Examen de structure de la matière (chimie 1)

Exercice 1 (6 points)

Un statue composé d'alliage (mélange) à base de cuivre, d'arsenic et de fer, pèse 6175 grammes, dont 5 Kg en fer. Sachant que la masse de cuivre est le double de la masse d'arsenic. Calculer pour chaque élément:

- a) le nombre de mol;
- b) le nombre d'atome;
- c) le pourcentage massique;
- d) le nombre de neutron.

On donne: ${}_{26}^{56}Fe$, ${}_{29}^{63}Cu$ et ${}_{33}^{75}As$, $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$.

Exercice 2 (4 points)

- 1. Les ions 1H+, 3Li+2, 4Be2+ et 8O2 sont-ils des hydrogénoïdes
- 2. Quelle énergie doit absorber un ion Li²⁺, pour que l'électron passe du niveau fondamental au deuxième niveau excité ? quelle est la longueur d'onde du rayonnement capable de provoquer cette transition?
- 3. Calculer en eV et en joules, l'énergie d'ionisation de l'ion Li²⁺, à partir du deuxième état excité.

On donne: Li (Z=3) $1eV = 1,6.10^{-19}$ Joules, $h = 6,62.10^{-34}$ J.s, $c = 3.10^8$ m.s⁻¹,

Exercice3 (7 points)

- a) Donner la configuration électronique des éléments suivants en précisant la période, le bloc et le groupe de chaque élément : 11Na, 17Cl, 15P et 24Cr.
- b) Donner les formules de Lewis des composés suivants : N₂, PCl₃ et AsCl₃. (₇N, ₈O, ₁₅P, ₃₃As et ₁₇Cl).
- c) Préciser la géométrie de la molécule PCl₃ à l'aide de la méthode VSPER (Gillespie)

Exercice4 (3 points)

On envoie un rayonnement monochromatique de fréquence 9,12·10¹⁴ s⁻¹ sur un atome d'hydrogène (H) déjà en premier état excité. L'énergie du rayonnement est-elle suffisante pour arracher l'électron de l'atome H et pourquoi? Calculer la vitesse de l'électron éjecté.

On donne: $m_c = 9.1. \ 10^{-31} \text{kg}$, H (Z=1), $1 \text{eV} = 1.6. \ 10^{-19} \text{ J}$, $h = 6.62. \ 10^{-34} \text{ J.s}$, $c = 3.10^8 \text{ m.s}^{-1}$

Bon courage

1ère année : ST + énergies renouvelables

Corrigé type de l' Examen de structure de la matière (chimie 1)

Tout d'abord on calcul la masse de cuivre et d'arsenic :

Nous avons:

$$m_{\text{totale}} = m_{\text{fer}} + m_{\text{cuivre}} + m_{\text{arsenic}} = 5000 + m_{\text{cuivre}} + m_{\text{arsenic}} = 6175 \text{ g}$$

$$0,25p$$

et
$$m_{\text{cuivre}} = 2 m_{\text{arsenic}}$$

Donc on peut écrire :

$$m_{\text{totale}} = m_{\text{fer}} + 3 m_{\text{arsenic}} \text{ cela implique } m_{\text{arsenic}} = \frac{m_{\text{totale}} - m_{\text{fer}}}{3} = \frac{6175 - 5000}{3} = 391,66 \text{ g}$$
 0,25p

$$\rightarrow$$
 m_{cuivre} = 2 x 391,66=783,3 g 0,25p

a) le nombre de mol;

$$n_{Fer} = \frac{m_{fer}}{M_{fer}} = \frac{5000}{56} = 89,29 \ mol$$
 0,25p

$$n_{Cuivre} = \frac{783,3}{63} = 12,43 \ mol$$
 0,25p

$$n_{Arsenic} = \frac{391,66}{75} = 5,22 \ mol$$
 0,25p

b) le nombre d'atome;

$$N_{atome} = n * N_A \rightarrow$$

$$N_{\text{Fer}} = 89,29 \text{ x } 6,02 \text{ x } 10^{23} = 5,37 \text{ . } 10^{25} \text{ atome}$$
 0,5p

$$N_{\text{Cuivre}} = 12,43 \times 6,02 \times 10^{23} = 7,48.10^{24} \text{ atom}$$
 0,5p

$$N_{\text{Cuivre}} = 5.22 \text{ x } 6.02 \text{ x } 10^{23} = 3.14. \ 10^{24} \text{ atome}$$

c) le pourcentage massique;

$$X(\%) = \frac{m_x}{m_t} * 100$$
 0,5p

$$Fer(\%) = \frac{5000}{6175} * 100 = 80,97 \%$$
 0,5p

$$Cuivre(\%) = \frac{783,3}{6175} * 100 = 12,68 \%$$
 0,5p

Arsenic(%) =
$$\frac{391,66}{6175} * 100 = 6,34 \%$$
 0,5p

d) le nombre de neutron.

