Lecture Note-Numerical Analysis (4): Roots of Nonlinear Algebraic Equations

1. Background information on the numerical approximation of the derivative of a function

FDM: Finite Difference Method (유한차분법)을 이용한 도함수 계산

O Taylor series expansion of f(x+h) for a small value h around a given point x

$$f(x+h) \approx f(x) + f'(x)h + \frac{1}{2}f'(x)h^2 + \frac{1}{6}f^{(3)}(x)h^3 + O(h^4)$$
$$f(x-h) \approx f(x) - f'(x)h + \frac{1}{2}f'(x)h^2 - \frac{1}{6}f^{(3)}(x)h^3 + O(h^4)$$

O The 1^{st} order approximation of the derivative of f(x) using one of the above equation

$$f'(x) \approx \frac{1}{h} \left\{ f(x+h) - f(x) \right\} + \frac{1}{2} f'(x)h + \frac{1}{6} f^{(3)}(x)h^2 + O(h^3) \approx \frac{1}{h} \left\{ f(x+h) - f(x) \right\} + O(h)$$
or

$$f'(x) \approx \frac{1}{h} \left\{ f(x) - f(x-h) \right\} + \frac{1}{2} f'(x) h - \frac{1}{6} f^{(3)}(x) h^2 + O(h^3) \approx \frac{1}{h} \left\{ f(x+h) - f(x) \right\} + O(h)$$

Therefore, the first order numerical approximation becomes

$$f'(x) \approx \frac{1}{h} \left\{ f(x+h) - f(x) \right\} \quad \text{or} \quad f'(x) \approx \frac{1}{h} \left\{ f(x) - f(x-h) \right\}$$

,which is called by the forward/backward difference formula

O The 2^{nd} order approximation of the derivative of f(x) by subtracting the above equation

$$f(x+h) - f(x-h) \approx 2f'(x)h + \frac{2}{6}f^{(3)}(x)h^3 + O(h^4)$$

$$f'(x) \approx \frac{1}{2h}\{f(x+h) - f(x-h)\} - \frac{1}{6}f^{(3)}(x)h^2 + O(h^3) \approx \frac{1}{2h}\{f(x+h) - f(x-h)\} + O(h^2)$$

Therefore, the 2nd order numerical approximation becomes

$$f'(x) \approx \frac{1}{2h} \left\{ f(x+h) - f(x-h) \right\}$$

,which is called by the central difference formula

(Example) calculate f'(1) for $f(x) = x^5$ with varying h: True value is f'(1) = 5.0

h	f'(1) with 1st order	f'(1) with 2nd order
1	31	16
0.5	13.1875	7.5625
0.25	8.20703125	5.62890625
0.125	6.416259766	5.156494141
0.0625	5.665298462	5.039077759
0.03125	5.322419167	5.009766579
0.015625	5.158710539	5.002441466
0.0078125	5.078737739	5.000610355
0.00390625	5.039215386	5.000152588
0.001953125	5.019569434	5.000038147

2. Definition of Jacobian and numerical approximation of Jacobian

Multi-variable function: $\mathbf{f}(\mathbf{x}) = 0$, $\mathbf{f} \in \mathbb{R}^n$, $\mathbf{x} \in \mathbb{R}^m$

$$\mathbf{f}(\mathbf{x}) = \begin{pmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ \vdots \\ f_n(\mathbf{x}) \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{pmatrix}$$
Example:
$$\mathbf{f}(x, y, z) = \begin{pmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} x^2 + y^2 + z^2 + 2xy - 3yz \\ 3x - 2y + 5z \end{pmatrix}$$

Definition of the Jacobian of the multi-variable function:

$$\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} = \begin{pmatrix}
\frac{\partial f_1(\mathbf{x})}{\partial x_1} & \frac{\partial f_1(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f_1(\mathbf{x})}{\partial x_m} \\
\frac{\partial f_2(\mathbf{x})}{\partial x_1} & \frac{\partial f_2(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f_2(\mathbf{x})}{\partial x_m} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_n(\mathbf{x})}{\partial x_1} & \frac{\partial f_2(\mathbf{x})}{\partial x_2} & \cdots & \frac{\partial f_n(\mathbf{x})}{\partial x_m}
\end{pmatrix} \text{ Example:}$$

$$\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} = \begin{pmatrix}
\frac{\partial f_1(\mathbf{x})}{\partial x_1} & \frac{\partial f_1(\mathbf{x})}{\partial x_2} & \frac{\partial f_1(\mathbf{x})}{\partial x_3} \\
\frac{\partial f_2(\mathbf{x})}{\partial x_1} & \frac{\partial f_2(\mathbf{x})}{\partial x_2} & \frac{\partial f_2(\mathbf{x})}{\partial x_3}
\end{pmatrix} = \begin{pmatrix}
\frac{\partial f_1(\mathbf{x})}{\partial x_1} & \frac{\partial f_1(\mathbf{x})}{\partial x_2} & \frac{\partial f_1(\mathbf{x})}{\partial x_3} \\
\frac{\partial f_2(\mathbf{x})}{\partial x_1} & \frac{\partial f_2(\mathbf{x})}{\partial x_2} & \frac{\partial f_2(\mathbf{x})}{\partial x_3}
\end{pmatrix} = \begin{pmatrix}
\frac{\partial f_1(\mathbf{x})}{\partial x_1} & \frac{\partial f_1(\mathbf{x})}{\partial x_2} & \frac{\partial f_1(\mathbf{x})}{\partial x_3} \\
\frac{\partial f_2(\mathbf{x})}{\partial x_1} & \frac{\partial f_2(\mathbf{x})}{\partial x_2} & \frac{\partial f_2(\mathbf{x})}{\partial x_3}
\end{pmatrix} = \begin{pmatrix}
\frac{\partial f_1(\mathbf{x})}{\partial x_1} & \frac{\partial f_1(\mathbf{x})}{\partial x_2} & \frac{\partial f_1(\mathbf{x})}{\partial x_3} \\
\frac{\partial f_2(\mathbf{x})}{\partial x_3} & \frac{\partial f_2(\mathbf{x})}{\partial x_2} & \frac{\partial f_2(\mathbf{x})}{\partial x_3}
\end{pmatrix} = \begin{pmatrix}
\frac{\partial f_1(\mathbf{x})}{\partial x_1} & \frac{\partial f_1(\mathbf{x})}{\partial x_2} & \frac{\partial f_2(\mathbf{x})}{\partial x_3} \\
\frac{\partial f_2(\mathbf{x})}{\partial x_3} & \frac{\partial f_2(\mathbf{x})}{\partial x_2} & \frac{\partial f_2(\mathbf{x})}{\partial x_3}
\end{pmatrix}$$

Numerical approximation of the Jacobian using the finite difference formula

$$\frac{\partial f_{k}\left(\mathbf{x}\right)}{\partial x_{j}} \approx \frac{f_{k}\left(x_{1}, \cdots, x_{j-1}, x_{j} + \Delta x_{j}, x_{j+1}, \cdots, x_{m}\right) - f_{k}\left(x_{1}, \cdots, x_{j-1}, x_{j} - \Delta x_{j}, x_{j+1}, \cdots, x_{m}\right)}{2\Delta x_{j}}$$

Remark: The formula has the perturbed values only for the x_j with $x_j \pm \Delta x_j$

