eMasters – Communication Systems E920 Wireless Communications

Notes, References, Questions, Problems, and Solutions

Venkateswar Reddy Melachervu Jan 2023

Brillium Technologies

C 501, Salarpuria Serenity, 5th Main, Sector 7, HSR Layout, Bengaluru, Karnataka - 560102, India Website: www.brillium.in | Email: connect@Brillium.in

© Brillium Technologies 2011-19. All rights reserved.

Key Concepts in Signal Processing

- Power Signal
 - A signal is said to be power signal if its average power is finite i.e. $0 < P < \infty$
 - Total energy is ∞
 - Periodic signals are examples of power signals
 - The average power of a signal is defined as the mean power dissipated by the signal such as voltage or current in a unit resistance over a period
- Energy Signal
 - A signal is said to be energy signal if and only if its total energy E is finite i.e. $0 < E < \infty$
 - Average power 0
 - Non-periodic signals are examples of energy signals
- Taking the reference of electric circuits/signals
 - The instantaneous power is p(t) = v(t). i(t)
 - Applying Ohm's law (v(t) = i(t)R)

$$p(t) = \frac{v^2(t)}{R} \text{ or } i^2(t)R$$

- When the value of resistance is 1Ω , the power dissipated in it is known as **normalized power** \Rightarrow Normalized power $-p(t)=v^2(t)=i^2(t)$
- If v(t) or i(t) is denoted by a continuous time signal x(t)
 - The instantaneous power is equals to the square of the amplitude of the signal
 - $p(t) = |x(t)|^2$

Key Concepts in Signal Processing

- Power and energy Continuous Time Case
 - Average power or normalized power of continuous time signal x(t) is given by

•
$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-(\frac{T}{2})}^{(\frac{T}{2})} |x(t)|^2 dt$$
 Watts

- Total energy or normalized energy of a continuous time signal is defined as
 - $E = \lim_{T \to \infty} \int_{-(\frac{T}{2})}^{(\frac{T}{2})} |x(t)|^2 dt$ Joules
- Power and energy Discrete Time Case
 - For the discrete time signal x(n), the integrals above are replaced by summations
 - Hence the **total energy** or normalized energy of x(n) is

$$\bullet E = \sum_{n=-\infty}^{\infty} |x(n)|^2$$

• The average power or normalized power of x(n) is given by

$$P = \lim_{N \to \infty} \frac{1}{2N+1} \sum_{n=-N}^{N} |x(n)|^2$$

- Important Points
 - Power and energy signals are mutually exclusive no signal can be both power signal and energy signal
 - A signal is neither energy nor power signal if both energy and power of the signal are equal to infinity
 - All practical signals have finite energy; thus they are energy signals
 - All finite duration and finite amplitude signals are energy signals
 - A signal whose amplitude is constant over infinite duration is a power signal
 - The energy of a signal is not affected by the time shifting and time inversion. It is only affected by the time scaling

Key Concepts in Signal Processing

- Average power
 - The average power of a signal is defined as the mean power dissipated by the signal such as voltage or current in a unit resistance over a period

•
$$P = \lim_{T \to \infty} \frac{1}{T} \int_{-(\frac{T}{2})}^{(\frac{T}{2})} |x(t)|^2 dt$$

- Parseval's Power Theorem
 - The power of a signal is equal to the sum of square of the magnitudes of various harmonic components present in the discrete spectrum
 - $P = \sum_{n=-\infty}^{\infty} |C_n|^2$
- Energy
 - Energy E_s of a continuous time signal x(t) is defined as the area under the curve of square of magnitude of that signal
 - $E = \int_{-\infty}^{\infty} |x(t)|^2 dt$
 - The energy signal exists only of the energy (E) of the signal is finite, i.e., only if 0 < E < ∞
- Rayleigh's Energy Theorem
 - Energy of a function i.e. the integral of the square of magnitude of a function is equal to the integral of the square of magnitude of its Fourier transform

•
$$\int_{-\infty}^{\infty} |x(t)|^2 dt = \frac{1}{2\pi} \sum_{-\infty}^{\infty} |X(\omega)|^2 d\omega$$

Energy Spectral Density and Autocorrelation

- Energy Spectral Density or Energy Density or Energy Density Spectrum $\psi(\omega)$
 - Distribution of energy of a signal in the frequency domain
 - $\psi(\omega) = |X(\omega)|^2$
- Autocorrelation
 - Gives the measure of degree of similarity between a signal (time series) and its time delayed version
 - The autocorrelation function of an energy signal x(t) is given by
 - $R(\tau) = \int_{-\infty}^{\infty} x(t) x^*(t-\tau) dt$
 - lacktriangledown au is called the delayed parameter
- Relationship between ESD and autocorrelation
 - The autocorrelation function $R(\tau)$ and the energy spectral density (ESD) function $\psi(\omega)$ form a Fourier transform pair
 - $\blacksquare R(\tau) \stackrel{FT}{\leftrightarrow} \psi(\omega)$

Power Spectral Density and Autocorrelation

- Autocorrelation
 - Gives the measure of similarity between a signal and its time-delayed version expressed as
 - $R_{XX}(t_1, t_2) = E\{X(t_1)X(t_2)^*\}$ • $X(t_1) - value \ of \ X \ at \ instant \ t_1$ • $X(t_2)^* - complex \ conjugate \ value \ of \ X \ at \ instant \ t_2$
 - The autocorrelation function of a power (or periodic) signal x(t) with any time period T is given by

•
$$R(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{-(\frac{T}{2})}^{(\frac{T}{2})} x(t) x^*(t - \tau) dt$$

- \bullet τ is called the delayed parameter
- For wide sense stationary process (WSS), the auto-correlation function) is:

$$R_X(\tau) = E\{X(t)X(t+\tau)\}$$

- PSD or Power Density or Power Density Spectrum
 - The distribution of average power of a signal in the frequency domain and denoted by $S(\omega)$

•
$$S(\omega) = \lim_{\tau \to \infty} \frac{|X(\omega)|^2}{\tau}$$

• Power spectral density, PSD $(S_x(f))$ – of x(t) is the Fourier transform (\mathcal{F}) of autocorrelation function $R_x(\tau)$ of x(t)

•
$$S_{x}(f) = \mathcal{F}\{R_{x}(\tau)\} = \int_{-\infty}^{\infty} R_{x}(\tau)e^{-2j\pi f_{\tau}}d\tau$$

- Relationship between PSD and autocorrelation function
 - The power spectral density function $S(\omega)$ and the autocorrelation function $R(\tau)$ of a power signal form a Fourier transform

$$R(\tau) \overset{FT}{\leftrightarrow} S(\omega)$$

Modern Communication Technologies and Systems

- Cutting edge wireless technologies
 - Multiple Antennae Systems
 - Multiple Input and Multiple Output MIMO Technology
 - OFDM Orthogonal Frequency Division Multiplexing
 - Large bandwidth divided into several sub-bands and multiple uses sub-carriers
 - CDMA
 - Spreading code
- Modern cellular and wifi systems built on cutting edge wireless technologies
 - LTE
 - 5G NR
 - 802.11 AC, 802.11 AX

Principles and Models of Modern Wireless Systems

Large Scale Fading

- Due to path loss of signal as a function of distance and shadowing by large structures buildings and hills
- Occurs as mobile moves through a distance of the order of the cell size
- Frequency independent

Small Scale Fading

- Due to constructive and destructive interference of the multiple signal paths between the transmitter and receiver
- Occurs at the spatial scale of the order of the carrier wavelength
- Frequency dependent

Modern Wireline Digital Communication System

- Channel is fixed
- Signal to Noise Power Ratio
- Simple model of wireline communication system
 - Four components
 - Received signal y
 - Transmitted signal x
 - Noise *n*
 - Channel
 - SNR Signal to Noise Power Ratio
 - Simplified model
 - y = x + n
 - *n* Additive noise
- Signal Energy
 - The energy of a continuous-time signal x(t) is defined as:
 - $E_x = \int_{-\infty}^{\infty} |x(t)|^2 dt$
 - The energy of a discrete-time signal x[n] is
 - $\bullet E_x = \sum_{n=-\infty}^{\infty} |x[n]|^2$
 - Physical interpretation
 - Energy above does not refer to a specific physical property
 - Instead, it describes the size of the signal
 - The energy above, however, can be related to electrical energy
 - If x(t) is the voltage signal across a load of resistance R, then the energy supplied to that load is $\frac{E_x}{R}$

Modern Wireline Digital Communication System

- Signal Power or Average power
 - The power of a continuous-time signal x(t)

•
$$P_x = \lim_{T \to \infty} \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x(t)|^2 dt$$

- If the signal is periodic => $P_x = \frac{1}{T} \int_{-\frac{T}{2}}^{\frac{T}{2}} |x(t)|^2 dt$
- The power of discrete-time signal

$$P_{x} = \lim_{N \to \infty} \frac{1}{(2N+1)} \sum_{n=-N}^{N} |x[n]|^{2}$$

When the signal is periodic

$$0 \frac{1}{N} \sum_{n=0}^{N-1} |x[n]|^2$$

- N is the period of periodic signal
- Physical interpretation
 - Power above does not refer to a specific physical property
 - Instead, it describes the size of the periodic signal
 - The power above, however, can be related to electrical power
 - If x(t) is the voltage signal across a load of resistance R
 - \circ Then the instantaneous power supplied to that load is $\frac{x^2(t)}{R}$

○ Based on
$$P = \frac{V^2}{R} = V \times I = V - Voltage, I - Current, R - Resistance$$

- Expected average value of the power of a signal $x P = E\{|x|^2\}$
- $E\{*\}$ Expected value or average

White Gaussian Noise

- Most common model for noise is Gaussian the noise samples follow the Gaussian density function
- In other words noise PDF is Gaussian in nature probability distribution/density function
- Gaussian variables/systems are represented by the Gaussian PDF function

•
$$f_G(n) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(n-\mu)^2}{2\sigma^2}}$$

- Peak at the centre is the mode
- Peak coincides with the mean (a measure of centrality)
- Unimodal distribution
- Width/spread of PDF is the variance
- Typically, noise has a zero mean ($\mu = 0$) value, then

•
$$\sigma^2 = Variance = Power of zero mean noise = \frac{N_0}{2} = E\{|N|^2\}$$

- Measure of spread
- Larger the spread, larger the noise power

Additive White Gaussian Noise

- Where does $\frac{N_0}{2}$ come from?
- White noise
 - To say that $f_N(n)$ is a white noise means merely the successive samples are uncorrelated

•
$$E\{f_N(n). f_N(n+m)\} = \begin{cases} \sigma_{f_N}^2, m = 0 \\ 0, m \neq 0 \end{cases} \triangleq \sigma_{f_N}^2 \delta(m)$$

- Where $E\{f_N(n), f_N(n+m)\}$ denotes the expected value random variables of f_N
- In other words, the autocorrelation function of white noise is an impulse at lag 0
- Since power spectral density is the Fourier transform of the autocorrelation function, the PSD of white noise is constant
- Therefore white noise power spectral density is flat or constant across the frequency spectrum
- Power spectral density of white noise is given as

■
$$PSD - S_{nn}(\Omega) = \frac{N_0}{2}$$
 - constant and here Ω is frequency

- Similar to white light contains all frequency components
- White Gaussian noise is additive in nature

