Algebra Notes

Camila Restrepo

Last updated February 27, 2024

 $\it Note:$ Theorem numbers come from the order they are presented in lecture, and do not correspond to any textbook or written course material.

Introduction to Groups

1.1 What is a group?

Definition of a group:

A **group** G is a nonempty set together with a multiplication $G \times G \to G$ satisfying

- 1. $(ab)c = a(bc) \forall a, b, c \in G$, (Associativity)
- 2. there exists $e \in G$ such that $ea = ae = a \forall a \in G$, (Identity)
- 3. and for every $a \in G$ there exists $b \in G$ such that ab = ba = e. (Inverse)

Example of a group:

Let $\mathbb{R}^{\times} = \mathbb{R}^{\dagger} = \{a \in \mathbb{R} : a \neq 0\}$ together with multiplication on \mathbb{R} .

Associativity is immediate.

The identity is $1 \in \mathbb{R}^{\times}$.

For every $a \in \mathbb{R}^{\times}$, $\frac{1}{a} \in \mathbb{R}$ and $a(\frac{1}{a}) = \frac{1}{a}(a) = 1$.

So \mathbb{R}^{\times} is a group.

Remark: When we need to highlight the group multiplication we write a group as a pair of the set and the multiplication, e.g., $(\mathbb{R}, +), (\mathbb{R}, \cdot)$. From now on, G is **always** a group.

Theorem 1.1

There is a unique identity element in G.

Theorem 1.2 Cancellation

Suppose ba = ca for $a, b, c \in G$. Then b = c

Proof. Let $d \in G$ be an inverse for a, i.e. da = ad = e. Multiplying on the right by d, we obtain

$$(ba)d = (ca)d \implies b(ad) = c(ad)$$

 $\implies be = ce$
 $\implies b = c.$

Theorem 1.3 Uniqueness of Inverses

For every $a \in G$ there is a unique element $a^{-1} \in G$ such that $aa^{-1} = a^{-1}a = e$.

Proof. Suppose $a \in G$ and $b, b' \in G$ are inverses of a, then

$$ba = e = b'a \implies b = b'$$

Example of inverses in different groups:

- 1. For $b \in \mathbb{R}^{\times}$, $b^{-1} = \frac{1}{b}$.
 - 2. For $b \in \mathbb{R}$ under addition $b^{-1} = -b$.
 - 3. For $b \in \mathbb{Z}_n$, $b^{-1} = n b$.

Example of groups using a field F:

- 1. (F, +) is a group (Imitate $(\mathbb{R}, +)$).
 - 2. (F^{\times}, \cdot) where $F^{\times} = F^{\dagger} = \{a \in F : a \neq 0\}$ is a group. In particular, if p is a prime number, then $\mathbb{Z}_p^{\times} = \{1, \dots, p-1\}$ is a group.
 - 3. The set of $m \times n$ matrices with entries in F, $M_{mn}(F)$ is a group under addition. When n = 1, $M_{m1}(F) = F^m$.
 - 4. The set of invertible $m \times n$ matrices with entries in F, $GL(n, F) = \{A \in M_{mn}(F) : \det(A) \neq 0\}$ together with matrix multiplication is called (rank n) **general linear group** (over F). The identity matrix $I \in GL(n, F)$ is the identity. $\det(A) \neq 0 \implies \exists A^{-1} \in GL(n, F)$ such that $AA^{-1} = A^{-1}A = I$.

Example of the symmetries of the equilateral triangle:

Let $\sigma =$ flip through the vertical axis. Let $\rho =$ rotation by $\frac{2\pi}{3}$.

We can compose two symmetries, e.g., $\sigma \rho = \sigma \cdot \rho$.

We can show that the symmetries given by σ and ρ under composition are $\{e, \rho, \rho^2, \sigma, \sigma\rho, \sigma\rho^2\}$ where e = doing nothing.

We call this set D_3 . It forms a group under composition. Clearly $\rho^3 = \rho \rho \rho = e$, $\sigma^2 = \sigma \sigma = e$, and $\sigma \rho \sigma = \rho^2 = \rho^{-1}$.

Definition of a dihedral group:

The **dihedral group** of order 2n is defined by

$$D_n = \left\{ e, \rho, \dots, \rho^{n-1}, \sigma, \sigma\rho, \dots, \sigma\rho^{n-1} \right\}$$

where $p^n=e,\ \sigma^2=e,\ {\rm and}\ \sigma\rho\sigma=\rho^{-1}.$ This is a group with the multiplication given by $\sigma\rho\sigma=\rho^{-1}.$

Remark: D_n is the group of symmetries of a regular n-gon.

Definition of an Abelian Group:

A group G is abelian (commutative) if ab = ba for all $a, b \in G$

Example of classifying groups:

- 1. (F, +) where F is a field is Abelian.
- 2. (F^{\times}, \cdot) where F is a field is Abelian.
- 3. $(M_{mn}(F), +)$ is Abelian.
- 4. $(GL(n,F),\cdot)$ is not Abelian.
- 5. D_n is not Abelian.

Definition of the group of units:

Let $n \ge 2$ and $U(n) = \{1 \le k \le n - 1 : \gcd(k, n) = 1\}$. U(n) is called the **group of units** of \mathbb{Z}_n

Recall Facts about $d = \gcd(a, b)$:.

- 1. $d \mid a$ and $d \mid b$, and d is the largest integer with this property
- 2. There exists $l, m \in \mathbb{Z}$ such that gcd(a, b) = la + mb
- 3. gcd(a, b) is the smallest positive \mathbb{Z} -linear combination of a and b.
- 4. If $f \mid a$ and $f \mid b$ then f divides $\gcd(a,b) = la + mb \implies f \mid d$

5

Example of U(n) together with multiplication $mod\ n$ is a group: Facts 2 and 3 tell us that $\gcd(k,n)=1 \iff \exists l,m\in\mathbb{Z}$ such that lk+mn=1. So $U(2)=\{1\}$, $U(3)=\{1,2\}$, $U(4)=\{1,3\}$, $U(5)=\{1,2,3,4\}$, etc. So $U(p)=\{1,\ldots,p-1\}=\mathbb{Z}_p^\times$ where p is prime.

Definition of exponentiation:

Suppose $g \in G$.

- 1. $g^0 = e$
- 2. $g^n = g \cdot \cdots \cdot g \ (n \text{ times})$
- 3. $q^{-n} = (q^{-1})^n$

Theorem 1.4 Socks and Shoes

Suppose $a, b \in G$. Then $(ab)^{-1} = b^{-1}a^{-1}$ (only relevant for non-abelian groups)

Proof.

$$(ab)(b^{-1}a^{-1}) = aea^{-1} = aa^{-1} = e$$

 $(b^{-1}a^{-1})(ab) = b^{-1}eb = b^{-1}b = e$

Definition of the order of a group and its elements:

The number of elements in G is called the **order** of G. Suppose $a \in G$. Then the **order of a** is the largest positive integer n such that $a^n = e$. If no such integer exists, we say a has **infinite order**. We denote the order of a by |a|.

Example of the order of $\{e\}$:

We know
$$|\{e\}| = 1$$
, and $e^1 = e \implies |e| = 1$

Example of the order of \mathbb{R}^{\times} :

 \mathbb{R}^{\times} is an infinite group so it has infinite order.

