Chapitre VIII

Fonctions continues

1 Généralités

1.1 Définitions

Définition

Soient I un intervalle de \mathbb{R} , $x_0 \in I$ et $f: I \to \mathbb{R}$ une application.

- f est **continue en** x_0 si et seulement si elle admet $f(x_0)$ pour limite en x_0 , c.a.d. $\forall \varepsilon > 0, \ \exists \alpha > 0, \ \forall x \in I, \ |x x_0| < \alpha \implies |f(x) f(x_0)| < \varepsilon$
- f est continue sur I si et seulement si f est continue en tout point $x \in I$, c.a.d. $\forall x \in I, \ \forall \varepsilon > 0, \ \exists \alpha > 0, \ \forall y \in I, \ |y x| < \alpha \implies |f(y) f(x)| < \varepsilon$

1.2 Propriétés

Soient I un intervalle de \mathbb{R} , $x_0 \in I$ et $f: I \to \mathbb{R}$.

Propriété : continuité et signe de f

Si f est continue en x_0 et $f(x_0) > 0$ (resp. $f(x_0) < 0$) alors il existe $\alpha > 0$ tel que f(x) > 0 (resp. f(x) < 0) sur $I \cap [x_0 - \alpha, x_0 + \alpha[$.

Démonstration

Supposons f continue en x_0 et $f(x_0) > 0$. D'après la définition de la limite appliquée avec $\varepsilon = \frac{f(x_0)}{2} > 0$, il existe $\alpha > 0$ tel que pour tout $x \in I$, si $x \in]x_0 - \alpha, x_0 + \alpha[$ alors $f(x_0) - \varepsilon < f(x) < f(x_0) + \varepsilon$ avec $f(x_0) - \varepsilon = \frac{f(x_0)}{2} > 0$ (CQFD).

Définition: suite convergente

Soit (u_n) une suite réelle et l un réel. (u_n) converge vers l si et seulement si : $\forall \varepsilon > 0$, il existe un indice N tel que $\forall n \ge N$, $|f(x) - l| < \varepsilon$.

Théorème : image d'une suite convergente

Si f est continue en x_0 et (u_n) est une suite d'éléments de I convergeant vers x_0 , alors la suite $(f(u_n))$ converge vers $f(x_0)$.

Remarque : il existe une réciproque à ce théorème.

 $D\'{e}monstration$: supposons que f est continue en x_0 et considérons une suite (u_n) d'éléments de I convergeant vers x_0 .

Soit $\varepsilon > 0$, d'après la continuité de f en x_0 , il existe $\alpha > 0$ tel que $\forall x \in I$, $|x - x_0| < \alpha \implies |f(x) - f(x_0)| < \varepsilon$ (1).

D'après la convergence de (u_n) vers x_0 , il existe N tel que pour tout $n \ge N$, $|u_n - x_0| < \alpha$. Donc, d'après (1), pour tout $n \ge N$, $|f(u_n) - f(x_0)| < \varepsilon$ (CQFD).

1.3 Opérations

Théorème

Soient I un intervalle de \mathbb{R} , $x_0 \in I$, f et g des applications de I dans \mathbb{R} .

f continue en x_0	g continue en x_0	$f + g$ et $f.g$ continues en x_0
(resp. sur I)	(resp. sur I)	(resp. sur I)
f continue en x_0	$\lambda \in \mathbb{R}$	$\lambda.f$ continue en x_0
(resp. sur I)		(resp. sur I)
f continue en x_0	g continue en x_0 et $g(x_0) \neq 0$	$\frac{f}{g}$ continue en x_0
f continue sur I	g continue sur I et $\forall x \in I, \ g(x) \neq 0$	$\frac{f}{g}$ continue sur I
f continue en x_0	g continue en $f(x_0)$	$g \circ f$ continue en x_0
(resp. sur I)	(resp. sur $f(I)$)	(resp. sur I)

1.4 Prolongement par continuité

Définition

Soient I un intervalle de \mathbb{R} , $x_0 \in I$ et $f: I \setminus \{x_0\} \to \mathbb{R}$ une application. Si f admet une limite finie $l \in \mathbb{R}$ en x_0 , alors on peut définir l'application

$$g: I \to \mathbb{R}$$

$$x \mapsto \begin{cases} f(x) & \text{si} \quad x \in I \setminus \{x_0\} \\ l & \text{si} \quad x = x_0 \end{cases}$$

g est continue en x_0 et s'appelle **prolongement par continuité** de f en x_0 .

Exemple: soit l'application

$$f: \]0, +\infty[\ \rightarrow \ \mathbb{R}$$

$$x \mapsto x \ln x$$

On a $\lim_{x\to 0} f(x) = 0$. La fonction g suivante est un prolongement par continuité de f en 0.

$$g: \begin{array}{cccc} g: & [0,+\infty[& \to & \mathbb{R} \\ & x & \mapsto & \left\{ \begin{array}{cccc} x \ln & x & \text{si} & x \in]0,+\infty[\\ & 0 & \text{si} & x = 0 \end{array} \right. \end{array}$$

2 Continuité sur un intervalle

2.1 Théorème des valeurs intermédiaires

Théorème

Soient $f:[a,b] \to \mathbb{R}$ (avec a < b réels) une application continue et k un réel strictement compris entre f(a) et f(b), il existe un nombre $c \in]a,b[$ tel que f(c)=k.

En particulier, si f(a).f(b) < 0 (ce qui équivaut à f(a) < 0 < f(b) ou f(b) < 0 < f(a)), il existe un nombre $c \in]a,b[$ tel que f(c) = 0.

Lemme

Soit A une partie non vide et majorée (resp. minorée) de \mathbb{R} . Il existe une suite d'éléments de A qui converge vers $\sup(A)$ (resp. $\inf(A)$).

Démonstration du lemme

A est une partie non vide et majorée de \mathbb{R} donc elle admet une borne supérieure $\sup(A)$. D'après les propriétés de la borne supérieure, pour tout $n \in \mathbb{N}$, il existe $a_n \in A$ tel que $\sup(A) - \frac{1}{n} < a_n \leq \sup(A)$.

On a ainsi défini une suite (a_n) d'éléments de A qui vérifie $|a_n - \sup(A)| < \frac{1}{n}$ pour tout n.

D'après le théorème des gendarmes, il suit que $\lim_{n\to+\infty} (a_n - \sup(A)) = 0$ c.a.d. $\lim_{n\to+\infty} a_n = \sup(A)$.

La preuve dans le cas de la borne inférieure est analogue.

Démonstration du théorème des valeurs intermédiaires

Soit k strictement compriseentre f(a) et f(b).

Si $f(a) \leq f(b)$, on pose $g: [a,b] \to \mathbb{R}$ telle que g(x) = f(x) - k.

Si f(a) > f(b), on pose $g: [a, b] \to \mathbb{R}$ telle que g(x) = -f(x) + k.

Dans les deux cas, on a g(a) < 0 et g(b) > 0 et on cherche $c \in]a,b[$ tel que g(c) = 0.

Considérons $A = \{x \in [a, b] / g(x) \le 0\}$. A est non vide, car $a \in A$, et est majoré par b car $A \subset [a, b]$. On note $c = \sup(A)$.

D'après le lemme, il existe une suite (c_n) d'éléments de A qui converge vers c. L'application g étant continue sur [a, b], la suite $(g(c_n))$ converge vers g(c).

Pour tout $n, c_n \in A$ donc $g(c_n) \leq 0$ d'où, par passage à la limite, $g(c) \leq 0$ (1).

De plus $a \neq c$, en effet, comme g(a) < 0 et g continue en a, d'après une propriété démontrée sur le signe d'une application continue, il existe $\alpha > 0$ tel que g(x) < 0 sur $[a, a + \alpha[$ donc $a + \alpha \in A$ et $c \geqslant a + \alpha > a$.

Mais on a aussi $c \neq b$, car $g(c) \neq g(b)$ puisque $g(c) \leq 0$ et g(b) > 0. On en déduit que [c,b] n'est pas vide et est donc un voisinage de c ce qui permet de considérer $\lim_{x\to c^+} g(x)$.

Pour tout $x \in]c,b]$, $x \notin A$ car c majore A donc g(x) > 0 par définition de A. Comme g est continue en c, on peut effectuer un passage à la limite dans cette inégalité, ce qui donne $g(c) = \lim_{x \to c^+} g(x) \geqslant 0$ (2).

(1) et (2) implique g(c)=0 c'est-à-dire f(c)=k ce qui termine la démonstration puisque $c\in]a,b[$.

2.2 Image d'un intervalle

Théorème

Soient I un intervalle de \mathbb{R} et $f:I\to\mathbb{R}$ une application continue sur I, alors f(I) est un intervalle.

 $D\acute{e}monstration$: c'est une conséquence du théorème des valeurs intermédiaires. Rappelons qu'une partie A de $\mathbb R$ est un intervalle si et seulement si pour tous x et y dans A tels que x < y, $|x,y| \in A$.

Soient x < y dans f(I), alors il existe a et b tel que f(a) = x et f(b) = y.

Soit $k \in]x, y[=]f(a), f(b)[$, d'après le théorème des valeurs intermédiaires, il existe c entre a et b tel que f(c) = k. Comme I est un intervalle, $c \in I$ donc $k \in f(I)$. (CQFD)

2.3 Image d'un segment

Théorème du maximum

Soient [a, b] (avec a < b réels) un segment de \mathbb{R} (c'est-à-dire un intervalle fermé et borné de \mathbb{R}), f une application **continue** sur [a, b], alors f est bornée sur [a, b].

De plus **l'image du segment** [a,b] **est aussi un segment** : f([a,b]) = [m,M] où M et m sont respectivement le maximum et le minimum de f sur [a,b].

Autrement dit, il existe u et v dans [a,b] tel que $\forall x \in [a,b]$ $f(u) \leqslant f(x) \leqslant f(v)$.

Pour une démonstration, lire p.81 à 82, de F. Liret et D. Martinais, Licence 1re année, "Cours et exercices avec solutions", Tome d'Analyse, édition Dunod.

FIGURE VIII.1 – Image d'un segment de \mathbb{R} par une application continue

2.4 Application strictement monotone et continue

Théorème de la bijection

Soient I un intervalle de \mathbb{R} et $f: I \to \mathbb{R}$ une application.

Si f est strictement monotone et continue alors :

- 1) f(I) est un intervalle de \mathbb{R} et f est bijective de I sur f(I).
- 2) Les extrémités de f(I) sont les images ou les limites de f aux extrémités de I.
- 3) On peut définir une bijection réciproque de f notée f^{-1} définie de f(I) vers I. f^{-1} est continue et strictement monotone, de même sens de variation que f.

 $D\acute{e}monstration$: On a déjà montré que f(I) est un intervalle, de plus la monotonie stricte de f implique son injectivité. En restreignant l'ensemble d'arrivée à f(I), f devient donc bijective.

Pour montrer le point 2, il faut considérer les différents types d'intervalles de \mathbb{R} . Pour la démonstration du point 2 et 3, lire p.84 et 85, de F. Liret et D. Martinais, Licence 1re année, "Cours et exercices avec solutions", Tome d'Analyse, édition Dunod.

Différents cas possibles pour 2):

- Si f est strictement croissante et si I = [a, b], alors f(I) = [f(a), f(b)].
- Si f est strictement croissante et si I = [a, b[, alors $f(I) = [f(a), \lim_{x \to a} f(x)[$.
- Si f est strictement croissante et si $I = [a, +\infty[$, alors $f(I) = [f(a), \lim_{x \to +\infty} f(x)]$.
- Si f est strictement décroissante et si I = [a, b[, alors $f(I) =]\lim_{x \to b} f(x), f(a)].$

. . .

Exemples

1) Soit l'application

$$f: \mathbb{R}^+ \to \mathbb{R}$$
$$x \mapsto x^2$$

f est strictement croissante (car elle est définie sur \mathbb{R}^+) et continue. De plus $f(\mathbb{R}^+) = f([0,+\infty[) = [f(0),\lim_{x\to +\infty}f(x)[=[0,+\infty[=\mathbb{R}^+.$ On déduit du théorème que f est bijective de \mathbb{R}^+ vers \mathbb{R}^+ . Elle admet une réciproque

On déduit du théorème que f est bijective de \mathbb{R}^+ vers \mathbb{R}^+ . Elle admet une réciproque f^{-1} définie de \mathbb{R}^+ vers \mathbb{R}^+ qui est également continue et strictement croissante. Cette application est la fonction racine carrée.

$$f^{-1}: \mathbb{R}^+ \to \mathbb{R}^+ \\ x \mapsto \sqrt{x}$$

2) Soit l'application

$$g: \ \mathbb{R} \ \to \ \mathbb{R}$$
$$x \ \mapsto \ e^x$$

g est strictement croissante et continue.

De plus
$$g(\mathbb{R}^+) = g(]-\infty, +\infty[) = \lim_{x \to -\infty} g(x), \lim_{x \to +\infty} g(x)[=]0, +\infty[=\mathbb{R}^{+*}.$$
 On déduit du théorème que g est bijective de \mathbb{R} vers \mathbb{R}^{+*} . Elle admet une réciproque

On déduit du théorème que g est bijective de \mathbb{R} vers \mathbb{R}^{+*} . Elle admet une réciproque g^{-1} définie de \mathbb{R}^{+*} vers \mathbb{R} qui est également continue et strictement croissante. Cette application est la fonction logarithme.

$$g^{-1}: \ \mathbb{R}^{+*} \to \mathbb{R} + \\ x \mapsto \ln x$$