

Established by the European Commission

Optimizing the diffusion for equilibrium and nonequilibrium dynamics

Régis SANTET

(CERMICS, École des Ponts & MATHERIALS Team, Inria Paris)

ANR SINEQ

• Aim: Estimation of $\mathbb{E}_{\pi}[f] = \int_{\mathcal{X}} f(q)\pi(q)\mathrm{d}q, \quad \pi \propto \mathrm{e}^{-\beta V}$ with the estimator

$$\hat{I}_N := \frac{1}{N} \sum_{i=1}^N f(q^i), \qquad q^i \sim \pi$$

• Aim: Estimation of $\mathbb{E}_{\pi}[f] = \int_{\mathcal{X}} f(q)\pi(q)\mathrm{d}q, \quad \pi \propto \mathrm{e}^{-\beta V}$ with the estimator

$$\hat{I}_N := \frac{1}{N} \sum_{i=1}^N f(q^i), \qquad q^i \sim \pi$$

• Difficulty: explore anisotropic potentials with multiple minima

• Aim: Estimation of $\mathbb{E}_{\pi}[f] = \int_{\mathcal{X}} f(q)\pi(q)\mathrm{d}q, \quad \pi \propto \mathrm{e}^{-\beta V}$ with the estimator

$$\hat{I}_N := \frac{1}{N} \sum_{i=1}^N f(q^i), \qquad q^i \sim \pi$$

- Difficulty: explore anisotropic potentials with multiple minima
- Solution: Position dependent pos. def. sym. matrix \mathcal{D}^1

$$dq_t = (-\mathcal{D}(q_t)\nabla V(q_t) + \beta^{-1}\operatorname{div}\mathcal{D}(q_t))dt + \sqrt{2\beta^{-1}}\mathcal{D}(q_t)^{1/2}dW_t$$

¹Bou-Rabee/Doney/Vanden-Eijnden (2014)

ullet Aim: Estimation of $\mathbb{E}_{\pi}[f]=\int_{\mathcal{X}}f(q)\pi(q)\mathrm{d}q,\quad\pi\propto\mathrm{e}^{-\beta V}$ with the estimator

$$\hat{I}_N := \frac{1}{N} \sum_{i=1}^N f(q^i), \qquad q^i \sim \pi$$

- Difficulty: explore anisotropic potentials with multiple minima
- ullet Solution: Position dependent pos. def. sym. matrix \mathcal{D}^1

$$dq_t = (-\mathcal{D}(q_t)\nabla V(q_t) + \beta^{-1}\operatorname{div}\mathcal{D}(q_t))dt + \sqrt{2\beta^{-1}}\mathcal{D}(q_t)^{1/2}dW_t$$

 \bullet Challenge: Find optimal diffusion coefficient $\mathcal D$ to accelerate convergence

¹Bou-Rabee/Donev/Vanden-Eijnden (2014)

ullet Related to the spectral gap of the dynamics' generator $\mathcal{L}_{\mathcal{D}}$:

$$\mathcal{L}_{\mathcal{D}}\varphi = \left(-\mathcal{D}\nabla V + \beta^{-1}\operatorname{div}\mathcal{D}\right) \cdot \nabla\varphi + \beta^{-1}\mathcal{D} : \nabla^{2}\varphi$$

Then for any initial distribution π_0 , the law π_t of the process q_t satisfies²

$$\left[\left\| \frac{\pi_t}{\pi} - 1 \right\|_{L^2(\pi)} \leqslant e^{-\Lambda(\mathcal{D})\beta^{-1}t} \left\| \frac{\pi_0}{\pi} - 1 \right\|_{L^2(\pi)} \right]$$

 $\Lambda(\mathcal{D})$: spectral gap of $-\beta \mathcal{L}_{\mathcal{D}} \geqslant 0$

²Lelièvre/Nier/Pavliotis (2013)

ullet Related to the spectral gap of the dynamics' generator $\mathcal{L}_{\mathcal{D}}$:

$$\mathcal{L}_{\mathcal{D}}\varphi = \left(-\mathcal{D}\nabla V + \beta^{-1}\operatorname{div}\mathcal{D}\right) \cdot \nabla\varphi + \beta^{-1}\mathcal{D} : \nabla^{2}\varphi$$

Then for any initial distribution π_0 , the law π_t of the process q_t satisfies²

$$\left[\left\| \frac{\pi_t}{\pi} - 1 \right\|_{L^2(\pi)} \leqslant e^{-\Lambda(\mathcal{D})\beta^{-1}t} \left\| \frac{\pi_0}{\pi} - 1 \right\|_{L^2(\pi)} \right]$$

