

Machine Learning with R

Machine Learning

Machine Learning

what society thinks I do

what my friends think I do

what my parents think I do

$$\begin{split} L_{\varphi} &= \frac{1}{2} \|\mathbf{w}\|_{2}^{2} - \sum_{n = 0}^{t} \alpha_{i} y_{i} \left(\mathbf{x}_{i} \cdot \mathbf{w} + b\right) + \sum_{n = 0}^{t} \alpha_{i} \\ &\alpha_{i} \geq 0, \forall i \\ &\mathbf{w} = \sum_{n = 0}^{t} \alpha_{i} y_{i} \mathbf{x}_{i}, \sum_{n = 0}^{t} \alpha_{i} y_{i} = 0 \\ &\nabla \hat{g}(\theta_{t}) = \frac{1}{n} \sum_{i = 1}^{n} \nabla \ell(x_{i}, y_{i}; \theta_{t}) + \nabla r(\theta_{t}). \\ &\theta_{t+1} = \theta_{t} - \eta_{t} \nabla \ell(x_{i(t)}, y_{i(t)}; \theta_{t}) - \eta_{t} \cdot \nabla r(\theta_{t}) \\ &\mathbb{E}_{i(t)} [\ell(x_{i(t)}, y_{i(t)}; \theta_{t})] = \frac{1}{n} \sum_{i} \ell(x_{i}, y_{i}; \theta_{t}). \end{split}$$

what other programmers think I do

what I think I do

>>> from scipy import SVM

what I really do

http://sentdex.com/sentimentanalysisbig-data-and-pythontutorials-algorithmictrading/machine-learningalgorithmic-trading-automatedtrading/

- □ 컴퓨터에게 배울 수 있는 능력, 즉 코드로 정의하지 않은 동작을 실행하는 능력에 대한 연구 분야(Arthur Samuel, 1959)
- □ Machine Learning: 사람이 직접 명시적으로 Logic을 지시하지 않아도 데이터를 통해 컴퓨터가 학습을 하고 그것을 사용해 컴퓨터가 자동으로 문제를 해결하도록 하는 것
- 그 주어진 데이터 $X = (x_1, x_2, x_3, ..., x_n)$ 와 각 데이터에 대응하는 실제 현상 $Y = (y_1, y_2, y_3, ..., y_n)$ 에 대한 관계 function f = 찾는 과정. 이때, 정확한 함수 f = 찾기 위해 데이터에 대한 가정을 하고, 그 가정에 따라 주어진 데이터를 최대한 잘 설명할 수 있는 함수 f' = 를 찾는다. (f' : Hypothesis)
 - Set of possible instance(domain) : X, Output : Y, Unknown target function : $f: X \to Y$
 - Set of hypothesis function space : $H \in \{h | h : X \to Y\}$
 - Input : Training example $\{(x_i, y_i)\}$
 - Output : $h \in H$ (best approximates target function)

- □ Data Mining : 데이터의 미처 몰랐던 속성을 발견하는 것
- 괴 Deep Learning : 여러 비선형 변환기법의 조합을 통해 높은 수준의 추상화를 시도하는 기계학습 알고리즘의 집합

question > input data > features > algorithm > parameter > evaluation

R Programming

☐ Data Structure

	Homogeneous	Hetrogeneous
1d	Atomic Vector	List
2d	Matrix	Data frame
nd	Array	

□ Vector

$$intV = c(1,2,3); intV$$
 [1] 1 2 3
$$charV = c(1, "a", 3); charV$$
 [1] "1" "a" "3" > doubleV = c(1, 2, 3.0); doubleV = c(1, 2, 3.5); doubleV [1] 1.0 2.0 3.5

booleanV = c(T, F, TRUE); booleanV
[1] TRUE FALSE TRUE
as.numeric(booleanV)
[1] 1 0 1

attr(booleanV, "desc") = "This is boolean Vector"
booleanV

[1] TRUE FALSE TRUE
attr(,"desc")

[1] "This is boolean Vector"
str(booleanV)
atomic [1:3] TRUE FALSE TRUE
- attr(*, "desc")= chr "This is boolean Vector"


```
☐ List
                                                                       ☐ Factor
                                                                         x = factor(c("a", "b", "b", "a"));x
    x = list(1:3, "a", c(TRUE, FALSE, TRUE), c(2.3, 5.9));x
                                                                         [1] a b b a
    [[1]]
                                                                         Levels: a b
    [1] 1 2 3
                                                                         class(x)
    [[2]]
                                                                         [1] "factor"
    [1] "a"
                                                                         levels(x)
    [[3]]
                                                                         [1] "a" "b"
    [1] TRUE FALSE TRUE
                                                                         sex_char = c("m", "m", "m")
    [[4]]
                                                                         sex_factor = factor(sex_char, levels=c("m","f"))
    [1] 2.3 5.9
                                                                         table(sex_char)
    str(x)
                                                                         sex_char
    List of 4
                                                                         m
    $: int [1:3] 1 2 3
                                                                         3
    $ : chr "a"
                                                                         table(sex_factor)
    $: logi [1:3] TRUE FALSE TRUE
                                                                         sex_factor
    $: num [1:2] 2.3 5.9
                                                                         m f
                                                                         30
```


■ Matrix & Array

```
rownames(mat) = c("A", "B"); colnames(mat) = c("a", "b", "c"); mat
mat = matrix(1:6, ncol = 3, nrow = 2);mat
                                              length(mat);length(arr)
                                                                          abc
                                              [1] 6
   [,1] [,2] [,3]
                                                                         A 1 3 5
[1,] 1 3 5
                                              [1] 12
                                                                         B 2 4 6
[2,] 2 4 6
                                              nrow(mat);nrow(arr)
                                                                         dimnames(arr) = list(c("A", "B"), c("a", "b", "c"), c("one", "two")); arr
arr = array(1:12, c(2, 3, 2)); arr
                                              [1] 2
                                              [1] 2
                                                                         , , one
, , 1
                                              ncol(mat);ncol(arr)
   [,1] [,2] [,3]
[1,] 1 3 5
                                                                          abc
                                              [1] 3
                                                                         A 1 3 5
[2,] 2 4 6
                                              [1] 3
                                                                         B 2 4 6
, , 2
   [,1] [,2] [,3]
                                                                         , , two
[1,] 7 9 11
[2,]
     8 10 12
                                                                          a b c
                                                                         A 7 9 11
                                                                         B 8 10 12
```


□ Data Frame

```
data.frame(x = 1:3, y = list(1:2, 1:3, 1:4))
df = data.frame(x=1:3, y=c("a", "b", "c"), stringsAsFactors=FALSE);df
                                                                            Error in data.frame(1:2, 1:3, 1:4, check.names = FALSE,
ху
                                                                            stringsAsFactors = TRUE):
11a
                                                                             arguments imply differing number of rows: 2, 3, 4
22b
                                                                            df = data.frame(x = 1:3)
                                       cbind(df, data.frame(z=3:1))
33c
                                                                            df$y = list(1:2, 1:3, 1:4)
                                        xyz
str(df)
                                                                            df
                                       11a3
'data.frame': 3 obs. of 2 variables:
                                       22b2
                                                                             Χ
$ x: int 123
                                                                            1 1
                                                                                    1, 2
                                       33c1
$ y: chr "a" "b" "c"
                                                                            2 2 1, 2, 3
                                       rbind(df, data.frame(x=10,y="z"))
class(df)
                                                                            3 3 1, 2, 3, 4
                                         ху
[1] "data.frame"
                                                                            df = data.frame(x = 1:3, y = I(list(1:2, 1:3, 1:4)))
                                       1 1 a
is.data.frame(df)
                                                                            df
                                       2 2 b
[1] TRUE
                                                                             Χ
                                                                                     У
                                       3 3 c
                                                                            1 1
                                                                                    1, 2
                                       4 10 z
                                                                            2 2 1, 2, 3
                                                                            3 3 1, 2, 3, 4
```


■ Subset

```
a = matrix(1:9, nrow = 3); colnames(a) = c("A", "B", "C"); a
  ABC
[1,] 1 4 7
[2,] 258
[3,] 3 6 9
a[1:2,]
  ABC
[1,] 1 4 7
[2,] 258
a[c(T, F, T), c("B", "A")]
   ВА
[1,] 4 1
[2,] 6 3
a[0, -2]
  A C
```

```
a = outer(1:5, 1:5, FUN = "paste", sep = ",");a
   [,1] [,2] [,3] [,4] [,5]
[1,] "1,1" "1,2" "1,3" "1,4" "1,5"
[2,] "2,1" "2,2" "2,3" "2,4" "2,5"
[3,] "3,1" "3,2" "3,3" "3,4" "3,5"
[4,] "4,1" "4,2" "4,3" "4,4" "4,5"
[5,] "5,1" "5,2" "5,3" "5,4" "5,5"
select = matrix(ncol = 2, byrow = TRUE, c(1,1,3,1,2,4));select
   [,1] [,2]
[1,] 1 1
[2,] 3 1
[3,] 2 4
a[select]
[1] "1,1" "1,2" "3,4"
```


□ Subset

```
df = data.frame(x = 1:3, y = 3:1, z = letters[1:3]);df
                                                                 df[,c("x", "z")]
 хух
                                                                  ΧZ
113a
                                                                 11a
222b
                                                                 22b
331c
                                                                 33c
df[df$x == 2, ]
                                                                 str(df["x"])
 хух
222b
                                                                 'data.frame': 3 obs. of 1 variable:
df[c("x", "z")]
                                                                 $ x: int 123
                                                                 str(df[,"x"])
 ΧΖ
11a
                                                                 int [1:3] 1 2 3
22b
33c
```


□ Subset

	Simplifying	Preserving
Vector	x[[1]]	x[1]
List	x[[1]]	x[1]
Factor	x[1:4, drop =T]	x[1:4]
Array	x[1,] / x[, 1]	x[1, , drop = F] / x[, 1, drop = F]
Data frame	x[, 1] / x[[1]]	x[, 1, drop = F] / x[1]

a = list(a=1, b=2);a	a[1]	a["a"]
\$a	\$a	\$a
[1] 1	[1] 1	[1] 1
\$ b	a[[1]]	a[["a"]]
[1] 2	[1] 1	[1] 1

☐ Out of bound index

operator	index	Atomic	List
]	oob	NA	list(NULL)
[NA_real_	NA	list(NULL)
]	NULL	x[0]	list(NULL)
[[oob	Error	Error
[[NA_real_	Error	NULL
[[NULL	Error	Error

□ Assignment

x = 1:5;x	df = data.frame(a = c(1, 10, NA));df	df\$a[df \$a < 5] = 0; df
[1] 1 2 3 4 5	а	а
x[c(2,4)] = c(9,23);x	1 1	1 0
[1] 1 9 3 23 5	2 10	2 10
x[-1] = 99;x	3 NA	3 NA
[1] 1 99 99 99 99		> df\$a
		[1] 0 10 NA

□ Function

Variable Scope - Dynamic loopup

```
f = function() x
f()
x = 15
f()
x = 20
f()
```

where? when?

```
f = function() {
  i = 10
    x
    cat(paste0(i,",",x))
}
codetools::findGlobals(f)
```

external dependencies of function

Function call with argument

```
f <- function(abcdef, bcde1, bcde2) {
  list(a = abcdef, b1 = bcde1, b2 = bcde2)
}
str(f(1, 2, 3))
str(f(2, 3, abcdef = 1))
str(f(2, 3, a = 1))
str(f(1, 3, b = 1))</pre>
```

Function call with list argument

```
mean(1:10, na.rm = TRUE)
args = list(1:10, na.rm = TRUE)
mean(args)
do.call(mean, args)
```

Default argument

```
f <- function(a = 1, b = a * 2) {
    c(a, b)
}

f()
f(3)
f(3,5)
```

Lazy evaluation

```
f <- function(x) {
   10
}
f()

f <- function(x) {
   force(x)
   10
}
f()</pre>
```


