Логическо програмиране

Лектор: Тинко Тинчев

Дефиниции

Дефиниция 1 (Съждение). Нещо, което може да отъждествим до вярно или невярно. Елементарните съждения имат предварително зададена стойност.

Дефиниция 2 (Отрицание). Отрицание на съждението A променя неговата стойност на противоположната, т.е "не A" и пишем $\neg A$.

- $H_{\neg}(T) = F$
- $H_{\neg}(F) = T$

Дефиниция 3 (Конюнкция). Конюнкция на съжденията A и B наричаме съждението "A и B" и numem (A&B).

- $H_{\&}(T,T)=T$
- $H_{\&}(T,F) = H_{\&}(F,T) = H_{\&}(F,F) = F$

Дефиниция 4 (Дизюнкция). Дизюнкция на съжденията A и B наричаме съждението "A или B" и пишем $(A \lor B)$.

- $H_{\vee}(T,T) = H_{\vee}(T,F) = H_{\vee}(F,T) = T$
- $H_{\vee}(F,F)=F$

Дефиниция 5 (Импликация). Импликация на съжденията A и B наричаме съждението "ако A, то B" и пишем $(A \Rightarrow B)$.

- $H_{\Rightarrow}(T,T) = H_{\Rightarrow}(F,T) = H_{\Rightarrow}(F,F) = T$
- $H_{\Rightarrow}(T,F)=F$

Дефиниция 6 (Еквивалентност). Еквивалентност на съжденията A и B наричаме съждението "A тогава и само тогава, когато B" и пишем ($A \Leftrightarrow B$).

- $H_{\Leftrightarrow}(T,T) = H_{\Leftrightarrow}(F,F) = T$
- $H_{\Leftrightarrow}(T,F) = H_{\Leftrightarrow}(F,T) = F$

Дефиниция 7 (Квантор за всеобщност). Квантор за всеобщност в даден свят за φ е съждението "за всяко x е в сила φ " и записваме ($\forall x \varphi$)

Пример. a_1, a_2, a_3, a_4, a_5 – светьт, в който работим.

Тогава, $\forall a \varphi$ е еквивалентно на $\varphi(a_1) \& \varphi(a_2) \& \varphi(a_3) \& \varphi(a_4) \& \varphi(a_5)$, тъй като светът е краен.

Дефиниция 8 (Квантор за съществуване). Квантор за съществуване в даден свят за φ е съждението "съществува x, за което е в сила φ " и записваме $(\exists x\varphi)$

Пример. a_1, a_2, a_3, a_4, a_5 – светът, в който работим.

Тогава, $\exists a \varphi \ e$ еквивалентно на $\varphi(a_1) \vee \varphi(a_2) \vee \varphi(a_3) \vee \varphi(a_4) \vee \varphi(a_5)$, тъй като светът е краен.

Дефиниция 9 (Език на съждителното смятане). *Езикът на съждителното смятане съдържа следните непразни множества от символи:*

- Съждителни променливи (може и безкраен брой): съвкупност от букви и символи, които могат да бъдат оценени до верни/неверни в света, замисълът е те да означават елементарни съждения (PVar);
- Логически връзки: \neg , &, \lor , \Rightarrow , \Leftrightarrow букви (символи) за съждителните връзки;
- Помощни символи: (,).

Дефиниция 10 (Съждителна формула). *Съждителната формула има следната структу-*ра:

- Съждителните променливи са съждителни формули;
- Ако φ е съждителна формула, то $\neg \varphi$ също е съждителна формула;
- Ако φ и ψ са съждителни формули, то $(\varphi \& \psi), (\varphi \lor \psi), (\varphi \Rightarrow \psi), (\varphi \Leftrightarrow \psi)$ са съждителни формули.

Формули са само нещата, които могат да се получат след краен брой прилагане на горните правила.

Дефиниция 11 (Индуктивен принцип за доказване на свойства на съждителни формули). Нека A е свойство u са e сила:

- всяка съждителна променлива има свойство А;
- ако φ е съждителна формула, която има свойството A, то $\neg \varphi$ също има свойството A:
- ако φ и ψ са съждителни формули, които имат свойството A, то $(\varphi \sigma \psi)$, където $\sigma \in \{\lor, \&, \Rightarrow, \Leftrightarrow\}$, също има свойството A.

Тогава всяка съждителна формула има свойството А.

Дефиниция 12 (Еднозначен синтактичен анализ за формули). За всяка съждителна формула φ е в сила точно една от следните три възможности:

- ullet $\varphi=P,$ където P е съждителна променлива
- $\varphi = \neg \varphi_1$, където φ_1 е еднозначно определена съждителна формула
- $\varphi = (\varphi_1 \sigma \varphi_2)$, където φ_1, φ_2 са еднозначно определени формули, а σ е еднозначно определена двувалентна логическа връзка измежду $\{\lor, \&, \Rightarrow, \Leftrightarrow\}$

Семантика на съждителните формули

Дефиниция 13 (Съждителна (булева) интерпретация). Съждителна интерпретация (оценка на съждителните променливи) е изображение (функция) I_0 от съвкупността на съждителните променливи PVar (propositional variables) в $\{T, F\}$, т.е. $I_0: PVar \longrightarrow \{T, F\}$.

$$I_0(P) \in \{T, F\}, P \in PVar$$

Дефиниция 14 (Вярност на формула. Булев модел за формула). *Казваме, че* **формулата** φ **е вярна** при булевата интерпретация I_0 , ако

$$I(\varphi) = T$$
,

където I е единственото разширение на I_0 (от твърдение 1).

Пишем още, $I \models \varphi$ и казваме също така "I е модел на φ ".

$$I_0: PVar \to \{T, F\}$$

$$I: For \rightarrow \{T, F\}$$

Ако I не е булев модел за φ , пишем $I\not\models \varphi$.

Дефиниция 15 (Изпълнимост). *Казваме*, че формулата φ е **изпълнима**, ако има булева интерпретация I, която е модел за φ , т.е. $I(\varphi) = T$.

Има формули, които не са изпълними. Такива формули се наричат **неизпълними** формули. φ е **неизпълнима**, т.е. няма булева интерпретация I_0 , за която $I(\varphi) = T$, т.е. за всяка булева интерпретация I_0 , $I(\varphi) = F$.

Дефиниция 16 (Булев модел за множество от формули). Нека Γ е множество от съждителни формули. Нека I е съждителна (булева) интерпретация.

Казваме, че I е модел на Γ , ако всеки път, когато $\varphi \in \Gamma$, то $I(\varphi) = T$.

Бележим:

- $I \models \Gamma, I$ е модел за Γ
- ullet $I \models \Gamma \longleftrightarrow I$ е модел за всяка формула от Γ
- $I \models \varphi \longleftrightarrow I \models \{\varphi\}$, т.е. φ и $\{\varphi\}$ имат едни и същи модели
- $I \models \{\varphi_1, \varphi_2, \dots, \varphi_n\} \leftrightarrow I(\varphi_1) = T, I(\varphi_2) = T, \dots, I(\varphi_n) = T \leftrightarrow I((\varphi_1 \& \varphi_2 \& \dots \& \varphi_n)) = T$

Забележка. Ако има формула $\varphi \in \Gamma$, такава че $I \not\models \varphi$, т.е. $I(\varphi) = F$, то I не е модел за Γ , т.е. $I \not\models \Gamma$.

Дефиниция 17 (Изпълнимост на множество от формули). Едно множество от формули Γ се нарича **изпълнимо**, ако Γ има модел. Ако кажем, че Γ е изпълнимо, то всяка формула от него също е изпълнима.

 Γ е **неизпълнимо**, ако Γ не е изпълнимо, т.е. Γ няма модел.

Дефиниция 18 (Съждителна тавтология). *Една формула се нарича съждителна тавтология*, ако е вярна при всяка булева интерпретация.

- ullet φ e съждителна тавтология ,точно тогава, когато $\neg \varphi$ e неизпълнима формула;
- ullet φ е неизпълнима точно тогава, когато $\neg \varphi$ е съждителна тавтология.

Дефиниция 19. Нека φ е съждителна формула. $C\ Var(\varphi)$ означаваме множеството на съждителните променливи, участващи във φ .

Булева еквивалентност на съждителни формули

Дефиниция 20 (Логическо следване от формула). Нека φ и ψ са съждителни формули. Казваме, че ψ логически следва от φ , ако всеки модел на φ е модел на ψ , т.е. всеки път, когато I_0 е булева интерпретация, ако $I(\varphi) = T$, то $I(\psi) = T$. Пишем $\varphi \models \psi$.

Забележка. $C \varphi \models \psi$ ще означаваме "във всички светове, в които φ е вярно, ψ е вярно".

Дефиниция 21 (Логическа еквивалентност на формули). *Нека* φ u ψ *са съждителни формули.* φ u ψ *са логически еквивалентни, ако:*

$$\varphi \models \psi$$
 и $\psi \models \varphi \longleftrightarrow$ за всяка булева интерпретация $I_0, I(\varphi) = I(\psi)$

 $\Pi u u e M \varphi \models \psi.$

Забележка. φ и ψ имат едни и същи булеви модели, ако са логически еквивалентни.

Заместване на съждителни променливи със съждителни формули

Дефиниция 22 (Едновременна замяна). Нека φ е съждителна формула и $Var(\varphi) \subseteq \{P_1, P_2, \ldots, P_n\}$, където P_1, P_2, \ldots, P_n са различни съждителни променливи. Нека $\varphi_1, \varphi_2, \ldots, \varphi_n$ са произволни съждителни формули.

Тогава за $\varphi[P_1, P_2, \dots, P_n]: Var(\varphi) \subseteq \{P_1, P_2, \dots, P_n\}, \ \varphi[P_1/\varphi_1, P_2/\varphi_2, \dots, P_n/\varphi_n]$ е резултатот от едновременната замяна на всички срещания на буквите P_1, P_2, \dots, P_n във φ със съответните $\varphi_1, \varphi_2, \dots, \varphi_n$.

Дефиниция 23. Ако имаме две булеви интерпретации I_0, J_0 , такива че $I_0 \upharpoonright Var(\varphi) = J_0 \upharpoonright Var(\varphi)$, то $I(\varphi) = J(\varphi)$.

Дефиниция 24 (Литерал). Съждителен литерал ще наричаме формула, която е или съждителна променлива, или отрицание на съждителна променлива.

Дефиниция 25 (Елементарна конюнкция). *Елементарна конюнкция наричаме формула от* вида $\varepsilon_1 P_1 \& \varepsilon_2 P_2 \& \ldots \& \varepsilon_n P_n$, където $\varepsilon_i \in \{\varepsilon, \neg\}$, а $P_1, P_2, \ldots, P_n \in PV$ ar.

Дефиниция 26 (Елементарна дизюнкция). Елементарна дизюнкция наричаме формула от вида $\varepsilon_1 P_1 \vee \varepsilon_2 P_2 \vee \ldots \vee \varepsilon_n P_n$, където $\varepsilon_i \in \{\varepsilon, \neg\}$, а $P_1, P_2, \ldots, P_n \in PV$ аг. Множество от вида $\{\varepsilon_1 P_1, \varepsilon_2 P_2, \ldots, \varepsilon_n P_n\}$ ще наричаме **дизюнкти**.

Индуктивна дефиниция:

- всеки литерал е елементарна дизюнкция;
- ако φ е елементарна дизюнкция и L е литерал, то формулата $(\varphi \lor L)$ е също елементарна дизюнкция.

Елементарните дизюнкции ще записваме без вътрешните скоби (заради асоциативността).

Дефиниция 27 (Конюнкция на елементарни дизюнкции). Индуктивна дефиниция:

- всяка елементарна дизюнкция е конюнкция на елементарни дизюнкции;
- ако K е конюнкция на елементарни дизюнкции, E е елементарна дизюнкция, то (K&E) е конюнкция на елементарни дизюнкции.

Дефиниция 28. Нека Γ е множество от съждителни формули и ψ е съждителна формула. Казваме, че **от** Γ **логически следва** ψ . $\Gamma \models \psi$, ако всеки модел на Γ е модел за ψ .

Ако има модел на Γ , който не е модел за ψ , то от Γ не следва логически ψ : $\Gamma \not\models \psi$. C други думи, има булева интерпретация I_0 , такава че $\varphi \in \Gamma \longrightarrow I(\varphi) = T$ & $I(\psi) = F$.

Предикатно смятане от първи ред

Дефиниция 29 (Език на предикатното смятане от първи ред). Език на предикатнот смятане е двойка от вида <логическа-част, нелогическа-част>. Логическата част ще е една и съща за всички езици на предикатното смятане от първи ред. Бележи се с $\mathcal L$ и съдържа:

- 1. Логическа част:
 - **индивидни променливи** (Var): съвкупност от букви за означаване на обекти. Индивидните променливи:
 - са номерирани с $\mathbb{N}: x_0, x_1, \ldots;$

- не са съждителни връзки.
- съждителни **логически връзки** (булеви операции): азбуката $\neg, \&, \lor, \Rightarrow, \Leftrightarrow$
- **квантори**: буквите ∀,∃
- помощни символи: ,()

Забележка. Азбуките на индивидните променливи, съждителните логически връзки и кванторите са винаги непразни.

2. Нелогическа част:

- $\mathbb{C}onst_{\mathcal{L}}$: индивидни константи за езика \mathcal{L} , т.е. съвкупност от букви за имена на обектите (или означение за конкретен обект, като указател към обект);
- $\mathbb{F}unc_{\mathcal{L}}$: функционални символи за езика \mathcal{L} , т.е. съвкупност от букви за означаване на функции: f, g, h, \ldots
 - За всеки функционален символ има определена арност (#): #[f] е брой на аргументите на f и представлява естествено число >0.
- $\mathbb{P}red_{\mathcal{L}}$: npedukamhu символи за езика \mathcal{L} , m.e. съвкупност от букви за означаване на първични свойства: p,q,r,\ldots

Всеки предикатен символ има арност.

Забележка. $\# : \mathbb{F}unc_{\mathcal{L}} \cup \mathbb{P}red_{\mathcal{L}} \longrightarrow \mathbb{N} \setminus \{0\}$

• \doteq : формално равенство. Може и да го няма.

Забележка. $\mathbb{C}onst_{\mathcal{L}}$, $\mathbb{F}unc_{\mathcal{L}}$ и $\mathbb{P}red_{\mathcal{L}}$ може да бъдат и празни азбуки.

Дефиниция 30 (Разширение). Нека \mathcal{L}_1 и \mathcal{L}_2 са езици на предикатното смятане от първи ред. Казваме, че \mathcal{L}_2 е разширение на \mathcal{L}_1 , ако $\mathbb{C}onst_{\mathcal{L}_1} \subseteq \mathbb{C}onst_{\mathcal{L}_2}$, $\mathbb{F}unc_{\mathcal{L}_1} \subseteq \mathbb{F}unc_{\mathcal{L}_2}$, $\#_{\mathcal{L}_1}$ и $\#_{\mathcal{L}_2}$ са едни и същи за функционални символи от \mathcal{L}_1 , ако \mathcal{L}_1 е с формално равенство, то и \mathcal{L}_2 е с формално равенство, $\mathbb{P}red_{\mathcal{L}_1} \subseteq \mathbb{P}red_{\mathcal{L}_2}$, $\#_{\mathcal{L}_1}$ и $\#_{\mathcal{L}_2}$ са едни и същи за предикатни символи от \mathcal{L}_1 .

Дефиниция 31. Нека \mathcal{L} е предикатен език от първи ред. Ще дефинираме две множествва от формални думи в обединението на азбуките от \mathcal{L} .

 $Tермове: T_{\mathcal{L}}$ – означават обекти;

 Φ ормули: $\mathbb{F}or_{\mathcal{L}}$ – означават свойства.

Дефиниция 32 (Термове). Термовете от езика \mathcal{L} са думи за означаване на обекти. Индуктивна дефиниция на $T_{\mathcal{L}}$:

- индивидните константи са термове;
- индивидните променливи са термове;
- ако $\tau_1, \tau_2, \dots, \tau_n$ са термове, $f \in \mathbb{F}unc_{\mathcal{L}}, \#[f] = n$, то думата $f(\tau_1, \tau_2, \dots, \tau_n)$ също е терм.

Дефиниция 33 (Атомарни формули от езика \mathcal{L}).

 $\mathbb{A}t\mathbb{F}_{\mathcal{L}}$ са думите от вида $p(\tau_1, \tau_2, \dots, \tau_n)$, където $p \in \mathbb{P}red_{\mathcal{L}}, \#[p] = n, \tau_1, \tau_2, \dots, \tau_n$ – произволни термове от езика \mathcal{L} .

Ако \mathcal{L} е език $c \doteq$, то има още един вид атомарни формули и това са думите от вида $(\tau_1 \doteq \tau_2)$.

Дефиниция 34 (Формули).

Индуктивна дефиниция на $\mathbb{F}or_{\mathcal{L}}$:

- атормарните формули от \mathcal{L} са формули от \mathcal{L} ;
- ако φ е формула от \mathcal{L} , то $\neg \varphi$ е също формула от \mathcal{L} ;
- aro φ u ψ ca формули om \mathcal{L} , mo $(\varphi \& \psi), (\varphi \lor \psi), (\varphi \Rightarrow \psi), (\varphi \Leftrightarrow \psi)$ ca също формули om \mathcal{L} :
- ако φ е формула от \mathcal{L} , x е индивидна променлива, то $\forall x \varphi$ и $\exists x \varphi$ са също формули от \mathcal{L} (отличително свойство на език от 1-ви ред).

Дефиниция 35 (Индуктивен принцип за доказване на свойства на термове).

Нека Р е свойство. Нека са в сила следните условия:

- всяка индивидна константа има свойството P;
- всяка индивидна променлива има свойството P;
- всеки път, когато $\tau_1, \tau_2, \dots, \tau_n$ са термове, които имат свойството P и $f \in \mathbb{F}unc_{\mathcal{L}}, \#[f] = n$, може да се твърди, че думата $f(\tau_1, \tau_2, \dots, \tau_n)$ също има свойството P.

Тогава всеки терм au от езика $\mathcal L$ има свойството P.

Означаваме: $\mathrm{T}_{\mathcal{L}}$ – множеството на термовете в езика $\mathcal{L}.$

Дефиниция 36 (Еднозначен синтактичен анализ за термове). Нека \mathcal{L} е език на $FOL(first-order\ logic)$. За всеки терм τ от \mathcal{L} е в сила точно една от следните възможности:

- τ е индивидна константа;
- \bullet au e индивидна променлива;
- τ е от вида $f(\tau_1, \tau_2, ..., \tau_n)$, където $f \in \mathbb{F}unc_{\mathcal{L}}, \#[f] = n, \tau_1, \tau_2, ..., \tau_n$ са еднозначно определени термове и f е еднозначно определен функционален символ.

Ako
$$\tau = f(\tau_1, \tau_2, \dots, \tau_n)$$
 u $\tau = g(\varkappa_1, \varkappa_2, \dots, \varkappa_k)$, moraba $f = g, n = k, \tau_1 = \varkappa_1, \tau_2 = \varkappa_2, \dots, \tau_n = \varkappa_k$.

Никое собствено начало на терм не е собствен край на терм.

Алтернативна дефиниция: Нека τ е терм, а е буква и $\tau = \alpha a \beta$. Ако а е функционален символ с арност n, то има еднозначно определени термове $\tau_1, \tau_2, \ldots, \tau_n$, такива че $\beta = (\tau_1, \ldots, \tau_n)\beta_1$. С всеки терм можем да свържем едно синтактично наредено дърво.

Дефиниция 37. Ако τ е терм, то $Var(\tau) = \{x, y, z, \ldots\}$ означаваме множеството на индивидните променливи, които участват в τ .

Индуктивно можем да дефинираме променливите на терм, $\tau(Var(\tau))$:

- $\tau = c \longrightarrow Var(\tau) = \varnothing;$
- $\tau = x \longrightarrow Var(\tau) = \{x\};$
- $\tau = f(\tau_1, \tau_2, \dots, \tau_n) \longrightarrow Var(\tau) = Var(\tau_1) \cup Var(\tau_2) \cup \dots \cup Var(\tau_n).$

Забележка. Удобно е да използваме следния запис: $\tau[x_1, x_2, \dots, x_n] : \tau$ – терм, x_1, x_2, \dots, x_n – различни индивидни променливи участващи в τ и $Var(\tau) = \{x_1, x_2, \dots, x_n\}$.

Дефиниция 38 (Затворен терм). Много важна роля ще играят термовете, в които няма индивидни променливи, т.е. термовете τ , такива че $Var(\tau) = \varnothing$. Наричаме такива термове затворени (основни, базисни, **ground term**). При дървовидно построение има само индивидни константи по листата. Означваме: $\mathbf{T}^{cl}_{\mathcal{L}}$ – множеството на затворените термове в езика \mathcal{L} и $\mathbf{T}^{cl}_{\mathcal{L}} = \varnothing \longleftrightarrow \mathbb{C}onst_{\mathcal{L}} = \varnothing$.

Дефиниция 39 (Индуктивна дефиниция на T_L^{cl}).

- индивидните константи са затворени термове;
- ако $\tau_1, \tau_2, ..., \tau_n$ са затворени термове, $f \in \mathbb{F}unc_{\mathcal{L}}, \#[f] = n$, то $f(\tau_1, \tau_2, ..., \tau_n)$ е затворен терм от езика \mathcal{L} .

