

逻辑电路

• 组合逻辑电路

》输出状态仅和当时的输 入状态有关,而与过去 输入状态无关

● 时序逻辑电路

》输出状态不仅和当时的 输入状态有关,而且与 过去的输入状态有关

触发器?

- 一种具有"记忆"功能的单元逻辑电路
- 是构成时序逻辑电路的基本器件
- 区别:
 - > 有触发器就是时序电路
 - > 无触发器就是组合电路
- 时序电路的分析、设计都需要掌握 触发器(Flip-Flop)的功能特性。
- 学习要求
 - > 了解基本工作原理
 - > 重点掌握它们的逻辑功能
 - > 能够正确使用

PHILIPS 74HC14D施密特<u>触发器</u>作用:整流、滤波

内容提要

- **4.1 触发器概述**
 - 4.2 触发器的逻辑功能
 - 4.3 边沿触发器
 - 4.4 触发器的触发方式
 - 4.5 触发器的功能转换

4.1 触发器概述

● 符号表示

- > 两个互反的输出,用 Q 和 Q 表示
- > 多个输入,用约定字母表示

● 基本特征

> 有两种稳定的状态

$$0$$
态 $\left\{ \begin{array}{ll} \mathbf{Q}=\mathbf{0} \\ \overline{\mathbf{Q}}=\mathbf{1} \end{array} \right.$ $\left\{ \begin{array}{ll} \mathbf{Q}=\mathbf{1} \\ \overline{\mathbf{Q}}=\mathbf{0} \end{array} \right.$

>在输入信号的作用下,两种状态可相互转换

• 现态和次态

- > 现态: 信号作用前的状态,记作Q(Qn)
- ▶ 次态: 信号作用后的状态,记作Q'(Qn+1)

注意: 现态和次态是以时间划分的, 空间上是相同的

• 逻辑功能

(电路中的信号点)

- > Q'=f(Q,X)次态是现态和输入的函数
- ▶ 描述方法: 功能表、特征方程、激励表

• 触发方式

> 输入信号的有效条件

触发器的分类

• 按触发方式分类

- ▶ 基本(电位)触发器:输入信号电平直接控制
- > 时钟触发器
 - → 同步触发器:时钟电平直接控制
 - → 边沿触发器:时钟边沿控制
 - → 主从触发器:主从控制时钟脉冲触发

• 按功能方式分类

- > RS触发器
 - → 基本RS触发器 (4.2.1)
- ▶ JK触发器 (4.2.3)
 - → 边沿控制的JK触发器(4.2.4)
- > D触发器
 - → 同步D触发器 (4.2.2)
- > T触发器(4.2.5)
- > T'触发器

内容提要

- 4.1 触发器概述
 - 4.2 触发器的逻辑功能
 - 4.3 边沿触发器
 - 4.4 触发器的触发方式
 - 4.5 触发器的功能转换

4.2 触发器的逻辑功能

- 1. 基本RS触发器
- 2. 同步D触发器
- 3. JK触发器
- 4. 边沿控制的JK触发器
- 5. T触发器

4. 2. 1 基本R-S触发器

1) 电路组成与符号 由两个与非门交叉耦合组成。 输入信号为S、R,输出信号为Q,Q

也可以用或非门实现,见(126)练习四1a

2) 工作原理

- (1)当R=1, S=0 时 触发器Q=1, <u>T</u>1
- (2)当R=0 , S=1时 触发器Q=0,置0
- (3)当R=1 , S=1 时 若Q原来为0,则Q仍为0 若Q原来为1,则Q仍为1
- (4) 当R=0 , S=0 时 Q和Q都为1, 不定态(禁用)

(a) 电路结构

R	5	Q	Q'
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	*
1	1	1	*

2) 工作原理

• 转换过程

- (1) 当R=1 , S=1 时 若Q原来为0,则Q仍为0 若Q原来为1,则Q仍为1
- (2)当R=1 , S=0 时 触发器Q=1,<u>置</u>1

3) 功能描述

①功能表

图 卡诺图形式的功能表

②特征方程(次态表达式)

