61.
$$\frac{(3x+5)^{10}\sqrt{x^2+5}}{(x^3+1)^{50}} \left(\frac{30}{3x+5} + \frac{x}{x^2+5} - \frac{150x^2}{x^3+1}\right)$$

63.
$$\sqrt{3} + \pi/6$$
 65. 1 **67.** $2^x \ln 2(x \ln 2 + 2)$ **69.** $\frac{6 \ln x - 5}{x^4}$

71.
$$\frac{2(xy+y^2)}{(x+2y)^3} = \frac{2}{(x+2y)^3}$$
 73. $y = x$ 75. $y = -\frac{4x}{5} + \frac{24}{5}$

$$(x + 2y)^3$$
 $(x + 2y)^3$ 5 5
77. $x^2 f'(x) + 2x f(x)$ 79. $\frac{g(x)(xf'(x) + f(x)) - x f(x)g'(x)}{g^2(x)}$

85. a. 27 **b.**
$$\frac{16}{27}$$
 c. 72 **d.** 1215 **e.** $\frac{1}{9}$ **87.** $\frac{6}{13}$

89.
$$(f^{-1})'(x) = -3/x^4$$
 91. a. $\frac{1}{4}$ **b.** 1 **c.** $\frac{1}{3}$

93.
$$y = 24x - 118$$
 95. a. 84 ft/s **b.** 7 s **c.** 384 ft

b. The slope of the secant line through the two points is approximately equal to the slope of that tangent line at
$$t = 55$$
.

c.
$$15 \text{ m/s}$$
 d.

e. The skydiver deployed the parachute. **103.** x = 4; x = 6

105.
$$f(x) = \tan(\pi\sqrt{3x - 11}), a = 5; f'(5) = 3\pi/4$$

107. a. $\overline{C}(3000) = \$341.67$; C'(3000) = \$280 b. The average cost of producing the first 3000 lawn mowers is \$341.67 per mower. The cost of producing the 3001st lawn mower is \$280.

109. a. 6550 people/yr **b.** p'(40) = 4800 people/yr

111. 50 mi/hr **113.**
$$-5 \sin 65^{\circ}$$
 ft/s ≈ -4.5 ft/s

115. -0.166 rad/s **117.** 1.5 ft/s **119.** a.
$$(f^{-1})'(1/\sqrt{2}) = \sqrt{2}$$

CHAPTER 4

Section 4.1 Exercises, pp. 247-250

1. f has an absolute maximum at c in [a, b] if $f(x) \le f(c)$ for all x in [a, b]. f has an absolute minimum at c in [a, b] if $f(x) \ge f(c)$ for all x in [a, b]. 3. The function must be continuous on a closed interval.

9. Evaluate the function at the critical points and at the endpoints of the interval. 11. Abs. min at $x = c_2$; abs. max at x = b 13. Abs. min at x = a; no abs. max 15. Local min at x = q, s; local max at x = p, r; abs. min at x = a; abs. max at x = b 17. Local max at x = p, r; local min at x = q; abs. max at x = p; abs. min at x = b

23.
$$x = \frac{2}{3}$$
 25. $x = \pm 3$ **27.** $x = -\frac{2}{3}, \frac{1}{3}$ **29.** $x = \pm \frac{2a}{\sqrt{3}}$

31.
$$t = \pm 1$$
 33. $x = 0$ **35.** $x = 1$ **37.** $x = -4, 0$

39. If
$$a \ge 0$$
, there is no critical point. If $a < 0$, $x = 2a/3$ is the only critical point. **41.** $t = \pm a$ **43.** Abs. max: -1 at $x = 3$; abs. min: -10 at $x = 0$ **45.** Abs. max: 0 at $x = 0$, 3 ;

abs. min:
$$-4$$
 at $x = -1$, 2 **47.** Abs. max: 234 at $x = 3$;

abs. min:
$$-38$$
 at $x = -1$ **49.** Abs. max: 1 at $x = 0$, π ; abs. min: 0 at $x = \pi/2$ **51.** Abs. max: 1 at $x = \pi/6$; abs. min: -1 at $x = -\pi/6$

53. Abs. min:
$$(\sqrt{1/e})^{1/e}$$
 at $x = 1/(2e)$; abs. max: 2 at $x = 1$

55. Abs. max:
$$1 + \pi$$
 at $x = -1$; abs. min: 1 at $x = 1$

57. Abs. max: 11 at
$$x = 1$$
; abs. min: -16 at $x = 4$

59. Abs. max: 27 at
$$x = -3$$
; abs. min: $-\frac{19}{12}$ at $x = \frac{1}{2}$

59. Abs. max: 27 at
$$x = -3$$
; abs. min: $-\frac{19}{12}$ at $x = \frac{1}{2}$
61. Abs. max: $\frac{1}{100,000}$ at $x = 1$; abs. min: $-\frac{1}{100,000}$ at $x = -1$

63. Abs. max:
$$\sqrt{2}$$
 at $x = \pm \pi/4$; abs. min: 1 at $x = 0$

65. Abs. max:
$$27/e^3$$
 at $x = 3$; abs. min: $-e$ at $x = -1$

67. Abs. max: 3 at
$$x = \pm 1$$
; abs. min: 0 at $x = -2, 0, 2$

69. a. The velocity of the downstream wind
$$v_2$$
 is less than or equal to the velocity of the upstream wind, so $0 \le v_2 \le v_1$, or $0 \le \frac{v_2}{v_1} \le 1$.

b. R(1) = 0 **c.** $R(0) = \frac{1}{2}$ **d.** 0.593 is the maximum fraction of power that can be extracted from a wind stream by a wind turbine.

