МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МО ЭВМ

ОТЧЕТ

по лабораторной работе № 3 по дисциплине «Информатика»

Тема: Машина Тьюринга

Студент гр. 3344	 Волков А.А.
Преподаватель	 Иванов Д.В.

Санкт-Петербург

2023

Цель работы

Изучить механизм работы машины Тьюринга, освоить табличный способ записи программ для машины Тьюринга, реализовать алгоритм для решения поставленной задачи при помощи машины Тьюринга, имитировав её работу в Python.

Задание

Вариант 3.

Напишите программу, которая заменяет в исходной строке символ, предшествующий первому встретившемуся символу 'с' на символ, следующий за первым встретившимся символом 'а'. Если первый встретившийся символ 'а' в конце строки, то используйте его в качестве заменяющего.

Указатель на текущее состояние Машины Тьюринга изначально находится слева от строки с символами (но не на первом ее символе). По обе стороны от строки находятся пробелы.

Алфавит:

- 1) a
- 2) b
- 3) c
- 4) " " (пробел)

Соглашения:

- 1. Направление движения автомата может быть одно из R (направо), L (налево), N (неподвижно).
 - 2. Гарантируется, что длинна строки не менее 5 символов и не более 15.
 - 3. В середине строки не могут встретиться пробелы.
- 4. При удалении или вставке символов направление сдвигов подстрок не принципиально (т. е. результат работы алгоритма может быть сдвинут по ленте в любую ее сторону на любое число символов).
- 5. Курсор по окончании работы алгоритма может находиться на любом символе.

Ваша программа должна вывести полученную ленту после завершения работы. В отчет включите таблицу состояний. Отдельно кратко опишите каждое состояние.

Выполнение работы

Перед написание алгоритма, необходимо составить таблицу состояний для МТ, которая описывает действия для каждого состояния и каждого символа алфавита по отдельности. В ячейке записана тройка: записываемый в текущую ячейку символ, направление следующего шага (R – вправо, L – влево, N – остаться на месте), следующее состояние.

Таблица для решения задачи (табл. 1):

Таблица 1 – Таблица состояний для машины Тьюринга

Состояние	a	ии для машины b	C	" " (пробел)
q1	a, R, q3	b, R, q1	c, R, q2	" ", R, q1
q2	a, R, q4	b, R, q2	c, R, q2	
q3	a, R, q14	b, R, q15	c, L, q16	
q4	a, L, q5	b, L, q7	c, L, q6	" ", L, q5
q 5	a, L, q5	b, L, q5	c, L, q5	"", R, q8
q6	a, L, q6	b, L, q6	c, L, q6	" ", R, q10
q 7	a, L, q7	b, L, q7	c, L, q7	" ", R, q12
q8	a, R, q8	b, R, q8	c, L, q9	
q9	a, N, qT	a, N, qT	a, N, qT	a, N, qT
q10	a, R, q10	b, R, q10	c, L, q11	
q11	c, N, qT	c, N, qT	c, N, qT	c, N, qT
q12	a, R, q12	b, R, q12	c, L, q13	
q13	b, N, qT	b, N, qT	b, N, qT	b, N, qT
q14	a, R, q14	b, R, q14	c, L, q17	
q15	a, R, q15	b, R, q15	c, L, q18	
q16	c, N, qT			
q17	a, N, qT	a, N, qT	a, N, qT	
q18	b, N, qT	b, N, qT	b, N, qT	

Описание состояний:

- ${
 m q1}$ состояние для нахождения того, что встретилось первым («**a**» или «**c**»).
- q2 попадаем, когда «**c**» встретилась раньше «**a**», и находим первое вхождение «**a**».
- q3 попадаем, когда «**a**» встретилась раньше «**c**», переходим в нужные состояния в зависимости от буквы, которая оказалась после «**a**».

Группа состояний для случая q2:

- q4 в зависимости от символа после «а» переходим в нужное состояние.
- q5 состояние, куда попадаем, когда надо заменить символ до «**c**» на «**a**». Идём до начала слова (движемся влево), а затем переходим в состояние **q8**.
- q6 состояние, куда попадаем, когда надо заменить символ до «**c**» на «**c**». Идём до начала слова (движемся влево), а затем переходим в состояние **q10**.
- q7 состояние, куда попадаем, когда надо заменить символ до «**c**» на «**b**». Идём до начала слова (движемся влево), а затем переходим в состояние **q12**.
- q8 ищем первое вхождение «**c**», затем переходим в состояние **q9**, сдвинув автомат влево.
- ${
 m q9}$ заменяем текущий символ «а» и переходим в терминальное состояние ${
 m qT}$, т.е завершаем работу.
- m q10-ищем первое вхождение «**c**», затем переходим в состояние **q11**, сдвинув автомат влево.
- m q11- заменяем текущий символ «m c» и переходим в терминальное состояние m qT, т.е завершаем работу.
- ${
 m q}12$ ищем первое вхождение « ${
 m c}$ », затем переходим в состояние ${
 m q}13$, сдвинув автомат влево.
- ${
 m q}13$ заменяем текущий символ « ${
 m b}$ » и переходим в терминальное состояние ${
 m q}{
 m T}$, т.е завершаем работу.

Группа состояний для случая q3:

 ${
m q}14$ — ищем первое вхождение «**c**», затем переходим в состояние **q17**, сдвинув автомат влево.

