CUR: How it Works

- Sampling columns (similarly for rows):
- ColumnSelect algorithm:

Input: matrix $\mathbf{A} \in \mathbb{R}^{m \times n}$, sample size c

Output: $\mathbf{C}_d \in \mathbb{R}^{m \times c}$

- 1. for x = 1 : n [column distribution]
- 2. $P(x) = \sum_{i} \mathbf{A}(i, x)^{2} / \sum_{i,j} \mathbf{A}(i, j)^{2}$
- 3. for i = 1 : c [sample columns]
- 4. Pick $j \in 1 : n$ based on distribution P(x)
- 5. Compute $\mathbf{C}_d(:,i) = \mathbf{A}(:,j)/\sqrt{cP(j)}$

Note this is a randomized algorithm, same column can be sampled more than once

Computing U

- Let W be the "intersection" of sampled columns C and rows R
 - Let SVD of W = X Z Y^T
- Then: U = W⁺ = Y Z⁺ X^T
 - Z^+ : reciprocals of non-zero singular values: $Z^+_{ii} = 1/Z_{ii}$
 - W⁺ is the "pseudoinverse"

Why pseudoinverse works?

W = X Z Y then W⁻¹ = X⁻¹ Z⁻¹ Y⁻¹
Due to orthonomality $X^{-1}=X^{T}$ and $Y^{-1}=Y^{T}$ Since Z is diagonal $Z^{-1}=1/Z_{ii}$ Thus, if W is non-singular, pseudoinverse is the true inverse

CUR: Provably good approx. to SVD

For example:

- Select $c = O\left(\frac{k \log k}{\varepsilon^2}\right)$ columns of A using ColumnSelect algorithm
- Select $r = O\left(\frac{k \log k}{\varepsilon^2}\right)$ rows of A using ColumnSelect algorithm
- Set $U = W^+$
- Then: $||A CUR||_F \le (2 + \epsilon) ||A A_k||_F$ with probability 98%