71.
$$t = 2$$
 s **73.** $t = 2$ s **75. a.** 50 **b.** 45 **77. a.** False

b. False **c.** False **d.** True **79. a.**
$$x = -0.96, 2.18, 5.32$$

b. Abs. max: 3.72 at
$$x = 2.18$$
; abs. min: -32.80 at $x = 5.32$

81. a. $x = \tan^{-1} 2 + k\pi$, for k = -2, -1, 0, 1

b.
$$x = \tan^{-1} 2 + k\pi$$
, for $k = -2$, 0, correspond to local max; $x = \tan^{-1} 2 + k\pi$, for $k = -1$, 1, correspond to local min.

c. Abs. max: 2.24; abs. min:
$$-2.24$$
 83. a. $x = 5 - 4\sqrt{2}$

b.
$$x = 5 - 4\sqrt{2}$$
 corresponds to a local max. **c.** No abs. max or min

85. Abs. max: 4 at
$$x = -1$$
; abs. min: -8 at $x = 3$

87. a.
$$T(x) = \frac{\sqrt{2500 + x^2}}{2} + \frac{50 - x}{4}$$
 b. $x = 50/\sqrt{3}$

c. $T(50/\sqrt{3}) \approx 34.15, T(0) = 37.50, T(50) \approx 35.36$

89. a. 1, 3, 0, 1 **b.** Because $h'(2) \neq 0$, h does not have a local extreme value at x = 2. However, g may have a local extremum at x = 2 (because g'(2) = 0). **91. a.** $f(x) - f(c) \le 0$ for all x near c

b.
$$\lim_{x \to c^+} \frac{f(x) - f(c)}{x - c} \le 0$$
 c. $\lim_{x \to c^-} \frac{f(x) - f(c)}{x - c} \ge 0$

d. Because f'(c) exists, $\lim_{x\to c^+} \frac{f(x)-f(c)}{x-c} = \lim_{x\to c^-} \frac{f(x)-f(c)}{x-c}$. By parts (b) and (c), we must have that f'(c)=0.

Section 4.2 Exercises, pp. 254-257

1. If f is a continuous function on the closed interval [a, b] and is differentiable on (a, b), and the slope of the secant line that joins (a, f(a)) to (b, f(b)) is zero, then there is at least one value c in (a, b)at which the slope of the line tangent to f at (c, f(c)) is also zero.

11. $x = \frac{1}{3}$

3. f(x) = |x| is not differentiable at 0. **5.** b. c = 1

7. **b.** $c = \pm 2/\sqrt[4]{5} \approx \pm 1.34$

13. $x = \pi/4$ **15.** Does not apply **17.** $x = \frac{5}{3}$ **19.** Average lapse rate $= -6.3^{\circ}$ /km. You cannot conclude that the lapse rate at a point exceeds the threshold value. 21. a. Yes b. $c = \frac{1}{2}$ **23. a.** Does not apply **25. a.** Yes **b.** $c = \ln(e - 1)$ **27. a.** Yes

b. $c \approx \pm 0.881$ **29. a.** Yes **b.** $c = \sqrt{1 - 9/\pi^2}$ **31. a.** Does not apply 33. a. False b. True c. False 37. h and p

41. No such point exists; function is not continuous at 2.

43. The car's average velocity is (30 - 0)/(28/60) = 64.3 mi/hr. By the MVT, the car's instantaneous velocity was 64.3 mi/hr at some time. **45.** Average speed = 11.6 mi/hr. By the MVT, the speed was exactly 11.6 mi/hr at least once. By the Intermediate Value Theorem, all speeds between 0 and 11.6 mi/hr were reached. Because the initial and final speeds were 0 mi/hr, the speed of 11 mi/hr was reached at least twice.

47.
$$\frac{f(b) - f(a)}{b - a} = A(a + b) + B \text{ and } f'(x) = 2Ax + B;$$

$$2Ax + B = A(a + b) + B \text{ implies that } x = \frac{a + b}{2}, \text{ the midpoint of } [a, b].$$
49.
$$\tan^2 x \text{ and } \sec^2 x \text{ differ by a constant; in fact,}$$

 $\tan^2 x - \sec^2 x = -1$. 53. Hint: By the MVT, there is a value of c in

(2, 4) for which
$$\frac{f(4) - f(2)}{4 - 2} = f'(c)$$
. **57.** b. $c = \frac{1}{2}$

Section 4.3 Exercises, pp. 267-270

1. f is increasing on I if f'(x) > 0 for all x in I; f is decreasing on Iif f'(x) < 0 for all x in I. 3. a. x = 3 b. Increasing on $(3, \infty)$; decreasing on $(-\infty, 3)$

