B51R150

BLE 透传模组 B51R150

说明书 V1.0

惠州高盛达科技有限公司 HUIZHOU GAOSHENGDA TECHNOLOGY CO. LT

B51R150

产品概述

1.1 简要介绍

B51R150 透传模组采用 最新推出的蓝牙 4.2 BLE 单芯片 AB1602,通过内嵌的数据透传专用 Service 实现基于 GATT 的蓝牙数据透传。B51R150 透传模组支持串口命令模式,用于实现外部 MCU 与模组的交互。用户 可通过串口命令对模组进行参数配置和一些控制,如修改 UUID,修改蓝牙名称,控制蓝牙断开连接等等。

1.2 产品特点

- (1) 蓝牙 BLE4.2
- (2) 稳定可靠的蓝牙透传性能
- (3) 支持串口命令模式,可配置多个蓝牙参数
- (4) 优秀的 RF 性能和低功耗设计
- (5) 低成本

1.3 支持功能

- (1) 可配置串口波特率和硬件流控
- (2) 可修改广播间隔时间和广播数据
- (3) 可修改 Service UUID 和 Characteristic UUID
- (4) 可使能安全配对以加密蓝牙数据
- (5) 支持动态连接参数更新

1.4 应用

- (1) 手机周边
- (2)智能家居
- (3) 智能玩具
- (4) mPOS
- (5) 医疗设备

第 2 页 Version 1.0

B51R150

2 引脚定义

Pin	Pin Define	Description
1	VBAT	3.3V(1.7V~3.6V)
2	GND	Ground
3	GPIO5	Programmable IO
4	GPIO6	Programmable IO
5	GPIO7	Programmable IO
6	UART_TXD	SPI data output/O
7	UART_RXD	SPI data input/l
8	GND	Ground
9	I2C_SCK	SPI clock input/IO
10	I2C_SDA	SPI chip select input/IO
11	RESET	Global reset, active low/l

表 2-1 引脚定义

需要注意的是,GPI021 为模式选择引脚,当它处于低电平时,模块为透传模式,当它为高电平时,模块处于命令模式。GPI023 为模组选通引脚,低电平有效。向模组发送串口数据前必须拉低此引脚。当输入高电平时,模组将进入低功耗模式,无法接收串口数据,但仍可接收蓝牙数据并通过串口向外发送。

第 3 页 Version 1.0

B51R150

简单来说,就是默认状态是低功耗模式,将 GPI06 拉低,模块进入命令模式,可以执行一些命令(详细在软件说明中),将GPI05 与GPI06 同时拉低,模块进入串口透传模式。

3 软件说明

AB1602 透传模组支持命令模式,采用 UART Command 用于实现模组与外部 MCU 的交互。命令协议采用命令包-应答包模式,当外部 MCU 向模组发送命令时,模组在执行完命令后会返回一个应答包用于指示命令是否执行成功。在发送串口命令前,请确保模组工作在命令模式下。

3.1 命令包格式

OpCode(1byte)	Parameter Length(1byte)	Parameter(n bytes)	FCS(1byte)
操作码	命令长度	命令参数	校验字节

表(3.1) 命令包格式

如表格 3.1 所示,每个命令包都有一个 1 byte 的操作码(Opcode)用于唯一标识不同类型的命令,1 byte 的长度域用于指示命令参数的数据长度。若长度为 0,则参数域为空,参数数值类型由具体命令定义。FCS 为校验字节,校验方法为对 OpCode,Parameter Length 和 Parameter 的所有字节进行 XOR 计算。

OpCode:

Value	Description
0x01~0x0E	命令对应的操作码,查看所有命令

Parameter Length:

Value	Description
0	若命令不带参数,则为 0
1~255	参数的长度(n)

Parameter:

Value	Description
0xXX	参数内容由具体命令决定,若命令不带参数,则省略参数域

第 4 页 Version 1.0

B51R150

3.2 应答包格式

OpCode (1byte)	ErrorCode(1byte)	Parameter Length(1	Parameter(nbytes)	FCS(1byte)
		byte)		
操作码	错误码	参数长度	应答参数	校验字节

表(3.2) 应答包格式

如表格 3.2 所示,应答包的第一个 byte 为对应命令的操作码,用于指示该应答包所回应的命令。1 byte 的错误码用于指示命令的操作结果,具体意义请查看错误码说明。1 byte 的长度域用于指示应答参数的数据长度。若长度为 0,则参数域为空,参数数值的数据类型和意义由具体命令决定。FCS 为校验字节,校验方法为对应答包的所以数据字节进行 XOR 运算。

OpCode:

