sez. 4, si effettueranno misure al variare della distanza della sorgente, per verificare che i dati seguano l'andamento atteso. Un'analisi dettagliata dello spettro verrà presentata nella sezione Sez. 5.

2 Calibrazione e risoluzione energetica

3 Coefficiente di assorbimento

Ci si propone di effettuare delle misure in presenza di materiali di diverso spessore, nello specifico rame e argento, con lo scopo di calcolarne il coefficiente di assorbimento μ , che si ricava dalla relazione:

$$I(x) = I_0 e^{-\mu x} \tag{1}$$

dove I è l'intensità della radiazione incidente e x lo spessore attraversato. In particolare, si vuole fornire una stima del coefficiente di assorbimento massivo, definito come:

$$\mu_{\rho} = \frac{\mu}{\rho} \tag{2}$$

con ρ densità del materiale, che è pari a $10.49 \, \mathrm{g \cdot cm^{-3}}$ per l'argento e $8.96 \, \mathrm{g \cdot cm^{-3}}$ per il rame.

Si inseriscono gli assorbitori di spessore variabile e si acquisiscono gli spettri per un intervallo di tempo sufficiente

	Ag		Cu	
	Spessore [µm]	Rate [Hz]	Spessore [µm]	Rate [Hz]
	60	5.4 ± 0.1	92	6.97 ± 0.13
	120	3.80 ± 0.08	184	6.1 ± 0.1
	180	2.42 ± 0.07	276	5.5 ± 0.1
	240	1.93 ± 0.06	368	4.7 ± 0.1

Table 1. Dati fit esponenziale per il calcolo del coefficiente di assorbimento

a garantire una precisione migliore del 3% sul picco a 59.5keV. La precisione in percentuale si ottiene ricavando il numero di eventi N, cioè l'area, al di sotto del picco di interesse, come $\frac{\sqrt{N}}{N}$. Si calcola il rate degli eventi nel picco a 60 keV per tutte le misure effettuate come rapporto tra numero di eventi rilevati e tempo di acquisizione, che come prima è stato adattato in modo da avere precisioni di almeno il 3%. Considerando la relazione Eq. 1 si effettua un fit del rate in funzione dello spessore del materiale, separatamente per rame e argento. Si sottolinea che il rapporto N/t rappresenta l'intensità della radiazione incidente per unità di superficie: il rivelatore a disposizione ha un'area di 1cm^2 , dunque il fit restituisce parametri dimensionalmente corretti. (?)

Si riportano in Tab. 1 i dati utilizzati per l'interpolazione, con errore sulle ordinate calcolato per propagazione, trascurando le incertezze sui tempi di acquisizione. Infatti, alla luce del fatto che i valori dei tempi di acquisizione mostrati sull'interfaccia del software si discostavano senibilmente da quelli impostati manualmente, si è assunto un errore massimo di 0.1s, ed è stato preliminarmente verificato che tale contributo avesse un peso relativo trascurabile. SI Vuole inizialmente effettuare un fit esponenziale del tipo $y = I_0 e^{-\mu x}$. Successivamente, sfruttando il parametro I_0 per normalizzare i dati, si vuole considerare il logaritmo delle intensità nor-

Fig. 1. A sinistra fit esponenziale, a destra fit linearizzato per il calcolo dei coefficienti di assorbimento

malizzate ed effettuare una regressione lineare con la retta di equazione y = mx In questo modo, quindi, i dati si distribuiscono secondo $\log(I/I_0) = -\mu x$, con errore sul logaritmo ottenuto per propagazione.

- 4 Misure in funzione della distanza
- 5 Fit multipicco
- 6 Stima dell'efficienza relativa