MA 181301A

2024

B.Tech. 3rd Semester End-Term Examination **MATHEMATICS III -A**

Full Marks - 70

1.

Time - Three hours

The figures in the margin indicate full marks for the questions.

			Answer q	uestion No.	1 and any f	our fron	n the rest.		
(I)	Fill in the blanks in the following:								
	(i)	Th	e equation	$\frac{\partial^2 u}{\partial x \partial y} = \left(\frac{\partial u}{\partial z}\right)$	$\right)^3$ is of ord	er —			
	(ii)	Sol	ution of p	pq = 1 is					
	(iii) Lagrange's auxiliary equations are ———————————————————————————————————								
(II)									
(i) If A and B two events such that $P(A) = 0.6$, $P(B) = 0.5$ then $P(A'/B')$ is equal to									
		(a)	1/10		(b)	3/10			
		(c)	3/8		(d)	6/7			
	(ii)	ii) For a Binomial Distribution the mean is 6 and variance is 3 then val of q is							
		(a)	1		(b)	2/3			
		(c)	1/3		(d)	1/2			
	(iii)	T-te	T-test Z-test are used in the sample of						
		(a)	Small s	ize, Medium	size				
		(b)	Small s	ize, Large si	ze				
		(0)	Modium	eize Large	cizo				

None of these

(d)

(iv)
$$L\left(e^{-2t}\cos t\right) =$$

(a)
$$\frac{s+2}{s^2+4s+5}$$

(b)
$$\frac{s}{s^2 + 4s + 5}$$

(c)
$$\frac{s-2}{s^2+4s+5}$$

(d) None of these

(v)
$$L^{-1}\left(\frac{s}{s^2+5}+\frac{1}{s^2-4}\right)=$$

(a)
$$\cos 5t + \frac{\sinh 2t}{2}$$

(b)
$$\cos\sqrt{5t} + \frac{\sinh 2t}{2}$$

(c)
$$\cos\sqrt{5t} + \frac{\sinh t}{2}$$

(d) None of these

(vi)
$$\int_{0}^{\infty} t^3 e^{5t} dt =$$

(a)
$$\frac{1}{625}$$

(b)
$$\frac{6}{25}$$

(c)
$$\frac{6}{625}$$

(d) None of these

2. (a) Form partial differential equation whose solution is
$$z = f(x+it) + g(x-it)$$
. 3

(b) Solve any three of the following:

 3×4

(i)
$$\frac{\partial^3 z}{\partial x^2 \partial y} = \cos(2x + 3y)$$

(ii)
$$(mz-ny)p + (nx-lz)q = ly-mx$$

(iii)
$$yp = 2yx + \log q$$

(iv)
$$x^2p^2 + y^2q^2 = z^2$$

3. (a) Apply Charpit's method to solve
$$px + qy = pq$$
.

6

(b) Solve the Boundary value problem
$$\frac{\partial u}{\partial x} = 2 \frac{\partial u}{\partial t} + u$$
 given that $u(x, 0) = 6e^{-3x}$.

5

(i) What is the probability of drawing a red ball?

(ii) If the ball drawn is red then what is the probability that the ball is picked up from bag B. 2+2

4.	(a)	(i) If $L\{f(t)\}=F(s)$ then show that $L\{e^{at}f(t)\}=F(s-a)$ 3+	1000				
		(ii) Find the Laplace transform of $te^{-2t} \sin t$					
	(b)-	If $L\{f(t)\}=F(s)$ then show that $L\{f'(t)\}=sF(s)-f(0)$ where $f'(t)$	i				
		continuous and $\lim_{t\to\infty} e^{-st}f(t) = 0$.					
		Hence evaluate					
		(i) $L\{t\sin wt\}$					
		(ii) $L\left\{wt\cos wt + \sin wt\right\}$					
	(c)	State the convolution theorem.	2				
5.	(a)	Out of 800 families with 4 children each, how many families would you expected to have					
		(i) 2 Boys and 2 Girls					
		(ii) at least one Boy					
		(iii) at most two Girls. Assume equal probabilities for Boys and Girls.					
	(b)	A sample of 100 dry battery cells tested to find the length of life produced with the results mean is 12 hrs and standard deviation 3 hrs. Assuming the data to be normally distributed. What percentage of battery cells are expected to have life:					
		(i) more than 15 hrs					
		(ii) less than 6 hrs					
		(iii) between 10 and 14 hrs					
	(c)	Fit a straight line for the following data by least square method considerin y as dependent variable.	g 5				
		x = 0 - 1 - 2 - 3 - 4					
		y 1 1.8 3.3 4.5 6.3					
6.	(a)	Evaluate $L^{-1}\left\{\frac{s}{(s+1)^5}\right\}$	4				
	(b)	A random variable X has the density function					
			agrif				

MA 181301A

 $f(x) = \frac{Cx(1-x)}{0} \quad 0 \le x \le 1$ otherwise

Find:

(i) C

(ii)
$$P\left[\frac{1}{2} \le X \le \frac{3}{4}\right]$$

- (iii) The commutative density function.
- (c) A fair coin is tossed four times. Let X denote the numbers of heads occurring and Y denote the longest string of heads occurring. Determine.
 - (i) the joint distribution of X and Y
 - (iii) the cov(X, Y)
 - (iii) the marginal distribution of X and Y.
- 7. (a) Solve the following differential equation by using Laplace Transforms $\frac{d^3y}{dt^3} + y = 1, t > 0, \text{ given that}$ y(0) = y'(0) = y''(0) = 0
 - (b) Define a Markov chain. A man is at an integral point of the real axis between 0 and 6. He takes a unit shop to the right with probability $\frac{3}{4}$ and to the left with probability $\frac{1}{4}$ unless he is at the origin where he takes a step to the right one at the point 6 where he takes a step to the left. Let X_n denote the position after n steps.

Write the state-space and transition matrix of this Markov chain.