Calcolo Differenziale

Simone Lidonnici

 $30~\mathrm{marzo}~2024$

Indice

1	Equazioni e Disequazioni														3
	1.1 Primo grado														3
	1.1.1 Equazioni														3
	1.1.2 Disequazioni														3
	1.2 Secondo grado														4
	1.2.1 Equazioni														4
	1.3 Modulo		•	 •			 •								4
2	Applicazioni														6
	2.1 Tipi di applicazioni														6
3	Insiemi numerici														7
	3.1 Estremi di un insieme	. .		 •											8
4	Funzioni elementari														9
	4.1 Radicali														9
	4.2 Logaritmi														9
	4.3 Sommatoria														10
	4.3.1 Coefficiente binomiale		•												10
5	Funzioni reali														11
	5.1 Funzioni reali a variabili reali														11
	5.2 Proprietà delle funzioni reali														
	5.3 Funzioni monotone														
	5.4 Funzioni periodiche														
	5.5 Composizione di funzioni														13
	5.5.1 Funzione inversa														
	5.6 Operazioni su grafici		•	•	 •	•	 •			•	•	 •	•		14
6	Successioni														15
	6.1 Limiti														
	6.2 Successioni monotone		•	 •	 •				٠		•	 •	•	•	16
7	Limiti														17
	7.1 Definizione topologica di limite														17
	7.2 Algebra dei limiti														17
	7.3 Teoremi sui limiti														18
	7.4 Confronti e stime asintotiche														19
	7.5 Continuità														19
	7.5.1 Teoremi sulla continuità		•	•	 •	•		 •	٠	•	•	 •	•	•	19
8	Derivate														21
	8.1 Punti di non deriavbilità														21
	8.1.1 Tipi di punti di non derivabilità														22
	8.2 Algebra delle derivate														22

Indice Indice

	8.3	Massimi e minimi	23
		8.3.1 Ricerca dei punti estremali	23
	8.4	Teoremi sulle derivate	24
	8.5	Derivata seconda	25
		8.5.1 Concavità e convessità	25
9	Stud	dio di funzione	27
	9.1	Ordine delle operazioni	27
	9.2	Trovare la retta tangente a una funzione in un punto	27
		Asintoto obliquo	
10	Poli	nomio di Taylor	29
	10.1	Metodo di Newton	29
11	Nur	meri complessi	30
		Operazioni con numeri complessi	30
		Equazioni con numeri complessi	

Equazioni e Disequazioni

1.1 Primo grado

1.1.1 Equazioni

Equazione di una Retta

Una retta sul piano ha equazione di forma:

$$y = mx + q$$

Preso un punto $P_1=(x_1,y_1)$ possiamo calcolare m usando la formula:

$$m = \frac{y - y_1}{x - x_1} \implies y = mx + m(y_1 - x_1)$$

m è anche uguale a $tan(\theta)$ dove θ è l'angolo tra la retta e l'asse x.

Per risolvere un'equazione di primo grado:

$$y = mx + q \implies mx + q - y = 0 \implies x = -\frac{q - y}{a}$$

1.1.2 Disequazioni

Per risolvere invece una disequazione della forma:

$$ax + b \ge 0$$

dobbiamo distinguere due casi:

- Se $a > 0 \implies x \ge -\frac{b}{a}$
- Se $a < 0 \implies x \le -\frac{b}{a}$

1.2 Secondo grado

1.2.1 Equazioni

Equazione di una parabola

Un'equazione di una parabola ha forma:

$$y = ax^2 + bx + c$$

Per risolverla dobbiamo calcolare il determinante Δ tramite la formula quadratica:

$$\Delta = b^2 - 4ac$$

In base ai 3 valori possibili del Δ la soluzione dell'equazione si trova in modo diverso:

- Se $\Delta > 0 \implies x = \frac{-b \pm \sqrt{\Delta}}{2a}$
- Se $\Delta = 0 \implies x = \frac{-b}{2a}$
- Se $\Delta < 0 \implies$ non ci sono soluzioni

1.3 Modulo

Definizione di modulo

Il modulo, scritto |x| indica la distanza di x dallo 0. Il modulo è uguale:

$$|x| = \sqrt{x^2} = \begin{cases} x & x > 0 \\ -x & x < 0 \end{cases}$$

Il modulo ha una proprietà rispetto alla moltiplicazione:

$$|a| \cdot |b| = |a \cdot b|$$

Le disequazioni con il modulo si risolvono:

- $\bullet \ |x| \leq a \implies -a \leq x \leq a \implies x \in [-a,a]$
- $|x| \ge a \implies x \le -a \lor x \ge a \implies x \in [-\infty, -a] \cup [a, \infty]$

Esempio: $|x-2|-3 \le 0 \implies |x-2| \le -3 \implies -3 \le x-2 \le 3 \implies -1 \le x \le 5$

Disuguaglianza triangolare

La disuguaglianza triangolare dice che:

$$|x+y| \le |x| + |y|$$

Dimostrazione:

$$\begin{cases} -|x| < x < |x| \\ -|y| < y < |y| \end{cases} \implies -|x| - |y| \le x + y \le |x| + |y| \implies |x + y| \le |x| + |y|$$

Applicazioni

Definizione di Applicazione

Le applicazioni associano ad ogni elemento di un insieme di partenza A un elemento dell'insieme di arrivo B.

$$f: applicazione \implies \forall a \in A \ \exists f(a) = b \in B$$

f(b) si dice **Immagine** di b.

2.1 Tipi di applicazioni

Applicazioni iniettive

Un'applicazione è **iniettiva** quando non esisto due elementi distinti nell'insieme di partenza che hanno come immagine lo stesso elemento nell'insieme di arrivo.

$$\forall a_1, a_2 \in A \implies f(a_1) \neq f(a_2)$$

Esempi:

 $f(x) = x^2$ non è iniettiva perché f(2) = f(-2) = 4

f(x) = x + 3 è iniettiva

Applicazioni suriettive

Un'applicazione è **suriettiva** quando ogni elemento dell'insieme di arrivo è immagine di almeno un elemento dell'insieme di partenza.

$$\forall b \in B \implies \exists a \in A | f(a) = b$$

Applicazioni biettive

Un'applicazione è biettiva se è sia iniettiva che suriettiva.

Insiemi numerici

Naturali: N

L'insieme dei numeri naturali $\mathbb{N} = \{0, 1, 2, ...\}$ è un insieme creato considerando la classe degli insiemi che sono in biezione tra loro, questo ci permette di creare i numeri interi considerandone la cardinalità:

- $A = \emptyset \implies 0$ elementi
- $A = \{\emptyset\} \approx \{0\} \implies 1$ elementi
- $A = {\emptyset, {\emptyset}} \approx {0, 1} \implies 2$ elementi

 \approx significa che sono in biezione.

Interi: \mathbb{Z}

L'insieme dei numeri naturali $\mathbb{Z} = \{..., -1, 0, 1, ...\}$ è un insieme contenente tutti i numeri tali che -n + n = 0.

Razionali: Q

L'insieme dei numeri razionali $\mathbb{Q}=\{...,\frac{7}{10},\frac{25}{2},...\}$ è un insieme contenente tutti i numeri nella forma $\frac{p}{q}$ con $p\in\mathbb{Z}$ e $q\in\mathbb{Z}\backslash\{0\}$.

Reali: \mathbb{R}

L'insieme dei numeri reali $\mathbb{R} = \{.\pi, \sqrt{3}, ...\}$ è un insieme contenente tutti i numeri che non si possono scrivere nella forma $\frac{p}{q}$.

3.1 Estremi di un insieme

Limitato

Un insieme A si dice **limitato superiormente** se:

$$\exists x \in \mathbb{R} | \forall y \in A \ y < x$$

Un insieme A si dice **limitato inferiormente** se:

$$\exists x \in \mathbb{R} | \forall y \in A \ y > x$$

Un insieme A si dice **limitato** se lo è sia superiormente che inferiormente.

Massimo e Minimo

Un insieme A limitato superiormente ha massimo se:

$$\exists x_{max} \in A | \forall y \in A \ y < x_{max}$$

Un insieme A limitato inferiormente ha **minimo** se:

$$\exists x_{min} \in A | \forall y \in A \ y > x_{min}$$

Maggioranti e Minoranti

Un maggiorante di un insieme A è un valore z tale che:

$$\forall y \in A \ y < z$$

Un **minorante** di un insieme A è un valore z tale che:

$$\forall y \in A \ y > z$$

Estremo superiore e inferiore

L'estremo superiore sup_A di un insieme A è il minimo dei maggioranti, in caso esista x_{max} allora $sup_A = x_{max}$, nel caso in cui A non sia limitato superiormente allora $sup_A = \infty$.

L'estremo inferiore inf_A di un insieme A è il massimo dei minoranti, in caso esista x_{min} allora $inf_A = x_{min}$, nel caso in cui A non sia limitato inferiormente allora $inf_A = -\infty$.

Esempio:

$$A = [0, 1)$$

 x_{max} non esiste, ma $sup_A = 1$

$$x_{min} = 0 = inf_A$$

Funzioni elementari

4.1 Radicali

Unicità dei radicali

Per ogni valore y in \mathbb{R}^+ esiste un solo numero che elevato alla n fa y:

$$\forall y \in \mathbb{R}^+ \; \exists ! x \in \mathbb{R}^+ | x^n = y$$

Da questo possiamo dire anche che:

$$x^{n} = y \Longrightarrow x = \sqrt[n]{y} = y^{\frac{1}{x}}$$
$$x^{\frac{n}{m}} = \sqrt[m]{x^{n}}$$

4.2 Logaritmi

Definizione di logaritmo

Un **logaritmo** è una funzione che dato un numero y e una base a calcola il valore x tale che $a^x = y$:

$$\log_a y = x \implies y = a^x$$

Anche per i logaritmi esiste il teorema di unicità cioè:

$$\forall a, y > 0, a \neq 1 \ \exists ! x \in \mathbb{R} | a^x = y$$

Da questo possiamo dire anche che: $\log_2 y$

$$a^{\log_a y} = y$$

I logaritmi hanno diverse proprietà:

$$1. \log_a xy = \log_a x + \log_a y$$

$$2. \ a^{\log_a x + \log_a y} = a^{\log_a x} \cdot a^{\log_a y}$$

$$3. \log_a x^y = y \log_a x$$

4.3 Sommatoria

Definizione di logaritmo

Una **sommatoria** è una funzione che dato un indice i e uno finale n somma tutti i valori dipendenti da questo insieme di indici:

$$\sum_{i=1}^{n} a_i = a_1 + a_2 + \dots + a_n$$

In una sommatoria è possibile variare il valore di questi indici modificando il contenuto della sommatoria, ad esempio:

$$\sum_{i=1}^{n} a_i = \sum_{i=0}^{n-1} a_{i+1}$$

Esempi:

$$\sum_{i=1}^{n} \frac{1}{i} = 1 + \frac{1}{2} + \dots + \frac{1}{n}$$

$$\sum_{i=1}^{n} q^{k} = \begin{cases} \frac{1 - q^{n+1}}{1 - q} & q \neq 1\\ n + 1 & q = 1 \end{cases}$$

4.3.1 Coefficiente binomiale

Definizione di coefficiente binomiale

Il **coefficiente binomiale** tra due numeri n e k è un valore:

$$\binom{n}{k} = \frac{n!}{(n-k)! \cdot k!}$$

Dove n! è un fattoriale cioè:

$$n! = n \cdot (n-1) \cdot (n-2) \cdot \dots \cdot 3 \cdot 2 = \prod_{i=1}^{n} i$$

Funzioni reali

5.1 Funzioni reali a variabili reali

Definizione di funzione reale

Una **funzione reale** è una funzione che ha come insieme di partenza e arrivo un sottoinsieme di \mathbb{R} , cioè della forma:

$$f: I \subseteq \mathbb{R} \to \mathbb{R} \implies x \in I \to f(x) \in \mathbb{R}$$

L'insieme dei punti di R^2 definiti come $(x, f(x)) \forall x \in I$ si dice **grafico** della funzione f.

5.2 Proprietà delle funzioni reali

Limiti delle funzioni

Una funzione è **limitata superiormente** se $\exists M \in \mathbb{R} | f(x) \leq M \forall x \in I$.

Una funzione è **limitata inferiormente** se $\exists N \in \mathbb{R} | f(x) \geq N \forall x \in I$.

Una funzione è **limitata** se lo è sia inferiormente che superiore.

Proprietà di simmetria

Una funzione $f:I\subseteq\mathbb{R}\to\mathbb{R}$ con insieme I simmetrico rispetto all'origine cioè $x\in I\implies -x\in I$, è:

- f è pari se $\forall x \in If(x) = f(-x)$, cioè il grafico è simmetrico rispetto all'asse y
- f è **dispari** se $\forall x \in If(-x) = -f(x)$, cioè il grafico è simmetrico rispetto all'origine

5.3 Funzioni monotone

Definizione di funzione monotona

Una funzione f è **monotona** in un intervallo I se in quell'inervallo il grafico ha sempre lo stesso andamento (sale solo o scende solo), più precisamente è:

- Monotona crescente in I se $\forall x_1, x_2 \in I$ se $x_1 \leq x_2 \implies f(x_1) \leq f(x_2)$
- Monotona decrescente in I se $\forall x_1, x_2 \in I$ se $x_1 \leq x_2 \implies f(x_1) \geq f(x_2)$

Esempio:

$$f(x) = x^2$$

monotona crescente in $[0, \infty)$
monotona descrescente in $(-\infty, 0]$

5.4 Funzioni periodiche

Una funzione f è periodica di periodo T se $\forall x \in I, k \in \mathbb{Z} f(x+kT) = f(x)$.

Esempi:

 $f(x) = \sin(x)$ è 2π periodica $f(x) = \tan(x)$ è 2π periodica

Parte intera di x

La funzione parte intera di x, scritta [x] è la funzione:

$$f(x) = [x] = n \in \mathbb{Z} | n \le x \land n + 1 \ge x$$

Grafico:

5.5 Composizione di funzioni

Comporre due funzioni

Una composizione di funzioni f e g, scritta $f \circ g$ è una funzione h(x) = f(g(x)). Per poter fare una composizione di funzioni è necessario che:

- $Im(g) = y \in \mathbb{R} | \exists x \in Dom(g) | g(x) = y$
- $Im(g) \subseteq Dom(f)$

La funzione neutra rispetto alla composizione è Id(x) = x.

Esempio:

$$f(x) = \sin(x) \quad g(x) = \frac{1}{x^2}$$
$$f \circ g = \sin(\frac{1}{x^2})$$
$$g \circ f = \frac{1}{\sin(x)^2}$$

5.5.1 Funzione inversa

Definizione di funzione inversa

Data una funzione f, la **funzione inversa** rispetto ad f è la funzione, scritta come $f^{-1}(x)$ che composta con f da come risultato x, cioè:

$$f^{-1} \circ f = f^{-1}(f(x)) = x \ \forall x \in Dom(f)$$

 $f \circ f^{-1} = f(f^{-1}(x)) = x \ \forall x \in Dom(f)$

La funzione inversa esiste solo se f è iniettiva.

Esempio:

$$f(x)=x^2$$
 $Dom(f)=[0,\infty) \implies$ restringiamo il dominio per renderla iniettiva $f^{-1}=\sqrt{x}$

5.6 Operazioni su grafici

Preso il grafco di una funzione f(x) possiamo modificare il grafico in diversi modi:

- g(x) = f(x+h) in questo caso:
 - se h>0il grafico si sposta a sinistra
 - se h<0il grafico si sposta a destra
- g(x) = f(x) + k in questo caso:
 - se k>0il grafico si sposta in alto
 - se k < 0 il grafico si sposta in basso
- g(x) = -f(x) in questo caso:
 - la funzione si ribalta verticalmente

Successioni

Definizione di successione

Una successione è una funzione con dominio \mathbb{N} e codominio \mathbb{R} :

$$f: \mathbb{N} \to \mathbb{R}$$
$$\forall n \in \mathbb{N} \ f(n) = a_n$$

Esempi:

 $a_n = \frac{1}{n} \implies a_1 = 1, a_2 = \frac{1}{2}, \dots$ Successione di Erone:

$$a_0 = 1$$
 $a_{n+1} = \frac{1}{2}(a_n + \frac{2}{a_n})$
 $a_1 = \frac{3}{2}, a_2 = \frac{17}{12}, a_3 = \sqrt{2}$

6.1 Limiti

Definizione di limite

Una successione si dice che **converge** a $l \in \mathbb{R}$ o che $\lim_{n\to\infty} a_n = l$ se:

$$\forall \epsilon > 0 \; \exists \mathbb{N} = n(\epsilon) | \forall n \ge \mathbb{N} \implies |a_n - l| \le \epsilon$$

Successioni divergenti

Una successione a_n si dice **diverge** a ∞ e $\lim_{n\to\infty} a_n = \infty$ se:

$$\forall M > 0 \; \exists N = N(M) | \forall n > N \implies a_n \ge M$$

Una successione a_n si dice **diverge** a $-\infty$ e $\lim_{n\to\infty} a_n = \infty$ se:

$$\forall M > 0 \; \exists N = N(M) | \forall n > N \implies a_n \leq M$$

Esempio:

$$\lim_{n\to\infty} n^2 = \infty \implies \forall M > 0 \; \exists \mathbb{N} = \sqrt{M} | \forall n > \sqrt{M} \implies a_n \ge M$$
$$\lim_{n\to\infty} (-2)^n \ne \infty \ne -\infty$$

6.2 Successioni monotone

Teorema sulle successioni monotone

Data una successione monotona a_n e esiste $\lim_{n\to\infty} a_n$:

- se è una successione limitata $\lim_{n\to\infty} = l \in \mathbb{R}$
- se è una successione non limitata:
 - $-\lim_{n\to\infty}=\infty$ se è monotona crescente
 - $-\lim_{n\to\infty}=\infty$ se è monotona decrescente

7 Limiti

7.1 Definizione topologica di limite

Intorno

Un **Intorno** di un valore $c \in \mathbb{R}$ è un qualsiasi intervallo aperto che contiene c:

$$U_c = (a, b) | c \in (a, b)$$

Nel caso degli infiniti:

$$U_{\infty} = (a, \infty) \ \forall a \in \mathbb{R}$$

$$U_{-\infty} = (-\infty, b) \ \forall b \in \mathbb{R}$$

Data la definizione di intorno possiamo dare un'altra definizione di funzione:

$$\forall c, l \in \mathbb{R} \ f(c) = l \ \text{se} \ \forall U_l \ \exists U_c | \forall x \in U_c \ f(x) \in U_l$$

7.2 Algebra dei limiti

Nei limiti abbiamo molti casi noti:

$$\bullet \lim_{n \to +\infty} n^a = \begin{cases} +\infty & a > 0 \\ 1 & a = 0 \\ 0 & a < 0 \end{cases}$$

•
$$\lim_{n \to +\infty} a^n = \begin{cases} +\infty & a > 1 \\ \text{forma indeterminata} & a = 1 \\ 0 & a < 1 \end{cases}$$

•
$$\lim_{n \to +\infty} \log_a n = \begin{cases} +\infty & a > 1 \\ -\infty & a < 1 \end{cases}$$