(Example) Jacobian computing using the central difference formula

$$\mathbf{f}(x, y, z) = \begin{pmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} x^2 + y^2 + z^2 + 2xy - 3yz \\ 3x - 2y + 5z \end{pmatrix} \text{ at } x = y = z = 1 \text{ with } \Delta x = \Delta y = \Delta z = 0.1$$

(i) Perturbation in x

Positive perturbation with x = 1.1, y = z = 1

$$\begin{pmatrix} f_1 \\ f_2 \end{pmatrix}_p = \begin{vmatrix} (x^2 + y^2 + z^2 + 2xy - 3yz) \\ 3x - 2y + 5z \end{vmatrix} = \begin{pmatrix} 2.4100 \\ 6.3000 \end{pmatrix}$$

Negative perturbation with x = 0.9, y = z = 1

$$\begin{pmatrix} f_1 \\ f_2 \end{pmatrix}_n = \begin{pmatrix} x^2 + y^2 + z^2 + 2xy - 3yz \\ 3x - 2y + 5z \end{pmatrix} = \begin{pmatrix} 1.6100 \\ 5.7000 \end{pmatrix}$$

Jacobian component due to variable x

$$\frac{\partial}{\partial x} \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} \approx \frac{1}{2 \times 0.1} \left\{ \begin{vmatrix} f_1 \\ f_2 \end{pmatrix}_p - \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}_n \right\} = \frac{1}{2 \times 0.1} \left\{ \begin{pmatrix} 2.4100 \\ 6.3000 \end{pmatrix} - \begin{pmatrix} 1.6100 \\ 5.7000 \end{pmatrix} \right\} = \frac{1}{2 \times 0.1} \begin{pmatrix} 0.8000 \\ 0.6000 \end{pmatrix} = \begin{pmatrix} 4.0000 \\ 3.0000 \end{pmatrix}$$

(ii) Perturbation in y with the fixed values of x = z = 1

Jacobian component due to variable y

$$\frac{\partial}{\partial y} \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} \approx \frac{1}{2 \times 0.1} \left\{ \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}_n - \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}_n \right\} = \frac{1}{2 \times 0.1} \left\{ \begin{pmatrix} 2.1100 \\ 5.8000 \end{pmatrix} - \begin{pmatrix} 1.9100 \\ 6.2000 \end{pmatrix} \right\} = \begin{pmatrix} 1.0000 \\ -2.0000 \end{pmatrix}$$

(iii) Perturbation in z with the fixed values of x = y = 1

Jacobian component due to variable y

$$\frac{\partial}{\partial y} \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} \approx \frac{1}{2 \times 0.1} \left\{ \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}_p - \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}_n \right\} = \frac{1}{2 \times 0.1} \left\{ \begin{pmatrix} 1.9100 \\ 6.5000 \end{pmatrix} - \begin{pmatrix} 2.1100 \\ 5.5000 \end{pmatrix} \right\} = \begin{pmatrix} -1.0000 \\ 5.0000 \end{pmatrix}$$

(iv) Approximated Jacobian

$$\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} = \begin{pmatrix} 4 & 1 & -1 \\ 3 & -2 & 5 \end{pmatrix}$$

(v) Exact Jacobian

$$\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} = \begin{pmatrix} 2x + 2y & 2y + 2x - 3z & 2z - 3y \\ 3 & -2 & 5 \end{pmatrix} = \begin{pmatrix} 4 & 1 & -1 \\ 3 & -2 & 5 \end{pmatrix}$$

(Example) Jacobian computing using the forward difference formula

$$\mathbf{f}(x, y, z) = \begin{pmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} x^2 + y^2 + z^2 + 2xy - 3yz \\ 3x - 2y + 5z \end{pmatrix} \text{ at } x = y = z = 1 \text{ with } \Delta x = \Delta y = \Delta z = 0.1$$

$$\mathbf{f}(1,1,1) = \begin{pmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \end{pmatrix}$$

(Example):
$$\mathbf{f}(x, y, z) = \begin{pmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \end{pmatrix} = \begin{pmatrix} x^2 + y^2 + z^2 + 2xy - 3yz \\ 3x - 2y + 5z \end{pmatrix}$$
 at $x = y = z = 1$ with $\Delta x = \Delta y = \Delta z = 0.1$

(i) Perturbation in x

Jacobian component due to variable x

$$\frac{\partial}{\partial x} \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} \approx \frac{1}{0.1} \left\{ \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}_p - \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} \right\} = \frac{1}{0.1} \left\{ \begin{pmatrix} 2.4100 \\ 6.3000 \end{pmatrix} - \begin{pmatrix} 2 \\ 6 \end{pmatrix} \right\} = \begin{pmatrix} 5.0 \\ 3.0 \end{pmatrix}$$

(ii) Perturbation in y with the fixed values of x = z = 1

$$\frac{\partial}{\partial y} \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} \approx \frac{1}{0.1} \left\{ \begin{pmatrix} f_1 \\ f_2 \end{pmatrix}_p - \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} \right\} = \frac{1}{0.1} \left\{ \begin{pmatrix} 2.1100 \\ 5.8000 \end{pmatrix} - \begin{pmatrix} 2 \\ 6 \end{pmatrix} \right\} = \begin{pmatrix} 1.1 \\ -2.0 \end{pmatrix}$$

(iii) Perturbation in z with the fixed values of x = y = 1

Jacobian component due to variable y

$$\frac{\partial}{\partial y} \begin{pmatrix} f_1 \\ f_2 \end{pmatrix} \approx \frac{1}{0.1} \left\{ \begin{vmatrix} f_1 \\ f_2 \end{vmatrix}_p - \begin{pmatrix} f_1 \\ f_2 \end{vmatrix} \right\} = \frac{1}{0.1} \left\{ \begin{pmatrix} 1.9100 \\ 6.5000 \end{pmatrix} - \begin{pmatrix} 2 \\ 6 \end{pmatrix} \right\} = \begin{pmatrix} -0.9 \\ 5.0 \end{pmatrix}$$

(iv) Approximated Jacobian

$$\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} = \begin{pmatrix} 5.0 & 1.1 & -0.9 \\ 3.0 & -2.0 & 5.0 \end{pmatrix}$$

(v) Exact Jacobian

$$\frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} = \begin{pmatrix} 2x + 2y & 2y + 2x - 3z & 2z - 3y \\ 3 & -2 & 5 \end{pmatrix} = \begin{pmatrix} 4 & 1 & -1 \\ 3 & -2 & 5 \end{pmatrix}$$

Tips

- 1) Use a small value for the perturbations $\Delta x, \Delta y, \Delta z$
- 2) Use the 2nd order central difference formula to enhance accuracy
- 3) Use the 1st order difference formula to save computing time with small values for the perturbations

3. Taylor series expansion of the multi-variable functions

(3-1) Two-variable scalar function $f(x, y) \in R$

$$f(x+h_x,y+h_y) \approx f(x,y) + \frac{\partial f}{\partial x}h_x + \frac{\partial f}{\partial y}h_y + \frac{1}{2}\frac{\partial^2 f}{\partial x^2}h_x^2 + \frac{\partial^2 f}{\partial x\partial y}h_xh_y + \frac{1}{2}\frac{\partial^2 f}{\partial y^2}h_y^2 + O(h^3)$$

