```
In [1]: import pandas as pd
import numpy as np
%matplotlib inline

In [2]: df = pd.read_excel('C://Users//saswa//OneDrive//Desktop//Pinaki-Time-series-forecasting//Superstore_Sales_Records.xls', index_
df = df[df['Category']=='Furniture']
df = df.groupby(by='Order Date').agg({'Sales':sum})
df.sort_index(inplace=True)
df.head(15)
```

Out[2]:	Sales
---------	-------

Order Date	
2014-01-06	2573.820
2014-01-07	76.728
2014-01-10	51.940
2014-01-11	9.940
2014-01-13	879.939
2014-01-14	61.960
2014-01-16	127.104
2014-01-19	181.470
2014-01-20	1413.510
2014-01-21	25.248
2014-01-26	217.200
2014-01-27	333.000
2014-01-31	290.666
2014-02-08	14.560
2014-02-11	1650.050

```
In [3]: df = df.resample('MS').sum()
    df.head(15)
```

Out[3]:		Sales
	Order Date	
	2014-01-01	6242.5250
	2014-02-01	1839.6580
	2014-03-01	14573.9560
	2014-04-01	7944.8370
	2014-05-01	6912.7870
	2014-06-01	13206.1256
	2014-07-01	10821.0510
	2014-08-01	7320.3465
	2014-09-01	23816.4808
	2014-10-01	12304.2470
	2014-11-01	
	2014-12-01	
	2015-01-01	
	2015-02-01	
		3134.3740
	2015-03-01	12499.7830
In [4]:	df.shape	
Out[4]:		
In [5]:	<pre>n = len(df) m = int(n*0</pre>	
	train_data	
	ci aiii_aaca	41.1100[0

```
test data = df.iloc[m:n]
        print(f"Total df size {len(df)}")
        print(f"Total train data size {len(train data)}")
        print(f"Total test data size {len(test_data)}")
       Total df size 48
       Total train data size 38
       Total test data size 10
In [6]: train data.tail()
Out[6]:
                         Sales
         Order Date
        2016-10-01 11872.5770
        2016-11-01 31783.6288
        2016-12-01 36678.7150
        2017-01-01
                    5964.0320
        2017-02-01 6866.3374
In [7]: from statsmodels.tsa.holtwinters import ExponentialSmoothing
        fitted model = ExponentialSmoothing(train data['Sales'], trend='mul', seasonal='mul', seasonal periods=12).fit()
       C:\Users\saswa\AppData\Roaming\Python\Python311\site-packages\statsmodels\tsa\holtwinters\model.py:83: RuntimeWarning: overflow
       encountered in matmul
         return err.T @ err
       C:\Users\saswa\AppData\Roaming\Python\Python311\site-packages\statsmodels\tsa\holtwinters\model.py:917: ConvergenceWarning: Opt
       imization failed to converge. Check mle_retvals.
         warnings.warn(
In [8]: test_predictions = fitted_model.forecast(len(test_data))
        test predictions
```

```
Out[8]: 2017-03-01
                      2.139283e+18
        2017-04-01
                      4.589978e+18
        2017-05-01
                      1.088440e+19
        2017-06-01
                      2.139505e+19
        2017-07-01
                      6.488781e+19
        2017-08-01
                      1.055809e+20
        2017-09-01
                      7.192510e+20
        2017-10-01
                      8.114941e+20
        2017-11-01
                      4.000376e+21
        2017-12-01
                      9.608036e+21
        Freq: MS, dtype: float64
In [9]: train_data['Sales'].plot(legend=True, label='TRAIN DATA')
        test_data['Sales'].plot(legend=True, label='TEST DATA', figsize=(12, 6)).autoscale(axis='x', tight=True)
```



```
In [10]: train_data['Sales'].plot(legend=True, label='TRAIN DATA')
  test_data['Sales'].plot(legend=True, label='TEST DATA', figsize=(12, 6)).autoscale(axis='x', tight=True)
  test_predictions.plot(legend=True, label='PREDICTION')
```

Out[10]: <Axes: xlabel='Order Date'>


```
In [11]: from sklearn.metrics import mean_absolute_error, mean_squared_error
mae_error = mean_absolute_error(test_data, test_predictions)
print(f"Mean absolute error of the above model is {mae_error}")
```

Mean absolute error of the above model is 1.5348634368862705e+21

```
In [12]: mse_error = mean_squared_error(test_data, test_predictions)
```

```
print(f"Mean squared error of the above model is {mse error}")
        Mean squared error of the above model is 1.0950916485965921e+43
In [13]: rmse_error = np.sqrt(mean_squared_error(test_data, test_predictions))
         print(f"Root mean squared error of the above model is {rmse_error}")
        Root mean squared error of the above model is 3.309216899202275e+21
In [14]: test data.describe()
Out[14]:
                       Sales
                   10.000000
         count
          mean 20255.689980
                 9463.329001
                 9065.958100
           min
           25%
               12720.235000
           50% 17983.072450
           75% 27242.171550
           max 37056.715000
In [15]: fitted model = ExponentialSmoothing(df['Sales'], trend='mul', seasonal='mul', seasonal periods=12).fit()
        C:\Users\saswa\AppData\Roaming\Python\Python311\site-packages\statsmodels\tsa\holtwinters\model.py:917: ConvergenceWarning: Opt
        imization failed to converge. Check mle_retvals.
          warnings.warn(
In [16]: future_preds = fitted_model.forecast(12)
         future_preds
```

```
Out[16]: 2018-01-01
                       10145.196758
         2018-02-01
                        5276.646045
         2018-03-01
                       14046.143518
         2018-04-01
                       12638.938600
         2018-05-01
                       15347.806822
         2018-06-01
                       14398.498944
         2018-07-01
                       15575.177149
         2018-08-01
                       12050.471323
         2018-09-01
                       32198.645769
         2018-10-01
                       15228.732215
         2018-11-01
                       34823.955051
         2018-12-01
                       37118.533234
         Freq: MS, dtype: float64
In [17]: df['Sales'].plot(figsize=(12, 8), legend=True, label='Exisiting Points')
         future_preds.plot(figsize=(12, 8), legend=True, label='Future Points')
Out[17]: <Axes: xlabel='Order Date'>
```


In [18]: df = pd.read_csv('C://Users//saswa//OneDrive//Desktop//Pinaki-Time-series-forecasting//Pinaki-samples.csv', index_col=0, parse
 df.head()

In [19]: df['a'].plot(ylim=[0, 100], title='STATIONARY DATA').autoscale(axis='x', tight=True)

In [21]: df['b'].plot(ylim=[0,100],title="NON-STATIONARY DATA").autoscale(axis='x',tight=True)


```
In [22]: df['b_ma'] = df['b'].rolling(12).mean()
df['b_ma'].plot(ylim=[0, 100], title='Moving Average')
```

