Network I-low

How does one design an algorithm? · Identify a known paradigm, or

· Jake a fresh approach.

-> by considering small examples

-> learning by mistakes

-> building a theory /notation.

- What is a network?

Sg. network of pipes with some fluid,

network of roads or rails,

network of vires.

-What is a flow? 10 (25 > 20 Stown along an edge (20 Stown at every vertex should be conserved, 1.e. incoming & outgoing flows are the same.

Defn: Network is modelled as a graph G= (V, E, c) with source & & sink t. · How is modelled as an edge-weight oussignment f s.t. V(x,y) EE, f(x,y) < c(x,y) and Yve V\ {s,t}: $\Sigma f(u,v) = \Sigma f(v,w)$, $(u,v) \in E$ $(v,w) \in E$ · value(f) := flow out of $S = \sum_{(8,\nu) \in E} f(8,\nu)$. Max-flow problem is to compute the inevergram.

When the program. - Idea 0: Find an 8-t path. Send minimum capacity along it. Repeat the above on the remaining capacity. 5^{20} 10^{1 But maxiflow= 30:

- This construction suggests an interesting iterative algorithm: Find an St path in the current Gg. Update the flow & Gg. Repeat! $f \leftarrow 0$; $f \leftarrow 0$; fFord-Fulkerson (G=(V,E,c)) } augmenting-path Plean &-thath in Gf; c' min. capacity in P; For (x,y) EP if ((1,y) is forward) $f(x,y) \leftarrow f(x,y) + c';$ else $f(x,y) \leftarrow f(x,y) - c'$; zetwen f; - an: Does it ever stop?
Does it output max, flow?

- To analyze, we need a new concept-• For $A \subset V$ At. Se A, $t \notin A$, consider the edges that go from A to \overline{A} , $\operatorname{cut}(A) := E \cap A \times \overline{A}$.
 - · Capacity of a cut, $C(A) := \sum_{\substack{(u,v) \in \\ \text{cut}(A)}} C(u,v)$.
- Note that, in some sense: $S \in A$ means that A is a "source" L $t \in A$ means that A is a "sink".
- For a flow f we can define the flow amounts leaving f entering f: $faut (A) := \sum_{(x,y) \in aut(A)} f(x,y).$
 - $f_{in}(A) := \sum_{(x,y') \in cut(A)} f(x,y') = \sum_{(x,y') \in cut(A)} f(y,x).$

9;

Jemmal:
$$f_{out}(A) - f_{in}(A) = v_{olue}(f)$$
,

Pf:

• value $(f) = f_{out}(b) - f_{in}(b)$
 $= \sum_{\alpha \in A} (f_{out}(\alpha) - f_{in}(\alpha)) \quad \text{[: conservation]}$
 $= \sum_{\alpha \in A} (\sum_{(\alpha, y) \in E} f_{(\alpha, y)}) - \sum_{(\alpha, \alpha) \in E} f_{(\alpha, \alpha)}$
 $= \sum_{\alpha \in A} (\sum_{(\alpha, y) \in E} f_{(\alpha, y)}) - \sum_{(\alpha, \alpha) \in E} f_{(\alpha, \alpha)}$
 $= \sum_{\alpha \in A} (\sum_{(\alpha, y) \in E} f_{(\alpha, y)}) - \sum_{\alpha \in A} f_{(\alpha, \alpha) \in E}$
 $= \sum_{\alpha \in A} (\sum_{(\alpha, y) \in Cut}(A) - \sum_{\alpha \in A} f_{(\alpha, x) \in Cut}(A)$
 $= f_{out}(A) - f_{in}(A) \leq c(A)$.

 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A) - f_{(\alpha, y) \in Cut}(A)$
 $= \sum_{(\alpha, y) \in Cut}(A)$

Max-flow Min-aut Theorem

- Upon termination of Ford-Fulkerson & & t get disconnected in the current graph Gg, where f is the final flow.
- Let A be the set of vertices reachable from s. Let A be the rest (includes t).

Theorem: In G, value (f) = c(A). Thus, max. flow equals min.cut capacity in any graph.

- · We know that value (f) (c(A),
- · Suppose at the end of Ford-Fulkerson value(f) < c(A). $\Rightarrow \exists (x,y) \in cut(A)$ in $\Rightarrow \exists (x,y) \in cut(A) = 0$.

- · This contradicts y & A.
- \Rightarrow value (f) = c(A).
- · For any s-t cut B, c(A)=value(f) < c(B).

=> DFord-Fulkerson computes max-flow 4 min-cut) DFor integral weights, the max. flow is integral!

- The number of steps night be as many as the max. flow.

=> The number of steps above is 200!

Theorem (Ford, Fulkerson, 1956): If G has max. flow f then the algorithm takes time O(IEI.f).

- Dechnically, it is an exponential-time algorithm as capacities are given in binary.

