Columbia MA Math Camp

Real Analysis

Vinayak Iyer August 14, 2019

Motivation

- In real analysis (and also in micro) we often need to use concepts related to limits and convergence
- roughly speaking, that the sequence will get "as close as we want" to the limit.

By saying that a sequence of objects converges to a limiting object, we mean,

- To be able to talk about how close 2 objects are, we need the concept of distance.
- Metric spaces are the general framework that capture the concept of distance, but we will focus on Euclidean metric spaces
 - Pretty much the only thing economists work with
 - Easier to visualize

Table of Contents

Euclidean Spaces

Sequences and Convergence

Open and Closed Sets

Compactness

Continuity

Metric Spaces

Defining Metric Spaces

Definition 1.1

Let X be a set, and $d: X \times X \to \mathbb{R}$ a function. We call d a **metric** on X if:

- Positive Definiteness : $d(x,y) \ge 0$ for all $x,y \in X$, and d(x,y) = 0 iff x = y
- Symmetry : d(x, y) = d(y, x)
- Triangle Inequality : $d(x,z) \le d(x,y) + d(y,z)$ for all $x,y,z \in X$

A metric space (X, d) is a set X with a metric d defined on X

Example: A trivial example is the discrete metric:

$$d(x,y) = \begin{cases} 1 & \text{if } x \neq y \\ 0 & \text{if } x = y \end{cases}$$

Does this satisfy the properties of a metric? We will however focus on Euclidean metric spaces.

4

Discrete Metric is actually a metric

Discrete metric :
$$d(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

Let us check that the discrete metric satisfies the 3 properties of a metric :

- (a) By definition d(x, y) = 0 iff x = y
- (b) Symmetric is also trivial
- (c) Take $x, y, z \in X$. If x = y, then $d(x, y) = 0 \le d(x, z) + d(z, y)$. If $x \ne y$, then we must have d(x, z) = 1 OR d(z, y) = 1. In either case we have :

$$d(x,y) = 1 \le d(x,z) + d(z,y)$$

Euclidean Distance

Definition 1.2

In \mathbb{R}^n , the Euclidean distance is the function $d: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^+$:

$$d(x,y) = \left(\sum_{i=1}^{n} (x_i - y_i)^2\right)^{\frac{1}{2}}$$

Euclidean distance satisfies the 3 properties that we mentioned earlier:

- $d(x,y) \ge 0$, and d(x,y) = 0 iff x = y
- d(x,y) = d(y,x)
- $d(x,y) \leq d(x,z) + d(z,y)$

Let us prove the first two properties. Triangle Inequality is hard to show - requires the Cauchy Schwarz inequality.

6

Euclidean metric proof

Fact 1

Prove that the Euclidean metric satisfies the first two properties of a metric

Proof.

(a) WTS that d(x,y) = 0 iff x = y for any $x, y \in \mathbb{R}^n$.

$$(\Longrightarrow):$$
 If $d(x,y)=\sqrt{\sum_{i=1}^n(x_i-y_i)^2}=0$, this implies $\sum_{i=1}^n(x_i-y_i)^2=0$. Since

 $(x_i - y_i)^2 \ge 0$ for each i which means that $(x_i - y_i)^2 = 0 \ \forall i$ and thus $x_i = y_i \ \forall i$. Thus x = y

(
$$\Leftarrow$$
): If $x = y$, we have $x_i = y_i$ for each i . Therefore

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} = 0$$

(b) WTS that d(x,y) = d(y,x). This follows from the fact that :

$$\sqrt{\sum_{i=1}^{n} (x_i - y_i)^2} = \sqrt{\sum_{i=1}^{n} (y_i - x_i)^2}$$

Bounded Sets

Definition 1.3

A subset S of \mathbb{R}^n is **bounded** if there exists $M \in \mathbb{R}$ such that for all $x \in S$, $d(0,x) \leq M$.

Note: We could have chosen any $a \in \mathbb{R}^n$ in the place of 0. Suppose S is bounded with respect to 0. Then for any $x \in S$ the triangle inequality tells us

$$d(a,x) \le d(a,0) + d(0,x) \le d(a,0) + M$$

Thus S is bounded with respect to a as well.

Least Upper Bounds

Definition 1.4

Let $S \subseteq \mathbb{R}$. A number $M \in \mathbb{R}$ is an **upper bound** of S if $s \leq M$ for every $s \in S$.

If no M' < M is an upper bound of S, then M is called the **least upper bound** or **supremum** of S.

We make one important assumption about the real numbers: every bounded set of real numbers has a least upper bound. This is called the **least upper bound property**.

