线性代数习题二:矩阵及其运算

一、计算。

1.
$$\begin{pmatrix} 3 & 2 \\ -4 & -2 \end{pmatrix}^5$$
 2. $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^n$ 3. $\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}^n$

4.
$$i \xi f(\lambda) = \lambda^2 - 5\lambda + 3, A = \begin{pmatrix} 2 & -1 \\ -3 & 3 \end{pmatrix}, \ \, \sharp f(A).$$

二、设三阶矩阵
$$A \neq O$$
,矩阵 $B = \begin{pmatrix} 1 & 3 & 5 \\ 2 & 4 & t \\ 3 & 5 & 3 \end{pmatrix}$,且 $AB = O$,求 t .

- 三、计算及证明。
- 1. 若n阶矩阵A满足方程 $A^2 + 2A + 3E = 0$, 求证A可逆, 并求 A^{-1} ;
- 2. 设A为3阶矩阵, 且|A|=1, 求 $|2A^{-1}+3A^*|$;
- 3. 设A, B为n阶方阵,且 $B^2 = B$, 若A = B + E, 求证A可逆, 并求 A^{-1} ;
- 4. 设A为n阶方阵,证明:存在一个非零n阶方阵B使AB=O的充分必要条件 是|A|=0;
 - 5. 证明:设A为n阶方阵,如果对任意n维列向量X,都有AX = O,那么A = O;
 - 6. 若n阶矩阵 $A \neq O$,且 $A^* = A^T$,证明A可逆。

四、已知上三角方阵

$$N = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}, \qquad A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix},$$

- (1). $\sharp N^k$, $k = 2, 3, \cdots$;
- (2). RA^{10} .