IFT 615 – Intelligence artificielle

Robotique

Hugo Larochelle
Département d'informatique
Université de Sherbrooke
http://www.dmi.usherb.ca/~larocheh/cours/ift615.html

Sujets couverts

- Survol rapide de la robotique
 - types de robots
 - types de problèmes en robotique
- Localisation de robot
- Apprentissage de contrôle de robots

- La robotique, c'est l'objectif ultime en intelligence artificielle
- Elle fait appel à pratiquement toutes les connaissances vues dans le cours (et bien d'autres!)
- Caractéristiques d'environnement
 - partiellement observable
 - stochastique
 - dynamique
 - continu
 - séquentiel (parfois)
 - multi-agent (parfois)

Applications liées à la robotique

Contrôle de bras robotique

Applications liées à la robotique

Voiture robotisée

Applications liées à la robotique

http://www.youtube.com/watch?v=4wMSiKHPKX4&feature=related
http://www.youtube.com/watch?v=AxDO7ZT4s_w

Dans ce cours...

- On va seulement gratter la surface de la robotique
- On va voir différents types de robots
- On va voir une application de l'apprentissage automatique à la robotique
 - contrôle d'un agent à l'aide d'apprentissage supervisé
- On va voir une application des réseaux bayésiens dynamique à la robotique
 - localisation de robot

Types de robots

- On distingue 3 types de robots
- Les robots manipulateurs
 - peuvent manipuler des objets
 - très utilisés en contexte manufacturier
 - plus d'un million installés dans le monde

Types de robots

- On distingue 3 types de robots
- Les robots mobiles
 - leur fonction première est l'exploration
 - se déplacent sur roues, pattes, ou autre mécanisme
 - se déplacent sur terre, dans les airs, dans l'eau, dans l'espace

Types de robots

- On distingue 3 types de robots
- Les robots hybrides
 - combine l'exploration et la manipulation
 - n'inclue pas seulement les robots humanoïdes
- On inclue également dans la robotique
 - prothèses artificielles
 - environnement intelligents
 - systèmes multicorps

Environnement robotique

- Un algorithme doit être efficace et rouler en temps réel (ou proche)
- Un algorithme d'apprentissage dans un robot doit s'améliorer rapidement
 - un environnement réel de va pas plus vite qu'en "temps réel »
- En pratique, l'apprentissage se fait souvent hors-ligne (offline)
 - un simulateur peut fournir des millions d'essais en quelques heures
 - aucun risque de briser/détruire le robot
- Un système robotisé concret va normalement nécessiter une connaissance préalable:
 - du robot
 - de son environnement physique
 - des tâches à effectuer

Apprentissage de contrôle d'un robot

- On a vu une approche par apprentissage par renforcement
 - on apprend un modèle de l'environnement
 - on fait des simulations hors-ligne, pour optimiser la politique

http://heli.stanford.edu/

Apprentissage de contrôle d'un robot

- On a vu une approche par apprentissage supervisé
 - on construit un ensemble d'entraînement où x_t est l'information des capteurs, et y_t est la décision à prendre
 - cet ensemble est construit en demandant à un humain de contrôler le robot

Input:

Camera Image

Output:

Ross, Gordon et Bagnell (2011)

Steering in [-1,1]

Hard left turn

Hard right turn

Apprentissage de contrôle d'un robot

- Cette dernière approche ne fonctionne pas toujours très bien http://videolectures.net/aistats2011_ross_reduction/
- Solution: « accompagner » le robot
 - on observe les erreurs faites par le robot

on lui donne de nouveaux exemples d'apprentissage, afin de corriger ces

- Un exemple d'application d'un réseau bayésien dynamique à la robotique
- Problème à résoudre: étant donné des informations de capteurs, déterminer la position du robot
- Types de capteurs
 - capteurs passifs: caméra vidéo, microphone, etc.
 - capteurs actifs: sonar, laser, etc.
- On suppose que le robot connaît
 - ♦ la carte de l'environnement dans lequel il se trouve
 - ◆ la vitesse à laquelle il se déplace
- On va supposer qu'une politique/plan à suivre est spécifié

Simulation: http://www.youtube.com/watch?v=nWvLX6xmoAw

- On utilise un réseau bayésien dynamique avec
 - des variables cachées X_t et observées Z_t continues
 - des actions A₊ qui déterminent la distribution de transition (mouvement)

$$\mathbf{X}_{t} = [i_{t}, j_{t}, \theta_{t}], où$$

 i_t : position horizontale du robot à l'instant t

 j_t : position verticale du robot à l'instant t

 θ_t : angle d'orientation du robot à l'instant t

- On utilise un réseau bayésien dynamique avec
 - des variables cachées X_t et observées Z_t continues
 - des actions A₊ qui déterminent la distribution de transition (mouvement)

- On utilise un réseau bayésien dynamique avec
 - des variables cachées X, et observées Z, continues
 - des actions A₊ qui déterminent la distribution de transition (mouvement)

- On utilise un réseau bayésien dynamique avec
 - des variables cachées X₊ et observées Z₊ continues
 - des actions A_t qui déterminent la distribution de transition (mouvement)

- On utilise un réseau bayésien dynamique avec
 - des variables cachées X, et observées Z, continues
 - des actions A₊ qui déterminent la distribution de transition (mouvement)

Modèle de mouvement

Δt : temps entre chaque instant

Si à l'instant t, le robot a une vitesse de translation $v_{\rm t}$ et une vitesse de rotation $w_{\rm t}$ alors...

