Report: Optimising NYC Taxi Operations

Include your visualisations, analysis, results, insights, and outcomes. Explain your methodology and approach to the tasks. Add your conclusions to the sections.

1. Data Preparation

1.1. Loading the dataset

1.1.1. Sample the data and combine the files

The dataset was loaded from 12 parquet files and combined into a single DataFrame. A sample of the 5% of data was extracted for efficiency in processing.

2. Data Cleaning

2.1. Fixing Columns

2.1.1. Fix the index

I simply check for the index and it looked good, from 0 to 21

2.1.2. Combine the two airport_fee columns

Airport_fee and airport_fee, two columns were appearing which I combined to handle redundancy.

2.2. Handling Missing Values

2.2.1. Find the proportion of missing values in each column

Using below command I got the percentage of missing values in data

- 100 * df2.isnull().mean()

2.2.2. Handling missing values in passenger_count

Missing values in Passenger Count handled using median.

2.2.3. Handle missing values in RatecodelD

Missing values in RatecodeID were handled using **mode** which were populate maximum appearing values.

2.2.4. Impute NaN in congestion_surcharge

I have replaced NaN values in Congestion Surcharge with median to handle null values.

Code- #replacing nulls with median

```
df2['congestion_surcharge'] =
df2['congestion_surcharge'].fillna(df2['congestion_surcharge'].median())
#Printing the result
missing_values = df2['congestion_surcharge'].isnull().sum()
print(f"Missing values in 'congestion surcharge': {missing values}")
```

2.3. Handling Outliers and Standardising Values

2.3.1. Check outliers in payment type, trip distance and tip amount columns

Outliers were checked in payment type, trip distance, and tip amount and standardised to ensure the fare consistency

3. Exploratory Data Analysis

3.1. General EDA: Finding Patterns and Trends

Numerical columns (int and float)

3.1.1. Classify variables into categorical and numerical

```
numerical_cols = df2.select_dtypes(include=['int64',
'float64']).columns.tolist()
```

Categorical columns (object and category)

categorical_cols = df2.select_dtypes(include=['object', 'category']).columns.tolist()

Used above commands to categorised the columns.

3.1.2. Analyse the distribution of taxi pickups by hours, days of the week, and months

a. Taxi pickup by hours: During evening hours taxi pickups increases. Value is highest @6 PM.

b. Taxi pickup by Day: During mid of the week taxi pickups increases. Value is highest on thrusday

a. Taxi pickup by Month: Taxi pickup in quarter second and quarter four are highest.

3.1.3. Filter out the zero/negative values in fares, distance and tips

columns_to_check = ['fare_amount', 'tip_amount', 'total_amount',
'trip_distance']

df2[columns_to_check].describe()

Used above code to check the negative and zero values

3.1.4. Analyse the monthly revenue trends

Monthly revenue is highest in Oct month'23 and lowest in Feb and Aug'23

3.1.5. Find the proportion of each quarter's revenue in the yearly revenue year_quarter

2022Q4 0.000067
2023Q1 24.694513
2023Q2 25.816265
2023Q3 23.040803
2023Q4 26.448352

Revenue is highest in Q4

3.1.6. Analyse and visualise the relationship between distance and fare amount

- a. A positive correlation between trip distance and fare was observed
- b. Correlation between Trip Distance and Fare Amount: 0.1564

3.1.7. Analyse the relationship between fare/tips and trips/passengers

A. Correlation is negative

B. Correlation between Trip Duration and Fare Amount: -0.0002

a. Correlation between Passenger Count and Fare Amount: 0.0067 and positive

3.1.8. Analyse the distribution of different payment types

3.1.9. Load the taxi zones shapefile and display it

import geopandas as gpd

Read the shapefile using geopandas

 $zones = gpd.read_file(r"C:\Users\Vedan\Downloads\Datasets\ and\ Dictionary\NYC\Datasets\ and\ Dictionary\taxi_zones\taxi_zones.shp")$

zones.head()

3.1.10. Merge the zone data with trips data

```
# Merge zones and trip records using locationID and PULocationID

df_merged = df2.merge(zones, left_on='PULocationID', right_on='LocationID', how='left')

# Display the first few rows of merged data
print(df_merged.head())
```

3.1.11. Find the number of trips for each zone/location ID

```
trip counts = df2.groupby('PULocationID').size().reset index(name='trip count')
   # Sort by the number of trips (descending order)
   trip counts = trip counts.sort values(by='trip count', ascending=False)
   # Display the top locations with highest trips
   print(trip counts.head())
    PULocationID trip_count
125
             132
                       96803
229
                       86904
             237
154
             161
                        85946
228
              236
                        77516
155
              162
                        65634
```

