

3

Efficient Sorting -

The Power of Divide & Conquer

17 October 2022

Sebastian Wild

Learning Outcomes

- 1. Know principles and implementation of *mergesort* and *quicksort*.
- 2. Know properties and *performance characteristics* of mergesort and quicksort.
- **3.** Know the comparison model and understand the corresponding *lower bound*.
- **4.** Understand *counting sort* and how it circumvents the comparison lower bound.
- **5.** Know ways how to exploit *presorted* inputs.

Unit 3: Efficient Sorting

Outline

3 Efficient Sorting

- 3.1 Mergesort
- 3.2 Quicksort
- 3.3 Comparison-Based Lower Bound
- 3.4 Integer Sorting
- 3.5 Adaptive Sorting
- 3.6 Python's list sort
- 3.7 Order Statistics
- 3.8 Further D&C Algorithms

Why study sorting?

- fundamental problem of computer science that is still not solved
- building brick of many more advanced algorithms

Algorithm with optimal #comparisons in worst case?

- for preprocessing
- as subroutine
- playground of manageable complexity to practice algorithmic techniques

Here:

- "classic" fast sorting method
- ▶ exploit partially sorted inputs
- ▶ parallel sorting → Unit 5

Part I

The Basics

Rules of the game

- ► Given:
 - ► array A[0..n) = A[0..n 1] of *n* objects
 - a total order relation ≤ among A[0],...,A[n-1]
 (a comparison function)
 Python: elements support <= operator (_le_())
 Java: Comparable class (x.compareTo(y) <= 0)
- ▶ **Goal:** rearrange (i. e., permute) elements within A, so that A is *sorted*, i. e., $A[0] \le A[1] \le \cdots \le A[n-1]$
- for now: A stored in main memory (internal sorting) single processor (sequential sorting)

Clicker Question

What is the complexity of sorting? Type you answer, e.g., as "Theta(sqrt(n))"

→ sli.do/comp526

3.1 Mergesort

Clicker Question

How does mergesort work?

- **B** Recurse on left / right half, then combine sorted halves.
- C Grow sorted part on left, repeatedly add next element to sorted range.
- D Repeatedly choose 2 elements and swap them if they are out of order.
- **E** Don't know.

→ sli.do/comp526

Clicker Question

How does mergesort work?

- $f{B}$ Recurse on left / right half, then combine sorted halves. \checkmark
- Crew sorted part on left, repeatedly add next element to sorted range.
- D Repeatedly choose 2 elements and swap them if they are out of order.
- E Don't know.

→ sli.do/comp526

run1

run1

run1

run1

run1

Clicker Question

What is the worst-case running time of mergesort?

9

 \mathbf{A} $\Theta(1)$

 $\Theta(\log n)$

 \bigcirc $\Theta(\log\log n)$

 $\mathbf{D} \quad \Theta(\sqrt{n})$

 $\Theta(n)$

 $\Theta(n \log \log n)$

G) $\Theta(n \log n)$

 $\mathbf{H} \quad \Theta(n \log^2 n)$

 $\Theta(n^{1+\epsilon})$

 \mathbf{J} $\Theta(n^2)$

 \mathbf{K} $\Theta(n^3)$

 \mathbf{L} $\Theta(2^n)$

→ sli.do/comp526

Clicker Question

→ sli.do/comp526

Mergesort

```
procedure mergesort(A[l..r))

n := r - l

if n \le 1 return

m := l + \lfloor \frac{n}{2} \rfloor

mergesort(A[l..m))

mergesort(A[m..r))

merge(A[l..m), A[m..r), buf)

copy buf to A[l..r)
```

- recursive procedure
- merging needs
 - temporary storage buf for result (of same size as merged runs)
 - to read and write each element twice (once for merging, once for copying back)

Mergesort

```
procedure mergesort(A[l..r))

n := r - l

if n \le 1 return

m := l + \lfloor \frac{n}{2} \rfloor

mergesort(A[l..m))

merge(A[l..m), A[m..r), buf)

copy buf to A[l..r)
```

array accesce)

Analysis: count "element visits" (read and/or write)

$$C(n) = \begin{cases} 0 & n \le 1 \\ C(\lfloor n/2 \rfloor) + C(\lceil n/2 \rceil) + 2n & n \ge 2 \end{cases}$$

► recursive procedure

- merging needs
 - temporary storage buf for result (of same size as merged runs)
 - to read and write each element twice (once for merging, once for copying back)

same for best and worst case!

Simplification
$$n = 2^k$$

$$C(2^{k}) = \begin{cases} 0 & k \le 0 \\ 2 \cdot C(2^{k-1}) + 2 \cdot 2^{k} & k \ge 1 \end{cases} = 2 \cdot 2^{k} + 2^{2} \cdot 2^{k-1} + 2^{3} \cdot 2^{k-2} + \dots + 2^{k} \cdot 2^{1} = 2k \cdot 2^{k}$$

$$C(n) = 2n \lg(n) = \Theta(n \log n)$$

$$C(2^{k}) = 2 C(2^{k-1}) + 2 \cdot 2^{k}$$

$$= 2 \left(2 \cdot C(2^{k-2}) + 2 \cdot 2^{k-1}\right) + 2 \cdot 2^{k}$$

$$= 2^{2} \cdot C(2^{k-2}) + 2^{2} \cdot 2^{k-1} + 2 \cdot 2^{k}$$

$$= 2^{2} \cdot C(2^{k-2}) + 2^{2} \cdot 2^{k-1} + 2 \cdot 2^{k}$$

Mergesort – Discussion

- optimal time complexity of $\Theta(n \log n)$ in the worst case
- stable sorting method i.e., retains relative order of equal-key items
- memory access is sequential (scans over arrays)
- \bigcap requires $\Theta(n)$ extra space

there are in-place merging methods, but they are substantially more complicated and not (widely) used

3.2 Quicksort

Clicker Question

How does quicksort work?

- **B** recurse on left / right half, then combine sorted halves.
- c grow sorted part on left, repeatedly add next element to sorted range.
- **D** repeatedly choose 2 elements and swap them if they are out of order.
- **E** Don't know.

→ sli.do/comp526

Clicker Question

How does quicksort work?

- B recurse on left / right half, then combine sorted halves
- grow sorted part on left, repeatedly add next element to sorted range.
- D repeatedly choose 2 elements and swap them if they are out of order.
- E Don't know.

→ sli.do/comp526

Partitioning around a pivot

Partitioning – Detailed code

Beware: details easy to get wrong; use this code!

(if you ever have to)

```
procedure partition(A, b)
      // input: array A[0..n), position of pivot b \in [0..n)
      swap(A[0], A[b])
      i := 0, \quad j := n
      while true do
           do i := i + 1 while i < n and A[i] < A[0]
          do j := j - 1 while j \ge 1 and A[j] > A[0]
          if i \ge j then break (goto 11)
          else swap(A[i], A[i])
      end while
10
      swap(A[0], A[i])
11
      return j
12
```

Loop invariant (5–10): $A p \leq p ? \geq p$

```
1 procedure quicksort(A[l..r))

2 if r - \ell \le 1 then return

3 b := \text{choosePivot}(A[l..r))

4 j := \text{partition}(A[l..r), b)

5 quicksort(A[l..j))

6 quicksort(A[j + 1..r))
```

- recursive procedure
- choice of pivot can be
 - ► fixed position → dangerous!
 - ► random
 - more sophisticated, e.g., median of 3

Clicker Question

What is the worst-case running time of quicksort?

9

 $\mathbf{A} \quad \Theta(1)$

 $\Theta(\log n)$

 $oldsymbol{C} \Theta(\log\log n)$

 $\mathbf{D} \quad \Theta(\sqrt{n})$

 $\Theta(n)$

 $\Theta(n \log \log n)$

 $\Theta(n \log n)$

 $\mathbf{H} \quad \Theta(n \log^2 n)$

 \mathbf{I} $\Theta(n^{1+\epsilon})$

 $\mathbf{J} \quad \Theta(n^2)$

 \mathbf{K} $\Theta(n^3)$

 \mathbf{L} $\Theta(2^n)$

→ sli.do/comp526

Clicker Question

→ sli.do/comp526

Quicksort

Binary Search Tree (BST)

7 4 2 9 1 3 8 5 6

Quicksort

Quicksort

Binary Search Tree (BST)

4 2 9 1 3 8 5 6

Quicksort

Binary Search Tree (BST)

7 4 2 9 1 3 8 5 6

- ► recursion tree of quicksort = binary search tree from successive insertion
- comparisons in quicksort = comparisons to built BST
- ► comparisons in quicksort ≈ comparisons to search each element in BST

Quicksort – Worst Case

- ► Problem: BSTs can degenerate
- ightharpoonup Cost to search for k is k-1

$$\rightsquigarrow$$
 Total cost $\sum_{k=1}^{n} (k-1) = \frac{n(n-1)}{2} \sim \frac{1}{2}n^2$

 \rightsquigarrow quicksort worst-case running time is in $\Theta(n^2)$

terribly slow

But, we can fix this:

Randomized quicksort:

- ► choose a *random pivot* in each step
- → same as randomly shuffling input before sorting

Randomized Quicksort - Analysis

- ightharpoonup C(n) = element visits (as for mergesort)
- \rightsquigarrow quicksort needs $\sim 2 \ln(2) \cdot n \lg n \approx 1.39 n \lg n$ in expectation
- ▶ also: very unlikely to be much worse: e. g., one can prove: $Pr[cost > 10n \lg n] = O(n^{-2.5})$ distribution of costs is "concentrated around mean"
- ▶ intuition: have to be *constantly* unlucky with pivot choice

Quicksort – Discussion

fastest general-purpose method

 $\Theta(n \log n)$ average case

works *in-place* (no extra space required)

memory access is sequential (scans over arrays)

 \square $\Theta(n^2)$ worst case (although extremely unlikely)

not a stable sorting method

Open problem: Simple algorithm that is fast, stable and in-place.