Machine Learning for Networking ML4N

Luca Vassio
Gabriele Ciravegna
Zhihao Wang
Tailai Song

Supervised learning

Data points characterized by features and labels

$$\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)}) \}.$$

- Predict the label y of a data point from its features x
- Learn a hypothesis within a **model** $h \in \mathcal{H}$ $h: \mathcal{X} \to \mathcal{Y}$ such that $h(\mathbf{x}) \approx y$
- Loss function: how to quantify/weight prediction error between y and h(x)

Artificial Neural Networks

Learning goals

- Model of Artificial Neural Networks (NN)
- Algorithm for ERM on NN
- Gradient descent for NN
- Activation functions and loss functions for NN
- Neural networks in Python
- More complex NN (Convolutional NN, Recurrent NN, Autoencoder, Word2Vec,...)

Artificial neural networks

- Artificial neural networks (ANN or NN) are just another model for supervised ML
- Find an hypothesis map h out of a hypothesis space H that minimizes a loss over a training set (ERM)
- H is the space of neural network hypotheses
- The hypothesis space (might) include highly non-linear functions

Biological neural networks

- Artificial neural networks inspired by biological neural networks
- Structure of the brain
 - Neurons as elaboration units
 - Synapses as connection network

Structure of an artificial neuron

Structure of an artificial neuron

Often another weight not multiplied by the input vector is added: offset or bias

8

Equivalently, we can add a new input (x_4 in the example) and define its value to be fixed to 1

Structure of an artificial neuron

NN – stacked elementary units

NN – stacked elementary units

These are called **feed-forward neural networks** or **multilayer perceptron**

Model (signal-flow chart graphical representation)

Hyper-parameters of a NN

- What defines the model:
 - Number of layers
 - Number of neurons for each layer
 - Activation functions for the neurons

Hyper-parameters of a NN

- What defines the model:
 - Number of layers
 - Number of neurons for each layer
 - Activation functions for the neurons
- Hyper-parameter tuning as usual:
 - Validation curve
 - Grid search

—

Parameters of a NN

- What defines the hypothesis:
 - Weights and offsets (biases)
- Trained through ERM

Linear regression is a NN

Logistic regression is a NN

- Given a model, how to find a good hypothesis?
- For each neuron, definition of:
 - set of weights
 - offset value
- For example, total number
 of parameters in figure: 3*5+5*1

- Define a loss function to have an empirical error over a training set
- Iterative approach on training data instances to solve ERM
- Backpropagation of errors with gradient descent algorithm

The backward pass is a **gradient descent step** using the the **chain rule to compute the** gradients at different layers

Algorithm:

- 1) Initially assign random values to weights and offsets
- 2) Forward pass: process instances \mathbf{x} in the training set one at a time
 - For each neuron, compute the result when applying weights, offset and activation function for the instance
 - \triangleright Forward propagation until the output is computed h(x)
 - \triangleright Compare the computed output h(x) with the expected output y, and compute loss (error)
- 3) Backward pass: backpropagation of the error (one sample at a time or in batches or total empirical risk)
 - Compute an estimate of the gradient starting from the last layer to the first layer
 - \triangleright Updating weights and offset for each neuron \rightarrow (stochastic) gradient descent step
- 4) Go back to step 2

- The process ends when
 - The maximum number of epochs is reached
 - % of loss (or of loss variation) below a given threshold (or metric above given threshold)
 - % of parameter variation below a given threshold

Backpropagation of the error one sample at a time

Data points

Fea	ture	Class y	
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0

. . .

