ОБЗОР/ВСТРАИВАЕМЫЕ СИСТЕМЬ

Андрей Головастов

CompactPCI и PXI: не соревнуясь, а дополняя друг друга

Часть 1

Статья подготовлена по материалам регулярно проводимых семинаров «Встраиваемые системы: перспективные решения для ответственных задач и жёстких условий эксплуатации» и посвящена системам CompactPCI и PXI. Рассмотрены основные принципы построения и структура систем данных стандартов. В качестве примера приведён краткий обзор соответствующей продукции компании ADLINK. Основной акцент сделан на изделия формата 3U.

Введение

Сегодня мировой рынок встраиваемых систем (embedded systems) - это значительный сегмент общемирового рынка электроники. Встраиваемые системы проникли практически во все сферы жизни от потребительской электроники до военной техники. Совсем недавно термин «встраиваемые системы» ассоциировался, прежде всего, с бортовыми компьютерами, а сегодня уже трудно найти электронную продукцию, которая не попадала бы в данную категорию: встраиваемые компьютеры, процессорные, измерительные и интерфейсные платы и многое-многое другое.

В чем специфика требований современного разработчика компьютерных систем? Общая тенденция такова:

- стремление к максимальной стандартизации, унификации и модульному принципу построения, использование открытых международных стандартов для обеспечения конкурентоспособности производимых модульных систем;
- применение технологически совершенных изделий, COTS-продуктов (COTS – commercial off-the-shelf – готовые коммерческие продукты и

- технологии, доступные для свободного приобретения на рынке), обладающих устойчивостью к различным неблагоприятным воздействиям и высокой надёжностью, соответствующей условиям промышленной эксплуатации;
- возможность выбора лучшей продукции и продукции именно тех компаний, которые специализируются на встраиваемой электронике и работают в рамках одного стандарта, что приводит к простоте последующей модернизации и удобству обслуживания их изделий;
- использование широких возможностей применения уже разработанного системного и прикладного программного обеспечения (ПО) под Windows, Linux, QNX и т.д., следствием чего является снижение финансовых и временных затрат на разработку;
- экономия средств и времени разработки, которая продиктована высокой конкуренцией на рынке встраиваемых систем

COMPACTPCI

Наверное, те же задачи стояли и перед инженерами 1990-х годов, инициировавшими разработку нового стандарта CompactPCI, который был окончательно сформулирован в 1997 году консорциумом PICMG (PCI Industrial Computer Manufacturers Group). В рамках этой некоммерческой организации, созданной в 1994 году и на сегодняшний день насчитывающей среди своих членов более 450 компаний-производителей, была разработана открытая спецификация для высокоэффективных телекоммуникационных и вычислительных применений под названием CompactPCI, или PICMG 2.0 (http://www.picmg.org/v2internal/specifications.htm) [1, 2, 3].

Стандарт явился прямым развитием шины PCI для применения в промышленных и особо ответственных приложениях.

Основные особенности, определяемые стандартом Compact PCI:

- унифицированные размеры Eurocard в соответствии с IEEE 1101.1 (рис. 1);
- компактные соединители с шагом 2 мм (рис. 2);
- вертикальное расположение плат для наилучшего охлаждения;
- надёжная фиксация модулей в системном шасси;
- высокая устойчивость к ударным и вибрационным воздействиям;

Рис. 1. Внешний вид и размеры модулей CompactPCI

- металлическая передняя панель съёмных модулей;
- соединители для пользователя, расположенные как на передней, так и на задней стороне модуля;
- применение стандартных шасси от разных изготовителей;
- каскадное исполнение выводов питания для реализации режима «горячей» замены:
- поддержка восьми слотов в базовой конфигурации (с расширением при использовании мостов).

Конструктивно платы CompactPCI представляют собой платы Eurocard высотой 3U (100×160 мм) или 6U (233×160 мм, рис. 1).

