MULTI-TASK DEEP NEURAL NETWORKS FOR NATURAL LANGUAGE UNDERSTANDING

XIAODONG LIU, PENGCHENG HE, WEIZHU CHEN, JIANFENG GAO

Alberto Baldrati, Giovanni Berti

Supervisor: Prof. Paolo Frasconi

Dipartimento di Ingegneria dell'Informazione Università degli Studi di Firenze

INDEX

Introduction

Previous Multi Task Model BFRT

Multi-Task Deep Neural Network

Multi-Task Learning
Datasets
Architecture overview
Task Specific Layers
Training Procedure

Experiments

Experimental setup Experimental results

Conclusions

Introduction

- ► In Liu et al., 2019 is presented a Multi-Task Deep Neural Network (MT-DNN) for learning representations across multiple natural language understanding (NLU) tasks
- ► MT-DNN extends the models proposed in <u>Liu et al., 2015</u> by incorporating a pre-trained bidirectional transformers language model, known as BERT (<u>Devlin et al., 2019</u>)
- ► MT-DNN obtains new state-of-the-art results on ten NLU tasks, including SNLI, SciTail, and eight out of nine GLUE tasks
- ► It is also shown that multi task learning allows a more domain adaptation with fewer data in SNLI and SciTail datasets

PREVIOUS MULTI TASK MODEL

search ranking

- ► The proposed Multi-Task DNN Model was made of three layers of where the first two of them were shared among tasks:
 - Word Hash Layer (I₁) maps one hot-word vectors, with an extremely high dimensionality, into a limited letter-trigram space with dimensionality about 50K
 - Semantic-Representation Layer (l_2): maps the letter-trigram input into a 300-dimensional vector by $l_2 = \tanh(\mathbf{W}_1 \cdot l_1)$
 - Task-Specific Representation (l_3) maps, the 300-dimensional semantic representation l_2 into the 128-dimensional task-specific representation by $l_3 = \tanh(\mathbf{W_2^t} \cdot l_2)$

PREVIOUS MULTI TASK MODEL

ARCHITECTURE

➤ The last task specific representation is designed to either classify queries or rank web search output using the computed 128D input

Figure: Previous MT-DNN architecture

BERT

- THE STATE OF THE S
- ▶ BERT Devlin et al., 2019, which stands for Bidirectional Encoder Representations from Transformers is a transformer-based language model
- ► BERT architecture is a multi-layer bidirectional Transformer encoder(<u>Vaswani et al.</u>, 2017). It is designed to be pre-trained on unlabeled text data and its architecture allows every token to attend to every other token.

Figure: BERT comparison with other transformers-based language models

BERT PRE-TRAINING

- ► BERT is pre-trained via two unsupervised tasks:
 - Masked Language Modeling consists in predicting correct words in sentences after they have been masked or replaced with another word. This masking task allows training of a fully bidirectional model, as opposed to traditional left-to-right conditional language models.
 - Next Sentence Prediction consists in training the model to output sentence relationships between pairs of clauses. More specifically, the model is trained to classify with one of IsNext/NotNext labels. This kind of classification is fundamental to many important natural language inference tasks
- ► This pre-trained model is then used as a backbone when fine tuning for downstream tasks

BERT OPERATING SCHEME

MULTI-TASK DEEP NEURAL NETWORK

MT-DNN NLU AND MULTI-TASK TRAINING

- ► MT-DNN extends the models proposed in <u>Liu et al., 2015</u> by incorporating the pre-trained bidirectional transformer-based language model BERT
- ► Learning multiple tasks jointly has been shown to be effective in training language models, either by leveraging data from related tasks or by learning more general language representations
- ► The reference training tasks are based on General Language Understanding Evaluation (GLUE) benchmark, plus SNLI and SciTail for evaluating domain adaptation
- ► MTL and language model pretraining are complementary technologies, and can be combined to improve the learning of text representations to boost the performance of various NLU tasks

DATASETS

- ► GLUE (Wang et al., 2019) (General Language Understanding Evaluation) is a benchmark consisting in many different NLU tasks, including question answering, text similarity and textual entailment
- ► **SNLI** (Bowman et al., 2015) (Stanford Natural Language Inference) dataset contains 570k premise-hypothesis sentence pairs. It is mainly used for textual entailment in NLI.
- ► SciTail (Khot et al., 2018) is a textual entailment dataset analogous to SNLI, with the difference that answer candidates are collected from relevant web sentences retrieved from a large corpus, this making the task more difficult.
- ► GLUE tasks were used for multi-task learning while SNLI and SciTail were tested in a domain adaptation setting

