Cau 2.1	
Cho biến ngẫu nhiên X có hàm mật độ là $f_X(x) = \begin{cases} kx^{-3} & \text{khi } x \ge 1 \\ 0 & \text{khi } x < 1. \end{cases}$	2 đ
a) Tìm hằng số k , hàm phân bố của X và $P(X > 2)$.	
b) Tìm hàm mật độ của biến ngẫu nhiên $Y = \frac{1}{3X}$.	
a) Ta có $\int_{-\infty}^{+\infty} f_X(x) dx = 1 \Leftrightarrow \int_{1}^{+\infty} kx^{-3} dx = 1 \Leftrightarrow k = 2.$	1 đ
Hàm phân bố của X là $F_X(x) = \begin{cases} \int_1^x 2u^{-3} du = 1 - \frac{1}{x^2} & x > 1 \\ 0 & x \le 1. \end{cases}$	
$P(X > 2) = 1 - P(X \le 2) = 1 - F(2) = 1 - \left(1 - \frac{1}{4}\right) = \frac{1}{4}.$	
b) Với y > 0 ta có $F_{Y}(y) = P(Y < y) = P\left(\frac{1}{3X} < y\right) = P\left(X > \frac{1}{3y}\right)$ $= 1 - F_{X}\left(\frac{1}{3y}\right) = \begin{cases} 1 & y \ge 1/3, \\ 9y^{2} & 0 < y < 1/3. \end{cases}$	1 đ
Với $y \le 0$ ta có $F_Y(y) = 0$.	
Do đó hàm mật độ của Y là $f_Y(y) = \begin{cases} 18y \text{ khi } 0 < y < 1/3 \\ 0 \text{ khi } y \notin [0;1/3] \end{cases}$	

Câu 2.2

Cho hai biến ngẫu nhiên X và Y có hàm phân bố đồng thời là	2 đ
$F(x,y) = \begin{cases} (1 - e^{-2x})(1 - e^{-y}) & \text{khi } x > 0, y > 0 \\ 0 & \text{n\'eu tr\'ai lại} \end{cases}$	
$\int f(x,y) = 0$ nếu trái lại	
a) Tìm hàm phân bố của X và của Y.	
b) Chứng minh X và Y độc lập. Tính $P(X < 2, Y < 2)$.	
a) $F_X(x) = \begin{cases} 1 - e^{-2x} & \text{khi } x > 0 \\ 0 & \text{nếu trái lại} \end{cases}$ $F_Y(y) = \begin{cases} 1 - e^{-y} & \text{khi } y > 0 \\ 0 & \text{nếu trái lại} \end{cases}$	1 đ
	1 4
b) X, Y độc lập vì $F(x, y) = F_X(x) \cdot F_Y(y)$, $\forall x, y$.	1 đ
$P(X < 2, Y < 2) = F(2, 2) = (1 - e^{-4})(1 - e^{-2}) \approx 0.849$.	

Cho biến ngẫu nhiên X có hàm mật độ	2 đ
$f_X(x) = \begin{cases} k\cos 2x & khi - \frac{\pi}{4} \le x \le \frac{\pi}{4} \end{cases}$	
0 nếu trái lại	
a) Tìm hằng số k và hàm phân bố của X .	
b) Tính kỳ vọng và phương sai của X.	
a) Ta có	1 đ

$\int_{-\infty}^{+\infty} f(x)dx = 1 \iff k = 1. \qquad F_X(x) = \begin{cases} 0 & \text{khi } x \le -\frac{\pi}{4} \\ \frac{\sin 2x + 1}{2} & \text{khi } -\frac{\pi}{4} < x \le \frac{\pi}{4} \\ 1 & \text{khi } x > \frac{\pi}{4} \end{cases}$	
b) $EX = 0, DX = EX^2 = \frac{\pi^2 - 8}{16}$	1 đ

Cuu 2:T	
Cho hai biến ngẫu nhiên X và Y có hàm mật độ đồng thời là	2 đ
$\int k(1-x)y \text{khi} 0 < x < 1, 0 < y < 2$	
$f(x,y) = \begin{cases} k(1-x)y & \text{khi } 0 < x < 1, 0 < y < 2\\ 0 & \text{n\'eu ngược lại} \end{cases}$	
a) Tìm hằng số k và các hàm mật độ của X và của Y .	
b) X và Y có độc lập hay không? Tính EX.	
a) $\int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} f(x, y) dx dy = 1 \Leftrightarrow k = 1.$	1 đ
Ta có $f_X(x) = \begin{cases} 2(1-x) \text{ khi } 0 < x < 1 \\ 0 \text{ nếu ngược lại} \end{cases}$ $f_Y(y) = \begin{cases} \frac{y}{2} \text{ khi } 0 < y < 2 \\ 0 \text{ nếu ngược lại} \end{cases}$	
b) X, Y độc lập vì $f(x, y) = f_X(x).f_Y(y)$, $\forall x, y$. $EX = \int_{-\infty}^{+\infty} x f_X(x) dx = \frac{1}{3}.$	1 đ

Câu 2.5

Cho biến ngẫu nhiên hai chiều
$$(\xi, \eta)$$
, có hàm mật độ
$$f_{\xi,\eta}(x) = \begin{cases} k\left(\frac{x^2}{2} + xy\right) & \text{khi } 0 \le x \le 1; 0 \le y \le 1 \\ 0 & \text{nếu trái lại} \end{cases}$$
a) Tìm hằng số k .
b) Tính xác suất $P\left((\xi, \eta) \in \left[-\frac{1}{2}; \frac{1}{2}\right] \times \left[\frac{1}{2}; \frac{3}{2}\right]\right)$.

a) $1 = k \int_{0}^{1} \int_{0}^{1} \left(\frac{x^2}{2} + xy\right) dx dy = \frac{5k}{12} \Rightarrow k = \frac{12}{5}$
b) $P\left((\xi, \eta) \in \left[-\frac{1}{2}; \frac{1}{2}\right] \times \left[\frac{1}{2}; \frac{3}{2}\right]\right) = k \int_{0}^{\frac{1}{2}} \int_{\frac{1}{2}}^{1} \left(\frac{u^2}{2} + uv\right) du dv = k \left(\frac{1}{96} + \frac{3}{64}\right) = \frac{11}{80}$

Cho biến ngẫu nhiên ξ liên tục, có hàm mật độ	$f(x) = \begin{cases} k(1-x)(x+2) & \text{kl} \\ 0 & \text{n} \end{cases}$	ni − 2 ≤ x ≤ 1	2 đ
a) Tìm hằng số k , tính $P(-4 < \xi \le 0)$.		•	

h) Tính hà vong nhương gọi của hiến ngẫn nhiên	
b) Tính kỳ vọng, phương sai của biến ngẫu nhiên $\eta = -\xi + 3$.	1 #
a) $\int_{-\infty}^{\infty} f(x) dx = 1 \Rightarrow k = \frac{2}{9}$	1 đ
$P(-4 < \xi \le 0) = \frac{2}{9} \int_{-2}^{0} (1 - x)(x + 2) dx = \frac{20}{27}.$	
b) $E\eta = \int_{-\infty}^{\infty} (3-x)f(x)dx = \frac{7}{2}$, $E\eta^2 = \int_{-\infty}^{\infty} (3-x)^2 f(x)dx = \frac{127}{10}$.	1 đ
$D\eta = E\eta^2 - \left(E\eta\right)^2 = \frac{9}{20}.$	
Cách 2. $E\eta = -E\xi + 3 = -\frac{1}{2} + 3 = \frac{7}{2};$ $D\eta = D\xi = \frac{9}{20}$	
Cho biến ngẫu nhiên ξ liên tục, có hàm mật độ	2 đ
$f(x) = \begin{cases} k.x^{-\frac{5}{2}} & \text{khi } x \ge 1\\ 0 & \text{khi } x < 1 \end{cases}$	
a) Tìm hằng số k và hàm phân bố $F_{\xi}(x)$.	
b) Tìm hàm mật độ của biến ngẫu nhiên $\eta = \frac{1}{\xi}$ và từ đó tính xác suất	
$P(0,1<\eta<0,2)$.	
$P(0,1 < \eta < 0,2).$ $a) \int_{-\infty}^{\infty} f(x) dx = 1 \Rightarrow k = \frac{3}{2}$	1 đ
$\int_{0}^{\infty} x < 1$	
Hàm phân bố $F_{\xi}(x) = \int_{-\infty}^{x} f(t) dt = \begin{cases} 0 & x < 1 \\ 1 - \frac{1}{\frac{3}{2}} & x \ge 1 \end{cases}$	
b) Tîm $F_{\eta}(y)$.	1 đ
Khi y>0,	
$F_{\eta}(y) = P(\eta < y) = P\left(\frac{1}{\xi} < y\right) = P\left(\xi > \frac{1}{y}\right) = 1 - F\left(\frac{1}{y}\right)$	
$= \begin{cases} 1 & y > 1 \\ \frac{3}{y^2} & 0 < y < 1 \end{cases}$	
Khi y < 0, $F_{\eta}(y) = 0$	
$Va f(y) = \begin{cases} 0 & (y < 0) \lor (y > 1) \\ 2 & \end{cases}$	
$\operatorname{Va} f_{\eta}(y) = \begin{cases} 0 & (y < 0) \lor (y > 1) \\ \frac{3}{2} \sqrt{y} & 0 \le y \le 1 \end{cases}$	
$P(0,1<\eta<0,2)=0,2^{\frac{3}{2}}-0,1^{\frac{3}{2}}=0.058$	

