Lecture 5: Temporal Difference Learning and Monte-Carlo Methods

B. Ravindran

Dynamic Programming

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) \left[r + \gamma v_{\pi}(s') \right]$$

Monte-Carlo RL

$$v_{\pi}(s) \doteq \mathbb{E}_{\pi}[G_t \mid S_t = s]$$

Best of Both Worlds!

Simplest 'TD' Method

$$v_{\pi}(s) = R_{t+1} + \gamma v_{\pi}(s')$$

DP vs MC vs TD

Bootstrapping and Sampling

- Bootstrapping: Update using an estimate
 - DP and TD bootstrap
 - Monte Carlo does not bootstrap X

- Sampling: Update using samples
 - TD and Monte Carlo sample
 - \Box DP (typically) does not sample \times

Bootstrapping and Sampling

Monte-Carlo RL

- Learning directly from sample episodes of experience
- Does not use a known model and is model-free

- MC does not use bootstrapping
- □ Value functions are calculated as mean of discounted returns (G_{+})

Monte-Carlo Prediction

First-visit MC method estimates V(s) as the average of the returns following first visits to s

Every-visit MC method estimates V(s) as the average of the returns following all visits to s

Monte-Carlo Prediction: First Visit

```
Input: a policy \pi to be evaluated
Initialize:
     V(s) \in \mathbb{R}, arbitrarily, for all s \in \mathcal{S}
     Returns(s) \leftarrow \text{an empty list, for all } s \in S
Loop forever (for each episode):
     Generate an episode following \pi: S_0, A_0, R_1, S_1, A_1, R_2, \ldots, S_{T-1}, A_{T-1}, R_T
     G \leftarrow 0
     Loop for each step of episode, t = T-1, T-2, \ldots, 0:
          G \leftarrow \gamma G + R_{t+1}
          Unless S_t appears in S_0, S_1, \ldots, S_{t-1}:
               Append G to Returns(S_t)
               V(S_t) \leftarrow \operatorname{average}(Returns(S_t))
```


Monte-Carlo Control: First Visit

```
Algorithm parameter: small \varepsilon > 0
Initialize:
     \pi \leftarrow \text{an arbitrary } \varepsilon\text{-soft policy}
     Q(s, a) \in \mathbb{R} (arbitrarily), for all s \in \mathcal{S}, a \in \mathcal{A}(s)
     Returns(s, a) \leftarrow \text{empty list, for all } s \in \mathcal{S}, \ a \in \mathcal{A}(s)
Repeat forever (for each episode):
     Generate an episode following \pi: S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T
    G \leftarrow 0
    Loop for each step of episode, t = T-1, T-2, \ldots, 0:
         G \leftarrow \gamma G + R_{t+1}
          Unless the pair S_t, A_t appears in S_0, A_0, S_1, A_1, ..., S_{t-1}, A_{t-1}:
              Append G to Returns(S_t, A_t)
              Q(S_t, A_t) \leftarrow \text{average}(Returns(S_t, A_t))
              A^* \leftarrow \operatorname{argmax}_a Q(S_t, a)
                                                                                         (with ties broken arbitrarily)
              For all a \in \mathcal{A}(S_t):
                        \pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}
```


Temporal Difference Learning

Temporal Difference

"If one had to identify one idea as central and novel to RL, it would undoubtedly be TD learning"

$$V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right]$$

- Simple rule to explain complex behaviors
- Has had profound impact in behavioral psychology and neuroscience!

Temporal Difference

- TD methods do not require a model of the environment, only experience
- TD methods can be fully incremental (bootstrapping)
 - You can learn before knowing the final outcome
 - Less memory & peak computation
 - You can learn without the final outcome
 - From incomplete sequences
- ☐ TD methods thus combine individual advantages of DP and MC

