EGM0017 (60h)

Fluxo e metodologias de projeto de Sistemas Embarcados

Prof. Josenalde Barbosa de Oliveira – UFRN

i josenalde.oliveira@ufrn.br
 i josenalde.oliveira@ufrn.br

Programa de Pós-Graduação em Engenharia Mecatrônica

Aqui podemos relembrar esta categorização...

Bare-metal: requisito de baixo consumo; alto nível de controle de hw (regs, etc.); pequeno overhead de software; aplicações únicas e simples; focado em plataforma de hw específica; uC simples

RTOS: alto nível de controle de hw; overhead do escalonador; multithreading (bibliotecas comuns à outros hw); muitas tarefas Comunicação, UI etc.; mais portável

https://www.instructables.com/search/?q=esp32&projects=featured

OS embarcado de propósito geral: grande overhead (escalonador, Gerencia de memória); múltiplas tarefas complexas (rede, filesystem, UI etc.); em geral requer microprocessador com memória RAM/NVM maior; controle direto do hardware baixo, pois usa camadas de abstração – alguns exemplos em robótica agrícola-rural

Paralelizando código no Linux Embarcado (Embedded GPOS)

APIs como OpenMP, MPI estão disponíveis, além das threads <u>Posix</u>, <u>pthreads</u>, que podem ser usadas em códigos que justifiquem paralelizar, seja por escala, seja por adequação a dividir tarefas para depois uni-las em um resultado final

Adicionalmente pode-se customizar distro/kernel Linux com funcionalidades desejadas (yocto, buildroot, openwrt, etc.)

2015 IEEE International Conference on Autonomous Robot Systems and Competitions

Towards a Reliable Monitoring Robot for Mountain Vineyards

Filipe Neves dos Santos*, Heber Sobreira*, Daniel Campos*, Raul Morais[†], António Paulo Moreira* and Olga Contente[‡]
*INESC TEC - INESC Technology and Science (formerly INESC Porto) and Faculty of Engineering, University of Porto
, Porto, Portugal Email: {fbsantos, heber.m.sobreira, daniel.f.campos, antonio.p.moreira}@inesctec.pt
†INESC TEC - INESC Technology and Science (formerly INESC Porto) and Universidade de Trás-os-Montes e Alto Douro, UTAD,

Vila Real, Portugal Email: rmorais@utad.pt [‡]Instituto Politcnico de Viseu, ESTGV, Viseu, Portugal Email: ocont@estv.ipv.pt

Fig. 5. Teleoperation of Agrob V14 in a mountain vineyard.

Fig. 4. Agrob V14 Hardware diagram.

Fig. 6. Agrob V14 - The five main ROS packages and the main information flow

Fig. 18. The proposed topological map for the Hybrid SLAM. Each node contains the metric feature-based map, altitude propriety of the vineyard row, and the artificial landmarks.

Paralelizando código no Linux Embarcado (Embedded GPOS)

APIs como OpenMP, MPI estão disponíveis, além das threads <u>Posix</u>, <u>pthreads</u>, que podem ser usadas em códigos que justifiquem paralelizar, seja por escala, seja por adequação a dividir tarefas para depois uni-las em um resultado final

Adicionalmente pode-se customizar distro/kernel Linux com funcionalidades desejadas (yocto, buildroot, rootfs, etc.)

Família BeagleBone
https://www.beagleboard.org/boards

Debian version

Família ASUS Tinker Board

Tinker OS

Paralelizando código no Linux Embarcado

- Cálculos matriciais (filtros processamento digitais de sinais, redes neurais, otimização e vários algoritmos ML
- Processamento distribuído (filesystem), aproximações, criptografia (n. primos)

Filtro FIR paralelo (Finite Impulse Response) – em controle resposta do sistema <-> função de transferência...

Calculando saída de um neurônio em rede neural

IOT OPERATING SYSTEMS - CONSTRAINED DEVICES

Which operating system(s) do you use for your IoT devices? (Devices)

IoT Developer Survey 2017 - Copyright Eclipse Foundation, Inc.

IOT OPERATING SYSTEMS / LINUX DISTROS FOR IOT

If you are using Linux, what distribution do you typically use for your loT solution?

ALTERNATIVES TO USING LINUX FOR IOT

Copyright (c) 2018, Eclipse Foundation, Inc. | Made available under a Creative Commons Attribution 4.0 International License (CC BY 4.0).

USAGE OF OPEN HARDWARE

Have you ever used any open hardware platforms like Raspberry Pi, Arduino, BeagleBone, etc.?

Uso muito comum: Servidor mqtt

MQTT

Client