Automaty a Gramatiky

Poznámky z přednášek

Letní semestr2020/2021

Viktor Soukup, Lukáš Salak

Obsah

1 První přednáška

Poznámka (Chomského hierarchie): Automaty a gramatiky - dva způsoby popisu:

Turingovy stroje \leftrightarrow gramatiky Typu 0 lineárně omezené automaty \leftrightarrow kontextové gramatiky, monotónní gramatiky zásobníkové automaty \leftrightarrow bezkontextové gramatiky konečné automaty (DFA,NFA, λ NFA) \leftrightarrow regulární jazyky

Nejjednodušší jsou nejníž, turingův stroj je nejkomplikovanější. Každá gramatika odpovídá nějaké třídě automatů.

Proč to řešíme?

- zpracování přirozeného jazyka,
- překladače (lexikální, syntaktická analýza...),
- návrh, popis, verifikace hardware...
- hledání výskytu slova v textu (grep),
- verifikace systémů s konečně mnoha stavy

Příklad:

1. Návrh a verifikace integrovaných obvodů, např. Konečný automat modelující spínač on/off

2. Lexikální analýza, např. Konečný automat rozpoznávajíci slovo then

Definice (Deterministický konečný automat (DFA)): $A = (Q, \Sigma, \delta, q_0, F)$ sestává z:

- 1. konečné množiny stavů, zpravidla značíme Q
- 2. konečné neprázdné množiny vstupních symbolů (abecedy), znažíme Σ
- 3. **přechodové funkce** zobrazení $Q \times X \to Q$, značíme δ , která bude reprezentovaná hranami grafu
- 4. **počátečného stavu** $q_0 \in Q$, vede do něj šipka 'odnikud'

5. neprázdné **množiny koncových (přijímajících) stavů** (final states) $F \subseteq Q$, označených dvojitým kruhem či šipkou 'ven'.

Poznámka:

Pokud pro některou dvojici stavu a písmene není definovaný přechod, přidáme nový stav fail a přechodovou funkci doplníme na totální přidáním šipek do fail.

Pokud je množina F prázdná, přidáme do ní i Q nový stav final do kterého vedou jen přechody z něj samotného $\forall s \in \Sigma : \delta(final, s) = final$.

Příklad:

Automat A přijímající $L = x01y : x, y \in \{0, 0\} *.$

Automat
$$A = (\{q_0, q_1, q_2\}, 0, 1, \delta, q_0, q_1)$$

Reprezentujeme stavovým diagramem (grafem), pomocí tabulky nebo stavovým stromem

Definice (Abeceda, slova, jazyky): Mějme neprázdnou množinu symbolů Σ .

- Slovo je konečná (i prázdná) posloupnost symbolů $s \in \Sigma$, prázdné slovo se značí λ nebo ϵ
- Množinu všech slov v abecedě Σ značíme Σ^*
- $\bullet\,$ množinu všech neprádzných slov v abecedě značíme Σ^+
- jazyk $L \subseteq \Sigma^*$ je množina slov v abecedě Σ

Definice (Operace na Σ^*):

- 1. **zřetězení slov** u.v nebo uv
- 2. mocnina (počet opakování) $u^n(u^0 = \lambda, u^1 = u, u^{n+1} = u^n.u)$
- 3. délka slova $|u|(|\lambda|=0, |auto|=4)$
- 4. **počet výskytů** $s \in \Sigma$ ve slově u značíme $|u|_s(|zmrzlina|_z = 2)$.

Definice (Rozšířená přechodová funkce): Mějme přechodovou funkci $\delta: Q \times \Sigma \to Q$. Rozšířenou přechodovou funkci $\delta^*: Q \times \Sigma^* \to Q$ (tranzitivní uzávěr δ) definujeme induktivně:

- 1. $\delta^*(q,\lambda) = q$,
- 2. $\delta^*(q, wx) = \delta(\delta^*(q, w)x)$ pro $x \in \Sigma, w \in \Sigma^*$.

Poznámka: Pokud se v textu objeví δ aplikované na slova, míní se tím δ^* .

Definice (Jazyk rozpoznávaný (přijímaný, akceptovaný) konečným automatem): Jazykem rozpoznávaným konečným automatem $A = (Q, \Sigma, \delta, q_0, F)$ nazveme jazyk $L(A) = \{w : w \in \Sigma^* \& \delta^*(q_0, w) \in F\}$.