(3-2) Two-variable vector function $\mathbf{f}(x, y) = \begin{pmatrix} f_1(x, y) \\ f_2(x, y) \end{pmatrix} \in \mathbb{R}^2$

$$\mathbf{f}(x+h_{x},y+h_{y}) = \begin{pmatrix} f_{1}(x+h_{x},y+h_{y}) \\ f_{2}(x+h_{x},y+h_{y}) \end{pmatrix}$$

$$\approx \begin{pmatrix} f_{1}(x,y) + \frac{\partial f_{1}}{\partial x}h_{x} + \frac{\partial f_{1}}{\partial y}h_{y} \\ f_{2}(x,y) + \frac{\partial f_{2}}{\partial x}h_{x} + \frac{\partial f_{2}}{\partial y}h_{y} \end{pmatrix} = \begin{pmatrix} f_{1}(x,y) \\ f_{2}(x,y) \end{pmatrix} + \begin{pmatrix} \frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\ \frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y} \end{pmatrix} \begin{pmatrix} h_{x} \\ h_{y} \end{pmatrix}$$

$$= \mathbf{f}(x,y) + \frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} \Delta \mathbf{x} \leftarrow \frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} \\ \frac{\partial f_{2}}{\partial x} & \frac{\partial f_{1}}{\partial y} \end{pmatrix}, \quad \Delta \mathbf{x} = \begin{pmatrix} h_{x} \\ h_{y} \end{pmatrix}$$

(3-3) Three-variable scalar function $f(x, y, z) \in R$

$$f(x+h_x, y+h_y, z+h_z) \approx f(x, y) + \frac{\partial f}{\partial x}h_x + \frac{\partial f}{\partial y}h_y + \frac{\partial f}{\partial z}h_z + O(h^2)$$

(3-4) Three-variable vector function $\mathbf{f}(x, y) = \begin{pmatrix} f_1(x, y) \\ f_2(x, y) \end{pmatrix} \in \mathbb{R}^2$

$$\begin{split} \mathbf{f}(x+h_{x},y+h_{y},z+h_{z}) &= \begin{pmatrix} f_{1}(x+h_{x},y+h_{y},z+h_{z}) \\ f_{2}(x+h_{x},y+h_{y},z+h_{z}) \end{pmatrix} \\ &\approx \begin{pmatrix} f_{1}(x,y,z) + \frac{\partial f_{1}}{\partial x}h_{x} + \frac{\partial f_{1}}{\partial y}h_{y} + \frac{\partial f_{1}}{\partial z}h_{z} \\ f_{2}(x,y,z) + \frac{\partial f_{2}}{\partial x}h_{x} + \frac{\partial f_{2}}{\partial y}h_{y} + \frac{\partial f_{2}}{\partial z}h_{z} \end{pmatrix} \\ &= \begin{pmatrix} f_{1}(x,y,z) \\ f_{2}(x,y,z) \end{pmatrix} + \begin{pmatrix} \frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} & \frac{\partial f_{1}}{\partial z} \\ \frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y} & \frac{\partial f_{2}}{\partial z} \end{pmatrix} \begin{pmatrix} h_{x} \\ h_{y} \\ h_{z} \end{pmatrix} \\ &= \mathbf{f}(x,y,z) + \frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} \Delta \mathbf{x} \leftarrow \frac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} = \begin{pmatrix} \frac{\partial f_{1}}{\partial x} & \frac{\partial f_{1}}{\partial y} & \frac{\partial f_{1}}{\partial z} \\ \frac{\partial f_{2}}{\partial x} & \frac{\partial f_{2}}{\partial y} & \frac{\partial f_{1}}{\partial z} \end{pmatrix}, \quad \Delta \mathbf{x} = \begin{pmatrix} h_{x} \\ h_{y} \\ h_{z} \end{pmatrix} \end{split}$$

4. Newton-Raphson Method: One of the most popular iterative method

O The 1st order Taylor series approximation of a function can be written as $f(x_{i+1}) \approx f(x_i) + f'(x)(x_{i+1} - x_i)$

The Newton-Raphson method approximate the root with x_{j+1} satisfying $f(x_{j+1}) \approx f(x_j) + f'(x)(x_{j+1} - x_j) = 0$

Therefore,

$$\rightarrow f(x_j) + f'(x)(x_{j+1} - x_j) = 0$$

$$\Rightarrow x_{j+1} - x_j = -\frac{f(x_j)}{f'(x_j)} \Rightarrow x_{j+1} = x_j - \frac{f(x_j)}{f'(x_j)}$$

O Graphical depiction of the Newton-Raphson method


```
Function NEWTON(x, ITmax, h,epsilon)
!Pseudo code for Newton_Raphson method to find x satisfying f(x)=0 with a given initial point x
!Given variables: x(initial-value), h(small increment to calculate derivative)
                    ITmax (number of maximum iteration allowed)
! Given tolerance: epsilon <<1
! Given external function: f(x)
! Using numerical calculation of derivative information of the function f(x)
       Do j=1,2,3,....ITmax
! estimation of derivative using the central difference formula
              fzero = f(x) xpl
                                                  !function value at zero perturbation
              us = x+h fplus
                                                ! positive perturvation
              = f(xplus)
                                                         ! function value at xplus
              xminus = x-h fmin
                                                ! negative perturvation
              us = f(xminus)
                                                         ! function value at xminus
              gradf = 0.5*(fplus-fminus)/h
                                                         ! derivative(gradient) estimation
```

!Newton-Raphson method

x0=x

 $x \leftarrow x - fzero/gradf$

! for the nonlinear system: gradf is a matrix

!convergence test

If abs(fzero) < epsilon, exit

!converged solution

If abs(x-x0)<epsilon, exit

!converged solution

!

End do NEW

TON = x

!similar to return value in C/C++

End NEWTON

5. The Secant Method

O In the Secant method the derivative is approximated using the 1st order finite difference formula with the following increment condition

$$x_{j} = x_{j-1} + h \to h = x_{j} - x_{j-1}$$

$$f'(x) \approx \frac{1}{h} \{ f(x) - f(x-h) \} \to f'(x_{j}) \approx \frac{f(x_{j}) - f(x_{j-1})}{x_{j} - x_{j-1}}$$

Then the Newton-Raphson formula can be represented by the formula for the Secant Method

$$x_{j+1} \approx x_{j} - \frac{f(x_{j})}{f'(x_{j})}$$

$$= x_{j} - \frac{f(x_{j})}{f(x_{j}) - f(x_{j-1})} (x_{j} - x_{j-1})$$

O Modified Secant method by directly using the backward difference formula (1st order)

$$f'(x) \approx \frac{1}{h} \left\{ f(x) - f(x - h) \right\} \rightarrow f'(x_j) \approx \frac{f(x_j) - f(x_j - h)}{h}$$

$$x_{j+1} \approx x_j - \frac{f(x_j)}{f'(x_j)}$$

$$= x_j - \frac{hf(x_j)}{f(x_j) - f(x_j - h)}$$

O Definition of open method

- It needs functional information such as function value and its gradient at one points to find a root: Find x satisfying the nonlinear equation $\mathbf{f}(\mathbf{x}) = 0$, $\mathbf{f} \in R^n$, $\mathbf{x} \in R^n$
- -Bracketing methods are always convergent. However, the convergence of open methods highly depend on the initial estimation of the root, where function value and its gradient are calculated.

