En los Ejercicios 12 y 13, sea $T(\mathbf{x}) = A\mathbf{x}$, donde A es una matriz 2×2 .

- **12.** Demostrar que T es inyectiva si y solo si el determinante de A es distinto de cero.
- **13.** Demostrar que det $A \neq 0$ si y solo si T es sobrevectiva.
- **14.** Supongamos que $T: \mathbb{R}^2 \to \mathbb{R}^2$ es lineal y está dada por $T(\mathbf{x}) = A\mathbf{x}$, donde A es una matriz 2×2 . Demostrar que si det $A \neq 0$, entonces T transforma paralelogramos en paralelogramos. [SUGERENCIA: el paralelogramo general de \mathbb{R}^2 se puede describir como el conjunto de puntos $\mathbf{q} = \mathbf{p} + \lambda \mathbf{v} + \mu \mathbf{w}$ para $\lambda, \mu \in (0,1)$ donde $\mathbf{p}, \mathbf{v}, \mathbf{w}$ son vectores de \mathbb{R}^2 tales que \mathbf{v} no es un múltiplo escalar de \mathbf{w} .]
- **15.** Una aplicación $T: \mathbb{R}^2 \to \mathbb{R}^2$ se denomina **afín** si $T(\mathbf{x}) = A\mathbf{x} + \mathbf{v}$, donde A es una matriz 2×2

- y \mathbf{v} es un vector fijo en \mathbb{R}^2 . Demostrar que esto es así para T en los Ejercicios 12, 13 y 14.
- **16.** Supongamos que $T: \mathbb{R}^2 \to \mathbb{R}^2$ es como la del Ejercicio 14 y que $T(P^*) = P$ es un paralelogramo. Demostrar que P^* es un paralelogramo.
- **17.** Considérese la aplicación $T: D \to D$, donde D es el disco unidad en el plano, dada por

$$T(r\cos\theta, r\sin\theta) = (r^2\cos 2\theta, r^2\sin 2\theta).$$

Utilizando notación compleja, z=x+iy, la aplicación T se puede escribir como $T(z)=z^2$. Demostrar que el determinante jacobiano de T se anula solo en el origen. Por tanto, fuera del origen, T es localmente inyectiva. Demostrar sin embargo que T no es globalmente inyectiva.

6.2 Teorema del cambio de variables

Dadas dos regiones D y D^* de \mathbb{R}^2 , una aplicación diferenciable T de D^* con imagen D—es decir, $T(D^*) = D$ —y una función real integrable $f \colon D \to \mathbb{R}$, deseamos expresar $\iint_D f(x,y) \, dA$ como una integral sobre D^* de la función compuesta $f \circ T$. En esta sección vamos a ver cómo hacer esto.

Supongamos que D^* es una región del plano uv y que D es una región en el plano xy. La aplicación T se define mediante las dos funciones de coordenadas:

$$T(u,v) = (x(u,v), y(u,v))$$
 para $(u,v) \in D^*$.

En primer lugar, podríamos conjeturar que

$$\iint_{D} f(x,y) dx dy \stackrel{?}{=} \iint_{D^*} f(x(u,v), y(u,v)) du dv, \tag{1}$$

donde $f \circ T(u, v) = f(x(u, v), y(u, v))$ es una función compuesta definida sobre D^* . Sin embargo, si consideramos la función $f: D \to \mathbb{R}^2$ donde f(x, y) = 1, entonces la Ecuación (1) implicaría

$$A(D) = \iint_D dx \, dy \stackrel{?}{=} \iint_{D^*} du \, dv = A(D^*). \tag{2}$$

Pero la Ecuación (2) solo se cumple en unos pocos casos especiales y no para una aplicación T cualquiera. Por ejemplo, definimos T como $T(u, v) = (-u^2 + 4u, v)$. Restringimos T al cuadrado unidad; es decir,