A study of Sylvester Gallai configurations

Kushagra Shandilya - 21Q050010 kushagras@cse.iitb.ac.in

Indian Institute of Technology, Bombay

06 May, 2022

Contents

Sylvester's Problem

Sylvester's Problem Extension

Allowable sequence

Conclusions and Future work

Sylvester's Problem

Consider P, a finite set of points

Connecting line: A line which contains two or more points from P.

Ordinary line: A line which contains exactly two points from P.

Sylvester's Conjecture: There exists at least one ordinary line.

Kelly's proof of Sylvester's problem

(X, I) be the pair with minimum perpendicular distance; I must be ordinary

Other proofs for Sylvester's problem

- Kelly (Euclidean)
- Steinberg
- Gallai (Projective)

Sylvester's Problem Extension

Minimum no of ordinary lines

Dirac-Motzkin Conjecture: There are at least $\lfloor n/2 \rfloor$ ordinary lines.

Motzkin's proof I

Consider a point $p \in P$ not lying on any ordinary line. Let the smallest cell containing p be C.

Case 1 No such *p* exists

Case 2 Considering such a *p* exists.

Lemma 1: There can't be a point $x \in P$ lying on the edges of C.

Motzkin's proof II

Lemma 2: If there are at least three edges in the smallest cell C containing p, then all the edges of C are ordinary.

Motzkin's proof III

Consider the set of ordinary lines.

Lemma 3: A cell can not have more than one point. Suppose p and q both lie in a cell. No ordinary lines passes through p and q Connecting line through $q \rightarrow$ neighbour to p Contradiction to Lemma 2

m ordinary lines pass through at most 2m points and divide the plane into a maximum of $\binom{m}{2} + 1$ regions

$$2m + {m \choose 2} + 1 \ge n$$

$$m \ge \sqrt{2n} - 2$$

$$O(\sqrt{n}) \text{ ordinary lines}$$

Other proofs for Sylvester's problem extension

Melchoir: 3 ordinary points

• Motzkin: $O(\sqrt{n})$ ordinary lines

• Kelly-Moser: 3n/7 ordinary lines

Allowable sequence I

÷	:	:	:	:	:
1	2	3	4	5	6
1	2	3	4	6	5
1	3	2	4	6	5
1	3	4	2	6	5
1	3	4	6	2	5
4	3	1	6	5	2
:	:	:	:	:	:

- Allowable sequence is double infinite and periodic
- Switch: Reversal of any substring, Simple switch: Reversal of only two elements
- Collinear points all switch simultaneously
- ullet Parallel lines switch simultaneously, 1 2 3 4 5 6 ightarrow 1 3 2 4 6 5

Sylvester's problem using Allowable Sequence I

To show that there exists at least one simple switch

Claim: substring either to the left of 1 or to the right of $n \rightarrow simple$ switch

Similarly, two simple switches

Future work

- Dirac-Motzkin conjecture using Allowable sequences
- Coloured Extensions
- Csima-Sawyer; 6n/13 ordinary points
- Green-Tao theorem

References I

- [1] Ben Green and Terence Tao. "On sets defining few ordinary lines". In: Discrete & Computational Geometry 50.2 (2013), pp. 409–468.
- [2] Leroy M Kelly and William OJ Moser. "On the number of ordinary lines determined by n points". In: *Canadian Journal of Mathematics* 10 (1958), pp. 210–219.
- [3] Niranjan Nilakantan. "Extremal problems related to the Sylvester-Gallai theorem". In: Combinatorial and Computational Geometry 52 (2005), pp. 479–494.

That's all folks!

Thank You!

A study of Sylvester Gallai configurations for R&D2

Kushagra Shandilya - 21Q050010