

100V 1.6mΩ N-Ch Power MOSFET

Features

- Ultra-low ON-resistance, R_{DS(ON)}
- Low Gate Charge, Q_g
- 100% UIS and R_a Tested
- · Pb-free Lead Plating
- Halogen-free and RoHS-compliant
- AEC-Q101 Qualified for Automotive Applications

Product Summary

Parameter	Value	Unit
V _{DS}	100	V
$V_{GS(th)_Typ}$	2.7	V
$I_D (@V_{GS} = 10V)^{(1)}$	350	Α
$R_{DS(ON)_Typ}$ (@ $V_{GS} = 10V$)	1.6	mΩ

Ordering Information

Device	Package	# of Pins	Marking	MSL	T _J (°C)	Media	Quantity (pcs)
JMSH1002AEQ-13	TO-263-3L	3	SH1002A	1	-55 to 175	13-inch Reel	800

Absolute Maximum Ratings (@ T_A = 25°C unless otherwise specified)

Parameter		Symbol	Value	Unit
Drain-to-Source Vol	tage	V _{DS}	100	V
Gate-to-Source Volt	age	V _{GS}	±20	V
Continuous Drain	T _C = 25°C	1	350	^
Current (1)	T _C = 100°C	I _D	247	A
Pulsed Drain Currer	nt ⁽²⁾	I _{DM}	1398	A
Avalanche Current	3)	I _{AS}	50	Α
Avalanche Energy (3)	E _{AS}	1250	mJ
Dawer Dissipation (4	T _C = 25°C	В	500	W
Power Dissipation (4) $T_C = 25^{\circ}C$ $T_C = 100^{\circ}C$	T _C = 100°C	P _D	250	VV
Junction & Storage	Temperature Range	T _J , T _{STG}	-55 to 175	°C

Electrical Characteristics (@ T_J = 25°C unless otherwise specified)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
STATIC PARAMETERS				•		
Drain-Source Breakdown Voltage	V _{(BR)DSS}	$I_D = 250 \mu A, V_{GS} = 0 V$	100			V
Zero Gate Voltage Drain Current		V _{DS} = 80V, V _{GS} = 0V			1.0	μА
Zero Gate Voltage Drain Current	I _{DSS}	T _J = 55°C			5.0	
Gate-Body Leakage Current	I _{GSS}	$V_{DS} = 0V, V_{GS} = \pm 20V$			±100	nA
Gate Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}$, $I_D = 250\mu A$	2.0	2.7	4.0	V
Static Drain-Source ON-Resistance	R _{DS(ON)}	$V_{GS} = 10V, I_D = 20A$		1.6	2.0	mΩ
Forward Transconductance	g FS	$V_{DS} = 5V, I_{D} = 20A$		94		S
Diode Forward Voltage	V_{SD}	I _S = 1A, V _{GS} = 0V		0.68	1.0	٧
Diode Continuous Current	Is	T _C = 25°C			500	Α
DYNAMIC PARAMETERS (5)						
Input Capacitance	C _{iss}			9623		pF
Output Capacitance	C _{oss}	V _{GS} = 0V, V _{DS} = 50V, f = 1MHz		2091		pF
Reverse Transfer Capacitance	C_{rss}]		1.2		pF
Gate Resistance	R_g	$V_{GS} = 0V$, $V_{DS} = 0V$, $f = 1MHz$		2.4		Ω
SWITCHING PARAMETERS (5)						
Total Gate Charge (@ V _{GS} = 10V)	Q_g			155		nC
Total Gate Charge (@ V _{GS} = 6.0V)	Q_g	V _{GS} = 0 to 10V		101		nC
Gate Source Charge	Q_{gs}	$V_{DS} = 50V, I_{D} = 20A$		31		nC
Gate Drain Charge	Q_{gd}			37		nC
Turn-On DelayTime	t _{D(on)}			34		ns
Turn-On Rise Time	t _r	V _{GS} = 10V, V _{DS} = 50V		67		ns
Turn-Off DelayTime	t _{D(off)}	$R_L = 2.5\Omega$, $R_{GEN} = 6\Omega$		145		ns
Turn-Off Fall Time	t _f			111		ns
Body Diode Reverse Recovery Time	t _{rr}	$I_F = 15A$, $dI_F/dt = 100A/\mu S$		76		ns
Body Diode Reverse Recovery Charge	Q_{rr}	$I_F = 15A$, $dI_F/dt = 100A/\mu S$		116	-	nC

Thermal Performance

Parameter	Symbol	Тур.	Max.	Unit
Thermal Resistance, Junction-to-Ambient	$R_{\theta JA}$	49	59	°C/W
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0.30	0.40	°C/W

Notes:

- Computed continuous current assumes the condition of T_{J_Max} while the actual continuous current depends on the thermal & electro-mechanical
 application board design.
- 2. This single-pulse measurement was taken under T_{J_Max} = 175°C.
- 3. This single-pulse measurement was taken under the following condition [L = 1mH, V_{GS} = 10V, V_{DS} = 50V] while its value is limited by $T_{\rm J~Max}$ = 175°C.
- 4. The power dissipation $P_{\rm D}$ is based on $T_{\rm J_Max}$ = 175°C.
- 5. This value is guaranteed by design hence it is not included in the production test.

Typical Electrical & Thermal Characteristics

Figure 1: Saturation Characteristics

Figure 2: Transfer Characteristics

Figure 3: $R_{DS(ON)}$ vs. Drain Current

Figure 4: $R_{DS(ON)}$ vs. Junction Temperature

Figure 5: $V_{GS(th)}$ vs. Junction Temperature

Figure 6: $V_{BR(DSS)}$ vs. Junction Temperature

Typical Electrical & Thermal Characteristics

Figure 7: Body-Diode Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Current De-rating

Figure 10: Power De-rating

Figure 11: Single Pulse Power Rating, Junction-to-Case

Figure 12: Maximum Safe Operating Area

Typical Electrical & Thermal Characteristics

Figure 13: Normalized Maximum Transient Thermal Impedance

TO-263-3L Package Information

Package Outline

DIM.	MILLIMETER				
DIM.	MIN.	NOM.	MAX.		
A	4.24		4.77		
A1	2.30		2.89		
A2	0.00	0.10	0.25		
b	0.70		0.96		
bl	1.17		1.70		
С	0.30		0.60		
C1	1.15		1.42		
D	14.10		15.88		
D1	8.50		9.60		
Е	9.78		10.36		
L	1.78		2.79		
L1			1.75		
e		2.54			

Recommend Soldering Footprint

