RegressionAnalysis

April 30, 2023

Regression Analysis for the California Housing census

Author: Jose Pena Github: JoseJuan98

0.1 Aims

The aim of this notebook is to demonstrate the data regression skills by applying them to a real-world dataset. A variety of tools will be leveraged to build and compare at least three linear regression models covering different variations, such as using a simple linear regression as a baseline, adding polynomial effects, and using a regularization regression. The focus should not only be on accuracy but also on explainability, as the models will be presented to a senior audience. In addition to presenting findings, recommendations for next steps in analyzing the data will be provided.

0.2 Instructions:

The purpose of this exercise is to demonstrate the ability to apply data regression skills using a variety of tools. The focus of this report should be on presenting findings, insights, and next steps. Visuals from code output may be included, but the emphasis should be on summarizing the findings rather than on reviewing the code. The expectation is that a wide range of tools will be leveraged to produce accurate and understandable results.

This exercise is an opportunity to demonstrate data regression skills. Follow the steps below to complete the analysis:

- A data set that is interesting and relevant to your work or field of study will be chosen. A
 brief description of the dataset, including its source, size, and the variables it contains will
 be provided.
- The data set will be explored and necessary cleaning and feature engineering will be performed. This will include, but is not limited to, checking for missing values, outliers, and correlations among variables. Visualizations or statistical tests may be used to support findings.
- At least three linear regression models that cover different variations, such as using a simple linear regression as a baseline, adding polynomial effects, and using a regularization regression, will be trained. The same training and test splits or the same cross-validation method will be used to ensure comparability.

- The performance of each model will be evaluated, and a recommendation for the best one based on accuracy and explainability will be provided. Metrics such as R-squared, mean squared error, or root mean squared error may be used to compare the models.
- The key findings and insights derived from the linear regression models will be summarized. The main drivers of the models and any insights gained from the data will be explained. Visualizations or tables will be used to support conclusions.
- Suggestions for next steps in analyzing the data will be provided. This could include exploring other variables or adding more data to improve the accuracy or explainability of the models.
- A report summarizing the analysis and findings will be prepared. The report will be geared towards a senior audience, such as a Chief Data Officer or Head of Analytics. Visualizations and tables will be included to support findings, but the focus will be on presenting insights and recommendations in a clear and concise manner.
- The report will be submitted for review by one of your peers. Feedback on the analysis will be received, as well as suggestions for improvement. This feedback will be used to revise the report as needed.

Remember to document the code and provide clear explanations of the methodology and thought process throughout the notebook. Good luck!

1 Setup

For this Regression Data Analysis project the following libraries will be used:

- pandas for managing the data.
- numpy for mathematical operations.
- seaborn for visualizing the data.
- matplotlib for visualizing the data.
- sklearn for machine learning related functions.

1.1 Imports

```
[1]: import pandas
import numpy

from matplotlib import pyplot
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression, ElasticNetCV
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV
from sklearn.preprocessing import PolynomialFeatures

from scipy.stats import normaltest
from scipy.special import inv_boxcox

from statsmodels.stats.outliers_influence import variance_inflation_factor
```

```
# To be able to import outside of this folder
import os
os.chdir("..")

from src.utils.data_transformations import preprocess_data
from src.utils.evaluation import evaluate_metrics

# utils.py
from src.utils import fetch_housing_data, HOUSING_URL, HOUSING_PATH, TARGET
```

Setting up some options:

```
[2]: # Display and store plot within the notebook
%matplotlib inline

# Show all columns when displaying dataframe
pandas.options.display.max_columns = None
```

Load data, if it wasn't downloaded before it will fetch it from the URL specified, otherwise will load it from a local '.csv' file.

```
[3]: data = fetch_housing_data(url=HOUSING_URL, path=HOUSING_PATH)
```

2 1. About the Data

This California Housing dataset is available from Luís Torgo's page (University of Porto).

