Respostas do Livro Cálculo Numérico

Valentín Mendoza

1 Métodos Numéricos para a solução de equações

Exercício 1.1 $[1, 2] \cup [3, 4]$

Exercício 1.2 (a) $[-\pi/2, 0] \cup [0, \pi/2]$ (b) $[-n\pi/2, n\pi/2]$ em que: $n \in N$ (c) [1, 2] (d) $[0, 1] \cup [3, 4]$

Exercício 1.3 (a) Sugestão: Utilize o Teorema do Valor Intermediário (TVI) (b) n=5 (c) 0.015625

Exercício 1.4 Método de Bisseção: 2.460938, Método da Falsa Posição: 2.460938

Exercício 1.5 (a) $x \simeq -0.757813$ (b) $x \simeq -0.867188$

Exercício 1.6 $x_9 \simeq 1.080079$, O número mínimo de interações são: n = 28 para uma precisão de 10^{-8} .

Exercício 1.7 (a) $x \subset [-2, -1] \cup [1, 3]$ (b) $\overline{x} \approx x_5 = 0.695620768$

Exercício 1.8 (a) $x \subset [-1,0] \cup [0,1]$ **(b)** $\overline{x} \approx x_5 = 0.561552811$

Exercício 1.9 Não irá convergir. Sugestão: Mostre que a condição $|\phi'| < 1$ não é satisfeita.

Exercício 1.10 (a) No intervalo [3,3.5] a função ϕ convergirá, $\overline{x} \approx 3.147228$ (b) No intervalo [0.1,0.5] a função ϕ convergirá, $\overline{x} \approx 0.158609$.

Exercício 1.11 (a) Sim, Sim (b) Não, Não

Exercício 1.12 $\bar{x} \approx 2.726712591$

Exercício 1.13 $\overline{x} \approx x_3 = 1.259933$, Pela calculadora: $\overline{x} = 1.25992105$

Exercício 1.14 As duas raízes são aproximadamente: -2.12487233 e 1.6786615

Exercício 1.15 $x \approx -1.1297121$, $x \approx 0.77744204$

Exercício 1.16 $|x_5 - x_4| \times 10^7 = 1.5523204$

Exercício 1.17 $\overline{x} \approx x_2 = -0.7461$

Exercício 1.18 $|x_5 - x_4| \times 10^7 = 3.138208 \times 10^{-4}$

Exercício 1.19 $|S_5 - P_5| \times 100 = 87.4664$

Exercício 1.20 $\bar{x} \approx x_4 = 2.506181$

Exercício 1.21 $\bar{x} \approx x_4 = 0.337609$

Exercício 1.22 $\bar{x} \approx x_5 = 0.337609$

Exercício 1.23

Exercício 1.24 Os pontos de mínimos globais são: -0.618035 e -1.618035.

Exercício 1.25 $\overline{x} \approx 1.732051$

Exercício 1.26 $\overline{x} \approx 2.262178$

Exercício 1.27 $\overline{\theta} \approx 1.154583$

Exercício 1.28

Exercício 1.29 $\bar{x} \approx 0.99999988 = 1$

2 Interpolação Polinomial

Exercício 2.1 $x \simeq 0,909905$

Exercício 2.2 f(0.8) = 1.876

Exercício 2.3 f(0.25) = 2.60

Exercício 2.4 (a) $x^3 - 3x^2 + 2x$ (b) f(3.5) = 13.125

Exercício 2.5 $P(x) = -3x^2 + 3.5x$

Exercício 2.6 $K(x) = 4.5 \times 10^{-4} x^2 - 2.5 \times 10^{-4} x + 1.5706 \text{ e } K(2.5) \simeq 1.5728$

Exercício 2.7 (a) P(x) = 0.5x (b) $P(x) = -0.467x^2 + 0.967x$ (c) item a: f(0.5) = 0.25

item b: f(0.5) = 0.36675

Exercício 2.8 P(x) = -x - 1

Exercício 2.9 $f(3.7) \simeq P(3.7) = 1.3022559$, Na calculadora: f(3.7) = 1.30833282

Exercício 2.10 $f(0.47) \simeq P_2(0.47) = 0.346749$

Exercício 2.11 $f(1.12) \simeq P_2(1.12) = 1.0576$, Na calculadora: f(1.12) = 1.058300524

