

## PROBLEM STATEMENT

- In general ¼ of diabetes cases (type 2) are undiagnosed.
- 2. Diabetes can lead to several other complications throughout the body (e.g., kidney and heart diseases), and compromise immune system
- Doctor's often make assumptions based off age, weight, and blood sugar levels, leaving room for misdiagnosis.



## **USING MACHINE LEARNING**

### Using a Machine Learning Model can Help us:

- Diagnosis patients who are not showing symptoms or not considered high risk
- Provide cheaper alternatives than performing in depth tests
  - Utilizing data about your patient that is readily available
- Saving us time type 2 can take a long time to diagnose

#### **Overall Approach:**

- Prepare and Understand the Data
- Set Metrics for success
- Finalize and Improve Models
- Determine next steps based on Business goals and model performance

## LOOKING AT OUR DATA

## **FEATURES**

- Glucose
- BMI
- Insulin
- Diabetes Pedigree Function
- Age
- Pregnancies
- Skin Thickness
- Blood Pressure

# TARGET

- Diabetic
- Not Diabetic





## DATA OVERVIEW

- Several of our columns had "zero" values including Glucose, BMI, Insulin, and Skin Thickness
- Wanted to avoid dropping zero values. I used the median value to replace the zero values.
- This helped us see a more normal distribution for our variables
- Overall we saw highest correlation with Glucose, Pregnancies, and Age

|       | Pregnancies | Glucose    | BloodPressure | SkinThickness | Insulin    | ВМІ        | DiabetesPedigreeFunction | Age        | Outcome    |
|-------|-------------|------------|---------------|---------------|------------|------------|--------------------------|------------|------------|
| count | 768.000000  | 768.000000 | 768.000000    | 768.000000    | 768.000000 | 768.000000 | 768.000000               | 768.000000 | 768.000000 |
| mean  | 3.845052    | 121.656250 | 72.386719     | 27.334635     | 94.652344  | 32.450911  | 0.471876                 | 33.240885  | 0.348958   |
| std   | 3.369578    | 30.438286  | 12.096642     | 9.229014      | 105.547598 | 6.875366   | 0.331329                 | 11.760232  | 0.476951   |
| min   | 0.000000    | 44.000000  | 24.000000     | 7.000000      | 14.000000  | 18.200000  | 0.078000                 | 21.000000  | 0.000000   |
| 25%   | 1.000000    | 99.750000  | 64.000000     | 23.000000     | 30.500000  | 27.500000  | 0.243750                 | 24.000000  | 0.000000   |
| 50%   | 3.000000    | 117.000000 | 72.000000     | 23.000000     | 31.250000  | 32.000000  | 0.372500                 | 29.000000  | 0.000000   |
| 75%   | 6.000000    | 140.250000 | 80.000000     | 32.000000     | 127.250000 | 36.600000  | 0.626250                 | 41.000000  | 1.000000   |
| max   | 17.000000   | 199.000000 | 122.000000    | 99.000000     | 846.000000 | 67.100000  | 2.420000                 | 81.000000  | 1.000000   |
|       |             |            |               |               |            |            |                          |            |            |

# DATA OVERVIEW CONT'D

Total Data: 768
-Diabetic: 268

-Not Diabetic:500

**Training Set Data:576** 

-Diabetic:374

-Not Diabetic:202

Test Set Data: 192

-Diabetic:126

-Not Diabetic:66



## **IDEAL SITUATION**

- Our biggest priority is to avoid informing patients who have diabetes that they don't have diabetes
  - (False Negatives)
- According to the National Academy of Science, incorrect diagnosis is expensive
  - False Negatives are more expensive than False Positives.
- We ideally want to create a model that has high overall accuracy but is also cost efficient for the patient and the physician

## **MODELS USED**

### **MODELS USED:**

- LOGISTIC REGRESSION
- DECISION TREE
- RANDOM FOREST

### **METRICS OF SUCCESS:**

- Fbeta 2 (PRIMARY)
- PREDICTION ACCURACY (SECONDARY)



RESULTS

192
Test size

576

Training Size

|                        | ACCURACY SCORE | FBETA2 | FALSE NEGATIVES |
|------------------------|----------------|--------|-----------------|
| LOGISTIC<br>REGRESSION | 61%            | 78%    | 3               |
| DECISION TREE          | 81%            | 74%    | 15              |
| RANDOM FOREST          | 80%            | 69%    | 21              |

# **ANALYSIS**

#### **NEXT STEPS:**

- Increase the overall score for our model by tuning our model and using alternate ML model types
- Working with a larger dataset that includes more features like ethnicity, gender, etc.
- Tune our training and test data set to work with a more balanced class

#### **BUSINESS STRATEGY:**

- Determine which groups of people are the least likely to develop diabetes and utilize the top performing model on that group to avoid misdiagnosing them.
- Our Model can also be used to determine if a patient is likely to develop diabetes.
   Developing a preventative model will help us be even more cost efficient.