Statistica - 7^a lezione

23 marzo 2021

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|0$$

La media campionaria tende in probabilità al valore atteso delle X_i :

$$\overline{X}_n \xrightarrow[n \to \infty]{\mathbb{P}} \mu$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|0$$

La media campionaria tende in probabilità al valore atteso delle X_i :

$$\overline{X}_n \xrightarrow[n \to \infty]{\mathbb{P}} \mu$$

 μ non si può misurare, ma \overline{X}_n sì!

Teorema (Legge (debole) dei Grandi Numeri)

Sia
$$X_1, X_2, \ldots$$
 un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

$$1 \geq \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| < \varepsilon\right)$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia
$$X_1, X_2, \ldots$$
 un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

$$1 \underset{\mathbb{P}(E) \leq 1}{\geq} \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| < \varepsilon\right) \underset{\mathbb{P}(E) = \\ = 1 - \mathbb{P}(\overline{E})}{=} 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| \geq \varepsilon\right)$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia
$$X_1, X_2, \ldots$$
 un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

$$\begin{array}{lll}
1 & \geq & \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| < \varepsilon\right) & = & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| \geq \varepsilon\right) \\
& = & 1 - \mathbb{P}(\overline{E}) \\
& = & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| \geq \varepsilon\right) \\
& = & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mathbb{E}[\overline{X}_{n}]\right| \geq \varepsilon\right)
\end{array}$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia
$$X_1, X_2, \ldots$$
 un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

$$\begin{array}{ccc}
1 & \geq & \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| < \varepsilon\right) & = & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| \geq \varepsilon\right) \\
& = & 1 - \mathbb{P}(\overline{E}) \\
& = & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| \geq \varepsilon\right) \\
& = & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mathbb{E}[\overline{X}_{n}]\right| \geq \varepsilon\right) \\
& \geq & 1 - \frac{\operatorname{var}\left[\overline{X}_{n}\right]}{\varepsilon^{2}}
\end{array}$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n \to \infty} \mathbb{P}\left(\left|\overline{X}_n - \mu\right| < \varepsilon\right) = 1$$
 per ogni $\varepsilon > 0$

$$\begin{array}{ll} 1 \underset{\mathbb{P}(E) \leq 1}{\geq} \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| < \varepsilon\right) & \underset{\mathbb{P}(E) = \\ = 1 - \mathbb{P}(\overline{E})}{=} & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| \geq \varepsilon\right) \\ & \underset{\mathbb{E}[\overline{X}_{n}] = \mu}{=} & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mathbb{E}[\overline{X}_{n}]\right| \geq \varepsilon\right) \\ & \underset{\text{Chebyshev}}{\geq} & 1 - \frac{\operatorname{var}\left[\overline{X}_{n}\right]}{\varepsilon^{2}} \\ & \underset{\sigma^{2} := \operatorname{var}\left[X_{i}\right]}{=} & 1 - \frac{\left(\sigma^{2}/n\right)}{\varepsilon^{2}} \end{array}$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n \to \infty} \mathbb{P}\left(\left|\overline{X}_n - \mu\right| < \varepsilon\right) = 1$$
 per ogni $\varepsilon > 0$

$$\begin{array}{ll} 1 \underset{\mathbb{P}(E) \leq 1}{\geq} \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| < \varepsilon\right) & \underset{\mathbb{P}(E) = \\ = 1 - \mathbb{P}(\overline{E})}{=} & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| \geq \varepsilon\right) \\ & \underset{\mathbb{E}[\overline{X}_{n}] = \mu}{=} & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mathbb{E}[\overline{X}_{n}]\right| \geq \varepsilon\right) \\ & \underset{Chebyshev}{\geq} & 1 - \frac{\operatorname{var}\left[\overline{X}_{n}\right]}{\varepsilon^{2}} \\ & \underset{\sigma^{2} := \operatorname{var}\left[X_{i}\right]}{=} & 1 - \frac{\sigma^{2}}{n \varepsilon^{2}} \end{array}$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

$$\begin{array}{ccc}
1 & \underset{\mathbb{P}(E) \leq 1}{\geq} & \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| < \varepsilon\right) & \underset{\mathbb{P}(E) = \\ = 1 - \mathbb{P}(\overline{E})}{=} & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| \geq \varepsilon\right) \\
& \underset{\mathbb{E}[\overline{X}_{n}] = \mu}{=} & 1 - \mathbb{P}\left(\left|\overline{X}_{n} - \mathbb{E}[\overline{X}_{n}]\right| \geq \varepsilon\right) \\
& \underset{\mathbb{C}(\text{hebyshev})}{\geq} & 1 - \frac{\operatorname{var}\left[\overline{X}_{n}\right]}{\varepsilon^{2}} \\
& \underset{\sigma^{2} := \operatorname{var}\left[X_{1}\right]}{=} & 1 - \frac{\sigma^{2}}{n \varepsilon^{2}}
\end{array}$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia
$$X_1, X_2, \ldots$$
 un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

$$1 \geq \mathbb{P}\left(\left|\overline{X}_n - \mu\right| < \varepsilon\right) \geq 1 - \frac{\sigma^2}{n\varepsilon^2}$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia
$$X_1, X_2, \ldots$$
 un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

$$1 \geq \mathbb{P}\left(\left|\overline{X}_n - \mu\right| < \varepsilon\right) \geq 1 - \frac{\sigma^2}{n\varepsilon^2} \xrightarrow[n \to \infty]{} 1$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia
$$X_1, X_2, \ldots$$
 un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty} \mathbb{P}\left(\left|\overline{X}_n - \mu\right| < \varepsilon\right) = 1 \qquad \text{per ogni } \varepsilon > 0$$