3.1.12. Add the number of trips for each zone to the zones dataframe

```
# Merge trip counts back to the zones GeoDataFrame

# Step 1: Group trip data by PULocationID and count trips
trip_counts = df2.groupby('PULocationID').size().reset_index(name='trip_count')

# Step 2: Merge trip counts back to the zones GeoDataFrame
zones_merged = zones.merge(trip_counts, left_on='LocationID', right_on='PULocationID', how='left')

# Fill NaN values (for locations with no trips) with 0
zones_merged['trip_count'] = zones_merged['trip_count'].fillna(0)

# Display the first few rows
print(zones_merged.head())
```

3.1.13. Plot a map of the zones showing number of trips

3.1.14. Conclude with results

- The analysis discloses that taxi demand peaks in the evenings, mid-week, and during Q4 of the year. A positive correlation exists between distance and fare, while tip percentages vary based on factors like distance and pickup time. Optimizing taxi dispatching in high-traffic zones and adjusting pricing strategies based on peak demand can enhance operational efficiency and revenue.

3.2. Detailed EDA: Insights and Strategies

3.2.1. Identify slow routes by comparing average speeds on different routes

During night time on below PUlocation speed is comparatively slow

	PULocationID	DOLocationID	time_of_day	speed_mph
620	10	1	Night	0.0
717	10	137	Night	0.0
1424	13	195	Night	0.0
3870	41	205	Night	0.0
6998	56	230	Night	0.0
7276	62	39	Night	0.0
8310	68	130	Night	0.0
8737	69	232	Night	0.0
10085	75	13	Night	0.0
11620	80	255	Night	0.0

3.2.2. Calculate the hourly number of trips and identify the busy hours

6PM is the busiest hour

3.2.3. Scale up the number of trips from above to find the actual number of trips

Code-# Define your sampling fraction

```
sampling_fraction = 0.1 #Taking 10% for sampling
# Scale up the number of trips

df['scaled_revenue'] = df2['total_amount'] / sampling_fraction

df['scaled_distance'] = df2['trip_distance'] / sampling_fraction
# Display the first few rows

print(df[[ 'scaled_revenue', 'scaled_distance']].head())
```

```
# Print total scaled values
total scaled revenue = df['scaled revenue'].sum()
total scaled distance = df['scaled distance'].sum()
print(f"Total Scaled Revenue: ${total_scaled_revenue:,.2f}")
print(f"Total Scaled Distance: {total scaled distance:,.2f} miles")
            3.2.4.
                      Compare hourly traffic on weekdays and weekends
Code- # Ensure datetime conversion
df['tpep_pickup_datetime'] = pd.to_datetime(df2['tpep_pickup_datetime'])
# Extract hour and day of the week
df['hour'] = df['tpep_pickup_datetime'].dt.hour
df['day of week'] = df['tpep_pickup_datetime'].dt.dayofweek # Monday=0, Sunday=6
# Define weekday vs weekend
df['day_type'] = df['day_of_week'].apply(lambda x: 'Weekday' if x < 5 else 'Weekend')
# Aggregate trip counts per hour
trips per hour = df.groupby(['day type', 'hour']).size().reset index(name='trip count')
# Plot
plt.figure(figsize=(12, 6))
sns.set theme(style="whitegrid")
```

```
sns.lineplot(data=trips per hour, x='hour', y='trip count', hue='day type', marker="o")
```

```
# Labels and title
plt.xlabel("Hour of the Day")
plt.ylabel("Number of Trips")
plt.title("Hourly Trip Trends: Weekdays vs. Weekends")
plt.xticks(range(0, 24))
plt.legend(title="Day Type")
plt.show()
```


