TIADPE

Absolute positioning by triangulation and trilateration

Christian Fischer Pedersen Assistant Professor cfp@eng.au.dk

Section of Electrical and Computer Engineering
Department of Engineering
Aarhus University

December 1, 2014

Positioning

Triangulation

Positioning

Triangulation

Positioning

Fundamental in

Location based services and mobile robotics

Different methods

- Absolute positioning: With reference to beacons
- Relative positioning: Continuous offset relative to initial absolute position
- Hybrid positioning: Combination of absolute and relative positioning

Absolute positioning

Triangulation

- Based on angle measurements relative to beacons
- Determine position and orientation (pose)

- Based on distance measurements relative to beacons
- Determine position

Positioning

Triangulation

Triangulation in the history of surveying

Figure: Left: 3rd century. Mid: 19th century. Right: 1929. (Wikipedia)

Triangulation methods

Triangulation methods

- Many methods exist each with own pros and cons
- Different approaches to (nearly) same problem

We will review a recent method

- ► Three object Triangulation algorithm (ToTal)

 (Pierlot and Droogenbroeck, 2014 [1])
- Companion website at: www2.ulg.ac.be/telecom/triangulation/
- (See also: http://www2.ulg.ac.be/telecom/publi/publications/ pierlot/Pierlot2011ANewThreeObject/index.html)

Triangulation with three fixed and indexed beacons

ToTal (Pierlot and Droogenbroeck, 2014 [1])

Figure : Find position $(x_R, y_R) \in \mathbb{R}^2$ and orientation $\theta \in \mathbb{R}$ of object R. NOTE: ϕ_2 and ϕ_3 are mixed up.

Two beacons constrains locus to a circle

ToTal (Pierlot and Droogenbroeck, 2014 [1])

Figure : Left: For const. ϕ the potential positions of R are on arcs of **two** symmetric circles (solid). Right: Remove symmetry ambiguity by defining angles between beacons to be CCW, e.g. $\phi_{12}=\phi_2-\phi_1$. On the remaining circle: $\phi_{12}<\pi$ on lower part and $\phi_{12}>\pi$ on upper part.

Three beacons constrains locus to a point

ToTal (Pierlot and Droogenbroeck, 2014 [1])

Figure : R lie on the unique intersection between C_{12} , C_{23} , and C_{31} . All angles and the corresponding notation is CCW and relative to R.

Determining the locus point by power centers

ToTal (Pierlot and Droogenbroeck, 2014 [1])

Figure : Power centers for three 3-locus-circle configurations, i.e. points with equal power relative to all three circles. Left: Most interesting situation as power center coincide with unique circle intersection point; hence, the circles' intersection point can be computed as the power center, i.e. intersection point of three power lines. Power of point $p = \{x,y\}$ wrt. to center $\mathcal{C} = \{x_c,y_c\}$ is $\mathcal{P}_{\mathcal{C},p} = (x-x_c)^2 + (y-y_c)^2 - R^2$

Positioning

Triangulation

Trilateration overview

- Trilateration is a method to determine the position of an object based on simultaneous distance measurements from three fixed and indexed beacons
- Trilateration is applied in, e.g. surveying and navigation, including global positioning systems (GPS)
- Trilateration can be used to find the position of a device and thereby be an integral part in location based services

Position: Multiple possibilities on locus circle

Distance from one beacon

Figure: Device located on the circumference

Position: Two possibilities at intersection points

Distance from two beacons

Figure: Device located at one of the two intersection points

Position: Single possibility at intersection point

Distance from three or more beacons

Figure: Device located at the common intersection point

References I

 Pierlot, V. and M. V. Droogenbroeck (2014). A new three object triangulation algorithm for mobile robot positioning. IEEE Transactions on Robotics 30(3), 566–577.