

The difficult automatic calculation of RAW

Introduction

In PSA applications importance measures like RAW, RDF, RRW, FV and Birnbaum indicator are well known and used

To control importance _ to control model uncertainties and code uncertainties measures accuracy

Among code uncertainties: the uncertainty due to the truncation of the set of MCS used to estimate the risk

To find a compromise between calculation time and accuracy of importance measures

Importance measures

$$RAW(BE_i) = \frac{P(Fus / BE_i)}{P(Fus)} = \frac{R_{1,i}}{R}$$

$$VF(BE_i) = \frac{P(Fus) - P(Fus / \overline{BE_i})}{P(Fus)} = \frac{R - R_{0,i}}{R}$$

$$I_{B}(BE_{i}) = P(Fus / BE_{i}) - P(Fus / \overline{BE_{i}}) = R_{1,i} - R_{0,i}$$

All common importance measures can be computed if R, R_{0,i} and R_{1,i} are known

NB: R is still known, it is the baseline risk

9.25E-7

K

break_3mm

Pump2_DS Valve1_RO

Pump2_DS

break_3mm Valve1_RO

1E-12

5E-13

K

break_3mm Pump1_DS

Pump3_DS

edF

Valve3

Valve2_RO Pump3_DS

Valve3_RO Pump3 DS break_3mm Valvel_RO Pump2_DS 9.25E-7 break_3mm Valve1_RO Pump2_DS 1E-06

Valve2_RO Pump3_DS

break_3mm Pump1_DS

5E-13

Pump3_DS break_3mm Valve1_RO Pump2_DS 9.25E-7

Valve3 RO break 3mm Valvel RO Pump2 DS 1E - 12

Pump3_DS 5E-13

Valve2_RO break_3mm Pump1_DS

Truncation of a MCS set for baseline risk estimation

- ▶ With our Boolean model => Minimal Cut Sets
- amount of MCS => negligible MCS have to be suppressed ► PSA models are very detailed and result in an huge
- ▼ Truncation process:
- A threshold Sa is defined by the user
- If $P(MCS_j) \ge Sa\ MCS_j$ is retained
- If P(MCS_i) < Sa MCS_i is suppressed
- R (the risk) is estimated from the truncated set of MCS
- => The under-estimation of R (Δ_R) is jugged acceptable with actual value S_a (1E-12 for example) risque F seuil.xls

Truncation uncertainty

► Example 19.25E-7

Valve3 RO Valve2_RO Valve3 RO Pump3_DS Pump2 DS Pump2_DS Valvel_RO Valvel_RO break_3mm Pump1_DS break 3mm break_3mm 5E-13

P(Cor.Dam. / Valve3_RO) is studied with P(Valve3_RO)=1E-6

Valvel_RO break_3mm 9.25E-7

break_3mm Valve1_RO

1E-06

Pump2_DS

Pump1_DS

break_3mm

5E-07

Valve3_RO

Valve3_RO

Pump3_DS

Pump2_DS

Valve2_RO

Pump2_DS | 9.25E-7 break_3mm Valvel_RO

Pump3_DS

Calculation of R_{0,j} and R_{1,j}

Calculation of R_{0,j} and R_{1,j}

By modifying the PSA model

=burdensome

From the set of MCS corresponding to the baseline case

Truncation uncertainty

Impact of the truncation :

- A negligible impact on R and $R_{0,i}$ if the threshold is well adapted,
- The underestimation of $R_{1,j}$ is a function of EB_{i} probability FAR F prob EB.xIs
- A moving ranking R1 F P.pps

Is the impact on R₁, really significant?

The sum of R_{1,i} for all i.
 somme FAR.xis
 zoom somme FAR.xis

► How to chose the value of S_a?

A huge MCS set nb cp F seuil.pps

It is really difficult to keep all MCS to compute all $R_{1,i}$ whatever i

Conclusion

eDF

- Really difficult to compute RAWs from a baseline case MCS set (too many MCS)
- baseline case MCS set to compute RAWs Need of a new truncation process of the (see PSAM 8)
- How to detect underestimated RAWs

The difficult automatic calculation of RAW

Nature du problème :

Les EB peu probables avec une probabilité élevée d'être critique => $R_{1,i}$ élevé car EB; souvent critique mais les coupes contenant cet EB sont peu probables => S_{ρ} doit être très faible pour sélectionner ces coupes => jeu de coupes gigantesque constitué de nombreuses coupes « inutiles »

■ Objectif:

Sélectionner les coupes significatives et les coupes potentiellement significatives (lorsque l'un de leur EB est considéré comme certain)

Troncation double

Un processus de troncation double :

