★ General Understanding

- Loss Function is computed when a single data record is passed through the model.
- Cost Function is computed when a batch of data is passed.
- Error Function can be used interchangeably with Loss/Cost Function.
- Different problems use different types of loss functions:
 - o Regression Problems → Squared Error, Absolute Error, Huber Loss
 - o Classification Problems → Cross Entropy (Binary or Multi-class)

E Regression Loss Functions

1. Squared Error Loss (MSE - Mean Squared Error)

Formula:

$$L = (y - \hat{y})^2$$
 (for one sample)

$$J = rac{1}{t} \sum_{i=1}^t (y_i - \hat{y}_i)^2 \quad ext{(for batch of size } t)$$

Advantages:

- It forms a quadratic function: ax^2+bx+c
 - o When plotted, this provides a **single global minimum**—no local minima.
 - Works well with **gradient descent optimization**.
 - Penalizes large errors more heavily by squaring them.

Disadvantages:

• **Not robust to outliers**. Since errors are squared, a single large error can dominate the loss.

2. Absolute Error Loss (MAE - Mean Absolute Error)

Formula:

$$L = |y - \hat{y}|$$

$$J = rac{1}{t} \sum_{i=1}^t |y_i - \hat{y}_i|$$

Advantages:

• More robust to outliers compared to MSE because it doesn't square the error.

Disadvantages:

- Computationally more difficult (non-differentiable at 0).
- Can lead to multiple local minima, which makes optimization harder.

3. Huber Loss

A **hybrid** of MSE and MAE. Introduces a hyperparameter δ to control transition from MSE to MAE.

Formula:

$$ext{Loss} = egin{cases} rac{1}{2}(y-\hat{y})^2, & ext{if } |y-\hat{y}| \leq \delta \ \delta \cdot |y-\hat{y}| - rac{1}{2}\delta^2, & ext{otherwise} \end{cases}$$

Key Points:

- Uses MSE for small errors (quadratic).
- Uses MAE for large errors (linear).
- Handles outliers better than MSE.
- Avoids the local minima issue of MAE.
- δ is a **hyperparameter** to tune.

Q Classification Loss Functions

4. Binary Cross Entropy Loss

Used in binary classification problems.

Formula:

Loss =
$$-y \log(\hat{y}) - (1 - y) \log(1 - \hat{y})$$

Output Activation:

Uses Sigmoid Activation:

$$\hat{y}=rac{1}{1+e^{-z}}$$

Behavior:

- When $y = 0 \rightarrow \text{Loss} = -\log(1 \hat{y})$
- When y=1 \rightarrow Loss = $-\log(\hat{y})$

5. Multi-class Cross Entropy Loss

Used for multi-class classification problems.

Formula:

$$L(x_i,y_i) = -\sum_{j=1}^c y_{ij} \log(\hat{y}_{ij})$$

Key Concepts:

- One-hot Encoding: Converts class labels into vectors.
 - e.g., "Good" = [1,0,0], "Bad" = [0,1,0]
- $ullet y_{ij}=1$ if the class is correct, 0 otherwise.

Output Activation:

Uses Softmax Activation:

$$\sigma(z_i) = rac{e^{z_i}}{\sum_{j=1}^k e^{z_j}}$$

Converts raw model outputs (logits) into probabilities that sum to 1.

✓ Summary Table

Problem Type	Lace Function		Local Minima	Differentiability	Notes
IIR eareccion	Squared Error (MSE)	× No	✓ No	✓ Yes	Simple, global minimum
Regression	Absolute Error (MAE)	✓ Yes	× Yes	X No at 0	Harder to optimize
Regression	Huber Loss	✓ Yes	✓ No	✓ Yes	Best of both MSE & MAE
III Taccitication	Binary Cross Entropy	✓ Yes	✓ No	✓ Yes	For binary tasks
Classification	Multi-class Cross Entropy	✓ Yes	✓ No	✓ Yes	Uses Softmax