Improving random sampling in Python

scipy.stats.sampling and scipy.stats.qmc

Tirth Patel Christoph Baumgarten Matt Haberland

Pamphile T. Roy

SciPy

Statistics, optimization, interpolation, integration, *

Random numbers you said?

```
>>> Draw from a set: variable
```

- ... Numbers
- ... Things/Variables are dimensions
- ... Draw/samples are independent

```
>>> rng = np.random.default_rng()
```

```
\rightarrow \rightarrow x = rng.random(1_000)
```

>>> $x = rng.random(size=(1_000, 10))$

Random numbers you said?

$$\mathbf{x} = (x_1, \dots, x_n)$$

$$x \sim \mathcal{U}(0, 1)$$

Distribution sampling is easy

>>>
$$x = U \sim 0, 1()$$

$$\rightarrow \rightarrow PDF = f(x)$$

$$\rightarrow \rightarrow$$
 CDF = F(x)

Distribution sampling is easy

But it's hard

- >>> What is this PPF function?
- >>> What to do if there is no direct formula!?

>>> from scipy.stats import sampling

- >>> Blackbox methods
- >>> C library UNU.RAN
- >>> Generate variates from non-standard distributions
- >>> Inversion methods are relevant for QMC
- >>> "Automatic random variate generation in Python" in the conference proceedings

Sampling Continuous distributions

Methods for continuous distributions	Required Inputs	Optional Inputs	Setup Speed	Sampling Speed
TransformedDensityRejection	pdf, dpdf	none	slow	fast
NumericalInverseHermite	cdf	pdf, dpdf	(very) slow	(very) fast
NumericalInversePolynomial	pdf	cdf	(very) slow	(very) fast
SimpleRatioUniforms	pdf	none	fast	slow

where

- pdf: probability density function
- dpdf: derivative of the pdf
- cdf: cumulative distribution function

And Discrete distributions

Methods for discrete distributions	Required Inputs	Optional Inputs	Setup Speed	Sampling Speed
DiscreteAliasUrn	pv	pmf	slow	very fast
DiscreteGuideTable	pv	pmf	slow	very fast

where

- pv: probability vector
- pmf: probability mass function

Sample various distributions

- >>> import scipy.stats as stats
- >>> dist = stats.fisk(c=3.9)
- >>> rng_dist = stats.sampling.NumericalInverseHermite(dist)
- >>> sample_qmc = rng_dist.rvs(128)

What is Quasi-Monte Carlo?

- >>> Deterministic methods
- >>> Not independent and identically distributed (IID)
- >>> Better space filling
- >>> Better convergence

What is Quasi-Monte Carlo?

https://blog.scientific-python.org/posts/scipy/qmc-basics

What is Quasi-Monte Carlo?

$$f(\mathbf{x}) = \left(\sum_{j=1}^{5} x_j\right)^2$$
$$x_j \sim \mathcal{U}(0,1)$$
$$\mu = 5/3 + 5(5-1)/4$$

>>> Faster convergence
integration

...
$$o(n^{-1/2})$$
 to $o(n^{-1})$

>>> from scipy.stats import qmc

- >>> Sobol'
- >>> Halton
- >>> LHS and Orthogonal LHS
- >>> Poisson disk (new!)
- >>> Multinomial
- >>> Multivariate normal
- >>> Discrepancy

Sample various distributions with QMC

```
>>> Easy API
```

>>> sampling

- >>> dist = stats.fisk(c=3.9)
- >>> rng_dist = stats.sampling.NumericalInverseHermite(dist)
- >>> sample_qmc = rng_dist.qrvs(128)

Do's and don'ts

- >>> Know where speed matters: sampling/init
- >>> Use QMC!
- >>> Don't modify the sequences
- >>> Don't use a seed (ready to die on this hill)

Demo

https://gist.github.com/tupui/9c61591395da3a0b008e4be0ebb465d7

You help[ed] make it happen...

Issues, PR, reviews, discussions, issue management: every contribution matters, even a star on the repository... Join us!

Thank You!