Random Process Characterization - Power Spectral Density

- For deterministic signal
 - a Fourier transform gives the spectrum of the signal (distribution of power across different frequencies in the spectrum)
- For random process or signal
 - Power spectral density gives the distribution of power across different frequencies in the spectrum
- Random process is a random variable at every instant of time
- One of the important tools to characterize random process is the power spectral density
- Power Spectral Density
 - Measure of the signal's power
 - The power spectrum $S_{xx}(f)$ of a time series x(t) describes the distribution of power into frequency components composing that signal
 - According to Fourier Analysis, any physical signal can be decomposed into a number of discrete frequencies or spectrum of frequencies over a continuous range
 - The statistical average of a certain signal as analysed in terms of its frequency content is called Spectrum
 - PSD refers to the spectral energy distribution that is depicted per unit time
 - Summation or integration of the spectral components yields the total power for a physical processor or variance in a statistical process which is identical to what would be obtained by integrating $x^2(t)$ over the time domain as per Parseval's theorem (Rayleigh's Energy Theorem or Rayleigh's Identity)
- Power spectral density of a random process or variable is derived from the auto-correlation function
- PSD of a random process or signal is the Fourier transform of auto-correlation function

Stationary Process

- Strict/strong stationary process is a stochastic process whose unconditional joint probability distribution does not change when shifted in time
- Consequently, parameters such as mean and variance also do not change over time
- Definitions
 - Joint probability
 - Given two random variables that are defined in the same probability space, the joint probability distribution is the corresponding probability distribution on all possible pairs of outputs
 - Probability space
 - Also called a probability triplet comprising of
 - \circ Sample space of all possible outcomes Ω
 - \circ **Event space** set of events/outcomes in the sample space \mathcal{F}
 - o **Probability function** P Event probability in the event space between 0 and 1
 - Represented by $\{\Omega, \mathcal{F}, P\}$
- Strict sense stationarity SSS
 - Let $\{X_t\}$ be a stochastic process
 - Let $F_X(x_{t_{1+\tau}}, x_{t_{2+\tau}}, \dots, x_{t_{n+\tau}})$ represent cumulative distribution function of the unconditional joint distribution of $\{X_t\}$ at times $t_1 + \tau$, $t_2 + \tau$, ..., $t_n + \tau$
 - Then $\{X_t\}$ is said to be strictly stationary or strict sense stationary if:
 - $\quad \blacksquare \ \ F_X \big(x_{t_{1+\tau}}, x_{t_{2+\tau}}, \dots, x_{t_{n+\tau}} \, \big) = F_X \big(x_{t_1}, x_{t_2}, \dots, x_{t_n} \, \big) \ \text{for all} \ \tau, t_1, t_2, \ \dots, t_n \in \mathbb{R} \ \text{and for all} \ n \in \mathbb{N} > 0$
 - Since τ does not affect $F_X(.)$, F_X is not a function of time
 - All statistical properties of X_t all orders of moments are time invariant or invariant under time translation
- Wide sense stationarity WSS
 - A random process is said to be WSS if only its first (mean) and second moments (autocorrelation) are invariant under time translation and higher-order moments may vary with time

Auto-correlation, Cross Correlation and Power Spectral Density

Correlation

- If X,Y are two complex-valued random variables, the correlation between these two random variables is defined as $E\{XY^*\}$
- A higher correlation between X,Y indicate a higher degree of similarity between the values assumed by these random variables
- Degree/strength of the correlation can be measured by correlation coefficient $-1 \le R \le 1$
- A positive correlation coefficient
 - As one variable increases, the other variable also tends to increase
- A negative correlation coefficient
 - As one variable increases, the other variable tends decreases
- Zero correlation coefficient
 - No relationship between the variables
- Auto-correlation or serial correlation
 - Degree to which a time series is correlated with itself over time
 - Measure of how the values of a variable at different time points are related to each other
 - Autocorrelation is commonly used in time series analysis to detect patterns and trends in data
- Cross Correlation
 - Degree of similarity between two time series or between two signals at different lags or time intervals
- Power spectral density
 - PSD is calculated using the Fourier transform of a signal or time series
 - PSD is usually plotted with frequency on x-axis and power or energy on y-axis

PSD of Random Process and White Noise

- One of the important tools to characterize a random process is the power spectral density
- PSD of a random process depicts the distribution of power/energy across different frequencies in the spectrum
- PSD of a random process is derived from the auto-correlation function
- Auto-correlation of Random Process
 - Two samples of noise at time k is n(k), and time (n+l) is n(k+l) a lag of I from k
 - The correlation between these two samples i.e. the expected value of $n(k)*n(k+l)-E\{n(k) and \ n(k+l)\}$
 - If the correlation depends only on lag I and does not depend on the time instant k, such a random process is known as Wide Sense Stationary Random Process
- White Gaussian Noise
 - Typically the *white noise* is a wide sense stationary random process
 - Particularly for white noise, the auto-correlation is simply an impulse $\frac{N_0}{2}\delta(l)$

•
$$R_{nn}(l) = E\{n(k) * n(k+l)\} = \frac{N_0}{2}\delta(l)$$

- Any two samples of white noise are un-correlated and coupled with the fact these are Gaussian which
 means these are independent noise samples- IID independent identically distributed samples
- When we take the Fourier transform of white noise auto-correlation function we get the PSD
- The PSD of white noise i.e. Fourier transform of an impulse is flat across entire frequency spectrum $\frac{N_0}{2}$

Notes – Power of a Signal and PSD of White Noise

- Power of a signal
 - Measure of the amount of energy in the signal
 - Commonly computed as mean squared value of the signal over a given interval
 - The power P of continuous signa x(t) over the interval [t1, t2]
 - $P = \frac{1}{(t_2 t_1)} * \int_{t_1}^{t_2} |x(t)|^2 dt where |x(t)|^2 represents the magnitude squared at of the signal at time t$
 - The power of a signal is closely related to its variance which is how much the signal values deviate from their mean value
 - The variance of a continuous signal x(t) over an interval [t1,t2] is defined as
 - $Var = \sigma^2 = \frac{1}{t_1 t_2} * \int_{t_1}^{t_2} (x(t) \mu)^2 dt \mu$ is the mean value of the signal over t_1 and t_2 interval
 - Why the power of a signal is equal to its variance, let's use the following property of variance
 - $Var = E\{x^2\} E\{x\}^2 E\{.\}$ is expectation operator
 - If the signal x(t) has zero mean i.e. $E\{x\}=0$, then $Var=\sigma^2=E\{x^2\}-0=E\{x^2\}$
 - In other words, the variance of a zero mean signal is equal to the expected value of the signal's magnitude squared
 - For a signal with non-zero mean, the power can be obtained by subtracting the mean value of the signal before computing the mean squared value

Wireline SNR – Signal to Noise Power Ratio

•
$$y = x + n$$

• SNR =
$$\frac{E|x|^2}{E\{|n|^2\}} = \frac{P}{\frac{N_0}{2}} = \frac{2P}{N_0} \sim \frac{P}{N_0} \sim \frac{P}{\sigma^2}$$
 - P is the power of the signal

- Approximately constant because channel is fixed
- Hence no variations or fluctuations in SNR and hence performance is fixed

Performance of Communication System

- BER is the probability that a single received bit is in error
- Bit Error Rate is an important metric for communication system performance

Digital Modulation - BPSK

- Mapping of information bits to signals that can be transmitted over the channel
- There are various formats for digital modulation
 - BPSK, QPSK, QAM
- BPSK Binary Phase Shift Keying
 - $x \in \{+A, -A\}$:
 - Two Phases 0^o , 180^o are employed to indicate the information
 - Signal Constellation : $\{+A, -A\}$ 2 points/symbols
 - A is amplitude-voltage
 - $0 \rightarrow +A$
 - $1 \rightarrow -A$
 - If there M points/symbols in the constellation, the number of bits per symbol will be
 log₂ m
 - Number of bits per symbol in BPSK $log_2 2 = 1$
 - Consider signal power $P \Rightarrow A = \sqrt{P} \Rightarrow x \in \{\sqrt{P}, -\sqrt{P}\}$
 - Expected value $E\{|x|^2\} = P$
- Communication system model for BPSK
 - y = x + n

BPSK Wireline Performance

- Signal power P
- Noise power $\frac{N_0}{2}$
- SNR is $\frac{P}{(\frac{N_0}{2})} = \frac{2P}{N_0}$
- BER for BPSK over wireline channel

•
$$BER = Q\left(\sqrt{\frac{2P}{N_0}}\right) = Q\left(\sqrt{SNR}\right)$$

- Standard Gaussian RV
 - Mean $\mu = 0$, Variance $\sigma^2 = 1$
 - PDF $f_X(x) = \frac{1}{\sqrt{2\pi}} e^{-\left(\frac{x^2}{2}\right)}$
- Gaussian Q function
 - Q function is the CCDF Complementary CDF of standard Gaussian RV $-f_X(x)$ $\int_{-\infty}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\left(\frac{x^2}{2}\right)} dx$
 - The CDF is the probability that the value of the random variable is equal to or less than a certain value
 - Hence the Complementary CDF is the probability that the value of the random variable exceeds certain value
 - CDF $\mathbb{P}(X \le x) = F_X(x)$
 - CCDF $\mathbb{P}(X > x) = \bar{F}_X(x) = 1 CDF$
 - Hence $CCDF(x) = Q(x) = \mathbb{P}(X > x_0) = \int_{x_0}^{\infty} \frac{1}{\sqrt{2\pi}} e^{-\left(\frac{x^2}{2}\right)} dx \le \frac{1}{2} e^{-\left(\frac{1}{2}x^2\right)}$
 - Q(x) is bounded by $\mathbf{Q}(\mathbf{x}) \leq \frac{1}{2}e^{-\left(\frac{1}{2}x^2\right)}$
- PDF can be obtained from CDF $F_X(x)$
 - PDF $f_X(x) = \frac{dF_X(x)}{dx}$

•
$$SNR_{dB} = 10 \log_{10} SNR \Rightarrow SNR = 10^{\frac{SNR_{dB}}{10}}$$

CCDF aka Q Function of Gaussian RV

QPSK

- Quadrature Phase Shift Keying
 - Quadrature 90°
- Quadrature Carrier Multiplexing
 - Cos and Sine waves 90^o to each other Orthogonal
- Constellation is given as
 - $x_I + jx_Q$
 - x_I In phase component $\cos(2\pi f_c t)$
 - x_Q Quadrature component $\sin(2\pi f_c t)$
 - Above two are orthogonal carriers
 - Any communication signal can be expressed as a combination of two signals
 - $x_I(t) + jx_O(t)$ complex representation of passband signal
 - 2 times the rate bandwidth
 - $x_I \in \{+A, -A\}, x_O \in \{+A, -A\}$
 - QPSK constellation $x_I + jx_Q$ is $\{A + jA, A jA, -A + jA, -A jA\}$ where symbols or points M = 4
 - QPSK bits per symbol = $log_2 4 = 2 bits$
 - If the power is $P = 2A^2 \Rightarrow Ampliture A = \sqrt{\frac{P}{2}}$
 - Phases of the symbols are 45°, 135°, 225°, 315°
 - Phase differences between any successive points/symbols are 90^o