Out[22]: <Axes: title={'center': 'Moving Average'}>


```
In [23]: from statsmodels.tsa.statespace.tools import diff

df['d1'] = diff(df['b'],k_diff=1)

df['d1'].plot(title="FIRST DIFFERENCE DATA", ylim=[-30, 30]).autoscale(axis='x',tight=True)
```



```
In [24]: df['d1_ma'] = df['d1'].rolling(12).mean()

df['d1_ma'].plot(title="MA OF FIRST DIFFERENCE DATA", ylim=[-10, 10]).autoscale(axis='x',tight=True)
```



```
Out[29]: array([ 44.22222222, -6.30864198, 19.60493827, -11.62962963,
                  7.80246914, -13.58024691, -0.14814815, -15.9382716,
                 -1.91358025])
In [30]: arr3 = acf(df['a'])
         arr3
Out[30]: array([ 1.
                           , -0.14265773, 0.44332775, -0.26298157, 0.17643774,
                -0.30709101, -0.00335008, -0.36041318, -0.04327192])
In [31]: from statsmodels.tsa.stattools import pacf yw
         arr4 = pacf yw(df['a'],nlags=4,method='mle')
         arr4
Out[31]: array([ 1.
                           , -0.14265773, 0.43176344, -0.20758442, -0.04572862])
In [32]: arr4 = pacf yw(df['a'],nlags=4,method='adjusted')
         arr4
                          , -0.16048995, 0.5586243 , -0.39456104, 0.01906252])
Out[32]: array([ 1.
In [33]: from statsmodels.tsa.stattools import pacf ols
         arr5 = pacf ols(df['a'],nlags=4)
         arr5
                           , -0.13833492, 1.13495418, -0.04476691, 0.5979815 ])
Out[33]: array([ 1.
In [34]: from pandas.plotting import lag plot
In [36]: df = pd.read excel('C://Users//saswa//OneDrive//Desktop//Pinaki-Time-series-forecasting//Superstore Sales Records.xls', index
         df['Category'].value_counts()
Out[36]: Office Supplies
                            6026
         Furniture
                            2121
         Technology
                            1847
         Name: Category, dtype: int64
In [37]: df = pd.read excel('C://Users//saswa//OneDrive//Desktop//Pinaki-Time-series-forecasting//Superstore Sales Records.xls', index
         df = df[df['Category']=='Office Supplies']
```

```
df = df.groupby(by='Order Date').agg({'Sales':sum})
         df.sort_index(inplace=True)
         df.head(4)
Out[37]:
                       Sales
          Order Date
         2014-01-03 16.448
         2014-01-04 288.060
         2014-01-05 19.536
         2014-01-06 685.340
In [38]: df = df.resample('W').sum()
         df.head()
Out[38]:
                        Sales
          Order Date
         2014-01-05
                     324.044
         2014-01-12
                     708.004
         2014-01-19 2337.764
         2014-01-26 1143.170
         2014-02-02 368.784
In [39]: lag_plot(df['Sales'])
Out[39]: <Axes: xlabel='y(t)', ylabel='y(t + 1)'>
```



```
In [42]: title = 'Partial Autocorrelation: Weekly Sales of Office Supplies'
lags = 40
plot_pacf(df['Sales'], title=title)
```



```
In [43]: import pandas as pd
import numpy as np
%matplotlib inline
```

```
In [44]: from statsmodels.tsa.ar_model import AR,ARResults

#plot the sales data of Office Supplies

df = pd.read_excel('C://Users//saswa//OneDrive//Desktop//Pinaki-Time-series-forecasting//Superstore_Sales_Records.xls', index_

df = df[df['Category']=='Furniture']

df = df.groupby(by='Order Date').agg({'Sales':sum})

df.sort_index(inplace=True)

df.head(4)
```

```
Out[44]:
                        Sales
          Order Date
         2014-01-06 2573.820
         2014-01-07
                       76.728
         2014-01-10
                       51.940
         2014-01-11
                        9.940
In [45]: df = df.resample('M').sum()
         df.head()
Out[45]:
                         Sales
          Order Date
         2014-01-31
                      6242.525
         2014-02-28
                     1839.658
         2014-03-31 14573.956
         2014-04-30
                     7944.837
         2014-05-31 6912.787
In [46]: title='Monthly Furniture Sales Data'
         ylabel='Sales Data'
         xlabel='Order Date'
         ax = df['Sales'].plot(figsize=(12,5),title=title)
         ax.autoscale(axis='x',tight=True)
         ax.set(xlabel=xlabel, ylabel=ylabel)
Out[46]: [Text(0.5, 0, 'Order Date'), Text(0, 0.5, 'Sales Data')]
```



```
In [47]: len(df)
Out[47]: 48

In [48]: train = df.iloc[:len(df)-6]
    test = df.iloc[len(df)-6:]
    print(f"Train size is {len(train)}")
    print(f"Test size is {len(test)}")
    Train size is 42
    Test size is 6
In [49]: import warnings
```

```
warnings.filterwarnings("ignore")
        from statsmodels.tsa.ar model import AutoReg
       mod1 = AutoReg(train['Sales'], 1, old_names=False)
In [50]:
        res1 = mod1.fit()
        print(res1.summary())
                               AutoReg Model Results
       ______
       Dep. Variable:
                                  Sales No. Observations:
       Model:
                              AutoReg(1) Log Likelihood
                                                                 -427.247
       Method:
                       Conditional MLE S.D. of innovations
                                                                   8116.944
                       Thu, 21 Sep 2023 AIC
       Date:
                                                                   860.493
                                                                   865.634
       Time:
                                00:07:29
                                         BIC
       Sample:
                              02-28-2014
                                        HQIC
                                                                    862.365
                            - 06-30-2017
                            std err
                                                 P>|z|
                                                          [0.025
                                                                     0.975]
                     coef
                 1.172e+04
                           2487.380
                                       4.712
                                                 0.000
                                                        6845.693
       const
                                                                   1.66e+04
       Sales.L1
                    0.1884
                              0.152
                                       1.237
                                                 0.216
                                                       -0.110
                                                                     0.487
                                      Roots
       ______
                      Real
                                  Imaginary
                                                   Modulus
                                                                 Frequency
                    5.3086
                                 +0.0000j
                                                    5.3086
       AR.1
                                                                    0.0000
In [51]: print(f'Lag: {res1.arfreq}')
        print(f'Coefficients:\n{res1.params}')
       Lag: [0.]
       Coefficients:
       const
                 11720.868755
       Sales.L1
                    0.188372
       dtype: float64
In [52]: start=len(train)
        end=len(train)+len(test)-1
        predictions1 = res1.predict(start=start, end=end, dynamic=False).rename('AR(1) Predictions')
```

```
In [53]: predictions1
Out[53]: 2017-07-31
                        15301.562179
          2017-08-31
                        14603.261009
          2017-09-30
                       14471.720330
          2017-10-31
                       14446.941694
          2017-11-30
                       14442.274083
          2017-12-31
                        14441.394833
          Freq: M, Name: AR(1) Predictions, dtype: float64
In [54]: for i in range(len(predictions1)):
             print(f"predicted={predictions1[i]:<11.10}, expected={test['Sales'][i]}")</pre>
        predicted=15301.56218, expected=11813.021999999999
        predicted=14603.26101, expected=15441.874
        predicted=14471.72033, expected=29028.206000000002
        predicted=14446.94169, expected=21884.0682
        predicted=14442.27408, expected=37056.715
        predicted=14441.39483, expected=31407.4668
In [55]: test['Sales'].plot(legend=True)
         predictions1.plot(legend=True, figsize=(12,6))
Out[55]: <Axes: xlabel='Order Date'>
```

Pinaki-Time-Series-Analysis-and-Forecasting


```
In [56]: mod6 = AutoReg(train['Sales'], 6)
    res6 = mod6.fit()
    print(res6.summary())
```

