Учреждение образования «БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ»

Кафедра информатики

Отчет по лабораторной работе №14 Аппроксимация граничных условий второго рода в методе конечных разностей на примере уравнения теплопроводности

> Выполнил: студент гр. 153505 Власенко Тимофей Павлович

Руководитель:

Доцент

Анисимов Владимир Яковлевич

Содержание

- 1. Цель работы
- 2. Теоретические сведения
- 3. Решение задания
- 4. Выводы

Цель работы

Ознакомиться с наиболее часто применяемыми способами аппроксимации граничных условий второго рода (граничных условий (ГУ) Неймана) в методе конечных разностей (на примере ГУ для одномерного нестационарного уравнения теплопроводности). Разработать соответствующие алгоритмы и программные реализации для решения поставленной задачи.

Теоретические сведения

Задачи, которые будут использоваться для анализа свойств численных решений с ГУ второго рода, формулируются так: в стержне длиной L с mennousonuposahhoù боковой поверхностью торец x=0 noddepжusaemcs при nocmoshhoù температуре T_0 (ГУ первого рода), а торец x=1 - mennousonuposah (ГУ второго рода); температуропроводность материала стержня постоянна и равна a; в начальный момент времени t=0 стержень нагрет до температуры $T_{\text{нач}}(x)$ (координата x отсчитывается от левого торца стержня (рис. 2.4)). Найти распределение температуры по стержню в любой момент времени, т. е. найти функцию T(x, t) для $0 < x \le L$ и t > 0.

Рис. 2.4.

Стержень круглого сечения нарисован условно — сечение может иметь любую форму, и если боковая поверхность теплоизолирована, то температура любой точки стержня может зависеть только от координаты x и не будет зависеть от координаты поперек стержня).

Искомая функция T(x,t) является решением одномерного уравнения теплопроводности, которое в безразмерных координатах имеет вид:

$$\frac{\partial T}{\partial t} = k \frac{\partial^2 T}{\partial x^2}, \ 0 < x < 1, \ 0 < t \le T.$$

Граничные условия:

$$T(0,t) = T_0$$
, $\frac{\partial T(1,t)}{\partial x} = 0$, для $0 < t \le T$

(на границе x = 0 граничное условие первого рода, а при x = 1 – второго).

Начальные условия: $T(x,0) = T_{\text{нач}}(x)$ при 0 < x < 1.

Способы реализации ГУ второго рода

Методы конечных разностей, применяемые для численного решения задач с граничными условиями второго (и третьего) рода, не имеют никаких принципиальных отличий от методов, применяемых для задач с ГУ первого рода. Для решения поставленной задачи методом конечных разностей необходимо представить граничное условие второго рода в «естественном» для этого метода виде, т. е. с использованием численного решения (величин T_i^n). Иными словами, производную в граничном условии надо заменить ее разностной аппроксимацией, а это можно сделать многими способами. Рассмотрим только два способа реализации ГУ второго рода, которые будут использованы в расчетах. При рассмотрении используем ту же равномерную сетку, что и в лабораторной работе N13.

ЗАДАНИЕ К ЛАБОРАТОРНОЙ РАБОТЕ №14

ЗАДАЧА1. Найти приближенное решение начально-краевой задачи для уравнения теплопроводности:

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} + f(x,t), \quad a < x < b, \quad 0 < t \le T,$$

$$u(a,t) = g_1(t), \quad \frac{\partial u}{\partial t}(b,t) = g_2(t), \quad 0 < t \le T,$$

$$u(x,0) = \varphi(x), \quad a \le x \le b,$$

используя явную и неявную разностные схемы. Исходные данные указаны в табл. 2.9. Изобразить графики зависимости приближенного решения от x при t=0, 2τ , 4τ ,...T.

