SCM optimization using AI

Banana Problem

Problem Statement:

Predicting Delivery Delays in Multi-Modal Logistics

Background:

A logistics company handles shipments using **multiple transportation modes** — trucks, rail, and air. However, they are experiencing frequent **delivery delays**, leading to dissatisfied customers and increased operational costs.

The company wants to **forecast whether a shipment will be delivered on time or delayed** based on historical shipment data and key factors like distance, vehicle type, traffic, weather, and driver experience.

Your task as a **data analyst** is to build a **predictive model** that determines the probability of delay for upcoming shipments and identifies the **major factors contributing to delays**.

Objective:

- 1. Predict whether a shipment will be **delayed (1) or on time (0)**.
- 2. Identify **key factors** (distance, vehicle type, weather, traffic, driver experience) that contribute to delays.
- 3. Provide insights to improve logistics efficiency and route planning.

Expected Outputs

1. Prediction File (CSV):

Shipment_ID	Predicted_Delay			
S006	1			
S007	0			
S008	1			

2. Performance Metrics Table:

| Model | Accuracy | Precision | Recall | F1-Score | ROC-AUC | | Logistic Regression | 0.87 | 0.85 | 0.88 | 0.86 | 0.91 |

3. Feature Importance Plot:

Visual representation of top variables influencing shipment delays.

Dataset Description:

Shipment Delivery Dataset

Shipment_ID	Origin	Destination	Distance_km	Vehicle_Type	Route_Traffic_I ndex	Weather	Driver_Experie nce_Years	Scheduled_Del ivery_Hours	Actual_Deliver y_Hours	Delayed
S001	Mumbai	Pune	150	Truck	6.5	Rainy	5	4	5	1
S002	Delhi	Jaipur	270	Rail	4.0	Sunny	8	6	6	0
S003	Bangalore	Chennai	350	Truck	7.2	Foggy	3	6	8	1
S004	Kolkata	Hyderabad	1450	Air	5.0	Clear	6	18	18	0
S005	Mumbai	Ahmedabad	500	Truck	5.5	Stormy	2	10	13	1

Columns Explained:

·Shipment_ID: Unique identifier for each shipment

·Origin / Destination: Start and end cities

· **Distance_km:** Distance of shipment in kilometers

· **Vehicle_Type:** Mode of transport (Truck, Rail, Air)

• **Route_Traffic_Index:** Traffic congestion score (1–10, higher = worse traffic)

· Weather: Weather condition during shipment (Clear, Rainy, Foggy, Stormy)

· **Driver_Experience_Years:** Years of experience of the driver (for road transport)

·Scheduled_Delivery_Hours: Planned delivery time in hours

· Actual_Delivery_Hours: Actual delivery time in hours

• **Delayed:** Target variable (0 = On-time, 1 = Delayed)

Instructions

1. Open the dataset Shipment_Delivery_Dataset

2. Handle missing values and clean the data

3. Choose a classification model

4. Train the model

5. Evaluate performance (Accuracy, Precision, Recall, F1-Score)

6. Predict delays for the test shipments

7. Save predictions in CSV: Shipment_ID, Predicted_Delay

8. Submit: report, predictions CSV, and code/script