San José State University Department of Computer Science

Ahmad Yazdankhah

ahmad.yazdankhah@sjsu.edu www.cs.sjsu.edu/~yazdankhah

Other Models of TMs

(Part 1)

Lecture 17 Day 18/31

CS 154
Formal Languages and Computability
Spring 2019

Agenda of Day 18

- Collecting Quiz 6
- Summary of Lecture 16
- A Few Slides from the Past (Slides are added to the Lecture 16)
- Lecture 17: Teaching ...
 - Other Models of TMs (Part 1)

Summary of Lecture 16: We learned ...

Turing Machines (TMs)

- The main difference between TMs and NPDAs is ...
 - ... we have the ability to move the read/write head to the left or right without losing data.
- The transition condition of TMs is ...
 - ... input symbol.
- TMs halt iff ...
 - ... they have zero transition.

$$z \leftrightarrow h$$

 The criteria of accepting strings for previous machines are ...

$$(h \land c \land f) \leftrightarrow a$$

- Consuming all input symbols is meaningless for TMs.
- So, theoretically, the logical representation of accepting strings is

$$(h \land f) \leftrightarrow a$$

And for rejecting strings is ...

$$(\sim h \lor \sim f) \leftrightarrow \sim a$$

- But in practice ...
- ... that is the TMs designers responsibility to make sure that the machine halts in an accepting state when all symbols are consumed.

Any Question

Summary of Lecture 16: We learned ...

TMs

- For the first time, we observed a new phenomenon that happens in Turing machines ...
 - Infinite loops!
- This phenomenon never happened in the previous deterministic machines.
- This is the consequence of ...
 - ... having freedom of moving the read-write head to the left or right.

- If a TM is in infinite-loop, the string that is being processed is considered as rejected.
- When a machine is working for a long time, from an observer's point of view, ...
 - ... is it in an infinite loop? OR
 - ... it is in the middle of a very long computation?
- We don't know yet and will get back to this important question later.

Any Question

Summary of Lecture 16: We learned ...

TMs

 A standard (deterministic) Turing machine M is defined by the septuple:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \square, F)$$

δ: $Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\}$

- □ ∈ Γ is a special symbol called blank.
- Sub-rule example:

$$\delta(q_1, a) = (q_2, b, R)$$

Any Question

A Few Slides from the Past

Slides are added to the Lecture 16

TMs as Transducers

What is Transducer?

- In physics, transducer is a device that converts the variation in a physical quantity into an electrical signal, or vice versa.
 - The variation could be movement, pressure, brightness, or so forth.
- In a nutshell, transducer is a device that converts an input to an output.

Examples of Transducers

Microphone

 A microphone converts your voice to electrical signals.

Electric Generator

 An electric generator converts movement to electrical power.

Reference

Bo Krantz Simonsen at da.wikipedia

Mathematical Model of Transducers

- What is the mathematical model for transducers?
- Functions!

- Recall that a function ...
- ... converts (aka maps) an input (a member of its domain) to an output (a member of its range) based on a rule.

TMs as Transducers

- A TM can act like a transducer. Why?
 - Because it can transform an input to an output.
- What are the input and output of a TM when we run TMs in transducer mode?

Input

All or part of the nonblank symbols on the tape at the initial time.

Output

- All or part of the tape's content when the machine halts.
- In fact, it's designer's responsibility to define the input and output.

11

How JFLAP Shows TMs' Outputs

- JFLAP can run TMs in two modes:
 - Regular mode [Menu → Input → Multiple Run]
 - Transducer mode [Menu → Input → Multiple Run (Transducer)]
 - In regular mode, JFLAP shows "Accept" or "Reject" for accepting/rejecting strings.
- In transducer mode, it shows the output of the computation too.
- We'll follow how JFLAP shows the output when we run TMs in transducer mode.

Let's explain it through an example.

How JFLAP Shows TM's Output in Transducer Mode

 Assume our TM halts in an accepting state, and the content of the tape is ...

- then, the output would be 1 0 1 1.
- So, the output starts from the symbol at which the head is pointing, to the right, until the first blank.

Turing Computable Functions

Definition

- A function is said to be "Turing-computable" (or just "computable")
 if there exists a TM that implements it.
 - It has been proved by computer scientists that all common mathematical functions are Turing-computable.
 - Let's take some practical examples (basic operations of computers)
 such as:
 - adding numbers
 - copying strings
 - simple comparisons

TMs as Transducers

Example 1

- Given two unary numbers x and y, separated by a 0 (zero).
- Design a TM that computes x + y.

Homework

- Given a string w ∈ L = {1}+.
- Design a TM that writes a copy of w at the end of the w.

At the end of the execution, we'll have "ww" on the tape.

Homework

- Given two unary numbers x and y (x goes first), separated by a 0 (zero).
- Design a TM that halts in an accepting state if x ≥ y, otherwise it halts in a non-accepting state.

