27 Friday, April 15, 2011

Sheaf on \mathbb{P}^n

Define on standard affine, $U_i = \operatorname{Spec} \mathbb{C}\left[\left\{\frac{x_j}{x_i}\right\}\right]$.

Other affine opens: take homogeneous polynomial in $f(x_0, \ldots, x_n)$, degree r. (A function on \mathbb{P}^n : ratio $\frac{f}{g}$ of homogeneous polynomials of some degree $\frac{f(\lambda x)}{g(\lambda x)} = \frac{f(x)}{g(x)}$.)
The locus $\{f = 0\}$ exists in \mathbb{P}^n , and is a closed set. Let $U_{(f)} = \mathbb{P}^n - \{f = 0\}$. $U_{(f)}$ is an affine

The locus $\{f=0\}$ exists in \mathbb{P}^n , and is a closed set. Let $U_{(f)} = \mathbb{P}^n - \{f=0\}$. $U_{(f)}$ is an affine variety. Coordinate ring $R_{(f)} = \left\{\frac{p(x)}{f(x)^k} \middle| p \text{ has degree } kr \right\}$. $\frac{p}{f^k}$ is a well-defined function on $U_{(f)}$.

 $R_{(f)}$ is generated by $\left\{\frac{m}{f} \mid m \text{ is a monomial of degree } r\right\}$.

Example. $f = x_0^2 + x_1^2 + x_2^2$

 $R_{(f)}$ is generated by $\frac{x_0^2}{f}, \frac{x_0x_1}{f}, \ldots$, with many relations.

Proposition.

$$U_{(f)} \approx \operatorname{Spec} R_{(f)}$$

On $V_{(f)}$, this has the structure sheaf $\mathcal{O}_{V_{(f)}}$.

The definition says that the slobal struture sheaf(?) $\mathcal{O}_{V_{(f)}}(V_{(f)}) = R_{(f)}, \mathcal{O}_{V_{(f)}}(V_{(f)})$ – zeros of s) = $R_{(f)}[s^{-1}]$.

We have defined the structure sheaf $\mathcal{O}_{\mathbb{P}^n}$

If we have $Y \xrightarrow{j} X$ (variety) is an inclusion of an open set and has structure sheaf \mathcal{O}_X , then Y is the topological space with the "indeed topology": a subset $V \subset Y$ is open if Y is open in X.

The structure sheaf $\mathcal{O}_Y := \text{restriction}$ of the structure sheaf \mathcal{O}_X .

V open in Y, $\mathcal{O}_Y(V) = \mathcal{O}_X(V)$, $\mathcal{O}_Y = [j^*\mathcal{O}_X]$

 \therefore We have defined the structure sheaf $\mathcal{O}_{U_{(f)}}$.

The statement of the proposition $U_{(f)} \approx V_{(f)}^{(f)}$ then means:

- homomorphism $U_{(f)} \to V_{(f)}$
- & $\mathcal{O}_{U_{(f)}} \stackrel{\approx}{\longleftrightarrow} \mathcal{O}_{V_f}$

A morphism

$$(Y, \mathcal{O}_Y) \xrightarrow{f} (X, \mathcal{O}_X)$$

- (a) continuous map $Y \to X$
- (b) Map $\mathcal{O}_Y \stackrel{f^*}{\longleftarrow} \mathcal{O}_X$

If U is open in X, then $f^{-1}U = V$ open in Y. Then we have a homomorphism of algebras $\mathcal{O}_Y(X) \stackrel{f^*}{\longleftarrow} \mathcal{O}_X(U)$.

An isomorphism is an invertible morphism.

Proof. In Prof. Artin's notes.

Suppose f and g are homomorphisms of degrees r, respectively. Then we have three finite-type algebras $R_{(f)}$, $R_{(g)}$, $R_{(fg)}$.