表示触发器的次态和现态以及输入之间的函数关系的逻辑表达式

$$Q'=S+RQ$$
特征方程 $RS=0$

③激励表

Q	Q'	R	S
0	0	*	0
0	1	0	1
1	0	1	0
1	1	0	*

3) 功能描述

④状态图

用圆圈表示状态,有向线段表示转移关系,线上标明转换条件

⑤逻辑符号

3) 功能描述

⑥波形图 (时序图)

- (1)当 $\overline{R}=1,\overline{S}=0$ 时,触发器 $Q=1,\overline{Z}$ 1
- (2) 当R=0, S=1时, 触发器Q=0, 置0
- (3) 当 $\overline{R}=1$, $\overline{S}=1$ 时,若Q原来为0,则Q仍为0,若Q原来为1,则Q仍为1

4)特点及应用

● 基本R-S触发器电路简单

- > 有两种稳定状态,可相互转换
- ▶ 输入直接控制, 抗干扰能力差 (可通过条件选通控制提高抗干扰能力)

作用

- > 可以存储一位二进制数
- > 构成各种性能更完善的触发器的基础

缺点

> RS之间有约束关系(RS不能同时为0),限制了它的使用

具有选通控制的同步RS触发器

● 同步RS触发器电路

- > G3 G4为选通信号
- > CP为选通控制信号 (通常称为时钟脉冲)

• 工作分析

- Arr 在CP=0期间,G3、G4封锁,输入信号R、S不起作用 $(\overline{R}=1 \ \overline{S}=1)$,基本触发器状态不变)
- ➤ 在CP=1期间,G3、G4开通,输入信号可作用于基本触发器 (R、S经G3、G4反相后变为R、S),其功能与前述基本RS相同
- > 这种触发器,输入信号是否有效受选通信号CP的电平控制,称 之为同步触发器
- > 逻辑符号中有CP端

4.2 触发器的逻辑功能

- 1. 基本RS触发器
- 2. 同步D触发器
- 3. JK触发器
- 4. 边沿控制的JK触发器
- 5. T触发器

4. 2. 2 同步D触发器

1. 电路

由同步RS触发器导出

2. 工作分析

在CP=0期间,G3、G4封锁 输入无效,触发器状态不变 在CP=1期间,G3、G4开通 输入有效,触发器状态可变

3. 功能描述(在CP=1期间)

①功能表

D	Q	Q ´
0	0	0
0	1	0
1	0	1
1	1	1
		1

4. 2. 2 同步D触发器

3. 功能描述(在CP=1期间)

- ②特征方程 Q'=D
- ③激励表

④状态图

Q	→ Q′	D
0	0	0
0	1	1
1	0	0
1	1	1

激励表

状态图

⑤逻辑符号

⑥波形图

逻辑符号

波形图

4.2 触发器的逻辑功能

- 1. 基本RS触发器
- 2. 同步D触发器
- 3. JK触发器
- 4. 边沿控制的JK触发器
- 5. T触发器

4. 2. 3 JK触发器

1. 电路

由同步RS触发器导出

2. 工作分析

CP=0, G3/G4封锁,输入无效,状态不变 CP=1, G3/G4开通,输入有效,状态可变

②J=0, K=1
$$(\overline{S}=1)$$
 $Q=0$ -> Q'=0 $($ 置0 $)$

③J=1, K=0
$$Q=0$$
 -> Q'=1 $Q=1$ -> Q'=1 (置1)

4. 2. 3 JK触发器

● 3. 功能描述

- ①功能表
- ②特征方程

$$Q' = J \overline{Q} + \overline{K} Q$$

Q KJ	00	01	11	10
0	0	1	1	0
1	1	1	0	0

③激励表

④状态图

Q	→ Q´	K	J	
0	0	*	0	
0	1	*	1	
1	0	1	*	
1	1	0	*	

4. 2. 3 JK触发器

● 4. 空翻问题

空翻现象:

同一同步控制信号/时钟脉冲作用期间,引起触发器发生两次以致多次翻转的现象,叫空翻。

4. 2. 4 边沿控制的JK触发器

• 边沿控制特性

- ▶ 输入信号仅在CP正跳变(或负跳变)时有效
- > 可保证在一个CP期间,触发器状态最多变化一次
- > 实现边沿控制的电路有主从、维阻、集成边沿等

• 逻辑功能

- > 输入有效时,触发器的功能与前面讨论的相同
- > JK: $Q' = J\bar{Q} + \bar{K}Q$

CP↑ 或 CP↓

4. 2. 4 边沿控制的JK触发器

● 符号表示

• 工作波形

$$\mathbf{Q}^{\,\prime}\!=\!\mathbf{J}\,\bar{\mathbf{Q}}\!+\!\bar{\mathbf{K}}\,\mathbf{Q}$$

4. 2. 5 T触发器

● 将JK的两个输入端连接在一起(J=K=T)即构成 T触发器

4.2 触发器的逻辑功能

- 1. 基本RS触发器
- 2. 同步D触发器
- 3. JK触发器
- 4. 边沿控制的JK触发器
- 5. T触发器

4.3 边沿触发器

• 边沿触发器

- >(1)触发器只有在时钟CP某一约定跳变(上跳变或下跳变)到来时,才接收输入数据
- > (2) 在CP=0及CP=1期间,输入的数据变化不会引起触发器输出状态的变化
- > (3) 时钟CP的非约定跳变不会引起触发器输出 状态的变化

主从触发器

- 由两级电位触发器(主触发器和从触发器)串联而成
- 工作原理
 - ➤ 在时钟CP=1期间,主触发器接收数据,从触发器封锁,然后在负跳变到来时,主触发器封锁,从触发器接收主触发器输出的状态(注意:不是接收CP负跳变到来时的主触发器的输入数据)。
- 常用主-从触发器
 - ≥ 主从R-S触发器
 - ≥ 主从J-K触发器

4. 3. 1 主从RS触发器

(1) 结构:

由主、从两个同步RS触发器和一个非门构成。

在CP=1期间,从触发器输出不变,主触发器接收RS的数据

在CP负跳变到来时,主触发器封锁,从触发器接收门打开,使主触发器在CP负跳变前接收的数据传送到从触发器。

图 4.2.8 主从结构 RS 触发器 (a)电路结构 (b)图形符号

整个触发器为下降沿触发。

缺点: 主从触发器本质上是同步触发器,所以CP=1期间,其输出Q'仍随输入的改变而改变,且有约束RS=0。

" ¬ " 表示延迟输出。

表 4.2.4 主从 RS 触发器的特性表

CP.	S	R	Q^n	Q^{n+1}
· ×	×	×	×	Q°.
Ţ	0	0	0	0
Ţ	0	0	1	1
ŢŢ	1	0	0	i
Л	1	0	1	1
Ţ	0	1	0	Ð
7.	0	1	1	0
<u>.T</u>	1	1	0	1 *
	1	1	1	1*

* CP 回到低电平后输出状态不定。

主从J-K 触发器(补充)

为了克服约束RS=0,提出JK触发器。

(1) 结构:在主从RS触发器基础上,加两条线J、K(S→J,R→K)

(2) 原理:

CP=1,主触发器接收J、K信号; CP负跳变时,从触发器接收主触发器的状态。

J=K=0,
$$Q^{n+1}=Q^n$$

J=0, K=1, $Q^{n+1}=0$
J=1, K=0, $Q^{n+1}=1$
J=K=1, $Q^{n+1}=\overline{Q^n}$

(3) JK触发器特性表

	CP						
J	K	\mathbf{Q}^n	$Q^{n+1} \qquad Q^n \begin{array}{c} JK \\ 00 01 1 \end{array}$	1	10		
0	0	0		1	1		
0	0	1	$\binom{0}{1}$ \mathbf{Q}^n 保持功能 $\binom{0}{1}$ $\binom{0}{1}$	0	1		
1	0	0	1	U	-		
1	0	1	$\left\{\begin{array}{c} 1 \\ 0 \\ \end{array}\right\} = \left\{\begin{array}{c} 1 \\ 0 \\ \end{array}\right\}$				
0	1	0					
0	1	1					
1	1	0	$\left\{ ar{\mathbf{Q}}^{n} \right\}$ 计数功能				
1	1	1					