QPSK

- Mapping of the Symbols can be:
 - $(A,A) \rightarrow 00$
 - $(A, -A) \rightarrow 01$
 - $(-A,A) \rightarrow 10$
 - $(-A, -A) \to 11$
- Communication system model
 - $\underbrace{\left(y_I + jy_Q\right)}_{y} = \underbrace{\left(x_I + jx_Q\right)}_{x} + \underbrace{\left(n_I + jn_Q\right)}_{n}$
 - \bullet y, x, n are complex baseband representations of received signal, transmitted signal, noise, respectively and are complex quantities
- Signal power P
 - For power $A = \frac{\sqrt{P}}{2}$
 - In phase and quadrature components each will have half the power => P/2
 - Signal amplitude A depends on the power and cannot be chosen arbitrarily
- Noise power
 - Noise will have real and complex parts each of which will have a power of $\frac{N_0}{2}$ and hence total noise power will be $\frac{N_0}{2} + \frac{N_0}{2} = N_0$
 - n_I , n_Q are Gaussian with $\frac{N_0}{2} \Rightarrow Total\ Noise\ power = N_0$
- SNR for this system is $SNR_{QPSK} = \frac{P}{N_0}$ P is the total power of both the streams (In phase and quadrature phase)
- QPSK can be represented as two parallel streams of BPSK
 - $y_I = x_I + n_I$
 - $y_Q = x_Q + n_Q$
- BER of each BPSK stream (In phase or quadrature) is $Q(\sqrt{SNR}) = Q(\sqrt{\frac{P}{N_0}})$

QPSK

- QPSK symbol is in error when either of the bits (in phase and quadrature) is in error
- Symbol Error Rate of QPSK

•
$$SER_{QPSK} = 1 - \left(1 - Q\left(\sqrt{SNR_{QPSK}}\right)\right)^2$$

•
$$SER_{QPSK} \approx 2 * BER_{BPSK} = 2Q(\sqrt{SNR}) = 2Q(\sqrt{\frac{P}{N_0}})$$

QAM – Quadrature Amplitude Modulation

- HOM Higher Order Modulation
- Most important constellations
- Used in 4G,LTE, 5G-NR etc.
- Generalization of QPSK
 - QPSK is 4 QAM
- Also called as 2^{2n} QAM
- QAM is known as M-QAM M is the number of symbols
- QCM Quadrature Carrier Multiplexing
- Number of bits per symbols log₂ M
- Square constellation
- 16 QAM
 - $x_I \in \{-3A, -A, A, 3A\}$
 - $x_0 \in \{-3A, -A, A, 3A\}$
 - $x_I + jx_Q = -3A j3A, -3A jA, -3A + jA \dots$
 - A is amplitude and depends on the power and cannot be chosen arbitrarily
- QAM allows to transmit at very high bit rates
 - 1024 QAM has $\log_2 1024 = \log_2 2^{10} = 10$ bits per symbol

QAM

- AMC Adaptive modulation and coding is employed by mobile communication systems for effective communication
- Signal power $-P = E\{|x|^2\} = E_S$, Noise power $-N_0 = E\{|n|\}^2$
- Symbol Error Rate for m-ary QAM is:

• SER
$$\approx 4\left(1-\frac{1}{\sqrt{M}}\right)Q\left(\sqrt{\frac{3P}{N_0(M-1)}}\right)-M-modulation\ order$$

Wireless Channel and Performance

- Multiple propagation paths LOS, and several NLOS multipath propagation due to scatterers
- Multipaths exists due to large objects or scatters
- Multipath propagation leads to multiple copies of the signal at the receiver
- Multiple signal copies causes superposition of the signals at the receiver resulting interference – constructive and destructive
- Because of interference, the SNR varies or fluctuates
- Due to interference, received signal power fluctuates or varies and this phenomenon is called fading
- Wireless channel is also called fading channel where the received power dips significantly is termed as deep fade

Wireless Channel Model

- Wireline channel model
 - y = x + n
- Wireless channel model
 - y = hx + n
 - h fading channel coefficient and is complex quantity
 - h has multiplicative effect on the signal
 - **h** is represented as
 - $h_I + jh_O$ In phase and quadrature entities
 - Alternatively as u + jv
 - h determines the output power large if |h| is large, small if |h| is small
- Fading channel coefficient
 - Random in nature and modelled as h = u + jv
 - u real part and v is imaginary part and -u and v are independent Gaussian RVs
 - Their mean is zero i.e. $E\{u\}=E\{v\}=0$ and variance is $\frac{1}{2}$ i.e. $E\{u^2\}=E\{v^2\}=\frac{1}{2}$
 - h is a symmetric complex Gaussian RV
 - Mean $E\{h\} = E\{u\} + jE\{v\} = 0$ and Variance $E\{|h|^2\} = E\{u^2 + v^2\} = E\{u^2\} + E\{v^2\} = \frac{1}{2} + \frac{1}{2} = 1$
 - h is a complex Gaussian variable with mean zero and variance unity unit variance complex Gaussian
 - Polar form of h is : $h = ae^{j\phi}$
 - a is magnitude = $|h| = \sqrt{u^2 + v^2}$
 - ϕ is phase = $\angle h$

Fading Channel Coefficient

- Amplitude
 - The channel coefficient **h** in the polar form is $ae^{j\phi} a$ is amplitude and ϕ is phase
 - The amplitude a follows the Rayleigh PDF

- Rayleigh fading channel
- Phase
 - ϕ phase is uniformly distributed across $-\pi$, π or 0, π

• PDF of phase =
$$f_{\Phi}(\phi)=$$

$$\begin{cases} \frac{1}{2\pi} \text{ , } -\pi < \phi \leq \pi \\ 0, \quad Otherwise \end{cases}$$

Symbol Detection – Equalization and Estimation

- Channel estimation
 - Technique used for determining the value of h to be accounted for at the receiver
 - Performed by measuring the transmitted pilot stream of symbols sequence of known symbols at the receiver
- Equalization
 - Account or cancel or invert the effect of the channel coefficient h is known as equalization
 - Dividing the received signal by a channel coefficient a single number is called as **Single Tap Equalizer**

•
$$z = \frac{1}{h}y = \frac{1}{h}(hx + n) = x + \frac{n}{h}$$

- It's not always possible to simply divide by a coefficient to recover the original signal especially when there is Inter-Symbol-Interference
- Equalization process
 - Example : $x \in \{A, -A\}$
 - Simple signal detection (z) at the receiver can be carried out as follows:

$$z = \begin{cases} \geq 0 \Rightarrow \hat{x} \sim + A \\ < 0 \Rightarrow \hat{x} \sim - A \end{cases} - \hat{x} \text{ is an estimate or detected symbol or hard decision or slicing}$$

- This is termed as a Threshold Detector and threshold is zero
- Mathematically rigorous framework that can guarantee signal detection is Maximum Likelihood (ML) Detector

Wireless Channel Output SNR

- Wireless system y = hx + n
- The output power of the channel is = $|h|^2 * E\{|x|\}^2 = |h|^2 * P = a^2P$
 - a is amplitude and real value whereas h is complex quantity
- The channel output SNR, represented as SNR_o is

•
$$SNR_o = \frac{Signal\ Power}{Noise\ Power} = \frac{|h|^2 P}{\frac{N_0}{2}} = |h|^2 * SNR_{Transmitter} = a^2 SNR_{Transmitter}$$

Wireless Channel Performance - BER

- Instantaneous BER of BPSK = $Q(\sqrt{SNR_0}) = Q(\sqrt{a^2 * SNR_{Transmitter}})$
 - SNR_0 The output SNR of the wireless channel
- Instantaneous BER depends on amplitude *a* (|h|) which is a random quantity Rayleigh random variable
- Hence BER is an average with respect to the PDF of \boldsymbol{a} which is follows Rayleigh PDF from the channel model of Rayleigh Fading channel $f_A(a) = 2ae^{-a^2}$
- The average of a function g(a) whose PDF is $f_A(a)$ is $\int_{-\infty}^{\infty} g(a) \cdot f_A(a) \cdot da$
 - The lower limit $-\infty$ is actually zero
- BER of Wireless BPSK
 - $\int_0^\infty Q(\sqrt{a^2.SNR}).2ae^{-a^2}.da$
 - $=\frac{1}{2}\left(1-\sqrt{\frac{SNR}{2+SNR}}\right)=\frac{1}{2}\left(1-\sqrt{\frac{2P/N_0}{2+2P/N_0}}\right)$
- BER of Wireless QPSK

$$\bullet \quad \frac{1}{2} \left(1 - \sqrt{\frac{P/N_0}{2 + P/N_0}} \right)$$

BER of Rayleigh Fading Channel

- Wireline
 - The Q function CCDF the tail probability of Gaussian RV, x is $\int_{x}^{\infty} \frac{1}{\sqrt{2}\pi} \times e^{-\frac{t^{2}}{2}} \times dt$
 - The Q function can be approximately upper bounded by
 - $Q(x) \le \frac{1}{2} \times e^{-\frac{1}{2} \times x^2}$
 - $\Rightarrow Q(\sqrt{SNR}) \le \frac{1}{2} \times e^{-\frac{1}{2} \times (\sqrt{SNR})^2} \le \frac{1}{2} \times e^{-\frac{1}{2} \times SNR}$
 - Wireline BER decreases exponentially with an increase in SNR
- Wireless

•
$$\frac{1}{2} \times \left(1 - \sqrt{\frac{SNR}{2 + SNR}}\right) = \frac{1}{2} \times \left(1 - \sqrt{\frac{1}{\frac{2}{SNR} + 1}}\right) = \frac{1}{2} \times \left(1 - \left(\frac{2}{SNR} + 1\right)^{-\frac{1}{2}}\right)$$

- At higher SNR, $\frac{2}{SNR}$ will be very small
- Applying Taylor series $(1+x)^{-\frac{1}{2}}$, where x is very small $(1+x)^{-\frac{1}{2}} \approx (1-\frac{1}{2}\times x)$ is first order Taylor series approximation
- Applying first order Taylor series approximation to BER

- Wireless BER only decreases as $\frac{1}{SNR}$
- $^{
 m \bullet}$ The wireless channel requires an order of 10^4 times more transmit signal power to maintain the same BER
- This is due to deep fade or wireless channel being deep fading channel

Deep Fade

- Output signal power ≪ noise power
- For deep fade $|h|^2 P < N_0 \Rightarrow |h|^2 = a^2 < \frac{N_0}{P} = \frac{1}{SNR} \Rightarrow a^2 < \frac{1}{SNR}$
- Probability of Deep Fade

•
$$P_{DF} = \Pr\left(a^2 < \frac{1}{SNR}\right) \Rightarrow \Pr\left(a < \frac{1}{\sqrt{SNR}}\right)$$

- $a Rayleigh \ random \ variable \ whose \ PDF \ is \ f_A(a) = 2ae^{-a^2}$
- $\int_0^{1/\sqrt{SNR}} f_A(a) da = \int_0^{1/\sqrt{SNR}} 2ae^{-a^2} da = -e^{a^2} \Big|_0^{\frac{1}{\sqrt{SNR}}} = 1 e^{-\frac{1}{SNR}}$
- $P_{DF} = \left(1 e^{-\frac{1}{SNR}}\right)$
- As per Taylor series, $e^{-x} = 1 x + \frac{x^2}{2} \frac{x^3}{6} + \cdots$
- When x is small, $e^{-x} = 1 x$
- Simplifying further, $P_{DF} = \left(1 \left(1 \frac{1}{SNR}\right)\right) = \frac{1}{SNR}$
- $BER = \frac{1}{2SNR} = \frac{1}{2}P_{DF} \Rightarrow BER \propto \frac{1}{2}P_{DF}$
- BER is highly correlated with deep fade

