LIE ALGEBRA OF A LIE GROUP

Zih-Yu Hsieh, mentored by Arthur Jiang

University of California Santa Barbara

Tangent Vectors as Derivations

When embedding smooth manifolds into \mathbb{R}^n , tangent vectors are associated with directional derivatives. To generalize tangent vectors into abstract smooth manifold, we need an analogy:

Definition

Any point $u \in M$, a **Derivation at** u, is a linear map $v_u : C^{\infty}(M) \to \mathbb{R}$, that satisfies the product rule:

$$\forall f, g \in C^{\infty}(M), \quad v_u(fg) = f(u)(v_ug) + g(u)(v_uf)$$

Which, the set of all derivations at u, denoted as $T_u(M)$, is the **Tangent Space** of M at u, and each derivation $v_u \in T_u(M)$ is a **Tangent Vector** of u.

Vector Fields & Smooth Conditions

Definition

a vector field is a map $X: M \to TM$ (TM denotes the **Tangent Bundle**), with $X(u) = X_u \in T_u(M)$.

Which, X is a **Smooth Vector Field**, if $X:M\to TM$ is a smooth map. A collection of smooth vector fields on M is denoted as $\mathfrak{X}(M)$, which is an \mathbb{R} -vector space.

An equivalent condition of saying a vector field X is smooth, is through smooth functions $f \in C^{\infty}(M)$: For all $u \in M$, $X(u) = X_u \in T_u(M)$ is a derivation at u, define $Xf : M \to \mathbb{R}$ by $Xf(u) = X_u(f)$, then X is a smooth vector field iff $Xf \in C^{\infty}(M)$. Which, a smooth vector field can be viewed as a **Derivation**:

Property

For all $f, g \in C^{\infty}(M)$, given $X \in \mathfrak{X}(M)$, any $u \in M$ satisfies product rule:

$$X(fg)(u) = X_u(fg) = f(u)(X_ug) + g(u)(X_uf) = f(u)Xg(u) + g(u)Xf(u)$$

$$\implies X(fg) = f(Xg) + g(Xf)$$

Vector Fields of Different Manifolds

Given M,N two smooth manifolds, and smooth map $F:M\to N$. Let $X\in\mathfrak{X}(M)$, an ideal situation is mapping X to a smooth vector field of N through F. Yet, this requires F to be bijective:

Figure 1: Example of Conflicting Tangent Vectors So, we'll consider a weaker notion:

Definition

Given $X \in \mathfrak{X}(M)$ and $Y \in \mathfrak{X}(N)$, the two are $\textbf{\textit{F-related}}$, if for all $u \in M$, the following is true:

$$dF_u(X_u) = Y_{F(u)}$$

Simply speaking, F maps the tangent vectors collected by X, to be compatible with tangent vectors collected by Y.

Figure 2: A demonstration of F-Relation

Lie Brackets of Vector Fields

The initial motivation is to combine two vector fields $X,Y\in\mathfrak{X}(M)$ to be another vector field. For all $f\in C^\infty(M)$, since $Yf\in C^\infty(M)$, then $XYf:=X(Yf)\in C^\infty(M)$. But, in general XY is not a derivation, hence not a vector field:

Example

Define vector fields $X = \frac{\partial}{\partial x}$, $Y = x \frac{\partial}{\partial y}$ on \mathbb{R}^2 . Take smooth functions f(x,y) = x and g(x,y) = y, then we get the following:

$$XY(fg) = X\left(x\frac{\partial}{\partial y}(xy)\right) = \frac{\partial}{\partial x}(x^2) = 2x$$

But, product rule doesn't hold for this example:

$$f(XYg) + g(XYf) = x\left(X\left(x\frac{\partial}{\partial y}(y)\right)\right) + y\left(X\left(x\frac{\partial}{\partial y}(x)\right)\right) = x$$

So, we need to define a new operation on vector fields:

Definition

The Lie Bracket $[\cdot,\cdot]:\mathfrak{X}(M)\times\mathfrak{X}(M)\to\mathfrak{X}(M)$, is defined as:

$$\forall X, Y \in \mathfrak{X}(M), \quad [X, Y] = XY - YX$$

Which, the output $[X,Y] \in \mathfrak{X}(M)$, since it satisfies product rule:

$$\begin{split} [X,Y](fg) &= X(Y(fg)) - Y(X(fg)) = X(f(Yg) + g(Yf)) - Y(f(Xg) + g(Xf)) \\ &= f(XYg) + (Yg)(Xf) + g(XYf) + (Yf)(Xg) - f(YXg) - (Xg)(Yf) - g(YXf) - (Xf)(Yg) \\ &= f(XYg - YXg) + g(XYf - YXf) = f[X,Y](g) + g[X,Y](f) \end{split}$$

Lie Bracket also satisfies these properties:

- Bilinearity: [aX + bY, Z] = a[X, Z] + b[Y, Z]
- Antisymmetry: [X,Y] = -[Y,X]
- Jacobi's Identity: [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0

Moreover, Lie Bracket inherits relation of smooth maps:

Property

Given smooth map $F: M \to N$, if $X_1, X_2 \in \mathfrak{X}(M)$ and $Y_1, Y_2 \in \mathfrak{X}(N)$ are F-related respectively, then $[X_1, X_2] \in \mathfrak{X}(M)$ and $[Y_1, Y_2] \in \mathfrak{X}(N)$ are also F-related.

