Rekurentní rovnice, strukturální indukce

Backusova-Naurova forma

Například syntaxe formulí výrokové logiky

$$arphi ::= a \mid \mathsf{tt} \mid (arphi \wedge arphi) \mid (
eg arphi)$$

kde $a \in At$.

Poznámky

- Relaxace BNF.
- Původ notace: John Warner Backus a Peter Naur pro popis syntaxe jazyka ALGOL 60.

Pravidla stejné vyjadřovací schopnosti: hindský gramatik Pānini (cca 6. století př.n.l.) pro popis sanskrtu.

První formální popis přirozeného jazyka: 3 959 veršů díla *Astādhyāyī*.

Jiné zápisy BNF

$$\frac{1}{a} \mid \frac{1}{tt} \mid \frac{\varphi_1}{(\varphi_1 \wedge \varphi_2)} \mid \frac{\varphi}{(\neg \varphi)}$$

nebo

$$\frac{1}{a}$$
(atom) $\frac{1}{a}$ (true) $\frac{\varphi_1}{\varphi_1}$ $\frac{\varphi_2}{\varphi_2}$ (and) $\frac{\varphi}{\varphi_2}$ (not)

Axiomy: (atom), (true). Deduktivní pravidla: (and), (not).

Syntaktický strom (Parsing Tree)

$$\frac{\frac{a}{a}(\mathsf{atom}) \frac{b}{b}(\mathsf{and})}{(a \land b)}(\mathsf{not})$$

Jazyk generovaný gramatikou

Abeceda: $\Sigma = At \cup \{\mathsf{tt}, \wedge, \neg, (,)\}.$

Množina F všech formulí je $F \subseteq \Sigma^*$.

F je induktivně generovaná "gramatikou" (atom), (true), (and), (not).

Pro každé $\varphi \in \Sigma^*$ platí

 $\varphi \in F$ iff existuje parsing tree (dané "gramatiky").

Z toho plyne další indukční princip!

Příklad

Pro každé $\varphi \in F$ platí: φ má stejný počet pravých a levých závorek.

Řešení:

- 1 Tvrzení platí pro závěr každého z axiomů (atom), (true).
- ② Pro pravidlo (and): Jestliže tvrzení platí pro každý předpoklad pravidla (and), pak tvrzení platí i pro závěr pravidla (and).
- O Pro pravidlo (not): Jestliže tvrzení platí pro každý předpoklad pravidla (not), pak tvrzení platí i pro závěr pravidla (not).

Podle principu strukturální indukce jsme hotovi

Příklad

Pro každé $\varphi \in F$ platí: φ má stejný počet pravých a levých závorek.

Řešení:

- 1 Tvrzení platí pro závěr každého z axiomů (atom), (true).
- Pro pravidlo (and): Jestliže tvrzení platí pro každý předpoklad pravidla (and), pak tvrzení platí i pro závěr pravidla (and).
- Pro pravidlo (not): Jestliže tvrzení platí pro každý předpoklad pravidla (not), pak tvrzení platí i pro závěr pravidla (not).

Podle principu strukturální indukce jsme hotovi.

Princip strukturální indukce

Ať Σ je libovolná konečná abeceda. Ať G je konečná sada odvozovacích pravidel, která induktivně zadává množinu slov $L \subseteq \Sigma^*$.

Ať A je množina všech axiomů z G. Ať D je množina všech deduktivních pravidel z G.

Ať V je nějaká vlastnost slov nad abecedou Σ . K tomu, abychom ukázali, že každé slovo v množině L má vlastnost V, stačí ukázat:^a

- Základní krok: Závěr každého axiomu z množiny A má vlastnost V.
- Indukční krok: Pro každou instanci libovolného deduktivního pravidla v množině D platí:

Jestliže všechny předpoklady pravidla mají vlastnost V, potom i závěr tohoto pravidla má vlastnost V.

^aTomu se říká: Vlastnost V je invariantní na průchod gramatikou G.

Platí:

- Jestliže platí (silný nebo slabý) princip indukce, platí i princip strukturální indukce.
- ② Pro každou neprázdnou abecedu Σ platí: existuje množina $M \subseteq \Sigma^*$, kterou nelze zadat induktivně.

Další poznatky: skripta a sbírka řešených příkladů.

Platí:

- Jestliže platí (silný nebo slabý) princip indukce, platí i princip strukturální indukce.
- ② Pro každou neprázdnou abecedu Σ platí: existuje množina $M \subset \Sigma^*$, kterou nelze zadat induktivně.

Další poznatky: skripta a sbírka řešených příkladů.

