解析学6等レポート

基礎工学研究科システム創成専攻修士 1 年 学籍番号 29C17095 百合川尚学 選択番号1 2

2017年10月28日

- | 1 | 以下の問いに答えよ.
- (1) X を空でない集合とし、その部分集合族 \mathcal{F} を次で与える.

$$\mathcal{F} = \{A \subset X \mid A \text{ または } A^c \text{ は可算集合}\}$$

- (i) \mathcal{F} は X 上の σ 集合体であることを示せ.
- (ii) \mathcal{F} 上の関数 P を次で定義する.

$$P(A) = \begin{cases} 1 & (A^c \ \text{は可算集合}) \\ 0 & (A \ \text{は可算集合}) \end{cases} \quad (A \in \mathcal{F})$$

解答

- (i) 1. $X^c = \emptyset$ の濃度は 0 であるから $X \in \mathcal{F}$ である.
 - 2. $A \in \mathcal{F}$ であれば A または A^c が可算集合である.これは A^c または $(A^c)^c$ が可算集合であることと同じであるから $A^c \in \mathcal{F}$ である.
 - 3. $A_n \in \mathcal{F}$ $(n=1,2,\cdots)$ を取る. A_n $(n=1,2,\cdots)$ がすべて可算集合であるなら $\cup_{n\in\mathbb{N}}A_n$ も可算集合であるから $\cup_{n\in\mathbb{N}}A_n\in\mathcal{F}$ が成り立つ. ある $N\in\mathbb{N}$ について A_N が非可算集合である場合, A_N^c が可算集合であって

$$\bigcap_{n\in\mathbb{N}}A_n^c\subset A_N^c$$

となるから $\bigcap_{n\in\mathbb{N}}A_n^c\in\mathcal{F}$ であることが判る. 二番目の結果によりこの場合も $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{F}$ が成り立つ. 以上でいかなる場合も $\bigcup_{n\in\mathbb{N}}A_n\in\mathcal{F}$ が成り立つことが示された.

以上で \mathcal{F} が σ 集合体であることの定義を満たしていることが確認された.

- (ii) (i) の結果により (X,\mathcal{F}) は可測空間となる. 定義された集合関数 P が確率測度の定義を満たしていることを確認する.
 - 1. $X^c = \emptyset$ が可算集合であるから P(X) = 1 である.
 - 2. $\forall A \in \mathcal{F}$ に対し P(A) = 0 または 1 でしかないから $0 \le P(A) \le 1$ が満たされている.
 - 3. $A_n \in \mathcal{F}$ $(n = 1, 2, \dots)$, $A_n \cap A_m = \emptyset$ $(n \neq m)$ となる集合の系 $(A_n)_{n \in \mathbb{N}}$ に対して, A_n $(n = 1, 2, \dots)$ が全て可算集合であるなら $\sum_{n \in \mathbb{N}} A_n$ も可算集合となるから $P(\sum_{n \in \mathbb{N}} A_n) = 0$ となり,かつ全ての $n \in \mathbb{N}$ に対して $P(A_n) = 0$ ともなっているから

$$P(\sum_{n\in\mathbb{N}}A_n)=\sum_{n\in\mathbb{N}}P(A_n)$$

が成立する. 或る $N \in \mathbb{N}$ について A_N が非可算集合となっている場合, $n \neq N$ となる $n \in \mathbb{N}$ については $A_n \subset A_N^c$ が成り立つことから、非可算集合は A_N のみとなることに注意する. (i) を示した時と同じ理由で $\bigcap_{n \in \mathbb{N}} A_n^c$ が可算集合となるから $P(\sum_{n \in \mathbb{N}} A_n) = 1$ であり、

$$1 = P(A_N) = \sum_{n \in \mathbb{N}} P(A_n) = P(\sum_{n \in \mathbb{N}} A_n)$$

が成り立つことから, いかなる場合も

$$P(\sum_{n\in\mathbb{N}}A_n)=\sum_{n\in\mathbb{N}}P(A_n)$$

が成立することが示され、ゆえにPは \mathcal{F} の上で完全加法的である.