AutoReg Model Results

Dep. Variable	e:	9	Sales No.	Observation	42	
Model:		AutoRe	eg(6) Log	Likelihood	-373.443	
Method:	(Conditional	L MLE S.D.	of innovat	ions	7742.555
Date:	Th	nu, 21 Sep	2023 AIC			762.887
Time:		00:0	08:29 BIC			775.555
Sample:		07-31-	-2014 HQI	•		767.308
		- 06-30-	-2017			
=========	coef	std err		P> z	[0.025	0.975]
		Stu em	Z	P> 2 	[0.025	0.975]
const	1.93e+04	5788.110	3.334	0.001	7950.646	3.06e+04
Sales.L1	0.1277	0.165	0.774	0.439	-0.196	0.451
Sales.L2	-0.0805	0.162	-0.496	0.620	-0.399	0.238
Sales.L3	0.0557	0.159	0.350	0.726	-0.256	0.367
Sales.L4	-0.2548	0.158	-1.610	0.107	-0.565	0.055
Sales.L5	-0.1875	0.160	-1.175	0.240	-0.500	0.125
Sales.L6	0.0541	0.160	0.339	0.735	-0.259	0.367
			Roots			
=========	D1				1	
	Real		[maginary 	Moa 	ulus	Frequency
AR.1	-0.5872	-0.5872 -1.13		1.2763		-0.3261
AR.2	-0.5872			1.2763		0.3261
AR.3	-1.6817			1.6817		-0.5000
AR.4	0.9181			1.2266		-0.1154
AR.5	0.9181			1.2266		0.1154
AR.6	4.4871		-0.0000j	4.	4871	-0.0000

```
In [57]: start=len(train)
  end=len(train)+len(test)-1
  predictions6 = res6.predict(start=start, end=end, dynamic=False).rename('AR(6) Predictions')
  predictions6
```

```
Out[57]: 2017-07-31
                       17121.629045
         2017-08-31
                       16914.370614
         2017-09-30
                       15703.623235
         2017-10-31
                       13359.612451
         2017-11-30
                       13669.199630
         2017-12-31
                       14347.505858
         Freq: M, Name: AR(6) Predictions, dtype: float64
In [58]: test['Sales'].plot(legend=True)
         predictions6.plot(legend=True,figsize=(12,6))
Out[58]: <Axes: xlabel='Order Date'>
```



```
In [59]: from statsmodels.tsa.ar_model import ar_select_order
    p = ar_select_order(train['Sales'], maxlag=15)
    p.ar_lags

Out[59]: [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]

In [60]: mod12 = AutoReg(train['Sales'], 12)
    res12 = mod12.fit()
    print(res12.summary())
```

AutoReg Model Results

Dep. Variab	Dep. Variable: Sales			No. Observations: 42			
Model:		AutoReg(1	2) Log	Likelihood	-290.930		
Method:	C	onditional M	LE S.D.	of innovat:	ions	3939.183	
Date:	Th	u, 21 Sep 20	23 AIC			609.860	
Time:		00:09:				629.477	
Sample:		01-31-20	15 HQIC			616.136	
		- 06-30-20	17				
========	coef	std err	===== Z	P> z	[0.025	0.975]	
const	6179.8244	9948.341	0.621	0.534	-1.33e+04	2.57e+04	
Sales.L1	0.0175	0.102	0.172	0.864	-0.182	0.217	
Sales.L2	-0.0058	0.104	-0.056	0.956	-0.209	0.197	
Sales.L3	-0.0491	0.102	-0.481	0.631	-0.249	0.151	
Sales.L4	-0.1194	0.103	-1.163	0.245	-0.320	0.082	
Sales.L5	-0.0596	0.101	-0.593	0.553	-0.257	0.138	
Sales.L6	-0.0091	0.101	-0.091	0.928	-0.206	0.188	
Sales.L7	0.0419	0.114	0.369	0.712	-0.181	0.265	
Sales.L8	0.0262	0.118	0.221	0.825	-0.206	0.258	
Sales.L9	-0.0595	0.115	-0.516	0.606	-0.285	0.166	
Sales.L10	-0.0724	0.123	-0.590	0.555	-0.313	0.168	
Sales.L11	0.0335	0.118	0.284	0.776	-0.198	0.265	
Sales.L12	0.9403	0.115	8.143	0.000	0.714	1.167	
			Roots				
Real			Imaginary		Modulus		
AR.1	1 0270				0270	-0.0000	
AR.1 AR.2	1.0270 0.8601		-0.0000j		1.0270 0.9991		
AR.3	0.8601		-0.5085j		0.9991		
AR.4	0.5128		3		.9882	0.0850 -0.1632	
AR.5	0.5128		-0.8447j +0.8447j		.9882	0.1632	
AR.6	-0.0108		+0.8447j -1.0048j		1.0049		
AR.7	-0.0108		1.0048j	1.0049		-0.2517 0.2517	
AR.8	-0.5131		0.8690j	1.0043		-0.3349	
AR.9	-0.5131		0.8690j	1.0091		0.3349	
AR.10	-0.8731		0.5059j	1.0091		-0.4164	
AR.11	-0.8731		0.5059j		1.0091		
AR.12	-1.0144		0.0000j		.0144	0.4164 -0.5000	
			,				

.....

```
In [61]: start=len(train)
    end=len(train)+len(test)-1
    predictions12 = res12.predict(start=start, end=end, dynamic=False).rename('AR(6) Predictions')
    test['Sales'].plot(legend=True)
    predictions12.plot(legend=True,figsize=(12,6))
```

Out[61]: <Axes: xlabel='Order Date'>

In [62]: from sklearn.metrics import mean_squared_error

```
labels = ['AR(1)','AR(6)','AR(12)']
         preds = [predictions1, predictions6, predictions12] # these are variables, not strings!
         for i in range(3):
             error = mean_squared_error(test['Sales'], preds[i])
             print(f'{labels[i]} Error: {error:11.10}')
        AR(1) Error: 179889307.7
        AR(6) Error: 186429758.2
        AR(12) Error: 30320630.65
In [63]: modls = [res1,res6,res12]
         for i in range(3):
             print(f'{labels[i]} AIC: {modls[i].aic:6.5}')
        AR(1) AIC: 860.49
        AR(6) AIC: 762.89
        AR(12) AIC: 609.86
In [64]: mod12 = AutoReg(df['Sales'], 12)
         res12 = mod12.fit()
         print(res12.summary())
```

AutoReg Model Results

Dep. Variab	ole:	Sal	Les No.	Observation	s:	48	
Model:		AutoReg(1	l2) Log	Likelihood		-349.076	
Method:	C	onditional M	ILE S.D.	of innovat	ions	3934.790	
Date:	Th	u, 21 Sep 20	23 AIC			726.152	
Time:		00:10:	:01 BIC			748.321	
Sample:		01-31-20)15 HQIC			733.889	
		- 12-31-26					
========	coef	std err	z	P> z	[0.025	0.975]	
const	4356.0138	7562.612	0.576	0.565	-1.05e+04	1.92e+04	
Sales.L1	0.0321	0.088	0.366	0.715	-0.140	0.204	
Sales.L2	-0.0097	0.094	-0.102	0.918	-0.195	0.175	
Sales.L3	-0.0670	0.092	-0.727	0.467	-0.248	0.114	
Sales.L4	-0.0820	0.097	-0.846	0.398	-0.272	0.108	
Sales.L5	-0.0348	0.094	-0.369	0.712	-0.219	0.150	
Sales.L6	0.0304	0.095	0.320	0.749	-0.155	0.216	
Sales.L7	-0.0261	0.093	-0.279	0.780	-0.209	0.157	
Sales.L8	-0.0317	0.093	-0.339	0.734	-0.215	0.151	
Sales.L9	-0.0284	0.094	-0.303	0.762	-0.212	0.155	
Sales.L10	0.0041	0.093	0.044	0.965	-0.178	0.186	
Sales.L11	0.1429	0.090	1.592	0.111	-0.033	0.319	
Sales.L12	0.8895	0.089	9.993	0.000	0.715	1.064	
Roots							
========	 Real		====== naginary		======== dulus	Frequency	
AR.1	1.0149		-0.0000j		1.0149		
AR.2	0.8510		-0.5063j		0.9902		
AR.3	0.8510		+0.5063j		0.9902		
AR.4	0.4907		-0.8578j		0.9882		
AR.5	0.4907		+0.8578j		0.9882		
AR.6	-0.0094		-1.0212j		1.0212		
AR.7	-0.0094		+1.0212j		1.0212		
AR.8	-0.5178		-0.8730j		1.0150		
AR.9	-0.5178		+0.8730j		1.0150		
AR.10	-1.0205		-0.0000j	1.0205		-0.5000	
AR.11	-0.8920		-0.5093j		1.0272		
AR.12	-0.8920) -	⊦0.5093j	1	.0272	0.4174	

```
In [65]: start = len(df)
         end = len(df)+12
         pred_future = res12.predict(start=start, end=end, dynamic=False)
         pred_future
Out[65]: 2018-01-31
                        6022.626972
         2018-02-28
                        5739.250407
         2018-03-31
                        9199.016790
         2018-04-30
                        9976.759362
         2018-05-31
                       19661.613494
         2018-06-30
                       20722.318428
         2018-07-31
                       13609.961837
         2018-08-31
                       18080.731150
         2018-09-30
                       29604.129926
         2018-10-31
                       26437.359412
         2018-11-30
                       39227.722049
         2018-12-31
                       29781.186936
         2019-01-31
                        5288.024913
         Freq: M, dtype: float64
In [66]: df['Sales'].plot()
         pred_future.plot()
Out[66]: <Axes: xlabel='Order Date'>
```


