Introduction to Nonstandard Analysis

2009年11月15日 田中 良樹東京大学理学部物理学科3年

1 Introduction

超準解析(Nonstandard Analysis)という言葉をご存知ですか?これは数学における手法の1つで,そこでは無限大や無限小を"合法的に"扱い,実数上の解析や位相空間論などを展開することができます.簡単な例を挙げると,数列の極限の定義として, ε とか n_0 とか出てくる定義を大学1年生の時に習いますが,超準解析では,

任意の無限大自然数 u に対して, $a_{
u}-lpha$ が無限小のとき, $\{a_n\}$ は lpha に収束する

という直感的な表現をすることができます(もちろんこれが standard な定義と同値であることは示さねばならぬことです。) このように standard なことを nonstandard に言い換えていくことで,より直感的に理解できたり,いろいろな定理たちをより簡単に示すことができます。また歴史的にも,先に nonstandard な手法で証明された定理なんてものもあります。

私はこの超準解析を大学1年生の時に,河東泰之先生(東京大学数理科学研究科教授)の全学ゼミナールで知り,その後高々2年ほどですが,いくつかの本を読みながら続けてきました.そういうわけで,今回これを紹介することになりました.このような機会を与えてくれた井上君に,この場を借りて感謝します.さて,このテキストのIntroduction以降の構成は以下のようになるはずだったのですが,一応ページ数

さて、このテキストの Introduction 以降の構成は以下のようになるはすたったのですが、一心ペーシ数は 10 ページが目安ということなので、ここでは 2 だけにします.そして当日 3 と 4 について話をしようと思います.

- 2. 超準解析の基礎
- 3. 実数と超実数
- 4.位相と超準解析

また,参考文献として今までに読んだ or 今読んでいる本を挙げておくので,興味をもたれた方は読んでみてください(当日もたぶん持っていきます.)

では、最後にいくつかこのテキストで用いる記号についてまとめ、Introduction を終わりにします.

$$\mathfrak{P}(X) := \{A|A\subseteq X\} \quad \text{power set of } X$$

$$< a,b> := \{\{x\}, \{x,y\}\} \quad \text{ordered pair of } x \text{ and } y$$

$$< x_1, \cdots x_n> := << x_1, \cdots x_{n-1}>, x_n> \quad \text{ordered } n\text{-tuple}$$

$$X\times Y := \{< x,y> | x\in X,\ y\in Y\}$$

$$r\lceil s := \begin{cases} t \quad \text{(if there is one and only one t for which } < s,t> \in r \text{)} \\ \phi \quad \text{(otherwise)} \end{cases}$$

$$g[C] : \quad \text{image of C under a mapping } g$$

$$\text{dom}(g) : \quad \text{domain of a mapping (or relation) } g$$

ただし,関係 (relation) や写像 (mappaing) もここでは集合とみなしている.まず, $r\subseteq A\times B$ であるとき,r は relation であるという.そして $< x,y>\in r$ のとき,この r という関係が x と y の間に成り立つとみなす.また,f が A から B への写像 (mapping) であるとは,以下の場合をいう.

 $f \subseteq A \times B$, and for each $x \in A$ there is exactly one $y \in B$ such that $\langle x, y \rangle \in f$

2 超準解析の基礎

2.1 FILTER

まず,超準解析の構成に必要な,filterの定義とfilterに関するいくつかの性質を見ていこう.

Definition 2.1.1 I を空でない集合とする . $F \subseteq \mathfrak{P}(I)$ に対して以下の 3 つが成り立つとき , F は I 上の filter であるという .

- 1. $A \in F, A \subseteq B \longrightarrow B \in F$,
- $2. A, B \in F \longrightarrow A \cap B \in F$
- 3. $\phi \notin F$, $I \in F$

Definition 2.1.2 *I* 上の filter *F* が ultrafilter であるとは, さらに次が成り立つときを言う.

$$F \subseteq F_1, F_1 \text{ is a filter } \longrightarrow F = F_1$$

[問] 例として,以下の F が filter であることを確認せよ.また,これは ultrafilter であるか否か.

- $1.\,\,I$ を無限集合とする $.\,I$ の有限部分集合の補集合全体 F
- 2. I の元を1 つとり, これをx とする. $F = \{A \subseteq I | x \in A\}$

そして, ultrafilter の存在を示すのが, 次の定理である.

Theorem 2.1.3 F_0 を I 上の filter とする. このとき , I 上の ultrafilter F で $F \supseteq F_0$ なるものが存在する.

 $[\operatorname{proof}]$ $\mathfrak{G}=\{G\supseteq F_0|G$ は I 上の filter} とおく.これは \subseteq について帰納的順序集合である(すなわち,任意の全順序部分集合が上界を持つ)ということが filter の定義を用いれば示せる.よって Zorn 's Lemma から \mathfrak{G} は極大元を持ち,これが定理の主張する $\operatorname{ultrafilter} F$ である(証明終わり)

Definition 2.1.4 $G \subseteq \mathfrak{P}(I)$ が以下を満たすとき , この G は filter basis であるという .

- 1. $\phi \notin G$
- 2. $G \neq \phi$
- $3. A, B \in G \longrightarrow A \cap B \in G$

Theorem 2.1.5 G を I 上の filter basis とする . このとき , $G \subseteq F$ をみたす I 上の filter F が存在する .

