Analyse Approfondie

Table des matières

1.	Introduction.	1
	1.1. Minoration, Majoration	
	1.2. Supremum et infimum.	1
2.	Fonctions dans \mathbb{R} .	2
	2.1. Valeur absolue. · · · · · · · · · · · · · · · · · · ·	2
	2.2. Partie entière.	2
3.	Irrationalitée	3

Chapitre 1: les nombres réels

1. Introduction.

Définition 1.1. L'ensemble des nombres réels $\mathbb R$ muni de l'addition et de la multiplication et de la relation d'ordre est caracterisé par

- (1) Sa commutativité,
- (2) Son ordre total,
- (3) \mathbb{R} est Dedekind complet.

Définition 1.2 (Dedekind-complet). On dit qu'un ensemble est Dedekind-complet si toute partie non vide de cet ensemble admet une borne supérieure.

1.1. Minoration, Majoration...

Définition 1.3 (Majorant). Soit $A \subset \mathbb{R}$, $M \in \mathbb{R}$. On dit que M est un majorant si $\forall x \in A, M \geq x$.

Définition 1.4 (Minorant). Soit $A \subset \mathbb{R}$, $m \in \mathbb{R}$. On dit que m est un minorant si $\forall x \in A$, $m \le x$. i.e

Définition 1.5 (Partie majorée). On dit qu'une partie de \mathbb{R} est majorée si elle admet un majorant. A est majorée $\Leftrightarrow \exists M \in \mathbb{R}, \forall x \in A, M \geq x$.

Définition 1.6 (Partie minorée). On dit qu'une partie de \mathbb{R} est minorée si elle admet un minorant. A est minorée $\Leftrightarrow \exists m \in \mathbb{R}, \forall x \in A, m \leq A$.

Définition 1.7 (Partie bornée). Soit $A \subset \mathbb{R}$, $R \in \mathbb{R}$. On dit que A est bornée si $\forall x \in A, |x| \leq R$.

1.2. Supremum et infimum.

Définition 1.8 (Borne supérieure). Soit $A \subset \mathbb{R}$, $S \in \mathbb{R}$. On dit que S est la borne supérieure de A si S est le plus petit des majorants. On la note $S = \sup(A)$.

Proposition 1.9. Soit $A \subset \mathbb{R}$ et $S \in \mathbb{R}$ alors

$$S = \sup(A) \Leftrightarrow \begin{cases} \forall x \in A, x \le S \\ \forall \varepsilon > 0, \exists x \in A, S - \varepsilon < x \le S \end{cases}$$

Définition 1.10 (Borne inférieure). Soit $A \subset \mathbb{R}$, $I \in \mathbb{R}$. On dit que I est la borne inférieure de A si et seulement si I est le plus grand des minorants. On la note $I = \inf(A)$.

Proposition 1.11. Soit $A \subset \mathbb{R}$ et $I \in \mathbb{R}$ alors

$$I = \inf(A) \Leftrightarrow \begin{cases} \forall x \in A, x \ge I \\ \forall \varepsilon > 0, \exists x \in A, I + \varepsilon > x \ge I \end{cases}$$

Proposition 1.12. La borne supérieure/inférieure d'un ensemble lorsqu'elle existe est unique.

Démonstration. Supposons que S_1 et S_2 soient deux bornes supérieures de A. Puisque S_1 est un majorant, $\forall x \in A, S_1 \geq x$. Or S_2 est le plus petit des majorants donc $S_2 \leq S_1$. De même, on a $S_1 \leq S_2$ donc par ordre total de \mathbb{R} , $S_1 = S_2$ □

Remarque 1.13. On note $\sup A = +\infty$ si A est une partie de \mathbb{R} non-majorée. On note $\inf A = -\infty$ si A est une partie de \mathbb{R} non-minorée.

Définition 1.14 (Intervalle). Une partie I de \mathbb{R} est un intervalle si

$$\forall x, z \in I, \forall y \in \mathbb{R}, x < y < z \Rightarrow y \in I$$

Théorème 1.15. ℝ est archimédien, i.e

$$\forall \varepsilon > 0, \forall A > 0, \exists n \in \mathbb{N}, \varepsilon n > A.$$

Démonstration. Soit $\varepsilon > 0$, A > 0. Supposons par l'absurde que $\forall n \in \mathbb{N}$, $n\varepsilon \le A$. Alors $E := \{n\varepsilon \mid n \in \mathbb{N}\}$ est non-vide et majoré. Ainsi $M := \sup(E)$ existe. Puisque $M - \varepsilon$ n'est pas un majorant de E, il existe $n \in \mathbb{N}$ tel que $n\varepsilon > M - \varepsilon$. Ainsi, $(n + 1)\varepsilon > M$. D'où une contradiction. □

2. Fonctions dans \mathbb{R} .

2.1. Valeur absolue.

Définition 2.1 (Valeur absolue). On définit la fonction valeur absolue par :

$$|\cdot|: \mathbb{R} \to \mathbb{R}; x \mapsto \begin{cases} x & \text{si } x \ge 0 \\ -x & \text{si } x \le 0 \end{cases}$$

Proposition 2.2. Soit $x, y \in \mathbb{R}$,

- (1) $|x| = |y| \Leftrightarrow (x = y \text{ ou } x = -y)$
- (2) $|x + y| \le |x| + |y|$ (Inégalité triangulaire).
- (3) $|x y| \ge ||x| |y||$ (Inégalité triangulaire inversée).

Proposition 2.3. Soit $a, x \in \mathbb{R}$, alors:

- (1) Si $a \ge 0$, $|x| = a \Leftrightarrow (x = a \text{ ou } x = -a)$
- (2) $|x| \le a \Leftrightarrow -a \le x \le a$
- (3) $|x| < a \Leftrightarrow -a < x < a$
- (4) $|x| \ge a \Leftrightarrow (x \ge a \text{ ou } x \le -a)$
- (5) $|x| > a \Leftrightarrow (x > a \text{ ou } x < a)$.

2.2. Partie entière.

Théorème 2.4. Pour tout $x \in \mathbb{R}$, il existe un unique $n \in \mathbb{Z}$ tel que $n \le x < n + 1$ On dit que n est la partie entière de x, que l'on note $\lfloor x \rfloor$.

Corollaire 2.5.

 $\forall x \in \mathbb{R}, |x| \le x < |x| + 1$ $\forall x \in \mathbb{R}, x - 1 < \lfloor x \rfloor \le x.$

3. Irrationalitée

Théorème 3.1.

$$\sqrt{2} \notin \mathbb{Q}$$
.

Démonstration. Supposons par l'absurde $\sqrt{2} \in \mathbb{Q}$. Alors il existe $a, b \in \mathbb{Z}$ tq $\sqrt{2} = \frac{a}{b} \Leftrightarrow b\sqrt{2} = a \Leftrightarrow$ $2b^2 = a^2$. Donc 2 apparait un nombre de fois impair dans la décomposition en facteur premier à gauche de l'équation et un nombre de fois pair à droite de l'équation. Or d'parès le théorème fondamental de l'arithmetique, la décomposition en facteur premier est unique. On obtient donc une contradiction. Ainsi, $\sqrt{2} \in \mathbb{R} \setminus \mathbb{Q}$.

Théorème 3.2. \mathbb{Q} est dense dans \mathbb{R} i.e

$$\forall x, y \in \mathbb{R}, x < y \Rightarrow \exists q \in \mathbb{Q}, x < q < y.$$

Démonstration. Soit $x, y \in \mathbb{R}$ tels que x < y. Posons $\varepsilon := y - x > 0$.

Comme \mathbb{R} est archimédien, il existe $n \in \mathbb{N} \setminus \{0\}$ tel que $n\varepsilon > 1$, c'est-à-dire $\frac{1}{n} < \varepsilon$.

Posons $m := \lfloor nx \rfloor + 1$.

Alors
$$nx < m \le nx + 1 \Rightarrow x < \frac{m}{n} \le x + \frac{1}{n} < x + \varepsilon = y$$
.
Ainsi, $q = \frac{m}{n} \in \mathbb{Q}$ vérifie $x < q < y$

Théorème 3.3. $\mathbb{R} \setminus \mathbb{Q}$ est dense dans \mathbb{R} , i.e

$$\exists x, y \in \mathbb{R}, x < y \Rightarrow \exists z \in \mathbb{R} \setminus \mathbb{Q}, x < z < y.$$

Démonstration. Soit $x, y \in \mathbb{R}, x < y$.

D'après la démonstration précédente, il existe $q \in \mathbb{Q}, x < q < y$. De même, il existe $p \in \mathbb{Q}, x$

Ainsi, on a x .

Posons $s := p + \frac{\sqrt{2}}{2}(p - q)$. Alors $s \in \mathbb{R} \setminus \mathbb{Q}$, sinon on aurait $\sqrt{2} = 2\frac{s - p}{q - p} \in \mathbb{Q}$.

De plus p < s < q puisque $0 < \frac{\sqrt{2}}{2} < 1$. On a bien construit $s \in \mathbb{R} \setminus \mathbb{Q}$ vérifiant x < s < y.

Chapitre 2: Continuité uniforme:

Définition 3.4 (Continuité). Soit $f: D \to \mathbb{R}$ une fonction définie sur $D \subset \mathbb{R}$. On dit que f est continue si

$$\forall x_1 \in D, \forall \varepsilon > 0, \exists \eta > 0, \forall x_2 \in D, |x_1 - x_2| < \eta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon.$$

Définition 3.5 (Continuité uniforme). Soit $f: D \to \mathbb{R}$ une fonction définie sur $D \subset \mathbb{R}$. On dit que f est uniformément continue si

$$\forall \varepsilon > 0, \exists \eta > 0, \forall x_1, x_2 \in D, |x_1 - x_2| < \eta \Rightarrow |f(x_1) - f(x_2)| < \varepsilon.$$

Remarque 3.6. Le quantificateur universel sur x_1 est positionné différemment dans les deux définitions. Ainsi:

- (1) La continuité est une notion locale puisque η depend de ε et de x_1 .
- (2) La continuité uniforme est une notion globale pusique η doit être choisit indépendamment de x_1 et dépendre seulement de ε (η dépend du comportement de f sur tout son domaine).

Définition 3.7 (k-lipschitzienne). Une fonction $f: I \to \mathbb{R}$ est dite k-lipschitzienne s'il existe k > 0 tel que

$$\forall x_1, x_2 \in I, |f(x_1) - f(x_2)| \le k|x_1 - x_2|$$

Proposition 3.8. Soit $f: I \to \mathbb{R}$ une fonction k lipschitzienne. Alors f est uniformément continue.

Démonstration. Soit $f: I \to \mathbb{R}$ une fonction k lipschitzienne. Soit $\varepsilon > 0$. Posons $\eta = \frac{\varepsilon}{k}$. On a $|x_1 - x_2| \le \eta \Rightarrow |f(x_1) - f(x_2)| \le k|x_1 - x_2| \le k\eta = \varepsilon$. Ainsi, f est uniformément continue. \square

Proposition 3.9. Soit $f: I \to \mathbb{R}$ une fonction dérivable sur un intervalle I. Si f' est bornée alors f est uniformément continue.

Démonstration. Soit $f:I\to\mathbb{R}$ une fonction continue et dérivable, $M\in\mathbb{R}$ tel quel $\forall x\in I, f'(x)\leq M$ On a f continue sur I un segment, et f dérivable sur I ouvert. Donc d'apres le théorème d'inégalité des accroissements finis, on a $\forall x_1,x_2\in\mathbb{R}, |f(x_1)-f(x_2)|\leq M(x_1-x_2)$. Posons $\eta=\frac{\varepsilon}{M}$. On a

$$|f(x_1) - f(x_2)| \le M|x_1 - x_2| \le M\eta = \varepsilon$$

donc f est uniformément continue.

Proposition 3.10. Soit $f : \mathbb{R}_+ \to \mathbb{R}$. Si f est uniformément continue, il existe $a, b \in \mathbb{R}$ tel que pour tout $x \in \mathbb{R}_+$, $f(x) \le ax + b$.

Proposition 3.11. Soit $f: \mathbb{R}_+ \to \mathbb{R}$ une fonction continue. Si $\lim_{x \to +\infty} \frac{f(x)}{x} = l \in \mathbb{R}$, f est uniformément continue.

Théorème 3.12 (Théorème de Heine). Soit $f : [a, b] \to \mathbb{R}$ une fonction continue. Alors elle est uniformément continue.