Naive Bayes Classifier

Implementation Notes

Python Scikit Learn

- Gaussian Naive Bayes
- Multinomial Naire Bayes
- c Categorical Naive Bayes 1º (Attribute values are différent categories)

$$P(Y/X) = \frac{P(X/Y) - P(Y)}{P(X)}$$

χ_{l}	O	1	2	1	0	2	2	0	1
Y	0	I	0	1	1	1	0	ಲ	0

$$\chi_{i} = \{0, 1, 2\}$$

(/	1
	XI		1 1
	0	2/5	
	L	1/5	
	2	45	

P(24/4)

		1		1		<u>.</u>
				1	<i> </i>	0
Y	1	0	1	. 1		
			7	Bono	mel	(Bern

$$P(Y) = 3/5$$

What is probability of an unbiased coin toss (observing hard)

$$P(H) = \frac{1}{2}$$
 $P(T) = 1 - \frac{1}{2} = \frac{1}{2}$

rauli)

$$f(x) = P^{x}(1-P)^{1-x}$$

$$P(x) = P \text{ if } x=1$$

$$= 1-P \text{ if } x=0$$

$$P(x=H) = \frac{1}{2}$$

 $P(x=T) = \frac{1}{2}$

HHHTNO. Binomial Distribution:= n pr(1-p)n-r

 $P(x=H) = {}^{5}C_{4}({}^{1}/_{2})^{4} \cdot ({}^{1}/_{2})^{1}$

$$P(x = H) = {}^{5}C_{4}(\frac{1}{2})^{4} \cdot (\frac{1}{2})^{1}$$

$$= {}^{5}(\frac{1}{2})^{5} = {}^{5}(\frac{1}{32})$$

Multinonnial Distribution $\frac{n!}{n! n!} \frac{n!}{n! n!} \frac{n!}{n! n!} \frac{n!}{n! n!} \frac{n!}{n! n!}$ No. of times X = 22

 $\chi_1 + \chi_2 + - \chi_u = \mathcal{N}$ Gaussian Distribution

\times_{ι}	0.2	0.4	0.5	0.3	0.7
$\overline{}$	エ	0	1	O	1

Central Limit Theorem

How the appreach of categorial & gaussian different &

χ_1	0.2	0.4	0.5	0.7	0.3	0.8	0.4	0.2
Y	0	O	1	I	0	1	0	L

Training $P(Y) = \frac{1}{2}$ $P(\overline{Y}) = \frac{1}{2}$

- Look at all examples where y=1.

- Calculate M1, 51

$$P(x/y=0)$$
- Look at all examples
where $y=0$
- calculate M_0 , G_0

$$P(Y=1/X=0.1) =$$

P(
$$\chi = 0.1/\gamma = 1$$
). P($\gamma = 1$)

<u>Categorical</u>: when each outcome is

considere différent

leach example is an independent experiment (Sonny, overcast, Rainy)

Multinomial: When all examples are

generated by repeating an

experiment.

H, H, H, T

Day 1	Day 2	Day 3
Rain	Rain	Sunny

		4	4	
Days	Day 2	Day3	Day 4	
W	レ	L (w	

Check if an email is span - each Word is a feature each Word is a R.V., for the NBC Word is a _____ R.V.

- 1 Categorical
 2 Multinomial
- 3) Gaussian

$$w_1$$
 w_2 w_3 --- w_n $c.L$
 m_1 2 4 1 0 S
 m_2
 m_1
 m_1
 m_2
 m_1
 m_2
 m_3
 m_4
 m_5
 m_5