 $\Lambda(\mathcal{D})$: spectral gap of $-\beta \mathcal{L}_{\mathcal{D}} \geqslant 0$

ullet Goal: Compute, explicitly or numerically, \mathcal{D}^{\star} leading to largest spectral gap

²Lelièvre/Nier/Pavliotis (2013)

ullet Related to the spectral gap of the dynamics' generator $\mathcal{L}_{\mathcal{D}}$:

$$\mathcal{L}_{\mathcal{D}}\varphi = \left(-\mathcal{D}\nabla V + \beta^{-1}\operatorname{div}\mathcal{D}\right) \cdot \nabla\varphi + \beta^{-1}\mathcal{D} : \nabla^{2}\varphi$$

Then for any initial distribution π_0 , the law π_t of the process q_t satisfies²

$$\left[\left\| \frac{\pi_t}{\pi} - 1 \right\|_{L^2(\pi)} \leqslant e^{-\Lambda(\mathcal{D})\beta^{-1}t} \left\| \frac{\pi_0}{\pi} - 1 \right\|_{L^2(\pi)} \right]$$

 $\Lambda(\mathcal{D})$: spectral gap of $-\beta \mathcal{L}_{\mathcal{D}} \geqslant 0$

- ullet Goal: Compute, explicitly or numerically, \mathcal{D}^{\star} leading to largest spectral gap
- Need to set normalizing constraints on \mathcal{D} : $\Lambda(a\mathcal{D}) = a\Lambda(\mathcal{D}) \xrightarrow[a \to +\infty]{} +\infty$

²Lelièvre/Nier/Pavliotis (2013)

ullet Related to the spectral gap of the dynamics' generator $\mathcal{L}_{\mathcal{D}}$:

$$\mathcal{L}_{\mathcal{D}}\varphi = \left(-\mathcal{D}\nabla V + \beta^{-1}\operatorname{div}\mathcal{D}\right) \cdot \nabla\varphi + \beta^{-1}\mathcal{D} : \nabla^{2}\varphi$$

Then for any initial distribution π_0 , the law π_t of the process q_t satisfies²

$$\left[\left\| \frac{\pi_t}{\pi} - 1 \right\|_{L^2(\pi)} \leqslant e^{-\Lambda(\mathcal{D})\beta^{-1}t} \left\| \frac{\pi_0}{\pi} - 1 \right\|_{L^2(\pi)} \right]$$

 $\Lambda(\mathcal{D})$: spectral gap of $-\beta \mathcal{L}_{\mathcal{D}} \geqslant 0$

- ullet Goal: Compute, explicitly or numerically, \mathcal{D}^{\star} leading to largest spectral gap
- Need to set normalizing constraints on \mathcal{D} : $\Lambda(a\mathcal{D}) = a\Lambda(\mathcal{D}) \xrightarrow[a \to +\infty]{} +\infty$
- Examples: Approach mainly used in Bayesian Inference³: $\mathcal{D} \equiv (\nabla^2 V)^{-1}$ Other works⁴ suggest $\mathcal{D} \propto \mathrm{e}^{\beta V} \mathrm{I}_d$

R. Santet (CERMICS)

²Lelièvre/Nier/Pavliotis (2013)

³Girolami/Calderhead (2011)

⁴Roberts/Stramer (2002), Lelièvre/Pavliotis/Robin/Santet/Stoltz (In prep.)

Which diffusion coefficient? Metastability case

• Example with $\mathcal{D}_{One}=1$ and $\mathcal{D}_{exp}=\mathrm{e}^{\beta V}\mathbf{1}_{[-10,10]}+\mathbf{1}_{\mathbb{R}\setminus[-10,10]}$ (both normalized in $L^1(\pi)$)

Which diffusion coefficient? Metastability case

• Example with $\mathcal{D}_{\mathrm{One}}=1$ and $\mathcal{D}_{\mathrm{exp}}=\mathrm{e}^{\beta V}\mathbf{1}_{[-10,10]}+\mathbf{1}_{\mathbb{R}\setminus[-10,10]}$ (both normalized in $L^1(\pi)$)

• \mathcal{D}_{exp} helps to cross energy barriers (if $V \uparrow$, then $D \uparrow$)

