

DOCKET NO.: 267344US0PCT

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Takayuki FURUISHI, et al.

SERIAL NO.: NEW U.S. PCT APPLICATION

FILED: HEREWITH

INTERNATIONAL APPLICATION NO.: PCT/JP03/11420

INTERNATIONAL FILING DATE: September 8, 2003

FOR: PROLINE ESTER AND PREPARATION CONTAINING THE SAME FOR
PERCUTANEOUS ADMINISTRATION**REQUEST FOR PRIORITY UNDER 35 U.S.C. 119**
AND THE INTERNATIONAL CONVENTIONCommissioner for Patents
Alexandria, Virginia 22313

Sir:

In the matter of the above-identified application for patent, notice is hereby given that
the applicant claims as priority:

COUNTRY	APPLICATION NO	DAY/MONTH/YEAR
Japan	2002-265276	11 September 2002

Certified copies of the corresponding Convention application(s) were submitted to the International Bureau in PCT Application No. PCT/JP03/11420. Receipt of the certified copy(s) by the International Bureau in a timely manner under PCT Rule 17.1(a) has been acknowledged as evidenced by the attached PCT/IB/304.

Respectfully submitted,
OBLON, SPIVAK, McCLELLAND,
MAIER & NEUSTADT, P.C.

Norman F. Oblon
Attorney of Record
Registration No. 24,618
Surinder Sachar
Registration No. 34,423

Customer Number

22850

(703) 413-3000
Fax No. (703) 413-2220
(OSMMN 08/03)

08.09.03

日本国特許庁
JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されて
いる事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed
with this Office.

出願年月日 2002年 9月11日
Date of Application:

出願番号 特願 2002-265276
Application Number:
[ST. 10/C] [JP 2002-265276]

出願人 トーアエイヨー株式会社
Applicant(s):

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

2003年10月 9日

特許庁長官
Commissioner,
Japan Patent Office

今井 康夫

【書類名】 特許願
 【整理番号】 P04171409
 【あて先】 特許庁長官 殿
 【発明者】
 【住所又は居所】 福島県福島市飯坂町湯野字田中1番地 トーアエイヨー
 株式会社 製剤技術センター内
 【氏名】 古石 誉之
 【発明者】
 【住所又は居所】 福島県福島市飯坂町湯野字田中1番地 トーアエイヨー
 株式会社 製剤技術センター内
 【氏名】 南 邦弘
 【発明者】
 【住所又は居所】 東京都中央区京橋3丁目1-2 トーアエイヨー株式会
 社内
 【氏名】 笠輪 貴志
 【発明者】
 【住所又は居所】 埼玉県さいたま市天沼町2丁目293-3 トーアエイ
 ヨー株式会社 東京研究所内
 【氏名】 浅井 美穂
 【発明者】
 【住所又は居所】 福島県福島市飯坂町湯野字田中1番地 トーアエイヨー
 株式会社 製剤技術センター内
 【氏名】 木村 邦彦
 【特許出願人】
 【識別番号】 000109831
 【氏名又は名称】 トーアエイヨー株式会社

【代理人】

【識別番号】 110000084

【氏名又は名称】 特許業務法人アルガ特許事務所

【代表者】 有賀 三幸

【手数料の表示】

【予納台帳番号】 164232

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【ブルーフの要否】 要

【書類名】 明細書

【発明の名称】 プロリンエステル類及びそれを含有する経皮投与製剤

【特許請求の範囲】

【請求項 1】 一般式 (I)

【化1】

(式中、R'はヒドロキシ低級アルキル基、低級アルコキシ低級アルキル基又は低級アルコキシ低級アルコキシ低級アルキル基を示す)で表わされるプロリンエステル類又はその薬学的に許容しうる塩。

【請求項 2】 プロリンエステル類が、1-[N-[(1S)-1-カルボキシー-3-フェニルプロピル]-L-アラニル]-L-プロリン 2-ヒドロキシエチルエステル、1-[N-[(1S)-1-カルボキシー-3-フェニルプロピル]-L-アラニル]-L-プロリン 3-ヒドロキシプロピルエステル、1-[N-[(1S)-1-カルボキシー-3-フェニルプロピル]-L-アラニル]-L-プロリン 4-ヒドロキシプロピルエステル、1-[N-[(1S)-1-カルボキシー-3-フェニルプロピル]-L-アラニル]-L-プロリン 2-(2-メトキシエトキシ)エチルエステル及び1-[N-[(1S)-1-カルボキシー-3-フェニルプロピル]-L-アラニル]-L-プロリン 2-メトキシエチルエステルの群から選ばれるものである請求項1に記載のプロリンエステル類又はその薬学的に許容しうる塩。

【請求項 3】 請求項1又は2記載のプロリンエステル類又はその薬学的に許容しうる塩を含有する医薬。

【請求項 4】 請求項1又は2記載のプロリンエステル類又はその薬学的に許容しうる塩を含有する経皮投与製剤。

【請求項 5】 経皮投与製剤が貼付剤である請求項4記載の経皮投与製剤。

【請求項 6】 脂肪酸エステル及び非イオン界面活性剤からなる群から選ばれる1種又は2種以上の経皮吸収促進剤を含有する請求項4又は5記載の経皮投与製剤。

【請求項 7】 経皮吸収促進剤がミリスチン酸イソプロピル、ラウロマクロゴール、ラウリン酸ジエタノールアミド、モノカブリル酸グリセリン、モノラウリン酸グリセリン、モノカブリル酸ソルビタン及びモノオレイン酸ポリオキシエチレンソルビタンの群から選ばれるものである請求項6記載の経皮投与製剤。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】

本発明は、高血圧、心不全の治療薬であるエナラブリラートのプロドラッグとして有用なプロリンエステル類、それを含有する医薬及びそれを含有する経皮投与製剤に関する。

【0002】

【従来の技術】

現在、高血圧症の治療薬としてカルシウム拮抗剤、アンジオテンシン変換酵素(ACE)阻害剤、アンジオテンシン受容体拮抗剤等の多くの経口投与製剤が臨床で使用されている。しかし、高血圧症の患者の中には、経口投与に支障がある嚥下が困難な患者、消化管障害を有する患者等も多いことから、経口投与以外の投与経路による血圧降下剤の開発が望まれている。経皮投与製剤は薬物を皮膚から吸収させるために、経口投与に支障がある患者に対しての治疗方法としては適しているが、一般に血圧降下剤は経皮吸収性が悪い等の理由から、経皮投与製剤として臨床適用には至っていない。

【0003】

一方、エナラブリルはACE阻害作用を有する血圧降下剤として、経口剤が臨床で広く使用されている。エナラブリルは、その代謝活性体であるエナラブリラートの二つのカルボキシル基のうち、分子中央付近に位置するカルボキシル基がエチルエステル化されたプロドラッグであり、経口投与した場合、消化管から吸収された後、肝臓を通過する際に代謝によりエナラブリラートに変換されてACE

E阻害剤としての治療効果を発現する。

【0004】

エナラブリル及びエナラブリラートは、経皮吸収をするものの製剤中における有効成分の物理化学的安定性が極めて悪いため、経皮投与製剤化は不可能であった。この原因として、エナラブリル及びエナラブリラートのいずれも、プロリン環部分のカルボキシル基とアラニンの二級アミンとが縮合し、分子内で環化することが明らかとなっている（例えば、非特許文献1、非特許文献2参照。）。また、エナラブリルは経皮吸収されても、皮膚中でエナラブリラートに変換されないが、さらに血漿中でもエナラブリラートに変換されないことが知られている（例えば、非特許文献3参照。）。このため、経皮吸収後の体循環によって肝臓での代謝活性化を待たねばならないことから、ACE阻害作用の発現には長時間を要する、治療効果のバラツキを生じやすい等の問題もあった。

【0005】

さらに、エナラブリラートを化学的に修飾し、もとの薬効を保持したまま経皮吸収に適した物理的性質を有する薬剤に変換しようとする、いわゆるプロドランゲ化も検討されている。例えば、エナラブリルの分子中央部のカルボキシル基に加えて、プロリン環部分のカルボキシル基もエチルエステル化したプロドランゲが報告されており、マレイン酸エナラブリルと比べて経皮吸収性が高められることが知られている（例えば、非特許文献4参照。）。しかし、この化合物においては、プロリン環上のカルボキシル基のエチルエステルはヒトの皮膚内のエステラーゼ酵素により50%以上加水分解されるものの、もう一方のエチルエステルは加水分解されないため、エナラブリルと同様に肝臓において代謝活性化が必要となる問題があった。

