Комплект 1: Начала программирования. Операторы, вычисления, ввод-вывод.

Задача 1.2

Постановка задачи: Написать простую программу. Ввести два числа с клавиатуры, вычислить их сумму и напечатать результат. Использовать функцию printf для приглашений на ввод и для распечатки результата. Использовать функцию scanf для ввода каждого числа отдельно с клавиатуры. Для получения доступа к функциям printf и scanf включить в программу заголовочный файл stdio.h. Использовать корректные спецификаторы форматирования. Здесь и далее для распечатки надписей на экране использовать латинские буквы для избежания проблем с кодировками символов.

Математическая модель

sum = a + b

Список идентификаторов

Имя	Тип	Значение
a, b	int	Вводимые числа

Код программы на языке С

```
#include <stdio.h>

int main(void) {
   int a, b;

printf("\nPrivet! Invite you to input 2 numbers!\n");
   scanf("%d%d", &a, &b);
   printf("\nOgo! Sum is %d\n", a + b);
}
```

Результат работы программы

```
Privet! Invite you to input 2 numbers!
10
20
Ogo! Sum is 30
```

Задача 1.3

Постановка задачи: Вычислить значение выражения u(x, y), введя x и y с клавиатуры. Подберите значения аргументов x и y самостоятельно за исключением тривиальных значений. Напечатайте вычисленное значение u(x, y) на экране. Включить в программу заголовочный файл math.h для доступа к математическим функциям.

Математическая модель

$$u(x,y) = \frac{1 + \sin^2(x+y)}{2 + \left| x - \frac{2x^2}{1 + \left| \sin(x+y) \right|} \right|}$$

Список идентификаторов

имя	Тип	Значение
u	float	Функция u(x, y)
x, y	float	Вводимые числа х и у
sinxy	float	sin(x + y)

Код программы на языке С

```
#include <stdio.h>
#include <math.h>

float u(float x, float y) {
    float sinxy = sinf(x +y);
    return (1 + powf(sinxy, 2)) / (2 + fabs(x - (2*x*x / (1 + fabs(sinxy)))));
}

int main(void) {
    float x, y;

printf("\nPrivet! Invite you to input 2 numbers: x and y!\n");
    scanf("%f%f", &x, &y);
    printf("\nWow! u(x, y) is %f\n\n", u(x, y));
}
```

Результат работы программы

```
Privet! Invite you to input 2 numbers: x and y!
-1
1
Wow! u(x, y) is 0.200000
```

Задача 1.4

Постановка задачи: Вычислить значение выражения h(x) для приведенных ниже значений.

Математическая модель

$$h(x) = -\frac{x-a}{\sqrt[3]{x^2 + a^2}} - \frac{4\sqrt[4]{(x^2 + b^2)^3}}{2 + a + b + \sqrt[3]{(x-c)^2}}$$

$$a = 0.12, \quad b = 3.5, \quad c = 2.4, \quad x = 1.4$$

$$a = 0.12, \quad b = 3.5, \quad c = 2.4, \quad x = 1.6$$

$$a = 0.27, \quad b = 3.9, \quad c = 2.8, \quad x = 1.8$$

Список идентификаторов

Имя	Тип	Значение
h	double	Функция h(a, b, c, x)
a, b, c, x	double	Аргументы функции
term1, term2	double	Слагаемые в выражении
numerator	double	Числитель дроби во втором слагаемом
denominator	double	Знаменатель дроби во втором слагаемом

Код программы на языке С

```
#include <stdio.h>
#include <math.h>

double h(double a, double b, double c, double x) {

double term1 = -(x - a) / pow(x * x + a * a, 1.0 / 3.0);

double numerator = 4.0 * pow(x * x + b * b, 3.0 / 4.0);

double denominator = 2.0 + a + b + pow((x - c) * (x - c), 1.0 / 3.0);

double term2 = -numerator / denominator;

return term1 + term2;

}

int main(void) {

double a = 0.12, b = 3.5, c = 2.4, x = 1.4;

printf("\nh(\%f, \%f, \%f, \%f) = \%f\n", a, b, c, x, h(a, b, c, x));

a = 0.12; b = 3.5; c = 2.4; x = 1.6;

printf("h(\%f, \%f, \%f, \%f) = \%f\n", a, b, c, x, h(a, b, c, x));

a = 0.27; b = 3.9; c = 2.8; x = 1.8;

printf("h(\%f, \%f, \%f, \%f) = \%f\n\n", a, b, c, x, h(a, b, c, x));

return 0;

}
```

Результат работы программы

```
h(0.120000, 3.500000, 2.400000, 1.400000) = -5.442602
h(0.120000, 3.500000, 2.400000, 1.600000) = -5.738755
h(0.270000, 3.900000, 2.800000, 1.800000) = -5.992693
```

Комплект 2: Организация циклов. Условные конструкции.