Exercício 2.12 $x \simeq 0.402847$

Exercício 2.13 Parábola: $P_2(0.0378) = 2.8502$, Cúbica: $P_3(0.0378) = 2.7410$

Exercício 2.14 $f(3.1) \simeq P_3(3.1) = 22.20$, Na calculadora: f(3.1) = 22.19795128

Exercício 2.15 $f(1.23) \simeq P_5 = -1.2142$

Exercício 2.16 $P_2(x) = -0.0985x^2 + 1.1935x - 1.552$, $x \simeq 1.48152$

Exercício 2.17 $f(x) \simeq P_2(x) = -2x^2 + 1.5x + 1.22, \quad f'(x) = -0.5$

Exercício 2.18

Exercício 2.19 $f(1955) \simeq 58.3994$ milhões, $f(1975) \simeq 108.3837$ milhões,

 $f(2012) \simeq 201.6057$, Erro (2012) = 1.48%, logo os anos 1955 e 1975 são bem previsto.

3 Resolução Numérica de Sistemas Lineares

Exercício 3.1 (a) $x_1 = x_2 = 1$, No ponto (1, 1) as retas interceptam entre si **(b)** Não é possível. **(c)** Não é possível. **(d)** Não é possível.

Exercício 3.2 (a) x = (-4, 5, -2) (b) x = (0.9, 2.1, 3.0, 4.2) (c) x = (1.2, 2.12, 1.5, 0.2)

Exercício 3.3 x = (1.2, 2.12, 1.5, 0.2)

Exercício 3.4 (a) O critério de Sassenfeld é satisfeito

(b) $\overline{x} \approx x^{(5)} = (0.9996315, 1.0000731, 9.563 \times 10^{-5})$

Exercício 3.5 (a) I) x = (0.015756, 0.974553, 1.04484) II) x = (-4, 3, 2) **(b)** I) Não há convergência garantida II) $x^{(5)} = (0.364209, 4.312248, 1.557254)$

Exercício 3.6 (I) $x^{(9)} = (1.173454, 0.739947, -0.717783)$ com $\epsilon = 0.01$ (II) $x^{(6)} = (-0.495885, 0.504115, 4.66)$ com $\epsilon = 0.01$ (III) $x^{(3)} = (0, 2, 2)$ com $\epsilon = 0.01$

4 Integração Numérica

Exercício 4.1 (a) a) 0.265625 b) 0.866667 c) 0.228074 d) 1.233701 (b) Regra 1/3 Simpsons a) 0.194012 b) -0.739090 c) 0.192245 d) 1.04899 Regra 3/8 de Simpsons a) 0.193861 b) -0.73642 c) 0.19226 d) 0.996845

Exercício 4.2 (a) a) 0.19830 b) -0.70148 c) 0.19449 d) 1.01295 (b) a) 0.193581 b) -0.73407 c) 0.192092 d) 0.999920 (c) a) 0.194337 b) -0.734647 c) 0.192804 d) 1.032811

Exercício 4.3 (a) $n = 46 \text{ e } I \approx 0.416022$ (b) $n = 6 \text{ e } I \approx 0.405459$ (c) $n = 6 \text{ e } I \approx 0.405495$

Exercício 4.4 (a) $I \approx 1.902679$ (b) $I \approx 1.896168$ (c) $I \approx 1.896168$

Exercício 4.5 (a) $I \approx 0.026529$ (b) $I \approx 0.026207$ (c) $I \approx 0.026206$

Exercício 4.6 $n = 2 e I \approx 1.899855$

Exercício 4.7 (a) n = 6 **(b)** n = 6

Exercício 4.8 $I \approx -2.416538 \text{ e} |E| \le 3.1 \times 10^{-6}$

Exercício 4.9 (a) $I \approx 0.881415$ e $|E| \le 0.0185$ (b) $I \approx 0.882033$ e $|E| \le 5.487 \times 10^{-4}$ (c) $I \approx 0.881963$ e $|E| \le 1.852 \times 10^{-3}$

Exercício 4.10 $I \approx 44.74$ metros

Exercício 4.11 $T \approx 0.677030$ segundos

Exercício 4.12 (a) $1.114803x - 0.6797x^2 + 0.0643x^3$ (b) I = 0.34657359 (c) $I \approx 0.34156338$