6. Newton-Raphson Method for the System of Nonlinear Equations

O Definition of the system of nonlinear equations

 $|\mathbf{f}(\mathbf{x})| = 0$, $\mathbf{f} \in \mathbb{R}^n$, $\mathbf{x} \in \mathbb{R}^n$, which has n unknowns $\mathbf{x} \in \mathbb{R}^n$ and n nonlinear equations $\mathbf{f} \in \mathbb{R}^n$

Expanded form

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{pmatrix} \in R^n, \quad \mathbf{f} = \begin{pmatrix} f_1(x_1, x_2, x_3, \dots, x_n) \\ f_2(x_1, x_2, x_3, \dots, x_n) \\ f_3(x_1, x_2, x_3, \dots, x_n) \\ \vdots \\ f_n(x_1, x_2, x_3, \dots, x_n) \end{pmatrix} = \mathbf{0} \in R^n$$

O Jacobean of the system of nonlinear equations

$$\frac{d\mathbf{f}}{d\mathbf{x}} = \mathbf{G} = \begin{pmatrix}
\frac{df_1}{dx_1} & \frac{df_1}{dx_2} & \cdots & \frac{df_1}{dx_n} \\
\frac{df_2}{dx_1} & \frac{df_2}{dx_2} & \cdots & \frac{df_2}{dx} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{df_n}{dx_1} & \frac{df_n}{dx_2} & \cdots & \frac{df_n}{dx_n}
\end{pmatrix} \in R^{n \times n}$$

O 1st Order approximation of function value around x

$$\mathbf{f}(\mathbf{x} + \mathbf{h}) \approx \mathbf{f}(\mathbf{x}) + \frac{d\mathbf{f}}{d\mathbf{x}}\mathbf{h}$$
$$\approx \mathbf{f}(\mathbf{x}) + \mathbf{G}\mathbf{h}$$

O Newton-Raphson Method for the system of Nonlinear Equations

$$\mathbf{x}_{j+1} = \mathbf{x}_j + \mathbf{h}$$

The Newton-Raphson Method approximate the root with the vector satisfying

$$\mathbf{f}(\mathbf{x}_{j+1}) \approx \mathbf{f}(\mathbf{x}_{j}) + \frac{d\mathbf{f}}{d\mathbf{x}}(\mathbf{x}_{j+1} - \mathbf{x}_{j})$$

$$\approx \mathbf{f}(\mathbf{x}_{j}) + \mathbf{G}(\mathbf{x}_{j+1} - \mathbf{x}_{j})$$

$$\approx \mathbf{f}(\mathbf{x}_{j}) + \mathbf{G}(\mathbf{x}_{j+1} - \mathbf{x}_{j})$$

$$\Rightarrow \mathbf{x}_{j+1} = \mathbf{G}^{-1}(\mathbf{G}\mathbf{x}_{j} - \mathbf{f}(\mathbf{x}_{j}))$$

$$\Rightarrow \mathbf{x}_{j+1} = \mathbf{x}_{j} - \mathbf{G}^{-1}\mathbf{f}(\mathbf{x}_{j})$$

(Example) Newton-Raphson Method for the system of Nonlinear Equations

$$f_1(x, y) = x_2 + xy - 10 = 0$$

 $f_2(x, y) = 3xy_2 + y - 57 = 0$

$$\frac{\partial f_1(x, y)}{\partial x} = 2x + y \qquad \frac{\partial f_1(x, y)}{\partial y} = x$$
$$\frac{\partial f_2(x, y)}{\partial x} = 3y^2 \qquad \frac{\partial f_2(x, y)}{\partial y} = 6xy + 1$$

$$\Rightarrow \begin{bmatrix} \mathbf{G} = \begin{pmatrix} 2x + y & x \\ 3y^2 & 6xy + 1 \end{pmatrix} \\ \mathbf{G}^{-1} = \frac{1}{(2x + y)(6xy + 1) - 3xy^2} \begin{pmatrix} 6xy + 1 & -x \\ -3y^2 & 2x + y \end{pmatrix} \text{ for } \mathbf{x} = \begin{pmatrix} x_j \\ y_j \end{pmatrix}$$

By using
$$\mathbf{x}_{j+1} = \mathbf{x}_j - \mathbf{G}^{-1}\mathbf{f}(\mathbf{x}_j)$$

$$\begin{pmatrix} x_{j+1} \\ y_{j+1} \end{pmatrix} = \begin{pmatrix} x_j \\ y_j \end{pmatrix} - \frac{1}{(2x_j + y_j)(6x_jy_j + 1) - 3x_jy_j^2} \begin{pmatrix} 6x_jy_j + 1 & -x_j \\ -3y_j^2 & 2x_j + y_j \end{pmatrix} \begin{pmatrix} x_j^2 + x_jy_j - 10 \\ 3x_jy_j^2 + y_j - 57 \end{pmatrix}$$

```
Function NEWTON_SYS(n, x, ITmax, h, epsilon, error)
 !------
 !Pseudo code for Newton Raphson method to find x satisfying f(x)=0 with a given initial point x
 !Given variables:
         : (input) number of equations
    n
    x(1:n): (input/output) initial-value
   ITmax:(input) maximum allowed iteration
    h(1:n): (input) small increments to calculate derivative
   epsilon: (input) given tolerance (<<1)
   error:(output) norm of function residual
 !Be careful when we calculate the roots of nonlinear system of equations
     x(1:n), h(1:n), f(1:n), gradf(1:n, 1:n)
     _____
       Do j=1,2,3,....ITmax
              fzero(1:n) = f(x)
                                                  !function value at zero perturbation
! estimation of derivative using the central difference formula
              do k = 1, n
                                                   ! positive perturvation
                  xplus(1:n) = x(1:n)
                  xplus(k) = xplus(k) + h(k)
                  fplus(1:n) = f(xplus)
                                                   ! function value at xplus
                  xminus (1:n) = x(1:n)
                                                   ! negative perturvation
```

```
xminus (k)
                                  = xminus (k) - h(k)
                    fminus (1:n) = f(xminus)
                                                         ! function value at xminus
!
                    gradf (1:n,k)= 0.5*(fplus(1:n)-fminus(1:n))/h(k)! derivative(gradient) estimation
              end do
!Newton-Raphson method
                       x0(1:n)=x(1:n)
              x(1:n) \leftarrow x(1:n) - (gradf)^{-1} *fzero(1:n)
                                                        ! for the nonlinear system: gradf is a matrix
!convergence test
              If norm(fzero) < epsilon, exit
                                                !converged solution
              If norm(x-x0)<epsilon, exit
                                                !converged solution
      End do
      error = norm(f(x))! residual in function value
End NEWTON_SYS
```

Appendix: Problem set for the System of Nonlinear Equations

General Problem Statements

$$\mathbf{f}(\mathbf{x}) = \mathbf{0}, \quad \mathbf{f}, \mathbf{x} \in \mathbb{R}^n \to \mathbf{f} = \begin{pmatrix} f_1(x_1, x_2, \dots, x_n) \\ f_2(x_1, x_2, \dots, x_n) \\ \vdots \\ f_n(x_1, x_2, \dots, x_n) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad \mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

