## ROUGH CUT OF PROVEN WORK ON $\mathcal{H}$ .

#### MILES JOHNSON & NATALIE STEWART

#### 1. Introduction

Let  $S_{2n+r}$  be the symmetric group on 2n+r indices with  $2n+r \geq 2$ , let  $\mathscr{H} = \mathscr{H}_{k,q}(S_{2n+r})$  be the corresponding Hecke algebra over field k with parameter  $q \in k^{\times}$  having square root  $q^{1/2}$ , and let  $\{T_i\}$  be the reflections generating  $\mathscr{H}$ . Let  $[m]_q = 1 + q + \cdots + q^{m-1}$  be the q-number of m. Let e be the smallest positive integer such that  $[e]_q = 0$ , and set  $e = \infty$  if no such integer exists. Either q = 1 and e is the characteristic of k (with 0 replaced by  $\infty$ ), or  $q \neq 1$  and q is a primitive eth root of unity.

Throughout the text, we will refer to partitions of 2n+r; identify each partition with a tuple  $\lambda=(\lambda_1^{a_1},\ldots,\lambda_l^{a_l})$  having  $\lambda_i>\lambda_{i+1},\ a_i>0$ , and  $\sum_i a_i\lambda_i=2n+r$ . Identify each of these with a subset  $[\lambda]\subset\mathbb{N}^2$  as defined in Kleshev, and define  $\lambda(i)=(\lambda_1^{a_1},\ldots,\lambda_{i-1}^{a_{i-1}},\lambda_i^{a_i-1},\lambda_i^{a_i-1},\lambda_{i+1}^{a_{i+1}},\ldots,\lambda_l^{a_l})$  to be the partition with the ith row removed.

Fixing some partition  $\lambda$ , for  $1 \le i \le j \le l$ , let  $\beta(i,j)$  be the hook length

$$\beta(i,j) = \lambda_i - \lambda_j + \sum_{t=i}^{j} a_t.$$

Then, adopting Kleshev's terminology, j is normal in  $\lambda$  if  $\beta(i,j) \not\equiv 0 \pmod{e}$  for all i < j, and j is good if it is the largest normal number (these are stronger conditions than generally necessary).

Let  $S^{(n+r,n)'}$  be the Specht module corresponding to the young diagram with two columns with height difference r, and let  $D^{(n+r,n)'}$  be the corresponding irreducible quotient. The purpose of this writing is to characterize these representation via an isomorphism with two graphical representations of  $\mathcal{H}$ .

## 1.1. Crossingless Matchings.

**Definition 1.1.** A crossingless matching on 2n + r indices with r anchors is a partition of  $\{1, \ldots, 2n + r\}$  into n parts of size 2 and r of size 1 such that no two parts of size two "cross", i.e. there are no parts (a, a') and (b, b') such that a < b < a' < b', and no parts of size one are "inside" of a part of size two, i.e. there are no c, (a, a') such that a < c < a'. We will call these arcs and anchors, respectively. Then, define  $W_{2n+r}^r$  to be the k-vector space with basis the set of generalized crossingless matchings on 2n + r indices with r anchors.

In order for this to be a  $\mathcal{H}$ -module, endow this with the action given by Figure 1; if a "loop" is created, scale by q+1, if a loop is not created and the action involves fewer than 2 anchors, deform into a new crossingless maching and scale by  $q^{1/2}$ , and if it involves two anchors, scale by 0. We verify that this is well-defined in appendix A.1.

Let the length of an arc (i,j) be l(i,j):=j-i+1. Note that the crossingless matchings on 2n indices with no anchors can all be identified with a list of n integers describing the lengths of the arcs from left to right; using this, we may order the crossingless matchings with no anchors in increasing lexicographical order in order to obtain an order on the subbasis containing a particular set of anchors; let the basis be ordered first by the position of the anchors in decreasing lexicographical order, then increasing for the matchings between each anchor. Let this basis be  $\{w_i\}$ . This basis is illustrated for  $W_5^1$  in Figure 2.

We will prove that  $W := W_{2n+r}^r$  and  $S := S^{(n+r,n)'}$  are isomorphic as representations in the case that

We will prove that  $W := W_{2n+r}^r$  and  $S := S^{(n+r,n)}$  are isomorphic as representations in the case that e > n+r+1. Note that, when r=0, these have the same dimension given by the nth catalan number  $C_n$ .

1.2. **Fibonacci Representation.** Now suppose that  $k = \mathbb{C}$  and  $q = \exp(2\pi i \ell/5)$  is a primitive 5th root of unity. Let  $V^m$  be a k-vector space with basis given by the strings  $\{*,p\}^{n+1}$  such that the character \* never appears twice in a row. We will surpress the superscript whenever it is clear from context.



**Figure 1.** Illustration of the actions  $(1+T_i)w_{|W_6^2|}$ . In general, we act by deleting loops, deforming into a new crossingless matching, and scaling by either  $q^{1/2}$ , (q+1), or 0.