 $N_{neutron} = A-Z \rightarrow$

$$N_{\text{neutron(Fer)}} = 56-26 = 30 \text{ neutron}$$

$$N_{\text{neutron}(\text{Cuivre})} = 63-29=34 \text{ neutron}$$

$$N_{\text{neutron(Arsenic)}} = 75-33 = 42 \text{ neutron}$$

Exercice 2 (4 points)

Pour un hydrogénoïde nous avons $E_n = \frac{-13,6*Z^2}{n^2}$ avec Z est le numéro atomique du lithium (Li) qui est égale à

- l'énergie absorbée est calculée par l'équation suivante :

$$\Delta E_{1\to 3} = |E_3 - E_1| = \left| \frac{-13.6*3^2}{3^2} - \frac{-13.6*3^2}{1^2} \right| = 108.8 \text{ eV}$$

-La longueur d'onde correspondante est égale à

$$\lambda = \frac{h * c}{E} = \frac{6,62.10^{-34} * 3.10^{8}}{108,8 * 1.6.10^{-19}} = 0,114 \cdot 10^{-7} \text{m} = 11,4 \text{ nm}$$

3. Calculer en eV et en joules, l'énergie d'ionisation de l'ion Li²⁺, à partir du deuxième état excité.

L'ionisation correspond à $n = \infty$, donc dans ce cas nous avons la transition entre n=3 et $n=\infty$.

$$\Delta E_{3\to\infty} = |E_{\infty} - E_3| = \left| \frac{-13,6*3^2}{\infty^2} - \frac{-13,6*3^2}{3^2} \right| = \left| 0 - \frac{-13,6*9}{9} \right| = 13,6 \text{ eV } = 13,6*1,6.10^{-19} = 2,1.10^{-18} \text{ J}$$

Exercice 3 (7 points)

a) Pour chaque élément 1,25 point :

0.5 p

0.25 p

0.25 p

0.25 p

 $_{11}$ Na: $1s^2 2s^2 2p^6 3s^1 \rightarrow {}_{11}$ Na: $[_{10}$ Ne] $3s^1$

 $_{17}\text{Cl}: 1\text{s}^2 2\text{s}^2 2\text{p}^6 3\text{s}^2 3\text{p}^5 \implies _{17}\text{Cl}: [_{10}\text{Ne}] 3\text{s}^2 3\text{p}^5$

 $_{15}P: 1s^2 2s^2 2p^6 3s^2 3p^3 \rightarrow _{15}P: [_{10}Ne] 3s^2 3p^3$

la période 3, le bloc s et le groupe IA

la période 3, le bloc P et le groupe VIIA

la période 3, le bloc P et le groupe VA

 $_{24}\text{Cr: } 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 3d^4 \Rightarrow _{24}\text{Cr: } [_{18}\text{Ar}] 4s^2 3d^4 \text{ en appliquant l'exception :}$

24Cr: [18Ar] 3d5 4s1

la période 4, le bloc d et le groupe VI_R

b) Formule de Lewis

- **N2**:
$$_7$$
N: [$_2$ He] $2s^2 2p^3$

$$\begin{array}{c|c}
\uparrow \downarrow \\
2s^2 \\
\end{array}$$

0.5 p

-PCl₅: $_{15}$ P: [$_{10}$ Ne] $3s^2 3p^3$

Pour faire 5 liaisons, le phosphore

doit s'hybrider en 3s1 3p33d1

D'autre part $_{17}\text{Cl} : [_{10}\text{Ne}] \ 3s^2 \ 3p^5 \ \boxed{\uparrow}$

- **AsCl₃:** ₂₄**As**: [₁₈**Ar**] 3d¹⁰4s² 4p³

$$\begin{array}{c|c}
\uparrow \downarrow \\
4s^2
\end{array}$$

$$\begin{array}{c|c}
\uparrow \uparrow \\
4p^3
\end{array}$$

c) géométrie de la molécule PCl₃ → AX₃E₁

3+1=4 → géométrie tétraédrique

0.5 p

Exercice 4 (3 points)

L'énergie du 1^{er} état excité
$$\rightarrow$$
 n=2 s'écrit : $E_2 = \frac{-13.6}{2^2} = -3.4 \text{ eV}$ 0.5 p

L'énergie du rayonnement s'écrit : $E = h. \nu$

=
$$6,626.10^{-34}.9,12.10^{14} = 60,43.10^{-20}J = 3,78 \text{ eV}$$
 0,5 p

L'énergie cinétique de l'électron arraché est égale à la différence entre les deux énergies :

$$E_c=E-E_2=3.78-3.4=0.38 \text{ eV}=6.10^{-20} \text{ J},$$

$$E_c = \frac{1}{2}m_e v^2 \Rightarrow v = \sqrt{\frac{2.E_c}{m_e}} = \sqrt{\frac{2*6.10^{-20}}{9,1.10^{-31}}} = 3,61.10^5 \text{ m. s}^{-1}$$