A Strong Separation for Adversarially Robust ℓ_0 Estimation for Linear Sketches

Elena Gribelyuk
Honghao Lin
David P. Woodruff
Huacheng Yu
Samson Zhou

Streaming Model

- Input: Elements of an underlying data set S, which arrives sequentially
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size m of the input S

Lots of problems...

- Graph problems: Matchings, MST, MAX-CUT
- Geometric problems: Clustering, facility location
- Statistical problems: Heavy-hitters, norm/moment estimation, quantile estimation
- Algebraic problems: Subspace embeddings, regression, low-rank approximation
- String problems: pattern matching, periodicity
- Others: CSPs, coding theory, submodular optimization, etc

Distinct Elements

- Given a set S of m elements from [n], let f_i be the frequency of element i. (How often it appears)
- Let F_0 be the frequency moment of the vector:

$$F_0 = |\{i : f_i \neq 0\}|$$

- Goal: Given a set S of m elements from [n] and an accuracy parameter ε , output a $(1 + \varepsilon)$ -approximation to F_0
- Motivation: Traffic monitoring

Insertion-Only Streams

• Each update of the stream can only increase a coordinate of the frequency vector $x \in \mathbb{R}^n$

$$14213441 \rightarrow [3, 1, 1, 3, 0] := x$$

Streaming Algorithms for ℓ_0 Estimation

 $(1 + \varepsilon)$ -multiplicative approximation streaming algorithms for distinct elements estimation using space:

- $O(\log n)$, assuming constant ε and random oracle [FlajoletMartin85]
- $O(\log n)$, assuming constant ε [AlonMatiasSzegedy99]
- $O\left(\frac{1}{\varepsilon^2}\log n\right)$ [Bar-YoseffJayramKumarSivakumar02]
- $O\left(\frac{1}{\varepsilon^2}\log\log n + \log n\right)$ assumes random oracle, additive error, i.e., HyperLogLog [FlajoletFusyGandouetMeunier07]
- $O\left(\frac{1}{\varepsilon^2} + \log n\right)$ [KaneNelsonWoodruff10], [Blasiok20]

Streaming Algorithms for ℓ_0 Estimation

• Sample the elements of the universe [n] at rate $\frac{1}{2^i}$ into set S_i for $i=0,1,\ldots,O(\log n)$

• Pick set S_i with roughly $\frac{1}{\varepsilon^2} \log n$ items in the stream

• Output $|S_i| \cdot 2^i$ as constant-factor approximation to the number of distinct elements

- Input: Elements of an underlying data set S, which arrives sequentially and adversarially
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size m of the input S

1

- Input: Elements of an underlying data set S, which arrives sequentially and adversarially
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size m of the input S

14

- Input: Elements of an underlying data set S, which arrives sequentially and adversarially
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size m of the input S

142

- Input: Elements of an underlying data set S, which arrives sequentially and adversarially
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size m of the input S

1421

- Input: Elements of an underlying data set S, which arrives sequentially and adversarially
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size m of the input S

- Input: Elements of an underlying data set S, which arrives sequentially and adversarially
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size m of the input S

- Adversarially Robust: "Future queries may depend on previous queries"
- Motivation: Database queries, adversarial ML

Robust Algorithms for ℓ_0 Estimation

 $(1 + \varepsilon)$ -multiplicative approximation adversarially robust streaming algorithms for distinct elements estimation using space:

- $\tilde{O}\left(\frac{1}{\varepsilon^3}\right)$ · polylog(n), via sketch switching [Ben-EliezerJayaramWoodruffYogev20]
- $\tilde{O}\left(\frac{1}{\varepsilon^{2.5}}\right)$ · polylog(n), via differential privacy [HassidimKaplanMansourMatiasStemmer20]
- $\tilde{O}\left(\frac{1}{\varepsilon^2}\right)$ · polylog(n), via difference estimators [WoodruffZhou21]

Robust Algorithms for ℓ_0 Estimation

Insertion-Deletion Streams

• Each update $u_t = (a_t, \Delta_t)$ can increase or decrease a coordinate $a_t \in [n]$ of the underlying frequency vector $x \in \mathbb{R}^n$ by $\Delta_t \in \mathbb{Z}$

• For simplicity, we assume $\Delta_t \in \{-1, +1\}$

ullet In the robust setting, each update u_t can be chosen adversarially

Insertion-Deletion Streams

• $\tilde{O}(m^{1/3})$ space algorithm for distinct element estimation, where m is the length of the stream [Ben-EliezerEdenOnak22]

• Nothing known for constant-factor approximation in space polynomial in \boldsymbol{n}

