Calculus - Chapter 10 - Differentiation Rules.

$$\frac{d}{dx}(c) = 0$$

5.
$$\frac{d(u-v)}{dx} = \frac{du}{dx} - \frac{dv}{dx}$$

$$2 \cdot \frac{d}{dbc}(bc) = 1$$

$$\frac{d}{dx}(uv) = u\frac{dv}{dx} + v\frac{du}{dx}$$

3.
$$\frac{d}{dx}(cu) = c\frac{du}{dx}$$

7.
$$\frac{d}{dx}\left(\frac{u}{v}\right) = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2}$$

4.
$$\frac{d}{dx}(u+v+...) = \frac{du}{dx} + \frac{dv}{dx} + ...$$
 8. $\frac{d}{dx}(\frac{1}{x}) = -1/x^2$

$$\frac{\partial}{\partial x} \left(\frac{1}{x} \right) = -1/x^2$$

$$9. \quad \frac{d}{dx}(x^m) = mx^{m-1}$$

Chain Rule:

$$\frac{d}{dx}(f(g(x)) = f'(g(x)) \cdot g'(x)$$

Example:

$$f(x) = x^2 + 3$$
, $g(x) = 2x + 1$, $f'(x) = 2x$, $g'(x) = 2$
Hence $\frac{d}{dx}(f(g(x))) = 2(2x + 1) \cdot 2 = 8x + 4$

Alternative Chain

Let
$$u = g(x)$$
 and $y = f(u)$, $y = f(u) = f(g(x))$:

Rule:

Example:

Let
$$y = u^3$$
 and $u = 4x^2 - 2x + 5$ then the composite $y = (4x^2 - 2x + 5)^3$ has derivative:

$$\frac{dy}{dx} = \frac{dy}{dx}, \frac{du}{dx} = 3u^2(8x-2) = 3(4x^2 - 2x + 5)^2(8x - 2)$$

$$(f^{-1})(y_0) = 1/f(\alpha_0)$$
 where $\frac{d\alpha}{dy} = 1/(dy/d\alpha)$.

Example: Let
$$y = f(x) = x^2$$
, $x > 0$

Then
$$x = f^{-1}(y) = \sqrt{y}$$

Since
$$\frac{dy}{dx} = 2x$$
, $\frac{dx}{dy} = \frac{1}{2x}$ $\frac{1}{2\sqrt{y}}$ $\frac{1}{2\sqrt{y}}$