Tarea 2

Jonathan Andrés Niño Cortés

5 de febrero de 2016

1. (Necessity for the space on which we construct the measure to be locally compact.) Describe $C_0(\mathbb{Q})$. Show that if X is locally compact and Hausdorff, then $C_0(X)$ contains more than just the zero function.

Demostración. En primer lugar vamos a demostrar que $C_0(\mathbb{Q}) = \{0\}$ (0 denota la función constante 0).

Supongase por contradicción que existe una función $f \in C_0(\mathbb{Q})$ distinta de **0**. Por lo tanto, existe un $q \in \mathbb{Q}$ tal que ||f(q)|| > 0. Tomese $\epsilon = ||f(q)||$. Puesto que $f \in C_0(\mathbb{Q})$ existe un K tal que si $p \notin K$ entonces $f(p) < \epsilon/3$. Adicionalmente tenemos que f es continua. Por lo tanto, existe una bola $B_{\delta}(q)$ tal que si $p \in B_{\delta}(q)$ entonces $||f(q) - f(p)|| < \epsilon/3$.

Por desigualdad triangular tenemos lo siguiente

$$||f(q) - f(p)|| + ||f(p) - 0|| \ge ||f(q) - 0||$$
$$||f(p)|| \ge ||f(q)|| - ||f(q) - f(p)|| > \epsilon - \epsilon/3 = 2\epsilon/3 > \epsilon/3$$

Esto implica que $B_{\delta}(q) \subseteq K$ pero esto es una contradicción porque todo compacto en K tiene interior vacío.

Ahora, vamos a demostrar que si un espacio X es localmente compacto y de Hausdorff entonces existe una función distinta de $\mathbf{0}$ en $C_{00}(X)$ y por lo tanto también en $C_0(X)$. Por topología sabemos que X es un espacio completamente regular o de Tychonoff. Tomemos un punto $x \in X$. Puesto que X es localmente compacto existen un compacto K y un abierto U tales que $x \in U \subseteq K$. Luego podemos utilizar que X es completamente regular para separar el punto x del conjunto cerrado U^C por medio de una función continua f. Esta función es tal que $f(U^C) = \{0\}$ y f(x) = 1. Por algebra de conjuntos sabemos que $K^C \subseteq U^C$ por lo que tenemos que $f(K^C) = \{0\}$. Es decir que la función tiene soporte compacto dado por K. Por lo tanto, concluimos que $f \neq 0$ y $f \in C_{00}(\mathbb{X})$.

2. (Properties of \mathfrak{M} .) Denote by \mathfrak{M} the set of lower semicontinuous functions as defined in Definition 7.20, page 88 of the textbook.

a) Show that f is lower semicontinuous at x_0 if and only if for every real number $\alpha < f(x_0)$, there is a neighbourhood U of x_0 such that $f(x) > \alpha$ for all $x \in U$. (Here $f(x_0)$ can be a real number or $+\infty$.)

Demostración. La definición de función semicontinua hacia abajo según el libro es la siguiente:

La función $f: X \to \mathbb{R} \cup \{\infty\}$ es semicontinua hacia abajo en el punto x_0 si cumple la siguiente condición:

Si $f(x_0) < \infty$ entonces para todo $\epsilon > 0$ existe un vecindario U de x_0 tal que $f(x) > f(x_0) - \epsilon$ para todo $x \in U$. Si $f(x) = \infty$ entonces para cada número positivo α existe un vecindario U de x_0 tal que $f(x) > \alpha$ para todo $x \in U$.

En primer lugar observesé que para el caso en que $f(x_0) = \infty$ las definiciones son equivalentes puesto que todo número α es menor a ∞ .

Ahora, para el caso en que $f(x_0) < \infty$ si realizamos la sustitución $\alpha = f(x_0) - \epsilon$. Claramente, para todo α existe un ϵ tal que $f(x_0) - \epsilon = \alpha$ y adicionalmente si $\epsilon > 0$ entonces $\alpha < f(x_0)$. Por lo tanto, las deficiones son equivalentes.

b) Show that for $f: X \to (-\infty, +\infty]$ we have that $f \in \mathfrak{M}$ if and only if $f^{-1}((t, +\infty])$ is open in X for every $t \in R$.

