Homework 1

Lygina Oksana 878

23 февраля 2021 г.

Matrix calculus

1. solution:

$$\begin{array}{l} f(x) = ||Ax||_2 = \sqrt{< Ax, Ax>} \\ df = \frac{d < Ax, Ax>}{||Ax||_2} = \frac{< Adx, Ax> + < Ax, Adx>}{2||Ax||_2} = \frac{< Ax, Adx>}{||Ax||_2} = < \frac{A^TAx}{||Ax||_2}, dx> \rightarrow \nabla \ f(x) = < \frac{A^TAx}{||Ax||_2} > \\ Other: \nabla \ f(x) = < \frac{A^TAx}{||Ax||_2} > \end{array}$$

2. solution:

С семинара: $g(X) = det X \to g'(X) = det X X^{-T}$ Тогда $df(X) = d \log det X = \frac{\langle det X X^{-T}, dX \rangle}{\langle det X \rangle} = \langle X^{-T}, dX \rangle \to f'(X) = X^{-T}$

 $h(X) = X^{-T}$. Тогда найдем h'(X):

Дифференцируем тождество: $X^T X^{-T} = I \to dX^T X^{-T} + X^T d(X^{-T}) = 0$

 $dh(X) = -X^{-T}dX^TX^{-T}$

Обозначим через E_{ij} матрицу, в которой везде нули, кроме элемента (i, j) - там стоит единица.

Тогда: $dX = E_{ij}dX_{ij}$

 $dh(X) = -X^{-T} E_{ij}^T X^{-T} dX_{ij} \to \frac{\partial h(X)}{\partial x_{ij}} = -X^{-T} E_{ji} X^{-T}$ Ответ: $f''(X) = -X^{-T} E_{ii} X^{-T}$

3. solution:

$$\begin{array}{l} f(X) = ||X||_F^2 = tr(X^TX) = < X, X > \\ df(X) = d < X, X > = 2 < X, dX > = < 2X, dX > \to \frac{\partial}{\partial X} ||X||_F^2 = 2X \\ \text{Otbet: 2X} \end{array}$$
 Otbet:

$$f(x) = ||y-y_o||_2^2 = <(y - y_o), (y - y_o)> = <(y - Wx - b), (y - Wx - b)>,$$
 где $y_o = Wx + b$
 $\frac{\partial L}{\partial W} = 2 < y - Wx - b, \frac{\partial}{\partial W}(y - Wx - b)> = 2 < y - Wx - b, -x dW> = (-2x^T(y - Wx - b), dW> $\rightarrow \frac{\partial L}{\partial W} = -2x^T(y - Wx - b)$$

$$\frac{\partial L}{\partial b}=2<$$
y - Wx - b, $\frac{\partial}{\partial b}(y$ - Wx - b)> = 2 = (-2(y - Wx - b), db> $\frac{\partial L}{\partial b}=-2(y$ - Wx - b)

Convex sets

1. solution:

Пусть множество S - выпукло и $x_o, y_o \in int(S) \to x_o, y_o \in S$

Так как точки x_o, y_o - внутренние $\to \exists \epsilon > 0$: $\forall x : ||\mathbf{x} - x_o|| \le \epsilon \to \mathbf{x} \in S$

$$|M \forall y : ||y - y_o|| \le \epsilon \to y \in S$$

Домножим первое неравенство на α , а второе на $(1 - \alpha)$, далее сложим и используем неравенство треугольника, тогда получим:

$$||\mathbf{z} - z_o|| = |\alpha x + (1 - \alpha)\mathbf{y} - (\alpha x_o + (1 - \alpha)y_o)|| \le \alpha ||\mathbf{x} - x_o|| + (1 - \alpha)||\mathbf{y} - y_o|| \le \epsilon z = \alpha \mathbf{x} + (1 - \alpha)\mathbf{y}, z_o = \alpha x_o + (1 - \alpha)y_o, 0 \le \alpha \le 1$$

Так как $x, x_o, y, y_o \in S$ и S - выпукло $\rightarrow z, z_o \in S$

Это значит, что z_o содержится в S вместе со своей окрестностью и значит in S $\rightarrow \in int(S) \rightarrow int(S)$ - выпукло.

