KL Divergence Summary

Jonathan Klus

2024-02-12

$$D_{KL}(p||q) = \sum_{x \in \mathcal{X}} p(x) log\left(\frac{p(x)}{q(x)}\right)$$

for densities p and q with support \mathcal{X} , where p is the true density and q is the estimated density.

Well separated case

Simulated data sets

Mixture of 3 multivariate normal densities all with diagonal variance structure and $\sigma^2 = 10$. The true means are (-20, 20), (20, -20), and (0, 0), and $\sum_j n_j = 30$.

Results

Table 1: KL divergence averaged across 10 simulated data sets for the well-separated case with n=30 observations

	DEE	DEV	UVV
no SM with SM	000	$0.074 \\ 0.069$	0.0.0

Close together case

Simulated data sets

Mixture of 3 multivariate normal densities all with diagonal variance structure and $\sigma^2 = 10$. The true means are (10, 10), (0, -5), (12, -2), and (0, 10), and $\sum_j n_j = 50$.

Results

Table 2: KL divergence averaged across 10 simulated data sets for the closer case with n=30 observations

	DEE	DEV	UVV
no SM with SM	000	$0.096 \\ 0.153$	0.200