前面我们学习了行列式和矩阵,主要研究了:行列式的计算,包括:

2,3阶行列式的计算,n阶行列式的计算,

4阶行列式的计算。 关于矩阵,主要包括:

矩阵的线性运算,矩阵的乘法运算,

矩阵的转置运算,矩阵的秩,

矩阵可逆的条件及逆阵的求法,

分块矩阵及矩阵方程。

初等变换-----最重要和最经常使用的工具。梯形阵,初等矩阵。

n维向量

n维向量及其线性运算

- 一、n维向量的概念
- **1.定义1:** 由数 $a_{1,a_{2,}}\cdots a_{n}$ 组成的有序数组,称为n维向量,简称为向量。

向量通常用斜体希腊字母α,β,γ等表示。

$$\alpha = (a_1, a_2, \dots, a_n),$$
行向量
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$
第i个分量
$$\alpha = \begin{pmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{pmatrix}$$

$$= (a_1, a_2, \dots, a_n)^T$$

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

$$(a_{i1}, a_{i2}, \dots, a_{in})$$

 $i = 1, 2, \dots m.$

矩阵A的行向量

$$\begin{vmatrix} a_{1j}, a_{2j}, \dots, a_{mj} \\ \vdots \end{vmatrix}^{T} - \alpha = 0$$

$$j = 1, 2, \dots, n$$

$$-\alpha = (-a_1, -a_2, \dots, -a_n)$$

 $\mathbf{0} = (0,0,\cdots,0)$

2.定义**2:** $\alpha = (a_1, a_2, \dots, a_n)$,数值 $\sqrt{a_1^2 + a_2^2 + \dots + a_n^2}$ 称为向量 α 的长度或范数或模,记为 $\|\alpha\|$.

$$\|\alpha\| = 0 \Leftrightarrow \alpha = 0 \qquad \alpha \neq 0 \Rightarrow \|\alpha\| > 0$$

 $\|\alpha\| = 1$ 称 α 为单位向量。

$$\alpha = (\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}), \beta = (\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}), \gamma = (\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}).$$

$$e_1 = (1,0,0), e_2 = (0,1,0), e_3 = (0,0,1).$$

$$e_1 = (1,0,\cdots,0), e_2 = (0,1,\cdots,0),\cdots, e_n = (0,0,\cdots,1).$$

二、n维向量的线性运算 设向量

$$\alpha = (a_1, a_2, \dots, a_n), \quad \beta = (b_1, b_2, \dots, b_n),$$

1.加法:
$$\alpha + \beta = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$$

2.滅法:
$$\alpha - \beta = (a_1 - b_1, a_2 - b_2, \dots, a_n - b_n)$$

3.数乘:
$$k\alpha = (ka_1, ka_2, \dots, ka_n)$$

线性运算满足8条运算规律。

$$\alpha + \beta = \beta + \alpha,$$
 $k(\alpha + \beta) = k\alpha + k\beta,$
 $(\alpha + \beta) + \gamma = \alpha + (\beta + \gamma),$ $(k + l)\alpha = k\alpha + l\alpha,$
 $\alpha + 0 = \alpha = 0 + \alpha,$ $k(l\alpha) = (kl)\alpha,$
 $\alpha - \alpha = 0.$ $l\alpha = \alpha$

 $1\alpha = \alpha$.

4.线性组合

定义: 设向量 β , α_1 , α_2 ,···, α_m , 若存在一组数 k_1,k_2 ,···, k_m 使 $\beta = k_1\alpha_1 + k_2\alpha_2 + \cdots + k_m\alpha_m$ 则称向量 β 可由向量 α_1,α_2 ,···, α_m 线性表示, 或称向量 β 是向量 α_1,α_2 ,···, α_m 的线性组合。

$$\alpha = (a_1, a_2, \dots, a_n) = a_1 e_1 + a_2 e_2 + \dots + a_n e_n$$

例1: 设 $\alpha_1 = (1, 2, -1), \alpha_2 = (2, -3, 1), \alpha_3 = (4, 1, -1),$

证明: α_3 是 α_1 , α_2 的线性组合。

证明:设 $\alpha_3=k_1\alpha_1+k_2\alpha_2$,即:

$$(4,1,-1)=k_1(1,2,-1)+k_2(2,-3,1),$$

$$\Rightarrow \begin{cases} 4 = k_1 + 2k_2, \\ 1 = 2k_1 - 3k_2, \\ -1 = -k_1 + k_2. \end{cases} \Rightarrow \begin{cases} k_1 = 2, \\ k_2 = 1. \end{cases}$$

故 $\alpha_3=2\alpha_1+\alpha_2$.

向量组的等价

1.定义**1:** 设有两个 n 维向量组 (I): $\alpha_1, \alpha_2, \dots, \alpha_r$ (II): $\beta_1, \beta_2, \dots, \beta_s$

若向量组(I)中每个向量都可由向量组(II)线性表示,则称向量组(I)可由向量组(I)线性表示;

若向量组(I)与向量组(II)可以互相线性表示,则称向量组(I)与向量组(II)等价。

向量组的等价关系具有自反性、对称性、传递性。

练习

设 $\alpha_1 = (1, 2, -1), \alpha_2 = (2, -3, 1), \alpha_3 = (4, 1, -1),$ 证明: $\{\alpha_1, \alpha_2, \alpha_3\}$ 与 $\{\alpha_1, \alpha_2, \alpha_3\}$ 等价。

 α_3 可由 α_1 , α_2 线性表示。

例2: 设 n 维向量组 $\alpha_1, \alpha_2, \dots, \alpha_n$,若 e_1, e_2, \dots, e_n 可由它 们线性表示,证明 $\alpha_1, \alpha_2, \dots, \alpha_n$ 与 e_1, e_2, \dots, e_n 等价。

证: $:: \alpha_1, \alpha_2, \cdots, \alpha_n$ 显然可由 e_1, e_2, \cdots, e_n 线性表示,

又由题设 e_1, e_2, \cdots, e_n 可由 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性表示,

 $\therefore \alpha_1, \alpha_2, \dots, \alpha_n$ 与 e_1, e_2, \dots, e_n 等价。