This dataset appeared in a 1997 paper titled Sparse Spatial Autoregressions by Pace, R. Kelley and Ronald Barry, published in the Statistics and Probability Letters journal. They built it using the 1990 California census data. It contains one row per census block group. A block group is the smallest geographical unit for which the U.S. Census Bureau publishes sample data (a block group typically has a population of 600 to 3,000 people).

The target variable or dependent variable for this anlysis will be the median_house_value, which describes median price of the houses per block group.

Shape of the dataset

```
'housing_median_age',
'total_rooms',
'total_bedrooms',
'population',
'households',
'median_income',
'median_house_value',
'ocean_proximity']
```

First 5 rows of the dataset

565.0

[6]: data.head()

	longitude	latitude h	ousing_median_age	e total_rooms	total_bedrooms \	
0	-122.23	37.88	41.0	880.0	129.0	
1	-122.22	37.86	21.0	7099.0	1106.0	
2	-122.24	37.85	52.0	1467.0	190.0	
3	-122.25	37.85	52.0	1274.0	235.0	
4	-122.25	37.85	52.0	1627.0	280.0	
	population	households	${\tt median_income}$	median_house_va	lue ocean_proximity	
0	322.0	126.0	8.3252	45260	0.0 NEAR BAY	
1	2401.0	1138.0	8.3014	35850	0.0 NEAR BAY	
2	496.0	177.0	7.2574	35210	0.0 NEAR BAY	
3	558.0	219.0	5.6431	34130	0.0 NEAR BAY	
	1 2 3 4 0 1 2	0 -122.23 1 -122.22 2 -122.24 3 -122.25 4 -122.25 population 0 322.0 1 2401.0 2 496.0	0 -122.23 37.88 1 -122.22 37.86 2 -122.24 37.85 3 -122.25 37.85 4 -122.25 37.85 population households 0 322.0 126.0 1 2401.0 1138.0 2 496.0 177.0	0 -122.23 37.88 41.0 1 -122.22 37.86 21.0 2 -122.24 37.85 52.0 3 -122.25 37.85 52.0 4 -122.25 37.85 52.0 population households median_income 0 322.0 126.0 8.3252 1 2401.0 1138.0 8.3014 2 496.0 177.0 7.2574	0 -122.23 37.88 41.0 880.0 1 -122.22 37.86 21.0 7099.0 2 -122.24 37.85 52.0 1467.0 3 -122.25 37.85 52.0 1274.0 4 -122.25 37.85 52.0 1627.0 population households median_income median_house_va 0 322.0 126.0 8.3252 45260 1 2401.0 1138.0 8.3014 35850 2 496.0 177.0 7.2574 35210	0 -122.23 37.88 41.0 880.0 129.0 1 -122.22 37.86 21.0 7099.0 1106.0 2 -122.24 37.85 52.0 1467.0 190.0 3 -122.25 37.85 52.0 1274.0 235.0 4 -122.25 37.85 52.0 1627.0 280.0 population households median_income median_house_value ocean_proximity 0 322.0 126.0 8.3252 452600.0 NEAR BAY 1 2401.0 1138.0 8.3014 358500.0 NEAR BAY 2 496.0 177.0 7.2574 352100.0 NEAR BAY

3.8462

NEAR BAY

342200.0

Non-null values count, type of feature and memory usage

259.0

[7]: data.info()

4

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 20640 entries, 0 to 20639
Data columns (total 10 columns):

#	Column	Non-Null Count	Dtype	
0	longitude	20640 non-null	float64	
1	latitude	20640 non-null	float64	
2	housing_median_age	20640 non-null	float64	
3	total_rooms	20640 non-null	float64	
4	total_bedrooms	20433 non-null	float64	
5	population	20640 non-null	float64	
6	households	20640 non-null	float64	
7	median_income	20640 non-null	float64	
8	median_house_value	20640 non-null	float64	
9	ocean_proximity	20640 non-null	object	

dtypes: float64(9), object(1)

memory usage: 1.6+ MB

Statistical properties of the dataset

[8]: data.describe(include='all')