□ Function

Replcement function

```
second <- function(x,
value) {
 x[2] <- value
 Χ
x = 1:10
second(x) = 5L
`second<-`<- function(x,
value) {
 x[2] <- value
 Χ
x = 1:10
second(x) = 5L;x
```

on.exit

```
in_dir <- function(dir, code) {
  old <- setwd(dir) # return old working dir
  on.exit(setwd(old))

force(code)
}
getwd()
in_dir("/", getwd())
getwd()</pre>
```


- Imperative Programming: mutable variables, assignments, control structure(if-then-else, loop, break, continue, return) C++, Java
- Logic Programming : formal logic Prolog, Answer set programming(ASP)
- Functional Programming
 - restricted sense : not use imperative programming paradigm
 - wider sense: use function, functions can be values that are produces, consumed, composed.
 - function can be defined anywhere, including side other functions
 - like any other value, they can be passed as parameters to functions and returned as results
 - as for other values, there exists a set operators to compose functions

1959 2003 1975-77 1978 1986 1990 1999 2000 2005 2007 ML, FP, Scheme **XSLT** Scala, XQuery Lisp Smalltalk Standard ML Haskell, Erlang **OCaml** F# Clojure


```
public class Factorial {
  public static long imperativeFactorial(int n){
     assert n > 0: "n should be greater than 0";
     long result = 1;
    for(int i=2;i<=n;i++){
       result *= i;
    return result;
  public static long declarativeFactorial(int n){
     assert n > 0 : "n should be greater than 0 ";
     if(n==1)
       return 1;
     else
       return n * declarativeFactorial(n-1);
```


anonymous function

```
lapply(mtcars, function(x) length(unique(x))) Filter(function(x) !is.numeric(x), mtcars) integrate(function(x) \sin(x) ^2, 0, pi)
```

closures

```
power = function(exponent) {
  function(x) {
    x ^ exponent
  }
}
square <- power(2)
square(2)</pre>
```

Mutable state

```
new_counter <- function() {</pre>
i < -0
 function() {
  i < < -i + 1
one = new_counter()
one()
one()
```

```
i <- 0
new_counter2 <- function() {</pre>
 i < < -i + 1
new_counter3 <- function() {</pre>
 i < -0
 function() {
  i < -i + 1
one2 = new_counter2()
one2();one2()
one3 = new_counter3()
one3();one3()
```


Lazy evaluation & closure

```
factory = function (K) {
     function (x) print(K + x)
funcs<-list()
for(i in 1:5)
 funcs[[i]]<-factory({cat("evaluating K:",i,"\n"); i})</pre>
funcs[[1]](10)
factory = function (K) {
 force(K)
 function (x) print(K + x)
funcs<-list()
for(i in 1:5)
 funcs[[i]]<-factory({cat("evaluating K:",i,"\n"); i})</pre>
funcs[[1]](10)
```


List of functions

```
compute_mean <- list(</pre>
 base = function(x) mean(x),
 sum = function(x) sum(x) / length(x),
 manual = function(x) {
  total <- 0
  n <- length(x)
  for (i in seq_along(x)) {
    total <- total + x[i] / n
  total
```

```
compute_mean$base(x)
compute_mean[[2]](x)
compute_mean[["manual"]](x)

lapply(compute_mean, function(f) f(x))
```

ListOfFunctions.R

lapply functions

lapply.R

☐ Non-standard evaluation

$$x = seq(0, 2 * pi, length = 100)$$

 $sinx = sin(x)$
 $plot(x, sinx, type = "l")$

Capturing expression

- substitute
- deparse : char vector
- library(ggplot2) / library("ggplot2")

□ Performance

■ 연산 속도 측정

```
library(microbenchmark)

x <- runif(100)
microbenchmark(
sqrt(x),
x ^ 0.5
)
```

100번 수행한 시간에 대한 통계

Lazy evaluation

```
f0 <- function() NULL
f1 <- function(a = 1) NULL
f2 \leftarrow function(a = 1, b = 1) NULL
f3 \leftarrow function(a = 1, b = 2, c = 3) NULL
f4 \leftarrow function(a = 1, b = 2, c = 4, d = 4) NULL
f5 \leftarrow function(a = 1, b = 2, c = 4, d = 4, e = 5) NULL
microbenchmark(f0(), f1(), f2(), f3(), f4(), f5(), times = 50)
Unit: nanoseconds
expr min lq mean median uq max neval cld
f0() 0 0 28.94 0.0 0 963 50 a
f1() 0 0 86.76 0.0 1 962 50 a
f2() 0 0 356.30 0.5 481 9625 50 ab
f3() 0 0 250.36 1.0 481 963 50 ab
f4() 0 0 298.70 1.0 482 1925 50 ab
f5() 0 481 577.66 482.0 962 1925 50 b
```


□ Code profiling

```
devtools::install_github("rstudio/profvis")
library(profvis)
library(ggplot2)

profile = profvis({
    g <- ggplot(diamonds, aes(carat, price)) +
    geom_point(size = 1, alpha = 0.2)
    print(g)
})
profile</pre>
```


□ Memory


```
library(pryr)
object_size(1:10)
sizes = sapply(0:50, function(n) object_size(seq_len(n)))
plot(0:50, sizes, xlab = "Length", ylab = "Size (bytes)", type = "s")
```

```
mem_used()
92.8 MB
mem_change(v <- list(1:1e8, 1:1e8, 1:1e8))
1.2 GB
mem_used()
1.29 GB
rm(v)
mem_used()
93.1 MB
```


Memory profiling

```
devtools::install_github("hadley/lineprof")
library(lineprof)
profile = lineprof(f())
shine(profile)
```


□ Data read

file

```
df= read.table("http://www.ats.ucla.edu/stat/data/test.txt", header = T)
is.data.frame(df)
head(df)
?read.table

table.fixed = read.fwf("http://www.ats.ucla.edu/stat/data/test_fixed.txt", width = c(8, 1, 3, 1, 1, 1))
is.data.frame(table.fixed)
head(table.fixed)
```

RDBMS

□ Data read

HIVE

```
options( java.parameters = "-Xmx2g" )
library(rJava)
library(RJDBC)

cp = c("/usr/hdp/current/hive-client/lib/hive-jdbc.jar", "/usr/hdp/current/hadoop-client/hadoop-ommon.jar")
.jinit(classpath=cp)
drv = JDBC("org.apache.hive.jdbc.HiveDriver", "/usr/hdp/current/hive-client/lib/hive-jdbc.jar", identifier.quote="`")
conn = dbConnect(drv, "jdbc:hive2://servername:10000/demo", "user", "password")
df <- dbGetQuery(conn, "show databases")
```

hdfs file (Spark)

```
Sys.setenv(SPARK_HOME="/home/shige/bin/spark")
.libPaths(c(file.path(Sys.getenv("SPARK_HOME"), "R", "lib"), .libPaths()))
library(SparkR)
sc = sparkR.init(master = "local[*]", sparkEnvir = list(spark.driver.memory="2g"))
sqlContext = sparkRSQL.init(sc)
df = read.df(sqlContext, "hdfs://namenode:port/xxx/yyy.parquet", "parquet")
```


Data Manipulation

☐ tidyr & dplyr package

library(tidyr) library(dplyr)

❖ tidyr

❖ dplyr

gather()

select()

spread()

filter()

separate()

group_by()

unite()

- summarise()
- arrange()
- join()
- mutate()

❖ %>% 연산자

```
a <- filter(data, variable == numeric_value)
b <- summarise(a, Total = sum(variable))
c <- arrange(b, desc(Total))</pre>
```

```
arrange(
    summarize(
        filter(data, variable == numeric_value),
        Total = sum(variable)
    ),
    desc(Total)
)
```

```
data %>%

filter(variable == "value") %>%

summarise(Total = sum(variable)) %>%

arrange(desc(Total))
```


□ data example

library(nycflights13)

str(flights) str(weather) str(planes) str(airports)

```
str(flights)
Classes 'tbl df', 'tbl' and 'data.frame': 336776 obs. of 16 variables:
       $ month : int 1 1 1 1 1 1 1 1 1 ...
        : int 111111111...
$ day
$ dep_time: int 517 533 542 544 554 554 555 557 557 558 ...
$ dep_delay: num 2 4 2 -1 -6 -4 -5 -3 -3 -2 ...
$ arr time : int 830 850 923 1004 812 740 913 709 838 753 ...
$ arr delay: num 11 20 33 -18 -25 12 19 -14 -8 8 ...
$ carrier : chr "UA" "UA" "AA" "B6" ...
$ tailnum : chr "N14228" "N24211" "N619AA" "N804JB" ...
$ flight: int 1545 1714 1141 725 461 1696 507 5708 79 301 ...
$ origin : chr "EWR" "LGA" "JFK" "JFK" ...
$ dest : chr "IAH" "IAH" "MIA" "BQN" ...
$ air time: num 227 227 160 183 116 150 158 53 140 138 ...
$ distance : num 1400 1416 1089 1576 762 ...
$ hour : num 5555555555...
$ minute : num 17 33 42 44 54 54 55 57 57 58 ...
```


□ gather()


```
flight_delay = flights[c("tailnum","arr_delay", "dep_delay")]
flight_delay = flight_delay[sample(nrow(flight_delay), 5), ]
flight_delay
delay_gather = flight_delay %>% gather(delay, time, arr_delay:dep_delay)
delay_gather
```

```
flight_delay
        tailnum arr_delay dep_delay
        1 N434UA
                     -29
                            -4
                                                                       delay
                                                                               time
                                                          tailnum
        2 N520JB
                           26
                                                           N434UA
                                                                     arr_delay
                                                                               √-29
                            -2
        3 N538UA
                      19
                                                           N520JB
                                                                     arr delay
                                                                                 9
        4 N934XJ
                           10
                                                           N538UA
                                                                     arr_delay
                                                                                19
                           -7
        5 N744P
                    -12
                                                           N934XJ
                                                                     arr_delay
                                                                                       delay_gather
                                                                     arr_delay
                                                            N744P
                                                                                -12
                                                           N434UA
                                                                     dep_delay
                                                                                -4
                                                           N520JB
                                                                     dep_delay
                                                                                26
                                                           N538UA
                                                                     dep_delay
                                                                                -2
                                                         9 N934XJ
                                                                     dep_delay
                                                                                10
                                                         10 N744P
                                                                     dep_delay
                                                                                -7
```


□ spread()


```
head(delay_gather,10)
flight_return <- delay_gather %>% spread(delay, time)
head(flight_return)
```

delay_gather

tailnum		delay	time
1	N434UA	arr_delay	-29
2	N520JB	arr_delay	9
3	N538UA	arr_delay	19
4	N934XJ	arr_delay	1
5	N744P	arr_delay	-12
6	N434UA	dep_delay	-4
7	N520JB	dep_delay	26
8	N538UA	dep_delay	-2
9	N934XJ	dep_delay	10
10	N744P	dep_delay	-7

flight_return

□ seperate()


```
head(airport)
name_seperate <- airports %>% separate(name, c("prefix", "suffix"))
head(name_seperate)
```

airport

faa	name `
1 04G	Lansdowne Airport
2 06A	Moton Field Municipal Airport
3 06C	Schaumburg Regional
4 06N	Randall Airport
5 09J	Jekyll Island Airport
6 0A9	Lizabethton Municipal Airport

```
lat Ion alt tz dst
41.13047 -80.61958 1044 -5 A
32.46057 -85.68003 264 -5 A
41.98934 -88.10124 801 -6 A
41.43191 -74.39156 523 -5 A
31.07447 -81.42778 11 -4 A
36.37122 -82.17342 1593 -4 A
```

faa prefix suffix
1 04G Lansdowne Airport
2 06A Moton Field
3 06C Schaumburg Regional
4 06N Randall Airport
5 09J Jekyll Island
6 0A9 Elizabethton Municipal

name_seperate

lat lon alt tz dst 41.13047 -80.61958 1044 -5 A 32.46057 -85.68003 264 -5 A 41.98934 -88.10124 801 -6 A 41.43191 -74.39156 523 -5 A 31.07447 -81.42778 11 -4 A 36.37122 -82.17342 1593 -4 A