«Сердце» СотрастРСІ — это газонепроницаемый компактный разъём, отвечающий стандарту IEC 1076 и характеризующийся низкой индуктивностью и контролируемым импедансом (рис. 2). Для плат 3U он имеет 44 ряда сигнальных контактов, расположенных с шагом 2 мм по 5 в каждом ряду (всего 220). Разъём состоит из двух снабжённых металлическим экраном половин (соединители J1 и J2) по 110 контактов каждая, 20 из которых зарезервированы.

Относительно большое количество контактов служит для экранирования и заземления, что позволяет исключить помехи и обеспечить надёжную передачу сигналов.

Разная длина контактов в системных разъёмах CompactPCI обусловлена аппаратной реализацией режима Hot Swap («горячая» замена). «Длинные» контакты применяются для подключения сигналов питания, основная группа сигна-

Рис. 2. Разъём CompactPCI

лов системной шины подключается контактами «нормальной» длины, а «укороченные» контакты служат для передачи специальных сигналов Hot Swap (при отсоединении модуля они первыми размыкаются и предупреждают систему о предстоящем его удалении).

На кросс-панели (объединительной панели, рис. 3) устанавливаются ответные части разъёмов плат. В 32-битовом варианте шина использует только один соединитель (J1), причём не полностью; часть контактов выделяется на

усмотрение пользователя. 64-битовая шина использует весь разъём (J1+J2), при этом возможна комбинация разных модулей на одной и той же 64-разрядной объединительной панели.

Металлическая передняя панель съёмных модулей выполнена в соответствии с IEEE 1101.10, имеет ручку-фиксатор, цент-

рирующие штифты и при помощи невыпадающих винтов надёжно фиксирует модули в шасси Compact PCI.

В отличие от шины PCI, где количество слотов может быть не более четырёх, шина CompactPCI поддерживает до восьми слотов (рис. 3). Дальнейшее расширение количества слотов вплоть до 32 реализуется с помощью мостов PCI-PCI.

Каждый сегмент системы имеет один системный и семь периферийных слотов. Системный модуль занимает левый (системный) слот и обеспечивает арбитраж шины, формирование тактовых сигналов, приём и выдачу сигналов управления.

Требования стандарта предполагают использование соединителей как на передней, так и на задней (тыльной) стороне кросс-панели, что позволяет организовать так называемый тыльный ввод-вывод (Rear I/O) и подключение дополнительных устройств с обратной стороны объединительной панели.

Принципиальные конструктивные моменты стандарта CompactPCI под-

ку-фиксатор, цент- Рис. 3. Объединительная панель CompactPCI

робно были изложены в [2], и здесь о них говорить не будем. В качестве справочной информации в табл. 1 приведены данные, которые помогут разобраться в существующих обозначениях, присущих системам Compact PCI (PXI).

Следующей отправной точкой для разговора о конкретных решениях будет описание стандарта РХІ.

Стандарт РХІ

Стандарт РХІ (PCI eXtention for Instrumentation) появился в 1997 году как открытый промышленный стандарт благодаря группе компаний, входящих в альянс PXISA (PXI Systems Alliance, http://www.pxisa.org/). В основе архитектуры PXI лежат шина PCI, стандарт CompactPCI, а также дополнительные программно-аппаратные возможнос-

ти, позволяющие создать на их базе практически любую автоматизированную вычислительную или контрольно-измерительную систему (рис. 4).

Конструктивно система РХІ представляет собой шасси, оснащённое объединительной панелью на 8 модулей (рис. 5).

Самый левый слот в корзине предназначен для системного контроллера; слева от него оставлено свободное место для его возможных расширений (рис. 6). Семь свободных слотов справа предназначаются для модулей вводавывода. В следующий за системным слот может устанавливаться специальный модуль, предназначенный для синхронизации работы нескольких модулей, так называемый стар-триггер (Star Trigger).

Пропускная способность системы — до 132 Мбайт/с для 32-разрядной шины РСІ на частоте 33 МГц; для 64-разрядного варианта РСІ значение этого параметра составляет до 528 Мбайт/с.

Если обычная шина РСІ имеет возможность работать не более чем с 4 слотами, то увеличенное до 8 количество слотов является явным преимуществом стандартов РХІ/СомрастРСІ. Неоспоримыми достоинствами РХІ/СомрастРСІ являются использование шины передачи данных РСІ, надёжных разъёмов и технологии plug&play, а также функциональная совместимость систем РХІ и СомрастРСІ (рис. 7).

Помимо этого спецификация РХІ предусматривает дополнительные возможности синхронизации (рис. 8).

Таблица 1

Краткое описание ключевых особенностей основных спецификаций PIMG

PICMG	Наименование	Версия	Краткое описание
2.0	CompactPCI	R2.1	Определяет форм-фактор IEEE 1101.1 (Eurocard) и устанавливает назначение контактов для соединителей с шагом 2 мм (IEC 1076-4-101)
		R3.0	Вводит последовательность соединения выводов для «горячей» замены
		ECN 002	Вводит связь между «географическими» и физическими адресами
2.1	Hot Swap	R1.0	Определяет конфигурацию выводов и другие аппаратные особенности для съёма и установки плат при работающей системе CompactPCI («горячая» замена)
		R2.0	Включает в себя уточнения программной архитектуры, поддержки режимов 3,3 В и 66 МГц, РСІ-Х совместимости, соглашения о терминах
2.2	VME64x	R1.0	Определяет назначения выводов для расширений VME64 в соответствии с требованиями ANSI и VITA для соединителей J4/P4 и J5/P5 на объединительной панели
2.3	PMC I/O	R1.0	Определяет назначение выводов пользователя для соединителей J3/P3, J4/P4, J5/P5 на объединительной панели CompactPCI в соответствии с IEEE 1386 PMC
2.4	IP I/O	R1.0	Определяет назначение выводов пользователя для соединителей J3/P3, J4/P4, J5/P5 на объединительной панели CompactPCI в соответствии со стандартом IP ANSI/VITA
2.5	Telephony	R1.0	Определяет использование стандарта CompactPCI и регламентирует конфигурацию выводов, определённых пользователем для применения в компьютерной телефонии с шиной TDM, Rear I/O, 48 VDC, платами типа 6U
2.7	Dual CompactPCI	R1.0	Определяет средства процессорных плат CompactPCI для управления двумя независимыми сегментами шин PCI в конструктиве 6U; шина, соединённая с J1/J2, обозначается как A, а шина, связанная с J4/J5, как B
2.8	PXI	-	Определяет назначение выводов пользователя для соединителей J2 в инструментальных системах на базе CompactPCI
2.9	Management	R1.0	Спецификация для вспомогательной шины управления системой, призванная обеспечить контроль плат CompactPCI со стороны основного или подчинённого процессора
		ECN 001	Определяет данные для обеспечения связи слота
2.10	Keying	R1.0	Определяет механизм кодирования и конфигурации выводов для соединителей J4/P4 согласно IEC 1076-4-101, а также требованиям IEEE 1101.10
2.11	Power Interface	R1.0	Определяет электрические и механические требования для функционирования и взаимодействия встроенных модулей питания в системах CompactPCI
2.12	Software Interoperability	R1.0	Определяет независимые от фирм-производителей программные интерфейсы, поддерживающие программно-аппаратный процесс соединения и режим «горячей» замены, определённый в PICMG 2
		R2.0	Содержит обновления для PICMG 2.1 R2.0, Windows и Linux, API резервного системного слота (Redundant System Slot – RSS), поддержки переключения мостов PCI-PCI, аппаратно и программно независимых моделей интеллектуальных сетевых узлов, управления HS- и RSS-платформами CompactPCI, выбора устройства назначения в циклах считывания и записи конфигурации (IDSEL) для «географического» адреса (требования PICMG 2.1)
2.13	Redundant System Slot	_	Определяет подход для сокращения функций системного слота РСІ с целью обеспечения возможности его «горячей» замены
2.14	Multicomputing	R1.0	Определяет основанное на пакетной передаче данных взаимодействие между многопроцессорными системами (heterogeneous PCI agents) внутри системной архитектуры CompactPCI
2.15	РТМС	R1.0	Определяет конфигурацию соединителя РТМС для поддержки специализированных telecom-интерфейсов; распространяется на мезонинные платы РМС с четырьмя соединителями, поддерживающими сигналы РСІ, три специализированных telecom-интерфейса и Ethernet
		ECN 001	Увеличивает возможности TDM (мультиплексной передачи с временным уплотнением) за счёт расширения полосы пропускания TDM (Н.110) и добавления Ethernet, а также комбинирования возможностей ATM (асинхронной передачи данных) и Ethernet
2.16	PSB	R1.0	Расширяет спецификацию объединительной панели CompactPCI в части пакетной передачи данных, накладывая архитектуру встроенной сети (Embedded System Area Network – ESAN) на основе 10/100/1000 Ethernet с использованием топологии «звезда» поверх архитектуры CompactPCI
2.17	StarFabric	R1.0	Определяет требования к объединительной панели, узловым и коммутационным платам, совмещая технологию StarFabric и существующие стандарты PICMG
2.18	RapidIO	R1.0	Определяет резервированное переключаемое высокоскоростное соединение точка-точка для отдельных или всех слотов с использованием Serial RapidIO, 64-битового варианта CompactPCI H.110 и опционально PICMG 2.16
2.20	Serial Mesh	R1.0	Определяет последовательное соединение точка-точка, предназначается для расширения возможностей высокоскоростной передачи данных платформ PICMG 2.x; предложение использовать объединительную CompactPCI-панель с сеткой последовательных двухточечных соединений (CompactPCI Serial Mesh Backplane – CSMB) базируется на новых стандартах для высокоскоростной связи и разъёмов, направленных на улучшение работы дифференциальной линии связи
2.50	CompactTCA	_	Оформляет ряд инструкций по упорядочению платформ PICMG 2.16, которые в целях повышения функциональной совместимости ограничивают реализацию аппаратных опций