【0006】

【非特許文献1】

アナリティカル プロファイルズ オブ ドラグ サブスタンシーズ (Analytical Profiles of Drug Substances)、(米国)、アカデミック プレス、インク。(Academic press, Inc.)、1987年、16巻、p.207-244

【非特許文献2】

ドラグ デベロブメント アンド インダストリアル ファーマシー
(Drug Development And Industrial Pharmacy)、(米国)、マーセル デッカー
、インク. (Marcel Dekker, Inc.)、1986年、12巻、14号、p. 2467-2480

【非特許文献 3】

ドラグ メタボリズム アンド ディスポジション(Drug Metabolism And Disposition)、(米国)、ジ アメリカン ソサイエティ フォー フアーマコロジー アンド エクスペリメンタル セラピューティクス(The american society for pharmacology and experimental therapeutics)、1982年、10巻
、1号、p. 15-19

【非特許文献 4】

C. Li、他 6 名、"ACE阻害剤の経皮投与及びそれらのプロドラッグの改良された吸収の研究" (THE STUDY OF TRANSDERMAL ADMINISTRATION OF ACE INHIBITORS AND IMPROVED ADSORPTION OF THEIR PRODRUGS"、[online]、2000年11月2日、ノーブン製薬株式会社AAPS年次会合及び展示会2000(Noven pharmaceuticals, Inc., AAPS Annual Meeting and Exposition(2000))、インターネット<URL:
http://www.noven.com/Noven_Doc3.pdf

【0007】

【発明が解決しようとする課題】

したがって、本発明の目的は、エナラブリラートを経皮吸収により臨床で治療に用いるために、経皮吸収性及び物理化学的安定性に優れ、かつ経皮吸収される過程で容易にエナラブリラートに変換されるエナラブリラートのプロドラッグ、それを含有する医薬及びそれを含有する経皮投与製剤を提供することにある。

【0008】

【課題を解決するための手段】

かかる実情において、本発明者らは、エナラブリラートのプロドラッグとなる可能性のある化合物を数多く合成し検討した結果、エナラブリラートのプロリン環上のカルボキシル基をアルキル基でエステル化したものは経皮吸収性は改善されないが、特定の置換基を有する低級アルキル基でエステル化した化合物が、物理化学的安定性に優れ、皮膚透過性が高く、皮膚透過時に高い割合でエナラブリ

ラートに変換されプロドラッグとして有用であることを見出し、本発明を完成した。

【0009】

すなわち、本発明は、一般式（I）

【0010】

【化2】

【0011】

（式中、R¹はヒドロキシ低級アルキル基、低級アルコキシ低級アルキル基又は低級アルコキシ低級アルコキシ低級アルキル基を示す）で表されるプロリンエステル類又はその薬学的に許容しうる塩及びこれを含有する医薬、特に経皮投与製剤を提供するものである。

【0012】

【発明の実施の形態】

一般式（I）の式中のR¹及び後述の一般式（II）中のR²としての各置換基の用語のうち、「低級アルキル」とは炭素数1～6の直鎖状又は分岐状のアルキル基をいい、「低級アルコキシ」とは炭素数1～4の直鎖状又は分岐状のアルコキシ基をいう。

【0013】

R¹で示されるヒドロキシ低級アルキル基としては、ヒドロキシC₁～₆アルキル基、例えばヒドロキシメチル基、ヒドロキシエチル基、ヒドロキシプロピル基、ヒドロキシブチル基、ヒドロキシベンチル基、ヒドロキシヘキシル基等が挙げられ、なかでも2-ヒドロキシエチル基、3-ヒドロキシブチル基、4-ヒドロキシブチル基が好ましい。

R¹で示される低級アルコキシ低級アルキル基としては、C₁～₄アルコキシ-C

1-6アルキル基、例えばメトキシエチル基、エトキシエチル基、プロポキシエチル基、イソプロポキシエチル基、ブトキシエチル基、イソブトキシエチル基、sec-ブトキシエチル基、tert-ブトキシエチル基、メトキシプロピル基等が挙げられ、なかでもメトキシエチル基が好ましい。

R¹で示される低級アルコキシ低級アルコキシ低級アルキル基としては、C₁₋₄アルコキシ-C₁₋₄アルコキシ-C₁₋₆アルキル基、例えばメトキシメトキシエチル基、メトキシエトキシエチル基、メトキシメトキシプロピル基等が挙げられ、なかでもメトキシエトキシエチル基が好ましい。

【0014】

本発明化合物(I)には、水和物、各種溶媒和物が含まれ、さらに結晶形がすべて包含される。

【0015】

本発明化合物(I)の薬学的に許容しうる塩としては、例えば、塩酸塩、臭化水素酸塩、ヨウ化水素酸塩、硝酸塩、硫酸塩、リン酸塩等の無機酸との塩；酢酸塩、プロピオン酸塩、トリフルオロ酢酸塩、シュウ酸塩、フマル酸塩、マレイン酸塩、酒石酸塩、クエン酸塩、コハク酸塩、リンゴ酸塩、メタンスルホン酸塩、ベンゼンスルホン酸塩、p-トルエンスルホン酸塩等の有機酸との塩；リチウム塩、ナトリウム塩、カリウム塩等のアルカリ金属との塩、カルシウム塩、マグネシウム塩等のアルカリ土類金属との塩等が挙げられる。

【0016】

本発明の化合物(I)としては、1-[N-[(1S) -1-カルボキシー-3-フェニルプロピル]-L-アラニル]-L-プロリン 2-ヒドロキシエチルエステル、1-[N-[(1S) -1-カルボキシー-3-フェニルプロピル]-L-アラニル]-L-プロリン 3-ヒドロキシプロピルエステル、1-[N-[(1S) -1-カルボキシー-3-フェニルプロピル]-L-アラニル]-L-プロリン 4-ヒドロキシプロピルエステル、1-[N-[(1S) -1-カルボキシー-3-フェニルプロピル]-L-アラニル]-L-プロリン 2-(2-メトキシエトキシ)エチルエステル、1-[N-[(1S) -1-カルボキシー-3-フェニルプロピル]-L-アラニル]-L-プロリン 2-メトキシエチルエステルが好ましい。

[0017]

本発明の化合物（I）は、例えば、次に示す反応式に従って製造される。

[0018]

[化3]

[00191]

(式中、R₂はベンジルオキシ低級アルキル基、低級アルコキシ低級アルキル基又は低級アルコキシ低級アルコキシ低級アルキル基を示し、B_nはベンジル基を示し、R¹は前記と同じ。)

[0 0 2 0]

すなわち、化合物(II)を接触還元してベンジル基を脱保護することにより、本発明化合物(I)を製造することができる(工程A)。

反応は、メタノール、エタノール、エーテル、テトラヒドロフラン、ジオキサン、N、N-ジメチルホルムアミド等又はこれらの混合溶媒中、パラジウム-炭素、パラジウム黒、トリス(トリフェニルホスフィン)ロジウムクロリド、酸化白金等の金属触媒存在下、0℃から溶媒の沸点までの温度範囲で、常圧又は中圧水素圧下接触還元に付すことにより行われる。この反応によりベンジルエステル又はベンジルエーテルの脱保護を行うことができる。

【0021】

本発明化合物(Ⅰ)の製造中間体である化合物(Ⅱ)は、例えば、次の反応式に従い、エナラブリル(Ⅲ)をtert-アブチルエステル化して化合物(Ⅳ)を得(工程B)、当該化合物(Ⅳ)のエチルエステルを選択的に加水分解して化合物(Ⅴ)を得(工程C)、当該化合物(Ⅴ)をベンジルエステル化して化合物(Ⅵ)を得(工程D)、さらに当該化合物(Ⅵ)のtert-アブチルエステルを

加水分解し（工程E）、次いでこれにR²OH（VIII）を反応させることにより得ることができる。

【0022】

【化4】

【0023】

(式中、R²及びB nは前記と同じ。)

【0024】

工程Bは、エーテル、テトラヒドロフラン、ジオキサン、ジクロロメタン、クロロホルム等又はこれらの混合溶媒中、濃硫酸又は三フッ化ホウ素エーテル錯体等の酸触媒存在下、-78℃から室温の温度範囲で、エナラブリル（III）をイソブテンと反応させることにより行われる。工程Cは、化合物（IV）を、水酸化ナトリウム水溶液、水酸化カリウム水溶液等のアルカリ水溶液にてエステル加水分解することにより行われる。工程Dは、エーテル、テトラヒドロフラン、ジオキサン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、ジクロロメタキサン等、

ン、クロロホルム等又はこれらの混合溶媒中、ナトリウムアミド、リチウムアミド、水素化ナトリウム、炭酸カリウム、カリウム *t e r t*-ブトキシド等の塩基存在下、0℃から溶媒の沸点までの温度範囲で、化合物(V)とベンジルハラノイドを反応させることにより行われる。工程Eは、エーテル、テトラヒドロフラン、ジオキサン、ジクロロメタン、クロロホルム等又はこれらの混合溶媒中、ギ酸、酢酸、トリフルオロ酢酸、塩酸、塩化水素ジオキサン溶液等の酸存在下、0℃から溶媒の沸点までの温度範囲で、化合物(VI)の*t e r t*-ブチルエステルの脱保護を行うことにより行われる。工程Fは、ベンゼン、トルエン、キシレン等又はこれらの混合溶媒中、p-トルエンスルホン酸等の酸触媒存在下、溶媒の沸点温度で、化合物(VII)とアルコール(VIII)を反応させることにより行われる。

【0025】

また、化合物(II)は、次の反応式に従い、化合物(IX)を加水分解して化合物(X)を得(工程G)、ベンジルエステル化して化合物(XI)とし(工程H)、当該化合物(XI)をさらに、L-アラニン*t e r t*-ブチルエステルと反応して化合物(XII)とし(工程I)、当該化合物(XII)の*t e r t*-ブチルエステルを選択的に加水分解し(工程J)、次いでこれに化合物(XIV)を縮合させる(工程K)により製造することができる。

【0026】

【化5】

【0027】

(式中、R²及びBnは前記と同じ。)

【0028】

工程Gは、化合物(IX)を水酸化ナトリウム水溶液、水酸化カリウム水溶液等のアルカリ水溶液にてエステル加水分解することにより行われる。工程Hは、エーテル、テトラヒドロフラン、ジオキサン、N,N-ジメチルホルムアミド、ジメチルスルホキシド、ジクロロメタン、クロロホルム等又はこれらの混合溶媒中、ナトリウムアミド、リチウムアミド、水素化ナトリウム、炭酸カリウム、カリウムtert-ブトキシド等の塩基存在下、0℃から溶媒の沸点までの温度範囲で、化合物(X)とベンジルハライドを反応させることにより行われる。工程Iは、化合物(XI)を、ジクロロメタン、クロロホルム等の溶媒中、2,6-二ジン存在下、トリフルオロメタンスルホン酸無水物と反応させることによりトリフルオロメタンスルホン酸エ斯特とした後、L-アラニンtert-ブチルエ斯特塩酸塩と反応させることにより行われる。工程Jは、エーテル、テトラヒドロフラン、ジオキサン、ジクロロメタン、クロロホルム等又はこれらの混

合溶媒中、ギ酸、酢酸、トリフルオロ酢酸、塩酸、塩化水素ジオキサン溶液等の酸存在下、0℃から溶媒の沸点までの温度範囲で、化合物(XII)のtert-ブチルエステルを脱保護することにより行われる。工程Kは、エーテル、テトラヒドロフラン、ジオキサン、N,N-ジメチルホルムアミド、ジクロロメタン、クロロホルム、ベンゼン、トルエン等又はこれらの混合溶媒中、0℃から溶媒の沸点までの温度範囲で、必要によりトリエチルアミン、エチルジイソプロピルアミン、1,8-ジアザビシクロ[5.4.0]ウンデック-7-エン等の塩基存在下、1-ヒドロキシ-1H-ベンゾトリアゾール、N-ヒドロキシコハク酸イミド、N,N-ジシクロヘキシカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピルカルボジイミド)等の縮合剤を用いて化合物(XIII)と化合物(XIV)などを縮合させることにより行われる。

【0029】

なお、化合物(XIV)はベンゼン、トルエン、キシレン等又はこれらの混合溶媒中、p-トルエンスルホン酸等の酸触媒存在下、溶媒の沸点温度で、プロリン(XV)とアルコール(VIII)を反応させることにより得ることができる(工程L)。

【0030】

【化6】

【0031】

(式中、R²は前記と同じ。)

【0032】

このようにして得られた本発明化合物(I)は、再結晶、カラムクロマトグラフィー等の慣用的手段により単離精製することができる。

【0033】

また、本発明化合物（I）は、常法により薬学的に許容しうる酸又は塩基との塩に導くことができる。

【0034】

本発明化合物（I）及びその薬学的に許容しうる塩は、経皮投与されることにより、エナラブリラートに変換されるため、優れたACE阻害活性を有する。このため、ACEの賦活化によって影響される又は引き起こされる疾患等、例えば、高血圧症、心臓病（心肥大、心不全、心筋梗塞等）、腎炎及び脳卒中等の循環器系疾患等の予防・治療に使用することができる。本発明化合物（I）の成人1日当たりの投与量は、患者の症状や体重、年齢、化合物の種類によって変動し得るが、約1～1000mgとするのが好ましい。

【0035】

本発明の経皮投与製剤には、さらに経皮吸収性をよくするために経皮吸収促進剤を配合するのが好ましい。経皮吸収促進剤としては、例えば、脂肪酸エステル及び非イオン性界面活性剤の群から選ばれる1又は2種以上を用いることができる。

【0036】

脂肪酸エステルとしては、例えば炭素数6～22までの脂肪酸類と炭素数1～12のアルコール類からなる脂肪酸エステルが挙げられる。炭素数6～22までの脂肪酸類としては、例えばカプロン酸、エナント酸、カブリル酸、カブリン酸、ウンデシレン酸、ラウリン酸、ミリスチン酸、パルミチン酸、マルガリン酸、ステアリン酸、オレイン酸、リノール酸等のモノカルボン酸やアジピン酸、セバシン酸等のジカルボン酸等が挙げられる。炭素数1～12までのアルコール類としては、例えばメタノール、エタノール、プロパノール、イソプロパノール、ブタノール、tert-ブタノール、ヘキサノール、オクタノール等が挙げられる。従って、脂肪酸エステルとしては、例えばアジピン酸ジイソプロピル、セバシン酸ジエチル、ミリスチン酸イソプロピル、パルミチン酸イソプロピル、ステアリン酸イソプロピル、ステアリン酸ブチル、ミリスチン酸オクチルドデシル、ミリスチン酸ブチル、ラウリン酸ヘキシル、パルチミン酸オクチル、オレイン酸エチル等が挙げられる。なかでも、ミリスチン酸イソプロピル、パルミチン酸イソチル等が挙げられる。

プロピル、セバシン酸ジエチル等が好ましく、特にミリストン酸イソプロピルが好ましい。

【0037】

非イオン界面活性剤としては、例えば、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルアリールエーテル、脂肪酸アミド、グリセリン脂肪酸エステル、プロピレングリコール脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ポリオキシエチレン脂肪酸エステル、ポリオキシエチレングリセリン脂肪酸エステル、ポリオキシエチレンヒマシ油誘導体、プロックポリマー型非イオン界面活性剤、ポリグリセリン脂肪酸エステル等が挙げられるが、なかでも、ポリオキシエチレンアルキルエーテル、脂肪酸アミド、グリセリン脂肪酸エステル、ソルビタン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステルが好ましい。

【0038】

ポリオキシエチレンアルキルエーテルとしては、ポリオキシエチレンセチルエーテル、ポリオキシエチレンオレイルエーテル、ポリオキシエチレンラウリルエーテル等が挙げられるが、特にポリオキシエチレンラウリルエーテル（ラウロマクロゴール）が好ましい。

【0039】

脂肪酸アミドとしては、ラウリン酸モノエタノールアミド、ラウリン酸ジエタノールアミド、オレイン酸ジエタノールアミド等が挙げられるが、特にラウリン酸ジエタノールアミドが好ましい。

【0040】

グリセリン脂肪酸エステルとしては、モノカプリル酸グリセリン、モノラウリノ酸グリセリン、モノパルミチン酸グリセリン、モノオレイン酸グリセリン、モノステアリン酸グリセリン等が挙げられるが、特にモノカプリル酸グリセリンとモノラウリノ酸グリセリンが好ましい。

【0041】

ソルビタン脂肪酸エステルとしては、モノカプリル酸ソルビタン、モノラウリノ酸ソルビタン、モノパルミチン酸ソルビタン、モノオレイン酸ソルビタン、モ

ノステアリン酸ソルビタン等が挙げられるが、特にモノカブリル酸ソルビタンが好ましい。

【0042】

ポリオキシエチレンソルビタン脂肪酸エステルとしては、モノオレイン酸ポリオキシエチレンソルビタン、トリオレイン酸ポリオキシエチレンソルビタン、モノパルミチン酸ポリオキシエチレンソルビタン等が挙げられるが、特にモノオレイン酸ポリオキシエチレンソルビタンが好ましい。

【0043】

経皮吸収促進剤としては、ミリスチン酸イソプロピル、ラウロマクロゴール、ラウリン酸ジエタノールアミド、モノカブリル酸グリセリン、モノラウリン酸グリセリン、モノカブリル酸ソルビタン及びモノオレイン酸ポリオキシエチレンソルビタンからなる群から選ばれるものが好ましい。

【0044】

本発明の経皮投与製剤の剤型は、特に限定されないが、軟膏剤、クリーム剤、貼付剤、ローション剤等が挙げられ、患者の使用性の面から貼付剤が好ましい。

【0045】

貼付剤の形態としては、公知の粘着剤と支持体とからなるものが挙げられ、本発明化合物（I）又はその塩及び経皮吸収促進剤等の添加剤を含有させた粘着剤層を支持体の一面に形成させた後、所定の大きさに裁断することによって得られる。また、支持体と接触していない側は、剥離シートのような保護体によって、あるいは自体をロール状にすることによって保護されていてもよい。

【0046】

粘着剤としては、例えば常温で感圧性を有するアクリル系粘着剤、ゴム系粘着剤、シリコン系粘着剤等が用いられる。

アクリル系粘着剤として、例えば（メタ）アクリル酸アルキルエステル（ここで、（メタ）アクリル酸は、メタアクリル酸又はアクリル酸を意味する）を主成分とした単独重合物又は他の共重合性モノマーとの共重合体等が好ましい。（メタ）アクリル酸アルキルエステル单量体としては、例えば（メタ）アクリル酸-2-エチルヘキシルエステル、（メタ）アクリル酸エチルエステル、（メタ）アクリル酸-2-ヒドロキシエチルエステル等が挙げられる。

リル酸ブチルエステル、(メタ)アクリル酸イソブチルエステル、(メタ)アクリル酸ヘキシリエステル、(メタ)アクリル酸オクチルエステル、(メタ)アクリル酸デシルエステル、(メタ)アクリル酸イソデシルエステル、(メタ)アクリル酸ラウリルエステル、(メタ)アクリル酸ステアリルエステル等が挙げられる。共重合性モノマーとしては、例えばアクリル酸、メタアクリル酸、マレイン酸、フマル酸、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、アクリルアミド、ジメチルアクリルアミド、ジエチルアクリルアミド、ブトキシメチルアクリルアミド、エトキシメチルアクリルアミド、N-ビニル-2-ピロリドン、酢酸ビニル、プロピオン酸ビニル、スチレン、 α -メチルスチレン、塩化ビニル、アクリロニトリル、エチレン、プロピレン、ブタジエン等が挙げられる。

ゴム系粘着剤としては特に限定されず、例えばスチレン-ブタジエン共重合体、スチレン-イソプレン共重合体、スチレン-イソプレン-スチレンブロック共重合体、天然ゴム、合成イソプレンゴム、ポリイソブチレン、ポリビニルエーテル、ポリウレタン、ポリイソプレン、ポリブタジエン等が挙げられる。

シリコン系粘着剤としては特に限定されず、例えばポリオルガノシロキサン等のシリコンゴム等が挙げられる。

これらの粘着剤のうち、特に本発明化合物(I)との相溶性が良好であり、また貼付剤としたときの物性が良好なスチレン-イソプレン-スチレンブロック共重合体等が特に好ましい。

【0047】

支持体としては薬物不透過程のものが好ましく、例えばポリエチレンテレフタレート、酢酸セルロース、エチルセルロース、ナイロン、エチレン-酢酸ビニル共重合体、ポリエチレン、ポリウレタン等の樹脂フィルムが挙げられる。支持体には柔軟性が要求されることから、その厚さは通常300 μm 以下、好ましくは2~100 μm 以下である。

【0048】

剥離シートとしては、使用時に粘着層から簡単に剥離できることが必要であるため、通常、粘着層との接触面にシリコンコートが施されたポリエチレンテレフ

タレート、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリエステル等のフィルム、又はグラシン紙等のラミネートフィルム等が用いられる。剥離シートの厚さは1000μm以下、好ましくは、30～150μmである。

【0049】

貼付剤には治療に必要な量の本発明化合物（I）を含むが、粘着層における本発明化合物（I）又はその塩の配合量は、粘着層の乾燥総質量に対して好ましくは0.1～30質量%、より好ましくは0.5～20質量%である。なお、粘着層の厚さは、好ましくは10～400μmの範囲である。

また、粘着層における経皮吸収促進剤の配合量は、粘着層の乾燥総質量に対して好ましくは0.1～60質量%であり、より好ましくは1～40質量%である。とりわけ、粘着層における脂肪酸エステルの配合量は1～40質量%、非イオン界面活性剤の配合量は1～20質量%となることが好ましい。

【0050】

貼付剤の粘着層を形成する方法としては特に限定されないが、溶液塗工法が好ましい。すなわち、粘着剤、薬物、必要に応じて経皮吸収促進剤、各種添加剤を配合し、有機溶媒に希釈し分散した分散液を支持体の表面にアプリケーターにより塗工し、乾燥させて有機溶媒を除去することによって形成される。上記分散液を剥離シート上に塗工し乾燥させた後、支持体に転写することも可能である。

【0051】

本発明の経皮投与製剤が、軟膏剤、クリーム剤又はローション剤である場合、その基剤は特に限定されないが、白色ワセリン、流動パラフィン、パラフィン、スクワラン、プラスチベースの炭化水素類、セタノール、ステアリルアルコール等の高級アルコール類、イソステアリン酸、オレイン酸、ラウリン酸等の高級脂肪酸類、カルボキシビニルポリマー、ガルボキシメチセルロース、メチルセルロース、ヒドロキシプロピルセルロース、ヒドロキシプロピルメチセルロース、ポリビニルアルコール、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリビニルピロリドン、アラビアゴム、アルギン酸、アルギン酸ナトリウム、ゼラチン等の増粘剤類、グリセリン、プロピレングリコール、1,3-ブチレングリコール等の多価アルコール類等が挙げられる。

【0052】

本発明の経皮投与製剤には上記成分以外に抗酸化剤、充填剤、薬物溶解補助剤、抗菌剤、皮膚刺激低減化剤等の添加剤も必要に応じて配合することができる。抗酸化剤としては、ビタミンE、ビタミンC等が挙げられる。充填剤としては、カオリン、ペントナイト、二酸化チタン等が挙げられる。薬物溶解補助剤としては、 α -シクロデキストリン、 β -シクロデキストリン、 γ -シクロデキストリン、ヒドロキシプロピル化- β -シクロデキストリン、スルホブチルエーテル化- β -シクロデキストリン等が挙げられる。抗菌剤としては、塩化ベンザルコニウム、安息香酸、メチルバラヒドロキシベンゾエート等が挙げられる。皮膚刺激低減化剤としては無水ケイ酸等が挙げられる。さらに、他の吸収調整剤を添加することもできる。他の吸収調整剤としては、ポリプレニルアザシクロアルカン類（例えば、1-ドデシルアザシクロヘプタン-2-オノン等）、油脂類（例えば、オリーブ油、ヒマシ油、ホホバ油、トウモロコシ胚芽油、ヒマワリ油、ヤシ油、スクワラン、スクワレン、オレンジオイル、ミネラルオイル等）等が挙げられる。

【0053】

【実施例】

以下に参考例及び実施例及び製剤例を挙げて本発明を更に詳細に説明するが、本発明はこれらに限定されるものではない。

【0054】

参考例1 1-[N-[（1S）-1-エトキシカルボニル-3-フェニルプロピル]-L-アラニル]-L-プロリン tert-ブチルエステル（化合物（I V））

マレイン酸エナラブリル5.0gを水40mLに懸濁した後、飽和炭酸水素ナトリウム水溶液60mLを加え完全に溶解した。水溶液を10w/v%塩酸にてpH4~5とした後、クロロホルムにて抽出し、有機層を無水硫酸ナトリウムにて乾燥した。減圧下溶媒を留去し、得られた残渣をジオキサンに溶解した後、濃硫酸1.0mL及びイソブテン30mLを加え、封管反応装置に移した後密閉し、室温にて2日間攪拌した。反応液を飽和炭酸水素ナトリウム水溶液にて中和した後、エ

一テルにて抽出し、有機層を水及び飽和食塩水にて洗浄後、無水硫酸ナトリウムにて乾燥した。減圧下溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー（ヘキサン：酢酸エチル=1:1）にて精製し、無色油状物質として標題化合物2.74gを得た。

$^1\text{H-NMR}$ (CDCl_3) δ : 1.21-1.38(6H, m), 1.45(9H, s), 1.87-2.25(7H, m), 2.59-2.80(2H, m), 3.24(1H, t, $J=6.6\text{Hz}$), 3.43-3.60(2H, m), 4.18(2H, q, $J=7.2\text{Hz}$), 4.41-4.46(1H, m), 7.14-7.30(5H, m).

