EXERCICE 1: CHIMIE ORGANIQUE 6 points - 1.1- Ecrire l'équation-bilan de la réaction et préciser la fonction en présence de l'acide suffurique conduit à un composé B. 1.1- Ecrire l'équation-bilan de la réaction et préciser la fonction en présence de l'acide suffurique conduit à un composé B. 1.1- Ecrire l'équation-bilan de la réaction et préciser la fonction en présence de l'acide suffurique conduit à un composé B. 1.1- Ecrire l'équation-bilan de la réaction et préciser la fonction en présence de l'acide suffurique conduit à un composé B. 1.1- Ecrire l'équation-bilan de la réaction et préciser la fonction de B. 0,76pt 1.2- Sachiant que B renfermé en masse 21,8% d'oxygéne, déterminer sa formule brute. 0,5pt 1.1- Ecrire l'équation-bilan de la réaction et préciser la fonction de B. 1.1- Ecrire l'équation-bilan de la réaction en utilisant les formules semi-développées de A et B. 2- Une amine tertaire A de formule C ₃ H ₃ N réagit avec le 1-iodobutane en solution dans l'éther. Il se forme un précipité blanc. 2-1- Ecrire l'équation-bilan de la réaction en utilisant les formules semi-développées. 0,5pt 0,5pt 2-2. Nommer le produit formé. 2-3- Identifier le caractère de l'amine, mis en évidence dans cette réaction. 0,25pt 3-3- Guertifier le caractère de l'amine, mis en évidence dans cette réaction. 0,25pt 3-3- Guertifier le mainé des acides α- aminé s. 2-0- Exerminer sa formule brute. 3-3- Sachant que la moiécule des acides α- aminés. 2-0- Exerminer sa formule brute. 3-3- Sachant que la moiécule de vaide α- aminé ne comporte qu'un seul atome de carbone asymétrique, en dédutre sa formule semi-développée et préciser son nome en nomenclature systématique. 1- 1pt mainer developpée et préciser son nome en momenclature systématique. 1- 1pt minure semi-développée et préciser son nome en momenclature systématique. 1- 1pt minure semi-développée et préciser son nome en momenclature systématique. 1- 1pt minure semi-développée et préciser son nome en momenclature systématique. 1- 1pt minure semi-développée et préciser son nome e		OFFICE DL	J BACCALAUREAT DU CAMERO	DUN	
ERREUVE : CHIMIE DEPREVE disponible sur www.emergencetechnocm.com EXERCICE 1: CHIMIE ORGANIQUE 6 points. 1-Un alcène A a pour formule brute C_nH_{2n} . Son hydratation en présence de l'acide sulfurique conduit à un composé B. 1-Un alcène A a pour formule brute C_nH_{2n} . Son hydratation en présence de l'acide sulfurique conduit à un composé B. 1-1- Ecrire l'équation-bilan de la réaction et présies ra fonction de B. 0,75pt 1-2- Sachant que B renferme en masse 21,6% d'oxygéne, déterminer sa formule brute. 0,5pt 1-4- L'oxydation ménagée de B étant impossible, déduire lies formules semi-développées 0,5pt 1-4- L'oxydation ménagée de B étant impossible, déduire lies formules semi-développées 0,5pt 2-1- Ecrire l'équation- bilan de la réaction en utilisant les formules semi-développées. 0,5pt 2-1- Ecrire l'équation- bilan de la réaction en utilisant les formules semi-développées. 0,5pt 2-2- Nommer le produit formé. 2-3- Identifier le caractère de l'amine, mis en évidence dans cette réaction. 0,5pt 3-0- no considère un acide c - aminé de masse molaire M = 131 g . mol $^{-1}$ d'ont le groupe R est un radical alkyler saturé à une seule amilification. 1-1- Ecrire la formule générale des acides c - aminé ne comporte qu'un seul atome de carbone asymétrique, en déduire sa formule générale des acides c - aminé ne comporte qu'un seul atome de carbone asymétrique, en déduire sa formule semi- développée et préciser son nom en nomenclature systématique. 1-1- Exercice 2- ACIDES – BASES / 6 points s 1- Définir un acide faible. 2- Deux solutions aqueuses à 25°C ont un pH identique de valeur 3,4. 2- Deux solutions aqueuses à 25°C ont un pH identique de valeur 3,4. 2- Deux solution acide éthanoique est un acide faible. 2- Calculer la concentration d'acide éthanoique (H ₃ CO+ + CT^-) de concentration C_2 = 10^{-2} mol. L^{-1} . 2- de deutie la concentration des lies hybrionisments l'un acide exploition d'acide éthanoique (H ₃ COOH de concentration C_2) a concentration bilan de la réaction ent	EXAMEN:	BACCALAURÉAT	SÉRIE : C-D	SESSION ·	20/18
Exercice 1: CHIMIE ORGANIQUE 6 points. 1-Un alcêne A a pour formule brute C_nH_{2n} . Son hydratation en présence de l'acide sulfurique conduit à un composé B. 1-1: Ecrire l'équation-bian de la réaction et préciser la fonction de B. 1-1: Ecrire l'équation-bian de la réaction et préciser la fonction de B. 1-2: Sacharit que B renferme en masse 21,0% d'oxygéne, déterminer sa formule brute. 0,5pt 1-3: Ecrire les différentes formules semi-développées possibles de B. 1-4: L'oxydation ménagée de B étant impossible, déduire les formules semi-développées de A et B. 2-10: A entine tertaier A de formule C_3H_9 N réagit avec le 1-iodobutane en solution dans l'éther. Il se forme un précipté blanc. 2-1: Écrire l'équation- bilan de la réaction en utilisant les formules semi-développées. 2-1: Écrire l'équation- bilan de la réaction en utilisant les formules semi-développées. 2-2: Nommer le produit formé. 2-3: Identifier le caractère de l'amine, mis en évidence dans cette réaction. 3-1: Écrire l'équation- bilan de la réaction en utilisant les formules semi-développées. 3-3: Identifier le caractère de l'amine, mis en évidence dans cette réaction. 3-1: Écrire la formule générale des acides α - aminés en sasse molaire M = 131 g . $mol - 1$ dont le groupe R est un radical alkyles saturé à une seule ramification. 3-1: Écrire la formule générale des acides α - aminés. 3-2: Déterminer sa formule brute. 3-3: Sachant que la molécule d'acide α - aminé ne comporte qu'un seul atome de carbone asymétrique, en déduire sa formule semi- développée et préciser son nom en nomenclature systématique. 1-pt Masses molaires a tomique sen g . $mol - 1$: c = 12; e + 1; e = 16. 2- EXERCICE 2: ACIDES - BASES / 6 points. 2-1: Définir un acide faible. 2-2: Montrer que l'acide éthanoique et l'acide éthanoique. 3-3: Déterminer sa ture solution d'acide éthanoique. CH-3COH de concentration e = 10 - 2 mol. e - 2-2. Montrer que l'acide éthanoique. CH-3COH de concentration et l'acide éthanoique. CH-3COH de concentration et	EPREUVE :	CHIMIE			
