10-301/601: Introduction to Machine Learning Lecture 10 — Regularization

Henry Chai & Matt Gormley 10/2/23

Front Matter

- Announcements:
 - HW4 released 9/29, due 10/9 at 11:59 PM

Recall: Logistic Regression

Model:

$$p(y|\mathbf{x}, \boldsymbol{\theta}) = \begin{cases} \sigma(\boldsymbol{\theta}^T \mathbf{x}) & \text{if } y = 1\\ 1 - \sigma(\boldsymbol{\theta}^T \mathbf{x}) & \text{if } y = 0 \end{cases}$$

where
$$\sigma(z) = 1/1 + \exp(-z)$$

Derivatives

$$\frac{\partial J^{(i)}}{\partial \theta_m} = \frac{\partial}{\partial \theta_m} \left(-\log p(y^{(i)} | \mathbf{x}^{(i)}, \boldsymbol{\theta}) \right)$$

$$\vdots$$

$$= -\left(y^{(i)} - \sigma(\boldsymbol{\theta}^T \mathbf{x}^{(i)}) \right) \mathbf{x}_m^{(i)}$$

 Optimization: use GD or SGD;
 logistic regression does not permit a closed form solution Objective: minimize the negative conditional log-likelihood

$$J(\theta) = \frac{1}{N} \sum_{i=1}^{N} -\log p(y^{(i)} | \boldsymbol{x}^{(i)}, \boldsymbol{\theta})$$

Gradients

$$\nabla J^{(i)}(\boldsymbol{\theta}) = -\left(y^{(i)} - \sigma(\boldsymbol{\theta}^T \boldsymbol{x}^{(i)})\right) \boldsymbol{x}^{(i)}$$

$$\nabla J(\boldsymbol{\theta}) = \frac{1}{N} \sum_{i=1}^{N} \nabla J^{(i)}$$

Predictions

$$\hat{y} = \underset{y \in \{0,1\}}{\operatorname{argmax}} p(y|x', \hat{\theta})$$

$$= \text{"sign"}(\widehat{\boldsymbol{\theta}}^T \boldsymbol{x}')$$

Logistic Regression Decision Boundary

Logistic Regression Decision Boundary

Logistic Regression Decision Boundary

But is this the best that we could do, even if we knew p^* ?

Bayes Optimal Classifier

• Suppose you knew $p^*(Y=1|x)$ for all x and wanted to minimize the 0-1 loss

$$\ell(\hat{y}, y) = \mathbb{1}(\hat{y} \neq y)$$

• Then the optimal classifier in this setting, called the Bayes optimal classifier, is

$$\hat{y} = \begin{cases} 1 \text{ if } p^*(Y = 1 | \mathbf{x}) \ge 0.5\\ 0 \text{ otherwise} \end{cases}$$

- The reducible error of a classifier is the expected loss that could be eliminated if we knew p^*
 - The *irreducible error* of a classifier is the expected loss even if we knew p^*

Stochastic Gradient Descent (SGD) for Logistic Regression

- Input: training dataset $\mathcal{D} = \left\{ \left(x^{(i)}, y^{(i)} \right) \right\}_{i=1}^N$ and step size γ
- 1. Initialize $\boldsymbol{\theta}^{(0)}$ to all zeros and set t=0
- While TERMINATION CRITERION is not satisfied
 - a. For $i \in \text{shuffle}(\{1, ..., N\})$
 - i. Compute the pointwise gradient:

$$\nabla J^{(i)}(\boldsymbol{\theta}^{(t)}) = \underbrace{-\left(y^{(i)} - \sigma(\boldsymbol{\theta}^T \boldsymbol{x}^{(i)})\right) \boldsymbol{x}^{(i)}}_{}$$

- ii. Update θ : $\theta^{(t+1)} \leftarrow \theta^{(t)} \gamma \nabla J^{(i)}(\theta^{(t)})$
- iii. Increment $t: t \leftarrow t + 1$
- Output: $\boldsymbol{\theta}^{(t)}$

Stochastic Gradient Descent (SGD) for Logistic Regression

- Input: training dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^N$ and step size γ
- 1. Initialize $\boldsymbol{\theta}^{(0)}$ to all zeros and set t=0
- 2. While TERMINATION CRITERION is not satisfied
 - a. For $i \in \text{shuffle}(\{1, ..., N\})$
 - i. Compute the pointwise gradient:

- ii. Update $\boldsymbol{\theta}$: $\boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} \gamma \nabla J^{(i)}(\boldsymbol{\theta}^{(t)})$
- iii. Increment $t: t \leftarrow t + 1$
- Output: $\boldsymbol{\theta}^{(t)}$

Stochastic Gradient Descent vs. Gradient Descent

11

Can we find some middle ground here?