Formulation of the optimization problem

• Using $\mathcal{L}_{\mathcal{D}} = -\beta^{-1} \nabla^{\star} \mathcal{D} \nabla$ on $L^2(\pi)$, the spectral gap of $-\beta \mathcal{L}_{\mathcal{D}}$ is

$$\boxed{ \Lambda(\mathcal{D}) = \min_{u \in H^1(\mathbb{T}^d) \setminus \{0\}} \left\{ \frac{\int_{\mathbb{T}^d} \nabla u^\mathsf{T} \mathcal{D} \nabla u \, \mathrm{d}\pi}{\int_{\mathbb{T}^d} u^2 \, \mathrm{d}\pi} \, \middle| \, \int_{\mathbb{T}^d} u \, \mathrm{d}\pi = 0 \right\} }$$

Formulation of the optimization problem

• Using $\mathcal{L}_{\mathcal{D}} = -\beta^{-1} \nabla^{\star} \mathcal{D} \nabla$ on $L^2(\pi)$, the spectral gap of $-\beta \mathcal{L}_{\mathcal{D}}$ is

$$\boxed{ \mathbf{\Lambda}(\mathcal{D}) = \min_{u \in H^1(\mathbb{T}^d) \setminus \{0\}} \left\{ \frac{\int_{\mathbb{T}^d} \nabla u^\mathsf{T} \mathcal{D} \nabla u \, \mathrm{d}\pi}{\int_{\mathbb{T}^d} u^2 \, \mathrm{d}\pi} \, \middle| \, \int_{\mathbb{T}^d} u \, \mathrm{d}\pi = 0 \right\} }$$

• L^p constraint on \mathcal{D} : $\mathcal{D} \in L^p_{\pi}\left(\mathbb{T}^d, \mathcal{M}_{a,b}\right)$ for $1 \leqslant p \leqslant +\infty, \ a,b \geqslant 0$ if

$$\mathrm{e}^{-\beta V(q)}\mathcal{D}(q) \in \mathcal{M}_{a,b} = \left\{ M \in \mathcal{S}_d^+ \, \middle| \, \forall \xi \in \mathbb{R}^d, a \, |\xi|^2 \leqslant \xi^\mathsf{T} M \xi \leqslant b^{-1} \, |\xi|^2 \right\} \text{ a.e.}$$

endowed with

$$\|\mathcal{D}\|_{L^p_{\pi}} = \left(\int_{\mathbb{T}^d} |\mathcal{D}(q)|_{\mathcal{F}}^p e^{-\beta pV(q)} dq\right)^{1/p}$$

$$\boxed{\mathfrak{D}_p^{a,b} = \left\{ \mathcal{D} \in L_{\pi}^{\infty}(\mathbb{T}^d, \mathcal{M}_{a,b}) \, \middle| \, \|\mathcal{D}\|_{L_{\pi}^p} \leqslant 1 \right\}}$$

Theoretical analysis of the optimization problem

- ullet $V\in\mathcal{C}^{\infty}(\mathbb{T}^d)$, V and π bounded on \mathbb{T}^d
- ullet π satisfies a Poincaré inequality
- ullet $\mathfrak{D}^{a,b}_p$ weakly closed for L^p_π
- $\mathcal{D} \mapsto \Lambda(\mathcal{D})$ concave

Theorem [Existence of a maximizer]

For any $p \in [1, +\infty)$, there exists

$$\mathcal{D}_p^{\star} = \underset{\mathcal{D} \in \mathfrak{D}_p^{a,b}}{\operatorname{arg max}} \Lambda(\mathcal{D})$$

The maximizer is such that

- $\|\mathcal{D}\|_{L^p_{\pi}} = 1$;
- For any open set $\Omega\subset \mathbb{T}^d$, there exists $q\in\Omega$ such that $\mathcal{D}_p^{\star}(q)\neq 0$

Euler-Lagrange equation

If $\Lambda(\mathcal{D}_p^\star)$ is isolated with $u_{\mathcal{D}_p^\star}$ an associated unit eigenvector,

$$\left. \frac{\mathrm{d}}{\mathrm{d}t} \Lambda(\mathcal{D}_p^{\star} + t \delta \mathcal{D}) \right|_{t=0} + \gamma \left. \frac{\mathrm{d}}{\mathrm{d}t} \left\| \mathcal{D}_p^{\star} + t \delta \mathcal{D} \right\|_{L_{\pi}^p}^p \right|_{t=0} = 0$$

leads to

$$\mathcal{D}_p^{\star}(q) = \alpha_p \left| \mathcal{D}_p^{\star}(q) \right|_{\mathrm{F}}^{2-p} e^{\beta(p-1)V(q)} \nabla u_{\mathcal{D}_p^{\star}}(q) \otimes \nabla u_{\mathcal{D}_p^{\star}}(q)$$

 \bullet The matrix $\mathcal{D}_p^{\star}(q)$ of rank 1 a.e.

