

Nomes: Wesley Barbaro - 1134832, Wendel Barbaro 1134440

Linguagens Formais e Autômatos Prof. Me. Fahad Kalil

REVISÃO G1

Hierarquia de Chomsky

Grammar ≑	Languages \$	Recognizing Automaton +	Production rules (constraints)*	Examples ^{[5][6]}
Type-3	Regular	Finite-state automaton	$A o {f a} \ A o {f a} B$ (right regular) or $A o {f a} \ A o B B$ (left regular)	$L=\{a^n n>0\}$
Type-2	Context-free	Non-deterministic pushdown automaton	A o lpha	$L=\{a^nb^n n>0\}$
Type-1	Context-sensitive	Linear-bounded non-deterministic Turing machine	$lpha Aeta ightarrow lpha \gamma eta$	$L=\{a^nb^nc^n n>0\}$
Type-0	Recursively enumerable	Turing machine	$\gamma ightarrow lpha$ (γ non-empty)	$L = \{w w ext{ describes a terminating } $

^{*} Meaning of symbols:

- a = terminal
- A, B = non-terminal
- α , β , γ = string of terminals and/or non-terminals

I. IMPORTANTE

O que não pode ser considerado uma linguagem regular?

Linguagens que requerem a atuação de uma memória para estruturar os elementos de suas cadeias, isto é, quando a frequência de um elemento da cadeia determina a frequência de outro elemento da mesma cadeia. Portanto, linguagens como "todas cadeias de 'a' seguido de 'b', onde o número de 'a' é igual ao de 'b'", não são regulares pois o número de 'a' determina o número de 'b'.

Expressões Regulares

Definição de ER

Sejam R_1 e R_2 duas linguagens. Sejam também as ER r_1 e r_2 que denotam as linguagens R_1 e R_2 .

Dizemos que r é uma expressão regular (ER) se r for:

- a, ∀a ∈ Σ, ou seja, a linguagem que contém exclusivamente a palavra constituída pelo símbolo a;
- ϵ, ou seja, a cadeia vazia;
- Ø, ou seja, a linguagem vazia. E, indutivamente, considerando r₁ e r₂, expressões regulares, temos:
- \bullet $r = (r_1 \cup r_2)$, a união, também denotada por $r_1 + r_2$;
- \circ $r = (r_1 \circ r_2)$, a concatenação, também denotada por $r_1 r_2$;
- Σ*, para Σ um alfabeto qualquer
 - É a linguagem constituída de todas as cadeias de caracteres sobre Σ
 - Sendo $\Sigma = \{a, b\}, \Sigma^* = (a \cup b)^* + \epsilon$

Expressão Regular, (R)	Linguagem gerada, $L(R)$
ab + ba	$L(R) = \{ab, ba\}$
$(a + b)^*$	Todas as palavras sobre Σ
$(a+b)^*aa(a+b)^*$	Todas as palavras que contém a subcadeia 'aa'
$(a+b)^*(aa+bb)$	Todas as palavras que terminam com 'aa' ou 'bb'

ER, (R) Linguagem gerada, $L(R)$		
$(a \cup \epsilon)b^*$	$=\{w\mid w=ab^*\cup b^*\}$	
$(a \cup \epsilon)(b \cup \epsilon)$	$= \{\epsilon, a, b, ab\}$	
b*∅	= Ø	
Ø*	$=\{\epsilon\}$, (ou seja, juntar qualquer número	
	de cadeias, pode ser pode ser juntar 0 cadeias,	
	o que gera a cadeia vazia)	

Autômatos Finitos e Gramáticas Regulares

Teorema: A toda gramática regular há um autômato finito equivalente.

Demonstra-se através da construção de um modelo de autômato a partir dos não-terminais da gramática.

<u>Teorema</u>: A todo autômato finito há uma gramática regular equivalente.

Demonstra-se através da construção de um modelo de uma gramática cujos não-terminais são os estados do autômato.

Equivalência entre autômato finito determinístico (AFD) e autômato finito não-determinístico (AFND)

Teorema: Para cada modelo de autômato não-determinístico há um modelo de autômato determinístico equivalente.

EXERCÍCIOS

>>> Todos os autômatos deverão ser representados usando diagrama de estados <<

1) Considere a expressão regular $\mathbf{b}^*\mathbf{a}(\mathbf{b}^*\mathbf{a}\mathbf{b}^*\mathbf{a}\mathbf{b}^*)^*$ sobre o alfabeto $\Sigma = \{a, b\}$ e especifique 3 palavras que pertencem e 3 palavras que não pertencem a linguagem correspondente.

Palavras que pertencem à linguagem (número ímpar de 'a's):

a: O b* inicial é vazio, e a parte (b*ab*ab*) * se repete zero vezes.

baaab: Começa com b, seguido de a. A parte (b*ab*ab*)* se repete uma vez como ab*ab*

bababa: Começa com b, seguido de a. A parte (b*ab*ab*) * se repete uma vez como b*ab*ab*.

Palavras que não pertencem à linguagem

b: Não possui o 'a' obrigatório.

aa: Tem um número par de 'a's.

bbaabb: Tem um número par de 'a's.

2) Considere o alfabeto $\Sigma = \{a, b\}$ e a linguagem $L = \{a^nbbbc^mdd \mid m, n \in \mathbb{N}_0\}$. \mathbb{N}_0 significa: Conjunto dos números naturais incluindo o zero.

Existe uma expressão regular que represente essa linguagem?

Expressão regular que representa a linguagem L é: a*bbb c*dd.

3) Considere a linguagem $L = \{$ palavras que terminam com 11 $\}$ que possui como alfabeto $\Sigma = \{0, 1\}$.

a. Criar um <u>AFD</u> que a represente.

q0 (Estado Inicial): receber um 0, continua em q0. Se receber um 1, vai para q1, pois pode ser o início da sequência 11.

q1: Se receber um 0, volta para q0, pois a sequência foi quebrada. Se receber um 1, vai para q2, completando a sequência 11.

q2 (Estado Final): A palavra termina em 11. Se receber um 0, volta para q0. Se receber outro 1, permanece em q2, pois a nova palavra ainda termina com 11.

- b. Escolha apenas UMA afirmativa que contém a expressão regular referente a L.
 - a) 0*1(0*1)*11*(0*1(0*1)*11*)
 - b) (0*1(0*1)*11*)*
 - c) (0*1*)*11
 - d) (0+1)*11*
 - e) (0*1(0*1)*11*)

Alternativa c) (0*1*)*11.

4) Construa uma gramática regular que gere palavras pertencentes a linguagem $L=0^*(0+1^+)$ e depois crie um <u>autômato finito</u> que reconheça tal linguagem.

 $S \rightarrow 0S$

 $S \rightarrow 0$

 $S \rightarrow 1A$

 $A \rightarrow 1A$

 $A \rightarrow 1$

 $G = ({S, A}, {0, 1}, P, S)$

P:

1. $S \rightarrow 0S$

2. $S \rightarrow 0$

3. $S \rightarrow 1A$

4. $A \rightarrow 1A$

5. $A \rightarrow 1$

q0 (inicial,nao final), q1 (final)

q0 -0,1->q1

q1-0,1->q1

5) Considere o autômato (M) e a linguagem (L) abaixo.

$$M = (\{q_0, q_1, q_2, q_f\}, \{a, b\}, \delta, q_0, \{q_f\})$$

 $L = \{ w \mid w \text{ possui } aa \text{ ou } bb \text{ como subpalavra} \}$

Usando <u>Função de Transição Estendida (δ^*) ou alternativa apresentada pelo professor</u>, mostre o processamento das palavras: (a) **babab** e (b) **abaab**, indicando se seriam reconhecidas ou não. **Dica: Veja no AVA sobre AFD -> Slide 11 e conteúdo presente no tópico.**