**Figure 2.** The basis for  $W_5^1$ .

We wish to endow this with a  $\mathcal{H}$ -action which acts on a basis vector only dependent on characters i, i+1, i+2, sending each basis vector to a combination of the other basis vectors having the same characters  $1, \ldots, i, i+2, \ldots, n+1$  as follows:

(1) 
$$T_{1}(*pp) := \alpha(*pp)$$

$$T_{1}(pp*) := \alpha(pp*)$$

$$T_{1}(*p*) := \beta(*p*)$$

$$T_{1}(p*p) := \gamma(p*p) + \delta(ppp)$$

$$T_{1}(ppp) := \delta(p*p) + \varepsilon(ppp)$$

for constants

$$\beta = q$$

$$\gamma = \tau(q\tau - 1)$$

$$\delta = \tau^{3/2}(q+1)$$

$$\varepsilon = \tau(q-\tau)$$

$$\tau = \begin{cases} \frac{1}{2} \left(\sqrt{5} - 1\right) & \ell \equiv 1, 4 \pmod{5} \\ \frac{1}{2} \left(\sqrt{5} + 1\right) & \ell \equiv 2, 3 \pmod{5} \end{cases}$$

 $\alpha = -1$ 

with  $T_i$  acting similarly on the substring i, i+1, i+2. We will verify that this is a representation of  $\mathcal{H}$  in Appendix A.2

This contains 4 subrepresentations based on the first and last character of the string, which are not modified by  $\mathscr{H}$ . Label the subrepresentation of strings  $(*\cdots*)$  by  $V_{**}$ , and similar for the other 3. It is easy to see that  $V_{*p} \simeq V_{p*}$ , so that

$$V \simeq 2V_{*p} \oplus V_{**} \oplus V_{pp}.$$

We will show that  $V_{pp} \simeq V_{*p} \oplus V_{**}$ , and give the following isomorphisms with irreducible quotients of specht modules depending on the parity of the number of indices in  $\mathcal{H}$ :

(3) 
$$V_{**}^{2n} \simeq D^{(n,n)'}$$

$$V_{**}^{2n-1} \simeq D^{(n+1,n-2)'}$$

$$V_{*p}^{2n} \simeq D^{(n+1,n-1)'}$$

$$V_{*p}^{2n-1} \simeq D^{(n,n-1)'}.$$

## 2. Crossingless Matchings and Specht Modules

Our goal is to prove that  $W^r_{2n+r} \simeq S^{(n+r,n)'}$  when e > n+r+1.

**Proposition 2.1.** (i) Suppose that n, r > 0. Then, a filtration of  $ResW_{2n+r}^r$  is given by

$$(4) 0 \subset W^{r-1}_{2n+r-1} \subset \operatorname{Res} W^r_{2n+r}$$

with  $Res W^r_{2n+r}/W^{r-1}_{2n+r-1} \simeq W^{r+1}_{2n+r-1}$ .

(ii) We have the following isomorphism of representations:

$$(5) W_{2n-1}^1 \simeq \operatorname{Res} W_{2n}^0$$

Proof. (i) Note that we may identify the subrepresentation of Res  $W^r_{2n+r}$  having anchor n with  $W^{r-1}_{2n+r-1}$ . Let  $U:=\operatorname{Res} W^r_{2n+r}/W^{r-1}_{2n+r-1}$ . Let  $\phi:U\to W^{r+1}_{2n+r-1}$  be the k-linear map which regards the arc (i,2n+r) in U as an anchor at i in  $W^{r+1}_{2n+r-1}$ . It is not hard to verify that this is a well-defined isomorphism of vector spaces, so we must show that it is  $\mathscr{H}$ -linear.

Given a basis vector  $w_j$  with arc (i, 2n+r),  $\phi$  is clearly compatible with  $T_{i'}$  with  $i' \neq i, i-1$ . Further, it's easy to verify that  $\phi$  is compatible with  $T_i$  and  $T_{i-1}$ , as actions on one anchor were designed for this deformation. When there are anchors (i, i+1), then  $\phi(T_i w_j) = T_i \phi(w_j) = 0$ , and similar for  $T_{i-1}$ . Hence  $\phi$  is an isomorphism of representations, and the statement is proven.

(ii) This follows with the above proof, defining 
$$W_{2n-1}^{-1} := 0$$

# **Lemma 2.2.** Every basis vector in $W_{2n+r}^r$ is cyclic.

*Proof.* We have already proven this in the r = 0 case, so suppose that r > 0.

Note that, between anchors a < a' having no arc b with a < b < a', the  $W_{a'-a}^0$  case allows us to generate the vector with all length-2 arcs between a, a' and identical arcs/anchors outside of this sub-matching.

Applying this between each arc gives us a vector with length-2 arcs and anchors, and we may use the appropriate  $(1 + T_i)$  to move anchors to any positions, and the reverse process from above to generate the correct matchings between arcs and generate any other basis vector.

