

I²C

- "two-wire interface" standard
- Used to attach low-speed peripherals to embedded systems
- The Bone has two I²C controllers (Section 21 of TRM)

Hardware - Bone

• You can see which ones are configured at boot time

```
beagle$ dmesg | grep i2c

[ 0.156139] omap_i2c 44e0b000.i2c: bus 0 rev0.11 at 400 kHz

[ 0.157673] input: tps65217_pwr_but as
/devices/ocp.2/44e0b000.i2c/i2c-0/0-0024/input/input0

[ 0.169206] omap_i2c 44e0b000.i2c: unable to select pin group

[ 0.170089] omap_i2c 4819c000.i2c: bus 1 rev0.11 at 100 kHz

[ 0.172685] omap_i2c 4819c000.i2c: unable to select pin group

[ 0.762708] i2c /dev entries driver

Two buses each running at different speeds
```

Bus 2

 $\bullet\,$ Bus 2 is brought out on the expansion header

• These signals are 1.8V

Pin MUX

• Is the MUX set to output i2c?

beagle\$ cd /sys/kernel/debug/omap_mux

beagle\$ ls | grep i2c

i2c0_scl

i2c0_sda

beagle\$ grep i2c2_sda *

spi0_sclk:signals:
 spi0_sclk | uart2_rxd | i2c2_sda | NA | NA | NA | NA | gpi00_2
uart0_rxd:signals:
 uart0_rxd | spi1_cs0 | d_can0_tx | i2c2_sda | NA | NA | NA | Ma | gpi01_10

uart1_ctsn:signals: uart1_ctsn | NA | d_can0_tx | i2c2_sda | spi1_cs0 | NA | NA | gpio0_12

• Which one is it?

Pin MUX

• Cat each file to see

beagle\$ cat spi0_sclk

name: spi0_sclk.gpio0_2 (0x44e10950/0x950 = 0x0037), b NA, t NA mode: OMAP_PIN_OUTPUT | OMAP_MUX_MODE7 signals: spi0_sclk | uart2_rxd | i2c2_sda | NA | NA | NA | NA | gpio0_2

beagle\$ cat uart0_rxd

name: uart0_rxd.uart0_rxd (0x44e10970/0x970 = 0x0030), b NA, t NA
mode: OMAP_PIN_OUTPUT | OMAP_MUX_MODE0
signals: uart0_rxd | spi1_cs0 | d_can0_tx | i2c2_sda | NA | NA | NA |
gpiol_10

beagle\$ cat uart1_ctsn

name: uart1_ctsn.i2c2_sda (0x44e10978/0x978 = 0x0033), b NA, t NA
mode: OMAP_PIN_OUTPUT | OMAP_MUX_MODE3
signals: uart1_ctsn | NA | d_can0_tx | i2c2_sda | spi1_cs0 | NA | NA |
gpio0_12

Hardware - TC74

• Goal: Interface to a TC74 temp sensor

Parameter Name	Value
Typical Accuracy (°)	0.5
Max Input/ Supply Current (μA)	350
Max. Accuracy @ 25° (°)	2
Temp. Range (°C)	-40 to +125
Operating Voltage Range (V)	2.7 to 5.5
Device Description	Serial Output Temp Sensor

 $\underline{http://www.microchip.com/wwwproducts/Devices.aspx?dDocName} = en010749\#1$

Hardware - TMP101

• Goal: Interface to a TMP101 temp sensor

Parameter Name	Value
Typical Accuracy (°)	±2.0°C from -25°C to +85°C (max) ±3.0°C from -55°C to +125°C (max)
Supply Current (µA)	45 μ A, 0.1 μ A Standby
Resolution	9- to 12-bits,
Operating Voltage Range (V)	2.7V to 5.5V
Device Description	Serial Output Temp Sensor

 $\underline{http://www.ti.com/lit/gpn/tmp101}$

2-wire bus

- The two wires are
 - Serial Clock (SCL), is an input to the TMP101 and is used to clock data into and out of the TMP101.
 - Serial Data (SDA), is bidirectional and carries the data to and from the TMP101.
- The only other two pins on the TMP101 that you need to use are the Power Supply (Vdd) and Ground.

Software - xM

- See what's on a bus with i2cdetect
- # i2cdetect -y -r 2

				-													
	0	1	2	3	4	5	6	7	8	9	a	b	C	d	е	f	
00:																	
10:																	
20:																	
30:													UU				
40:																	
50:																	
60:																	
70:																	

- $\bullet\,$ I have 2 TC74's and a 3-axis accelerometer.
- The TC74's are at 1001 000 and 1001 010
- Convert to hex **0x48** and **0x4a**

Software - bone

• See what's on a bus with i2cdetect

heagles i2cdetect -v -r 1

beag	gre	; 12	2cde	ete	ct ·	-У .	-r]	L								
	0	1	2	3	4	5	6	7	8	9	а	b	C	d	е	f
00:																
10:																
20:																
30:																
40:									48	49						
50:																
60:																
70:	70															

I have 2, TMP101's and an LED matrix.

- The TMP101's are at 1001 000 and 1001 001
- Convert to hex **0x48** and **0x49**

Registers

• Each TMP101 has four registers

Table 2. Pointer Addresses of the TMP100 and TMP101 Registers

P1	P0	REGISTER
0	0	Temperature Register (READ Only)
0	1	Configuration Register (READ/WRITE)
1	0	TLOW Register (READ/WRITE)
1	1	THIGH Register (READ/WRITE)

- Read with \$ i2cget -y 1 0x48 00
- 0x18 which is 24C or 75.2F

Table 6. Configuration Register Format

BYTE	D7	D6	D5	D4	D3	D2	D1	D0
1	OS/ALERT	R1	R0	F1	F0	POL	TM	SD

Table 2. Pointer Addresses of the TMP100 and TMP101 Registers

Registers

P1	P0	REGISTER
0		Temperature Register (READ Only)
0	1	Configuration Register (READ/WRITE)
1	0	TLOW Register (READ/WRITE)
1	1	THIGH Register (READ/WRITE)

- Read with \$ i2cget -y 1 0x48 01
- 0x80 which is 1000 0000

Table 6. Configuration Register Format

rabio or comigaration register romat								
BYTE	D7	D6	D5	D4	D3	D2	D1	D0
1	OS/ALERT	R1	R0	F1	F0	POL	TM	SD

SD – Shutdown Mode TM - Thermostat Mode

POL-Polarity

F1/F0 - Fault Queue

R1/R0 - Converter Resolution

OS - OS/Alert

80. O-1	Cavite Surrey, Surrey	Control Lago:	8_O 80A
000 O-E	AD Carrector	Territ Interface	*-C A000
ALRE O-3	280	Config and Simp Register	*-O W
	14	eran	1

Table 8. Resolution of the TMP100 and TMP101

	R1	R0	RESOLUTION	CONVERSION TIME (typical)
ı	0	0	9 Bits (0.5°C)	40ms
ı	0	1	10 Bits (0.25°C)	80ms
ı	1	0	11 Bits (0.125°C)	160ms
ı	1	1	12 Bits (0.0625°C)	320ms

I²C via C - myi2cget.c

I²C via C

I²C via C

myi2ctest

- See exercises/i2c/matrixLEDi2c.c for an example that controls an LED grid
- See exercises/realtime/boneServer.js for an example that uses i2cdump and i2cset to control an LED grid
- See exercises/i2c/i2c-tools-3.1.0 for source code for ic2 tools