

Y YESTAMIE

$$D\left(\frac{X-m_X}{\sigma_X}\pm\frac{Y-m_Y}{\sigma_Y}\right)=D\left(\frac{X-m_X}{\sigma_X}\right)+D\left(\frac{Y-m_Y}{\sigma_Y}\right)\pm$$

$$\frac{\pm 2 \cdot M \left[\left(\frac{X - m_X}{\sigma_X} - M \left[\frac{X - m_X}{\sigma_X} \right] \right) \cdot \left(\frac{Y - m_Y}{\sigma_Y} - M \left[\frac{Y - m_Y}{\sigma_Y} \right] \right) \right] =$$

$$=1+1\pm 2M\left[\frac{X-m_X}{\sigma_X},\frac{Y-m_Y}{\sigma_Y}\right]=$$

yreaspone

4) Если $|r_{XY}|=1$, то X и Y связаны линейной функциональной зависимостью;

 \square Пусть $r_{XY}=1$. Тогда из равенства

$$D\left[\frac{X-m_X}{\sigma_X} - \frac{Y-m_Y}{\sigma_Y}\right] = 2\left(1 - \frac{K_{XY}}{\sigma_X\sigma_Y}\right)$$

(свойство 7, Теорема 1) получаем

$$D\left[\frac{X-m_X}{\sigma_X}-\frac{Y-m_Y}{\sigma_Y}\right]=0 \implies$$

$$K = (K_i)_{m \times n}$$
 Z_{xy}
 $Z_{xy} = O(X_i Y_i - Hekoppe)$