Дефиниция 40 (Подтерм). Казваме, че термът τ е подтерм на терма \varkappa , ако $\varkappa = \alpha \tau \beta$, където α и β са думи.

```
Ако \varkappa = f(\varkappa_1, \varkappa_2, \dots, \varkappa_k), то \tau е подтерм на някой от термовете \varkappa_1, \varkappa_2, \dots, \varkappa_k.

Ако \varkappa = f(\varkappa_1, \varkappa_2, \dots, \varkappa_k) и \tau е подтерм на \varkappa, \varkappa = \alpha \tau \beta, то за някое i, 1 \leq i \leq k, \varkappa = f(\varkappa_1, \varkappa_2, \dots, \varkappa_{i-1}, \alpha' \tau \beta', \varkappa_{i+1}, \dots, \varkappa_k), \alpha = f(\varkappa_1, \varkappa_2, \dots, \varkappa_{i-1}, \alpha', \beta = \beta', \varkappa_{i+1}, \dots, \varkappa_k).

Пишем Subt(\tau).
```

Дефиниция 41 (Индуктивна дефиниция на $Subt(\tau)$). C индукция относно построението на τ дефинираме $Subt(\tau)$ по следния начин:

- $\tau = c \longrightarrow Subt(\tau) = \{c\};$
- $\tau = x \longrightarrow Subt(\tau) = \{x\};$
- $\tau = f(\tau_1, \tau_2, \dots, \tau_n) \longrightarrow Subt(\tau) = \{\tau\} \cup Subt(\tau_1) \cup Subt(\tau_2) \cup \dots \cup Subt(\tau_n).$

Дефиниция 42 (Заместване на индивидни променливи с термове в термове). *Нека* x_1, x_2, \ldots, x_n *са различни индивидни променливи, а* $\tau_1, \tau_2, \ldots, \tau_n$ *са произволни термове от езика* \mathcal{L} .

 $C \tau[x_1/\tau_1, x_2/\tau_2, \dots, x_n/\tau_n]$ ще означаваме думата, която се получава от τ при едновременната замяна на x_1, x_2, \dots, x_n съответно с $\tau_1, \tau_2, \dots, \tau_n$.

Дефиниция 43 (Индуктивна дефиниция на заместването). *Нека* x_1, x_2, \ldots, x_n *са различни* индивидни променливи и $\tau_1, \tau_2, \ldots, \tau_n$ – произволни термове.

- $c[x_1/\tau_1, x_2/\tau_2, \dots, x_n/\tau_n] = c;$
- x:

$$- x = x_i, 1 \le i \le n \longrightarrow x[x_1/\tau_1, x_2/\tau_2, \dots, x_n/\tau_n] = \tau_i; - x \notin \{x_1, x_2, \dots, x_n\} \longrightarrow x[x_1/\tau_1, x_2/\tau_2, \dots, x_n/\tau_n] = x.$$
 (ih)

• $f(\varkappa_1, \varkappa_2, \ldots, \varkappa_n)[x_1/\tau_1, x_2/\tau_2, \ldots, x_n/\tau_n] = f(\varkappa_1[x_1/\tau_1, x_2/\tau_2, \ldots, x_n/\tau_n], \varkappa_2[x_1/\tau_1, x_2/\tau_2, \ldots, x_n/\tau_n], \ldots, \varkappa_n[x_1/\tau_1, x_2/\tau_2, \ldots, x_n/\tau_n]) \ u \ usnows as ame (ih) <math>\exists a \ \varkappa_1, \varkappa_2, \ldots, \varkappa_n.$

Така $\tau[x_1/\tau_1, x_2/\tau_2, \dots, x_n/\tau_n]$ е терм от езика \mathcal{L} .

Семантика на език от първи ред

Дефиниция 44 (Структура за език от първи ред). Нека \mathcal{L} е език от първи ред. Структура за \mathcal{L} ще наричаме наредена двойка от вида $< A, \mathbb{I}>$, където:

- $A \neq \varnothing, A$ универсиум на структурата;
- \mathbb{I} е интерпретация на \mathcal{L} в A;

- $\mathbb{I}(c) \in A$ за всяка индивидна константа $c \in \mathbb{C}onst_{\mathcal{L}}$, може $c_1 \neq c_2$, но $c_1^{\mathcal{A}} = c_2^{\mathcal{A}}$;
- $\mathbb{I}(f):A^{\#[f]}\longrightarrow A$ за всеки функционален символ $f\in\mathbb{F}unc_{\mathcal{L}},\ Dom(f)=A^{\#[f]}$ тотална;
- $\mathbb{I}(p) \subseteq A^{\#[p]}$ множество от n-торки, където $n = \#[p], p \in \mathbb{P}red_{\mathcal{L}}$, може $p^{\mathcal{A}} = \emptyset$ или $p^{\mathcal{A}} = A^{\#[p]}$.

Означение: $\mathcal{A} = \langle A, I \rangle, |\mathcal{A}| = A$

Забележка. Вместо $\mathbb{I}(c)$ ще пишем $c^{\mathcal{A}}$, вместо $\mathbb{I}(f)-f^{\mathcal{A}}$ и вместо $\mathbb{I}(p)-p^{\mathcal{A}}$: интерпретации в структурата \mathcal{A} .

Забележка. За да може да кажем какво означава един терм, трябва да кажем какво означават променливите в него.

Дефиниция 45 (Оценка). Нека \mathcal{A} е структура за езика \mathcal{L} . Нека универсумът на \mathcal{A} е A. Оценката на индивидните променливи наричаме изображение $\nu: Var \longrightarrow A$.

Дефиниция 46 (Модифицирана оценка). Нека $x \in Var, a \in A$. Тогава модифицирана оценка в точка x с a ще наричаме $v_a^x(y) = \begin{cases} a, & y = x \\ \nu(y), y \neq x \end{cases}$.

Дефиниция 47 (Оценка в структура \mathcal{A} (Тарски)).

Нека $\mathcal{A} = < A, \mathbb{I} > e$ структура за $FOL\ \mathcal{L}$. Нека ν е оценка на индивидните променливи в \mathcal{A} . Индуктивно дефинираме за всеки терм $\tau \in T_{\mathcal{L}}$ стойност на τ в \mathcal{A} при оценка ν ($\tau^{\mathcal{A}}[\nu]$).

- $\tau = c, c \in \mathbb{C}onst_{\mathcal{L}} \longrightarrow c^{\mathcal{A}}[\nu] \leftrightharpoons c^{\mathcal{A}};$
- $\tau = x, x \in Var \longrightarrow x^{\mathcal{A}}[\nu] \leftrightharpoons \nu(x);$
- $\tau = f(\tau_1, \tau_2, \dots, \tau_n), \#[f] = n, f \in \mathbb{F}unc_{\mathcal{L}} \longrightarrow \tau^{\mathcal{A}}[\nu] \leftrightharpoons f^{\mathcal{A}}(\tau_1^{\mathcal{A}}[\nu], \tau_2^{\mathcal{A}}[\nu], \dots, \tau_n^{\mathcal{A}}[\nu]).$

Забележка. Означаваме: $\tau^{A}[\nu]$ или $\|\tau\|^{A}[\nu]$.

Забележка. Тази дефиниция е коректна заради еднозначния синтактичен анализ на термове.

Дефиниция 48 (Стойност на предикатна формула в структура при дадена оценка). *Нека* φ е формула, \mathcal{A} е структура, ν е оценка в структурата \mathcal{A} . \mathcal{C} индукция по построение на формулите дефинираме $\|\varphi\|^{\mathcal{A}}[\nu] \in \{T, F\}$. (Трябва ни и еднозначен синтактичен анализ):

- \bullet φ е атомарна:
 - $\varphi = p(\tau_1, \tau_2, \dots, \tau_n):$ $\|\varphi\|^{\mathcal{A}}[\nu] = \|p(\tau_1, \tau_2, \dots, \tau_n)\|^{\mathcal{A}}[\nu] = T \iff \tau_1^{\mathcal{A}}[\nu], \tau_2^{\mathcal{A}}[\nu], \dots, \tau_n^{\mathcal{A}}[\nu] > \in p^{\mathcal{A}}.$

Елементите на универсума означени с $\tau_1, \tau_2, \dots, \tau_n$ имат свойството означено с p.

- $\varphi = (\tau_1 \doteq \tau_2):$ $\|\varphi\|^{\mathcal{A}}[\nu] = \|(\tau_1 \doteq \tau_2)\|^{\mathcal{A}}[\nu] = T \leftrightarrows \tau_1^{\mathcal{A}}[\nu] = \tau_2^{\mathcal{A}}[\nu]$
- $\varphi = \neg \varphi_1 : \|\varphi\|^{\mathcal{A}}[\nu] = H_{\neg}(\|\varphi_1\|^{\mathcal{A}}[\nu])$
- $\varphi = (\varphi_1 \sigma \varphi_2), \sigma \in \{\&, \lor, \Rightarrow, \Leftrightarrow\} : \|\varphi\|^A[\nu] = H_\sigma(\|\varphi_1\|^A[\nu], \|\varphi_2\|^A[\nu])$

- $\varphi = \forall x \psi : \|\varphi\|^{\mathcal{A}}[\nu] = \|\forall x \psi\|^{\mathcal{A}}[\nu] = T \Longrightarrow \forall a \in A, \|\psi\|^{\mathcal{A}}[\nu_a^x] = T,$ $\kappa \sigma \partial emo\ v_a^x[y] = \begin{cases} a, & y = x \\ \nu(y), & y \neq x \end{cases}$
- $\varphi = \exists x \psi : \|\varphi\|^{\mathcal{A}}[\nu] = \|\exists x \psi\|^{\mathcal{A}}[\nu] = T \leftrightharpoons \exists a \in A, \|\psi\|^{\mathcal{A}}[\nu_a^x] = T,$ където $v_a^x[y] = \begin{cases} a, & y = x \\ \nu(y), y \neq x \end{cases}$

Забележка. Ако $\|\varphi\|^{\mathcal{A}}[\nu] = T$, то пишем $\mathcal{A} \models_{\nu} \varphi$ и четем "в \mathcal{A} , при оценката ν , е вярна формулата φ " и за $\|\varphi\|^{\mathcal{A}}[\nu] = F$ ще пишем $\mathcal{A} \not\models_{\nu} \varphi$ и казваме "в \mathcal{A} , при оценката ν , е невярна формулата φ ".

Дефиниция 49. $He \kappa a \varphi - \phi o p M y \Lambda a u Var^{free}(\varphi) \subseteq \{x_1, x_2, \dots x_n\}.$

Тогава ще пишем $\varphi[x_1, x_2, \dots, x_n]$, където наредбата x_1, x_2, \dots, x_n е фиксирана. Вместо да пишем $\|\varphi\|^A[\nu]$, където $\nu(x_1) = a_1, \nu(x_2) = a_2, \dots \nu(x_n) = a_n$, ще пишем $\varphi[a_1, a_2, \dots a_n]$, където $a_1, a_2, \dots a_n$ е фиксирана наредба от n от света.

Вместо $\|\varphi\|^{\mathcal{A}}[\nu] = T$ имаме $\mathcal{A} \models_{\nu} \varphi$, т.е. $\mathcal{A} \models \varphi[a_1, a_2, \dots a_n]$.

Така всяка формула $\varphi[x_1, x_2, \dots x_n]$ определя множеството от тези n-торки $\{< a_1, a_2, \dots a_n > | a_1, a_2, \dots, a_n \in A, A \models \varphi[a_1, a_2, \dots a_n]\} = \mathcal{D}^{\mathcal{A}}_{\varphi[x_1, x_2, \dots, x_n]}$. Всички множества в една структура, които са от този вид, са определими.

3а множеството \mathcal{D}_{φ} ще казваме, че е определимо с φ в \mathcal{A} .

 $C \subseteq A^n$ е определимо в A, ако $C = \mathcal{D}_{\varphi}$ за някои φ .

Дефиниция 50 (Вярна формула). Нека \mathcal{A} е структура, φ е формула. Казваме, че $\mathcal{A} \models \varphi$ ("в \mathcal{A} е вярна φ "), ако за всяка оценка ν в \mathcal{A}, φ е вярна: $\|\varphi\|^{\mathcal{A}}[\nu] = T$, и записваме $\mathcal{A} \models_{\nu} \varphi$.

Забележка. Има структури, формули и оценки $\nu_1, \nu_2,$ такива че: $\mathcal{A} \models_{\nu_1} \varphi, \, \mathcal{A} \not\models_{\nu_2} \varphi \Rightarrow \mathcal{A} \models_{\nu_2} \neg \varphi$

Забележка. Ако $\mathcal{A}\not\models\varphi$ има оценка ν_1 в \mathcal{A} , за която $\mathcal{A}\not\models_{\nu_1}\varphi\Rightarrow\mathcal{A}\models_{\nu_1}\neg\varphi$.

Забележка. $\mathcal{A} \models \varphi$ или $\mathcal{A} \models \neg \varphi$, ако φ е затворена, но за произволна формула φ от $\mathcal{A} \models \varphi$ или $\mathcal{A} \not\models \varphi$ не следва $\mathcal{A} \models \neg \varphi$, защото може и за $\neg \varphi$ да съществува оценка ν_1 , за която $\mathcal{A} \not\models_{\nu_1} \neg \varphi$.

Дефиниция 51 (Валидна формула). *Казваме, че* φ *е валидна (общовалидна) формула в структурата* \mathcal{A} , ако $\mathcal{A} \models \varphi$.

Дефиниция 52 (Затворена формула). Една формула φ се нарича затворена, ако няма свободни променливи, т.е. $Var^{free}(\varphi) = \varnothing$ (говори за света).

Забележка. Ако φ е затворена, то е вярно $\mathcal{A} \models \varphi$ или $\mathcal{A} \models \neg \varphi$.

Дефиниция 53 (Изпълнима формула). Формулата φ е изпълнима, ако съществува структура \mathcal{A} и оценка ν , такива че $\|\varphi\|^{\mathcal{A}}[\nu] = T$, тогава $\mathcal{A} \models_{\nu} \varphi$.

Забележка. Няма задължение различните индивидни константи да бъдат интерпретирани в структурата като различни обекти, могат да съвпадат, $c^A \in A$.

Дефиниция 54 (Изпълнимо множество от формули). Едно множество от предикатни формули Γ е изпълнимо, ако съществува структура \mathcal{A} и оценка ν , такива че за всяка формула $\varphi \in \Gamma, \mathcal{A} \models_{\nu} \varphi$.

Казваме, че Γ е неизпълнимо, ако Γ не е изпълнимо.

Забележка. Ø е изпълнимо за всяка структура и всяка оценка.

Забележка. Множеството от всички формули не е изпълнимо, тъй като в такова множество за някоя формула φ , $\neg \varphi$ също е от множеството.

Дефиниция 55 (Предикатна тавтология). *Казваме, че* φ *е предикатна тавтология (общовалидна), ако за всяка структура* $\mathcal{A}, \mathcal{A} \models \varphi$. Означаваме със $\models \varphi$.

Дефиниция 56 (Подформула). Казваме, че φ е подформула на ψ , ако има думи α и β , такива че $\psi = \alpha \varphi \beta$. Всяка такава двойка α, β определя едно конкретно участие на φ в ψ .

Дефиниция 57 (Индуктивна дефиниция на подформула). Нека φ е формула. Със $SubFor(\varphi)$ ще означаваме множеството от всички подформули на φ .

- ако φ е атомарна, то $SubFor(\varphi) = \{\varphi\};$
- $SubFor(\neg \varphi) = {\neg \varphi} \cup SubFor(\varphi);$
- $SubFor((\varphi \sigma \psi)) = \{(\varphi \sigma \psi)\} \cup SubFor(\varphi) \cup SubFor(\psi), \sigma \in \{\lor, \&, \Rightarrow, \Leftrightarrow\};$
- $SubFor(Qx\varphi) = \{Qx\varphi\} \cup SubFor(\varphi), Q \in \{\forall, \exists\}.$

Дефиниция 58. Нека φ е предикатна формула, а е съждителна връзка или квантор, $\varphi = \alpha a \beta$.

- ако $a = \neg \longrightarrow$ има единствена формула φ_1 , такава че $\beta = \varphi_1\beta_1$;
- aro $a \in \{\&, \lor, \Rightarrow, \Leftrightarrow\} \longrightarrow u$ ма единствени формули φ_1, φ_2 , такива че $\alpha = \alpha_1(\varphi_1, \beta = \varphi_2)\beta_1$;
- ако $a \in \{\forall, \exists\} \longrightarrow u$ ма единствена индивидна променлива x и единствена формула φ_1 , такива че $\beta = x \varphi_1 \beta_1$.

Дефиниция 59 (Област на действие на квантор). Нека φ е предикатна формула, Q е квантор, т.е. $Q \in \{\forall, \exists\}$, и $\varphi = \alpha Q \beta$ е конкретно участие на Q във φ .

Тогава първата буква на β е индивидна променлива и казваме, че това участие на Q във φ е **квантор по тази променлива**. Тогава има единствена индивидна променлива x и предикатна формула ψ , такива че $\beta = x\psi\beta'$, т.е. $\varphi = \alpha Qx\psi\beta'$.

Участието на $x\psi$ във φ се нарича **област на действие** на участието на Q във φ .

Дефиниция 60 (Свободно и свързано участие на индивидна променлива в предикатна формула).

Едно участие на променлива в предикатна формула се нарича свободно участие в тази формула, ако то не е в област на действие на квантор по тази променлива.

Едно участие на променлива в предикатна формула се нарича свързано участие в тази формула, ако то е в област на действи на квантор по тази променлива.

Забележка. Свързаните участия на индивидните променливи са в някакъв смисъл "анонимни" участия., т.е. името на променливата има значение само от синтактична гледна точка.

Дефиниция 61 (Свободни и свързани индивидни променливи в предникатна формула).

Една индивидна променлива се нарича свързана променлива на формула φ , ако тя има поне едно участие във φ , което е свързано: $Var^{bd}(\varphi)$.

Една индивидна променлива се нарича свободна променлива за формула φ , ако тя има поне едно участие във φ , което е свободно: $V^{free}(\varphi)$.

Забележка. Една променлива може да бъде, както свободна, така и свързана за φ .

Забележка. Свободните променливи са важни, с φ определяме свойство на свободните променливи, дали дадена n-торка има свойството φ .

Дефиниция 62. Индуктивна дефиниция на $Var^{bd}(\varphi)$ и $Var^{free}(\varphi)$:

- $Var^{bd}(p(\tau_1, \tau_2, \dots, \tau_n)) = \varnothing; Var^{free}(p(\tau_1, \tau_2, \dots, \tau_n)) = Var(\tau_1) \cup Var(\tau_2) \cup \dots Var(\tau_n)$ $Var^{bd}((\tau_1 \doteq \tau_2)) = \varnothing; Var^{free}((\tau_1 \doteq \tau_2)) = Var(\tau_1) \cup Var(\tau_2)$
- $Var^{bd}(\neg \varphi) = Var^{bd}(\varphi); Var^{free}(\neg \varphi) = Var^{free}(\varphi)$ $Var^{bd}((\varphi \sigma \psi)) = Var^{bd}(\varphi) \cup Var^{bd}(\psi); Var^{free}((\varphi \sigma \psi)) = Var^{free}(\varphi) \cup Var^{free}(\psi),$ $\sigma \in \{\&, \lor, \Rightarrow, \Leftrightarrow\}$
- $\bullet \ Var^{bd}(Qx\varphi) = Var^{bd}(\varphi) \cup \{x\}; Var^{free}(Qx\varphi) = Var^{free}(\varphi) \setminus \{x\}, Q \in \{\forall, \exists\}$

Дефиниция 63 (Безкванторна формула). Една формула φ се нарича безкванторна, ако в нея няма срещане на \forall , \exists .

Безкванторните формули може да ги дефинираме индуктивно така:

- атомарните формули са безкванторни
- ullet ако arphi е безкванторна, то $\neg arphi$ също е безкванторна
- ако φ и ψ са безкванторни, то $(\varphi \sigma \psi), \sigma \in \{\lor, \&, \Rightarrow, \Leftrightarrow\}$

Дефиниция 64. Нека x_1, x_2, \ldots, x_n са различни индивидни променливи, $Var^{free}(\varphi) \subseteq \{x_1, x_2, \ldots, x_n\}$. Тогава ще пишем $\varphi[x_1, x_2, \ldots, x_n]$.

Нека $a_1, a_2, \ldots, a_n \in A$. Ако ν_1 и ν_2 са оценки в \mathcal{A} , и $\nu_j(x_i) = a_i, i = 1, \ldots, n, j = 1, 2,$ и $\|\varphi\|^{\mathcal{A}}[\nu_1] = \|\varphi\|^{\mathcal{A}}[\nu_2], \mathcal{A} \models_{\nu_1} \varphi \longleftrightarrow \mathcal{A} \models_{\nu_2} \varphi$. Тогава вместо $\mathcal{A} \models_{\nu} \varphi$ и $\nu(x_i) = a_i, i = 1, \ldots, n$ ще пишем $\mathcal{A} \models \varphi \llbracket a_1, a_2, \ldots, a_n \rrbracket$.

Дефиниция 65. $Def^{\mathcal{A}}(\varphi) \leftrightharpoons \{ \langle a_1, a_2, \dots, a_n \rangle | \mathcal{A} \models \varphi [\![a_1, a_2, \dots, a_n]\!] \}$ е определимо множество в \mathcal{A} с φ .

Дефиниция 66 (Определимо множество с формула). Нека \mathcal{L} е предикатен език и \mathcal{A} е структура на \mathcal{L} . Нека $B \subseteq A^n$ за някое n. Казваме, че B е определимо в \mathcal{A} с формула от \mathcal{L} , ако $\exists \varphi$ от $\mathcal{L}, \varphi[x_1, x_2, \ldots, x_n]$, такава че $\mathcal{A} \models \varphi[a_1, a_2, \ldots, a_n] \longleftrightarrow \langle a_1, a_2, \ldots, a_n \rangle \in B$, за произволни $a_1, a_2, \ldots, a_n \in A$.

Хомоморфизми и изоморфизми.

Дефиниция 67 (Хомоморфизъм). Нека \mathcal{A} и \mathcal{B} са структури за езика \mathcal{L} . Нека $h:A\longrightarrow B$. Казваме, че h е хомоморфизъм от \mathcal{A} към \mathcal{B} , ако са в сила:

- $h(c^{A}) = c^{B}$ за всяка индивидна константа c:
- $h(f^{\mathcal{A}}(a_1, a_2, \dots, a_n)) = f^{\mathcal{B}}(h(a_1), h(a_2), \dots, h(a_n)), \#(f) = n, f \in \mathbb{F}unc_{\mathcal{L}}, a_1, a_2, \dots, a_n \in A$:
- $\langle a_1, a_2, \dots, a_n \rangle \in p^{\mathcal{A}} \longleftrightarrow \langle h(a_1), h(a_2), \dots, h(a_n) \rangle \in p^{\mathcal{B}}, \#(p) = n, p \in \mathbb{P}red_{\mathcal{L}},$ $a_1, a_2, \dots, a_n \in A.$

Казваме, че \mathcal{B} е хомоморфен образ на \mathcal{A} при h, ако h[A] = B.