Euler-Lagrange equation

If $\Lambda(\mathcal{D}_p^{\star})$ is isolated with $u_{\mathcal{D}_p^{\star}}$ an associated unit eigenvector,

$$\left. \frac{\mathrm{d}}{\mathrm{d}t} \Lambda(\mathcal{D}_p^{\star} + t \delta \mathcal{D}) \right|_{t=0} + \gamma \left. \frac{\mathrm{d}}{\mathrm{d}t} \left\| \mathcal{D}_p^{\star} + t \delta \mathcal{D} \right\|_{L_{\pi}^p}^p \right|_{t=0} = 0$$

leads to

$$\mathcal{D}_p^{\star}(q) = \alpha_p \left| \mathcal{D}_p^{\star}(q) \right|_{\mathrm{F}}^{2-p} e^{\beta(p-1)V(q)} \nabla u_{\mathcal{D}_p^{\star}}(q) \otimes \nabla u_{\mathcal{D}_p^{\star}}(q)$$

- The matrix $\mathcal{D}_p^{\star}(q)$ of rank 1 a.e.
- \bullet if d=1,

$$\mathcal{D}_{p}^{\star} \propto e^{\beta V} \left| u_{\mathcal{D}_{p}^{\star}}^{\prime} \right|^{2/(p-1)}$$

Euler-Lagrange equation

If $\Lambda(\mathcal{D}_p^\star)$ is isolated with $u_{\mathcal{D}_p^\star}$ an associated unit eigenvector,

$$\frac{\mathrm{d}}{\mathrm{d}t}\Lambda(\mathcal{D}_p^{\star} + t\delta\mathcal{D})\bigg|_{t=0} + \gamma \frac{\mathrm{d}}{\mathrm{d}t} \left\| \mathcal{D}_p^{\star} + t\delta\mathcal{D} \right\|_{L_{\pi}^p}^p\bigg|_{t=0} = 0$$

leads to

$$\mathcal{D}_p^{\star}(q) = \alpha_p \left| \mathcal{D}_p^{\star}(q) \right|_{F}^{2-p} e^{\beta(p-1)V(q)} \nabla u_{\mathcal{D}_p^{\star}}(q) \otimes \nabla u_{\mathcal{D}_p^{\star}}(q)$$

- ullet The matrix $\mathcal{D}_p^{\star}(q)$ of rank 1 a.e.
- if d = 1.

$$\mathcal{D}_p^{\star} \propto e^{\beta V} \left| u_{\mathcal{D}_p^{\star}}^{\prime} \right|^{2/(p-1)}$$

Else, we still expect

$$\mathcal{D}_{p}^{\star} \propto e^{\beta V} \left(\sum_{i=1}^{N} \left| u_{\mathcal{D}_{p}^{\star}, i}^{\prime} \right|^{2} \right)^{1/(p-1)}$$

Numerical approximation of the optimization problem

- ullet For simplicity, $\mathcal{D}(q)=\mathscr{D}(q)\mathrm{I}_d$
- ullet Piecewise constant approximation for ${\mathscr D}$ on ${\mathbb T}^d$
- \mathbb{P}_1 Finite Elements approximation to compute $(\Lambda(\mathcal{D}), u_{\mathcal{D}})$:

$$A(\mathcal{D})u_{\mathcal{D}} = \Lambda(\mathcal{D})Bu_{\mathcal{D}}$$

with

$$A_{i,j}(\mathcal{D}) = \int \nabla \varphi_j^{\mathsf{T}} \mathcal{D} \nabla \varphi_i \, \mathrm{d}\pi, \qquad B_{i,j} = \int \varphi_j \varphi_i \, \mathrm{d}\pi$$

ullet Generalized eigenvalue problem: A sym., B pos. def. sym.

