Sortări

Bucket, Radix, Quick, Merge, Heap?

- Elementele vectorului sunt distribuite în bucket-uri după anumite criterii
- Bucket-urile sunt reprezentate de elemente ale unui vector de liste înlănţuite
- Fiecare bucket conţine elemente care îndeplinesc aceleaşi condiţii

IDEE:

- Fie v vectorul de sortat și b vectorul de buckets
- Se iniţializează vectorul auxiliar cu liste (buckets) goale
- Iterăm prin **v** și adăugăm fiecare element în bucket-ul corespunzător
- Sortăm fiecare bucket (discutăm cum)
- Iterăm prin fiecare bucket, de la primul la ultimul, adăugând elementele înapoi în ${f v}$

Vizualizare:

https://www.cs.usfca.edu/~galles/visualization/BucketSort.html

Cum adăugăm elementele în bucket-ul corespunzător?

- Metoda clasică este să împărțim la o valoare și, în funcție de câtul împărțirii, punem valoarea în bucketul corespunzător.
- În animație foloseam 30 de bucketuri și, cum numerele erau până la 1000, înmulțeam cu 30 și împărțeam la 1000

Cum adăugăm elementele în bucket-ul corespunzător?

Cum adăugăm elementele în bucket-ul corespunzător?

 Metoda clasică este să împărțim la o valoare și, în funcție de cât, să punem în bucketul corespunzător

Cum sortăm bucketurile?

- Putem aplica recursiv tot bucketsort sau, dacă avem puține elemente, să folosim o sortare simplă (insertion / selection / bubble sort)
 - Cum adică să folosim bubble sort? De ce nu quicksort ???
 - Pentru n mic, constanta de la quicksort, mergesort face ca sortarea să fie mai înceată

- Câte bucketuri?
 - Dacă sunt foarte multe, inițializăm spațiu prea mare
 - Dacă sunt prea puţine, nu dispersăm suficient...
 - Ce se întâmplă dacă toate pică în același bucket ?
 - Contează foarte mult și distribuția inputului.

Complexitate?

- Timp:
 - Average O(n+k)
 - Worst case O(n²)

Algoritm bun dacă avem o distribuție uniformă a numerelor...

- Spaţiu:
 - O(n+k)

- Este un algoritm folosit în special pentru ordonarea șirurilor de caractere
 - Pentru numere funcționează pe aceeași idee

- Asemănător cu bucket sort este o generalizare pentru numere mari
- Împărțim în **B** bucketuri, unde **B** este baza în care vrem să considerăm numerele (putem folosi 10, 100, 10⁴ sau 2, 2⁴, 2¹⁶ ...)

 Presupunem că vectorul de sortat v conține elemente întregi, cu cifre din mulțimea {0, ..., B-1}

- Cum sunt utilizate bucket-urile?
 - Elementele sunt sortate după fiecare cifră, pe rând
 - Bucket-urile sunt cifrele numerelor
 - Fiecare bucket b[i] conține, la un pas, elementele care au cifra curentă = i

- Numărul de bucket-uri necesare?
 - Baza în care sunt scrise numerele

Complexitate?

- Timp:
 - O(n log max) (discuție mai lungă)

- Spaţiu:
 - o O(n+b)

Vizualizare:

https://visualgo.net/bn/sorting

Radix Sort - LSD

• LSD = **L**east **S**ignificant **D**igit (iterativ rapid)

Radix Sort - MSD

• MSD = **M**ost **S**ignificant **D**igit (recursiv, ca bucket sort)

- Algoritm Divide et Impera
- Este un algoritm eficient în practică (implementarea este foarte importantă)

- Divide: se împarte vectorul în doi subvectori în funcție de un pivot x, astfel încât elementele din subvectorul din stânga sunt ≤ x ≤ elementele din subvectorul din dreapta
- Impera: se sortează recursiv cei doi subvectori

Quick Sort - exemplu

- Pivot ales la coadă
- Contraexemplu?

