Denne uge: Insertion sort, merge sort

Senere i kurset: Heap sort, counting sort, radix sort, bucket sort

Mikkel Abrahamsen

Givet array A af n tal, byt om på rækkefølgen sådan at

$$A[0] \le A[1] \le \ldots \le A[n-1].$$

0							· · · · · · · · · · · · · · · · · · ·							
33	4	25	28	45	18	7	12	36	1	47	42	50	16	31

Givet array A af n tal, byt om på rækkefølgen sådan at

$$A[0] \le A[1] \le \ldots \le A[n-1].$$

0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
33	4	25	28	45	18	7	12	36	1	47	42	50	16	31

Ønsket resultat:

0	_	_	9	-	•	0	•	Ü	0					
1	4	7	12	16	18	25	28	31	33	36	42	45	47	50

														14
4	18	25	28	33	45	7	12	36	1	47	42	50	16	31

_		_	-	•	_	•	•		_	_					14
4	Į	18	25	28	33	45	7	12	36	1	47	42	50	16	31

$$key = 7$$

														14
4	18	25	28	33	45	45	12	36	1	47	42	50	16	31

$$key = 7$$

					i	j								
	1													
4	18	25	28	33	45	7	12	36	1	47	42	50	16	31

$$key = 7$$

$$key = A[j]$$
 $i = j - 1$ while $i \ge 0$ and $A[i] > key$ $A[i+1] = A[i]$ $i = i-1$ $A[i+1] = key$

${\it J}$	
0 1 2 3 4 5 6 7 8 9 10 11 12	13 14
4 18 25 28 33 45 45 12 36 1 47 42 50	16 31

$$key = 7$$

$$key = A[j]$$
 $i = j - 1$ while $i \ge 0$ and $A[i] > key$ $A[i+1] = A[i]$ $i = i-1$ $A[i+1] = key$

$$key = 7$$

$$key = A[j]$$
 $i = j - 1$ while $i \ge 0$ and $A[i] > key$ $A[i+1] = A[i]$ $i = i-1$ $A[i+1] = key$

$$key = 7$$

$$key = A[j]$$
 $i = j - 1$ while $i \ge 0$ and $A[i] > key$ $A[i+1] = A[i]$ $i = i-1$ $A[i+1] = key$

$$key = A[j]$$
 $i = j - 1$ while $i \ge 0$ and $A[i] > key$ $A[i+1] = A[i]$ $i = i-1$ $A[i+1] = key$

$$\begin{aligned} key &= A[j] \\ i &= j-1 \\ \text{while } i \geq 0 \text{ and } A[i] > key \\ A[i+1] &= A[i] \\ i &= i-1 \\ A[i+1] &= key \end{aligned}$$

$$key = A[j]$$
 $i = j - 1$ while $i \ge 0$ and $A[i] > key$ $A[i+1] = A[i]$ $i = i-1$ $A[i+1] = key$

$$key = A[j]$$
 $i = j - 1$ while $i \ge 0$ and $A[i] > key$ $A[i+1] = A[i]$ $i = i - 1$ $A[i+1] = key$

$$key = A[j]$$
 $i = j - 1$ while $i \ge 0$ and $A[i] > key$ $A[i+1] = A[i]$ $i = i-1$ $A[i+1] = key$

0														
33	4	25	28	45	18	7	12	36	1	47	42	50	16	31

$$key = A[j]$$
 $i = j - 1$ while $i \ge 0$ and $A[i] > key$ $A[i+1] = A[i]$ $i = i-1$ $A[i+1] = key$

0	_	<u> </u>												
33	4	25	28	45	18	7	12	36	1	47	42	50	16	31

```
Insertion-Sort(A,n)
for j=1 to n-1
key=A[j]
i=j-1
while i\geq 0 and A[i]>key
A[i+1]=A[i]
i=i-1
A[i+1]=key
```

$$key = 4$$

i	\dot{j}													
0	_	_	_	_	_	•	•	_	_					
33	4	25	28	45	18	7	12	36	1	47	$\overline{42}$	50	16	31

```
Insertion-Sort(A,n)
for j=1 to n-1
key=A[j]
i=j-1
while i\geq 0 and A[i]>key
A[i+1]=A[i]
i=i-1
A[i+1]=key
```

