2016-2 期末试题解答

一、单项选择题

1. D 2. C 3. B 4. A 5. C 6. C

二、填空题

7. edx 8. $\frac{3}{4}\pi$ 9. π 10.4

三、基本计算题

11.设所求平面为 π_1 :x+y+z+D=0,

取直线 L 上的一个点 P(10,-4,0) ,将点 P 代入平面 π_1 ,则 D=-6 ,

所以
$$\pi_1$$
: $x + y + z - 6 = 0$.

12.
$$z_x = 2e^{2x} f_1'(e^{2x}, xy) + yf_2'(e^{2x}, xy)$$
.

$$\Rightarrow G(x,y) = 2e^{2x} f_1'(e^{2x}, xy) + yf_2'(e^{2x}, xy),$$

则
$$G(0,y) = 2f_1'(1,0) + yf_2'(1,0)$$
,

从而
$$G'_{y}(0,3) = \frac{\partial^{2} z}{\partial x \partial y} \Big|_{\substack{x=0 \ y=3}} = f_{2}(1,0) = 2$$

所以
$$\frac{\partial^2 z}{\partial x \partial y}\Big|_{\substack{x=0\\y=3}} = f_2(1,0) = 2$$
.

13. 依题意,方程组
$$\begin{cases} x = F(t,y), \\ f(x+y+t) = 3y \end{cases}$$
 确定了 $t = t(y), x = x(y), x = x(y)$

对 y 求导:
$$\begin{cases} x'(y) = F_1 t'(y) + F_2, \\ (x'(y) + t'(y) + 1) f' = 3 \end{cases}$$

解得
$$\frac{dx}{dy} = \frac{f' F_2 + (3 - f') F_1}{(1 + F_1) f'}$$
.

14. 补
$$L_1: y = 0(x \text{ 从} 1 \rightarrow 0)$$
,则 $L + L_1$ 封闭,且取正向,所以

$$I = \oint_{L+L_1} (1 - y - e^x \sin y) dx + (1 - e^x \cos y) dy - \int_{L_1} (1 - y - e^x \sin y) dx + (1 - e^x \cos y) dy$$

$$= \iint_{\Sigma} dx dy - \int_{L_1} dx = \frac{\pi}{8} - \int_{1}^{0} dx = \frac{\pi}{8} + 1.$$

15. 补 $S_1: z = 0, x^2 + y^2 \le 1$, 下侧, 则 $S + S_1$ 封闭, 指向内侧. 所以

$$I = \bigoplus_{S+S_1} xyzdydz + x^2ydzdx + (\frac{1}{3}z^3 + 1)dxdy - \iint_{S_1} xyzdydz + x^2ydzdx + (\frac{1}{3}z^3 + 1)dxdy$$
$$= - \iiint_V (yz + x^2 + z^2)dv - \iint_{S_2} dxdy,$$

其中
$$\iint_{S} dx dy = -\pi$$
;

由对称性
$$\iiint_{V} (yz + x^2 + z^2) dv = \iiint_{V} (x^2 + z^2) dv$$
,

$$\begin{split} & \coprod \iiint_{V} x^{2} dv = \int_{0}^{2\pi} d\theta \int_{\pi/2}^{\pi} d\varphi \int_{0}^{1} \rho^{2} \sin^{2} \varphi \cos^{2} \theta \rho^{2} \sin \varphi d\rho \\ & = \int_{0}^{2\pi} \frac{1 + \cos 2\theta}{2} d\theta \int_{\pi/2}^{\pi} (\cos^{2} \varphi - 1) d(\cos \varphi) \int_{0}^{1} \rho^{4} d\rho = \frac{2}{15} \pi , \\ & \iiint_{V} z^{2} dv = \int_{0}^{1} z^{2} \pi (1 - z^{2}) dz = \frac{2}{15} \pi , \end{split}$$

所以
$$I = -\frac{4\pi}{15} + \pi = \frac{11}{15}\pi$$
.

16. 将
$$f(x) = \arctan \frac{1+x}{1-x}$$
 展成 x 的幂级数 .

解 因
$$f'(x) = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}, |x| < 1$$

所以, 当
$$|x| < 1$$
 时, $f(x) = \int_0^x f'(x)dx + f(0) = \int_0^x f'(x)dx + \frac{\pi}{4}$

$$\int_0^x f'(x)dx = \int_0^x \sum_{n=0}^\infty (-1)^n x^{2n} dx = \sum_{n=0}^\infty \int_0^x (-1)^n x^{2n} dx = \sum_{n=0}^\infty \frac{(-1)^n x^{2n+1}}{2n+1} ,$$

又
$$x = -1$$
 时,
$$\sum_{n=0}^{\infty} \frac{(-1)^n (-1)^{2n+1}}{2n+1} = \sum_{n=0}^{\infty} \frac{(-1)^{n+1}}{2n+1}$$
 收敛,

所以
$$f(x) = \frac{\pi}{4} + \sum_{n=0}^{\infty} \frac{(-1)^n x^{2n+1}}{2n+1}$$
, $x \in [-1,1)$.