BER and SER of QPSK and QAM

- QPSK
 - SNR of BPSK = $\frac{P}{\left(\frac{N_0}{2}\right)}$
 - SNR of QPSK (2 BPKS streams) = $\frac{P}{\left(\frac{N_0}{2} + \frac{N_0}{2}\right)} = \frac{P}{N_0}$
 - BER of each BPSK stream is $\frac{1}{2} \times \frac{1}{SNR} = \frac{1}{2} \times \frac{1}{\left(\frac{P}{N_0}\right)} = \frac{1}{2} \times \frac{1}{SNR}$
 - Overall SER $2 \times BER = 2 \times \frac{1}{2} \times \frac{1}{SNR} = \frac{1}{SNR}$
- SER of M-ary QAM

•
$$4 \times \left(1 - \frac{1}{\sqrt{M}}\right) \times \frac{1}{2} \times \frac{1}{\frac{3P}{N_0(M-1)}} = 4 \times \left(1 - \frac{1}{\sqrt{M}}\right) \times \frac{1}{2} \times \frac{(M-1)}{3 \times SNR} \propto \frac{1}{SNR}$$

- Thus BER and SER are proportional to $\frac{1}{SNR}$
- Thus the wireless channel performance cannot be increased simply by changing the modulation
- The solution to improve the wireless performance is diversity multiple antennae

Multiple Antenna Diversity

Proprietary and Confidentia

Multiple Antennas and Diversity

- Diversity is achieved through multiple links between transmitter and receiver
- One simple technique for diversity is to use multiple antennas
- Mathematical model
 - $y_i = h_i \times x + n_i$
 - lacktriangledown has a channel coefficient between the transmit antenna and i^{th} receive antenna
 - x Input symbol vector
 - y_i Output vector on l^{th} receive antenna
 - \blacksquare n_i Noise vector
- For L antenna system

•
$$y_1 = h_1 \times x + n_1$$

•
$$y_2 = h_2 \times x + n_2$$

•
$$y_3 = h_3 \times x + n_3$$

- •
- $y_L = h_L \times x + n_L$

SIMO Diversity

SIMO System – Weighted Linear Combining

Vector form

$$\bullet \quad \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_L \end{bmatrix} = \begin{bmatrix} h_1 \\ h_2 \\ h_3 \\ \vdots \\ h_L \end{bmatrix} [x] + \begin{bmatrix} n_1 \\ n_2 \\ n_3 \\ \vdots \\ n_L \end{bmatrix}$$

- $\bar{y} = \bar{h} x + \bar{n}$ output vector channel vector noise vector
- $y_1, y_2, y_3, ..., y_L$ are the output symbols on the antennas at the receiver
- How to process these output samples from receive antennas?
- Weighted linear combining $w_1^*y_1 + w_2^*y_2 + w_3^*y_3 + \cdots + w_L^*y_L$ filtering operation
- Assuming $w = \begin{bmatrix} w_1 \\ w_2 \\ w_3 \\ \vdots \\ w_I \end{bmatrix} \Rightarrow \overline{w}^H = \underbrace{\begin{bmatrix} w_1^* & w_2^* & w_3^* & \dots & w_L^* \end{bmatrix}}_{}$
- \overline{w}^H Hermitian (transpose and complex conjugate) of \overline{w} and H is the Hermitian operator

$$\bullet \Rightarrow \underbrace{\begin{bmatrix} w_1^* & w_2^* & w_3^* & \dots & w_L^* \end{bmatrix}}_{\overline{w}^H} \underbrace{\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ \vdots \\ y_L \end{bmatrix}}_{\overline{y}_L}$$

• \overline{w} is known as beamformer or beamforming vector

SIMO - Beamformer

- How to choose $\overline{\mathbf{w}}$?
 - · Choose beamformer to maximize output SNR
- Output of beamformer
 - $\underline{\overline{w}^H \overline{y}}_{output\ of\ the\ beamformer} = \overline{w}^H (\bar{h}x + \bar{n}) = \underline{\overline{w}^H \bar{h}x}_{signal} + \underline{\overline{w}^H \bar{n}}_{noise}$
 - Signal power = $|\overline{w}^H \overline{h}|^2 \times P$
 - Noise power = $E\{\overline{|w^H\overline{n}|^2}\} = E\left\{\begin{bmatrix} [w_1^*\ w_2^*\ w_3^*\ w_4^*\ ...\ w_L^*] \begin{bmatrix} n_1\\ n_2\\ n_3\\ .\\ .\\ .\\ n_L \end{bmatrix}\end{bmatrix}\right\} = E\{|w_1^*n_1 + w_2^*n_2 + \cdots + w_L^*n_L|^2\}$
 - Noise samples $n_1, n_2, ..., n_L$ across antennas are i.i.d independent and identically distributed
 - $\Rightarrow E\{n_1n_2^*\} = \begin{cases} if \ i \neq j \Rightarrow E\{n_i\} \times E\{n_j^*\} = 0 \times 0 \text{ , as these are zero mean noise samples} \\ if \ i = j, E\{n_in_j^*\} = E\{|n_i|^2\} = N_0 \end{cases}$
 - The output noise power at the output of the beamformer is: $E\{|\overline{w}^H\overline{n}|^2\} = N_0||\overline{w}||^2$
 - $||\overline{w}|| = \sqrt{|w_1|^2 + |w_2|^2 + |w_3|^2 + \cdots + |w_L|^2}$
- Hence SNR at the output of beamformer:
 - $SNR_0 = \frac{|\overline{w}^H \overline{h}|^2 E\{|x|^2\}}{N_0 ||w||^2} = \frac{|\overline{w}^H \overline{h}|^2 P}{N_0 ||w||^2}$

SIMO - Beamformer

- SNR at the output of beamformer:
 - $SNR_0 = \frac{|\overline{w}^H \overline{h}|^2 E\{|x|^2\}}{N_0 ||w||^2} = \frac{|\overline{w}^H \overline{h}|^2 P}{N_0 ||w||^2}$
- Remembering Cauchy-Schwartz inequality
 - $\left| \overline{w} \overline{h} \right|^2 \le \left| \left| \overline{w} \right| \right|^2 \left| \left| \overline{h} \right| \right|^2 \Rightarrow \left| \overline{w}^H \overline{h} \right|^2 \le \left| \left| \overline{w} \right| \right|^2 \left| \left| \overline{h} \right| \right|^2$ Remember w^H is a transposed complex conjugate of w
- Using Cauchy-Schwartz inequality for SNR₀
 - $\frac{\left|\overline{w}^H \overline{h}\right|^2 P}{N_0 \left|\left|w\right|\right|^2} \le \frac{\left|\left|w\right|\right|^2 \left|\left|h\right|\right|^2 P}{N_0 \left|\left|w\right|\right|^2} = \left|\left|h\right|\right|^2 \times \frac{P}{N_0} \text{Maximum output SNR}$
 - $Max(SNR_0) = ||h||^2 \times \frac{P}{N_0}$ this is for QPSK
 - For BPSK, $Max(SNR_0) = \left| |h| \right|^2 \times \frac{P}{\frac{N_0}{2}} = \left| |h| \right|^2 \times \frac{2P}{N_0}$
 - Hence maximum output SNR occurs when we choose $\overline{w} \propto \overline{h}$ or $\overline{w} = k\overline{h}$ that means \overline{w} should be aligned with channel matched filter
 - $\Rightarrow \overline{w} = \frac{\overline{h}}{||h||} = Maximal\ Ratio\ Combiner$
 - $||\bar{h}|| = Norm \ of \ \bar{h} = \sqrt{|h_1|^2 + |h_2|^2 + \cdots + |h_L|^2}$
 - $||\overline{w}|| = 1$ Unit-norm beamformer
 - Since $\frac{h}{||\bar{h}||}$ is the combiner that maximizes the noise power ratio, it is know as MRC Maximal Ratio Combiner
 - Output SNR of *Maximal Ratio Combiner* is: $SNR_0 = \frac{P}{N_0} \times \left| |\overline{h}| \right|^2$
- Uses of Beamforming
 - Maximizes the signal ratio SNR
 - · Supress the interference from un-desired use or jammers

BERs for Multiple Antenna System

- BER for BPSK
 - $(2L-1)C_{(L-1)} \times \frac{1}{2^L} \times \frac{1}{SNR^L}$
- BER of Multi-antenna system $\propto \frac{1}{SNR^L}$
- L is called diversity order
- If the BER decreases as $\frac{1}{SNR^d}$, then the diversity order is d

Deep Fade in Multi-Antenna System

- Deep fade occurs when the signal is buried in noise i.e. $SNR_0 \leq 1$
- $\Rightarrow \frac{P}{N_0} ||h||^2 \le 1 \text{ where } ||h||^2 (norm) = |h_1|^2 + |h_2|^2 + \dots + |h_L|^2$
 - $|h_1|^2$, $|h_2|^2$, ... $|h_L|^2$ magnitudes of each component of \bar{h}
- $\Rightarrow SNR_0 ||h||^2 \le 1 \Rightarrow ||h||^2 \le \frac{1}{SNR_0}$
- $||h||^2$ is known as *chi-squared random variable* and let's say $g = ||h||^2$
- The PDF of chi-squared χ^2 variable $f_G(g) = \frac{g^{L-1}e^{-g}}{(L-1)!}$
- So then the $Pr\left(g \leq \frac{1}{SNR_0}\right) = P_{DF} = \int_0^{\frac{1}{SNR_0}} f_G(g) dg = \int_0^{\frac{1}{SNR_0}} \frac{g^{L-1}e^{-g}}{(L-1)!} dg = \frac{1}{L!} \times 1/SNR^L \propto \frac{1}{SNR^L}$
- $BER \propto P_{DF} \propto \frac{1}{SNR^L}$

Multi-Antenna System - Deep Fade Justification

- Say E_i is the event that i^{th} link between receiver and transmitter of SIMO is in deep fade assumption is each E_i ($E_1, E_2, ..., E_L$) is an independent event
- Then the probability that L-antenna SIMO system has to be in deep fade for a given receiver
 - $P_{DF} = \mathbb{P}(E_1 \cap E_2 \cap E_3 \cap \cdots \cap E_L) = \mathbb{P}(E_1) \times \mathbb{P}(E_2) \times \cdots \times \mathbb{P}(E_L)$
- Since $E_1, E_2, E_3, \dots E_L$ are independent, links between the receiver and transmitter antennae are independently fading
- This link independence is obtained when the antenna spacing is large
- Rule of thumb for antenna spacing \Rightarrow Antenna Spacing $\geq \frac{\lambda}{2} = \frac{c}{2 \times f_c} = \frac{3 \times 10^8 m/s}{2 \times f_c}$
 - f_c Carrier frequency

MIMO System

- Multiple-Input Multiple-Output Antenna System
- Key technology used in
 - 4G LTE
 - 5G-NR
 - WLAN 802.11n, AC, AX
- MIMO can lead to a significant increase in data rates via parallel transmissions Same time, same power, and same bandwidth
- This phenomenon multiplexing several information streams in the spatial domain is called **Spatial Multiplexing**
- MIMO system model
 - r is the receive antennae and t is the transmit antennae
 - It'll be called as *rxt* MIMO system
 - Mathematically represented as

$$\bullet \quad \begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ \vdots \\ y_r \end{bmatrix} = \begin{bmatrix} h_{11} & h_{12} & h_{13} & \dots & h_{1t} \\ h_{21} & h_{22} & h_{23} & \dots & h_{2t} \\ h_{31} & h_{32} & h_{33} & \dots & h_{3t} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ h_{r1} & h_{r2} & h_{r3} & \dots & h_{rt} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_t \end{bmatrix} + \begin{bmatrix} n_1 \\ n_2 \\ n_3 \\ \vdots \\ x_t \end{bmatrix}$$

