

Introduction: Causal Inference in E-Scooter Adoption

• E-Scooters: A Game Changer

- E-scooters have emerged as a key player in transforming urban transportation.
- They offer a quick, eco-friendly, and convenient alternative to traditional modes of transport."

Benefits Highlighted

- Eco-Friendly: Reducing carbon footprint with zero emissions.
- Ease of Use: Simple to operate, perfect for short urban trips.
- Decongesting Cities: A solution to urban traffic woes, easing congestion.

Problem Description

Purpose of the Study: To understand the factors influencing user behavior and acceptance of shared E-scooters.

Analytical Approaches:

- Causal Discovery: Used causal discovery algorithms PC and GES for learning the structure and compared the approaches.
- Average Causal Effects: Backdoor approach is used to estimate average treatment effects of different demographic variables on intention to use in the future.
- **Structural Equation Modeling (SEM)**: Analyzing patterns and relationships among key *behavioral* variables within the Technology Acceptance Model (TAM).
- Causal Analysis in Python: Using Dowhy library to identify direct causal effects and validate findings from SEM.

Objective:

 To combine insights from SEM and causal analysis for a comprehensive understanding of factors driving E-scooter adoption.

Project dataset

Composition:

- Variety of Variables (277 columns)
- Mixed Data Types (Categorical, Numerical, Binary)

Key Variables:

- Demographics: Age, Gender, Race
- Transportation Preferences: Vehicle Ownership, Use of E-scooters
- Geographic Data: IP Address Location

Data Size:

- 2167 Entries
- Broad Coverage Across Multiple Aspects

Purpose:

- Understanding Transportation Preferences
- Insights into E-scooter Usage

histograms for six key variables from the dataset

Causal Discovery

PC Algorithm

Causal Discovery

GES Algorithm

Causal Effects Estimation

Average treatment effects on intention to use in the future

ATT of Student status: 0.038

ATT of No of Vehicles: 0.058

• ATT of Exercise: -0.001

ATT of Race category: 0.023

• ATT of reduce fee transit: 0.10

Understanding the Technology Acceptance Model (TAM) for Behavioral Variables

TAM:

- Developed by Davis (1989) for understanding technology adoption.
- Focuses on two main factors: Perceived Usefulness (PU) and Perceived Ease of Use (PEOU).

Relevance to E-Scooter Study:

- Ideal for assessing factors influencing E-scooter adoption.
- Widely validated in technology acceptance research.

SEM Model (R): Latent variables

- Each latent variable is defined by several observable indicators, like user opinions on E-scooter use.
- The main latent variables in our SEM model, which are critical concepts to extract user's perceptions and preferences.
- Understanding these relationships helps us to analyze user behavior and preferences regarding shared E-scooter usage.

Table: SEM Model - Latent Variables and Indicators

Latent Variable	Indicators			
Intent to Use	1. "I intend to continue using shared E-scooters."			
	2. "I will recommend others to use shared E-Scooters."			
Perceived Ease of Use	1. "E-scooter apps are easy to use and understand."			
	2. "Using E-scooters requires little mental effort."			
	3. "Using E-scooters requires little physical effort."			
Perceived Usefulness	1. "E-scooters are useful for daily transport needs."			
	2. "E-scooters make travel more convenient."			
	3. "E-scooters make travel more efficient."			
Perceived Enjoyment	1. "Using E-scooters is enjoyable."			
	2. "Using E-scooters is fun."			
	3. "E-scooters rides are memorable and enrich life."			
	4. "I feel good about life after riding an E-Scooter."			
	4			

The correlation heatmap of the relationships between the latent variables in the SEM model:

Key Path Coefficients in SEM Analysis

- The path coefficients indicate the strength and significance of relationships between variables.
- This table summarizes the significant path coefficients from the SEM model.
- Estimates indicate the effect size, with positive values showing a direct relationship and negative values indicating an inverse relationship.

Dependent Variable	Predictor	Estimate	P-value
Intent to Use	Perceived Ease of Use	0.734	<0.001
	Perceived Usefulness	0.273	<0.001
	Frequency of Access (2-5 min)	0.202	<0.001
Perceived Usefulness	Perceived Ease of Use	1.001	<0.001
	Female Gender	-0.199	<0.001
	Holding a Graduate Degree	-0.142	0.007
	Frequency of Access (2-5 min)	0.313	<0.001
Perceived Ease of Use	Perceived Enjoyment	0.538	<0.001

SEM Model Results

• Factors influencing the use of e-scooters, highlighting the importance of ease of use, usefulness, and enjoyment as well as gender and education in shaping user intentions.

Enhancing TAM Analysis with Python Causal Analysis

Objective: To complement SEM findings from R with causal analysis using Python and also Validates our SEM.

