Variational Inference Foundations and recent advances (Part 1)

Kamélia Daudel

University of Bristol - 09/03/2022

Outline

- 1 Introduction
- 2 Mean-field Variational Inference
- 3 Black-box Variational Inference
- 4 Alpha-divergence Variational Inference
- **5** Conclusion of Part 1

Outline

- 1 Introduction
- 2 Mean-field Variational Inference
- 3 Black-box Variational Inference
- 4 Alpha-divergence Variational Inference
- **5** Conclusion of Part 1

- Goal: model a phenomenon given some observed data while taking into account prior knowledge on the model parameters.
- Core quantity in Bayesian Inference: posterior density of the latent

$$p(y|\mathcal{D}) = \frac{p(\mathcal{D}, y)}{p(\mathcal{D})} = \frac{p(\mathcal{D}|y)p_0(y)}{p(\mathcal{D})}$$

- What we would like: compute / sample from the posterior density
- Problem: for many important models, we can only evaluate $p(y|\mathcal{D})$ up

- Goal: model a phenomenon given some observed data while taking into account prior knowledge on the model parameters.
- Core quantity in Bayesian Inference : posterior density of the latent variables y given the data \mathscr{D}

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})} = \frac{p(\mathscr{D}|y)p_0(y)}{p(\mathscr{D})}$$

- What we would like: compute / sample from the posterior density
- Problem: for many important models, we can only evaluate $p(y|\mathcal{D})$ up

- Goal: model a phenomenon given some observed data while taking into account prior knowledge on the model parameters.
- \bullet Core quantity in Bayesian Inference : posterior density of the latent variables y given the data ${\mathscr D}$

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})} = \frac{p(\mathscr{D}|y)p_0(y)}{p(\mathscr{D})}$$

 $p(\mathcal{D})$: normalisation constant 'marginal likelihood'

- What we would like: compute / sample from the posterior density (posterior mean, posterior predictive distribution...)
- Problem : for many important models, we can only evaluate $p(y|\mathcal{D})$ up to the constant $p(\mathcal{D})$.

- Goal: model a phenomenon given some observed data while taking into account prior knowledge on the model parameters.
- \bullet Core quantity in Bayesian Inference : posterior density of the latent variables y given the data ${\mathscr D}$

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})} = \frac{p(\mathscr{D}|y)p_0(y)}{p(\mathscr{D})}$$

 $p(\mathcal{D})$: normalisation constant 'marginal likelihood'

- What we would like: compute / sample from the posterior density (posterior mean, posterior predictive distribution...)
- Problem : for many important models, we can only evaluate $p(y|\mathcal{D})$ up to the constant $p(\mathcal{D})$.

- Goal: model a phenomenon given some observed data while taking into account prior knowledge on the model parameters.
- \bullet Core quantity in Bayesian Inference : posterior density of the latent variables y given the data ${\mathscr D}$

$$p(y|\mathscr{D}) = \frac{p(\mathscr{D}, y)}{p(\mathscr{D})} = \frac{p(\mathscr{D}|y)p_0(y)}{p(\mathscr{D})}$$

 $p(\mathcal{D})$: normalisation constant 'marginal likelihood'

- What we would like: compute / sample from the posterior density (posterior mean, posterior predictive distribution...)
- Problem : for many important models, we can only evaluate $p(y|\mathscr{D})$ up to the constant $p(\mathscr{D})$.

Two broad categories of methods:

- Monte Carlo methods → sampling methods
 - Importance Sampling (IS)
 - Markov Chain Monte Carlo (MCMC)
 - Sequential Monte Carlo (SMC) ...
- ② Variational Inference methods → optimisation-based methods
 - Mean-field Variational Inference (MFVI)
 - Black-Box Variational Inference (BBVI)
 - Variational Auto-Encoder (VAE) ...

Two broad categories of methods :

- Monte Carlo methods → sampling methods
 - Importance Sampling (IS)
 - Markov Chain Monte Carlo (MCMC)
 - Sequential Monte Carlo (SMC) ...
- ② Variational Inference methods → optimisation-based methods
 - Mean-field Variational Inference (MFVI)
 - Black-Box Variational Inference (BBVI)
 - Variational Auto-Encoder (VAE) ...

Two broad categories of methods :

- Monte Carlo methods → sampling methods
 - Importance Sampling (IS)
 - Markov Chain Monte Carlo (MCMC)
 - Sequential Monte Carlo (SMC) ...
- ② Variational Inference methods → optimisation-based methods
 - Mean-field Variational Inference (MFVI)
 - Black-Box Variational Inference (BBVI)
 - Variational Auto-Encoder (VAE) ...

Two broad categories of methods:

- Monte Carlo methods → sampling methods
 - Importance Sampling (IS)
 - Markov Chain Monte Carlo (MCMC)
 - Sequential Monte Carlo (SMC) ...
- ② Variational Inference methods → optimisation-based methods
 - Mean-field Variational Inference (MFVI)
 - Black-Box Variational Inference (BBVI)
 - Variational Auto-Encoder (VAE) ...

Two broad categories of methods:

- Monte Carlo methods → sampling methods
 - Importance Sampling (IS)
 - Markov Chain Monte Carlo (MCMC)
 - Sequential Monte Carlo (SMC) ...
- ② Variational Inference methods → optimisation-based methods
 - Mean-field Variational Inference (MFVI)
 - Black-Box Variational Inference (BBVI)
 - Variational Auto-Encoder (VAE) ...

Two broad categories of methods :

- Monte Carlo methods → sampling methods
 - Importance Sampling (IS)
 - Markov Chain Monte Carlo (MCMC)
 - Sequential Monte Carlo (SMC) ...
- ② Variational Inference methods → optimisation-based methods
 - Mean-field Variational Inference (MFVI)
 - Black-Box Variational Inference (BBVI)
 - Variational Auto-Encoder (VAE) ...

Two broad categories of methods :

- Monte Carlo methods → sampling methods
 - Importance Sampling (IS)
 - Markov Chain Monte Carlo (MCMC)
 - Sequential Monte Carlo (SMC) ...
- ② Variational Inference methods → optimisation-based methods
 - Mean-field Variational Inference (MFVI)
 - Black-Box Variational Inference (BBVI)
 - Variational Auto-Encoder (VAE) ...

Two broad categories of methods:

- Monte Carlo methods → sampling methods
 - Importance Sampling (IS)
 - Markov Chain Monte Carlo (MCMC)
 - Sequential Monte Carlo (SMC) ...
- ② Variational Inference methods → optimisation-based methods
 - Mean-field Variational Inference (MFVI)
 - Black-Box Variational Inference (BBVI)
 - Variational Auto-Encoder (VAE) ...

Two broad categories of methods:

- Monte Carlo methods → sampling methods
 - Importance Sampling (IS)
 - Markov Chain Monte Carlo (MCMC)
 - Sequential Monte Carlo (SMC) ...
- ② Variational Inference methods → optimisation-based methods
 - Mean-field Variational Inference (MFVI)
 - Black-Box Variational Inference (BBVI)
 - Variational Auto-Encoder (VAE) ...

Variational Inference methodology

- **1** Posit a variational family Q, where $q \in Q$.
- **2** Fit q to obtain the best approximation to the posterior density :

$$\inf_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) \tag{1}$$

Here, D is a **measure of dissimilarity** between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$

- ightarrow D and ${\mathcal Q}$ are key elements in the optimisation problem (1) !
 - Q is easy to sample from / optimise over, yet can capture the complexity inside p(y|𝒜) (e.g. well-chosen parametric family
 Q = {q: y → k(θ, y) : θ ∈ T})
 - $D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$ can be optimised efficiently

Variational Inference methodology

- **1** Posit a variational family Q, where $q \in Q$.
- $oldsymbol{2}$ Fit q to obtain the best approximation to the posterior density :

$$\inf_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) \tag{1}$$

Here, D is a **measure of dissimilarity** between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$

- ightarrow D and ${\mathcal Q}$ are key elements in the optimisation problem (1) !
 - Q is easy to sample from / optimise over, yet can capture the complexity inside p(y|Ø) (e.g. well-chosen parametric family Q = {q: y → k(θ, y) : θ ∈ T})
 - $D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$ can be optimised efficiently

Variational Inference methodology

- **1** Posit a variational family Q, where $q \in Q$.
- **2** Fit q to obtain the best approximation to the posterior density :

$$\inf_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) \tag{1}$$

Here, D is a **measure of dissimilarity** between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$

ightarrow D and ${\cal Q}$ are key elements in the optimisation problem (1) !

What we want

- Q is easy to sample from / optimise over, yet can capture the complexity inside p(y|Ø) (e.g. well-chosen parametric family Q = {a: y → k(θ, y) : θ ∈ T})
- $D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$ can be optimised efficiently

Variational Inference methodology

- **1** Posit a variational family Q, where $q \in Q$.
- **2** Fit q to obtain the best approximation to the posterior density :

$$\inf_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) \tag{1}$$

Here, D is a **measure of dissimilarity** between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$

ightarrow D and ${\cal Q}$ are key elements in the optimisation problem (1) !

What we want

- Q is easy to sample from / optimise over, yet can capture the complexity inside p(y|𝒜) (e.g. well-chosen parametric family
 Q = {q: y → k(θ, y) : θ ∈ T})
- $D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$ can be optimised efficiently

Variational Inference methodology

- **1** Posit a variational family Q, where $q \in Q$.
- $oldsymbol{2}$ Fit q to obtain the best approximation to the posterior density :

$$\inf_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) \tag{1}$$

Here, D is a **measure of dissimilarity** between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$

- Q is easy to sample from / optimise over, yet can capture the complexity inside p(y|𝒜) (e.g. well-chosen parametric family
 Q = {q: y → k(θ, y) : θ ∈ T})
- $D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$ can be optimised efficiently

Variational Inference methodology

- **1** Posit a variational family Q, where $q \in Q$.
- **2** Fit q to obtain the best approximation to the posterior density :

$$\inf_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) \tag{1}$$

Here, D is a **measure of dissimilarity** between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$

- Q is easy to sample from / optimise over, yet can capture the complexity inside p(y|D) (e.g. well-chosen parametric family Q = {q: y → k(θ, y) : θ ∈ T})
- $D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$ can be optimised efficiently

Variational Inference methodology

- **1** Posit a variational family Q, where $q \in Q$.
- **2** Fit q to obtain the best approximation to the posterior density :

$$\inf_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) \tag{1}$$

Here, D is a **measure of dissimilarity** between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$

- Q is easy to sample from / optimise over, yet can capture the complexity inside p(y|D) (e.g. well-chosen parametric family Q = {q: y → k(θ, y) : θ ∈ T})
- ullet $D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$ can be optimised efficiently

Variational Inference methodology

- **1** Posit a variational family Q, where $q \in Q$.
- **2** Fit q to obtain the best approximation to the posterior density :

$$\inf_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) \tag{1}$$

Here, D is a **measure of dissimilarity** between the variational distribution \mathbb{Q} and the posterior distribution $\mathbb{P}_{|\mathscr{D}}$

- Q is easy to sample from / optimise over, yet can capture the complexity inside p(y|D) (e.g. well-chosen parametric family Q = {q: y → k(θ, y) : θ ∈ T})
- $D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$ can be optimised efficiently

Variational Inference methodology

- **1** Posit a variational family \mathcal{Q} , where $q \in \mathcal{Q}$.
- **2** Fit q to obtain the best approximation to the posterior density:

$$\inf_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) \tag{1}$$

Here, D is a **measure of dissimilarity** between the variational distribution $\mathbb Q$ and the posterior distribution $\mathbb P_{|\mathscr D}$

- Q is easy to sample from / optimise over, yet can capture the complexity inside $p(y|\mathcal{D})$ (e.g. well-chosen parametric family $Q = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\}\$
- $D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$ can be optimised efficiently

Outline

- 1 Introduction
- 2 Mean-field Variational Inference
- 3 Black-box Variational Inference
- 4 Alpha-divergence Variational Inference
- **5** Conclusion of Part 1

Mean-field Variational Inference (MFVI)

ightarrow D: Kullback-Leibler (KL) divergence

 (Y, \mathcal{Y}, ν) : measured space, ν is a σ -finite measure on (Y, \mathcal{Y}) .

 $\mathbb{Q} \text{ and } \mathbb{P}_{|\mathscr{D}}: \mathbb{Q} \preceq \nu \text{, } \mathbb{P}_{|\mathscr{D}} \preceq \nu \text{ with } \tfrac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu} = q, \tfrac{\mathrm{d}\mathbb{P}_{|\mathscr{D}}}{\mathrm{d}\nu} = p(\cdot|\mathscr{D}).$

$$D_{KL}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) = \int_{\mathsf{Y}} \log \left(\frac{q(y)}{p(y|\mathscr{D})}\right) q(y) \nu(\mathrm{d}y) \;.$$

 $D_{KL}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) \geqslant 0$ and $D_{KL}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) = 0$ iif $\mathbb{Q} = \mathbb{P}_{|\mathscr{D}}$

 $ightarrow \mathcal{Q}$: Mean-field family

The latent variable y is made of L independent latent variables $(y_1,\ldots,y_L)\in\mathsf{Y}_1\times\ldots\times\mathsf{Y}_L$ and

$$Q = \left\{ q : y \mapsto \prod_{\ell=1}^{L} q_{\ell}(y_{\ell}) \right\}$$

i.e each latent variable y_{ℓ} is governed by its own variational probability density q_{ℓ} with $\nu(\mathrm{d}y) = \bigotimes_{\ell=1}^{L} \nu_{\ell}(\mathrm{d}y_{\ell})$.

Mean-field Variational Inference (MFVI)

ightarrow D : Kullback-Leibler (KL) divergence

 (Y, \mathcal{Y}, ν) : measured space, ν is a σ -finite measure on (Y, \mathcal{Y}) .

 $\mathbb{Q} \text{ and } \mathbb{P}_{|\mathscr{D}}: \mathbb{Q} \preceq \nu \text{, } \mathbb{P}_{|\mathscr{D}} \preceq \nu \text{ with } \tfrac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu} = q, \ \tfrac{\mathrm{d}\mathbb{P}_{|\mathscr{D}}}{\mathrm{d}\nu} = p(\cdot|\mathscr{D}).$

$$D_{KL}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) = \int_{\mathsf{Y}} \log \left(\frac{q(y)}{p(y|\mathscr{D})}\right) q(y) \nu(\mathrm{d}y) \;.$$

$$D_{KL}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})\geqslant 0$$
 and $D_{KL}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})=0$ iif $\mathbb{Q}=\mathbb{P}_{|\mathscr{D}}$

 $ightarrow \mathcal{Q}$: Mean-field family

The latent variable y is made of L independent latent variables $(y_1, \ldots, y_L) \in \mathsf{Y}_1 \times \ldots \times \mathsf{Y}_L$ and

$$Q = \left\{ q : y \mapsto \prod_{\ell=1}^{L} q_{\ell}(y_{\ell}) \right\}$$

i.e each latent variable y_{ℓ} is governed by its own variational probability density q_{ℓ} with $\nu(\mathrm{d} y) = \bigotimes_{\ell=1}^{L} \nu_{\ell}(\mathrm{d} y_{\ell})$.

Mean-field Variational Inference (MFVI)

ightarrow D: Kullback-Leibler (KL) divergence

 (Y, \mathcal{Y}, ν) : measured space, ν is a σ -finite measure on (Y, \mathcal{Y}) .

 $\mathbb{Q} \text{ and } \mathbb{P}_{|\mathscr{D}}: \mathbb{Q} \preceq \nu \text{, } \mathbb{P}_{|\mathscr{D}} \preceq \nu \text{ with } \tfrac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu} = q, \, \tfrac{\mathrm{d}\mathbb{P}_{|\mathscr{D}}}{\mathrm{d}\nu} = p(\cdot|\mathscr{D}).$

$$D_{KL}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) = \int_{\mathsf{Y}} \log \left(\frac{q(y)}{p(y|\mathscr{D})} \right) q(y) \nu(\mathrm{d}y) \;.$$

 $D_{KL}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})\geqslant 0$ and $D_{KL}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})=0$ iif $\mathbb{Q}=\mathbb{P}_{|\mathscr{D}}$

 $ightarrow \mathcal{Q}$: Mean-field family

The latent variable y is made of L **independent** latent variables $(y_1, \ldots, y_L) \in \mathsf{Y}_1 \times \ldots \times \mathsf{Y}_L$ and

$$Q = \left\{ q : y \mapsto \prod_{\ell=1}^{L} q_{\ell}(y_{\ell}) \right\}$$

i.e each latent variable y_ℓ is governed by its own variational probability density q_ℓ with $\nu(\mathrm{d}y) = \bigotimes_{\ell=1}^L \nu_\ell(\mathrm{d}y_\ell)$.

$$\begin{split} D_{KL}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) &= \int_{\mathsf{Y}} \log \left(\frac{q(y)}{p(y|\mathscr{D})} \right) q(y) \nu(\mathrm{d}y) \\ &= \int_{\mathbb{Y}} q(y) \log \left(\frac{q(y)}{p(y,\mathscr{D})} \right) \nu(\mathrm{d}y) + \log p(\mathscr{D}) \\ &:= -\mathsf{ELBO}(q;\mathscr{D}) + \log p(\mathscr{D}) \end{split}$$

$$\mathsf{ELBO}(q; \mathscr{D}) := \int_{\mathsf{Y}} q(y) \log \left(\frac{p(y, \mathscr{D})}{q(y)} \right) \nu(\mathrm{d}y)$$

- ightarrow We deduce

 - **2** ELBO $(q; \mathcal{D}) \leqslant \log p(\mathcal{D})$ with equality iif $\mathbb{Q} = \mathbb{P}_{|\mathcal{D}|}$

$$\begin{split} D_{KL}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) &= \int_{\mathbb{Y}} \log \left(\frac{q(y)}{p(y|\mathscr{D})} \right) q(y) \nu(\mathrm{d}y) \\ &= \int_{\mathbb{Y}} q(y) \log \left(\frac{q(y)}{p(y,\mathscr{D})} \right) \nu(\mathrm{d}y) + \log p(\mathscr{D}) \\ &:= -\mathrm{ELBO}(q;\mathscr{D}) + \log p(\mathscr{D}) \end{split}$$

$$\mathsf{ELBO}(q;\mathscr{D}) := \int_{\mathsf{Y}} q(y) \log \left(\frac{p(y,\mathscr{D})}{q(y)} \right) \nu(\mathrm{d}y) \;.$$

- ightarrow We deduce

 - **2** ELBO $(q; \mathcal{D}) \leqslant \log p(\mathcal{D})$ with equality iif $\mathbb{Q} = \mathbb{P}_{|\mathcal{D}|}$

$$\begin{split} D_{KL}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) &= \int_{\mathsf{Y}} \log \left(\frac{q(y)}{p(y|\mathscr{D})}\right) q(y) \nu(\mathrm{d}y) \\ &= \int_{\mathsf{Y}} q(y) \log \left(\frac{q(y)}{p(y,\mathscr{D})}\right) \nu(\mathrm{d}y) + \log p(\mathscr{D}) \\ &:= -\mathsf{ELBO}(q;\mathscr{D}) + \log p(\mathscr{D}) \end{split}$$

$$\mathsf{ELBO}(q; \mathscr{D}) := \int_{\mathsf{Y}} q(y) \log \left(\frac{p(y, \mathscr{D})}{q(y)} \right) \nu(\mathrm{d}y) \; .$$

- \rightarrow We deduce :

 - **2** ELBO $(q; \mathcal{D}) \leqslant \log p(\mathcal{D})$ with equality iif $\mathbb{Q} = \mathbb{P}_{|\mathcal{D}|}$

$$\begin{split} D_{KL}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) &= \int_{\mathsf{Y}} \log \left(\frac{q(y)}{p(y|\mathscr{D})} \right) q(y) \nu(\mathrm{d}y) \\ &= \int_{\mathsf{Y}} q(y) \log \left(\frac{q(y)}{p(y,\mathscr{D})} \right) \nu(\mathrm{d}y) + \log p(\mathscr{D}) \\ &:= -\mathsf{ELBO}(q;\mathscr{D}) + \log p(\mathscr{D}) \end{split}$$

$$\mathsf{ELBO}(q;\mathscr{D}) := \int_{\mathsf{Y}} q(y) \log \left(\frac{p(y,\mathscr{D})}{q(y)} \right) \nu(\mathrm{d}y) \;.$$

- ightarrow We deduce

 - **2** ELBO $(q; \mathcal{D}) \leqslant \log p(\mathcal{D})$ with equality iif $\mathbb{Q} = \mathbb{P}_{|\mathcal{D}|}$

$$\begin{split} D_{KL}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) &= \int_{\mathsf{Y}} \log \left(\frac{q(y)}{p(y|\mathscr{D})}\right) q(y) \nu(\mathrm{d}y) \\ &= \int_{\mathsf{Y}} q(y) \log \left(\frac{q(y)}{p(y,\mathscr{D})}\right) \nu(\mathrm{d}y) + \log p(\mathscr{D}) \\ &:= -\mathsf{ELBO}(q;\mathscr{D}) + \log p(\mathscr{D}) \end{split}$$

$$\mathsf{ELBO}(q;\mathscr{D}) := \int_{\mathsf{Y}} q(y) \log \left(\frac{p(y,\mathscr{D})}{q(y)} \right) \nu(\mathrm{d}y) \;.$$

- \rightarrow We deduce :
 - $\bullet \inf_{g \in \mathcal{Q}} D_{KL}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) \Leftrightarrow \sup_{g \in \mathcal{Q}} \mathsf{ELBO}(q;\mathscr{D})$
 - **2** ELBO $(q; \mathcal{D}) \leqslant \log p(\mathcal{D})$ with equality iif $\mathbb{Q} = \mathbb{P}_{|\mathcal{D}|}$

$$\begin{split} D_{KL}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) &= \int_{\mathsf{Y}} \log \left(\frac{q(y)}{p(y|\mathscr{D})} \right) q(y) \nu(\mathrm{d}y) \\ &= \int_{\mathsf{Y}} q(y) \log \left(\frac{q(y)}{p(y,\mathscr{D})} \right) \nu(\mathrm{d}y) + \log p(\mathscr{D}) \\ &:= -\mathsf{ELBO}(q;\mathscr{D}) + \log p(\mathscr{D}) \end{split}$$

$$\mathsf{ELBO}(q;\mathscr{D}) := \int_{\mathsf{Y}} q(y) \log \left(\frac{p(y,\mathscr{D})}{q(y)} \right) \nu(\mathrm{d}y) \;.$$

- \rightarrow We deduce :
 - $\bullet \inf_{q \in \mathcal{Q}} D_{KL}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) \Leftrightarrow \sup_{q \in \mathcal{Q}} \ \mathsf{ELBO}(q;\mathscr{D})$
 - **2** ELBO $(q; \mathcal{D}) \leq \log p(\mathcal{D})$ with equality iif $\mathbb{Q} = \mathbb{P}_{|\mathcal{D}|}$

Why this choice of D?

$$\begin{split} D_{KL}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) &= \int_{\mathbb{Y}} \log \left(\frac{q(y)}{p(y|\mathscr{D})} \right) q(y) \nu(\mathrm{d}y) \\ &= \int_{\mathbb{Y}} q(y) \log \left(\frac{q(y)}{p(y,\mathscr{D})} \right) \nu(\mathrm{d}y) + \log p(\mathscr{D}) \\ &:= -\mathsf{ELBO}(q;\mathscr{D}) + \log p(\mathscr{D}) \end{split}$$

Evidence Lower BOund (ELBO)

$$\mathsf{ELBO}(q;\mathscr{D}) := \int_{\mathsf{Y}} q(y) \log \left(\frac{p(y,\mathscr{D})}{q(y)} \right) \nu(\mathrm{d}y) \;.$$

- \rightarrow We deduce :
 - $\bullet \inf_{q \in \mathcal{Q}} D_{KL}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) \Leftrightarrow \sup_{q \in \mathcal{Q}} \mathsf{ELBO}(q;\mathscr{D})$
 - **2** ELBO $(q; \mathscr{D}) \leqslant \log p(\mathscr{D})$ with equality iif $\mathbb{Q} = \mathbb{P}_{|\mathscr{D}|}$

Why this choice of Q?

Recall that

Mean-field assumption

The latent variable y is made of L **independent** latent variables $(y_1, \ldots, y_L) \in \mathsf{Y}_1 \times \ldots \times \mathsf{Y}_L$ and

$$\mathcal{Q} = \left\{ q: y \mapsto \prod_{\ell=1}^L q_\ell(y_\ell) \right\}$$

i.e each latent variable y_{ℓ} is governed by its own variational probability density q_{ℓ} with $\nu(\mathrm{d}y) = \bigotimes_{\ell=1}^{L} \nu_{\ell}(\mathrm{d}y_{\ell})$.

ightarrow Plugging this into the ELBO and keeping all factors but ℓ fixed :

$$q_{\ell}^*(y_{\ell}) \propto \exp\left(\mathbb{E}_{-\ell}[\log p(y, \mathcal{D})]\right)$$
 (optimal rule)

where $\mathbb{E}_{-\ell}$ is the expectation w.r.t q omitting the factor q_{ℓ}

Why this choice of Q?

Recall that

Mean-field assumption

The latent variable y is made of L independent latent variables $(y_1,\ldots,y_L)\in \mathsf{Y}_1\times\ldots\times\mathsf{Y}_L$ and

$$\mathcal{Q} = \left\{ q: y \mapsto \prod_{\ell=1}^{L} q_{\ell}(y_{\ell}) \right\}$$

i.e each latent variable y_{ℓ} is governed by its own variational probability density q_{ℓ} with $\nu(\mathrm{d}y) = \bigotimes_{\ell=1}^{L} \nu_{\ell}(\mathrm{d}y_{\ell})$.

ightarrow Plugging this into the ELBO and keeping all factors but ℓ fixed :

$$q_{\ell}^*(y_{\ell}) \propto \exp\left(\mathbb{E}_{-\ell}[\log p(y, \mathscr{D})]\right)$$
 (optimal rule)

where $\mathbb{E}_{-\ell}$ is the expectation w.r.t q omitting the factor q_ℓ

Optimal rule keeping all factors but ℓ fixed :

$$q_{\ell}^*(y_{\ell}) \propto \exp\left(\mathbb{E}_{-\ell}[\log p(y, \mathcal{D})]\right)$$

Optimal rule keeping all factors but ℓ fixed :

$$q_{\ell}^*(y_{\ell}) \propto \exp\left(\mathbb{E}_{-\ell}[\log p(y, \mathscr{D})]\right)$$

Algorithm 1: Coordinate Ascent Variational Inference (CAVI)

```
Input: (q_{\ell})_{1 \le \ell \le L}: initial variational factors.
```

Output: Return the optimised mean-field variational density q satisfying:

for all
$$y \in Y$$
, $q(y) = \prod_{\ell=1}^{L} q_{\ell}(y_{\ell})$.

while the ELBO has not converged do

$$\begin{array}{l} \text{for } \ell = 1 \dots L \text{ do} \\ \mid \text{ set } q_\ell(y_\ell) \propto \exp\left(\mathbb{E}_{-\ell}[\log p(y, \mathscr{D})]\right) \end{array}$$

end

Compute the ELBO.

end

Optimal rule keeping all factors but ℓ fixed :

$$q_\ell^*(y_\ell) \propto \exp\left(\mathbb{E}_{-\ell}[\log p(y, \mathscr{D})]\right)$$

Algorithm 1: Coordinate Ascent Variational Inference (CAVI)

Input: $(q_{\ell})_{1 \leq \ell \leq L}$: initial variational factors.

Output: Return the optimised mean-field variational density q satisfying:

for all
$$y \in Y$$
, $q(y) = \prod_{\ell=1}^{L} q_{\ell}(y_{\ell})$.

while the ELBO has not converged do

$$\begin{array}{l} \text{for } \ell = 1 \dots L \text{ do} \\ \mid \text{ set } q_\ell(y_\ell) \propto \exp\left(\mathbb{E}_{-\ell}[\log p(y, \mathscr{D})]\right) \\ \text{end} \end{array}$$

Compute the ELBO.

end

ightarrow Convergence towards a **local** maximum of the ELBO

Optimal rule keeping all factors but ℓ fixed :

$$q_\ell^*(y_\ell) \propto \exp\left(\mathbb{E}_{-\ell}[\log p(y, \mathscr{D})]\right)$$

Algorithm 1: Coordinate Ascent Variational Inference (CAVI)

Input: $(q_{\ell})_{1 \leq \ell \leq L}$: initial variational factors.

Output: Return the optimised mean-field variational density q satisfying:

for all
$$y \in Y$$
, $q(y) = \prod_{\ell=1}^{L} q_{\ell}(y_{\ell})$.

while the ELBO has not converged do

$$\begin{array}{l} \text{for } \ell = 1 \dots L \text{ do} \\ \mid \text{ set } q_\ell(y_\ell) \propto \exp\left(\mathbb{E}_{-\ell}[\log p(y, \mathscr{D})]\right) \end{array}$$

end

Compute the ELBO.

end

- → Convergence towards a **local** maximum of the ELBO
- ightarrow Tractable updates for **conditionally conjugate exponential** models (e.g. Bayesian mixture of Gaussians, Latent Dirichlet Allocation)

Optimal rule keeping all factors but ℓ fixed :

$$q_\ell^*(y_\ell) \propto \exp\left(\mathbb{E}_{-\ell}[\log p(y, \mathscr{D})]\right)$$

Algorithm 1: Coordinate Ascent Variational Inference (CAVI)

Input: $(q_{\ell})_{1 \le \ell \le L}$: initial variational factors.

Output: Return the optimised mean-field variational density q satisfying:

for all
$$y \in Y$$
, $q(y) = \prod_{\ell=1}^{L} q_{\ell}(y_{\ell})$.

while the ELBO has not converged do

$$\begin{array}{l} \text{for } \ell = 1 \dots L \text{ do} \\ \mid \text{ set } q_\ell(y_\ell) \propto \exp \left(\mathbb{E}_{-\ell}[\log p(y, \mathscr{D})] \right) \\ \text{end} \end{array}$$

ena

Compute the ELBO.

end

- ightarrow Convergence towards a **local** maximum of the ELBO
- → Tractable updates for **conditionally conjugate exponential** models (e.g. Bayesian mixture of Gaussians, Latent Dirichlet Allocation)

Variational Inference: A Review for Statisticians. D. Blei et al. (2017). JASA

The New York Times

music band songs rook album jazz pop song singer night	book life novel story books man stories love children family	art museum show exhibition artists artists paintings painting century works	game Knicks nets points team season play games night coach	show film television movie series says life man character know
theater play production show stage street broadway director musical directed	clinton bush campaign gore political republican dole presidential senator house	stock market percent fund investors funds companies stocks investment trading	restaurant sauce menu food dishes street dining dinner chicken served	budget tax governor county mayor billion taxes plan legislature fiscal

 $\mathsf{Data} : 1.8\mathsf{M}$ articles from the New York Times

Model: hierarchical Dirichlet process topic model

Taken from Stochastic Variational Inference. M. D. Hoffman et al. (2013). JMRL.

- $\mathscr{D}=\{m{c},m{x}\}: I$ 1-D class labels $(c_i)_{1\leqslant i\leqslant I}$, I 2-D covariates $(m{x}_i)_{1\leqslant i\leqslant I}$
- $y = \{y_1, y_2\} \in \mathbb{R}^2$: regression coefficients
- Model :

$$p(c_i|\mathbf{x}_i, y) = \mathcal{N}(c_i; y^T \mathbf{x}_i, \sigma^2) , \quad 1 \leqslant i \leqslant I$$

$$p_0(y) = \mathcal{N}(y; \mu_0, \Lambda_0^{-1})$$

 μ_0, Λ_0, σ : fixed hyperparameters

In that case

$$p(y|\mathcal{D}) = \mathcal{N}(y; \mu, \Lambda^{-1})$$

with $\Lambda=\Lambda_0+\sigma^{-2}\sum_{i=1}^Ix_ix_i^T$ and $\Lambda\mu=\Lambda_0\mu_0+\sigma^{-2}\sum_{i=1}^Ic_ix_i$

- $\mathscr{D}=\{c,x\}: I$ 1-D class labels $(c_i)_{1\leqslant i\leqslant I}$, I 2-D covariates $(x_i)_{1\leqslant i\leqslant I}$
- $y = \{y_1, y_2\} \in \mathbb{R}^2$: regression coefficients
- Model:

$$p(c_i|\mathbf{x}_i, y) = \mathcal{N}(c_i; y^T \mathbf{x}_i, \sigma^2), \quad 1 \leqslant i \leqslant I$$

 $p_0(y) = \mathcal{N}(y; \mu_0, \Lambda_0^{-1})$

 μ_0, Λ_0, σ : fixed hyperparameters

In that case,

$$p(y|\mathscr{D}) = \mathcal{N}(y; \mu, \Lambda^{-1})$$

with $\Lambda = \Lambda_0 + \sigma^{-2} \sum_{i=1}^{I} \boldsymbol{x}_i \boldsymbol{x}_i^T$ and $\Lambda \mu = \Lambda_0 \mu_0 + \sigma^{-2} \sum_{i=1}^{I} c_i \boldsymbol{x}_i$.

$$p(y|\mathscr{D}) = \mathcal{N}(y; \mu, \Lambda^{-1})$$

- Mean-field assumption : $q(y) = q_1(y_1)q_2(y_2)$
- Optimal rules : for all $\ell=\{1,2\}$, $q_\ell(y_\ell)\propto \exp\left(\mathbb{E}_{-\ell}[\log p(y,\mathscr{D})]\right)$ that is.

$$q_1(y_1) \propto \exp\left(\mathbb{E}_{y_2 \sim q_2} \left[\log p(y|\mathscr{D})\right]\right)$$

$$q_2(y_2) \propto \exp\left(\mathbb{E}_{y_1 \sim q_1} \left[\log p(y|\mathscr{D})\right]\right)$$

$$\begin{split} \text{Notation}: \ & \mu = (\mu_1 \ \mu_2), \ \Lambda = (\Lambda_{\ell,k})_{1\leqslant \ell,k\leqslant 2} \ \text{with} \ \Lambda_{1,2} = \Lambda_{2,1} \\ & \log p(y|\mathscr{D}) = -\frac{1}{2} \left\{ (y_1 - \mu_1)^2 \Lambda_{1,1} + 2(y_1 - \mu_1)(y_2 - \mu_2) \Lambda_{1,2} + (y_2 - \mu_2)^2 \Lambda_{2,2} \right\} + c_{-y} \end{split}$$

ightarrow Plugging this in the optimal rule,

$$\begin{split} q_1(y_1) &\propto \exp\left(-\frac{1}{2}\left\{(y_1-\mu_1)^2\Lambda_{1,1} + 2(y_1-\mu_1)(\mathbb{E}_{y_2\sim q_2}\left[y_2\right] - \mu_2)\Lambda_{1,2}\right\}\right) \\ &\propto \exp\left(-\frac{1}{2}\left\{y_1^2\Lambda_{1,1} - 2y_1\left[\mu_1\Lambda_{1,1} - (\mathbb{E}_{y_2\sim q_2}[y_2] - \mu_2)\Lambda_{1,2}\right]\right\}\right) \\ &\text{o that}: \ q_1(y_1) = \mathcal{N}(y_1;\mu_1-\Lambda_{1,1}^{-1}(\mathbb{E}_{y_2\sim q_2}[y_2] - \mu_2)\Lambda_{1,2},\Lambda_{1,1}^{-1}) \end{split}$$

$$p(y|\mathscr{D}) = \mathcal{N}(y; \mu, \Lambda^{-1})$$

- Mean-field assumption : $q(y) = q_1(y_1)q_2(y_2)$
- Optimal rules : for all $\ell=\{1,2\},\ q_\ell(y_\ell)\propto \exp\left(\mathbb{E}_{-\ell}[\log p(y,\mathscr{D})]\right)$ that is,

$$q_1(y_1) \propto \exp\left(\mathbb{E}_{y_2 \sim q_2} \left[\log p(y|\mathscr{D})\right]\right)$$

$$q_2(y_2) \propto \exp\left(\mathbb{E}_{y_1 \sim q_1} \left[\log p(y|\mathscr{D})\right]\right)$$

Notation : $\mu=(\mu_1\ \mu_2)$, $\Lambda=(\Lambda_{\ell,k})_{1\leqslant \ell,k\leqslant 2}$ with $\Lambda_{1,2}=\Lambda_{2,1}$

$$\log p(y|\mathscr{D}) = -\frac{1}{2} \left\{ (y_1 - \mu_1)^2 \Lambda_{1,1} + 2(y_1 - \mu_1)(y_2 - \mu_2) \Lambda_{1,2} + (y_2 - \mu_2)^2 \Lambda_{2,2} \right\} + c_{-y}$$

ightarrow Plugging this in the optimal rule,

$$q_1(y_1) \propto \exp\left(-\frac{1}{2}\left\{(y_1 - \mu_1)^2 \Lambda_{1,1} + 2(y_1 - \mu_1)(\mathbb{E}_{y_2 \sim q_2}[y_2] - \mu_2)\Lambda_{1,2}\right\}\right)$$

$$\propto \exp\left(-\frac{1}{2}\left\{y_1^2 \Lambda_{1,1} - 2y_1\left[\mu_1 \Lambda_{1,1} - (\mathbb{E}_{y_2 \sim q_2}[y_2] - \mu_2)\Lambda_{1,2}\right]\right\}\right)$$
o that : $q_1(y_1) = \mathcal{N}(y_1; \mu_1 - \Lambda_{1,1}^{-1}(\mathbb{E}_{y_2 \sim q_2}[y_2] - \mu_2)\Lambda_{1,2}, \Lambda_{1,1}^{-1})$

$$p(y|\mathscr{D}) = \mathcal{N}(y; \mu, \Lambda^{-1})$$

- Mean-field assumption : $q(y) = q_1(y_1)q_2(y_2)$
- Optimal rules : for all $\ell=\{1,2\}$, $q_\ell(y_\ell)\propto \exp\left(\mathbb{E}_{-\ell}[\log p(y,\mathscr{D})]\right)$ that is,

$$q_1(y_1) \propto \exp\left(\mathbb{E}_{y_2 \sim q_2} \left[\log p(y|\mathscr{D})\right]\right)$$

$$q_2(y_2) \propto \exp\left(\mathbb{E}_{y_1 \sim q_1} \left[\log p(y|\mathscr{D})\right]\right)$$

Notation : $\mu=(\mu_1\ \mu_2)$, $\Lambda=(\Lambda_{\ell,k})_{1\leqslant \ell,k\leqslant 2}$ with $\Lambda_{1,2}=\Lambda_{2,1}$

$$\log p(y|\mathscr{D}) = -\frac{1}{2} \left\{ (y_1 - \mu_1)^2 \Lambda_{1,1} + 2(y_1 - \mu_1)(y_2 - \mu_2) \Lambda_{1,2} + (y_2 - \mu_2)^2 \Lambda_{2,2} \right\} + c_{-\frac{1}{2}}$$

 \rightarrow Plugging this in the optimal rule,

$$\begin{split} q_1(y_1) &\propto \exp\left(-\frac{1}{2}\left\{(y_1-\mu_1)^2\Lambda_{1,1} + 2(y_1-\mu_1)(\mathbb{E}_{y_2\sim q_2}\left[y_2\right] - \mu_2)\Lambda_{1,2}\right\}\right) \\ &\propto \exp\left(-\frac{1}{2}\left\{y_1^2\Lambda_{1,1} - 2y_1\left[\mu_1\Lambda_{1,1} - (\mathbb{E}_{y_2\sim q_2}[y_2] - \mu_2)\Lambda_{1,2}\right]\right\}\right) \\ &\text{o that}: \ q_1(y_1) = \mathcal{N}(y_1;\mu_1 - \Lambda_{1,1}^{-1}(\mathbb{E}_{y_2\sim q_2}[y_2] - \mu_2)\Lambda_{1,2},\Lambda_{1,1}^{-1}) \end{split}$$

$$p(y|\mathscr{D}) = \mathcal{N}(y; \mu, \Lambda^{-1})$$

- Mean-field assumption : $q(y) = q_1(y_1)q_2(y_2)$
- Optimal rules : for all $\ell = \{1, 2\}, q_{\ell}(y_{\ell}) \propto \exp\left(\mathbb{E}_{-\ell}[\log p(y, \mathcal{D})]\right)$ that is,

$$\begin{split} q_1(y_1) &\propto \exp\left(\mathbb{E}_{y_2 \sim q_2} \left[\log p(y|\mathscr{D})\right]\right) \\ q_2(y_2) &\propto \exp\left(\mathbb{E}_{y_1 \sim q_1} \left[\log p(y|\mathscr{D})\right]\right) \end{split}$$

$$\begin{split} q_1(y_1) &\propto \exp\left(-\frac{1}{2}\left\{(y_1-\mu_1)^2\Lambda_{1,1} + 2(y_1-\mu_1)(\mathbb{E}_{y_2\sim q_2}\left[y_2\right] - \mu_2)\Lambda_{1,2}\right\}\right) \\ &\propto \exp\left(-\frac{1}{2}\left\{y_1^2\Lambda_{1,1} - 2y_1\left[\mu_1\Lambda_{1,1} - (\mathbb{E}_{y_2\sim q_2}[y_2] - \mu_2)\Lambda_{1,2}\right]\right\}\right) \\ &\text{o that}: \ q_1(y_1) = \mathcal{N}(y_1;\mu_1-\Lambda_{1,1}^{-1}(\mathbb{E}_{y_2\sim q_2}[y_2] - \mu_2)\Lambda_{1,2},\Lambda_{1,1}^{-1}) \end{split}$$

$$p(y|\mathscr{D}) = \mathcal{N}(y; \mu, \Lambda^{-1})$$

- Mean-field assumption : $q(y) = q_1(y_1)q_2(y_2)$
- Optimal rules : for all $\ell = \{1, 2\}, q_{\ell}(y_{\ell}) \propto \exp\left(\mathbb{E}_{-\ell}[\log p(y, \mathcal{D})]\right)$ that is,

$$\begin{aligned} q_1(y_1) &\propto \exp\left(\mathbb{E}_{y_2 \sim q_2} \left[\log p(y|\mathscr{D})\right]\right) \\ q_2(y_2) &\propto \exp\left(\mathbb{E}_{y_1 \sim q_1} \left[\log p(y|\mathscr{D})\right]\right) \end{aligned}$$

Notation : $\mu=(\mu_1 \ \mu_2)$, $\Lambda=(\Lambda_{\ell,k})_{1\leqslant \ell,k\leqslant 2}$ with $\Lambda_{1,2}=\Lambda_{2,1}$

$$\log p(y|\mathscr{D}) = -\frac{1}{2} \left\{ (y_1 - \mu_1)^2 \Lambda_{1,1} + 2(y_1 - \mu_1)(y_2 - \mu_2) \Lambda_{1,2} + (y_2 - \mu_2)^2 \Lambda_{2,2} \right\} + c_{-y}$$

$$\begin{split} q_1(y_1) &\propto \exp\left(-\frac{1}{2}\left\{(y_1-\mu_1)^2\Lambda_{1,1} + 2(y_1-\mu_1)(\mathbb{E}_{y_2\sim q_2}\left[y_2\right] - \mu_2)\Lambda_{1,2}\right\}\right) \\ &\propto \exp\left(-\frac{1}{2}\left\{y_1^2\Lambda_{1,1} - 2y_1\left[\mu_1\Lambda_{1,1} - (\mathbb{E}_{y_2\sim q_2}[y_2] - \mu_2)\Lambda_{1,2}\right]\right\}\right) \\ &\text{o that}: \ q_1(y_1) = \mathcal{N}(y_1;\mu_1-\Lambda_{1,1}^{-1}(\mathbb{E}_{y_2\sim q_2}[y_2] - \mu_2)\Lambda_{1,2},\Lambda_{1,1}^{-1}) \end{split}$$

$$p(y|\mathscr{D}) = \mathcal{N}(y; \mu, \Lambda^{-1})$$

- Mean-field assumption : $q(y) = q_1(y_1)q_2(y_2)$
- Optimal rules : for all $\ell=\{1,2\}$, $q_\ell(y_\ell)\propto \exp\left(\mathbb{E}_{-\ell}[\log p(y,\mathscr{D})]\right)$ that is,

$$\begin{aligned} q_1(y_1) &\propto \exp\left(\mathbb{E}_{y_2 \sim q_2} \left[\log p(y|\mathscr{D})\right]\right) \\ q_2(y_2) &\propto \exp\left(\mathbb{E}_{y_1 \sim q_1} \left[\log p(y|\mathscr{D})\right]\right) \end{aligned}$$

$$\begin{split} \text{Notation}: \ & \mu = (\mu_1 \ \mu_2), \ \Lambda = (\Lambda_{\ell,k})_{1\leqslant \ell,k\leqslant 2} \text{ with } \Lambda_{1,2} = \Lambda_{2,1} \\ & \log p(y|\mathscr{D}) = -\frac{1}{2} \left\{ (y_1 - \mu_1)^2 \Lambda_{1,1} + 2(y_1 - \mu_1)(y_2 - \mu_2) \Lambda_{1,2} + (y_2 - \mu_2)^2 \Lambda_{2,2} \right\} + c_{-y} \end{split}$$

ightarrow Plugging this in the optimal rule.

$$\begin{split} q_1(y_1) &\propto \exp\left(-\frac{1}{2}\left\{(y_1-\mu_1)^2\Lambda_{1,1} + 2(y_1-\mu_1)(\mathbb{E}_{y_2\sim q_2}\left[y_2\right] - \mu_2)\Lambda_{1,2}\right\}\right) \\ &\propto \exp\left(-\frac{1}{2}\left\{y_1^2\Lambda_{1,1} - 2y_1\left[\mu_1\Lambda_{1,1} - (\mathbb{E}_{y_2\sim q_2}[y_2] - \mu_2)\Lambda_{1,2}\right]\right\}\right) \\ &\text{o that}: \ q_1(y_1) = \mathcal{N}(y_1;\mu_1-\Lambda_{1,1}^{-1}(\mathbb{E}_{y_2\sim q_2}[y_2] - \mu_2)\Lambda_{1,2},\Lambda_{1,1}^{-1}) \end{split}$$

$$p(y|\mathscr{D}) = \mathcal{N}(y; \mu, \Lambda^{-1})$$

- Mean-field assumption : $q(y) = q_1(y_1)q_2(y_2)$
- Optimal rules : for all $\ell=\{1,2\}$, $q_\ell(y_\ell)\propto \exp\left(\mathbb{E}_{-\ell}[\log p(y,\mathscr{D})]\right)$ that is,

$$\begin{aligned} q_1(y_1) &\propto \exp\left(\mathbb{E}_{y_2 \sim q_2} \left[\log p(y|\mathscr{D})\right]\right) \\ q_2(y_2) &\propto \exp\left(\mathbb{E}_{y_1 \sim q_1} \left[\log p(y|\mathscr{D})\right]\right) \end{aligned}$$