Numerical results - 1

Isolated eigenvalue

Numerical results - 2

1.00

Optimal diffusion in the homogenized limit

- Previous procedure only helpful in low dimensions
- Need to solve a high-dimensional generalized eigenvalue problem

Goal: Obtain a good approximation of the optimal diffusion

- Idea 1: study the asymptotic behaviour of the optimal diffusion in the homogenized limit
- Idea 2: optimize the periodic homogenization limit

Periodic homogenization procedure

- \bullet Decrease the period: $(\mathbb{Z}/k)^d$ -periodic functions $V_{\#,k}(q)=V(kq)$ and $\mathcal{D}_{\#,k}(q)=\mathcal{D}(kq)$
- Write the spectral gap problem:

$$\Lambda_{\#,k}(\mathcal{D}) = \min_{u \in H^1(\mathbb{T}^d) \setminus \{0\}} \left\{ \frac{\int_{\mathbb{T}^d} \nabla u^\mathsf{T} \mathcal{D}_{\#,k} \nabla u \, \mathrm{e}^{-\beta V_{\#,k}}}{\int_{\mathbb{T}^d} u^2 \, \mathrm{e}^{-\beta V_{\#,k}}} \, \middle| \, \int_{\mathbb{T}^d} u \, \mathrm{e}^{-\beta V_{\#,k}} = 0 \right\}$$

⁵See for instance Allaire, Shape Optimization by the Homogenization Method (2002)

Periodic homogenization procedure

- ullet Decrease the period: $(\mathbb{Z}/k)^d$ -periodic functions $V_{\#,k}(q)=V(kq)$ and $\mathcal{D}_{\#,k}(q)=\mathcal{D}(kq)$
- Write the spectral gap problem:

$$\Lambda_{\#,k}(\mathcal{D}) = \min_{u \in H^1(\mathbb{T}^d) \setminus \{0\}} \left\{ \frac{\int_{\mathbb{T}^d} \nabla u^{\mathsf{T}} \mathcal{D}_{\#,k} \nabla u \, \mathrm{e}^{-\beta V_{\#,k}}}{\int_{\mathbb{T}^d} u^2 \, \mathrm{e}^{-\beta V_{\#,k}}} \, \middle| \, \int_{\mathbb{T}^d} u \, \mathrm{e}^{-\beta V_{\#,k}} = 0 \right\}$$

• Use H-convergence:⁵ $\exists \overline{\mathcal{D}} \in \mathfrak{D}_p^{a,b}, \ \Lambda_{\#,k}(\mathcal{D}) \xrightarrow[k \to +\infty]{} \Lambda_{\mathrm{Hom}}(\mathcal{D}) \text{ with}$

$$\Lambda_{\mathrm{Hom}}(\mathcal{D}) := \min_{u \in H^1(\mathbb{T}^d) \setminus \{0\}} \left\{ \frac{\int_{\mathbb{T}^d} \nabla u^\mathsf{T} \overline{\mathcal{D}} \nabla u}{\int_{\mathbb{T}^d} u^2} \, \middle| \, \int_{\mathbb{T}^d} u = 0 \right\}$$

 \bullet $\overline{\mathcal{D}}$ can be expressed using \mathcal{D} and corrector functions appearing in the H-convergence procedure

⁵See for instance Allaire, Shape Optimization by the Homogenization Method (2002)

Optimization of the homogenized limit

Goal: compute

$$\boxed{ \Lambda_{\mathrm{Hom}}^{\star} = \sup_{\mathcal{D} \in \mathfrak{D}_p^{a,b}} \Lambda_{\mathrm{Hom}}(\mathcal{D}) }$$

$$\mathcal{D} \xrightarrow[k \to +\infty]{\mathsf{Hom}} \mathcal{D}_{\mathsf{Hom}}$$

$$\downarrow \mathsf{Op}_{\mathsf{Hom}}$$

$$\mathcal{D}_{\mathsf{Hom}}^{\star}$$

Theorem [Analytic expression]

 \bullet Linear constraint: For a fixed $M\in\mathcal{S}_d^{++}$, under the constraint, $\int_{\mathbb{T}^d}\mathcal{D}\,\mathrm{d}\pi=M$,

$$\mathcal{D}_{\mathrm{Hom}}^{\star}(q) = M/\pi(q)$$

is a maximizer.

• L^p_π constraint, d=1: Under the constraint $\|\mathcal{D}\|_{L^p_\pi}\leqslant 1$,

$$\mathcal{D}_{\mathrm{Hom}}^{\star}(q) = \mathrm{e}^{\beta V(q)}$$

is a maximizer.

