Labrapport - Lab 4

Sondre H. Elgaaen & Eirik Wittersø

13. april 2019

Sammendrag

Innhold

Sa	ammendrag	1			
In	Innhold				
1	Innledning	1			
2	Teori	2			
3 Vårt Arbeid					
	3.1 Forarbeid	3			
	3.1.1 Design av absoluttverdikrets	3			
	3.1.2 Jeg må jobbe på toget	3			
4	1 Resultater				
5	5 Diskusjon				
6	3 Konklusjon				

1 Innledning

2 Teori

3 Vårt Arbeid

3.1 Forarbeid

3.1.1 Design av absoluttverdikrets

I forarbeidet skulle det designes en 4-bits absoluttverdikrets. For å ta absoluttverdien av et binært tall kan man invertere det og addere 1. En absoluttverdikrets kan dermed bygges opp av inverterkretser og av halvadderkretser. Vi startet med å designe en inverterkrets, altså en krets som inverterer hvert bit som kommer inn, hvis kretsen er aktivert.

Det blir gjort tydelig av tabell 1 at en slik krets kan lett implementeres som en XOR-port.

In	En	Out
0	0	1
0	1	0
1	0	1
1	1	0

Tabell 1: Sannhetstabell for inverterkrets

Deretter designet vi en halvadderkrets. En halvadderkrets adderer to tall og har to utganger, en for summen og en for mente, så lenge kretsen er aktivert.

In	Carry-In	Sum	Carry-Out
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Tabell 2: Sannhetstabell for halvadderkrets

Etter å ha designet komponentene til 4-bits absoluttverdikretsen, måtte vi sette disse sammen. Da lagde vi blokker ved å sette inverterkretsen og halvadderkretsen i serie, og satte fire av disse blokkene i parallell. Videre brukte vi MSB som enable signal for inverterne og som mente inn for første halvadder, slik som i figur [REF HER].

3.1.2 Jeg må jobbe på toget

4 Resultater

5 Diskusjon

6 Konklusjon