Les réseaux LAN - Chapitre 8

Pourquoi un LAN?

Un réseau local (LAN) c'est un réseau informatique physique et/ou virtuel. Il permet d'interconnecter par Wi_Fi ou câbles Ethernet des terminaux entre eux. Le LAN peut aussi se connecter à l'extérieur grâce à un accès Internet.

Source : <u>Bouygues Télécom</u>

Principales différences entre un réseau local LAN et une connexion directe à Internet

Différence	Réseau LAN	Connexion directe à Internet
Etendu	Local	Monde, accès par adresse IP ou nom
géographique		d'hôte
Type de connexion	Câbles Ethernet ou des points d'accès sans fil	Internet, réseaux spécifiques comme redirection de ports sur un routeur (NAT) pour accéder à un NAT
Objectifs d'utilisation	Privés, facile de concevoir et de maintenir, faible latence et taux de transfert de données élevé	N'est pas limité par sa zone géographique, peut relier des appareils à travers le monde

Situations concrètes pour le LAN indispensable en entreprise :

1. Transfert rapide de fichiers volumineux entre postes de travail

Transfert de fichiers volumineux en utilisant un réseau LAN câblé. La connexion Ethernet assure un transfert rapide, fiable et sécurisé sans solliciter l'accès Internet.

2. <u>Impression centralisée sur une imprimante réseau locale</u>

L'imprimante réseau est connectée au LAN, accessible uniquement aux postes du même sous-réseau. Les documents sont partagés en sécurité sans utiliser Internet, et impression rapide grâce à la faible latence du réseau.

3. <u>Utilisation d'une application interne de gestion de stock</u>

Utilisation de terminaux fixes et scanners Wi-Fi reliés au LAN. Les données sont stockées sur un serveur local en temps réel par le réseau interne. En cas de panne internet, le système continue de fonctionner grâce au réseau LAN autonome.

Avantages et inconvénients d'un LAN en comparaison du Wi-Fi :

	LAN	Wi-Fi
	Connexion plus stable et rapide (jusqu'à 1Gbps ou plus)	Grande mobilité et flexibilité
0	Sécurité renforcée (moins	Installation facile, sans câblage
Avantage	exposé aux intrusions)	Couverture étendue dans les espaces ouverts
	Faible latence, idéal pour le gaming ou le streaming	
	Mobilité limitée (nécessite des câbles)	Moins sécurisé (risque d'interception)
		Sensible aux interférences et à
Inconvénient	Installation plus complexe et coûteuse	l'instabilité
	Portée restreinte (dépend de la	Débit souvent inférieur au LAN, surtout en environnement chargé
	longueur des câbles)	en environnement charge

Plan d'adressage IP d'un LAN

Type d'adresse IP	Adresse IP publique	Adresse IP privée
Définition	Adresse visible sur Internet	Adresse visible en réseau
Dejinition		local
Accessibilité	Accessible depuis n'importe	Accessible uniquement au
Accessibilite	quel réseau externe	sein d'un réseau privé
Exemples	8.8.8.8 (Google DNS),	192.168.0.1, 10.0.0.2,
Exemples	123.45.67.89	172.16.5.4
Attribution	Fournie par le fournisseur	Assignée par routeur ou
Attribution	d'accès Internet (FAI)	administrateur réseau
Sécurité	Plus exposée aux attaques	Moins exposée, protégée par
Securite		le NAT
Utilisation	Serveurs web, accès à	Appareils domestiques : PC,
Othisution	distance, services en ligne	imprimantes, téléphones
Nombre disponible	Limité (IPv4), illimité avec	Réservé à des plages définies
ואטוווטופ עוגףטוווטופ	IPv6	(RFC 1918)

Plan d'adressage IPv4 privé :

192.168.1.1 et 192.168.1.254

Pour une PME de 50 postes

192.168.1.2 à 192.168.1.52

Type d'équipement	Plage d'adresses attribuées
Routeur / Passerelle	192.168.1.1
Postes de travail (PC)	192.168.1.10 à 192.168.1.59
Imprimantes réseau	192.168.1.60 à 192.168.1.62
Réseau / Broadcast	192.168.1.0 / 192.168.1.255

