

计算机导论与程序设计

1 计算机体系结构及其编码方式-2

讲授内容

- 图灵机原理-什么是计算?
- ■二进制的产生和运算
- 数的表示: 数据的编码的基本原理

二进制(0和1)

对图灵机的进一步分析

- 在图灵机的计算例子中,字母表是 { 1, b }, 其中符号 b (空白(Blank), 在计算机领域中通常叫空格)的作用 是什么?
 - □它是被加数、加数、和的边界符号,表示着计算对象和 计算结果的边界。
- 因此,真正用来表示被加数、加数与和的数值的,只有符号 1。
 - □那么,数值 1,000,000 就应当由一百万个 1 来表示。 读入这一个数,读写头就要移动一百万次。
 - □在设计真正的计算机时,这显然是不合理、不实际的。

- 如果这个字母表中一共有11个符号: { 0, 1, ..., 9, b }, 那么就可以用十进制来表示数值。
 - 但是,这时的程序要长得多。
 - 确定当前指令自然要花更多的时间。

怎样用机器表示带上的符号?

- 字母表中的符号越多,用电子器件表示的困难一般就越大,精确性越低。
- 一个电子器件的状态越多,可靠运行的困难通常就越大。
- 与两个状态的电子元件相比(0,1电平),有三个状态的电子元件在制造上比较困难,可靠性也比较低。

采用二进制使电子器件制造计算机成为可能!

怎样用机器表示带上的符号?

- ■制作控制器的基本要求
 - □ 控制器必须有逻辑判断能力。例如要执行下面的指令:
 - q1 1 1 R q1
 - □控制器要作出的逻辑判断是:如果当前机器状态是q1,且读入的符号是1,则
- 用机器来实现控制器,必须要考虑怎样来实现逻辑判断
 - □ 对于通用图灵机,程序要放在带上。还要考虑采用字母表中的符号来表示程序,而且这样的表示应当易于控制器来处理和判断(也就是:解释)。
- "真、假"(true / false)判断就是最基本的逻辑判断。

-- 2#

二进制的由来

- 综合以上考虑, 计算机是用两个符号(0 和 1)来:
 - 表示数据;
 - 表示程序;
 - 按照以此为基础的"布尔代数"(或"二值逻辑"),来设计和制造计算机中的大多数零件(元器件)。(在以后的《数字系统设计基础》、《计算机组成原理》等课程中,同学们将学习相应的基本原理和设计方法)
- 这样的表示方法叫做二进制(Binary)表示。
 - 最早的二进制表示来自我国的《周易》。

- 综合以上考虑, 计算机是用两个符号(0 和 1)来:
 - ■表示数据
 - ■表示程序
 - 按照以此:
 - 和制造计算
 - 系统设计
 - 习相应的
- 这样的表示
 - 最早的二.

回顾:用十进制来表示数值的规则

■一个数的十进制表示记为:

$$d_n d_{n-1} ... d_1 d_0$$
 (10)

其中:

$$d_n \in \{ 1, ..., 9 \}, n>0$$
 (多位数) 123, 0123 $d_n \in \{ 0, ..., 9 \}, n=0$ (一位数) 1,2,3,0 $d_{n-1}, ..., d_1, d_0 \in \{ 0, ..., 9 \}$ 123, 3040

则该数的值可用下式得出:

$$d_n x 10^n + d_{n-1} x 10^{n-1} + ... + d_1 x 10^1 + d_0 x 10^0$$

■例如,123 (10) 的值是:

$$1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0$$

$$= 100+20+3$$

= 123

得出:用二进制来表示数值的规则

一个数的十讲制表示记为:

 $d_n \in \{1, ..., 9\}, n>0$ $d_n \in \{0, ..., 9\}, n=0$

则该数的值可用下式得出:

 $1 \times 10^2 + 2 \times 10^1 + 3 \times 10^0$

例如,123₍₁₀₎的值是:

= 100+20+3

= 123

 $d_{n-1}, ..., d_1, d_0 \in \{0, ..., 9\}$

 $d_0 \times 10^0 + d_{0.1} \times 10^{0.1} + ... + d_1 \times 10^1 + d_0 \times 10^0$

