Explaining by Removing: A Unified Framework for Model Explanation*

Authors: Ian C. Covert, Scott Lundberg, Su-In Lee

Presenters: Hongjin Lin, Jason Wang, Oam Patel

Monday 03/27/2023

Motivation

There is a need for a unifying framework

Minimal Image Representation approach, Zhou et al. (2014)—LIME (Ribeiro et al., 2016)

Masking Model approach (Dabkowski and Gal, 2017) \times SHAP (Lundberg and Lee, 2017)

Prediction Difference Analysis (Zintgraf et al., 2017)

Meaningful Perturbations (Fong and Vedaldi, 2017)

FIDO-CA (Chang et al., 2018)

REAL-X (Jethani et al., 2021a)

INVASE (Yoon et al., 2018)

RISE (Petsiuk et al., 2018)

. . .

Extremal Perturbations (Fong et al., 2019)

Contributions

- 1. A unified framework that characterizes 26 existing explanation methods → removal-based explanations.
- 2. Mathematical tools to represent different approaches for removing features from ML models.
- 3. Removal-based explanations are implicitly tied to **cooperative game theory**
 - → advantages of the Shapley value over alternative allocation strategies.
- 4. Feature removal is a simple application of **subtractive counterfactual reasoning**.

Previous Unifying Efforts

2017

A Unified Approach to Interpreting Model Predictions

2017

TOWARDS BETTER UNDERSTANDING OF GRADIENT-BASED ATTRIBUTION METHODS FOR DEEP NEURAL NETWORKS

Marco Ancona

Department of Computer Science ETH Zurich, Switzerland

Enea Ceolini

Institute of Neuroinformatics University Zürich and ETH Zürich

2020

Understanding Global Feature Contributions With Additive Importance Measures

Ian C. Covert
University of Washington
Seattle, WA
icovert@uw.edu

Scott Lundberg
Microsoft Research
Redmond, WA
scott.lundberg@microsoft.com

Su-In Lee University of Washington Seattle, WA suinlee@uw.edu LIME, DeepLIFT, LRP, QII, ... ↓ SHAP

Grad * Input, DeepLIFT, LRP and Integrated Gradients

modified gradient back propagations

permutation tests, Shapley Net Effects, feature ablation, SAGE...

additive importance measures

The Removal-based Explanations Framework

Methods Survey

Key insights

- Common
 - a. marginalize out removed features with their conditional distribution
 - b. Shapley values
- 2. Relatively unique and spatially isolated
 - a. RISE; LIME for tabular data; INVASE
- Many combinations left unexplored!

				N4-		Additivo			
	-	Remove individual	Include individual	Mean when included	Shapley value	Additive model	High value subset	Low value subset	Partition subset
	Zeros	Occlusion CXPlain	 	RISE					ММ
	Default values					LIME (images)			
	Extend pixels						MIR		
	Blurring						EP	МР	
val	Generative model						FIDO-CA		
Feature removal	Marginalize (replacement distribution)					LIME (tabular)			
eature	Marginalize (uniform)				IME 2010				
Ŧ	Marginalize (marginals product)				QII				
	Marginalize (marginal)	Permutation test			SHAP KernelSHAP				
	Marginalize (conditional)	PredDiff Conditional perm. test			SHAP SAGE LossSHAP Shapley Effects				
	Tree distribution				TreeSHAP				
	Surrogate model						L2X REAL-X		
	Missingness during training						INVASE		
	Separate models	Feature ablation	Univariate predictors		Shapley Net Effects IME 2009 SPVIM				

Summary technique

Mathematical Formulation

Overview

1. Feature removal

$$F: \mathcal{X} \times \mathcal{P}(D) \mapsto \mathcal{Y}$$

2. Model behavior

$$u: \mathcal{P}(D) \mapsto \mathbb{R}$$

3. Summary technique

 $E: U \mapsto \mathbb{R}^d$

or

 $E: U \mapsto \mathcal{P}(D)$

Defining Feature Removal

$$F(x) = f(\text{features_to_keep}, \text{features_to_remove})$$

- Zero ablation
- Default values
- Generative model
- Train separate models
 - Train surrogate models
- "Missingness" during training

$$F(x_S) = f(x_S, 0).$$

$$F(x_S) = f(x_S, r_{\bar{S}}).$$

$$F(x_S) = f(x_S, \tilde{x}_{\bar{S}}).$$

Defining Feature Removal (cont)

Marginalization

- Marginalize with conditional
 - Tree distribution
- Marginalize with marginal
- Marginalize with product of marginals $F(x_S) = \mathbb{E}_{\prod_{i \in D} p(X_i)}[f(x_S, X_{\bar{S}})]$.
- Marginalize with uniform
- Marginalize with replacement distribu $F(x,S) = \mathbb{E}_{\prod_{i \in D} q_{x_i}(X_i)}[f(x_S, X_{\bar{S}})]$.