Obviously, |1| = 1.

$$|-1| = 2$$
 since $(-1)^2 = 1$ and $(-1)^1 \neq 1$.

All other real numbers in \mathbb{R}^{\times} have infinite order.

Example of the order of D_3 :

$$|D_3| = 6.$$

 $|\sigma| = 2, |\rho| = 3, |\rho^2| = 3, |\sigma\rho| = 2, |\sigma\rho^2| = 2.$

1.2 Subgroups and subgroup tests

Definition of a subgroup:

A **subgroup** of G is a subset $H \subseteq G$ which is a group under the same group multiplication as G.

Example of subgroups:

•

1. $\{\pm 1\} \subseteq \mathbb{R}^{\times}$ is a subgroup

2. $\mathbb{Z}_5 \subseteq \mathbb{Z}$ is not a subgroup of \mathbb{Z} since they have different group multiplications

Theorem 1.5 2-step subgroup test

Suppose H is a non-empty subset of G. Then H is a subgroup of G if and only if:

- 1. $a, b \in H \implies ab \in H$ (closure under multiplication)
- 2. $a \in H \implies a^{-1} \in H$ (closure under inverse)

Theorem 1.6 1-test subgroup test

 $\emptyset \neq H \subseteq G$ is a subgroup $\iff a, b \in H \implies ab^{-1} \in H$

Proof. The forward direction is immediate.

" \Leftarrow " Suppose 1 and 2 hold. 1 tells us that the group multiplication on G restricts to a multiplication on H. The associativity of this multiplication on H is inherited from the associativity of the group multiplication on G.

By 1 and 2, for any $a \in H$, $a^{-1}inH$ and $e = aa^{-1} \in H$. Therefore $e \in H$.

Finally, 2 is the inverse axiom for H.

Example of showing subgroup-ness:

Let
$$\mu_4 = \{ a \in \mathbb{C}^\times : a^4 = 1 \} = \{1, -1, i, -i \}.$$

 $\mu_4 \neq \emptyset.$

$$a, b \in \mu_4 \implies (ab)^4 = a^4b^4 = (1)(1) = 1 \implies ab \in \mu_4$$

 $a \in \mu_4 \implies (a^{-1})^4 = a^{-4} = (a^4)^{-1} = 1^{-1} = 1 \implies a^{-1} \in \mu_4$

Theorem 1.7 Finite subgroup test

Suppose $H \neq \emptyset$ is a finite subset $H \subseteq G$. Then H is a subgroup \iff $a, b \in H \implies ab \in H$.

Proof. "⇒ " Follows from 2-step subgroup test.

" ⇐ " By the 2-step subgroup test it is enough to show that if $a, b \in H \implies ab \in H$ then $b \in H \implies b^{-1} \in H$ also holds. Suppose $a, b \in H \implies ab \in H$ (*). Suppose $e \neq b \in H$. Let's prove $b^{-1} \in H$ By (*), $b^2 = bb \in H$, and by induction, $b^n \in H$ for all $n \geq 1$. Since H is a finite set, $b^k = b^j$ for some $k > j \geq 1 \implies b^k b^{-j} = b^j b^{-k} = e \implies b^{k-j} = e$ for $k - j \geq 1$. So $b^{-1} = b^{k-j-1}$. k - j - 1 cannot be zero, since then b = e. So $k - j - 1 \geq 1$ and so $b^{-1} = b^{k-j-1} \in H$. If $b = e \in H$, then its inverse (itself) is obviously also in H.

Example of a finite subgroup:

Consider $\{1, i, -1, -i\} \subseteq \mathbb{C}^{\times}$. By the finite subgroup test, it suffices to show that $\{1, i, -1, -i\}$ is closed under multiplication to prove that it is a subgroup. This can be done by brute force.

Cyclic Subgroups

Definition of a cyclic group:

A group G is called **cyclic** if there is an element $a \in G$ such that $G = \{a^j : j \in \mathbb{Z}\}$. a is called a **generator** of G. We indicate that G is a cyclic group generated by a with the notation $G = \langle a \rangle$.

Theorem 2.1

Suppose $a \in G$. Then $\langle a \rangle$ is a subgroup of G.

Proof. Suppose $a^m, a^n \in \langle a \rangle$ where $m, n \in \mathbb{Z}$. Then $a^m a^n = a^{m+n} \in \langle a \rangle$ since $m+n \in \mathbb{Z}$. Also $a^{-m} \in \langle a \rangle$ for all m since $-m \in \mathbb{Z}$, and $a^m a^{-m} = a^0 = e = a^0 = a^{-m} a^m$. By the 2-step subgroup test $\langle a \rangle$ is a subgroup.

Definition of a cyclic subgroup:

The subgroup $\langle a \rangle \subseteq G$ is called the **cyclic subgroup** generated by $a \in G$.

Example of generators:

Take $G = \mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$ together with addition mod 6. $\mathbb{Z}_6 = \langle 1 \rangle$ since $n(1) = n \mod 6$. Note that we also have $\mathbb{Z}_6 = \langle 5 \rangle$.

Remark: In general, \mathbb{Z}_n is cyclic and generated by $\langle -1 \rangle$. All finite cyclic are isomorphic to \mathbb{Z}_n for some n.

Remark: For $a \in G$, $\langle a \rangle = \langle a^{-1} \rangle$.

Example of the integers:

Take $G = \mathbb{Z}$.

$$\langle 1 \rangle = \{ j1 : j \in \mathbb{Z} \} = \mathbb{Z}.$$

$$\langle 2 \rangle = \{j2 : j \in \mathbb{Z}\} = \text{even numbers} \subset \mathbb{Z}.$$

$$\langle m \rangle = \{jm : j \in \mathbb{Z}\} = \text{integers divisible by } m \text{ for } m \neq 0.$$

$$\langle 0 \rangle = \{0\}.$$

Remark: Infinite cyclic groups are all isomorphic to \mathbb{Z} .

Definition of the centre of a group:

The **centre** of G is the subset

$$Z(G) = \{ x \in G : xa = ax \forall a \in G \}$$

i.e., the elements that commute with everything in G.

Theorem 2.2

Z(G) is a subgroup of G.

Proof. Suppose $x,y\in Z(G)$ and $a\in G$. Then (xy)a=x(ya)=xay=axy=a(xy). Therefore $xy\in Z(G)$. Moreover, $xa=ax\implies x^{-1}xa=x^{-1}ax\implies a=x^{-1}ax\implies ax^{-1}=x^{-1}axx^{-1}\implies ax^{-1}=x^{-1}a\implies x^{-1}\in Z(G)$. By the 2-step subgroup test, Z(G) is a subgroup of G.

Remark: 1. G is abelian $\iff Z(G) = G$

- 2. Z(G) is abelian (even when G is not)
- 3. $Z(D_3) = \{e\}$ (brute force)
- 4. $x \in Z(G) \iff xax^{-1} = a$ for all $a \in G \iff axa^{-1} = x$ for all $a \in G$

Example of a non-trivial center:

$$Z(GL(2,\mathbb{R})) = \left\{ \begin{bmatrix} a & 0 \\ 0 & a \end{bmatrix} : a \in \mathbb{R}^{\times} \right\}$$

Definition of the centralizer:

Fix $b \in G$. The **centralizer** of b in G is

$$C_G(b) = C(b) = \{a \in G : ab = ba\}$$
$$= \{a \in G : aba^{-1} = b\}$$

Theorem 2.3

For any $b \in G$, $C_G(b)$ is a subgroup.

