Assignment 2 (EE 238)

- 1. Design a buck converter with a source voltage of 50 V and duty ratio of 0.6. The load resistance is 20 Ω . The maximum voltage ripple in the capacitor is 1% of the average capacitor voltage and the maximum ripple current is 5% of the average output current. Assume the converter is operating in CCM (Continuous Conduction Mode). The switching frequency is 2 kHz. (Ans: L=80 mH; C=15.625 μ F)
- 2. Find the output voltage of the following circuit considering the forward voltage drop of the MOSFET as 1 V and the forward voltage drop of the diode as 0.7 V. The switch is ON for 40% of the time in a switching cycle. The switching frequency is 5 kHz and assume CCM. (Ans: V_0 =5.18 V)

3. Consider the following circuit. The $f_s=10$ kHz of the switch.

The minimum current of the inductor is zero but never for a finite duration at the steady state. Find the peak value of the inductor current and also the duty ratio.

(Ans: $I_{L,pk}$ =83.33 A; D=5/6)

- 4. For a buck converter, the source voltage is 100 V, the duty ratio is 0.4 and the output voltage is 50 V. Given L=200 μ H and f_s=20 kHz, find
 - a) the peak value of the current.
 - b) The average output current. (Ans: $I_{L,pk}=5 A$, $I_0=2 A$)
- 5. Assuming CCM, draw the waveforms of the switch current, diode current, inductor current and the capacitor current for both Boost and Buck-Boost converters.

Ans. 1)

$$\Delta U_{0} = 0.01 V_{0}. \quad C_{1}$$
 $V_{0} = D V_{01} = 0.6 \times 50 = 36 V_{0}. \quad C_{2}$
 $\Delta U_{0} = 0.01 \times 30 = 0.3 V_{0}. \quad C_{3}$
 $\Delta U_{0} = \Delta I_{1} = 26 \times 6.6 \times 6.6$

(0)=0=) (15-1-V₀) D76 = (+0.7+V₀) (1-D)76.

$$\Rightarrow . \quad (4-1) \times 0.4 = (+0.7+1) \times 0.6.$$

$$T_{L,peole} = 100 \text{ ADTs} \qquad T_{L,peole} = 100 \text{ ADTs}$$

$$= 100 \text{ ADTs}$$

The circuit is operating in DCM as U. > DVar

$$= 0.4 \times 100$$

$$= 0.4 \times 100$$

$$= 0.4 \times 100$$

$$= 0.8 \quad -(1)$$

a).
$$I_{L,peck} = \frac{V_{dc} - V_{a}}{L} DT_{a}$$
.
$$= \frac{(60 - 50) \times 0.4}{200 \mu} \times 0.4$$

$$I_{L,peck} = \frac{50 \times 0.4}{4000 \mu \text{ K}} \times 4$$

$$T_{0} = \langle i_{L} \rangle = \frac{1}{2} \times \frac{17}{5} \times T_{L,pk}.$$

$$= \frac{1}{2} \times 0.8 \times 5$$

$$T_{0} = \frac{1}{2} \times 0.8 \times 5$$