Explainability of Neural Networks (XAI)

CPSC680: Trustworthy Deep Learning

Rex Ying

Readings

- Readings are updated on the website (syllabus page)
- Lecture 4 readings:
 - https://arxiv.org/abs/1703.01365

Content

- Introduction to Explainability
- Explainability Settings
- Explainable Models
- Gradient-based Methods
- Methods using Surrogate Models
- Perturbation Methods

Content

- Introduction to Explainability
- Explainability Settings
- Explainable Models
- Gradient-based Methods
- Perturbation Methods

Explainability

- The black-box nature of deep learning makes it a major challenge to:
 - Understand what is learned by the ML model
 - Extract insights of the underlying data we are trying to model
- Explainable Artificial Intelligence (XAI) is an umbrella term for any research trying to solve the black-box problem for AI
- Why is it useful?
 - Enable users to understand the decision-making of the model
 - Gain trust from human users of the deep learning system
- Simple-to-read guide: <u>2004.14545.pdf (arxiv.org)</u>

Goal of Explainability

- Model's behavior might be different from the underlying phenomenon
- Explaining ground truth phenomenon

What are the characteristics of certain diseases in terms of imaging?

Explaining model predictions

Why does the model recommend no loan for Person X?

Forms of Explanation

Rex Ying, CPSC 471 / 571: Trustworthy Deep Learning

Example: Computer Vision

Explanation in Computer Vision:

A particular region of the image **displays the predicted class of objects** (cat / dog in this example)

Importance scores on pixels

computation process of CNN and the prediction

Example: Natural Language Processing

Explanation in Natural Language Processing: important tokens that lead to the prediction

Example: Graph Learning

Explanation in Graph Learning: an important **subgraph structure** and a small **subset of node features** that play a crucial role in GNNs prediction

Explanations for prediction at **node** \boldsymbol{v}

A: Import subgraph structure

B: important subset of features

Reasons for Explainability

Why do we need Explainability?

- Trust: Explainability is a prerequisite for humans to trust and accept the model's prediction.
- Causality: Explainability (e.g. attribute importance) conveys causality to the system's target prediction: attribute X causes the data to be Y
- Transferability: The model needs to convey an understanding of decision-making for humans before it can be safely deployed to unseen data.
- Fair and Ethical Decision Making: Knowing the reasons for a certain decision is a societal need, in order to perceive if the prediction conforms to ethical standards.

Content

- Introduction to Explainability
- Explainability Settings
- Explainable Models
- Gradient-based Methods
- Perturbation Methods

Explainability Settings (1)

By target:

- Instance-level: a local explanation for a single input x and the prediction \hat{y}
 - identify the important components of individual instances
- Model-level: a global explanation for a specific dataset D or classes of D
 - provide high-level insights into the model's decision-making behaviors

Example: model-level explanations for each class

Engelmann, Justin, Amos Storkey, and Miguel O. Bernabeu. "Global explainability in aligned image modalities."

Explainability Settings (2)

By applicability of the method:

model-specific: the machanism for generating explanation is model-dependent and works only for a specific model.

model-agnostic:

the machanism for generating explnation is **applicable** for many or even all model classes

Content

- Introduction to Explainability
- Explainability Settings
- Explainable Models
- Gradient-based Methods
- Perturbation Methods

Explainable Models: Linear regression

- Linear regression
 - Slope is explainable (how much does one variable affects a prediction)

- Each feature has an associated weights, indicating its importance
 - "A change of Δx amount to feature x_1 will result in increase of prediction by Δy

Explainable Models: Dimension Reduction

Dimension reduction

Dimension reduction allows us to visualize the training data distribution

- Decision boundary can be visualized and understood
 - Instances at the boundary characterizes how different classes are different

Explainable Models: Decision Tree

- Decision trees are very explainable!
- On every node of the decision tree, we understand a criteria for prediction
- We can perform statistics for each decision node
 - E.g. if the condition of the node is met, 80% of the instances will be classified as being positive

Explainable Characteristics

- What makes model explainable?
 - Importance values (for pixels, features, words, nodes in graphs ...)

• Attributions: straightforward relationships between prediction

and input features

Encourage concepts and prototypes

Content

- Introduction to Explainability
- Explainability Settings
- Explainable Models
- Gradient-based Methods
- Perturbation Methods

Gradient-based Explanation

 Gradient-based methods identify the saliency of input features based on gradient signals passed from output to input features

• Intuition: important features tend to have high gradients

We typically care about magnitude

Saliency Map (in the form of a heatmap) highlights the discriminative regions, revealing model's decision-making logic

class

Why Gradients?

