Mathematical and Statistical Foundations of Machine Learning

Lectures: Ulrich Terstiege Tutorials: Tizian Wenzel

April 24th, 2025

Chapter I: Introduction

What is Machine Learning?

Some tasks appear too complicated to directly program for a computer, e.g. recognition of objects in images or autonomous driving.

Machine learning may be defined as computational methods for converting experience into expertise.

Experience: past information, data collections, e.g. human labeled training sets such as images (e.g. labeled with 1 or 0 depending on whether or not the image shows a cat) or emails (spam or not spam).

Expertise: Prediction of future outcomes.

Similar to statistics but with a strong emphasis on efficient algorithms (optimization)

Some applications for learning algorithms

- Text / document classification
- speech regonition
- automatic translation
- image recognition / face recognition
- autonomous driving
- search engines, recommendation systems
- ► Games: chess, Go
- medical diagnosis
- analysis of social networks
- text generation

Some standard learning tasks

Classification: Assign a category to each item. Usually a small number of categories Binary classification: two categories $\{-1, +1\}, \{0, +1\},...\}$

Example: Predict whether email is spam or not

Regression: Predict (continuous) value for each item

Examples:

- Predict maximal temperature of the next day at some place given some of today's weather parameters
- Predict share price of a company (that is about to go public) from revenues.
- Ranking: Order items according to some criterion

Example: web search: ranking of webpages

Some standard learning tasks

Clustering: Partition items into several groups

Example: identify communities in social networks

Dimensionality reduction / manifold learning: try to find lower dimensional representation of items (vectors) in a high dimensional space while preserving properties of original representation (e.g. distance)

Example: Preprocessing of digital images in computer vision tasks.

This course

Two parts:

- Theoretical foundations of Machine Learning and Statistical learning theory: The PAC-Learning Framework, Rademacher Complexity and VC-Dimension
- 2. Analysis of some machine learning methods and algorithms (with applications of part 1): Some possible topics
 - Support Vector Machines and Kernel Methods
 - Boosting
 - Logistic Regression
 - Stochastic Gradient Descent
 - Neural Networks (Deep Learning)
 - further topics as time allows, e.g. Decision Trees, Clustering, Reinforcement Learning,...

Prerequisites

- Analysis
- Linear algebra
- ► Basic probability theory

Main References

- S. Shalev Shwartz, S. Ben-David Understanding Machine Learning – From Theory to Algorithms. Cambridge University Press 2014
- M. Mohri, A. Rostamizadeh, A. Talwalkar Foundations of Machine Learning. second edition, MIT Press 2018

Basic machine learning setup

```
Input space X, e.g. X=\mathbb{R}^n or X=[0,1]^2 or ... Output space Y, e.g. Y=\{0,1\} or Y=\mathbb{R} or ... Training data (x_i,y_i),\ i=1,\ldots,m (labeled data) [or x_i,\ i=1,\ldots,m (unlabeled data)] Hypothesis class \mathcal{H}: A set of functions h:X\to Y.
```

Machine learning scenarios I: Supervised Learning

Learner receives labeled data (x_i, y_i) , i = 1, ..., m and tries to make predictions on new data (unseen), i.e. tries to find a function $h: X \to Y$, $h \in \mathcal{H}$, such that for future data (with unknown label) $h(x_i) \approx y_i, \ i = m+1, m+2, ...$

Example: $x_i \in X = ([0,255] \cap \mathbb{Z})^{n_1 \times n_2}$ represents greyscale image with $n_1 \times n_2$ pixels, $y_1 \in Y = \{1,0\}$ represents whether or not a cat is in the image. (Alternatively, $X = [0,255]^{n_1 \times n_2}$ or $[0,1]^{n_1 \times n_2}$ etc.

For colored pictures one could use $X=([0,255]\cap\mathbb{Z})^{3n_1\times n_2}$ (rgb channels).

Machine learning scenarios II: Unsupervised Learning

Learner receives unlabeled data x_i , $i=1,\ldots,m$ and tries to make predictions on unseen data, for instance learns something about the structure of the data points, e.g. they may be contained in a subspace or submanifold of $X\subset\mathbb{R}^n$ (\rightarrow dimensionality reduction, manifold learning), or they may cluster into a few clusters (\rightarrow clustering)

Example: A retailer might want to cluster its costumers into a few groups in order to adapt its strategy.

Machine learning scenarios III: Semisupervised Learning

Learner receives labeled data $(x_i,y_i),\ i=1,\ldots,m$ and unlabeled data $x_i,\ i=m+1,\ldots,N$ and predicts labels of unseen unlabeled data x_{N+1},\ldots , i.e. tries to find a function $h:X\to Y,\ h\in\mathcal{H},$ such that for future data (with unknown label) $h(x_i)\approx y_i,\ i=N+1,N+2,\ldots$ (Hope that unlabeled training data $x_i,\ i=m+1,\ldots,N$ help to improve the prediction, e.g. by helping to learn something about the structure of the set of the possible data x_i .)

