LINEAR LAW.  $= m \times + c$ LINE avantity plotted Quantity plotted on x-axis. on y-axis velo city Y= m X + c S= mt + c Y=mX+C V=mt+c



(i) Find the gradient of this line.

[2]

(ii) Given that the line intersects the axis of  $\ln y$  at the point where  $\ln y = 0.5$ , find the value of A correct to 2 decimal places.





Two variable quantities x and y are related by the equation  $y = Ax^n$ , where A and n are constants. The diagram shows the result of plotting  $\ln y$  against  $\ln x$  for four pairs of values of x and y. Use the diagram to estimate the values of A and n.

| $y = Ax^n$                                                 | gradient = n        |
|------------------------------------------------------------|---------------------|
| last - lin Ax                                              | y-intercept = ln A. |
| $lny = lnAx^{n}$ $lny = lnA + lnx^{n}$ $lny = lnA + n lnx$ | y-ineovego - win    |
| lny = lnA + n lnoc                                         |                     |
|                                                            |                     |
| lny = n lnx + lnA $y = m X + C$                            |                     |
|                                                            |                     |

GRADIENT Y-intercept (0.9, 0.9)(2.5, 1.3)Y-intercept  $y-int = \ln A$   $0.7 = \ln A$   $0.7 = \ln A$  2.5-0.9  $e^{-7} = A$  A=2.013



The variables x and y satisfy the equation  $y = Ae^{-kx^2}$ , where A and k are constants. The graph of  $\ln y$  against  $x^2$  is a straight line passing through the points (0.64, 0.76) and (1.69, 0.32), as shown in the diagram. Find the values of A and k correct to 2 decimal places. [5]

$$luy = lnAe$$

$$luy = lnA + lne$$

$$luy = lnA - kx^{2} lne$$

$$luy = lnA - kx^{2} lne$$

$$luy = lnA - kx^{2} (1)$$

$$luy = -kx^{2} + lnA$$

$$luy = mX + C$$