Adresse publique non attribuée directement :

- -Nombre limité d'IP publiques : L'espace IPv4 est épuisé, les adresses publiques sont rares et coûteuses.
- -<u>Sécurité</u> : Une IP publique expose directement chaque poste à Internet, augmentant les risques d'attaques.
- -<u>Complexité</u> : Gérer 50 IP publiques nécessite une configuration réseau complexe et coûteuse.
- -<u>NAT</u> (Network Address Translation) : Permet à plusieurs postes avec IP privées d'accéder à Internet via une seule IP publique.

IPv6 permet de simplifier :

- -Nombre quasi illimité d'adresses : IPv6 offre 2^128 adresses, permettant une IP unique pour chaque appareil sans pénurie.
- -<u>Sécurité intégrée</u> : IPv6 intègre des mécanismes comme IPsec pour sécuriser les communications.
- -<u>Plus besoin de NAT</u> : Chaque appareil peut avoir une IP publique tout en restant sécurisé, simplifiant la gestion réseau.
- -Meilleure gestion du routage : IPv6 facilite l'auto-configuration et le routage dynamique.

Fonctionnement Ethernet et CSMA/CD

CSMA (Carrier Sense Multiple Access):

Une station écoute le support (câble ou fibre) pour vérifier si une autre transmet. Si le support est libre, elle émet. Mais si deux stations commencent à émettre en même temps, leurs signaux se rencontrent et s'annulent : c'est une collision.

CD (Collision Detection):

Les stations détectent les collisions grâce à un jam signal (c'est-à-dire un signal volontairement brouillé envoyé pour avertir toutes les stations qu'une collision a eu lieu). Ainsi, les trames endommagées sont ignorées et chaque station réémet après un délai aléatoire.

<u>Ce protocole est probabiliste</u>: on ne peut pas prévoir le moment exact d'envoi d'un message. Dans un Ethernet partagé, toutes les stations utilisent le même support, sans priorité d'émission.

Scénario:

1. Réseau Ethernet (avec commutateur / switch)

- a. Pas de collision : Le switch gère les communications en point-à-point, chaque machine a son propre canal logique.
- b. Transmission simultanée possible : Les messages sont acheminés indépendamment vers leurs destinataires.
- c. Switch intelligent : Il analyse les adresses MAC et dirige les paquets vers les bons ports.

2. Réseau Ethernet ancien (avec hub)

- a. Collisions possibles : Le hub diffuse les données à tous les ports, donc les signaux peuvent entrer en conflit.
- b. CSMA/CD (Carrier Sense Multiple Access with Collision Detection):

Les machines écoutent le réseau avant d'envoyer.

Si collision → elles attendent un temps aléatoire avant de réessayer.

c. Performance réduite : Plus il y a d'envois simultanés, plus le risque de collision augmente.

3. <u>Réseau Wi-</u>Fi

- a. Risques de collisions : Le Wi-Fi utilise CSMA/CA (Collision Avoidance), qui tente d'éviter les conflits.
- b. Temps d'attente : Chaque machine attend que le canal soit libre avant d'émettre.
- c. Débit impacté : Si plusieurs machines veulent parler en même temps, le réseau ralentit.

Rôle et explication du BEB (Binary Exponential Backoff) :

C'est un algorithme utilisé en Ethernet et Wi-Fi pour limiter la charge du réseau lors d'une collision.

En Ethernet, lorsqu'une collision est détectée, un **jam signal** est envoyé. Ensuite, chaque station attend un délai aléatoire avant de tenter une nouvelle transmission. Ce délai est un multiple de **slotTime**, choisi dans un intervalle de taille 2^k , où k est le nombre d'échecs (limité à 10). L'intervalle double à chaque tentative.

Bonus, CSMA/CD est beaucoup moins utilisé aujourd'hui avec les switchs modernes :

1. Passage aux commutateurs (switches)

Les réseaux modernes utilisent des switches au lieu de hubs.

Chaque appareil a un canal dédié, donc plus de collisions → CSMA/CD devient inutile.

