

Video in sledenje

Pregled

- Zaznavanje sprememb
 - Preprosto
 - Napredno
- Optični tok
 - Lucas-Kanade
- Sledenje objektov
 - NCC
 - Mean-shift
 - Detekcija

Zaznavanje sprememb

Odstranjevanje ozadja

- Model ozadja
 - Statična slika
 - Verjetnostno modeliranje
- Detekcija ospredja
 - Kar ne pripada modelu
- Uporaba
 - Nadzorni sistemi
 - Interakcija

Gradnja modela

- Pristopi
 - Statična slika
 - Povprečenje
 - Statistično modeliranje
 - Regularizacija
- Osveževanje modela

Zaznavanje sprememb

- Binarna maska
 - Pripadnost elementa modelu
- Naknadno procesiranje
 - Morfološke operacije
 - Povezane komponente

Premiki v videu

- Dve zaporedni sliki
 - Premik
 - Prikaz
 - Zakritje
- Optični tok = modeliranje premikov

Optični tok

- Opis premikov v sliki
 - $-(x, y) \rightarrow (u, v)$
 - Optični premik ni vedno dejanski premik
- Predpostavke
 - Majhni premiki
 - Konstanten izgled (svetlost)
 - Lokalno podoben

Algoritem Lucas-Kanade

- Iskanje rešitve sistema enačb
 - Majhen premik
 - Enak izgled
 - Lokalno konstanten
- Učinkovit izračun
 - Sistem enačb

$$\begin{bmatrix} U \\ V \end{bmatrix} = \begin{bmatrix} \sum_{i} I_x(q_i)^2 & \sum_{i} I_x(q_i) I_y(q_i) \\ \sum_{i} I_y(q_i) I_x(q_i) & \sum_{i} I_y(q_i)^2 \end{bmatrix}^{-1} \begin{bmatrix} -\sum_{i} I_x(q_i) I_t(q_i) \\ -\sum_{i} I_y(q_i) I_t(q_i) \end{bmatrix}$$

 $I_{x}(q_{3})V_{x}$ $I_{y}(q_{3})V_{y} = -I_{z}$ $I_{x}(q_{2})V_{x}$ $I_{y}(q_{2})V_{y} = -I_{t}(q_{2})$

 $I_x(q_1)V_x + I_y(q_1)V_y = -I_t(q_1)$

t+1

Piramidni optični tok

Rekurzivno ocenjevanje

- Groba ocena
- Izboljševanje

Določanje dobrih točk

- Kje lahko dobro ocenimo optični tok?
 - Samopodobnost
 - Značilne točke
 - Problem odprtine

- Kvaliteta ocene optičnega toka
 - Lastne vrednosti
 - Vzvratni tok

$$A = \begin{bmatrix} I_x^2 & I_x I_y \\ I_x I_y & I_y^2 \end{bmatrix}$$

$$C = \lambda_1 \lambda_2 - \kappa (\lambda_1 + \lambda_2)^2 = \det(A) - \kappa \operatorname{trace}^2(A)$$

Sledenje objektov

Sledenje objektov

- Višje-nivojski koncepti v videu
 - Kaj je objekt?
 - Kako se objekt spreminja?
- Sledenje enemu objektu
 - Sprotno sledenje
 - Procesiranje posnetka
- Sledenje večim objektom
 - Specifično za kategorije
 - Razreševanje dvoumnosti

Model izgleda

- Osveževanje
 - Statični
 - Osveževani
- Struktura
 - Holistični modeli
 - Več-delni modeli
- Primeri
 - Predloga
 - Histogram
 - Klasifikator

Model gibanja

- Kako se objekt giblje
 - Napoved položaja
 - Razreševanje dvoumnosti
 - Omejitev iskanja
- Modeli
 - Naključni model
 - Skoraj-konstantna hitrost
- Kalmanov filter

$$\vec{x}_{t+1} = \vec{x}_t + \epsilon$$

$$\vec{x}_{t+1} = \vec{x}_t + \vec{v}_t$$
$$\vec{v}_{t+1} = \vec{v}_t + \epsilon$$

Sledenje kot ujemanje predloge

- Sivinska predloga
- Normalizirana križna korelacija
- Maksimum ujemanja

- Hitrost
- Toga geometrija
- Velikost, rotacija

Sledenje z barvo

- Barvni histogram
- Projekcija histograma
- Mean-Shift algoritem

- Neodvisnost od geometrije
- Ločevalna barva
- Sprememba svetlobe

Sledenje kot detekcija

- Ali regija vsebuje objekt?
- Ločevanje od ozadja
- Osveževanje modela

- Diskriminativnost
- Malo učnih primerov
- Geometrija

Sledenje z optičnim tokom

- Sledenje z deli
- Lokalni optični tok
- Robustna ocena premika

- Odpornost na deformacije
- Prilagajanje velikosti
- Število in kvaliteta točk

t+1

Nasveti

- Odstranjevanje ozadja
 - Ali se okolica spreminja?
 - Fiksiranje samodejnega prilagajanja kamere
- Optični tok
 - Omejitev na del, ki nas zanima
 - Zanesljivost posameznih ocen
- Sledenje
 - Analiza scenarija uporabe
 - Vsi sledilniki odpovejo (prej ali slej)

Vaje 6: video in sledenje

- Odstranjevanje ozadja
- Optični tok
- Sledilniki
- Modeli gibanja

Odmor

Ozadje (background.cpp)

```
#include <opencv2/bgsegm.hpp>
using namespace cv::bgsegm;

Ptr<BackgroundSubtractor> model = createBackgroundSubtractorKNN()
Ptr<BackgroundSubtractor> model = createBackgroundSubtractorMOG2()
Ptr<BackgroundSubtractor> model = createBackgroundSubtractorGMG()

model->apply(frame, mask)
    frame - vhodna slika videa
```

mask - rezultat (binarna maska sprememb)

Optični tok (flow.cpp)

calcOpticalFlowPyrLK(Ip, In, Pp, Pn, status, error, window, 3,
termcrit, 0, 0.001);

goodFeaturesToTrack(image, points, max, 0.01, 10, Mat(), 3, 0,
0.04);

Sledenje (tracking.cpp)

```
Ptr<Tracker> tracker = TrackerNCC::createTracker()
Ptr<Tracker> tracker = TrackerKCF::createTracker()

tracker->init(frame, initialization)
• frame - vhodna slika
• initialization - pravokotnik za inicializacijo

tracker->update(frame, region)
• frame - vhodna slika
• region - izhodni pravokotnik, položaj objekta
```

Modeli gibanja (kalman.cpp)

```
Ptr<KalmanFilter> filter = motion_model_ncc(measurement_noise,
process_noise);

Mat prediction = filter->predict();
Mat estimated = filter->correct(measurement);
```


Domača naloga

- Možnost 1
 - Na sliki iz kamere prikazujemo krog
 - V vsakem časovnem koraku izračunamo optični tok na poziciji kroga
 - Krog premaknemo za vektor toka
 - Krog naj se odbija od robov slike
- Možnost 2
 - Detekcija regije sprememb v videu
 - Odstranjevanje ozadja
 - Morfološke operacije
 - Izbira največje regije
 - Inicializacija sledilnika na regiji

Reference

- Predmeti
 - Napredne metode računalniškega vida
 - Umetno zaznavanje
- http://docs.opencv.org/3.1.0/dc/d6b/group_video_track.html
- http://docs.opencv.org/3.1.0/de/de1/group_video_motion.html
- http://docs.opencv.org/3.1.0/d2/d55/group_bgsegm.html
- http://docs.opencv.org/3.1.0/d9/df8/group_tracking.html