Combining TMs

Combining TMs

How to combine TMs to solve more complex problems?

Example 2

- Given two unary numbers x and y (x goes first), separated by a 0 (zero).
- Design a TM to compute the following function:

$$f(x, y) = \begin{cases} x + y & \text{if } x \ge y \\ 0 & \text{if } x < y \end{cases}$$

Let's visualize what would be the output in different situations ...

TM as Transducer

Example 2: When x \ge y

$$f(x, y) = \begin{cases} x + y & \text{if } x \ge y \\ 0 & \text{if } x < y \end{cases}$$

TM as Transducer

Example 2: When x < y

$$f(x, y) = \begin{cases} x + y & \text{if } x \ge y \\ 0 & \text{if } x < y \end{cases}$$

We don't care what the other contents are!

Combining TMs

Example 2 (cont'd)

- To implement this function, we would need the following routines:
 - a comparer
 - an adder
 - an eraser
- A comparer compares x and y ...
 - If $x \ge y$, then it activates the adder to compute x + y.
 - Else (i.e.: x < y), it activates the eraser to show zero.

Combining TMs

Example 2 (cont'd)

- This example shows that we can break any complex problem into simpler routines and implement each routine with a TM.
- Do the rest of this example as homework!

Homework

- Given two unary numbers x and y, separated by a 0 (zero).
 Design a TM to compute x * y.
- Given a binary number x.
 Design a TM to compute x + 1. (Binary Incrementor)
- 3. Use your binary incrementor as a subroutine to design a Unary-to-Binary converter.

Other Models of TMs

Introduction

- We saw how adding memory could increase the computing power.
- Now the question is ...
- ... to make more powerful machines, can we add more memory, or other kind of memories?
- For example:
 - two or more stacks,
 - a queue and a stack,
 - two or more RAMs
 - or ...
- How far can we go?
- What would be the most powerful automata?

Objective

- We are going to add some extra capabilities to the standard TMs.
- By any changes, we introduce a new class of automata.
- Then, the very first question would be:
 - Is this new class more powerful than the standard TMs?
- We've already saw how we compare the classes of automata by simulation.

TMs with Stay-Option

TMs with Stay-Option

- In standard TMs, the head can move left or right.
- Now, we add a new movement to the head, ...
 Stay (or no movement) denoted by S
- Everything else would remain exactly the same as standard TMs.

Formal Definition

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$$

- Where:
 - ... (same as standard TM)
 - δ: Q x Γ \rightarrow Q x Γ x {L, R, S}

TMs with Stay-Option

Example 3

 The following transition is using stay option.

$$\delta (q_2, b) = (q_5, k, S)$$

Is this new class more powerful than standard TMs?

Theorem

- TMs with stay-option class is equivalent to standard TMs class.
- We need to prove two things:
 - 1. TMs with stay-option simulate standard TMs.
 - 2. Standard TMs simulate TMs with stay-option.

Proof of 1

- Let's assume we've constructed a standard TM for an arbitrary language L.
- Can we always construct a TM with stay-option for L?
- Yes, just don't use "S" option!

Is this new class more powerful than standard TMs?

Proof of 2

- Let's assume we've constructed a TM with stay-option for an arbitrary language L.
- Can we construct a standard TM for L?
- The only difference is those transitions that use "S" option.
- So, we just need to simulate "no move" for those transitions.
- That can be simulated by two moves of the head: "left, then right" (or "right, then left") as the following figures show.

TMs with Multidimensional-Tape

TMs with Multidimensional-Tape

TMs with Multidimensional-Tape

Formal Definition

A TM with multidimensional-tape M is defined by the septuple:

$$M = (Q, \Sigma, \Gamma, \delta, q_0, \Box, F)$$

- Where:
 - ... (same as standard TM elements)

$$\delta$$
: Q x Γ → Q x Γ x {L, R, U, D}

The new movements: U=Up and D=Down

Is this new class more powerful than standard TMs?

Theorem

- The TMs with multidimensional-tape class is equivalent to standard TMs class.
- We need to prove two things:
 - Multidimensional-tape TMs simulate standard TMs.
 - Standard TMs simulate multidimensional-tape TMs.

Proof

- Multidimensional-tape TMs simulate standard TMs.
- This step is trivial because if we just use one row of the tape, then we have standard TM.
- 2. Standard TMs simulate multidimensional-tape TMs.
- Prove this as exercise!

References

- Linz, Peter, "An Introduction to Formal Languages and Automata, 5th ed.," Jones & Bartlett Learning, LLC, Canada, 2012 ISBN: 978-1-4496-1552-9
- Michael Sipser, "Introduction to the Theory of Computation, 3rd ed.," CENGAGE Learning, United States, 2013 ISBN-13: 978-1133187790

37