Evaluation of intra-coding based image compression

Steve Göring, Alexander Raake

Audiovisual Technology Group, Technische Universität Ilmenau, Germany; Email: [steve.goering, alexander.raake]@tu-ilmenau.de

code & demo: https://git.io/Je0ip

October 30, 2019

Motivation

- ▶ increase of uploaded/shared images¹, e.g. flickr, instagram, . . .
- ▶ higher resolutions, more content of different quality

ightarrow image compression review

¹for Flickr: average 1.68 million photos per day for 2016, see https://www.flickr.com/photos/franckmichel/6855169886/

- popular/new lossy image codecs:
 - o JPEG, PNG, GIF, JPEG-2K, JPEG-XR
 - o video codec based: BPG², HEIF [4]³, WebP⁴, AVIF⁵
- ▶ most evaluation, i.e. [5, 1, 2, 4, 3]
 - small dataset (<100 images), small resolution (<1000p), mostly PSNR, SSIMR,
- intra-frame compression-quality vs. JPEG in case of high resolution images
 - ightarrow large scale evaluation

²https://bellard.org/bpg/

hhttps://nokiatech.github.io/heif/

⁴https://developers.google.com/speed/webp/

⁵https://aomediacodec.github.io/av1-avif/

- popular/new lossy image codecs:
 - JPEG, PNG, GIF, JPEG-2K, JPEG-XR
 - o video codec based: BPG², HEIF [4]³, WebP⁴, AVIF⁵
- ▶ most evaluation, i.e. [5, 1, 2, 4, 3]
 - o small dataset (<100 images), small resolution (<1000p), mostly PSNR, SSIMR, SSIMR,
- intra-frame compression-quality vs. JPEG in case of high resolution images
 - ightarrow large scale evaluation

²https://bellard.org/bpg/

hhttps://nokiatech.github.io/heif/

⁴https://developers.google.com/speed/webp/

⁵https://aomediacodec.github.io/av1-avif/

- popular/new lossy image codecs:
 - o JPEG, PNG, GIF, JPEG-2K, JPEG-XR
 - o video codec based: BPG², HEIF [4]³, WebP⁴, AVIF⁵
- ▶ most evaluation, i.e. [5, 1, 2, 4, 3]
 - o small dataset (<100 images), small resolution (<1000p), mostly PSNR, SSIWR
- intra-frame compression-quality vs. JPEG in case of high resolution images

²https://bellard.org/bpg/

³hhttps://nokiatech.github.io/heif/

⁴https://developers.google.com/speed/webp/

⁵https://aomediacodec.github.io/av1-avif/

- popular/new lossy image codecs:
 - o JPEG, PNG, GIF, JPEG-2K, JPEG-XR
 - o video codec based: BPG², HEIF [4]³, WebP⁴, AVIF⁵
- ▶ most evaluation, i.e. [5, 1, 2, 4, 3]
 - \circ small dataset (<100 images), small resolution (<1000p), mostly PSNR, SSIM
- intra-frame compression-quality vs. JPEG in case of high resolution images

²https://bellard.org/bpg/

³hhttps://nokiatech.github.io/heif/

⁴https://developers.google.com/speed/webp/

⁵https://aomediacodec.github.io/av1-avif/

- popular/new lossy image codecs:
 - o JPEG, PNG, GIF, JPEG-2K, JPEG-XR
 - o video codec based: BPG², HEIF [4]³, WebP⁴, AVIF⁵
- ▶ most evaluation, i.e. [5, 1, 2, 4, 3]
 - o small dataset (<100 images), small resolution (<1000p), mostly PSNR, SSIM
- intra-frame compression-quality vs. JPEG in case of high resolution images

²https://bellard.org/bpg/

³hhttps://nokiatech.github.io/heif/

⁴https://developers.google.com/speed/webp/

⁵https://aomediacodec.github.io/av1-avif/

- popular/new lossy image codecs:
 - o JPEG, PNG, GIF, JPEG-2K, JPEG-XR
 - o video codec based: BPG², HEIF [4]³, WebP⁴, AVIF⁵
- ▶ most evaluation, i.e. [5, 1, 2, 4, 3]
 - o small dataset (<100 images), small resolution (<1000p), mostly PSNR, SSIM
- intra-frame compression-quality vs. JPEG in case of high resolution images