9

Table of Contents

Euclidean Spaces

Sequences and Convergence

Open and Closed Sets

Compactness

Continuity

Metric Spaces

Sequences: Definition

Formally, a **sequence** in a set X is a function from \mathbb{N} to X. We denote x_n the image of n, and (x_n) the sequence.

Less formally, a sequence is an **ordered collection** of elements $(x_0, x_1, x_2, ...)$. Many problems in math boil down to understanding the long-term behavior of some sequence.

We typically write sequences as a formula or by enumerating the first few terms.

- $(x_n) = (n)_{n=0}^{\infty} : (0, 1, 2, 3, ...)$
- $(x_n) = (1)_{n=0}^{\infty} : (1, 1, 1, 1, ...)$
- $(x_n) = \left(\frac{1+(-1)^n}{2}\right)_{n=0}^{\infty}$: (1, 0, 1, 0, ...)
- $(x_n) = (\frac{1}{n+1})_{n=0}^{\infty}$: $(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \ldots)$

You'll also see people write things like $x_n = n$.

Bounded Sequences

In \mathbb{R}^n we can define properties of sequences that rely on the notion of distance.

Definition 2.1

A sequence (x_n) of $S \subseteq \mathbb{R}^n$ is **bounded** iff $\{x_0, ..., x_n, ...\}$ is a bounded subset of \mathbb{R}^n .

Are the sequences $x_n = n$ and $x_n = 1/n$ bounded or unbounded?

- The sequence $x_n = n$ is not bounded. For any $M \in \mathbb{R}$, $d(x_n, 0) > M$ for n > M.
- The sequence $x_n = \frac{1}{n}$ is bounded: $d(x_n, 0) \le 1$ for all n

Limits

Definition 2.2

A sequence (x_n) of $S \subseteq \mathbb{R}^n$ converges to a limit $\ell \in S$ iff for all $\epsilon > 0$, there exists an integer $N(\epsilon)$ such that for all $n \geq N(\epsilon)$

$$d(x_n,\ell) < \epsilon$$

We write $x_n \to \ell$ or $\lim_{n \to \infty} x_n = \ell$. If (x_n) does not converge, we say it diverges.

This definition is important, so let's unpack it a little:

- ullet The sequence must eventually **get and remain** arbitrarily close to ℓ
- N can be different for each ϵ .
- We require $\ell \in S$. Consider $(x_n) = (1, \frac{1}{2}, \frac{1}{3}, ...)$. What happens if $S = \mathbb{R}$? If S = (0, 2)?

Convergent sequences: Results

Proposition 2.1

If a sequence converges, then it is bounded.

Proof.

Assume $x_n \to \ell$.

- Take $\epsilon = 1$
- Since $x_n \to \ell$, by definition there exists $N \in \mathbb{N}$ such that for all $n \ge N, d(x_n, \ell) < 1$.

This proves that the sequence starting at N is bounded, but we need to deal with the first N-1 terms.

- Define $M \equiv \max\{d(x_1, \ell), ..., d(x_{N-1}, \ell), 1\}$
- For all $n, d(x_n, l) \leq M$

Limit (if exists) must be unique

Proposition 2.2

The limit of a sequence (x_n) is unique provided it exists i.e. if $x_n \to x$ and $x_n \to x'$, then x = x'

Proof.

We prove this by contradiction. Suppose $x \neq x'$. Thus it must be that d(x, x') > 0.

Consider
$$\varepsilon = \frac{d(x,x')}{2}$$
.

Because $x_n \to x$, there exists N such that $d(x_n, x) < \varepsilon$ for any n > N. Similarly, because $x_n \to x'$, there exists N' such that $d(x_n, x') < \varepsilon$ for any n > N'. Take $\hat{n} = \max\{N, N'\} + 1$ so that $\hat{n} > N$ and $\hat{n} > N'$. There $d(x_{\hat{n}}, x) < \varepsilon$ and $d(x_{\hat{n}}, x') < \varepsilon$.

Thus it must be that:

$$d(x, x_{\hat{n}}) + d(x_{\hat{n}}, x') < 2\varepsilon = d(x, x')$$

which contradicts the triangle inequality of d. Thus we have reached a logical contradiction and therefore x = x'.

Example 1

Proposition 2.3

In the Euclidean metric space (\mathbb{R}, d) , suppose there are 2 convergent sequences $x_n \to x$ and $y_n \to y$. If $x_n \le y_n \ \forall n$, then prove that $x \le y$

Proof.