- Le seuil S_p est conservé pour sélectionner les coupes significatives,
- Un seuil $S_{
 hoot}$ est introduit. Ce seuil sélectionne les coupes en se basant sur leur « probabilité potentielle ». Cette probabilité ce définit comme la probabilité de la coupe lorsque son EB le moins probable est certain :

$$= \max_{EBi \in CM_j} \left[P(CM_j/EB_i) \right]$$

■ Une coupe est gardée si :

$$P(CM_j)$$
Emin $\left(S_p; \frac{P(CM_j)}{\min\left[p(EB_i)\right]}\right)$

► Efficacité de cette troncation double

- Peu intéressante pour les EB relativement probables
- Un seuil $S_{
 hoot}$ est introduit. Ce seuil sélectionne les coupes en se basant sur leur « probabilité potentielle ». Cette probabilité ce définit comme la probabilité de la coupe lorsque son EB le moins probable est certain :

$$= \max_{EBi \in CM_j} \left[P(CM_j/EB_i) \right]$$

► Une coupe est gardée si

$$P(CM_j)$$
 Emin $\left[S_{p_j}, \frac{P(CM_j)}{\min\left[p(EB_i)\right]}\right]$

Troncation double

► Efficacité de ce processus :

Une efficacité fonction de la probabilité des EB R1 pro be tpas.pps

► Efficacité vérifiée de manière globale ?

- Une vérification faite sur une EPS de niveau 1 : res globaux.pps
- Un processus de troncation robuste et efficace

Plan

- Présentation des Facteurs d'Importance (FI)
- Expression des mesures d'importance
- Applications des mesures d'importance
- Incertitudes lors de leurs calculs
- Adapter les modèles EPS aux FI
- Seuils de troncature

▶ Solutions

- Un nouveau processus de troncation
- Un post-traitement des résultats de RSW

% Post-traitement des résultats de RSW

Adaptation au contexte d'utilisation d'EDF

- Un processus de troncation qui n'est pas implémenté sous RSW
- Nécessité de s'adapter :
- Générer le plus de coupes possible avec RSW
- A partir de ce jeu de coupes calculer les R_{1,j} sans supprimer les coupes non minimales => ils sont surestimés mais le calcul est rapide
- Tronquer le jeu de coupes à l'aide de notre processus double
- certain (ne peut pas être fait sur le jeu de coupes complet car trop long) Pour chaque EB rechercher les coupes non-minimales lorsqu'il est
- $R_{1,i} = R_{1,i} CM \text{ non-min}_i$

► Exemple:

Facteurs d'Importance et incertitude

Plan

Présentation des Facteurs d'Importance (FI)

- Expression des mesures d'importance
- Applications des mesures d'importance

► Incertitudes lors de leurs calculs

- Adapter les modèles EPS aux FI
- Seuils de troncature

Solutions

- Un nouveau processus de troncation
- Un post-traitement des résultats de RSW

Plan

Présentation des Facteurs d'Importance (FI)

- Expression des mesures d'importance
- Applications des mesures d'importance

Incertitudes lors de leurs calculs

- Adapter les modèles EPS aux FI
- Seuils de troncature

Solutions

- Un nouveau processus de troncation
- Un post-traitement des résultats de RSW

%/Les Études Probabiliste de Sûreté

Application du risque de référence et des séquences

- Le domaine complémentaire
- ANPI
- Ré-examen de sûreté

Autres applications des EPS :

Déterminer la contribution au risque ou à la défense en profondeur d'un événement (défaillance d'un matériel, erreur humaine...)

Maintenance (OMF)

Spécifications d'exploitations (STE, cumul)

Conception (génération IV)

es mesures d'importance

Autres applications des EPS:

Déterminer la contribution au risque ou à la défense en profondeu d'un événement (défaillance d'un matériel, erreur humaine...)

Maintenance Spécifications d'exploitations (STE, cumul)

Comment déterminer l'importance d'un événement?

Les facteurs d'importance

Les mesures d'importance

Les principaux facteurs d'importance

 $FAR(E_{Vmt_i}) = \frac{P(FUSION/E_{Vmt_i}) - P(FUSION)}{P(E_{Vmt_i}) - P(FUSION)}$ C'est le pourcentage d'accroissement de risque lorsque P(FUSION)

l'événement i est considéré comme certain.

 $FDR(Evmt_t) = P(FUSION) - P(FUSION/Evmt_t)$ P(FUSION)

C'est le pourcentage de diminution de risque lorsque l'événement i est considéré comme impossible. $(E_{Vmt_i}) = P(FUSION \mid E_{Vmt_i}) - P(FUSION \mid E_{Vmt_i})$ critique pour l'événement i (si la fonction de structure est cohérente)

Les principaux facteurs d'importance peuvent être exprimés à partir de

 $P(FUSION/Evmt_i)$, $P(FUSION/Evmt_i)$ et P(FUSION)

Plan

Présentation des Facteurs d'Importance (FI)

- Expression des mesures d'importance
- Applications des mesures d'importance

Incertitudes lors de leurs calculs

- Adapter les modèles EPS aux FI
- Seuils de troncature

Solutions

- Un nouveau processus de troncation
- Un post-traitement des résultats de RSW

eDF.