13. a. Concave up on $(-\infty, 2)$; concave down on $(2, \infty)$

b. Inflection point at x = 2 **15.** Yes; consider the graph of $y = \sqrt{x}$ on $(0, \infty)$. 17. $f(x) = x^4$ 19. Increasing on $(-\infty, 0)$; decreasing on $(0, \infty)$ 21. Decreasing on $(-\infty, 1)$; increasing on $(1, \infty)$

23. Increasing on $(-\infty, 1)$ and $(4, \infty)$; decreasing on (1,4)

25. Increasing on $(-\infty, 1/2)$; decreasing on $(1/2, \infty)$

27. Increasing on $(-\infty, 0)$, (1, 2); decreasing on (0, 1), $(2, \infty)$

29. Increasing on $\left(-\frac{1}{\sqrt{e}}, 0\right), \left(\frac{1}{\sqrt{e}}, \infty\right)$; decreasing on

 $\left(-\infty, -\frac{1}{\sqrt{e}}\right), \left(0, \frac{1}{\sqrt{e}}\right)$ 31. Increasing on $\left(\frac{\pi}{6}, \frac{5\pi}{6}\right)$; decreasing

on $\left(0, \frac{\pi}{6}\right), \left(\frac{5\pi}{6}, 2\pi\right)$ 33. Increasing on $(-\pi, -2\pi/3)$,

 $(-\pi/3, 0), (\pi/3, 2\pi/3);$ decreasing on $(-2\pi/3, -\pi/3),$ $(0, \pi/3), (2\pi/3, \pi)$ **35.** Increasing on $(-1, 0), (1, \infty)$; decreasing on $(-\infty, -1)$, (0, 1) 37. Increasing on (-3, 1);

decreasing on (1,3) 39. Increasing on (1,4); decreasing on

 $(-\infty, 1), (4, \infty)$ **41.** Increasing on $(-\infty, -\frac{1}{2}), (0, \frac{1}{2});$

decreasing on $\left(-\frac{1}{2},0\right)$, $\left(\frac{1}{2},\infty\right)$ **43.** Increasing on (-1,1);

decreasing on $(-\infty, -1)$, $(1, \infty)$ **45. a.** x = 0 **b.** Local min at x = 0 **c.** Abs. min: 3 at x = 0; abs. max: 12 at x = -3

47. a. $x = \pm \sqrt{2}$ b. Local min at $x = -\sqrt{2}$; local max at $x = \sqrt{2}$ **c.** Abs. max: 2 at $x = \sqrt{2}$; abs. min: -2 at $x = -\sqrt{2}$ **49. a.** $x = \pm \sqrt{3}$ **b.** Local min at $x = -\sqrt{3}$; local max at $x = \sqrt{3}$ **c.** Abs. max: 28 at x = -4; abs. min: $-6\sqrt{3}$ at $x = -\sqrt{3}$ **51. a.** x = 2 and x = 0 **b.** Local max at x = 0;

local min at x = 2 **c.** Abs. min: $-10\sqrt[3]{25}$ at x = -5; abs. max: 0 at x = 0, 5 **53.** a. $x = e^{-2}$ b. Local min at $x = e^{-2}$

c. Abs. min: -2/e at $x = e^{-2}$; no abs. max **55.** Abs. max: 1/e at x = 1 57. Abs. min: $36\sqrt[3]{\pi/6}$ at $r = \sqrt[3]{6/\pi}$

63. Concave up on $(-\infty, 0)$, $(1, \infty)$; concave down on (0, 1); inflection points at x = 0 and x = 1 65. Concave up on $(-\infty, 0)$, $(2, \infty)$; concave down on (0, 2); inflection points at x = 0 and x = 2 67. Concave down on $(-\infty, 1)$; concave up on $(1, \infty)$; inflection point at x = 1 69. Concave up on $(-1/\sqrt{3}, 1/\sqrt{3})$; concave down on $(-\infty, -1/\sqrt{3})$, $(1/\sqrt{3}, \infty)$; inflection points at $t = \pm 1/\sqrt{3}$ 71. Concave up on $(-\infty, -1)$, $(1, \infty)$; concave down on (-1, 1); inflection points at $x = \pm 1$ 73. Concave up on (0, 1); concave down on $(1, \infty)$; inflection point at x = 1 75. Concave up on (0, 2), $(4, \infty)$; concave down on $(-\infty, 0)$, (2, 4); inflection points at x = 0, 2, 4 77. Critical pts. x = 0 and x = 2; local max at x = 0, local min at x = 2 79. Critical pt. x = 0; local max at x = 0 81. Critical pt. x = 6; local min at x = 6 83. Critical pts. x = 0 and x = 1; local max at x = 0; local min at x = 1

85. Critical pts. x = 0 and x = 2; local min at x = 0; local max at x = 2 **87.** Critical pt. $x = e^5$; local min at $x = e^5$ **89.** Critical pts. t = -3 and t = 2; local max at t = -3; local min at t = 2

91. Critical pt. x = -a; local min at x = -a

93. Critical pts. $x = \pm \sqrt[3]{e}$; local min at $x = \pm \sqrt[3]{e}$

95. a. True b. False c. True d. False e. False

97. y

101.

