

规约算法

Hui Liu Email: hui.sc.liu@gmail.com

Reduction Steps

Reduction #2: Interleaved Addr./non-divergent branching

Replace the divergent branching code:

```
// do reduction in shared mem

for (unsigned int s=1; s < blockDim.x; s *= 2) {
            if (tid % (2*s) == 0) {
                 sdata[tid] += sdata[tid + s];
            }
            __syncthreads();
}
```

With strided index and non-divergent branch

```
// do reduction in shared mem
for (unsigned int s=1; s < blockDim.x; s *= 2) {
    int index = 2 * s * tid;

    if (index < blockDim.x / s) {
        sdata[index] += sdata[index + s];
    }
    __syncthreads();
}</pre>
```

Reduction #2: Access Pattern

Reduction #2: Warp control flow

Performance for 4M element reduction

	Time (2 ²² ints)	Bandwidth	Step Speedup	Cumulative Speedup
Kernel 1: interleaved addressing with divergent branching	8.054 ms	2.083 GB/s		
Kernel 2: interleaved addressing non-divergent branching	3.456 ms	4.854 GB/s	2.33x	2.33x

Reduction #2: Problem

2-way bank conflicts at every step

Recall there are more than 16 threads

To see the conflicts see what happens with 128 threads

THANK YOU