1-2 Sectinant que B renferme en masse 21,6% d'oxygéne, déterminer sa formule brute. 1-3 Ectine les différentes formules semi-développées possibles de B. 1-4 L'oxydation ménagée de B étant impossible, détuire les formules semi-développées 1-4 A et B. 2-Une amine tertlaire A de formule C_3 H_9 N réagit avec le 1-iodobutane en solution dans l'éther. Il se forme un précipité blanc. 2-1 he crire l'équation- bilan de la réaction en utilisant les formules semi-développées. 2-2 Nommer le produit formé. 2-3 identifier le caractère de l'amine, mis en évidence dans cette réaction. 3-1 he crire la formule générale des acides α - aminé de masse molaire $M=131$ g . mol^{-1} dont le groupe R est un radical alkyles sature, à une seule ramification. 3-1 Ectrire la formule générale des acides α - aminé ne comporte qu'un seul atome de carbone asymétrique, en dédulre sa formule brute. 3-3 Sachant que la molécule d'acide α - aminé ne comporte qu'un seul atome de carbone asymétrique, en dédulre sa formule semi- développée et préciser son nom en nomenclature systématique. 1-12 Deffairir un acide faible. 2-12 Deux solutions aqueuses a α -	1-Un alcène A a po	IMIE ORGANIQUE/ 6 points: our formule brute C_nH_{2n} . Son	 hvdratation en présence de l'acide 		un composé B.
1-3- Curine les differenties formules semi-développées possibles de B. 1-4. L'oxydation ménagée de B étant impossible, déduire les formules semi-développées 1-4. L'oxydation ménagée de B étant impossible, déduire les formules semi-développées 1-4. L'oxydation ménagée de B étant impossible, déduire les formules semi-développées 2-2. Une amine tertiaire A de formule C_3 H_9 N réagit avec le 1-iodobutane en solution dans l'éther. Il se forme un précipité blanc. 2-1. Ecrire l'équation- bilan de la réaction en utilisant les formules semi-développées. 2-3. Identifier le caractère de l'amine, mis en évidence dans cette réaction. 3-1. Ecrire l'acquation- bilan de masse molaire M = 131 $g.mol^{-1}$ dont le groupe R est un radical alkyler saturé à une seule ramification. 3-1. Ecrire la formule générale des acides α - aminés. 3-2. Determiner sa formule brute. 3-3. Sachant que la molécule d'acide α - aminé ne comporte qu'un seul atome de carbone asymétrique, en déduire sa formule semi- développée et préciser son nom en nomenclature systématique. 1-2. Deux solutions aqueuses $a = mol^{-1}$: C = 12; H = 1; O = 16. EXERCICE 2: ACIDES – BASES / 6 points. 2-2. Deux solutions aqueuses à $a = mol^{-1}$: C = 12; H = 1; O = 16. EXERCICE 2: ACIDES – BASES / 6 points. 3-1. Définir un acide faible. 2-2. Evant est une solution d'acide éthanoïque (H ₃ O + + CT -) de concentration C ₁ = 4,0 x 10 -3 mol. L ⁻¹ ; La deuxième est une solution d'acide éthanoïque (H ₃ CO + CT -) de concentration C ₂ = 10 -2 mol. L ⁻¹ . 1-2. Calculer la concentration des ions hydronium H_3 O + dans ces solutions. 2-2. Evant es que l'acide éthanoïque est un acide faible. 2-3. Ecrire l'équation-bilan de la réaction entre l'acide éthanoïque et l'acu. 2-4. Calculer les concentrations des diffrérentes espèces chimiques présentes dans la solution d'acide éthanoïque. En déduire le pKa de l'acide éthanoïque. 1-2-2. Cette solution est obtenue en dissolvant m = 20,4 g d'acide carboxylique. 1-2-2. Cette solution est obtenue en dissolvant m = 20,4 g d'	1-2- Sachant que	B renferme en masse 21 6% o	Sei la lollottoit de D.	am så a	
1-4- L Dxydation menagée de B étant impossible, déduire les formules semi-développées de A et B. 2-Une amine tertiaire A de formule C_3 H_9 N réagit avec le 1-iodobutane en solution dans l'éther. Il se forme un précipité blanc. 2-1- Écrire l'équation- bilan de la réaction en utilisant les formules semi-développées. 2-2- Nommer le produit formé. 2-3- Identifier le caractère de l'amine, mis en évidence dans cette réaction. 3-0 no considère un acide α - aminé de masse molaire M = 131 g . mol^{-1} dont le groupe R est un radical alkyler saturé à une seule ramification. 3-1-Écrire la formule générale des acides α - aminés. 3-2- Déterminer sa formule brute. 3-3-Sachant que la molécule d'acide α - aminé ne comporte qu'un seul atome de carbone asymétrique, en déduire sa formule semi- développée et préciser son nom en nomenclature systématique. Masses molaires atomiques en g . mol^{-1} : C = 12; H = 1; O = 16. EXERCICE 2: ACIDES — BASES / 6 points. 1- Définir un acide faible. 2- Deux solutions aqueuses à 2.5° C ont un pH identique de valeur 3,4. La première est une solution d'acide éthanoique $(H_3 O^+ + CI^-)^+$ de concentration C_2 = 10^{-2} mol. L^{-1} : La deuxième est une solution d'acide éthanoique CHyCOOH de concentration C_2 = 10^{-2} mol. L^{-1} : La deuxième est une solution d'acide éthanoique est un acide faible. 2- Deux solutions aqueuses à 2.5° C ont un pH identique de valeur 3,4. La première est une solution d'acide éthanoique CHyCOOH de concentration C_2 = 10^{-2} mol. L^{-1} : La deuxième est une solution d'acide éthanoique est un acide faible. 2- ELERCICE 2: ACIDES — BASES / 6 points — 10- 50- 50- 50- 50- 50- 50- 50- 50- 50- 5	1-3- Écrire les diffé	rentes formules semi-dávolon	nées possibles de P	orute.	
