

Cortex-M

离线编程器用户手册

适用产品

本编程器支持芯片型号如下:

系列	型号	系列	型号
HC32M140	HC32M140F8TA HC32M140J8TA HC32M140J8UA HC32M140KATA	HC32L15	HC32L150KATA HC32L150JATA HC32L150FAUA
HC32F146	HC32F146F8TA HC32F146J8TA HC32F146J8UA HC32F146KATA	1,002,210	HC32L156KATA HC32L156JATA
HC32F003 HC32F005	HC32F003C4UA HC32F003C4PA HC32F005C6UA HC32F005C6PA HC32F005D6UA	HC32L110	HC32L110C6UA HC32L110C6PA HC32L110B6PA HC32L110C4UA HC32L110C4PA HC32L110B4PA
HC32L13	HC32L136K8TA HC32L136J8TA HC32L130J8TA HC32L130F8UA HC32L130E8PA	HC32F030	HC32F030K8TA HC32F030J8TA HC32F030H8TA HC32F030F8TA HC32F030F8UA HC32F030E8PA
HC32F460	HC32F460JEUA HC32F460JETA HC32F460KEUA HC32F460KETA HC32F460PETB	HC32F17	HC32F176PATA HC32F176MATA HC32F176KATA HC32F176KATA HC32F176JATA HC32F170JATA HC32F170FAUA
HC32F07	HC32F072PATA HC32F072KATA HC32F072JATA	HC32L17	HC32L176PATA HC32L176MATA HC32L176KATA HC32L176JATA HC32L170JATA HC32L170FAUA

	HC32F196PCTA		HC32L196PCTA
	HC32F196MCTA		HC32L196MCTA
HC32F19	HC32F196KCTA	HC32L19	HC32L196KCTA
ПС32Г19	HC32F196JCTA	nC32L19	HC32L196JCTA
	HC32F190JCTA		HC32L190JCTA
	HC32F190FCUA		HC32L190FCUA
	HC32L072PATA		
	HC32L072KATA		
HC32L07	HC32L072JATA		
HC32L07	HC32L073PATA		
	HC32L073KATA		
	HC32L073JATA		

目 录

1.	简介		4
	1.1 栂	T. B. L.	4
	1.2 夕	卜 观及接口	5
	1.3	写线编程器功能	7
	1.3.1		7
	1.3.2	按键	9
	1.3.3	LED 指示灯	9
	1.3.4	XTAL 支持	10
	1.3.5	供电	10
	1.3.6	计数	
	1.3.7	安全	
	1.3.8	复位	
	1.3.9	滚码功能	
	1.3.10	片擦除/页擦除配置	
	1.3.11	Flash 写保护	
	1.3.12		
	•	ラ屏版本	
	1.4.1	界面切换	
_	1.4.2	图标说明	
2.		系统配置软件	
	•	区动安装	
		己置软件介绍	
		操作步骤	
	2.3.1	双击打开 ConfigTool.exe 软件	
	2.3.2	配置目标 MCU 型号	
	2.3.3	配置硬件环境	
	2.3.4	设置波特率	
	2.3.5	设置目标文件	
	2.3.6	设置擦除方式 设置复位	
	2.3.7 2.3.8	0 直 复 位	
	2.3.6	加密设置	
	2.3.10	配置文件名设置	
	2.3.10	设置滚码功能	
	2.3.12	编程时写选项字节	
	2.3.13	数据加密	
	2.3.14	确定	
3.		器软件及文件更新	
٠.		T件拷贝	
		5 代 5 分	
1	•		
		al गां	
		处理	
6.	版本信息	& 联系方式	34

1. 简介

1.1 概览

CM PGM(Cortex-M Programmer)是为华大半导体(HDSC)的 Cortex-M 系列 MCU 提供的一款离线编程器,支持华大半导体旗下所有的 Cortex-M 系列 MCU 产品。目的是为用户提供一款小巧便携、安全可靠、操作简单的小批量离线编程工具或设计方案,目前提供标准版和带屏版 2 个版本供用户选择。

