

Universidade de Aveiro - Departamento de Matemática

Matemática Discreta 2016/2017 - UC 47166 (1º Ano/2º Sem)

Exame de Recurso - 12/07/2017

Duração: 2h 30m

- 1. Admita que o universo do discurso é o conjunto dos seres Humanos e considere os seguintes predicados:
 - Xibu(x) : x 'e da tribo Xibu;
 - $Tonga(y) : y \in da tribo Tonga;$
 - vendearmas(x, y) : x vende armas a y;
 - $traidor(x) : x \notin traidor$.
 - (a) Segundo a lei da tribo Xibu é traidor quem desta tribo venda armas a alguém da tribo Tonga. Usando os predicados definidos, represente a lei da tribo Xibu em lógica de primeira ordem.
 - (b) Traduza a seguinte fórmula bem formada da lógica de primeira ordem para linguagem comum:

$$\exists y \ (\text{Tonga}(y) \land \text{vendearmas}(Guru, y) \land \text{Xibu}(Guru))$$

- (c) Supondo verdadeiros os factos descritos nas alíneas anteriores, aplicando o princípio da resolução mostre que se pode concluir que *Guru* é traidor. Justifique devidamente.
- 2. Suponha que 9 estudantes realizam um teste da disciplina de Matemática Discreta numa sala onde vão ser distribuídas três versões desse teste, T_a , T_b e T_c .
 - (a) Sabendo que são distribuídos 3 testes de cada versão, de quantas maneiras podem ser distribuídos os 9 testes, de modo a que cada aluno receba uma única versão do teste.
 - (b) Considere, agora, que são distribuídos pelo menos um teste T_a , pelo menos dois testes T_b e pelo menos três testes T_c . Determine o polinómio gerador do número de possibilidades de distribuir as três versões pelos 9 estudantes e, a partir desse polinómio, obtenha o valor do seu coeficiente que dá a solução do problema. Justifique.
- 3. Considere o grafo simples G = (V, E) da figura seguinte, o qual contém três componentes conexas.

Seja \mathcal{R} a relação binária definida no conjunto de vértices V de G, tal que

$$\mathcal{R} = \{(x, y) \in V \times V : \text{existe um caminho entre } x \in y\}.$$

- (a) Mostre que \mathcal{R} é uma relação de equivalência em V.
- (b) Determine o conjunto quociente V/\mathcal{R} . Justifique.
- (c) Determine, justificando, o número de arestas do grafo simples G^C complementar do grafo G.

- 4. Seja G = (V, E) um grafo simples não orientado com conjunto de vértices $V = \{1, 2, 3, 4, 5, 6, 7\}$ e conjunto de arestas $E = \{12, 23, 35, 51, 34, 54, 65, 57, 76\}$. Suponha que, a cada aresta $ij \in E$ está associado um custo $c_{ij} = i + j$, com $i, j \in V$. Construa uma árvore abrangente de G de custo mínimo, aplicando o algoritmo de Prim. Justifique devidamente os passos do algoritmo e indique o custo total da árvore obtida.
- 5. Considere a sucessão dos números de Tribonacci $(T_n)_{n\in\mathbb{N}}$ definida por $T_1=T_2=T_3=1$ e $T_n=T_{n-1}+T_{n-2}+T_{n-3},$ para $n\geq 4.$ Mostre que $T_n<2^n,$ para todo o $n\in\mathbb{N}.$

Cataaãaa	
Cotações	:

1	L.(a)	1.(b)	1.(c)	2.(a)	2.(b)	3.(a)	3.(b)	3.(c)	4.	5.
	2.0	1.0	2.5	2.0	2.5	2.0	2.0	1.5	2.5	2.0