- (a) $\nabla(1/r) = -\mathbf{r}/r^3, r \neq 0$; y, en general, $\nabla(r^n) = nr^{n-2}\mathbf{r}$ y $\nabla(\log r) = \mathbf{r}/r^2$.
- (b) $\nabla^2(1/r) = 0, r \neq 0$; y, en general, $\nabla^2 r^n = n(n+1) r^{n-2}$.
- (c) $\nabla \cdot (\mathbf{r}/r^3) = 0$; y, en general, $\nabla \cdot (r^n \mathbf{r}) = (n+3) r^n$.
- (d) $\nabla \times \mathbf{r} = \mathbf{0}$; y, en general, $\nabla \times (r^n \mathbf{r}) = \mathbf{0}$.
- **39.** ¿Son perpendiculares $\nabla \times \mathbf{F}$ y \mathbf{F} ?
- **40.** Sea $\mathbf{F}(x, y, z) = 3x^2y\mathbf{i} + (x^3 + y^3)\mathbf{j}$.
 - (a) Verificar que rot $\mathbf{F} = \mathbf{0}$.
 - (b) Determinar una función f tal que $\mathbf{F} = \nabla f$

- (en el Capítulo 8 se proporcionan técnicas para construir f en general. En este problema debe bastar el método de prueba y error.)
- **41.** Demostrar que las partes real e imaginaria de cada una de las siguientes funciones complejas forman las componentes de un campo vectorial irrotacional e incompresible en el plano; aquí $i=\sqrt{-1}$.
 - (a) $(x iy)^2$
 - (b) $(x iy)^3$
 - (c) $e^{x-iy} = e^x(\cos y i \sin y)$

Ejercicios de repaso del Capítulo 4

Para los Ejercicios 1 a 4, calcular el vector velocidad, el vector aceleración, la rapidez y la ecuación de la recta tangente en el punto indicado.

1.
$$\mathbf{c}(t) = (t^3 + 1, e^{-t}, \cos(\pi t/2)), \text{ en } t = 1$$

2.
$$\mathbf{c}(t) = (t^2 - 1, \cos(t^2), t^4), \text{ en } t = \sqrt{\pi}$$

3.
$$\mathbf{c}(t) = (e^t, \sin t, \cos t), \text{ en } t = 0$$

4.
$$\mathbf{c}(t) = \frac{t^2}{1+t^2}\mathbf{i} + t\mathbf{j} + \mathbf{k}$$
, en $t = 2$

- **5.** Calcular los vectores tangente y aceleración para la hélice $\mathbf{c}(t) = (\cos t, \sin t, t)$ en $t = \pi/4$.
- **6.** Calcular los vectores tangente y aceleración para la cicloide $\mathbf{c}(t) = (t \sin t, 1 \cos t)$ en $t = \pi/4$ y dibujarlos.
- 7. Sea una partícula de masa m que se mueve sobre la trayectoria $\mathbf{c}(t) = (t^2, \sin t, \cos t)$. Calcular la fuerza que actúa sobre la partícula en t = 0.
- **8.** (a) Sea $\mathbf{c}(t)$ una trayectoria con $\|\mathbf{c}(t)\| = \text{constante}$; es decir, la curva está en una esfera. Demostrar que $\mathbf{c}'(t)$ es ortogonal a $\mathbf{c}(t)$.
 - (b) Sea \mathbf{c} una trayectoria cuya rapidez nunca es igual a cero. Demostrar que \mathbf{c} tiene una rapidez constante si y solo si el vector aceleración \mathbf{c}'' es siempre perpendicular al vector velocidad \mathbf{c}' .

- **9.** Sea $\mathbf{c}(t) = (\cos t, \sin t, \sqrt{3}t)$ una trayectoria en \mathbb{R}^3 .
 - (a) Hallar la velocidad y la aceleración de esta trayectoria.
 - (b) Hallar una parametrización para la línea tangente a esta trayectoria en t=0.
 - (c) Hallar la longitud de arco de esta trayectoria para $t \in [0, 2\pi]$.
- **10.** Sea $\mathbf{F}(x, y, z) = (\text{sen}(xz), e^{xy}, x^2y^3z^5)$.
 - (a) Hallar la divergencia de F.
 - (b) Hallar el rotacional de **F**.
- **11.** Comprobar que el campo de la fuerza gravitacional $\mathbf{F}(x,y,z) = -A \frac{(x,y,z)}{(x^2+y^2+z^2)^{3/2}}$, donde A es constante, es irrotacional fuera del origen.
- **12.** Demostrar que el campo vectorial $\mathbf{V}(x,y,z) = 2x\mathbf{i} 3y\mathbf{j} + 4z\mathbf{k}$ no es el rotacional de ningún campo vectorial.
- **13.** Expresar la longitud de arco de la curva $x^2 = y^3 = z^5$ entre x = 1 y x = 4 como una integral, utilizando una parametrización adecuada.
- **14.** Hallar la longitud de arco de $\mathbf{c}(t) = t\mathbf{i} + (\log t)\mathbf{j} + 2\sqrt{2t}\mathbf{k}$ para $1 \le t \le 2$.