Física. Grados en Ingeniería Informática y de Computadores. Tema 5: Inducción electromagnética.

- **1.** a) $I = \varepsilon/R = Bdv/R = 0.8 A$ en sentido antihorario.
 - b) $F = IdB = (Bd)^2 v/R = 128 \, mN$.
 - c) $P = Fv = (Bdv)^2/R = 1.28 W$.
 - d) $P_d = \varepsilon I = (Bdv)^2/R = P$.
- **2.** a) $\varepsilon = \pi r^2 (dB/dt) = 0.31 \, mV$.
 - b) $I = \varepsilon / R = 0.79 \, mA$.
 - c) $P_d = \varepsilon I = 0.25 \ \mu W$.
- **3.** a) $\Phi = (\mu_0 Ib/2\pi) \ln[(d+a)/d] = 82 \, nWb$.
 - b) $M = \Phi/I = 8.2 \, nH$.
 - c) $I_e=\varepsilon/R=(d\varPhi/dt)/R=(\mu_0b/2\pi)(dI/dt)\ln[(d+a)/d]/R=16$ nA en sentido antihorario.
 - d) $I_e=0$, pues no cambia el flujo magnético.
 - e) $I_e = \mu_0 I a b v / 2\pi (d + v t) (d + v t + a) R = 160 / (0.15 + 5t) (0.25 + 5t) \, nA$ en sentido horario.
- **4.** a) $M=\mu_0(N_e/l)S_iN_i=10~\pi~\mu{\rm H};~L=\mu_0N^2~S/l:~L_e=60~\pi~\mu{\rm H}, L_i=5~\pi~\mu{\rm H}.$
 - b) $\varepsilon = M(dI/dt) = 20 \pi \mu V$.
 - c) $\varepsilon' = 4\varepsilon = 80 \pi \mu V$.
 - d) Se induce la misma.
 - e) No.