107. a. Increasing on (-2, 2); decreasing on (-3, -2)**b.** Critical pts. x = -2 and x = 0; local min at x = -2; neither a local max nor min at x = 0 c. Inflection pts. at x = -1 and x = 0**d.** Concave up on (-3, -1), (0, 2); concave down on (-1, 0)

109. a. $E = \frac{p}{p-50}$ **b.** -1.4% **c.** $E'(p) = -\frac{ab}{(a-bp)^2} < 0$, for $p \ge 0, p \ne a/b$ **d.** E(p) = -b, for $p \ge 0$ **111. a.** 300 **b.** $t = \sqrt{10}$ **c.** $t = \sqrt{b/3}$

Section 4.4 Exercises, pp. 277-280

1. We need to know on which interval(s) to graph f. **3.** No; the domain of any polynomial is $(-\infty, \infty)$; there is no vertical asymptote. Also, $\lim_{x \to \infty} p(x) = \pm \infty$, where p is any polynomial; there is no horizontal asymptote. 5. Evaluate the function at the critical points and at the endpoints. Then find the largest and smallest values among those candidates.

43.

45.

47. Critical pts. at x = 1, 3; local max at x = 1; local min at x = 3; inflection pt. at x = 2; increasing on (0, 1), (3, 4); decreasing on (1, 3); concave up on (2, 4); concave down on (0, 2)

49.

51.

53.

55. a. False **b.** False

59.

b. Water is being added at all times. c. No concavity

d. h' has an abs. max at all points of [0, 10].

(B) a.

c. Concave down **d.** h' has abs.

 $\max at t = 0.$

c. Concave up **d.** h' has abs. max at t = 10.

(D) a.

c. Concave down on (0, 5), then concave up on (5, 10); inflection pt. at t = 5 **d.** h' has abs. max at t = 0 and t = 10.

c. First, no concavity; then concave down, no concavity, concave up, and, finally, no concavity

d. h' has abs. max at all points of an interval [0, a] and [b, 10].

c. Concave down on (0, 5); concave up on (5, 10); inflection pt. at t = 5 **d.** h' has abs. max at

63. Local max of $e^{1/e}$ at x = e

Section 4.5 Exercises, pp. 284-291

1. Objective function, constraint(s) **3.** $Q = x^2(10 - x)$; $Q = (10 - y)^2 y$ **5. a.** $P(x) = 100x - 10x^2$ **b.** Abs. max: 250 at x = 5 7. $\frac{23}{2}$ and $\frac{23}{2}$ 9. $5\sqrt{2}$ and $5\sqrt{2}$ 11. Width = length = $\frac{5}{2}$

13. Width = length = 10 **15.** $x = \sqrt{6}$, $y = 2\sqrt{6}$

17. $\frac{10}{\sqrt{2}}$ cm by $\frac{5}{\sqrt{2}}$ cm 19. Length = width = height = 2

21. $\frac{4}{\sqrt[3]{5}}$ ft by $\frac{4}{\sqrt[3]{5}}$ ft by $5^{2/3}$ ft **23.** Approx. (0.59, 0.65)

25. (5, 15), distance ≈ 47.4 **27. a.** A point $8/\sqrt{5}$ mi from the point on the shore nearest the woman in the direction of the restaurant **b.** $9/\sqrt{13}$ mi/hr **29.** A point $7\sqrt{3}/6$ mi from the point on shore nearest the island, in the direction of the power station

31. 18.2 ft **33.**
$$h = \frac{20}{\sqrt{3}}$$
; $r = 20\sqrt{\frac{20}{3}}$

31. 18.2 ft 33. $h = \frac{20}{\sqrt{3}}$; $r = 20\sqrt{\frac{2}{3}}$ 35. a. $r = \sqrt[3]{177/\pi} \approx 3.83$ cm; $h = 2\sqrt[3]{177/\pi} \approx 7.67$ cm

b. $r = \sqrt[3]{177/2\pi} \approx 3.04 \text{ cm}; h = 2\sqrt[3]{708/\pi} \approx 12.17 \text{ cm};$ part (b) is closer to the real can. 37. $\sqrt{15}$ m by $2\sqrt{15}$ m

39. 12" by 6" by 3"; 216 in³ **41.** Lower rectangular pane is approximately 5.6 ft wide by 2.8 ft high. **43.** $r/h = \sqrt{2}$

45. $r = \sqrt{2}R/\sqrt{3}$; $h = 2R/\sqrt{3}$ **47.** 3:1 **49. a.** 0, 30, 25 **b.** 42.5 mi/hr **c.** The units of p/g(v) are \$/mi and so are the units

of w/v. Therefore, $L\left(\frac{p}{g(v)} + \frac{w}{v}\right)$ gives the total cost of a trip of L

miles. **d.** Approx. 62.9 mi/hr **e.** Neither; the zeros of C'(v) are independent of L. **f.** Decreased slightly, to 62.5 mi/hr g. Decreased to 60.8 mi/hr 51. $\sqrt{30} \approx 5.5$ ft 53. The point