Proof. Subgroup test.

Remark: 1. $C_G(e) = G$

2.
$$C_G(b) = G \iff b \in Z(G)$$

3.
$$e \in C_G(b), \langle b \rangle \subseteq C_G(b)$$

Example of a centralizer:

$$C_{GL(2,\mathbb{R})}\left(\begin{bmatrix}1&0\\0&-1\end{bmatrix}\right) = \left\{\begin{bmatrix}a&0\\0&b\end{bmatrix}: a,b\in\mathbb{R}^{\times}\right\}$$

Recall: G is cyclic if $G = \langle a \rangle = \{a^j : j \in \mathbb{Z}\}$ for some $a \in G$.

Theorem 2.4

Suppose $a \in G$. Then

1. If
$$|a| = \infty$$
, then $a^k = a^j \iff j = k$

2. If
$$|a| = n$$
, then $a^k = a^j \iff n$ divides $k - i$

- *Proof.* 1. Suppose $|a| = \infty$. This means $a^n \neq e$ for any $n \geq 1$. Suppose now $a^k = a^j$ with $k \geq j$. Then $a^k a^{-j} = aja^{-j} = e \implies a^{k-j}$ for $k-j \geq 0$. Since $a^n \neq e \forall n \geq 1$, we have $k-j=0 \implies k=j$.
 - 2. Suppose |a|=n. This means $a^n=e$ and n is the least positive number satisfying this equation. Suppose $a^k=a^j$ with $k\geq j$. Then $a^{k-j}=e$ where $k-j\geq 0$. By definition of $n,\ n\leq k-j$. By the division algorithm, k-j=qn+r where $q,r\in\mathbb{Z}$ are unique and $0\leq r\leq n-1$.

 $e = a^{k-j} = a^{qn+r} = a^{qn}a^r = (a^n)^q a^r = e^q a^r = ea^r = a^r$, so r = 0 by the minimality of n, and so $k - j = qn \implies \frac{k-j}{n} = q \in Z \implies n$ divides k - j.

Conversely if qn = k - j, then $a^{k-j} = (a^n)^q = e^q = e \implies a^k = a^j$.

Remark: In part 2., n divides $k-j \iff (k-j) \mod n = 0 \iff k \mod n = j \mod n$

Corollary 2.5

Suppose |a| = n. Then $a^k = e$ for some $k \in \mathbb{Z} \iff$ k is a multiple of |a|

Proof. Suppose $a^k = e$. Then $a^k = a^0$, so n divides k - 0 = k.

Corollary 2.6

Suppose $a \in G$. Then

- 1. If |a| = n then $\langle a \rangle = \{e, a^1, a^2, \dots, a^{n-1}\}$ and $|\langle a \rangle| = |a|$.
- 2. If $|a| = \infty$, then $\langle a \rangle$ is infinite and $|\langle a \rangle| = |a| = \infty$

Proof. Didn't take notes for this one.

Corollary 2.7

Suppose G is a finite group and $a, b \in G$. Then

- 1. |a|, |b| are finite
- 2. If ab = ba then |ab| divides |a||b|

Proof. 1. Suppose by way of contradiction that |a| is infinite. Then $\langle a \rangle \subseteq G$ is infinite. But G is finite so $|\langle a \rangle| \leq |G|$ is a contradiction.

$$2. \ (ab)^{|a||b|} = a^{|a||b|}b^{|a||b|} = (a^{|a|})^{|b|}(b^{|b|})^{|a|} = e^{|b|}e^{|a|} = e$$

2 examples omitted. Sorry, I'm prepping for my tutorial later!

Theorem 2.8

Suppose $a \in G$ and |a| = n. Then for any $k \ge 1$, $\langle a^k \rangle = \langle a^{\gcd(n,k)} \rangle$ and $\left| a^k \right| = \frac{n}{\gcd(n,k)}$

Theorem 2.9 Fundamental Theorem of Cyclic Groups

Suppose $G = \langle a \rangle$ is cyclic and |G| = n. Then

- 1. Every subgroup H is cyclic and k = |H| divides n = |G|, i.e., k is a divisor of n
- 2. For every divisor k of n, there is a unique subgroup of G of order k and it is equal to $\langle a^{\frac{n}{k}} \rangle$
- Proof. 1. Suppose H is a subgroup of G and $H \neq \langle e \rangle$. Let $m \geq 1$ be the least power of a such that $a^m \in H$. Since H is closed under multiplication and inversion, $\langle a^m \rangle \subseteq H$. Suppose $a^j \in H$. By the division algorithm, j = qm + r with $0 \leq r \leq m \implies a^j = (a^m)^q a^r \implies a^j (a^m)^{-q} = a^r$, so since $a^j, (a^m)^{-q} \in H$, $a^r \in H \implies r = 0$ by the minimality of m.
 - 2. Suppose k divides n, i.e. $\frac{n}{k}$ is an integer. Recall that $\left|\langle a^{\frac{n}{k}}\rangle\right| = \left|a^{\frac{n}{k}}\right| = k$. It follows that $\left|\langle a^{\frac{n}{k}}\rangle\right| = k$.

Suppose $H \subseteq \langle a \rangle$ is a subgroup and |H| = k. By part 1, $H = a^m$ for some $m \ge 1$. By Theorem 2.8, $k = |H| = |\langle a^m \rangle| = |a^m| = \frac{n}{\gcd(m,n)} \implies \gcd(m,n) = \frac{n}{k}$.

By Theorem 2.8 again, $H=\langle a^m\rangle=\langle a^{\gcd(m,n)}\rangle=\langle a^{\frac{n}{k}}\rangle.$

Example of the subgroups of \mathbb{Z}_{12} :

The divisors of n=12 are 1,2,3,4,6,12

- k = 1: $\langle 0 \rangle$
- k = 2: $\langle 6 \rangle = \{0, 6\}$
- k = 3: $\langle 4 \rangle = \{0, 4, 8\}$
- k = 4: $\langle 3 \rangle = \{0, 3, 6, 9\}$
- k = 6: $\langle 2 \rangle = \{0, 2, 4, 6, 8, 10\}$
- k = 12: $\mathbb{Z}_{12} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11\}$

Note: The lattice of subgroups of \mathbb{Z}_{12} illustrates the containment relationships.

Remark: In \mathbb{Z}_n , clearly $\langle m \rangle \subseteq \langle k \rangle \iff m \in \langle k \rangle \iff ka = m \iff k$ divides m.

Example of subgroups of \mathbb{Z}_p :

Consider \mathbb{Z}_p where p is prime. The only subgroup of \mathbb{Z}_p is $\langle 0 \rangle$.

Permutation Groups (Symmetric Groups)

Definition of the Euler ϕ -function:

The Euler ϕ -function is defined for every positive integer $d \geq 1$ by

$$\phi(d) = \begin{cases} 1 & \text{if } d = 1\\ |\{1 \le j \le d - 1 : \gcd(j, d) = 1\}| \end{cases}$$

Definition of:

Suppose $A \neq \phi$ is a set. A **permutation** of A is a bijection $\beta : A \to A$ (1-1, onto). The **permutation group** (symmetric group) of A is the set of permutations of A under composition.