 $[\operatorname{proof}]$ $F = \{A \subseteq I | A \supseteq C \text{ for some } C \in G\}$ とする.この F は明らかに G を含むので,あとはこの F が filter であることを filter の定義に戻って示そう.(1) $A \in F, A \subseteq B$ とすると,F の定義から $C \subseteq A$ なる G の元 C があるので, $B \supseteq A \supseteq C$ となり, $B \in F$ を得る.(2) $A, B \in F$ とする.すると $C_1, C_2 \in G, C_1 \subseteq A, C_2 \subseteq B$ となる C_1, C_2 が存在し, $C_1 \cap C_2 \in G$ と $A \cap B \supseteq C_1 \cap C_2$ より, $A \cap B \in F$ を得る.(3) $G \neq \phi$ より,ある G の元 C が存在して, $C \subseteq I$ より, $I \in F$.また, $\phi \notin G$ より, $\phi \supseteq C$ となる G の元 C は存在しない.よって $\phi \notin I$.(証明終わり)

上述の2つの定理より,次の系を得る.

Corollary 2.1.6 G を I 上の filter basis とすると , $G \subseteq F$ をみたす I 上の ultrafilter F が存在する . 最後に ultrafilter の重要な性質を挙げてこの節を終わりとする .

Theorem 2.1.7 I 上の filter F に対して,次の 4 条件は同値である.

- 1. F は ultrafilter
- 2. $A \subseteq I \longrightarrow A \in F \text{ or } A^c \in F$
- 3. $A \cup B \in F \longrightarrow A \in F \text{ or } B \in F$
- 4. $A_1 \cup \cdots \cup A_n \in F \longrightarrow A_i \in F$ for some j.

[問] この定理を示せ.

2.2 SUPERSTRUCTURE and UNIVERSE

まず , superstructure と呼ばれる集合を構成する.そのためにまず , individuals の集合 S を 1 つとる(すなわち , S の元は集合ではない.)一般的な話をするために S としているが , 例えば超実数を考えるのだったら S は $\mathbb R$ とする.

Definition 2.2.1 以下で定義される \hat{S} を superstructure with individuals S という.

$$S_0 = S$$

$$S_{i+1} = S_i \cup \mathfrak{P}(S_i)$$

$$\hat{S} = \bigcup_{i \in \mathbb{N}} S_i$$

S の元は individual , $\hat{S} - S$ の元は集合である .

Definition 2.2.2 $A \subseteq \hat{S}$ が \hat{S} において transitive であるとは,次が成り立つときをいう.

$$x \in A - S$$
 and $y \in x \longrightarrow y \in A$

Definition 2.2.1 のように \hat{S} を定義すると, \hat{S} は数学に必要なほぼ全ての集合(\leftarrow 写像や関係も集合とみなす)を含む.証明は簡単なため省略するが,以下の性質を示すことができる.

Theorem 2.2.3 \hat{S} に関して,以下の性質が成り立つ.

- 1. $x \in \hat{S} S \longrightarrow \mathfrak{P}(x) \in \hat{S}$
- 2. $x \in \hat{S} S, y \subseteq x \longrightarrow y \in \hat{S}$

3.
$$x \in \hat{S} - S, x \cap S = \phi \longrightarrow y = \bigcup_{z \in x} z \in \hat{S}$$

4.
$$a_1, \dots a_k \in \hat{S} \longrightarrow \langle a_1, \dots a_k \rangle \in \hat{S}$$
 and $\{a_1, \dots a_k\} \in \hat{S}$

5.
$$x_1, \dots x_k \in \hat{S} - S \longrightarrow x_1 \cup \dots \cup x_k \in \hat{S}$$

- 6. $X, Y \in \hat{S} S \longrightarrow X \times Y \in \hat{S}$
- 7. $X,Y \in \hat{S} S$, $f: X \to Y$ とすると,以下が成り立つ.
 - (a) $f \in \hat{S}$
 - (b) $a \in X \longrightarrow f(a) \in \hat{S}$
 - (c) $A \subseteq X \longrightarrow f[A] \in \hat{S}$

 $S. \ J,V \in \hat{S} - S,$ 各 $j \in J$ に対して $X_j \in V$ とする.このとき,

(a)
$$\bigcup_{j \in J} X_j \in \hat{S}$$
 (b)
$$\prod_{i \in J} X_j \in \hat{S} .$$

(b)
$$\prod_{j \in J} X_j \in \hat{S}$$
.

9.
$$r \in \hat{S}, s \in \hat{S} \longrightarrow r[s \in \hat{S}]$$

Definition 2.2.4 \hat{S} の部分集合 U が以下を満たすとき , U を universe (with individuals S) という .

- 1. $\phi \in U$
- $2. S \subseteq U$
- $3. \ x, y \in U \longrightarrow \{x, y\} \in U$
- 4. U is transitive in \hat{S} .

この定義から,次の定理が成り立つ.

Theorem 2.2.5

$$r, s \in U \longrightarrow \langle r, s \rangle \in U \text{ and } r \lceil s \in U$$

[proof] transitivity と , $\langle r, s \rangle = \{\{r\}, \{r, s\}\} = \{\{r, r\}, \{r, s\}\}$, $r[s = \phi \text{ or } \langle s, r[s \rangle \in r$ より示せる .