- $F(x_S) = \mathbb{E}[f(X) \mid X_S = x_S].$
 - $F(x_S) = \mathbb{E}[f(x_S, X_{\bar{S}})].$
- $F(x_S) = \mathbb{E}_{\prod_{i \in \mathcal{D}} u_i(X_i)} [f(x_S, X_{\bar{S}})].$

Explaining Model Behaviors

- Given the newly defined model F(x_S), we need a metric to assess how important the x_S features are
- Options
 - O Prediction*
 - Prediction loss*
 - Prediction mean loss
 - Dataset loss*
 - Prediction loss w.r.t. output
 - O Dataset loss w.r.t. output

$$F(x_S)$$
.

$$-\ell(F(x_S),y).$$

$$-\mathbb{E}_{p(Y|X=x)}\Big[\ell\big(F(x_S),Y\big)\Big].$$

$$-\mathbb{E}_{XY}\Big[\ell\big(F(X_S),Y\big)\Big].$$

$$-\ell(F(x_S),F(x)).$$

$$-\mathbb{E}_X\Big[\ellig(F(X_S),F(X)ig)\Big].$$

Summarizing Feature Influence

Two related approaches

- Map feature to real number value (feature attribution)*
- Map dataset to a set of important features (feature selection)

Both are related, often the second is just a threshold applied to the first

$$E:\mathcal{U}
ightarrow\mathcal{P}(D)$$

Computational Complexity

How to isolate features?

- Consider every subset including the feature in question
 - O Exact solutions are O(2^d / d) in the worst case
 - O SHAP, RISE summarization, LIME additive model, etc
- Only consider the subset where you remove the feature
 - O Polynomial in d
 - Occlusion, PRedDiff, CXPlain, permutation tests, etc

Approximations? (much faster, but lose worst-case guarantees)

- Sampling
- TreeSHAP (dynamic programming solution for tree models)
- Solve a continuous relaxation of the subset problem (i.e. learn a mask)
- Greedy search (MIR)
- Learn a model to do the explanation task (map from dataset to feature importance vector)

Frameworks

Connections to Other Theoretical

Game Theory

Same setup as what the SHAP people said

 Cooperative games where we solve for allocations

Makes SHAP unique; however, other methods can be viewed as fitting (linear, additive) models to cooperative games

Proofs in appendix, not critical

SUMMARIZATION	Methods	Related To		
Shapley value	Shapley Net Effects, IME, QII, SHAP, TreeSHAP, KernelSHAP, LossSHAP, Shapley Effects, SAGE, SPVIM	Shapley value, probabilistic values, modeling cooperative games Banzhaf value, probabilistic values, modeling cooperative games		
Mean value when included	RISE			
Remove/include individual players	Occlusion, PredDiff, CXPlain, permutation tests, univariate predictors, feature ablation (LOCO)	Probabilistic values, modeling cooperative games		
Fit additive model	LIME	Shapley value, Banzhaf value, modeling cooperative games		
High/low value coalitions	MP, EP, MIR, MM, L2X, INVASE, REAL-X, FIDO-CA	Maximum/minimum excess		

Information Theory

- f approximates response variable's conditional distribution $f(x) \approx p(Y|X=x)$
 - \bigcirc Classificati $f(x) pprox \mathbb{E}[Y|X=x]$
 - Regression:

Information Theory

- f approximates response variable's conditional distribution $f(x) \approx p(Y|X=x)$
 - \bigcirc Classificati $f(x) pprox \mathbb{E}[Y|X=x]$
 - O Regression:
- F can also approximate $co^{\{q(Y|X_S): S\subseteq D\}}$ stribution (over subsets!)
 - Set of conditional distributions:

Information Theory

- f approximates response variable's conditional distribution $f(x) \approx p(Y|X=x)$ Classification $f(x) \approx \mathbb{E}[Y|X=x]$
 - O Regression:
- F can also approximate $co^{\{q(Y|X_S): S\subseteq D\}}_{\infty}$.stribution (over subsets!)
 - \bigcirc Set of conditional $P(\bigcup_{i=1}^{\infty} A_i) = \sum_{i=1}^{\infty} P(A_i)$:
- Want this to $P(A \mid B) = \frac{P(A,B)}{P(B)}$ sabilistically valid (called consistent)
 - O Countable Additivity:
 - O Bayes' Rule:
 - Occurs only when average over conditional distribution

