Indian Institute of Technology Indore

MA203 Complex Analysis and Differential Equations-II

(Autumn Semester 2023)

Tutorial Sheet 2

1. Find the Laurent series of the following functions around the given points.

(a)
$$f(z) = \frac{1}{z^2 - 3z + 2}$$
, around $z = 0$.

(b)
$$f(z) = \frac{1}{z^2 - 3z + 2}$$
, around $z = 3/2$.

- 2. Expand the function $e^{\frac{1}{1-z}}$ in a Laurent series around the point z=1. Also determine the domain within which the expansion holds.
 - 3. Expand the function $e^{z+\frac{1}{z}}$ in a Laurent series in the domain $0 < |z| < \infty$.
 - 4. Find Laurent series of the function $f(z) = \frac{1}{z^3 z^4}$ in the regions
 - (a) $\{z \in \mathbb{C} : 0 < |z| < 1\},$
 - (b) $\{z \in \mathbb{C} : |z| > 1\}.$
 - 5. Find Laurent series of the function $f(z) = \frac{1}{1-z}$ in the domains |z| > 1 and |z| < 1.
 - 6. Find the Laurent series of the function $f(z) = \frac{1}{z(1-z)^2}$ on the sets
 - (a) $D_1 := \{z : 0 < |z 1| < 1\},\$
 - (b) $D_2 := \{z : |z 1| > 1\}.$
 - 7. Can the given functions be expanded in a Laurent series around the given points? Why or why not?
 - (a) $\cos \frac{1}{z}, z = 0.$
 - (b) $\sec \frac{1}{z-1}$, z=1.
 - (c) $z^2 \csc \frac{1}{z}, z = 0.$
 - (d) Log z, z = 0.
 - 8. Find the Laurent series of $f(z) = z^3 3z^2 + 3z 1 + \frac{1}{z-2}$ around z = 2.
 - 9. Discuss the singularities of the following functions:
 - (a) $\frac{1}{z-z^3}$ (b) $\frac{z^4}{1+z^4}$ (c) $\frac{z^5}{(1-z)^2}$ (d) $\frac{e^z}{1+z^2}$ (e) e^{-1/z^2}

- (f) $\frac{\cos z}{z^2}$ (g) $\frac{\sin z}{z^2}$ (h) $\frac{\sin z}{z}$ (i) $\tan z$ (j) $\sin \frac{1}{z}$.

- 10. Discuss the singularities of the functions $\frac{1}{\sin z}$ and $\frac{1}{\sin \frac{1}{z}}$ at z=0.
- 11. Which of the following singularities are removable/pole?

(a)
$$\frac{\sin z}{z^2 - \pi^2}$$
, $z = \pi$

(b)
$$\frac{\sin z}{(z-\pi)^2}$$
, $z=\pi$

12. Find the zeros and their orders for the following functions:

(a)
$$z^2(e^{z^2}-1)$$

(b)
$$z^2 + 9$$

(c)
$$\frac{z^2+9}{z^4}$$

(d) $z \sin z$.

- 13. Prove the following theorems.
 - **Theorem 1** A point $z_0 \in \mathbb{C}$ is a zero of f of order m if and only if f can be expressed in the form

$$f(z) = \psi(z)(z - z_0)^m, \qquad z \in D = \{z : |z - z_0| < r\},\$$

for some r > 0, where ψ is analytic at z_0 and $\psi(z_0) \neq 0$.

Theorem 2 A point $z_0 \in \mathbb{C}$ is a pole of f of order m if and only if f can be expressed in the form

$$f(z) = \frac{\psi(z)}{(z - z_0)^m}, \qquad z \in \hat{D} = \{z : 0 < |z - z_0| < r\},$$

for some r > 0, where ψ is analytic at z_0 and $\psi(z_0) \neq 0$.

14. Let z_0 be a pole of f(z) of order m. Then show that

$$\lim_{z \to z_0} (z - z_0)^k f(z) = \begin{cases} l, & k = m, \\ 0, & k > m, \\ \infty, & k < m. \end{cases}$$

for some $l \neq 0$.