• În cel mai bun caz, pivotul x este chiar mediana, adică împarte vectorul în 2 subvectori de n/2 elemente fiecare

Worst case?

- Când alegem cel mai mic sau cel mai mare element din vector la fiecare pas
- Una din cele două partiții va fi goală
- Cealaltă partiție are restul elementelor, mai puțin pivotul
- Număr de apeluri recursive?
 - o n 1
- Lungime partiţie?
 - o n k (unde k = numărul apelului recursiv) \rightarrow O(n k) comparații
- Complexitate finală?
 - \circ O(n²)

Cum alegem pivotul?

- Primul element
- Elementul din mijloc
- Ultimul element
- Un element random
- Mediana din 3
- Mediana din 5, 7 (atenție când vectorul devine mic, facem mult calcul pentru puțin)

https://en.wikipedia.org/wiki/Quicksort#Choice of pivot

Merge Sort

Algoritm Divide et Impera

 Divide: se împarte vectorul în jumătate și se sortează independent fiecare parte

Impera: se sortează recursiv cei doi subvectori

Merge Sort - exemplu

Merge Sort

- Când se oprește recursivitatea?
 - Când vectorul ajunge de lungime 1 sau 2 (depinde de implementare)
 - La fel ca la quicksort, ne-am putea opri mai repede ca să evităm multe operații pentru puține numere
- Algoritm de merging
 - Creem un vector temporar
 - Iterăm cele două jumătăți sortate de la stânga la dreapta
 - o Copiem în vectorul temporar elementul mai mic dintre cele două

Merge Sort vs Quick Sort

De ce e Quick Sort mai rapid în practică atunci când cazul ideal de la Quick Sort e când împărțim în 2 exact ce face Merge Sort?

- Merge Sort are nevoie de un vector suplimentar şi face multe mutări suplimentare.
- Quick Sort e "in place"... memoria suplimentară e pentru stivă...

In-Place Merge Sort

- Nu folosim vector suplimentar ca în cazul Merge Sort
 - Nu este O(n logn)
 - Mai complicat
 - O altă opțiune este <u>Block Sort</u>

Intro Sort

- Se mai numește Introspective Sort
- Este sortarea din anumite implementări ale STL-ului
- Este un algoritm hibrid (combină mai mulți algoritmi care rezolvă aceeași problemă)
- Este format din Quick Sort, Heap Sort şi Insertion Sort

IDEE:

- Algoritmul începe cu Quick Sort
- Trece în Heap Sort dacă nivelul recursivității crește peste logn
- Trece în Insertion Sort dacă numărul de elemente de sortat scade sub o anumită limită

TimSort

- Sortarea din Python
- Este un algoritm hibrid care îmbină Merge Sort cu sortare prin inserare

IDEE:

- Algoritmul începe cu Merge Sort
- Trece în Insertion Sort dacă numărul de elemente de sortat scade sub o anumită limită (32, 64)

Sortări prin comparație

Vizualizare:

https://www.cs.usfca.edu/~galles/visualization/ComparisonSort.html

- Quick Sort
- Merge Sort
- Algoritmi elementari de sortare

Clase de complexitate

Fie f, g două funcții definite pe Z⁺

Notații:

- O(margine superioară upper bound)
- Ω (margine inferioară *lower bound*)
- Θ(categorie constantă same order)

Big-O

- O → mărginire superioară
 - Un algoritm care face 3*n operații este și O(n), dar și $O(n^2)$ și O(n!)
 - o În general, vom vrea totuși marginea strânsă, care este de fapt Θ

• f(n) = O(g(n)), dacă există constantele c și n_0 astfel încât $f(n) \le c * g(n)$ pentru $n \ge n_0$