また, \hat{S} 自身も universe になることが定義から明らかで,これを $\operatorname{standard}$ universe という.これから先 は, ultrfilter を利用して, nonstandard universe と呼ばれる別の universe を構成する.そこで, I を空で ない集合, F を I 上の ultrafilter としよう.

まず, 各 $n \in \mathbb{N}$ に対して Z_n を, 次を満たすf全体の集合として定義する.

$$f: I \to \hat{S}$$
 and $\{d \in I | f_d \in S_n\} \in F$

また,下線部のような主張は今後,I上のほとんどの d で成り立つ」という意味を込めて $f_d \in S_n$ a.e. と 略記することにする (a.e. は almost everywhere の頭文字)

そして今定義した Z_n から,

$$Z = \bigcup_{n \in \mathbb{N}} Z_n$$

と定義する . $\operatorname{standard}$ universe \hat{S} は定数関数によって自然に Z に埋め込むことができる . というのは $r \in \hat{S}$ に対して, $r_d = r$ (for all $d \in I$) という定数関数 (これは Z の元である) を対応させればよいからである.

また , $f,g\in Z_0$ に対して $f_d=g_d$ a.e. であるとき , $f\sim g$ と定める . すると \sim は Z_0 上の同値関係になるので , Z_0 を \sim で割って , $W=Z_0/\sim$,fの属する同値類をar fと書くことにする (つまり , $ar f=\{g\in Z_0|g\sim f\},\;W=1$ $\{ar f|f\in Z_0\}$ ということ .) このように W を定義したとき, $x,y\in S, x
eq y$ ならば明らかに ar x
eq ar y である. よって $x \in S$ に対して $\bar{x} \in W$ を x と同一視することができ,S を W に埋め込んで $S \subseteq W$ とできる.す ると $x \in S$ に対しては $\bar{x} = x$ である (W の元の中に , S の元でないものがあるかどうかは , I や F のとり 方による. 例えば $I=\mathbb{N}, F=(\mathbb{N})$ の有限部分集合の補集合全体という filter を含む ultrafilter) とすると, $f_d = d \text{ (for all } d \in \mathbb{N} \text{)}$ に対する $\bar{f} \in W$ は, S の元ではない.)

次に, \hat{W} を,superstructure with individuals W とする.そしてこの中に,nonstandard universe \hat{W} を 構成しよう . 先ほど $f\in Z_0$ に対して $ar f\in W_0$ を定義した . そこですでに Z_i までの f に対し $ar f\in W_i$ が定義 されているとして, $f \in Z_{i+1} - Z_i$ に対して \bar{f} を,以下を満たす \bar{g} 全体の集合と定める.

$$g \in Z_i$$
 and $g_d \in f_d$ a.e.

すると $ar f \in W_{i+1}$ なので,これによって帰納的に全ての Z の元に対して $ar f \in \hat W$ が定義され, $f \in Z_i$ ならば $ar f \in W_i$ である.そして最後に $\tilde W = \{ar f | f \in Z\}$ とおき,これを nonstandard universe と呼ぶ.(もちろんこれが universe であることは今から示す.) また,単なる呼び方であるが, $\hat S$ の元 r によって ar r と書ける $\tilde W$ の元を standard element,そうでないものを nonstandard element と呼ぶ.また, $\hat W$ の元のうち, $\tilde W$ の元であるものは internal,そうでないものは external であるという.

今までに述べてきた定義から,次の定理を得る.

Theorem 2.2.6 $f, g \in Z$ に対して,以下が成り立つ.

- 1. $\bar{f} \in \bar{g}$ if and only if $f_d \in g_d$ a.e.
- 2. $\bar{f} = \bar{g}$ if and only if $f_d = g_d$ a.e.

[proof] 上に述べた定義と filter の定義を用いれば, 帰納的に示せる(証明略)

では次に \tilde{W} が universe であることを示そう.

Theorem 2.2.7 \tilde{W} is a universe with individuals W.

[proof] universe の定義に沿って示す. $(1)\phi\in S_1\subseteq Z_1$ より, $\bar{\phi}\in \tilde{W}$ を考えることができる.これは元を1つももたない集合のため, $\bar{\phi}=\phi$. $(2)W\subseteq \tilde{W}$ は明らか.(3) $\bar{x},\ \bar{y}\in \tilde{W}$ とする.このとき $h_d=\{x_d,y_d\}\in Z$ なので \bar{h} を考える.まず, $\bar{x},\bar{y}\in \bar{h}$.またもし, $\bar{k}\in \bar{h}$ とすると, $k_d\in \{x_d,y_d\}$ a.e. であり,すると,ultrafilter の性質 (Theorem 2.1.7) から, $k_d=x_d$ a.e. or $k_d\in y_d$ a.e. となるため, $\bar{k}=\bar{x}$ or \bar{y} . 以上より, $\{\bar{x},\bar{y}\}=\bar{k}\in \tilde{W}$. (4) の transitivity は明らか(証明終わり)

さらに次の定理も成り立つ.同じような議論が続くので,証明は[問]ということにする.

