LINEAR ALGEBRA II

Ch. IV LINEAR MAPS AND MATRICES

§1. The Linear Map Associated with a Matrix

• Let A be an $m \times n$ matrix in a field K.

$$L_A: K^n \ni X \mapsto AX \in K^m$$

is a linear map from K^n to K^m .

• Theorem 1.1. If A, B are $m \times n$ matrices and if $L_A = L_B$, then A = B. In other words, if matrices A, B give rise to the same linear map, then they are equal.

• Theorem 2.1. Let $L: K^n \to K^m$ be a linear map. Then there exists a unique matrix A such that $L = L_A$.

• The identity: id_{R^n} .

• The projection: $F: \mathbb{R}^n \to \mathbb{R}^r$,

$$F(x_1,\ldots,x_n)=(x_1,\ldots,x_r).$$

• Theorem III, 2.1. Let V and W be vector spaces. Let $\{v_1, \ldots, v_n\}$ be a basis of V, and let $\{w_1, \ldots, w_n\}$ be arbitrary elements of W, Then there exists a unique linear mapping $T: V \to W$ such that

$$T(v_1) = w_1, \ldots, T(v_n) = w_n.$$

If x_1, \ldots, x_n are numbers, then

$$T(x_1v_1+\cdots+x_nv_n)=x_1w_1+\cdots+x_nw_n.$$

• Let E^1, \ldots, E^n be unit columns in R^n and A^1, \ldots, A^n arbitrary elements of R^m . Then the matrix associated to the unique linear mapping such that $T(E^1) = A^1, \ldots, T(E^n) = A^n$ is A.

$$\bullet \ L_{A+B}=L_A+L_B.$$

- $L_{cA} = cL_A$.
- $\bullet \ L_{AB} = L_A L_B = L_A \circ L_B.$

• **Theorem 2.2.** Let A be an $n \times n$ matrix, and let A^1, \ldots, A^n be its columns. Then A is invertible if and only if A^1, \ldots, A^n are linearly independent.

- Let V and W be arbitrary finite dimensional VSs over K, $\mathcal{B} = \{v_1, \dots, v_n\}$ and $\mathcal{B}' = \{w_1, \dots, w_m\}$ be bases of V and W respectively.
- Let $F: V \to W$ be a linear map.
- $\forall v \in V$, denote by
 - $X_{\mathcal{B}}(v)$ the coordinate vector of v relative to the basis \mathcal{B} ;
 - $X_{\mathcal{B}'}(F(v))$ the coordinate vector of F(v) relative to the basis \mathcal{B}'
- We associate a (uniquely determined) matrix with F, depending on our choice of bases, and denoted by $M_{\mathcal{B}'}^{\mathcal{B}}(F)$, such that $\forall v \in V$

$$X_{\mathcal{B}'}(F(v)) = M_{\mathcal{B}'}^{\mathcal{B}}(F)X_{\mathcal{B}}(v).$$

• Let V be a vector space, and let $\mathcal{B}, \mathcal{B}'$ be bases of V. Then $\forall v \in V$

$$X_{\mathcal{B}'}(v) = M_{\mathcal{B}'}^{\mathcal{B}}(\mathrm{id})X_{\mathcal{B}}(v).$$

Let

$$F(v_1) = a_{11}w_1 + \dots + a_{m1}w_m$$

$$\vdots$$

$$F(v_n) = a_{1n}w_1 + \dots + a_{mn}w_m$$

then

$$M_{\mathcal{B}'}^{\mathcal{B}}(F) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

• **Remark.** If the order of vectors in \mathcal{B} or \mathcal{B}' , then $M_{\mathcal{B}'}^{\mathcal{B}}(F)$ will change.