Proposition. Let $w = \frac{g^r}{f^s} \in R_{(f)}$. Then

$$R_{(f)}[w^{-1}] \approx R_{(fg)} \approx R_{(g)}[w]$$

Proof. $R_{(fg)}$ is generated by $\frac{M}{(fg)}$ (M is a monomial), M has degree r+s. We can write $M=m_1m_2$, with m_1 of degree r and m_2 of degree s.

$$\frac{M}{fg} = \frac{m_1}{f} \frac{m_2}{g}$$

$$\frac{m}{g} = m \frac{f^s}{g^r} \frac{g^{r-1}}{f^s} = \frac{mg^{r-1}}{f^s} w$$

Let's not check the rest.

 $\{U_{(f)}\}\ =$ all affine opens in \mathbb{P}^n

Definition. A quasi-coherent sheaf \mathcal{M} on an affine scheme $X = \operatorname{Spec} A$ corresponds to an A-module M given by the following rules:

- Given a quasi-coherent sheaf \mathcal{M} , $M = \mathcal{M}(X)$ =global sections.
- Gven an A-module M, define M by $\mathcal{M}(X_s) = M_s$.

Note $\mathcal{M}(X_s)$ (M_s) is a $\mathcal{O}_X(X_s)$ -module (A_s) .

 \mathcal{M} is a sheaf of \mathcal{O}_x -modules.¹

A sheaf is *coherent* if M is finite-type.

If (X, \mathcal{O}_X) is a variety, e.g., \mathbb{P}^n , not necessarily affine, then a *quasi-coherent sheaf* \mathcal{M} on X is the sheaf of \mathcal{O}_X -modules, and when we restrict to an affine open, we get a quasi-coherent sheaf on that affine.

Example. The sheaf $\mathcal{O}(n)$ on \mathbb{P}^n :

Its section on an affine open $U_{(f)}$ case: (f homomorphism of degree r)

$$\left[\mathcal{O}_{\mathbb{P}}(n)\right]\left(U_{(f)}\right) = \left\{\frac{p(x)}{f(x)^{k}} \middle| p \text{ has degree } rk + n\right\}$$
$$\mathcal{O}_{\mathbb{P}}(U_{(f)}) = R_{(f)} = \left\{\frac{p}{f^{k}} \middle| p \text{ has degree } rk\right\}$$

The global sections $\mathcal{O}_{\mathbb{P}}(n)(\mathbb{P}^n) = H^0(\mathbb{P}^n, \mathcal{O}(n))$ are homogeneous polynomials of degree n. Let h be a polynomial of degree m.

$$0 \to \mathcal{O}_{\mathbb{P}}(n) \xrightarrow{\text{multiplication by } h} \mathcal{O}_{\mathbb{P}}(n+m) \to \text{cokernel}$$

Let Y be the locus h = 0 in \mathbb{P}^n .

$$0 \to \mathcal{O}_{\mathbb{P}}(-m) \xrightarrow{h} \mathcal{O}_{\mathbb{P}} \to \mathcal{O}_Y \to 0$$

is exact, and so is

$$0 \to \mathcal{O}_{\mathbb{P}}(n-m) \xrightarrow{h} \mathcal{O}_{\mathbb{P}}(n) \to \mathcal{O}_{Y}(n) \to 0$$

This is something analogous to $\mathcal{O}(n)$, but on Y.

 $(\mathcal{O}_{\mathbb{P}}(-m), \mathcal{O}_{\mathbb{P}})$ are independent of h

¹Why not call it an \mathcal{O}_x -module? Don't know.

Example. $x_0 = h$

$$\mathcal{O}_{\mathbb{P}^n}(-1) \xrightarrow{x_0} \mathcal{O}_{\mathbb{P}^n} \to \mathcal{O}_{\mathbb{P}^{n-1}} \to 0$$

 $Y = \text{locus } \{x_0 = p\} = \mathbb{P}^{n-1} \text{ (hyperplane at } \infty)$

Next week: cohomology of coherent sheaves