Spring 1999 M. Hartmann

THE EXCESS SCALING ALGORITHM FOR THE MAXIMUM FLOW PROBLEM

The Capacity Scaling Algorithm

The Excess Scaling Algorithm

Proof of Polynomial Time

Extensions

THE GENERIC SCALING ALGORITHM

Input: A problem instance **P**.

- Let **P*** be a very rough approximation to **P**.
- Solve problem **P***, possibly approximately.
- Replace P* by a less rough approximation to P.
- Solve problem **P***, possibly approximately, starting with the previous solution.

Iterate until problem **P** is solved optimally.

IMPROVEMENT IN THE FORD FULKERSON AUGMENTING PATH ALGORITHM

Augment along the path that maximizes $\delta(P)$, the residual capacity of the path.

- Number of augmentations is O(m log U).
- Running time is O(m² log U).

A scaling variant:

- Select a target value Δ . Initially $\Delta = U/2$.
- Augment along a path p with $\delta(P) \ge \Delta$. If no such path exists, replace Δ by $\Delta/2$.

The number of augmenting paths is O(m log U), or O(m) between successive divisions of Δ by 2.

Running time: O(nm log U) if implemented well, or O(nm) between successive divisions of Δ by 2.

BOUNDING THE NUMBER OF AUGMENTATIONS

At the end of the scaling iteration, the residual capacity from S to T is less than $m\Delta$:

Hence the number of augmentations at next iteration is less than 2m.

AN ALGORITHM FOR WHICH THE NUMBER OF NON-SATURATING PUSHES IS O(n² log U).

```
Let K satisfy U \le 2^K and let e_{max} = max \{ e(i) : i \in N \}.
```

```
algorithm EXCESS-SCALING; begin  \begin{array}{l} \text{PREPROCESS;} \\ \text{K} := \lceil \log_2 \mathsf{U} \rceil; \\ \text{for } \text{k} := \text{K down to 0 do} \\ \text{begin } \{ \Delta \text{-scaling phase } \} \\ \Delta := 2^k; \\ \text{while there is a node i with } \text{e(i)} > \Delta/2 \text{ do} \\ \text{PUSH/RELABEL(i,} \Delta); \\ \text{end;} \\ \end{array}
```

PUSH/RELABEL must be modified to ensure that no node excess exceeds Δ in the Δ -scaling phase.

PRELIMINARIES

The Δ in the scaling phase is referred to as the *excess-dominator*. The scaling phase is also called the Δ -scaling phase.

- The number of scaling phases is O(log U).
- At the Δ -scaling phase, $\Delta/2 < e_{max} \leq \Delta$.
- Each scaling phase reduces Δ by a factor of 2.
- After K+1 scaling phases, e_{max} is reduced to 0.

New data structures:

$$ActNode(\Delta,k) = \{i \in N : d(i) = k, e(i) > \Delta/2\}$$

$$ActSet(\Delta) = \{k : ActNode(\Delta) \neq \emptyset\}.$$

We store the labels in $ActSet(\Delta)$ in increasing order.)

```
procedure SELECT;
begin
  if ActSet(\Delta) = \emptyset then
     go to the \Delta/2 scaling phase
  else
     begin
        select the minimum distance label k in ActSet(\Delta);
        select i \in ActNode(\Delta,k);
        PUSH/RELABEL(i,\Delta);
     end;
end
procedure PUSH/RELABEL(i,\Delta);
begin
  if there is an admissible arc (i,j) then
    push \delta := \min\{e(i), r_{ij}, \Delta - e(j)\}\ units of flow from i to j
  else
    d(i) := min \{d(j) + 1 : (i,j) \in A(i) \text{ and } r_{ij} > 0\};
end
```

EXAMPLE

e(3)=5
After preprocessing;
nodes are labelled with distances,
arcs are labelled with residual capacities.

COMPLEXITY ANALYSIS

Lemma. The algorithm satisfies the following two conditions:

- 1. Each non-saturating push from a node i to a node j sends at least $\Delta/2$ units of flow.
- 2. No excess ever exceeds Δ .