IR(neat) ν_{max} : 2977, 2932, 2875, 1737, 1650, 1453, 1422, 1367, 1154, 1094, 1031, 750, 701 cm^{-1} .

MS m/z (ESI+): 433(M+H) $^+$.

【0055】

参考例2 1-[N-[(1S)-1-カルボキシー-3-フェニルプロピル]-L-アラニル]-L-プロリン tert-ブチルエステル（化合物(V)）

化合物(IV) 2.0gをメタノール15mLに溶解した後、0℃にて1mol/L水酸化ナトリウム水溶液15mLを加え、室温にて3時間攪拌した。反応液を10w/v%塩酸にて中和してメタノールを留去した後、クロロホルムにて抽出し、有機層を無水硫酸ナトリウムにて乾燥した。減圧下溶媒を留去し、無色アモルファスとして標題化合物1.87gを得た。

$^1\text{H-NMR}$ (CDCl_3) δ : 1.42(9H, s), 1.47(3H, d, $J=6.8\text{Hz}$), 1.87-2.01(3H, m), 2.10-2.25(3H, m), 2.76-2.83(2H, m), 3.33-3.61(3H, m), 4.04-4.15(1H, m), 4.36-4.41(1H, m), 7.10-7.23(5H, m).

IR(KBr) ν_{max} : 3435, 2981, 1735, 1654, 1450, 1368, 1226, 1152, 1095, 1042, 849, 750, 701 cm^{-1} .

MS m/z (ESI+): 405(M+H) $^+$.

$[\alpha]_D=-44.2^\circ$ ($\text{CHCl}_3, c:1.07$).

【0056】

参考例3 1-[N-[(1S)-1-ベンジルオキシカルボニル-3-フェニルプロピル]-L-アラニル]-L-プロリン tert-ブチルエステル（化合物(VI)）

化合物(V) 1.47gをN, N-ジメチルホルムアミド7.0mLに溶解し、臭化ベンジル684mg及び炭酸カリウム502mgを加えた後、室温にて1時間攪拌した。反応液に水70mLを加え酢酸エチルにて抽出した後、有機層を水及び飽和食塩水にて洗浄後、無水硫酸ナトリウムにて乾燥した。減圧下溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(ヘキサン：酢酸エチル=1:1)にて精製し、無色油状物質として標題化合物1.65gを得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.25(3H, d, $J=6.8\text{Hz}$), 1.43(9H, s), 1.75-2.25(7H, m), 3.20-3.52(4H, m), 4.38(1H, dd, $J=3.6, 8.3\text{Hz}$), 5.13(1H, d, $J=12.1\text{Hz}$), 5.18(1H, d, $J=12.1\text{Hz}$), 7.05-7.47(10H, m).

IR(neat) ν_{max} : 2976, 1736, 1648, 1496, 1454, 1423, 1367, 1154, 750, 700 cm^{-1} .

$[\alpha]_D=-86.4^\circ$ ($\text{CHCl}_3, c:1.39$).

【0057】

参考例4 1-[N-[(1S)-1-ベンジルオキシカルボニル-3-フェニルプロピル]-L-アラニル]-L-ブロリン(化合物(VII))

化合物(VII) 1.50gをジクロロメタン6.0mLに溶解し、0°Cにてトリフルオロ酢酸6.0mLを滴下した後、室温にて2時間攪拌した。減圧下溶媒を留去後、反応液を飽和炭酸水素ナトリウム水溶液にてアルカリ性とした後、10w/v%塩酸にてpH4~5とし、クロロホルムにて抽出した。有機層を無水硫酸ナトリウムにて乾燥した後、減圧下溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=50:1)にて精製し、無色アモルファスとして標題化合物1.09gを得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.23(3H, d, $J=6.8\text{Hz}$), 1.77-2.33(6H, m), 2.55-2.78(2H, m), 3.21-3.45(3H, m), 3.50(1H, q, $J=6.8\text{Hz}$), 4.40-4.50(1H, m), 5.11(1H, d, $J=12.1\text{Hz}$), 5.17(1H, d, $J=12.1\text{Hz}$), 7.06-7.46(10H, m).

IR(KBr) ν_{max} : 3448, 3030, 2954, 2879, 1736, 1638, 1497, 1454, 1382, 1191, 749, 698 cm^{-1} .

$[\alpha]_D=-86.4^\circ$ ($\text{CHCl}_3, c:1.14$).

【0058】

参考例5 1-[N-[(1S)-1-ベンジルオキシカルボニル-3-フェニ

ルプロピル]-L-アラニル]-L-プロリン 2-ベンジルオキシエチルエス
テル (化合物 (IIa))

化合物 (VII) 1.06 g をベンゼン 5.0 mL に溶解し、2-ベンジルオキシエタノール 1.85 g 及び p-トルエンスルホン酸一水和物 555 mg を加えた後、加熱還流下、生成する水を共沸により取り除きつつ 3 時間攪拌した。溶媒を留去した後、酢酸エチルを加え、飽和炭酸水素ナトリウム水溶液、水及び飽和食塩水にて洗浄後、無水硫酸ナトリウムにて乾燥した。減圧下溶媒を留去して得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル = 1:1) にて精製し、無色油状物質として標題化合物 1.02 g を得た。

$^1\text{H-NMR}$ (CDCl_3) δ : 1.23 (3H, d, $J=6.8\text{Hz}$), 1.70-2.35 (7H, m), 2.51-2.77 (2H, m), 3.20-3.76 (6H, m), 4.16-4.42 (2H, m), 4.46-4.58 (3H, m), 5.12 (1H, d, $J=12.1\text{Hz}$), 5.17 (1H, d, $J=12.1\text{Hz}$), 7.04-7.47 (15H, m).

IR ν_{max} (neat): 3474, 3325, 3062, 3029, 2953, 2874, 1742, 1645, 1496, 1454, 1424, 1366, 1277, 1184, 1028, 916, 746, 700 cm^{-1} .

$[\alpha]_D=-67.6^\circ$ (CHCl_3 , c: 1.27).

【0059】

参考例 6 1-[N-(1S)-1-ベンジルオキシカルボニル-3-フェニルプロピル]-L-アラニル]-L-プロリン 3-ベンジルオキシプロピルエステル (化合物 (IIb))

参考例 5 と同様にして化合物 (VII) 800 mg 及び 3-ベンジルオキシプロパノール 1.52 g から無色油状物質として標題化合物 943 mg を得た。

$^1\text{H-NMR}$ (CDCl_3) δ : 1.23 (3H, d, $J=6.8\text{Hz}$), 1.75-2.27 (9H, m), 2.54-2.73 (2H, m), 3.20-3.59 (6H, m), 4.09-4.29 (2H, m), 4.42-4.54 (1H, m), 4.48 (2H, s), 5.12 (1H, d, $J=12.1\text{Hz}$), 5.17 (1H, d, $J=12.1\text{Hz}$), 7.04-7.45 (15H, m).

IR ν_{max} (neat): 3473, 3322, 3061, 3029, 2956, 2871, 1740, 1646, 1496, 1454, 1423, 1364, 1277, 1182, 1096, 1046, 1029, 916, 741, 699 cm^{-1} .

$[\alpha]_D=-67.3^\circ$ (CHCl_3 , c: 1.02).

【0060】

参考例 7 1-[N-(1S)-1-ベンジルオキシカルボニル-3-フェニ

ルプロピル]-L-アラニル]-L-プロリン 4-ベンジルオキシブチルエス
テル（化合物（IIc））

参考例5と同様にして化合物（VII）800mg及び4-ベンジルオキシブタノ
ール1.64gから無色油状物質として標題化合物831mgを得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.24(3H, d, $J=6.6\text{Hz}$), 1.56-2.30(11H, m), 2.55-2.75(2H, m), 3.21
-3.59(6H, m), 4.01-4.20(2H, m), 4.40-4.54(1H, m), 4.49(2H, s), 5.12(1H, d, $J=12.1\text{Hz}$),
5.18(1H, d, $J=12.1\text{Hz}$), 7.03-7.45(15H, m).

