A. 程式執行說明

1.

共有一個執行檔,名稱為 Hopfield QT.exe、兩份 python 程式、兩個資料 夾,名稱分別為 train 和 test, train 資料夾裡有所有助教給的訓練檔案, test 資料夾裡有所有助教給的測試檔案,執行執行檔時務必把所有檔案及資料夾 放在同一個目錄下執行。

2.

執行方式為經由 cmd 到執行檔所在目錄,並輸入 .\ Hopfield QT.exe,執 行執行檔時會花一些時間。

3.

執行程式時會出現如圖一的視窗圖,左上角藍色框部分是選擇要訓練的 資料集、及設定神經網路學習率、隱藏層的神經元數目、隱藏層數目、 epoch 數及隨機取訓練資料和測試資料的 seed。

■ 多層感知器神經網路

2Ccircle1.txt			
顯示train data預測正確資料	顯示train data預測錯誤資料	顯示test data預測正確資料	顯示test data預測錯誤資料

(圖一)

設定完參數之後,按下開始訓練按鈕,會開始訓練並把結果視覺化(圖 二),紅色框會顯示訓練資料的準確率和測試資料準確率。下方紅色框的四個 按鈕,是分別顯示訓練資料預測正確筆數的詳細資料、訓練資料預測錯誤筆數 的詳細資料、測試資料預測正確筆數的詳細資料、測試資料預測錯誤筆數的詳 細資料(圖三)。

(圖二)

顯示train data預測正確資料		顯示train data預測錯誤資料			顯示test data預測正確資料		타	顯示test data預測錯誤資料			
0	1	label	predict		^	0	1	label	predict		^
-3.6163	0.9627	2	2			-2.9756	0.1820	2	2		
-1.0910	1.3122	1	1			-0.2792	3.0989	2	2		
-0.0550	0.8228	2	2			-2.4922	3.6764	2	2		
-3.7616	1.4098	2	2			-3.7985	1.8785	2	2		
0.1249	2.3429	2	2			-2.3540	2.7910	1	1		
-0.1820	0.6244	2	2			-1.1078	3.6764	2	2		
-0.9627	3.6163	2	2			-2.8239	2.2827	1	1		
-2.8724	1.6666	1	1			-2.7526	1.3775	1	1		
-3.6478	1.0346	2	2			0.1861	1.5649	2	2		
-1.9785	2.8969	1	1			-1.5649	3.7861	2	2		
-3.7021	2.4180	2	2			-3.7021	1.1820	2	2		
-2.8724	2.1334	1	1			-3.0989	0.2792	2	2		Ų
1 0705	0.1005	1	2		~	2.0564	0.0122	1	1		~

(圖三)

B. 程式簡介

由 MLP.py 和 MLP_QT.py 兩份 python 程式組成,MLP_QT.py 是編寫 GUI 圖形介面程式,MLP.py 則是多層感知機神經網路,除了一個輸入層和一個輸出層外,使用者可以藉由圖形介面設定隱藏層數目以及隱藏層的神經元數目。設計多層感知機神經網路架構如圖四,其中包含幾項重要功能

1. 對資料的 label 做 one-hot encoding

- 2. 實作前饋式神經網路
- 3. 使用邏輯斯成本函數(logistic coss function)計算神經網路的 loss function
- 4. 使用 relu 函數當作每層的啟動函數

ReLU
$$\phi(z) = \begin{cases} 0 & z < 0 & \text{Multilayer NN,} \\ z & z > 0 \end{cases}$$

5. 實作反傳遞法更新神經網路的 weight 值(圖五)

(圖五)

C. 實驗結果

以下是對威知器神經網路超參數設定:

設定好參數之後,把感知器神經網路對每份資料開始訓練結果如下:

1. 2CloseS.txt 檔案:

網路參數:

學習率: 0.005

隱藏層神經元數:50

隱藏層數:1 Epoch 數:20

Random seed:1

Train data 結果:

準確率: 100%

Test data 結果:

準確率: 100%

結論:視覺化的結果中,平面的顏色為神經網路對所有資料集的形成二維資料平面,對每個座標點進行預測,並對預測 label 畫上對應顏色,而平面上的標記點和顏色則是實際測試資料座標點的 label,由圖可以看出,神經網路預測是否正確(以下資料以此類推)。

而 2CloseS.txt 檔案中,神經網路可以對所有的 label 做正確分類

2. 2Ccircle1.txt

網路參數:

學習率: 0.005

隱藏層神經元數:500

隱藏層數:3

Epoch 數:20

Random seed:1

Train data 結果:

準確率: 100.00% Test data 結果:

準確率:100.00%

結論: 神經網路可以完美辨識非線性可分的資料集

2Circle1.txt

網路參數:

學習率: 0.005

隱藏層神經元數:800

隱藏層數:3

Epoch 數:20

Random seed:1

Train data 結果:

準確率:98.75%

Test data 結果:

準確率: 93.75%

結論: 可以正確分類 90%以上資料

4. 2Circle2.txt

網路參數:

學習率: 0.005

隱藏層神經元數:800

隱藏層數:4

Epoch 數:20

Random seed:1

Train data 結果:

準確率: 92.44%

Test data 結果:

準確率: 88.37%

結論:神經網路可以辨識非線性可分的資料集中85%以上的資料。

5. 2CloseS2.txt

網路參數:

學習率: 0.005

隱藏層神經元數:10

隱藏層數:1

Epoch 數:20

Random seed:1

Train data:

準確率: 98.48%

Test data:

準確率: 100%

結論:可以接近 100%分類資料

6. 2CloseS3.txt

網路參數:

學習率: 0.005

隱藏層神經元數:300

隱藏層數:2

Epoch 數:20

Random seed:1

Train data:

準確率: 99.85%

Test data:

準確率: 99.40%

結論:可以接近100%分類資料

7. 2cring.txt

網路參數:

學習率: 0.005

隱藏層神經元數:10

隱藏層數:1 Epoch 數:20

Random seed:1

Train data:

準確率: 100.00%

Test data:

準確率: 100.00%

結論:可以接近100%分類資料

8. 2CS.txt

網路參數:

學習率: 0.005

隱藏層神經元數:10

隱藏層數:1

Epoch 數:20

Random seed:1

Train data:

準確率: 100.00%

Test data:

準確率: 100.00%

結論:可以接近100%分類資料

9. 2Hcircle1.txt

網路參數:

學習率: 0.005

隱藏層神經元數:10

隱藏層數:1

Epoch 數:20

Random seed:1

Train data:

準確率: 100.00%

Test data:

準確率: 100.00%

結論:可以接近100%分類資料

10. 2ring.txt

網路參數:

學習率: 0.005

隱藏層神經元數:10

隱藏層數:1 Epoch 數:20

Random seed:1

Train data:

準確率: 100.00%

Test data:

準確率: 100.00%

結論:可以接近100%分類資料

11. 4-satellite-6.txt

網路參數:

學習率: 0.005

隱藏層神經元數:10

隱藏層數:1

Epoch 數:20

Random seed:1

Train data: 因為維度資料超過二維,很抱歉無法視覺化呈現 train data!

準確率: 27.80%

Test data: 因為維度資料超過二維,很抱歉無法視覺化呈現 test data!

準確率: 27.37%

結論:分類結果不好

12. 5CloseS1.txt

網路參數:

學習率: 0.005

隱藏層神經元數:20

隱藏層數:1

Epoch 數:20

Random seed:1

Train data:

準確率: 100.00%

Test data:

準確率: 100.00%

結論:可以接近100%分類資料

13. 8XOR.txt

網路參數:

學習率: 0.005

隱藏層神經元數:100

隱藏層數:3

Epoch 數:20 Random seed:1

Train data: 因為維度資料超過二維,很抱歉無法視覺化呈現 train data!

準確率: 100.00%

Test data: 因為維度資料超過二維,很抱歉無法視覺化呈現 test data!

準確率: 60.00%

結論:可以分類 60%筆測試資料

14. C10D.txt

網路參數:

學習率: 0.005

隱藏層神經元數:20

隱藏層數:1

Epoch 數:20

Random seed:1

Train data: 因為維度資料超過二維,很抱歉無法視覺化呈現 train data!