Vi begyndte med:

$$key = 4$$

 \imath

Insertion-Sort
$$(A,n)$$
for $j=1$ to $n-1$
 $key=A[j]$
 $i=j-1$
while $i\geq 0$ and $A[i]>key$
 $A[i+1]=A[i]$
 $i=i-1$
 $A[i+1]=key$


```
Insertion-Sort(A,n)
for j=1 to n-1
key=A[j]
i=j-1
while i\geq 0 and A[i]>key
A[i+1]=A[i]
i=i-1
A[i+1]=key
```

Vi begyndte med:

Insertion-Sort
$$(A,n)$$
for $j=1$ to $n-1$
 $key=A[j]$
 $i=j-1$
while $i\geq 0$ and $A[i]>key$
 $A[i+1]=A[i]$
 $i=i-1$
 $A[i+1]=key$

OBS: I CLRS bruger denne algoritme 1-indeksering. Derfor en lille forskel.

Insertion-Sort
$$(A,n)$$
for $j=1$ to $n-1$
 $key=A[j]$
 $i=j-1$
while $i\geq 0$ and $A[i]>key$
 $A[i+1]=A[i]$
 $i=i-1$
 $A[i+1]=key$

ertion-Sort
$$(A,n)$$
 or $j=1$ to $n-1$ $key=A[j]$ $i=j-1$ while $i\geq 0$ and $A[i]>key A[i+1]=A[i]$ c_1 c_2 c_3 c_3 n

Køretid:
$$T(n) = c_1 n + c_3 n + c_2 \cdot \frac{n \cdot (n+1)}{2}$$

= $c_2/2 \cdot n^2 + (c_1 + c_3 + c_2/2) \cdot n$

$$\begin{array}{|c|c|c|c|}\hline \text{Insertion-Sort}(A,n) & \text{skridt} & \text{max. gange} \\ \hline \text{for } j=1 \text{ to } n-1 & & & \\ key=A[j] & & c_1 & n \\ i=j-1 & \text{while } i\geq 0 \text{ and } A[i]>key \\ A[i+1]=A[i] & c_2 & 1+2+\ldots+n=\frac{n\cdot(n+1)}{2} \\ i=i-1 & & \\ A[i+1]=key & & & \\ \hline \end{array}$$

Køretid:
$$T(n) = c_1 n + c_3 n + c_2 \cdot \frac{n \cdot (n+1)}{2}$$

= $c_2/2 \cdot n^2 + (c_1 + c_3 + c_2/2) \cdot n$

$$=\Theta(n^2)$$

Asymptotisk notation: Vi udelader langsomt voksende led og konstanter. Interesseret i hvordan køretiden vokser som funktion af n.

Insertion-Sort
$$(A,n)$$
 for $j=1$ to $n-1$ $key=A[j]$ c_1 n $i=j-1$ while $i\geq 0$ and $A[i]>key$ $A[i+1]=A[i]$ c_2 $1+2+\ldots+n=\frac{n\cdot(n+1)}{2}$ c_3 n

Køretid:
$$T(n) = c_1 n + c_3 n + c_2 \cdot \frac{n \cdot (n+1)}{2}$$

= $c_2/2 \cdot n^2 + (c_1 + c_3 + c_2/2) \cdot n$

$$=\Theta(n^2)$$

Asymptotisk notation: Vi udelader langsomt voksende led og konstanter. Interesseret i hvordan køretiden vokser som funktion af n.

Udfordring: Kan vi sortere hurtigere?

Antag hver halvdel af A er sorteret. Vi merger:

_	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$\mid A \mid$	4	7	12	18	25	28	33	45	1	16	31	36	42	47	50

Antag hver halvdel af A er sorteret. Vi merger:

B								

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

NB: Lidt anderledes i CLRS: kopiér først halvdelene over i to andre arrays og merge tilbage i A.

Antag hver halvdel af A er sorteret. Vi merger:

_	$i \atop 0$													13	
A[4	7	12	18	25	28	33	45	1	16	31	36	42	47	50

Nyt array B.

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

 $\begin{aligned} &\mathsf{Merge}(A,p,q,r) \\ &\mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ &i=p \\ &j=q+1 \\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ &B[k]=A[i] \\ &i=i+1 \\ &\mathsf{else} \\ &B[k]=A[j] \\ &j=j+1 \\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}$

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

 $\begin{aligned} &\mathsf{Merge}(A,p,q,r)\\ &\mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1\\ &i=p\\ &j=q+1\\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p\\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j])\\ &B[k]=A[i]\\ &i=i+1\\ &\mathsf{else}\\ &B[k]=A[j]\\ &j=j+1\\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}$

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r) \\ &\mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ &i=p \\ &j=q+1 \\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ &B[k]=A[i] \\ &i=i+1 \\ &\mathsf{else} \\ &B[k]=A[j] \\ &j=j+1 \\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r) \\ &\mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ &i=p \\ &j=q+1 \\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ &B[k]=A[i] \\ &i=i+1 \\ &\mathsf{else} \\ &B[k]=A[j] \\ &j=j+1 \\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r)\\ &\mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1\\ &i=p\\ &j=q+1\\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p\\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j])\\ &B[k]=A[i]\\ &i=i+1\\ &\mathsf{else}\\ &B[k]=A[j]\\ &j=j+1\\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r) \\ &\mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ &i=p \\ &j=q+1 \\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ &B[k]=A[i] \\ &i=i+1 \\ &\mathsf{else} \\ &B[k]=A[j] \\ &j=j+1 \\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r) \\ &\mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ &i=p \\ &j=q+1 \\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ &B[k]=A[i] \\ &i=i+1 \\ &\mathsf{else} \\ &B[k]=A[j] \\ &j=j+1 \\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r) \\ &\mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ &i=p \\ &j=q+1 \\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ &B[k]=A[i] \\ &i=i+1 \\ &\mathsf{else} \\ &B[k]=A[j] \\ &j=j+1 \\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r)\\ &\mathsf{let}\ B\ \mathsf{be\ an\ array\ of\ size}\ r-p+1\\ &i=p\\ &j=q+1\\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p\\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j])\\ &B[k]=A[i]\\ &i=i+1\\ &\mathsf{else}\\ &B[k]=A[j]\\ &j=j+1\\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r) \\ &\mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ &i=p \\ &j=q+1 \\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ &B[k]=A[i] \\ &i=i+1 \\ &\mathsf{else} \\ &B[k]=A[j] \\ &j=j+1 \\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r)\\ &\mathsf{let}\ B\ \mathsf{be\ an\ array\ of\ size}\ r-p+1\\ &i=p\\ &j=q+1\\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p\\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j])\\ &B[k]=A[i]\\ &i=i+1\\ &\mathsf{else}\\ &B[k]=A[j]\\ &j=j+1\\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Antag hver halvdel af A er sorteret. Vi merger:

Nyt array B.

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r)\\ &\mathsf{let}\ B\ \mathsf{be\ an\ array\ of\ size}\ r-p+1\\ &i=p\\ &j=q+1\\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p\\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j])\\ &B[k]=A[i]\\ &i=i+1\\ &\mathsf{else}\\ &B[k]=A[j]\\ &j=j+1\\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Køretid

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Arbejde ved kald Merge $(A,0,\lfloor \frac{n}{2} \rfloor,n-1)$: n iterationer af for-løkke, hver konstant tid n gange kopiering fra B til A I alt: $\Theta(n)$ tid.