Notation : $\mu=(\mu_1\ \mu_2),\ \Lambda=(\Lambda_{\ell,k})_{1\leqslant \ell,k\leqslant 2}$ with $\Lambda_{1,2}=\Lambda_{2,1}$ $\log p(y|\mathscr{D})=-\frac{1}{2}\left\{(y_1-\mu_1)^2\Lambda_{1,1}+2(y_1-\mu_1)(y_2-\mu_2)\Lambda_{1,2}+(y_2-\mu_2)^2\Lambda_{2,2}\right\}+c_{-y}$

→ Plugging this in the optimal rule,

$$q_1(y_1) \propto \exp\left(-\frac{1}{2}\left\{(y_1 - \mu_1)^2 \Lambda_{1,1} + 2(y_1 - \mu_1)(\mathbb{E}_{y_2 \sim q_2}[y_2] - \mu_2)\Lambda_{1,2}\right\}\right)$$

$$\propto \exp\left(-\frac{1}{2}\left\{y_1^2 \Lambda_{1,1} - 2y_1\left[\mu_1 \Lambda_{1,1} - (\mathbb{E}_{y_2 \sim q_2}[y_2] - \mu_2)\Lambda_{1,2}\right]\right\}\right)$$
so that : $q_1(y_1) = \mathcal{N}(y_1; \mu_1 - \Lambda_{1,1}^{-1}(\mathbb{E}_{y_2 \sim q_2}[y_2] - \mu_2)\Lambda_{1,2}, \Lambda_{1,1}^{-1})$

$$p(y|\mathscr{D}) = \mathcal{N}(y; \mu, \Lambda^{-1})$$

- Mean-field assumption : $q(y) = q_1(y_1)q_2(y_2)$
- Optimal rules : for all $\ell=\{1,2\}$, $q_\ell(y_\ell)\propto \exp\left(\mathbb{E}_{-\ell}[\log p(y,\mathscr{D})]\right)$ that is,

$$\begin{aligned} q_1(y_1) &\propto \exp\left(\mathbb{E}_{y_2 \sim q_2} \left[\log p(y|\mathscr{D})\right]\right) \\ q_2(y_2) &\propto \exp\left(\mathbb{E}_{y_1 \sim q_1} \left[\log p(y|\mathscr{D})\right]\right) \end{aligned}$$

Notation : $\mu=(\mu_1\ \mu_2),\ \Lambda=(\Lambda_{\ell,k})_{1\leqslant \ell,k\leqslant 2}$ with $\Lambda_{1,2}=\Lambda_{2,1}$

$$\log p(y|\mathscr{D}) = -\frac{1}{2} \left\{ (y_1 - \mu_1)^2 \Lambda_{1,1} + 2(y_1 - \mu_1)(y_2 - \mu_2) \Lambda_{1,2} + (y_2 - \mu_2)^2 \Lambda_{2,2} \right\} + c_{-y}$$

→ Plugging this in the optimal rule,

$$q_1(y_1) \propto \exp\left(-\frac{1}{2}\left\{(y_1 - \mu_1)^2 \Lambda_{1,1} + 2(y_1 - \mu_1)(\mathbb{E}_{y_2 \sim q_2}[y_2] - \mu_2)\Lambda_{1,2}\right\}\right)$$

$$\propto \exp\left(-\frac{1}{2}\left\{y_1^2 \Lambda_{1,1} - 2y_1\left[\mu_1 \Lambda_{1,1} - (\mathbb{E}_{y_2 \sim q_2}[y_2] - \mu_2)\Lambda_{1,2}\right]\right\}\right)$$
or that $x : q_1(y_1) = \mathcal{N}(y_1; y_1 - \Lambda_{1,1}^{-1}(\mathbb{E}_{y_2 \sim q_2}[y_2] - \mu_2)\Lambda_{1,2})$

$$p(y|\mathcal{D}) = \mathcal{N}(y; \mu, \Lambda^{-1})$$

- Mean-field assumption : $q(y) = q_1(y_1)q_2(y_2)$
- Optimal rules : for all $\ell=\{1,2\}$, $q_\ell(y_\ell)\propto \exp\left(\mathbb{E}_{-\ell}[\log p(y,\mathscr{D})]\right)$ that is,

$$\begin{aligned} q_1(y_1) &\propto \exp\left(\mathbb{E}_{y_2 \sim q_2} \left[\log p(y|\mathscr{D})\right]\right) \\ q_2(y_2) &\propto \exp\left(\mathbb{E}_{y_1 \sim q_1} \left[\log p(y|\mathscr{D})\right]\right) \end{aligned}$$

Notation : $\mu=(\mu_1\ \mu_2),\ \Lambda=(\Lambda_{\ell,k})_{1\leqslant\ell,k\leqslant2}$ with $\Lambda_{1,2}=\Lambda_{2,1}$

$$\log p(y|\mathscr{D}) = -\frac{1}{2} \left\{ (y_1 - \mu_1)^2 \Lambda_{1,1} + 2(y_1 - \mu_1)(y_2 - \mu_2) \Lambda_{1,2} + (y_2 - \mu_2)^2 \Lambda_{2,2} \right\} + c_{-y}$$

→ Plugging this in the optimal rule,

$$\begin{split} q_1(y_1) &\propto \exp\left(-\frac{1}{2}\left\{(y_1-\mu_1)^2\Lambda_{1,1} + 2(y_1-\mu_1)(\mathbb{E}_{y_2\sim q_2}\left[y_2\right] - \mu_2)\Lambda_{1,2}\right\}\right) \\ &\propto \exp\left(-\frac{1}{2}\left\{y_1^2\Lambda_{1,1} - 2y_1\left[\mu_1\Lambda_{1,1} - (\mathbb{E}_{y_2\sim q_2}[y_2] - \mu_2)\Lambda_{1,2}\right]\right\}\right) \\ \text{so that}: \ q_1(y_1) &= \mathcal{N}(y_1;\mu_1-\Lambda_{1,1}^{-1}(\mathbb{E}_{y_2\sim q_2}[y_2] - \mu_2)\Lambda_{1,2},\Lambda_{1,1}^{-1}) \end{split}$$

$$p(y|\mathscr{D}) = \mathcal{N}(y; \mu, \Lambda^{-1})$$

Optimal updates:

$$\begin{split} q_1(y_1) &= \mathcal{N}(y_1; \mu_1 - \Lambda_{1,1}^{-1}(\mathbb{E}_{y_2 \sim q_2}[y_2] - \mu_2) \Lambda_{1,2}, \Lambda_{1,1}^{-1}) \\ q_2(y_2) &= \mathcal{N}(y_2; \mu_2 - \Lambda_{2,2}^{-1}(\mathbb{E}_{y_1 \sim q_1}[y_1] - \mu_1) \Lambda_{1,2}, \Lambda_{2,2}^{-1}) \end{split}$$

Setting $m_1=\mathbb{E}_{y_1\sim q_1}[y_1]$ and $m_2=\mathbb{E}_{y_2\sim q_2}[y_2]$, the CAVI algorithm alternates between :

$$m_1 \leftarrow \mu_1 - \Lambda_{1,1}^{-1}(m_2 - \mu_2)\Lambda_{1,2}$$

 $m_2 \leftarrow \mu_2 - \Lambda_{2,2}^{-1}(m_1 - \mu_1)\Lambda_{1,2}$

One stable fixed point : $(m_1, m_2) = (\mu_1, \mu_2)$ $\mu = (0 \ 0), \ \Lambda_{1,1} = \Lambda_{2,2} = 3 \ \text{and} \ \Lambda_{1,2} = -2.$

$$p(y|\mathscr{D}) = \mathcal{N}(y; \mu, \Lambda^{-1})$$

Optimal updates:

$$\begin{split} q_1(y_1) &= \mathcal{N}(y_1; \mu_1 - \Lambda_{1,1}^{-1}(\mathbb{E}_{y_2 \sim q_2}[y_2] - \mu_2) \Lambda_{1,2}, \Lambda_{1,1}^{-1}) \\ q_2(y_2) &= \mathcal{N}(y_2; \mu_2 - \Lambda_{2,2}^{-1}(\mathbb{E}_{y_1 \sim q_1}[y_1] - \mu_1) \Lambda_{1,2}, \Lambda_{2,2}^{-1}) \end{split}$$

Setting $m_1=\mathbb{E}_{y_1\sim q_1}[y_1]$ and $m_2=\mathbb{E}_{y_2\sim q_2}[y_2]$, the CAVI algorithm alternates between :

$$m_1 \leftarrow \mu_1 - \Lambda_{1,1}^{-1}(m_2 - \mu_2)\Lambda_{1,2}$$

$$m_2 \leftarrow \mu_2 - \Lambda_{2,2}^{-1}(m_1 - \mu_1)\Lambda_{1,2}$$

One stable fixed point : $(m_1, m_2) = (\mu_1, \mu_2)$ $\mu = (0 \ 0), \ \Lambda_{1,1} = \Lambda_{2,2} = 3 \ \text{and} \ \Lambda_{1,2} = -2.$

$$p(y|\mathscr{D}) = \mathcal{N}(y; \mu, \Lambda^{-1})$$

Optimal updates:

$$\begin{split} q_1(y_1) &= \mathcal{N}(y_1; \mu_1 - \Lambda_{1,1}^{-1}(\mathbb{E}_{y_2 \sim q_2}[y_2] - \mu_2)\Lambda_{1,2}, \Lambda_{1,1}^{-1}) \\ q_2(y_2) &= \mathcal{N}(y_2; \mu_2 - \Lambda_{2,2}^{-1}(\mathbb{E}_{y_1 \sim q_1}[y_1] - \mu_1)\Lambda_{1,2}, \Lambda_{2,2}^{-1}) \end{split}$$

Setting $m_1=\mathbb{E}_{y_1\sim q_1}[y_1]$ and $m_2=\mathbb{E}_{y_2\sim q_2}[y_2]$, the CAVI algorithm alternates between :

$$\begin{split} m_1 \leftarrow \mu_1 - \Lambda_{1,1}^{-1}(m_2 - \mu_2)\Lambda_{1,2} \\ m_2 \leftarrow \mu_2 - \Lambda_{2,2}^{-1}(m_1 - \mu_1)\Lambda_{1,2} \end{split}$$

One stable fixed point : $(m_1, m_2) = (\mu_1, \mu_2)$

$$\mu = (0 \ 0), \ \Lambda_{11} = \Lambda_{22} = 3 \ \text{and} \ \Lambda_{12} = -2.$$

$$p(y|\mathscr{D}) = \mathcal{N}(y; \mu, \Lambda^{-1})$$

Optimal updates:

$$\begin{split} q_1(y_1) &= \mathcal{N}(y_1; \mu_1 - \Lambda_{1,1}^{-1}(\mathbb{E}_{y_2 \sim q_2}[y_2] - \mu_2) \Lambda_{1,2}, \Lambda_{1,1}^{-1}) \\ q_2(y_2) &= \mathcal{N}(y_2; \mu_2 - \Lambda_{2,2}^{-1}(\mathbb{E}_{y_1 \sim q_1}[y_1] - \mu_1) \Lambda_{1,2}, \Lambda_{2,2}^{-1}) \end{split}$$

Setting $m_1=\mathbb{E}_{y_1\sim q_1}[y_1]$ and $m_2=\mathbb{E}_{y_2\sim q_2}[y_2]$, the CAVI algorithm alternates between :

$$m_1 \leftarrow \mu_1 - \Lambda_{1,1}^{-1}(m_2 - \mu_2)\Lambda_{1,2}$$

 $m_2 \leftarrow \mu_2 - \Lambda_{2,2}^{-1}(m_1 - \mu_1)\Lambda_{1,2}$

One stable fixed point : $(m_1, m_2) = (\mu_1, \mu_2)$ $\mu = (0 \ 0), \ \Lambda_{1,1} = \Lambda_{2,2} = 3 \ \text{and} \ \Lambda_{1,2} = -2.$

$$p(y|\mathscr{D}) = \mathcal{N}(y; \mu, \Lambda^{-1})$$

Optimal updates:

$$\begin{split} q_1(y_1) &= \mathcal{N}(y_1; \mu_1 - \Lambda_{1,1}^{-1}(\mathbb{E}_{y_2 \sim q_2}[y_2] - \mu_2)\Lambda_{1,2}, \Lambda_{1,1}^{-1}) \\ q_2(y_2) &= \mathcal{N}(y_2; \mu_2 - \Lambda_{2,2}^{-1}(\mathbb{E}_{y_1 \sim q_1}[y_1] - \mu_1)\Lambda_{1,2}, \Lambda_{2,2}^{-1}) \end{split}$$

Setting $m_1=\mathbb{E}_{y_1\sim q_1}[y_1]$ and $m_2=\mathbb{E}_{y_2\sim q_2}[y_2]$, the CAVI algorithm alternates between :

One stable fixed point : $(m_1, m_2) = (\mu_1, \mu_2)$ $\mu = (0\ 0), \ \Lambda_{1,1} = \Lambda_{2,2} = 3 \ \text{and} \ \Lambda_{1,2} = -2.$

-1.0

-1.0 -0.5 0.0 0.5 1.0

The approximative family Q can be too restrictive / the updates are model-specific.

2 The ELBO tends to underestimate the posterior variance.

The approximative family Q can be too restrictive / the updates are model-specific.

2 The ELBO tends to underestimate the posterior variance.

- The approximative family Q can be too restrictive / the updates are model-specific.
 - → Black-box Variational Inference

 Black Box Variational Inference. R. Ranganath et al. (2014). PMLR.
- **2** The ELBO tends to underestimate the posterior variance.

- The approximative family Q can be too restrictive / the updates are model-specific.
 - → Black-box Variational Inference

 Black Box Variational Inference. R. Ranganath et al. (2014). PMLR.
- 2 The ELBO tends to underestimate the posterior variance.
 - → Alpha-divergence Variational Inference

 Black-box alpha divergence minimization. J. Hernandez-Lobato et al. (2016). ICML

 Rényi divergence variational inference. Y. Li and R. E Turner. (2016). NeurIPS

 Variational inference via χ-upper bound minimization A. Dieng et al. (2017). NeurIPS

Outline

- 1 Introduction
- 2 Mean-field Variational Inference
- 3 Black-box Variational Inference
- 4 Alpha-divergence Variational Inference
- **5** Conclusion of Part 1

Idea of BBVI: Consider a parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform Gradient Ascent on the ELBO with a learning policy $(r_n)_{n\geqslant 1}$

$$\theta_{n+1} = \theta_n + r_n \nabla_{\theta} \mathsf{ELBO}(k(\theta, \cdot); \mathscr{D})|_{\theta = \theta_n}$$

We have that

$$\nabla_{\theta} \mathsf{ELBO}(k(\theta, \cdot); \mathcal{D})|_{\theta=\theta_{n}} = \nabla_{\theta} \left(\int_{\mathsf{Y}} k(\theta, y) \log \left(\frac{p(y, \mathcal{D})}{k(\theta, y)} \right) \nu(\mathrm{d}y) \right) \Big|_{\theta=\theta_{n}}$$

$$= -\int_{\mathsf{Y}} \frac{\partial}{\partial \theta} \left(\frac{k(\theta, y)}{p(y, \mathcal{D})} \log \left(\frac{k(\theta, y)}{p(y, \mathcal{D})} \right) \right) \Big|_{(\theta, y) = (\theta_{n}, y)} p(y, \mathcal{D}) \nu(\mathrm{d}y)$$

$$= -\int_{\mathsf{Y}} \left(\log \left(\frac{k(\theta_{n}, y)}{p(y, \mathcal{D})} \right) + 1 \right) \frac{\partial k(\theta, y)}{\partial \theta} \Big|_{(\theta, y) = (\theta_{n}, y)} \nu(\mathrm{d}y)$$

$$= \int_{\mathsf{Y}} k(\theta_{n}, y) \log \left(\frac{p(y, \mathcal{D})}{k(\theta_{n}, y)} \right) \frac{\partial \log k(\theta, y)}{\partial \theta} \Big|_{(\theta, y) = (\theta_{n}, y)} \nu(\mathrm{d}y) \quad \text{(REINFORCE)}$$

$$- \int_{\mathsf{Y}} \frac{\partial k(\theta, y)}{\partial \theta} \Big|_{(\theta, y) = (\theta_{n}, y)} \nu(\mathrm{d}y)$$

Idea of BBVI: Consider a parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform Gradient Ascent on the ELBO with a learning policy $(r_n)_{n\geq 1}$

$$\theta_{n+1} = \theta_n + r_n \nabla_{\theta} \mathsf{ELBO}(k(\theta, \cdot); \mathscr{D})|_{\theta = \theta_n}$$

We have that :

$$\begin{split} \nabla_{\theta} \mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} &= \nabla_{\theta} \left(\int_{\mathsf{Y}} k(\theta,y) \log \left(\frac{p(y,\mathscr{D})}{k(\theta,y)} \right) \nu(\mathrm{d}y) \right) \bigg|_{\theta=\theta_n} \\ &= - \int_{\mathsf{Y}} \frac{\partial}{\partial \theta} \left(\frac{k(\theta,y)}{p(y,\mathscr{D})} \log \left(\frac{k(\theta,y)}{p(y,\mathscr{D})} \right) \right) \bigg|_{(\theta,y)=(\theta_n,y)} p(y,\mathscr{D}) \nu(\mathrm{d}y) \\ &= - \int_{\mathsf{Y}} \left(\log \left(\frac{k(\theta_n,y)}{p(y,\mathscr{D})} \right) + 1 \right) \frac{\partial k(\theta,y)}{\partial \theta} \bigg|_{(\theta,y)=(\theta_n,y)} \nu(\mathrm{d}y) \\ &= \int_{\mathsf{Y}} k(\theta_n,y) \log \left(\frac{p(y,\mathscr{D})}{k(\theta_n,y)} \right) \frac{\partial \log k(\theta,y)}{\partial \theta} \bigg|_{(\theta,y)=(\theta_n,y)} \nu(\mathrm{d}y) \quad \text{(REINFORCE)} \\ &- \int_{\mathsf{Y}} \frac{\partial k(\theta,y)}{\partial \theta} \bigg|_{(\theta,y)=(\theta_n,y)} \nu(\mathrm{d}y) \end{split}$$

Idea of BBVI: Consider a parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform Gradient Ascent on the ELBO with a learning policy $(r_n)_{n\geqslant 1}$

$$\theta_{n+1} = \theta_n + r_n \nabla_{\theta} \mathsf{ELBO}(k(\theta, \cdot); \mathscr{D})|_{\theta = \theta_n}$$

We have that .

$$\begin{split} \nabla_{\theta} \mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} &= \nabla_{\theta} \left(\int_{\mathsf{Y}} k(\theta,y) \log \left(\frac{p(y,\mathscr{D})}{k(\theta,y)} \right) \nu(\mathrm{d}y) \right) \bigg|_{\theta=\theta_n} \\ &= - \int_{\mathsf{Y}} \frac{\partial}{\partial \theta} \left(\frac{k(\theta,y)}{p(y,\mathscr{D})} \log \left(\frac{k(\theta,y)}{p(y,\mathscr{D})} \right) \right) \bigg|_{(\theta,y)=(\theta_n,y)} p(y,\mathscr{D}) \nu(\mathrm{d}y) \\ &= - \int_{\mathsf{Y}} \left(\log \left(\frac{k(\theta_n,y)}{p(y,\mathscr{D})} \right) + 1 \right) \frac{\partial k(\theta,y)}{\partial \theta} \bigg|_{(\theta,y)=(\theta_n,y)} \nu(\mathrm{d}y) \\ &= \int_{\mathsf{Y}} k(\theta_n,y) \log \left(\frac{p(y,\mathscr{D})}{k(\theta_n,y)} \right) \frac{\partial \log k(\theta,y)}{\partial \theta} \bigg|_{(\theta,y)=(\theta_n,y)} \nu(\mathrm{d}y) \quad \text{(REINFORCE)} \\ &- \int \frac{\partial k(\theta,y)}{\partial \theta} \bigg|_{(\theta,y)=(\theta_n,y)} \nu(\mathrm{d}y) \end{split}$$

Idea of BBVI: Consider a parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform Gradient Ascent on the ELBO with a learning policy $(r_n)_{n\geqslant 1}$

$$\theta_{n+1} = \theta_n + r_n \nabla_{\theta} \mathsf{ELBO}(k(\theta, \cdot); \mathscr{D})|_{\theta = \theta_n}$$

We have that :

$$\begin{split} \nabla_{\theta} \mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} &= \nabla_{\theta} \left(\int_{\mathsf{Y}} k(\theta,y) \log \left(\frac{p(y,\mathscr{D})}{k(\theta,y)} \right) \nu(\mathrm{d}y) \right) \bigg|_{\theta=\theta_n} \\ &= - \int_{\mathsf{Y}} \frac{\partial}{\partial \theta} \left(\frac{k(\theta,y)}{p(y,\mathscr{D})} \log \left(\frac{k(\theta,y)}{p(y,\mathscr{D})} \right) \right) \bigg|_{(\theta,y)=(\theta_n,y)} p(y,\mathscr{D}) \nu(\mathrm{d}y) \\ &= - \int_{\mathsf{Y}} \left(\log \left(\frac{k(\theta_n,y)}{p(y,\mathscr{D})} \right) + 1 \right) \frac{\partial k(\theta,y)}{\partial \theta} \bigg|_{(\theta,y)=(\theta_n,y)} \nu(\mathrm{d}y) \\ &= \int_{\mathsf{Y}} k(\theta_n,y) \log \left(\frac{p(y,\mathscr{D})}{k(\theta_n,y)} \right) \frac{\partial \log k(\theta,y)}{\partial \theta} \bigg|_{(\theta,y)=(\theta_n,y)} \nu(\mathrm{d}y) \quad \text{(REINFORCE)} \\ &- \int_{\mathcal{D}} \frac{\partial k(\theta,y)}{\partial \theta} \bigg|_{(\theta,y)=(\theta_n,y)} \nu(\mathrm{d}y) \end{split}$$

Idea of BBVI: Consider a parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform Gradient Ascent on the ELBO with a learning policy $(r_n)_{n\geqslant 1}$

$$\theta_{n+1} = \theta_n + r_n \nabla_{\theta} \mathsf{ELBO}(k(\theta, \cdot); \mathscr{D})|_{\theta = \theta_n}$$

We have that :

$$\begin{split} \nabla_{\theta} \mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} &= \nabla_{\theta} \left(\int_{\mathbf{Y}} k(\theta,y) \log \left(\frac{p(y,\mathscr{D})}{k(\theta,y)} \right) \nu(\mathrm{d}y) \right) \bigg|_{\theta=\theta_n} \\ &= - \int_{\mathbf{Y}} \frac{\partial}{\partial \theta} \left(\frac{k(\theta,y)}{p(y,\mathscr{D})} \log \left(\frac{k(\theta,y)}{p(y,\mathscr{D})} \right) \right) \bigg|_{(\theta,y)=(\theta_n,y)} p(y,\mathscr{D}) \nu(\mathrm{d}y) \\ &= - \int_{\mathbf{Y}} \left(\log \left(\frac{k(\theta_n,y)}{p(y,\mathscr{D})} \right) + 1 \right) \frac{\partial k(\theta,y)}{\partial \theta} \bigg|_{(\theta,y)=(\theta_n,y)} \nu(\mathrm{d}y) \\ &= \int_{\mathbf{Y}} k(\theta_n,y) \log \left(\frac{p(y,\mathscr{D})}{k(\theta_n,y)} \right) \frac{\partial \log k(\theta,y)}{\partial \theta} \bigg|_{(\theta,y)=(\theta_n,y)} \nu(\mathrm{d}y) \quad \text{(REINFORCE)} \\ &- \int_{\mathbf{Y}} \frac{\partial k(\theta,y)}{\partial \theta} \bigg|_{(\theta,y)=(\theta_n,y)} \nu(\mathrm{d}y) \end{split}$$

Idea of BBVI: Consider a parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform Gradient Ascent on the ELBO with a learning policy $(r_n)_{n\geq 1}$

$$\theta_{n+1} = \theta_n + r_n \nabla_{\theta} \mathsf{ELBO}(k(\theta, \cdot); \mathscr{D})|_{\theta = \theta_n}$$

with

$$\nabla_{\theta}\mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} = \int_{\mathsf{Y}} k(\theta_n,y) \log \left(\frac{p(y,\mathscr{D})}{k(\theta_n,y)}\right) \left.\frac{\partial \log k(\theta,y)}{\partial \theta}\right|_{(\theta,y)=(\theta_n,y)} \nu(\mathrm{d}y)$$

1 Stochastic Gradient Ascent using the unbiased estimate

$$\hat{\nabla}_{\theta}\mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} = \frac{1}{M} \sum_{m=1}^{M} \log \left(\frac{p(Y_m,\mathscr{D})}{k(\theta_n,Y_m)} \right) \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_n,Y_m)}$$

- 2 Large-scale learning using mini-batching

Idea of BBVI: Consider a parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform Gradient Ascent on the ELBO with a learning policy $(r_n)_{n\geq 1}$

$$\theta_{n+1} = \theta_n + r_n \nabla_{\theta} \mathsf{ELBO}(k(\theta, \cdot); \mathscr{D})|_{\theta = \theta_n}$$

with

$$\nabla_{\theta}\mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} = \int_{\mathsf{Y}} k(\theta_n,y) \log \left(\frac{p(y,\mathscr{D})}{k(\theta_n,y)}\right) \frac{\partial \log k(\theta,y)}{\partial \theta} \bigg|_{(\theta,y)=(\theta_n,y)} \nu(\mathrm{d}y)$$

In practice...

1 Stochastic Gradient Ascent using the unbiased estimate

$$\hat{\nabla}_{\theta}\mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} = \frac{1}{M} \sum_{m=1}^{M} \log \left(\frac{p(Y_m,\mathscr{D})}{k(\theta_n,Y_m)} \right) \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_n,Y_m)}$$

- 2 Large-scale learning using mini-batching

Idea of BBVI: Consider a parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform Gradient Ascent on the ELBO with a learning policy $(r_n)_{n\geq 1}$

$$\theta_{n+1} = \theta_n + r_n \nabla_{\theta} \mathsf{ELBO}(k(\theta, \cdot); \mathcal{D})|_{\theta = \theta_n}$$

with

$$\nabla_{\theta}\mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} = \int_{\mathsf{Y}} k(\theta_n,y) \log \left(\frac{p(y,\mathscr{D})}{k(\theta_n,y)}\right) \left.\frac{\partial \log k(\theta,y)}{\partial \theta}\right|_{(\theta,y)=(\theta_n,y)} \nu(\mathrm{d}y)$$

In practice...

Stochastic Gradient Ascent using the unbiased estimate

$$\hat{\nabla}_{\theta}\mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} = \frac{1}{M} \sum_{m=1}^{M} \log \left(\frac{p(Y_m,\mathscr{D})}{k(\theta_n,Y_m)} \right) \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_n,Y_m)}$$

- 2 Large-scale learning using mini-batching
- \rightarrow convergence towards a **local** optimum of the ELBO $((r_n)_{n\geq 1}$ follows Robbins-Monro)

Idea of BBVI: Consider a parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform Gradient Ascent on the ELBO with a learning policy $(r_n)_{n\geq 1}$

$$\theta_{n+1} = \theta_n + r_n \nabla_{\theta} \mathsf{ELBO}(k(\theta, \cdot); \mathcal{D})|_{\theta = \theta_n}$$

with

$$\nabla_{\theta}\mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} = \int_{\mathsf{Y}} k(\theta_n,y) \log \left(\frac{p(y,\mathscr{D})}{k(\theta_n,y)}\right) \frac{\partial \log k(\theta,y)}{\partial \theta} \bigg|_{(\theta,y)=(\theta_n,y)} \nu(\mathrm{d}y)$$

In practice...

Stochastic Gradient Ascent using the unbiased estimate

$$\hat{\nabla}_{\theta}\mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} = \frac{1}{M} \sum_{m=1}^{M} \log \left(\frac{p(Y_m,\mathscr{D})}{k(\theta_n,Y_m)} \right) \frac{\partial \log k(\theta,y)}{\partial \theta} \bigg|_{(\theta,y)=(\theta_n,Y_m)}$$

where $Y_1, \ldots, Y_M : M$ i.i.d. samples generated from $k(\theta_n, \cdot)$

2 Large-scale learning using mini-batching

Idea of BBVI: Consider a parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform Gradient Ascent on the ELBO with a learning policy $(r_n)_{n\geq 1}$

$$\theta_{n+1} = \theta_n + r_n \nabla_{\theta} \mathsf{ELBO}(k(\theta, \cdot); \mathscr{D})|_{\theta = \theta_n}$$

with

$$\nabla_{\theta}\mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} = \int_{\mathsf{Y}} k(\theta_n,y) \log \left(\frac{p(y,\mathscr{D})}{k(\theta_n,y)}\right) \frac{\partial \log k(\theta,y)}{\partial \theta} \bigg|_{(\theta,y)=(\theta_n,y)} \nu(\mathrm{d}y)$$

In practice...

Stochastic Gradient Ascent using the unbiased estimate

$$\hat{\nabla}_{\theta}\mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} = \frac{1}{M} \sum_{m=1}^{M} \log \left(\frac{p(Y_m,\mathscr{D})}{k(\theta_n,Y_m)} \right) \frac{\partial \log k(\theta,y)}{\partial \theta} \bigg|_{(\theta,y)=(\theta_n,Y_m)}$$

where $Y_1, \ldots, Y_M : M$ i.i.d. samples generated from $k(\theta_n, \cdot)$

2 Large-scale learning using mini-batching

 \rightarrow convergence towards a **local** optimum of the ELBO $((r_n)_{n\geq 1}$ follows Robbins-Monro)

In short, BBVI resorts to Stochastic Gradient Ascent on the ELBO

- The updates are not model-specific ("Black-box")
- Q: parametric family

$$Q = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

Uses the unbiased estimator

$$\hat{\nabla}_{\theta} \mathsf{ELBO}(k(\theta, \cdot); \mathscr{D}) |_{\theta = \theta_n} = \frac{1}{M} \sum_{m=1}^{M} \log \left(\frac{p(Y_m, \mathscr{D})}{k(\theta_n, Y_m)} \right) \left. \frac{\partial \log k(\theta, y)}{\partial \theta} \right|_{(\theta, y) = (\theta_n, Y_m)}$$

- - Rao-blackwellisation
 - Reparameterisation (used in VAEs)
 - Control variates
 - Quasi-Monte Carlo methods
 - ... This is an active area of research!
- (2) $Y_1 \sim k(\theta_n, \cdot)$ with $p(Y_1, \mathcal{D}) = 0$ makes the gradient blow up...

In short, BBVI resorts to Stochastic Gradient Ascent on the ELBO

- The updates are not model-specific ("Black-box")
- Q: parametric family

$$Q = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

Uses the unbiased estimator

$$\hat{\nabla}_{\theta} \mathsf{ELBO}(k(\theta, \cdot); \mathscr{D}) |_{\theta = \theta_n} = \frac{1}{M} \sum_{m=1}^{M} \log \left(\frac{p(Y_m, \mathscr{D})}{k(\theta_n, Y_m)} \right) \left. \frac{\partial \log k(\theta, y)}{\partial \theta} \right|_{(\theta, y) = (\theta_n, Y_m)}$$

- - Rao-blackwellisation
 - Reparameterisation (used in VAEs)
 - Control variates
 - Quasi-Monte Carlo methods
 - ... This is an active area of research!
- (2) $Y_1 \sim k(\theta_n, \cdot)$ with $p(Y_1, \mathcal{D}) = 0$ makes the gradient blow up...

In short, BBVI resorts to Stochastic Gradient Ascent on the ELBO

- The updates are not model-specific ("Black-box")
- Q: parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

Uses the unbiased estimator

$$\hat{\nabla}_{\theta} \mathsf{ELBO}(k(\theta, \cdot); \mathscr{D})|_{\theta = \theta_n} = \frac{1}{M} \sum_{m=1}^{M} \log \left(\frac{p(Y_m, \mathscr{D})}{k(\theta_n, Y_m)} \right) \left. \frac{\partial \log k(\theta, y)}{\partial \theta} \right|_{(\theta, y) = (\theta_n, Y_m)}$$

- - Rao-blackwellisation
 - Reparameterisation (used in VAEs)
 - Control variates
 - Quasi-Monte Carlo methods
 - ... This is an active area of research!
- (2) $Y_1 \sim k(\theta_n, \cdot)$ with $p(Y_1, \mathcal{D}) = 0$ makes the gradient blow up...

In short, BBVI resorts to Stochastic Gradient Ascent on the ELBO

- The updates are not model-specific ("Black-box")
- Q : parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

Uses the unbiased estimator

$$\hat{\nabla}_{\theta}\mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} = \frac{1}{M} \sum_{m=1}^{M} \log \left(\frac{p(Y_m,\mathscr{D})}{k(\theta_n,Y_m)} \right) \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_n,Y_m)}$$

- - Rao-blackwellisation
 - Reparameterisation (used in VAEs)
 - Control variates
 - Quasi-Monte Carlo methods
 - ... This is an active area of research!
- (2) $Y_1 \sim k(\theta_n, \cdot)$ with $p(Y_1, \mathcal{D}) = 0$ makes the gradient blow up...

In short, BBVI resorts to Stochastic Gradient Ascent on the ELBO

- The updates are not model-specific ("Black-box")
- Q: parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

Uses the unbiased estimator

$$\hat{\nabla}_{\theta}\mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} = \frac{1}{M} \sum_{m=1}^{M} \log \left(\frac{p(Y_m,\mathscr{D})}{k(\theta_n,Y_m)} \right) \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_n,Y_m)}$$

- 1 The variance of the gradient estimators is an issue :
 - Rao-blackwellisation
 - Reparameterisation (used in VAEs)
 - Control variates
 - Quasi-Monte Carlo methods
 - ... This is an active area of research!
- (2) $Y_1 \sim k(\theta_n, \cdot)$ with $p(Y_1, \mathcal{D}) = 0$ makes the gradient blow up...

In short, BBVI resorts to Stochastic Gradient Ascent on the ELBO

- The updates are not model-specific ("Black-box")
- Q: parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

Uses the unbiased estimator

$$\hat{\nabla}_{\theta}\mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} = \frac{1}{M} \sum_{m=1}^{M} \log \left(\frac{p(Y_m,\mathscr{D})}{k(\theta_n,Y_m)} \right) \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_n,Y_m)}$$

- 1 The variance of the gradient estimators is an issue :
 - Rao-blackwellisation
 - Reparameterisation (used in VAEs)
 - Control variates
 - Quasi-Monte Carlo methods
 - ... This is an active area of research!
- (2) $Y_1 \sim k(\theta_n, \cdot)$ with $p(Y_1, \mathcal{D}) = 0$ makes the gradient blow up...

In short, BBVI resorts to Stochastic Gradient Ascent on the ELBO

- The updates are not model-specific ("Black-box")
- Q: parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

Uses the unbiased estimator

$$\hat{\nabla}_{\theta}\mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} = \frac{1}{M} \sum_{m=1}^{M} \log \left(\frac{p(Y_m,\mathscr{D})}{k(\theta_n,Y_m)} \right) \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_n,Y_m)}$$

- 1 The variance of the gradient estimators is an issue :
 - Rao-blackwellisation
 - Reparameterisation (used in VAEs)
 - Control variates
 - Quasi-Monte Carlo methods
 - ... This is an active area of research!
- (2) $Y_1 \sim k(\theta_n, \cdot)$ with $p(Y_1, \mathcal{D}) = 0$ makes the gradient blow up...

In short, BBVI resorts to Stochastic Gradient Ascent on the ELBO

- The updates are not model-specific ("Black-box")
- Q: parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

Uses the unbiased estimator

$$\hat{\nabla}_{\theta}\mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} = \frac{1}{M} \sum_{m=1}^{M} \log \left(\frac{p(Y_m,\mathscr{D})}{k(\theta_n,Y_m)} \right) \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_n,Y_m)}$$

- 1 The variance of the gradient estimators is an issue :
 - Rao-blackwellisation
 - Reparameterisation (used in VAEs)
 - Control variates
 - Quasi-Monte Carlo methods
 - ... This is an active area of research!
- (2) $Y_1 \sim k(\theta_n, \cdot)$ with $p(Y_1, \mathcal{D}) = 0$ makes the gradient blow up...

In short, BBVI resorts to Stochastic Gradient Ascent on the ELBO

- The updates are not model-specific ("Black-box")
- Q: parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

Uses the unbiased estimator

$$\hat{\nabla}_{\theta}\mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} = \frac{1}{M} \sum_{m=1}^{M} \log \left(\frac{p(Y_m,\mathscr{D})}{k(\theta_n,Y_m)} \right) \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_n,Y_m)}$$

- 1 The variance of the gradient estimators is an issue :
 - Rao-blackwellisation
 - Reparameterisation (used in VAEs)
 - Control variates
 - Quasi-Monte Carlo methods
 - ... This is an active area of research!
- (2) $Y_1 \sim k(\theta_n, \cdot)$ with $p(Y_1, \mathcal{D}) = 0$ makes the gradient blow up...

In short, BBVI resorts to Stochastic Gradient Ascent on the ELBO

- The updates are not model-specific ("Black-box")
- Q: parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

Uses the unbiased estimator

$$\hat{\nabla}_{\theta}\mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} = \frac{1}{M} \sum_{m=1}^{M} \log \left(\frac{p(Y_m,\mathscr{D})}{k(\theta_n,Y_m)} \right) \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_n,Y_m)}$$

- 1 The variance of the gradient estimators is an issue :
 - Rao-blackwellisation
 - Reparameterisation (used in VAEs)
 - Control variates
 - Quasi-Monte Carlo methods
 - ... This is an active area of research!
- (2) $Y_1 \sim k(\theta_n, \cdot)$ with $p(Y_1, \mathcal{D}) = 0$ makes the gradient blow up...

In short, BBVI resorts to Stochastic Gradient Ascent on the ELBO

- The updates are not model-specific ("Black-box")
- Q: parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

Uses the unbiased estimator

$$\hat{\nabla}_{\theta}\mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} = \frac{1}{M} \sum_{m=1}^{M} \log \left(\frac{p(Y_m,\mathscr{D})}{k(\theta_n,Y_m)} \right) \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_n,Y_m)}$$

- 1 The variance of the gradient estimators is an issue :
 - Rao-blackwellisation
 - Reparameterisation (used in VAEs)
 - Control variates
 - Quasi-Monte Carlo methods
 - ... This is an active area of research!
- **2** $Y_1 \sim k(\theta_n, \cdot)$ with $p(Y_1, \mathcal{D}) = 0$ makes the gradient blow up...

In short, BBVI resorts to Stochastic Gradient Ascent on the ELBO

- The updates are not model-specific ("Black-box")
- Q: parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

Uses the unbiased estimator

$$\hat{\nabla}_{\theta}\mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} = \frac{1}{M} \sum_{m=1}^{M} \log \left(\frac{p(Y_m,\mathscr{D})}{k(\theta_n,Y_m)} \right) \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_n,Y_m)}$$

- 1 The variance of the gradient estimators is an issue :
 - Rao-blackwellisation
 - Reparameterisation (used in VAEs)
 - Control variates
 - Quasi-Monte Carlo methods
 - ... This is an active area of research!
- **2** $Y_1 \sim k(\theta_n, \cdot)$ with $p(Y_1, \mathcal{D}) = 0$ makes the gradient blow up... \rightarrow the ELBO enforces $\operatorname{supp}(k(\theta_n,\cdot)) \subseteq \operatorname{supp}(p(\cdot|\mathscr{D}))$ "zero-forcing"

In short, BBVI resorts to Stochastic Gradient Ascent on the ELBO

- The updates are not model-specific ("Black-box")
- Q : parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

Uses the unbiased estimator

$$\hat{\nabla}_{\theta}\mathsf{ELBO}(k(\theta,\cdot);\mathscr{D})|_{\theta=\theta_n} = \frac{1}{M} \sum_{m=1}^{M} \log \left(\frac{p(Y_m,\mathscr{D})}{k(\theta_n,Y_m)} \right) \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_n,Y_m)}$$

- 1 The variance of the gradient estimators is an issue :
 - Rao-blackwellisation
 - Reparameterisation (used in VAEs)
 - Control variates
 - Quasi-Monte Carlo methods
 - ... This is an active area of research!
- **②** $Y_1 \sim k(\theta_n, \cdot)$ with $p(Y_1, \mathscr{D}) = 0$ makes the gradient blow up... \rightarrow the ELBO enforces $\operatorname{supp}(k(\theta_n, \cdot)) \subseteq \operatorname{supp}(p(\cdot|\mathscr{D}))$ "zero-forcing"

Outline

- 1 Introduction
- 2 Mean-field Variational Inference
- 3 Black-box Variational Inference
- 4 Alpha-divergence Variational Inference
- **6** Conclusion of Part 1

 $\begin{array}{l} (\mathsf{Y},\mathcal{Y},\nu): \text{ measured space, } \nu \text{ is a } \sigma\text{-finite measure on } (\mathsf{Y},\mathcal{Y}). \\ \mathbb{Q} \text{ and } \mathbb{P}_{|\mathscr{D}}: \mathbb{Q} \preceq \nu \text{, } \mathbb{P}_{|\mathscr{D}} \preceq \nu \text{ with } \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu} = q, \frac{\mathrm{d}\mathbb{P}_{|\mathscr{D}}}{\mathrm{d}\nu} = p(\cdot|\mathscr{D}) \end{array}$

Alpha-divergence between \mathbb{Q} and $\mathbb{P}_{|\mathscr{D}|}$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) = \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y|\mathscr{D})}\right) p(y|\mathscr{D}) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha}(u) = \frac{1}{\alpha(\alpha - 1)} [u^{\alpha} - 1 - \alpha(u - 1)], \quad \alpha \in \mathbb{R} \setminus \{0, 1\}$$

 $\begin{array}{l} (\mathsf{Y},\mathcal{Y},\nu): \text{ measured space, } \nu \text{ is a } \sigma\text{-finite measure on } (\mathsf{Y},\mathcal{Y}). \\ \mathbb{Q} \text{ and } \mathbb{P}_{|\mathscr{D}}: \mathbb{Q} \preceq \nu \text{, } \mathbb{P}_{|\mathscr{D}} \preceq \nu \text{ with } \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu} = q, \frac{\mathrm{d}\mathbb{P}_{|\mathscr{D}}}{\mathrm{d}\nu} = p(\cdot|\mathscr{D}) \end{array}$

Alpha-divergence between $\mathbb Q$ and $\mathbb P_{|\mathscr D}$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) = \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y|\mathscr{D})}\right) p(y|\mathscr{D}) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha}(u) = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL)}, \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL)}. \end{cases}$$

 $\begin{array}{l} (\mathsf{Y},\mathcal{Y},\nu): \text{ measured space, } \nu \text{ is a } \sigma\text{-finite measure on } (\mathsf{Y},\mathcal{Y}). \\ \mathbb{Q} \text{ and } \mathbb{P}_{|\mathscr{D}}: \mathbb{Q} \preceq \nu \text{, } \mathbb{P}_{|\mathscr{D}} \preceq \nu \text{ with } \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu} = q, \frac{\mathrm{d}\mathbb{P}_{|\mathscr{D}}}{\mathrm{d}\nu} = p(\cdot|\mathscr{D}) \end{array}$

Alpha-divergence between $\mathbb Q$ and $\mathbb P_{|\mathscr D}$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y|\mathscr{D})}\right) p(y|\mathscr{D}) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha}(u) = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL)}, \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL)}. \end{cases}$$

A flexible family of divergences...

Figure: In red, the Gaussian which minimises $D_{\alpha}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$ for a varying α

Adapted from V. Cevher's lecture notes (2008) https://www.ece.rice.edu/~vc3/elec633/AlphaDivergence.pdf

 $\begin{array}{l} (\mathsf{Y},\mathcal{Y},\nu): \text{ measured space, } \nu \text{ is a } \sigma\text{-finite measure on } (\mathsf{Y},\mathcal{Y}). \\ \mathbb{Q} \text{ and } \mathbb{P}_{|\mathscr{D}}: \mathbb{Q} \preceq \nu \text{, } \mathbb{P}_{|\mathscr{D}} \preceq \nu \text{ with } \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu} = q, \ \frac{\mathrm{d}\mathbb{P}_{|\mathscr{D}}}{\mathrm{d}\nu} = p(\cdot|\mathscr{D}) \end{array}$

Alpha-divergence between $\mathbb Q$ and $\mathbb P_{|\mathscr D}$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) = \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y|\mathscr{D})}\right) p(y|\mathscr{D}) \nu(\mathrm{d}y) ,$$

where

$$f_{\alpha}(u) = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL)}, \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL)}. \end{cases}$$

• A flexible family of divergences...

Figure: Optimal mean-field approximation for a varying α (BLR revisited)

$$\begin{array}{l} (\mathsf{Y},\mathcal{Y},\nu): \text{ measured space, } \nu \text{ is a } \sigma\text{-finite measure on } (\mathsf{Y},\mathcal{Y}). \\ \mathbb{Q} \text{ and } \mathbb{P}_{|\mathscr{D}}: \mathbb{Q} \preceq \nu \text{, } \mathbb{P}_{|\mathscr{D}} \preceq \nu \text{ with } \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu} = q, \frac{\mathrm{d}\mathbb{P}_{|\mathscr{D}}}{\mathrm{d}\nu} = p(\cdot|\mathscr{D}) \end{array}$$

Alpha-divergence between \mathbb{Q} and $\mathbb{P}_{|\mathscr{D}|}$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) = \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y|\mathscr{D})}\right) p(y|\mathscr{D}) \nu(\mathrm{d}y) \;,$$

where

$$f_{\alpha}(u) = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL)}, \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL)}. \end{cases}$$

- A flexible family of divergences...
- 2 ...suitable for Variational Inference purposes...

$$\begin{split} \inf_{q \in \mathcal{Q}} D_{\alpha}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) &\Leftrightarrow \inf_{q \in \mathcal{Q}} \Psi_{\alpha}(q;p) \\ \text{with } \Psi_{\alpha}(q;p) &= \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) \text{ and } p = p(\cdot,\mathscr{D}) \end{split}$$

3 ...with good convexity properties : f_{α} is convex!