Дефиниция 68 (Изоморфно влагане). Нека \mathcal{L} е език на предикатното смятане. \mathcal{A} и \mathcal{B} са структури за \mathcal{L} и $h:A\longrightarrow B$. Казваме, че h е изоморфно влагане на \mathcal{A} в \mathcal{B} , ако h е хомоморфизъм на \mathcal{A} в \mathcal{B} и h е инективна функция, т.е. имаме на лице следните условия:

- 1. h е инекция $(a \neq b \longrightarrow h(a) \neq h(b))$
- 2. $h(c^{\mathcal{A}}) = c^{\mathcal{B}}, \forall c \in \mathbb{C}onst_{\mathcal{C}}$
- 3. $h(f^{\mathcal{A}}(a_1, a_2, \dots, a_n)) = f^{\mathcal{B}}(h(a_1), h(a_2), \dots, h(a_n)),$ където $f \in \mathbb{F}unc_{\mathcal{L}}, \#[f] = n,$ произволни $a_1, a_2, \dots, a_n \in A$
- $4. < a_1, a_2, \ldots, a_n > \in p^{\mathcal{A}} \longleftrightarrow < h(a_1), h(a_2), \ldots, h(a_n) > \in p^{\mathcal{B}}, \ \kappa \mathrm{odemo} \ p \in \mathbb{P}red_{\mathcal{L}}, \#[p] = n.$ произволни $a_1, a_2, \ldots, a_n \in A$

Дефиниция 69 (Изоморфизъм). **Изоморфизъм на** \mathcal{A} върху \mathcal{B} ще наричаме изоморфио влагане h на \mathcal{A} в \mathcal{B} , такова че \mathcal{B} е хомоморфен образ на \mathcal{A} (h[A]=B), т.е. h е хомоморфизъм на A върху B и е биекция. Ако има изоморфизъм на A върху B, ще казваме, че A и B ca**изоморфни** и пишем $A \cong \mathcal{B}$.

 ${f Забележка.}\,\,{\cal A}$ ефиницията е коректна, защото ако h е изоморфизъм на ${\cal A}$ върху ${\cal B},$ то h^{-1} eизоморфизъм на $\mathcal B$ върху $\mathcal A$ и h^{-1} е биекция на B върху $A, h^{-1}(c^{\mathcal B}) = c^{\mathcal A}, h^{-1}(f^{\mathcal B}(b_1,b_2,\ldots,b_n)) =$ $f^{\mathcal{A}}(h^{-1}(b_1), h^{-1}(b_2), \dots, h^{-1}(b_n)).$ Значи, ако $h: A \xrightarrow{\cong} B$, то $h^{-1}: B \xrightarrow{\cong} A$.

Ако две структури \mathcal{A} и \mathcal{B} са изоморфни, ще пишем $\mathcal{A} \cong \mathcal{B}$.

Дефиниция 70 (Автоморфизьм). Изоморфизмите на А върху А образуват група относно $Id_{\mathcal{A}},^{-1}, \circ u$ се наричат автоморфизми, $Aut(\mathcal{A})$ – група на автоморфизмите:

- $Id_{\mathcal{A}}$ е автоморфизъм в \mathcal{A} ;
- Ако h е автоморфизъм в A, то h^{-1} е автоморфизъм в A;
- Ако h_1 и h_2 са автоморфизми в \mathcal{A} , то $h_1 \circ h_2 e$ също автоморфизъм в \mathcal{A} .

Забележка. Тези структури, за които Aut(*) съдържа само един елемент – неутралния, m.e. имат единствен автоморфизъм относно $Id_{\mathcal{A}}$ – ce наричат твърди.

Пример. $<\mathbb{N}, \le> e$ твърда структура, но $<\mathbb{Z}, \le>$ не e, тъй като за всяко $a\in\mathbb{Z}$ изображението $h_a(m) = m + a$ е автоморфизъм $\epsilon < \mathbb{Z}, <>$.

Дефиниция 71 (Универсална формула). Формулите от вида $\forall y_1 \forall y_2 \dots \forall y_n \psi$ е безкванторна, се наричат универсални формули.

 $\exists a \ \varphi = \forall y_1 \forall y_2 \dots \forall y_n \psi, \ \kappa$ ъдето $\psi \ e \ б$ езкванторна, $e \ в$ ярно, че $\mathcal{B} \models \varphi \llbracket h(a_1), h(a_2), \dots, h(a_n)
brace \longrightarrow$ $\mathcal{A} \models \varphi[\![a_1, a_2, \dots, a_n]\!].$

Дефиниция 72 (Екзистенциална формула). Формулите от вида $\exists y_1 \exists y_2 \dots \exists y_n \psi$ е безкванторна, се наричат универсални формули.

 $\exists a \ \varphi = \exists y_1 \exists y_2 \ldots \exists y_n \psi, \ \kappa \sigma \partial e mo \ \psi \ e \ \delta e s \kappa s a n mopha, \ e \ в s p n o, \ ue \ \mathcal{A} \models \varphi \llbracket a_1, a_2, \ldots, a_n \rrbracket \longrightarrow$ $\mathcal{B} \models \varphi[\![h(a_1), h(a_2), \dots, h(a_n)]\!].$

Логически еквивалентни формули

Дефиниция 73 (Логически еквивалентни формули). *Казваме*, че φ и ψ са логически еквивалентни $(\varphi \bowtie \psi)$, ако всеки път, когато A е структура и ν е оценква в A, имаме $\mathcal{A} \models_{\nu} \varphi \longleftrightarrow \mathcal{A} \models_{\nu} \psi$. Или записано по друг начин: $\|\varphi\|^{\mathcal{A}}[\nu] = \|\psi\|^{\mathcal{A}}[\nu]$.

Заместване на подформули с формули

Дефиниция 74. Нека \mathcal{A} е структура. Казваме, че предикатните формули от езика \mathcal{L} φ и ψ са еквивалентни в $\mathcal{A}, \varphi \stackrel{\mathcal{A}}{\models} \psi$, ако за всяка оценка ν в \mathcal{A} е изпълнено $\mathcal{A} \models_{\nu} \varphi \longleftrightarrow \mathcal{A} \models_{\nu} \psi$. $\varphi \stackrel{\mathcal{A}}{\models} \psi \longleftrightarrow \mathcal{A} \models \varphi \Leftrightarrow \psi.$

Заместване на индивидни променливи с термове

Дефиниция 75 (Допустима замяна). Нека φ е предикатна формула, x е индивидна променлива, τ е терм. Резултатът от едновременната замяна на всички свободни участия на x във φ с τ ще означаваме с $\varphi^{[x/\tau]}$.

Казваме, че едновременната замяна на свободните участия на x във $\varphi, \varphi[x/\tau]$, е допустима замяна, ако никое свободно участие на x във φ не е в област на действие на квантор по променлива участваща в τ .

Забележка. Ако $x\not\in Var^{free}(\varphi)$, то за всеки терм $\tau\varphi[x/\tau]$ е допустима.

Забележка. Ако τ е затворен терм, то за всяко φ и всяко $x\varphi^{[x/\tau]}$ е допустима замяна.

Преименуване на свързани променливи

Дефиниция 76 (Вариант). *Казваме*, че $Qy\varphi[x/y]$ е вариант на $Qx\varphi$, ако:

- $\varphi[x/y]$ е допустима (т.е. свободните участия на x във φ не са в област на действие на квантор по y);
- $y \in Var^{free}[\varphi]$.

Пренексна нормална форма

Дефиниция 77. Казваме, че φ е в **пренексна нормална форма** ($\Pi H \Phi$), ако $\varphi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \Theta$, където x_1, x_2, \dots, x_n са различни индивидни променливи $Q_1, Q_2, \dots Q_n$ са квантори, Θ е безкванторна формула, $n \geq 0$.

```
Думата Q_1x_1Q_2x_2...Q_nx_n се нарича кванторен префикс на \varphi, а \Theta – матрица на \varphi. Ако всичките Q_1,Q_2,...,Q_n са \forall, то казваме, че \varphi е универсална. Ако всичките Q_1,Q_2,...,Q_n са \exists, то казваме, че \varphi е екзистенциална.
```

Логическо следване

Дефиниция 78 (Секвенциално следване). Нека $\Gamma \cup \{\psi\}$ е множество от предикатни формули. Казваме, че от Γ логически следва $\psi(\Gamma \models \psi)$, ако всеки път, когато \mathcal{A} е структура и ν е оценка в \mathcal{A} от $\mathcal{A} \models_{\nu} \varphi$ за всяко $\varphi \in \Gamma$ следва, че $\mathcal{A} \models_{\nu} \psi$.

Дефиниция 79 (Глобално следване). Казваме, че от Γ глобално (моделно) следва ψ ($\Gamma \models^g \psi$), ако всеки път, когато \mathcal{A} е структура, ако за всяка $\varphi \in \Gamma, \mathcal{A} \models \varphi$, то $\mathcal{A} \models \psi$.

Скулемизация

Дефиниция 80 (Скулемизация). Алгоритъм, който по дадено множество от затворени формули Γ дава множество от затворени формули Γ^S , такова че Γ е изпълнимо тогава и само тогава, когато Γ^S е изпълнимо и Γ е неизпълнимо тогава и само тогава, когато Γ^S е неизпълнимо.

```
Това преобразувание е поточково, т.е. \Gamma^S = \{\varphi^S \mid \varphi \in \Gamma\}. \Gamma \models \psi \longleftrightarrow \Gamma \cup \{\neg \psi\} е неизпълнимо \longleftrightarrow \Gamma^S \cup \{(\neg \psi)^S\} е неизпълнимо.
```

Дефиниция 81 (Скулемова нормална форма). Ако φ е затворена u е в пренексна нормална форма, то φ^S е затворена u универсална, но в разсширение на езика. φ^S ще наричаме Скулемова нормална форма на φ .

Дефиниция 82 (Алгоритъм за скулемизация). Ще дефинираме едностъпкова скулемизация (от φ ще получаваме φ^S):

- φ^S е затворена;
- φ^S е в пренексна нормална форма;
- φ^S ще има един квантор за \exists по-малко от φ (ако във φ има \exists).

Нека $\varphi = Q_1 x_1 Q_2 x_2 \dots Q_n x_n \Theta$ – затворена формула, x_1, x_2, \dots, x_n са различни индивидни променливи, Q_1, Q_2, \dots, Q_n са квантори. Тогава φ_S :

- 1. Ako $Q_1 = Q_2 = \ldots = Q_n = \forall$, mo $\varphi_S \models \varphi$;
- 2. Ако $Q_1 = \exists$, т.е. $\varphi = \exists x \psi \ (\psi \leftrightharpoons Q_2 x_2 \dots Q_n x_n \Theta)$, то $\varphi^S \leftrightharpoons \psi[x/c_{\varphi}]$, където c_{φ} е нова индивидна променлива.
- 3. Ако $Q_1 = Q_2 = \ldots = Q_k = \forall, Q_{k+1} = \exists, m.e. \varphi = \forall x_1 \forall x_2 \ldots \forall x_k \exists x_{k+1} \ldots \Theta, mo$ $\varphi_S \leftrightharpoons \forall x_1 \forall x_2 \ldots \forall x_k (Q_{k+2} x_{k+2} \ldots Q_n x_n)[x_{k+1}/f_{\varphi}(x_1, x_2, \ldots, x_k)],$ където f_{φ} е нов за езика функционален символ с арност k.

Ако в кванторния префикс има точно m>0 квантора \exists , то $\varphi^S=\underbrace{\varphi_{SSS...}}_{m,n,m,n}$

Затворени универсални формули

Дефиниция 83 (Затворен частен случай). Нека \mathcal{L} е език, в който има поне една индивидна константа. Нека $\forall x_1 \forall x_2 \dots \forall x_n \Theta$ е затворена формула, Θ е безкванторна формула и x_1, x_2, \dots, x_n са различни индивидни променливи.

Нека $\tau_1, \tau_2, \ldots, \tau_n$ са произволни затворени термове от \mathcal{L} . Формулата $\Theta[x_1/\tau_1, x_2/\tau_2, \ldots, x_n/\tau_n]$ ще наричаме затворен частен случай на $\forall x_1 \forall x_2 \ldots \forall x_n \Theta$. Множеството на всички затворени частни случаи на универсална затворена формула φ ще означаваме със $CSI(\varphi)$, Closed substitution instances, m.e. $CSI(\varphi) \leftrightharpoons \{\Theta[x_1/\tau_1, x_2/\tau_2, \ldots, x_n/\tau_n] : \tau_1, \tau_2, \ldots, \tau_n \in T_c^c\}$.

Дефиниция 84. Нека Δ е множество от безкванторни формули от \mathcal{L} . Можем да разгледаме формулите от Δ като съждителни формули над множеството от съждителни променливи $\mathbb{A}t_{\mathcal{L}}$.

Нека \mathcal{A} е структура, ν оценка в \mathcal{A} . За всяка формула $\chi \in \mathbb{A}t_{\mathcal{L}}$ дефинираме $I_{\mathcal{A},\nu}(\chi) = \|\chi\|^{\mathcal{A}}[\nu]$. Тогава за всяка безкванторна формула φ е изпълнено $\mathcal{A} \models_{\nu} \varphi \longleftrightarrow I_{\mathcal{A},\nu}(\varphi) = T$. Тогава $\mathcal{A} \models_{\nu} \Delta \longrightarrow I_{\mathcal{A},\nu} \models \Delta$.

Ербранови структури

Дефиниция 85 (Ербранова структура). Нека \mathcal{L} е предикатен език. Една структура \mathcal{H} за езика \mathcal{L} се нарича ербранова структура, ако:

- $\mathcal{H} = \mathcal{T}_{\mathcal{L}}^{cl}$ универсумът е множеството от затворените термове от езика \mathcal{L} ;
- $c^{\mathcal{H}} = c$ за всяка индивидна константа от \mathcal{L} ;
- $f^{\mathcal{H}}(\tau_1, \tau_2, \dots, \tau_n) = f(\tau_1^{\mathcal{H}}, \tau_2^{\mathcal{H}}, \dots, \tau_n^{\mathcal{H}})$ за всеки функционален символ f, #[f] = n, за произволни $\tau_1, \tau_2, \dots, \tau_n \in \mathbf{T}_{\mathcal{L}}^{\mathcal{L}}$

Забележка. \mathcal{L} има поне една ербранова структура $\longleftrightarrow \mathcal{T}^{cl}_{\mathcal{L}} \neq \varnothing \longleftrightarrow \mathcal{L}$ има поне една индивидна константа.

Забележка. Едно множество от безкванторни формули е изпълнено \longleftrightarrow то е изпълнено в ербранова структура.

Свободни ербранови структури

Дефиниция 86 (Свободна ербранова структура). Една структура \mathcal{H} се нарича свободна ербранова структура за езика \mathcal{L} , ако:

- ullet $\mathcal{H}=\mathcal{T}_{\mathcal{L}}$ универсумът е множеството от всички термове от \mathcal{L}
- $c^{\mathcal{H}} \leftrightharpoons c$, за всяка индивидна константа $c \in \mathbb{C}onst_{\mathcal{L}}$
- $f^{\mathcal{H}}(\tau_1, \tau_2, \dots, \tau_n) = f(\tau_1, \tau_2, \dots, \tau_n)$, за всеки n-арен функционален символ f и за всеки n терма.

Съждителна резолюция

Дефиниция 87. Нека φ е съждителна формула и $\varphi = \psi_1 \& \psi_2 \& \dots \& \psi_n$, където ψ_i са елементарни дизюнкции, тъй като $\Theta \lor \Theta \models \Theta$, на всяка елементарна дизюнкция ψ ще съпоставим крайното множество от литералите (т.е. P или $\neg P$), които участват във формулата ψ .

 $\psi \longrightarrow \mathbb{D}_{\psi}$ – крайно множество от литерали.

 $L_1 \lor L_2 \lor \ldots \lor L_k$ – дизюнкция от литерали.

 $I \models L_1 \lor L_2 \lor \ldots \lor L_k \longleftrightarrow \exists i, 1 \le i \le k, I \models L_i.$

Следователно за едно крайно множество от литерали от $\mathbb{D}_{\psi}, I \models \mathbb{D}_{\psi} \longleftrightarrow$ има литерал $L \in \mathbb{D}_{\psi}, I \models L$. Така $I \models \psi \longleftrightarrow I \models \mathbb{D}_{\psi}$.

Дефиниция 88 (Дизюнкт). Дизюнкт \mathbb{D} ще наричаме крайно множество от литерали, I е булева интерпретация. Казваме, че $I \models \mathbb{D}$, ако съществува $L \in \mathbb{D}, I \models L$.

 ψ е елементарна дизюнкция, следователно \mathbb{D}_{ψ} е дизюнкт, $I \models \psi \longleftrightarrow I \models \mathbb{D}_{\psi}$. Ако $\mathbb{D} \neq \emptyset$ и \mathbb{D} е дизюнкт, то има формула ψ , такава че $\mathbb{D} = \mathbb{D}_{\psi}$.

Забележка. Има само един дизюнкт, който не е от вида \mathbb{D}_{ψ} за някоя елементарна дизюнкция ψ . Това е празното множество от литерали. Този дизюнкт ще наричаме "празен дизюнкт" и ще го означаваме с \blacksquare .

Забележка. Нека I е булева интерпретация. ■ не е верен за всяка булева интерпретация. ■ е неизпълним – няма модел. Всеки дизюнкт, различен от ■ има поне един модел.

Дефиниция 89 (Тавтология). Нека казваме за един дизюнкт \mathbb{D} , че е тавтология, ако всеки път, когато I е булева интерпретация, $I \models \mathbb{D}$.

 \mathbb{D} е тавтология \longleftrightarrow има променлива $P:P\in\mathbb{D}$ и $\neg P\in\mathbb{D}$.

Дефиниция 90 (Дуален литерал). Нека L е литерал. Дуален на L литерал ще наричаме $L^{\partial} = \begin{cases} P, & a\kappa o \ L = P \\ \neg P, a\kappa o \ L = \neg P \end{cases}$

Дефиниция 91 (Модел). Казваме, че I е модел за S, където S е множество от дизюнкти, ако за всеки дизюнкт $\mathbb{D} \in S, I \models \mathbb{D}$. Така, $I \models \varphi \longleftrightarrow I \models S_{\varphi}$. За всяка булева интерпретация $I, I \models \varnothing$. S може u да е безкрайно.

Нека Δ е множество от съждителни формули, I е булева интерпретация, $I \models \Delta \longleftrightarrow \forall \varphi \in \Delta, I \models \varphi$. За всяка булева интерпретация $I, I \models \Delta \longleftrightarrow \bigcup_{\varphi \in \Delta} S_{\varphi}$.

Забележка. Δ е изпълнимо $\longleftrightarrow S_{\Delta}$ е изпълнимо. Ако $\blacksquare \in S$, то S е неизпълнимо.

Правило на съждителната резолюция

Дефиниция 92. Нека \mathbb{D}_1 и \mathbb{D}_2 са дизюнкти, а L е литерал.

Казваме, че правилото за съждителната резолюция е приложимо към двойката $\mathbb{D}_1, \mathbb{D}_2$ относно L, ако $L \in \mathbb{D}_1$ и $L^{\partial} \in \mathbb{D}$.

Бележим ! $\mathcal{R}_L(\mathbb{D}_1,\mathbb{D}_2)$.

Забележка. Ако \mathbb{D}_1 и \mathbb{D}_2 са дизюнкти и L е литерал, то алгоритмично разпознаваемо е дали ! $\mathcal{R}_L(\mathbb{D}_1,\mathbb{D}_2)$.

Резултат от прилагането на правилото за резолюцията към \mathbb{D}_1 и \mathbb{D}_2 относно L имаме само когато правилото е приложимо и този резултат е $\mathcal{R}_L(\mathbb{D}_1,\mathbb{D}_2) \leftrightharpoons \{\mathbb{D}_1 \setminus \{L\} \cup \{\mathbb{D}_2 \setminus \{L^{\partial}\}\}$.

Дефиниция 93 (Резолвента). \mathbb{D} е резолвента на \mathbb{D}_1 и \mathbb{D}_2 , ако има литерал $L: \mathbb{D} = \mathcal{R}_L(\mathbb{D}_1,\mathbb{D}_2)$.

Дефиниция 94 (Резолютивен извод). Нека S е множество от дизюнкти. Резолютивен извод от S наричаме крайна редица от дизюнкти $\mathbb{D}_1, \mathbb{D}_2, \dots, \mathbb{D}_n$: всеки неин член е или от S, или е резолвента на два предходни члена.

Дефиниция 95. Нека S е множество от дизюнкти u \mathbb{D} е дизюнкт. Казваме, че \mathbb{D} е резолютивно изводим от S, ако има резолютивен извод от S, чийто последен член е \mathbb{D} , m.e. има крайна редица $\mathbb{D}_1, \mathbb{D}_2, \ldots, \mathbb{D}_n$, такава че тя е резолютивен извод u $\mathbb{D}_n = \mathbb{D}$.

 $\Pi u u e M S \vdash D.$

Забележка. Нека S е множество от дизюнкти, I е булева интерпретация и $S \stackrel{r}{\vdash} D$. Тогава, ако $I \models S$, то $I \models \mathbb{D}$.

Трансверзали за фамилии от множества

Дефиниция 96 (Трансверзала). Нека A е множество, чиито елементи са множества. A е фамилия от множества. Казваме, че едно множество Y е трансверзала за A, ако за всеки елемент $x \in A, Y \cap x = \varnothing$.

Дефиниция 97 (Минимална трансверсала). *Нека А е фамилия от множества. За едно множество Y казваме, че е минимална трансверзала за A, ако:*

- Y е трансверзала за А;
- Ако $Y' \subseteq Y$ и Y' е трансверзала, то Y' = Y.