Køretid

```
\begin{aligned} &\mathsf{Merge}(A,p,q,r) \\ &\mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ &i=p \\ &j=q+1 \\ &\mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ &\mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ &B[k]=A[i] \\ &i=i+1 \\ &\mathsf{else} \\ &B[k]=A[j] \\ &j=j+1 \\ &\mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```

Arbejde ved kald Merge $(A,0,\lfloor\frac{n}{2}\rfloor,n-1)$: n iterationer af for-løkke, hver konstant tid n gange kopiering fra B til A I alt: $\Theta(n)$ tid. Arbejde ved kald Merge(A,p,q,r): $\Theta(n')$ tid, hvor n'=r-p+1.

_	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	33	4	25	28	45	18	7	12	36	1	47	42	50	16	31

_											10				
A[33	4	25	28	45	18	7	12	36	1	47	42	50	16	31

_						IV	ierg	e 50	or L	iue					
	Merg	ge-Sc	ort(A)	(p,r))										
	if	$p < \frac{1}{2}$	r												
		q = 1	$\lfloor \frac{p+r}{2} \rfloor$												
			ge-Sc		, p, q										
			ge-Sc												
			$\operatorname{ge}(A)$	-		, ,		_							
l	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
I	33	4	25	28	45	18	7	12	36	1	47	42	50	16	31
									Cor	tár b	مارط	ا ماما	بمارين	rciv (+	
									3 01	tér h	aivu	ieie i	reku	rsivt	
		4				_		_			4.0	4.4	10	4.0	 1
ı ſ	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
	1	\neg	10	10	0 T	വ	22	1 [1	16	21	26	40	17	F O
1	4	7	12	18	25	28	33	45	1	16	31	36	42	47	50
<u>1</u>	4	7	12	18	25	28	33	45	1	16	31	36	42	47	50
! [4	7	12	18	25	28	33	45	1 Mai		31	36	42	47	50
1 [4	7	12	18	25	28	33	45	Mei		31	36	42	47	50
! [$\frac{4}{0}$	1	12 2	3	4	28 <u></u>	33 6	45 7	Mei 8		31	36	12	47 13	50 14

 $\begin{aligned} \mathsf{Merge-Sort}(A,p,r) \\ \mathsf{if} \ p < r \\ q = \lfloor \frac{p+r}{2} \rfloor \\ \mathsf{Merge-Sort}(A,p,q) \\ \mathsf{Merge-Sort}(A,q+1,r) \\ \mathsf{Merge}(A,p,q,r) \end{aligned}$

Divide and conquer (del og hersk): Del problemet i to dele, løs dem, og kombinér løsningerne.

		Mer	ge(A,	p, q,	r)			ı	I						
_	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A[33	4	25	28	45	18	7	12	36	1	47	42	50	16	31
															_
									Sort	tér h	alvd	lele r	'eku	rsivt	
	•														
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	4	7	12	18	25	28	33	45	1	16	31	36	42	47	50
•	•				-	-					-	-			
								•							
									Mei	ge					
	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	$\frac{1}{1}$	$\overline{4}$	$\frac{1}{7}$	$\overline{12}$	16	18	$\frac{3}{25}$	28	$\frac{31}{31}$	33	36	$\overline{42}$	$\overline{45}$	$\overline{47}$	50

 $\begin{aligned} \mathsf{Merge-Sort}(A,p,r) \\ \mathsf{if} \ p < r \\ q = \lfloor \frac{p+r}{2} \rfloor \\ \mathsf{Merge-Sort}(A,p,q) \\ \mathsf{Merge-Sort}(A,q+1,r) \\ \mathsf{Merge}(A,p,q,r) \end{aligned}$

25

33

4

28

Divide and conquer (del og hersk): Del problemet i to dele, løs dem, og kombinér løsningerne.

Tilfældet p == r: Vi kigger på et enkelt tal. Allerede sorteret!

	4	5	6	7	8	9	10	11	12	13	14
,	45	18	7	12	36	1	47	42	50	16	31

Sortér halvdele rekursivt

_	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	4	7	12	18	25	28	33	45	1	16	31	36	42	47	50

Merge

_	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
A	1	4	7	12	16	18	25	28	31	33	36	42	45	47	50

Eksempel

```
\begin{aligned} \mathsf{Merge-Sort}(A,p,r) \\ \mathsf{if} \ p < r \\ q = \lfloor \frac{p+r}{2} \rfloor \\ \mathsf{Merge-Sort}(A,p,q) \\ \mathsf{Merge-Sort}(A,q+1,r) \\ \mathsf{Merge}(A,p,q,r) \end{aligned}
```

