Билет 4. Кинематика движения тела по окружности. Период, частота, угловая скорость.

Вращательное движение — движение, при котором все точки тела описывают окружности, центры которых находятся на одной прямой (оси вращения), перпендикулярной плоскостям этих окружностей. Абсолютно твердое тело — тело, деформациями которого под действием внешних сил можно пренебречь. Деформация — изменение формы или размера тела.

Примеры вращательного движения: диск, сверло дрели,

За время $\ \Delta \, t$ точка поворачивается на угол $\ \Delta \, \phi$.

Угол поворота $\Delta \vec{\phi}$ — вектор, модуль которого равен углу, на который повернулось тело, направление совпадает с направлением вращения. Направление определяется с помощью правила буравчика: если правый винт вращать по направлению вращения тела, то его поступательное движение укажет направление $\Delta \vec{\phi}$.

(
$$\Delta \vec{\phi} = [pao] = [\frac{180^{\circ}}{\pi}]$$
)

Средняя угловая скорость — векторная физическая величина, равная отношению угла поворота к промежутку времени совершения поворота.

$$\vec{\omega}_{cp} = \frac{\Delta \vec{\phi}}{\Delta t} \quad [\vec{\omega}_{cp}] = \frac{pa\partial}{c}$$

Мгновенная угловая скорость — векторная физическая величина, равная отношению угла поворота тела за достаточно малый промежуток времени Δt , начинающийся сразу после момента времени t , к длительности промежутка.

$$\vec{\omega} = \lim_{\Delta t \to 0} \frac{\Delta \vec{\phi}}{\Delta t} = \frac{d \vec{\phi}}{d t}$$

Среднее угловое ускорение — векторная физическая величина, равная отношению изменения угловой скорости к промежутку времени, за который произошло это изменение.

$$\vec{\beta}_{cp} = \frac{\Delta \vec{\omega}}{\Delta t}$$

Мгновенное угловое ускорение — векторная физическая величина, равная пределу отношения изменения угловой скорости к промежутку времени $\Delta\,t$, за которое совершается поворот, при условии, что $\Delta\,t$ стремиться к 0.

$$\vec{\beta} = \lim_{\Delta t \to 0} \frac{\Delta \vec{\omega}}{\Delta t} = \frac{d \vec{\omega}}{d t}$$

Модуль углового ускорения

$$\beta = \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \frac{d \omega}{d t}$$

eta>0 , если угловая скорость увеличивается ($\vec{\beta}\uparrow\uparrow\vec{\omega}$) - равноускоренное вращение. eta<0 , если угловая скорость уменьшается ($\vec{\beta}\uparrow\downarrow\vec{\omega}$) - равнозамедленное вращение.

Равномерное вращение

Вращение с постоянной по модулю угловой скоростью называется равномерным.

Период вращения $\ T$ — время полного оборота тела на угол $\ 2\,\pi$ радиан.

$$T = \frac{t}{N}$$
 $[T] = c$ $\omega = \frac{2\pi}{T}$

Частота вращения v или n — число оборотов в единицу времени.

$$v = \frac{1}{T} \quad [v] = c^{-1} = \Gamma u$$

Связь угловых и линейных величин

Пусть Δs — путь, пройденный телом за время Δt . За это время происходит поворот тела на угол $\Delta \phi$. Тогда $\Delta s = \Delta \phi \cdot R$.

Поделим обе части уравнения на Δt : $\frac{\Delta s}{\Delta t} = \frac{\Delta \phi}{\Delta t} \cdot R$

Линейная скорость точки тела – отношение пути, пройденного данной точкой, к промежутку времени, за который он пройден.

$$v = \frac{\Delta s}{\Delta t} = \omega R$$

Линейная скорость точки тела — векторное произведение угловой скорости на радиус-вектор точки относительно оси вращения.

$$\vec{v} = \vec{\omega} \times \vec{R} = \omega R \cdot \sin \alpha \stackrel{\alpha = \frac{\pi}{2}}{=} \omega R$$

Нормальное ускорение

$$a_n = \frac{v^2}{R} = \frac{\omega^2 R^2}{r} = \omega^2 R = \frac{4\pi^2}{T^2} R = 4\pi^2 n^2 R$$

Тангенциальное ускорение
$$|\vec{a}_{\tau}| = \lim_{\Delta t \to 0} \frac{\Delta |\vec{v}|}{\Delta t} = \lim_{\Delta t \to 0} \frac{\Delta (\omega R)}{\Delta t} = R \lim_{\Delta t \to 0} \frac{\Delta \omega}{\Delta t} = \beta R$$

Основные уравнения кинематики равноускоренного (равнозамедленного) вращения

$$\vec{\omega}(t) = \vec{\omega}_0 + \vec{\beta} \cdot t$$

$$\Delta \vec{\phi}(t) = \vec{\phi}_0 + \vec{\omega}_0 t + \frac{\vec{\beta} t^2}{2}$$