Problems based on line plots using Matplotlib's `pyplot` module:

1. Plotting a Linear Function

Create a line plot of the linear function y = 2x + 3 for x values ranging from -10 to 10.

2. Plotting Multiple Functions

Plot the functions $y = x^2$ and $(y = \sqrt{x})$ on the same plot for (x) values ranging from 0 to 10. Use different line styles or colors for each function.

Plot the functions $y = x^2$ and $y = \sqrt{x}$ on the same plot for x values ranging from 0 to 10. Use different line styles or colors for each function.

3. Plotting Trigonometric Functions

Create a line plot showing the functions $\langle y = \sin(x) \rangle$, $\langle y = \cos(x) \rangle$, and $\langle y = \tan(x) \rangle$ for $\langle x \rangle$ values ranging from 0 to $\langle 2 \rangle$.

Create a line plot showing the functions $y = \sin(x)$, $y = \cos(x)$, and $y = \tan(x)$ for x values ranging from 0 to (2π) .

4. Plotting Exponential Growth

Plot the function $(y = e^x)$ for (x) values ranging from -5 to 5.

Plot the function $y = e^x$ for x values ranging from -5 to 5.

5. Plotting Piecewise Functions

Create a line plot of the piecewise function $\ (f(x) = \text{begin}\{\text{cases}\} - 1 \& \text{if} \} x < 0 \ 1 \& \text{if} \} x \ge 0 \pmod{\text{cases}}$ for $\ (x)$ values ranging from -2 to 2.

Create a line plot of the piecewise function

$$f(x) = egin{cases} -1 & ext{if } x < 0 \ 1 & ext{if } x \geq 0 \end{cases}$$
 for x values ranging from -2 to 2,

for x values ranging from -2 to 2.

6. Plotting Parametric Equations

Create a line plot of the parametric equations $(x = \cos(t))$ and $(y = \sin(t))$ for (t) values ranging from 0 to $\langle (2 \rangle pi \rangle)$.

Create a line plot of the parametric equations $x = \cos(t)$ and $y = \sin(t)$ for t values ranging from 0 to 2π .

7. Plotting Logarithmic Functions

Plot the functions $\langle (y = \log(x)) \rangle$ and $\langle (y = \log_{10}(x)) \rangle$ for $\langle (x) \rangle$ values ranging from 0.1 to 10.

Plot the functions $y = \log \mathbb{Z}x$) and $y = \log_{10}(x)$ for x values ranging from 0.1 to 10.

8. Plotting Step Function

Create a line plot of the step function $\setminus \{f(x) = \text{begin}\{\text{cases}\} \ 0 \ \text{ktext}\{\text{if} \ \} \ x < 0 \setminus 1 \ \text{ktext}\{\text{if} \ \} \ x$ $\gcd 0 \pmod{ \text{cases}}$) for (x) values ranging from -5 to 5.

 $f(x) = \begin{cases} 0 & \text{if } x < 0 \\ 1 & \text{if } x \geq 0 \end{cases} \text{ for } x \text{ values ranging from -5 to 5,} \\ & \text{for } x \text{ values ranging} \end{cases}$ Create a line plot of the step function from -5 to 5.

9. Plotting Polynomial Functions

Plot the polynomial function $(y = x^3 - 2x^2 + x - 1)$ for (x) values ranging from -3 to 3.

Plot the polynomial function $y = x^3 - 2x^2 + x - 1$ for x values ranging from -3 to 3.

10. Plotting Piecewise Linear Functions

to 2.

Create a line plot of the piecewise linear function $\setminus (f(x) = \text{begin}\{\text{cases}\} - x \& \text{text}\{\text{if }\} x \setminus \text{leq } 0$

Create a line plot of the piecewise
$$\begin{cases} -x & \text{if } x \leq 0 \\ x & \text{if } x > 0 \end{cases}$$
 for x values ranging from -2