PSYC 5303: Theories of Learning

Thomas J. Faulkenberry, Ph.D.

Department of Psychological Sciences Tarleton State University

Week 7: Working Memory

Working memory versus STM

Current models focus more on processing (than structures) and include STM in some form (storage and manipulation of information)

► There are multiple models of "working memory" that are designed to account for similar sets of data

Models of WM assume:

- STM is a storage unit and WM is the processes involved in completing a task
- WM requires conciousness includes info we are currently attending to

Classic models of WM

- ▶ Baddeley's multi-component model (Baddeley, 1986, 2000)
- Cowan's activation model (Cowan, 1988, 1995)
- Nairne's feature model (Nairne, 1988, 2001)

Baddeley & Hitch (1974) - multicomponent model of WM

Components:

- Central executive controls focus of attention and division of resources
- Three subsystems under its control
 - Visuo-spatial sketchpad
 - Phonological loop
 - Episodic buffer

Central executive

- ► Thought to be an attentional controller, with two main modes of operation (Norman & Shallice, 1986)
 - ► A semi-automatic conflict-resolution system, based on existing habits and requiring little attention
 - the supervisory attentional system (SAS), based on an attentionally limited executive
- Major functions
 - Direct attention to the task at hand
 - Divide attention between two or more tasks

Visuo-spatial sketchpad

- Stores and manipulates visual and spatial information
- Info enters through perception or internally generated visual images
- Controls tasks like mental rotation and geographical search of a visual or mental image

Visuo-spatial sketchpad – evidence

Baddeley (1992) – found that subjects' memory for chess patterns was more disrupted by a visual distractor task than an auditory one

Shepard & Feng (1972) – imagine folding the shapes below to create a solid, with the shaded area as the base. Will the arrows meet head-on?

 found that the time it takes to answer the question depends on the number of folds required

Phonological loop

- Two parts phonological store (PS) and articulatory control process (ACP)
 - PS: stores auditory info for 1-2 seconds and then it starts to decay
 - ACP: recodes visual info to auditory code for storage and controls rehearsal
- 4 main effects in serial recall task to account for:
 - word length effect
 - phonological similarity effect
 - articulatory suppression effect
 - ▶ irrelevant speech effect

Word-length effect (Baddeley, Thomson, & Buchanan, 1975)

- Recall decreases as the length of time it takes to say a word increases
- Rehearsal takes longer for longer words – can't rehearse as many times

Phonological similarity effect

- Memory worse for items that sound alike versus those that look alike or have similar meanings
- Works same for both auditory and visual presentation of words
 - implies visual items are recoded to auditory for storage and rehearsal by ACP

- List 1 (Easy to remember/dissimilar phonology and semantics):
- PIT, DAY, COW, PEN, HOT
- List 2 (Only slightly harder than List #1/similar semantics):
 - HUGE, WIDE, BIG, LONG, TALL
- List 3 (Much harder than List #1/ similar phonology):
 - CAT, MAP, MAN, CAP, MAD

What happens if you prevent recoding of visual information into auditory information?

Articulatory suppression effect (Peterson & Johnson, 1971)

- engaging in an auditory task during study (saying "the" aloud over and over) removes phonological similarity effect for visual items
- No recoding of visual info by ACP
- Phonological information gets in directly, doesn't need recoding

Irrelevant speech effect

- Background speech presented during study decreases memory for visual items
- Irrelevant speech interferes with recoding of visual info to auditory
- Visual info weak in WM
 - something is likely stored in visuo-spatial sketchpad, but this system is not as efficient as phonological loop

Problems with Baddeley model:

▶ Lovatt et al. (2000) - reverse word-length effect

Word Type	Stimuli	Mean Pronunciation Time	Percent Recalled
Short	bishop, pectin, ember, wicket, wiggle, pewter, tipple, hackle, decor, phallic	530 ms	70.7 %
Long	Friday, coerce, humane, harpoon, nitrate, cyclone, morphine,	693 ms	65.5 %
Short	button, tractor, whistle, spider, pencil, pocket, shovel, candle	605 ms	60.7 %
Long	pebbles, curtains, station, needle, branches, canoes, necklace, robot	793 ms	65.1 %

Problems with Baddeley model:

▶ Lovatt et al. (2000) - reverse word-length effect

Word Type	Stimuli	Mean Pronunciation Time	Percent Recalled
Short	bishop, pectin, ember, wicket, wiggle, pewter, tipple, hackle, decor, phallic	530 ms	70.7 %
Long	Friday, coerce, humane, harpoon, nitrate, cyclone, morphine, pscoon, prodoo, psyche	693 ms	65.5 %
Short	button, tractor, whistle, spider, pencil, pocket, shovel, candle	605 ms	60.7 %
Long	pebbles, curtains, station, needle, branches, canoes, necklace, robot	793 ms	65.1 %

Problems with Baddeley model:

- Lovatt et al. (2000) reverse word-length effect
- Specific mechanisms for phonological loop and VSP not well-specified
- conceptual model versus computational model (good for explaining, not as much for predicting)