Presi due limiti $\lim_{n\to+\infty} a_n = a$, $\lim_{n\to+\infty} b_n = b$ con $a,b \in \mathbb{R}$:

$$\bullet \lim_{n \to +\infty} a_n + b_n = a + b$$

$$\bullet \lim_{n \to +\infty} a_n \cdot b_n = ab$$

$$\bullet \lim_{n \to +\infty} \frac{a_n}{b_n} = \frac{a}{b}$$

Presi due limiti $\lim_{n\to+\infty} a_n = +\infty$, $\lim_{n\to+\infty} b_n = b$ con $b \in \mathbb{R}$:

$$\bullet \lim_{n \to +\infty} a_n + b_n = +\infty$$

$$\bullet \lim_{n \to +\infty} \frac{a_n}{b_n} = +\infty$$

$$\bullet \lim_{n \to +\infty} \frac{b_n}{a_n} = 0$$

•
$$\lim_{n \to +\infty} a_n \cdot b_n = \begin{cases} +\infty & b > 0 \\ \text{Non definibile a priori} & b = 0 \\ -\infty & b < 0 \end{cases}$$

7.3 Teoremi sui limiti

Teorema della permanenza del segno

Dato un limite positivo o negativo, sicuramente da un determinato valore di n in poi la funzione sarà sempre dello stesso segno del limite:

$$\lim_{n \to +\infty} a_n = a > 0 \implies \exists N | \forall n > N \ a_n > 0$$

Teorema del confronto

Date due successioni con limiti non infiniti $\lim_{n\to+\infty} a_n = a$, $\lim_{n\to+\infty} b_n = b$, allora possiamo dire che:

$$a_n \ge b_n \ \forall n \implies a \ge b$$

Unicità dei limiti

Se un limite ha valore $l \in \mathbb{R}$, questo è l'unico limite e non possono esisterne altri:

$$\lim_{x \to +\infty} f(x) = l \implies \nexists l' \neq l | \lim_{x \to +\infty} f(x) = l'$$

7.4 Confronti e stime asintotiche

Date due successioni con limiti infiniti $\lim_{n\to+\infty} a_n = +\infty$, $\lim_{n\to+\infty} b_n = +\infty$:

$$\lim_{n\to +\infty} \frac{a_n}{b_n} = \begin{cases} 0 & a_n \text{ ha un ordine di infinito minore di } b_n \\ +\infty & a_n \text{ ha un ordine di infinito maggiore di } b_n \\ l \in \mathbb{R} & a_n \text{ ha un ordine di infinito uguale a } b_n \end{cases}$$

Nel caso in cui $a_n = n^{\alpha}, b_n = n^{\beta}$ con $\alpha, \beta > 0$:

$$\lim_{n \to +\infty} \frac{a_n}{b_n} = \lim_{n \to +\infty} n^{\alpha - \beta} = \begin{cases} 0 & \alpha - \beta < 0 \\ +\infty & \alpha - \beta > 0 \\ 1 & \alpha - \beta = 0 \end{cases}$$

Ordini di infinito

Per sapere quale ordine di infinito è più grande di un altro possiamo seguire questo ordine:

$$c \in \mathbb{R} < \log(n) < n^a < a^n < n! < n^n$$

7.5 Continuità

Definizione di funzione continua

Una funzione f è **continua** in un punto x_0 se $\lim_{x\to x_0} f(x) = f(x_0)$.

Queste funzioni sono sempre continue:

- Potenze: x^a
- Esponenziali: e^x, a^x
- Logaritmiche: $log_a x$
- $\sin(x) e \cos(x)$

7.5.1 Teoremi sulla continuità

Teorema di esistenza degli zeri

Data una funzione continua f in [a, b]:

$$f(a) \cdot f(b) < 0 \implies \exists x_0 \in (a, b) | f(x_0) = 0$$

Corollario:

$$f(a) \neq f(b) \implies \exists m \in [f(a), f(b)] | \exists x_0 \in (a, b) | f(x_0) = m$$

7. Limiti 7.5. Continuità

Teorema di Weierstrass

Data una funzione continua f in [a,b] allora esistono minimo e massimo di f in [a,b]. Corollario:

$$\forall l \in [min(f), max(f)] \exists x \in [a, b] | f(x) = l$$

Il teorema non vale se:

- 1. L'intervallo è aperto
- 2. L'intervallo non è limitato

Esempi:

$$f(x) = x \text{ in } (0,1)$$

 $inf_f = 0$ ma il minimo non esiste

 $sup_f = 1$ ma il massimo non esiste

$$f(x) = \frac{1}{2} \text{ in } [1, +\infty)$$

 $inf_f = 0$ ma il minimo non esiste

$$sup_f = 1 = x_{max}$$

Funzioni inverse continue

Una funzione f è invertibile solo se continua e monotona, la sua inversa sarà anch'essa continua e monotona.