Gradient Descent

Stochastic Gradient Descent

12

Mini-batch Stochastic Gradient Descent for Neural Networks

- Input: training dataset $\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^N$ step size γ , and batch size B
- 1. Initialize $\boldsymbol{\theta}^{(0)}$ to all zeros and set t=0
- 2. While TERMINATION CRITERION is not satisfied
 - a. Randomly sample B data points from \mathcal{D} , $\{(x^{(b)}, y^{(b)})\}_{b=1}^{B}$
 - b. Compute the gradient w.r.t. the sampled batch,

$$\nabla J^{(B)}(\boldsymbol{\theta}^{(t)}) = \frac{1}{B} \sum_{b=1}^{B} (P(Y=1|\boldsymbol{x}^{(b)},\boldsymbol{\theta}^{(t)}) - y^{(b)}) \boldsymbol{x}^{(b)}$$

- c. Update $\boldsymbol{\theta}$: $\boldsymbol{\theta}^{(t+1)} \leftarrow \boldsymbol{\theta}^{(t)} \gamma \nabla J^{(B)}(\boldsymbol{\theta}^{(t)})$
- d. Increment $t: t \leftarrow t + 1$

• Output: $\boldsymbol{\theta}^{(t)}$

Logistic Regression Learning Objectives

You should be able to...

- Apply the principle of maximum likelihood estimation (MLE) to learn the parameters of a probabilistic model
- Given a discriminative probabilistic model, derive the conditional log-likelihood, its gradient, and the corresponding Bayes Classifier
- Explain the practical reasons why we work with the log of the likelihood
- Implement logistic regression for binary classification
- Prove that the decision boundary of binary logistic regression is linear

Feature Transforms

• Given D-dimensional inputs $\mathbf{x} = [x_1, ..., x_D]$, first compute some transformation of our input, e.g.,

$$\phi([x_1, x_2]) = [z_1 = (x_1 - 0.5)^2, z_2 = (x_2 - 0.5)^2]$$

General Oth-order **Transforms**

 $\phi_{2,2}([x_1,x_2]) = [x_1,x_2,x_1^2,x_1x_2,x_2^2]$

•
$$\phi_{2,2}^{\mathbf{v}}([x_1, x_2]) = [x_1, x_2, x_1^2, x_1 x_2, x_2^2]$$

•
$$\phi_{2,3}([x_1, x_2]) = [x_1, x_2, x_1^2, x_1x_2, x_2^2, x_1^3, x_1^2x_2, x_1x_2^2, x_2^3]$$

- $\phi_{2,Q}$ maps a 2-dimensional input to a $\frac{Q(Q+3)}{2}$ -dimensional output
- Scales even worse for higher-dimensional inputs...

Feature Transforms: Tradeoffs

	Low-Dimensional Input Space	High-Dimensional Input Space
Training Error	High	Low
Generalization	Good	Bad

30

Feature Transforms: Experiment

- $x \in \mathbb{R}$, $y \in \mathbb{R}$ and N = 20
- Targets are generated by a 10^{th} -order polynomial in x with additive Gaussian noise:

$$y = \sum_{d=0}^{10} a_d x^d + \epsilon \text{ where } \epsilon \sim N(0, \sigma^2)$$

• $\mathcal{H}_2 = 2^{\text{nd}}$ -order polynomials

$$\cdot \phi_{1,2}(x) = [x, x^2]$$

• $\mathcal{H}_{10} = 10^{\text{th}}$ -order polynomials

•
$$\phi_{1,10}(x) = [x, x^2, x^3, x^4, x^5, x^6, x^7, x^8, x^9, x^{10}]$$

- 10-dimensional target function with additive Gaussian noise
- $\mathcal{H}_2 = 2^{\text{nd}}$ -order polynomial
- $\mathcal{H}_{10}=10^{ ext{th}} ext{-order}$ polynomial

32

Poll Question 1

Which model do you think will have a lower true error?

