Transformações entre modelos – Parte 2

CAPÍTULO 5

©Carlos A. Heuser - Transparências para uso com o livro Projeto de Banco de Dados, Ed. Sagra&Luzzatto, Porto Alegre, 1999

Relacionamentos 1:n

	Regra de implementação		
Tipo de relacionamento	Tabela própria	Adição coluna	Fusão tabelas
(0,1) $(0,n)$	±	+	_
$(0,1) \qquad (1,n)$	±	+	_
(1,1) (0,n)	_	+	_
(1,1) (1,n)	_	+	_

+ Alternativa preferida

± Pode ser usada

- Não usar

1:n - caso 1

OA entidade que tem cardinalidade máxima 1 é obrigatória

1:n - caso 1 adição de colunas

Departamento (<u>CodDept</u>, Nome)
Empregado (<u>CodEmp</u>, Nome, **CodDept, DataLota**)
CodDept referencia Departamento

1:n - caso 1 tabela própria

Departamento (CodDept, Nome)

Empregado (CodEmp, Nome,

Lotacao(CodEmp,CodDept,DataLota)

CodDept referencia Departamento CodEmp referencia Empregado

1:n - caso 1 discussão

- ○Fusão de tabelas
 - Não se aplica
 - o Implicaria em
 - o redundância de dados de departamento, ou
 - o tabela aninhada
- OAdição de colunas é melhor que tabela própria
 - Menor número de chaves
 - Menor número de junções
 - O Não há o problema de campos opcionais

1:n - caso 2

OA entidade que tem cardinalidade máxima 1 é opcional

1:n - caso 2 adição de colunas

Financeira (<u>CodFin</u>, Nome)
Venda (<u>IdVend</u>, Data, **CodFin**, **NoParc**, **TxJuros**) **CodFin** referencia Financeira

1:n - caso 2 tabela própria

Financeira (<u>CodFin</u>,Nome) Venda (<u>IdVend</u>,Data)

Fianciam (<u>IdVend</u>,CodFin,NoParc,TxJuros)
IdVend referencia Venda
CodFin referencia Financeira

1:n - caso 2 discussão

- olmplementação por tabela própria também é aceitável
 - o É melhor em relação a campos opcionais
 - Perde em relação a junções e número de chaves

Relacionamentos n:n

	Regra de implementação		
Tipo de relacionamento	Tabela própria	Adição coluna	Fusão tabelas
(0,n) (0,n)	+	1	ı
(0,n) (1,n)	+	-	I
(1,n) (1,n)	+	-	_

⁺ Alternativa preferida

Não usar

Relacionamentos n:n

Engenheiro (CodEng,Nome)

Projeto (CodProj, Título)

Atuação (CodEng,CodProj,Função)

CodEng referencia Engenheiro CodProj referencia Projeto

- Não são definidas regras específicas
 - O relacionamento é transformado em uma tabela
 - São aplicadas regras de conversão de relacionamentos binários

- O modelo final pode deixar de capturar algumas restrições
 - Nesse caso, deve-se lembrar de incorporar essas restrições sobre o modelo relacional após a conversão

Exemplo de relacionamento ternário que pode ser transformado sem que haja perdas (1, n, n)

Ocorrências válidas

c1,p1,d1

c1,p3,d1

c2,p1,d1

Ocorrência que viola as restrições

c1,p1,d2

(c1,p1) já está associado com d1

Ocorrências válidas

c1,p1,d1

c1,p3,d1

c2,p1,d1

Ocorrência que viola as restrições

c1,p1,d2

(c1,p1) já está associado com d1

Ocorrências válidas

c1,p1,d1

c1,p3,d1

c2,p1,d1

Produto (CodP,Nome)

Cidade (CodC, Nome)

Distribuidor (CodD, Nome)

Distribuição (<u>CodC, CodP,</u>CodD,DataInicio)

CodP referencia Produto

CodD referencia Distribuidor

CodC referencia Cidade

Ocorrência que viola as restrições

c1,p1,d2

(c1,p1) já está associado com d1

A chave primária de distribuição impede que instâncias inválidas sejam aceitas

Exemplo de relacionamento ternário cuja conversão leva à perdas que devem ser tratadas

Ocorrências válidas

c1,p1,d1

c1,p3,d2

c2,p1,d1

Ocorrências que violam as restrições

c1,p1,d2

(c1,p1) já está associado com d1

c1,p2,d1

(c1,d1) já está associado com p1

Ocorrências válidas

c1,p1,d1

c1,p3,d2

c2,p1,d1

Ocorrências que violam as restrições

c1,p1,d2

(c1,p1) já está associado com d1

c1,p2,d1

(c1,d1) já está associado com p1

Produto (CodP,Nome)

Cidade (CodC, Nome)

Distribuidor (CodD, Nome)

Distribuição (**CodC**, **CodP**, CodD, DataInicio)

CodP referencia Produto

CodD referencia Distribuidor

CodC referencia Cidade

Ocorrências válidas

c1,p1,d1

c1,p3,d2

c2,p1,d1

Ocorrências que violam as restrições

c1,p1,d2

(c1,p1) já está associado com d1

<u>c1,p2,d1</u>

(c1,d1) já está associado com p1

A chave primária de distribuição não impede que algumas instâncias inválidas sejam aceitas Ex. **c1,p2**,d1 seria aceito, já que **c1,p2** é um identificador não usado ainda

Produto (CodP,Nome)

Cidade (CodC, Nome)

Distribuidor (CodD, Nome)

Distribuição (**CodC**, **CodP**, CodD, DataInicio)

CodP referencia Produto

CodD referencia Distribuidor

CodC referencia Cidade

Ocorrências válidas

c1,p1,d1

c1,p3,d2

c2,p1,d1

Ocorrências que violam as restrições

c1,p1,d2

(c1,p1) já está associado com d1

<u>c1,p2,d1</u>

(c1,d1) já está associado com p1

Nesse caso, é necessário indicar que (codC,codD) é uma chave alternativa

Exercício

Como converter este modelo?

Observe que um par de produto e distribuidor não necessariamente possui uma cidade

Ocorrências válidas

c1,p1,d1

c2,p1,d1

_, p2,d1

c1,p3,d2

Ocorrências inválidas

c1,p1,d2

Produto (CodP,Nome)

Cidade (CodC, Nome)

Distribuidor (CodD, Nome)

Distribuição (idDist, CodC, CodP, CodD, DataInicio)

CodP referencia Produto

CodD referencia Distribuidor

CodC referencia Cidade

Ocorrências válidas

c1,p1,d1

c2,p1,d1

_, p3,d3

c1,p3,d2

Ocorrência que viola as restrições

c1,p1,d2

Regras a serem criadas:

- Chave primária artificial: idDist
- **codC** opcional
- (codC,codD) chave alternativa

Atividade Individual

Montar o modelo ER e o modelo relacional referente ao sistema considerado abaixo:

- As salas de cinema exibem filmes de terças a domingos, em diversos horários.
- Os ingressos vendidos para uma sessão não podem ultrapassar a capacidade da sala.
- Os ingressos podem ser de dois tipos: normal e estudante. O preço do ingresso varia de acordo com o tipo.
- O preço pode mudar ao longo do tempo
- Nas quartas feiras, o preço dos ingressos (de qualquer tipo) cai pela metade
- É desejável fazer consultas históricas obtendo informações a respeito de cada sessão, como o filme exibido, data, hora, dia da semana, número de espectadores e renda.
- É desejável fazer consultas históricas obtendo os totais de ingressos vendidos em cada sessão, considerando os tipos de ingressos isoladamente
- Não devem ser armazenados dados redundantes