In [67]: pip install pmdarima

```
Defaulting to user installation because normal site-packages is not writeable
Requirement already satisfied: pmdarima in c:\users\saswa\appdata\roaming\python\python311\site-packages (2.0.3)
Requirement already satisfied: joblib>=0.11 in c:\users\saswa\appdata\roaming\python\python311\site-packages (from pmdarima)
(1.3.1)
Requirement already satisfied: Cython!=0.29.18,!=0.29.31,>=0.29 in c:\users\saswa\appdata\roaming\python\python311\site-package
s (from pmdarima) (3.0.2)
Requirement already satisfied: numpy>=1.21.2 in c:\users\saswa\appdata\roaming\python\python311\site-packages (from pmdarima)
(1.24.2)
Requirement already satisfied: pandas>=0.19 in c:\users\saswa\appdata\roaming\python\python311\site-packages (from pmdarima)
(1.5.3)
Requirement already satisfied: scikit-learn>=0.22 in c:\users\saswa\appdata\roaming\python\python311\site-packages (from pmdari
ma) (1.3.0)
Requirement already satisfied: scipy>=1.3.2 in c:\users\saswa\appdata\roaming\python\python311\site-packages (from pmdarima)
(1.11.2)
Requirement already satisfied: statsmodels>=0.13.2 in c:\users\saswa\appdata\roaming\python\python311\site-packages (from pmdar
ima) (0.14.0)
Requirement already satisfied: urllib3 in c:\users\saswa\appdata\roaming\python\python311\site-packages (from pmdarima) (2.0.4)
Requirement already satisfied: setuptools!=50.0.0,>=38.6.0 in c:\program files\python311\lib\site-packages (from pmdarima) (65.
5.0)
Requirement already satisfied: python-dateutil>=2.8.1 in c:\users\saswa\appdata\roaming\python\python\python311\site-packages (from pa
ndas >= 0.19 - pmdarima) (2.8.2)
Requirement already satisfied: pytz>=2020.1 in c:\users\saswa\appdata\roaming\python\python311\site-packages (from pandas>=0.19
->pmdarima) (2022.7.1)
Requirement already satisfied: threadpoolctl>=2.0.0 in c:\users\saswa\appdata\roaming\python\python311\site-packages (from scik
it-learn>=0.22->pmdarima) (3.2.0)
Requirement already satisfied: patsy>=0.5.2 in c:\users\saswa\appdata\roaming\python\python311\site-packages (from statsmodels>
=0.13.2->pmdarima) (0.5.3)
Requirement already satisfied: packaging>=21.3 in c:\users\saswa\appdata\roaming\python\python311\site-packages (from statsmode
ls >= 0.13.2 - pmdarima) (23.1)
Requirement already satisfied: six in c:\users\saswa\appdata\roaming\python\python311\site-packages (from patsy>=0.5.2->statsmo
dels>=0.13.2->pmdarima) (1.16.0)
Note: you may need to restart the kernel to use updated packages.
```

import pandas as pd import numpy as np %matplotlib inline # Load specific forecasting tools from statsmodels.tsa.arima_model import ARMA,ARMAResults,ARIMA,ARIMAResults from statsmodels.graphics.tsaplots import plot_acf,plot_pacf # for determining (p,q) orders from pmdarima import auto arima # for determining ARIMA orders

```
# Ignore harmless warnings
         import warnings
         warnings.filterwarnings("ignore")
In [69]: df = pd.read_excel('C://Users//saswa//OneDrive//Desktop//Pinaki-Time-series-forecasting//Superstore_Sales_Records.xls', index_
         df = df[df['Category']=='Furniture']
         df = df.groupby(by='Order Date').agg({'Sales':sum})
         df.sort_index(inplace=True)
         df.head(4)
Out[69]:
                        Sales
          Order Date
         2014-01-06 2573.820
         2014-01-07
                       76.728
         2014-01-10
                       51.940
         2014-01-11
                        9.940
In [70]: df = df.resample('MS').sum()
         df.head()
Out[70]:
                         Sales
          Order Date
                      6242.525
          2014-01-01
         2014-02-01
                      1839.658
         2014-03-01 14573.956
         2014-04-01
                     7944.837
         2014-05-01 6912.787
```

```
In [71]: from statsmodels.tsa.stattools import adfuller
In [72]: def adf_test(series,title=''):
             Pass in a time series and an optional title, returns an ADF report
             print(f'Augmented Dickey-Fuller Test: {title}')
             result = adfuller(series.dropna(),autolag='AIC')
             labels = ['ADF test statistic','p-value','# lags used','# observations']
             out = pd.Series(result[0:4],index=labels)
             for key,val in result[4].items():
                 out[f'critical value ({key})']=val
             print(out.to_string())
             if result[1] <= 0.05:</pre>
                 print("Strong evidence against the null hypothesis")
                 print("Reject the null hypothesis")
                 print("Data has no unit root and is stationary")
             else:
                 print("Weak evidence against the null hypothesis")
                 print("Fail to reject the null hypothesis")
                 print("Data has a unit root and is non-stationary")
In [73]: df['Sales'].plot()
Out[73]: <Axes: xlabel='Order Date'>
```


In [74]: adf_test(df['Sales'])

```
Augmented Dickey-Fuller Test:
ADF test statistic
                        -4.699026
p-value
                         0.000085
# lags used
                         0.000000
# observations
                        47.000000
critical value (1%)
                        -3.577848
critical value (5%)
                        -2.925338
critical value (10%)
                        -2.600774
Strong evidence against the null hypothesis
Reject the null hypothesis
Data has no unit root and is stationary
```

```
In [75]: auto_arima(df['Sales'], seasonal=True).summary()
                                SARIMAX Results
Out[75]:
             Dep. Variable:
                                         y No. Observations:
                                                                   48
                   Model: SARIMAX(1, 0, 0)
                                               Log Likelihood -502.820
                    Date: Thu, 21 Sep 2023
                                                         AIC 1011.640
                    Time:
                                   00:14:34
                                                         BIC 1017.253
                                01-01-2014
                                                       HQIC 1013.761
                  Sample:
                               - 12-01-2017
          Covariance Type:
                                      opg
                                 std err
                                                z P>|z|
                                                           [0.025
                                                                     0.975]
                         coef
                                                         5554.237 1.61e+04
          intercept 1.084e+04 2695.066
                                            4.021 0.000
                                                                      0.563
              ar.L1
                       0.3056
                                  0.131
                                            2.328 0.020
                                                             0.048
           sigma2 7.318e+07
                                  0.160 4.56e+08 0.000 7.32e+07 7.32e+07
             Ljung-Box (L1) (Q): 0.00 Jarque-Bera (JB): 3.70
                       Prob(Q): 0.98
                                             Prob(JB): 0.16
          Heteroskedasticity (H): 1.88
                                                Skew: 0.64
            Prob(H) (two-sided): 0.22
                                              Kurtosis: 2.54
```