Cho biến ngẫu nhiên ξ liên tục, có hàm mật độ 2 đ

$f(x) = \begin{cases} kx^2 (x-1)^2 & \text{khi } 0 \le x \le 1 \\ 0 & \text{n\'eu tr\'ai lại} \end{cases}$	
0 nếu trái lại	
a) Tìm hằng số k , tính $P\left(-\frac{1}{2} \le \xi \le \frac{1}{2}\right)$.	
b) Tính kỳ vọng, phương sai của ξ .	
a) $\int_{-\infty}^{\infty} f(x) dx = 1 \Rightarrow k = 30;$ $P\left(-\frac{1}{2} \le \xi \le \frac{1}{2}\right) = 30 \int_{0}^{\frac{1}{2}} x^{2} (x-1)^{2} dx = \frac{1}{2}$	1 đ
b) $E\xi = \int_{-\infty}^{\infty} xf(x)dx = \frac{1}{2}, E\xi^2 = \int_{-\infty}^{\infty} x^2 f(x)dx = \frac{2}{7}; D\xi = E\xi^2 - (E\xi)^2 = \frac{1}{28}$	1 đ

Cuu 217	
Cho X là biến ngẫu nhiên có hàm mật độ	2 đ
$f(x) = \begin{cases} 20x^3(1-x) & \text{khi } 0 < x < 1\\ 0 & \text{khi } x \notin (0;1) \end{cases}$	
$\int (x)^{-} \left[0 \qquad \text{khi } x \notin (0;1) \right]$	
a) Tính kỳ vọng và phương sai của X.	
b) Tìm hàm phân bố của X , từ đó tính $P(0.2 < X < 0.5)$.	
a) $EX = \int_{0}^{1} 20x^{4}(1-x)dx = \frac{2}{3}$; $EX^{2} = \int_{0}^{1} 20x^{5}(1-x)dx = \frac{10}{21}$; $DX = EX^{2} - (EX)^{2} = \frac{2}{63}$.	1 đ
$\int 0 \qquad \text{khi } x \le 0$	1 đ
b) Vậy $F(x) = \begin{cases} 5x^4 - 4x^5 & \text{thi } 0 < x \le 1; \ P(0, 2 < X < 0, 5) = F(0, 5) - F(0, 2) = 0,0181 \\ 1 & \text{thi } x > 1 \end{cases}$	
1 khi x > 1	

Câu 2.10

	
Một thiết bị điện tử có tuổi thọ (năm) là biến ngẫu nhiên X có hàm mật độ dạng	2 đ
$f(x) = \begin{cases} k.x^3 e^{-x} & \text{khi } x \ge 0\\ 0 & \text{khi } x < 0 \end{cases}$	
$\int (x)^{-} \left(0 \text{khi } x < 0 \right)$	
a) Tìm k , tính tuổi thọ trung bình của thiết bị đó và xác suất thiết bị đó hỏng	
trong 2 năm đầu làm việc.	
b) Nếu biết rằng sau 2 năm đầu làm việc vẫn thấy thiết bị đó hoạt động tốt thì	
xác suất thiết bị đó bị hỏng trong 2 năm tiếp theo là bao nhiêu?	
a) $k = \frac{1}{6}$, $EX = 4$, $P(X \le 2) = 0.1429$	1 đ
c) $P(X \le 4 \mid X > 2) = \frac{P(2 < X \le 4)}{P(X > 2)} = \frac{0.4237}{0.8571} = 0.4943$	1 đ
P(X > 2) 0.8571	

Câu 2.11

Cho biến ngẫu nhiên hai chiều
$$(X,Y)$$
 có hàm mật độ là

$$f(x,y) = \begin{cases} \frac{1}{4\pi} & \text{khi } x^2 + y^2 \le 4 \\ 0 & \text{khi } x^2 + y^2 > 4 \end{cases}$$
a) Tính $R(X,Y)$ và $P(|X|+|Y|\le 1)$.
b) X và Y có độc lập không?

$$EX = EY = \iint_{R^2} xf(x, y) dx dy = \frac{1}{4\pi} \iint_{\{x^2 + y^2 \le 1\}} x dx dy = 0$$

$$EXY = \iint_{\mathbb{R}^2} xyf(x, y) dxdy = \frac{1}{4\pi} \iint_{\left\{x^2 + y^2 \le 1\right\}} xy dxdy = 0. \text{ Do d\'o } \rho(X, Y) = 0. \text{ Từ d\'o suy ra } X \text{ và}$$

Y không tương quan.

Gọi
$$D = \{(x, y) : |x| + |y| \le 1\}.$$

Ta có
$$P(|X|+|Y| \le 1) = \iint_D f(x,y) dx dy = \frac{S_D}{4\pi} = \frac{2}{4\pi} = \frac{1}{2\pi}$$

1 đ

1

1

b) Do tính đối xứng của x và y nên hai biến ngẫu nhiên X và Y có cùng phân bố. Hàm

mật độ của
$$X$$
 là $f_X(x) = \int_{-\infty}^{+\infty} f(x,y) dy = \begin{cases} \frac{\sqrt{4-x^2}}{2\pi} & \text{nếu } -2 \le x \le 2\\ 0 & \text{nếu ngược lại} \end{cases}$

Từ đó ta c
ó $f(x,y) \neq f_X(x).f_Y(y)$. Do vậy X và Y không độc lập.

Câu 2.12

Cho
$$X$$
 và Y là hai biến ngẫu nhiên có hàm mật độ đồng thời là
$$f(x,y) = \begin{cases} \frac{6}{5}(x^2 + y) & \text{khi } 0 < x, y < 1\\ 0 & \text{nếu trái lại} \end{cases}$$

- a) Tìm hàm mật đô của X và Y kiểm tra tính độc lập giữa X và Y.
- b) Tính P(X+Y<1).

a)
$$f_X(x) = \begin{cases} 0 & \text{v\'oi } x \notin (0;1) \\ \frac{6}{5} \int_0^1 (x^2 + y) dy \text{ v\'oi } x \in (0;1) \end{cases} = \begin{cases} 0 & \text{v\'oi } x \notin (0;1) \\ \frac{6}{5} (x^2 + \frac{1}{2}) \text{ v\'oi } x \in (0;1) \end{cases}.$$

$$f_{Y}(y) = \begin{cases} 0 & v \acute{o}i \ y \notin (0;1) \\ \frac{6}{5} \int_{0}^{1} (x^{2} + y) dx \ v \acute{o}i \ y \in (0;1) \end{cases} = \begin{cases} 0 & v \acute{o}i \ y \notin (0;1) \\ \frac{6}{5} (y + \frac{1}{3}) \ v \acute{o}i \ y \in (0;1) \end{cases}$$

Rõ ràng $f(x,y) \neq f_X(x).f_Y(y)$ nên X và Y không độc lập.

b)
$$P(X + Y < 1) = \iint_{\{x+y<1\}} f(x,y) dxdy = \frac{6}{5} \int_{0}^{1} dx \int_{0}^{1-x} (x^2 + y) dxdy = \frac{3}{10}$$
.