Příklad (Parketáž triminy z minulé přednášky)

P(n) = počet parket k vyparketování místnosti rozměru n

- P(1) = 1.
- 2 $P(n+1) = 1 + 4 \cdot P(n), n \ge 1.$

Čili:

- P(1) = 1 (počáteční podmínka).

Příklad (složitost algoritmu Bubblesort)

Označte C(n) počet porovnání v segmentu (pseudo)kódu

Potom platí:

$$C(n) = (n-1) + (n-2) + \cdots + 1 + 0 = \sum_{k=0}^{n-1} k, \quad n \ge 1.$$

Tedy
$$C(1) = 0$$
, $C(n+1) = C(n) + n$, $n \ge 1$.

Definice

Lineární rekurentní rovnice k-tého řádu s konstantními koeficienty je zápis

$$a_k X(n+k) + a_{k-1} X(n+k-1) + \cdots + a_0 X(n) = f(n)$$

kde $a_k \neq 0$.

Terminologie:

- Koeficienty: (reálná nebo komplexní) čísla a_k , a_{k-1} ,..., a_0
- Pravá strana: posloupnost f(n)
- Příslušná homogenní rovnice:

$$a_k X(n+k) + a_{k-1} X(n+k-1) + \cdots + a_0 X(n) = 0$$

• Charakteristická rovnice: $a_k \lambda^k + a_{k-1} \lambda^{k-1} + \cdots + a_0 = 0$

- ① Vyřešíme charakteristickou rovnici $a_k \lambda^k + a_{k-1} \lambda^{k-1} + \cdots + a_0 = 0$. Kořeny: λ_1 (násobnost k_1), . . . , λ_r (násobnost k_r)
- ② Kořen λ_1 násobnosti $k_1 \ge 1$ přidá k_1 různých posloupností do fundamentálního systému:

$$\lambda_1^n, \quad n \cdot \lambda_1^n, \quad n^2 \cdot \lambda_1^n, \quad \dots, \quad n^{k_1-1} \cdot \lambda_1^n$$

- **3** Fundamentální systém má celkově k různých posloupností, protože $k_1 + k_2 + \cdots + k_r = k$.
- Kompletní řešení homogenní rovnice je lineární kombinace fundamentálního systému.

- Vyřešíme charakteristickou rovnici $a_k \lambda^k + a_{k-1} \lambda^{k-1} + \cdots + a_0 = 0$. Kořeny: λ_1 (násobnost k_1), . . . , λ_r (násobnost k_r).
- ② Kořen λ_1 násobnosti $k_1 \geq 1$ přidá k_1 různých posloupností do fundamentálního systému:

$$\lambda_1^n$$
, $n \cdot \lambda_1^n$, $n^2 \cdot \lambda_1^n$, ..., $n^{k_1-1} \cdot \lambda_1^n$

- **3** Fundamentální systém má celkově k různých posloupností, protože $k_1 + k_2 + \cdots + k_r = k$.
- Kompletní řešení homogenní rovnice je lineární kombinace fundamentálního systému.

- Vyřešíme charakteristickou rovnici $a_k \lambda^k + a_{k-1} \lambda^{k-1} + \cdots + a_0 = 0$. Kořeny: λ_1 (násobnost k_1), . . . , λ_r (násobnost k_r).
- ② Kořen λ_1 násobnosti $k_1 \geq 1$ přidá k_1 různých posloupností do fundamentálního systému:

$$\lambda_1^n$$
, $n \cdot \lambda_1^n$, $n^2 \cdot \lambda_1^n$, ..., $n^{k_1-1} \cdot \lambda_1^n$

- **3** Fundamentální systém má celkově k různých posloupností, protože $k_1 + k_2 + \cdots + k_r = k$.
- Kompletní řešení homogenní rovnice je lineární kombinace fundamentálního systému.

- Vyřešíme charakteristickou rovnici $a_k \lambda^k + a_{k-1} \lambda^{k-1} + \cdots + a_0 = 0$. Kořeny: λ_1 (násobnost k_1), . . . , λ_r (násobnost k_r).
- ② Kořen λ_1 násobnosti $k_1 \geq 1$ přidá k_1 různých posloupností do fundamentálního systému:

$$\lambda_1^n$$
, $n \cdot \lambda_1^n$, $n^2 \cdot \lambda_1^n$, ..., $n^{k_1-1} \cdot \lambda_1^n$

- **3** Fundamentální systém má celkově k různých posloupností, protože $k_1 + k_2 + \cdots + k_r = k$.
- Kompletní řešení homogenní rovnice je lineární kombinace fundamentálního systému.