- Slovo w je $p\check{r}ij\acute{m}\acute{a}no$ automatem A, právě když $w\in L(A)$.
- Jazyk L je rozpoznatelný konečným automatem, jestliže existuje konečný automat A takový, že L = L(A).
- \bullet Třídu jazyků rozpoznatelných konečnými automaty označíme \mathcal{F} , nazveme **regulární jazyky**.

Věta (Iterační (pumping) lemma pro regulární jazyky): Mějme regulární jazyk L. Pak existuje konstanta $n \in \mathbb{N}$ (závislá na L) tak, že každé $w \in L; |w| \geq n$ můžeme rozdělit na tři části, w = xyz, že:

- 1. $y \neq \lambda$
- $2. |xy| \leq n$
- 3. $\forall k \in \mathbb{N}_0$, slovo $xy^k z$ je také v L.

Důkaz:

- Mějme regulární jazyk L, pak existuje DFA A s n stavy, že L = L(A).
- Vezměme libovolné slovo $a_1 a_2 a_3 \dots a_m = w \in L$ délky $m \geq n, a_i \in \Sigma$.
- Definujeme: $\forall i p_i = \delta^*(q_0, a_1 a_2 \dots a_i)$. Platí $p_0 = q_0$.
- Máme $n+1p_i$ a n stavů, některý se opakuje, vezměme první takový, t. j. $(\exists i, j: 0 \leq i < jq leqn \& p_i = p_j)$.
- Definition $x = a_1 a_2 \dots a_i, y = a_{i+1} a_{i+2} \dots a_j, z = a_{j+1} a_{j+2} \dots a_m, t.j. \ w = xyz, y \neq \lambda, |xy| \leq n.$
- pak y^k můžeme opakovat libovolněkrát a vstup je také akceptovaný.

Příklad (Aplikace pumping lemmatu): TODO

2 Druhá přednáška

Definice (Kongruence): Mějme konečnou abecedu Σ a relaci ekvivalnece \sim na Σ^* (reflexivní, symetrická, tranzitivní). Potom:

- 1. ~ je pravá kongruence, jestliže $(\forall u, v, w \in \Sigma^*)$ $u \sim v \implies uw \sim vw$.
- 2. je konečného indexu, jestliže rozklad Σ^*/\sim má konečný počet tříd.
- 3. Třídu kongruence \sim obsahujíci slovo u značíme $[u]_{\sim}$, resp. [u].

Věta (Myhill-Nerodova Věta): Nechť L je jazyk nad konečnou abecedou Σ . Potom následujíci tvrzení jsou ekvivalentní:

- 1. L je rozpoznatelný konečným automatem,
- 2. \exists pravá kongruence \sim konečného indexu nad Σ^* tak, že L je sjednocením jistých tříd rozkladu Σ^*/\sim .

Důkaz:

- 1. ⇒ 2.; t.j. automat ⇒ pravá kongruence konečného indexu
 - definujeme $u \sim v \equiv \delta^*(q_0, u) = \delta^*(q_0, v)$.

- je to ekvivalnece (reflexivní, symetrická, tranzitivní)
- je to pravá kongruence (z definice δ^*)
- má konečný index (konečně mnoho stavů)

$$L = \{w | \delta^*(q_0, w) \in F\} = \bigcup_{q \in F} \{w | \delta^*(q_0, w) = q\} = \bigcup_{q \in F} [w | \delta^*(q_0, w) = q]_{\sim}.$$

- 2. \implies 1.; t.j. pravá kongruence konečného indexu \implies automat
 - $\bullet\,$ abeceda automatu nazveme $\Sigma\,$
 - za stavy Q volíme třídy rozkladu Σ^*/\sim
 - počáteční stav $q_0 \equiv [\lambda]_{\sim}$
 - koncové stavy $F = \{c_1, \dots, c_n\}$, kde $L = \bigcup_{i=[1,n]} c_i$
 - přechodová funkce $\delta([u], x) = [ux]$ (je korektní z def. pravé kongruence).
 - L(A) = L

$$w \in L \Leftrightarrow w \in \bigcup_{i=[1,n]} c_i \Leftrightarrow w \in c_1 \vee \dots w \in c_n \Leftrightarrow [w] = c_1 \vee \dots [w] = c_n \Leftrightarrow [w] \in F \Leftrightarrow w \in L(A)$$

Příklad: Sestrojte automat přijímající jazyk

 $L=\{w|w\in a,b^*\&|w|_a=3k+2\},$ t. j. obsahuje 3k+2 symbolů a.