Recall some facts about functions: Let S_A be the symmetric group of $A \neq \phi$.

If $\alpha, \beta \in S_A$ then $\alpha \circ \beta(a) = \alpha(\beta(a))$ for all $a \in A$.

From MATH1800 composition of 1-1 and onto functions is again 1-1 and onto, i.e., $\alpha \circ \beta \in S_A$.

From MATH1800 $(\alpha \circ \beta) \circ \gamma = \alpha \circ (\beta \circ \gamma)$ for all $\alpha, \beta, \gamma \in S_A$. α permutation $\iff \alpha$ is invertible under composition.s

Remark: Define $e \in S_A$ by e(a) = a for all $a \in A$. Clearly $e \circ \alpha(a) = e(\alpha(a)) = \alpha(a)$ for all $a \in A \implies e \circ a = a$. We see that S_A truly is a group.

Example of:

Take $A = \{1, 2, 3\}$. What are the permutations in $S_3 = S_A$?

- $e \in S_3$: e(1) = 1, e(2) = 2, e(3) = 3.
- $\beta \in S_3$ where $\beta(1) = 2, \beta(2) = 3, \beta(3) = 1$.

Let's rewrite β as follows: $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} = \mathbb{R}.$

In general for any $\alpha \in S_3$, we may rewrite it as $\begin{bmatrix} 1 & 2 & 3 \\ \alpha(1) & \alpha(2) & \alpha(3) \end{bmatrix} = \mathbb{R}$.

The number of permutations is given by the number of choices. This is $3! = 3 \cdot 2 \cdot 1$. We just proved that $|S_3| = 3! = 6$.

Similar reasoning tells us that $|S_n| = n!$ for every $n \ge 1$.

Question

Paul Mezo said we "know everything" about linear algebra. What does that mean?

Answer

There are no unsolved problems in finite linear algebra.

3.1 Cycle Notation

Consider S_3 and $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{bmatrix} \in S_3$. We rewrite this permutation as follows: $(1\ 2\ 3)$.

Notice that $\alpha = (1\ 2\ 3) \neq (1\ 3\ 2) = \beta$, but they are both 3-cycles.

Also, $\gamma=(1\ 2)$ is the permutation such that $\gamma(1)=2, \gamma(2)=1, \gamma(3)=3.$ It's a 2-cycle.

We omit 1-cycles.

The six permutations in S_3 in cycle notation are e, (12), (13), (23), (123), (132).

Example of cycles of S_4 :

Consider S_4 . $|S_4| = 24 = 4!$.

- e,
- (12), (13), (14), (23), (24), (34)
- $(1\ 2\ 3), (1\ 3\ 4), \dots$
- (1 2 3 4), (1 2 4 3), ...
- \bullet (12)(34), (13)(24), (14)(23)

Definition of disjoint cycles:

Two cycles $(a_1 \ a_2 \ \dots \ a_m), (b_1 \ b_2 \ \dots \ b_k) \in S_n$ are **disjoint** if $a_j \neq b_l$ for any j, l. Their product can be written equally in either order.

Composition of permutations is interpreted as products of cycles as follows:

17

Example of compositions in S_7 : • (6 2 3)(1 2) = (1 3 6 2)

- \bullet (12)(347)(23) = (24731)
- $(1\ 3)(2\ 4\ 5\ 6\ 7)(3\ 2)(1\ 2\ 5) = (2\ 6\ 7)(5\ 3\ 4)$

Remark: 1. Some authors move from left to right, one cycle to the next. We move from right to left.

2. Cycles don't tell us which S_n they live in.

Example of powers of a k-cycle:

Consider $(a_1 \ldots a_k) \in S_n$.

- 1. $(a_1 \ldots a_k)^2 = (a_1 \ a_2 \ a_3 \ldots a_k)(a_1 \ a_2 \ a_3 \ldots a_k)$ sends a_1 to a_3 , and a_l to a_{l+2} if $l \le k-2$. Sends $a_{k-1} \to a_1, a_k \to a_2$.
- 2. $(a_1 \ldots a_k)^j$ sends a_l to $a_{(l+j) \mod k}$.

In particular $(a_1 \ldots a_k)^k$ sends a_l to $a_{(l+j) \mod k} = a_{l \mod k} = a_l$ for $1 \le l \le k$, so $(a_1 \ldots a_k)^k = e \implies |(a_1 \ldots a_k)| = k$.

Theorem 3.1

Every permutation in S_n is a product of disjoint cycles. The products of disjoint cycles $\alpha, \beta \in S_n$ commute, i.e., $\alpha\beta = \beta\alpha$.

Proof. Proof omitted.

Remark: Products of disjoint cycles can be written in more than one way to represent a single permutation in S_n .

$$(1\ 2\ 3)(5\ 6) = (5\ 6)(1\ 2\ 3) = (5\ 6)(2\ 3\ 1)$$

Question

Dr. Mezo said they were unique "modulo" changing the order. Why use this language? What's the connection to modulo here?

Definition of the least common multiple:

The **least common multiple** of $m, n \ge 1$ is the smallest positive integer k such that m divides k and n divides k. We write k = lcm(m, n).

Example of finding LCM:

1. lcm(2,3) = 6

2.
$$lcm(6, 12) = 12$$

3.
$$\operatorname{lcm}(12,8) = \operatorname{lcm}(2^3 \cdot 3^1, 2^3 \cdot 3^0) = 2^3 \cdot 3^1 = 24$$

Theorem 3.2

Let $\alpha_1, \ldots, \alpha_k \in S_n$ be disjoint cycles. Then $|\alpha_1 \ldots \alpha_k| = \text{lcm}(|\alpha_1|, \ldots, |\alpha_k|)$

Example of the theorem:

|(15)(37124)(986)| = 12 = lcm(2, 4, 3)

Definition of a transposition:

A **transposition** in S_n is a 2-cycle.

Example of transpositions:

Note

•
$$(1\ 2) = (2\ 1) = (1\ 2)^{-1}$$

•
$$(1\ 2)(1\ 2) = (1)(2) = e$$

• Similarly,
$$(a \ b) = (b \ a) = (ab)^{-1}$$

•
$$(1\ 2\ 3) = (1\ 3)(1\ 2)$$

•
$$(1\ 2\ 3) = (a\ c)(a\ b)$$

Theorem 3.3

Every permutation in S_n is a product of transpositions.