We do this by contradiction. Suppose x>y and set $\varepsilon=\frac{x-y}{2}$. Since $x_n\to x$ and $y_n\to y$, then by definition, $\exists N_x$ and N_y such that $|x_n-x|<\varepsilon$ and $|y_n-y|<\varepsilon$ $\forall n>N_x$ and $n>N_y$. Take $\hat{n}>\max\{N_x,N_y\}$. Then we must have $|x_{\hat{n}}-x|<\varepsilon$ and $|y_{\hat{n}}-y|<\varepsilon$. Since $\varepsilon=\frac{x-y}{2}$, this implies, $x-\varepsilon=y+\varepsilon$

$$x_{\hat{n}} > x - \varepsilon = y + \varepsilon > y_{\hat{n}}$$

which contradicts $x_n \leq y_n \ \forall n$

Convergent sequences: results (cont.)

Here is a result you'll show on your problem set:

Proposition 2.4

A sequence $(x^k) = (x_1^k, ..., x_n^k)$ of \mathbb{R}^n converges to a limit x iff each component converges to the corresponding component of x in \mathbb{R} .

The result boils down to the fact that for all $j \in \{1, ..., n\}$:

$$|x_j - x_j^k| \le \left(\sum_{i=1}^n (x_j - x_j^i)^2\right)^{\frac{1}{2}} \le n \max_i |x_i - x_i^k|$$

Convergent sequences: results (cont.)

In general, working with the definition of convergence is cumbersome. There are some important results we'll use frequently

Proposition 2.5

Let (x_n) and (y_n) be sequences of \mathbb{R} . If $(x_n) \to x$ and $(y_n) \to y$:

- (a) $x_n + y_n \rightarrow x + y$
- (b) $x_n y_n \to xy$
- (c) $1/x_n \rightarrow 1/x$ if $x \neq 0$

Proof.

We'll show the second one and the rest will probably be on your problem set.

Proof of Property (b)

Proposition 2.6

Let (x_n) and (y_n) be sequences of \mathbb{R} . If $(x_n) \to x$ and $(y_n) \to y$ then $x_n y_n \to xy$

Proof.

Take any $\varepsilon > 0$. I want to find N such that $|x_n y_n - xy| < \varepsilon$ for any n > N.

Because (y_n) is convergent, it is bounded i.e. there exists M such that $|y_n| < M \ \forall n$. Because $x_n \to x$, there exists N_x s.t $|x_n - x| < \frac{\varepsilon}{2M}$. Again since $y_n \to y$, there exists N_y such that $|y_n - y| < \frac{\varepsilon}{2(|x|+1)}$.

Let $N = \max\{N_x, N_y\}$ and I claim this is the N we need to find. This is because for any n > N,

$$\begin{aligned} |x_n y_n - xy| &= |(x_n - x)y_n + (y_n - y)x| \\ &\leq |x_n - x| |y_n| + |y_n - y| |x| \\ &< \frac{\varepsilon}{2M} \cdot M + \frac{\varepsilon}{2(|x| + 1)} \cdot |x| \\ &< \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \end{aligned}$$

Subsequences

Definition 2.3

Let (x_n) be a sequence. A subsequence of (x_n) is a sequence (x_{n_k}) where $n_1 < n_2 < ...$ is an increasing sequence of indices.

- $(x_2, x_3, x_5, ...)$ is a subsequence of (x_n)
- $(x_4, x_3, x_2, ...)$ is not (the terms are out of order).

Proposition 2.7

A sequence (x_n) converges to a limit ℓ iff all its subsequences converge to the same limit ℓ .

Proof.

- (\Rightarrow) Assume $(x_n) \to \ell$ and consider a subsequence (x_{n_k}) of (x_n) . Fix $\epsilon > 0$. There exists $N \in \mathbb{N}$ such that for all $n \geq N$, $d(x_n, \ell) < \epsilon$. Take K such that $n_K \geq N$. Then for all $k \geq K$, $n_k \geq n_K \geq N$, so $d(x_{n_k}, \ell) < \epsilon$.
- (\Leftarrow) Since (x_n) is a subsequence of itself, this implication is immediate.

Subsequences (cont.)

Proposition 2.8

Every bounded sequence of real numbers has a convergent subsequence.

Proof.

Let (x_n) be a bounded sequence of real numbers.

- Since (x_n) is bounded, some integer part D occurs infinitely many times; consider only terms whose integer part is D.
- Among these terms, some first digit d_1 must occur infinitely many times.
- Continuing this process we can construct some $\ell = D.d_1d_2...$

Construct the subsequence as follows:

- Let x_{n_1} be an element that begins with $D.d_1$.
- Take x_{n_2} to be a term after x_{n_1} that begins with $D.d_1d_2$ (we can take $n_2 > n_1$ because there are infinitely many such elements).
- Continue this process for n_3 and so on. We see $d(\ell, x_{n_k}) < 10^{-k}$, so the subsequence clearly converges to ℓ .