 $\begin{array}{l} (\mathsf{Y},\mathcal{Y},\nu): \text{ measured space, } \nu \text{ is a } \sigma\text{-finite measure on } (\mathsf{Y},\mathcal{Y}). \\ \mathbb{Q} \text{ and } \mathbb{P}_{|\mathscr{D}}: \mathbb{Q} \preceq \nu \text{, } \mathbb{P}_{|\mathscr{D}} \preceq \nu \text{ with } \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu} = q, \ \frac{\mathrm{d}\mathbb{P}_{|\mathscr{D}}}{\mathrm{d}\nu} = p(\cdot|\mathscr{D}) \end{array}$

Alpha-divergence between \mathbb{Q} and $\mathbb{P}_{|\mathscr{D}|}$

$$D_{\alpha}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) = \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y|\mathscr{D})}\right) p(y|\mathscr{D}) \nu(\mathrm{d}y) \;,$$

where

$$f_{\alpha}(u) = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL)}, \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL)}. \end{cases}$$

- A flexible family of divergences...
- 2 ...suitable for Variational Inference purposes...

$$\begin{split} \inf_{q \in \mathcal{Q}} D_{\alpha}(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}}) &\Leftrightarrow \inf_{q \in \mathcal{Q}} \Psi_{\alpha}(q;p) \\ \text{with } \Psi_{\alpha}(q;p) &= \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) \text{ and } p = p(\cdot,\mathscr{D}) \end{split}$$

3 ...with good convexity properties : f_{α} is convex!

Consider a parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform **Gradient Descent** on $\Psi_{\alpha}(k(\theta,\cdot);p)$

We have that : for all $\alpha\in\mathbb{R}\setminus\{1\}$, $f'_{\alpha}(u)=\frac{1}{\alpha-1}\left[u^{\alpha-1}-1\right]$ and

$$\nabla_{\theta} \Psi_{\alpha}(k(\theta, \cdot); p)|_{\theta = \theta_{n}} = \nabla_{\theta} \left(\int_{\mathbf{Y}} f_{\alpha} \left(\frac{k(\theta, y)}{p(y)} \right) p(y) \nu(\mathrm{d}y) \right) \Big|_{\theta = \theta_{n}}$$

$$= \dots$$

$$= \int_{\mathbf{Y}} \frac{k(\theta_{n}, y)^{\alpha} p(y)^{1-\alpha}}{\alpha - 1} \left. \frac{\partial \log k(\theta, y)}{\partial \theta} \right|_{(\theta, y) = (\theta_{n}, y)} \nu(\mathrm{d}y)$$

$$\approx \frac{1}{M} \sum_{\alpha} \frac{k(\theta_{n}, Y_{m})^{\alpha - 1} p(Y_{m})^{1-\alpha}}{\alpha - 1} \left. \frac{\partial \log k(\theta, y)}{\partial \theta} \right|_{(\theta, y) = (\theta_{n}, y)} \nu(\mathrm{d}y)$$

In practice : **Stochastic** Gradient Descent using $k(\theta_n, \cdot)$ as a sampler + Mini-batching + Reparameterisation.

Consider a parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform **Gradient Descent** on $\Psi_{\alpha}(k(\theta,\cdot);p)$

We have that : for all $\alpha\in\mathbb{R}\setminus\{1\}$, $f'_{\alpha}(u)=\frac{1}{\alpha-1}\left[u^{\alpha-1}-1\right]$ and

$$\nabla_{\theta} \Psi_{\alpha}(k(\theta, \cdot); p)|_{\theta = \theta_{n}} = \nabla_{\theta} \left(\int_{\mathbf{Y}} f_{\alpha} \left(\frac{k(\theta, y)}{p(y)} \right) p(y) \nu(\mathrm{d}y) \right) \Big|_{\theta = \theta_{n}}$$

$$= \dots$$

$$= \int_{\mathbf{Y}} \frac{k(\theta_{n}, y)^{\alpha} p(y)^{1-\alpha}}{\alpha - 1} \frac{\partial \log k(\theta, y)}{\partial \theta} \Big|_{(\theta, y) = (\theta_{n}, y)} \nu(\mathrm{d}y)$$

$$\approx \frac{1}{M} \sum_{m=1}^{M} \frac{k(\theta_{n}, Y_{m})^{\alpha - 1} p(Y_{m})^{1-\alpha}}{\alpha - 1} \frac{\partial \log k(\theta, y)}{\partial \theta} \Big|_{(\theta, y) = (\theta_{n}, Y_{m})}$$

In practice : **Stochastic** Gradient Descent using $k(\theta_n, \cdot)$ as a sampler + Mini-batching + Reparameterisation.

Consider a parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform **Gradient Descent** on $\Psi_{\alpha}(k(\theta,\cdot);p)$

We have that : for all $\alpha\in\mathbb{R}\setminus\{1\}$, $f'_{\alpha}(u)=\frac{1}{\alpha-1}\left[u^{\alpha-1}-1\right]$ and

$$\nabla_{\theta} \Psi_{\alpha}(k(\theta, \cdot); p)|_{\theta = \theta_{n}} = \nabla_{\theta} \left(\int_{\mathbf{Y}} f_{\alpha} \left(\frac{k(\theta, y)}{p(y)} \right) p(y) \nu(\mathrm{d}y) \right) \Big|_{\theta = \theta_{n}}$$

$$= \dots$$

$$= \int_{\mathbf{Y}} \frac{k(\theta_{n}, y)^{\alpha} p(y)^{1-\alpha}}{\alpha - 1} \left. \frac{\partial \log k(\theta, y)}{\partial \theta} \right|_{(\theta, y) = (\theta_{n}, y)} \nu(\mathrm{d}y)$$

$$\approx \frac{1}{M} \sum_{m=1}^{M} \frac{k(\theta_{n}, Y_{m})^{\alpha - 1} p(Y_{m})^{1-\alpha}}{\alpha - 1} \left. \frac{\partial \log k(\theta, y)}{\partial \theta} \right|_{(\theta, y) = (\theta_{n}, Y_{m})}$$

In practice : **Stochastic** Gradient Descent using $k(\theta_n, \cdot)$ as a sampler + Mini-batching + Reparameterisation.

Consider a parametric family

$$Q = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform **Gradient Descent** on $\Psi_{\alpha}(k(\theta,\cdot);p)$

We have that : for all $\alpha\in\mathbb{R}\setminus\{1\}$, $f'_{\alpha}(u)=\frac{1}{\alpha-1}\left[u^{\alpha-1}-1\right]$ and

$$\begin{split} \nabla_{\theta} \Psi_{\alpha}(k(\theta,\cdot);p)|_{\theta=\theta_{n}} &= \nabla_{\theta} \left(\int_{\mathsf{Y}} f_{\alpha} \left(\frac{k(\theta,y)}{p(y)} \right) p(y) \nu(\mathrm{d}y) \right) \bigg|_{\theta=\theta_{n}} \\ &= \dots \\ &= \int_{\mathsf{Y}} \frac{k(\theta_{n},y)^{\alpha} p(y)^{1-\alpha}}{\alpha-1} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_{n},y)} \nu(\mathrm{d}y) \\ &\approx \frac{1}{M} \sum_{m=1}^{M} \frac{k(\theta_{n},Y_{m})^{\alpha-1} p(Y_{m})^{1-\alpha}}{\alpha-1} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_{n},Y_{m})} \end{split}$$

In practice : Stochastic Gradient Descent using $k(\theta_n,\cdot)$ as a sampler + Mini-batching + Reparameterisation.

Consider a parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform **Gradient Descent** on $\Psi_{\alpha}(k(\theta,\cdot);p)$

We have that : for all $\alpha\in\mathbb{R}\setminus\{1\}$, $f'_{\alpha}(u)=\frac{1}{\alpha-1}\left[u^{\alpha-1}-1\right]$ and

$$\begin{split} \nabla_{\theta} \Psi_{\alpha}(k(\theta,\cdot);p)|_{\theta=\theta_{n}} &= \nabla_{\theta} \left(\int_{\mathsf{Y}} f_{\alpha} \left(\frac{k(\theta,y)}{p(y)} \right) p(y) \nu(\mathrm{d}y) \right) \bigg|_{\theta=\theta_{n}} \\ &= \dots \\ &= \int_{\mathsf{Y}} \frac{k(\theta_{n},y)^{\alpha} p(y)^{1-\alpha}}{\alpha-1} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_{n},y)} \nu(\mathrm{d}y) \\ &\approx \frac{1}{M} \sum_{m=1}^{M} \frac{k(\theta_{n},Y_{m})^{\alpha-1} p(Y_{m})^{1-\alpha}}{\alpha-1} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_{n},Y_{m})} \end{split}$$

In practice : **Stochastic** Gradient Descent using $k(\theta_n, \cdot)$ as a sampler + Mini-batching + Reparameterisation.

Consider a parametric family

$$Q = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform **Gradient Descent** on $\Psi_{\alpha}(k(\theta,\cdot);p)$

We have that : for all $\alpha\in\mathbb{R}\setminus\{1\}$, $f'_{\alpha}(u)=\frac{1}{\alpha-1}\left[u^{\alpha-1}-1\right]$ and

$$\begin{split} \nabla_{\theta} \Psi_{\alpha}(k(\theta,\cdot);p)|_{\theta=\theta_{n}} &= \nabla_{\theta} \left(\int_{\mathbf{Y}} f_{\alpha} \left(\frac{k(\theta,y)}{p(y)} \right) p(y) \nu(\mathrm{d}y) \right) \bigg|_{\theta=\theta_{n}} \\ &= \dots \\ &= \int_{\mathbf{Y}} \frac{k(\theta_{n},y)^{\alpha} p(y)^{1-\alpha}}{\alpha-1} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_{n},y)} \nu(\mathrm{d}y) \\ &\approx \frac{1}{M} \sum_{m=1}^{M} \frac{k(\theta_{n},Y_{m})^{\alpha-1} p(Y_{m})^{1-\alpha}}{\alpha-1} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_{n},Y_{m})} \end{split}$$

In practice : **Stochastic** Gradient Descent using $k(\theta_n, \cdot)$ as a sampler + Mini-batching + Reparameterisation.

Consider a parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform **Gradient Descent** on $\Psi_{\alpha}(k(\theta,\cdot);p)$

We have that : for all $\alpha\in\mathbb{R}\setminus\{1\}$, $f'_{\alpha}(u)=\frac{1}{\alpha-1}\left[u^{\alpha-1}-1\right]$ and

$$\begin{split} \nabla_{\theta} \Psi_{\alpha}(k(\theta,\cdot);p)|_{\theta=\theta_{n}} &= \nabla_{\theta} \left(\int_{\mathbf{Y}} f_{\alpha} \left(\frac{k(\theta,y)}{p(y)} \right) p(y) \nu(\mathrm{d}y) \right) \bigg|_{\theta=\theta_{n}} \\ &= \dots \\ &= \int_{\mathbf{Y}} \frac{k(\theta_{n},y)^{\alpha} p(y)^{1-\alpha}}{\alpha-1} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_{n},y)} \nu(\mathrm{d}y) \\ &\approx \frac{1}{M} \sum_{m=1}^{M} \frac{k(\theta_{n},Y_{m})^{\alpha-1} p(Y_{m})^{1-\alpha}}{\alpha-1} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_{n},Y_{m})} \end{split}$$

In practice : **Stochastic** Gradient Descent using $k(\theta_n, \cdot)$ as a sampler + Mini-batching + Reparameterisation.

Consider a parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform **Gradient Descent** on $\Psi_{\alpha}(k(\theta,\cdot);p)$

We have that : for all $\alpha\in\mathbb{R}\setminus\{1\}$, $f'_{\alpha}(u)=\frac{1}{\alpha-1}\left[u^{\alpha-1}-1\right]$ and

$$\begin{split} \nabla_{\theta} \Psi_{\alpha}(k(\theta,\cdot);p)|_{\theta=\theta_{n}} &= \nabla_{\theta} \left(\int_{\mathsf{Y}} f_{\alpha} \left(\frac{k(\theta,y)}{p(y)} \right) p(y) \nu(\mathrm{d}y) \right) \bigg|_{\theta=\theta_{n}} \\ &= \dots \\ &= \int_{\mathsf{Y}} \frac{k(\theta_{n},y)^{\alpha} p(y)^{1-\alpha}}{\alpha-1} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_{n},y)} \nu(\mathrm{d}y) \\ &\approx \frac{1}{M} \sum_{m=1}^{M} \frac{k(\theta_{n},Y_{m})^{\alpha-1} p(Y_{m})^{1-\alpha}}{\alpha-1} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_{n},Y_{m})} \end{split}$$

In practice : **Stochastic** Gradient Descent using $k(\theta_n,\cdot)$ as a sampler + Mini-batching + Reparameterisation.

Consider a parametric family

$$Q = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform **Gradient Ascent** on the VR bound : for all $\alpha \in \mathbb{R} \setminus \{1\}$

$$\mathcal{L}_{\alpha}(k(\theta,\cdot);p) = \frac{1}{1-\alpha} \log \left(\int_{Y} k(\theta,y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y) \right)$$

ightarrow derived from Rényi's lpha-divergence, linked to the lpha-divergence.

$$\nabla_{\theta} \mathcal{L}_{\alpha}(k(\theta, \cdot); p)|_{\theta = \theta_{n}} = \frac{\alpha}{1 - \alpha} \int_{Y} \frac{k(\theta_{n}, y)^{\alpha} p(y)^{1 - \alpha}}{\int_{Y} k(\theta_{n}, y')^{\alpha} p(y')^{1 - \alpha} \nu(\mathrm{d}y')} \frac{\partial \log k(\theta, y)}{\partial \theta} \Big|_{(\theta, y) = (\theta_{n}, y)} \nu(\mathrm{d}y')$$

$$\approx \frac{\alpha}{1 - \alpha} \sum_{m=1}^{M} \frac{w_{n,m}}{\sum_{m'=1}^{M} w_{n,m'}} \frac{\partial \log k(\theta, y)}{\partial \theta} \Big|_{(\theta, y) = (\theta_{n}, Y_{m})}$$

with $w_{n,m} = k(\theta_n, Y_m)^{\alpha} p(Y_m)^{1-\alpha}$

In practice : **Stochastic** Gradient Ascent using $k(\theta_n, \cdot)$ as a sampler

+ Mini-batching + Reparameterisation

Consider a parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform **Gradient Ascent** on the VR bound : for all $\alpha \in \mathbb{R} \setminus \{1\}$

$$\mathcal{L}_{\alpha}(k(\theta,\cdot);p) = \frac{1}{1-\alpha} \log \left(\int_{\mathbf{Y}} k(\theta,y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y) \right)$$

ightarrow derived from Rényi's lpha-divergence, linked to the lpha-divergence

$$\nabla_{\theta} \mathcal{L}_{\alpha}(k(\theta, \cdot); p)|_{\theta=\theta_{n}} = \frac{\alpha}{1-\alpha} \int_{Y} \frac{k(\theta_{n}, y)^{\alpha} p(y)^{1-\alpha}}{\int_{Y} k(\theta_{n}, y')^{\alpha} p(y')^{1-\alpha} \nu(\mathrm{d}y')} \left. \frac{\partial \log k(\theta, y)}{\partial \theta} \right|_{(\theta, y) = (\theta_{n}, y)} \nu(\mathrm{d}y)$$

$$\approx \frac{\alpha}{1-\alpha} \sum_{m=1}^{M} \frac{w_{n,m}}{\sum_{m'=1}^{M} w_{n,m'}} \left. \frac{\partial \log k(\theta, y)}{\partial \theta} \right|_{(\theta, y) = (\theta_{n}, Y_{m})}$$

with $w_{n,m} = k(\theta_n, Y_m)^{\alpha} p(Y_m)^{1-\alpha}$

In practice : **Stochastic** Gradient Ascent using $k(\theta_n, \cdot)$ as a sampler

+ Mini-batching + Reparameterisation

Consider a parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform **Gradient Ascent** on the VR bound : for all $\alpha \in \mathbb{R} \setminus \{1\}$

$$\mathcal{L}_{\alpha}(k(\theta,\cdot);p) = \frac{1}{1-\alpha} \log \left(\int_{\mathbf{Y}} k(\theta,y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y) \right)$$

ightarrow derived from Rényi's lpha-divergence, linked to the lpha-divergence.

$$\nabla_{\theta} \mathcal{L}_{\alpha}(k(\theta, \cdot); p)|_{\theta=\theta_{n}} = \frac{\alpha}{1-\alpha} \int_{Y} \frac{k(\theta_{n}, y)^{\alpha} p(y)^{1-\alpha}}{\int_{Y} k(\theta_{n}, y')^{\alpha} p(y')^{1-\alpha} \nu(\mathrm{d}y')} \left. \frac{\partial \log k(\theta, y)}{\partial \theta} \right|_{(\theta, y) = (\theta_{n}, y)} \nu(\mathrm{d}y)$$

$$\approx \frac{\alpha}{1-\alpha} \sum_{m=1}^{M} \frac{w_{n,m}}{\sum_{m'=1}^{M} w_{n,m'}} \left. \frac{\partial \log k(\theta, y)}{\partial \theta} \right|_{(\theta, y) = (\theta_{n}, Y_{m})}$$

with $w_{n,m} = k(\theta_n, Y_m)^{\alpha} p(Y_m)^{1-\alpha}$

In practice : **Stochastic** Gradient Ascent using $k(\theta_n,\cdot)$ as a sampler

+ Mini-batching + Reparameterisation

Consider a parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform **Gradient Ascent** on the VR bound : for all $\alpha \in \mathbb{R} \setminus \{1\}$

$$\mathcal{L}_{\alpha}(k(\theta,\cdot);p) = \frac{1}{1-\alpha} \log \left(\int_{\mathbf{Y}} k(\theta,y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y) \right)$$

ightarrow derived from Rényi's lpha-divergence, linked to the lpha-divergence.

$$\nabla_{\theta} \mathcal{L}_{\alpha}(k(\theta, \cdot); p)|_{\theta=\theta_{n}} = \frac{\alpha}{1 - \alpha} \int_{\mathbf{Y}} \frac{k(\theta_{n}, y)^{\alpha} p(y)^{1 - \alpha}}{\int_{\mathbf{Y}} k(\theta_{n}, y')^{\alpha} p(y')^{1 - \alpha} \nu(\mathrm{d}y')} \frac{\partial \log k(\theta, y)}{\partial \theta} \bigg|_{(\theta, y) = (\theta_{n}, y)} \nu(\mathrm{d}y)$$

$$\approx \frac{\alpha}{1 - \alpha} \sum_{m=1}^{M} \frac{w_{n,m}}{\sum_{m'=1}^{M} w_{n,m'}} \frac{\partial \log k(\theta, y)}{\partial \theta} \bigg|_{(\theta, y) = (\theta_{n}, Y_{m})}$$

with
$$w_{n,m} = k(\theta_n, Y_m)^{\alpha} p(Y_m)^{1-\alpha}$$

In practice : Stochastic Gradient Ascent using $k(\theta_n,\cdot)$ as a sampler

+ Mini-batching + Reparameterisation

Consider a parametric family

$$Q = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform **Gradient Ascent** on the VR bound : for all $\alpha \in \mathbb{R} \setminus \{1\}$

$$\mathcal{L}_{\alpha}(k(\theta,\cdot);p) = \frac{1}{1-\alpha} \log \left(\int_{\mathbf{Y}} k(\theta,y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y) \right)$$

ightarrow derived from Rényi's lpha-divergence, linked to the lpha-divergence.

$$\begin{split} \nabla_{\theta} \mathcal{L}_{\alpha}(k(\theta,\cdot);p)|_{\theta=\theta_{n}} &= \frac{\alpha}{1-\alpha} \int_{\mathsf{Y}} \frac{k(\theta_{n},y)^{\alpha} p(y)^{1-\alpha}}{\int_{\mathsf{Y}} k(\theta_{n},y')^{\alpha} p(y')^{1-\alpha} \nu(\mathrm{d}y')} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_{n},y)} \nu(\mathrm{d}y) \\ &\approx \frac{\alpha}{1-\alpha} \sum_{m=1}^{M} \frac{w_{n,m}}{\sum_{m'=1}^{M} w_{n,m'}} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_{n},Y_{m})} \end{split}$$

with $w_{n,m} = k(\theta_n, Y_m)^{\alpha} p(Y_m)^{1-\alpha}$

In practice : **Stochastic** Gradient Ascent using $k(\theta_n,\cdot)$ as a sampler

+ Mini-batching + Reparameterisation

Consider a parametric family

$$Q = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform **Gradient Ascent** on the VR bound : for all $\alpha \in \mathbb{R} \setminus \{1\}$

$$\mathcal{L}_{\alpha}(k(\theta,\cdot);p) = \frac{1}{1-\alpha} \log \left(\int_{\mathbf{Y}} k(\theta,y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y) \right)$$

ightarrow derived from Rényi's lpha-divergence, linked to the lpha-divergence.

$$\begin{split} \nabla_{\theta} \mathcal{L}_{\alpha}(k(\theta,\cdot);p)|_{\theta=\theta_{n}} &= \frac{\alpha}{1-\alpha} \int_{\mathsf{Y}} \frac{k(\theta_{n},y)^{\alpha} p(y)^{1-\alpha}}{\int_{\mathsf{Y}} k(\theta_{n},y')^{\alpha} p(y')^{1-\alpha} \nu(\mathrm{d}y')} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_{n},y)} \nu(\mathrm{d}y) \\ &\approx \frac{\alpha}{1-\alpha} \sum_{m=1}^{M} \frac{w_{n,m}}{\sum_{m'=1}^{M} w_{n,m'}} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_{n},Y_{m})} \end{split}$$

with $w_{n,m} = k(\theta_n, Y_m)^{\alpha} p(Y_m)^{1-\alpha}$

In practice : **Stochastic** Gradient Ascent using $k(\theta_n,\cdot)$ as a sampler

+ Mini-batching + Reparameterisation

Consider a parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform **Gradient Ascent** on the VR bound : for all $\alpha \in \mathbb{R} \setminus \{1\}$

$$\mathcal{L}_{\alpha}(k(\theta,\cdot);p) = \frac{1}{1-\alpha} \log \left(\int_{\mathbf{Y}} k(\theta,y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y) \right)$$

ightarrow derived from Rényi's lpha-divergence, linked to the lpha-divergence.

$$\begin{split} \nabla_{\theta} \mathcal{L}_{\alpha}(k(\theta,\cdot);p)|_{\theta=\theta_{n}} &= \frac{\alpha}{1-\alpha} \int_{\mathsf{Y}} \frac{k(\theta_{n},y)^{\alpha} p(y)^{1-\alpha}}{\int_{\mathsf{Y}} k(\theta_{n},y')^{\alpha} p(y')^{1-\alpha} \nu(\mathrm{d}y')} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_{n},y)} \nu(\mathrm{d}y) \\ &\approx \frac{\alpha}{1-\alpha} \sum_{m=1}^{M} \frac{w_{n,m}}{\sum_{m'=1}^{M} w_{n,m'}} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_{n},Y_{m})} \end{split}$$

with
$$w_{n,m} = k(\theta_n, Y_m)^{\alpha} p(Y_m)^{1-\alpha}$$

In practice : $\mathbf{Stochastic}$ Gradient Ascent using $k(\theta_n,\cdot)$ as a sampler

+ Mini-batching + Reparameterisation

Consider a parametric family

$$Q = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

and perform **Gradient Ascent** on the VR bound : for all $\alpha \in \mathbb{R} \setminus \{1\}$

$$\mathcal{L}_{\alpha}(k(\theta,\cdot);p) = \frac{1}{1-\alpha} \log \left(\int_{\mathbf{Y}} k(\theta,y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y) \right)$$

ightarrow derived from Rényi's lpha-divergence, linked to the lpha-divergence.

$$\nabla_{\theta} \mathcal{L}_{\alpha}(k(\theta, \cdot); p)|_{\theta=\theta_{n}} = \frac{\alpha}{1 - \alpha} \int_{\mathbf{Y}} \frac{k(\theta_{n}, y)^{\alpha} p(y)^{1 - \alpha}}{\int_{\mathbf{Y}} k(\theta_{n}, y')^{\alpha} p(y')^{1 - \alpha} \nu(\mathrm{d}y')} \left. \frac{\partial \log k(\theta, y)}{\partial \theta} \right|_{(\theta, y) = (\theta_{n}, y)} \nu(\mathrm{d}y)$$

$$\approx \frac{\alpha}{1 - \alpha} \sum_{m=1}^{M} \frac{w_{n,m}}{\sum_{m'=1}^{M} w_{n,m'}} \left. \frac{\partial \log k(\theta, y)}{\partial \theta} \right|_{(\theta, y) = (\theta_{n}, Y_{m})}$$

with $w_{n,m} = k(\theta_n, Y_m)^{\alpha} p(Y_m)^{1-\alpha}$

In practice : **Stochastic** Gradient Ascent using $k(\theta_n,\cdot)$ as a sampler

+ Mini-batching + Reparameterisation

Alpha-divergence Variational Inference: summary

Alpha-Divergence approach	Rényi's Alpha-Divergence approach
$\inf_{\theta \in T} \Psi_{\alpha}(k(\theta, \cdot); p)$	$\sup_{\theta \in T} \mathcal{L}_{\alpha}(k(\theta, \cdot); p)$
$\frac{1}{\alpha - 1} \frac{1}{M} \sum_{m=1}^{M} w_{n,m} \left. \frac{\partial \log k(\theta, y)}{\partial \theta} \right _{(\theta, y) = (\theta_n, Y_m)}$	$\left. \frac{\alpha}{1-\alpha} \sum_{m=1}^{M} \frac{w_{n,m}}{\sum_{m'=1}^{M} w_{n,m'}} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right _{(\theta,y)=(\theta_n,Y_m)}$

$$\begin{aligned} \text{Alpha}: \quad & \theta_{n+1} = \theta_n + \frac{r_n}{1-\alpha} \frac{1}{M} \sum_{m=1}^M w_{n,m} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y) = (\theta_n,Y_m)} \\ \text{R\'enyi's Alpha}: \quad & \theta_{n+1} = \theta_n + \frac{r_n}{1-\alpha} \sum_{m=1}^M \frac{w_{n,m}}{\sum_{m'=1}^M w_{n,m'}} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y) = (\theta_n,Y_m)} \end{aligned}$$

Alpha-divergence Variational Inference: summary

$$\begin{array}{c|c} \text{Alpha-Divergence approach} & \text{R\'enyi's Alpha-Divergence approach} \\ & \inf_{\theta \in \mathsf{T}} \Psi_{\alpha}(k(\theta,\cdot);p) & \inf_{\theta \in \mathsf{T}} -\alpha^{-1} \mathcal{L}_{\alpha}(k(\theta,\cdot);p) \\ \\ \frac{1}{\alpha-1} \frac{1}{M} \sum_{m=1}^{M} w_{n,m} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_n,Y_m)} & \frac{1}{\alpha-1} \sum_{m=1}^{M} \frac{w_{n,m}}{\sum_{m'=1}^{M} w_{n,m'}} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_n,Y_m)} \end{array}$$

$$\begin{aligned} \text{Alpha}: \quad & \theta_{n+1} = \theta_n + \frac{r_n}{1-\alpha} \frac{1}{M} \sum_{m=1}^M w_{n,m} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y) = (\theta_n,Y_m)} \\ \text{R\'enyi's Alpha}: \quad & \theta_{n+1} = \theta_n + \frac{r_n}{1-\alpha} \sum_{m=1}^M \frac{w_{n,m}}{\sum_{m'=1}^M w_{n,m'}} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y) = (\theta_n,Y_m)} \end{aligned}$$

Alpha-divergence Variational Inference: summary

$$\begin{array}{c|c} \text{Alpha-Divergence approach} & \text{R\'enyi's Alpha-Divergence approach} \\ & \inf_{\theta \in \mathbb{T}} \Psi_{\alpha}(k(\theta,\cdot);p) & \inf_{\theta \in \mathbb{T}} -\alpha^{-1} \mathcal{L}_{\alpha}(k(\theta,\cdot);p) \\ \\ & \frac{1}{\alpha-1} \frac{1}{M} \sum_{m=1}^{M} w_{n,m} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_{n},Y_{m})} & \frac{1}{\alpha-1} \sum_{m=1}^{M} \frac{w_{n,m}}{\sum_{m'=1}^{M} w_{n,m'}} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y)=(\theta_{n},Y_{m})} \end{array}$$

$$\begin{split} \text{Alpha}: \quad &\theta_{n+1} = \theta_n + \frac{r_n}{1-\alpha} \frac{1}{M} \sum_{m=1}^M w_{n,m} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y) = (\theta_n,Y_m)} \\ \text{R\'enyi's Alpha}: \quad &\theta_{n+1} = \theta_n + \frac{r_n}{1-\alpha} \sum_{m=1}^M \frac{w_{n,m}}{\sum_{m'=1}^M w_{n,m'}} \left. \frac{\partial \log k(\theta,y)}{\partial \theta} \right|_{(\theta,y) = (\theta_n,Y_m)} \end{split}$$

Outline

- 1 Introduction
- 2 Mean-field Variational Inference
- 3 Black-box Variational Inference
- 4 Alpha-divergence Variational Inference
- **5** Conclusion of Part 1

Variational Inference : optimisation-based methods for Bayesian Inference

- choice of the variational family Q
- choice of the **measure of dissimilarity** D
 - MFVI: mean-field family, model-specific updates using the ELBO
 - SVI: scales MFVI to large datasets
 - 3 BBVI: parametric family, Stochastic Gradient Ascent on the ELBO
 - a Alpha-divergence Variational Inference: parametric family, extends BBVI to more general objective functions derived from the Alpha-divergence

Variational Inference : optimisation-based methods for Bayesian Inference

- choice of the variational family Q
- choice of the **measure of dissimilarity** D
 - MFVI: mean-field family, model-specific updates using the ELBO
 - SVI: scales MFVI to large datasets
 - 3 BBVI: parametric family, Stochastic Gradient Ascent on the ELBO
 - a Alpha-divergence Variational Inference: parametric family, extends BBVI to more general objective functions derived from the Alpha-divergence

Variational Inference: optimisation-based methods for Bayesian Inference

- choice of the variational family ${\cal Q}$
- choice of the **measure of dissimilarity** D
 - MFVI: mean-field family, model-specific updates using the ELBO
 - SVI: scales MFVI to large datasets
 - 3 BBVI: parametric family, Stochastic Gradient Ascent on the ELBO
 - Alpha-divergence Variational Inference: parametric family, extends BBVI to more general objective functions derived from the Alpha-divergence

Variational Inference: optimisation-based methods for Bayesian Inference

- choice of the variational family $\ensuremath{\mathcal{Q}}$
- choice of the **measure of dissimilarity** D
 - MFVI: mean-field family, model-specific updates using the ELBO
 - SVI: scales MFVI to large datasets
 - 3 BBVI: parametric family, Stochastic Gradient Ascent on the ELBO
 - a Alpha-divergence Variational Inference: parametric family, extends BBVI to more general objective functions derived from the Alpha-divergence

Variational Inference: optimisation-based methods for Bayesian Inference

- choice of the variational family $\ensuremath{\mathcal{Q}}$
- choice of the **measure of dissimilarity** D
 - 1 MFVI: mean-field family, model-specific updates using the ELBO
 - SVI: scales MFVI to large datasets
 - 3 BBVI: parametric family, Stochastic Gradient Ascent on the ELBO
 - a Alpha-divergence Variational Inference: parametric family, extends BBVI to more general objective functions derived from the Alpha-divergence

Variational Inference: optimisation-based methods for Bayesian Inference

- choice of the variational family $\ensuremath{\mathcal{Q}}$
- choice of the **measure of dissimilarity** D
 - 1 MFVI: mean-field family, model-specific updates using the ELBO
 - 2 SVI: scales MFVI to large datasets
 - 3 BBVI: parametric family, Stochastic Gradient Ascent on the ELBO
 - Alpha-divergence Variational Inference: parametric family, extends BBVI to more general objective functions derived from the Alpha-divergence

Variational Inference: optimisation-based methods for Bayesian Inference

- choice of the variational family $\ensuremath{\mathcal{Q}}$
- choice of the **measure of dissimilarity** D
 - 1 MFVI: mean-field family, model-specific updates using the ELBO
 - 2 SVI : scales MFVI to large datasets
 - 3 BBVI : parametric family, Stochastic Gradient Ascent on the ELBO
 - a Alpha-divergence Variational Inference: parametric family, extends BBVI to more general objective functions derived from the Alpha-divergence

Variational Inference: optimisation-based methods for Bayesian Inference

- choice of the variational family $\ensuremath{\mathcal{Q}}$
- choice of the **measure of dissimilarity** D
 - 1 MFVI: mean-field family, model-specific updates using the ELBO
 - 2 SVI : scales MFVI to large datasets
 - 3 BBVI : parametric family, Stochastic Gradient Ascent on the ELBO
 - Alpha-divergence Variational Inference: parametric family, extends BBVI to more general objective functions derived from the Alpha-divergence

Food for thoughts

Question : Can we further extend the approximating family $\mathcal Q$ in the context of Alpha-divergence Variational Inference?

Some answers in Part 2 and 3!

Food for thoughts

Question : Can we further extend the approximating family $\mathcal Q$ in the context of Alpha-divergence Variational Inference?

Some answers in Part 2 and 3!

Food for thoughts

Question : Can we further extend the approximating family $\mathcal Q$ in the context of Alpha-divergence Variational Inference?

Some answers in Part 2 and 3!

Proof of the optimal rule $q_{\ell}^*(y_{\ell}) \propto \exp\left(\mathbb{E}_{-\ell}[\log p(y, \mathcal{D})]\right)$

$$\begin{split} \mathsf{ELBO}(q;\mathscr{D}) &= \int_{\mathsf{Y}} q(y) \log \left(\frac{p(y,\mathscr{D})}{q(y)} \right) \nu(\mathrm{d}y) \\ &= \int_{\mathsf{Y}_{\ell}} \int_{\mathsf{Y}_{-\ell}} q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell}) \log \left(\frac{p(y,\mathscr{D})}{q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell})} \right) \nu_{-\ell}(\mathrm{d}y_{-\ell}) \nu_{\ell}(\mathrm{d}y_{\ell}) \\ &= \int_{\mathsf{Y}_{\ell}} q_{\ell}(y_{\ell}) \left(\int_{\mathsf{Y}_{-\ell}} q_{-\ell}(y_{-\ell}) \log p(y,\mathscr{D}) \nu_{-\ell}(\mathrm{d}y_{-\ell}) \right) \nu_{\ell}(\mathrm{d}y_{\ell}) \\ &\quad - \int_{\mathsf{Y}_{\ell}} \int_{\mathsf{Y}_{-\ell}} q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell}) \log \left(q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell}) \right) \nu_{-\ell}(\mathrm{d}y_{-\ell}) \nu_{\ell}(\mathrm{d}y_{\ell}) \\ &:= \int_{\mathsf{Y}_{\ell}} q_{\ell}(y_{\ell}) \mathbb{E}_{-\ell} \left[\log p(y,\mathscr{D}) \right] \nu_{\ell}(\mathrm{d}y_{\ell}) - \int_{\mathsf{Y}_{\ell}} q_{\ell}(y_{\ell}) \log \left(q_{\ell}(y_{\ell}) \right) \nu_{\ell}(\mathrm{d}y_{\ell}) + c_{-\ell} \right] \end{split}$$

$$\mathsf{ELBO}(q; \mathscr{D}) = \int_{\mathsf{Y}} q_{\ell}(y_{\ell}) \log \left(\frac{\exp \left(\mathbb{E}_{-\ell} \left[\log p(y, \mathscr{D}) \right] \right)}{q_{\ell}(y_{\ell})} \right) \nu_{\ell}(\mathrm{d}y_{\ell}) + c_{-\ell}$$

Proof of the optimal rule $q_{\ell}^*(y_{\ell}) \propto \exp\left(\mathbb{E}_{-\ell}[\log p(y, \mathcal{D})]\right)$

$$\begin{split} \mathsf{ELBO}(q;\mathscr{D}) &= \int_{\mathsf{Y}} q(y) \log \left(\frac{p(y,\mathscr{D})}{q(y)} \right) \nu(\mathrm{d}y) \\ &= \int_{\mathsf{Y}_{\ell}} \int_{\mathsf{Y}_{-\ell}} q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell}) \log \left(\frac{p(y,\mathscr{D})}{q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell})} \right) \nu_{-\ell}(\mathrm{d}y_{-\ell}) \nu_{\ell}(\mathrm{d}y_{\ell}) \\ &= \int_{\mathsf{Y}_{\ell}} q_{\ell}(y_{\ell}) \left(\int_{\mathsf{Y}_{-\ell}} q_{-\ell}(y_{-\ell}) \log p(y,\mathscr{D}) \nu_{-\ell}(\mathrm{d}y_{-\ell}) \right) \nu_{\ell}(\mathrm{d}y_{\ell}) \\ &- \int_{\mathsf{Y}_{\ell}} \int_{\mathsf{Y}_{-\ell}} q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell}) \log \left(q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell}) \right) \nu_{-\ell}(\mathrm{d}y_{-\ell}) \nu_{\ell}(\mathrm{d}y_{\ell}) \\ &:= \int_{\mathsf{Y}_{\ell}} q_{\ell}(y_{\ell}) \mathbb{E}_{-\ell} \left[\log p(y,\mathscr{D}) \right] \nu_{\ell}(\mathrm{d}y_{\ell}) - \int_{\mathsf{Y}_{\ell}} q_{\ell}(y_{\ell}) \log \left(q_{\ell}(y_{\ell}) \right) \nu_{\ell}(\mathrm{d}y_{\ell}) + c_{-\ell} \right] \end{split}$$

$$\mathsf{ELBO}(q; \mathscr{D}) = \int_{\mathsf{Y}} q_{\ell}(y_{\ell}) \log \left(\frac{\exp \left(\mathbb{E}_{-\ell} \left[\log p(y, \mathscr{D}) \right] \right)}{q_{\ell}(y_{\ell})} \right) \nu_{\ell}(\mathrm{d}y_{\ell}) + c_{-\ell}$$

Proof of the optimal rule $q_{\ell}^*(y_{\ell}) \propto \exp\left(\mathbb{E}_{-\ell}[\log p(y, \mathscr{D})]\right)$

$$\begin{split} \mathsf{ELBO}(q;\mathscr{D}) &= \int_{\mathsf{Y}} q(y) \log \left(\frac{p(y,\mathscr{D})}{q(y)} \right) \nu(\mathrm{d}y) \\ &= \int_{\mathsf{Y}_{\ell}} \int_{\mathsf{Y}_{-\ell}} q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell}) \log \left(\frac{p(y,\mathscr{D})}{q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell})} \right) \nu_{-\ell}(\mathrm{d}y_{-\ell}) \nu_{\ell}(\mathrm{d}y_{\ell}) \\ &= \int_{\mathsf{Y}_{\ell}} q_{\ell}(y_{\ell}) \left(\int_{\mathsf{Y}_{-\ell}} q_{-\ell}(y_{-\ell}) \log p(y,\mathscr{D}) \nu_{-\ell}(\mathrm{d}y_{-\ell}) \right) \nu_{\ell}(\mathrm{d}y_{\ell}) \\ &\quad - \int_{\mathsf{Y}_{\ell}} \int_{\mathsf{Y}_{-\ell}} q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell}) \log \left(q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell}) \right) \nu_{-\ell}(\mathrm{d}y_{-\ell}) \nu_{\ell}(\mathrm{d}y_{\ell}) \\ &:= \int_{\mathsf{Y}_{\ell}} q_{\ell}(y_{\ell}) \mathbb{E}_{-\ell} \left[\log p(y,\mathscr{D}) \right] \nu_{\ell}(\mathrm{d}y_{\ell}) - \int_{\mathsf{Y}_{\ell}} q_{\ell}(y_{\ell}) \log \left(q_{\ell}(y_{\ell}) \right) \nu_{\ell}(\mathrm{d}y_{\ell}) + c_{-\ell} \right] \end{split}$$

$$\mathsf{ELBO}(q; \mathscr{D}) = \int_{\mathsf{Y}} q_\ell(y_\ell) \log \left(\frac{\exp \left(\mathbb{E}_{-\ell} \left[\log p(y, \mathscr{D}) \right] \right)}{q_\ell(y_\ell)} \right) \nu_\ell(\mathrm{d}y_\ell) + c_{-\ell}$$

Proof of the optimal rule $q_{\ell}^*(y_{\ell}) \propto \exp\left(\mathbb{E}_{-\ell}[\log p(y, \mathcal{D})]\right)$

$$\begin{split} \mathsf{ELBO}(q;\mathscr{D}) &= \int_{\mathsf{Y}} q(y) \log \left(\frac{p(y,\mathscr{D})}{q(y)} \right) \nu(\mathrm{d}y) \\ &= \int_{\mathsf{Y}_{\ell}} \int_{\mathsf{Y}_{-\ell}} q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell}) \log \left(\frac{p(y,\mathscr{D})}{q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell})} \right) \nu_{-\ell}(\mathrm{d}y_{-\ell}) \nu_{\ell}(\mathrm{d}y_{\ell}) \\ &= \int_{\mathsf{Y}_{\ell}} q_{\ell}(y_{\ell}) \left(\int_{\mathsf{Y}_{-\ell}} q_{-\ell}(y_{-\ell}) \log p(y,\mathscr{D}) \nu_{-\ell}(\mathrm{d}y_{-\ell}) \right) \nu_{\ell}(\mathrm{d}y_{\ell}) \\ &\quad - \int_{\mathsf{Y}_{\ell}} \int_{\mathsf{Y}_{-\ell}} q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell}) \log \left(q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell}) \right) \nu_{-\ell}(\mathrm{d}y_{-\ell}) \nu_{\ell}(\mathrm{d}y_{\ell}) \\ &:= \int_{\mathsf{Y}_{\ell}} q_{\ell}(y_{\ell}) \mathbb{E}_{-\ell} \left[\log p(y,\mathscr{D}) \right] \nu_{\ell}(\mathrm{d}y_{\ell}) - \int_{\mathsf{Y}_{\ell}} q_{\ell}(y_{\ell}) \log \left(q_{\ell}(y_{\ell}) \right) \nu_{\ell}(\mathrm{d}y_{\ell}) + c_{-\ell} \right] \end{split}$$

$$\mathsf{ELBO}(q; \mathscr{D}) = \int_{\mathsf{Y}} q_\ell(y_\ell) \log \left(\frac{\exp \left(\mathbb{E}_{-\ell} \left[\log p(y, \mathscr{D}) \right] \right)}{q_\ell(y_\ell)} \right) \nu_\ell(\mathrm{d}y_\ell) + c_{-\ell}$$

Proof of the optimal rule $q_{\ell}^*(y_{\ell}) \propto \exp\left(\mathbb{E}_{-\ell}[\log p(y, \mathcal{D})]\right)$

$$\begin{split} \mathsf{ELBO}(q;\mathscr{D}) &= \int_{\mathsf{Y}} q(y) \log \left(\frac{p(y,\mathscr{D})}{q(y)} \right) \nu(\mathrm{d}y) \\ &= \int_{\mathsf{Y}_{\ell}} \int_{\mathsf{Y}_{-\ell}} q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell}) \log \left(\frac{p(y,\mathscr{D})}{q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell})} \right) \nu_{-\ell}(\mathrm{d}y_{-\ell}) \nu_{\ell}(\mathrm{d}y_{\ell}) \\ &= \int_{\mathsf{Y}_{\ell}} q_{\ell}(y_{\ell}) \left(\int_{\mathsf{Y}_{-\ell}} q_{-\ell}(y_{-\ell}) \log p(y,\mathscr{D}) \nu_{-\ell}(\mathrm{d}y_{-\ell}) \right) \nu_{\ell}(\mathrm{d}y_{\ell}) \\ &\quad - \int_{\mathsf{Y}_{\ell}} \int_{\mathsf{Y}_{-\ell}} q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell}) \log \left(q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell}) \right) \nu_{-\ell}(\mathrm{d}y_{-\ell}) \nu_{\ell}(\mathrm{d}y_{\ell}) \\ &:= \int_{\mathsf{Y}_{\ell}} q_{\ell}(y_{\ell}) \mathbb{E}_{-\ell} \left[\log p(y,\mathscr{D}) \right] \nu_{\ell}(\mathrm{d}y_{\ell}) - \int_{\mathsf{Y}_{\ell}} q_{\ell}(y_{\ell}) \log \left(q_{\ell}(y_{\ell}) \right) \nu_{\ell}(\mathrm{d}y_{\ell}) + c_{-\ell} \end{split}$$

$$\mathsf{ELBO}(q; \mathscr{D}) = \int_{\mathsf{Y}} q_\ell(y_\ell) \log \left(\frac{\exp \left(\mathbb{E}_{-\ell} \left[\log p(y, \mathscr{D}) \right] \right)}{q_\ell(y_\ell)} \right) \nu_\ell(\mathrm{d}y_\ell) + c_{-\ell}$$

Proof of the optimal rule $q_{\ell}^*(y_{\ell}) \propto \exp\left(\mathbb{E}_{-\ell}[\log p(y, \mathscr{D})]\right)$

$$\begin{split} \mathsf{ELBO}(q;\mathscr{D}) &= \int_{\mathsf{Y}} q(y) \log \left(\frac{p(y,\mathscr{D})}{q(y)} \right) \nu(\mathrm{d}y) \\ &= \int_{\mathsf{Y}_{\ell}} \int_{\mathsf{Y}_{-\ell}} q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell}) \log \left(\frac{p(y,\mathscr{D})}{q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell})} \right) \nu_{-\ell}(\mathrm{d}y_{-\ell}) \nu_{\ell}(\mathrm{d}y_{\ell}) \\ &= \int_{\mathsf{Y}_{\ell}} q_{\ell}(y_{\ell}) \left(\int_{\mathsf{Y}_{-\ell}} q_{-\ell}(y_{-\ell}) \log p(y,\mathscr{D}) \nu_{-\ell}(\mathrm{d}y_{-\ell}) \right) \nu_{\ell}(\mathrm{d}y_{\ell}) \\ &\quad - \int_{\mathsf{Y}_{\ell}} \int_{\mathsf{Y}_{-\ell}} q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell}) \log \left(q_{\ell}(y_{\ell}) q_{-\ell}(y_{-\ell}) \right) \nu_{-\ell}(\mathrm{d}y_{-\ell}) \nu_{\ell}(\mathrm{d}y_{\ell}) \\ &:= \int_{\mathsf{Y}_{\ell}} q_{\ell}(y_{\ell}) \mathbb{E}_{-\ell} \left[\log p(y,\mathscr{D}) \right] \nu_{\ell}(\mathrm{d}y_{\ell}) - \int_{\mathsf{Y}_{\ell}} q_{\ell}(y_{\ell}) \log \left(q_{\ell}(y_{\ell}) \right) \nu_{\ell}(\mathrm{d}y_{\ell}) + c_{-\ell} \end{split}$$

$$\mathsf{ELBO}(q; \mathscr{D}) = \int_{\mathsf{Y}} q_\ell(y_\ell) \log \left(\frac{\exp \left(\mathbb{E}_{-\ell} \left[\log p(y, \mathscr{D}) \right] \right)}{q_\ell(y_\ell)} \right) \nu_\ell(\mathrm{d}y_\ell) + c_{-\ell} \; .$$

- $\mathcal{D} = \{x_1, \dots, x_I\}, x_1, \dots, x_I : i.i.d.$ observations
- $y = \{\pi, \xi_1, \dots, \xi_I\}$, π : global latent variable, ξ_1, \dots, ξ_I : local latent variables (β : hyperparameter)

In that case,
$$p(y,\mathscr{D}) = p(\pi|\beta) \prod_{i=1}^{I} p(\xi_i|\pi) p(x_i|\xi_i,\pi)$$

$$q(y) = q(\pi|\gamma) \prod_{i=1}^{I} q(\xi_i|\phi_i)$$

- $\mathcal{D} = \{x_1, \dots, x_I\}, x_1, \dots, x_I : i.i.d.$ observations
- $y = \{\pi, \xi_1, \dots, \xi_I\}$, π : global latent variable, ξ_1, \dots, ξ_I : local latent variables (β : hyperparameter)

In that case,
$$p(y,\mathscr{D}) = p(\pi|\beta) \prod_{i=1}^{I} p(\xi_i|\pi) p(x_i|\xi_i,\pi)$$

$$q(y) = q(\pi|\gamma) \prod_{i=1}^{l} q(\xi_i|\phi_i)$$

- $\mathcal{D} = \{x_1, \dots, x_I\}, x_1, \dots, x_I : i.i.d.$ observations
- $y = \{\pi, \xi_1, \dots, \xi_I\}$, π : global latent variable, ξ_1, \dots, ξ_I : local latent variables (β : hyperparameter)

In that case,
$$p(y,\mathscr{D}) = p(\pi|\beta) \prod_{i=1}^{I} p(\xi_i|\pi) p(x_i|\xi_i,\pi)$$

Mean-field approximation:

$$q(y) = q(\pi|\gamma) \prod_{i=1}^{I} q(\xi_i|\phi_i)$$

- $\mathcal{D} = \{x_1, \dots, x_I\}, x_1, \dots, x_I : i.i.d.$ observations
- $y = \{\pi, \xi_1, \dots, \xi_I\}$, π : global latent variable, ξ_1, \dots, ξ_I : local latent variables (β : hyperparameter)

In that case,
$$p(y,\mathscr{D}) = p(\pi|\beta) \prod_{i=1}^{I} p(\xi_i|\pi) p(x_i|\xi_i,\pi)$$

Mean-field approximation:

$$q(y) = q(\pi|\gamma) \prod_{i=1}^{I} q(\xi_i|\phi_i)$$

 γ : global variational parameter, ϕ_1,\ldots,ϕ_I : local variational parameters

- $\mathcal{D} = \{x_1, \dots, x_I\}, x_1, \dots, x_I : i.i.d.$ observations
- $y = \{\pi, \xi_1, \dots, \xi_I\}$, π : global latent variable, ξ_1, \dots, ξ_I : local latent variables (β : hyperparameter)

In that case,
$$p(y,\mathscr{D}) = p(\pi|\beta) \prod_{i=1}^{I} p(\xi_i|\pi) p(x_i|\xi_i,\pi)$$

Mean-field approximation:

$$q(y) = q(\pi|\gamma) \prod_{i=1}^{I} q(\xi_i|\phi_i)$$

 γ : global variational parameter, ϕ_1,\ldots,ϕ_I : local variational parameters

Problem: I is often very large (e.g. 1.8M articles from the New York Times)

- $\mathcal{D} = \{x_1, \dots, x_I\}, x_1, \dots, x_I : i.i.d.$ observations
- $y = \{\pi, \xi_1, \dots, \xi_I\}$, π : global latent variable, ξ_1, \dots, ξ_I : local latent variables (β : hyperparameter)

In that case,
$$p(y,\mathscr{D}) = p(\pi|\beta) \prod_{i=1}^{I} p(\xi_i|\pi) p(x_i|\xi_i,\pi)$$

Mean-field approximation:

$$q(y) = q(\pi|\gamma) \prod_{i=1}^{I} q(\xi_i|\phi_i)$$

 γ : global variational parameter, ϕ_1,\ldots,ϕ_I : local variational parameters

Problem: I is often very large (e.g. 1.8M articles from the New York Times)

→ The use of **stochastic** optimisation enabled large scale learning

- $\mathcal{D} = \{x_1, \dots, x_I\}, x_1, \dots, x_I : i.i.d.$ observations
- $y = \{\pi, \xi_1, \dots, \xi_I\}$, π : global latent variable, ξ_1, \dots, ξ_I : local latent variables (β : hyperparameter)

In that case,
$$p(y,\mathscr{D}) = p(\pi|\beta) \prod_{i=1}^{I} p(\xi_i|\pi) p(x_i|\xi_i,\pi)$$

Mean-field approximation:

$$q(y) = q(\pi|\gamma) \prod_{i=1}^{I} q(\xi_i|\phi_i)$$

 γ : global variational parameter, ϕ_1,\ldots,ϕ_I : local variational parameters

Problem: I is often very large (e.g. 1.8M articles from the New York Times)

→ The use of **stochastic** optimisation enabled large scale learning

Stochastic Variational Inference. M. D. Hoffman et al. (2013). JMRL.

Variational Inference Foundations and recent advances (Part 2)

Kamélia Daudel

University of Bristol - 09/03/2022

Reminder - 1

$$\begin{array}{l} (\mathsf{Y},\mathcal{Y},\nu): \text{ measured space, } \nu \text{ is a } \sigma\text{-finite measure on } (\mathsf{Y},\mathcal{Y}). \\ \mathbb{Q} \text{ and } \mathbb{P}_{|\mathscr{D}}: \mathbb{Q} \preceq \nu \text{, } \mathbb{P}_{|\mathscr{D}} \preceq \nu \text{ with } \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu} = q, \frac{\mathrm{d}\mathbb{P}_{|\mathscr{D}}}{\mathrm{d}\nu} = p(\cdot|\mathscr{D}) = \frac{p(\cdot,\mathscr{D})}{p(\mathscr{D})} \end{array}$$

• Variational Inference optimisation problem :

$$\inf_{q \in \mathcal{Q}} D(\mathbb{Q}||\mathbb{P}_{|\mathcal{D}|})$$

where Q is the variational family and D is the measure of dissimilarity

Alpha-Divergence Variational Inference : Two possible objective functions

$$\Psi_{\alpha}(q; p) = \int_{\mathsf{Y}} f_{\alpha} \left(\frac{q(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y)$$

$$\mathcal{L}_{\alpha}(q; p) = \frac{1}{1 - \alpha} \log \left(\int_{\mathsf{Y}} q(y)^{\alpha} p(y)^{1 - \alpha} \nu(\mathrm{d}y) \right)$$

with $p = p(\cdot, \mathcal{D})$ and

$$f_{\alpha}(u) = \begin{cases} \frac{1}{\alpha(\alpha - 1)} \left[u^{\alpha} - 1 - \alpha(u - 1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0, 1\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL)}, \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL)}. \end{cases}$$

Reminder - 1

$$\begin{array}{l} (\mathsf{Y},\mathcal{Y},\nu): \text{ measured space, } \nu \text{ is a } \sigma\text{-finite measure on } (\mathsf{Y},\mathcal{Y}). \\ \mathbb{Q} \text{ and } \mathbb{P}_{|\mathscr{D}}: \mathbb{Q} \preceq \nu \text{, } \mathbb{P}_{|\mathscr{D}} \preceq \nu \text{ with } \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu} = q, \frac{\mathrm{d}\mathbb{P}_{|\mathscr{D}}}{\mathrm{d}\nu} = p(\cdot|\mathscr{D}) = \frac{p(\cdot,\mathscr{D})}{p(\mathscr{D})} \end{array}$$

• Variational Inference optimisation problem :

$$\inf_{q\in\mathcal{Q}}D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$$

where Q is the variational family and D is the measure of dissimilarity

• Alpha-Divergence Variational Inference : Two possible objective functions

$$\begin{split} &\Psi_{\alpha}(q;p) = \int_{\mathsf{Y}} f_{\alpha} \left(\frac{q(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y) \\ &\mathcal{L}_{\alpha}(q;p) = \frac{1}{1-\alpha} \log \left(\int_{\mathsf{Y}} q(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y) \right) \end{split}$$

with $p = p(\cdot, \mathcal{D})$ and

$$f_{\alpha}(u) = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL)}, \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL)}. \end{cases}$$

Reminder - 1

$$\begin{array}{l} (\mathsf{Y},\mathcal{Y},\nu): \text{ measured space, } \nu \text{ is a } \sigma\text{-finite measure on } (\mathsf{Y},\mathcal{Y}). \\ \mathbb{Q} \text{ and } \mathbb{P}_{|\mathscr{D}}: \mathbb{Q} \preceq \nu \text{, } \mathbb{P}_{|\mathscr{D}} \preceq \nu \text{ with } \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu} = q, \frac{\mathrm{d}\mathbb{P}_{|\mathscr{D}}}{\mathrm{d}\nu} = p(\cdot|\mathscr{D}) = \frac{p(\cdot,\mathscr{D})}{p(\mathscr{D})} \end{array}$$

• Variational Inference optimisation problem :

$$\inf_{q\in\mathcal{Q}}D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$$

where Q is the variational family and D is the measure of dissimilarity

• Alpha-Divergence Variational Inference : Two possible objective functions

$$\Psi_{\alpha}(q; p) = \int_{\mathbf{Y}} f_{\alpha} \left(\frac{q(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y)$$

$$\mathcal{L}_{\alpha}(q; p) = \frac{1}{1 - \alpha} \log \left(\int_{\mathbf{Y}} q(y)^{\alpha} p(y)^{1 - \alpha} \nu(\mathrm{d}y) \right)$$

with $p=p(\cdot,\mathscr{D})$ and

$$f_{\alpha}(u) = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}\,, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL).} \end{cases}$$

$$\begin{array}{l} (\mathsf{Y},\mathcal{Y},\nu): \text{ measured space, } \nu \text{ is a } \sigma\text{-finite measure on } (\mathsf{Y},\mathcal{Y}). \\ \mathbb{Q} \text{ and } \mathbb{P}_{|\mathscr{D}}: \mathbb{Q} \preceq \nu \text{, } \mathbb{P}_{|\mathscr{D}} \preceq \nu \text{ with } \frac{\mathrm{d}\mathbb{Q}}{\mathrm{d}\nu} = q, \frac{\mathrm{d}\mathbb{P}_{|\mathscr{D}}}{\mathrm{d}\nu} = p(\cdot|\mathscr{D}) = \frac{p(\cdot,\mathscr{D})}{p(\mathscr{D})} \end{array}$$

• Variational Inference optimisation problem :

$$\inf_{q\in\mathcal{Q}}D(\mathbb{Q}||\mathbb{P}_{|\mathscr{D}})$$

where Q is the variational family and D is the measure of dissimilarity

• Alpha-Divergence Variational Inference : Two possible objective functions

$$\begin{split} \Psi_{\alpha}(q;p) &= \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) \\ &-\alpha^{-1} \mathcal{L}_{\alpha}(q;p) = \frac{1}{\alpha(\alpha-1)} \log \left(\int_{\mathsf{Y}} q(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)\right) \end{split}$$

with $p=p(\cdot,\mathscr{D})$ and

$$f_{\alpha}(u) = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\} \,, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL).} \end{cases}$$

When Q is parametric,

$$\mathcal{Q} = \{q: y \mapsto k(\theta, y) : \theta \in \mathsf{T}\}$$

we can perform Stochastic Gradient Descent w.r.t θ on $\Psi_{\alpha}(q;p)$ (resp. $-\alpha^{-1}\mathcal{L}_{\alpha}(q;p)$)

Question: Can we further extend the approximating family $\mathcal Q$ in the context of Alpha-divergence Variational Inference?

When Q is parametric,

$$\mathcal{Q} = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\}$$

we can perform Stochastic Gradient Descent w.r.t θ on $\Psi_{\alpha}(q;p)$ (resp. $-\alpha^{-1}\mathcal{L}_{\alpha}(q;p)$)

Question : Can we further extend the approximating family $\mathcal Q$ in the context of Alpha-divergence Variational Inference?

When Q is parametric,

$$\mathcal{Q} = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\}$$

we can perform Stochastic Gradient Descent w.r.t θ on $\Psi_{\alpha}(q;p)$ (resp. $-\alpha^{-1}\mathcal{L}_{\alpha}(q;p)$)

Question : Can we further extend the approximating family $\mathcal Q$ in the context of Alpha-divergence Variational Inference?

Outline

- 1 Infinite-dimensional Alpha-divergence minimisation
- 2 Numerical experiments
- 3 Conclusion of Part 2

Outline

- 1 Infinite-dimensional Alpha-divergence minimisation
- 2 Numerical experiments
- 3 Conclusion of Part 2

Infinite-dimensional gradient-based descent for alpha-divergence minimisation. K. Daudel, R. Douc and F. Portier. Ann. Statist. 49 (4) 2250 - 2270, August 2021. https://doi.org/10.1214/20-AOS2035.

Mixture weights optimisation for Alpha-Divergence Variational Inference K. Daudel and R. Douc (2021). To appear in NeurlPS2021

Idea: Extend the traditional variational parametric family

$$Q = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

by putting a prior on the variational parameter θ

$$Q = \left\{ q : y \mapsto \mu k(y) := \int_{\mathbb{T}} \mu(\mathrm{d}\theta) k(\theta, y) \; : \; \mu \in \mathsf{M} \right\}$$

and propose an update formula for μ that ensures a systematic decrease in $\mu \mapsto \Psi_{\mathcal{C}}(\mu k; p)$ at each step

$$ightarrow$$
 Finite Mixture Models : $\mu = \sum_{j=1}^{J} \lambda_j \delta_{\theta_j}$

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier. Ann. Statist. 49 (4) 2250 - 2270, August 2021. https://doi.org/10.1214/20-AOS2035.

Mixture weights optimisation for Alpha-Divergence Variational Inference.

K. Daudel and R. Douc (2021). To appear in NeurIPS2021

Idea: Extend the traditional variational parametric family

$$Q = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

by putting a prior on the variational parameter θ

$$Q = \left\{ q : y \mapsto \mu k(y) := \int_{\mathbb{T}} \mu(d\theta) k(\theta, y) : \mu \in M \right\}$$

and propose an update formula for μ that ensures a systematic decrease in $\mu \mapsto \Psi_{\mathcal{O}}(\mu k; p)$ at each step

ightarrow Finite Mixture Models : $\mu = \sum_{j=1}^J \lambda_j \delta_{\theta_j}$

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier. Ann. Statist. 49 (4) 2250 - 2270, August 2021. https://doi.org/10.1214/20-AOS2035.

Mixture weights optimisation for Alpha-Divergence Variational Inference.

K. Daudel and R. Douc (2021). To appear in NeurIPS2021

Idea: Extend the traditional variational parametric family

$$Q = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

by putting a prior on the variational parameter θ

$$\mathcal{Q} = \left\{ q : y \mapsto \mu k(y) := \int_{\mathbb{T}} \mu(\mathrm{d}\theta) k(\theta, y) \; : \; \mu \in \mathsf{M} \right\}$$

and propose an update formula for μ that ensures a systematic decrease in $\mu\mapsto \Psi_{\alpha}(\mu k;p)$ at each step

 \rightarrow Finite Mixture Models : $\mu = \sum_{j=1}^{J} \lambda_j \delta_{\theta_j}$

Infinite-dimensional gradient-based descent for alpha-divergence minimisation.

K. Daudel, R. Douc and F. Portier. Ann. Statist. 49 (4) 2250 - 2270, August 2021. https://doi.org/10.1214/20-AOS2035.

Mixture weights optimisation for Alpha-Divergence Variational Inference.

K. Daudel and R. Douc (2021). To appear in NeurIPS2021

Idea: Extend the traditional variational parametric family

$$Q = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

by putting a prior on the variational parameter θ

$$\mathcal{Q} = \left\{q: y \mapsto \mu k(y) := \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \ : \ \mu \in \mathsf{M} \right\}$$

and propose an update formula for μ that ensures a systematic decrease in $\mu\mapsto \Psi_{\alpha}(\mu k;p)$ at each step

$$\rightarrow$$
 Finite Mixture Models : $\mu = \sum_{i=1}^{J} \lambda_i \delta_{\theta_i}$

Optimisation problem

$$\inf_{\mu \in \mathsf{M}} \Psi_\alpha(\mu k; p) \quad \text{with} \quad \Psi_\alpha(\mu k; p) := \int_{\mathsf{Y}} \! f_\alpha\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \geqslant 1$$

$$\mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \text{ with } b_{\mu,\alpha}(\theta) = \int_{\mathsf{Y}} k(\theta,y) f_{\alpha}'\left(\frac{\mu k(y)}{p(y)}\right) \nu(\mathrm{d}y)$$

Optimisation problem

$$\inf_{\mu \in \mathsf{M}} \Psi_{\alpha}(\mu k; p) \quad \text{with} \quad \Psi_{\alpha}(\mu k; p) := \int_{\mathsf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

- p is a nonnegative measurable function defined on (Y, \mathcal{Y})
- M is a subset of $M_1(T)$, the space of probability measures on T
- $K:(\theta,A)\mapsto \int_A k(\theta,y)\nu(\mathrm{d}y)$ is a Markov transition kernel defined on $\mathsf{T}\times\mathcal{Y}$ with density k

Algorithm

Let $\mu_1 \in M_1(T)$ be such that $\Psi_{\alpha}(\mu_1 k) < \infty$. The sequence of probability measures $(\mu_n)_{n\geqslant 1}$ is defined iteratively by

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \geqslant 1$$

$$\mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \text{ with } b_{\mu,\alpha}(\theta) = \int_{\mathsf{Y}} k(\theta, y) f_{\alpha}'\left(\frac{\mu k(y)}{p(y)}\right) \nu(\mathrm{d}y)$$

Optimisation problem

$$\inf_{\mu \in \mathsf{M}} \Psi_{\alpha}(\mu k; p) \quad \text{with} \quad \Psi_{\alpha}(\mu k; p) := \int_{\mathsf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

- p is a nonnegative measurable function defined on (Y, \mathcal{Y})
- M is a subset of $\mathrm{M}_1(\mathsf{T})$, the space of probability measures on T

- $K:(\theta,A)\mapsto \int_A k(\theta,y)\nu(\mathrm{d}y)$ is a Markov transition kernel defined on T \times $\mathcal Y$ with density k

Algorithm

Let $\mu_1 \in M_1(T)$ be such that $\Psi_{\alpha}(\mu_1 k) < \infty$. The sequence of probability measures $(\mu_n)_{n\geqslant 1}$ is defined iteratively by

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \geqslant 1$$

$$\mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \text{ with } b_{\mu,\alpha}(\theta) = \int_{\mathsf{Y}} k(\theta,y) f_{\alpha}'\left(\frac{\mu k(y)}{p(y)}\right) \nu(\mathrm{d}y) dy$$

Optimisation problem

$$\inf_{\mu \in \mathsf{M}} \Psi_{\alpha}(\mu k; p) \quad \text{with} \quad \Psi_{\alpha}(\mu k; p) := \int_{\mathsf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

- p is a nonnegative measurable function defined on (Y, \mathcal{Y})
- M is a subset of $\mathrm{M}_1(\mathsf{T})$, the space of probability measures on T
- $K:(\theta,A)\mapsto \int_A k(\theta,y)\nu(\mathrm{d}y)$ is a Markov transition kernel defined on $\mathsf{T}\times\mathcal{Y}$ with density k

Algorithm

Let $\mu_1 \in M_1(T)$ be such that $\Psi_{\alpha}(\mu_1 k) < \infty$. The sequence of probability measures $(\mu_n)_{n \geq 1}$ is defined iteratively by

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n) , \qquad n \geqslant 1$$

$$\mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \text{ with } b_{\mu,\alpha}(\theta) = \int_{\mathsf{Y}} k(\theta,y) f_{\alpha}'\left(\frac{\mu k(y)}{p(y)}\right) \nu(\mathrm{d}y)$$

Optimisation problem

$$\inf_{\mu \in \mathsf{M}} \Psi_{\alpha}(\mu k; \mathbf{p}) \quad \text{with} \quad \Psi_{\alpha}(\mu k; \mathbf{p}) := \int_{\mathsf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

- p is a nonnegative measurable function defined on (Y, \mathcal{Y})
- M is a subset of $\mathrm{M}_1(\mathsf{T})$, the space of probability measures on T
- $K:(\theta,A)\mapsto \int_A k(\theta,y)\nu(\mathrm{d}y)$ is a Markov transition kernel defined on $\mathsf{T}\times\mathcal{Y}$ with density k

Algorithm

Let $\mu_1 \in M_1(T)$ be such that $\Psi_{\alpha}(\mu_1 k) < \infty$. The sequence of probability measures $(\mu_n)_{n \geq 1}$ is defined iteratively by

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n)$$
, $n \geqslant 1$

$$\mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \text{ with } b_{\mu,\alpha}(\theta) = \int_{\mathsf{Y}} k(\theta,y) f_{\alpha}'\left(\frac{\mu k(y)}{p(y)}\right) \nu(\mathrm{d}y)$$

Optimisation problem

$$\inf_{\mu \in \mathsf{M}} \Psi_{\alpha}(\mu k; \mathbf{p}) \quad \text{with} \quad \Psi_{\alpha}(\mu k; \mathbf{p}) := \int_{\mathsf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

- p is a nonnegative measurable function defined on (Y, \mathcal{Y})
- M is a subset of $M_1(T)$, the space of probability measures on T
- $K:(\theta,A)\mapsto \int_A k(\theta,y)\nu(\mathrm{d}y)$ is a Markov transition kernel defined on $\mathsf{T}\times\mathcal{Y}$ with density k

Algorithm

Let $\mu_1 \in \mathrm{M}_1(\mathsf{T})$ be such that $\Psi_{\alpha}(\mu_1 k) < \infty$. The sequence of probability measures $(\mu_n)_{n\geqslant 1}$ is defined iteratively by

$$\mu_{n+1} = \mathcal{I}_{\alpha}(\mu_n)$$
, $n \geqslant 1$

$$\mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} \quad \text{with} \quad b_{\mu,\alpha}(\theta) = \int_{\mathsf{Y}} k(\theta,y) f_{\alpha}'\left(\frac{\mu k(y)}{p(y)}\right) \nu(\mathrm{d}y)$$

Conditions for a monotonic decrease

- (A1) For all $(\theta,y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta,y) > 0$, $p(y) \geqslant 0$ and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$.
- (A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Theorem

Assume (A1) and (A2). Let $\mu \in M_1(T)$ be such that $\Psi_{\alpha}(\mu k) < \infty$ and $\mu(\Gamma(b_{\mu,\alpha} + \kappa)) < \infty$. Then,

- $\bullet \Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k) \leqslant \Psi_{\alpha}(\mu k)$
- **2** $\Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k) = \Psi_{\alpha}(\mu k)$ if and only if $\mu = \mathcal{I}_{\alpha}(\mu)$

Conditions for a monotonic decrease

- (A1) For all $(\theta,y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta,y) > 0$, $p(y) \geqslant 0$ and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$.
- (A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Theorem

Assume (A1) and (A2). Let $\mu \in M_1(T)$ be such that $\Psi_{\alpha}(\mu k) < \infty$ and $\mu(\Gamma(b_{\mu,\alpha} + \kappa)) < \infty$. Then,

- $\bullet \ \Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k) \leqslant \Psi_{\alpha}(\mu k)$
- **2** $\Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k) = \Psi_{\alpha}(\mu k)$ if and only if $\mu = \mathcal{I}_{\alpha}(\mu)$

Conditions for a monotonic decrease

- (A1) For all $(\theta,y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta,y) > 0$, $p(y) \geqslant 0$ and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$.
- (A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Theorem

Assume (A1) and (A2). Let $\mu \in M_1(T)$ be such that $\Psi_{\alpha}(\mu k) < \infty$ and $\mu(\Gamma(b_{\mu,\alpha} + \kappa)) < \infty$. Then,

- $\bullet \ \Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k) \leqslant \Psi_{\alpha}(\mu k)$
- **2** $\Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k) = \Psi_{\alpha}(\mu k)$ if and only if $\mu = \mathcal{I}_{\alpha}(\mu)$

Let $\mu, \zeta \in M_1(\mathsf{T})$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu k) < \infty$. Denote by g the density of ζ w.r.t μ .

We want to find A_{α} such that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu k) - \Psi_{\alpha}(\zeta k)$$

and equality holds iif $\zeta = \mu$.

By definition $\Psi_{\alpha}(\mu k)=\int_{Y}f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right)p(y)\nu(\mathrm{d}y)$ with f_{α} convex

By convexity of f_{α}

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant f_{\alpha}\left(\frac{\zeta k(y)}{p(y)}\right) + f_{\alpha}'\left(\frac{\zeta k(y)}{p(y)}\right) \frac{\mu k(y) - \zeta k(y)}{p(y)}$$

X Not the best idea!

Let $\mu, \zeta \in M_1(\mathsf{T})$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu k) < \infty$. Denote by g the density of ζ w.r.t μ .

We want to find A_{α} such that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu k) - \Psi_{\alpha}(\zeta k)$$

and equality holds iif $\zeta = \mu$.

By definition $\Psi_{\alpha}(\mu k) = \int_{Y} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$ with f_{α} convex.

By convexity of f_{α}

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant f_{\alpha}\left(\frac{\zeta k(y)}{p(y)}\right) + f_{\alpha}'\left(\frac{\zeta k(y)}{p(y)}\right) \frac{\mu k(y) - \zeta k(y)}{p(y)}$$

X Not the best idea!

Let $\mu, \zeta \in M_1(T)$ s.t $\zeta \prec \mu$ and $\Psi_{\alpha}(\mu k) < \infty$. Denote by q the density of ζ w.r.t μ .

We want to find A_{α} such that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu k) - \Psi_{\alpha}(\zeta k)$$

and equality holds iif $\zeta = \mu$.

By definition $\Psi_{\alpha}(\mu k) = \int_{\mathbb{R}^d} f_{\alpha}\left(\frac{\mu k(y)}{r(y)}\right) p(y) \nu(\mathrm{d}y)$ with f_{α} convex.

💡 First idea

By convexity of f_{α} ,

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant f_{\alpha}\left(\frac{\zeta k(y)}{p(y)}\right) + f_{\alpha}'\left(\frac{\zeta k(y)}{p(y)}\right) \frac{\mu k(y) - \zeta k(y)}{p(y)}$$

Let $\mu, \zeta \in M_1(T)$ s.t $\zeta \prec \mu$ and $\Psi_{\alpha}(\mu k) < \infty$. Denote by q the density of ζ w.r.t μ .

We want to find A_{α} such that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu k) - \Psi_{\alpha}(\zeta k)$$

and equality holds iif $\zeta = \mu$.

By definition $\Psi_{\alpha}(\mu k) = \int_{\mathbb{R}^d} f_{\alpha}\left(\frac{\mu k(y)}{r(y)}\right) p(y) \nu(\mathrm{d}y)$ with f_{α} convex.

💡 First idea

By convexity of f_{α} ,

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant f_{\alpha}\left(\frac{\zeta k(y)}{p(y)}\right) + f_{\alpha}'\left(\frac{\zeta k(y)}{p(y)}\right) \frac{\mu k(y) - \zeta k(y)}{p(y)}$$

X Not the best idea!

Let $\mu, \zeta \in M_1(T)$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu k) < \infty$. Denote by g the density of ζ w.r.t μ .

We want to find A_{α} such that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu k) - \Psi_{\alpha}(\zeta k)$$

and equality holds iif $\zeta = \mu$.

By definition $\Psi_{\alpha}(\mu k) = \int_{\mathcal{M}} f_{\alpha}\left(\frac{\mu k(y)}{r(y)}\right) p(y) \nu(\mathrm{d}y)$ with f_{α} convex.

By convexity of f_{α} : for all $y \in Y$

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right)\frac{\mu k(y)}{p(y)}[1 - g(\theta)] \ .$$

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + \int_{\mathsf{T}} \mu(\mathrm{d}\theta)k(\theta,y) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \frac{1}{p(y)} [1 - g(\theta)] f_{\alpha}'(\theta) f_{\alpha}$$

$$\geqslant f_{\alpha} \left(\frac{\int_{\mathbb{T}} \mu(\mathrm{d}\theta) k(\theta, y) g(\theta)}{p(y)} \right) + \int_{\mathbb{T}} \mu(\mathrm{d}\theta) k(\theta, y) f_{\alpha}' \left(\frac{g(\theta) \mu k(y)}{p(y)} \right) \frac{1}{p(y)} [1 - g(\theta)]$$

Let $\mu, \zeta \in M_1(T)$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu k) < \infty$. Denote by g the density of ζ w.r.t μ .

We want to find A_{α} such that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu k) - \Psi_{\alpha}(\zeta k)$$

and equality holds iif $\zeta = \mu$.

By definition $\Psi_{\alpha}(\mu k) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$ with f_{α} convex.

By convexity of f_{α} : for all $y \in Y$

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right)\frac{\mu k(y)}{p(y)}[1 - g(\theta)].$$

ightarrow Next, we integrate w.r.t to $rac{\mu(\mathrm{d} heta)k(heta,y)}{\mu k(y)}$,

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + \int_{\mathsf{T}} \mu(\mathrm{d}\theta)k(\theta,y) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \frac{1}{p(y)} [1-g(\theta)]$$

$$\geqslant f_{\alpha}\left(\frac{\int_{\mathbb{T}}\mu(\mathrm{d}\theta)k(\theta,y)g(\theta)}{p(y)}\right) + \int_{\mathbb{T}}\mu(\mathrm{d}\theta)k(\theta,y)f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right)\frac{1}{p(y)}[1-g(\theta)]$$

Let $\mu, \zeta \in M_1(\mathsf{T})$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu k) < \infty$. Denote by g the density of ζ w.r.t μ .

We want to find A_{α} such that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu k) - \Psi_{\alpha}(\zeta k)$$

and equality holds iif $\zeta = \mu$.

By definition $\Psi_{\alpha}(\mu k) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$ with f_{α} convex.

By convexity of f_{α} : for all $y \in Y$

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right)\frac{\mu k(y)}{p(y)}[1 - g(\theta)] \ .$$

ightarrow Next, we integrate w.r.t to $rac{\mu(\mathrm{d} heta)k(heta,y)}{\mu k(y)}$,

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + \int_{\mathsf{T}} \mu(\mathrm{d}\theta)k(\theta,y) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \frac{1}{p(y)} [1-g(\theta)]$$

$$\geqslant f_{\alpha}\left(\frac{\int_{\mathbb{T}}\mu(\mathrm{d}\theta)k(\theta,y)g(\theta)}{p(y)}\right) + \int_{\mathbb{T}}\mu(\mathrm{d}\theta)k(\theta,y)f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right)\frac{1}{p(y)}[1-g(\theta)]$$

Let $\mu, \zeta \in M_1(\mathsf{T})$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu k) < \infty$. Denote by g the density of ζ w.r.t μ .

We want to find A_{α} such that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu k) - \Psi_{\alpha}(\zeta k)$$

and equality holds iif $\zeta = \mu$.

By definition $\Psi_{\alpha}(\mu k) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$ with f_{α} convex.

By convexity of f_{α} : for all $y \in Y$

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right)\frac{\mu k(y)}{p(y)}[1 - g(\theta)] \ .$$

 \rightarrow Next, we integrate w.r.t to $\frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)}$,

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant \int_{\mathsf{T}} \frac{\mu(\mathrm{d}\theta)k(\theta,y)}{\mu k(y)} f_{\alpha}\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) + \int_{\mathsf{T}} \mu(\mathrm{d}\theta)k(\theta,y) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \frac{1}{p(y)} [1-g(\theta)]$$

$$\geqslant f_{\alpha}\left(\frac{\int_{\mathsf{T}}\mu(\mathrm{d}\theta)k(\theta,y)g(\theta)}{p(y)}\right) + \int_{\mathsf{T}}\mu(\mathrm{d}\theta)k(\theta,y)f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right)\frac{1}{p(y)}[1-g(\theta)]$$

Let $\mu, \zeta \in M_1(T)$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu k) < \infty$. Denote by g the density of ζ w.r.t μ .

We want to find A_{α} such that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu k) - \Psi_{\alpha}(\zeta k)$$

and equality holds iif $\zeta = \mu$.

By definition
$$\Psi_{\alpha}(\mu k) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$
 with f_{α} convex.

 \rightarrow At this stage : for all $y \in Y$,

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant f_{\alpha}\left(\frac{\zeta k(y)}{p(y)}\right) + \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \frac{1}{p(y)} [1-g(\theta)]$$

Now integrating w.r.t to $\nu(\mathrm{d}y)p(y)$, we deduce

$$\Psi_{\alpha}(\mu k) \geqslant \Psi_{\alpha}(\zeta k) + \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta, y) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \left[1 - g(\theta)\right]$$

Choice of A_{α}

We take
$$A_{\alpha} := \int_{\mathbf{Y}} \nu(\mathrm{d}y) \int_{\mathbf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_{\alpha}' \left(\frac{g(\theta) \mu k(y)}{p(y)} \right) [1 - g(\theta)]$$

Let $\mu, \zeta \in M_1(T)$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu k) < \infty$. Denote by g the density of ζ w.r.t μ .

We want to find A_{α} such that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu k) - \Psi_{\alpha}(\zeta k)$$

and equality holds iif $\zeta = \mu$.

By definition $\Psi_{\alpha}(\mu k) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$ with f_{α} convex.

 \rightarrow At this stage : for all $y \in Y$,

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant f_{\alpha}\left(\frac{\zeta k(y)}{p(y)}\right) + \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \frac{1}{p(y)} [1-g(\theta)]$$

Now integrating w.r.t to $\nu(\mathrm{d}y)p(y)$, we deduce

$$\Psi_{\alpha}(\mu k) \geqslant \Psi_{\alpha}(\zeta k) + \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_{\alpha}' \left(\frac{g(\theta) \mu k(y)}{p(y)} \right) [1 - g(\theta)]$$

Choice of A_{α}

We take
$$A_{\alpha} := \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_{\alpha}' \left(\frac{g(\theta) \mu k(y)}{p(y)} \right) [1-g(\theta)] d\theta$$

Let $\mu, \zeta \in M_1(\mathsf{T})$ s.t $\zeta \leq \mu$ and $\Psi_{\alpha}(\mu k) < \infty$. Denote by g the density of ζ w.r.t μ .

We want to find A_{α} such that

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu k) - \Psi_{\alpha}(\zeta k)$$

and equality holds iif $\zeta = \mu$.

By definition
$$\Psi_{\alpha}(\mu k) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$
 with f_{α} convex.

 \rightarrow At this stage : for all $y \in Y$,

$$f_{\alpha}\left(\frac{\mu k(y)}{p(y)}\right) \geqslant f_{\alpha}\left(\frac{\zeta k(y)}{p(y)}\right) + \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \frac{1}{p(y)} [1 - g(\theta)]$$

Now integrating w.r.t to $\nu(\mathrm{d}y)p(y)$, we deduce

$$\Psi_{\alpha}(\mu k) \geqslant \Psi_{\alpha}(\zeta k) + \int_{\mathsf{T}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_{\alpha}'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) [1-g(\theta)]$$

Choice of A_{α}

We take
$$A_\alpha := \int_{\mathbf{Y}} \nu(\mathrm{d}y) \int_{\mathbf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_\alpha'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) [1-g(\theta)]$$

Setting $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$\zeta(\mathrm{d}\theta) = \mu(\mathrm{d}\theta)g(\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} = \mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta)$$

and thu

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu k) - \Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k)$$

with
$$A_{\alpha} = \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta, y) f_{\alpha}' \left(\frac{g(\theta)\mu k(y)}{p(y)} \right) [1 - g(\theta)]$$

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

Proving that $A_{\alpha} \geq 0 \rightarrow \text{We treat the case } \alpha \in \mathbb{R} \setminus \{1\}.$

In this case $f'_{\alpha}(u) = \frac{1}{\alpha - 1}[u^{\alpha - 1} - 1]$ and

$$b_{\mu,\alpha}(\theta) = \int_{\mathsf{Y}} k(\theta, y) \frac{1}{\alpha - 1} \left[\left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] \nu(\mathrm{d}y)$$

$$A_{\alpha} = \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta, y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] [1 - g(\theta)]$$

Setting $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$\zeta(\mathrm{d}\theta) = \mu(\mathrm{d}\theta)g(\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} = \mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta)$$

and thus

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu k) - \Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k)$$

$$\text{with} \quad A_\alpha = \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_\alpha' \left(\frac{g(\theta) \mu k(y)}{p(y)} \right) \left[1 - g(\theta) \right] \; .$$

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

Proving that $A_{\alpha} \geq 0 \rightarrow \text{We treat the case } \alpha \in \mathbb{R} \setminus \{1\}.$

In this case $f'_{\alpha}(u) = \frac{1}{\alpha - 1}[u^{\alpha - 1} - 1]$ and

$$b_{\mu,\alpha}(\theta) = \int_{\mathsf{Y}} k(\theta, y) \frac{1}{\alpha - 1} \left[\left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] \nu(\mathrm{d}y)$$

$$A_{\alpha} = \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta, y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] [1 - g(\theta)]$$

Setting $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$\zeta(\mathrm{d}\theta) = \mu(\mathrm{d}\theta)g(\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} = \mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta)$$

and thus

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu k) - \Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k)$$

$$\text{with} \quad A_\alpha = \int_{\mathbf{Y}} \nu(\mathrm{d}y) \int_{\mathbf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_\alpha'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \left[1 - g(\theta)\right] \; .$$

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

Proving that $A_{\alpha} \geqslant 0 \rightarrow \text{We treat the case } \alpha \in \mathbb{R} \setminus \{1\}.$

In this case $f'_{\alpha}(u) = \frac{1}{\alpha-1}[u^{\alpha-1}-1]$ and

$$\begin{split} b_{\mu,\alpha}(\theta) &= \int_{\mathsf{Y}} k(\theta,y) \frac{1}{\alpha-1} \left[\left(\frac{\mu k(y)}{p(y)} \right)^{\alpha-1} - 1 \right] \nu(\mathrm{d}y) \\ A_{\alpha} &= \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \frac{1}{\alpha-1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha-1} - 1 \right] [1 - g(\theta)] \end{split}$$

Setting $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$\zeta(\mathrm{d}\theta) = \mu(\mathrm{d}\theta)g(\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} = \mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta)$$

and thus

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu k) - \Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k)$$

$$\text{with} \quad A_\alpha = \int_{\mathbf{Y}} \nu(\mathrm{d}y) \int_{\mathbf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_\alpha'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \left[1 - g(\theta)\right] \; .$$

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

Proving that $A_{\alpha} \geqslant 0 \rightarrow \text{We treat the case } \alpha \in \mathbb{R} \setminus \{1\}.$

In this case
$$f'_{\alpha}(u) = \frac{1}{\alpha-1}[u^{\alpha-1}-1]$$
 and

$$\begin{split} b_{\mu,\alpha}(\theta) &= \int_{\mathsf{Y}} k(\theta,y) \frac{1}{\alpha-1} \left[\left(\frac{\mu k(y)}{p(y)} \right)^{\alpha-1} - 1 \right] \nu(\mathrm{d}y) \\ A_{\alpha} &= \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \frac{1}{\alpha-1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha-1} - 1 \right] [1 - g(\theta)] \end{split}$$

Setting $g \propto \Gamma(b_{\mu,\alpha} + \kappa)$, we have that

$$\zeta(\mathrm{d}\theta) = \mu(\mathrm{d}\theta)g(\theta) = \frac{\mu(\mathrm{d}\theta) \cdot \Gamma(b_{\mu,\alpha}(\theta) + \kappa)}{\mu(\Gamma(b_{\mu,\alpha} + \kappa))} = \mathcal{I}_{\alpha}(\mu)(\mathrm{d}\theta)$$

and thus

$$A_{\alpha} \leqslant \Psi_{\alpha}(\mu k) - \Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k)$$

$$\text{with} \quad A_\alpha = \int_{\mathbf{Y}} \nu(\mathrm{d}y) \int_{\mathbf{T}} \mu(\mathrm{d}\theta) k(\theta,y) f_\alpha'\left(\frac{g(\theta)\mu k(y)}{p(y)}\right) \left[1 - g(\theta)\right] \; .$$

The proof is complete if we prove that $A_{\alpha} \geqslant 0$.

Proving that $A_{\alpha} \geqslant 0 \rightarrow \text{We treat the case } \alpha \in \mathbb{R} \setminus \{1\}.$

In this case $f'_{\alpha}(u) = \frac{1}{\alpha-1}[u^{\alpha-1}-1]$ and

$$\begin{split} b_{\mu,\alpha}(\theta) &= \int_{\mathsf{Y}} k(\theta,y) \frac{1}{\alpha-1} \left[\left(\frac{\mu k(y)}{p(y)} \right)^{\alpha-1} - 1 \right] \nu(\mathrm{d}y) \\ A_{\alpha} &= \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \frac{1}{\alpha-1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha-1} - 1 \right] [1 - g(\theta)] \end{split}$$

Proving that $A_{\alpha} \geqslant 0 \to \text{We treat the case } \alpha \in \mathbb{R} \setminus \{1\}.$ In this case $f'_{\alpha}(u) = \frac{1}{\alpha-1}[u^{\alpha-1}-1]$ and

$$b_{\mu,\alpha}(\theta) = \int_{\mathbf{Y}} k(\theta, y) \frac{1}{\alpha - 1} \left[\left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] \nu(\mathrm{d}y)$$

$$A_{\alpha} = \int_{\mathbf{Y}} \nu(\mathrm{d}y) \int_{\mathbf{T}} \mu(\mathrm{d}\theta) k(\theta, y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] [1 - g(\theta)]$$

$$= \int_{\mathbf{T}} \mu(\mathrm{d}\theta) \left(\int_{\mathbf{Y}} \nu(\mathrm{d}y) k(\theta, y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] \right) [1 - g(\theta)]$$

$$= \int_{\mathbf{T}} \mu(\mathrm{d}\theta) \left(\int_{\mathbf{Y}} k(\theta, y) \frac{1}{\alpha - 1} \left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} \nu(\mathrm{d}y) \right) g(\theta)^{\alpha - 1} [1 - g(\theta)]$$

$$= \int_{\mathbf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha - 1} \right] g(\theta)^{\alpha - 1} [1 - g(\theta)]$$

$$b_{\mu,\alpha}(\theta) = \int_{\mathbf{Y}} k(\theta, y) \frac{1}{\alpha - 1} \left[\left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] \nu(\mathrm{d}y)$$

$$A_{\alpha} = \int_{\mathbf{Y}} \nu(\mathrm{d}y) \int_{\mathbf{T}} \mu(\mathrm{d}\theta) k(\theta, y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] [1 - g(\theta)]$$

$$= \int_{\mathbf{T}} \mu(\mathrm{d}\theta) \left(\int_{\mathbf{Y}} \nu(\mathrm{d}y) k(\theta, y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] \right) [1 - g(\theta)]$$

$$= \int_{\mathbf{T}} \mu(\mathrm{d}\theta) \left(\int_{\mathbf{Y}} k(\theta, y) \frac{1}{\alpha - 1} \left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} \nu(\mathrm{d}y) \right) g(\theta)^{\alpha - 1} [1 - g(\theta)]$$

$$= \int_{\mathbf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha - 1} \right] g(\theta)^{\alpha - 1} [1 - g(\theta)]$$

$$\begin{split} b_{\mu,\alpha}(\theta) &= \int_{\mathsf{Y}} k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] \nu(\mathrm{d}y) \\ A_{\alpha} &= \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] [1 - g(\theta)] \\ &= \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left(\int_{\mathsf{Y}} \nu(\mathrm{d}y) k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] \right) [1 - g(\theta)] \\ &= \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left(\int_{\mathsf{Y}} k(\theta,y) \frac{1}{\alpha - 1} \left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} \nu(\mathrm{d}y) \right) g(\theta)^{\alpha - 1} [1 - g(\theta)] \\ &= \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha - 1} \right] g(\theta)^{\alpha - 1} [1 - g(\theta)] \end{split}$$

$$\begin{split} b_{\mu,\alpha}(\theta) &= \int_{\mathsf{Y}} k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] \nu(\mathrm{d}y) \\ A_{\alpha} &= \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] [1 - g(\theta)] \\ &= \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left(\int_{\mathsf{Y}} \nu(\mathrm{d}y) k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} \right] \right) [1 - g(\theta)] \\ &= \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left(\int_{\mathsf{Y}} k(\theta,y) \frac{1}{\alpha - 1} \left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} \nu(\mathrm{d}y) \right) g(\theta)^{\alpha - 1} [1 - g(\theta)] \\ &= \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha - 1} \right] g(\theta)^{\alpha - 1} [1 - g(\theta)] \end{split}$$

$$\begin{split} b_{\mu,\alpha}(\theta) &= \int_{\mathsf{Y}} k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] \nu(\mathrm{d}y) \\ A_{\alpha} &= \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] [1 - g(\theta)] \\ &= \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left(\int_{\mathsf{Y}} \nu(\mathrm{d}y) k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} \right] \right) [1 - g(\theta)] \\ &= \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left(\int_{\mathsf{Y}} k(\theta,y) \frac{1}{\alpha - 1} \left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} \nu(\mathrm{d}y) \right) g(\theta)^{\alpha - 1} [1 - g(\theta)] \\ &= \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha - 1} \right] g(\theta)^{\alpha - 1} [1 - g(\theta)] \end{split}$$

$$\begin{split} b_{\mu,\alpha}(\theta) &= \int_{\mathsf{Y}} k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] \nu(\mathrm{d}y) \\ A_{\alpha} &= \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] [1 - g(\theta)] \\ &= \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left(\int_{\mathsf{Y}} \nu(\mathrm{d}y) k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} \right] \right) [1 - g(\theta)] \\ &= \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left(\int_{\mathsf{Y}} k(\theta,y) \frac{1}{\alpha - 1} \left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} \nu(\mathrm{d}y) \right) g(\theta)^{\alpha - 1} [1 - g(\theta)] \\ &= \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha - 1} \right] g(\theta)^{\alpha - 1} [1 - g(\theta)] \end{split}$$

$$\begin{split} b_{\mu,\alpha}(\theta) &= \int_{\mathsf{Y}} k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] \nu(\mathrm{d}y) \\ A_{\alpha} &= \int_{\mathsf{Y}} \nu(\mathrm{d}y) \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} - 1 \right] [1 - g(\theta)] \\ &= \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left(\int_{\mathsf{Y}} \nu(\mathrm{d}y) k(\theta,y) \frac{1}{\alpha - 1} \left[\left(\frac{g(\theta)\mu k(y)}{p(y)} \right)^{\alpha - 1} \right] \right) [1 - g(\theta)] \\ &= \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left(\int_{\mathsf{Y}} k(\theta,y) \frac{1}{\alpha - 1} \left(\frac{\mu k(y)}{p(y)} \right)^{\alpha - 1} \nu(\mathrm{d}y) \right) g(\theta)^{\alpha - 1} [1 - g(\theta)] \\ &= \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha - 1} \right] g(\theta)^{\alpha - 1} [1 - g(\theta)] \end{split}$$

Proving that $A_{\alpha} \geqslant 0 \rightarrow \text{We treat the case } \alpha \in \mathbb{R} \setminus \{1\}.$

We have obtained that

$$A_{\alpha} = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha - 1} \right] g(\theta)^{\alpha - 1} \left[1 - g(\theta) \right]$$

It's time to use that $q \propto \Gamma(b_{\mu\alpha} + \kappa)!$

- (i) Let V be the random variable $V(\theta) = b_{\mu,\alpha}(\theta) + \kappa$ (probability space $(\mathsf{T}, \mathcal{T}, \mu)$)
- (ii) Set $\tilde{\Gamma}(v) = \Gamma(v)/\mu(\Gamma(b_{\mu,\alpha} + \kappa))$ for all $v \in \mathrm{Dom}_{\alpha}$.