 $12/(\sqrt[3]{2}+1) \approx 5.3$ m from the weaker source 55. b. Because the speed of light is constant, travel time is minimized when distance is

minimized. **57.**
$$r = h = \sqrt[3]{450/\pi}$$
 m **59. a.** $\frac{a_1 + a_2}{2}$ **b.** $\frac{a_1 + a_2 + a_3}{3}$ **c.** $\frac{a_1 + a_2 + \cdots + a_n}{n}$ **61.** $\frac{\pi}{3}$

63. When the seat is at its lowest point **65.** For $L \le 4r$, max at $\theta = 0$ and $\theta = 2\pi$; min at $\theta = \cos^{-1}(-L/(4r))$ and $\theta = 2\pi - \cos^{-1}(-L/(4r))$. For L > 4r, max at $\theta = 0$ and $\theta = 2\pi$; min at $\theta = \pi$. 67. a. $P = 2/\sqrt{3}$ units from the midpoint of the base 69. You can run 12 mi/hr if you run toward the point 3/16 mi ahead of the locomotive (when it passes the point nearest you). **71. a.** r = 2R/3; $h = \frac{1}{3}H$ **b.** r = R/2; h = H/2**73.** $(1 + \sqrt{3})$ mi ≈ 2.7 mi **75.** (i) $(p - \frac{1}{2}, \sqrt{p - \frac{1}{2}})$ (ii) (0,0) 77. Let the angle of the cuts be φ_1 and φ_2 , where

 $\varphi_1 + \varphi_2 = \theta$. The volume of the notch is proportional to $\tan \varphi_1 + \tan \varphi_2 = \tan \varphi_1 + \tan (\theta - \varphi_1)$, which is minimized

when $\varphi_1 = \varphi_2 = \frac{\theta}{2}$. **79.** $x \approx 38.81, y \approx 55.03$

Section 4.6 Exercises, pp. 298-300

3. $f(x) \approx f(a) + f'(a)(x - a)$ 1.

5. L(x) = 3x - 1; 2.3 **7.** 2.7 **9.** dy = f'(x) dx

11. Approx. 25 **13.** 61 mi/hr; 61.02 mi/hr

15. L(x) = T(0) + T'(0)(x - 0) = D - (D/60)x = D(1 - x/60)

17. 84 min; 84.21 min **19.** L(x) = 9x - 4 **21.** L(t) = t + 5

23. L(x) = 3x - 5 **25. a.** L(x) = -4x + 16 **b.** 7.6

c. 0.13% error **27. a.** L(x) = x **b.** 0.9 **c.** 40% error

29. a. L(x) = 1 **b.** 1 **c.** 0.005% error **31. a.** $L(x) = \frac{1}{2} - \frac{x}{48}$

b. 0.5 **c.** 0.003% error **33. a.** L(x) = 1 - x; **b.** $1/1.1 \approx 0.9$ **c.** 1% error **35. a.** L(x) = 1 - x **b.** $e^{-0.03} \approx 0.97$

c. 0.05% error **37.** $a = 200; \frac{1}{203} \approx 0.004925$

39. a = 144; $\sqrt{146} \approx \frac{145}{12}$ **41.** a = 1; $\ln 1.05 \approx 0.05$

43. a = 0; $e^{0.06} \approx 1.06$ **45.** a = 512; $\frac{1}{\sqrt[3]{510}} \approx 0.125$

47. a. L(x) = -2x + 4 **b.** y

c. Underestimates **d.** f''(1) = 4 > 0

49. a.
$$L(x) = -\frac{1}{2}x + \frac{1}{2}(1 + \ln 2)$$

c. Underestimates **d.** $f''(\ln 2) = \frac{1}{2} > 0$

51. $E(x) \le 1$ when $-7.26 \le x \le 8.26$, which corresponds to driving times for 1 mi from about 53 s to 68 s. Therefore, L(x) gives approximations to s(x) that are within 1 mi/hr of the true value when you drive 1 mi in t seconds, where 53 < t < 68.

53. a. True **b.** False **c.** True **d.** True

55. $\Delta V \approx 10\pi \text{ ft}^3$ 57. $\Delta V \approx -40\pi \text{ cm}^3$

59.
$$\Delta S \approx -\frac{59\pi}{5\sqrt{34}} \text{ m}^2$$
 61. $dy = 2 dx$ 63. $dy = -\frac{3}{x^4} dx$ 65. $dy = a \sin x \, dx$ 67. $dy = (9x^2 - 4) \, dx$

69. $dy = \sec^2 x \, dx$

71. L(x) = 2 + (x - 8)/12

x	Linear approx.	Exact value	Percent error
8.1	2.0083	2.00829885	1.7×10^{-3}
8.01	2.00083	2.000832986	1.7×10^{-5}
8.001	2.000083	2.00008333	1.7×10^{-7}
8.0001	2.0000083	2.000008333	1.7×10^{-9}
7.9999	1.9999916	1.999991667	1.7×10^{-9}
7.999	1.999916	1.999916663	1.7×10^{-7}
7.99	1.99916	1.999166319	1.7×10^{-5}
7.9	1.9916	1.991631701	1.8×10^{-3}

73. a. f; the rate at which f' is changing at 1 is smaller than the rate at which g' is changing at 1. The graph of f bends away from the linear function more slowly than the graph of g. b. The larger the value of |f''(a)|, the greater the deviation of the curve y = f(x) from the tangent line at points near x = a.

