Data Modelling and Regression Techniques

M. Fatih Amasyalı

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

- A model is an underlying theory about how the world works. It includes:
 - Assumptions
 - Key players (independent variables)
 - Interactions between variables
 - Outcome set (dependent variables)
- CB=x1+educ*x2+resid
 - Assumptions?, variables?, interactions?

Mehmet Fatih AMASYALL Ontimization Techniques Lecture Notes

Regression Models

- Relationship between one dependent variable and explanatory variable(s)
- Use equation to set up relationship
 - Numerical Dependent (Response) Variable
 - 1 or More Numerical or Categorical Independent (Explanatory) Variables

Mehmet Fatih AMASYALI Optimization Techniques Lecture Note

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEP

Regression Modeling Steps

- 1. Hypothesize Deterministic Component
 - Estimate Unknown Parameters
- 2. Evaluate the fitted Model
- 3. Use Model for Prediction & Estimation

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

Specifying the deterministic component

- Define the dependent variable and independent variable(s)
- 2. Hypothesize Nature of Relationship
 - Expected Effects (i.e., Coefficients' Signs)
 - Functional Form (Linear or Non-Linear)
 - Interactions

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEPT

Model Specification Is Based on Theory

- 1. Previous Research
- 2. 'Common Sense'
- 3. Data (which variables, linear/non-linear etc.)

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Types of Regression Models

The linear first order model Y= β_0 + β_1 X+ ϵ The linear second order model Y= β_0 + β_1 X+ β_2 X²+ ϵ The linear n order model Y= β_0 + β_1 X+ β_2 X²+ ... + β_n Xⁿ+ ϵ

ε is random error.

The word **linear** refers to the linearity of the parameters β_i .

The **order** (or **degree**) of the model refers to the highest power of the predictor variable X.

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Types of Regression Models

- If the parameters are linear related to the each other the model is linear. A non-linear first order model: $Y=(\beta_0X)/(\beta_1+X)+\epsilon$
- If X has d dimensions, a linear first order model: $Y=\beta_0+\beta_1X_1+\beta_2X_2+...+\beta_dX_d+\epsilon$

Mehmet Fatih AMASYALI Optimization Techniques Lecture Note:

YILDIZ TECHNICAL LINIVERSITY COMPLITER ENGINED

- A linear first order model $Y=\beta_0+\beta_1X+\epsilon$
- To get the model, we need to estimate the parameters β_0 and β_1
- Thus, the estimate of our model is

$$\hat{Y} = \hat{\beta}_0 + \hat{\beta}_1 X$$

• Y_{hat} denotes the predicted value of Y for some value of X, and β_{0hat} and β_{1hat} are the estimated parameters.

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Estimating Parameters: Least Squares Method

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEP

Least Squares

• 1. 'Best Fit' means difference between actual Y values & predicted Y values are a minimum. *But* positive differences off-set negative. So square errors!

$$\sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2 = \sum_{i=1}^{n} \hat{\varepsilon}_i^2$$

- 2. LS Minimizes the Sum of the Squared Differences (errors) (SSE)
- Mean squared error (MSE)= $\frac{1}{n} \sum_{i=1}^{n} (Y_i \hat{Y}_i)^2$

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Least Squares Graphically

LS minimizes
$$\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} = \hat{\varepsilon}_{1}^{2} + \hat{\varepsilon}_{2}^{2} + \hat{\varepsilon}_{3}^{2} + \hat{\varepsilon}_{4}^{2}$$

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL LINIVERSITY COMPLITER ENGINEP

Interpretation of Coefficients

- 1. Slope $(\hat{\beta}_1)$
 - Estimated Y Changes by β_1 for Each 1 Unit Increase in X
 - If $\beta_1 = 2$, then Y is Expected to Increase by 2 for Each 1 Unit Increase in X
- 2. Y-Intercept $(\hat{\beta}_0)$
 - Average Value of Y When X = 0
 - If β_0 = 4, then Average Y Is Expected to Be 4 When X Is 0