$$1 \geq \mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| < \varepsilon\right) \geq 1 - \frac{\sigma^{2}}{n \varepsilon^{2}} \xrightarrow[n \to \infty]{} 1$$

$$\Rightarrow \lim_{n \to \infty} \mathbb{P}\left(\left|\overline{X}_n - \mu\right| < \varepsilon\right) = 1$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

$$\mathbb{P}\left(\left|\overline{X}_{n} - \mu\right| < \varepsilon\right) \geq 1 - \frac{\sigma^{2}}{n\varepsilon^{2}}$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

$$\mathbb{P}\left(\left|\overline{X}_{n}-\mu\right|<\varepsilon\right) \geq 1-\frac{\sigma^{2}}{n\varepsilon^{2}} \equiv p$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

$$\mathbb{P}\left(\left|\overline{X}_{n}-\mu\right|<\varepsilon\right) \geq 1-\frac{\sigma^{2}}{n\,\varepsilon^{2}} \equiv p$$

$$\Rightarrow \quad \varepsilon\left(n,p\right)=\frac{\sigma}{\sqrt{n(1-p)}}$$

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|0$$

ESEMPIO:

$$X_i \sim \mathcal{U}(0,1)$$
 $\Rightarrow \mu = \frac{1}{2}$

con Chebyshev

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

ESEMPIO:

$$X_i \sim \mathcal{U}(0,1)$$
 $\Rightarrow \quad \mu = \frac{1}{2}$

con Chebyshev

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

ESEMPIO:

$$X_i \sim \mathcal{U}(0,1)$$
 $\Rightarrow \mu = \frac{1}{2}$

con Chebyshev

 $\overline{X}_n = realizzazione$ di \overline{X}_n dopo l'esperimento

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|<\varepsilon\right)=1\qquad\text{per ogni }\varepsilon>0$$

ESEMPIO:

$$egin{aligned} X_i &\sim \mathcal{U}(0,1) \ \Rightarrow & \mu = rac{1}{2} \end{aligned}$$

con Chebyshev

 $\overline{X}_n = realizzazione$ di \overline{X}_n dopo l'esperimento

Teorema (Legge (debole) dei Grandi Numeri)

Sia X_1, X_2, \ldots un campione aleatorio con $\mathbb{E}[X_i] = \mu$. Allora:

$$\lim_{n\to\infty}\mathbb{P}\left(\left|\overline{X}_n-\mu\right|0$$

ESEMPIO:

$$X_i \sim \mathcal{U}(0,1)$$
 $\Rightarrow \mu = \frac{1}{2}$

con Chebyshev

 $\overline{X}_n = realizzazione$ di \overline{X}_n dopo l'esperimento

$$X_i = \begin{cases} 1 & \text{se avrò successo all'} i\text{-esima prova} \\ 0 & \text{altrimenti} \end{cases}$$

- X_1, X_2, \dots i.i.d.
- $X_i \sim B(1,q)$ con q = probabilità di successo in una prova

$$X_i = \begin{cases} 1 & \text{se avrò successo all'} i\text{-esima prova} \\ 0 & \text{altrimenti} \end{cases}$$

- \bullet X_1, X_2, \dots i.i.d.
- $X_i \sim B(1,q)$ con q= probabilità di successo in una prova

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

$$X_i = \begin{cases} 1 & \text{se avrò successo all'} i\text{-esima prova} \\ 0 & \text{altrimenti} \end{cases}$$

- \bullet X_1, X_2, \dots i.i.d.
- $X_i \sim B(1,q)$ con q= probabilità di successo in una prova

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}}$$

$$X_i = egin{cases} 1 & ext{se avrò successo all'} i - ext{esima prova} \ 0 & ext{altrimenti} \end{cases}$$

- X_1, X_2, \dots i.i.d.
- $X_i \sim B(1,q)$ con q= probabilità di successo in una prova

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}} =: \frac{\text{frequenza empirica}}{\text{(dei successi)}}$$

$$X_i = \begin{cases} 1 & \text{se avrò successo all'} i\text{-esima prova} \\ 0 & \text{altrimenti} \end{cases}$$

- $X_1, X_2, ...$ i.i.d.
- $X_i \sim B(1,q)$ con q= probabilità di successo in una prova

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}} =: \text{frequenza empirica}$$

$$\mathbb{E}\left[X_{i}\right] = q \qquad \Rightarrow \qquad \overline{X}_{n} \xrightarrow[n \to \infty]{\mathbb{F}} q$$

$$X_i = \begin{cases} 1 & \text{se avrò successo all'} i\text{-esima prova} \\ 0 & \text{altrimenti} \end{cases}$$

- X_1, X_2, \dots i.i.d.
- ullet $X_i \sim B(1,q)$ con q= probabilità di successo in una prova

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}} =: \text{ frequenza empirica}$$

$$\mathbb{E}\left[X_{i}\right] = q \qquad \Rightarrow \qquad \overline{X}_{n} \xrightarrow[n \to \infty]{\mathbb{F}} q$$

$$Z_1, Z_2, \dots$$
 i.i.d. con $Z_i \sim f$

$$X_i = \begin{cases} 1 & \text{se avrò successo all'} i\text{-esima prova} \\ 0 & \text{altrimenti} \end{cases}$$

- X_1, X_2, \dots i.i.d.
- ullet $X_i \sim B(1,q)$ con q= probabilità di successo in una prova

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}} =: \text{ frequenza empirica}$$

$$\mathbb{E}\left[X_{i}\right] = q \qquad \Rightarrow \qquad \overline{X}_{n} \xrightarrow[n \to \infty]{\mathbb{F}} q$$

$$Z_1,\,Z_2,\ldots$$
 i.i.d. con $Z_i\sim f$ $X_i=egin{cases} 1 & ext{se troverò }Z_i ext{ nella classe }[a,b] \ 0 & ext{altrimenti} \end{cases}$

- $X_1, X_2, ...$ i.i.d.
- ullet $X_i \sim B(1,q)$ con q= probabilità di successo in una prova

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}} =: \text{ frequenza empirica}$$

$$\mathbb{E}\left[X_{i}\right] = q \qquad \Rightarrow \qquad \overline{X}_{n} \xrightarrow[n \to \infty]{\mathbb{F}} q$$

$$Z_1,\,Z_2,\ldots$$
 i.i.d. con $Z_i\sim f$ $X_i=egin{cases} 1 & ext{se troverò }Z_i ext{ nella classe }[a,b] \ 0 & ext{altrimenti} \end{cases}$

- $X_1, X_2, ...$ i.i.d.
- $X_i \sim B(1,q)$ con $q = \mathbb{P}(a \leq Z_i \leq b)$

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}} =: \text{ frequenza empirica}$$

$$\mathbb{E}\left[X_{i}\right] = q \qquad \Rightarrow \qquad \overline{X}_{n} \xrightarrow[n \to \infty]{\mathbb{F}} q$$

$$Z_1,\,Z_2,\ldots$$
 i.i.d. con $Z_i\sim f$ $X_i=egin{cases} 1 & ext{se troverò }Z_i ext{ nella classe }[a,b] \ 0 & ext{altrimenti} \end{cases}$

• X_1, X_2, \dots i.i.d.

•
$$X_i \sim B(1,q)$$
 con $q = \mathbb{P}(a \le Z_i \le b) = \int_a^b f(z) dz$

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}} =: \text{frequenza empirica}$$

$$\mathbb{E}\left[X_{i}\right] = q \qquad \Rightarrow \qquad \qquad \overline{X}_{n} \xrightarrow[n \to \infty]{\mathbb{P}} q$$

$$Z_1,\,Z_2,\ldots$$
 i.i.d. con $Z_i\sim f$ $X_i=egin{cases} 1 & ext{se troverò }Z_i ext{ nella classe }[a,b] \ 0 & ext{altrimenti} \end{cases}$

• $X_1, X_2, ...$ i.i.d.

•
$$X_i \sim B(1,q)$$
 con $q = \mathbb{P}(a \le Z_i \le b) = \int_a^b f(z) dz$

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}} =: FR([a, b])$$

$$\mathbb{E}\left[X_{i}\right] = q \qquad \Rightarrow \qquad \overline{X}_{n} \xrightarrow[n \to \infty]{\mathbb{F}} q$$

$$Z_1,\,Z_2,\ldots$$
 i.i.d. con $Z_i\sim f$ $X_i=egin{cases} 1 & ext{se troverò }Z_i ext{ nella classe }[a,b] \ 0 & ext{altrimenti} \end{cases}$

• X_1, X_2, \dots i.i.d.

•
$$X_i \sim B(1,q)$$
 con $q = \mathbb{P}(a \le Z_i \le b) = \int_a^b f(z) dz$

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}} =: FR([a, b])$$

$$\mathbb{E}\left[X_{i}\right] = q \qquad \Rightarrow \qquad \operatorname{FR}\left(\left[a,b\right]\right) \xrightarrow[n \to \infty]{\mathbb{P}} \int_{a}^{b} f(z) \, \mathrm{d}z$$

$$Z_1,\,Z_2,\ldots$$
 i.i.d. con $Z_i\sim f$ $X_i=egin{cases} 1 & ext{se troverò }Z_i ext{ nella classe }[a,b] \ 0 & ext{altrimenti} \end{cases}$

• X_1, X_2, \dots i.i.d.

•
$$X_i \sim B(1,q)$$
 con $q = \mathbb{P}(a \le Z_i \le b) = \int_a^b f(z) dz$

$$\overline{X}_n = \frac{X_1 + X_2 + \ldots + X_n}{n} = \frac{\text{num. di successi}}{\text{num. di prove}} =: FR([a, b])$$

$$\mathbb{E}\left[X_{i}\right] = q \qquad \Rightarrow \qquad \operatorname{FR}([a,b]) \xrightarrow[n \to \infty]{\mathbb{P}} \int_{a}^{b} f(z) \, \mathrm{d}z$$

La frequenza relativa converge all'area sottesa dalla densità!

$$Z_1, Z_2, \dots$$
 i.i.d. con $Z_i \sim f$
$$f(z) = \begin{cases} \mathrm{e}^{-z} & \text{se } z \geq 0 \\ 0 & \text{se } z < 0 \end{cases}$$

Legge dei grandi numeri e istogrammi

Legge dei grandi numeri e istogrammi

Legge dei grandi numeri e istogrammi

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim f$, qual è la densità di \overline{X}_n ?

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim f$, qual è la densità di \overline{X}_n ?

• Se n = 1: $\overline{X}_n = X_1 \sim f$ (ovviamente!)

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim f$, qual è la densità di \overline{X}_n ?

- Se n = 1: $\overline{X}_n = X_1 \sim f$ (ovviamente!)
- Se n > 1 è piccolo: non lo so

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim f$, qual è la densità di \overline{X}_n ?

- Se n = 1: $\overline{X}_n = X_1 \sim f$ (ovviamente!)
- Se n > 1 è piccolo : non lo so
- Se n > 1 è grande : esiste il famoso...

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim f$, qual è la densità di \overline{X}_n ?

- Se n = 1: $\overline{X}_n = X_1 \sim f$ (ovviamente!)
- Se n > 1 è piccolo : non lo so
- Se n > 1 è grande : esiste il famoso...

Teorema del Limite Centrale (versione informale)

Se
$$X_1, \ldots, X_n$$
 sono i.i.d. con $\mathbb{E}[X_i] = \mu$ e $\mathrm{var}[X_i] = \sigma^2$, allora $\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$ se n è 'grande'

 \approx : 'ha circa densità'

Teorema del Limite Centrale (versione informale)

Se X_1, \ldots, X_n sono i.i.d. con $\mathbb{E}[X_i] = \mu$ e $\text{var}[X_i] = \sigma^2$, allora

$$\overline{X}_n \approx N\left(\mu, \, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

OSSERVAZIONI:

Tipicamente, 'grande' = 'maggiore di 30'

Teorema del Limite Centrale (versione informale)

Se X_1, \ldots, X_n sono i.i.d. con $\mathbb{E}[X_i] = \mu$ e $\text{var}[X_i] = \sigma^2$, allora

$$\overline{X}_n \approx N\left(\mu, \, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

OSSERVAZIONI:

- Tipicamente, 'grande' = 'maggiore di 30'
- Se $X_i \sim N(\mu, \sigma^2)$, già sapevamo che $\overline{X}_k \sim N(\mu, \frac{\sigma^2}{n})$

Teorema del Limite Centrale (versione informale)

Se X_1, \ldots, X_n sono i.i.d. con $\mathbb{E}[X_i] = \mu$ e $\text{var}[X_i] = \sigma^2$, allora

$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

OSSERVAZIONI:

- Tipicamente, 'grande' = 'maggiore di 30'
- Se $X_i \sim N(\mu, \sigma^2)$, già sapevamo che $\overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$
- Il TLC vale qualunque sia la densità delle X_i

Teorema del Limite Centrale (versione informale)

Se X_1, \ldots, X_n sono i.i.d. con $\mathbb{E}[X_i] = \mu$ e $\text{var}[X_i] = \sigma^2$, allora

$$\overline{X}_n \approx N\left(\mu, \, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

OSSERVAZIONI:

- Tipicamente, 'grande' = 'maggiore di 30'
- Se $X_i \sim N(\mu, \sigma^2)$, già sapevamo che $\overline{X}_n \sim N\left(\mu, \frac{\sigma^2}{n}\right)$
- Il TLC vale qualunque sia la densità delle X_i
- Il TLC non dice nulla sulla densità delle X_i

Teorema del Limite Centrale (versione informale)

$$\overline{X}_n \approx N\left(\mu, \, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

Teorema del Limite Centrale (versione informale)

$$\overline{X}_n \approx N\left(\mu, \, rac{\sigma^2}{n}
ight)$$
 se n è 'grande'

Teorema del Limite Centrale (versione informale)

$$\overline{X}_n \approx N\left(\mu, \, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

Teorema del Limite Centrale (versione informale)

$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

Teorema del Limite Centrale (versione informale)

$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

Teorema del Limite Centrale (versione informale)

$$\overline{X}_n pprox \mathcal{N}\left(\mu,\,rac{\sigma^2}{n}
ight)$$
 se n è 'grande'

Teorema del Limite Centrale (versione informale)

$$\overline{X}_n \approx N\left(\mu, \, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

Teorema del Limite Centrale (versione informale)

$$\overline{X}_n \approx N\left(\mu, \, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

Teorema del Limite Centrale (versione informale)

$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

Teorema del Limite Centrale (versione informale)

$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

Teorema del Limite Centrale (versione informale)

Se X_1, \ldots, X_n sono i.i.d. con $\mathbb{E}[X_i] = \mu$ e var $[X_i] = \sigma^2$, allora

$$\overline{X}_n \approx N\left(\mu, \frac{\sigma^2}{n}\right)$$
 se n è 'grande'

n = 25 n = 25Ma allora $f_{\overline{X}_n}$ diverge!

Servirebbe un enunciato più preciso...

$$X_i \sim N(0.5, 1)$$

$$X_i \sim \mathcal{E}(1)$$

Teorema del Limite Centrale (versione formale)

Se
$$X_1, X_2, \ldots$$
 sono i.i.d. con $\mathbb{E}[X_i] = \mu$ e $\operatorname{var}[X_i] = \sigma^2$, allora

$$\lim_{n\to\infty} \mathbb{P}\left(\frac{\overline{X}_n - \mu}{\frac{\sigma}{\sqrt{n}}}\right) \leq z\right) = \Phi(z) \quad \text{per ogni } z \in \mathbb{R}$$

standardizzazione di \overline{X}_n

Teorema del Limite Centrale (versione formale)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Teorema del Limite Centrale (versione formale)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Teorema del Limite Centrale (versione formale)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Teorema del Limite Centrale (versione formale)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Teorema del Limite Centrale (versione formale)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Teorema del Limite Centrale (versione formale)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Teorema del Limite Centrale (versione formale)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Teorema del Limite Centrale (versione formale)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Teorema del Limite Centrale (versione formale)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Teorema del Limite Centrale (versione formale)

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\overline{X}_n-\mu}{\frac{\sigma}{\sqrt{n}}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Qual è la densità di $X_1 + X_2 + ... + X_n$ quando n è grande?

Se X_1, \ldots, X_n sono i.i.d. e n è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + \ldots + X_n = n \overline{X}_n \approx N$$

perché

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

Se X_1, \ldots, X_n sono i.i.d. e n è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + \ldots + X_n = n \overline{X}_n \approx N$$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

$$\Rightarrow \quad \mathbb{E}\left[X_1+\ldots+X_n\right] = \mathbb{E}\left[X_1\right]+\ldots+\mathbb{E}\left[X_n\right] \quad \quad \text{linearità di } \mathbb{E}$$

Se X_1, \dots, X_n sono i.i.d. e n è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + \ldots + X_n = n \overline{X}_n \approx N$$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = \underbrace{\mathbb{E}[X_1]}_{\mu} + \ldots + \underbrace{\mathbb{E}[X_n]}_{\mu}$

Se X_1, \ldots, X_n sono i.i.d. e n è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + \ldots + X_n = n \overline{X}_n \approx N$$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = \underbrace{\mathbb{E}[X_1]}_{\mu} + \ldots + \underbrace{\mathbb{E}[X_n]}_{\mu} = n \mu$

Se $X_1,...,X_n$ sono i.i.d. e n è grande, allora per il TLC $\overline{X}_n \approx N \implies X_1 + ... + X_n = n \overline{X}_n \approx N$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = n \mu$

Se X_1, \ldots, X_n sono i.i.d. e n è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + \ldots + X_n = n \overline{X}_n \approx N$$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = n \mu$

•
$$\operatorname{var}[X_i] = \sigma^2$$

$$\Rightarrow$$
 $\operatorname{var}\left[X_{1}+\ldots+X_{n}\right]=\operatorname{var}\left[X_{1}\right]+\ldots+\operatorname{var}\left[X_{n}\right]$ indipendenza delle X_{i}

Se $X_1,...,X_n$ sono i.i.d. e n è grande, allora per il TLC $\overline{X}_n \approx N \implies X_1 + ... + X_n = n \overline{X}_n \approx N$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = n \mu$

•
$$\operatorname{var}[X_i] = \sigma^2$$

$$\Rightarrow \operatorname{var}[X_1 + \ldots + X_n] = \underbrace{\operatorname{var}[X_1]}_{\sigma^2} + \ldots + \underbrace{\operatorname{var}[X_n]}_{\sigma^2}$$

Se X_1, \ldots, X_n sono i.i.d. e n è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad X_1 + \ldots + X_n = n \overline{X}_n \approx N$$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = n \mu$

•
$$\operatorname{var}[X_i] = \sigma^2$$

$$\Rightarrow \operatorname{var}[X_1 + \ldots + X_n] = \underbrace{\operatorname{var}[X_1]}_{\sigma^2} + \ldots + \underbrace{\operatorname{var}[X_n]}_{\sigma^2} = n \sigma^2$$

Se $X_1,...,X_n$ sono i.i.d. e n è grande, allora per il TLC $\overline{X}_n \approx N \implies X_1 + ... + X_n = n \overline{X}_n \approx N$

$$Z \sim N \quad \Rightarrow \quad aZ + b \sim N$$

•
$$\mathbb{E}[X_i] = \mu$$

 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = n \mu$

•
$$\operatorname{var}\left[X_{i}\right] = \sigma^{2}$$

$$\Rightarrow$$
 var $[X_1 + \ldots + X_n] = n \sigma^2$

Se X_1, \ldots, X_n sono i.i.d. e n è grande, allora per il TLC

$$\overline{X}_{n} \approx N \quad \Rightarrow \quad \underline{X}_{1} + \ldots + X_{n} = n \overline{X}_{n} \approx N$$
Herché
$$Z \sim N \quad \Rightarrow \quad aZ + L \sim N$$

$$\bullet \quad \mathbb{E}[X_{i}] = \mu$$

$$\Rightarrow \quad \mathbb{E}[X_{1} + \ldots + X_{n}] = n \mu$$

$$\bullet \quad \text{var}[X_{i}] = \sigma^{2}$$

$$\Rightarrow \quad \text{var}[X_{1} + \ldots + X_{n}] = n \sigma^{2}$$

$$\mathbb{E}\left[X_{i}\right] = \mu$$

$$\Rightarrow \mathbb{E}\left[X_{1} + \ldots + X_{n}\right] = n \mu$$

•
$$\operatorname{var}\left[X_{i}\right] = \sigma^{2}$$

$$\Rightarrow \operatorname{var}[X_1 + \ldots + X_n] = n \sigma^2$$

$$\Rightarrow \boxed{X_1 + \ldots + X_n \approx N(n\mu, n\sigma^2)}$$

Se X_1, \ldots, X_n sono i.i.d. e *n* è grande, allora per il TLC

$$\overline{X}_n \approx N \quad \Rightarrow \quad \underline{X_1 + \ldots + X_n = n \overline{X}_n \approx N}$$

perché

$$Z \sim N \quad \Rightarrow \quad aZ + t \sim \Lambda$$

$$\Rightarrow \quad \mathbb{E}\left[X_1 + \ldots + X_n\right] = n\,\mu$$

$$\Rightarrow \mathbb{E}[X_1 + \dots + X_N] = N$$

$$\Rightarrow \operatorname{var}[X_1 + \ldots + X_n] = n \sigma^2$$

erché
$$Z \sim N \Rightarrow aZ + k \sim N$$

• $\mathbb{E}[X_i] = \mu$
 $\Rightarrow \mathbb{E}[X_1 + \ldots + X_n] = n\mu$

• $\operatorname{var}[X_i] = \sigma^2$
 $X_1 + \ldots + X_n \approx N(n\mu, n\sigma^2)$

Teorema del Limite Centrale (versione equivalente)

Se $X_1, X_2,...$ sono i.i.d. con $\mathbb{E}[X_i] = \mu$ e $\text{var}[X_i] = \sigma^2$, allora

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{X_1+\ldots+X_n-n\,\mu}{\sqrt{n\,\sigma^2}}\leq z\right)=\Phi(z)\qquad\text{per ogni }z\in\mathbb{R}$$

Se
$$X_1, \ldots, X_n$$
 sono i.i.d. con $X_i \sim B(1, q)$, allora $X_1 + \ldots + X_n \sim B(n, q)$

$$X_1 + \ldots + X_n \sim B(n, q)$$

 $X_1 + \ldots + X_n \approx N(n \mu, n \sigma^2)$

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim B(1, q)$, allora, se n è grande,

$$\left. \begin{array}{l} X_1 + \ldots + X_n \sim \textit{B}(n,\,q) \\ X_1 + \ldots + X_n \approx \textit{N}\left(n\,\mu,\,n\,\sigma^2\right) \end{array} \right\} \ \Rightarrow \ \textit{B}(n,\,q) \simeq \textit{N}\big(n\,\mu,\,n\,\sigma^2\big)$$

Quali sono i parametri della gaussiana?

$$\left. \begin{array}{l} X_1 + \ldots + X_n \sim \textit{B}(\textit{n}, \textit{q}) \\ X_1 + \ldots + X_n \approx \textit{N}\left(\textit{n}\,\mu, \, \textit{n}\,\sigma^2\right) \end{array} \right\} \; \Rightarrow \; \; \textit{B}(\textit{n}, \, \textit{q}) \simeq \textit{N}\left(\textit{n}\,\mu, \, \textit{n}\,\sigma^2\right) \label{eq:special_eq}$$

$$\bullet \ \mu = \mathbb{E}\left[X_i\right] = q$$

$$\left. \begin{array}{l} X_1 + \ldots + X_n \sim \textit{B}(\textit{n}, \textit{q}) \\ X_1 + \ldots + X_n \approx \textit{N}\left(\textit{n}\,\mu, \, \textit{n}\,\sigma^2\right) \end{array} \right\} \; \Rightarrow \; \; \textit{B}(\textit{n}, \, \textit{q}) \simeq \textit{N}\left(\textit{n}\,\mu, \, \textit{n}\,\sigma^2\right) \label{eq:special_problem}$$

- $\mu = \mathbb{E}[X_i] = q$
- $\sigma^2 = \text{var}[X_i] = q(1-q)$

$$\left. \begin{array}{l} X_1 + \ldots + X_n \sim \textit{B}(n,\,q) \\ X_1 + \ldots + X_n \approx \textit{N}\left(n\,\mu,\,n\,\sigma^2\right) \end{array} \right\} \; \Rightarrow \; \underbrace{\textit{B}(n,\,q) \simeq \textit{N}\left(n\,\mu,\,n\,\sigma^2\right)}_{\parallel}$$

•
$$\mu = \mathbb{E}[X_i] = q$$

$$\bullet \ \mu = \mathbb{E}[X_i] = q$$

$$\bullet \ \sigma^2 = \text{var}[X_i] = q(1-q)$$

$$\Rightarrow \boxed{B(n, q) \simeq N(nq, nq(1-q))}$$

Se X_1, \ldots, X_n sono i.i.d. con $X_i \sim B(1, q)$, allora, se n è grande,

$$\left. \begin{array}{l} X_1 + \ldots + X_n \sim \textit{B}(n,\,q) \\ X_1 + \ldots + X_n \approx \textit{N}\left(n\,\mu,\,n\,\sigma^2\right) \end{array} \right\} \; \Rightarrow \; \underbrace{\textit{B}(n,\,q) \simeq \textit{N}\left(n\,\mu,\,n\,\sigma^2\right)}_{\parallel}$$

$$\bullet \mu = \mathbb{E}[X_i] = q$$

$$\bullet \sigma^2 = \operatorname{var}[X_i] = q(1-q)$$

$$\Rightarrow \boxed{B(n, q) \simeq N(nq, nq(1-q))}$$

Approssimazione gaussiana della binomiale (versione formale)

Se $Y_n \sim B(n,q)$ per ogni n, allora

$$\lim_{n\to\infty} \mathbb{P}\left(\frac{Y_n - nq}{\sqrt{nq(1-q)}} \le z\right) = \Phi(z) \quad \text{per ogni } z \in \mathbb{R}$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$\mathbb{P}(Y_{30}<20) = \sum_{k=0}^{19} p_{Y_{30}}(k)$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$\mathbb{P}(Y_{30}<20)=\sum_{k=0}^{19}p_{Y_{30}}(k)$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$\mathbb{P}(Y_{30} < 20) = \sum_{k=0}^{19} p_{Y_{30}}(k) = \sum_{k=0}^{19} {30 \choose k} 0.5^k (1 - 0.5)^{30-k}$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$\mathbb{P}(Y_{30} < 20) = \sum_{k=0}^{19} p_{Y_{30}}(k) = \sum_{k=0}^{19} {30 \choose k} 0.5^k (1 - 0.5)^{30-k} = ???$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q))$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 $Y_{30} =$ num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

