Задачи 1.1 и 1.2. Найдите базис ортогонального дополнения L^{\perp} , если

$$(1.1) \ L = \langle \begin{pmatrix} 1 \\ 2 \\ 0 \\ -1 \end{pmatrix}, \begin{pmatrix} 0 \\ -1 \\ 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 4 \\ 2 \\ 3 \end{pmatrix} \rangle, \qquad (1.2) \ L : \begin{cases} x_1 - 2x_2 + x_3 + 3x_4 = 0, \\ 3x_1 - 4x_2 - x_3 + 7x_4 = 0, \\ x_2 - 2x_3 - x_4 = 0 \end{cases}$$

Указание. Чтобы найти ортогональное дополнение к подпространству, являющемуся линейной оболочкой векторов u_1,\ldots,u_k , нужно эти векторы записать по строкам в матрицу и найти Φ CP однородной системы уравнений с этой матрицей. В самом деле, каждое из уравнений этой системы будет иметь вид $(u_i,x)=0$. Для того, чтобы сделать пункт (1.2), обратите внимание на следующее: выражение $x_1-2x_2+x_3+3x_4$ является скалярным произведением вектора $(1,-2,1,3)^T$ и $(x_1,x_2,x_3,x_4)^T$. Таким образом, в пункте (б) L состоит из векторов, у которых равны нулю скалярные произведения с векторами $(1,-2,1,3)^T$, $(3,-4,-1,7)^T$ и $(0,1,-2,-1)^T$. Что вы, с учётом этого, можете сказать об ортогональном дополнении к L?

Задача 1.3. Методом ортогонализации Грама-Шмидта постройте ортонормированный базис подпространства, образованного векторами

$$v_1 = \begin{pmatrix} 1 \\ -1 \\ -1 \\ -1 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 5 \\ -2 \\ 0 \\ -1 \end{pmatrix}, \quad v_3 = \begin{pmatrix} 3 \\ 4 \\ 2 \\ 1 \end{pmatrix}, \quad v_4 = \begin{pmatrix} 4 \\ -1 \\ 1 \\ 0 \end{pmatrix}$$

 $\mathit{Указаниe}$. Если система, которую вам дали для ортогонализации, линейно зависима, в какой-то момент очередной v_i окажется равным нулю. Этого не надо бояться. Просто выкидывайте этот ноль, не используйте этот v_i и смело продвигайтесь дальше.

Задача 1.4. Дополните до ортонормированного базиса пространства \mathbb{R}^4 следующую систему векторов:

$$v_1 = \frac{1}{2} \begin{pmatrix} 1\\1\\-1\\-1 \end{pmatrix}, \quad v_2 = \frac{1}{2} \begin{pmatrix} 1\\1\\1\\1 \end{pmatrix}$$

Указание. В данном случае есть две стратегии:

- 1) Дополнить v_1, v_2 до базиса абы какими векторами v_1, v_2, v_3, v_4 и ортогонализовать систему из этих четырёх векторов;
- 2) Найти базис u_3, u_4 ортогонального дополнения к $\langle v_1, v_2 \rangle$ и ортогонализовать по отдельности системы v_1, v_2 и u_3, u_4 .

Вторая вычислительно проще. Не забывайте, что нормировать (делить на длины) стоит уже после того, как вы нашли просто ортогональный базис.

Задачи 1.5. Найдите (с помощью ортогонализации) проекцию вектора v на подпространство L, где

$$v = \begin{pmatrix} 7 \\ 1 \\ 1 \\ 1 \end{pmatrix}, \quad L = \langle \begin{pmatrix} 1 \\ 0 \\ 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 3 \\ -1 \\ -1 \\ -4 \end{pmatrix} \rangle$$

Задачи 1.6. Найдите с помощью ортогонализации проекцию вектора v на подпространство L, где

(1.6)
$$v = \begin{pmatrix} -1\\5\\3\\5 \end{pmatrix}$$
, $L = \begin{cases} -4x + 3y + 2z + t = 0, \\ 5x - 2y + z - 9t = 0. \end{cases}$

 $\mathit{Указаниe}.$ Если вы успешно решили задачу 1.2, то знаете, как быстро найти базис $L^{\perp}.$ Из разложения

$$\mathbb{R}^4 = L \oplus L^{\perp}$$
$$v = v_{\parallel} + v_{\perp}$$

и из тривиального соотношения $(L^{\perp})^{\perp} = L$ следует, что проекция v_{\parallel} вектора v на L является его ортогональной составляющей относительно L^{\perp} и наоборот. Таким образом, вы можете найти обычным образом проекцию v_{\perp} вектора v на L^{\perp} (базис которого вам уже известен), а затем получить искомую проекцию найти как $v_{\parallel} = v - v_{\perp}$.

Определение. Назовём *ортогональной* матрицу $n \times n$, у которой все столбцы ортогональны друг другу и имеют длину 1 (то есть столбцы составляют ортонормированный базис — обратите внимание, что именно ортонормированный, а не ортогональный).

Задача 2.1. Докажите, что матрица Q является ортогональной тогда и только тогда, когда $Q^T=Q^{-1}.$

Задача 2.2. Опишите все диагональные ортогональные матрицы.

Задача 2.3. Докажите, что у ортогональной матрицы все элементы по модулю не превосходят 1.

Задача 2.4. Могут ли все элементы ортогональной матрицы быть неотрицательными? положительными?

Задача 2.5. Представьте, что вам нужно придумать ортогональную матрицу 8×8 . Как вы это будете делать? А если дополнительно требуется, чтобы она была не диагональной? А если требуется, чтобы в ней не было нулей? Ваш алгоритм должен быть таким, чтобы его можно было запрограммировать.

Задача 2.6. Докажите, что $(U+W)^{\perp} = U^{\perp} \cap W^{\perp}$.

Указание. Докажите сначала вложение в одну сторону, потом в другую.

Задача 2.7. Докажите, что $(U \cap W)^{\perp} = U^{\perp} + W^{\perp}$.

Указание. Возможно, при доказательстве одного из включений вам помогут формулы, связывающие размерности суммы и пересечения, а также пространства и его ортогонального дополнения (напомню, что если всё происходит в n-мерном пространстве, то $\dim L^{\perp} = n - \dim L$).