Energy Price Predictions using SSMs

GROUP 15

CYRIL SMETANKA

RAPHAEL SUTTER

LE MINH TRUONG

Project Objectives

- Infer energy prices in the Netherlands based on weather, energy consumption/production and temporal features.
- Develop and compare deep learning models for price forecasting
- Models evaluated
 - Deep State-Space Model (Gu et al. 2021)
 - Structured State Spaces for Sequence Modeling (Gu et al. 2022)
 - Mamba (Gu & Dao. 2023)
 - Linear Regression

Project Outline

- Data extraction and transformation
- Training each model
- Evaluating each model
- Comparison between models
- Discussion

The Dataset

Input Features:

- Spanning back 3 years: n = 26280
- Temperature, Solar Radiation, Wind Speed, Energy Consumption, Solar Production, Wind Production in the Netherlands
- Temporal features
 - Is_daytime, sin_hour, cos_hour, price_lag_1h

Target:

Price (EUR/MWh)

Deep State-Space Model (DSSM)

Architecture:

- 2 layer GRU for state representation
 - Dropout (default = 0.1) between layers
- Feedforward Network (Observational model)
 - Two hidden layers with RELU activation
 - Final linear output layer with output neuron

DSSM - Dropout Rate

DSSM – Number of Layers

DSSM - Sequence Length

DSSM - Hyperparameter Results

	Drop out	Sequence length	Number of layers	Evaluation Metrics			
				MAE	MSE	SMAPE	Accuracy
Drop out	0.1 0.15 0.2	24	2	13.38 13.38 13.85	366.87 368.47 418.23	50.48% 49.29% 48.70%	96.43% 98.81% 98.21%
Sequence length	0.15	24 72 168	2	14.52 13.83 12.77	432.39 412.63 386.94	50.30% 50.04% 44.99%	96.66% 98.21% 98.21%
Num layers	0.15	24	1 2 3	14.53 14.46 13.26	423.21 408.66 397.73	50.38% 49.99% 47.25%	97.62% 98.81% 98.21%

DSSM Results

	Short-term (0-24h)	Medium-term (24-72h)	Long-term (72-168h)
MAE	10.67	14.05	14.83
MSE	211.01	381.52	372.25
SMAPE	25.14%	71.59%	41.76%
Accuracy	100.00%	95.83%	98.96%

DSSM - Week Forecast

Structured State Spaces for Sequence Modeling (S4)

Architecture:

- Linear layer to project input features to hidden_size
- S4D Block (Structured State Space Layers) containing
 - Diagonal state-space dynamics (A, B, C, D matrices)
 - Learned time step (Δt) per hidden unit
 - Option for recurrent or convolutional mode
 - Residual connections and LayerNorm
- GELU activation and dropout (default=0.15) for regularization
- Final linear output layer projecting from hidden_size $\rightarrow 1$

S4 – Dropout Rate

S4 – Number of Layers

S4 – Sequence Length

S4 - Hyperparameter Results

	Drop out	Sequence length	Number of layers	Evaluation Metrics			
				MAE	MSE	SMAPE	Accuracy
Drop out	0.1 0.15 0.2	72	9	16.72 15.65 15.42	459.46 429.22 435.02	55.78% 55.59% 56.62%	98.81% 98.21% 97.62%
Sequence length	0.2	24 72 168	9	14.05 15.16 15.09	356.33 431.47 400.22	51.22% 54.20% 54.63%	98.81% 98.81% 97.02%
Num layers	0.2	72	7 8 9	16.18 14.71 13.76	512.82 412.35 397.96	54.55% 53.08% 53.62%	98.21% 98.21% 98.81%

S4 Results

	Short-term (0-24h)	Medium-term (24-72h)	Long-term (72–168h)
MAE	18.42	14.41	18.40
MSE	446.33	374.43	537.71
SMAPE	32.20%	59.14%	43.10%
Accuracy	96.81%	96.81%	96.81%

S4 - Week Forecast

Mamba

Architecture:

- Linear projection maps raw input features to hidden_size
- Mamba block
 - Depth-wise 1D convolution for token mixing
 - Structured State Space Model (SSM) with:
 - Diagonal state matrix A (log-parameterized)
 - Input-dependent B, C, and Δt (learned per time step)
 - Dynamic recurrent state update per hour
 - Query-key interaction (q_proj, k_proj) fused with SSM output
 - Element-wise gated output: SSM_out ⊙ SiLU(query)
- Final linear layer maps to a single energy price per hour

Mamba

- Linear Projection
- Projects raw historical features [B,Thist,nhist][B,Thist,nhist] into model dimension [B,Thist,dmodel][B,Thist,dmodel].
- Stacked Mamba Blocks (repeated layers 3x)
- Mamba SSM (diagonal AA, time- and input-dependent B,C,ΔtB,C,Δt, per-step recurrent update)
- **Dropout** (p=0.1)
- LayerNorm over the dmodeldmodel axis
- Residual connection around each block
- Summary Extraction
- Take the final time-step output as the encoder state ("dstatedstate"), shape [B,dmodel][B,dmodel].