Обратно неверно - приведем контрпример.

Возьмем квадрат ABCD на плоскости, границы AB и CD входят в множество, включая точки A, B, C, D, но при этом границы BC и AD не входят.

Это множество невыпукло, так как, например, отрезок между D и A не принадлежит этому множеству. Но множество внутренних точек квадрата выпукло. 🗸

2. solution:

Возьмем две квадратные симметричные положительные определенные матрицы A и B, то есть A, $B \succ 0$

Это означает, что $\forall x \in R^n \ (\mathbf{x} \neq \mathbf{0})$ выполнено: $x^T A x > \mathbf{0}, \ x^T B x > \mathbf{0}$

Пусть $\alpha \in [0, 1]$. Тогда $C = \alpha A + (1 - \alpha)B$

Домножим слева на x^T и справа на x:

$$x^TCx=x^T(lpha \mathrm{A}+(1-lpha)\mathrm{B})\mathrm{x}=lpha x^TAx+(1-lpha)x^TBx>0 o\mathrm{C}\succ 0$$
 и \mathcal{S}^n_{++} выпукло. \checkmark

3. solution:

Пусть x, y
$$\in$$
 S; $0 \le \alpha \le 1$

Проверим принадлежность S произвольной выпуклой комбинации x и у ($\prod^n x_i \ge$

$$1, \prod_{i=1}^{n} y_i \ge 1):$$

$$1, \prod_{i=1}^{n} y_{i} \geq 1):$$

$$\prod_{i=1}^{n} z_{i} = \prod_{i=1}^{n} (\alpha x_{i} + (1 - \alpha)y_{i}) \geq \prod_{i=1}^{n} x_{i}^{\alpha} y_{i}^{1-\alpha} = (\prod_{i=1}^{n} x_{i})^{\alpha} (\prod_{i=1}^{n} y_{i})^{1-\alpha} \geq 1^{\alpha} 1^{1-\alpha} = 1 \rightarrow z \in S$$

$$\rightarrow S - выпукло. \checkmark$$

$$\Rightarrow$$
 Пусть выполнено $(\alpha + \beta)S = \alpha S + \beta S$

Тогда $\forall x_1, x_2 \in S \ \forall \alpha, \beta \geq 0 \to \exists x \in S : \alpha x_1 + \beta x_2 = (\alpha + \beta) \mathbf{x}$ Возьмем $\alpha = \mathbf{a}, \ \beta = 1$ - $\mathbf{a}, \ \mathbf{a} \in [0, 1] \to \forall x_1, x_2 \in S \ \forall \mathbf{a} \in [0, 1] \to \mathbf{a} \mathbf{x}_1 + (1 - a) x_2 = x \in S \to S$ - выпукло

- 1) Пусть $x \in (\alpha + \beta)S$. Тогда $\exists y \in S: x = (\alpha + \beta)y$. Тогда $\alpha y \in \alpha S$, $\beta y \in \beta S$ и выполнено: $x = \alpha y + \beta y \to x \in \alpha S + \beta S$
- 2) Пусть $\mathbf{x} \in \alpha \mathbf{S} + \beta \mathbf{S}$. Тогда $\exists \mathbf{y}_1, y_2 \in \mathbf{S} : \mathbf{x} = \alpha y_1 + \beta y_2$ S выпукло, значит, $\frac{x}{\alpha+\beta} = \frac{\alpha}{\alpha+\beta} y_1 + \frac{\beta}{\alpha+\beta} y_2 \in \mathbf{S} \to \mathbf{x} \in (\alpha+\beta) \mathbf{S}$. \checkmark

5. solution:

Пункт а:

- 1) Если $\alpha > a_i$, то набор будет пустым и будет выпуклым.
- 2) Если $\alpha \leq a_1$, то набор векторов совпадает с вероятностным пространством векторов и тоже выпуклый.

