

Contouring

Marching Tetrahedra

Scientific Visualization Professor Eric Shaffer

Motivation

- Marching Cubes was patented
- MC applies to structured grids...not unstructured tetrahedral meshes
 - ..tet meshes are popular
- Handling ambiguities in MC is not easy

Marching Tetrahedra: Algorithm

Cell Configurations

Only 5 equivalence classes of configurations if we allow rotation

Generating the Isosurface

Generate a vertex along each bipolar edge

For mesh edge [p,q] with $f(p)=s_p$ and $f(q)=s_q$ and isovalue f_0

Place vertex at
$$(1-t)p + tq$$
 where $t = \frac{(f_0 - s_p)}{(s_q - s_p)}$ \subset \Box

Using these vertices, generate one or two triangles inside the tetrahedron for the isosurface patch

Properties of the Isosurface

Assume:

- The isovalue does not equal the scalar value of any mesh vertex.
- The tetrahedral mesh is a partition of a 3-manifold with boundary.

Resulting Properties

- The isosurface is a piecewise linear, orientable 2-manifold with boundary.
- The boundary of the isosurface lies on the boundary of the grid.
- The isosurface does not contain any zero-area triangles or duplicate triangles

Ambiguity

Marching Tetrahedra has no ambiguous configurations.

- The four vertices of each tetrahedron are connected by tetrahedron edges
- Each such edge is intersected at most once by the isosurface
- There is no possible ambiguity in the isosurface construction

Disadvantages

- Generates a large number of triangles
 - ...more than Marching Cubes
- Unstructured nature of the tetrahedral mesh impacts scalability
 - Harder to manage storage
 - Partitioning for parallel processing

All these issues can be overcome...

Cube Tetrahedralization

Can apply marching tetrahedra to regular grids

Decompose cubes into tetrahedra

Can choose to use either 5 or 6 tetrahedra per cube

Cube Tetrahedralization

This creates diagonal facets on the square faces of the cube Diagonals of adjacent cube faces must match

Using 6 tetrahedra per cube results in matching diagonals

• If 5 tetrahedra are used, need to alternate the decomposition

Where did the Ambiguity Go?

- MC has ambiguous cases
- MT does not

Choice of tetrahedral decomposition orientation resolves the ambiguity

Isocontouring a Triangle Mesh

Extremely simple algorithm

...no table

...each triangle has at most one contour edge

...place the vertices of contour edge using linear interpolation.