 $\mathbb{P}(Y_{30} < 20) = \mathbb{P}\begin{pmatrix} Y_{30} & 20 \end{pmatrix}$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

 $\mathbb{P}(Y_{30} < 20) = \mathbb{P}(Y_{30} - nq) < 20 - 30 \cdot 0.5$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

$$\mathbb{P}\left(Y_{30} < 20\right) = \mathbb{P}\left(\frac{Y_{30} - nq}{\sqrt{nq(1-q)}} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}\left(\underbrace{\frac{Y_{30} - nq}{\sqrt{nq(1-q)}}}_{\approx N(0,1)} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 $Y_{30} =$ num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}\left(\underbrace{\frac{Y_{30} - nq}{\sqrt{nq(1-q)}}}_{\approx N(0,1)} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

$$\simeq \Phi\left(\frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 $Y_{30} =$ num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}\left(\underbrace{\frac{Y_{30} - nq}{\sqrt{nq(1-q)}}}_{\approx N(0,1)} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

$$\simeq \Phi\left(\frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right) = \Phi(1.826)$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 Y_{30} = num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}\left(\underbrace{\frac{Y_{30} - nq}{\sqrt{nq(1-q)}}}_{\approx N(0,1)} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

$$\simeq \Phi\left(\frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right) = \Phi(1.826) = 96.638\%$$

ESEMPIO: Se lancio 30 volte una moneta equilibrata, qual è la probabilità di fare testa meno di 20 volte?

SOLUZIONE: Definisco la v.a.

 $Y_{30} =$ num. di teste nei 30 lanci $\sim B(30, 0.5)$

$$B(30, 0.5) \simeq N(nq, nq(1-q)) = N(30 \cdot 0.5, 30 \cdot 0.5 \cdot (1-0.5))$$

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}\left(\underbrace{\frac{Y_{30} - nq}{\sqrt{nq(1-q)}}}_{\approx N(0,1)} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

$$\simeq \Phi\left(\frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right) = \Phi(1.826) = 96.638\%$$

Correzione di continuità

Per approssimare una v.a. discreta Y con una assolutamente continua, è meglio usare le identità

"
$$Y < 20$$
" = " $Y \le 19$ " = " $Y \le 19$ " = " $Y \le 19$ ".

B (30) dove
$$\frac{1}{qui}$$
 mettere \leq 0 $<$ non fa differenza

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}\left(\underbrace{\frac{Y_{30} - nq}{\sqrt{nq(1-q)}}}_{\approx N(0,1)} < \frac{20 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1-0.5)}}\right)$$

$$\simeq \Phi\left(\frac{20-30\cdot 0.5}{\sqrt{30\cdot 0.5\cdot (1-0.5)}}\right) = \Phi(1.826) = 96.638\%$$

Correzione di continuità

Per approssimare una v.a. discreta Y con una assolutamente continua, è meglio usare le identità

"
$$Y < 20$$
" = " $Y \le 19$ " = "

tol calco "Y < 20" = " $Y \le 19$ " = " $Y \le 19$ " = " $Y \le 19$ ".5" B (30, (dove qui mettere \le 0 < non fa differenza

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}(Y_{30} \le 19.5)$$

$$\simeq \Phi\left(\frac{20-30\cdot 0.5}{\sqrt{30\cdot 0.5\cdot (1-0.5)}}\right) = \Phi(1.826) = 96.638\%$$

Approssimazione gaussiana della binomiale

Correzione di continuità

Per approssimare una v.a. discreta Y con una assolutamente continua, è meglio usare le identità

"
$$Y < 20$$
" = " $Y \le 19$ " = " $Y \le 19.5$ "

fol calco "Y < 20" = " $Y \le 19$ " = " $Y \le 19$ " = " $Y \le 19$.5" B (30, dove qui mettere ≤ 0 < non fa differenza

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}(Y_{30} \le 19.5)$$

=

$$\simeq \Phi\left(\frac{19.5 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1 - 0.5)}}\right) = \Phi(1.826) = 96.638\%$$

Approssimazione gaussiana della binomiale

Correzione di continuità

Per approssimare una v.a. discreta Y con una assolutamente continua, è meglio usare le identità

"
$$Y < 20$$
" = " $Y \le 19$ " = " $Y \le 19$ " = " $Y \le 19$.5"

fol calco "Y < 20" = " $Y \le 19$ " = " $Y \le 19$ " = " $Y \le 19$.5" B (30, (dove qui mettere \le 0 < non fa differenza

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}(Y_{30} \le 19.5)$$
 $= \dots$

$$\simeq \Phi\left(\frac{19.5 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1 - 0.5)}}\right) = \Phi(1.643) = 96.638\%$$

Approssimazione gaussiana della binomiale

Correzione di continuità

Per approssimare una v.a. discreta Y con una assolutamente continua, è meglio usare le identità

"
$$Y < 20$$
" = " $Y \le 19$ " = " $Y \le 19$ ".

fol calco "Y < 20" = " $Y \le 19$ " = " $Y \le 19$ " = " $Y \le 19$.5" B (30, dove qui mettere ≤ 0 < non fa differenza

$$\mathbb{P}(Y_{30} < 20) = \mathbb{P}(Y_{30} \le 19.5)$$
 $= \dots$

$$\simeq \Phi\left(\frac{19.5 - 30 \cdot 0.5}{\sqrt{30 \cdot 0.5 \cdot (1 - 0.5)}}\right) = \Phi(1.643) = 94.950\%$$

