

Systemtheorie

1. Reaktive Elemente

1.1. Die vier zentralen Größen u, i, a, Φ

... beschreiben die Wirkungsweise von elektronischen Bauelementen

Spannung u: Potentialdifferenz. Hohes zu niedrigem Potential Strom i: Bewegte Ladung. Bewegungsrichtung positiver Ladung Ladung q: Grundeigenschaft von Materie.

Magnetischer Fluss Φ: Grundeigenschaft von elektr. magn. Feldern

1.1.1 Allgemeine Zusammenhänge u, i, q, Φ

Ladung und Strom beschreiben den Zustand der Materie. Spannung und magn. Fluss beschreiben den Zustand des elekt. magn. Fel-

Kondensator ist u-gesteuert (q-gesteuert), falls für ein u (q) nur ein q (u)

Induktivität ist i-gesteuert (ϕ -gesteuert), falls für ein i (ϕ) nur ein ϕ (i)

$$\begin{array}{lll} i(t) = \dot{q}(t) & [i] = A \\ q(t) = q(t_0) + \int_{t_0}^t i(\tau) \mathrm{d}\tau & [q] = As = C \\ \hline u(t) = \dot{\Phi}(t) & [u] = V \\ \Phi = \Phi(t_0) + \int_{t_0}^t u(\tau) \mathrm{d}\tau & [\Phi] = Vs = Wb \end{array}$$

1.1.2 Arten von Bauelemente

Art	Symbol	Beschr.	linear
Resistivität	$i_R \xrightarrow{u_R}$	$f_R(u,i)$	$u = U_0 + R \cdot i$
Kapazität	i_c u_c	$f_C(u,q)$	$q = Q_0 + C \cdot u$
Induktivität	<i>i_L</i> − <i>m</i> −	$f_L(i,\Phi)$	$\Phi = \Phi_0 + L \cdot i$
Memristivität		$f_{M}\left(q,\Phi\right)$	$\Phi = \Phi_0 + M \cdot q$

1.1.3 Zusammenhang der Bauelemente

1.1.4 Eigenschaften von Reaktanzen

Linearität: siehe Eintore

Linearrat: Stene Eintore Differentialgleichung: $i(t)=C\frac{\mathrm{d}u(t)}{\mathrm{d}t}, u(t)=L\frac{\mathrm{d}i(t)}{\mathrm{d}t}$ Gedächtnis: Verhalten durch vorhergehende Klemmengrößen bestimmt. $\textbf{Stetigkeit} \colon u_C(t) \text{, } i_L(t) \text{ stetig in } (t_a, t_b) \text{, wenn Torgr\"{o}Ben endlich}$

Verlustfreiheit: $W_C(t_1, t_2) = \int_{t_1}^{t_2} u(t)i(t) dt = \int_{q_1}^{q_2} X(q) dt$

Falls linear: $W=\frac{Cu^2}{2}=\frac{Li^2}{2}$ Periodisch: u(t+T)=u(t), q(t+T)=q(t)

Graphisch: Falls keine geschlossenen Schleifen in q/u, Φ/i-Diagramm existieren (Hystenesefrei)

Energie (nicht linearer Fall):

- Kapazitiv: $W_C(t_1,t_2)=\int_{t_1}^{t_2}u(t)i(t)\,\mathrm{d}t=\int_{q_1}^{q_2}u(q)\,\mathrm{d}q$
- Induktiv: $W_L(t_1,t_2)=\int_{t_1}^{t_2}u(t)i(t)\,\mathrm{d}t=\int_{\Phi_1}^{\Phi_2}i(\Phi)\,\mathrm{d}\Phi$

Energie (linearer Fall):

- Kapazitiv: $W_C=\frac{C}{2}u^2=\frac{1}{2C}q^2$ Induktiv: $W_L=\frac{L}{2}i^2=\frac{1}{2L}\Phi^2$

Graphisch: Fläche zwischen der Kennlinie und der g-/Φ-Achse Relaxationspunkte (=Ruhepunkte): Betriebspunkte, in dem die in einer Reaktanz gespeicherte Energie minimal ist. Kandidaten sind: Extremwerte, Wendepunkte, Knicke, Schnittpunkte mit q-/ Φ -Achse

