Techniques for Counting

- Combinations
- Permutations
- Permutations with constraints

Permuations of subsets

The number of permutations of subsets of *k* elements selected from a set of *n* different elements is

$$P(n,r) = \frac{n!}{(n-k)!}$$

Combinations of subsets

The number of combinations that can be selected from n items is

$$\binom{n}{k} = \frac{n!}{k! \times (n-k)!}$$

Counting Problems

- Sampling without replacement.
- Factorials
- Permutations
- Combinations

Sampling without replacement

- Sampling is said to be "without replacement" when a unit is selected at random from the population and it is not returned to the main lot.
- The first unit is selected out of a population of size N and the second unit is selected out of the remaining population of N-1 units and so on.
- For example, if you draw one card out of a deck of 52, there are only 51 cards left to draw from if you are selecting a second card.

Sampling without replacement

A lot of 100 semiconductor chips contains 20 that are defective. Two chips are selected at random, without replacement from the lot.

• What is the probability that the first one is defective? (Answer: 20/100, i.e 0.20)

• What is the probability that the second one is defective given that the first one was defective? (Answer: 19/99)

• What is the probability that the second one is defective given that the first one was not defective?

(Answer: 20/99)

Sampling With Replacement

Sampling is called "with replacement" when a unit selected at random from the population is returned to the population and then a second element is selected at random. Whenever a unit is selected, the population contains all the same units.

- What is the probability of guessing a PIN number for an ATM card at the first attempt.
- Importantly a digit can be used twice, or more, in PIN codes.
- For example 1337 is a valid pin number, where 3 appears twice.
- We have a one-in-ten chance of picking the first digit correctly, a one-in-ten chance of the guessing the second, and so on.
- All of these events are independent, so the probability of guess the correct PIN is $0.1 \times 0.1 \times 0.1 \times 0.1 = 0.0001$

Factorials Numbers

A factorial is a positive whole number, based on a number n, and which is written as "n!". The factorial n! is defined as follows:

$$n! = n \times (n-1) \times (n-2) \times \ldots \times 2 \times 1$$

Remark $n! = n \times (n-1)!$

Example:

- $3! = 3 \times 2 \times 1 = 6$
- $4! = 4 \times 3! = 4 \times 3 \times 2 \times 1 = 24$

Remark 0! = 1 not 0.

Permutations and Combinations

Often we are concerned with computing the number of ways of selecting and arranging groups of items.

- A *combination* describes the selection of items from a larger group of items.
- A *permutation* is a combination that is arranged in a particular way.
- Suppose we have items A,B,C and D to choose two items from.
- AB is one possible selection, BD is another. AB and BD are both combinations.
- More importantly, AB is one combination, for which there are two distinct permutations: AB and BA.

Combinations

Combinations: The number of ways of selecting k objects from n unique objects is:

$${}^{n}C_{k} = \frac{n!}{k! \times (n-k)!}$$

In some texts, the notation for finding the number of possible combination is written

$${}^{n}C_{k} = \binom{n}{k}$$

How many ways are there of selecting two items from possible 5?

$${}^{5}C_{2}$$
 (also $\binom{5}{2}$) = $\frac{5!}{2! \times 3!}$ = $\frac{5 \times 4 \times 3!}{2 \times 1 \times 3!}$ = 10

Discuss how combinations can be used to compute the number of rugby matches for each group in the Rugby World Cup.

The Permutation Formula

The number of different permutations of r items from n unique items is written as ${}^{n}P_{k}$

$${}^{n}P_{k} = \frac{n!}{(n-k)!}$$

Permutations

Example: How many ways are there of arranging 3 different jobs, between 5 workers, where each worker can only do one job?

$$^{5}P_{3} = \frac{5!}{(5-3)!} = \frac{5!}{2!} = 60$$

A committee of 4 must be chosen from 3 females and 4 males.

- In how many ways can the committee be chosen.
- In how many cans 2 males and 2 females be chosen.
- Compute the probability of a committee of 2 males and 2 females are chosen.
- Compute the probability of at least two females.

Part 1

We need to choose 4 people from 7:

This can be done in

$${}^{7}C_4 = \frac{7!}{4! \times 3!} = \frac{7 \times 6 \times 5 \times 4!}{4! \times 3!} = 35 \text{ ways.}$$

Part 2

With 4 men to choose from, 2 men can be selected in

$${}^{4}C_{2} = \frac{4!}{2! \times 2!} = \frac{4 \times 3 \times 2!}{2! \times 2!} = 6$$
 ways.

Similarly 2 women can be selected from 3 in

$${}^{3}C_{2} = \frac{3!}{2! \times 1!} = \frac{3 \times 2!}{2! \times 1!} = 3$$
 ways.

Part 2

Thus a committee of 2 men and 2 women can be selected in $6 \times 3 = 18$ ways.

Part 3

The probability of two men and two women on a committee is

$$\frac{\text{Number of ways of selecting 2 men and 2 women}}{\text{Number of ways of selecting 4 from 7}} = \frac{18}{35}$$

- The probability of at least two females is the probability of 2 females or 3 females being selected.
- We can use the addition rule, noting that these are two mutually exclusive events.
- From before we know that probability of 2 females being selected is 18/35.

- We have to compute the number of ways of selecting 1 male from 4 (4 ways) and the number of ways of selecting three females from 2 (only 1 way)
- The probability of selecting three females is therefore $\frac{4\times1}{35} = 4/35$
- So using the addition rule

$$Pr($$
 at least 2 females $) = Pr($ 2 females $) + Pr($ 3 females

$$Pr($$
 at least 2 females $) = 18/35 + 4/35 = 22/35$

Permutations with Constraints

How many different four digit numbers greater than 5000 can be formed from the digits

if each digit can only be used once in any given number.

Permutations with Constraints

How many of these four digit numbers are odd, given they are greater than 5000?

2, 4, 5, 8, 9

Permutations with Constraints

Calculations using the Choose Operator

kobriendublin.wordpress.com

Twitter: @StatsLabDublin

For the positive integer n and non-negative integer k (with $k \le n$), the choose operater is calculated as follows:

$$\binom{n}{k} = \frac{n!}{k! \times (n-k)!}$$

Evansate Cherologium: 3

- \bullet $\binom{5}{2}$
- \circ $\binom{6}{3}$
- \bullet $\binom{6}{6}$
- \circ $\binom{10}{9}$

$$\binom{5}{2}$$

$$\binom{5}{0}$$

$$\binom{6}{3}$$

$$\binom{6}{6}$$

$$\binom{10}{1}$$

$$\binom{10}{9}$$

- The Venn Diagram shows the number of elements in each subset of set *S*.
- If P(A) = 3/10 and P(B) = 1/2, find the values of x and y

- The total number of items in the data set is x + y + 5
- There are x + 1 items in Area A
- There are x + y items in Area B
- We can say

$$P(A) = \frac{3}{10} = \frac{x+1}{x+y+5}$$

$$P(B) = \frac{1}{2} = \frac{x+y}{x+y+5}$$

Cross Multiplication

$$P(A) = \frac{3}{10} = \frac{x+1}{x+y+5}$$

Cross Multiplication

$$P(B) = \frac{1}{2} = \frac{x+y}{x+y+5}$$

Simultaneous Equations

- 1) 7x 3y = 5
- **2)** x + y = 5

Simultaneous Equations

- 7x 3y = 5
- x + y = 5