Задача 2.1

Постановка задачи: Вычислить используя цикл for координаты планеты Марс относительно Земли с течением времени t. Распечатать на экране координаты для каждой итерации по t. Координаты планеты Марс для каждой итерации задаются заданы формулами:

$$x = r_1 \cos(w_1 t) - r_2 \cos(w_2 t),$$

$$y = r_1 \sin(w_1 t) - r_2 \sin(w_2 t),$$

$$w_1 = \frac{2\pi}{T_1},$$

$$w_2 = \frac{2\pi}{T_2},$$

где r₁ – радиус орбиты Марса, r₂ – радиус орбиты Земли, T₁ и T₂ — периоды обращения указанных планет соответственно, t — каждый заданный момент времени внутри цикла повремени. Подберите подходящие единицы измерения для времени и расстояния.

Список идентификаторов

Имя	Тип	Значение
r1, r2, t1, t2	const double	Исходные значения в СИ
w1, w2	double	Угловые скорости планет
t	int	Счётчик цикла, время в днях
t_sec	double	Время в СИ
x, y	double	Координаты Марса относительно земли

Код программы на языке С

```
#include <stdio.h>
#include <math.h>
int main(void) {
   const double r1 = 228e9;
   const double r2 = 150e9;
   const double t1 = 686.96 * 24 * 3600;
   const double t2 = 365.26 * 24 * 3600;
   double w1 = (2 * M_PI) / t1;
   double w2 = (2 * M_PI) / t2;
   printf("\nt, days\t\tx, mln. km\t\ty, mln. km\n");
    for (int t = 0; t < 365; t++) {
        double t_sec = t * 24 * 3600;
        double x = r1 * cos(w1 * t_sec) - r2 * cos(w2 * t_sec);
        double y = r1 * sin(w1 * t_sec) - r2 * sin(w2 * t_sec);
        printf("%d\t\t%.4f\t\t\t%.4f\n", t + 1, x / 1e9, y / 1e9);
    return 0;
```

Результат работы программы

t, days	x, mln. km	y, mln. km
1	78.0000	0.0000
2	78.0127	-0.4948
3	78.0506	-0.9891
4	78.1139	-1.4821
5	78.2024	-1.4021 -1.9734
6	78.3161	-2.4623
7	78.4550	-2.4023 -2.9483
8	78.6190	-3.4308
9	78.8080	-3.4300 -3.9092
10	79.0220	-4.3828
11	79.2608	-4.8512
12	79.5244	-5.3138
13	79.8125	-5.7699
14	80.1252	-6.2189
15	80.4622	-6.6605
16	80.8234	-0.0003 -7.0938
17	81.2086	-7.0936 -7.5185
18	81.6176	-7.9183 -7.9338
16 19	82.0503	-7.9336 -8.3393
20	82.5065	-8.7345
20	82.9859	-9.1186
22	83.4884	-9.1186 -9.4913
23	84.0136	-9.4913 -9.8519
23	84.5614	-9.8319 -10.2000
2 4 25		-10.2000 -10.5349
26	85.1315 85.7236	-10.5349 -10.8561
26 27		
28	86.3375	-11.1632 -11.4556
	86.9729 87.6295	-11.4556 -11.7327
29 30		-
30 31	88.3070 89.0050	-11.9942 -12.2393
		-12.2393 -12.4678
32 33	89.7233	
	90.4614	-12.6790
34	91.2192	-12.8725
35	91.9962	-13.0479
36	92.7920	-13.2045
37	93.6063	-13.3420
38	94.4387	-13.4600
39	95.2887	-13.5578
40	96.1561	-13.6352
41	97.0404	-13.6917
42	97.9412	-13.7267
43	98.8580	-13.7400

Задача 2.2

Постановка задачи: Вычислить определённый интеграл от заданной функции методом трапеций:

$$\int_{a}^{b} f(x) \, dx = \int_{a}^{b} e^{x+2} \, dx \, .$$

Функция f(x) может быть выбрана и самостоятельно. Результат интегрирования сравнить с вычисленным вручную и убедиться в корректности результата.