Section 4.7 Exercises, pp. 310-312

1. If $\lim_{x \to a} f(x) = 0$ and $\lim_{x \to a} g(x) = 0$, then we say $\lim_{x \to a} f(x)/g(x)$ is an indeterminate form 0/0. **3.** Take the limit of the quotient of the

5. **a.**
$$\lim_{x \to 0} \left(x^2 \cdot \frac{1}{x^2} \right) = 1$$
 b. $\lim_{x \to 0} \left(2x^2 \cdot \frac{1}{x^2} \right) = 2$
7. If $\lim_{x \to a} f(x)g(x)$ has the indeterminate form $0 \cdot \infty$, then

 $\lim_{x \to a} \left(\frac{f(x)}{1/g(x)} \right)$ has the indeterminate form 0/0 or ∞/∞ .

9. $\frac{1}{5}$ **11.** If $\lim_{x \to a} f(x) = 1$ and $\lim_{x \to a} g(x) = \infty$, then $f(x)^{g(x)}$ has the form 1^{∞} as $x \to a$, which is meaningless; so direct sub-

stitution does not work. 13. $\lim_{x\to\infty} \frac{g(x)}{f(x)} = 0$ 15. $\ln x, x^3, 2^x, x^x$

17. -1 19. $\frac{3}{4}$ 21. $\frac{1}{2}$ 23. $\frac{1}{2}$ 25. $\frac{1}{e}$ 27. -1 29. $\frac{12}{5}$ 31. 4 33. $\frac{9}{16}$ 35. $\frac{1}{2}$ 37. $-\frac{2}{3}$ 39. $\frac{1}{24}$ 41. 1 43. 4 45. 1 47. $-\frac{1}{2}$ 49. $\frac{1}{\pi^2}$ 51. $\frac{1}{3}$ 53. 1 55. $\frac{7}{6}$ 57. 1

59. $-\frac{1}{2}$ **61.** 0 **63.** -8 **65.** 0 **67.** $\frac{1}{2}$ **69.** $\frac{\ln 3}{\ln 2}$ **71.** $-\frac{9}{4}$ **73.** $\frac{1}{6}$ **75.** 1 **77.** 1 **79.** e **81.** e^{a+1} **83.** e

85. b.
$$\lim_{m \to \infty} (1 + r/m)^m = \lim_{m \to \infty} \left(1 + \frac{1}{(m/r)} \right)^{(m/r)r} = e^r$$

87. 3 **89.** $\frac{1}{2}$ **91.** e **93.** $\ln a - \ln b$ **95.** $e^{0.01x}$ **97.** Comparable growth rates 2 99. x^{x} 101. 1.00001 x 103. $e^{x^{2}}$ 105. a. False

b. False c. False d. False e. True f. True

111.
$$\sqrt{a/c}$$
 113. $\lim_{x \to \infty} \frac{x^p}{b^x} = \lim_{t \to \infty} \frac{\ln^p t}{t \ln^p b} = 0$, where $t = b^x$ **115.** Show $\lim_{x \to \infty} \frac{\log_a x}{\log_b x} = \frac{\ln b}{\ln a} \neq 0$. **117.** 1/3 **121.** a. $b > e$

115. Show
$$\lim_{x \to \infty} \frac{\log_a x}{\log_b x} = \frac{\ln b}{\ln a} \neq 0$$
. 117. 1/3 121. a. $b > a$

b. e^{ax} grows faster than e^{x} as $x \to \infty$, for a > 1; e^{ax} grows slower than e^x as $x \to \infty$, for 0 < a < 1.

Section 4.8 Exercises, pp. 318-321

- 1. Newton's method generates a sequence of x-intercepts of lines tangent to the graph of f to approximate the roots of f.
- **3.** $x_1 = 2, x_2 = 1, x_3 = 0$ **5.** $x_1 = 0.75$ **7.** Generally, if two successive Newton approximations agree in their first p digits, then those approximations have p digits of accuracy. The method is terminated when the desired accuracy is reached.
- **9.** $x_{n+1} = x_n \frac{x_n^2 6}{2x_n} = \frac{x_n^2 + 6}{2x_n}$; $x_1 = 2.5, x_2 = 2.45$
- **11.** $x_{n+1} = x_n \frac{e^{-x_n} x_n}{e^{-x_n} 1}; x_1 = 0.564382, x_2 = 0.567142$
- n0 3 1 3.1667 3.16228 3.16228
- $r \approx 3.16228$
- 15. n x_n 0 0.5 $r \approx 0.51097$ 0.51096 1 2 0.51097 3 0.51097
- **17.** x_n 0 1.2 1.16935 1.16561 1.16556 1.16556
- $r \approx 1.16556$
- 19. n x_n 0 0.75 $r \approx 0.73909$ 1 0.73915 2 0.73909 0.73909
- **21.** $x \approx -0.335408, 1.333057$ **23.** $x \approx 0.179295$
- **25.** $x \approx 0.620723, 3.03645$ **27.** $x \approx 0, 1.895494, -1.895494$
- **29.** $x \approx -2.114908, 0.254102, 1.860806$
- **31.** $x \approx 0.062997, 2.230120$