Let  $K := \bigcap_{i=1}^{2n+r-1} \ker(1+T_i) = \ker \bigoplus_{i=1}^{2n+r-1} (1+T_i)$ . This will be a large technical tool in our proof of irreducibility.

**Lemma 2.3.** Let  $w_j$  be the basis vector with anchors  $1, \ldots, r$  and all arcs of maximal length. Suppose  $w \in K \setminus \{0\}$ . Then,  $w_i$  is represented in w.

*Proof.* We will show this in steps; first, we show that, given that a vector is represented with anchors  $1, \ldots, s$ , there must be a vector represented in w with (s+1)st anchor, including when s=0; this implies that a vector is represented with anchors  $1, \ldots, r$ . Then, we will show that, given a vector is represented with anchors  $1, \ldots, r$  and first s arc-lengths  $n, n-2, \ldots, n-2s$ , there is a vector represented with these and the (s+1)st arc-length n-2s-2. This implies that  $w_j$  is represented.

Step 1. Suppose that s < r is the maximal number such that a vector with anchors  $1, \ldots, s$  is represented. Take the vector  $w_i$  which, among vectors represented in w with anchors  $1, \ldots, s$ , has (s+1)st anchor at minimal index t > s+1, Then,  $q^{-1/2}(1+T_{t-1})w_i$  has anchors  $1, \ldots, s$  and a earlier index than t, so it was not represented before; further, for any other basis vector  $w_l \neq w_i$  to map onto  $q^{-1/2}(1+T_{t-1})w_i$ , we would require that  $w_l$  has anchors  $1, \ldots, s$  and some other anchor at index t' < t, so it is not represented. Hence  $w_i$  is unique among the vectors represented mapping onto  $q^{-1/2}(1+T_{t-1})w_i$ , and  $(1+T_{t-1})w$  represents this vector, giving  $w \notin \ker(1+T_{t-1})$ .

When s=0, this is similar, and we simply perform this logic on the 1st anchor. Each lead to contradiction, so we must have s=r.

Step 2. This step is similar; suppose that s < n is the maximal number such that a vector with anchors  $1, \ldots, r$  and first s arc-lengths  $n, \ldots, n-2s$  is represented. Take the vector  $w_i$  which, among vectors represented in w with anchors  $1, \ldots, r$  and first s arc-lenths  $n, \ldots, n-2s$ , has maximal length t of the arc beginning at index r+s+1. Then,  $q^{1/2}(1+T_{r+s+t})w_i$  is mapped to only by  $w_i$  and vectors having anchors  $1, \ldots, r$  and first s+1 arc-lengths  $n, \ldots, n-2s, t'$  with t'>t, which are not represented in w; hence

<sup>&</sup>lt;sup>1</sup>At the ends, we apply the  $W_a^0$  case or the  $W_{2n+r-a}^0$  case in the same way for the first a or last 2n+r-a indices.



Figure 3. Illustrated is the row constructed for transposition  $(1 + T_2)$ ; clearly these are the only basis elements mapping to multiples of the desired element, and they relate to each other. replacing the outermost and/or innermost arc with an anchor typifies the rows constructed with three nonzero coefficients.

 $q^{-1/2}(1+T_{r+s+t})w_i$  is represented in  $(1+T_{r+s+t})w$ , giving  $w \notin \ker(1+T_{r+s+t})$ . The s=0 case is similar, and implies that s=n.

**Lemma 2.4.** Suppose  $e \nmid n + r + 1$ . Then, K = 0.

*Proof.* Consider the matrix  $A = \bigoplus (1 + T_i)$  having kernel K. It is sufficient by lemma 2.3 to show that A includes a row  $[0, \ldots, 0, 1, 0, \ldots, 0]$  with a nonzero entry only on the column j.

Now, we may characterize the rows of A as follows; if the row corresponding to  $(1 + T_i)$  and mapping onto the element  $w_l \in W$  is nonzero, then it is of the form  $[a_1, \ldots, a_{|W|}]$  where  $a_l = 1 + q$ ,  $a_m = q^{1/2}$  whenever  $(1 + T_i)w_m = q^{1/2}w_l$ , and  $a_m = 0$  otherwise.

Seeing this, the row corresponding to  $(1+T_{n+r})$  and  $w_j$  has nonzero entries  $q^{1/2}$  at  $w_j$  and (1+q) at the vector w agreeing with  $w_j$  at all indices except having arcs at (n+r-1,n+r) and (n+r+1,n+r+2). Similar justification leads the row corresponding to  $(1+T_{n+r-1})$  at w to have nonzero entries  $q^{1/2}$  at w and (1+q) at  $w_j$  and the vector with anchors  $1,\ldots,r$ , arc (n+r-3,n+r-2), and all other arcs maximum length.

