Are wider nets better given the same number of parameters?

Anna Golubeva, Guy Gur-Ari, Behnam Neyshabur

@ Blueshift, Alphabet

ICLR 2021

arXiv:2010.14495

wider layers \Leftrightarrow more parameters \Rightarrow better performance Is the performance gain due to more params or larger width?

How to increase width independently of the number of params?

Bottleneck Methods linear: non-linear: split each layer in two modify layers in pairs $fd \times d_b d_b \times d$ leads to worse performance strongly affects trainability

- in-layer distribution uniform across all layer dimensions

Our approach in summary:

- select model type and architecture baseline: dense model (full connectivity)
- e.g. ResNet18 with 32 output channels fix the number of weights in the first conv layer
- build a family of models having different widths and sparsity, but same number of weights
 - wide & sparse: increase the width and remove excess weights
- train and compare performance (task: image classification)

Bottleneck results

ResNet-18 on CIFAR

ResNet-18: results in overview

Test accuracy of ResNet-18 as a function of width: performance improves as width is increased, even though the number of weights is fixed!

ResNet-18 on ImageNet

width	64	90	128	181	256
dense sparse	68.03 (11.7) -	69.11 (22.8) 69.56 (11.7)	70.22 (45.7) 70.02 (11.7)	70.91 (90.7) 70.66 (11.7)	71.89 (180.6) 70.53 (11.7)
	top-1 test acc. % ·	num. weights in 10 ⁶			

MLP-1 on MNIST

∞width limit and sparse GP kernel

- perf improvement is correlated with having a GP kernel that is closer to the ∞width kernel
- the distance to the ∞width kernel can be reduced by increasing network width
- compute GP kernel of a sparse ReLU net with 1 hidden layer in theory and experiments

How much improvement is due to width only?

compare perf increase for wide & sparse to wide & dense models 0.00 widening factor widening factor ∆ test acc. (sparse) Δ test acc. (dense)

MLP-1 on MNIST: test accuracy and GP kernel distance