GLUE TASK CATEGORIES

- ➤ **Single Sentence Classification**: Given a sentence, the model labels it using one of the predefined class labels. (CoLA, SST-2)
- ► Pairwise Text Similarity: Given a pair of sentences, predict a semantic similarity score between the two sentences. (STS-B)
- ► Pairwise Text Classification: Given a pair of sentences, predict a semantic relationship between the two sentences (i.e. in RTE and MNLI whether there is an entailment relationship; in QQP and MRPC whether the two sentences are semantically equivalent)
- ► Pairwise Ranking: Given a query and an answer, predict a relevance score by assessing whether the second sentence contains the correct answer to the query. (QNLI)

MT-DNN

ARCHITECTURE OVERVIEW

MT-DNN LEXICON ENCODER

► The Lexicon Encoder (I₁) maps sequences of tokens (X) into input embedding vectors by summing their word, segment and positional embeddings.
WordPiece is used to compute word embeddings.

MT-DNN

TRANSFORMER ENCODER

► The **Transformer Encoder** (*l*₂) maps representation vectors from *l*₁ into contextual embedding vectors using a multi-layer transformer architecture

MT-DNN

TASK-SPECIFIC LAYERS

▶ Different task-specific layers are fine-tuned along with the transformer model. Each task has its own parameters while the underlying transformer is shared.

SINGLE SENTENCE CLASSIFICATION

- ▶ [CLS] token is an extra token produced by the l_1 embedding at the beginning of the input. Its l_2 embedding C is used for classification purposes.
- ► The attention mechanism allows C to attend to all other token embeddings, thus encoding the overall meaning of the sentence
- ► This layer takes C as an input x
- ▶ It is a dense layer with a parameter matrix of size $H \times k$ (where k equals the number of output classes) with a *softmax* activation function, where H is the hidden size of the transformer module:

$$P_r(c \mid X) = \operatorname{softmax}(\mathbf{W^T} \cdot \mathbf{x})$$

► CoLA and SST-2 tasks fall into this category

PAIRWISE TEXT SIMILARITY

► Here *C* can be seen as the semantic representation of the input sentence pair (X_1, X_2)

► This layer takes C as an input x

► It is a dense layer with a parameter vector of size *H*, where *H* is the hidden size of the transformer module:

$$Sim(X_1, X_2) = \mathbf{w^T} \cdot \mathbf{x}$$

► STS-B task falls into this category

PAIRWISE TEXT CLASSIFICATION

- ▶ Takes as input two sentence embeddings. We will refer the first as premise $P = (p_1, ..., p_m)$ and the second one as hypothesis $H = (h_1, ..., h_n)$ and outputs the logical relationship between P and H.
- ► The design of such layer follows the answer module of the stochastic answer network (SAN) (Liu et al., 2018)
- SAN's answer module uses multi-step reasoning. Rather than directly predicting the entailment given the input, it maintains a state and iteratively refines its predictions.
- ► MNLI, RTE, WNLI, QQP, MRPC tasks fall into this category.

PAIRWISE TEXT CLASSIFICATION

- ▶ We denote as $\mathbf{M}^p \in \mathbb{R}^{d \times m}$ the output of the transformer encoder of premise P input, similarly we denote $\mathbf{M}^h \in \mathbb{R}^{d \times n}$ the output of the transformer encoder of premise H input.
- ▶ We perform K-step reasoning on such matrix representation. At the beginning the initial state \mathbf{s}^0 is the summary of \mathbf{M}^h :

$$\mathbf{s}^{0} = \alpha^{T} \cdot \mathbf{M}^{h}$$
 where $\alpha = \operatorname{softmax}(\mathbf{w}_{1}^{T} \cdot \mathbf{M}^{h})$

► A reasoning step k in the range of $\{1, 2, ..., K-1\}$ the state is defined by

$$\mathbf{s}^k = \mathsf{GRU}(\mathbf{s}^{k-1}, \mathbf{x}^k)$$

ightharpoonup ightharpoonup is computed from the previous state ightharpoonup and ightharpoonup:

$$\mathbf{x}^k = \beta^T \cdot \mathbf{M}^p$$
 and $\beta = \operatorname{softmax}(\mathbf{s}^{k-1} \cdot \mathbf{W}_2^T \cdot \mathbf{M}^p)$

