Aljabar Boolean (Bag. 1)

IF2120 Matematika Diskrit

Oleh: Rinaldi Munir Program Studi Informatika, STEI-ITB

Pengantar

- Aljabar Boolean ditemukan oleh George Boole, pada tahun 1854.
- Boole melihat bahwa himpunan dan logika proposisi mempunyai sifat-sifat yang serupa (perhatikan kemiripan hukum-hukum aljabar logika dan hukum-hukum aljabar himpunan).
- Dalam buku The Laws of Thought, Boole memaparkan aturan-aturan dasar logika.
- Aturan dasar logika ini membentuk struktur matematika yang disebut aljabar Boolean.
- Aplikasi: perancangan rangkaian pensaklaran, rangkaian digital, dan rangkaian IC (integrated circuit) komputer

© Can Stock Photo - csp10410713

Peraga digital

Integarted Circuit (IC)

Jaringan saklar

Definisi Aljabar Boolean

DEFINISI. Misalkan B adalah himpunan yang didefinisikan pada dua operator biner, + dan \cdot , dan sebuah operator uner, \cdot . Misalkan 0 dan 1 adalah dua elemen yang berbeda dari B. Maka, tupel

$$< B, +, \cdot, ', 0, 1 >$$

disebut **aljabar Boolean** jika untuk setiap $a, b, c \in B$ berlaku aksioma berikut:

- 1. Identitas
 - (i) a + 0 = a
 - (ii) $a \cdot 1 = a$
- 2. Komutatif
 - (i) a + b = b + a
 - (ii) $a \cdot b = b \cdot a$
- 3. Distributif
 - (i) $a \cdot (b + c) = (a \cdot b) + (a \cdot c)$
 - (ii) $a + (b \cdot c) = (a + b) \cdot (a + c)$
- 4. Komplemen

Untuk setiap $a \in B$ terdapat elemen unik $a' \in B$ sehingga

- (i) a + a' = 1
- (ii) $a \cdot a' = 0$

 Berhubung elemen-elemen B tidak didefinisikan nilainya (kita bebas menentukan anggota-anggota B), maka terdapat banyak sekali aljabar boolean.

- Untuk mempunyai sebuah aljabar Boolean, orang harus memperlihatkan:
 - 1. elemen-elemen himpunan *B*,
 - 2. kaidah/aturan operasi untuk dua operator biner dan operator uner,
 - 3. himpunan *B*, bersama-sama dengan dua operator tersebut, memenuhi keempat aksioma di atas

- Aljabar himpunan dan aljabar logika proposisi juga merupakan aljabar Boolean karena memenuhi empat aksioma di atas.
- Dengan kata lain, aljabar himpunan dan aljabar proposisi adalah himpunan bagian (subset) dari aljabar Boolean.
- Pada aljabar proposisi misalnya:
 - B berisi semua proposisi dengan n peubah.
 - dua elemen unik berbeda dari B adalah T dan F,
 - operator biner: ∨ dan ∧, operator uner: ~
 - semua aksioma pada definisi di atas dipenuhi

Dengan kata lain $\langle B, \vee, \wedge, ^{\sim}, F, T \rangle$ adalah aljabar Booelan

Aljabar Boolean 2-Nilai

- Merupakan aljabar Boolean yang paling popular, karena aplikasinya luas.
- Pada aljabar 2-nilai:
 - (i) $B = \{0, 1\},$
 - (ii) operator biner: + dan ·, operator uner: '
 - (iii) Kaidah untuk operator biner dan operator uner:

a	b	$a \cdot b$
0	0	0
0	1	0
1	0	0
1	1	1

a	b	a+b
0	0	0
0	1	1
1	0	1
1	1	1

a	a'
0	1
1	0

(iv) Keempat aksioma di atas dipenuhi

Ekspresi Boolean

• Ekspresi Boolean dibentuk dari elemen-elemen B dan/atau peubah-peubah yang dapat dikombinasikan satu sama lain dengan operator +, ·, dan '.

