

Capstone Project Submission Report

E-Commerce Data Engineering Pipeline with Azure and Databricks

Name: Jatin Midha Employee ID: 127287

Course/Program: Data Engineering

Instructor Name: Mr. Piyush Raj Katayan

Table of Contents

Problem Statement & Overview Workflow Architecture

3 4-5

Data Collection, Exploratory Data Analysis, and Data Preprocessing	5-10
Data Storage and Optimization	10-12
Real-Time Processing and Streaming	13-14
Solution Design & Integration	14-15
Implementation and Results	16-17
Working Screenshots	18-40
Conclusion and Future Work	41-42

Problem Statement

The task involves developing a comprehensive data processing and analytics solution for a fictional ecommerce company. This company processes millions of transactions daily, necessitating the analysis of this data to extract valuable business insights. The solution must be capable of ingesting raw transactional data from various sources, including APIs, structured databases, and event-driven

streams. Subsequently, the data must be transformed and loaded into a database for reporting and analysis. The solution must be highly available, scalable, secure, and optimized for cost efficiency.

Objective

Implement an ETL pipeline using Azure services and Databricks to process, analyze, and visualize large datasets, adhering to production-level requirements. We will design, deploy, and present an end-to-end solution that integrates various Azure services, focusing on real-world data engineering challenges.

Workflow Architecture

Bronze Layer

- **Data Sources**: Historical data is stored in Blob Storage, and real-time data is ingested through Event Hub.
- Data Processing: Stream Analytics Job is used to process real-time data as it arrives.
- **Purpose**: This layer captures raw data from various sources and performs initial processing on real-time data. It serves as the landing zone for all incoming data.

Silver Layer

- Data Processing: Data Factory is used to further process and transform the data.
- Data Storage: The processed data is stored in SQL DB and Cosmos DB.
- Purpose: This layer cleanses, validates, and enriches the data. It involves deduplication, transformation, and integration of data from different sources.

Gold Layer

- Data Consumption: The refined data is made available for business intelligence and analytics through Power BI and a website.
- Purpose: This layer contains highly curated, business-ready data optimized for reporting, dashboards, and advanced analytics.

Data Collection:

The provided datasets are:

Historical Data

1. **customer_data.csv**: Contains customer information such as names, contact details, and demographic data.

Table: Data Description

Attribute Name	Data Type	Description	Missing Values (%)
Customer_id	Integer	Id of Customers	0%
First_name	String	Customer's first name	0%
Last_name	String	Customer's last name	0%
Signup_date	Date	Signup date of cust.	0%
Address	String	Customers address	0%
Email	String	Customers email	0%

2. **inventory_data.csv**: Includes details about the products in stock, such as item names, quantities, and prices.

Table: Data Description

Attribute Name	Data Type	Description	Missing Values (%)
Product_id	Integer	Id of product	0%
Current_stock	Integer	Stock Available	0%
Reorder_level	Integer	Items used	0%

3. **Product_data.csv**: Similar to the previous file, contains data of product inventory with price, categories.

Table: Data Description

Attribute Name	Data Type	Description	Missing Values (%)
Product_id	Integer	Id of product	0%
Product_name	String	Name of Product	0%
Stock_Quantity	Integer	Items available	0%
Category	String	Categories of product	0%
Price	Integer	Price of Product	0%

4. Reviews_data.csv: Holds customer reviews and ratings for various products or services.

Table: Data Description

Attribute Name	Data Type	Description	Missing Values (%)
Review_id	String	Review ID	0%
Customer_id	String	Customer ID	0%
Product_id	String	Product ID	0%
Rating	Integer	Product Rating	0%
Review_Text	String	Customer Feedback	0%
Review_date	Date	Date of review	0%

5. **Transaction_data.csv**: Records transaction details, including purchase dates, amounts, and customer IDs.

