

Доклад по домешнему заданию на тему: "Лексическая Семантика"

Подготовил: Кирдин М.Д.

Преподаватель: Большакова Е.И.

Магистратура "Науки о Данных" ФКН ВШЭ

Москва, 2025

1/12

Содержание

- Цели и Задачи
- Используемая модель
- Методы
 - Описание данных
 - Алгоритм *K-Means*
 - Алгоритм OPTICS
- Результаты
- Заключение

Цель:

 провести исследование способности сохранять семантические связи между словами у предобученных эмбеддингов.

Задачи:

- кластеризовать векторные представления нескольких различных наборов слов, рассмотрев различные наборы методов кластеризации и метрик;
- проанализровать полученные кластеры.

Используемая модель

- Идентификатор: ruwikiruscorpora_upos_skipgram_300_2_2019, модель взята с ресурса RusVectōrēs.
- Корпус: данные Википедии и НКРЯ за декабрь 2018 года, 788 млн слов.
- Алгоритм: Continuous Skipgram.
- Словарь: 248 978 слов.
- Размерность эмбеддингов: 300.

Методы

Для исследования способности эмбеддингов сохранять семантические сходства между словами была проведена кластеризация эмбеддингов для нескольких наборов слов.

- Использованные алгоритмы: K-Means и OPTICS.
- Расстояния между эмбедингами: косинусное и евклидово расстояния.

Описание данных

Исследование проводилось на трех наборах слов:

- Первый набор слов был направлен на исследование того как сохраняются семантические связи между именами прилагательными и состоит из слов описывающих черты характера и материал предмета. Также в нем присутствуют семантические омонимы, которые принадлежат обеим группам: «железный», «стальной», «золотой». Объем 25 слов.
- Второй набор слов составлен аналигочно первому и содержит существительные обозначающие животных и существительные обозначающие съедобные предметы. Объем 29 слов.
- Третий набор был направлен на исследование того как сохраняются связи между узконаправленными терминами в смежных напревлениях. Он содержит слова, описывающие составные части автомобиля и самолета, а также пары гипоним-гипероним («оперение» и «элерон»). Объем 27 слов.

Алгоритм K-Means

В работе используется алгоритм, предоставленный библиотекой *scikit-learn*. Значения входных параметров:

- n_clusters: 2 количество кластеров(все наборы слов составлены так, что подразумевается наличие лишь двух кластеров);
- init: "k-means++" метод задания начальных положений центроид. Данный вариант подразумевает выбор точек данных центроидами учетом их вклада в инерцию.

Алгоритм *ОРТІСЅ*

В отличие от *K-Means*, который является **центроидным** алгоритмом кластеризации, алгоритм *OPTICS* является алгоритмом выделяющим кластеры на основе **плотности** точек данных.

В работе использовался *OPTICS* предоставляемый библиотекой scikit-learn. Были выбраны следующие значения параметров:

- metric: "cosine" и "euclidean" евклидово и косинусное расстояния;
- для остальных параметров взяты значения по умолчанию.

Результаты

слово	K-Means	OPTICS (евклидово	OPTICS
		расстояние)	(косинусное
			расстояние)
железный	0	0	-1
серебряный	0	0	0
стальной	0	0	0
твердый	1	1	-1
добрый	1	1	-1
выносливый	1	1	-1
терпеливый	1	1	-1
алмазный	0	0	-1
алюминиевый	0	0	0
верный	1	1	-1
пластиковый	0	0	0
жестокий	1	1	-1
отважный	1	1	-1
высокомерный	1	1	-1

слово	K-Means	OPTICS (евклидово	OPTICS
		расстояние)	(косинусное
			расстояние)
надменный	1	1	-1
деревянный	0	0	0
золотой	0	0	0
кожаный	0	0	0
медный	0	0	0
бронзовый	0	0	-1
внимательный	1	1	-1
раздражительный	1	1	-1
хитрый	1	1	-1
мудрый	1	1	-1

Результаты

слово	K-Means	OPTICS (евклидово	OPTICS	слово	K-Means	OPTICS (евклидово	OPTICS
		расстояние)	(косинусное			расстояние)	(косинусное
			расстояние)				расстояние)
киви	0	-1	0	крыжовник	0	0	0
смородина	0	0	0	мандарин	0	-1	0
лиса	1	-1	0	мандаринка	1	-1	0
лисичка	0	-1	0	ворон	1	-1	0
apa	1	-1	0	сорока	1	-1	0
клубника	0	0	0	беркут	1	-1	0
земляника	0	0	0	орел	1	-1	0
малина	0	0	0	сокол	1	-1	0
черника	0	0	0	страус	1	-1	0
ежевика	0	0	0	эму	1	-1	0
огурец	0	0	0	голубь	1	-1	0
облепиха	0	0	0	трясогузка	1	-1	0
перец	0	0	0	казуар	1	-1	0
яблоко	0	0	0				

0

0

черешня

0

Результаты

слово	K-Means	OPTICS (евклидово расстояние)	ОРТІСЅ (косинусное расстояние)	слово	K-Means	OPTICS (евклидово расстояние)	ОРТІСЅ (косинусное расстояние)
руль	0	0	0	колесо	0	0	0
штурвал	0	0	0	шина	0	0	0
ручка	1	-1	0	покрышка	0	0	0
дверь	1	-1	0	кузов	0	0	0
кабина	0	0	0	оперение	1	0	0
кокпит	0	0	0	планер	1	0	0
шасси	0	0	0	машина	0	0	0
трансмиссия	0	0	0	капот	0	0	0
фара	0	0	0	бак	1	0	0
элерон	1	0	0	закрылок	1	0	0
тормоз	0	0	0	тангаж	1	0	0
крыло	1	-1	0		,		
XBOCT	1	-1	0				

0

0

-1

-1

тяга

зеркало

Выводы

По результатам экспериментов:

- наилучшим образом показал себя алгоритм *K-Means*, использующий евклидово расстояние для измерения семантической близости слов;
- у всех рассмотренных алгоритмов качество кластеризации узконаправленных терминов было **ниже**, чем более общих групп слов.

Последнее могло быть вызвано **низкой частотой употреблений** данных слов в корпусе, на котором была обучена модель и, оследовательно, более низким качеством полученных эмбеддингов.

12/12: