

COMP7015 Artificial Intelligence

Lecture 12: Genetic Algorithm & Course Review

Instructor: Dr. Kejing Yin

December 1, 2022

Course Project

- Submit early to avoid last-minute accidence!
- The submission box closes at due automatically. Late submissions are not allowed unless prior consent is obtained.
- Present your face in the video presentation.
 - 8. In the **Presentation Video**, you are required to display the presenter's faces clearly to allow the lecturers to identify your identity.

Agenda

Genetic Algorithm

- Course Review
- Tips & Suggestions for preparing for the final

Review of Assignments

Genetic Algorithm

Genetic Algorithm

Why using genetic algorithm?

Avoid getting trapped in (bad) local optima

$$x \in \{a, b, c, d, e\}, \quad x \in \{true, false\},\$$

- To handle discrete design variables
- However, genetic algorithms do not guarantee a global optimum.

Motivating Problem: Discrete Optimization

The Knapsack Problem

Goal: maximize the value of items but cannot exceed the weight limit.

Maximum weight: 3kg

Value: 750 Weight: 0.4

1100 1.2

1800.3

0.6

1.0

80 0.2

120 0.6

Motivating Problem: Discrete Optimization

- Solution 1: Brute-force (List out all possible combinations)
 - For each item, use a binary variable to indicate its status.
 - Complexity: 2^N where N is the number of items.

Number of items	Number of combinations	Seconds
5	32	0.0000192
10	1,024	0.00006144
20	1,048,576	0.06291456
30	1,073,741,824	64.42450944
40	≈ 10 ¹²	~65970.6976666
50	≈ 10 ¹⁵	~67553994.4106
60	≈ 10 ¹⁸	~69175290276.4

(2193 years)

Motivating Problem: Discrete Optimization

Solution 2: Genetic Algorithm

Number of items	Time using Brute-force	Time using Genetic Algorithm	Accuracy of Genetic Algorithm
5	0.00000192	0.000460147	100.00%
10	0.00006144	0.001574755	100.00%
20	0.06291456	0.003477812	100.00%
30	64.42450944	0.007086039	100.00%
40	~65970.6976666	0.0159061	100.00%
50	~67553994.4106	0.0206821	97.57%
60	~69175290276.4	0.0238941	94.32%

COMP7015 (HKBU) L12: GA & Review December 1, 2022

Idea of Genetic Algorithm

- Genetic algorithm (GA) belongs to a larger class of "Evolutionary algorithms".
- It is inspired by the process of natural selection.
- Natural Selection is a very successful organizing principle for optimizing individuals and populations of individuals.
- It is argued that if we can mimic natural selection, then we will be able to optimize more successfully.
- Only the fittest survive define a fitness function.

Terminologies

Each chromosome represents a solution, often using strings of 0's and 1's. Each bit typically corresponds to a gene. This is called binary encoding.

10

https://ocw.mit.edu/courses/ids-338j-multidisciplinary-system-design-optimization-spring-2010/resources/mitesd_77s10_lec11/

- 1. Initialize Population
- 2. Select individual for mating
- 3. Mate individuals and produce children
- 4. Mutate children
- 5. Insert children into population
- 6. Check whether termination conditions are met
- 7. Output

1. Initialize Population

Biology

Design (binary coding)

- 2. Select individual for mating
 - a) Choosing the right fitness function
 - b) Evaluating genes with fitness functions
 - c) Selecting genes with higher value, e.g., top k

Selection by Ranking

- Goal is to select parents for crossover
- Should create a bias towards more fitness
- Must preserve diversity in the population
- (1) Selection according to RANKING

Example: Let
$$D=\sum_{j\in P}\ 1/j$$
 select the kth most fit member of a population to be a parent with probability $P_k=\left(\frac{1}{k}\right)D^{-1}$

Better ranking has a higher probability of being chosen, e.g. 1st $\propto 1$, 2nd $\propto 1/2$, 3rd $\propto 1/3$...

13

https://ocw.mit.edu/courses/ids-338j-multidisciplinary-system-design-optimization-spring-2010/resources/mitesd_77s10_lec11/

- 2. Select individual for mating
 - a) Choosing the right fitness function
 - b) Evaluating genes with fitness functions
 - c) Selecting genes with higher value, e.g., top k

Roulette Wheel Selection

Roulette Wheel Selection

Probabilistically select individuals based on some measure of their performance.

Sum of individual's selection probabilities

3rd individual in current population mapped to interval [0, Sum]

14

Selection: generate random number in [0, Sum] Repeat process until desired # of individuals selected Basically: stochastic sampling with replacement (SSR)

https://ocw.mit.edu/courses/ids-338j-multidisciplinary-system-design-optimization-spring-2010/resources/mitesd_77s10_lec11/

- 2. Select individual for mating
 - a) Choosing the right fitness function
 - b) Evaluating genes with fitness functions
 - c) Selecting genes with higher value, e.g., top k

Tournament Selection

https://ocw.mit.edu/courses/ids-338j-multidisciplinary-system-design-optimization-spring-2010/resources/mitesd_77s10_lec11/

COMP7015 (HKBU) L12: GA & Review December 1, 2022 15

Children

Two-point crossover

COMP7015 (HKBU) L12: GA & Review December 1, 2022 16

4. Mutate children

17

COMP7015 (HKBU) L12: GA & Review December 1, 2022

- 5. Insert children into population
- 6. Check whether termination conditions are met
 - a) Iteration:

The maximum number of generations completed.

b) Design variable:

All genes become almost the same.

c) Fitness:

The improvement of the fitness (reward) is marginal.

7. Output the design variables

COMP7015 (HKBU) L12: GA & Review December 1, 2022

Step 1: Initialize population

1100 180

90 0.6

0.2

120 0.6

Weight: 0.4 0.3 1.0 1.2

1000110

1000001

1100001

1111001

0110100

0100010

1101001

Step 2: Select Individuals for matting

Value: Weight:

750 0.4

1.2

1800.3

0.6

1.0

80 0.2

1200.6

Generation 0 (just random)

1000110

1100001

1111001

0110100

0101011

0100010

1010110

0010011

1101001

21

Fitness function: sum of the values

Fitness =
$$\begin{cases} 750 \ b_1 + 1100 \ b_2 + 180 \ b_3 + 90 \ b_4 + 3 \ b_5 + 80 \ b_6 + 120 \ b_7 & \text{if weight} \le 3 \\ 0 & \text{if weight} > 3 \end{cases}$$

COMP7015 (HKBU) L12: GA & Review December 1, 2022

Value:

Step 2: Select Individuals for matting

80 0.2

0.6

Weight:

0.4

750

1.2

0.3

0.6

1.0

Generation 0 (just random)

1000110

1000001

1100001

1111001

0110100

0101011

0100010

1010110

1101001 0010011

Fitness function: sum of the values

833

870

1970

0

1283

1390

1180

1180

380

Step 2: Select Individuals for matting (e.g., Roulette Wheel selection method)

Suppose the two get selected

Individual	Fitness Function	Selection Probability
1000110	833	0.07
1000001	870	0.08
1100001	1970	0.18
1111001	0	0
0110100	1283	0.12
0101011	1390	0.12
0100010	1180	0.11
1010110	1180	0.11
0010011	380	0.03
1101001	2060	0.18
	Sum = 11146	Sum = 1

23

COMP7015 (HKBU) L12: GA & Review December 1, 2022

Step 3: Mate individuals and produce children (cross-over)

COMP7015 (HKBU) L12: GA & Review December 1, 2022

Step 4: Mutate children

children

COMP7015 (HKBU) L12: GA & Review December 1, 2022

mutation

Step 5: Insert children into population

Generation 1

Step 6: Check Termination

If one of the following conditions is met, terminate:

- The maximum number of generations completed.
- All genes become almost the same.
- The improvement of the fitness is marginal.

Otherwise, go back to step 2 and iterate.

The individual with maximum fitness function is the result.

https://www.youtube.com/watch?v=pgaEE27nsQw&t=1s

A Demo: Flexible Muscle-Based Locomotion for Bipedal Creatures

https://www.youtube.com/watch?v=pgaEE27nsQw

Suggested Readings

 David E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, 1989

COMP7015 Artificial Intelligence Course Review

Artificial Intelligence

- Searching
- Knowledge Representation & Logics
- Machine Learning
- Deep Learning
- Bayesian Learning
- Reinforcement Learning
- Genetic Algorithms

I. Searching

- How to formulate a search problem: states, initial state, goal state, & actions
- Uninformed Search (blind search):
 - BFS, graph DFS, uniform-cost search
 - Tree-like search: tree-like DFS, depth-limited search, iterative deepening search
- Informed Search (heuristic search; have hints about the how close a state is to the goal state):
 - Heuristic functions: admissible? Which is better?
 - Greedy search & A* search
- Constraint Satisfaction Problems (CSPs):
 - Variables and domains
 - Backtracking with forward checking
- Which algorithm to use?

II. Knowledge Representation and Logics

- Goal: Represent and store information and derive conclusions from the available information.
 (example: virtual assistant)
- Why logics? Natural language is not precise. Need a precise way to store and process knowledge.
- Ingredients of logic: Syntax, Semantics, and Inference Rules.
- Propositional Logics
 - Syntax: propositional atoms and propositional connectives
 - Semantics: models, satisfaction, truth table
 - Knowledge base: entailment, satisfiability, Tell and Ask operations.
 - Inference Rules: Modus Ponens, Resolution
- First-order Logics
 - Syntax and Semantics: quantifiers (universal and existential)
 - Inference Rules: generalized Modus Ponens rule

COMP7015 (HKBU) L12: GA & Review December 1, 2022

III. Machine Learning (1/2)

- Supervised Machine Learning Algorithms
 - Linear regression, logistic regression: loss minimization framework, gradient descent
 - Decision tree (ID3) algorithm
 - Entropy, information gain, information gain ratio
 - Bi-partition for continuous attributes
- Generalization and Model Selection
 - How to evaluate model performance? Hold-out, repeated hold-out, K-fold, leave-one-out
- Performance Measures for Classification Problems
 - Confusion matrix
 - Metrics: accuracy, precision, recall, f1-scores
- Ensemble Learning:
 - Why and when ensemble learning could help?
 - Random forest.

III. Machine Learning (2/2)

- Multi-class classification
 - OvO and OvR approach
 - Performance Evaluation
- Feature Engineering
 - Hypothesis class: a feature extractor (or feature mapping) determines the hypothesis class.

IV. Deep Learning

- Neural Networks: Feature (representation) learning
- Feedforward Neural Network
 - Neurons, layers, nonlinear activation functions
 - Computational graphs and backpropagation
 - Stochastic gradient descent
- Regularization Techniques
- Convolutional Neural Networks
 - Convolution, padding, stride, receptive field, pooling
 - Why CNN?
- Recurrent Neural Networks
 - Sequential data
 - RNN, vanilla RNN, LSTM
- Language Models: word embeddings
- Pre-trained CNN and language models and fine-tuning

V. Bayesian Learning

- Probabilities
 - Independence vs conditional independence
- Bayesian Decision Theory: MAP decision
 - Bayes' rule
 - Prior, posterior & likelihood
 - Naïve Bayes classifier
- Bayesian Network
 - Why do we need Bayes net? Space complexity
 - Structure of Bayesian network
 - Belief propagation

VI. Reinforcement Learning

- Markov Decision Process
 - Why? Uncertainty
 - State, chance nodes, transition function, reward.
 - Policy evaluation: how good a given policy is?
 - Utility, discounting, value, Q-value.
 - Value iteration: what is the optimal value and optimal policy?
 - Optimal value, optimal policy, iterative algorithm
- Reinforcement Learning
 - Why? No access to transition function and reward.
 - Framework
 - Monte Carlo methods
 - Model-based: estimate the MDP
 - Model-free: estimate the Q-value directly.
 - Q-learning
 - ϵ -greedy algorithm: exploration vs exploitation

VII. Genetic Algorithm

- Why genetic algorithm?
- Algorithm process:
 - Initialize population
 - Select individuals for mating: selection methods
 - Mate individuals and produce children: crossover
 - Mutate children
 - Insert children into population
 - Check termination and return output

The final exam

- Materials for preparation:
 - Slides (you can safely skip parts we did not cover in class)
 - Lab materials
 - Assignments (written/programming)
 - Quiz
- Give short explanation when you are not certain about your answer.
- Give intermediate steps.
- You can use a calculator.
- There are in total 8 questions. There will be less calculation than the quiz.
- Scan through the questions before start: not ordered by difficulty.

