

WE CLAIM:

*Sub
E 1*

5 1. A radiation-sensitive composition comprising (1) a resole resin, (2) a novolac resin, (3) a haloalkyl-substituted s-triazine, and (4) an infrared absorber.

10 2. A radiation-sensitive composition as claimed in claim 1, wherein said resole resin is derived from bis-phenol A and formaldehyde.

15 3. A radiation-sensitive composition as claimed in claim 1, wherein said novolac resin is derived from m-cresol and formaldehyde.

20 4. A radiation-sensitive composition as claimed in claim 1, wherein said haloalkyl-substituted s-triazine has the formula:

wherein R₁ is a substituted or unsubstituted aliphatic or aromatic radical and R₂ and R₃ are, independently, haloalkyl groups.

25 5. A radiation-sensitive composition as claimed in claim 1, wherein said haloalkyl-substituted s-triazine has the formula:

T201X

20

wherein R₁ is a substituted or unsubstituted aliphatic or aromatic radical and each X is, independently, a halogen atom.

- 5 6. A radiation-sensitive composition as claimed in claim 1, wherein said haloalkyl-substituted s-triazine has the formula:

- 10 wherein R is an aryl group of 6 to 15 carbon atoms.

7. A radiation-sensitive composition as claimed in claim 1, wherein said haloalkyl-substituted s-triazine has the formula:

15

8. A radiation-sensitive composition as claimed in claim 1, wherein said haloalkyl-substituted s-triazine has the formula:

20

25

9. A radiation-sensitive composition as claimed in claim 1, wherein said haloalkyl-substituted s-triazine has the formula:

30

10. A radiation-sensitive composition as
claimed in claim 1, wherein said haloalkyl-substituted
s-triazine has the formula:

15. A radiation-sensitive composition as
claimed in claim 1, wherein said haloalkyl-substituted
s-triazine has the formula:

12. A radiation-sensitive composition as
30 claimed in claim 1, wherein said infrared absorber is a
squarylium, croconate, cyanine, merocyanine,
indolizine, pyrylium or metal dithiolene dye or
pigment.

35. 13. A lithographic printing plate comprising
a support and an imaging layer that is sensitive to
both ultraviolet and infrared radiation and capable of

functioning in either a positive-working or negative-working manner, the solubility of said imaging layer in aqueous alkaline developing solution being reduced in exposed areas and increased in unexposed areas by the
5 steps of imagewise exposure to activating radiation and heating; said imaging layer comprising (1) a resole resin (2) a novolac resin, (3) a haloalkyl-substituted s-triazine and (4) an infrared absorber.

10 14. A lithographic printing plate as claimed in claim 13, wherein said imaging layer has a dry thickness in the range of from about 0.5 to about 2 micrometers.

15 15. A lithographic printing plate as claimed in claim 13, wherein said resole resin is derived from bis-phenol A and formaldehyde.

20 16. A lithographic printing plate as claimed in claim 13, wherein said novolac resin is derived from m-cresol and formaldehyde.

25 17. A lithographic printing plate as claimed in claim 13, wherein said haloalkyl-substituted s-triazine has the formula:.

wherein R₁ is a substituted or unsubstituted aliphatic or aromatic radical and R₂ and R₃ are, independently,
30 haloalkyl groups.

18. A lithographic printing plate as claimed in claim 13, wherein said haloalkyl-substituted s-triazine has the formula:

5

wherein R₁ is a substituted or unsubstituted aliphatic or aromatic radical and each X is, independently, a halogen atom.

10

19. A lithographic printing plate as claimed in claim 13, wherein said haloalkyl-substituted s-triazine has the formula:

15

wherein R is an aryl group of 6 to 15 carbon atoms.

20

20. A lithographic printing plate as claimed in claim 13, wherein said haloalkyl-substituted s-triazine has the formula:

25

21. A lithographic printing plate as claimed in claim 13, wherein said haloalkyl-substituted s-triazine has the formula:

24

5

10

22. A lithographic printing plate as claimed
in claim 13, wherein said haloalkyl-substituted s-
triazine has the formula

15

20

23. A lithographic printing plate as claimed
in claim 13, wherein said haloalkyl-substituted s-
triazine has the formula:

25

24. A lithographic printing plate as claimed
in claim 13, wherein said haloalkyl-substituted s-
triazine has the formula:

30

T253X

35

25. A lithographic printing plate as claimed
in claim 13, wherein said infrared absorber is a
squarylium, croconate, cyanine, merocyanine,

25

indolizine, pyrylium or metal dithiolene dye or pigment.

26. A lithographic printing plate as claimed
5 in claim 13, wherein said support is a polyester film.

27. A lithographic printing plate as claimed
in claim 13, wherein said support is comprised of
grained and anodized aluminum.

10

28. A method of forming a lithographic
printing surface comprising the steps of:

(a) providing a lithographic printing plate
comprising a support and an imaging layer containing
15 (1) a resole resin, (2) a novolac resin, (3) a
haloalkyl-substituted s-triazine and (4) an infrared
absorber;

(b) imagewise exposing said lithographic
printing plate to activating radiation; and

20 (c) contacting said lithographic printing
plate with an aqueous alkaline developing solution to
remove the exposed areas thereof and thereby form a
lithographic printing surface.

25

29. A method of forming a lithographic
printing surface comprising the steps of:

(a) providing a lithographic printing plate
comprising a support and an imaging layer containing
15 (1) a resole resin, (2) a novolac resin, (3) a
haloalkyl-substituted s-triazine and (4) an infrared
absorber;

(b) imagewise exposing said lithographic
printing plate to activating radiation;

30 (c) heating said lithographic printing plate
to provide reduced solubility in exposed areas and
increased solubility in unexposed areas; and

(d) contacting said lithographic printing plate with an aqueous alkaline developing solution to remove the unexposed areas thereof and thereby form a lithographic printing surface.