Lecture 17

Lorentz Invariance and "Soft Limits"

Punch line that we've been building to in first part of this course.

Matrix element we would get by scattering external γ .

$$M = \epsilon^{\mu} M_{\mu}$$

where ϵ^{μ} is some linear combination of two photon polarization vector ϵ^{1} and ϵ^{2} M is Lorentz Invariant, under lorentz transformation

$$M \to \epsilon'^{\mu} M'_{\mu}$$

where $M'_{\mu} = \Lambda_{\mu}^{\ \nu} M_{\nu}$

However (here comes the major constraint) ϵ is not a full 4-vector. Only has 2 components.

Under little group transformations (you will show in your H.W.)

$$\epsilon \rightarrow \underbrace{c_1 \epsilon_1^{\mu} + c_2 \epsilon_2^{\mu}}_{\epsilon' \text{ can only be made of these pieces}} + \underbrace{c_3 p^{\mu}}_{\text{Not valid in Hilbert Space"}}$$

So,

$$M = \epsilon^{\mu} M_{\mu} \rightarrow \left(c_{1} \epsilon_{1}^{\mu} + c_{2} \epsilon_{2}^{\mu} + c_{3} p^{\mu} \right) M_{\mu}'$$

$$= \epsilon'^{\mu} M_{\mu}' + \underbrace{c_{3} p^{\mu} M_{\mu}'}_{\text{Must go to 0}}$$

We will see, this has enourmous implications !!!

Will be considering diagrams with external " γ "s (massless spin 1 particles)

$$= iQ(p^{\mu} + (p^{\mu} + q^{\mu}))\epsilon_{\mu} \qquad (q^{\mu}\epsilon_{\mu} = 0)$$

$$= iQ2p^{\mu}\epsilon_{\mu}$$

This is the most general form in the "soft limit" $q \rightarrow 0$

$$\Gamma_{\mu} \sim p_{\mu} F(q^2, p^2, p \cdot q)$$
 By dimensional analysis $F(q^2, p^2, p \cdot q) \rightarrow F(\frac{p \cdot q}{m^2})$

Consider "Compton Scattering"

Start with one type of spin-1 boson and one type of matter particle.

The diagram:

As we said above, Lorentz Invariant $\Rightarrow q_1^{\mu} q_2^{\nu} M_{\mu\nu} = 0$

But here, $q_1^{\mu} q_2^{\nu} M_{\mu\nu} = (-iQ^2) 2(p_2 \cdot q_2) \neq 0$!

Looks like we're dead...

However we are forgetting a diagram.

$$\begin{array}{lll}
& = & (iQ)\epsilon_{\mu}^{1}(2p_{2}^{\mu})\frac{i}{(p_{2}-q_{1})^{2}-m^{2}}(iQ)\epsilon_{\nu}^{2}(2p_{1}^{\nu}) \\
& = & \epsilon_{1}^{\mu}\epsilon_{2}^{\nu}\left(\frac{(-iQ^{2})4p_{2\mu}p_{1\nu}}{-2p_{2}\cdot q_{1}}\right) \\
& = & \epsilon_{1}^{\mu}\epsilon_{2}^{\nu}\left(\frac{(-iQ^{2})2p_{1\mu}p_{2\nu}}{-p_{1}\cdot q_{1}}\right) \\
& = & \epsilon_{1}^{\mu}\epsilon_{2}^{\nu}\left(\frac{(-iQ^{2})2p_{1\mu}p_{2\nu}}{p_{1}\cdot q_{1}}\right)
\end{array}$$
Soft limit $p_{1}=p_{2}$

and for this diagram, $q_1^{\mu}q_2^{\nu}M_{\mu\nu} = -(-iQ^2)2(p_2 \cdot q_2)$

So the sum $M_{\mu\nu}^A + M_{\mu\nu}^B$ is Lorentz Invariant. (Residual non Lorentz Invariant pieces of each diagram cancel)

Very good!

Now lets do the same thing as before, but with many different possible matter particles.

$$i = 1, ...N_{\text{matter}}$$

$$= (iT_{ab})\epsilon_{\mu}^{1}(2p_{1}^{\mu})\frac{i}{\underbrace{(p_{1}+q_{1})^{2}-m^{2}}}(iT_{bc})\epsilon_{\nu}^{2}(2p_{2}^{\nu})$$

$$= \epsilon_{1}^{\mu}\epsilon_{2}^{\nu}\left(\frac{(-iT_{ab}T_{bc})4p_{1\mu}p_{2\nu}}{m_{a}^{2}+2p_{1}\cdot q_{1}-m_{b}^{2}}\right) \equiv M_{A}^{\mu\nu}$$

Other diagram:

Now, if
$$m_a = m_b = m_c$$
 then, $q_{1\mu}q_{2\nu}(M_A^{\mu\nu} + M_B^{\mu\nu}) = 0$ as above $\begin{vmatrix} m_a^2 - m_b^2 = 0 \\ \text{relative - size} \end{vmatrix}$

However if $m_a \neq m_b$, in soft limit

$$q_{1\mu}q_{2\nu}(M_A^{\mu\nu}+M_B^{\mu\nu}) = -\left[\frac{(-iT_{ab}T_{bc})4}{m_a^2-m_b^2}(2p_1^{\mu}p_1^{\nu})\right] \neq 0$$

Massless spin-1 particles can only interact with particles of the same mass!

Now allow many differnt matter fields (but same mass!) and many force carriers "gluons"

$$i = 1, ...N_{\text{matter}}$$

$$I = 1, ...N_{\text{gluons}}$$

and

Now,

$$\begin{array}{lcl} q_{1\mu}q_{2\nu}(M_A^{\mu\nu}+M_B^{\mu\nu}) & = & 2(-i)(p_2\cdot q_2)(T_{ab}^AT_{bc}^B-T_{ab}^BT_{bc}^A) \\ & = & 2(-i)(p_2\cdot q_2)[T^A,T^B] \end{array}$$

 $[T^A, T^B]$ not 0 for random Ts.

In fact, another diagram we are missing:

Sum of all three only lorentz invariant if

$$[T^A, T^B] = if^{ABC}T^C$$

"gluons" (or any other group of interacting massless spin-1 particles) must transform as a Lie group!

Only question is which group, there are only a finite handful of possibilities "Yang-Mills" Interaction.