- Vyřešíme charakteristickou rovnici $a_k \lambda^k + a_{k-1} \lambda^{k-1} + \cdots + a_0 = 0$. Kořeny: λ_1 (násobnost k_1), . . . , λ_r (násobnost k_r).
- ② Kořen λ_1 násobnosti $k_1 \geq 1$ přidá k_1 různých posloupností do fundamentálního systému:

$$\lambda_1^n$$
, $n \cdot \lambda_1^n$, $n^2 \cdot \lambda_1^n$, ..., $n^{k_1-1} \cdot \lambda_1^n$

- **3** Fundamentální systém má celkově k různých posloupností, protože $k_1 + k_2 + \cdots + k_r = k$.
- Kompletní řešení homogenní rovnice je lineární kombinace fundamentálního systému.

- ① *d* je násobnost *A* jako kořene charakteristické rovnice. (Násobnost 0 znamená: *A* není kořen).
- ② Odhad partikulárního řešení: $n^d \cdot A^n \cdot p(n)$, kde p(n) je polynom stejného stupně jako P(n).
- 3 Koeficienty polynomu p(n) získáme z požadavku, že $n^d \cdot A^n \cdot p(n)$ má řešit danou nehomogenní rovnici.

- d je násobnost A jako kořene charakteristické rovnice.
 (Násobnost 0 znamená: A není kořen).
- ② Odhad partikulárního řešení: $n^d \cdot A^n \cdot p(n)$, kde p(n) je polynom stejného stupně jako P(n).
- Skáme z požadavku, že n^d · Aⁿ · p(n) má řešit danou nehomogenní rovnici.

- **1** d je násobnost A jako kořene charakteristické rovnice. (Násobnost 0 znamená: A není kořen).
- ② Odhad partikulárního řešení: $n^d \cdot A^n \cdot p(n)$, kde p(n) je polynom stejného stupně jako P(n).
- 3 Koeficienty polynomu p(n) získáme z požadavku, že $n^d \cdot A^n \cdot p(n)$ má řešit danou nehomogenní rovnici.

- **1** d je násobnost A jako kořene charakteristické rovnice. (Násobnost 0 znamená: A není kořen).
- ② Odhad partikulárního řešení: $n^d \cdot A^n \cdot p(n)$, kde p(n) je polynom stejného stupně jako P(n).
- **3** Koeficienty polynomu p(n) získáme z požadavku, že $n^d \cdot A^n \cdot p(n)$ má řešit danou nehomogenní rovnici.

- d je násobnost A jako kořene charakteristické rovnice.
 (Násobnost 0 znamená: A není kořen).
- ② Odhad partikulárního řešení: $n^d \cdot A^n \cdot p(n)$, kde p(n) je polynom stejného stupně jako P(n).
- **3** Koeficienty polynomu p(n) získáme z požadavku, že $n^d \cdot A^n \cdot p(n)$ má řešit danou nehomogenní rovnici.

- Sečteme kompletní řešení homogenní rovnice a partikulární řešení.
- Jsou-li zadány počáteční podmínky: nakonec určíme koeficienty lineární kombinace fundamentálního systému.

- Silná analogie s lineárními diferenciálními rovnicemi.
- 2 Diferenční a sumační počet, viz např.
 - J. Kaucký, Kombinatorické identity, Veda, Bratislava, 1975
 - W. G. Kelley a A. C. Peterson, *Difference Equations: An Introduction with Applications*, Academic Press Inc., New York, 1991

- Sečteme kompletní řešení homogenní rovnice a partikulární řešení.
- Jsou-li zadány počáteční podmínky: nakonec určíme koeficienty lineární kombinace fundamentálního systému.

- Silná analogie s lineárními diferenciálními rovnicemi.
- ② Diferenční a sumační počet, viz např.
 - J. Kaucký, Kombinatorické identity, Veda, Bratislava, 1975
 - W. G. Kelley a A. C. Peterson, *Difference Equations: An Introduction with Applications*, Academic Press Inc., New York, 1991

- Sečteme kompletní řešení homogenní rovnice a partikulární řešení.
- Jsou-li zadány počáteční podmínky: nakonec určíme koeficienty lineární kombinace fundamentálního systému.

- Silná analogie s lineárními diferenciálními rovnicemi.
- ② Diferenční a sumační počet, viz např.
 - J. Kaucký, Kombinatorické identity, Veda, Bratislava, 1975
 - W. G. Kelley a A. C. Peterson, *Difference Equations: An Introduction with Applications*, Academic Press Inc., New York, 1991

- Sečteme kompletní řešení homogenní rovnice a partikulární řešení.
- Jsou-li zadány počáteční podmínky: nakonec určíme koeficienty lineární kombinace fundamentálního systému.

