

CALCOLI

CableApp utilizza i fattori di correzione definiti nelle tabelle CEI UNEL 35024 / CEI UNEL 35026. Ciò consente all'utente di personalizzare il calcolo per la propria installazione prescritta. Questi fattori di correzione coprono i seguenti parametri: temperatura ambiente (aria e terra se del caso), resistività del suolo, profondità, prossimità di circuiti multipli per scala, vassoio, diretto nel terreno e nei condotti nel terreno.

LE CONDIZIONI DI BASE PER LE VALUTAZIONI DELLE CORRENTI SONO LE SEGUENTI

Condizioni di installazione del cavo di base per le classificazioni dei cavi

PARAMETRO	VALORE
Temperatura Aria	30°C
Temperatura del Suolo	20°C
Profondità di posa (per cavi BT installati in suolo)	0.8 m
Profondità di posa (per cavi MT installati in suolo)	1.0 m
Resistività Termica Suolo (per cavi installati in suolo)	1.5 K.m/W

CALCOLO DELLA SEZIONE DOVUTA ALLA TENSIONE

Per calcolare la sezione di un cavo in base al criterio della caduta di tensione, è conveniente tenere conto dell'effetto della reattanza, la cui influenza è significativa, specialmente quando il risultato è una sezione maggiore di 35 mm2 per conduttori di rame o 70 mm2 per conduttori di alluminio.

Le seguenti formule di calcolo della caduta di tensione possono essere considerate tenendo conto dell'effetto della reattanza:

MONOFASE	TRIFASE
$S = \frac{2 \cdot L \cdot I \cdot \cos \Phi}{\gamma \cdot (\Delta U - 2 \cdot 10^{-3} \cdot x \cdot L \cdot I \cdot \sin \Phi)}$	$S = \frac{\sqrt{3 \cdot L \cdot I \cdot \cos \Phi}}{\gamma \cdot (\Delta U - 1,732 \cdot 10^{-3} \cdot x \cdot L \cdot I \cdot \sin \Phi)}$
dove	
- S = sezione del conduttore in mm2	
- cos Ф: fattore di carico	

Prysmian Group

Cable App

- L = lunghezza della linea in metri

- I = intensità corrente in A

- γ = conduttività del conduttore in m / (Ω • mm2)

- ΔU = caduta di tensione massima consentita in V

- x = reattanza di linea = 0,08 Ω / km / (numero di conduttori per fase)

CALCOLO DELL'INTENSITÀ DI CORRENTE

Per ottenere le intensità correnti si applicano le seguenti formule:

MONOFASE	TRIFASE
$I = \frac{P}{U \cdot \cos \Phi}$	$I = \frac{P}{\sqrt{3 \cdot U \cdot \cos \Phi}}$
$I = \frac{S}{U}$	$I = \frac{S}{\sqrt{3 \cdot U}}$

Dove

- I: intensità di corrente della linea (A)

- P: potenza (W)

- U: tensione fase- neutro (monofase) o tra le fasi (trifase) (V)

- cos Ф: fattore di carico

S: potenza apparente (VA)

CORRENTE DI CORTO CIRCUITO

Possiamo calcolare la massima corrente di corto circuito che un cavo può sopportare secondo la seguente formula:

Icc = $k \cdot S / \sqrt{t}$

In quale

- Icc: corrente di corto circuito in A.
- k: costante che dipende dalla natura del conduttore (Cu o Al) e dal tipo di isolamento (termoplastico PVC) o reticolato (XLPE, HEPR)
- S: sezione del conduttore in mm2
- t: la durata del corto circuito in secondi (minimo 0,1 secondi, massimo 5 secondi).

