3.1 - 1

Let f(n) and g(n) be asymptotically nonnegative functions. Using the basic definition of Θ -notation, prove that $\max(f(n), g(n)) = \Theta(f(n) + g(n))$

if f(n) and g(n) be asymptotically nonnegative functions:

$$f(n) \leq \max(f(n),g(n))$$

$$g(n) \leq \max(f(n),g(n))$$

$$f(n)+g(n) \leq 2*\max(f(n),g(n))$$

$$1/2(f(n)+g(n)) \leq \max(f(n),g(n)) \leq f(n)+g(n)$$
 , so
$$\max(f(n),g(n)) = \Theta(f(n)+g(n))$$

3.1-2

Show that for any real constants a and b, where b > 0,

$$(n+a)^b = \Theta(n^b)$$

The fastest growing part is n^b , so $c_1 * n^b \ge (n+a)^b \ge c_2 * n^b$, for some c_1 and $c_2 = a^b$. So,

$$(n+a)^b = \Theta(n^b)$$

3.1 - 3

Explane why the statement, "The running time of algorithm A is at least $O(n^2)$," is meaningless.

O- show the upper bound of time. "At least" means lower bound. This concepts contradict each other.

3.1-4

Is $2^{n+1} = O(2^n)$? Is $2^{2n} = O(2^n)$?

$$2^{n+1} = 2 * 2^n$$

, so

$$2*2^n \le c*2^n$$

, for $c \ge 2$ So $2^{n+1} = O(2^n)$

$$2^{2n} = 2^n * 2^n$$

$$2^n * 2^n < c * 2^n$$

 2^n is unbounded function, so there is no c bigger than 2^n for all n. So $2^{2n} \neq O(2^n)$

3.1-5

Prove Theorem 3.1.

For any two function f(n) and g(n), we have $f(n) = \Theta(g(n))$ if and only if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$.

if g(n) is upper bound and lower bound function than g(n) is tight bound. So if f(n) = O(g(n)) and $f(n) = \Omega(g(n))$ then $f(n) = \Theta(g(n))$.

Let us assume $f(n) = \Theta(g(n))$ and there is same n_k $f(n_k) > O(g(n_k))$. But in this case $\Theta(g(n))$ is not a tight bound. Contradiction. Same with $f(n_k) < \Omega(g(n_k))$

3.1-6

Prove that the running time of an algorithm is $\Theta(g(n))$ if and only if its worst-case running time is O(g(n)) and its best-case running time is $\Omega(g(n))$

From Theorem 3.1

3.1-7

Prove that $o(g(n)) \cap \omega(g(n))$ is the empty set.

$$f(n) = o(g(n)) : c * g(n) > f(n)$$

, there is no c that $c * g(n) \le f(n)$

$$f(n) = \omega(g(n)) : c * g(n) < f(n)$$

, there is no c that $c * g(n) \ge f(n)$

Contradiction.

3.1 - 8

We can extend out notation to the case of two parameters n and m that can go to infinity independently at different rates. For a given function g(n, m), we denote by O(g(n, m)) the set of functions

 $O(g(n,m)) = \{f(n,m), \text{ there exist positive c, } n_0, \text{ and } m_0 \text{ such that } 0 \leq f(n,m) \leq cg(n,m) \text{ for all } n \geq n_0 \}$ Give corresponding differition for $\Omega(g(m,n))$ and $\Theta(g(m,n))$

 $\Omega(g(n,m)) = \Big\{ \mathrm{f(n,m)}, \qquad \text{there exist positive c, n_0, and m_0 such that $cg(n,m) \leq f(n,m)$ for all $n \geq n_0$ or $m_0 < m_0$.} \\$

 $\Theta(g(n,m)) = \Big\{ f(n,m), \quad \text{there exist positive c, } n_0, \text{ and } m_0 \text{ such that } c_1 g(n,m) \le f(n,m) \le c_2 g(n,m) \text{ for all } m_0 = 0.$