Лабораторная работа 17

Задания для самостоятельной работы

Ендонова Арюна Валерьевна

Содержание

Цель работы	4
Задание	5
Выполнение лабораторной работы	6
Моделирование работы вычислительного центра	6
Модель работы аэропорта	9
Моделирование работы морского порта	12
Выводы	21
Список литературы	22

Список иллюстраций

1	Модель работы вычислительного центра	7
2	Отчёт по модели работы вычислительного центра	8
3	Отчёт по модели работы вычислительного центра	8
4	Модель работы аэропорта	10
5	Отчёт по модели работы аэропорта	11
6	Отчёт по модели работы аэропорта	12
7	Модель работы морского порта	13
8	Отчет по модели работы морского порта	14
9	Модель работы морского порта с оптимальным количеством причалов .	15
10	Отчет по модели работы морского порта с оптимальным количеством	
	причалов	16
11	Модель работы морского порта	17
12	Отчет по модели работы морского порта	18
13	Модель работы морского порта с оптимальным количеством причалов .	19
14	Отчет по модели работы морского порта с оптимальным количеством	
	причалов	20

Цель работы

Реализовать с помощью gpss модели работы вычислительного центра, аэропорта и морского порта.

Задание

Реализовать с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.

Выполнение лабораторной работы

Моделирование работы вычислительного центра

На вычислительном центре в обработку принимаются три класса заданий A, B и C. Исходя из наличия оперативной памяти ЭВМ задания классов A и B могут решаться одновременно, а задания класса C монополизируют ЭВМ. Задачи класса C загружаются в ЭВМ, если она полностью свободна. Задачи классов A и B могут дозагружаться к решающей задаче.

Смоделируем работу ЭВМ за 80 ч. и определим её загрузку.

Построим модель (рис. [-@fig:001]).

🎇 model 17_1.gps ram STORAGE 2 ;моделирование заданий класса А GENERATE 20,5 QUEUE class A ENTER ram, 1 DEPART class A ADVANCE 20,5 LEAVE ram, 1 TERMINATE 0 ;моделирование заданий класса В GENERATE 20,10 QUEUE class A ENTER ram, l DEPART class A ADVANCE 21,3 LEAVE ram, 1 TERMINATE 0 ;моделирование заданий класса С GENERATE 28,5 QUEUE class A ENTER ram, 2 DEPART class A ADVANCE 28,5 LEAVE ram, 2 TERMINATE 0 ; таймер GENERATE 4800 TERMINATE 1

Рис. 1: Модель работы вычислительного центра

START 1

Задается хранилище гат на две заявки. Затем записаны три блока: первые два обрабатывают задания класса A и B, используя один элемент гат, а третий обрабатывает задания класса C, используя два элемента гат. Также есть блок времени генерирующий 4800 минут (80 часов).

После запуска симуляции получаем отчёт (рис. [-@fig:002], [-@fig:003]).

model 17	_1.1.1 - REPORT				
	START TIME	FND TI	ME BLOCKS	FACILITIES	STORAGES
	0.000		000 23		1
	0.000	100010	.00 20		-
	NAME		VALUE		
	CLASS_A		10001.000		
	RAM		10000.000		
LABEL	LO	BLOCK TYPE	ENTRY COU	NT CURRENT C	OUNT RETRY
	1	GENERATE	240	0	0
	2	QUEUE	240	4	0
	3	ENTER	236	0	0
	4	DEPART	236	0	0
	5	ADVANCE	236	1	0
	6	LEAVE	235	0	0
	7	TERMINATE	235	0	0
	8	GENERATE	236	0	0
	9	QUEUE	236	5	0
	10	ENTER	231	0	0
	11	DEPART	231	0	0
	12	ADVANCE	231	1	0
	13	LEAVE	230	0	0
	14	TERMINATE	230	0	0
	15	GENERATE	172	0	0
	16	QUEUE	172	172	0
	17	ENTER	0	0	0
	18	DEPART	0	0	0
	19	ADVANCE	0	0	0
	20	LEAVE	0	0	0
	21	TERMINATE	0	0	0
	22	GENERATE	1	0	0
	23	TERMINATE	1	0	0

Рис. 2: Отчёт по модели работы вычислительного центра

QUEUE CLASS_A							AVE.(-0) RETRY 688.354 0
STORAGE RAM						. AVE.C. UTI 1.988 0.9	L. RETRY DELAY 94 0 181
FEC XN						PARAMETER	VALUE
	0	4803.512		0	1		
636		4805.704			6		
651	0	4807.869		0	15		
637	0	4810.369	637	12			
652	0	4813.506	652	0	8		
653	0	9600.000	653	0	22		
653	0	9600.000	553	0			

Рис. 3: Отчёт по модели работы вычислительного центра

Из отчета увидим, что загруженность системы равна 0.994.