TD Prediction

- Policy Evaluation (the prediction problem): for a given policy, compute the state-value function
- □ No knowledge of p & r, but access to the real system, or a "sample" model assumed
- Uses bootstrapping and sampling
- \Box The simplest TD method, TD(0):

$$V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right]$$

Stochastic Averaging Rule

$$E(x) \approx \frac{1}{n} \sum_{i=1}^{n} x_i$$

Let \overline{x}_n be the average of the first *n* samples

$$\overline{x}_{n+1} = \frac{1}{n+1} \left(x_{n+1} + n\overline{x}_n \right)
= \frac{1}{n+1} \left(x_{n+1} + n\overline{x}_n + \overline{x}_n - \overline{x}_n \right)
= \frac{1}{n+1} \left((n+1)\overline{x}_n + \left(x_{n+1} - \overline{x}_n \right) \right)
= \overline{x}_n + \frac{1}{n+1} \left(x_{n+1} - \overline{x}_n \right)
= \overline{x}_n + \alpha \left(x_{n+1} - \overline{x}_n \right)$$

new estimate = old estimate + α (new sample - old estimate)

$$V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right]$$

TD Update Example

Assuming:

reward,
$$r$$
, $A \rightarrow B:0$

$$V(A) = V(A) + \alpha [r + \gamma V(B) - V(A)]$$

$$\alpha$$
:0.2

$$\gamma : 0.9$$

$$V(A) = 0.5 + 0.2[0 + 0.9 * 0.8 - 0.5] = 0.544$$

TD Control

- ☐ The control problem: approximate optimal policies
- Recall the idea of GPI:

- Evaluation: use TD(0) to evaluate value function
- Improvement: make policy greedy wrt current value function
- Note that we estimate action values rather than state values in the absence of a model

ε-Greedy Policies

$$A^* \leftarrow \operatorname{arg\,max}_a Q(S_t, a)$$
For all $a \in \mathcal{A}(S_t)$:
$$\pi(a|S_t) \leftarrow \begin{cases} 1 - \varepsilon + \varepsilon/|\mathcal{A}(S_t)| & \text{if } a = A^* \\ \varepsilon/|\mathcal{A}(S_t)| & \text{if } a \neq A^* \end{cases}$$

Any ε -greedy policy with respect to Q following π is an improvement over any ε -soft policy π is assured by the policy improvement theorem

Summary: DP vs MC vs TD

	Bootstrapping?	Sampling?	Bias/Variance
DP		X	-
МС			Low Bias, High Variance
TD		X	High Bias, Low Variance

Sarsa

Bellman Equation

$$q_{\pi}(s, a) \doteq \sum_{s', r} p(s', r|s, a) [r + \gamma \sum_{a'} \pi(a'|s') q(s', a')]$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

Temporal Difference Error

Sarsa: On-Policy TD Control

On-policy control: Improve the behaviour policy

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right]$$

- ☐ Convergence is guaranteed as long as it is GLIE (Greedy in the Limit with Infinite Exploration)
 - \Box all state-action pairs are visited an ∞ no. of times
 - ☐ the policy converges in the limit to the greedy policy

Sarsa: On-Policy TD Control

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0

Initialize Q(s,a), for all s \in S^+, a \in \mathcal{A}(s), arbitrarily except that Q(terminal,\cdot) = 0

Loop for each episode:

Initialize S

Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)

Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., \varepsilon-greedy) improvement Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A)\right] evaluation S \leftarrow S'; A \leftarrow A'; until S is terminal
```


Sarsa: On-Policy TD Control

Every time-step:

Policy evaluation Sarsa, $Q \approx q_{\pi}$

Policy improvement ϵ -greedy policy improvement

Q-Learning

Bellman Optimality Equation

$$q_*(s, a) = \mathbb{E}\left[R_{t+1} + \gamma \max_{a'} q_*(S_{t+1}, a') \mid S_t = s, A_t = a\right]$$

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

Temporal Difference Error

Q-Learning: Off-Policy TD Control

- ☐ In off-policy control, we have two policies:
 - behavior policy used to generate behavior
 - estimation policy the policy that is being evaluated and improved

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

Q-Learning: Off-Policy TD Control

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in \mathbb{S}^+, a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SLoop for each step of episode: Choose A from S using policy derived from Q (e.g., ε -greedy) Take action A, observe R, S' $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]$ $S \leftarrow S'$ until S is terminal

Q-Learning: Off-Policy TD Control

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in \mathbb{S}^+, a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode:

Initialize SLoop for each step of episode:

Choose A from S using polymetric derived from S (Figure 4)

Take action A, observe R, S' $Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma \max_a Q(S',a) - Q(S,A)\right]$ $S \leftarrow S'$ until S is terminal

Cliff Walking: SARSA vs Q-learning

- R = -1 on all transitions except those into the region marked "The Cliff"
- ☐ Stepping into this region incurs a reward of -100 and the agent restarts

n - step Bootstrapping

n-Step TD Prediction

- Consider TD(0): $V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) V(S_t) \right]$
- Here, the target (for estimating TD error) contains only the next step reward: $G_{t:t+1} \doteq R_{t+1} + \gamma V_t(S_{t+1})$
- \Box Alternatively, we can consider the rewards received in the next n steps:

$$G_{t:t+n} \doteq R_{t+1} + \gamma R_{t+2} + \dots + \gamma^{n-1} R_{t+n} + \gamma^n V_{t+n-1}(S_{t+n})$$

The extreme would be to consider rewards till the end of the episode (Monte Carlo)

n-Step TD Prediction

*n-*Step TD Prediction - Example

*n-*Step TD Prediction - Example

From n-Step TD to TD(λ)

Instead of using 1 n-step backup, we can consider an average of multiple n-step backups

$$lacksquare$$
 Example: $G_t^{avg}=rac{1}{2}\,G_{t:t+10}+rac{1}{2}\,G_{t:t+20}$

estimates of the same value - V(s,)

In TD(λ), the average contains all the n-step backups each weighted proportional to λ^{n-1} , where $0 \le \lambda \le 1$.

$TD(\lambda)$

In TD(λ), the average contains all the n-step backups each weighted proportional to λ^{n-1} , where $0 \le \lambda \le 1$.

λ-return:

$$G_t^{\lambda} \doteq (1 - \lambda) \sum_{n=1}^{\infty} \lambda^{n-1} G_{t:t+n}$$

decreasing weight

$TD(\lambda) \lor s n-step TD$

The results with the TD(λ) are slightly better at the best values of α and λ , and at high α

TD(λ) - Forward View

- \Box TD(λ) as a *forward* view algorithm
- Wait till the episode terminates
- ☐ Then for each state visited, we look *forward* in time to all the future rewards and combine them

Eligibility Traces

- ☐ To implement $TD(\lambda)$ on-the-fly we use the concept of eligibility traces
- These are variables associated with each state denoted by $E_{t}(s)$
- They indicate the degree to which each state is eligible for undergoing learning changes
- On each step: $E_t(s) = \begin{cases} \gamma \lambda E_{t-1}(s) & \text{if } s \neq S_t; \\ \gamma \lambda E_{t-1}(s) + 1 & \text{if } s = S_t, \end{cases}$

TD(λ) using Eligibility Traces