[8]:		longitude	latitude	housing_median_	age	total_rooms	\	
	count	_	20640.000000	20640.000	_	20640.000000		
	unique	NaN	NaN		NaN	NaN		
	top	NaN	NaN		NaN	NaN		
	freq	NaN	NaN		NaN	NaN		
	mean	-119.569704	35.631861	28.639	9486	2635.763081		
	std	2.003532	2.135952	12.585	5558	2181.615252		
	min	-124.350000	32.540000	1.000	0000	2.000000		
	25%	-121.800000	33.930000	18.000	0000	1447.750000		
	50%	-118.490000	34.260000	29.000	000	2127.000000		
	75%	-118.010000	37.710000	37.000	000	3148.000000		
	max	-114.310000	41.950000	52.000	0000	39320.000000		
		total_bedrooms	population	n households	med	lian_income \		
	count	20433.000000	20640.000000	20640.000000	20	640.000000		
	unique	NaN	NaN	NaN		NaN		
	top	NaN	NaN	NaN		NaN		
	freq	NaN	NaN	NaN		NaN		
	mean	537.870553	1425.476744	499.539680		3.870671		
	std	421.385070	1132.462122	382.329753		1.899822		
	min	1.000000	3.000000	1.000000		0.499900		
	25%	296.000000	787.000000	280.000000		2.563400		
	50%	435.000000	1166.000000	409.000000		3.534800		
	75%	647.000000				4.743250		
	max	6445.000000	35682.000000	6082.000000		15.000100		
		median_house_v	_	•				
	count	20640.00		20640				
	unique		NaN	5				
	top			H OCEAN				
	freq		NaN	9136				
	mean	206855.81		NaN				
	std	115395.61		NaN				
	min	14999.00		NaN				
	25%	119600.00		NaN				
	50%	179700.00		NaN				
	75%	264725.00		NaN				
	max	500001.00	0000	NaN				

As it was analyzed in the previous exercise of Exploratory Data Analysis (notebook, report) the actions taken for Data Cleaning and Feature Engineering are: * Target normalization * Handling missing values * Handling outliers * Encoding categorical variables * Scaling continuous variables

And these actions are encapsulated in the method prepare_data() from the utils/data_transformations.py, but first the data must be split to create the train and

test set to avoid overfitting and inaccurate evaluation.

3 2. Objectives

This exercise focuses in the predictions of the models, so this approach compares y_p with y by **performance metrics**, which measure the quality of the model's predictions (closeness between y_p and y).

As this approach doesn't focus on interpretability there is a greater risk of having a Black-box model, so it's recommended also to explore an approach based in interpretation to have both.

4 3. Linear Regression Models

```
[12]: metrics = {}
      def add_metrics(metrics_report: dict, model_name: str, y_true, y_pred, lmbda:_
       →float) -> dict:
          11 11 11
          Args:
              metrics_report:
              model_name:
              y_true:
              y_pred:
          Returns:
              dict: per model
                       - MSE: penalizes big errors
                       - RMSE: standarize unit errors
                       - R2: proportion of variance (0,1) - The bigger better
                       - MAE: average of erros
          metrics_report[model_name] = evaluate_metrics(y_true=y_true, y_pred=y_pred,_
       →lmbda=lmbda)
          return metrics_report
```

4.1 Preparing the data

median income

4.1.1 Multicollinearity Analysis

As observed in the Exploratory Data Analysis phase, it's likely that there is multicollinearity between some variables.

Correlation Matrix (Pearson's) To check it, first it can be observed the correlation matrix of the numerical values by computing the Person's correlation.

longitude latitude housing_median_age total_rooms

```
[13]: # Compute correlation matrix
corr_matrix = x_train.corr(numeric_only=True, method="pearson")
print(corr_matrix)
```

