COMP229: Introduction to Data Science Lecture 7: data represented by graphs

Vitaliy Kurlin, vitaliy.kurlin@liverpool.ac.uk Autumn 2018, Computer Science department University of Liverpool, United Kingdom

Data from networks or graphs

The past lectures discussed data (and invariants) given geometrically as a cloud of points. This data often requires a "hard-to-find" metric (distance).

Facebook (or other social nets) may represent their users not as points with real coordinates, but as a network, say with friendship links.

In the next 6 lectures we will study how to classify and visualise these networks: what objects are "the same" and can we draw them?

Graphs with vertices and edges

Definition 7.1. A (unoriented) *graph* is a pair (V, E), where V is a finite set of |V| vertices, E is a set of |E| edges (unordered pairs of vertices).

|V| = number of vertices, |E| = number of edges. Other names: graph = network, vertex = node, edge = link (or connection), oriented = directed.

Example. The graph with a single edge connecting two vertices (labelled by 1,2) can be described by the pair (1,2) or (2,1). The list (1,2), (2,3), (3,1) represents a triangular cycle.

More conventions and examples

For any vertex v, the pair (v, v) represents a *loop* at v (one edge connecting a vertex to itself).

For |V| = 2, the list of (1,1) denotes the graph consisting of one loop and the isolated vertex 2.

For vertices u, v, the repeated pair (u, v), (u, v) in a list represents a double edge between u, v.

Questions: graph drawings and lists

Draw the graphs represented by these lists:

1)
$$V = \{1\}, E = \{(1, 1), (1, 1)\};$$

2)
$$V = \{1, 2\}, E = \{(1, 2), (1, 2), (2, 1)\};$$

3)
$$V = \{1, 2, 3, 4\}, E = \{(1, 3), (2, 3), (2, 1)\}.$$

4)
$$V = \{1, 2, 3, 4\}, E = \{(1, 3), (2, 3), (4, 2), (4, 1)\}.$$

Write down representations of these graphs:

Answers: graph drawings and lists

The lists in the last slide represent these graphs:

Graph K_5 has 5 vertices and 10 edges (1, 2), (1, 3), (1, 4), (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (3, 5), (4, 5).

 K_5 is a complete graph when every vertex is connected by one edge with every other vertex.

Graph $K_{3,3}$ has 6 vertices and 9 edges (1, 2), (1, 4), (1, 6), (3, 2), (3, 4), (3, 6), (5, 2), (5, 4), (5, 6). Each odd vertex is connected with each even vertex.

Combinatorial equivalence of graphs

A representation by a list of edges with labelled vertices isn't unique. As usual, when a new object is introduced, the next question is to decide how two objects can be different or the same.

Definition 7.2. Graphs G, H are combinatorially equivalent if there is a one-to-one map of vertices $f:V(G)\to V(H)$ that respects the edges: $(u,v)\in E(G)\Leftrightarrow (f(u),f(v))\in E(H)$, i.e. any vertices u,v are connected in G by the same number of edges as the vertices f(u), f(v) in H.

Invariants of graphs

How can we distinguish graphs combinatorially?

Definition 7.3. A combinatorial invariant of graphs is a function f that takes the same value on all graphs combinatorially equivalent to each other: if G, H are equivalent, then f(G) = f(H). So if $f(G) \neq f(H)$, then G, H aren't equivalent.

f(G) = f(H) may not imply G, H are equivalent.

Claim 7.4. The numbers of vertices and edges are combinatorial invariants of graphs. *Proof.* A 1–1 map on vertices induces a 1–1 map on edges.

Topological equivalence of graphs

Definition 7.5. Graphs are called *topologically equivalent* if they can become combinatorially equivalent after mergers or subdivisions of edges:

any edge can be subdivided into two edges; if a vertex has 2 edges, they can merge into one.

The numbers of vertices and edges can change, so they are not topological invariants of graphs.

Combinatorics vs topology

The graphs in the groups below are topologically equivalent, but not combinatorially, e.g. compare the numbers of vertices and edges in each group.

To prove a topological equivalence, show how edges are merged step-by-step. We draw edges as continuous arcs, not necessarily straight.

How can we distinguish graphs topologically? We'll introduce topological invariants a bit later.

Your questions and the quiz

To benefit from the lecture, now you could

- ask or submit your anonymous questions to the COMP229 folder after the lecture;
- write down your summary in 2-3 phrases,
 e.g. list key concepts you have learned;
- talk to your classmates to revise the lecture.

Question. Represent this graph by a list of edges.

Answer to the quiz and summary

Answer. 4 vertices 1,2,3,4. One potential list of edges is (1, 2), (3, 4), (2, 3), (2, 3), (1, 4)(1, 4).

- A graph is a set of vertices and edges.
- A combinatorial equivalence of graphs is a bijection between vertices respecting edges.
- A topological equivalence = combinatorial equivalence plus mergers or subdivisions.
- To prove that graphs are equivalent, it's enough to give an example of equivalence.

