Sprawozdanie algorytmy grafowe

Algorytmy i struktury danych Kacper Majorkowski Adam Mikołajczak

I. Metodologia

Utworzone zostały trzy spójne, acykliczne, skierowane reprezentacje grafu, z nasyceniem wierzchołków równym 50%, G(n, m), gdzie n - ilość wierzchołków, m - ilość krawędzi

- Macierz sąsiedztwa adjMatrix
- Lista następników adjList
- Tabela krawędzi edgeList

Dla każdej z nich wykonano testy złożoności czasowej sortowań topologicznych BFS oraz BFS. Wykonano dziesięć testów, dla grafów z ilością wierzchołków n w przedziale 100 - 1000 z krokiem co 100. Podany czas jest średnią wykonywania z pięciu prób.

II. Grafy

1. Macierz sąsiedztwa, złożoność:

- a) pamięciowa $O(n^2)$ trzeba utworzyć tabelę o rozmiarach $n \times n$ wierzchołków
- b) znalezienia pojedynczej krawędzi O(1) wystarczy podać wierzchołek wyjścia i wejścia oraz odwrotnie jako parametry tablicy, i sprawdzić czy jest tam 1, która oznacza że istnieje taka krawędź
- c) znalezienie wszystkich następników wierzchołka O(n) należy przeszukać cały wiersz tablicy, aby mieć pewność że sprawdziliśmy wszystkie wierzchołki

2. Lista następników, złożoność:

- a) pamięciowa O(n+m) utworzenie wierszy w tabeli dla wszystkich wierzchołków, następnie dla wszystkich wierszy dopisanie następników (1 łącznie ilość krawędzi)
- b) znalezienia pojedynczej krawędzi średnio $O(\frac{n}{m})$, jednak w najgorszym przypadku gdy wierzchołek będzie na końcu wiersza, będzie to O(n)
- c) znalezienie wszystkich następników wierzchołka średnio $O(\frac{n}{m})$, w najgorszym przypadku tak jak powyżej, wierzchołek jako następników może posiadać wszystkie inne wierzchołki, przez co złożoność będzie wynosić O(n)

3. Tabela krawędzi, złożoność:

- a) pamięciowa O(m) tworzymy dwie kolumny, o długości m, do pierwszej wpisujemy wierzchołek wyjściowy, do drugiej wejściowy
- b) znalezienia pojedynczej krawędzi O(m) trzeba przeszukać wszystkie wiersze w poszukiwaniu krawędzi
- c) znalezienie wszystkich następników O(m) tak samo jak powyżej, musimy przejść przez wszystkie krawędzie aby być pewnym, iż nic się nie pominęło

III. Złożoność sortowania topologicznego

1. BFS

Tworzymy tablicę pomocniczą in_degree, która reprezentuje stopnie wejściowe wierzchołków w grafie. Najpierw inicjalizujemy ją z samymi zerami dla każdego wierzchołka, więc złożoność tej operacji to O(n). Następnie kalkujemy faktyczne stopnie wierzchołków, złożoność tej operacji jest zależna od reprezentacji grafu: musimy przejść w niej przez każdą krawędź (wyszukiwanie następników danych wierzchołków). Następnie przechodzimy przez tablicę in_degree w poszukiwaniu wierzchołka z zerowym stopniem (O(n)). W trakcie działania algorytmu zmniejszamy stopnie wejściowe następników wierzchołków z zerowym stopniem wejściowym (operacja zależna od reprezentacji). Tą operacje wykonujemy dla każdego wierzchołka (O(n)).

- a) Macierz sąsiedztwa $O(n + n + n + (n * n)) = O(n^2 + 3n) = O(n^2)$
- b) Lista następników:

i) Średnio:
$$O(n + \frac{n}{m} + n + (n * \frac{n}{m})) = O(\frac{n^2}{m} + \frac{n}{m} + 2n) = O(\frac{n^2}{m})$$

- ii) Najgorszy: $O(n + n + n + (n * n)) = O(n^2 + 3n) = O(n^2)$
- c) Tabela krawędzi O(n + m + n + (n * m)) = O(n * m + 2n + m) = O(n * m)

2. DFS

Tworzymy tablicę pomocniczą visited, która mówi o tym czy dany wierzchołek został już odwiedzony. Najpierw inicjalizujemy ją z wartościami False dla każdego wierzchołka, więc złożoność tej operacji to O(n). Algorytm przechodzi przez wszystkie wierzchołki (O(n)). Dla każdego z nich wyszukujemy następników (zależnie od reprezentacji). Następnie sprawdzamy czy dany następnik został już odwiedzony (średnio ($O(\frac{m}{n})$).

- a) Macierz sąsiedztwa $O(n + n * n * \frac{m}{n}) = O(n * m)$
- b) Lista następników:
 - i) Średnio: $O(n + n * \frac{n}{m} * \frac{m}{n}) = O(n)$
 - ii) Najgorszy: $O(n + n * n * \frac{m}{n}) = O(n * m)$
- c) Tabela krawędzi $O(n + n * m * \frac{m}{n}) = O(m^2)$

