Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСТИТЕТ СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ» (ТУСУР)

Кафедра комплексной информационной безопасности электронновычислительных систем (КИБЭВС)

ИССЛЕДОВАНИЕ СТАБИЛИТРОНА

Отчет по практической работе №2 по дисциплине «Электроника и схемотехника»

Студент гр.728-2
Д. Р. Геворгян
Принял
Преподаватель кафедры
КИБЭВС
А С Семенов

1 Введение

Целью данной практической работы является построение обратной ветви вольтамперной характеристики стабилитрона и определение напряжения стабилизации, вычисление тока и мощности, рассеиваемой стабилитроном, определение дифференциального сопротивления стабилитрона по вольтамперной характеристике, исследование изменения напряжения стабилитрона в схеме параметрического стабилизатора, построение нагрузочной прямой стабилитрона.

2 Ход работы

Эксперимент 1. Измерение напряжения и вычисление тока через стабилитрон.

Данные о стабилитроне (SML4740) (Рисунок 2.1).

Zener Diode Model 'SML4741'			?	×
Sheet 1 Sheet 2				
Saturation current (IS):	9.128e-06 A			
Ohmic resistance (RS):	0.05954 → №			
Zero-bias junction capacitance (CJO):	1e-12 • F			
Junction potential (VJ):	0.75 · V			
Transit time (TT):	5e-09 • s			
Grading coefficient (M):	0.3333			
Zener test voltage at IZT (VZT):	11.05 V			
Zener test current (IZT):	0.1416 📑 A			
Emission coefficient (N):	1			
Activation energy (EG):	1.11 eV			
		ОК	Отме	на

Рисунок 2.1 – Данные о стабилитроне

Uct.min=11,05 B.

Iст.min=0,1416 А.

Iст.max=1,416 А.

Была собрана схема (рисунок 2.2).

Рисунок 2.2 – Схема эксперимента 1

$$R_{\scriptscriptstyle H}\!\!=\!\!\infty,\,I_{\scriptscriptstyle H}\!\!=\!\!0.$$

Для подсчета изменения напряжения питания Е, используются формулы:

$$Emin=Uct+R*(IH+Ict.min)$$

$$Emax=Uct+R*(IH+Ict.max)$$

а), б) данные для построения ВАХ стабилитрона.

$$E_{min} = 53,53 \text{ B}$$

 $E_{\text{max}} = 435,85 \text{ B}$

R=300 Ом

Таблица 1 - Данные для построения ВАХ стабилитрона

E, B	Uст, B	Іст, мА
0	0	0
60	11,06	163,1
120	11,1	363
180	11,12	562,9
240	11,14	762,87
300	11,16	962,8
360	11,17	1162,76
410	11,19	1329,36
435	11,19	1412,7

в) построение ВАХ стабилитрона

г) напряжение стабилизации стабилитрона

$$UcT = 11,05 B$$

д) рассеиваемая мощность

$$E_{cp} = 244,69 \text{ B}$$

$$PcT = 8,7 BT$$

е) дифференциальное сопротивление стабилитрона

$$R$$
диф =tan(86)=14.3

Эксперимент 2. Измерение точек нагрузочной характеристики параметрического стабилизатора.

Была собрана схема (Рисунок 2.3).

Рисунок 2.3 – Схема эксперимента 2

Таблица 2 – Данные для нагрузочной характеристики стабилитрона.

Rн, Ом	Ист, В	I _R , MA	Ін, мА	Іст, А
75	11,13	815,6	148,4	0,63
100	11,13	815,6	111,3	0,667
300	11,14	815,6	37,13	0,741
600	11,14	815,6	18,57	0,759
1000	11,14	815,6	11,14	0,767
к.з.				

Эксперимент 3. Получение ВАХ на экране осциллографа.

Была собрана схема (рисунок 2.4) и сняты показания с экрана осциллографа (рисунок 2.5).

Рисунок 2.4 – Схема эксперимента 3

Рисунок 2.5 – Показания осциллографа

Напряжение стабилизации, определенное из вольтамперной характеристики, полученной при помощи осциллографа Ucт = -3,85 мВ.

Эксперимент 4. Построение нагрузочной прямой стабилитрона.

a) E = Emin; RH = 200 OM;

Уравнение примет вид:

 $I_{CT} = 0.18 - 0.008 * U_{CT}$

Нанесем нагрузочную прямую на ВАХ стабилитрона (рисунок 2.6).

Рисунок 2.6 – Пересечение ВАХ и нагрузочной прямой

Рабочая точка Icт=8,19 A, Ucт=0,108 B.

б) E = Ecp; RH = 1 кОм;

Уравнение примет вид:

Ict = 0.245 - 0.004 * Uct

Нанесем нагрузочную прямую на ВАХ стабилитрона (рисунок 2.7).

1 may man 2.7 11 aprova 10 mm py are most inputies

Рабочая точка Іст=0.2 А, Uст=11,3 В.

в) E = Emax; $R_H = 200 O_M$.

Уравнение примет вид:

Ict = 1,45 - 0.008*Uct

Нанесем нагрузочную прямую на ВАХ стабилитрона (рисунок 2.8).

Рисунок 2.8 – Пересечение ВАХ и нагрузочной прямой

Рабочая точка Icт=1,36 A, Ucт=11,36 B.

3 Заключение

В ходе выполнения практической работы была построена обратная ветвы вольтамперной характеристики стабилитрона и определено напряжение стабилизации, вычислен ток и мощность, рассеиваемая стабилитроном. определено дифференциальное сопротивление стабилитрона по вольтамперной характеристике, исследовано изменение напряжения стабилитрона в схеме параметрического стабилизатора, построена нагрузочная прямая стабилитрона.