

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

« МИРЭА Российский технологический университет»

РТУ МИРЭА

Институт Информационных технологий

Кафедра Вычислительной техники

УЧЕБНОЕ ЗАДАНИЕ

по дисциплине

« Объектно-ориентированное программирование»

Наименование задачи:

« Задание 2_1_2 »

С тудент группы	ИКБО-27-21	Родионов А.А.
Руководитель практики	Ассистент	Морозов В.А.
Работа представлена	«» 2022 г.	
		(подпись студента)
Оценка		
		(подпись руководителя)

Москва 2022

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
Постановка задачи	5
Метод решения	6
Описание алгоритма	7
Блок-схема алгоритма	10
Код программы	12
Тестирование	14
ЗАКЛЮЧЕНИЕ	15
СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)	16

введение

Постановка задачи

Создать объект «треугольник», который содержит длины сторон треугольника. Длины сторон определяются в момент конструирования объекта.

Объект вычисляет периметр и площадь треугольника.

Функционал:

- параметризированный конструктор с параметрами длин сторон;
- метод вычисления периметра;
- метод вычисления площади.

Написать программу, которая создает объект «треугольник», вводит стороны треугольника и выводит периметр и площадь.

Описание входных данных

Три целых числа, соответствующие длинам сторон треугольника, разделенные пробелом.

Описание выходных данных

 Первая
 строка:

 Р
 =
 «периметр»

Вторая строка:

S = «площадь»

Метод решения

Для выполнения задачи нам потребуется:

- -Переменная типа integer/float
- -Объект ввода/вывода потока данных cin/cout (iostream)
- -Математическая операция sqrt (math.h)
- -Условный оператор if
- -Класс Triangles
- -Объект tri класса Triangles
- -Модификаторы доступа public, private

Описание алгоритма

разработки, необходимого Согласно определения после этапам инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

Класс объекта: Triangles

Модификатор доступа: public

Метод: Triangles

Функционал: Конструктор класса

Параметры: int a, int b, int c

Возвращаемое значение: void

Алгоритм метода представлен в таблице 1.

Таблица 1. Алгоритм метода Triangles класса Triangles

N₂	Предикат	Действия	№ перехода	Комментарий
1		Ввод значений а,b,с	Ø	

Класс объекта: Triangles

Модификатор доступа: public

Метод: perimetr

Функционал: Вычисление периметра

Параметры: нет

Возвращаемое значение: integer

Алгоритм метода представлен в таблице 2.

Таблица 2. Алгоритм метода perimetr класса Triangles

N₂	Предикат	Действия	№ перехода	Комментарий
1		Возвращени a + b + c	Ø	

Класс объекта: Triangles

Модификатор доступа: public

Метод: square

Функционал: Вычисление периметра

Параметры: нет

Возвращаемое значение: float

Алгоритм метода представлен в таблице 3.

Таблица 3. Алгоритм метода square класса Triangles

No	Предикат	Действия	№ перехода	Комментарий
1		Инициализация целочисленной переменой типа integer int p	2	
2		p = perimetr() / 2	3	
3		Возвращение sqrt(p * (p - a) * (p - b) * (p - c))	Ø	

Функция: main

Функционал: Главная функция программы

Параметры: нет

Возвращаемое значение: integer

Алгоритм функции представлен в таблице 4.

Таблица 4. Алгоритм функции main

N₂	Предикат	Действия	№ перехода	Комментарий
1		Инициализация целочисленных переменных типа integer int a,b,c	2	
2		Ввод значений а,b,с	3	
3		Инициализация переменной типа Triangles Triangles tri(a,b,c)	4	
4		Вывод "P = " << tri.perimetr() << endl << "S = " << tri.square()	Ø	

Блок-схема алгоритма

Представим описание алгоритмов в графическом виде на рисунках ниже.

Рис. 1. Блок-схема алгоритма.

Рис. 2. Блок-схема алгоритма.

Код программы

Программная реализация алгоритмов для решения задачи представлена ниже.

Файл main.cpp

```
#include "Triangles.h"
#include <iostream>

using namespace std;

int main(){
        int a,b,c;
        cin >> a >> b >> c;
        Triangles tri(a,b,c);
        cout << "P = " << tri.perimetr() << endl << "S = " << tri.square();
}</pre>
```

Файл Triangles.cpp

```
#include "Triangles.h"
#include <iostream>
#include <math.h>
using namespace std;
Triangles::Triangles(int A, int B, int C){
        this->a = A;
        this->b = B;
        this->c = C;
}
int Triangles::perimetr(){
        return a + b + c;
}
float Triangles::square(){
        float p = (float)this->perimetr() / 2.0f;
        float sq = sqrt(p * (p - (float)a) * (p - (float)b) * (p - (float)c));
        return sq;
}
```

Файл Triangles.h

Тестирование

Результат тестирования программы представлен в следующей таблице.

Входные данные	Ожидаемые выходные данные	Фактические выходные данные
111	P = 3 S = 0.433013	P = 3 S = 0.433013
0 0 0	P = 0 S = 0	P = 0 S = 0
3 4 5	P = 12 S = 6	P = 12 S = 6

ЗАКЛЮЧЕНИЕ

СПИСОК ИСПОЛЬЗУЕМОЙ ЛИТЕРАТУРЫ (ИСТОЧНИКОВ)

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».

обращения 05.05.2021).

6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. — М.: МИРЭА — Российский технологический университет, 2018 — 1 электрон. опт. диск (CD-ROM).