

Finite State Automata

刘铎

liuduo@bjtu.edu.cn

- □ (确定性)有限状态自动机(finite state automata ,FSA)是一种计算模型,表示有限个状态以及 在这些状态之间的转移行为,最终判断一系列行 为是否符合"可接受"的要求
- 口有限状态自动机指五元组 $M=(S,I,f,A,S_0)$,其中
 - S 是一个有限的状态集合
 - *I* 是一个有限的输入符号集合
 - f 表示状态的转换是从 $S \times I$ 到 S 的函数
 - 接受状态的非空集合 $A \subseteq S$
 - 初始状态 $S_0 \in S$

- □例
 - $M=(\{S_0, S_1\}, \{a, b\}, f, \{S_1\}, S_0)$ 构成 一个有限状态自动机,其中
 - $f(S_0, a) = S_0, \ f(S_0, b) = S_1$ $f(S_1, a) = S_1, \ f(S_1, b) = S_0$
- $\square M$ 可接受的语言 L(M) 为包含奇数个b的 a-b 串

口例

- $M=(\{S_0,S_1\},\{a,b\},f,\{S_1\},S_0)$ 构成一个有限状态自动机,其中
- $f(S_0, a) = S_0, \ f(S_0, b) = S_1$ $f(S_1, a) = S_1, \ f(S_1, b) = S_0$

	f	
S	а	b
S_0	S_0	S_1
S_1	S_1	S_0

- □有限状态自动机的状态转移图是一个有向图
 - 顶点表示状态集合 *S* 中各个元素
 - 通过在有向边上标明输入符号表示*f*
 - □ 例如图中表示 " $S_k = f(S_i, I_i)$ "
 - 接受状态用双圈表示
 - 使用一个箭头指向表示开始状态的顶点

□例

- $\overline{M} = (\{S_0, S_1\}, \{a, b\}, f, \{S_1\}, S_0)$ 构成一个有限状态自动机,其中
- $f(S_0, a) = S_0, \ f(S_0, b) = S_1$ $f(S_1, a) = S_1, \ f(S_1, b) = S_0$

□可以把有限状态自动机 $M=(S, I, f, A, S_0)$ 看作一台机器,读写头从最左端开始自左而右逐位读入x,然后由当前状态和当前读入的位,根据 f 得到下一个状态,读写头向右移动一位,直到读完 x 的所有位,最后判断最终状态是否属于可接受状态集合。如果最终状态属于可接受状态集合,则称 M 可接受 x 。

- □ 可以给出一个形式化的定义:
- □ 假设 $M=(S, I, f, A, S_0)$ 是一个有限状态自动机, $x = x_1x_2...x_n \in I^n$ 。定义

$$f^{(0)}(x) = S_0, \ f^{(k+1)}(x) = f(f^{(k)}(x), x_{k+1}),$$

其中 $0 \le k \le n-1$, 如果 $f^{(|x|)}(x) \in A$, 则称 x 可以被M接受。

- \square I 上所有可被 M 接受的串全体记作 Ac(M),也称作 M 可接受的(定义的)语言,记作 L(M)
- □ 从直观上讲,x 可以被 M 接受是指:在 M 的状态转换图中,从顶点 S_0 出发,存在一条到一个接受状态顶点的道路,途经的各条有向边上的符号之连接恰好是 x

- □例
 - 接受所有偶数长度的串的有限状态自动机

■接受所有以"b"结尾的串的有限状态自动机

□例 构造一个有限状态自动机M,它接受的语言为{ $x000y \mid x,y \in \{0,1\}^*$ }

□例 构造一个有限状态自动机M, 它接受的语言为 { $0^n1^m \mid n, m \geq 1$ }

y mod 3

0

- □例
 - 构造一个有限状 x∈{0,1}*,且除}

□解

- 假设 $x = b_1 b_2 ... l$
- 当M在读入 b_i $b_{i,j}$ $b_{i,j}$ 形成的值为 $b_{i,j}$ $b_{i,j}$

 b_i

 $2y+b_i \mod 3$

言为 { *x*

x 能被3整

表入 x是

■ 于是y 和 $2y+b_i$ 模3的余数之间存在如表所示关系

有阻状突自动机

□例

■ 构造一个有限状态自动机M,它接受的语言为 $\{x \mid x \in \{0, 1\}^*$,且当把 x 看成二进制数时,x 能被3整除 $\}$

y mod 3	b_i	$2y+b_i \mod 3$
0	0	0
0	1	1
1	0	2
1	1	0
2	0	1
2	1	2

