COMP30120 Tutorial

Decision Trees and Naïve Bayes Classifiers

Derek Greene

School of Computer Science and Informatics Autumn 2015

Reminder: Entropy & Information Gain

 Entropy provides a measure of impurity - how uncertain we are about the decision for a given set of examples.

Entropy of a set of examples S with class labels $\{C_1, \ldots, C_n\}$:

$$H(S) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

where p_i is the relative frequency (probability) of class C_i .

 Information Gain measures reduction in entropy when a feature is used to split a set into two or more subsets

IG for feature A that splits a set of examples S into $\{S_1, \ldots, S_m\}$:

$$IG(S, A) = (original entropy) - (entropy after split)$$

$$IG(S,A) = H(S) - \sum_{i=1}^{m} \frac{|S_i|}{|S|} H(S_i)$$
 Each subset is weighted in proportion to its size

a) What is the entropy of this data set with respect to the target class label *Result*?

	Name	Hair	Height	Weight	Dublin	Result
1	Sarah	blonde	average	light	no	sunburned
2	Dana	blonde	tall	average	yes	none
3	Alex	brown	short	average	yes	none
4	Annie	blonde	short	average	no	sunburned
5	Emily	red	average	heavy	no	sunburned
6	Pete	brown	tall	heavy	no	none
7	John	brown	average	heavy	no	none
8	Katie	brown	short	light	yes	none

Entropy(Dataset)

$$= -(3/8)*log_2(3/8) -(5/8)*log_2(5/8)$$

$$= 0.5306 + 0.4238 = 0.9544$$

$$H(S) = -\sum_{i=1}^{n} p_i \log_2 p_i$$

b) Construct the decision tree that would be built with Information Gain for this data set. Show your work for selection of the root feature in your tree.

	Name	Hair	Height	Weight	Dublin	Result
1	Sarah	blonde	average	light	no	sunburned
2	Dana	blonde	tall	average	yes	none
3	Alex	brown	short	average	yes	none
4	Annie	blonde	short	average	no	sunburned
5	Emily	red	average	heavy	no	sunburned
6	Pete	brown	tall	heavy	no	none
7	John	brown	average	heavy	no	none
8	Katie	brown	short	light	yes	none

Steps:

- 1. Calculate overall dataset entropy.
 - 2. Calculate entropy for each feature.
 - 3. Calculate Information Gain for each feature.

Calculate entropy values for all features:

```
Entropy(Hair=blonde) = Entropy(1/3,2/3) = 0.9183
Entropy(Hair=brown) = Entropy(0/4,4/4) = 0
Entropy(Hair=red) = Entropy(1/1,0/1) = 0
```

```
Entropy(Height=average) = Entropy(1/3,2/3) = 0.9183
Entropy(Height=tall) = Entropy(2/2,0/2) = 0
Entropy(Height=short) = Entropy(1/3,2/3) = 0.9183
```

Entropy(Weight=light) = $Entropy(1/2,1/2) = 1$
Entropy(Weight=average) = $Entropy(1/3,2/3) = 0.9183$
Entropy(Weight=heavy) = $Entropy(1/3,2/3) = 0.9183$

<pre>Entropy(Dublin=no) =</pre>	Entropy $(2/5, 3/5) = 0.9710$
<pre>Entropy(Dublin=yes) =</pre>	= Entropy(3/3,0/3) = 0

Hair	Result
blonde	sunburned
blonde	none
brown	none
blonde	sunburned
red	sunburned
brown	none
brown	none
brown	none

Height	Result
blonde	average
blonde	tall
brown	short
blonde	short
red	average
brown	tall
brown	average
brown	short

Use Information Gain to choose best feature to split for root node. Try each feature in turn...

```
IG(Hair) = Entropy(Dataset)
  - p(Hair=blonde) * Entropy(Hair=blonde)
  - p(Hair=brown) * Entropy(Hair=brown)
  - p(Hair=red) * Entropy(Hair=red)

= 0.9544 - (3/8)*0.9183 - (4/8)*0 - (1/8)*0
  = 0.610
```

```
Entropy(Hair=blonde) = 0.9183
Entropy(Hair=brown) = 0
Entropy(Hair=red) = 0

Entropy(Height=average) = 0.9183
Entropy(Height=tall) = 0
Entropy(Height=short) = 0.9183

Entropy(Weight=light) = 1
Entropy(Weight=average) = 0.9183
Entropy(Weight=heavy) = 0.9183

Entropy(Dublin=no) = 0.9710
Entropy(Dublin=yes) = 0
```

```
IG(Height) = 0.9544 - (3/8)*0.9183 - (2/8)*0 - (3/8)*0.9183 = 0.2657
IG(Weight) = 0.9544 - (2/8)*1 - (3/8)*0.9183 - (3/8)*0.9183 = 0.0157
IG(Dublin) = 0.9544 - (5/8)*0.9710 - (3/8)*0 = 0.3475
```

"Hair" will be selected as the feature with the highest IG value.
It perfectly classifies the data for Hair=brown & Hair=red

 "Hair" selected as the feature with the highest IG value ⇒ used to split the root node of the tree.

