Spike-Sorting by Spectral Analysis of Single Action Potentials: Outline

- 1. Introduction
 - 1.1. Membrane potential information content
 - 1.2. Spike-sorting methods
 - 1.3. Action potential information content
 - 1.4. Information in an action potential as a method in spike-sorting
- 2. Methods
 - 2.1. Theory (Details in appendix)
 - 2.2. Computational Tools
 - 2.3. Experimental Design (Procedure; data flow diagrams)
 - 2.3.1. Intracellular single-neuron analysis
 - 2.3.1.1. Simulation of membrane potential
 - 2.3.1.1.1. Simulation of ion channels undergoing Markov kinetics
 - 2.3.1.1.2. Transformation to spike-trains
 - 2.3.1.2. Extraction of action potentials from spike-trains
 - 2.3.1.2.1. Action potential averaging
 - 2.3.1.3. Spectral analysis of averaged action potentials
 - 2.3.1.3.1. Spectral characteristics as a function of injected current density
 - 2.3.1.3.2. Spectral characteristics as a function of ion conductance density
 - 2.3.1.3.2.1. Sodium channels
 - 2.3.1.3.2.2. Potassium channels
 - 2.3.1.4. Comparative analysis
 - 2.3.1.4.1. Action potential shape analysis
 - 2.3.1.4.2. Spike-train analysis
 - 2.3.1.5. Effect of computation parameters (sampling rate, white noise, and action potential window)
 - 2.3.2. Extracellular multi-neuron spike-sorting
 - 2.3.2.1. Simulation of extracellular field potential
 - 2.3.2.2. Extraction of action potentials from spike-trains
 - 2.3.2.3. Spectral analysis of action potentials
- 3. Results
 - 3.1. Method development Intracellular single-neuron action potential
 - 3.1.1. Spectrogram of single action potentials
 - 3.1.1.1. Effect of injected current density
 - 3.1.1.1. Effect on spectral characteristics
 - 3.1.1.1.2. Shape analysis
 - 3.1.1.1.3. Firing rate
 - 3.1.1.1.4. Summary
 - 3.1.1.2. Effect of sodium channel density
 - 3.1.1.2.1. Effect on spectral characteristics
 - 3.1.1.2.2. Shape analysis

Clayton Fan

- 3.1.1.2.3. Firing rate
- 3.1.1.2.4. Summary
- 3.1.1.3. Effect of potassium channel density
 - 3.1.1.3.1. Effect on spectral characteristics
 - 3.1.1.3.2. Shape analysis
 - 3.1.1.3.3. Firing rate
 - 3.1.1.3.4. Summary
- 3.1.1.4. Summary
- 3.2. Implementation of spectral spike-sorting
 - 3.2.1. Simulated field potential
 - 3.2.2. Empirical field potential
- 3.3. Summary
- 4. Discussion
 - 4.1. Assumptions
 - 4.2. Validity of spike-sorting by spectral analysis of action potentials
 - 4.3. Recommendations for future studies

Appendices

- A. The stochastic Hodgkin-Huxley model
- B. Extracellular field potential
- C. Spectral Analysis
- D. Effect of computational parameters
 - D.1. Sampling rate
 - D.2. White noise
 - D.3. Action potential window width and offset
- E. Results (in detail)
- F. Source Code