Contoh 1:

```
0
1
a
b
a+b
a \cdot b
a' \cdot (b+c)
a \cdot b' + a \cdot b \cdot c' + b', dan sebagainya
```

Hukum-hukum Aljabar Boolean

1. Hukum identitas: (i) $a + 0 = a$	2. Hukum idempoten: (i) $a + a = a$
(ii) $a \cdot 1 = a$	(ii) $a \cdot a = a$
3. Hukum komplemen: (i) $a + a' = 1$ (ii) $aa' = 0$	4. Hukum dominansi: (i) $a \cdot 0 = 0$ (ii) $a + 1 = 1$
5. Hukum involusi: (i) (a')' = a	6. Hukum penyerapan: (i) $a + ab = a$ (ii) $a(a + b) = a$
7. Hukum komutatif: (i) <i>a</i> + <i>b</i> = <i>b</i> + <i>a</i> (ii) <i>ab</i> = <i>ba</i>	8. Hukum asosiatif: (i) $a + (b + c) = (a + b) + c$ (ii) $a (b c) = (a b) c$
9. Hukum distributif: (i) $a + (b c) = (a + b) (a + c)$ (ii) $a (b + c) = a b + a c$	10. Hukum De Morgan: (i) $(a+b)' = a'b'$ (ii) $(ab)' = a' + b'$
11. Hukum 0/1 (i) 0' = 1 (ii) 1' = 0	

Contoh 2: Buktikan bahwa untuk sembarang elemen *a* dan *b* dari aljabar Boolean maka kesamaaan berikut:

$$a + a'b = a + b$$
 dan $a(a' + b) = ab$ adalah benar.

Penyelesaian:

(i)
$$a + a'b = (a + ab) + a'b$$
 (Hukum Penyerapan)
 $= a + (ab + a'b)$ (Hukum Asosiatif)
 $= a + (a + a')b$ (Hukum Distributif)
 $= a + 1 \cdot b$ (Hukum Komplemen)
 $= a + b$ (Hukum Identitas)

(ii)
$$a(a' + b) = a a' + ab$$
 (Hukum Distributif)
= $0 + ab$ (Hukum Komplemen)
= ab (Hukum Identitas)

Fungsi Boolean

• Contoh-contoh fungsi Boolean:

$$f(x) = x$$

 $f(x, y) = x'y + xy' + y'$
 $f(x, y) = x'y'$
 $f(x, y) = (x + y)'$
 $f(x, y, z) = xyz'$

- Setiap peubah di dalam fungsi Boolean, termasuk dalam bentuk komplemennya, disebut literal.
- Fungsi h(x, y, z) = xyz' terdiri dari 3 buah literal, yaitu x, y, dan z'.
- Jika diberikan x = 1, y = 1, z = 0, maka nilai fungsinya:

$$h(1, 1, 0) = 1 \cdot 1 \cdot 0' = (1 \cdot 1) \cdot 1 = 1 \cdot 1 = 1$$

Bentuk Kanonik

- Ekspresi Boolean yang menspesifikasikan suatu fungsi dapat disajikan dalam dua bentuk berbeda.
- Pertama, sebagai penjumlahan dari hasil kali dan kedua sebagai perkalian dari hasil jumlah.

Contoh 3:

$$f(x, y, z) = x'y'z + xy'z' + xyz$$

$$dan$$

$$g(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)$$

adalah dua buah fungsi yang sama.

- Minterm: suku (term) di dalam ekspresi boolean mengandung literal yang lengkap dalam bentuk hasil kali
- *Maxterm*: suku (*term*) di dalam ekspresi boolean mengandung literal yang lengkap dalam bentuk hasil jumlah.

Contoh 4:

$$f(x, y, z) = x'y'z + xy'z' + xyz$$
 \rightarrow 3 buah minterm: $x'y'z$, $xy'z'$, xyz

$$g(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)$$

 \Rightarrow 5 buah maxterm: $(x + y + z)$, $(x + y' + z)$, $(x + y' + z')$, $(x' + y + z')$, dan $(x' + y' + z)$

Misalkan peubah (variable) fungsi Boolean adalah x, y, dan z
 Maka:

 $x'y \rightarrow bukan minterm$ karena literal tidak lengkap $y'z' \rightarrow bukan minterm$ karena literal tidak lengkap xy'z, xyz', $x'y'z \rightarrow minterm$ karena literal lengkap

 $(x + z) \rightarrow$ bukan maxterm karena literal tidak lengkap $(x' + y + z') \rightarrow$ maxterm karena literal lengkap $(xy' + y' + z) \rightarrow$ bukan maxterm

• Ekspresi Boolean yang dinyatakan sebagai penjumlahan dari satu atau lebih *minterm* atau perkalian dari satu atau lebih *maxterm* disebut dalam **bentuk kanonik**.

