Devoir maison exercice 28 et 29

Etienne Thomas

September 8, 2024

Exercice 28:

1) f est une fonction définie sur \mathbb{R}_+^* par $f: x \mapsto x + \frac{1}{x}$. Prouvons que

 $\forall x \in \mathbb{R}_+^*, f(x) \ge 2.$ Soit $x \in \mathbb{R}_+^*$, on a $(x-1)^2 \ge 0 \Leftrightarrow x^2 - 2x + 1 \ge 0$

$$\Leftrightarrow x^2 + 1 \ge 2x$$

$$\Leftrightarrow x + \frac{1}{x} \ge 2$$

Ainsi, $\forall x \in \mathbb{R}_+^*, f(x) \ge 2$. 2) Montrons que $\forall (a,b) \in (\mathbb{R}_+^*)^2, \frac{a}{b} + \frac{b}{a} \ge 2$. On sait que

$$f(\frac{a}{b}) = \frac{a}{b} + \frac{b}{a}$$

et que

$$f(\frac{a}{b}) \ge 2$$

Donc

$$\frac{a}{b} + \frac{b}{a} \ge 2$$

Par conséquent, $\forall (a,b) \in (\mathbb{R}_+^*)^2, \frac{a}{b} + \frac{b}{a} \geq 2$ est verifié.

Exercice 29:

1) On cherche a montrer que $\forall x \in \mathbb{R}_+, x - \frac{1}{2}x^2 \leq \ln(1+x)$. Pour cela, on étudie la fonction $f: x \mapsto \ln(1+x) - x + \frac{x^2}{2}$.

ln(x+1) est definie et derivable sur \mathbb{R}_+ , $x-\frac{x^2}{2}$ est un polynome, donc il est défini et dérivable sur \mathbb{R} . Par somme, f est dérivable sur \mathbb{R}_+ , de dérivée:

$$f'(x) = \frac{1}{x+1} - 1 + x$$

$$f'(x) = \frac{x^2}{1+x}$$

 $x\in\mathbb{R}_+\Rightarrow x^2\geq 0$ et x+1>0, donc $f'(x)\geq 0.$ Par conséquent f est croissante sur $\mathbb{R}_+.$

$$\Leftrightarrow (a,b) \in (\mathbb{R}_+)^2, a \le b \Rightarrow f(a) \le f(b)$$

Posons a = 0 et b = x, on a:

$$f(0) = ln(1) - 0 + 0 = 0$$

$$f(0) \le f(x) \Leftrightarrow 0 \le f(x)$$

Par conséquent, $\forall x \in \mathbb{R}_+, x - \frac{1}{2}x^2 \le ln(1+x)$.