# Model Predictive Control of a Sewer System

June 14, 2018

Group 1030

Jacob Naundrup Pedersen Thomas Holm Pilgaard





Group 1030

Introductio

Implementa

-

Results

Diecueei

Conclusio

Introduction

Implementation

Control

Results

Discussion

Conclusion



► slide 1 hello world

Agenda

Group 1030

### Introduction

Implement

Results

Discussion

\_ . . .



Group 1030

raduatio

#### Implementation

Control

Results

Discussion

0----

Implementation

► Control

Results

Discussion

► Conclusion



Group 1030

ntroductio

Implementation

...pioinonta

Contro

Results

Discussion

0----



Figure: Chosen structure of simulation environment.



Group 1030

troductio

#### Implementation

....pioinionic

Control

Results

Discussion

Conclusion

# 1. Pipe

- Length [m]
- Sections (Number of sections the pipe should be split in to)
- ► S<sub>b</sub> (Slope) [‰]
- $ightharpoonup \Delta x = \text{Length/Sections [m]}$
- ▶ Diameter [meter]
- ► Theta (parameter used in Preissmann scheme)
- ightharpoonup Q<sub>f</sub>[m<sup>3</sup>/s]
- ► Side/lateral inflow present
- Section location in data

## 2. Tank

- ► Size [m³]
- ► Height [m]
- ► Area = Size / Height [m²]
- ► Maximum outflow [m³/s]
- ► Section location in data

Table: List of parameters for pipe and tank.



Group 1030

Introductio

Implementation

•

Results

Discussio

\_ . . .

Conclusion

| Fields | length | == sections | <b>⊞</b> Dx | ⊞ Sb       | ⊞ d    | H Theta | <b>⊞</b> Qf | ■ side_inflow | data_location |
|--------|--------|-------------|-------------|------------|--------|---------|-------------|---------------|---------------|
| 1      | 700    | 35          | 20          | 0.0030     | 0.9000 | 0.6500  | 0.9730      | 0             | 1             |
| 2      | 303    | 15          | 20.2000     | 0.0030     | 0.9000 | 0.6500  | 0.9730      | 0             | 3             |
| 3      | 27     | 2           | 13.5000     | 0.0030     | 1      | 0.6500  | 1.2843      | 1             | 4             |
| 4      | 155    | 8           | 19.3750     | 0.0041     | 1      | 0.6500  | 1.5014      | 0             | 5             |
| 5      | 295    | 14          | 21.0714     | 0.0122     | 0.8000 | 0.6500  | 1.4386      | 0             | 6             |
| 6      | 318    | 15          | 21.2000     | 0.0053     | 0.9000 | 0.6500  | 1.2932      | 1             | 7             |
| 7      | 110    | 5           | 22          | 0.0036     | 0.9000 | 0.6500  | 1.0658      | 1             | 8             |
| 8      | 38     | 2           | 19          | 0.0024     | 1      | 0.6500  | 1.1487      | 1             | 9             |
| 9      | 665    | 30          | 22.1667     | 0.0030     | 1      | 0.6500  | 1.2843      | 1             | 10            |
| 10     | 155    | 7           | 22.1429     | 8.0000e-04 | 1      | 0.6500  | 0.6632      | 0             | 11            |
| 11     | 955    | 47          | 20.3191     | 0.0029     | 1.2000 | 0.6500  | 2.0415      | 1             | 12            |
| 12     | 304    | 15          | 20.2667     | 0.0030     | 1.2000 | 0.6500  | 2.0764      | 0             | 13            |
| 13     | 116    | 5           | 23.2000     | 0.0021     | 1.2000 | 0.6500  | 1.7373      | 1             | 14            |
| 14     | 283    | 12          | 23.5833     | 0.0017     | 1.4000 | 0.6500  | 2.3463      | 1             | 15            |
| 15     | 31     | 2           | 15.5000     | 0.0019     | 1.4000 | 0.6500  | 2.4805      | 1             | 16            |
| 16     | 125    | 6           | 20.8333     | 0.0021     | 1.6000 | 0.6500  | 3.7075      | 0             | 17            |
| 17     | 94     | 4           | 23.5000     | 0.0013     | 1.5000 | 0.6500  | 2.4609      | 0             | 18            |
| 18     | 360    | 18          | 20          | 0.0046     | 1.6000 | 0.6500  | 5.4872      | 1             | 19            |
| 19     | 736    | 38          | 19.3684     | 0.0012     | 1.6000 | 0.6500  | 2.8026      | 0             | 20            |

Figure: Setup in MATLAB of pipe specification of the main line in Fredericia.