Biết rằng mật độ của biến ngẫu nhiên
$$X$$
 có dạng
$$\begin{cases} k x e^{-x} & k \text{hi} & x > 0 \end{cases}$$

- $f(x) = \begin{cases} k x e^{-x} & \text{khi } x \ge 0 \\ 0 & \text{khi } x < 0 \end{cases}$
- a) Tìm hằng số k; Mod(X).
- b) Tính EX, EX^2 , DX.

a) $1 = \int_{-\infty}^{\infty} f(x)dx = \int_{0}^{\infty} kxe^{-x}dx = \dots = k \implies k = 1$	1đ
Xét $g(x) = xe^{-x}$, $x \ge 0$. $g'(x) = e^{-x}[-x+1] = 0 \Leftrightarrow x = 1$, đổi dấu $\Rightarrow Mod(X) = 1$	
b) $E(X) = \int_{-\infty}^{\infty} x f(x) dx = \int_{0}^{\infty} x^{2} e^{-x} dx = \dots = 2;$ $E(X^{2}) = \int_{-\infty}^{\infty} x^{2} f(x) dx = \int_{0}^{\infty} x^{3} e^{-x} dx = \dots = 6$	1đ
$\Rightarrow D(X) = E(X^2) - (E(X))^2 = 6 - 4 = 2$	

Cho X là biến ngẫu nhiên có mật độ $f(x) = \begin{cases} k x e^{-x} & \text{khi } x \ge 0 \\ 0 & \text{khi } x < 0 \end{cases}$	2
Cho X ha blen ngau innen eo mat do $f(x) = 0$ khi $x < 0$	
a) Tìm hằng số k và tính $P(X > e)$.	
b) Tìm hàm mật độ của biến ngẫu nhiên \sqrt{X} .	
a) $k=1$, $P(X > e) = 0.2454$	1đ
b) $y < 0$: $F_Y(y) = 0$; $y > 0$: $F_Y(y) = P\{\sqrt{X} < y\} = P\{X < y^2\} = F_X(y^2)$	1đ
$\Rightarrow f_Y(y) = \frac{d}{dy}(F_Y(y)) = \frac{d}{dy}(F_X(y^2)) = f(y^2).2y = 2y^3 e^{-y^2}$	

cuộc chơi c a) I	dừng lạ Lập bản	ni khi anl g phân b	ı ta ném đư	rợc một qu	ıå bóı	0.6; kết quả các ng vào rổ. h xác suất phải n			2 đ
a)									1 đ
	X	1	2	3		n			
	P	0,6	0,4.0,6	$0,4^2$. $0,6$		0,4 ⁿ⁻¹ . 0,6			
P=1- (0,6 -	+ 0,24)	= 0,16							
b) E(2	$(X) = \sum_{n=1}^{\infty}$	$n(0,4)^{n-1}$	$0, 6 = 0, 6 \sum_{n=1}^{\infty}$	$n(0,4)^{n-1}$.	Chuc		$\sum_{n=0}^{\infty} x^n = \frac{1}{1}$	$\frac{1}{-x}$, bán	1 đ
kínl	h h	nội t	ụ là	r =		$1. \qquad \Rightarrow f'(x) =$	$=\sum_{n=0}^{\infty}nx^{n}$	$e^{-1} = \frac{1}{(1-x)^2}$	
$\Rightarrow i$	E(x) = 0	0,6.f'(0,4)	$4) = \frac{0.6}{(0.6)^2} =$	= 1,667.					

Câu 2.16

Véc tơ ngẫu nhiên
$$(X, Y)$$
 có mật độ
$$f(x,y) = \begin{cases} e^{-(x+y)} & \text{khi } x \ge 0, y \ge 0; \\ 0 & \text{nếu trái lại.} \end{cases}$$
a) Tìm các mật độ biên $f_X(x)$; $f_Y(y)$; suy ra rằng X , Y là 2 biến ngẫu nhiên độc lập.
b) Tìm mật độ của $Z = X + Y$.

$$a) * x < 0: f_{x}(x) = \int_{-\infty}^{\infty} f(x, y) dy = 0$$

$$* x \ge 0: f_{x}(x) = \int_{-\infty}^{\infty} f(x, y) dy = \int_{0}^{\infty} e^{-(x+y)} dy = \dots = e^{-x}$$

$$Turong tự, \quad f_{y}(x) = \begin{cases} 0 & y < 0 \\ e^{-y} & y \ge 0 \end{cases}. \quad Do dó f(x, y) = f_{x}(x).f_{y}(y) \quad \forall x, y.$$

$$Vậy X, Y độc lập$$

$$b) f_{z}(x) = f_{x}(x) * f_{y}(x) = \int_{-\infty}^{\infty} f_{x}(x-t) f_{y}(t) dt = \int_{0}^{\infty} f_{x}(x-t) f_{y}(t) dt$$

$$* x \le 0: f_{z}(x) = 0; \quad x > 0: f_{z}(x) = \int_{0}^{x} e^{-(x-t)} e^{-t} dt = xe^{-x}. \qquad f_{z}(x) = \begin{cases} 0, & x \le 0; \\ xe^{-x}, & x > 0 \end{cases}$$

Cho X là biến ngẫu nhiên có $f(x) = \begin{cases} k x e^{-x} & \text{khi } x \ge 0 \\ 0 & \text{khi } x < 0 \end{cases}$.	2 đ
a) Tìm hằng số k và mật độ của biến ngẫu nhiên X^2 .	
b) Tính $P(X^2 < 1)$.	
a) $k = 1$	1
$y < 0: F_Y(y) = 0 ;$	
$y > 0$: $F_Y(y) = P\{X^2 < y\} = P\{X < \sqrt{y}\} = F_X(\sqrt{y})$	
$\Rightarrow f_Y(y) = \frac{d}{dy}(F_Y(y)) = \frac{d}{dy}(F_X(\sqrt{y})) = f(\sqrt{y}) \cdot \frac{1}{2\sqrt{y}} = \sqrt{y}e^{-\sqrt{y}} \cdot \frac{1}{2\sqrt{y}} = \frac{1}{2}e^{-\sqrt{y}}$	
$\int 0$ khi $y \le 0$	
$v\hat{a}y \ f_Y(y) = \begin{cases} 0 & \text{khi } y \le 0\\ \frac{1}{2}e^{-\sqrt{y}} & \text{khi } y > 0 \end{cases}$	
b) $P(X^2 < 1) = P(X < 1) = 0.264$	1

Câu 2.18

Tầm bắn của một loại pháo là biến ngẫu nhiên có phân bố chuẩn với tru	ıng bình	2 đ
16.7km và độ lệch chuẩn 0.3km.		
a) Tính xác suất một phát bắn đạt xa hơn 16.7km		
b) Tính xác suất một phát bắn đạt từ 15.8km đến 17.6km		
Cho $\Phi(0) = 0,5000; \Phi(3) = 0,9987; \Phi(1.96) = 0,9750$		
$Z = \frac{X - 16.7}{0.3} \approx N\left(0,1\right)$		1 đ
a) $P(X > 16.7) = P(Z > 0) = \frac{1}{2} \Rightarrow 50\%$		
b) $P(15.8 < X < 17.6) = P(-3 < Z < 3) = 0.997 \Rightarrow 99.7\%$		1 đ

Tuổi thọ X của một loại thiết bị điện tử là biến ngẫu nhiên có phân bố với hàm mật	2 đ
độ	

$f(x) = \begin{cases} \frac{1}{4} x e^{-x/2} & \text{khi } x > 0 \\ 0 & \text{khi } x \le 0. \end{cases}$	
a) Tính $P(X \ge 4)$ và $P(X \ge 4/X \ge 2)$.	
b) Tính kỳ vọng và phương sai của X.	
a) $P(X \ge 4) = \int_{4}^{\infty} \frac{x}{4} e^{-x/2} dx = 3e^{-2}$. $P(X \ge 4/X \ge 2) = \frac{P(X \ge 4)}{P(X \ge 2)} = \frac{3e^{-2}}{2e^{-1}} = \frac{3}{2}e^{-1}$.	1 đ
b) $E(X) = 4$, $EX^2 = 24$, $Var(X) = 8$.	1 đ

Cau 2.20	
Cho biến ngẫu nhiên X có hàm mật độ	2 đ
$f(x) = \begin{cases} cx^2 \cdot e^{-2x} & \text{khi } x \ge 0 \\ 0 & \text{khi } x < 0 \end{cases}$ a Tîm c và tính $P\left(x < \frac{1}{2}\right)$.	
a) Tìm <i>EX</i> .	
a) $c = 4$; $P\left(X < \frac{1}{2}\right) = 0.0803$	1 đ
b) $EX = \frac{3}{2}$.	1 đ

Câu 2.21

Cau 2.21	
Cho X là biến ngẫu nhiên có hàm mật độ $f(x) = \begin{cases} 4x(1-x^2) & \text{khi } x \in (0;1) \\ 0 & \text{khi } x \notin (0;1) \end{cases}$	2 đ
(0 Km1	
a) Tính kỳ vọng và độ lệch chuẩn của X .	
b) Tìm med X và tính $P\left(0 < X < \frac{1}{2}\right)$.	
a) $EX = 4 \int_{0}^{1} x^{2} (1 - x^{2}) dx = \frac{8}{15}$; $EX^{2} = 4 \int_{0}^{1} x^{3} (1 - x^{2}) dx = \frac{1}{3}$; $DX = \frac{11}{225}$; $\sigma_{X} = \frac{\sqrt{11}}{15}$	1 đ
b) $medX = a \in (0;1)$ với a là nghiệm của $2a^4 - 4a^2 + 1 = 0$. Do đó	1 đ
$medX = \sqrt{\frac{2 - \sqrt{2}}{2}} \approx 0.541. P\left(0 < X < \frac{1}{2}\right) = 4 \int_{0}^{1/2} x(1 - x^{2}) dx = \frac{7}{16}.$	

