Nandan Madhuj

1 Solving for x.

$$x \equiv 2 \mod 3$$
, $x \equiv 3 \mod 5$, $x \equiv 2 \mod 7$

or
$$x = b_i \mod n_i$$
... for $i \in \{1, 2, 3\}$

where
$$n_1 = 3, n_2 = 5, n_3 = 7$$
 and similar relations for b_i

where
$$b_1 = 2, b_2 = 3, b_3 = 2$$

and
$$N = n_1 \cdot n_2 \cdot n_3 = 105$$

and
$$N_i = \frac{N}{n_i}$$
 for $i \in \{1, 2, 3\}$

So,
$$N_1 = 35, N_2 = 21, N_3 = 15$$

We define x_i such that, $x_i \cdot N_i \equiv 1 \mod n_i$

So,
$$x_1 \cdot N_1 \equiv 1 \mod n_1$$

$$\implies x_1 \cdot 35 \equiv 1 \mod 3$$

$$\implies x_1 \cdot -1 \equiv 1 \mod 3$$

$$\implies x_1 \equiv -1 \mod 3 \equiv 2 \mod 3$$

Similarly,

$$x_2 \cdot N_2 \equiv 1 \mod n_2$$

$$\implies x_2 \cdot 21 \equiv 1 \mod 5$$

$$\implies x_2 \equiv 1 \mod 5$$

Also,

$$x_3 \cdot N_3 \equiv 1 \mod n_3$$

$$\implies x_3 \cdot 15 \equiv 1 \mod 7$$

$$\implies x_3 \equiv 1 \mod 7$$

Using the CRT, we have,

$$x = \sum_{1,2,3} x_i \cdot N_i \cdot b_i$$

$$\implies x = 2 \cdot 35 \cdot 2 + 1 \cdot 21 \cdot 3 + 1 \cdot 15 \cdot 2 = 233$$

$$\implies x \equiv 233 \mod 105 \equiv 23 \mod 105.$$

Required solution is $x \equiv 23 \mod 105$

2 Given first relation: $x = 36 \cdot k + 11$

Taking mod 4 and mod 9, we get,

$$x \equiv 11 \mod 4 \implies x \equiv 3 \mod 4$$

$$x \equiv 11 \mod 9 \implies x \equiv 2 \mod 9$$

Similarly, the other two relations give

$$x \equiv 7 \mod 8$$

$$x \equiv 2 \mod 5$$

Also,

$$x \equiv 7 \mod 25$$

$$x \equiv 2 \mod 3$$

Hence, we have 6 relation.

Some are implied by the following 3 relations:

$$x \equiv 2 \mod 9$$

$$x \equiv 7 \mod 8$$

$$x \equiv 7 \mod 25$$

These can directly be solved using Chinese Remainder Theorem. We define $\{x_1, x_2, x_3\}$ inverses of 200,225 and 72 w.r.t modulo 9,8 and 25 respectively.

$$x_1 \cdot 200 \equiv 1 \mod 9 \implies x_1 = 5.$$

$$x_2 \cdot 225 \equiv 1 \mod 8 \implies x_2 = 1.$$

$$x_3 \cdot 72 \equiv 1 \mod 25 \implies x_3 = 8.$$

So by CRT we get $x = 5 \cdot 200 \cdot 2 + 1 \cdot 225 \cdot 7 + 8 \cdot 72 \cdot 7 = 7606 \equiv 407 \mod 1800$.

Or We directly use Code used in 6th problem to get

$$x=407 \mod 1800$$

3. Symbols have usual meaning.

 $x^2 \equiv 1 \mod 3 \iff x \equiv 1 \mod 3 \text{ or } x \equiv 2 \mod 3.$

System 1: $x \equiv 1 \mod 3$ and $x \equiv 2 \mod 4$

We define $N = 3 \cdot 4 = 12$

$$N_i = \frac{N}{n_i}$$

$$N_1 = 4 \text{ and } N_2 = 3$$

We define x_i such that $x_i \cdot N_i \equiv 1 \mod n_i$

$$x_1 \cdot 4 \equiv 1 \mod 3 \implies x_1 = 1.$$

 $x_2 \cdot 3 \equiv 1 \mod 4 \implies x_2 = 3$. Using the Chinese remainder theorem, $x = \sum x_i \cdot N_i \cdot b_i$ where b_i is the residue class of x w.r.t n_i

This gives,

$$x = 1 \cdot 4 \cdot 1 + 3 \cdot 3 \cdot 2 \equiv 10 \mod 12$$

System 2: $x \equiv 2 \mod 3$ and $x \equiv 2 \mod 4$

We define N = 12.

$$N_1 = 4 \text{ and } N_2 = 3$$

We define x_i in a similar way.

$$x_1 = 1 \text{ and } x_2 = 3$$

Hence,

$$x = 1 \cdot 4 \cdot 2 + 3 \cdot 3 \cdot 2 \equiv 2 \mod 12$$

Hence, the combined solution is $x \pm 2 \mod 12$

We note that for a number n to be p-safe,

$$3 \le n \mod p \le p-3$$

So $n \mod p$ may take values $\{3, 4, 5 \dots p - 3\}$

That is, total of p-5 values.

For 7-safe, permitted residue classes are $\{3, 4\}$.

For 11-safe, permitted residue classes are $\{3, 4, 5 \dots 8\}$

For 13-safe, permitted residue classes are $\{3, 4, 5 \dots 10\}$ Hence, to be 7-safe,11-safe,13-safe simultaneously, we have the system,

 $x \equiv a_i \mod 7$

 $x \equiv b_i \mod 11$

 $x \equiv c_i \mod 13$

where a_i, b_i, c_i is one of the permitted residue classes for 7-safe,11-safe and 13-safe respectively.

We note that, gcd(7,11,13) = 1. \Longrightarrow we have unique solution modulo 1001 for each of a_i, b_i, c_i .

Hence, in modulo 1001, we have $2 \cdot 6 \cdot 8 = 96$ unique solution modulo 1001. (one corresponding to each choice of a_i, b_i, c_i .)

Since we need $x \le 10000$, upto 10010, we have $10 \cdot 96 = 960$ solutions. But some values may be greater than 10,000.

7-safes in range are $\{10,006,10,007\}$

11-safes in range are $\{10002,\!10003,\!10004,\!10005...10007\}$

13-safes in are $\{10001, 10002...10007\}$.

Common numbers are 10006 and 10007. So, we subtract these.

Hence total, 960 - 2 = 958. (Total possibilities.)

The problem requires the residues of divisor $m \in \{2, 3, 5\}$ be repeated after m positions. So, for m = 2, we need only fix the remainders of a_1 and a_2 . \implies 2 ways.

Similarly, for m = 3 we fix remainders for a_1, a_2 and a_3 . \implies 3! ways.

And, for m = 5, we fix remainders for $a_1, a_2 \dots a_5 \implies 5!$ ways.

Total: $2 \cdot 6 \cdot 120 = 1440$ ways.

After that, remainders are fixed w.r.t divisors 2,3 and 5 for all positions.

By CRT we obtain unique solutions modulo 30 at each of these positions.

Hence, after setting up the remainders at first 5 positions, we have fixed the required permutation as all places have unique solution modulo 30.

At one of these places, we have a 0, which we replace by 30.

Hence, we can conclude that N = 1440. $\implies N \equiv 440 \mod 1000$

6 Implementing CRT on coprime Divisors.

Following code is in C language.

CRT in Action

Please download the file if its not loading.