Range-Separated Random Phase Approximation: Recent Advances

B. $Mussard^{a,b}$, O. $Franck^{a,b}$, E. $Luppi^b$, P. Reinhardt^b, J. Toulouse^b

^a Institut du Calcul et de la Simulation, Université Pierre et Marie Curie, CNRS, 75005 Paris, France ^b Laboratoire de Chimie Theorique, Université Pierre et Marie Curie, CNRS, 75005 Paris, France

bastien.mussard@upmc.fr

RSH+RPA formulation

 $rac{\mathrm{erf}\left(\mu r_{ij}
ight)}{r_{ij}}$

Range separation^[1] with the range-separation parameter μ :

$$E_{\text{exact}} = \min_{\Psi} \left\{ \langle \Psi | \hat{T} + \hat{V}_{ne} + \hat{W}_{ee}^{\text{lr}} | \Psi \rangle + E_{Hxc}^{\text{sr}} [n_{\Psi}] \right\}$$

Single determinant approximation:

nmant approximation: $E_0 = \min \left\{ \langle \Phi | \hat{T} + \hat{V}_{ne} + \hat{W}_{ee}^{lr} | \Phi \rangle + E_{Hxc}^{sr} [n_{\Phi}] \right\}$

Adding long-range correlation:

ion: $E_{\text{exact}} = E_0 + E_c^{\text{lr}}$

There is a wide variety of RPA formulations and variants^[2], focus is here brought mainly to: dRPA-I^[2] and Szabo-Ostlund 2 (SO2)^[3].

(dRPA-I includes in no way exchange effects; SO2 is a variant of RPA that fully includes exchange effects.)

Performance on energies

(a,b)> Interaction energy of Ar₂ and Ne₂ dimers^[3]

 $(\mu = 0.5 \text{ bohr}^{-1}, \text{ srPBE functional, aug-cc-pV6Z}).$

(c) > Study on the S22 set of weakly-interacting molecular systems^[3] $(\mu = 0.5 \text{ bohr}^{-1}, \text{srPBE functional, aug-cc-pVDZ}).$

It is seen that SO2 is better for the description of van der Waals interactions[3].

Basis set convergence

both **partial wave** and **principal number** expansions lead to an **exponential convergence** of the wavefunction^[4]

> FCI wave function of the He atom calculated with Dunning basis sets

by the absence of cusp in the lr-wavefunction accelerates the convergence

be the convergence seems less systematic

(Dunning optimized for Coulomb interaction)

Three-point extrapolation

We propose a three-point extrapolation scheme for total RSH+correlation energies^[4] trying to fit:

$$E_{\infty} = E_{XYZ} = \frac{E_Y^2 - E_X E_Z}{2E_Y - E_X - E_Z}$$

 $E_X = E_{\infty} + B \exp(-\beta X)$

> errors (mHartree) wrt. cc-pV6Z ($\mu = 0.5 \text{ bohr}^{-1}$, srPBE)

	He	Ne	N_2	H_2O
$\Delta E_{ m D}$	8.488	74.523	51.581	55.850
$\Delta E_{ m T}$	0.781	20.337	13.406	14.736
$\Delta E_{ m Q}$	0.245	5.763	4.090	4.499
ΔE_5	0.078	0.751	0.810	0.726
$\Delta E_{ m DTQ}$	0.205	0.401	1.083	1.105
$\Delta E_{ m TQ5}$	0.002	-1.876	-0.972	-1.475

Spin-Unrestricted RPA

> Normal distributions of errors (kcal/mol) of calculations on $\mathbf{AE49}^{[5]}$ ($\mu = 0.5 \text{ bohr}^{-1}$, srPBE functional, cc-pVQZ, spin unrestricted)

CONCLUSION AND OUTLOOK

- Description Parameter Description Parameter
- ⊳Most RPA formulations and variants have been **generalized to**open-shell expressions (available in MOLPRO[6]).
- Den-shell (RSH+)RPA calculations have successfully been applied to the **AE49 and DBH24/08 dataset**.
- ⊳ Results confirm that **RSH+SO2** is a good method to calculate:
- interaction energies
 - atomization energies
 - barrier heights
- ► Future developments could include a way to estimate **spin-contamination** in these RPA calculations.
- > Current developments involve fractional occupation number

calculations References

- 1. J. Toulouse, I. Gerber, G. Jansen, A. Savin, J.G. Ángyán, PRL, 2009
- 2. J.G. Ángyán, R. Liu, J. Toulouse, G. Jansen, JCTC, 2011
- 3. J. Toulouse, W. Zhu, A. Savin, G. Jansen, J.G. Ángyán, JCP, 2011
- 4. O. Franck, BM, E. Luppi, J. Toulouse, JCP, 2015
- 5. BM, P. Reinhardt, J.G. Ángyán, J. Toulouse, JCP, 2015
- 6. MOLPRO H.-J. Werner, P.J. Knowles, G. Knizia, F.R. Manby, M.