Homogenization of the optimal diffusion

Goal: optimize for a given $k \geqslant 1$, then let $k \to +\infty$

- Recall the oscillating potential $V_{\#,k}(q) = V(kq)$. Let $\mathfrak{D}^{a,b}_{\#,k,p} \equiv \mathfrak{D}^{a,b}_p$ but defined with $V_{\#,k}$ instead of V.
- Let

$$\Lambda^{k}(\mathcal{D}) = \min_{u \in H^{1}(\mathbb{T}^{d}) \setminus \{0\}} \left\{ \frac{\int_{\mathbb{T}^{d}} \nabla u^{\mathsf{T}} \mathcal{D} \nabla u \, \mathrm{e}^{-\beta V_{\#,k}}}{\int_{\mathbb{T}^{d}} u^{2} \, \mathrm{e}^{-\beta V_{\#,k}}} \, \middle| \, \int_{\mathbb{T}^{d}} u \, \mathrm{e}^{-\beta V_{\#,k}} = 0 \right\}$$

and

$$\Lambda^{k,\star} = \max_{\mathcal{D} \in \mathfrak{D}^{a,b}_{\#,k,p}} \Lambda^k(\mathcal{D})$$

Homogenization of the optimal diffusion

Goal: optimize for a given $k \ge 1$, then let $k \to +\infty$

- Recall the oscillating potential $V_{\#,k}(q) = V(kq)$. Let $\mathfrak{D}^{a,b}_{\#,k,p} \equiv \mathfrak{D}^{a,b}_p$ but defined with $V_{\#,k}$ instead of V.
- Let

$$\Lambda^{k}(\mathcal{D}) = \min_{u \in H^{1}(\mathbb{T}^{d}) \setminus \{0\}} \left\{ \frac{\int_{\mathbb{T}^{d}} \nabla u^{\mathsf{T}} \mathcal{D} \nabla u \, \mathrm{e}^{-\beta V_{\#,k}}}{\int_{\mathbb{T}^{d}} u^{2} \, \mathrm{e}^{-\beta V_{\#,k}}} \, \middle| \, \int_{\mathbb{T}^{d}} u \, \mathrm{e}^{-\beta V_{\#,k}} = 0 \right\}$$

and

$$\Lambda^{k,\star} = \max_{\mathcal{D} \in \mathfrak{D}_{\#,k,p}^{a,b}} \Lambda^k(\mathcal{D})$$

Lemma

There exists a maximizer $\mathcal{D}^{k,\star}\in\mathfrak{D}^{a,b}_p$ such that, denoting by $\mathcal{D}^{k,\star}_{\#,k}(q)=\mathcal{D}^{k,\star}(kq)$.

$$\Lambda^k(\mathcal{D}_{\#,k}^{k,\star}) = \Lambda^{k,\star}$$

Commutation between Homogenization and Optimization

$$\begin{array}{c|c} \Lambda(\mathcal{D}) & \xrightarrow{\text{Hom.}} & \Lambda_{\operatorname{Hom}}(\mathcal{D}) \\ & \downarrow & & \downarrow \\ \bullet & & \downarrow & \downarrow \\ \Lambda^{k,\star} & \xrightarrow{\text{Hom.}} & \Lambda^{\star}_{\operatorname{Hom}} \end{array}$$

Theorem

The sequence $(\Lambda^{k,\star})_{k\geqslant 1}$ converges to $\Lambda^{\star}_{\mathrm{Hom}}:=\Lambda(\mathcal{D}^{\star}_{\mathrm{Hom}}).$

Commutation between Homogenization and Optimization

$$\begin{array}{c|c} \Lambda(\mathcal{D}) & \xrightarrow{\operatorname{Hom.}} & \Lambda_{\operatorname{Hom}}(\mathcal{D}) \\ \downarrow \vdots & & \downarrow & \Diamond \\ \bullet & & \downarrow & \Diamond \\ \Lambda^{k,\star} & \xrightarrow{\operatorname{Hom.}} & \Lambda^{\star}_{\operatorname{Hom}} \end{array}$$

Theorem

The sequence $(\Lambda^{k,\star})_{k\geqslant 1}$ converges to $\Lambda^{\star}_{\mathrm{Hom}}:=\Lambda(\mathcal{D}^{\star}_{\mathrm{Hom}}).$

- \bullet This implies that a good proxy (d=1) is $\mathcal{D}_{\mathrm{Hom}}^{\star}=\mathrm{e}^{\beta V}$
- In this case, $\overline{\mathcal{D}} = \left(\int_{\mathbb{T}} \mathrm{e}^{-\beta V} \right)^{-1} := Z^{-1}$, and

$$\Lambda_{\rm Hom}^{\star} = 4\pi^2 Z^{-1}$$

Numerical results - 3

Numerical results - Application to sampling experiments - 1

Homogenized diffusion coefficient

Mean square distance (averaged)

