6è IMAOC / Conakry 14 -25 Octobre 2024

TP Basse atmosphère

I/ Transformations de l'air atmosphériqueII/ Prise en main de l'émagramme 761III/ Exercices

Exercice 1

Le radiosondage qui vous est donné (voir feuille jointe) a été réalisé le 31 mai 2011 à 12h à la station de Ouagadougou aéroport.

- 1) Tracer sur l'émagramme 761 la courbe d'état en rouge et la courbe de rosée en bleu ;
- 2) Déterminer à l'aide de l'émagramme 761 le rapport de mélange (r) d'une parcelle d'air ainsi que son rapport de mélange de saturation (r_w) <u>au niveau de la surface</u>. La valeur de r que vous avez obtenue graphiquement est-elle cohérente avec celle donnée par le radiosondage ?

 On suppose que la parcelle d'air a suffisamment d'énergie pour atteindre et dépasser le niveau 670
- 3) Le niveau de condensation Pc ainsi que l'altitude Zc correspondante ;
- 4) Le niveau de la base des nuages P_B ainsi que l'altitude Z_B correspondante ;
- 5) Le niveau du sommet des nuages Ps ainsi que l'altitude Zs correspondante ;
- 6) La masse d'eau condensée dans le nuage ;

hPa et poursuivre son ascension. Déterminer :

7) On assimile le nuage formé à un cylindre de hauteur h ($h=Z_S-Z_B$) et de rayon R=5km. En supposant que toute l'eau liquide précipite, donner la valeur de la masse totale d'eau qui atteint le sol (M_{totale}) ainsi que le volume correspondant (V_{total}). (On fait l'hypothèse que les précipitations ne s'évaporent pas entre le nuage et le sol).

<u>Donnée</u>: On fera l'hypothèse que la masse volumique de l'air sec à 20°C au niveau de la mer est égale à 1,2kg/m³.

PRES hPa		C	C	%		DRCT deg	knot	K	K	THTV K
970.0	399	32.4	15.4	36	11.49	315	5	308.4	343.6	310.5
925.0	804	28.6	14.6	42	11.42	295	7	308.6	343.5	310.7
380.0	1240	24.4	14.5	54	11.93	275	9	308.6	345.1	310.8
350.0	1542	21.4	14.4	64	12.28	65	3	308.6	346.1	310.8
320.0	1860	22.2	8.2	41	8.40	76	15	312.7	339.1	314.3
800.0	2109	20.0	6.2	41	7.51	85	24	313.0	336.7	314.4
700.0	3175	10.4	-2.6	40	4.54	85	29	314.0	328.6	314.8
515.0	4244	2.2	-9.9	40	2.95	95	45	316.4	326.3	317.0
500.0	4407	1.0	-11.0	40	2.75	95	42	316.8	326.0	317.3
500.0	5910	-5.1	-33.7	9	0.45	90	25	326.8	328.5	326.8
471.0	6378	-8.0	-30.7	14	0.63	78	26	329.2	331.6	329.3
430.0	7115	-12.9				106	25	331.7		331.7
380.0	7975	-17.0				99	30	338.1		338.1
362.0	8375	-19.0				104	34	338.6		338.6
300.0	9730	-29.0				100	18	340.9		340.9

Exercice 2

- 1) Une masse d'air humide présente les caractéristiques suivantes : P=1010hPa, t=18°C et td=14°C. Déterminer :
 - a) Le rapport de mélange (r),
 - b) Le rapport de mélange de saturation (r_w)
 - c) L'humidité relative (U₁) de la masse d'air
- 2) La masse d'air est contrainte de franchir une montagne dont le sommet culmine à 3000m (700hPa). Déterminer :
 - a) Le niveau du point de condensation Pc ainsi que l'altitude correspondante Zc
 - b) La masse d'eau condensée lorsque la masse d'air atteint le sommet du relief
 - c) La température t_S de la masse d'air au sommet de la montagne (on considère que la température est uniforme au sein de la masse d'air)
- 3) On considère que <u>toute l'eau condensée précipite</u>. La masse d'air franchit la montagne et descend sur l'autre versant. Elle atteint le niveau 1000hPa et sa température de rosée est t_d =11°C. Déterminer :
 - a) La température de la masse d'air
 - b) L'humidité relative U₂

On se servira de l'émagramme 761 pour traiter l'exercice