Niveau 1:

Exercice 2 p 222:

- 2 1. Dans le triangle rectangle ci-dessous, préciser :
 - a. l'hypoténuse;
 - b. le côté opposé à B;
 - c. le côté adjacent à B.
 - 2. Écrire sin B, cos B et tan B en utilisant les longueurs AB, AC et BC.

Exercice 3 p 222 :

Dans le triangle rectangle ci-contre, écrire sinD, cosD et tanD en utilisant les longueurs DE, EF et FD.

Exercice 4 p 222 :

Le triangle GHI est rectangle en G. Écrire sinĤ, cosĤ et tanĤ en utilisant les longueurs GH, HI et IG.

Exercice 50 p 228 :

Le triangle TZW est rectangle en W. Écrire sin 2, cos 2 et tan 2 en fonction de TZ, TW et WZ.

Exercice 51 p 228 :

- [51] ABC est un triangle rectangle en C.
 - 1. Écrire $\sin \hat{A}$, $\cos \hat{A}$ et $\tan \hat{A}$ en fonction des côtés du triangle.
 - 2. Écrire $\sin \hat{B}$, $\cos \hat{B}$ et $\tan \hat{B}$ en fonction des côtés du triangle.
 - 3. Parmi ces six rapports, lesquels sont égaux?

Correction:

Exercice 2 p 222:

- 1. a. L'hypoténuse est [BC]
 - b. Le côté opposé à l'angle \hat{B} est [AC]
 - c. Le côté opposé à l'angle \hat{B} est [AB]

2.
$$\sin \hat{B} = \frac{AC}{BC}$$
 $\cos \hat{B} = \frac{AB}{BC}$ $\tan \hat{B} = \frac{AC}{AB}$

Exercice 3 p 222:

$$\sin \widehat{D} = \frac{EF}{DF} \quad \cos \widehat{D} = \frac{DE}{DF} \quad \tan \widehat{D} = \frac{EF}{DE}$$

Exercice 4 p 222:

$$\sin \widehat{H} = \frac{GI}{IH}$$
 $\cos \widehat{H} = \frac{HG}{IH}$ $\tan \widehat{H} = \frac{GI}{HG}$

Exercice 50 p 228 :

$$\sin \hat{Z} = \frac{TW}{TZ}$$
 $\cos \hat{Z} = \frac{ZW}{TZ}$ $\tan \hat{Z} = \frac{TW}{ZW}$

Exercice 51 p 228 :

1.
$$\sin \hat{A} = \frac{BC}{AB}$$
 $\cos \hat{A} = \frac{AC}{AB}$ $\tan \hat{A} = \frac{BC}{AC}$
2. $\sin \hat{B} = \frac{AC}{AB}$ $\cos \hat{B} = \frac{BC}{AB}$ $\tan \hat{B} = \frac{AC}{BC}$

3. On a $\sin \hat{A} = \cos \hat{B}$ et $\cos \hat{A} = \sin \hat{B}$

Niveau 2:

Exercice 8 p 222 :

- 1. Dans le triangle ABC, rectangle en A, $\sin \hat{B} = 0.7$.
- 2. Dans le triangle DEF, rectangle en F, $\cos \hat{E} = 1,3$.
- 3. Dans le triangle GHI, rectangle en G, tan $\hat{G} = 2.8$.
- **4.** Dans le triangle JKL, rectangle en L, $\sin \hat{J} = 3$.
- 5. Dans le triangle MNO, rectangle en $0, \cos \hat{N} = 0, 9$.
- **6.** Dans le triangle STU, rectangle en T, $\tan \hat{S} = 0.3$.

Correction:

Exercice 8 p 223 :

- 1. Oui
- 2. Non car le cosinus est la division du côté adjacent et de l'hypoténuse. Le résultat est donc forcément plus petit que 1.
- 3. Non car on ne calcule pas la tangente de l'angle droit.
- 4. Non car le sinus est la division du côté opposé et de l'hypoténuse. Le résultat est donc forcément plus petit que 1.
- 5. Oui
- 6. Oui

Niveau 3:

Exercice 11 p 223:

- Le triangle JKL est rectangle en J. Dans ce triangle, on sait que $\sin \hat{K} = \cos \hat{K}$.
 - 1. Que peut-on dire du triangle JKL?
 - 2. Que peut-on en déduire pour les angles \hat{K} et \hat{L} ?

Exercice 13 p 223 :

- 13 1. Calculer $(\sin x)^2 + (\cos x)^2$ pour plusieurs valeurs de x strictement comprises entre 0° et 90° .
 - 2. Quelle conjecture peut-on faire?
 - 3. On considère un triangle ABC rectangle en A.
 - a. Faire un schéma.
 - **b.** Écrire $\sin x$ et $\cos x$ en fonction de AB, AC et BC.
 - c. Exprimer alors $(\sin x)^2 + (\cos x)^2$ en fonction de AB, AC et BC et en déduire une preuve de la conjecture formulée à la question 2.
 - 4. Dans un triangle DEF, rectangle en E, on sait que $\cos \hat{D} = 0.8$. Calculer $\sin \hat{D}$ et $\tan \hat{D}$.

Correction:

Exercice 11 p 223 :

- 1. Si le sinus est égal au cosinus cela signifie que le côté adjacent est égal au côté opposé. Donc c'est un triangle rectangle isocèle.
- 2. Comme c'est un triangle isocèle, les deux angles sont égaux.

Exercice 13 p 223:

- 1. Calculatrice
- 2. On peut conjecturer que pour toutes valeurs de $x (\cos x)^2 + (\sin x)^2 = 1$
- 3. a. Faites un beau triangle

b.
$$\sin x = \frac{AC}{BC}$$
 $\cos x = \frac{AB}{BC}$

c.
$$(\cos x)^2 + (\sin x)^2 = \frac{AC^2}{BC^2} + \frac{AB^2}{BC^2} = \frac{AC^2 + AB^2}{BC^2}$$

On sait que ABC est un triangle rectangle donc le théorème s'applique. On a donc

$$AC^2 + AB^2 = BC^2$$
. Donc $\frac{AC^2 + AB^2}{BC^2} = 1$

4. Appliquer la formule 😉