Pequeñas oscilaciones

Luis A. Núñez

Escuela de Física, Facultad de Ciencias, Universidad Industrial de Santander, Santander, Colombia

27 de septiembre de 2024

Agenda

- Pequeñas oscilaciones 1D
- Oscilaciones con varios grados de libertad
- Sección
- 4 Sección
- Sección

ullet Como vimos en la clase de estabiliad dado un ${\cal L}=rac{1}{2}c\dot{q}^2-V_{
m ef}(q)$

- ullet Como vimos en la clase de estabiliad dado un $\mathcal{L}=rac{1}{2}c\dot{q}^2-V_{ ext{ef}}(q)$
- La ecuación de movimiento es $c\ddot{q}=f_{
 m ef}(q)\equiv -rac{\partial V_{
 m ef}}{\partial q}$

- ullet Como vimos en la clase de estabiliad dado un $\mathcal{L}=rac{1}{2}c\dot{q}^2-V_{ ext{ef}}(q)$
- ullet La ecuación de movimiento es $c\ddot{q}=f_{
 m ef}(q)\equiv -rac{\partial V_{
 m ef}}{\partial q}$
- Que tendrá un mínimo en q_0 , cuando $f_{\rm ef}\left(q_0\right)=0\Rightarrow \left.\frac{\partial V_{\rm ef}}{\partial q}\right|_{q_0}=0$

- ullet Como vimos en la clase de estabiliad dado un $\mathcal{L}=rac{1}{2}c\dot{q}^2-V_{ ext{ef}}(q)$
- ullet La ecuación de movimiento es $c\ddot{q}=f_{
 m ef}(q)\equiv -rac{\partial V_{
 m ef}}{\partial q}$
- Que tendrá un mínimo en q_0 , cuando $f_{\rm ef}\left(q_0\right)=0\Rightarrow \left.\frac{\partial V_{\rm ef}}{\partial q}\right|_{q_0}=0$
- Será estable si $\left. \frac{\partial V_{\rm ef}^2}{\partial q^2} \right|_{q_0} > 0$

- ullet Como vimos en la clase de estabiliad dado un $\mathcal{L}=rac{1}{2}c\dot{q}^2-V_{ ext{ef}}(q)$
- ullet La ecuación de movimiento es $c\ddot{q}=f_{
 m ef}(q)\equiv -rac{\partial V_{
 m ef}}{\partial q}$
- Que tendrá un mínimo en q_0 , cuando $f_{
 m ef}\left(q_0
 ight)=0\Rightarrow \left. rac{\partial V_{
 m ef}}{\partial q}\right|_{q_0}=0$
- Será estable si $\left. \frac{\partial V_{\rm ef}^2}{\partial q^2} \right|_{q_0} > 0$
- Igual que en el caso anterior perturbamos alrededor del mínimo

3/9

- ullet Como vimos en la clase de estabiliad dado un $\mathcal{L}=rac{1}{2}c\dot{q}^2-V_{ ext{ef}}(q)$
- La ecuación de movimiento es $c\ddot{q}=f_{
 m ef}(q)\equiv -rac{\partial V_{
 m ef}}{\partial q}$
- Que tendrá un mínimo en q_0 , cuando $f_{
 m ef}\left(q_0
 ight)=0 \Rightarrow \left. rac{\partial V_{
 m ef}}{\partial q} \right|_{q_0}=0$
- Será estable si $\left. \frac{\partial V_{\rm ef}^2}{\partial q^2} \right|_{q_0} > 0$
- Igual que en el caso anterior perturbamos alrededor del mínimo

ullet Desarrollamos por Taylor, $V_{
m ef}\left(q
ight)$ alrededor de $q=q_0$, y tenemos

$$V_{ ext{ef}}(q) = V_{ ext{ef}}\left(q_0 + \eta
ight) = V\left(q_0
ight) + \left. rac{\partial V_{ ext{ef}}}{\partial q} \right|_{q_0} \eta + \left. rac{1}{2} rac{\partial^2 V_{ ext{ef}}}{\partial q^2} \right|_{q_0} \eta^2 + \cdots,$$

• Despreciando términos en potencias de η de orden superior al cuadrático, tenemos $V_{\rm ef}(q)=V_{\rm ef}\left(q_0+\eta\right)\approx \frac{1}{2}K\left(q-q_0\right)^2=\frac{1}{2}K\eta^2$

- Despreciando términos en potencias de η de orden superior al cuadrático, tenemos $V_{\rm ef}(q)=V_{\rm ef}\left(q_0+\eta\right)\approx \frac{1}{2}K\left(q-q_0\right)^2=\frac{1}{2}K\eta^2$
- ullet La ecuación de movimiento será $c\ddot{\eta}=-rac{\partial V_{ ext{ef}}}{\partial q}=-\mathcal{K}\left(q-q_{0}
 ight)\equiv-\mathcal{K}\eta$

- Despreciando términos en potencias de η de orden superior al cuadrático, tenemos $V_{\rm ef}(q)=V_{\rm ef}\left(q_0+\eta\right)\approx \frac{1}{2}K\left(q-q_0\right)^2=\frac{1}{2}K\eta^2$
- ullet La ecuación de movimiento será $c\ddot{\eta}=-rac{\partial V_{ ext{ef}}}{\partial q}=-K\left(q-q_{0}
 ight)\equiv-K\eta$
- Entonces, $\ddot{\eta} + \omega^2 \eta = 0$, donde $\omega^2 \equiv \frac{\kappa}{c} = \frac{1}{c} \frac{\partial^2 V_{\rm ef}}{\partial q^2} \Big|_{q_0}$ es la frecuencia angular de las pequeñas oscilaciones alrededor de q_0 .

- Despreciando términos en potencias de η de orden superior al cuadrático, tenemos $V_{\rm ef}(q)=V_{\rm ef}\left(q_0+\eta\right)\approx \frac{1}{2}K\left(q-q_0\right)^2=\frac{1}{2}K\eta^2$
- ullet La ecuación de movimiento será $c\ddot{\eta}=-rac{\partial V_{ ext{ef}}}{\partial q}=-K\left(q-q_0
 ight)\equiv -K\eta$
- Entonces, $\ddot{\eta} + \omega^2 \eta = 0$, donde $\omega^2 \equiv \frac{\kappa}{c} = \frac{1}{c} \frac{\partial^2 V_{\rm ef}}{\partial q^2} \Big|_{q_0}$ es la frecuencia angular de las pequeñas oscilaciones alrededor de q_0 .
- Que tendrá como solución $\eta(t) = c_1 \cos \omega t + c_2 \sin \omega t = A \cos(\omega t + \varphi) \equiv \text{Re}\left[Ae^{i(\omega t + \varphi)}\right] = \text{Re}\left(ae^{i\omega t}\right)$ donde $a = Ae^{i\varphi}$ es la amplitud compleja

4/9

• Dado un sistema con s grados de libertad $\{q_i: i=1,\ldots,s\}$ con energía potencial $V(q_1,\ldots,q_s)$.

- Dado un sistema con s grados de libertad $\{q_i: i=1,\ldots,s\}$ con energía potencial $V(q_1,\ldots,q_s)$.
- La configuración de equilibrio del sistema en $\{q_{0i}: i=1,\ldots,s\}$, con $\frac{\partial V}{\partial q_i}\Big|_{q_{0i}}=0, \quad i=1,2,\ldots,s$

- Dado un sistema con s grados de libertad $\{q_i: i=1,\ldots,s\}$ con energía potencial $V(q_1,\ldots,q_s)$.
- La configuración de equilibrio del sistema en $\{q_{0i}: i=1,\ldots,s\}$, con $\frac{\partial V}{\partial q_i}\Big|_{q_{0i}}=0, \quad i=1,2,\ldots,s$

ullet Perturbando las q_i , tendremos $q_i=q_{0i}+\eta_i,$ con $\eta_i o 0$ $\left(rac{\eta_i}{q_{0i}}\ll 1
ight)$