We may iterate this process as illustrated in Figure 3, eventually ending at a row with two nonzero entries, either an arc (1,2) or an arc (2,3), and all anchors otherwise left-aligned and arcs of maximum length. These rows together form an  $(n+r) \times |W^r_{2n+r}|$  sumbatrix of A which has a nonzero column in the row corresponding to j, and has (by removing zero columns) the same column space as the following square matrix:

$$B_{n+r} := \begin{bmatrix} q+1 & q^{1/2} & & & & & & \\ q^{1/2} & q+1 & q^{1/2} & & & & & \\ & q^{1/2} & q+1 & q^{1/2} & & & & \\ & & \ddots & \ddots & & & \\ & & & & q^{1/2} & q+1 & q^{1/2} \\ & & & & & & q^{1/2} & q+1 \end{bmatrix}.$$

We will show that this matrix is invertible; then, a sequence of elementary row operations will yield the identity, and in particular, when applied to A, will yield a row with a nonzero entry only on column j, giving K = 0.



**Figure 4.** The correspondence between the action of  $(1 + T_2)$  on  $w'_5 \in W_6^0$  and the action of  $q^{-1}(1 + T_3)(1 + T_4)(1 + T_2)$  on the corresponding vector in  $W_8^0$  having arc (3,4) first, then on  $w'_2 \in W_4^0$ . This demonstrates that the action works with and without creating a loop.

We may prove invertibility of this matrix by proving that  $\det B_{n+r} = [n+r+1]_q$  inductively on n+r. This is satisfied for our base case n+r=1, so supose that it is true for each m < n+r. Then,

$$\det B_{n+r} = (q+1) \det B_{n+r-1} - q \det B_{n+r-2}$$

$$= (q+1)(1+\dots+q^{n+r-1}) - (q+\dots+q^{n+r-1})$$

$$= 1+\dots+q^{n+r}$$

$$= [n+r+1]_q.$$

Hence  $\det B_{n+r} \neq 0$ , and K = 0.

**Proposition 2.5.** The representation  $W_{2n+r}^r$  is irreducible when e > n + r + 1.

*Proof.* We proceed by induction on 2n + r. Note that, by identification with the trivial and sign representations, the base case 2n + r = 2 is already prove, so suppose we have proven this for each 2m + s < 2n + r. Take some  $w \in W$  and some  $(1 + T_i)$  not annhialating w. Note that

$$\operatorname{im}(1+T_i) = \operatorname{Span}\{w_j \mid w_j \text{ contains arc } (i,i+1)\}.$$

Hence, as vector spaces, there is an isomorphism  $\varphi: \operatorname{im}(1+T_i) \to W^r_{2(n-1)+r}$  "deleting" the arc (i,i+1). This sends every basis vector to another basis vector.

We will show that, for every action  $(1 + T'_j) \in \mathcal{H}(S_{2(n-1)+r})$ , there is some action  $h_j \in W^r_{2n+r}$  such that the following commutes:

$$\operatorname{im}(1+T_i) \xrightarrow{\varphi} W_{2(n-1)+r}^r$$

$$\downarrow^{h_j} \qquad \downarrow^{1+T_j}$$

$$\operatorname{im}(1+T_i) \xrightarrow{\varphi} W_{2(n-1)+r}^r$$

Indeed, when  $i \neq j$  this is given by  $h_j = 1 + T_j$ , and we have  $h_i = q^{-1}(1 + T_i)(1 + T_{i+1})(1 + T_{i-1})$ , as given by Figure 4.

Due to the inductive hypothesis, there is some action  $h' \in \mathcal{H}(S_{2(n-1)+r})$  sending  $\varphi((1+T_i)w)$  to a basis vector; then, the action  $\mathcal{H}$  generates the endomorphism  $\varphi^{-1}h'\varphi$  sending  $(1+T_i)w$  to a basis vector, giving w cyclic and hence  $W_{2n+r}^r$  irreducible.

**Corollary 2.6.** Suppose n, r > 0 and e > n + 1. Then, the sequence (4) is a composition series of  $Res W_{2n+r}^r$ .

**Theorem 2.7.** Suppose e > n + r + 1, n > 0. Then,  $W_{2n+r}^r \simeq S^{(n+r,n)'}$ .

*Proof.* By irreducibility, we know that  $W_{2n+r}^r \simeq D^{\lambda}$  for some e-restricted partition  $\lambda$ . We will proceed in two steps; first we prove that  $\lambda = (n+r,n)'$ , then we prove that  $S^{(n+r,n)'}$  is irreducible.

This will be done inductively; by identification with the trivial and sign representations, the 2n+r=2 caseholds, so suppose this is true for  $W^s_{2m+s}$  whenever 2m+s<2n+r and  $m+s\leq n+r$  (i.e. e>m+s+1).

Step 1. By the inductive hypothesis and irreducibility, we have a composition series given by

$$(6) 0 \longrightarrow D^{(n+r-1,n)'} \longrightarrow \operatorname{Res} D^{\lambda} \longrightarrow D^{(n+r,n-1)'} \longrightarrow 0$$

In particular, by the Jordan-Hölder theorem, if we have some module  $D^{\mu} \subset \text{Res } D^{\lambda}$ , then  $\mu = (n+r-1,n)'$  or  $\mu = (n+r,n-1)'$ .

