

Eletrónica Aplicada

Automação do Controlo de Temperatura de uma Divisão

Turma2DA

1160772 Diogo Silva 1140468 Diogo Pereira 1160949 Nuno Lapa **Docente/Orientador**

Luís Lima, (LUL)

Unidade Curricular Eletrónica Aplicada

Resumo

O projeto centraliza-se na automação da temperatura de uma divisão de uma casa. Ao longo deste relatório iremos descrever como vamos automatizar a temperatura, através de um sensor, de um condicionamento de sinal e de um microcontrolador. Além de descrevermos teoricamente iremos também apresentar, ao longo do relatório, alguns cálculos que comprovam alguma engenharia neste projeto.

1. Índice

1.	Índice	3
2.	Índice de imagens	3
3.	Introdução	4
4.	Projeto	5
5.	Condicionamento de sinal	6
1	L. Linearização	6
	1. Primeiro circuito	6
	2. Segundo circuito	
	3. Terceiro Circuito	
2		
6.	Considerações finais	
7.	Referencias	
8.	Anexos	
	2. Índice de imagens	
Figu	ura 1-Diagrama de blocos do Projeto	4
_	ura 2-Resistência em função da temperatura	
Figu	ura 3-Sensor NTC	5
Figu	ura 4-Circuito 1	6
Figu	ura 5-Tensao em função da temperatura circuito1	7
Figu	ura 6- gráfico circuito 3	7
Figu	ura 7-Circuito 3	8
Figu	ura 8-Gráfico circuito 3	8
Figu	ura 9- Amplificador instrumental	9

3. Introdução

Este projeto consiste em regular a temperatura de uma divisão, de modo a que a temperatura seja do agrado do utilizador.

O utilizador poderá regular conforme pretender a temperatura da divisão, posteriormente poderia ser acrescentar a este projeto uma certa inteligência que sem o utilizador fazer nada ele saberia a temperatura a que o utilizador queria a casa. Também poderia saber as horas em que não estava ninguém na divisão e então estar desligado, e previamente aquecia a divisão para quando este chegar a divisão estar quente.

Teremos o uso de ar quente e de ar frio para regulara a temperatura. Para uma melhor regulação de temperatura estes devem ser ligados com o uso de um sinal pwm.

De notar que os gráficos apresentados neste relatório foram feitos pelo grupo em python.

O diagrama de blocos pode ser visto na figura 1

Figura 1-Diagrama de blocos do Projeto

Estado de arte

Atualmente existem vários projetos com o mesmo propósito que o nosso, porem uma grande parte desses projetos usam o microcontrolador para fazer a conversão tensão temperatura, fazendo assim uma dita linearização digital. No nosso projeto pretendemos usar a eletrónica analógica para desenvolver o nosso circuito recorrendo ao micro, inicialmente, simplesmente para mandar os dados sobre a temperatura para o pc.

4. Projeto

O sensor NTC, também conhecido por termístor, é um componente que varia em uma grandeza elétrica de acordo com uma grandeza física (neste caso resistência-temperatura).

Este sensor é do tipo **resistivo** pois á medida que a temperatura varia, a resistência também variará. Caso a temperatura aumente a resistência diminui, caso a temperatura diminua a resistência aumentará, como podemos visualizar na figura 2.

Figura 2-Resistência em função da temperatura

O Sensor NTC usada neste projeto tem as cores castanho laranja e preto, o que significa que a 25° o sensor oferece uma resistência de $10k\Omega$, como esta representado na figura 2.

Figura 3-Sensor NTC

Existem outros tipos de sensores temperatura como os termopares, termoresitore entre outros. Para este projeto iremos nos focar no NTC.

5. Condicionamento de sinal

Os sensores são instrumentos de medição, e estes precisam sempre de um condicionamento de sinal para que efetuem uma medição mais exata e eficaz.

O condicionamento de sinal, neste projeto, irá ter duas fases representadas nos próximos tópicos.

1. Linearização

1. Primeiro circuito

Os sensores resistivos dispõem uma variação exponencial da resistência conforme a grandeza.

Os circuitos de linearização servem para aproximar a variação da resistência de uma função linear.

Esta é sempre necessária sempre que os sensores sinais de tensão que não estão relacionadas com a medição física.

Há muitas maneiras de linearizar um sensor, mas neste projeto iremos apenas apresentar três maneiras de linearizar e mostrar qual o melhor circuito a usar.

A **primeira opção** de linearização foi usar uma ponte de wheatsone com um amplificador operacional que a imagem da figura 4 apresenta.

