

Data Science Project

CRISP-DM (Cross Industry Standard Process – Data Mining)

- 1. Business Problem Understanding
- 2. Data understanding
- 3. Data pre-processing
- 4. Modelling
- 5. Evaluation
- 6. Presentation

Business Problem Understanding

> Understand the extract problem and the requirements of the client

Ex: Identify the loan defaulters in a bank

Data Understanding

- ➤ Understand the each and every variable clearly (if required take the help of domain expert)
- Understand the dataset (shape & info)
- ➤ list the discrete variables and continuous variables

Data Pre-processing

- > EDA (Exploratory Data Analysis)
 - Understanding given raw data clearly by applying pandas, Matplotlib & Seaborn
 - Both Discrete and continuous variables separately
 - Univariate Analysis
 - Bivariate Analysis
 - Multivariate Analysis
 - Check & list how many variables are having
 - missing values
 - outliers
 - skewed

- discrete nominal
- discrete ordinal

> Feature Selection

o Drop unimportant variables (constant valve, uniques)

> Data Cleaning

- o Treat the missing values (mandatory)
- o Treat the outliers

> Data Wrangling

- Convert skewed to normal
- Convert discrete categorical to discrete count (mandatory)
- > Train test Split
- > Feature Scaling
- ➤ Dimension Reduction (PCA)

Modelling & Evaluation

Select various Algorithms which are applicable for given problem.

For Each and Every Algorithm

> with default parameters

Import Algorithm

Fit the train data

Predict on train, Predict on test

Calculate the train, test accuracy & cross validation score

- **Evaluation**
 - Check for Overfit or Underfit or good model (Good Model will have train accuracy = test accuracy)
 - Check test accuracy = cross validation score

Apply Hyper parameter tuning for each algorithm separately

+

Identify the best parameters

Rebuilt the model with same algorithm by considering the best hyperparameters

+

Calculate the train, test accuracy & cross validation score

+

Evaluation

Check for Overfit or Underfit or good model
(Good Model will have train accuracy = test accuracy)

and

- Check test accuracy = cross validation score
- > Save the train accuracy, test accuracy and CV values for ML Algorithm

Model Selection

Once each and every algorithm is completed, identify which is the best model with hyperparameters which satisfies the business requirements

Save Model

➤ Save the final model (which has given maximum accuracy) as a pickle file or joblib file as per requirements of deployment team