Problem Set 10

Aaron Wang

April 22 2024

- 1. Construct—with proof—the explicit functions requested below.
 - (a) A bijection from $\{x \in \mathbb{R} | -1 < x < 1\}$ to $\{x \in \mathbb{R} | -\pi < x < \pi\}$.

Proof. Let $A := \{x \in \mathbb{R} | -1 < x < 1\}$ and let $B := \{x \in \mathbb{R} | -\pi < x < \pi\}$. Let $f : A \to B$ where $f(a) = \pi \cdot a$.

- Injective Let $a_1, a_2 \in A$ and assume $f(a_1) = f(a_2)$. By definition of f, we get $\pi \cdot a_1 = \pi \cdot a_2$. Since $\pi \neq 0$, we know by multiplicative cancellation $a_1 = a_2$. Thus, f is injective.
- Surjective Let $b \in B$. Let $x := \frac{b}{\pi}$. Observe that x > -1 because $b > -\pi \implies \frac{b}{-\pi} > \frac{-\pi}{\pi} = -1$. Similarly, observe that x < 1 because $b < \pi \implies \frac{b}{\pi} < \frac{\pi}{\pi} = 1$. Since $x \in \mathbb{R} \land -1 < x < 1$, $x \in A$ so f(x) = b. Therefore, f is surjective.

As f is surjective and injective, it is bijective.

Q.E.D.

(b) A surjection from \mathbb{N} to $\{p|p \text{ is prime}\}.$

Proof. Let $P := \{p | p \text{ is prime}\}$. Let $f : \mathbb{N} \to P$ where

$$f(n) = \begin{cases} n & \text{when } n \text{ is prime} \\ 2 & \text{otherwise} \end{cases}$$

Let $p \in P$. Let x = p. Observe that $x \in \mathbb{N}$ and x is prime so f(x) = p. Thus, f is a surjection. Q.E.D.

(c) An injection from X to $\mathbb{P}(X)$ for every set X.

Proof. Let X be an arbitrary set. Let $f: X \to \mathbb{P}(X)$ where $f(x) = \{x\}$. Let $x_1, x_2 \in X$ and assume $f(x_1) = f(x_2)$. Thus, we know that $\{x_1\} = \{x_2\}$. By extensionality, we know that $x_1 \in \{x_1\} \iff x_1 \in \{x_2\}$. Since x_2 is the only element in $\{x_2\}$, we know $x_1 = x_2$. Thus, f is injective. Q.E.D.

(d) A surjection from $\mathbb{P}(X)$ to X for every set $X \neq \emptyset$.

Proof. Let X be an arbitrary set and let $x_0 \in X$. Let $f : \mathbb{P}(X) \to X$ where

$$f(y) = \begin{cases} \bigcup y & \text{if } |y| = 1\\ x_0 & \text{otherwise} \end{cases}$$

Let $x \in X$. Let $y = \{x\}$. Observe that $y \subseteq X$ and |y| = 1 so $f(y) = \bigcup y = x$. Thus, f is surjective. Q.E.D.

2. Let A be an arbitrary finite set of cardinality |A| = n, where $n \in \mathbb{N}$. How many finite strings over A are there?

Proof. Let $k \in \mathbb{N}$ and let $s: k \to A$. Observe that there are $k^{|A|}$ distinct strings s. Let $S_k := \{s | s: k \to A\}$ so as shown above $|S_k| = k^{|A|}$. Also let $S := \{S_k | k \in \mathbb{N}\}$. By theorem 8.8, since $|S| \le |\mathbb{N}|$ and $(\forall k \in \mathbb{N})(|S_k| \le |\mathbb{N}|)$, we know that $|\cup S| \le |\mathbb{N}|$.

Towards a contradiction, assume that $|\cup S| = n$ for some $n \in \mathbb{N}$. So there must be $f: n \to \cup S$ such that f is surjective. Let $a \in A$ and let $h := f(0) + f(1) + \dots + f(n-1) + a$. Observe $|h| = \left(\sum_{i=0}^{n-1} |f(i)|\right) + 1$. Thus we know that $(\forall k \in n)(|f(k)| \le \sum_{i=0}^{n-1} |f(i)| < \left(\sum_{i=0}^{n-1} |f(i)|\right) + 1 = |h|$. Since $(\forall k \in n)(|f(k)| < |h|)$ we know that $(\forall k \in n)(f(k) \ne h)$. Thus we have achieved a contradiction as h is a finite string over A (aka $h \in \cup S$) and f does not map to h so f can not be surjective.

Consequently, $\cup S \neq n$ for any $n \in \mathbb{N}$ so $|\cup S| \geq |\mathbb{N}|$.

From $|\cup S| \leq |\mathbb{N}|$ and $|\cup S| \geq |\mathbb{N}|$, we know $|\cup S| = |\mathbb{N}| = \aleph_0$.

There are \aleph_0 many finite strings over A.

Q.E.D.

3. The Library

Proof. Let S := the set of all books in the library. Let $\beta :=$ the set of all sentences. Observe that there are a countable infinite amount of sentences so $|\beta| = |\mathbb{N}|$. Also observe that since β is numbered, we can use \mathbb{N} to represent the sentences in β . Now, let $i : \mathbb{N} \to \mathbb{N}$ (a string of infinite length over alphabet \mathbb{N} which represents the sentences in β) represent a book of infinite length. Let $I := \{i|i : \mathbb{N} \to \mathbb{N}\}$ (the set of all infinite books).

Towards a contradiction, assume that $|\mathbb{N}| \geq |I|$. This means that there exists an $f : \mathbb{N} \to I$ where f is surjective. Let us define $g : \mathbb{N} \to \mathbb{N}$ where:

$$g(i) = \begin{cases} 1 & f(i)(i) \neq 1 \\ 2 & f(i)(i) = 1 \end{cases}$$

Notice that since f is surjective so for some value $t \in \mathbb{N}$, f(t) = g. As such, $(\forall i \in \mathbb{N})(f(t)(i) = g(i))$ so f(t)(t) = g(t). Note that there are two cases: f(t)(t) = 1 or $f(t)(t) \neq 1$

f(t)(t) = 1 implies that $g(t) = 2 \neq 1$ so $f(t)(t) \neq g(t) \notin$.

 $f(t)(t) \neq 1$ implies that g(t) = 1 so $f(t)(t) \neq g(t) \notin$.

In both cases, we achieve a contradiction and since f was arbitrary, we know that there are no injective functions from $\mathbb{N} \to I$. As such, $|\mathbb{N}| < |I|$. Notice that $I \subseteq S$. Consequently, $|\mathbb{N}| < |S|$ as well so we know that S is uncountable. Therefore, as there are an uncountable amount of books, I will not be set free. Q.E.D.