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Assume that our model is $Y=\beta$

- How can we estimate β using LS?
- Least Squares Minimize squared error

$$\sum_{i=1}^{n} \varepsilon_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \beta)^{2}$$

$$-2\sum_{i=1}^{n} (y_{i} - \beta) = 0$$

$$\sum_{i=1}^{n} y_{i} - \sum_{i=1}^{n} \beta = 0$$

A new look

- A linear first order model (X has d dim.)
- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_d X_d + \epsilon$
- This can be written in matrix form as
- $Y_{n*1} = X_{n*(d+1)} \beta_{(d+1)*1} + \epsilon_{n*1}$
- n is the sample size

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

Example-1

- $Y_{n*1} = X_{n*(d+1)} \beta_{(d+1)*1} + \epsilon_{n*1}$ n = 4, d = 1

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 1 x_1 \\ 1 x_2 \\ 1 x_3 \\ 1 x_4 \end{bmatrix} * \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \end{bmatrix}$$

$$Y_i = 1 * \beta_0 + \beta_1 * X_i + \varepsilon_i$$

Example-2

- $Y_{n*1} = X_{n*(d+1)} \beta_{(d+1)*1} + \epsilon_{n*1}$ n = 4, d = 2

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 1 x_{11} & x_{12} \\ 1 x_{21} & x_{22} \\ 1 x_{31} & x_{32} \\ 1 x_{41} & x_{42} \end{bmatrix} * \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \end{bmatrix}$$

$$Y_i = 1 * \beta_0 + \beta_1 * X_{i1} + \beta_2 * X_{i2} + \varepsilon_i$$

Example-3

$$Y_i = 1 * \beta_0 + \beta_1 * X_i + \beta_2 * X_i^2 + \varepsilon_i$$

• n =4, d=1, order=2

$$\begin{bmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{bmatrix} = \begin{bmatrix} 1 x_1 x_1^2 \\ 1 x_2 x_2^2 \\ 1 x_3 x_3^2 \\ 1 x_4 x_4^2 \end{bmatrix} * \begin{bmatrix} \beta_0 \\ \beta_1 \\ \beta_2 \end{bmatrix} + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \varepsilon_4 \end{bmatrix}$$

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENGIDEPT

- All examples have the following form:
- Y=Xβ
- How can we estimate β?
- $X^{-1}Y = X^{-1}X\beta (X^{-1}X = I)$
- $\beta=X^{-1}Y$ (OK, but what if X is not square matrix?)
- $X^TY = X^TX\beta$ (X^TX is always a square matrix)
- $(X^TX)^{-1}(X^TY)=(X^TX)^{-1}(X^TX)\beta$ $[(X^TX)^{-1}(X^TX)=I]$
- $\beta = (X^TX)^{-1}(X^TY)$

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Overfitting

 Overfitting occurs when a statistical model describes random error or noise instead of the underlying relationship.

High bias (underfit)

"Just right"

High variance (overfit)

hmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEPT

Model Validation

- Training set MSE is not reliable. WHY?
- Because, we can not determine the overfitting with training set MSE.
- Training set is used for parameter estimation.
- Test set is used for model validation.

ehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Model Validation

- Training and test sets are seperated data samples.
- Lin_reg6.m

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL LINIVERSITY COMPLITER ENGINEE

Y=X*β Linear System Construction

- Data= (X_{n*d},Y_{n*1})
- n: number of data, d: dimension of data
- Model Y= β1 + β2*X
- $X_{n*2} = [1_{n*1} X_{n*1}] \beta_{2*1} = [\beta 1; \beta 2]$
- Model Y= $\beta 1*X + \beta 2*X^2$
- $X_{n*2} = [X_{n*1} X_{n*1}^2] \beta_{2*1} = [\beta 1; \beta 2]$
- Model Y= β 1 + β 2*X^2 + β 3*X^3
- $X_{n*3} = [1_{n*1} X_{n*1}^2 X_{n*1}^3] \beta_{3*1} = [\beta 1; \beta 2; \beta 3]$