Then

$$\begin{split} A_{\alpha} &= \mathbb{E}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V)\left[1 - \tilde{\Gamma}(V)\right]\right) \\ &= \mathbb{C}\mathrm{ov}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V), 1 - \tilde{\Gamma}(V)\right) \quad \text{since} \quad \mathbb{E}[1 - \tilde{\Gamma}(V)] = 0 \end{split}$$

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Conclusion: $A_{-} \ge 0$

Proving that $A_{\alpha} \geqslant 0 \rightarrow \text{We treat the case } \alpha \in \mathbb{R} \setminus \{1\}.$

We have obtained that

$$A_{\alpha} = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha-1} \right] g(\theta)^{\alpha-1} \left[1 - g(\theta) \right]$$

It's time to use that $a \propto \Gamma(b_{\mu\alpha} + \kappa)!$

- (i) Let V be the random variable $V(\theta) = b_{\mu,\alpha}(\theta) + \kappa$ (probability space $(\mathsf{T},\mathcal{T},\mu)$)
- (ii) Set $\tilde{\Gamma}(v) = \Gamma(v)/\mu(\Gamma(b_{\mu,\alpha} + \kappa))$ for all $v \in \mathrm{Dom}_{\alpha}$.

Then

$$\begin{split} A_{\alpha} &= \mathbb{E}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V)\left[1 - \tilde{\Gamma}(V)\right]\right) \\ &= \mathbb{C}\mathrm{ov}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V), 1 - \tilde{\Gamma}(V)\right) \quad \text{since} \quad \mathbb{E}[1 - \tilde{\Gamma}(V)] = 0 \end{split}$$

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Proving that $A_{\alpha} \geqslant 0 \rightarrow \text{We treat the case } \alpha \in \mathbb{R} \setminus \{1\}.$

We have obtained that

$$A_{\alpha} = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha-1} \right] g(\theta)^{\alpha-1} \left[1 - g(\theta) \right]$$

It's time to use that $g \propto \Gamma(b_{\mu,\alpha} + \kappa)!$

- (i) Let V be the random variable $V(\theta) = b_{u,\alpha}(\theta) + \kappa$ (probability space $(\mathsf{T},\mathcal{T},\mu)$)
- (ii) Set $\tilde{\Gamma}(v) = \Gamma(v)/\mu(\Gamma(b_{\mu,\alpha} + \kappa))$ for all $v \in \mathrm{Dom}_{\alpha}$.

Then

$$\begin{split} A_{\alpha} &= \mathbb{E}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V)\left[1 - \tilde{\Gamma}(V)\right]\right) \\ &= \mathbb{C}\mathrm{ov}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V), 1 - \tilde{\Gamma}(V)\right) \quad \text{since} \quad \mathbb{E}[1 - \tilde{\Gamma}(V)] = 0 \end{split}$$

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Proving that $A_{\alpha} \geqslant 0 \rightarrow \text{We treat the case } \alpha \in \mathbb{R} \setminus \{1\}.$

We have obtained that

$$A_{\alpha} = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha-1} \right] g(\theta)^{\alpha-1} \left[1 - g(\theta) \right]$$

It's time to use that $g \propto \Gamma(b_{\mu,\alpha} + \kappa)!$

- (i) Let V be the random variable $V(\theta) = b_{\mu,\alpha}(\theta) + \kappa$ (probability space $(\mathsf{T},\mathcal{T},\mu)$)
- (ii) Set $\tilde{\Gamma}(v) = \Gamma(v)/\mu(\Gamma(b_{\mu,\alpha} + \kappa))$ for all $v \in \mathrm{Dom}_{\alpha}$.

Then

$$\begin{split} A_{\alpha} &= \mathbb{E}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V)\left[1 - \tilde{\Gamma}(V)\right]\right) \\ &= \mathbb{C}\mathrm{ov}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V), 1 - \tilde{\Gamma}(V)\right) \quad \text{since} \quad \mathbb{E}[1 - \tilde{\Gamma}(V)] = 0 \end{split}$$

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Proving that $A_{\alpha} \geqslant 0 \rightarrow \text{We treat the case } \alpha \in \mathbb{R} \setminus \{1\}.$

We have obtained that

$$A_{\alpha} = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha-1} \right] g(\theta)^{\alpha-1} \left[1 - g(\theta) \right]$$

It's time to use that $g \propto \Gamma(b_{\mu,\alpha} + \kappa)!$

- (i) Let V be the random variable $V(\theta) = b_{\mu,\alpha}(\theta) + \kappa$ (probability space $(\mathsf{T},\mathcal{T},\mu)$)
- (ii) Set $\tilde{\Gamma}(v) = \Gamma(v)/\mu(\Gamma(b_{\mu,\alpha} + \kappa))$ for all $v \in \mathrm{Dom}_{\alpha}$.

Then

$$\begin{split} A_{\alpha} &= \mathbb{E}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V)\left[1 - \tilde{\Gamma}(V)\right]\right) \\ &= \mathbb{C}\mathrm{ov}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V), 1 - \tilde{\Gamma}(V)\right) \quad \text{since} \quad \mathbb{E}[1 - \tilde{\Gamma}(V)] = 0 \end{split}$$

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Proving that $A_{\alpha} \geqslant 0 \rightarrow \text{We treat the case } \alpha \in \mathbb{R} \setminus \{1\}.$

We have obtained that

$$A_{\alpha} = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha-1} \right] g(\theta)^{\alpha-1} \left[1 - g(\theta) \right]$$

It's time to use that $g \propto \Gamma(b_{\mu,\alpha} + \kappa)!$

- (i) Let V be the random variable $V(\theta) = b_{\mu,\alpha}(\theta) + \kappa$ (probability space $(\mathsf{T},\mathcal{T},\mu)$)
- (ii) Set $\tilde{\Gamma}(v) = \Gamma(v)/\mu(\Gamma(b_{\mu,\alpha} + \kappa))$ for all $v \in \mathrm{Dom}_{\alpha}$.

Then,

$$\begin{split} A_{\alpha} &= \mathbb{E}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V)\left[1 - \tilde{\Gamma}(V)\right]\right) \\ &= \mathbb{C}\mathrm{ov}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V), 1 - \tilde{\Gamma}(V)\right) \quad \text{since} \quad \mathbb{E}[1 - \tilde{\Gamma}(V)] = 0 \end{split}$$

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Proving that $A_{\alpha} \geqslant 0 \rightarrow \text{We treat the case } \alpha \in \mathbb{R} \setminus \{1\}.$

We have obtained that

$$A_{\alpha} = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha-1} \right] g(\theta)^{\alpha-1} \left[1 - g(\theta) \right]$$

It's time to use that $g \propto \Gamma(b_{\mu,\alpha} + \kappa)!$

- (i) Let V be the random variable $V(\theta) = b_{\mu,\alpha}(\theta) + \kappa$ (probability space $(\mathsf{T},\mathcal{T},\mu)$)
- (ii) Set $\tilde{\Gamma}(v) = \Gamma(v)/\mu(\Gamma(b_{\mu,\alpha} + \kappa))$ for all $v \in \mathrm{Dom}_{\alpha}$.

Then,

$$\begin{split} A_{\alpha} &= \mathbb{E}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V)\left[1 - \tilde{\Gamma}(V)\right]\right) \\ &= \mathbb{C}\mathrm{ov}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V), 1 - \tilde{\Gamma}(V)\right) \quad \text{since} \quad \mathbb{E}[1 - \tilde{\Gamma}(V)] = 0 \end{split}$$

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Proving that $A_{\alpha} \geqslant 0 \rightarrow \text{We treat the case } \alpha \in \mathbb{R} \setminus \{1\}.$

We have obtained that

$$A_{\alpha} = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha-1} \right] g(\theta)^{\alpha-1} \left[1 - g(\theta) \right]$$

It's time to use that $g \propto \Gamma(b_{\mu,\alpha} + \kappa)!$

- (i) Let V be the random variable $V(\theta) = b_{\mu,\alpha}(\theta) + \kappa$ (probability space $(\mathsf{T},\mathcal{T},\mu)$)
- (ii) Set $\tilde{\Gamma}(v) = \Gamma(v)/\mu(\Gamma(b_{\mu,\alpha} + \kappa))$ for all $v \in \mathrm{Dom}_{\alpha}$.

Then,

$$\begin{split} A_{\alpha} &= \mathbb{E}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V)\left[1 - \tilde{\Gamma}(V)\right]\right) \\ &= \mathbb{C}\mathrm{ov}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V), 1 - \tilde{\Gamma}(V)\right) \quad \text{since} \quad \mathbb{E}[1 - \tilde{\Gamma}(V)] = 0 \end{split}$$

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Proving that $A_{\alpha} \geqslant 0 \rightarrow \text{We treat the case } \alpha \in \mathbb{R} \setminus \{1\}.$

We have obtained that

$$A_{\alpha} = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha-1} \right] g(\theta)^{\alpha-1} \left[1 - g(\theta) \right]$$

It's time to use that $g \propto \Gamma(b_{\mu,\alpha} + \kappa)!$

- (i) Let V be the random variable $V(\theta) = b_{\mu,\alpha}(\theta) + \kappa$ (probability space $(\mathsf{T},\mathcal{T},\mu)$)
- (ii) Set $\tilde{\Gamma}(v) = \Gamma(v)/\mu(\Gamma(b_{\mu,\alpha} + \kappa))$ for all $v \in \mathrm{Dom}_{\alpha}$.

Then,

$$\begin{split} A_{\alpha} &= \mathbb{E}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V)\left[1 - \tilde{\Gamma}(V)\right]\right) \\ &= \mathbb{C}\mathrm{ov}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V), \mathbf{1} - \tilde{\Gamma}(V)\right) \quad \text{since} \quad \mathbb{E}[1 - \tilde{\Gamma}(V)] = 0 \end{split}$$

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Proving that $A_{\alpha} \geqslant 0 \rightarrow \text{We treat the case } \alpha \in \mathbb{R} \setminus \{1\}.$

We have obtained that

$$A_{\alpha} = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha-1} \right] g(\theta)^{\alpha-1} \left[1 - g(\theta) \right]$$

It's time to use that $g \propto \Gamma(b_{\mu,\alpha} + \kappa)!$

- (i) Let V be the random variable $V(\theta) = b_{\mu,\alpha}(\theta) + \kappa$ (probability space $(\mathsf{T},\mathcal{T},\mu)$)
- (ii) Set $\tilde{\Gamma}(v) = \Gamma(v)/\mu(\Gamma(b_{\mu,\alpha} + \kappa))$ for all $v \in \mathrm{Dom}_{\alpha}$.

Then,

$$\begin{split} A_{\alpha} &= \mathbb{E}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V)\left[1 - \tilde{\Gamma}(V)\right]\right) \\ &= \mathbb{C}\mathrm{ov}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V), 1 - \tilde{\Gamma}(V)\right) \quad \text{since} \quad \mathbb{E}[1 - \tilde{\Gamma}(V)] = 0 \end{split}$$

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Proving that $A_{\alpha} \geqslant 0 \rightarrow \text{We treat the case } \alpha \in \mathbb{R} \setminus \{1\}.$

We have obtained that

$$A_{\alpha} = \int_{\mathsf{T}} \mu(\mathrm{d}\theta) \left[b_{\mu,\alpha}(\theta) + \frac{1}{\alpha-1} \right] g(\theta)^{\alpha-1} \left[1 - g(\theta) \right]$$

It's time to use that $g \propto \Gamma(b_{\mu,\alpha} + \kappa)!$

- (i) Let V be the random variable $V(\theta) = b_{\mu,\alpha}(\theta) + \kappa$ (probability space $(\mathsf{T},\mathcal{T},\mu)$)
- (ii) Set $\tilde{\Gamma}(v) = \Gamma(v)/\mu(\Gamma(b_{\mu,\alpha} + \kappa))$ for all $v \in \mathrm{Dom}_{\alpha}$.

Then.

$$\begin{split} A_{\alpha} &= \mathbb{E}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V)\left[1 - \tilde{\Gamma}(V)\right]\right) \\ &= \mathbb{C}\mathrm{ov}\left(\left[V - \kappa + \frac{1}{\alpha - 1}\right]\tilde{\Gamma}^{\alpha - 1}(V), 1 - \tilde{\Gamma}(V)\right) \quad \text{since} \quad \mathbb{E}[1 - \tilde{\Gamma}(V)] = 0 \end{split}$$

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Reminder: Conditions for a monotonic decrease

- (A1) For all $(\theta,y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta,y) > 0$, $p(y) \geqslant 0$ and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$.
- (A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

Theorem

Assume (A1) and (A2). Let $\mu\in M_1(T)$ be such that $\Psi_{\alpha}(\mu k)<\infty$ and $\mu(\Gamma(b_{\mu,\alpha}+\kappa))<\infty$. Then,

- $\bullet \ \Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k) \leqslant \Psi_{\alpha}(\mu k)$
- **2** $\Psi_{\alpha}(\mathcal{I}_{\alpha}(\mu)k) = \Psi_{\alpha}(\mu k)$ if and only if $\mu = \mathcal{I}_{\alpha}(\mu)$

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

• Entropic Mirror Descent : $\eta \in (0,1], \kappa \in \mathbb{R}$ and $\alpha = 1$

$$\Gamma(v) = e^{-\eta v}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \exp\left[-\eta \int_{\mathsf{Y}} k(\theta,y) \log\left(\frac{\mu_n k(y)}{p(y)}\right) \nu(\mathrm{d}y)\right]$$

- \rightarrow NB : η corresponds to the learning rate
- Power descent : $\eta \in (0,1]$, $(\alpha 1)\kappa \geqslant 0$ and $\alpha \neq 1$

$$\Gamma(v) = [(\alpha - 1)v + 1]^{\frac{\eta}{1 - \alpha}}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \left[\int_{\mathsf{Y}} k(\theta, y) \left(\frac{\mu_n k(y)}{p(y)} \right)^{\alpha - 1} \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\frac{\eta}{1 - \alpha}}$$

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

• Entropic Mirror Descent : $\eta \in (0,1]$, $\kappa \in \mathbb{R}$ and $\alpha = 1$

$$\Gamma(v) = e^{-\eta v}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \exp\left[-\eta \int_{\mathsf{Y}} k(\theta,y) \log\left(\frac{\mu_n k(y)}{p(y)}\right) \nu(\mathrm{d}y)\right]$$

- \rightarrow NB : n corresponds to the learning rate
- Power descent : $\eta \in (0,1]$, $(\alpha 1)\kappa \geqslant 0$ and $\alpha \neq 1$

$$\Gamma(v) = [(\alpha - 1)v + 1]^{\frac{\eta}{1 - \alpha}}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \left[\int_{\mathsf{Y}} k(\theta, y) \left(\frac{\mu_n k(y)}{p(y)} \right)^{\alpha - 1} \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\frac{\eta}{1 - \alpha}}$$

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

 \bullet Entropic Mirror Descent : $\eta \in (0,1]$, $\kappa \in \mathbb{R}$ and $\alpha = 1$

$$\Gamma(v) = e^{-\eta v}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \exp\left[-\eta \int_{\mathsf{Y}} k(\theta,y) \log\left(\frac{\mu_n k(y)}{p(y)}\right) \nu(\mathrm{d}y)\right]$$

- \rightarrow NB : η corresponds to the learning rate
- Power descent : $\eta \in (0,1], (\alpha-1)\kappa \geqslant 0$ and $\alpha \neq 1$

$$\Gamma(v) = [(\alpha - 1)v + 1]^{\frac{\eta}{1 - \alpha}}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \left[\int_{\mathsf{Y}} k(\theta, y) \left(\frac{\mu_n k(y)}{p(y)} \right)^{\alpha - 1} \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\frac{n}{1 - \alpha}}$$

(A2) The function $\Gamma:\mathrm{Dom}_{\alpha}\to\mathbb{R}_{>0}$ is decreasing, continuously differentiable and satisfies the inequality

$$[(\alpha - 1)(v - \kappa) + 1] (\log \Gamma)'(v) + 1 \geqslant 0.$$

• Entropic Mirror Descent : $\eta \in (0,1]$, $\kappa \in \mathbb{R}$ and $\alpha = 1$

$$\Gamma(v) = e^{-\eta v}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \exp\left[-\eta \int_{\mathsf{Y}} k(\theta,y) \log\left(\frac{\mu_n k(y)}{p(y)}\right) \nu(\mathrm{d}y)\right]$$

- \rightarrow NB : η corresponds to the learning rate
- Power descent : $\eta \in (0,1]$, $(\alpha 1)\kappa \geqslant 0$ and $\alpha \neq 1$

$$\Gamma(v) = [(\alpha - 1) v + 1]^{\frac{\eta}{1 - \alpha}}$$

$$\mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \left[\int_{\mathbf{Y}} k(\theta, y) \left(\frac{\mu_n k(y)}{p(y)} \right)^{\alpha - 1} \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\frac{\eta}{1 - \alpha}}$$

$$\mu_{n+1}(\mathrm{d}\theta) = \frac{\mu_n(\mathrm{d}\theta) \cdot \Gamma(b_{\mu_n,\alpha}(\theta) + \kappa)}{\mu_n(\Gamma(b_{\mu_n,\alpha} + \kappa))}, \quad n \geqslant 1$$

- - Entropic Mirror Descent : $\Gamma(v) = e^{-\eta v}$ with $\eta \in (0, \frac{1}{|\alpha-1||b||_{\alpha}})$, any α, κ
 - Power Descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ with $\eta \in (0,1], \alpha > 1, \kappa > 0$

$$\mu^{\star} \text{ is a fixed point of } \mathcal{I}_{\alpha} \text{ and } \Psi_{\alpha}(\mu^{\star}k) = \inf_{\zeta \in \mathrm{M}_{1,\mu_{1}}(T)} \Psi_{\alpha}(\zeta k)$$

$$\mu_{n+1}(\mathrm{d}\theta) = \frac{\mu_n(\mathrm{d}\theta) \cdot \Gamma(b_{\mu_n,\alpha}(\theta) + \kappa)}{\mu_n(\Gamma(b_{\mu_n,\alpha} + \kappa))}, \quad n \geqslant 1$$

Assume (A1) and that $|b|_{\infty,\alpha} = \sup_{\theta \in \mathsf{T}, \mu \in \mathsf{M}_1(\mathsf{T})} |b_{\mu,\alpha}(\theta)| < \infty$

- - Entropic Mirror Descent : $\Gamma(v) = e^{-\eta v}$ with $\eta \in (0, \frac{1}{|\alpha-1||b|_{\infty} + 1})$, any α, κ
 - Power Descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ with $\eta \in (0,1], \alpha > 1, \kappa > 0$

$$\mu^\star$$
 is a fixed point of \mathcal{I}_α and $\Psi_\alpha(\mu^\star k) = \inf_{\zeta \in \mathrm{M}_{1,\mu_1}(\mathsf{T})} \Psi_\alpha(\zeta k)$

$$\mu_{n+1}(\mathrm{d}\theta) = \frac{\mu_n(\mathrm{d}\theta) \cdot \Gamma(b_{\mu_n,\alpha}(\theta) + \kappa)}{\mu_n(\Gamma(b_{\mu_n,\alpha} + \kappa))}, \quad n \geqslant 1$$

Assume (A1) and that $|b|_{\infty,\alpha} = \sup_{\theta \in T, \mu \in M_1(T)} |b_{\mu,\alpha}(\theta)| < \infty$

- $\to O(1/N)$ convergence rates when Γ is L-smooth and $-\log \Gamma$ is concave increasing
 - Entropic Mirror Descent : $\Gamma(v) = e^{-\eta v}$ with $\eta \in (0, \frac{1}{|\alpha-1||h|_{\infty}})$, any α, κ
 - Power Descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ with $\eta \in (0,1], \alpha > 1, \kappa > 0$

$$\mu^{\star}$$
 is a fixed point of \mathcal{I}_{α} and $\Psi_{\alpha}(\mu^{\star}k) = \inf_{\zeta \in \mathrm{M}_{1,\mu_{1}}(\mathsf{T})} \Psi_{\alpha}(\zeta k)$

$$\mu_{n+1}(\mathrm{d}\theta) = \frac{\mu_n(\mathrm{d}\theta) \cdot \Gamma(b_{\mu_n,\alpha}(\theta) + \kappa)}{\mu_n(\Gamma(b_{\mu_n,\alpha} + \kappa))}, \quad n \geqslant 1$$

Assume (A1) and that $|b|_{\infty,\alpha} = \sup_{\theta \in \mathsf{T}, \mu \in \mathrm{M}_1(\mathsf{T})} |b_{\mu,\alpha}(\theta)| < \infty$

- ightarrow O(1/N) convergence rates when Γ is L-smooth and $-\log\Gamma$ is concave increasing
 - Entropic Mirror Descent : $\Gamma(v) = e^{-\eta v}$ with $\eta \in (0, \frac{1}{|\alpha-1||b|_{\infty} \alpha+1})$, any α, κ
 - Power Descent : $\Gamma(v) = [(\alpha-1)v+1]^{\eta/(1-\alpha)}$ with $\eta \in (0,1], \ \alpha>1, \ \kappa>0$
- o The case lpha < 1 for the Power Descent is trickier... $\eta \in (0,1]$, $\kappa \leqslant 0$ Under additionnal assumptions on Ψ_{α} and $b_{\mu,\alpha}$, if $(\mu_n)_{n\geqslant 1}$ weakly converges to μ^{\star} then :

$$\mu^{\star}$$
 is a fixed point of \mathcal{I}_{α} and $\Psi_{\alpha}(\mu^{\star}k) = \inf_{\zeta \in \mathrm{M}_{1,\mu_{1}}(\mathsf{T})} \Psi_{\alpha}(\zeta k)$

$$\mu_{n+1}(\mathrm{d}\theta) = \frac{\mu_n(\mathrm{d}\theta) \cdot \Gamma(b_{\mu_n,\alpha}(\theta) + \kappa)}{\mu_n(\Gamma(b_{\mu_n,\alpha} + \kappa))}, \quad n \geqslant 1$$

Assume (A1) and that $|b|_{\infty,\alpha} = \sup_{\theta \in \mathsf{T}, \mu \in \mathrm{M}_1(\mathsf{T})} |b_{\mu,\alpha}(\theta)| < \infty$

- ightarrow O(1/N) convergence rates when Γ is L-smooth and $-\log\Gamma$ is concave increasing
 - Entropic Mirror Descent : $\Gamma(v) = e^{-\eta v}$ with $\eta \in (0, \frac{1}{|\alpha 1| |b|_{\infty, \alpha} + 1})$, any α, κ
 - Power Descent : $\Gamma(v)=[(\alpha-1)v+1]^{\eta/(1-\alpha)}$ with $\eta\in(0,1]$, $\alpha>1$, $\kappa>0$
- \to The case lpha < 1 for the Power Descent is trickier... $\eta \in (0,1]$, $\kappa \leqslant 0$ Under additionnal assumptions on Ψ_{α} and $b_{\mu,\alpha}$, if $(\mu_{\mathbf{n}})_{\mathbf{n}\geqslant 1}$ weakly converges to μ^{\star} , then :

$$\mu^{\star}$$
 is a fixed point of \mathcal{I}_{α} and $\Psi_{\alpha}(\mu^{\star}k) = \inf_{\zeta \in \mathrm{M}_{1,\mu_{1}}(\mathsf{T})} \Psi_{\alpha}(\zeta k)$

$$\mu_{n+1}(\mathrm{d}\theta) = \frac{\mu_n(\mathrm{d}\theta) \cdot \Gamma(b_{\mu_n,\alpha}(\theta) + \kappa)}{\mu_n(\Gamma(b_{\mu_n,\alpha} + \kappa))}, \quad n \geqslant 1$$

Assume (A1) and that $|b|_{\infty,\alpha} = \sup_{\theta \in \mathsf{T}, \mu \in \mathrm{M}_1(\mathsf{T})} |b_{\mu,\alpha}(\theta)| < \infty$

- ightarrow O(1/N) convergence rates when Γ is L-smooth and $-\log\Gamma$ is concave increasing
 - Entropic Mirror Descent : $\Gamma(v)=e^{-\eta v}$ with $\eta\in(0,\frac{1}{|\alpha-1||b|_{\infty,\alpha}+1})$, any α,κ
 - Power Descent : $\Gamma(v)=[(\alpha-1)v+1]^{\eta/(1-\alpha)}$ with $\eta\in(0,1]$, $\alpha>1$, $\kappa>0$
- ightarrow The case lpha < 1 for the Power Descent is trickier... $\eta \in (0,1], \ \kappa \leqslant 0$ Under additionnal assumptions on Ψ_{α} and $b_{\mu,\alpha}$, if $(\mu_{n})_{n\geqslant 1}$ weakly converges to μ^{\star} , then :

$$\mu^{\star} \text{ is a fixed point of } \mathcal{I}_{\alpha} \text{ and } \Psi_{\alpha}(\mu^{\star}k) = \inf_{\zeta \in \mathrm{M}_{1,\mu_{1}}(\mathsf{T})} \Psi_{\alpha}(\zeta k)$$

$$\mu_{n+1}(\mathrm{d}\theta) = \frac{\mu_n(\mathrm{d}\theta) \cdot \Gamma(b_{\mu_n,\alpha}(\theta) + \kappa)}{\mu_n(\Gamma(b_{\mu_n,\alpha} + \kappa))}, \quad n \geqslant 1$$

Assume (A1) and that $|b|_{\infty,\alpha} = \sup_{\theta \in \mathsf{T}, \mu \in \mathsf{M}_1(\mathsf{T})} |b_{\mu,\alpha}(\theta)| < \infty$

- ightarrow O(1/N) convergence rates when Γ is L-smooth and $-\log\Gamma$ is concave increasing
 - Entropic Mirror Descent : $\Gamma(v)=e^{-\eta v}$ with $\eta\in(0,\frac{1}{|\alpha-1||b|_{\infty,\alpha}+1})$, any α,κ
 - Power Descent : $\Gamma(v)=[(\alpha-1)v+1]^{\eta/(1-\alpha)}$ with $\eta\in(0,1]$, $\alpha>1$, $\kappa>0$
- ightarrow The case lpha < 1 for the Power Descent is trickier... $\eta \in (0,1], \ \kappa \leqslant 0$ Under additionnal assumptions on Ψ_{α} and $b_{\mu,\alpha}$, if $(\mu_n)_{n\geqslant 1}$ weakly converges to μ^* , then :

$$\mu^{\star} \text{ is a fixed point of } \mathcal{I}_{\alpha} \text{ and } \Psi_{\alpha}(\mu^{\star}k) = \inf_{\zeta \in \mathrm{M}_{1,\mu_{1}}(\mathsf{T})} \Psi_{\alpha}(\zeta k)$$

$$\mu_{n+1}(\mathrm{d}\theta) = \frac{\mu_n(\mathrm{d}\theta) \cdot \Gamma(b_{\mu_n,\alpha}(\theta) + \kappa)}{\mu_n(\Gamma(b_{\mu_n,\alpha} + \kappa))}, \quad n \geqslant 1$$

Assume (A1) and that $|b|_{\infty,\alpha} = \sup_{\theta \in \mathsf{T}, \mu \in \mathsf{M}_1(\mathsf{T})} |b_{\mu,\alpha}(\theta)| < \infty$

- $\to O(1/N)$ convergence rates when Γ is L-smooth and $-\log \Gamma$ is concave increasing
 - Entropic Mirror Descent : $\Gamma(v) = e^{-\eta v}$ with $\eta \in (0, \frac{1}{|\alpha 1| |b|_{\infty, \alpha} + 1})$, any α, κ
 - Power Descent : $\Gamma(v) = [(\alpha-1)v+1]^{\eta/(1-\alpha)}$ with $\eta \in (0,1]$, $\alpha>1$, $\kappa>0$
- ightarrow The case lpha < 1 for the Power Descent is trickier... $\eta \in (0,1]$, $\kappa \leqslant 0$ Under additionnal assumptions on Ψ_{α} and $b_{\mu,\alpha}$, if $(\mu_n)_{n\geqslant 1}$ weakly converges to μ^{\star} , then :

$$\mu^{\star} \text{ is a fixed point of } \mathcal{I}_{\alpha} \text{ and } \Psi_{\alpha}(\mu^{\star}k) = \inf_{\zeta \in \mathrm{M}_{1,\mu_{1}}(\mathsf{T})} \Psi_{\alpha}(\zeta k)$$

$$\mu_{n+1}(\mathrm{d}\theta) = \frac{\mu_n(\mathrm{d}\theta) \cdot \Gamma(b_{\mu_n,\alpha}(\theta) + \kappa)}{\mu_n(\Gamma(b_{\mu_n,\alpha} + \kappa))}, \quad n \geqslant 1$$

$$\begin{split} S_J &= \left\{ \pmb{\lambda} = (\lambda_1,...,\lambda_J) \in \mathbb{R}^J \ : \ \forall j \in \{1,...,J\} \,, \ \lambda_j \geqslant 0 \ \text{and} \ \sum_{j=1}^J \lambda_j = 1 \right\} \\ \text{Let } \Theta &= (\theta_1,\ldots,\theta_J) \in \mathsf{T}^J \,, \ \pmb{\lambda}_1 = (\lambda_{1,1},\ldots,\lambda_{J,1}) \in \mathcal{S}_J \ \text{and denote} \\ &\qquad \qquad \mu_{\pmb{\lambda}} = \sum_{j=1}^J \lambda_j \delta_{\theta_j} \quad \text{where} \quad \pmb{\lambda} \in \mathcal{S}_J \;. \end{split}$$

Then,
$$\mu_n = \underbrace{\mathcal{I}_{\alpha} \circ \cdots \circ \mathcal{I}_{\alpha}}_{n \text{ times}}(\mu_{\lambda_1})$$
 is of the form $\mu_n = \sum_{j=1}^J \lambda_{j,n} \delta_{\theta_j}$ with
$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{i=1}^J \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)}, \quad j = 1 \dots J, \ n \geqslant 1$$

NB :
$$\mu_n k(y) = \sum_{j=1}^J \lambda_{j,n} k(\theta_j, y)$$

$$Q = \left\{ q : y \mapsto \mu_{\lambda} k(y) = \sum_{j=1}^{J} \lambda_{j} k(\theta_{j}, y) : \lambda \in \mathcal{S}_{J} \right\}$$

$$\begin{split} \mu_{n+1}(\mathrm{d}\theta) &= \frac{\mu_n(\mathrm{d}\theta) \cdot \Gamma(b_{\mu_n,\alpha}(\theta) + \kappa)}{\mu_n(\Gamma(b_{\mu_n,\alpha} + \kappa))}, \quad n \geqslant 1 \\ S_J &= \Big\{ \pmb{\lambda} = (\lambda_1,...,\lambda_J) \in \mathbb{R}^J \ : \ \forall j \in \{1,...,J\} \,, \ \lambda_j \geqslant 0 \ \text{and} \ \sum_{j=1}^J \lambda_j = 1 \Big\} \\ \mathrm{Let} \ \Theta &= (\theta_1,\ldots,\theta_J) \in \mathsf{T}^J, \ \pmb{\lambda}_1 = (\lambda_{1,1},\ldots,\lambda_{J,1}) \in \mathcal{S}_J \ \text{and denote} \\ \mu_{\pmb{\lambda}} &= \sum_{j=1}^J \lambda_j \delta_{\theta_j} \quad \text{where} \quad \pmb{\lambda} \in \mathcal{S}_J \,. \end{split}$$

Then,
$$\mu_n = \underbrace{\mathcal{I}_{\alpha} \circ \cdots \circ \mathcal{I}_{\alpha}}_{n \text{ times}}(\mu_{\lambda_1})$$
 is of the form $\mu_n = \sum_{j=1}^J \lambda_{j,n} \delta_{\theta_j}$ with
$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{i=1}^J \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)}, \quad j = 1 \dots J, \ n \geqslant 1$$

$$\mathcal{Q} = \begin{cases} q : y \mapsto \mu_{\lambda} k(y) = \sum_{j=1}^{J} \lambda_{j} k(\theta_{j}, y) \end{cases}$$

$$\mu_{n+1}(\mathrm{d}\theta) = \frac{\mu_n(\mathrm{d}\theta) \cdot \Gamma(b_{\mu_n,\alpha}(\theta) + \kappa)}{\mu_n(\Gamma(b_{\mu_n,\alpha} + \kappa))}, \quad n \geqslant 1$$

$$S_J = \left\{ \boldsymbol{\lambda} = (\lambda_1,...,\lambda_J) \in \mathbb{R}^J \ : \ \forall j \in \{1,...,J\} \,, \ \lambda_j \geqslant 0 \text{ and } \sum_{j=1}^J \lambda_j = 1 \right\}$$
 Let $\Theta = (\theta_1,\ldots,\theta_J) \in \mathsf{T}^J, \ \boldsymbol{\lambda}_1 = (\lambda_{1,1},\ldots,\lambda_{J,1}) \in \mathcal{S}_J \text{ and denote}$

$$\mu_{\boldsymbol{\lambda}} = \sum_{j=1}^J \lambda_j \delta_{\theta_j}$$
 where $\boldsymbol{\lambda} \in \mathcal{S}_J$.

Then,
$$\mu_n = \underbrace{\mathcal{L}_{\alpha} \circ \cdots \circ \mathcal{L}_{\alpha}}_{n \text{ times}}(\mu_{\lambda_1})$$
 is of the form $\mu_n = \sum_{j=1}^J \lambda_{j,n} \delta_{\theta_j}$ with
$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{j=1}^J \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)}, \quad j = 1 \dots J, \ n \geqslant 1$$

NB :
$$\mu_n k(y) = \sum_{j=1}^J \lambda_{j,n} k(\theta_j, y)$$

$$Q = \left\{ q : y \mapsto \mu_{\lambda} k(y) = \sum_{j=1}^{J} \lambda_{j} k(\theta_{j}, y) : \lambda \in \mathcal{S}_{J} \right\}$$

$$\mu_{n+1}(\mathrm{d}\theta) = \frac{\mu_n(\mathrm{d}\theta) \cdot \Gamma(b_{\mu_n,\alpha}(\theta) + \kappa)}{\mu_n(\Gamma(b_{\mu_n,\alpha} + \kappa))}, \quad n \geqslant 1$$

$$\begin{split} S_J &= \left\{ \pmb{\lambda} = (\lambda_1,...,\lambda_J) \in \mathbb{R}^J \ : \ \forall j \in \{1,...,J\} \,, \ \lambda_j \geqslant 0 \text{ and } \sum_{j=1}^J \lambda_j = 1 \right\} \\ \text{Let } \Theta &= (\theta_1,\ldots,\theta_J) \in \mathsf{T}^J, \ \pmb{\lambda}_1 = (\lambda_{1,1},\ldots,\lambda_{J,1}) \in \mathcal{S}_J \text{ and denote} \\ &\qquad \qquad \mu_{\pmb{\lambda}} = \sum_{j=1}^J \lambda_j \delta_{\theta_j} \quad \text{where} \quad \pmb{\lambda} \in \mathcal{S}_J \,. \end{split}$$

Then,
$$\mu_n = \underline{\mathcal{I}_{\alpha}} \circ \cdots \circ \underline{\mathcal{I}_{\alpha}}(\mu_{\lambda_1})$$
 is of the form $\mu_n = \sum_{j=1}^J \lambda_{j,n} \delta_{\theta_j}$ with

 $\lambda_{j,n+1} = \frac{\lambda_{j,n}\Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{j=1}^{J} \lambda_{i,n}\Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}, \quad j = 1 \dots J, \ n \geqslant 1$

NB :
$$\mu_n k(y) = \sum_{j=1}^J \lambda_{j,n} k(\theta_j, y)$$

$$Q = \left\{ q : y \mapsto \mu_{\lambda} k(y) = \sum_{j=1}^{J} \lambda_{j} k(\theta_{j}, y) : \lambda \in \mathcal{S}_{J} \right\}$$

Convergence results for finite mixture models

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{i=1}^{J} \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)}, \quad j = 1 \dots J, \ n \geqslant 1$$

$$\Psi_{\alpha}(\mu_{\lambda_n}k) - \Psi_{\alpha}(\mu^*k) \leqslant \frac{\log J}{\eta N} + \frac{\sqrt{2\log J}|b|_{\infty,1}}{(1-\eta)N}$$

- - $(\lambda_n)_{n\geq 1}$ converges to some λ^*
 - $\mu^{\star} = \mu_{\lambda^{\star}}$ is a fixed point of \mathcal{I}_{α} and $\Psi_{\alpha}(\mu^{\star}k) = \inf_{\zeta \in \mathcal{M}_{1,\mu_{1}}(\mathsf{T})} \Psi_{\alpha}(\zeta k)$

Convergence results for finite mixture models

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{i=1}^{J} \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)}, \quad j = 1 \dots J, \ n \geqslant 1$$

Assume (A1) and that $|b|_{\infty,\alpha} = \sup_{\theta \in \mathsf{T}, \mu \in \mathsf{M}_1(\mathsf{T})} |b_{\mu,\alpha}(\theta)| < \infty$

$$\Psi_{\alpha}(\mu_{\lambda_n}k) - \Psi_{\alpha}(\mu^*k) \leqslant \frac{\log J}{\eta N} + \frac{\sqrt{2\log J}|b|_{\infty,1}}{(1-\eta)N}$$

- - $(\lambda_n)_{n\geq 1}$ converges to some λ^*
 - $\mu^* = \mu_{\lambda^*}$ is a fixed point of \mathcal{I}_{α} and $\Psi_{\alpha}(\mu^* k) = \inf_{\zeta \in \mathcal{M}_{1,\mu_{\tau}}(\mathsf{T})} \Psi_{\alpha}(\zeta k)$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{i=1}^{J} \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)}, \quad j = 1 \dots J, \ n \geqslant 1$$

Assume (A1) and that $|b|_{\infty,\alpha} = \sup_{\theta \in \mathsf{T}, \mu \in \mathrm{M}_1(\mathsf{T})} |b_{\mu,\alpha}(\theta)| < \infty$

ightharpoonup O(1/N) convergence rates when Γ is L-smooth and $-\log \Gamma$ is concave increasing e.g. Entropic Mirror Descent: when $\alpha=1$, we have for all $n\in (0,1)$

$$\Psi_{\alpha}(\mu_{\lambda_n}k) - \Psi_{\alpha}(\mu^*k) \leqslant \frac{\log J}{\eta N} + \frac{\sqrt{2\log J}|b|_{\infty,1}}{(1-\eta)N}$$

ightarrow The case lpha < 1 for the Power Descent is trickier... $\eta \in (0,1], \ \kappa \geqslant 0$ Under additionnal assumptions on Ψ_{α} and $b_{\mu,\alpha}$, if $\{K(\theta_1,\cdot),\ldots K(\theta_J,\cdot)\}$ are linearly independent, then :

- $(\lambda_n)_{n\geq 1}$ converges to some λ^*
- $\mu^{\star} = \mu_{\lambda^{\star}}$ is a fixed point of \mathcal{I}_{α} and $\Psi_{\alpha}(\mu^{\star}k) = \inf_{\zeta \in \mathcal{M}_{1,\mu_{1}}(\mathsf{T})} \Psi_{\alpha}(\zeta k)$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{i=1}^{J} \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)}, \quad j = 1 \dots J, \ n \geqslant 1$$

Assume (A1) and that $|b|_{\infty,\alpha} = \sup_{\theta \in \mathsf{T}, \mu \in \mathrm{M}_1(\mathsf{T})} |b_{\mu,\alpha}(\theta)| < \infty$

o O(1/N) convergence rates when Γ is L-smooth and $-\log\Gamma$ is concave increasing e.g. Entropic Mirror Descent: when $\alpha=1$, we have for all $\eta\in(0,1)$

$$\Psi_{\alpha}(\mu_{\lambda_n} k) - \Psi_{\alpha}(\mu^{\star} k) \leqslant \frac{\log J}{\eta N} + \frac{\sqrt{2 \log J} |b|_{\infty, 1}}{(1 - \eta) N}$$

ightarrow The case lpha < 1 for the Power Descent is trickier... $\eta \in (0,1], \ \kappa \geqslant 0$ Under additionnal assumptions on Ψ_{α} and $b_{\mu,\alpha}$, if $\{K(\theta_1,\cdot),\ldots K(\theta_J,\cdot)\}$ are linearly independent, then :

- $(\lambda_n)_{n\geq 1}$ converges to some λ^*
- $\mu^* = \mu_{\lambda^*}$ is a fixed point of \mathcal{I}_{α} and $\Psi_{\alpha}(\mu^* k) = \inf_{\zeta \in \mathcal{M}_{1,\mu_*}(T)} \Psi_{\alpha}(\zeta k)$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{i=1}^{J} \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)}, \quad j = 1 \dots J, \ n \geqslant 1$$

Assume (A1) and that $|b|_{\infty,\alpha} = \sup_{\theta \in \mathsf{T}, \mu \in \mathrm{M}_1(\mathsf{T})} |b_{\mu,\alpha}(\theta)| < \infty$

 $\to O(1/N)$ convergence rates when Γ is L-smooth and $-\log \Gamma$ is concave increasing e.g. Entropic Mirror Descent: when $\alpha=1$, we have for all $\eta\in(0,1)$

$$\Psi_{\alpha}(\mu_{\lambda_n} k) - \Psi_{\alpha}(\mu^{\star} k) \leqslant \frac{\log J}{\eta N} + \frac{\sqrt{2 \log J} |b|_{\infty, 1}}{(1 - \eta) N}$$

ightarrow The case lpha < 1 for the Power Descent is trickier... $\eta \in (0,1], \ \kappa \geqslant 0$

Under additionnal assumptions on Ψ_{α} and $b_{\mu,\alpha}$, if $\{K(\theta_1,\cdot),\ldots K(\theta_J,\cdot)\}$ are linearly independent, then :

- $(\lambda_n)_{n\geq 1}$ converges to some λ^*
- $\mu^* = \mu_{\lambda^*}$ is a fixed point of \mathcal{I}_{α} and $\Psi_{\alpha}(\mu^*k) = \inf_{\zeta \in \mathcal{M}_{1,n}(\mathsf{T})} \Psi_{\alpha}(\zeta k)$

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{i=1}^{J} \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)}, \quad j = 1 \dots J, \ n \geqslant 1$$

Assume (A1) and that $|b|_{\infty,\alpha} = \sup_{\theta \in T, \mu \in M_1(T)} |b_{\mu,\alpha}(\theta)| < \infty$

 $\to O(1/N)$ convergence rates when Γ is L-smooth and $-\log \Gamma$ is concave increasing e.g. Entropic Mirror Descent: when $\alpha=1$, we have for all $\eta\in(0,1)$

$$\Psi_{\alpha}(\mu_{\lambda_n} k) - \Psi_{\alpha}(\mu^{\star} k) \leqslant \frac{\log J}{\eta N} + \frac{\sqrt{2 \log J} |b|_{\infty, 1}}{(1 - \eta) N}$$

- o The case lpha < 1 for the Power Descent is trickier... $\eta \in (0,1]$, $\kappa \geqslant 0$ Under additionnal assumptions on Ψ_{α} and $b_{\mu,\alpha}$, if $\{K(\theta_1,\cdot),\ldots K(\theta_J,\cdot)\}$ are linearly independent, then :
 - $(\lambda_n)_{n\geqslant 1}$ converges to some λ^*
 - $\mu^{\star} = \mu_{\lambda^{\star}}$ is a fixed point of \mathcal{I}_{α} and $\Psi_{\alpha}(\mu^{\star}k) = \inf_{\zeta \in \mathcal{M}_{1,\mu_{\tau}}(\mathsf{T})} \Psi_{\alpha}(\zeta k)$

Algorithm

Let $\Theta = (\theta_1, ..., \theta_J) \in \mathsf{T}^J$ be fixed and let $\lambda_1 \in \mathcal{S}_J$. At time $n \geqslant 1$, define

$$\mu_{n+1}k = \sum_{j=1}^{J} \lambda_{j,n+1}k(\theta_j,\cdot)$$

where

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{i=1}^{J} \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)}, \quad j = 1 \dots J$$

 \rightarrow Monte Carlo approximations to estimate $b_{\mu_n,\alpha}(\theta_j)$, e.g.

$$\hat{b}_{\mu_n,\alpha,M}(\theta_j) = \frac{1}{M} \sum_{m=1}^{M} \frac{k(\theta_j, Y_{m,n})}{\mu_n k(Y_{m,n})} f'_{\alpha} \left(\frac{\mu_n k(Y_{m,n})}{p(Y_{m,n})} \right),$$

with $Y_{1,n},...,Y_{M,n} \stackrel{\text{i.i.d}}{\sim} \mu_n k$.