Initialise with random weights

Backpropagation of the error one sample at a time

Data points

Forward pass: Predict h(x) of a sample x and compute loss

Fea	Class		
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0

Backpropagation of the error one sample at a time

Backward pass:

Compute gradient and adjust weights with a gradient descent step

Data points

Features	Class	1.4	
1.4 2.7 1.9	0	1.4	
3.8 3.4 3.2	0		
6.4 2.8 1.7	1	2.7	0.8
4.1 0.1 0.2	0		
•••		1.9	error 0.8

Backpropagation of the error one sample at a time

Data points

Fea	Class		
1.4	2.7	1.9	0
3.8	3.4	3.2	0
6.4	2.8	1.7	1
4.1	0.1	0.2	0

Repeat iteratively with other samples

Training a NN – decision boundary perspective

2D, binary classification problem

Initial random weights

Training a NN – decision boundary perspective

2D, binary classification problem

After first iteration

Training a NN – decision boundary perspective

2D, binary classification problem

Eventually you can solve the ERM

Single neuron with single input

Single neuron with single input

$$\nabla L(w) = \frac{\partial L}{\partial w} = \frac{\partial L}{\partial g} \frac{\partial g}{\partial z} \frac{\partial z}{\partial w}$$

Single neuron with single input

$$\frac{\partial z}{\partial w} = x$$
 $\frac{\partial g}{\partial z} = g(1-g)$ $\frac{\partial L}{\partial g} = -\frac{y}{g} + \frac{1-y}{1-g}$

Single neuron with single input

Gradient Descent

(Gradient Step)
$$\underline{\mathbf{w}}^{(k+1)} = \underline{\mathbf{w}}^{(k)} - \underline{\alpha} \nabla f(\mathbf{w}^{(k)})$$
 f is empirical risk representations.

mini-batch Gradient Descent

(Noisy Gradient Step)
$$\underbrace{\mathbf{w}^{(k+1)}}_{\text{new guess}} = \underbrace{\mathbf{w}^{(k)}}_{\text{current guess}} - \underbrace{\alpha^{(k)}}_{\text{step size}} \mathbf{g}^{(k)} \text{ with } \mathbf{g}^{(k)} \approx \nabla f(\mathbf{w}^{(k)})$$

 There are many variations of gradient descent algorithms https://arxiv.org/pdf/1609.04747.pdf

- Hyper-parameters to set:
 - Learning rate α (step size) by what amount we adjust/ tune/ update model's parameters (weights)
 - Number of iterations (epochs) how many times we update model's weight
 - Batch size for stochastic gradient descent
 - Version of the optimizer (of the gradient descent)

Gradient descent algorithm

- Note: Neural networks with multiple layers and non-linear activation functions can be non-convex → multiple local minima
 - This is not always a problem:
 - Local minima can still be good and generalize (less overfitting than global optimum one) due to overparametrization of neural networks
 - Saddle points more common than (poor) local minima
 - Solutions:
 - Good initialization of weight
 - Modify classical gradient descent step (momentum, adaptive learning rate,..)
 - Regularization techniques (dropout, weight decay,...)

Activation functions

- Simulates biological activation to input stimuli
- Provides non-linearity to the computation
- May help to saturate neuron outputs in fixed ranges
- We will see some popular choices

No activation function

- What happens if there is no activation function (or a linear one)?
- No matter how many layers we stack on top of each other, the overall behavior of the NN will always be a linear map
- Example: NN with one input, two neurons in a hidden layer and one output neuron without adding any activation function. The network will always return a linear predictor, no matter the bias and weight values of the neurons.

Activation functions allows non-linearity

Activation functions: sigmoid, tanh

- Saturate input value in a fixed range
- Non linear for all the input scale
- Typically used for both hidden and output layers
 - E.g. sigmoid in output layers allows generating values between 0 and 1 (useful when output must be interpreted as likelihood/probability)

Sigmoid (logistic, soft step)

$$\sigma(x) \doteq rac{1}{1+e^{-x}}$$

Hyperbolic tangent (tanh)

$$anh(x) \doteq rac{e^x - e^{-x}}{e^x + e^{-x}}$$

Activation functions: binary step, ReLU

Binary Step (Heaviside step function)

