CS 3640: Introduction to Networks and Their Applications

Fall 2023, Lecture 5/6: Performance metrics

Instructor: Rishab Nithyanand

Teaching Assistant: Manisha Keim

You should have...

- Submitted assignment 1.
 - Add Prof. and TA as "Maintainer" or "Developer". "Guest" does not work.

- Assignment 2 coming soon.
- Class on Thursday may be canceled. Please stay tuned to your inboxes tomorrow.

Assessing performance in packet-switched networks

Delay

- How long does it take a packet to get to its destination?
 - Transmission delay: How fast can your link interface convert bits into link signals?
 - Propagation delay: How fast can your link send bits from one end to the other?
 - Processing delay: How fast can your processor handle an incoming packet?
 - Queueing delay: How full is the buffer?

Loss

What fraction of packets that are sent end up getting dropped?

Throughput

At what rate is data being received by the destination?

This week

1.

Performance metrics

2.

Q&A: Wrapping up "design principles"

End-to-end delay of a packet-switched network

- End-to-end delay is the sum of all the delays added by each switch/link between the source & destination.
 - $d_{e2e} = (total_{switch\ delays} + total_{link\ delays}) = \sum_{i=1}^{n} (d^{i}_{trans} + d^{i}_{prop} + d^{i}_{proc} + d^{i}_{queue})$
 - Here, d i is the delay associated with the i th of n switches/links.

$$d^{i}_{trans} + d^{i}_{prop} + d^{i}_{proc} + d^{i}_{queue}$$

- Transmission delay of a link
 - Q: How many bits can you write to the link in one second?
 A: How much \$\$\$ can you spend?

$$d^{i}_{trans} + d^{i}_{prop} + d^{i}_{proc} + d^{i}_{queue}$$

 Discuss: Need to send a 1000KB packet over a 1, 10, and 100 Gbps link adapter. What is the transmission delay over each one?

8000 Kbits = 8 x 10⁶ bits 100 Gbps = 100 x 10⁹ bits/sec 10 Gbps = 10 x 10⁹ bits/sec 1 Gbps = 10⁹ bits/sec

Transmission delay for a 1000KB packet:

@100Gbps: 8x10⁻⁵ sec @10 Gbps: 8x10⁻⁴ sec @1 Gbps: 8x10⁻³ sec

Transmission delay = data size/transmission rate of link interface

$$d^{i}_{trans} + d^{i}_{prop} + d^{i}_{proc} + d^{i}_{queue}$$

- Propagation delay of a link
 - How long does it take to move one bit from one end of the link to the other?
 - Depends on how long the link is.
 - Depends on the material used by the link.
 - Since links are usually optic fiber, they propagate bits at 2x10⁸ mps.
 - This is the speed of light in glass.
 - If we could cost-effectively send bits in vacuum, this would be 3x108 mps.

$$d^{i}_{trans} + d^{i}_{prop} + d^{i}_{proc} + d^{i}_{queue}$$

- Discuss: What is the propagation delay of a 100m optic fiber link? (speed of light in glass: 2x108 mps)
 - Time to travel 100 meters @ $2x10^8$ mps = $100m/2x10^8$ mps= $.5x10^{-6}$ sec

Propagation delay = length of link/propagation speed of link

Propagation delay = length of link/propagation speed of link

Transmission delay = data size/transmission rate of link interface

$$d^{i}_{trans} + d^{i}_{prop} + d^{i}_{proc} + d^{i}_{queue}$$

- Discuss: Assume we have no switch-induced delays.
 - Link propagation speed: 2x10⁸ mps. Link length: 20x10³ m
 - Two different networks. When should you invest in a faster link interface card?
 - Scenario 1:
 - Link adapter: 1 Gbps, Data: 1 GB? What is d_{trans}? What is d_{prop}?
 - $d_{trans} = 1x8x10^9/1x10^9 = 8s$, $d_{prop} = 20x10^3/2x10^8 = 10^{-4}s$,
 - $d_{e2e} = 8 + 10^{-4} s$
 - d_{trans} is dominant. Investing in a faster link interface card is a good idea.
 - Scenario 2:
 - Link adapter: 1 Gbps, Data: 100 B? What is d_{trans}? What is d_{prop}?
 - $d_{trans} = 8x10^2/1x10^9 = 8x10^{-7} \text{ s}, d_{prop} = 20x10^3/2x10^8 = 10^{-4} \text{ s},$
 - $d_{e2e} = (8x10^{-7}) + 10^{-4} s$
 - d_{prop} is dominant. Investing in a faster link interface card a waste.