3) Если
$$a_{k-1} \leq \alpha \leq a_k$$
, то: $P(x > \alpha) = \sum_{i=k}^n a_i p_i \geq \beta$

Пусть p, q \in S: $\forall \lambda \in [0, 1]$

Тогда для их выпуклой комбинации выполнено: $\sum\limits_{i=k}^n a_i (\lambda p_i + (1 - \lambda) q_i) = \lambda \sum\limits_{i=k}^n a_i p_i +$

$$(1$$
 - $\lambda)\sum\limits_{i=k}^n a_iq_i \geq \lambdaeta + (1$ - $\lambda)eta = eta o \mathrm{S}$ - выпукло. \checkmark

Пункт b:

Вектор р принадлежит набору $\Leftrightarrow E |\mathbf{x}^{201}| = \sum_{i=1}^{n} p_i |a_i^{201}| \le \alpha \sum_{i=1}^{n} p_i |\mathbf{a}_i|$

Рассмотрим $\mathbf{p} = \lambda \mathbf{c} + (1 - \lambda) \mathbf{b}$, где \mathbf{c} , \mathbf{b} принадлежат данному набору, $\lambda \in [0, 1]$ $\sum_{i=1}^n p_i |\alpha_i^{201}| = \lambda \sum_{i=1}^n c_i \; |\mathbf{a}_i^{201}| + (1 - \lambda) \sum_{i=1}^n b_i \; |\mathbf{a}_i^{201}| \leq \lambda \alpha \sum_{i=1}^n c_i |\mathbf{a}_i| + (1 - \lambda) \; \alpha \sum_{i=1}^n b_i |a_i| = \alpha \sum_{i=1}^n c_i |\mathbf{a}_i| + (1 - \lambda) \; \alpha \sum_{i=1}^n c_i |\mathbf{a}_i| = \alpha \sum_{i=1}^n c_i |\mathbf{a}_i| + (1 - \lambda) \; \alpha \sum_{i=1}^n c_i |\mathbf{a}_i| = \alpha \sum_{i=1}^n c_i |\mathbf{a}_i| + (1 - \lambda) \; \alpha \sum_{i=1}^n c_i |\mathbf{a}_i| = \alpha \sum_{i=1}^n c_i |\mathbf{a}_i| + (1 - \lambda) \; \alpha \sum_{i=1}^n c_i |\mathbf{a}_i| = \alpha \sum_{i=1}^n c_i |\mathbf{a}_i| + (1 - \lambda) \; \alpha \sum_{i=1}^n c_i |\mathbf{a}_i| = \alpha \sum_{i=1}^n c_i |\mathbf{a}_i| + (1 - \lambda) \; \alpha \sum_{i=1}^n c_i |\mathbf{a}_i| = \alpha \sum_{i=1}^n c_i |\mathbf{a}_i| + (1 - \lambda) \; \alpha \sum_{i=1}^n c_i |\mathbf{a$

 $(\lambda c_i + (1 - \lambda) |\mathbf{b}_i| \mathbf{a}_i) = \alpha \sum_{i=1}^n p_i |\mathbf{a}_i| \to \text{вектор p принадлежит данному набору} \to \text{данный набор выпуклый.} \checkmark$

Пункт с:

Аналогично пунктам а и б:

Вектор р принадлежит набору $\Leftrightarrow E |\mathbf{x}^2| = \sum_{i=1}^n p_i |\mathbf{a}_i^2| \ge \alpha$

