■ Chapitre 11 ■

Réduction des endomorphismes

Notations.

- \blacksquare \mathbb{K} désigne \mathbb{R} ou \mathbb{C} .
- $\blacksquare n$ désigne un entier naturel non nul.
- $\blacksquare E$ désigne un \mathbb{K} -espace vectoriel de dimension finie n.
- M désigne une matrice de $\mathcal{M}_n(\mathbb{K})$.
- $\blacksquare f, g$ sont des endomorphismes de E.

Définition 1 (Diagonalisable).

- (i). L'endomorphisme f est diagonalisable s'il existe une base dans laquelle sa matrice est diagonale.
- (ii). La matrice M est diagonalisable si elle est semblable à une matrice diagonale.

Exercice 1. Soit $M \in \mathcal{M}_n(\mathbb{K})$. Montrer que M est diagonalisable si et seulement si tM est diagonalisable.

Exercice 2. Soient $(u_n)_{n\in\mathbb{N}}$, $(v_n)_{n\in\mathbb{N}}$, $(w_n)_{n\in\mathbb{N}}$ trois suites définies par $u_0=1$, $v_0=w_0=0$ et

$$\forall n \in \mathbb{N}, \begin{cases} u_{n+1} = 2u_n + 4w_n \\ v_{n+1} = 3u_n - 4v_n + 12w_n \\ -w_{n+1} = u_n - 2v_n + 5w_n \end{cases}$$

Pour tout entier naturel n, on note $X_n = {}^t \begin{pmatrix} u_n & v_n & w_n \end{pmatrix}$.

- 1. Montrer qu'il existe une matrice A telle que, pour tout entier naturel $n, X_{n+1} = AX_n$.
- **2.** En supposant que A est diagonalisable, expliquer comment résoudre ce système.
- **3.** Toujours en supposant que A est diagonalisable, expliquer comment résoudre le système différentiel u(0) = 1, v(0) = w(0) = 0 et

$$\forall t \in \mathbb{R}, \begin{cases} u'(t) &= 2u(t) + 4w(t) \\ v'(t) &= 3u(t) - 4v(t) + 12w(t) \\ w'(t) &= u(t) - 2v(t) + 5w(t) \end{cases}$$

I. Valeurs propres, Vecteurs propres

I.1 Spectre

Propriété 1 (Droite stable).

Soit D une droite de E. Si D est stable par f, il existe un scalaire λ tel que $\forall x \in D$, $f(x) = \lambda x$.

Définition 2 (Valeur / Vecteurs propres).

- * Soit $\lambda \in \mathbb{K}$. S'il existe un vecteur x non nul tel que $f(x) = \lambda x$, alors
 - (i). λ est une valeur propre de f.
- (ii). x est un vecteur propre de f.
- * Soient $M \in \mathcal{M}_n(\mathbb{K})$ et f l'endomorphisme canoniquement associé à M. Les valeurs propres de M sont les valeurs propres de f.

Exercice 3.

- 1. Montrer que, si u est un vecteur propre de f, alors pour tout scalaire α non nul, αu est un vecteur propre de f.
- 2. Déterminer les valeurs propres d'une homothétie.
- 3. Déterminer les valeurs propres d'une matrice diagonale.
- 4. Déterminer les valeurs propres d'un projecteur.
- **5.** Soit $f \in \mathcal{L}(E)$ et $m \in \mathbb{N}$ supérieur à 2 tel que $f^m = \mathrm{Id}_E$. Montrer que les valeurs propres de f sont des éléments de \mathbb{U}_m .
- **6.** Soit $\varphi : \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}) \to \mathscr{C}^{\infty}(\mathbb{R}, \mathbb{R}), f \mapsto f'$. Déterminer les valeurs propres de φ .

Théorème 1 (Base de vecteurs propres).

Si E est de dimension finie, l'endomorphisme f est diagonalisable si et seulement s'il existe une base de E formée de vecteurs propres de f.

Exercice 4. Soit f un endomorphisme diagonalisable. Notons $\operatorname{Mat}_{\mathscr{B}}(f) = \operatorname{Diag}(\lambda_1, \ldots, \lambda_n)$ la matrice de f dans une base de vecteurs propres. Montrer que l'ensemble des valeurs propres de f est l'ensemble des éléments diagonaux.

Propriété 2.

Si E est de dimension finie, λ est une valeur propre de f si et seulement si $\lambda \operatorname{Id}_E - f$ n'est pas inversible.

Exercice 5.

- 1. Montrer que si A et B sont semblables, alors λ est une valeur propre de A si et seulement si λ est une valeur propre de B.
- **2.** Soient μ_1, \ldots, μ_r des scalaires qui ne sont pas des valeurs propres de f et $P = \prod_{i=1}^r (X \mu_i)$. Montrer que P(f) est inversible.

Définition 3 (Spectre).

Le spectre de f, noté Sp(f) est l'ensemble des valeurs propres de f.