№	а	b	k	T	$\varphi(x)$	$g_1(t)$	$g_2(t)$	f(x,t)
7	0	1	2	0.02	0	0	$\sin(10t)$	x (1-x)

Общая постановка задачи

Дано следующее уравнение:

$$rac{\partial u}{\partial t} = rac{\partial^2 u}{\partial x^2} + f(x), x \in [a,b], t \in [0,T]$$

Зададим оператор L:

$$L = \frac{\partial}{\partial t} - \frac{\partial^2}{\partial x^2}$$

Для аппроксимации оператора L с помощью явной схемы используем следующие точки:

шаблон неявной схемы

Обозначим для удобства точки следующим образом:

$$x_{j,k} = (x, t)$$

Тогда, обозначив разность

$$x_{j,k} - x_{j-1,k} = h$$

A

$$x_{j,k+1}-x_{j,k}=\tau$$

Получаем:

$$x_{j-1,k} = (x-h,t)$$

$$x_{j+1,k} = \left(x+h,t\right)$$

1. Явная схема

$$egin{aligned} rac{\partial u}{\partial t} &= rac{u(x,t+ au) - u(x,t)}{ au} \ &rac{\partial^2 u}{\partial x^2} &= rac{u(x+h,t) - 2u(x,t) + y(x-h,t)}{h^2} \end{aligned}$$

Таким образом результат оператора Lu:

$$Lu=rac{u(x,t+ au)-u(x,t)}{ au}-rac{u(x+h,t)-2u(x,t)+y(x-h,t)}{h^2}$$

Теперь давайте выразим отсюда u(x,t+ au):

$$u(x,t+ au) = u(x,t) + au(rac{u(x+h,t)}{h^2} - 2rac{u(x,t)}{h^2} + rac{u(x-h,t)}{h^2})$$

Итого приведя слагаемые:

$$u(x,t+ au) = rac{ au}{h^2} u(x-h,t) + (1-rac{2 au}{h^2}) u(x,t) + rac{ au}{h^2} u(x+h,t)$$

2. Неявная схема

$$rac{\partial u}{\partial t} = rac{u(x,t+ au) - u(x,t)}{ au} \ rac{\partial^2 u}{\partial x^2} = rac{u(x+h,t+ au) - 2u(x,t+ au) + y(x-h,t+ au)}{h^2}$$

Таким образом результат оператора Lu:

$$Lu=rac{u(x,t+ au)-u(x,t)}{ au}-rac{u(x+h,t+ au)-2u(x,t+ au)+y(x-h,t+ au)}{h^2}$$

Теперь давайте выразим отсюда u(x,t):

$$u(x,t) = u(x,t+ au) - au(rac{u(x+h,t+ au)}{h^2} + 2rac{u(x,t+ au)}{h^2} - rac{u(x-h,t+ au)}{h^2})$$

Итого приведя слагаемые:

$$u(x,t) = -rac{ au}{h^2}u(x-h,t+ au) + (1+rac{2 au}{h^2})u(x,t+ au) - rac{ au}{h^2}u(x+h,t+ au)$$

Левая разность

Используем аппроксимацию производной:

$$rac{\partial u}{\partial x} = rac{u(x_n, au_N) - u(x_{n-1}, au_N)}{h}$$

Тогда:

$$g_2(au_N) = rac{u(x_n, au_N) - u(x_{n-1}, au_N)}{h}$$

И

$$u(x_n,\tau_N)=u(x_{n-1},\tau_N)+hg_2(\tau_N)$$

Центральная разность

$$rac{\partial u}{\partial x} = rac{u(x_{n+1}, au_N) - u(x_{n-1}, au_N)}{2h}$$

Тогда:

$$g_2(au_N) = rac{u(x_{n+1}, au_N) - u(x_{n-1}, au_N)}{2h}$$

И

$$u(x_{n+1}, \tau_N) = u(x_{n-1}, \tau_N) + 2hg_2(\tau_N)$$

Формула для явной схема с учётом константы:

$$u(x,t+\tau) = \frac{c \cdot \tau}{h^2} u(x-h,t) + (1 - \frac{c \cdot \tau}{h^2}) u(x,t) + \frac{c \cdot \tau}{h^2} u(x+h,t) + \tau f(x), c - const$$

