530 陈斯杰 电子信息工程 第11次作业

1.

甲的赢得矩阵
$$A=\begin{bmatrix}10&-1&3\\12&10&-5\\6&8&5\end{bmatrix}$$
得到 $V_1=max\{-1,-5,5\}=5, V_2=min\{12,10,5\}=5, V_1=V_2=V_G$

即鞍点值 V_G 对应的最优纯策略 α_3, β_3

2.

甲的赢得矩阵
$$A = \begin{bmatrix} -4 & 0 & -6 \\ 3 & 2 & 4 \\ 16 & 1 & -9 \\ -1 & 1 & 7 \end{bmatrix}$$

得到 $V_1 = max\{-6, 2, -9, -1\} = 2, V_2 = min\{16, 2, 7\} = 2, V_1 = V_2 = V_G$ 即鞍点值 V_G 对应的最优纯策略 α_2, β_2

3.

	红桃	黑桃	方块	梅花
红桃	-3	1	1	1
黑桃	1	-3	1	1
方块	1	1	-3	1
梅花	1	1	1	-3

显然, 该矩阵对策的解不唯一, 这一矩阵对策在纯策略意义下无解, 我们考虑混合策略, $x = (x_1, x_2, x_3, x_4), y = (y_1, y_2, y_3, y_4).$ $\sharp + x_1 + x_2 + x_3 + x_4 = 1, y_1 + y_2 + y_3 + y_4 = 1;$ 计算盈利函数

$$u = -3\sum_{i=1}^{4} x_i y_i + \sum_{i \neq j} x_i y_j$$

运用偏导数方法对其求最大值,得:

$$x_1 = x_2 = x_3 = x_4 = \frac{1}{4}$$

 $y_1 = y_2 = y_3 = y_4 = \frac{1}{4}$

所以甲乙两人将随机出牌/猜牌。

4,

依题意得:

	, C , 1 4 ,	
	甜	咸
甜	(-100,-100)	(200,400)
咸	(200,400)	(-100,-100)

各自的最优策略为卖咸早餐。

5解:

甲的选择最后得分的期望值为: $E = \frac{1}{2} * 1 + \frac{1}{2} * (-1) = 0$; 乙的选择最后得分的期望值为: $E = \frac{1}{2} * (-1) + \frac{1}{2} * 1 = 0$; 所以不管甲乙做出什么决策,都是最优决策。

6.假设猪之间没有信息互通。设一共有8两粮食,可画出以下对策的赢得双矩阵。 可解得纳什最优解为(2.6)即大猪按,小猪不按。事实上,不管小猪按与否,都会没有食物,

大猪-小猪	β_1	β_2
α_1	(4,4)	(2,6)
α_2	(8,0)	(0,0)

因此小猪会选择不按。但是若大猪也不按,那么两头猪都会饿死,因此大猪必须选择去按。

7. 设A国,B国,赢得矩阵:
$$\begin{bmatrix} (-3000, -3000) & (10000, -inf) \\ (-inf, 10000) & (0, 0) \end{bmatrix}, A = \begin{bmatrix} -3000 & 10000 \\ -inf & 0 \end{bmatrix}, B = \begin{bmatrix} -3000 & -inf \\ -inf & 0 \end{bmatrix}$$
 但Alter the transfer to th

8. R的赢得矩阵
$$A = \begin{bmatrix} 0.5 & 0.8 \\ 0.9 & 0.2 \end{bmatrix}$$

得到 $V_1 = max\{0.5, 0.2\} = 0.5, V_2 = min\{0.9, 0.8\} = 0.8, V_1 \neq V_2$

即本题不存在纯策略纳什均衡.

设R以x的概率射左,1-x的概率射右

若C扑向左则R的收益为0.5x+0.9(1-x), 若C扑向右则R的收益为0.8x+0.2(1-x) R想使收益尽可能大, C想使收益尽可能小.

令两式相等,得x=0.7,R的期望收益为0.62.

设C以v的概率扑左,1-v的概率扑右

若R射左则C的收益为0.5y+0.8(1-y),若R射右则C的收益为0.9x+0.2(1-x) R想使收益尽可能大,C想使收益尽可能小.

令两式相等,得y=0.6,C的期望收益为0.62.

此时打到那是均衡,即R射左C防左,得分概率为0.62.

9.假设四条线路为*A*, *B*, *C*, *D*.首先分析,若红军再某一路线派出两个连队,则该路上的蓝军将可完全被击落,所以红军至多在同一条线路上派出两支连队,分析红军的策略有:

 $S_2 = \{ABCD, AABC, AABD, AACD, BBAC, BBAD, BBCD, CCAB, CCAD, CCBD, DDAB, DDAC, DDBC, AABB, AACC, AADD, BBCC, BBDD, CCDD\}$ 蓝军的策略有:

$S_1 = \{$	(AA, AB)	C, AC, AD	BBBB	BC, BD,	CC.	CD.	DD
- I	. ,) -)	, ,	-))	-)	,

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
AA	1	0	0	0	1	1	1	1	1	1	1	1	1	0	0	0	1	1	1
AB	0	0	0	1	0	0	1	0	1	1	0	1	1	0	1	1	1	1	1
AC	0	0	1	0	0	1	1	0	0	1	1	0	1	1	0	1	1	1	1
AD	0	1	0	0	1	0	1	1	0	1	0	0	1	1	1	0	1	1	1
ВВ	1	1	1	1	0	0	0	1	1	1	1	1	1	0	1	1	0	0	1
ВС	0	0	1	1	0	1	0	0	1	0	1	1	0	1	1	1	0	1	1
BD	0	1	0	1	1	0	0	1	1	0	0	1	0	1	1	1	1	0	1
CC	1	1	1	1	1	1	1	0	0	0	1	1	1	1	0	1	0	1	0
CD	0	1	1	0	1	1	0	1	0	0	1	0	0	1	1	1	1	1	0
DD	1	1	1	1	1	1	1	1	1	1	0	0	0	1	1	0	1	0	0

10、设不做广告为1,只做电视广告为2,只做报纸广告为3,只做无线电广告为4,只做电视和报纸广告为5,只做电视和无线电广告为6,只做报纸和无线电广告为7,所有广告都做为8.

(1)A的赢得矩阵为:

A*A*	met e		В								
策略		1	2	3	4	5	6	7	8		
	1	0	-50	-30	-20	-80	-70	-50	-100	-100	
	2	50	0	20	30	-30	-20	0	-50	-50	
	3	30	-20	0	10	-50	-40	-20	-70	-70	
	4	20	-30	-10	0	-60	-50	-30	-80	-80	
qA	5	80	30	50	60	0	10	30	-20	-20	
	6	70	20	40	50	-10	0	20	-30	-30	
	7	50	0	20	30	-30	-20	0	-50	-50	
	8	100	50	70	80	20	30	50	0	0*	
ma	$x a_{ij}$	100	50	70	80	20	30	50	0*		

(2)最优策略都是8,即所有广告都做

11 解:

假设局中人I与II可分别看作甲和乙;

策略集:假设甲可以采取的策略为阻扰和不阻挠,乙可以采取的策略为进入和不进入。那么 S_1 =阻挠,不阻挠, S_2 =进入,不进入,因此赢得矩阵为:显然,双方最好的策略就是甲选

甲\乙	进入	不进入
阻挠	(0,-10)	(0,0)
不阻挠	(50,40)	(300,0)

择不阻挠,乙选择进入,即 (α_2, β_1) .因为选择不阻挠和进入双方都可以得到利润。甲选择不阻挠才会获得利润,而乙选择进入才有获利的机会。因此,最终甲会选择不阻挠,而乙会选择进入。

12、假设在某个地区的盈利与其人数成正比。在A地区盈利为4,B地区盈利为3,C地区盈利为3。

记甲的策略集 $S_{\mathbb{H}} = AB, AC, BC, \mathbb{Z}$ 公司的策略集 $S_{\mathbb{Z}_1} = ABC$,构成如下赢得双矩阵。

甲-乙	A	В	С
AB	(5,2)	(5.5,1.5)	(7,3)
AC	(5,2)	(7,3)	(5.5,1.5)
ВС	(6,4)	(4.5,1.5)	(4.5,1.5)

解得有3个鞍点,分别为

甲选AB,乙选C。

甲选AC,乙选B。

甲选BC, 乙选A。

13.

设丈夫为A,妻子为B,得到他们的赢得矩阵 $A = \begin{bmatrix} 4 & 0 \\ 0 & 1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} (\underline{4}, \underline{1}) & (0, 0) \\ (0, 0) & (\underline{1}, \underline{4}) \end{bmatrix}$ 得到对应的纳什均衡为都去看足球或者都去剧院

14.

科洛奈的可选决策: (0,2),(1,1),(2,0).

敌人的可选决策: (0,3),(1,2),(2,1),(3,0)

科洛奈的赢得矩阵
$$A = \begin{bmatrix} -3 & -1 & 1 & 0 \\ -1 & -2 & -2 & -1 \\ 0 & 1 & -1 & -3 \end{bmatrix}$$

得到 $V_1 = max\{-3, -2, -3\} = -2, V_2 = min\{0, 1, 1, 0\} = 0, V_1 \neq V_2$

因此科洛奈选择(1,1)敌人选择(0,3)或(3,0).

15.应当建新厂、减少乙产品的生产量,与竞争者采取合作。

16,

17.(拍卖问题) 解:

根据拍卖的对策论,每个竞拍者对于每次加价都应该加价尽可能少的价格,以取得最低的竞

拍价格.

18. 可以把这个问题看成两人有限零和博弈。

局中人1为建筑公司,局中人2即为各种不确定因素。

局中人1的策略集合 $S_1 = x_1, x_2...x_n$

局中人2的策略集合 $S_1 = x_1, x_2...x_m$

一共有mn种策略,可由此构建关于工作量,施工面积等指标的赢得矩阵,从中找到最优局势 所对应的对策值。以这些值作为指标比较合适。