Quelques interprétations des nombres de Fine

Frédéric ANDRIANARIVONY

Département Mathématiques et informatiques

March 6, 2024

Table des Matières

- Définitions et quelques résultats préliminaire
 - Fraction continues
 - Nombres de Catalan
 - Chemins de Motzkin
 - Chemins de Fine
- 2 Nombres de Fine, relations de similarité et permutation
 - Relations de similarité
 - Autres interprétations des F_n

- Définitions et quelques résultats préliminaire
 - Fraction continues
 - Nombres de Catalan
 - Chemins de Motzkin
 - Chemins de Fine
- Nombres de Fine, relations de similarité et permutation
 - Relations de similarité
 - Autres interprétations des F_n

- 1 Définitions et quelques résultats préliminaire
 - Fraction continues
 - Nombres de Catalan
 - Chemins de Motzkin
 - Chemins de Fine
- 2 Nombres de Fine, relations de similarité et permutation

S-Fraction et J-Fraction

S-Fraction

Une S-fraction est une expression de la forme:

$$S(z) = \frac{1}{1 - \frac{c_1 z}{1 - \frac{c_2 z}{1 - \frac{c_3 z}{\vdots}}}}$$

S-Fraction et J-Fraction

J-Fraction

Une J-fraction est une expression de la forme:

$$J(z) = \frac{1}{1 - c_1 z - \frac{c_1 c_2 z^2}{1 - (c_2 + c_3)z - \frac{c_3 c_4 z^2}{1 - (c_4 + c_5)z - \frac{c_5 c_6 z^2}{\vdots}}}$$

D'après le Lemme 2.11 de [9], on a S(z) = J(z)

- 1 Définitions et quelques résultats préliminaire
 - Fraction continues
 - Nombres de Catalan
 - Chemins de Motzkin
 - Chemins de Fine
- 2 Nombres de Fine, relations de similarité et permutation

Nombres de Catalan

Définition

Le nombre de Catalan d'ordre $n \ge 1$ est défini par

- (i) $C_0 = 1$
- (ii) $\forall n \geq 1, \ C_n = \sum_{i=0}^{n-1} C_i C_{n-i-1}$

Développement en fraction continue de la fgc

On a
$$C(z) = \frac{1}{1 - z - \frac{z^2}{1 - 2z - \frac{z^2}{z^2}}}$$

où
$$C(z) = \sum_{n \geq 0} C_n z^n$$

Nombres de Catalan

Définition

Le nombre de Catalan d'ordre $n \ge 1$ est défini par

(i)
$$C_0 = 1$$

(ii)
$$\forall n \geq 1$$
, $C_n = \sum_{i=0}^{n-1} C_i C_{n-i-1}$

Développement en fraction continue de la fgo

On a
$$C(z) = \frac{1}{1 - z - \frac{z^2}{1 - 2z - \frac{z^2}{z^2}}}$$

où
$$C(z) = \sum_{n\geq 0} C_n z^n$$

- 1 Définitions et quelques résultats préliminaire
 - Fraction continues
 - Nombres de Catalan
 - Chemins de Motzkin
 - Chemins de Fine
- 2 Nombres de Fine, relations de similarité et permutation

Fraction continues Nombres de Catalan Chemins de Motzkin Chemins de Fine

Définition de quelques chemins

Chemins de Motzkin

Les chemins de Motzkin sont les éléments de l'ensemble $\Gamma^0_{n,1}$ qui vérifient, pour tout $c \in \Gamma^0_{n,1}$:

- (i) $\forall i \in [n], |c_1c_2\cdots c_i|_m \geq |c_1c_2\cdots c_i|_d$
- (ii) $|c_1c_2\cdots c_n|_m = |c_1c_2\cdots c_n|_d$

2-Chemins de Motzkin

Un 2-chemin de Motzkin est un chemin de Motzkin caractérisé par deux types de paliers : le palier rouge, noté r, et le palier bleu, noté b. De plus, un chemin $c = c_1 c_2 \cdots c_n$, avec $c_k \in \{m, d, r, b\}$, est considéré comme un 2-chemin de Motzkin s'il ne comporte aucun palier rouge de niveau zéro.

