1. Introdução

Contexto:

O aumento de eventos climáticos extremos em São Paulo exige soluções tecnológicas sustentáveis. Este relatório analisa dados históricos (21-28/05/2025) e em tempo real (30/05/2025) para propor ações de mitigação baseadas em energias renováveis e IoT.

Objetivos:

- Identificar padrões de risco climático.
- Propor soluções sustentáveis integrando tecnologia e resiliência urbana.

2. Análise dos Dados Climáticos

2.1 Dados Históricos (21-28/05/2025)

Tabela 1: Eventos extremos em São Paulo

Data	Temp. Máx (°C)	Temp. Mín (°C)	Precipitação (mm)	Calor Extremo (≥25°C)	Frio Extremo (≤15°C)	Chuva Intensa (≥5mm)
2025- 05-21	26.3	17.2	0.6	Sim	Não	Não
2025- 05-22	25.7	17.7	9.5	Sim	Não	Sim
	•••	•••	•••	•••	•••	

Critérios:

- Calor extremo: Temperatura máxima ≥ 25°C.
- Frio extremo: Temperatura mínima ≤ 15°C.
- Chuva intensa: Precipitação ≥ 5 mm.

2.2 Dados em Tempo Real (30/05/2025)

Temperatura: 12.6°C

• Vento: 3.7 m/s (Sudeste, 119°)

2.3 Visualizações

Temperaturas Máximas e Mínimas (Histórico x Previsão)

Precipitação Diária (Histórico x Previsão)

3. Propostas de Ações Preventivas

3.1 Monitoramento Avançado

- Sensores IoT: Rede de dispositivos para coleta em tempo real (temperatura, umidade, vento).
- IA Preditiva: Modelos de machine learning para alertas precoces.

3.2 Infraestrutura Resiliente

- Energia Solar: Instalação de painéis fotovoltaicos em abrigos e centros de monitoramento.
- Baterias de Armazenamento: Backup para falhas na rede elétrica.

3.3 Gestão Sustentável da Água

- Pavimentação Permeável: Redução de alagamentos em áreas urbanas.
- Telhados Verdes: Absorção de água pluvial e regulação térmica.

3.4 Educação Comunitária

- Campanhas: Treinamentos sobre uso racional de energia e água.
- App de Alertas: Notificações em tempo real para a população.

4. Conceitos de Sustentabilidade Aplicados

- Redução de Emissões: Energia solar para diminuir pegada de carbono.
- Resiliência Urbana: Adaptação da infraestrutura a extremos climáticos.
- Economia Circular: Reuso de água pluvial em sistemas de irrigação.

5. Conclusão

A análise revelou 5 dias com calor extremo e 2 com frio intenso em São Paulo, além de chuva intensa em 22/05. As soluções propostas (IoT, energia solar, gestão hídrica) demonstram potencial para reduzir impactos e aumentar a resiliência urbana.