	0		0	_
longitude	1.000000 -0.923408		-0.101083	0.037158
latitude	-0.923408 1.00	0000	0.003461	-0.028768
housing_median_age	-0.101083 0.00	3461	1.000000	-0.362713
total_rooms	0.037158 -0.02	8768	-0.362713	1.000000
total_bedrooms	0.061797 -0.05	9700	-0.321328	0.929527
population	0.092163 -0.10	1665	-0.291589	0.855384
households	0.047659 -0.06	3487	-0.302516	0.920133
median_income	-0.019019 -0.07	5892	-0.117506	0.198362
	total_bedrooms	population	households	${\tt median_income}$
longitude	0.061797	0.092163	0.047659	-0.019019
latitude	-0.059700	-0.101665	-0.063487	-0.075892
housing_median_age	-0.321328	-0.291589	-0.302516	-0.117506
total_rooms	0.929527	0.855384	0.920133	0.198362
total_bedrooms	1.000000	0.876119	0.980570	-0.010193
population	0.876119	1.000000	0.904678	0.003661
households	0.980570	0.904678	1.000000	0.011628

-0.010193

As shown, there are clearly some correlations within the dependent variables which can cause collinearity.

0.003661

0.011628

1.000000

Variance Inflation Factor To check if they really cause multicollinearity the Variance Inflation Factor can be used. Because of the scale used in the following method, If it gives a value bigger than 15 o a relatively bigger value compare with the rest it can be proved that those variables will definitely cause collinearity.

Print VIF scores print(vif_scores)

longitude 614.104270 latitude 548.596876 housing_median_age 7.259158 total_rooms 30.774710 total_bedrooms 95.973312 population 15.813275 households 94.392021 median_income 8.260040 dtype: float64

[15]: corr_matrix[corr_matrix > 0.7]

households

median_income

[15]:		longitude	latitude	housin	g_median_age	total_rooms	\
[10].	longitude	1.0	NaN	110 00 111	NaN	NaN	`
	latitude	NaN	1.0		NaN	NaN	
	housing_median_age	NaN	NaN		1.0	NaN	
	total_rooms	NaN	NaN		NaN	1.000000	
	total_bedrooms	NaN	NaN		NaN	0.929527	
	population	NaN	NaN		NaN	0.855384	
	households	NaN	NaN		NaN	0.920133	
	median_income	NaN	NaN		NaN	NaN	
		total_bedro	oms popu	lation	households	median_income)
	longitude		NaN	NaN	NaN	NaN	ſ
	latitude		NaN	NaN	NaN	NaN	Ī
	housing_median_age		NaN	NaN	NaN	NaN	Ī
	total_rooms	0.929	527 0.	855384	0.920133	NaN	Ī
	total_bedrooms	1.000	000 0.	876119	0.980570	NaN	Ī
	population	0.876	119 1.	000000	0.904678	NaN	Ī

0.980570

 ${\tt NaN}$

Based on the results from the VIF score and correlation matrix, it can be observed that total_rooms and total_bedrooms have high values of VIF, indicating that these two variables are highly correlated. This high correlation is not surprising, as total_rooms may affect the number of total_bedrooms. However, including both features in the model can lead to issues with multicollinearity, as it becomes difficult to distinguish the individual effect of each variable on the target variable. Therefore, it may be necessary to address multicollinearity in the model, either by removing one of the highly correlated features or by using techniques such as ridge regression or principal component analysis.

0.904678

NaN

1.000000

NaN

NaN

1.0

The same with population and households.

```
[16]: vars_to_remove = ['total_rooms', 'population', 'households']
      x_train = x_train.drop(columns=vars_to_remove, axis=1)
      x_test = x_test.drop(columns=vars_to_remove, axis=1)
[17]: vars_with_outliers = ["median_income", "total_bedrooms",
                            "housing median age"]
      x_train, y_train, preprocessor, lmbda = preprocess_data(X=x_train, y=y_train, __
       ovariables_with_outliers=vars_with_outliers, normalize_target=True)
      x_test, y_test, _, _ = preprocess_data(X=x_test, y=y_test,_
       preprocessor=preprocessor, variables_with_outliers=vars_with_outliers)
[18]: preprocessor
[18]: ColumnTransformer(n_jobs=-1, remainder='passthrough',
                        transformers=[('numerical',
                                       Pipeline(steps=[('num_imputer',
      SimpleImputer(missing_values=<NA>)),
                                                        ('scaler', MinMaxScaler())],
                                                verbose=True),
                                       ['longitude', 'latitude', 'housing_median_age',
                                         'total_bedrooms', 'median_income']),
                                      ('categorical',
                                       Pipeline(steps=[('cat_imputer',
      SimpleImputer(strategy='most frequent')),
                                                        ('cat_ohe',
      OneHotEncoder(handle unknown='ignore'))],
                                                verbose=True),
                                       ['ocean proximity'])],
                        verbose=True)
```