Хорнови дизюнкти

Дефиниция 98 (Хорнов дизюнкт). Един съждителен дизюнкт \mathbb{D} се нарича хорнов, ако съдържа най-много един позитивен литерал.

Дефиниция 99 (Факт). $\{P\}$, където P е позитивен литерал, т.е. съждителна променлива или атомарна формула. Дизюнкти от този вид се наричат факти.

Дефиниция 100 (Правило).
$$\{P, \neg Q_1, \dots, \neg Q_n\}, n \geq 1$$
 – правило. $P: -Q_1, Q_2, \dots, Q_n$. $P \vee \neg Q_1 \vee \dots \vee \neg Q_n \models \neg (Q_1 \& Q_2 \& \dots Q_n) \vee P \models Q_1 \& Q_n \& \dots \& Q_n \Rightarrow P$.

Дефиниция 101 (Цели). $\{\neg Q_1, \neg Q_2 \dots, \neg Q_n\}, n \geq 1.$

Дефиниция 102 (Хорнова програма). *Хорнова програма е крайно множество от правила и факти*.

Дефиниция 103. $Hexa\ I: PVar \longrightarrow \{T, F\}$. $Hexa\ conocmasum\ A_I = \{P\mid I(P) = T\} \subseteq PVar$.

Oбратно, ако A е множество от съждителни променливи, то на A съпоставяме харак-

теристичната ѝ функция
$$I(P) = \begin{cases} T, P \in A \\ F, P \not\in A \end{cases}$$

теристичната ѝ функция $I(P)=\begin{cases} T,P\in A\\ F,P\not\in A \end{cases}$. Ако на A съпоставим I_A и на I_A съпоставим A_{I_A} , ще получим $A=A_{I_A}$. Аналогично, $I=I_{A_I}$.

В множеството на всички булеви интерпретации дефинираме частична наредба:

$$I \preccurlyeq J \leftrightharpoons A_I \subseteq A_J$$

Изоморфии влагания. Хомоморфизми и изоморфизми.

Дефиниция 104. Нека $A_0 \subseteq A^n$ и нека A_0 е определимо. Нека h е автоморфизъм в струкmypama A.

Тогава за произволни $a_1, a_2, \dots, a_n \in A$ е изпълнено

$$< a_1, a_2, \dots, a_n > \in A_0 \Leftrightarrow < h(a_1), h(a_2), \dots, h(a_n) > \in A_0$$

Дефиниция 105. Нека h е изоморфизъм на A върху \mathcal{B} и φ – формула.

Ако $\mathcal{A} \models \varphi\llbracket a_1, a_2, \dots, a_n \rrbracket \longleftrightarrow \mathcal{B} \models \varphi\llbracket h(a_1), h(a_2), \dots, h(a_n) \rrbracket$ и φ е затворена, то $\mathcal{A} \models$ $\varphi \longleftrightarrow \mathcal{B} \models \varphi$.

Дефиниция 106. Нека $A_0 \subseteq A^n$ и h e автоморфизъм в структурата A.

 $A \text{ ko } \exists < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0 \in A_0, \text{ no} < h(a_1), h(a_2), \ldots, h(a_n) > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1, a_2, \ldots, a_n > \in A_0, \text{ makuba ue} < a_1,$ $A_0 \not\in A_0$, то A_0 не е определимо множество.

 Π ример: $< \mathbb{N}, \le >$.

Дефиниция 107 (Подструктура). Нека \mathcal{A} и \mathcal{B} са структури за \mathcal{L} , казваме че \mathcal{A} е подструктура на \mathcal{B} , ако Id_A е изоморфно влагане на \mathcal{A} в \mathcal{B} , m.е.:

- $A \subseteq B$
- $c^{\mathcal{A}} = c^{\mathcal{B}}$
- $f^{\mathcal{A}}(a_1, a_2, \dots, a_n) = f^{\mathcal{B}}(a_1, a_2, \dots, a_n)$, такива че на a_1, a_2, \dots, a_n действа изоморфно влагане $a_1, a_2, \ldots, a_n \in A$
- $\langle a_1, a_2, \dots, a_n \rangle \in p^{\mathcal{A}} \longleftrightarrow \langle a_1, a_2, \dots, a_n \rangle \in p^{\mathcal{B}}, \ aa \ a_1, a_2, \dots, a_n \in A$

 Π ример: $\langle \mathbb{Q}, \langle \rangle$ за $\langle \mathbb{R}, \langle \rangle$

Дефиниция 108. Нека \mathcal{L} е език без формално равенство, $\mathbb{C}onst_{\mathcal{L}} \neq \emptyset$, \mathcal{H} е ербранова структура за \mathcal{L} , а \mathcal{H}^{free} – свободна ербранова структура.

- 1. За ${\cal H}$ ербранова структура, тогава $\exists H^{free}$ свободна ербранова структура, за която \mathcal{H} e nodcmpykmypa.
- 2. За $\forall H^{free}$ свободни ербранови структури $\exists \mathcal{H}$ ербранова структура , такава че \mathcal{H} e подструктура на \mathcal{H}^{free}

Дефиниция 109. *Нека* A *е подструктура на* B:

- 1. Нека $\varphi[x_1,x_2,\ldots,x_n]$ и φ е безкванторна, тогава за произволни $a_1,a_2,\ldots,a_n\in A$, $\mathcal{A}\models$ $\varphi[a_1, a_2, \dots, a_n] \longleftrightarrow \mathcal{B} \models \varphi[a_1, a_2, \dots, a_n]$
- 2. Нека $\varphi[x_1, x_2, \dots, x_n]$ и φ е универсална формула, тогава $\mathcal{B} \models \varphi[a_1, a_2, \dots, a_n] \longrightarrow \mathcal{A} \models$ $\varphi[a_1, a_2, \dots, a_n]$ sa $a_1, a_2, \dots, a_n \in A$

3. Нека $\varphi[x_1, x_2, \ldots, x_n]$ и φ е екзистенциална формула, тогава $\mathcal{A} \models \varphi[a_1, a_2, \ldots, a_n] \longrightarrow \mathcal{B} \models \varphi[a_1, a_2, \ldots, a_n]$ за $a_1, a_2, \ldots, a_n \in A$

Дефиниция 110 (Логическа еквивалентност на формули). *Нека* φ u ψ ca npedukamhu $\phi op-мули$.

Казваме, че φ и ψ са логически еквивалентни и записваме $\varphi \models \psi$, ако за всяка структура \mathcal{A} и за всяка оценка ν имаме, че $\mathcal{A} \models_{\nu} \varphi \longleftrightarrow \mathcal{A} \models_{\nu} \psi$.

 $\varphi \models \psi \longleftrightarrow$ във всяка структура φ и ψ определят едни и същи множества, φ и ψ имат свободни променливи между $\{x_1, x_2, \dots, x_n\}$.

$$\varphi \models \psi \longleftrightarrow \models (\varphi \Leftrightarrow \psi)$$

Дефиниция 111 (Предикатна тавтология). Една предикатна формула φ се нарича предикатна тавтология, ако за $\forall \mathcal{A}$ – структура и за $\forall \nu$ – оценка в \mathcal{A} , $\mathcal{A} \models_{\nu} \varphi$, т.е. $\|\varphi\|^{\mathcal{A}} = T$. $H_{\Leftrightarrow}(l_1, l_2) = T \longleftrightarrow l_1 = l_2$

Дефиниция 112. Нека \mathcal{A} е структура, φ и ψ са предикатни формули. Казваме, че φ и ψ са логически еквивалентни в \mathcal{A} , $\varphi \models_{\mathcal{A}} \psi$, ако за $\forall \nu$ – оценка в \mathcal{A} е в сила $\|\varphi\|^{\mathcal{A}}[\nu] = \|\psi\|^{\mathcal{A}}[\nu]$.

Дефиниция 113 (Заместване на индивидни променливи и предикатни формули). Нека x е индивидна променлива, τ е терм. C $\varphi[^x/\tau]$ ще означаваме резултата от едновременната замяна на всички свободни участия на x във φ с τ .

Казваме, че замяната е **допустима**, ако свободните участия на x във φ не са в област на действие на квантор по променлива от τ .

Забележка. Нека φ е безкванторна. Тогава за всяко x и всеки терм $\tau \varphi[x/\tau]$ е допустима.

Забележка. Ако τ е затворен терм, то за всяка формула φ и всяко $x \varphi[x/\tau]$ е допустима.

Дефиниция 114 (Преименуване на свързани променливи). *Нека* φ *е предикатна формула*, $x \neq z, Q \in \{\forall, \exists\}.$

Казваме, че формулта $Qz[\varphi[^x/z]]$ е получена от $Qx\varphi$ с преименуване, ако са изпълнени условията:

- $\varphi[^x/z]$ е допустима замяна (свободните участия на x във φ не са в област на действие на Q no z)
- $z \in Var^{free}[\varphi]$

Свойства

Булева еквивалентност на съждителни формули

Свойство 1 (Логическа еквивалентност).

- 1. $\varphi \models \varphi$;
- 2. $\varphi \models \psi \rightarrow \psi \models \varphi$ симетричност;
- 3. $\varphi \models \psi, \psi \models \chi \rightarrow \varphi \models \chi$ транзитивност;
- 4. $\varphi \models \varphi' \rightarrow \neg \varphi \models \neg \varphi';$ 5. $\varphi \models \varphi', \psi \models \psi' \rightarrow (\varphi \sigma \psi) \models (\varphi' \sigma \psi'), \sigma \in \{\&, \lor, \Rightarrow, \Leftrightarrow\}.$ $\}$ устойчивост на съждителните съюзи

Доказателство.

4. Нека $\varphi \models \varphi'$, т.е. за всяка булева интерпретация $I, I(\varphi) = I(\varphi')$. Нека J_0 е булева интерпретация - произволна, тогава $J(\varphi) = J(\varphi')$ и $J(\neg \varphi) = H_{\neg}(J(\varphi)) =$ $H_{\neg}(J(\varphi')) = J(\neg \varphi').$

Значи, за всяка булева интерпретация $I, I(\neg \varphi) = I(\neg \varphi')$, т.е. $\neg \varphi \models \neg \varphi'$.

5. Нека I_0 е булева интерпретация.

Тогава, тъй като $\varphi \models \varphi'$, имаме $I(\varphi) = I(\varphi')$, и от $\psi \models \psi'$ имаме $I(\psi) = I(\psi')$.

Значи $I(\varphi \sigma \psi) = H_{\sigma}(I(\varphi), I(\psi)) = H_{\sigma}(I(\varphi'), I(\psi')) = I(\varphi' \sigma \psi').$

Следователно $(\varphi \sigma \psi) \models (\varphi' \sigma \psi')$.

Забележка. Формулите образуват алгебрична система и ⊨ разбива това множество на класове, за които алгебричните операции са съгласувани.

Свойство 2 (Полезни еквивалентности).

- 1. $(\varphi \lor \varphi) \models \varphi$, $(\varphi \& \varphi) \models \varphi u\partial e Mnome + m + o c m + a \lor, \&;$
- 2. $(\varphi \lor \psi) \models (\psi \lor \varphi), (\varphi \& \psi) \models (\psi \& \varphi) \kappa_{OMYMamushocm} \ ha \lor, \&;$
- 3. $(\varphi \lor (\psi \lor \chi)) \models ((\varphi \lor \psi) \lor \chi), (\varphi \& (\psi \& \chi)) \models ((\varphi \& \psi) \& \chi) acouuamuвност на \lor, \&;$
- 4. $(\varphi \lor (\psi \& \chi)) \vDash ((\varphi \lor \psi) \& (\varphi \lor \chi));$ 5. $(\varphi \& (\psi \lor \chi)) \vDash ((\varphi \& \psi) \lor (\varphi \& \chi));$ $\}$ ducmpubymusen закон за \lor , &
- 6. $\neg \neg \varphi \models \varphi$ класическа логика: двойното отрицание пада;
- 7. $\neg(\varphi \lor \psi) \models (\neg \varphi \& \neg \psi);$ 8. $\neg(\varphi \& \psi) \models (\neg \varphi \lor \neg \psi);$ $\partial e Mopran$

9. $(\varphi \Rightarrow \psi) \models (\neg \varphi \lor \psi);$ 10. $(\varphi \Rightarrow \psi) \models (\varphi \& \neg \psi)$ 11. $(\varphi \Leftrightarrow \psi) \models ((\varphi \& \psi) \lor (\neg \varphi \& \neg \psi));$ $abpeauamypu \ 3a \Rightarrow, \Leftrightarrow$

12. $(\varphi \Leftrightarrow \psi) \models ((\varphi \Rightarrow \psi) \& (\psi \Rightarrow \varphi))$

- 13. Нека φ е съждителна тавтология, тогава за всяка формула ψ имаме следните логически еквивалентности:
 - $(\varphi \lor \psi) \models \varphi$;
 - $(\varphi \& \psi) \models \psi$.

Доказателство.

9. \Rightarrow) Нека I_0 е произволна булева интерпретация.

Нека $I(\varphi \Rightarrow \psi) = F = H_{\Rightarrow}(I(\varphi), I(\psi))$. Следователно $I(\varphi) = T, I(\psi) = F, I(\neg \varphi) = H_{\neg}(\varphi) = F$.

Така $I(\neg \varphi) = I(\psi) = F$. Следователно $H_{\vee}(I(\neg \varphi), I(\psi)) = F = I((\neg \varphi \vee \psi))$.

 \Leftarrow) Нека $I((\neg \varphi \lor \psi)) = F$.

Тогава $H_{\vee}(I(\neg\varphi),I(\psi))=F$. Значи $I(\neg\varphi)=I(\psi)=F$. $I(\neg\varphi)=H_{\neg}(\varphi)=F$, следователно $I(\varphi)=T$.

Следователно $H_{\Rightarrow}(I(\varphi),I(\psi))=F=I((\varphi\Rightarrow\psi)).$

Заместване на съждителни променливи със съждителни формули Свойство 3.

- 1. $\varphi \models \psi$ тогава и само тогава, когато $\varphi \Rightarrow \psi$ е булева тавтология;
- 2. ако φ е противоречие, то за всяка формула ψ , $\varphi \models \psi$;
- 3. ако ψ е съждителна тавтология, то за всяка формула φ , $\varphi \models \psi$;
- 4. ако φ не е противоречие и ψ не е тавтология, и $\varphi \models \psi$, то φ и ψ имат поне една обща съждителна променлива.

Доказателство.

1. \Rightarrow) Допускаме, че $\varphi \Rightarrow \psi$ не е булева тавтология.

Тогава има булева интерпретация I_0 , при която $I_0 \not\models \varphi \Rightarrow \psi$. Нека I_0 е такава булева интерпретация.

Тогава $I(\varphi)=T$ и $I(\psi)=F$. От $I(\varphi)=T$ следва $I\models\varphi$. Но $\varphi\models\psi$. Следователно $I\models\varphi$, т.е. $I(\psi)=T$. Противоречие.

 \Leftarrow) Обратно, нека $\varphi \Rightarrow \psi$ е булева тавтология. Да допуснем, че $\varphi \models \psi$. Нека I_0 е булева интерпретация, за която $I_0 \models \varphi, I_0 \not\models \psi$.

Тогава $I(\varphi) = T$ и $I(\psi) = F$. Следователно $I((\varphi \Rightarrow \psi)) = H_{\Rightarrow}(I(\varphi), I(\psi)) = F$. Значи $\varphi \Rightarrow \psi$ не е булева тавтология. Противоречие.

Забележка. $\varnothing \models \varphi$ тогава и само тогава, когато φ е съждителна тавтология. Вместо $\varnothing \models \varphi$, пишем $\models \varphi$.

- \Rightarrow) Нека $\models \varphi$. Нека I_0 е произволна булева интерпретация. Тогава I_0 е модел на \varnothing . От това, че I_0 е модел за \varnothing получаваме, че I_0 е модел за φ , т.е. φ е съждителна тавтология.
- \Leftarrow) Обратно, нека φ е съждителна тавтология. Нека I_0 е произволен модел за \varnothing . Тъй като φ е съждителна тавтология, $I(\varphi) = T$. Така всеки модел на празното множество е модел на φ .

4. Тъй като φ не е противоречие, тогава избираме $I_0:I(\varphi)=T$ и тъй като ψ не е тавтология, тогава избираме булева интерпретация $J_0:J(\psi)=F$.

Дефинираме
$$K_0(P)=\left\{ egin{array}{ll} I_0(P), \mbox{ако }P \mbox{ участва във } \varphi; \\ J_0(P), \mbox{ако }P \mbox{ не участва във } \varphi. \end{array} \right.$$

Тогава за всяко
$$P \in Var(\varphi), K_0(P) = I_0(P)$$
. Следователно $K(\varphi) = I(\varphi) = T$.

Да допуснем, че φ и ψ нямат общи променливи. Тогава за всяка променлива P, която участва в ψ , P не участва във φ . Следователно, $K_0(P) = J_0(P)$. Следователно $K(\psi) = J(\psi) = F$.

Тогава $K(\varphi) = T, K(\psi) = F$, но $\varphi \models \psi$. Противоречие. Следователно допускането е невярно.

Забележка. Можем да разглеждаме едновременно модели за $\varphi_1 \& \varphi_2 \& \ldots \& \varphi_n \ u \ \{\varphi_1, \varphi_2, \ldots, \varphi_n\}$. Свойство 4 (Логическо следване).

- 1. $\psi \in \Gamma \longrightarrow \Gamma \models \psi$:
- 2. Нека Γ и Δ са множества от съждителни формули. Нека всеки път, когато $\varphi \in \Delta, \Gamma \models \varphi$. Нека $\Delta \models \psi$. Тогава $\Gamma \models \psi$;
- 3. $\Gamma' \subseteq \Gamma$ и $\Gamma' \models \psi \longrightarrow \Gamma \models \varphi$ монотонност;
- 4. Семантична дедукция: От $\Gamma \cup \{\varphi\} \models \psi \longleftrightarrow \Gamma \models \varphi \Rightarrow \psi$. Означаваме: $\Gamma, \varphi \models \psi, m.e. c$ добавянето на аксиомата φ към Γ, Γ става модел за ψ .
- 5. $\varphi_1, \varphi_2, \dots, \varphi_n \models \psi \longleftrightarrow \models (\varphi_1 \& \varphi_2 \& \dots \& \varphi_n) \Rightarrow \psi$
- 6. $\Gamma \models \varphi \longleftrightarrow \Gamma \cup \{\neg \varphi\}$ е неизпълнимо множество
- 7. Компактност на логическото следване: $\Gamma \models \varphi \longleftrightarrow \text{ има крайно } \Gamma_0 \subseteq \Gamma, \Gamma_0 \models \varphi \models \Gamma \text{ е неизпълнимо} \longleftrightarrow \text{ има крайно } \Gamma_0 \subseteq \Gamma, \Gamma_0 \text{ е неизпълнимо} \mapsto \text{ има крайно } \Gamma_0 \subseteq \Gamma, \Gamma_0 \text{ е изпълнимо}.$
- 8. $\varnothing \models \psi \longleftrightarrow \models \psi$ вярна при всяка булева интерпретация (тавтология).
- 9. Ако Γ е неизпълнимо, то за всяка формула $\psi, \Gamma \models \psi$ (от лъжата следва всичко).
- 10. Нека $\models \psi$, тогава за всяко множество $\Gamma, \Gamma \models \psi$.

Доказателство.

- 3. Нека $\Gamma' \subseteq \Gamma$ и $\Gamma' \models \varphi$. Нека I_0 е произволен модел на $\Gamma, I_0 \models \Gamma$. т.е. ако $\psi \in \Gamma \to I(\psi) = T$, $I_0 \models \psi$. Нека $\psi \in \Gamma'$, тогава $\psi \in \Gamma$, значи $I_0 \models \psi$. С други думи, $I_0 \in \Gamma'$. Но $\Gamma' \models \varphi$, поради което $I_0 \models \varphi$. Тъй като I_0 е произволен модел на $\Gamma, \Gamma \models \varphi$.
- 4. \Rightarrow) (Достатъчност) $\Gamma, \varphi \models \psi$. Нека I_0 е произволен модел за Γ .

1-ви случай: Нека $I_0 \models \varphi$. Тогава $I_0 \models \Gamma \cup \{\varphi\}$, но $\Gamma \cup \{\varphi\} \models \psi$. Следователно $I_0 \models \psi$.

2-ри случай: Нека $I_0\not\models\varphi$, т.е. $I(\varphi)=F$. Тогава $H_\Rightarrow(I(\varphi),I(\psi))=T$, значи $I((\varphi\Rightarrow\psi))=T$. Следователно $I_0\models\varphi\Rightarrow\psi$.

Така и в двата случая $I_0 \models \varphi \Rightarrow \psi$. Значи $\Gamma \models \varphi \Rightarrow \psi$.

 \Leftarrow) (Необходимост) Нека $\Gamma \models \varphi \Rightarrow \psi$. Нека I_0 е модел за $\Gamma \cup \{\varphi\}$. Тогава за всяка формула $\chi \in \Gamma \cup \{\varphi\}$ имаме $I(\chi) = T$. В частност, $\chi \in \Gamma$ влече $I(\chi) = T$, т.е. $I_0 \models \Gamma$. Ако $\chi = \varphi$, то $I(\varphi) = T$. Значи $I(\varphi \Rightarrow \psi) = T$, $I(\varphi) = T$ и $H_{\Rightarrow}(I(\varphi), I(\psi)) = T$. Следователно $I(\psi) = T$, т.е. $I \models \psi$.

Следователно $\Gamma \cup \{\varphi\} \models \psi$.

- 6. \Rightarrow) (Достатъчност) Нека $\Gamma \models \varphi$. Да допуснем, че $\Gamma \cup \{ \neg \varphi \}$ е изпълнимо. Тогава това множество има модел. Нека $I_0 \models \Gamma \cup \{ \neg \varphi \}$. Следователно $I_0 \models \Gamma$ и $I_0 \models \neg \varphi$. Значи $I(\neg \varphi) = T$, но $I(\neg \varphi) = H_{\neg}(I(\varphi))$, следователно $I(\varphi) = F$, но от $\Gamma \models \varphi$ следва, че $I_0 \models \varphi$ и $I(\varphi) = T$. Противоречие.
 - \Leftarrow) (Необходимост) Нека $\Gamma \cup \{\neg \varphi\}$ е неизпълнимо. Нека I_0 е произволен модел на Γ . Тъй като $\Gamma \cup \{\neg \varphi\}$ няма модел следва, че $I_0 \not\models \neg \varphi$, т.е. $I_0 \models \varphi$. I_0 е произволен модел на Γ , поради което $\Gamma \models \varphi$.

