9/07/2007

Algebra lineare - Corso di laurea in Informatica

Cognome:	Matricola:
	Cognome:

N.B.1 La risposta ad ogni singolo esercizio deve essere riportata nello spazio sottostante l'esercizio stesso (gli esercizi svolti in altri fogli non verranno presi in considerazione).

N.B.2 Gli esercizi senza giustificazione o risposta hanno valore nullo.

N.B.3 Gli esercizi senza nome e cognome hanno valore nullo.

Esercizio 1 [2.5 PUNTI]

Trovare i numeri complessi ztali che $(z-2)^3=(\frac{1}{\sqrt{2}}-i\frac{1}{\sqrt{2}})^4.$

Risposta:

Esercizio 2 [2.5 PUNTI]

Esistono numeri complessi che soddisfano l'equazione $z^5+z^3-z+2i=0$?

Risposta:

Esercizio 3 [2.5 PUNTI]

Scrivere due numeri complessi non nulli z e w tale che $(z-w)^2=-1$.

Esercizio	4	[2.5]	PUNTI	l
-----------	---	-------	-------	---

Esercizio 4 [2.5 PUNTI]

Trovare tre vettori u, v, w di \mathbb{R}^3 tali che $u \cdot v = u \cdot w = 0$ e $v \cdot w = 1$.

Risposta:

Esercizio 5 [2.5 PUNTI]

Definire il prodotto vettoriale in \mathbb{R}^3 .

Risposta:

Esercizio 6 [2.5 PUNTI]

Calcolare l'area del triangolo di vertici generato dai tre vettori $P_0=(0,0,0),\ P_1=(2,0,1)$ e $P_2 = (1, 1, -1).$

Esercizio 7 [2.5 PUNTI]

Esercizio 7 [2.5 PUNTI]

Trovare l'inversa della matrice
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 0 \\ 1 & 1 & 0 \end{pmatrix}$$

Risposta:

Esercizio 8 [2.5 PUNTI]

Scrivere una matrice 2×4 di rango 1 .

Risposta:

Esercizio 9 [2.5 PUNTI]

Scrivere due vettori linearmente indipendenti di \mathbb{R}^4 tali che ognuno di essi formi un angolo di $\frac{\pi}{2}$ con il vettore (1,2,1,2).

Esercizio 10 [2.5 PUNTI]

Un sistema di tre equazioni lineari in due incognite è sempre incompatibile. ${f V}$ ${f F}$ Giustificazione:

Esercizio 11 [2.5 PUNTI] Discutere le soluzioni del seguente sistema lineare al variare del parametro reale λ .

$$\left\{ \begin{array}{l} x+y+z=-1\\ x+y+(\lambda+1)z=0\\ (\lambda-1)x+(\lambda-1)z=0 \end{array} \right.$$

Risposta:

Esercizio 12 [2.5 PUNTI]

Trovare una base del sottospazio vettoriale di \mathbb{R}^4 generato dai vettori:

$$\left(\begin{array}{c}1\\0\\1\\0\end{array}\right), \left(\begin{array}{c}1\\1\\0\\1\end{array}\right), \left(\begin{array}{c}2\\1\\1\\0\end{array}\right).$$