Первый метод

Правое краевое условие задано следующим образом:

$$\frac{\partial u}{\partial x}(b, t) = g_2(t)$$

Для первого метода правое краевое условие будем аппроксимировать по формуле:

$$\frac{\partial T}{\partial x} = \frac{T_N^n - T_{n-1}^n}{h}$$

Таким образом:

$$T_N^n = hg_2(t) + T_{N-1}^n$$

равое граничное условие будем аппроксимировать по обычной формуле при помощи добавления риктивных узлов. Для этого аппроксимируем граничное условие следующим образом:

$$\frac{\partial T}{\partial x} = \frac{T_{N+1}^n - T_{N-1}^n}{2h}$$

тсюда выразим фиктивный узел:

$$T_{N+1}^n = 2hg_2(t) + T_{N-1}^n$$

одставив это в нашу исходную формулу получим:

$$u(b,t+\tau) = \frac{c \cdot \tau}{h^2} u(b-h,t) + (1 - \frac{c \cdot \tau}{h^2}) u(b,t) + \frac{c \cdot \tau}{h^2} (2hg_2(t) + T_{N-1}^n) + \tau f(x), c - const$$

2. Неявная схема

Для каждой строки матрицы (кроме первой - заполняется начальным условием) необходимо решить систему линейных уравнений (каждый текущий член, зависит от следующего):

$$u(x,t) + \tau f(t) = -\frac{c\tau}{h^2}u(x-h,t+ au) + (1+\frac{2c au}{h^2})u(x,t+ au) - \frac{c au}{h^2}u(x+h,t+ au)$$

c = const

Таким образом для нахождения решения можно заполнить матрицу коэффициентов и затем на каждом новом временном слое находить новый вектор свободных членов, т.е матрица будет иметь вид:

10. . . .

 $k_1k_2k_3...$

 $0k_1k_2k_3...$

.....

0....-11

Взависимости от способа будут отличаться последние строки в нашей матрице коэффициентов и векторе свободных членов)

$$u(x,t) + \tau f(t) = -\frac{c\tau}{h^2}u(x-h,t+\tau) + (1+\frac{2c\tau}{h^2})u(x,t+\tau) - \frac{c\tau}{h^2}u(x+h,t+\tau)$$

c = const

Первый способ

Правое краевое условие задано следующим образом:

$$\frac{\partial u}{\partial x}(b, t) = g_2(t)$$

Для первого метода правое краевое условие будем аппроксимировать по формуле:

$$\frac{\partial T}{\partial x} = \frac{T_N^n - T_{n-1}^n}{h}$$

Таким образом:

$$-T_{N-1}^n + T_N^n = hg_2(t)$$

Таким образом коэффициенты в последней строке матрицы коэффициентов -1,1, а в векторе свободных членов последний элемент $=hg_2(t)$

Второй способ

Правое граничное условие будем аппроксимировать по обычной формуле при помощи добавления фиктивных узлов. Для этого аппроксимируем граничное условие следующим образом:

$$\frac{\partial T}{\partial x} = \frac{T_{N+1}^n - T_{N-1}^n}{2h}$$

Отсюда выразим фиктивный узел:

$$T_{N+1}^n = 2hg_2(t) + T_{N-1}^n$$

Подставив это в нашу исходную формулу получим:

$$-rac{2c \cdot au}{h^2}u(b-h,t) + (1+rac{c \cdot au}{h^2})u(b,t) = -rac{c \cdot au}{h^2}2hg_2(t) + au f(x) + u(b,t), c-const$$

Отсюда соответственно и берём последнюю строку для матрицы коэффициентов и последний элемент в матрице свободных членов

Фиксированное t:

	N	Nh	t	s(t=t_n1)	s(t=t_n2)	max t=t_n1	max t=t_n2
0	80.0	0.0125	0.000078	0.000000	0.000000	0.000000	0.000000
1	40.0	0.0250	0.000078	0.001063	0.001418	0.001858	0.002472
2	20.0	0.0500	0.000078	0.000524	0.000699	0.000936	0.001247
3	10.0	0.1000	0.000078	0.000258	0.000344	0.000471	0.000628
4	5.0	0.2000	0.000078	0.000132	0.000176	0.000241	0.000321

Неявная:

0.000000
857 0.002471
934 0.001245
468 0.000624
234 0.000312
)!