Intractable $\mathbf{x} = \mathbb{E}_{p(Y_{\bar{z}}|Y_{\bar{z}}=x_{\bar{z}})} [f(x_{\bar{z}}, X_{\bar{z}})]$

Conditional Distribution is Intracte $\mathbb{E}[f(X) \mid X_S = x_S] = \mathbb{E}_{p(X_{\bar{S}} \mid X_S = x_S)}[f(x_S, X_{\bar{S}})]$

- Assume feature independence
- Assume model linearity

$$pprox \mathbb{E}_{p(X_{\bar{S}})}[f(x_S, X_{\bar{S}})]$$

$$pprox f(x_S, \mathbb{E}[X_{\bar{S}}])$$

Conditional Distribution is Intracte $\mathbb{E}[f(X) \mid X_S = x_S] = \mathbb{E}_{p(X_{\bar{S}} \mid X_S = x_S)}[f(x_S, X_{\bar{S}})]$

- Assume feature independence
- Assume model linearity

$$pprox \mathbb{E}_{p(X_{\bar{S}})}[f(x_S, X_{\bar{S}})]$$

$$\approx f(x_S, \mathbb{E}[X_{\bar{S}}])$$

Or:

Assume norma

- Generative Model
 - Draw samples from cGAN
 - Single-Sample Monte Carlo Approximation

- Generative Model
 - Draw samples from cGAN
 - Single-Sample Monte Carlo Approximation
- Surrogate Model
 - Train a model to match model predictions
 - \bigcirc Objective $\min_F \ \mathbb{E}_X \mathbb{E}_S \Big[\ell ig(F(X_S), f(X) ig) \Big]$

- Generative Model
 - Draw samples from cGAN
 - Single-Sample Monte Carlo Approximation
- Surrogate Model
 - Train a model to match model predictions
 - \bigcirc Objective $\min_F \; \mathbb{E}_X \mathbb{E}_S \Big[\ell \big(F(X_S), f(X) \big) \Big]$
- Training with Missing
 - Train your original model with missing features
 - \bigcirc Objective $\min_F \; \mathbb{E}_{XY} \mathbb{E}_S \Big[\ell \big(F(X_S), Y \big) \Big]$

- Generative Model
 - Draw samples from cGAN
 - Single-Sample Monte Carlo Approximation
- Surrogate Model
 - Train a model to match model predictions
 - \bigcirc Objective $\min_F \; \mathbb{E}_X \mathbb{E}_S \Big[\ell ig(F(X_S), f(X) ig) \Big]$
- Training with Missing
 - Train your original model with missing features
 - \bigcirc Objective $\min_F \; \mathbb{E}_{XY} \mathbb{E}_S \Big[\ell ig(F(X_S), Y ig) \Big]$
- Separate Model
 - Train separate model for each possible subset

Information Theory Quantities

Model Behavior	SET FUNCTION	Methods	Related To
Prediction	u_x	Occlusion, MIR, MM, IME, QII, LIME, MP, EP, FIDO-CA, RISE, SHAP, KernelSHAP, TreeSHAP	Conditional probability, conditional expectation
Prediction loss	v_{xy}	LossSHAP, CXPlain	Pointwise mutual information
Prediction mean loss	v_x	INVASE	KL divergence with conditional distribution
Dataset loss	v	Permutation tests, univariate predictors, feature ablation (LOCO), Shapley Net Effects, SAGE, SPVIM	Mutual information (with label)
Prediction loss (output)	w_x	L2X, REAL-X	KL divergence with full model output
Dataset loss (output)	w	Shapley Effects	Mutual information (with output)

Cognition Theory

- Subtractive Counterfactual (Epstude and Roese, 2008) and Method of Difference (Mill, 1884)
- Norm Theory and the downhill rule
- Trade-off between simplicity and completeness

Global feature selection attribution Simplicity

Completeness

- Less detailed summary + Accessible to more users

Local feature attribution

Completeness + Rich model information - Risk of misunderstanding,

cognitive overload

Experiments

		Remove individual	Include individual	Mean when included	Shapley value	Additive model	High value subset	Low value subset	Partition subset
	Zeros	Occlusion CXPlain		RISE					ММ
	Default values					LIME (images)			
	Extend pixels						MIR		
	Blurring						EP	MP	
val	Generative model						FIDO-CA		
Feature removal	Marginalize (replacement distribution)					LIME (tabular)			
eature	Marginalize (uniform)				IME 2010				
ட்	Marginalize (marginals product)				QII				
	Marginalize (marginal)	Permutation test			SHAP KernelSHAP				
	Marginalize (conditional)	PredDiff Conditional perm. test			SHAP SAGE LossSHAP Shapley Effects				
	Tree distribution				TreeSHAP				
	Surrogate model						L2X REAL-X		
	Missingness during training						INVASE		
	Separate models	Feature ablation	Univariate predictors		Shapley Net Effects IME 2009 SPVIM				

