README.md 2024-11-03

HERA: Hopefully Electronics Running Automatically

A slightly less simple CPU than the SPEAR. It is way more powerful due to:

- Significantly more control lines, thus more instructions
- An extra C register
- Direct read and write access to all registers
- Jump and branches as individual instructions (SPEAR solution was creative, but tedious)
- A 16-bit bus (i.e. jump in single cycle)
- 16-bit registers and ALU
- RAM size increased from 256 bytes to 128 KiB
- Additional NOR operation
- Multiple flags (carry out, zero, negative) in a proper status register
- Far better input/output capabilities
- Instructions without literal value fit into one byte

Features

- Full 16-bit architecture
 - o 16-bit addressing for ROM and RAM (ROM: 64 KiB, RAM: 128 KiB)
 - Two RAM chips for direct 16-bit access
 - o 16-bit bus, registers and ALU
- Usable digital I/O
 - 256 input ports (16-bit)
 - o 256 output ports (16-bit), can be extended at expense of RAM size

Technical details

Instructions

The upper 4 bits of any instruction signify control lines for writing to the internal bus (everything but STAT uses 16-bit values):

Nibble	Name	Description
0	LIT	Literal value
1	А	A register
2	В	B register
3	С	C register
4	RAM	RAM
5	RAM_P	RAM pointer register
6	PC	Program counter register
7	STAT	Status register (8-bit)

README.md 2024-11-03

	Nibble	Name	Description
•	8	-	-
	9	-	-
	А	ADD	Adder (A + B)
	В	COM	Two's complement (-A)
	С	NOR	NOR gate ~(A B)
•	D	-	-
•	Е	-	-
•	F	-	-

If a literal is selected to be written to the bus (upper nibble is 0x0), it is read from the two bytes after the instruction in big-endian format.

The lower 4 bits signify control lines for reading from the internal bus:

Nibble	Name	Description
0	-	Ignore value
1	А	A register
2	В	B register
3	С	C register
4	RAM	RAM
5	RAM_P	RAM pointer register
6	PC	Program counter register
7	STAT	Status register (8-bit)
8	-	-
9	-	-
Α	АВ	A & B registers
В	B RAM_P	B & RAM_P registers
С	C PC	C & PC registers
D	-	-
E	-	-
F	-	-

Assembly code Examples

README.md 2024-11-03

Machine code Examples

Copying the value of the A register into the B register is done by instruction 0x12 (upper nibble 1 -> write A to bus, lower nibble 2 -> read from bus into B).

Setting B to a literal value is done by instruction 0×02 followed by two bytes in big-endian order (i.e. 0×02 0×12 0×34 -> B= 0×1234).