- Jadi, ada dua macam bentuk kanonik:
 - 1.Penjumlahan dari hasil kali (sum-of-product atau SOP)
 - 2.Perkalian dari hasil jumlah (product-of-sum atau POS)

- Fungsi f(x, y, z) = x'y'z + xy'z' + xyz dikatakan dalam bentuk SOP
- Fungsi g(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)dikatakan dalam bentuk POS

Cara membentuk *minterm* dan *maxterm*:

• Untuk *minterm*, setiap peubah yang bernilai 0 dinyatakan dalam bentuk komplemen, sedangkan peubah yang bernilai 1 dinyatakan tanpa komplemen.

 Sebaliknya, untuk maxterm, setiap peubah yang bernilai 0 dinyatakan tanpa komplemen, sedangkan peubah yang bernilai 1 dinyatakan dalam bentuk komplemen. • Cara membentuk *minterm* dan *maxterm* dari tabel kebenaran untuk dua peubah:

		Minterm		Maxterm	
\mathcal{X}	y	Suku	Lambang	Suku	Lambang
0	0	<i>x</i> ' <i>y</i> '	m_0	x + y	M_0
0	1	x' y	m_1	x + y	M_1
1	0	xy'	m_2	x' + y	M_2
1	1	x y	m_3	x' + y'	M_3

• Cara membentuk *minterm* dan *maxterm* dari tabel kebenaran untuk tiga peubah:

			Minterm		Ма	xterm
\mathcal{X}	у	\mathcal{Z}	Suku	Lambang	Suku	Lambang
0	0	0	x' y ' z '	m_0	x + y + z	M_0
0	0	1	x' y ' z	m_1	x + y + z	M_1
0	1	0	x'yz'	m_2	x + y' + z	M_2
0	1	1	x'y z	m_3	x + y' + z'	M_3
1	0	0	xy'z'	m_4	x'+y+z	M_4
1	0	1	xy'z	m_5	x'+y+z'	M_5
1	1	0	xyz	m_6	x'+y'+z	M_6
1	1	1	x y z	m_7	x'+y'+z'	M_7

 Jika diberikan sebuah tabel kebenaran, kita dapat membentuk fungsi Boolean dalam bentuk kanonik (SOP atau POS) dari tabel tersebut dengan cara:

- mengambil minterm dari setiap nilai fungsi yang bernilai 1 (untuk SOP)

atau

- mengambil maxterm dari setiap nilai fungsi yang bernilai 0 (untuk POS).

Contoh 5: Tinjau fungsi Boolean yang dinyatakan oleh Tabel di bawah ini. Nyatakan fungsi tersebut dalam bentuk kanonik SOP dan POS

X	у	Z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Penyelesaian:

SOP

Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 1 adalah 001, 100, dan 111, maka fungsi Booleannya dalam bentuk kanonik SOP adalah

$$f(x, y, z) = x'y'z + xy'z' + xyz$$

atau (dengan menggunakan lambang minterm),

$$f(x, y, z) = m_1 + m_4 + m_7 = \sum (1, 4, 7)$$

POS

X	у	Z	f(x, y, z)
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Kombinasi nilai-nilai peubah yang menghasilkan nilai fungsi sama dengan 0 adalah 000, 010, 011, 101, dan 110, maka fungsi Booleannya dalam bentuk kanonik POS adalah

$$f(x, y, z) = (x + y + z)(x + y' + z)(x + y' + z')(x' + y + z')(x' + y' + z)$$

atau dalam bentuk lain,

$$f(x, y, z) = M_0 M_2 M_3 M_5 M_6 = \prod (0, 2, 3, 5, 6)$$

Contoh 6: Nyatakan fungsi Boolean f(x, y, z) = x + y'z dalam bentuk kanonik SOP dan POS.

