CS 475 Machine Learning: Homework 6 Graphical Models 2 Due: Friday December 4, 2015, 11:59pm

50 Points Total Version 1.0

Li-Yi Lin/llin34@jhu.edu

1 Analytical (20 points)

1. (10 points) Causal Effect Identification Use do-calculus to give an identifying expression for $p(x_5 \mid do(x_3))$ in terms of $p(x_1, x_2, x_3, x_4, x_5)$ in a hidden variable causal model in Fig. 1. Note: your expression is not allowed to refer to h_1, h_2, h_3 as those variables are not observed.

Ans:

```
P(X_5|do(x_3)) = P(X_5|do(x_3)) = P(X_5|x_1) \sum_{x_2} \sum_{x_4} P(X_5|x_1, x_2, x_4|do(x_3)) = P(X_5|x_1) \sum_{x_2} \sum_{x_4} P(X_5|x_1, x_2, x_4, do(x_3)) P(x_1, x_2, x_4|do(x_3)) = P(X_5|x_1) \sum_{x_2} \sum_{x_4} P(X_5|x_1, x_2, x_4, do(x_3)) P(x_4|x_1, x_2, do(x_3)) P(x_1, x_2|do(x_3)) = P(X_5|x_1) \sum_{x_2} \sum_{x_4} P(X_5|x_1, x_2, x_4, do(x_3)) P(x_4|x_1, x_2, do(x_3)) P(x_2|x_1, do(x_3)) P(x_1|do(x_3)) = P(X_5|x_1) \sum_{x_2} \sum_{x_4} P(X_5|x_1, x_2, x_4, do(x_3)) P(x_4|x_1, x_2, do(x_3)) P(x_2|x_1, do(x_3)) P(x_1|x_1) = P(X_5|x_1) \sum_{x_2} \sum_{x_4} P(X_5|x_1, x_2, x_4, do(x_3)) P(x_4|x_1, x_2, x_3) P(x_2|x_1, do(x_3)) P(x_1|x_1) = P(X_5|x_1) \sum_{x_2} \sum_{x_4} P(X_5|x_1, x_2, do(x_4), do(x_3)) P(x_4|x_1, x_2, x_3) P(x_2|x_1, do(x_3)) P(x_1|x_1) = P(X_5|x_1) \sum_{x_2} \sum_{x_4} P(X_5|x_1, x_2, do(x_4)) P(x_4|x_1, x_2, x_3) P(x_2|x_1, do(x_3)) P(x_1|x_1) = P(X_5|x_1) \sum_{x_2} \sum_{x_4} P(X_5|x_1, x_2, do(x_4)) P(x_4|x_1, x_2, x_3) P(x_2|x_1, do(x_3)) P(x_1|x_1) = P(X_5|x_1) \sum_{x_2} \sum_{x_4} P(X_5|x_1, x_2, do(x_4)) P(x_4|x_1, x_2, x_3) P(x_2|x_1, do(x_3)) P(x_1|x_1) = P(X_5|x_1) \sum_{x_2} \sum_{x_4} P(X_5|x_1, x_2, do(x_4)) P(x_3|x_1, x_2, do(x_4)) P(x_4|x_1, x_2, x_3) P(x_2|x_1, do(x_3)) P(x_1|x_1) = P(X_5|x_1) \sum_{x_2} \sum_{x_4} P(X_5|x_1, x_2, do(x_4)) P(x_3|x_1, x_2, do(x_4)) P(x_4|x_1, x_2, x_3) P(x_2|x_1, do(x_3)) P(x_1|x_1) = P(X_5|x_1) \sum_{x_2} \sum_{x_4} P(X_5|x_1, x_2, x_4) P(x_3|x_1, x_2, do(x_4)) P(x_4|x_1, x_2, x_3) P(x_2|x_1, do(x_3)) P(x_1|x_1) = P(X_5|x_1) \sum_{x_2} \sum_{x_4} P(X_5|x_1, x_2, x_4) P(x_3|x_1, x_2, do(x_4)) P(x_4|x_1, x_2, x_3) P(x_2|x_1, do(x_3)) P(x_1|x_1) = P(X_5|x_1) \sum_{x_2} P(X_5|x_1, x_2, x_4) P(x_3|x_1, x_2, do(x_4)) P(x_4|x_1, x_2, x_3) P(x_2|x_1, do(x_3)) P(x_1|x_1) = P(X_5|x_1) \sum_{x_2} P(X_5|x_1, x_1, x_2, x_4) P(x_3|x_1, x_2, x_4) P(x_3|x_1, x_2, x_4) P(x_4|x_1, x_2, x_3) P(x_2|x_1, do(x_3)) P(x_1|x_1) = P(X_5|x_1) \sum_{x_2} P(X_5|x_1, x_1, x_2, x_4) P(x_3|x_1, x_2, x_4) P(x_3|x_1, x_2, x_4) P(x_4|x_1, x_2, x_3) P(x_2|x_1, do(x_3)) P(x_1|x_1) = P(X_5|x_1, x_2, x_2, x_4) P(X_5|x_1, x_1, x_2, x_4) P(x_3|x_1, x_2, x
```

2. (10 points) Structure Learning We have data on four variables x_1, x_2, x_3, x_4 , and running a set of hypothesis tests we learned that the following set of conditional independences hold in our data: $(x_2 \perp \!\!\! \perp x_3 \mid x_1)$, $(x_4 \perp \!\!\! \perp x_1 \mid x_2, x_3)$. Assuming our data was generated by a DAG model (Bayesian network), give the set of DAGs consistent with

Figure 1: A hidden variable causal DAG.

the set of independences we see. Are there any causal effects with a single outcome (e.g. $p(x_i \mid do(\mathbf{x}))$, where $\mathbf{x} = \{x_j \mid i \neq j\}$) that could be identified by the same expression, regardless of which DAG in the set is the true DAG?

Ans

The correponding DAGs are shown below.

The three DAG graphs above have the same skeleton and the same unshielded collider that is node X_4 . Therefore, regardless which one is the real graph, they will result in a single outcome by the theorem "Verma and Pearl". They are observational equivalence