A. \mathcal{H}_2

B. TOXIC

C. \mathcal{H}_{10}

- 10-dimensional target function with additive Gaussian noise
- $\mathcal{H}_2 = 2^{\text{nd}}$ -order polynomial
- $\mathcal{H}_{10}=10^{\mathrm{th}} ext{-order}$ polynomial

- 10-dimensional target function with additive Gaussian noise
- $\mathcal{H}_2 = 2^{\mathrm{nd}}$ -order polynomial
- $\mathcal{H}_{10}=10^{ ext{th}} ext{-order}$ polynomial

35

- 10-dimensional target function with additive Gaussian noise
- $\mathcal{H}_2 = 2^{\mathrm{nd}}$ -order polynomial
- $\mathcal{H}_{10}=10^{ ext{th}} ext{-order}$ polynomial

36

Noisy Targets

	\mathcal{H}_2	\mathcal{H}_{10}
Training Error	0.016	0.011
True Error	0.009	3797

Feature Transforms: Experiment

•
$$x \in \mathbb{R}$$
, $y \in \mathbb{R}$ and $N = 100$

• Targets are generated by a 10^{th} -order polynomial in x with additive Gaussian noise:

$$y = \sum_{d=0}^{10} a_d x^d + \epsilon \text{ where } \epsilon \sim N(0, \sigma^2)$$

• $\mathcal{H}_2 = 2^{\text{nd}}$ -order polynomials

$$\cdot \phi_{1,2}(x) = [x, x^2]$$

• $\mathcal{H}_{10} = 10^{\text{th}}$ -order polynomials

•
$$\phi_{1,10}(x) = [x, x^2, x^3, x^4, x^5, x^6, x^7, x^8, x^9, x^{10}]$$

Poll Question 2

Now wich model do you think will have a lower true error?

- A. TOXIC
- B. \mathcal{H}_2
- C. \mathcal{H}_{10}

- $x \in \mathbb{R}$, $y \in \mathbb{R}$ and N = 100
- Targets are generated by a 10^{th} -order polynomial in x with additive Gaussian noise:

$$y = \sum_{d=0}^{10} a_d x^d + \epsilon \text{ where } \epsilon \sim N(0, \sigma^2)$$

• $\mathcal{H}_2 = 2^{\text{nd}}$ -order polynomials

$$\cdot \phi_{1,2}(x) = [x, x^2]$$

• $\mathcal{H}_{10} = 10^{\text{th}}$ -order polynomials

•
$$\phi_{1,10}(x) = [x, x^2, x^3, x^4, x^5, x^6, x^7, x^8, x^9, x^{10}]$$

Noisy Targets

	\mathcal{H}_2	\mathcal{H}_{10}
Training Error	0.018	0.010
True Error	0.009	0.003

Regularization

- Constrain models to prevent them from overfitting
- Learning algorithms are optimization problems and regularization imposes constraints on the optimization

• $\mathcal{H}_{10} = 10^{\text{th}}$ -order polynomials

•
$$\phi_{1,10}(x) = [x, x^2, x^3, x^4, x^5, x^6, x^7, x^8, x^9, x^{10}]$$

• Given
$$X = \begin{bmatrix} 1 & \phi_{1,10}(x^{(1)}) \\ 1 & \phi_{1,10}(x^{(2)}) \\ \vdots & \vdots \\ 1 & \phi_{1,10}(x^{(N)}) \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$ find

 $\boldsymbol{\theta} = [\theta_0, \theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6, \theta_7, \theta_8, \theta_9, \theta_{10}]$ that minimizes

$$(X\boldsymbol{\theta} - \boldsymbol{y})^T(X\boldsymbol{\theta} - \boldsymbol{y})$$

Subject to

$$\theta_3 = \theta_4 = \theta_5 = \theta_6 = \theta_7 = \theta_8 = \theta_9 = \theta_{10} = 0$$

• $\mathcal{H}_{10} = 10^{\text{th}}$ -order polynomials

•
$$\phi_{1,10}(x) = [x, x^2, x^3, x^4, x^5, x^6, x^7, x^8, x^9, x^{10}]$$

• Given
$$X = \begin{bmatrix} 1 & \phi_{1,10}(x^{(1)}) \\ 1 & \phi_{1,10}(x^{(2)}) \\ \vdots & \vdots \\ 1 & \phi_{1,10}(x^{(N)}) \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$ find