- \rightarrow Exploitation step not requiring any information on the distribution of $\theta_1, ..., \theta_J$
- \rightarrow Idea: combine this step with and Exploration Step updating Θ

Algorithm

Let $\Theta = (\theta_1, ..., \theta_J) \in \mathsf{T}^J$ be fixed and let $\lambda_1 \in \mathcal{S}_J$. At time $n \geqslant 1$, define

$$\mu_{n+1}k = \sum_{j=1}^{J} \lambda_{j,n+1}k(\theta_j,\cdot)$$

where

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{i=1}^J \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)}, \quad j = 1 \dots J$$

 \rightarrow Monte Carlo approximations to estimate $b_{\mu_n,\alpha}(\theta_j)$, e.g.

$$\hat{b}_{\mu_n,\alpha,M}(\theta_j) = \frac{1}{M} \sum_{m=1}^{M} \frac{k(\theta_j, Y_{m,n})}{\mu_n k(Y_{m,n})} f_\alpha' \left(\frac{\mu_n k(Y_{m,n})}{p(Y_{m,n})} \right),$$

with $Y_{1,n},...,Y_{M,n}\stackrel{\mathrm{i.i.d}}{\sim}\mu_n k$.

- \rightarrow Exploitation step not requiring any information on the distribution of $\theta_1, ..., \theta_J$
- \rightarrow Idea: combine this step with and Exploration Step updating Θ

Algorithm

Let $\Theta = (\theta_1, ..., \theta_J) \in \mathsf{T}^J$ be fixed and let $\lambda_1 \in \mathcal{S}_J$. At time $n \geqslant 1$, define

$$\mu_{n+1}k = \sum_{j=1}^{J} \lambda_{j,n+1}k(\theta_j,\cdot)$$

where

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{i=1}^{J} \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)}, \quad j = 1 \dots J$$

 \rightarrow Monte Carlo approximations to estimate $b_{\mu_n,\alpha}(\theta_j)$, e.g.

$$\hat{b}_{\mu_n,\alpha,M}(\theta_j) = \frac{1}{M} \sum_{m=1}^{M} \frac{k(\theta_j, Y_{m,n})}{\mu_n k(Y_{m,n})} f_\alpha' \left(\frac{\mu_n k(Y_{m,n})}{p(Y_{m,n})} \right),$$

with $Y_{1,n},...,Y_{M,n} \stackrel{\text{i.i.d}}{\sim} \mu_n k$.

- \rightarrow Exploitation step not requiring any information on the distribution of $\theta_1, ..., \theta_J$
- \rightarrow Idea: combine this step with and Exploration Step updating Θ

Algorithm

Let $\Theta = (\theta_1, ..., \theta_J) \in \mathsf{T}^J$ be fixed and let $\lambda_1 \in \mathcal{S}_J$. At time $n \geqslant 1$, define

$$\mu_{n+1}k = \sum_{j=1}^{J} \lambda_{j,n+1}k(\theta_j,\cdot)$$

where

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \Gamma(b_{\mu_n,\alpha}(\theta_j) + \kappa)}{\sum_{i=1}^{J} \lambda_{i,n} \Gamma(b_{\mu_n,\alpha}(\theta_i) + \kappa)}, \quad j = 1 \dots J$$

ightarrow Monte Carlo approximations to estimate $b_{\mu_n,lpha}(heta_j)$, e.g.

$$\hat{b}_{\mu_n,\alpha,M}(\theta_j) = \frac{1}{M} \sum_{m=1}^{M} \frac{k(\theta_j, Y_{m,n})}{\mu_n k(Y_{m,n})} f_\alpha' \left(\frac{\mu_n k(Y_{m,n})}{p(Y_{m,n})} \right),$$

with $Y_{1,n},...,Y_{M,n} \stackrel{\text{i.i.d}}{\sim} \mu_n k$.

- ightarrow Exploitation step not requiring any information on the distribution of $heta_1,..., heta_J$
- \rightarrow Idea : combine this step with and *Exploration Step* updating Θ

Outline

- 1 Infinite-dimensional Alpha-divergence minimisation
- 2 Numerical experiments
- 3 Conclusion of Part 2

• Gaussian kernel with density k_h and bandwidth h, $\mathsf{T} = \mathbb{R}^d$

$$\left\{ y \mapsto \mu_{\lambda,\Theta} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- **1** Exploitation step : optimise λ using the (α, Γ) -descent.
- **2** Exploration step: update Θ (e.g. by sampling under $\mu_{\lambda,\Theta}k_h$, $h \propto J^{-1/(4+d)}$)
- Toy example $p(y) = Z \times [0.5\mathcal{N}(y; -2u_d, I_d) + 0.5\mathcal{N}(y; 2u_d, I_d)], \ Z = 2$
- Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

ullet Gaussian kernel with density k_h and bandwidth h, $\mathsf{T} = \mathbb{R}^d$

$$\left\{ y \mapsto \mu_{\lambda,\Theta} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- **1** Exploitation step : optimise λ using the (α, Γ) -descent.
- **2** Exploration step : update Θ (e.g. by sampling under $\mu_{\lambda,\Theta}k_h$, $h \propto J^{-1/(4+d)}$)
- Toy example $p(y) = Z \times [0.5\mathcal{N}(y; -2u_d, I_d) + 0.5\mathcal{N}(y; 2u_d, I_d)], \ Z = 2$
- Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

ullet Gaussian kernel with density k_h and bandwidth h, $\mathsf{T} = \mathbb{R}^d$

$$\left\{ y \mapsto \mu_{\lambda,\Theta} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- **1** Exploitation step : optimise λ using the (α, Γ) -descent.
- **2** Exploration step: update Θ (e.g. by sampling under $\mu_{\lambda,\Theta}k_h$, $h \propto J^{-1/(4+d)}$)
- Toy example $p(y) = Z \times [0.5 \mathcal{N}(y; -2u_d, I_d) + 0.5 \mathcal{N}(y; 2u_d, I_d)], \ Z = 2$
- Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

ullet Gaussian kernel with density k_h and bandwidth h, $\mathsf{T} = \mathbb{R}^d$

$$\left\{ y \mapsto \mu_{\lambda,\Theta} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- **1** Exploitation step : optimise λ using the (α, Γ) -descent.
- **2** Exploration step : update Θ (e.g. by sampling under $\mu_{\lambda,\Theta}k_h$, $h \propto J^{-1/(4+d)}$)
- Toy example $p(y) = Z \times [0.5 \mathcal{N}(y; -2u_d, I_d) + 0.5 \mathcal{N}(y; 2u_d, I_d)], \ Z = 2$
- Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

ullet Gaussian kernel with density k_h and bandwidth h, $\mathsf{T} = \mathbb{R}^d$

$$\left\{ y \mapsto \mu_{\lambda,\Theta} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- **1** Exploitation step : optimise λ using the (α, Γ) -descent.
- **2** Exploration step : update Θ (e.g. by sampling under $\mu_{\lambda,\Theta}k_h$, $h \propto J^{-1/(4+d)}$)
- Toy example $p(y) = Z \times [0.5\mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5\mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})], \ Z = 2$
- Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

ullet Gaussian kernel with density k_h and bandwidth h, $\mathsf{T} = \mathbb{R}^d$

$$\left\{ y \mapsto \mu_{\lambda,\Theta} k_h(y) = \sum_{j=1}^J \lambda_j k_h(y - \theta_j) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} .$$

- **1** Exploitation step : optimise λ using the (α, Γ) -descent.
- **2** Exploration step : update Θ (e.g. by sampling under $\mu_{\lambda,\Theta}k_h$, $h \propto J^{-1/(4+d)}$)
- Toy example $p(y) = Z \times [0.5\mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5\mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})], \ Z = 2$
- Bayesian Logistic Regression Covertype dataset (581,012 data points and 54 features)

Comparison between

- 0.5-Mirror descent : $\Gamma(v) = e^{-\eta v}$ and $\alpha = 0.5$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ and $\alpha = 0.5$.

Comparison between

- 0.5-Mirror descent : $\Gamma(v) = e^{-\eta v}$ and $\alpha = 0.5$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ and $\alpha = 0.5$.

Comparison between

- 0.5-Mirror descent : $\Gamma(v) = e^{-\eta v}$ and $\alpha = 0.5$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ and $\alpha = 0.5$.

Comparison between

- 0.5-Mirror descent : $\Gamma(v) = e^{-\eta v}$ and $\alpha = 0.5$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ and $\alpha = 0.5$.

Comparison between:

- 1-Mirror descent : $\Gamma(v) = e^{-\eta v}$ with $\alpha = 1$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ with $\alpha = 0.5$.

Comparison between:

- 1-Mirror descent : $\Gamma(v) = e^{-\eta v}$ with $\alpha = 1$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha-1)\,v+1]^{\eta/(1-\alpha)}$ with $\alpha=0.5$.

Comparison between:

- 1-Mirror descent : $\Gamma(v) = e^{-\eta v}$ with $\alpha = 1$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1) v + 1]^{\eta/(1-\alpha)}$ with $\alpha = 0.5$.

Comparison between:

- 1-Mirror descent : $\Gamma(v) = e^{-\eta v}$ with $\alpha = 1$,
- 0.5-Power descent : $\Gamma(v) = [(\alpha 1)v + 1]^{\eta/(1-\alpha)}$ with $\alpha = 0.5$.

 $o \mathscr{D} = \{c,x\}$: I binary class labels, $c_i \in \{-1,1\}$, L covariates for each datapoint, $x_i \in \mathbb{R}^L$

 \rightarrow Model: L regression coefficients $w_l \in \mathbb{R}$, precision parameter $\beta \in \mathbb{R}^+$

$$\begin{aligned} p_0(\beta) &= \operatorname{Gamma}(\beta; a, b) , \\ p_0(w_l | \beta) &= \mathcal{N}(w_l; 0, \beta^{-1}) , \quad 1 \leqslant l \leqslant L \\ p(c_i &= 1 | \boldsymbol{x}_i, \boldsymbol{w}) &= \frac{1}{1 + e^{-\boldsymbol{w}^T \boldsymbol{x}_i}} , \quad 1 \leqslant i \leqslant I \end{aligned}$$

where a=1 and b=0.01

Nonparametric variational inference S. Gershman, M. Hoffman, and D. Blei (2012). ICML

ightarrow Quantity of interest : $p(y|\mathcal{D})$ with $y = [oldsymbol{w}, \log eta]$

Comparison between

- 0.5-Power descent
- Typical AIS

N = 1, T = 500, $J_0 = M_0 = 20$, $J_{t+1} = M_{t+1} = J_t + 1$ initial mixture weights: $[1/J_t, ..., 1/J_t]$, $\eta_0 = \eta_0/\sqrt{\eta}$ with $\eta_0 = 0.05$

- $\rightarrow \mathscr{D} = \{c, x\}$: I binary class labels, $c_i \in \{-1, 1\}$, L covariates for each datapoint, $\boldsymbol{x}_i \in \mathbb{R}^L$
- \rightarrow Model : L regression coefficients $w_l \in \mathbb{R}$, precision parameter $\beta \in \mathbb{R}^+$

$$\begin{aligned} p_0(\beta) &= \operatorname{Gamma}(\beta; a, b) , \\ p_0(w_l | \beta) &= \mathcal{N}(w_l; 0, \beta^{-1}) , \quad 1 \leqslant l \leqslant L \\ p(c_i = 1 | \boldsymbol{x}_i, \boldsymbol{w}) &= \frac{1}{1 + e^{-\boldsymbol{w}^T \boldsymbol{x}_i}} , \quad 1 \leqslant i \leqslant I \end{aligned}$$

where a=1 and b=0.01

Nonparametric variational inference S. Gershman, M. Hoffman, and D. Blei (2012), ICML

- 0.5-Power descent
- Typical AIS

- $\rightarrow \mathscr{D} = \{c, x\}$: I binary class labels, $c_i \in \{-1, 1\}$, L covariates for each datapoint, $\boldsymbol{x}_i \in \mathbb{R}^L$
- \rightarrow Model : L regression coefficients $w_l \in \mathbb{R}$, precision parameter $\beta \in \mathbb{R}^+$

$$\begin{aligned} &p_0(\beta) = \operatorname{Gamma}(\beta; a, b) \;, \\ &p_0(w_l | \beta) = \mathcal{N}(w_l; 0, \beta^{-1}) \;, \quad 1 \leqslant l \leqslant L \\ &p(c_i = 1 | \boldsymbol{x}_i, \boldsymbol{w}) = \frac{1}{1 + e^{-\boldsymbol{w}^T \boldsymbol{x}_i}} \;, \quad 1 \leqslant i \leqslant I \end{aligned}$$

where a=1 and b=0.01

Nonparametric variational inference S. Gershman, M. Hoffman, and D. Blei (2012), ICML

 \rightarrow Quantity of interest : $p(y|\mathcal{D})$ with $y = [\boldsymbol{w}, \log \beta]$

- 0.5-Power descent
- Typical AIS

 $\rightarrow \mathscr{D} = \{c, x\}$: I binary class labels, $c_i \in \{-1, 1\}$, L covariates for each datapoint, $\boldsymbol{x}_i \in \mathbb{R}^L$

 \rightarrow Model : L regression coefficients $w_l \in \mathbb{R}$, precision parameter $\beta \in \mathbb{R}^+$

$$\begin{aligned} &p_0(\beta) = \operatorname{Gamma}(\beta; a, b) \;, \\ &p_0(w_l | \beta) = \mathcal{N}(w_l; 0, \beta^{-1}) \;, \quad 1 \leqslant l \leqslant L \\ &p(c_i = 1 | \boldsymbol{x}_i, \boldsymbol{w}) = \frac{1}{1 + e^{-\boldsymbol{w}^T \boldsymbol{x}_i}} \;, \quad 1 \leqslant i \leqslant I \end{aligned}$$

where a=1 and b=0.01

Nonparametric variational inference S. Gershman, M. Hoffman, and D. Blei (2012), ICML

 \rightarrow Quantity of interest : $p(y|\mathcal{D})$ with $y = [\boldsymbol{w}, \log \beta]$

Comparison between

- 0.5-Power descent
- Typical AIS

 $N = 1, T = 500, J_0 = M_0 = 20, J_{t+1} = M_{t+1} = J_t + 1$ initial mixture weights : $[1/J_t,...,1/J_t]$, $\eta_n = \eta_0/\sqrt{n}$ with $\eta_0 = 0.05$

Outline

- 1 Infinite-dimensional Alpha-divergence minimisation
- 2 Numerical experiments
- 3 Conclusion of Part 2

General framework for infinite-dimensional lpha-divergence minimisation over

$$\mathcal{Q} = \left\{q: y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- → Exploitation Exploration algorithm
 - ① Update for Θ not specified (e.g. your favorite update for Θ)
- 2 Empirical advantages of using the Power Descent algorithm

General framework for infinite-dimensional α -divergence minimisation over

$$\mathcal{Q} = \left\{q: y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- → Exploitation Exploration algorithm
 - ① Update for Θ not specified (e.g. your favorite update for Θ)
- 2 Empirical advantages of using the Power Descent algorithm

General framework for infinite-dimensional α -divergence minimisation over

$$\mathcal{Q} = \left\{q: y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- → Exploitation Exploration algorithm
 - **1** Update for Θ not specified (e.g. your favorite update for Θ)
- 2 Empirical advantages of using the Power Descent algorithm

General framework for infinite-dimensional lpha-divergence minimisation over

$$\mathcal{Q} = \left\{q: y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- → Exploitation Exploration algorithm
 - **1** Update for Θ not specified (e.g. your favorite update for Θ)
- 2 Empirical advantages of using the Power Descent algorithm

General framework for infinite-dimensional lpha-divergence minimisation over

$$\mathcal{Q} = \left\{q: y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \boldsymbol{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- → Exploitation Exploration algorithm
 - **1** Update for Θ not specified (e.g. your favorite update for Θ)
- 2 Empirical advantages of using the Power Descent algorithm

General framework for infinite-dimensional α -divergence minimisation over

$$\mathcal{Q} = \left\{q: y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \boldsymbol{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- \rightarrow Exploitation Exploration algorithm
 - **1** Update for Θ not specified (e.g. your favorite update for Θ)
 - 2 Empirical advantages of using the Power Descent algorithm

General framework for infinite-dimensional α -divergence minimisation over

$$\mathcal{Q} = \left\{q: y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \boldsymbol{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- \rightarrow Exploitation Exploration algorithm
 - **1** Update for Θ not specified (e.g. your favorite update for Θ)
 - Empirical advantages of using the Power Descent algorithm

General framework for infinite-dimensional lpha-divergence minimisation over

$$\mathcal{Q} = \left\{q: y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \ : \ \mu \in \mathsf{M} \right\}$$

- recovers the Entropic Mirror Descent algorithm
- novel Power Descent algorithm
- conditions for a systematic decrease + convergence results
- applicable to mixture models :

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \boldsymbol{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

- \rightarrow Exploitation Exploration algorithm
 - **1** Update for Θ not specified (e.g. your favorite update for Θ)
- 2 Empirical advantages of using the Power Descent algorithm

• Question : What about Entropic Mirror Descent applied to $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k; p)$?

Mixture weights optimisation for Alpha-Divergence Variational Inference.

K. Daudel and R. Douc (2021). To appear in NeurIPS2021

$$\begin{split} \text{Alpha}: \quad & \mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \exp\left[-\frac{\eta}{\alpha-1} \int_{\mathsf{Y}} k(\theta,y) \mu_n k(y)^{\alpha-1} p(y)^{1-\alpha} \nu(\mathrm{d}y)\right] \\ \text{R\'enyi's Alpha}: \quad & \mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \exp\left[-\frac{\eta}{\alpha-1} \frac{\int_{\mathsf{Y}} k(\theta,y) \mu_n k(y)^{\alpha-1} p(y)^{1-\alpha} \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \mu_n k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)}\right] \end{split}$$

 \rightarrow The Entropic Mirror Descent applied to $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k;p)$ is in fact closely-related to the Power Descent

• Question : What about Entropic Mirror Descent applied to $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k;p)$?

Mixture weights optimisation for Alpha-Divergence Variational Inference.

K. Daudel and R. Douc (2021). To appear in NeurIPS2021

$$\begin{aligned} & \text{Alpha}: \quad \mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \exp\left[-\frac{\eta}{\alpha-1} \int_{\mathsf{Y}} k(\theta,y) \mu_n k(y)^{\alpha-1} p(y)^{1-\alpha} \nu(\mathrm{d}y)\right] \\ & \text{R\'enyi's Alpha}: \quad \mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \exp\left[-\frac{\eta}{\alpha-1} \frac{\int_{\mathsf{Y}} k(\theta,y) \mu_n k(y)^{\alpha-1} p(y)^{1-\alpha} \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \mu_n k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)}\right] \end{aligned}$$

 \rightarrow The Entropic Mirror Descent applied to $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k;p)$ is in fact closely-related to the Power Descent

• Question : What about Entropic Mirror Descent applied to $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k;p)$?

Mixture weights optimisation for Alpha-Divergence Variational Inference.

K. Daudel and R. Douc (2021). To appear in NeurIPS2021

$$\mathsf{Alpha}: \quad \mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \exp\left[-\frac{\eta}{\alpha-1} \int_{\mathsf{Y}} k(\theta,y) \mu_n k(y)^{\alpha-1} p(y)^{1-\alpha} \nu(\mathrm{d}y)\right]$$

$$\text{R\'enyi's Alpha}: \quad \mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \exp\left[-\frac{\eta}{\alpha-1} \frac{\int_{\mathbf{Y}} k(\theta,y) \mu_n k(y)^{\alpha-1} p(y)^{1-\alpha} \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} \mu_n k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)}\right]$$

o The Entropic Mirror Descent applied to $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k;p)$ is in fact closely-related to the Power Descent

• Question : What about Entropic Mirror Descent applied to $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k;p)$?

Mixture weights optimisation for Alpha-Divergence Variational Inference.

K. Daudel and R. Douc (2021). To appear in NeurIPS2021

$$\mathsf{Alpha}: \quad \mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \exp\left[-\frac{\eta}{\alpha-1} \int_{\mathsf{Y}} k(\theta,y) \mu_n k(y)^{\alpha-1} p(y)^{1-\alpha} \nu(\mathrm{d}y)\right]$$

$$\begin{aligned} & \mathsf{R\acute{e}nyi's} \; \mathsf{Alpha}: \quad \mu_{n+1}(\mathrm{d}\theta) \propto \mu_{n}(\mathrm{d}\theta) \exp\left[-\frac{\eta}{\alpha-1} \frac{\int_{\mathsf{Y}} k(\theta,y) \mu_{n} k(y)^{\alpha-1} p(y)^{1-\alpha} \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \mu_{n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)} \right] \end{aligned}$$

o The Entropic Mirror Descent applied to $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k;p)$ is in fact closely-related to the Power Descent

• Question : What about Entropic Mirror Descent applied to $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k;p)$?

Mixture weights optimisation for Alpha-Divergence Variational Inference.

K. Daudel and R. Douc (2021). To appear in NeurIPS2021

$$\text{Alpha}: \quad \mu_{n+1}(\mathrm{d}\theta) \propto \mu_n(\mathrm{d}\theta) \exp\left[-\frac{\eta}{\alpha-1} \int_{\mathbf{Y}} k(\theta,y) \mu_n k(y)^{\alpha-1} p(y)^{1-\alpha} \nu(\mathrm{d}y)\right]$$

 $\begin{aligned} & \mathsf{R\acute{e}nyi's} \; \mathsf{Alpha}: \quad \mu_{n+1}(\mathrm{d}\theta) \propto \mu_{n}(\mathrm{d}\theta) \exp\left[-\frac{\eta}{\alpha-1} \frac{\int_{\mathsf{Y}} k(\theta,y) \mu_{n} k(y)^{\alpha-1} p(y)^{1-\alpha} \nu(\mathrm{d}y)}{\int_{\mathsf{Y}} \mu_{n} k(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)} \right] \end{aligned}$

o The Entropic Mirror Descent applied to $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k;p)$ is in fact closely-related to the Power Descent

• Question : What is a good choice for the exploration step?

Some answers in Part 3!

• Question : What is a good choice for the exploration step?

Some answers in Part 3!

Variational Inference Foundations and recent advances (Part 3)

Kamélia Daudel

University of Bristol - 09/03/2022

Alpha-Divergence Variational Inference: Two possible objective functions

$$\begin{split} \Psi_{\alpha}(q;p) &= \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) \\ &-\alpha^{-1} \mathcal{L}_{\alpha}(q;p) = \frac{1}{\alpha(\alpha-1)} \log \left(\int_{\mathsf{Y}} q(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)\right) \end{split}$$

with $p = p(\cdot, \mathscr{D})$ and

$$f_{\alpha}(u) = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}\,, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL).} \end{cases}$$

•
$$Q = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\}$$

Stochastic Gradient Descent w.r.t heta on $\Psi_lpha(q;p)$ (resp. $-lpha^{-1}\mathcal{L}_lpha(q;p)$)

•
$$Q = \{q: y \mapsto \int_{\mathbb{T}} \mu(\mathrm{d}\theta) k(\theta, y) : \mu \in \mathsf{M}\}$$

Power Descent, Entropic Mirror Descent on $\Psi_{\alpha}(q; p)$ (resp. $-\alpha^{-1} \mathcal{L}_{\alpha}(q; p)$)
 $\to \mathsf{applies}$ to $Q = \{q: y \mapsto \sum_{j=1}^J \lambda_j k(\theta_j, y) : \lambda \in \mathcal{S}_J\}$

Alpha-Divergence Variational Inference: Two possible objective functions

$$\begin{split} \Psi_{\alpha}(q;p) &= \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) \\ &-\alpha^{-1} \mathcal{L}_{\alpha}(q;p) = \frac{1}{\alpha(\alpha-1)} \log \left(\int_{\mathsf{Y}} q(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)\right) \end{split}$$

with $p = p(\cdot, \mathcal{D})$ and

$$f_{\alpha}(u) = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}\,, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL).} \end{cases}$$

• $Q = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\}$

Stochastic Gradient Descent w.r.t θ on $\Psi_{\alpha}(q;p)$ (resp. $-\alpha^{-1}\mathcal{L}_{\alpha}(q;p)$)

$$\bullet \ \mathcal{Q} = \left\{q: y \mapsto \int_{\mathbb{T}} \mu(\mathrm{d}\theta) k(\theta,y) \ : \ \mu \in \mathsf{M} \right\}$$
 Power Descent, Entropic Mirror Descent on $\Psi_{\alpha}(q;p)$ (resp. $-\alpha^{-1}\mathcal{L}_{\alpha}(q;p)$) \to applies to $\mathcal{Q} = \left\{q: y \mapsto \sum_{j=1}^{J} \lambda_{j} k(\theta_{j},y) \ : \ \lambda \in \mathcal{S}_{J} \right\}$

Alpha-Divergence Variational Inference: Two possible objective functions

$$\begin{split} \Psi_{\alpha}(q;p) &= \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) \\ -\alpha^{-1} \mathcal{L}_{\alpha}(q;p) &= \frac{1}{\alpha(\alpha-1)} \log \left(\int_{\mathsf{Y}} q(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)\right) \end{split}$$

with $p = p(\cdot, \mathcal{D})$ and

$$f_{\alpha}(u) = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}\,, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL).} \end{cases}$$

• $Q = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\}$

Stochastic Gradient Descent w.r.t θ on $\Psi_{\alpha}(q;p)$ (resp. $-\alpha^{-1}\mathcal{L}_{\alpha}(q;p)$)

•
$$\mathcal{Q} = \left\{q: y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) : \mu \in \mathsf{M}\right\}$$

Power Descent, Entropic Mirror Descent on $\Psi_{\alpha}(q;p)$ (resp. $-\alpha^{-1}\mathcal{L}_{\alpha}(q;p)$) \to applies to $\mathcal{Q} = \left\{q: y \mapsto \sum_{j=1}^J \lambda_j k(\theta_j,y) : \lambda \in \mathcal{S}_J\right\}$

Alpha-Divergence Variational Inference: Two possible objective functions

$$\begin{split} \Psi_{\alpha}(q;p) &= \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) \\ &-\alpha^{-1} \mathcal{L}_{\alpha}(q;p) = \frac{1}{\alpha(\alpha-1)} \log \left(\int_{\mathsf{Y}} q(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)\right) \end{split}$$

with $p = p(\cdot, \mathcal{D})$ and

$$f_{\alpha}(u) = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}\,, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL).} \end{cases}$$

 $\bullet \ \mathcal{Q} = \{q: y \mapsto k(\theta, y) \ : \ \theta \in \mathsf{T}\}$

Stochastic Gradient Descent w.r.t θ on $\Psi_{\alpha}(q;p)$ (resp. $-\alpha^{-1}\mathcal{L}_{\alpha}(q;p)$)

• $Q = \{q : y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta, y) : \mu \in \mathsf{M} \}$ lower Descent, Entropic Mirror Descent on $\Psi_{\alpha}(q; p)$ (resp. $-\alpha^{-1} \mathcal{L}_{\alpha}(q; p)$) \to applies to $Q = \{q : y \mapsto \sum_{i=1}^{J} \lambda_i k(\theta_i, y) : \lambda \in \mathcal{S}_I \}$

Alpha-Divergence Variational Inference: Two possible objective functions

$$\begin{split} \Psi_{\alpha}(q;p) &= \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) \\ &-\alpha^{-1} \mathcal{L}_{\alpha}(q;p) = \frac{1}{\alpha(\alpha-1)} \log \left(\int_{\mathsf{Y}} q(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)\right) \end{split}$$

with $p = p(\cdot, \mathcal{D})$ and

$$f_{\alpha}(u) = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}\,, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL).} \end{cases}$$

• $Q = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\}$

Stochastic Gradient Descent w.r.t θ on $\Psi_{\alpha}(q;p)$ (resp. $-\alpha^{-1}\mathcal{L}_{\alpha}(q;p)$)

• $\mathcal{Q} = \left\{q: y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta, y) : \mu \in \mathsf{M}\right\}$ Power Descent, Entropic Mirror Descent on $\Psi_{\alpha}(q; p)$ (resp. $-\alpha^{-1}\mathcal{L}_{\alpha}(q; p)$) \to applies to $\mathcal{Q} = \left\{q: y \mapsto \sum_{i=1}^{J} \lambda_i k(\theta_i, y) : \lambda \in \mathcal{S}_J\right\}$

Alpha-Divergence Variational Inference: Two possible objective functions

$$\begin{split} \Psi_{\alpha}(q;p) &= \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y) \\ -\alpha^{-1} \mathcal{L}_{\alpha}(q;p) &= \frac{1}{\alpha(\alpha-1)} \log \left(\int_{\mathsf{Y}} q(y)^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)\right) \end{split}$$

with $p = p(\cdot, \mathcal{D})$ and

$$f_{\alpha}(u) = \begin{cases} \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right], & \text{if } \alpha \in \mathbb{R} \setminus \{0,1\}\,, \\ u \log(u) + 1 - u, & \text{if } \alpha = 1 \text{ (Exclusive KL),} \\ -\log(u) + u - 1, & \text{if } \alpha = 0 \text{ (Inclusive KL).} \end{cases}$$

• $Q = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\}$

Stochastic Gradient Descent w.r.t θ on $\Psi_{\alpha}(q;p)$ (resp. $-\alpha^{-1}\mathcal{L}_{\alpha}(q;p)$)

• $\mathcal{Q} = \left\{q: y \mapsto \int_{\mathbb{T}} \mu(\mathrm{d}\theta) k(\theta,y) : \mu \in \mathsf{M}\right\}$ Power Descent, Entropic Mirror Descent on $\Psi_{\alpha}(q;p)$ (resp. $-\alpha^{-1}\mathcal{L}_{\alpha}(q;p)$) \to applies to $\mathcal{Q} = \left\{q: y \mapsto \sum_{j=1}^{J} \lambda_{j} k(\theta_{j},y) : \boldsymbol{\lambda} \in \mathcal{S}_{J}\right\}$

•
$$Q = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\}$$

Stochastic Gradient Descent w.r.t θ on $\Psi_{\alpha}(q; p)$ (resp. $-\alpha^{-1}\mathcal{L}_{\alpha}(q; p)$)

$$\begin{split} & \bullet \ \, \mathcal{Q} = \left\{q: y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta,y) \ : \ \, \mu \in \mathsf{M} \right\} \\ & \mathsf{Power Descent}, \ \mathsf{Entropic Mirror Descent on} \ \Psi_{\alpha}(q;p) \ \big(\mathsf{resp.} \ -\alpha^{-1} \mathcal{L}_{\alpha}(q;p)\big) \\ & \to \mathsf{applies to} \ \mathcal{Q} = \left\{q: y \mapsto \sum_{j=1}^J \lambda_j k(\theta_j,y) \ : \ \pmb{\lambda} \in \mathcal{S}_J \right\} \end{split}$$

Question: Can we propose valid updates for

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \lambda \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} ?$$

•
$$Q = \{q : y \mapsto k(\theta, y) : \theta \in \mathsf{T}\}$$

Stochastic Gradient Descent w.r.t θ on $\Psi_{\alpha}(q;p)$ (resp. $-\alpha^{-1}\mathcal{L}_{\alpha}(q;p)$)

•
$$Q = \{q : y \mapsto \int_{\mathsf{T}} \mu(\mathrm{d}\theta) k(\theta, y) : \mu \in \mathsf{M}\}$$

Power Descent, Entropic Mirror Descent on $\Psi_{\alpha}(q; p)$ (resp. $-\alpha^{-1}\mathcal{L}_{\alpha}(q; p)$)

$$ightarrow$$
 applies to $\mathcal{Q} = \left\{q: y \mapsto \sum_{j=1}^J \lambda_j k(\theta_j, y) \; : \; \pmb{\lambda} \in \mathcal{S}_J
ight\}$

Question: Can we propose valid updates for

$$Q = \left\{ q : y \mapsto \sum_{j=1}^{J} \lambda_j k(\theta_j, y) : \boldsymbol{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\} ?$$

Outline

- 1 Monotonic Alpha-Divergence Minimisation
- 2 Maximisation approach
- 3 Gradient-based approach
- 4 Numerical Experiments
- **5** Conclusion of Part 3

Outline

- 1 Monotonic Alpha-Divergence Minimisation
- 2 Maximisation approach
- 3 Gradient-based approach
- **4** Numerical Experiments
- **5** Conclusion of Part 3

Monotonic Alpha-Divergence Minimisation

Monotonic Alpha-divergence Minimisation.

K. Daudel, R. Douc and F. Roueff (2021). https://arxiv.org/abs/2103.05684

Idea: Extend the typical variational parametric family

$$\mathcal{Q} = \{ y \mapsto k(\theta, y) : \theta \in \mathsf{T} \}$$

by considering the mixture model variational family

$$\mathcal{Q} = \left\{ q: y \mapsto \mu_{\pmb{\lambda},\Theta} k(y) := \sum_{j=1}^J \lambda_j k(\theta_j,y) \; : \; \pmb{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J \right\}$$

and propose an update formula for (λ, Θ) that ensures a systematic decrease in the alpha-divergence (i.e. Ψ_{α}) at each step.

 \rightarrow Optimising w.r.t λ and Θ is the novelty compared to Part 2!

Optimisation problem

$$\inf_{\pmb{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J} \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; p) \quad \text{with} \quad \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; p) = \int_{\mathsf{Y}} f_\alpha\left(\frac{\mu_{\pmb{\lambda},\Theta} k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

(A1) For all $(\theta, y) \in T \times Y$, $k(\theta, y) > 0$, $p(y) \geqslant 0$ and $\int_Y p(y) \nu(\mathrm{d}y) < \infty$

Theorem

Assume (A1). Let $\alpha \in [0,1)$, $J \in \mathbb{N}^{\star}$. Then, choosing $(\lambda_n, \Theta_n)_{n\geqslant 1}$ so that $\Psi_{\alpha}(\mu_{\lambda_1,\Theta_1}k) < \infty$ and $\forall n\geqslant 1$,

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

$$\int_{\mathsf{Y}} \sum_{i=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1}, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\varphi_{j,n}^{(\alpha)}(y) = k(\theta_{j,n},y) \left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in Ψ_{α} at each step.

Optimisation problem

$$\inf_{\pmb{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J} \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; \pmb{p}) \quad \text{with} \quad \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; \pmb{p}) = \int_{\mathsf{Y}} f_\alpha\left(\frac{\mu_{\pmb{\lambda},\Theta} k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

(A1) For all $(\theta,y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta,y) > 0$, $p(y) \geqslant 0$ and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$

Theorem

Assume (A1). Let $\alpha \in [0,1)$, $J \in \mathbb{N}^{\star}$. Then, choosing $(\lambda_n, \Theta_n)_{n\geqslant 1}$ so that $\Psi_{\alpha}(\mu_{\lambda_1,\Theta_1}k) < \infty$ and $\forall n\geqslant 1$,

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

$$\int_{\mathsf{Y}} \sum_{i=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1}, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\varphi_{j,n}^{(\alpha)}(y) = k(\theta_{j,n},y) \left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in Ψ_{α} at each step.

Optimisation problem

$$\inf_{\pmb{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J} \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; \pmb{\nu}) \quad \text{with} \quad \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; \pmb{\nu}) = \int_{\mathsf{Y}} f_\alpha\left(\frac{\mu_{\pmb{\lambda},\Theta} k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

(A1) For all $(\theta, y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta, y) > 0$, $p(y) \ge 0$ and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$.

Theorem

Assume (A1). Let $\alpha \in [0,1)$, $J \in \mathbb{N}^{\star}$. Then, choosing $(\lambda_n, \Theta_n)_{n\geqslant 1}$ so that $\Psi_{\alpha}(\mu_{\lambda_1,\Theta_1}k) < \infty$ and $\forall n\geqslant 1$,

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1}, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\varphi_{j,n}^{(\alpha)}(y) = k(\theta_{j,n},y) \left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in Ψ_{α} at each step.

Optimisation problem

$$\inf_{\pmb{\lambda} \in \mathcal{S}_J, \Theta \in \mathsf{T}^J} \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; \pmb{\nu}) \quad \text{with} \quad \Psi_\alpha(\mu_{\pmb{\lambda},\Theta} k; \pmb{\nu}) = \int_{\mathsf{Y}} f_\alpha\left(\frac{\mu_{\pmb{\lambda},\Theta} k(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y)$$

(A1) For all $(\theta,y) \in \mathsf{T} \times \mathsf{Y}$, $k(\theta,y) > 0$, $p(y) \geqslant 0$ and $\int_{\mathsf{Y}} p(y) \nu(\mathrm{d}y) < \infty$.

Theorem

Assume (A1). Let $\alpha \in [0,1)$, $J \in \mathbb{N}^{\star}$. Then, choosing $(\lambda_n, \Theta_n)_{n\geqslant 1}$ so that: $\Psi_{\alpha}(\mu_{\lambda_1,\Theta_1}k) < \infty$ and $\forall n\geqslant 1$,

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Weights}$$

$$\int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

where $\varphi_{j,n}^{(\alpha)}(y)=k(\theta_{j,n},y)\left(\frac{\mu_{\lambda_n,\Theta_n}k(y)}{p(y)}\right)^{\alpha-1}$, yields a systematic decrease in Ψ_{α} at each step.

Let $q, q' \in \mathcal{Q}$ and assume that $\Psi_{\alpha}(q') < \infty$. For all $\alpha \in [0, 1)$, it holds that

$$\frac{1}{1-\alpha}\int_{\mathbb{Y}}q'(y)^{\alpha}p(y)^{1-\alpha}\log\left(\frac{q(y)}{q'(y)}\right)\nu(\mathrm{d}y)\leqslant\Psi_{\alpha}(q')-\Psi_{\alpha}(q)$$

By definition
$$\begin{split} \Psi_{\alpha}(q) &= \int_{Y} f_{\alpha} \left(\frac{q(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y). \\ \to \mathbf{Case} \ \alpha = 0 : \ f_{0}(u) = -\log(u) + u - 1 \\ \Psi_{\alpha}(q) &= \int_{Y} \left(-\log \left(\frac{q(y)}{p(y)} \right) + \frac{q(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y) \\ &= \int_{Y} \left(-\log \left(\frac{q(y)}{p(y)} \right) + \left(\frac{q(y)}{p(y)} - \frac{q'(y)}{p(y)} \right) + \frac{q'(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y) \\ &= \int_{Y} \left(-\log \left(\frac{q(y)}{q'(y)} \right) - \log \left(\frac{q'(y)}{p(y)} \right) + \frac{q'(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y) \\ \mathrm{so \ that} \\ \Psi_{\alpha}(q) &= \int_{Y} -\log \left(\frac{q(y)}{q'(y)} \right) p(y) \nu(\mathrm{d}y) + \Psi_{\alpha}(q') \end{split}$$

Let $q, q' \in \mathcal{Q}$ and assume that $\Psi_{\alpha}(q') < \infty$. For all $\alpha \in [0, 1)$, it holds that

$$\frac{1}{1-\alpha}\int_{\mathbb{Y}}q'(y)^{\alpha}p(y)^{1-\alpha}\log\left(\frac{q(y)}{q'(y)}\right)\nu(\mathrm{d}y)\leqslant\Psi_{\alpha}(q')-\Psi_{\alpha}(q)$$

By definition
$$\Psi_{\alpha}(q) = \int_{\mathcal{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y).$$

$$\rightarrow$$
 Case $\alpha = 0$: $f_0(u) = -\log(u) + u - 1$

$$\Psi_{\alpha}(q) = \int_{Y} \left(-\log \left(\frac{q(y)}{p(y)} \right) + \frac{q(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y)$$

$$= \int_{\mathsf{Y}} \left(-\log\left(\frac{q(y)}{p(y)}\right) + \left(\frac{q(y)}{p(y)} - \frac{q'(y)}{p(y)}\right) + \frac{q'(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y)$$

$$= \int_{\mathsf{Y}} \left(-\log \left(\frac{q(y)}{q'(y)} \right) - \log \left(\frac{q'(y)}{p(y)} \right) + \frac{q'(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y)$$

so tha

$$\Psi_{\alpha}(q) = \int_{Y} -\log\left(\frac{q(y)}{q'(y)}\right) p(y)\nu(\mathrm{d}y) + \Psi_{\alpha}(q')$$

Let $q, q' \in \mathcal{Q}$ and assume that $\Psi_{\alpha}(q') < \infty$. For all $\alpha \in [0, 1)$, it holds that

$$\frac{1}{1-\alpha}\int_{\mathbb{Y}}q'(y)^{\alpha}p(y)^{1-\alpha}\log\left(\frac{q(y)}{q'(y)}\right)\nu(\mathrm{d}y)\leqslant\Psi_{\alpha}(q')-\Psi_{\alpha}(q)$$

By definition
$$\Psi_{\alpha}(q) = \int_{\mathcal{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y).$$

→ Case
$$\alpha = 0$$
: $f_0(u) = -\log(u) + u - 1$

$$\Psi_{\alpha}(q) = \int_{Y} \left(-\log\left(\frac{q(y)}{p(y)}\right) + \frac{q(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y)$$

$$\int_{Y} \left(-\log\left(\frac{q(y)}{p(y)}\right) + \left(\frac{q(y)}{p(y)}\right) + \frac{q'(y)}{p(y)} + \frac{q'(y)}{p(y)} \right) \mu(\mathrm{d}y)$$

$$= \int_{\mathsf{Y}} \left(-\log\left(\frac{q(y)}{p(y)}\right) + \left(\frac{q(y)}{p(y)} - \frac{q'(y)}{p(y)}\right) + \frac{q'(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y)$$

$$= \int_{\mathsf{Y}} \left(-\log \left(\frac{q(y)}{q'(y)} \right) - \log \left(\frac{q'(y)}{p(y)} \right) + \frac{q'(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y)$$

so tha

$$\Psi_{\alpha}(q) = \int_{\mathbf{Y}} -\log\left(\frac{q(y)}{q'(y)}\right) p(y) \nu(\mathrm{d}y) + \Psi_{\alpha}(q')$$

Let $q,q'\in\mathcal{Q}$ and assume that $\Psi_{\alpha}(q')<\infty.$ For all $\alpha\in[0,1)$, it holds that

$$\frac{1}{1-\alpha} \int_{\mathsf{Y}} q'(y)^{\alpha} p(y)^{1-\alpha} \log \left(\frac{q(y)}{q'(y)} \right) \nu(\mathrm{d}y) \leqslant \Psi_{\alpha}(q') - \Psi_{\alpha}(q)$$

By definition
$$\begin{split} \Psi_{\alpha}(q) &= \int_{\mathsf{Y}} f_{\alpha} \left(\frac{q(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y). \\ \to \mathbf{Case} \ \alpha &= 0 : \ f_{0}(u) = -\log(u) + u - 1 \\ \Psi_{\alpha}(q) &= \int_{\mathsf{Y}} \left(-\log \left(\frac{q(y)}{p(y)} \right) + \frac{q(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y) \\ &= \int_{\mathsf{Y}} \left(-\log \left(\frac{q(y)}{p(y)} \right) + \left(\frac{q(y)}{p(y)} - \frac{q'(y)}{p(y)} \right) + \frac{q'(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y) \\ &= \int_{\mathsf{Y}} \left(-\log \left(\frac{q(y)}{q'(y)} \right) - \log \left(\frac{q'(y)}{p(y)} \right) + \frac{q'(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y) \\ &\text{so that} \end{split}$$

Let $q,q'\in\mathcal{Q}$ and assume that $\Psi_{\alpha}(q')<\infty.$ For all $\alpha\in[0,1)$, it holds that

$$\frac{1}{1-\alpha} \int_{\mathsf{Y}} q'(y)^{\alpha} p(y)^{1-\alpha} \log \left(\frac{q(y)}{q'(y)} \right) \nu(\mathrm{d}y) \leqslant \Psi_{\alpha}(q') - \Psi_{\alpha}(q)$$

By definition
$$\begin{split} \Psi_{\alpha}(q) &= \int_{\mathbf{Y}} f_{\alpha} \left(\frac{q(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y). \\ &\to \mathbf{Case} \ \alpha = 0: \ f_{0}(u) = -\log(u) + u - 1 \\ &\Psi_{\alpha}(q) = \int_{\mathbf{Y}} \left(-\log \left(\frac{q(y)}{p(y)} \right) + \frac{q(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y) \\ &= \int_{\mathbf{Y}} \left(-\log \left(\frac{q(y)}{p(y)} \right) + \left(\frac{q(y)}{p(y)} - \frac{q'(y)}{p(y)} \right) + \frac{q'(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y) \\ &= \int_{\mathbf{Y}} \left(-\log \left(\frac{q(y)}{q'(y)} \right) - \log \left(\frac{q'(y)}{p(y)} \right) + \frac{q'(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y) \\ &\text{so that} \end{split}$$

By definition
$$\begin{split} \Psi_{\alpha}(q) &= \int_{\mathbf{Y}} f_{\alpha} \left(\frac{q(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y). \\ &\to \mathbf{Case} \ \alpha = 0: \ f_0(u) = -\log(u) + u - 1 \\ &\Psi_{\alpha}(q) = \int_{\mathbf{Y}} \left(-\log \left(\frac{q(y)}{p(y)} \right) + \frac{q(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y) \\ &= \int_{\mathbf{Y}} \left(-\log \left(\frac{q(y)}{p(y)} \right) + \left(\frac{q(y)}{p(y)} - \frac{q'(y)}{p(y)} \right) + \frac{q'(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y) \\ &= \int_{\mathbf{Y}} \left(-\log \left(\frac{q(y)}{q'(y)} \right) - \log \left(\frac{q'(y)}{p(y)} \right) + \frac{q'(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y) \\ &\text{so that} \end{split}$$