Модель работы аэропорта

Самолёты прибывают для посадки в район аэропорта каждые 10 ± 5 мин. Если взлетнопосадочная полоса свободна, прибывший самолёт получает разрешение на посадку. Если полоса занята, самолет выполняет полет по кругу и возвращается в аэропорт каждые
5 мин. Если после пятого круга самолет не получает разрешения на посадку, он отправляется на запасной аэродром.

В аэропорту через каждые 10 ± 2 мин к взлетно -посадочной полосе выруливают готовые к взлёту самолёты и получают разрешение на взлёт, если полоса свободна. Для взлета и посадки самолёты занимают полосу ровно на 2 мин. Если при свободной полосе одновременно один самолёт прибывает для посадки, а другой — для взлёта, то полоса предоставляется взлетающей машине.

Требуется:

- выполнить моделирование работы аэропорта в течение суток;
- подсчитать количество самолётов, которые взлетели, сели и были направлены на запасной аэродром;
- определить коэффициент загрузки взлетно-посадочной полосы.

Построим модель (рис. [-@fig:004]).

```
model 17_2.gps
 GENERATE 10,5,,,1
 ASSIGN 1,0
 QUEUE arrival
 landing GATE NU runway, wait
 SEIZE runway
 DEPART arrival
 ADVANCE 2
 RELEASE runway
 TERMINATE 0
 ; ожидание
 wait TEST L p1,5,goaway
 ADVANCE 5
 ASSIGN 1+,1 ;если значение атрибута меньше 5,
 ;то счетчик прибавляет 1(круг) и идет попытка приземления
 TRANSFER 0, landing
 goaway SEIZE reserve
 DEPART arrival
 RELEASE reserve
 TERMINATE 0
 GENERATE 10,2,,,2
 QUEUE takeoff
 SEIZE runway
 DEPART takeoff
 ADVANCE 2
 RELEASE runway
 TERMINATE 0
 :таймер
 GENERATE 1440
 TERMINATE 1
 START 1
```

Рис. 4: Модель работы аэропорта

Блок для влетающих самолетов имеет приоритет 2, для прилетающий приоритет 1 (чем выше значение, тем выше приоритет). Происходит проверка: если полоса пустая, то заявка просто отрабатывается, если нет, то происходит переход в блок ожидания. При ожидании заявка проходит в цикле 5 раз, каждый раз проверяется не освободилась ли полоса, если освободилась — переход в блок обработки, если нет — самолет обрабатывается дополнительным обработчиком отправления в запасной аэродром. Время задаем в минутах — 1440 (24 часа).

После запуска симуляции получаем отчёт (рис. [-@fig:005], [-@fig:006]).

model 17	2.4.1 - REPORT									
		ббот	а, июня	15.	2024	19:09	9:52			
			,	,						
	START TIME			END	TIME	BLOCE	KS FA	CILITIES	STOR	RAGES
	0.000			1440	.000	26		1	()
	NAME					VALUE				
	ARRIVAL					02.000				
	GOAWAY					14.000	_			
	LANDING RESERVE				******	4.000 PECIF				
	RUNWAY					01.000				
	TAKEOFF					00.000				
	WAIT					10.000				
	11111					10.00				
LABEL	L	OC :	BLOCK 1	TYPE	E	NTRY (COUNT	CURRENT	COUNT	RETRY
	1		GENERA1	ľΕ		14	6		0	0
	2	1	ASSIGN			14	6		0	0
	3		QUEUE			14			0	0
LANDING	4		GATE			184			0	0
	5		SEIZE			14			0	0
	6		DEPART			140			0	0
	7		ADVANCE			14	_		0	0
	8		RELEASE TERMINA			140	_		0	0
WAIT	10		TEST	AIL		38			0	0
WAII	11		ADVANCE	7		38			0	0
	12		ASSIGN	-		38			0	0
	13		TRANSFE	ER		38	_		0	0
GOAWAY	14		SEIZE				0		0	0
	15		DEPART			(0		0	0
	16		RELEASE	2		(0		0	0
	17		TERMINA	ATE		(0		0	0
	18		GENERAT	ľΕ		142	2		0	0
	19	(QUEUE			142	2		0	0
	20		SEIZE			142	_		0	0
	21		DEPART			142			0	0
	22		ADVANCE			142			0	0
	23		RELEASE			140			0	0
	24		TERMINA			142			0	0
	25		GENERAT				1		0	0
	26		TERMINA	ATE			1		U	U