PAIRWISE TEXT CLASSIFICATION

► A one-layer classifier is used to determine the relation at each step *k*:

$$P_r^k = \text{softmax}(\mathbf{W}_3^T \cdot \left[\mathbf{s}^k; \mathbf{x}^k; \left| \mathbf{s}^k - \mathbf{x}^k \right|; \mathbf{s}^k \odot \mathbf{x}^k \right])$$

► At last, the final output is determined by averaging the *K* scores:

$$P_r = avg([P_r^0, P_r^1, ..., P_r^{K-1}])$$

- ightharpoonup Each P_r is a probability distribution over all logical relationships
- ▶ During training stochastic prediction dropout (<u>Liu et al., 2017</u>) is applied before the averaging operation. During decoding all *K* outputs are considered in the averaging operation.

RELEVANCE RANKING

- ► Here the *C* can be seen as the semantic representation of the input sentence pair (Question, Answer)
- ► This layer takes C as an input x
- ► It is a dense layer with a parameter vector of size *H*, with a sigmoid activation function, where *H* is the hidden size of the transformer module:

$$Rel(Q, A) = sigmoid(\mathbf{w}^T \cdot \mathbf{x})$$

► QNLI task falls into this category

TRAINING PROCEDURE LOSSES

► Single Sentence Classification and Pairwise Text Classification: crossentropy loss

$$-\sum_{c}\mathbb{1}(X=c)\log(P_{r}(c\mid X))$$

► **Text Similarity**: square loss

$$(y-\operatorname{Sim}(X_1,X_2))^2$$

► Relevance Ranking: given a query Q we extract a list of candidate answers A, where only one answer A⁺ is correct and all other answers are incorrect. We then compute

$$P_r(A \mid Q) = \operatorname{softmax}(\operatorname{Rel}(Q, A))$$

And use negative log likelihood as the loss function

$$-\sum_{(Q,A^+)}\log(P_r(A^+\mid Q))$$

TRAINING PROCEDURE LOSSES

► Single Sentence Classification and Pairwise Text Classification: crossentropy loss

$$-\sum_{c}\mathbb{1}(X=c)\log(P_{r}(c\mid X))$$

► **Text Similarity**: square loss

$$(y-\operatorname{Sim}(X_1,X_2))^2$$

- Relevance Ranking: In the case of QNLIv2, due to the different dataset structure, binary crossentropy loss was used instead, turning the ranking problem into a binary classification problem
 - Since QNLIv1 expired on 2019-01-30 due to dataset issues, we perform all of our experiments on QNLIv2 and treat QNLI as a binary classification problem

TRAINING PROCEDURE

MULTI-TASK TRAINING ALGORITHM

- 1 Initialize model parameters ⊖ randomly.
- 2 Pre-train the shared layers

```
3 for t in 1, 2, ..., T do
```

Pack the dataset t into mini-batches: D_t .

```
s end
```

10

11

12

13

14

15

16

17

```
8 2. Shuffle D
```

for b_t in D **do**

 $//b_t$ is a mini-batch of task t.

3. Compute loss : $L(\Theta)$

 $L(\Theta) =$ **Crossentropy loss** for classification

 $L(\Theta) =$ **Square loss** for regression

 $L(\Theta) =$ **Ranking loss** for ranking

4. Compute gradient: $\nabla L(\Theta)$

5. Update model: $\Theta = \Theta - \epsilon \nabla L(\Theta)$

end

8 end

TRAINING PROCEDURE

TASK FINE-TUNING

- Since the Multi-Task-Learning of MT-DNN uses all GLUE tasks, it is possible to directly apply the model trained to each GLUE task individually
- ► However in tasks such as CoLA where the available dataset is very small MT-DNN tends to underfit
- ► To alleviate this we further fine-tune the MT-DNN model on each task
- ► It is shown that such fine-tuning step improves the overall performance of the model

TRAINING PROCEDURE

DOMAIN ADAPTATION

- ► In the case of SNLI and SciTail we perform domain adaptation: after training with Multi-Task learning on GLUE task the model is fine-tuned without having seen these datasets before
- ► This measures how general the representations learned through multi task learning are and how flexible the system is
- ► Both SNLI and SciTail are Pairwise Text Classification tasks
- ► To test domain adaptation, a simple linear layer is added on top of the base MT-DNN model with C as input, with a softmax activation function