- The optimization landscape of deep networks is very complex and a global scope is no longer possible
- Gradient is a local approximation of the slope
- Each dimension of the gradient vector can indicate how much the prediction is impacted by the input

Grad-CAM (1)

Gradient-weighted Class Activation Map (Grad-CAM):

 y_c : the score for class c (before the softmax)

 A_k : feature activation map with size $m \times n$

Architecture of CNN

gradients of the output w.r.t. the last convolutional layer

Importance score $\alpha_{k,c}$ for activation map A_k and class c:

$$\alpha_{k,c} = \frac{1}{m \cdot n} \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\partial y_c}{\partial A_{k,i,j}}$$

 $A_{k,i,j}$: value at (i,j) in the $m \times n$ feature map A_k

Saliency map for class *c*:

$$map_c = \text{ReLU}(\sum_{k} \alpha_{k,c} A_k)$$

map_c has the same dimension as the input image

Why ReLU?

Grad-CAM (2)

Example: class 0 is "cat"

Important score $\alpha_{k,0} = \frac{1}{m \cdot n} \sum_{i=1}^{m} \sum_{j=1}^{n} \frac{\partial y_0}{\partial A_{k,i,j}}$

 A_k

(of the same size as the original image)

Saliency map of "cat": $map_0 = ReLU(\alpha_{0.0})$ + $\alpha_{1,0}$ + ... + $\alpha_{k,0}$ A_0 A_1

 A_k : feature activation map with size $m \times n$

corresponds to a pixel on the original image

Visualization of the Saliency map of "cat":

Grad-CAM: Evaluation

Localization Evaluation:

- Given an image, first obtain class predictions from the network
- Generate Grad-CAM maps for each of the predicted classes
- Binarize with threshold of 15% of max intensity

Grad-CAM Grad-CAM

Localize the man and the pizza (ignoring the woman)

Localize the flying kites (despite their small sizes)

A group of people flying kites on a beach

A man is sitting at a table with a pizza

Visual Explanations highlight image regions that are important for producing the captions

Grad-CAM:Comparison to DenseCap

Localizations of a global caption generated by Grad-CAM:

DenseCap: jointly localizes and generates captions for salient regions in each image.

Localization of DenseCap: bounding boxes for regions of interest

Localization of Grad-CAM: more fine-grained details with importance values

Grad-CAM: VQA Evaluation

- Visual Question Answering (VQA): VQA pipelines consist of a CNN to process images and a language model for questions. The model will predict the answer to the question.
- Grad-CAM: visualize salient regions over the image the explain the answer

Rex Ying, CPSC 471 / 571: Trustworthy Deep Learning

Grad-CAM: Comparison to Human Attention

- Use the rank correlation to compare the Grad-CAM visualizations and Human attention maps over visual question answering pairs
- Correlation: 0.136
- statistically higher than chance or random attention maps (zero correlation)

Human Attention:

<u>Das et. al</u> collected human attention maps for a subset of VQA dataset.

These maps have **high intensity** where

These maps have **high intensity** where **humans looked** in the image in order to answer a visual question.

Sensitivity of Gradients

- Saliency maps using a vanilla gradient are sensitive to small perturbations in the input instance.
 - Adding a small perturbation may change the interpretation significantly, even though the prediction is unchanged.

Integrated Gradients (1)

• Integrated Gradients (IG): given a reference (baseline) input x^0 , the integrated gradient of the model f w.r.t. the i-th feature x_i for an input x:

$$IG_i(\mathbf{x}) = \left(x_i - x_i^0\right) \int_0^1 \frac{\partial f(\mathbf{x}^0 + \boldsymbol{\alpha}(\mathbf{x} - \mathbf{x}^0))}{\partial x_i} d\boldsymbol{\alpha}$$

• x: input; x^0 : baseline input; x_i : i-th feature of x; x_i^0 : i-th feature of x^0

• Integral path: $\gamma(\alpha) = x^0 + \alpha \times (x - x^0), \alpha \in [0,1]$

• The reference (baseline) input: Comparison to saliency?

a black image or a zero embedding vector

 IG_i : sensitivity of f to changes in the i-th feature from x^0 to x along $\gamma(\alpha)$ in direction i Higher $IG_i \Leftrightarrow$ Higher importance of the i-th feature

Integrated Gradients (2)

• IG can be approximated by a Riemann summation of the integral

$$IG_{i}(\mathbf{x}) \approx \left(x_{i} - x_{i}^{0}\right) \frac{1}{M} \sum_{k=1}^{M} \frac{\partial f\left(\mathbf{x}^{0} + \frac{k}{M}(\mathbf{x} - \mathbf{x}^{0})\right)}{\partial x_{i}}$$

• M is the number of steps in the Riemann approximation of this integral

(recommended M: 20 to 300 steps)

Observation: Integrated Gradients can better reflect distinctive features of the input image

Top label: starfish Score: 0.999992

Top label: reflex camera

Integrated Gradients

gradients

Sensitivity of Integrated Gradients

Integrated Gradients is still vulnerable to adversarial noise.

Sensitivity of Integrated Gradients

- Integrated Gradients is still vulnerable to adversarial noise.
- However, Integrated Gradients is more robust than Vanilla Gradient-based methods

The y-axis is the correlation of the Salien cysmap at x_0 and at perturbed input $x_0 + \delta$

Comparison of IG and Grad-CAM

- IG is more **flexible** in the setting than Grad-CAM
 - Adjustable parameters: baseline input, number of steps M, etc.
- IG satisfies the "sensitivity" atom by introducing a baseline input
 - "sensitivity" atom: if input x differs from x' along feature x_i only, and the prediction $f(x) \neq f(x')$. Then x_i should have a non-zero importance score.
 - Grad-CAM might generate the same saliency maps for x and x'
- IG is more robust to noise / small perturbations on the input
 - The saliency maps of Grad-CAM might change drastically due to small variation of input (e.g., for input x and perturbed input x', the prediction f(x) = f(x'), the saliency maps differ greatly)
- IG has larger computation complexity.

Content

- Introduction to Explainability
- Explainability Settings
- Explainable Models
- Gradient-based Methods
- Perturbation Methods
 - When do we need black-box explainability?
 - How should we tackle black-box explainability?

Perturbation-based Explanation

Perturbation methods

- Post-hoc, model-agnostic explanation for black-box models
- Use perturbation (altering or removing the input features) to identify features that can greatly influence predictions
- Intuition: the model's performance decreases dramatically when the model does not have access to the most relevant information.
- The performance drop can be used to create a sensitivity heatmap to visualize the importance of each portion

Discussion: How are these techniques related to adversarial attacks?

Principle of Perturbation-based Explanation

Occlusion Sensitivity

portions of the input

image with a grey patch

• Occlusion Sensitivity: measure the sensitivity of the model's output to occlusion in different regions by a small grey patch

Sensitivity of the **Sensitivity of the Strongest** Label **Input image** probability of correct class feature map to the occlusion **Strongest feature map:** Consistently corresponds Pomeranian the feature map with to the dog's face the largest values in the top convolution layer Why different blue areas: **Sensitivity:** the change of Car Wheel the final prediction relies weak the value to the occlusion on multiple feature maps sensitivity A woman's face ⇒ the strongest **Afghan Hound** strong feature map The dog ⇒ the final prediciton sensitivity occlude different

Rex Ying, CPSC 471 / 571: Trustworthy Deep Learning

Meaningful Perturbation and Evaluation

- Other types of **perturbation** [1]:
 - Blur: blurring the region area
 - Constant: replacing with a constant value
 - Noise: adding noise to the region

[1] Fong, Ruth C., and Andrea Vedaldi. "Interpretable explanations of black boxes by meaningful perturbation."

Area over Perturbation Curve (AOPC): to evaluate the perturbation methods

Issues with Occlusion and Perturbation

- Efficiency: occlusion at token / pixel level is very time-consuming
 - Too many forward propagations are needed
- Correlation is not modeled well
 - E.g. Presence of Part A "or" part B results in prediction of a class
- The shape of the occluding patch is pre-defined

The size of the **grey patch** is always the same – **same granularity**

Removing one of the patch may not have much effect on the logits

Explanation as Masks

- The learnable mask consists of values between 0 and 1
- $\operatorname{argmin}_{M} f(\phi(x)) + g(M)$

Masked prediction Regularization

Original input

flute: 0.9973

Decrease in model confidence after masking

flute: 0.0007

Explanation of "flute" class in this instance

Learned Mask

Explanation as Masks

- The learnable mask consists of values between 0 and 1
- $\operatorname{argmin}_M f(\phi(x)) + g(M)$, $0 \le M \le 1$ Mask M is randomly initialized Masked prediction Regularization

- Replace the masked portion of the input
 - $\phi(x) = x \odot M + x^0 \odot (1 M)$
- Control the desirable properties of the mask
 - $g(M) = \lambda_1 ||1 M|| + \sum_u \nabla M(u)$

What's the rationale behind g(M)?

Image gradient (difference between adjacent pixels)

Comparison with Other Methods

Does Masking Solve These Challenges?

- Efficiency: occlusion at token / pixel level is very time-consuming
 - Too many forward propagations are needed
- Correlation is not modeled well
 - E.g. Presence of Part A "or" part B results in prediction of a class
- The **shape** of the occluding patch is pre-defined

The size of the **grey patch** is always the same – **same granularity**

Removing one of the patch may not have much effect on the logits

What are more issues of maskingbased methods?

Problems with Mask Explanations

Efficiency

- Also slow when the input is large (too many pixels, tokens, nodes etc.)
- Requires optimization for generating explanation for every instance

Stability

- Explanation can vary across different runs depending on random seed of the optimization
- Mask can get stuck in local optimum instead of global optimum

Robustness

- The process is analogous to the problem of finding adversarial examples
- Explanations might not provide the true insight!

Summary

- The goal of XAI is to enable users to **understand the decision-making** of the model and **gain the trust** of human users of the deep learning system.
- The explanation for a DL system can be categorized as being model-level or instance-level; ante-hoc or post-hoc; model-specific or model-agnostic.
- Explainable Models include decision trees, linear models, etc.
- Gradient-based Explanation: Saliency, Grad-CAM, Integral gradient
- The change of prediction to **perturbation** over individual regions reveals the importance of the specific region
 - Occlusion and mask-based optimization
- All methods introduced today are instance-level explainability methods

Q & A