- $\bar{y} = H\bar{x} + \bar{n}$
 - \bar{y} output vector rx1
 - \blacksquare H channel vector rxt
 - \bar{x} Input vector tx1
 - \bar{n} noise vector rx1
- h_{ij} is the channel coefficient between i^{th} receive antenna and j^{th} transmit antenna

MIMO Receiver

- Given \bar{y} , how to determine \bar{x} ?
- We have r equations and t unknowns for $\bar{y} = H\bar{x}$
- $\bar{x} = H^{-1}\bar{y}$
- If H is non-singular (determinant $\neq 0$, i.e. invertible i.e. H^{-1} exists)
 - $\bar{y} = H\bar{x}$ has a unique solution $\Rightarrow \hat{x} = H^{-1}\bar{y}$
 - \hat{x} is called estimated vector
- What happens when r > t
 - More equations y (r) than unknowns x (t) in MIMO system model
 - That means more rows than columns ⇒ tall matrix NOT a square matrix
 - H is not invertible
 - Inverse exists only for square matrices when the determinant is NOT zero (can be positive or negative)
 - $\bar{y} = H\bar{x} \ has$ no solution for \hat{x}
- How to determine \hat{x} ?
- Approximate solution Find \hat{x} such that \bar{e} is minimum $\bar{y} H\hat{x} = \bar{e}$
- Minimize the error $\min |e|^2 = \min |\overline{y} H\hat{x}|^2$ Minimize the square of norm of the error
- This is known as **Least Squares Problem LS problems**
- Solution to LS problem is $\widehat{x} = (H^H H)^{-1} H^H \overline{y}$ Zero Forcing ZF Receiver
- $(H^H H)^{-1} H^H$ is termed as *pseudo-inverse* of H Tall matrix formula
 - Because $(H^{H}H)^{-1}H^{H}.H = I$

MIMO LMMSE Receiver

- Another popular MIMO receiver is LMMSE receiver
- Linear Minimum Mean Square Error Receiver
 - Estimate $\hat{x} = C^H y$ Linear transformation for the estimate
 - Minimize $E\left\{\left|\left|C^{H}y-\hat{x}\right|\right|^{2}\right\}$
- To derive the solution for LMMSE receiver, we need
 - Covariance matrix of $\bar{x} R_{xx} = E\{\bar{x}\bar{x}^H\}$
 - Covariance matrix of $\bar{y} R_{yy} = E\{\bar{y}\bar{y}^H\}$
 - Cross-covariance matrix of $-R_{xy} = E\{\bar{x}\bar{y}^H\}$
- General expression of LMMSE receiver is
 - LMMSE estimate $\hat{x} = R_{xy}R_{yy}^{-1}\bar{y}$
- LMMSE receiver derivation
 - The transmit symbols to be IID Independent and identically distributed

•
$$R_{xx} = E\{\bar{x}\,\bar{x}^H\} = PI_{t\times t} \begin{cases} 0, & \text{if } i \neq j \\ E\{|x_i|^2\}, = PI \text{ if } i = j \end{cases}$$

- $R_{xy} = E\{\bar{x}\bar{y}^H\} = P.I.H^H = P.H^H$
- $R_{yy} = E\{\bar{y}\bar{y}^H\} = P.HH^H + N_0.I$
- $\hat{x} = PH^H(P.HH^H + N_0I)^{-1}\overline{y}$ rxr
- $\hat{x} = P(P.H^HH + N_0I)^{-1}H^H\bar{y}$
- Alternate LMMSE expression

•
$$\hat{x} = \left(H^H H + \frac{N_0}{P}I\right)^{-1} H^H \bar{y} = \left(H^H H + \frac{1}{SNR}\right)^{-1} H^H \bar{y}$$

• At high SNR $(SNR \to \infty) \Rightarrow \frac{1}{SNR} = 0 \Rightarrow LMMSE \hat{x} = (H^H H)^{-1} H^H \bar{y}$ - tens to be zero forcing receiver

MIMO LMMSE Receiver Derivation

- $\widehat{x} = R_{xy}R_{yy}^{-1}\overline{y}$
- The transmit symbols are IID Independent and identically distributed
- $R_{xx} = E\{\bar{x}\,\bar{x}^H\}$

•
$$\Rightarrow R_{xx} = PI_{t \times t} \begin{cases} 0, if \ i \neq j \\ E\{|x_i|^2\}, = PI \ if \ i = j \end{cases}$$

- $R_{yy} = E\{\bar{y}\bar{y}^H\}$
 - $\Rightarrow R_{yy} = E\{\bar{y}\bar{y}^H\} = E\{(H\bar{x} + \bar{n})(H\bar{x} + \bar{n})^H\} = E\{(H\bar{x} + \bar{n})(\bar{x}^HH^H + \bar{n}^H)\}$
 - $\Rightarrow E\{H\bar{x}\bar{x}^HH^H + H\bar{x}\bar{n}^H + \bar{n}\bar{x}^HH^H + \bar{n}\bar{n}^H\} =$
 - $R_{yy} = P.HH^H + N_0$
- $R_{xy} = E\{\bar{x}\bar{y}^H\}$
 - Deriving similarly like above:
 - $R_{xy} = P.I.H^H = P.H^H$
- So $\widehat{x} = R_{xy}R_{yy}^{-1}\overline{y} = PH^H \underbrace{\left(PHH^H + N_0I\right)^{-1}}_{TYT}\overline{y}$
- Simplifying further, $\widehat{x} = \left(HH^H + \frac{N_0}{P}I\right)^{-1}H^H\overline{y} = \underbrace{\left(HH^H + \frac{1}{SNR}I\right)^{-1}}_{\text{SNR}}\overline{y}$
- Form One $\widehat{x}_{LMMSE} = P.H^H (HH^H + N_0I)^{-1} \overline{y}$ inverse to be taken for $r \times r$
- Form Two $\widehat{x}_{LMMSE} = \left(HH^H + \frac{1}{SNR_0}I\right)^{-1}H^H\overline{y}$ inverse to be taken for $t \times t$ lower computational complexity as $t \ll r$
- At high SNR $(SNR \to \infty) \Rightarrow \frac{1}{SNR} = 0 \Rightarrow LMMSE \hat{x} = (H^H H)^{-1} H^H \bar{y}$ tens to be **zero forcing receiver**

SVD – Singular Value Decomposition

- Mathematical technique for decomposing a matrix into 3 components
 - A left singular matrix
 - A diagonal singular values matrix
 - A right singular matrix
- Represented by $H = U_{r \times r} \Sigma_{r \times t} V_{t \times t}^H$
- Provides a way to analyze the properties of a matrix rank, eigenvalues, eigenvectors, singular values etc. which are related to the matrix norm and condition number
- One of the most important techniques for MIMO processing
- Used for decomposing the channel between transmitter and receiver into set of parallel subchannels, each having different gains and phases
- Used to find the optimal beamforming vectors that maximize the SNR for each sub-channel a technique known as Singular Value Beamforming
- Also used for transmit diversity usage of multiple antennas at the transmitter to improve the reliability of transmission
- By decomposing the channel matrix using SVD
 - A transmitter can send different signals on each of the sub-channels with different powers based on their corresponding singular values
 - This technique is known as STBC Space-time Block Coding
 - STBC improves the error performance of wireless systems

SVD – Singular Value Decomposition

- Given $r \ge t$, SVD is defined as
 - $H = U_{rxr} \Sigma_{rxt} V_{txt}^H$
- Σ has the structure

$$\begin{bmatrix}
\sigma_1 & 0 & 0 \\
0 & \sigma_2 & 0 \\
0 & 0 & \sigma_t \\
0 & 0 & 0
\end{bmatrix}$$

- Diagonal matrix
- t diagonal singular values
- $(r-t) \times t$ zero matrix
- $\sigma_i \geq 0$ and arranged in decreasing order $\sigma_1 \geq \sigma_2 \geq \sigma_3 \geq \cdots \sigma_t \geq 0$ and are singular values real, non-negative
 - Singular values of any matrix are non-negative real number numbers
 - Whereas eigenvalues can be complex, negative, or positive
- Rank of H is number of non-zero singular values
- U,V satisfy the properties
 - Ortho-normal matrices Columns are orthogonal and norm $\left| |column| \right|^2$ is 1
 - $U = [\bar{u}_1 \ \bar{u}_2 \ \bar{u}_3 \ ... \bar{u}_r] \Rightarrow \bar{u}_i. \bar{u}_j = 0 \text{ and } ||\bar{u}_i||^2 = 1$
 - $V = [\bar{v}_1 \ \bar{v}_2 \ \bar{v}_3 \ ... \ \bar{v}_r] \Rightarrow \bar{v}_i ... \ \bar{v}_j = 0 \ and ||\bar{v}_i||^2 = 1$
 - Unitary matrices
 - $U^H U = U U^H = I$
 - $V^H V = V V^H = I$
 - U is known as left singular matrix and $\bar{u}_1, \bar{u}_2, \bar{u}_3, ... \bar{u}_r$ left singular vectors and \bar{u}_1 is called **dominant left singular vector**
 - V is known as right singular matrix and $\bar{v}_1, \bar{v}_2, \bar{v}_3, ... \bar{v}_r$ left singular vectors and \bar{v}_1 is called **dominant right singular vector**

SVD Relation to Eigenvalue Decomposition

$$\bullet HH^{H} = U \begin{bmatrix} \sigma_{1}^{2} & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & \sigma_{2}^{2} & \dots & 0 & 0 & 0 & 0 \\ 0 & 0 & \dots & \sigma_{t}^{2} & 0 & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 & 0 & 0 \end{bmatrix}_{r \times t} U^{H}$$

- σ_1^2 , σ_2^2 , σ_3^2 ... σ_t^2 are non-zero eigenvalues and rest (r-t) values are zero of HH^H
- U contains eigenvectors $\bar{u}_1, \bar{u}_2, \bar{u}_3, ... \bar{u}_r$ (the left singular vectors) of HH^H

$$\bullet H^H H = V \begin{bmatrix} \sigma_1^2 & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \sigma_t^2 \end{bmatrix}_{t \times t} V^H$$

- σ_1^2 , σ_2^2 , σ_3^2 ... σ_t^2 are t non-zero eigenvalues of $H^H H$
- V contains eigenvectors $\bar{v}_1, \bar{v}_2, \bar{v}_3, ... \bar{v}_t$ (the right singular vectors) of $H^H H$

SVD in MIMO Processing

- MIMO channel model $\bar{y} = H\bar{x} + \bar{n}$
- Substitute $H = U\Sigma V^H$
- At the receiver without pre-coding at the transmitter
 - $\bar{y} = U\Sigma V^H \bar{x} + \bar{n}$
 - Process using $U^H \Rightarrow \tilde{y} = U^H \bar{y}$

$$\bullet \Rightarrow \widetilde{y} = U^H (H \overline{x} + \overline{n}) = U^H H \overline{x} + U^H \overline{n} = U^H U \Sigma V^H \overline{x} + U^H \overline{n} = \Sigma V^H \overline{x} + \widetilde{n} \ (\widetilde{n} = U^H \overline{n})$$

- U^H is the combiner or receive beam former or receive filter
- At the transmitter with pre-coding
 - Pre-process/multiply prior to transmission using $V: \bar{x} = V\tilde{x}$
 - $\tilde{\mathbf{x}}$ Original symbol vector
 - \bar{x} Transmitted vector
 - $V-Precoder\ or\ Transmit\ beamforming\ matrix$
- At the receiver with transmitter pre-coding
 - $\bar{y} = U\Sigma V^H(V\tilde{x}) + \bar{n}$
 - Process using $U^H \Rightarrow \tilde{y} = U^H \bar{y}$

$$\bullet \Rightarrow \widetilde{y} = U^H (H \overline{x} + \overline{n}) = U^H H V \widetilde{x} + U^H \overline{n} = U^H U \Sigma V^H V \widetilde{x} + U^H \overline{n} = \Sigma \widetilde{x} + \widetilde{n} \ (\widetilde{n} = U^H \overline{n})$$

• U^H is the combiner or receive beam former or receive filter

SVD in MIMO Processing

- SVD-based transmitted pre-coded signals at the receive antennas output
 - $\widetilde{y} = \Sigma \widetilde{x} + \widetilde{n} \ (\widetilde{n} = U^H \overline{n})$

- \tilde{y} will have more than t components as $r \gg t$. (t+1), (t+2), ... r can be ignored as these are noise
- Hence the system of MIMO equations with SVD are:
 - $\tilde{y}_1 = \sigma_1 \tilde{x}_1 + \tilde{n}_1$
 - $\tilde{y}_2 = \sigma_2 \tilde{x}_2 + \tilde{n}_2$
 - $\tilde{y}_3 = \sigma_3 \tilde{x}_3 + \tilde{n}_3$
 - ..
 - $\tilde{y}_t = \sigma_t \tilde{x}_t + \tilde{n}_t$
- Decoupled channels spatial multiplexing
- Consider i^{th} channel $\Rightarrow \tilde{y}_i = \sigma_i \tilde{x}_i + \tilde{n}_i$
 - Signal power = $E\{|\tilde{x}|^2\} = P_i$
 - Noise power = N_0
- $SNR_o^i = \sigma^2 \cdot \frac{P_i}{N_0}$

Capacity of MIMO Wireless Systems

- Shannon's channel capacity maximum data rate for error free transmission
 - $\log_2(1 + SNR)$
- Maximum data rate for i^{th} channel in MIMO is $\log_2(1+\sigma^2.\frac{P_i}{N_0})$
- So, the total data transmission capacity of the MIMO channel
 - $\sum_{i=1}^{t} R_i = \sum_{i=1}^{t} \log_2(1 + SNR_o^i) = \sum_{i=1}^{t} \log_2(1 + \sigma^2 \cdot \frac{P_i}{N_o})$
- Let's call the maximum transmit power at the transmitter total permissible transmit power as P_0
- Therefore sum of all MIMO streams/links/modes $P_0 = \sum_{i=1}^t P_i$
- What is the possible maximum error-free transmission rate of MIMO channel per a unit bandwidth bits/second/hertz
- Solution is as per below optimization problem
 - Maximize $\sum_{i=1}^{t} \log_2 \left(1 + \frac{\sigma_i^2 P_i}{N_0} \right)$
 - subject to the constraint $\sum_{i=1}^{t} P_i = P_0$
- Solved using Lagrange multiplier $-f(x) + \lambda g(x) KKT \ framework$
- The optimal power solution for maximum error-free transmission rate is
 - $P_j = \left(\frac{1}{\lambda} \frac{N_0}{\sigma_j^2}\right)^+ + indicates that if the value < 0, then the value is 0$
 - P_j is $\left(\frac{1}{\lambda} \frac{N_0}{\sigma_j^2}\right)$ if $P_j \ge 0$, else 0

•
$$P_{j} = \begin{cases} \left(\frac{1}{\lambda} - \frac{N_{0}}{\sigma_{j}^{2}}\right), & \text{if } \frac{1}{\lambda} \ge \frac{N_{0}}{\sigma_{j}^{2}} \\ 0, & \text{if } \frac{1}{\lambda} < \frac{N_{0}}{\sigma_{j}^{2}} \end{cases}$$

MIMO Capacity

- Optimal power allocation to various MIMO streams/modes Water-filling/pouring power allocation
- If σ_j is $small \Rightarrow \left(\frac{1}{\lambda} \frac{N_0}{\sigma_j^2}\right)$ is $small \Rightarrow$ Weaker channels are allocated with lower power (based on this water-filling power allocation)
- Corollary of the above, stronger channels will be allocated more power

Alamouti Code

- The main idea behind Alamouti coding is to transmit the same data over multiple antennas in a way that maximizes diversity and protects against error error protection coding
 - If one of the antennas experiences fading or interference, the data can still be recovered from the other antenna
- This is achieved by transmitting the data in a space-time block code, where the data is transmitted over multiple time slots and multiple antennas improving the reliability and capacity of transmission
- Particularly useful when the transmitted signal is subjected to fading due to multipath propagation
- It is a 2x1 Orthogonal STBC used for 2 transmit antennae and 1 receive antenna system (a 1x2 (rxt) diverse system MISO system)
- It encodes two complex symbols onto two transmit antennae and transmits over two consecutive time slots providing diversity and improved SNR at the receiver
 - In the first time slot, the two complex symbols are transmitted on the two antennas
 - In the second time slot, the same two symbols are transmitted again, but with the conjugate of one symbol transmitted on the second antenna
- Achieves diversity order 2 without the knowledge of the channel state information (CSI) for beamforming (channel coefficients being sent by the receiver) at the transmitter

Alamouti Code

- MISO channel is represented by $[h_1 \; h_2] = \overline{h}^T$
 - ullet h_1 channel coefficient between transmit antenna 1 and receive antenna 1
 - h_2 channel coefficient between transmit antenna 2 and receive antenna 1
- The first transmit vector t_1 is $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$
 - $x_1 transmit antenna 1$
 - x_2 transmit antenna 2
- The second transmit vector t_2 is $\begin{bmatrix} -x_2^* \\ x_1^* \end{bmatrix}$
- Hence $y_1 = [h1 \ h2] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + n_1 = h_1 x_1 + h_2 x_2 + n_1$
- $y_2 = [h_1 \ h_2] \begin{bmatrix} -x_2^* \\ x_1^* \end{bmatrix} + n_2 = -h_1 x_2^* + h_2 x_1^* + n_2 \Rightarrow [h_2 h_1] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + n_2$
- $\bullet \Rightarrow y_2^* = -h_1^* x_2 + h_2^* x_1 + n_2^*$
- $y_2^* = [h_2^* h_1^*] \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + n_2^*$
- Hence output system of equations

•
$$\begin{bmatrix} y_1 \\ y_2^* \end{bmatrix} = \begin{bmatrix} h_1 & h_2 \\ h_2^* & -h_1^* \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} n_1 \\ n_2^* \end{bmatrix}$$

Alamouti Code

•
$$\begin{bmatrix} y_1 \\ y_2^* \end{bmatrix} = \begin{bmatrix} h_1 & h_2 \\ h_2^* & -h_1^* \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} n_1 \\ n_2^* \end{bmatrix}$$
Output Vector $-\overline{y}$ Channel Vector $-H$ Transmit Vector $-\overline{x}$ Noise Vector $-\overline{n}$

- Columns of channel matrix of Alamouti system are orthogonal vectors
- Hence Alamouti code is known as Orthogonal Space-time Block Code OSTBC
- Can be extended to arbitrary number of receive antennae
- Since the matrix is orthogonal, decoding can be simply performed by multiplying by inverse
- Inverse of Alamouti Matrix $H^{-1} = \frac{1}{||h||^2} H^H = \frac{1}{||h||^2} \begin{bmatrix} h_1^* & h_2 \\ h_2^* & -h_1 \end{bmatrix}$
 - $||h||^2 = |h_1|^2 + |h_2|^2$ Norm square of 1×2 channel vector = $|[h_1 \ h_2]|^2 = \left(\sqrt{|h_1|^2 + |h_2|^2}\right)^2 = (h_1^2 + h_2^2)$
- Decoder o/p = $H^{-1}\overline{y} = \frac{1}{\left||h|\right|^2} \times H^H \times \overline{y}$, where $\overline{y} = \begin{bmatrix} y_1 \\ y_2^* \end{bmatrix}$
- Alamouti code transmits two symbols per two time instants with a net of one symbol per a time instant i.e. R=1 such a code is termed a *full rate code*

SNR and BER of Alamouti Code

- SNR
 - The available power P at the transmitter is split equally across two transmit streams/antennae
 - $\Rightarrow E\{|x_1|^2\} = E\{|x_2|^2\} = \frac{P}{2}$
 - Channel output SNR of each stream is $SNR_0 = \left| |h| \right|^2 \times \frac{\frac{P}{2}}{N_0}$
 - $\Rightarrow \frac{1}{2} \times ||h||^2 \times \frac{P}{N_0} = \frac{1}{2} \times ||h||^2 \times SNR_{tx} = \frac{1}{2} \times (|h_1|^2 + |h_2|^2) \times SNR_{tx}$
 - Where for BPSK $SNR = \frac{P}{N_0}$ and QPSK $SNR = \frac{2P}{N_0}$
 - $SNR_o = \frac{1}{2} \times ||h||^2 \times \frac{\frac{P}{2}}{N_0} = \frac{1}{2} \times ||h||^2 \times SNR \text{ where } ||h||^2 = (|h_1|^2 + |h_2|^2)$
 - Alternatively, $SNR_0 = \frac{1}{2} \times \frac{||h||^2}{\sigma^2} P$
- BER
 - The output BER of Alamouti Scheme for BPSK and QPSK = $\frac{3}{SNR^2}$

OFDM Technology

Proprietary and Confidentia

Single and Multi-carrier Modulation

- Single Carrier System
 - For a bandwidth B/2, the symbol time is $\frac{1}{B}$
 - Example : For a single carrier system of 10 MHz bandwidth, the symbol time is $\frac{1}{10~MHz} = 0.1~\mu s$
 - As the bandwidth increases, symbol time decreases or shrinks
 - Due to multi-path in wireless channel, different copies of the transmitted signal arrive with different delays τ_0 , τ_1 , τ_2 , ..., τ_{l-1}
 - As a result, multi-path components are spread over time which is called as Delay Spread
 - For large bandwidth
 - lacktriangle Delay Spread >> Symbol Time/Duration $\Rightarrow t_{ds} \gg t_s$
 - At higher bandwidths, the multi-path signal copies with different delays superimpose at the receiver causing ISI – Inter-symbol Interference increasing BER
- How to eliminate ISI?
- ISI can be eliminated using Multi-carrier Modulation (MCM) using OFDM

What is OFDM

- OFDM is widely employed in most of the modern cellular and wifi systems
- MIMO-OFDM is one of the most widely used technologies today
 - 4G LTE, 5G-NR
 - 802.11n, 802.11ac, 802.11ax
- Due its transmission over very large bandwidth, it enables ultra-high data rates
- OFDM exploits frequency dimension and MIMO exploits space dimension
 - Space + Frequency Multiplexing => Extra-ordinarily high data rates

OFDM - Multi-carrier Modulation

- Instead of using one carrier, use N carriers/sub-carriers
- Divides the bandwidth into N sub-bands/carriers
- Each sub-band bandwidth is $\frac{B}{N}$ across N bands, B is total bandwidth $\left[-\frac{B}{2}, +\frac{B}{2}\right]$
- The sub-carrier bandwidth is also called as sub-carrier spacing, sub-carrier bandwidth etc. $-\frac{B}{N}$
- Sub-carriers are placed at $-\frac{2B}{N}$, $-\frac{B}{N}$, $0, \frac{B}{N}, \frac{2B}{N}, \frac{3B}{N}$, ...
- If $\frac{B}{N}$ is called as $f_0 \Rightarrow N \ sub carrier$ placement is ..., $-2f_0$, $-f_0$, 0, f_0 , $2f_0$,
- As per signals and systems, the mathematical representation of a generic carrier of frequency is
 - $f_c = e^{j2\pi f_c t}$
- k^{th} sub-carrier is placed at kf_0 , where $f_0 = \frac{B}{N}$
 - $\bullet \quad f_k = k f_0 = e^{j2\pi k f_0 t}$
- Modulate each sub-carrier with a symbol
 - k^{th} modulated sub-carrier $x_k(t) = X_k \times e^{j2\pi k f_0 t}$
- Hence the aggregate transmit signal
 - Becomes the sum of all modulated sub-carrier signals
 - $x(t) = \sum_k X_k e^{j2\pi k f_0 t}$
 - Also termed as symbol loaded on sub-carrier kf_0

Fourier Series

- Fourier series exists for a continuous periodic signal
- For continuous periodic signals, Fourier series or complex exponential Fourier series or trigonometric Fourier series will be used
- For continuous aperiodic signals, Fourier transform is used
- For discrete aperiodic signals, Discrete-Time Fourier transform is used
- For discrete periodic signals, Discrete Fourier Series is used
- For discrete limited signals, FFT or DFT is used

OFDM - Demodulation

- Considering a noiseless and non-fading channel/scenario
 - $y(t) = x(t) = \sum_{k} X_{k} e^{j2\pi k f_{0}t}$
 - $\sum_k X_k e^{j2\pi k f_0 t}$ is a Fourier series or complex exponential Fourier series of x(t)
 - Fundamental frequency $f_0 = \frac{B}{N}$ and various X_k representing the Fourier coefficients X_l
- All frequencies kf_0 are multiples of the fundamental frequency $f_0 = \frac{1}{T_0} = \frac{B}{N}$
- ullet Therefore to extract X_l coefficient of a Fourier coefficient corresponding to the frequency f_l
 - Multiply the input signal y(t) with $e^{-j2\pi lf_0t}$ (complex conjugate of the input), and f_0 or $\frac{1}{T}$, and integrate over a limit of $\left[0,\frac{1}{f_0}\right]$ or $\left[-\frac{1}{2f_0},\frac{1}{2f_0}\right]$ or $\left[0,\frac{1}{f_0}\right]$ or $\left[-\frac{T}{2},\frac{T}{2}\right]$
 - $\Rightarrow X_l = f_0 \int_{-\frac{1}{2f_0}}^{\frac{1}{2f_0}} y(t) \times (e^{j2\pi l f_0 t})^* dt = f_0 \int_{-\frac{1}{2f_0}}^{\frac{1}{2f_0}} \sum_k X_k e^{j2\pi k f_0 t} \times e^{-j2\pi l f_0 t} dt$
- $\frac{1}{f_0} = T$ is the OFDM symbol duration $\Rightarrow T = \frac{1}{f_0} = \frac{1}{\frac{B}{N}} = \frac{N}{B} = N \times \left(\frac{1}{B}\right) \Rightarrow \frac{N}{B} \gg \frac{1}{B} \gg \text{Delay Spread}$
- Thus OFDM eliminates ISI

OFDM - Demodulation

• Extracting l^{th} symbol

•
$$f_0 \int_{-\frac{1}{2f_0}}^{\frac{1}{2f_0}} y(t) \times (e^{j2\pi l f_0 t})^* dt = f_0 \int_{-\frac{1}{2f_0}}^{\frac{1}{2f_0}} \sum_k X_k e^{j2\pi k f_0 t} \times e^{-j2\pi l f_0 t} dt = f_0 \int_0^{\frac{1}{f_0}} \sum_k X_k e^{j2\pi k f_0 t} \times e^{-j2\pi l f_0 t} dt$$

- Also called as coherent demodulation
- Rewriting the above equation:

•
$$X_l = \sum_k X_k (f_0 \int_0^{\frac{1}{f_0}} e^{j2\pi(k-l)f_0 t} dt)$$

•
$$f_0 \int_0^{\frac{1}{f_0}} e^{j2\pi(k-l)f_0 t} dt \begin{cases} 0, & \text{if } k \neq l \\ 1, & \text{if } k = l \end{cases}$$

- The sub-carriers $e^{j2\pi k}$, $e^{j2\pi l}$ are orthogonal and hence their product when they are not equal $k \neq l$ is zero
- $X_l = \sum_k X_k \, \delta(k-l) discrete \ delta \ function$
- The sub-carrier orthogonality can leveraged to extract the symbol
 - ⇒ inner product between two sub-carriers that are orthogonal is zero
- In summary
 - Orthogonal sub-carriers are orthogonal
 - Frequency Division Dividing bandwidth into multiple sub-carriers
 - Multiplexing Parallel transmission of multiple symbols over multiple sub-carriers in the same band Wide Bandwidth Channel
 - Enables transmission over large bandwidth without ISI extremely high data rates

OFDM Generation – IDFT \Rightarrow IFFT

- OFDM comprises of 1000s of sub-carriers ⇒ difficult to generate!
- Is there a simple technique to generate OFDM?
- Yes using sampling!
- Considering signal BW is limited to $\frac{B}{2}$ (i. e. f_{max}), the sampling frequency is $f_S = 2 \times \frac{B}{2} = B$ (Nyquist Criterion)
- Sampling duration $t_S = \frac{1}{B} = \frac{1}{f_S}$
- The l^{th} sample will be at $t = l \times t_s = l \times \frac{1}{B} = \frac{l}{B}$
- $\Rightarrow x(l) = \sum_{k} X_k e^{j2\pi k f_0 t} = \sum_{k} X_k e^{j2\pi k \frac{B l}{NB}} = \sum_{k} X_k e^{\frac{j2\pi k l}{N}}$
- Scaling x(l) by $\frac{1}{N}$ factor $\Rightarrow \frac{1}{N} \sum_{k} X_{k} e^{j2\pi \frac{kl}{N}}$
- The expression $\frac{1}{N}\sum_k X_k e^{j2\pi\frac{kl}{N}}dt$ is representation of IDFT **Inverse Discrete Fourier Transform**
- IDFT can be efficiently implemented using IFFT Inverse Fast Fourier Transform
- IFFT algo is widely implemented in DSP chipsets computational complexity is $Nlog_2N$

 $(IFFT)^{-1} \Rightarrow FFT$ Demodulation

$$H_k = \sum_{l=0}^{(L-1)} h(l)e^{-j2\pi \frac{kl}{N}}$$

Zero padded FFT of the channel taps (N-L) zeros

Sub-carrier channel coefficients

$$Y_k = \sum_{l=0}^{(N-1)} y(l)e^{-j2\pi \frac{kl}{N}}$$
Frequency Domain Samples

ISI Channel Model

- Fading channel model for a symbol k, y(k) = hx(k) + n(k)
- ISI channel model with interference from other/previous symbols in the band, for symbol k:
 - $y(k) = h(0)x(k) + h(1)x(k-1) + h(2)x(k-2) + \dots + h(L-1)x(k-(L-1)) + v(k)$ • $\{v(k) \text{ is noise}\}$
- Simplifying
 - $y(k) = \sum_{l=0}^{l=(L-1)} h(l)x(k-l) + v(k)$ convolution operation
 - h(0), h(1), h(2), ... h(L-1) are called **channel taps channel filters**
- y(k) can be further simplified as y(k) = h * x + v(k)
- So, channel performs linear convolution

Convolution

- Convolution is a mathematical operation on two functions (f and g) that produce a third function (f*g) that expresses how the shape of one is modified by the other
- The term convolution refers to both the resultant function and the process of computing it
- The resultant function is defined as the integral of the product of the two functions after one is reflected on y-axis and shifted

•
$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t-\tau)d\tau = \int_{-\infty}^{\infty} f(t-\tau)g(\tau)d\tau$$

Some features of convolution are similar to cross-correlation

Cyclic Prefix – CP and Demodulation

•
$$x(N-\tilde{L}), \dots x(N-2), x(N-1), \quad x(0), x(1), x(2), \dots x(N-1)$$

Cyclic Prefix

Original samples generated by IFFT

- ullet The cyclic prefix are $ilde{L}$ samples from the tail of OFDM generated by IFFT
- Prior to transmission, the above cyclic prefix is prefixed to the IFFT output forming OFDM block
- So the total number of samples in OFDM block are $(N + \tilde{L})$, $\tilde{L} \ll N$
- \tilde{L} is usually a maximum of 25%*N
- What is the effect of CP?
- Because of the addition of CP as prefix to the output of IFFT of OFDM, the linear convolution becomes circular convolution
 - $y(k) = h * x + v(k) \Rightarrow Prefix \ with \ CP \Rightarrow y(k) = h \circledast x + v$
- The output of OFDM channel is $y(k) = h \circledast x + v$
- The output of the sub-carrier k $y(k) = h \circledast x + v \Rightarrow FFT \Rightarrow Y_K = H_k \times X_k + V_k$
- When an FFT is taken for a circular convoluted time domain signal, it becomes the product between corresponding coefficients

OFDM System Model

- k=0,1,2,...N-1 sub-carriers
- The OFDM System Model is
 - $\bullet \quad Y_0 = H_0 \times X_0 + V_0$
 - $Y_1 = H_1 \times X_1 + V_1$
 - $Y_2 = H_2 \times X_2 + V_2$
 - ..
 - $Y_{N-1} = H_{N-1} \times X_{N-1} + V_{N-1}$
- Channel coefficient H_k are given as
 - $H_k = \sum_{0}^{L-1} h(l) e^{-j2\pi \frac{kl}{N}} \Rightarrow h(0), h(1), h(2), \dots h(L-1), 0, 0, 0, \dots 0 \ (N-L \ zeros)$
 - N Point Zero Padded FFT \Rightarrow H₀, H₁, H₂, ... H_{N-1} sub carrier channel coefficients
- CP removal
 - OFDM block = $x(N-\tilde{L})$, ... x(N-2), x(N-1), x(0), x(1), x(2), ... x(N-1)
 - The prefixed CP is removed by the receiver and receiver processes the output from x(0) or y(0)
 - $y(0) = h(0)x(0) + h(1)x(N-1) + \dots + h(L-1)x(N-L+1) + \dots + 0 \times x(2) + 0 \times x(1) + v(0)$
 - This process is known as CP removal
- What is OFDM achieving?
 - Converting a time-domain ISI channel into N parallel ISI-free (flat fading) sub-carrier channels!
 - ISI Frequency selective, dispersive channel
 - Flat fading Frequency flat channel, ISI free

OFDM Examples

- The expressions $e^{j\theta}$ and $e^{-j\theta}$ can be simplified using Euler's formula
 - $e^{j\theta} = cos(\theta) + jsin(\theta)$
 - $e^{-j\theta} = cos(-\theta) + jsin(-\theta) = cos(\theta) jsin(\theta)$
 - $cos(-\theta) = cos(\theta)$ Since cosine is even function
 - $sin(-\theta) = -sin(\theta)$ Since sine is odd function
- $H_3 = h(0) + h(1)e^{-\frac{j3\pi}{2}}$
 - = $h(0) + h(1) \left(\cos \left(-\frac{3\pi}{2} \right) j \sin \left(\frac{3\pi}{2} \right) \right)$
 - = h(0) + h(1)(0 -
- Effective bit rate = $Number\ of\ bits\ per\ symbol\ * \frac{N}{T_{symbols} + T_{CP}}$