Figure: 2-Chemin de Motzkin

Définition de quelques chemins

Chemins de Motzkin valués

Un 2-chemin de Motzkin valué est un couple (c,p) où $c = c_1c_2\cdots c_n$ et $p = p_1p_2\cdots p_n$ vérifient les conditions suivantes:

- $c \in \Gamma_n$
- $0 \le p_i \le \gamma_{i-1}$, si $c_i = m$ ou $c_i = b$
- $0 \le p_i \le \gamma_{i-1} 1$, si $c_i = d$ ou $c_i = r$

Fraction continues Nombres de Catalan Chemins de Motzkin Chemins de Fine

Quelques résultats sur les chemins

Proposition

La J-fraction des
$$(|\Gamma_n|)$$
 est $\Gamma(z) = \frac{1}{1-z-\frac{z^2}{1-2z-\frac{z^2}{\cdot \cdot \cdot}}}$

où
$$\Gamma(z) = 1 + \sum_{n \geq 1} |\Gamma_n| z^n$$

On a
$$|\Gamma_n| = C_n$$

Fraction continues Nombres de Catalan Chemins de Motzkin Chemins de Fine

Quelques résultats sur les chemins

Proposition

La J-fraction des
$$(|\Gamma_n|)$$
 est $\Gamma(z) = \frac{1}{1-z-\frac{z^2}{1-2z-\frac{z^2}{\cdot \cdot \cdot}}}$

où
$$\Gamma(z) = 1 + \sum_{n \geq 1} |\Gamma_n| z^n$$

On a
$$|\Gamma_n| = C_n$$

Fraction continues Nombres de Catala Chemins de Motzki Chemins de Fine

- 1 Définitions et quelques résultats préliminaire
 - Fraction continues
 - Nombres de Catalan
 - Chemins de Motzkin
 - Chemins de Fine
- 2 Nombres de Fine, relations de similarité et permutation

Premier aperçu sur les nombres de Fine

Définition

Un chemin de Fine est un 2-chemin de Motzkin sans palier bleu de niveau zéro. On note par \mathcal{F}_n l'ensemble de tels chemins

Proposition

On a
$$F(z) = \frac{1}{1 - \frac{z^2}{1 - 2z - \frac{z^2}{\cdot \cdot \cdot}}} = \frac{1}{2 + z} (1 + C(z))$$

où
$$F(z) = \sum_{n \geq 0} F_n z^n$$
 et $F_n = |\mathcal{F}_n|$

Premier aperçu sur les nombres de Fine

Définition

Un chemin de Fine est un 2-chemin de Motzkin sans palier bleu de niveau zéro. On note par \mathcal{F}_n l'ensemble de tels chemins

Proposition

On a
$$F(z) = \frac{1}{1 - \frac{z^2}{1 - 2z - \frac{z^2}{\cdot \cdot \cdot}}} = \frac{1}{2 + z} (1 + C(z))$$

où
$$F(z) = \sum_{n \geq 0} F_n z^n$$
 et $F_n = |\mathcal{F}_n|$

Quelques relations de récurrence

•
$$[z^n]C(z) = C_n = 2F_n + F_{n-1}, (n \ge 1)$$

•
$$[z^n]F(z) = F_n = \frac{1}{2} \sum_{k=0}^{n-2} (-\frac{1}{2})^k C_{n-k}, (n \ge 2)$$

Quelques relations de récurrence

•
$$[z^n]C(z) = C_n = 2F_n + F_{n-1}, (n \ge 1)$$

•
$$[z^n]F(z) = F_n = \frac{1}{2} \sum_{k=0}^{n-2} (-\frac{1}{2})^k C_{n-k}, (n \ge 2)$$

Quelques relations de récurrence

•
$$[z^n]C(z) = C_n = 2F_n + F_{n-1}, (n \ge 1)$$

•
$$[z^n]F(z) = F_n = \frac{1}{2} \sum_{k=0}^{n-2} (-\frac{1}{2})^k C_{n-k}, (n \ge 2)$$

Proposition 1

La transformation $\theta: \mathcal{F}_n \longrightarrow \overline{\mathrm{Dyck}}(n); c \longrightarrow p = p_1 \cdots p_{2n}$ définie comme suit, pour tout $i \in [n]$,

$$p_{2i-1}p_{2i} = \begin{cases} mm & \text{si } c_i = m \\ dd & \text{si } c_i = d \\ md & \text{si } c_i = b \\ dm & \text{si } c_i = r \end{cases}$$

est une application bijective où $\overline{\text{Dyck}}(n)$ l'ensemble des chemins de Dyck qui vérifient la condition si $p_i = m$ et $\gamma_{i-1} = 0$, alors $p_{i+1} = m$.