Рис. 5: Отчёт по модели работы аэропорта

]	FACILITY RUNWAY		ENTRIES 288		IL. 1	AVE. TIN	ME AVA	IL.	OWNER 0	PEND 0	INTER 0	RETRY 0	DELAY 0
(QUEUE TAKEOFF ARRIVAL		MAX CC	NT. 0 0	142		0) AVE 0 0	.017		0.173 1.301	3	E.(-0) 0.880 5.937	0
]	FEC XN 290 291 292	PRI 2 1 0	BDT 1440.7 1445.3 2880.0	67	ASSEI 290 291 292	0	ENT N	B 1	PARAN	METER	VAI	LUE	

Рис. 6: Отчёт по модели работы аэропорта

Взлетело 142 самолета, село 146, а в запасной аэропорт отправилось 0. В запасной аэропорт не отправились самолеты, поскольку процессы обработки длятся всего 2 минуты, что намного быстрее, чем генерации новых самолетов. Коэффициент загрузки полосы равняется 0.4, полоса большую часть времени не используется.

Моделирование работы морского порта

Морские суда прибывают в порт каждые $[\alpha \pm \delta]$ часов. В порту имеется N причалов. Каждый корабль по длине занимает M причалов и находится в порту $[b \pm \varepsilon]$ часов. Требуется построить GPSS-модель для анализа работы морского порта в течение полугода, определить оптимальное количество причалов для эффективной работы порта.

Рассмотрим два варианта исходных данных:

1)
$$a = 20$$
 ч, $\delta = 5$ ч, $b = 10$ ч, $\varepsilon = 3$ ч, $N = 10$, $M = 3$;

2)
$$a = 30$$
 y, $\delta = 10$ y, $b = 8$ y, $\varepsilon = 4$ y, $N = 6$, $M = 2$.

Первый вариант модели

Построим модель для первого варианта (рис. [-@fig:007]).

model 17_3.gps pier STORAGE 10 GENERATE 20,5 ;моделирование занятия причала QUEUE arrive ENTER pier,3 DEPART arrive ADVANCE 10,3 LEAVE pier,3 TERMINATE 0 ;таймер GENERATE 24 TERMINATE 1 START 180

Рис. 7: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. [-@fig:008]).

	START T				FACILITIES		
	0.	000	4320.00	0 9	0	1	
	NAME			VALUE			
	ARRIVE		1	0001.000			
	PIER		1	0000.000			
LABEL		LOC BLO	CK TYPE	ENTRY COU	NT CURRENT C	OUNT RETRY	
		1 GEN	ERATE	215	0	0	
		2 QUE	UE	215	0	0	
		3 ENT	ER	215	0	0	
		4 DEP	ART	215	0	0	
		5 ADV	ANCE	215	1	0	
		6 LEA	VE	214	0	0	
		7 TER	MINATE	214	0	0	
		8 GEN	ERATE	180	0	0	
		9 TER	MINATE	180	0	0	
QUEUE		MAX CONT.	ENTRY ENTR	Y(0) AVE.C	ONT. AVE.TIM	E AVE.(-0)	RETRY
ARRIVE						0.000	
STODACE		CAD DEM	MIN MAY	ENTRIES N	ur sur c	UTIL. RETRY	ענוסת
PIER						0.148 0	
FIER		10 /	0 3	013	1.105	0.140 0	0
FEC XN	PRI	BDT	ASSEM CU	RRENT NEX	T PARAMETER	VALUE	
395	0	4324.260	395	5 6			
396	0	4335.233	396	0 1			
397	0	4344.000	397	0 8			

Рис. 8: Отчет по модели работы морского порта

При запуске с 10 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов — 3 (рис. [-@fig:009]), получаем оптимальный результат, что видно на отчете (рис. [-@fig:010]).

model 17_3.gps

```
pier STORAGE 3
GENERATE 20,5
;моделирование занятия причала
QUEUE arrive
ENTER pier,3
DEPART arrive
ADVANCE 10,3
LEAVE pier,3
TERMINATE 0
;таймер
GENERATE 24
TERMINATE 1
START 180
```