Encoder

historic data

Mamba

Decoder

- Summary Injection
 - Expand the encoder state to [B,Tfore,dmodel][B,Tfore,dmodel] and **concatenate** with forecast features [B,Tfore,nfore][B,Tfore,nfore], yielding [B,Tfore,nfore+dmodel][B,Tfore,nfore+dmodel].
- Linear Projection
 - Map to [B,Tfore,dmodel][B,Tfore,dmodel].
- Stacked Mamba Blocks (× nlayersnlayers)
 - Same Mamba + Dropout + LayerNorm + residual pattern as the encoder.
- Output Head
 - Final linear layer from [B,Tfore,dmodel][B,Tfore,dmodel] to [B,Tfore,1][B,Tfore,1], producing the hourly energy price forecast.

Decoder

Mamba - Dropout Rate

Mamba - Number of Layers

Mamba - Sequence Length

Mamba – Hyperparameter Results

	Drop out	Sequence length	Number of layers	Evaluation Metrics			_
				MAE	MSE	SMAPE	Accuracy
Drop out	0.1 0.15 0.2	24 24 24	3 3 3	23.92 41.78 39.14	989.03 2870.68 2855.42	62.94% 81.31% 80.74%	91.67% 72.02% 76.19%
Sequence length	0.1	24 72 168	3 3 3	30.49 21.85 32.56	1881.77 830.15 1714.57	69.34% 61.40% 72.32%	83.93% 96.43% 83.33%
Num layers	0.1	24	3 4 5	39.74 54.24 51.51	2696.02 5260.57 4165.23	76.73% 77.98% 78.38%	75.60% 60.71% 61.90%

Mamba Results

	Short-term (0-24h)	Medium-term (24-72h)	Long-term (72-168h)
MAE	23.59	20.77	21.95
MSE	784.97	965.13	773.96
SMAPE	57.29%	54.45%	45.94%
Accuracy	100.00%	95.83%	95.83%

Mamba - Week Forecast

Model comparison

Model	1	Hyperparameters	Number of layers	Evaluation Metrics			
		Sequence length		MAE	MSE	SMAPE	Accuracy
DSSM	0.15	168	2	13.32	373.24	51.28%	97.50%
S4D	0.2	72	9	16.39	466.67	56.19%	97.50%
Mamba 	0.15	72	3	21.85	830.15	61.40%	96.43%
LR	n/a	n/a	n/a	48.74	4395.58	60.03%	69.52%

Discussion

- All models performed better than baseline (linear regression)
- Models are not great at predicting price volatility; high SMAPE values (51.28%-60.03%)
 - Model was trained on MAE loss; focused on averages and not extremes
 - Use probabilistic forecasting (Gaussian likelihood)
 - Add more volatility features (momentum indicators)
- Diminishing returns from layers, more layers didn't necessarily improve performance but increased training times
- Models get worse the further they are from the current day
- DSSM outperformed all models
- Mamba model did not include temporal features
 - · Could not learn patterns within time intervals as effectively when inferring data
- Possible improvements
 - More specific temporal features (seasonal)
 - Dataset larger than 3 years for deeper training

A&Q

References

- https://github.com/gnovack/easy-ssm
- Gu, A., Johnson, I., Goel, K., Saab, K., Dao, T., Rudra, A., & Ré, C. (2021). Linear State-Space Layers: Combining Recurrent, Convolutional, and Continuous-time Models with Linear State Space Layers. arXiv preprint arXiv:2110.13985. https://arxiv.org/abs/2110.13985
- Gu, A., Goel, K., Gupta, A., & Ré, C. (2022). On the parameterization and initialization of diagonal state space models. arXiv preprint arXiv:2206.11893. https://arxiv.org/abs/2206.11893
- Gu, A., & Dao, T. (2023). Mamba: Linear-time sequence modeling with selective state spaces. arXiv preprint arXiv:2312.00752. https://arxiv.org/abs/2312.00752