

«Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана

(национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ _	ИНФОРМАТИІ	КА И СИСТЕМЫ УПІ	РАВЛЕНИЯ			
КАФЕДРА	РА КОМПЬЮТЕРНЫЕ СИСТЕМЫ И СЕТИ					
	ОТ	ЧЕТ				
		работе № 1				
Дисциплина: _	Электроника					
Название: Исс	следование вольт-ампе	ерных и вольт-фарадн	ых характеристик			
пол	упроводникового дио	да (Вариант №19)				
Студент	<u>ИУ6-42Б</u> (Группа)		А. П. Плютто (И. О. Фамилия)			
Преполаватель		08.03.24	В.А. Карпухин			

(Подпись, дата)

(И. О. Фамилия)

Содержание

1. Цель работы	. 3
2. Задание и требования к отчету	
2.1. Задание	
2.2. Требования к отчету	. 4
2.3. Задание по варианту	
3. Выполнение работы	. 5
3.1. Задание 1	
3.2. Задание 2	
4. Вывод	

1. Цель работы

Исследование вольт-амперных и вольт-фарадных характеристик модели полупроводникового диода в программе аналогового и цифрового моделирования электрических и электронных цепей Micro-Cap 12.

2. Задание и требования к отчету

2.1. Задание

- 1. Построить прямую и обратную ветви вольт-амперной характеристики диода (модель выбирается согласно варианту, см. приложенный к заданию файл). Оценить влияние допустимого рабочего диапазона температур на характеристики полупроводникового диода.
- 2. Проанализировать зависимость собственной барьерной емкости диода от напряжения смещения (рекомендуется использовать параллельный резонансный контур, при этом добротность контура и частоту резонанса при нулевом смещении выбрать согласно варианту).

2.2. Требования к отчету

Отчет должен полностью удовлетворять заданию, должен быть выполнен в соотстветствии с индивидуальным вариантом и должен быть предоставлен для проверки в обозначенные сроки. Для удобства оценки работы рекомендуется отображать в отчете все важные промежуточные этапы как с помощью вспомогательных иллюстраций, так и с помощью поясняющего текста. Отчет рекомендуется оформить в соответствии с требованиями ГОСТ 7.32-2017.

2.3. Задание по варианту

Модель	$U_{ m ct},$ B				aII 07/0C	JII 07
элемента	мин.	ном.	макс.	$I_{ m ct}$, м ${ m A}$	$aU_{ m ct},\%/^{\circ}C$	$dU_{ m ct},\%$
Д816Б	24, 2		29, 5	150	0, 12	5

	$U_{ m np},$ B	$r_{ m cr}$, Ом	$I_{ m ct}$	мА	D Rm	$T, ^{\circ}C$	Модель
	При $I_{ m ct}$, м ${ m A}$		мин.	макс.	$P_{ m np},$ Вт	I, C	в МС12
Ī	1,5(500)	8(150)	10	180	5	-60130	D816B

Добротность контура	Частота резонанса, кГц		
33	330		

3. Выполнение работы

3.1. Задание 1

Для получения прямой ветви вольт-амперной характеристики (BAX) диода на рабочем поле Micro-Cap 12 (MC12) составляется принципиальная схема, представленная на рис.1.

Рисунок 1 — Принципиальная схема

Построим прямую и обратную ветвь BAX для выбранной модели диода (рис. 2-3).

Рисунок 2 — Прямая ветвь ВАХ

Рисунок 3 — Обратная ветвь ВАХ

Исследуем принципиальную схему, для этого проведем анализ Dynamic DC.... Этот анализ называется анализом динамических процессов по постоянному току.

Dynamic DC
Temperature=27
Displaying DC Voltages
PGT = Total power generated = 493.271m
PDT = Total power dissipated = 493.271m

Рисунок 4 — Анализ динамических процессов по постоянному току

Тут видно, что при составлении схемы ошибок допущено не было.

Проведем теперь анализ DC.... Этот анализ называется анализом передаточных характеристик по постоянному току. В данном случае будем анализировать зависимость BAX от изменения температуры.

Рисунок 5 — *Настройки анализа DC*

Рисунок 6 — *Анализ DC*

Получили 3 графика, наложенные друг на друга. Добавим на эти графики немного информации.

Рисунок 7 — *Анализ DC*

Добавим несколько температур: от -60 до 60 с шагом 20.

Рисунок 8 — Анализ DC для 7 температур

Графики получились похожие: чем больше температура тем сила тока возрастает быстрее с увеличением напряжения.

Теперь перестроим принципиальную схему для анализа обратной ветви.

Рисунок 9 — Принципиальная схема №2

Снова запустим Dynamic DC... и увидим, что диод находится в закрытом состоянии.

Dynamic DC
Temperature=27
Displaying DC Voltages
PGT = Total power generated = 403.553
PDT = Total power dissipated = 403.553

Рисунок 10 — *Dynamic DC для второй схемы* Построим BAX относительно 3 температур.

Рисунок 11 — Обратные ветви ВАХ при трех температурах

Теперь видно, что с увеличением температуры при уменьшении напряжения сила тока падает больше, причем эта зависимость нелинейна. Возьмем большее количество температур и снова запустим анализ.