R. Santet (CERMICS)

Journée ANR SINEQ

December 15 2022

Numerical results - Application to sampling experiments - 2

Diffusion coefficient	Constant	Homogenized	Optimal
Spectral gap	2.16	10.57	11.23

Transition times between the two wells, $N_{\rm transitions} = 10^5$

Conclusion

- Using a position-dependant diffusion coefficient can help sample rare events, cross energy barriers, etc.
- Optimization problem can be solved numerically in low dimensions

Conclusion

- Using a position-dependant diffusion coefficient can help sample rare events, cross energy barriers, etc.
- Optimization problem can be solved numerically in low dimensions
- ullet Good approximation with homogenization procedure: $\mathcal{D}_{ ext{Hom}}^{\star}=\mathrm{e}^{eta V}$
- In high-dimension, use free energy F and coordinate reaction ξ :

$$\mathcal{D}(q) \propto \mathrm{e}^{\beta F(\xi(q))}$$

Conclusion

- Using a position-dependant diffusion coefficient can help sample rare events, cross energy barriers, etc.
- Optimization problem can be solved numerically in low dimensions
- Good approximation with homogenization procedure: $\mathcal{D}_{\text{Hom}}^{\star} = e^{\beta V}$
- In high-dimension, use free energy F and coordinate reaction ξ :

$$\mathcal{D}(q) \propto e^{\beta F(\xi(q))}$$

- ullet Spectral gap is only one criterion: sampling issues when $\mathcal{D}^\star(q) pprox 0$
- Normalization constraint on \mathcal{D} : which one to choose ?

Perspectives - 1

 \bullet Adapt to nonequilibrium dynamics: non-gradient force F, use biasing scalar function $\mathcal{E}>0$

$$dq_t^{\eta} = \mathcal{E}(q_t^{\eta}) \left(-\nabla V(q_t^{\eta}) + \eta F(q_t^{\eta}) \right) dt + \sqrt{2\mathcal{E}(q_t^{\eta})} dW_t.$$

- ullet $\mathcal{L}^{\eta}_{\mathcal{E}}$ is not self-adjoint: optimize real part of the spectral gap
- Antisymmetric part in the gen. eigen. problem, complex eigenvalues

$$(A - \eta M) u_{\mathcal{E}} = \Lambda(\mathcal{E}) B(\mathcal{E}) u_{\mathcal{E}}$$

$$A \in \mathcal{S}_d$$
, $M \in \mathcal{A}_d$, $B \in \mathcal{S}_d^{++}$

Perspectives - 2

ullet Adapt to QSD: from a metastable state A, if $u^{\mathcal{D}}$ is a QSD i.e.

$$\begin{cases} \mathcal{L}_{\mathcal{D}}^* \nu_{\mathcal{D}} = \lambda(\mathcal{D}) \nu_{\mathcal{D}} & \text{ on } A \\ \nu_{\mathcal{D}} = 0 & \text{ on } \partial A \end{cases}$$

ullet Then to accelerate convergence, we maximize $\lambda_2-\lambda_1$ which amounts to

$$\max_{\mathcal{D} + \text{ proper normalization}} \lambda_2(\mathcal{D})$$

• It is observed numerically that there is indeed an optimum when $\mathcal{D} \propto \mathrm{e}^{\alpha V}$, with $\alpha \approx 1.5$ (normalization constraint effect)

Perspectives - 2

ullet Adapt to QSD: from a metastable state A, if $u^{\mathcal{D}}$ is a QSD i.e.

$$\begin{cases} \mathcal{L}_{\mathcal{D}}^* \nu_{\mathcal{D}} = \lambda(\mathcal{D}) \nu_{\mathcal{D}} & \text{ on } A \\ \nu_{\mathcal{D}} = 0 & \text{ on } \partial A \end{cases}$$

ullet Then to accelerate convergence, we maximize $\lambda_2-\lambda_1$ which amounts to

$$\max_{\mathcal{D} + \text{ proper normalization}} \lambda_2(\mathcal{D})$$

• It is observed numerically that there is indeed an optimum when $\mathcal{D} \propto \mathrm{e}^{\alpha V}$, with $\alpha \approx 1.5$ (normalization constraint effect)

Thank you!

