

TRABALHO PRÁTICO Nº1

Agentes Racionais

Introdução à Inteligência Artificial

Bruno Martins - 2022147149 João Mota - 2020151878

Índice

Índice

Objetivo	. 2
Ambiente	2
Modelo Base	- 2
Modelo Melhorado	3
Agentes	3
Modelo base	3
Comportamento dos agentes	3
Hienas (falta cenas)	3
Experts Erro! Indicador não definid	0
Interface	
resultados	
Configuração inicial	
Análise de Resultados	(
existentes.	(
Modelo 1- Influência de quantidade de Agentes Inicial	(
Modelo 2 - Sobrevivência dos agentes alterando o valor da variável Energia_Por_Alimento para 50	. (
Modelo 3- Influência de Quantidade de Alimento de Pequeno Porte	- 7
Modelo 4- Influência das Armadilhas nos Leões	. 7
Modelo 5- Influência da Reprodução nos Leões	. 8
Modelo 6- Influência da Reprodução nos Leões	8
Conclusão	ç
ληργος	c

Objetivo

No campo da Inteligência Artificial, são distinguidos dois tipos de agentes. O agente racional é capaz de percecionar o seu meio envolvente e agir em conformidade com o mesmo, de forma que as suas ações resultem em sucesso ou maior sobrevivência. Por outro lado, o agente reativo não tem em consideração o meio envolvente, agindo apenas segundo a sua perceção mais recente.

De forma a interiorizar estes conceitos, o presente trabalho surge no âmbito de criar, implementar e analisar os comportamentos racionais de agentes reativos de forma que a sua sobrevivência seja bem-sucedida.

Ambiente

Modelo Base

O ambiente consiste numa grelha bidimensional aberta que é inicializada pelo procedimento "*Setup*", responsável por criar as células de comida de pequeno porte (castanhas) (configuráveis entre 0% e 20%) e de grande porte (vermelhas) (configuráveis entre 0% e 10%), as células azuis (para descanso, configuráveis de 0 a 5).

Figura 1: células de comida de Pequeno Porte

Figura 2: células de comida de Grande Porte

Figura 3: células azuis (descanso)

Modelo Melhorado

No modelo melhorado é acrescentada a existência de Armadilhas.

Figura 4: células de armadilhas

Figura 5: Todas as configurações ativas

Agentes

Modelo base

No ambiente, estão presentes os agentes do tipo *Hienas* ("wolf" de cor branca) e *Leões* ("cat" de cor amarela), ambos de quantidade configurável. Estes agentes podem ou não executar alguns comportamentos tais como: alimentação, interação e movimentação pelo ambiente.

Figura 7: agentes Hienas e Leões

Comportamento dos agentes

Hienas

Os agentes Hienas conseguem percecionar o conteúdo das células que se encontram imediatamente à sua frente, direita e esquerda.

Este agente tem como funções:

- 1) Alimentação: Ao percecionar uma célula de alimentação de grande porte, torna essa mesma de pequeno porte, por sua vez ao percecionar uma célula de pequeno porte torna essa célula preta.
- 2) Movimentação: A movimentação é realizada de forma a melhorar o tempo de sobrevivência (afastando-se dos abrigos e armadilhas), sendo que podem movimentar-se para a frente e rodar 90° à direita ou esquerda.

3) Interação: Sempre que o seu nível de agrupamento for superior a 1 e apenas existir um agente leão em toda a vizinhança percecionada, estes agentes conseguem transformá-lo em alimento de grande porte e, devido ao combate efetuado, acabam por perder uma percentagem da energia que o leão tinha (configurável pelo utilizador), dividindo pelo nível de agrupamento.

Leões

Os agentes Leões conseguem percecionar o conteúdo das células que se encontram à sua frente e em ambos os lados.

Este agente tem como funções:

- 1) Alimentação: Ao encontrar uma célula de alimentação de grande porte, torna essa mesma de pequeno porte, por sua vez ao encontrar uma célula de pequeno porte torna essa célula preta.
- 2) Movimentação: A movimentação poderá ser feita para a frente , 90° à direita ou 90° à esquerda. No caso de existirem duas ou mais hienas nas células percecionadas este agente realiza uma ação de movimentação especial.
- 3) Interação: Sempre que se encontrar apenas com um agente hiena na vizinhança percecionada, torna-a num alimento de pequeno porte e perde uma percentagem do valor da energia que esta tinha devido ao combate (configurável pelo utilizador).

Interface

A interface está dividida em 3 áreas: Ambiente, Configuração inicial e Análise de resultados.