Proposition 2

On a
$$F_n = \sum_{k=2}^n C_{k-1} F_{n-k}$$

Fraction continues Nombres de Catala Chemins de Motzki Chemins de Fine

Proposition 1

La transformation $\theta: \mathcal{F}_n \longrightarrow \overline{\mathrm{Dyck}}(n); c \longrightarrow p = p_1 \cdots p_{2n}$ définie comme suit, pour tout $i \in [n]$,

$$p_{2i-1}p_{2i} = \begin{cases} mm & \text{si } c_i = m \\ dd & \text{si } c_i = d \\ md & \text{si } c_i = b \\ dm & \text{si } c_i = r \end{cases}$$

est une application bijective où $\overline{\text{Dyck}}(n)$ l'ensemble des chemins de Dyck qui vérifient la condition si $p_i = m$ et $\gamma_{i-1} = 0$, alors $p_{i+1} = m$.

Proposition 2

On a
$$F_n = \sum\limits_{k=2}^n C_{k-1} F_{n-k}$$

- Définitions et quelques résultats préliminaire
 - Fraction continues
 - Nombres de Catalan
 - Chemins de Motzkin
 - Chemins de Fine

- 2 Nombres de Fine, relations de similarité et permutation
 - Relations de similarité
 - Autres interprétations des F_n

- Définitions et quelques résultats préliminaire
- 2 Nombres de Fine, relations de similarité et permutation
 - Relations de similarité
 - Autres interprétations des F_n

Quelques définitions

Définition 1

Une relation de similarité \mathcal{R} sur [n] est une relation binaire, réflexive et symétrique vérifiant la propriété suivante:

$$\forall x, y, z \in [n], ((x < y \le z \text{ et } x\mathcal{R}z) \implies (x\mathcal{R}y \text{ et } y\mathcal{R}z))$$

On note par RS_n l'ensemble de tels relations.

Définition 2

Soit $i \in [n]$. On dit que i est un point isolé de \mathcal{R} si

$$\forall j \in [n], (i\mathcal{R}j \implies i = j)$$

On note par Sim_n l'ensemble des mots $r=r_1r_2\cdots r_n$, avec les $r_i\in\mathbb{N}$, tels que $\forall i\leq n, 0\leq r_i\leq i-1$ et $r_{i+1}\leq r_i+1$ avec la convention $r_{n+1}=0$

Conditions nécessaire et suffisante

Proposition 1

La transformation $\Phi: \mathrm{RS}_n \to \mathrm{Sim}_n$, $\mathcal{R} \to r = r_1 r_2 \cdots r_n$ où, pour $1 \leq i \leq n$, r_i est égale au nombre d'entiers j tels que j < i et $j\mathcal{R}i$, est une application bijective.

De plus, $|\text{Sim}_n(k)| := \{r \in \text{Sim}_n; \#\{i; r_i = r_{i+1} = 0\} = k\} = \#\text{RS}_n(k)$ \mathcal{R}

Proposition 2

Soit la transformation $\varphi: \operatorname{Dyck}(n) \longrightarrow \operatorname{Sim}_n$, $p = p_1 p_2 \cdots p_{2n} \longrightarrow r = r_1 r_2 \cdots r_n$ définie comme suit: Soit $\operatorname{Mont}(p) = \{i_1, i_2, \cdots, i_n\}$ l'ensemble des entiers i tels que $p_i = m$ Alors pour tout $1 \leq j \leq n$, $r_j = \gamma_{i_j-1}$ où γ_{i-1} est le niveau du i-ième pas de p. Alors φ est une application bijective. De plus,

Conditions nécessaire et suffisante

Proposition 1

La transformation $\Phi: \mathrm{RS}_n \to \mathrm{Sim}_n$, $\mathcal{R} \to r = r_1 r_2 \cdots r_n$ où, pour $1 \leq i \leq n$, r_i est égale au nombre d'entiers j tels que j < i et $j\mathcal{R}i$, est une application bijective.

