# 實習十四

# 單載子接面場效電晶體偏壓電路

## ◆ 實習目的

- 1. 學習各種接面場效電晶體偏壓電路之設計方法。
- 2. 藉由實習過程,以瞭解各種接面場效電晶體偏壓電路之特性。



#### 相 關 知 識

- ◆ 為使場效電晶體 (Field Effect Transistor; FET) 可正常的工作,必須外加一些直流電壓,以提供 FET 工作時所需之電源,而此外加之直流電壓即稱為偏壓 (Bias)。
- ◆ 因 FET 之輸入阻抗相當高,導致幾乎為零之輸入電流,因此 FET 不考慮電流放大之問題,而僅需討論電壓放大之問題,故 FET 的直流偏壓與小訊號放大之問題,比 BJT (雙載子接面電晶體)簡單。
- ◆ 當對 FET 施予適當偏壓,使 FET 操作於飽和區後,再依實際工作狀況,在輸出特性曲線上設定工作 點 (Operation Point),接著配合外加負載所產生之直流負載線 (DC Load Line),便可分析電晶體之交 流工作情況,以設計符合實際需要之電晶體放大器。
- ◆ 直流偏壓乃是用來提供 FET 工作時所需之電源,此種偏壓純粹是一種直流操作,其目的乃為建立電路之工作點。當交流訊號輸入時,便可產生一個在工作點附近變化之電壓與電流,使 FET 能適當的將交流訊號作完整而無失真的放大。
- ◆ 而在分析 FET 之交流小訊號效前,首先討論 FET 之直流負載線 (DC Load Line)、工作點 (Operation Point)、交流小訊號放大原理與等效電路後,再討論 JFET 所構成的放大電路之交流小訊號特性。

### 接面場效電晶體 (JFET) 之直流偏壓電路分析

- ◆ 當對 FET 施予不同之直流偏壓後,可使其操作於截止區、歐姆區、飽和區與崩潰區等四個不同工作區域,以提供各種電子電路之不同應用。
- ◆ 本節將依不同電路連接方式與電子電路實際之需求,分成共源極自偏壓電路、雙電阻分壓器偏壓電路 等 2 種常用之偏壓電路。



### 源極自偏壓電路

◆ 利用一個電阻 R<sub>D</sub> 連接汲極與 V<sub>DD</sub> 之正端,再將電阻 R<sub>G</sub> 接地,並在源極與地間加上一個電阻 R<sub>S</sub>,即可組成 JFET 之單電源自偏壓電路,如右圖所示。

◆ 因 JFET 之閘 - 源極必須加上逆向偏壓,才可調整通道之導電率,而此偏壓電路利用 I<sub>D</sub> 流過 R<sub>S</sub> 所產生之壓降,作為閘 - 源極逆向偏壓,故此種偏壓技術亦可稱為源極自偏壓電路。



◆ 對右圖之單電源自偏壓電路作直流分析,亦可分為輸入迴路與輸出迴路兩個部份來討論 (對直流訊號 而言,電容可視為開路狀態),以求解V<sub>GS</sub>、I<sub>D</sub>與V<sub>DS</sub>如下:



1. 輸入迴路:因 JFET 的輸入電阻相當大,因此I<sub>G</sub> 可視為零,

因此V<sub>G</sub>亦可視為零,利用 KVL 於右圖之輸入迴路,可得

$$V_{GS} = -I_D \cdot R_S$$

當 JFET 操作於飽和區之 Ip與VGS 關係為

$$I_D = I_{DSS} \cdot \left(1 + \frac{V_{GS}}{V_P}\right)^2$$

將 $V_{GS} = -I_D \cdot R_S$ 帶入上式,可得

$$I_D = I_{DSS} \cdot \left(1 - \frac{I_D \cdot R_S}{V_P}\right)^2$$

2. 輸出迴路:利用 KVL 於右圖之輸出迴路之可得

$$V_{DS} = V_{DD} - I_D \cdot (R_D + R_S)$$





### 單電源自偏壓電路的直流分析之討論

- ◆ 由前面計算可得 $V_{GS} = -I_D \cdot R_S \times I_D = I_{DSS} \cdot \left(1 \frac{I_D \cdot R_S}{V_P}\right)^2$ 與 $V_{DS} = V_{DD} I_D \cdot (R_D + R_S)$ 等三個方程式,欲得到 $V_{GS} \times I_D$ 與 $V_{DS}$ 之值,必須求解一元二次方程式,因此所得之 $I_D$ 會有兩個解。
- ◆ 對 n 通道之 JFET 而言,僅有  $I_D$  為正值的解,可使  $V_{GS} < 0$ ,此  $I_D > 0$  之解方為正確,才會滿足 JFET 操作於飽和區之條件;;而  $I_D$  為負值的解,會使  $V_{GS} > 0$  (不合),故此解可忽略(即此解為一元二次方程式的增根)。