Machine learning scenarios IV: Online learning

There are multiple training rounds. At each round, the learner receives an unlabeled training point x_j , makes a prediction $\hat{y}_j \in Y$ of its label y_j , then the true label y_j is received and the learner incurs the loss $\ell(y_j, \hat{y}_j)$.

Goal: Minimize cumulative loss $\sum_{j=1}^{m} \ell(y_j, \hat{y}_j)$.

Example: At each round, receive an email x_j , predict whether it is spam or not, receive information whether it is spam or not (by a human reader of the email), if prediction was wrong, adapt the predictor.

Machine learning scenarios V: Reinforcement learning

Mixed training and testing phase. The learner decides on actions interacting with environment and receives immediate reward / loss for each action.

Task: Maximize total reward over course of actions

ightarrow Exploration vs. exploitation dilemma: decide between unexplored action to gain more information about environment and known action exploiting already collected information.

Examples: Games (e.g. Go, Chess), Advertisement on websites

Machine learning scenarios VI: Active learning

Similar to supervised learning, but learner can decide on data points x_i to query the label y_i .

Examples: Scientific experiments, oil exploration

<u>Hope</u>: Better predictions / less needed samples than in supervised learning.

Chapter II: The PAC-Learning Framework

PAC: Probably Approximately Correct

Consider supervised learning scenario for binary classification:

- ▶ *X*: Input space, e.g. Input space *X*, e.g. $X = \mathbb{R}^n$ or $X = [0,1]^2$ or $X = ([0,255] \cap \mathbb{Z})^{3n_1 \times n_2}$ or...
- ▶ Set of labels Y, for now $Y = \{0,1\}$ (or $Y = \{-1,1\}$)
- ▶ Training data $S = ((x_1, y_1), (x_2, y_2), \dots (x_m, y_m)) \in (X \times Y)^m$ (labeled domain points)

Assumptions

- 1. The points x_i , $i=1,\ldots,m$ are drawn independently and identically distributed (i.i.d.) according to some <u>unknown</u> probability distribution \mathcal{D} on X.
- 2. The labels are given as $y_i = f(x_i), i = 1, ..., m$ for some map $f: X \to Y$.

Goal: Find f (at least approximately)

More generally (later): Assume that the labeled examples (x_i, y_i) are drawn i.i.d. according to some unknown probability distribution \mathcal{D} on $X \times Y$.

Learner's output: A prediction rule (predictor, hypothesis, classifier)

$$h: X \to Y$$
.

Ideally: h = f.

Learner selects hypothesis from a hypothesis set

$$\mathcal{H} \subset \{g \colon X \to Y\}$$

and f may or may not be contained in \mathcal{H} .

Assumptions on measurable spaces

We will assume (unless otherwise mentioned) that for measurable spaces (typically denoted by X, Y, Z, ...) the following assumptions apply.

- If the space is finite or countably infinite, it is equipped with the σ -algebra consisting of all subsets of the space (applies e.g. for
 - $X = \mathbb{N}, \ X = ([0, 255] \cap \mathbb{Z})^{3n_1 \times n_2}, X = \mathbb{Q}^n, Y = \{0, 1\}, \ldots)$
- Otherwise it is a metric space which is complete and separable and equipped with the corresponding Borel σ -algebra (applies e.g. for $X = \mathbb{R}^n, [0, 1]^2, \ldots$)
- ▶ If it is given as a product $X \times Y$, then the product carries the product σ -algebra of X and Y.

(Note that the case of a finite or countably infinite space X can be seen as a special case of a complete separable metric space with corresponding Borel σ -algebra by using e.g. the trivial metric $d(x,y)=\delta_{x,y}$, i.e d(x,x)=0 and d(x,y)=1 for $x\neq y$. Also e.g. the product of two spaces as in the first or as in the second case have again this form, respectively.)

Generalization Error

For the next definition, we assume a fixed labeling function $f: X \to Y = \{0,1\}$ and a probability distribution $\mathcal D$ on X.

Definition 2.1 (Generalization error)

For $h: X \to Y = \{0,1\}$, the generalization error or <u>risk</u> of h is defined as

$$R(h) = \underset{x \sim \mathcal{D}}{\mathbb{P}}(h(x) \neq f(x)) = \mathbb{E}[\mathbb{1}_{\{x \mid h(x) \neq f(x)\}}].$$

Here:

- ▶ P denotes the probability of an event.
- ightharpoonup denotes expectation (wrt. \mathcal{D}).
- ▶ $\mathbb{1}_A$ denotes the indicator function of A, i.e. $\mathbb{1}_A(x) = 1$ for $x \in A$ and $\mathbb{1}_A(x) = 0$ for $x \notin A$.
- f and h are always assumed to be measurable.

Note that the generalization error is not directly accessible since $\mathcal D$ and f are unknown.

21/26

Empirical Risk

Definition 2.2 (Empirical Risk)

For $h: X \to Y = \{0,1\}$, the (true) labeling function $f: X \to Y = \{0,1\}$ and a sample $S = (x_1, \ldots, x_m)$ (with $x_i \in X$), the empirical risk of h is defined as

$$\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{h(x_i) \neq f(x_i)} = \frac{1}{m} \# \{ i \in [m] \colon h(x_i) \neq f(x_i) \}.$$

Here $[m] := \{1, \dots, m\}$ and for a finite set A, we denote by #A the number of elements in A.

