Amendments to the Claims

This listing of claims will replace all prior versions, and listings, of claims in the current application.

Listing of Claims

1. (currently amended) A compound having Formula I:

and pharmaceutically acceptable salts thereof, where:

 X^1 and X^2 are hydrogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heteroaryl, aralkyl, cycloalkylalkyl, -(CH₂)_m-halogen, -(CH₂)_m-heteroaryl, -(CH₂)_m-SOR³, -(CH₂)_m-OCOR³, -(CH₂)_m-OSO₂NR⁴R⁵, -(CH₂)_m-NR⁶COR³, -(CH₂)_m-NR⁶SO₂R³, -(CH₂)_m-NR³SO₂NR⁴R⁵, -(CH₂)_mNR⁴R⁵, -(CH₂)_mOR³, -CN, -NO₂, -CF_(3-n)H_n, -(CH₂)_m-O(CH₂)_mR³, -(CH₂)_m-O(CH₂)_m-O(CH₂)_m-NR⁴R⁵, -(CH₂)_mR³, -(CH₂)_mCO₂R³, -(CH₂)_mCOR³, -(CH₂)_mCOR³, -(CH₂)_mCOR³, -(CH₂)_mNR⁶COR³, -

$$(CH_2)_mNR^6CONR^4R^5, -(CH_2)_mSO_2R^3, -(CH_2)_mSO_2NR^4R^5,$$

$$(CH_2)_m - N - R^3$$

$$(CH_2)_p - N - R^3$$

$$(CH_2$$

heteroatoms;
A is aryl, arylcycloalkyl, heteroaryl, heteroarylcycloalkyl, cycloalkyl, or cycloalkenyl;

M is arylene, heteroarylene, or cycloalkylene, heterocycloalkylene, cycloalkenylene or heterocycloalkenylene;

Q is -CONR⁴R⁵, aryl, heteroaryl, cycloalkyl, or cycloalkenyl, heterocycloalkyl, or heterocycloalkenyl;

R1 is hydrogen, alkyl, aryl, hotoroaryl or alkenyl;

R² is hydrogen, alkyl, aryl, hotoroaryl, alkenyl, cycloalkyl, cycloalkylalkyl, aralkyl, hotoroayoloalkylalkyl, carboxy, -(CH₂)_mNR⁴R⁵, -(CH₂)_mOR³, -(CH₂)_mNR⁶COR³;

R³ is hydrogen, alkyl, aryl, hotoroaryl, alkenyl, alkynyl, cycloalkyl, cycloalkyl, or aralkyl, or hotoroarylalkyl;

R⁶ is hydrogen, alkyl, aryl, heteroaryl, alkenyl, alkynyl, cycloalkyl, cycloalkylalkyl, or aralkyl, or heteroarylalkyl;

R⁴ and R⁵ are each independently hydrogen, alkyl, aryl, heteroaryl, alkenyl, alkynyl,

cycloalkyl, cycloalkylalkyl, aralkyl, heteroarylalkyl, —C-C₁-C₆alkyl

O O O O
$$\parallel$$

$$\parallel$$

$$-C-O-C_1-C_6alkyl$$

$$-C-O-aralkyl$$

$$-C-S-C_1-C_6alkyl$$

$$O \qquad \parallel$$

$$-C-N-C_1-C_6alkyl$$

$$O \qquad \parallel$$

$$-C-N-C_1-C_6alkyl$$

$$O \qquad \parallel$$

$$-C-N-C_1-C_6alkyl$$

joined tegether to form a 3 to 8 member ring;

m is 0 to 8;

n is 0 to 2; and

p is 1_to_3;__

with the proviso that when R^1 and R^2 are H, neither X^1 nor X^2 is H.

- 2. (currently amended) The compound of claim 1, wherein A is aryl or heteroaryl.
- 3. (currently amended) The compound of claim 2, wherein A is

wherein R^{15} and $R^{15'}$ are independently hydrogen, $-(CH_2)_{1-6}$ -OH, $-(CH_2)_{1-6}$ -O-C₁-C₆ alkyl, $-(CH_2)_{1-6}$ -NH₂, -COOH, or -OH; and E is O, S, or NR⁴⁶-where R⁴⁶-is R⁴⁶-is

7346222928

R¹ and R³ are each independently hydrogen, or C₁-C₆alkyl; and R² is hydrogen, C₁-C₆ alkyl, phenyl, pyridyl, cyclopropyl, cyclopropylmethyl, cyclopentylmethyl, cyclopentylmethyl, 2-cyclopropylethyl, 2-cyclopentylethyl, benzyl, 2-pyridinylmethyl, 3-pyridinylmethyl, 4-pyridinylmethyl, 3 (2-pyridinyl) propyl, thienylmethyl, 2-morpholin 4-yl ethyl, 2-thiomorpholin-4-yl ethyl, -(CH₂)₁₋₃NH₂, -(CH₂)₁₋₃N(C₁-C₆alkyl)₂, -(CH₂)₁₋₃NHC₁-C₆alkyl, -(CH₂)₁₋₃CON(C₁-C₆alkyl, -(CH₂)₁₋₃CONHC₁-C₆alkyl, or -(CH₂)₁₋₃NHCOC₁-C₆alkyl.

- (currently amended) The compound of claim 1, wherein the compounds is
 - 1-[3-(4-Chloro-phenyl)-ureido]-cyclopropanecarboxylic acid (3-fluoro-2'-methanesulfonyl-biphenyl-4-yl)-amide;
- 1-[3-(5-Chloro pyridin 2-yl)-uroido] cyolopropanecarboxylic acid (3-fluoro 2' sulfamoyl-biphonyl-4-yl) amide;
- 2 [3 (5 Chloro-pyridin 2 yl) ureido] N-(3-fluoro 2' methanesulfonyl biphenyl 4-yl) 2-methyl-propionamide;
- 2-[3-(4-Chloro-phenyl)-ureido]-N-(3-fluoro-2'-sulfamoyl-biphenyl-4-yl)-2-methyl-propionamide;
- 4 [3 (4-Chlore-phonyl) ureide] tetrahydro-thiopyran 4 carboxylic acid (3-fluoro-2'-sulfamoyl-biphenyl-4-yl) amide;
- 1-[3-(4-Chloro-phenyl)-ureido]-cyclopropanecarboxylic acid (3-fluoro-2'-sulfamoyl-biphenyl-4-yl)-amide;

1-[3-(5-Chloro-pyridin-2-yl)-ureido]-cyclopropanecarboxylic acid (3-fluoro-2'-methanesulfonyl-biphenyl-4-yl)-amide;

4-[3 (4 Chloro-phonyl) uroido] tetrahydro-pyran 4 carboxylic acid (3-fluoro 2' sulfamoyl biphonyl 4-yl) amide;

Cl
1-[3-(4-chloro-phenyl)-ureido]-cyclopropanecarboxylic acid (3-fluoro-2'-methanesulfonyl-biphenyl-4-yl)-amide

CMP. I w Cl. 22