Para una de las direcciones tomese cualquier $x_0 \in X$, queremos probar que f es semicontinua hacia abajo para este punto. Entonces tomemos cualquier $\alpha < f(x_0)$. Vemos que $f^{-1}((\alpha, +\infty])$ es un abierto tal que contiene a x_0 y todo imagen de este conjunto es mayor que α . Por lo tanto es semicontinua hacia abajo.

Para la otra dirección tomese cualquier conjunto de la forma $f^{-1}((t, +\infty])$ y tome cualquier x_0 en el conjunto. Puedo tomar un α tal que $t < \alpha < f(x_0)$ y por semicontinuidad hacia abajo se que existe un vencidario U de x_0 tal que para todo $x \in U$, $f(x) > \alpha$ esto quiere decir que $f(U) \subseteq (\alpha, \infty] \subseteq (t, \infty]$ y por lo tanto U es una vecindad de x_0 contenida en $f^{-1}((t, +\infty])$. Probamos que cualquier x_0 es interior por lo cual $f^{-1}((t, +\infty])$ es abierto.

- 3. (Concrete examples of the first Daniell extension.)
 - a) Let $S: C_{00}(\mathbb{R}) \to \mathbb{C}$ denote the Riemann integral. Compute carefully $\overline{S}(\chi_U)$, where χ_U denotes the characteristic function of U and U is any open subset of \mathbb{R} .

Demostración. Antes de calcular \overline{S} , observese que χ_U es una función semicontinua hacia abajo. Esto lo podemos demostrar utilizando el punto b del punto anterior, es decir, demostrando que para todo $t \in \mathbb{R}$, $f^{-1}((t,\infty))$ es abierto. Tenemos varios casos: Si t < 0 entonces $\{0,1\} \subseteq \langle (t,\infty) \rangle$ y por lo tanto $f^{-1}((t,\infty)) = f^{-1}(\{0,1\}) = \mathbb{R}$ que es abierto.

Si $0 \le t < 1$ entonces $f^{-1}((t, \infty)) = f^{-1}(\{1\}) = U$ que es abierto por hipótesis. Por ultimo, si $1 \le t$ entonces $f^{-1}((t, \infty)) = f^{-1}(\emptyset) = \emptyset$ que es abierto. Vamos primero a demostrar que para U=(a,b) con $a,b\in\mathbb{R}, \overline{S}(\chi_U)=b-a$.

Recordemos que $\overline{S}(\chi_U) = \sup\{S(f) : f \in C_{00}(\mathbb{R}) \land f \leq \chi_U\}$. Vamos a demostrar que b-a es este supremo. Primero para probar que es cota superior observese que para cualquier $f < \chi_U$ si $x \notin (a,b)$ entonces f(x) = 0. Luego claramente la función se desvanece fuera de [a,b]. Por lo tanto, por lo demostrado en (8.12) del libro, $S(f) = \int_a^b f(x) dx$. Puesto que f es acotada por 1 concluimos que $S(f) = \int_a^b f(x) dx < (b-a) * (1) = b-a$.

Ahora demostremos que no existe una cota menor. Para demostrar esto tomemos para cualquier $\alpha < b-a$ la función f_{α} definida de la siguiente manera.

$$f_{\alpha}(x) := \begin{cases} 0 & x \le a \\ \frac{x-a}{a'-a} & a \le x \le a' \\ 1 & a' \le x \le b' \\ \frac{b-x}{b-b'} & b' \le x \le b \\ 0 & b \le x \end{cases}$$

donde
$$a' = \frac{b+a-\alpha}{2}$$
 y $b' = \frac{b+a+\alpha}{2}$.

Es facil ver que esta función es continua y menor a χ_U y adicionalmente se desvanece fuera de [a,b] y todos sus valores son mayores a 0. Por lo tanto, esta función pertenece a $C_00(\mathbb{R})$. Calculando el valor de $S(f_\alpha)$ obtenemos:

$$S(f_{\alpha}) = \int_{a}^{b} f_{\alpha}(x)dx$$

$$= \int_{a}^{a'} \frac{x-a}{a'-a}dx + \int_{a'}^{b'} dx + \int_{b'}^{b} \frac{b-x}{b-b'}dx$$

$$= \frac{a'-a}{2} + b' - a' + \frac{b-b'}{2}$$

$$= \frac{b-a-\alpha}{4} + \alpha + \frac{b-a-\alpha}{4}$$

$$= \frac{b-a-\alpha}{2} + \alpha$$

$$> \alpha$$

Por lo que ningun α es cota superior.