De plus, $|\text{Sim}_n(k)| := \{r \in \text{Sim}_n; \#\{i; r_i = r_{i+1} = 0\} = k\} = \#\text{RS}_n(k)$ \mathcal{R}

Proposition 2

Soit la transformation $\varphi : \operatorname{Dyck}(n) \longrightarrow \operatorname{Sim}_n$,

 $p = p_1 p_2 \cdots p_{2n} \longrightarrow r = r_1 r_2 \cdots r_n$ définie comme suit:

Soit $Mont(p) = \{i_1, i_2, \dots, i_n\}$ l'ensemble des entiers i tels que $p_i = m$.

Alors pour tout $1 \le j \le n$, $r_j = \gamma_{i_j-1}$ où γ_{i-1} est le niveau du i-ième pas de p. Alors φ est une application bijective.

De plus,

$$|\mathrm{Sim}_n(k)| = \#\{p \in \mathrm{Dyck}(n); |\{i \in \mathrm{Mont}(p); \gamma_{i-1} = 0 \text{ et } p_{i+1} = d\}| = k\}$$

Les relations de similarité non-singulière

On en déduit les résultats suivants en utilisant les deux bijections précédentes et la bijection θ sur les chemins de Fine:

- $\underbrace{\{p \in \text{Dyck}(n); |\{i \in \text{Mont}(p); \gamma_{i-1} = 0 \text{ et } p_{i+1} = d\}| = 0\}}_{\text{Dyck}(n)}$
- $|RS_n(0)| = F_n$ où F_n est la cardinalité de $|\mathcal{F}_n|$

- Définitions et quelques résultats préliminaire
- 2 Nombres de Fine, relations de similarité et permutation
 - Relations de similarité
 - Autres interprétations des F_n

Les permutations évitant le motif 123

Proposition 1

Soit Θ la transformation $S_n(123) \longrightarrow \operatorname{Dyck}(n), \pi \longrightarrow p$ définie par: soit $w_1u_1w_2u_2\cdots w_su_s$ la ssd-décomposition de π et on définit $\Theta(\pi) := p = m_1d_1m_2d_2\cdots m_sd_s$ où m_i (resp d_i) est un mot formé par la seule lettre m (resp d) tel que $|m_i| = |w_i| + 1$ et $|d_i| = u_i - u_{i+1}$ avec la convention $u_{s+1} = 0$.

Alors Θ est bijective.

De plus,
$$\#D(\pi) = \#\{i \in \text{Mont}(p); \gamma_{i-1} = 0, p_{i+1} = d\}$$
 où $D(\pi) := \{i; \pi_{n-i+1} = i\}$

Corollaire 1

On a
$$\forall n \geq 0, s_n^k(321) = \# RS_n(k)$$

On a
$$F_n = s_n^0(321)$$
.

Les permutations évitant le motif 123

Proposition 1

Soit Θ la transformation $S_n(123) \longrightarrow \operatorname{Dyck}(n)$, $\pi \longrightarrow p$ définie par: soit $w_1u_1w_2u_2\cdots w_su_s$ la ssd-décomposition de π et on définit $\Theta(\pi) := p = m_1d_1m_2d_2\cdots m_sd_s$ où m_i (resp d_i) est un mot formé par la seule lettre m (resp d) tel que $|m_i| = |w_i| + 1$ et $|d_i| = u_i - u_{i+1}$ avec la convention $u_{s+1} = 0$.

Alors Θ est bijective.

De plus,
$$\#D(\pi) = \#\{i \in \text{Mont}(p); \gamma_{i-1} = 0, p_{i+1} = d\}$$
 où $D(\pi) := \{i; \pi_{n-i+1} = i\}$

Corollaire 1

On a
$$\forall n \geq 0, s_n^k(321) = \# RS_n(k)$$

On a
$$F_n = s_n^0(321)$$
.