 $d_n d_{n-1} ... d_1 d_0$ (10)

其中:

■ 一个数的二进制表示记为:

$$b_n b_{n-1} ... b_1 b_0$$
 (2)
其中:
 $b_n = 1, n>0$ 110, 0110
 $b_n \in \{0, 1\}, n=0$ 1, 0
 $b_{n-1}, ..., b_1, b_0 \in \{0, 1\}$
110, 1101

则该数的值可用下式得出:

$$b_n x2^n + b_{n-1} x2^{n-1} + ... + b_1 x2^1 + b_0 x2^0$$

■ 例如,1111011 (2) 的值是:

```
1 x2<sup>6</sup> + 1 x2<sup>5</sup> + 1 x2<sup>4</sup> + 1 x2<sup>3</sup> + 0 x2<sup>2</sup> + 1 x2<sup>1</sup> + 1 x2<sup>0</sup>
= 64+32+16+8+0+2+1
= 123
```

十进制整数转换为二进制整数的规则

■ 可采用辗转相除法。我们用一个例子来说明:

将123 ₍₁₀₎ 转换成等值的二进制数:
除以2的商(取整) 余数
123/2 = 61 1
61/2 = 30 1
30/2 = 15 0
15/2 = 7 1
7/2 = 3 1
3/2 = 1 1
1/2 = 0 1

自下而上地依次将余数加以汇集,即得到

对应的二进制数: 1111011 (2)。

八进制与十六进制

- 数据也可以用八进制和十六进制表示:
 - □ 八进制表示: 使用 0-7 共 8 个数字。
 - □ 十六进制表示: 使用 0-9 共 10 个数字和 A-F 共 6 个字母, 后者表示 10-15 这 6 个数。
- 将二进制数转换为八进制和十六进制数:
 - □ 从右向左,每三位进行一次转换,即从二进制数的值转换成等 值的八进制数字。
 - □ 从右向左,每四位进行一次转换,即从二进制数的值转换成等 值的十六进制数字。
 - □例:转换 1111011 (2)
 - ■1111011 ₍₂₎ = 173 ₍₈₎
 - $\blacksquare 1111011_{(2)} = 7B_{(16)}$

```
1 1 1 1 1 (2)
32 16 8 4 2 1 (10)
1 1 1 1 (2)
8 4 2 1 =15(10)
1 0 0 1 (2)
8 4 2 1 =9(10)
```

采用二进制后的一个问题

- 在我们前面的例子里, b (空格)的作用很重要,它表示着一个数的边界。如果没有了它怎么办?
- 在计算机中的做法是: 预先规定数据的表示单位。这样, 数据就不需要用特殊的符号来表示它的边界, 因为它所 在的那个单位的边界, 就是这个数据的边界。
- 在计算机中有这样几个基本单位:
 - □位(bit): 1 或者 0;
 - □ 字节 (byte): 8bits (可表示256个不同的数);
 - □字(word):与具体的计算机有关,如:8bits、16bits、32bits、64bits等。它的长度称为对应计算机的字长,相当于在对应的图灵机中,有这么多个读写头同时读写。

计算机存储容量的常用表示单位

- 在图灵机中,带的长度是无限的。但是,真实的计算机不可能做到这一点,其存储容量(相当于图灵机中带的长度)总是有限的。
- 计算机的字长可能不同,为便于比较,需用与字长无关的单位来表示计算机的存储容量,即字节。常用的表示单位是: B (Bytes)、KB (Kilobytes)、MB (Megabytes,汉语读作"兆")、GB (Gigabytes)、TB (Terabytes)。
 - □ 1KB = 1024 B = 2^{10} bytes $\approx 10^3$ bytes (千字节)
 - □ 1MB = 1024 KB = 2²⁰ bytes≈10⁶ bytes (百万字节)
 - □ 1GB = 1024 MB = 2^{30} bytes $\approx 10^9$ bytes (十亿字节)
 - □ 1TB = 1024 GB = 2^{40} bytes $\approx 10^{12}$ bytes (万亿字节)

计算机中程序如何表示? 一字符和符号

- 一种常用的标准表示是 ASCII (American Standard Code for Information Interchange) 码。
- ASCII 码用一个字节来表示一个符号或字母。这个字节的二进制表示本身是一个数,称为对应的码值。
 - ■常规 ASCII 码将这个字节的最高位(从左边数第一位)用做奇偶校验,其他 7 位可以表示 128 种符号和字母。
 - ■扩展 ASCII 码将这个字节全部用来表示,因此可表示 256 种符号和字母,其中前 128 种与常规 ASCII 码相同。
 - ■目前常用的是扩展 ASCII 码。

在计算机中怎样表示符号和英文字母?

■ 从计算机键盘输入的字母、数字和符号,都被自动转换 成对应的 ASCII 码值。例如(采用扩展 ASCII 码):

□字母R: 01010010₍₂₎, 即 82₍₁₀₎或52₍₁₆₎

□字母 r: 011110010₍₂₎, 即 114₍₁₀₎或 72₍₁₆₎

□数字 3: 00110011₍₂₎,即 51₍₁₀₎或 33₍₁₆₎

□符号%: 00100101(2), 即 37(10)或25(16)

	Ctrl -	十进制	<u> </u>	字符	代码		十进制	蓮畜	字符		十进制	連新	字符	+:	进制	遊	字符	
_	^@	0	00		NUL		32	20			64	40	@	[9	96	60	'	
^	^A	1	01		SOH		33	21	!		65	41	@ A	9	97	61	a	
^	^в	2	02		STX		34	22	<u>''</u>		66	42	В	9	98	62	b	
^	^c	3	03		ETX		35	23	#		67	43	C	9	99	63	Ç	
^	^D	4	04		EOT	П	36	24	\$		68	44	D	10	00	64	d	
^	^E	5	05		ENQ	П	37	25	%		69	45	E	10	01	65	e	
^	^F	6	06		ACK	П	38	26	&		70	46	F	10	02	66	f	
^	^G	7	07		BEL	П	39	27	'		71	47	G	10	03	67	g	
^	^н	8	08		BS	П	40	28	(72	48	Η	10	04	68	h	
^	^ı	9	09		нт	П	41	29)		73	49	Ι	10	05	69	i	
^	^j	10	0A		LF		42	2A	*		74	4A]	10	06	6A	j	
^	^K	11	0B		VT	П	43	2B	+		75	4B	K	10	07	6B	k	
^	^L	12	0C		FF	П	44	2C	`		76	4C	LΙ	10	80	6C		
^	^м	13	0D		CR	П	45	2D	-		77	4D	M	10	09	6D	m	
^	^N	14	0E		so	П	46	2E	;		78	4E	N	1:	10	6E	n	
^	^0	15	0F		SI		47	2F			79	4F	Õ	1:	11	6F	0	
	^P	16	10		DLE	П	48	30	0		80	50	P		12	70	р	
	^Q	17	11		DC1		49	31	1		81	51	Q R	1:	13	71	q	
	^R	18	12		DC2	П	50	32	2 3		82	52	K		14	72	r	
	^s	19	13		DC3	П	51	33			83	53	ş		15	73	S	
	^T	20	14		DC4	П	52	34	4		84	54	Ϊ		16	74	t	
	^U	21	15		NAK	П	53	35	5		85	55	Ŭ		17	75	u	
	^٧	22	16		SYN		54	36	6 7		86	56	V		18	76	V	
	^w	23	17		ETB	П	55	37			87	57	W		19	77	W	
	^X	24	18		CAN		56	38	8		88	58	χ		20	78	X	
	^Y	25	19		EM	П	57	39	9		89	59	Ϋ́		21	79	Ϋ́	
	^Z	26	1A		SUB		58	3A	:		90	5A	Ž		22	7A	Z	
]^	27	1B		ESC	П	59	3B	/		91	5B	[23	7B	{	
	^\	28	1C		FS		60	3C	<		92	5C	\		24	7C		
	^]	29	1D		GS		61	3D	=		93	5D]		25	7D	}	
	^^	30	1E	<u> </u>	RS		62	3E	?		94	5E	^		26	7E	č	
Ľ	^-	31	1F	•	US		63	3F	:	ı	95	5F	_	12	27	7F	ш	

^{*} ASCII 代码 127 拥有代码 DEL。在 MS-DOS 下,此代码具有与 ASCII 8 (BS) 相同的效果。 DEL 代码可由 CTRL + BKSP 键生成。

在计算机中怎样表示汉字?

