

52578C_cor.ST25.txt SEQUENCE LISTING

<110>	Wu, Jingrui									
<120>	Water-Deficit-TolerantTransgenic Plants									
<130>	38-21(52578)c									
<140> <141>	US 10/678,588 2003-10-02									
<150> <151>	us 60/415,758 2002-10-02									
<150> <151>	us 60/425,157 2002-11-08									
<150> <151>										
<160>	10									
<170>	PatentIn version 3.2									
<210> <211> <212> <213>	> 2480 > DNA									
<220> <223>										
<400> aggata	1 ttaa agtatgtatt catcattaat ataatcagtg tattccaata tgtactacga	60								
tttcca	atgt ctttattgtc gccgtatgta atcggcgtca caaaataatc cccggtgact	120								
ttcttt	taat ccaggatgaa ataatatgtt attataattt ttgcgatttg gtccgttata	180								
ggaatt	gaag tgtgcttgag ctcggtcgcc accactccca tttcataatt ttacatgtat	240								
ttgaaa	aata aaaatttatg gtattcaatt taaacacgta tacttgtaaa gaatgatatc	300								
ttgaaa	gaaa tatagtttaa atatttattg ataaaataac aagtcaggta ttatagtcca	360								
agcaaa	aaca taaatttatt gatgcaagtt taaattcaga aatatttcaa taactgatta	420								
tatcag	ctgg tacattgccg tagatgaaag actgagtgcg atattatgtg taatacataa	480								
attgat	gata tagctagaac tagtggatcc cccgggccct gcaggctcga gctagtttga	540								
gatato	cccg ttatggtact ggggttgcat ataacccatt ccttggttgt atgctccctg	600								
ttggcc	catc ccttgtgcag ctgagctact tgctcccaca tgaccaaggg catcctttt	660								
aattga	gcca tcgctagatt ttgcagttaa cttgctatca ccctccatct ctctgtactt	720								
° ctgcag	gtac accttgaggg gttcaatgta gtcttcaaac cccagcgtgg ccatggccca	780								
cagcag	atcg tcgccattga tggtcttccg cttctccctc tggcacttgt cactcgcttc	840								
gctagt	gatg aaggagatga actcggagac gcactcctgc acggtctcct tagcgtcctt Page 1	900								

ggcgatcttc	ccgttagccg	ggatggtctt	cccgttagcc	gggatggcct	tcttcatgat	960
gcgactgatg	ttggcgatgg	gcaggaacct	gtcctgctcc	ctgacgctgc	caccgcctcc	1020
gcctcccctg	gggctcccgc	tctcgtggct	cccgccgccg	ccgccagggc	tcgccggagc	1080
ttccgccatg	gtctacctac	aaaaaagctc	cgcacgaggc	tgcatttgtc	acaaatcatg	1140
aaaagaaaaa	ctaccgatga	acaatgctga	gggattcaaa	ttctacccac	aaaaagaaga	1200
aagaaagatc	tagcacatct	aagcctgacg	aagcagcaga	aatatataaa	aatataaacc	1260
atagtgccct	tttcccctct	tcctgatctt	gtttagcatg	gcggaaattt	taaacccccc	1320
atcatctccc	ccaacaacgg	cggatcgcag	atctacatcc	gagagcccca	ttccccgcga	1380
gatccgggcc	ggatccacgc	cggcgagagc	cccagccgcg	agatcccgcc	cctcccgcgc	1440
accgatctgg	gcgcgcacga	agccgcctct	cgcccaccca	aactaccaag	gccaaagatc	1500
gagaccgaga	cggaaaaaaa	aaacggagaa	agaaagagga	gaggggcggg	gtggttaccg	1560
gcggcggcgg	agggggaggg	gggaggagct	cgtcgtccgg	cagcgagggg	ggaggaggtg	1620
gtggtggtgg	tggtggtagg	gttgggggga	tgggaggaga	ggggggggta	tgtatatagt	1680
ggcgatgggg	ggcgtttctt	tggaagcgga	gggagggccg	gcctcgtcgc	tggctcgcga	1740
tcctcctcgc	gtttccggcc	cccacgaccc	ggacccacct	gctgttttt	ctttttcttt	1800
tttttctttc	ttttttttt	tttggctgcg	agacgtgcgg	tgcgtgcgga	caactcacgg	1860
tgatagtggg	ggggtgtgga	gactattgtc	cagttggctg	gactggggtg	ggttgggttg	1920
ggttgggttg	ggctgggctt	gctatggatc	gtggatagca	ctttgggctt	taggacttta	1980
ggggttgttt	ttgtaaatgt	tttgagtcta	agtttatctt	ttatttttac	tagaaaaaat	2040
acccatgcgc	tgcaacgggg	gaaagctatt	ttaatcttat	tattgttcat	tgtgagaatt	2100
cgcctgaata	tatatttttc	tcaaaaatta	tgtcaaatta	gcatatgggt	tttttaaag	2160
atatttctta	tacaaatccc	tctgtattta	caaaagcaaa	cgaacttaaa	acccgactca	2220
aatacagata	tgcatttcca	aaagcgaata	aacttaaaaa	ccaattcata	caaaaatgac	2280
gtatcaaagt	accgacaaaa	acatcctcaa	tttttataat	agtagaaaag	agtaaatttc	2340
actttgggcc	accttttatt	accgatattt	tactttatac	caccttttaa	ctgatgtttt	2400
cacttttgac	caggtaatct	tacctttgtt	ttattttgga	ctatcccgac	tctcttctca	2460
agcatatgaa	tgacctcgag					2480