Cho X là biến ngẫu nhiên có hàm mật độ $f(x) = \begin{cases} 12x^3(1-x^2) & \text{khi } x \in (0;1) \\ 0 & \text{khi } x \notin (0;1) \end{cases}$	2 đ
a) Tính kỳ vọng và phương sai của X.	
b) Tìm mod X và tính $P\left(0 < X < \frac{1}{2}\right)$.	
a) $EX = 12 \int_{0}^{1} x^{4} (1 - x^{2}) dx = \frac{24}{35}$; $EX^{2} = 12 \int_{0}^{1} x^{5} (1 - x^{2}) dx = \frac{1}{2}$; $DX = \frac{73}{2450}$	1 đ
b) $modX = \sqrt{\frac{3}{5}} \approx 0.775$; $P\left(0 < X < \frac{1}{2}\right) = 12 \int_{0}^{1/2} x^{3} (1 - x^{2}) dx = \frac{5}{32} = 0.15625$	1 đ

Cau 2.23	
Cho X là biến ngẫu nhiên có hàm mật độ $f(x) = \begin{cases} 12x^2(1-x) & \text{khi } x \in (0;1) \\ 0 & \text{khi } x \notin (0;1) \end{cases}$	2 đ
 a) Tìm kỳ vọng và độ lệch chuẩn của X. b) Tiến hành quan sát giá trị của X. Tính xác suất trong 5 lần quan sát có đúng 	
hai lần X nhận giá trị nhỏ hơn $\frac{1}{2}$.	
a) $EX = 12 \int_{0}^{1} x^{3} (1-x) dx = \frac{3}{5}$; $EX^{2} = 12 \int_{0}^{1} x^{4} (1-x) dx = \frac{2}{5}$; $DX = \frac{1}{25}$; $\sigma_{X} = \frac{1}{5}$	1 đ
b) $P\left(0 < X < \frac{1}{2}\right) = 12 \int_{0}^{1/2} x^{2} (1 - x) dx = \frac{5}{16}$. Do đó $p = C_{5}^{2} \left(\frac{5}{16}\right)^{2} \cdot \left(\frac{11}{16}\right)^{3} \approx 0.3173$	1 đ

Câu 2.24

Cho X là biến ngẫu nhiên có hàm mật độ	2 đ
$f(x) = \begin{cases} kx^3(1-x) & \text{khi } x \in [0;1] \\ 0 & \text{khi } x \notin [0;1]. \end{cases}$	
$\int_{0}^{\infty} (x)^{-1} dx = 0$ khi $x \notin [0;1]$.	
1) Tìm hằng số k , tính kỳ vọng và phương sai của X .	
2) Tìm hàm phân bố của X và tính $P(0.5 < X < 1)$.	
k = 20	1 đ
$EX = \int_0^1 20x^4 (1-x) dx = \frac{2}{3} \qquad EX^2 = \int_0^1 20x^5 (1-x) dx = \frac{10}{21} \qquad DX = EX^2 - (EX)^2 = \frac{2}{63}.$	
$\int 0 \qquad \text{khi } x \leq 0$	1 đ
$F(x) = \int_{-\infty}^{x} f(t)dt = \begin{cases} 0 & \text{khi } x \le 0\\ 5x^4 - 4x^5 & \text{khi } 0 < x \le 1 \text{ và } P(0.5 < X < 1) = F(1) - F(0.5) = \frac{13}{16}.\\ 1 & \text{khi } x > 1 \end{cases}$	

Qua nghiên cứu ở một vùng trồng cam, người ta thấy số quả cam trên một cây là biến ngẫu nhiên có phân bố chuẩn. Người ta đếm thử 600 cây thì thấy 15 cây có ít	2 đ
hơn 20 quả, 30 cây có ít hơn 25 quả.	
a) Hãy ước lượng số quả cam trung bình trên một cây.	
b) Ước lượng tỷ lệ cây cam có từ 60 quả trở lên.	
Biết rằng: $u(0.05) = 1.65$; $u(0.302) = 0.52$; $u(0.025) = 1.96$; $u(0.10) = 1.28$.	
a) Gọi X là số quả cam trên một cây. Ta có $X \square N(\mu, \sigma^2)$.	1 đ
$P(X < 20) = \Phi\left(\frac{20 - \mu}{\sigma}\right) \approx 0.025 = \Phi(-1.96)$	
$P(X < 25) = \Phi\left(\frac{25 - \mu}{\sigma}\right) \approx 0.05 = \Phi(-1.65)$. Do đó ta có hệ phương trình	
$\begin{cases} \frac{20-\mu}{\sigma} \approx -1.96 \\ \frac{25-\mu}{\sigma} \approx -1.65 \end{cases}$. Giải hệ ta có $\mu \approx 51.61$ và $\sigma \approx 16.13$. Do đó trung bình một	
$\left(\frac{23-\mu}{\sigma}\approx -1.65\right)$	
cây cam có 51.61 quả.	
b) $P(X \ge 60) = 1 - \Phi\left(\frac{60 - \mu}{\sigma}\right) \approx 1 - \Phi(0.52) = 0.302$. Do đó tỷ lệ cây có từ 60 quả	1 đ
σ)	

trở lên chiếm khoảng 30.2%.

Câu 2.26

Môt cơ quan mua về 15 cái máy tính, trong đó có 4 cái máy không đạt chất lượng. Phòng kinh doanh được phân cho 6 chiếc và ho đã nhân một cách ngẫu nhiên 6 chiếc đem về. Gọi ξ là số chiếc máy tính đạt chất lượng mà phòng kinh doanh nhận được.

2₫

- a) Lập bảng phân phối xác suất của \mathcal{E}
- b) Tính xác suất để phòng kinh doanh nhận được 3 máy không đạt chất lượng biết rằng có ít nhất 1 máy không đạt chất lượng.

$$P(\xi=2) = \frac{C_{11}^2 \cdot C_4^4}{C_4^6} = 0.011$$

$$P(\xi=2) = \frac{C_{11}^2.C_4^5}{C_{15}^6} = 0.011 \qquad P(\xi=3) = \frac{C_{11}^3.C_4^3}{C_{15}^6} = 0.132$$

a)
$$P(\xi = 4) = \frac{C_{11}^4 \cdot C_4^2}{C_{15}^6} = 0.396$$
 $P(\xi = 5) = \frac{C_{11}^5 \cdot C_4^1}{C_{15}^6} = 0.369$

$$P(\xi = 5) = \frac{C_{11}^5 \cdot C_4^1}{C_{15}^6} = 0.369$$

0.369

$$P(\xi = 6) = \frac{C_{11}^{6}}{C_{15}^{6}} = 0.092$$

$$\xi \qquad 2 \qquad 3 \qquad 4$$

P	0.011	0.132	0.396
5/4 014	$P(\xi=3)$	$\xi \le 5$) 0.132	2 0 1 1 7

0.092

b)
$$P(\xi = 3 \mid \xi \le 5) = \frac{P(\xi = 3 \cap \xi \le 5)}{P(\xi \le 5)} = \frac{0.132}{0.908} = 0.145$$

Câu 2.27

Cho X là biến ngẫu nhiên liên tục có hàm mật độ $f(x) = \begin{cases} k & \text{khi } 1 \le x < 2 \\ 0 & \text{khi } x \notin [1;2] \end{cases}$ khi $x \notin [1;2]$

2đ

- a) Xác định giá trị của k. Tính $P\left(\frac{1}{2} < X < \frac{4}{3}\right)$.
- b) Tính kì vọng và phương sai của biến ngẫu nhiên Y = 3X 2.

a)
$$k = \frac{2}{3}, P\left(\frac{1}{2} < X < \frac{4}{3}\right) = \frac{2}{3}$$

b)
$$EX = \frac{11}{9} \rightarrow EY = 3EX - 2 = \frac{5}{3}$$

$$DX = 0.228 \rightarrow DY = 9DX = 2.052$$

Câu 2.28

Cho X là biến ngẫu nhiên có hàm phân bố xác suất

2đ

$$F(x) = \begin{cases} 0 & \text{khi} \quad x < -2\\ 0.25x + 0.5 & \text{khi} \quad -2 \le x < 1\\ 0.5x + 0.25 & \text{khi} \quad 1 \le x < 1.5\\ 1 & \text{khi} \quad 1.5 \le x \end{cases}$$

- a) Tính $P(\{X < -1\} \cup \{X > 1.6\})$. Tìm hàm mật độ của X.
- b) Tính kì vọng, phương sai của biến ngẫu nhiên Y = |X|.

a)
$$P(X < -1 \cup X > 1, 6) = P(X < -1) + P(X > 1, 6) = F(-1) + 1 - F(1.6) = 0.25$$