1. Problem #1

$$\mathbf{f} = \begin{pmatrix} x_1 + 3\ln(x_1) - x_2^2 \\ 2x_1^2 - x_1x_2 - 5x_1 + 1.0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \mathbf{x}_0 = \begin{pmatrix} 1.0 \\ -2.0 \end{pmatrix}$$

2. Problem #2

$$\mathbf{f} = \begin{pmatrix} x_1^2 + x_1 x_2^2 - 9 \\ 3x_1^2 x_2 - x_2^3 - 4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \mathbf{x}_0 = \begin{pmatrix} 1.2 \\ 2.5 \end{pmatrix}$$

3. Problem #3

$$\mathbf{f} = \begin{pmatrix} x_1 + 2x_2 - 3.0 \\ 2x_1^2 + x_2^2 - 5.0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \mathbf{x}_0 = \begin{pmatrix} 1.5 \\ 1.0 \end{pmatrix}$$

4. Problem #4

$$\mathbf{f} = \begin{pmatrix} 3x_1^2 + 4x_2^2 - 1.0 \\ x_2^3 - 8x_1^3 - 1.0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \mathbf{x}_0 = \begin{pmatrix} -0.5 \\ 0.25 \end{pmatrix}$$

5. Problem #5

$$\mathbf{f} = \begin{pmatrix} 4x_1^2 + x_2^2 - 4.0 \\ x_1 + x_2 - \sin(x_1 - x_2) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \mathbf{x}_0 = \begin{pmatrix} 1.0 \\ 0.0 \end{pmatrix}$$

6. Problem #6: Not converged

$$\mathbf{f} = \begin{pmatrix} x_1^5 + x_2^3 x_3^4 + 1.0 \\ x_1^2 x_2 x_3 \\ x_3^4 - 1.0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{x}_0 = \begin{pmatrix} -10 \\ -10 \\ -10 \end{pmatrix}$$

7. Problem #7

$$\mathbf{f} = \begin{pmatrix} x_1^2 + x_2 - 37 \\ x_1 - x_2^2 - 5.0 \\ x_1 + x_2 + x_3 - 3.0 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{x}_0 = \begin{pmatrix} 5.0 \\ 0.0 \\ -2.0 \end{pmatrix}$$

8. Problem #8

$$\mathbf{f} = \begin{pmatrix} 12x_1 - 3x_2^2 - 4x_3 - 7.17 \\ x_1^2 + 10x_2 - x_3 - 11.54 \\ x_2^3 + 7x_3 - 7.631 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{x}_0 = \begin{pmatrix} 3.0 \\ 0.0 \\ 1.0 \end{pmatrix}$$

9. Problem #9

$$\mathbf{f} = \begin{pmatrix} 10x_2 - 10x_1^2 \\ 1 - x_1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{x}_0 = \begin{pmatrix} -1.2 \\ 1.0 \end{pmatrix}$$

10.Problem #10: Not converged

$$\mathbf{f} = \begin{pmatrix} -13.0 + x_1 - x_2^3 + 5x_2^2 - 2x_2 \\ -29.0 + x_1 + x_2^3 + x_2^2 - 14x_2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{x}_0 = \begin{pmatrix} 15.0 \\ 1.0 \end{pmatrix}$$

11.Problem #11

$$\mathbf{f} = \begin{pmatrix} 10.0x_2 - 10x_1^2 \\ 1.0 - x_1 \\ 10.0x_4 - 10x_3^2 \\ 1.0 - x_3 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{x}_0 = \begin{pmatrix} 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \end{pmatrix}$$

12.Problem #12: Poor convergence

$$\mathbf{f} = \begin{pmatrix} x_1 + 10x_2 \\ \sqrt{5}x_3 - \sqrt{5}x_4 \\ (x_2 - 2x_3)^2 \\ \sqrt{10}(x_1 - x_4) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}, \quad \mathbf{x}_0 = \begin{pmatrix} 0.5 \\ 0.5 \\ 0.5 \\ 0.5 \end{pmatrix}$$

13.Problem #13: Poor convergence

$$\mathbf{f} = \begin{pmatrix} x_1^2 - x_2 - 1 \\ x_2^2 - x_1 - 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \mathbf{x}_0 = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$$