Предикатно смятане от първи ред

Свойство 5. Ако φ е затворена формула, то $\mathcal{A} \models \varphi$ или $\mathcal{A} \models \neg \varphi$

Забележка. $A\not\models\varphi$ и оценка ν , за която $A\models\neg\varphi$, тогава за всяка оценка ω е в сила $A\models_{\omega}\neg\varphi$, $A\models\neg\varphi$.

Забележка. Винаги е вярно едно от двете $A \models_{\nu} \varphi$ или $A \models_{\nu} \neg \varphi$, но $\underline{A \models_{\varphi} u$ ли $A \models_{\neg \varphi}$ е вярно само ако формулата φ е затворена.

Семантика на език от първи ред

Свойство 6.

- $\mathcal{A} \models_{\nu} p(\tau_1, \tau_2, \dots, \tau_n) \leftrightharpoons <\tau_1, \tau_2, \dots, \tau_n > \in p^{\mathcal{A}};$
- $\mathcal{A} \models_{\nu} (\tau_1 \doteq \tau_2) \leftrightharpoons \tau_1^{\mathcal{A}}[\nu] = \tau_2^{\mathcal{A}}[\nu];$
- $\mathcal{A} \models_{\nu} \neg \varphi \leftrightharpoons \mathcal{A} \not\models \varphi$;
- $\mathcal{A} \models_{\nu} (\varphi \& \psi) \leftrightharpoons \mathcal{A} \models \varphi \ u \ \mathcal{A} \models \psi;$
- $\mathcal{A} \models_{\nu} (\varphi \lor \psi) \leftrightharpoons \mathcal{A} \models \varphi \text{ unu } \mathcal{A} \models \psi;$
- $\mathcal{A} \models_{\nu} (\varphi \Rightarrow \psi) = a\kappa o \mathcal{A} \models \varphi, mo \mathcal{A} \models \psi;$
- $\mathcal{A} \models_{\nu} (\varphi \Leftrightarrow \psi) \leftrightharpoons \mathcal{A} \models \varphi$ тогава и само тогава, когато $\mathcal{A} \models \psi$;
- $\mathcal{A} \models_{\nu} \forall x \varphi \leftrightharpoons \exists a \text{ всяко } a \in A, \mathcal{A} \models_{\nu_{x}^{x}} \varphi;$
- $\mathcal{A} \models_{\nu} \exists x \varphi \leftrightharpoons c \sigma u e c m e y e a \ a \in A, \mathcal{A} \models_{\nu_a^x} \varphi;$

Свойство 7.

- \varnothing е определимо във всяка структура при всеки език: $\varphi[x], \varphi \& \neg \varphi$ определя \varnothing ;
- A е определимо във всяка структура при всеки език: $\varphi[x], \varphi \vee \neg \varphi$ определя A;
- A^2 е определимо във всяка структура при всеки език: $\varphi[x], \varphi[x,y], \varphi \vee \neg \varphi$ определя A^2 ;

- ullet ако B е определимо и $B\subseteq A^n,$ то $A^n\setminus B$ е също определимо.
 - $\langle a_1, a_2, \dots, a_n \rangle \in B \longleftrightarrow A \models \varphi[\![a_1, a_2, \dots, a_n]\!]$ $A \not\models \varphi[\![a_1, a_2, \dots, a_n]\!] \longleftrightarrow \langle a_1, a_2, \dots, a_n \rangle \not\in B \longleftrightarrow \langle a_1, a_2, \dots, a_n \rangle \not\in A^n \setminus B$
- ако $B_1, B_2 \subseteq A^n$ са определими, то $B_1 \cup B_2, B1 \cap B2, B1 \setminus B_2, B_1 \Delta B_2$ също са определими. Щом B_1 е определимо, т.е. $\exists \varphi[x_1, x_2, \dots x_n]$, която определя B_1 и щом B_2 е определимо, т.е. $\exists \psi[x_1, x_2, \dots x_n]$, която определя B_2 .

Тогава $(\varphi \lor \psi)[x_1, x_2, \dots x_n]$ определя $B_1 \cup B_2$, $(\varphi \& \psi)[x_1, x_2, \dots x_n]$ определя $B_1 \cap B_2$, $(\varphi \& \neg \psi)[x_1, x_2, \dots x_n]$ определя $B_1 \setminus B_2$, $[(\varphi \& \neg \psi) \lor (\neg \varphi \& \psi)][x_1, x_2, \dots x_n]$ определя $B_1 \Delta B_2$. Ако $\{x_1, x_2, \dots, x_n\} \cap \{y_1, y_2, \dots, y_n\} = \varnothing$ и $\psi'[y_1, y_2, \dots, y_n]$ определя B_2 , то $\varphi \lor \psi'$ определя $(B_1 \times A^n) \cup (B_2 \times A^n)$.

Хомоморфизми и изоморфизми.

Свойство 8 (Изоморфизъм).

- $\mathcal{A}\cong\mathcal{B}\longrightarrow\mathcal{B}\cong\mathcal{A}$, ако h е изоморфизъм на \mathcal{A} върху \mathcal{B} , то h^{-1} е изоморфизъм на \mathcal{B} върху \mathcal{A}
- $\mathcal{A} \cong \mathcal{B}$ и $\mathcal{B} \cong \mathcal{C} \longrightarrow \mathcal{A} \cong \mathcal{C}$, нека h_1, h_2 са изоморфизми съответно на \mathcal{A} върху \mathcal{B} и на \mathcal{B} върху \mathcal{C} . Тогава $h(a) = h_1 \circ h_2 = h_2(h_1(a))$ е изоморфизъм на \mathcal{A} върху \mathcal{C} .
- $\mathcal{A} \cong \mathcal{A}, Id_{\mathcal{A}}$ е изоморфизъм на \mathcal{A} върху \mathcal{A}

Доказателство.

- ullet Нека $h:A\longrightarrow B$ е биекция. Тогава $h^{-1}:B\longrightarrow A$ също е биекция. Значи:
 - $-b_1 = h(a_1), a_i \in A;$ $-f^{\mathcal{B}}(b_1, b_2, \dots, b_n) = f^{\mathcal{B}}(h(a_1), h(a_2), \dots, h(a_n)) = h(f^{\mathcal{A}}(a_1, a_2, \dots, a_n)) =$ $= h(f^{\mathcal{A}}(h^{-1}(b_1), h^{-1}(b_2), \dots, h^{-1}(b_n)))$

Следователно $h^{-1}(f^{\mathcal{B}}(b_1,b_2,\ldots,b_n))=h^{-1}(h(f^{\mathcal{A}}(h^{-1}(b_1),h^{-1}(b_2),\ldots,h^{-1}(b_n))))=f^{\mathcal{A}}(h^{-1}(b_1),h^{-1}(b_2),\ldots,h^{-1}(b_n))$

Ще покажем, че е вярно $(b_1, b_2, \dots, b_n) \in p^{\mathcal{B}} \longleftrightarrow (h^{-1}(b_1), h^{-1}(b_2), \dots, h^{-1}(b_n)) \in p^{\mathcal{A}}.$

Тъй като h е биекция, то $b_1 = h(a_1), b_2 = h(a_2), \ldots, b_n = h(a_n)$ за произволни $a_1, a_2, \ldots, a_n \in A$. Тогава $(b_1, b_2, \ldots, b_n) \in p^{\mathcal{B}} \longleftrightarrow (h(a_1), h(a_2), \ldots, h(a_n)) \in p^{\mathcal{B}} \overset{\text{хом.}}{\longleftrightarrow} (a_1, a_2, \ldots, a_n) \in p^{\mathcal{A}} \longleftrightarrow (h^{-1}(b_1), h^{-1}(b_2), \ldots, h^{-1}(b_n)) \in p^{\mathcal{A}}$.

Свойство 9 (Автоморфизъм). *Ако* A = B *и h e* изоморфизъм на A върху B, то *h* се нарича автоморфизъм в A.

- $Id_{\mathcal{A}}$ е автоморфизъм;
- h е автоморфизъм, то h^{-1} е автоморфизъм;
- h_1 и h_2 са автоморфизми в A, то $h_2 \circ h_1$ е автоморфизъм в A.

Логически еквивалентни формули

Свойство 10. Верни са всички еквивалентности за съждителни формули.

- $\exists x \varphi \models \neg \forall x \neg \varphi$
- $\forall x \varphi \models \neg \exists x \neg \varphi$
- $\neg \exists x \varphi \models \forall x \neg \varphi$
- $\neg \forall x \varphi \models \exists x \neg \varphi$
- $\forall (\varphi \& \psi) \models \forall x \varphi \& \forall x \psi$
- $\exists x(\varphi \lor \psi) \models (\exists x\varphi \lor \exists x\psi)$
- $\forall (\varphi \lor \psi) \not\models (\forall \varphi \lor \forall \psi)$
- $\exists (\varphi \& \psi) \not\models (\exists \varphi \& \exists \psi)$
- Hera $x \in Var^{free}[\varphi]$. Torasa $\forall x (\varphi \lor \psi) \models \forall x \varphi \lor \psi$, $\exists x (\varphi \& \psi) \models \exists x \varphi \& \psi$, $(\mathcal{A} \models_{\nu} \exists x \psi \longleftrightarrow \mathcal{A} \models_{\nu} \psi)$;
- Heka x&Var^free $[\varphi]$. Torasa $\varphi \models \forall x \varphi, \varphi \models \exists x \varphi \ u \ \|\varphi\|^{\mathcal{A}}[\nu] = \|\varphi\|^{\mathcal{A}}[\nu_a^x]$ sa $\nu, a \in A$.

Преименуване на свързани променливи

Свойство 11. Ако $Qy\varphi[x/y]$ е вариант на $Qx\varphi$, то $Qx\varphi$ е вариант на $Qy\varphi[x/y]$.

Логическо следване

Свойство 12.

- $A\kappa o \varphi \in \Gamma$, $mo \Gamma \models \varphi$;
- $A\kappa o \Gamma \subseteq \Delta \ u \Gamma \models \varphi, \ mo \ \Delta \models \varphi;$
- $\Gamma \cup \{\varphi\} \models \psi \longleftrightarrow \Gamma \models \varphi \Rightarrow \psi$;
- $\varphi_1, \varphi_2, \dots, \varphi_n \models \psi \longleftrightarrow (\varphi_1 \& \varphi_2 \& \dots \& \varphi_n) \Rightarrow \psi.$

Затворени универсални формули

Свойство 13.

- Нека \mathcal{A} е структура, в която е вярна затворената универсална формула φ . Тогава в \mathcal{A} е верен всеки затворен частен случай на φ .
- Ако Γ е множество от затворени универсални формули, то $CSI(\Gamma) \leftrightharpoons \bigcup_{\varphi \in \Gamma} CSI(\varphi)$
- $\mathcal{A} \models \Gamma \longrightarrow \mathcal{A} \models CSI(\Gamma)$.

Съждителна резолюция

Правило на съждителната резолюция

Свойство 14.

- Ако $\mathbb{D}_1, \mathbb{D}_2, \dots, \mathbb{D}_n$ е резолютивен извод от S и $k \leq n$, то $\mathbb{D}_1, \mathbb{D}_2, \dots, \mathbb{D}_k$ също е резолютивен извод;
- Ако α и β са резолютивни изводи от S, то α , β също е резолютивен извод от S;
- Ако S е разпознаваемо (рекурсивно) множество и $\mathbb{D}_1, \mathbb{D}_2, \dots, \mathbb{D}_k$ е крайна редица от дизюнкти, то можем алгоритмично да разпознаем дали $\mathbb{D}_1, \mathbb{D}_2, \dots, \mathbb{D}_k$ е рекурсивен извод от S:
- Нека I е булева интерпретация, S е множество от дизюнкти и $\mathbb{D}_1, \mathbb{D}_2, \dots, \mathbb{D}_k$ е резолютивен извод от S. Ако $I \models S$, то за всяко $k \leq n, I \models \mathbb{D}_k$.

Трансверзали за фамилии от множества

Свойство 15. А има трансверзала \longleftrightarrow за всяко множество $x \in A, x \neq \emptyset$.

Хорнови дизюнкти

Свойство 16.

- Ако \mathbb{D}_1 и \mathbb{D}_2 са хорнови дизюнкти и ! $\mathcal{R}_L(\mathbb{D}_1,\mathbb{D}_2)$, то $\mathcal{R}_L(\mathbb{D}_1,\mathbb{D}_2)$ е също хорнов дизюнкт;
- Нека S е множество от хорнови дизюнкти и $\blacksquare \mathscr{L}S$. Ако S е неизпълнимо, то S съдържа поне един факт и поне една цел;
- ullet Ако S е хорнова програма, то S има модел.

Свойство 17 (Формално равенство).

- $\forall x Eq(x,x)$;
- $\forall x \forall y (Eq(x,y) \Leftrightarrow Eq(y,x));$
- $\forall x \forall y \forall z ((Eq(x,y)\&Eq(y,z)) \Rightarrow Eq(x,z);$
- $\forall x_1 \dots \forall x_n \forall x_1' \dots \forall x_n' (Eq(x_1, x_1') \& \dots \& Eq(x_n, x_n')) \Rightarrow (f(x_1, \dots, x_n) \doteq f(x_1', \dots, x_n'))$
- $\forall x_1 \dots \forall x_n \forall x_1' \dots \forall x_n' (Eq(x_1, x_1') \& \dots \& Eq(x_n, x_n')) \Rightarrow (p(x_1, \dots, x_n) \Leftrightarrow p(x_1', \dots, x_n'))$

Твърдения

Семантика на съждителните формули

Твърдение 1. Всяка съждителна интерпретация I_0 може по единствен начин да се разшири до изображение I от съвкупността на всички съждителни формули в $\{T, F\}$. Има единствено изображение $I: \{\varphi \mid \varphi \text{ е съждителна формула }\} \to \{T, F\}$

- за всяка съждителна променлива $P, I(P) = I_0(P);$
- ullet за всяка съждителна формула $arphi, I(
 eg arphi) = H_
 eg (I(arphi));$
- за всеки две съждителни формули φ и $\psi, I((\varphi \sigma \psi)) = H_{\sigma}(I(\varphi), I(\psi)), \sigma \in \{\&, \lor, \Rightarrow, \Leftrightarrow\}.$

Следва от еднозначния синтактичен анализ на съждителните функции.

Доказателство. Приложение на еднозначния синтактичен анализ – индукция относно построението на съждителните формули.

Ако I и I' удовлетворяват написаните условия, то те съвпадат. Непосредствено от индуктивния принцип и еднозначния синтактичен анализ.

Твърдение 2. Ако $\Gamma_1 \subseteq \Gamma_2$ и Γ_2 е изпълнимо, то Γ_1 също е изпълнимо.

Доказателство. Наистина, ако I е булев модел за Γ_2 , то за всяка формула $\varphi \in \Gamma_2, I \models \varphi$. В частност, за всяко $\varphi \in \Gamma_1, I \models \varphi$. Значи ако $I \models \Gamma_2$, то $I \models \Gamma_1$. Следователно Γ_1 е изпълнимо.

Твърдение 3. Ако $\Gamma_1 \subseteq \Gamma_2$ и Γ_1 е неизпълнимо, то Γ_2 също е неизпълнимо.

Твърдение 4. φ е съждителна тавтология, т.е. всяка булева интерпретация е модел за φ , тогава и само тогава, когато $\neg \varphi$ е противоречие.

Доказателство.

- \Rightarrow) (Достатъчност) Нека φ е съждителна тавтология. Нека I_0 е произволна булева интерпретация. Тогава $I_0 \models \varphi$, т.е. $I(\varphi) = T$. Следователно $I(\neg \varphi) = H_{\neg}(I(\varphi)) = H_{\neg}(T) = F$, т.е. $I_0 \not\models \neg \varphi$.
- \Leftarrow) (Необходимост) Нека $\neg \varphi$ е противоречие.

Нека I_0 е произволна булева интерпретация. Тъй като $\neg \varphi$ е произволна, $I(\neg \varphi) = F$. $F = I(\neg \varphi) = H_{\neg}(I(\varphi))$. Следователно $I(\varphi) = T$. I_0 е произволна, следователно φ е тавтология.

Твърдение 5. Нека φ е съждителна формула. Нека I_0 и J_0 са булеви интерпретации. Ако за всяка съждителна променлива P, участваща лингвистично във φ , т.е. $P \in Var(\varphi)$, $I_0(P) = J_0(P)$, то $I(\varphi) = J(\varphi)$.

Доказателство с индукция по построението на φ :

• Нека φ е съждителна променлива, P.

Тогава $Var(\varphi) = \{P\}$. Нека I_0 и J_0 са булеви интерпретации, удовлетворяващи условието за всяка променлива от $Var(\varphi)$, I_0 и J_0 съвпадат.

Тогава
$$I(\varphi) = I(P) = I_0(P) = J_0(P) = J(P) = J(\varphi).$$

• Нека $\varphi = \neg \psi$, като за ψ твърдението е вярно.

Значи всеки път, когато I_0 и J_0 са булеви интерпретации, такива че за всяка съждителна променлива $P \in Var(\varphi), I_0(P) = J_0(P),$ то $I(\psi) = J(\psi).$

Нека I_0 и J_0 са булеви интерпретации и за всяко $P \in Var(\psi)$ имаме $I_0(P) = J_0(P)$. $Var(\varphi) = Var(\neg \psi) = Var(\psi)$. Следователно, за всяка $P \in Var(\varphi), I_0(P) = J_0(P)$. От индукционното предположение следва $I(\psi) = J(\psi)$.

Следователно $H_{\neg}(I(\psi)) = H_{\neg}(J(\psi))$, т.е. $I(\neg \varphi) = J(\neg \varphi)$.

• Heka $\varphi = (\varphi_1 \sigma \varphi_2), \sigma \in \{\&, \lor, \Rightarrow, \Leftrightarrow\}.$

Нека I_0 и J_0 са булеви интерпретации, такива че $I_0(P)=J_0(P)$ всеки път, когато $P\in Var(\varphi), Var(\varphi)=Var(\varphi_1)\cup Var(\varphi_2).$

За всяко $P \in Var(\varphi_1)$ имаме $I_0(P) = J_0(P)$. Прилагаме индукционното предположение за φ_1, I_0, J_0 и получаваме $I(\varphi_1) = J(\varphi_1)$.

За всяко $P\in Var(\varphi_2)$ имаме $I_0(P)=J_0(P)$. Прилагаме индукционното предположение за φ_2,I_0,J_0 и получаваме $I(\varphi_2)=J(\varphi_2)$.

Тогава $I(\varphi)=I(\varphi_1\sigma\varphi_2)=H_\sigma(I(\varphi_1),I(\varphi_2))=H_\sigma(J(\varphi_1),J(\varphi_2))=J(\varphi_1\sigma\varphi_2)=J(\varphi).$

Следствие 1. Проблемите за изпълнимост и тавтологичност на съждителни формули са разрешими, т.е. има алгоритъм, който по дадена произволна формула φ разпознават дали φ е изпълнима и съответно дали е тавтология.

Доказателство. $Var(\varphi)$ е крайно множество, $Var(\varphi) = \{P_1, P_2, \dots, P_n\}$.

Последователно подреждаме редица с дължина n от $\{T,F\}$. За всяка такава редица a_1,a_2,\ldots,a_n смятаме стойността на φ при $I(P_i)=a_i,1\leq i\leq n$. Спираме тогава, когато получим .

Така имаме алгоритъм за разпознаване на изпълнимост.

Забележка. Пробелмът за изпълнимост на съждителна формула е NP-пълен.

Твърдение 6. Дизюнкция на две формули, които са конюнкции на елементарни дизюнкции е еквивалентна с конюнкция на елементарни дизюнкции.

Твърдение 7. Конюнкция на две формули, които са конюнкции на елементарни дизюнкции е еквивалентна с конюнкция на елементарни дизюнкции.

Булева еквивалентност на съждителни формули

Заместване на съждителни променливи със съждителни формули

Твърдение 8. Ако $\varphi[P_1, P_2, \dots, P_n], P_1, P_2, \dots, P_n$ – различни съждителни променливи и $\varphi_1, \varphi_2, \dots, \varphi_n$ са произволни съждителни формули, то $\varphi[P_1/\varphi_1, P_2/\varphi_2, \dots, P_n/\varphi_n]$ е също съждителна формула.

Твърдение 9. Нека $\varphi_1, \varphi_2, \ldots, \varphi_n$ и $\psi_1, \psi_2, \ldots, \psi_n$ са съждителни формули и $\alpha_0 \varphi_1 \alpha_1 \varphi_2 \ldots \alpha_{n-1} \varphi_n \alpha_n$ е съждителна формула, то $\alpha_0 \psi_1 \alpha_1 \psi_2 \ldots \alpha_{n-1} \psi_n \alpha_n$ също е съждителна формула.

Доказателство. Избираме променливи Q_1,Q_2,\ldots,Q_n – различни и не се срещат във $\varphi_1,\varphi_2,\ldots,\varphi_n;$ $\psi_1,\psi_2,\ldots,\psi_n;$ $\alpha_0,\alpha_1,\ldots,\alpha_n.$

Тогава думата $\alpha_0Q_1\alpha_1Q_2\dots\alpha_{n-1}Q_n\alpha_n=:\varphi$ е съждителна формула и $\varphi[P_1,P_2,\dots,P_k,Q_1,Q_2,\dots,Q_n].$ От тук може да получим чрез едновременна замяна

$$\begin{array}{l} \varphi[P_1/P_1,P_2/P_2,\ldots,P_k/P_k,Q_1/\varphi_1,Q_2/\varphi_2,\ldots,Q_n/\varphi_n] = \alpha_0\varphi_1\alpha_1\varphi_2\ldots\alpha_{n-1}\varphi_n\alpha_n \text{ M} \\ \varphi[P_1/P_1,P_2/P_2,\ldots,P_k/P_k,Q_1/\psi_1,Q_2/\psi_2,\ldots,Q_n/\psi_n] = \alpha_0\psi_1\alpha_1\psi_2\ldots\alpha_{n-1}\psi_n\alpha_n. \end{array}$$

Следователно, ако $\alpha_0 \varphi_1 \alpha_1 \varphi_2 \dots \alpha_{n-1} \varphi_n \alpha_n$ е съждителна формула, то и $\alpha_0 \psi_1 \alpha_1 \psi_2 \dots \alpha_{n-1} \psi_n \alpha_n$ също е съждителна формула.