$0.25, -2 \le x < 1$	
$f(x) = \begin{cases} 0.5, & 1 \le x < 1.5 \end{cases}$	
$0, x \notin [-2; 1.5]$	
b) $EY = 0.875$, $DY = 0.38$	1đ

Cho biến ngẫu nhiên rời rạc X có bảng phân phối xác suất									2đ		
X	1	2	3	4	5	6	7	8	9	10	
P	0.05	0.19	0.20	0.25	0.12	0.10	x	0.08	у	0.01	
		của <i>x</i> , <i>y</i> .								_	
b) Qua	ın sát bi	ến ngẫu	nhiên X	20 lần	độc lập	nhau tro	ng cùn	g một đ	iều kiện	ı. Tính	
xác	suất để	trong 2	0 lần có	đúng 17	7 lần X	≤6. Tru	ng bình	có bao	nhiêu 1	ần	
<i>X</i> ≤ 6 ?											
a)	a) $x = y = 0, P(X > 6) = 0.09$									1đ	
b)	b) Gọi Y là số lần $X \le 6$ trong 20 lần quan sát. $P(X \le 6) = 0.91$									1đ	
	P	P(Y=17)	$=C_{20}^{175}0.9$	$91^{17}0.09^3$	=0.167	; $EY = 2$	20×0.91	1 = 18.2	lần		

Câu 2.30

Một thiết bị gồm 3 bộ phận hoạt động độc lập với nhau, xác suất trong khoảng thời	2đ
gian t các bộ phận bị hỏng tương ứng là 0.2; 0.3 và 0.25. Gọi ξ là số bộ phận bị hỏng	
trong khoảng thời gian t.	
a) Tìm bảng phân phối xác suất của ξ .	

- b) Tính kì vọng, phương sai của ξ và xác suất để trong khoảng thời gian t có đúng 2 bộ phận bị hỏng biết rằng có ít nhất 1 bộ phận bị hỏng.
- a) Gọi A_i : bộ phận thứ i bị hỏng, i = 1, 2, 3.

 $P(\xi = 0) = P(\overline{A_1}, \overline{A_2}, \overline{A_3}) = 0.8 \times 0.7 \times 0.75 = 0.42$

$$P(\xi = 1) = P(A_1 \overline{A_2} \overline{A_3} \cup \overline{A_1} \overline{A_2} \overline{A_3} \cup \overline{A_1} \overline{A_2} \overline{A_3}) = 0.2 \times 0.7 \times 0.75 + 0.8 \times 0.3 \times 0.75 + 0.8 \times 0.7 \times 0.25 = 0.425$$

$$P(\xi = 2) = P(A_1 A_2 \overline{A_3} \cup A_1 \overline{A_2} A_3 \cup \overline{A_1} A_2 A_3) = 0.2 \times 0.3 \times 0.75 + 0.2 \times 0.7 \times 0.25 + 0.8 \times 0.3 \times 0.25 = 0.14$$

$$P(\xi = 3) = P(\overline{A_1} \overline{A_2} \overline{A_3}) = 0.2 \times 0.3 \times 0.25 = 0.015$$

Bảng phân phối xác suất của ξ

ξ	0	1	2	3	
P	0.42	0.425	0.14	0.015	

b)
$$E\xi = 0.75, D\xi = 0.5575$$
; $P(\xi = 2 \mid \xi \ge 1) = \frac{P(\xi = 2 \cap \xi \ge 1)}{P(\xi \ge 1)} = \frac{0.14}{0.58} = 0.24$

Câu 2.31

Cho hai biến ngẫu nhiên độc lập ξ, η có bảng phân phối xác suất										2đ		
ξ	-1	0	2	4		η	-1	1	3	5	7	
P	0,2	0,3	0,1	0,4		P	0,1	0,1	0,2	0,4	0,2	ı
a) Lập	bảng p	phân ph	ối xác	suất đồ	ng thời	cho ξ ,	η .					
b) Cho	$X = \xi$	-2η . T	ính <i>EX</i>	, DX	$r\grave{a}P(X \leq$	≤ 2) .						
a)	a) Bảng phân phối xác suất đồng thời của ξ, η										1đ	
5		-1		1		3		5		7]
$\mid \mid \eta \mid$												
-1		0.02		0.02	•	0.04		0.04		0.02		

0	0.03	0.03	0.06	0.12	0.06			
2	0.01	0.01	0.02	0.04	0.02			
4	0.04	0.04	0.08	1.6	0.08			
EX = $E\xi + 2E\eta = 1.6 - 2 \times 4 = -6.4$								
b) $DX = D\mathcal{E} + 4Dn = 4.44 + 4 \times 5.8 = 27.64$								

Câu hỗi Cho
$$X$$
, Y là các biến ngẫu nhiên có hàm mật động đồng thời
$$f(x,y) = \begin{cases} c(x+y) & \text{khi } 0 < x < 3, x < y < x + 2 \\ 0 & \text{nếu trái lại} \end{cases}$$
a) Tìm c . Tính các xác suất $P(X < 1, Y < 2)$, $P(1 < X < 2)$.
b) Tính EX , DX .
$$c = \frac{1}{24},$$
a)
$$P(X < 1, Y < 2) = \int_{0}^{1} \int_{x}^{2} \frac{1}{24}(x+y) dx dy = 0.104; P(1 < X < 2) = \int_{1}^{2} \int_{x}^{x+2} \frac{1}{24}(x+y) dx dy = 0.33$$

$$EX = \int_{0}^{3} \int_{x}^{x+2} x \frac{1}{24}(x+y) dx dy = 1.875$$
b)
$$EX^{2} = \int_{0}^{3} \int_{x}^{x+2} x^{2} \frac{1}{24}(x+y) dx dy = 4.125 \rightarrow DX = EX^{2} - (EX)^{2} = 0.609$$

Câu 2.33

Cho X, Y là các biến ngẫu nhiên có hàm mật động đồng thời					
$f(x,y) = \begin{cases} ce^{-2x-3y} & \text{thi } 0 < x, x < y \\ 0 & \text{n\'eu tr\'ai lại} \end{cases}$					
$\int_{0}^{f(x,y)} \left(0\right) = 0$ nếu trái lại					
a) Tìm c. Tính các xác suất $P(X < 2, Y < 2)$, $P(Y > 3)$.					
b) Tính kì vọng, phương sai của X.					
c = 15	1đ				
a) $P(X < 2, Y < 2) = \int_{0}^{2} \int_{x}^{2} 15e^{-2x-3y} dxdy = 1 + \frac{3}{2}e^{-10} - \frac{5}{2}e^{-6} = 0.994$					
$P(Y > 3) = \int_{1}^{2} \int_{3}^{+\infty} 15e^{-2x-3y} dxdy = 0.00012$					
$EX = \int_{0}^{+\infty} \int_{0}^{+\infty} x 15e^{-2x-3y} dx dy = \frac{1}{5} = 0.2$	1đ				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$EX^{2} = \int_{0}^{+\infty} \int_{x}^{+\infty} x^{2} 15e^{-2x-3y} dxdy = \frac{2}{25} = 0.08 \rightarrow DX = EX^{2} - (EX)^{2} = 0.04$					

Tuổi thọ (năm) của một bóng đèn là biến ngẫu nhiên X có hàm mật độ	2đ
$\int kx^2(4-x) \text{khi } x \in [0;4]$	
$f(x) = \begin{cases} kx^2(4-x) & \text{khi } x \in [0;4] \\ 0 & \text{khi } x \notin [0;4] \end{cases}.$	
a) Tìm hằng số k và tính tuổi thọ trung bình của bóng đèn.	
b) Tính xác suất tuổi thọ của bóng đèn không quá 1 năm.	

a) Do $\int_{-\infty}^{+\infty} f(x) dx = 1$ nên $1 = \int_{0}^{4} kx^{2} (4 - x) dx = k \cdot \frac{64}{3} \Rightarrow k = \frac{3}{64}$. Tuổi thọ trung bình	1đ
của bóng đèn là EX = $\int_{-\infty}^{+\infty} xf(x)dx = \frac{3}{64} \int_{0}^{4} x^{3}(4-x)dx = \frac{3}{64} \cdot \frac{256}{5} = \frac{12}{5} = 2,4 \text{ (năm)}.$	
b) Xác suất tuổi thọ của bóng đèn không quá 1 năm	1đ
$\lim_{x \to 0} P(0 \le X \le 1) = \int_{0}^{1} f(x)dx = \frac{3}{64} \int_{0}^{1} x^{2}(4-x)dx = \frac{13}{256} \approx 0,051.$	

Câu 2.35 3 ý

Một thùng hàng có 5 sản phẩm cũ và 10 sản phẩm mới. Lấy ngẫu nhiên đồng thời ra							
2 sản phẩm. Gọi X là số sản p	hẩm	mới tro	ng 2 så	n phẩm	được lấy ra.		
a) Lập bảng phân bố xác	suất	của X.					
b) Tính giá trị trung bình	ı của	X và x	ác suất	có ít nh	nất 1 sản phẩm mới được lấy		
ra.							
a) Ta có bảng phân bố						1đ	
	X	0	1	2			
	Р	10	50	45			
	Г	105	105	105			
$\frac{1}{2}$ $\frac{10}{10}$	50	. 2 45	140	4. 200	95 19	1đ	
b) $EX = \sum_{i=0}^{2} x_i p_i = 0.\frac{10}{105} + 1$	105	$+2.\overline{105}$	$=\frac{105}{105}$	$=\frac{1}{3}$, $P(2)$	$105 = \frac{1}{105} = \frac{1}{21}$.		

