Problem 10 (Ch. 1.8)

Let G be a finite group, A and B non-vacuous subsets of G. Show that G = AB if |A| + |B| > |G|.

Solution. Since inverses are determined uniquely in groups, there is a 1-1 correspondance between A and A^{-1} , so $|A| = |A^{-1}|$. Furthermore, for any $g \in G$, note that $|A^{-1}g| = |A^{-1}| = |A|$, since cosets have the same order as the original set. But then $|A^{-1}g| + |B| > |G|$, and since $A^{-1}g$ and B, by definition are subgroups of G, they have a nonempty intersect (otherwise if the intersect were empty, there would be $|A^{-1}g| + |B|$ elements in |G|, but that's a contradiction). Thus there exists some $a \in A$ and $b \in B$ so that $a^{-1}g = b$, or g = ab. But this is true for all $g \in G$, thus $G \subseteq AB$. But $AB \subseteq G$ since $a, b \in G$ for any $a \in A$ and $b \in B$, and $ab \in G$ since G is a group so its closed. Therefore, AB = G.

Problem 11 (Ch. 1.8)

Let G be a group of order 2k where k is odd. Show that G contains a subgroup of index 2. (Hint: Consider the permutation group G_L of left translations and use exercise 13, p.36.

Solution. Recall from previous chapters that G_L is a subgroup of S_{2k} , and $G_L \cong G$. Thus, it suffices to show that there is a subgroup of index 2 inside G_L .

First, since G is of even order, by exercise 13, there exists some $a \in G$ such that $a \neq 1$ and $a^2 = 1$, so it is of order 2. Consider the bijective map $a_L \in G_L$ given by $a_L : g \mapsto ag$ for all elements $g \in G$ (this is clearly a bijective map, since there is a well-defined inverse on G: $a_L^{-1} : g \mapsto a^{-1}g = ag$, so $a_L(a_L^{-1}(g)) = (a_L^{-1} \circ a_L)(g) = g$). Note $a_L = a_L^{-1}$. Thus, a_L is just swapping two elements, thus we can represent it as composition of transpositions, ie. if we number our elements in G correctly, we have $a_L = (12)(34) \cdots (2k-12k)$. Of note is that, since k is odd, a_L is an odd permutation.

Now, define $H_L = A_{2k} \cap G_L$ where A_{2k} is the group of even permutations of S_{2k} . Note that for any odd permutation $\alpha \in G_L$, we have $\alpha a_L \in H_L$, so $\alpha \in H_L \alpha_L^{-1} = H_L \alpha_L$. Thus, H_L are all the even permutations in G_L , and since α was arbitrary, $H_L a_l$ are all the odd permutations of G_L , thus $G_L = H_L \cup H_L a_L$. But then H_L is a subgroup of G_L with index 2, and since $G_L \cong G$, we have that there exists a subgroup of G with index 2.

Problem 2 (Ch. 1.9)

Let G be the set of triples of integers (k, l, m) and define $(k_1, l_1, m_1)(k_2, l_2, m_2) = (k_1 + k_2 + l_1 m_2, l_1 + l_2, m_1 + m_2)$. Verify that this defines a group with unit (0, 0, 0). Show that $C = \{(k, 0, 0) \mid k \in \mathbb{Z}\}$ is a normal subgroup and that $G/C \cong$ the group $\mathbb{Z}^{(2)} = \{(l, m) \mid l, m \in \mathbb{Z}\}$ with the usual addition as composition.

Solution. Note that G is closed, since if $k_1, k_2, l_1, l_2, m_1, m_2 \in \mathbb{Z}$, then $k_1 + k_2 + l_1 m_2, l_1 + l_2, m_1 + m_2 \in \mathbb{Z}$, since \mathbb{Z} is closed under addition and multiplication, so $(k_1, l_1, m_1)(k_2, l_2, m_2) \in G$. We have associativity:

```
((k_1, l_1, m_1)(k_2, l_2, m_2))(k_3, l_3, m_3) = (k_1 + k_2 + l_1 m_2, l_1 + l_2, m_1 + m_2)(k_3, l_3, m_3)
= (k_1 + k_2 + l_1 m_2 + k_3 + (l_1 + l_2) m_3, l_1 + l_2 + l_3, m_1 + m_2 + m_3)
= (k_1 + k_2 + k_3 + l_2 m_3 + l_1 (m_2 + m_3), l_1 + l_2 + l_3, m_1 + m_2 + m_3)
= (k_1, l_1, m_1)(k_2 + k_3 + l_2 m_3, l_2 + l_3, m_2 + m_3)
= (k_1, l_1, m_1)((k_2, l_2, m_2)(k_3, l_3, m_3))
```

Furthermore, (0,0,0) is the identity: (k,l,m)(0,0,0) = (k+0+0,l+0,m+0) = (k,l,m) and (0,0,0)(k,l,m) = (0+k+0,0+l,0+m) = (k,l,m). Finally, we have inverses: we give that the inverse of $(k,l,m) \in G$ is (-k+lm,-l,-m). We can verify: (k,l,m)(-k+lm,-l,-m) = (-k+lm,-l,-m)(k,l,m) = (0,0,0).