内容提要

- 4.1 触发器概述
 - 4.2 触发器的逻辑功能
 - 4.3 边沿触发器
 - 4.4 触发器的触发方式
 - 4.5 触发器的功能转换

4.4 触发器方式及集成触发器

● 4.4.1 触发方式

- ▶ 逻辑功能: 输入和输出的函数关系 Q'=f(Q,X) 其中X表示输入信号
- ▶ 触发方式: 输入信号的有效条件
 - → 异步触发:输入之间作用,无CP
 - → 同步触发:输入受CP电平控制,CP端无箭头
 - → 边沿触发:输入受CP跳变控制,CP端有箭头

4.4.1 触发方式

- 逻辑功能: 输入和输出的函数关系
- 触发方式: 输入信号的有效条件

逻辑功能与触发方式的关系

同一种逻辑功能的触发器可以采用不同的触发方式,同一种触发方式也可以用于逻辑功能不同的触发器。但是,JK触发器和T触发器只能采用边沿触发方式。

4.4.2 集成触发器

• 采用集成电路工艺制作,常设有异步输入端及多输入端,如图所示

- 多输入端是指同一功能的信号设置多个输入端,使其使用更为灵活方便。
- 多个输入端是与的关系

$$J = J1 \cdot J2$$
$$K = K1 \cdot K2$$

工作波形

● 异步端作用P114

第四章 小结

- 一、触发器和门电路一样,也是组成数字电路的基本逻辑单元。它有两个基本特性:
 - 1. 有两个稳定的状态(0 状态和1状态)。
- 2. 在外信号作用下,两个稳定状态可相互转换;没有外信号作用时,保持原状态不变。

因此,触发器具有记忆功能,常用来保存二进制信息。

二、触发器的逻辑功能

指触发器输出的次态 Q'与输出的现态 Q 及输入信号之间的逻辑关系。触发器逻辑功能的描述方法主要有特性表、卡诺图、特性方程、状态转换图和波形图(时序图)。

二、触发器的分类

- 1. 根据电路结构不同,触发器可分为
- (1) 基本触发器: 输入信号电平直接控制。

特性方程
$$\begin{cases} Q' = S + RQ \\ RS = 0 \end{cases}$$
 (约束条件)

(2) 同步触发器: 时钟电平直接控制。

$$CP = 1$$
 (或 0) 时有效

特性方程
$$\begin{cases} Q'=S+RQ\\ RS=0 \end{cases}$$

$$Q'=D$$

同步 RS 触发器

同步D触发器

二、触发器的分类(续)

- 1. 根据<u>电路结构</u>不同,触发器可分为
- (3) 边沿触发器: 时钟边沿控制。 CP上升沿(或下降沿)时刻有效

特性方程

$$Q' = D$$

$$Q' = J\overline{Q} + \overline{K}Q$$

边沿D触发器 边沿JK触发器

(4) 主从触发器: 主从控制脉冲触发。 *CP* 下降沿(或上升沿)到来时有效

特性方程

$$\begin{cases}
Q' = S + \overline{RQ} \\
RS = 0
\end{cases}$$
主从 RS 触发器
$$Q' = J\overline{Q} + \overline{KQ}$$
 主从 JK 触发器

二、触发器的分类

2. 根据逻辑功能不同,时钟触发器可分为

(1) RS 触发器

$$\begin{cases} Q' = S + \overline{R}Q \\ RS = 0 \quad (约束条件) \end{cases}$$

(2) D 触发器

$$Q'=D$$

(3) JK 触发器

$$Q' = J\overline{Q} + \overline{K}Q$$

(4) T触发器

$$Q' = T\overline{Q} + \overline{T}Q$$

利用特性方程可实现不同功能触发器间逻辑功能的相互转换。

作业

• 练习四

> 1, 4, 5, 6

