Titill - Áfangi

ttb3@hi.is

22. febrúar 2022

1. Um hvað snérist verkefnið

Verkefnið snérist um að útbúa rafrás sem gat tekið inn merki á BCD kóðaformi, breytt því merki yfir í Excess-3 kóðaform og skilað nýja merkinu. Til að gera verkefnið þurfti að nota nokkrar tæknir sem er búið að kenna eins og að, skrifa inn í og lesa úr k-kortum og breyta úr SOP-boolean rás yfir í NAND-rás.

2. Hvað gerði ég?

Ég byrjaði á því að krota upp grófa sanntöflu fyrir rásina, reikna með öllum inntökum og merki þau sem á ekki að taka með í reikninginn sem x.

out	ignore	В0	B1	B2	В3	E0	E1	E2	E3
0		0	0	0	0	0	0	1	1
1		0	0	0	1	0	1	0	0
2		0	0	1	0	0	1	0	1
3		0	0	1	1	0	1	1	0
4		0	1	0	0	0	1	1	1
5		0	1	0	1	1	0	0	0
6		0	1	1	0	1	0	0	1
7		0	1	1	1	1	0	1	0
8		1	0	0	0	1	0	1	1
9		1	0	0	1	1	1	0	0
10	X	1	0	1	0	X	X	X	X
11	X	1	0	1	1	X	X	X	X
12	X	1	1	0	0	X	X	X	X
13	X	1	1	0	1	X	X	X	X
14	X	1	1	1	0	X	X	X	X
15	X	1	1	1	1	X	X	X	X

Útfrá sanntöflunni bjó ég svo til k-kort til að fá betri yfirsýn yfir það hvernig rásin myndi að lokum líta út.

		CD	CD	CD	CD
		00	01	11	10
AB	00	0	0	0	0
AB	01	0	1	1	1
AB	11	1	1	X	X
AB	10	X	X	X	X

Ég tók svo fjögur af þessu k-korti, eitt fyrir hvert output í excess-3, og bjó til SOP-boolean jöfnu fyrir hvert og eitt. Þessi kort og jöfnur hvers og eins má sjá hér fyrir neðan, reitir sem tengdir eru saman eru litaðir í sama lit og ef reitur er notaður oftar en einu sinni, ætti að vera í nokkrum litum, þá reyndi ég að afmarka hann með þykkari border línu.

Núna er ég kominn með boolean jöfnu fyrir hvert output á XS-3 formi:

$$E0 = A + BD + BC$$

$$E1 = BC'D' + B'D + B'C$$

$$E2 = C'D' + CD$$

$$E3 = D'$$

Þá er auðvelt að búa til rásir fyrir hvert output, sjá fyrir neðan:

Þá er næsta skref að breyta þessum rásum í NAND rásir, sjá fyrir neðan:

Þá var aðeins að fegra aðeins upp á rásirnar og tengja þær svo allar saman og fá þá út þessa rás:

Rásin með öll input 0

Rásin með input 0001

Rásin með input 0101

3. Hvernig gekk?

Verkefnið þegar á heildina er litið gekk frekar vel, ég þurfti að lesa mér aðeins meira til um K-kort en eftir að vera kominn með góðann skilning á þeim gekk allt smurt fyrir sig.

4. Niðurstöður

Ég prófaði rásina fyrir öll gildi í sanntöflunni og til minnar ánægju var útkoman alltaf rétt. sjá næstu töflu, sem forritið bjó til fyrir mig:

A	В	С	D	E0	E1	E2	E3
0	0	0	0	0	0	1	1
0	0	0	1	0	1	0	0
0	0	1	0	0	1	0	1
0	0	1	1	0	1	1	0
0	1	0	0	0	1	1	1
0	1	0	1	1	0	0	0
0	1	1	0	1	0	0	1
0	1	1	1	1	0	1	0
1	0	0	0	1	0	1	1
1	0	0	1	1	1	0	0