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 2.09e+24. Standard errors may be unstable.

```
In [76]: train = df.iloc[:len(df)-6]
         test = df.iloc[len(df)-6:]
         len(train), len(test)
Out[76]: (42, 6)
In [77]: help(ARMA)
        Help on class ARMA in module statsmodels.tsa.arima_model:
        class ARMA(builtins.object)
            ARMA(*args, **kwargs)
            ARMA has been deprecated in favor of the new implementation
            See Also
            statsmodels.tsa.arima.model.ARIMA
                ARIMA models with a variety of parameter estimators
            statsmodels.tsa.statespace.SARIMAX
                SARIMAX models estimated using MLE
            Methods defined here:
            __init__(self, *args, **kwargs)
                Initialize self. See help(type(self)) for accurate signature.
            Data descriptors defined here:
            __dict_
                dictionary for instance variables (if defined)
            __weakref
                list of weak references to the object (if defined)
In [78]: from statsmodels.tsa.arima.model import ARIMA
         model = ARIMA(train['Sales'], order=(2,0,2))
         results = model.fit()
```

about:srcdoc

results.summary()

Out[78]:	SARIMAX Results
----------	-----------------

Sales	No. Observations:	42
ARIMA(2, 0, 2)	Log Likelihood	-436.980
Thu, 21 Sep 2023	AIC	885.960
00:15:08	BIC	896.386
01-01-2014	HQIC	889.782
- 06-01-2017		
	ARIMA(2, 0, 2) Thu, 21 Sep 2023 00:15:08 01-01-2014	ARIMA(2, 0, 2) Log Likelihood Thu, 21 Sep 2023 AIC 00:15:08 BIC 01-01-2014 HQIC

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
const	1.418e+04	1427.017	9.934	0.000	1.14e+04	1.7e+04
ar.L1	0.6732	0.810	0.831	0.406	-0.914	2.260
ar.L2	0.1773	0.842	0.211	0.833	-1.474	1.828
ma.L1	-0.5278	0.739	-0.714	0.475	-1.977	0.921
ma.L2	-0.4528	0.771	-0.587	0.557	-1.964	1.059
sigma2	7.04e+07	0.014	4.87e+09	0.000	7.04e+07	7.04e+07

 Ljung-Box (L1) (Q):
 0.01
 Jarque-Bera (JB):
 8.53

 Prob(Q):
 0.93
 Prob(JB):
 0.01

 Heteroskedasticity (H):
 1.31
 Skew:
 1.10

 Prob(H) (two-sided):
 0.62
 Kurtosis:
 3.27

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 2.64e+25. Standard errors may be unstable.

```
start=len(train)
In [79]:
         end=len(train)+len(test)-1
         predictions = results.predict(start=start, end=end).rename('ARMA(2,2) Predictions')
         predictions
Out[79]: 2017-07-01
                       13115.074287
          2017-08-01
                       12031.112128
          2017-09-01
                       12543.910534
          2017-10-01
                       12696.894212
          2017-11-01
                       12890.811988
          2017-12-01
                       13048.480070
         Freq: MS, Name: ARMA(2,2) Predictions, dtype: float64
In [80]: title = 'Furniture Sales Data'
         ylabel='Sales Data'
         xlabel='Order Date'
         ax = test['Sales'].plot(legend=True, figsize=(12,6), title=title)
         predictions.plot(legend=True)
         ax.autoscale(axis='x',tight=True)
         ax.set(xlabel=xlabel, ylabel=ylabel)
Out[80]: [Text(0.5, 0, 'Order Date'), Text(0, 0.5, 'Sales Data')]
```



```
In [81]: df = pd.read_excel('C://Users//saswa//OneDrive//Desktop//Pinaki-Time-series-forecasting//Superstore_Sales_Records.xls', index_
    df = df[df['Category']=='Furniture']
    df = df.groupby(by='Order Date').agg({'Sales':sum})
    df.sort_index(inplace=True)
    df.head(4)
```

```
Out[81]:
                         Sales
          Order Date
         2014-01-06 2573.820
         2014-01-07
                       76.728
         2014-01-10
                       51.940
         2014-01-11
                        9.940
In [82]: df = df.resample('MS').sum()
         df.head()
Out[82]:
                         Sales
          Order Date
         2014-01-01
                      6242.525
         2014-02-01
                      1839.658
         2014-03-01 14573.956
         2014-04-01
                     7944.837
         2014-05-01 6912.787
In [83]: import matplotlib.ticker as ticker
         formatter = ticker.StrMethodFormatter('{x:,.0f}')
         title = 'Furniture Sales Data'
         ylabel='Sales Data'
         xlabel='Order Date'
         ax = df['Sales'].plot(figsize=(12,5),title=title)
         ax.autoscale(axis='x',tight=True)
         ax.set(xlabel=xlabel, ylabel=ylabel)
         ax.yaxis.set_major_formatter(formatter);
```



```
In [84]: from statsmodels.tsa.seasonal import seasonal_decompose
    result = seasonal_decompose(df['Sales'], model='additive')
    result.plot()
```


In [85]: auto_arima(df['Sales'], seasonal=False).summary()

Out[85]:	SARIMAX Results
----------	-----------------

Model: SARIMAX(1, 0, 0) Log Likelihood -502.820 Date: Thu, 21 Sep 2023 AIC 1011.640 Time: 00:17:17 BIC 1017.253 Sample: 01-01-2014 HOIC 1013.761
Time: 00:17:17 BIC 1017.253
Complex 01 01 2014 HOIC 1012 761
Sample: 01-01-2014 HQIC 1013.761
- 12-01-2017

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
intercept	1.084e+04	2695.066	4.021	0.000	5554.237	1.61e+04
ar.L1	0.3056	0.131	2.328	0.020	0.048	0.563
sigma2	7.318e+07	0.160	4.56e+08	0.000	7.32e+07	7.32e+07

Ljung-Box (L1) (Q):	0.00	Jarque-Bera (JB):	3.70
Prob(Q):	0.98	Prob(JB):	0.16
Heteroskedasticity (H):	1.88	Skew:	0.64
Prob(H) (two-sided):	0.22	Kurtosis:	2.54

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 2.09e+24. Standard errors may be unstable.

In [86]: from statsmodels.tsa.statespace.tools import diff

```
df['d1'] = diff(df['Sales'], k_diff=1)
         adf_test(df['d1'], 'Furniture Sales Data')
        Augmented Dickey-Fuller Test: Furniture Sales Data
        ADF test statistic
                               -1.147459e+01
        p-value
                               5.167971e-21
        # lags used
                               1.000000e+01
        # observations
                               3.600000e+01
        critical value (1%)
                               -3.626652e+00
        critical value (5%)
                               -2.945951e+00
        critical value (10%)
                              -2.611671e+00
        Strong evidence against the null hypothesis
        Reject the null hypothesis
        Data has no unit root and is stationary
In [87]: title = 'Furniture Monthly Sales Data'
         lags = 40
         plot_acf(df['Sales'],title=title,lags=lags)
```



```
In [88]: title = 'Partial Autocorrelation: Monthly Furniture Sales Data'
lags = 12
plot_pacf(df['Sales'],title=title,lags=lags)
```


