Roll No.

Total No. of Questions: 5] [Total No. of Printed Pages: 4

EH-245

tay Expanding (1 + 2 m macmillag powers of a material

B.E. IInd Semester (CGPA) Inform. Tech.

Examination, 2019

Mathematics

Paper - IT - 201

Time: 3 Hours [Maximum Marks: 60

Note: - Attempt all five questions. Each question has an internal choice.

1. (a) Using Lagrange's mean value theorem, prove that

$$\frac{b-a}{b} < \log\left(\frac{b}{a}\right) < \frac{b-a}{a}$$

where 0 < a < b

EH-245

(1)

P.T.O.

UITians

(b) Expand $\log x$ in power of (x-1) by Taylor's theorem and hence find the value of $\log_e 1.1$.

OR

- (a) Expand $\log (1 + e^x)$ in ascending powers of x as for as the term containing x^4 .
- (b) The power dissipated in a resistor is given by $p = E^2/R$. Find by using calculus the approximate percentage change in P when E is increased by 3% and R is decreased by 2%.
- 2. (a) Find the radius of curvature to the cycloid $x = a(\theta + \sin \theta)$ $y = a(1 - \cos \theta)$ at the point θ .
 - (b) Find the centre of curvature of the curve $x^3 + xy^2 - 6y^2 = 0$ at (3, 3)

OR

- (a) Find all the asymptotes of the curve $x^3 + 3x^2y 4y^3 x + y + 3 = 0$
- (b) Find the envelope of the family of straight lines given by the normal equation:

 $x \cos c + y \sin c = p$

EH-245

(2)

- 3. (a) The tangents are drawn from the origin to the curve $y = \sin x$. Prove that their points of contact lie on $x^2y^2 = x^2-y^2$.
 - (b) If $u = \tan^{-1} \frac{x^3 + y^3}{x y}$, prove that $x^2 \frac{\partial^2 h}{\partial x^2} + y^2 \frac{\partial^2 h}{\partial x y^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} = \sin hx \sin 2u$

OR

(a) If $u = \log (x^3 + y^3 + z^3 - 3xyz)$, show that

$$\left(\frac{\partial}{\partial x} + \frac{\partial}{\partial y} + \frac{\partial}{\partial z}\right)^2 u = \frac{9}{(x+y+z)^2}$$

- (b) Discuss the maxima and minima of $f(x,y)=x^3y^2(1-x-y)$
- 4. (a) Find the limit when $n \to \infty$ of the series:

$$\frac{n}{n^2} + \frac{n}{n^2 + 1^2} + \frac{n}{n^2 + 2^2} + \dots + \frac{n}{n^2 + (n-1)^2}$$

(b) Prove that
$$\int_0^{\pi} \frac{x \, dx}{a^2 \cos^2 x + b^2 \sin^2 x} = \frac{\pi^2}{2ab}$$

OR

(a) Evaluate $\int_a^b \sin x \, dx$, $0 \le a$, $b \le \pi/2$ as the limit of a sum.

EH-245

(3)

P.T.O.

(b) Evaluate

$$\lim_{n \to \infty} \left\{ \left(1 + \frac{1}{n} \right) \left(1 + \frac{2}{n} \right) \left(1 + \frac{3}{n} \right) \dots \left(1 + \frac{n}{n} \right) \right\}^{\frac{1}{n}}$$

- 5. (a) Find the area enclosed by the curve $y^2(a-x)=x^3$ and its asymptotes.
 - (b) Find the perimeter of the cardioid $r = a(1 \cos \theta)$.

OR

- (a) Show that the volume of the solid generated by the revolution of the curve $(a-x)y^2 = a^2x$, about its asymptote is $\pi^2 a^3/2$.
- (b) Find the common area to the circles $r = a\sqrt{2}$ and r = 2a cos θ .

 $\frac{1}{(1-\alpha)^2+1^2} + \frac{1}{(1+2)^2+1^2} + \frac{1}$

+++

France vinx dv, 0 s a, b & m/2 as the limit of a

EH-245

(4)

Copies 100

UITians