3.2.5. Identify the top 10 zones with high hourly pickups and drops

Code-# Find top 10 pickup and dropoff zones

Step 1: Count top 10 pickup zones

```
top pickup zones = df2['PULocationID'].value counts().head(10).reset index()
top_pickup_zones.columns = ['LocationID', 'trip_count']
# Step 2: Count top 10 dropoff zones
top dropoff zones = df2['DOLocationID'].value counts().head(10).reset index()
top_dropoff_zones.columns = ['LocationID', 'trip_count']
# Step 3: Merge with zone names (if available)
if 'zone' in zones.columns: # Assuming 'zones' has a mapping of LocationID to zone names
  top pickup zones = top pickup zones.merge(zones[['LocationID', 'zone']],
on='LocationID', how='left')
  top_dropoff_zones = top_dropoff_zones.merge(zones[['LocationID', 'zone']],
on='LocationID', how='left')
# Step 4: Plot Top 10 Pickup Zones
plt.figure(figsize=(12, 5))
sns.barplot(x=top pickup zones['trip count'], y=top pickup zones['zone'])
plt.xlabel("Number of Trips")
plt.ylabel("Pickup Zone")
plt.title("Top 10 Pickup Zones")
plt.show()
# Step 5: Plot Top 10 Dropoff Zones
plt.figure(figsize=(12, 5))
sns.barplot(x=top_dropoff_zones['trip_count'], y=top_dropoff_zones['zone'])
plt.xlabel("Number of Trips")
plt.ylabel("Dropoff Zone")
```

plt.title("Top 10 Dropoff Zones")
plt.show()

Top 10 Pickup Zones:

Top 10 Dropoff Zones:

3.2.6. Find the ratio of pickups and dropoffs in each zone

Code: # Find the top 10 and bottom 10 pickup/dropoff ratios

Step 1: Count total pickups and dropoffs
pickup_counts = df2['PULocationID'].value_counts().reset_index()


```
pickup counts.columns = ['LocationID', 'pickup count']
dropoff counts = df2['DOLocationID'].value counts().reset index()
dropoff counts.columns = ['LocationID', 'dropoff count']
# Step 2: Merge pickup and dropoff counts
zone ratios = pickup counts.merge(dropoff counts, on='LocationID', how='outer').fillna(0)
# Step 3: Compute the pickup/dropoff ratio
zone ratios['pickup dropoff ratio'] = zone ratios['pickup count'] /
(zone ratios['dropoff count'] + 1) # Avoid division by zero
# Step 4: Merge with zone names
if 'zone' in zones.columns:
  zone_ratios = zone_ratios.merge(zones[['LocationID', 'zone']], on='LocationID',
how='left')
# Step 5: Sort and extract top/bottom 10
top 10 ratios = zone ratios.sort values(by='pickup dropoff ratio',
ascending=False).head(10)
bottom 10 ratios = zone ratios.sort values(by='pickup dropoff ratio',
ascending=True).head(10)
# Step 6: Plot the Top 10 Ratios
plt.figure(figsize=(12, 5))
sns.barplot(x=top_10_ratios['pickup_dropoff_ratio'], y=top_10_ratios['zone'])
plt.xlabel("Pickup/Dropoff Ratio")
plt.ylabel("Zone")
```

plt.title("Top 10 Pickup/Dropoff Ratios")
plt.show()

Top 10 Pickup Ratio:

Top 10 Dropoff Ratio:

3.2.7. Identify the top zones with high traffic during night hours

3.2.8. Find the revenue share for nighttime and daytime hours

3.2.9. For the different passenger counts, find the average fare per mile per passenger

3.2.10. Find the average fare per mile by hours of the day and by days of the week

3.2.11. Analyse the average fare per mile for the different vendors

3.2.12. Compare the fare rates of different vendors in a distance-tiered fashion

3.2.13. Analyse the tip percentages

3.2.15. Analyse the trends in passenger count

3.2.16. Analyse the variation of passenger counts across zones

3.2.17. Analyse the pickup/dropoff zones or times when extra charges are applied more frequently.

4. Conclusions

4.1. Final Insights and Recommendations

- 4.1.1. Recommendations to optimize routing and dispatching based on demand patterns and operational inefficiencies.
 - Since taxi demand peaks at **6 PM and midweek (Thursday)**, routing algorithms should prioritize these high-traffic areas for cab availability.
 - Assign more taxis to **high-revenue quarters (Q2 & Q4)** and areas with high trip volumes.
 - Use historical trip data to predict demand surges and dispatch cabs in advance.
- 4.1.2. Suggestions on strategically positioning cabs across different zones to make best use of insights uncovered by analysing trip trends across time, days and months.
 - Position cabs near the top 10 pickup zones identified in the report.
 - Since nighttime has slow-moving traffic in certain zones, increase availability in well-lit and high-demand areas.
 - Deploy more cabs in Q2 and Q4, as these have the highest revenue.

4.1.3. Propose data-driven adjustments to the pricing strategy to maximize revenue while maintaining competitive rates with other vendors.

- Charge higher rates for longer trips, as there's a positive correlation between distance and fare.
- Differentiate pricing for single vs. multiple passengers to maximize per-mile revenue.