Taller básico de Arduino

Y su aplicación en el ámbito de las Neurociencias

Agenda

Presentación

Qué es Arduino? Conceptos básicos de Hardware y Software para su uso mediante ejemplos prácticos

Manos a la obra

Actividad en grupos en la plataforma Tinkercad

Revisión conjunta, ejemplos y cierre

Comentarios sobre la actividad. Consultas.

Duración Total: 90min

Qué es Arduino?

Ejemplos de aplicación:

Centrifugas

Laberinto para estudio del ritmo circadiano

Impresora

3D

Datalogger para jaulas

Caja operante usando un ipod-touch

Cámara de exposición a vapor de nicotina

Hardware del Arduino

Microcontroller & USB-to-serial converter	ATmega328P & Atmega16U2
Operating Voltage	5V
Input Voltage (recommended)	7-12V
Input Voltage (limits)	6-20V
Digital I/O Pins	14 (of which 6 provide PWM output)
Analog Input Pins	6
DC Current per I/O Pin	40 mA
DC Current for 3.3V Pin	50 mA
Flash Memory	32 KB (ATmega328) of which 0.5 KB used by bootloader
SRAM	2 KB (ATmega328)
EEPROM	1 KB (ATmega328)
Clock Speed	16 MHz

- 14 pines digitales que pueden ser configurados como entradas o salidas.
- 6 pines PWN (serigrafiados con ~) entre los pines digitales.
- 6 pines analógicos serigrafiados desde AO hasta A5 para las entradas analógicas.
- 3 pines GND para conectar a tierra nuestros circuitos.
- 2 pines de alimentación de 5V y 3.3V respectivamente.

- 12C (pines 4 y 5)
- SPI (pines 10,11,12,13)
- Comunicación serie (pines 0 y 1) + Puerto USB
- Boton de reset

Hardware del Arduino

Alimentación de la placa

Límites de voltaje de entrada

- 7~12 V recomendado
- 6~20 V limite absoluto
- Pines Entrada/Salida (E/S): -0.5V a +5.5V (el máximo real es Vcc + 0.5V para un arduino de 5V)

Límites de corriente de salida:

- Si es alimentado por USB: un total de 500 mA
- Si es alimentado por fuente externa o batería: un total de 500 mA~1 A
- Máximo individual por pin de E/S: 40 mA
- Suma de todas las Entradas/Salidas combinadas (SIN incluir el pin de "5V"): 200 mA

Hardware del Arduino

Como romper un Arduino

- Conectar un pin digital en modo OUTPUT a GND
- 2. Conectar un pin digital en modo OUTPUT a un pin INPUT
- 3. Aplicar mas de 5.5V en forma sostenida a cualquier pin (INPUT u OUTPUT)
- 4. Exceder la corriente total que puede entregar el pin de salida
- 5. Invertir la polaridad en el pin Vin desde una fuente externa
- 6. Suministrar más de 5V al pin de 5V
- 7. Suministrar más de 3.3V al pin de 3.3V
- 8. Aplicar mas de 13V al pin RESET
- 9. Grabar en la memoria EEPROM más de 100.000 veces
- 10. Instalar el chip del microcontrolador ATMEGA al revés
- 11. Romper alguna pata al extraer el microcontrolador

Los programas (Sketch)

Entradas y Salidas (E/S) digitales

pinMode

SINTAXIS: pinMode(#pin, modo);

#pin: Es el numero del pin que se quiere configurar. Está escrito en la tarjeta

Arduino

modo: INPUT, INPUT_PULLUP, OUTPUT

digitalWrite

SINTAXIS: digitalWrite(#pin, estado);

#pin: Es el numero del pin que se quiere cambiar el estado

estado: HIGH, LOW

digitalRead

SINTAXIS: digitalRead(#pin);

#pin: Es el numero del pin que se quiere saber el estado lógico de entrada

TIP. Las E/S analógicas se pueden usar también como E/S digitales llamándolas por su nombre A0,A1,etc

RECORDAR. No superar los 40mA de salida de cada pin de salida y 200mA máx en conjunto

Simulación en TinkerCad

Recursos en: GitHub del evento

Simulador: www.tinkercad.com

Preguntar siempre!