Твърдение 10. Има алгоритъм, който по дадена съждителна формула φ дава винаги като резултат формула ψ , такава че:

- $\varphi \vDash \psi$
- в ψ няма срещания на $\Rightarrow u \Leftrightarrow$

Доказателство.

- ако φ е съждителна променлива, то $\psi = \varphi$.
- ако $\varphi = \neg \varphi$ и има алгоритъм за φ_1 , който дава като резултат ψ_1 , така че $\varphi_1 \models \psi_1$, и в ψ_1 няма \Rightarrow , \Leftrightarrow .

Тогава $\varphi_1 \models \psi_1 \longrightarrow \neg \varphi_1 \models \neg \psi_1$. В ψ_1 няма \Rightarrow , \Leftrightarrow , следователно $\psi = \neg \psi_1$, също няма \Rightarrow , \Leftrightarrow .

- $\varphi = (\varphi_1 \sigma \varphi_2), \sigma \in \{\lor, \&\}$ и има алгоритъм за φ_1 и φ_2 , който дава като резултат ψ_1 и ψ_2 . Тогава от $\varphi_1 \models \psi_1, \varphi_2 \models \psi_2$ следва, че $(\varphi_1 \sigma \varphi_2) \models (\psi_1 \sigma \psi_2)$ и в $(\psi_1 \sigma \psi_2)$ няма \Rightarrow , \Leftrightarrow .
- $\varphi = (\varphi_1 \Rightarrow \varphi_2)$ и има алгоритъм за φ_1 и φ_2 , който дава като резултат ψ_1 и ψ_2 . Тогава $(\varphi_1 \Rightarrow \varphi_2) \models (\psi_1 \Rightarrow \psi_2)$ и $(\psi_1 \Rightarrow \psi_2) \models (\neg \psi_1 \lor \psi_2)$. Следователно може да считаме, че $(\neg \psi_1 \lor \psi_2)$ е резултат от алгоритъма.
- $\varphi = (\varphi_1 \Leftrightarrow \varphi_2)$ и има алгоритъм за φ_1 и φ_2 , който дава като резултат ψ_1 и ψ_2 . Тогава $(\varphi_1 \Leftrightarrow \varphi_2) \models (\psi_1 \Leftrightarrow \psi_2)$ и $(\psi_1 \Leftrightarrow \psi_2) \models (\psi_1 \& \psi_2) \lor (\neg \psi_1 \& \neg \psi_2)$. Следователно може да считаме, че $(\psi_1 \& \psi_2) \lor (\neg \psi_1 \& \neg \psi_2)$ е резултат от алгоритъма.

Твърдение 11. Има алгоритъм, който по дадена съждителна формула φ дава винаги като резултат формула ψ , такава че:

- $\varphi \models \psi$
- в ψ няма срещания на $\Rightarrow u \Leftrightarrow$
- ullet всяко срещане на \neg е от вида $\neg P, P \in PVar.$

Доказателство. От твърдение 10 получаваме ψ , такова че $\varphi \models \psi$ и в ψ няма срещане на \Rightarrow , \Leftrightarrow .

- ullet ако $\psi \in PVar$, то твърдението е изпълнено.
- ako $\psi = \neg \psi'$:

- ако
$$\psi' = \neg \psi''$$
, то $\psi = \neg \neg \psi'' \models \psi''$

- ако
$$\psi' = (\psi_1 \& \psi_2)$$
, то $\neg \psi' \models \neg (\psi_1 \& \psi_2) \models (\neg \psi_1 \lor \neg \psi_2)$

- ако
$$\psi' = (\psi_1 \lor \psi_2)$$
, то $\neg \psi' \models \neg (\psi_1 \lor \psi_2) \models (\neg \psi_1 \& \neg \psi_2)$

Твърдение 12. Има алгоритъм, който на φ съпоставя $\psi = \psi_1 \& \psi_2 \& \dots \& \psi_n$, където $\psi_1, \psi_2, \dots \psi_n$ са елементарни дизюнкции.

Твърдение 13. Нека $\varphi_1, \varphi_2, \dots, \varphi_n$ са съждителни формули. Нека φ е съждителна формула, такава че $\varphi \models \alpha_0 \varphi_1 \alpha_1 \varphi_2 \dots \varphi_n \alpha_n$.

Казваме, че сме отбелязали някои конкретни участия на $\varphi_1, \varphi_2, \dots, \varphi_n$ във φ . Нека $\varphi_1', \varphi_2', \dots, \varphi_n'$ са съждителни формули.

Да разгледаме думата $\alpha_0 \varphi_1' \alpha_1 \varphi_2' \dots \varphi_n' \alpha_n$. Тази дума е съждителна формула.

Доказателствого използва еднозначен синтактичен анализ и индукция по построението на φ . Вземаме твърдението за истина на доверие.

Твърдение 14. Нека I е булева интерпретация, такава че $I(\varphi_1) = I(\varphi_1'), \ldots, I(\varphi_n) = I(\varphi_n')$. Тогава $I(\alpha_0 \varphi_1 \alpha_1 \ldots \varphi_n \alpha_n) = I(\alpha_0 \varphi_1' \alpha_1 \ldots \varphi_n' \alpha_n)$.

Твърдение 15. Нека φ е съждителна формула, в която не участват \Rightarrow $u \Leftrightarrow$. Тогава алгоритмично можем да намерим формула φ' , такава че $\varphi \models \varphi'$ $u \Rightarrow$, \Leftrightarrow не участват във φ' u във φ' отрицанието се среща само пред съждителни променливи.

 $Hanpumep: \varphi' \Rightarrow \alpha \neg \beta \rightarrow \beta = P\beta'.$

Предикатно смятане от първи ред

Твърдение 16. Нека \mathcal{L}_2 е разширение на \mathcal{L}_1 . Тогава всеки терм от \mathcal{L}_1 е терм от \mathcal{L}_2 .

Доказателство. С индукция по построението на термовете.

Твърдение 17. За всеки два терма τ и \varkappa е в сила еквивалентността: τ е подтерм на $\varkappa \longleftrightarrow \tau \in Subt(\varkappa)$.

Семантика на език от първи ред

Твърдение 18. Нека \mathcal{A} е крайна структура и са зададени интерпретации на нелогическите символи. Тогава има алгоритъм, който по дадена формула φ разпознава дали формулата е вярна или не.

Следствие 1. Има алгоритъм, който по дадена формула φ разпознава дали в крайна структура $\mathcal{A}, \mathcal{A} \models \varphi$.

Твърдение 19. Ако ν_1 и ν_2 са оценки в \mathcal{A} и за всяка индивидна променлива x, участваща във $\varphi, \nu_1(x) = \nu_2(x)$, то $\mathcal{A} \models \varphi$.

Твърдение 20. Нека \mathcal{A} е структура. Тогава за всяка формула φ е в сила следното: ако ν_1 и ν_2 са оценки в \mathcal{A} и $\nu_1|Var^{free}(\varphi) = \nu_2|Var^{free}(\varphi)$, то $\|\varphi\|^{\mathcal{A}}[\nu_1] = \|\varphi\|^{\mathcal{A}}[\nu_2]$.

 $\ensuremath{\mathcal{A}\!\textit{okasameacmbo}}$. Индукция по построението на φ :

• $\varphi = p(\tau_1, \tau_2, \dots, \tau_n)$. Нека ν_1 и ν_2 са оценки в \mathcal{A} и $\nu_1|Var^{free}(\varphi) = \nu_2|Var^{free}(\varphi)$. Нека $1 \leq i \leq n, \ Var^{free}(\tau_i) \subseteq Var^{free}(\varphi)$.

Следователно $\nu_1|Var(\tau_i) = \nu_2|Var(\tau_i), \tau_i^{\mathcal{A}}[\nu_1] = \tau_i^{\mathcal{A}}[\nu_2].$

$$p(\tau_{1}, \tau_{2}, \dots, \tau_{n}) \|^{\mathcal{A}}[\nu_{1}] \longleftrightarrow <\tau_{1}[\nu_{1}], \tau_{2}[\nu_{1}], \dots, \tau_{n}[\nu_{1}] > \in p^{\mathcal{A}}$$

$$\longleftrightarrow <\tau_{1}[\nu_{2}], \tau_{2}[\nu_{2}], \dots, \tau_{n}[\nu_{2}] > \in p^{\mathcal{A}} \longleftrightarrow \|p(\tau_{1}, \tau_{2}, \dots, \tau_{n})\|^{\mathcal{A}}[\nu_{2}]$$

- $\varphi = \neg \varphi_1$ и за φ_1 твърдението е вярно. Нека ν_1 и ν_2 са оценки в \mathcal{A} и $\nu_1|Var^{free}(\varphi) = \nu_2|Var^{free}(\varphi)$. Тъй като $Var^{free}(\varphi) = Var^{free}(\varphi_1)$, имаме $\nu_1|Var^{free}(\varphi_1) = \nu_2|Var^{free}(\varphi_1)$. Следователно $\|\varphi_1\|^{\mathcal{A}}[\nu_1] = \|\varphi_1\|^{\mathcal{A}}[\nu_2]$ (ih). Тогава $H_{\neg}(\|\varphi_1\|^{\mathcal{A}}[\nu_1]) = H_{\neg}(\|\varphi_1\|^{\mathcal{A}}[\nu_2])$, т.е. $\|\neg \varphi_1\|^{\mathcal{A}}[\nu_1] = \|\neg \varphi_1\|^{\mathcal{A}}[\nu_2]$.
- $\varphi = (\varphi_1 \sigma \varphi_2), \sigma \in \{\&, \lor, \Rightarrow, \Leftrightarrow\}$ и за φ_1 и φ_2 твърдението е вярно. Нека ν_1 и ν_2 са оценки в \mathcal{A} и $\nu_1 | Var^{free}(\varphi) = \nu_2 | Var^{free}(\varphi), Var^{free}(\varphi) = Var^{free}(\varphi_1) \cup Var^{free}(\varphi_2),$ т.е. $Var^{free}(\varphi_1) \subseteq Var^{free}(\varphi)$ и $Var^{free}(\varphi_2) \subseteq Var^{free}(\varphi)$.

Значи $\nu_1|Var^{free}(\varphi_j)=\nu_2|Var^{free}(\varphi_j), j=1,2.$ Ето защо можем да приложим (ih) за φ и $\nu_1,\nu_2.$ Така $\|\varphi_j\|^{\mathcal{A}}[\nu_1]=\|\varphi_j\|^{\mathcal{A}}[\nu_2].$

 $\|\varphi\|^{\mathcal{A}}[\nu_1] = H_{\sigma}(\|\varphi_1\|^{\mathcal{A}}[\nu_1], \|\varphi_2\|^{\mathcal{A}}[\nu_1]) = H_{\sigma}(\|\varphi_1\|^{\mathcal{A}}[\nu_2], \|\varphi_2\|^{\mathcal{A}}[\nu_2]) = \|\varphi\|^{\mathcal{A}}[\nu_2].$

- $\varphi = Qx\psi, Q \in \{\forall,\exists\}$ и за ψ твърдението е вярно. Нека ν_1 и ν_2 са оценки в \mathcal{A} и $\nu_1|Var^{free}(\varphi) = \nu_2|Var^{free}(\varphi)$. Нека a е произволен елемент на A. Разглеждаме оценките ν_{1a}^x и ν_{2a}^x . $Var^{free}(\psi) \subseteq Var^{free}(\varphi) \cup \{x\}$. Нека $y \in Var^{free}(\psi)$. Тогава:
 - (a) y = x, следователно $\nu_{1a}^{x}(y) = a = \nu_{2a}^{x}(y)$;
 - (б) $y \neq x$, следователно $y \in Var^{free}(\varphi), \nu_1(y) = \nu_2(y)$, следователно $\nu_{1a}^{\ x}(y) = \nu_{2a}^{\ x}(y)$.

Тогава за всяко $y \in Var^{free}(\psi), \nu_{1a}^{\ x}(y) = \nu_{2a}^{\ x}(y)$. Прилагаме (ih) към ψ за $\nu_{1a}^{\ x}$ и $\nu_{2a}^{\ x}$. $\|\psi\|^{\mathcal{A}}[\nu_{1a}^{\ x}] = \|\psi\|^{\mathcal{A}}[\nu_{2a}^{\ x}]$.

- (а) ако $Q = \forall$. Нека $\|\psi\|^A[\nu_1] = T$. Тогава за всяко $a \in A$, $\|\psi\|^A[\nu_{1a}^x] = T$. Следователно за всяко $a \in A$, $\|\psi\|^A[\nu_{2a}^x] = T$. Значи $\|\psi\|^A[\nu_1] = T$. Аналогично от $\|\varphi\|^A[\nu_1] = T$ следва $\|\varphi\|^A[\nu_2] = T$, т.е. $\|\varphi\|^A[\nu_1] = \|\varphi\|^A[\nu_2]$.
- (б) ако $Q=\exists$. Нека $\|\varphi\|^{\mathcal{A}}[\nu_1]=T$. Тогава има $a\in A, \|\psi\|^{\mathcal{A}}[\nu_{1a}]=T$. Така има $a\in A, \|\psi\|^{\mathcal{A}}[\nu_{2a}]=T$. Аналогично $\|\varphi\|^{\mathcal{A}}[\nu_2]=T$ влече $\|\varphi\|^{\mathcal{A}}[\nu_1]=T$. Следователно $\|\varphi\|^{\mathcal{A}}[\nu_1]=\|\varphi\|^{\mathcal{A}}[\nu_2]$.

Твърдение 21. Нека φ е формула, x е индивидна променлива, \mathcal{A} е структура за езика, в който е φ . Тогава $\mathcal{A} \models \varphi \longleftrightarrow \mathcal{A} \models \forall x \varphi$.

Доказателство.

- \Rightarrow) Нека в \mathcal{A} е вярна формулата φ , т.е. $\mathcal{A} \models \varphi$, т.е. за всяка оценка ν в $\mathcal{A}, \mathcal{A} \models_{\nu} \varphi$. Нека ω е произволна оценка в \mathcal{A} . Нека $a \in \mathcal{A}$. Да разгледаме ω_a^x . Тогава $\mathcal{A} \models_{\omega_a^x} \varphi$. Следователно $\mathcal{A} \models_{\omega} \forall x \varphi$. Следователно $\mathcal{A} \models_{\omega} \forall x \varphi$.
- \Leftarrow) Обратно, нека $\mathcal{A}\models \forall x \varphi$, т.е. за всяка оценка ν и всяко $a\in A, \mathcal{A}\models_{\nu_a^x}\varphi$. Нека ω е произволна оценка в $\mathcal{A}, \nu \leftrightharpoons \omega_{\nu(x)}^x$. За $\mathcal{A}\models_{\omega_{\nu(x)}^x}\varphi$, т.е. $\mathcal{A}\models_{\nu}\varphi$. Но $\nu=\omega$, т.е. $\mathcal{A}\models_{\omega}\varphi$. Така имаме, че $\mathcal{A}\models\varphi$.

Следствие 2. Нека $Var^{free}(\varphi) \subseteq \{x_1, x_2, \dots, x_n\}$ и x_1, x_2, \dots, x_n са различни, т.е. $\varphi[x_1, x_2, \dots, x_n]$. Тогава $\forall x_1 \forall x_2 \dots \forall x_n \varphi$ е затворена формула. Следователно $\mathcal{A} \models \varphi \longleftrightarrow \mathcal{A} \models \forall x_1 \forall x_2 \dots \forall x_n \varphi$.

Твърдение 22. Нека $B \subseteq A^n$ е определимо. Нека x_1, x_2, \ldots, x_n са различни индивидни променливи. Тогава има формула $\varphi[x_1, x_2, \ldots, x_n]$, която определя B.

Хомоморфизми и изоморфизми.

Твърдение 23. Нека h е хомоморфизъм на A в B. Нека τ е терм и $\tau[x_1, x_2, \ldots, x_n]$. Тогава за произволни $a_1, a_2, \ldots, a_n \in A$ е изпълнено

$$h(\tau^{\mathcal{A}}[a_1, a_2, \dots, a_n]) = \tau^{\mathcal{B}}[h(a_1), h(a_2), \dots, h(a_n)]$$

Доказателство. Индукция по построението на τ :

- $\tau = c$ $h(\tau^{\mathcal{A}}[a_1, a_2, \dots, a_n]) = h(c^{\mathcal{A}}) = c^{\mathcal{B}} = \tau^{\mathcal{B}}[h(a_1), h(a_2), \dots, h(a_n)]$
- $\tau = x$ $\tau[x_1, x_2, \dots, x_n], \text{ следователно } x = x_i \text{ за някое } i, 1 \le i \le n \text{ и значи } x^{\mathcal{A}}[\![a_1, a_2, \dots, a_n]\!] = a_i.$ Тогава $h(x^{\mathcal{A}}[\![a_1, a_2, \dots, a_n]\!]) = h(a_i) = x^{\mathcal{B}}[\![h(a_1), h(a_2), \dots, h(a_n)]\!].$
- $\tau = f(\tau_1, \tau_2, \dots, \tau_n)$ и за $\tau_1, \tau_2, \dots, \tau_n$ твърдението е вярно. $tau[x_1, x_2, \dots, x_n], \text{ следователно за всяко } i, 1 \leq i \leq n, \tau_i[x_1, x_2, \dots, x_n].$ Тогава индукционното предположение е изпълнено за $\tau_i \colon h(\tau^A[a_1, a_2, \dots, x_n]) = h(f^A(\tau_1^A[a_1, a_2, \dots, a_n], \tau_2^A[a_1, a_2, \dots, a_n], \dots, \tau_n^A[a_1, a_2, \dots, a_n])) = f^B(h(\tau_1^A[a_1, a_2, \dots, a_n]), h(\tau_2^A[a_1, a_2, \dots, a_n]), \dots, h(\tau_n^A[a_1, a_2, \dots, a_n])) = f^B(\tau_1^B[h(a_1), h(a_2), \dots, h(a_n)], \dots, \tau_n^B[h(a_1), h(a_2), \dots, h(a_n)])) = \tau^B[h(a_1), h(a_2), \dots, h(a_n)].$

Твърдение 24. Нека h е хомоморфизъм на A към B. Нека φ е без формално равенство.

- 1. Ако φ е безкванторна, то $\mathcal{A} \models \varphi[\![a_1, a_2, \dots, a_n]\!] \longleftrightarrow \mathcal{B} \models \varphi[\![h(a_1), h(a_2), \dots, h(a_n)]\!]$, за произволни $a_1, a_2, \dots, a_n \in A$.
- 2. Ако $\varphi = \exists y_1 \exists y_2 \dots \exists y_n \psi$, където ψ е безкванторна, то за произволни $a_1, a_2, \dots, a_n \in A$ е изпълнено $\mathcal{A} \models \exists y_1 \exists y_2 \dots \exists y_n \psi \llbracket a_1, a_2, \dots, a_n \rrbracket \longrightarrow \mathcal{B} \models \exists y_1 \exists y_2 \dots \exists y_n \psi \llbracket h(a_1), h(a_2), \dots, h(a_n) \rrbracket$.

3. Ако $\varphi = \forall y_1 \forall y_2 \dots \forall y_n \psi$, ψ е безкванторна. Нека $a_1, a_2, \dots, a_n \in A$. Тогава $\mathcal{B} \models \forall y_1 \forall y_2 \dots \forall y_n \psi \llbracket h(a_1), h(a_2), \dots, h(a_n) \rrbracket \longrightarrow \mathcal{A} \models \forall y_1 \forall y_2 \dots \forall y_n \psi \llbracket a_1, a_2, \dots, a_n \rrbracket$.

Твърдение 25. Нека h е изоморфно влагане на A в B. Нека φ е безкванторна формула, u $\varphi[x_1, x_2, \ldots, x_n]$ (т.е. свободните променливи на φ са измежду x_1, x_2, \ldots, x_n , но φ е безкванторна и значи, че всички променливи на $\varphi \in \{x_1, x_2, \ldots, x_n\}$).

Тогава за произволни $a_1, a_2, \ldots, a_n \in A$ е изпълнено

$$\mathcal{A} \models \varphi[\![a_1, a_2, \dots, a_n]\!] \longleftrightarrow \mathcal{B} \models \varphi[\![h(a_1), h(a_2), \dots, h(a_n)]\!]$$

Следствие 1. Нека h е изоморфно влагане на \mathcal{A} в \mathcal{B} . Нека φ е формула и $\varphi[x_1, x_2, \dots, x_n]$. Тогава за произволни $a_1, a_2, \dots, a_n \in A$:

- 1. Ако φ е екзистенциална и $\mathcal{A} \models \varphi \llbracket a_1, a_2, \dots, a_n \rrbracket$, то $\mathcal{B} \models \varphi \llbracket h(a_1), h(a_2), \dots, h(a_n) \rrbracket$
- 2. Ако φ е универсална и $\mathcal{B} \models \varphi \llbracket h(a_1), h(a_2), \dots, h(a_n) \rrbracket$, то $\mathcal{A} \models \varphi \llbracket a_1, a_2, \dots, a_n \rrbracket$.

Твърдение 26. С помощта на $\varphi_1, \varphi_2, \dots, \varphi_n$ и използвайки $\neg, \&, \lor, \Rightarrow, \Leftrightarrow$ построяваме формула φ .

