Matrius i vectors (grup de matí)

Curs 2018–2019

1.1 Combinacions lineals

Sigui E un espai vectorial sobre els nombres reals i sigui $\{v_1, \ldots, v_n\}$ un conjunt de vectors de E. S'anomena *combinació lineal* de v_1, \ldots, v_n qualsevol vector que s'expressi com

$$a_1v_1 + \cdots + a_nv_n$$

on a_1, \ldots, a_n són nombres reals, que es diuen *coeficients* de la combinació lineal.

Definició 1.1. Direm que els vectors v_1, \ldots, v_n són linealment independents si l'única combinació lineal seva que satisfà $a_1v_1 + \cdots + a_nv_n = 0$ és la que té tots els coeficients nuls: $a_i = 0$ per a tot i.

En cas contrari, es diu que els vectors v_1, \ldots, v_n són linealment dependents. Qualsevol expressió de la forma $a_1v_1 + \cdots + a_nv_n = 0$ on algun coeficient a_i és diferent de zero s'anomena una relació de dependència entre els vectors v_1, \ldots, v_n .

Qualsevol subconjunt d'un conjunt de vectors linealment independents és un conjunt de vectors linealment independents. Un únic vector v és linealment independent si i només si $v \neq 0$. Per conveni, el conjunt buit \emptyset es considera un conjunt de vectors linealment independents.

Proposició 1.2. Donat un conjunt de vectors $\{v_1, \ldots, v_n\}$ amb $n \geq 2$, es compleix que v_1, \ldots, v_n són linealment dependents si i només si algun d'ells és combinació lineal dels altres.

Demostració. Suposem primer que els vectors v_1, \ldots, v_n són linealment dependents. Sigui $a_1v_1 + \cdots + a_nv_n = 0$ una relació de dependència. Canviant l'ordre, si cal, dels sumands, podem suposar que $a_1 \neq 0$. Aleshores, multiplicant els dos membres per $1/a_1$, obtenim

$$v_1 + (a_2/a_1)v_2 + \dots + (a_n/a_1)v_n = 0$$

i per tant

$$v_1 = -(a_2/a_1)v_2 - \dots - (a_n/a_1)v_n,$$

d'on v_1 és combinació lineal de v_2, \ldots, v_n .

Recíprocament, suposem que v_1 és combinació lineal de v_2, \ldots, v_n . Això vol dir que $v_1 = b_2v_2 + \cdots + b_nv_n$ per a alguns nombres reals b_1, \ldots, b_n , i d'aquí resulta

$$-v_1 + b_2v_2 + \dots + b_nv_n = 0,$$

que és una relació de dependència, ja que el coeficient de v_1 no és zero.

Observem que si un conjunt de vectors $\{v_1, \ldots, v_n\}$ conté el vector 0, llavors v_1, \ldots, v_n són linealment dependents. Per demostrar aquesta afirmació, suposem que $v_1 = 0$. Llavors

$$1v_1 + 0v_2 + \cdots + 0v_n = 0$$

és una relació de dependència entre v_1, \ldots, v_n .

Definició 1.3. Un conjunt $\{v_1, \ldots, v_n\}$ de vectors d'un espai vectorial E és un conjunt de generadors de E si tot vector de E és combinació lineal de v_1, \ldots, v_n .

Si $\{v_1, \ldots, v_n\}$ és un conjunt de generadors de E, també direm que els vectors v_1, \ldots, v_n generen E.

Proposició 1.4. Si $\{v_1, \ldots, v_n\}$ és un conjunt de generadors de E on v_1 és combinació lineal de v_2, \ldots, v_n , llavors $\{v_2, \ldots, v_n\}$ també són generadors de E.

Demostració. Per demostrar aquest fet, sigui w un vector qualsevol de E. Com que $\{v_1, \ldots, v_n\}$ és un conjunt de generadors de E, podem escriure

$$w = a_1v_1 + a_2v_2 + \dots + a_nv_n$$

per a alguns nombres reals a_1, \ldots, a_n . Com que v_1 és combinació lineal de v_2, \ldots, v_n , podem escriure

$$v_1 = b_2 v_2 + \dots + b_n v_n.$$

Aleshores

$$w = a_1(b_2v_2 + \dots + b_nv_n) + a_2v_2 + \dots + a_nv_n$$

= $(a_1b_2 + a_2)v_2 + \dots + (a_1b_n + a_n)v_n$

i per tant w és combinació lineal de v_2, \ldots, v_n .

Definició 1.5. Un conjunt ordenat v_1, \ldots, v_n de vectors linealment independents que són generadors de E s'anomena una base de E.

Si v_1, \ldots, v_n és una base de E i w és un vector qualsevol de E, llavors, com que v_1, \ldots, v_n generen E, podem escriure

$$w = a_1v_1 + \cdots + a_nv_n$$

per a alguns nombres reals a_1, \ldots, a_n . És important observar que aquests nombres reals a_1, \ldots, a_n són 'unics, ja que si

$$w = b_1 v_1 + \dots + b_n v_n$$

llavors

$$0 = (a_1 - b_1)v_1 + \dots + (a_n - b_n)v_n$$

i, com que v_1, \ldots, v_n són linealment independents, resulta que $a_i - b_i = 0$ per a tot i; és a dir, $a_i = b_i$ per a tot i.

Els coeficients a_1, \ldots, a_n s'anomenen *components* de w en la base v_1, \ldots, v_n .

Hem imposat que una base sigui un conjunt ordenat de vectors per poder dir que les components d'un vector w en una base v_1, \ldots, v_n són un element $(a_1, \ldots, a_n) \in \mathbb{R}^n$ ben definit. Si canviem l'ordre de v_1, \ldots, v_n , llavors s'obté una altra base diferent i les components dels vectors també queden permutades.

El conjunt buit és, per conveni, una base de l'espai vectorial $E = \{0\}$.