担ヨ有石	機部·小林	字精苗号	
科目名	12学 B (H.14)	氏 名	

- 【1】次の(a)から(c)について答えなさい。
- (a) カチオンの半径(r_c)と酸素イオン O^2 の半径(r_a)の比から、酸化物、ケイ酸塩、水酸化物中のカチオンの配位数を推定することができる。次の4つの各カチオンの配位数を推定しなさい。ただし、各イオンのイオン半径は、 O^2 =1.40Å, Si^{4+} =0.41Å, Mg^{2+} =0.65Å, Ca^{2+} =0.99Å, Cs^{+} =1.67 Åである。
- 金属と半導体の電気伝導度の違いをエネルギーバンドの考え方に従って説明しなさい。
- (c) 気和解離反応、 $CS_2 \rightarrow CS + S$ は 1 次反応であり、その速度定数は 1000K において、 $k_1 = 2.94x10^{-7} \text{ s}^{-1}$ である。 1000K で 10 時間加熱すると、 CS_2 の何%が解離するか。また、この反応の半減期を求めなさい。
- (a) $\mathrm{NH_3}$, $\mathrm{H_2}$, $\mathrm{N_2}$ の気体の分圧をそれぞれ $\mathrm{P(NH_3)}$, $\mathrm{P(H_2)}$, $\mathrm{P(N_2)}$ とする。気体の分圧を用いて平衡定数 $\mathrm{K_p}$ を表しなさい。
- (b) 1 mol の NH_3 気体が入った容器を 350 \mathbb{C} に保って平衡状態に到達させた。このときに分解した NH_3 の割合を α として K_a を表しなさい。
- (c) 平衡状態において全圧を大きくすると、平衡はどのように移動するか。その理由も述べなさい。
- (d) 右方向への反応のエンタルピー変化ΔH は正の値をとる。平衡状態において温度を上昇させると、平衡はどのように移動するか。その理由も述べなさい。
- (e) 温度と平衡定数との間には $d(\ln K_p)/d(1/\Gamma) = -\Delta H/R$ という関係が成り立つ。ただし、R は気体定数(R=8.314 J K^{\dagger} mol⁻¹)である。350 C における K_p は 1.29×10^3 atm² であり、500 C における K_p は 6.67×10^4 atm² である。 ΔH を 求めなさい。(途中の計算式も示し、 ΔH の単位も明記すること。)
- 【3】次の文章の(ア)~(サ)に最も適する語句を下の選択肢(a)~(z)の中から選んで記号で答えなさい。さらに、(F)~(L)に相当する有機化合物の構造式を描きなさい。化合物(A)~(E)の構造式は選択肢の下に示した。

トリクロロ酢酸が酢酸よりも強い酸である理由は、(ア)基であるトリクロロメチル基の(イ)効果でカルボン酸陰イ オンが安定化するためである。化合物(A)に HBr が付加すると、(ウ)則に従った化合物(F)が主生成物として得られるが、これは、中間体としてより安定な(エ)カルボカチオンが、(オ)カルボカチオンより優先して生成するからである。(エ)カルボカチオンが(オ)カルボカチオンが(オ)カルボカチオンよりも安定な理由は、(カ)基であるアルキル基の(イ)効果による。

化合物 (B) を硝酸 - 硫酸でニトロ化すると化合物 (G) が得られるが、これは (力) 性置換基である OCH₃ 基が (キ)、(ク) 配向性であり、(ア) 性置換基である CHO 基が (ケ) 配向性であるからである。化合物 (B) から化合物 (G) が得られる事実を最も良く説明する化合物 (B) の極限構造式は、(H) のように描ける。

キラルな化合物(C)に CH_3CH_2MgBr を付加させると(水で後処理する),ジアステレオマーの関係にある化合物 (I) と(J)が得られる。キラルな化合物(D)に Pd 触媒存在下水素を付加させると,(コ)な化合物(K)が得られる。 化合物(E)は NaOH と反応させると,(サ)反応で化合物(L)となる。

選択肢: (a) 電子供与: (b) 電子求引: (c) 共鳴: (d) 誘起: (e) Fischer: (f) Octet: (g) Markovnikov: (h) Newman: (i) Grignard: (j) Lewis: (k) 第1級: (l) 第2級: (m) 第3級: (n) パラ: (o) メタ: (p) オルト: (q) エナンチオマー: (r) ジアステレオマー: (s) キラル: (t) アキラル: (u) 付加: (v) 脱離: (w) S_N1: (x) S_N2: (y) 酸化: (z) 還元