Child node Hair=blonde:

	Name	Hair	Height	Weight	Dublin	Result
1	Sarah	blonde	average	light	no	sunburned
2	Dana	blonde	tall	average	yes	none
4	Annie	blonde	short	average	no	sunburned

The case for Hair=blonde contains (2 sunburned, 1 none).
Can split these into pure child nodes using feature "Dublin".

c) Using your decision tree from (b), how would you classify the following example:

	Hair	Height	Weight	Dublin	Result
X	blonde	average	heavy	no	???

- First, check Hair=Blonde
- Next, check Dublin=No
- Output: Sunburned

d) Use Naïve Bayes to give the likelihood that the result for the given example is "sunburned". Then indicate what prediction Naïve Bayes would make. Provide the probability table for each of the predicting features.

Probability table for each of the predicting features:

Feature/Value	Class=sunburned	Class=none
Hair=blonde	2/3	1/5
Hair=brown	0/3	4/5
Hair=red	1/3	0/5
Height=average	2/3	1/5
Height=tall	0/3	2/5
Height=short	1/3	2/5
Weight=light	1/3	1/5
Weight=average	1/3	2/5
Weight=heavy	1/3	2/5
Dublin=no	3/3	2/5
Dublin=yes	0/3	3/5
Class Probabilities	3/8	5/8

Use the probability table to calculate the Naïve Bayes scores:

	Hair	Height	Weight	Dublin	Result
X	blonde	average	heavy	no	???

$$v_{NB} = \arg\max_{v_j \in V} P(v_j) \prod_i P(f_i|v_j)$$

Calculate raw probabilities for two classes:

$$P(S) = (2/3)*(2/3)*(1/3)*(3/3) * (3/8)$$

$$P(S) = 0.056$$

$$P(N) = (1/5)*(1/5)*(2/5)*(2/5) * (5/8)$$

$$P(N) = 0.004$$

Feature/Value	Class=sunburned	Class=none
Hair=blonde	2/3	1/5
Hair=brown	0/3	4/5
Hair=red	1/3	0/5
Height=average	2/3	1/5
Height=tall	0/3	2/5
Height=short	1/3	2/5
Weight=light	1/3	1/5
Weight=average	1/3	2/5
Weight=heavy	1/3	2/5
Dublin=no	3/3	2/5
Dublin=yes	0/3	3/5
Class Probabilities	3/8	5/8

Normalise probabilities:

$$P(S)' = 0.056/(0.056+0.004) = 0.933$$

$$P(N)' = 0.004/(0.056+0.004) = 0.067$$

→ Output: Sunburned

Tutorial Q2(a)

a) Which one of the predicting features would be selected by ID3 at the root of a decision tree? Explain your answer.

Example	Credit_History	Debt	Income	Risk
1	bad	low	0to15	high
2	bad	high	15to35	high
3	bad	low	0to15	high
4	unknown	high	15to35	high
5	unknown	high	0to15	high
6	good	high	0to15	high
7	bad	low	over35	moderate
8	unknown	low	15to35	moderate
9	good	high	15to35	moderate
10	unknown	low	over35	low
11	unknown	low	over35	low
12	good	low	over35	low
13	good	high	over35	low
14	good	high	over35	low

Tutorial Q2(a)

a) Which one of the predicting features would be selected by ID3 at the root of a decision tree? Explain your answer.

Calculate entropy for data set:

```
Entropy(Dataset) =
-(6/14)*log<sub>2</sub>(6/14) - (3/14)*log<sub>2</sub>(3/14)
-(5/14)*log<sub>2</sub>(5/14)
= 0.5239 + 0.4762 + 0.5305
= 1.5306
```

	СН	Debt	Income	Risk
1	bad	low	0to15	high
2	bad	high	15to35	high
3	bad	low	0to15	high
4	unknown	high	15to35	high
5	unknown	high	0to15	high
6	good	high	0to15	high
7	bad	low	over35	moderate
8	unknown	low	15to35	moderate
9	good	high	15to35	moderate
10	unknown	low	over35	low
11	unknown	low	over35	low
12	good	low	over35	low
13	good	high	over35	low
14	good	high	over35	low