Exercício 4.13 $p \approx 8.144206$

Exercício 4.14 (a) $I \approx 4.352959$ (b) |E| < 0.023773

Resolução Numérica de Equações Diferenciais Ordinárias 5

Exercício 5.1 $y(1) \approx y_3 = 1.842456$

Exercício 5.2
$$\begin{cases} y_{n+1} = y_n + K_2 \\ K_1 = f(x_n, y_n, z_n, w_n) \\ K_2 = f(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_1, z_n + \frac{h}{2}K_1, w_n + \frac{h}{2}K_1) \end{cases}$$

$$\begin{cases} z_{n+1} = z_n + K_2 \\ K_1 = g(x_n, y_n, z_n, w_n) \\ K_2 = g(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_1, z_n + \frac{h}{2}K_1, w_n + \frac{h}{2}K_1) \end{cases}$$

$$\begin{cases} w_{n+1} = w_n + K_2 \\ K_1 = u(x_n, y_n, z_n, w_n) \\ K_2 = u(x_n + \frac{h}{2}, y_n + \frac{h}{2}K_1, z_n + \frac{h}{2}K_1, w_n + \frac{h}{2}K_1) \end{cases}$$
Dica: Faça: $F(x_n, U_n) = F(x_n, y_n, z_n, w_n) = (f(x_n, y_n, z_n, w_n), g(x_n, y_n, z_n, w_n), u(x_n, y_n, z_n, w_n))$

Exercício 5.3 (a)
$$y(3) \approx y_2 = 2.625$$
 e $E_{rel} = 5\%$ (b) $y(2) \approx y_2 = 5.386$ e $E_{rel} = 4.1\%$ (c) $y(1) \approx y_4 = 2.2365$ e $E_{rel} = 5.6\%$

Exercício 5.4 Método de Euler: (a) $y(1) \approx y_4 = 0.2203$ (b) $y(1) \approx y_5 = 0.772913$ Método de Euler Aperfeiçoado: (a) $y(1) \approx y_4 = 0.3594$ (b) $y(1) \approx y_4 = 0.840111$

Exercício 5.5 (a) i) Método de Euler: $y(2) \approx y_3 = -0.319251$ ii) Método de Euler Aperfeiçoado: $y(2) \approx y_3 = -0.459748$ (b) i) Método de Euler: $y(2) \approx y_6 = -0.406638$ ii) Método de Euler Aperfeiçoado: $y(2) \approx y_6 = -0.496618$

Tabela h = 1/3

				,		
n	x_n	M. Euler	M. E. Aprox.	-1/x	$E_A(Euler)$	$E_A(E.Aprox.)$
0	1	-1	-1	-1	0	0
1	4/3	-0.866667	-0.730324	-0.75	0.083333	0.019676
2	5/3	-0.460648	-0.568618	-0.6	0.139352	0.031382
3	2	-0.319251	-0.459748	-0.5	0.180749	0.040252

Tabela h = 1/6

					,		
(c)	n	x_n	M. Euler	M. E. Aprox.	-1/x	$E_A(Euler)$	$E_A(E.Aprox.)$
	0	1	-1	-1	-1	0	0
	1	7/6	-0.833333	-0.853789	-0.857143	0.023810	0.003354
	2	8/6	-0.707577	-0.744285	-0.75	0.042423	0.005715
	3	9/6	-0.608824	-0.661784	-0.666667	0.057843	0.004883
	4	10/6	-0.528881	-0.595752	-0.6	0.071119	0.004248
	5	11/6	-0.462612	-0.541694	-0.545454	0.082842	0.003760
	6	12/6	-0.406638	-0.496618	-0.5	0.093362	0.003382

Obs.: Em ambos os casos o método de Euler aperfeiçoado foi o mais apurado e quanto maior o número de subintervalos mais preciso é o método.

Exercício 5.6 (a) i) Método de Heun: $y(2) \approx y_3 = 3.180479$ ii) Método de Nystrom: $y(2) \approx y_3 = 3.483360$ (b) i) Método de Heun: $y(2) \approx y_6 = 3.424047$ ii) Método de Nystrom: $y(2) \approx y_6 = 3.563732$

Tabela $n_1 = 3$

n	x_n	M. Heun	M. Nystrom	$((x^2+3)/3)^{3/2}$	$E_A(E.H.)$	$E_A(E.N.)$
0	0	1	1	1	0	0
1	2/3	1.102720	1.175821	1.230259	0.127539	0.054438
2	4/3	1.697012	1.944343	2.009819	0.312807	0.065476
3	2	3.180479	3.483360	3.564226	0.383747	0.080866