Group 1030

ntroduction

Implementation

.

\_. .

Conclusion

| Field 🔺       | Value  |
|---------------|--------|
| isize size    | 90     |
| Height        | 10     |
| area area     | 9      |
| Q_out_max     | 0.9730 |
| data_location | 2      |

Figure: Setup in MATLAB of tank specifications.



Agenda Group 1030

ntroduction

Implementation

Implemente

Contro

Discussio

Conclusio

| Fields | type type | component |     |
|--------|-----------|-----------|-----|
| 1      | 'Pipe'    | 1         | 35  |
| 2      | 'Tank'    | 1         | 1   |
| 3      | 'Pipe'    | 18        | 245 |
| 4      | 'Total'   | 20        | 281 |

Figure: Display of structure showing system setup information in MATLAB.



Group 1030

ntroduction

Implementation

Contro

Results

Discussion

Conclusion



Figure: Comparison between data obtained by equation ?? and the same data curve fitted to a ninth order polynomial.



Group 1030

ntroduction

Implementation

Contro

Results

Discussio

Conclusion



Figure: Comparison between data obtained by equation ?? and the same data curve fitted to a ninth order polynomial.



Agenda Group 1030

ntroductio

Implementation

Contro

Result

Discussion

Conclusio



Figure: Height and flow of pipe setup from part of Fredericia where boundary conditions is found by fitted polynomial. Various amount of iterations, with constant flow input of 0,25 m³/s, is performed. The dotted line indicates pipe intersections.



Agenda Group 1030

Group 103

Introductio

Implementation

Control

Results

Discussio

Conclusion



Figure: Height and flow of pipe setup from part of Fredericia where boundary conditions is found by lookup table. Various amount of iterations, with constant flow input of 0,25 m<sup>3</sup>/s, is performed. The dotted line indicates pipe intersections.



► Preissmann scheme

Agenda

Group 1030

roductio

#### Implementation

Results

Discussion

\_....



Group 1030

ntroduction

Implementation

Contro

ricount

DISCUSSIO

Conclusio



Dept. of Electronic Systems Aalborg University Denmark

30

Figure



Group 1030

Introduction

Implementation

Control

Results

Discussion

Conclusion



Group 1030

Introduction

Implementation

Control

Results

Discussion

Conclusion



Group 1030

traduation

Imnlementati

#### Control

Results

Discussion

JISCUSSIOIT

► Sinus

▶ Flow profiles



Group 1030

traduction

Implemen

Control

Results

Conclusion



Figure: Comparison of the nonlinear and linear model at the last pipe in the setup.



Group 1030

stroductio

Implementation

#### Control

Results

Discussion

- ► Cost function
- ► Constraints
- ► Linear model



Group 1030

troduction

Implementation

#### Control

Result

Discussion

► Bestemmelse af Prediction horizon

- ► Flow profiler
- ▶ Industri
- ► Begrænsning af Prediction horizon





Group 1030

troduction

Implemen

Control

Results

Conclusion



Figure: Output of the last pipe.

Dept. of Electronic Systems Aalborg University Denmark





Group 1030

#### Control

Results



Figure: Height in the tank.



Group 1030

ntroduction

Implementat

implementa

Control Results

Discoursia

Conclusion



Figure: Output of the last pipe in the second simulation run.



Group 1030

atraduatio

Implementati

Control

#### Results

Discussion

► System setup

► Flow profiles

| Туре  | Component | Sections |
|-------|-----------|----------|
| Pipe  | 1         | 35       |
| Tank  | 1         | 1        |
| Pipe  | 17        | 207      |
| Tank  | 1         | 1        |
| Pipe  | 1         | 38       |
| Total | 21        | 282      |

Table: System setup.



Group 1030

troduction

Implementa

Contro

Results

Discussion



Figure: Output of the last pipe into the WWTP.

Dept. of Electronic Systems Aalborg University Denmark



Group 1030

troduction

Implementat

Control

Results

DISCUSSION

Conclusion



Figure: Simulation of COD output of the last pipe into the WWTP.



Group 1030

stroductio

Implementa

Contro

Results

Discussion

. . .

► Over dimensioneret tank

► Konstant output af tank



Group 1030

ntroduction

Implementa

Contro

Results

Discussion

Conclusion



Figure: Output of the last pipe in to the WWTP, where a tank has been placed in front to reduce variation in flow into WWTP.



Group 1030

ntroductio

Implements

Contro

Results

Discussion

Conclusion

► Courant's number

▶ Model reduction



Group 1030

troduction

Implementat

Contro

Results

Discussio

Conclusion

► Simulation

► MPC