EGZAMIN Z MATEMATYKI DYSKRETNEJ LUTY 2011, PIERWSZY TERMIN, CZĘŚĆ A, CZAS: 120 MIN. Zadania powinny być rozwiązane na osobnych kartkach

Zadanie 1

Niech a i b będą dowolnymi liczbami całkowitymi. Pokaż, że jeśli $a^3|b^5$, to $a|b^2$.

Zadanie 2

W czerwonym sześcianie wybieramy cztery krawędzie i kolorujemy je na zielono. Oblicz, na ile istotnie różnych sposobów możemy to zrobić. Dwa kolorowania są istotnie różne, jeśli z jednego nie da się osiągnąć drugiego przez żaden obrót sześcianu.

Zadanie 3

Oblicz (np. z zasady włączeń/wyłączeń) liczbę rozwiązań równania

$$x_1 + x_2 + \dots + x_n = N,$$

gdy $0 \le x_i \le K \text{ dla } i = 1, 2, ..., n.$

Zadanie 4

Niech F(t) będzie funkcją tworzącą ciągu f_n w którym $f_0 = 1$. Napisz wzór pozwalający wyliczyć wyrazy g_n ciągu, którego funkcją tworzącą jest G(t) = 1/F(t). Wzór ten powinien używać do wyliczenia g_n wartości f_i i wyrazów g_i dla i < n. Pokaż, że jeśli wyrazy f_n są całkowite, to g_n też są całkowite.

POWODZENIA!

EGZAMIN Z MATEMATYKI DYSKRETNEJ LUTY 2011, PIERWSZY TERMIN, CZĘŚĆ B, CZAS: 120 MIN. Zadania powinny być rozwiązane na osobnych kartkach

Zadanie 5

Drabiną D_n nazywamy graf składający się z $2 \cdot (n+1)$ wierzchołków, taki jak narysowany poniżej. Udowodnij, że liczba drzew rozpinających drabiny D_n wynosi $\left| (1/2 + 1/\sqrt{3}) \cdot (2 + \sqrt{3})^n \right|$.

Zadanie 6

Pokaż, że każdy graf prosty planarny o co najmniej czterech wierzchołkach ma co najmniej cztery wierzchołki stopnia mniejszego niż 6.

Wsk. Rozważ krawędziowo maksymalny graf płaski.

Zadanie 7

 $Pokryciem\ cyklowym\ digrafu\ G$ nazywamy taki zbiór C cykli skierowanych G, że każdy wierzchołek należy do dokładnie jednego cyklu z C. Podaj wielomianowy algorytm, który oblicza pokrycie cyklowe danego digrafu, jeśli pokr. cykl. w tym digrafie istnieje i daje odpowiedź NIE, jeśli nie istnieje. Wskazówka: rozszczep każdy wierzchołek na dwa i zbuduj odpowiedni graf dwudzielny.

Zadanie 8

Graf krawędziowy L(G) grafu G ma zbiór wierzchołków V(L(G)) = E(G) i dwa z tych wierzchołków są połączone krawędzią gdy odpowiadające im krawędzie mają wspólny wierzchołek. Wyraź m(L(G)) za pomocą stopni wierzchołków G.

POWODZENIA!