Figura 4-Circuito 1

Para equilibrar a ponte a 0°, optamos por usar um Vi (tensão de entrada) de 5V, e com os valores das resistências e da resistência variável igual a 32.5k ohms, sendo este o valor da resistência que o sensor oferece a 0°. A tensão de saída diferencial para estas condições é igual ou aproximadamente 0. A temperatura ao variar, fará com que a resistência também varie o que faz com que o ganho varie em função da resistência para. Com esta variação no ganho tentamos aproximar a tensão de saída linear

A formula que simplifica este ideal é a seguinte (dedução da formula situa-se no anexo 2):

$$Vo = -\frac{Vi}{2} * (\frac{\Delta R}{R})$$

Na figura 5 vemos o gráfico da tensão de saída em função da temperatura

Figura 5-Tensao em função da temperatura circuito1

Como vemos a função afastasse um pouco de uma equação linear. No final da apresentação dos 3 circuitos escolheremos a melhor aproximação a uma equação linear.

2. Segundo circuito

A **segunda opção** foi usar uma ponte de wheatsone em que a resistência R2 iria ser muito maior do que a resistência R4,e neste principio o circuito iria tender a linearizar. Posto este caso podemos fazer a seguinte aproximação da formula da ponte de wheatsone:

$$Vm = \frac{R2 * R3 - R1 * R4}{(R1 + R3) * R3} * V$$

Sendo R1,R2,R3 e V constantes a expressão fica só a depender de R4, e então podemos considerar que:

$$K = \frac{R2 * R3}{(R1 + R3) * R2} * V$$
 $m = \frac{-R1}{(R1 + R3) * R2} * V$

Neste caso podemos assumir que a função VM é aproximadamente igual a:

$$vm = k + m * R4$$

Como podemos verificar Vm é uma equação linear. Porém se aumentarmos muito R2 podemos estar num caso em que Vm é so ruido, sendo as tensões pouco variantes com a temperatura.

Variação da tensão em função da temperatura.

Para combater essa situação podemos aumentar a tensão.

Outro fator a ter em conta é a potência dissipada pelas resistências visto que P=R*I**2,se R é muito elevado como no caso, as perdas vão ser muito grandes o que neste caso , o sensor de temperatura teria muito influência.

O gráfico de tensão em função da temperatura pode ser visto no figura 6

Figura 6- gráfico circuito 3

3. Terceiro Circuito

A terceira e ultima opção de linearização é muito semelhante á primeira opção que mencionamos neste relatório, em que ligamos a ponte de wheatsone a um amplificador operacional, mas será colocado de forma diferente, e o sensor ficará colocado em R3, como mostra a figura 7.

Neste circuito o ponto A está ligado ao V- do amplificador e como se pode verificar está ligado a massa (v+=v- considerando o ampop ideal), e faz com que a corrente que corre em R1 é forçada a passar para o ramo R1//R3 produzindo uma tensão igual e oposta no outro lado da ponte com -V. Quando a resistência R3(Resistência variável) varia consequentemente variará a tensão em VB.

A formula final da tensão é (a dedução pode ser encontrada em [1]) :

$$VB = \left(\frac{V}{2} * \frac{\Delta R}{R}\right)$$

Figura 7-Circuito 3

Figura 8-Gráfico circuito 3

2. Amplificação do sinal

Para tratarmos o sinal de modo a entrar no ADC, que só aceita valores de tensão no intervalo de 0 a 5 volts, usaremos o amplificador instrumental (anexo 1 figura 9). Este amplificador é de grande utilidade pois possui dois andares, o primeiro andar será destinado a amplificar o sinal, já o segundo servirá para rejeitar a tensão em modo comum, isto porque como o primeiro andar possui dois amplificadores o ganho em tensão em modo comum irá também ser amplificado, mas será igual nos dois amplificadores, no segundo andar ao realizar a diferença entre as tensões(V2-V1), o ganho em modo comum irá ser anulado ou praticamente nulo.

Figura 9- Amplificador instrumental

6. Considerações finais

Depois de apresentado os 3 circuitos bem como o amplificador de instrumentação estamos agora em posse de todos os meios para escolher a melhor forma de realizar este projeto.

De acordo com os gráficos mostrados neste projeto verificamos que a melhor a aproximação é feita pelo circuito 3.

As suas resistências R1, R2 e R4 terão o valor de 32.5kΩ, R3 será o nosso sensor.

Sendo a gama de temperaturas de funcionamento do projeto de [0;40] graus, temos que a tensão mínima será de 0 graus e a máxima de 40 graus.