1.1.5 Verschaltung von Reaktanzen

- Parallelschaltung: $C_p = C_1 + C_2$, $L_p = L_1 || L_2 = \frac{L_1 L_2}{L_1 + L_2}$
- Serienschaltung: $C_p = C_1 || C_2 = \frac{C_1 C_2}{C_1 + C_2}$, $L_p = L_1 + L_2$

Merke: Am Kondensator eilt der Strom vor, bei Induktivitäten wird er

Merke: Ist das Mädchen brav, bleibt der Bauch konkav, hat das Mädchen Sex, wird der Bauch konvex.

1.1.6 Dualität

$$\begin{aligned} u &\to R_d \cdot i^d, \, i \to \frac{1}{R_d} u^d \\ \Phi &\to R_d \cdot q^d, \, q \to \frac{1}{r_d} \cdot \Phi^d \end{aligned}$$

1.2. Populationswachstum

Zustandsgleichung: $\dot{p} = \alpha p(t)$

Zeitkonstante $au=-rac{1}{lpha}$ Mit Anfangswert $p_0=p(t_0)$ zum Zeitpunkt t_0 ist die Lösung des Gleichungssystemes: $p(t) = p_0 e^{\alpha(t-t_0)}$

2. Systeme ersten Grades

I. Resistives ESB bestimmen			
	Kapazität	Induktivität	
ESB-Typ	Helmholtz-Thévenin	Mayer-Norton	
	+ ~~~~	+	
Zustandsgröße Zeitkonstante	$\begin{aligned} x(t) &= u_C(t) \\ \tau &= RC \end{aligned}$	$\begin{split} x(t) &= i_L(t) \\ \tau &= GL \end{split}$	

II. Aufstellen DGL (kanonische Form)

$$\dot{x}(t) = -\frac{1}{-}x(t) + \frac{1}{-}v$$
 mit der Erregung v

III. Lösen der DGL

$$\text{Konstante Erregung: } x(t) = x_{\infty} + (x_0 - x_{\infty}) \mathrm{e}^{-\frac{t-t_0}{\tau}} \\ \text{Allgemeine Erregung: } x(t) = \underbrace{x_0 \mathrm{e}^{\frac{t_0-t}{\tau}}}_{\text{zero-input-response}} + \underbrace{\int_{t_0}^{t} \frac{1}{\tau} v(t') \mathrm{e}^{\frac{t'_0-t'}{\tau}}}_{\text{zero-state-response}}$$

 $\operatorname{mit}\, u_{C,\infty}=U_0\,\operatorname{bzw.}\, i_{L,\infty}=I_0$

IV. Dynamischer Pfad

Kapazität	Induktivität	
i < 0: u wird größer	u < 0: i wird größer	
i > 0: u wird kleiner	u>0: i wird kleiner	
i = 0: GGP	u=0: GGP	

Toter Punkt: kein GGP, aber Pfad kann nicht fortgesetzt werden →Sprung $\text{der nicht stetigen Größe } (i_C \,\, \text{oder} \,\, u_L)$

Gleichgewichtspunkt (GGP):

Kapazität	Induktivität
$\frac{d}{dt}u_F = 0 \to i_F = 0$	$\frac{d}{dt}i_F = 0 \to u_F = 0$

- a) stabil, falls der Pfad nicht aus diesem Punkt herausläuft
- b) instabil, falls der Pfad aus dem Punkt herausläuft
- c) virtuell, falls der Pfad in einen toten Punkt auf dem verlängertem Pfad auf der Achse läuft

2.1. Stabile Schaltung ($\tau > 0$)

2.2. Instabile Schaltung ($\tau < 0$)

2.3. Dynamischer Pfad

2.4. Sprung- und Impulsantwort

2.4.1 Sprungantwort

$$\begin{aligned} & \text{Sprungfunktion: } \sigma(t) = \begin{cases} 1 & \text{für } t > 0 \\ 0 & \text{für } t < 0 \end{cases} \\ & \text{Sprungantwort: } x_{\sigma}(t) = (1 - \exp{(-\frac{1}{z})})\sigma(t) \end{aligned}$$

2.4.2 Impulsantwort

rechteckförmiger Signalverlauf der Erregung