### 直流負載線與工作點

- ◆ 直流負載線 (DC Load Line) 是以電晶體電路之輸出電流與輸出電壓來決定所有可能之直線稱之,即利用偏壓電路之輸出方程式,連接輸出特性區線上的 A 點 (令 V<sub>DS</sub> = 0 所得之 I<sub>D</sub>)與 B 點 (令 I<sub>D</sub> = 0 所得之 V<sub>DS</sub>)等兩點所成之直線,而此直線為偏壓電路之最大直流負載線。
- ◆ 接著利用偏壓電路直流分析所得之V<sub>GS</sub>與直流負載線之交點,即稱為電晶體電路之工作點 (Operation Option) 或稱為靜態點 (Quiescent Point; Q點),如右圖所示。





- ◆ ② 點之選擇與V<sub>GS</sub>有相當密切之關係,在許多情況下,②點之選擇應盡量接近直流負載線之中心點,以容許電晶體放大器作最佳交流操作為原則,即此選擇可使電晶體產生最佳放大效果。
- ◆ 相同的,若 ② 點太靠近截止區或飽和區,則電晶體在進行交流操作時,輸出波形易發生失真現象。當使用 FET 來處理交流訊號放大工作時,輸出特性曲線、直流負載線與工作點之選擇方式,大致上與 BJT 相似。



◆ 觀察上圖可知,若對電晶體電路施予適當之偏壓,以建立電路之工作點後,若加入vgs後,則vgs會以
②點為中心作等量之變化(即 vGS = VGSQ + vgs)。當電晶體操作於飽和區時,則VDS 與ID,亦會產生
等量變化(vDS = VDSQ + vds,iD = IDQ + id),其中vgs 、vds與id 皆為交流小訊號。



#### 雙電阻分壓器偏壓電路

- ◆ 為了提供一個較具彈性與穩定之 FET 偏壓技術,利用 R₁連接閘極與V<sub>DD</sub>之正端,而使用 R₂連接閘極與地,即使用電阻器分壓原理,以提供閘 源極所需之逆向偏壓,此種技術是利用雙電阻器分壓式偏壓電路,如右圖所示。
- ◆ 汲極電阻 R<sub>D</sub> 與源極電阻 R<sub>S</sub> 分別用來提供輸出所需電 壓與電流,而交連電容 C<sub>1</sub> 與 C<sub>2</sub> 是用來阻隔直流訊號, 只允許交流訊號在輸入與輸出間傳遞。



◆ 雖然 R₁與 R₂之電阻値僅需考慮彼此間之比例關係:實際上,選用這兩個電阻値亦應加以留意。若為使放大器具有較高輸入電阻,而選用太大電阻値之 R₁與 R₂,可能會使反向飽和電流隨溫度變化,而影響到工作點的穩定性,因此 R₁與 R₂之電阻,通常選用100KΩ至 1MΩ 間較為恰當。



- ◆ 在源極與地間加上 R<sub>S</sub>,可產生自偏壓及溫度補償的作用之負回授功用。雖然將負回授應用於電晶體放大電路,可能會導致交流增益降低,但卻可獲得更穩定之直流偏壓。
- ◆ 連接於源汲與地間之旁路電容 C<sub>s</sub> 可提高偏壓電路機定度,即對直流訊號而言, C<sub>s</sub> 可視為開路,因此 R<sub>s</sub> 可產生負回受機制,以提高直流偏壓之機定度:對交流訊號而言, C<sub>s</sub> 可視為短路,因此 R<sub>s</sub> 無法產生負回授機制,故電路之交流增益不會受到影響。