Como para a tensão de entrada para o ADC é tida no entreva-lo [0,5] temos de manipular o ganho do amplificador instrumental para que a tensão esteja contida nesse intervalo. Seguindo a formula vista anteriormente temos que as resistências R1 e R2 devem ter o valor de 1K Ω , R3 6K Ω e R4 5K Ω (cálculos em anexo).

7. Referencias

LINEARIZATION OF WHEATSTONE-BRIDGE By: Ashwin Badri Narayanan, Member of Technical Staff, Maxim Integrated [1]

Visto em 20/3/2018 https://www.grc.nasa.gov/www/k-12/airplane/tunwheat.html [2]

Visto em 20/3/2018 https://www.electronicshub.org/wheatstone-bridge/[3]

Visto em 20/3/2018 https://www.electronics-tutorials.ws/blog/wheatstone-bridge.html [4]

Visto em 20/3/2018 http://electronics360.globalspec.com/article/5424/design-notebook-linearization-of-a-wheatstone-bridge [5]

Visto em 20/3/2018 https://origin-www.maximintegrated.com/en/app-notes/index.mvp/id/6144 [6]

Visto em 20/3/2018 http://www.circuitstoday.com/instrumentation-amplifier [7]

8. Anexos

Amiliae do ponte de Wheatstome

 $V_m = V \cdot \frac{R_2 \cdot R_3 - R_1 \cdot R_4}{(R_1 + R_3)(R_3 + R_4)}$

Se Ra > Ry o circuito tenden a Filor lineoz, isto e, podemos Forger a muxumte aproximação Vm ~ R2-R2-R4-R4 . V

Service Ry, Rz, Rz &V constantes a epensar File a depender sã de Ry.

considerems que:

entar podernos assumir que a funçar Vm é aproximadamente iquel a Voma Ktom Ry. Como podemos Vei: f. Coz Vom è uma equoção limear.

Temperatura de Funcionamento

T= 50,407 Ro. = 325542 Ryo = 53302

Varmos ente portir da expressa de Vom a tentor knowiezar o sis terma

Porem se aumentarions invito Ra podernos estor num cosa em que um é só Rudo, sends is suns temsors pouce visionts com a temperature.

Porce combuter isto podemos entar aumely a tensão.

Gutro patre a ter em conta é a Potencia dessipoda pelos resistancias visto que P=RI2 Se R For muits elevely, Como mo caso, as perho vi see muito grando o que neste caso, unse le tomquetira, Tem must impliance.

K= V. Rz.Rz e m= V. -Ry Posto isto, preu o l'imensionnements da (R1+R3)Rz Ponte leverns ter em 6nte 3 Fitoes:

Valequet pour mi siems em

$$\begin{cases} \frac{v_1^* - v^*}{R} = \frac{v^* - O}{R} \\ \frac{v_2^* - v^*}{R} = \frac{v^* - v_0}{R + \Delta R} \end{cases} (=)$$

$$\begin{cases} \frac{v_1^* - v^*}{R} = \frac{v^*}{R} - \frac{v_0}{R} \\ \frac{v_2^* - v_0}{R} = \frac{v_2^* - v_0}{R + \Delta R} \end{cases} (=)$$

$$\begin{cases} \frac{v_1^* - v^*}{R} = \frac{v_2^* - v_0}{R + \Delta R} \\ \frac{v_2^* - v_0}{R} = \frac{v_2^* - v_0}{R + \Delta R} \end{cases} (=)$$

$$\begin{cases} \frac{v_1^* - v_2^*}{R} = \frac{v_2^* - v_0}{R + \Delta R} \\ \frac{v_2^* - v_0^*}{R} = \frac{v_2^* - v_0}{R + \Delta R} \end{cases} (=)$$

$$\begin{cases} \frac{v_1^* - v_2^*}{R} = \frac{v_2^* - v_0}{R + \Delta R} \\ \frac{v_2^* - v_0^*}{R} = \frac{v_2^* - v_0}{R + \Delta R} \end{cases} (=)$$

$$(=) \begin{cases} \frac{V_{i}^{2}}{2} \left(\frac{R}{R} + \frac{\Delta R}{R} - 1 \right) = -v_{0} \end{cases} \qquad (=) \begin{cases} \frac{V_{i}^{2}}{2} \left(\frac{R}{R} + \frac{\Delta R}{R} - 1 \right) = -v_{0} \end{cases}$$

Amplification de instrumentações

$$(V_{0_{2}}-V_{0_{1}}) = \frac{V_{0}d}{R_{1}}(R_{2}+R_{1}+R_{2})$$

$$= V_{0}d\left(1+\frac{R_{2}}{R_{1}}\right)$$