

Decision Tree

Implement Decision Tree algorithm as follows:

DTree(records, attributes) returns a tree the best feature to split

If stopping criterion is met, return a leaf node with the assigned class.

Else pick an *attribute* F based on Gini Index and create a node R for it

For each possible value *v* of *F*:

Let Sv be the subset of records that have value v for F call $\underline{DTree}(Sv, attributes - \{F\})$ and attach the resulting tree as the subtree to the current node.

Return the subtree.

Example

- Golf dataset
 - 4 features
 - Label: yes/no
- We use multi-way
 Split in this assignment

Outlook	Temperature	Humidity	Windy	Label
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Overcast	Hot	High	FALSE	Yes
Sunny	Mild	High	FALSE	Yes
Sunny	Cool	Normal	FALSE	Yes
Sunny	Cool	Normal	TRUE	No
Overcast	Cool	Normal	TRUE	Yes
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Sunny	Mild	Normal	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes
Overcast	Mild	High	TRUE	Yes
Overcast	Hot	Normal	FALSE	Yes
Sunny	Mild	High	TRUE	No

Stopping criteria

assignedLabel = majority(labels)

stopCriteria(dataset)
 assignedLabel = None
 if all class labels are the same
 assignedLabel = label
 else if no more features to split

Check if the data matrix has only one column left by evaluating the number of columns in the current dataset

- Input: dataset/split dataset
- Output: assigned label
- The original dataset does not satisfy the stopping criteria.
- Then we find best split feature:

chooseBestFeature(dataset)
 for each feature i in the dataset
 calculate gini index on dataset
 for each value of the feature
 subset = splitData(dataset, i, value)
 calculate gini index on the subset
 calculate Gain for feature i
 Find the bestGain and the corresponding feature id

- Input: dataset/split dataset
- Output: index of best feature

Find best split feature

For each feature, calculate the gain of gini

indexes

Outlook = rainy

Outlook	Temperature	Humidity	Windy	Label
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Overcast	Hot	High	FALSE	Yes
Sunny	Mild	High	FALSE	Yes
Sunny	Cool	Normal	FALSE	Yes
Sunny	Cool	Normal	TRUE	No
Overcast	Cool	Normal	TRUE	Yes
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Sunny	Mild	Normal	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes
Overcast	Mild	High	TRUE	Yes
Overcast	Hot	Normal	FALSE	Yes
Sunny	Mild	High	TRUE	No

- Find best split feature
 - For each feature, calculate the gain of gini

indexes

If Feature = Outlook

Gini=
$$1 - \left(\frac{5}{14}\right)^2 - \left(\frac{9}{14}\right)^2 = 0.46$$

Outlook = Rainy

gini =
$$1 - \left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2 = 0.48$$

Outlook = overcast

$$gini=1-\left(\frac{4}{4}\right)^2=0$$

Outlook	Temperature	Humidity	Windy	Label
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Overcast	Hot	High	FALSE	Yes
Sunny	Mild	High	FALSE	Yes
Sunny	Cool	Normal	FALSE	Yes
Sunny	Cool	Normal	TRUE	No
Overcast	Cool	Normal	TRUE	Yes
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Sunny	Mild	Normal	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes
Overcast	Mild	High	TRUE	Yes
Overcast	Hot	Normal	FALSE	Yes
Sunny	Mild	High	TRUE	No

- Find best split feature
 - For each feature, calculate the gain of gini

If Feature = Outlook

Gini=1
$$-\left(\frac{5}{14}\right)^2 - \left(\frac{9}{14}\right)^2 = 0.46$$

gini =
$$1 - \left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2 = 0.48$$

Outlook = overcast

$$gini=1-\left(\frac{4}{4}\right)^2=0$$

Outlook = sunny

gini=
$$1 - \left(\frac{3}{5}\right)^2 - \left(\frac{2}{5}\right)^2 = 0.48$$

Gain =
$$0.46 - (\frac{5}{14} * 0.48 + \frac{4}{14} * 0)$$

$$+\frac{5}{14}*0.48)=0.117$$

Outlook	Temperature	Humidity	Windy	Label
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Overcast	Hot	High	FALSE	Yes
Sunny	Mild	High	FALSE	Yes
Sunny	Cool	Normal	FALSE	Yes
Sunny	Cool	Normal	TRUE	No
Overcast	Cool	Normal	TRUE	Yes
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Sunny	Mild	Normal	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes
Overcast	Mild	High	TRUE	Yes
Overcast	Hot	Normal	FALSE	Yes
Sunny	Mild	High	TRUE	No