Proof. $e = (1\ 2)(2\ 1) = (1\ 2)(1\ 2).$ Suppose $\sigma \in S_n, \sigma \neq e$. Then by a previous theorem, $\sigma = \beta_1 \dots \beta_k$ for disjoint cycles $\beta_1, \ldots, \beta_k \in S_n$. If each B_j is a product of transpositions then so is σ . Let $\beta = (a_1 \dots a_k)$ be a k-cycle in S_n . Let's prove by induction on $k \geq 2 \text{ that } (a_1 \ldots a_k) = (a_1 a_k)(a_1 a_{k-1}) \ldots (a_1 a_2).$ Base case is obvious. Assume it's true for k. Let $\beta = (a-1 \ldots a_{k+1}), \alpha = (a_1 a_{k+1}), \gamma = (a_1 \ldots a_k).$ By induction $\gamma = (a_1 \dots a_k) = (a_1 \ a_k)(a_1 \ a_{k-1}) \dots (a_1 \ a_2)$. It suffices to show that $\beta = \alpha \gamma$. Let $1 \leq l \leq k-1$. Then $\beta(a_l) = a_{l+1}$, and $\alpha \gamma(a_l) = \alpha(a_{l+1}) =$ $a_{l+1} \implies \beta(a_l) = \alpha \gamma(a_l).$ So $\beta(a_k) = a_{k+1}$ and $\alpha \gamma(a_k) = \alpha(a_1) = a_{k+1} \implies \beta(a_k) = \alpha \gamma(a_k)$. So $\beta(a_{k+1}) = a_1$ and $\alpha \gamma(a_{k+1}) = \alpha(a_{k+1}) = a_1 \implies \beta(a_{k+1}) =$ $\alpha \gamma (a_{k+1})$ Rest of the proof was erased before I could get to it:(

Lemma 3.4

If $e = \alpha_1 \dots \alpha_k$ is a product of transpositions $\alpha_1, \dots, \alpha_k \in S_n$, then k is even.

Proof. Proof omitted.

Theorem 3.5

Suppose $\alpha \in S_n$ and $\beta_1 \dots \beta_r = \alpha = \gamma \dots \gamma_s$ where $\beta_1, \dots, \beta_r, \gamma_1, \dots, \gamma_s \in S_n$ are transpositions.

Then either r and s are both even, or they are both odd (i.e., $r \mod 2 = s \mod 2$).

Proof. $\gamma_1 \dots \gamma_s = \beta_1 \dots \beta_r \implies \gamma_1^{-1} \gamma_1 \dots \gamma_s = \gamma_1^{-1} \beta_1 \dots \beta_r \implies e = \gamma_s \dots \gamma_1 \beta_1 \dots \beta_r$, so the identity is a product of transpositions. By the lemma, r + s is even.

Definition of parity:

We say that $\alpha \in S_n$ is **even** if it is a product of even number of transpositions, we say α is odd if it is a product of an odd number of transpositions.

Example of parity of cycles:

- 1. (a b) odd
 - 2. $(a_1 \ a_2 \ a_3) = (a_1 \ a_3)(a_1 \ a_2)$ even
 - 3. $(a_1 \ a_2 \ a_3 \ a_4) = (a_1 \ a_4)(a_1 \ a_3)(a_1 \ a_2) = (a_1 \ a_4)(a_1 \ a_2 \ a_3)$

Remark: A k-cycle is even for odd k and is odd for even k.

Theorem 3.6

Let $A_n \subseteq S_n, n \ge 2$ be the subset of even elements in S_n . Then A_n is a subgroup (called the **alternating group**).

Proof. $e \in A_n$ so $A_n \neq \emptyset$. Suppose $\alpha = \beta_1 \dots \beta_s$ and $\sigma = \gamma_1 \dots \gamma_r$ for transpositions $\beta_1, \dots, \beta_s, \gamma_1, \dots, \gamma_r \in S_n$, i.e., s and r are even. Then $\alpha \sigma = \beta_1, \dots, \beta_s, \gamma_1, \dots, \gamma_r$ is a product of r+s transpositions. Since r+s is even, $\alpha \sigma \in A_n$. $\alpha^{-1} = (\beta_1 \dots \beta_s)^{-1} = \beta_s^{-1} \dots \beta_1^{-1} = \beta_s \dots \beta_1$ a product of s transpositions. Since s is even, $\alpha^{-1} \in A_n$.

Example of alternating groups:

- $S_2 = \{e, (1\ 2)\} \supseteq \{e\} = A_2$
 - $S_3 = \{e\} \cup 2$ -cycles \cup 3-cycles $\supseteq \{e\} \cup 3$ -cycles $= \{e, (1\ 2\ 3), (1\ 3\ 2)\} = A_3 = \langle (1\ 2\ 3) \rangle$
 - $S_4 = \{e\} \cup 2$ -cycles \cup 3-cycles \cup 4-cycles \cup products of disjoint 2-cycles $\supseteq \{e\} \cup 3$ -cycles \cup products of disjoint 2-cycles $= A_4$

Theorem 3.7

 $|A_n| = \frac{n!}{2}$ for all $n \ge 2$.

Proof. Recall that every element in S_n is either even or odd. So $S_n = A_n \cup B$ is a disjoint union where B is the set of odd permutations. So $|S_n| = |A_n| + |B| \implies n! = |A_n| + |B|$. So if we prove $|A_n| = |B|$ then $n! = 2 |A_n| \implies |A_n| = \frac{n!}{2}$. To prove $|A_n| = |B|$, we define $f: A_n \to B$ by $f(\alpha) = (1\ 2)\alpha$ for all $\alpha \in A_n$. Clearly, $(1\ 2)\alpha$ is odd since α is even. To show injectivity, suppose $\alpha, \beta \in A_n$ with $f(\alpha) = f(\beta) \implies (1\ 2)\alpha = (1\ 2)\beta \implies (1\ 2)(1\ 2)\alpha = (1\ 2)(1\ 2)\beta \implies \alpha = \beta$, so f is injective. Suppose $\sigma \in B$. Then $f((1\ 2)\sigma) = (1\ 2)(1\ 2)\sigma = \sigma$. This proves that f is a bijection and $|A_n| = |B|$.

Isomorphisms

Remark: • Cayley's Theorem says that every finite group is isomorphic to a subgroup of some S_n .

• Historically, the idea of a group comes from work with S_n .

Example of:

Recall $D_3 = \{e, \rho, \rho^2, \sigma, \sigma\rho, \sigma\rho^2\}$

Note that S_3 also has order 6.

We may identify the elements in D_3 by how they permute the vertices of a triangle:

- $\bullet \ \ e \leftrightarrow e$
- $\rho \leftrightarrow (1\ 2\ 3)$
- $\rho^2 \leftrightarrow (1\ 3\ 2)$
- $\sigma \leftrightarrow (1\ 3)$
- $\sigma\rho\leftrightarrow(1\ 2)$
- $\sigma\rho\leftrightarrow(2\ 3)$

If we define $\phi: D_3 \to S_3$ by $\phi(e) = e, \phi(\rho) = (1\ 2\ 3)$ etc. as above, then it remains to show that $\phi(ab) = \phi(a)\phi(b)$ for all $a, b \in D_3$.

After a brute force check, we can verify that the above holds.

Definition of an isomorphism:

Suppose G and \bar{G} are groups. An **isomorphism** is a map $\phi: G \to \bar{G}$ which is bijective and $\phi(ab) = \phi(a) \phi(b)$ for all $a, b \in G$.

Example of:

Let $G = \langle a \rangle = \{ a^j : j \in \mathbb{Z} \}$ be an infinite cyclic group. $(|a| = \infty)$.

Define $\phi: \mathbb{Z} \to G$ by $\phi(j) = a^j$.

This function is bijective. Proof omitted because I'm sleepy! It's not too hard, do it as an exercise.