Monitor en serie

DIGITAL (PWM-)

a = anode (+) c = cathode (-) Configuro Led en puerto 7

Enciendo LED

Espero X mseg

Apago LED

Espero X mseg

1 (Arduino Uno R3) ▼

Texto

Compartir


```
const int led = 7;
   void setup()
     pinMode(led,OUTPUT); //defino pin de led como salida
     digitalWrite(led, LOW); //arranco con estado LOW la salida LED
 8
 9
   void loop()
11
12
     digitalWrite(led, HIGH); //enciendo el LED
     delay(500); //espero 500mseg
14
     digitalWrite(led,LOW); //apago el LED
     delay(200); //espero 200mseg
15
16 }
```


Agreguemos un pulsador

Resistencia Pull-Down

Resistencia Pull-Up

Compartir

T I N K E R C A D


```
Texto
                                                 1 (Arduino Uno R3) ▼
 1 //Salidas
   const int led = 7;
   //Entradas
   const int pulsador = 2;
   //Variables auxiliares
   int estado = 0; //estado del pulsador
10
   void setup()
11
                              //defino pin de led como salida
12
     pinMode(led,OUTPUT);
     pinMode (pulsador, INPUT); //defino pin de pulsador como entrada
     digitalWrite(led, LOW); //arranco con estado LOW la salida LED
15
16
   void loop()
17
18
19
     estado = digitalRead(pulsador); //leo estado del puls.
20
     if(estado == 1) //pregunto por el estado del pulsador
21
22
       digitalWrite(led, HIGH); //si esta pulsado, prendo el LED
23
24
     else
25
26
       digitalWrite(led,LOW); //caso contrario, mantengo apagado LED
27
28
```


Se han guardado todos los cambios.

Compartir

Compartir

T I N K E R C A D

LED y pulsador con retención

```
DIGITAL (PWM-)
```

```
Texto
```



```
const int led = 7;
   const int pulsador = 2;
   int salida = 0;
                            //estado del led
   int estadoanterior = 0; //estado anterior del pulsador
   int estado = 0;
                            //estado del pulsador
   void setup()
 9
10
     pinMode(led,OUTPUT);
                               //defino pin de led como salida
11
     pinMode (pulsador, INPUT); //defino pin de pulsador como entrada
12
     digitalWrite(led, LOW); //arranco con estado LOW la salida LED
13
14
15
   void loop()
16
17
     estado = digitalRead(pulsador); //leo estado actual del puls.
18
     if (estado == HIGH && estadoanterior == LOW)
19
20
        salida = 1 - \text{salida}; //\text{cambia } 1 < --> 0
21
        delay(20); //DEBOUNCE
22
23
      estadoanterior = estado;
24
     if(salida == 1)
25
26
        digitalWrite(led, HIGH);
27
28
      else
29
30
        digitalWrite(led,LOW);
31
32
```

Manos a la obra...

Manos a la obra

Grupos aleatorios de 5 personas

Uno entra a TinkerCad y comparte pantalla. Pero trabajan todos juntos.

Valerse de los recursos en GitHub

Probar conectando de diferentes formas los componentes. Discutir la forma de conectarlos

Modificar el código

Comentar entre todos modificaciones a hacer al código. Simularlas.

Solicitar asistencia

Pueden solicitar ayuda en cualquier momento clickeando en el icono ?

Duración de la Actividad: 30min

Actividad propuesta

Comenzar de cero con una placa Arduino y un protoboard.

- Conectar un LED al puerto D7
- Conectar un pulsador en el puerto D2.
- Escribir el código para setear cada puerto como entrada o salida según corresponda. Hacer que el LED se encienda al presionar el pulsador y se apague al soltarlo.

EXTRA

- Agregar otro LED (de un color diferente) en el puerto D9.
- Modifica el código para que un led se encienda al presionar el pulsador y el otro led se encienda de forma intermitente durante todo el tiempo.

Recursos para seguir

Arduino and Electronics Reference sheet

En el GitHub del evento

Biblioteca de Libros Varios de Arduino

Carpeta de Drive

Sitio oficial de la comunidad Arduino

www.arduino.cc

Si puedes imaginarlo, puedes crearlo...

Walt Disney (Tom Fitzgerald)

Muchas Gracias!