Einheitsimpuls:
$$\delta(t) = \begin{cases} 0 & \text{für } t \neq 0 \\ \infty & \text{für } t = 0 \text{ und } \int_{-\epsilon_1}^{\epsilon_2} \delta(t) \, \mathrm{d}t = 1 \end{cases} \ \forall \epsilon_1, \epsilon_2$$
 Impulsantwort: $h(t) = \frac{1}{\tau} \exp{(-\frac{1}{\tau})}\sigma(t) = \frac{d}{dt}\sigma$

2.5. Sprungphänomene

Tritt auf, falls Pfad in einen toten Punkt läuft. Führt zu einer sprungartigen Fortsetzung des dynamischen Pfades auf einem anderen Kennlinienast (Stetigkeitsregel beachten). Beispiele: Relaxationsoszilator, astabiler Multivibrator

3. Systeme zweiten Grades

3.1. Differentialgleichungssystem aufstellen

I. Schaltung umzeichnen

Zeichne die Schaltung so um, dass beide Reaktanzen an den äußeren Sei-

II. Matrix aufstellen (Quellen vernachlässigen)

- a) zwei Kapazitäten: Leitwertsmatrix G
- b) zwei Induktivitäten: Widerstandsmatrix R
- c) Kapazität (Tor 1) und Induktivität (Tor 2): Inverse Hybridmatrix H'
- d) Induktivität (Tor 1) und Kapazität (Tor 2): Hybridmatrix H

III. Quellenvektor aufstellen

IV. Differentialgleichungssystem aufstellen

3.2. Phasenportraits

3.2.1 Zeichnen des Phasenportraits

I. Bestimmung der Eigenwerte λ_i und Eigenvektoren q_i

$$\lambda_{1,2} = \frac{tr(\mathbf{A})}{2} \pm \sqrt{\frac{tr(\mathbf{A})^2}{4} - det(\mathbf{A})}$$

$$a_{12} \neq 0 \Rightarrow \mathbf{q}_i = \begin{bmatrix} -a_{12} \\ a_{11} - \lambda_i \end{bmatrix} \quad a_{21} \neq 0 \Rightarrow \mathbf{q}_i = \begin{bmatrix} a_{22} - \lambda_i \\ -a_{21} \end{bmatrix}$$

$$a_{12} = a_{21} = 0 \Rightarrow \mathbf{q}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{q}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

Falls Eigenvektoren komplex: $\mathbf{q}_r = \operatorname{Re}\left\{q_1\right\}$ $\mathbf{q}_i = \operatorname{Im}\left\{q_1\right\}$

II. Bestimmung des Fixpunktes

 $\mathbf{A}\mathbf{x}_{\infty} + \mathbf{B}\mathbf{v} = 0 \Rightarrow \mathbf{x}_{\infty} = -\mathbf{A}^{-1}\mathbf{B}\mathbf{v}$

III. Art des Phasenportraits

 $\lambda_{1/2} = \alpha \pm \beta j, \ \alpha \neq 0$: Je nach $\mathrm{sgn}(\alpha)$ (in-)stabiler Strudel in Drehrichtung von \mathbf{q}_r ($\xi_{\text{reel}1}$) nach $-\mathbf{q}_i$ ($\xi_{\text{reel}2}$)

Wirbelpunkt

 $\lambda_{1/2} = \pm \beta j$: Wirbel in Drehrichtung von \mathbf{q}_r ($\xi_{\mathsf{reel}1}$) nach $-\mathbf{q}_i$ (ξ_{reel2})

 $\lambda_{1,2} < 0, |\lambda_1| < |\lambda_2|$: Trajektorien von Richtung (Eigenvektor) des schnelleren Eigenwerts (\mathbf{q}_2, ξ_2) schmiegen sich an an Richtung des langsameren Eigenwerts (\mathbf{q}_1, ξ_1)

Sattelpunkt