Value	Description
0x01~0x0E	与对应命令的 OpCode 相同
0xFF	用于指示无法解析的命令包

ErrorCode:

Value	Description
0x00	命令操作成功
0x01~0xFF	命令操作失败错误码

Parameter Length:

Value	Description
0	应答包不带参数
1~255	参数的长度(n)

Parameter:

Value	Description
0xXX	具体值由相应的命令决定,若该命令无返回
	参数,则参数域为空。

FCS:

第5页 Version 1.0

B51R150

Value	Description
0xXX	等于应答包的所有数据字节相异或

3.3 命令操作码

名称	操作码	说明
BT_CMD_Set_UARTBaudrate	0x01	修改串口波特率
BT_CMD_Set_FlowControl	0x02	设置硬件流控
BT_CMD_Set_AdvInterval	0x03	设置广播间隔时间
BT_CMD_Set_AdvData	0x04	设置广播数据
BT_CMD_Set_ScanResData	0x05	设置扫描回应数据
BT_CMD_Set_UUID	0x06	设置 UUID
BT_CMD_Set_SM	0x07	设置安全配对
BT_CMD_Reset_Module	0x08	复位模组
BT_CMD_Disconnect	0x09	断开连接
BT_CMD_Update_ConnParam	0x0A	更新连接参数
BT_CMD_Read_BdAddress	0x0B	读取蓝牙地址
BT_CMD_Read_BtState	0x0C	读取设备状态
BT_CMD_Read_FWRevision	0x0D	读取固件版本号
BT_CMD_Unknown_OpCode	0xFF	未知操作码

表(3.3) 命令操作码

```
代码定义:

typedef enum
{

BT_CMD_Set_UartBaudrate = 0x01,

BT_CMD_Set_FlowControl = 0x02,

BT_CMD_Set_AdvInterval = 0x03,

BT_CMD_Set_AdvData = 0x04,

BT_CMD_Set_ScanResData = 0x05,

BT_CMD_Set_UUID = 0x06,
```

第6页 Version 1.0

B51R150

```
BT_CMD_Set_SM = 0x07,

BT_CMD_Reset_Module = 0x08,

BT_CMD_Disconnect = 0x09,

BT_CMD_Update_ConnParam = 0x0A,

BT_CMD_Read_BdAddress = 0x0B,

BT_CMD_Read_BtState = 0x0C,

BT_CMD_Read_FWRevision = 0x0D,

BT_CMD_Unknown_OpCode = 0xFF,

} BtOpCode_t;
```

3.4 错误码

我们定义了以下错误码,用于向用户指示串口命令失败的原因,方便用户调试。

Error Code (1byte)	Description
0x00	命令操作成功
0x01	命令不完整
0x02	无效的操作码
0x03	无效的参数长度
0x04	无效的参数,请填写正确的命令参数
0x05	命令不允许
0x06	FCS 校验错误
0xFF	未知错误

表(3.4) 错误码

代码定义:

```
/** Bluetooth UART Command Error Code **/
typedef enum
{
BT_CMD_ERROR_CODE_Success = 0x00,
BT_CMD_ERROR_CODE_Incomplete_Command = 0x01,
BT_CMD_ERROR_CODE_Invalid_OpCode = 0x02,
BT_CMD_ERROR_CODE_Invalid_Length = 0x03,
```

第7页 Version 1.0

B51R150

BT_CMD_ERROR_CODE_Invalid_Parameter = 0x04,

BT CMD ERROR CODE Command Disallowed = 0x05,

BT CMD ERROR CODE FCS Error = 0x06,

BT_CMD_ERROR_CODE_Unknown_Error = 0xFF,

} BtErrorCode t;

3.5 命令说明

3.5.1 修改串口波特率

操作码	参数长度	命令参数(4 bytes)	校验字节	应答参数
0x01	0x04	[Baudrate]	Unknown	NOP

说明:(表格中只列出应答参数,完整应答包格式请查看 3.2) 此命令用于修改模组串口波特率。 [Baudrate]为 uint32 类型,采用大端模式,高字节先发送。支持的波特率范围是 9600~3000000。注意,默认的波特率为 115200,此命令必须复位后才能生效。