4.1.2 Normality Test in the target variable

The normlatest() function is a statistical test for normality that combines skewness and kurtosis based on D'Agostino and Pearson's method.

It produces a p-value, which indicates the goodness of fit to a normal distribution. A higher p-value suggests a closer match to a normal distribution. Generally, frequentist statisticians consider a p-value greater than 0.05 as evidence that the distribution is normal, and fail to reject the null hypothesis of normality.

However, it's important to note that this test is not perfect and has some limitations.

```
[20]: NormaltestResult(statistic=716.5809435890789, pvalue=2.4912951418262196e-156)
```

4.1.3 Simple Linear Regression

```
[22]: lr.fit(X=x_train, y=y_train)
```

Fitting 5 folds for each of 1 candidates, totalling 5 fits

{'MSE': 84154.5075, 'RMSE': 290.094, 'R2': 0.4604, 'MAE': 56842.5729}

4.1.4 Linear Regression with Polynomial Features

```
[25]: lr_polynomial.fit(X=x_train, y=y_train)
```

Fitting 5 folds for each of 1 candidates, totalling 5 fits

```
PolynomialFeatures(degree=3,
                                                                  include_bias=False)),
                                              ('lr', LinearRegression(n_jobs=-1))]),
                   n_jobs=-1, param_grid={}, verbose=1)
[26]: metrics = add_metrics(metrics_report=metrics,
                            model name='LR PolynEffects',
                            y_true=y_test,
                            y_pred=lr_polynomial.predict(x_test),
                            lmbda=lmbda)
      print(f"{metrics['LR_PolynEffects']}")
     {'MSE': 76401.5438, 'RMSE': 276.4083, 'R2': 0.555, 'MAE': 50224.9909}
     4.1.5 Regression with Regularization
[27]: 11_ratios = numpy.linspace(0.1, 0.9, 9)
      alphas = numpy.array([1e-5, 5e-5, 0.0001, 0.0005, 0.1, 0.01, 1])
      lr_regularization = ElasticNetCV(
          alphas=alphas,
          11_ratio=l1_ratios,
          n jobs=-1,
          max_iter=int(1e5),
          cv=5
      )
[28]: | lr_regularization.fit(X=x_train, y=y_train.to_numpy().ravel())
[28]: ElasticNetCV(alphas=array([1.e-05, 5.e-05, 1.e-04, 5.e-04, 1.e-01, 1.e-02,
      1.e+00]),
                   cv=5,
                   l1_ratio=array([0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9]),
                   max_iter=100000, n_jobs=-1)
[29]: metrics = add_metrics(metrics_report=metrics,
                            model_name='Regularization',
                            y_true=y_test,
                            y_pred=lr_regularization.predict(x_test),
                            lmbda=lmbda)
      print(f"{metrics['Regularization']}")
     {'MSE': 84157.8672, 'RMSE': 290.0998, 'R2': 0.4604, 'MAE': 56845.0172}
[30]: import json
      print(json.dumps(metrics, indent=4))
```

```
{
    "LR_Simple": {
        "MSE": 84154.5075,
        "RMSE": 290.094,
        "R2": 0.4604,
        "MAE": 56842.5729
    },
    "LR_PolynEffects": {
        "MSE": 76401.5438,
        "RMSE": 276.4083,
        "R2": 0.555,
        "MAE": 50224.9909
    },
    "Regularization": {
        "MSE": 84157.8672,
        "RMSE": 290.0998,
        "R2": 0.4604,
        "MAE": 56845.0172
    }
}
```

The Linear Regression with Polynomial Effects seems to be the best fit as it has the lowest MSE and RMSE, highest R2, and lowest MAE. Additionally, using polynomial features can help capture more complex relationships between the features and target variable. However, it's always good to consider the interpretability of the model, and the simple linear regression model could be preferred if interpretability is a priority.

