Monitoria MAT1202 - Álgebra Linear 2 Apostila Notas de Aula

Matheus Nogueira

Resumo

Este documento consiste nas notas de aula da monitoria de MAT1202. Este material foi produzido com base em minhas anotações do curso de Álgebra Linear 2 do semestre 20.2 e do livro Álgebra Linear e suas aplicações, de Gilbert Strang. Qualquer dúvida, favor entrar em contato matnogueira@gmail.com

Sumário

1	\mathbf{Sist}	mas Lineares e Eliminação Gaussiana	2
	1.1	Sistemas Lineares e Notação Matricial	2
	1.2	Solução de um Sistema Linear	2
		1.2.1 Operações Elementares	٠
		1.2.2 Matrizes das operações elementares	٠
	1.3	Exemplo	4
	1.4	Conclusão	

1 Sistemas Lineares e Eliminação Gaussiana

1.1 Sistemas Lineares e Notação Matricial

Nosso foco é estudar sistemas de equações da forma Ax = b, onde A é a matriz com os termos que acompanham as variáveis (incógnitas), x é o vetor coluna com as incógnitas e b é o vetor coluna com os termos independentes.

Exemplo: Seja o seguinte sistema de equações...

$$x + 2y + 3 = 2$$
$$-x + y - z = -3$$
$$2x + y - z = 0$$

Escrevê-lo em forma matricial é definir as seguinte matriz e vetores:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -1 & 1 & -1 \\ 2 & 1 & -1 \end{bmatrix}, x = \begin{bmatrix} x \\ y \\ z \end{bmatrix} e b = \begin{bmatrix} 2 \\ -3 \\ 0 \end{bmatrix}$$

Não é difícil perceber que a multiplicação representada por Ax resulta exatamente no sistema linear inicial.

1.2 Solução de um Sistema Linear

Nossa estratégia para calcular a solução de um sistema de equações lineares será a Eliminação Gaussiana.

Este método consiste em realizar operações na matriz do sistema Ax = b, chamadas operações elementares, para chegar a um sistema triangular. Ao ser obtido este sistema, basta realizar uma série de substituições retroativas para chegar à solução.

Definição: Matrizes Triangulares

Uma matriz é triangular - superior ou inferior - se todas as entradas abaixo ou acima, respectivamente, da diagonal principal são nulas. A matriz A abaixo é triangular superior, enquanto que B é triangular inferior.

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \end{bmatrix}, B = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 2 & 1 & -1 \end{bmatrix}$$

São 3 os possíveis tipos de solução de um sistema linear:

- 1. Exatamente 1 solução
- 2. Infinitas Soluções
- 3. Não há solução

Observação: lembrem-se que, para verificar qual das opções acima é a o caso da matriz a ser estudada, podemos olhar para o *determinante* da matriz. Se seu valor for zero, o sistema possui infinitas soluções ou nenhuma solução. Se for diferente de zero, uma solução.

1.2.1 Operações Elementares

Definição: dado um sistema linear Ax = b, são 3 as operações elementares que não alteram a solução do sistema.

- 1. Permutação de linhas $(L_i \leftrightarrow L_j)$
- 2. Multiplicação de linha por escalar $(L_i \to L_i \cdot k, k \neq 0)$
- 3. Somar um múltiplo de uma linha a outra linha $(L_i \to L_i + k \cdot L_j)$

1.2.2 Matrizes das operações elementares

Veremos que cada uma das 3 operações elementares descritas pode ser representada por meio de matrizes da seguinte forma:

Se queremos realizar a operação elementar e sobre a matriz A, devemos realizar a multiplicação $E \cdot A$, onde E é a matriz que representa a operação elementar e.

Vejamos as como montar as matrizes para as mesmas 3 operações já apresentadas. Por facilidade, usaremos matrizes 3x3, pois o raciocínio para outras dimensões é o mesmo. Começamos sempre com a matriz identidade e:

- 1. Permutação de linhas $(L_i \leftrightarrow L_j)$: basta permutar as linhas da matriz identidade de acordo com as linhas a serem permutadas na matriz A
- 2. Multiplicação de linha por escalar $(L_i \to L_i \cdot k, k \neq 0)$: multiplicamos a linha correspondente da matriz identidade pelo escalar em questão.
- 3. Somar um múltiplo de uma linha a outra linha $(L_i \to L_i + k \cdot L_j)$: colocamos na entrada i, j da matriz identidade o valor de k com o devido sinal.

$$L_2 \leftrightarrow L_3 \implies \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} = E \tag{1}$$

$$L_2 \to L_2 \cdot k \implies \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & k \cdot 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = E \tag{2}$$

$$L_{3} \to L_{3} - 2 \cdot L_{1} \implies \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \leftrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1 \end{bmatrix} = E$$
 (3)

Ao final da *Eliminação Gaussiana*, depois de serem realizadas todas as devidas *operações* elementares, a matriz obtida estará na forma **escalonada**, isto é:

- 1. Se existem linhas nulas elas devem ser as últimas da matriz.
- 2. Em quaisquer duas linhas sucessivas não nulas, o pivô (primeiro elemento não nulo) da linha inferior deve estar mais à direita que o da linha superior.
- 3. Abaixo do pivô todas as entradas são nulas.

1.3 Exemplo

Calculemos a solução do seguinte sistema, mostrando as matrizes das operações elementares.

$$2x + y + z = 5$$
$$4x - 6y = 2$$
$$-2x + 7y + 2z = 9$$

Em forma matricial o sistema é:

$$\begin{bmatrix} 2 & 1 & 1 \\ 4 & -6 & 0 \\ -2 & 7 & 2 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 5 \\ -2 \\ 9 \end{bmatrix}$$

Seja a matriz aumentada a ser escalonada a seguir:

$$\begin{bmatrix} 2 & 1 & 1 & 5 \\ 4 & -6 & 0 & -2 \\ -2 & 7 & 2 & 9 \end{bmatrix}$$

Comecemos as operações elementares para chegar à matriz escalonada. A cada operação, indicaremos a matriz E correspondente.

$$L_2 \to L_2 - 2L_1 \text{ sendo } E_1 = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Nosso sistema fica...

$$\begin{bmatrix} 2 & 1 & 1 & 5 \\ 0 & -8 & -2 & -12 \\ -2 & 7 & 2 & 9 \end{bmatrix}$$

$$L_3 \to L_3 + L_1 \text{ sendo } E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$$

Nosso sistema fica...

$$\begin{bmatrix} 2 & 1 & 1 & 5 \\ 0 & -8 & -2 & -12 \\ 0 & 8 & 3 & 14 \end{bmatrix}$$

$$L_3 \to L_3 + L_2 \text{ sendo } E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}$$

Nosso sistema fica...

$$\begin{bmatrix} 2 & 1 & 1 & 5 \\ 0 & -8 & -2 & -12 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

Chegamos à matriz escalonada. Agora basta realizar algumas substituições retroativas para calcularmos a solução.

Lendo e substituindo o sistema de baixo para cima temos:

$$z = 2$$

 $-8y - 2(2) = -12 \rightarrow y = 1$
 $2x + 1 + 2 = 5 \rightarrow x = 1$

Note que chegamos a uma solução única, o que faz sentido pois $\det(A) = -16 \neq 0$ Utilizando as matrizes das operações elementares, chegaríamos na mesma matriz escalonada:

$$E_3 \cdot E_2 \cdot E_1 \cdot A$$
, onde A é a matriz aumentada

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 2 & 1 & 1 & 5 \\ 4 & -6 & 0 & -2 \\ -2 & 7 & 2 & 9 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 1 & 5 \\ 0 & -8 & -2 & -12 \\ 0 & 0 & 1 & 2 \end{bmatrix}$$

1.4 Conclusão

Com este material sabemos como encontrar a solução de um sistema linear utilizando a Eliminação Gaussiana e as operações Elementares, com suas respectivas matrizes. O próximo assunto a ser abordado será **Fatoração LU**.