By Kleschev, we know that  $soc(D^{\lambda}) = \bigoplus_{\mu} D^{\mu}$ , where  $\mu$  ranges over  $\lambda(i)$  for every good number i of  $\lambda$ . Immediately this narrows down  $\lambda$  to three options; the only  $\lambda$  with some  $\lambda(i)$  giving (n+r-1,n)' are  $\lambda_1 := (n+r-1,n,1)'$ ,  $\lambda_2 = (n+r-1,n+1)'$ , and  $\lambda_3 = (n+r,n)'$ .

Note numbers  $\beta_l(i,j)$  correspond to hook-lengths, and each  $\lambda$ ; has maximum hook length n+r+1; hence  $\beta_l(i,j) \not\equiv 0 \pmod{e}$  for all i,j,l, and 3 is a good number in  $\lambda_1$  and 2 in  $\lambda_2$ . This implies  $D^{(n+r-2,n,1)'} \subset D^{\lambda_1}$  and  $D^{(n+r-2,n+1)'} \subset D^{\lambda_2}$ , giving that  $\lambda = \lambda_3$  as desired.

Step 2. Let the hook length of node (a,b) in  $[\lambda]$  be written  $h_{ab}^{\lambda}$ . Let  $\nu_p(h_{ab}^{\lambda})$  be the p-adic valuation of  $h_{ab}^{\lambda}$ , and let  $\nu_{e,p}(h_{ab}^{\lambda})$  be  $\nu_p(h^J)$ . Mathas Theorem 5.42 says, for  $\lambda$  e-restricted,  $S^{\lambda}$  is irreducible if  $\nu_{e,p}(h_{ab}^{\lambda}) = \nu_{e,p}(h_{ac}^{\lambda})$  for a suitable prime p. In particular, since  $h_{ab}^{\lambda} < e$  for all a,b, we have  $\nu_{e,p}(h_{ab}^{\lambda}) = -1$  for all a,b, and  $S^{\lambda}$  is irreducible.

## 3. The Fibonacci Representation and Specht Modules

We can start our study of V by studying low-dimensional cases. First, note that  $V_{*p}^2$  is the sign representation  $D^{(2)}$  and  $V_{**}^2$  is the trivial representation  $D^{(1)^2}$ .

 $V_{pp}^2$  is a 2-dimensional representation of a semisimple commutative algebra, and hence decomposes into a direct sum of two subrepresentations. In particular, we can use the basis  $\{(p*p), (ppp)\}$  and explicitly write the matrix

$$\rho_{T_1} = \begin{bmatrix} \gamma & \delta \\ \delta & \varepsilon \end{bmatrix}$$

having characteristic polynomial  $(c-\lambda)(e-\lambda)-d^2=\lambda^2-(c+e)\lambda+(ce-d^2)$ . The reader can verify that this has roots -1 and q. The eigenspaces with eigenvalues -1 and q are subrepresentations isomorphic to the sign and trivial representation, hence  $F_{pp}$  is isomorphic to a direct sum of the trivial and sign representations:  $V_{pp}^2 \simeq V_{*p}^2 \oplus V_{**}^2$ .

Now let's prove that  $V_{**}^3$  is irreducible; this has basis  $\{*p*p\}$ ,  $\{*ppp\}$ , and the following matrices:

$$\rho_{T_1} = \begin{bmatrix} \beta & 0 \\ 0 & \alpha \end{bmatrix}; \qquad \rho_{T_2} = \begin{bmatrix} \gamma & \delta \\ \delta & \varepsilon \end{bmatrix}.$$

A subrepresentation must be one-dimensional, and hence an eigenspace of each of these matrices; since  $\beta \neq \alpha$ , the first has eigenspaces given by the spans of basis elements, and since  $\delta \neq 0$ , these are not eigenspaces of the second. Hence  $V_{**}^3$  is irreducible. Now we may move on to the general case.

**Proposition 3.1.** The representation  $V_{*p} := V_{*p}^m$  is irreducible.

*Proof.* We will prove this inductively in m. We've already proven it for  $V_{*p}^2$  and  $V_{*p}^3$ , so suppose that  $V_{*p}^{m-2}$  is irreducible.

Let  $\{v_i\}$  be the basis for  $V_{*p}$ . Then, each  $v_i$  is cyclic; indeed, we can transform every basis vector into  $(*p \dots p)$  by multiplying by the appropriate  $\frac{1}{\delta - \gamma}(T_i - \gamma)$ , and we can transform  $(*p \dots p)$  into any basis vector by multiplying be the appropriate  $\frac{1}{\delta - \varepsilon}(T_i - \varepsilon)$ . Hence it is sufficient to show that each  $v \in V_{*p}$  generate some basis element.

Let v' be the basis element (\*p\*p...p), which is many copies of \*p, followed by an extra p if m is odd. We will show that each  $v \in F$  generates v'.