- outputs 1 when input is positive
- useful for binary outputs
- issues: not appropriate for gradient descent
- derivative not defined in x=0

$$H(x) := \left\{egin{array}{ll} 1, & x \geq 0 \ 0, & x < 0 \end{array}
ight.$$

ReLU (Rectified Linear Unit)

- neurons activate linearly only for positive input
- used in deep NN (e.g. CNNs)
 - does not saturate
 - avoids vanishing gradient

$$(x)^+ \doteq \left\{egin{array}{ll} 0 & ext{if } x \leq 0 \ x & ext{if } x > 0 \end{array}
ight.$$

Activation functions: Softmax

- Differently to other activation functions
 - works by considering all the neurons in the layer
 - it is usually applied only to the output layer
- After softmax, the output vector can be interpreted as a discrete distribution of probabilities
 - Generalization of sigmoid to multiple dimensions
 - Probabilities for the input pattern of belonging to each class (multiclass tasks)

$$softmax(z_j) = \frac{e^{z_j}}{\sum_{i=0}^{N-1} e^{z_i}}$$

N is the number of neurons in the layer

Activation functions

input layer

hidden layer

- ReLU
- · Leaky ReLU
- ELU
- tanh

output layer

- sigmoid
- softmax
- None

output/predictions

Classification tasks

Binary

spam y=1not spam y=0

Multiclass

Multilabel

Example of a NN for multiclass task

Example of a NN for multilabel task

Classification tasks

Activation functions - classification

Cross-entropy loss

Cross-entropy loss

+ Softmax

Categorical CE

$$CE = -\sum_{i}^{C} y_{i} \log(\hat{y}_{i}) = -\log\left(\frac{e^{s_{p}}}{\sum_{j=1}^{C} e^{s_{j}}}\right) \underset{\text{class}}{\text{score for positive}}$$

Last-layer activation function + loss

Table 4.1 Choosing the right last-layer activation and loss function for your model

Problem type	Last-layer activation	Loss function
Binary classification	sigmoid	binary_crossentropy
Multiclass, single-label classification	softmax	categorical_crossentropy
Multiclass, multilabel classification	sigmoid	binary_crossentropy
Regression to arbitrary values	None	mse
Regression to values between 0 and 1	sigmoid	mse or binary_crossentropy

Neural networks

Issues

- Long training time
- Complex configuration (choice/tuning of hyper-parameters)
- Not interpretable model (black box model)

Neural networks libraries

- Playground of TensorFlow: https://playground.tensorflow.org/
- Try yourself!

Scikit-learn

sklearn.neural_network.MLPClassifier

 $class\ sklearn.neural_network. \textbf{MLPClassifier} (hidden_layer_sizes=(100,), activation='relu', *, solver='adam', alpha=0.0001, batch_size='auto', learning_rate='constant', learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-0.8, n_iter_no_change=10, max_fun=15000) [source]$

Multi-layer Perceptron classifier.

This model optimizes the log-loss function using LBFGS or stochastic gradient descent.

sklearn.neural_network.MLPRegressor

Multi-layer Perceptron regressor.

This model optimizes the squared error using LBFGS or stochastic gradient descent.

Scikit-learn

Class MLPClassifier implements a feed forward neural network (multi-layer perceptron) that trains using backpropagation

```
from sklearn.neural_network import MLPClassifier

clf = MLPClassifier(hidden_layer_sizes=(5, 2), solver='adam', alpha=1e-5)

model=clf.fit(X_train, y_train)
```

Pytorch

- Library for advanced machine learning (deep learning)
- One of the most popular in academia and industry
- Allows acceleration via GPU
- Works on multidimensional arrays, called tensors
- What you will use in Lab 10!

https://pytorch.org/docs/stable/index.html

https://pytorch.org/tutorials/

https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html

Neural Networks -More complex architectures

Deep neural networks

- Deep neural networks are neural networks with "many" layers (even billions of neurons)
- They often allow to use raw input
- The multiple layers are used to progressively extract higher-level features from the raw input
- Often deep learning uses more complex layers than the one we have seen in feed-forward neural networks