Theorem 2.2.8 $f, g, h \in \mathbb{Z}$ とする.このとき次の 2 つが成り立つ.

- 1. $\bar{h} = \langle \bar{f}, \bar{g} \rangle$ if and only if $h_d = \langle f_d, g_d \rangle$ a.e.
- 2. $\bar{h} = \bar{f} [\bar{g}]$ if and only if $h_d = f_d [g_d]$ a.e.

2.3 LANGUAGE

universe U に対して,対応する language \mathfrak{L}_U とは,次の記号たちの集まりである.

- 1. $=, \in, \neg, \&, \exists, (,), <, >, \lceil, , \rceil$
- 2. variables $(x, y, z, \dots, x_1, x_2 \dots)$
- 3. constants (constants と U の元の間には 1 対 1 の対応がある.)

そして, \mathfrak{L}_U の記号の有限列を expression といい,そのうち特に意味を持つ term,formula などを次に定義する.以下 U が明らかな場合は \mathfrak{L}_U を単に $\mathfrak L$ と書く.

Definition 2.3.1 expression μ が $\mathfrak L$ の term であるとは , μ を末項に持つ有限列 μ_1, \cdots, μ_n (もちろん $\mu_n = \mu$) が存在して , 全ての $i = 1, 2, \cdots n$ に対して以下のいずれかが成り立つ場合 .

- 1. μ_i is variable.
- 2. $\mu_i \not \downarrow \mathcal{L} \mathcal{D}$ constant.
- $3. \mu_i = \langle \mu_i, \mu_k \rangle$ where j, k < i (この" = "は $\mathfrak L$ の記号の = という意味ではない、次も同様、)
- 4. $\mu_i = (\mu_i \lceil \mu_k)$ where j, k < i

とくに 1 つも variable を含まない term を , closed term という . また , term μ が $x_1, \cdots x_k$ という variables を含む場合は , それを明示して , $\mu(x_1, \cdots x_k)$ と書く . このとき $x_1, \cdots x_k$ を全て constants $b_1, \cdots b_k$ で置き換えれば , これは closed term になる .

Definition 2.3.2 expression α が $\mathfrak L$ の formula であるとは, α を末項に持つ有限列 $\alpha_1, \cdots, \alpha_n$ (もちろん $\alpha_n = \alpha$) が存在して,全ての $i = 1, 2, \cdots n$ に対して以下のいずれかが成り立つ場合と定義する.

- 1. $\alpha_i = (\mu = \nu)$ where μ and ν are terms of \mathfrak{L}
- 2. $\alpha_i = (\mu \in \nu)$ where μ and ν are terms of \mathfrak{L}
- 3. $\alpha_i = \neg \alpha_i$ where j < i
- 4. $\alpha_i = (\alpha_i \& \alpha_k)$ where j, k < i
- 5. $\alpha_i = (\exists x_i \in \mu) \alpha_k$ where k < i, and μ is a term of \mathfrak{L} in which x_i doesn't occur.

formula に出てくる variables のうち , \exists に束縛されているものを , bounded variable , そうでないものを free variable という . そして特に free variable を持たない formula を , sentence と呼ぶ . また , formula α が $x_1, \cdots x_k$ という free variables を持つ場合は , term の場合と同様に , それを明示して , $\alpha(x_1, \cdots x_k)$ と書く . このとき $x_1, \cdots x_k$ を全て constants $b_1, \cdots b_k$ で置き換えれば , これは sentence になる .

次に , closed term や sentence の U での解釈を定義する.直感的には明らかだが , まず次の手順で closed term μ の U における値 $|\mu|_U$ を定義する (U を明示する必要がないときは単に $|\mu|$ と書く .)

- 1. μ が constant b の場合は , 1 対 1 に対応する U の元があるので , これを同じ文字で b と書き , $|b|_U=b$.
- 2. $|<\mu,\nu>|_U=<|\mu|_U,|\nu|_U>$
- 3. $|(\mu \lceil \nu)|_U = (|\mu|_U \lceil |\nu|_U)$

あとは term の構成法から、帰納的に定めることができる.

そして次に , sentence の真偽を定めよう . 次のような手順で , $U \models \alpha$ を定義する .

- $1.~U\models(\mu=
 u)$ とは , $|\mu|_U=|
 u|_U$ のとき (そしてもちろんその場合のみ . 以下も同様 .)
- $2.~U\models(\mu\in\nu)$ とは, $(|\mu|_U)\in(|\nu|_U)$ のとき.
- 3. $U \models \neg \alpha$ とは、 $U \models \alpha$ でないとき.
- $4. \ U \models (\alpha \& \beta)$ とは , $U \models \alpha$ かつ $U \models \beta$ のとき .
- $5.~U \models (\exists x_i \in \mu)\alpha(x_i)$ とは , $U \models \alpha(c)$ がある $c \in |\mu|_U$. に対して成り立つとき .

あとは formula の構成法から , 帰納的に定めることができる . $U \models \alpha$ のとき , α is true in U という . そうでないとき , $U \not\models \alpha$ と書き , α is false in U という .

Definition 2.3.3 $A \subseteq U$ とする . A が definable (厳密には , definable subset of U) とは , ある \mathcal{L}_U の formula $\alpha = \alpha(x)$ が存在して ,

$$A = \{b \in U | U \models \alpha(b)\}$$

と書ける場合とする.