Ahora, para abiertos U de la forma (a, ∞) tenemos que $\overline{S}(\chi_U) = \infty$.

Podemos tomar la sucesión de funciones $f_n(x) = \chi_{U_n}$ donde $U_n = (a, a + n)$. Claramente tenemos que $f_n(x) < f_{n+1}(x)$ y además todo $f_n(x) < \chi_U$. Luego tenemos que

$$\lim_{n\to\infty} f_n \le \chi_U$$

Por otro lado tenemos que

$$\overline{S}(\chi_U) \geq \overline{S}(\lim_{n \to \infty} f_n) \\
= \lim_{n \to \infty} \overline{S}(f_n) \\
= \lim_{n \to \infty} n \\
= \infty$$

Por lo tanto, $\overline{S}(\chi_U) = \infty$.

De manera analoga podemos demostrar que para $U=(-\infty,a)$ y $U=(-\infty,\infty)$, $\overline{S}(\chi_U)=\infty$. Lo que nos permite concluir que para cualquier intervalo abierto U=(a,b) con $a,b\in\mathbb{R}\cup\{-\infty,+\infty\}$, $\overline{S}(\chi_U)=b-a$.

Por ultimo, para generalizar a cualquier abierto U en \mathbb{R} podemos utilizar el teorema (6.59) del libro que dice que existe una única colección contable de intervalos abiertos disyuntos $\mathfrak{U} = \{V_n\}$ tales que $\bigcup_{n \in \mathbb{N}} V_n = U$. Podemos escribir V_n como

 (a_n, b_n) con $a_n, b_n \in \mathbb{R} \cup \{-\infty, +\infty\}$. Luego tenemos que $\chi_U = \sum_{n \in \mathbb{N}} \chi_{V_n}$ y por el colorario (9.14) concluimos que

$$\overline{S}(\chi_U) = \overline{S}(\sum_{n \in \mathbb{N}} \chi_{V_n}) = \sum_{n \in \mathbb{N}} \overline{S}(V_N) = \sum_{n \in \mathbb{N}} (b_n - a_n)$$

.

b) Let $E_a: C_{00}(X) \to \mathbb{C}$ denote the evaluation functional defined by $E_a(f) := f(a)$. Compute $\overline{E}_a(f)$ for $f \in \mathfrak{M}^+$.

Demostración. Nota: En el ejercicio (9.9) del libro de donde se tomó este punto se dice que se tome E_a como se define en (9.2.c). Aqui se dice que E_a se define para cualquier espacio no vacío localmente compacto de Hausdorff, por lo cual vamos a usar estos supuestos para realizar el ejercicio.

Recordemos la definición de $\overline{E}_a(f)$.

$$\overline{E_a}(f) = \sup\{E_a(g) = g(a) : g \in C_{00}(\mathbb{R}) \land g \le f\}$$

Vamos a probar que $\overline{E}_a(f) = f(a)$ demostrando que f(a) es la mínima cota superior del conjunto. Por un lado es facil ver que es cota pues si $g \leq f$ entonces $g(a) \leq f(a)$, por lo que $E_a(g) \leq f(a)$.

Ahora si tomamos cualquier $\alpha < f(a)$, existe un $\alpha' \in \mathbb{R}$ tal que $\alpha < \alpha' < f(a)$. Para este α' existe un vecindario U de a tal que $f(x) > \alpha'$ para todo punto x en dicho vecindario.

Puesto que X es localmente compacto (vease la nota) tenemos que existe un compacto K y un abierto V tales que $a \in V \in K$. Entonces tomemos el abierto

 $U \cap V$. Por nuestros supuestos tenemos que X es completamente regular por lo que existe una función continua $g: X \to [0,1]$ que separa el punto a del cerrado $(U \cap V)^C$, es decir que cumple que g(a) = 1 y g(x) = 0 para todo $x \in (U \cap V)^C$. A partir de esta función podemos construir la función continua $h(x) = \alpha' g(x)$. Esta función pertenece claramente a $C_{00}(X)$ pues se desvanece fuera de K, $E_a(h) = \alpha'$ y $h \leq f$ puesto que para todo $x \notin U$ h(x) = 0 y para todo $x \in U$, $h(x) \leq \alpha' < f(x)$. Por lo tanto, encontramos una función para la cual α no es cota. Puesto que esto es para cualquier $\alpha < f(a)$ concluimos que el supremo es efectivamente f(a).

5