Penyelesaian:

(a) SOP

Lengkapi terlebih dahulu literal untuk setiap suku agar jumlahnya sama.

$$x = x(y + y')$$

$$= xy + xy'$$

$$= xy (z + z') + xy'(z + z')$$

$$= xyz + xyz' + xy'z + xy'z'$$

dan

$$y'z = y'z (x + x') = xy'z + x'y'z$$

Jadi
$$f(x, y, z) = x + y'z$$

 $= xyz + xyz' + xy'z + xy'z' + xy'z + x'y'z$
 $= x'y'z + xy'z' + xyz' + xyz' + xyz$
atau $f(x, y, z) = m_1 + m_4 + m_5 + m_6 + m_7 = \Sigma$ (1,4,5,6,7)

(b) POS

$$f(x, y, z) = x + y'z$$
$$= (x + y')(x + z)$$

Lengkapi terlebih dahulu literal pada setiap suku agar jumlahnya sama:

$$x + y' = x + y' + zz'$$

= $(x + y' + z)(x + y' + z')$

$$x + z = x + z + yy'$$

= $(x + y + z)(x + y' + z)$

Jadi,
$$f(x, y, z) = (x + y' + z)(x + y' + z')(x + y + z)(x + y' + z)$$

= $(x + y + z)(x + y' + z)(x + y' + z')$

atau
$$f(x, y, z) = M_0 M_2 M_3 = \prod (0, 2, 3)$$

Contoh 7: Nyatakan fungsi Boolean f(x, y, z) = xy + x'z dalam bentuk kanonik POS. Penyelesaian:

$$f(x, y, z) = xy + x'z$$
= $(xy + x') (xy + z)$
= $(x + x') (y + x') (x + z) (y + z)$
= $(x' + y) (x + z) (y + z)$

Lengkapi literal untuk setiap suku agar jumlahnya sama:

$$x' + y = x' + y + zz' = (x' + y + z) (x' + y + z')$$

 $x + z = x + z + yy' = (x + y + z) (x + y' + z)$
 $y + z = y + z + xx' = (x + y + z) (x' + y + z)$

Jadi,
$$f(x, y, z) = (x + y + z) (x + y' + z) (x' + y + z) (x' + y + z')$$

atau $f(x, y, z) = M_0 M_2 M_4 M_5 = \prod (0,2,4,5)$

Konversi Antar Bentuk Kanonik

Misalkan f adalah fungsi Boolean dalam bentuk SOP dengan tiga peubah:

$$f(x, y, z) = \Sigma (1, 4, 5, 6, 7)$$

dan f'adalah fungsi komplemen dari f,

$$f'(x, y, z) = \Sigma (0, 2, 3) = m_0 + m_2 + m_3$$

Dengan menggunakan hukum De Morgan, kita dapat memperoleh fungsi f dalam bentuk POS:

$$f(x, y, z) = (f'(x, y, z))' = (m_0 + m_2 + m_3)' = m_0' \cdot m_2' \cdot m_3'$$

$$= (x'y'z')' (x'yz')' (x'yz)'$$

$$= (x + y + z) (x + y' + z) (x + y' + z')$$

$$= M_0 M_2 M_3 = \prod (0, 2, 3)$$

Jadi, $f(x, y, z) = \Sigma (1, 4, 5, 6, 7) = \prod (0,2,3)$.

Kesimpulan: $m_i' = M_i$

Rangkaian Logika

- Fungsi Boolean dapat juag direpresentasikan dalam bentuk rangkaian logika.
- Ada tiga gerbang logika dasar: gerbang AND, gerbang OR, dan gerbang NOT

Contoh 8: Nyatakan fungsi f(x, y, z) = xy + x'y ke dalam rangkaian logika.

Penyelesaian: Ada beberapa cara penggambaran

• Gerbang logika turunan: NAND, NOR, XOR, dan XNOR

Keempat gerbang di atas merupakan kombinasi dari gerbang-gerbang dasar, misalnya gerbang NOR disusun oleh kombinasi gerbang OR dan gerbang NOT:

Selain itu, dengan menggunakan hukum De Morgan, kita juga dapat membuat gerbang logika yang ekivalen dengan gerbang NOR dan NAND di atas:

Transistor untuk gerbang logika

Sumber gambar: http://hyperphysics.phy-astr.gsu.edu/hbase/electronic/trangate.html#c3