Нека $\varphi_1 \models \psi_1, \varphi_2 \models \psi_2, \dots, \varphi_n \models \psi_n$. Тогава използвайки същата конструкция получаваме формула ψ .

Tвърдим, че φ и ψ са логически еквивалентни.

Твърдение 27. Нека Θ е съждителна формула и $\Theta[p_1, p_2, \dots, p_n]$, където p_1, p_2, \dots, p_n – съждителни променливи.

Hека $\varphi_1, \varphi_2, \ldots, \varphi_n; \psi_1, \psi_2, \ldots, \psi_n$ са nредикатни формули. Тогава, ако $\varphi_1 \models \psi_1, \varphi_2 \models \psi_2, \ldots, \varphi_n \models \psi_n, mo \Theta[p_1/\varphi_1, p_2/\varphi_2, \ldots, p_n/\varphi_n] \models \Theta[p_1/\psi_1, p_2/\psi_2, \ldots, p_n/\psi_n].$

Твърдение 28. Нека \mathcal{A} е структура, φ и ψ са предикатни формули. Нека φ е логически еквивалентна c ψ в структурата \mathcal{A} .

Всеки път, когато $\alpha\varphi\beta$ е предикатна формула, е в сила $\alpha\varphi\beta \models_{\mathcal{A}} \alpha\psi\beta$ (конкретно участие на φ заместено c ψ).

Твърдение 29. Нека \mathcal{A} е структура, x е индивидна променлива, τ е терм, φ е предикатна формула. Нека замяната $\varphi^{[x/\tau]}$ е допустима замяна.

Всеки път, когато ν и ω са оценки в \mathcal{A} , удовлетворяващи условията:

- $\nu(x) = \tau^{\mathcal{A}}[\omega]$
- $\nu(y) = \omega(y), \forall y \in Var^{free}[\varphi] \setminus \{x\}$

 $e \ \epsilon \ cuлa \ \|\varphi\|^{\mathcal{A}}[\nu] = \|\varphi[x/\tau]\|^{\mathcal{A}}[\omega].$

Хомоморфизми и изоморфизми.

Твърдение 30. Нека x_1, x_2, \ldots, x_n са различни индивидни променливи, $\varkappa_1, \varkappa_2, \ldots, \varkappa_n$ – термове. Нека \mathcal{A} е структура. Нека τ е терм от езика \mathcal{L} и оценките ν_1 и ν_2 в \mathcal{A} удовлетворяват следните условия:

- за всяка индивидна променлива $y, y \in Var(\tau) \setminus \{x_1, x_2, \dots, x_n\}, \nu_1(y) = \nu_2(y);$
- за всяко $i, 1 \le i \le n, \nu_1(x_i) = \varkappa^{\mathcal{A}}[\nu_2].$

Torasa $\tau^{\mathcal{A}}[\nu_1] = \tau[x_1/\varkappa_1, x_2/\varkappa_2, \dots, x_n/\varkappa_n]^{\mathcal{A}}[\nu_2].$

Следствие 1. Нека \mathcal{A} е структура, τ е терм. Нека ν_1 и ν_2 са оценки в \mathcal{A} , такива че $\nu_1(x) = \nu_2(x)$ за всяка индивидна променлива $x, x \in Var[\tau]$. Тогава $\tau^{\mathcal{A}}[\nu_1] = \tau^{\mathcal{A}}[\nu_2]$.

Следствие 2. Нека τ е затворен терм $(Var[\tau] = \varnothing)$. Нека \mathcal{A} е структура. Тогава за всеки две оценки ν_1 и ν_2 в \mathcal{A} , $\tau^{\mathcal{A}}[\nu_1] = \tau^{\mathcal{A}}[\nu_2]$, т.е. затворените термове в структура не зависят от нищо и имат една и съща стойност за коя да е оценка в структурата.

Нека x_1, x_2, \ldots, x_n са различни променливи, $Var[\tau] \subseteq \{x_1, x_2, \ldots, x_n\}$. Такъв терм означаваме с $\tau[x_1, x_2, \ldots, x_n]$ (променливите на τ са измежду x_1, x_2, \ldots, x_n).

Нека ν_1 и ν_2 са оценки в \mathcal{A} . Тогава $\tau^{\mathcal{A}}$ зависи само от $\nu_1(x_1), \nu_1(x_2), \ldots, \nu_1(x_n)$ и $\nu_2(x_1), \nu_2(x_2), \ldots, \nu_2(x_n), \nu_1[x_i] = \nu_2[x_i], 1 \leq i \leq n$. $\tau^{\mathcal{A}}[v_1] = \tau^{\mathcal{A}}[v_2] \longleftrightarrow \tau[\nu_1(x_1), \nu_1(x_2), \ldots, \nu_1(x_n)] = \tau[\nu_2(x_1), \nu_2(x_2), \ldots, \nu_2(x_n)].$ Такъв терм означаваме с $\tau[a_1, a_2, \ldots, a_n]$, където $a_i = \nu_j(x_i), j = 1, 2, 1 \leq i \leq n$. Всеки терм τ с фиксирана наредба от променливи $\tau[x_1, x_2, \ldots, x_n], \tau: A^n \longrightarrow A, \tau[a_1, a_2, \ldots, a_n]$. Всеки полином поражда функция.

Твърдение 31. Нека \mathcal{A} е структура за \mathcal{L} . Нека φ е предикатна формула. Нека ν_1 и ν_2 са оценки в \mathcal{A} , такива че за всяка свободна променлива $y \in Var^{free}[\varphi], \nu_1(y) = \nu_2(y)$. Тогава $\|\varphi\|^{\mathcal{A}}[\nu_1] = \|\varphi\|^{\mathcal{A}}[\nu_2]$.

Забележка. Формулите без свободна променлива говорят за света като цяло.

Заместване на подформули с формули

Твърдение 32. Нека φ е съждителна формула и $\varphi[P_1, P_2, \dots, P_n]$. Нека $\varphi_1, \varphi_2, \dots, \varphi_n$ са предикатни формули.

 $C \varphi[P_1/\varphi_1, P_2/\varphi_2, \dots, P_n/\varphi_n]$ означаваме резултата от едновременната замяна на P_1 с φ_1 , P_2 с φ_2 , ..., P_n с φ_n . Думата $\varphi[P_1/\varphi_1, P_2/\varphi_2, \dots, P_n/\varphi_n]$ е предикатна формула.

Твърдение 33. Нека $\varphi[P_1, P_2, \dots, P_n]$ е съждителна формула и нека $\varphi_1, \varphi_2, \dots, \varphi_n$ са предикатни формули.

Нека I_0 е булева интерпретация, а \mathcal{A} е структура над \mathcal{L} и ν е оценка. Ако $I_0(P_1) = \|\varphi_1\|^{\mathcal{A}}[\nu], I_0(P_2) = \|\varphi_2\|^{\mathcal{A}}[\nu], \dots, I_0(P_n) = \|\varphi_n\|^{\mathcal{A}}[\nu],$ то $I(\varphi) = \|\varphi[P_1/\varphi_1, P_2/\varphi_2, \dots, P_n/\varphi_n]\|^{\mathcal{A}}[\nu]$

Следствие 1. Ако φ е тавтология, то $\models \varphi[P_1/\varphi_1, P_2/\varphi_2, \dots, P_n/\varphi_n]$. Казваме, че φ е тавтология по съждителни причини.

Следствие 2. Нека φ' и φ'' са съждителни формули и $\varphi' \models \varphi''$.

Нека $\varphi'[P_1,P_2,\ldots,P_n], \varphi''[P_1,P_2,\ldots,P_n]$. Нека $\varphi_1,\varphi_2,\ldots,\varphi_n$ са произволни предикатни формули от \mathcal{L} . Тогава $\varphi'[P_1/\varphi_1,P_2/\varphi_2,\ldots,P_n/\varphi_n] \models \varphi''[P_1/\varphi_1,P_2/\varphi_2,\ldots,P_n/\varphi_n]$

Твърдение 34. Нека $\varphi[P_1, P_2, \dots, P_n]$. Нека $\varphi_1, \varphi_2, \dots, \varphi_n$ и $\psi_1, \psi_2, \dots, \psi_n$ са произволни съждителни формули и I_0 е булева интерпретация, такава че $I(\varphi_1) = I(\psi_i), i = 1, \dots, n$. Тогава $I(\varphi^{[P_1/\varphi_1, P_2/\varphi_2, \dots, P_n/\varphi_n]}) = I(\varphi^{[P_1/\psi_1, P_2/\psi_2, \dots, P_n/\psi_n]})$.

Твърдение 35. Нека φ е предикатна формула от вида $\varphi = \alpha \varphi' \beta$, където φ' е предикатна формула от същия език. Нека \mathcal{A} е структура. Нека φ'' е предикатна формула, такава че $\varphi' \models \varphi''$. Тогава $\alpha \varphi' \beta \models \alpha \varphi'' \beta$.

Твърдение 36. Нека $\varphi = \alpha_0 \varphi_1 \alpha_1 \varphi_2 \dots \alpha_{n-1} \varphi_n \alpha_n$ и $\psi_1, \psi_2, \dots, \psi_n$ са предикатни формули. Нека \mathcal{A} е структура и $\varphi_1 \stackrel{\mathcal{A}}{\models} \psi_1, \varphi_2 \stackrel{\mathcal{A}}{\models} \psi_2, \dots, \varphi_n \stackrel{\mathcal{A}}{\models} \psi_n$.

Тогава $\alpha_0 \varphi_1 \alpha_1 \varphi_2 \dots \alpha_{n-1} \varphi_n \alpha_n \stackrel{\mathcal{A}}{\models} \alpha_0 \psi_1 \alpha_1 \psi_2 \dots \alpha_{n-1} \psi_n \alpha_n$.

Заместване на индивидни променливи с термове

Твърдение 37. Нека ν, ω са оценки в \mathcal{A} и е изпълнено $\nu(x_1) = \tau_i^{\mathcal{A}}[\omega], 1 \leq i \leq n$. Тогава $\tau^{\mathcal{A}}[\nu] = \tau[x_1/\tau_1, x_2/\tau_2, \dots, x_n/\tau_n]^{\mathcal{A}}[\nu]$

Твърдение 38. Нека \mathcal{A} е структура, φ е формула, x е индивидна променлива, τ е терм и $\varphi[x/\tau]$ е допустима замяна.

Нека ν и ω са оценки в \mathcal{A} . Ако

$$\nu(x) = \tau^{\mathcal{A}}[\omega]$$

$$\nu(y) = \omega(y), \forall y \in Var^{free}[\varphi] \setminus \{x\}$$

Тогава $\|\varphi\|^A[\nu] = \|\varphi[x/\tau]\|^A[\omega]$, т.е. $\mathcal{A} \models_{\nu} \varphi \longleftrightarrow \mathcal{A} \models_{\omega} \varphi[x/\tau]$.

Твърдение 39. Нека φ е предикатна формула и замяната $\varphi[x/\tau]$ е допустима. Тогава

$$\models \forall x \varphi \Rightarrow \varphi[x/\tau]$$
$$\models \varphi[x/\tau] \Rightarrow \exists x \varphi$$

Преименуване на свързани променливи

Логическо следване

Твърдение 40. Нека $\Gamma \models \psi$. За всяко $\varphi \in \Gamma$, х $\not\in Var^{free}[\varphi]$. Тогава $\Gamma \models \forall x\psi$.

Твърдение 41. Ако $\Gamma \models \psi$, то $\Gamma \models^g \psi$.

Твърдение 42. Нека Γ е множество от затворени формули. Ако $\Gamma \models^g \psi$, то $\Gamma \models \psi$. Значи, ако Γ е множество от затворени формули, то $\Gamma \models \psi \longleftrightarrow \Gamma \models^g \psi$.

Скулемизация

Твърдение 43. Нека φ е затворена формула в пренексна нормална форма. Тогава $\models \varphi_S \Rightarrow \varphi$. Следователно $\models \varphi^S \Rightarrow \varphi$.

Твърдение 44. Нека φ е затворена формула в пренексна нормална форма, \mathcal{A} е структура за езика \mathcal{L} и в \mathcal{A} е вярна φ . Тогава има обогатяване \mathcal{A}_S на \mathcal{A} до структура в разширения език, такова че $\mathcal{A}_S \models \varphi_S$.

Следователно $\mathcal{A} \models \varphi$ влече, че има обогатяване \mathcal{A}_S на $\mathcal{A}, \mathcal{A}^S \models \varphi^S$.

Затворени универсални формули

Твърдение 45. Нека Γ е множество от затворени универсални формули. Нека \mathcal{A} е структура, такава че за всяко $a \in A$ съществува затворен терм τ_a , за който $\tau_a^{\mathcal{A}} = a$. Тогава $\mathcal{A} \models \Gamma \longleftrightarrow CSI(\Gamma)$.

Твърдение 46. Нека \mathcal{A} е структура. За всяко $a \in \mathcal{A}$ има затворен терм τ_a , такъв че $\tau_a^{\mathcal{A}} = a$. Тогава $\mathcal{A} \models CSI(\Gamma) \longrightarrow \mathcal{A} \models \Gamma$.

Tака, ако \mathcal{A} има горното свойство, то $\mathcal{A} \models \Gamma \longleftrightarrow \mathcal{A} \models CSI(\Gamma)$.

Ербранови структури

Твърдение 47. За всеки затворен терм τ и за всяка ербранова структура $\mathcal{H}, \, \tau^{\mathcal{H}} = \tau.$

Твърдение 48. Един език \mathcal{L} има ербранова структура $\longleftrightarrow T_{\mathcal{L}}^{cl} \neq \varnothing \longleftrightarrow \mathbb{C}onst_{\mathcal{L}} \neq \varnothing$.

Твърдение 49. За всеки затворен терм τ е изпълнено, че $\tau^{\mathcal{H}} = \tau$.

Твърдение 50. Нека Γ е множество от затворени формули в език с $\mathbb{C}onst_{\mathcal{L}} \neq \emptyset$. Тогава за всяка ербранова структура \mathcal{H} на $\mathcal{L}, \mathcal{H} \models \Gamma \longleftrightarrow \mathcal{H} \models CSI(\Gamma)$.

Безкванторни формули

Твърдение 51. Нека \mathcal{A} е структура и ν е оценка в \mathcal{A} . Тогава дефинираме булева интерпретация $I_{\mathcal{A},\nu}:I_{\mathcal{A},\nu}(\Theta)\leftrightharpoons \|\Theta\|^{\mathcal{A}}[\nu]$ за всяка атомарна формула Θ .

За всяка безкванторна $\varphi: \|\varphi\|^{\mathcal{A}}[\nu] = I_{\mathcal{A},\nu}(\varphi), \ m.e. \ \mathcal{A} \models_{\nu} \varphi \longleftrightarrow I_{\mathcal{A},\nu} \models \varphi. \ Taka, \ ako \ \Delta \ e$ множество от безкванторни формули, $\mathcal{A} \models_{\nu} \Delta \longleftrightarrow I_{\mathcal{A},\nu} \models \Delta. \ Ako \ \Delta \ e$ изпълнимо, то $\Delta \ e$ булево изпълнимо.

Твърдение 52. Нека Γ е множество от безкванторни формули от езика \mathcal{L} . Нека \mathcal{A} е структура, ν е оценка и всички формули от Γ са верни в \mathcal{A} при ν , т.е. $\mathcal{A} \models_{\nu} \Gamma$.

Да разгледаме булевите интерпретации $I_{A,\nu}$ на атомарните формули, дефинирани така за φ – атомарна, $I_{A,\nu}[\varphi] = \|\varphi\|^A[\nu]$.

Тогава $I_{A,\nu} \models \Gamma$ (булев модел за Γ).

Следствие 1. Нека Γ е множество от безкванторни формули. Ако Γ е изпълнимо, то Γ има булев модел, т.е. е булево изпълнимо.

Твърдение 53. Нека Δ е множество от безкванторни формули в език без формално равенство. Тогава Δ е изпълнимо $\longleftrightarrow \Delta$ е булево изпълнимо.

Забележка. Интерпретацията на формалното равенство в ербранова структура е "графичното" равенство на термове.

Tака, ако Δ е множество от затворени формули без формално равенство. Δ е булево изпълнимо $\longleftrightarrow \Delta$ има ербранов модел.

Твърдение 54. Γ има модел $\longleftrightarrow CSI(\Gamma)$ е булево изпълнимо, следователно Γ е неизпълнимо $\longleftrightarrow CSI(\Gamma)$ е булево неизпълнимо.

Следствие 1.

- 1. Нека Γ е множество от затворени универсални формули в език с поне една индивидна константа и без формално равенство. Тогава има алгоритъм, който спира работа точно тогава, когато Γ е неизпълнимо и работи до безкрай, когато Γ е изпълнимо.
- 2. Ако допълнително в езика няма функционални символи, то има алгоритъм, който винаги завършва работа за краен брой стъпки и разпознава дали Γ е изпълнимо.

Забележка. Тъй като в езика няма функционални символи, затворените термове са само индивидните константи. Но Γ е крайно множество, следователно индивидните константи, които имат значение, са краен брой. Следователно $CSI(\Gamma)$ е крайно.

Свободни ербранови структури

Твърдение 55. Нека \mathcal{H} е свободна ербранова структура за езика \mathcal{L} и ν е оценка в \mathcal{H} . Тогава за всеки терм τ , $\tau^{\mathcal{H}}[\nu] = \tau[x_1/\nu(x_1), x_2/\nu(x_2), \dots, x_n/\nu(x_n)]$, където $Var[\tau] \subseteq \{x_1, x_2, \dots, x_n\}$.

Следствие 1. Нека \mathcal{H} е свободна ербранова структура и разгледаме оценките Id_{Var} . За всеки терм $\tau, \tau^{\mathcal{H}}[Id_{Var}] = \tau$.

Следствие 2. Нека \mathcal{H} е свободна ербранова структура и ν е оценка в \mathcal{H} .

За всеки затворен терм τ (терм, в който няма променливи), $\tau^{\mathcal{H}} = \tau$.

 $(\tau_1 \doteq \tau_2)^{\mathcal{H}}[Id_{Var}] = T \longleftrightarrow \tau_1^{\mathcal{H}}[Id_{Var}] = \tau_2^{\mathcal{H}}[Id_{Var}] \longleftrightarrow \tau_1 = \tau_2$ (ще разглеждаме езици без формално равенство).

Твърдение 56. Нека \mathcal{L} е предикатен език без формално равенство. Нека Γ е множество от безкванторни формули от \mathcal{L} .

Aко Γ е булево изпълнимо, то Γ е изпълнимо.

Твърдение 57. Нека \mathcal{L} е предикатен език без формално равенство. Нека Γ е множество от безкванторни формули от \mathcal{L} .

Тогава Γ е булево изпълнимо \longleftrightarrow Γ е изпълнимо \longleftrightarrow Γ е изпълнимо в свободна ербранова структура.

Съждителна резолюция

 ${f T}$ върдение ${f 58}$. Нека ${\Bbb D}$ е дизюнкт. ${\Bbb D}$ е тавтология, ако има два дуални литерали $L,L^\partial\in{\Bbb D}$.

Твърдение 59. Нека \mathbb{D} е дизюнкт. \mathbb{D} е изпълним $\longleftrightarrow \mathbb{D} \neq \blacksquare$.

Правило на съждителната резолюция

Твърдение 60. Нека I е булева интерпретация, \mathbb{D}_1 и \mathbb{D}_2 са дизюнкти, а L е литерал и $!\mathcal{R}_L(\mathbb{D}_1,\mathbb{D}_2)$.

$$A\kappa o\ I \models \{\mathbb{D}_1, \mathbb{D}_2\}, \ mo\ I \models \{\mathbb{D}_1, \mathbb{D}_2, \mathcal{R}_L(\mathbb{D}_1, \mathbb{D}_2)\}.$$

Твърдение 61. Ако дизюнктот $\mathbb{D} = \mathcal{R}_L(\mathbb{D}_1, \mathbb{D}_2)\}, I \models \mathbb{D}_1 \ u \ I \models \mathbb{D}_2, \ mo \ I \models \mathbb{D}.$

Трансверзали за фамилии от множества

Твърдение 62. Нека A е фамилия от множества и Y е трансверзала за A. Тогава следните са еквивалентни:

- 1. У е минимална трансверзала;
- 2. Всеки път, когато $Y_0 \subset Y$, то е в сила, че Y_0 не е трансверзала;
- 3. За всяко $a \in Y, Y \setminus \{a\}$ не е трансверзала за A;
- 4. За всеки елемент $a \in Y$ съществува $x \in A$, такова че $Y \cap x = \{a\}$.

Твърдение 63. Aко A e фамилия от непразни множества, то не винаги A има минимална трансверзала.

Твърдение 64. Нека S е множество от дизюнкти, което е затворено относно правилото за резолюцията, т.е. $\mathbb{D}_1, \mathbb{D}_2 \in S$ и \mathbb{D} е резолвента на \mathbb{D}_1 и $\mathbb{D}_2 \longrightarrow \mathbb{D} \in S$. Ако $\blacksquare \mathscr{E}S$, то S е изпълнимо.

Твърдение 65. Γ е изпълнимо $\longleftrightarrow CSI(\Gamma)$ е булево изпълнимо.

Хорнови дизюнкти

Твърдение 66. Нека S е множество от хорнови дизюнкти. Нека M е непразно множество от модели на S.

Тогава има модел $I_M \models S$, такъв че за всяка $I \in M, I_M \preccurlyeq I$.

Следствие 1. Нека S е множество от правила и факти. Тогава S има най-малък модел I_m , т.е. $I_m \models S$ и за всеки модел I на $S, I_m \preccurlyeq I$.

Твърдение 67. Нека S е множество от правила и факти и C – множество от цели, S и C са непразни, $S \cup C$ е неизпълнимо.

Тогава съществува крайно $S_0 \subseteq S$ и цел $G \in C$, такива че $S_0 \cup \{G\}$ е неизпълнимо.

Твърдение 68. Ако \mathcal{L} е език без формално равенство, Γ е множество от затворени формули. Γ е неизпълнимо \longleftrightarrow съществува крайно $\Gamma_0 \subseteq \Gamma$ – неизпълнимо.

