Name:		

MATH 3100H EXAM 1

February 3, 2017

INSTRUCTIONS: This is a closed book, closed notes exam. You are not to provide or receive help from any outside source during the exam. **None of the following are allowed**: notes, formula sheets, or electronic devices of any kind (including calculators, cell phones, etc.).

- Print your name clearly in the space provided.
- Read all of the questions carefully before starting to work.
- Give complete arguments and explanations unless otherwise indicated.
- Continue on the back of the **previous** page if you run out of space.
- Enjoy!

HONOR STATEMENT:

I have neither given nor received help on this exam, and all of the answers are my own.

Signature

Question	Points	Score
1	15	
2	25	
3	15	
4	20	
5	25	
Total:	100	

1. [15 points] Consider the sequence $\langle a_n \rangle$ defined recursively by $a_1 = 1$ and

$$a_{n+1} = a_n + \frac{1}{2^n}$$
 for all $n \in \mathbb{N}$.

Use induction to prove that $a_n = 2 - \frac{1}{2^{n-1}}$ for all $n \in \mathbb{N}$.

2. (a) [10 points] Carefully state the definition of convergence of a sequence $\langle a_n \rangle$ to the real number L.

(b) [15 points] Suppose that $\langle a_n \rangle$ is the sequence given by $a_n = \frac{2n^2 + n}{n^2 - 10}$. Use **the definition of convergence** to prove that $\lim_{n \to \infty} a_n = 2$. (No credit will be given for a solution using the limit rules of §1.5.)

3. [15 points] Suppose $\langle a_n \rangle$, $\langle b_n \rangle$ are sequences with

$$\lim_{n \to \infty} a_n = 10, \qquad \lim_{n \to \infty} b_n = 10.$$

Prove that there is an $N \in \mathbb{N}$ such that

$$|a_n - b_n| < 1$$
 for all $n \ge N$.

- 4. Let $\langle a_n \rangle$ and $\langle b_n \rangle$ be sequences of real numbers.
 - (a) [5 points] Give the definition of what it means to say $\langle a_n \rangle$ is **bounded**.

(b) [5 points] Prove that the product of two bounded sequences is also bounded. You may use any facts about bounded sequences proved in class.

(c) [10 points] Suppose that $\langle a_n \rangle$ is a bounded sequence. Suppose that there exists a natural number N such that

$$a_n = b_n$$
 whenever $n > N$.

Show that $\langle b_n \rangle$ is also bounded.

5. The goal of this problem is to prove a special case of the sequence ratio test. Suppose that $\langle a_n \rangle$ is a sequence of *positive* real numbers satisfying

$$\lim_{n \to \infty} \frac{a_{n+1}}{a_n} = \frac{1}{2}.$$

(a) [5 points] Show that there is an $N \in \mathbb{N}$ such that

$$\frac{a_{n+1}}{a_n} < 2/3 \qquad \text{for all } n \ge N.$$

(b) [12 points] Show that there is a real number K > 0 such that

$$a_n \le K(2/3)^n$$
 for all $n \in \mathbb{N}$.

- (c) [8 points] Use the result of (b) to prove that $\lim_{n\to\infty} a_n = 0$. You may use any theorem discussed in class (except the ratio test for sequences!), but make sure to indicate which results you use.
 - You may receive credit for this part regardless of whether you solved (b) correctly.