- 1. $|u|_x$ značí počet symblů x ve slově u
- 2. definujeme $u \sim v \equiv (|u|_a mod 3 = |v|_a mod 3)$
- 3. třídy ekvivalence 0, 1, 2
- 4. L odpovídá třídě 2
- 5. a přechody do následujíci třídy
- 6. b přechody zachovávajíci třídu

28. slide, doplniť obrázok

Příklad (Neregulární pumpovatelný jazyk): Ne-regulární jazyk, který lze pumpovat

Jazyk $L = \{u|u = a^+b^ic^i \lor u = b^ic^j\}$ není regulární (Myhill-Nerodova věta), ale vždy lze pumpovat první písmeno.

- 1. Předpokládejme, že L je regulární
- 2. \implies pak \exists pravá kongruence \sim_L konečného indexu m,L je sjednocení některých tříd Σ^*/\sim_L
- 3. vezmeme množinu slov $S = \{ab, abb, abbb, \dots, ab^{m+1}\}$
- 4. existují dvě slova $i \neq j$, která padnou do stejné třídy

$$i \neq j$$
 $ab^i \sim ab^j$ přidáme c^i $ab^ic^i \sim ab^jc^i$ \sim je kongruence spor $ab^ic^i \in L\&ab^jc^i \notin L$ s' L je sjednocení některých tříd Σ^*/\sim_L .

Definice (Dosažitelný stav): Mějme DFA $A = (Q, \Sigma, \delta, q_0, F)$ a $q \in Q$. Řekneme, že stav je dosažitelný, jestliže $\exists w \in \Sigma^* : \delta^*(q_0, w) = q$.

Příklad: Algoritmus na hledání dosažitelných stavů : DFS (důkaz asi není nutný)

Definice (Automatový homomorfismus): Nechť A_1, A_2 jsou DFA. Řekneme, že zobrazení $h: Q_1 \to Q_2, Q_1$ na Q_2 je (automatovým) homomorfismem, jestliže:

$$h(q_{0_1}) = q_{0_2}$$
 'stejné' počáteční stavy $h(\delta_1(q,x)) = \delta_2(h(q),x)$ 'stejné' přechodové funkce $q \in F_1 \Leftrightarrow h(q) \in F_2$ 'stejné' koncové stavy.

Homomorfismus prostý a na nazývame isomorfismus.

Definice (Ekvivalence automatů): Dva konečné automaty A, B nad stejnou abecedou Σ jsou ekvivalentní, jestliže rozpoznávají stejný jazyk, t. j. L(A) = L(B).

Věta (Věta o ekvivalenci automatů): Existuje-li homomorfismus konečných automatů A_1 do A_2 , pak jsou A_1 a A_2 ekvivalentní.

Důkaz:

1. Pro libovolné slovo $w \in \Sigma^*$ konečnou iterací

$$h(\delta_1^*(q,w)) = \delta_2^*(h(q),w)$$

2. dále

$$w \in L(A_1) \Leftrightarrow \delta_1^*(q_{0_1}, w) \in F_1$$

$$\Leftrightarrow h(\delta_1^*(q_{0_1}, w)) \in F_2$$

$$\Leftrightarrow \delta_2^*(h(q_{0_1, w})) \in F_2$$

$$\Leftrightarrow \delta_2^*(q_{0_2}, w) \in F_2$$

$$\Leftrightarrow w \in L(A_2)$$

Definice (Ekvivalence stavů): Říkáme, že stavy $p,q\in Q$ konečného automatu A jsou ekvivalentní, pokud:

1. Pro všechna vstupní slova $w: \delta^*(p, w) \in F \Leftrightarrow \delta^*(q, w) \in F$.

Pokud dva stavy nejsou ekvivalentní, říkáme že jsou rozlišitelné.

Příklad: Ten example je na slide 36, najlepšie s tým obrázkom

Definice (Algoritmus hledání rozpoznatelných stavů v DFA): Následujíci algoritmus nalezne rozlišitelné stavy:

- 1. Základ: Pokud $p \in F$ (přijímajíci) a $q \notin F$, pak je dvojice $\{p,q\}$ rozlišitelná.
- 2. Indukce: Nechť $p,q \in Q, a \in \Sigma$ a o dvojici $r,s: r = \delta(p,a), s = \delta(q,a)$ víme, že jsou rozlišitelné. Pak i $\{p,q\}$ jsou rozlišitelné.
- 3. opakuj dokud \exists nová trojice $p,q\in Q, a\in \Sigma.$

Doplniť obrázky zo slidov, 37/38

Věta: Pokud dva stavy nejsou odlišeny předchodzím algoritmem, pak jsou tyto stavy ekvivalentní.

