Rappels

- ☐ Durée de vie (variable d'un programme) = durée d'exécution du programme
- ☐ Mémorisation (données) stockage sur un support physique
 - Bande magnétique
 - Disquette
 - Disque dur / Disque dur externe
 - Clé USB
 - CD Rom
 - **-** ...

1. <u>Définitions</u>

- Un fichier permet de stocker sur un support physique des données
- ☐ Un fichier a
 - Un nom
 - Des attributs (taille, date de création, droits...)
- ☐ Un fichier peut contenir :
 - Du texte
 - Des images
 - Des vidéos
 - Du son
 - **-** ...

2. Types de fichiers

- ☐ Fichier texte
 - Structurés en ligne
 - Une ligne = un enregistrement
 - Données structurées = (texte, nombres)
 - Directement lisible
 - Modifiable par un éditeur de texte
- ☐ Fichier binaire
 - Pas de structure apparente
 - Octets écrits les uns derrière les autres
 - Données = (sons, images, programmes exécutables)
 - Ne peut être ouvert par un éditeur de texte

3. Accès aux fichiers

- ☐ Accès séquentiel
 - Accès à une ligne quand on a accédé à toutes les précédentes
 - Impossible de modifier directement un fichier séquentiel
 - Ajout d'un enregistrement uniquement en fin de fichier
 - EOF = marqueur de fin de fichier
 - Fichiers texte sont généralement à accès séquentiel
 - Fichiers binaires peuvent être à accès séquentiel

3. Accès aux fichiers

- ☐ Accès direct
 - Lors de son ajout dans le fichier, un numéro d'ordre est associé à l'enregistrement
 - Accès direct à l'enregistrement
 - on peut lire, écrire, modifier n'importe quel enregistrement
 - Tous les enregistrements ont la même longueur

- ☐ Lignes successives = enregistrements = {champs}
 - les champs peuvent être séparés par un caractère de délimitation
 - Le caractère de délimitation ne doit pas figurer dans les données
 - Les champs sont collés les uns aux autres
 - pas de place mémoire perdue
 - Récupération des données nécessite un découpage des lignes en champs (besoin de repérer dans la chaîne le caractère de délimitation)
 - lecture assez lente

- 1. les champs peuvent être séparés par un caractère de délimitation
 - Le caractère de délimitation ne doit pas figurer dans les données
 - Les champs sont collés les uns aux autres
 - pas de place mémoire perdue
 - Récupération des données nécessite un découpage des lignes en champs (besoin de repérer dans la chaîne le caractère de délimitation)
 - lecture assez lente

4. Structure des fichiers texte

Exemple: On considère le fichier /etc/passwd sous Unix

- Ligne = enregistrement = 1 utilisateur du système
- « : » est le caractère de délimitation
- 1 enregistrement = { 7 champs }

Exemple : on considère l'enregistrement suivant :

Jean:*:500:50:Jean Dupont:/home/jean:/bin/bash

- 2. les champs sont de longueur fixe
 - Chaque champ a sa propre longueur
 - lecture d'une ligne rapide : découpage en chaînes dont la longueur est définie
 - Si taille(donnée(champ))<taille(champ) alors
 chaque caractère manquant est remplacé par un espace
 - Perte de place mémoire : existence de trous
 - Convient aux fichiers à accès séquentiel et aux fichiers à accès direct

Dupont	Jean	0601020333
Escalier	Célestin	0648499521
Durant	Clémentine	0721548710
Chambon	Louise	0665903149

5. Fichiers séquentiels

- Manipuler un fichier séquentiel en LAP :
 - Déclaration
 - Assignation
 - Ouverture
 - Lecture/Ecriture
 - Fermeture

5. Fichiers séquentiels

☐ Déclaration d'un fichier en LAP

Syntaxe : *Id_Fichier : fichier séquentiel de type de base*

Exemple:

type etudiant = **enregistrement**

nom: CC[20]

prenom: CC[20]

Dnaiss: entier

fin enregistrement

var F_etudiant : fichier séquentiel de type etudiant

5. Fichiers séquentiels

☐ Création d'un fichier en LAP

Syntaxe : assign(Id_Fic_physique,Id_Fic_Logique)

Exemple :
assign(« Annee1 »,F_etudiant)

Remarque :
Le fichier n'existe pas — Erreur à l'exécution

5. Fichiers séquentiels

Ouverture d'un fichier en LAP Syntaxe : ouvrir(Id_Fic_Logique, mode_ouverture)

Exemple:

ouvrir(F_etudiant, « ecriture »)

Remarque:

Ouverture d'un fichier séquentiel existant en mode écriture

Destruction du fichier

5. Fichiers séquentiels

Lecture d'un fichier en LAP

Syntaxe: lire(Id_Fic_Logique, Id_enregistrement)

Exemple:

lire(F_etudiant, e) /* e variable de type étudiant*/

5. Fichiers séquentiels

Exemple : lecture intégrale d'un fichier en LAP

```
tq non (Eof(F_etudiant)) faire
  lire(F_etudiant, e)
  afficher(e) /* afficher procédure écrite par le programmeur */
Ftq /* affichant les différents champs de l'enregistrement */
```

Remarque : Eof fonction booléenne qui détecte la fin de fichier

- 5. Fichiers séquentiels
 - Ecriture dans un fichier en LAP
 - Ajout d'un enregistrement en fin de fichier
 - Le fichier doit être ouvert en mode écriture.

```
Syntaxe: ajouter(Id_Fic_Logique, Id_enregistrement)
```

Exemple:

ajouter(F_etudiant, e) /* e : une variable de type étudiant */

5. Fichiers séquentiels

fermer(F_etudiant)

☐ Fermeture d'un fichier en LAP

Syntaxe: fermer(Id_Fic_Logique)

Exemple: