$$\begin{array}{lll}
3) & A \times C & = & \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = & C_1 \begin{bmatrix} a_{11} \\ a_{21} \end{bmatrix} + & C_2 \begin{bmatrix} a_{12} \\ a_{22} \end{bmatrix} \\
& = & \begin{bmatrix} C_1 a_{11} + C_2 a_{12} \\ C_1 a_{21} + C_2 a_{22} \end{bmatrix}
\end{array}$$

$$= \left(\frac{q_{11}}{q_{11}} \int_{0}^{1} + q_{12} \int_{2}^{1} - q_{11} \int_{0}^{1} + q_{12} \int_{2}^{2} \right)$$

$$= \left(\frac{q_{11}}{q_{21}} \int_{0}^{1} + q_{22} \int_{2}^{1} - q_{11} \int_{0}^{1} + q_{12} \int_{2}^{2} \right)$$

$$\frac{d}{dt} \left\{ \begin{array}{l} P_{i} = \sum_{i}^{m} m_{i} \frac{d(vt) - v_{i}}{dt} \\ = \sum_{i}^{m} m_{i} \frac{dv}{dt} = \frac{d}{dt} P \\ = \sum_{i}^{m} p_{i} \frac{dv}{dt} = \frac{d}{dt} P \\ = \sum_{i}^{m} \frac{dv}{dt} = \frac{dv}{dt} P \\ = \sum_{i}^{m} \frac{dv}{dt} = \frac{dv}{dt}$$

a)
$$w = x' = 0$$
 $x = v \neq x' = v$

$$= (x) = (x) =$$

$$\begin{pmatrix} \mathcal{O} \\ \mathcal{E} \end{pmatrix} = \mathcal{I} \begin{pmatrix} \frac{q}{\xi} \\ \frac{q}{\zeta} \end{pmatrix} \begin{pmatrix} \chi' \\ \chi' \end{pmatrix} = \begin{pmatrix} q \chi' + f \chi' \\ e \chi' + f \chi' \end{pmatrix}$$

$$= \begin{pmatrix} q \chi' - f \chi' \\ e \chi' - \frac{f}{\zeta} \chi' \end{pmatrix}$$

So General C.T.

$$\begin{pmatrix} x \\ t \end{pmatrix} = a \begin{pmatrix} l & J \\ \frac{e}{a} & l \end{pmatrix} \begin{pmatrix} x' \\ t' \end{pmatrix}$$

C) Now impose (.T. form = grap

$$\begin{pmatrix} x'' \\ t'' \end{pmatrix} \longrightarrow \begin{pmatrix} x' \\ t' \end{pmatrix} \longrightarrow \begin{pmatrix} x \\ t' \end{pmatrix} \longrightarrow \begin{pmatrix} x \\ t \end{pmatrix} \\
 \begin{pmatrix} x \\ t \end{pmatrix} = a(v_1) \begin{pmatrix} 1 & v_2 \\ -2(v_1) & 1 \end{pmatrix} a(v_1) \begin{pmatrix} 1 & v_1 \\ -2(v_1) & 1 \end{pmatrix} \begin{pmatrix} x'' \\ t'' \end{pmatrix} \\
 = a(v_1) a(v_1) \begin{pmatrix} 1 + \frac{e}{2}(v_1) \cdot v_2 & v_1 + v_2 \\ -2(v_1) + \frac{e}{2}(v_2) & 1 + \frac{e}{2}(v_2) v_1 \end{pmatrix} \begin{pmatrix} x'' \\ t'' \end{pmatrix} \\
 = a(v_1) a(v_1) \begin{pmatrix} 1 + \frac{e}{2}(v_1) \cdot v_2 & v_1 + v_2 \\ -2(v_1) + \frac{e}{2}(v_2) & 1 + \frac{e}{2}(v_2) v_1 \end{pmatrix} \begin{pmatrix} x'' \\ t'' \end{pmatrix} \\
 = a(v_1) a(v_1) \begin{pmatrix} 1 + \frac{e}{2}(v_1) \cdot v_2 & v_1 + v_2 \\ -2(v_1) + \frac{e}{2}(v_2) & 1 + \frac{e}{2}(v_2) v_1 \end{pmatrix} \\
 = a(v_1) a(v_1) \begin{pmatrix} 1 + \frac{e}{2}(v_2) \cdot v_2 & 1 + \frac{e}{2}(v_2) \cdot v_1 \\ -2(v_1) \cdot v_2 & 1 + \frac{e}{2}(v_2) \cdot v_1 \end{pmatrix}$$

For this to be the c-se, the diagonal elastis much be equal to the condition of the condition

 $3(c \text{ we have separtion of variable, both side most be exact to a constant (south is By applying <math>\frac{2}{2v_i} + \frac{2}{2v_2}$) $= \int_{-1}^{1} \frac{e(v_i)}{a(v_i)} = \frac{1}{2} \frac$

So, beard C.T.

$$\begin{pmatrix} x \\ t \end{pmatrix} = q \begin{pmatrix} 1 & 0 \\ q & 1 \end{pmatrix} \begin{pmatrix} x \\ t' \end{pmatrix} = \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix}$$

e) What is
$$V_{+}$$
? Assure southly has allow V_{+}

in prince conditions,

$$\begin{pmatrix}
x \\
t
\end{pmatrix} = V_{+}t'$$

The imprince conditions,

$$\begin{pmatrix}
x \\
t
\end{pmatrix} = V_{+}t'$$

 $=\frac{1}{\left[-\left(\frac{\sqrt{2}}{2}\right)^{2}}\left[\left(\sqrt{2}-\frac{2}{2}\right)^{2}+\left(\frac{\sqrt{2}}{2}-1\right)^{2}\right]^{2}$

$$= \frac{1}{1 - \left(\frac{1}{\sqrt{2}}\right)^2} \left[\left(1 - \left(\frac{1}{\sqrt{2}}\right)^2\right) + \frac{1}{\sqrt{2}} - \left(1 - \left(\frac{1}{\sqrt{2}}\right)^2\right) \times \frac{1}{\sqrt{2}} \right]$$

$$= \sqrt{2} + \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = \sqrt{2}$$

$$\begin{pmatrix} x \\ t \end{pmatrix} = \frac{1}{\int_{1-\frac{\sqrt{2}}{2}}} \begin{pmatrix} 1 \\ \frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix}$$

$$0 \qquad \times = \times' + \cup \leftarrow'$$

$$+ = +'$$

(Remember His number.)

8)
$$t = \frac{L}{2}$$

$$t_{A} = \frac{L}{2}$$

$$t_{A} = \frac{L}{2}$$

$$t_{A} = \frac{L}{2}$$

$$t_{A} = \frac{L}{2}$$

t a > t 8

C) Louis of physics (and all physial constate appound in them) are the Sane in Il montil reference Sure S (Convoluy: the speed of light (One of the physical constats) is He same in Il volence Lonez.

(0) Sag too differ clocks were abjeted to on at the same speed ("calibrated") at vest and then Set in motion, if the motion affacts the clocks I. Faulty, Someone riding along with them could see the clocks running at this know they were in a monty value from. this is a violation of the Principle of Roberts The closes must be atteded in exactly the same way.