Фиксированное h:

Явная:

40	N	N h	t	s(t=t_n1)	s(t=t_n2)	max t=t_n1	max t=t_n2
0	100.0	0.031623	0.000500	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
1	200.0	0.031623	0.000250	7.276515e-08	9.488010e-08	2.863107e-07	3.730689e-07
2	400.0	0.031623	0.000125	3.599320e-08	4.695894e-08	1.415820e-07	1.845702e-07
3	800.0	0.031623	0.000063	1.790244e-08	2.336295e-08	7.040917e-08	9.180781e-08
4	1600.0	0.031623	0.000031	8.928059e-09	1.165280e-08	3.511049e-08	4.578624e-08

Неявная:

-0	N	N h	t	s(t=t_n1)	s(t=t_n2)	max t=t_n1	max t=t_n2
0	100.0	0.031623	0.000500	0.000000e+00	0.000000e+00	0.000000e+00	0.000000e+00
1	200.0	0.031623	0.000250	6.899722e-08	9.009356e-08	2.753966e-07	3.591959e-07
2	400.0	0.031623	0.000125	3.484830e-08	4.548007e-08	1.391555e-07	1.814204e-07
3	800.0	0.031623	0.000063	1.751437e-08	2.285167e-08	6.995247e-08	9.117843e-08
4	1600.0	0.031623	0.000031	8.780106e-09	1.145418e-08	3.507128e-08	4.570790e-08

2. Определение порядков сходимости

Найти приближенное решение начально-краевой задачи для уравнения теплопроводности:

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} + f(x, t), a < x < b, 0 < t \le T,$$

$$u(a, t) = g_1(t), \frac{\partial u}{\partial t}(b, t) = g_2(t), 0 < t \le T,$$

$$u(x, 0) = \varphi(x), a \le x \le b$$

используя явную и неявную разностные схемы. Изобразить графики приближенного решения от x при $t = 0,2\tau,4\tau,...,T$.

$$a=-1,b=1,k=0.5,T=0.4, \varphi(x)=1-x^2, g_1(t)=0,g_2(t)=0,f(x,t)=x$$
 $t\leq 0.5(\frac{1}{k})$ Далее представлены четыре группы расчётов, каждая из которых содержит:

- 1) график численного решения;
- 2) таблица результатов для фиксированного h и графики зависимости ошибки численного решения от τ в точках t1, t2;
- 3) таблица результатов для фиксированного τ и графики зависимости ошибки численного решения от h в точках t1, t2;
- 4) таблица результатов для $\tau = \frac{h^2}{6}$ относительно h (для вычисления численной ошибки с помощью нормы вектора были взяты два численных решения с параметрами h и h/2 cootветственно);
- 5) таблица результатов для $\tau = \frac{h^2}{6}$ относительно τ (для вычисления численной ошибки с помощью нормы вектора были взяты два решения с параметрами τ и $\tau/2$ соответственно);

Явная разностная схема, способ 1

1)

N	tau	#(t=t1)	s(t=t2)	mox(t=t1)	mex(t=t2)
18	8.661	6.00030700658685126486	8.888274944881246961	#.8888128388516958114	8.8667365632771283437
18	0.0005	0.00015326469109387512	0.00013728740927946117	0.0004055657182453487	0.0003579477257432229
10	0.00025	7.6572884466925894-85	6.859767576791365e-85	8.60028267858944966583	0.00018389044979671979
18	8.888125	3.827159931139668e-85	3.428734671248627e-85	0.00010130717722789395	9.192437983863246-85
19	6.25e-85	1.9132891686616116e-85	1.71488825487853e-85	5.8646578614789674e-85	4,5956979825567686-85