Let $q,q'\in\mathcal{Q}$ and assume that $\Psi_{\alpha}(q')<\infty$. For all $\alpha\in[0,1)$, it holds that

$$\frac{1}{1-\alpha} \int_{\mathsf{Y}} q'(y)^{\alpha} p(y)^{1-\alpha} \log \left(\frac{q(y)}{q'(y)} \right) \nu(\mathrm{d}y) \leqslant \Psi_{\alpha}(q') - \Psi_{\alpha}(q)$$

By definition
$$\begin{split} \Psi_{\alpha}(q) &= \int_{\mathbf{Y}} f_{\alpha} \left(\frac{q(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y). \\ &\to \mathbf{Case} \ \alpha = 0 : \ f_{0}(u) = -\log(u) + u - 1 \\ &\Psi_{\alpha}(q) = \int_{\mathbf{Y}} \left(-\log \left(\frac{q(y)}{p(y)} \right) + \frac{q(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y) \\ &= \int_{\mathbf{Y}} \left(-\log \left(\frac{q(y)}{p(y)} \right) + \left(\frac{q(y)}{p(y)} - \frac{q'(y)}{p(y)} \right) + \frac{q'(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y) \\ &= \int_{\mathbf{Y}} \left(-\log \left(\frac{q(y)}{q'(y)} \right) - \log \left(\frac{q'(y)}{p(y)} \right) + \frac{q'(y)}{p(y)} - 1 \right) p(y) \nu(\mathrm{d}y) \\ &\text{so that} \end{split}$$

By definition
$$\Psi_{\alpha}(q) = \int_{\Upsilon} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y).$$

$$\to \mathbf{Case} \ \alpha \in (0,1): \ f_{\alpha}(u) = \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1)\right]$$

$$\Psi_{\alpha}(q) = \int_{\Upsilon} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)}\right)^{\alpha} - 1 - \alpha\left(\frac{q(y)}{p(y)} - 1\right)\right] p(y) \nu(\mathrm{d}y)$$

$$= \int_{\Upsilon} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)}\right)^{\alpha} - 1 - \alpha\left(\frac{q'(y)}{p(y)} - 1\right)\right] p(y) \nu(\mathrm{d}y)$$

$$= \int_{\Upsilon} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)}\right)^{\alpha} - \left(\frac{q'(y)}{p(y)}\right)^{\alpha} + \left(\frac{q'(y)}{p(y)}\right)^{\alpha} - 1 - \alpha\left(\frac{q'(y)}{p(y)} - 1\right)\right] p(y) \nu(\mathrm{d}y)$$

$$= \int_{\Upsilon} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)}\right)^{\alpha} - \left(\frac{q'(y)}{p(y)}\right)^{\alpha}\right] p(y) \nu(\mathrm{d}y) + \Psi_{\alpha}(q')$$

By definition
$$\Psi_{\alpha}(q) = \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y).$$

$$\to \mathbf{Case} \ \alpha \in (0,1): \ f_{\alpha}(u) = \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1)\right]$$

$$\Psi_{\alpha}(q) = \int_{\mathsf{Y}} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)}\right)^{\alpha} - 1 - \alpha\left(\frac{q(y)}{p(y)} - 1\right)\right] p(y) \nu(\mathrm{d}y)$$

$$= \int_{\mathsf{Y}} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)}\right)^{\alpha} - 1 - \alpha\left(\frac{q'(y)}{p(y)} - 1\right)\right] p(y) \nu(\mathrm{d}y)$$

$$= \int_{\mathsf{Y}} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)}\right)^{\alpha} - \left(\frac{q'(y)}{p(y)}\right)^{\alpha} + \left(\frac{q'(y)}{p(y)}\right)^{\alpha} - 1 - \alpha\left(\frac{q'(y)}{p(y)} - 1\right)\right] p(y) \nu(\mathrm{d}y)$$

$$= \int_{\mathsf{Y}} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)}\right)^{\alpha} - \left(\frac{q'(y)}{p(y)}\right)^{\alpha}\right] p(y) \nu(\mathrm{d}y) + \Psi_{\alpha}(q')$$

By definition
$$\Psi_{\alpha}(q) = \int_{\mathsf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y).$$

$$\to \mathbf{Case} \ \alpha \in (0,1): \ f_{\alpha}(u) = \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1)\right]$$

$$\Psi_{\alpha}(q) = \int_{\mathsf{Y}} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)}\right)^{\alpha} - 1 - \alpha\left(\frac{q(y)}{p(y)} - 1\right)\right] p(y) \nu(\mathrm{d}y)$$

$$= \int_{\mathsf{Y}} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)}\right)^{\alpha} - 1 - \alpha\left(\frac{q'(y)}{p(y)} - 1\right)\right] p(y) \nu(\mathrm{d}y)$$

$$= \int_{\mathsf{Y}} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)}\right)^{\alpha} - \left(\frac{q'(y)}{p(y)}\right)^{\alpha} + \left(\frac{q'(y)}{p(y)}\right)^{\alpha} - 1 - \alpha\left(\frac{q'(y)}{p(y)} - 1\right)\right] p(y) \nu(\mathrm{d}y)$$

$$= \int_{\mathsf{Y}} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)}\right)^{\alpha} - \left(\frac{q'(y)}{p(y)}\right)^{\alpha}\right] p(y) \nu(\mathrm{d}y) + \Psi_{\alpha}(q')$$

By definition
$$\Psi_{\alpha}(q) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y).$$

$$\rightarrow \mathbf{Case} \ \alpha \in (0,1): \ f_{\alpha}(u) = \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1)\right]$$

$$\Psi_{\alpha}(q) = \int_{\mathbf{Y}} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)}\right)^{\alpha} - 1 - \alpha\left(\frac{q(y)}{p(y)} - 1\right)\right] p(y) \nu(\mathrm{d}y)$$

$$= \int_{\mathbf{Y}} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)}\right)^{\alpha} - 1 - \alpha\left(\frac{q'(y)}{p(y)} - 1\right)\right] p(y) \nu(\mathrm{d}y)$$

$$= \int_{\mathbf{Y}} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)}\right)^{\alpha} - \left(\frac{q'(y)}{p(y)}\right)^{\alpha} + \left(\frac{q'(y)}{p(y)}\right)^{\alpha} - 1 - \alpha\left(\frac{q'(y)}{p(y)} - 1\right)\right] p(y) \nu(\mathrm{d}y)$$

$$= \int_{\mathbf{Y}} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)}\right)^{\alpha} - \left(\frac{q'(y)}{p(y)}\right)^{\alpha}\right] p(y) \nu(\mathrm{d}y) + \Psi_{\alpha}(q')$$

$$\begin{split} & \text{By definition } \Psi_{\alpha}(q) = \int_{\mathsf{Y}} f_{\alpha} \left(\frac{q(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y). \\ & \to \mathsf{Case } \alpha \in (0,1) : f_{\alpha}(u) = \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right] \\ & \Psi_{\alpha}(q) = \int_{\mathsf{Y}} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)} \right)^{\alpha} - 1 - \alpha \left(\frac{q(y)}{p(y)} - 1 \right) \right] p(y) \nu(\mathrm{d}y) \\ & = \int_{\mathsf{Y}} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)} \right)^{\alpha} - 1 - \alpha \left(\frac{q'(y)}{p(y)} - 1 \right) \right] p(y) \nu(\mathrm{d}y) \\ & = \int_{\mathsf{Y}} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)} \right)^{\alpha} - \left(\frac{q'(y)}{p(y)} \right)^{\alpha} + \left(\frac{q'(y)}{p(y)} \right)^{\alpha} - 1 - \alpha \left(\frac{q'(y)}{p(y)} - 1 \right) \right] p(y) \nu(\mathrm{d}y) \\ & = \int_{\mathsf{Y}} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)} \right)^{\alpha} - \left(\frac{q'(y)}{p(y)} \right)^{\alpha} \right] p(y) \nu(\mathrm{d}y) + \Psi_{\alpha}(q') \end{split}$$

Let $q,q'\in\mathcal{Q}$ and assume that $\Psi_{\alpha}(q')<\infty.$ For all $\alpha\in[0,1)$, it holds that

$$\frac{1}{1-\alpha} \int_{\mathsf{Y}} q'(y)^{\alpha} p(y)^{1-\alpha} \log \left(\frac{q(y)}{q'(y)} \right) \nu(\mathrm{d}y) \leqslant \Psi_{\alpha}(q') - \Psi_{\alpha}(q)$$

By definition
$$\Psi_{\alpha}(q) = \int_{Y} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y) \nu(\mathrm{d}y).$$

→ Case
$$\alpha \in (0,1)$$
: $f_{\alpha}(u) = \frac{1}{\alpha(\alpha-1)} [u^{\alpha} - 1 - \alpha(u-1)]$

$$\Psi_{\alpha}(q) = \int_{\mathsf{Y}} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)} \right)^{\alpha} - \left(\frac{q'(y)}{p(y)} \right)^{\alpha} \right] p(y) \nu(\mathrm{d}y) + \Psi_{\alpha}(q')$$

Let $q,q'\in\mathcal{Q}$ and assume that $\Psi_{\alpha}(q')<\infty.$ For all $\alpha\in[0,1)$, it holds that

$$\frac{1}{1-\alpha} \int_{\mathsf{Y}} q'(y)^{\alpha} p(y)^{1-\alpha} \log \left(\frac{q(y)}{q'(y)} \right) \nu(\mathrm{d}y) \leqslant \Psi_{\alpha}(q') - \Psi_{\alpha}(q)$$

$$\begin{split} \text{By definition } \Psi_{\alpha}(q) &= \int_{\mathbf{Y}} f_{\alpha} \left(\frac{q(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y). \\ \to \mathbf{Case} \ \alpha \in (0,1): \ f_{\alpha}(u) &= \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right] \\ \Psi_{\alpha}(q) &= \int_{\mathbf{Y}} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)} \right)^{\alpha} - \left(\frac{q'(y)}{p(y)} \right)^{\alpha} \right] p(y) \nu(\mathrm{d}y) + \Psi_{\alpha}(q') \\ &= \int_{\mathbf{Y}} \left(\frac{q'(y)}{p(y)} \right)^{\alpha} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{q'(y)} \right)^{\alpha} - 1 \right] p(y) \nu(\mathrm{d}y) + \Psi_{\alpha}(q') \end{split}$$

Let $q, q' \in \mathcal{Q}$ and assume that $\Psi_{\alpha}(q') < \infty$. For all $\alpha \in [0, 1)$, it holds that

$$\frac{1}{1-\alpha} \int_{\mathsf{Y}} q'(y)^{\alpha} p(y)^{1-\alpha} \log \left(\frac{q(y)}{q'(y)} \right) \nu(\mathrm{d}y) \leqslant \Psi_{\alpha}(q') - \Psi_{\alpha}(q)$$

$$\begin{split} \text{By definition } \Psi_{\alpha}(q) &= \int_{\mathbf{Y}} f_{\alpha} \left(\frac{q(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y). \\ \to \mathbf{Case} \ \alpha \in (0,1): \ f_{\alpha}(u) &= \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right] \\ \Psi_{\alpha}(q) &= \int_{\mathbf{Y}} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)} \right)^{\alpha} - \left(\frac{q'(y)}{p(y)} \right)^{\alpha} \right] p(y) \nu(\mathrm{d}y) + \Psi_{\alpha}(q') \\ &= \int_{\mathbf{Y}} \left(\frac{q'(y)}{p(y)} \right)^{\alpha} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{q'(y)} \right)^{\alpha} - 1 \right] p(y) \nu(\mathrm{d}y) + \Psi_{\alpha}(q') \end{split}$$

Since $\log(u) \leqslant u - 1$ for all u > 0 and $\alpha \in (0, 1)$,

$$\frac{u-1}{\alpha(\alpha-1)} \leqslant \frac{\log(u)}{\alpha(\alpha-1)}$$

Let $q, q' \in \mathcal{Q}$ and assume that $\Psi_{\alpha}(q') < \infty$. For all $\alpha \in [0, 1)$, it holds that

$$\frac{1}{1-\alpha}\int_{\mathbb{Y}}q'(y)^{\alpha}p(y)^{1-\alpha}\log\left(\frac{q(y)}{q'(y)}\right)\nu(\mathrm{d}y)\leqslant\Psi_{\alpha}(q')-\Psi_{\alpha}(q)$$

$$\begin{split} \text{By definition } \Psi_{\alpha}(q) &= \int_{\mathbf{Y}} f_{\alpha} \left(\frac{q(y)}{p(y)} \right) p(y) \nu(\mathrm{d}y). \\ \to \mathbf{Case} \ \alpha \in (0,1): \ f_{\alpha}(u) &= \frac{1}{\alpha(\alpha-1)} \left[u^{\alpha} - 1 - \alpha(u-1) \right] \\ \Psi_{\alpha}(q) &= \int_{\mathbf{Y}} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{p(y)} \right)^{\alpha} - \left(\frac{q'(y)}{p(y)} \right)^{\alpha} \right] p(y) \nu(\mathrm{d}y) + \Psi_{\alpha}(q') \\ &= \int_{\mathbf{Y}} \left(\frac{q'(y)}{p(y)} \right)^{\alpha} \frac{1}{\alpha(\alpha-1)} \left[\left(\frac{q(y)}{q'(y)} \right)^{\alpha} - 1 \right] p(y) \nu(\mathrm{d}y) + \Psi_{\alpha}(q') \end{split}$$

Since $\log(u) \leqslant u - 1$ for all u > 0 and $\alpha \in (0, 1)$,

$$\frac{u^{\alpha}-1}{\alpha(\alpha-1)} \leqslant \frac{\log(u^{\alpha})}{\alpha(\alpha-1)}$$

Let $q,q'\in\mathcal{Q}$ and assume that $\Psi_{\alpha}(q')<\infty.$ For all $\alpha\in[0,1)$, it holds that

$$\frac{1}{1-\alpha} \int_{\mathsf{Y}} q'(y)^{\alpha} p(y)^{1-\alpha} \log \left(\frac{q(y)}{q'(y)} \right) \nu(\mathrm{d}y) \leqslant \Psi_{\alpha}(q') - \Psi_{\alpha}(q)$$

By definition
$$\Psi_{\alpha}(q) = \int_{\mathbf{Y}} f_{\alpha}\left(\frac{q(y)}{p(y)}\right) p(y)\nu(\mathrm{d}y).$$

$$\rightarrow \mathbf{Case} \ \alpha \in (0,1): \ f_{\alpha}(u) = \frac{1}{\alpha(\alpha-1)}\left[u^{\alpha}-1-\alpha(u-1)\right]$$

$$\Psi_{\alpha}(q) = \int_{\mathbf{Y}} \frac{1}{\alpha(\alpha-1)}\left[\left(\frac{q(y)}{p(y)}\right)^{\alpha}-\left(\frac{q'(y)}{p(y)}\right)^{\alpha}\right] p(y)\nu(\mathrm{d}y) + \Psi_{\alpha}(q')$$

$$= \int_{\mathbf{Y}} \left(\frac{q'(y)}{p(y)}\right)^{\alpha} \frac{1}{\alpha(\alpha-1)}\left[\left(\frac{q(y)}{p'(y)}\right)^{\alpha}-1\right] p(y)\nu(\mathrm{d}y) + \Psi_{\alpha}(q')$$

Since $\log(u) \leqslant u - 1$ for all u > 0 and $\alpha \in (0, 1)$,

$$\frac{u^{\alpha} - 1}{\alpha(\alpha - 1)} \leqslant \frac{\log(u^{\alpha})}{\alpha(\alpha - 1)} = \frac{\log(u)}{\alpha - 1}$$

Let $q,q'\in\mathcal{Q}$ and assume that $\Psi_\alpha(q')<\infty$. For all $\alpha\in[0,1)$, it holds that

$$\frac{1}{1-\alpha} \int_{\mathbf{Y}} q'(y)^{\alpha} p(y)^{1-\alpha} \log \left(\frac{q(y)}{q'(y)} \right) \nu(\mathrm{d}y) \leqslant \Psi_{\alpha}(q') - \Psi_{\alpha}(q)$$

Notation : $\mu_n k(y) := \mu_{\lambda_n,\Theta_n} k(y) = \sum_{j=1}^J \lambda_{j,n} k(\theta_{j,n},y)$, for all $n\geqslant 1$ and all $y\in Y$

Let $q,q'\in\mathcal{Q}$ and assume that $\Psi_{\alpha}(q')<\infty$. For all $\alpha\in[0,1)$, it holds that

$$\frac{1}{1-\alpha} \int_{\mathbf{Y}} q'(y)^{\alpha} p(y)^{1-\alpha} \log \left(\frac{q(y)}{q'(y)} \right) \nu(\mathrm{d}y) \leqslant \Psi_{\alpha}(q') - \Psi_{\alpha}(q)$$

Notation : $\mu_n k(y) := \mu_{\lambda_n,\Theta_n} k(y) = \sum_{j=1}^J \lambda_{j,n} k(\theta_{j,n},y)$, for all $n\geqslant 1$ and all $y\in \mathsf{Y}$

Assume that $\Psi_{\alpha}(\mu_n k) < \infty.$ For all $\alpha \in [0,1)$, it holds that

$$\frac{1}{1-\alpha}\int_{\mathsf{Y}} \big(\mu_n k(y)\big)^{\alpha} p(y)^{1-\alpha} \log \left(\frac{\mu_{n+1} k(y)}{\mu_n k(y)}\right) \nu(\mathrm{d} y) \leqslant \Psi_{\alpha}(\mu_n k) - \Psi_{\alpha}(\mu_{n+1} k)$$

Notation : $\mu_n k(y) := \mu_{\lambda_n,\Theta_n} k(y) = \sum_{j=1}^J \lambda_{j,n} k(\theta_{j,n},y)$, for all $n\geqslant 1$ and all $y\in \mathsf{Y}$

Assume that $\Psi_{\alpha}(\mu_n k) < \infty$. For all $\alpha \in [0,1)$, it holds that

$$\frac{1}{1-\alpha}\int_{\mathsf{Y}} \big(\mu_n k(y)\big)^{\alpha} p(y)^{1-\alpha} \log \left(\frac{\mu_{n+1} k(y)}{\mu_n k(y)}\right) \nu(\mathrm{d} y) \leqslant \Psi_{\alpha}(\mu_n k) - \Psi_{\alpha}(\mu_{n+1} k)$$

Notation : $\mu_n k(y) := \mu_{\lambda_n, \Theta_n} k(y) = \sum_{j=1}^J \lambda_{j,n} k(\theta_{j,n}, y)$, for all $n \geqslant 1$ and all $y \in Y$

Assume that $\Psi_{\alpha}(\mu_n k) < \infty$. For all $\alpha \in [0,1)$, it holds that

$$\frac{1}{1-\alpha}\int_{\mathsf{Y}}\big(\mu_nk(y)\big)^{\alpha}p(y)^{1-\alpha}\log\left(\frac{\mu_{n+1}k(y)}{\mu_nk(y)}\right)\nu(\mathrm{d}y)\leqslant \Psi_{\alpha}(\mu_nk)-\Psi_{\alpha}(\mu_{n+1}k)$$

Notation : $\mu_n k(y) := \mu_{\lambda_n,\Theta_n} k(y) = \sum_{j=1}^J \lambda_{j,n} k(\theta_{j,n},y)$, for all $n\geqslant 1$ and all $y\in Y$

 $varphi u \mapsto \frac{1}{1-\alpha} \log(u)$ is concave

Jensen's inequality: for all $y \in Y$ and all $n \ge 1$,

$$\frac{1}{1-\alpha} \log \left(\frac{\mu_{n+1}k(y)}{\mu_n k(y)} \right) = \frac{1}{1-\alpha} \log \left(\sum_{j=1}^J \frac{\lambda_{j,n}k(\theta_{j,n},y)}{\sum_{\ell=1}^J \lambda_{\ell,n}k(\theta_{\ell,n},y)} \frac{\lambda_{j,n+1}k(\theta_{j,n+1},y)}{\lambda_{j,n}k(\theta_{j,n},y)} \right)$$

$$\geqslant \frac{1}{1-\alpha} \sum_{j=1}^J \frac{\lambda_{j,n}k(\theta_{j,n},y)}{\sum_{\ell=1}^J \lambda_{\ell,n}k(\theta_{\ell,n},y)} \log \left(\frac{\lambda_{j,n+1}k(\theta_{j,n+1})}{\lambda_{j,n}k(\theta_{j,n},y)} \right)$$

Assume that $\Psi_{\alpha}(\mu_n k) < \infty$. For all $\alpha \in [0,1)$, it holds that

$$\frac{1}{1-\alpha}\int_{\mathsf{Y}} \big(\mu_n k(y)\big)^{\alpha} p(y)^{1-\alpha} \log \left(\frac{\mu_{n+1} k(y)}{\mu_n k(y)}\right) \nu(\mathrm{d} y) \leqslant \Psi_{\alpha}(\mu_n k) - \Psi_{\alpha}(\mu_{n+1} k)$$

Notation : $\mu_n k(y) := \mu_{\lambda_n,\Theta_n} k(y) = \sum_{j=1}^J \lambda_{j,n} k(\theta_{j,n},y)$, for all $n\geqslant 1$ and all $y\in \mathsf{Y}$

 $varphi u \mapsto \frac{1}{1-\alpha} \log(u)$ is concave

Jensen's inequality: for all $y \in Y$ and all $n \ge 1$,

$$\frac{1}{1-\alpha}\log\left(\frac{\mu_{n+1}k(y)}{\mu_nk(y)}\right) = \frac{1}{1-\alpha}\log\left(\sum_{j=1}^J \frac{\lambda_{j,n}k(\theta_{j,n},y)}{\sum_{\ell=1}^J \lambda_{\ell,n}k(\theta_{\ell,n},y)} \frac{\lambda_{j,n+1}k(\theta_{j,n+1},y)}{\lambda_{j,n}k(\theta_{j,n},y)}\right)$$

$$\geqslant \frac{1}{1-\alpha} \sum_{j=1}^{J} \frac{\lambda_{j,n} k(\theta_{j,n}, y)}{\sum_{\ell=1}^{J} \lambda_{\ell,n} k(\theta_{\ell,n}, y)} \log \left(\frac{\lambda_{j,n+1} k(\theta_{j,n+1})}{\lambda_{j,n} k(\theta_{j,n}, y)} \right)$$

that is:

$$\frac{1}{1-\alpha}\log\left(\frac{\mu_{n+1}k(y)}{\mu_nk(y)}\right)\geqslant \frac{1}{1-\alpha}\sum_{j=1}^J\lambda_{j,n}\frac{k(\theta_{j,n},y)}{\mu_nk(y)}\log\left(\frac{\lambda_{j,n+1}k(\theta_{j,n+1})}{\lambda_{j,n}k(\theta_{j,n},y)}\right)$$

Assume that $\Psi_{\alpha}(\mu_n k) < \infty$. For all $\alpha \in [0,1)$, it holds that

$$\frac{1}{1-\alpha}\int_{\mathsf{Y}} \big(\mu_n k(y)\big)^{\alpha} p(y)^{1-\alpha} \log \left(\frac{\mu_{n+1} k(y)}{\mu_n k(y)}\right) \nu(\mathrm{d} y) \leqslant \Psi_{\alpha}(\mu_n k) - \Psi_{\alpha}(\mu_{n+1} k)$$

Notation : $\mu_n k(y) := \mu_{\lambda_n, \Theta_n} k(y) = \sum_{i=1}^J \lambda_{i,n} k(\theta_{i,n}, y)$, for all $n \ge 1$ and all $y \in Y$

 $u \mapsto \frac{1}{1-\alpha} \log(u)$ is concave

Jensen's inequality: for all $y \in Y$ and all $n \geqslant 1$,

$$\frac{1}{1-\alpha}\log\left(\frac{\mu_{n+1}k(y)}{\mu_nk(y)}\right) = \frac{1}{1-\alpha}\log\left(\sum_{j=1}^J \frac{\lambda_{j,n}k(\theta_{j,n},y)}{\sum_{\ell=1}^J \lambda_{\ell,n}k(\theta_{\ell,n},y)} \frac{\lambda_{j,n+1}k(\theta_{j,n+1},y)}{\lambda_{j,n}k(\theta_{j,n},y)}\right)$$

$$\geqslant \frac{1}{1-\alpha} \sum_{j=1}^{J} \frac{\lambda_{j,n} k(\theta_{j,n}, y)}{\sum_{\ell=1}^{J} \lambda_{\ell,n} k(\theta_{\ell,n}, y)} \log \left(\frac{\lambda_{j,n+1} k(\theta_{j,n+1})}{\lambda_{j,n} k(\theta_{j,n}, y)} \right)$$

that is:

$$\frac{1}{1-\alpha}\log\left(\frac{\mu_{n+1}k(y)}{\mu_nk(y)}\right) \geqslant \frac{1}{1-\alpha}\sum_{j=1}^J \lambda_{j,n}\frac{k(\theta_{j,n},y)}{\mu_nk(y)}\log\left(\frac{\lambda_{j,n+1}k(\theta_{j,n+1})}{\lambda_{j,n}k(\theta_{j,n},y)}\right)$$

To finish the proof:

- (i) multiply by $(\mu_n k(y))^{\alpha} p(y)^{1-\alpha}$ on both sides $(\varphi_{j,n}^{(\alpha)}(y) = k(\theta_{j,n},y) \left(\frac{p(y)}{\mu_n k(y)}\right)^{1-\alpha})$
- (ii) integrate with respect to $\nu(dy)$

$$\begin{split} \int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}}\right) \nu(\mathrm{d}y) &\geqslant 0 \\ \int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y) &\geqslant 0 \end{split} \tag{Components} \\ \text{where } \varphi_{j,n}^{(\alpha)}(y) = k(\theta_{j,n},y) \left(\frac{\mu_n k(y)}{p(y)}\right)^{\alpha-1} \end{split}$$

- (Weights) and (Components) permit separate/simultaneous updates
- **2** They are satisfied for $\lambda_{n+1} = \lambda_n$ and $\Theta_{n+1} = \Theta_n$ respectively
- 3 The dependency is **simpler** in (Weights)
 - ightarrow (Weights) holds for $oldsymbol{\lambda}_{n+1}$ such that

$$\boldsymbol{\lambda}_{n+1} = \operatorname{argmax}_{\boldsymbol{\lambda} \in \mathcal{S}_J} \sum_{j=1}^J \left[\lambda_{j,n} \int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) \right] \log \left(\frac{\lambda_j}{\lambda_{j,n}} \right)$$

$$\begin{split} \int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}}\right) \nu(\mathrm{d}y) \geqslant 0 & \text{(Weights)} \\ \int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y) \geqslant 0 & \text{(Components)} \\ \text{where } \varphi_{j,n}^{(\alpha)}(y) = k(\theta_{j,n},y) \left(\frac{\mu_n k(y)}{p(y)}\right)^{\alpha-1} \end{split}$$

- (Weights) and (Components) permit separate/simultaneous updates
- **2** They are satisfied for $\lambda_{n+1} = \lambda_n$ and $\Theta_{n+1} = \Theta_n$ respectively
- The dependency is simpler in (Weights)
 → (Weights) holds for \(\lambda_{n+1}\) such that

$$\pmb{\lambda}_{n+1} = \mathrm{argmax}_{\pmb{\lambda} \in \mathcal{S}_J} \sum_{j=1}^J \left[\lambda_{j,n} \int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) \right] \log \left(\frac{\lambda_j}{\lambda_{j,n}} \right)$$

$$\begin{split} \int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}}\right) \nu(\mathrm{d}y) \geqslant 0 & \text{(Weights)} \\ \int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y) \geqslant 0 & \text{(Components)} \\ \text{where } \varphi_{j,n}^{(\alpha)}(y) = k(\theta_{j,n},y) \left(\frac{\mu_n k(y)}{p(y)}\right)^{\alpha-1} \end{split}$$

- (Weights) and (Components) permit separate/simultaneous updates
- **2** They are satisfied for $\lambda_{n+1}=\lambda_n$ and $\Theta_{n+1}=\Theta_n$ respectively
- 3 The dependency is **simpler** in (Weights)
 - ightarrow (Weights) holds for $oldsymbol{\lambda}_{n+1}$ such that

$$\lambda_{n+1} = \operatorname{argmax}_{\lambda \in \mathcal{S}_J} \sum_{j=1}^J \left[\lambda_{j,n} \int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) \right] \log \left(\frac{\lambda_j}{\lambda_{j,n}} \right)$$

$$\begin{split} \int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}}\right) \nu(\mathrm{d}y) \geqslant 0 & \text{(Weights)} \\ \int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y) \geqslant 0 & \text{(Components)} \\ \text{where } \varphi_{j,n}^{(\alpha)}(y) = k(\theta_{j,n},y) \left(\frac{\mu_n k(y)}{p(y)}\right)^{\alpha-1} \end{split}$$

- (Weights) and (Components) permit separate/simultaneous updates
- **2** They are satisfied for $\lambda_{n+1} = \lambda_n$ and $\Theta_{n+1} = \Theta_n$ respectively
- 3 The dependency is simpler in (Weights)
 - ightarrow (Weights) holds for $oldsymbol{\lambda}_{n+1}$ such that

$$\boldsymbol{\lambda}_{n+1} = \operatorname{argmax}_{\boldsymbol{\lambda} \in \mathcal{S}_J} \sum_{j=1}^J \left[\lambda_{j,n} \int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(\boldsymbol{y}) \nu(\mathrm{d}\boldsymbol{y}) \right] \log \left(\frac{\lambda_j}{\lambda_{j,n}} \right)$$

$$\begin{split} \int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}}\right) \nu(\mathrm{d}y) \geqslant 0 & \text{(Weights)} \\ \int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y) \geqslant 0 & \text{(Components)} \\ \text{where } \varphi_{j,n}^{(\alpha)}(y) = k(\theta_{j,n},y) \left(\frac{\mu_n k(y)}{p(y)}\right)^{\alpha-1} \end{split}$$

- (Weights) and (Components) permit separate/simultaneous updates
- **2** They are satisfied for $\lambda_{n+1} = \lambda_n$ and $\Theta_{n+1} = \Theta_n$ respectively
- 3 The dependency is simpler in (Weights)
 - ightarrow (Weights) holds for $oldsymbol{\lambda}_{n+1}$ such that

$$\boldsymbol{\lambda}_{n+1} = \operatorname{argmax}_{\boldsymbol{\lambda} \in \mathcal{S}_J} \sum_{j=1}^J \left[\lambda_{j,n} \int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) \right] \log \left(\frac{\lambda_j}{\lambda_{j,n}} \right)$$

$$\begin{split} \int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}}\right) \nu(\mathrm{d}y) \geqslant 0 & \text{(Weights)} \\ \int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y) \geqslant 0 & \text{(Components)} \\ \text{where } \varphi_{j,n}^{(\alpha)}(y) = k(\theta_{j,n},y) \left(\frac{\mu_n k(y)}{p(y)}\right)^{\alpha-1} \end{split}$$

- (Weights) and (Components) permit separate/simultaneous updates
- **2** They are satisfied for $\lambda_{n+1} = \lambda_n$ and $\Theta_{n+1} = \Theta_n$ respectively
- 3 The dependency is simpler in (Weights)
 - ightarrow (Weights) holds for $oldsymbol{\lambda}_{n+1}$ such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \int_{\mathbf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}, \quad j = 1 \dots J$$

$$\begin{split} \int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{\lambda_{j,n+1}}{\lambda_{j,n}}\right) \nu(\mathrm{d}y) \geqslant 0 & \text{(Weights)} \\ \int_{\mathsf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y) \geqslant 0 & \text{(Components)} \\ \text{where } \varphi_{j,n}^{(\alpha)}(y) = k(\theta_{j,n},y) \left(\frac{\mu_n k(y)}{p(y)}\right)^{\alpha-1} \end{split}$$

- (Weights) and (Components) permit separate/simultaneous updates
- **2** They are satisfied for $\lambda_{n+1} = \lambda_n$ and $\Theta_{n+1} = \Theta_n$ respectively
- 3 The dependency is simpler in (Weights)
 - ightarrow (Weights) holds for $oldsymbol{\lambda}_{n+1}$ such that

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}, \quad j = 1 \dots J$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha - 1)\kappa \geqslant 0$

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that:

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} , \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_n$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha - 1)\kappa \geqslant 0$

ightarrow We recover the Power Descent algorithm from Part 2

- $\ensuremath{\mathbf{0}}$ The mixture weights update is gradient-based, η_n plays the role of a learning rate
- $oldsymbol{2}$ We can improve on the Power Descent by proposing simultaneous updates for Θ with convergence guarantees!

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that:

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} , \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_n$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha - 1)\kappa \geqslant 0$

→ We recover the Power Descent algorithm from Part 2

- $\ensuremath{\mathbf{0}}$ The mixture weights update is gradient-based, η_n plays the role of a learning rate
- $oldsymbol{2}$ We can improve on the Power Descent by proposing simultaneous updates for Θ with convergence guarantees!

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that:

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} , \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_n$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha - 1)\kappa \geqslant 0$

→ We recover the Power Descent algorithm from Part 2

- f 1 The mixture weights update is gradient-based, η_n plays the role of a learning rate
- ② We can improve on the Power Descent by proposing simultaneous updates for Θ with convergence guarantees!

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that:

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} , \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_n$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha - 1)\kappa \geqslant 0$

→ We recover the Power Descent algorithm from Part 2

- lacktriangle The mixture weights update is gradient-based, η_n plays the role of a learning rate
- ② We can improve on the Power Descent by proposing simultaneous updates for Θ with convergence guarantees!

(Weights) and (Components) hold for λ_{n+1} and Θ_{n+1} such that:

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}, \quad j = 1 \dots J$$

$$\Theta_{n+1} = \Theta_n$$

where $\eta_n \in (0,1]$ and κ is such that $(\alpha - 1)\kappa \geqslant 0$

→ We recover the Power Descent algorithm from Part 2

- lacktriangle The mixture weights update is gradient-based, η_n plays the role of a learning rate
- **②** We can improve on the Power Descent by proposing simultaneous updates for Θ with convergence guarantees!

Towards simultaneous updates

$$\int_{\mathsf{Y}} \sum_{j=1}^J \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

• Maximisation approach : for all $i = 1 \dots J$,

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta \in \mathsf{T}} \int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta,y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y)$$

• Gradient-based approach : for all $j=1\ldots J,\ \gamma_{j,n}\in(0,1]$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}$$

where $g_{i,n}$ is assumed to be $\beta_{i,n}$ -smooth on $\mathsf{T} = \mathbb{R}^d$ with

$$g_{j,n}(\theta) = \int_{\mathsf{Y}} \frac{\varphi_{j,n}^{(\alpha)}(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y)$$

Towards simultaneous updates

$$\int_{\mathsf{Y}} \sum_{j=1}^J \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

• Maximisation approach : for all $j = 1 \dots J$,

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta \in \mathsf{T}} \int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta,y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y)$$

• Gradient-based approach : for all $j=1\ldots J,\ \gamma_{j,n}\in(0,1]$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}$$

where $g_{i,n}$ is assumed to be $\beta_{i,n}$ -smooth on $\mathsf{T} = \mathbb{R}^d$ with

$$g_{j,n}(\theta) = \int_{\mathsf{Y}} \frac{\varphi_{j,n}^{(\alpha)}(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y)$$

Towards simultaneous updates

$$\int_{\mathbf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

• Maximisation approach : for all $j = 1 \dots J$,

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta \in \mathsf{T}} \int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta,y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y)$$

• Gradient-based approach : for all $j=1\ldots J,\ \gamma_{j,n}\in(0,1]$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}$$

where $g_{j,n}$ is assumed to be $eta_{j,n}$ -smooth on $\mathsf{T}=\mathbb{R}^d$ with

$$g_{j,n}(\theta) = \int_{\mathsf{Y}} \frac{\varphi_{j,n}^{(\alpha)}(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

Two questions at this stage

- Can we derive practical updates from the maximisation / gradient-based approaches?
- ② Do those approaches relate to the existing litterature?

Two questions at this stage

- Can we derive practical updates from the maximisation / gradient-based approaches?
- 2 Do those approaches relate to the existing litterature?

Outline

- 1 Monotonic Alpha-Divergence Minimisation
- 2 Maximisation approach
- 3 Gradient-based approach
- **4** Numerical Experiments
- **5** Conclusion of Part 3

Maximisation approach

$$\int_{\mathbf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

For all $j = 1 \dots J$,

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta \in \mathsf{T}} \int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta,y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y)$$

Maximisation approach

$$\int_{\mathbf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

For all $j = 1 \dots J$,

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta \in \mathsf{T}} \int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta,y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y)$$

Maximisation approach

$$\int_{\mathsf{Y}} \sum_{j=1}^J \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

For all $j = 1 \dots J$, $b_{j,n} \geqslant 0$ and

$$\theta_{j,n+1} = \operatorname{argmax}_{\theta \in \mathsf{T}} \int_{\mathsf{Y}} \left[\varphi_{j,n}^{(\alpha)}(y) + b_{j,n} k(\theta_{j,n},y) \right] \log \left(\frac{k(\theta,y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y)$$

 \rightarrow We have added a regularisation term!

Set
$$k(\theta,y) = \mathcal{N}(y;m,\Sigma)$$
 with $\theta = (m,\Sigma)$ and $\check{\varphi}_{j,n}^{(\alpha)} = \varphi_{j,n}^{(\alpha)} / \int \varphi_{j,n}^{(\alpha)} \mathrm{d}\nu$.

For all
$$j=1\ldots J$$
,
$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\eta_n}}$$

$$m_{j,n+1} = (1-\gamma_{j,n}) m_{j,n} + \gamma_{j,n} \int_{\mathsf{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)$$

$$\Sigma_{j,n+1} = (1-\gamma_{j,n}) \check{\Sigma}_{j,n} + \gamma_{j,n} \int_{\mathsf{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) (y-m_{j,n+1}) (y-m_{j,n+1})^T \nu(\mathrm{d}y)$$

where
$$\tilde{\Sigma}_{j,n} = \Sigma_{j,n} + (m_{j,n+1} - m_{j,n})(m_{j,n+1} - m_{j,n})^T$$
 and $\gamma_{j,n}$ depends on $b_{j,n}$.

 \rightarrow Considering all possible values of $b_{j,n}$, we have $\gamma_{j,n} \in (0,1]$

Interpretation: tradeoff between

- an update close to $\theta_{j,n}=(m_{j,n},\Sigma_{j,n})$ $[\gamma_{j,n}\to 0]$
- an update that chooses the Gaussian with the same mean and covariance matrix as $\tilde{\varphi}_{i,p}^{(\alpha)}$ $[\gamma_{i,n}=1]$

Why does it matter? In practice. Monte Carlo approximations!

Set
$$k(\theta,y) = \mathcal{N}(y;m,\Sigma)$$
 with $\theta = (m,\Sigma)$ and $\check{\varphi}_{j,n}^{(\alpha)} = \varphi_{j,n}^{(\alpha)} / \int \varphi_{j,n}^{(\alpha)} \mathrm{d}\nu$.

For all
$$j=1\ldots J$$
,
$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\eta_n}}$$

$$m_{j,n+1} = (1-\gamma_{j,n}) m_{j,n} + \gamma_{j,n} \int_{\mathbf{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)$$

$$\Sigma_{j,n+1} = (1-\gamma_{j,n}) \tilde{\Sigma}_{j,n} + \gamma_{j,n} \int_{\mathbf{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) (y-m_{j,n+1}) (y-m_{j,n+1})^T \nu(\mathrm{d}y)$$

where
$$\tilde{\Sigma}_{j,n} = \Sigma_{j,n} + (m_{j,n+1} - m_{j,n})(m_{j,n+1} - m_{j,n})^T$$
 and $\gamma_{j,n}$ depends on $b_{j,n}$.

- an update close to $\theta_{i,n}=(m_{i,n},\Sigma_{i,n})$ $[\gamma_{i,n}\to 0]$

Set
$$k(\theta,y) = \mathcal{N}(y;m,\Sigma)$$
 with $\theta = (m,\Sigma)$ and $\check{\varphi}_{j,n}^{(\alpha)} = \varphi_{j,n}^{(\alpha)} / \int \varphi_{j,n}^{(\alpha)} \mathrm{d}\nu$.

For all
$$j=1\dots J$$
,
$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbb{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbb{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\eta_n}}$$

$$m_{j,n+1} = (1-\gamma_{j,n}) m_{j,n} + \gamma_{j,n} \int_{\mathbb{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)$$

$$\Sigma_{j,n+1} = (1-\gamma_{j,n}) \check{\Sigma}_{j,n} + \gamma_{j,n} \int_{\mathbb{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) (y-m_{j,n+1}) (y-m_{j,n+1})^T \nu(\mathrm{d}y)$$

where
$$\tilde{\Sigma}_{j,n}=\Sigma_{j,n}+(m_{j,n+1}-m_{j,n})(m_{j,n+1}-m_{j,n})^T$$
 and $\gamma_{j,n}$ depends on $b_{j,n}$.

 \rightarrow Considering all possible values of $b_{j,n}$, we have $\gamma_{j,n} \in (0,1]$

- an update close to $\theta_{i,n} = (m_{i,n}, \Sigma_{i,n}) \ [\gamma_{i,n} \to 0]$

Set
$$k(\theta,y) = \mathcal{N}(y;m,\Sigma)$$
 with $\theta = (m,\Sigma)$ and $\check{\varphi}_{j,n}^{(\alpha)} = \varphi_{j,n}^{(\alpha)} / \int \varphi_{j,n}^{(\alpha)} \mathrm{d}\nu$.

For all
$$j=1\dots J$$
,
$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\eta_n}}$$

$$m_{j,n+1} = (1-\gamma_{j,n}) m_{j,n} + \gamma_{j,n} \int_{\mathbf{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)$$

$$\Sigma_{j,n+1} = (1-\gamma_{j,n}) \tilde{\Sigma}_{j,n} + \gamma_{j,n} \int_{\mathbf{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) (y-m_{j,n+1}) (y-m_{j,n+1})^T \nu(\mathrm{d}y)$$

where
$$\tilde{\Sigma}_{j,n} = \Sigma_{j,n} + (m_{j,n+1} - m_{j,n})(m_{j,n+1} - m_{j,n})^T$$
 and $\gamma_{j,n}$ depends on $b_{j,n}$.

 \rightarrow Considering all possible values of $b_{j,n}$, we have $\gamma_{j,n} \in (0,1]$

Interpretation: tradeoff between

- an update close to $\theta_{i,n} = (m_{i,n}, \Sigma_{i,n}) \ [\gamma_{i,n} \to 0]$

Set
$$k(\theta,y) = \mathcal{N}(y;m,\Sigma)$$
 with $\theta = (m,\Sigma)$ and $\check{\varphi}_{j,n}^{(\alpha)} = \varphi_{j,n}^{(\alpha)} / \int \varphi_{j,n}^{(\alpha)} \mathrm{d}\nu$.

For all
$$j=1\dots J$$
,
$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\eta_n}}$$

$$m_{j,n+1} = (1-\gamma_{j,n}) m_{j,n} + \gamma_{j,n} \int_{\mathbf{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)$$

$$\Sigma_{j,n+1} = (1-\gamma_{j,n}) \check{\Sigma}_{j,n} + \gamma_{j,n} \int_{\mathbf{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) (y-m_{j,n+1}) (y-m_{j,n+1})^T \nu(\mathrm{d}y)$$

where
$$\tilde{\Sigma}_{j,n} = \Sigma_{j,n} + (m_{j,n+1} - m_{j,n})(m_{j,n+1} - m_{j,n})^T$$
 and $\gamma_{j,n}$ depends on $b_{j,n}$.

 \rightarrow Considering all possible values of $b_{j,n}$, we have $\gamma_{j,n} \in (0,1]$

Interpretation: tradeoff between

- an update close to $\theta_{i,n} = (m_{i,n}, \Sigma_{i,n}) [\gamma_{i,n} \to 0]$

Set
$$k(\theta,y) = \mathcal{N}(y;m,\Sigma)$$
 with $\theta = (m,\Sigma)$ and $\check{\varphi}_{j,n}^{(\alpha)} = \varphi_{j,n}^{(\alpha)} / \int \varphi_{j,n}^{(\alpha)} \mathrm{d}\nu$.

For all
$$j=1\ldots J$$
,
$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\eta_n}}$$

$$m_{j,n+1} = (1-\gamma_{j,n}) m_{j,n} + \gamma_{j,n} \int_{\mathbf{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)$$

$$\Sigma_{j,n+1} = (1-\gamma_{j,n}) \tilde{\Sigma}_{j,n} + \gamma_{j,n} \int_{\mathbf{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) (y-m_{j,n+1}) (y-m_{j,n+1})^T \nu(\mathrm{d}y)$$

where
$$\tilde{\Sigma}_{j,n} = \Sigma_{j,n} + (m_{j,n+1} - m_{j,n})(m_{j,n+1} - m_{j,n})^T$$
 and $\gamma_{j,n}$ depends on $b_{j,n}$.

 \rightarrow Considering all possible values of $b_{j,n}$, we have $\gamma_{j,n} \in (0,1]$

Interpretation: tradeoff between

- an update close to $\theta_{j,n}=(m_{j,n},\Sigma_{j,n})$ $[\gamma_{j,n}\to 0]$
- an update that chooses the Gaussian with the same mean and covariance matrix as $\check{\varphi}_{i,n}^{(\alpha)} \left[\gamma_{j,n} = 1 \right]$

Why does it matter? In practice, Monte Carlo approximations!

Set
$$k(\theta,y) = \mathcal{N}(y;m,\Sigma)$$
 with $\theta = (m,\Sigma)$ and $\check{\varphi}_{j,n}^{(\alpha)} = \varphi_{j,n}^{(\alpha)} / \int \varphi_{j,n}^{(\alpha)} \mathrm{d}\nu$.

For all
$$j=1\ldots J$$
,
$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\eta_n}}$$

$$m_{j,n+1} = (1-\gamma_{j,n}) m_{j,n} + \gamma_{j,n} \int_{\mathsf{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)$$

$$\Sigma_{j,n+1} = (1-\gamma_{j,n}) \check{\Sigma}_{j,n} + \gamma_{j,n} \int_{\mathsf{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) (y-m_{j,n+1}) (y-m_{j,n+1})^T \nu(\mathrm{d}y)$$

where
$$\tilde{\Sigma}_{j,n} = \Sigma_{j,n} + (m_{j,n+1} - m_{j,n})(m_{j,n+1} - m_{j,n})^T$$
 and $\gamma_{j,n}$ depends on $b_{j,n}$.