CM PGM 离线编程系统如图 1 所示,离线编程器由配置软件 ConfigTool.exe 和 PGM 主板组成。

图 1 离线编程系统

配置软件(ConfigTool.exe)生成配置文件、PGM 主板代码文件。

USB 接口对 PGM 主板供电,用户通过 USB 向 PGM 拷贝入编程所需文件。

文件拷贝完成后,用户通过 PGM 主板的按键进行编程模式切换及启动编程功能。

离线编程器支持的功能如下:

- 1) 编程模式(UART/SWD)可选择
- 2) LED 灯或 OLED 屏(仅带屏版本支持)指示编程模式及编程状态
- 3) 配置工具包含以下可配置功能:
 - 一 目标芯片外部晶振及内部时钟可配置;
 - 一 计数功能;
 - 一目标芯片供电可选择功能;
 - 一 文件加密功能;
 - 一 目标芯片加密功能:

- 复位功能(部分系列支持);
- 滚码功能
- 一 片擦除/页擦除配置
- Flash 写保护(部分系列支持)
- 4) 多文件选择及编程状态显示(仅带屏版本支持)
- 5) 自升级
 - 通过按键实现主板固件自我升级。

1.2 外观及接口

离线编程器外观及功能部件如图 2 所示:

图 2 离线编程器外观

USB 接口采用标准 Type B 接口。

编程接口与目标 MCU 连接,接口分配如下图所示:

V11/V12:

RESET **SWCLK SWDIO** GND Vext

TXGND

MD

RX

Vext

MD: PGM主控板芯片模式引脚

RESET: 目标芯片复位

GND: 地 电源 Vext:

UART模式数据接收 RX: TX: UART模式数据发送 SWCLK: SWD模式时钟

SWDIO: SWD模式数据

V13:

RESET NCNC GND

Vext

MD RX/SWCLK TXSWDIO GND Vext

MD: PGM主控板芯片模式引脚

RESET: 目标芯片复位

GND: 地 Vext: 电源

RX: UART模式数据接收 UART模式数据发送 TX:

SWCLK: SWD模式时钟 SWDIO: SWD模式数据

图 3 编程接口引脚分配

1.3 离线编程器功能

1.3.1 编程模式

离线编程器支持两种编程模式: UART 编程模式和 SWD 编程模式。LED1 颜色指示当前编程模式,绿灯为 SWD 模式,橙色灯为 UART 模式。带屏版离线编程器同时在显示屏上显示当前编程模式,详情请参考带屏版本图标说明 1.4.2。

• HC32L15/HC32F14/HC32M14/HC32L13/HC32F03/HC32L17/HC32L19/HC32L07/HC32F0 7/HC32F19/HC32F17 系列芯片的接线方法如图 4 所示。

HC32L110/HC32F003/HC32F005 系列芯片没有 MD 引脚,其他引脚连线方法与图 4 相同。

图 4 部分系列连线方法 1

• HC32F460 系列芯片的接线方法如图 5 所示。

图 5 部分系列连线方法 2

• UART 模式下,不同系列芯片对应的引脚如表 1 所示。

表 1 UART 模式引脚说明

	HC32L15	HC32F14 HC32M14	HC32L110/HC32F003 /HC32F005 [©]	HC32L13 HC32F03	HC32F460	HC32L17 HC32L19 HC32F19 HC32F17	HC32F07 HC32L07
SINx	SIN0_0	SIN5_0	P36/P27	PA10	SWCLK	SWCLK	SWCLK
SOTx	SOT0_0	SOT5_0	P35/P31	PA09	SWDIO	SWDIO	SWDIO

注①:

- HC32L110/HC32F003/HC32F005 系列所有版本的芯片均支持 P36、P35 接口。支持两种接口的 HC32L110/HC32F003/HC32F005 系列芯片丝印根据封装有所不同: Tssop20 在批次号后空一格加 T, QFN 在 第二排后面空一格加 T。

1.3.2 按键

离线编程器两个版本按键定义不同。

1) 标准版:

KEY1 为编程模式按键,短按(约 0.5 秒)KEY1 使 PGM 主板在 UART 模式和 SWD 模式 之间切换。

KEY2 为启动编程按键,短按(约0.5秒)KEY2 启动一次编程功能。

注意:

一在剩余次数为0时和编程器正在编程时,按键均无效。

2) 带屏版:

KEY1 和 KEY2 在每个页面的功能由显示屏对应位置提示。

1.3.3 LED 指示灯

LED1 为编程模式指示灯,显示状态如表 2 所示:

表 2 LED1 状态

LED1 颜色	当前状态
绿色	SWD 编程模式
橙色	UART 编程模式

LED2 为编程状态指示灯,各种颜色表示状态如表 3 所示:

表 3 LED2 状态

绿色	红色	橙色	离线编程器状态
快闪①	灭	灭	正在编程
完	灭	灭	空闲/成功,无次数限制功能或者剩余次数 大于或等于50次
慢闪②	灭	灭	空闲且剩余次数小于 50 次
灭	快闪	灭	剩余次数为0
灭	灭	亮	编程失败,无次数限制功能或者剩余次数大 于或等于50次
灭	亮	慢闪	编程失败,剩余次数小于50次

注①:快闪,频率约 16Hz

注②:慢闪,频率1Hz

1.3.4 XTAL 支持

目标板可采用不同的外部晶振或者内部 RC 进行编程。带屏版编程器在编程页面显示当前配置时钟频率,详情请参考带屏版本图标说明 1.4.2。

各系列 MCU 支持 XTAL (外部晶振)设置范围如表 4 所示。

HC32L15	HC32F14 HC32M14	HC32L110 HC32F003 HC32F005	HC32L13 HC32F03	HC32F460	HC32L17 HC32L19 HC32F19 HC32F17	HC32F07 HC32L07	说明
0	0	0	0	0	0	0	使用目标 MCU 内部 RC
4~32	4~16	NA	NA	NA	NA	NA	使用目标 MCU 外部晶振, 且晶振频率为设置值(单位: MHz)

表 4 各系列 XTAL 设置

1.3.5 供电

目标 MCU 系统可以选择外部供电或者使用 PGM 主板供电。

➤ 配置供电功能,即 PGM 主板给目标芯片供电,带屏版编程器在编程页面显示当前供电配置,详情请参考带屏版本图标说明 1.4.2。

PGM 主板对目标板可以提供 3.3V, 最大 100mA 的供电。

▶ 未配置供电功能,则需目标芯片系统外部供电。

HC32L15/HC32F14/HC32M14/HC32L13/HC32F03/HC32F460/HC32L17/HC32L19/HC32L0 7/HC32F07/HC32F19/HC32F17 系列芯片需按 1.3.1 节的编程模式完成硬件连接后,再对目标芯片进行供电,UART模式编程时,第一次编程成功后,再次启动编程前,需要对目标芯片复位或者重新上电,时序图如下。

图 6 带 MD 引脚芯片外部供电时序图

HC32L110/HC32F003/HC32F005 系列芯片, UART 编程需满足以下时序。启动编程后,需要对目标芯片进行复位。

图 7 不带 MD 引脚芯片外部供电时序图

1.3.6 计数

限制编程次数可配置功能。可以配置是否使用计数功能,最大可配置次数为 5000 次。当编程器计数功能使能,且次数不足及次数为 0 时,LED2 会有如表 3 所示相应提示信息。带屏版编程器在显示屏显示当前计数信息,详情请参考带屏版本图标说明 1.4.2。

1.3.7 安全

提供文件加密和芯片加密等功能,详细说明如下:

- 1. 文件加密功能(所有系列支持) 使能后,离线编程系统配置软件 ConfigTool.exe 对目标二进制文件进行 AES(128 位、CBC 模式)加密。
- 芯片加密功能(HC32L15/HC32F14/HC32M14/HC32L13/HC32F03/HC32L110/HC32F003/HC32F005/HC32L17/HC32L19/HC32L07/HC32F07/HC32F19/HC32F17 系列支持)
 使目标芯片的 Flash 数据禁止被读出。操作成功后,目标芯片 SWD 接口被禁止无法再次连接,仅能通过 UART 模式再次编程。
- 3. 读保护 1(仅 HC32F460 系列支持) 使目标芯片的 Flash 数据禁止被读出。操作成功后,目标芯片 SWD 接口可再次连接,任何 方式都无法读取 Flash 内数据。但可以通过设置密钥进行解密使芯片退出 Flash 读保护状态。
- 4. 读保护 2(仅 HC32F460 系列支持) 使目标芯片的 Flash 数据禁止被读出。操作成功后,目标芯片 SWD 接口可再次连接,任何 方式都无法读取 Flash 内数据。仅能通过片擦除操作后再次编程。
- 5. 数据加密功能(仅 HC32F460 系列支持)

防止目标芯片 Flash 数据被物理盗取,可以按扇区使能配置。操作成功后,目标芯片被保护扇区内数据通过物理方式读取的数据为密文数据。

带屏版编程器在编程页面显示当前文件加密及芯片加密配置情况,详情请参考带屏版本图标说明 1.4.2。

1.3.8 复位

可以配置编程成功后,是否对目标 MCU 进行复位。带屏版编程器在编程页面显示当前复位配置情况,详情请参考带屏版本图标说明 1.4.2。

注意:

- UART 模式下的复位功能无效。

1.3.9 滚码功能

提供滚码功能。可以设置初始滚码值,设置滚码步长。带屏版编程器在编程界面显示当前的滚码值,详情请参考带屏版本图标说明 1.4.2。

1.3.10 片擦除/页擦除配置

可以在界面选择编程前进行擦除的方式。选择片擦除时,采用全片擦除方式,选择页擦除时,编程器根据所编程的文件大小擦除相应区域。

注意:

- 如果同时使能滚码功能和页擦除功能,且滚码地址在代码文件地址范围外则可能会编程失败。

1.3.11 Flash 写保护

HC32L110/HC32F003/HC32F005/HC32L13/HC32F03 系列支持 flash 写保护功能设置。设置并编程成功后,下一次代码运行时所保护区域不能被擦写。

以上 1.3.4 至 1.3.11 为离线编程器的可配置功能,其详细配置方法见 2.3 节详细配置步骤。

1.3.12 固件自升级

提供 CM PGM 主板固件升级功能。

如需更新 CM PGM 主板代码,可通过 PGM 按键进入主板代码升级界面实现主板固件的自我更新。带屏板编程器界面会显示升级界面,升级成功后显示界面自动跳转到开机界面。

1.4 带屏版本

1.4.1 界面切换

1.4.2 图标说明

除开机页面,屏幕右上角图标表示编程器状态如表 5 所示。

表 5 带屏版状态图标

+	""表示未使能下载次数限制功能;	
或 +- 999	数字表示本编程器剩余下载次数。	
SIU	"S"表示当前选择 SWD 编程模式;	
11-11 或[1-1]	"U"表示当前选择 UART 编程模式	
SN:	""表示未使能滚码功能;	
SN:0000005000	数字表示当前滚码值。	

编程页面屏幕左上角图标表示当前选择配置文件的配置信息如表 6 所示。

表 6 带屏版配置信息图标

8M _等	表示选择时钟频率
<u> </u>	表示芯片加密功能使能
	表示目标二进制文件已进行 AES 加密
Ÿ	表示目标板供电功能使能
R	表示目标板复位功能使能

2. 离线编程系统配置软件

2.1 驱动安装

运行本软件需要 Microsoft.NET Framework v3.5, 如果没有安装 Framework 3.5 将出现如下错误或者软件无法运行,如图:

图 8 无法运行

请确认"C:\Windows\Microsoft.NET\Framework"是否存在 Framework 3.5, 如下图:

图 9 Framework 3.5

如果操作系统未安装,请去 Microsoft 官网进行下载,选择相应的版本进行下载,如下:

Microsoft .NFT Framework 3.5

图 10 Framework 3.5 下载

2.2 配置软件介绍

本软件根目录为(EXE)HDSC Programmer Config Tool_VX.X, 文件夹内容如图 11 所示。其中 ConfigTool.exe 是可执行文件, Config 文件夹包含本软件的配置文件, PGMFile 文件夹中是 CM PGM 固件, RamCode 文件夹里存放目标芯片的 RamCode, User Data 存放该配置软件生成的用户文件。

图 11 配置软件目录结构

用户运行完 ConfigTool.exe 后,文件夹 User Data 中可能生成文件如表 7 所示。

表 7 生成文件

文件名	描述		
PGMKEY.bin	转换后的 PGM 代码文件		
***. config	配置文件,包含编程配置信息以及目标 MCU 二进制文件信息		

双击"ConfigTool.exe"打开软件,软件界面如图 12 所示:

图 12 软件界面

芯片名称:设置目标 MCU 型号。

XTAL: 配置目标 MCU 外部晶振频率或内部高速时钟。

波特率: 配置 PGM 板与目标板的 UART 通信波特率。

计数:设置编程次数功能。

文件加密: 配置目标文件加密功能,如使能加密功能则需要设置密钥。

密钥:输入文件加密的密钥。

芯片加密: 配置目标芯片加密功能。

供电:选择是否让PGM 板对目标板进行供电。

片擦除/页擦除:编程时 Flash 擦除方式配置。

复位:选择编程成功后是否让目标 MCU 复位。

目标 Hex 文件:选择需要对目标板进行编程的文件。

MCU 信息:显示当前选择的 MCU 信息。

滚码功能:配置目标芯片滚码功能。

选项字节设置/编程时写选项字节: 特殊字节写功能,目前有某些系列的 Flash 写保护功能。

带屏版及配置文件名: 当使用带屏版离线编程器时,需要生成指定文件名的配置文件时的可选择功能。

2.3 操作步骤

以下为配置软件操作步骤,其中2.3.1至2.3.5为必要步骤,2.3.6至2.3.13为可选配置步骤。

2.3.1 双击打开 ConfigTool.exe 软件

2.3.2 配置目标 MCU 型号

如选择 MCU 型号 HC32L15XXA, 右边 MCU 信息栏出现所选 MCU 信息,如图 13 所示。

图 13 选择芯片型号

2.3.3 配置硬件环境

HC32L15/HC32F14/HC32M14 系列根据目标板环境设置 XTAL(外部晶振)频率,如选择内部 RC(芯片内部时钟),XTAL 填 0,此样例中目标 MCU 使用 24M 外部晶振,此处填 24,如图 14 所示。

HC32L110/HC32F003/HC32F005/HC32L13/HC32F03/HC32L17/HC32L19/HC32F07/HC32F19/HC32F17 系列设置 XTAL 为 0M,与硬件环境无关。

设置目标板是否使用 PGM 主板的供电,此样例选择 PGM 主板供电。

图 14 配置硬件环境

2.3.4 设置波特率

设置通信波特率,此样例中设置为256000。

图 15 波特率设置

2.3.5 设置目标文件

选择需要对目标 MCU 编程的文件,目标文件支持的格式有.srec、hex 和 bin。

图 16 设置目标 Hex 文件

2.3.6 设置擦除方式

软件默认选择片擦除方式,如编程时仅需要擦除代码所在区域则选择页擦除方式。

图 17 擦除方式设置

2.3.7 设置复位

如果编程成功后需要将目标板复位,则选择复位复选框,此样例使能复位功能。

图 18 复位功能设置

2.3.8 设置计数功能

如需次数限制功能,则选中"计数 (Dec)"复选框,并且设置一个小于等于 5000 的次数。

图 19 计数功能设置

2.3.9 加密设置

如果需要加密功能,则选中"文件加密"复选框,同时设置密钥。

选择"文件加密"功能后,"芯片加密"自动使能。

注意:

- 一 芯片加密后的芯片,如果需要再次编程,必须使用 UART 模式。
- 一 密钥支持长度 1~16 范围内的 ASCII 码字符串。

图 20 加密设置

2.3.10 配置文件名设置

如果使用带屏版的离线编程器,则选择"带屏版"复选框,并且在"配置文件名"文本框中输入需要生成的配置文件名。

图 21 配置文件名设置

2.3.11 设置滚码功能

如果需要设置滚码功能,则选中"滚码功能"复选框,同时设置滚码参数。滚码参数包括滚码地址,滚码初始值,滚码步长,以分号隔开。这里设置的滚码地址为0x00,滚码步长为50,滚码初始值为3。

图 22 配置滚码功能

注意:

- 一 使用滚码功能时,仅限于一个配置文件。
- 滚码参数中地址需为十六进制,步长可以有正负,滚码初始值为无符号数,范围 (0~4294967295)。

2.3.12 编程时写选项字节

如选择 HC32L110/HC32F003/HC32F005/HC32L13/HC32F03 系列芯片,则可以配置 Flash 写保护功能。选择"编程时写选项字节"点击按钮"选项字节设置"设置需要写保护的区域。

图 23 写保护功能设置

2.3.13 数据加密

如选择 HC32F460 系列芯片,则可以配置数据加密功能。选择"数据加密"点击按钮"数据加密设置"设置需要数据加密的区域。

2.3.14 确定

按照需要配置好各项功能后,点击"确定"按钮。 完成后,User Data 文件夹中会生成用户文件如下。

1) 未设置配置文件名

生成两个文件: PGMKEY.bin pgm.config

2) 设置了配置文件名

生成两个文件: PGMKEY.bin

configfilename1.config

3. 离线编程器软件及文件更新

按照 2.3 节步骤生成用户文件后,将生成的配置文件和 PGM 主板代码文件拷贝至离线编程器中,然后更新 PGM。

3.1 文件拷贝

通过 USB 连接 PGM 与电脑,在电脑端识别到 U 盘设备后,拷贝文件步骤如下:

- 1) 格式化 U 盘
- 2) 拷贝 PGMKEY.bin 和***.config 到 U 盘中,标准版编程器拷贝文件如图 24 所示。带屏版可拷贝多个配置文件到 U 盘中,如图 25 所示。

图 24 标准版拷贝文件

图 25 带屏版拷贝文件

注意:

一 当拷贝多个配置文件到带屏版本离线编程器时,只有无需升级 PGM 固件时,多个配置文件 才均能正常运行。

3.2 离线编程器主板固件升级

以下情况必须对 CM PGM 进行固件升级:

- 选择计数功能。
- 选择加密功能或密钥更改。
- 编程器本身设置为带计数功能,但此次需要配置为不带计数功能。

PGM 主板固件升级步骤如下:

- 1) 同时按下 KEY1 和 KEY2 按键;
- 2) 给 PGM 上电,标准版编程器的 LED1 和 LED2 均为绿色,带屏版编程器屏幕显示如图 26 所示:

图 26 离线编程器升级界面 1

3) 同时短按 KEY1 和 KEY2 按键, 离线编程器开始升级主板固件, 此时, LED1 灯为绿色常 亮, LED2 灯绿色快闪, 带屏版离线编程器屏幕显示如图 27 所示:

图 27 离线编程器升级界面 2

注意:

一升级之前应确保离线编程器中已拷贝 PGMKEY.bin 和对应的***.config 文件,如遇异常情况,请重复升级步骤。

4) 升级成功后直接运行 PGM 代码。带屏版离线编程器屏幕跳转到开机界面,如图 28 所示:

图 28 离线编程器开机界面

升级过程中, LED1 和 LED2 灯颜色状态如表 8 所示:

表 8 LED 指示灯状态

LED1	LED2	当前状态	
绿色	绿色	UDISK,进入升级模式	
绿色	灭	从 UDISK 状态切换到 Upgrading 状态	
绿色	绿色快闪	Upgrading,开始升级	
绿色	红色快闪	升级失败,或无 PGMKEY.bin 文件	
绿色/橙色	绿色	开机界面,升级成功(LED1 颜色显示当前编程模式,详情如表 2 所示)	

