APRENDIZAJE PROFUNDO

DESCENSO POR GRADIENTE

Gibran Fuentes-Pineda Agosto 2025

ESTIMACIÓN DE PARÁMETROS

• En el entrenamiento de neuronas artificiales y redes neuronales, se desea encontrar los valores de los pesos y sesgos¹ que minimicen una función de pérdida $\mathcal{L}: \Theta \to \mathbb{R}$

$$\bar{\boldsymbol{\theta}} \leftarrow \argmin_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \mathcal{L}(\boldsymbol{\theta})$$

donde $\Theta \subseteq \mathbb{R}^d$.

· Se dice que $ar{ heta}$ es el mínimo global.

¹A esto se le conoce como estimación de parámetros.

MINIMIZACIÓN DE PÉRDIDA

 Para neuronas artificiales individuales la función de pérdida es convexa

DESCENSO POR GRADIENTE (GD)

 Algoritmo iterativo de primer orden que va moviendo los pesos w y sesgos b hacia donde la pérdida descienda más rápido en el vecindario, esto es,

$$\boldsymbol{\theta}^{[t+1]} = \boldsymbol{\theta}^{[t]} - \alpha \nabla \mathcal{L}(\boldsymbol{\theta}^{[t]})$$

donde

$$oldsymbol{ heta} = \{ \mathsf{w}, \mathsf{b} \}$$
 $abla \mathcal{L}(oldsymbol{ heta}^{[t]}) = \left[rac{\partial \mathcal{L}}{\partial oldsymbol{ heta}_0^{[t]}}, \cdots, rac{\partial \mathcal{L}}{\partial oldsymbol{ heta}_d^{[t]}}
ight]$

 \cdot A lpha se le conoce como tasa de aprendizaje

DESCENSO POR GRADIENTE ESTOCÁSTICO (SGD)

- Aproximación estocástica de GD: estima $\nabla \mathcal{L}(\boldsymbol{\theta}^{[t]})$ y actualiza pesos y sesgos con un minilote \mathcal{B} de ejemplos de entrenamiento
 - $\cdot |\mathcal{B}|$ es un hiperparámetro
 - Es común dividir y ordenar aleatoriamente el conjunto de n ejemplos de entrenamiento en k minilotes ($|\mathcal{B}| \times k \approx n$); una época ocurre cada vez que se han considerado los k minilotes

GRADIENTE PARA REGRESIÓN LINEAL

 Para una neurona lineal, el gradiente de la función de pérdida de suma de errores cuadráticos respecto a los pesos y sesgos está dado por

$$\frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial w_j} = \frac{\partial ECM(\mathbf{y}, \hat{\mathbf{y}})}{\partial w_j} = \sum_{i=1}^n \left(\hat{y}^{(i)} - y^{(i)} \right) \cdot x_j^{(i)}$$
$$\frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial b} = \frac{\partial ECM(\mathbf{y}, \hat{\mathbf{y}})}{\partial b} = \sum_{i=1}^n \left(\hat{y}^{(i)} - y^{(i)} \right)$$

ALGORITMO DEL DESCENSO POR GRADIENTE PARA REGRESIÓN LINEAL

- 1. Asignar valores aleatorios a los parámetros $oldsymbol{ heta}$
- 2. Repetir hasta que converja

$$b^{\{t+1\}} \leftarrow b^{\{t\}} - \alpha \sum_{i=1}^{n} \left(\hat{y}^{(i)} - y^{(i)} \right)$$

$$w_j^{\{t+1\}} \leftarrow w_j^{\{t\}} - \alpha \sum_{i=1}^{n} \left(\hat{y}^{(i)} - y^{(i)} \right) \cdot x_j^{(i)}$$

$$\frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial w_j^{\{t\}}}$$

(Actualización simultánea de b y todos los w_j)

GRADIENTE PARA REGRESIÓN LOGÍSTICA

 Para una neurona logística, el gradiente de la función de pérdida de entropía cruzada binaria respecto a los pesos y sesgos está dado por

$$\frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial w_j} = \frac{\partial ECB(\mathbf{y}, \hat{\mathbf{y}})}{\partial w_j} = \sum_{i=1}^n \left(\hat{y}^{(i)} - y^{(i)} \right) \cdot x_j^{(i)}$$
$$\frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial b} = \frac{\partial ECB(\mathbf{y}, \hat{\mathbf{y}})}{\partial b} = \sum_{i=1}^n \left(\hat{y}^{(i)} - y^{(i)} \right)$$

donde
$$\hat{y}^{(i)} = \sigma(\mathbf{w}^{\top}\mathbf{x}^{(i)} + b)$$

GRADIENTE PARA REGRESIÓN SOFTMAX

 Para una neurona logística, el gradiente de la función de pérdida de entropía cruzada binaria respecto a los pesos y sesgos está dado por

$$\frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial w_{jk}} = \frac{\partial ECC(\mathbf{Y}, \hat{\mathbf{Y}})}{\partial w_{jk}} = \sum_{i=1}^{n} (y_k^{(i)} - [y^{(i)} = k]) \cdot x_j^{(i)}$$
$$\frac{\partial \mathcal{L}(\boldsymbol{\theta})}{\partial b_k} = \frac{\partial ECC(\mathbf{Y}, \hat{\mathbf{Y}})}{\partial b_k} = \sum_{i=1}^{n} (y_k^{(i)} - [y^{(i)} = k])$$

donde
$$\hat{y}_k^{(i)} = softmax(\mathbf{W}^{\top}\mathbf{x}^{(i)} + \mathbf{b})_k$$