举例:将串口波特率修改为9600

发送命令: 01 04 00 00 25 80 A0

返回应答: 01 00 00 01

3.5.2 设置硬件流控

操作码	参数长度	命令参数(1 bytes)	校验字节	应答参数
0x02	0x01	0x00 or 0x01	Unknown	NOP

说明: 此命令用于配置是否使能硬件流控。参数为 0x01 则使能流控,为 0x00 则关闭流控。注意,模组默认关闭流控功能, 此命令必须复位后才能生效。

举例: 使能硬件流控

发送命令: 02 01 01 02

返回应答: 02 00 00 02

第8页 Version 1.0

B51R150

3.5.3 设置广播间隔时间

操作码	参数长度	命令参数(2 bytes)	校验字节	应答参数
0x03	0x02	[Advertising Interval]	Unknown	NOP

说明: 此命令用于设置广播间隔时间。[Advertising Interval]为 uint16 类型,采用大端模式,即高字节先发送,数值单位 为 ms,取值范围是 20ms~10240ms。注意,默认的广播间隔时间为 200ms,此命令必须复位后才能生效。

举例:将广播间隔时间设置为 300ms

发送命令: 03 02 01 2C 2C

返回应答: 03 00 00 03

3.5.4 设置广播数据

操作码	参数长度	命令参数(n bytes)	校验字节	应答参数
0x04	0x03~0x1F	[AdvData]	Unknown	NOP

说明:

此命令用于修改蓝牙广播数据。参数长度限定取值范围为 0x03~0x1F, 否则将返回错误码 0x03。 [AdvData]只需要 包含广播数据的有效部分,默认的广播数据为: 02 01 05 0A 09 43 6F 6D 70 78 5F 42 4C 45 03 03 F0 FF, 此命 令必须复位后才能生效。

广播数据和扫描回应数据的格式说明:

如图 3.1 所示,数据的总长度为 31bytes,包含了有效部分和无效部分。有效部分有一系列 AD 结构体构成,数据的 无效部分由全 0 构成。每个 AD 结构体以 1byte 的 Length 域开头,用于指示 AD 结构体中 Data 域的长度。Data 域由 AD Type 和 AD data 构成,AD Type 和 AD data 的数值 和定义可查看 GAP Assigned Number 和 CSS 文档。 比如,蓝牙设备名称的 AD Type 为 0x09,AD data 为字符串类型,因此修改蓝牙设备名称只要在广播数据中加入 AD Type 为 0x09 的 AD 结构体即可,可查看以下举例。

第9页 Version 1.0

B51R150

图(3.1) 广播数据和扫描回应数据格式

举例:将蓝牙广播设备名称修改为 abc,即只需要广播数据设置为 02 01 05 04 09 61 62 63

发送命令: 04 08 02 01 05 04 09 61 62 63 67

返回应答: 04 00 00 04

3.5.5 设置扫描回应数据

操作码	参数长度	命令参数(n bytes)	校验字节	应答参数
0x05	0x03~0x1F	[ScanResData]	Unknown	NOP

说明:

此命令用于修改扫描回应数据。参数长度限定取值范围为 0x03~0x1F, 否则将返回错误码 0x03。 [ScanResData] 只需要包含扫描回应数据的有效部分,默认的扫描回应数据为: 02 0A 00,此命令必须复位后才能生效。扫描回应数据格式说明查看 3.5.4 设置广播数据。

举例: 在扫描回应数据中使用 Tx Power Level 和 Service UUID(0xFFF0)

发送命令: 05 07 02 0A 00 03 03 F0 FF 05

返回应答: 05 00 00 05

3.5.6 设置 UUID

操作码	参数长度	命令参数(6 bytes)	校验字节	应答参数
0x06	0x06	[A11 UUID]	Unknown	NOP

说明:

第 10 页 Version 1.0

B51R150

此命令用于配置 GATT 透传服务的 Service UUID,TX Characteristic UUID 和 RX Characteristic UUID。模组只支持 16 bits 的 UUID,命令参数的格式为: [16 bits Service UUID]+[16 bits TX UUID]+[16 bits RX UUID]。注意, 此命令必须复位后才能生效。

默认的 UUID 为: Service UUID = 0xFFF0,TX UUID = 0xFFF1,RX UUID = 0xFFF2. 举例: 将 UUID 修改为 Service UUID = 0x1122,TX UUID = 0x3344,RX UUID = 0x5566

发送命令: 06 06 11 22 33 44 55 66 77

返回应答: 06 00 00 06

3.5.7 设置安全配对

操作码	参数长度	命令参数(1 bytes)	校验字节	应答参数
0x07	0x01	0x00 or 0x01	Unknown	NOP

说明: 此命令用配置是否使用蓝牙安全配对。模组采用 Just work 的配对方式,手机端不需要输入验证码,配对成功后蓝牙 通信将被加密。注意:模组默认不采用安全配对,此命令必须复位后才能生效。

举例:发送以下命令使能安全配对,这样当 ios 设备要与模组建立连接时,将会弹出配对确认选项。

发送命令: 07 01 01 07

返回应答: 07 00 00 07

3.5.8 复位模组

操作码	参数长度	命令参数	校验字节	应答参数
80x0	0x00	NOP	0X08	NOP

说明:

此命令用于复位模组。命令参数和应答参数都为空。一些特定命令必须复位后才能生效,因此用户可发送此复位命令 以使配置立即生效。

举例:

发送命令: 08 00 08

第 11 页 Version 1.0

B51R150

返回应答: 08 00 00 08

3.5.9 断开连接

操作码	参数长度	命令参数(1 bytes)	校验字节	应答参数
0x09	0x00	NOP	0X09	NOP

说明:

此命令用于断开蓝牙连接。命令参数和应答参数都为空。若模组未与手机建立连接,应答数据的错误码为 0x05。

举例: 若蓝牙模块已建立连接, 发送以下命令蓝牙将断开连接

发送命令: 09 00 09

返回应答: 09 00 00 09

3.5.10 更新连接参数

操作码	参数长度	命令参数(8 b	ytes)	校验字节	应答参数(6 byte)
0x0A	0x08	[Interval	Min]+[Interval	Unknow	NOP
		Max]+[Latency]+[Timeout]			

说明:

此命令用于更新蓝牙连接参数。命令参数格式为: [Interval Min]+[Interval

Max]+[Latency]+[Timeout]。 [Interval Min]: 为连接间隔允许的最小值,数据类型为 uint16,采用小端模式,即低字节先发送。单位为 1.25ms, 数值范围是 0x0006~0x0C80。

[Interval Max]: 为连接间隔允许的最大值,数据类型为 uint16,采用小端模式。单位为 1.25ms,数值范围是 0x0006~0x0C80。

[Latency]: 为从机延时,与允许从机跳过的连接事件数目,数据类型为 uint16,采用小端模式。

[Timeout]: 为连接监督超时,数据类型为 uint16,采用小端模式。单位是 10ms,要求超时时间(单位 ms)必须大于(1 + Latency) * Interval_Max * 2(单位 ms)。

默认连接参数为: [Interval Min]=0x0010, [Interval Max]=0x0020, [Latency]=0x0000, [Timeout]=0x0048。

第 12 页 Version 1.0

B51R150

注意: Apple 设备对连接参数有额外的特殊要求,用户应该使连接参数满足以下要求以保证 Apple 设备能接收连接 参数更新请求。

Interval Max * (Slave Latency + 1) \leq 2 seconds

Interval Min ≥ 20 ms

Interval Min + 20 ms ≤ Interval Max

Slave Latency ≤ 4 connSupervisionTimeout ≤ 6 seconds

Interval Max * (Slave Latency + 1) * 3 < connSupervisionTimeout

举例: 设置参数[Interval Min]=0x0018, [Interval Max]=0x0028, [Latency]=0x0000,

[Timeout]=0x0048.

发送命令: 0A 08 18 00 28 00 00 00 48 00 7A

返回应答: 0A 00 00 0A

3.5.11 读取蓝牙地址

操作码	参数长度	命令参数	校验字节	应答参数
0x0B	0x00	NOP	ОХОВ	[BD Address]

说明:

此命令用于获取蓝牙设备地址。命令参数为空,应答参数长度为 6。[BD Address]为模组的蓝牙地址,采用大端模式。

举例: 假设模组蓝牙地址为 11:22:33:44:55:66

发送命令: 0B 00 0B

返回应答: 0B 00 06 11 22 33 44 55 66 7A

3.5.12 读取设备状态

操作码	参数长度	命令参数	校验字节	应答参数(1 byte)
0x0C	0x00	NOP	0X0C	[Bluetooth State]

说明:

此命令用于获取蓝牙连接状态。命令参数为空,应答参数长度为 1。[Bluetooth State]包含 3 种状态: GAP Init = 0x00, // 设备初始化

第 13 页 Version 1.0

B51R150

GAP_Advertising = 0x01, // 正在广播

GAP_Connected = 0x02, // 设备已连接

举例: 当模组处于广播状态时

发送命令: 0C 00 0C

返回应答: 0C 00 01 01 0C

3.5.13 读取固件版本号

操作码	参数长度	命令参数	校验字节	应答参数(1 byte)
0x0D	0x00	NOP	OXOD	[FW Revision]

说明:

此命令用于获取蓝牙模组固件版本号。命令参数为空,应答参数长度为 1。[FW Revision]采用 BCD 编码, 高 4 位表 示主版本号, 低 4 位表示子版本号, 如 0x11 表示版本号为 1.1。

举例: 模组的版本号为 1.0

发送命令: 0D 00 0D

返回应答: 0D 00 01 10 1C

第 14 页 Version 1.0