14.Problem #14: Poor convergence

$$\mathbf{f} = \begin{pmatrix} x_1 - x_2^2 \\ (x_2 - 1)^2 (x_2 - 2)^2 + (x_1 - x_2^2)^2 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}, \quad \mathbf{x}_0 = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$$

```
Problem Set for Nonlinear Algebraic Equations
   SUBROUTINE NAE Problems(IND PROBLEM,IND case,No variable,X,Fun,No fun call);
   IMPLICIT DOUBLE PRECISION (A-H,O-Z)
  Input:
        IND_PROBLEM: Problem Number
        IND Case
             = 1: initialization routine
             = 2: evaluation of function vectors
   DIMENSION X(*),Fun(*)
  IF(IND_case==2) No_fun_call = No_fun_call + 1
   NSELECT = 0
   SELECT CASE (IND_PROBLEM)
!
      CASE (1);
  -----
         IF(IND Case==1) THEN
            No_variable = 2;
            X(1) = 1.0
            X(2) = -2.0
             NSELECT = 1:
         ELSEIF(IND Case==2) THEN
            Fun(1) = X(1) + 3.0*LOG(X(1))-X(2)*X(2)
            Fun(2) = 2*X(1)*X(1) - X(1)*X(2) - 5.0*X(1) + 1.0
            NSELECT = 1;
         END IF
```

```
CASE (2);
   IF(IND_Case==1) THEN
       No_variable = 2;
       X(1) = 1.2
       X(2) = 2.5
       NSELECT = 1;
  ELSEIF(IND_Case==2) THEN
       Fun(1) = X(1)*X(1) + X(1)*X(2)*X(2) -9.0
       Fun(2) = 3*X(1)*X(1)*X(2) - X(2)**3 - 4.0
       NSELECT = 1;
  END IF
CASE (3);
   IF(IND_Case==1) THEN
       No_variable = 2;
       X(1) = 1.5
       X(2) = 1.0
       NSELECT = 1;
  ELSEIF(IND_Case==2) THEN
       Fun(1) = X(1) + 2.0*X(2) - 3.0
       Fun(2) = 2*X(1)*X(1) + X(2)*X(2) - 5.0
```

```
NSELECT = 1;
     END IF
   _____
  _____
    CASE (4);
!-----
      IF(IND_Case==1) THEN
        No_variable = 2;
        X(1) = -0.5
        X(2) = 0.25
        NSELECT = 1;
     ELSEIF(IND_Case==2) THEN
        Fun(1) = 3.0*X(1)*X(1) + 4*X(2)*X(2) - 1.0
        Fun(2) = X(2)**3 - 8.0*X(1)**3 - 1.0
        NSELECT = 1;
     END IF
     _____
    CASE(5);
      IF(IND_Case==1) THEN
        No_variable = 2;
        X(1) = 1.0
        X(2) = 0.0
        NSELECT = 1;
```

```
ELSEIF(IND_Case==2) THEN
       Fun(1) = 4.0*X(1)*X(1) + X(2)*X(2) - 4.0
       Fun(2) = X(1) + X(2) - SIN(X(1)-X(2))
       NSELECT = 1;
   END IF
CASE (6);
   IF(IND Case==1) THEN
       No_variable = 3;
       X(1) = -10.0
       X(2) = -10.0
       X(3) = -10.0
       NSELECT = 1;
   ELSEIF(IND_Case==2) THEN
       Fun(1) = X(1)**5 + (X(2)**3)*(X(3)**4) + 1.0
       Fun(2) = X(1)*X(1)*X(2)*X(3)
       Fun(3) = X(3)**4 - 1.0 NSELE
       CT = 1;
   END IF
CASE (7);
   IF(IND_Case==1) THEN
       No_variable = 3;
```

```
X(1) = 5.0
       X(2) = 0.0
       X(3) = -2.0
       NSELECT = 1;
   ELSEIF(IND_Case==2) THEN
       Fun(1) = X(1)**2 + X(2) - 37.0
       Fun(2) = X(1) - X(2)*X(2) - 5.0
       Fun(3) = X(1) + X(2) + X(3) - 3.0
       NSELECT = 1;
   END IF
CASE (8);
   IF(IND_Case==1) THEN
       No_variable = 3;
       X(1) = 3.0
       X(2) = 0.0
       X(3) = 1.0
       NSELECT = 1;
   ELSEIF(IND_Case==2) THEN
       Fun(1) = 12.0*X(1) - 3.0*X(2)**2 - 4.0*X(3) - 7.17
       Fun(2) = X(1)**2 + 10.0*X(2) - X(3) - 11.54
       Fun(3) = X(2)**3 + 7.0*X(3) - 7.631
       NSELECT = 1;
   END IF
```

```
CASE (9); ! Ref Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations
   IF(IND_Case==1) THEN
       No_variable = 2;
       X(1) = -1.2
       X(2) = 1.0
       NSELECT = 1;
   ELSEIF(IND_Case==2) THEN Fu
       n(1) = 10.0*(X(2) - X(1)**2) F
       un(2) = 1.0 - X(1)
       NSELECT = 1;
   END IF
CASE (10); ! Ref Broyden A Class of Methods for Solving Nonlinear Simultaneous Equations
   IF(IND_Case==1) THEN
       No_variable = 2;
       X(1) = 15.0
       X(2) = 1.0
       NSELECT = 1;
   ELSEIF(IND_Case==2) THEN
       Fun(1) = -13.0 + X(1) + ((-X(2) + 5.0)*X(2) - 2.0)*X(2)
       Fun(2) = -29.0 + X(1) + ((X(2) + 1.0)*X(2) - 14.0)*X(2)
```

```
NSELECT = 1;
   END IF
CASE (11); ! Ref Shanghai Multi-step Nonlinear ABS Methods and Their Efficiency Analysis 1991 (Extended Rosenbloack function)
   IF(IND_Case==1) THEN
       No_{variable} = 4;
       X(1:4) = 0.5
       NSELECT = 1;
   ELSEIF(IND_Case==2) THEN Fu
       n(1) = 10.0*(X(2) - X(1)**2) F
       un(2) = 1.0 - X(1)
       Fun(3) = 10.0*(X(4) - X(3)**2)
       Fun(4) = 1.0 - X(3)
       NSELECT = 1;
   END IF
CASE (12); !! Ref Shanghai Multi-step Nonlinear ABS Methods and Their Efficiency Analysis 1991 (Extended Powell singular function)
   IF(IND_Case==1) THEN
       No_variable = 4;
       X(1:4) = 0.5
       NSELECT = 1;
```

```
ELSEIF(IND_Case==2) THEN
       Fun(1) = X(1) + 10.0*X(2)
       Fun(2) = SQRT(5.0)*(X(3) - X(4))
       Fun(3) = (X(2) - 2.0*X(3))**2
       Fun(4) = SQRT(10.0)*(X(1) - X(4))**2
       NSELECT = 1;
   END IF
CASE (13); !! Ref Atluri, A Modified Newton Method for Solving NAEs Example #1
   IF(IND_Case==1) THEN
       No_variable = 2;
       X(1:2) = 0.5
       NSELECT = 1;
   ELSEIF(IND_Case==2) THEN
       Fun(1) = X(1)**2 - X(2)-1.0
       Fun(2) = X(2)**2 - X(1)-1.0
       NSELECT = 1;
   END IF
CASE (14); !! Ref Atluri, A Modified Newton Method for Solving NAEs Example #2
   IF(IND_Case==1) THEN
       No_variable = 2;
```

```
X(1:2) = 0.5
       NSELECT = 1;
  ELSEIF(IND Case==2) THEN
       Fun(1) = X(1) - X(2)**2
      Fun(2) = ((X(2)-1.0)**2)*((X(2)-2.0)**2) + (X(1)-X(2)**2)**2
      NSELECT = 1;
  END IF
 _____
CASE (15); !! Ref Atluri, A Modified Newton Method for Solving NAEs Example #3
  a1 = 25.0; b1 = 1.0;
                          c1 = 2.0;
  a2 = 3.0: b2 = 4.0:
                          c2 = 5.0;
  IF(IND_Case==1) THEN
       No_variable = 2;
       X(1) = -10.0
       X(2) = -1.0
       NSELECT = 1;
  ELSEIF(IND_Case==2) THEN
       Fun(1) = X(1)**3 - 3.0*X(1)*X(2)**2 + a1*(2.0*X(1)**2 + X(1)*X(2)) + b1*X(2)**2 + c1*X(1) + a2*X(2)
      Fun(2) = -X(2)**3 + 3.0*X(2)*X(1)**2 + a1*( X(2)**2 - 4.0*X(1)*X(2)) + b2*X(1)**2 + c2
       NSELECT = 1;
  END IF
```

```
CASE (16); !! Ref Atluri, A Modified Newton Method for Solving NAEs Example #4
        IF(IND Case==1) THEN
           No_variable = 3;
           X(1:3) = 0.1
           NSELECT = 1;
        ELSEIF(IND_Case==2) THEN
           Fun(1) = X(1) + X(2) + X(3) - 3.0
           Fun(2) = X(1)*X(2) + 2.0*X(2)**2 + 4.0*X(3)**2 - 7.0
           Fun(3) = X(1)**8 + X(2)**4 + X(3)**9 - 3.0
           NSELECT = 1;
        END IF
         ______
! Large Scale Problem by Adjusting N the number of equations
1_____
     CASE (101); ! Ref An Autoadatative limited memory Broyden's Method to Solve Systems of NEs:: Broyden banded function
!______
        N = 10
        IF(IND_Case==1) THEN
           No_variable = N;
```

```
X(1:N) = 0.0
                                            NSELECT = 1;
                                ELSEIF(IND Case==2) THEN
                                             Fun(1) = X(1)*(2.0+5.0*X(1)**2)+1.0 - X(2)*(1.0+X(2))
                                            Fun(2) = X(2)*(2.0+5.0*X(2)**2)+1.0 - X(1)*(1.0+X(1)) - X(3)*(1.0+X(3))
                                            Fun(3) = X(3)*(2.0+5.0*X(3)**2)+1.0 - X(1)*(1.0+X(1)) - X(2)*(1.0+X(2)) - X(4)*(1.0+X(4))