準確率: 100.00%

Test data: 因為維度資料超過二維,很抱歉無法視覺化呈現 test data!

準確率: 100.00%

結論:可以分類 100%筆測試資料

15. C3D.txt

網路參數:

學習率: 0.005

隱藏層神經元數:20

隱藏層數:1

Epoch 數:20

Random seed:1

Train data: 因為維度資料超過二維,很抱歉無法視覺化呈現 train data!

準確率: 100.00%

Test data: 因為維度資料超過二維,很抱歉無法視覺化呈現 test data!

準確率: 100.00%

結論:可以分類 100%筆測試資料

16. IRIS.TXT

網路參數:

學習率: 0.005

隱藏層神經元數:80

隱藏層數:4

Epoch 數:20

Random seed:1

Train data: 因為維度資料超過二維,很抱歉無法視覺化呈現 train data!

準確率: 69.00%

Test data: 因為維度資料超過二維,很抱歉無法視覺化呈現 test data!

準確率: 68.00%

結論:可以分類 60%筆測試資料

17. Number.txt

網路參數:

學習率: 0.005

隱藏層神經元數:20

隱藏層數:1 Epoch 數:20

Random seed:1

Train data: 因為維度資料超過二維,很抱歉無法視覺化呈現 train data!

準確率: 33.33%

Test data: 因為維度資料超過二維,很抱歉無法視覺化呈現 test data!

準確率: 0.00%

結論: 資料筆數太少,導致訓練 overfitting

18. Perceptron1.txt

網路參數:

學習率: 0.005

隱藏層神經元數:10

隱藏層數:3 Epoch 數:10

Random seed:6

Train data:

準確率: 100.00%

Test data:

準確率: 0.00%

結論: 資料筆數太少,導致神經網路訓練 overfitting

19. Perceptron2.txt

網路參數:

學習率: 0.005

隱藏層神經元數:10

隱藏層數:3

Epoch 數:10

Random seed:6

Train data:

準確率: 33.33%

Test data:

準確率: 0.00%

結論: 資料筆數太少,導致神經網路訓練 overfitting

20. Perceptron3.txt

網路參數:

學習率: 0.005

隱藏層神經元數:10

隱藏層數:3

Epoch 數:10

Random seed:6

Train data: 因為維度資料超過二維,很抱歉無法視覺化呈現 train data!

準確率: 66.7%

Test data: 因為維度資料超過二維,很抱歉無法視覺化呈現 test data!

準確率: 0.00%

結論: 資料筆數太少, 導致訓練 overfitting

21. Perceptron4.txt

網路參數:

學習率: 0.005

隱藏層神經元數:500

隱藏層數:3

Epoch 數:10

Random seed:6

Train data:

準確率: 33.33%

Test data:

準確率: 50.00%

結論: 資料筆數太少,導致神經網路訓練 overfitting

22. wine.txt

網路參數:

學習率: 0.005

隱藏層神經元數:15

隱藏層數:10

Epoch 數:10

Random seed:6

Train data: 因為維度資料超過二維,很抱歉無法視覺化呈現 train data!

準確率: 35.59%

Test data: 因為維度資料超過二維,很抱歉無法視覺化呈現 test data!

準確率: 27.12%

結論: 訓練結果不好

23. xor.txt

Train data:

準確率: 66.67%

Test data:

準確率: 0.00%

結論: 資料筆數太少,導致神經網路訓練 overfitting

D. 實驗結果分析與討論

由上述實驗可以發現,當訓練的資料是不是線性可分割平面時,自己設計的神經網路可以藉由增加隱藏層數目來增加準確率。但相同問題是如果資料筆數太少,訓練時容易 overfitting,除此之外大部分線性可分割資料及多 label 資料都可以準確分辨 80%資料。

E. 預計可以完成的加分項目

- A. 能夠處理多維資料 (三維以上)
- B. 能夠處理多群資料 (三群以上)
- C. 隱藏層層數可設定
- D. 隱藏層的神經元個數可設定