Рассмотрим $p = \lambda c + (1 - \lambda)b$, где c, b принадлежат данному набору, $\lambda \in [0, 1]$ $\sum_{i=1}^{n} p_i |\alpha_i^2| = \lambda \sum_{i=1}^{n} p_i |c_i^2| + (1-\lambda) \sum_{i=1}^{n} b_i |a_i^2| \ge \lambda \alpha + (1 - \lambda) \alpha \ge \alpha \to \text{вектор p принадлежит данному набору} \to \text{данный набор выпуклый.} \checkmark$

Пункт d:

Распишем дисперсию:
$$\bigvee \mathbf{x} = E\mathbf{x} - (E\mathbf{x})^2 = \sum_{i=1}^n a_i^2 p_i - (\sum_{i=1}^n a_i p_i)^2$$

Пусть p, q \in S, $\lambda \in [0,1]$. Тогда их выпуклой комбинации будет: $z = \lambda p + (1 - \lambda)q$

$$\sum_{i=1}^{n} a_i^2 p \ge (\sum_{i=1}^{n} a_i^2 p)^2 + \alpha$$

$$\sum_{i=1}^{n} a_i^2 q \ge (\sum_{i=1}^{n} a_i^2 q)^2 + \alpha$$

$$\bigvee(z) = \lambda \sum_{i=1}^{n} a_i^2 p + (1 - \lambda) \sum_{i=1}^{n} a_i^2 q - \lambda^2 (\sum_{i=1}^{n} a_i p)^2 - (1 - \lambda)^2 (\sum_{i=1}^{n} a_i q)^2 - 2\lambda (\lambda - 1) \sum_{i=1}^{n} a_i p \sum_{i=1}^{n} a_i q \ge \lambda \alpha + \lambda (1 - \lambda) ((\sum_{i=1}^{n} a_i q)^2 + (\sum_{i=1}^{n} a_i p)^2 - 2\sum_{i=1}^{n} a_i p \sum_{i=1}^{n} a_i q) \ge \alpha + (\sum_{i=1}^{n} a_i p + \sum_{i=1}^{n} a_i q)^2 \ge \alpha \to$$

$$z \in S \to S - \text{ выпуклое множество. } \checkmark$$

Projection

1. solution:

Норма Фробениуса:

Пусть SVD матрицы: X = UDV,где D сингулярные значения стоят на диагонали порядке убывания: $\sigma_1 \geq \sigma_2 \geq \dots$ Покажем, что $X_k = \sum_{i=1}^k \sigma_i u_i v_i^T$, где u_i, v_i і-ые столбцы V, U есть искомая проекция.

$$||\mathbf{X} - X_k||_F^2 = ||\sum_{i=1}^{k+1} \sigma_i u_i v_i^T||_F^2 = \sum_{i=1}^{k+1} \sigma_i^2$$

Покажем, что для любой матрицы Y ранга k выполняется: $||\mathbf{X} - \mathbf{Y}||_F^2 \ge ||\mathbf{X} - \mathbf{X}_k||_F^2$ Учтем неравенство сингулярных разложений: $\sigma_{i+j-1}(\mathbf{A} + \mathbf{B}) \le \sigma_i(A) + \sigma_j(B) \ \forall \mathbf{j} \le \mathbf{n}, \ \mathbf{i} + \mathbf{j} - 1 \le \mathbf{n}$

Так как у Y ранг k,то
$$\sigma_{k+1}(Y) = 0.j = k+1, B = Y, A = X-Y : \sigma_{i+k}(X) \le \sigma_i^2(X-Y)$$

 $\forall i : 1 \le \text{n-k} \rightarrow ||X-Y||_F^2 \ge \sum_{i=1}^{n-k} \sigma_i^2(X-Y) \ge \sum_{i=k+1}^n \sigma_i^2(X) = ||X-X_k||_F^2$

Значит, X_k . \checkmark

Спектральная норма:

Покажем, что для любой матрицы Y ранга k выполняется: $||X-Y||_2^2 \ge ||X-X_k||_2^2$ $= ||\sum_{i=k+1}^n \sigma_i u_i v_i^T||_2^2 = \sigma_{k+1}^2$