- 汉字的种类远比 256 种多,何况也不能占用 ASCII 码 已经使用的码值。目前采用两个字节来表示一个汉字。
- 汉字的编码规则还没有统一。在我国大陆采用的标准是 GB2312。 256*256= 65536个汉字
- 国内的计算机都支持汉字输入与输出,用户可用多种方法输入汉字(如拼音、五笔字形等)。
- 国际组织已经制定了一种 Unicode 标准,也是采用两个字节来表示一个数字、字母、符号或文字,并为中文、日文等都分配了相应的码段(码值连续的区间),以实现各种文字的国际交流。

计算机中二进制数的四则运算

■ 仿照十进制数的运算规则,可以做二进制数的加法。

- ■用计算机做二进制数的减法
- 用计算机做二进制数的乘法:
 - □把被乘数累加乘数那么多次即可(例: 2*3=2+2+2)。
- 用计算机做二进制数的除法:
 - □反复在被除数中减去除数、直到小于除数,减的次数即为 商,剩下为余数(例: 7/3, 7-3-3=1, 商为2, 余数为1)。

整数在计算机中的表示

- 在计算机中,按照既定的二进制位数(称 为码长),
 - □最左边的那一位(称为符号位)用来表示一个整数的正负号: 0 表示正数, 1 表示负数。
 - □符号位之后的那些位(称为数值位), 用来表示这个整数的绝对值。
- 在计算机中,数可以有三种不同的二进制表示方法(差别在于负数之数值位的表示不同):
 - 口 原码表示
 - 口 反码表示
 - □ 补码表示

 $00011010 \\ +26 \\ 10011010 \\ -26$

原码表示

■ 在给定码长后,根据一个整数的正负填写符号位,再将 这个整数之绝对值的二进制表示,按照数值位的长度在 前面补足必要的 0 后,就得到这个整数的原码表示。

若码长为 8, 则 123 (10) 的原码表示是:

01111011

-123 (10) 的原码表示是:

11111011

若码长为 16, 则 123 (10) 的原码表示是:

0000000001111011

-123 (10) 的原码表示是:

1000000001111011

100

反码表示

- 规定:
 - □一个正整数的反码表示与其原码表示相同;
 - □一个负整数的反码表示:对其原码表示的数值位进行 按位变反的结果

按位将 1 换成 0、将 0 换成 1

- 例如(若码长为 8):
 - \square (26) (反) = (26) (原) = 0 0011010
 - \square (-26) (反) = 11100101 (10011010 \rightarrow 11100101)

补码表示

- 刚才留下了一个问题:
 - □用计算机怎么做二进制数的减法?
- 如果能够在负数的表示上想办法,就有可能在计算机中 利用二进制加法的部件来实现二进制减法
- 由于乘法可以用加法实现、除法可以用减法实现,因而可以用统一的部件来进行二进制数的四则运算。
- 支持这种统一处理的基础,是计算机中数的补码表示。

第一个例子

第二个例子

第二个例子

补码表示

- 在这个例子中,当里程表上的数字是 999999时,再行进 1 公里,里程表显示的是 000000。
- 由于 999999 + 1 = 000000, (从仪表盘上看到的结果), 所以从算术运算的角度看, 这里999999 的作用相当于 -1。 即 x-1=x+(-1)=x+999999
- 这就说明,当限制了数据的表示长度时,要减去一个正整数b等价于加上一个数c。可以认为:要得到的这个数c加上这个正整数b之后等于 0。我们称之为求补。
 - □在上面的例子中,要得到 1 的负数表示 -1, 就是看哪个数加上 1 后等于 0。
 - □这个数便是 999999。

数学表达

- a b = a+(-b)= a + c (b, c都是正数) b + c = 0? b + c = 100000000 (前提:码长为8位)
- ■提出补码概念的目的是
 - □用加法解决减法
 - □ 所以-b的补码等于c

补码表示

■ 回到给定码长的二进制表示上来:

例如,当码长为8(即数值位数为7),则

$$26_{(10)} = 00011010$$

那么,要得到 - 26 $_{(10)}$ 的补码 ,就得求一个二进制数 c:

使得: c + 00011010 = 100000000

这样相对于| - 26₍₁₀₎ |的 c 应该为:

11100110

因为:

补码表示

- 规定:
 - □一个正整数的补码表示与它的原码表示相同;
 - □一个负整数的补码表示:符号位为 1,数值位是其绝对值的求补结果。
- 对于一个负整数,怎样求它的补码表示?
 - □一条简单规则:对其原码表示的数值位按位变反后加 1。
 - □例: 当码长为 8, 求 -26 (10) 的补码表示(11100110):
 - ■原码表示是: 10011010
 - ■按位变反后: 11100101 (其实是反码)
 - ■加1后得到: 11100110,即得到其补码表示。

补码运算规则

- 已经证明,对于数 X 和 Y, (X+Y)(补) = X(补)+Y(补),
 (X-Y)(补) = X(补)+(-Y)(补)
- 两个数相加减,只需进行包括符号位在内的补码相加:

$$(-27)$$
 ($?$) = 11100101 (10011011 \rightarrow 11100100 \rightarrow 11100101)

(-1) (
$$^{\uparrow}$$
) = 11111111 (10000001 \rightarrow 111111110 \rightarrow 11111111)

$$(-26)$$
 ($?$) = 11100110 (10011010 \rightarrow 11100101 \rightarrow 11100110)

(-25)
$$(\ref{h}) = 11100111$$
 $(10011001 \rightarrow 11100110 \rightarrow 11100111)$

$$26 - 27 = -1$$
 $26 - 26 = 0$ $26 - 25 = 1$ 00011010 00011010 $+) 11100101$ $+) 11100110$ $+) 11100111$ 00000000 00000001

- 1、加深概念:二进制在计算机中的作用。
- 2、使用二进制进行数据的存储,相比其它进制,更节约存储空间。
- 3、熟悉原码、反码和补码的概念与计算。
- 4、继续熟悉C编程工具: Dev C++,
- VC6.0, C4droid (或其它手机编程工具)

进位计数制及其各进位制数之间66/159

- □计算机中常用的计数制
 - 二进制 (Binary)

R=2, 各数位上只有两个数字0,1

例:有二进制数x=10110111.011

其值为:27+25+24+22+21+20+2-2+2-3 =183.375

计算机中为何要采用二进制计数?

(A) 只有两种基本状态, 易于硬件实现

可用任何具有两个截然不同物理状态的器件表示或存储 二进制数。这些状态有:

开关:通--断 电流:有--无

电压:高--低 正向和反向磁化等

(B) 节省存储成本

设在R进制中用n位数字能表示的最大数为N

则:N = Rn - 1

预备知识 二进制 (Binary)

7/159

□节省存储成本

因为每位有R种状态所以要表示一位数字的成本正比于R则总成本正比于R*n,设它为x,即:x=k*R*n

设Rn=N+1=M , 两边取对数:

 $1nR^{n}=1nM$

n*1nR=1nM

n=1nM/1nR

则 x=k*R*1nM/1nR

为了求R为何值时,成本x最小,则令: dx/dR=0

P: k*n+k*R*(1nM/1nR)'=0

可以推出: (1nR-1)/1n²R=0

故有: 1nR=1, ∴R=e=2.71828 时, x取最小值。

因为R必须为整数,故可取2、3,

由于取2硬件易于实现,所以主要采用二进制计数。

35