0,5pt 2.0 Line amine tertiaire A de formule C_3H_9N réagit avec le 1-iodobutane en solution dans l'éther. Il se forme un précipité blanc. 2-1- Écrire l'équation- bilan de la réaction en utilisant les formules semi-développées. 2-1- Écrire l'équation- bilan de la réaction en utilisant les formules semi-développées. 2-1- Écrire l'équation- bilan de la réaction en utilisant les formules semi-développées. 2-2- Nommer le produit formé. 0,5pt 3-0 n considère un acide α - amine de masse molaire M = 131 g . mol^{-1} dont le groupe R est un radical alkyles asturé à une seule ramification. 3-1- Écrire la formule générale des acides α - aminés. 3-2- Déterminer sa formule brute. 3-3- Sachant que la molécule d'acide α - aminé ne comporte qu'un seul atome de carbone asymétrique, en déduire sa formule semi- développée et préciser son nom en nomenclature systématique. 1pt Masses molaires atomiques en g . mol^{-1} : C = 12; H = 1; O = 16. EXERCICE 2: A CIDES — BASES / 6 points 3-1- Déterminer as developpée et préciser son nom en nomenclature systématique. 1pt Masses molaires atomiques en g . mol^{-1} : C = 12; H = 1; O = 16. EXERCICE 2: A CIDES — BASES / 6 points 3-1- Déterminer as clues olution d'acide éthanoïque ($H_3O^+ + CI^-$) de concentration C_1 = 4.0×10^{-3} mol. L^{-1} : L deuxième est une solution d'acide éthanoïque ($H_3O^+ + CI^-$) de concentration C_2 = 10^{-2} mol. L^{-1} . 2-1- L deuxième est une solution d'acide éthanoïque ($H_3O^+ + CI^-$) de concentration C_2 = 10^{-2} mol. L^{-1} . 2-1- L deuxième est une solution d'acide éthanoïque et l'eau. 2-1- L deuxième est une solution d'acide éthanoïque et l'eau. 2-1- L deuxième est une solution d'acide éthanoïque et l'eau. 2-1- L deuxième est une solution d'acide éthanoïque et l'eau. 2-1- L deuxième est deuxièm	1-4- L'oxydation me	énagée de B étant impossible	déduire les formules semi dévole	nnáca	100
2-Une amine tertiaire A de formule C_3 H_9 N réagit avec le 1-iodobutaine en solution dans l'éther. Il se forme un précipité blanc. 2-1 Écrire l'équation- bilan de la réaction en utilisant les formules semi-développées. 0,5pt 2-2. Nommer le produit formé. 2-3 identifier le caractère de l'amine, mis en évidence dans cette réaction. 3-0 n considère un acide a - aminé de masse molaire $M=131$ g . mol^{-1} dont le groupe R est un radical alkyles saturé à une seule ramification. 3-1 Écrire la formule générale des acides a - aminés. 3-2 Déterminer sa formule brute. 3-3 Sachant que la molécule d'acide a - aminé ne comporte qu'un seul atome de carbone asymétrique, en déduire sa formule semi- développée et préciser son nom en nomenclature systématique. 1 pt Masses molaires atomiques en g . mol^{-1} : $C=12$; $H=1$; $O=16$. 2 EXERCICE 2: A -CIDES — $BASES 16$ points. 1 Définir un acide faible. 2 Deux solutions aqueuses à $2.5^{\circ}C$ ont un pH identique de valeur 3.4 . La première est une solution d'acide éthanoique A -dans ces solutions. 2 deux en est une solution d'acide éthanoique A -dans ces solutions. 2 deux en l'acide éthanoique est un acide faible. 3 de Calcular les concentrations des différentes espèces chimiques présentes dans la solution d'acide éthanoique. 3 de déduire le pKa de l'acide éthanoique. 3 de déduire le pout de de valeur A -de de solution A -de l'acide ethanoique. 3 de déduire le pour atteindre le point d'équivalence, on doit verser un volume A -gue par une solution d'hydroxyde de sodium. Pour atteindre le point d'équivalence, on doit verser un volume A -gue par une solution d'hydroxyde de sodium Pour atteindre le point d'équivalence, on doit verser un volume A -gue que sour de de solution d'hydroxyde de sodium de concentration A -gue les abution d'acide carboxylique. 3 Déterminer la concentration molaire A -gue la solution d'acide carboxylique. 3 Déterminer la concentration molaire A -gue la solution d'acide carboxylique. 3 Déterminer la concentration d	de A et B.		, deduite les lorridles serril-develo	ppees	0 Ent
2-23 - Identifier le produit forme. 2-3 - Identifier le caractère de l'amine, mis en évidence dans cette réaction. 3- On considère un acide α- aminé de masse molaire $M=131\ g.\ mol^{-1}$ dont le groupe R est un radical alkyles saturé à une seule ramification. 3-1-Écrire la formule générale des acides $α$ - aminé ne comporte qu'un seul atome de carbone asymétrique, en déduire sa formule brute. 3-3-Sachant que la molécule d'acide $α$ - aminé ne comporte qu'un seul atome de carbone asymétrique, en déduire sa formule semi- développée et préciser son nome en nomenclature systématique. Masses molaires atomiques en $g.\ mol^{-1}$: $C=12$; $H=1$; $O=16$. $\frac{EXERCICE 2: ACIDES – BASES / 6 points _3 1. Définir un acide faible. 2- Deux solutions aqueuses à 25^{\circ}C ont un pH identique de valeur _3A. La première est une solution d'acide chlorhydrique (H_30^{+}+CI^{-}) de concentration C_1=4,0 \times 10^{-3} mol.L^{-1}; La deuxième est une solution d'acide éthanoïque CH_3COOH de concentration C_2=10^{-2} mol.L^{-1}. 2-1- Calculer la concentration des ions hydronium H_3C O^+ dans ces solutions. 2-2- Montrer que l'acide éthanoïque est un acide faible. 0,5pt 0,75pt 0,23- Ecrire l'équation-bilan de la réaction entre l'acide éthanoïque et l'eau. 0,5pt 0,5pt 0,75pt 0,25pt 0,25$	un precipite bianc.	•			me 0,3pt
2-3. Identifier le caractère de l'amine, mis en évidence dans cette réaction. 0,25pt 3-0 n considère un acide c- aminé de masse molaire $M=131\ g.\ mol^{-1}$ dont le groupe R est un radical alkyle saturé à une seule ramification. 3-1-Eorire la formule générale des acides α - aminés. 0,5pt 3-2. Déterminer sa formule brute. 0,5pt 3-3-Sachant que la molécule d'acide α - aminé ne comporte qu'un seul atome de carbone asymétrique, en déduire sa formule semi- développée et préciser son nom en nomenclature systématique. 1	2.7 Echie requation	on-bilan de la réaction en utilis	sant les formules semi-développée	es.	0,5pt
3-On Considere un acide c- aminé de masse molaire $M=131\ g.\ mol^{-1}$ dont le groupe R est un radical alkyles saturé à une seule ramification. 3-1-Ecrire la formule générale des acides a - aminés. 3-2- Déterminer sa formule brute. 3-3-Sachant que la molécule d'acide a - aminé ne comporte qu'un seul atome de carbone asymétrique, en déduire sa formule semi- développée et préciser son nom en nomenclature systématique. 1pt Masses molaires atomiques en $g.\ mol^{-1}: C=12$; $R=1$;	2.2. Idontification	oduit forme.			0,5pt
3-1-Ecirre la formule générale des acides a - aminés. 3-1-Ecirre la formule générale des acides a - aminés. 3-2- Déterminer sa formule brute. 3-3-Sachant que la molécule d'acide a - aminé ne comporte qu'un seul atome de carbone asymétrique, en déduire sa formule semi- développée et préciser son nome nomenclature systématique. 1pt Masses molaires atomiques en g - mol^{-1} : $C = 12$;	2-3- identifier le ca	aractère de l'amine, mis en év	ridence dans cette réaction.		0,25pt
3-2- Déterminer sa formule brute. 3-3- Sachant que la molécule d'acide α - aminé ne comporte qu'un seul atome de carbone asymétrique, en déduire sa formule semi- développée et préciser son nom en nomenclature systématique. 1pt Masses molaires atomiques en $g.mol^{-1}$: $C=12$; $H=1$; $O=16$. EXERCICE 2: ACIDES — BASES / 6 points $_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{{{_$	saturé à une seule	n acide α- aminé de masse mo e ramification.	plaire M = 131 $g.mol^{-1}$ dont le gro	oupe R est un radical	
3-3-Sachant que la molécule d'acide ${\bf q}$ - aminé ne comporte qu'un seul atome de carbone asymétrique, en déduire sa formule semi- développée et préciser son nom en nomenclature systématique. Masses molaires atomiques en ${\bf g}, mol^{-1}: {\bf C}=12$; ${\bf H}=1$; ${\bf O}=16$. EXERCICE 2: ACIDES — BASES / 6 points . 1- Définir un acide faible. 2- Deux solutions aqueuses à $2.5^{\circ}C$ ont un pH identique de valeur 3,4. La première est une solution d'acide chlorhydrique $(H_3O^+ + CI^-)$ de concentration $C_1=4,0 \times 10^{-3}$ mol. L^{-1} ; La deuxième est une solution d'acide éthanoïque CH_3COOH de concentration $C_2=10^{-2}$ mol. L^{-1} . 2-1- Calculer la concentration des ions hydronium H_3O^+ dans ces solutions. 2-2- Montrer que l'acide éthanoïque est un acide faible. 2-3- Écrire l'équation-bilan de la réaction entre l'acide éthanoïque et l'eau. 2-3- Écrire l'équation-bilan de la réaction entre l'acide éthanoïque et l'eau. 3-5- Traisise le dosage d'un volume $V_a=50$ mL d'un acide carboxylique de formule $C_nH_{2n}O_2$ par une solution d'hydroxyde de sodium. 4- Pour atteindre le point d'équivalence, on doit verser un volume $V_b=100$ mL 4- Déterminer la concentration molaire C_a de la solution d'acide carboxylique. 3-1- Déterminer la concentration molaire C_a de la solution d'acide carboxylique dans $V_a=1$ L d'eau; en déduire la masse molaire de cet acide. 3-3- Déterminer sa formule brute. 4- Again d'acide carboxylique dans $V_a=1$ L d'eau; en déduire la masse molaire de cet acide. 3-3- Déterminer sa formule brute. 4- Again de carboxylique dans $V_a=1$ L d'eau; en déduire la masse molaire de cet acide. 3-3- Déterminer sa formule brute. 5- CHIMIE GÉNÉRALE / Apoints - 1-1- Définir énergie d'ionisation. 1-2- Pris dans son état fondamental, l'atome d'hydrogène est excité et son électron passe du niveau 1 au niveau $V_a=1$ 1-2-1- Y-a-t-il absorption ou émission des photons? Justifier votre réponse. 1-2-1- Y-a-t-il absorption ou émission des pho	3-2- Déterminer sa	formula bruta	nes.		
Masses molaires atomiques en $g.\ mol^{-1}: C=12$; $H=1; O=16$. EXERCICE 2: ACIDES — BASES / 6 points 3 1. Définir un acide faible. 2. Deux solutions aqueuses à $25^{\circ}C$ ont un pH identique de valeur 3,4. La première est une solution d'acide chlorhydrique $(H_3O^++CI^-)$ de concentration $C_1=4,0 \times 10^{-3}$ mol. L^{-1} ; La deuxième est une solution d'acide éthanoïque CH ₃ COOH de concentration $C_2=10^{-2}$ mol. L^{-1} . 2-1. Calculer la concentration des ions hydronium H_3 O^+ dans ces solutions. 2-2. Montrer que l'acide éthanoïque est un acide faible. 2-3. Écrire l'équation-bilan de la réaction entre l'acide éthanoïque et l'eau. 2-4. Calculer les concentrations des différentes espèces chimiques présentes dans la solution d'acide éthanoïque. En déduire le pKa de l'acide éthanoïque. 3-On réalise le dosage d'un volume $V_a=50$ mL d'un acide carboxylique de formule $C_nH_{2n}O_2$ par une solution d'hydroxyde de sodium. Pour atteindre le point d'équivalence, on doit verser un volume $V_b=100$ mL de solution d'hydroxyde de sodium de concentration $C_b=0,100$ mol. L^{-1} . 3-1. Déterminer la concentration molaire C_a de la solution d'acide carboxylique. 3-2. Cette solution est obtenue en dissolvant $m=20,4$ g d'acide carboxylique dans $V=1$ L d'eau; en déduire la masse molaire de cet acide. 3-3. Déterminer sa formule brute. Masses molaires atomiques en $gmol^{-1}: C=12: H=1; O=16: EKRCICE 3: CHIMIE GÉNÉRALE / 4points - 1-Niveau d'énergie / 2 points Les niveaux d'énergie de l'atome d'hydrogène sont donnés par la relation E_n=\frac{-13.6}{n^2} (eV). 1-1- Définir énergie d'ionisation. 0,5pt 1-2- Pris dans son état fondamental, l'atome d'hydrogène est excité et son électron passe du niveau 1 au niveau p > 1. 0,5pt 1-2-1. Y-a-t-il absorption ou émission des photons? Justifier votre réponse. 1-2-2- Établir l'expression littérale de la fréquence des radiations émises lorsque cet atome passe d'un état excité p à l'état n = 1, 0,5pt 1-2-3- Calculer cette fréquence pour p=3. Constante de Planck$	3-3-Sachant que la	molóculo d'apido a paria é un			0,5pt
Masses molaires atomiques en g. mol^{-1} ; C = 12; H =1; O = 16. EXERCICE 2: ACIDES – BASES / 6 points $_{3}$ 1. Définir un acide faible. 2. Deux solutions aqueuses à $25^{\circ}C$ ont un pH identique de valeur 3,4. La première est une solution d'acide éthanoïque ($H_{3}O^{+} + CI^{-}$) de concentration $C_{1} = 4,0 \times 10^{-3}$ mol. L^{-1} ; La deuxième est une solution d'acide éthanoïque ($H_{3}O^{+} + CI^{-}$) de concentration $C_{2} = 10^{-2}$ mol. L^{-1} . 2-1. Calculer la concentration des ions hydronium $H_{3}O^{+}$ dans ces solutions. 2-2. Montrer que l'acide éthanoïque est un acide faible. 2-3. Écrire l'équation-bilan de la réaction entre l'acide éthanoïque et l'eau. 2-4. Calculer les concentrations des différentes espèces chimiques présentes dans la solution d'acide éthanoïque. En déduire le pKa de l'acide éthanoïque. 3-On réalise le dosage d'un volume $V_{a} = 50$ mL d'un acide carboxylique de formule $C_{n}H_{2n}O_{2}$ par une solution d'hydroxyde de sodium. Pour atteindre le point d'équivalence, on doit verser un volume $V_{b} = 100$ mL desolution et obtenue en dissolvant $m = 20.4$ g d'acide carboxylique. 3-1. Déterminer la concentration molaire C_{a} de la solution d'acide carboxylique dans $V = 1$ L d'eau; en déduire la masse molaire de cet acide. 3-3. Déterminer sa formule brute. Masses molaires atomiques en $gmol^{-1}$: $C = 12$;	déduire sa formule	semi développée et présie et	e comporte qu'un seul atome de ca	arbone asymétrique, e	
1- Détinir un acide faible. 2- Deux solutions aqueuses à $25^{\circ}C$ ont un pH identique de valeur 3.4 . La première est une solution d'acide chlorhydrique ($H_3O^+ + CI^-$) de concentration $C_1 = 4.0 \times 10^{-3}$ mol. L^{-1} ; La deuxième est une solution d'acide éthanoïque $C_{13}COOH$ de concentration $C_2 = 10^{-2}$ mol. L^{-1} . 2-1- Calculer la concentration des ions hydronium H_3O^+ dans ces solutions. 2-1- Calculer la concentration des ions hydronium H_3O^+ dans ces solutions. 2-1- Calculer le concentration des ions hydronium H_3O^+ dans ces solutions. 2-1- Calculer le character des concentrations des différentes espèces chimiques présentes dans la solution d'acide éthanoïque. En déduire le pKa de l'acide éthanoïque est l'eau. 2-1- Calculer les concentrations des différentes espèces chimiques présentes dans la solution d'acide éthanoïque. En déduire le pKa de l'acide éthanoïque en doit verser un volume C_1 par une solution d'hydroxyde de sodium. Pour atteindre le point d'équivalence, on doit verser un volume $V_b = 100 \text{ mL}$ de solution d'hydroxyde de sodium de concentration $C_b = 0,100 \text{ mol.}L^{-1}$. 3-1- Déterminer la concentration molaire C_a de la solution d'acide carboxylique. 3-2- Cette solution est obtenue en dissolvant $m = 20,4$ g d'acide carboxylique dans $V = 1$ L d'eau; en déduire la masse molaire de cet acide. 3-3- Déterminer sa formule brute. Masses molaires atomiques en $gmol^{-1}: C = 12$; $H = 1$; $O = 16$. EXECICE 3: CHIMIE GÉNÉRALE / 4points - 1-Niveau d'énergie de l'atome d'hydrogène sont donnés par la relation $E_n = \frac{-13,6}{n^2}$ (eV). 1-1- Définir énergie d'ionisation. 0,5pt 1-2- Pris dans son état fondamental, l'atome d'hydrogène est excité et son électron passe du niveau 1 au niveau p > 1. 1-2- Pris dans son état fondamental, l'atome d'hydrogène est excité et son électron passe du niveau 1 au niveau p > 1. 1-2- Pris dans son état fondamental, l'atome d'hydrogène sont des misses lorsque cet atome passe d'un état excité p à l'état $n = 1$. 0,5pt 1-2- L' Y-a-1-il	Masses molaires : EXERCICE 2 : ACI	atomiques en g. mol^{-1} : C IDES – BASES / 6 points.	= 12 ; H =1 ; O = 16.	natique.	1pt
2- Deux solutions aqueuses à $25^{\circ}C$ ont un pH identique de valeur 3.4 . La première est une solution d'acide chlorhydrique $(H_3O^+ + CI^-)$ de concentration $C_1 = 4.0 \times 10^{-3}$ mol. L^{-1} ; La deuxième est une solution d'acide éthanoïque CH3COOH de concentration $C_2 = 10^{-2}$ mol. L^{-1} . 2-1- Calculer la concentration des ions hydronium H_3 O^+ dans ces solutions. 0,5pt 2-2- Montrer que l'acide éthanoïque est un acide faible. 0,5pt 2-3- Écrire l'équation-bilan de la réaction entre l'acide éthanoïque et l'eau. 0,75pt 2-4- Calculer les concentrations des différentes espèces chimiques présentes dans la solution d'acide éthanoïque. En déduire le pKa de l'acide éthanoïque. 3-On réalise le dosage d'un volume $V_a = 50$ mL d'un acide carboxylique de formule $C_nH_{2n}O_2$ par une solution d'hydroxyde de sodium. Pour atteindre le point d'équivalence, on doit verser un volume $V_b = 100$ mL de solution d'hydroxyde de sodium de concentration $C_b = 0,100$ mol. L^{-1} . 3-1- Déterminer la concentration molaire C_a de la solution d'acide carboxylique. 3-2- Cette solution est obtenue en dissolvant $m = 20,4$ g d'acide carboxylique dans $V = 1$ L d'eau; en déduire la masse molaire de cet acide. 3-3- Déterminer sa formule brute. 1pt 0,5pt Masses molaires atomiques en $gmol^{-1}$: $C = 12$; $C $	 Définir un acide 	faible.			0.5pt
2-1- Calculer la concentration des ions hydronium H_3 O^+ dans ces solutions. 2-2-2- Montrer que l'acide éthanoïque est un acide faible. 2-3- Écrire l'équation-bilan de la réaction entre l'acide éthanoïque et l'eau. 2-4- Calculer les concentrations des différentes espèces chimiques présentes dans la solution d'acide éthanoïque. En déduire le pKa de l'acide éthanoïque. 3-On réalise le dosage d'un volume $V_a = 50$ mL d'un acide carboxylique de formule $C_nH_{2n}O_2$ par une solution d'hydroxyde de sodium. Pour atteindre le point d'équivalence, on doit verser un volume $V_b = 100$ mL de solution d'hydroxyde de sodium de concentration $C_b = 0,100$ mol. L^{-1} . 3-1- Déterminer la concentration molaire C_a de la solution d'acide carboxylique. 3-2- Cette solution est obtenue en dissolvant $m = 20,4$ g d'acide carboxylique dans $V = 1$ L d'eau; en déduire la masse molaire de cet acide. 3-3- Dèterminer sa formule brute. Masses molaires atomiques en $gmol^{-1}$: $C = 12$; $C = 12$	La première est une La deuxième est ur	e solution d'acide chlorhydriqu ne solution d'acide éthanoïque	ue $(H_3O^+ + CI^-)$ de concentration e CH ₃ COOH de concentration C ₂ =	$10^{-2} = 4.0 \times 10^{-3} \text{ mo}$ $10^{-2} \text{ mol.} L^{-1}$.	1000 - 12 Calif
2-2- Montrer que l'acide éthanoïque est un acide faible. 2-3- Écrire l'équation-bilan de la réaction entre l'acide éthanoïque et l'eau. 2-4- Calculer les concentrations des différentes espèces chimiques présentes dans la solution d'acide éthanoïque. En déduire le pKa de l'acide éthanoïque. 3-On réalise le dosage d'un volume $V_a = 50$ mL d'un acide carboxylique de formule $C_nH_{2n}O_2$ par une solution d'hydroxyde de sodium. Pour atteindre le point d'équivalence, on doit verser un volume $V_b = 100$ mL de solution d'hydroxyde de sodium de concentration $C_b = 0,100$ mol. L^{-1} . 3-1- Déterminer la concentration molaire C_a de la solution d'acide carboxylique. 3-2- Cette solution est obtenue en dissolvant $m = 20,4$ g d'acide carboxylique dans $V = 1$ L d'eau; en déduire la masse molaire de cet acide. 3-3- Déterminer sa formule brute. Masses molaires atomiques en $gmol^{-1}$: $C = 12$; C	2-1- Calculer la con	icentration des ions hydroniun	$H_2 O^+$ dans ces solutions.		0,5pt
2-4- Calculer les concentrations des différentes espèces chimiques présentes dans la solution d'acide éthanoïque. En déduire le pKa de l'acide éthanoïque. 3-On réalise le dosage d'un volume $V_a = 50$ mL d'un acide carboxylique de formule $C_n H_{2n} O_2$ par une solution d'hydroxyde de sodium. Pour atteindre le point d'équivalence, on doit verser un volume $V_b = 100$ mL de solution d'hydroxyde de sodium de concentration $C_b = 0,100$ mol. L^{-1} . 3-1- Déterminer la concentration molaire C_a de la solution d'acide carboxylique. 0,75pt 3-2- Cette solution est obtenue en dissolvant $m = 20,4$ g d'acide carboxylique dans $V = 1$ L d'eau; en déduire la masse molaire de cet acide. 1pt 0,5pt masses molaire sa formule brute. 1pt 0,5pt Masses molaires atomiques en $gmol^{-1}$: $C = 12$;	2-2- Montrer que l'a	acide éthanoïque est un acide	faible.		0,5pt
2-4- Calculer les concentrations des différentes espèces chimiques présentes dans la solution d'acide éthanoïque. En déduire le pKa de l'acide éthanoïque. 3-On réalise le dosage d'un volume $V_a = 50$ mL d'un acide carboxylique de formule $C_n H_{2n} O_2$ par une solution d'hydroxyde de sodium. Pour atteindre le point d'équivalence, on doit verser un volume $V_b = 100$ mL de solution d'hydroxyde de sodium de concentration $C_b = 0,100$ mol. L^{-1} . 3-1- Déterminer la concentration molaire C_a de la solution d'acide carboxylique. 0,75pt 3-2- Cette solution est obtenue en dissolvant $m = 20,4$ g d'acide carboxylique dans $V = 1$ L d'eau; en déduire la masse molaire de cet acide. 1pt 0,5pt masses molaire sa formule brute. 1pt 0,5pt Masses molaires atomiques en $gmol^{-1}$: $C = 12$;	2-3- Ecrire l'équation	on-bilan de la réaction entre l'a	icide éthanoïque et l'eau.		0,75pt
1,5pt 3-On réalise le dosage d'un volume $V_a=50$ mL d'un acide carboxylique de formule $C_nH_{2n}O_2$ par une solution d'hydroxyde de sodium. Pour atteindre le point d'équivalence, on doit verser un volume $V_b=100$ mL de solution d'hydroxyde de sodium de concentration $C_b=0,100$ mol. L^{-1} . 3-1- Déterminer la concentration molaire C_a de la solution d'acide carboxylique. 3-2- Cette solution est obtenue en dissolvant $m=20,4$ g d'acide carboxylique dans $V=1$ L d'eau; en déduire la masse molaire de cet acide. 1pt 0,5pt masses molaires atomiques en $gmol^{-1}: C=12$; $H=1; O=16$. EXRCICE 3: CHIMIE GÉNÉRALE / 4points - 1-Niveau d'énergie / 2 points Les niveaux d'énergie de l'atome d'hydrogène sont donnés par la relation $E_n=\frac{-13,6}{n^2}$ (eV). 1-1- Définir énergie d'ionisation. 0,5pt 1-2-1- Y-a-t-il absorption ou émission des photons? Justifier votre réponse. 0,5pt 1-2-2- Établir l'expression littérale de la fréquence des radiations émises lorsque cet atome passe d'un état excité p d'iétat $n=1$. 0,5pt 1-2-3- Calculer cette fréquence pour $p=3$. 0,5pt 1-2-3- Calcul	2-4- Calculer les co	ncentrations des différentes e	spèces chimiques présentes dans	la solution d'acide	
de solution d'hydroxyde de sodium. Pour atteindre le point d'équivalence, on doit verser un volume $V_b=100~\mathrm{mL}$ de solution d'hydroxyde de sodium de concentration $C_b=0,100~\mathrm{mol.}L^{-1}$. 3-1- Déterminer la concentration molaire C_a de la solution d'acide carboxylique. 0,75pt 3-2- Cette solution est obtenue en dissolvant $m=20,4$ g d'acide carboxylique dans $V=1$ L d'eau; en déduire la masse molaire de cet acide. 1pt 0,5pt Masses molaires atomiques en $gmol^{-1}: C=12$; $H=1; O=16$. EXRCICE 3: CHIMIE GÉNÉRALE / 4points - 1-Niveau d'énergie / 2 points Les niveaux d'énergie de l'atome d'hydrogène sont donnés par la relation $E_n=\frac{-13,6}{n^2}$ (eV). 1-1- Définir énergie d'ionisation. 0,5pt 1-2-1- Y-a-t-il absorption ou émission des photons? Justifier votre réponse. 0,5pt 1-2-2- Établir l'expression littérale de la fréquence des radiations émises lorsque cet atome passe d'un état excité p à l'état $n=1$. 0,5pt 1-2-3- Calculer cette fréquence pour $p=3$. 0,5pt 1-2-3- Calculer cette fréquence pour $p=3$. 0,5pt 1-2-3- Calculer cette fréquence pour $p=3$. 0,5pt 1-2-3- Calculer cette fréquence des radiations émises lorsque cet atome passe d'un état excité p 0,5pt 1-2-3- Calculer cette fréquence pour $p=3$. 0,5pt 1-2-3- Calculer cette fréquence pour $p=3$. 0,5pt 1-2-3- Calculer cette fréquence des radiations émises lorsque cet atome passe d'un état excité p 0,5pt 1-2-3- Calculer cette fréquence pour $p=3$. 0,5pt 1-2-3- Calculer cette fréquence pour $p=3$. 0,5pt 1-2-3- Calculer cette fréquence que radiations émises lorsque cet atome passe d'un état excité p 0,5pt 1-2-3- Calculer cette fréquence des radiations émises lorsque cet atome passe d'un état excité p 0,5pt 1-2-3- Calculer cette fréquence pour p 3.	en anorque. En dec	luire le pKa de l'acide éthanoï	aue.		1,5pt
3-1- Determiner la concentration molaire C_a de la solution d'acide carboxylique. 3-2- Cette solution est obtenue en dissolvant $m=20,4$ g d'acide carboxylique dans $V=1$ L d'eau; en déduire la masse molaire de cet acide. 3-3- Déterminer sa formule brute. Masses molaires atomiques en $gmol^{-1}$: $C=12$; $H=1$; $O=16$. EXRCICE 3: CHIMIE GÉNÉRALE / 4points - 1-Niveau d'énergie / 2 points Les niveaux d'énergie de l'atome d'hydrogène sont donnés par la relation $E_n=\frac{-13,6}{n^2}$ (eV). 1-1- Définir énergie d'ionisation. 1-2- Pris dans son état fondamental, l'atome d'hydrogène est excité et son électron passe du niveau 1 au niveau $p>1$. 1-2-1- Y-a-t-il absorption ou émission des photons? Justifier votre réponse. 1-2-2- Établir l'expression littérale de la fréquence des radiations émises lorsque cet atome passe d'un état excité $p=1$ (eV). 1-2-3- Calculer cette fréquence pour $p=3$. Données: $1eV=1,6x10^{-19}J$ Constante de Planck $h=6,62x10^{-34}J$.s	a ilyaroxyae ae soa	ilum. Pour atteindre le point d'	équivalence, on doit verser un volu	$C_n H_{2n} O_2$ par une s ume $V_b = 100 \text{ mL}$	olution
