Financial Data Science

Lecture 1 Introduction to Financial Data Science

Liu Peng liupeng@smu.edu.sg

Pre-class, in-class, and after-class activities

Pre-class learning resources

Self-paced learning, covering essential contents to be covered in class

Group homework

Takeaway homework to be completed as a group and submitted before the next class

In-class quiz

Reinforce understanding via practice and discussion

Student discussions

Open forum for Q&A and discussions

Final project

Practice and deepen understanding of learned knowledge

Weekly lesson plan

Session	Topics	Assignments/Activities
1	Introduction to Financial Data Science	
2	Data Preprocessing and Feature Engineering	Group assignment
3	Foundational ML Models in Finance – Linear Regression	Project guideline release
4	Foundational ML Models in Finance – Logistic Regression	Group assignment
5	Portfolio Optimization with ML	
6	Tree-Based Models	Group assignment
7	Neural Networks	
8	Deep Reinforcement Learning	Project presentation
9	Model Evaluation and Explainability	Project presentation
10	Course Review and Final Team Presentation	Project presentation
11	FINAL EXAM (Closed book)	

Course assessment rubics

Class

- 20%
- Engagement in discussion, critical thinking

Group assignment

- 40%
- Team work, problem solving, communication

Final exam

- 40%
- Problem solving, decision making

References and resources

- Books:
- Bayesian Optimization: Theory and Practice Using Python, Liu Peng, Apress
- Quantitative Trading Strategies with Python, Liu Peng, Apress
- The Statistics and Machine Learning with R Workshop, Liu Peng, Packt
- Deep Reinforcement Learning in Portfolio Optimization, Liu Peng, CRC (upcoming)
- Deep Learning Generalization, Liu Peng, CRC (upcoming)
- Quantitative Risk Management with Python, Liu Peng, Apress (upcoming)
- Papers: See reference papers for each session

Grading curve

Not drawn to scale

Exact distribution is class-specific and confidential

Office consultation hours

10am-12pm, Fri

- Email me before you come

Room 5118, LKCSB

Alternatively, can send me an email to book other slots

Quick self-introduction

Your name and hobby

Form class groups

Learning outcomes

Course outlook overview

Ways to engage in learning and discussion

Getting to know data science

Understand major Financial ML applications

Python basics

Tutorials and References

- Introduction to machine learning https://youtu.be/00t53nPpbnU
- Python programming basics https://youtu.be/u5mSDRCoaEo
- Downloading and visualizing stock prices with Python https://youtu.be/ngPjj93B5kE
- Chapter 1&2, The Statistics and Machine Learning with R Workshop

Artificial (General) Intelligence

risk

mkt

credit

ops

model

Financial Data Science

Finance

Data Science

Intersection

What data do we work with?

• Tabular structured data

• Image pixel [0, 255], color RGB

• Text input -> model -> output

structured

Common Data Structure

- Scalar 3
 - Boolean 0/1
 - Numeric 2, 3
 - Categorical A/B
- Vector [1, 2, 3]
- List [1, A, 3]
- Matrix [[_______]
- Dataframe
- Tensor

Common Control Logic

- True or False
- If-else
- Loop
 - For
 - While
- Function

Figure 1.9 – Illustration of a function's workflow

Different Data Representation

- Wide format
- Long format
- One-hot encoding

Merging Two Datasets

Figure 2.2 – Four different joins commonly used in practice

In-class quiz

Three Main Types of Models

- Supervised Learning
- Unsupervised Learning
- Reinforcement Learning

How to build a good model?

https://playground.tensorflow.org/

Flavors of machine learning: Supervised

Case study: large language models (LLM)

- Definition: LLMs are neural networks designed to generate and understand human-like text based on vast amounts of data.
- Supervised Learning Paradigm: LLMs are typically trained using supervised learning, where
 the model learns to map input sequences (e.g., text) to target sequences (e.g., next word or
 sentence).
- The training process involves minimizing cross-entropy loss using gradient-based optimization.
- Regularization techniques and evaluation metrics are crucial for model performance.
- Exploring more sophisticated models, optimization strategies, and data augmentation techniques to enhance LLM capabilities.

LLM: Data and Representation

• Training Data:

- Consists of large corpora of text, where each text sequence ${\bf x}$ is paired with a target sequence ${\bf y}$.
- Data pairs: $(\mathbf{x}_i, \mathbf{y}_i)$ for i = 1, 2, ..., N, where N is the number of samples. Q: how many data pairs can we get from a sentence?

Tokenization:

- Text is tokenized into a sequence of tokens $\mathbf{x}_i = (x_{i1}, x_{i2}, ..., x_{im})$.
- ullet Embedding $E:\mathcal{V} o\mathbb{R}^d$ maps each token x_{ij} from vocabulary \mathcal{V} to a d-dimensional vector.

Input Representation:

• Input sequence: $\mathbf{X}_i = (E(x_{i1}), E(x_{i2}), ..., E(x_{im}))$, where $\mathbf{X}_i \in \mathbb{R}^{m \times d}$.

LLM: Model Architecture

Neural Network:

- Typically uses transformers with layers of self-attention and feed-forward networks.
- Model parameters: θ (weights of the neural network). Q: how many parameters does a typical LLM have?
- Output: Predicted sequence $\hat{\mathbf{y}}_i$.

Sequence Prediction:

- For each input \mathbf{X}_i , the model predicts the next token $\hat{y}_{i,j+1}$ conditioned on previous tokens.
- Probability distribution: $P(\hat{y}_{i,j+1}|\mathbf{X}_i,\theta)$. Q: how does this influence LLM output?

LLM: Loss Function

Cross-Entropy Loss:

- Measures the difference between the predicted probability distribution and the true distribution.
- Loss for a single sequence:

$$\mathcal{L}_i(heta) = -\sum_{j=1}^m \log P(y_{ij}|\mathbf{X}_i, heta)$$
 Q: is this differentiable?

Total loss over all training samples:

$$\mathcal{L}(heta) = rac{1}{N} \sum_{i=1}^{N} \mathcal{L}_i(heta)$$

• Goal: Minimize the loss $\mathcal{L}(\theta)$ by adjusting model parameters θ .

LLM: Optimization

Gradient Descent:

Update rule for model parameters:

$$heta_{t+1} = heta_t - \eta
abla_{ heta} \mathcal{L}(heta_t)$$

• η : Learning rate. Q: how to tune this hyperparameter?

• Backpropagation:

- Computes gradients $\nabla_{\theta} \mathcal{L}(\theta)$ through the network layers.
- Uses chain rule to propagate errors from the output to the input layer.
- Stochastic Gradient Descent (SGD):
 - Often used for large datasets, updating parameters using mini-batches:

$$heta_{t+1} = heta_t - \eta
abla_{ heta} \mathcal{L}_{ ext{mini-batch}}(heta_t)$$

Flavors of machine learning

Case Study: Unsupervised Learning

Hidden Markov Model (HMM) for Market Regime Detection SMU Classification: Restricted

- States S_t :
 - Hidden market regimes (e.g., Bull, Bear, Neutral).
 - S_t represents the hidden state at time t.
- Observations O_t :
 - Observable market variables (e.g., returns).
 - O_t is the observed data at time t.
- Transition Probabilities $P(S_t|S_{t-1})$:
 - Probability of moving from one state to another.
 - Transition matrix *A*:

$$A = \{a_{ij}\}, \quad a_{ij} = P(S_t = j | S_{t-1} = i)$$

- Emission Probabilities $P(O_t|S_t)$:
 - Probability of observing O_t given state S_t .
 - Modeled as Gaussian:

$$P(O_t|S_t=j) = \mathcal{N}(O_t|\mu_j,\sigma_j^2)$$

- Initial State Distribution π :
 - Probability of each state at t=0:

$$\pi=P(S_0=i)$$

Flavors of machine learning

Case Study: Reinforcement Learning

Source: Mathworks

Q-Learning

Let's play a game!

- Context:
 - Q-Learning is a model-free reinforcement learning algorithm used to learn optimal action-selection policies in environments modeled as Markov decision processes (MDPs).
- Q-Value Update (Bellman Equation):

$$Q(s,a) = r(s,a) + \gamma \max_{a'} Q(s',a')$$

Q-Learning Update Rule:

$$Q(s,a) \leftarrow Q(s,a) + lpha \left[r(s,a) + \gamma \max_{a'} Q(s',a') - Q(s,a)
ight]$$

• Optimal Policy:

$$\pi^*(s) = rg \max_a Q(s,a)$$

Reading materials

- https://www.coursera.org/articles/machine-learning-in-finance
- Deep learning in finance and banking: A literature review and classification
- An Overview of Machine Learning, Deep Learning, and Reinforcement Learning-Based Techniques in Quantitative Finance: Recent Progress and Challenges
- Machine Learning for Quantitative Finance Applications: A Survey

Homework

- Watch/review video tutorials and class recording for week 1 lecture (if you have not done so)
- Post learning reflections and questions in the group chat if any
- Form groups, get to know your teammates and discuss ideas for final project