Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

 $\frac{\text{grade}}{100\%}$

Module 5 Graded Quiz

LATEST SUBMISSION GRADE

100%

1.	True or false, behavioural planning does not need to take dynamic obstacles into consideration, as it is too low level and should be handled by the local planner.	1 / 1 point
	True	
	False	
	Correct Correct, dynamic obstacles are at the correct level of abstraction for behavioral planning and therefore are taken into consideration during the behavioural planning process.	
2.	As an autonomous vehicle approaches an intersection, which of the following best describes the role of a behavioural planner?	1/1 point
	Plan when and where to stop, how long to stay stopped for, and when to proceed through the intersection	
	Plan a path to the required goal state subject to static/dynamic obstacles and kinodynamic constraints	
	Navigate through the map to find the most efficient path to the required destination.	
	O Determine the throttle angle, brake, and steering angle required to track the reference path through the intersection	
	Correct	

Correct, these steps are crucial for safe behaviour in an intersection.

3.	What is the primary output of a behavioural planning module?	1 / 1 point
	The driving maneuver to be executed in the current environment	
	A sequence of waypoints that correspond to a feasible, collision-free trajectory	
	The throttle, brake, and steering angle values required for tracking the reference trajectory	
	The sequence of road segments to be traversed to reach the destination	
	Correct Correct, this is how the planner outputs the desired behaviour.	
4.	Which of the following are common inputs to the behavioural planner?	1 / 1 point
	A default path in the current lane to follow	
	✓ Localization information	
	Correct Correct, this lets us know where we are in the map.	
	A mission plan	
	Correct Correct, this guides the behavioural planner's goal states.	
	✓ High definition roadmap	

Correct, this is helpful for localizing other agents, and for map-aware prediction.

5.	Which of the following are a disadvantage of using finite state machines for behavioural planning?	1 / 1 point
	As the number of states decreases, it becomes more computationally complex to evaluate state transitions	
	As the number of states increases, it becomes increasingly complicated to define all possible transition conditions	
	Finite state machines can only handle uncertainty when there are many states available	
	None of the above	
	Correct Correct, this grows exponentially as we add more states.	
6.	Which portion of the intersection best describes when the ego vehicle is on the intersection?	1 / 1 point
	The interior of the intersection	
	The lane exiting the intersection	
	The lane preceding the intersection	
	None of the above	

Correct

Correct, by our definitions in Lesson 2 of Module 5 on Handling an Intersection Scenario Without Dynamic Objects.

7.	Which of the following can increase the size of the "approaching", "at", and "on" zones of an intersection?	
	The speed of the ego vehicle	
	Correct Incorrect. Please refer to Lesson 2 of Module 5 on Handling an Intersection Scenario Without Dynamic Objects to review this material.	
	The size of the intersection	
	Correct Correct, as the size of the intersection increases, the size of the intersection zones increases accordingly.	
	The size of the ego vehicle	
	The number of dynamic obstacles present	
8.	For a 2-lane, 4-way intersection, which of the following maneuvers are absolutely required?	1/1 point
	Merge to lane	
	✓ Decelerate to stop	
	Correct Correct, this behaviour is required for any intersection.	
	Stop	

- **/** co
 - Correct, this behaviour is necessary for any intersection.
- Track speed
 - Correct

Correct, this behaviour is required to make forward progress.

For this question, let us use our finite state machine discussed in Module 5 Lesson 2. Suppose the car has entered the "Stop" state while at the intersection. Which of the following is the correct transition condition for the vehicle to enter the "Track Speed" state?

1 / 1 point

- Ego.StopTime >= 3.0 sec
- Ego.Velocity >= 0
- Ego.StopTime < 3.0 sec
- Ego.Position == Approaching

Corrrect, we are required to remain at a complete stop before moving again.

10. For this question, let us use our limite state machine discussed in Module 5 Lesson 2. Suppose the car has entered the "Track speed" state before reaching any zone of the intersection. Which of the following is the correct transition condition for the vehicle to enter the "Decelerate to Stop" state?

1 / 1 point

- Ego. Velocity >= 0
- Ego.StopTime < 3.0 sec
- Ego.Position == Approaching
- Ego.Position != Approaching

✓ Correct

Correct, if we are approaching an intersection we need to decelerate.

- 11. Which of the following are the key aspects of dynamic objects that we focus upon in behavioural planning?
- 1 / 1 point

/

Time to collision

Correct, this influences our behaviour with the dynamic object.