We show that C is in the kernel of some homomorphism ϕ , and so by the fundamental theorem of homomorphisms, C is normal. Furthermore, for the sake of efficiency, we will construct our homomorphism from G to $\mathbb{Z}^{(2)}$, which also by the fundamental theorem, G/C is isomorphic to $\mathbb{Z}^{(2)}$. We claim that $\phi: G \to \mathbb{Z}^{(2)}$ is defined by $(k, l, m) \mapsto (l, m)$. So what remains to show? All we need to show is that ϕ is a homomorphism, and that

 $C = \{(k,0,0) \mid k \in \mathbb{Z}\}$ is the kernel of ϕ . ϕ is obviously a well-defined map to $\mathbb{Z}^{(2)}$, and

$$\phi((k_1, l_1, m_1)(k_2, l_2, m_2)) = \phi(k_1 + k_2 + l_1 m_2, l_1 + l_2, m_1 + m_2)$$

$$= (l_1 + l_2, m_1 + m_2)$$

$$= (l_1, m_1) + (l_2, m_2)$$

$$= \phi(k_1, l_1, m_1) + \phi(k_2, l_2, m_2)$$

So ϕ is a homomorphism. Now, $\ker \phi = C$. The identity of $\mathbb{Z}^{(2)}$ is (0,0), and note that ϕ will map any element in G to (0,0) if and only if the last two elements in G are 0. This is exactly $C = \{(k,0,0) \mid k \in \mathbb{Z}\}$, thus $C = \ker \phi$.

Problem 4 (Ch. 1.9)

Determine Aut G for (i) G an infinite cyclic group, (ii) a cyclic group of order six, (iii) for any finite cyclic group.

Solution. Consider an infinite cyclic group, $G = \langle g \rangle$. Since G is infinite, there is are only two possible generators, namely g and g^{-1} . In order for the image of our homomorphism to be equal to $\langle g \rangle$, we need the image to be equal to $\langle g \rangle = \langle g^{-1} \rangle$. By Theorem 1.7. we need only specify how a homomorphism acts on the generator for G to specify a homomorphism. The only homomorphisms that have a range of G is $\phi(g) = g$ and $\phi(g) = g^{-1}$. Thus, Aut G = the identity map, and the inverse map (mapping each element to its inverse).

Now consider a cyclic group of order six, ie. $G = \langle g \rangle$ and $g^6 = 1_G$. Note that $\langle g^5 \rangle = G$ as well, thus g^5 is also a generator for G. Note that for all other elements $g' \in G \setminus \{g, g^5\}, \langle g' \rangle \neq G$. Thus, any automorphism must map all g into g or g^5 . Thus Aut G = G the identity map, and $\phi: g \to g^5$.

Finally, consider an arbitrary finite cyclic group. Let $G = \langle g \rangle$ where g is of order n. The potential generators of G are all a^k such that (n,k)=1 and $k \leq n$ (as we proved in problem 4 of Jacobson 1.5). Thus Aut $G=\{\phi\colon a\mapsto a^k\mid k\leq n, (n,k)=1\}$.

Problem 5 (Ch. 1.9)

Determine Aut S_3 .

Solution. Note that (12) and (123) are generators of S_3 . Define a=(12) and b=(123). Note that $S_3=\langle a,b \mid a^2=b^3=1, ab=b^2a\rangle$. Also, ((12),(123)),((13),(123)),((123),(123)),((12),(132)),((13),(132)) are generators of S_3 . By theorem 1.7, we need only specify mapping the generators of S_3 . But mapping our generators to each of these generators is a map from S_3 to S_3 (since both generate S_3). Thus any map from S_3 to one of our generators above is an automorphism, and since these are the only generators, it must be of this form. Thus

Aut
$$S_3 = \{\phi(a,b) = (a,b), \phi(a,b) = (a,ba), \phi(a,b) = (a,ba^2), \phi(a,b) = (a^2,b), \phi(a,b) = (a^2,ba), \phi(a,b)$$

Problem 8 (Ch. 1.9)

Let G be a group such that $\operatorname{Aut} G = 1$. Show that G is abelian and that every element of G satisfies the equation $x^2 = 1$. Show that if G is finite then |G| = 1 or 2 (Hint: Use the procedure of finding a base for a vector space to show that G contains elements a_1, a_2, \ldots, a_r such that every element of G can be written in one and only one way in the form $a_1^{k_1} a_2^{k_2} \cdots a_r^{k_r}, k_i = 0, 1$. Then show that there exists an automorphism interchanging a_1 and a_2 .)