Рис. 9: Модель работы морского порта с оптимальным количеством причалов

		000 1ME				FACILITIES 0		5
	٠.					ŭ	-	
	NAME			VA				
	ARRIVE PIER			10001				
	FILK			10000	.000			
LABEL.		TOC BIO	שמעד שי	ENT	DV COIN	IT CURRENT	COUNT DET	5 V
LADEL			ERATE		215		0 0	XI.
		2 OUE			215		0 0	
		_	ER		215		0 0	
		4 DEP	ART		215		0 0	
		5 ADV	ANCE		215		1 0	
		6 LEA	-		214		0 0	
		7 TER			214		0 0	
		8 GEN			180		0 0	
		9 TER	MINATE		180		0 0	
OTTETTE		MAY CONT	ENTRY E	NTDV (O)	AUE CO	NT. AVE.TI	ME AUE	(0) DETDY
ARRIVE						0.0 0.0		
ANIXIVE		1 0	210	210	0.00			.000
STODAGE		CND DEM	MTN MA	V FNT	מודכ אנו	L. AVE.C.	ווידוו סקי	יסע חקו אע
PIER						1.485		
1					0.0 2	2.100	0.130	
FEC XN	PRT	BDT	ASSEM	CHEBEN	T NEYT	PARAMETE	ים עד.ווד	7
		4324.260					,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-
396		4335.233						
397		4344.000						
<u></u>								

Рис. 10: Отчет по модели работы морского порта с оптимальным количеством причалов

Второй вариант модели

Построим модель для второго варианта (рис. [-@fig:011]).

```
model 17_3.gps

pier STORAGE 6
GENERATE 30,10

;моделирование занятия причала
QUEUE arrive
ENTER pier,2
DEPART arrive
ADVANCE 8,4
LEAVE pier,2
TERMINATE 0

;таймер
GENERATE 24
TERMINATE 1
START 180
```

Рис. 11: Модель работы морского порта

После запуска симуляции получаем отчёт (рис. [-@fig:012]).

model 17	_3.3.1 - REPO	RT					
					FACILITIES 0		
	NAME ARRIVE PIER			VALUE 10001.000 10000.000			
LABEL		1 GEN 2 QUE 3 ENT 4 DEP 5 ADV 6 LEA 7 TER 8 GEN	ERATE UE ER ART ANCE VE MINATE ERATE	143 143 143 143 143	0 1 0 0	0 0 0 0 0 0 0 0 0 0 0	
QUEUE ARRIVE					CONT. AVE.TIM	, ,	
STORAGE PIER					AVL. AVE.C. 1 0.524		
322 324	0	4325.892 4336.699	322	5 6 0 1	T PARAMETER	VALUE	

Рис. 12: Отчет по модели работы морского порта

При запуске с 6 причалами видно, что судна обрабатываются быстрее, чем успевают приходить новые, так как очередь не набирается. Кроме того загруженность причалов очень низкая. Соответственно, установив наименьшее возможное число причалов – 2 (рис. [-@fig:013]), получаем оптимальный результат, что видно из отчета (рис. [-@fig:014]).

🎇 model 17_3.gps

```
pier STORAGE 2
GENERATE 30,10

;моделирование занятия причала
QUEUE arrive
ENTER pier,2
DEPART arrive
ADVANCE 8,4
LEAVE pier,2
TERMINATE 0

;таймер
GENERATE 24
TERMINATE 1
START 180
```

Рис. 13: Модель работы морского порта с оптимальным количеством причалов

model 17	_3.6.1 - REPO	RT					
		IME 000			FACILITIES 0	STORAGES	
	NAME ARRIVE PIER			VALUE 001.000 000.000			
LABEL		1 GENE 2 QUEU 3 ENTE 4 DEPA 5 ADVA 6 LEAV	RATE E R RT NCE E INATE RATE		0 0 1	0 0 0 0 0 0	
QUEUE ARRIVE						E AVE.(-0)	
STORAGE PIER						UTIL. RETRY I	
FEC XN 322 324 325	0	BDT 4325.892 4336.699 4344.000	322 324	5 6 0 1	T PARAMETER	VALUE	

Рис. 14: Отчет по модели работы морского порта с оптимальным количеством причалов

Выводы

В результате выполнения данной лабораторной работы я реализовала с помощью gpss:

- модель работы вычислительного центра;
- модель работы аэропорта;
- модель работы морского порта.

Список литературы

- 1. Королькова А.В., Кулябов Д.С. Руководство к лабораторной работе №8. Модель TCP/AQM. – Москва, 2025. – 82 с.
- 2. Васенин В.А., Симонова Г.И. Математические модели управления трафиком в интернет: новые подходы на основе схем TCP/AQM // Автоматика и телемеханика. 2005. № 8. С. 94–107; Autom. Remote Control. 66:8 (2005). С. 1274–1286.
- 3. Батыр С.С., Хорхордин А.В. Построение модели сети передачи данных для исследования технологии AQM.
- 4. Approximation models for the evaluation of TCP/AQM networks // Bulletin of the Polish Academy of Sciences. Technical Sciences. 2022. Vol. 70(4). Article number: e141986.
- 5. Hotchi R. Active Queue Management Supporting TCP Flows Using Disturbance Observer and Smith Predictor. January 2020.