Důkaz: Korektnost algoritmu

- 1. Uvažujme špatné páry stavů, které jsou rozlišitelné a algoritmus je nerozlišil.
- 2. Vezměme z nich pár p, q rozlišitelný nejkratším slovem $w = a_1 \dots a_n$.
- 3. Stavy $r = \delta(p, a_1), s = \delta(q, a_1)$ jsou rozlišitelné kratším slovem $a_2 \dots a_n$, takže pár není mezi špatnými.
- 4. Tedy jsou 'vyškrtnuté' algoritmem.
- 5. Tedy v příštim kroku algoritmus rozliší i p, q.

Čas výpočtu je poylnomiální vzhledem k počtu stavů.

- 1. V jednom kole uvažujeme všechny páry, t.j. $O(n^2)$.
- 2. Kol je maximálně $O(n^2)$, protože pokud nepřidáme křížek, končíme.
- 3. Dohromady $O(n^4)$.

Algoritmus lze zrychlit na $O(n^2)$ pamatováním stavů, které závisí na páru $\{r,s\}$ a sledovaním těchto seznamů 'zpátky'.

Definice (Redukovaný DFA): Deterministický konečný automat je redukovaný, pokud

- 1. nemá dosažitelné stavy,
- 2. žádne dva stavy nejsou ekvivalentní.

Definice (Redukt): Konečný automat B je reduktem automatu A, jestliže:

- 1. B je redukovaný,
- 2. A a B jsou ekvivalentní

ADD PICS PLS (don't shout pls)

Věta (Algoritmus na nalezení reduktu DFA A):

- 1. Ze vstupního DFA A eliminujeme stavy nedosažitelné z počátečního stavu.
- 2. Najdeme rozklad zbylých stavů na třídy ekvivalence.
- 3. Konstruujeme DFA B na třídách ekvivalence jakožto stavech. Přechodová funkce B γ , mějme $S \in Q_B$. Pro libovolné $q \in S$ označíme T třídu ekvivalence $\delta(q, a)$ a definujeme $\gamma(S, a) = T$. Tato třída musí být stejná pro všechna $q \in S$.
- 4. Počáteční stav B je třída obsahujíci počáteční stav A.
- 5. Množina přijímajícich stavů B jsou bloky odpovídajíci přijímacím stavům A.

3 Třetí přednáška

Definice: Algoritmus na testování ekvivalnece regulárních jazyků

Ekvivalenci regulárních jazyků L,M testujeme následovně:

- 1. Najdeme $DFAA_L, A_M$ rozpoznávajíci $L(A_L) = L, L(A_M) = M, Q_L \cap Q_M = \emptyset.$
- 2. Vytvoříme DFA sjednocením stavů a přechodů $(Q_L \cup Q_M, \Sigma, \delta_L \cap \delta_M, q_L, F_L \cap F_M)$; zvolíme jeden z počátečních stavů.
- 3. Jazyky jsou ekvivalentní právě když počáteční stavy původních DFA jsou ekvivalentní.

Nedeterministické konečné automaty (NFA)

Nedeterministický automat může být ve více stavech paralelně. Má schopnost 'uhodnout' něco o vstupu.

pridať obrázok zo slidov (61. slide)

Definice: Nedeterministický konečný automat (NFA) $A = (Q, \Sigma, \delta, S_0, F)$ sestává z:

- 1. konečné množiny stavů, zpravidla značíme Q,
- 2. konečné množiny vstupních symbolů, značíme Σ
- 3. přechodové funkce, zobrazení $\delta: Q \times \Sigma \to \mathcal{P}(Q)$ vracejíci podmnožinu Q.
- 4. množiny počátečních stavů $S_0 \subseteq Q$,
- 5. množiny koncových (přijímajícich) stavů $F \subseteq Q$.