Drawing x_1, \ldots, x_m i.i.d. according to \mathcal{D} , i.e. drawing $S = (x_1, \ldots, x_m) \sim D^m$, we obtain a random variable which we also denote by $\hat{R}(h)$.

Lemma 2.3

If x_1, \ldots, x_m are drawn i.i.d. according to $\mathcal D$ then for any (measurable) h: $X \to \{0,1\}$:

$$\mathbb{E}[\hat{R}(h)] = R(h).$$

Definition 2.4 (Empirical Risk Minimization)

Let $f: X \to Y = \{0,1\}$ be the true labeling function and let $\mathcal{H} \subset \{h: X \to Y\}$ be a hypothesis set. Given a sample $S = (x_1, \dots, x_m) \in X^m$ with corresponding labels $y_i = f(x_i)$ for $i \in \{1, \dots, m\}$, empirical risk minimization consists of selecting a minimizer $h \in \mathcal{H}$ of \hat{R} , i.e. selecting a h realizing

$$\min_{h \in \mathcal{H}} \hat{R}(h) = \min_{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \mathbb{1}_{h(x_i) \neq f(x_i)}.$$

PAC Learning

PAC = Probably Approximately Correct

Definition 2.5 (PAC-Learning, consistent case)

A hypothesis class $\mathcal{H}\subset\{h\colon X\to Y=\{0,1\}\}$ is <u>PAC-learnable</u> if there exists a function $m_{\mathcal{H}}\colon (0,1)^2\to\mathbb{N}$ and a learning algorithm \mathcal{A} with the following property:

For every $\varepsilon, \delta \in (0,1)$, for every probability distribution \mathcal{D} over X, and for every labeling function $f \in \mathcal{H}$, the following holds: If $m \geq m_{\mathcal{H}}(\varepsilon, \delta)$ and $S = (x_1, \ldots, x_m)$ is an i.i.d. sample, $S \sim \mathcal{D}^m$, then given the data $(x_i, y_i) = (x_i, f(x_i)), i = 1, \ldots, m$, the algorithm \mathcal{A} returns a hypothesis $h_S \in \mathcal{H}$ such that with probability at least $1 - \delta$ (over $S \sim \mathcal{D}^m$), it holds

$$R(h_S) \leq \varepsilon$$
.

Remarks

Analogous definitions of empirical risk, empirical risk minimization and PAC-learning for any Y consisting of two elements.

The sample complexity $m_{\mathcal{H}} \colon (0,1)^2 \to \mathbb{N}$ determines the number of required training data in order to learn \mathcal{H} . Depends on accuracy ε and confidence δ and on properties of \mathcal{H} . Ideally, $m_{\mathcal{H}}$ is bounded by a polynomial in $\frac{1}{\varepsilon}$ and $\frac{1}{\delta}$. (More precisely, the sample complexity should be defined as the minimal possible $m_{\mathcal{H}}$ satisfying the conditions in the definition.)

The definition does not require the algorithm to be efficient, only the existence of a possibly slow (intractable) algorithm is assumed. If the runtime of the algorithm is polynomial (in $\frac{1}{\varepsilon}, \frac{1}{\delta}$ and the "computational representation of $f \in \mathcal{H}$ ") then we call \mathcal{H} efficiently PAC-learnable.

ERM is a possible "algorithm", but it may not always be the optimal one. Depending on $\mathcal H$ it may be efficient or not.

In some cases, PAC-learnability may be shown directly (example: Learning axis aligned rectangles, see exercises).

Theorem 2.6 (Finite \mathcal{H} , consistent case)

Let \mathcal{H} be a finite set of functions $h\colon X\to Y=\{0,1\}$. Assume that the labeling function f belongs to \mathcal{H} and let \mathcal{A} be an algorithm that for each i.i.d. sample $S=(x_1,\ldots,x_m)$ and labeled training data $(x_i,y_i)=(x_i,f(x_i)), i=1,\ldots,m$ returns a consistent hypothesis $h_S\in\mathcal{H}$, i.e. $\hat{R}(h_S)=0$. Then, for $\varepsilon,\delta\in(0,1)$, if

$$m \geq rac{1}{arepsilon}(\log |\mathcal{H}| + \log(rac{1}{\delta}))$$

the inequality $\mathbb{P}[R(h_S) \leq \varepsilon] \geq 1 - \delta$ holds.

In other words, with probability at least $1 - \delta$:

$$R(h_S) \leq \frac{1}{m} (\log |\mathcal{H}| + \log(\frac{1}{\delta})).$$

The theorem shows that under its assumptions \mathcal{H} is PAC-learnable with $m_{\mathcal{H}}(\varepsilon, \delta) = \left\lceil \frac{1}{\varepsilon} (\log |\mathcal{H}| + \log(\frac{1}{\delta})) \right\rceil$.