<210> <211> <212> <213> 2 185

PRT Zea mays

<400> 2

Met Ala Glu Ala Pro Ala Ser Pro Gly Gly Gly Gly Gly Ser His Glu

Ser Gly Ser Pro Arg Gly Gly Gly Gly Gly Gly Gly Gly Glu Gln

Asp Arg Phe Leu Pro Ile Ala Asn Ile Ser Arg Ile Met Lys Lys Ala

Ile Pro Ala Asn Gly Lys Thr Ile Pro Ala Asn Gly Lys Ile Ala Lys

Asp Ala Lys Glu Thr Val Gln Glu Cys Val Ser Glu Phe Ile Ser Phe

65

Ile Thr Ser Glu Ala Ser Asp Lys Cys Gln Arg Glu Lys Arg Lys Thr 85 90 95

Ile Asn Gly Asp Asp Leu Leu Trp Ala Met Ala Thr Leu Gly Phe Glu 100 105 110

Asp Tyr Ile Glu Pro Leu Lys Val Tyr Leu Gln Lys Tyr Arg Glu Met 115 120 125

Glu Gly Asp Ser Lys Leu Thr Ala Lys Ser Ser Asp Gly Ser Ile Lys 130 135 140

Lys Asp Ala Leu Gly His Val Gly Ala Ser Ser Ser Ala Ala Gln Gly 145 150 155 160

Met Gly Gln Gln Gly Ala Tyr Asn Gln Gly Met Gly Tyr Met Gln Pro 165 170 175

Gln Tyr His Asn Gly Asp Ile Ser Asn 180 185

<210> 3 <211> 178 <212> PRT

<213> Zea mays

<400> 3

Met Ala Glu Ala Pro Ala Ser Pro Gly Gly Gly Gly Ser His Glu $1 \ \ \,$ 10 $\ \ \,$ 15

Ser Gly Ser Pro Arg Gly Gly Gly Gly Gly Ser Val Arg Glu Gln 20 25 30

52578C_cor.ST25.txt
Asp Arg Phe Leu Pro Ile Ala Asn Ile Ser Arg Ile Met Lys Lys Ala
35 40 45 Ile Pro Ala Asn Gly Lys Ile Ala Lys Asp Ala Lys Glu Thr Val Gln 50 60 Glu Cys Val Ser Glu Phe Ile Ser Phe Ile Thr Ser Glu Ala Ser Asp 65 70 75 80 Lys Cys Gln Arg Glu Lys Arg Lys Thr Ile Asn Gly Asp Asp Leu Leu 85 90 95 Trp Ala Met Ala Thr Leu Gly Phe Glu Asp Tyr Ile Glu Pro Leu Lys 100 105 110 Val Tyr Leu Gln Lys Tyr Arg Glu Met Glu Gly Asp Ser Lys Leu Thr 115 120 125 Ala Lys Ser Ser Asp Gly Ser Ile Lys Lys Asp Ala Leu Gly His Val 130 135 140 Gly Ala Ser Ser Ser Ala Ala Glu Gly Met Gly Gln Gln Gly Ala Tyr 145 150 155 160 Asn Gln Gly Met Gly Tyr Met Gln Pro Gln Tyr His Asn Gly Asp Ile 165 170 175 Ser Asn <210> <211> 537 DNA Zea mays <400> atggcggaag ctccggcgag ccctggcggc ggcggcggga gccacgagag cgggagcccc 60 aggggaggcg gaggcggtgg cagcgtcagg gagcaggaca ggttcctgcc catcgccaac 120 atcagtcgca tcatgaagaa ggccatcccg gctaacggga agatcgccaa ggacgctaag 180 gagaccgtgc aggagtgcgt ctccgagttc atctccttca tcactagcga agcgagtgac 240 aagtgccaga gggagaagcg gaagaccatc aatggcgacg atctgctgtg ggccatggcc 300 acgctggggt ttgaagacta cattgaaccc ctcaaggtgt acctacagaa gtacagagag 360 atggagggtg atagcaagtt aactgctaaa tctagcgatg gctcgattaa aaaggatgct 420 cttggtcatg tgggagcaag tagctcagct gcagaaggga tgggccaaca gggagcatac 480 aaccaaggaa tgggttatat gcaacctcag taccataacg gggatatctc aaactaa 537 Page 4