Suppose that no elements beginning (\*p\*p) are represented in  $v_i$ ; then, all such elements are represented in  $T_3v$ , so we may assume that at least one is represented in v.



**Figure 5.** Illustration of the partitions of 9 which can, via row removal, yield (n, n-2)' alone, or both (n, n-2)' and (n-1, n-1)'.

Note that  $\operatorname{im}(T_2 - \alpha) = \operatorname{Span}\{\operatorname{Basis} \text{ vectors beginning } (*p*p)\}$  and  $(T_2 - \alpha)v \neq 0$ . Further, note that  $\operatorname{Res}_{\mathcal{H}(S_{m-2})}^{\mathcal{H}(S_m)}\operatorname{im}(T_2 - \alpha) \simeq V_{*p}^{m-2}$  as representations. Hence irreducibility of  $V_{*p}^{m-2}$  implies that v' is generated by  $(T_2 - \alpha)v$ , and  $V_{*p}^m$  is irreducible.

Knowing this, the restriction statements are clear;  $\operatorname{Res} V^m_{*p} \simeq V^{m-1}_{pp}$  by considering the last m-2 transpositions, and  $\operatorname{Res} V^{m-1}_{*p} \simeq V^{m-1}_{*p} \oplus V^{m-1}_{**}$  by considering the first m-2. Similarly,  $\operatorname{Res} V^m_{**} \simeq V^{m-1}_{*p}$  by considering the first m-2 transpositions. This gives that  $V \simeq 3V_{*p} \oplus 2V_{**}$ .

Now we may move on and use Young Tableau to characterize V. Recall that the socle of  $D^{\lambda}$  is given by  $\bigoplus_{\mu \xrightarrow{\text{good}} \lambda} D^{\mu}$ , and that  $D^{\lambda}$  is semisimple iff every  $\mu \xrightarrow{\text{normal}} \lambda$  is good.

**Theorem 3.2.** The irreducible components of V are given by the following isomorphisms:

$$\begin{split} V_{**}^{2n} &\simeq D^{(n,n)'} \\ V_{**}^{2n-1} &\simeq D^{(n+1,n-2)'} \\ V_{*p}^{2n} &\simeq D^{(n+1,n-1)'} \\ V_{*p}^{2n-1} &\simeq D^{(n,n-1)'}. \end{split}$$

*Proof.* We will prove this by induction on n; we have already proven the base case  $V^2$ , so suppose that we have proven these isomorphisms for  $V^{2n-2}$ . We will prove the isomorphisms for  $V^{2n-1}$  and  $V^{2n}$ .

By irreducibility,  $V_{**}^{2n-1} \simeq D^{\lambda_{**}}$  and  $V_{*p}^{2n-1} \simeq D^{\lambda_{*p}}$  for some diagrams  $\lambda_{**}$  and  $\lambda_{*p}$ . We will show that  $\lambda_{**} = (n+1, n-2)'$  and  $\lambda_{*p} = (n+1, n-1)'$ .

First, note that we have

Res 
$$D^{\lambda_{**}} \sim D^{(n,n-2)'} \sim \text{Res } D^{(n+1,n-2)'}$$

and

Res 
$$D^{\lambda_{*p}} \simeq D^{(n,n-2)} \oplus D^{(n-1,n-1)} \simeq \text{Res } D^{(n,n-1)'}$$
.

By semisimplicity of  $\operatorname{Res} D^{\lambda_{**}}$  and  $\operatorname{Res} D^{\lambda_{*p}}$ , every normal cell in  $\lambda_{**}$  and  $\lambda_{*p}$  is good, and every good cell is removed in a summand of the restriction. In particular, the only normal number in  $\lambda_{**}$  is 1.

For  $\lambda_{**}$ , the only tableaux which can remove a cell to yield  $D^{(n,n-2)'}$  are (n+1,n-2)', (n,n-1)', and (n,n-2,1)' as illustrated in Figure 5; we have already seen that  $D^{(n,n-1)'}$  does not have irreducible restriction, so we are left with (n+1,n-2)' and (n,n-2,1)'. We may directly check that (n,n-2,1)' doesn't satisfy this, as we have the following:

$$\beta_{\lambda}(1,2) = 3 - 2 + (n-2) = n - 1$$
  
$$\beta_{\lambda}(1,3) = 3 - 1 + n = n + 2$$
  
$$\beta_{\lambda}(2,3) = 2 - 1 + 3 = 4.$$

At least one of  $\beta(1,2)$  and  $\beta(1,3)$  is nonzero, since  $\beta_{\lambda}(1,3) - \beta_{\lambda}(1,2) = 3 \not\equiv 0 \pmod{e}$ , and hence at least one of  $M_2$  and  $M_3$  is empty. Hence at least one of 2 or 3 is normal in (n, n-2, 1)', and  $\lambda_{**} = (n+1, n-2)$ . For  $\lambda_{*p}$ , we immediately see from Figure 5 that the only option is (n, n-1).