 $\lambda_1 < 0 < \lambda_2$: Zwei Geraden in Eigenrichtungen, von stabiler Richtung zu GGP, zu instabiler Richtung. Restliche Trajektorien Hyperbeln mit Geraden als Asymptoten.

IV. Einzeichnen von Fixpunkt und Eigenvektoren

Die Eigenvektoren werden ausgehend vom Fixpunkt eingezeichnet. Bei konjugierten Eigenvektoren zeichnet man den Realteil und den negierten

3.2.2 Isokline

Kurve, auf der die Steigung der Trajektorie konstant ist. $m=\frac{\dot{x}_2}{\dot{x}_1}$, falls $m=0:\dot{x}_2=0$ bzw. $m=\infty:\dot{x}_1=0$

Kurve, die Gebiete mit verschiedenem Langzeitverhalten trennt.

3.3. Lösung der Zustandsgleichungen

3.3.1 Homogener Fall

Transformation autonom (konst. Erregung) ⇒ homogener Fall mit: $x' = x - x_{\infty}$

$$\begin{array}{l} \lambda_1 \neq \lambda_2 \colon \mathbf{x}(t) = \ c_1 \mathrm{e}^{\lambda_1 t} \mathbf{q}_1 + c_2 \mathrm{e}^{\lambda_2 t} \mathbf{q}_2 \\ \lambda_1 = \lambda_2 = \lambda \colon \mathbf{x}(t) = e^{\lambda t} (\mathbf{1} + (\mathbf{A} - \lambda \mathbf{1}) t) [\mathbf{q}_1 \ \mathbf{q}_2]^T \\ \mathrm{komplexe} \quad \mathrm{Eigenwerte:} \quad c_1 \mathrm{e}^{\alpha t} (\cos{(\beta t)} \mathbf{q}_{\mathrm{reell}} \ - \ \sin{(\beta t)} \mathbf{q}_{\mathrm{imag}}) \ + c_2 \mathrm{e}^{\alpha t} (\sin{(\beta t)} \mathbf{q}_{\mathrm{reell}} - \cos{(\beta t)} \mathbf{q}_{\mathrm{imag}}) \end{array}$$

3.3.2 Transformation auf Normalform

Gegeben: $\dot{x} = \mathbf{A}x$

Normalgleichung: $\dot{\xi} = \Lambda \xi$

Eigenwerte λ_1, λ_2 und Eigenvektoren $\mathbf{q}_1, \mathbf{q}_2$ berechnen

$$\mathbf{Q} = \begin{bmatrix} \mathbf{q}_1 & \mathbf{q}_2 \end{bmatrix}$$

$$\Lambda = \mathbf{Q}^{-1} \mathbf{A} \mathbf{Q} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}, \xi = \mathbf{Q}^{-1} x$$

$$x(t) = \mathbf{Q} \xi(t) = \mathbf{Q} \exp(\Lambda(t - t_0)) \mathbf{Q}^{-1} x_0$$

3.3.3 Transformation auf Jordan-Normalform

Gegeben: $\lambda = \lambda_1 = \lambda_2, \mathbf{A}$ ist keine Diagonalmatrix $J = \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}, \mathbf{Q}' = \begin{bmatrix} \mathbf{q}_1' & \mathbf{q}_2' \end{bmatrix}, \xi'(t) = \mathbf{Q}'^{-1} \mathbf{x}(t)$

Zustandsgleichung in Jordan-Normalform: $\dot{\xi}'(t) = \mathbf{J}\xi'(t)$ Lösung der Zustandsgleichung:

$$\xi'(t) = \begin{bmatrix} \exp(\lambda(t-t_0))\xi_1'(t_0) + (t-t_0)\exp(\lambda(t-t_0))\xi_2'(t_0) \\ \exp(\lambda(t-t_0))\xi_2'(t_0) \end{bmatrix}$$
 Rücktransformation: $\mathbf{x}(t) = \mathbf{Q}'\xi'(t) = \mathbf{q}_1'\xi_1'(t) + \mathbf{q}_2'\xi_2'(t)$

3.3.4 Transformation auf reellwertige Normalform

Gegeben: $\lambda_{1/2} = \alpha \pm \beta j, \mathbf{q}_r, \mathbf{q}_i$ $\mathbf{Q}_{\mathsf{reell}} = \begin{bmatrix} \mathbf{q}_r & -\mathbf{q}_i \end{bmatrix}$