Tabela $n_2 = 6$

(c)	n	x_n	M. Euler	M. E. Aprox.	$((x^2+3)/3)^{3/2}$	$E_A(Euler)$	$E_A(E.Aprox.)$
	0	0	1	1	1	0	0
	1	1/3	1.056009	1.056005	1.056067	0.000058	0.000062
	2	2/3	1.132909	1.230134	1.230259	0.097350	0.000125
	3	1	1.434414	1.539406	1.539601	0.105187	0.000195
	4	4/3	1.894549	2.009543	2.009819	0.115270	0.000276
	5	5/3	2.545679	2.672379	2.672756	0.127077	0.000377
	6	2	3.424047	3.563732	3.564226	0.140179	0.000494

Obs.: Em ambos os casos o método de Nystrom foi o mais apurado e também quanto maior o número de subintervalos mais preciso é o método.

Exercício 5.7 (a) i) Método de Nystrom: $y(2) \approx y_4 = 0.491512$ ii) Método de Runge-Kutta (4ª Ordem): $y(2) \approx y_4 = 0.500425$ (b) i) Método de Heun: $y(2) \approx y_8 = 0.495924$ ii) Método de Nystrom: $y(2) \approx y_8 = 0.488563$

Tabela h = 4

n	x_n	M. Nystrom	R.K. (4 ^a Ordem)	$2/x^{2}$	$E_A(M.N.)$	$E_A(R.K.(4^{\mathrm{a}}Ordem))$
0	1	2	2	2	0	0
1	5/4	1.256220	1.281312	1.28	0.023780	0.001312
2	6/4	0.871392	0.889881	0.888889	0.017497	0.000992
3	7/4	0.641515	0.653713	0.653061	0.011546	0.000652
4	2	0.491512	0.500425	0.5	0.008488	0.000425

Tabela h = 8

(c)	n	x_n	M. Nystrom	R.K. (4 ^a Ordem)	$2/x^2$	$E_A(M.N.)$	$E_A(R.K.(4^{\mathrm{a}}Ordem))$
(0)	0	1	2	2	2	0	0
	1	9/8	1.578561	1.580319	1.580247	0.001686	0.000072
	2	10/8	1.278052	1.280081	1.28	0.001948	0.000081
	3	11/8	1.056068	1.057923	1.057851	0.001783	0.000072
	4	12/8	0.887369	0.888948	0.888889	0.001520	0.000059
	5	13/8	0.756138	0.757444	0.757396	0.001258	0.000048
	6	14/8	0.652029	0.653099	0.653061	0.001032	0.000038
	7	15/8	0.568043	0.568919	0.568889	0.000846	0.000030
	8	2	0.495924	0.500024	0.5	0.004076	0.000024

Obs.: Em ambas tabelas o método de Runge-Kutta de 4ª ordem foi o mais robusto. Note que o aumento de subintervalos (n) faz com que o erro absoluto diminua.

Exercício 5.8 $y(1) \approx y_2 = 0.828366$

Exercício 5.9 (a) (b)

Exercício 5.10 Método de Euler: $y(1) \approx y_4 = 1.536928$ Método de Euler Modificado: $y(1) \approx y_4 = 1.594143$ Método de Euler Melhorado: $y(1) \approx y_4 = 1.588770$ Método de Heun: $y(1) \approx y_4 = 1.586973$ Método de Nystrom: $y(1) \approx y_4 = 1.587445$ Método de Runge-Kutta (4ª Ordem) $y(4) \approx y_4 = 1.587456$

Exercício 5.11 (a) i) $h = 0.2 \ y(1) \approx y_5 = 1 \ \text{ii}) \ h = 0.25 \ y(1) \approx y_4 = 1 \ \text{(b)} \ \text{i)} \ h = 0.2 \ y(1) \approx y_5 = 1 \ \text{ii}) \ h = 0.25 \ y(1) \approx y_4 = 1$

Exercício 5.12 (a) i) $\mathbf{h} = \mathbf{0.5} \ y(1) \approx y_2 = 0.3125 \ \text{ii}) \ \mathbf{h} = \mathbf{0.25} \ y(1) \approx y_4 = 0.415524 \ \text{(b)} \ \text{i})$ $\mathbf{h} = \mathbf{0.5} \ y(1) \approx y_2 = 0.533203 \ \text{ii}) \ \mathbf{h} = \mathbf{0.25} \ y(1) \approx y_4 = 0.517281$