#### 分壓器偏壓電路之直流分析

- ◆ 對左下圖之偏壓電路作直流分析時,所有電容皆可視為開路狀態,因此可假設  $C_1 \cdot C_2$  與  $C_S$  開路,接著將輸入迴路用戴維寧等效電路來取代,可得到雙電阻分壓式電晶體偏壓電路之等效電路,如右下圖所示,其中  $R_G = R_1 /\!/ R_2, V_G = \frac{R_2 \cdot V_{DD}}{R_1 + R_2}$ 。
- ◆ 對右圖之接面場效電晶體偏壓電路 作直流分析,可分為輸入迴路與輸 出迴路兩個部份來討論 (對直流訊 號而言,電容可視為開路狀態),以 求解V<sub>GS</sub>、I<sub>D</sub>與V<sub>DS</sub>如下:





#### 1. 輸入迴路: 因 JFET 的輸入電阻相當大,因此 Ic 可視為零,

#### 故利用 KVL 於右圖之輸入迴路,可得

$$V_{GS} = V_G - V_S = \frac{R_2 \cdot V_{DD}}{R_1 + R_2} - I_D \cdot R_S$$

其中 
$$V_G = \frac{R_2 \cdot V_{DD}}{R_1 + R_2}, V_S = I_D \cdot R_S$$

當 JFET 操作於飽和區之 Ip 與 Vas 關係為

$$I_D = I_{DSS} \cdot \left(1 + \frac{V_{GS}}{V_P}\right)^2$$
,將 $V_{GS}$ 帶入右式,可得

$$I_D = I_{DSS} \cdot \left(1 + \frac{1}{V_P} \cdot \left(\frac{R_2 \cdot V_{DD}}{R_1 + R_2} - I_D \cdot R_S\right)\right)^2$$

2. 輸出迴路:利用 KVL 於右圖之輸出迴路之可得

$$V_{DS} = V_{DD} - I_D \cdot (R_D + R_S)$$





#### 分壓器偏壓電路的直流分析之討論

- ◆ 由前面計算可得 $V_{GS} = \frac{R_2 \cdot V_{DD}}{R_1 + R_2} I_D \cdot R_S$  、  $I_D = I_{DSS} \cdot \left(1 \frac{I_D \cdot R_S}{V_P}\right)^2$ 與 $V_{DS} = V_{DD} I_D \cdot (R_D + R_S)$ 等三個方程式,欲得到 $V_{GS}$  、  $I_D$ 與 $V_{DS}$ 之值,必須求解一元二次方程式,因此所得之 $I_D$  會有兩個解。
- ◆ 對 n 通道之 JFET 而言,僅有  $I_D$  為正值的解,可使  $V_{GS} < 0$ ,此  $I_D > 0$ 之解方為正確,才會滿足 JFET 操作於飽和區之條件;而  $I_D$  為負值的解,會使  $V_{GS} > 0$  (不合),故此解可忽略(即此解為一元二次方程式的增根)。



## 實習步驟與結果

#### (一)共源極自偏壓電路





表 14-1 共源極自偏壓電路之 / 與 ٧ 肽 値

汲極電阻  $(R_D + VR) = __2.55 \text{ K} __Ω$ 

| 偏壓參數<br>測量狀況 | IDSS  | V <sub>GS (off)</sub> | $V_{GS}$ | I <sub>D</sub> | V <sub>DS</sub> |
|--------------|-------|-----------------------|----------|----------------|-----------------|
| 測量値          | 3.6mA | -2 <i>V</i>           | -0.9V    | 1.95mA         | 6 <i>V</i>      |
| 理論値          |       |                       | -0.86V   | 1.72mA         | 6.75 V          |
| 加熱後之値        |       |                       | -0.88V   | 1.93mA         | 6.12V           |





#### (二)電阻分壓器偏壓電路





表 14-2 電阻分壓器偏壓電路之 / 與 以 值

汲極電阻値  $(R_D + VR) = 0.761K KΩ$ 

| 偏 <b>壓參數</b> | I I <sub>DSS</sub> | V <sub>GS (off)</sub> | V <sub>GS</sub> | I <sub>D</sub> | V <sub>DS</sub> |
|--------------|--------------------|-----------------------|-----------------|----------------|-----------------|
| 測量値          | 3.6mA              | -2 <i>V</i>           | -0.602 V        | 2.64mA         | 6V              |
| 理論値          |                    |                       | -0.57V          | 2.52mA         | 6.2 V           |
| 加熱後之值        |                    |                       | -0.59V          | 2.62 mA        | 6.05V           |