IR ν_{max} (neat): 3448, 3324, 3061, 3029, 2952, 2869, 1740, 1648, 1496, 1454, 1422, 13
62, 1277, 1182, 1095, 1055, 1029, 740, 699 cm^{-1} .

$[\alpha]_D=-60.9^\circ$ (CHCl_3 , c:1.56).

【0061】

参考例8 1-[N-[(1S)-1-ベンジルオキシカルボニル-3-フェニ
ルプロピル]-L-アラニル]-L-プロリン 2-メトキシエチルエステル（
化合物（IId））

参考例5と同様にして化合物（VII）800mg及び2-メトキシエタノール6
94mgから無色油状物質として標題化合物725mgを得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.25(3H, d, $J=6.8\text{Hz}$), 1.79-2.33(7H, m), 2.54-2.75(2H, m), 3.22-
3.73(6H, m), 3.36(3H, s), 4.15-4.33(2H, m), 4.52(1H, dd, $J=3.7, 8.4\text{Hz}$), 5.13(1H, d,
 $J=12.1\text{Hz}$), 5.18(1H, d, $J=12.1\text{Hz}$), 7.07-7.44(10H, m).

IR ν_{max} (neat): 3473, 3322, 3061, 3028, 2952, 2880, 1741, 1650, 1604, 1496, 1454, 14
23, 1371, 1351, 1278, 1183, 1130, 1095, 1032, 751, 700 cm^{-1} .

$[\alpha]_D=-77.8^\circ$ (CHCl_3 , c:1.06).

【0062】

参考例9 1-[N-[(1S)-1-ベンジルオキシカルボニル-3-フェニ
ルプロピル]-L-アラニル]-L-プロリン 2-(2-メトキシエトキシ)
エチルエステル（化合物（IIe））

参考例5と同様にして化合物（VII）720mg及び2-(2-メトキシエトキ
シ)エタノール986mgから無色油状物質として標題化合物675mgを得た。

$^1\text{H-NMR}(\text{CDCl}_3)$ δ : 1.25(3H, d, $J=6.6\text{Hz}$), 1.80-2.30(7H, m), 2.54-2.77(2H, m), 3.29(

2H, t, J=6.6Hz), 3.37(3H, s), 3.40-3.76(8H, m), 4.17-4.35(2H, m), 4.36-4.57(1H, m), 7.06-7.44(5H, m).

IR ν_{max} (neat): 3481, 3321, 3061, 3028, 2952, 2928, 2878, 1741, 1646, 1454, 1423, 1366, 1278, 1184, 1112, 1047, 1030, 972, 917, 850 cm^{-1} .

$[\alpha]_D = -71.1^\circ$ (CHCl_3 , c:1.02).

【0063】

参考例 10 (R) -2-ヒドロキシ-4-フェニル酪酸 (化合物 (X))

(R) -2-ヒドロキシ-4-フェニル酪酸 エチルエステル (化合物 (IX)) 500mgをエタノール 5.0mLに溶解した後、0℃で10w/v%水酸化ナトリウム水溶液 1.2mLを滴下し、0℃で1時間攪拌した。溶媒を留去後、残渣に0℃で1mol/L塩酸を滴下し、pH 3とし、ジエチルエーテルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去し、無色粉末として標題化合物 4.12mgを得た。

m.p.: 104-107°C

$^1\text{H-NMR}$ (CD_3OD) δ : 1.85-1.95(1H, m), 1.97-2.11(1H, m), 2.74(2H, t, J=7.9Hz), 4.08(1H, dd, J=4.2, 8.3Hz), 7.13-7.28(5H, m).

IR ν_{max} (KBr): 3459, 2925, 1733, 1242, 1097, 695 cm^{-1} .

$[\alpha]_D = -8.5^\circ$ (MeOH , c:1.04).

【0064】

参考例 11 (R) -2-ヒドロキシ-4-フェニル酪酸 ベンジルエステル (化合物 (XI))

化合物 (X) 1.0gをN,N-ジメチルホルムアミド 10mLに溶解した後、0℃で炭酸水素カリウム 611mg及びベンジルプロマイド 660 μL を加え、50℃で8時間攪拌した。溶媒を留去し、水を加え、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。得られる粗結晶をn-ヘキサンより再結晶することにより、無色結晶として標題化合物 1.1gを得た。

m.p.: 59-60°C

$^1\text{H-NMR}$ (CDCl_3) δ : 1.89-2.00(1H, m), 2.07-2.18(1H, m), 2.63-2.81(2H, m), 4.23(1H,

dd, J=4.0, 7.5Hz), 5.16(1H, d, J=12.7Hz), 5.20(1H, d, J=12.7Hz), 7.14-7.20(3H, m), 7.24-7.29(2H, m), 7.35-7.39(5H, m).

IR ν_{max} (KBr) : 3458, 2943, 1728, 1450, 1251, 1103, 699 cm^{-1} .

【0065】

参考例 12 N-[(1S) -1-(ベンジルオキシカルボニル) -3-フェニル]-L-アラニン t er t -ブチルエステルマレイン酸塩 (化合物 (XII))

化合物 (XI) 2.0 g をジクロロメタン 20 mL に溶解した後、0 ℃で 2, 6-アルチジン 0.94 mL 及びトリフルオロメタンスルホン酸無水物 1.4 mL を加え、0 ℃で 2 時間攪拌した。反応液にクロロホルムを加え、5 w/v % 重硫酸カリウム水溶液及び飽和炭酸水素ナトリウム水溶液で洗浄した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥後、溶媒を減圧下留去し、2-トリフルオロメタンスルホニルオキシ-4-フェニル酷酸ベンジルエステルとして褐色粘稠性物質 3.5 gを得た。L-アラニン t er t -ブチルエステル塩酸塩 2.0 g を水 20 mL に溶解させ、炭酸アンモニウム 1.7 g 及び 2-トリフルオロメタンスルホニルオキシ-4-フェニル酷酸 ベンジルエステル 3.5 g のニトロメタン溶液 15 mL を加え、50 ℃で 3 時間攪拌した。反応液に酢酸エチルを加え、5 w/v % 重硫酸カリウム水溶液、飽和炭酸水素ナトリウム水溶液、水及び飽和食塩水で洗浄した。無水硫酸ナトリウムで乾燥後、減圧下溶媒を留去した。残査を酢酸エチル 14 mL に溶解し、マレイン酸 859 mg を加え、加熱還流し、全ての結晶が溶解した後、徐々に室温に冷却することにより標題化合物の粗結晶を得た。粗結晶を酢酸エチルより再結晶し、無色結晶として標題化合物 2.63 gを得た。

◦

m.p.: 137-138°C

$^1\text{H-NMR}$ (CDCl_3) δ : 1.44(9H, s), 1.48(3H, d, J=7.2Hz), 2.24(2H, t, J=7.3Hz), 2.60-2.79(2H, m), 3.69(1H, q, J=7.2Hz), 3.77(1H, t, J=6.2Hz), 5.20(1H, d, J=11.9Hz), 5.27(1H, d, J=11.9Hz), 6.34(1H, s), 7.08-7.10(2H, m), 7.18-7.28(3H, m), 7.38-7.39(5H, m).

IR ν_{max} (KBr) : 2987, 1746, 1458, 1352, 1162, 996, 697 cm^{-1} .

[α]D=1.43° (CHCl_3 , c: 1.38)

【0066】

参考例 13 N-[(1S) -1-(ベンジルオキシカルボニル) -3-フェニル]-L-アラニン (化合物 (XIII))

化合物 (XII) 2.5 g に水を加え、飽和炭酸水素ナトリウム水溶液で pH 8 とした後、酢酸エチルで抽出した。有機層を飽和食塩水で洗浄し、無水硫酸ナトリウムで乾燥した。減圧下溶媒を留去した後、塩化水素-ジオキサン溶液 4.5 mL を滴下し、室温で 13 時間攪拌した。減圧下溶媒を留去し、水を加え、飽和炭酸水素ナトリウム水溶液を加え pH 6 とした。沈殿物をろ取した後、酢酸エチルにより再結晶を行い、無色粉末として標題化合物 1.5 g を得た。

m.p.: 160-161°C

$^1\text{H-NMR}$ (CD_3OD) δ : 1.48 (3H, d, $J=7.2\text{Hz}$), 2.14-2.21 (2H, m), 2.52-2.62 (1H, m), 2.67-2.77 (1H, m), 3.57 (1H, q, $J=7.2\text{Hz}$), 4.05 (1H, t, $J=6.1\text{Hz}$), 5.18 (1H, d, $J=11.9\text{Hz}$), 5.36 (1H, d, $J=11.9\text{Hz}$), 7.08-7.27 (5H, m), 7.36-7.45 (5H, m).