Tabela h = 0.5

n	x_n	M. Euler	M.E.Aperf.	M.E.Modif.	R.K.(4 ^a Ordem)	$exp(-x+x^3/3)$
0	0	1	1	1	1	1
1	0.5	0.5	0.65625	0.648438	0.632342	0.632337
2	1	0.3125	0.533203	0.533188	0.513347	0.513417

Tabela h = 0.25 (\mathbf{d}) M. Euler M.E.Aperf. M.E.Modif. $R.K.(4^{a} Ordem)$ n x_n 0 0 1 1 0.250.750.7871090.7846680.7828720.7828682 0.50.5742190.6383730.6358430.6370980.6323373 0.750.4665530.5436910.5501600.5480580.547783

Obs.: Em ambas tabelas acima, o método mais robusto foi o Runge-Kutta de ordem 4.

0.0.521012

0.517281

(b) $t \approx 0.780268$ segundos

0.513417

Exercício 5.13 (a)
$$\begin{cases} z' = 2xy - y^3 sen(x) \\ z(1) = z_0 = 15 \end{cases} e \begin{cases} y' = z \\ y(1) = y_0 = 0 \end{cases}$$
 (b) $y(1.2) = y_2 = 3.15$

Exercício 5.14 Método de Euler Modificado: $y(0.3)\approx y_3=-0.926904$ Método de Euler Aperfeiçoado: $y(0.3)\approx y_3=-0.926904$

Exercício 5.15 $y(0.4) \approx y_4 = 1.539527$

0.415524

0.520073

Exercício 5.16 Velocidades (M. de Euler)

1

		(
	t_n/s	$v(t)/m.s^{-1}$
	0	8
	0.1	6.903636
	0.2	5.836981
	0.3	4.795035
(a)	0.4	3.773231
	0.5	2.767345
	0.6	1.773421
	0.7	0.787703
	0.8	-0.193425
	0.9	-1.173357
	1.0	-2.150854

Exercício 5.17 $P(5 \text{ anos}) = P_5 \approx 56711$

6 Resolução Numérica de Equações Diferenciais Parciais

Exercício 6.1 Para uma função de calor $(u_t = \alpha u_{xx})$ e $\sigma = \alpha k/h^2$ **Método Implícito:**

$$U_{0,j-1} = -2\sigma U_{1,j} + (1+2\sigma)U_{0,j} + 2h\sigma f(t_j)$$

$$U_{N,j-1} = -2\sigma U_{N-1,j} + (1+2\sigma)U_{N,j} - 2h\sigma g(t_j)$$

Método Crank-Nicolson:

$$-2\sigma U_{1,j} + (2+2\sigma)U_{0,j} + 2h\sigma f(t_j) = 2\sigma U_{1,j-1} + (2-2\sigma)U_{0,j-1} - 2h\sigma f(t_j - k)$$

$$(2+2\sigma)U_{N,j} - 2\sigma U_{N-1,j} - 2h\sigma g(t_j) = (2-2\sigma)U_{N,j-1} + 2\sigma U_{N-1,j-1} + 2h\sigma g(t_j - k)$$

Exercício 6.2 $U_{1,1}=1.234700,\ U_{1,2}=3.358066,\ U_{2,1}=1.987742,\ U_{2,2}=4.864230$

Exercício 6.3 a) elíptica b)hiperbólica c) hiperbólica d) elíptica e) parabólica f) hiperbólica

Exercício 6.4 Sim, para um C=2.

Exercício 6.5 a) parabólica b) (Demonstração) c) $u(0.03, 0.05) \approx U_{3,1} = 1.75$

Exercício 6.6 a) Sim **b) c)** $U_{1,1} = 2.792675$, $U_{1,2} = 4.361935$, $U_{1,3} = 5.581548$, $U_{1,4} = 6.354581$ e $U_{1,5} = 6.619159$

Exercício 6.7 $u\left(\frac{\pi}{4}, \frac{\pi}{4}\right) \approx U_{1,1} = 0.507766$

Tabela de resultados

Exercício 6.8 a) Sim

	$U_{i,j}$	M. das diferenças	xe^y	$E_{relativo}$
b)	$U_{1,1}$	0.863514	0.824361	4,75%
D)	$U_{1,2}$	1.435094	1.359141	$5{,}59\%$
	$U_{2,1}$	1.725053	1.648721	$4{,}63\%$
	$U_{1,1}$	2.975801	2.718282	$9{,}47\%$