BER Performance of OFDM Systems

- Consider channel taps h(0), h(1), h(2), h(3), ..., h(L-1)
- Assume they are Rayleigh fading with unit power $E\{|h(l)|^2\}=1$
- Noise samples v(l) are i.i.d with power $N_0 = E\{|v(l)|^2\}$
- Symbols loaded on sub-carriers have power P
- Effective SNR for QPSK as

•
$$SNR_{OFDM-QPSK} = \rho_{eff} = \frac{L}{N} \times \frac{P}{N_0} = \frac{L}{N}SNR$$

- L number of channel taps
- N number of sub-carriers
- BER of OFDM for QPSK

•
$$BER_{OFDM-QPSK} = \frac{1}{2} \times \left(1 - \sqrt{\frac{\rho_{eff}}{2 + \rho_{eff}}}\right) \approx \frac{1}{2} \times \frac{1}{\rho_{eff}} \approx \frac{1}{2} \times \frac{1}{\frac{L}{N}SNR}$$

•
$$BER_{OFDM-QPSK} \approx \frac{1}{2} \times \frac{N}{L} \times \frac{1}{SNR}$$

MIMO-OFDM Channel Coefficients

- MIMO channel coefficients in the frequency domain corresponding to sub-carrier k between i^{th} receive antenna and j^{th} transmit antenna $H_{ij}(k)$
- $h_{ij}(0), h_{ij}(1), h_{ij}(2), \dots h_{ij}(L-1), \underbrace{0,0,0,0\dots 0}_{(N-L\ zeros)} \Rightarrow FFT(N-pt) \Rightarrow H_{ij}(0), H_{ij}(1), \dots, H_{ij}(N-1)$
- $H_{ij}(k)$ are given by the FFT of the channel taps and are frequency domain coefficients
- $Y(k) = H(k) \times X(k) + W(k)$
 - H(k) Flat MIMO channel
 - There are k = 0,1,2,...(N-1) n flat parallel MIMO channels
- Converted a frequency selective MIMO channel to a flat fading MIMO channel using OFDM

MIMO-OFDM

- Exploits spatial multiplexing of MIMO and frequency multiplexing of OFDM leading to ultra-high data rates
- MIMO-OFDM channel model
 - r number **receive** antennas, t number of transmit antennas
 - Channel taps between receive antenna *i* and transmit antenna *j*
 - $h_{ij}(0), h_{ij}(1), h_{ij}(2), \dots, h_{ij}(L-1), h_{ij}(l) l^{th}$ channel tap between i^{th} receive antenna and j^{th} transmit antenna with l taps
 - Total number of taps are $r \times t \times l$

Transmission

- On each transmit antenna j load the sub-carriers as below i.e. perform IFFT
 - $X_i(0), X_i(1), X_i(2), ... X_i(N-1) \Rightarrow X_i(k) Symbol loaded on sub carrier k at transmit antenna j Frequency domain samples$
- Total number of symbols = $n \times t$
- IFFT can be performed as shown below
 - $X_i(0), X_i(1), X_i(2), ... X_i(N-1) \Rightarrow IFFT \Rightarrow x_i(0), x_i(1), x_i(2), ..., x_i(N-1)$ time domain samples on transmit antenna j
- One IFFT per each transmit antenna total t IFFT blocks at the transmitter
- Add CP on each transmit antenna

$$\underbrace{x_j(N-\tilde{L}), \dots x_j(N-2), x_j(N-1)}_{CP-\tilde{L} \ samples}, \underbrace{x_j(0), x_j(1), x_j(2), \dots, x_j(N-1)}_{original \ samples \ after \ IFFT-N \ samples} \Rightarrow \left(N+\tilde{L}\right) samples$$

What is the size of total transmission block – one OFDM block?

•
$$(N + \tilde{L}) \times t = t \times (N + N_{CP}) \times t$$

Channel

- Because of addition of CP, the linear convolution becomes circular convolution
- $y_i(k) = \sum_{j=1}^t h_{ij} \circledast x_j + w_j(k)$

Receiver

- FFT is performed at each receive antenna after removing CP
- $y_i(0), y_i(1), y_i(2), y_i(N-1)(CP \ removed) \Rightarrow FFT \Rightarrow Y_i(0), Y_i(1), Y_i(2), ..., Y_i(N-1)$
- $y_i(k)$ is output on sub-carrier k
- One FFT at each receive antenna $\Rightarrow r$ FFTs

Net MIMO-OFDM System Model

$$\bullet \begin{bmatrix} Y_{1}(k) \\ Y_{2}(k) \\ Y_{3}(k) \\ \vdots & \ddots & \vdots \\ H_{r1}(k) & \cdots & H_{rt}(k) \end{bmatrix} \times \begin{bmatrix} X_{1}(k) \\ X_{2}(k) \\ \vdots & \ddots & \vdots \\ X_{t}(k) \end{bmatrix} + \begin{bmatrix} W_{1}(k) \\ W_{2}(k) \\ \vdots & \ddots & \vdots \\ W_{r}(k) \end{bmatrix}$$

- $Y(k) r \times 1$ vector of outputs for all Rx antennas on sub-carrier k output symbol vector
- H(k) $r \times t$ MIMO channel matrix for sub-carrier k Channel matrix
- X(k) $t \times 1$ vector of symbols loaded on sub-carrier k for all Tx antennas transmit symbol vector
- W(k) $r \times 1$ Noise vector for sub-carrier k noise vector

MIMO-OFDM

- MIMO-OFDM model for sub-carrier k is
 - $Y(k) = H(k) \times X(k) + W(k)$ Frequency domain model
- How many such parallel MIMO systems are there?
 - One for each sub-carrier → N parallel MIMO channels
 - Y(0) = H(0)X(0) + W(0)
 - Y(1) = H(1)X(1) + W(1)
 - Y(2) = H(2)X(2) + W(2)
 - •
 - Y(N-1) = H(N-1)X(N-1) + W(N-1)
- How to recover X(k)?
 - Any MIMO receiver ZF or LMMSE receiver
- ZF receiver
 - ZF receiver : $\widehat{X}(k) = H^{\dagger}(k)Y(k) \Rightarrow \underbrace{\left(H^{H}(k)H(k)\right)^{-1}}_{Pseudo\ Inverse\ of\ H(k)} H^{H}(k)Y(k)$
- LMMSE receiver
 - $\hat{X}(k) = \left(H^H(k)H(k) + \frac{1}{SNR}I\right)^{-1}H^H(k)Y(k)$

Proprietary and Confidenti

Wireless Channel Model

- Wireless channel model
 - $h = \sum_{i=0}^{L-1} a_i \delta(t-\tau)$
 - L number of multi-path components/channels
 - a_i Channel attenuation
 - lacktriangledown au_i delay
- An important characteristic of a multi-path channel is the time delay spread it causes to the received signal
- This delay spread equals the time delay between
 - The arrival of the first received signal component (LOS or multi-path)
 - Last received signal component associated with a single transmitted pulse
- If the delay spread is
 - Small compared to the inverse of the signal bandwidth, then there is little time spreading in the received signal
 - Relatively large compared to the inverse of the signal bandwidth, then there is significant time spreading
 of the received signal which leads to substantial signal distortion
- Maximum delay spread
 - $\bullet \quad T_d = \tau_{L-1} \tau_0$
 - lacktriangledown au_{L-1} Last multi-path component received
 - lacktriangledown First multi-path component received

Wireless Channel Model – Delay Spread

- Another metric for the delay spread is RMS delay spread
- Let $g_i = |a_i|^2$
- Mean delay (Weighted average of delays) $\bar{\tau} = \frac{\sum_i g_i \tau_i}{\sum_i g_i}$
- RMS Delay Spread $T_{d,rms} = \sqrt{\frac{\sum_i g_i (\tau_i \overline{\tau})^2}{\sum_i g_i}}$
- Typical delay spread in outdoor distances 2-3 μ s
- When does ISI occur?
 - $T_d(Delay\ Spread) \ge \frac{1}{2}T_s\ (Symbol\ Time)$ ISI
- On the other hand
 - $T_d(Delay\ Spread) < \frac{1}{2}T_S\ (Symbol\ Time)$ No ISI

ISI Channel Model

- Non ISI channel model
 - y(k) = hx(k) + n(k)
 - y(k) depends only on x(k)
- ISI channel model
 - $y(k) = h(0)x(k) + h(1)x(k-1) + h(2)x(k-2) + \dots + h(L-1)x(k-L+1) + n(k)$
 - y(k) = h * x + n * linear convolution
 - h(0), h(1), ... h(L-1) channel taps or taps of the channel filter or coefficients of channel filter FIR Finite Impulse Response
 - y(k) depends on x(k), x(k-1),
- Delay spread
 - $T_d = 2\mu s$
 - $T_S \le 4\mu s = 2T_d \Rightarrow \frac{1}{B} = 4\mu s$
 - $\Rightarrow B \ge \frac{1}{2T_d} = \frac{1}{4\mu s} = 250 \text{ kHz}$
 - So, ISI occurs when the bandwidth is greater than 250 kHz this bandwidth is known as Coherence bandwidth and is represented by B_c of the channel
- The relationship between T_d and B_c is $\boldsymbol{B}_c = \frac{1}{2T_d}$ T_d channel delay spread
- Hence ISI occurs if:
 - $T_d \ge \frac{1}{2}T_S$
 - $B \ge B_c \ge \frac{1}{2T_d}$
- So, $B_c \propto \frac{1}{T_d}$ coherence bandwidth is inversely proportional to delay spread

Delay Spread

- Say delay spread $T_d = 0$
 - Channel model $h(t) = \delta(t)$
 - Fourier transform |H(f)| = 1
 - BW= $B_C = \infty$
- Frequency domain interpretation of B_c
 - When signal bandwidth $B_s/B \leq B_c$, the output spectrum is undistorted
 - Channel response is flat over signal bandwidth
 - Such a channel is termed as flat fading channel
 - No ISI and no distortion
 - When signal bandwidth $B_s/B \ge B_c$
 - Fading is frequency selective
 - Channel response is NOT flat and varies over signal bandwidth
 - Signal spectrum is distorted frequency domain and is ISI in time domain

Doppler Shift

- What happens when a mobile moves away or towards base station/transmitter
 - Angle θ and velocity v
 - Change in the observed/received frequency by the receiver
 - This is termed as doppler shift
- Doppler shift $f_D = \frac{v \times cos\theta}{c} \times f_C$
 - v velocity of the mobile
 - c speed of light
 - f_c carrier frequency
 - θ angle between velocity vector and line joining mobile to base station
- Impact of doppler shift on the channel
 - Time varying delay ⇒ Time Varying Channel
 - Such a channel is called Time Selective Channel
- How fast is channel varying?
 - Let T_c denote the time over which channel is constant
 - This T_c is termed **Coherence Time**
 - $T_C = \frac{1}{4f_D} \propto \frac{1}{f_D}$
- Higher velocity => coherence time is small
- Doppler bandwidth = $2f_D = B_D$

Brillium Technologies

C 501, Salarpuria Serenity, 5th Main, Sector 7, HSR Layout, Bengaluru, Karnataka - 560102, India Website: www.brillium.in | Email: connect@Brillium.in

© Brillium Technologies 2011-19. All rights reserved.

Proprietary and Confidenti