A Survey of Computational Physics

Nathan Chapman¹

¹Faculty of Physics Central Washington University

CS 530: High Performance Computing, Spring 2024

Pillars of Physics

Computational Applications

• Classical Mechanics ——— N-Body Simulations & Fluid Dynamics

Pillars of Physics

Computational Applications

- Classical Mechanics
 N-Body Simulations & Fluid Dynamics
- Electromagnetism ———— Fringing Fields & Antenna Radiation

	Pillars of Physics	Computational Application	าร
•	Classical Mechanics		ics
•	Electromagnetism —		on
•	Thermodynamics —		??

Pil	lars	of	Ph	vsics

Computational Applications

- ullet Classical Mechanics ----- N-Body Simulations & Fluid Dynamics
- ullet Quantum Mechanics ullet Molecular Optimization & Ultra-Cold Gases

	Pillars of Physics	Computational Applications
•	Classical Mechanics —	→ N-Body Simulations & Fluid Dynamics
•	Electromagnetism —	
•	Thermodynamics ——	→ ???
•	Quantum Mechanics -	→ Molecular Optimization & Ultra-Cold Gases
•	Relativity	Mercury's Perihelion & Black Hole Ray Tracing

Classical Mechanics

Remark

Given the position and velocity of and the forces acting on an object, the motion of that object is completely determined.

• Everday physics can be completed described by Newton's 2nd Law.

$$\sum_{i} \mathbf{F}_{i} = m\ddot{\mathbf{r}} \tag{1}$$
Equation of Motion

Sample frame title

In this slide, some important text will be highlighted because it's important. Please, don't abuse it.

Remark

Sample text

Important theorem

Sample text in red box

Examples

Sample text in green box. The title of the block is "Examples".

Two-column slide

This is a text in first column.

$$E = mc^2$$

- First item
- Second item

This text will be in the second column and on a second thoughts, this is a nice looking layout in some cases.