また,今までの定義では, \lor , \to , \leftrightarrow , \forall は出てこなかったが,それぞれ次の formula を表していると考えれば,これらを用いることができる.(また,上の $U \models \alpha$ を定める手順に戻って考えることで,これらはいつも通りの解釈と一致することが分かる.)

$$(\alpha \lor \beta) = \neg(\neg \alpha \& \neg \beta)$$

$$(\alpha \to \beta) = \neg(\alpha \& \neg \beta)$$

$$(\alpha \leftrightarrow \beta) = ((\alpha \to \beta) \& (\beta \to \alpha))$$

$$(\forall x_i \in \mu)\alpha = \neg(\exists x_i \in \mu) \neg \alpha$$

2.4 ŁOS' THEOREM

 $\mathfrak{L}=\mathfrak{L}_{\tilde{S}},\ ^*\mathfrak{L}=\mathfrak{L}_{\tilde{W}}$ とする.またそれぞれの term の解釈は, $|\mu|,\ |\mu|,\ |\mu|_*$ のように書くことにする. λ を \mathfrak{L} の formula (or term) としよう.これに対する $^*\mathfrak{L}$ の formula (or term) $^*\lambda$ を, λ に含まれる全ての constant b を, \tilde{W} で \bar{b} を表す \mathfrak{L} の constant \bar{b} で置き換えて得られるものと定める(ここで,b や \bar{b} を,language の constant と universe の元 の 2 通りの意味で使っていることに注意.)この定義より, λ に出てくる全ての constant \tilde{M} individual を表す場合は, $^*\lambda=\lambda$ となる.

Theorem 2.4.1 $\mu(x_1, \dots x_n)$ を $\mathfrak L$ の term , $g^1, \dots g^n \in Z$, $\bar{g} = |*\mu(\bar{g^1}, \dots \bar{g^n})|_*$ とする. すると,

$$g_d = |\mu(g_d^1, \cdots g_d^n)|$$
 a.e.

[proof] term の構成に関する帰納法で示せる(つまり," ("や" < "の出現回数についての帰納法)

Corollary 2.4.2 $\mu(x_1,\cdots x_n)$ を $\mathfrak L$ の term , $g^1,\cdots g^n\in Z$, 各 $d\in I$ に対して , $h_d=|\mu(g_d^1,\cdots g_d^n)|$ とおく、すると,次が成立.

$$h \in Z$$
 and $\bar{h} = | \mu(\bar{q^1}, \cdots \bar{q^n}) |_*$

 $[\mathrm{proof}]$ まず $h\in Z$ と仮定して, $ar{g}=|^*\mu(ar{g^1},\cdots ar{g^n})|_*$ とおくと Theorem 2.4.1 より $g_d=h_d$ a.e. なので,Theorem 2.2.6 より $ar{h}=ar{g}$ を得る.そして, $h\in Z$ であることは,term の構成に関する帰納法で言える.

Theorem 2.4.3 (Łos' theorem)

 $lpha=lpha(x_1,\cdots x_n)$ を $\mathfrak L$ の formula , $g^1,\cdots g^n\in Z$ とする . すると , 以下が成り立つ .

$$* \models *\alpha(\bar{g^1}, \cdots \bar{g^n})$$
 if and only if $\models \alpha(g_d^1, \cdots g_d^n)$ a.e.

[proof] α の中に出てくる" ¬ "," & "," \exists "の個数 k についての帰納法で示す.

[k=0 のとき ($\alpha=(\mu=\nu) \text{ or } (\mu\in\nu)$ の形のとき)

まず, $\alpha=(\mu=\nu)$ の場合, * $\alpha=(*\mu=*\nu)$ である. Theorem 2.4.1 と Theorem 2.2.6 より,

$$\label{eq:continuous_problem} \begin{split} {}^* \models {}^*\alpha(\bar{g^1}, \cdots \bar{g^n}) & \quad \text{if and only if} \quad |{}^*\mu(\bar{g^1}, \cdots \bar{g^n})|_* = |{}^*\nu(\bar{g^1}, \cdots \bar{g^n})|_* \\ & \quad \text{if and only if} \quad |\mu(g^1_d, \cdots g^n_d)| = |\mu(g^1_d, \cdots g^n_d)| \text{ a.e.} \\ & \quad \text{if and only if} \quad \models \alpha(g^1_d, \cdots g^n_d) \text{ a.e.} \end{split}$$

また,この証明の" = "を" \in "で置き換えれば,もう一方の場合の証明になる.

[k>0 のとき($\alpha=\neg\beta$, $\alpha=(\beta\&\gamma)$, or $\alpha(x_1,\cdots x_n)=\left(\exists x\in\mu(x_1,\cdots x_n)\right)\beta(x,x_1,\cdots x_n)$ の形)]帰納法の仮定として, β , γ に対しては定理が成立するとする.

 $(その1)\alpha = \neg\beta$ の場合

*
$$\models$$
 * $\alpha(\bar{g^1}, \dots \bar{g^n})$ if and only if * $\not\models$ * $\beta(\bar{g^1}, \dots \bar{g^n})$ if and only if $\not\models \beta(g_d^1, \dots g_d^n)$ a.e. if and only if $\models \alpha(g_d^1, \dots g_d^n)$ a.e.