Maximum velocity			
~	Distance to collision point		
✓	Correct Correct, this is useful for computing time to collision. Distance to dynamic object		
	Correct Correct, this is useful for determining the relevance of a dynamic object.		
12			
12. W	ch of the following best describes the "Follow Leader" maneuver?	/ 1 point	
O	th of the following best describes the "Follow Leader" maneuver? In a safe and comfortable manner, decelerate to a complete stop to avoid the leading vehicle	/ 1 point	
O	In a safe and comfortable manner, decelerate to a complete stop to avoid the leading	/ 1 point	
O	In a safe and comfortable manner, decelerate to a complete stop to avoid the leading vehicle Accelerate to the speed of the lead vehicle, passing the lead vehicle if they are below	/ 1 point	
O O	In a safe and comfortable manner, decelerate to a complete stop to avoid the leading vehicle Accelerate to the speed of the lead vehicle, passing the lead vehicle if they are below our reference speed When a lead vehicle is performing a lane change, we wait until it is safe and follow	/ 1 point	

15.

1 / 1 point

True or false, using the state machine developed in L3, suppose the ego vehicle is "at" the intersection, and is currently in the "Stop" state and 3 seconds have elapsed. Suppose the only dynamic obstacle is "on" the intersection has a heading of 180 degrees relative to the ego heading, and suppose the ego vehicle intends to turn left. Which state will the state machine transition to?

	O Decelerate to Stop	
	Track Speed	
	Control Follow Leader	
	Stop	
	Correct, the dynamic obstacle is heading in the opposite direction of the ego vehicle, and will interfere with the ego vehicle's desire to turn left. Even though 3 seconds have elapsed, it will remain in the "Stop" state.	
16.	Which of the following are disadvantages of using a single state machine to handle $_{1/1}$ multiple scenarios?	point
	The amount of computation time required at each step	
	Correct Correct, many different conditions will need to be checked at each step.	
	Not able to handle a small set of scenarios	
	Complicated to create and maintain all possible cases	

Correct

Correct, analyzing all possible transitions with a single state machine can grow to be intractable.

Rule explosion when adding new scenarios to the state machine Correct Correct, transition rules grow exponentially with the number of states. 17. True or false, an example of a hierarchical state machine in the behavioural planning 1 / 1 point context involves superstates representing each potential scenario and substates representing the maneuvers to be handled in each scenario. True False Correct Correct

18. 1/1 point

Following the hierarchical state machine introduced in Module 5 Lesson 4, if we are exiting the intersection and we are currently in the "Intersection Scenario" superstate, which substates of the "Intersection Scenario" will allow us to change to a different superstate?

Correct

Correct, while performing nominal speed tracking we can transition to a different super state.

- Declerate to Stop
- Follow Leader

✓ Correct

Correct, while performing lead vehicle speed tracking we can transition to a different super state.

Stop

19. True or false, the hierarchical state machine is immune to the effects of rule explosion.	1 / 1 point
○ True	
False	
Correct Correct, while the hierarchical state machine can allow for its designer to add more complexity to the system, it is still affected by rule explosion as there are many duplicative transitions in each superstate's state machine.	
20. True or false, the hierarchical state machine limits the amount of computation time at each time step by restructuring the search space more efficiently.	1 / 1 point
True	
○ False	
Correct Correct	
21. Which of the following are some issues with the state machine approaches presented in Lessons 1-4?	1 / 1 point
State machines are unlikely to handle situations that have not been explicitly programmed	
 Correct Correct, they do not generalize well to unforeseen scenarios. 	

	The state ma	achines discussed are only able to handle noise in very limited situations	
	Correct Correct,	in general the state machines we discussed cannot handle noise.	
	There is no r	method to handle multiple scenarios when using state machines	
		of hyperparameters required increases as the behaviours get more d inputs get more noisy	
		the complexity of computation grows quickly as the number of desired urs increases.	
22.	What is an advar	ntage of rule based systems over state machines?	1 / 1 point
	Rule based s	systems can handle multiple scenarios	
		systems do not duplicate transitions, as rules can apply throughout ortions (or all of) the ODD	
		systems do not require as much attention as state machines do, as rules et one another	
	None of the a	above	
	Correct,	this results in higher planning efficiency.	
23.		zzy logic systems are more robust to environmental noise than traditional s, such as a finite state machine.	1 / 1 point

Correct, they can handle a wider range of inputs and as a result are more robust to noise.

^{24.} True or false, reinforcement learning involves clustering unlabeled data to inform the behavioural planner on the best course of action in each scenario.

1 / 1 point

True

False

Correct, reinforcement learning is a form of machine learning in which an agent learns how to interact with a given environment by taking action and receiving continuous rewards.

25. Which of the following are some of the shortcomings of reinforcement learning approaches for behavioural planning?

1 / 1 point

The model simplicity used for reinforcement learning means the results transfer poorly to real-world scenarios

Correct

Correct, to remain tractable reinforcement learning models are often too simple for what is required in the real world.

It is challenging to perform rigorous safety assessment or safety guarantees of learned systems, as they are largely black boxes

✓ Correct

Correct, the policies learned by reinforcement learning are often not human- interpretable
Reinforcement learning is unable to handle continuous variables, such as the distance to a dynamic obstacle, and these are commonly used in behavioural planning
Reinforcement learning do not generalize well to scenarios that weren't explicitly programmed