- Dado un sistema con s grados de libertad $\{q_i: i=1,\ldots,s\}$ con energía potencial $V(q_1,\ldots,q_s)$.
- La configuración de equilibrio del sistema en $\{q_{0i}: i=1,\ldots,s\}$, con $\frac{\partial V}{\partial q_i}\Big|_{q_{0i}}=0, \quad i=1,2,\ldots,s$

- ullet Perturbando las q_i , tendremos $q_i=q_{0i}+\eta_i,$ con $\eta_i o 0$ $\left(rac{\eta_i}{q_{0i}}\ll 1
 ight)$
- El valor del potencial $V(q_1, \ldots, q_s)$ cerca de la configuración de equilibrio se obtiene de la expansión de Taylor en varias variables de $V(q_1, \ldots, q_s)$ alrededor de $\{q_{0i}\}$, con $q_i = q_{0i} + \eta_{i}$, $q_i = q_{0i} + \eta_{i}$

• Esto es $V(q_1, ..., q_s) = V(q_{01}, ..., q_{0s}) + \sum_{i} \left(\frac{\partial V}{\partial q_i}\right)_{\{q_{0i}\}} \eta_i + \frac{1}{2} \sum_{i} \sum_{j} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_{\{q_{0i}\}} \eta_i \eta_j + \cdots$

- Esto es $V(q_1, ..., q_s) = V(q_{01}, ..., q_{0s}) + \sum_{i} \left(\frac{\partial V}{\partial q_i}\right)_{\{q_{0i}\}} \frac{1}{q_{i}} + \frac{1}{2} \sum_{i} \sum_{j} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_{\{q_{0i}\}} \eta_i \eta_j + \cdots$
- Los $V(q_{01},...,q_{0s})$ es un valor constante y las derivadas parciales están evaluadas en $\{q_{0i}\}=(q_{01},...,q_{0s})$.

- Esto es $V(q_1, ..., q_s) = V(q_{01}, ..., q_{0s}) + \sum_{i} \left(\frac{\partial V}{\partial q_i}\right)_{\{q_{0i}\}} \frac{1}{q_{0i}} + \frac{1}{2} \sum_{i} \sum_{j} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_{\{q_{0i}\}} \eta_i \eta_j + \cdots$
- Los $V(q_{01}, \ldots, q_{0s})$ es un valor constante y las derivadas parciales están evaluadas en $\{q_{0i}\} = (q_{01}, \ldots, q_{0s})$.
- En la configuración de equilibrio $q_i = q_{0i} + \eta_i$, el potencial se puede expresar como $V(q_1, \ldots, q_s) = V(\eta_1, \ldots, \eta_s) = \frac{1}{2} \sum_{i,j} V_{ij} \eta_i \eta_j$

- Esto es $V(q_1, ..., q_s) = V(q_{01}, ..., q_{0s}) + \sum_{i} \left(\frac{\partial V}{\partial q_i}\right)_{\{q_{0i}\}} \frac{1}{q_{0i}} \sum_{i} \sum_{j} \left(\frac{\partial^2 V}{\partial q_i \partial q_j}\right)_{\{q_{0i}\}} \eta_i \eta_j + \cdots$
- Los $V(q_{01}, \ldots, q_{0s})$ es un valor constante y las derivadas parciales están evaluadas en $\{q_{0i}\} = (q_{01}, \ldots, q_{0s})$.
- En la configuración de equilibrio $q_i = q_{0i} + \eta_i$, el potencial se puede expresar como $V(q_1, \ldots, q_s) = V(\eta_1, \ldots, \eta_s) = \frac{1}{2} \sum_{i,j} V_{ij} \eta_i \eta_j$
- ullet donde los coeficientes $V_{ij}\equiv\left(rac{\partial^2 V}{\partial q_i\partial q_j}
 ight)_{\{q_{0i}\}}$ son simétricos, $V_{ij}=V_{ji}$

Título transparencia

Título transparencia

•

Título transparencia