□ unite()


```
weather_part = weather[c("Date","Location", "MinTemp", "MaxTemp","Rainfall")]
head(weather_part)
temp_unite <- weather_part %>% unite(Temp, MinTemp, MaxTemp, sep = "/")
head(temp_unite)
```

weather_part

Date	Location	MinTemp	MaxTem	Rainfall
1 2007-11-01	Canberra	8.0	24.3	0.0
2 2007-11-02	Canberra	14.0	26.9	3.6
3 2007-11-03	Canberra	13.7	23.4	3.6
4 2007-11-04	Canberra	13.3	15.5	39.8
5 2007-11-05	Canberra	7.6	16.1	2.8
6 2007-11-06	Canberra	6.2	16.9	0.0

Location Temp Rainfall Date 1 2007-11-01 Canberra 8/24.3 0.0 2 2007-11-02 Canberra 14/26.9 3.6 3 2007-11-03 Canberra 13.7/23.4 3.6 4 2007-11-04 Canberra 13.3/15.5 39.8 5 2007-11-05 Canberra 7.6/16.1 2.8 6 2007-11-06 Canberra 6.2/16.9 0.0

temp_unite

□ select()


```
head(planes)
planes_part = planes %>% select(tailnum, year, model:speed)
head(planes_part)
planes %>% select(starts_with("t"))
planes %>% select(-manufacturer, -speed)
```

planes

	tailnum	year	type	manufacturer	model (engine	s sea	ts spe	ed engine
1	N10156	2004	Fixed wing multi engine	EMBRAER	EMB-145X	R 2	55	NA	Turbo-fan
2	N102UW	1998	Fixed wing multi engine	AIRBUS INDUSTRIE	A320-214	2	182	NA	Turbo-fan
3	N103US	1999	Fixed wing multi engine	AIRBUS INDUSTRIE	A320-214	2	182	NA	Turbo-fan
4	N104UW	1999	Fixed wing multi engine	AIRBUS INDUSTRIE	A320-214	2	182	NA	Turbo-fan
5	N10575	2002	Fixed wing multi engine	EMBRAER	EMB-145L	R 2	55	NA	Turbo-fan
6	N105UW	1999	Fixed wing multi engine	AIRBUS INDUSTRIE	A320-214	2	182	NA	Turbo-fan

model engines seats speed tailnum year 1 N10156 2004 EMB-145XR 2 55 NA 2 N102UW 1998 A320-214 2 182 NA 2 182 3 N103US 1999 A320-214 NA 4 N104UW 1999 A320-214 2 182 NA N10575 2002 EMB-145LR 2 55 NA 6 N105UW 1999 A320-214 2 182 NA

planes_part

☐ filter()


```
summary(planes)
planes_2004 = planes %>% filter(year=='2004', engines > 2)
head(planes_2004)
```

planes

tailnum engines year Length:3322 Min. :1956 Min. :1.000 Class:character 1st Qu.:1997 1st Qu.:2.000 Mode :character Median :2001 Median :2.000 Mean :2000 Mean :1.995 3rd Qu.:2.000 3rd Qu.:2005 Max. :2013 Max. :4.000

NA's :70

Less than
Greater than
= Equal to
is.na
is NA
= Less than or equal to
!is.na
is not NA
= Greater than or equal to
&,|,!
Boolean operators

tailnum year type manufacturer model engines seats speed engine
1 N854NW 2004 Fixed wing multi engine
AIRBUS A330-223
3 379 NA Turbo-fan

2 N856NW 2004 Fixed wing multi engine AIRBUS A330-223 3 379 NA Turbo-fan

□ summarise() & group_by()

❖ 첫번째 summarise 결과

Source: local data frame [1 x 2]

dep_delay_mean arr_delay_mean

NA NA

❖ 두번째 summarise 결과

Source: local data frame [1 x 2]

dep_delay_mean arr_delay_mean 1 12.55516 6.895377

Source: local data frame [12 x 3]

r	nonth	dep_delay_m	ean arr_delay_mean
1	1	9.985491	6.1299720
2	2	10.760239	5.6130194
3	3	13.164289	5.8075765
4	4	13.849187	11.1760630
5	5	12.891709	3.5215088
6	6	20.725614	16.4813296
7	7	21.522179	16.7113067
8	8	12.570524	6.0406524
9	9	6.630285	-4.0183636
10	10	6.233175	-0.1670627
11	11	5.420340	0.4613474
12	12	16.482161	14.8703553

□ arrange()


```
flights_groupby_summarise_arrange = flights_groupby_summarise %>% arrange(dep_delay_mean)
flights_groupby_summarise_arrange
flights_groupby_summarise_arrange = flights_groupby_summarise %>% arrange(desc(arr_delay_mean))
flights_groupby_summarise_arrange
```

Source: local data frame [12 x 3] Source: local data frame [12 x 3]

dep delay m	ean arr_delay_mean		m	onth	dep_delay_me	ea <u>n arr_delay</u> ı	mean
5.420340	0.4613474		1	7	21.522179	16.7113067	
6.233175	-0.1670627		2	6	20.725614	16.4813296	
6.630285	-4.0183636		3	12	16.482161	14.8703553	
9.985491	6.1299720		4	4	13.849187	11.1760630	
10.760239	5.6130194		5	1	9.985491	6.1299720	
12.570524	6.0406524		6	8	12.570524	6.0406524	
12.891709	3.5215088		7	3	13.164289	5.8075765	
13.164289	5.8075765		8	2	10.760239	5.6130194	
13.849187	11.1760630		9	5	12.891709	3.5215088	
16.482161	14.8703553		10	11	5.420340	0.4613474	
20.725614	16.4813296		11	10	6.233175	-0.1670627	
21.522179	16.7113067		12	9	6.630285	-4.0183636	
	5.420340 6.233175 6.630285 9.985491 10.760239 12.570524 12.891709 13.164289 13.849187 16.482161 20.725614	6.233175 -0.1670627 6.630285 -4.0183636 9.985491 6.1299720 10.760239 5.6130194 12.570524 6.0406524 12.891709 3.5215088 13.164289 5.8075765 13.849187 11.1760630 16.482161 14.8703553 20.725614 16.4813296	5.420340 0.4613474 6.233175 -0.1670627 6.630285 -4.0183636 9.985491 6.1299720 10.760239 5.6130194 12.570524 6.0406524 12.891709 3.5215088 13.164289 5.8075765 13.849187 11.1760630 16.482161 14.8703553 20.725614 16.4813296	5.420340 0.4613474 1 6.233175 -0.1670627 2 6.630285 -4.0183636 3 9.985491 6.1299720 4 10.760239 5.6130194 5 12.570524 6.0406524 6 12.891709 3.5215088 7 13.164289 5.8075765 8 13.849187 11.1760630 9 16.482161 14.8703553 10 20.725614 16.4813296 11	5.420340 0.4613474 1 7 6.233175 -0.1670627 2 6 6.630285 -4.0183636 3 12 9.985491 6.1299720 4 4 10.760239 5.6130194 5 1 12.570524 6.0406524 6 8 12.891709 3.5215088 7 3 13.164289 5.8075765 8 2 13.849187 11.1760630 9 5 16.482161 14.8703553 10 11 20.725614 16.4813296 11 10	5.420340 0.4613474 1 7 21.522179 6.233175 -0.1670627 2 6 20.725614 6.630285 -4.0183636 3 12 16.482161 9.985491 6.1299720 4 4 13.849187 10.760239 5.6130194 5 1 9.985491 12.570524 6.0406524 6 8 12.570524 12.891709 3.5215088 7 3 13.164289 13.164289 5.8075765 8 2 10.760239 13.849187 11.1760630 9 5 12.891709 16.482161 14.8703553 10 11 5.420340 20.725614 16.4813296 11 10 6.233175	5.420340 0.4613474 1 7 21.522179 16.7113067 6.233175 -0.1670627 2 6 20.725614 16.4813296 6.630285 -4.0183636 3 12 16.482161 14.8703553 9.985491 6.1299720 4 4 13.849187 11.1760630 10.760239 5.6130194 5 1 9.985491 6.1299720 12.570524 6.0406524 6 8 12.570524 6.0406524 12.891709 3.5215088 7 3 13.164289 5.8075765 13.849187 11.1760630 9 5 12.891709 3.5215088 16.482161 14.8703553 10 11 5.420340 0.4613474 20.725614 16.4813296 11 10 6.233175 -0.1670627

□ join()


```
flights_dest_group = flights %>% group_by(dest) %>% filter(!is.na(arr_delay)) %>% summarise(arr_delay = mean(arr_delay), n = n() ) %>% arrange(desc(arr_delay)) location = airports %>% select(dest = faa, name, lat, lon) flights_join = flights_dest_group %>% left_join(location) flights_join = flights_dest_group %>% left_join(location, by='dest')
```

```
dest arr delay n
                                               dest
                                                                            lat
                                                                                   lon
                                                                    name
                                                             Lansdowne Airport 41.13047 -80.61958
 CAE 41.76415 106
                                               <del>1 04</del>G
2 TUL 33.65986 294
                                               2 06A Moton Field Municipal Airport 32.46057 -85.68003
                                                            Schaumburg Regional 41.98934 -88.10124
3 OKC 30.61905 315
                                               3 06C
4 JAC 28.09524 21
                                               4 06N
                                                              Randall Airport 41.43191 -74.39156
5 TYS 24.06920 578
                                               5 09J
                                                          Jekyll Island Airport 31.07447 -81.42778
6 MSN 20.19604 556
                                               6 0A9 Elizabethton Municipal Airport 36.37122 -82.17342
```

dest arr_delay n name lat lon

1 CAE 41.76415 106 Columbia Metropolitan 33.93883 -81.11953

2 TUL 33.65986 294 Tulsa Intl 36.19839 -95.88811

3 OKC 30.61905 315 Will Rogers World 35.39309 -97.60073

4 JAC 28.09524 21 Jackson Hole Airport 43.60733 -110.73775

5 TYS 24.06920 578 Mc Ghee Tyson 35.81097 -83.99403

6 MSN 20.19604 556 Dane Co Rgnl Truax Fld 43.13986 -89.33751

□ join()

Superheroes

name	alignment	gender	publisher
Magneto	bad	male	Marvel
Storm	good	female	Marvel
Mystique	bad	female	Marvel
Batman	good	male	DC
Joker	bad	male	DC
Catwoman	bad	female	DC
Hellboy	good	male	Dark Horse Comics

Publishers

publisher	founded
DC	1934
Marvel	1939
Image	1992

Superheroes %>% inner_join(Publishers, by=publisher)

name	alignment	gender	publisher	founded
Magneto	bad	male	Marvel	1939
Storm	good	female	Marvel	1939
Mystique	bad	female	Marvel	1939
Batman	good	male	DC	1934
Joker	bad	male	DC	1934
Catwoman	bad	female	DC	1934

□ join()

Superheroes %>% semi_join(Publishers, by=publisher)

name	alignment	gender	publisher
Batman	good	male	DC
Joker	bad	male	DC
Catwoman	bad	female	DC
Magneto	bad	male	Marvel
Storm	good	female	Marvel
Mystique	bad	female	Marvel

Superheroes %>% left_join(Publishers, by=publisher)

name	alignment	gender	publisher	founded
Magneto	bad	male	Marvel	1939
Storm	good	female	Marvel	1939
Mystique	bad	female	Marvel	1939
Batman	good	male	DC	1934
Joker	bad	male	DC	1934
Catwoman	bad	female	DC	1934
Hellboy	good	male	Dark Horse Comics	NA