Finally, $\phi(j+k) = a^{j+k} = a^j a^k = \phi(j) \phi(k)$. This proves that $\phi: \mathbb{Z} \to \langle a \rangle$ is an isomorphism.

Definition of isomorphic groups:

We say groups G and \bar{G} are **isomorphic** if there is an isomorphism $\phi: G \to \bar{G}$. In this case we write $G \cong \bar{G}$.

Theorem 4.1

Suppose $\phi: G \to \bar{G}$ is a group isomorphism. Then

1.
$$\phi(e) = \bar{e}$$
 is the identity in \bar{G}

2.
$$\phi(b^n) = (\phi(b))^n$$
 for all $b \in G$

3.
$$ab = ba$$
 in $G \implies \phi(a) \phi(b) = \phi(b) \phi(a)$ in \bar{G}

4.
$$G = \langle b \rangle \implies \bar{G} = \langle \phi(b) \rangle$$

5.
$$|b| = |\phi(b)|$$
 for all $b \in G$

6. Omitted.

7.
$$|G| = |\bar{G}|$$
 (In particular G finite $\iff \bar{G}$ finite)

Proof. Sketch of proof

1.
$$\phi(e) = \phi(ee) = \phi(e) \phi(e) \implies \bar{e} = \bar{e}\phi(e) = \phi(e)$$
.

2. Prove by induction on $n \ge 1$. For $n \le -1$, replace b by $b^{-1} \in G$.

3.
$$ab = ba \in G \implies \phi(a) \phi(b) = \phi(ab) = \phi(ba) = \phi(b) \phi(a)$$

- 4. Suppose $G = \langle b \rangle$. Let $a \in \mathbb{Z}$. Since ϕ is a bijection, there exists a unique $a \in G$ such that $\phi(a) = \bar{a}$. Since $G = \langle b \rangle$, $a = b^j$ for some $j \in \mathbb{Z}$. By 2, $\bar{a} = \phi(a) = \phi(b^j) = \phi(b)^j \implies \bar{a} \in \langle \phi(b) \rangle \implies \bar{G} \subseteq \langle \phi(b) \rangle \implies \bar{G} = \langle \phi(b) \rangle$.
- 5. Suppose $|b| = n < \infty$. Then $\phi(b)^n = \phi(b^n) = \phi(e) = \bar{e}$. n must be the lowest of these, otherwise we arrive at $b^m = e$ for m < n is a contradiction. A similar proof by contradiction is reached if $|b| = \infty$.

Example of

Define
$$\mu_n = \left\{ e^{2\pi i \frac{k}{n}} : 0 \le k \le n-1 \right\} = \left\{ z \in \mathbb{C}^\times : z^n = 1 \right\} \subseteq \mathbb{C}^\times.$$

 μ_n is a subgroup of \mathbb{C}^{\times} .

Define $\phi: \mathbb{Z}_n \to \mu_n$ by $\phi(k) = e^{2\pi i \frac{k}{n}}$ for all $0 \le k \le n-1$.

Exercise: ϕ is a bijection.

Note: Examples omitted from lecture today; sorry I'm sleepy and need to do tutorial prep.

Theorem 4.2

Suppose $\phi: G \to \bar{G}$ is a group isomorphism. Then

- 1. $\phi^{-1}: \bar{G} \to G$ is an isomorphism
- 2. G abelian $\iff \bar{G}$ is abelian
- 3. G cyclic $\iff \bar{G}$ is cyclic
- 4. K subgroup of $G \implies \phi\left(K\right) = \left\{\phi\left(k\right) : k \in K\right\}$ subgroup of \bar{G}
- 5. \bar{K} subgroup of $\bar{G} \implies \phi^{-1}(\bar{K})$ subgroup of G.
- 6. $\phi(Z(G)) = Z(\bar{G})$

Proof. 1. $\phi^{-1}: \bar{G} \to G$ exists and is a bijection since ϕ is a bijection. Must prove $\phi^{-1}(\bar{a}\bar{b}) = \phi^{-1}(\bar{a})\phi^{-1}(\bar{b})$ for $\bar{a}, \bar{b}, \in \bar{G}$. Since ϕ is a bijection, there exist unique $a, b \in G$ such that $\phi(a) = \bar{a}$ and $\phi(b) = \bar{b}$. So

$$\phi^{-1}(\bar{a}\bar{b}) = \phi^{-1}(\phi(a)\phi(b)) = \phi^{-1}(\phi(ab)) = ab = \phi^{-1}(\bar{a}) = \phi^{-1}(\bar{b})$$

2. Let's prove G abelian $\iff \bar{G}$ abelian. Suppose G is abelian, and $\bar{a}, \bar{b} \in \bar{G}$. Let $a, b, \in G$ such that $\phi(a) = \bar{a}, \phi(b) = \bar{b}$, then

$$\bar{a}\bar{b} = \phi(a)\phi(b) = \phi(ab) = \phi(ba) = \phi(b)\phi(a) = \bar{b}\bar{a}.$$

This proves \bar{G} is abelian/

- 3. Was done previously
- 4. Suppose $K \subseteq G$ is a subgroup. Suppose $\phi(K)$, $\phi(k') \in \phi(K)$ where $k, k' \in K$. Then $(\phi(k))^{-1} \phi(k') = \phi(k^{-1}) \phi(k') = \phi(k^{-1}k')$. Since $k^{-1}k' \in K$, $\phi(k^{-1}k') = (\phi(k))^{-1} \phi(k') \in \phi(K)$
- 5. Follows from 4
- 6. First we prove $\phi\left(Z\left(G\right)\right)\subseteq Z\left(\bar{G}\right)$. Suppose $z\in Z\left(G\right)$ and $\bar{a}\in\bar{G}$. Let $a\in G$ such that $\phi\left(a\right)=\bar{a}$. Then $\phi\left(z\right)\bar{a}=\phi\left(z\right)\phi z=\phi\left(za\right)=\phi\left(az\right)=\phi\left(a\right)\phi\left(z\right)=\bar{a}\phi\left(z\right)\implies\phi\left(z\right)\in Z\left(\bar{G}\right)\implies\phi\left(Z\left(G\right)\right)\subseteq Z\left(\bar{G}\right)$. By symmetry, $Z\left(\bar{G}\right)\subseteq\phi\left(Z\left(G\right)\right)$ so they are equal.

Definition of an automorphism:

An **automorphism** of G is an isomorphism $\phi: G \to G$. The set of automorphisms of G is denoted by $\operatorname{Aut}(G)$.

Theorem 4.3

 $\operatorname{Aut}(G)$ is a group under composition of functions.

Cosets and Lagrange's Theorem

Definition of a coset:

A (left) **coset of H** is of the form $xH = \{xh : h \in H\}$ where $x \in G$. A (right) **coset of H** is of the form $Hx = \{hx : h \in H\}$ where $x \in G$. In both cases, x is called a (coset) **representative for** xH (or Hx). |xH| is the number of elements in xH.

Lemma 5.1

Let H be a subgroup of G and $x, y \in G$. Then

- 1. $x \in xH$
- 2. $xH = H \iff x \in H$
- 3. x(yH) = (xy)H
- 4. $xH = yH \iff x \in yH$
- 5. Either xH = yH or $xH \cap yH = \emptyset$
- 6. $xH = yH \iff y^{-1}x \in H \iff x^{-1}y \in H$
- 7. |xH| = |H|
- 8. $xH = Hx \iff xHx^{-1} = H$
- 9. xH is a subgroup $\iff x \in H \iff xH = H$

Theorem 5.2 Lagrange's Theorem

Suppose H is a subgroup of a finite group G. Then |H| divides |G| and the number of cosets is $\frac{|G|}{|H|}$.