<210> 5 <211> 52 <212> DN <213> Gl		ax							
<400> 5 atgtcggat	g cgcca	ccgag co	cgáctca	t gagagtg	1999	gcgagca	gag c	ccgcgcgg	t
tcgtcgtcc	g gcgcg	aggga go	aggaccg	g tacctco	cga	ttgccaa	at c	agccgcati	t
atgaagaag	g ctctg	cctcc ca	acggcaa	g attgcaa	agg	atgccaa	aga c	accatgca	g
gaatgcgtt	t ctgag	ttcat ca	gcttcat	t accagcg	agg	cgagtga	gaa a	tgccagaa	g
gagaagaga	a agaca	atcaa to	gagacga	t ttgctat	999	ccatggc	cac t	ttaggatti	t
gaagactac	a tagag	ccgct ta	aggtgta	c ctggcta	ıggt	acagagag	ggc g	gagggtga	c
actaaagga	t ctgct	agaag tg	gtgatgg	a tctgcta	cac	cagatca	agt t	ggccttgca	a
ggtcaaaat	t ctcag	cttgt to	atcaggg	t tcgctga	act	atattgg	ttt g	caggtgca	a
ccacaacat	c tggtt	atgcc tt	caatgca	a agccatg	aat	ag			
<210> 6 <211> 17 <212> PR <213> Gl	-	ax							
<400> 6									
Met Ser A 1	sp Ala	Pro Pro 5	Ser Pro	Thr His 10	Glu	Ser Gly		Glu Gln 15	
Ser Pro A	rg Gly 20	Ser Ser	Ser Gly	Ala Arg 25	Glu	Gln Asp	Arg 30	Tyr Leu	
Pro Ile A	la Asn 5	Ile Ser	Arg Ile 40.	Met Lys	Lys	Ala Leu 45	Pro	Pro Asn	
Gly Lys I 50	le Ala	Lys Asp	Ala Lys 55	Asp Thr		Gln Glu 60	Cys	Val Ser	
Glu Phe I 65	le Ser	Phe Ile 70	Thr Ser	Glu Ala	Ser 75	Glu Lys	Cys	Gln Lys 80	
Glu Lys A		Thr Ile 85	Asn Gly	Asp Asp 90	Leu	Leu Trp		Met Ala 95	
Thr Leu G	ily Phe 100	Glu Asp	Tyr Ile	Glu Pro 105	Leu	Lys Val	Tyr 110	Leu Ala	
Arg Tyr A	rg Glu	Ala Glu	Gly Asp		Gly Page		Arg	Ser Gly	