1pt 3-2- Cette solution est obtenue en dissolvant $m=20,4$ g d'acide carboxylique dans $V=1$ L d'eau; en déduire la masse molaire de cet acide. 3-3- Déterminer sa formule brute. 0,5pt Masses molaires atomiques en $gmol^{-1}$: $C=12$; $H=1$; $O=16$. EXRCICE 3: CHIMIE GÉNÉRALE / 4points - 1-Niveau d'énergie / 2 points Les niveaux d'énergie de l'atome d'hydrogène sont donnés par la relation $E_n=\frac{-13,6}{n^2}$ (eV). 1-1- Définir énergie d'ionisation. 0,5pt 1-2- Pris dans son état fondamental, l'atome d'hydrogène est excité et son électron passe du niveau 1 au niveau $p>1$. 1-2-1- Y-a-t-il absorption ou émission des photons? Justifier votre réponse. 0,5pt 1-2-2- Établir l'expression littérale de la fréquence des radiations émises lorsque cet atome passe d'un état excité p 2 a' l'état p 3. Constante de Planck p 4 constante de Planck p 5. Constante de Planck p 6,62x 10 ⁻³⁴ J.s	3-1- Déterminer la d	concentration molaire C_{α} de la	a solution d'acide carboxylique		0.75pt
1pt 3-3- Déterminer sa formule brute. Masses molaires atomiques en $gmol^{-1}$: C = 12; H = 1; O = 16. EXRCICE 3: CHIMIE GÉNÉRALE / 4points - 1-Niveau d'énergie / 2 points Les niveaux d'énergie de l'atome d'hydrogène sont donnés par la relation $E_n = \frac{-13.6}{n^2}$ (eV). 1-1- Définir énergie d'ionisation. 1-2- Pris dans son état fondamental, l'atome d'hydrogène est excité et son électron passe du niveau 1 au niveau p > 1. 1-2-1- Y-a-t-il absorption ou émission des photons? Justifier votre réponse. 1-2-2- Établir l'expression littérale de la fréquence des radiations émises lorsque cet atome passe d'un état excité p à l'état n = 1. 1-2-3- Calculer cette fréquence pour p = 3. Données: $1eV = 1,6x10^{-19}J$ Constante de Planck $h = 6,62x10^{-34}J$.s	3-2- Cette solution	est obtenue en dissolvant m =	20,4 g d'acide carboxylique dans	V = 1 L d'eau: en dé	duire
Masses molaires atomiques en $gmol^{-1}: C = 12$; $H = 1; O = 16$. EXRCICE 3: CHIMIE GÉNÉRALE / 4points - 1-Niveau d'énergie / 2 points Les niveaux d'énergie de l'atome d'hydrogène sont donnés par la relation $E_n = \frac{-13.6}{n^2}$ (eV). 1-1- Définir énergie d'ionisation. 1-2- Pris dans son état fondamental, l'atome d'hydrogène est excité et son électron passe du niveau 1 au niveau $p > 1$. 1-2-1- Y-a-t-il absorption ou émission des photons? Justifier votre réponse. 1-2-2- Établir l'expression littérale de la fréquence des radiations émises lorsque cet atome passe d'un état excité p à l'état $n = 1$. 1-2-3- Calculer cette fréquence pour $p = 3$. Données : $1eV = 1,6x10^{-19}J$ Constante de Planck $h = 6,62x10^{-34}J$.s	ia masse molaire d	le cet acide.	=-,- g - ===== ====,,,,,q.ao cano	, , , , , , , , , , , , , , , , , , ,	
Masses molaires atomiques en $gmol^{-1}$: C = 12; H = 1; O = 16. EXRCICE 3: CHIMIE GÉNÉRALE / 4points - 1-Niveau d'énergie / 2 points Les niveaux d'énergie de l'atome d'hydrogène sont donnés par la relation $E_n = \frac{-13.6}{n^2}$ (eV). 1-1- Définir énergie d'ionisation. 1-2- Pris dans son état fondamental, l'atome d'hydrogène est excité et son électron passe du niveau 1 au niveau p > 1. 1-2-1- Y-a-t-il absorption ou émission des photons? Justifier votre réponse. 1-2-2- Établir l'expression littérale de la fréquence des radiations émises lorsque cet atome passe d'un état excité p à l'état n = 1. 1-2-3- Calculer cette fréquence pour p = 3. Données: $1 \text{ eV} = 1,6 \text{ x} 10^{-19} \text{ J}$ Constante de Planck h = 6,62x 10^{-34} J .s	3-3- Déterminer sa	a formule brute.			6407 HEAT 10
Les niveaux d'énergie de l'atome d'hydrogène sont donnés par la relation $E_n = \frac{-13.6}{n^2}$ (eV). 1-1- Définir énergie d'ionisation. 1-2- Pris dans son état fondamental, l'atome d'hydrogène est excité et son électron passe du niveau 1 au niveau p > 1. 1-2-1- Y-a-t-il absorption ou émission des photons? Justifier votre réponse. 1-2-2- Établir l'expression littérale de la fréquence des radiations émises lorsque cet atome passe d'un état excité p à l'état n = 1. 1-2-3- Calculer cette fréquence pour p = 3. Données : $1 = 1.6 \times 10^{-19} \text{J}$ Constante de Planck h = $6.62 \times 10^{-34} \text{J}$.s	Masses molaires a EXRCICE 3 : CHIM	atomiques en <i>gmol⁻¹ :</i> C = IIE GÉNÉRALE / 4points -	12; H=1;O=16.		and all 90 souls
1-1- Définir énergie d'ionisation. 1-2- Pris dans son état fondamental, l'atome d'hydrogène est excité et son électron passe du niveau 1 au niveau p > 1. 1-2-1- Y-a-t-il absorption ou émission des photons? Justifier votre réponse. 1-2-2- Établir l'expression littérale de la fréquence des radiations émises lorsque cet atome passe d'un état excité p à l'état n = 1. 1-2-3- Calculer cette fréquence pour p = 3. 1-2-3- Calculer cette fréquence pour p = 3. 1-2-3- Constante de Planck h = 6,62x 10 ⁻³⁴ J.s		•		10.6	
1-1- Définir énergie d'ionisation. 1-2- Pris dans son état fondamental, l'atome d'hydrogène est excité et son électron passe du niveau 1 au niveau p > 1. 1-2-1- Y-a-t-il absorption ou émission des photons? Justifier votre réponse. 1-2-2- Établir l'expression littérale de la fréquence des radiations émises lorsque cet atome passe d'un état excité p à l'état n = 1. 1-2-3- Calculer cette fréquence pour p = 3. 1-2-3- Calculer cette fréquence pour p = 3. 1-2-3- Constante de Planck h = 6,62x 10 ⁻³⁴ J.s	Les niveaux d'énerç	gie de l'atome d'hydrogène so	ont donnés par la relation $E_n = \frac{1}{n}$	- 13,6 	
1-2- Pris dans son état fondamental, l'atome d'hydrogène est excité et son électron passe du niveau 1 au niveau p > 1. 1-2-1- Y-a-t-il absorption ou émission des photons? Justifier votre réponse. 1-2-2- Établir l'expression littérale de la fréquence des radiations émises lorsque cet atome passe d'un état excité p à l'état n = 1. 1-2-3- Calculer cette fréquence pour p = 3. 1-2-3- Calculer cette fréquence pour p = 3. 1-2-3- Constante de Planck h = 6,62x 10 ⁻³⁴ J.s	1-1- Définir éneraie	d'ionisation.	16	n^2	0 Ent
1-2-3- Calculer cette fréquence pour p = 3. Données : $1eV = 1,6x10^{-19}J$ Constante de Planck h = $6,62x10^{-34}J$.s	1-2- Pris dans son e 1-2-1- Y-a-t-il absor 1-2-2- Établir l'expi	état fondamental, l'atome d'hy rption ou émission des photon	s? Justifier votre réponse		u niveau p > 1. 0,5pt etat excité p
•	1-2-3- Calculer cet	te fréquence pour p = 3. nées : 1eV = 1,6x10 ⁻¹⁹ J	Constante de Planck h = 6.62x	10^{-34} J.s	

