Corso di laurea in Ingegneria Informatica Calcolo Numerico Prof.ssa L.D'Amore Prova intercorso aprile 2022

Il candidato svolga i seguenti quesiti:

- 1. scrivere una function in MATLAB per il calcolo di $z=\sqrt{2}$. Tale function considera la funzione $f(x)=x^2-2$ e calcola una approssimazione di z come zero di f(x), ovvero f(z)=0, nell'intervallo [1,2]. Lo zero di f é ottenuto come segue: partendo dall'intervallo iniziale [a,b], si calcola il punto medio $x_1=(a+b)/2$, e si considera il sottointervallo $[a,x_1]$ oppure $[x_1,b]$ a seconda se $f(a)f(x_1)<0$ oppure $f(a)f(x_1)>0$. I passi successivi si ripetono nel sottointervallo scelto. L'approssimazione dello zero di f é l'ultimo punto medio calcolato dall'algoritmo. La function deve fornire in output l'approssimazione di z e il numero di cifre significative corrette confrontate con $\sqrt(2)$. Utilizzare un criterio d'arresto opportuno in un ambiente di calcolo a presione finita (e che non usi il fatto che stiamo calcolando l'approssimazione di $\sqrt{2}$).
- 2. Si generi in maniera casuale la matrice a blocchi T e il vettore Z dove

$$T = \left(\begin{array}{cc} A & B \\ C & D \end{array}\right); Z = \left(\begin{array}{c} Z1 \\ Z2 \end{array}\right)$$

si risolva il sistema TX=Z - con X vettore partizionato a blocchi in modo analogo - utilizzando un algoritmo che operi come l'algoritmo di Gauss ma sui blocchi e quindi tenga conto della struttura della matrice. Fornire un esempio test di correttezza.

3. si calcoli in matlab la funzione coseno per i seguenti valori: z = cos(1.57078) e $z_1 = cos(1.57079)$. Confrontare la variazione relativa sul dato con la variazione relativa sul valore della funzione coseno. Si giustifichi il risultato.