4. 操作流程

以对芯片 HC32L15XXX 编程/Flash 读为例, CM PGM 离线编程系统总体使用流程如下:

1) 软件配置

打开配置软件 ConfigTool.exe, 按照 2.3 节的详细步骤配置编程环境生成文件。完成后 User Data 文件夹中生成 PGMKEY.bin 和 ***.config 文件。

2) 文件拷贝

通过 CM PGM 的 USB 接口与电脑相连接。若电脑未识别 U 盘,请参考 3.2 节步骤使电脑 识别到 U 盘。

3) 准备硬件连接

请参考 1.3.1 章节,连接目标 MCU,如需外部供电则连接外部供电。

4) 切换编程模式

根据表 2 内容或者带屏版显示屏信息查看当前编程模式并选择。

5) 启动编程或 Flash 读。

标准版短按编程键启动编程,根据表 3 内容查看编程状态和编程结果。

带屏版通过菜单选择编程文件或者读 Flash 并且通过菜单提示启动,根据表 3 内容或者屏幕显示查看编程状态和编程结果。

Flash 读的数据保存为 read.bin 文件,需要重新连接编程器后通过 PC 端获取。

5. 常见错误处理

离线编程器出现故障时,可参照表 9 方法进行处理,如果仍然无法排除故障,请与代理商或者 厂家联系。

表 9 常见错误处理

编号	错误类型	原因	解决方法
1	上电后离线编程器 LED1 不亮	硬件损坏	建议返厂
2	上电后 U 盘不显示, LED1 绿色,LED2 不亮	离线编程器 bootloader 代码损坏	建议返厂
3	上电后 U 盘不显示, LED1 绿色,LED2 呈红 色快闪	PGM 无固件代码	按照 3.2 节步骤升级固件代码
4	同时接下 KEY1, KEY2, 上电后无法识 别 U 盘	bootloader 代码损坏	建议返厂
5	无屏版,KEY1 可以切换编程模式,KEY2 无反应	无 pgm.config 文件	拷贝 pgm.config 文件至 U 盘中
6	升级失败	无 PGMKEY.bin 文件或 PGMKEY.bin 文件损坏	检查 PGMKEY.bin 文件正确 性
7	编程失败	硬件连接错误配置信息错误目标芯片损坏	• 检查接线方式与编程模式是否匹配 • 检查目标芯片与配置信息是否匹配 • 检查晶振是否匹配 • 检查编程次数是否为 0 • 升级当前 config 文件对应的固件代码(PGMKEY.bin) • 同时使能滚码功能和页擦除功能,且滚码地址在代码文件地址范围外。
8	带屏版,屏幕不显示或 显示不全	硬件问题	建议返厂

6. 版本信息 & 联系方式

日期	版本	修改记录
2017-11-10	Rev1.0	Cortex-M 离线编程器用户手册初版发布。
2018-3-20	Rev2.1	增加对 HC32F003/HC32F005 系列的支持;配合软件版本,手册版本号升为 Rev2.1。
2018-4-10	Rev2.2	增加滚码功能,增加目标芯片外部供电时序说明。
2018-5-3	Rev2.3	增加支持芯片型号,增加 Flash 读功能说明,增加擦除方式 配置说明,增加写选项字节配置说明。
2018-6-25	Rev2.4	增加支持芯片 HC32F030/HC32F036 系列, 更新 HC32L15 系列的型号, 修改 framework 版本。
2019-3-1	Rev2.5	增加对芯片 HC32F460 系列的支持。
2019-6-25	Rev2.6	更新支持芯片型号。 增加对硬件版本 V1.3 的支持。 增加对 HC32L110/HC32F003/HC32F005 新版 bootloader 的 支持。

如果您在购买与使用过程中有任何意见或建议,请随时与我们联系。

Email: mcu@hdsc.com.cn

网址: http://www.hdsc.com.cn/mcu.htm

通信地址:上海市张江高科园区碧波路 572 弄 39 号

邮编: 201203