                                             Fun(4) = X(4)*(2.0+5.0*X(4)**2)+1.0 - X(1)*(1.0+X(1)) - X(2)*(1.0+X(2)) - X(3)*(1.0+X(3)) - X(5)*(1.0+X(5))
                                             Fun(5) = X(5)*(2.0+5.0*X(5)**2)+1.0-X(1)*(1.0+X(1))-X(2)*(1.0+X(2))-X(3)*(1.0+X(3))-X(4)*(1.0+X(4))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.0+X(6))-X(6)*(1.
                                             DO J = 6, N-1
                                                         Fun(J) = X(J)*(2.0+5.0*X(J)**2)+1.0
                                                         DO K = J-5, J-1
                                                                      Fun(J) = Fun(J) - X(K)*(1.0+X(K))
                                                         END DO
                                                         Fun(J) = Fun(J) - X(J+1)*(1.0+X(J+1))
                                             END DO
                                             Fun(N) = X(N)*(2.0+5.0*X(N)**2)+1.0
                                             DO K = N-5, N-1
                                                                     Fun(N) = Fun(N) - X(K)*(1.0+X(K))
                                             END DO
                                            NSELECT = 1;
                                END IF
                                    _____
                       CASE (102); ! Ref An Autoadatative limited memory Broyden's Method to Solve Systems of NEs:: Martinez function
l-----
                                N = 10
                               IF(IND_Case==1) THEN
                                            No variable = N;
```

```
X(1:N) = 0.0
       NSELECT = 1;
   ELSEIF(IND_Case==2) THEN
       Fun(1) = (3.0 - 0.1*X(1))*X(1) + 1.0 - 2.0*X(2) + X(1)
       DO J = 2, N-1
            Fun(J) = (3.0 - 0.1*X(J))*X(J) + 1.0 - X(J-1) - 2.0*X(J+1) + X(J)
       END DO
       Fun(N) = (3.0 - 0.1*X(N))*X(N) + 1.0 - 2.0*X(N-1) + X(N)
       NSELECT = 1;
   END IF
CASE (103); ! Ref An Autoadatative limited memory Broyden's Method to Solve Systems of NEs :: Broyden tridiagonal function
   N = 10
   IF(IND_Case==1) THEN
       No_variable = N;
       X(1:N) = 0.0
       NSELECT = 1;
   ELSEIF(IND Case==2) THEN
       Fun(1) = (3.0 - 2.0*X(1))*X(1) + 1.0 - 2.0*X(2)
       Fun(N) = (3.0 - 2.0*X(N))*X(N) + 1.0 -
                                                X(N-1)
       DO J = 2, N-1
            Fun(J) = (3.0 - 2.0*X(J))*X(J) + 1.0 - X(J-1) - 2.0*X(J+1)
       END DO
       NSELECT = 1;
   END IF
```

```
CASE (104); ! Ref An Autoadatative limited memory Broyden's Method to Solve Systems of NEs :: Spedicato function 4
   N = 10
   IF(IND_Case==1) THEN
       No_variable = N;
       X(1:N-1) = -1.2
       X(N) = 1.0
       NSELECT = 1;
   ELSEIF(IND_Case==2) THEN
       \mathbf{K} = \mathbf{0}
       \mathbf{DO} J=1, N
           K = K + 1
           IF(K.EQ.1) THEN;! Odd case of J F
                un(J) = 1.0 - X(J)
                               ;! Even case of J
            ELSE
                Fun(J) = 100.0*(X(J) - X(J-1)**2)
                \mathbf{K} = \mathbf{0}
           END IF
       END DO
       NSELECT = 1;
   END IF
CASE (105); ! Ref Air Autoadāptātīvē līmīted mēmory Broyden's Method to Solve Systems of NEs :: Discrete integral equation function
  - N = 10 -----
   H = 1.0/FLOAT(N+1)
```

```
HH = 0.5*H
            IF(IND_Case==1) THEN
                 No_variable = N;
                 \mathbf{DO} \mathbf{J} = 1, \mathbf{N}
                      TJ = H*FLOAT(J)
                      X(J) = TJ*(TJ-1.0)
                 END DO
                 NSELECT = 1;
            ELSEIF(IND_Case==2) THEN
                 \mathbf{DO} \mathbf{J} = 1, \mathbf{N}
                      TJ
                              =H*FLOAT(J)
                      Sum1 = 0.0
                      \mathbf{DO} \mathbf{K} = 1, \mathbf{J}
                          TK = H*FLOAT(K)
                          Sum1 = Sum1 + TK*(X(K)+TK+1.0)**3
                      END DO
                      Sum2 = 0.0
                      DO K = J+1, N
                          TK = H*FLOAT(K)
                          Sum2 = Sum2 + (1.0 - TK)*(X(J)+TK+1.0)**3
                      END DO
!
                      Fun(J) = X(J) + HH*((1.0-TJ)*Sum1 + TJ*sum2)
                 END DO
                 NSELECT = 1;
            END IF
```

```
CASE (106); ! Ref Shanghai Multi-step Nonlinear ABS Methods and Their Efficiency Analysis 1991 (Brown Problem)
   N = 10
   IF(IND_Case==1) THEN
        No_variable = N;
        X(1:N) = 0.5
        NSELECT = 1;
   ELSEIF(IND_Case==2) THEN
       Pr1 = 1.0
       \mathbf{DO} K = 1, N
             Pr1 = Pr1*X(K)
       END DO
       Fun(N) = -1.0 + Pr1
       DO J = 2, N-1
            Fun(J) = -FLOAT(N+1)
             \mathbf{DO} K = J+1, N
                 \operatorname{Fun}(J) = \operatorname{Fun}(J) + \operatorname{X}(K)
             END DO
        END DO
        NSELECT = 1;
   END IF
CASE (107); !! Ref Atluri, A Modified Newton Method for Solving NAEs Example #5
   N=10
   X0 = 0.0
```

```
XN = 20.0
   IF(IND_Case==1) THEN
       No_{variable} = N;
       X(1:N) = 1.0
       NSELECT = 1;
   ELSEIF(IND_Case==2) THEN
       \mathbf{DO} \mathbf{J} = \mathbf{1}, \mathbf{N}
            IF(J==1) THEN
               Xm = X0
               Xx = X(J)
               Xp = X(J+1)
            ELSE IF(J==N) THEN
               Xm = X(J-1)
               Xx = X(J) X
               p = XN
            ELŜE
               Xm = X(J-1)
               Xx = X(J) X
               p = X(J+1)
            END IF
           Fun(J) = 3.0*Xx*(Xp -2.0*Xx + Xm) + 0.25*(Xp-Xm)**2
       END DO
       NSELECT = 1;
   END IF
CASE (108); !! Ref Atluri, A Modified Newton Method for Solving NAEs Example #6
   IF(IND_Case==1) THEN
```

```
No_variable = 10;
        X(1:N) = -0.1
        NSELECT = 1;
    ELSEIF(IND_Case==2) THEN
       Fun(1) = (3.0-5.0*X(1))*X(1) + 1.0-2.0*X(2)
        Fun(10) = (3.0-5.0*X(10))*X(10) + 1.0 -
        DO J = 2, 9
           Fun(J)= (3.0-5.0*X(J))*X(J) - X(J-1) - 2.0*X(J+1)
        END DO
        NSELECT = 1;
   END IF
_____
 CASE (109); !! Ref Atluri, A Modified Newton Method for Solving NAEs Example #7
    N = 10
    H = 1.0/FLOAT(N+1)
    H2=1.0/H**2
    X0 = 4.0
    XN = 1.0
    IF(IND_Case==1) THEN
        No_variable = N;
        X(1:N)
                  = 0.5
        NSELECT = 1;
    ELSEIF(IND_Case==2) THEN
        DOJ = 1, N
```

```
IF(J==1) THEN
                    Xm = X0
                    Xx = X(J)
                    Xp = X(J+1)
                  ELSE IF(J==N) THEN
                    Xm = X(J-1)
                    Xx = X(J) X
                    p = XN
                  ELSE
                    Xm = X(J-1)
                    Xx = X(J) X
                    p = X(J+1)
                  END IF
                  Fun(J) = H2*(Xp -2.0*Xx + Xm) - 1.5*Xx**2
              END DO
              NSELECT = 1;
          END IF
    END SELECT
    IF(NSELECT.EQ.0) THEN
      PRINT*, NO PROBLEM IS SELECTED, SEE SUBROUTINE NLP_Problems for IND_PROBLEM = ', IND_PROBLEM
      STOP
   END IF
RETURN
END
```

