

UKAEA NEPTUNE - Preconditioning

Sue Thorne (PI), Vassil Alexandrov, Anton Lebedev and Emre Sahin

STFC Hartree Centre

sue.thorne@stfc.ac.uk vassil.alexandrov@stfc.ac.uk anton.lebedev@stfc.ac.uk emre.sahin@stfc.ac.uk

Linear solvers

Discretisation of the PDE => a very large linear system *Ax=b* must be solved (or series)

$$A = \begin{bmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{n,1} & \cdots & A_{n,n} \end{bmatrix}$$

A_{i,i} represents discretisation of *i*-th PDE

Iterative methods preferable but convergence slow: $x^{(0)}$, $x^{(1)}$, $x^{(2)}$,..., $x^{(k)} \rightarrow x$

Linear solvers (2)

Want to (approximately) solve **Ax=b**

<u>Instead</u> find P and/or Q and solve By=c, where $B=P^{-1}AQ^{-1}$, $c=P^{-1}b$ and $x=Q^{-1}y$

Choose **P/Q** that

- improve rate of convergence
- but "cheap" to generate and apply preconditioner

From SD1D Example (BOUT++)

• Good preconditioner for $A_{1,1}$ is not a good preconditioner for **A** when n>1

Our approach

$$A = \begin{bmatrix} A_{1,1} & \cdots & A_{1,n} \\ \vdots & \ddots & \vdots \\ A_{n,1} & \cdots & A_{n,n} \end{bmatrix}$$

Identification of key PDEs and literature search to assess suitability of known preconditioners

- PDE-based (multigrid,...)
- Sparse approximate inverses (Markov Chain Monte Carlo Matrix Inverse,...)

Development of implicit-factorization preconditioners

- Make use of block structure and preconditioners for A_{i,i}
- Comparison of implicit-factorization versus SPAI applied to A

Guide NEPTUNE Programme in choice of preconditioner

Key deliverables

- Literature surveys
 - [D1.1] Elliptic
 - [D2.1] Hyperbolic
 - [D3.1] Sparse approximate inverse
- [D4.1] Implicit-factorization preconditioner report
 - Proposed preconditioners
 - Loosely-coupled
 - Strongly-coupled
 - Theoretical convergence results
 - Reduced subspace iteration methods
- [D6.1-6.4] Comparison report and [D5.1-5.2] prototype code
 - Recommendations

Markov Chain Monte Carlo for Approximate Matrix Inversion (MCMCMI)

- Sparse approximate inverse preconditioners are based on forming a sparse approximation $G \approx A^{-1}$
 - Modified Sparse Approximate Inverse is most widely used
- MCMCMI preconditioner
 - The main idea of the method is to employ Neumann series which is evaluated stochastically using Markov Chains to compute an approximate inverse of a diagonally dominant matrix.
 - CPU parallelization combining MPI and OpenMP (OMP)
 - Multiple GPU

Markov Chain Monte Carlo for Approximate Matrix Inversion (MCMCMI)

MATRIX SET.

Matrix	Dimension	Non-zeros	Sparsity
ID1_2_P3_7_stiffness	$514,369 \times 514,369$	8,702,911	0.003%
nonsym_r3_a11	$20,930 \times 20,930$	638,733	0.15%
rdb2048_noL	$2,048 \times 2,048$	12,032	0.29%
sym_r6_a11	$1,314,306 \times 1,314,306$	36,951,316	0.02%

Implicit-factorization preconditioners

$$A = A^{T} = \begin{bmatrix} H_{1,1} & H_{1,2} & A_{1,3} \\ H_{2,1} & H_{2,2} & A_{2,3} \\ A_{3,1} & A_{3,2} & C \end{bmatrix}$$

Family 2

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & A_{1,3} \\ 0 & G_{2,2} & A_{2,3} \\ G_{3,1} & 0 & G_{3,3} \end{bmatrix} \begin{bmatrix} B_{1,1} & 0 & B_{1,3} \\ 0 & B_{2,2} & 0 \\ B_{3,1} & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & G_{1,3} \\ 0 & G_{2,2} & 0 \\ A_{3,1} & A_{3,2} & G_{3,3} \end{bmatrix}$$

$$G_{3,1} = B_{3,1}^T, \qquad G_{3,3} + G_{3,3}^T + G_{3,1}B_{1,1}G_{3,1}^T = C$$

Total of 14 families derived with constrained optimization as application

Implicit-factorization preconditioners

PDE-constrained optimization problem

Example 5.1. Let $\Omega = [0,1]^m$, where m = 2,3, and consider the problem

$$\min_{u,f} \frac{1}{2} ||u - \hat{u}||_{L_2(\Omega)}^2 + \beta ||f||_{L_2(\Omega)}^2$$

s.t.
$$-\nabla^2 u = f \text{ in } \Omega$$
 (5.
 $u = \hat{u}|_{\partial\Omega} \text{ on } \partial\Omega$

Implicitfactorization preconditioner using multigrid within some sub-blocks

1.	3n	backslash	MINRES	MINRES	PPCG	PPCG
h			(P_{D2})	(P_{D3})	(\mathcal{P}_{C2})	(G = diag(A))
			Convergence tolerance = 10^{-4}			
2^{-2}	81	0.001	0.15 (10)	0.15 (11)	0.02(5)	0.01 (6)
2^{-3}	1029	0.13	0.34(14)	0.48(23)	0.10(5)	0.18 (6)
2^{-4}	10125	18.9	2.74 (14)	4.36 (23)	1.58 (5)	18.8 (5)
2^{-5}	89373	_	26.5 (14)	44.1 (24)	15.7 (4)	
			Convergence tolerance = 10^{-8}			
2^{-2}	81	0.001	0.053 (12)	0.060(17)	0.03(7)	0.01 (10)
2^{-3}	1029	0.13	0.25 (18)	0.45(31)	0.15(8)	0.34(14)
2^{-4}	10125	18.9	3.76 (18)	7.29 (37)	2.21(8)	36.4 (13)
2^{-5}	89373	_	44.0 (18)	85.3 (37)	25.6 (8)	_

Thank you!

