WHAT IS CLAIMED IS:

1	1. A process, comprising:		
2	passing a silica gel body through a hot zone under conditions that cause partial		
3	sintering of the gel body; and		
4	repassing the gel body through the hot zone under conditions that further sinter		
5	the gel body.		
1	2. The process of claim 1, wherein the passing and repassing comprises:		
2	vertically moving the gel body through the hot zone.		
1	3. The process of claim 1, further comprising:		
2	passing the gel body through the hot zone under conditions that significantly		
3	purify the gel body without shrinking the gel body.		
1	4. The process of claim 3, further comprising:		
2	treating the silica gel body to cause dehydroxylation prior to performing the		
3	passing.		
1	5. The process of claim 1, wherein the gel body has a tubular shape;		
2	the passing causes at least a 1 percent shrinkage in a diameter of the gel body; a		
3	the repassing causes at least another 1 percent shrinkage in the diameter of the ge		
4	body.		
1	6. The process of claim 5, wherein one of the passing and the repassing		
2	causes at least a 5 percent shrinkage of the diameter of the gel body.		
1	7. The process of claim 1, further comprising:		
2	forming a sol comprising silica particles; and		
3	casting the gel body from the sol.		
	5 5		

1	o. The process of claim 1, wherein both the passing and repassing include			
2	vertically moving the hot zone along the gel body.			
1	9. The process of claim 8, wherein the passing and repassing include			
2	·			
1	10. The process of claim 8, further comprising:			
2	inserting a core-cladding rod into the further sintered gel body; and			
3	heat collapsing the further sintered gel body onto the rod to produce a preform.			
1	11. The process of claim 9, wherein the passing and repassing produce a			
2	preform having a level of [OH] impurities of less than 2 parts per million.			
1	12. The process of claim 1, wherein the repassing includes producing a			
2	transparent silica-glass overcladding tube.			
1	13. A process, comprising:			
2	subjecting one end of a cylindrical silica gel body to a hot zone until the end is at			
3	least partially sintered; and			
4	vertically passing the gel body through the hot zone to sinter the gel body by			
5	causing the partially sintered end to enter the hot zone last.			
1	14. The process of claim 13, wherein the partially sintered end has a diameter			
2	at least 1 percent smaller than the diameter of the end prior to the subjecting.			
1	15. The process of claim 13, further comprising:			
2	producing the silica gel body from a sol comprising silica particles; and			
3	wherein the gel body has a tubular form.			
1	16. The process of claim 14, wherein the passing includes raising the gel body			
2	through the hot zone in a direction opposite to the direction of gravity.			

1	17.	The process of claim 13, wherein the passing produces a silica glass tube.	
1	18.	A manufacture, comprising:	
2	a pref	orm having a central core, a cladding layer, and an overcladding layer; the	
3	core, cladding layer, and overcladding layer each comprising silica-glass, the preform		
4		variation of 10 ⁻¹ percent or less at one longitudinal position.	
1	19.	The manufacture of claim 18, wherein the length and outer diameter of the	
2	preform are a	t least as great as 1200 mm and 90 mm, respectively.	
1	20.	The manufacture of claim 18, wherein the overcladding layer has less than	
2	2 parts per mi	llion of hydroxide impurities.	
1	21.	The manufacture of claim 20, wherein the overcladding layer has less than	
2	.2 parts per million of hydroxide impurities.		
1	22.	The manufacture of claim 19, wherein the preform has an OD variation of	
2	5x10 ⁻² percen	t or less at one longitudinal position.	
1	23.	The manufacture of claim 18, wherein the inner diameter of the	
2	overcladding layer varies by less than 1 percent over the length of the preform.		