DATASETS AND METRICS

Corpus	Task	#Train	#Dev	#Test	#Label	Metrics			
Single-Sentence Classification (GLUE)									
CoLA	Acceptability	8.5k	1k	1k	2	Matthews corr			
SST-2	Sentiment	67k	872	1.8k	2	Accuracy			
Pairwise Text Classification (GLUE)									
MNLI	NLI	393k	20k	20k	3	Accuracy			
RTE	NLI	2.5k	276	3k	2	Accuracy			
WNLI	NLI	634	71	146	2	Accuracy			
QQP	Paraphrase	364k	40k	391k	2	Accuracy/F1			
MRPC	Paraphrase	3.7k	408	1.7k	2	Accuracy/F1			
	Text Similarity (GLUE)								
STS-B	Similarity	7k	1.5k	1.4k	1	Pearson/Spearman corr			
Relevance Ranking (GLUE)									
QNLI	QA/NLI	108k	5.7k	5.7k	2	Accuracy			
Pairwise Text Classification									
SNLI	NLI	549k	9.8k	9.8k	3	Accuracy			
SciTail	NLI	23.5k	1.3k	2.1k	2	Accuracy			

EXPERIMENT SETUP

- ► Due to memory limitations we have performed experiments using BERT_{BASE} with bert-base-uncased configuration
- ► We have trained the MT-DNN model for **5** epochs
- ▶ We have fine-tuned the MT-DNN model for **10** epochs
- ➤ To assess the effect of Multi-Task-Learning we have also trained Single-Task version of the aforementioned model for 10 epochs
- ► We tested domain adaptation with random downsampling of the dataset, of sizes 0.1%, 1%, 10%, 100%. We have conducted such experiments **5** times and we have taken the average of the runs as the result

EXPERIMENTAL SETUP

- STUDIO 27
- Our implementation of MT-DNN is based on the PyTorch implementation of BERT
- ► The following training hyperparameters are used:
 - Optimizer: Adamax
 - Learning rate: 5e-5 with linear warm-up over 10% of the dataset
 - Batch size: 32†
 - Dropout rate: 0.1 for all task specific layers, except 0.3 for MNLI and 0.05 for CoLA
 - Gradient clipping: set to unitary norm
 - Maximum sequence length: 512 tokens
- ► † when batch size 32 exceed the GPU memory limit we dynamically halve the batch size

GLUE DEV SET RESULTS

Model	MNLI _{m/mm}	QQP	RTE	QNLI	MRPC	CoLa	SST-2	STS-B
	Acc	F1/Acc	Acc	Acc	F1/Acc	MCC	Acc	Acc
BERT _{LARGE}	86.3/86.2	88.0/91.1			89.5/85.8	61.8	93.5	89.6/89.3
ST-DNN	86.6/86.3	88.4/91.3			89.7/86.4		-	-
MT-DNN	87.1/86.7	89.2/91.9	83.4	92.9	91.0/87.5	63.5	94.3	90.7/90.6
ST-DNN ^{ours}	82.3/83.1							
MT-DNN ours no-fine-tune	82.0/82.0	85.5/88.9	70.0	90.5				
MT-DNN ^{ours}	83.1/82.8	87.0/90.2	75.0	91.2	93.2/90.4	55.7	93.2	89.7/89.7

Table: Dev test results

GLUE TEST SET RESULTS

	CoLA	SST-2	MRPC	STS-B	QQP	MNLI _{m/mm}	QNLI	RTE	WNLI	AX	Score
Model	MCC	Acc	F1/Acc	P/S Corr	F1/Acc	Acc	Acc	Acc	Acc	MCC	
	8.5k	67k	3.7k	7k	364k	393k	108k	2.5k	634		
BiLSTM+ELMo+Attn	36.0	90.4	84.9/77.9	75.1/73.3	64.8/84.7	76.4/76.1	-	56.8	65.1	26.5	70.5
Singletask Pretrain Transformer	45.4	91.3	82.3/75.7	82.0/80.0	70.3/88.5	82.1/81.4	1	56.0	53.4	29.8	72.8
GPT on STILTs	47.2	93.1	87.7/83.7	85.3/84.8	70.1/88.1	80.8/80.6	-	69.1	65.1	29.4	76.9
BERT _{LARGE}	60.5	94.9	89.3/85.4	87.6/86.5	72.1/89.3	86.7/85.9	92.7	70.1	65.1	39.6	80.5
MT-DNN _{no-fine-tune}	58.9	94.6	90.1/86.4	89.5/88.8	72.7/89.6	86.5/85.8	93.1	79.1	65.1	39.4	81.7
MT-DNN	62.5	95.6	91.1/88.2	89.5/88.8	72.7/89.6	86.7/86.0	93.1	81.4	65.1	40.3	82.7
BERT _{BASE}	52.1	93.5	88.9/84.8	87.1/85.8	71.2/89.2	84.6/83.4	90.5	66.4	65.1	34.2	78.3
ST-DNN ^{ours}	50.8	92.9	86.6/81.0	83.5/81.8	70.1/88.3	82.1/82.4	90.8	63.9	65.1	34.4	76.8
MT-DNN ours	44.8	90.8	87.4/82.5	83.8/84.3	69.2/87.3	81.5/81.0	90.0	68.9	65.1	31.0	76.5
MT-DNN ^{ours}	52.8	92.9	89.0/85.0	88.1/87.3	70.5/88.4	82.8/81.9	90.8	70.8	65.1	34.7	78.7
Human	66.4	97.8	86.3/80.8	92.7/92.6	59.5/80.4	92.0/92.8	91.2	93.6	95.9	-	87.1