Big-O

Ilustrare grafică. Pentru valori mari ale lui n, f(n) este mărginită superior de c*g(n), c > 0

$$c*g(n) = n^2$$

$$f(n) = 10n*ln(n) + 5$$

Big-Ω

• $\Omega \rightarrow \text{mărginire inferioară}$

• $f(n) = \Omega(g(n))$, dacă există constantele c și n_0 astfel încât $f(n) \ge c * g(n)$ pentru $n \ge n_0$

Big-Ω

Ilustrare grafică. Pentru valori mari ale lui n, f(n) este mărginită inferior de c*g(n), c > 0

Big-O

• $\Theta \rightarrow$ marginire dubla (si inferioara si superioara)

Big-O

Ilustrare grafică. Pentru valori mari ale lui n, f(n) este mărginită atât inferior cât și superior de $c_1*g(n)$, respectiv $c_2*g(n)$, $c_1,c_2>0$

$$c_2^*g(n) = 2n^2$$

$$f(n) = n^2 + 10n*ln(n) + 5$$

$$c_1^*g(n) = n^2$$

Complexitatea minimă pentru o sortare prin comparație

Teoremă: Orice algoritm de sortare care se bazează pe comparații face cel putin Ω (n logn) comparații.

Schiță de demonstrație:

Sunt în total n! permutări. Algoritmul nostru de sortare trebuie să sorteze toate aceste n! permutări. La fiecare pas, pe baza unei comparații între 2 elemente, putem, în funcție de răspuns, să eliminăm o parte din comparații. La fiecare pas, putem înjumătăți numărul de permutări \rightarrow obținem minim $\log_2(n!)$ comparatii, dar

$$\log_2(n!) = \log_2(n) + \log_2(n-1) + ... + \log_2(2) = \Omega(n \log n).$$

Complexitatea minimă pentru o sortare prin comparație

Teoremă: Orice algoritm de sortare care se bazează pe comparații face cel putin Ω (n logn) comparații.

Exemplu: N = 3, vrem să sortăm orice permutare a vectorului {1,2,3}:

$$(1,2,3)$$
 $(1,3,2)$ $(2,1,3)$ $(2,3,1)$ $(3,1,2)$ $(3,2,1)$

Facem o primă comparație, să zicem a_1 ? a_2 . Să zicem că $a_1 > a_2 \rightarrow$ rămân 3 posibilități: (1,2,3) (1,3,2) (2,3,1)

Dacă ulterior comparăm a_1 cu a_3 ... atunci:

- dacă $a_3 > a_1$ am terminat
- dacă $a_1^{-} > a_3^{-}$ atunci rămânem cu (1,2,3) (1,3,2) și mai trebuie să facem a 3-a comparație...

Heap Sort

Vizualizare:

https://www.cs.usfca.edu/~galles/visualization/HeapSort.html

6 5 3 1 8 7 2 4

Scurtă introducere în heap-uri

- Ce este un heap?
 - Arbore binar aproape complet
 - Are înălțimea h = logn
- Max-heap
 - Pentru orice nod X, fie T tatăl lui X
 - T are valoarea ≥ decât valoarea lui X
 - Elementul maxim este în rădăcină
- Min-heap
 - Pentru orice nod X, fie T tatăl lui X
 - T are valoarea ≤ decât valoarea lui X
 - Elementul minim este în rădăcină

Scurtă introducere în heap-uri

Max-heap Ultima poziție: 14

Min-heap Ultima poziție: 89

Heap Sort

• În funcție de sortarea dorită (ascendentă sau descendentă) - se folosește max-heap sau min-heap

IDEE:

- Elementele vectorului inițial sunt adăugate într-un heap
- La fiecare pas, este reparat heap-ul după condiția de min/max-heap
- Cât timp mai sunt elemente în heap:
 - Fie X elementul maxim
 - o X este interschimbat cu cel de pe ultima poziție în heap
 - X este adăugat la vectorul sortat (final)
 - X este eliminat din heap
 - Heap-ul este reparat după condiția de min/max-heap

Kahoot

Final