Causal Insights Sought:

- Direction and Strength: Determines the direct influence and impact of variables like Perceived Ease of Use on Intent to Use.
- Effect Quantification: Measures the magnitude of these influences.

Methodology Overview:

- Factor Analysis: Construct latent variables from observed data.
- Dowhy Causal Modeling: Employs causal inference techniques to establish direct effects.
- Refutation Tests: Includes Random Common Cause, Placebo Treatment, and Data Subset methods to test the robustness of causal findings.

Key Findings from Causal Analysis (Python)

- Purpose: Identifying direct causal impacts within TAM using Python's Dowhy library.
- Causal Relationships and Estimates:
- Key Relationships and Estimates:

```
Pease → Intent
```

PUse → Intent

Penjoy → Pease

Pease → PUse

Influences of Demographic and Contextual Factors:

Female → PUse

Graduate Degree → PUse

Access Time (2-5 min) → Intent

Understanding Refutation Tests in Causal Analysis

- Purpose of Refutation Tests: To validate the robustness of causal estimates against potential biases and confounding factors.
- Types of Refutation Tests:
 - Random Common Cause: Tests for hidden confounders by adding a random variable to the model. Stability in the causal estimate suggests robustness against unobserved biases.
 - Placebo Treatment: Replaces the treatment with a placebo to check if the observed relationship is genuinely causal. A significant reduction in effect when using placebo supports the original causal inference.
 - Data Subset Refutation: Re-estimates the causal effect using a subset of the data to test consistency. Consistent effects across subsets reinforce the reliability of the findings.
- Role in Causal Inference:
 - These tests act as rigorous checks, ensuring that the causal relationships identified are not merely correlations or results of hidden biases.

Causal Relationships Involving Perceived Factors

Perceived ease of use → Intent:

Causal Estimate: 0.2122

Refutation Tests: Consistent effects across tests.

Perceived usefulness → Intent:

Causal Estimate: 0.5098

Refutation Tests: Robust against various tests.

Perceived enjoyment → Perceived ease of use:

Causal Estimate: 0.4391

Refutation Tests: Effect remains stable; significantly reduced in placebo.

☐ These results suggest that the ease of use, usefulness, and enjoyment have significant and positive causal impacts on user intentions.

Summary of Causal Analysis Results using Dowhy

- Causal Estimate: The estimated effect of the treatment on the outcome.
- Random Common Cause Effect: Effect after adding a random common cause (tests for hidden confounders).
- Placebo Treatment Effect: Effect
 after using a placebo treatment
 (tests if the observed relationship is
 likely due to the treatment).
- Data Subset Effect: Effect when using a subset of the data (tests consistency of the estimated causal effect).

Relationship	Causal Estimate	Random Common Cause Effect	Placebo Treatment Effect	Data Subset Effect
Pease → Intent	0.2122	0.2123	0.0014	0.2117
PUse → Intent	0.5098	0.5099	-0.00016	0.5074
Penjoy → Pease	0.4391	0.4392	-0.0046	0.4396
Pease → PUse	0.4047	0.4046	-0.0037	0.4053
Female → PUse	0.1194	0.1194	-0.0025	0.1194
Graduate Degree → PUse	0.1067	0.1069	-0.0026	0.1058
frqncy_access_2_5_min → Intent	-0.1731	-0.1730	-0.0065	-0.1745

Conclusions

Causal Discovery:

 Identified causal structure from observational data using GES algorithm. This structure is further used to estimate causal effects of different variables.

• SEM Insights:

Identified strong correlations among key TAM variables in the e-scooter context.

Causal Analysis Findings:

- Positive direct effects of perceived factors on user intent.
- SEM and causal analysis offer a comprehensive view of user behavior towards E-scooters.
- The importance of perceived factors and reveal complex demographic influences, guiding strategies for E-scooter adoption and user experience enhancement.

References

- Fred Davis. 1985. A Technology Acceptance Model for Empirically Testing New End-User Information Systems. (01 1985)
- Si, H., Shi, J. G., Tang, D., Wu, G., & Lan, J. (2020). Understanding intention and behavior toward sustainable usage of bike sharing by extending the theory of planned behavior.
 Resources, Conservation and Recycling, 152(October 2019)
- Fornell, C., & Larcker, D. F. (1981). Structural equation models with unobservable variables and measurement error: Algebra and statistics. Journal of Marketing Research, 18(3), 382–388
- Cristopher Siegfried Kopplin, Benedikt Martin Brand, and Yannick Reichenberger. 2021.
 Consumer acceptance of shared e-scooters for urban and short-distance mobility.
 Transportation research part D: transport and environment 91 (2021)
- Jonas Peters, Dominik Janzing, and Bernhard Schölkopf. 2017. Elements of causal inference: foundations and learning algorithms. The MIT Press.

Thank you