 $(その2)\alpha = (\beta \& \gamma)$ の場合

$$\begin{tabular}{ll} $*\models *\alpha(\bar{g^1},\cdots \bar{g^n})$ & if and only if & $*\models *\beta(\bar{g^1},\cdots \bar{g^n})$ and $*\models *\gamma(\bar{g^1},\cdots \bar{g^n})$\\ & if and only if & $\models\beta(g^1_d,\cdots g^n_d)$ a.e. and $\models\gamma(g^1_d,\cdots g^n_d)$ a.e.\\ & if and only if & $\models\alpha(g^1_d,\cdots g^n_d)$ a.e. \end{tabular}$$

(その3) $\alpha(x_1,\cdots x_n)=\left(\exists x\in \mu(x_1,\cdots x_n)\right)\beta(x,x_1,\cdots x_n)$ の場合まず,* \models * $\alpha(\bar{g^1},\cdots \bar{g^n})$, $\bar{h}=|*\mu(\bar{g^1},\cdots \bar{g^n})|_*$ と仮定する.* α の解釈から,ある $\bar{g}\in \tilde{W}$ が存在して,

$$\bar{g} \in \bar{h} \text{ and } * \models *\beta(\bar{g}, \bar{g^1}, \cdots \bar{g^n})$$

Theorem 2.2.6 と帰納法の仮定から

$$g_d \in h_d$$
 a.e. $\models \beta(g_d, g_d^1, \cdots g_d^n)$ a.e.

また,Theorem 2.4.1 より, $h_d = |\mu(g_d^1, \cdots g_d^n)|$ a.e. となるので,

$$\models \alpha(g_d^1, \cdots g_d^n)$$
 a.e.

次は逆に $\models \alpha(g_d^1,\cdots g_d^n)$ a.e. を仮定する. $h_d=|\mu(g_d^1,\cdots g_d^n)|$ とおくと,Corollary 2.4.2 より, $h\in Z,\ \bar h=|*\mu(\bar{g^1},\cdots \bar{g^n})|_*$ である.すると仮定より,次のような g_d が存在する.

$$[g_d \in h_d \text{ and } \models \beta(g_d, g_d^1, \cdots g_d^n)]$$
 a.e.

帰納法の仮定と Theorem 2.2.6 から,

$$\bar{q} \in \bar{h} \text{ and } * \models *\beta(\bar{q}, \bar{q^1}, \cdots \bar{q^n}).$$

したがって,

$$* \models *\alpha(\bar{q^1}, \cdots \bar{q^n})$$

となる.(証明終わり)

とくに n=0 のLos' theorem として,次の系を得る.

Corollary 2.4.4 (transfer principle) α を $\mathfrak L$ の sentence とする . すると , 次が成り立つ .

*
$$\models$$
 * α if and only if $\models \alpha$

Definition 2.4.5 A を definable subset とする . そして A は \pounds の formula α によって , $A = \{b \in \hat{S} | \models \alpha(b)\}$ と書けるとする . このとき , A に対して , *A を ,

$$^*A = \{b \in \tilde{W} | ^* \models ^*\alpha(b)\}$$

と定義する.

[問] この定義が well defined であること (α のとり方に依存しないこと) を示せ.

Corollary 2.4.6 r を $r \in \hat{S} - S$ とする . すると r は definable で , $*r = \bar{r}$. [proof] \mathfrak{L} の formula $\alpha(x)$ として , $\alpha(x) = (x = r)$ をとればよい (証明終わり)

さらに standard universe \hat{S} (今からこれを U と書く) 自身も , $\alpha(x)=(x=x)$ によって definable であるので , $^*U=\{b\in \tilde{W}|\ ^*\models(b=b)\}=\tilde{W}$ となり , *U が nonstandard universe \tilde{W} となっている . また , S の元 x に対しては , x がそもそも集合でないため , *x は上では定義されないが , 便宜上 $^*x=\bar{x}=x$ と 定義しておく . 以上の議論を用いると , 以下の定理が示せる . 証明は比較的簡単なので , [問] とする .

Theorem 2.4.7 $A \subseteq S$ とする.このとき, $A \subseteq {}^*A$ and ${}^*A \cap S = A$ である.

Theorem 2.4.8 $x, y \in U$ とする.このとき以下が成り立つ.

- 1. x = y if and only if x = y
- 2. $x \in y$ if and only if $x \in y$
- 3. * $\langle x, y \rangle = \langle x, y \rangle$
- 4. *(x[y) = (*x[*y)

Theorem 2.4.9 A, B を definable subsets of U とする. すると,以下が成り立つ.

- 1. $*(A \cup B) = *A \cup *B$
- 2. $*(A \cap B) = *A \cap *B$
- 3. *(A B) = *A *B

Corollary 2.4.10 $\phi = \phi, \ *\{a_1, \cdots a_k\} = \{*a_1, \cdots *a_k\}$

Theorem 2.4.11 ${}^*U = \bigcup_{i \in \mathbb{N}} {}^*(S_i)$

Theorem 2.4.12 $f \in U$ を写像, $C \subseteq dom(f)$ とすると, $^*(f[C]) = ^*f[^*C]$ である.