以上より P が可測空間 (X,\mathcal{F}) 上の確率測度であることが示された.

- (2) (Ω, \mathcal{F}, P) を確率空間とし、 $A_1, A_2, \dots \in \mathcal{F}$ とする.
 - (i) $n \ge 2$ に対して次の等式を示せ:

$$P(\bigcup_{k=1}^{n} A_k) = \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_1 < i_2 < \dots < i_k \le n} P(\bigcap_{m=1}^{k} A_{i_m})$$
 (1)

(ii) $n \ge 2$ に対して次の不等式を示せ

$$P(\bigcup_{k=1}^{n} A_k) \ge \sum_{k=1}^{n} P(A_k) - \sum_{1 \le i \le n} P(A_i \cap A_j)$$

$$\tag{2}$$

解答

(i) 数学的帰納法で証明する. n=2 の場合

$$P(A_1 \cup A_2) = P(A_1 + A_2 \setminus (A_1 \cap A_2)) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$$

となるから等式 (1) は成立している. $n \ge 2$ 番目まで等式 (1) が成立していると仮定して n+1 番目を考える. まず一般に

$$P(\bigcup_{k=1}^{n+1} A_k) = P(\bigcup_{k=1}^{n} A_k) + P(A_{n+1} \setminus \bigcup_{k=1}^{n} A_k)$$