Proof.
$$G=x_1H\bigcup\cdots\bigcup x_mH$$
 a disjoint union \Longrightarrow $|G|=\sum_{j=1}^m|x_jH|=m\,|H|.$

Definition of coset spaces and index:

Suppose H is a subgroup of G, then the number of (left) cosets is called the **index of H in G** and is denoted by |G:H|. The set of (left) cosets is denoted by $\frac{G}{H} = \{gH: g \in G\}$ and is called the **coset space**. So

$$\left|\frac{G}{H}\right| = |G:H|$$

Example of:

If G is finite then $\left| \frac{G}{H} \right| = |G:H| = \frac{|G|}{|H|}$.

- Take $G = \mathbb{Z}$ and $H = \langle 2 \rangle$. Then $\frac{\mathbb{Z}}{\langle 2 \rangle} = \{0 + \langle 2 \rangle, 1 + \langle 2 \rangle\} \implies |\mathbb{Z} : \langle 2 \rangle| = 2$.
- $|\mathbb{Z}:\langle 3\rangle|=3$
- $|\mathbb{Z}:\langle 0\rangle|=\infty$
- $|D_3:\langle\rho\rangle|=\frac{6}{3}=2$ by Lagrange's theorem.

Corollary 5.3

Suppose G is finite and $x \in G$. Then |x| divides |G|.

Proof.
$$|x| = |\langle x \rangle|$$
 divides $|G|$ by Lagrange.

Corollary 5.4

Suppose |G| = p is a prime number. Then G is cyclic and $G \cong \mathbb{Z}_p$.

Proof. Suppose $x \in G, x \neq e$. Then $1 \neq |\langle x \rangle|$ divides p by Lagrange's theorem. So $|\langle x \rangle| = p$. However $\langle x \rangle \subseteq G$ so $\langle x \rangle = G$. For the desired isomorphism let $\phi(k) = x^k$, $0 \leq k \leq p-1$.

Corollary 5.5

Suppose G is finite and $x \in G$. Then $x^{|G|} = e$.

Corollary 5.6 Fermat's Little Theorem

Suppose $m \in \mathbb{Z}$ and p is prime. Then $m^p \mod p = m \mod p$.

5.1 External Direct Products

Definition of a direct product:

Suppose G_1, \ldots, G_n are groups. Then $G_1 \oplus \cdots \oplus G_n = G_1 \times \cdots \times G_n = \{(g_1, \ldots, g_n) : g_i \in G_i\}$ together with multiplication defined by $(g_1, \ldots, g_n)(g'_1, \ldots, g'_n)$. $|G_1 \oplus \cdots \oplus G_n| = \prod_{i=1}^n |G_i|$

Theorem 5.7

Suppose $G_1 \oplus \cdots \oplus G_n$ is a direct product of groups and $(g_1, \ldots, g_n) \in G_1 \oplus \cdots \oplus G_n$. Then $|(g_1, \ldots, g_n)| = \operatorname{lcm}(|g_1|, \ldots, |g_n|)$.

Working with the Direct Product

Theorem 6.1

Suppose $G_1 \oplus \cdots \oplus G_n$ is a direct product of finite groups and $(g_1, \ldots, g_n) \in G_1 \oplus \cdots \oplus G_n$. Then $|(g_1, \ldots, g_n)| = \text{lcm}(|g_1|, \ldots, |g_n|)$.

Proof. Let $t = |(g_1, \ldots, g_n)|$ and $m = \text{lcm}(|g_1|, \ldots, |g_n|)$. Then $m = q_j |g_j|$ for some $q_j \in \mathbb{Z}$ and any $1 \leq j \leq n$. So

$$(g_1, \dots, g_n)^m = (g_1^m, \dots, g_n^m) = (g_1^{q_1|g_1|}, \dots, g_n^{q_n|g_n|})$$

$$= \left(\left(g_1^{|g_1|} \right)^{q_1}, \dots, \left(g_n^{|g_n|} \right)^{q_n} \right) = (e^{q_1}, \dots, e^{q_n}) = (e, \dots, e),$$

so m is divisible by $|(g_1, \ldots, g_n)| = t \implies m \ge t$. In addition,

$$(e, \dots, e) = (g_1, \dots, g_n)^t$$

$$= (g_1^t, \dots, g_n^t)$$

$$\implies g_j^t = e \text{ for all } 1 \le j \le n$$

$$\implies |g_j| \text{ divides } t \text{ for all } 1 \le j \le n$$

$$\implies t \text{ is a common multiple of } |g_1|, \dots, |g_n|$$

$$\implies t \ge m = \text{ the least common multiple.}$$

Remark: For
$$n=p_1^{a_1}\dots p_k^{a_k},\, m=p_1^{b_1}\dots p_k^{b_k},$$
 we have

$$\begin{split} & \text{lcm}\,(n,m) = p_1^{\max\{a_1,b_1\}} \dots p_k^{\max\{a_k,b_k\}} \\ & \text{gcd}\,(n,m) = p_1^{\min\{a_1,b_1\}} \dots p_k^{\min\{a_k,b_k\}}, \end{split}$$

so

$$lcm(n, m) gcd(n, m) = p_1^{a_1+b_1} \dots p_k^{a^k+b^k}$$

Example of the direct product of prime groups:

Suppose $\gcd n, m = 1$ are prime.

$$(1,1) \in \mathbb{Z}_n \oplus \mathbb{Z}_m, |(1,1)| = \operatorname{lcm}(|1|,|1|) = \operatorname{lcm}(n,m) = (n)(m) = nm.$$

Also $\langle (1,1) \rangle \subseteq \mathbb{Z}_n \oplus \mathbb{Z}_m$ and $|\langle (1,1) \rangle| = |(1,1)| = nm \implies \langle (1,1) \rangle = \mathbb{Z}_n \oplus \mathbb{Z}_m.$

Example of non-cyclic direct products:

Take $n \geq 2$. Consider $\mathbb{Z}_n \oplus \mathbb{Z}_n$. Then $\operatorname{lcm}(n,n) = \gcd(n,n) = n$.

Let $(a, b) \in \mathbb{Z}_n \oplus \mathbb{Z}_n$. By Lagrange's Theorem, |a| divides $n = |\mathbb{Z}_n|$, so |b| divides n. Thus n is a common multiple of |a|, |b|.

By the theorem, $|a, b| = \text{lcm}(|a|, |b|) \le n$. More directly $(a, b)^n = (a^n, b^n) = (e, e)$ by Lagrange's theorem since $n = \mathbb{Z}_n$. So |(a, b)| divides n.

It follows $|\langle (a,b)\rangle| = |(a,b)| \le n < n^2 = |\mathbb{Z}_n \oplus \mathbb{Z}_n|$.

Therefore $\langle (a,b) \rangle \neq \mathbb{Z}_n \oplus \mathbb{Z}_n$ and $\mathbb{Z}_n \oplus \mathbb{Z}_n$ is not cyclic.

Theorem 6.2

Suppose G and H are finite cyclic groups $(G \cong \mathbb{Z}_n, H \cong Z_m)$. Then $G \oplus H$ is cyclic if and only if $1 = \gcd(|G|, |H|)$.

Proof. Let n = |G| and m = |H|. Suppose $G = \langle g \rangle$ and $H = \langle h \rangle$ so that |g| = n and |h| = m.

" \Leftarrow " Suppose $\gcd(n, m) = 1$. Then $nm = \operatorname{lcm}(n, m) \gcd(n, m) = \operatorname{lcm}(n, m)$ by theorem 8.1 $|(g, h)| = \operatorname{lcm}(n, m) = nm$.

Moreover $\langle (g,h) \rangle \subseteq G \oplus H$ and $|\langle (g,h) \rangle| = nm = |G| \oplus |H|$. So $\langle (g,h) \rangle = G \oplus H$ and $G \oplus H$ is cyclic.

" \Longrightarrow " Suppose $G \oplus H = \langle (a,b) \rangle$ so that $|(a,b)| = |\langle (a,b) \rangle| = |G \oplus H| = nm$.

Let $d = \gcd(n, m)$. Then $(a, b)^{\frac{nm}{d}} = \left(a^{\frac{nm}{d}}, b^{\frac{nm}{d}}\right) = \left((a^n)^{\frac{m}{d}}, (b^m)^{\frac{n}{d}}\right) = \left(e^{\frac{m}{d}}, e^{\frac{n}{d}}\right) = (e, e)$.

Thus |(a,b)| divides $\frac{nm}{d}$ implies nm divides $\frac{nm}{d} \implies d=1$

Example of a non-cyclic group:

 $\mathbb{Z}_2 \oplus \mathbb{Z}_4$ is not cyclic since $\gcd(2,4) = 2 \neq 1$.

Example of $\mathbb{Z}_2 \oplus \mathbb{Z}_{10} \oplus \mathbb{Z}_{13}$:

$$|(1,1,1)| = \text{lcm}(|1|,|1|,|1|) = \text{lcm}(2,10,13) = (2)(5)(13) = 130 \neq 260 = |\mathbb{Z}_2 \oplus \mathbb{Z}_{10} \oplus \mathbb{Z}_{13}|.$$

 $\langle (1,1,1) \subseteq \mathbb{Z}_2 \oplus \mathbb{Z}_{10} \oplus \mathbb{Z}_{13} \rangle$ and $|\langle (1,1,1) \rangle| = |(1,1,1)| \neq |\mathbb{Z}_2 \oplus \mathbb{Z}_{10} \oplus \mathbb{Z}_{13}|$. That is, the element (1,1,1), made up of the generators of each group, does not generate the direct product of the groups. Observe that $\gcd(2,10,13) = 1$.

Corollary 6.3

Suppose G_1, \ldots, G_n are finite cyclic groups. Then $G_1 \oplus \cdots \oplus G_n$ is cyclic if and only if $\gcd(|G_j|, |G_k|) = 1$ for all $j \neq k$.

Proof. Proof omitted.

Corollary 6.4

Let $m = n_1 \dots n_k$. Then

$$\mathbb{Z}_m \cong \mathbb{Z}_{n_1} \oplus \cdots \mathbb{Z}_{n_k} \iff \gcd(n_j, n_l) = 1 \forall j \neq l.$$

Proof. (Sketch). Take
$$G_j = \mathbb{Z}_{n_j}$$
. Then $|G_1 \oplus \cdots \oplus G_k| = n_1 n_2 \dots n_k = m$. By corollary 6.3 $G_1 \oplus \cdots \oplus G_k \cong Z_m \iff \gcd(n_j, n_l) = 1 \forall j \neq l$.

Example of using the theorem:

Proofs left as an exercise, but notice $12 = 2^2 \cdot 3 = 6 \cdot 2 = 4 \cdot 3$, but by corollary 6.4,

- $\mathbb{Z}_{12} \ncong \mathbb{Z}_2 \oplus \mathbb{Z}_2 \oplus \mathbb{Z}_3$
- $\mathbb{Z}_{12} \ncong \mathbb{Z}_6 \oplus \mathbb{Z}_3$
- $\mathbb{Z}_{12} \cong \mathbb{Z}_4 \oplus \mathbb{Z}_3$

It is not hard to see that if m has prime factorization $m = p_1^{a_1} \dots p_k^{a_k}$ $(a_j \ge 0)$, then $\mathbb{Z}_m \cong \mathbb{Z}_{p_1^{a_1}} \oplus \dots \oplus \mathbb{Z}_{p_p^{a_k}}$ by corollary 6.4 (since their gcd is 1).

Factor groups

Definition of the factor group: Suppose HG. Then the group $\frac{G}{H}$ is called the **factor group** of G relative to H. (also **quotient group**.)

Theorem 7.1

Suppose HG. Then $\frac{G}{H}$ is a group under the multiplication given by

$$(aH)(bH) = abH,$$

for all $aH, bH \in \frac{G}{H}$.

Recall: from a previous lemma that $aH=a'H\iff H=a^{-1}a'H\iff a^{-1}a'\in H\iff a^{-1}a'=h$ for some $h\in H$.

In order for the theorem to make sense, we need to show that (ahH)(bH) =abH = (aH)(bH) for any $h \in H$. Showing this property has a name. It's called showing the multiplication is well-defined.

Proof. Let's show that the multiplication is well-defined, i.e., (ahH)(bH) = abH = (aH)(bH) for any $h \in H$. Suppose $aH, bH \in \frac{G}{H}$ and $h \in H$. Then $(ahH)(bH) = (ah)bH = abb^{-1}hbH = ab(b^{-1}hb)H$. Since HG, $b^{-1}hb = b^{-1}h(b^{-1})^{-1} \in H$ so $(b^{-1}hb)H = H$, so $(ahH)(bH) = ab(b^{-1}hb)H = abH = (aH)(bH)$. A similar argument can be used to show (aH)(bhH) = (aH)(bH) for all $h \in H$, so the multiplication is well-defined.

Since the multiplication is well-defined, we check the group axioms next.

- 1. Identity: eH = H. Indeed (eH)(aH) = eaH = aH and (aH)(eH) = aeH = aH for all $aH \in \frac{G}{H}$.
- 2. Inverse: Suppose $aH\in \frac{G}{H}$. Then $(aH)^{-1}=a^{-1}H$ since $(a^{-1}H)(aH)=a^{-1}aH=eH=H$, and similarly on the other side.
- 3. Associativity: Trivial, since (ab)c = a(bc).

Example of of the theorem:

$$\begin{split} G &= \mathbb{Z}, H = 3\mathbb{Z} = \langle 3 \rangle. \mathrm{V} \\ &\frac{\mathbb{Z}}{3\mathbb{Z}} = 0 + 3\mathbb{Z}, 1 + 3\mathbb{Z}, 2 + 3\mathbb{Z} = \langle 1 + 3\mathbb{Z} \rangle. \\ &(1 + 3\mathbb{Z}) + (1 + 3\mathbb{Z}) = (1 + 1) + 3\mathbb{Z} = 2 + 3\mathbb{Z}. \end{split}$$