We can perform a similar argument for the  $V^{2n}$  case, finding now that

Res 
$$D^{\mu_{**}} \simeq D^{(n,n-1)'} \simeq \text{Res } D^{(n,n)'}$$

and

Res 
$$D^{\mu_{*p}} \simeq D^{(n,n-1)'} \oplus D^{(n+1,n-2)'} \simeq \text{Res } D^{(n+1,n-1)'}$$
.

Through a similar process, we see that  $\mu_{*p} = (n+1, n-1)'$ . We narrow down  $\mu_{**}$  to one of (n, n)' or (n, n-1, 1)', and note that

$$\beta_{\mu}(1,2) = 3 - 2 + (n-1) = n$$
  
$$\beta_{\mu}(1,3) = 3 - 1 + n = n + 2$$
  
$$\beta_{\mu}(2,3) = 2 - 1 + 2 = 3$$

and hence at least one of 2 or 3 is normal,  $\operatorname{Res} D^{(n,n-1,1)'}$  is not irreducible, and  $\mu_{**}=(n,n)'$ , finishing our proof.

**Corollary 3.3.** We have the following isomorphisms of representations:

$$V^{2n} \simeq 3D^{(n+1,n-1)'} \oplus 2D^{(n,n)'}V^{2n-1} \simeq 3D^{(n,n-1)'} \oplus 2D^{(n+1,n-2)'}$$

4. Explicit Relationships

### APPENDIX A. COMPATIBILITY OF REPRESENTATIONS WITH THE RELATIONS

In general, we define representations above for the free algebra on generators  $\{T_i\}$ . Recall that we may give a presentation of  $\mathscr{H}$  having generators  $T_i$  and relations

$$(7) (T_i - q)(T_i + 1) = 0$$

(8) 
$$T_i T_{i+1} T_i = T_{i+1} T_i T_{i+1}$$

(9) 
$$T_i T_j = T_j T_i \qquad |i - j| > 1.$$

We call (7) the quadratic relation and (8), (9) the braid relations. It is easily seen that a representation of  $\mathcal{H}$  is equivalent to a representation of the free algebra  $k\langle T_i \rangle$  which acts as 0 on the relations (henceforth referred to as compatibility with the relations). We will prove in the following sections that V and W are compatible with the Hecke algebra relations.

# A.1. The Crossingless Matchings Representation. Take some basis vector $w_i$ . We will first check (7) by case work:

- Suppose there is an arc (i, i+1). Then,  $(T_i q)(T_i + 1)w = (1+q)[(1+T_i)w (1+q)w] = 0$ , giving (7).
- Suppose there is no arc (i, i + 1) and i, i + 1 do not both have anchors; then  $(T_i + 1)w = q^{1/2}w''$  for some basis vector w' having arc (i, i + 1), and the computation follows as above for (7).
- Suppose i, i + 1 are anchors; then  $(T_i + 1)w = 0$ , giving (7).

Now we verify (8). Let  $h := (1 + T_i)(1 + T_{i+1})(1 + T_i)$ , and let  $g := (1 + T_{i+1})(1 + T_i)(1 + T_{i+1})$ . Note the following expansion:

$$hw = 1 + 2T_i + T_i^2 + T_{i+1} + T_i T_{i+1} + T_{i+1} T_i + T_i T_{i+1} T_i$$
  
= 1 + (1 + q)T<sub>i</sub> + T<sub>i+1</sub> + T<sub>i</sub>T<sub>i+1</sub> + T<sub>i+1</sub>T<sub>i</sub> + T<sub>i</sub>T<sub>i+1</sub>T<sub>i</sub>.

An analogous formula gives an analogous equality in g. Hence we have

$$(h-g)w = q(T_i - T_{i+1}) + T_i T_{i+1} T_i - T_{i+1} T_i T_{i+1}.$$

Hence we may equivalently check that  $(h-q)w=q(T_i-T_{i+1})$ . This is illustrated in Figure 6.



**Figure 6.** Here we verify in small cases that  $hw = qT_i$  and  $gw = qT_{i+1}$ . These 6 cases cover the situations that there is an arc among the indices i, i+1, i+2, that there isn't and there are not two arcs, and that there are two arcs.

Lastly, we have the equation

$$(1+T_i)(1+T_j) - (1+T_j)(1+T_i) = T_iT_j - T_jT_i$$

and hence we simply need to verify that  $(1+T_i)$  and  $(1+T_i)$  commute, which the reader may easily check.