Mehmet Fatih AMASYALI Optimization Techniques Lecture Note:

Y=X*β Linear System Construction

- Model Y= $\beta 1*X + \beta 2*cos(X^2)$
- $X_{n*2} = [X_{n*1} \cos(X^2)_{n*1}] \beta_{2*1} = [\beta 1; \beta 2]$
- Model Y= β 1*X1 + β 2*cos(X2^2) + β 3*sin(X1)
- $X_{n*3} = [X1_{n*1} \cos(X2^2)_{n*1} \sin(X1)_{n*1}] \beta_{3*1} = [\beta 1; \beta 2; \beta 3]$
- Model Y= β 1 + β 2*X1*X2*X3 + β 3*X1
- $X_{n*3} = [1_{n*1} \times 1 \times 2 \times 3_{n*1} \times 1_{n*1}] \beta_{3*1} = [\beta 1; \beta 2; \beta 3]$

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

What if we can not write linear equation system?

- (linear according to b)
- Y=b1*sin(X)
- Y=X1*b1*sin(X2)
- Y=b1*sin(X) +b2*cos(X)
- Y=b1*exp(X) +b2*cos(X)
- Y=b1*exp(X1) +b2*cos(X2)+b3*cos(X1)
- (non-linear according to b)
- Y=sin(b1*X)
- Y=b1+sin(b2*X)
- Y=exp(b1*X)
- Y=(b1*X)/(b2+X)
- Y=b1*(exp -((X-b2)^2 /(b3^2))

Mehmet Fatih AMASYALL Ontimization Techniques Lecture Notes

Non-linearity

- A parameter β of the function f appears nonlinearly if the derivative $\partial f/\partial \beta$ is a function of β .
- The model $M(\beta, x)$ is nonlinear if at least one of the parameters in β appear nonlinearly.
- $f(x) = \beta * \sin(x)$, $\partial f/\partial \beta = \sin(x)$, which is independent of β , so the model $M(\beta,x)$ is linear.
- $f(x)=\sin(\beta^*x)$, $\partial f/\partial \beta = x^*\cos(\beta^*x)$, which is dependent of β , so the model $M(\beta,x)$ is non-linear.

Mehmet Fatih AMASYALI Optimization Techniques Lecture Note:

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEPT

Non-linearity

- $f(x) = \beta 1*\sin(x) + \beta 2*\cos(x)$, $\partial f/\partial \beta 1 = \sin(x)$, which is independent of $\beta 1$, $\partial f/\partial \beta 2 = \cos(x)$, which is independent of $\beta 2$, so the model $M(\beta,x)$ is linear.
- $f(x)=\beta 1+\cos(\beta 2^*x)$, $\partial f/\partial \beta 1=1$, which is independent of $\beta 1$, but $\partial f/\partial \beta 2=-x^*\sin(b 2^*x)$, which is dependent of $\beta 2$, so the model $M(\beta,x)$ is non-linear.

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

What if we can not write linear equation system?

- There are two ways:
 - Transformations to achieve linearity
 - Nonlinear regression (iterative estimation)

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEP

Transformations to achieve linearity

- Some tips:
- In(e)=1, In(1)=0
- ln(x^r)=r*ln(x)
- In(e^A)=A^In(e)=A
- ln(A*B)=ln(A)+ln(B)
- In(A/B)=In(A)-In(B)
- e^(A*B)=(e^A) ^B
- e^(A+B)=(e^A) *(e^B)
- e^(A-B)=(e^A) /(e^B)

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Transformations to achieve linearity