Application des FI à l'OMF

	FDR élevé	FDR faible
FAR élevé	La maintenance peut être ou ne pas être efficace : Révision de la maintenance préventive, surveillance et ou re-conception	La maintenance est efficace : garder le programme de maintenance préventive et de surveillance
FAR	La maintenance n'est pas suffisante : <i>fiabiliser le</i> <i>matériel ou reconception</i>	La maintenance peut être réduite : <i>maintenance corrective</i>

Une erreur d'estimation sur les FI peut conduire à des décisions ayant un impact sur le risque

Plan

- Présentation des Facteurs d'Importance (FI)
- Expression des mesures d'importance
- Applications des mesures d'importance

► Incertitudes lors de leurs calculs

- Adapter les modèles EPS aux FI
- Seuils de troncature

Solutions

- Un nouveau processus de troncation
- Un post-traitement des résultats de RSW

Incertitudes de modèles

risque de référence ne le sont plus lorsqu'on veut calculer des Certaines simplifications valides dans le cadre du calcul du facteurs d'importance

■ Exemple:

Des sous-systèmes symétriques modélisés de manière dissymétrique

Deux voies identiques régulièrement permutées

Modélisation simplifiée

La voie A modélisée en fonctionnement et la voie B modélisée en secours

L'importance de la défaillance en fonctionnement de la voie B est sousévaluée. L'importance de la défaillance à la sollicitation de la voie B est sur-évaluée.

Incertitudes de modèles

Solution apportées :

- Répertorier les simplifications posant problème
- Initiateurs non-développées,
- Défaillances masquées,
- Dissymétrie non-justifiées,
- Séquences négligées,

:

Proposer des solutions simples pour faire évoluer les modèles

Plan

Présentation des Facteurs d'Importance (FI)

Présentation de leurs applications existantes

OMF

Cumuls d'indisponibilités

▶ Problèmes lors de leurs calculs

Adapter les modèles EPS aux FI

· Seuils de troncature

Perspectives

Fi pour des événements composés

· Aide à la conception (gen. IV)

Troncation de l'information :

les EPS sont de très gros modèles : il faut supprimer les informations superflues.

■ Exemple :

Troncation du jeu de coupes

Un modèle EPS peut correspondre à des centaines de millions de coupes minimales => On ne peut pas toutes les générer

Simplification logiciel

On garde celles qui contribuent le plus au risque de référence

Les coupes importantes pour le risque de référence ne sont pas forcément celles importantes pour le calcul des facteurs d'importance

Processus de troncation actuel :

- Troncation par ordre :
- Les coupes contenant plus de S_N EB ne sont pas prises en compte
- inadapté aux EPS (dans les 200 coupes les plus probables certaines sont d'ordre six ou sept)
- Troncation probabiliste:
- Les coupes dont la probabilité est inférieure à un seuil S_{ρ} ne sont pas conservées
- Bien adapté au calcul du risque de référence : risque F_seuil.xls
- Problème lors du calcul des FI ? => vérifier que $R_{0.j}$ et $R_{1.j}$ ne sont pas trop impactés par la troncation du jeu de coupes de référence.

► Solution : un calcul « à la main »

- Tous les facteurs d'importance sont calculés très précisément,
- Solution très longue et très manuelle donc très coûteuse.

Présentation des Facteurs d'Importance (FI)

- Expression des mesures d'importance
- Applications des mesures d'importance

Incertitudes lors de leurs calculs

- Adapter les modèles EPS aux FI
- Seuils de troncature

■ Solutions

- Un nouveau processus de troncation
- Un post-traitement des résultats de RSW

d'événements composes Facteurs d'importance

eDF

Objectif:

Les facteurs d'importance sont définis et utilisés pour déterminer l'importance des Événements de Base (EB) : mode de def. spécifique d'un comp. spécifique.

On peut vouloir connaître l'importance d'événements composés (à partir de plusieurs EB) appelés macro-événements.

■ Etat de l'art :

Plusieurs extensions des facteurs d'importance existent mais

- Définitions contradictoires (exemple des systèmes)
- Application potentielles non envisagées

Travail à effectuer :

signification physique. Proposer des exemples d'application. Clarifier les définitions mathématiques. Expliciter leur

Facteurs d'importance

eDF

► Exemple : l'importance d'un système

Définitions existantes :

Les considérer comme tous défaillant OU considérer que la fonction est perdue

Notre définition :

composants du système = les composants contribuant à la mission Un système caractérisé par une et une seule fonction. Les perte du système = occurrence d'une de ses coupes

Signification :

 $P(FUSION \ / \ Système_i \)$ La probabilité de fusion du cœur sachant que la mission i est défaillante : on sait qu'une coupe du système est réalisée. On ne sait pas laquelle.

Facteurs d'importance

eDF

■ Mode de calcul :

d'événements composes Facteurs d'importance

eDF

Résultats « académiques »

Présentation en congrès (ESREL06 et Lambda Mu 15)

▶ Application à EDF (en cours)

Cumul d'indisponibilités et STE :

Prise en compte d'événement composés (perte d'une voie RIS) Définition du délai avant repli de la tranche à partir de l' effet du cumul sur le risque : nul, "additif", "multiplicatif" 1 Développement d'un facteur d'importance spécifique

Application potentielle:

Utilisation de ces facteurs d'importances "étendus" à l'aide à la conception et à la vérification de l'indépendance des lignes de défense

Présentation des Facteurs d'Importance (FI)

Présentation de leurs applications existantes

• OMF

Cumuls d'indisponibilités

▶ Problèmes lors de leurs calculs

Adapter les modèles EPS aux FI

· Seuils de troncature

Perspectives

· Fi pour des événements composés

Aide à la conception (gen. IV)

Facteurs d'importance et conception

Contexte :

déterministe et probabiliste. Les facteurs d'importance peuvent donc centrales doit être envisagé (gen. IV). La conception sera à la fois Le remplacement des centrales existantes par de nouvelles y trouver une place.

Objectif:

Le plus sûre et le plus disponible possible à moindre coût.

- ⇒peu de lignes de défense très fiables, robustes, polyvalentes et indépendantes les unes des autres.
- ⇒couverture homogène des risques,
- ⇒bonne défense en profondeur,
- ⇒risque résiduel acceptable

Facteurs d'importance et

eDF

►Travail effectué :

Rechercher les travaux effectués dans ce domaine, élaborer une première proposition de démarche de conception probabiliste/déterministe.

Schéma général :

Faire un va et vient successif entre approche déterministe pour concevoir et EPS pour enrichir la conception.

Les étapes seraient :

- pré-design déterministe (quel caloporteur, quel modérateur, quel combustible)
- EPS compacte (re-répartition, re-conception des lignes de défenses, ajout de nouvelles lignes)
- design déterministe des systèmes (critère de défaillance unique...)
- défense en profondeur au niveau composant et du niveau de risque = dernière EPS complète (vérification de l'indépendance des lignes de défense, de la phase d'enrichissement de la conception)

Facteurs d'importance et conception

eDF

Exemple:

peut comparer le FAR du système qui supporte la mission de la ligne Pour savoir si une ligne de défense est indépendante des autres on de défense au FAR de la mission (c.f. figure). Si les deux FAR sont identiques la ligne de défense est indépendante des autres.

FUSION

d'événements composés Facteurs d'importance

eDF

Résultats « académiques »

Présentation en congrès (ESREL juin 07)

Perspectives pour EDF

(actuellement)

Production d'un rapport présentant ces pistes de développement

(à venir)

Discussion sur les pistes de développement proposées

Expression du risque

▶ Décomposition pivotale :

$$P(FUSION) = p_i \cdot P(FUSION / EB_i) + (1 - p_i) \cdot P(FUSION / \overline{EB_i})$$

$$P(FUSION) = p_i \cdot (P(FUSION / EB_i) - P(FUSION / \overline{EB_i})) + P(FUSION / \overline{EB_i})$$

$$a_i = P(EB_i \ critique)$$

$$b_i$$

Les FI

► Le FAR:

$$FAR(EB_i) = \frac{R_{1,i} - R}{R} = \frac{a_i \cdot (1 - p_i)}{R} = \frac{P(EB_i \ critique) \cdot (1 - p_i)}{R}$$

Signification:

- Si *EB*; correspond à la def. de la pompe, le FAR de *EB*; nous donne la probabilité que la pompe soit critique et en marche.
- C'est le pourcentage d'augmentation du risque instanné lorsque la pompe est défaillante

► Utilisation:

Il indique sur le niveau de défense en profondeur relativement à *EB_i*

► Le FDR:

$$FDR(EB_i) = \frac{R - R_{0,i}}{R} = \frac{a_i \cdot p_i}{R} = \frac{P(EB_i \ critique) \cdot p_i}{R}$$

Signification :

- => la probabilité que la def. de la pompe provoque la fusion. Si EB, correspond à la def. de la pompe, le FDR de EB, nous donne la probabilité que la pompe soit critique et en panne
- Ce serait le pourcentage de diminution du risque si la pompe est défaillante
- C'est le pourcentage d'accroissement de risque instantané lorsque $oldsymbol{
 ho}_i$ est doublé

■ Utilisation:

ullet II indique sur le niveau contribution au risque de EB_i