CS 66 Final Project: Dataset Size vs Testing Accuracy

Luke Pietrantonio

Question

- 1. How does dataset size affect testing accuracies?
 - a. How does this change from model to model?
 - i. Standard Linear Regression
 - ii. Random Forest Linear Regression
 - iii. Logistic Regression

Question cont.

Why is this important?

Can you achieve near perfect accuracies by increasing dataset size?

Hypothesis

- As dataset size increases, so will model accuracy/score.
- But eventually plateau

Hypothesised Behavior: %Of Dataset vs Accuracy

Accuracy

%Of Dataset

Dataset

- Bike Sharing Dataset
 - Hadi Fanaee T of The Laboratory of Artificial Intelligence and Decision Support
 - Collected From Capital Bikeshare in Washington D.C.
 - January 1st, 2011 to December 31st 2012
 - o 17,379 unique entries
 - 14 Features

(Capital Bikeshare)

Dataset cont.

capital bikeshare

(Capital Bikeshare)

(Dreamstime)

Methods

SkLearn

Linear Regression

Random Forest Regression

Logistic Regression

Methods cont.

Data Prep for Both

Choose best features/remove repetitive features

Split up data into Divisions

Data Prep for Linear Regression

No Additional Prep

Data Prep for Logistic Regression

Outputs: Continuous → Categorical

(Shutterstock)

Results: Linear Regression

100 Divisions

250 Divisions

500 Divisions

Results: Random Forests

25 Divisions 50 Divisions

Results: Random Forests cont.

75 Divisions

Results: Logistic Regression

100 Divisions

250 Divisions

500 Divisions

Feature Analysis: Linear Regression

100 Divisions

500 Divisions

Feature Analysis: Random Forests

Feature Analysis: Random Forests

Feature Analysis: Logistic Regression

100 Divisions

250 Divisions

500 Divisions

Summary

- Best:
 - o Random Forests and Logistic Regression
- Worst:
 - Linear Regression
- All exhibited expected behavior
- All of the models showed Hours as the most important feature

Conclusion and Future Work

- Confirmed hypothesis
- What about perfect accuracy??

Future:

- Larger Datasets
- Neural Networks
- Harder Regression/Classification Problems

(Discovery Communications LLC)

Thank You