5 AUSSAGENLOGIK

5.1 INFORMELLE GRUNDLAGEN

Klammersparregeln bei aussagenlogischen Formeln

Beispiele

• P v Q A R steht für (P v (Q A R))

5.2 BOOLESCHE FUNKTIONEN

5.3 SEMANTIK AUSSAGENLOGISCHER FORMELN

Interpretationen von Mengen von Aussagevariablen

klar machen, dass es für jede Variablenmenge mit $k \in \mathbb{N}_+$ Aussagevariablen gerade 2^k Interpretationen gibt.

- Fälle k = 1, 2, 3 betrachten
- Wieviele Interpretationen gibt es bei *k* + 1 Variablen im Vergleich zu *k* Variablen?

Auswertung von Formeln:

meistens macht man das gleich für alle Interpretationen, wobei man sich nur die Aussagevariablen hinschreibt, die auch in der Formel vorkommen.

- Wenn man größere Formeln "auswerten" will, dann kann man Wahrheitswerte unter die Konnektive schreiben:
 - 1. Wahrheitswerte für die Variablen:

(P	^	Q)	٧	P
f		f		f
f		w		f
\mathbf{w}		f		W
\mathbf{w}		W		W

2. Wahrheitswerte für die Teilformel $(G \land H)$:

(P	^	Q)	V	P
f	f	f		f
f	f	w		f
w	f	f		W
W	W	W		W

3. Wahrheitswerte für die ganze Formel

(P	^	Q)	V	P
f	f	f	f	f
f	f	w	f	f
w	f	f	w	w
w	w	w	w	w

4. Man sehe die Äquivalenz von $(P \land Q) \lor P$ und P.

Implikation

- ausführlich erklärt; sehen Sie sich bitte die Folien noch mal an.
- we sentlich: $P \to Q$ ist äquivalent zu $\neg P \lor Q$
- Auswirkung auf Beweis von Aussagen der Form $A \rightarrow B$: Man muss nur etwas tun, wenn A wahr ist. (so etwas wird sehr oft vorkommen)

Äquivalenz von aussagenlogischen Formeln

- Man bespreche noch einmal, was äquivalente Aussagen sind.
- Beachte: Äquivalente Aussagen enthalten "meistens" die gleichen Aussagevariablen:
 - Die Formeln P und Q sind nicht äquivalent.
 - Denn es kann ja P wahr sein und Q falsch.
 - Ausnahmen sind so etwas wie z. B. $P \land \neg P$ und $Q \land \neg Q$