Proof: Suppose that we perform a non-saturating push on (i,j). Then $e(i) > \Delta/2$ because $i \in ActNode(\Delta,d(i))$. Also $e(j) \leq \Delta/2$ because $d(j) \notin ActList(\Delta)$. [Recall that d(i) has the minimum distance label in $ActList(\Delta)$.] Thus $\delta = min\{e(i), \Delta - e(j)\} \geq \Delta/2$.

Theorem. The excess-scaling algorithm performs $O(n^2)$ non-saturating pushes per scaling iteration and $O(n^2 \log U)$ pushes in total.

PROOF. Consider the potential function

$$\Phi = \sum_{i \in N} e(i)d(i)/\Delta$$
.

(Think of d(i) as the height of a node, and e(i)/ Δ as its weight measured in units of Δ . Then Φ is its gravitational potential.)

Questions:

- What is the effect on Φ of a saturating push?
 (Does it go up? Does it go down?)
- What is the effect on Φ of a non-saturating push?
- What is the total impact on Φ of the distance increases of a specific node i over all iterations?

A MORE FORMAL PROOF OF THE TIME BOUND

Let ΔD , R, SAT and NS be the steps during which an excess dominator decrease ($\Delta := \Delta/2$), relabel, saturating push or non-saturating push occurs, respectively. Note that $|\Delta D| \leq \lceil \log_2 U \rceil + 1$, $|R| \leq 2n^2$ and $|SAT| \leq nm$.

Let K be the last iteration. Each step $k \in \Delta D$, R, SAT or NS, so

$$\begin{split} \Phi(\mathsf{K}) - \Phi(0) &= \sum_{\mathsf{k} \in \Delta \mathsf{D}} \Phi(\mathsf{k}) - \Phi(\mathsf{k} - 1) + \sum_{\mathsf{k} \in \mathsf{R}} \Phi(\mathsf{k}) - \Phi(\mathsf{k} - 1) \\ & \sum_{\mathsf{k} \in \mathsf{SAT}} \Phi(\mathsf{k}) - \Phi(\mathsf{k} - 1) + \sum_{\mathsf{k} \in \mathsf{NS}} \Phi(\mathsf{k}) - \Phi(\mathsf{k} - 1) \end{split}$$

Next we bound the relevant terms:

- $\Phi(0) \le n^2 \text{ and } \Phi(K) = 0$
- if $k \in \Delta D$, then $\Phi(k) \Phi(k-1) \le n^2$
- if $k \in R$, then $\Phi(k) \Phi(k-1) \le \text{increase in d(i)}$
- if $k \in SAT$, then $\Phi(k) \Phi(k-1) \le 0$
- if $k \in NS$, then $\Phi(k) \Phi(k-1) \le -1/2$

Thus $|NS|/2 \le n^2 + 2n^2 \log U + 2n^2 = O(n^2 \log U)$.

ADDITIONAL COMMENTS ON EXCESS SCALING

- 1. The algorithm can be modified (substantively) so that the running time is $O(nm + n^2 \log^{1/2} U)$.
- 2. The algorithm can be modified (a little) so that *any* node i with large excess may be selected for pushing, but if we try to push to a node j that has large excess, then we put i on a stack and try to push from j.
- 3. The algorithm works quite well in practice. (But highest level pushing is a little better.)

FURTHER RESULTS

- Using the Dynamic Tree data structure, the running time of the pre-flow push algorithm can be reduced to O(nm log(n²/m)), but the algorithm is not very practical.
- 2. In the case of unit capacities, the max-flow problem can be solved in $O(n^{2/3}m)$ time. If at most one unit of flow can pass through each node, the running time is $O(n^{1/2}m)$.
- 3. In a bipartite network with $n = n_1 + n_2$ nodes, almost all pre-flow push algorithms can replace n by n_1 in the complexity.
- 4. In a planar network, the max-flow problem can be solved in $O(n^{3/2} \log n)$ time using planar separators.
- 5. The arc connectivity of a network (the number of arcs whose removal [strongly] disconnects the network) can be determined in O(nm) time.
- 6. Hao and Orlin (1994) show that the overall minimum capacity cut in a network can be determined in time O(nm log(n²/m)).