Which diffusion coefficient? Anisotropic case

- Anisotropic diffusion coefficient $\mathcal{D}_{\mathsf{Tan}}(q) = \varepsilon I_2 + \tilde{q}\tilde{q}^{\mathsf{T}}/\|q\|^2, \ \tilde{q} = (-y\ x)^{\mathsf{T}}$
- Isotropic diffusion coefficient $\mathcal{D}_{\mathsf{One}} \equiv (1+\varepsilon) I_2, \;\; \varepsilon = 0.1$

Which diffusion coefficient? Anisotropic case

- Anisotropic diffusion coefficient $\mathcal{D}_{\mathsf{Tan}}(q) = \varepsilon \mathbf{I}_2 + \tilde{q}\tilde{q}^{\mathsf{T}}/\|q\|^2, \ \tilde{q} = (-y\ x)^{\mathsf{T}}$
- Isotropic diffusion coefficient $\mathcal{D}_{\mathsf{One}} \equiv (1+\varepsilon) I_2, \;\; \varepsilon = 0.1$

Computing: after fixed number of iterations, distance to the invariant measure of the angle distribution (uniform on $[0, 2\pi]$)

Which diffusion coefficient? Anisotropic case

- Anisotropic diffusion coefficient $\mathcal{D}_{\mathsf{Tan}}(q) = \varepsilon \mathbf{I}_2 + \tilde{q}\tilde{q}^{\mathsf{T}}/\|q\|^2, \ \tilde{q} = (-y\ x)^{\mathsf{T}}$
- Isotropic diffusion coefficient $\mathcal{D}_{One} \equiv (1+\varepsilon)I_2, \quad \varepsilon = 0.1$

Computing: after fixed number of iterations, distance to the invariant measure of the angle distribution (uniform on $[0, 2\pi]$)

⇒ Compromise: small/large time steps (exploration vs rejection) R. Santet (CERMICS)

H-convergence

Definition [H-convergence]

A sequence $(\mathcal{A}^k)_{k\geqslant 1}\subset L^\infty(\mathbb{T}^d,\mathcal{M}_{a,b})$ H-converges to $\overline{\mathcal{A}}\in L^\infty(\mathbb{T}^d,\mathcal{M}_{a,b})$ if, for any $f\in H^{-1}(\mathbb{T}^d)$ such that $\langle f,\mathbf{1}\rangle_{H^{-1},H^1}=0$, the sequence $(u^k)_{k\geqslant 1}\subset H^1(\mathbb{T}^d)$ of solutions to

$$\begin{cases} -\operatorname{div}\left(\mathcal{A}^k\nabla u^k\right) = f & \text{ on } \mathbb{T}^d, \\ \int_{\mathbb{T}^d} u^k(q)\mathrm{d}q = 0 \end{cases}$$

satisfies in the limit $k \to +\infty$,

$$\begin{cases} u^k \rightharpoonup u & \text{weakly in } H^1(\mathbb{T}^d), \\ \mathcal{A}^k \nabla u^k \rightharpoonup \overline{\mathcal{A}} \nabla u & \text{weakly in } L^2(\mathbb{T}^d)^d, \end{cases}$$

where $u \in H^1(\mathbb{T}^d)$ is the solution of the homogenized problem

$$\begin{cases} -\operatorname{div}\left(\overline{\mathcal{A}}\nabla u\right) = f & \text{on } \mathbb{T}^d, \\ \int_{\mathbb{T}^d} u(q)\mathrm{d}q = 0 \end{cases}$$

Periodic homogenization

Definition [Correctors]

If $\mathcal{A} = \mathcal{D}\exp(-\beta V)$, $(w_i)_{1 \leq i \leq d} \subset H^1(\mathbb{T}^d)$ is the family of unique solutions to the problem

$$\begin{cases} -\operatorname{div}(\mathcal{A}(e_i + \nabla w_i)) = 0, \\ \int_{\mathbb{T}^d} w = 0 \end{cases}$$

Then for any $\xi \in \mathbb{R}^d$,

$$\xi^{\mathsf{T}} \overline{D} \xi = \xi^{\mathsf{T}} \left(\int_{\mathbb{T}^d} \mathcal{D}(q) \mathrm{d}\pi \right) \xi - \int_{\mathbb{T}^d} \nabla w_{\xi}^{\mathsf{T}} \mathcal{D} \nabla w_{\xi} \mathrm{d}\pi.$$