Autômato (M):

• Estados: {q0, q1, q2, qf}

• Alfabeto: {a, b}

• Estado inicial: q0

Estado final: {qf}

Transições (com base no diagrama):

• δ(q0, a) = q1

• $\delta(q0, b) = q2$

δ(q1, b) = q2

• δ(q1, a) = qf

• $\delta(q^2, a) = q^2$

• δ(q2, b) = qf

δ(qf, a) = qf

δ(qf, b) = qf

Processamento da palavra babab:

1. $\delta * (q0, babab)$

2. $\delta * (\delta(q0, b), abab) = \delta * (q2, abab)$

3. $\delta*(\delta(q2, a), bab) = \delta*(q1, bab)$

4. $\delta * (\delta(q1, b), ab) = \delta * (q2, ab)$

5. $\delta*(\delta(q^2, a), b) = \delta*(q^1, b)$

6. $\delta * (\delta(q1, b)) = q2$

Processamento da palavra abaab:

1. $\delta*(q0, abaab)$

2. $\delta * (\delta(q0, a), baab) = \delta * (q1, baab)$

3. $\delta * (\delta(q1, b), aab) = \delta * (q2, aab)$

4. $\delta * (\delta(q2, a), ab) = \delta * (q1, ab)$

5. $\delta * (\delta(q1, a), b) = \delta * (qf, b)$

6. $\delta * (\delta(qf, b)) = qf$

6) A seguir estão os diagramas de estado de dois AFDs (M_1 e M_2). Responda às seguintes questões sobre cada uma dessas máquinas.

- a. Qual é o estado inicial?
- b. Qual é o conjunto de estados de aceitação?
- c. Por qual sequência de estados a máquina passa para a entrada aabb?
- d. A máquina aceita a cadeia aabb?
- e. A máquina aceita a cadeia ε ?

a)q1 (indicado pela seta sem origem).

b){q2} (indicado pelo círculo duplo).

c) Sequência: **q1, q2, q2, q3, q3**

d)Não, pois o processamento termina no estado q3, que não é de aceitação.

e) Não, pois o estado inicial q1 não é de aceitação.

Máquina M2:

a)q1 (indicado pela seta sem origem).

b){q1, q4} (indicados pelos círculos duplos).

c) Sequência: q1, q2, q3, q4, q4

d) Sim, pois o processamento termina no estado q4, que é um estado de aceitação.

e) Sim, pois o estado inicial q1 também é um estado de aceitação.

7) Converta o AFN-ε (Autômato Finito Não Determinístico Vazio) para AFD:

Estados: {q0, q1, q2} Alfabeto: {a, b, c} Estado Inicial: q0 Estado Final: {q2}

В	С	D
Com 'a'	Com 'b'	Com 'c'
А	В	С
D	В	С
D	D	С
D	D	D
	B Com 'a' A D D	B C Com 'a' Com 'b' A B D B D D D

8) Construa uma gramática regular que gera a linguagem reconhecida pelo AFD abaixo:

Estados: {q0, q1, q2}

Símbolo Inicial: q0 (que corresponderá ao símbolo inicial da nossa gramática)

Estado Final: {q1} Transições:

- $\delta(q0, a) = q0$
- $\delta(q0, b) = q1$
- $\delta(q1, a) = q2$
- $\delta(q2, b) = q1$

 $G = ({q0, q1, q2}, {a, b}, P, q0)$

P (Produções):

- \bullet q0 \rightarrow a q0 | b q1 | b
- $\bullet \quad q1 \ \rightarrow \ a \ q2$
- $q2 \rightarrow b q1 \mid b$

Esta gramática gera exatamente a mesma linguagem que o AFD reconhece, que pode ser descrita pela expressão regular a*b(ab)*.