Linear Sketch

- Algorithm maintains Ax for a matrix A throughout the stream
- The algorithm then outputs f(Ax) for some post-processing function f

• All insertion-deletion streaming algorithms on a sufficiently long stream might as well be linear sketches [LiNguyenWoodruff14, AiHuLiWoodruff16]

Reconstruction Attack on Linear Sketches

- Linear sketches are "not robust" to adversarial attacks, must use $\Omega(n)$ space [HardtWoodruff13]
- Approximately learn sketch matrix A, query something in the kernel of A
- Iterative process, start with V_1, \dots, V_r
- Correlation finding: Find vectors weakly correlated with A orthogonal to V_{i-1}
- Boosting: Use these vectors to find strongly correlated vector \boldsymbol{v}
- Progress: Set $V_i = \text{span}(V_{i-1}, v)$

Reconstruction Attack on Linear Sketches

Attack randomly generates Gaussian vectors

Analysis uses rotational invariance of Gaussians to observe

• Attack ONLY works on real-valued inputs (main difficulty!) and ONLY against ℓ_p norm estimation for p>0

Our Contribution

• There is a constant $\varepsilon = \Omega(1)$ so that any linear sketch giving a $(1+\varepsilon)$ -approximation to ℓ_0 on an adversarial insertiondeletion stream using $r < n^c$ rows, for a constant c > 0, can be broken in $\tilde{O}(r^8)$ queries

Upcoming

Attack intuition

Questions?

Gap ℓ_0 Norm Problem

• Let α and β be fixed constants

• Distinguish between the case where $||x||_0 < \alpha n$ or $||x||_0 > \beta n$

- Algorithm allowed to arbitrarily output when neither case holds
- Any multiplicative $(1 + \varepsilon)$ -approximation algorithm to ℓ_0 can solve the gap problem, for sufficiently small ε

A Motivating Question

 Some coordinates of the input vector are significant, i.e., learned well by the sketching matrix A, but most of them are not

What does significant mean?

A Motivating Question

- Intuitively, a sketch matrix A may preserve a "large" amount of information about some coordinates and a "small" amount of information about other coordinates
 - There can be a row of A that is nonzero in only a single column
 - A can be sampled such that a random set of O(1) coordinates has large information
 - There can be coordinates that only appears in columns with a large number of nonzero entries

$$Ax := \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & -1 & 1 & 1 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$x := [0,1,0,1,0,0,0]$$

$$A_1 := [0,0,0,1,0,0,0] \rightarrow \langle A_1, x \rangle = 1$$

 $A_2 := [1,-1,1,1,0,1,1] \rightarrow \langle A_2, x \rangle = 0$

Attack Outline

Adversary wants to gradually learn the sketching matrix

Strategy:

- Iteratively identify the significant coordinates and set them to zero in all future queries
- 2. After we have learned all significant coordinates, the query algorithm must rely on the other coordinates, for which the sketch Ax only has "small" information

Attack Outline

• Consider an extreme example where the sketch Ax is a subset S of r coordinates of x, unknown to the adversary

Attack:

- 1. Identify S
- 2. Place zeros in S and nonzeros elsewhere

Interactive Fingerprinting Code Problem

- An algorithm \mathcal{P} selects a set $S \subset [n]$ of coordinates unknown to the fingerprinting code \mathcal{F}
- \mathcal{F} must identify S by making adaptive queries $c^t \in \{0, 1\}^n$
- \mathcal{P} must answer consistently with some coordinate in c^t , i.e., $a^t = c_i^t$ for some $i \in [n]$
- BUT \mathcal{P} can only observe c_i^t for $i \in S \to \text{needs to distinguish between inputs that are all zeros and all ones restricted to <math>S$

• Used for watermarking, traitor-tracing schemes [BonehShaw98]

Interactive Fingerprinting Codes

• There exists an interactive fingerprinting code with length $\tilde{O}(n^2)$ [SteinkeUllman15]

• Gap ℓ_0 norm problem needs to distinguish between $\|x\|_0 < \alpha n$ or $\|x\|_0 > \beta n$

 Stronger requirement than fingerprinting code (which just needs to distinguish between all zeros and all ones)

Significant Coordinates (I)

- How to quantify significant coordinates?
- *i* is significant if there exists:
 - an elementary vector e_i that is a row of A

$$Ax \coloneqq \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 999 & 1 & 1 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 1 \\ 1000 \end{bmatrix}$$
$$x \coloneqq [0,1,0,1,0,0,0]$$

$$A_1 := [0,0,0,1,0,0,0] \rightarrow \langle A_1, x \rangle = 1$$

 $A_2 := [1,999,1,1,0,1,1] \rightarrow \langle A_2, x \rangle = 1000$

Significant Coordinates (II)