Математическая модель

$$I = \int_a^b f(x) \, dx \approx h \left(\frac{1}{2} f(x_0) + f(x_1) + \ldots + f(x_{n-1}) + \frac{1}{2} f(x_n) \right) = h \left(\frac{y_0 + y_n}{2} + \sum_{i=1}^{n-1} y_i \right),$$
 где $x \in [a; b], \quad \Delta x = h$

05.03.2024 5

Список идентификаторов

Имя	Тип	Значение
n	int	Число итераций
a, b	int	Границы интегрирования
h	double	Шаг интегрирования
X	double	Переменная интегрирования
I	double	Вычисляемый интеграл
f	double	Вычисление интегрируемой функции

Код программы на языке С

```
1  #include <stdio.h>
2  #include <math.h>
3
4
5  int main(void) {
6    int n = 100000;
7    double a = 0;
8    double b = 5;
9
10    double h = (b - a) / n;
11    double I = 0;
12
13    for (double x = a; x <= b; x += h) {
14        double f = exp(x + 2.0);
15        f = (x == a || x == b) ? f/2 : f;
16        I += f;
17    }
18    I *= h;
19    printf("\nI = %f\n\n", I);
20 }</pre>
```

Результат работы программы

```
I = 1089.271518
```

Задача 2.3

Постановка задачи: Организовать и распечатать последовательность чисел Падована, не превосходящих число m, введенное c клавиатуры. Числа Падована представлены следующим рядом:

Использовать конструкцию for и простые варианты условной конструкции if else. Для этих чисел заданы формулы:

$$P(0) = P(1) = P(2) = 1,$$

 $P(n) = P(n-2) + P(n-3).$

Список идентификаторов

Имя	Тип	Значение
P	int	Рекурсивная функция
n	int	Аргумент функции
m	int	Число m
p	int	Результат вычисления функции P(n) в цикле по n

Код программы на языке С

```
#include <stdio.h>

int P(int n) {
    if (n > 2) {
        return P(n - 2) + P(n - 3);
    } else {
        return 1;
    }

}

int main(void) {
    int m;
    int p = 1;

printf("\nPrivet! Invite you to input m: ");
    scanf("%d", &m);

printf("Padovan numbers:\n");
    for (int n = 0; p <= m; n++) {
        printf("%d\n", p);
        p = P(n);
    }
}</pre>
```

Результат работы программы

```
Privet! Invite you to input m: 100
Padovan numbers:
1
1
1
1
2
2
3
4
5
7
9
12
16
21
28
37
49
65
86
```

Задача 2.4

Постановка задачи: С клавиатуры вводится трёхзначное число, считается сумма его цифр. Если сумма цифр числа больше 10, то вводится следующее трёхзначное число, если сумма меньше либо равна 10 — программа завершается.

Список идентификаторов

Имя	Тип	Значение
a	int	Вводимое число
sum	int	Сумма цифр
i	int	Счётчик цикла

Код программы на языке С

```
#include <stdio.h>

int main(void) {
    int a;
    int sum = 11;

printf("\nPrivet! Invite you to input 3-diget number:\n");
for (int i = 0; sum > 10; i++) {
    scanf("%d", &a);
    sum = (a / 100) + (a % 100 /10) + (a % 10);
}

printf("\n");

return 0;
}
```

Результат работы программы

```
Privet! Invite you to input 3-diget number:
444
551
900
```

Комплект 3: Основы работы со статическими массивами.

Задача 3.1

Постановка задачи: Для некоторого числового вектора X, введённого с клавиатуры, вычислить значения вектора $Y = X \cdot X$ ($y_i = x_i \cdot x_i$ — поэлементно).

Список идентификаторов

Имя	Тип	Значение
n	int	Длина вектора
x[n], y[n]	int	Массивы для векторов X и Y
i	int	Счётчик цикла

Код программы на языке С

```
#include <stdio.h>
     int main(void) {
         int n;
         printf("\nInput vector X length: ");
         scanf("%d", &n);
         int x[n], y[n];
         for (int i = 0; i < n; i++) {
11
             printf("Input x_%d: ", i);
12
             scanf("%d", &x[i]);
             y[i] = x[i] * x[i];
         printf("\nVector Y:\n");
         for (int i = 0; i < n; i++) {
             printf("y_%d: %d\n", i, y[i]);
         printf("\n");
         return 0;
23
```

Результат работы программы

```
Input vector X length: 5
Input x_0: 1
Input x_1: 2
Input x_2: 3
Input x_3: 4
Input x_4: 5

Vector Y:
y_0: 1
y_1: 4
y_2: 9
y_3: 16
y_4: 25
```

Постановка задачи: Для некоторого числового массива X, введённого с клавиатуры поэлементно, изменить порядок элементов на обратный и распечатать результат на экране.