N tau	s(tet1)	s(t=t2)	max(t=t1)	max(t=t2)
10 0.0066666666666666	8.8821781298591937433	0.801938175891778438	M 8.00569121279317	7414 0.00511945496690369
20 0.00166666666666666	0.00021701230351937433	8.888473378255884285		
30 0.0007407407407407407	0.00023143899922898372	0.000208593120788964	Service Contract Cont	
40 0.00041666666666666675	0.00013019291559511695	0.000117483835425441		
58 8.88826666666666666	8.300340935828374e-05	7.507992551908135e-0	5 0.000238848450365	36984 0.00021676674034787
++				
tau is h ^ 2 / 6 (relative to	h)			
·····	+			
tau is h ^ 2 / 6 (relative to +	h) s(t=t1)	s(t=t2)	max(t=t1)	max(t=t2)
N tau	s(t=t1)			
N tau 10 0.0066666666666668	s(t=t1) e.e25678209185750855	0.02164923836770511	0.07300481294301142	0.06742479490286757
N tau 10 0.0066666666666666666666666666666666	s(t=t1) e.023078209185750855 e.010280875876994134	0.82164923836770511 0.809984598247676884	0.07300481294301142 0.03543418491868766	0.06742479490286757 0.03325926561576287
N tau 10 0.0066666666666668	s(t=t1) e.023678209185750855 e.010180875876994134 e.006566455616072411	0.02164923836770511	0.07300481294301142	0.06742479490286757

N	tau	s(t=t1)	s(t=t2)	max(t=t1)	max(t=t2)
18	0.0001	0.00887453228291472	0.008523117574677698	0.0271430868573293	0.02530394827210996
20	0.0001	0.002097787647787466	0.0020565315513540517	0.006727114975333848	0.00641754500223268
30	0.0001	0.0010363100694397174	0.0010238535561392283	0.00346755093363732	0.00333177040121757
40	0.0001	0.0007165611476286597	0.0007131432349764097	0.002497558889454854	0.002416454176187418
50	0.0001	0.0006033483871992516	9.0006044081625520095	0.002179873151161027	0.002121902426474031

N	tau	s(t=t1)	s(t=t2)	max(t=t1)	max(t=t2)
10	0.0066666666666666	8.8828242251575428895	e.002065934184427182	8.006376098918170259	0.0063614738029732
20	0.00166666666666666	8.8889762778248665547	0.0010060946732337386	0.0035263482594363182	0.0035275257835719
30 I	8.8887487487487487487	0.0006486265921357033	0.0006673148615851272	0.9024484395350847787	0.00244000039511915
48	8.9884166666666666675	0.00048478432576116743	0.000498423204548376	0.0018728888120412845	0.00186310236936426
50	0.00026666666666667	8.8883874731967448594	0.0003979502705141397	0.0015155161569860853	0.0015060516453005
tau is	h ^ 2 / 6 (relative to)	"		*	***************************************
tau is	h ^ 2 / 6 (relative to)	s(t=t1)	s(t=t2)	max(t=t1)	max(t=t2)
tau is		s(t=t1)			
tau is			s(t=t2) e.e136882592e0533525	max(t=tl) 8.84421386883982362	max(t=t2) 8.04203002370136438
N	tau e.006666666666666 8.00166666666666666	s(t=t1)			8.04203002370136438 8.014041411891160371
N	tau 0.006666666666668	s(t=t1) 8.014070948429956057 0.004228668640233348 0.0022799093090288846	0.013688259280533525 0.004206046198650432 0.0022840912418356676	8.84421386883982362 8.814461557376987955 8.888142363814722997	8.84283882378136438 8.814841411891168371 8.887947915658965465
N 10 20	tau e.006666666666666 8.00166666666666666	s(t=t1) 8.814878948429956857 8.884228668648233348	0.013688259200533525 0.004206046198650432	e.84421386883982362 e.814461557376987955	8.84283882378136438

Неявная разностная схема, способ 1

N	tau	s(t=t1)	1	s(t×t2)	max(t+t1)	.!	max(t+t2)
18	0.001	8.0001288559789098916	ī	0.00012765423476952434	0.00026138408959778477	H	0.0002537655771561731
10	0.0005	6.415032283811075e-05		6.392038645716996e-85	8.0001308730372051592		0.8001278373627979548
10	0.00025	3.210578041328567e-05		3.1983516570736594e-05	6.54916887145689e-85		6.3557284251663e-85
18	0.800125	1.6868549327238333e-85	1	1.5997589819966142e-05	3.275961838080718e-05		3.1788217444761466-85
18	6.25e-05	8.032189991988663e-06	- 1	8.00025288173509e-06	1.6383252175011798e-05	1	1.5896518699886512e-8