Superheroes %>% anti_join(Publishers, by=publisher)

name	alignment	gender	publisher
Hellboy	good	male	Dark Horse Comics

□ mutate()


```
flights_mutate = flights %>% select(year, month, day, tailnum, hour, minute) %>% mutate(time = hour + minute / 60) flights_mutate_summarise = flights %>% mutate(time = hour + minute / 60) %>% group_by(time) %>% summarise(arr_delay = mean(arr_delay, na.rm = TRUE), n = n())
```

flights_mutate

year mo	nth	da	y tailnum	hour	· minute	time	
1 2013	1	1	N14228	5	17	5.283333	
2 2013	1	1	N24211	5	33	5.550000	
3 2013	1	1	N619AA	5	42	5.700000	
4 2013	1	1	N804JB	5	44	5.733333	
5 2013	1	1	N668DN	5	54	5.900000	
6 2013	1	1	N39463	5	54	5.900000	
						\	,

flights_mutate_summarise

```
time arr_delay n
1 0.01666667
2 0.03333333
3 0.05000000
4 0.06666667
5 0.08333333
6 0.10000000

arr_delay n
75.96000 25
90.00000 35
65.46154 26
60.50000 26
74.50000 21
91.90909 22
```


☐ data.table package

library(data.table) df = copy(flights) dt = setDT(df) large data set

fast

clean code

❖ select columns

❖ select rows

group by

❖ add, remove fields

❖ join

❖ fread

DataTable.R

Visualization

KODB or and or mondage 8

- data
- aesthetic mapping
- geometric object
- statistical transformations
- scales
- coordinate system
- position adjustments
- faceting

http://docs.ggplot2.org/current/

- ❖ ggplot2에서 지원하지 않는 기능
 - 3 차원 그래프: rgl package
 - 그래프 이론 형태의 그래프(node/edges layout) : igraph package
 - 대화형 그래프 : ggvis package

❖ ggplot2 구조

```
ggplot(data = <default data set>,
    aes(x = < default x axis variable>,
      y = <default y axis variable>,
       ... <other default aesthetic mappings>),
    ... <other plot defaults>) +
    geom_<geom type>(aes(size = <size variable for this geom>,
              ... <other aesthetic mappings>),
           data = <data for this point geom>,
           stat = <statistic string or function>,
           position = <position string or function>,
           color = <"fixed color specification">,
           <other arguments, possibly passed to the stat function) +
 scale_<aesthetic>_<type>(name = <"scale label">,
             breaks = <where to put tick marks>,
             labels = <labels for tick marks>,
             ... <other options for the scale>) +
 theme(plot.background = element_rect(fill = "gray"),
     ... <other theme elements>)
```


sample data

```
> housing = read.csv("landdata-states.csv")
> str(housing)
'data.frame':
                7803 obs. of 9 variables:
$ State
              : Factor w/ 51 levels "AK", "AL", "AR", ...: 1 1 1 1 1 1 1 1 1 1 ...
$ region
              : Factor w/ 4 levels "Midwest", "N. East", ...: 4 4 4 4 4 4 4 4 4 4 ...
$ Date
              : int 20101 20102 20093 20094 20074 20081 20082 20083 20084 20091 ...
$ Home.Value
                  : int 224952 225511 225820 224994 234590 233714 232999 232164 231039 229395 ...
$ Structure.Cost: int 160599 160252 163791 161787 155400 157458 160092 162704 164739 165424 ...
$ Land. Value
               : int 64352 65259 62029 63207 79190 76256 72906 69460 66299 63971 ...
$ Land.Share..Pct.: num 28.6 28.9 27.5 28.1 33.8 32.6 31.3 29.9 28.7 27.9 ...
$ Home.Price.Index: num 1.48 1.48 1.49 1.48 1.54 ...
$ Land.Price.Index: num 1.55 1.58 1.49 1.52 1.88 ...
```

histogram

```
> ggplot(housing, aes(x=Home.Value)) + geom_histogram() stat_bin: binwidth defaulted to range/30. Use 'binwidth = x' to adjust this.
```

```
> ggplot(housing, aes(x=Home.Value)) + geom_histogram(bins=100)
```

> ggplot(housing, aes(x=Home.Value)) + geom_histogram(binwidth = 4000)

Statistical transformation

```
housing.sum = aggregate(housing["Home.Value"], housing["State"], FUN=mean)
head(housing.sum, 10)
ggplot(housing.sum, aes(x=State, y=Home.Value)) + geom_bar()
ggplot(housing.sum, aes(x=State, y=Home.Value)) + geom_bar(stat="identity")
```

housing.sum

State Home. Value

- AK 147385.14
- AL 92545.22
- AR 82076.84
- AZ 140755.59
- CA 282808.08
- CO 158175.99
- CT 223063.08
- DC 287552.56
- DE 152905.53
- FL 137842.59 10

scatter plot

ggplot(subset(housing, State %in% c("MA", "TX")), aes(x=Date, y=Home.Value, color=State))+geom_point()

- Aesthetics
 - position(on the x, y axes)
 - color(outside color)
 - fill(inside color)
 - shape(of point)
 - linetype
 - size

- Geometic objects
 - geom_point : scatter plot, dot plot
 - geom_line : time series, trend line
 - geom_boxplot : box plots

help.search("geom_", package = "ggplot2")

http://docs.ggplot2.org/current/

Scatter plot

```
hp2001Q1 = subset(housing, Date == 20011)
p1 = ggplot(hp2001Q1, aes(y = Structure.Cost, x = Land.Value))
(p2 = p1 + geom_point(aes(color = Home.Value)))
```

Prediction line

```
hp2001Q1$pred.SC <- predict(Im(Structure.Cost ~ Land.Value, data = hp2001Q1))
(p3 = p2 + geom_line(aes(y=hp2001Q1$pred.SC)))
```

Smoothers

❖ Text

❖겹침 방지

library(ggrepel)

(p6 = p1 + geom_point() + geom_text_repel(aes(label=State), size = 3))

❖ Asethetic mapping vs. Assignment

```
p1 + geom_point(aes())
p1 + geom_point(aes(size=100, color="red"))
p1 + geom_point(aes(), size=2, color="red") # 고정 값은 ase() 밖에서 설정
p1 + geom_point(aes(color=Home.Value, shape = region)) # ase() 안에서는 field로 설정
```

<< 실습 >>

실습 데이터 : EconomistData.csv

- 1. x 축은 CPI, y축은 HDI로 scatter plot
- 2. 1번 plot 점의 색깔은 파란색으로
- 3. 점의 색깔을 Region 별로 다르게
- 4. Region에 의한 CPI boxplot
- 5. box plot 과 scatter plot overlay

<< 실습 >>

- 6. 1번 plot에 Im method를 이용하여 smoothing line 추가
- 7. 1번 plot에 기본 method를 이용하여 smoothing line 추가

❖ Scale : 데이터와 aesthetics 간의 mapping 조정 scale_<aesthetic>_<type> position, color, fill, size, shape, line type

```
(p3 = ggplot(housing, aes(x = State, y = Home.Price.Index)))
(p4 = p3 + geom_point(aes(color=Date), alpha=0.5, size=1.5,
                       position=position jitter(width=0.25, height=0)))
(p4 + scale_x_discrete(name="State Abbreviation") +
      scale_color_continuous(name="Color Index",
               breaks = c(19751, 19941, 20131),
               labels = c(1971, 1994, 2013),
               low = "blue", high = "red"))
(p4 + scale_color_gradient2(name="Color Index",
               breaks = c(19751, 19941, 20131),
               labels = c(1971, 1994, 2013),
               low = "blue",
               high = "red",
               mid = "gray60",
               midpoint = 19941)
```

help.search("scale_", package = "ggplot2")

http://docs.ggplot2.org/current/

❖ Faceting : 데이터셋을 일부를 다른 panel에 표시

facet_wrap() : 1차원

facet_grid(): 2차원

(p5 = ggplot(housing, aes(x = Date, y = Home.Value)) + geom_line(aes(color = State)))

(p5 <- p5 + geom_line() + facet_wrap(~State, ncol = 10))

(p5 + geom_line() + facet_grid(region~State))

❖ Theme : 데이터 plot 이외의 다른 요소 설정(축 레이블, 배경, 범례 등)

```
p5 + theme_linedraw()
p5 + theme_light()
# theme 재정의
p5 + theme minimal()
p5 + theme_minimal()+ theme(text = element_text(color = "turquoise"))
theme new = theme bw() +
 theme(plot.background = element_rect(size = 1, color = "blue", fill = "black"),
     text=element_text(size = 12, family = "Arial", color = "ivory"),
     axis.text.y = element_text(colour = "purple"),
     axis.text.x = element_text(colour = "red"),
     panel.background = element_rect(fill = "pink"),
     strip.background = element_rect(fill = "orange"))
p5 + theme_new
```


❖ 두개의 변수로 plot 그리기

ggplot(home.land.byyear, aes(x=Date, y=value, color=type)) + geom_line()

❖ 실습

- 데이터 : EconomistData.csv
- 1. scatter plot
- 2. trend line
- 3. open point
- 4. labeling
- 5. 겸침 방지
- 6. 범례 변경
- 7. scale 설정: x, y, color
- 8. theme 설정

☐ ggvis package

library(ggvis) library(dplyr) library(shiny)

mtcars %>% ggvis(x = \sim mpg, y = \sim disp) %>% mutate(disp = disp / 61.0237) %>% layer_points()

ggvis.R

https://rstudio-pubsstatic.s3.amazonaws.com/1704_8f4e918c76cc 447fac11113df250e02b.html

Machine Learning with R

□ caret package

- Caret(Classification and regression training)
 - data splitting
 - pre-processing
 - feature selection
 - model tuning using resampling
 - variable importance estimation

- Machine learning algorithm
 - Linear discriminant analysis
 - Regression
 - Naïve Bayes
 - Support vector machines
 - Classification, regression trees
 - Random forests, Boosting

https://topepo.github.io/caret/modelList.html

□ EDA(Exploratory data analysis)


```
#install.packages("caret", dependencies = c("Depends", "Suggests"))
library(caret)
library(kernlab)
data(spam)
data = spam
dim(data)
str(data)
sapply(data, class)
summary(data)
head(data,10)
levels(data$type)
percentage <- prop.table(table(data$type)) * 100</pre>
cbind(freq=table(data$type), percentage=percentage)
```

	freq	percentage
nonspam	2788	60.59552
spam	1813	39.40448

□ EDA(Exploratory data analysis)


```
features <- data[,1:57]
target <- data[,58]
par(mfrow=c(1,4))
for(i in 1:57) {
 boxplot(features[,i], main=names(data)[i])
plot(target)
partFeatures = data[,1:4]
featurePlot(x=partFeatures, y=target, plot="ellipse")
featurePlot(x=partFeatures, y=target, plot="box")
scales = list(x=list(relation="free"), y=list(relation="free"))
featurePlot(x=partFeatures, y=target, plot="density", scales=scales)
```

```
x <- matrix(rnorm(50*5),ncol=5)
y <- factor(rep(c("A", "B"), 25))

# classification
featurePlot(x, y, "ellipse")
featurePlot(x, y, "strip", jitter = TRUE)
featurePlot(x, y, "box")
featurePlot(x, y, "pairs")

# regression
pairs, scatter</pre>
```


□ Data slicing


```
sampling = createDataPartition(y=data$type, p=0.75, list=F)
sampling
trainData = data[sampling,]
testData = data[-sampling,]
dim(trainData);dim(testData)
# folding
set.seed(1234)
training = createFolds(y=data$type, k=10, list=T, returnTrain=T)
set.seed(1234)
testing = createFolds(y=data$type, k=10, list=T, returnTrain=F)
sapply(training, length)
sapply(testing, length)
training[[1]][1:10]
testing[[1]][1:10]
```

```
# resampling
set.seed(1234)
resampling = createResample(y=data$type,
                              times=10, list=T)
sapply(resampling, length)
resampling[[1]][1:10]
# time slices
set.seed(1234)
tme = 1:1000
timeslicing = createTimeSlices(tme,
                     initialWindow=20, horizon=10)
names(timeslicing)
sapply(timeslicing$train, length)
sapply(timeslicing$test, length)
timeslicing$train[[1]]
timeslicing$test[[1]]
```


☐ Cross Validation

- 모델을 생성할 변수 선택
- 사용할 알고리즘 선택
- 알고리즘에 적용할 파라메터 선택
- 알고리즘간 비교

☐ Cross Validation

Random subsampling(replace=false)

bootstrap(replace=true)

☐ Cross Validation

Leave one out

❖ k-fold

Testing

Training

☐ Training


```
model = train(type~., data=trainData, method="glm") args(train.default)
```

Generalized Linear Model

3451 samples 57 predictor 2 classes: 'nonspam', 'spam'

No pre-processing

Resampling: Bootstrapped (25 reps)

Summary of sample sizes: 3451, 3451, 3451, 3451, 3451,

3451, ...

Resampling results

Accuracy Kappa Accuracy SD Kappa SD 0.9199084 0.8318034 0.01199406 0.02314435

□ Training

- method: resampling
 - boot bootstrapping
 - boot632 bootstrapping with adjustment
 - cv cross validation
 - repeatedcv repeated cross validation
 - LOOCV leave one out cross validation

- repeats
 - subsampling을 반복 하는 회수
 - 숫자가 커지면 수행속도 느려짐
- number
 - boot / cross validation
 - 사용할 subsampling 개수
- classProbs
 - 결과값을 확률로 나타낼 것인가분류를 할 것인가

preprocessing


```
qqplot(trainData, aes(x=capitalAve)) + geom_histogram()
mean(trainData$capitalAve)
sd(trainData$capitalAve) # 값의 편차가 너무 큼
# standarization
capitalAveS = (trainData$capitalAve - mean(trainData$capitalAve)) / sd (trainData$capitalAve)
mean(capitalAveS)
sd(capitalAveS) #1
preObj = preProcess(trainData[,-58], method=c("center","scale"))
predict(preObj, trainData[,-58])
capitalAveS = predict(preObj, trainData[,-58])$capitalAve
mean(capitalAveS)
sd(capitalAveS)
par(mfrow=c(1,2))
hist(capitalAveS); qqnorm(capitalAveS)
model = train(type~., data=trainData, method="glm",
        trControl = control, preProcess=c("center", "scale"))
```


preprocessing


```
# box-cox transform
preObj = preProcess(trainData[,-58], method=c("BoxCox"))
capitalAveS = predict(preObj, trainData[,-58])$capitalAve
mean(capitalAveS)
sd(capitalAveS)
hist(capitalAveS); qqnorm(capitalAveS)
# missing value(Imputing data)
set.seed(1234)
trainData$capAve = trainData$capitalAve
summary(trainData$capAve)
selectNA = rbinom(dim(trainData)[1], size=1, prob=0.05) == 1
trainData$capAve[selectNA] = NA
summary(trainData$capAve)
preObj = preProcess(trainData[,-58], method=c("knnImpute"))
capAve = predict(preObj, trainData[,-58])$capAve
summary(capAve)
```


preprocessing

method	설명	method	설명
scale	data / sd(data)	ZV	zero variance
center	data - mean(data)	nzv	near zero variance
range	값을 [0,1] 사이의 값으로 scaling(normalization)	knnlmpute	knn을 이용해서 NA 근처의 값들을 가 중평균해서 값을 채움
Box-Cox	치우친 데이터를 정규분포화 (positive value)	bagImpute	Bagged tree model을 통해 NA 값을 예측하여 채움
YeoJohnson	치우친 데이터를 정규분포화 (0, negative 도 가능)	medianImpute	중앙값으로 NA 값을을 채움
expoTrans	지수함수를 이용한 정규분포화(positive, negative)		
рса	주성분 분석		
ica	독립성분분석, n.comp 지정해야 함		

□ Evaluation

modelPredict = predict(model, testData)
confusionMatrix(modelPredict, testData\$type)

Confusion Matrix and Statistics

Reference
Prediction nonspam spam
nonspam 653 38
spam 44 415

Accuracy: 0.9287

95% CI: (0.9123, 0.9429)

No Information Rate: 0.6061 P-Value [Acc > NIR]: <2e-16

Kappa: 0.851

Mcnemar's Test P-Value: 0.5808

Sensitivity: 0.9369 Specificity: 0.9161

Pos Pred Value : 0.9450 Neg Pred Value : 0.9041 Prevalence : 0.6061

Detection Prevalence: 0.6009 Balanced Accuracy: 0.9265

Detection Rate: 0.5678

'Positive' Class: nonspam

☐ Model evaluation matrix - Classification

Confusion matrix

Confusion Matrix		Real			
		Positive	Negative		
Predict	Positive	а	b	Positive Predictive V alue (precision)	a/(a+b)
	Negative	С	d	Negative Predictive Value	d/(c+d)
		Sensitivity (recall)	Specificity	Accuracy (a+d) / (a+b+c+d)	
		a/(a+c)	d/(b+d)		

■ F = 2 * (precision * recall) / (precision + recall)

☐ Model evaluation matrix - Classification

Gain Chart

Lift Chart

☐ Model evaluation matrix - Classification

ROC Curve

❖ Area under ROC Curve

☐ Model evaluation matrix - Regression

* RMSE - Root Mean Squared Error

$$RMSE = \sqrt{\frac{\sum_{i=1}^{n} (p_i - a_i)^2}{n}}$$

❖ MAE - Mean Absolute Error

$$MAE = \frac{\sum_{i=1}^{n} |p_i - a_i|}{n}$$

RSE - Relative Squared Error

$$RSE = \frac{\sum_{i=1}^{n} (p_i - a_i)^2}{\sum_{i=1}^{n} (\overline{a} - a_i)^2}$$

* RAE - Relative Absoulte Error

$$RAE = \frac{\sum_{i=1}^{n} |p_i - a_i|}{\sum_{i=1}^{n} |\overline{a}_i - a_i|}$$

a: real value

p : predict value

ā : average

R Shiny

☐ Reactive programming

❖ Reactive programming: Asynchronous and Event based data streaming을 처리하는 Message driven architecture

Responsive

Scalable

Event-Driven

Resillient

Reactive value

(implementation of reactive source)

Reactive source

Reactive expression

(implementation of reactive conductor)

Reactive conductors

Observer

(implementation of reactive endpoint)

Reactive endpoints

☐ Shiny

library(shiny)

runExample("01_hello") # a histogram runExample("02_text") # tables and data frames runExample("03_reactivity") # a reactive expression runExample("04_mpg") # global variables runExample("05_sliders") # slider bars runExample("06_tabsets") # tabbed panels runExample("07_widgets") # help text and submit buttons runExample("08_html") # Shiny app built from HTML runExample("09_upload") # file upload wizard runExample("10_download") # file download wizard runExample("11_timer") # an automated timer

http://shiny.rstudio.com/gallery/

FirstShinyApp ui.R server.R

ui.R

```
library(shiny)
shinyUI(fluidPage(
 titlePanel("Shiny Text"),
 sidebarLayout(
  sidebarPanel(
   selectInput("dataset", "Choose a dataset:",
           choices = c("rock", "pressure", "cars")),
   numericInput("obs", "Number of observations to
view:", 10)
mainPanel(
   verbatimTextOutput("summary"),
   tableOutput("view")
```

server.R

```
library(shiny)
library(datasets)
shinyServer(function(input, output) {
 datasetInput <- reactive({</pre>
  switch(input$dataset,
       "rock" = rock,
       "pressure" = pressure,
       "cars" = cars)
 })
 output$summary <- renderPrint({
  dataset <- datasetInput()</pre>
  summary(dataset)
 output$view <- renderTable({
  head(datasetInput(), n = input$obs)
```


□ 소스 구조

FirstShinyApp.R

```
library(shiny)
runApp(
  list(
     ui = fluidPage(
     server = function(input, output) {
```

```
runApp("first")
runApp("first", display.mode = "showcase")
```

□ Ul Layout

simple layout library(shiny) - 🗆 Hello Shiny! - Mozilla Firefox shinyUI(fluidPage(**Hello Shiny!** titlePanel("Hello Shiny!"), Histogram of dist Number of observations: sidebarLayout(100 sidebarPanel(sliderInput("obs", "Number of observations:", 9 min = 1, max = 1000, value = 500) 20 mainPanel(plotOutput("distPlot")

☐ Ul Layout

- Grid layout
 - 12 column 으로 구성


```
shinyUI(fluidPage(
 titlePanel("Diamonds Explorer!"),
 fluidRow(
  column(3,
       h4("Diamonds Explorer"),
      sliderInput('sampleSize', 'Sample Size',
              min=1, max=nrow(dataset), value=min(1000, nrow(dataset)),
              step=500, round=0),
       br(),
      checkboxInput('jitter', 'Jitter'),
       checkboxInput('smooth', 'Smooth')
  column(4, offset = 1,
       selectInput('x', 'X', names(dataset)),
       selectInput('y', 'Y', names(dataset), names(dataset)[[2]]),
       selectInput('color', 'Color', c('None', names(dataset)))
  column(4,
       selectInput('facet_row', 'Facet Row', c(None='.', names(dataset))),
       selectInput('facet_col', 'Facet Column', c(None='.', names(dataset)))
```


☐ Ul Layout

KO D B

- Segment layout
 - tabsetPanel()
 - navlistPanel()

```
tabsetPanel(type = "tabs", position="below",
// "above", "below", "left", "right"
```

```
shinyUI(fluidPage(
 titlePanel("Tabsets"),
 sidebarLayout(
  sidebarPanel(
   radioButtons("dist", "Distribution type:",
           c("Normal" = "norm", "Uniform" = "unif",
            "Log-normal" = "Inorm", "Exponential" = "exp")),
   br(),
   sliderInput("n",
           "Number of observations:",
           value = 500,
                                  min = 1,
                                                     max = 1000)
  mainPanel(
   tabsetPanel(type = "tabs",
          tabPanel("Plot", plotOutput("plot")),
           tabPanel("Summary", verbatimTextOutput("summary")),
           tabPanel("Table", tableOutput("table"))
```

☐ Ul Layout

- Segment layout
 - tabsetPanel()
 - navlistPanel()


```
shinyUI(fluidPage(
 titlePanel("Application Title"),
 navlistPanel(
  "Header A",
  tabPanel("Component 1", "Component 1"),
  tabPanel("Component 2", "Component 2"),
  "Header B".
  tabPanel("Component 3", "Component 3"),
  tabPanel("Component 4", "Component 5"),
  tabPanel("Component 5", "Component 5")
# Navbar pages
shinyUI(navbarPage("My Application", header="header", footer="footer",
           tabPanel("Component 1", "Component 1"),
           tabPanel("Component 2", "Component 2"),
           navbarMenu("Component 3",
                 tabPanel("Sub-Component A", "Sub-Component A"),
                 tabPanel("Sub-Component B", "Sub-Component B"))
```


□ HTML contents

method	html tag
p	
h1	<h1></h1>
h2	<h2></h2>
h3	<h3></h3>
h4	<h4></h4>
h5	<h5></h5>
h6	<h6></h6>
а	<a>>
br	
div	<div></div>
span	
pre	<pre><</pre>

method	html tag
code	<code></code>
img	
strong	
em	
HTML	

```
shinyUI(fluidPage(
  titlePanel("My Shiny App"),
  sidebarLayout(
    sidebarPanel(),
    mainPanel(
       h1("First level title"),
       HTML("<br>'),
       h2("Second level title"),
       HTML("<br>'),
       h3("Third level title")
    )
)
```

☐ Control widget

function	widget	
actionButton	Action Button	
checkboxGroupInput	A group of check boxes	
checkboxInput	A single check box	
dateInput	A calendar to aid date selection	
dateRangeInput	A pair of calendars for selecting a date r ange	
fileInput	A file upload control wizard	
helpText	Help text that can be added to an input f orm	
numericInput	A field to enter numbers	
radioButtons	A set of radio buttons	
selectInput	A box with choices to select from	
sliderInput	A slider bar	
submitButton	A submit button	
textInput	A field to enter text	

runApp("widget")

□ Control widget

KO DB

- action widget
 - actionButton("<inputId>", "<label>")
 - actionLink("<inputId>", "<label>")

Command 실행

```
library(shiny)
ui <- fluidPage(
 tags$head(tags$script(
  "Shiny.addCustomMessageHandler('testmessage',
  function(message) {
  alert(JSON.stringify(message));
 actionButton("do", "Click Me")
server <- function(input, output, session) {</pre>
 observeEvent(input$do, {
  session$sendCustomMessage(type = 'testmessage',
                  message = 'Thank you for clicking')
 })
shinyApp(ui, server)
```


□ Control widget

Reactive data

```
library(shiny)
ui <- fluidPage(
 actionButton("go", "Go"),
 numericInput("n", "n", 50),
 plotOutput("plot")
server <- function(input, output) {</pre>
 randomVals <- eventReactive(input$go, {
  runif(input$n)
 })
 output$plot <- renderPlot({
  hist(randomVals())
shinyApp(ui, server)
```



```
library(shiny)
ui <- fluidPage(
 actionButton("runif", "Uniform"),
 actionButton("rnorm", "Normal"),
 hr(),
 plotOutput("plot")
server <- function(input, output){</pre>
 v <- reactive Values (data = NULL)
 observeEvent(input$runif, {
  v$data <- runif(100)
 observeEvent(input$rnorm, {
  v$data <- rnorm(100)
 output$plot <- renderPlot({
  if (is.null(v$data)) return()
  hist(v$data)
shinyApp(ui, server)
```


output function	create	renderer
htmlOutput	raw HTML	renderPrint
imageOutput	image	renderlmage
plotOutput	plot	renderPlot
tableOutput	table	renderTable
textOutput	text	renderText
uiOutput	raw HTML	renderUI
verbatimTextOutput	text	renderPrint

```
shinyServer(
  function(input, output) {
    output$text1 <- renderText({
     paste("You have selected", input$var)
    })
}</pre>
```

```
shinyUI(fluidPage(
 titlePanel("censusVis"),
 sidebarLayout(
  sidebarPanel(
     selectInput("var",
     label = "Choose a variable to display",
     choices = c("Percent White",
                 "Percent Black",
                  "Percent Hispanic",
                  "Percent Asian"),
     selected = "Percent White")
  mainPanel(
   textOutput("text1")
```



```
library(shiny)
runApp(
 list(
  ui = pageWithSidebar(
   headerPanel("Display Text!!"),
   sidebarPanel(
     p("display text...")
   mainPanel(
    verbatimTextOutput("text1"),
     verbatimTextOutput("text3"),
    htmlOutput("text2")
  server = function(input, output){
   output$text1 <- renderText({
     "hello world!!"
```

```
output$text2 <- renderUI({
     "hello world!!"
    c = list("a", "b", "c")
    output$text3 <- renderPrint({</pre>
```

□ Reactive Data Stream


```
shinyServer(function(input, output) {
 output$plotOut <- renderPlot({
  hist(faithful$eruptions, breaks = as.numeric(input$nBreaks))
  if (input$individualObs)
   rug(faithful$eruptions)
 })
 output$tableOut <- renderTable({
  if (input$individualObs)
   faithful
  else
   NULL
```


☐ Reactive Data Stream


```
fib <- function(n) ifelse(n<3, 1, fib(n-1)+fib(n-2))

shinyServer(function(input, output) {
  output$nthValue <- renderText({ fib(as.numeric(input$n)) })
  output$nthValueInv <- renderText({ 1 / fib(as.numeric(input$n)) })
})
```



```
fib <- function(n) ifelse(n<3, 1, fib(n-1)+fib(n-2))

shinyServer(function(input, output) {
  currentFib <- reactive({ fib(as.numeric(input$n)) })

output$nthValue <- renderText({ currentFib() })
  output$nthValueInv <- renderText({ 1 / currentFib() })
})
```


isolation

```
library(shiny)
ui <- pageWithSidebar(
 headerPanel("Click the button"),
 sidebarPanel(
  sliderInput("obs", "Number of observations:",
          min = 0, max = 1000, value = 500),
  actionButton("run","run")
 mainPanel(
  plotOutput("distPlot")
server <- function(input, output) {</pre>
 output$distPlot <- renderPlot({
  input$run
  dist <- isolate(rnorm(input$obs))</pre>
  hist(dist)
```


☐ HTML UI


```
names(tags)
[1] "a"
          "abbr" "address" "area" "article" "aside"
                                                   "audio"
      "base" "bdi" "bdo" "blockquote" "body"
                                                  "br"
[8] "b"
[15] "button" "canvas" "caption" "cite" "code" "col" "colgroup"
[22] "command" "data" "datalist" "dd" "del" "details" "dfn"
[29] "div" "dl"
                  "dt" "em" "embed" "eventsource" "fieldset"
[36] "figcaption" "figure" "footer" "form"
                                     "h1" "h2"
                                                     "h3"
           "h5"
                   "h6"
                          "head" "header" "hgroup" "hr"
[43] "h4"
[50] "html" "i" "iframe" "img" "input" "ins" "kbd"
[57] "keygen" "label" "legend" "li"
                                    "link" "mark"
                                                    "map"
[64] "menu" "meta" "meter" "nav" "noscript" "object" "ol"
[71] "optgroup" "option" "output"
                              "p"
                                    "param" "pre" "progress"
          "ruby" "rp" "rt" "s"
                                              "script"
                                    "samp"
[78] "q"
[85] "section" "select" "small" "source"
                                    "span" "strong" "style"
[92] "sub" "summary" "sup" "table" "tbody"
                                              "td" "textarea"
           "th"
                                          "tr"
                                                 "track"
[99] "tfoot"
                  "thead" "time" "title"
           "ul"
                  "var" "video" "wbr"
[106] "u"
```


□ HTML UI


```
library(shiny)
shinyUI(fluidPage(
 titlePanel("Hello Shiny!"),
 sidebarLayout(
  sidebarPanel(
   sliderInput("bins",
           "Number of bins:",
           min = 1,
           max = 50,
           value = 30),
   tags$div(class="header", checked=NA,
         tags$p("Ready to take the Shiny tutorial? If so"),
         tags$a(href="http://shiny.rstudio.com/tutorial", "Click Here!")
  mainPanel(
   plotOutput("distPlot")
```


□ HTML UI

<html>

runExample("06_tabsets")

<script src="shared/jquery.js" type="text/javascript"></script>
<script src="shared/shiny.js" type="text/javascript"></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></script></scrip

application-dir> < link rel="si </head>

k rel="stylesheet" type="text/css" href="shared/shiny.css"/>

<application-dir>
www
index.html

server.R

<body>

<h1>HTML UI</h1>

>

<label>Distribution type:</label>

<select name="dist">

<option value="norm">Normal</option> <option value="unif">Uniform</option>

<option value="Inorm">Log-normal</option> <option value="exp">Exponential</option>

</select>

>

<label>Number of observations:</label>

<input type="number" name="n" value="500" min="1" max="1000" />

<div id="plot" class="shiny-plot-output" style="width: 100%; height: 400px"></div>

<div id="table" class="shiny-html-output"></div>

</body>

</html>

□ Execution Flow


```
library(shiny)
shinyUI(fluidPage(
 titlePanel("Reactive"),
 sidebarLayout(
  sidebarPanel(
   textInput("name", "Your Name")
  mainPanel(
   textOutput("text1")
```

```
library(shiny)
print("Outside!")
shinyServer(function(input, output) {
 print("Inside!")
 output$text1 <- renderText({</pre>
  print("Inside render!")
  paste0("Hello ", input$name)
 })
```



```
shinyServer(function(input, output, session) {
 # Return the components of the URL in a string:
 output$urlText <- renderText({
  paste(sep = "",
      "protocol: ", session$clientData$url_protocol, "\n",
      "hostname: ", session$clientData$url_hostname, "\n",
      "pathname: ", session$clientData$url_pathname, "\n",
      "port: ", session$clientData$url_port, "\n",
      "search: ", session$clientData$url search, "\n"
 # Parse the GET query string
 output$queryText <- renderText({
  query <- parseQueryString(session$clientData$url_search)
  # Return a string with key-value pairs
  paste(names(query), query, sep = "=", collapse=", ")
```

```
shinyUI(bootstrapPage(
h3("URL components"),
verbatimTextOutput("urlText"),
h3("Parsed query string"),
verbatimTextOutput("queryText")
))
```

☐ Run

R Studio

- runApp("<directory name>")
- runUrl("<url>")
- runGitHub("<your repository name>", "<your user name>")
- runGist("<gist number>")

command line

R -e "shiny::runApp('<path>')"

☐ Run

- Hosting
 - http://www.shinyapp.io

install.packages('devtools')

devtools::install_github('rstudio/rsconnect')

rsconnect::setAccountInfo(name='raonbit', token='~~', secret='~~')

library(rsconnect)

rsconnect::deployApp('shiny/stockVis')

Preparing to deploy application...DONE

Uploading bundle for application: 89077...

Detecting system locale ... ko_KO

DONE

Deploying bundle: 396314 for application: 89077 ...

Waiting for task: 168849237 building: Parsing manifest building: Fetching packages building: Installing packages

building: Installing files

building: Pushing image: 389669 deploying: Starting instances

rollforward: Activating new instances success: Stopping old instances

Application successfully deployed to https://raonbit.shinyapps.io/stockVis/

Linear algebra

□ 기본개념

선형 대수: 행렬 연산, 벡터 연산, 미분, 적분 등의 선형 함수를 수를 대신하여 문자를 사용해 식을 전개하고 방정식을 푸는것

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$
, $\mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$ (A: $m \times n$ 행렬, \mathbf{x} :열벡터)

$$A = \begin{pmatrix} a_{11} \dots a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} \dots a_{nn} \end{pmatrix} \qquad E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \dots$$

$$(AB)^{T} = B^{T}A^{T}$$

$$(A+B)^{T} = A^{T} + B^{T}$$

$$det(A^{T}) = det(A)$$

$$||\mathbf{x}||^{2} = \mathbf{x}^{T}\mathbf{x} = \mathbf{x} \cdot \mathbf{x}$$

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \rightarrow A^{T} = \begin{pmatrix} a & d & g \\ b & e & h \\ c & f & i \end{pmatrix}$$

$$A = \begin{pmatrix} a & b & c \\ d & e & f \end{pmatrix} \rightarrow A^{T} = \begin{pmatrix} a & d \\ b & e \\ c & f \end{pmatrix}$$

□ 기본개념

$$A = \begin{pmatrix} a_{11}a_{12}a_{13} \\ a_{21}a_{22}a_{23} \end{pmatrix} = \begin{pmatrix} \vec{a}_1 \\ \vec{a}_2 \end{pmatrix} B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = (\vec{b}_1 \vec{b}_2)$$

$$AB = \begin{pmatrix} a_{11}a_{12}a_{13} \\ a_{21}a_{22}a_{23} \end{pmatrix} \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix} = \begin{pmatrix} \vec{a}_1 \\ \vec{a}_2 \end{pmatrix} (\vec{b}_1 \vec{b}_2) = \begin{pmatrix} \vec{a}_1 \cdot \vec{b}_1 & \vec{a}_1 \cdot \vec{b}_2 \\ \vec{a}_2 \cdot \vec{b}_1 & \vec{a}_2 \cdot \vec{b}_2 \end{pmatrix}$$

$$\begin{bmatrix} 3 & 4 & 5 \\ 2 & 7 & 4 \end{bmatrix} \begin{bmatrix} 5 & 1 \\ 2 & 3 \\ 9 & 8 \end{bmatrix} = \begin{bmatrix} (3 & 4 & 5) \cdot (5 & 2 & 9) & (3 & 4 & 5) \cdot (1 & 3 & 8) \\ (2 & 7 & 4) \cdot (5 & 2 & 9) & (2 & 7 & 4) \cdot (1 & 3 & 8) \end{bmatrix} = \begin{bmatrix} 3x5 + 4x2 + 5x2 & 3x1 + 4x3 + 5x8 \\ 2x5 + 7x2 + 4x2 & 2x1 + 7x3 + 4x8 \end{bmatrix}$$

□ 기본개념

$$tr(A) = a_{11} + a_{22} + \dots + a_{nn} = \sum_{i=1}^{n} a_{ii} , A = \begin{pmatrix} a_{11} \dots a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} \dots & a_{nn} \end{pmatrix}$$

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow tr(A) = a + d$$

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \rightarrow tr(A) = a + e + i$$

$$tr(AB)=tr(BA)\neq tr(A)tr(B)$$

$$tr(ABC)=tr(BCA)=tr(CAB)\neq tr(ACB)$$

$$tr(P^{-1}AP)=tr(A)$$
 (: $tr(AB)=tr(BA)$)

$$tr(A) = \sum_{i} \lambda_{i}$$
 ($\lambda_{i} : A \cong$ eigenvalue)

$$tr(A^k) = \sum_{i} \lambda_i^k \quad (\lambda_i : A \supseteq eigenvalue)$$

$$D=diag(a_1,a_2,...,a_n)$$

$$D^{k}=diag(a_{1}^{k},a_{2}^{k},...,a_{n}^{k})$$

$$D^{-1}=diag(\frac{1}{a_1},\frac{1}{a_2},...,\frac{1}{a_n})$$

$$D^T=D$$

$$det(D)=a_1a_2...a_n$$

$$diag(a_1,a_2) = \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix}, diag(a_1,a_2,a_3) = \begin{pmatrix} a_1 & 0 & 0 \\ 0 & a_2 & 0 \\ 0 & 0 & a_3 \end{pmatrix}, \dots$$

□ 역행렬

$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$

$$D = [aei + bfg + cdh - ceg - bdi - afh]$$

$$A^{-1} = \frac{1}{D} \begin{bmatrix} ei - fh & -(bi - ch) & bf - ce \\ -(di - fg) & ai - cg & -(af - cd) \\ dh - eg & -(ah - bg) & ae - bd \end{bmatrix} \qquad \begin{pmatrix} a_{11} \cdots a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

$$(AB)^{-1}=B^{-1}A^{-1}$$

$$\begin{aligned} &a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ &a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ &\vdots \\ &a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{aligned}$$

$$\begin{pmatrix} a_{11} \cdots a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} b_1 \\ \vdots \\ b_n \end{pmatrix}$$

$$AX=B$$

$$X = A^{-1}B$$

□ 행렬식(determinant)

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \rightarrow det(A) = ad-bc$$

$$A = \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \rightarrow det(A) = a(ei - fh) - b(di - fg) + c(dh - eg)$$

$$det(AB)=det(A)det(B)$$
 (단, A,B 는 동일크기의 정방행렬)

$$det(A^T)=det(A)$$

$$det(A^{-1}) = \frac{1}{det(A)}$$

$$det(PAP^{-1})=det(A)$$

 $det(cA)=c^n det(A)$ (단, A는 $n \times n$ 정방행렬)

$$det(A) = \sum_{j=1}^{n} (-1)^{i+j} a_{ij} det(S_{ij})$$

□ 선형 변환(linear transformation)

벡터 공간 V, W에 대하여 V에 속하는 임의의 두 벡터 x, y에 대해

$$f(x+y) = f(x) + f(y),$$

임의의 스칼라 a에 대해

$$f(ax) = af(x)$$
를 만족하는 함수

$$f:V \rightarrow W$$

□ 고유값(eigenvalue), 고유벡터(eigenvector)

- 선형 변환 A에 의한 변환 결과가 자기 자신의 상수배가 되는 0이 아닌 벡터(고유 벡터), 이 상수배 값(고유값)
- 고유벡터는 선형변환 A에 의해 방향은 보존되고 scale 만 변화되는 방향 벡터를 나타내고 고유값은 그고유벡터의 변화되는 스케일 정도를 의미

$$A\mathbf{v} = \lambda \mathbf{v}$$

$$\begin{pmatrix} a_{11} \cdots a_{1n} \\ \vdots & \ddots & \vdots \\ a_{n1} \cdots & a_{nn} \end{pmatrix} \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix} = \lambda \begin{pmatrix} v_1 \\ \vdots \\ v_n \end{pmatrix}$$

$$Av = \lambda v$$

 $Av - \lambda v = 0$ (0: 영행렬)
 $(A - \lambda E)v = 0$ (E: 단위행렬)

$$det(A-\lambda E)=0$$

$$A = \begin{bmatrix} 2 & 0 & -2 \\ 1 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix}$$

$$det(A-\lambda E) = det\begin{pmatrix} 2 & 0 & -2 \\ 1 & 1 & -2 \\ 0 & 0 & 1 \end{pmatrix} - \lambda \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix})$$

$$= \begin{vmatrix} 2-\lambda & 0 & -2 \\ 1 & 1-\lambda & -2 \\ 0 & 0 & 1-\lambda \end{vmatrix}$$

$$= (2-\lambda)((1-\lambda)(1-\lambda)-0)$$

$$= (2-\lambda)(1-\lambda)^{2}$$

고유값: 1, 2

$$\begin{bmatrix} 2-\lambda & 0 & -2 \\ 1 & 1-\lambda & -2 \\ 0 & 0 & 1-\lambda \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_z \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & -2 \\ 1 & -1 & -2 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} v_x \\ v_y \\ v_x \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

$$-2v_z=0$$
, $v_x-v_y-2v_z=0$, $-v_z=0$

$$v_x = v_y, v_z = 0$$

고유벡터: (1, 1, 0)

□ 대각화 분해(eigendecomposition)

 $AP=P\Lambda$

■ P: 행렬 A의 고유벡터들을 열벡터로 하는 행렬

 $A=P\Lambda P^{-1}$

■ ∧: 고유값들을 대각원소로 하는 대각행렬

$$\begin{bmatrix} 1 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \end{bmatrix}^{-1}$$

- 대칭행렬(symmetric matrix) : 정방행렬 중 대각원소를 중심으로 원소값들이 대칭되는 행렬
- 대칭행렬은 항상 고유값 대각화가 가능하며 직교행렬(orthogonal matrix)로 대각화가 가능
- 직교 벡터(orthogonal vector) : 두 벡터가 서로 수직(내적이 0)
- 정규직교 벡터(orthonomal vector) : 두 벡터가 단위 벡터이면서 서로 수직
- 직교행렬(orthogonal matrix) : 자신의 전치행렬을 역행렬로 가지는 정방행렬, 열벡터,행벡터들이 직교

$$A^{-1}=A^T$$
 $AA^T=E$

□ PCA(주성분 분석)

■ 분포된 데이터들의 주성분을 찿아주는 방법으로 통계 데이터 분석, 영상인식, 차원 감소, 노이즈 제거 등에서 활용

- 데이터의 분포가 그림과 같을 때, 이 데이터들의 분포 특성을 2개의 벡터로 설명
- 두개의 벡터의 방향과 크기를 알면 데이터의 분표 형태 파악 가능
- 첫번째 주성분 벡터 : 데이터들의 분산이 가장 큰 방향 벡터
- 두번째 주성분 벡터 : 첫번째 주성분 벡터와 수직이면서 그 다음으로 데이터들의 분산이 큰 방향 벡터

Linear Regression

Sales = a + b*TV + c*Radio + d*Newspaper + e

$$y = \beta_0 + \beta_1 x + \varepsilon$$

intercept slope error
coefficients
(parameters)

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x \qquad e_i = y_i - \hat{y}_j \qquad RSS = e_1^2 + e_2^2 + \dots + e_n^2$$
 prediction value residual residual sum of squares

$$RSS = (y_1 - \hat{\beta}_0 - \hat{\beta}_{1x_1})^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_{1x_2})^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_{1x_n})^2$$

❖ RSS 최소화

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{X})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} \qquad \hat{\beta}_0 = \bar{y} - \hat{\beta}_{1\bar{x}}$$

$$\bar{y} = \frac{1}{n} \Sigma_{i=1}^n y_i$$

$$\bar{x} = \frac{1}{n} \Sigma_{i=1}^n x_i$$


```
library(caret)
data("faithful")
summary(faithful);head(faithful)
split = createDataPartition(y=faithful$eruptions, p=0.7, list=F)
trainData = faithful[split,]
testData = faithful[-split,]
dim(trainData);dim(testData)
model = Im(eruptions~waiting, data=trainData)
summary(model)
predict(model, testData)
coef(model)[1] + coef(model)[2] * testData[1,2]
(trainDataRMSE = sqrt(sum((model$fitted-trainData$eruptions))^2))
(testDataRMSE = sqrt(sum((predict(model,testData)-testData$eruptions))^2))
```


Call:

Im(formula = eruptions ~ waiting, data = trainData)

Residuals:

Min 1Q Median 3Q Max -1.27825 -0.34440 -0.00492 0.34450 1.14211

Coefficients:

Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.971041 0.179954 -10.95 <2e-16 ***
waiting 0.077578 0.002513 30.86 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4671 on 190 degrees of freedom Multiple R-squared: 0.8337, Adjusted R-squared: 0.8328 F-statistic: 952.6 on 1 and 190 DF, p-value: < 2.2e-16

❖ Std(Standard) Error : repeated sampling의 표준 오차

$$S_E = \sqrt{\frac{RSS}{n-2}}$$

❖ t value(t-statistic) : 모델에서 얻은 값과 귀무가설 값의 표준화된 차이

$$t = \frac{\hat{\beta}_1 - \beta_1}{s_E(\hat{\beta}_1)} \qquad , \, \beta_1 = 0$$

❖ Pr(>|t|): p value, 유의 수준, 귀무가설이 옳다는 가정하에 모델에서 얻은 값 또는 그 이상의 값을 얻을 확률

❖ R-squared : 회귀식이 얼마나 원래의 자료를 설명하는가

$$R^{2} = \frac{\text{TSS} - \text{RSS}}{\text{TSS}} = 1 - \frac{\text{RSS}}{\text{TSS}} \qquad \text{TSS} = \sum_{i=1}^{n} (y_{i} - \bar{y})^{2}$$

- ❖ Adjusted R-squared : R-squared 값이 변수가 추가될때 마다 증가되는것을 방지, 새로 추가된 변수가 y의 예측에 기여하는 만큼만 증가하도록 조정
- ❖ F-statistic: 이 모델이 통계적으로 의미가 있는가? (F-statistic가 충분히 크면 통계적으로 유의미
 - 오차들의 크기가 작을 수록
 - 표본의 수가 많을 수록
 - 독립변수의 수가 적을 수록


```
library(ISLR)
data(Wage)
summary(Wage);head(Wage)
split = createDataPartition(y=Wage$wage, p=0.7, list=F)
trainData = Wage[split,]
testData = Wage[-split,]
dim(trainData);dim(testData)
model = train(wage~ age+jobclass+education, mothod="lm", data=trainData)
#model = train(wage~ ., mothod="lm", data=trainData)
finalModel = model$finalModel
library(ggplot2)
pred = predict(model, testData)
qplot(wage, pred, colour=year, data=testData)
```


Classification

□ 분류 분석

□ 분류 분석 - Logistic regression

Logistic regression

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \dots + \beta_p X_p$$

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}{1 + e^{\beta_0 + \beta_1 X_1 + \dots + \beta_p X_p}}$$

- ❖ 가정: 주머니에 빨간공 60%, 파란공 40%, 빨간공의 20%는 깨졌고, 파란공의 30%는 깨졌다. 임의로 꺼낸 공이 깨졌을때 이 공이 빨간색일 확률은?
 - P(깨진공/파란색): likelihood
 - P(파란색/깨진공): posterior
- ❖ 깨진공이 파란색인지 빨간색인지 알아내는 방법
 - Maximum A posterior : 깨진 공이 빨간색일 확률과 깨진 공이 파란색일 확률을 비교해서 더 확률 높은 쪽을 선택
 - Maximum Likehood : 파란색이 깨진공일 확률과 빨간색이 깨진공일 확률을 계산해서 더 확률 높은 쪽을 선택
- ❖ 가정: 빨간공 60개 파란공 40개, 빨간공 12개 깨짐, 파란공 12개 깨졌다. 임의로 꺼낸 공이 깨졌을때 이 공이 빨간색일 확률은?

$$p(Y = k|X = x) = \frac{P(X = \chi|y = k)P(Y = k)}{p(X = x)}$$

- ❖ P(빨간색/깨진공) = P(깨진공/빨간색) * P(빨간색) / P(깨진공) = P(깨진공/빨간색) * P(빨간색) / (P(깨진공/빨간색) * P(빨간색) + P(깨진공/파란색) * P(파란색)) = 0.2 * 0.6 / (0.2 * 0.6 + 0.3 * 0.4)
- ❖ 확장 : 주머니에 빨간공 35%, 파란공 55%, 흰공 : 10%, 빨간공의 15%는 깨졌고, 파란공의 20%는 깨졌고, 흰공의 35%는 깨짐 임의로 꺼낸 공이 깨졌을때 이 공이 빨간색일 확률은?
- ❖ P(빨간색/깨진공) = P(깨진공/빨간색) * P(빨간색) / P(깨진공)
 - = P(깨진공/빨간) * P(빨간색) / (P(깨진공/빨간색)* P(빨간색) + P(깨진공/파란색)* P(파란색) + P(깨진공/흰색) * P(흰색))
 - = 0.15 * 0.35 / (0.15*0.35 + 0.2*0.55 + 0.35*0.1)

no	words	class	
1	fun, couple, love, love	comedy	
2	fast, furious, shoot	action	
3	couple, fly, fast, fun, fun	comedy	
4	furious, shoot, shoot, fun	action	
5	fly, fast, shoot, love	action	
6	fast, furious, fun	?	

P(comedy/fast,furious,fun) = P(fast/comedy) * P(furious/comedy)

* P(fun/comedy) * P(comedy)

$$= 1/9 * 0/9 * 3/9 * 2/5 = 0$$

P(action/fast,furious,fun) = P(fast/action) * P(furious/action)

* P(fun/action) * P(action)

P(comedy/fast,furious,fun) = P(fast/comedy) * P(furious/comedy)

* P(fun/comedy) * P(comedy)

$$= (1+1)/(9+7) * (0+1)/(9+7) * (3+1)/(9+7) * 2/5 = 0.00078$$

P(action/fast,furious,fun) = P(fast/action) * P(furious/action)

$$= (2+1)/(11+7) * (2+1)/(11+7) * (1+1)/(11+7) * 3/5 = 0.0018$$

pred <- predict(model, HouseVotes84[,-1])</pre> table <- table(pred, HouseVotes84\$Class)


```
library (e1071)
data (HouseVotes84, package="mlbench")
summary(HouseVotes84); head(HouseVotes84)
model = naiveBayes(Class ~ ., data = HouseVotes84)
predict(model, HouseVotes84[1:20,-1])
# 확률
predict(model, HouseVotes84[1:20,-1], type = "raw")
pred = predict(model, HouseVotes84[,-1])
(table <- table(pred, HouseVotes84$Class))
confusionMatrix(table)
## Laplace smoothing:
```

```
library(ROCR)
                                                         HouseVotes84$republican =
                                                                  factor(1*(HouseVotes84$Class == 'republican'))
                                                         pred = predict(model, HouseVotes84[,-1], type = 'raw')
                                                         pred = pred[,2]
                                                         plot(performance(prediction(pred,
                                                         HouseVotes84$republican), 'tpr', 'fpr'))
model <- naiveBayes(Class ~ ., data = HouseVotes84, laplace = 3)
```


confusionMatrix(table)

- Basic algorithm
 - i. 전체 데이터를 포함하는 root node 생성
 - ii. 만일 샘플들이 모두 같은 클래스이면 node는 leaf가 되고 해당 클래스로 label 부여
 - iii. 그렇지 않으면 information gain이 높은 속성 선택
 - iv. 선택된 속성으로 branch를 만들고 하위 node 생성
 - v. 각 노드에 대하여 ii 부터 반복
 - 정지 조건 : 해당 node에 속한는 데이터들이 모두 같은 클래스를 가지거나 상위 node에서 모든 속성을 사용
- ❖ Information gain : 특정 속성을 기준으로 데이터를 구분할 때 감소되는 entropy의 양

$$Gain(S,A) = Entropy(S) - \sum_{v \in Values(A)} \frac{|S_v|}{|S|} Entropy(S_v) \quad (S_v = \{s \in S | A(s) = v\})$$

� Entropy(무질서도) $H(p) = -\sum_{x \in X} p(x) \log p(x)$

Outlook	Temperature Numeric	Temperature Nominal	Humidity Numeric	Humidity Nominal	Windy	Play
overcast	83	hot	86	high	FALSE	yes
overcast	64	cool	65	normal	TRUE	yes
overcast	72	mild	90	high	TRUE	yes
overcast	81	hot	75	normal	FALSE	yes
rainy	70	mild	96	high	FALSE	yes
rainy	68	cool	80	normal	FALSE	yes
rainy	65	cool	70	normal	TRUE	no
rainy	75	mild	80	normal	FALSE	yes
rainy	71	mild	91	high	TRUE	no
sunny	85	hot	85	high	FALSE	no
sunny	80	hot	90	high	TRUE	no
sunny	72	mild	95	high	FALSE	no
sunny	69	cool	70	normal	FALSE	yes
sunny	75	mild	70	normal	TRUE	yes

rainy entropy(4,0)
=
$$3/5*log(3/5) + 2/5*log(2/5) = 0.97$$


```
#boosting
library(C50)
                                                            model = C5.0( trainDataX, trainDataY, trials=10)
library(caret)
                                                            summary( model )
                                                            plot(model)
data(iris)
summary(iris);head(iris)
                                                            testDataX = testData[,1:15]
                                                            testDataY = testData[,16]
split = createDataPartition(y=iris$Species, p=0.7, list=F)
                                                            pred = predict(model, testDataX, type="class")
trainData = iris[split,]
                                                            sum(pred==testDataY) / length(pred)
testData = iris[-split,]
dim(trainData):dim(testData)
                                                            # rpart
                                                            rpart_model = train(Species~., method="rpart",
# C50
                                                            data=trainData)
trainDataX = trainData[,1:4]
                                                            print(rpart_model$finalModel)
trainDataY = trainData[,5]
model = C5.0( trainDataX, trainDataY )
                                                            library(rattle)
summary( model )
                                                            fancyRpartPlot(rpart_model$finalModel)
                                                            rpart_pred = predict(rpart_model, testData)
                                                            sum(rpart_pred==testDataY) / length(rpart_pred)
```


Cross Validation

■ Model error

$$Err(x) = \left(E[\hat{f}\left(x
ight)] - f(x)\right)^2 + E\Big[\hat{f}\left(x
ight) - E[\hat{f}\left(x
ight)]\Big]^2 + \sigma_e^2$$
 $Err(x) = \mathrm{Bias}^2 + \mathrm{Variance} + \mathrm{Irreducible\ Error}$

- ❖ Bias error : 모델의 예측 값과 실제 값의 차이, bias error가 높다는 것은 모델 성능이 안좋은 것을 의미
- ❖ Variance : 모델이 서로 다른 데이터에 대해 같은 성능을 보장하는가. bias error가 낮은데도 variance가 높다는 것은 training data 에 대해 over-fit되었음을 의미

□ Model error

Prediction Error

Low

Model Complexity

■ Model error

Ensemble learning

□ Bagging(Bootstrap aggregating)

□ Boosting

□ Boosting

□ Random forests

- 1. bootstrap samples
- 2. bootstrap variables
- 3. grow multiple trees and votes

장점 : 정확도

단점: 속도, 해석력, 과적합


```
library(ISLR)
library(ggplot2)
library(caret)
data(Wage);summary(Wage);head(Wage)
split = createDataPartition(y=Wage$wage, p=0.7, list=F)
trainData = Wage[split,]; testData = Wage[-split,]
dim(trainData);dim(testData)
#rpart
rpart_model = train(wage ~ ., method="rpart", data=trainData, verbose=F)
qplot(predict(rpart_model,testData), wage, data=testData)
# boosting
boost model = train(wage ~ ., method="gbm", data=trainData, verbose=F)
qplot(predict(boost_model,testData), wage, data=testData)
# randomforest(bagging)
rf_model = train(wage ~ ., method="rf", data=trainData, verbose=F)
qplot(predict(rf_model,testData), wage, data=testData)
```


Support Vector Machine

☐ SVM

□ SVM


```
library(caret)
#R CMD INSTALL kernlab_0.9-24.zip
x = iris[,1:4]
y = iris[,5]
folds = createMultiFolds(y, k = 10, times = 5)
#Linear SVM
L_model = train(x,y,method="svmLinear",tuneLength=5,
trControl=trainControl(method='repeatedCV',index=folds,classProbs=TRUE))
#Poly SVM
P_model = train(x,y,method="svmPoly",tuneLength=5,
trControl=trainControl(method='repeatedCV',index=folds,classProbs=TRUE))
#Fit a Radial SVM
R_model = train(x,y,method="svmRadial",tuneLength=5,
trControl=trainControl(method='repeatedCV',index=folds,classProbs=TRUE))
```


□ SVM


```
#Compare 3 models
resamps = resamples(list(Linear = L_model, Poly = P_model,
Radial = R_model))
summary(resamps)
bwplot(resamps, metric = "Accuracy")
densityplot(resamps, metric = "Accuracy", auto.key=TRUE)

pred = predict(L_model,x,type='prob')

library(caTools)
colAUC(pred,y,plot=TRUE)
```


Clustering

□ Hierarchical clustering

☐ Hierarchical clustering

- ❖ 클러스터간의 유사도 측정 방법
 - Single Link

가장 가까운 점의 거리 (neighbouring joining)

Complete Link

가장 먼 점의 거리

Median

중앙값 거리 (centroid)

Average Link

모든 점들의 평균 거리

Ward Link

점에서 중심까지의 편차에 대한 제곱을 합한 것

☐ Hierarchical clustering

Similarity measures between clusters : Lance-Williams formula

$$d(i+j,k) = a_i d(i,k) + a_j d(j,k) + b d(i,j) + c |d(i,k) - d(j,k)|$$

Single-link	$a_i = a_j = 0.5$; $b = 0$; $c = -0.5$ $d(i + j, k) = \min\{d(i, k), d(j, k)\}$
Complete-link	$a_i = a_j = 0.5$; $b = 0$; $c = 0.5$ $d(i + j, k) = \max\{d(i, k), d(j, k)\}$
Centroid	$a_i = \frac{n_i}{n_i + n_j}$ $a_j = \frac{n_j}{n_i + n_j}$ $b = -\frac{n_i n_j}{(n_i + n_j)^2}$ $c = 0$ $d(i + j, k) = d(\mu_{i+j}, \mu_k)$
Median	$a_i = a_j = 0.5$; $b = -0.25$; $c = 0$
(Average link)	$a_i = \frac{n_i}{n_i + n_j}$ $a_j = \frac{n_j}{n_i + n_j}$ $b = c = 0$ $d(C_i, C_j) = \frac{1}{n_i n_j} \sum_{\sigma \in C_i, b \in C_j} d(a, b)$
Ward's Method (minimum variance)	$a_i = \frac{n_k + n_i}{n_k + n_i + n_j}$ $a_j = \frac{n_k + n_j}{n_k + n_i + n_j}$ $b = -\frac{n_k}{n_k + n_i + n_j}$ $c = 0$

□ K-means clustering

- ❖ Cluster : C1 ~ Ck
 - 모든 데이터는 적어도 하나의 클러스터에 속한다
 - 하나 이상의 클러스터에 속하는 데이터는 없다
- ❖ WCV(within cluster variation) 이 최소화 되도록 클러스터 조정

$$\underset{C_1,\dots,C_K}{\text{minimize}} \left\{ \sum_{k=1}^K \text{WCV}(C_k) \right\}.$$

❖ K개의 클러스터의 WCV 의 총합이 최소가 되도록 데이터를 K 개의 클러스터로 나눔

$$WCV(C_k) = \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2, \quad \text{minimize}_{C_1,\dots,C_K} \left\{ \sum_{k=1}^K \frac{1}{|C_k|} \sum_{i,i' \in C_k} \sum_{j=1}^p (x_{ij} - x_{i'j})^2 \right\}$$

☐ K-means clustering

