Порождающие модели белковых структур

Роман Сергеевич Клыпа Научный руководитель: к.ф.-м.н. С. В. Грудинин

Кафедра интеллектуальных систем ФПМИ МФТИ Специализация: Интеллектуальный анализ данных Направление: 03.04.01 Прикладные математика и физика

Постановка задачи

Задача генерации трехмерных объектов

Необходимо построить модель G, порождающую объекты согласно $p(\mathcal{M})$, где \mathcal{M} - \mathbb{R}^{3M} .

Уменьшение размерности

Наличие связей в \mathbb{R}^{3M} позволяет уменьшить пространство до $\mathsf{SE}(3)^N$ (N < M), которое можно отождествить с $\mathsf{SO}(3)^N \times \mathbb{R}^{3N}$.

Score Matching

Вместо $p(\mathbf{x})$ моделируется $\nabla_{\mathbf{x}} \log p(\mathbf{x})$:

$$\mathcal{L}(\theta) = \mathbb{E}_{p(\mathbf{x})} \left[\| s_{\theta}(\mathbf{x}) - \nabla_{\mathbf{x}} \log p(\mathbf{x}) \|^{2} \right]. \tag{1}$$

Генерация возможна с помощью алгоритма Ланжевена:

$$\mathbf{x}_{i+1} = \mathbf{x}_i + \epsilon \nabla_{\mathbf{x}} \log p(\mathbf{x}) + \sqrt{2\epsilon} \mathbf{z}_i, \ i = 0, 1, ... K, \ \mathbf{z}_i \sim \mathcal{N}(0, I). \tag{2}$$

Цель исследования

Поставленные цели

- ▶ Предложить прямой и обратный диффузионные процессы для SO(3).
- ▶ Предложить способ обеспечить эквивариантность процессов $(g_1f(g_2) = f(g_1g_2))$.
- Показать преимущества предложенных методов на реальной задаче.

Существующие подходы и их недостатки

- Предложенные ранее методы не гарантируют сходимость прямого процесса к шуму (Yim et al. 2023).
- Предложенные ранее методы являются эмпирическими.

Предлагаемый подход: прямой процесс

Здесь и далее $\mathbf{R} \in SO(3)$, $\log \mathbf{R} = \mathbf{r} \in \mathfrak{so}(3)$, * - композиция элементов $\mathfrak{so}(3)$.

Предложение 1 (Клыпа, 2024)

Прямой процесс на SO(3):

$$\mathbf{R}_{t} = \exp[d(t)\mathbf{r}_{0} * \tilde{\mathbf{r}}(t)], \ \tilde{\mathbf{r}}(t) \sim \mathsf{IGSO}_{3}\left(\mathbf{Id}, \sigma^{2}(t)\right) \tag{3}$$

где d(t) – коэффициент дрифта, d(0)=1, d(1)=0.

Теорема 1 (Клыпа, 2024)

Для прямого процесса 3:

$$p_t(\mathbf{R}_t|\mathbf{R}_0) = \mathsf{IGSO}_3\left(\mathbf{R}_t|\exp[d(t)\mathbf{r}_0], \sigma^2(t)\right),\tag{4}$$

в частности $p_1(\mathbf{R}_1|\mathbf{R}_0) = \mathsf{IGSO}_3(\mathbf{R}_1|\mathbf{Id},\sigma^2(1)).$

Предлагаемый подход: обратный процесс

Предложение 2 (Клыпа, 2024)

Обратный процесс на SO(3), соответствующий 3:

$$\mathbf{R}_{t-dt} = \exp[\mathbf{r}_t * g^2(t)s(\mathbf{r}_t)dt * g(t)\sqrt{dt}\tilde{\mathbf{r}}(t)], \tag{5}$$

где
$$s(\mathbf{r}_t) =
abla_{\mathbf{r}} \log p_t(\mathbf{r}_t | \mathbf{r}_0), \ g(t) = \sqrt{rac{d}{dt} \sigma^2(t)}.$$

Динамика Ланжевена с отжигом.

Эквивариантность и сходимость процессов

При $p(\mathbf{r}|\mathbf{r_0}) = \mathsf{IGSO}_3\left(\mathbf{r}|\mathbf{r_0},\sigma^2\right)$, процесс

$$\mathbf{r}_{i+1} = \mathbf{r}_i * \epsilon \nabla_{\mathbf{r}} \log p(\mathbf{r}_i | \mathbf{r}_0) * \sqrt{2\epsilon} \mathbf{z}_i, \ \mathbf{z}_i \sim \mathsf{IGSO}_3(\mathbf{Id}, \sigma^2)$$
 (6)

сходится к $p(\mathbf{r}|\mathbf{r_0})$ при $i \to \infty$.

Теорема 2 (Клыпа, 2024)

Прямой процесс 3 эквивариантен относительно SO(3):

$$RR_t(R_0) = R_t(RR_0) \ \forall R \in SO(3). \tag{7}$$

Если $s_{\theta}(\mathbf{r}_t)$ инвариантен относительно SO(3), то обратный процесс 5 также эквивариантен:

$$RR_t(R_1) = R_t(RR_1) \ \forall R \in SO(3). \tag{8}$$

Вычислительный эксперимент

Элементы группы SO(3) изображены в трехмерном пространстве при использовании представления векторов Эйлера. Для наглядности полученные распределения были спроецированы на плоскость.

Слева изображено целевое распределение, по центру - результат генерации метода Yim et al. 2023., справа - результат предлагаемого нами метода.

Генерация трехмерных структур РНК

Постановка задачи

Генерация трехмерных структур молекул РНК, при взаимодействии с протеином: $P(geom_{RNA}|geom_{pr}, seq_{pr}, seq_{RNA})$. Предполагается, что $geom_{RNA}, geom_{pr} \in SE(3)^N$.

Архитектура модели MolBindDif. Здесь r_r - количество остатков PHK, r_p - количество остатков белка, а N_r - общее количество атомов в PHK

Результаты MolBindDif

Теорема 3 (Клыпа, 2024)

Архитектура модели MolBindDif эквивариантна относительно SO(3).

Результаты эксперимента

Процесс	↓ rRMSD _{rr} , Å	↓ rRMSD _{rp} , Å	↑ IDDT _{rr}	\uparrow IDDT _{rp}
Yim et al. 2023	10.7 ± 5.5	14.1 ± 7.8	0.17 ± 0.06	0.10 ± 0.05
Klypa, 2024	11.1 ± 5.1	$\textbf{13.4}\pm\textbf{8.2}$	0.15 ± 0.06	0.11 ± 0.05
RoseTTaFoldNA	13.3 ± 6.3	17.6 ± 7.8	0.19 ± 0.10	0.08 ± 0.04

Результаты генерации трехмерных структур PHK. RoseTTAFoldNA не является генеративным процессом.

Выносится на защиту

- 1. Предложен новый порождающий процесс на SO(3).
- 2. Доказана эквивариантность процесса.
- 3. Продемонстрированы его преимущества относительно прошлых работ на синтетических данных.
- 4. Продемонстрирована его сходимость на реальных данных.

Публикации

1. Roman Klypa, Kliment Olechnovič, Ben Shor, Dina Schneidman-Duhovny, Sergei Grudinin. *MolBindDif:* Protein-conditioned RNA structure diffusion

OpenReview preprint, ICML 2024 submission