Из неравенства сингулярных значений: $\sigma_{k+1}(X) \leq \sigma_1(X-Y) \rightarrow ||X-Y||_2^2 \geq \sigma_1^2(X-Y) \geq \sigma_{k+1}(X) = ||X-X_k||_2^2$

А значит, $X_k = \sum_{i=1}^k \sigma_i u_i v_i^T$ искомая проекция по спектральной норме. \checkmark

2. solution:

Используем теорему: Пусть S - выпуклое замкнутое множество в R^n . Тогда проекция $\pi_S(a)$ любой точки $a \in R^n$ на S существует и единственна. Тогда $<\pi_S(x_1)$ - $x_1, y-\pi_S(x_1)>>0$

$$<\pi_S(x_2)$$
 - $x_2, y-\pi_S(x_2)> \ge 0$

Так как у любой, то возьмем вместо него проекции противоложных точек, то есть $\langle \pi_S(x_1)$ - $\mathbf{x}_1, \pi_S(x_2)$ - $\pi_S(x_1) > \ge 0$

 $<\pi_S(x_2)$ - $x_2,\pi_S(x_1)$ - $\pi_S(x_2)>\geq 0$

Из этих неравенств получаем требуемое неравенство $||\pi_S(x_2) - \pi_S(x_1)||_2 \le ||\mathbf{x}_2 - \mathbf{x}_1||_2 \checkmark$

Matrix calculus

1. solution:

а) Воспользуемся способом ограничения на прямую. Пусть $X \in S^n_{++}$, $Y \in R^{nxn}$. Покажем, что функция $h(t) = f(X+tY) = tr(X+tY)^{-1}$ выпукла на множестве $T = t \mid X+tY \in S^n_{++}$. Чтобы T не равнялось пустому множеству, необходимо, чтобы матрица Y была симметричной.

 $h(t) = tr(X + tY)^{-1} = tr(I + tX^{-1})^{-1}X^{-1} = trX^{-1}(I + tP\bigwedge P^T)^{-1}$, где $X^{-1}Y = P\bigwedge P^T$ - диагонализация симметричной матрицы $X^{-1}Y$. Еще здесь используется, что след произведения симметричных матриц не зависит от порядка их перемножения.

Далее учтем, что преобразования не меняют след.

$$h(t) = tr(X^{-1}P(I+t\bigwedge)^{-1}P^T) = tr(p^TX^{-1}P(I+t\bigwedge)^{-1}) = \sum_{k=1}^{n} (P^TX^{-1}P)_{kk} \frac{1}{1+t}\lambda_k = \sum_{k=1}^{n} \frac{c_k}{1+\lambda_k t}$$

Используем тот факт, что если A, B \succeq 0 и AB - симметричная матрица, то $\stackrel{\sim}{AB} \succeq 0$ Тогда у нас A = $X^{-1} \succeq 0$, B = X + tY $\succeq 0$. Значит, AB = I + t X^{-1} Y $\succeq 0$, то есть выполнено 1 + λ_k t $\geqslant 0$ \forall k \forall t \in T \rightarrow функции $\frac{c_k}{1+}\lambda_k$ t выпуклы на T

Тогда и h(t) выпукла как сумма выпуклых функций. ✓

b) Воспользуемся способом ограничения на прямую. Пусть $X \in S^n_{++}$, $Y \in R^{nxn}$. Покажем, что функция $h(t) = -g(X + tY) = -(\det(X + tY))^{\frac{1}{n}}., Y$.

$$h(t) = -(\det X)^{\frac{1}{n}} (\det(I + tX^{-1}Y))^{\frac{1}{n}} = -C \prod_{k=1}^{n} (1 + \lambda_k t))^{\frac{1}{n}}$$

 $a)1 + \lambda_k t > 0.$

Есть такой факт, что геометрическое среднее $F(x) = \prod_{k=1}^n x_k^{\frac{1}{n}} R_{++}^n$

