CSE215: Lecture 1 Foundations of Computer Science

Instructor: Zhoulai Fu

State University of New York, Korea

August 30, 2022

Course materials and Info available here: https://github.com/zhoulaifu/22_cse215_fall

Ada code for Ariane 5 Rocket

```
if L_M_BV_32 > 32767 then
    P_M_DERIVE(T_ALG.E_BV) := 16#7FFF#;
elsif L_M_BV_32 < -32768 then
    P_M_DERIVE(T_ALG.E_BV) := 16#8000#;
else

P_M_DERIVE(T_ALG.E_BV) := UC_16S_EN_16NS(TDB.T_ENTIER_16S(L_M_BV_32));
end if;
P_M_DERIVE(T_ALG.E_BH) :=
    UC_16S_EN_16NS(TDB.T_ENTIER_16S(().03C_PI_LSB_BH)*G_M_INFO_DERIVE(T_ALG.E_BH)));</pre>
```

\$7 billion Software Disaster

Comparison:

SUNY Korea was awarded \$0.05 billion for 10 years under an MKE grant (Source: https://sunyk.cs.stonybrook.edu/)

From 2018 to 2020, South Korea GDP dropped \$94 billion; (Source: World bank)

Propositional Logic

Predicate Logic

Proof

Why does a computing system fail (or work)?

Sequences

Sets

Functions

Relations

Expected Learning Outcomes

- An ability to check if a mathematical argument is valid and sound
- An ability to verify the correctness of proofs of some existing theorems and prove some new theorems
- An ability to use the mathematical concepts of sequences, functions, relations, and sets in solving computing problems

Meet the Instructor

Education

- B.Sc, M.Sc, Ecole Polytechnique, France
- M.Eng. Telecom Paris, France
- Ph.D. INRIA (National CS Lab), France

Teaching & Research

- University of California Davis, United States
- IT University of Copenhagen, Denmark
- SUNY Korea

Meet the TA

Each team member's jobs

You

TA

Instructor

Lectures

Office hours

Office hours

Lectures

Grading

Answer questions

Homework

Ask questions

Answer questions

Practical matters

- COVID
- Textbook
- Schedule
- Homework
- Exams and grading
- Ask for help

Covid

- In-person classes; Indoor masks; Social distance
- Inform instructor immediately of the date of a positive test.
- Follow government guidelines including a 7-day quarantine.
- Return to the class after quarantine. Negative test not needed.

- Let's do our best to keep us safe
- While maintaining the quality of your learning experience

Textbook

 Our course relates to Chapters 2-7

Very helpful, though optional

 Suggestion: Skim the related chapter before the lecture; read deeper after the lecture

 Textbook may not cover everything in the exams; lectures do

Schedule

- Main lectures: Tuesday and Thursday 12h30 pm- 1h50 pm, at B204
- Recitation: Wednesday 3h30pm 4h25pm, at B203
- Office hours: Tuesday and Thursday 2h15pm 3h15pm, at B424
- TA office hours: TBA
- Per-class schedule: https://github.com/zhoulaifu/ 22_cse215_fall#schedule

Per-class schedule

Week	Date	Tentative schedule for each class	Reading
01	08-30	Course overview	
	08-31	Recitation: Look and feel of a final exam	
	09-01	Propositional logic [homework01 announced]	Epp, Ch2
02	09-06	Propositional logic	Epp, Ch2
	09-07	Recitation	
	09-08	Propositional logic [homework01 due, homework02 announced]	Epp, Ch2
03	09-12	Propositional logic	
	09-14	Recitation: homework01 explained	

- Slides will be available before lectures start
- Homework: Due. Announced. Explained.
- Schedule may change. Major changes will be announced at Blackboard.

Exams and grading

• Attendance: 5%

• Homeworks: 45%

• Midterms: 30%

• Final exam: 20%

- Numerical Grading is a sum of
 - total attendance / total check * 100 * 5%
 - (homework01 + ... + homework13) / 11 * 45%
 - (midterm1 + midterm2) / 2 * 30%
 - Final * 20%

Questions are gold

The recommended way is to send questions to Forum at blackboard.
 You could get answers faster, and benefit others. Please subscribe to Forum get email notification.

- If you are shy, send questions to TA or me
- For urgency, feel free to call the instructor: 010-____-

Questions so far?

Technic overview

A personal story

The story

- Once upon a time, I worked for a project involving financial calculation
- I needed to sum up a number of floating-point values like
 - \bullet 0.1 + 0.2 + 0.3 + 0.7 + 0.9 + 1.2 + 3.5...
- There were billion of numbers like this, so performance was a key for the project's success
- We decided to use the state-of-the-art multi-core, parallel computing
- Parallel computing works like a divide-and-conquer:
 - \bullet (0.1 + 0.2) + (0.3 + 0.7) + (0.9 + 1.2 + 3.5) + ...
- Now, let us think why it looks reasonable le to use parallel computing for this task??
- The reason is associative law. (a + b) + c = a + (b + c)

A problem

We get different results for each round, if we put parentheses differently each time.

$$\bullet$$
 (0.1 + 0.2) + (0.3 + 0.7) + (0.9 + 1.2 + 3.5) + ...

becomes different from

$$\bullet$$
 (0.1 + 0.2 + 0.3) + (0.7+ 0.9)+ (1.2 + 3.5) + ...

Live demo

Why?

- We made this assumption:
 - for any numbers a, b, c, (a + b) + c = a + (b + c)
- This is a statement that can be assigned with true or false value, we call it a proposition
- The inner part has variables, and can be denoted as a statement with parameters (a, b, c). We call it a predicate.
- Many CS work involves determining if a proposition is true or false. To show the truth is called to prove.
- The reason for the problem is that the proposition above is false.

Live demo:

First check 1 + 2 + 3, then 0.1 + 0.2 + 0.3

Summary for the story

The whole is called a proposition, to which we can assign a truth value

Exercise

Assume associative law:

$$\forall a, b, c \in I, (a+b)+c=a+(b+c)$$

- Assume 1 + 1 = 2, 2 + 1 = 3
- Try to prove 1 + 2 = 3

Takeaway for today

- The ultimate goal of this course is to learn fundamentals for understanding why our digital world works or fails.
- We will study logic (propositions, and predicates), proof, and math structures like sets
- Practical matter: covid protocol, schedule, ask questions