 $\boldsymbol{\theta} = [\theta_0, \theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6, \theta_7, \theta_8, \theta_9, \theta_{10}]$ that minimizes

$$\sum_{n=1}^{N} \left(\left(\sum_{d=0}^{10} x_d^{(n)} \theta_d \right) - y^{(n)} \right)^2$$

Subject to

$$\theta_3 = \theta_4 = \theta_5 = \theta_6 = \theta_7 = \theta_8 = \theta_9 = \theta_{10} = 0$$

• $\mathcal{H}_{10} = 10^{\text{th}}$ -order polynomials

•
$$\phi_{1,10}(x) = [x, x^2, x^3, x^4, x^5, x^6, x^7, x^8, x^9, x^{10}]$$

• Given
$$X = \begin{bmatrix} 1 & \phi_{1,10}(x^{(1)}) \\ 1 & \phi_{1,10}(x^{(2)}) \\ \vdots & \vdots \\ 1 & \phi_{1,10}(x^{(N)}) \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$ find

 $\boldsymbol{\theta} = [\theta_0, \theta_1, \theta_2, \theta_3, \theta_4, \theta_5, \theta_6, \theta_7, \theta_8, \theta_9, \theta_{10}]$ that minimizes

$$\sum_{n=1}^{N} \left(\left(\sum_{d=0}^{2} x_d^{(n)} \theta_d \right) - y^{(n)} \right)^2$$

Subject to nothing!

•
$$\mathcal{H}_2 = 2^{\text{nd}}$$
-order polynomials

$$\cdot \phi_{1,2}(x) = [x, x^2]$$

• Given
$$X = \begin{bmatrix} 1 & \phi_{1,2}(x^{(1)}) \\ 1 & \phi_{1,2}(x^{(2)}) \\ \vdots & \vdots \\ 1 & \phi_{1,2}(x^{(N)}) \end{bmatrix}$$
 and $\mathbf{y} = \begin{bmatrix} y^{(1)} \\ y^{(2)} \\ \vdots \\ y^{(N)} \end{bmatrix}$ find

$$\boldsymbol{\theta} = [\theta_0, \theta_1, \theta_2]$$
 that minimizes

$$(X\boldsymbol{\theta} - \boldsymbol{y})^T (X\boldsymbol{\theta} - \boldsymbol{y})$$

Subject to nothing!

Soft Constraints

• More generally, ϕ can be any nonlinear transformation, e.g., exp, log, sin, sqrt, etc...

• Given
$$X = \begin{bmatrix} 1 & \phi_1(\boldsymbol{x}^{(1)}) & \cdots & \phi_m(\boldsymbol{x}^{(1)}) \\ \vdots & \vdots & \ddots & \vdots \\ 1 & \phi_1(\boldsymbol{x}^{(N)}) & \cdots & \phi_m(\boldsymbol{x}^{(N)}) \end{bmatrix}$$
 and $\boldsymbol{y} = \begin{bmatrix} \boldsymbol{y}^{(1)} \\ \boldsymbol{y}^{(2)} \\ \vdots \\ \boldsymbol{y}^{(N)} \end{bmatrix}$,

find w that minimizes

$$(X\boldsymbol{\theta} - \boldsymbol{y})^T(X\boldsymbol{\theta} - \boldsymbol{y})$$

Subject to:

$$\|\boldsymbol{\theta}\|_2^2 = \boldsymbol{\theta}^T \boldsymbol{\theta} = \sum_{d=0}^D \theta_d^2 \le C$$

Soft Constraints

minimize $\ell_{\mathcal{D}}(\boldsymbol{\theta}) = (X\boldsymbol{\theta} - \boldsymbol{y})^T (X\boldsymbol{\theta} - \boldsymbol{y})$ $(\Theta_{\circ}^2 + \Theta_{\circ}^2) \leq C$ subject to $\boldsymbol{\theta}^T \boldsymbol{\theta} \leq C$

minimize $\ell_{\mathcal{D}}(\boldsymbol{\theta}) = (X\boldsymbol{\theta} - \boldsymbol{y})^T (X\boldsymbol{\theta} - \boldsymbol{y})$

subject to $\boldsymbol{\theta}^T \boldsymbol{\theta} \leq C$

Soft Constraints

Soft Constraints: Solving for $\widehat{\boldsymbol{\theta}}_{REG}$

minimize
$$\ell_{\mathcal{D}}(\boldsymbol{\theta}) = (X\boldsymbol{\theta} - \boldsymbol{y})^T (X\boldsymbol{\theta} - \boldsymbol{y})$$

