Total No. of Questions: 6

Total No. of Printed Pages:3

Enrollment No.....

Faculty of Engineering / Science End Sem (Even) Examination May-2022 EN3BS13 / SC3BS05 Engineering Physics

Programme: B.Tech. Branch/Specialisation: All / / B.Sc. AIML/CS/CTIS/MAIS

Duration: 3 Hrs. Maximum Marks: 60

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

1 (M	CQs)	should be written in full instead of or	nly a, b, c or d.	
Q.1	i.	Which event is likely to take place the difference in energy between tw		-
		(a) Absorption	(b) Emission	
		(c) Absorption and emission	(d) None of these	
	ii.	The normalized frequency of an op-	otical fibre is equal to 2.	Then the 1
		number of modes propagating throu	gh the fibres are:	
		(a) Two (b) One	(c) Three (d) Infinit	te
	iii.	The criterion of resolution of optical	l instruments was given by	/- 1
		(a) Newton (b) Huygen	(c) Rayleigh (d) Ramse	den
	iv.	Which phenomenon causes the polar	risation of light-	1
		(a) Double reflection	(b) Double refraction	
		(c) Diffraction	(d) None of these	
	v.	out the energy in a quantur	m is true? 1	
		(a) Varies directly with frequency	(b) Same for all frequence	cies
		(c) Varies inversely with frequency	(d) None of these	
	vi.	Heisenberg's uncertainty relation ho	olds good for:	1
		(a) Microscopic as well as macrosco	ppic particles both	
		(b) Only microscopic particles		
		(c) Only macroscopic particles		
		(d) None of these		
	vii.	The coordination number for face co	entred cubic lattice is-	1
		(a) 12 (b) 8	(c) 6 (d) 26	
	viii.	The transition temperature of mercu	ry is-	1
		(a) 1 K (b) 1.14 K	(c) 4.2 K (d) 9.22 k	
				P.T.O.

	ix.	Ultrasonic waves are-	1
		(a) Sound waves of very long wavelength	
		(b) Move slower than sound waves	
		(c) Move faster than sound waves	
		(d) Move with the same velocity as sound waves	
	х.	Total energy of the particle executing simple harmonic motion is same at-	1
		(a) Equilibrium position (b) Extreme position	
		(c) Midway (between zero & maximum) (d) All of these	
Q.2	i.	What is spontaneous and stimulated emission?	2
	ii.	Differentiate between step index and graded index optical fibre and draw their refractive index profile.	3
	iii.	1	5
OR	iv.	(a) Numerical aperture (b) Fractional refractive index change (c) Acceptance angle (d) V-number (e) Approximate number of modes. Explain the working of Ruby laser with the help of block diagram and energy level diagram.	5
Q.3	i. ii.	What is Double refraction, Positive crystal and Negative crystal? Describe Fresnel's bi-prism. Obtain the expressions for the fringe width and distance between virtual coherent sources by deviation method.	3 7
OR	iii.	Derive an expression for the intensity due to single slit diffraction. Show that the intensity at first secondary maxima is about 4.5 % of that of principal maxima.	7
Q.4	i.	What is phase velocity and group velocity?	2
	ii.	X-ray of wavelength 10.0 pm are scattered from a target. (a) Find the wavelength of the X ray scattered through 45°. (b) Find the maximum wavelength present in the scattered X ray.	3
		(b) Find the maximum wavelength present in the scattered X-ray.	

iii.	Write down the Schrodinger's equation for a particle in a box. Solve it to obtain Eigen functions and show that the energy Eigen values are discrete.	5			
iv	Write short note on: (a) Heisenberg's uncertainty principle (b) Limitations of classical mechanics	5			
i.	What is position of Fermi level in intrinsic and extrinsic Semiconductor?	2			
ii.	A plane cuts intercepts 2a, 3b and c along the crystallographic axis in a crystal. Determine the Miller Indices of plane.	3			
iii.	What is Hall Effect? Derive the expression of Hall coefficient.	5			
iv	Explain Meissner effect of super conductors. Discuss type-I and type-II 5 super conductor.				
	Attempt any two:				
i.	What is Sabine's formula and its limitations?	5			
ii.	Give any one method of production and detection of ultrasonic waves.	5			
iii.	Derive an expression for the total energy of a harmonic oscillator and show that it is constant and proportional to the square of the amplitude.	5			
	iv i. ii. iii. iv i. iii.	to obtain Eigen functions and show that the energy Eigen values are discrete. iv Write short note on: (a) Heisenberg's uncertainty principle (b) Limitations of classical mechanics i. What is position of Fermi level in intrinsic and extrinsic Semiconductor? ii. A plane cuts intercepts 2a, 3b and c along the crystallographic axis in a crystal. Determine the Miller Indices of plane. iii. What is Hall Effect? Derive the expression of Hall coefficient. iv Explain Meissner effect of super conductors. Discuss type-I and type-II super conductor. Attempt any two: i. What is Sabine's formula and its limitations? ii. Give any one method of production and detection of ultrasonic waves. iii. Derive an expression for the total energy of a harmonic oscillator and show that it is constant and proportional to the square of the			