IR ν_{max} (KBr) : 2781, 1739, 1618, 1356, 1262, 1192, 698 cm^{-1}

$[\alpha]_D = 6.6^\circ$ (MeOH, c: 1.10).

【0067】

参考例 14 L-プロリン 3-ベンジルオキシプロピルエステルシュウ酸塩 (化合物 (XIV))

L-プロリン 2.30 g をベンゼン 2.0 mL に溶解した後、p-トルエンスルホン酸一水和物 4.57 g 及び 3-ベンジルオキシプロパノール 1.58 mL を加え、加熱還流下、生成する水を共沸により取り除きつつ 15 時間攪拌した。溶媒を留去した後、飽和炭酸水素ナトリウム水溶液を加えクロロホルムにて抽出し、飽和食塩水にて洗浄した後、無水硫酸ナトリウムにて乾燥した。減圧下溶媒を留去した後、得られた残渣を酢酸エチル 1.6 mL に溶解し、シュウ酸 6.93 mg を加え加熱溶解した後、室温にて放置した。析出した結晶をろ取し、酢酸エチルにより再結晶を行い、無色粉末として標題化合物 1.92 g を得た。

m.p.: 84-85°C

$^1\text{H-NMR}$ (CDCl_3) δ : 1.90-2.11 (5H, m), 2.13-2.45 (1H, m), 3.41-3.50 (1H, m), 3.52 (2H, t, $J=6.0\text{Hz}$), 4.24-4.39 (2H, m), 4.43-4.51 (1H, m), 4.48 (2H, s), 7.30-7.38 (5H, m).

IR ν_{max} (KBr) : 3348, 2873, 1742, 1637, 1560, 1458, 1402, 1279, 1229, 1108, 720, 497 cm^{-1}

$[\alpha]_D = -28.7^\circ$ ($\text{CHCl}_3, c: 1.17$).

【0068】

参考例 15 1-[N-(1S)-1-ベンジルオキシカルボニル-3-フェニルプロピル]-L-アラニル] - L-プロリン 3-ベンジルオキシプロピルエステル (化合物 (IIb))

化合物 (XIV) 5.00 mg を水 6 mL に溶解後、飽和炭酸水素ナトリウム水溶液を加え pH 8 とした後、クロロホルムにて抽出した。有機層を飽和食塩水にて洗浄した後、無水硫酸ナトリウムにて乾燥した。減圧下溶媒を留去して得られた残渣をクロロホルム 7 mL に溶解した。0°C にて化合物 (XIII) 4.83 mg、N, N'-ジシクロヘキシリカルボジイミド 2.91 mg 及び 1-ヒドロキシ-1H-ベンゾトリアゾール-水和物 2.37 mg を加え、0°C から室温に徐々に昇温し、室温にて 2 時間攪拌した。反応液を 5 w/v % 硫酸水素カリウム水溶液、飽和炭酸水素ナトリウム水溶液、水及び飽和食塩水にて洗浄した後、無水硫酸ナトリウムにて乾燥した。溶媒を留去した後、得られた残渣をシリカゲルカラムクロマトグラフィー (ヘキサン:酢酸エチル = 2:3 ~ 1:2) にて精製し、無色油状物質として標題化合物 7.47 mg を得た。

【0069】

実施例 1 1-[N-(1S)-1-カルボキシー-3-フェニルプロピル]-L-アラニル] - L-プロリン 2-ヒドロキシエチルエステル (本発明化合物 1)

化合物 (IIa) 2.65 g をエタノール 100 mL に溶解し、5 質量% パラジウム炭素 1.3 g を加え、水素雰囲気下 (4 気圧)、室温にて 13 時間攪拌した。触媒をセライトろ過により除去し、ろ液を減圧下濃縮した後、得られた残渣をシリカゲルカラムクロマトグラフィー (クロロホルム:メタノール = 3:1) にて精製し、無色アモルファスとして標題化合物 1.49 g を得た。

$^1\text{H-NMR}$ (CDCl_3) δ : 1.47 (3H, d, $J=6.8\text{Hz}$), 1.80-2.36 (6H, m), 2.60-2.83 (2H, m), 3.27-3.95 (6H, m), 3.96-4.57 (4H, m), 6.97-7.22 (5H, m).

IR ν_{max} (KBr) : 3422, 3028, 2956, 2879, 1742, 1655, 1560, 1543, 1509, 1498, 1451, 1388, 1282, 1187, 1087, 1051, 895, 861, 753, 702 cm^{-1} .

MS m/z (ESI+): 393 ($M+H$)⁺.

$[\alpha]_D = -26.4^\circ$ (CHCl₃, c:1.20).

【0070】

実施例 2 1-[N-(1S)-1-カルボキシー-3-フェニルプロピル]-L-アラニル]-L-プロリン 3-ヒドロキシプロピルエステル (本発明化合物2)

実施例 1 と同様にして化合物 (IIb) 2.97 g から無色アモルファスとして標題化合物 2.06 gを得た。

¹H-NMR (CDCl₃) δ : 1.55(3H, d, J=7.0Hz), 1.78-2.38(8H, m), 2.65-2.87(2H, m), 3.31(1H, t, J=7.0Hz), 3.36-3.80(5H, m), 4.00-4.15(1H, m), 4.17-4.39(2H, m), 4.47-4.60(1H, m), 7.07-7.28(5H, m).

IR ν_{max} (KBr) : 3385, 3027, 2958, 2878, 1741, 1655, 1560, 1543, 1509, 1498, 1439, 1388, 1280, 1186, 1093, 1053, 920, 863, 751, 702 cm^{-1} .

MS m/z (ESI+): 407 ($M+H$)⁺.

$[\alpha]_D = -33.0^\circ$ (CHCl₃, c:1.04).

【0071】

実施例 3 1-[N-(1S)-1-カルボキシー-3-フェニルプロピル]-L-アラニル]-L-プロリン 4-ヒドロキシブチルエステル (本発明化合物3)

実施例 1 と同様にして化合物 (IIc) 4.51 g から無色アモルファスとして標題化合物 2.92 gを得た。

¹H-NMR (CDCl₃) δ : 1.35-2.31(10H, m), 1.49(3H, d, J=6.8Hz), 2.63-2.83(2H, m), 3.33(1H, t, J=6.8Hz), 3.38-3.77(5H, m), 3.88-4.55(4H, m), 7.00-7.24(5H, m).

IR ν_{max} (KBr) : 3386, 3028, 2953, 2874, 1742, 1656, 1451, 1382, 1281, 1214, 1184, 1093, 1046, 944, 859, 752, 701 cm^{-1} .

MS m/z (ESI+): 421 ($M+H$)⁺.

$[\alpha]_D = -32.9^\circ$ (CHCl₃, c:1.31).

【0072】

実施例4 1-[N-[（1S）-1-カルボキシ-3-フェニルプロピル]-L-アラニル]-L-プロリン 2-(2-メトキシエチル)エチル (本発明化合物4)

化合物 (IIId) 700mgをエタノール4.0mLに溶解し、5質量%パラジウム炭素140mgを加え、水素雰囲気下(常圧)、室温にて1時間攪拌した。触媒をセライトろ過により除去し、ろ液を減圧下濃縮した後、得られた残渣をシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=20:1)にて精製し、無色アモルファスとして標題化合物547mgを得た。

$^1\text{H-NMR}$ (CDCl₃) δ : 1.45(3H, d, J=7.0Hz), 1.86-2.35(6H, m), 2.64-2.86(2H, m), 3.25(1H, t, J=7.0Hz), 3.36(3H, s), 3.42-3.69(4H, m), 3.82(1H, q, J=6.8Hz), 4.15-4.43(2H, m), 4.54(1H, dd, J=3.5, 8.3Hz), 7.06-7.25(5H, m).

IR ν_{max} (KBr): 3448, 3028, 2954, 2882, 1743, 1655, 1560, 1543, 1523, 1509, 1498, 1450, 1380, 1280, 1185, 1129, 1094, 1034, 916, 865, 753, 702 cm⁻¹.

MS m/z (ESI+): 407(M+H)⁺.

[α]D=-44.5° (CHCl₃, c:1.10).