Attribute Name	Data Type	Description	Missing Values (%)
Transaction_id	String	Review ID	0%
Customer_id	String	Customer ID	0%
Transaction_date	date	Transaction date	0%
Product_id	String	Product ID	0%

Quantity	Integer	Product Quantity	0%
Payment_Type	String	Mode of Payment	0%
Transaction_amount	Float	Transaction amount	0%

Real-Time Data

1. **Realtime transactions.json:** Contains real-time transaction data including transaction IDs, timestamps, amounts, and customer details.

Attribute Name	Data Type	Description	Missing Values (%)
Transaction_id	String	Review ID	0%
Customer_id	String	Customer ID	0%
Transaction_date	date	Transaction date	0%
Product_id	String	Product ID	0%
Quantity	Integer	Product Quantity	0%
Payment_Type	String	Mode of Payment	0%
Transaction_amount	Float	Transaction amount	0%

Data Preprocessing

The data preprocessing phase involved cleaning the raw transactional data using PySpark in Databricks. This process is crucial for ensuring the quality and reliability of the data before it is used for analysis and reporting. Here is a detailed explanation of the steps involved:

1. Data Ingestion:

The raw data, stored in CSV files in Azure Blob Storage, was ingested into Databricks using PySpark. Databricks provides a collaborative environment for data engineering and data science, making it an ideal platform for preprocessing large datasets.

2. Data Cleaning:

Removing Duplicates: Duplicate records were identified and removed to ensure that each transaction is unique. This was achieved using the dropDuplicates() function in PySpark.

Handling Missing Values: Missing values were handled by either filling them with appropriate default values or by removing the records with missing critical information. The dropna() functions in PySpark was used for this purpose.

Step	Technique	Result
Checked Null Values	Counting each column null	Consistent Data
Checked Duplicates	Using filter and count together	Clean data without duplicates

Data Storage and Optimization

For Historical Data

Azure Blob Storage:

Purpose: Used for extracting and storing raw transactional data from CSV files.

Reason for Choice: Azure Blob Storage provides scalable and cost-effective storage for unstructured data. It supports a wide range of data formats and integrates seamlessly with other Azure services. Blob Storage offers high durability and availability, making it an ideal choice for storing large volumes of raw data.

For Real Time Data Storage

Azure Cosmos DB:

Purpose: Used for storing real-time data from Event Hub.

Reason for Choice: Azure Cosmos DB is a globally distributed, multi-model database service that provides low-latency and high-throughput performance. It is designed to handle real-time data streams and supports automatic scaling to accommodate varying workloads. Cosmos DB offers comprehensive security features, including encryption and fine-grained access control, ensuring the protection of real-time data.

Fig. Real time data storage

Azure SQL Database:

Purpose: Used for storing transformed data for reporting and analysis. Reason for Choice: Azure SQL Database is a fully managed relational database service that offers high performance, scalability, and security. It supports automated backups, patching, and scaling, ensuring high availability and reliability. The service also provides advanced security features, including encryption and threat detection, making it suitable for storing sensitive business data.

Data Storage Architecture:

Partitioning & Indexing Strategies:

Composite Indexing:

- **Technique**: Composite Indexing
- **Description**: Composite indexes were created on multiple columns that are often used together in queries, such as customer ID and transaction date. This technique helps in optimizing complex queries that involve multiple columns.
- **Result**: Improved performance for multi-column queries, as the composite index allows for efficient data retrieval based on multiple criteria.

6. Real-Time Data Processing and Streaming

Real-Time Data Processing:

Azure Event Hubs for Data Ingestion – Real-time transaction data is streamed into Azure Event Hubs, acting as a highly scalable event ingestion service.

Azure Stream Analytics for Data Processing – Incoming transaction data is processed using Azure Stream Analytics (ASA) to perform transformations, aggregations, and anomaly detection in real time.

Apache Spark on Azure Databricks for Advanced Processing – Real-time fraud detection, risk assessment, and customer behavior analysis are performed using Spark Structured Streaming in Azure Databricks.

Delta Lake for Streaming Data Storage – Streamed data is written into Delta Lake tables in ADLS (Bronze Layer), ensuring ACID compliance and real-time updates.

Power BI & Alerts for Instant Insights – Real-time dashboards in Power BI display live transaction trends, and Azure Functions trigger alerts for suspicious activities like potential fraud.

Fig. Real time data entering Cosmos DB

Triggering Events:

- **Fraud Detection Alerts**: If a transaction amount exceeds a predefined threshold or an unusual pattern is detected, an Azure Function triggers an alert.
- **Service Availability Monitoring**: If a bank service is down or slow, an Event Grid notification is sent to the IT support team for immediate action.
- Real-Time Risk Assessment : High-risk transactions (e.g., large withdrawals, rapid transactions in
 - different locations) trigger real-time risk assessment models to flag suspicious activity.

Solution Design & Integration

- Data Extraction from Multiple Sources: Historical data is pulled from blobstorage via Azure
 Data Factory (ADF), and real-time data is ingested using Azure Event Hubs from banking
 transactions.
- Transformation & Cleansing in Databricks: Raw data is processed in Azure Databricks using Apache Spark, including data validation, missing value handling, and feature engineering.
- Loading into Medallion Architecture: Processed data is stored in Azure Data Lake Storage (ADLS) following the Bronze (raw), Silver (cleaned), and Gold (aggregated) layers.
- Batch & Real-Time Processing Integration: Historical transaction data is processed in batch mode while real-time streaming is handled with Stream Analytics.

 Orchestration Using Azure Data Factory: ADF Pipelines automate data movement between layers, trigger transformations, and integrate batch + real-time processing for seamless operations.

System Architecture

Automated Workflows:

- ADF Pipeline for ETL Automation: ADF triggers data extraction, transformation, and storage using scheduled pipelines, reducing manual intervention.
- **Event-Driven Processing with Azure Functions**: Fraud detection triggers real-time alerts based on transaction anomalies, ensuring quick action.
- CI/CD Deployment with Azure DevOps: Automated deployments using GitHub Actions and Azure DevOps Pipelines, ensuring seamless updates to ETL workflows.

Implementation and Results

Architecture:

Fig. Historical data flow

Fig. Ingesting historical data from blob to data bricks towards delta lake

Connection details as variables
cosmos_endpoint = "https://jatincosmosdb.documents.azure.com:443/"


```
"IOvGwpuVgubfdwdSgHknWaUfPFU8BJYKoX9TMOkac5i7Wbv24G5MSvOy8iVt9sE2TXl10rGiI5sBACDbb69zrw=="
database_name = "jatincosmosdb"
container_name = "livedatastorage"
# Read from Cosmos DB
cosmos_df = spark.read \
    .format("cosmos.oltp") \
    .option("spark.cosmos.accountEndpoint", cosmos_endpoint) \
    .option("spark.cosmos.accountKey", cosmos_key) \
    .option("spark.cosmos.database", database_name) \
    .option("spark.cosmos.container", container_name) \
    .load()
# Select only required columns (remove Cosmos DB metadata)
cosmos_realtime_df = cosmos_df.select(
    col("transaction_id"),
    col("customer_id"),
    col("transaction_date"),
    col("product_id"),
    col("quantity"),
    col("payment_type"),
    col("transaction_amount")
)
```

Connecting Cosmos to databricks for transformations

WORKING SCREENSHOTS

For historical data:

Creating Storage Account

Creating Containers in the storage account

Blob storage where csv's were stored

Initializing Data Factory

Ingesting data from Blob Storage through Data Factory

Opening databricks

Databricks Details

For Real-Time Data

Initializing Stream Analytics Job

Setting up Input

Setting up Output

Using Stream Analytics Job to ingest real time data

Setting up Cosmos DB

Data is sent to Cosmos DB


```
from pyspark.sql.functions import col
# Connection details as variables
cosmos_endpoint = "https://jatincosmosdb.documents.azure.com:443/"
cosmos_key = "IOvGwpuVgubfdwdSgHknWaUfPFU8BJYKoX9TMOkac5i7Wbv24G5MSvOy8iVt9sE2TXl10rGiI5sBACDbb69zrw=="
database_name = "jatincosmosdb"
container_name = "livedatastorage"
# Read from Cosmos DB
cosmos df = spark.read \
    .format("cosmos.oltp") \
    .option("spark.cosmos.accountEndpoint", cosmos_endpoint) \
    .option("spark.cosmos.accountKey", cosmos_key) \
    .option("spark.cosmos.database", database name) \
    .option("spark.cosmos.container", container_name) \
    .load()
# Select only required columns (remove Cosmos DB metadata)
cosmos realtime df = cosmos df.select(
    col("transaction_id"),
    col("customer_id"),
    col("transaction_date"),
    col("product id"),
    col("quantity"),
    col("payment_type"),
    col("transaction amount")
# Show data
display(cosmos_realtime_df)
```



```
%sql
create database if not exists realtimedatabase;
```

```
# Save as a Delta table in Hive Metastore
database_name = "realtimedatabase"
table_name = "real_time_data_table"
path = f'dbfs:/user/hive/warehouse/realtimedatabase.db/{table_name}'
cosmos_realtime_df.write.format("delta").mode("overwrite").option("path",
path).saveAsTable(f'{database_name}.{table_name}')

# Print confirmation message
print(f" Data successfully saved as a Delta table: {table_name}")
```

Data loaded from Cosmos to Databricks

Data checked for cleaning

Pyspark Transformations

For Historical Data:

```
from pyspark.sql import SparkSession

spark=SparkSession.builder.appName('Historical Data Transformations').getOrCreate()
product_dataframe=spark.sql("Select * from default.product_data")
```



```
# Calculate average price per category
from pyspark.sql.functions import col, sum, avg
avg_price_per_category = product_dataframe.groupBy("category").agg(avg("price").alias("average_price"))
# Calculate total stock value for each product
product_dataframe = product_dataframe.withColumn("total_stock_value", col("stock_quantity") *
col("price"))
display(product_dataframe)
```


display(joined_df)

	A ^B C email	1.2 total_transaction_amount	1.2 avg_transaction
Ganj, Nagpur-632378	inaya.maharaj@yahoo.com	205487.94	205487.94
achar Chowk, Junagadh-341496	vamakshi.gade@gmail.com	30341.73	30341.73
anj, Bathinda-826246	amaira.dara@hotmail.com	21459.12	21459.12
ri, Secunderabad-966633	maanas.choudhary@outlook.com	201618.37999999998	67206.12666666666
ila, Nangloi Jat-154202	xiti.dhar@hotmail.com	36505.53	18252.765
Street, Cuttack-973667	chanakya.dewan@gmail.com	32064.63	32064.63
Nangloi Jat-669019	upma.bhasin@gmail.com	887248.77	295749.59
Iswa Jahangir Pur 540524	netra.chaudhuri@outlook.com	179008.23	179008.23
arula Marg, Gandhinagar-280962	advay.bhattacharyya@outlook.com	382650.83999999997	191325.41999999998
anda Road, Gudivada 063965	hredhaan.gandhi@gmail.com	17988.96	17988.96
urthy Street, Bhalswa Jahangir Pur-180587	dhriti.badami@hotmail.com	184271.32	92135.66
, Zila, Sonipat 708909	tanish.oak@outlook.com	25059.47	25059.47
hwa Ganj, Ajmer 504395	anthony.dara@hotmail.com	4339.47	4339.47
dy Nagar, Raichur 972560	vritti.gara@yahoo.com	251944.88999999998	125972.44499999999
L a li access	h 11 mat - 1	70000 07	70505 07


```
# Install the necessary library
%pip install textblob
from textblob import TextBlob
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType
reviews_dataframe = spark.sql("SELECT * FROM default.reviews_data")
# Define a function to analyze sentiment
def analyze_sentiment(review):
    analysis = TextBlob(review)
    if analysis.sentiment.polarity > 0:
        return 'Positive'
    elif analysis.sentiment.polarity == 0:
        return 'Neutral'
    else:
        return 'Negative'
# Register the UDF (User Defined Function)
sentiment_udf = udf(analyze_sentiment, StringType())
# Apply the sentiment analysis function to the review text
reviews df2 = reviews dataframe.withColumn("sentiment",
sentiment_udf(reviews_dataframe["review_text"]))
# Display the results
```