subject to $\boldsymbol{\theta}^T \boldsymbol{\theta} \leq C$

minimize
$$\ell_{\mathcal{D}}^{AUG}(\boldsymbol{\theta}) = \ell_{\mathcal{D}}(\boldsymbol{\theta}) + \lambda_{\mathcal{C}} \boldsymbol{\theta}^{T} \boldsymbol{\theta}$$

s.t.
$$\lambda_c \geq 0$$

minimize
$$\ell_{D}^{AUG}(\theta) = \ell_{D}(\theta) + \lambda_{c}\theta^{T}\theta$$

$$\nabla_{\theta} \ell_{D}^{AUG}(\theta) = 2 \quad \text{XTX}\theta - 2\text{XT}y + 2\lambda\theta$$

$$\Rightarrow 2\text{XTX}\theta_{REG} - 2\text{XT}y + 2\lambda\theta_{REG} = 0$$

$$\Rightarrow \text{XTX}\theta_{REG} + \lambda_{c}\theta_{REG} = \text{XT}y$$

$$\Rightarrow (\text{XTX} + \lambda_{c}I_{D+2})\theta_{REG} = \text{XT}y$$

$$\Rightarrow \theta_{REG} = (\text{XTX} + \lambda_{c}I_{D+1})^{-1}\text{XT}y$$
51

Poll Question 3

TOXIC

- Suppose we are minimizing $\ell_{\mathcal{D}}^{AUG}(\boldsymbol{\theta}) = \ell_{\mathcal{D}}(\boldsymbol{\theta}) + \lambda_{\mathcal{C}} \underline{r(\boldsymbol{\theta})}$.

 As $\lambda_{\mathcal{C}}$ increases, the minimum of $\ell_{\mathcal{D}}^{AUG}$...
- A. ... moves towards the midpoint of $\ell_{\mathcal{D}}$ and r
- B. ... moves towards the minimum of $\ell_{\mathcal{D}}$
- c. ... moves towards the minimum of r
- D. ... moves towards the vector of all infinities
- E. ... moves towards the vector of all ones
- ... stays the same

• Should we regularize the bias/intercept parameter, θ_0 ?

Regularization: Q & A

• Is feature scale a concern with regularization?

Regularization: Best Practices

- Should we regularize the bias/intercept parameter, θ_0 ?
 - No!
 - Regularizers typically avoid penalizing this term so that our classifiers can adapt to shifts in the y values
- Is feature scale a concern with regularization?
 - Yes!
 - Features at dramatically different scales might have vastly different coefficient values
 - When using regularization, it is common to standardize the features first by subtracting the mean and dividing by the standard deviation

Ridge Regression

- 10-dimensional target function with additive Gaussian noise
- $\mathcal{H}_{10}=10^{ ext{th}}$ -order polynomial

Ridge Regression

	$\lambda_C = 0$	$\lambda_{\mathcal{C}} = 10^{-6}$	$\lambda_C = 10^{-3}$	$\lambda_C = 1$
True Error	0.059	0.006	0.008	0.011
	Overfit	Nice!	Wait	Underfit

Other Regularizers A solve for Closed for Closed

$$\ell_{\mathcal{D}}(\boldsymbol{\theta}) + \lambda r(\boldsymbol{\theta})$$

$\mathcal{L}_{\mathcal{D}}(\boldsymbol{\theta}) + \mathcal{M}(\boldsymbol{\theta})$			
Ridge or <i>L</i> 2	$r(\boldsymbol{\theta}) = \ \boldsymbol{\theta}\ _2^2 = \sum_{d=0}^D \theta_d^2$	Encourages small weights	
Lasso or <i>L</i> 1	$r(\boldsymbol{\theta}) = \ \boldsymbol{\theta}\ _1 = \sum_{d=0}^{D} \theta_d $	Encourages sparsity	
L0	$r(\boldsymbol{\theta}) = \ \boldsymbol{\theta}\ _0 = \sum_{d=0}^{D} \mathbb{1}(\theta_d \neq 0)$	Encourages sparsity (intractable)	

10/2/23 **61**

Other Regularizers

Regularization Learning Objectives

You should be able to...

- Identify when a model is overfitting
- Add a regularizer to an existing objective in order to combat overfitting
- Explain why we should not regularize the bias term
- Convert linearly inseparable dataset to a linearly separable dataset in higher dimensions