Calculate entropy values for all features:

```
Entropy(CH=bad) = (1/4)*log_2(1/4)-(3/4)*log_2(3/4) = 0.8113

Entropy(CH=unknown) = -(2/5)*log_2(2/5)-(1/5)*log_2(1/5)-(2/5)*log_2(2/5) = 1.5219

Entropy(CH=good) = -(1/5)*log_2(1/5)-(1/5)*log_2(1/5)-(3/5)*log_2(3/5) = 1.3710

Entropy(Debt=low) = -(2/7)*log_2(2/7)-(2/7)*log_2(2/7)-(3/7)*log_2(3/7) = 1.5567

Entropy(Debt=high) = -(4/7)*log_2(4/7)-(1/7)*log_2(1/7)-(2/7)*log_2(2/7) = 1.3788

Entropy(Income=0to15) = -(4/4)*log_2(4/4) = 0

Entropy(Income=15to35) = -(2/4)*log_2(2/4)-(2/4)*log_2(2/4) = 1

Entropy(Income=over35) = -(1/6)*log_2(1/6)-(5/6)*log_2(5/6) = 0.6500
```

Tutorial Q2(a)

Use Information Gain to choose best feature to split for root node...

```
IG(CH) = Entropy(Dataset)
  - p(CH=bad) * Entropy(CH=bad)
  - p(CH=unknown) * Entropy(CH=unknown)
  - p(CH=good) * Entropy(CH=good)

= 1.5306 - (4/14)*0.8113 - (5/14)*1.5219
  - (5/14)*1.3710

= 0.2656
```

```
Entropy(CH=bad) = 0.8113
Entropy(CH=unknown) = 1.5219
Entropy(CH=good) = 1.3710

Entropy(Debt=low) = 1.5567
Entropy(Debt=high) = 1.3788

Entropy(Income=0to15) = 0
Entropy(Income=15to35) = 1
Entropy(Income=over35) = 0.65
```

```
IG(Debt) = 1.5306 - (7/14)*1.5567 - (7/14)*1.3788 = 0.0628

IG(Income) = 1.5306 - (4/14)*0 - (4/14)*1 - (6/14)*0.65 = 0.9663
```

"Income" will be selected as the feature to split as it has the highest IG value.

b) What is the main problem with the Information Gain criterion for attribute selection in decision trees?

"Although information gain is usually a good measure for deciding the relevance of an attribute, it is not perfect. A notable problem occurs when information gain is applied to attributes that can take on a large number of distinct values. For example, suppose that one is building a decision tree for some data describing the customers of a business. Information gain is often used to decide which of the attributes are the most relevant, so they can be tested near the root of the tree. One of the input attributes might be the customer's credit card number. This attribute has a high mutual information, because it uniquely identifies each customer, but we do not want to include it in the decision tree: deciding how to treat a customer based on their credit card number is unlikely to generalise to customers we haven't seen before (overfitting)."

Tutorial Q2(c)

c) Provide the contingency table of conditional and prior probabilities that would be used by Naïve Bayes to build a classifier for this data set.

Contingency table (probability table) for each of the predicting features:

Risk	high	moderate	low
CH=bad	3/6	1/3	0
CH=unknown	2/6	1/3	2/5
CH=good	1/6	1/3	3/5
Debt=low	2/6	2/3	3/5
Debt=high	4/6	1/3	2/5
Income=0to15	4/6	0	0
Income=15to35	2/6	2/3	0
Income=over35	0	1/3	5/5
Class Probabilities (Priors)	6/14	3/14	5/14

Tutorial Q2(d)

d) Write down the rule used by Naïve Bayes to classify examples, and apply it to the following example. Which class will be returned by Naïve Bayes for the example?

Example	СН	Debt	Income	Risk
X	bad	low	15to35	???

NB Objective:
$$v_{NB} = \arg \max_{v_j \in V} P(v_j) \prod_i P(f_i|v_j)$$

Calculate raw probabilities for 3 classes, using probability table:

$$P(H) = (3/6)*(2/6)*(2/6) * (6/14) = 0.0238$$

 $P(M) = (1/3)*(2/3)*(2/3) * (3/14) = 0.0317$
 $P(L) = (0)*(3/5)*(0) * (5/14) = 0$

Normalise probabilities:

$$P(H)' = 0.0238/(0.0238+0.0317+0) = 0.4288$$

 $P(M)' = 0.0317/(0.0238+0.0317+0) = 0.5712$
 $P(L)' = 0$

Output:

Moderate