Рисунок 12 — Дупатіс ДС для второй схемы

Видно, что сила тока на температуре 120 упала настолько низко, что остальные графики практически слились в один.

3.2. Задание 2

Для начала определим собственную емкость диода (обозначим далее как CJ0).

Рисунок 13 — Параметры диода

Как видим в поле СЈО собственная емкость диода равна 133.2 пикафарад.

Добавим в схему парраллельный колебательный контур. В параллельном колебательном контуре присутствуют три элемента: катушка индуктивности, конденсатор и резистор. Определим номиналы этих элементов.

У конденсатора возьмем $C_1=1..5~{\rm CJO}\simeq 133.2~{\rm n\Phi}$. Для разделительного конденсатора возьмем значение на порядок большее C_1 и CJO, $C_2=100..1000~{\rm CJO}\simeq 65000~{\rm n\Phi}$. Таким образом рассчет сложной емкости

можно приблеженно произвести без учета влияния разделительного конденсатора.

$$C_{\mathrm{k}} = C_1 + \frac{C_2 \times \mathrm{CJO}}{C_2 + \mathrm{CJO}} \simeq C_1 + \mathrm{CJO} = 433.2 \ \mathrm{n\Phi}$$

Номинал катушки индуктивности определим по формуле Томпсона:

$$\begin{split} L_1 &= \frac{1}{\left(2 \times \pi \times f_0\right)^2 \times \left(C_1 + \text{CJO}\right)} = \\ &= \frac{1}{\left(2 \times 3.1415 \times 300 \cdot 10^3\right)^2 \times 433.2 \cdot 10^{-12}} \simeq \\ &\simeq 0,00065 \; \text{Гн} = 650 \; \text{мГн} \end{split}$$

Номинал резистора определяется параметрами контура и соотношением реактивных потерь в контуре к активным — то есть параметром добротности Q по следующей формуле:

$$R_1 = \frac{1}{Q} \sqrt{\frac{L_1}{C_1}} = \frac{1}{33} \sqrt{\frac{650 \cdot 10^{-6}}{300 \cdot 10^{-12}}} = \frac{1}{33} \cdot 1471,96 = 44,6 \text{ Ом}$$

Помимо элементов контура в схеме присутствуют два резистора R_2 и R_b , отвечающие за сопротивление источников переменного и постоянного напряжения. Номиналы этих резисторов выбираются в диапазоне от 1 до 5 значений сопротивления контура на резонансной частоте, а это сопротивление может быть определено из значений элементов контура как

$$R_{\mathrm{pes}} = \frac{1}{R_1} \cdot \frac{L_1}{C_1} = \frac{650 \cdot 10^{-6}}{33 \times 300 \cdot 10^{-12}} = 65,65 \ \mathrm{кОм}$$

$$R_2 = R_b = 1..5 R_{\mathrm{pes}} \simeq 164,14 \ \mathrm{кОм}$$

Итак, мы рассчитали все номиналы для построения параллельного резонансного контура. Составим новую принципиальную схему, опираясь на эти значения.

Рисунок 14 — Принципиальная схема для части 2

Заметим, что напряжение на Vb сейчас равно 0. В последствии мы будем изменять это напряжение и следить, как меняется резонансная частота.

Проведем анализ АС... – анализ частотных характеристик. Посмотрим на зависимость V(C1) от изменения частоты на генераторе. Минимальное и максимальное значения возьмем как в два раза меньшее и в два раза большее отклонение от частоты резонанса.

Рисунок 15 — Настройки анализа частотных характеристик

После этого проведем сам анализ и выделим максимум напряжения – он будет на частоте резонанса.

Рисунок 16 — Анализ частотных характеристик при Vb = 0B

При увеличении Vb частота резонанса и максимальное значение напряжения будут увеличиваться. Покажем это на 10 наложенных друг на друга графиках — при Vb = 0..10 B .

Рисунок 17 — *Настройки Stepping*

Рисунок 18 — *AC анализ при разных* значениях Vb

Теперь по этим 10 значениям построим зависимость СЈО от Vb . Для этого используем механизм Performance Windows . По оси X выбираем Vb , а по оси Y может быть любая формула, поэтому введем формулу для вычисления СЈО через частоту резонанса:

$$\text{CJO} = \frac{1}{\left(2 \times \pi \times f_0\right)^2 \times L_1} - C_1$$

В MC12 эту формулу можно записать так: $1/((2*3.14*Peak_X(v(C1),1,1))^2*L(L1))-C(C1)$. Где $Peak_X - функция$ взятия значения по X (частоты) из графиков анализа.

Рисунок 19 — Настройки Performance Windows

Получаем такой график:

Рисунок 20 — График $CJO(f_0)$ (ВФХ диода)

Как мы видим, при увеличении напряжения собственная емкость диода падает, но при Vb=0 емкость диода соответствует емкости в документации (рис. 13).

4. Вывод

В процессе работы были исследованы вольт-амперные и вольт-фарадные характеристики модели полупроводникового диода в программе аналогового и цифрового моделирования электрических и электронных цепей Micro-Cap 12. Построны прямая и обратная ветви вольт-амперной характеристики диода. Оценено влияние допустимого рабочего диапазона температур на характеристики полупроводникового диода. Проанализирована зависимость собственной барьерной емкости диода от напряжения смещения.