²https://bellard.org/bpg/

³hhttps://nokiatech.github.io/heif/

⁴https://developers.google.com/speed/webp/

⁵https://aomediacodec.github.io/av1-avif/

- popular/new lossy image codecs:
 - o JPEG, PNG, GIF, JPEG-2K, JPEG-XR
 - o video codec based: BPG², HEIF [4]³, WebP⁴, AVIF⁵
- ▶ most evaluation, i.e. [5, 1, 2, 4, 3]
 - small dataset (<100 images), small resolution (<1000p), mostly PSNR, SSIM
- intra-frame compression-quality vs. JPEG in case of high resolution images

ightarrow large scale evaluation

²https://bellard.org/bpg/

³hhttps://nokiatech.github.io/heif/

⁴https://developers.google.com/speed/webp/

⁵https://aomediacodec.github.io/av1-avif/

- popular/new lossy image codecs:
 - o JPEG, PNG, GIF, JPEG-2K, JPEG-XR
 - o video codec based: BPG², HEIF [4]³, WebP⁴, AVIF⁵
- ▶ most evaluation, i.e. [5, 1, 2, 4, 3]
 - \circ small dataset (<100 images), small resolution (<1000p), mostly PSNR, SSIM
- ▶ intra-frame compression-quality vs. JPEG in case of high resolution images
 - ightarrow large scale evaluation

²https://bellard.org/bpg/

³hhttps://nokiatech.github.io/heif/

⁴https://developers.google.com/speed/webp/

⁵https://aomediacodec.github.io/av1-avif/

- popular/new lossy image codecs:
 - o JPEG, PNG, GIF, JPEG-2K, JPEG-XR
 - o video codec based: BPG², HEIF [4]³, WebP⁴, AVIF⁵
- ▶ most evaluation, i.e. [5, 1, 2, 4, 3]
 - o small dataset (<100 images), small resolution (<1000p), mostly PSNR, SSIM
- ▶ intra-frame compression-quality vs. JPEG in case of high resolution images
 - \rightarrow large scale evaluation

²https://bellard.org/bpg/

³hhttps://nokiatech.github.io/heif/

⁴https://developers.google.com/speed/webp/

⁵https://aomediacodec.github.io/av1-avif/

- ▶ raw images: wesaturate.com; <u>all</u> raw images of \leq year 2018
- remove duplicates, unify to PNG: 1133 images
- encode: AV1, VP9, H.264, H.265; JPEG:
 - \circ all possible settings CRF settings: pprox 380k encoded imgs
 - one pass, preset: veryslow (H.26X); cpu-count=1 (VP9/AV1)
 - \circ unified quality level: $ql=1-crf/n_{codec}$ or $ql=(JPEG_q-1)/99$
- quality metrics: VMAF, SSIM, PSNR, VIF

- ▶ raw images: wesaturate.com; <u>all</u> raw images of \leq year 2018
- ▶ remove duplicates, unify to PNG: 1133 images
- encode: AV1, VP9, H.264, H.265; JPEG:
 - \circ all possible settings CRF settings: pprox 380k encoded imgs
 - one pass, preset: veryslow (H.26X); cpu-count=1 (VP9/AV1).
 - \circ unified quality level: $ql=1-crf/n_{codec}$ or $ql=(JPEG_q-1)/99$
- quality metrics: VMAF, SSIM, PSNR, VIF

- ▶ raw images: wesaturate.com; <u>all</u> raw images of \leq year 2018
- ▶ remove duplicates, unify to PNG: 1133 images
- ▶ encode: **AV1**, VP9, H.264, H.265; JPEG:
 - all possible settings CRF settings: $\approx 380k$ encoded imgs
 - one pass, preset: veryslow (H.26X); cpu-count=1 (VP9/AV1)
 - \circ unified quality level: $ql = 1 crf/n_{codec}$ or $ql = (JPEG_q 1)/99$
- quality metrics: VMAF, SSIM, PSNR, VIF

- ▶ raw images: wesaturate.com; <u>all</u> raw images of \leq year 2018
- ▶ remove duplicates, unify to PNG: 1133 images
- ▶ encode: **AV1**, VP9, H.264, H.265; JPEG:
 - ∘ all possible settings CRF settings: $\approx 380k$ encoded imgs
 - one pass, preset: veryslow (H.26X); cpu-count=1 (VP9/AV1)
 - \circ unified quality level: $ql = 1 crf/n_{codec}$ or $ql = (JPEG_q 1)/99$
- quality metrics: VMAF, SSIM, PSNR, VIF

- ▶ raw images: wesaturate.com; <u>all</u> raw images of \leq year 2018
- ▶ remove duplicates, unify to PNG: 1133 images
- ▶ encode: **AV1**, VP9, H.264, H.265; JPEG:
 - ∘ all possible settings CRF settings: $\approx 380k$ encoded imgs
 - one pass, preset: veryslow (H.26X); cpu-count=1 (VP9/AV1)
 - \circ unified quality level: $ql = 1 crf/n_{codec}$ or $ql = (JPEG_q 1)/99$
- quality metrics: VMAF, SSIM, PSNR, VIF

- ▶ raw images: wesaturate.com; <u>all</u> raw images of \leq year 2018
- ▶ remove duplicates, unify to PNG: 1133 images
- ▶ encode: **AV1**, VP9, H.264, H.265; JPEG:
 - ∘ all possible settings CRF settings: $\approx 380k$ encoded imgs
 - one pass, preset: veryslow (H.26X); cpu-count=1 (VP9/AV1)
 - o unified quality level: $ql = 1 crf/n_{codec}$ or $ql = (JPEG_q 1)/99$
- ▶ quality metrics: **VMAF**, SSIM, PSNR, VIF