Câu 2.36

Tuổi thọ (năm) của một thiết bị là biến ngẫu nhiên X có hàm mật độ					
$f(x) = \begin{cases} kx^3 (4-x)^2 & \text{khi } x \in [0;4] \\ 0 & \text{khi } x \notin [0;4] \end{cases}.$					
$\int (x)^{-} \left[0 \text{khi } x \notin [0;4] \right].$					
a) Tìm k. Tính tuổi thọ trung bình của thiết bị đó.					
b) Nhà sản xuất bảo hành thiết bị đó trong vòng 1 năm. Tính tỷ lệ số thiết bị bị					
hỏng trong thời gian còn được bảo hành.					
a) Do $\int_{-\infty}^{+\infty} f(x)dx = 1$ nên $1 = \int_{0}^{4} kx^{3}(4-x)^{2} = \frac{1024}{15}.k \Rightarrow k = \frac{15}{1024}$. Tuổi thọ trung bình	1đ				
của thiết bị là $EX = \int_{-\infty}^{+\infty} x f(x) dx = \frac{15}{1024} \int_{0}^{4} x^{4} (4 - x)^{2} = \frac{16}{7} \approx 2,286 \text{ (năm)}.$					
b) Thiết bị bị hỏng trong thời gian còn được bảo hành nghĩa là tuổi thọ không quá	1đ				
1 năm. Ta có $P(X \le 1) = \int_{0}^{1} f(x)dx = \frac{15}{1024} \int_{0}^{1} x^{3} (4-x)^{2} dx = \frac{77}{2048} \approx 0,0376 = 3,76\%$.					

Độ bền (vạn km) của một loại lốp ô tô là biến ngẫu nhiên X có hàm mật độ				
$f(x) = \begin{cases} kx^3(6-x)^2 & \text{khi } x \in [0;6] \\ 0 & \text{khi } x \notin [0;6] \end{cases}.$				
$\int (x)^{-1} \left[0 \text{khi } x \notin [0;6] \right].$				
a) Tìm k. Tính tỷ lệ số lốp có độ bền trên 4 vạn km.				
b) Tính độ bền trung bình của loại lốp đó.				
a) Do $\int_{-\infty}^{+\infty} f(x)dx = 1$ nên $1 = \int_{0}^{6} kx^{3}(6-x)^{2}dx = \frac{3888}{5}.k \Rightarrow k = \frac{5}{3888}$. Tỷ lệ lốp có độ	1đ			
bền trên 4 vạn km là				

$P(X > 4) = \int_{4}^{6} f(x)dx = \frac{5}{3888} \int_{4}^{6} x^{3} (6 - x)^{2} dx = \frac{233}{729} \approx 0,3196 = 31,96\%.$	
b) Độ bền trung bình của lốp là	1đ
$EX = \int_{-\infty}^{+\infty} x f(x) dx = \frac{5}{3888} \int_{0}^{6} x^{4} (6 - x)^{2} dx = \frac{24}{7} \approx 3,43 \text{ (van km)}.$	

Cau 2.38					
Hàm mật độ của biến ngẫu nhiên X có dạng					
$f(x) = \begin{cases} ax^3(2-x) & \text{khi } x \in [0;2] \\ 0 & \text{khi } x \notin [0;2] \end{cases}.$					
$\int_{0}^{\infty} (x)^{-1} \left[0 \text{khi } x \notin [0;2] \right].$					
a) Tìm hằng số a và tính $P(0 \le X \le 1)$.					
b) Tính kỳ vọng và phương sai của <i>X</i> .					
a) Do $\int_{0}^{+\infty} f(x)dx = 1$ nên $1 = \int_{0}^{2} ax^{3}(2-x)dx = \frac{8}{5}.a \Rightarrow a = \frac{5}{8}.$	1đ				
$\int_{-\infty}^{\infty} \int_{0}^{\infty} \int_{$					
$P(0 \le X \le 1) = \int_{0}^{1} f(x)dx = \frac{5}{8} \int_{0}^{1} x^{3}(2-x)dx = \frac{3}{16}.$					
b) $EX = \int_{-\infty}^{+\infty} xf(x)dx = \frac{5}{8} \int_{0}^{2} x^{4}(2-x)dx = \frac{4}{3}$. $EX^{2} = \int_{-\infty}^{+\infty} x^{2}f(x)dx = \frac{5}{8} \int_{0}^{2} x^{5}(2-x)dx = \frac{40}{21}$.	1đ				
$VX = EX^{2} - (EX)^{2} = \frac{40}{21} - \left(\frac{4}{3}\right)^{2} = \frac{8}{63}.$					

Cân 2.39

Câu 2.39				
Khả năng chịu tải phân bố (tấn/m) của một loại dầm bê tông đúc sẵn là biến ngẫu nhiên	X có 2đ			
hàm mật độ				
$\int k(x-4)(8-x) \text{ khi } x \in [4;8]$				
$f(x) = \begin{cases} k(x-4)(8-x) & \text{khi } x \in [4;8] \\ 0 & \text{khi } x \notin [4;8] \end{cases}.$				
a) Tìm hằng số k và tính khả năng chịu tải phân bố trung bình của loại dầm bê tôn trên.	ıg kể			
b) Tính tỷ lệ số dầm bê tông có khả năng chịu tải phân bố lớn hơn 5 tấn/m. Ngư				
mua 3 cái dầm bê tông thuộc loại trên. Tính xác suất ít nhất 2 cái có khả năng chị	iu tải			
phân bố lớn hơn 5 tấn/m.				
a) Do $\int_{-\infty}^{+\infty} f(x)dx = 1$ nên $1 = \int_{4}^{8} k(x-4)(8-x)dx = k \cdot \frac{32}{3} \Rightarrow k = \frac{3}{32}$.	1đ			
Khả năng chịu tải phân bố trung bình của loại dầm bê tông đó là				
$EX = \int_{-\infty}^{+\infty} x f(x) dx = \frac{3}{32} \int_{4}^{8} x(x-4)(8-x) dx = 6 \text{ (tấn/m)}.$				
b) Tỷ lệ dầm bê tông có khả năng chịu tải phân bố lớn hơn 5 tấn/m là	1đ			
$P(X > 5) = \int_{5}^{+\infty} f(x)dx = \frac{3}{32} \int_{5}^{8} (x - 4)(8 - x)dx = \frac{27}{32} = 84.375\%.$				
Xác suất ít nhất 2 dầm có khả năng chịu tải phân bố lớn hơn 5 tấn/m là				

$$3 \times \left(\frac{27}{32}\right)^2 \left(1 - \frac{27}{32}\right) + \left(\frac{27}{32}\right)^3 \approx 0.9344.$$

Tuổi thọ X của một loại đèn điện tử do nhà máy sản xuất ra là đại lượng ngẫu nhiên có phân bố chuẩn với trung bình $\mu = 1500$ và $\sigma = 150$ giờ. Nếu thời gian sử dụng thực tế chỉ đạt dưới 1200 giờ thì nhà máy phải bảo hành miễn phí.

- a) Tính tỷ lệ sản phẩm phải bảo hành miễn phí
- b) Nếu muốn tỷ lệ bảo hành miễn phí chỉ còn 1% thì nhà máy phải quy định thời gian bảo hành là bao nhiệu giờ.

Cho biết: $\Phi_0(2) = 0,4772; \Phi_0(2,33) = 0,49; \Phi_0(\infty) = 0,5$

a)
$$P(X < 1200) = \Phi_0 \left(\frac{1200 - 1500}{150} \right) - \Phi_0 \left(-\infty \right) = -\Phi_0 \left(2 \right) + 0.5 = -0.4772 + 0.5 = 0.0228$$

b)Gọi t là thời gian quy định bảo hành để tỷ lệ bảo hành là 1%.

b) Gọi t là thời gian quy định bảo hành để tỷ lệ bảo hành là 1%.
$$P(X < t) = 0.01 \Leftrightarrow \Phi_0 \left(\frac{t - 1500}{150} \right) - \Phi_0 \left(-\infty \right) = 0.01 \Leftrightarrow \Phi_0 \left(\frac{t - 1500}{150} \right) = -0.49$$
$$\Rightarrow \frac{1500 - t}{150} = 2.33 \Leftrightarrow t = 1150.5 \text{ giờ.}$$

Câu 2.41

Thời gian hoạt động tốt X (không phải sửa chữa) của một loại tivi là đại lượng ngẫu nhiên có phân bố chuẩn với trung bình là 4000 giờ và độ lệch chuẩn 350 giờ. Giả thiết mỗi ngày người ta sử dụng trung bình là 10 giờ và thời gian bảo hành là 1 năm (365 ngày).