Exercice 6.

- **1.** Déterminer le spectre de $\begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{pmatrix}$.
- **2.** Déterminer le spectre de $f: \mathbb{K}[X] \to \mathbb{K}[X], P \mapsto (X^2 1)P'' + (2X + 1)P'$.

Exercice 7.

- **1.** Montrer que $Sp(A) = Sp({}^tA)$.
- **2.** Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que si $\lambda \in \mathbb{C}$ est une valeur propre de A, alors $\overline{\lambda}$ est également une valeur propre de A.

I.2 Polynôme caractéristique

Dans toute la suite, E est supposé de dimension finie.

Définition 4 (Polynôme caractéristique).

(i). Le polynôme caractéristique de l'endomorphisme f, noté χ_f , est défini par

$$\chi_f(\lambda) = \det(\lambda \operatorname{Id}_E - f).$$

(ii). Le polynôme caractéristique de la matrice M, noté χ_M , est défini par

$$\chi_M(\lambda) = \det(\lambda I_n - M).$$

Exercice 8.

- **1.** Montrer que $\chi_f(\lambda) = (-1)^n \det(f \lambda \operatorname{Id}_E)$.
- **2.** Soit $A = \begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{pmatrix}$. Déterminer χ_A .
- 3. Montrer que M et ${}^t\!M$ ont même polynôme caractéristique.
- **4.** Montrer que, si M et N sont semblables, alors $\chi_M = \chi_N$. Que pensez-vous de la réciproque?

Théorème 2 (Polynôme caractéristique & Spectre).

$$\lambda \in \operatorname{Sp}(f) \iff \chi_f(\lambda) = 0.$$

Exercice 9.

- 1. Déterminer les spectres des homothéties, matrices triangulaires et projecteurs.
- 2. Montrer qu'une matrice et sa transposée ont même spectre.
- 3. Montrer que deux matrices semblables ont même spectre.

4. Soient $\theta \in \mathbb{R}$ et $R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$. Déterminer le spectre de R_{θ} .

Propriétés 3 (Propriétés du polynôme caractéristique).

Soit χ_f le polynôme caractéristique de f. On note $n = \dim(E)$. Alors,

- (i). χ_f est unitaire et de degré n.
- (ii). le coefficient de X^{n-1} dans χ_f est $-\operatorname{Tr}(f)$.
- (iii). le coefficient constant de χ_f est $(-1)^n \det(f)$.

En particulier, si $\chi_f = \prod_{i=1}^n (X - \lambda_i)$ est scindé, alors

$$\operatorname{Tr}(f) = \sum_{i=1}^{n} \lambda_i \text{ et } \det(f) = \prod_{i=1}^{n} \lambda_i.$$

Exercice 10.

- **1.** Montrer que f possède au plus n valeurs propres distinctes.
- **2.** Si E est un \mathbb{R} -espace vectoriel de dimension impaire, montrer que f a au moins une valeur propre réelle.
- **3.** Si E est un \mathbb{C} -espace vectoriel, montrer que f a au moins une valeur propre.
- **4.** Soit $(u,v) \in \mathcal{L}(E)^2$.
 - a) Lorsque u est inversible, montrer que $\chi_{uv} = \chi_{vu}$.
 - **b)** En déduire que $\chi_{uv} = \chi_{vu}$ par un argument de continuité.
- **5.** Soit $A \in \mathcal{G}\ell_n(\mathbb{K})$. Exprimer χ_A en fonction de $\chi_{A^{-1}}$.

Définition 5 (Ordre de multiplicité).

Soit λ une valeur propre de f. La valeur propre λ est d'ordre de multiplicité p si elle est racine d'ordre p de χ_f .

Proposition 4.

Soit F un sous-espace de E stable par f et g l'endomorphisme induit par f sur F. Alors, le polynôme χ_g divise le polynôme χ_f .

I.3 Sous-espaces propres

Définition 6 (Sous-espace propre).

Soit $\lambda \in \mathbb{K}$. L'espace vectoriel $E_{\lambda}(f) = \operatorname{Ker}(f - \lambda \operatorname{Id}_{E})$ est le sous-espace propre associé à λ .

Exercice 11.

- **1.** Montrer que dim $E_{\lambda}(f) \geqslant 1$ si et seulement si λ est une valeur propre de f.
- 2. Déterminer les sous-espaces propres des homothéties, projecteurs, matrices diagonales.
- **3.** Soit $A \in \mathcal{M}_n(\mathbb{R})$. Montrer que si $\lambda \in \mathbb{C}$ est une valeur propre de A, alors dim $E_{\lambda}(A) = \dim E_{\overline{\lambda}}(A)$.

Théorème 3.

Soit μ une valeur propre de f. Alors, la dimension de $E_{\mu}(f)$ est majorée par l'ordre de multiplicité de μ dans χ_f .

Exercice 12. Déterminer les sous-espaces propres de $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Théorème 4.