=> Claim: Ford-Fulkerson may not terminate on even 6 vertices if the weights are not positive rationals. Pf: (2xercise) []

		For positive integer weights can we do better than exp. time? Select the paths cleverly?
		better than exp. time?
		Select the bather claveshi?
		scale the party course.
	Adea	1: Select a both with max cabacity
	<u> </u>	1: Select a path with max. capacity. This raises the hope of faster. Convergence to max. flow.
	-	This raises the hope of faster
	- 1	Convergence to max. flow,
	_	- The carefully chosen path to augment the
		The carefully chosen path (to augment the flow) is called an augmenting path.
		Algo1 (G=(V,E,c), s,t) {
		f←o; k = max. capacity(E);
		while (k≥1) {
ter	aroft's of cap	100 Lk, - while (7 s-t path Pin Gg with cap 7 k) {
Ige	s of car	n c'+ capacity of P;
90	DFS 1	in $C \leftarrow Capacity of P;$ ie for $(x,y) \in P$ $x \leftarrow y$
	,,,,,	if (x,y) is a forward-edge
8		$f(x,y) \leftarrow f(x,y) + c';$
7		else $f(y,x) \leftarrow f(y,x) - c';$ } $k \leftarrow k/2; 3 3$

D The first while-loop runs O(Games) times
D The first while-loop runs O(GCmax) times, where Cmax is the max. capacity on E.
The second while-loop runs for O(m) times
· Note that There is a bath Paf cabor
but not 32k, in Gg.
but not 32k, in Gg. Let A be the set of vertices in Gg that are reachable from b by a
reachable from b by a
bath of cab. > 2k.
=> each cut-edge(A to A) has cap. <2k. => value(f) > fmax - mx2k.
· Note that each iteration of the inner
· Note that each iteration of the inner while-loop increases the flow by $7k$. \implies # iterations < $2m$.
For an integral network G, Agol finds max

flow in mxlg gmax x O(m) time.

	_	We can give a different analysis/aleo.
		We can give a different analysis/algo., that does not use the capacities.
		that goes not use the corparages.
	<u> </u>	
	Idea 2	: Let Ss(s,v) be the shortest-distance
		in Gy considering only the # hops & not
		the edge-capacities from & to v.
		Pick a start-Lath P as an
	-	Pick a shortest-path P as an
		augmenting-path (to augment f to f).
		- The intuition is that since in the new
		Gj' an edge in P disappears (say 2-34),
		$S_{S'}(\lambda,y) > S_{S}(\lambda,y).$
- ?r	3(2,4)	In a later iteration (in Gs")
t	*(-,)	if the edge (x,y) reappears then what
£,	p(x/y)	and the dal 2
ع	17 (y, x)	can we deduce?
2	=	=> Backedge (y,x) is
		there in the picked in you
		there in the picked with P.
		> $S_{\xi''}(8,x) = S_{\xi''}(8,y) + 1 \ge S_{\xi}(8,y) + 1$
		$= \delta_{\varsigma}(s,x) + 2.$

Lemma	: Whenever (x,y) reappears in a residual
	: Whenever (x,y) reappears in a residual graph, δ(s,x) increases by \$2. Thus, (x,y) can disappear/reappear
	Thus, (x,y) can disappear/reappear
	$\leq \frac{n-1}{2}$ times.
7	D #augmentations (M (n-1) -
Theore	m (Edmonds, Karp 1972): Max. flow in a real
	m (Edmonds, Karp 1972): Max. flow in a real weighted graph is computable in O(min) tim
	-Later improvements:
	[Malhotra, Kumar, Maheshwari 78] O(n3)
	[Orlin 2013] O(mn).
Exercis	e: Show that after every augmentation,
	$\forall \nu \in V$, $\delta_{\xi}(\vartheta, \nu) \leq \delta_{\xi'}(\vartheta, \nu)$. is affected only if it overlaps with snot. Latter we've analyzed.]
[8~ov	is affected only if it overlaps with snot. Latter we've analyzed. 7
Variar	ts: 1) Multiple sources & sinks, or
	ts: 1) Multiple sources L sinks, or 2) Nodes have capacities, or
	3) How with lower bound.

e.

Application 1: Bipartite Matching - Problem: Given a bipartite graph G = (U,V,E) find a largest set of non-overlapping edges MSE. G! U - Ghas a max. matching of size = 3. G'has max. flow = 3. Theorem: I has a size-k matching iff the related network I has flow=k. Proof: · [=] is the easy direction. · [=] Ford-Fulkerson also, gives the flow by picking one edge at a time. Exercise: It can be computed in O((m+n)n)-time.

Application 2: Edge disjoint s-t paths

- Let G=(V,E) be the graph in which we are interested in edge disjoint st paths. Let G' be the related flow network with edge-weights Oor 1.

Theorem: G'has an st flow=k iff G has k edge-disjoint st paths.

·[=] This is clear.
·(=>)

Note that in Ford- & Julkerson any augmenting-path

P has capacity=1 (in G'). 9:

disjoint.

=> We get k edge-disjoint s-t paths.

	Y
	Application 3: Matrix Rounding
	A A
	Given a matrix, eg. Given a matrix, eg. Guld we round each 3.1 6.8 7.3 17.2 9.6 2.4 0.7 12.7 11.3
	91ven a malux, eg. 9.6 2.4 0.7 12.7
Qn:	Could we round each 3.6 1.2 6.5 11.3
	columns (resp. rows) is also the rounding?
	columns (resp. rows) is also the rounding?
= 1	
_	We could model this as a network where
	o- la de ha - (1 . 1) . 11 . 1 . 1
	each edge has a flow upper bd. & lower ba
	91 3,4 16.17
D	Flow in Gy = 12,13 0 19,11
	Consistent rounding of M. 11,12 14,15
	Corrobations of 11.
	92: \$ 1 1 -1
-	Reduce to single wits .: -40 1 1 -1 1 40
	-40 1 1 -1 -1 -40
	$\frac{1}{1}$
	Connect +re nodes to 8' &
	Connect +re nodes to 8' & to
	Find flow (G2). Check whether all the
	edges from 8' (resp. to t') are saturated.