Лабораторная работа № 3

Изучение движения тела по окружности

Цель работы: определить центростремительное ускорение шарика при его равномерном движении по окружности.

Оборудование: штатив с муфтой и лапкой, лента измерительная, циркуль, динамометр лабораторный, весы с разновесами, шарик на нити, кусочек пробки с отверстием, лист бумаги, линейка, секундомер.

Описание работы:

- 1) Определите массу шарика на весах с точностью до 1 г.
- 2) Соберите экспериментальную установку: зажмите пробку с нитью в лапке штатива, внизу разместите лист бумаги с нарисованной окружностью радиусом около 20 см(R) с центром на линии продолжения нити.
- 3) Определите высоту конического маятника h расстояние по вертикали от шарика до точки подвеса.
- 4) С помощью секундомера найдите время, за которое шарик, вращаясь по линии начерченной на бумаге окружности, совершает определенное вами число оборотов N (30-60).
- 5) С помощью динамометра измерьте модуль силы F_1 , руководствуясь соответствующим рисунком.
- 6) Результаты измерений внесите в таблицу, рассчитайте оставшиеся величины и модули центростремительного ускорения по трем формулам.
- 7) Сделайте вывод по цели работы, сравнивая полученные значения модуля центростремительного ускорения шарика.

№	R,	N	Δt ,	T =	h,	m,	F_1 ,	$a_1 = \frac{4 \times \pi^2 \times R}{T^2}, \frac{M}{c^2}$	$a_2 =$	$a_3 =$
опыта	M		c	$\frac{\Delta t}{N}$, c	M	КГ	Н	$\frac{4\times\pi^2\times R}{T^2}$, $\frac{M}{c^2}$	$\frac{g \times R}{h}$, $\frac{M}{c^2}$	$\frac{F_1}{m}, \frac{M}{c^2}$
1										
2										

Таблица 1.

Рис. 1: Опыт с динамометром