が成立している. ここで右辺の第二項を分解していくと

$$\begin{split} P(A_{n+1} \setminus \bigcup_{k=1}^{n} A_k) &= P(A_{n+1}) - P(\bigcup_{k_1=1}^{n} A_{k_1} \cap A_{n+1}) \\ &= P(A_{n+1}) - \sum_{k_1=1}^{n} P(A_{k_1} \cap A_{n+1} \setminus \bigcup_{k_2=1}^{k_1-1} A_{k_2} \cap A_{n+1}) \\ &= P(A_{n+1}) - \sum_{k_1=1}^{n} P(A_{k_1} \cap A_{n+1}) + \sum_{k_1=1}^{n} P(\bigcup_{k_2=1}^{k_1-1} A_{k_2} \cap A_{k_1} \cap A_{n+1}) \\ &= P(A_{n+1}) - \sum_{k_1=1}^{n} P(A_{k_1} \cap A_{n+1}) + \sum_{k_1=1}^{n} P(\sum_{k_2=1}^{k_1-1} A_{k_2} \cap A_{k_1} \cap A_{n+1} \setminus \bigcup_{k_3=1}^{k_2-1} A_{k_3} \cap A_{k_1} \cap A_{n+1}) \\ &= P(A_{n+1}) - \sum_{k_1=1}^{n} P(A_{k_1} \cap A_{n+1}) + \sum_{k_1=2}^{n} \sum_{k_2=1}^{k_1-1} P(A_{k_2} \cap A_{k_1} \cap A_{n+1} \setminus \bigcup_{k_3=1}^{k_2-1} A_{k_3} \cap A_{k_1} \cap A_{n+1}) \\ &= P(A_{n+1}) - \sum_{k_1=1}^{n} P(A_{k_1} \cap A_{n+1}) + \sum_{k_1=2}^{n} \sum_{k_2=1}^{k_1-1} P(A_{k_2} \cap A_{k_1} \cap A_{n+1}) \\ &- \sum_{k_1=2}^{n} \sum_{k_2=1}^{k_1-1} P(\bigcup_{k_3=1}^{k_3-1} A_{k_3} \cap A_{k_2} \cap A_{k_1} \cap A_{n+1}) \\ &= P(A_{n+1}) - \sum_{k_1=1}^{n} P(A_{k_1} \cap A_{n+1}) + \sum_{k_1=2}^{n} \sum_{k_2=1}^{k_1-1} P(A_{k_2} \cap A_{k_1} \cap A_{n+1}) \\ &- \sum_{k_1=2}^{n} \sum_{k_2=1}^{k_1-1} P(\sum_{k_3=1}^{k_3-1} A_{k_3} \cap A_{k_2} \cap A_{k_1} \cap A_{n+1}) + \sum_{k_1=2}^{n} \sum_{k_2=1}^{k_1-1} P(A_{k_2} \cap A_{k_1} \cap A_{n+1}) \\ &- \sum_{k_1=2}^{n} \sum_{k_2=1}^{k_1-1} P(\sum_{k_2=1}^{k_2-1} A_{k_3} \cap A_{k_2} \cap A_{k_1} \cap A_{n+1}) + \sum_{k_1=2}^{n} \sum_{k_2=1}^{k_1-1} P(A_{k_2} \cap A_{k_1} \cap A_{n+1}) \\ &- \sum_{k_1=2}^{n} \sum_{k_2=1}^{k_1-1} P(\sum_{k_2=1}^{k_2-1} A_{k_3} \cap A_{k_2} \cap A_{k_1} \cap A_{n+1}) + \sum_{k_1=2}^{n} \sum_{k_2=1}^{n-1} P(A_{k_2} \cap A_{k_1} \cap A_{n+1}) \\ &- \sum_{k_1=2}^{n} \sum_{k_2=1}^{n-1} P(\sum_{k_2=1}^{k_2-1} A_{k_2} \cap A_{k_2} \cap A_{k_1} \cap A_{n+1}) \\ &- \sum_{k_1=2}^{n} \sum_{k_2=1}^{n-1} P(\sum_{k_2=1}^{n-1} A_{k_2} \cap A_{k_2} \cap A_{k_1} \cap A_{n+1}) \\ &- \sum_{k_1=2}^{n} \sum_{k_2=1}^{n-1} P(\sum_{k_2=1}^{n-1} A_{k_2} \cap A_{k_2} \cap A_{k_1} \cap A_{n+1}) \\ &- \sum_{k_1=2}^{n} \sum_{k_2=1}^{n-1} P(\sum_{k_2=1}^{n-1} A_{k_2} \cap A_{k_2} \cap A_{k_1} \cap A_{n+1}) \\ &- \sum_{k_1=2}^{n} \sum_{k_2=1}^{n-1} P(\sum_{k_2=1}^{n-1} A_{k_2} \cap A_{k_2} \cap A_{k_1} \cap A_{n+1}) \\ &- \sum_{k_1=2}^{n} \sum_{k_2=1}^{n-1} P(\sum_{k_2=1}^{n-1} A_{k_2} \cap A_{k_2} \cap A_{k_1} \cap A_{n+1}) \\ &- \sum_{k_1=2}^{n} \sum_{k_2=1}^{n-1} P(\sum_{k_2=1}^{n-1} A$$

$$= P(A_{n+1}) - \sum_{k_1=1}^{n} P(A_{k_1} \cap A_{n+1}) + \sum_{k_1=2}^{n} \sum_{k_2=1}^{k_1-1} P(A_{k_2} \cap A_{k_1} \cap A_{n+1})$$

$$- \sum_{k_1=3}^{n} \sum_{k_2=2}^{k_1-1} \sum_{k_3=1}^{k_2-1} P(A_{k_3} \cap A_{k_2} \cap A_{k_1} \cap A_{n+1})$$

$$+ \sum_{k_1=4}^{n} \sum_{k_2=3}^{k_1-1} \sum_{k_3=2}^{k_2-1} P(\bigcup_{k_4=1}^{k_3-1} A_{k_4} \cap A_{k_3} \cap A_{k_2} \cap A_{k_1} \cap A_{n+1})$$