Solution. Recall from Jacobson problem 6 from 1.9: we have $I_a \in \operatorname{Aut} G$ where $I_a \colon x \mapsto axa^{-1}$, and if $\operatorname{Inn} G = \{I_a \mid a \in G\}$ then $\operatorname{Inn} G \cong G/C$ (where C is the center of G). So $\operatorname{Inn} G \subseteq \operatorname{Aut} G$. But since $\operatorname{Aut} G = 1$, $\operatorname{Inn} G$ only has one element, namely I_{1_G} . But since $\operatorname{Inn} G \cong G/C$, |G/C| = 1 as well. Since G/C are the cosets of C in G, and there is only one possible coset, this must mean C = G. But if the center of G is the entire group, we know that G is abelian.

Further, from Jacobson problem 3 from 1.9, which states that $x \to x^{-1}$ is an automorphism of G if and only if G is abelian, we have that the inverse map is an automorphism of G. But since Aut G = 1, $x \to x^{-1}$ must also be the identity map, thus each element in G is its own inverse. Thus $x^2 = 1$ for all $x \in G$.

Finally, let G be finite. Then we have a finite set of generators for G, a_1, a_2, \dots, a_r . Thus, every element $g \in G$ can be written as a finite string $g = a_{i_1}^{\alpha_{i_1}} a_{i_2}^{\alpha_{i_2}} \cdots a_{i_j}^{\alpha_{i_j}}$, but since the group is abelian, we can rearrange it the a

to get $g=a_1^{k_1}a_2^{k_2}\cdots a_r^{k_r}$, and since $a^2=1$ for any a, we have that $k_i=0,1$ for all $1\leq i\leq r$. To show that the k_i are unique (namely $k_i=0$), we have $g=a_1^{k_1'}a_2^{k_2'}\cdots a_r^{k_r'}$ where $k_i'=0,1$ for all $1\leq i\leq r$ as well. Then $a_1^{k_1}a_2^{k_2}\cdots a_r^{k_r}=a_1^{k_1'}a_2^{k_2}\cdots a_r^{k_r}$, which implies $a_1^{k_1-k_1'}a_2^{k_2-k_2'}\cdots a_r^{k_r-k_r'}=1$. If $k_i-k_i'=0$, we are done. Otherwise, there exists some $a_j^{k_j-k_j'}$ such that $k_j-k_j'\in\{-1,1\}$. Then $1=a_j^{\pm 1}a_1^{k_1-k_1'}\cdots$ so $a_j^{\pm 1}=a_1^{k_1-k_1'}\cdots$, so the right hand side generates the element on the left. Repeat this process without a_j , which we can do since there is a finite set of them. Eventually, we reach some set of generators a_1,\ldots,a_k such that there is no a_j , otherwise there are no generators and G=1 and we are done anyway. If there is some set, we have that the only representation of 1 with the generators is with $1=a_1^0\cdots a_q^0$. Then $g=a_1^{k_1}\cdots a_q^{k_q}=a_1^{k_1'}\cdots a_q^{k_q'}$ implies that $k_i=k_i'$ for all $1\leq i\leq q$, thus the representation of g by these generators are unique.

Consider the map $\phi: G \to G$ that swaps $a_1 \to a_j$ for some $1 \le j \le k$. This map is well-defined, since the representation of an element in g is uniquely determined, as we just proved, and so g will always get mapped to the same element. We claim that this is a automorphism. First, we show that it is a homomorphism:

$$\begin{split} \phi(a_1^{k_1}\cdots a_q^{k_q})\phi(a_1^{k_1'}\cdots a_q^{k_q'}) &= (a_j^{k_1}\cdots a_1^{k_j}\cdots a_q^{k_q})(a_j^{k_1'}\cdots a_1^{k_j'}\cdots a_q^{k_q'})\\ &= a_j^{k_1+k_1'}\cdots a_1^{k_j+k_j'}\cdots a_q^{k_q+k_q'}\\ &= \phi(a_1^{k_1+k_1'}\cdots a_q^{k_q+k_q'})\\ &= \phi((a_1^{k_1}\cdots a_q^{k_q})(a_1^{k_1'}\cdots a_q^{k_q'})) \end{split}$$

Now, we show that it is a bijection to show that it is an isomorphism. But we have a well-defined inverse, namely itself, since swapping a_1 with a_j and swapping them again is just the identity map (and it is well-defined since ϕ is well-defined). Thus, ϕ is an isomorphism. Finally, $\phi \in \operatorname{Aut} G$, since any bijection on a finite set (and G is finite) to itself must map each element in G to another element in G. Now recall that $\operatorname{Aut} G = 1$, thus swapping a_1 with an arbitrary a_j keeps $g \in G$ the same, thus $a_1 = a_2 = \cdots = a_q$. But then G is a group with only one generator, or $G = \langle a_1 \rangle$. But $a_1^2 = 1$, thus $G = \{1, a_1\}$, so |G| = 2. Recall earlier that we could also have G = 1 (if there are no generators), so we can also have |G| = 1, as desired.