N	tau	s(t=t1)	s(t=t2)	max(t=t1)	max(t=t2)
•					
18	0.8881		0.020969478863979686		0.0650955870444375
28	0.0001	0.010222993429886747	0.009847953273761183	0.03515984357230317	0.0330125821253152
38	0.0001	0.0065590368112314395	0.00637506424342199	0.02340990114778796	0.0220756117113638
48	8.0001	0.004814573725847887	0.004701605321414782	6.017538362448533462	0.0165742374674882
50	1 0.0001	0.0037990491670675396	0.003720763646918946	0.014019265558951277	0.0132656322779766

Неявная разностная схема, способ 2

N	ue?	s(t=t1)	s(t=t2)	mex(t=t1)	max(t±t2)
10	8.881	0.00015331560718774177	0.00014464775998410942	0.00043038168661330145	0.00038295370978558285
10	8.8885	7.67471122461252e-05	7.2398484483382e-85	0.00021519640722988953	0.00019142587934906086
10	0.00025	3.839576555421421e-05	3.6211858658904046e-05	0.00010759825152378832	9.569952598320608e-05
10	0.000125	1.9203420339156723e-05	1.811007919864427e-05	5.379896833823672e-05	4.7846326059586275e-05
10	6.25e-05	9.603092689002386e-06	9.056076523775846e-06	2.689942351458141e-05	2.392229336223295e-85

1 N 1	tau	s(t=t1)	6(t=t2)	max(t=t1)	max(t=t2)
18	9.00666666666666666	8.0010318695672252717	0.0009694392684915895	0.0029849159774701373	B.00264904576094870
28	0.001666666666666667	0.00021862805814610074	8.8882125867784588596	0.8006047716169270134	8.88855714941154183
38	0.0007407407407407407	9.384893932294333e-05	9.1744983946925e-85	0.8002619114221947813	0.000241909223157699
49	8.00041656666666666675	5.2017678770265675e-85	5.092915655581399e-05	8.80014685484887688464	0.00013549410144786
50	8.00026666666666667	3.296896566573253e-05	3.2326798699112885e-85	9.301933810551555e-05	8.645851398137316e-
tau is	h ~ 2 / 6 (relative to	h)	····		•
tau is	h ^ 2 / 6 (relative to	+ h) + s(t=t1)	s(t=t2)	* * * * * * * * * * * * * * * * * * *	max(t=t2)
i N	tau	s(t=t1)		·	
N N 10	tau 0.006666666666666	s(t=t1) s(t=t1) e.007201817639171631	8.886497738651958642	0.022001624993831348	0.01879352897388125
N 10 20	tau 8.88666666666666668 9.881866666666666667	s(t=t1) 8.007201817639171631 8.0015261734990489538	8.006497738651950642 0.0014261533478459392	0.022001624993831348 8.004471601958399296	e.01879352897388125 e.083962986959997194
N 10 20 30	tau 8.0066666666666668 9.00166666666666667 8.0007487487487487487	s(t=t1) 8.067201817639171631 9.0615261734990409538 8.0606553065058645665	8,886497738651958642 8.8814261533478459392 8.8886168447857888823	0.022001624993831348 0.004471601958399296 0.0019235317919299444	0.01879352897388125 0.083962986959997194 0.00171892295849185
N 10 20	tau 8.88666666666666668 9.881866666666666667	s(t=t1) 8.007201817639171631 8.0015261734990489538	8.006497738651950642 0.0014261533478459392	0.022001624993831348 8.004471601958399296	max(t=t2) 0.01879352897388125 0.083962986959997194 0.08097189295849185 0.08096956484957089 0.080961927867227606

Выводы

Таким образом, в ходе выполнения лабораторной работы, были рассмотрены два наиболее часто применяемых способа аппроксимации граничных условий второго рода на примере ГУ для одномерного нестационарного уравнения теплопроводности.

Также были разработаны соответствующие алгоритмы и программные реализации для решения поставленной задачи, найдено приближенное решение начально-краевой задачи для уравнения теплопроводности.

Исходя из полученных данных, можно судить о сходимостях методов по h и по τ как о близких к квадратичным.