A.2. **The Fibonacci Representation.** Similar to before, the reader may verify that (9) follows easily, and the others may be verified on strings of length 3 and 4. By considering the coefficients in order of (1), the quadratic relation (7) gives the following quadratics:

(10) 
$$(\alpha - q)(\alpha + 1) = 0$$
$$(\beta - q)(\beta + 1) = 0$$
$$\gamma \delta + \delta \varepsilon = (q - 1)\delta$$
$$\gamma^2 + \delta^2 = (q - 1)\gamma + q$$
$$\varepsilon^2 + \delta^2 = (q - 1)\varepsilon + q$$

The first two of these are easily verified for any q. Since  $\delta \neq 0$ , the third is equivalently given by

$$(q-1) = \gamma + \varepsilon = t(q\tau - 1 + q - \tau) = (\tau^2 + \tau)(q-1)$$

or that  $(\tau^2 + \tau - 1)(q - 1) = 0$ . The reader may verify that  $\tau^2 + \tau - 1 = 0$ , so this is true for every q. The fourth is given by the quadratic

$$\tau^{2} \left[ (q\tau - 1)^{2} - \tau(q+1) \right] = \tau(q-1)(q\tau - 1) + q$$

or equivalently,

$$(\tau^2 + \tau - 1) [q (qt^2 + 1) + t] = 0$$

which is true for every q.

The fifth is similarly given by

$$(\tau^2 + \tau - 1) \left[ q (qt + 1) + t^2 \right] = 0$$

which is true for every q.

We now verify (8). We may order the basis for  $V^4$  as follows:

$$\{(pppp), (*pp*), (ppp*), (*ppp), (*p*p), (p*p*), (p*p*), (p*pp)\}.$$

Then, in verifying the braid relation (8) in this order, we encounter the following quadratics (with tautologies and repetitions omitted):

$$\alpha \varepsilon^{2} + \beta \delta^{2} = \alpha^{2} \varepsilon$$

$$\alpha \delta \varepsilon + \beta \gamma \delta = \alpha \beta \delta$$

$$\beta \gamma^{2} + \alpha \delta^{2} = \beta^{2} \gamma$$

$$\alpha \gamma^{2} + \delta^{2} \varepsilon = \alpha^{2} \gamma$$

$$\delta \varepsilon^{2} + \alpha \gamma \delta = \alpha \delta \varepsilon$$

The reader may verify that each of these are satisfied for q a primitive 5th root of unity and  $\tau$  as defined.

This highlights the difficulty with deforming our module to q=1 at any field; the quadratic relations require that  $(\tau^2+\tau-1)(\tau^2+\tau+1)=0$ , but neither of these appear in the first braid relation, which reads  $\tau(\tau^3-6\tau^2+1)=0$ . If we have  $\tau^2+\tau\pm 1=0$ , then  $\tau\neq 0$  and  $-7\tau^2\pm \tau+1=0$ . Hence  $(7\pm 1)\tau+(1\pm 1)=0$ , implying that  $\tau=\frac{1}{4},0$ , neither of which satisfy  $\tau^2+\tau\pm 1=0$ , a contradiction.

To attempt to deform this to q=1 would require that we rewrite  $\gamma, \delta, \varepsilon$  entirely, rather than simply modifying  $\tau$ .

# APPENDIX B. MISCELLANEOUS ALGEBRA FACTS

Throughout the text, for some representation V, we refer to  $\operatorname{Res}_{\mathscr{H}(S_l)}^{\mathscr{H}(S_m)}V$  without specifying exactly which subalgebra  $\mathscr{H}(S_l)$ .

**Proposition B.1.** Suppose B, B' are subalgebras of the k-algebra A with  $B = uB'u^{-1}$ , and let V be a representation of A. Then, the linear isomorphism  $V \xrightarrow{\phi} V$  given by  $v \mapsto uv$  causes the following to commute for any  $b \in B$ :

$$V \xrightarrow{\phi} V$$

$$\downarrow b \qquad \downarrow ubu^{-1}$$

$$V \xrightarrow{\phi} V$$

Hence, through the identification of B and B' via conjugation, we have  $Res_B^A V \simeq Res_{B'}^A V$ 

*Proof.* This is simply given by  $(ubu^{-1})uv = ubv$ .

**Corollary B.2.** Suppose  $\mathcal{H}', \mathcal{H}''$  are two subalgebras of  $\mathcal{H}(S_m)$  generated by l reflections and V is a representation of  $\mathcal{H}$ . Then,  $Res_{\mathcal{H}'}^{\mathcal{H}}V \simeq Res_{\mathcal{H}''}^{\mathcal{H}}V$ .

*Proof.* Let  $\mathscr{H}'$  and  $\mathscr{H}''$  be the subalgebras of  $\mathscr{H}(S_m)$  generated by the reflections  $\{T_{i_1},\ldots,T_{i_l}\}$  and  $\{T_{i_1},\ldots,T_{i_{j-1}},T_{i_{j+1}},T_{i_{j+1}},\ldots,T_{i_l}\}$  for  $1\leq i_1<\cdots< i_{j-1}< i_j+1< i_{j+1}<\cdots< i_l\leq n$ . It is sufficient to prove that  $\mathscr{H}'$  and  $\mathscr{H}''$  are conjugate; then transitivity gives conjugacy of any  $S_l\subset S_m$ , and the previous proposition gives isomorphisms of the representations.

In fact, the reader can verify that  $\mathscr{H}'' = T_{i_j} \mathscr{H}' T_{i_j}^{-1}$ .