Definice: Rozšířená přechodová funkce

Pro přechodovou funkci δ NFA je rozšířená přechodová funkce δ^* $\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$ definovaná indukcí: start: $\delta^*(q, \lambda) = q$. ind. indukční krok:

$$\delta^*(q,wx) = \bigcup_{p \in \delta^*(q,w)} \delta(p,x)$$

t. j. množina stavů, do kterých se mohu dostat posloupností 'správně označených'

Definice: Jazyk přijímaný nedeterministickým konečným automatem

Mějme NFA $A = (Q, \Sigma, \delta, S_0, F)$, Pak

$$L(A) = \{w : (\exists q_0 \in S_0) \delta^*(q_0, w \cap F \neq \emptyset)\}\$$

je jazyk přijímaný automatem A.

Tedy L(A) je množina slov $w \in \Sigma^*$ takových, že $\delta^*(q_0, w)$ obsahuje alespoň jeden přijímajíci stav.

Definice: Algortismus : Podmnožinová konstrukce

Podmnožinová konstrukce začíná s NFA $N=(Q_N,\Sigma,\delta_N,S_0,F_N)$. Cílem je popis deterministického DFA $D=(Q_D,\Sigma,\delta_D,S_0,F_D)$, pro který L(N)=L(D).

1. Q_D je množina podmnožin $Q_N, Q_D = \mathcal{P}(Q_N)$ (potenční množina).

Poznámka: Nedosažitelné stavy můžeme vynechat

- 2. Počáteční stav DFA je stav označený S_0 , t.j. prvek Q_D .
- 3. $F_D = \{S : S \in \mathcal{P}(Q_N) \& S \cap F_N \neq \emptyset\}$, tedy S obsahuje alespoň jeden přijímajíci stav N.
- 4. Pro každé $S \subseteq Q_N$ a každý vstupní symbol $a \in \Sigma$,

$$\delta_D(S, a) = \bigcup_{p \in S} \delta_N(p, a).$$

Věta: Převod NFA na DFA

Pro DFA $D=(Q_D,\Sigma,\delta_D,S_0,F_D)$ vytvořený podmnožinovou konstrukcí z NFA $N=(Q_N,\Sigma,\delta_N,q_0,F_N)$ platí L(N)=L(D).

Důkaz: Indukcí dokážeme, že $\delta_D^*(S_0,w)=\delta_N^*(q_0,w)$. Můžeme přidat ještě tzv. λ -přechod.

Definice: Dovolíme přechody na λ , prázdné slovo, t.j. bez přečtení vstupního symbolu. **doplniť obrázok, 68. slide**

Definice: λ -uzávěr

Pro $q \in Q$ definujeme λ -uzávěr $\lambda CLOSE(q)$ rekurzivně:

- 1. Stav q je $\lambda CLOSE(q)$.
- 2. Je-li $p \in \lambda CLOSE(q)$ a $r \in \delta(p, \lambda)$, pak i $r \in \lambda CLOSE(q)$.

Pro $S \subseteq Q$ definujeme $\lambda CLOSE(S) = \bigcup_{q \in S} \lambda CLOSE(q)$.

Definice: Rozšířená přechodová funkce a jazyk přijímaný λ -NFA

Nechť $E = (Q, \Sigma, \delta, S_0, F)$ je λ -NFA. Rozšířenou přechodovou funkci δ^* definujeme následovně:

- 1. $\delta^*(q,\lambda) = \lambda CLOSE(q)$.
- 2. indukční krok: v = wa, kde $w \in \Sigma^*, a \in \Sigma$.

$$\delta^*(q, wa) = \lambda CLOSE\left(\bigcup_{p \in \delta^*(q, w)} \delta(p, a)\right)$$

Věta: Eliminace λ -přechodů

 $Jazyk\ L$ je rozpoznatelný λ -NFA právě když je L regulární.

Důkaz: Pro libovolný λ NFA $E=(Q_E, \Sigma, \delta_E, S_0, F_E)$ zkonstruujeme DFA $D=(Q_D, \Sigma, \delta_D, q_D, F_D)$ přijímajíci stejný jazyk jako E.

- 1. $Q_D \subseteq \mathcal{P}(Q_E), \forall S \subseteq Q_E : \lambda CLOSE(S) \in Q_D$. V Q_D může být i \emptyset .
- 2. $q_D = \lambda CLOSE(S_0)$.
- 3. $F_D = \{S : S \in Q_D \& S \cap F_E \neq \emptyset\}.$
- 4. Pro $S \in Q_D, a \in \Sigma$ definujeme $\delta_D(S, a) = \lambda CLOSE(\bigcup_{p \in S} \delta(p, a))$.