Performing stepwise search to minimize aic

ARIMA(0,0,0)(0,0,0)[0]: AIC=1078.259, Time=0.02 sec ARIMA(1,0,0)(0,0,0)[0] : AIC=1026.129, Time=0.04 sec : AIC=1059.367, Time=0.05 sec ARIMA(0,0,1)(0,0,0)[0] : AIC=1022.619, Time=0.06 sec ARIMA(2,0,0)(0,0,0)[0] : AIC=1018.040, Time=0.18 sec ARIMA(2,0,1)(0,0,0)[0] ARIMA(1,0,1)(0,0,0)[0]: AIC=1018.347, Time=0.14 sec ARIMA(2,0,2)(0,0,0)[0]: AIC=1020.706, Time=0.44 sec ARIMA(1,0,2)(0,0,0)[0]: AIC=1019.172, Time=0.15 sec ARIMA(2,0,1)(0,0,0)[0] intercept : AIC=1015.561, Time=0.15 sec ARIMA(1,0,1)(0,0,0)[0] intercept : AIC=1013.580, Time=0.08 sec : AIC=1011.909, Time=0.15 sec ARIMA(0,0,1)(0,0,0)[0] intercept ARIMA(0,0,0)(0,0,0)[0] intercept : AIC=1014.386, Time=0.08 sec ARIMA(0,0,2)(0,0,0)[0] intercept : AIC=1013.938, Time=0.09 sec ARIMA(1,0,0)(0,0,0)[0] intercept : AIC=1011.640, Time=0.06 sec ARIMA(2,0,0)(0,0,0)[0] intercept : AIC=1013.680, Time=0.18 sec

Best model: ARIMA(1,0,0)(0,0,0)[0] intercept

Total fit time: 1.890 seconds

Out[89]:	SARIMAX Results
UUT 89 :	JANINIAN NESUIL

Dep. Variable:	У	No. Observations:	48
Model:	SARIMAX(1, 0, 0)	Log Likelihood	-502.820
Date:	Thu, 21 Sep 2023	AIC	1011.640
Time:	00:18:13	ВІС	1017.253
Sample:	01-01-2014	HQIC	1013.761
	- 12-01-2017		

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
intercept	1.084e+04	2695.066	4.021	0.000	5554.237	1.61e+04
ar.L1	0.3056	0.131	2.328	0.020	0.048	0.563
sigma2	7.318e+07	0.160	4.56e+08	0.000	7.32e+07	7.32e+07

Ljung-Box (L1) (Q):	0.00	Jarque-Bera (JB):	3.70
Prob(Q):	0.98	Prob(JB):	0.16
Heteroskedasticity (H):	1.88	Skew:	0.64
Prob(H) (two-sided):	0.22	Kurtosis:	2.54

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 2.09e+24. Standard errors may be unstable.

```
train = df.iloc[:n-test_size]
test = df.iloc[n-test_size:]

In [91]: model = ARIMA(train['Sales'], order=(1, 0, 0))
    results = model.fit()
    results.summary()
```

Out[91]:	SARIMAX Results				
	Dep. Variable:	Sales	No. Observations:	36	
	Model:	ARIMA(1, 0, 0)	Log Likelihood	-376.058	
	Date:	Thu, 21 Sep 2023	AIC	758.116	
	Time:	00:18:37	ВІС	762.867	
	Sample:	01-01-2014	HQIC	759.774	
		- 12-01-2016			
	Covariance Type:	opg			

	coef	std err	z	P> z	[0.025	0.975]
const	1.463e+04	1934.689	7.561	0.000	1.08e+04	1.84e+04
ar.L1	0.2825	0.170	1.658	0.097	-0.051	0.616
sigma2	6.929e+07	0.134	5.15e+08	0.000	6.93e+07	6.93e+07

Ljung-Box (L1) (Q):	0.01	Jarque-Bera (JB):	4.47
Prob(Q):	0.92	Prob(JB):	0.11
Heteroskedasticity (H):	1.40	Skew:	0.83
Prob(H) (two-sided):	0.57	Kurtosis:	2.53

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 5.41e+25. Standard errors may be unstable.

```
In [92]: start=len(train)
end=len(train)+len(test)-1
```

```
predictions = results.predict(start=start, end=end, dynamic=False, typ='levels').rename('ARIMA(1,0,0) Predictions')
         predictions
Out[92]: 2017-01-01
                        20856.524035
          2017-02-01
                        16387.395968
          2017-03-01
                        15125.048311
          2017-04-01
                        14768.486230
          2017-05-01
                        14667.771885
          2017-06-01
                        14639.324162
          2017-07-01
                        14631.288832
          2017-08-01
                        14629.019177
          2017-09-01
                        14628.378091
          2017-10-01
                        14628.197011
          2017-11-01
                        14628.145863
          2017-12-01
                        14628.131415
          Freq: MS, Name: ARIMA(1,0,0) Predictions, dtype: float64
In [93]: for i in range(len(predictions)):
             print(f"predicted={predictions[i]:<11.10}, expected={test['Sales'][i]}")</pre>
        predicted=20856.52404, expected=5964.032
        predicted=16387.39597, expected=6866.3374
        predicted=15125.04831, expected=10893.4448
        predicted=14768.48623, expected=9065.9581
        predicted=14667.77188, expected=16957.5582
        predicted=14639.32416, expected=19008.5867
        predicted=14631.28883, expected=11813.021999999999
        predicted=14629.01918, expected=15441.874
        predicted=14628.37809, expected=29028.206000000002
        predicted=14628.19701, expected=21884.0682
        predicted=14628.14586, expected=37056.715
        predicted=14628.13142, expected=31407.4668
In [94]: title = 'Monthly Sales of Furnitures'
         vlabel='Sales Data'
         xlabel='Order Date'
         ax = test['Sales'].plot(legend=True,figsize=(12,6),title=title)
         predictions.plot(legend=True)
         ax.autoscale(axis='x',tight=True)
         ax.set(xlabel=xlabel, ylabel=ylabel)
```



```
error = rmse(test['Sales'], predictions)
print(f'ARIMA(1,0,0) RMSE Error: {error:11.10}')

ARIMA(1,0,0) RMSE Error: 10955.92925

In [97]: model = ARIMA(df['Sales'],order=(1,1,1))
    results = model.fit()
    fcast = results.predict(len(df),len(df)+11,typ='levels').rename('ARIMA(1,0,0) Forecast')
    title = 'Monthly Sales Data of Furniture'
    ylabel='Sales Data'
    xlabel='Order Date'

ax = df['Sales'].plot(legend=True,figsize=(12,6),title=title)
    fcast.plot(legend=True)
    ax.autoscale(axis='x',tight=True)
    ax.set(xlabel=xlabel, ylabel=ylabel)
    ax.yaxis.set_major_formatter(formatter)
```



```
import pandas as pd
import numpy as np
%matplotlib inline

from statsmodels.tsa.statespace.sarimax import SARIMAX

from statsmodels.graphics.tsaplots import plot_acf,plot_pacf
from statsmodels.tsa.seasonal import seasonal_decompose
from pmdarima import auto_arima

import warnings
```

2014-01-19

2014-01-21

2014-01-26

2014-01-27

2014-01-31

2014-02-08

2014-01-20 1413.510

2014-02-11 1650.050

181.470

25.248

217.200

333.000

290.666

14.560

```
warnings.filterwarnings("ignore")
In [99]: df = pd.read_excel('C://Users//saswa//OneDrive//Desktop//Pinaki-Time-series-forecasting//Superstore_Sales_Records.xls', index_
         df = df[df['Category']=='Furniture']
         df = df.groupby(by='Order Date').agg({'Sales':sum})
         df.sort_index(inplace=True)
         df.head(15)
Out[99]:
                        Sales
          Order Date
         2014-01-06 2573.820
         2014-01-07
                       76.728
         2014-01-10
                       51.940
         2014-01-11
                        9.940
         2014-01-13
                      879.939
         2014-01-14
                       61.960
         2014-01-16
                      127.104
```

```
In [100... df = df.resample('MS').sum()
    df.plot()
```