Epreuve disponible sur www.emergencetechnocm.com

2-	Cinétic	iue chi	mique/	2	points
				-	Politico

On étudie la cinétique de la réaction d'oxydation des ions iodure I^- en milieu acide par l'eau oxygénée H_2O_2 de concentration C_1 = 4,5 x 10^{-2} mol. L^{-1} .Cette réaction lente a pour équation – bilan :

 $H_2O_2 + 2I^- + 2H_3O^+ \longrightarrow I_2 + 4H_2O$

À l'instant t = 0 min, On mélange dans un bécher 100 mL de la solution S₁ d'eau oxygénée et 100 mL d'une solution d'iodure de potassium ($K^+ + I^-$) de concentration $C_2 = 2.0 \times 10^{-1}$ mol. L^{-1} .

On y ajoute quelques gouttes d'acide sulfurique. La solution obtenue est repartie dans 10 béchers à raison de 20 mL par bécher. À L'instant t = 3 min, on ajoute rapidement de la glace dans le premier bécher et ondose le diiode formé par une solution de thiosulfate de sodium $(2N_a^+ + S_2O_3^{2-})$ de concentration C en présence de l'empois d'amidon. Soit $V^{'}$ le volume de la solution de thiosulfate versé à l'équivalence.

Toutes les trois minutes, on renouvelle l'opération ci- dessus sur le 2 eme puis le 3 eme, etc.. La réaction du dosage est rapide et totale. Son équation-bilan est : $I_2 + 2 S_2 O_3^2 - \longrightarrow 2 I^- + S_4 O_6^{2-}$

2-1- Montrer que dans le mélange du départ, les ions iodure sont en excès.

0,5pt 2-2 Pourquoi ajoute-t-on de la glace rapidement à l'instant t à chaque bécher? 0,5pt

2-3 Montrer que la concentration du diiode apparu dans un bécher à l'instant t a pour expression: $[I_2]_t = \frac{1}{2} C' \frac{V}{V}$ où v est le volume de diiode présent dans le bécher.

0,5pt 2-4 Calculer la valeur de la concentration $[I_2]_t$ en diiode à la fin de la réaction. 0,5pt

EXERCICE 4: À CARACTÈRE EXPÉRIMENTAL / 4 points

1- Préparation d'une solution

On veut préparer V = 250 mL d'une solution d'acide chlorhydrique S de concentration C = 10^{-1} mol. L^{-1} , à partir d'une solution S_o disponible. Sur la paillasse du laboratoire, on trouve le matériel et les produits suivants:

Matériel : une burette graduée de 50 mL; deux béchers de 150mL et 500 mL ; deux fioles jaugées de 250 mL et 500 mL; pipettes jaugées de 10 mL et 20 mL.

<u>Produits</u>: une solution d'acide chlorhydrique S_o de concentration C_o = 2,5 mol. L^{-1} ; une solution S_1 d'hydroxyde de sodium de concentration $C_1 = 10^{-1}$ mol. L^{-1} et de l'eau distillée.

1-1 Calculer le volume de la solution S_o à prélever pour cette préparation.

0.5pt

1-2 Citer deux éléments du matériel nécessaire pour la préparation de la solution S.

0,5pt

1-3 Décrire brièvement le mode opératoire pour cette préparation.

0,5pt

2-Vérification de la concentration

Pour vérifier la concentration de la solution S, on prélève V_a = 20 mL de celie-ci que l'on introduit dans le becher de 100 mL. À l'aide de la burette, on y verse progressivement la solution d'hydroxyde de sodium S_1 . Un pH- mètre permet de suivre l'évolution du pH du mélange pendant le dosage.

Le tableau suivant indique les valeurs de pH obtenues pour différentes valeurs de volume V_b d'hydroxyde de sodium versé :

$V_b(mL)$	0	5	7	10	12	15	16	17	18	19	20	21	22
pH		1,1	1,2	1,3	1,5	1,8	2,0	2,2	2,3	3	9	11.2	11.7

2-1 Construire la courbe pH = $f(V_b)$ sur le papier millimétré à remettre avec la copie.

Echelle: 1 cm pour 1 mL et 1 cm pour une unité de pH.

1pt

2-2 Déduire de la courbe, le volume V_b d'hydroxyde de sodium versé à l'équivalence.

0,5pt

2-3 Calculer la concentration C_a de la solution S.

0,5pt

2-4 Comparer la valeur C_{α} obtenue à C et en déduire le rôle du dosage.

0,5pt

Epreuve disponible sur www.emergencetechnocm.com