$$d^{i}_{trans} + d^{i}_{prop} + d^{i}_{proc} + d^{i}_{queue}$$

Processing delay of a switch

- How long does a switch take to error check and figure out which link to send the packet on?
 - Depends on the switch CPU.
 - CPUs are typically multi-core 2-3GHz.
 - Depends on the per-packet operations required.
 - Operations per packet usually require O(10³) CPU cycles.

$$d^{i}_{trans} + d^{i}_{prop} + d^{i}_{proc} + d^{i}_{queue}$$

- Discuss: What is the per packet processing delay of a 3 GHz switch using 3x10³ cycles per packet?
 - Time to process a packet = $3x10^3$ cpp/ $3x10^9$ cps = 10^{-6} s
 - Currently, this is never the bottleneck. CPUs are way faster than networks.
 - Adding too much functionality at the link/network layer could make it one, however.

$$d^{i}_{trans} + d^{i}_{prop} + d^{i}_{proc} + d^{i}_{queue}$$

Queueing delay of a switch

- How long does a packet need to be buffered before the link can handle it?
 - Depends on packet arrival rate.
 - How many packets are already queued?
 - Bursty traffic is likely to have a longer time in the buffer.
 - Depends on packet dispatch rate.
 - How fast can things be removed from the buffer? Depends on d_{trans}.
- A lot messier to calculate.
 - Queueing theory: A whole research area with 100s of PhD dissertations.

$$d^{i}_{trans} + d^{i}_{prop} + d^{i}_{proc} + d^{i}_{queue}$$

- Part of the complication is that d_{queue} changes over time and is different even for packets arriving at the same time.
- At time t, here is what we do know:

$$d^{i}_{trans} + d^{i}_{prop} + d^{i}_{proc} + d^{i}_{queue}$$

$$d^{i}_{trans} + d^{i}_{prop} + d^{i}_{proc} + d^{i}_{queue}$$

Lets plot D(t) for link transmission rate r bytes/sec.

When are the first b_0 bytes sent?

$$x_0' = \frac{b_0}{r}$$

When are the next b₁ bytes sent?

$$x_1' = x_1 + \frac{b_1}{r}$$

Q(t) = #bytes in the queue at time t

Link transmission rate is fixed at **r** bytes per second

D(t) = #bytes that have left the queue (until time *t*)

A(t) = #bytes that havearrived (until time x)

$$d^{i}_{trans} + d^{i}_{prop} + d^{i}_{proc} + d^{i}_{queue}$$

$$d^{i}_{trans} + d^{i}_{prop} + d^{i}_{proc} + d^{i}_{queue}$$

- Queueing delay of a switch: A simple deterministic model
 - Queue statistic: Average queue occupancy over time.
 - How full is the queue, on average? This is the average vertical distance between A and D.
 - Scenario: At the start of every second, 100 bits arrive to a queue at rate 1000 bits/second. The transmission rate is 500 bits/second.
 - What is the maximum queue occupancy (required buffer size to not have packet loss)?
 - What is the average occupancy over time?

0s to 0.1s: For every 2 bits that arrive into the queue, 1 bit leaves from the queue. 100 bits arrive. [occupancy: 0->50 bits].

Average queue occupancy = (1 + 2 + ... + 49 + 50)/50

0.1s to 0.2s: No bits arrive, queue empties. [occupancy: 50 -> 0 bits]. Average queue occupancy = (49 + 48 + ... + 1 + 0)/50

Average occupancy from 0s to 0.2s =
$$\sum_{i=1}^{50} \frac{\frac{i}{50} + \frac{50-i}{50}}{2} = 25bits$$

0.2s to 1.0s: No bits arrive, no bits leave. [occupancy: 0 bits]. Average queue occupancy = 0

Average queue occupancy (per second): 25x0.2 + 0x0.8 = 5 bits

$$d^{i}_{trans} + d^{i}_{prop} + d^{i}_{proc} + d^{i}_{queue}$$

- Queue statistic: Average queuing delay per bit.
 - How long is the queueing delay, on average? The average horizontal distance between A and D.
- Scenario: At the start of every second, 100 bits arrive to a queue at rate 1000 bits/second. The transmission rate is 500 bits/second.
 - What is the maximum queueing delay for a bit? What is the average queuing delay per bit?

Maximum delay = 0.1 s (the last packet arrives at 0.1s, leaves at 0.2s)

Average delay = delay for each bit/#bits

Bit 1: Arrives at t=1/1000, leaves at t=1/500. Delay: 1/1000

Bit 2: Arrives at t=2/1000, leaves at t=2/500. Delay: 2/1000

Bit n: Arrives at t=n/1000, leaves at t=n/500. Delay: n/1000

Bit 100: Arrives at t=.1, leaves at t=.2. Delay: .1s

Average delay: $(100*101*.5)/(100*1000) \sim .05s$

$$d^{i}_{trans} + d^{i}_{prop} + d^{i}_{proc} + d^{i}_{queue}$$

Queueing delay of a switch and traffic intensity

- Intensity (I) = bit arrival rate/bit departure rate
- Let L be average packet length (depends on content being delivered).
- Let a be packet arrival rate.
- Let R be transmission rate of link adapter.
- I = La/R

Why do people spend their time studying queueing theory?