(/. 0				
Ç.	化B	Date			No.
ι.	HI4				
-	(a) h/ra_ 0.22~0.4/ 0.4/4~6.73	5	c. 75		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 			
	(4) 金属 → 価電子かハントかえたに満たこれで、 をしていてい 一温度を上げるは対称をしている電子かんの ことにいる。)いったものかは導体と発展体	1762 00-pt	でから	在海	^ハ つか 体 <i>[=肝</i>)
	$ \begin{array}{c} (C) l_n \frac{[A_0]}{[A]} = kt \\ \frac{[A]}{[A_0]} = e^{kt} \\ \frac{[A]}{[A_0]} = e^{-kt} \end{array} $				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	$\frac{e}{\ln 2 - kt} = \frac{1}{t} = \frac{989\%}{2 - 9490^{-7}} = \frac{989\%}{2 - 9490^{-7}} = \frac{989\%}{2 - 9490^{-7}} = \frac{989\%}{2 - 9490^{-7}}$	<u>, </u>	10/2		
<u></u>	$\frac{1}{1} (a) - K_{p} = \frac{P(H_{z})^{3} \cdot P(H_{z})}{P(N_{z})^{2}}$				
	e) $2NH_3$ $\stackrel{?}{=}$ $3H_5+N_2$ $(3d)^3(3d)$ $(1-d)^3$)	-		
	/6(1-d) ² - Kp- h ² P(H ₂) ² ・P(N ₂) ² となり Kplはー定でかか P(NH ₃) ² よって 左1: 行かか	5_	Þ(NH	ゝ)²か′	增加_
	1) 体験-定 XE+W=AH_W=PAV=D K=Aexp(AE) Tか、増加 → K増加 よって大分析 =Awp(-AH)				
			, , ,		·

2	Pate
2 <u>)</u>	$\Delta H = -R \frac{\ln \frac{6.67 \times 10^4}{1.29 \times 10^3}}{\frac{1}{773} - \frac{1}{623}} $ $= 105000 J/mol = 1.05 \times 10^2 kJ/mol$
3]	(3) e (1) d (1) g (2) m (7) l
	(1) a (1) p (1) n (1) 0 (1) t
	(#) V
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

.

担ヨ有石	機部·小林	字精苗号	
科目名	12学 B (H.14)	氏 名	

- 【1】次の(a)から(c)について答えなさい。
- (a) カチオンの半径(r_c)と酸素イオン O^2 の半径(r_a)の比から、酸化物、ケイ酸塩、水酸化物中のカチオンの配位数を推定することができる。次の4つの各カチオンの配位数を推定しなさい。ただし、各イオンのイオン半径は、 O^2 =1.40Å, Si^{4+} =0.41Å, Mg^{2+} =0.65Å, Ca^{2+} =0.99Å, Cs^{+} =1.67 Åである。
- 金属と半導体の電気伝導度の違いをエネルギーバンドの考え方に従って説明しなさい。
- (c) 気和解離反応、 $CS_2 \rightarrow CS + S$ は 1 次反応であり、その速度定数は 1000K において、 $k_1 = 2.94x10^{-7} \text{ s}^{-1}$ である。 1000K で 10 時間加熱すると、 CS_2 の何%が解離するか。また、この反応の半減期を求めなさい。
- (a) $\mathrm{NH_3}$, $\mathrm{H_2}$, $\mathrm{N_2}$ の気体の分圧をそれぞれ $\mathrm{P(NH_3)}$, $\mathrm{P(H_2)}$, $\mathrm{P(N_2)}$ とする。気体の分圧を用いて平衡定数 $\mathrm{K_p}$ を表しなさい。
- (b) 1 mol の NH_3 気体が入った容器を 350 \mathbb{C} に保って平衡状態に到達させた。このときに分解した NH_3 の割合を α として K_a を表しなさい。
- (c) 平衡状態において全圧を大きくすると、平衡はどのように移動するか。その理由も述べなさい。
- (d) 右方向への反応のエンタルピー変化ΔH は正の値をとる。平衡状態において温度を上昇させると、平衡はどのように移動するか。その理由も述べなさい。
- (e) 温度と平衡定数との間には $d(\ln K_p)/d(1/\Gamma) = -\Delta H/R$ という関係が成り立つ。ただし、R は気体定数(R=8.314 J K^{\dagger} mol⁻¹)である。350 C における K_p は 1.29×10^3 atm² であり、500 C における K_p は 6.67×10^4 atm² である。 ΔH を 求めなさい。(途中の計算式も示し、 ΔH の単位も明記すること。)
- 【3】次の文章の(ア)~(サ)に最も適する語句を下の選択肢(a)~(z)の中から選んで記号で答えなさい。さらに、(F)~(L)に相当する有機化合物の構造式を描きなさい。化合物(A)~(E)の構造式は選択肢の下に示した。