 $\mathbf{x}_{\mathsf{reell}} = \mathbf{Q}_{\mathsf{reell}}^{-1} \mathrm{e}^{\Delta t} \mathbf{Q}_{\mathsf{reell}}$

3.4. Zeitverlauf der Zustandsvariablen

Eigenwerte: $\lambda_i = \alpha + j\beta$ mit Dämpfung α und Schwingung β **Stabilität:** stabil, falls $\alpha < 0$, sonst instabil Schwingung mit Kreisfrequenz $\omega = \beta$

Fall	Schwingungsart
$\alpha = 0, \beta \neq 0$	ungedämpfte Schwingung
$\alpha < 0, \beta \neq 0$	schwach gedämpfte Schwingung
$\lambda_1 = \lambda_2 < 0, \beta = 0$	aperiodischer Grenzfall
$\lambda_1 \neq \lambda_2, \beta = 0$	stark gedämpfte Schwingung

3.5. Sprung- und Impulsantwort (analog zu 2.4)

Zustandsgleichung der Form $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t) + \mathbf{b}v(t)$.

Ausgangsgleichung der Form $y(t) = \mathbf{c}^T \mathbf{x}(t) + dv(t)$.

3.5.1 Sprungantwort

Sprungantwort

$$y_{\sigma}(t) = (d - \mathbf{c}^T \mathbf{A}^{-1} \mathbf{b}) \sigma(t) + \mathbf{c}^T \mathbf{A}^{-1} \exp{(\mathbf{A}t)} \mathbf{b} \sigma(t)$$
 mit der Sprungfunktion $\sigma(t)$

Für ein stabiles System mit $\lim_{t\to\infty} \exp{(\mathbf{A}t)} = \mathbf{0} \ (\lambda_{\text{real}} < 0)$

konvergiert die Sprungantwort wie folgt: $y_{\sigma,\infty} = d + \mathbf{c}^T \mathbf{A}^{-1} \mathbf{b}$.

3.5.2 Impulsantwort

$$h(t) = \frac{d}{dt} y_{\sigma}(t)$$

 $h(t) = d\delta(t) + \mathbf{c}^T \exp{(\mathbf{A}t)} \mathbf{b}\sigma(t)$

3.6. Steady-State- und Transientenantwort

 $\mathbf{x}(t) = \mathbf{x}_{trans}(t) + \mathbf{x}_{steady}(t)$

3.6.1 Steady-State-Antwort

$$\begin{aligned} \mathbf{x}_{\text{steady}}(t) &= \text{Re}\{Y(j\omega)\mathrm{e}^{j\omega t}\}\\ X_{\text{steady}}(t) &= H(j\omega) \cdot U_{\text{in}} \end{aligned}$$

3.6.2 Transientenantwort

Die Summe der Polstellen von $H(j\omega)$ ist die Transientenantwort. $\mathbf{x}_{\mathsf{trans}}(t) = \exp\left(\mathbf{A}t\right) \cdot \mathbf{x}_{\mathsf{trans}}(t)$

4. Nichtlineare dynamische Systeme

- 1. Alle Fixpunkte bestimmen $\mathbf{f}(x_{\infty}) \stackrel{!}{=} \mathbf{0}$
- 2. Jacobimatrix bestimmen
- 3. Fixpunkte in Jacobimatrix einsetzen und Eigenwerte und Eigenvektoren bestimmen
- 4. Überprüfen des Satzes von Hartmann/Grobmann: Für alle Eigenwerte gilt $\operatorname{Re} \{\lambda_i\} \neq 0$
- 5. Phasenportrait zeichnen (lokale Phasenportraits stetig verbinden)

4.1. Energiefunktion

Eigenschaften: stetig, lokal nicht konstant, auf jeder Trajektorie konstant Schaltung ist konservativ, falls:

$$\dot{E} = 0 \Leftrightarrow \frac{\partial E(\mathbf{x})}{\partial x_1} \dot{x}_1 + \frac{\partial E(\mathbf{x})}{\partial x_2} \dot{x}_2 + \ldots + \frac{\partial E(\mathbf{x})}{\partial x_n} \dot{x}_n = 0$$
