2023 Differential Geometry- TD 6

(Théorie des enveloppes)

Soit $f: \mathbb{R} \times \mathbb{R}^2$ une famille de fonctions C^{∞} définies sur le plan que l'on écira $f(\lambda, x, y)$. On suppose que pour tout (λ, x, y) annulant f, l'une des dérivées partielles $\frac{\partial}{\partial x} f(\lambda, x, y), \frac{\partial}{\partial y} f(\lambda, x, y)$ est non nulle.

- (a) Montrer que l'ensemble $C_{\lambda} = \{(x,y) \mid f(\lambda,x,y) = 0\}$ est une sous-variété de dimension 1 (i.e. une courbe régulière plongée).
- (b) Montrer que la tangente à C_{λ} en (x_0, y_0) est donné par l'équation

$$(x - x_0)\frac{\partial}{\partial x}f(\lambda, x_0, y_0) + (y - y_0)\frac{\partial}{\partial y}f(\lambda, x_0, y_0) = 0$$

(c) Écrire des hypothèses suffisantes pour que l'ensemble

$$\{(x,y) \mid \exists \lambda, \ f(\lambda,x,y) = \frac{\partial}{\partial \lambda} f(\lambda,x,y) = 0\}$$

définisse une courbe C^{∞} notée Γ

(d) Montrer sous les hypothèse précédentes, qu'en chacun de ses points, la courbe Γ est tangente à une des courbes C_{λ} . On appelle Γ l'enveloppe de la famille de courbes C_{λ} .

 $\begin{cases} 1. & \text{Fig1: the envelope of a family of circles centered at } (C,C) \in \mathbb{R}^2 \\ 2. & \text{Fig2: the envelope of a family of ellipses defined by the equation} \end{cases}$

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1,$$
 $a^2 + b^2 = 1$

Fig1

Fig2

L'espace projectif \mathbb{RP}^n est l'ensemble des droites vectorielles de \mathbb{R}^{n+1} . On va le munir d'une structure de variété de dimension n. Chaque point $(x_0,\ldots,x_n)\in\mathbb{R}^{n+1}-\{0\}$ définit une droite (celle qui le contient), notée $[x_0:x_1:\ldots:x_n]$. Ainsi, $[x_0:x_1:\ldots:x_n]=[x_0':x_1':\ldots:x_n']\iff \exists \lambda\in\mathbb{R}^*, (x_0,x_1,\ldots,x_n)=\lambda(x_0',x_1',\ldots,x_n')$.

Pour i = 0, ..., n, on note $U_i := \{x \in \mathbb{RP}^n, x = [x_0 : x_1 : ... : x_n] \text{ avec } x_i \neq 0\}$. On définit des fonctions $f_i : U_i \to \mathbb{R}^n$ par

$$f_i([x_0:\ldots:x_n])=(\frac{x_0}{x_i},\ldots,\frac{x_{i-1}}{x_i},\frac{x_{i+1}}{x_i},\ldots,\frac{x_n}{x_i}).$$

Montrer que les f_i sont des bijections et qu'elles munissent \mathbb{RP}^n d'une structure de variété C^{∞} (et même analytique) compacte de dimension n.

3 Fibration de Hopf, premiers pas _

Soit $n \in \mathbb{N}^*$. Montrer que la projection

$$\begin{array}{ccc} \mathbb{S}^n & \to & \mathbb{RP}^n \\ (x_0, \dots, x_n) & \mapsto & [x_0 : \dots : x_n] \end{array}$$

est un C^{∞} -difféomorphisme local surjectif.

Exemples de plongements _

- (1) Montrer que l'application $\mathbb{R} \to \mathbb{R}^2$, $x \mapsto (x, x^2)$ est un plongement de \mathbb{R} dans \mathbb{R}^2 .
- Soit $m, n \ge 1$ des entiers. Montrer que le produit d'espaces projectifs $\mathbb{RP}^m \times \mathbb{RP}^n$ se plonge dans $\mathbb{RP}^{(m+1)(n+1)-1}$ via l'application qui au couple $([x_0:\ldots:x_m],[y_0:\ldots:y_n])$ associe le point de coordonnées homogènes $[x_iy_j]_{0 \le i \le m, 0 \le j \le n}$.

Exercice f (Courbes en polaire) — Soit $\gamma(t) = \rho(t)e^{it}$ une courbe paramétrée en polaire. Montrer que sa vitesse et sa coubure sont données par

$$|\dot{\gamma}| = \sqrt{\rho^2 + \dot{\rho}^2}$$
 $\kappa = \frac{\rho^2 + 2\dot{\rho}^2 - \rho\ddot{\rho}}{(\rho^2 + \dot{\rho}^2)^{3/2}}$

Déterminer ces quantités dans le cas où $\gamma(t) = \rho(t)e^{i\theta(t)}$.

2 (Rpn)

· XE U; , we can write X= [xo, , xi4, 1, xi4, .. xn] then $U_i \equiv \mathbb{R}^N$, $f_i : [x_0, x_1] = \left(\frac{y_0}{x_1}, \dots, \frac{y_{i+1}}{x_i}, \frac{y_{i+1}}{x_i}, \dots, \frac{y_{i+1}}{x_i}\right)$

 $= (x_0, x_{i+1}, x_{i+1}, x_n)$

is the identity map. so fi is bijective.

· consider f, ofo'

$$f_o(Tx_o, x_n) = (\frac{x_1}{x_o}, \frac{x_2}{x_o}, \frac{x_n}{x_o})$$

$$f_1(7x_0, x_0) = \left(\frac{x_0}{x_1}, \frac{x_2}{x_1}, \dots, \frac{x_n}{x_n}\right)$$

on f. (U1) n f. (40) = { y + 12", y, to y

$$f_1 \circ f \circ^{-1} (y_1, y_n) = (\frac{1}{y_1}, \frac{y_1}{y_1}, \frac{y_n}{y_1})$$
 C^{∞} diffeom.
to U_i, f_i $i=1, ..., define on C^{∞} at las .$

- · as in the topology has a sountable basis,
- · IRPN is Hawdorff. & x +x' & IRPN.

The $0 \neq v' \in \mathbb{P}^{1+1} \setminus 0$. with TVJ = x, TU'J = x'

=) 3 open V, v' < 12th lo., v < V. v' < V'

ve have [w] + [w']

· compact. P: Ratt 10 -> 181" is continue. and the restriction of P on Sn is swiftful so. IRPn = P(sn) is compact.

3.
$$S^n \rightarrow IPP^n$$

- a) surjective /
- @ p: 12ntl \ 0 -> 12pn . (xo.. xn) |--- 7xo: --. : xn)

Claim: P is a submersion (. and ker dp/x = 1px

For x & 12 MH 10.] i=1.. n. s.t & =0

 $U_i = \{ Tx \dots x_n \} \in \mathbb{R}P^n, \quad x_i \neq 0 \$

 $\varphi_i: U_i \rightarrow I_i^{N}$, $\chi_i = \chi_i =$

(Ui, Pi) is a local chait at x.

4. op: Rn+1 10 -> Rn

 $(x_0, x_0) \longmapsto (\frac{x_0}{x_1}, \frac{x_1}{x_1}, \frac{x_N}{x_1})$

 $\frac{\partial \left(f_i \circ P \right)}{\partial x_j} = \left(\circ, \cdot \circ, \frac{1}{x_i}, \circ \cdot \cdot \circ \right)$

where $\frac{1}{x_i}$ is at j for $j \in i-1$

at j-1 for j=i+1

so. Tank $(d(Y_i \circ p)) = n$, $Y_i \circ p$ is a submassion.

on P is content on IRx. so. Ker (dP/x) = IRX

4. (1)
$$f: \mathbb{R} \to \mathbb{R}^2$$
 $f'(x) = (1. x)$
 $\times (-) (x, x^2)$ so f is an immersion

 f is also injective and proper. so f is an embedding

(2) $f: \mathbb{R}^p^m \times \mathbb{R}^p^n \to \mathbb{R}^p^{(m+1)(m+1)-1}$
 $[Tx_0; ... : x_m], Ty_0 : ... : y_n] \longmapsto T x_i y_i \int_{0.5}^{0.5} c_{ij} c_{ij} d^{ij} d^{ij}$

if
$$(x_0, x_0)$$
, (y_0, y_0) , y_0

· f is an immersion.

$$f(T_1, x_1, x_m), \overline{t}_1, y_1, y_n) = (1:(x_i):(x_i):(x_i):(x_iy_i))$$

 f has the firm $f(x_1, y) = (x_1, y_1, \overline{t}_1(x_1y_1))$
so df is injective

· f is proper as IRPM X IRPM is compact

Exercice ξ (Courbes en polaire) — Soit $\gamma(t) = \rho(t)e^{it}$ une courbe paramétrée en polaire. Montrer que sa vitesse et sa coubure sont données par

$$|\dot{\gamma}| = \sqrt{\rho^2 + \dot{\rho}^2}$$
 $\kappa = \frac{\rho^2 + 2\dot{\rho}^2 - \rho\ddot{\rho}}{(\rho^2 + \dot{\rho}^2)^{3/2}}$

Déterminer ces quantités dans le cas où $\gamma(t) = \rho(t)e^{i\theta(t)}$.

1.
$$\dot{Y}(t) = \dot{\rho}(t)e^{it} + i\dot{\rho}(t)e^{it} = (\dot{\rho}(t) + i\dot{\rho}(t))e^{it}$$
 $|\dot{Y}(t)|^{2} = \dot{\rho}(t)^{2} + \dot{\rho}(t)^{2}$
 $t = t(s)$
 $|= |\frac{dr}{ds}| = |\frac{dr}{ds}| = \frac{dt}{ds} = \sqrt{\frac{dt}{ds}} = \sqrt{\frac{d^{2}r}{ds^{2}}}$
 $\dot{Y}(s) = \frac{d}{ds}(\frac{dr}{ds})$
 $\ddot{R}(s) = \frac{d}{dt}(\frac{dr}{dt})$
 $\ddot{R}(s) = \frac{d}$