- Silná analogie s lineárními diferenciálními rovnicemi.
- 2 Diferenční a sumační počet, viz např.
 - J. Kaucký, Kombinatorické identity, Veda, Bratislava, 1975
 - W. G. Kelley a A. C. Peterson, *Difference Equations: An Introduction with Applications*, Academic Press Inc., New York, 1991

Definice (O-notace)

Ať $f,g:\mathbb{N}\to\mathbb{R}$ jsou funkce. Řekneme, že $f\in O(g)$ (někdy i $f(n)\in O(g(n))$) (čteme: f je třídy velké O(g)), a když existují C a n_0 tak, že platí

$$|f(n)| \le C \cdot |g(n)|$$
, pro všechna $n \ge n_0$

^aZavedl Paul Bachmann v roce 1892.

Příklady

- $f \in O(f)$ platí vždy.
- $\circ 6n^3 127n^2 + \pi n \in O(n^3).$
- **3** $3^n \notin O(n^p)$, pro každé $p \in \mathbb{N}$.
- $\bullet n! \in O(n^n).$

Věta

At $f,g:\mathbb{N}\to\mathbb{R}$ jsou funkce a at limita

$$\lim_{n\to+\infty}\frac{|f(n)|}{|g(n)|}$$

existuje a je konečná. Pak $f \in O(g)$.

Pozor!

Obrácení této věty neplatí.

Pro $f(n) = \sin n$, g(n) = 1 platí $f \in O(g)$, ale $\lim_{n \to +\infty} \frac{|f(n)|}{|g(n)|}$ neexistuje.

Hierarchie (asymptotické) složitosti

- Polynomiální: například $O(n^4)$. Slogan: polynomiálně složité algoritmy jsou "rychlé". Příklad: Bubblesort je $O(n^2)$.
- Exponenciální: například O(2ⁿ). Slogan: exponenciálně složité algoritmy jsou "pomalé". Příklad: test prvočíselnosti postupným dělením (Eratosthenovo síto).
- 3 A řada dalších tříd složitosti...

Viz například

T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein, *Introduction to Algorithms*, MIT Press, 2001

Strategie Divide and Conquer

Problém velikosti n je rozdělen na a podproblémů velikosti $\frac{n}{b}$ a při dělení je "spotřebován čas" f(n). Celkový čas T(n) je pak dán vztahem

$$T(n) = a \cdot T(\frac{n}{b}) + f(n), \quad n \geq 1.$$

Příklad (Merge-Sort)

Vstup: pole čísel $\vec{x} = x[1], \dots, x[n]$.

Výstup: setříděné pole čísel \vec{x} .

Složitost:
$$T(n) = \begin{cases} c & \text{pro } n = 1\\ 2T(n/2) + cn & \text{pro } n > 1. \end{cases}$$

Rovnice Divide and Conquer

$$T(n) = a \cdot T(\frac{n}{b}) + f(n), \quad n \ge 1,$$

kde $a \ge 0$, b > 0 jsou přirozená čísla.

Pokud $n = b^k$, pak platí

$$T(n) = a \cdot T(\frac{n}{b}) + f(n)$$

$$= a^2 \cdot T(\frac{n}{b^2}) + a \cdot f(\frac{n}{b}) + f(n)$$

$$= a^3 \cdot T(\frac{n}{b^3}) + a^2 \cdot f(\frac{n}{b^2}) + a \cdot f(\frac{n}{b}) + f(n)$$

$$\vdots$$

$$= a^k \cdot T(\frac{n}{b^k}) + \sum_{i=0}^{k-1} a^j \cdot f(\frac{n}{b^j})$$

Divide and Conquer, pokrač.

Pokud $n = b^k$, platí

$$T(n) = a^k \cdot T(1) + \sum_{j=0}^{k-1} a^j \cdot f(\frac{n}{b^j})$$

Věta

Ať $T: \mathbb{N} \to \mathbb{R}$ je rostoucí funkce, která pro všechna n dělitelná přirozeným číslem $b \geq 2$ splňuje rekurentní rovnici

$$T(n) = \begin{cases} c & \text{pro } n = 1 \\ a \cdot T(n/b) + cn & \text{pro } n > 1. \end{cases}$$

kde $a \ge 1$, c > 0 jsou reálná čísla. Pak platí:

$$T(n) \in O(n^{\log_b a}), \ kdy\check{z} \ a > b, \quad T(n) \in O(n\log n), \ kdy\check{z} \ a = b.$$

19/19