Linearity and the Superposition Principle

The wave equation we have seen until now have all bean linear in the wave displacement Ψ . This means if Ψ , and Ψ_2 are both solution, then the superposition $\Psi=\Psi$, $\pm\Psi_2$ is also a solution. In general, we can say for linear solutions that a solution $\Psi(x,t)$ is given by:

 $\Psi(x,t) = \sum_{n} c_n \Psi_n(x,t)$ where c_n is some scaling coefficient. We used this principle of superposition to make standing wave solutions as well as to convert between complex exponential and simpoidal oscillations.

An example of a NON-linear wave equation is: $\frac{\partial^2 \psi}{\partial t^2} = \psi \frac{\partial \psi}{\partial x}$ Here, if we double ψ , i.e. $\psi \to 2\psi$ then the right had side is quadrupted but the LHS is only doubled. So it is nonlinear. We can also show this by substituting in $\psi = \alpha \psi_1 + b \psi_2$. This should not satisfy the equation.

Beats

Let's consider a wavefunction that is the superposition of 2 basic wavefunctions:

$$\psi(x,t) = \cos(x_{1}x - \omega_{1}t) + \cos(x_{1}x - \omega_{2}t)
= \cos\left[\frac{x_{1}+x_{2}}{2}x + \frac{x_{1}-x_{2}}{2}x - \frac{\omega_{1}+\omega_{2}}{2}t - \frac{\omega_{1}-\omega_{2}}{2}t\right]
+ \cos\left[\frac{x_{1}+x_{2}}{2}x - \frac{x_{1}-x_{2}}{2}x - \frac{\omega_{1}+\omega_{2}}{2}t + \frac{\omega_{1}+\omega_{2}}{2}t\right]
= \cos\left[\left(\frac{x_{1}+x_{2}}{2}x - \frac{\omega_{1}+\omega_{2}}{2}t\right) + \left(\frac{x_{1}-x_{2}}{2}x - \frac{\omega_{1}-\omega_{2}}{2}t\right)\right]
+ \cos\left[\left(\frac{x_{1}+x_{2}}{2}x - \frac{\omega_{1}+\omega_{2}}{2}t\right) - \left(\frac{x_{1}-x_{2}}{2}x - \frac{\omega_{1}-\omega_{2}}{2}t\right)\right]$$

:.
$$\psi = \cos(\alpha + \beta) + \cos(\alpha - \beta)$$

but using the identity $\cos(\alpha + \beta) = \cos\alpha\cos\beta \mp \sin\alpha\sin\beta$:

 $\psi = \cos\alpha\cos\beta - \sin\alpha\sin\beta + \cos\alpha\cos\beta + \sin\alpha\sin\beta$
 $\psi = 2\cos\alpha\cos\beta$

$$\psi(x,t) = 2\cos\left[\left(\frac{\kappa_1 + \kappa_2}{2}x - \frac{\omega_1 + \omega_2}{2}t\right)\right]\cos\left[\left(\frac{\kappa_1 + \kappa_2}{2}x - \frac{\omega_1 - \omega_2}{2}t\right)\right]$$
awage κ, ω
envelope

This gives us the phenomenon of beating:

Group Velocity

From the example of beating above, we can say the phase relocity is the relocity of the "average":

$$V_p = \frac{(\omega_1 + \omega_2)}{(k_1 + k_2)/2} = \frac{\omega}{k}$$
 as we expect

the velocity of the envelope, which we call group velocity is: $\frac{V_g = (\omega_1 - \omega_2)/2}{(\kappa_1 - \kappa_2)/2} = \frac{S\omega}{S\kappa}$ $\frac{V_g = \frac{d\omega}{d\kappa}}{(\kappa_1 - \kappa_2)/2} = \frac{S\omega}{S\kappa}$ $\frac{V_g = \frac{\omega}{M}}{(\kappa_1 - \kappa_2)/2} = \frac{S\omega}{S\kappa}$