Approssimazione gaussiana vs. poissoniana

$$B(n,q) \simeq \left\{egin{array}{ll} N(n\,q,\,n\,q(1-q)) & ext{se} & egin{array}{ll} n\geq 20 \ n\,q\geq 5 \ n(1-q)\geq 5 \end{array}
ight.$$

Approssimazione gaussiana vs. poissoniana

$$B(n,q) \simeq \left\{egin{array}{ll} N(n\,q,\,n\,q(1-q)) & ext{se} & egin{array}{ll} n\geq 20 \\ n\,q\geq 5 \\ n(1-q)\geq 5 \end{array}
ight. \\ \mathcal{P}(n\,q) & ext{se} & egin{array}{ll} n\geq 20 \\ q\leq 0.01 \\ n\,q \simeq 1 \end{array}
ight.$$

Approssimazione gaussiana vs. poissoniana

$$B(n,q) \simeq \left\{ egin{array}{ll} N(n\,q,\,n\,q(1-q)) & ext{se} & egin{array}{ll} n\geq 20 \\ n\,q\geq 5 \\ n(1-q)\geq 5 \end{array}
ight. \\ \mathcal{P}(n\,q) & ext{se} & egin{array}{ll} n\geq 20 \\ q\leq 0.01 \\ n\,q\simeq 1 \end{array}
ight.$$

$$\Rightarrow$$
 $\mathcal{P}(\lambda) \simeq \mathcal{N}(\lambda, \lambda)$ se $\lambda \geq 5$

Se misuriamo un lato del tavolo, il risultato sarà la v.a.

$$L = \ell + X_1 + X_2 + \ldots + X_n$$

dove:

 $\ell = \text{lunghezza } vera \text{ del lato} \quad (costante deterministica})$

 $X_1 =$ errore dovuto alla dilatazione termica del tavolo (v.a.)

 $X_2 =$ errore dovuto alla dilatazione termica del metro (v.a.)

 $X_3 =$ errore dovuto all'imprecisione dello sperimentatore (v.a.)

.

Se misuriamo un lato del tavolo, il risultato sarà la v.a.

$$L = \ell + X_1 + X_2 + \ldots + X_n$$

dove:

 $\ell = \text{lunghezza } \textit{vera} \text{ del lato} \quad (\underline{\text{costante deterministica}})$

 X_1 = errore dovuto alla dilatazione termica del tavolo (v.a.)

 X_2 = errore dovuto alla dilatazione termica del metro (v.a.)

 $X_3 =$ errore dovuto all'imprecisione dello sperimentatore (v.a.)

.

IPOTESI: $X_1, X_2, ..., X_n$ sono i.i.d. con $\mathbb{E}[X_i] = 0$ e n è grande

Se misuriamo un lato del tavolo, il risultato sarà la v.a.

$$L = \ell + \underbrace{X_1 + X_2 + \ldots + X_n}_{E}$$

 $\ell = \text{lunghezza } \textit{vera} \text{ del lato} \quad (\text{costante deterministica})$

 X_1 = errore dovuto alla dilatazione termica del tavolo (v.a.)

 X_2 = errore dovuto alla dilatazione termica del metro (v.a.)

 $X_3 =$ errore dovuto all'imprecisione dello sperimentatore (v.a.)

.

dove:

IPOTESI: $X_1, X_2, ..., X_n$ sono i.i.d. con $\mathbb{E}[X_i] = 0$ e n è grande

CONSEGUENZA:
$$E := X_1 + X_2 + ... + X_n \underset{\mathsf{TLC}}{\approx} N(0, \sigma_E^2)$$

 $\operatorname{con} \ \sigma_E^2 = n \operatorname{var} [X_i]$

Se misuriamo un lato del tavolo, il risultato sarà la v.a.

$$L = \ell + X_1 + X_2 + \ldots + X_n = \ell + E \approx N(\ell, \sigma_E^2)$$

dove:

 $\ell = \text{lunghezza } \textit{vera} \text{ del lato} \quad (\underline{\text{costante deterministica}})$

 X_1 = errore dovuto alla dilatazione termica del tavolo (v.a.)

 X_2 = errore dovuto alla dilatazione termica del metro (v.a.)

 X_3 = errore dovuto all'imprecisione dello sperimentatore (v.a.)

.

IPOTESI: $X_1, X_2, ..., X_n$ sono i.i.d. con $\mathbb{E}[X_i] = 0$ e n è grande

CONSEGUENZA:
$$E := X_1 + X_2 + ... + X_n \underset{\mathsf{TLC}}{\approx} N(0, \sigma_E^2)$$

 $\operatorname{con} \ \sigma_E^2 = n \operatorname{var} [X_i]$

Cose da non fare MAI

• Credere che il TLC renda le X_i gaussiane quando n è grande:

È assurdo!

È \overline{X}_n che diventa gaussiana. La densità delle X_i non può cambiare né se n = 1 né se n = 10 né se n = 10000000

Cose da non fare MAI

• Credere che il TLC renda le X_i gaussiane quando n è grande:

È assurdo!

È \overline{X}_n che diventa gaussiana. La densità delle X_i non può cambiare né se n = 1 né se n = 10 né se n = 10000000

• Credere che $X_1 + X_2 + ... + X_n$ sia la stessa cosa di nX_1 :

Non ha senso!

Se lancio un dado n = 2 volte ed esce $x_1 = 4$ al primo lancio e $x_2 = 1$ al secondo, la somma dei due lanci non può essere $n x_1 = 8$, ma è piuttosto $x_1 + x_2 = 5$.