 Erweiterung des Satzes von Hartmann/Grobmann: Jacobimatrix hat nur

imaginäre Eigenwerte und Schaltung ist konservativ ⇔ GGP ist Wirbelpunkt

4.2. Oszillatoren

Schaltung mit periodischem Verlauf der Zustandsgrößen Voraussetzung: nichtlinear, nur ein Fixpunkt (instabil)

Van der Pol-Oszillator:

Relaxationsoszillator:

5. Dynamische Schaltungen beliebigen Grades

5.1. Verallgemeinerte Zustandsgleichungen

$$\frac{d}{dt} \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{M}_1 & \mathbf{N}_1 \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{i} \end{bmatrix} = - \begin{bmatrix} \mathbf{B} & \mathbf{0} \\ \mathbf{0} & \mathbf{A} \\ \mathbf{M}_0 & \mathbf{N}_0 \end{bmatrix} \begin{bmatrix} \mathbf{u} \\ \mathbf{i} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \mathbf{0} \\ \mathbf{e} \end{bmatrix}$$

$$\mathbf{M}_1, \mathbf{N}_1 \colon \mathsf{Elementgleichungen \ der \ reaktiven \ Elemente}$$

M₀, N₀: Elementgleichungen aus Tableau

B: KVL, A: KCL

 $(e = 0 \Leftrightarrow \text{keine Quellen enthalten})$

6. Komplexe Wechselstromrechnung

Vorraussetzung: lineares, eingeschwungenes System mit sinusförmiger Erregung $x(t) = A_m \cdot \cos(\omega t + \phi)$

6.1. Komplexe Zeigergrößen

Zeitfunktion Zeiger	$a(t) = A_m \cdot \cos(\omega t + \phi)$ $A = \alpha + i\beta = A_m \cdot e^{i\phi}$
Maximum	$A_m \cdot (\cos \phi + j \sin \phi)$ $A_m = A = \sqrt{\alpha^2 + \beta^2} = \sqrt{AA^*}$
Phase	$\phi = \begin{cases} \arctan \frac{\beta}{\alpha} & \alpha > 0\\ \arctan \frac{\beta}{\alpha} + \pi & \alpha < 0 \end{cases}$

Differential operator: $\frac{\mathrm{d}}{\mathrm{d}t} = j\omega$ $\frac{d}{dt}e^{j(\omega t + \phi)} = j\omega \cdot e^{j(\omega t + \phi)}$

	Widerstand	Kondensator	Spule
Impedanz $Z=rac{U}{I}$	R	$\frac{1}{i\omega C}$	$j\omega L$
Admittanz $Y = \frac{I}{U}$	$G = \frac{1}{R}$	$rac{j\omega C}{j\omega C}$	$\frac{1}{j \omega L}$
$\begin{array}{l} \Delta\varphi = \\ \varphi_u - \varphi_i \end{array}$	0	$-\frac{\pi}{2}$	$\frac{\pi}{2}$
$\varphi_u - \varphi_i$			

6.2. Komplexe Leistungsrechnung

$$U_{\text{eff}} = \frac{1}{\sqrt{2}} U_m \quad I_{\text{eff}} = \frac{1}{\sqrt{2}} I_m$$

Momentanleistung: p(t) = u(t)i(t) Energie einer Periode: $E = \int_0^T u(t)i(t)dt$

 $\begin{array}{l} \text{Leistungsmittelwert: } P_w = \frac{1}{T} \int_0^T u(t) i(t) dt \\ \text{Komplexe Leistung: } P = \frac{1}{2} U I^* = \frac{1}{2} U_m \cdot e^{j\phi_u} \cdot I_m \cdot e^{-j\phi_i} = \end{array}$

 $U_{\text{eff}} \cdot I_{\text{eff}} \cdot e^{j(\phi_u - \phi_i)}$ Scheinleistung: S = |P|

Wirkleistung: $P_w = \text{Re}\{P\}$

Blindleistung: $P_B = Im\{P\}$