rotation de $w_{\rm t}$ $\Delta {\rm t}$ degrés translation de longueur $v_{\rm t}$ $\Delta {\rm t}$ avec angle $\theta_{\rm t}$

- On utilise un réseau bayésien dynamique avec
 - des variables cachées X_t et observées Z_t continues
 - des actions A_t qui déterminent la distribution de transition (mouvement)

- On utilise un réseau bayésien dynamique avec
 - des variables cachées X_t et observées Z_t continues
 - des actions A_t qui déterminent la distribution de transition (mouvement)

Plus on s'éloigne de la prédiction attendue, plus la probabilité du mouvement est basse

- On utilise un réseau bayésien dynamique avec
 - des variables cachées X_t et observées Z_t continues
 - ◆ des actions A₊ qui déterminent la distribution de transition (mouvement)

Modèle de mouvement

- On utilise un réseau bayésien dynamique avec
 - des variables cachées X_t et observées Z_t continues
 - des actions A₁ qui déterminent la distribution de transition (mouvement)

Modèle de mouvement

IFT 615 Hugo Larochelle 25

- On utilise un réseau bayésien dynamique avec
 - des variables cachées X_t et observées Z_t continues
 - des actions A_t qui déterminent la distribution de transition (mouvement)

Moins l'observation est cohérente avec la variable d'état cachée, plus la probabilité est basse

- On utilise un réseau bayésien dynamique avec
 - des variables cachées X_t et observées Z_t continues
 - des actions A_t qui déterminent la distribution de transition (mouvement)
- On souhaite mettre à jour notre croyance p/r
 à la position du robot après chaque observation
 - filtrage en ligne (voir cours sur RBD)

$$P(\mathbf{X}_{t+1} \mid \mathbf{z}_{1:t+1}, \mathbf{a}_{1:t}) = P(\mathbf{X}_{t+1} \mid \mathbf{z}_{t+1}, \mathbf{z}_{1:t}, \mathbf{a}_{1:t})$$

$$= P(\mathbf{z}_{t+1}, \mathbf{X}_{t+1} \mid \mathbf{z}_{1:t}, \mathbf{a}_{1:t}) / \alpha$$

$$= \sum_{\mathbf{x}_{t}} P(\mathbf{z}_{t+1}, \mathbf{X}_{t+1}, \mathbf{x}_{t} \mid \mathbf{z}_{1:t}, \mathbf{a}_{1:t}) / \alpha$$

$$= \sum_{\mathbf{x}_{t}} P(\mathbf{z}_{t+1} \mid \mathbf{X}_{t+1}) P(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}, \mathbf{a}_{t}) P(\mathbf{x}_{t} \mid \mathbf{z}_{1:t}, \mathbf{a}_{1:t-1}) / \alpha$$

$$= P(\mathbf{z}_{t+1} \mid \mathbf{X}_{t+1}) \sum_{\mathbf{x}} P(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}, \mathbf{a}_{t}) P(\mathbf{x}_{t} \mid \mathbf{z}_{1:t}, \mathbf{a}_{1:t-1}) / \alpha$$

- On utilise un réseau bayésien dynamique avec
 - des variables cachées X_t et observées Z_t continues
 - des actions A₊ qui déterminent la distribution de transition (mouvement)
- Une valeur de X_{t+1} de l'état caché au temps t+1 aura une probabilité élevée si:
 - 1. elle est explique bien les observations des capteurs et
 - 2. elle est une conséquence probable de l'action a_t appliquée à l'instant t, sur les valeurs probables de X_t selon mes croyances précédentes

$$P(\mathbf{X}_{t+1} \mid \mathbf{z}_{1:t+1}, \mathbf{a}_{1:t}) = \frac{P(\mathbf{z}_{t+1} \mid \mathbf{X}_{t+1}) \sum_{\mathbf{x}_{t}} P(\mathbf{X}_{t+1} \mid \mathbf{x}_{t}, \mathbf{a}_{t}) P(\mathbf{x}_{t} \mid \mathbf{z}_{1:t}, \mathbf{a}_{1:t-1}) / \alpha}{\mathbf{x}_{t}}$$

- On utilise un réseau bayésien dynamique avec
 - des variables cachées X_t et observées Z_t continues
 - des actions A₊ qui déterminent la distribution de transition (mouvement)
- L'état X_{t+1} (position et angle) est une variable continue
 - nombre infinie de valeurs
 - on devrait remplacer la somme sur x_t par une intégrale
- Deux approximations possibles
 - on discrétise l'espace (impose un nombre fini de positions et d'angles)
 - 2. on approxime les intégrales avec de l'échantillonnage aléatoire (Monte Carlo)
 - » méthode normalement utilisée (voir livre de référence)

Simulation: http://www.youtube.com/watch?v=nWvLX6xmoAw

Conclusion

- La robotique est un autre exemple de domaine où l'apprentissage automatique joue un rôle de plus en plus important
- Nous sommes encore très loin du robot qui apprend seul, par lui-même, dans un vrai environnement
- Pas de cours de robotique au département d'informatique
 - par contre, le département de génie électrique et informatique offre des cours...
 - le livre de référence est contient plusieurs autres exemples et références

Objectifs du cours

Vous devriez être capable de...

 Avoir une meilleure idée de ce qu'il vous reste à apprendre pour faire de la robotique...