- a) Tính tỷ lệ tivi phải bảo hành trong thời hạn trên.
- b) Phải nâng chất lượng tivi bằng cách tăng thời gian hoạt động tốt trung bình của nó lên bao nhiêu giờ để tỷ lệ tivi phải bảo hành vẫn như trên song thời gian bảo hành là 2 năm. Cho biết: $\Phi_0(11,42) = 0.3413; \Phi_0(\infty) = 0.5; \Phi_0(1) = 0.3413$
- a) Thời gian hoạt động được bảo hành là: X = 10x365 = 3650 (giờ) 1 đ

Tỷ lệ phải bảo hành loại tivi trên là:

$$P(X < 3650) = \Phi_0 \left(\frac{3650 - 4000}{350} \right) - \Phi_0 \left(-\infty \right) = \Phi_0 \left(-1 \right) + 0, 5 = -0,3413 + 0,5 = 0,1587$$

b)Thời gian hoạt động trung bình là a

$$P(X < 7300) = \Phi_0 \left(\frac{7300 - a}{350} \right) - \Phi_0 \left(-\infty \right) = \Phi_0 \left(\frac{7300 - a}{350} \right) + 0.5 = 0.1587$$

$$\Rightarrow \Phi_0 \left(\frac{7300 - a}{350} \right) = -0.3413 = \Phi_0(-1) \Rightarrow \frac{7300 - a}{350} = -1 \Rightarrow a = 7650$$

Cau 2.42				
Đường kính của một loại chi tiết do một máy sản xuất có phân phối chuẩn, kỳ vọng 20mm, phương sai (0,2 mm) ² . Lấy ngẫu nhiên một chi tiết máy. Tính xác suất để:	2 đ			
a) Có đường kính trong khoảng từ 19,9mm đến 20,3mm.				
b) Có đường kính sai khác kỳ vọng không quá 0,3mm.				
Cho biết: $\Phi_0(1,5) = 0,4332$; $\Phi_0(0,5) = 0,1915$				
a) Gọi X là đường kính chi tiết lấy ra thì $X \square N(20; 0, 2^2)$. Ta có	1 đ			
$P = P(19, 9 < X < 20, 3) = P\left(\frac{19, 9 - 20}{0, 2} < \frac{X - 20}{0, 2} < \frac{20, 3 - 20}{0, 2}\right)$				
$=\Phi_0(\frac{20,3-20}{0,2})-\Phi_0(\frac{19,9-20}{0,2})=\Phi_0(1,5)-\Phi_0(-0,5)=0,4332+0,1915=0,6247.$				
b) $P = P\{ X - 20 \le 0,3\} = P\{-0,3 \le X - 20 \le 0,3\}$	1 đ			
$= P\left\{\frac{-0.3}{0.2} < \frac{X - 20}{0.2} < \frac{0.3}{0.2}\right\} = \Phi_0(1.5) - \Phi_0(-1.5) = 2\Phi_0(1.5) = 2.0,4332 = 0,8664$				

Câu 2.43

lột nữ công nhân phụ trách 3 máy dệt tự động. Xác suất để các máy 1, 2, 3 cần đến 2 đ					
ự điều chỉnh của chị trong khoảng thời gian T tương ứng là 0,1; 0,2; 0,2. Gọi X là số					
máy cần sự điều chỉnh trong khoảng thời gian T. Tìm phân bố xác suất của X					
Đặt A_i là biến cố máy thứ i cần sự điều chỉnh trong khoảng thời gian T , $i = 1, 2, 3$ $2 \text{\r{d}}$					
X là số máy cần sự điều chỉnh trong khoảng thời gian T, X là BNN rời rạc nhận các					
giá trị 0, 1, 2, 3					
$P(X = 0) = P(\overline{A}_1 \overline{A}_2 \overline{A}_3) = P(\overline{A}_1)P(\overline{A}_2)P(\overline{A}_3) = 0,9.0,8.0,8 = 0,576$					
$P(X = 1) = P(A_1 \overline{A}_2 \overline{A}_3 + \overline{A}_1 A_2 \overline{A}_3 + \overline{A}_1 \overline{A}_2 A_3) = 0,352$					
$P(X = 2) = P(A_1A_2\overline{A}_3 + A_1\overline{A}_2A_3 + \overline{A}_1A_2A_3) = 0,068$					
$P(X = 3) = P(A_1A_2A_3) = 0,004$					
Bảng phân bố xác suất của X					
X 0 1 2 3					
P 0,576 0,352 0.068 0,004					

Cho véc tơ ngẫu nhiên (X,Y) có hàm mật độ				
$\int k(x,y) = \int k(x+2xy), (x,y) \in D = (0,3) \times (0,1)$	ı			
$f(x,y) = \begin{cases} k(x+2xy), & (x,y) \in D = (0,3) \times (0,1) \\ 0, & (x,y) \notin D = (0,3) \times (0,1) \end{cases}$	ı			
a) Tính hàm phân bố đồng thời của (X,Y).				
b) Hỏi X và Y có độc lập hay không.				

a) Ta có
$$1 = \int_{\mathbb{R}^2} f(x, y) dx dy = k \int_0^3 \left(\int_0^1 (x + 2xy) dy \right) dx = 9$$
 dẫn đến $k = \frac{1}{9}$
Hàm phân bố $F(x, y) = \int_0^x \int_0^y f(u, v) du dv$

- Nếu
$$x \le 0$$
 hoặc $y \le 0$ thì $F(x, y) = 0$

- Nếu
$$\begin{cases} 0 < x < 3 \\ y \ge 1 \end{cases}$$
 thì $F(x, y) = \frac{1}{9} \int_{0}^{x} \left(\int_{0}^{1} (u + 2uv) dv \right) du = \frac{1}{9} \int_{0}^{1} (1 + 2v) dv \int_{0}^{x} u du = \frac{x^{2}}{9}$

- Nếu
$$\begin{cases} x \ge 3 \\ 0 < y < 1 \end{cases}$$
 thì

$$F(x,y) = \frac{1}{9} \int_{0}^{3} \left(\int_{0}^{y} (u + 2uv) dv \right) du = \frac{1}{9} \int_{0}^{y} (1 + 2v) dv \int_{0}^{3} u du = \frac{1}{2} (y + y^{2})$$

- Nếu
$$\begin{cases} x \ge 3 \\ y \ge 1 \end{cases}$$
 thì $F(x, y) = 1$

Nếu
$$0 \le x \le 3$$
, $f_X(x) = \frac{1}{9} \int_0^1 (x + 2xy) dy = \frac{1}{9} x \int_0^1 (1 + 2y) dy = \frac{2x}{9}$

Nếu
$$\begin{bmatrix} x < 0 \\ x > 3 \end{bmatrix}$$
, $f_x(x) = 0$

Nếu
$$0 \le y \le 1$$
, $f_Y(y) = \frac{1}{9} \int_0^3 (x + 2xy) dx = \frac{1}{9} (1 + 2y) \int_0^3 x dx = \frac{1 + 2y}{2}$

Nếu
$$\begin{bmatrix} y < 0 \\ y > 3 \end{bmatrix}$$
, $f_Y(y) = 0$ Do đó X, Y độc lập.

	• · · · · · · · · · · · · · · · · · · ·				
	Cho véc tơ ngẫu nhiên (X,Y) có hàm mật độ	2đ			
	Cho vec to figure finite (X, Y) co fram mat do $f(x,y) = \begin{cases} k(x^2 + 3xy^2), & (x,y) \in D = (0,2) \times (0,1) \\ 0, & (x,y) \neq D, (0,2) \times (0,1) \end{cases}$				
	$ (x, y) \notin D = (0, 2) \times (0, 1) $				
Tìm hệ số tương quan của X, Y.					

