Санкт-Петербургский Государственный Университет Saint-Petersburg State University

ЛАБОРАТОРИЯ ПРОЧНОСТИ МАТЕРИАЛОВ

ОТЧЕТ

По лабораторной работе 1

«Измерение модуля Юнга и коэффициента Пуассона»

По дисциплине «Лабораторный практикум, лабораторная работа»

Выполнили:

Баталов С. А. Хайретдинова Д. Д.

 $ext{Санкт-} \Pi$ етербург 2021

Цель работы

Исследование образцов на одноосное растяжение с измерением деформаций и определением постоянных, характеризующих упругие свойства образца — модуля Юнга Е и коэффициента Пуассона. Знакомство с тензодатчиками сопротивления и их принципом действия.

Теоретическое исследование

Рассмотрим стержень длины l=150 мм, ширины a=28.7мм и толщины b=2.2мм. Площадь сечения $S_0=63$ мм $^{-1}$, стержень растягивается силой Р.

Рис. 1: Объект испытаний

Пусть ось Ох системы координат совпадает с осью стержня. Стержень будет находиться в состоянии одноосного растяжения, то есть напряжения в нем равны

$$\sigma_{xx} = \frac{P}{S_0}, \quad \sigma_{yy} = \sigma_{zz} = \sigma_{xy} = \sigma_{xz} = \sigma_{yz} = 0 \tag{1}$$

Знаем, что поведение материалов при упргой деформации описывается законом Гука, в общем случае закон Гука имеет вид:

$$\varepsilon_{xx} = \frac{1}{E} \left(\sigma_{xx} - \nu (\sigma_{yy} + \sigma_{zz}) \right); \quad \sigma_{xy} = \frac{E}{1 + \nu} \varepsilon_{xy};
\varepsilon_{yy} = \frac{1}{E} \left(\sigma_{yy} - \nu (\sigma_{xx} + \sigma_{zz}) \right); \quad \sigma_{yz} = \frac{E}{1 + \nu} \varepsilon_{yz};
\varepsilon_{zz} = \frac{1}{E} \left(\sigma_{zz} - \nu (\sigma_{yy} + \sigma_{xx}) \right); \quad \sigma_{xz} = \frac{E}{1 + \nu} \varepsilon_{xz};$$
(2)

Подставив (1) в (2), получим, что при данном поле напряжений относительные удлинения по всем осям будут отличны от нуля, а сдвиги будут равны нулю:

$$\varepsilon_{xx} = \frac{1}{E}\sigma_{xx}; \quad \varepsilon_{yy} = \varepsilon_{zz} = -\frac{\nu}{E}\sigma_{xx} \quad \varepsilon_{xy} = \varepsilon_{yz} = \varepsilon_{xz} = 0$$
(3)

Отсюда получим, что экспериментальным путем модуль Юнга и коэффициент Пуассона может быть получен по следующим формулам:

$$E = \frac{P}{S_0} \frac{1}{\varepsilon_{xx}}; \quad \nu = -\frac{\varepsilon_{yy}}{\varepsilon_{xx}} \tag{4}$$

Относительное удлинение $\varepsilon_{xx}, \varepsilon_{yy}$ стержня в данной работе находим прямым измерением при помощи тензодатчиков

Описание установки

В данной лабораторной работе деформации измеряются посредством тензодатчиков, которые установлены в продольном и поперечном направлениях. Тензодатчик (рис.4) состоит из зигзагообразно уложенной проволоки (решетки) 1, наклеенной на подложку (тонкую бумагу) 2. К концам проволочной решетки припаяны медные выводы 3. Сверху решетка покрыта защитным слоем бумаги или лака. Тензодатчик измеряет относительное удлинение в направлении, обозначенном стрелками

Рис. 2: Тензодатчик

На рисунке 1 тензодатчики 1 и 2 измеряют продольное удлинение, 3 и 4 поперечное. Тензодатчики подключены к электронному измерителю деформации. Чувствительность датчика характеризуется коэффициентом $K=6.4\cdot 10^{-7}$

Лабораторная работа выполняется на универсальном лабораторном стенде посопротивлению материалов(рис 3), здесь 1 – образец, 2 – нагружающее устройство, 3 – силоизмерительное устройство

Рис. 3: Схема экспериментальной установки

Экспериментальные данные

При выполнении работы расчеты производили, пользуясь пакетом **Matlab** Образец нагружали последовательно силой P до 500H с шагом 50H на каждом шагу фиксируя показания измерителя деформаций для 4 тензорезистров. Подсчитали разность показаний измерителя деформаций для ступени $\Delta P=50$ H и занесли в таблицу 1. Усреднили показания и определили приращения деформации $\varepsilon_{xx}, \varepsilon_{yy}$, соответствующие приращеню силы по формулам:

$$\varepsilon_{xx} = \Delta n_x K; \quad \varepsilon_{yy} = \Delta n_y K$$
(5)

Для каждого шага вычислили постоянные ν и E.

Нагрузка Р	Продольная деформация Δn_x	Поперечная деформация Δn_y	$arepsilon_{xx}$	$arepsilon_{yy}$	σ_{xx}	ν	Е
Н	Показания ИД, дел.	Показания ИД, дел.	·10 ⁻⁶	·10 ⁻⁶	МПа		ГПа
50	14	-6	8.96	-3.84	0.79	0.43	88.38
100	24	-7	15.36	-4.48	1.58	0.29	51.56
150	24	-9	15.36	-5.76	2.38	0.37	51.56
200	22	-5	14.08	-3.2	3.17	0.23	56.24
250	30	-11	19.2	-7.04	3.96	0.37	41.24
300	27	-8	17.28	-5.12	4.75	0.3	45.83
350	33	-9	21.12	-5.76	5.54	0.27	37.49
400	37	-10	23.68	-6.4	6.34	0.27	33.44
450	72	-23	46.08	-14.72	7.13	0.32	17.19
500	55	-16	35.2	-10.24	7.92	0.29	22.5

Таблица 1: Экспериментальные и расчетные данные

Рис. 4: График зависимости σ от ε_{xx}

Считая, что в 2 последних шагах результаты не являются достоверными, вычислили конечное значение коэффициента Пуассона и модуля Юнга

Е	ΔE	ν	$\Delta \nu$
ГПа	ГПа		
51	± 12	0.32	± 0.01

Относительная погрешность измерений

$$\frac{E}{\Delta E} = 23\% \quad \frac{\nu}{\Delta \nu} = 2\% \tag{6}$$

Вывод

В проделанной работе исследовали на практике одноосное растяжение стержня, измеряя деформации при помощи тензодачиков, подключенных к измерителю деформаций. Познакомились с принципом работы тезодатчиков сопротивления, их преимуществами и недостатками. Исследовав изменение продольной деформации при увеличении нагрузки убедились в линейной зависимости продольной деформации от напряжения. Вычислили модуль Юнга и коэффициент Пуассона, постоянные, характеризующие упругие свойства материала. Оценили относительные погешности результатов.