	ABc customer_id	ABc product_id	123 rating	ABC review_text	review_date	ABC sentiment
1	CUST150	PROD1037	2	Very frustrating!	2024-01-23	Negative
2	CUST160	PROD1035	3	Meets expectations.	2024-01-22	Neutral
3	CUST169	PROD1005	2	Not durable!	2024-01-18	Neutral
4	CUST144	PROD1096	1	Not worth the money!	2024-02-09	Negative
5	CUST126	PROD1059	4	Great quality!	2024-02-03	Positive
6	CUST187	PROD1060	3	Decent but expensive.	2024-01-27	Negative
7	CUST180	PROD1050	5	Amazing experience!	2024-01-21	Positive
8	CUST153	PROD1064	5	Very satisfied!	2024-02-07	Positive
9	CUST120	PROD1038	2	Will not buy again!	2024-01-29	Neutral
10	CUST107	PROD1052	5	Love this!	2024-01-30	Positive
11	CUST159	PROD1011	4	Super fast delivery!	2024-02-02	Positive
12	CUST128	PROD1076	3	Neutral opinion.	2024-01-11	Neutral
13	CUST177	PROD1072	1	Will not buy again!	2024-02-09	Neutral
14	CUST183	PROD1071	3	Fairly good.	2024-01-26	Positive

```
jdbc_url = "jdbc:sqlserver://jatinsql1.database.windows.net:1433;databaseName=jatindatabasesql2 "
db_properties = {
    "user": "jatin1",
    "password": "Qwertyuiop12",
    "driver": "com.microsoft.sqlserver.jdbc.SQLServerDriver"
}

joined_df.write \
    .format("jdbc") \
    .option("url", jdbc_url) \
    .option("dbtable", "dbo.total_average_transactions") \
    .option("user", db_properties["user"]) \
    .option("password", db_properties["password"]) \
    .option("driver", db_properties["driver"]) \
    .mode("overwrite") \
    .save()
```