四、应用题

17. 将
$$x = y$$
 和球面 $x^2 + y^2 + z^2 = 4$ 代入函数 $f(x, y, z) = xy + z^2$,

得
$$f = 4 - x^2$$
, $(-\sqrt{2} \le x \le \sqrt{2})$.

令
$$f'(x) = -2x = 0$$
, 得唯一驻点 $x = 0$.

比较 f(0) = 4, $f(\pm \sqrt{2}) = 2$ 知,

最大值为 $f(0,0,\pm 2) = 4$, 最小值为 $f(\pm \sqrt{2},\pm \sqrt{2},0) = 2$.

18. 对方程两边求导,将 x = 0 代入方程有 $\begin{cases} \varphi''(x) + \varphi(x) = e^x, \\ \varphi(0) = 0, \varphi'(0) = 1. \end{cases}$

特征方程 $r^2+1=0$ 有共轭复根 $r_{1,2}=\pm i$,故

对应的齐次方程的通解为 $\boldsymbol{\Phi} = C_1 \cos x + C_2 \sin x$,特解 $\varphi^* = \frac{1}{2}e^x$.

因 $\lambda = 1$ 不是特征根,故设 $\varphi^* = Ae^x$,代入方程得 $A = \frac{1}{2}$.

从而方程的通解为 $\varphi = C_1 \cos x + C_2 \sin x + \frac{1}{2} e^x$.

将初始条件代入,得 $C_1 = -1/2$, $C_2 = 1/2$.

所以,所求定解为 $\varphi = \frac{1}{2}(-\cos x + \sin x + e^x)$.

五、分析证明题

18. 将级数看作是正项级数 $\sum_{n=1}^{\infty} [1 - \cos \frac{(-1)^n}{n^p}]$ 与级数 $\sum_{n=1}^{\infty} \sin \frac{(-1)^n}{n^p}$ 的差.

所以
$$\sum_{n=1}^{\infty} [1 - \cos \frac{(-1)^n}{n^p}]$$
 当 $p > \frac{1}{2}$ 时收敛, 当 $0 时发散;$

而 $\sum_{n=1}^{\infty} \sin \frac{(-1)^n}{n^p} = \sum_{n=1}^{\infty} (-1)^n \sin \frac{1}{n^p}$ 为交错级数,由莱布尼兹判别法,

当
$$p > 0$$
 时 $\sum_{n=1}^{\infty} (-1)^n \sin \frac{1}{n^p}$ 收敛,且 $\left| (-1)^n \sin \frac{1}{n^p} \right| = \sin \frac{1}{n^p} \sim \frac{1}{n^p}$,

因此级数 $\sum_{n=1}^{\infty} (-1)^n \sin \frac{1}{n^p}$ 当 p > 1 时绝对收敛,当 0 时条件收敛,

故原级数当 p > 1时绝对收敛,当 $\frac{1}{2} 时条件收敛,当<math>0 时发散.$

19. $\int_a^b x f(x) dx \int_a^b \frac{x}{f(x)} dx = \iint_D xy \frac{f(x)}{f(y)} dx dy \quad (D \in E \text{ F T D E G is } a \leq x \leq b, a \leq y \leq b),$

$$= \iint_{D} xy \left(\frac{f(x)}{f(y)} + \frac{f(y)}{f(x)} \right) dxdy \quad (轮换性)$$

$$\ge \frac{1}{2} \iint_{D} xy \cdot 2\sqrt{\frac{f(x)}{f(y)} \cdot \frac{f(x)}{f(y)}} dxdy \quad (均值不等式)$$

$$= \iint_{D} xydxdy = \frac{(b+a)^{2}(b-a)^{2}}{4}.$$

另证 由 Cauchy-Schwartz 不等式,得

$$\int_{a}^{b} x f(x) dx \int_{a}^{b} \frac{x}{f(x)} dx \ge \left[\int_{a}^{b} \sqrt{x f(x)} \cdot \sqrt{\frac{x}{f(x)}} dx \right]^{2} = \left(\int_{a}^{b} x dx \right)^{2} = \frac{(b^{2} - a^{2})^{2}}{4} .$$