Practical aspects of deep learning

LATEST SUBMISSION GRADE

100%

1.	If you have 10,000,000 examples, how would you split the train/dev/test set?	1 / 1 point
	33% train . 33% dev . 33% test	
	98% train . 1% dev . 1% test60% train . 20% dev . 20% test	
	O	
	✓ Correct	
2.	The dev and test set should:	1/1 point
	Come from the same distribution	
	Come from different distributions	
	Be identical to each other (same (x,y) pairs)	
	Have the same number of examples	
	✓ Correct	
3.	If your Neural Network model seems to have high variance, what of the following would be promising things to try?	1/1 point
	✓ Add regularization	
	✓ Correct	
	Increase the number of units in each hidden layer	
	Get more test data	
	Make the Neural Network deeper	
	Get more training data	
	✓ Correct	

4.	You are working on an automated check-out kiosk for a supermarket, and are building a classifier for apples, bananas and oranges. Suppose your classifier obtains a training set error of 0.5%, and a dev set error of 7%. Which of the following are promising things to try to improve your classifier? (Check all that apply.) Increase the regularization parameter lambda	1 / 1 point
	✓ Correct	
	Decrease the regularization parameter lambda	
	Get more training data	
	✓ Correct	
	Use a bigger neural network	
5.	What is weight decay?	1/1 point
	Gradual corruption of the weights in the neural network if it is trained on noisy data.	
	The process of gradually decreasing the learning rate during training.	
	A technique to avoid vanishing gradient by imposing a ceiling on the values of the weights.	
	A regularization technique (such as L2 regularization) that results in gradient descent shrinking the weights on every iteration.	
	✓ Correct	
6.	What happens when you increase the regularization hyperparameter lambda?	1 / 1 point
	Weights are pushed toward becoming smaller (closer to 0)	
	Weights are pushed toward becoming bigger (further from 0)	
	Oubling lambda should roughly result in doubling the weights	
	Gradient descent taking bigger steps with each iteration (proportional to lambda)	
	✓ Correct	
7.	With the inverted dropout technique, at test time:	1/1 point
	You do not apply dropout (do not randomly eliminate units) and do not keep the 1/keep_prob factor in the calculations used in training	
	You do not apply dropout (do not randomly eliminate units), but keep the 1/keep_prob factor in the calculations used in training.	
	You apply dropout (randomly eliminating units) and do not keep the 1/keep_prob factor in the calculations used in training	
	You apply dropout (randomly eliminating units) but keep the 1/keep_prob factor in the calculations used in training.	
	/ Covert	

8.	Increasing the parameter keep_prob from (say) 0.5 to 0.6 will likely cause the following: (Check the two that apply)	1/1 point
	☐ Increasing the regularization effect	
	Reducing the regularization effect	
	✓ Correct	
	Causing the neural network to end up with a higher training set error	
	Causing the neural network to end up with a lower training set error	
	✓ Correct	
9.	Which of these techniques are useful for reducing variance (reducing overfitting)? (Check all that apply.)	1/1 point
	Exploding gradient	
	☐ Gradient Checking	
	✓ L2 regularization	
	✓ Correct	
	☐ Vanishing gradient	
	✓ Data augmentation	
	✓ Correct	
	Xavier initialization	
	✓ Dropout	
	✓ Correct	
10.	Why do we normalize the inputs x ?	1/1 point
	It makes the cost function faster to optimize	
	Normalization is another word for regularizationIt helps to reduce variance	
	It makes it easier to visualize the data It makes the parameter initialization faster	
	✓ Correct	