- $M_{\mathcal{B}}^{\mathcal{B}}(\mathrm{id}) = I$.
- Let $\mathcal{B} = \{v_1, \dots, v_n\}$ and $\mathcal{B}' = \{w_1, \dots, w_n\}$ be bases of V. If

$$w_1 = a_{11}v_1 + \dots + a_{n1}v_n$$

$$\vdots$$

$$w_n = a_{1n}v_1 + \dots + a_{nn}v_n$$

then

$$M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{id}) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

• Theorem 3.3.

- $\bullet \ M_{\mathcal{B}'}^{\mathcal{B}}(F+G)=M_{\mathcal{B}'}^{\mathcal{B}}(F)+M_{\mathcal{B}'}^{\mathcal{B}}(G)$
- $\bullet \ M_{\mathcal{B}'}^{\mathcal{B}}(cF) = cM_{\mathcal{B}'}^{\mathcal{B}}(F)$
- Let dim V = n and dim W = m. The association $F \mapsto M_{\mathcal{B}'}^{\mathcal{B}}(F)$ is an isomorphism between $\mathcal{L}(V, W)$ and $\mathrm{Mat}_{m \times n}(K)$

- Let V be a vector space, \mathcal{B} a bases of V and $F: V \to V$ is a linear mapping. $M_{\mathcal{B}}^{\mathcal{B}}(F)$ is called the matrix associated with F relative to \mathcal{B} .
- (Do this here and now) Let $P_n = \left\{ \sum_{k=0}^n a_k t^k | a_k \in R \right\}$. What is the matrix associate with $D = d/dt : P_n \to P_n$ relative to the basis $\{1, t, \dots, t^n\}$?

• **Theorem 3.4.** Let V, W, U be vector spaces. Let \mathcal{B} , \mathcal{B}' , \mathcal{B}'' be bases for V, W, U respectively. Let $F: V \to W$ and $G: W \to U$ be linear maps. Then

$$M_{\mathcal{B}''}^{\mathcal{B}'}(G)M_{\mathcal{B}'}^{\mathcal{B}}(F) = M_{\mathcal{B}''}^{\mathcal{B}}(G \circ F)$$

- $M_{\mathcal{B}}^{\mathcal{B}}(\mathrm{id}) = I$.
- Corollary 3.5. Let V be a vector spaces and \mathcal{B} , \mathcal{B}' be bases of V. Then

$$M_{\mathcal{B}'}^{\mathcal{B}}(\mathrm{id})M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{id}) = I = M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{id})M_{\mathcal{B}'}^{\mathcal{B}}(\mathrm{id}).$$

In particular, $M_{\mathcal{B}}^{\mathcal{B}'}(id)$ is invertible.

• Theorem 3.6. Let V be a vector spaces and \mathcal{B} , \mathcal{B}' be bases of V. Then there exists an invertible matrix N such that

$$M_{\mathcal{B}'}^{\mathcal{B}'}(F) = N^{-1}M_{\mathcal{B}}^{\mathcal{B}}(F)N.$$

In fact, we can take

$$N=M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{id}).$$

Proof. Applying Th. 3.4, we have

$$M_{\mathcal{B}'}^{\mathcal{B}'}(F) = M_{\mathcal{B}'}^{\mathcal{B}}(\mathrm{id})M_{\mathcal{B}}^{\mathcal{B}}(F)M_{\mathcal{B}}^{\mathcal{B}'}(\mathrm{id}).$$

- Let $F: V \to V$ be a linear map. A basis \mathcal{B} of V is said to diagonalize F if $M_{\mathcal{B}}^{\mathcal{B}}(F)$ is a diagonal matrix.
- If there exists such a basis which diagonalizes *F*, then we say that F is diagonalizable.
- If A is an $n \times n$ matrix in K, we say that A can be diagonalized (in K) if the linear map on K^n represented by A can be diagonalized.
- Theorem 3.6. Let V be a finite dimensional vector space over K, let F: V → V be a linear map, and let M be its associated matrix relative to a basis B. Then F (or M) can be diagonalized (in K) if and only if there exists an invertible matrix N in K such that N⁻¹MN is a diagonal matrix.
- Homework: P94, 8, 9, 10.