Hierarchical Agglomerative Clustering

HAC

Agglomerative Clustering

- Bottom up approach
- Starts with one cluster and individual node
- Ends with Head, single cluster and all the data items will be merged.

Dendrigrams – leaf Individual and Root one cluster.

Dendrograms

Example

	X	Y
P1	0.40	0.53
P2	0.22	0.38
P3	0.35	0.32
P4	0.26	0.19
P5	0.08	0.41
P6	0.45	0.30

- Use Single link &
- Euclidean distance

Calculate Euclidean distance, create the distance matrix.

Distance
$$[(x,y), (a,b)] = \sqrt{(x-a)^2 + (x-b)^2}$$

Distance (P1,P2)
$$\Rightarrow \sqrt{(0.40 - 0.22)^2 + (0.53 - 0.38)^2}$$

(0.40,0.53), (0.22,0.38) $= \sqrt{(0.18)^2 + (0.15)^2}$

$$=\sqrt{0.13}$$
 $+(0.13)$ $=\sqrt{0.0324+0.0225}$

$$= \sqrt{0.0324 + 0.0225}$$

 $= \sqrt{0.0549}$

Distance Matrix

The distance matrix is

	P1	P2	P3	P4	P5	P6
P1	0					
P2	0.23	0				
Р3	0.22	0.15	0			
P4	0.37	0.20	0.15	0		
P5	0.34	0.14	0.28	0.29	0	
P6	0.23	0.25	0_11	0.22	0.39	0

P3,p6

Next step? – new cluster or extend

Update Distance matrix

- Min[dis(p3,p6),p1] = min((p3,p1),(p6,p1)) = 0.22
- Min[dis(p3,p6),P2)] = 0.15
- Min[dis(p3,p6),p4)] = 0.15
- Min[id(p3,p6),P5)] = 0.28

The updated distance matrix for cluster P3, P6

	P1	P2	P3,P6	P4	P5
P1	0				
P2	0.23	0			
P3,P6	0.22	0.15	0		
P4	0.37	0.20	0.15	0	
P5	0.34	0.14	0.28	0.29	0

	P1	P2	P3,P6	P4	P5
P1	0				
P2	0.23	0			
P3,P6	0.22	0.15	0		
P4	0.37	0.20	0.15	0	
→ P5	0.34	0.14	0.28	0.29	0

Update Distance matrix

- Min[dist(p2,p5),p1)] = 0.23
- Min[dist(p2,p5),(P3,p6)] = 0.15
- Min[dist(p2,p5),p4)] = 0.20

Next link?

The updated distance matrix for cluster P2,P5

		P1	P2,P5	P3,P6	P4
•	P1	0			
	P2,P5	0.23	0		
	P3,P6	0.22	0.15	0	
	P4	0.37	0.20	0.15	0

New Cluster

Update Distance vector Matrix

- Min[dist(p2,p5),(p3,p6)),p1] = 0.22
- Min[dist(p2,p5),(p3,p6)),p4] = 0.15

Next Link?

	P1	P2,P5,P3,P6	P4
P1	0		
P2,P5,P3,P6	0.22	0	
P4	0.37	0.15	0

New cluster

- To update the distance matrix MIN[dist(P2,P5,P3,P6),P4].
- MIN[dist((P2,P5,P3,P6),P1), (P4,P1)]

$$= \min[(0.22, 0.37)]$$

$$= 0.22$$

	P1	P2,P5,P3,P6,P4
P1	0	
P2,P5,P3,P6,P4	0.22	0

https://www.youtube.com/watch?v=RdT7bhm 1M3E