Les permutations évitant le motif 123

Proposition 1

Soit Θ la transformation $S_n(123) \longrightarrow \operatorname{Dyck}(n), \pi \longrightarrow p$ définie par: soit $w_1u_1w_2u_2\cdots w_su_s$ la ssd-décomposition de π et on définit $\Theta(\pi) := p = m_1d_1m_2d_2\cdots m_sd_s$ où m_i (resp d_i) est un mot formé par la seule lettre m (resp d) tel que $|m_i| = |w_i| + 1$ et $|d_i| = u_i - u_{i+1}$ avec la convention $u_{s+1} = 0$.

Alors Θ est bijective.

De plus,
$$\#D(\pi) = \#\{i \in \text{Mont}(p); \gamma_{i-1} = 0, p_{i+1} = d\}$$
 où $D(\pi) := \{i; \pi_{n-i+1} = i\}$

Corollaire 1

On a
$$\forall n \geq 0, s_n^k(321) = \# RS_n(k)$$

On a
$$F_n = s_n^0(321)$$
.

Interprétations combinatoire des F_n

Proposition 1

Pour tout $\mu \in \{123, 132\}$, on a $F_{2n} = \#\{\sigma \in S_{2n}(\mu); \sigma(1) \text{ impair }\}$ et $F_{2n+1} = \#\{\sigma \in S_{2n+1}(\mu); \sigma(1) \text{ pair }\}$

Proposition 2

Pour tout $n\geq 1$, on a $F_n=\#\{\pi\in S_n(\mu);\operatorname{Fix}(\pi)\bigcap [n-1]
eq\emptyset\}$

Interprétations combinatoire des F_n

Proposition 1

Pour tout $\mu \in \{123, 132\}$, on a $F_{2n} = \#\{\sigma \in S_{2n}(\mu); \sigma(1) \text{ impair }\}$ et $F_{2n+1} = \#\{\sigma \in S_{2n+1}(\mu); \sigma(1) \text{ pair }\}$

Proposition 2

Pour tout $n \ge 1$, on a $F_n = \#\{\pi \in S_n(\mu); \operatorname{Fix}(\pi) \cap [n-1] \ne \emptyset\}$

Autres interprétations des F_n

Mots de Catalan

Définition

A un décalage d'indice, un chemin de Dyck de longueur 2n est représenté par un mot $c_1c_2\cdots c_n$ tel que $1\leq c_1\leq c_2\leq \cdots \leq c_n$ où $c_i\leq i$ pour tout i. Un tel mot est appelé mot de Catalan de longueur n. On note par $\mathsf{Cat}(n)$ l'ensemble des mots de Catalan de longueur n.

(a) Chemin de Dyck

(b) Transformé du chemin de Dyck

Figure: Nouveau chemin de Dyck

On pose
$$A_n(x) = \sum_{\pi \in S_n(321)} x^{fix(\pi)}$$

•
$$A_n(x) = \sum_{c \in Cat(n)} x^{\#D(c)}$$
 où $D(c) = \{i; c_i = i \text{ et } c_{i+1} = i+1\}$

•
$$s_n^k(321) = \#\{c \in Cat(n); |D(c)| = k\}$$

•
$$1 + \sum_{n \ge 1} A_n(x) z^n = \frac{1 - x + C(z)}{2 - x + z(x - 1)^2}$$

•
$$A_n(x) = (x-1)A_{n-1}(x) + \sum_{i=1}^n C_{i-1}A_{n-i}(x)n$$

•
$$A_n(x) = (x-1)^n + \sum_{i=0}^{n-1} (x-1)^i \sum_{i=1}^{n-i} C_{j-1} A_{n-i-j}(x) = \sum_{k=0}^n b(n,k) (x-1)^k$$

•
$$[x^k]A_n(x) = \sum_{i=k}^n {k \choose j} b(n,k) (-1)^{j-k}$$

•
$$\forall n \geq 1$$
 et $\forall k \leq n, b(n, k) = b(m, k + 1) + b(n - 1, k - 1)$