【0073】

実施例5 1-[N-[（1S）-1-カルボキシ-3-フェニルプロピル]-L-アラニル]-L-プロリン 2-(2-メトキシエトキシ)エチル (本発明化合物5)

実施例4と同様にして化合物 (IIe) 640mgから無色アモルファスとして標題化合物465mgを得た。

$^1\text{H-NMR}$ (CDCl₃) δ : 1.43(3H, d, J=6.8Hz), 1.87-2.32(6H, m), 2.64-2.85(2H, m), 3.22(1H, t, J=6.4Hz), 3.37(3H, s), 3.43-3.80(8H, m), 4.17-4.45(2H, m), 4.55(1H, dd, J=3.5, 8.3Hz), 7.09-7.28(5H, m).

IR ν_{max} (KBr): 3448, 3027, 2930, 2880, 1742, 1655, 1560, 1543, 1523, 1509, 1498, 1450, 1382, 1281, 1187, 1139, 1109, 1048, 919, 859, 752, 703 cm⁻¹.

MS m/z (ESI+): 451(M+H)⁺.

[α]D=-41.1° (CHCl₃, c:1.05).

【0074】

実施例 6

安定性試験

本発明化合物1～5及びエナラブリルをそれぞれガラス瓶に約5mg量り、そこにミリスチン酸イソプロピル100μLを加えて溶解（もしくは懸濁）させた。これらを密栓して60℃の恒温槽中に1週間保存した。これらの溶液にメタノールを加えて溶解させ、全量100mLとしたものを試料溶液とし、HPLC法により分析を行った。得られたすべてのピークの面積の合計値に対する各化合物のピークの面積比（面積百分率）を算出した。その結果、表1に示すように、エナラブリルは1週間の保存により完全に閉環体及び他の分解物へと分解したのに対し、本発明化合物は良好な安定性を有していた。

【0075】

【表1】

化合物	面積百分率（%）：60℃1週間保存				
	プロリン エステル体	エナラブリル	エナラブリラート	閉環体	他の分解物
本 発 明 化 合 物	1 91.8	—	0.0	0.0	8.2
	2 96.7	—	0.0	0.0	3.3
	3 94.4	—	0.0	0.0	5.6
	4 99.1	—	0.0	0.0	0.9
	5 94.2	—	0.0	0.0	5.8
比較例	エナラブリル	—	0.0	48.4	51.6

【0076】

実施例 7

培養ヒト皮膚を用いた代謝試験

3次元培養ヒト皮膚モデル（LSE-hig h、東洋紡）を37℃に保温された縦型拡散セルに装着し、レセプター相内に等張リン酸緩衝溶液（PBS、pH 7.4）を7mL充填した。1時間放置後、本発明化合物1～3及び比較例としてエナラブリルを1.0質量%となるようにミリスチン酸イソプロピルに溶解（もしくは懸濁）した液200μLを摘出皮膚に塗布し、試験を開始した。試験開始から24時間後、レセプター相PBS中の未変化の各プロリンエステル体又はエ

ナラブリル（エナラブリラートのプロドラッグ）、及び変換されて生じたエナラブリラートの濃度をHPLC法により測定し、（プロリンエステル体又はエナラブリル）：（エナラブリラート）の濃度比を求め、存在比とした。表2に示すように、3次元培養ヒト皮膚モデルを透過したプロリンエステル体の64～77%がエナラブリラートに変換された。

【0077】

【表2】

化合物	存在比 ^{a)}
本発明化合物1	23.5/76.5
本発明化合物2	36.3/63.7
本発明化合物3	33.4/69.6
エナラブリル（比較例）	98.8/1.2

a) (プロリンエステル体又はエナラブリル) / (エナラブリラート) の濃度比

【0078】

実施例8

貼付剤の製造

スチレン-イソプレンースチレンブロック共重合体（商品名 クインタック3421：日本ゼオン製）30g及び粘着付与樹脂（脂環族飽和炭化水素樹脂、商品名 クイントンM1000：日本ゼオン製）60gをトルエン110gに溶解し、さらに流動パラフィン10gを加え、均一に混合し、粘着剤溶液を調製した。この粘着剤溶液を塗工乾燥後の質量として65質量%、本発明化合物1を20質量%、ミリスチン酸イソプロピルを10質量%、ラウロマクロゴールを5質量%となるよう配合し、さらにトルエンを加えて粘度を調整した後、均一になるまで混合した。この薬物を含有した粘着剤溶液を、厚さ75μmのポリエチレンテレフタレート製のセパレーターのシリコンコート面に、フィルムアクリケーターを用いて厚さ200μmで塗工した。これを約65℃で10分間乾燥させた後、塗工面に厚さ12μmのポリエチレンテレフタレート製の支持体を貼り合わせ、所定の大きさに裁断し、貼付剤1を製造した。

本発明化合物2～5を用いて、同様にして各々貼付剤2～5を製造した。

【0079】

ヘアレスマウス皮膚透過性試験

5週齢の雄性ヘアレスマウス（体重約20g）の皮膚を摘出し、37℃に保温された縦型拡散セルに装着し、レセプター相内にPBS（pH7.2）を7mL充填した。1時間放置後、貼付剤1～5を1.33cm²に打ち抜いたものを摘出皮膚に貼付し、試験を開始した。試験開始から8時間までは1時間毎、それ以後24時間までは2時間毎にレセプター相のPBSを各0.5mLずつ採取した。なお、採取後、同量のPBSをレセプター相に補充した。採取したレセプター相PBS中の未変化の各プロリンエステル体（エナラブリラートのプロドラッグ）及び変換され生じたエナラブリラートの濃度をHPLC法により測定した。次いで、得られた各プロリンエステル体の濃度をエナラブリラートの濃度に換算し、エナラブリラートとしての総濃度を求め、これを透過時間に対してプロットした。透過速度が定常状態となったとき透過曲線のslopeから皮膚透過速度（F1ux）、透過遅延時間（Lag Time）及び貼付面積1cm²あたりの24時間累積透過量を算出した。また、24時間後のレセプター相PBS中の各プロリンエステル体：エナラブリラートの濃度比を求め、存在比とした。表3に示すように、本発明のプロリンエステル体からなる経皮投与製剤は良好な皮膚透過性を有するとともに、皮膚透過したプロリンエステル体の約50～85%がエナラブリラートに変換された。

【0080】

【表3】

テープ剤	皮膚透過速度 (μg/cm ² /hr)	透過遅延時間 (hr)	存在比 ^{a)}	累積透過量 (μg/cm ²)
貼付剤1	21.80	3.60	50.5/49.5	393.39
貼付剤2	25.03	2.59	29.3/70.7	443.64
貼付剤3	17.30	2.40	41.9/58.1	374.31
貼付剤4	6.14	4.20	20.2/79.8	88.88
貼付剤5	11.59	2.30	15.0/85.0	187.10

a) (プロリンエステル体) / (エナラブリラート) の濃度比

【0081】

【発明の効果】

本発明のプロリンエステル類（I）及びその薬学的に許容しうる塩は、高血圧

症、心臓病（心肥大、心不全、心筋梗塞等）、腎炎および脳卒中等の循環器系疾患等予防・治療に有用な薬剤であるエナラブリラートのプロドラッグとして有用であり、それらを含有する医薬は、経皮投与製剤、特に貼付剤とするのが薬効及び使用性の点で好適である。

【書類名】 要約書

【要約】

【解決手段】 一般式 (I)

【化1】

(式中、R¹はヒドロキシ低級アルキル基、低級アルコキシ低級アルキル基又は低級アルコキシ低級アルコキシ低級アルキル基を示す)で表わされるプロリンエステル類又はその薬学的に許容しうる塩。

【効果】 本発明のプロリンエステル類 (I) 及びその薬学的に許容しうる塩は、高血圧症、心臓病（心肥大、心不全、心筋梗塞等）、腎炎および脳卒中等の循環器系疾患等予防・治療に有用な薬剤であるエナラブリラートのプロドラッグとして有用であり、それらを含有する医薬は、経皮投与製剤、特に貼付剤とするのが薬効及び使用性の点で好適である。

【選択図】 なし

認定・付加情報

特許出願の番号 特願2002-265276
受付番号 50201359378
書類名 特許願
担当官 第六担当上席 0095
作成日 平成14年 9月12日

<認定情報・付加情報>

【提出日】 平成14年 9月11日

次頁無

出証特2003-3083287

特願 2002-265276

出願人履歴情報

識別番号

[000109831]

1. 変更年月日

[変更理由]

住所
氏名

1990年 8月16日

新規登録

東京都中央区京橋3丁目1番2号
トーアエイヨー株式会社