- Packets don't arrive in regularly spaced intervals.
 - Their arrival times are randomly distributed (IRL).
- Unless you are the owner or exclusive user of the switch, you don't know A(t) or D(t). We need models based on incomplete information.
- We assumed infinitely long queues --- things get more complicated when we restrict this.

Packet loss in packet-switched networks

- Let L be average packet length (depends on content being delivered).
- Let a be packet arrival rate.
- Let R be transmission rate of link adapter.
- I = La/R
- What fraction of packets that are sent end up getting dropped?
- What can impact this?

Packet Loss

- Buffer sizes and traffic intensity (I = La/R).
- What can we say about the case where:
 - $I \leq 1$ and uniform packet arrivals?
 - The queue never fills up, average queueing delay is 0.
 - I > 1 and uniform packet arrivals?
 - For every La bits coming in, only R are sent out.
 - Every second, (La-R) bits are added to the queue!
 - Queue needs to be big enough to handle t(La-R) bits.
 - t is estimated duration of intensity (I).
- Rule of network design: Never let I > 1.
 - Increase R or provision other switches to reduce the maximum L x a.

Bit arrival rate: L x a

Buffer

Bit dispatch rate: R

Packet loss in packet-switched networks

- Let L be average packet length (depends on content being delivered).
- Let a be packet arrival rate.
- Let R be transmission rate of link adapter.
 - I = La/R
- What fraction of packets that are sent end up getting dropped?
- What can impact this?

Packet Loss

- Buffer sizes and traffic intensity (I = La/R).
- What can we say about the case where a = 1, but:
 - $I \leq 1$ and bursty packet arrivals (N simultaneous packets/N seconds)?
 - Packets still go out faster than they come in.
 - The queue never needs to hold more than N packets.
 - Queueing delay increases by (L/R) for each packet after the first.
 - Average queueing delay of n packets: (0 + L/R + 2L/R + ... + (n-1)L/R)/n
 - I > 1 and bursty packet arrivals (N simultaneous packets/N seconds)?
 - You're toast.
 - After N seconds, you still have N(L R) bits in the queue.
 - After 2N seconds, you still have 2N(L R) bits in the queue.
 - If queue size < tN(L-R) after tN seconds, everything coming in is dropped.

End-to-end throughput in packet-switched networks

End-to-end Throughput

- At what rate is data being received by the destination?
- What can impact this?
 - Slowest link on path and packet loss.
 - Limit (upper-bound on end-to-end throughput): You can never receive data faster than the transmission rate of the slowest link in your network.
 - How could you do worse than this limit? Packet loss. If a packet is lost/dropped, it does not count as received.
- Like queueing delays and packet loss, this is also a function of time.
 - Congested networks have lower throughput.
 - We use similar analysis using random variables and distributions to analyze end-toend throughput, but things get a bit messier.

Summary: Performance metrics in packetswitched networks

- End-to-end delays:
 - Transmission (link adapter limited)
 - d_{trans} = data size/transmission rate of link adapter
 - Propagation (link material limited)
 - d_{prop} = length of link/propagation speed of link
 - Processing (switch processor limited)
 - d_{proc} = clock cycles per packet/clock speed
 - Queueing (traffic intensity dependent)
 - Time dependent random variable.
 - D(t) and A(t):
 - Horizontal difference at bit "b": delay for bit "b".
 - Vertical difference at time "t": queue occupancy for time "t"
 - Can be used to compute average/maximum delays/occupancy.
 - Limitations of modeling as a uniform arrival rate.
 - Traffic intensity (I = La/R) can give an intuition about delay growth.

Summary: Performance metrics in packetswitched networks

- Packet loss:
 - Depends on buffer sizes and traffic arrival/departure rates.
 - Bursty traffic is much worse than uniform traffic on the same network.
 - Queueing delays increase when I <= 1.
 - Queue size requirements increase very fast when I > 1.
 - Remember: Traffic intensity (I) > 1: very bad. Always.
- End-to-end throughput:
 - Limited by transmission rate of slowest link on path.
 - Can be made worse by packet loss.

This week

1.

Performance metrics

2.

Q&A: Wrapping up "design principles"

Discussion

- In groups, produce two questions:
 - Q1: Something that was genuinely confusing to you about the topics we covered in class.
 - Q2: Something that you want to know more about regarding design principles.
- Topics: Layering and 4-layer model, end-to-end principle, fate-sharing, circuit switching, packet switching, performance metrics.