- The tumor decreases in size and then starts growing again. It decreases to half its size after about 6.4 days.
- **35. b.** $r \approx 7.3\%$ **37. a.** $t = \pi/4$ **b.** $t \approx 1.33897$
- **c.** $t \approx 2.35619$ **d.** $t \approx 2.90977$
- **39.** $p(x) = x^4 7$; $r \approx 1.62658$
- **41.** $p(x) = x^3 + 9$; $r \approx -2.08008$ **43.** $x \approx 2.798386$
- **45.** $x \approx -0.666667$, 1.5, 1.666667 **47. a.** True **b.** False
- **c.** False **49.** $x \approx 0.739085$ **51.** x = 0 and $x \approx 1.047198$
- 53. a. x_n 0 2. 5.33333 2 11.0553

3

22.2931

c. The tangent lines intersect the *x*-axis farther and farther away from the root r. 55. b. $x \approx 0.142857$ is approximately $\frac{1}{7}$. **57.** $\lambda = 1.29011, 2.37305, 3.40918$

Section 4.9 Exercises, pp. 331-334

1. The derivative, an antiderivative **3.** x + C, where C is an arbitrary constant 5. $\frac{x^{p+1}}{p+1} + C$, where $p \neq -1$ 7. $\ln|x| + C$

- **9.** 0 **11.** $x^5 + C$ **13.** $-2\cos x + x + C$ **15.** $3\tan x + C$
- **17.** $y^{-2} + C$ **19.** $e^x + C$ **21.** $\tan^{-1}s + C$ **23.** $\frac{1}{2}x^6 \frac{1}{2}x^{10} + C$
- **25.** $\frac{8}{3}x^{3/2} 8x^{1/2} + C$ **27.** $\frac{25}{3}s^3 + 15s^2 + 9s + C$
- **29.** $\frac{9}{4}x^{4/3} + 6x^{2/3} + 6x + C$ **31.** $-x^3 + \frac{11}{2}x^2 + 4x + C$
- **33.** $-x^{-3} + 2x + 3x^{-1} + C$ **35.** $x^4 3x^2 + C$
- **37.** $\frac{1}{2}x^2 + 6x + C$ **39.** $-\cot \theta + 2\theta^3/3 3\theta^2/2 + C$
- **41.** $-2 \cot y 3 \csc y + C$ **43.** $\tan x x + C$ **45.** $\tan \theta + \sec \theta + C$ **47.** $t^3 2 \cot t + C$
- **49.** $\sec \theta + \tan \theta + \theta + C$ **51.** $\frac{1}{2} \ln |y| + C$ **53.** $3 \sin^{-1} x + C$
- **55.** $4 \sec^{-1}|x| + C$ **57.** $\frac{1}{6} \sec^{-1}|x| + C$ **59.** $t + \ln|t| + C$
- **61.** $e^{x+2} + C$ **63.** $e^w 4w + C$ **65.** $\ln|x| + 2\sqrt{x} + C$
- **67.** $\frac{4}{15}x^{15/2} \frac{24}{11}x^{11/6} + C$ **69.** $\frac{1}{6}x^6 \frac{2}{3}x^3 + x + 1$

- 71. $2x^4 \cos x + 3$ 73. $\sec v + 1, -\pi/2 < v < \pi/2$ 75. $y^3 + 5 \ln y + 2, y > 0$ 77. $f(x) = x^2 3x + 4$ 79. $g(x) = \frac{7}{8}x^8 \frac{x^2}{2} + \frac{13}{8}$ 81. $f(u) = 4(\sin u + \cos u) 4$
- **83.** $y(t) = 3 \ln t + 6t + 2, t > 0$
- **85.** $y(\theta) = \sqrt{2} \sin \theta + \tan \theta + 1, -\pi/2 < \theta < \pi/2$
- **87.** $f(x) = x^2 5x + 4$ **89.** $f(x) = \frac{3}{2}x^2 \cos x + 4$