Asp Gly Ser Ala Thr Pro Asp Gln Val Gly Leu Ala Gly Gln Asn Ser 130 140

Gln Leu Val His Gln Gly Ser Leu Asn Tyr Ile Gly Leu Gln Val Gln 145 150 155 160

Pro Gln His Leu Val Met Pro Ser Met Gln Ser His Glu 165 170

<210> 7

<211> 141

<212> PRT

<213> Arabidopsis thaliana

<400> 7

Met Ala Asp Thr Pro Ser Ser Pro Ala Gly Asp Gly Glu Ser Gly 10 15

Gly Ser Val Arg Glu Gln Asp Arg Tyr Leu Pro Ile Ala Asn Ile Ser 20 25 30

Arg Ile Met Lys Lys Ala Leu Pro Pro Asn Gly Lys Ile Gly Lys Asp 35 40 45

Ala Lys Asp Thr Val Gln Glu Cys Val Ser Glu Phe Ile Ser Phe Ile 50 60

Thr Ser Glu Ala Ser Asp Lys Cys Gln Lys Glu Lys Arg Lys Thr Val 65 70 75 80

Asn Gly Asp Asp Leu Leu Trp Ala Met Ala Thr Leu Gly Phe Glu Asp 85 90. 95

Tyr Leu Glu Pro Leu Lys Ile Tyr Leu Ala Arg Tyr Arg Glu Leu Glu 100 105 110

Gly Asp Asn Lys Gly Ser Gly Lys Ser Gly Asp Gly Ser Asn Arg Asp 115 120 125

Ala Gly Gly Gly Val Ser Gly Glu Glu Met Pro Ser Trp 130 135 140

<210> 8

<211> 101

<212> PRT

<213> Artificial sequence

```
<220>...
<223> protein consensus sequence
<220>
<221> MISC_FEATURE
<222>
       (22)..(22)
<223> Xaa can be Ala or Pro
<220>
<221> MISC_FEATURE <222> (26)..(26)
<223> Xaa can be Thr or none
<220>
<221> MISC_FEATURE
<222>
       (27)..(27)
<223> Xaa can be Ile or none
<220>
<221> MISC_FEATURE <222> (28)..(28)
<223> Xaa can be Pro or none
<220>
<221> MISC_FEATURE
<222> (29)..(29)
<223> Xaa can be Ala or none
<220>
<221> MISC_FEATURE
<222> (30)..(30)
<223> Xaa can be Asn or none
<220>
<221> MISC_FEATURE
<222>
       (31)..(31)
<223> Xaa can be Gly or none
<220>
<221> MISC_FEATURE
<222> (32)..(32)
<223> Xaa can be Lys or none
<220>
<221> MISC_FEATURE
<222> (39)..(39)
<223> Xaa can be Glu or Asp
<220>
<221> MISC_FEATURE
<222> (41)..(41)
<223> Xaa can be Val or Met
<220>
<221> MISC_FEATURE
<222>
       (58)..(58)
<223> Xaa can be Asp or Glu
<220>
<221> MISC_FEATURE
 <222>
        (62)..(62)
<223> Xaa can be Arg or Lys
```

```
<220>
<221>
       MISC_FEATURE
<222>
       (94)..(94)
<223>
       Xaa can be Gln or Ala
<220>
<221>
       MISC_FEATURE
<222>
       (95)..(95)
       Xaa can be Lys or Arg
<223>
<220>
<221>
       MISC_FEATURE
<222>
       (99)..(99)
<223>
       Xaa can be Met or Ala
<400>
Arg Glu Gln Asp Arg Tyr Leu Pro Ile Ala Asn Ile Ser Arg Ile Met
1 10 15
Lys Lys Ala Leu Pro Xaa Asn Gly Lys Xaa Xaa Xaa Xaa Xaa Xaa Xaa Xaa 30
Ile Ala Lys Asp Ala Lys Xaa Thr Xaa Gln Glu Cys Val Ser Glu Phe
Ile Ser Phe Ile Thr Ser Glu Ala Ser Xaa Lys Cys Gln Xaa Glu Lys 50 60
Arg Lys Thr Ile Asn Gly Asp Asp Leu Leu Trp Ala Met Ala Thr Leu
Gly Phe Glu Asp Tyr Ile Glu Pro Leu Lys Val Tyr Leu Xaa Xaa Tyr
85 90 95
Arg Glu Xaa Glu Gly
<210>
<211>
       55
<212>
       PRT
<213>
       Artificial sequence
<220>
<223>
       consensus protein sequence
<220>
<221>
       MISC_FEATURE
<222>
       (29)..(29)
<223>
       Xaa can be any naturally occuring amino acid
<400>
       9
Asp Ser Lys Leu Thr Ala Lys Ser Ser Asp Gly Ser Ile Lys Lys Asp
```

Page 8

15

Ala Leu Gly His Val Gly Ala Ser Ser Ser Ala Ala Xaa Gly Met Gly 20 25 30

Gln Gln Gly Ala Tyr Asn Gln Gly Met Gly Tyr Met Gln Pro Gln Tyr 35 40 45

His Asn Gly Asp Ile Ser Asn 50 55

- <210> 10
- <211> 8
- <212> PRT
- <213> Artificial sequence
- <220>
- <223> consensus protein sequence
- <220>
- <221> MISC_FEATURE
- <222> (2)..(4)
- <223> Xaa can be any naturally occuring amino acid
- <220>
- <221> MISC_FEATURE
- <222> (6)..(6)
- <223> Xaa can be any naturally occuring amino acid

<400> 10

Met Xaa Xaa Xaa Pro Xaa Ser Pro 1