On pose
$$A_n(x) = \sum_{\pi \in S_n(321)} x^{fix(\pi)}$$

•
$$A_n(x) = \sum_{c \in Cat(n)} x^{\#D(c)}$$
 où $D(c) = \{i; c_i = i \text{ et } c_{i+1} = i+1\}$

•
$$s_n^k(321) = \#\{c \in Cat(n); |D(c)| = k\}$$

•
$$1 + \sum_{n \ge 1} A_n(x) z^n = \frac{1 - x + C(z)}{2 - x + z(x - 1)^2}$$

•
$$A_n(x) = (x-1)A_{n-1}(x) + \sum_{i=1}^n C_{i-1}A_{n-i}(x)$$
n

•
$$A_n(x) = (x-1)^n + \sum_{i=0}^{n-1} (x-1)^i \sum_{i=1}^{n-i} C_{j-1} A_{n-i-j}(x) = \sum_{k=0}^n b(n,k) (x-1)^k$$

•
$$[x^k]A_n(x) = \sum_{j=k}^n {k \choose j} b(n,k) (-1)^{j-k}$$

•
$$\forall n \ge 1$$
 et $\forall k \le n, b(n, k) = b(m, k + 1) + b(n - 1, k - 1)$

On pose
$$A_n(x) = \sum_{\pi \in S_n(321)} x^{fix(\pi)}$$

•
$$A_n(x) = \sum_{c \in Cat(n)} x^{\#D(c)}$$
 où $D(c) = \{i; c_i = i \text{ et } c_{i+1} = i+1\}$

•
$$s_n^k(321) = \#\{c \in Cat(n); |D(c)| = k\}$$

•
$$1 + \sum_{n \ge 1} A_n(x) z^n = \frac{1 - x + C(z)}{2 - x + z(x - 1)^2}$$

•
$$A_n(x) = (x-1)A_{n-1}(x) + \sum_{i=1}^n C_{i-1}A_{n-i}(x)n$$

•
$$A_n(x) = (x-1)^n + \sum_{i=0}^{n-1} (x-1)^i \sum_{i=1}^{n-i} C_{j-1} A_{n-i-j}(x) = \sum_{k=0}^n b(n,k) (x-1)^k$$

•
$$[x^k]A_n(x) = \sum_{j=k}^n {k \choose j} b(n,k) (-1)^{j-k}$$

•
$$\forall n \ge 1$$
 et $\forall k \le n, b(n, k) = b(m, k + 1) + b(n - 1, k - 1)$

On pose
$$A_n(x) = \sum_{\pi \in S_n(321)} x^{fix(\pi)}$$

•
$$A_n(x) = \sum_{c \in Cat(n)} x^{\#D(c)}$$
 où $D(c) = \{i; c_i = i \text{ et } c_{i+1} = i+1\}$

•
$$s_n^k(321) = \#\{c \in Cat(n); |D(c)| = k\}$$

•
$$1 + \sum_{n \ge 1} A_n(x) z^n = \frac{1 - x + C(z)}{2 - x + z(x - 1)^2}$$

•
$$A_n(x) = (x-1)A_{n-1}(x) + \sum_{i=1}^n C_{i-1}A_{n-i}(x)$$
n

•
$$A_n(x) = (x-1)^n + \sum_{i=0}^{n-1} (x-1)^i \sum_{i=1}^{n-i} C_{j-1} A_{n-i-j}(x) = \sum_{k=0}^n b(n,k) (x-1)^k$$

•
$$[x^k]A_n(x) = \sum_{j=k}^n {k \choose j} b(n,k) (-1)^{j-k}$$

•
$$\forall n \ge 1$$
 et $\forall k \le n, b(n, k) = b(m, k + 1) + b(n - 1, k - 1)$

On pose
$$A_n(x) = \sum_{\pi \in S_n(321)} x^{fix(\pi)}$$

•
$$A_n(x) = \sum_{c \in Cat(n)} x^{\#D(c)}$$
 où $D(c) = \{i; c_i = i \text{ et } c_{i+1} = i+1\}$