$$\vdots$$

$$= P(A_{n+1}) - \sum_{k_1=1}^{n} P(A_{k_1} \cap A_{n+1}) + \sum_{k_1=2}^{n} \sum_{k_2=1}^{k_1-1} P(A_{k_2} \cap A_{k_1} \cap A_{n+1})$$

$$- \sum_{k_1=3}^{n} \sum_{k_2=2}^{k_1-1} \sum_{k_3=1}^{k_2-1} P(A_{k_3} \cap A_{k_2} \cap A_{k_1} \cap A_{n+1})$$

$$+ \sum_{k_1=4}^{n} \sum_{k_2=3}^{k_1-1} \sum_{k_3=2}^{k_1-1} P(\bigcup_{k_4=1}^{k_3-1} A_{k_4} \cap A_{k_3} \cap A_{k_2} \cap A_{k_1} \cap A_{n+1})$$

$$\cdots$$

$$+ (-1)^n \sum_{k_1=n}^{n} \sum_{k_2=n-1}^{k_1-1} \cdots \sum_{k_{n-1}=2}^{k_{n-2}-1} P(\bigcup_{k_n=1}^{k_{n-1}-1} A_{k_n} \cap \cdots \cap A_{k_2} \cap A_{k_1} \cap A_{n+1})$$

$$= P(A_{n+1}) + \sum_{k=1}^{n} (-1)^k \sum_{1 \le i_1 \le i_2 \le \cdots \le i_k \le n} P(\bigcap_{m=1}^{k} A_{i_m} \cap A_{n+1})$$

が成り立つ. 上の結果と帰納法の仮定を使えば

$$P(\bigcup_{k=1}^{n} A_{k}) + P(A_{n+1} \setminus \bigcup_{k=1}^{n} A_{k})$$

$$= P(\bigcup_{k=1}^{n} A_{k}) + P(A_{n+1}) + \sum_{k=1}^{n} (-1)^{k} \sum_{1 \le i_{1} < i_{2} < \dots < i_{k} \le n} P(\bigcap_{m=1}^{k} A_{i_{m}} \cap A_{n+1})$$

$$= \sum_{k=1}^{n} (-1)^{k-1} \sum_{1 \le i_{1} < i_{2} < \dots < i_{k} \le n} P(\bigcap_{m=1}^{k} A_{i_{m}}) + P(A_{n+1}) + \sum_{k=1}^{n} (-1)^{k} \sum_{1 \le i_{1} < i_{2} < \dots < i_{k} \le n} P(\bigcap_{m=1}^{k} A_{i_{m}} \cap A_{n+1})$$

$$= \sum_{k=1}^{n+1} (-1)^{k-1} \sum_{1 \le i_{1} < i_{2} < \dots < i_{k} \le n+1} P(\bigcap_{m=1}^{k} A_{i_{m}})$$

が成り立つから

$$P(\bigcup_{k=1}^{n+1} A_k) = \sum_{k=1}^{n+1} (-1)^{k-1} \sum_{\substack{1 \le i_1 \le i_2 \le \dots \le i_k \le n+1 \\ 1 \le i_1 \le i_2 \le \dots \le i_k \le n+1}} P(\bigcap_{m=1}^k A_{i_m})$$

となり, n+1 番目にも等式 (1) が成立していることが示される. 以上で数学的帰納法により全ての自然数 $n \ge 2$ で等式 (1) が成立していることが示された.

