1. Induction on strings.

On page 302 of the book, the operation **rev** on strings is defined as follows:

$$\mathbf{rev} \ (\epsilon) := \epsilon$$
 $\mathbf{rev} \ (xa) := a\mathbf{rev}(x)$

for any $x \in \Sigma^*$ and $a \in \Sigma$.

Show that, for any strings $x, y \in \Sigma^*$, we have $\mathbf{rev}(xy) = \mathbf{rev}(y) \mathbf{rev}(x)$. In other words, the reverse of xy is the reverse of y followed by the reverse of x.

Base Case:

Consider the case where |y| = 0. This is equivalent to $y = \epsilon$. By definition, the null string ϵ serves as an identity for string concatenation.

Proof.

$$\mathbf{rev}(xy) = \mathbf{rev}(x\epsilon)$$
 by substituting ϵ in for y

$$= \mathbf{rev}(x)$$
 by definition of ϵ

$$= \epsilon \mathbf{rev}(x)$$
 by definition of ϵ

$$= \mathbf{rev}(\epsilon) \mathbf{rev}(x)$$
 by definition of \mathbf{rev}

$$= \mathbf{rev}(y) \mathbf{rev}(x)$$
 by substituting y in for ϵ

Induction Hypothesis:

Assume that for |y| = k, where $k \ge 1$, $\mathbf{rev}(xy) = \mathbf{rev}(y) \ \mathbf{rev}(x)$.

Inductive Step:

Let $y \neq \epsilon$. Therefore, y can be represented as the concatenation bc where $b \in \Sigma^*$ and $c \in \Sigma$.

Proof.

$$\mathbf{rev}(xy) = \mathbf{rev}(x(bc))$$
by substituting bc in for y $= \mathbf{rev}((xb)c)$ by associativity of concatenation $= c \mathbf{rev}(xb)$ by definition of \mathbf{rev} $= c \mathbf{rev}(b)\mathbf{rev}(x)$ by Induction Hypothesis $= \mathbf{rev}(bc) \mathbf{rev}(x)$ by definition of \mathbf{rev} $= \mathbf{rev}(y) \mathbf{rev}(x)$ by substituting y in for bc