Тогда функция h(t) является выпуклой. ✓

2. solution:

$$f(p) = \sum p_i log(p_i) \to f'_{p_i} = \log(p_i) + 1 \to f''_{p_i p_i} = \frac{1}{p_i} \to \nabla^2 f = \operatorname{diag}(1p_i) \succ 0$$
 По второму дифференциальному критерию f выпукла

Тогда первый дифференциальный критерий: $f(p)=\geq f(q)+\nabla f^T(q)(p-q)\to D(p,q)\geq 0 \ \forall p,r\in R_{++}^n$ и $D(p,q)=0 \leftrightarrow p=q.\checkmark$

- 1) Математическое ожидание линейная функция $E(\alpha x_1 + (1 \alpha x_2) = \alpha E x_1 + (1 \alpha)E x_2 \rightarrow$ это одновременно и выпуклая и вогнутая функция. \checkmark
- 2) Если $\alpha > a_n$, то P(p) = 0 $\forall p$ выпуклая функция. Аналогично при $\alpha < a_1$. Пусть $a_i < \alpha < a_i + 1$, тогда $P(p) = \sum\limits_{j=i+1}^n p_j$ линейная функция, значит, является выпуклой и вогнутой. \checkmark

3) Аналогично предыдущего пункту: $a_i < \alpha \le a_i + 1, \, a_j \le \beta < a_j + 1$

$$\mathrm{P}(\mathrm{p}) = \sum_{k=i+1}^{j} p_k$$
 - линейная функция, а значит является выпуклой и вогнутой. \checkmark

4) Из первой части задачи 2 по второму критериб следует, что строго выпуклая функпия. ✓

5)
$$v(x) = E(x^2) - E(x)^2$$

$$0 < \lambda < 1$$

$$V(\lambda p_{1} + (1 - \lambda p_{2})) = \sum_{i=1}^{n} a_{i}^{2} (\lambda p_{1i} + (1 - \lambda) p_{2i})) - (\sum_{i=1}^{n} a_{i} (\lambda p_{1i} + (1 - \lambda p_{2i}))^{2}$$

$$\lambda V(p_{1}) + (1 - \lambda) V(p_{2}) = \lambda \sum_{i=1}^{n} a_{i}^{2} p_{1i} - \lambda (\sum_{i=1}^{n} a_{i} p_{1i})^{2} + (1 - \lambda) \sum_{i=1}^{n} a_{i2} p_{2i} - (1 - \lambda) (\sum_{i=1}^{n} a_{i} p_{2i})^{2}$$

$$\lambda V(p_{1}) + (1 - \lambda) V(p_{2}) - V(\lambda p_{1} + (1 - \lambda) p_{2}) = (\sum_{i=1}^{n} a_{i} (\lambda p_{1i} + (1 - \lambda) p_{2i}))^{2} - \lambda (\sum_{i=1}^{n} a_{i} p_{1i})^{2} - (1 - \lambda) (\sum_{i=1}^{n} a_{i} p_{2i})^{2} = \lambda (\lambda - 1) ((\sum_{i=1}^{n} a_{i} p_{1i})^{2} + (\sum_{i=1}^{n} a_{i} p_{2i})^{2} - 2\sum_{i=1}^{n} a_{i} p_{1i} \sum_{i=1}^{n} a_{i} p_{2i}) = (\sum_{i=1}^{n} a_{i} p_{1i} - \sum_{i=1}^{n} a_{i} p_{2i})^{2} \le (1 - \lambda) (\sum_{i=1}^{n} a_{i} p_{2i})^{2} = \lambda (\lambda - 1) ((\sum_{i=1}^{n} a_{i} p_{1i})^{2} + (\sum_{i=1}^{n} a_{i} p_{2i})^{2} - 2\sum_{i=1}^{n} a_{i} p_{2i}) = (\sum_{i=1}^{n} a_{i} p_{1i} - \sum_{i=1}^{n} a_{i} p_{2i})^{2} \le (1 - \lambda) (\sum_{i=1}^{n} a_{i} p_{2i})^{2} = \lambda (\lambda - 1) (\sum_{i=1}^{n} a_{i} p_{1i})^{2} + (\sum_{i=1}^{n} a_{i} p_{2i})^{2} = \lambda (\lambda - 1) (\sum_{i=1}^{n} a_{i} p_{2i})^$$