5 4. Insights and key findings

Given the properties of the test set:

```
[31]: print(f'Mean: {y_test.mean()}\nMedian: {y_test.median()}\nMinimum: {y_test. max()}')
```

Mean: 206696.8142764858

Median: 181000.0 Minimum: 14999.0 Maximum: 500001.0

Regarding the key findings and insights from the linear regression model, we can observe the following:

- The models explain around 46%-55% of the variance in the target variable, which is moderate to good.
- The RMSE values suggest that the models have an average error of around \$276K-\$290K in predicting the target variable.
- The MAE values suggest that, on average, the predicted values are off by around \$50K-\$56K.

- The mean and median values of the target variable suggest that the dataset has a right-skewed distribution.
- The minimum and maximum values of the target variable indicate that there are significant differences between the lowest and highest values.

It's essential to note that the models assume linearity between the features and target variable. Still, this assumption may not hold in some cases, and nonlinear models could perform better.

5.1 Insights Visualization

5.1.1 Actual vs Predicted Values visualization

```
[32]: # Inverse the normalization to get easier interpretations of the results
    y_pred = inv_boxcox(lr_regularization.predict(x_test), lmbda)

pyplot.figure(figsize=(28,14))
    pyplot.plot(range(len(y_test)), y_test, color='blue', label='True values')
    pyplot.plot(range(len(y_pred)), y_pred, color='orange', label='Predictions')
    pyplot.xticks(fontsize=22)
    pyplot.yticks(fontsize=22)
    pyplot.legend(fontsize=22)
    pyplot.ylim(40000, 520000)
    pyplot.xlim(0, 6100)
    pyplot.show();
```


5.1.2 Residual Plot

```
[33]: # Compute the residuals
    residuals = numpy.subtract(y_test, y_pred)

# Plot the residuals
    pyplot.figure(figsize=(28,14))
    pyplot.scatter(y_pred, residuals)
    pyplot.title('Residual Plot', fontsize=22)
    pyplot.xlabel('Predicted Values', fontsize=22)
    pyplot.ylabel('Residuals', fontsize=22)
    pyplot.xticks(fontsize=22)
    pyplot.yticks(fontsize=22)
    pyplot.legend(fontsize=22)
    pyplot.show();
```

No artists with labels found to put in legend. Note that artists whose label start with an underscore are ignored when legend() is called with no argument.

5.1.3 Feature Importances Plot

Creating a bar chart of the feature importances by plotting the coefficients of the linear regression model can help to identify which features are most important in predicting the response variable.

```
coefs.plot(kind='barh', figsize=(9, 7))
pyplot.title('Ridge model')
pyplot.axvline(x=0, color='.5')
pyplot.subplots_adjust(left=.3)
```


6 5. Next Steps

Regarding next steps, we could explore several options:

- Feature engineering: We could try to identify additional relevant features that may explain more variance in the target variable and improve the model's performance.
- Nonlinear models: As mentioned earlier, we could explore more sophisticated models that can capture nonlinear relationships between the features and target variable.
- Outlier detection: We could analyze further if there are any outliers in the dataset that could affect the model's performance and try to remove or transform them if necessary.
- Ensemble methods: We could consider ensemble methods, such as random forests or gradient boosting, that can combine multiple models and improve their predictive power.

Overall, selecting the best model depends on the specific goals and priorities of the analysis, and additional exploration of the data and modeling techniques could provide further insights and

improvements.

6.1 Author

Author: Jose Pena Github: JoseJuan98

6.2 Change Log

Date (YYYY-MM-DD)	Version	Changed By	Change Description
2023-01-27	1.0	Jose	First version