Out[100... <Axes: xlabel='Order Date'>


```
In [101...
result = seasonal_decompose(df['Sales'], model='add')
result.plot()
```


In [102... auto_arima(df['Sales'],seasonal=True,m=12).summary()

48	No. Observations:	У	Dep. Variable:
-349.872	Log Likelihood	SARIMAX(2, 1, 0, 12)	Model:
707.744	AIC	Thu, 21 Sep 2023	Date:
714.078	ВІС	00:21:27	Time:
709.955	HQIC	01-01-2014	Sample:
		- 12-01-2017	

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
intercept	1616.5115	1257.009	1.286	0.198	-847.181	4080.205
ar.S.L12	-0.1196	0.087	-1.378	0.168	-0.290	0.051
ar.S.L24	0.1214	0.098	1.240	0.215	-0.070	0.313
sigma2	1.862e+07	0.036	5.1e+08	0.000	1.86e+07	1.86e+07

Ljung-Box (L1) (Q):	0.71	Jarque-Bera (JB):	1.87
Prob(Q):	0.40	Prob(JB):	0.39
Heteroskedasticity (H):	0.96	Skew:	0.55
Prob(H) (two-sided):	0.95	Kurtosis:	2.84

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 4.96e+24. Standard errors may be unstable.

```
In [103...
train = df.iloc[:len(df)-6]
test = df.iloc[len(df)-6:]
model = SARIMAX(train['Sales'],order=(0,1,3),seasonal_order=(2,1,0,12))
results = model.fit()
results.summary()
```

Out[103...

SARIMAX Results

42	No. Observations:	Sales	Dep. Variable:
-289.730	Log Likelihood	SARIMAX(0, 1, 3)x(2, 1, [], 12)	Model:
591.461	AIC	Thu, 21 Sep 2023	Date:
599.664	ВІС	00:21:48	Time:
594.030	HQIC	01-01-2014	Sample:
		- 06-01-2017	
		opa	Covariance Type:

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ma.L1	-0.3976	0.146	-2.722	0.006	-0.684	-0.111
ma.L2	-0.1639	0.156	-1.053	0.292	-0.469	0.141
ma.L3	-0.1625	0.167	-0.972	0.331	-0.490	0.165
ar.S.L12	-0.1664	0.118	-1.404	0.160	-0.399	0.066
ar.S.L24	0.2224	0.130	1.710	0.087	-0.033	0.477
sigma2	2.461e+07	5.24e-10	4.7e+16	0.000	2.46e+07	2.46e+07

 Ljung-Box (L1) (Q):
 2.15
 Jarque-Bera (JB):
 0.87

 Prob(Q):
 0.14
 Prob(JB):
 0.65

 Heteroskedasticity (H):
 0.75
 Skew:
 0.17

 Prob(H) (two-sided):
 0.65
 Kurtosis:
 2.22

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 3.91e+32. Standard errors may be unstable.

```
start=len(train)
In [104...
          end=len(train)+len(test)-1
          predictions = results.predict(start=start, end=end, dynamic=False, typ='levels').rename('SARIMA(0,1,3)(1,0,1,12) Predictions')
          for i in range(len(predictions)):
In [105...
              print(f"predicted={predictions[i]:<11.10}, expected={test['Sales'][i]}")</pre>
         predicted=18982.66877, expected=11813.021999999999
         predicted=15746.93545, expected=15441.874
         predicted=29761.95657, expected=29028.206000000002
         predicted=13953.797 , expected=21884.0682
         predicted=35822.90086, expected=37056.715
         predicted=34853.24127, expected=31407.4668
         title = 'Monthly Sales of Furniture'
In [106...
          ylabel='Sales Data'
          xlabel='Order Date'
          ax = test['Sales'].plot(legend=True, figsize=(12,6), title=title)
          predictions.plot(legend=True)
          ax.autoscale(axis='x',tight=True)
          ax.set(xlabel=xlabel, ylabel=ylabel)
         [Text(0.5, 0, 'Order Date'), Text(0, 0.5, 'Sales Data')]
Out[106...
```



```
In [109...
    title = 'Monthly Sales of Furniture'
    ylabel='Sales Data'
    xlabel='Order Date'

ax = df['Sales'].plot(legend=True,figsize=(12,6),title=title)
    fcast.plot(legend=True)
    ax.autoscale(axis='x',tight=True)
    ax.set(xlabel=xlabel, ylabel=ylabel)
```

Out[109... [Text(0.5, 0, 'Order Date'), Text(0, 0.5, 'Sales Data')]


```
import pandas as pd
In [110...
          import numpy as np
          %matplotlib inline
          from statsmodels.tsa.statespace.sarimax import SARIMAX
          from statsmodels.graphics.tsaplots import plot acf,plot pacf
          from statsmodels.tsa.seasonal import seasonal_decompose
          from pmdarima import auto arima
          import warnings
          warnings.filterwarnings("ignore")
In [111...
         df = pd.read_excel('C://Users//saswa//OneDrive//Desktop//Pinaki-Time-series-forecasting//Superstore_Sales_Records.xls', index_
          df = df[df['Category']=='Furniture']
          df = df.groupby(by='Order Date').agg({'Sales':sum, 'Quantity':sum})
          df.sort_index(inplace=True)
          df.head(24)
```

Out[111	Sales	Quantity
L-		~

Order Date		
2014-01-06	2573.820	9
2014-01-07	76.728	3
2014-01-10	51.940	1
2014-01-11	9.940	2
2014-01-13	879.939	9
2014-01-14	61.960	4
2014-01-16	127.104	6
2014-01-19	181.470	5
2014-01-20	1413.510	15
2014-01-21	25.248	3
2014-01-26	217.200	8
2014-01-27	333.000	3
2014-01-31	290.666	2
2014-02-08	14.560	2
2014-02-11	1650.050	10
2014-02-12	129.568	2
2014-02-18	25.160	5
2014-02-20	20.320	4
2014-03-01	1893.995	23
2014-03-03	928.802	8
2014-03-07	966.984	9

Sales Quantity

Order Date		
2014-03-11	8.320	5
2014-03-14	1139.920	4
2014-03-15	45.696	3

Out[112...

Sales Quantity

Order Date		
2014-01-12	2712.428	15
2014-01-19	1250.473	24
2014-01-26	1655.958	26
2014-02-02	623.666	5
2014-02-09	14.560	2

```
In [113... df['Sales'].plot()
```

Out[113... <Axes: xlabel='Order Date'>


```
In [114... df['Quantity'].plot()
```

Out[114... <Axes: xlabel='Order Date'>


```
In [117... from statsmodels.tsa.stattools import adfuller

def adf_test(series,title=''):
    """
    Pass in a time series and an optional title, returns an ADF report
    """
    print(f'Augmented Dickey-Fuller Test: {title}')
    result = adfuller(series.dropna(),autolag='AIC') # .dropna() handles differenced data

    labels = ['ADF test statistic','p-value','# lags used','# observations']
    out = pd.Series(result[0:4],index=labels)
```

```
for key,val in result[4].items():
                  out[f'critical value ({key})']=val
              print(out.to string())
                                               # .to string() removes the line "dtype: float64"
              if result[1] <= 0.05:</pre>
                  print("Strong evidence against the null hypothesis")
                  print("Reject the null hypothesis")
                  print("Data has no unit root and is stationary")
              else:
                  print("Weak evidence against the null hypothesis")
                  print("Fail to reject the null hypothesis")
                  print("Data has a unit root and is non-stationary")
          adf_test(df['Sales'])
         Augmented Dickey-Fuller Test:
         ADF test statistic
                                   -3.444275
         p-value
                                   0.009539
         # lags used
                                   6.000000
         # observations
                                  201.000000
         critical value (1%)
                                  -3.463309
         critical value (5%)
                                  -2.876029
         critical value (10%)
                                  -2.574493
         Strong evidence against the null hypothesis
         Reject the null hypothesis
         Data has no unit root and is stationary
         adf test(df['Quantity'])
In [118...
         Augmented Dickey-Fuller Test:
         ADF test statistic
                                   -4.457632
         p-value
                                   0.000234
         # lags used
                                   4.000000
         # observations
                                 203.000000
         critical value (1%)
                                 -3.462980
         critical value (5%)
                                  -2.875885
         critical value (10%)
                                  -2.574416
         Strong evidence against the null hypothesis
         Reject the null hypothesis
         Data has no unit root and is stationary
```

In [119...