•
$$s_n^k(321) = \#\{c \in Cat(n); |D(c)| = k\}$$

•
$$1 + \sum_{n \ge 1} A_n(x) z^n = \frac{1 - x + C(z)}{2 - x + z(x - 1)^2}$$

•
$$A_n(x) = (x-1)A_{n-1}(x) + \sum_{i=1}^n C_{i-1}A_{n-i}(x)$$
n

•
$$A_n(x) = (x-1)^n + \sum_{i=0}^{n-1} (x-1)^i \sum_{i=1}^{n-i} C_{j-1} A_{n-i-j}(x) = \sum_{k=0}^n b(n,k) (x-1)^k$$

•
$$[x^k]A_n(x) = \sum_{j=k}^n {k \choose j} b(n,k) (-1)^{j-k}$$

•
$$\forall n \geq 1$$
 et $\forall k \leq n, b(n, k) = b(m, k + 1) + b(n - 1, k - 1)$

On pose
$$A_n(x) = \sum_{\pi \in S_n(321)} x^{fix(\pi)}$$

•
$$A_n(x) = \sum_{c \in Cat(n)} x^{\#D(c)}$$
 où $D(c) = \{i; c_i = i \text{ et } c_{i+1} = i+1\}$

•
$$s_n^k(321) = \#\{c \in Cat(n); |D(c)| = k\}$$

•
$$1 + \sum_{n \ge 1} A_n(x) z^n = \frac{1 - x + C(z)}{2 - x + z(x - 1)^2}$$

•
$$A_n(x) = (x-1)A_{n-1}(x) + \sum_{i=1}^n C_{i-1}A_{n-i}(x)$$
n

•
$$A_n(x) = (x-1)^n + \sum_{i=0}^{n-1} (x-1)^i \sum_{i=1}^{n-i} C_{j-1} A_{n-i-j}(x) = \sum_{k=0}^n b(n,k) (x-1)^k$$

•
$$[x^k]A_n(x) = \sum_{j=k}^n {k \choose j} b(n,k) (-1)^{j-k}$$

•
$$\forall n \geq 1$$
 et $\forall k \leq n, b(n, k) = b(m, k + 1) + b(n - 1, k - 1)$

On pose
$$A_n(x) = \sum_{\pi \in S_n(321)} x^{fix(\pi)}$$

•
$$A_n(x) = \sum_{c \in Cat(n)} x^{\#D(c)}$$
 où $D(c) = \{i; c_i = i \text{ et } c_{i+1} = i+1\}$

•
$$s_n^k(321) = \#\{c \in Cat(n); |D(c)| = k\}$$

•
$$1 + \sum_{n \ge 1} A_n(x) z^n = \frac{1 - x + C(z)}{2 - x + z(x - 1)^2}$$

•
$$A_n(x) = (x-1)A_{n-1}(x) + \sum_{i=1}^n C_{i-1}A_{n-i}(x)$$
n

•
$$A_n(x) = (x-1)^n + \sum_{i=0}^{n-1} (x-1)^i \sum_{i=1}^{n-i} C_{j-1} A_{n-i-j}(x) = \sum_{k=0}^n b(n,k)(x-1)^k$$

•
$$[x^k]A_n(x) = \sum_{i=k}^n {k \choose j} b(n,k) (-1)^{j-k}$$

•
$$\forall n \geq 1$$
 et $\forall k \leq n, b(n, k) = b(m, k + 1) + b(n - 1, k - 1)$

Définition

Le triangle de Catalan est défini comme suit:

$$\begin{cases} c_{n,0} &= 1, \forall n \geq 0 \\ c_{n,k} &= 0, \text{ si } n < k \text{ ou } n < 0 \text{ ou } k < 0 \\ c_{n,k} &= c_{n-1,k} + c_{n,k-1}, \forall k, n \geq 1 \end{cases}$$

Lemme

Soit $s_{n,k}(p)$ le nombre de permutations σ dans $S_n(p)$ vérifiant $\sigma(1)=k$. On a pour tout $n,k\geq 1$,

$$s_{n,k}(123) = s_{n,k}(132) = s_{n,n-k+1}(321) = c_{n-1,k-1}(0)$$

Définition

Le triangle de Catalan est défini comme suit:

$$\begin{cases} c_{n,0} &= 1, \forall n \geq 0 \\ c_{n,k} &= 0, \text{ si } n < k \text{ ou } n < 0 \text{ ou } k < 0 \\ c_{n,k} &= c_{n-1,k} + c_{n,k-1}, \forall k, n \geq 1 \end{cases}$$

Lemme

Soit $s_{n,k}(p)$ le nombre de permutations σ dans $S_n(p)$ vérifiant $\sigma(1)=k$. On a pour tout $n,k\geq 1$,

$$s_{n,k}(123) = s_{n,k}(132) = s_{n,n-k+1}(321) = c_{n-1,k-1}$$

(Voir [6])

A partir des deux tableaux suivants, on déduit les deux propositions ci-après.