Список идентификаторов

Имя	Тип	Значение
n	int	Длина массива
x[n]	int	Массив Х
i	int	Счётчик цикла

Код программы на языке С

```
1  #include <stdio.h>
2
3
4  int main(void) {
5    int n;
6    printf("\nInput array X length: ");
7    scanf("%d", &n);
8
9    int x[n];
10    for (int i = 0; i < n; i++) {
11         printf("Input x_%d: ", i);
12         scanf("%d", &x[i]);
13    }
14
15    printf("\nReverse array X:\n");
16    for (int i = 0; i < n; i++) {
17         printf("x_%d: %d\n", i, x[n-i-1]);
18    }
19    printf("\n");
20
21    return 0;
22 }</pre>
```

Результат работы программы

```
Input array X length: 6
Input x_0: 1
Input x_1: 2
Input x_2: 3
Input x_3: 4
Input x_4: 5
Input x_5: 6

Reverse array X:
x_0: 6
x_1: 5
x_2: 4
x_3: 3
x_4: 2
x_5: 1
```

Постановка задачи: Транспонировать матрицу:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

Список идентификаторов

Имя	Тип	Значение
a	int	Исходная матрица
b	int	Транспонированная матрица
i	int	Счётчик цикла

Код программы на языке С

```
1
    #include <stdio.h>
    int main(void) {
        int a[3][3] = {
             {1, 2, 3},
            {4, 5, 6},
            {7, 8, 9}
        };
        int b[3][3];
        printf("\nMatrix A transposed:\n");
        for (int i = 0; i < 3; i++) {
             for (int j = 0; j < 3; j++) {
                b[i][j] = a[j][i];
                 printf("%d ", b[i][j]);
            printf("\n");
        printf("\n");
        return 0;
```

Результат работы программы

```
Matrix A transposed:
1 4 7
2 5 8
3 6 9
```

Постановка задачи: Преобразовать исходную матрицу так, чтобы первый элемент каждой строки был заменён средним арифметическим элементов этой строки.

Список идентификаторов

Имя	Тип	Значение
a	double	Исходная матрица
b	double	Преобразованная матрицы
I, J	const int	Размеры матрицы
i, j	int	Счётчики циклов
sum	double	Сумма элементов строки

Код программы на языке С

```
#include <stdio.h>
int main(void) {
    const int I = 4;
    const int J = 3;
    double a[I][J] = {
        {1, 2, 3},
        {4, 5, 6},
        \{7, 8, 9\},
        {10, 11, 12}
    };
    for (int i = 0; i < I; i++) {
        double sum = 0;
        for (int j = 0; j < 3; j++) {
            sum += a[i][j];
        a[i][0] = sum / J;
    printf("\nMatrix B:\n");
    for (int i = 0; i < I; i++) {
        for (int j = 0; j < 3; j++) {
            printf("%.3f\t", a[i][j]);
        printf("\n");
    printf("\n");
    return 0;
```

Результат работы программы

```
Matrix B:
2.000 2.000 3.000
5.000 5.000 6.000
8.000 8.000 9.000
11.000 11.000 12.000
```

Постановка задачи: Реализовать самостоятельно алгоритм сортировки вставками (без создания своих функций, внутри функции main).

Список идентификаторов

Имя	Тип	Значение
n	const int	Длина массива
a[n]	int	Исходный массив
buf	int	Буфер обмена
i, j	int	Счётчики циклов

Код программы на языке С

```
#include <stdio.h>

int main(void) {
    const int n = 7;
    int a[n] = {1, 30, 14, 5, 90, 1, 10};
    int buf;

for(int i = 1; i < n; i++) {

    for(int j = i; j > 0 && a[j-1] > a[j]; j--) {
        buf = a[j-1];
        a[j-1] = a[j];
        a[j] = buf;
    }

printf("\nSorted array: ");
    for (int i = 0; i < n; i++) {
        printf("%d ", a[i]);
    }

return 0;

return 0;

}</pre>
```

Результат работы программы

```
Sorted array: 1 1 5 10 14 30 90
```