Рис. 4. Программно-аппаратные возможности, определяемые стандартом РХІ

Синхронизация и тактирование в системах PXI реализуются применением:

- наносекундной синхронизации модулей ввода/вывода на основе опорного тактового сигнала 10 МГц, подаваемого на все модули;
- контроллера и шины Star Trigger, управляющих передачей сигналов тактирования и синхронизации, реализующих подключение модулей с использованием топологии «звезда», учитывающих длину пути сиг-

Рис. 5. Шасси РХІ

налов переключения для уменьшения задержки и для синхронизации моментов запуска различных приборов;

 шины PXI Trigger, состоящей из восьми линий, сигналы которых подаются на все слоты в сегменте, с тем чтобы они могли взаимодействовать и аппаратно управлять друг другом;

Рис. 6. Структура системы РХІ

Рис. 7. Функциональная совместимость систем РХІ и CompactPCI

Рис. 8. Синхронизация и тактирование в системе РХІ

 локальной шины, служащей для передачи высокочастотных цифровых и аналоговых сигналов между соседними модулями.

Для изделий стандарта РХІ заданы жёсткие требования по электромагнитной совместимости, питанию, вентиляции модулей и повышенной виброзащищённости конструкции. Архитектура РХІ позволяет использовать высо-

копроизводительные процессоры для задач, требующих сложного анализа или математической обработки данных. Используемое программное обеспечение аналогично ПО стандартных ПК и поэтому не требует дополнительного времени на изучение, что упрощает процесс интеграции систем.

Во второй части статьи делается краткий обзор продукции компании

ADLINK, соответствующей требованиям стандартов CompactPCI и PXI. Основное внимание уделяется изделиям формата 3U. Указываются возможные области применения.

■

ЛИТЕРАТУРА

- 1. Яковлев В. Базовые принципы построения высокопроизводительных и надёжных систем на основе изделий CompactPCI // Современные технологии автоматизации. 2007. № 3.
- 2. Беломытцев В. Шасси промышленных компьютеров с шиной CompactPCI // Современные технологии автоматизации. -2008. -№ 2.
- 3. Теплов А. Перспективный формат // Мир автоматизации. 2005. № 1.

Автор — сотрудник фирмы $\Pi POCO\Phi T$

Телефон: (495) 234-0636 E-mail: info@prosoft.ru