また, formula をいちいち書くのは大変なので, いくつかの略記してよいものを確認しよう.

- 1. X is a set : $\alpha_1(X) \equiv (X = \phi) \lor (\exists x \in X)(x = x)$
- 2. $X \subseteq Y : \alpha_2(X,Y) \equiv \alpha_1(X) \& \alpha_2(Y) \& (\forall x \in X)(x \in Y)$
- 3. $Z = X \times Y : (\forall z \in Z)(\exists x \in X)(\exists y \in Y)(z = \langle x, y \rangle) \& (\forall x \in X)(\forall y \in Y)(\exists z \in Z)(z = \langle x, y \rangle)$
- 4. f maps X into $Y: \alpha_4(f, X, Y) \equiv (\alpha_1(X) \& \alpha_1(Y) \& \alpha_1(f) \& (\forall t \in f)(\exists x \in X)(\exists y \in Y)(t = \langle x, y \rangle) \& (\forall x \in X)(\forall y \in Y)(\langle x, y \rangle \in f \leftrightarrow y = f[x))$
- 5. f maps X onto $Y: \alpha_4(f, X, Y) \& (\forall y \in Y) (\exists x \in X) (y = f \lceil x)$

これらを用いると,次の定理が示される.

Theorem 2.4.13 $A, B \in U, A \subseteq B$ とすると, $*A \subseteq *B$ である.

Theorem 2.4.14 $B \in U$, $A \in {}^*U$, $A \subseteq {}^*B$ とすると , $A \in {}^*(\mathfrak{P}(B))$ である .

また,A. の略記から, $f:A\to B$ に対して, $^*f:^*A\to ^*B$ となる.とくに $A,B\subseteq S$ のときは, $A\subseteq ^*A,B\subseteq ^*B$ であり,transfer principle より A 上では f と *f の値が一致する.このような場合, *f は f の拡張になっているとみなし, * を省いて単に f と書く.同様のことが r relation $r\subseteq A\times B,\,A,B\subseteq S$ に対しても言えるので,この場合も * を省略する.

2.5 CONCURRENCE

いままでのところ,I や F のとり方には言及してこなかった.例えば $I=\{0,1\}, F=\{I\}$ などとすると F は ultrafilter だが,すぐに W=S ということが分かり,何も意味がないことをしていた・・・ということになってしまう.こうなっては困るので,この節では I や F のとり方を(次の concurrence theorem の証明に出てくる I や F として)決める.

Definition 2.5.1 relation r が concurrent (in U) とは, $r \in U$ で,いかなる有限個の $a_1, \dots a_k \in \text{dom}(r)$ に対しても,ある $b \in U$ が存在して $\langle a_i, b \rangle \in r$ for $i = 1, 2, \dots k$ となるときをいう.

Theorem 2.5.2 (concurrence theorem)

relation r を concurrent (in U) とする . するとある $b \in {}^*U$ が存在して , 以下を満たす (そうなるように F,I をとれる .)

$$\langle a, b \rangle \in r$$
 for all $a \in dom(r)$

[proof] まず I を , 次をみたす function α 全体の集合とする .

- α は, U の concurrent relation r 全体の集合を定義域とする function .
- concurrent relation r に対して, $\alpha(r)$ は,dom(r) の有限部分集合を値にとる.

そして $\alpha, \beta \in I$ に対して, $\alpha < \beta$ とは

 $\alpha(r) \subseteq \beta(r)$ for each concurrent relation $r \in U$

 $\gamma = \alpha \vee \beta$ \geq \natural

$$\gamma(r) = \alpha(r) \cup \beta(r) \qquad (\rightarrow$$
 すると $\gamma \in I)$

 Γ_{α} は

$$\Gamma_{\alpha} = \{ \beta \in I | \alpha < \beta \}$$

を表すとそれぞれ定義する.

Lemma 2.5.3 $\Gamma_{\alpha} \cap \Gamma_{\beta} = \Gamma_{\alpha \vee \beta}$

 $[\text{proof}] \quad \gamma \in \Gamma_{\alpha} \cap \Gamma_{\beta} \ \leftrightarrow \ \alpha < \gamma, \ \beta < \gamma \ \leftrightarrow \ \forall r \ \alpha(r) \subseteq \gamma(r), \ \beta(r) \subseteq \gamma(r) \ \leftrightarrow \ \alpha \lor \beta < \gamma \ \leftrightarrow \ \gamma \in \Gamma_{\alpha \lor \beta}$

Lemma 2.5.4 $G = \{\Gamma_{\alpha} | \alpha \in I\} \mid \sharp$, $I \perp \mathcal{O}$ filter basis.

[proof] filter basis の定義に戻って示す.(1) どのような G の元 Γ_{α} も,少なくとも α を元として持つため,G の元はどれも空ではない. (2) 全ての concurrent relation r にたいして, $\alpha_0(r) = \phi$ と定義することで,G が少なくとも α_0 という元を持つことが分かる.よって $G \neq \phi$ (3) Γ_{α} , $\Gamma_{\beta} \in G$ に対して,Lemma 2.5.3 より, $\Gamma_{\alpha} \cap \Gamma_{\beta} = \Gamma_{\alpha \vee \beta} \in G$.(Lemma 2.5.4 の証明終わり)

Corollary 2.1.6 より , G を含む I 上の ultrafilter F をとることができる . そこで , F はこのようにとることにする . まとめると ,

Lemma 2.5.5 F は I 上の ultrafilter で,各 $\alpha \in I$ に対して $\Gamma_{\alpha} \in F$. ということである.