Dimostrazione:

Presi due $x_1, x_2 \in [a, b]$

Se
$$f(x_1) \neq f(x_2) \implies f(x_1) > f(x_2) \lor f(x_1) < f(x_2)$$

 f^{-1} è quindi continua e monotona perché:

$$f(x_1) = y_1 < y_2 = f(x_2) \implies f^{-1}(y_1) = x_1 < x_2 = f^{-1}(x_2)$$

8 Derivate

Definizione di derivata

La **derivata** di una funzione in un punto indica quanto cresce la funzione in quel punto. Per trovare la crescita media in un intervallo aggiungiamo un incremento h ad x:

Crescita media =
$$\frac{f(x+h) - f(x)}{h} = \tan \theta$$

Dove θ è l'angolo tra la retta passante per i punti (x, x + h) e l'asse delle x. Facendo tendere h a 0 otteniamo la crescita istantanea, l'effettiva derivata in un punto x, scritta come f'(x):

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

8.1 Punti di non deriavbilità

Una funzione f è **derivabile** in un intervallo [a, b] solo se:

$$\forall x \in [a, b] \ \exists f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Derivabilità implica continuità

Se una funzione f è derivabile in un punto x_0 allora è anche continua in quel punto.

$$\lim_{x \to x_0} f(x) = f(x_0) \implies \lim_{h \to 0} f(x_0 + h) = f(x_0) \implies \lim_{h \to 0} f(x_0 + h) - f(x_0) = 0 \implies \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \cdot h = 0 \implies f'(x_0) \cdot h = 0$$

Ci sono diversi punti in una funzione in cui questa può essere non derivabile.

Tipi di punti di non derivabilità 8.1.1

Punti angolosi

Un punto x_0 è un **punto angoloso** in una funzione f se il limite destro e sinistro sono diversi ma entrambi finiti:

$$\lim_{h \to x_0^+} \frac{f(x_0 + h) - f(x_0)}{h} = l_1 \in \mathbb{R}$$

$$\lim_{h \to x_0^-} \frac{f(x_0 + h) - f(x_0)}{h} = l_2 \in \mathbb{R}$$

$$l_1 \neq l_2$$

Esempio:

Esemplo:

$$f(x) = |x|$$

$$\lim_{h \to 0^{+}} \frac{f(0+h) - f(0)}{h} = 1$$

$$\lim_{h \to 0^{-}} \frac{f(0+h) - f(0)}{h} = -1$$

$$\implies f'(0) \text{ non esiste e } x_{0} = 0 \text{ è un punto angoloso}$$

Cuspide

Un punto x_0 è un **punto angoloso** in una funzione f se il limite destro e sinistro sono diversi e entrambi infiniti:

$$\lim_{h \to x_0^+} \frac{f(x_0 + h) - f(x_0)}{h} = +\infty$$

$$\lim_{h \to x_0^-} \frac{f(x_0 + h) - f(x_0)}{h} = -\infty$$

Algebra delle derivate 8.2

1.
$$[f(x) + g(x)]' = f'(x) + g'(x)$$

2.
$$[f(x) \cdot g(x)]' = f'(x) \cdot g(x) + f(x) \cdot g'(x)$$

3.
$$[f(g(x))]' = f'(g(x)) \cdot g'(x)$$

4.
$$\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

5.
$$[f^{-1}(x)]' = \frac{1}{f'(f^{-1}(x))}$$

8.3 Massimi e minimi

Massimo e minimo globale

Un punto x_0 è un **massimo globale** per f se:

$$\forall x \in Dom(f) \ f(x) \le f(x_0)$$

Un punto x_0 è un **minimo globale** per f se:

$$\forall x \in Dom(f) \ f(x) \ge f(x_0)$$

Massimo e minimo locale

Un punto x_0 è un massimo locale per f in un intervallo [a,b] se:

$$\exists \delta > 0 | \forall x \in [x_0 - \delta, x_0 + \delta] \ f(x) \le f(x_0)$$

Un punto x_0 è un **minimo locale** per f in un intervallo [a,b] se:

$$\exists \delta > 0 | \forall x \in [x_0 - \delta, x_0 + \delta] \ f(x) \ge f(x_0)$$

8.3.1 Ricerca dei punti estremali

Quando ricerchiamo dei **punti estremali**, cioè punti per cui $f'(x_0) = 0$, ci sono 4 casi possibili:

- 1. f'(x) > 0 se $x < x_0$ e f'(x) < 0 se $x > x_0 \implies x_0$ massimo
- 2. f'(x) < 0 se $x < x_0$ e f'(x) > 0 se $x > x_0 \implies x_0$ minimo
- 3. f'(x) > 0 se $x < x_0$ e f'(x) > 0 se $x > x_0 \implies x_0$ punto di flesso ma non estremale
- 4. f'(x) < 0 se $x < x_0$ e f'(x) < 0 se $x > x_0 \implies x_0$ punto di flesso ma non estremale

Esempio:

$$f(x) = x^4 - 8x^3 + 22x^2 - 24x + 12$$

$$f'(x) = 4x^3 - 24x^2 + 44x - 24 = 4(x^3 - 6x^2 + 11 - 4)$$

$$f'(x) = 0 \implies (x - 1)(x^2 - 5x + 6) = 0 \implies x = 1, 2, 3$$

Teoremi sulle derivate 8.4

Teorema di Fermat

Data una funzione f derivabile in un intervallo [a, b] con un punto $x_0 \in [a, b]$ punto estremale (massimo o minimo) allora $f'(x_0) = 0$.