Artificial neural networks

Different tasks, different architectures

numerical vectors classification/regression: **feed forward NN** (what we have seen so far)

image understanding: convolutional NN (CNN)

convolutional layers

time series analysis: **recurrent NN** (RNN)

denoising: auto-encoders

Convolutional neural networks

Allow automatically extracting features from images and performing classification

Convolutional Neural Network (CNN) Architecture

Convolutional neural networks

Convolutional layer

- processes data in form of tensors (multi-dimensional arrays)
- input: input image or intermediate features (tensor)
- output: a tensor with the extracted features

Convolutional layer

Dense layer

Convolutional layer

Weights of the different neurons are different!

Weights of the different neurons are the same!

Convolutional layer

- a sliding filter produces the values of the output tensor
- sliding filters contain the trainable weights of the neural network
- each convolutional layer contains might contain many filters

Convolutional neural networks

- Convolutional layers training
 - during training each sliding filter learns to recognize a particular pattern in the input tensor
 - filters in shallow layers recognize textures and edges
 - filters in deeper layers can recognize objects and parts (e.g. eye, ear or even faces)

- Allow processing sequential data x(t)
- Differently from normal FFNN they are able to keep a state which evolves during time
- Applications
 - machine translation
 - time series prediction
 - speech recognition

RNN execution during time

instance of the RNN at time t₁

instance of the RNN at time t₂

instance of the RNN at time t₃

instance of the RNN at time ta

- A RNN receives as input a vector x(t) and the state at previous time step s(t-1)
- A RNN typically contains many neurons organized in different layers

- Training is performed with backpropagation through time
- Given a pair training sequence x(t) and expected output y(t)
 - error is propagated through time
 - weights are updated to minimize the error across all the time steps

Autoencoders

- Autoencoders allow compressing input data by means of compact representations (embeddings) and from them reconstructing the initial input
 - for feature extraction: the compressed representation can be used as significant set of features representing input data
 - for image (or signal) denoising: the image reconstructed from the abstract representation is denoised with respect to the original one

Word Embeddings

- Word embeddings (e.g., Word2Vec) associate words to n-dimensional vectors
- Trained on big text collections to model the word distributions in different sentences and contexts
- Able to capture the semantic information of each word
- Words with similar meaning share vectors with similar characteristics

Word Embeddings

- Since each word is represented with a vector, operations among words (e.g. difference, addition) are allowed
- Semantic relationiships among words are captured by vector positions

Deep learning is advancing quickly...

- Long Short Term Memories (LSTM)
- Generative Adversarial Networks (GAN)
- Transformers
- Language models (LM) and large language models (LLM)
- Graph neural networks (GNN)

• ...

Any questions?

Self-assessment quiz

- Define the model (and draw the schema) of two different NN with 3 features and 1 output, with at least a hidden layer each, and using at least two different activation functions.
- You are given the following hypothesis h of a NN for binary classification problem. The output of the NN is the probability of belonging to class A (i.e., 1 minus probability of belonging to class B). If we assign to class A output larger than 0.5, what is the accuracy on data D?

X ₁	X ₂	У
2	3	Α
0	-4	В
5	5	Α
3	7	Α
-5	7	В

References: readings

Chapters 3.11

• Chapter 5

https://scikit-learn.org/stable/modules/neural_networks_supervised.html

https://pytorch.org/docs/stable/index.html

https://pytorch.org/tutorials/

https://pytorch.org/tutorials/beginner/blitz/neural_networks_tutorial.html

Slide acknowledgments

- Alexander Jung Aalto University
- Elena Baralis Politecnico di Torino
- Dr. Christoph F. Eick University of Houston
- Ethem Alpaydin Bogaziçi University