さて,Concurrent relation $r\in U$ を一つとって固定し, $r\in S_k$ とする. $f:I\to U$ を, $\alpha\in I$ に対して次を満たす f_α を対応させる写像として定義する.

$$< a, f_{\alpha} > \in r$$
 が $\alpha(r)$ の任意の元 a に対して , 成り立つ .

(このように定義できるのは , Concurrent relation の定義による .)そして各 $\alpha\in I$ に対して , S_k の transitivity より , $f_\alpha\in S_k$, よって $f\in Z$ であることが分かるので , $b=\bar f\in {}^*U$ とおく . すると , 次の Lemma が成り立つ .

 ${f Lemma~2.5.6}$ 各 $a\in{
m dom}(r)$ に対して, $\{lpha|< a,f_lpha>\in r\}\in F$ (すなわち, $< a,f_lpha>\in r$ a.e.)

[proof] $\beta \in I$ を , $\beta(X) = \{a\}(X = r \text{ のとき})$ $\phi(X \neq r \text{ のとき})$ と定める. すると ,

$$\alpha \in \Gamma_{\beta} \to \beta < \alpha \to \beta(r) \subseteq \alpha(r) \to a \in \alpha(r) \to \langle a, f_{\alpha} \rangle \in r \to \alpha \in \{\alpha' \mid \langle a, f_{\alpha'} \rangle \in r\}$$

となり , $\Gamma_{\beta}\subseteq\{\alpha|< a,f_{\alpha}>\in F\}$ を得る . Lemma 2.5.5 より $\Gamma_{\beta}\in F$ なので , filter の満たす条件から , $\{\alpha|< a,f_{\alpha}>\in F\}\in F$ が成り立つ (Lemma 2.5.6 の証明終わり)

この Lemma とLos' theorem より, concurrence theorem が導かれる(定理の証明終わり)

以後は concurrence theorem が成り立つこの F,I をとっておくとする.最後に少しだけ,Concurrence theorem を使う具体例を見て終わりにしよう.まず $\mathbb{N}\subseteq S$ とする.すると Theorem 2.4.7より $N\subseteq {}^*N$ である.さて,次の relation を考えよう.

$$L = \{ \langle x, y \rangle | x \in \mathbb{N}, y \in \mathbb{N}, x < y \}$$

[問] これが concurrent であることを示せ.

すると concurrence theorem より , ある $b\in {}^*U$ が存在して , 全ての $a\in \mathbb{N}$ に対して $<*a,b>\in {}^*L$ が成り立つ . そもそも $L\subseteq \mathbb{N}\times \mathbb{N}$ だったので , 前節の議論から ${}^*L\subseteq {}^*\mathbb{N}\times {}^*\mathbb{N}$. よって , $b\in {}^*\mathbb{N}$ である . この b がもし \mathbb{N} の元だとすると , ${}^*b=b$ なので , ${}^*\models<*a,{}^*b>\in {}^*L$ と transfer principle から , 全ての自然数 a に対して a< b であることになってしまう (もちろんそんなことはない .) よって $b\in {}^*\mathbb{N}-\mathbb{N}$ である (これは , Nonstandard individual)

2.4 節の終わりに書いたように, $x,y\in {}^*\mathbb{N}$ に対しても, $< x,y>\in {}^*L$ の時は x< y と書くことにすると,上の $b\in {}^*\mathbb{N}-\mathbb{N}$ は,全ての $a\in \mathbb{N}$ に対して a< b であり,これが無限大自然数である.また,いま < を ${}^*\mathbb{N}$ 上の関係に拡張したが,これが全順序であることに変わりはない.(というのは, \mathbb{N} 上での < の全順序性を表す formulae を書いて,transfer principle を用いれば,直ちに得られるからである.)

この最後の全順序性のように、 $transfer\ principle\ を用いると、*U$ 上でもいろいろな構造を保つことができる.そして、今見たように、無限大や(まだ出てきていないけれど)無限小が出現し、これらを使いながら解析をこれから展開していくわけである.ここまでで、基礎の部分はまあまあ説明したので、これ以降の応用は当日話すことにして、ひとまず事前のテキストはこれにて終わりにしようと思います.

参考文献

- [1] Martin Davis. Applied Nonstandard Analysis. John Wiley & Sons, New York, 1977.
- [2] Sergio Albeverio, Jens Eric Fenstad, Raphael Høegh-Krohn, Tom Lindstrøm. *Nonstandard Methods in Stochastic Analysis and Mathematical Physics*. Academic Press, Inc., Orlando, Florida, 1986.
- [3] Abraham Robinson. Non-standard Analysis Rev. ed. Princeton University Press, 1996.
- [4] 河東泰之『超準解析』講義ノート (2007 年度東京大学教養学部での講義ノート)
- [5] 齊藤正彦. 数学の基礎. 東京大学出版, 2002
- [6] 田中一之. 数の体系と超準モデル. 裳華房, 2002