	$q ext{-Metric}$	Data	Stat	Formula (Eq. $\#$)
	standard	$\mathcal{N}(0,1)$	mean	$\left(\frac{2^q\Gamma\left(\frac{q+1}{2}\right)p}{\sqrt{\pi}}\right)^{1/q} \ (\textbf{38})$
		$\mathcal{N}(0,1)$	variance	$\frac{4^q p}{q^2 \left(\frac{2^q \Gamma\left(\frac{1}{2}q+\frac{1}{2}\right)}{\sqrt{\pi}}p\right)^{2\left(1-\frac{1}{q}\right)}} \left[\frac{\Gamma\left(q+\frac{1}{2}\right)}{\sqrt{\pi}} - \frac{\Gamma^2\left(\frac{1}{2}q+\frac{1}{2}\right)}{\pi}\right] (38)$
		$\mathcal{U}(0,1)$	mean	$\left(rac{2p}{(q+2)(q+1)} ight)^{1/q} ig(48ig)$
		$\mathcal{U}(0,1)$	variance	$\frac{p}{q^2\left(\frac{2p}{(q+2)(q+1)}\right)^2\left(1-\frac{1}{q}\right)}\left[\frac{1}{(q+1)(2q+1)}-\left(\frac{2}{(q+2)(q+1)}\right)^2\right]$ (48)
	max-min normalized	$\mathcal{N}(0,1)$	mean	$\frac{\mu_{D_{ij}^{(q)}}}{2\mu_{\alpha}^{(1)}(m)} \ (\textbf{93})$ where $\mu_{D_{ij}^{(q)}}$ and $\mu_{\alpha}^{(1)}(m)$ are given by Eqs. 38 and 87, respectively.
		$\mathcal{N}(0,1)$	variance	$\frac{6\log(m)\sigma_{D_{ij}^{(q)}}^2}{\pi^2+24\left[\mu_{\alpha}^{(1)}(m)\right]^2\log(m)} \tag{93}$ where $\sigma_{D_{ij}^{(q)}}^2$ and $\mu_{\alpha}^{(1)}(m)$ are given by Eqs. 38 and 87, respectively.
		$\mathcal{U}(0,1)$	mean	$\frac{\left[\frac{(m+1)\mu_{D^{(q)}_{ij}}}{m-1}\right]}{m-1} \mbox{({\bf 101})}$ where $\mu_{D^{(q)}_{ij}}$ is given by Eq. 48
		$\mathcal{U}(0,1)$	variance	$\frac{\left[\frac{(m+2)(m+1)^2\sigma_{D_{ij}^{(q)}}^2}{m^3-m+2}\right]}{m^3-m+2}$ (101) where $\sigma_{D_{ij}^{(q)}}^2$ is given by Eq. 48