Figura9: Ambiente

Figura 10: Gráfico do número de agentes

Figura 11: Configuração inicial

Ambiente

A Interface principal permite observar as ações de ambos os agentes, a sua movimentação, interação e alimentação.

Configuração inicial

A configuração inicial permite-nos definir o número de agentes (leões e hienas), a quantidade de alimento de pequeno e grande porte, a energia que cada agente recebe por consumo de alimentos, a quantidade de abrigos, a energia inicial de cada agente, a quantidade de energia que o agente leão deve ter para começar a priorizar a alimentação, o nível de energia perdido em cada combate, o tempo de descanso e por fim habilitar as armadilhas / reprodução.

Análise de Resultados

Nesta divisão estão presentes os resultados e análises da evolução da sobrevivência de ambos os tipos de agentes, a nível de quantidade de agentes existentes.

Resultados

Modelo 1- Influência de quantidade de Agentes Inicial

Nesta experiência apenas os parâmetros de quantidade inicial de cada agente serão alterados, mantendo constante os restantes parâmetros.

Nº de Hienas	Nº de Leões	Média do número de ticks
5		305
15	5	468
30		424
5	15	128
15		184
30		242
5		44
15	30	83
30		104

Estudando os resultados podemos observar que quanto maior o número de agentes hienas, a sua extinção será mais tardia (número de ticks aumenta). Por outro lado, o aumento do número de agentes leão afeta de forma significativa o tempo de extinção dos agentes hienas (quanto maior o número de agentes L menor será o tempo de sobrevivência de agentes H).

Modelo 2 - Sobrevivência dos agentes alterando o valor da variável Energia Por Alimento para 50

Nesta experiência apenas os parâmetros Energia_Por_Alimento para cada agente vão variar, mantendo constante o resto dos parâmetros.

Nº de Hienas	Nº de Leões	Média do número de ticks
5		348
	5	
15		485
5		139
	15	
15		200

Comparando os resultados com os do modelo anterior podemos afirmar que o tempo de sobrevivência dos agentes Hienas aumenta paralelamente ao aumento do parâmetro Energia_Por_Alimento.

Modelo 3- Influência de Quantidade de Alimento de Pequeno Porte

Nesta experiência apenas os parâmetros de quantidade de alimento de pequeno porte vão variar, mantendo constante o resto dos parâmetros.

Nº de Hienas	Nº de Leões	Alimento de Pequeno Porte	Média do número de ticks
	15	5	165
15		10	196
	15	208	

Examinando os resultados podemos observar que quanto maior for a quantidade de alimento de pequeno porte maior será o número de ticks, uma vez que haverá maior probabilidade de os agentes se alimentarem, ganhando energia.

Modelo 4- Influência das Armadilhas nos Leões

Nesta experiência apenas o SWITCH das armadilhas será ligado.

Nº de Leões	Armadilhas	Média do número de ticks
5		369
10	Off	499
15		499

5		262
10	On	462
15		499

Analisando os resultados podemos observar que quando as armadilhas se encontram ligadas a extinção dos leões é acelarada.

Modelo 5- Influência da Reprodução nos Leões

Nesta experiência apenas o SWITCH da reprodução será ligado.

Nº de Leões	Reprodução	Média do número de ticks
5		298
10	Off	445
15		479
5		453
10	On	471
15		499

Analisando os resultados podemos observar que quando a reprodução se encontra ligada os agentes leões têm maior tempo de sobrevivência, chegando mesmo ao ponto de não se extinguirem quando existem 15 agentes leões e a reprodução ligada.

Modelo 6- Influência da Reprodução nas Hienas

Nesta experiência apenas o SWITCH da reprodução será ligado

Nº de Hienas	Reprodução	Média do número de ticks
5		77
10	On	90
15		97
5	Off	35

10	39
15	59

Analisando os resultados podemos observar que a presença da reprodução tem um impacto positivo no número de ticks (tempo de sobrevivência), aumentando significativamente.

Conclusão

Diante do que acima foi exposto concluímos que a quantidade de agentes será maior quanto maior for a quantidade de alimento. Seguindo esta lógica, a quantidade de agentes também aumentará conforme o aumento do valor de energia recebido por cada alimento. As armadilhas são uma mais valia para os agentes que se encontrem em desvantagem permitindo equilibrar o número entre os dois. Por fim, verificamos que a reprodução ajuda ambos os agentes a aumentar o valor de ticks (tempo de extinção).

Anexos

IIA. nlogo Apresentação .pptx Resultados.xlsx