- ▶ raw images: wesaturate.com; <u>all</u> raw images of \leq year 2018
- ▶ remove duplicates, unify to PNG: 1133 images
- ▶ encode: **AV1**, VP9, H.264, H.265; JPEG:
 - ∘ all possible settings CRF settings: $\approx 380k$ encoded imgs
 - one pass, preset: veryslow (H.26X); cpu-count=1 (VP9/AV1)
 - o unified quality level: $ql = 1 crf/n_{codec}$ or $ql = (JPEG_q 1)/99$
- quality metrics: VMAF, SSIM, PSNR, VIF

Evaluation – Dataset (sample)

- ► CCO licenced images; 36GB; download: https://zenodo.org/record/3459357#.XbdXVd-YWvZ
- ▶ mean height/width 3980 to 4375 pixel

Evaluation – Visual Comparison (1)

▶ left: av1: crf=63, right: jpeg quality=1; ql = 0

Evaluation – Visual Comparison (2)

▶ 360p center crop with ql = 0

Evaluation – Quality-level vs. Quality (VMAF)

- ightharpoonup AV1 \approx VP9.
- ► H.265 > H.264
- ▶ JPEG < AV1,VP9

Evaluation – Quality-level vs. Quality (SSIM)

- ightharpoonup AV1 pprox VP9 > H.265,
- ► H.265 > H.264 > JPEG

Evaluation – Quality-level vs. Quality (PSNR)

► JPEG worst

Evaluation – Quality-level vs. Compression

- ightharpoonup cr = FS(I)/FS(R),
- ▶ *I* lossy compressed,
- ► R lossless
- ► FS: filesize
- ► AV1 ≧ JPEG

- evaluated different intra-coding based image compression methods
 - \circ quality & compression: AV1|VP9 > H.265 > H.264 > JPEG
- ► large raw image dataset
 - 1133 images; high resolution; user content
- open and next steps:
 - evaluate image resolution as parameter
 - include other image codecs; subjective test

- evaluated different intra-coding based image compression methods
 - \circ quality & compression: AV1|VP9 > H.265 > H.264 > JPEG
- ► large raw image dataset
 - 1133 images; high resolution; user content
- open and next steps:
 - evaluate image resolution as parameter
 - include other image codecs; subjective test

- evaluated different intra-coding based image compression methods
 - \circ quality & compression: AV1|VP9 > H.265 > H.264 > JPEG
- ► large raw image dataset
 - 1133 images; high resolution; user content
- open and next steps:
 - evaluate image resolution as parameter
 - include other image codecs; subjective test

- evaluated different intra-coding based image compression methods
 - \circ quality & compression: AV1|VP9 > H.265 > H.264 > JPEG
- ► large raw image dataset
 - o 1133 images; high resolution; user content
- open and next steps:
 - evaluate image resolution as parameter
 - include other image codecs; subjective test

- evaluated different intra-coding based image compression methods
 - \circ quality & compression: AV1|VP9 > H.265 > H.264 > JPEG
- ► large raw image dataset
 - o 1133 images; high resolution; user content
- open and next steps:
 - evaluate image resolution as parameter
 - include other image codecs; subjective test

- evaluated different intra-coding based image compression methods
 - \circ quality & compression: AV1|VP9 > H.265 > H.264 > JPEG
- ► large raw image dataset
 - o 1133 images; high resolution; user content
- open and next steps:
 - o evaluate image resolution as parameter
 - include other image codecs; subjective test

- evaluated different intra-coding based image compression methods
 - \circ quality & compression: AV1|VP9 > H.265 > H.264 > JPEG
- ► large raw image dataset
 - o 1133 images; high resolution; user content
- open and next steps:
 - evaluate image resolution as parameter
 - o include other image codecs; subjective test

Thank you for your attention

..... are there any questions?

References I

- [1] Umar Albalawi, Saraju P Mohanty, and Elias Kougianos. "A hardware architecture for better portable graphics (BPG) compression encoder". In: 2015 IEEE International Symposium on Nanoelectronic and Information Systems. IEEE. 2015, pp. 291–296.
- [2] Abhilash Antony and G Sreelekha. "HEVC-based lossless intra coding for efficient still image compression". In: *Multimedia Tools and Applications* 76.2 (2017), pp. 1639–1658.
- [3] Nathan E Egge et al. "Using Daala intra frames for still picture coding". In: *Proceedings of Picture Coding Symposium*. 2015.
- [4] Jani Lainema et al. "HEVC still image coding and high efficiency image file format". In: 2016 IEEE International Conference on Image Processing (ICIP). IEEE. 2016, pp. 71–75.

References II

[5] Maurizio Pintus et al. "Objective evaluation of webp image compression efficiency". In: *International Conference on Mobile Multimedia Communications*. Springer. 2011, pp. 252–265.