- **91.** $s(t) = t^2 + 4t$ **93.** $s(t) = \frac{4}{3}t^{3/2} + 1$
- **95.** $s(t) = 2t^3 + 2t^2 10t$ **97.** $s(t) = -16t^2 + 20t$
- **99.** $s(t) = \frac{1}{30}t^3 + 1$ **101.** $s(t) = t^2 + 4t 3\sin t + 10$
- **103.** 200 ft **105.** Runner A overtakes runner B at $t = \pi/2$
- **107. a.** v(t) = -9.8t + 30 **b.** $s(t) = -4.9t^2 + 30t$
- **c.** Approx. 45.92 m at time $t \approx 3.06$ **d.** $t \approx 6.12$
- **109. a.** v(t) = -9.8t + 10 **b.** $s(t) = -4.9t^2 + 10t + 400$
- **c.** Approx. 405.10 m at time $t \approx 1.02$ **d.** $t \approx 10.11$
- 111. a. True b. False c. True d. False
- **e.** False **113.** $F(x) = -\cos x + 3x + 3 3\pi$
- **115.** $F(x) = 2x^8 + x^4 + 2x + 1$
- **117.** a. $Q(t) = 10t t^3/30$ gal

c. $\frac{200}{2}$ gal

Chapter 4 Review Exercises, pp. 334-337

1. a. False b. False c. True d. True e. True f. False

5. a. $x = 0, \pm 10$; increasing on (-10, 0) and $(10, \infty)$, decreasing on $(-\infty, -10)$ and (0, 10) **b.** $x = \pm 6$; concave up on $(-\infty, -6)$ and $(6, \infty)$, concave down on (-6, 6) c. Local min at x = -10, 10; local max at x = 0 d.

7. Critical pts. $x = 0, \pm 1$; abs. max: 33 at $x = \pm 2$; abs. min: 6 at $x = \pm 1$ 9. x = 3 and x = -2; no abs. max or min

11. Critical pt. x = 1; abs. max: $\ln 2$ at x = 0, 2; abs. min: 0 at x = 1

13. Critical pts.
$$x = \frac{2\pi}{3}, \frac{4\pi}{3}$$
; abs. max: $\frac{3\sqrt{3}}{8}$ at $x = \frac{4\pi}{3}$; abs. min: $-\frac{3\sqrt{3}}{8}$ at $x = \frac{2\pi}{3}$ 15. Critical pt. $x = 1/e$; abs.

min: 10 - 2/e at x = 1/e

Critical pts.: all x in the interval [-3, 2]; abs. max: 9 at x = 4; abs. and local min: 5 for x in [-3, 2]; local max: 5 for x in

19. a. Increasing on $(-\infty, -1)$ and $(1, \infty)$; decreasing on (-1, 1)**b.** Concave up on $(0, \infty)$ and concave down on $(-\infty, 0)$

21. Inflection pt. x = 0 **23.** Critical pts. x = -a, a/2; inflection pts. x = 0, -a

27.

29.

31.

33.

35. Approx. 2.5" by 3.5" by 9.5" **37.** Approx. 59 m from the loudest speaker **39.** $r = 4\sqrt{6}/3$; $h = 4\sqrt{3}/3$ **41.** x = 7, y = 14

43.
$$p = q = 5\sqrt{2}$$
 45. a. $L(x) = \frac{2}{9}x + 3$ **b.** $\frac{85}{9} \approx 9.44$; overestimate **47.** $f(x) = 1/x^2$, $q = 4: 1/4 \cdot 2^2 \approx 0.05625$

overestimate **47.** $f(x) = 1/x^2$; a = 4; $1/4.2^2 \approx 0.05625$ **49.** $\Delta h \approx -112$ ft **51.** c = 2.5 **53. a.** $\frac{100}{9}$ cells/week

b. t = 2 weeks **55.** -0.434259, 0.767592, 1 **57.** $0, \pm 0.948683$

59. 0 **61.** 0 **63.** 12 **65.**
$$\frac{2}{3}$$
 67. ∞ **69.** 0 **71.** 1 **73.** 0

75. 1 **77.** 1 **79.**
$$1/e^3$$
 81. 1 **83.** $x^{1/2}$ **85.** \sqrt{x} **87.** 3^x **89.** Comparable growth rates **91.** $\frac{4}{3}x^3 + 2x^2 + x + C$

93.
$$-\frac{1}{x} + \frac{4}{3}x^{-3/2} + C$$
 95. $\theta + 3\sin\theta + C$ 97. $\tan x + C$ 99. $12\ln|x| + C$ 101. $\tan^{-1}x + C$ 103. $\frac{4}{7}x^{7/4} + \frac{2}{7}x^{7/2} + C$

99.
$$12 \ln |x| + C$$
 101. $\tan^{-1} x + C$ **103.** $\frac{4}{7} x^{7/4} + \frac{2}{7} x^{7/2} + C$

105.
$$f(t) = -\cos t + t^2 + 6$$
 107. $h(x) = \frac{1}{3}x^3 - x - \tan^{-1}x + \frac{\pi}{4}$

109. v(t) = -9.8t + 120; $s(t) = -4.9t^2 + 120t + 125$. The rocket reaches a height of 859.69 m at time $t \approx 12.24$ s and then falls to the ground, hitting at time $t \approx 25.49$ s. 111. a. v(t) = 64 - 32t

b.
$$s(t) = -16t^2 + 64t + 128$$
 c. $t = 2$; 192 ft

d.
$$-64\sqrt{3}$$
 ft/s ≈ -110.9 ft/s **113.** 1; 1 **115.** $\lim_{x\to 0^+} f(x) = 1$; $\lim_{x\to 0^+} g(x) = 0$