Exercise for Computational Materials Sciences

Exercise 4, December 6th, 2024. Discussion on December 17th, 2024

1) Hubbard atom

Consider the Hubbard model for a system of just one site:

$$H = -\mu \sum_{\sigma} c_{\sigma}^{\dagger} c_{\sigma} + U n_{\downarrow} n_{\uparrow}, \tag{1}$$

 $\sigma = \downarrow, \uparrow$ being the spin, and $n_{\sigma} = c_{\sigma}^{\dagger} c_{\sigma}$ being the particle number operator of a given spin.

- a) Show that $|0\rangle$, $|\uparrow\rangle = c_{\uparrow}^{\dagger}|0\rangle$, $|\downarrow\rangle = c_{\downarrow}^{\dagger}|0\rangle$, and $|\uparrow\downarrow\rangle = c_{\uparrow}^{\dagger}c_{\downarrow}^{\dagger}|0\rangle$ are eigenstates of H. Calculate the partition function $Z = \text{Tr}e^{-\beta H}$ and the average occupation $\langle n_{\downarrow} + n_{\uparrow} \rangle$ as a function of the chemical potential μ and the inverse temperature β .
- b) Plot N as a function of μ for U=4 and $\beta=1/2$. To what chemical potential does the half-filling (N=1) correspond?
- c) Calculate and plot the local magnetic moment $\langle m^2 \rangle = \langle (n_{\uparrow} n_{\downarrow})^2 \rangle$ at half-filling as a function of temperature $T = 1/\beta$. Give a qualitative explanation of why for high temperatures $(T \gg U) \langle m^2 \rangle = \frac{1}{2}$ and for low temperatures $(T \ll U) \langle m^2 \rangle = 1$.

In the typical research context, the Hamiltonian will be too complicated to diagonalize by hand. Computers can help by finding *numerical solutions* in these cases. Write a python script that calculates the average occupation and the local magnetic moment of the Hubbard atom for a given value of U, μ , and β . Then:

- d) Plot the numerically computed average occupation vs. the chemical potential in accordance with b).
- e) Plot the numerically computed local magnetic moment vs. the temperature in accordance with c).

Do your numerical results agree with your analytical expressions?

2) The Hubbard dimer

Consider a two-site Hubbard model with the hopping matrix elements $t_{12} = t_{21} = t$ where t > 0 and the local Coulomb interaction parametrized by U,

$$H = -t \sum_{\sigma} \left(c_{1\sigma}^{\dagger} c_{2\sigma} + \text{h.c.} \right) - \mu \sum_{i=1}^{2} \sum_{\sigma} n_{i\sigma} + U \sum_{i=1}^{2} n_{i\uparrow} n_{i\downarrow}$$
 (2)

The two-site Hubbard model, the Hubbard dimer, can be considered as model system for the correlation effects present in a chemical bond.

a) Diagonalize the Hamiltonian and obtain the analytical expression for the eigen-values. Hint: Use the fact that Hubbard Hamiltonian is number and spin conserving and write the Hamiltonian in block-diagonal form. **b)** Sketch the behavior of filling i.e. $N(\mu) = \sum_{i\sigma} \langle n_{i\sigma} \rangle$ as a function of chemical potential μ . The thermal average of operator \hat{O} is defined as,

$$\langle \hat{O} \rangle = \frac{\text{Tr} \left(\hat{O} e^{-\beta \hat{H}} \right)}{\text{Tr} \left(e^{-\beta \hat{H}} \right)}$$
 (3)

For a given interaction parameter U and inverse temperature β , which values of chemical potential leads to half-filling i.e. N=2.0?

- c) At half-filling, evaluate the on-site magnetization $m_i = \langle (n_{i\uparrow} n_{i\downarrow})^2 \rangle$ as a function of $\frac{U}{t}$ for low temperatures.
- d) Obtain the ground-state in the mean-field limit $(n_{i\sigma} \to \langle n_{i\sigma} \rangle)$ and compare it with the exact results.
- d) Support your analytical results with numerical diagonalization.