ANÁLISIS NUMÉRICO I (LM-LMA) - ANÁLISIS NUMÉRICO (LC) Primer Parcial - 22 de abril de 2025

Nombre y Apellido:						Comisión	
	1	2	3	4	TOTAL	NOTA	

- En cada ejercicio JUSTIFIQUE CLARAMENTE sus respuestas.
- Enumere todas las hojas y escriba su nombre y apellido en cada una.

Ejercicio 1. Sea $f(x) = \frac{1}{1-x}$ y $x_0 = 0$.

- a) Halle el polinomio de Taylor de orden n, $P_n(x)$, de f(x) centrado en x_0 .
- b) Determine un valor de n tal que $P_n(x)$ aproxime a f(x) con un error menor que 10^{-6} en el intervalo [0, 0.5].

Ejercicio 2. Sea

$$f(x) = \begin{cases} -x^2 & si & x \le -2\\ -x+1 & si & -2 < x \le 1\\ x(x-1)(x-5) & si & x > 1 \end{cases}$$

Graficar la función y determinar de forma analítica si la sucesión generada por el método de bisección converge en los siguientes intervalos.

- (a) [-2,0]
- (b) [-1,3]
- (c) [3,9]

En caso de encontrar convergencia, determinar el límite correspondiente y establecer si existe relación con las raíces de f(x).

Ejercicio 3. Sean $f(x) = e^x - 3x$.

- (a) Determine una función apropiada y un intervalo adecuado de tal manera que se pueda garantizar que el método de iteración de punto fijo converja a la menor raíz positiva de f.
- (b) Estimar cuántas iteraciones del método de punto fijo se necesitan para que el error absoluto sea menor a un epsilon dado.

Ejercicio 4. Sean x = 1.2347 e y = 1.2352.

- (a) ¿Cuál es el error relativo al representar x e y en punto flotante de parámetros (10, 3, -2, 2)?
- (b) ¿Cuál es el error relativo en el resultado de fl(fl(x) fl(y)) en punto flotante de parámetros (10, 3, -2, 2)?