For Real Time Data

Showing top customers by transaction amount

```
from pyspark.sql import SparkSession
```



```
spark=SparkSession.builder.appName("Realtime_trans").getOrCreate()
realtimedf= spark.sql('select * from realtimedatabase.real_time_data_table')
from pyspark.sql.functions import sum
total_revenue_df = realtimedf.agg(sum("transaction_amount").alias("total_revenue"))
total revenue df.show()
#showing top customers by transactions amount
top customers df =
realtimedf.groupBy("customer_id").agg(sum("transaction_amount").alias("total_transaction_amount"))
top_customers_df = top_customers_df.orderBy("total_transaction_amount", ascending=False).limit(5)
top customers df.show()
realtimedf=realtimedf.join(top_customers_df, "customer_id", "left")
jdbc_url = "jdbc:sqlserver://jatinsql1.database.windows.net:1433;databaseName=jatindatabasesql2 "
db properties = {
    "user": "jatin1",
    "password": "Qwertyuiop12", # Avoid storing passwords in code
    "driver": "com.microsoft.sqlserver.jdbc.SQLServerDriver"
}
top_customers_df.write \
    .format("jdbc") \
    .option("url", jdbc_url) \
    .option("dbtable", "dbo.top customers shorttable realtime") \
    .option("user", db_properties["user"]) \
    .option("password", db properties["password"]) \
    .option("driver", db_properties["driver"]) \
    .mode("overwrite") \
    .save()
#top 5 customers with high amount transaction in realtime data
display(top_customers_df)
```



```
Python 🗇 💠 🖸 :
\blacksquare
          ▶ ✓ ✓ 04:44 PM (3s)
\Box
                                                                                                                                         Д
           ▶ (6) Spark Jobs
           ▶ ■ realtimedf: pyspark.sql.dataframe.DataFrame = [customer_id: string, transaction_id: string ... 7 more fields]
命
                                                                                                                                         ()
           ▼ ■ top_customers_df: pyspark.sql.dataframe.DataFrame
♦
                                                                                                                                         {x}
                  customer_id: string
                  total_transaction_amount: double
                                                                                                                                         00^{q}
          +-----
          |customer_id|total_transaction_amount|
             CUST169
                                478034.89
             CUST127
             CUST160
                                  448474.52
                                   407709.18
            CUST173
                                   387693.48
```

```
jdbc_url = "jdbc:sqlserver://jatinsql1.database.windows.net:1433;databaseName=jatindatabasesql2 "
db_properties = {
    "user": "jatin1",
    "password": "Qwertyuiop12", # Avoid storing passwords in code
    "driver": "com.microsoft.sqlserver.jdbc.SQLServerDriver"
}

realtimedf.write \
    .format("jdbc") \
    .option("url", jdbc_url) \
    .option("dbtable", "dbo.top_customers_realtime") \
    .option("user", db_properties["user"]) \
    .option("password", db_properties["password"]) \
    .option("driver", db_properties["driver"]) \
    .mode("overwrite") \
    .save()
```

```
from pyspark.sql.functions import count
payment_type_count_df =
realtimedf.groupBy("payment_type").agg(count("transaction_id").alias("transaction_count"))
payment_type_count_df.show()
# Drop the 'payment_type' column
realtimedf = realtimedf.drop("total_quantity_sold")
```


Transaction amount by payment type

	rk.sql.dataframe.DataFrame = [payment_type: string, transaction_count: long]
realtimedf: pyspark sql datafran	
realpysparkisquatarran	ne.DataFrame = [customer_id: string, transaction_id: string 6 more fields]
+	+
payment_type transaction_co	punt
+	+
Credit Card	19
Net Banking	27
Debit Card	19
Cash on Delivery	21
UPI	14

Connecting Power Bi to Azure Sql Database and importing tables

 \Box \rightarrow

Navigator

Select Related Tables

Cancel

Conclusion

- **Enhanced Data Management**: The project significantly improved the company's ability to manage and analyze large volumes of transactional data, ensuring high data quality and reliability.
- Robust ETL Pipeline: By leveraging Azure services and Databricks, a reliable ETL pipeline was
 established for both historical and real-time data, facilitating seamless data ingestion, transformation,
 and storage.
- Valuable Business Insights: The solution provided actionable insights, such as optimized inventory
 management, improved customer retention, and enhanced marketing ROI, driving strategic decisionmaking.
- **Real-Time Analytics**: The integration of real-time analytics enabled immediate detection of high-value transactions and potential fraud, enhancing operational efficiency and security.
- **Scalability**: The solution was designed to accommodate future growth and technological advancements, ensuring long-term viability and adaptability.

Future Work

- Advanced Analytics and Machine Learning: Develop and deploy more sophisticated machine
 learning models for predictive analytics, such as demand forecasting and customer behavior analysis,
 to enhance decision-making.
- **Global Data Distribution**: Expand the data infrastructure to support global operations, ensuring low-latency access and high availability of data across multiple regions.

- Microservices Architecture: Transition to a microservices architecture to enable independent scaling of different components, improving system flexibility and maintainability.
- **Enhanced Security and Compliance**: Continuously update security protocols and conduct regular audits to ensure compliance with evolving regulations and protect sensitive customer data.
- **Integration with Emerging Technologies**: Explore and adopt new technologies, such as edge computing and Al-driven automation, to enhance system capabilities and maintain a competitive edge.