Exercício 6.9 a) b) $U_{1,1} = U_{2,1} = 100$

Exercício 6.10 a) $u(0.5,0) \approx U_{-1,0} = 2.141593$ b) $u(1,\frac{1}{8}) \approx U_{0,1} = 0.570796$

Exercício 6.11 $\sigma \leq \frac{1}{2}$, Para $\alpha = 0.5 \rightarrow h^2 \geq k$ e $\alpha = 10^{-3} \rightarrow h^2 \geq 2 \times 10^{-3} k$

Exercício 6.12
$$\frac{U_{i+1,j}-2U_{i,j}+U_{i-1,j}}{h^2} + \frac{U_{i,j+1}-2U_{i,j}+U_{i,j-1}}{k^2} + \cos(y_j) \left[\frac{U_{i+1,j}-U_{i,j}}{h} \right] - \sin(x_i) \left[\frac{U_{i,j+1}-U_{i,j}}{k} \right]$$

Exercício 6.13
$$\frac{U_{i+1,j}-2U_{i,j}+U_{i-1,j}}{h^2}+\frac{U_{i,j+1}-2U_{i,j}+U_{i,j-1}}{k^2}+\cos(y_j)\left[\frac{U_{i+1,j}-U_{i-1,j}}{h}\right]-\sin(x_i)\left[\frac{U_{i,j+1}-U_{i,j-1}}{k}\right]$$

Exercício 6.14 a) $k \le \frac{1}{32}$ b) $U_{1,0} = U_{1,1} = U_{3,1} = 0.5$, $U_{4,1} = U_{4,2} = 0$, $U_{2,0} = 1$, $U_{2,1} = 0.68$, $U_{1,2} = U_{3,2} = 0.3976$ e $U_{2,2} = 0.5648$ c) $U_{1,0} = U_{2,0} = U_{3,1} = U_{3,2} = 0$, $U_{1,1} = U_{2,1} = 0.564972$ e $U_{1,2} = U_{2,2} = 0.478789$ d) $U_{1,0} = U_{2,0} = U_{3,1} = U_{3,2} = 0$, $U_{1,1} = U_{1,2} = 0.556575$ e $U_{1,2} = U_{2,2} = 0.464663$

Exercício 6.15 a) $\frac{U_{i,j+1}-U_{i,j}}{k} = \left[\frac{U_{i+1,j}-U_{i-1,j}}{2h}\right]^2 + U_{i,j}\left[\frac{U_{i+1,j}-2U_{i,j}+U_{i-1,j}}{h^2}\right]$ b) $U_{0,1} = 1.463415$, $U_{1,1} = 1.169444$, $U_{2,1} = 0.790278$, $U_{3,1} = 0.325205$, $U_{0,2} = 1.428571$, $U_{1,2} = 1.089560$, $U_{2,2} = 0.815094$ e $U_{3,2} = 0.317460$

Exercício 6.16 a) $U_{-1,j} = U_{1,j} - 4h[U_{0,j} - 1]$ e $U_{N+1,j} = U_{N-1,j} - 6h[U_{N,j} - 2]$ b) $U_{-1,j} = U_{0,j} - h[U_{0,j} - 1]$ e $U_{N+1,j} = U_{N,j} - 3h[U_{N,j} - 1]$ c) (a) $U_{-1,0} = 16/9$ e $U_{4,0} = 31/9$ (b) $U_{-1,0} = -1/3$ e $U_{4,0} = 2$

Exercício 6.17 $u\left(\frac{1}{3}, \frac{1}{2}\right) \approx U_{1,1} = 2.185185 \text{ e } u\left(\frac{2}{3}, \frac{1}{2}\right) \approx U(2,1) = 3.314814$

Exercício 6.18 a) $U_{0,1}=0, U_{1,1}=0.187037, U_{2,1}=0.596296$ e $U_{3,1}=0.951229$ b) $U_{0,2}=0, U_{1,2}=0.307222, U_{2,2}=0.502713$ e $U_{3,2}=0.904837$

Exercício 6.19 a) $U_{i,j+1} = (1+k)U_{i,j} + k \left[\frac{U_{i+1,j} - 2U_{i,j} + U_{i-1,j}}{h^2}\right]^3 + \frac{k}{h}(U_{i+1,j} - U_{i-1,j})$ b) $U_{0,1} = 0.0025, U_{1,1} = 64.166907, U_{2,1} = 512.909576 e U_{3,1} = 1.9975$