VALORI DI K	N	MATERIALE CONDUTTORE	
Isolamento (T max cortocircuito)	Cu	Al	
Termoplastico (160 ºC)	115	Nessun cavo a catalogo	
Reticolato (250 ºC)	143	94	

RISPARMIO ECONOMICO ED ECOLOGICO NELLE LINEE ELETTRICHE

La potenza elettrica (P) che si dissipa in un conduttore di resistenza R attraversata da una corrente I risponde alla legge di Joule:

 $P = R \cdot I^2$

Si può facilmente dimostrare che l'energia termica persa in una linea elettrica risponde alla seguente espressione generale:

 $EP = n \cdot R \cdot L \cdot I^2 \cdot t / 1000$

dove:

EP: energia persa nella linea [kWh]

n: numero di conduttori caricati (2 in monofase o continui e 3 in trifase)

R: resistenza del conduttore $[\Omega / km]$

L: lunghezza della linea [km]

I: intensità della corrente di linea [A]

t: time [h]

Come regola generale, le linee elettriche non portano la stessa intensità di corrente (I) per tutto il tempo (t). Pertanto, è consigliabile, per evitare di alterare i risultati, considerare il valore medio quadrato dell'intensità nel tempo (da non confondere con il valore medio poiché l'intensità nella Legge di Joule è quadrata) o almeno fare una stima.

Prysmian Group

L'applicazione offrirà di default il valore medio quadrato dell'intensità (I') pari al 100% di I, ma propone anche altri valori e consente all'utente di inserire i dati manualmente:

I"= 100% I (valore predefinito proposto)

40% I (residenziale)

60% I (luogo pubblico)

75% I (industriale)

altri%

Una volta ottenuta l'energia persa con i conduttori di resistenza R1, se aumentiamo la sezione dello stesso, otterremo minori perdite. Pertanto, il risparmio energetico (EA) mediante l'installazione di conduttori a resistenza inferiore R2 sarà:

 $EA = n \cdot (R1-R2) \cdot L \cdot I^2 \cdot t / 1000 (S2 > S1)$

Con questa energia risparmiata è facile calcolare i risparmi economici (in €) e i risparmi delle emissioni di CO2 poiché conosciamo i tassi di elettricità (ad es.) in € / kWh e ci sono anche valori approssimativi delle emissioni di CO2 per kWh generati.

Inserendo il valore della tariffa elettrica e il valore delle emissioni di CO2 per kWh, otterremo quindi i risparmi ottenuti installando i cavi con conduttori di sezione maggiore.

Tariffa = € 0,15 / kWh (valore predefinito proposto)

Emissioni di CO2 = 0,51 kg CO2 / kWh (valore predefinito proposto)

	Paese	
Italia		~
	Unità di misura	
m / kg / €		~
	Numero di decimali	
2		~
	Costo dell'energia (€/kWh)	
0.15		
	Valore medio di utilizzo (%)	
100 %		~

ESEMPIO

Supponiamo di voler effettuare un calcolo economico ed ecologico di una linea elettrica trifase da 130 m con conduttori in rame da 150 mm² che trasportano una corrente di 268 A.

Per misurare i risparmi dobbiamo considerare l'aumento della sezione usandone una più grande.

La prossima sezione standard più grande sarebbe 185 mm².

	Resistenza (Ω/km)	
sezione	Cu	Al
16	1,480	2,300
25	0,934	1,446
35	0,663	1,042
50	0,463	0,772
70	0,326	0,560
95	0,248	0,386
120	0,195	0,305
150	0,157	0,249
185	0,130	0,199
240	0,100	0,152
300	0,082	0,129
400	0,064	0,101

Se il calcolo deve essere stabilito per un anno di funzionamento della linea, il tempo (t) sarà $365 \times 24 = 8760$ h.

Supponiamo quindi che la linea elettrica sia in un luogo pubblico e accettiamo il quadrato del valore medio di I (I ') proposto dall'applicazione al 60% I.

Ora puoi calcolare l'energia che può essere risparmiata in un anno usando conduttori di 185 mm² invece di 150 mm².

EA = n / c • (R185-R150) • L • $1'^2$ • t / 1.000 = 3/1 x (0.157-0.13) x 0.13 x (0.6 x 268) 2 x 8760/1000 = 2385 kWh

Ora, come utenti, supponiamo di aver scelto l'installazione in locali pubblici e un'emissione pari a 0,51 kg CO2 / kWh con un tasso di € 0,15 / kWh.

in € = 2385 kWh x € 0,15 / kWh = € 358

in CO2 = 2385 kWh x 0,