Homework 2 - Realistic Camera

Digital Image Synthesis

R05944045 陳卓晗

Date submitted: 11/24/2016

1. Implementation

radius	thick	n_d	V-no	ap
58.950	7.520	1.670	47.1	50.4
169.660	0.240			50.4
38.550	8.050	1.670	47.1	46.0
81.540	6.550	1.699	30.1	46.0
25.500	11.410			36.0
	9.000			34.2
-28.990	2.360	1.603	38.0	34.0
81.540	12.130	1.658	57.3	40.0
-40.770	0.380			40.0
874.130	6.440	1.717	48.0	40.0
-79.460	72.228			40.0

在本次實作中·Realistic Camera 模擬光線從底片出發·用在真實的透鏡系統中進行折射之後形成的折射光線來進行 ray tracing 的計算。如上圖所示,圖左中的表格代表透鏡組中每個透鏡的參數,包括半徑、厚度、折射率、光圈大小等。圖右中最右邊是追蹤光線射出的底片所處的位置,光線從這裡出發,觸碰到第一個透鏡之後開始折射,如果光線行進中沒有被光圈遮擋的話,最後就從最左邊的透鏡折射出去進行後續的計算。

根據實作中用到的參數,計算過程主要可以分為以下幾步:

1) Camera Transformation

Realistic camera 中的 camera transformation matrix 和 projection 中 大致相似但略有不同。Raster space 和 camera 的位置都是在 camera space 的原點處。而 camera 的透鏡組會在 camera 的正前方。所以 tracing ray 會從 z=0 的位置出發。另外,由於經過透鏡之後底片的成 像會上下左右顛倒,所以矩陣也需要經過上下左右對調處理。screen[4] 的值可以通過 filmdiag 和 film->xResoution,film->yResolution 求 出。

2) Sampling

為了計算穿過整個透鏡的光線對 底片上某一點的能量總和,我們 需要對經過整個透鏡的光線進行

積分計算,這很難辦到,所以採用 Monte Carlo 方法來對這個積分進行 近似。即對整個透鏡進行多次隨機的平均採樣。在這裡使用了 pbrt 書中 的方法將一個[-1, 1]²的正方形映射到一個同心圓上,這樣可以使透鏡上 的採樣更加平均,pbrt 同樣提供了該方法的實作

ConcentricSampleDisk()。採樣之後我們就能得到從底片發出的初始光線的方向。

3) Intersection

由於透鏡其實就是一個球體,所以需要求的就是球心在 z 軸上的球和射線的交點。在 pbrt 第三章 shapes 裡面也提到過球體和射線的求交算法。需要注意的是如果透鏡是凸透鏡,那麼我們需要取比較遠的交點,如果透鏡是凹透鏡,需要取比較近的交點。

4) Refraction

光線在觸碰到透鏡的表面時會發生折射,為了計算折射之後的光線,光線的入射點已經在之前的 intersection 的步驟中算出。根據提供的講義,求折射之後的光線有三種方法,ppt 中的對比分別如下:

Whitted's Method				
$\sqrt{}$	/	×	+	
	1			$n = \eta_2 / \eta_1$
	3	3	2	$I' = I/(-I \cdot N)$
			3	J = I' + N
1	1	8	5	$\alpha = 1/\sqrt{n^2(I' \cdot I') - (J \cdot J)}$
		3	3	$T' = \alpha J - N$
1	3	3	2	T = T'/ T'
2	8	17	15	TOTAL

		Hecl	kber	t's Method			C	the	r Method
$\sqrt{}$	/	×	+		$\sqrt{}$	/	×	+	
	1			$\eta = \eta_1/\eta_2$		1			$n = \eta_2/\eta_1$
		3	2	$c_1 = -I \cdot N$			3	2	$c_1 = -I \cdot N$
1		3	2	$c_2 = \sqrt{1 - \eta^2 (1 - c_1^2)}$	1		2	3	$\beta = c_1 - \sqrt{n^2 - 1 + c_1^2}$
		7	4	$T = \eta I + (\eta c_1 - c_2)N$		3	3	3	$T = (I + \beta N)/n$
1	1	13	8	TOTAL	1	4	8	8	TOTAL

其中 Whitted's Method 需要最多的計算次數· Heckbert's Method 則 需要計算 23 次·Other Method 需要計算 21 次。

但是由於 Heckbert's Method 只需要計算一次除法,而且可以被優化,所以使用 Heckber's method 來計算折射之後的光線的計算量會略少與其他幾種計算折射的方法。

5) Aperture

光線在折射的過程中,有些光線會射出透鏡組的範圍之外,或是被透鏡組中間的快門光圈所遮擋。這一部分光線對最終

的成像沒有貢獻,也不需要進行後續的折射計算。所以,在每次折射過程中計算光線是否有落在對應透鏡的光圈範圍之外,若有的話可以直接終止計算并返回 0.0f。由於透鏡光圈的圓心都是在 z 軸上,所以只要判斷在透鏡的交點處 $x^2+y^2 \leq aper^2$ 是否成立就可以,如果不成立表示光線落在光圈之外。

6) Exposure

真實的相機受到 vignetting 的限制, 當光線和透鏡的角度過大時光線會減

弱,造成在成像的邊緣會逐漸變暗的效

果。對於每條採樣的光線,根據 Kolb

論文中的算法取weight = $L\frac{A}{Z^2}\cos^4\theta$ 。因為我們是根據最右邊的透鏡做的採樣,所以其中 Z 是底片到最右邊透鏡的距離,即 filmDistance,A 是第一塊光圈的面積。論文中又提到,當 \mathbf{x}' 和 \mathbf{x}' 之間的夾角很小時, θ' 可以假設成與 \mathbf{x}' 和圓盤的中心的夾角。

2. Performance

Environment	CPU	Memory	Cores	GPU
Windows 10	Core i7 2.70GHz	8GB	8	GTX 970m

	32ref	512ref
Dgauss	48.3s	825.6s
Fisheye	34.3s	548.7s
Telephoto	42.7s	708.5s
Wide	21.2s	357.2s

3. Results

注意到我的實作結果中圖像的距離比 reference 中的距離近了一點點。 猜測是因為在 camera space 中 camera 所定義的位置不同造成的。若把最左 邊的透鏡處設為原點,那麼相當於整個照相機往後移了一段距離,看到的圖像 "範圍"會稍大一點。