Lecture 4: □

Biomaterials Surfaces: Chemistry Hydrolysis

Supporting notes □

3.051J/20.340J Materials for Biomedical Applications, Spring 2006

Hydrolysis

Hydrolysis is a kind of "Solvolysis",
 solvent + lysis: cleavage by the solvent.

Polymer Hydrolysis

 Polymers prepared by polycondensation can be susceptible to hydrolysis.

n H O H + n HO Succinic acid

As, Zn catalysts,
$$\Delta$$

H+, OH-, or enzyme

As H+, OH-, or enzyme

Poly(butylene succinate), PBS

Hydrolysable is "degradable".

Synthetic polymers

- · Polyesters
- · Polyamides
- · Polyanhydrides
- · Polyethers
- · Polyurethanes
- · Polycarbonates
- · Polyureas

Material properties can be tuned readily.
Cheaper!

Naturally-occurring polymers

· Proteins and polyamides

Collagen

Fibrinogen and fibrin

Gelatin

Casein

Polysaccharides

Cellulose

Starch and amylose

Chitin and chitosan

Dextran

· Polynucleotides

DNA and RNA

Biodegradation:

An event which takes place through the action of enzymes and/or chemical decomposition associated with living organisms (bacteria, fungi, etc.) or their secretion products.

Albertsson and Karlsson, in Chemistry and Technology of Biodegradable Polymers 1994

$$-\left(O-R-C\right)$$

$$\begin{array}{c|c}
 & & O \\
\hline
 & & \parallel \\
\hline
 & & R & C
\end{array}$$

$$-\left(-0-R-O-C\right)$$

Polyester

Polyamide

Polycarbonate

$$\begin{array}{c|c}
C & C & C \\
\hline
\end{array}$$

$$\begin{array}{c|c} & & & R \\ \hline & & & \\ & & & P \end{array}$$

Polyanhydride

Polyphosphazene

Poly(ortho ester)

Key factors in hydrolysis □

1. Bond stability

Example: Hydrolysis of polyester

Base-catalyzed polyester hydrolysis

Acid-catalyzed polyester hydrolysis

Polyamide hydrolysis

Key factors in hydrolysis □

- 2. Hydrophobicity
- 3. Molecular weight & architecture
- **4. Morphology** Crystallinity, porosity
- **5.** T_g Mobility of polymer chain

Chance to contact with H₂O

Example: Hydrolysis of amorphous and crystalline poly(*L*-lactide) (PLLA)

Figure. Advancing contact angle (Θ_a) of amorphous PLLA and crystalline PLLA films treated in 0.01 N NaOH solution as a function of alkaline treatment time

Tsuji et al. Polym. Int., 52, 843, 2003

Orthorhombic crystal structure of α -PLLA \square

Figures removed for copyright reasons.

 d_{crystal} : 1.290 g/cm³ $d_{\text{amorphous}}$: 1.248 g/cm³

Hydrolysable polymers

Poly(sebacic anhydride) □

Properties: rapid degradation, T_g: 50 °C, T_m: 80 °C

Uses: drug delivery matrices

Table. Half-lives of hydrolyzable polymers

Polymer class	Half-life	
Polyanhydrides	0.1 h	
PLLA	3.3 years	
Polyamides	83,000 years	

Göpferich, *Biomater.*, **17**, 103, 1996

Incorporation of hydrophobic segment

Poly(bis-(p-carboxyphenoxy)propane-co-sebacic anhydride)

Tabata et al., *Pharm. Res.*, **10**, 391, 1993

Poly(glycolide-co-lactide) (polyglactide)

Properties: rapid degradation, amorphous*, T_g: 45-55 °C

Uses: bioresorbable sutures, controlled release matrices,

tissue engineering scaffolds

*Depending on composition

Glycolate Lactate (GA) (DL-LA)

Dexon®: the first synthetic bioresorbable suture in 1960s.

(PGA) ☐ Histological response can be predictable in comparison to non-synthetic materials.

High-crystalline nature limits processability.

Poly(*L*-lactide), poly(*L*-lactic acid) (PLLA)

Properties: rapid degradation, semicrystalline, T_q: 60 °C, T_m: 180 °C

Uses: fracture fixation, ligament augmentation

PLLA

Fermentation

microorganisms

e.g. Lactobacilli

D-glucose from agricultural product; corn, potato, rice

Physical properties of various plastics

	PLLA	PET	PS	PP□
Density/g/cm ³	1.27	1.34	1.04	0.90
Tensile strength/MPa	66.7	55.9	43.1	37.3
Yong's modulus/MPa	3300	2600	3300	2100
Elongation@break/%	4	300	2	700
Cost/\$/lb	1-5	0.75	0.55	-

^{*}Polymeric materials were non-oriented (as prepared).

Polyethylene oxide (PEO)

Properties: water soluble, semicrystalline, T_g: -60 °C, T_m: 60 °C

Uses: hydrogel, protein-resistant coatings

PEO

Two photos removed for copyright reasons.

Figure 6 in Irvine, D., et al. "Nanoscale Clustering of RGD Peptides at Surfaces Using Comb Polymers. 1. Synthesis and Characterization of Comb Thin Films." *Biomacromolecules* 2, no. 1 (2001): 85 -94.

Rate of hydrolysis:

anhydride > ester >> amide >>>> ether etc.

Matrices for drug delivery

Hydrolysis of polymeric materials

Hydrolysis of Bionole® (PBS) □

Photos removed for copyright reasons.

Application of biodegradable polymers and minimal requirements of biomaterials

PHA: Poly(hydroxyalkanoate

PLLA: Poly(L-lactide),

POE: Poly(orthoester)

PEC: Poly(ester carbonate)

PES: Poly(ethylene succinate)

PHB: Poly(3-hydroxybutyrate)

Poly(L-lactic acid)

Medical Application **Ecological Application PDLLA PGA PBS PGALA PES** PLLA PHA Oxidized cellulose (PHB) Chitin **PCA** PPZ **PEC** PCL POE **PEA** PAA Starch Hyaluronate Cellulose Collagen

PAA: Poly(acid anhydride) **PBS:** Poly(butylene succinate)

PCA: Poly(α -cyanoacrylate)

PCL: Poly(ε-caprolactone) **PEA:** Poly(ester amide)

PGA: Poly(glycolide), Poly(glycolic acid)

PGALA: Poly(glycolide-co-lactide),

Poly(glycolic acid-co-lactic acid)

PDLLA: Poly(DL-lactide), Poly(DL-lactic acid)

Fibrin

Application of Biodegradable Polymers

Minimal Requirements of Biomaterials

A) Non-toxic (biosafe)

Non-pyrogenic, Non-hemolytic, Chronically noninflammative, Non-allergenic, Non-carcinogenic, Non-teratogenic, etc.

B) Effective

Functionality, Performance, Durability, etc.

C) Sterilizable

Ethylene oxide, γ-Irradiation, Electron beams, Autoclave, Dry heating, etc.

D) Biocompatible

Interfacially, Mechanically, and Biologically

Figure by MIT OCW.

Microbial degradation of PLLA (rare case) □

Photos removed for copyright reasons.

Figure. SEM images of PLLA film treated with microbe Jarerat et al., *Macromol. Biosci.*, **2**, 420, 2002

Enzymatic degradation -Lipase-

Lipase: an esterase (EC3.1.1.3) stable in organic solvents @ high temp.

$$R-C-O-R' + H_2O \xrightarrow{\text{lipase}} R-C-OH + HO-R'$$
In toluene at 90 °C

Two figures removed for copyright reasons.

MW of the polyester is usually low (< 10 k). Poor mechanical properties.