Motivation and Basics

Il-Chul Moon Dept. of Industrial and Systems Engineering KAIST

icmoon@kaist.ac.kr

Weekly Objectives

- Motivate the study on
 - Machine learning, AI, Datamining....
 - Why? What?
 - Overview of the field
- Short questions and answers on a story
 - What consists of machine learning?
 - MLE
 - MAP
- Some basics
 - Probability
 - Distribution
 - And some rules...

WARMING UP A SHORT EPISODE

Thumbtack Question

- There is a gambling site with a game of flipping a thumbtack
 - Nail is up, and you betted on nail's up you get your money in double
 - Same to the nail's down

- With scientific and engineering supports
 - He is paying you a big chunk of money
- He asks you
 - I have a thumbtack, if I flip it, what's the probability that it will fall with the nail's up?
- Your response?

Number of Trials

$$\widehat{\theta} = \frac{a_H}{a_H + a_T}$$

- You report your proof to the billionaire
 - From the observations of your trials, and from the MLE perspective, and by assuming the binomial distribution assumption.....
 - **\theta** is 0.6
 - So, you are more likely to win a bet if you choose the head
- He says okay.
 - Billionaire
 - While you were calculating, I was flipping more times.
 - It turns out that we have 30 heads and 20 tails.
 - Does this change anything?
 - Your response
 - No, nothing's changed. Same. 0.6
 - Billionaire
 - Then, I was just spending time for nothing????
- You say no
 - Your additional trials are valuable to

Wait!!!

A student whose name is Bayes raised his hand

Incorporating Prior Knowledge

- Bayes says
 - Wait. Billionaire.
 - Is it really true that the thumbtack has 60% chance of head?
 - Don't you think it is 50 vs 50?
- Billionaire says
 - Well. I thought so...
 - But, how to merge the previous knowledge to my trials?
- Bayes says
 - So, I give you this theorem!

•
$$P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$$

- You already dealt with $P(D|\theta) = \theta^{a_H} (1-\theta)^{a_T}$
- $P(\theta)$ is the part of the prior knowledge
- Your response is
 - Then, $P(\theta|D)$ is the conclusion influenced by the data and the prior knowledge?

 $P(\theta|D) = \frac{P(D|\theta)P(\theta)}{P(D)}$

 $Posterior = \frac{Likelihood \times Prior \ Knowledge}{Normalizing \ Constant}$

- Bayes says
 - Yes, and it will be our future prior knowledge!

More Formula from Bayes Viewpoint

- $P(\theta|D) \propto P(D|\theta)P(\theta)$
 - $P(D|\theta) = \theta^{a_H} (1-\theta)^{a_T}$
 - $\widetilde{P(\theta)} = ????$

Nice match to the range!

- We need to represent the prior knowledge well
 - So, the multiply goes smooth and does not complicate the formula
- Bayes says
 - Why not use the Beta distribution?

•
$$P(\theta) = \frac{\theta^{\alpha-1}(1-\theta)^{\beta-1}}{B(\alpha,\beta)}$$
, $B(\alpha,\beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}$, $\Gamma(\alpha) = (\alpha-1)!$

- Your response is
 - Wow convenient!

$$P(\theta|D) \propto P(D|\theta)P(\theta) \propto \theta^{a_H}(1-\theta)^{a_T}\theta^{\alpha-1}(1-\theta)^{\beta-1}$$

$$= \theta^{a_H+\alpha-1}(1-\theta)^{a_T+\beta-1}$$

Also, you notice one interesting face from the above formula...

Maximum a Posteriori Estimation

- Billionaire says
 - Hey! Stop! I am here!
 - So, you are talking about the formula
 - I want the most probable and more approximate θ
- Your response is
 - We are there.
 - Previously in MLE, we found θ from $\hat{\theta} = argmax_{\theta}P(D|\theta)$
 - $P(D|\theta) = \theta^{a_H} (1-\theta)^{a_T}$
 - $\hat{\theta} = \frac{a_H}{a_H + a_T}$
 - Now in MAP, we find θ from $\hat{\theta} = argmax_{\theta}P(\theta|D)$
 - $P(\theta|D) \propto \theta^{a_H + \alpha 1} (1 \theta)^{a_T + \beta 1}$
 - $\hat{\theta} = \frac{a_H + \alpha 1}{a_H + \alpha + a_T + \beta 2}$
 - The calculation is same because anyhow it is the maximization

Conclusion from Anecdote

- Billionaire says
 - Wait you and Bayes!
 - Who is right? The numbers are different!
- Bayes says
 - Not really... if you give us enough money to replicate the game!
- You say
 - Yes! If a_H and a_T become big, α and β becomes nothing...
- Billionaire says
 - Enough talking
 - Still, α and β are important if I don't give you more trials
 - Who decides α and β ?
- Bayes and you say
 - Well... maybe grad students? =)

$$\hat{\theta} = \frac{a_H}{a_H + a_T}$$

MAP

$$\hat{\theta} = \frac{a_H + \alpha - 1}{a_H + \alpha + a_T + \beta - 2}$$