• Since the algorithm has Ax, it can recover y^TAx for any vector $y \in \mathbb{R}^r$

• If there exists $y \in \mathbb{R}^r$ such that $(y^TA)_i^2 \ge \frac{1}{s} \|y^TA\|_2^2$, then i is significant ("leverage score" of column i is large)

Significant Coordinates (II)

- How to quantify significant coordinates?
- *i* is significant if there exists:
 - an elementary vector e_i that is a row of A
 - $y \in \mathbb{R}^r$ such that $(y^T A)_i^2 \ge \frac{1}{s} ||y^T A||_2^2$

$$A_1 := [10, 10, 10, 10, 10, 10, 3] \rightarrow \langle A_1, x \rangle = 103$$

$$x := [2,3,5,0,0,0,1]$$

Reveals information about x_n modulo 10

$$A_1 := \left[1, 1, 1, 1, 1, \frac{3}{10}\right] \rightarrow \langle A_1, x \rangle = 10.3$$

$$x := [2,3,5,0,0,0,1]$$

Fractional part of $(y^TA)_n$ is large, for y selecting the first row of A

Significant Coordinates (III)

• *i* is significant if there exists $y \in \mathbb{R}^r$ such that $(FRAC(y^TAx)_i)^2 \ge \frac{1}{s}\sum_i (FRAC(y^TAx)_i)^2$

Significant Coordinates

- How to quantify significant coordinates?
- *i* is significant if there exists:
 - an elementary vector e_i that is a row of A
 - $y \in \mathbb{R}^r$ such that $(y^T A)_i^2 \ge \frac{1}{s} \|y^T A\|_2^2$
 - $y \in \mathbb{R}^r$ such that $(\operatorname{FRAC}(y^TA)_i)^2 \ge \frac{1}{s} \sum (\operatorname{FRAC}(y^TA)_j)^2$

• If i satisfies condition 1 or 2, then i satisfies condition 3

- The algorithm has access to linear sketch Ax
- Pre-process the matrix A into a larger matrix A' that separates the significant coordinates
- Only gives the algorithm "more" information

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 999 & 1 & 1 & 0 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A \qquad \qquad A'$$

• Resulting matrix A' is a combination of a sparse part S and a dense part D

$$A' = \begin{bmatrix} S \\ D \end{bmatrix}$$

$$A' = \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}$$

- Sparse part S has at most one nonzero entry per column
- Dense part D has no significant columns

• Show only $O(rs \log n)$ rows added to A

```
\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}
```

 Note that if there were no dense part, we can use fingerprinting code to attack S

- Sparse part S has at most one nonzero entry per column
- Dense part D has no significant columns

• Show only $O(rs \log n)$ rows added to A

```
\begin{bmatrix} 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 & 0 & 1 & 1 \end{bmatrix}
```

If we subsample coordinates of a random input $x \in \{-1,1\}^n$ at rate $\frac{1}{s}$ and repeat independently $s \log n$ times, obtaining sketches $Ax^1, \dots, Ax^{s \log n}$, we can recover any significant coordinate by looking at fractional parts of L_2 norm. But $O(rs \log n)$ bits of information in $Ax^1, \dots, Ax^{s \log n}$

Overall Attack

- 1. Pre-process the matrix A into a matrix A' that is a combination of a sparse part S and a dense part D
- 2. Attack sparse part *S* using fingerprinting code
- 3. Attack dense part *D*

Upcoming

Attack on dense part

Questions?

Attacking the Dense Part

- Design a family of distributions \mathcal{D} over [-R, ..., -1, 0, 1, ..., R] with $R = \text{poly}(r \ s \log n)$ such that:
 - For $D_p \in \mathcal{D}$ with $p \in [\alpha, \beta]$, we have $\Pr_{X \sim D_p}[X = 0] = p$
 - For any $q, p \in [\alpha, \beta]$, the total variation distance between Dx_p and Dx_q is small, i.e., $\frac{1}{\text{poly}(n)}$
- We show these are the only distributions needed for the fingerprinting code – dense part does not help for these!