トリクロロ酢酸が酢酸よりも強い酸である理由は、(ア)基であるトリクロロメチル基の(イ)効果でカルボン酸陰イ オンが安定化するためである。化合物(A)に HBr が付加すると、(ウ)則に従った化合物(F)が主生成物として得られるが、これは、中間体としてより安定な(エ)カルボカチオンが、(オ)カルボカチオンより優先して生成するからである。(エ)カルボカチオンが(オ)カルボカチオンが(オ)カルボカチオンよりも安定な理由は、(カ)基であるアルキル基の(イ)効果による。

化合物 (B) を硝酸 - 硫酸でニトロ化すると化合物 (G) が得られるが、これは (力) 性置換基である OCH₃ 基が (キ)、(ク) 配向性であり、(ア) 性置換基である CHO 基が (ケ) 配向性であるからである。化合物 (B) から化合物 (G) が得られる事実を最も良く説明する化合物 (B) の極限構造式は、(H) のように描ける。

キラルな化合物(C)に CH_3CH_2MgBr を付加させると(水で後処理する),ジアステレオマーの関係にある化合物 (I) と(J)が得られる。キラルな化合物(D)に Pd 触媒存在下水素を付加させると,(コ)な化合物(K)が得られる。 化合物(E)は NaOH と反応させると,(サ)反応で化合物(L)となる。

選択肢: (a) 電子供与: (b) 電子求引: (c) 共鳴: (d) 誘起: (e) Fischer: (f) Octet: (g) Markovnikov: (h) Newman: (i) Grignard: (j) Lewis: (k) 第1級: (l) 第2級: (m) 第3級: (n) パラ: (o) メタ: (p) オルト: (q) エナンチオマー: (r) ジアステレオマー: (s) キラル: (t) アキラル: (u) 付加: (v) 脱離: (w) S_N1: (x) S_N2: (y) 酸化: (z) 還元

(/. 0				
Ç.	化B	Date			No.
ι.	HI4				
-	(a) h/ra_ 0.22~0.4/ 0.4/4~6.73	5	c. 75		
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 			
	(4) 金属 → 価電子かハントかえたに満たこれで、 をしていてい 一温度を上げるは対称をしている電子かんの ことにいる。)いったものかは導体と発展体	1762 00-pt	でから	在海	^ハ つか 体 <i>[=肝</i>)
	$ \begin{array}{c} (C) l_n \frac{[A_0]}{[A]} = kt \\ \frac{[A]}{[A_0]} = e^{kt} \\ \frac{[A]}{[A_0]} = e^{-kt} \end{array} $				
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$				
	$\frac{e}{\ln 2 - kt} = \frac{1}{t} = \frac{989\%}{2 - 9490^{-7}} = \frac{989\%}{2 - 9490^{-7}} = \frac{989\%}{2 - 9490^{-7}} = \frac{989\%}{2 - 9490^{-7}}$	<u>, </u>	10/2		
<u></u>	$\frac{1}{1} (a) - K_{p} = \frac{P(H_{z})^{3} \cdot P(H_{z})}{P(N_{z})^{2}}$				
	e) $2NH_3$ $\stackrel{?}{=}$ $3H_5+N_2$ $(3d)^3(3d)$ $(1-d)^3$)	-		
	/6(1-d) ² - Kp- h ² P(H ₂) ² ・P(N ₂) ² となり Kplはー定でかか P(NH ₃) ² よって 左1: 行かか	5_	Þ(NH	ゝ)²か′	增加_
	1) 体験-定 XE+W=AH_W=PAV=D K=Aexp(AE) Tか、増加 → K増加 よって大分析 =Awp(-AH)				
			, , ,		·

2	Pate
2 <u>)</u>	$\Delta H = -R \frac{\ln \frac{6.67 \times 10^4}{1.29 \times 10^3}}{\frac{1}{773} - \frac{1}{623}} $ $= 105000 J/mol = 1.05 \times 10^2 kJ/mol$
3]	(3) e (1) d (1) g (2) m (7) l
	(1) a (1) p (1) n (1) 0 (1) t
	(#) V
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

.