 \rightarrow Considering all possible values of $b_{j,n}$, we have $\gamma_{j,n} \in (0,1]$

Interpretation: tradeoff between

- an update close to $\theta_{j,n}=(m_{j,n},\Sigma_{j,n})$ $[\gamma_{j,n}\to 0]$
- an update that chooses the Gaussian with the same mean and covariance matrix as $\check{\varphi}_{i,n}^{(\alpha)}\left[\gamma_{j,n}=1\right]$

Why does it matter? In practice, Monte Carlo approximations!

Set
$$k(\theta,y) = \mathcal{N}(y;m,\Sigma)$$
 with $\theta = (m,\Sigma)$ and $\check{\varphi}_{j,n}^{(\alpha)} = \varphi_{j,n}^{(\alpha)} / \int \varphi_{j,n}^{(\alpha)} \mathrm{d}\nu$.

For all
$$j=1\dots J$$
,
$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbb{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbb{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\eta_n}}$$

$$m_{j,n+1} = (1-\gamma_{j,n}) m_{j,n} + \gamma_{j,n} \int_{\mathbb{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)$$

$$\Sigma_{j,n+1} = (1-\gamma_{j,n}) \check{\Sigma}_{j,n} + \gamma_{j,n} \int_{\mathbb{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) (y-m_{j,n+1}) (y-m_{j,n+1})^T \nu(\mathrm{d}y)$$

where
$$\tilde{\Sigma}_{j,n} = \Sigma_{j,n} + (m_{j,n+1} - m_{j,n})(m_{j,n+1} - m_{j,n})^T$$
 and $\gamma_{j,n}$ depends on $b_{j,n}$.

 \rightarrow Considering all possible values of $b_{j,n}$, we have $\gamma_{j,n} \in (0,1]$

Interpretation: tradeoff between

- an update close to $\theta_{j,n}=(m_{j,n},\Sigma_{j,n})$ $[\gamma_{j,n}\to 0]$
- an update that chooses the Gaussian with the same mean and covariance matrix as $\check{\varphi}_{i,n}^{(\alpha)}\left[\gamma_{j,n}=1\right]$

Why does it matter? In practice, Monte Carlo approximations!

Set
$$k(\theta,y) = \mathcal{N}(y;m,\Sigma)$$
 with $\theta = (m,\Sigma)$ and $\check{\varphi}_{j,n}^{(\alpha)} = \varphi_{j,n}^{(\alpha)} / \int \varphi_{j,n}^{(\alpha)} \mathrm{d}\nu$.

For all
$$j=1\dots J$$
,
$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbb{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbb{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\eta_n}}$$

$$m_{j,n+1} = (1-\gamma_{j,n}) m_{j,n} + \gamma_{j,n} \int_{\mathbb{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)$$

$$\Sigma_{j,n+1} = (1-\gamma_{j,n}) \tilde{\Sigma}_{j,n} + \gamma_{j,n} \int_{\mathbb{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) (y-m_{j,n+1}) (y-m_{j,n+1})^T \nu(\mathrm{d}y)$$

Set
$$k(\theta,y) = \mathcal{N}(y;m,\Sigma)$$
 with $\theta = (m,\Sigma)$ and $\check{\varphi}_{j,n}^{(\alpha)} = \varphi_{j,n}^{(\alpha)} / \int \varphi_{j,n}^{(\alpha)} \mathrm{d}\nu$.

For all
$$j=1\dots J$$
,
$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathbb{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathbb{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha-1)\kappa \right]^{\eta_n}}$$

$$m_{j,n+1} = (1-\gamma_{j,n}) m_{j,n} + \gamma_{j,n} \int_{\mathbb{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)$$

$$\Sigma_{j,n+1} = (1-\gamma_{j,n}) \check{\Sigma}_{j,n} + \gamma_{j,n} \int_{\mathbb{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) (y-m_{j,n+1}) (y-m_{j,n+1})^T \nu(\mathrm{d}y)$$

Consider the case
$$\alpha=0$$
, $\gamma_{j,n}=1$, $\eta_n=1$, $\kappa=0$, set $t_{j,n}=\frac{\lambda_{j,n}k(\theta_{j,n},\cdot)}{\mu_{\lambda_n,\Theta_n}k}$ and $\tilde{p}=p/\int p\mathrm{d}\nu$

Set
$$k(\theta,y) = \mathcal{N}(y;m,\Sigma)$$
 with $\theta = (m,\Sigma)$ and $\check{\varphi}_{j,n}^{(\alpha)} = \varphi_{j,n}^{(\alpha)} / \int \varphi_{j,n}^{(\alpha)} \mathrm{d}\nu$.

For all
$$j=1\ldots J$$
,
$$\lambda_{j,n+1}=\int_{\mathbf{Y}}t_{j,n}(y)\ \tilde{p}(y)\ \nu(\mathrm{d}y)$$

$$m_{j,n+1}=\int_{\mathbf{Y}}t_{j,n}(y)\ \tilde{p}(y)\ y\ \nu(\mathrm{d}y)$$

$$\Sigma_{j,n+1}=\int_{\mathbf{Y}}t_{j,n}(y)\ \tilde{p}(y)\ (y-m_{j,n+1})(y-m_{j,n+1})^T\ \nu(\mathrm{d}y)$$

Consider the case
$$\alpha=0$$
, $\gamma_{j,n}=1$, $\eta_n=1$, $\kappa=0$, set $t_{j,n}=\frac{\lambda_{j,n}k(\theta_{j,n},\cdot)}{\mu_{\lambda_n,\Theta_n}k}$ and $\tilde{p}=p/\int p\mathrm{d}\nu$

 \rightarrow The M-PMC algorithm a.k.a 'Integrated EM' for GMMs

Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

Core insight: We have generalised an integrated EM algorithm for mixture models optimisation!

Set
$$k(\theta,y) = \mathcal{N}(y;m,\Sigma)$$
 with $\theta = (m,\Sigma)$ and $\check{\varphi}_{j,n}^{(\alpha)} = \varphi_{j,n}^{(\alpha)} / \int \varphi_{j,n}^{(\alpha)} \mathrm{d}\nu$.

For all
$$j=1\ldots J$$
,
$$\lambda_{j,n+1}=\int_{\mathbf{Y}}t_{j,n}(y)\;\tilde{p}(y)\;\nu(\mathrm{d}y)$$

$$m_{j,n+1}=\int_{\mathbf{Y}}t_{j,n}(y)\;\tilde{p}(y)\;y\;\nu(\mathrm{d}y)$$

$$\Sigma_{j,n+1}=\int_{\mathbf{Y}}t_{j,n}(y)\;\tilde{p}(y)\;(y-m_{j,n+1})(y-m_{j,n+1})^T\;\nu(\mathrm{d}y)$$

Consider the case
$$\alpha=0$$
, $\gamma_{j,n}=1$, $\eta_n=1$, $\kappa=0$, set $t_{j,n}=\frac{\lambda_{j,n}k(\theta_{j,n},\cdot)}{\mu_{\lambda_n,\Theta_n}k}$ and $\tilde{p}=p/\int p\mathrm{d}\nu$

→ The M-PMC algorithm a.k.a 'Integrated EM' for GMMs Adaptive importance sampling in general mixture classes. O. Cappé, R. Douc, A. Guillin, J-M Marin and C. P Robert (2008). Statistics and Computing, 18(4):447–459

Core insight: We have generalised an integrated EM algorithm for mixture models optimisation!

Outline

- 1 Monotonic Alpha-Divergence Minimisation
- 2 Maximisation approach
- 3 Gradient-based approach
- **4** Numerical Experiments
- **5** Conclusion of Part 3

$$\int_{\mathsf{Y}} \sum_{j=1}^J \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

For all $j = 1 \dots J$, $\gamma_{i,n} \in (0,1]$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}$$

where $g_{i,n}$ is assumed to be $\beta_{i,n}$ -smooth on $T = \mathbb{R}^d$ with

$$g_{j,n}(\theta) = \int_{\mathsf{Y}} \frac{\varphi_{j,n}^{(\alpha)}(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y)$$

We have that

$$\nabla g_{j,n}(\theta)|_{\theta=\theta_{j,n}} = \int_{\mathsf{Y}} \frac{\varphi_{j,n}^{(\alpha)}(y)}{\alpha - 1} \frac{\partial \log k(\theta, y)}{\partial \theta} \bigg|_{(\theta, y) = (\theta_{j,n}, y)} \nu(\mathrm{d}y)$$

→ There might be links with Gradient Descent steps...

$$\int_{\mathbf{Y}} \sum_{j=1}^{J} \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)} \right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

For all $j = 1 \dots J$, $\gamma_{j,n} \in (0,1]$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}$$

where $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T} = \mathbb{R}^d$ with

$$g_{j,n}(\theta) = \int_{\mathsf{Y}} \frac{\varphi_{j,n}^{(\alpha)}(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

We have that

$$\nabla g_{j,n}(\theta)|_{\theta=\theta_{j,n}} = \int_{\mathsf{Y}} \frac{\varphi_{j,n}^{(\alpha)}(y)}{\alpha - 1} \frac{\partial \log k(\theta, y)}{\partial \theta} \bigg|_{(\theta, y) = (\theta_{j,n}, y)} \nu(\mathrm{d}y)$$

→ There might be links with Gradient Descent steps.

$$\int_{\mathsf{Y}} \sum_{j=1}^J \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

For all $j = 1 \dots J$, $\gamma_{j,n} \in (0,1]$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}$$

where $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T} = \mathbb{R}^d$ with

$$g_{j,n}(\theta) = \int_{\mathsf{Y}} \frac{\varphi_{j,n}^{(\alpha)}(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

We have that

$$\nabla g_{j,n}(\theta)|_{\theta=\theta_{j,n}} = \int_{\mathsf{Y}} \frac{\varphi_{j,n}^{(\alpha)}(y)}{\alpha - 1} \frac{\partial \log k(\theta, y)}{\partial \theta} \bigg|_{(\theta, y) = (\theta_{j,n}, y)} \nu(\mathrm{d}y)$$

→ There might be links with Gradient Descent steps..

$$\int_{\mathsf{Y}} \sum_{j=1}^J \lambda_{j,n} \varphi_{j,n}^{(\alpha)}(y) \log \left(\frac{k(\theta_{j,n+1},y)}{k(\theta_{j,n},y)}\right) \nu(\mathrm{d}y) \geqslant 0 \tag{Components}$$

For all $j = 1 \dots J$, $\gamma_{j,n} \in (0,1]$

$$\theta_{j,n+1} = \theta_{j,n} - \frac{\gamma_{j,n}}{\beta_{j,n}} \nabla g_{j,n}(\theta)|_{\theta = \theta_{j,n}}$$

where $g_{j,n}$ is assumed to be $\beta_{j,n}$ -smooth on $\mathsf{T} = \mathbb{R}^d$ with

$$g_{j,n}(\theta) = \int_{\mathsf{Y}} \frac{\varphi_{j,n}^{(\alpha)}(y)}{\alpha - 1} \log \left(\frac{k(\theta, y)}{k(\theta_{j,n}, y)} \right) \nu(\mathrm{d}y) .$$

We have that

$$\nabla g_{j,n}(\theta)|_{\theta=\theta_{j,n}} = \int_{\mathsf{Y}} \frac{\varphi_{j,n}^{(\alpha)}(y)}{\alpha - 1} \frac{\partial \log k(\theta, y)}{\partial \theta} \bigg|_{(\theta, y) = (\theta_{j,n}, y)} \nu(\mathrm{d}y)$$

 \rightarrow There might be links with Gradient Descent steps...

Set
$$k(\theta,y) = \mathcal{N}(y; m, \sigma^2 \mathbf{I}_d)$$
 with $\theta = m$, fixed $\sigma > 0$ and $\check{\varphi}_{j,n}^{(\alpha)} = \varphi_{j,n}^{(\alpha)} / \int \varphi_{j,n}^{(\alpha)} \mathrm{d}\nu$

For all
$$j = 1 \dots J$$
,

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}$$

$$m_{j,n+1} = (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \int_{\mathsf{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y)$$

- - **1** Maximisation and gradient-based approach coincide when $\Sigma = \sigma^2 I_d$ with σ fixed

$$\gamma_{j,n} = \gamma'_{j,n} \frac{\lambda_{j,n} \int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}{\int_{\mathbf{V}} (\mu_n k(y))^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)} \quad \text{with} \quad \gamma'_{j,n} \in (0,1]$$

Set
$$k(\theta,y) = \mathcal{N}(y;m,\sigma^2 \mathbf{I}_d)$$
 with $\theta=m$, fixed $\sigma>0$ and $\check{\varphi}_{j,n}^{(\alpha)}=\varphi_{j,n}^{(\alpha)}/\int \varphi_{j,n}^{(\alpha)}\mathrm{d}\nu$

For all $i = 1 \dots J$,

$$\begin{split} \lambda_{j,n+1} &= \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} \\ m_{j,n+1} &= (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \int_{\mathsf{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y) \end{split}$$

where $\gamma_{i,n} \in (0,1]$

- - **1** Maximisation and gradient-based approach coincide when $\Sigma = \sigma^2 I_d$ with σ fixed

$$\gamma_{j,n} = \gamma'_{j,n} \frac{\lambda_{j,n} \int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} (\mu_n k(y))^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)} \quad \text{with} \quad \gamma'_{j,n} \in (0,1]$$

Set
$$k(\theta,y) = \mathcal{N}(y;m,\sigma^2 \mathbf{I}_d)$$
 with $\theta=m$, fixed $\sigma>0$ and $\check{\varphi}_{j,n}^{(\alpha)}=\varphi_{j,n}^{(\alpha)}/\int \varphi_{j,n}^{(\alpha)}\mathrm{d}\nu$

For all $i = 1 \dots J$,

$$\begin{split} \lambda_{j,n+1} &= \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} \\ m_{j,n+1} &= (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \int_{\mathsf{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y) \end{split}$$

where $\gamma_{i,n} \in (0,1]$

- \rightarrow Interpretation :
 - **1** Maximisation and gradient-based approach coincide when $\Sigma = \sigma^2 I_d$ with σ fixed

$$\gamma_{j,n} = \gamma'_{j,n} \frac{\lambda_{j,n} \int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} (\mu_n k(y))^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)} \quad \text{with} \quad \gamma'_{j,n} \in (0,1]$$

Set
$$k(\theta,y) = \mathcal{N}(y;m,\sigma^2 \mathbf{I}_d)$$
 with $\theta=m$, fixed $\sigma>0$ and $\check{\varphi}_{j,n}^{(\alpha)}=\varphi_{j,n}^{(\alpha)}/\int \varphi_{j,n}^{(\alpha)}\mathrm{d}\nu$

For all $j = 1 \dots J$,

$$\begin{split} \lambda_{j,n+1} &= \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} \\ m_{j,n+1} &= (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \int_{\mathsf{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y) \end{split}$$

where $\gamma_{j,n} \in (0,1]$

- \rightarrow Interpretation :
 - f 0 Maximisation and gradient-based approach coincide when $\Sigma=\sigma^2 m{I}_d$ with σ fixed
 - **2** We recognise Gradient Descent steps w.r.t Θ on $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k;p)$ by setting

$$\gamma_{j,n} = \gamma'_{j,n} \frac{\lambda_{j,n} \int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} (\mu_n k(y))^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)} \quad \text{with} \quad \gamma'_{j,n} \in (0,1]$$

Compatibility between Gradient Descent steps w.r.t Θ and mixture weights updates (and even covariance matrices updates)!

Set
$$k(\theta,y) = \mathcal{N}(y;m,\sigma^2 \mathbf{I}_d)$$
 with $\theta=m$, fixed $\sigma>0$ and $\check{\varphi}_{j,n}^{(\alpha)}=\varphi_{j,n}^{(\alpha)}/\int \varphi_{j,n}^{(\alpha)}\mathrm{d}\nu$

For all $j = 1 \dots J$,

$$\begin{split} \lambda_{j,n+1} &= \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} \\ m_{j,n+1} &= (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \int_{\mathsf{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y) \end{split}$$

where $\gamma_{j,n} \in (0,1]$

- \rightarrow Interpretation :
 - **①** Maximisation and gradient-based approach coincide when $\Sigma = \sigma^2 I_d$ with σ fixed
 - **2** We recognise Gradient Descent steps w.r.t Θ on $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k;p)$ by setting

$$\gamma_{j,n} = \gamma'_{j,n} \frac{\lambda_{j,n} \int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} (\mu_n k(y))^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)} \quad \text{with} \quad \gamma'_{j,n} \in (0,1]$$

Compatibility between Gradient Descent steps w.r.t Θ and mixture weights updates (and even covariance matrices updates)!

Set
$$k(\theta,y) = \mathcal{N}(y;m,\sigma^2 \mathbf{I}_d)$$
 with $\theta=m$, fixed $\sigma>0$ and $\check{\varphi}_{j,n}^{(\alpha)}=\varphi_{j,n}^{(\alpha)}/\int \varphi_{j,n}^{(\alpha)}\mathrm{d}\nu$

For all $j = 1 \dots J$,

$$\begin{split} \lambda_{j,n+1} &= \frac{\lambda_{j,n} \left[\int_{\mathsf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}}{\sum_{\ell=1}^J \lambda_{\ell,n} \left[\int_{\mathsf{Y}} \varphi_{\ell,n}^{(\alpha)}(y) \nu(\mathrm{d}y) + (\alpha - 1) \kappa \right]^{\eta_n}} \\ m_{j,n+1} &= (1 - \gamma_{j,n}) m_{j,n} + \gamma_{j,n} \int_{\mathsf{Y}} \check{\varphi}_{j,n}^{(\alpha)}(y) \ y \ \nu(\mathrm{d}y) \end{split}$$

where $\gamma_{i,n} \in (0,1]$

- \rightarrow Interpretation :
 - $oldsymbol{0}$ Maximisation and gradient-based approach coincide when $\Sigma=\sigma^2 oldsymbol{I}_d$ with σ fixed
 - **2** We recognise Gradient Descent steps w.r.t Θ on $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k;p)$ by setting

$$\gamma_{j,n} = \gamma'_{j,n} \frac{\lambda_{j,n} \int_{\mathbf{Y}} \varphi_{j,n}^{(\alpha)}(y) \nu(\mathrm{d}y)}{\int_{\mathbf{Y}} (\mu_n k(y))^{\alpha} p(y)^{1-\alpha} \nu(\mathrm{d}y)} \quad \text{with} \quad \gamma'_{j,n} \in (0,1]$$

Compatibility between Gradient Descent steps w.r.t Θ and mixture weights updates (and even covariance matrices updates)!

We expressed conditions on λ and Θ ensuring a systematic decrease in $\Psi_{\alpha}(\mu_{\lambda,\Theta})$:

- lacktriangle Updates on λ linked to the gradient-based Power Descent
- **2** Updates on Θ :
 - Maximisation approach : generalises an Integrated EM
 - Gradient-based approach : links with Gradient Descent algorithms

	Improvements of our framework
Gradient Descent w.r.t Θ on $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k;p)$	Simultaneous optimisation w.r.t $(\lambda_n)_{n\geqslant 1}$ $\lambda_{j,n}$ needs not to be as a factor in the means updates Covariance matrices update formulas
Power Descent	Simultaneous optimisation w.r.t $(\Theta_n)_{n\geqslant 1}$ Convergence towards a local optimum of the full algorithm
M-PMC algorithm	$lpha \in [0,1)$ (prev. $lpha = 0$) $\eta_n \in (0,1]$ and $(lpha - 1)\kappa_n \geqslant 0$ (prev. $\eta_n = 1$, $\kappa_n = 0$) $b_{j,n} \geqslant 0$ (prev. $b_{j,n} = 0$)

We expressed conditions on λ and Θ ensuring a systematic decrease in $\Psi_{\alpha}(\mu_{\lambda,\Theta})$:

- lacktriangle Updates on λ linked to the gradient-based Power Descent
- **2** Updates on Θ :
 - Maximisation approach : generalises an Integrated EM
 - Gradient-based approach : links with Gradient Descent algorithms

	Improvements of our framework
Gradient Descent w.r.t Θ on $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k;p)$	Simultaneous optimisation w.r.t $(\lambda_n)_{n\geqslant 1}$ $\lambda_{j,n}$ needs not to be as a factor in the means updates Covariance matrices update formulas
Power Descent	Simultaneous optimisation w.r.t $(\Theta_n)_{n\geqslant 1}$ Convergence towards a local optimum of the full algorithm
M-PMC algorithm	$lpha \in [0,1)$ (prev. $lpha = 0$) $\eta_n \in (0,1]$ and $(lpha - 1)\kappa_n \geqslant 0$ (prev. $\eta_n = 1$, $\kappa_n = 0$) $b_{j,n} \geqslant 0$ (prev. $b_{j,n} = 0$)

We expressed conditions on λ and Θ ensuring a systematic decrease in $\Psi_{\alpha}(\mu_{\lambda,\Theta})$:

- lacktriangle Updates on λ linked to the gradient-based Power Descent
- **2** Updates on Θ :
 - Maximisation approach : generalises an Integrated EM
 - Gradient-based approach: links with Gradient Descent algorithms

	Improvements of our framework
Gradient Descent w.r.t Θ on $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k;p)$	Simultaneous optimisation w.r.t $(\lambda_n)_{n\geqslant 1}$ $\lambda_{j,n}$ needs not to be as a factor in the means updates Covariance matrices update formulas
Power Descent	Simultaneous optimisation w.r.t $(\Theta_n)_{n\geqslant 1}$ Convergence towards a local optimum of the full algorithm
M-PMC algorithm	$lpha \in [0,1)$ (prev. $lpha = 0$) $\eta_n \in (0,1]$ and $(lpha - 1)\kappa_n \geqslant 0$ (prev. $\eta_n = 1$, $\kappa_n = 0$) $b_{j,n} \geqslant 0$ (prev. $b_{j,n} = 0$)

We expressed conditions on λ and Θ ensuring a systematic decrease in $\Psi_{\alpha}(\mu_{\lambda,\Theta})$:

- lacktriangle Updates on λ linked to the gradient-based Power Descent
- **2** Updates on Θ :
 - Maximisation approach : generalises an Integrated EM
 - Gradient-based approach : links with Gradient Descent algorithms

	Improvements of our framework
Gradient Descent w.r.t Θ on $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k;p)$	Simultaneous optimisation w.r.t $(\lambda_n)_{n\geqslant 1}$ $\lambda_{j,n}$ needs not to be as a factor in the means updates Covariance matrices update formulas
Power Descent	Simultaneous optimisation w.r.t $(\Theta_n)_{n\geqslant 1}$ Convergence towards a local optimum of the full algorithm
M-PMC algorithm	$lpha \in [0,1)$ (prev. $lpha = 0$) $\eta_n \in (0,1]$ and $(lpha - 1)\kappa_n \geqslant 0$ (prev. $\eta_n = 1$, $\kappa_n = 0$) $b_{j,n} \geqslant 0$ (prev. $b_{j,n} = 0$)

We expressed conditions on λ and Θ ensuring a systematic decrease in $\Psi_{\alpha}(\mu_{\lambda,\Theta})$:

- lacktriangle Updates on λ linked to the gradient-based Power Descent
- **2** Updates on Θ :
 - Maximisation approach : generalises an Integrated EM
 - Gradient-based approach : links with Gradient Descent algorithms

	Improvements of our framework
Gradient Descent w.r.t Θ on $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k;p)$	Simultaneous optimisation w.r.t $(\lambda_n)_{n\geqslant 1}$ $\lambda_{j,n}$ needs not to be as a factor in the means updates Covariance matrices update formulas
Power Descent	Simultaneous optimisation w.r.t $(\Theta_n)_{n\geqslant 1}$ Convergence towards a local optimum of the full algorithm
M-PMC algorithm	$lpha \in [0,1)$ (prev. $lpha = 0$) $\eta_n \in (0,1]$ and $(\alpha-1)\kappa_n \geqslant 0$ (prev. $\eta_n = 1$, $\kappa_n = 0$) $b_{j,n} \geqslant 0$ (prev. $b_{j,n} = 0$)

We expressed conditions on λ and Θ ensuring a systematic decrease in $\Psi_{\alpha}(\mu_{\lambda,\Theta})$:

- lacktriangle Updates on λ linked to the gradient-based Power Descent
- **2** Updates on Θ :
 - Maximisation approach : generalises an Integrated EM
 - Gradient-based approach : links with Gradient Descent algorithms

	Improvements of our framework
Gradient Descent w.r.t Θ on $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k;p)$	Simultaneous optimisation w.r.t $(\lambda_n)_{n\geqslant 1}$ $\lambda_{j,n}$ needs not to be as a factor in the means updates Covariance matrices update formulas
Power Descent	Simultaneous optimisation w.r.t $(\Theta_n)_{n\geqslant 1}$ Convergence towards a local optimum of the full algorithm
M-PMC algorithm	$lpha \in [0,1)$ (prev. $lpha = 0$) $\eta_n \in (0,1]$ and $(lpha - 1)\kappa_n \geqslant 0$ (prev. $\eta_n = 1$, $\kappa_n = 0$) $b_{j,n} \geqslant 0$ (prev. $b_{j,n} = 0$)

Outline

- 1 Monotonic Alpha-Divergence Minimisation
- 2 Maximisation approach
- 3 Gradient-based approach
- 4 Numerical Experiments
- **5** Conclusion of Part 3

Algorithm 1: Gaussian Mixture Models optimisation

- **1** Draw independently M samples $(Y_{m,n})_{1 \le m \le M}$ from the proposal q_n .
- **2** For all $j = 1 \dots J$, set:

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) + (\alpha - 1)\kappa_{n} \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\sum_{m=1}^{M} \hat{\varphi}_{\ell,n}^{(\alpha)}(Y_{m,n}) + (\alpha - 1)\kappa_{n} \right]^{\eta_{n}}}$$

$$(RGD) \quad m_{j,n+1} = m_{j,n} + \gamma_{n} \frac{\lambda_{j,n} \sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) \cdot (Y_{m,n} - \theta_{j,n})}{\sum_{j=1}^{J} \sum_{m=1}^{M} \lambda_{j,n} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n})}$$

$$(MG) \quad m_{j,n+1} = (1 - \gamma_{n}) m_{j,n} + \gamma_{n} \frac{\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) \cdot Y_{m,n}}{\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n})}$$

$$\rightarrow \text{ Here } \hat{\varphi}_{j,n}^{(\alpha)}(y) = \frac{\varphi_{j,n}^{(\alpha)}(y)}{q_n(y)} \text{, } \gamma_{j,n} := \gamma_n \in (0,1]$$

- - RGD: updates derived from Gradient Descent steps w.r.t Θ on $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k; p)$
 - MG: maximisation approach without $\lambda_{i,n}$ as a factor

Algorithm 1: Gaussian Mixture Models optimisation

- **1** Draw independently M samples $(Y_{m,n})_{1 \le m \le M}$ from the proposal q_n .
- **2** For all $j = 1 \dots J$, set:

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) + (\alpha - 1)\kappa_{n} \right]^{\prime m}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\sum_{m=1}^{M} \hat{\varphi}_{\ell,n}^{(\alpha)}(Y_{m,n}) + (\alpha - 1)\kappa_{n} \right]^{\eta_{n}}}$$

$$(RGD) \quad m_{j,n+1} = m_{j,n} + \gamma_{n} \frac{\lambda_{j,n} \sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) \cdot (Y_{m,n} - \theta_{j,n})}{\sum_{j=1}^{J} \sum_{m=1}^{M} \lambda_{j,n} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n})}$$

$$(MG) \quad m_{j,n+1} = (1 - \gamma_{n}) m_{j,n} + \gamma_{n} \frac{\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) \cdot Y_{m,n}}{\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n})}$$

$$\to \mathrm{Here} \ \hat{\varphi}_{j,n}^{(\alpha)}(y) = \frac{\varphi_{j,n}^{(\alpha)}(y)}{q_n(y)} \text{, } \gamma_{j,n} := \gamma_n \in (0,1]$$

- \rightarrow 2 possible algorithms :
 - RGD: updates derived from Gradient Descent steps w.r.t Θ on $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k; p)$

Algorithm 1: Gaussian Mixture Models optimisation

- **1** Draw independently M samples $(Y_{m,n})_{1 \le m \le M}$ from the proposal q_n .
- **2** For all $j = 1 \dots J$, set:

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) + (\alpha - 1)\kappa_{n} \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\sum_{m=1}^{M} \hat{\varphi}_{\ell,n}^{(\alpha)}(Y_{m,n}) + (\alpha - 1)\kappa_{n} \right]^{\eta_{n}}}$$

$$(RGD) \quad m_{j,n+1} = m_{j,n} + \gamma_{n} \frac{\lambda_{j,n} \sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) \cdot (Y_{m,n} - \theta_{j,n})}{\sum_{j=1}^{J} \sum_{m=1}^{M} \lambda_{j,n} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n})}$$

$$(MG) \quad m_{j,n+1} = (1 - \gamma_{n}) m_{j,n} + \gamma_{n} \frac{\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) \cdot Y_{m,n}}{\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n})}$$

$$\to \mathrm{Here} \; \hat{\varphi}_{j,n}^{(\alpha)}(y) = \frac{\varphi_{j,n}^{(\alpha)}(y)}{q_n(y)} \text{, } \gamma_{j,n} := \gamma_n \in (0,1]$$

- \rightarrow 2 possible algorithms :
 - RGD : updates derived from Gradient Descent steps w.r.t Θ on $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k; p)$

Algorithm 1: Gaussian Mixture Models optimisation

- **1** Draw independently M samples $(Y_{m,n})_{1 \le m \le M}$ from the proposal q_n .
- **2** For all $i = 1 \dots J$, set:

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) + (\alpha - 1)\kappa_{n} \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\sum_{m=1}^{M} \hat{\varphi}_{\ell,n}^{(\alpha)}(Y_{m,n}) + (\alpha - 1)\kappa_{n} \right]^{\eta_{n}}}$$

$$(RGD) \quad m_{j,n+1} = m_{j,n} + \gamma_{n} \frac{\lambda_{j,n} \sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) \cdot (Y_{m,n} - \theta_{j,n})}{\sum_{j=1}^{J} \sum_{m=1}^{M} \lambda_{j,n} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n})}$$

$$(MG) \quad m_{j,n+1} = (1 - \gamma_{n}) m_{j,n} + \gamma_{n} \frac{\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) \cdot Y_{m,n}}{\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n})}$$

$$\to \mathrm{Here} \; \hat{\varphi}_{j,n}^{(\alpha)}(y) = \frac{\varphi_{j,n}^{(\alpha)}(y)}{q_n(y)} \text{, } \gamma_{j,n} := \gamma_n \in (0,1]$$

- \rightarrow 2 possible algorithms :
 - RGD : updates derived from Gradient Descent steps w.r.t Θ on $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k; p)$
 - MG : maximisation approach without $\lambda_{j,n}$ as a factor

Algorithm 1: Gaussian Mixture Models optimisation

- **1** Draw independently M samples $(Y_{m,n})_{1 \leq m \leq M}$ from the proposal q_n .
- **2** For all $j = 1 \dots J$, set:

$$\lambda_{j,n+1} = \frac{\lambda_{j,n} \left[\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) + (\alpha - 1)\kappa_{n} \right]^{\eta_{n}}}{\sum_{\ell=1}^{J} \lambda_{\ell,n} \left[\sum_{m=1}^{M} \hat{\varphi}_{\ell,n}^{(\alpha)}(Y_{m,n}) + (\alpha - 1)\kappa_{n} \right]^{\eta_{n}}}$$

$$(RGD) \quad m_{j,n+1} = m_{j,n} + \gamma_{n} \frac{\lambda_{j,n} \sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) \cdot (Y_{m,n} - \theta_{j,n})}{\sum_{j=1}^{J} \sum_{m=1}^{M} \lambda_{j,n} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n})}$$

$$(MG) \quad m_{j,n+1} = (1 - \gamma_{n}) m_{j,n} + \gamma_{n} \frac{\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n}) \cdot Y_{m,n}}{\sum_{m=1}^{M} \hat{\varphi}_{j,n}^{(\alpha)}(Y_{m,n})}$$

$$\rightarrow \text{ Here } \hat{\varphi}_{j,n}^{(\alpha)}(y) = \frac{\varphi_{j,n}^{(\alpha)}(y)}{q_n(y)}, \ \gamma_{j,n} := \gamma_n \in (0,1]$$

- ightarrow 2 possible algorithms :
 - RGD : updates derived from Gradient Descent steps w.r.t Θ on $-\alpha^{-1}\mathcal{L}_{\alpha}(\mu k;p)$
 - MG : maximisation approach without $\lambda_{j,n}$ as a factor
- o 2 possible samplers : $q_n=\mu_{\lambda_n,\Theta_n}$ (IS-n) and $q_n=J^{-1}\sum_{j=1}^J k(\theta_{j,n},\cdot)$ (IS-unif).

Comparing RGD to MG (fixed λ)

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})]$$

• MC estimate of the VR Bound averaged over 30 trials for RGD and MG.

[Here,
$$\alpha=0.2$$
, $d=16$, $M=200$, $\kappa_n=0$, $\eta_n=0$. and $q_n=\mu_n k$.]

• LogMSE averaged over 30 trials for RGD and MG.

	J = 10			J = 50		
	$\gamma = 0.1$	$\gamma = 0.5$		$\gamma = 0.1$		
$\begin{array}{c} RGD\text{-}IS\text{-}n(\gamma) \\ MG\text{-}IS\text{-}n(\gamma) \end{array}$						

Comparing RGD to MG (fixed λ)

Target :
$$p(y) = 2 \times [0.5\mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5\mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})]$$

• MC estimate of the VR Bound averaged over 30 trials for RGD and MG.

[Here,
$$\alpha=0.2$$
, $d=16$, $M=200$, $\kappa_n=0$, $\eta_n=0$. and $q_n=\mu_n k$.]

J = 50

• LogMSE averaged over 30 trials for RGD and MG.

	J = 10			J = 50		
	$\gamma = 0.1$	$\gamma = 0.5$	$\gamma = 1.0$	$\gamma = 0.1$	$\gamma = 0.5$	$\gamma = 1.0$
RGD-IS-n (γ)	-0.081	-0.076	-0.218	-1.640	-1.673	-1.560
$MG ext{-}IS ext{-}n(\gamma)$	-3.702	-1.875	-2.711	-2.760	-2.771	-2.788

Comparing RGD to MG (varying λ)

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})]$$

• MC estimate of the VR Bound averaged over 30 trials for RGD and MG.

[Here,
$$\alpha = 0.2$$
, $d = 16$, $M = 200$, $\eta = 0.1$, $\kappa_n = 0$.]

LogMSE averaged over 30 trials for RGD and MG.

	J = 10			J = 50		
	$\gamma = 0.1$		$\gamma = 1.0$	$\gamma = 0.1$		$\gamma = 1.0$
RGD-IS-n (γ)	0.372	0.510	0.384	-0.616	-0.713	
$MG-IS-n(\gamma)$	1.104	1.074	0.387	1.135	-0.077	
RGD-IS-unif(γ)	0.359	0.469	0.458		-0.670	
$MG-IS-unif(\gamma)$	-0.200	-0.229	-0.515	-1.500	-1.462	-1.246

Comparing RGD to MG (varying λ)

$$\mathsf{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})]$$

• MC estimate of the VR Bound averaged over 30 trials for RGD and MG.

[Here,
$$\alpha = 0.2$$
, $d = 16$, $M = 200$, $\eta = 0.1$, $\kappa_n = 0$.]

• LogMSE averaged over 30 trials for RGD and MG.

		J = 10			J = 50	
	$\gamma = 0.1$	$\gamma = 0.5$	$\gamma = 1.0$	$\gamma = 0.1$	$\gamma = 0.5$	$\gamma = 1.0$
RGD-IS-n (γ)	0.372	0.510	0.384	-0.616	-0.713	-0.778
$MG ext{-}IS ext{-}n(\gamma)$	1.104	1.074	0.387	1.135	-0.077	-0.060
$RGD ext{-}IS ext{-}unif(\gamma)$	0.359	0.469	0.458	-0.688	-0.670	-0.583
$MG ext{-}IS ext{-}unif(\gamma)$	-0.200	-0.229	-0.515	-1.500	-1.462	-1.246

Comparing RGD to MG (varying λ) - 2

$$\text{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})]$$

• LogMSE averaged over 30 trials for RGD and MG. [Here, $\alpha = 0.2$, d = 16, M = 200, $\gamma = 0.5$, $\kappa_n = 0$.]

		J = 10			J = 50	
	$\eta = 0.05$	$\eta = 0.1$	$\eta = 0.5$	$\eta = 0.05$	$\eta = 0.1$	$\eta = 0.5$
RGD-IS-n (γ)	0.045	0.510	1.299	-1.355	-0.713	0.924
$MG ext{-}IS ext{-}n(\gamma)$	0.087	1.074	1.343	-1.205	-0.077	1.329
$RGD ext{-}IS ext{-}unif(\gamma)$	-0.018	0.469	1.328	-1.385	-0.670	0.928
$MG ext{-}IS ext{-}unif(\gamma)$	-1.244	-0.229	1.100	-2.524	-1.462	0.309

Comparing RGD to MG (varying λ) - 2

$$\text{Target}: \quad p(y) = 2 \times [0.5 \mathcal{N}(\boldsymbol{y}; -2\boldsymbol{u_d}, \boldsymbol{I_d}) + 0.5 \mathcal{N}(\boldsymbol{y}; 2\boldsymbol{u_d}, \boldsymbol{I_d})]$$

• LogMSE averaged over 30 trials for RGD and MG. [Here, $\alpha = 0.2$, d = 16, M = 200, $\gamma = 0.5$, $\kappa_n = 0.$]

		J = 10			J = 50	
	$\eta = 0.05$	$\eta = 0.1$	$\eta = 0.5$	$\eta = 0.05$	$\eta = 0.1$	$\eta = 0.5$
$RGD ext{-}IS ext{-}n(\gamma)$	0.045	0.510	1.299	-1.355	-0.713	0.924
$MG ext{-}IS ext{-}n(\gamma)$	0.087	1.074	1.343	-1.205	-0.077	1.329
RGD-IS-unif(γ)	-0.018	0.469	1.328	-1.385	-0.670	0.928
$MG\text{-}IS\text{-}unif(\gamma)$	-1.244	-0.229	1.100	-2.524	-1.462	0.309

Outline

- Monotonic Alpha-Divergence Minimisation
- 2 Maximisation approach
- 3 Gradient-based approach
- **4** Numerical Experiments
- **5** Conclusion of Part 3

- applicable to mixture models optimisation
- mixture weights and mixture components parameters can be updated
- links with an Integrated EM algorithm and with gradient-based approaches
- empirical benefits of our general framework

- Additionnal convergence results
- Hyperparameters tuning
- ML applications...

- applicable to mixture models optimisation
- mixture weights and mixture components parameters can be updated
- links with an Integrated EM algorithm and with gradient-based approaches
- empirical benefits of our general framework

- Additionnal convergence results
- Hyperparameters tuning
- ML applications...

- applicable to mixture models optimisation
- mixture weights and mixture components parameters can be updated simultaneously
- links with an Integrated EM algorithm and with gradient-based approaches
- empirical benefits of our general framework

- Additionnal convergence results
- Hyperparameters tuning
- ML applications...

- applicable to mixture models optimisation
- mixture weights and mixture components parameters can be updated simultaneously
- links with an Integrated EM algorithm and with gradient-based approaches
- empirical benefits of our general framework

- Additionnal convergence results
- Hyperparameters tuning
- ML applications...

- applicable to mixture models optimisation
- mixture weights and mixture components parameters can be updated simultaneously
- links with an Integrated EM algorithm and with gradient-based approaches
- empirical benefits of our general framework

- Additionnal convergence results
- Hyperparameters tuning
- ML applications...

Novel framework for monotonic alpha-divergence minimisation

- applicable to mixture models optimisation
- mixture weights and mixture components parameters can be updated simultaneously
- links with an Integrated EM algorithm and with gradient-based approaches
- empirical benefits of our general framework

- Additionnal convergence results
- Hyperparameters tuning
- ML applications...

Novel framework for monotonic alpha-divergence minimisation

- applicable to mixture models optimisation
- mixture weights and mixture components parameters can be updated simultaneously
- links with an Integrated EM algorithm and with gradient-based approaches
- empirical benefits of our general framework

- Additionnal convergence results
- Hyperparameters tuning
- ML applications...

Novel framework for monotonic alpha-divergence minimisation

- applicable to mixture models optimisation
- mixture weights and mixture components parameters can be updated simultaneously
- links with an Integrated EM algorithm and with gradient-based approaches
- empirical benefits of our general framework

- Additionnal convergence results
- Hyperparameters tuning
- ML applications...

Novel framework for monotonic alpha-divergence minimisation

- applicable to mixture models optimisation
- mixture weights and mixture components parameters can be updated simultaneously
- links with an Integrated EM algorithm and with gradient-based approaches
- empirical benefits of our general framework

- Additionnal convergence results
- Hyperparameters tuning
- ML applications...

- Part 1. General introduction to Variational Inference. MFVI, BBVI, Alpha-divergence VI.
- Part 2. Infinite-dimensional Alpha-divergence minimisation :
- Part 3. Monotonic Alpha-divergence minimisation:

- 1 the expressiveness of the variational family
- 2 the choice of the measure of dissimilarity
- 3 the theory of Variational Inference
- **6** and so much more!

- Part 1. General introduction to Variational Inference. MFVI, BBVI, Alpha-divergence VI.
- Part 2. Infinite-dimensional Alpha-divergence minimisation : Mixture weights optimisation to increase expressiveness Links with the Entropic Mirror Descent algorithm
- Part 3. Monotonic Alpha-divergence minimisation:

- 1 the expressiveness of the variational family
- 2 the choice of the measure of dissimilarity
- the theory of Variational Inference
- the interface between Variational Inference and Monte Carlo methods
- **6** and so much more!

- Part 1. General introduction to Variational Inference. MFVI, BBVI, Alpha-divergence VI.
- Part 2. Infinite-dimensional Alpha-divergence minimisation : Mixture weights optimisation to increase expressiveness Links with the Entropic Mirror Descent algorithm
- Part 3. Monotonic Alpha-divergence minimisation : Mixture models optimisation with convergence guarantees Links with an Integrated EM algorithm and gradient-based approaches.

- 1 the expressiveness of the variational family
- 2 the choice of the measure of dissimilarity
- the theory of Variational Inference
- the interface between Variational Inference and Monte Carlo methods
- **6** and so much more!

- Part 1. General introduction to Variational Inference. MFVI, BBVI, Alpha-divergence VI.
- Part 2. Infinite-dimensional Alpha-divergence minimisation : Mixture weights optimisation to increase expressiveness Links with the Entropic Mirror Descent algorithm
- Part 3. Monotonic Alpha-divergence minimisation : Mixture models optimisation with convergence guarantees Links with an Integrated EM algorithm and gradient-based approaches.

- 1 the expressiveness of the variational family
- 2 the choice of the measure of dissimilarity
- the theory of Variational Inference
- the interface between Variational Inference and Monte Carlo methods
- **6** and so much more!

- Part 1. General introduction to Variational Inference. MFVI, BBVI, Alpha-divergence VI.
- Part 2. Infinite-dimensional Alpha-divergence minimisation : Mixture weights optimisation to increase expressiveness Links with the Entropic Mirror Descent algorithm
- Part 3. Monotonic Alpha-divergence minimisation : Mixture models optimisation with convergence guarantees Links with an Integrated EM algorithm and gradient-based approaches.

- 1 the expressiveness of the variational family
- 2 the choice of the measure of dissimilarity
- 3 the theory of Variational Inference
- the interface between Variational Inference and Monte Carlo methods
- **6** and so much more!

- Part 1. General introduction to Variational Inference. MFVI, BBVI, Alpha-divergence VI.
- Part 2. Infinite-dimensional Alpha-divergence minimisation : Mixture weights optimisation to increase expressiveness Links with the Entropic Mirror Descent algorithm
- Part 3. Monotonic Alpha-divergence minimisation : Mixture models optimisation with convergence guarantees Links with an Integrated EM algorithm and gradient-based approaches.

- 1 the expressiveness of the variational family
- 2 the choice of the measure of dissimilarity
- 3 the theory of Variational Inference
- the interface between Variational Inference and Monte Carlo methods
- **6** and so much more!

- Part 1. General introduction to Variational Inference. MFVI, BBVI, Alpha-divergence VI.
- Part 2. Infinite-dimensional Alpha-divergence minimisation : Mixture weights optimisation to increase expressiveness Links with the Entropic Mirror Descent algorithm
- Part 3. Monotonic Alpha-divergence minimisation : Mixture models optimisation with convergence guarantees Links with an Integrated EM algorithm and gradient-based approaches.

- 1 the expressiveness of the variational family
- 2 the choice of the measure of dissimilarity
- 3 the theory of Variational Inference
- the interface between Variational Inference and Monte Carlo methods
- **6** and so much more!

- Part 1. General introduction to Variational Inference. MFVI, BBVI, Alpha-divergence VI.
- Part 2. Infinite-dimensional Alpha-divergence minimisation : Mixture weights optimisation to increase expressiveness Links with the Entropic Mirror Descent algorithm
- Part 3. Monotonic Alpha-divergence minimisation : Mixture models optimisation with convergence guarantees Links with an Integrated EM algorithm and gradient-based approaches.

- 1 the expressiveness of the variational family
- 2 the choice of the measure of dissimilarity
- 3 the theory of Variational Inference
- 4 the interface between Variational Inference and Monte Carlo methods
- **6** and so much more!

- Part 1. General introduction to Variational Inference. MFVI, BBVI, Alpha-divergence VI.
- Part 2. Infinite-dimensional Alpha-divergence minimisation : Mixture weights optimisation to increase expressiveness Links with the Entropic Mirror Descent algorithm
- Part 3. Monotonic Alpha-divergence minimisation : Mixture models optimisation with convergence guarantees Links with an Integrated EM algorithm and gradient-based approaches.

- 1 the expressiveness of the variational family
- 2 the choice of the measure of dissimilarity
- 3 the theory of Variational Inference
- 4 the interface between Variational Inference and Monte Carlo methods
- 6 and so much more!