2. <u>Utilisation du full-duplex</u>

Les connexions sont désormais souvent full-duplex : on peut envoyer et recevoir en même temps.

CSMA/CD est conçu pour le half-duplex, donc il ne s'applique plus.

3. Montée du Wi-Fi et des réseaux mobiles

Le Wi-Fi utilise CSMA/CA (Collision Avoidance), qui évite les collisions plutôt que de les détecter.

CSMA/CD ne fonctionne pas bien dans les environnements sans fil.

4. Performances et efficacité

CSMA/CD ralentit le réseau en cas de collisions fréquentes.

Les technologies modernes offrent des débits plus élevés sans ce mécanisme.

Débits Ethernet

Principale						Support	Distan	
S			Anné		Débit	utilisé	ce	
évolution	Rôle	Coût	es de	Obsol	théori	(câble	maxim	Contexte
s des	Note	Cout	sorti	ète	que	cuivre,	ale	Contexte
standards			e		que	fibre	suppor	
Ethernet						optique)	té	
								Ancien
	Réseaux					Câble		standard,
10BASE-T	locaux	Faibl	1990	Oui	10	cuivre	100m	remplacé
10DAJL-1	de base	e	1330	Oui	Mbps	(paires	100111	par le
	uc base					torsadées)		100BASE-
								TX

100BASE- TX	Réseaux bureauti que	Faibl e	1995	En partie	100 Mbps	Câble cuivre (Cat 5)	100m	Très répandu dans les PME
1000BASE -T	Réseaux performa nts	Moy en	1999	Non	1 Gbps	Câble cuivre (Cat 5e/6)	100m	Standard actuel pour les réseaux locaux
<u>10GBASE-</u> <u>T</u>	Réseaux haute performa nce	Elev é	2006	Non	10 Gbps	Câble cuivre (Cat 6a)	100m	Utilisé dans les datacenter s et grandes entreprise s
40/100GB ASE	Réseaux très haut débit	Très élev é	2010	Non	40 à 100 Gbps	Fibre optique principale ment	Jusqu' à 40km	Backbone, interconne xion de serveurs

Synthèse finale

IPv4 privé:

Equipement	Plage d'adresses IP
Passerelle/Routeur	192.168.1.1
Serveurs	192.168.1.10-192.168.1.19
Postes de travail	192.168.20 - 192.168.1.60
Imprimantes réseau	192.168.70 - 192.168.1.79
Caméras/IoT	192.168.80 - 192.168.1.99
Réserves/DHCP	192.168.100 - 192.168.1.199
Broadcast	192.168.1.255

Standard Ethernet: 1000BASE-T: câble cuivre (Cat 5e/6), 100m, 1 Gbps

Répéteurs pour augmenter la distance du câble et du signal

<u>Lan câblé :</u>

-Sécurité renforcée : moins exposé aux intrusions

-Stabilité et débit constant : pas de coupures ni de ralentissement dus aux interférences

- -Faible latence : essentiel pour les applications sensibles
- -Pas de saturation : chaque poste à sa propre bande passante

Complémentarité avec le Wi-Fi :

- -Wi-Fi reste utile pour les appareils mobiles, les visiteurs ou les zones difficiles à câbler
 - -Bon réseau LAN permet de soulager le Wi-Fi, en évitant la congestion (bouchons)

Détails techniques :

- Routeur / Pare-feu : Gère la sortie vers Internet et la sécurité
- Switch central (optionnel) : Interconnecte les deux bâtiments si la distance est importante
- Switchs locaux : Un par bâtiment, Gigabit Ethernet, 24 ports (ou plus selon besoins futurs)
- Câblage entre bâtiments :
 - O Utilise de la fibre optique multimode si la distance > 100 m
 - o Sinon, câble Cat 6 ou Cat 6a blindé pour éviter les interférences

Poste	IP proposée
Bat A	192.168.1.20 - 192.168.1.39
Bat B	192.168.1.40 – 192.168.1.59
Routeur	192.168.1.1
Serveur / NAS	192.168.1.10 - 192.168.1.19