Твърдение 69. Γ е изпълнимо \longleftrightarrow всяко крайно $\Gamma_0 \subseteq \Gamma$ е изпълнимо.

Леми

Лема 1. Дизюнкция на две формули, които са конюнкции на елементарни дизюнкции е еквивалентна с конюнкция на елементарни дизюнкции.

Лема 2. Конюнкция на две формули, които са конюнкции на елементарни дизюнкции е еквивалентна с конюнкция на елементарни дизюнкции.

Теореми

Заместване на съждителни променливи със съждителни формули

Теорема 1 (Еквивалентна замяна). Нека $\varphi_1, \varphi_2, \dots, \varphi_n; \psi_1, \psi_2, \dots, \psi_n$ са съждителни формули. Нека $\alpha_0 \varphi_1 \alpha_1 \dots \varphi_n \alpha_n$ също е съждителна формула. Нека I_0 е булева интерпретация. Тогава, ако

$$I(\varphi_1) = I(\psi_1), I(\varphi_2) = I(\psi_2), \dots, I(\varphi_n) = I(\psi_n),$$

mo

$$I(\alpha_0 \varphi_1 \alpha_1 \dots \varphi_n \alpha_n) = I(\alpha_0 \psi_1 \alpha_1 \dots \psi_n \alpha_n)$$

Доказателство. С индукция относно построението на $\alpha_0 \varphi_1 \alpha_1 \dots \varphi_n \alpha_n$.

Следствие 1. Нека $\varphi_1 \models \psi_1, \varphi_2 \models \psi_2, \dots, \varphi_n \models \psi_n$. Нека $\alpha_0 \varphi_1 \alpha_1 \dots \alpha_{n-1} \varphi_n \alpha_n$ е съждителна формула.

Тогава

$$\alpha_0 \varphi_1 \alpha_1 \dots \varphi_n \alpha_n \models \alpha_0 \psi_1 \alpha_1 \dots \psi_n \alpha_n$$

Теорема 2 (Алгоритъм за конюнкция на елементарни дизюнкции). *Има алгоритъм, който* по дадена съждителна формула φ дава като резултат конюнкция на елементарни дизюнкции ψ , така че $\varphi \models \psi$. Процедура:

1. Елиминираме \Leftrightarrow , т.е. ако имаме формулата φ с индукция относно броя на \Leftrightarrow във φ , доказваме че има формула φ' , $\varphi \models \varphi'$ и във φ' няма \Leftrightarrow .

$$Hanpumep: \varphi = \alpha(\varphi_1' \Leftrightarrow \varphi_2)\beta, (\varphi_1 \Leftrightarrow \varphi_2) \models (\varphi_1 \& \varphi_2) \lor (\neg \varphi_1 \& \neg \varphi_2).$$
 $Toraba \varphi \models \alpha((\varphi_1 \& \varphi_2) \lor (\neg \varphi_1 \& \neg \varphi_2))\beta \ e \ \phiopmyna \ c \ n-1 \ cpeuqahus \ ha знака \Leftrightarrow.$

- 2. Елиминираме $\Rightarrow c$ индукция относно броя на буквите \Rightarrow във φ . Например: $(\varphi_1 \Rightarrow \varphi_2) \models (\neg \varphi_1 \lor \varphi_2)$.
- 3. Вкарваме ¬ навътре, докато не останат ¬ само пред съждителни променливи.

Предикатно смятане от първи ред

Теорема 3 (Леополд Льовенхайм, Скулем, Белан). Нека \mathcal{L} е език на предикатното смятане, в който има само предикатни символи и те са унарни(едноместни). Тогава има алгоритъм, който разпознава изпълнимите формули от езика \mathcal{L} .

Теорема 4. Нека \mathcal{A} е структура, φ е предикатна формула, x – индивидна променлива. Тогава $\mathcal{A} \models \varphi \longleftrightarrow \mathcal{A} \models \forall x \varphi$.

Следствие 2. Нека
$$Var^{free}[\varphi] \subseteq \{x_1, x_2, \dots, x_n\}$$
. Тогава $\mathcal{A} \models \varphi \longleftrightarrow \mathcal{A} \models \underbrace{\forall x_1 \forall x_2 \dots \forall x_n \varphi}_{\text{затворена формуло}}$

Забележка. Определимото множество трябва да е подмножество на съответна декартова степен на универсума.

Хомоморфизми и изоморфизми.

Теорема 5 (Теорема за хомоморфизмите). Нека h е хомоморфизъм на \mathcal{A} в \mathcal{B} . Нека φ е формула без формално равенство и $\varphi[x_1, x_2, \dots, x_n]$ (т.е. свободните променливи на φ са измежду x_1, x_2, \dots, x_n).

Тогава за произволни $a_1, a_2, \dots, a_n \in A$ е изпълнено

$$\mathcal{A} \models \varphi \llbracket a_1, a_2, \dots, a_n \rrbracket \longleftrightarrow \mathcal{B} \models \varphi \llbracket h(a_1), h(a_2), \dots, h(a_n) \rrbracket$$

Доказателство. Индукция по построението на формулата φ :

- $\varphi = p(\tau_1, \tau_2, \dots, \tau_n)$ $\mathcal{A} \models p(\tau_1, \tau_2, \dots, \tau_n) \llbracket a_1, a_2, \dots, a_n \rrbracket \longleftrightarrow (\tau_1^{\mathcal{A}} \llbracket a_1, a_2, \dots, a_n \rrbracket, \tau_2^{\mathcal{A}} \llbracket a_1, a_2, \dots, a_n \rrbracket, \dots, \tau_n^{\mathcal{A}} \llbracket a_1, a_2, \dots, a_n \rrbracket) \in p^{\mathcal{A}} \longleftrightarrow (h(\tau_1^{\mathcal{A}} \llbracket a_1, a_2, \dots, a_n \rrbracket), h(\tau_2^{\mathcal{A}} \llbracket a_1, a_2, \dots, a_n \rrbracket), \dots, h(\tau_n^{\mathcal{A}} \llbracket a_1, a_2, \dots, a_n \rrbracket)) \in p^{\mathcal{B}} \longleftrightarrow (\tau_1^{\mathcal{B}} \llbracket h(a_1), h(a_2), \dots, h(a_n), \tau_1^{\mathcal{B}} \llbracket h(a_1), h(a_2), \dots, h(a_n) \rrbracket, \dots, \tau_n^{\mathcal{B}} \llbracket h(a_1), h(a_2), \dots, h(a_n) \rrbracket) \in p^{\mathcal{B}}$
- $\varphi = \neg \varphi_1$ и за φ_1 твърдението е вярно. $\varphi[x_1, x_2, \dots x_n]$, следователно $\varphi_1[x_1, x_2, \dots, x_n]$. $\mathcal{A} \models \varphi[a_1, a_2, \dots, a_n] \longleftrightarrow \mathcal{A} \not\models \varphi_1[a_1, a_2, \dots, a_n] \longleftrightarrow \mathcal{B} \not\models \varphi_1[h(a_1), h(a_2), \dots, h(a_n)] \longleftrightarrow \mathcal{B} \models \varphi[h(a_1), h(a_2), \dots, h(a_n)].$
- $\varphi=(\varphi_1\&\varphi_2)$ и за φ_1 и φ_2 твърдението е вярно. $\varphi[x_1,x_2,\ldots,x_n]$, следователно $\varphi_i[x_1,x_2,\ldots,x_n], i=1,2.$ Нека $a_1,a_2,\ldots,a_n\in A$.

$$(ih): \mathcal{A} \models \varphi_i[\![a_1, a_2, \dots, a_n]\!] \longleftrightarrow \mathcal{B} \models \varphi_i[\![h(a_1), h(a_2), \dots, h(a_n)]\!]$$

$$\mathcal{A} \models \varphi[\![a_1, a_2, \dots, a_n]\!] \longleftrightarrow \mathcal{A} \models \varphi_1[\![a_1, a_2, \dots, a_n]\!] \& \varphi_2[\![a_1, a_2, \dots, a_n]\!] \longleftrightarrow \longleftrightarrow \mathcal{B} \models \varphi_1[\![h(a_1), h(a_2), \dots, h(a_n)]\!] \& \varphi_2[\![h(a_1), h(a_2), \dots, h(a_n)]\!] \longleftrightarrow \longleftrightarrow \mathcal{B} \models \varphi[\![h(a_1), h(a_2), \dots, h(a_n)]\!]$$

Забележка. Аналогично за \lor , \Rightarrow , \Leftrightarrow .

• $\varphi = \exists x \psi$ и за ψ твърдението е вярно. $\varphi[x_1, x_2, \dots, x_n]$, следователно $\psi[x_1, x_2, \dots, x_n]$. Нека $a_1, a_2, \dots, a_n \in A$.

 $\mathcal{A} \models \varphi[\![a_1, a_2, \dots, a_n]\!]$. Тогава съществува $a \in A : \mathcal{A} \models \psi[\![a, a_1, a_2, \dots, a_n]\!]$. Тогава $\mathcal{B} \models \psi[\![h(a), h(a_1), h(a_2), \dots, h(a_n)]\!]$.

Нека $\mathcal{B} \models \varphi\llbracket h(a_1), h(a_2), \dots, h(a_n) \rrbracket$. Тогава има $b \in B : \mathcal{B} \models \varphi\llbracket b, h(a_1), h(a_2), \dots, h(a_n) \rrbracket$, h е сюрекция. Следователно има $a \in A : h(a) = b$ и значи $\mathcal{B} \models \varphi\llbracket h(a), h(a_1), h(a_2), \dots, h(a_n) \rrbracket$.

От (ih) следва, че $\mathcal{A} \models \psi\llbracket a, a_1, a_2, \dots, a_n \rrbracket$. Тогава $\mathcal{A} \models \varphi\llbracket a_1, a_2, \dots, a_n \rrbracket$.

• $\varphi = \forall x \psi$ и за ψ твърдението е вярно. $\varphi[x_1, x_2, \dots, x_n]$, следователно $\psi[x_1, x_2, \dots, x_n]$. Нека $a_1, a_2, \dots, a_n \in A$.

 $\mathcal{A} \models \varphi[\![a_1, a_2, \dots, a_n]\!]$. Нека a е произволен елемент на A. Тогава $\mathcal{A} \models \psi[\![a, a_1, a_2, \dots, a_n]\!]$. Нека $b \in B$. Избираме $a \in A, h(a) = b$. Тогава $\mathcal{B} \models \psi[\![h(a), h(a_1), h(a_2), \dots, h(a_n)]\!]$, значи $\mathcal{B} \models \psi[\![b, h(a_1), h(a_2), \dots, h(a_n)]\!]$. Тогава $\mathcal{B} \models \varphi[\![h(a), h(a_1), h(a_2), \dots, h(a_n)]\!]$.

 $\mathcal{B} \models \varphi[\![a_1, a_2, \dots, a_n]\!]$. Нека $a \in A$. Тогава $h(a) \in B$. Следователно $\mathcal{B} \models \psi[\![h(a), h(a_1), h(a_2), \dots, h(a_n)]\!]$.

От (ih) следва, че $\mathcal{A} \models \psi[\![a, a_1, a_2, \dots, a_n]\!]$. Тогава $\mathcal{A} \models \varphi[\![a_1, a_2, \dots, a_n]\!]$.

Теорема 6 (Теорема за изоморфизмите). Нека \mathcal{L} е предикатен език от първи ред (с или без формално равенство). Нека \mathcal{A} и \mathcal{B} са структури над \mathcal{L} и h е изоморфизъм на \mathcal{A} върху \mathcal{B} .

Тогава за всяка формула φ , $\varphi[x_1, x_2, \dots, x_n]$ и произволни $a_1, a_2, \dots, a_n \in A$ е в сила еквивалентността:

$$\mathcal{A} \models \varphi[\![a_1, a_2, \dots, a_n]\!] \longleftrightarrow \mathcal{B} \models \varphi[\![h(a_1), h(a_2), \dots, h(a_n)]\!]$$

Доказателство. От доказателството на твърдение (5) е достатъчно да проверим верността на $\mathcal{A} \models \varphi[\![a_1,a_2,\ldots,a_n]\!] \longleftrightarrow \mathcal{B} \models \varphi[\![h(a_1),h(a_2),\ldots,h(a_n)]\!]$ само за атомарните формули. Нека $\varphi[x_1,x_2,\ldots,x_n]$ е атомарна.

- $\varphi = p(\tau_1, \tau_2, \dots, \tau_n)$ вече е доказано в доказателството на твърдение (5);
- $\varphi = (\tau_1 \doteq \tau_2)$

Нека $a_1, a_2, \ldots, a_n \in A$.

- Ако $\mathcal{A} \models (\tau_1 \doteq \tau_2) \llbracket a_1, a_2, \dots, a_n \rrbracket$, то $\tau_1^{\mathcal{A}} \llbracket a_1, a_2, \dots, a_n \rrbracket = \tau_2^{\mathcal{A}} \llbracket a_1, a_2, \dots, a_n \rrbracket$. $h(\tau_1^{\mathcal{A}} \llbracket a_1, a_2, \dots, a_n \rrbracket) = \tau_1^{\mathcal{B}} \llbracket h(a_1), h(a_2), \dots, h(a_n) \rrbracket = \tau_2^{\mathcal{B}} \llbracket h(a_1), h(a_2), \dots, h(a_n) \rrbracket = h(\tau_2^{\mathcal{A}} \llbracket a_1, a_2, \dots, a_n \rrbracket)$.
 - Следователно $\mathcal{B} \models (\tau_1 \doteq \tau_2)\llbracket h(a_1), h(a_2), \dots, h(a_n) \rrbracket$
- Нека $\mathcal{A} \not\models (\tau_1 \doteq \tau_2) \llbracket a_1, a_2, \dots, a_n \rrbracket$, тогава $\tau_1^{\mathcal{A}} \llbracket a_1, a_2, \dots, a_n \rrbracket \neq \tau_2^{\mathcal{A}} \llbracket a_1, a_2, \dots, a_n \rrbracket$. h е инективна, следователно $h(\tau_1^{\mathcal{A}} \llbracket a_1, a_2, \dots, a_n \rrbracket) \neq h(\tau_2^{\mathcal{A}} \llbracket a_1, a_2, \dots, a_n \rrbracket)$, и значи $\tau_1^{\mathcal{B}} \llbracket h(a_1), h(a_2), \dots, h(a_n) \rrbracket \neq \tau_2^{\mathcal{B}} \llbracket h(a_1), h(a_2), \dots, h(a_n) \rrbracket$

Следствие 1. Ако $\mathcal{A} \cong \mathcal{B}$, то за всяка затворена формула φ е вярно $\mathcal{A} \models \varphi \longleftrightarrow \mathcal{B} \models \varphi$.

Следствие 2. Нека $B \subseteq A^n$ е определимо в структурата A, която е за език \mathcal{L} . Нека h е автоморфизъм в A. Тогава за произволни $a_1, a_2, \ldots, a_n \in A$ е изпълнено $(a_1, a_2, \ldots, a_n) \in B \longleftrightarrow (h(a_1), h(a_2), \ldots, h(a_n)) \in B$.

Следствие 3. Нека $B \subseteq A^n$ и h е автоморфизъм в A, такъв че за някоя n-торка $(a_1, a_2, \ldots, a_n) \in A^n$ и $(a_1, a_2, \ldots, a_n) \in B$, но $(h(a_1), h(a_2), \ldots h(a_n)) \not\in B$. Тогава B не е определимо c формула от $\mathcal L$ в A.

Заместване на подформули с формули

Теорема 7 (Теорема за еквивалентната замяна). *Нека* $\alpha \varphi \beta$ *е предикатна формула. Ако* $\varphi \models \psi$, то $\alpha \varphi \beta \models \alpha \psi \beta$.

Hека $\varphi = \alpha_0 \varphi_1 \alpha_1 \varphi_2 \dots \alpha_{n-1} \varphi_n \alpha_n$ и $\psi_1, \psi_2, \dots, \psi_n$ са предикатни формули. Нека $\varphi_1 \models \psi_1, \varphi_2 \models \psi_2, \dots, \varphi_n \models \psi_n$.

Тогава $\alpha_0 \varphi_1 \alpha_1 \varphi_2 \dots \alpha_{n-1} \varphi_n \alpha_n \stackrel{\mathcal{A}}{\models} \alpha_0 \psi_1 \alpha_1 \psi_2 \dots \alpha_{n-1} \psi_n \alpha_n$.

Преименуване на свързани променливи

Теорема 8 (Теорема за варианта). *Нека* $x \neq y$ *и нека формулата* $Qy\varphi[x/y]$ *е вариант на* $Qx\varphi$.

Тогава $Qx\varphi \models Qy\varphi[x/y]$.

Пренексна нормална форма

Теорема 9. Има алгоритъм, който по произволна предикатна формула φ от $\mathcal L$ дава ψ , такава че:

- 1. $\varphi \models \psi$
- 2. ψ е в пренексна нормална форма
- 3. $Var^{free}[\varphi] = Var^{free}[\psi]$
- $4. \ \varphi \ u \ \psi \ ca \ в \ e \partial u H \ u \ c z u u \ e з u \kappa$

Логическо следване

Теорема 10 (Теорема за дедукцията). $\Gamma \models \varphi \longleftrightarrow \Gamma \cup \{\neg \varphi\}$ *е неизпълнимо множество*.

Доказателство.

- \Rightarrow) (Достатъчност) Нека $\Gamma \models \varphi$. Да допуснем, че $\Gamma \cup \{\neg \varphi\}$ е изпълнимо. Тогава това множество има модел. Нека $I_0 \models \Gamma \cup \{\neg \varphi\}$. Следователно $I_0 \models \Gamma$ и $I_0 \models \neg \varphi$. Значи $I(\neg \varphi) = T$, но $I(\neg \varphi) = H_{\neg}(I(\varphi))$, следователно $I(\varphi) = F$, но от $\Gamma \models \varphi$ следва, че $I_0 \models \varphi$ и $I(\varphi) = T$. Противоречие.
- \Leftarrow) (Необходимост) Нека $\Gamma \cup \{\neg \varphi\}$ е неизпълнимо. Нека I_0 е произволен модел на Γ . Тъй като $\Gamma \cup \{\neg \varphi\}$ няма модел следва, че $I_0 \not\models \neg \varphi$, т.е. $I_0 \models \varphi$. I_0 е произволен модел на Γ , поради което $\Gamma \models \varphi$.

Скулемизация

Теорема 11.

- 1. Нека φ е затворена формула в пренексна нормална форма. Тогава φ е изпълнима тогава и само тогава, когато φ^S е изпълнима, т.е. φ е неизпълнима тогава и само тогава, когато φ^S е неизпълнима.
- 2. Нека Γ е множество от затворени формули в пренексна нормална форма. Да означим с $\Gamma^S = \{ \varphi^S \mid \varphi \in \Gamma \}$. Тогава Γ^S е множество от затворени универсални формули и Γ^S е изпълнимо тогава и само тогава, когато Γ е изпълнимо, т.е. Γ^S е неизпълнимо тогава и само тогава, когато Γ е неизпълнимо.

Ербранови структури

Безкванторни формули. Свободни ербранови структури

Теорема 12. Нека Γ е множество от затворени универсални формули в език с поне една индивидна константа и без формално равенство. Тогава следните са еквивалентни:

- 1. Γ има модел;
- 2. Г има ербранов модел;
- 3. $CSI(\Gamma)$ има ербранов модел;
- 4. $CSI(\Gamma)$ има модел;

5. $CSI(\Gamma)$ е булево изпълнимо.

Теорема 13 (Тюринг-Чърч, 1936). Нека \mathcal{L} е език на предикатното смятане от първи ред с поне един двуместен предикатен символ. Тогава няма алгоритъм, който по произволно дадена затворена формула φ от \mathcal{L} да разпознава дали φ е предикатна тавтология.

Eквивалентно, няма алгорит σ м, който да разпознава дали φ е предикатна тавтология.

Забележка. $\models \varphi \longleftrightarrow \neg \varphi$ е неизпълнима.

Теорема 14. Нека $\varphi = \forall x_1 \forall x_2 \dots \forall x_n \exists y_1 \exists y_2 \dots \exists y_k \Theta, \Theta$ е безкванторна, φ е затворена. Нека във φ няма функционални символи (без формално равенство).

Тогава има алгоритъм, който разпознава дали φ е предикатна тавтология. Нещо повече, има алгоритъм, който в случай, че φ не е предикатна тавтология дава крайна структура $\mathcal{A}, \mathcal{A} \not\models \varphi$.

Съждителна резолюция

Правило на съждителната резолюция

Теорема 15 (Коректност на резолютивната изводимост). *Нека* S *е множество от дизюнктии.* A *ко* $S \vdash \blacksquare$, *то* S *е неизпълнимо.*

Следствие 1. Ако $S \stackrel{r}{\vdash} \mathbb{D}$, то има крайно подмножество $S_0 \subseteq S$, такова че $S_0 \stackrel{r}{\vdash} \mathbb{D}$.

Трансверзали за фамилии от множества

Теорема 16 (Теорема за минималната трансверзала). *Нека* A e фамилия от непразни крайни множества. Тогава A има минимална трансверзала.

Теорема 17 (Пълнота на резолютивната изпълнимост). *Нека* S *е множество от дозюнкти*. *Ако* S *е неизпълнимо, то* $S \stackrel{r}{\vdash} \blacksquare$.

Следствие 1 (Теорема за компактност за множества от дизюнкти). *Нека* S *е множество от дизюнкти. Тогава* S *е неизпълнимо* \longleftrightarrow *има крайно* $S_0 \subseteq S$, S_0 *е неизпълнимо*.

Теорема 18 (Жак Ербран). Нека Γ е множество от затворени универсални формули от език с поне една индивидна константа и без формално равенство. Тогава следните са еквивалентни:

- 1. Γ е неизпълнимо;
- 2. Съществува крайно подмножество на $CSI(\Gamma)$, което е булево неизпълнимо;
- 3. Съществува краен брой затворени частни случаи $\Theta_1, \Theta_2, \dots, \Theta_n$ на формули от Γ , такива че $\models \neg \Theta_1 \lor \neg \Theta_2 \lor \dots \lor \neg \Theta_n$.