Summary technique

		Remove individual	Include individual	Mean when included	Shapley value	Additive model	High value subset	Low value subset	Partitioned subsets
	Zeros	Occlusion CXPlain		RISE					ММ
	Default values					LIME (images)			
	Extend pixels						MIR		
	Blurring						EP	MP	
	Generative model						FIDO-CA		
	Marginalize (replacement distribution)					LIME (tabular)			
	Marginalize (uniform)				IME 2010				
	Marginalize (marginals product)				QII				
	Marginalize (marginal)	Permutation test			SHAP KernelSHAP				
	Marginalize (conditional)	PredDiff Conditional perm. test			SHAP SAGE LossSHAP Shapley Effects				
	Tree distribution				TreeSHAP				
	Surrogate model						L2X REAL-X		
,	Missingness during training						INVASE		
	Separate models	Feature ablation	Univariate predictors		Shapley Net Effects IME 2009 SPVIM				

So many unexplored combinations!!!

Experimental Goals

1. Fill in the gaps of removal-based method combinations

Experimental Goals

1. Fill in the gaps of removal-based method combinations

2. Verify that the information-theoretic model works best

3. Verify other theorized relationships between existing methods

Removal-Based Model Combinations

Feature Removal

- Default Values
- Marginalization
 - Uniform
 - Product
 - Joint

Model Behavior

- Prediction
- PredictionLoss
- Dataset Loss

Summary Technique

- Removing
- Including
- Mean when Included
- Banzhaf
- Shapley

Removal-Based Model Combinations

Feature Removal

- Default Values
- Marginalization
 - Uniform
 - Product
 - O Joint

Model Behavior

- Prediction
- PredictionLoss
- Dataset Loss

Over 80 Combination s Tested!

Summary Technique

- Removing
- Including
- Mean when Included
- Banzhaf
- Shapley

Removal-Based Model Combinations

Feature Removal

- Default Values
- Marginalization
 - Uniform
 - Product
 - O Joint

Model Behavior

- Prediction
- PredictionLoss
- Dataset Loss

Summary Technique

- Removing
- Including
- Mean when Included
- Banzhaf
- Shapley

Experimental Domains

- Census Income
 - 48,842 Individuals
 - 14 Socioeconomic Features, >\$50k income or not
 - Light-GBM (gradient boosted tree)
- MNIST
 - 70,000 Handwritten Digits
 - 32x32 Grayscale Pixels
 - CNN (14 Layers)
- Breast Cancer Subtypes
 - 510 Patients
 - Took a random subset of 100/17,814 genes
 - Logistic Regression

1. Census Income

Qualitatively:

- Bottom four the same
 - Approximate conditional distribution

- Bottom four the same
 - Approximate conditional distribution
- Include and Banzhaf/Shapley the same
 - Similar formulations

- Bottom four the same
 - Approximate conditional distribution
- Include and Banzhaf/Shapley the same
 - Similar formulations
- Mean When Included is

Quantitatively:

How good is the conditional distribution approximation?

- Intractable, so treat separate models as ground truth
- Surrogate Removal Method does best

Qualitatively:

 Default Values gives zero attribution to zero-valueo features

- Default Values gives zerd attribution to zero-value features
- Shapley "looks" the best

- Quantitative Analysis:
 - Insertion: Remove the bottom k important features
 - Deletion: Remove the top k important features
 - O Removing with surrogate is better!

3. Breast Cancer Subtype Subty

- ESR1 gene is most important
- Hard to compare qualitatively
- Verify that "mean when included" is much different from the rest

3. Breast Cancer Subtypes

Quantitatively:

- Select only 20 most important genes
- Surrogate+Shapley best!

Conclusion

- SHAP+Surrogate Model is the best
 - In line with information-theoretic connection
- The authors' unified framework helps us reason abstractly about these techniques
 - Able to identify and fill so many gaps in the combination of removal-based models

Limitations

- No limitations section
- No comparisons across model behavior
- Quantifying approximation quality with an approximation
- Evaluation metrics can be aligned with explanation method
 - Doesn't bode well for a universal unbiased metric
- Slightly suspect analysis for Breast Cancer dataset

Discussion

- Are removal-based the right framework to go in XAI?
- How do we reconcile with the fact that removing features may result in out-of-distribution behavior?
- What other unifying frameworks can you think of?
- Do you agree with the assessment that SHAP provides the best explanation?
- What methods do not fall under removal-based methods?