7. Analyse dynamischer Systeme im Frequenzbereich

7.1. Laplace-Transformation

Für kausale Funktionen mit f(t) = 0 für t < 0:

$$F(p) = \mathcal{L}\{f(t)\} = \int_0^\infty f(t)e^{-pt}dt$$

$$f(t) = \mathcal{L}^{-1} \{ F(p) \} = \frac{1}{2\pi j} \int_{\gamma - j\infty}^{\gamma + j\infty} F(p) e^{-pt} dt$$

7.1.1 Rechenregeln

- Linearität: $\mathcal{L}\{\alpha f(t) + \beta g(t)\} = \alpha F(p) + \beta G(p)$
- Differentiationssatz: $\mathcal{L}\{\dot{f}(t)\} = pF(p) f(0)$
- Faltung: $\mathcal{L}\{(a*b)(t)\} = A(p)B(p)$

7.1.2 Wichtige Laplace-Transformationen

$$\mathcal{L}\{\alpha e^{\beta t}\} = \frac{\alpha}{p - \beta}$$

$$\mathcal{L}\{e^{\mathbf{A}t}\} = \frac{1}{p\mathbf{1} - \mathbf{A}}$$

•
$$\mathcal{L}\{e^{\mathbf{A}t}\} = \frac{1}{n\mathbf{1} - \mathbf{A}}$$

Allgemeine Lösung im Frequenzraum:
$$x(p) = \frac{1}{p\mathbf{1} - \mathbf{A}} x_0 + \frac{1}{p\mathbf{1} - \mathbf{A}} bV(p)$$

$$x(t) = x(0) e^{\mathbf{A}t} + \int_0^t e^{\mathbf{A}(t - t')} v(t') b dt'$$

7.2. Übertragungsfunktion

$$H(j\omega) = \frac{\text{Ausgang}}{\text{Eingang}}$$

Nullstellen des Ausgangs werden als $p_{0,i}$ bezeichnet

Nullstellen des Eingangs werden als **Eigenfrequenzen** $p_{\infty,i}$ bezeichnet Polstellen $p_{\infty,i}$ von $H(j\omega)$ sind die Eigenwerte der Systemmatrix

Bestimmung der Differentialgleichung:

$$\begin{split} &H(\mathrm{J}\omega) = \frac{U_A}{U_E} = \frac{a_0 + a_1 \mathrm{J}\omega + a_2 (\mathrm{J}\omega)^2}{e_0 + e_1 \mathrm{J}\omega + e_2 (\mathrm{J}\omega)^2} \\ &U_A(e_0 + e_1 \mathrm{J}\omega + e_2 (\mathrm{J}\omega)^2) = U_E(a_0 + a_1 \mathrm{J}\omega + a_2 (\mathrm{J}\omega)^2) \\ &e_0 u_a(t) + e_1 \dot{u}_a(t) + e_2 \ddot{u}_a(t) = a_0 u_e(t) + e_1 \dot{u}_e(t) + e_2 \ddot{u}_e(t) \\ &\mathrm{3dB-Grenzfrequenz:} \; |H(\mathrm{J}\omega)|^2 = \frac{1}{\alpha} \end{split}$$

Stabilität: $\operatorname{Re}\{p_{\infty,i}\} < 0 \quad \forall i$ Darstellung einer Schaltung in Abhängigkeit der Frequenz

 $H(j\omega) = |H(j\omega)| \exp(j\angle H(j\omega))$

$$\phi(\omega) = \angle H(j\omega) = \begin{cases} \arctan \lim_{\mathbb{R} \in H(j\omega)} \frac{\inf\{H(j\omega)\}}{\ker\{H(j\omega)\}} & \text{für } \operatorname{Re}\{H(j\omega)\} \\ \arctan \lim_{\mathbb{R} \in H(j\omega)} + \pi & \text{für } \operatorname{Re}\{H(j\omega)\} < 0 \end{cases}$$
 logarithmierte Darstellung des Betrages: $v(\omega) = 20 \log_{10} |H(j\omega)|$

7.3. Bodediagramm

1. Übertragungsfunktion faktorisieren

$$H(jw) = K \cdot \prod_{n=1}^{n} \left(x_n + \frac{jw}{w_n} \right)^{z_n} \qquad z_n \in \mathbb{Z} \left\{ 0 \right\}$$

- 2. Logarithmierte Beträge der einzelnen Faktoren aufstellen
 - a) Konstanter Faktor: $y = 20 \cdot \log_{10}(K) dB$