Marking Scheme

EN3BS13 / SC3BS05 Engineering Physics

Q.1	i.	Which event is likely to take place when a photon of energy equal to the difference in energy between two levels is incident in a system? (a) Absorption					
	ii.	The normalized frequency of an optical fibre is equal to 2. Then the number of modes propagating through the fibres are: (b) One					
	iii.	The criterion of resolution of optical instruments was given by- (c) Rayleigh					
	iv.	Which phenomenon causes the polarisation (a) Double reflection	of light-	1			
	v.	Which of the following statement about the (a) Varies directly with frequency	energy in a quantum is true?	1			
	vi.	Heisenberg's uncertainty relation holds good (b) Only microscopic particles	od for:	1			
	vii.	The coordination number for face centred cubic lattice is- (a) 12					
	viii.	The transition temperature of mercury is- (c) 4.2 K					
	ix.	Ultrasonic waves are- (d) Move with the same velocity as sound waves					
	х.	Total energy of the particle executing simple harmonic motion is same at- (d) All of these					
Q.2	i.	Spontaneous emission Stimulated emission	1 mark 1 mark	2			
	ii.						
		Their refractive index profile	1 mark				
	iii.	(a) Numerical aperture	1 mark	5			
		(b) Fractional refractive index change	1 mark				
		(c) Acceptance angle	1 mark				
		(d) V-number	1 mark				
		(e) Approximate number of modes	1 mark				

OR	iv.	Working of Ruby laser	1 mark	5
		Block diagram	1 mark	
		Energy level diagram with explanation	2 marks	
		Active medium, active centre & wavelength	1 mark	
Q.3	i.	Double refraction	2 marks	3
Q.5	1.	Positive crystal	0.5 mark	3
		Negative crystal	0.5 mark	
	ii.	•	2 marks	7
	11.	Fresnel's bi-prism Diagram required for Eringa width calculation	1 mark	′
		Diagram required for Fringe width calculation	3 marks	
		Complete derivation for fringe width	1 mark	
OD	:::	Expression for 2d calculation by deviation method		7
OR	iii.	Diagram Expression and the Lettersity relation	1 mark 4 marks	7
		Expression up to the Intensity relation		
		Expression 4.5% of I _o	2 marks	
Q.4	i.	Phase velocity	1 mark	2
		Group velocity	1 mark	
	ii.	Correct formula: $\Delta \lambda = (h / mc) (1-cos\theta)$	1 mark	3
		Value of λ ' for θ =45° λ ' = 0.1007 Å	1 mark	
		Value of λ ' for θ =180° λ ' = 0.1484 Å.	1 mark	
	iii.	Diagram and correct boundary condition	1 mark	5
		Derivation up to the wave function determination	2 marks	
		Derivation of energy Eigen value	1 mark	
		Determination of constant 'A' by normalization condition	1 mark	
OR	iv	(a) Heisenberg's uncertainty principle	2.5 marks	5
		(b) Limitations of classical mechanics	2.5 marks	
Q.5	i.	Position of Fermi level in intrinsic	1 mark	2
Q.5	1,	Position of Fermi level in extrinsic Semiconductor	1 mark	4
	ii.	Determine the intercepts of the face along the crystallographic a		3
	11.	of unit cell dimensions	1 mark	3
		Take the reciprocals of the coefficients of the intercept	1 mark	
		Clear fractions	1 mark	
		Step marking three marks for correct answer		
	iii.	Hall Effect and diagram	2 marks	5
		Derivation of Hall coefficient	3 marks	

OR	iv	Meissner effect and diagram	2 marks	5
		Type-I	1.5 marks	
		Type-II super conductor	1.5 marks	
Q.6		Attempt any two:		
	i.	Sabine's formula	3 marks	5
		Its limitations	2 marks	
	ii.	Production of ultrasonic waves	2.5 marks	5
		Detection of ultrasonic waves.	2.5 marks	
	iii.	Expression of total energy of a harmonic oscillator	3 marks	5
		Show that it is constant and proportional to the squ	are of the	
		amplitude	2 marks	

5				
5				
5				
5				