Homework 1 699 A1, Spring 2025

Due: 2/3

Problem 1 (10 points). Consider the following two objects with 7 binary attributes:

OID	A1	A2	A3	A4	A5	A6	A7
01	Р	N	Р	Р	N	Р	N
O2	Р	N	N	Р	N	N	Р

(1). Calculate the distance between O1 and O2 assuming all attributes are symmetric attributes.

The distance is 3

(2). Calculate the distance O1 and O2 assuming all attributes are asymmetric attributes with P being more important than N.

The distance is 2

Problem 2 (10 points)

Consider the following dataset with two objects.

Object	A1	A2	A3	A4
01	1	second	gold	Small
02	4	third	silver	large

Here, all attributes are ordinal attributes and ranks of their values are shown below (lowest rank on the left):

A1: {1, 2, 3, 4, 5}

A2: {first, second, third}
A3: {bronze, silver, gold}

A4: {small, medium, large, xlarge}

Calculate the distance between O1 and O2 using the method discussed in the class. Use the Euclidean distance measure.

The distance is 1.227577

Problem 3 (10 points). Consider the following dataset:

OID	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
O1	1	2	4	1	3	1	3	1	2	2
O2	2	2	3	5	0	4	0	3	5	2
O3	2	0	4	2	2	3	2	1	3	4

(1). Calculate the cosine similarity between O1 and O2, *cosine*(O1, O2).

The similarity is 0.6350853

(2). Calculate the cosine similarity between O1 and O3, *cosine*(O1, O3).

The similarity is 0.8638684

(3). Is O1 closer to O2 or O3?

O1 is closer to O3

You must do all calculations yourself.

Problem 4 (10 points). Consider the following dataset, which has attributes of mixed types.

Object ID	A1	A2	A3	A4	A5	A6	A7
O1	19	1	No	No	Yes	Low	mild
O2	42	1	Yes	No	Yes	High	cold
O3	28	0	No	Yes	No	Low	hot
O4	35	0	Yes	No	No	Middle	mild
O5	63	1	No	No	No	High	hot
O6	27	0	Yes	No	No	High	mild
O7	82	1	No	Yes	No	Low	cool
O8	36	1	No	No	Yes	High	mild
O9	12	0	Yes	No	Yes	High	hot

- A1 is a numeric attribute.
- A2 and A3 are symmetric binary attributes.
- A4 and A5 are asymmetric binary attributes, where Yes is more important than No
- A6 is a categorical (nominal) attribute.
- A7 is an ordinal attribute. The order of values is {cold, cool, mild, hot}, where cold has the lowest rank and high has the highest rank.

Calculate the distance between O1 and O2, d(O1, O2), and the distance between O1 and O3, d(O1, O3), using the method that we discussed in the class. Is O1 closer to O2 or closer to O3? You must do all calculations yourself.

Distance between O1 and O2: d(O1, O2) = 0.4278912Distance between O1 and O3: d(O1, O3) = 0.4945578O1 is closer to O2.

You must do all calculations yourself.

Include all answers in a single Word or PDF document and upload it to Blackboard. Use LastName_FirstName_hw1.docx or LastName_FirstName_hw1.pdf as the file name. If you have additional files, such as an Excel file or a R code file, then combine all of them into a single archive file and name it LastName_FirstName_hw1.EXT, where EXT is an appropriate archive file extension such as zip or rar.