Attacking the Dense Part

- Design a family of distributions \mathcal{D} over [-R, ..., -1, 0, 1, ..., R] with $R = \text{poly}(r \ s \log n)$ such that:
 - For $D_p \in \mathcal{D}$ with $p \in [\alpha, \beta]$, we have $\Pr_{X \sim D_p}[X = 0] = p$
 - For any $q, p \in [\alpha, \beta]$, the total variation distance between Dx_p and Dx_q is small, i.e., $\frac{1}{\text{poly}(n)}$
- If $x \sim D_p^n$, then $\operatorname{Ex}[||x||_0] = pn$ and if $x \sim D_q^n$, then $\operatorname{Ex}[||x||_0] = qn$, but the marginal distribution of Dx is nearly identical for $x \sim D_p^n$ and $x \sim D_q^n$, so the algorithm must use Sx

Overall Attack

- 1. Pre-process the matrix A into a matrix A' that is a combination of a sparse part S and a dense part D
- 2. Attack sparse part *S* using fingerprinting code
- 3. Attack dense part D using the family of distributions D

Bounding the Total Variation Distance

- Let P be the probability distribution corresponding to Dx_p and Q be the probability distribution corresponding to Dx_q
- To bound the total variation distance between P and Q, we multiply the support size $(n^{O(rs \log n)})$ of P and Q by a pointwise bound:

$$|P(x) - Q(x)| = \left| \frac{1}{(2\pi)^r} \int_{u \in [-\pi,\pi]^r} e^{i\langle u, x \rangle} \left(\widehat{P}(u) - \widehat{Q}(u) \right) du \right|$$

$$\leq \frac{1}{(2\pi)^r} \int_{u \in [-\pi,\pi]^r} \left| \hat{P}(u) - \hat{Q}(u) \right| du$$

Bounding the Total Variation Distance

• For a symmetric product distribution, we can write

$$\widehat{P}(u) = \mathcal{E}_{z \sim P} \left[e^{-i\langle u, z \rangle} \right]$$

$$= \prod_{j \in [n]} \sum_{k \ge 0} \left(M_p(2k) \right) \cdot f(D^j, u, k)$$

where $M_p(2k) = (\sum_{m \ge 0} P_m m^{2k})$ is the 2k-th moment of the distribution and f is a rapidly decaying function independent of P

Expand $e^{-i\langle u,z\rangle}$ into cosines and this is where fractional parts arise – use preprocessing to bound these fractional parts!

Bounding the Total Variation Distance

To analyze the total variation distance, we have

$$|\hat{P}(u) - \hat{Q}(u)| = \prod_{j \in [n]} \sum_{k \ge 0} (M_p(2k) - M_q(2k)) \cdot f(D^j, u, k)$$

so if the moments of the distributions of P and Q match, up to a sufficiently large k, this helps TVD be small!

Constructing Hard Distributions

- Design a family of distributions \mathcal{D} over [-R, ..., -1, 0, 1, ..., R] with $R = \text{poly}(r \ s \log n)$ such that:
 - For $D_p \in \mathcal{D}$ with $p \in [a,b]$, we have $\Pr_{X \sim D_p}[X=0] = p$
 - For any $q, p \in [a, b]$, the total variation distance between Dx_p and Dx_q is small, i.e., $\frac{1}{\text{poly}(n)}$
 - Moments of the distributions of D_p and D_q match

Moment Matching

- Want $E_{X \sim D_p}[X^k] = E_{X \sim D_q}[X^k]$ for all $k \le K = O(r \log n)$
- [LarsenWeinsteinYu20, Sherstov] There is a degree R polynomial Q such that for all $t < R^{1/2}$ and constant ε :

$$|Q(0)| > \varepsilon$$

Allows creating distributions with large probability at 0

$$\sum_{i=0}^{R} (-1)^{i} {R \choose i} \cdot Q(i) \cdot i^{t} = 0$$

Allows creating distributions with first t matching moments

Overall Attack

- 1. Pre-process the matrix A into a matrix A' that is a combination of a sparse part S and a dense part D
- 2. Attack sparse part *S* using fingerprinting code
- 3. Attack dense part D using the family of distributions D

Main Result

• There is a constant $\varepsilon = \Omega(1)$ so that any linear sketch giving a $(1+\varepsilon)$ -approximation to ℓ_0 on an adversarial insertion-deletion stream using $r < n^c$ rows, for a constant c > 0, can be broken in $\tilde{O}(r^8)$ queries

Additional Results

• Any linear skech that produces 1.1-approximation to ℓ_0 on an adversarial insertion-deletion stream using $r \ll n$ rows can be broken in $\tilde{O}(r^3)$ queries, if the calculations are performed on finite fields \mathbb{F}_p

• There exists an attack on any real-valued linear sketch with "bounded subdeterminants" that produces O(1)-approximation to ℓ_0 on an adversarial insertion-deletion stream with $r \ll n$ rows, using poly(r) queries

Attacks on linear-sketches for ℓ_0 estimation on adversarial insertion-deletion streams

Attacks on streaming algorithms for ℓ_0 estimation on adversarial insertion-deletion streams

Attacks on linear-sketches for ℓ_p estimation on adversarial insertiondeletion streams

Attacks on streaming algorithms for ℓ_p estimation on adversarial insertion-deletion streams