Corollario:

 $f'(x_0) = 0 \implies x_0$ punto estremale.

Dimostrazione:

 x_0 è un punto di minimo locale quindi $x \in [x_0 - \delta, x_0 + \delta] \implies f(x) > f(x_0)$

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} \ge 0$$

$$\lim_{h \to 0^+} \frac{f(x_0 + h) - f(x_0)}{h} \le 0$$

$$\lim_{h \to 0^{-}} \frac{f(x_0 + h) - f(x_0)}{h} \le 0$$

$$x_0 \text{ derivabile} \implies \lim_{h \to 0^{+}} = \lim_{h \to 0^{-}} \implies \lim_{h \to 0^{\pm}} = 0$$

Teorema di Lagrange

Data una funzione f derivabile in un intervallo [a, b] allora:

$$\exists x_0 \in [a, b] | f'(x_0) = \frac{f(b) - f(a)}{b - a} = \text{pendenza media}$$

Dimostrazione:

La funzione che passa per i punti (a, f(a)) e (b, f(b)) ha equazione $y = f(a) + \frac{f(b) - f(a)}{b - a}(x - a)$

Scriviamo $g(x) = f(x) - [f(a) + \frac{f(b) - f(a)}{b - a}(x - a)]$, allora abbiamo:

- q(a) = 0
- q(b) = 0

g è continua quindi ha minimo e massimo in [a, b] per il teorema di Weierstrass

Il minimo
$$x_0 \in (a,b) \Longrightarrow g'(x_0) = 0$$
, ma

Il minimo
$$x_0 \in (a, b) \Longrightarrow g'(x_0) = 0$$
, ma $g'(x_0) = f'(x) - \frac{f(b) - f(a)}{b - a} \Longrightarrow f'(x_0) = \frac{f(b) - f(a)}{b - a}$

8. Derivate 8.5. Derivata seconda

Teorema di De L'Hopital

Date due funzioni f(x), g(x):

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

Dimostrazione:

Sappiamo che $f(x_0) = g(x_0) = 0$

$$\lim_{x \to x_0} \frac{f(x)}{g(x)} = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{g(x) - g(x_0)} = \lim_{x \to x_0} \frac{\frac{f(x) - f(x_0)}{x - x_0}}{\frac{g(x) - g(x_0)}{x - x_0}} \implies \text{applicando Lagrange}$$

$$\implies \lim_{x \to x_0} \frac{f'(x)}{g'(x)}$$

8.5 Derivata seconda

Definizione di derivata seconda

Data una funzione f la **derivata seconda** è f''(x) = [f'(x)]'.

La derivata seconda ha un'interpretazione geometrica, cioè il semicerchio che approssima meglio il grafico di f in x:

$$g(x) = r - \sqrt{(r^2 - x^2)} \implies g''(x) = (r^2 - x^2)^{-\frac{1}{2}} - \frac{x}{2}(r^2 - x^2)^{-\frac{3}{2}}$$
$$g(0) = 0 \implies g''(0)(r^2)^{-\frac{1}{2}} = \frac{1}{r}$$

Dove g''(0) è la curvatura del grafico e r il raggio di curvatura.

8.5.1 Concavità e convessità

Definizione di concavità e convessità

La derivata seconda in base al segno ci dà informazioni sul grafico della funzione, in particolare:

- f è convessa in [a, b] se: $\forall x_1, x_2 \in [a, b] \forall t \in (0, 1) \ f(tx_1 + (1 - t)x_2) \leq tf(x_1) + (1 - t)f(x_2)$ Cioè il grafico della funzione è sotto il segmento che congiunge $(x_1, f(x_1))$ e $(x_2, (x_2))$
- f è concava in [a, b] se: $\forall x_1, x_2 \in [a, b] \forall t \in (0, 1) \ f(tx_1 + (1 - t)x_2) \ge tf(x_1) + (1 - t)f(x_2)$ Cioè il grafico della funzione è sopra il segmento che congiunge $(x_1, f(x_1))$ e $(x_2, (x_2))$

La derivata seconda ha diversi teoremi che la riguardano:

1. $f'(x) > 0 \forall x \in [a, b] \implies f(x)$ convessa e f'(x) monotona crescente in [a, b]

- 2. $f'(x) < 0 \forall x \in [a,b] \implies f(x)$ convessa e f'(x) monotona decrescente in [a,b]
- 3. Un punto x_0 si dice punto di flesso se $f''(x_0) = 0$ e f è convessa in (a, x_0) e concava in (x_0, b)

Studio di funzione

9.1 Ordine delle operazioni

Per studiare una funzione bisogna seguire dei passi precisi:

- 1. Trovare l'insieme di definizione (Dominio)
- 2. Controllare se la funzione è pari o dispari
- 3. Controllare i punti di intersezione con gli assi
- 4. Calcolare i valori estremi del dominio (limiti e asintoti)
- 5. Vedere se ci sono punti di discontinuità o di non derivabilità
- 6. Calcolare la derivata prima e eseguirne lo studio del segno
- 7. Determinare intervalli di monotonia e punti di massimo e minimo
- 8. Calcolare la derivata seconda e eseguirne lo studio del segno
- 9. Determinare intervalli di concavità e convessità

9.2 Trovare la retta tangente a una funzione in un punto

Data una funzione f ed un punto x_0 , la retta tangente alla funzione in quel punto ha formula y = mx + q in cui:

- $\bullet \ m = f'(x_0)$
- $\bullet \ q = f(x_0) f'(x_0) \cdot x_0$

Esempio:

$$f(x) = x^2$$
 $x_0 = 5$
 $f'(x) = 2x$
 $m = 2x_0 = 10$
 $q = x_0^2 - 2x_0 \cdot x_0 = 25 - 50 = -25$
Retta tangente: $y = 10x - 25$

9.3 Asintoto obliquo

Per trovare l'asintoto obliquo di una funzione f dobbiamo trovare l'equazione y=mx+q in cui:

•
$$m = \lim_{x \to +\infty} \frac{f(x)}{x}$$

•
$$q = \lim_{x \to +\infty} f(x) - mx$$

Polinomio di Taylor

Il **polinomio di Taylor** è il polinomio che approssima meglio una funzione f in un punto x_0 .

$$f(x_0) = P(x_0)$$

$$\underbrace{f^k(x_0)}_{\text{Derivata k-esima}} = P^k(x_0)$$

In cui:

$$P(x_0) = \sum_{k=0}^{n} \frac{f^k(x_0)}{k!} (x - x_0)^k = f(x_0) + f'(x_0)(x - x_0) + f''(x_0)(\frac{(x - x_0)^2}{2}) + \dots + f^k(x_0)(\frac{(x - x_0)^k}{k!})$$

Resto di Lagrange

Data una funzione f che è n+1 volte derivabile allora:

$$\exists c \in (x_0, x) \lor c \in (x, x_0) | f(x) = P(x) + \frac{f^{n+1}(c)}{(n+1!)} (x - x_0)^{n+1}$$

10.1 Metodo di Newton

Il metodo di Newton è una serie di procedimenti che permette, data una funzione f continua in [a, b] di trovare quel valore x_0 per cui $f(x_0) = 0$. Ci sono due casi possibili:

1.
$$f(a)f''(a) > 0 \implies \begin{cases} x_0 = a \\ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \end{cases}$$

2.
$$f(b)f''(b) > 0 \implies \begin{cases} x_0 = b \\ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \end{cases}$$

Andando avanti avremo che $x_n \to x_0$ e $f(x_n) \to 0$

Numeri complessi

Definizione di numero complesso

Un numero complesso è un numero scritto nella forma:

$$z = a + bi$$

In cui a è la **parte reale**, scritta come Re(z) e b è la **parte immaginaria** scritta come Im(z) (da non confondere con l'immagine di una funzione).

I numeri complessi si basano sul fatto che $i^2 = -1$, cioè $i = \sqrt{-1}$.

Preso un qualsiasi numero complesso possiamo calcolare diversi altri numeri complessi ad esso collegati:

- Coniugato: $\overline{z} = a bi$
- Modulo: $|z| = \sqrt{a^2 + b^2}$
- Inverso: $z^{-1} = \frac{\overline{z}}{|z|^2} = \frac{a-bi}{a^2+b^2}$

Esempio:

$$z = 5 + 6i$$

Allora avremo:

- $\overline{z} = 5 6i$
- $|z| = \sqrt{5^2 + 6^2} = \sqrt{61}$
- $z^{-1} = \frac{5-6i}{25+36} = \frac{5}{61} \frac{6}{61}i$

11.1 Operazioni con numeri complessi

Le operazioni con numeri complessi si eseguono considerando i come una variabile ma ricordando che $i^2=-1$.

Esempi:

- Somma: (2-3i) + (3+4i) = 5+1
- Moltiplicazione: $(2+3i)(4-2i) = -6i^2 + 12i 4i + 8 = 14 + 8i$
- Divisione: $\frac{2+i}{5-i} = \frac{2+i}{5-i} \cdot \frac{5+i}{5+i} = \frac{10+2i+5i+i^2}{25-i^2} = \frac{10+7i-1}{25+1} = \frac{9}{26} + \frac{7i}{26}$

11.2 Equazioni con numeri complessi

Le equazioni con numeri complessi del tipo $az^2+bz+c=0$ si risolvono sempre con la formula quadratica:

$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Solo che questa volta si possono risolvere anche se abbiamo $\Delta < 0$.

Esempio:

$$z^2 + 2z + 3 = 0 \implies z = \frac{-2 \pm \sqrt{4 - 12}}{2} = \frac{-2 \pm \sqrt{-8}}{2} = \frac{-2 \pm \sqrt{2^3 \cdot (-1)}}{2} = \frac{-2 \pm 2i\sqrt{2}}{2} = -1 \pm i\sqrt{2}$$