Lie Group & Left-Invariant Vector Fields

The initial motivation is to study group structures in some smooth manifolds.

Definition

A Lie Group G, is a smooth manifold along with group structure, such that the group operation $P: G \times G \to G$ by P(g,h) = gh, and the inversion map $i: G \to G$ by $i(g) = g^{-1}$ are both smooth maps between manifolds.

For all $g \in G$, denote the left multiplication $L_g : G \to G$ by $L_g(h) = gh$, since $L_g = P \mid_{\{g\} \times G}$, it is a smooth map. Hence, there's a notion of X being L_g -related to itself:

Definition

Given any $X \in \mathfrak{X}(G)$ and all $g \in G$, X is a **Left-Invariant Vector Field**, if for all $g \in G$, X is L_g -related to itself. Which, for all $g \in G$:

$$(dL_g)_e(X_e) = X_{L_q(e)} = X_g$$

So, X is uniquely determined by its tangent vector at identity, $X_e \in T_e(G)$. The collection of Left-Invariant vector fields $\mathfrak{g} \subseteq \mathfrak{X}(G)$, is a linear subspace.

Recall that Lie Bracket of vector field preserves F-relation between manifolds, so:

Property

For all $X,Y \in \mathfrak{X}(G)$ that are left-invariant, since for all $g \in G$, X and Y are L_g related to themselves, then the Lie Bracket [X,Y] is also L_g related to [X,Y]. Hence, [X,Y] is also left-invariant, so $\mathfrak g$ is closed under Lie Bracket's operation.

Lie Algebra on a Lie Group

Definition

Given a vector space \mathfrak{g} over \mathbb{R} or \mathbb{C} , with a binary operation $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, such that the following holds:

- Bilinearity: [aX + bY, Z] = a[X, Z] + b[Y, Z]
- Antisymmetry: [X, Y] = -[Y, X]
- Jacobi's Identity: [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0

Then, the pair $(\mathfrak{g}, [\cdot, \cdot])$ is a **Lie Algebra**.

In general, Lie Algebra is non-associative, which Jacobi's Identity is an alternative condition for Lie Algebra.

Finally, we can define Lie Algebra of a Lie Group:

Definition

Given a lie group G, since the subset of left-invariant vector fields $\mathfrak{g} \subseteq \mathfrak{X}(G)$ forms a linear subspace, while closed under Lie Bracket's operation, then the pair $(\mathfrak{g}, [\cdot, \cdot])$ forms a **Lie Algebra** of G, denoted as Lie(G).

Here's an example of Lie Algebra on a Lie Group:

Example

General Linear Group & its Lie Algebra:

Given the group of all invertible matrices $GL_n(\mathbb{R}) \subset M_n(\mathbb{R})$, since $M_n(\mathbb{R}) \cong \mathbb{R}^n$ and $GL_n(\mathbb{R})$ is an open subset, it's a smooth manifold with dimension n^2 . Which, since product of matrices and inversion are smooth functions, $GL_n(\mathbb{R})$ is a Lie Group.

Now, consider $\mathfrak{g}=Lie(GL_n(\mathbb{R}))$, recall that each Left-Invariant vector field $X\in\mathfrak{g}$ is uniquely characterized by $X_{I_n}\in T_{I_n}(GL_n(\mathbb{R}))$. In fact, such characterization is a 1-to-1 correspondance. As vector spaces, $\mathfrak{g}\cong T_{I_n}(GL_n(\mathbb{R}))$.

Lie Algebra on $M_n(\mathbb{R})$:

Given $M_n(\mathbb{R})$ as \mathbb{R} -vector space, and the commutator operation [A,B]=AB-BA, one can verity that the pair $(M_n(\mathbb{R}),[\cdot,\cdot])$ forms a Lie Algebra, normally denoted as $\mathfrak{gl}_n(\mathbb{R})$.

, with global coordinate provided by $M_n(\mathbb{R})$, denote as $(X_i^i)_{1 \le i,j \le n}$

Lie Algebra Isomorphism:

Acknowledgements & Reference

I want to thank my mentor Arthur Jiang for the effort and insights on the guidings through the materials and the project. I also want to thank UCSB Math Department Directed Reading Program for providing this opportunity. Finally, go check out Siyu Chen's poster on the application in physics!

Reference: John M. Lee, Introduction to Smooth Manifolds, 2nd Edition