Le tableau (b(n, k)) est

et le tableau $(c_{n,k})$ est

Proposition 1

$$\forall n \geq k, b(n,k) = c_{n,n-k}$$

Proposition 2

On a
$$F_n = \sum\limits_{k=0}^{\lfloor rac{n}{2}
floor} c_{n-1,n-2k}$$

Proposition 1

$$\forall n \geq k, b(n, k) = c_{n,n-k}$$

Proposition 2

On a
$$F_n = \sum_{k=0}^{\lfloor \frac{n}{2} \rfloor} c_{n-1,n-2k}$$

On conclut que $F_{2n} = \#\{\sigma \in S_{2n}(\mu); \sigma(1) \text{ impair }\}$ et $F_{2n+1} = \#\{\sigma \in S_{2n+1}(\mu); \sigma(1) \text{ pair }\}$ pour $\mu = 321$.

On note $\mathcal{E}_{n,r}$ l'ensemble des bijections π de [n] vers $\{r+1,\cdots,r+n\}$ telles que $\operatorname{st}(\pi) \in S_n(132)$ et considérons la fonction génératrice $E_{n,r}(x) = \sum_{\pi \in \mathcal{E}_{n,r}} x^{\operatorname{fix}(\pi)}$ où l'on convient $E_{0,r}(x) = 1$

Proposition

On a
$$E_{n,r}(x) = A_n(x) + (1-x) \sum_{i=0}^r C_{i-1} A_{n-i}(x)$$

Corollaire

On a
$$A_n(x) = \sum_{\pi \in S_n(132)} x^{fix(\pi)}$$

On conclut que $F_{2n} = \#\{\sigma \in S_{2n}(\mu); \sigma(1) \text{ impair }\}$ et $F_{2n+1} = \#\{\sigma \in S_{2n+1}(\mu); \sigma(1) \text{ pair }\}$ pour $\mu = 321$.

On note $\mathcal{E}_{n,r}$ l'ensemble des bijections π de [n] vers $\{r+1,\cdots,r+n\}$ telles que $\operatorname{st}(\pi) \in S_n(132)$ et considérons la fonction génératrice $E_{n,r}(x) = \sum_{\pi \in \mathcal{E}_{n,r}} x^{\operatorname{fix}(\pi)}$ où l'on convient $E_{0,r}(x) = 1$

Proposition

On a
$$E_{n,r}(x) = A_n(x) + (1-x) \sum_{i=0}^{r} C_{i-1} A_{n-i}(x)$$

Corollaire

On a
$$A_n(x) = \sum_{\pi \in S_n(132)} x^{fix(\pi)}$$

Frédéric

Nombres de Fine

C. Krattenthaler, Advances in Applied Mathematics 27, Permutations with Restricted Patterns and Dyck Paths

Rodica Simion and Frank W. Schmidt, *Restricted Permutations*, Europ.I. Combinatorics (1985) 6, 383-406

Emeric Deutsch, Louis Shapiro *A survey of the Fine numbers*, Discrete Mathematics, pp 241-265, 2001

- J. Françon, G. Viennot *Permutations selon leurs pics, creux, doubles montées et double descentes, nombres d'Euler et nombres de Genocchi*, Discrete Mathematics, pp 21-35, 1979
- Shushuo Fu, Dazhao Tang, Bin Han, and Jiang Zeng (q, t)-Catalan Numbers, Discrete Mathematics, pp 9, 2018
- Sergi Elzalde Fixed Points and Excedances in Restricted Permutations, Dartmouth College, pp 6, 2012
- T. Fine. Extrapolation when very little is known about the source, Inform and Control 331 359