- Find best split feature
 - For each feature, calculate the gain
 - If Feature = Temperature, follow the same procedure to obtain the gain value
 - After the calculation for each feature on the dataset, we obtain

Gain(outlook) = 0.117

Gain(temperature)=0.018

Gain(humidity)=0.092

Gain(windy)=0.031

So Outlook is the best feature to split;

Then we split the data set:

Split the dataset

For each value in Outlook, split the dataset

splitData function has been provided.

Delete the Outlook column					
Outlook	Temperature	Humidity	Windy	Label	
Rainy	Hot	High	FALSE	No	
Rainy	Hot	High	TRUE	No	
Overcast	Hot	High	FALSE	Yes	
Sunny	Mild	High	FALSE	Yes	
Sunny	Cool	Normal	FALSE	Yes	
Sunny	Cool	Normal	TRUE	No	
Overcast	Cool	Normal	TRUE	Yes	
Rainy	Mild	High	FALSE	No	
Rainy	Cool	Normal	FALSE	Yes	
Sunny	Mild	Normal	FALSE	Yes	
Rainy	Mild	Normal	TRUE	Yes	
Overcast	Mild	High	TRUE	Yes	
Overcast	Hot	Normal	FALSE	Yes	
Sunny	Mild	High	TRUE	No	

Temperature	Humidity	Windy	Label
Mild	High	FALSE	Yes
Cool	Normal	FALSE	Yes
Cool	Normal	TRUE	No
Mild	Normal	FALSE	Yes
Mild	High	TRUE	No

Choose subset: Outlook = sunny;

- Repeat the same procedure for the sub-dataset
 - This is done by calling Dtree again for each value of the best split feature (Outlook in our example).
 - It is already implemented in the template
- Sub-dataset doesn't satisfy stopping criteria
- Find best split on sub-dataset (outlook=sunny)
 Gain(temperature)=0.0133
 Gain(Humidity)=0.0133
 Gain(windy)=0.48
 So windy is the best feature to split the sub-dataset (when

outlook='sunny')

Temperature	Humidity	Windy	Label
Mild	High	FALSE	Yes
Cool	Normal	FALSE	Yes
Cool	Normal	TRUE	No
Mild	Normal	FALSE	Yes
Mild	High	TRUE	No

Iterate until stopping criteria satisfied

Windy = False
$$\rightarrow$$
 Yes

Windy = True
$$\rightarrow$$
 No

(outlook=sunny)

Temperature	Humidity	Windy	Label
Mild	High	FALSE	Yes
Cool	Normal	FALSE	Yes
Cool	Normal	TRUE	No
Mild	Normal	FALSE	Yes
Mild	High	TRUE	No

- Follow the same procedure for overcast and Rainy
 - Outlook = overcast → label=yes

(outlook=Overcast)

Outlook	Temperature	Humidity	Windy	Label
Overcast	Hot	High	FALSE	Yes
Overcast	Cool	Normal	TRUE	Yes
Overcast	Mild	High	TRUE	Yes
Overcast	Hot	Normal	FALSE	Yes

 Follow the same procedure for overcast and Rainy (outlook=Rainy)

– Outlook = Rainy

Outlook	Temperature	Humidity	Windy	Label
Rainy	Hot	High	FALSE	No
Rainy	Hot	High	TRUE	No
Rainy	Mild	High	FALSE	No
Rainy	Cool	Normal	FALSE	Yes
Rainy	Mild	Normal	TRUE	Yes

Gain(temperature)=0.28 Gain(Humidity)=0.48 Gain(windy)=0.013

Humidity = High \rightarrow No Humidity = Normal \rightarrow Yes