- Tính k
$$1 = k \int_{0}^{2} \left(\int_{0}^{1} (x^{2} + 3xy^{2}) dy \right) dx = k \int_{0}^{2} (x^{2} + x) dx = \frac{14}{3} k \text{ dẫn đến } k = \frac{3}{14}$$

Tính EX
$$EX = \frac{3}{14} \int_{0}^{2} \left(\int_{0}^{1} (x^{3} + 3x^{2}y^{2}) dy \right) dx = \frac{3}{14} \int_{0}^{2} (x^{3} + x^{2}) dx = \frac{3}{14} \cdot \frac{20}{3} = \frac{10}{7}$$

1đ

- Tính
$$EX^2$$

$$EX^2 = \frac{3}{14} \int_0^2 \left(\int_0^1 (x^4 + 3x^3y^2) dy \right) dx = \frac{3}{14} \int_0^2 (x^4 + x^3) dx = \frac{3}{14} \cdot \frac{52}{5} = \frac{78}{35}$$

- Tính EY

$$EY = \frac{3}{14} \int_{0}^{2} \left(\int_{0}^{1} (x^{2}y + 3xy^{3}) dy \right) dx = \frac{3}{14} \int_{0}^{2} \left(\frac{x^{2}}{2} + \frac{3x}{4} \right) dx = \frac{3}{14} \cdot \frac{17}{6} = \frac{17}{28}$$

- Tính EX^2

$$EX^{2} = \frac{3}{14} \int_{0}^{2} \left(\int_{0}^{1} \left(x^{2} y^{2} + 3xy^{3} \right) dy \right) dx = \frac{3}{14} \int_{0}^{2} \left(\frac{x^{2}}{3} + \frac{3x}{4} \right) dx = \frac{3}{14} \cdot \frac{43}{18} = \frac{129}{252}$$

- Tính EXY

$$EY = \frac{3}{14} \int_{0}^{2} \left(\int_{0}^{1} (x^{3}y + 3x^{2}y^{3}) dy \right) dx = \frac{3}{14} \int_{0}^{2} \left(\frac{x^{3}}{2} + \frac{3x^{2}}{4} \right) dx = \frac{3}{14}.7 = \frac{3}{2}$$

$$-\rho_{X,Y} = \frac{\frac{3}{2} - \frac{10}{7} \cdot \frac{17}{28}}{\sqrt{\frac{78}{35} - \left(\frac{10}{7}\right)^2} \sqrt{\frac{129}{252} - \left(\frac{17}{28}\right)^2}} = 0,667$$

Câu 2.46

Véc tơ ngẫu nhiên (X,Y) có hàm mật độ đồng thời

$$f(x,y) = \begin{cases} k(x^2 + y), & (x,y) \in D = \{(x,y) | |x| \le 1, 0 \le y \le 1 - x^2\} \\ 0, & (x,y) \notin D = \{(x,y) | |x| \le 1, 0 \le y \le 1 - x^2\} \end{cases}$$

a) Xác định hằng số k. Tính kỳ của X.

b) Tính xác suất
$$P\left(0 \le X \le \frac{1}{2}\right)$$
.

- Tính k

$$1 = k \int_{-1}^{1} \left(\int_{0}^{1-x^{2}} (x^{2} + y) dy \right) dx = k \int_{-1}^{1} \left(x^{2} (1 - x^{2}) + \frac{1}{2} (1 - x^{2})^{2} \right) dx = \frac{4}{5} k$$

dẫn đến
$$k = \frac{5}{4}$$

- Tính kỳ vọng

$$EX = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = \frac{5}{4} \int_{-1}^{1} \left(\int_{0}^{1-x^{2}} x(x^{2} + y) dy \right) dx$$

$$= \frac{5}{4} \int_{-1}^{1} \left(x^{3} (1 - x^{2}) + x \frac{(1 - x^{2})^{2}}{2} \right) dx$$
dẫn đến EX=0 (hàm lẻ).

2đ

$$P\left(0 \le X \le \frac{1}{2}\right) = \frac{5}{4} \int_{0}^{\frac{1}{2}} \left(\int_{0}^{1-x^{2}} \left(x^{2} + y\right) dy\right) dx = \frac{5}{4} \int_{0}^{\frac{1}{2}} \left(x^{2} \left(1 - x^{2}\right) + \frac{1}{2} \left(1 - x^{2}\right)^{2}\right) dx$$

$$= \frac{5}{4} \cdot \frac{1}{2} \int_{0}^{\frac{1}{2}} \left(1 - x^{4}\right) dx = \frac{79}{256}$$

Cho biến ngẫu nhiên liên tục X có hàm mật độ

 $f(x) = \begin{cases} a\cos^2 x, & x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \\ 0, & x \notin \left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \end{cases}$

- a) Tìm hệ số a, và tính xác suất để trong 3 phép thử độc lập, có 2 lần X nhận giá trị trong khoảng $\left(0; \frac{\pi}{4}\right)$.
- b) Tìm hàm phân bố F(x) của X.
- a) Tính hệ số a: $1 = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} a \cos^2 x dx = a\pi \text{ dẫn đến } a = \frac{2}{\pi}$

H: "X nhận giá trị trong $\left(0; \frac{\pi}{4}\right)$ ", $P(H) = \frac{2}{\pi} \int_{0}^{\frac{\pi}{4}} \cos^2 x dx = \frac{\pi + 2}{4\pi}$

Xác suất trong 3 phép thử độc lập, có 2 lần H xảy ra là

$$P = C_3^2 \left(\frac{\pi + 2}{4\pi}\right)^2 \left(1 - \frac{\pi + 2}{4\pi}\right) = 3\left(\frac{\pi + 2}{4\pi}\right)^2 \frac{3\pi - 2}{4\pi}$$

- b) Hàm phân bố $F(x) = \int_{-\infty}^{x} f(t)dt$
- Nếu $x \le -\frac{\pi}{2}$, F(x) = 0; Nếu $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$: $F(x) = \frac{2}{\pi} \int_{-\frac{\pi}{2}}^{x} \cos^{2} t dt = \frac{2}{\pi} \int_{-\frac{\pi}{2}}^{x} \frac{1 + \cos 2t}{2} dt = \frac{1}{\pi} \left(x + \frac{\pi}{2} + \frac{1}{2} \sin 2x \right)$
- Nếu $x \ge \frac{\pi}{2}$, F(x) = 1

Câu 2.48

Cho đại lượng ngẫu nhiên X có phân bố chuẩn với kỳ vọng $\mu = 10$ và độ lệch tiểu 2d chuẩn $\sigma = 2$.

2đ

a) Tính kỳ vọng, phương sai của đại lượng ngẫu nhiên Y = 2X - 10. b) Tính xác suất $P\left(\frac{1}{23} < Z < \frac{1}{21}\right)$ với $Z = \frac{1}{2(|X|+1)}$. Cho biết $\Phi_0(0,25) = 0,0987$. EY = 2EX - 10 = 10, DY = 4DX = 161đ 1đ $P\left(\frac{1}{23} < Z < \frac{1}{21}\right) = P\left(\frac{1}{23} < \frac{1}{2(|X|+1)} < \frac{1}{21}\right) = P\left(\frac{21}{2} < |X|+1 < \frac{23}{2}\right)$ b) $= P\left(\frac{19}{2} < |X| < \frac{21}{2}\right) = P\left(-\frac{21}{2} < X < -\frac{19}{2}\right) + P\left(\frac{19}{2} < X < \frac{21}{2}\right)$ $= 0 + P\left(-\frac{1}{4} < \frac{X - 10}{2} < \frac{1}{4}\right) = 2\Phi_0(0, 25) = 0,1974$

Câu 2.49						
Trong một hộp có 10 sản phẩm trong đó có 6 chính phẩm. Lấy ngẫu nhiên từ hộp ra 2 sản phẩm. Gọi X là số chính phẩm trong 2 sản phẩm lấy ra.					2 đ	
a) Lập bảng j	ohân t	ố xác suất của X	,			
b) Tìm phân	b) Tìm phân bố xác suất và tính kỳ vọng của X.					
	a) X	0	1	2		1đ
	P	G^2	alal o	G^2 5		
	1	$\frac{C_4^2}{C_{10}^2} = \frac{2}{15}$	$\frac{C_6C_4}{C^2} = \frac{8}{15}$	$\frac{C_6^2}{C_{10}^2} = \frac{5}{15}$		
		C_{10}^{2} 13	$C_{10} = 13$	C_{10}^{2} 13		
[0	$\begin{bmatrix} 0 & \text{khi } x \leq 0 \end{bmatrix}$					1 đ
b) $F(X) = \begin{cases} 0 & \text{khi } x \le 0 \\ 2/5 & \text{khi } 0 < x \le 1 \\ 10/5 & \text{khi } 1 < x \le 2 \end{cases}$ $EX = 0.\frac{2}{15} + 1.\frac{8}{15} + 2.\frac{5}{15} = \frac{6}{3}$						
1 khi x > 2						
b) $F(X) = \begin{cases} 10 \\ 1 \end{cases}$)/5	khi $1 < x \le 2$ K khi $x > 2$	\hat{y} vọng $EX = 0.\frac{1}{15} + 1$	$1.\frac{1}{15} + 2.\frac{1}{15} = \frac{1}{3}$		