$$(1-\lambda)(\sum_{i=1}^n a_i p_{2i})^2 = \lambda(\lambda - 1)((\sum_{i=1}^n a_i p_{1i})^2 + (\sum_{i=1}^n a_i p_{2i})^2 - 2\sum_{i=1}^n a_i p_{1i} \sum_{i=1}^n a_i p_{2i}) = (\sum_{i=1}^n a_i p_{1i} - \sum_{i=1}^n a_i p_{2i})^2 \leq 0$$

Значит, функция вогнутая. 🗸

6) Заметим, что в случае дискретной случайной величины квартилем является:

$$f(p) = quartile(x) = min\{a_k | \sum_{i=1}^k p_i \ge \frac{1}{4}\}$$

Квартиль, в случае дискретной случайной величины, являетя ступенчатой функцией. Ступенчатая функция не может быть ни выпуклой, ни вогнутой, так как ее надграфик и подграфик не являются выпуклыми множествами.

Теперь докажем это:

Покажем, что f не является выпуклой:

$$\mathbf{p}=(\frac{1}{4},\frac{3}{4}),\,\mathbf{q}=(0,\,1),\,\mathbf{a}=(0,\,1000),\,\lambda=\frac{1}{2}$$
 Тогда при $\mathbf{z}=\lambda\mathbf{p}+(1$ - $\lambda)\mathbf{q}=(\frac{1}{8},\frac{7}{8})$:

 $f(z)=1000,\, \lambda f(p)+(1-\lambda)f(q)=500 o$ нарушается определение выпуклости

Покажем, что f не является вогнутой:

$$p = (1, 0), q = (0, 1), a = (0, 1000), \lambda = \frac{1}{2}$$

Тогда при $z = \lambda p + (1 - \lambda)q = (\frac{1}{2}, \frac{1}{2})$:

$$f(z)=0,\,\lambda f(p)+(1-\lambda)f(q)=500$$
 — нарушается определение вогнутости. \checkmark

4. solution:

а) Это линейная функция, ее гесиан равен 0, значит, а(х) выпукла и вогнута. ✓

b) g(x) - вогнутая функция. Покажем это:

По дифференциальному критерию первого порядка, достаточно показать, что ∀х, у $\in R_{++}^n$:

$$g(y) \leq g(x) + \nabla g(x)^T (y - x)$$

$$g(x) \neq 0$$

$$(\prod_{k=1}^{n} \frac{y_k}{x_k})^{\frac{1}{n}} \le 1 + \frac{1}{n} \sum_{k=1}^{n} \frac{y_k - x_k}{x_k}$$

$$\left(\prod_{k=1}^{n} \frac{y_k}{x_k}\right)^{\frac{1}{n}} \le \frac{1}{n} \sum_{k=1}^{n} \frac{y_k}{x_k}$$

Последнее неравенство - это неравенство Коши о среднем: среднее геометрическое не

превосходит среднего арифметического. \checkmark

Функция
$$f(x) = -x\ln x - (1-x)\ln(1-x)$$
 определена на $(0,1)$ $f'(x) = -x\frac{1}{x} - \ln x + \ln(1-x) + 1 = \ln(1-x) - \ln x$ $f''(x) = -\frac{1}{1-x} - \frac{1}{x} = \frac{1}{(1-x)x} < 0$ Значит, f строго вогнута на $(0,1)$. \checkmark