Traitement d'image: compte rendu des Tps

1 - Binarisation

La LUT utilisé pour la binarisation est générée de manière à ce que l'image binarisée comporte 50% de pixels noirs et 50% de pixel blanc. Le seuil bas utilisé pour la binarisation est donc choisit automatiquement.

Illustration 1: couloir.pgm, seuil bas: 47

Illustration 2: femme.pgm, seuil bas: 140

2 – Histogramme

Illustration 3: Histogramme généré par Matlab pour femme.pgm

Illustration 4: Le même histogramme en image en niveau de gris

III - Recadrage dynamique

Illustration 5: femme.pgm avec alpha = 1.57 et beta = -122,78

IV - Détection de coutours

1 – Gradient

Illustration 6: Convolution de l'image house.pgm avec le noyau de Sobel Gx

Illustration 7: Convolution avec le noyau de Sobel Gy

Illustration 8: Amplitude du gradient

Illustration 9: Amplitude du gradient généré par Matlab

2 – Laplacien

Illustration 10: Convolution du noyau Laplacien avec house.pgm

Illustration 11: Image obtenue avec la fonction de convolution de Matlab

Illustration 12: Image obtenue en utilisant la même formule du Laplacien que Matlab, avec un lissage moyenneur

Illustration 13: La même image sans le lissage moyenneur préalable