- ${
 m q}15$ ищем первое вхождение «**c**», затем переходим в состояние **q18**, сдвинув автомат влево.
- q16 попадаем, когда «**a**» стоит перед «**c**». Предварительно сдвинув автомат влево в состояние **q3**, заменяем предшествующую «**a**» на «**c**». Переходим в терминальное состояние **qT**, т.е завершаем работу.
- ${
 m q}17$ заменяем текущий символ на « ${
 m a}$ » и переходим в терминальное состояние ${
 m q}{
 m T}$, т.е завершаем работу.
- q18 заменяем текущий символ на «**b**» и переходим в терминальное состояние **qT**, т.е завершаем работу.

После создания таблицы можно спокойно реализовать программу на Руthon, которая будет имитировать работу МТ. Создаём словарь (table) и заводим переменные для хранения текущего состояния (state), ленты, воссозданной в виде списка строк (memory), номера ячейки на ленте, на которой стоит в данный момент автомат (index). Запускаем цикл while до того момента, пока state не примет значение qT, обращаемся по ключам ячейкам таблицы, записывая новый символ (symbol), шаг автомата (step), и новое состояние (new_state). Записываем новый символ на ленту, обновляем текущее состояние, делаем шаг. Итоговая лента выводится на экран.

Результаты тестирования представлены в табл. 2, раздел «Тестирование».

Тестирование

Результаты тестирования представлены в табл. 2.

Таблица 2 – Результаты тестирования

No	Входные данные	Выходные данные	Список состояний
1.	« cbbba »	« acbbba »	q1 q1 q1 q1 q2 q2 q2 q2 q4 q5 q5 q5 q5 q5 q5 q8 q9 qT
2.	« abcabc »	« abcabc »	q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q1 q3 q15 q18 qT
3.	« accabcbabaacab »	« cccabcbabaacab »	q1 q1 q1 q1 q3 q16 qT

Выводы

Был изучен механизм работы машины Тьюринга и способ табличный записи программы для неё. При помощи этого был разработан алгоритм решения для поставленной задачи по замене необходимых символов в строке на ленте.

Была разработана программа на Python, которая имитирует работу машины Тьюринга, где лента представлена списком строк, а таблица реализована словарём, в котором первый ключ — состояние, второй — текущий символ.

ПРИЛОЖЕНИЕ А

ИСХОДНЫЙ КОД ПРОГРАММЫ

```
Название файла: lb_3.py
L, N, R = -1, 0, 1
table = {
           "q1": {
                      "a": ("a", R, "q3"),
"b": ("b", R, "q1"),
"c": ("c", R, "q2"),
" ": (" ", R, "q1"),
         },
"q2": {
    "a": ("a", R, "q4"),
    "b": ("b", R, "q2"),
    "c": ("c", R, "q2"),
           },
"q3": {
                      "a": ("a", R, "q14"),
"b": ("b", R, "q15"),
"c": ("c", L, "q16"),
        },
"q4": {
    "a": ("a", L, "q5"),
    "b": ("b", L, "q7"),
    "c": ("c", L, "q6"),
    " ": (" ", L, "q5"),
           },
"q5": {
                      "a": ("a", L, "q5"),
"b": ("b", L, "q5"),
"c": ("c", L, "q5"),
" ": (" ", R, "q8"),
        },
"q6": {
    "a": ("a", L, "q6"),
    "b": ("b", L, "q6"),
    "c": ("c", L, "q6"),
    " ": (" ", R, "q10"),
                      "a": ("a", L, "q7"),
"b": ("b", L, "q7"),
"c": ("c", L, "q7"),
" ": (" ", R, "q12"),
          },
"q8": {
"a"
                      "a": ("a", R, "q8"),
"b": ("b", R, "q8"),
"c": ("c", L, "q9")
          },
"q9": {
                      "a": ("a", N, "qT"),
"b": ("a", N, "qT"),
```

```
"c": ("a", N, "qT"),
" ": ("a", N, "qT"),
        },
"q10": {
"3":
                "a": ("a", R, "q10"),
"b": ("b", R, "q10"),
"c": ("c", L, "q11"),
       },
"q11": {
    "a":
                "a": ("c", N, "qT"),
"b": ("c", N, "qT"),
"c": ("c", N, "qT"),
" ": ("c", N, "qT"),
       },
"q12": {
    "a": ("a", R, "q12"),
    "b": ("b", R, "q12"),
    "c": ("c", L, "q13"),
        },
"q13": {
"a":
                "a": ("b", N, "qT"),
"b": ("b", N, "qT"),
"c": ("b", N, "qT"),
" ": ("b", N, "qT"),
                                            "qT"),
        },
"q14": {
"a":
                "a": ("a", R, "q14"),
"b": ("b", R, "q14"),
"c": ("c", L, "q17"),
        },
"q15": {
                "a": ("a", R, "q15"),
"b": ("b", R, "q15"),
"c": ("c", L, "q18"),
        },
"q16": {
"a":
                "a": ("c", N, "qT"),
       },
"q17": {
    "a":
                "a": ("a", N, "qT"),
"b": ("a", N, "qT"),
"c": ("a", N, "qT"),
        },
"q18": {
                ,. ເ
"a": ("b", N, "qT"),
"b": ("b", N, "qT"),
"c": ("b", N, "qT"),
        },
state = "q1"
memory = list(input())
index = 0
while state != "qT":
        symbol, step, new_state = table[state][memory[index]]
        memory[index] = symbol
        state = new_state
        index += step
print("".join(memory))
```

}