(ii) これも数学的帰納法による. n=2 の場合は

$$P(A_1 \cup A_2) = P(A_1) + P(A_2) - P(A_1 \cap A_2)$$

により不等式 (2) は成立している. $n (\geq 2)$ 番目まで不等式 (2) が成立していると仮定して n+1 番目を考えれば

$$\begin{split} \mathbf{P}(\bigcup_{k=1}^{n+1} A_k) &= \mathbf{P}(\bigcup_{k=1}^{n} A_k) + \mathbf{P}(A_{n+1} \setminus \bigcup_{k=1}^{n} A_k) \\ &= \mathbf{P}(\bigcup_{k=1}^{n} A_k) + \mathbf{P}(A_{n+1}) - \mathbf{P}(\bigcup_{k=1}^{n} A_k \cap A_{n+1}) \\ &\geq \mathbf{P}(\bigcup_{k=1}^{n} A_k) + \mathbf{P}(A_{n+1}) - \sum_{k=1}^{n} \mathbf{P}(A_k \cap A_{n+1}) \\ &\geq \sum_{k=1}^{n} \mathbf{P}(A_k) - \sum_{1 \le i < j \le n} \mathbf{P}(A_i \cap A_j) + \mathbf{P}(A_{n+1}) - \sum_{k=1}^{n} \mathbf{P}(A_k \cap A_{n+1}) \\ &= \sum_{k=1}^{n+1} \mathbf{P}(A_k) - \sum_{1 \le i < j \le n+1} \mathbf{P}(A_i \cap A_j) \end{split}$$

となり, n+1 番目にも不等式 (2) が成立していることが示される. 以上で数学的帰納法により全ての自然数 $n \ge 2$ で不等式 (2) が成立していることが示された.

 \mathbb{Z} 確率測度の列 $(\mu_n)_{n=1}^{\infty}$ を次で定める.

$$\mu_n(\{k\}) = \frac{n!}{k!(n-k)!} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{n-k} \quad (k = 0, 1, 2, \dots, n)$$

- (1) 確率測度 μ_n の特性関数 $\phi_n(\xi)$ を計算せよ.
- (2) $\lim_{n\to\infty}\phi_n(\xi)$ を求めよ.
- (3) 確率測度 *μ* を次で定める.

$$\mu(\{k\}) = \frac{1}{e \cdot k!}$$
 $(k = 0, 1, 2, \cdots)$

 μ の特性関数 $\phi(\xi)$ を計算し、 $\mu_n \Rightarrow \mu$ を示せ.

解答

(1) $i = \sqrt{-1}$ とする. 任意の $\xi \in \mathbb{R}^1$ に対して

$$\phi_n(\xi) = \sum_{k=0}^n \frac{n!}{k!(n-k)!} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{n-k} e^{i\xi k}$$

$$= \sum_{k=0}^n \frac{n!}{k!(n-k)!} \left(\frac{e^{i\xi}}{n}\right)^k \left(1 - \frac{1}{n}\right)^{n-k}$$

$$= \left(1 + \frac{e^{i\xi} - 1}{n}\right)^n$$

が成り立つ.

(2) $\xi \neq 0$ のとき,

$$\lim_{n\to\infty}\phi_n(\xi)=\lim_{n\to\infty}\left(1+\frac{e^{i\xi}-1}{n}\right)^n=\lim_{n\to\infty}\left(\left(1+\frac{e^{i\xi}-1}{n}\right)^{n/(e^{i\xi}-1)}\right)^{e^{i\xi}-1}=e^{e^{i\xi}-1}$$

が成り立ち、 $\xi=0$ の場合は全ての $n=1,2,\cdots$ について $\phi_n(0)=1$ であるから極限も 1 である.従って全ての $\xi\in\mathbb{R}^1$ に対して

$$\lim_{n\to\infty}\phi_n(\xi)=e^{e^{i\xi}-1}$$

となる.

(3) 任意の $\xi \in \mathbb{R}^1$ に対して

$$\phi(\xi) = \sum_{k=0}^{\infty} \frac{1}{e \cdot k!} e^{i\xi k} = \frac{1}{e} \sum_{k=0}^{\infty} \frac{(e^{i\xi})^k}{k!} = e^{e^{i\xi}-1}$$

が成り立つ. (2) の結果と合わせて ϕ_n は ϕ に各点 $\xi \in \mathbb{R}^1$ で収束 $(n \to +\infty)$ しているから,講義中の定理 2.2.5 により $\mu_n \to \mu$ が示された.