Algorithmen und Datenstrukturen SoSe25

-Assignment 3-

Problem 1: AVL-Bäume

- a) Fügen Sie die Schlüssel A, L, G, O, D, T, S, X, Y, Z in dieser Reihenfolge in einen anfangs leeren AVL-Baum ein. Löschen Sie sodann die Schlüssel Z, A, L. Zeichnen Sie den Baum nach jedem Einfüge- und Löschvorgang, und zeigen Sie die Rotationen, welche durchgeführt werden. Annotieren Sie dabei auch die Knoten mit ihrer jeweiligen Höhe.
- ⇒ Bei den Knoten die hochgestellte Zahl ist die Höhe des jeweiligen Knotens.

1. Einfügen: A

 A^0

2. Einfügen: L

3. Einfügen: G

- BF-Faktor bei Knoten A ist größer als $1 \Rightarrow$ Um-balancieren der Knoten A, L, G
- \Rightarrow Rechts-Rotation der Knoten L&G

 \Rightarrow Links-Rotation der Knoten A&G

- \Rightarrow AVL-Baum ist ausgeglichen
- 4. Einfügen: O

5. Einfügen: D

6. Einfügen: T

- BF-Faktor bei Knoten L ist größer als 1 \Rightarrow Um-balancieren der Knoten L, O, T
- \Rightarrow Rechts-Rotation der Knoten L&O

- \Rightarrow AVL-Baum ist ausgeglichen
- 7. Einfügen: S

8. Einfügen: X

9. Einfügen: Y

- BF-Faktor bei Knoten O ist größer als $1 \Rightarrow$ Um-balancieren der Knoten O&T
- \Rightarrow Links-Rotation der Knoten O&T

 \Rightarrow AVL-Baum ist ausgeglichen

10. Einfügen: Z

- BF-Faktor bei Knoten X ist größer als $1 \Rightarrow$ Um-balancieren der Knoten Y & Z
- \Rightarrow Links-Rotation der Knoten X&Y

 \Rightarrow AVL-Baum ist ausgeglichen

b) Beweisen Sie: Beim Einfügen in einen AVL-Baum wird höchstens eine (Einfach- oder Doppel-)Rotation ausgeführt. Gilt das auch beim Löschen (Begründung)?