数字信号处理 第九周作业

范云潜 18373486

微电子学院 184111 班

日期: 2020年11月7日

作业内容: 4.8, 4.20, 4.15, 4.18

Problem 4.8

SubProblem a

显然其频带受限,为了不混叠, $\Omega_N \leq \pi/T$,因此 $T_{max} = 0.5 \times 10^{-4} s$ 。

SubProblem b

$$y[n] = x[n] \otimes h[n]$$
$$= \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$\therefore h[n] = Tu[n]$$

SubProblem c

$$y[n] = T \sum_{k=-\infty}^{n} x[k]e^{-j\omega k}|_{\omega=0}$$
$$= TX(e^{j\omega})$$

SubProblem d

$$\int_{-\infty}^{\infty} x_c(t) e^{-j\Omega t} dt = X_c e^{j\Omega}|_{\Omega=0}$$
又因为

$$X(e^{j\omega}) = \frac{1}{T} \sum_{-\infty}^{\infty} X_c(j\Omega + k\Omega_s)|_{\Omega = \omega/T}$$

为了采样不失真,那么采样应满足采样定

理

$$T < 2T_s = 10^{-4}s$$

Problem 4.20

SubProblem a

在频谱搬移中,不会发生混叠,则 $\omega_0=$ $\Omega_0 T \leq \pi \;, T_{max}=\pi/\Omega_0 \;, F_s=1/T_S=2000 Hz$

SubProblem b

在滤波时,为了不损失信号 $\omega_0 \leq \pi/2$,同上, $F_S = 4000Hz$ 。

Problem 4.15

显然,只能恢复 $\frac{\pi}{3}$ 内的信号。

SubProblem a

$$|\omega|_{max} = \pi/4$$
, $x[n] = x_r[n]$.

SubProblem b

$$|\omega|_{max} = \pi/2$$
, $x[n] \neq x_r[n]$.

SubProblem c

时域的乘法看作是频域的窗函数卷积,那

么

$$|\omega|_{max}=\pi/8\times 2=\pi/4$$
 , $\ x[n]=x_r[n]$.

Problem 4.18

先进行升采样再进行滤波,不失真需要满足 $\omega_0/L < \min \pi/M, \pi/L$ 。分别带入得到: a) $\omega_0 < df rac 23\pi$, b) $\omega_0 < \frac{3}{5}\pi$, c) $\omega_0 < \pi$