Definice: Množinové operace nad jazyky

Mějme dva jazyky L, M. Definujeme následujíci operace:

1. binární sjednocení $L \cup M = \{w : w \in L \lor w \in M\}$

Poznámka: Příklad: jazyk obsahuje slova začínajíci a^i nebo tvaru $b^j c^j$.

2. průnik $L \cap M = \{w : w \in L\&w \in M\}$

Poznámka: Příklad: jazyk obsahuje slova sudé délky končíci na 'baa'.

- 3. rozdíl $L M = \{w : w \in L\&w \notin M\}$
- 4. doplněk (komplement) $\overline{L} = -L = \{w: w \in L\} = \sigma^* L$

Poznámka: Příklad: jazyk obsahuje slova nekončíci na 'a'.

Věta: de Morganova pravidla:

1.
$$L \cap M = \overline{\overline{L} \cup \overline{M}}$$

2.
$$L \cup M = \overline{\overline{L} \cap \overline{M}}$$

3.
$$L - M = L \cap \overline{M}$$

Věta: Uzavřenost na množinové operace

Mějme regulární jazyky L, M. Pak jsou následujíci jazyky také regulární:

- 1. $sjednocení L \cup M$
- 2. průnik $L \cap M$
- 3. rozdíl L M
- 4. $doplněk \overline{L} = \Sigma^* L$.

Důkaz:

- 1. Pokud δ není pro některé dvojice q, a definovaná, přidáme nový nepřijímajíci stav q_n a do něj přechod pro vše dříve nedefinované plus $\forall a \in \Sigma \cup \lambda : \delta(q_n, x) = q_n$.
- 2. Pak stačí prohodit koncové a nekoncové stavy přijímajíciho deterministického FA $F = Q_A F_A$.
- 3. pro rozdíl doplníme funkci $\delta natotln.Zkonstruujeme souinovautomat, Q=(Q_1\times Q_2, \Sigma, \delta((p_1,p_2),x)=(\delta_1(p_1,x),\delta_2,x)), (q_{0_1},q_{0_2},F)$
- 4. průnik: $F = F_1 \times F_2$

sjednocení: $F = (F_1 \times Q_2) \cup (Q_1 \times F_2)$

rozdíl:
$$F = F_1 \times (Q_2 - F_2)$$
.

Definice: Řetězcové operace nad jazyky

- 1. zřetězení jazyků ... $L.M = \{uv : u \in L\&v \in M\}, L.x = L.x \text{ a } x.L = x.L \text{ pro } x \in \Sigma$
- 2. mocniny jazyka ... $L^0 = \lambda$, $L^{i+1} = L^i L$
- 3. pozitivní iterace ... $L^+ = L^1 \cup L^2 \cdots \bigcup_{i \geq 1} L^i$
- 4. obecná iterace ... $L^* = L^0 \cup L^1 \cup \cdots = \bigcup_{i > 0} L^i,$ tedy $L^* = L^+ \cup \lambda$
- 5. otočení jazyka ... $L^R = \{u^R : u \in L\}$
- 6. levý kvocient L podle M ... M $L = \{u : uv \in L\&u \in M\}$
- 7. levá derivace L podle w ... $\partial_w L = \{w\}$
- 8. pravý kvocient L podle M ... $L/M = \{u : uv \in L\&v \in M\}$
- 9. pravá derivace L podle w ... $\partial_w^R L = L/\{w\}$.

Věta: Jsou-li L, M regulární jazyky, je regulární i L.M, L^* , L^+ , L^R , M LaL/M.

Věta: Jsou-li L,M regulární jazyky, je regulární i L.M.

Důkaz: Vezmeme DFA $A_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$, pak $A_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ tak, že $L=L(A_1)$ a $M=L(A_2)$.

Definujeme Nedeterministický automat $B = (Q \cup q_0, \Sigma, \delta, q_0, F_2)$ kde:

 $Q = Q_1 \cup Q_2$

předpokládáme různá jména stavů, jinak přejmenujeme, končíme až po přečtení slova z L_2

 $\delta(q)$ pro $q \in Q_1 \&$

 $\delta(q_0)$ pro q_1 $\delta(q_0)$ pro q_2 $\delta(q_0)$

pro $q \in Q_1 \&$

pro q

Pak $L(B) = L(A_1).L(A_2).$