Out[119...

```
auto_arima(df['Sales'],bseasonal=True, m=12).summary()
                        SARIMAX Results
   Dep. Variable:
                                y No. Observations:
                                                           208
          Model: SARIMAX(1, 1, 2)
                                      Log Likelihood -1917.198
           Date: Thu, 21 Sep 2023
                                                      3842.396
                                                AIC
           Time:
                         00:26:55
                                                BIC
                                                      3855.727
                                                      3847.787
        Sample:
                      01-12-2014
                                              HQIC
                      - 12-31-2017
Covariance Type:
                             opg
                      std err
                                     z P>|z|
                                                 [0.025
                                                           0.975]
              coef
            0.7864
                                 4.731 0.000
                                                            1.112
  ar.L1
                       0.166
                                                  0.461
 ma.L1
           -1.4945
                       0.201
                                -7.446 0.000
                                                 -1.888
                                                           -1.101
            0.5044
                       0.183
                                 2.763 0.006
                                                  0.147
                                                            0.862
 ma.L2
sigma2 6.442e+06 4.47e-08 1.44e+14 0.000 6.44e+06 6.44e+06
    Ljung-Box (L1) (Q): 0.12 Jarque-Bera (JB): 130.12
             Prob(Q): 0.73
                                    Prob(JB):
                                                 0.00
Heteroskedasticity (H): 1.43
                                       Skew:
                                                 1.32
  Prob(H) (two-sided): 0.14
                                     Kurtosis:
                                                 5.85
```

Warnings:

- [1] Covariance matrix calculated using the outer product of gradients (complex-step).
- [2] Covariance matrix is singular or near-singular, with condition number 7.8e+29. Standard errors may be unstable.

SARIMAX Results

170	No. Observations:	Sales	Dep. Variable:
-1573.035	Log Likelihood	SARIMAX(1, 1, 2)	Model:
3154.069	AIC	Thu, 21 Sep 2023	Date:
3166.589	ВІС	00:27:21	Time:
3159.150	HQIC	01-12-2014	Sample:
		- 04-09-2017	

Covariance Type: opg

	coef	std err	z	P> z	[0.025	0.975]
ar.L1	-0.7910	0.528	-1.499	0.134	-1.825	0.243
ma.L1	-0.2794	0.479	-0.583	0.560	-1.218	0.660
ma.L2	-0.9240	0.525	-1.759	0.079	-1.953	0.105
sigma2	6.972e+06	9.33e+05	7.472	0.000	5.14e+06	8.8e+06

 Ljung-Box (L1) (Q):
 5.41
 Jarque-Bera (JB):
 70.94

 Prob(Q):
 0.02
 Prob(JB):
 0.00

 Heteroskedasticity (H):
 1.23
 Skew:
 1.14

 Prob(H) (two-sided):
 0.44
 Kurtosis:
 5.21

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [123...
start=len(train)
end=len(train)+len(test)-1
```

```
predictions = results.predict(start=start, end=end, dynamic=False).rename('SARIMA(1,0,0)(2,0,0,7) Predictions')
title='Restaurant Visitors'
ylabel='Visitors per day'
xlabel=''

ax = test['Sales'].plot(legend=True,figsize=(12,6),title=title)
predictions.plot(legend=True)
ax.autoscale(axis='x',tight=True)
ax.set(xlabel=xlabel, ylabel=ylabel)
```

Out[123... [Text(0.5, 0, ''), Text(0, 0.5, 'Visitors per day')]

Out[126...

SARIMAX Results

Dep. Variable:	Sales	No. Observations:	170
Model:	SARIMAX(1, 0, 0)x(2, 0, 0, 7)	Log Likelihood	-1466.114
Date:	Thu, 21 Sep 2023	AIC	2942.229
Time:	00:28:10	ВІС	2957.908
Sample:	01-12-2014	HQIC	2948.591
	- 04-09-2017		
Covariance Type:	opg		

	coef	std err	z	P> z	[0.025	0.975]
Quantity	97.6600	2.403	40.643	0.000	92.950	102.369
ar.L1	-0.0783	0.072	-1.086	0.277	-0.220	0.063
ar.S.L7	0.2222	0.057	3.874	0.000	0.110	0.335
ar.S.L14	-0.0828	0.094	-0.879	0.379	-0.267	0.102
sigma2	1.903e+06	1.58e+05	12.024	0.000	1.59e+06	2.21e+06

Ljung-Box (L1) (Q): 0.02 **Jarque-Bera (JB):** 295.39 **Prob(Q):** 0.88 Prob(JB): 0.00 Heteroskedasticity (H): 1.16 Skew: 1.56 Prob(H) (two-sided): 0.58 **Kurtosis:** 8.66

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-step).

```
In [127... start=len(train)
  end=len(train)+len(test)-1
  exog_forecast = test[['Quantity']]
  predictions = results.predict(start=start, end=end, exog=exog_forecast).rename('SARIMAX(1,0,0)(2,0,0,7) Predictions')
  title='Restaurant Visitors'
  ylabel='Visitors per day'
  xlabel=''

ax = test['Sales'].plot(legend=True, figsize=(12,6), title=title)
  predictions.plot(legend=True)
  ax.autoscale(axis='x',tight=True)
  ax.set(xlabel=xlabel, ylabel=ylabel)
```

Out[127... [Text(0.5, 0, ''), Text(0, 0.5, 'Visitors per day')]


```
In [128... print(f'SARIMA(1,0,0)(2,0,0,7) MSE Error: {error1:11.10}')
    print(f'SARIMA(1,0,0)(2,0,0,7) RMSE Error: {error2:11.10}')
    print()

error1x = mse(test['Sales'], predictions)
    error2x = rmse(test['Sales'], predictions)

print(f'SARIMAX(1,0,0)(2,0,0,7) MSE Error: {error1x:11.10}')
    print(f'SARIMAX(1,0,0)(2,0,0,7) RMSE Error: {error2x:11.10}')
```

```
SARIMA(1,0,0)(2,0,0,7) MSE Error: 12077452.14
         SARIMA(1,0,0)(2,0,0,7) RMSE Error: 3475.262888
         SARIMAX(1,0,0)(2,0,0,7) MSE Error: 2317778.515
         SARIMAX(1,0,0)(2,0,0,7) RMSE Error: 1522.425208
          model = SARIMAX(df['Sales'],exog=df['Quantity'],order=(1,2,1),seasonal order=(1,2,2,7),enforce invertibility=False)
In [129...
          results = model.fit()
          exog_forecast = df[169:][['Quantity']]
          fcast = results.predict(len(df),len(df)+38,exog=exog_forecast).rename('SARIMAX(1,0,0)(2,0,0,7) Forecast')
In [130... title='Restaurant Visitors'
          ylabel='Visitors per day'
          xlabel=''
          ax = df['Sales'].plot(legend=True, figsize=(16,6), title=title)
          fcast.plot(legend=True)
          ax.autoscale(axis='x',tight=True)
          ax.set(xlabel=xlabel, ylabel=ylabel)
Out[130... [Text(0.5, 0, ''), Text(0, 0.5, 'Visitors per day')]
```


In []: