

Implementierung eines einfachen Lindenmayer-Systems

Abschlusspräsentation

vorgelegt von: Sebastian Seidel, Aniket Rodrigues, Laurids von Emden

Leiter des Fachgebiets: Prof. Dr.-Ing. Clemens Gühmann

Betreuer: M. Sc. Daniel Thomanek

Agenda

- Einführung und Projektziel
- Wie Lindenmayer-Systeme funktionieren
- Entwicklungsziele
- Vorstellung der Software
- Softwaretest
- Fazit und Ausblick

Einführung und Projektziel

Allgemein übergeordnete Projektziele:

- Möglichkeit der Prädiktion des Pflanzenwachstums entlang von Bahnstrecken
- Voraussagemöglichkeit, wann die Bepflanzung die geometrischen Grenzen des Regellichtraums erstmalig verletzen wird
- Zeitplanung von Pflanzenschnitt und Prognostizierung, von Maßen für die zurückzuschneidende Biomasse

Lindenmayer-Systeme können diese Projektziele auf lange Sicht erfüllen

https://de.wikipedia.org/wiki/Lichtraumprofil

Warum Lindenmayer-Systeme und wie funktionieren sie?

"After the incorporation of geometric features, plant models expressed using L-systems became detailed enough to allow the use of computer graphics for realistic visualization of plant structures and developmental processes."

Prusinkiewicz, P. & Lindenmayer, A. (2004) "The Algorithmic Beauty Of Plants"

- ► L-System ist mathematischer Formalismus zur Erzeugung von Fraktalen
- L-System = Ersetzungssystem: Rekursives Ersetzen eines Objekts durch bestimmte vordefinierte Regeln (Iteration einer bestimmten Schleife mit vorgegebenen Formeln)
 - Ergebnis: Zeichenkette (abstrakte Liste)
- Grafische Darstellung der Zeichenkette: Mittels Turtle-Grafik
 - Stifttragender Roboter auf Zeichenebene führt einfache Kommandos aus

Beispiel: Koch-Konstruktion

Startwert:

Ersetzungsbefehl: $F \rightarrow F+F--F+F$

Winkel: 60°

Iterationen: 4

Entwicklungsziele

- Recherche zu vorhandenen Lindenmayer-System Implementierungen
 - Gewählte Programmiersprachen (GitHub):
 - 1) Python
 - 2) Java
 - 3) JavaScript
 - 4) Delphi (auch Object Pascal genannt)

Für jede Programmiersprache wurden

drei Quellen verwendet und

entsprechend getestet

- Auswahlkriterien betrachteten Quellcode:
 - 1) Performance
 - 2) Strukturellen Aufbau
 - 3) Übersichtlichkeit des Quellcodes
 - a) Einfaches Verständnis
 - b) Anpassbarkeit

Entwicklungsziele

- Arbeit mit der Software:
 - Anpassen einer ausgewählten Implementierung
 - Visuelle Darstellung von Pflanzenwuchs in verschiedenen Wachstumsstadien
 - Gesamtes Wachstum als kontinuierliche Simulation
 - Erstellung einer GUI
 - 1) Eingabefeld
 - 2) Grow-Button: Für die kontinuierliche Simulation
 - 3) Prozentsatz des simulierten kontinuierlichen Pflanzenwachstums
 - 4) Show-Step: Einsehen des Wachstums nach jeweiliger Iteration
 - 5) Reset-Button
- Dokumentation der Rechercheergebnisse, des Evolutionsprozesses der Software, Erstellen von Wartungs- und Benutzerhandbuch

Vorstellung der Software – Benötigte Librarys

IDE: Spyder v5.1.5 (Anaconda 3)

Python: v3.9.7

1. Erstellung und Bearbeitung der GUI

► Library: tkinter

► Command: conda install -c anaconda tk

2. Exportieren des Bildes vom Canvas (= Zeichenfläche des Turtles)

Library: ghostscript

► Command: conda install -c conda-forge ghostscript

3. Laden der gespeicherten Bilder

Library: pillow

► Command: conda install -c conda-forge pillow

Vorstellung Software – Ablauf (Benutzereingabe)

Vorstellung Software – Ablauf (zukünftig)

[...]

Falsche Eingabe

Features der GUI (Prozentsatz des simulierten kontinuierlichen Pflanzenwachstums)

Features der GUI (Show-Step: Einsehen des Wachstums nach jeweiliger Iteration)

Simulation des Pflanzenwachstums (Beispiel 1):

Axiom: F

• Rule: F=FF+[+F-F-F]-[-F+F+F]

Iteration: 4Angle: 22.5

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Simulation des Pflanzenwachstums (Beispiel 2):

• Axiom: F

• Rule: F=F[+F]F[-F]F

Iteration: 4Angle: 25.7

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Fazit und Ausblick

- ► Recherche zu: Simulation von Pflanzenwuchs ✔
- Erste Implementierung einer Software
- ▶ Dokumentation der Ergebnisse (✓) bis 14.2.
- Projektplanung und zeitlicher Ablauf
- Mit Dokumentation Grundlage für weitere Gruppen gelegt
- Software Modular und übersichtlich aufgebaut
- GUI leicht erweiterbar
- Aufkommende Themen:
 - "Mehrere Bäume in einem Bild"
 - Bezug zu Bahnverkehr herstellen, Regellichtraum einbeziehen

Vielen Dank für Ihre Aufmerksamkeit!