- Original Y=b0*exp(b1*X)
- In (Y)= In(b0)+(b1*X)
- Z=In(Y), b2=In(b0)
- Z=b2+b1*X (linear)
- Original Y=exp(b0)*exp(b1*X)
- ln(Y)=b0+b1*X
- Z=In(Y)
- Z=b0+b1*X (linear)

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEPT

Transformations to achieve linearity

- Original Y=(b0+b1*X)^2
- sqrt(Y)= b0+b1*X
- Z=sqrt(Y),
- Z=b0+b1*X (linear)
- Original Y=1/(b0+b1*X)
- 1/Y=b0+b1*X
- Z=1/Y
- Z=b0+b1*X (linear)

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Nonlinear regression (iterative estimation)

- Data={x_i, y_i} i=1..n (n= number of data points)
- $y=f(\beta,x)$
- x = n*d matrix
- y= n*1 matrix
- $r_i=y_i-f(\beta,x_i)$ r= residuals (n*1 matrix)
- β = parameters to be optimized
- $E(\beta) = \sum (r_i)^2$ i = 1...n
- $\min_{\beta} E(\beta)$
- $dE(\beta)/d\beta = 0$ (optimize E according to β)

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

YILDIZ TECHNICAL UNIVERSITY COMPUTER ENG DEP

Nonlinear regression (iterative estimation)

- $dE(\beta)/d\beta = 2*r*dr/d\beta$
- $dr/d\beta$ = n*d matrix = $[dr_1/d\beta_1 dr_1/d\beta_2 ... dr_1/d\beta_d$ $dr_2/d\beta_1 dr_2/d\beta_2 ... dr_2/d\beta_d$... $dr_n/d\beta_1 dr_n/d\beta_2 ... dr_n/d\beta_d]$
- dr/dβ is called Jacobian matrix (J)
- $\beta_{k+1} = \beta_k eps * dE(\beta)/d\beta$ (Gradient descent)
- $\beta_{k+1} = \beta_k eps * J^T * r$ (Gradient descent)
- (d*1)=(d*1)-eps(d*n)*(n*1)

Mehmet Fatih AMASYALI Ontimization Techniques Lecture Notes

Nonlinear regression (iterative estimation)

- $\beta_{k+1} = \beta_k eps * dE(\beta)/d\beta$ (Gradient descent)
- $\beta_{k+1} = \beta_k (dE(\beta)/d\beta) / (ddE(\beta)/dd\beta)$ (Newton Raphson)
- $ddE(\beta)/dd\beta \approx J^{T*}J$
- $\beta_{k+1} = \beta_k (J^{T*}r) / (J^{T*}J)$
- $\beta_{k+1} = \beta_k inv(J^{T*}J)*(J^{T*}r)$
- pinv(J)=inv(J^T*J)*J^T
- $\beta_{k+1} = \beta_k$ pinv(J)*r (Newton Raphson)
- $\beta_{k+1} = \beta_k eps * J^T * r$ (Gradient descent)

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

Modeling Interactions

- Statistical Interaction: When the effect of one predictor (on the response) depends on the level of other predictors.
- Can be modeled (and thus tested) with crossproduct terms (case of 2 predictors):
- $Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_1 X_2$

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes

References

- http://www.columbia.edu/~so33/SusDev/Lecture3.pdf
- http://www.msu.edu/~fuw/teaching/Fu Ch11 linear regress ion.ppt
- http://www.holehouse.org/mlclass/10 Advice for applying machine learning.html
- http://www.imm.dtu.dk/~pcha/LSDF/NonlinDataFit.pdf
- http://fourier.eng.hmc.edu/e176/lectures/NM/node34.html
- http://fourier.eng.hmc.edu/e176/lectures/NM/node21.html
- http://www.kenbenoit.net/courses/ME104/logmodels2.pdf
- http://stattrek.com/regression/linear-transformation.aspx
- http://en.wikipedia.org/wiki/Data transformation (statistics)

Mehmet Fatih AMASYALI Optimization Techniques Lecture Notes