Np	It_newt N	f_newt Fn_newt	Dx_newt	lt_br	dn Nf_brdn Fr	n_brdn Dx_B	r dn	It_Tmas Nf_Tma	as Fn_Tmas	Dx_Tr	mas	It_mart Nf_m	art Fn_mart	Dx_mar	t	
1	11 55	0.314018E-15	0.728109E- 14 16	14	0.210486E-13	0.490187E-14 19	9 19	0.289978E-12	0.135531E-12	15	15	0.378128E-14	0.127834E-14	500 505	0.173576E-02	0.616325E-05
2	10 50	0.237783E-12	0.217161E- 14 13	14	0.120334E-12	0.118316E-13 13	3 13	0.564844E-12	0.596211E-13	14	14	0.118498E-13	0.103636E-14	500 505	0.587316E-02	0.555262E-05
3	10 50	0.439626E-14	0.945924E- 13 15	13	0.595989E-12	0.221141E-12 12	2 12	0.106766E-13	0.229617E-14	15	15	0.309272E-14	0.154266E-14	500 505	0.397494E-03	0.219393E-05
4	10 50	0.157009E-15	0.493563E- 20	20	0.388806E-12	0.734353E-13 1 ⁻	l 11	0.551088E-12	0.205790E-12	11	11	0.414695E-13	0.662863E-14	500 505	0.577830E-05	0.498691E-07
5	10 50	0.157009E-15	0.107252E- 12	12	0.415029E-12	0.283751E-12 13	3 13	0.180706E-13	0.301705E-14	13	13	0.351984E-13	0.444482E-14	500 505	0.943471E-04	0.981775E-06
6	35 245	0.963470E-12	0.372914E- 101 06	101	0.230735E+85	0.788668E+10 101	101	NaN	NaN 10 505	01 10	01 0).194128E+27 0.10	02558E-13 500		NaN	NaN
7	11 77	0 000000F+00	0.000000E+00 16	16	0 876837F-12	0.235614E-12 17	7 17	0 637615F-13	0.193977E-13	14	14	0.705456E-12 () 319848F-12	500 505	0.526664F-02	0 873318F-05
8				17		0.197035E-14 15			0.109693F-14		18		0.736436E-14		0.110273E-01	
_	10 50		0.000000E+00 16			0.395443E-15 13			0.784943E-16		19		0.467219E-15		0.155750E-02	
	101 500			101		0.136895E+02 101		0.924939E+01			01		0.615735E+02 50		NaN	NaN
11	9 81	0.000000E+00	0.000000E+00 77	77	0.209302E-12	0.162038E-13 20	20	0.858842E-12	0.864412E-13	41	41	0.111022E-14	0.117153E-15 5	00 505	0.159514E-02	0.942575E-05
12	101 900	NaN	NaN 101 1	01 0	.611603F-04 0.	280025F-02 101	101	0.667863F-06 () 232192F-03 10)1 1	101	0 125840F-04	0.130658F-02 5	00 505	0.391605F-02	0 201710F-04
. —	101 500	NaN	NaN 12 12		.239142E-12 0.		12	0.239142E-12 C				0.155431E-14 0).426203E-02 0	
14			0.366395E-05 78	78		0.300409E-07 10			0.211875E-06		35		0.386207E-06			0.258069E-03
15				101		0.150103E-02 101			0.191478E+00		101		0.548425E+01 50		0.116989E+09 (
10	101 000	0.1171102.01	101	101	0. 1007012-01	0.1001002 02 101	101	0.1000/02/02	0.1011102.00	101	101	0.0011002.01	0.0101202101 00	.000	0.1100002.00	3.1001E0E-01
16	30 210	0.904843E-12	0.271993E-12 89	89	0.173068E-12	0.612027E-13 2	23 23	0.213220E-12	0.675918E-13	3 41	41	0.317583E-12	0.677076E-13	500 505	0.419002E-0	2 0.251980E-04
10	17 357	0.276556E-12	0.376083E-13 101	101	0.919831E+13	0.132828E+04 10	101	0.165520E+00	0.317172E-01	101	101	0.835198E+01	0.296900E+00	500 505	0.728118E-01	0.130043E-03
10	10 210	0.289468E-14	0.212347E-14 34	34	0.900751E-12	0.346585E-12 2	22 22	0.340257E-13	3 0.133692E-13	3 30	30	0.314446E-12	0.866142E-13	500 505	NaN	NaN
10	11 231	0.352834E-15	0.764035E-16 48	48	0.853439E-12	0.297119E-12 2	23 23	0.159601E-12	2 0.396714E-13	34	34	0.271327E-12	0.495800E-13	500 505	NaN	NaN
10	9 189	0.00000E+00	0.000000E+00 101	101	0.192036E-03	0.289833E-05 39	39	0.306079E-13	0.380775E-15	30	30	0.213685E-12	0.414231E-14	500 505	0.594295E-01	0.480422E-04
10	10 210	0.202302E-16	0.173801E-16 19	19	0.482188E-12	0.479602E-12 1	8 18	0.315927E-12	2 0.312288E-12	2 16	16	0.303084E-12	0.307928E-12	500 505	0.700192E-04	0.813046E-06
10	101 2100	NaN	NaN 101 1	01	0.316228E+00 0	.123955E-13 101	101	0.316228E+00	0.471344E-07 1	101 1	01	0.316228E+00	0.931649E-12 5	00 505	0.316749E+00	0.361314E-02
10	22 462	0.315274E-12	0.426300E-10 101	101	0.553139E+12	0.145194E+06 1	01 101	0.136526E-03	3 0.260155E-01	1 101	101	0.207699E-0	1 0.181703E-01	500 505	0.114560E-0	1 0.146905E-03
10	11 231	0.464440E-16	0.938605E-17 33	33	0.724831E-12	2 0.216322E-12	222	0.650093E-12	2 0.150471E-12	2 31	31	0.169978E-12	0.382370E-13	500 505	0.298611E-03	0.918865E-06
10 9	11 231	0.333990E-13	0.202870E-15 101	101	0.245979E+04	0.117144E+02 3		0.330289E-12	0.113646E-13	101	101	0.637111E+05	0.157089E+03	500 505	0.171403E+01	0.871518E-04