 - b) Falls $x_n = 0$: Gerade durch $(\omega_n, 0dB)$
 - c) Falls $z_n < 0$: Bis ω_n Funktion gleich 0dB, dann linear um $20 \cdot \log_{10}(x_n)$ dB pro Dekade fallend
 - d) Falls $z_n > 0$: Bis ω_n Funktion gleich 0dB, dann linear um $20 \cdot \log_{10}(x_n)$ dB pro Dekade steigend
- 3. Phase der Faktoren bestimmen
- 4. Logarithmierte Beträge und Phasen aufaddieren
- 5. Separates Zeichnen des Betrages $v(\omega)$ und der Phase $\phi(\omega)$ in zwei Diagramme

7.4. Ortskurve

- 1. Bestimmung von diversen Werten der Übertragungsfunktion
- 2. Eintragen in der komplexen Ebene
- 3. Punkte stetig verbinden

Hier: Widerstandsortskurve eines Parallelschwingkreises. Re $\{Z(j\,\omega)\}$ andere Übertragungsfunktion sein

7.5. Filtertypen

 $\begin{array}{l} \text{Hochpass: } |H(j0)| = 0, |H(j\omega)| \rightarrow c \text{ für } \omega \rightarrow \infty \\ \text{Tiefpass: } |H(j0)| = c, |H(j\omega)| \rightarrow 0 \text{ für } \omega \rightarrow \infty \\ \text{Bandpass: } |H(j0)| = 0, |H(j\omega)| \rightarrow 0 \text{ für } \omega \rightarrow \infty, |H(jw_0)| = c \\ \text{Bandsperre: } |H(j0)| = c, |H(j\omega)| \rightarrow c \text{ für } \omega \rightarrow \infty, |H(jw_0)| = \end{array}$

Allpass: |H(j0)| = c (Phase kann sich trotzdem abhängig von ω ändern!)

7.6. Schwingkreis

Resonanzfrequenz: $\omega_0 = \sqrt{\frac{1}{LC}}$ Gütefaktor: $Q = \frac{\omega_0 C}{G} = \frac{1}{\omega_0 LG} = \frac{\sqrt{C}}{G\sqrt{L}}$ Eigenfrequenzen: $p_{\infty,1,2} = -\frac{\omega_0}{2Q} \pm \frac{\omega_0}{2Q} \sqrt{1-4Q^2}$

8. SPICE

8.1. Bauteile

- L<Name> <Knoten1> <Knoten2> <Wert>: Spule zwischen Knoten <Knoten1> und Knoten <Knoten2> mit Induktivität <Wert>
- C<Name> <Knoten1> <Knoten2> <Wert>: Kondensator zwischen Knoten <Knoten1> und Knoten <Knoten2> mit Kapazität <Wert>
- R<Name> <Knoten1> <Knoten2> <Wert>: Widerstand zwischen Knoten <Knoten1> und Knoten <Knoten2> mit Widerstandswert <Wert>
- U<Name> <Knoten1> <Knoten2> <Wert>: Spannungsquelle zwischen Knoten <Knoten1> und Knoten <Knoten2> mit Spannung <Wert> (Spannung positiv bei <Knoten1>)
- I<Name> <Knoten1> <Knoten2> <Wert>: Stromquelle zwischen Knoten <Knoten1> und Knoten <Knoten2> mit Stromstärke <Wert> (Strom in Richtung <Knoten2>)

8.2. Parameterbefehle

- .step param <Param> <Start> <End> <Step>: Alle Parameter {<Param>} werden vom Startwert <Start> bis <End> während der Simulation als Treppenfunktion mit Schrittweite <Step> eingesetzt.
- .step param <Param> list <Wert1> <Wert2> ...: Simulation wird n mal für jeden Parameterwert durchgeführt.
- .step oct param <Param> <Start> <End> <StepsPerOct>

8.3. Analysearten

9. Simulink

TODO