Table: GLUE test set results

DOMAIN ADAPTATION

ADAPTATION WITH SMALL DATASETS

Model	0.1%	1%	10%	100%				
SNLI Dataset (Dev Accuracy%)								
#Training Data	#Training Data 549 5,493 54,936 549,367							
BERT	52.5	78.1	86.7	91.0				
MT-DNN	82.1	85.2	88.4	91.5				
MT-DNN ^{ours}	81.2	85.0	87.5	91.2				
SciTail Dataset (Dev Accuracy%)								
#Training Data	23	235	2,359	23,596				
BERT	51.2	82.2	90.5	94.3				
MT-DNN	81.9	88.3	91.1	95.7				
MT-DNN ^{ours}	83.6	86.6	92.1	95.1				

DOMAIN ADAPTATION BENCHMARK

Model	Dev	Test					
SNLI Dataset (Accuracy%)							
GPT	-	89.9					
BERT _{LARGE}	91.7	91.0					
MT-DNN _{LARGE}	92.2	91.6					
BERT _{BASE}	91.0	90.8					
MT-DNN _{BASE}	91.5	91.1					
MT-DNN ^{ours}	91.2	91.0					

SciTail Dataset (Accuracy%)							
GPT	-	88.3					
BERT _{LARGE}	95.7	94.4					
MT-DNN _{LARGE}	96.3	95.0					
BERT _{BASE}	94.3	92.0					
MT-DNN _{BASE}	95.7	94.1					
MT-DNN ^{ours}	95.1	93.6					

Conclusions

- ► In this work we only manage to reproduce MT-DNN results with BERT_{BASE} as the transformer encoder layer
- ► In the original work the results were better due to the use of BERT_{LARGE} as the transformer encoder layer
- We demonstrated that, even in our configuration, Multi-Task learning augments the generalization capabilities of language models and improves performance wrt single task models
- ► In domain adaptation tests such improved generalization helps the model to be effective also with a small fraction of the original dataset

REFERENCES I

Bowman, S. R., Angeli, G., Potts, C., and Manning, C. D. (2015).
 A large annotated corpus for learning natural language inference.
 In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP). Association for Computational Linguistics.

 Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2019).
 Bert: Pre-training of deep bidirectional transformers for language understanding.

Khot, T., Sabharwal, A., and Clark, P. (2018).
 Scitail: A textual entailment dataset from science question answering.

Liu, X., Duh, K., and Gao, J. (2018). Stochastic answer networks for natural language inference. CoRR, abs/1804.07888.

REFERENCES II

- ▶ Liu, X., Gao, J., He, X., Deng, L., Duh, K., and Wang, Y.-y. (2015).
 Representation learning using multi-task deep neural networks for semantic classification and information retrieval.
 In Proceedings of the 2015 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 912–921, Denver, Colorado. Association for Computational Linguistics.
- Liu, X., He, P., Chen, W., and Gao, J. (2019). Multi-task deep neural networks for natural language understanding.
- Liu, X., Shen, Y., Duh, K., and Gao, J. (2017). Stochastic answer networks for machine reading comprehension. CoRR. abs/1712.03556.
- Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, L., and Polosukhin, I. (2017). Attention is all you need. CoRR. abs/1706.03762.

REFERENCES III

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and Bowman, S. R. (2019). GLUE: A multi-task benchmark and analysis platform for natural language understanding. In the Proceedings of ICLR.