```
\begin{aligned} & \mathsf{Merge}(A,p,q,r) \\ & \mathsf{let}\ B\ \mathsf{be}\ \mathsf{an}\ \mathsf{array}\ \mathsf{of}\ \mathsf{size}\ r-p+1 \\ & i=p \\ & j=q+1 \\ & \mathsf{for}\ k=0\ \mathsf{to}\ r-p \\ & \mathsf{if}\ j>r\ \mathsf{or}\ (i\leq q\ \mathsf{and}\ A[i]\leq A[j]) \\ & B[k]=A[i] \\ & i=i+1 \\ & \mathsf{else} \\ & B[k]=A[j] \\ & j=j+1 \\ & \mathsf{copy}\ B\ \mathsf{to}\ A[p\dots r] \end{aligned}
```


Første kald: Merge-Sort(A, 0, n - 1)

Køretid

Merge-Sort
$$(A, p, r)$$
if $p < r$
 $q = \lfloor \frac{p+r}{2} \rfloor$
Merge-Sort (A, p, q)
Merge-Sort $(A, q + 1, r)$
Merge (A, p, q, r)

$$T(n) = \begin{cases} c, & n = 1 \\ 2T(n/2) + cn, & n > 1 \end{cases}$$
 antager $n = 2^k$, $k \in \mathbb{N}$

Opsummering om sortering

Insertion sort: $\Theta(n^2)$ tid, kræver ikke ekstra plads.

Merge sort: $\Theta(n \log n)$ tid, kræver $\Theta(n)$ ekstra plads.

I DMA uge 4: Heap sort, bruger $\Theta(n \log n)$ tid, kræver ikke ekstra array (in place-algoritme).

I DMA uge 6: Ikke muligt at komme under $\Theta(n \log n)$ tid hvis man kun må deducere vha. sammenligninger. Vi skal se på andre sorteringsalgoritmer som kommer under vha. smarte "snydetricks".

Hvorfor er asymptotisk køretid så praktisk?

Antag S1(A) og S2(A) begge sorterer array A af længde n. S1 har køretid $T_1(n) = n^2$ og S2 har køretid $T_2(n) = 100 \cdot n \log_2 n$. $T_1(n) = \Theta(n^2)$ og $T_2(n) = \Theta(n \log n)$.

Hvorfor er asymptotisk køretid så praktisk?

Antag S1(A) og S2(A) begge sorterer array A af længde n. S1 har køretid $T_1(n) = n^2$ og S2 har køretid $T_2(n) = 100 \cdot n \log_2 n$. $T_1(n) = \Theta(n^2)$ og $T_2(n) = \Theta(n \log n)$.

$$n=20$$
: $T_1(20)=400$ og $T_2(20)pprox 8600$, så $rac{T_1(20)}{T_2(20)}pprox 0.05.$

Hvorfor er asymptotisk køretid så praktisk?

Antag S1(A) og S2(A) begge sorterer array A af længde n. S1 har køretid $T_1(n) = n^2$ og S2 har køretid $T_2(n) = 100 \cdot n \log_2 n$. $T_1(n) = \Theta(n^2)$ og $T_2(n) = \Theta(n \log n)$.

$$n=20$$
: $T_1(20)=400$ og $T_2(20) pprox 8600$, så

$$\frac{T_1(20)}{T_2(20)} \approx 0.05.$$

$$n=5.8\cdot 10^6$$
: $T_1(5.8\cdot 10^6)pprox 3.4\cdot 10^{13}$ og $T_2(5.8\cdot 10^6)pprox 1.3\cdot 10^{10}$, så $rac{T_1(5.8\cdot 10^6)}{T_2(5.8\cdot 10^6)}pprox 2600.$

Hvorfor er vi ligeglade med konstanter?

Hvis køretiden er $T(n) = 100n \log n$ skriver vi $T(n) = \Theta(n \log n)$. Vi igorerer konstanten 100 fordi:

- Konstanten afhænger af præcis hvordan vi tæller skridt.
- I praksis er det forskelligt hvor lang tid de basale skridt tager.
- Præcist antal skridt afhænger af programmeringssprog.
- Når n bliver stor er det vigtigste den asymptotiske opførsel.

Derfor ignorerer vi også langsomt voksende led.

Hvorfor er vi ligeglade med konstanter?

Hvis køretiden er $T(n) = 100n \log n$ skriver vi $T(n) = \Theta(n \log n)$. Vi igorerer konstanten 100 fordi:

- Konstanten afhænger af præcis hvordan vi tæller skridt.
- I praksis er det forskelligt hvor lang tid de basale skridt tager.
- Præcist antal skridt afhænger af programmeringssprog.
- Når n bliver stor er det vigtigste den asymptotiske opførsel.

Derfor ignorerer vi også langsomt voksende led.

P.S:

- I praksis kan vi ikke ignorere astronomiske konstanter.
- En asymptotisk langsommere algoritme kan foretrækkes hvis
 - -n aldrig bliver meget stor, eller
 - den langsommere algoritme er meget simplere og hurtig nok.
- To algoritmer med samme asymp. køretid behøver ikke være lige gode.