Sheet 3: The Adjacency matrix

Xianzhi Wang

fall 2021

All graphs are finite on this sheet. Let G be a directed graph on the vertex set $\{1, \ldots, n\}$. Let us define the *adjacency matrix* $A = \operatorname{Adj}(G)$ by setting

 $A_{i,j}$ = number of edges from i to j in G.

So, we allow multiple edges and even loops in G.

Exercise 1 Express the following in linear algebra terms, using A:

- 1) the degrees of a vertex;
- 2) the number of edges in G;
- 3) e(X,Y) for $X,Y \subseteq V(G)$.

One of the main reasons why we look at the adjacency (or neighboring) relation as a matrix is the following correspondence between matrix multiplication and walks in G.

Definition 2 A directed walk of length n in G is a sequence of directed edges e_1, \ldots, e_n such that $e_i^+ = e_{i+1}^-$ ($1 \le i \le n-1$). The walk is a loop (or returning), if $e_1^- = e_n^+$.

Note that we redefine the notion of walk here: it is a sequence of edges rather than vertices.

Theorem 3 For every k > 0, $(A^k)_{i,j}$ equals the number of directed walks of length k from i to j.

Proof. Let's prove by induction.

When k = 1, $(A)_{ij}$ is indeed the number of directed walks of length 1, (which is just directed edge) from i to j by definition.

Assume true for k-1.

Denote the ijth entry of A by a_{ij} and ijth entry of A^{k-1} by b_{ij}

$$(A^k)_{i,j} = (A \cdot A^{k-1})_{i,j} = \sum_{\alpha=1}^n a_{i\alpha} b_{\alpha j}$$
 (1)

Thus, for fixed α , we multiply together $a_{i\alpha}b_{\alpha j}$, which means multiply number of directed walks of length 1 (which are directed edges) from i to α and the number of directed walks of length k-1 from α to j. After this, we sum over α , which run through 1 to n, and the result $\sum_{\alpha=1}^{n}a_{i\alpha}b_{\alpha j}$ is indeed number of directed walks of length k.

Thus, we have proved the theorem using induction. ■

Corollary 4 For every k > 0, the trace $tr(A^k)$ equals the number of loops of length k in G.

Proof. Since $(A^k)_{ii}$ equals the number of directed walks of length k from i to i, (i.e., a loop), we could sum over the n entries in the diagonal to obtain all the loops of length k in G. This is exactly $tr(A^k)$.

Now assume that G is undirected.

This turns A to be a symmetric real matrix. Using the spectral theorem, it follows that A admits an orthonormal eigenbasis $b_0(G), b_1(G), \ldots, b_{n-1}(G)$ with real eigenvalues $\lambda_0(G) \geq \lambda_1(G) \geq \ldots \geq \lambda_{n-1}(G)$. That is, we have

$$Ab_i = \lambda_i b_i \ (0 \le i < n).$$

Note that the λ_i are well defined, but the b_i are not. Also:

Lemma 5 The eigenvalues are graph invariants, that is, isomorphic graphs have the same eigenvalues.

Proof. Isomorphic graphs have the same eigenvalues. Since Isomorphic graphs are structurally the same, they have the exact same adjacency matrix, thus the same eigenvalues.

Exercise 6 *Compute* λ_i *and* b_i *for the triangle.*

One way to visualize the adjacency matrix as an operator is as follows. Write real numbers on the vertices of G, call this function f. Now A acts by taking all neighbors of the vertex x, add up the f-values there and write it to the position x. This will be the value of Af at x:

$$(Af)(x) = \sum_{(x,y)\in E(G)} f(y).$$

Actually this is how we will *define* the adjacency operator for infinite graphs. Using this image, one can prove.

Theorem 7 Let G be an undirected graph with maximal degree d. Then $|\lambda_i(G)| \le d$ $(0 \le i < n)$. When G is d-regular, we have $\lambda_0(G) = d$.

Hint: take an eigenvector. Find a particular vertex for it..

Exercise 8 Assume that G is undirected and connected with maximal degree d. Then $\lambda_0(G) = d$ if and only if G is d-regular.

Lemma 9 Let G be a d-regular undirected graph. Then the multiplicity of d as an eigenvalue of G equals the number of connected components of G.

The eigenvalue -d also comes into the picture naturally.

Lemma 10 Let G be a d-regular undirected, connected graph. Then $\lambda_{n-1} = -d$ if and only if G is bipartite.

Exercise 11 Let G be a d-regular undirected graph. What is the multiplicity of -d as an eigenvalue of G?

Now we look at some simple examples.

Exercise 12 Compute the eigenvalues and eigenvectors for the cycle of length n.

Hint: What are the eigenvalues for the directed cycle of length n?

Exercise 13 Compute the eigenvalues and an orthonormal eigenbasis for the complete graph on d+1 points.

Hint: What happens to the eigenvalues and eigenvectors of A if you add a scalar matrix to A?