```
Initialize V(s) arbitrarily (but set to 0 if s is terminal)
 Repeat (for each episode):
    Initialize E(s) = 0, for all s \in S
    Initialize S
    Repeat (for each step of episode):
        A \leftarrow action given by \pi for S
        Take action A, observe reward, R, and next state, S'
\delta \leftarrow R + \gamma V(S') - V(S)
        E(S) \leftarrow E(S) + 1
                                               (accumulating traces)
        For all s \in S:
  V(s) \leftarrow V(s) + \alpha \delta E(s)
          E(s) \leftarrow \gamma \lambda E(s)
        S \leftarrow S'
    until S is terminal
```

TD(λ) - Backward View

- \Box TD(λ) as a **backward** view algorithm
- At each moment the current TD error is assigned it backwards to each prior state according to how eligible it is
- Need not wait for the episode to terminate!

Speedup in Policy Learning

Path taken

Action values increased by one-step Sarsa

Action values increased by 10-step Sarsa

Action values increased by Sarsa(λ) with λ =0.9

TD(0) vs $TD(\lambda)$

0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00					0.00				0.00
0.00	0.00	0.00	0.00 +		0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00		0.00 +	0.00 ♦ R-1.0	0.00	0.00	0.00
0.00	0.00	0.00	0.00		0.00 +	0.00 •	0.00	0.00 *	0.00
0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00 •	0.00
0.00	0.00	0.00	0.00 ♠		0.00 ♣	0.00 A	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Example grid world domain

Grey cells = obstacles

Notice R = 1.0 for centre cell with most surrounding cells having R = -1.0

Cell values = value function estimates

TD(0) vs $TD(\lambda)$

0.12	0.14	0.17	0.20	0.22	0.22	-0.00	-0.04	-0.03	-0.03
			1	1	1	Ţ	#	#	7
0.10	0.16	0.20	0.23	0.27	0.31	0.21	-0.04 +#	-0.03	-0.03
-0.05					0.36				-0.02 1
-0.05 ‡	-0.05 *	-0.05 4	-0.77		0.41	0.47	0.53	0.37	0.03
-0.05 ‡	-0.05 ‡	-0.04 **	-0.04 **		-0.07 R -1.♣	-0.48 R -1.0	0.60	0.51	0.25
-0.04 *	-0.04 *	-0.04 ‡	-0.04		1.09 ← R 1.0	-0.04 ← R -1.0	0.68	-0.44 R -1.0	0.0‡5
-0.04 + +	-0. 9 4	-0.04 ‡	-0.04		0.97		0.77	-0.39 R -1.0	-0.01 ‡
-0.04 ‡	-0.04	-0.03 ‡	-0.68 R-1.0		-0. ‡ 0	-0. ‡ 6	0.67	0.34	0.05
-0.04 ‡	-0.03 ***	-0.00	0.05	0.16	0.29	0.42	0.53	0.21	-0.01 +‡
-0.04	-0.04 \	-0.03	-0.02	-0.01	0.013	0.110	0.11	-0.01	-0.01

Algo: Q - learning

$$\gamma = 0.9, \varepsilon = 0.2, \alpha = 0.1, \lambda = 0$$

TD(0) vs $TD(\lambda)$

0.20	0.22	0.22	0.25	0.20	0.22	0.12	-0.02	0.02	0.02
0.20	0.23	0.22	0.25]	0.29]	0.33	1	1	-0.03	-0.03 ↑
0.23	0.25	0.28	0.31	0.34	0.38	0.33	0.02	-0.03 ‡	-0.03 ‡
0.210					0.41				-0.01 ‡
0.0	-0.04 ₹→	-0.04	-0.48		0.45	0.49	0.54	0.47	0.06
-0.04 ‡	-0.04 *	-0.04 ‡	-0.04		0.13 R -1.	-0.17 R -1.0	0.59	0.52	0.22
-0.04	-0.04 ←≭	-0.04	-0.04		0,05 R 1.0	0.14 ← R -1.0	0.65	-0.19 ← R -1.0	0.0 5
-0. \$ 4	-0.04	-0.04 ‡	-0.04 4 +		0.87	0.78	0.71	-0.12 -0.12	-0.00 ‡
-0.04 \$	-0.04 •*	-0.04	-0.48 R-1.0		0.0 9 R-1.0	-0. 0 2	0.62	0.38	0.12 ← X
-0.04 ¥→	-0.04 ‡	-0.04 ↔	-0.03 ★→	-0.02 ₹→	0.02	0.09	0.216	0.0‡2	-0.02 ←≭
-0.04	-0.04 ++	-0.04	-0.04	-0.03 	-0.03 •	-0.02	-0.02 ***	-0.02	-0.02 -1

Algo: Q - learning

$$\gamma = 0.9, \varepsilon = 0.2, \alpha = 0.1, \lambda = 0.2$$

Importance Sampling

More on Off-Policy Learning

- **L** Evaluate target policy π(a|s) to compute $v_π(s)$ or $q_π(s, a)$
- \Box Follow behaviour policy $\mu(a|s)$
- Assumption of coverage:
 - \Box Every action taken under π is also taken, at least occasionally, under μ
 - \Box $\pi(a|s) > 0$ implies $\mu(a|s) > 0$
- \Box e.g., π can be greedy while μ can be ε -greedy

Importance Sampling

☐ A general technique for estimating expected values under one distribution given samples from another.

$$\mathbb{E}_{X \sim P}[f(X)] = \sum_{X \sim P} P(X)f(X)$$

$$= \sum_{X \sim Q} Q(X) \frac{P(X)}{Q(X)} f(X)$$

$$= \mathbb{E}_{X \sim Q} \left[\frac{P(X)}{Q(X)} f(X) \right]$$

Off-Policy MC with Weighted Importance Sampling

Importance-sampling ratio:

$$\rho_t^T = \frac{\prod_{k=t}^{T-1} \pi(A_k|S_k) p(S_{k+1}|S_k, A_k)}{\prod_{k=t}^{T-1} \mu(A_k|S_k) p(S_{k+1}|S_k, A_k)} = \prod_{k=t}^{T-1} \frac{\pi(A_k|S_k)}{\mu(A_k|S_k)}.$$

Weighted average return for V:

$$V(s) \doteq \frac{\sum_{t \in \Im(s)} \rho_{t:T(t)-1} G_t}{|\Im(s)|}$$