customer-1

July 19, 2025

0.1 Load the data

0.1.1 Subtask:

Load the provided "Churn_Modelling.csv" file into a pandas DataFrame.

Reasoning: Import pandas and load the dataset into a DataFrame, then display the first 5 rows.

0.2 Explore the data

0.2.1 Subtask:

Perform some initial exploration to understand the dataset, including checking for missing values and examining the data types.

```
[]: import pandas as pd

df = pd.read_csv("Churn_Modelling.csv")
  display(df.head())
```

	RowNumber	CustomerId	Surname	CreditScore	Geography	Gender	Age	\
0	1	15634602	Hargrave	619	France	Female	42.0	
1	2	15647311	Hill	608	Spain	Female	41.0	
2	3	15619304	Onio	502	France	Female	42.0	
3	4	15701354	Boni	699	France	Female	39.0	
4	5	15737888	Mitchell	850	Spain	Female	43.0	

	Tenure	Balance	NumOfProducts	HasCrCard	${\tt IsActiveMember}$	\
0	2	0.00	1	1.0	1.0	
1	1	83807.86	1	0.0	1.0	
2	8	159660.80	3	1.0	0.0	
3	1	0.00	2	0.0	0.0	
4	2	125510.82	1	NaN	1.0	

	${ t Estimated Salary}$	Exited
0	101348.88	1
1	112542.58	0
2	113931.57	1
3	93826.63	0
4	79084.10	0

Error: Runtime no longer has a reference to this dataframe, please re-run this cell and try again.

Reasoning: Display the data types and check for missing values to understand the dataset structure and identify potential data quality issues.

```
[]: display(df.info())
display(df.isnull().sum())
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 10002 entries, 0 to 10001
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	CreditScore	10002 non-null	int64
1	Age	10002 non-null	float64
2	Tenure	10002 non-null	int64
3	Balance	10002 non-null	float64
4	NumOfProducts	10002 non-null	int64
5	HasCrCard	10002 non-null	float64
6	IsActiveMember	10002 non-null	float64
7	EstimatedSalary	10002 non-null	float64
8	Exited	10002 non-null	int64
9	<pre>Geography_Germany</pre>	10002 non-null	bool
10	Geography_Spain	10002 non-null	bool
11	<pre>Gender_Male</pre>	10002 non-null	bool
	11(2) 41+0	1(E) :-+C1(1)	

dtypes: bool(3), float64(5), int64(4)

memory usage: 732.7 KB

None

CreditScore	0
Age	0
Tenure	0
Balance	0
NumOfProducts	0
HasCrCard	0
IsActiveMember	0
EstimatedSalary	0
Exited	0
<pre>Geography_Germany</pre>	0
Geography_Spain	0
<pre>Gender_Male</pre>	0
dtype: int64	

0.3 Preprocess the data

0.3.1 Subtask:

Prepare the data for machine learning, which may include handling categorical variables, scaling numerical features, and splitting the data into training and testing sets.

Reasoning: I need to prepare the data for machine learning by dropping irrelevant columns, handling missing values, encoding categorical variables, and splitting the data. I can perform steps 1, 2, and 3 in a single code block.

```
[]: df = df.drop(['RowNumber', 'CustomerId', 'Surname'], axis=1)

for col in ['Geography', 'Age', 'HasCrCard', 'IsActiveMember']:
    mode_val = df[col].mode()[0]
    df[col] = df[col].fillna(mode_val)

df = pd.get_dummies(df, columns=['Geography', 'Gender'], drop_first=True)

display(df.head())
```

creditscore	Age	Tenure	Balance	NumUiProducts	HasCrCard	\
619	42.0	2	0.00	1	1.0	
608	41.0	1	83807.86	1	0.0	
502	42.0	8	159660.80	3	1.0	
699	39.0	1	0.00	2	0.0	
850	43.0	2	125510.82	1	1.0	
	619 608 502 699	619 42.0 608 41.0 502 42.0 699 39.0 850 43.0	619 42.0 2 608 41.0 1 502 42.0 8 699 39.0 1	619 42.0 2 0.00 608 41.0 1 83807.86 502 42.0 8 159660.80 699 39.0 1 0.00	619 42.0 2 0.00 1 608 41.0 1 83807.86 1 502 42.0 8 159660.80 3 699 39.0 1 0.00 2	608 41.0 1 83807.86 1 0.0 502 42.0 8 159660.80 3 1.0 699 39.0 1 0.00 2 0.0

	IsActiveMember	EstimatedSalary	Exited	<pre>Geography_Germany</pre>	\
0	1.0	101348.88	1	False	
1	1.0	112542.58	0	False	
2	0.0	113931.57	1	False	
3	0.0	93826.63	0	False	
4	1.0	79084.10	0	False	

```
Geography_Spain Gender_Male
0
              False
                            False
                            False
1
               True
2
              False
                            False
3
             False
                            False
4
               True
                            False
```

Reasoning: Now that the data is cleaned and encoded, I need to separate the features (X) and the target variable (y) and then split the data into training and testing sets as per steps 4 and 5 of the instructions.

```
[]: from sklearn.model_selection import train_test_split

X = df.drop('Exited', axis=1)
y = df['Exited']
```

	${\tt CreditScore}$	Age	Tenure	Balance	NumOfProducts	HasCrCard	\
1561	632	42.0	4	119624.60	2	1.0	
1670	559	24.0	3	114739.92	1	1.0	
6088	661	30.0	7	0.00	2	1.0	
9575	483	30.0	9	0.00	2	0.0	
8304	675	69.0	1	0.00	2	1.0	
	TsActiveMemb	er Fs	timatedSa	lary Geog	ranhy Germany	Geography S	nain

	${\tt IsActiveMember}$	EstimatedSalary	<pre>Geography_Germany</pre>	Geography_Spain	\
1561	1.0	195978.86	True	False	
1670	0.0	85891.02	False	True	
6088	0.0	72196.57	False	False	
9575	0.0	136356.97	False	False	
8304	0.0	157097.09	False	False	

	Gender_Male
1561	True
1670	True
6088	False
9575	False
8304	True
1561	0
1670	1
6088	0
9575	0
8304	0

Name: Exited, dtype: int64

0.4 Build and train a model

0.4.1 Subtask:

Choose a suitable machine learning model and train it on the prepared data.

Reasoning: Import and train a RandomForestClassifier model on the training data.

```
[]: from sklearn.ensemble import RandomForestClassifier

model = RandomForestClassifier(random_state=42)
model.fit(X_train, y_train)
```

[]: RandomForestClassifier(random_state=42)

0.5 Evaluate the model

0.5.1 Subtask:

Assess the performance of the trained model using appropriate metrics.

Reasoning: Use the trained model to make predictions on the test set and then calculate and print the evaluation metrics.

```
from sklearn.metrics import accuracy_score, precision_score, recall_score,
u-f1_score

y_pred = model.predict(X_test)

accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)

print(f"Accuracy: {accuracy:.4f}")
print(f"Precision: {precision:.4f}")
print(f"Recall: {recall:.4f}")
print(f"F1-score: {f1:.4f}")
```

Accuracy: 0.8701 Precision: 0.7591 Recall: 0.5174 F1-score: 0.6154