Week 2: Practice Quiz

Topics: asymptotic notation and summations

Collaboration Level: 0 (no restrictions). Open notes. Max time: unlimited

- 1. f = O(g) implies that g = O(f)
- 2. f = O(g) implies that $g = \Omega(f)$
- 3. f = O(g) implies that $f = \Theta(g)$
- 4. $f = \Theta(g)$ implies that f = O(g)
- 5. Find the order of growth of $f(n) = \lg n^2$
 - A. $f(n) = \Theta(\lg n)$
 - B. $f(n) = \Theta(\lg^2 n)$
 - C. $f(n) = \Theta(\lg \lg n)$
- 6. Find the order of growth of $f(n) = 3n \lg n + n^2 + n \lg^3 n + 100$
 - A. $f(n) = \Theta(n \lg n)$
 - B. $f(n) = \Theta(n^2)$
 - C. $f(n) = \Theta(n^2 \lg n)$
- 7. Find the order of growth of $f(n) = n \lg \lg n + n \lg n + \sqrt{n} \lg^2 n$
 - A. $\Theta(n \lg \lg n)$
 - B. $\Theta(n \lg n)$
 - C. $\Theta(\sqrt{n}\lg^2 n)$
- 8. Find the order of growth of $f(n) = 3^{\lg n} + n^2 + n \lg n$
 - A. $\Theta(3^{\lg n})$
 - B. $\Theta(n^2)$
 - C. $\Theta(n \lg n)$
- 9. Find the order of growth of $f(n) = 2^n + 2^{2n}$
 - A. $\Theta(2^n)$
 - B. $\Theta(2^{2n})$

- 10. Find the order of growth of $f(n) = 2^{\lg n} + \lg n^2$
 - A. $\Theta(n)$
 - B. $\Theta(\sqrt{n})$
 - C. $\Theta(\lg n)$
- 11. Find the order of growth of $f(n) = n \lg^2 n + n^2 \lg n$
 - A. $\Theta(n \lg^2 n)$
 - B. $\Theta(n^2 \lg n)$
- 12. Find the order of growth of $f(n) = \sqrt{2}^{\lg n}$
 - A. $f(n) = \Theta(\sqrt{n})$
 - B. $f(n) = \Theta(n^{\sqrt{2}})$
 - C. $f(n) = \Theta(\lg^{\sqrt{2}} n)$
- 13. $2n + 5 \lg n = O(n)$
- 14. $2n + 5 \lg n = \Omega(n)$
- 15. $2n + 5 \lg n = \Theta(n)$
- 16. $\sqrt{n} = O(n)$
- 17. $\lg \lg n = O(\lg n)$
- 18. $\lg^2 n = \Theta(\lg n^2)$
- 19. $n = O(\sqrt{2}^{\lg n})$
- 20. $n^2 = O(n \lg n)$
- 21. $\sqrt{2}^{\lg n} = O(\frac{3}{2}^n)$
- 22. $n^3 = O(\frac{3}{2}^n)$
- 23. $2^n = \Theta(2^{n+1})$
- 24. $2^n = \Theta(2^{2n})$
- 25. $2^{2n} = \Theta(4^n)$

1 Appendix: WITH Answers

- 1. f = O(g) implies that g = O(f) False
- 2. f = O(g) implies that $g = \Omega(f)$ True
- 3. f = O(g) implies that $f = \Theta(g)$ False
- 4. $f = \Theta(g)$ implies that f = O(g) True
- 5. Find the order of growth of $f(n) = \lg n^2$: $f(n) = \Theta(\lg n) \text{ (correct)}$
- 6. Find the order of growth of $f(n) = 3n \lg n + n^2 + n \lg^3 n + 100$ B. $f(n) = \Theta(n^2)$ Correct
- 7. Find the order of growth of $f(n) = n \lg \lg n + n \lg n + \sqrt{n} \lg^2 n$ A. $\Theta(n \lg n)$ correct
- 8. Find the order of growth of $f(n) = 3^{\lg n} + n^2 + n \lg n$ B. $\Theta(n^2)$ correct
- 9. Find the order of growth of $f(n) = 2^n + 2^{2n}$ B. $\Theta(2^{2n})$ correct
- 10. Find the order of growth of $f(n) = 2^{\lg n} + \lg n^2$ A. $\Theta(n)$ correct
- 11. Find the order of growth of $f(n) = n \lg^2 n + n^2 \lg n$ B. $\Theta(n^2 \lg n)$ Correct
- 12. Find the order of growth of $f(n) = \sqrt{2}^{\lg n}$ A. $f(n) = \Theta(\sqrt{n})$ (correct)
- 13. $2n + 5 \lg n = O(n)$ True
- 14. $2n + 5 \lg n = \Omega(n)$ True
- 15. $2n + 5 \lg n = \Theta(n)$ True
- 16. $\sqrt{n} = O(n)$ True
- 17. $\lg \lg n = O(\lg n)$ True
- 18. $\lg^2 n = \Theta(\lg n^2)$ False
- 19. $n = O(\sqrt{2}^{\lg n})$ False
- 20. $n^2 = O(n \lg n)$ False

- 21. $\sqrt{2}^{\lg n} = O(\frac{3}{2}^n)$ True
- 22. $n^3 = O(\frac{3}{2}^n)$ True
- 23. $2^n = \Theta(2^{n+1})$ true
- 24. $2^n = \Theta(2^{2n})$ false
- 25. $2^{2n} = \Theta(4^n)$ true