Soit $(\lambda_1, \ldots, \lambda_m) \in \mathbb{K}^m$ des scalaires deux à deux distincts. La somme $\sum_{i=1}^m E_{\lambda_i}(f)$ est directe. En particulier, si $(\lambda_1, \ldots, \lambda_m)$ est une famille de valeurs propres deux à deux distinctes, toute famille de vecteurs propres (x_1, \ldots, x_m) associée aux $(\lambda_1, \ldots, \lambda_m)$ est une famille libre.

Exercice 13. Écrire la matrice de la restriction de f à l'espace vectoriel $\bigoplus_{i=1}^{m} E_{\lambda_i}(f)$ dans une base adaptée à la décomposition.

Propriété 5 (Commutativité).

Si f et g commutent, alors les sous-espaces propres de f sont stables par g.

II. Caractérisation des endomorphismes diagonalisables

II.1 Caractérisations

Théorème 5 (Diagonalisabilité & Somme directe).

L'endomorphisme f est diagonalisable si et seulement si E est somme directe des sous-espaces propres de f.

Exercice 14. Montrer que si χ_f est scindé sur \mathbb{K} à racines simples, alors f est diagonalisable et ses sous-espaces propres sont de dimension 1.

Corollaire 6 (Diagonalisabilité & Dimensions).

f est diagonalisable si et seulement si la somme des dimensions des sous-espaces propres de f est égale à la dimension de E.

Exercice 15.

1. Soit
$$M = \begin{pmatrix} 1 & 4 & 2 \\ 0 & -3 & -2 \\ 0 & 4 & 3 \end{pmatrix}$$
. Montrer que M est diagonalisable.

2. Soit
$$M = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
. Montrer que M n'est pas diagonalisable.

Théorème 7 (Diagonalisation & Polynôme caractéristique).

L'endomorphisme f est diagonalisable si et seulement si son polynôme caractéristique χ_f est scindé sur \mathbb{K} et si, pour toute valeur propre λ de f, la dimension du sous-espace propre $E_{\lambda}(f)$ est égale à la multiplicité de λ dans χ_f .

Corollaire 8.

Si f admet n valeurs propres deux à deux distinctes, alors f est diagonalisable.

Exercice 16.

1. Diagonaliser la matrice
$$A = \begin{pmatrix} 2 & 0 & 4 \\ 3 & -4 & 12 \\ 1 & -2 & 5 \end{pmatrix}$$
.

2. Soit
$$M = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 1 \\ 1 & 2 & 0 \end{pmatrix}$$
. Montrer que M est diagonalisable.

II.2 Diagonalisation & Polynômes annulateurs

Proposition 6 (Polynôme annulateur & Valeurs propres).

Soit P un polynôme annulateur de f. Si λ est une valeur propre de f, alors $P(\lambda) = 0$.

Exercice 17.

- 1. Montrer que la réciproque de la proposition précédente est fausse.
- 2. Déterminer le spectre d'un endomorphisme nilpotent. Montrer que les endomorphismes nilpotents ne sont pas diagonalisables.

Théorème 9 (Théorème de CAYLEY-HAMILTON).

Le polynôme caractéristique est un polynôme annulateur.

Exercice 18.

1. Soit $A = \begin{pmatrix} 5 & -1 & 9 \\ 3 & 4 & 0 \\ 1 & 1 & 1 \end{pmatrix}$. À l'aide du théorème de Cayley-Hamilton, exprimer A^{-1} en fonction

des puissances successives de A.

- **2.** Retrouver la propriété des matrices nilpotentes : Si $M \in \mathcal{M}_n(\mathbb{K})$ est une matrice nilpotente, alors son indice de nilpotence est inférieur à n.
- **3.** Soit $M \in \mathcal{M}_n(\mathbb{C})$ une matrice non nulle telle que $Sp(M) = \{0\}$. Montrer que M est une matrice nilpotente.

Théorème 10 (Diagonalisation & Polynôme annulateur).

Il y a équivalence entre les propriétés suivantes.

- (i). f est diagonalisable.
- (ii). $\prod_{\lambda \in \operatorname{Sp}(f)} (X \lambda)$ est un polynôme annulateur de f.

Stanislas 84 A. Camanes

(iii). f admet un polynôme annulateur scindé à racines simples.

Exercice 19. Soit $M \in \mathcal{M}_n(\mathbb{C})$ vérifiant $M^3 - 2M^2 + M - I_n = 0_n$. Montrer que M est diagonalisable.

Corollaire 11 (Stabilité par restriction).

Soit f un endomorphisme diagonalisable et F un sous-espace vectoriel de E stable par f. Alors l'endomorphisme induit par f sur F est diagonalisable.

II.3 Diagonalisation de matrices symétriques réelles

Théorème 12 (Théorème spectral matriciel, Provisoirement admis).

Soit $M \in \mathcal{M}_n(\mathbb{R})$ une matrice symétrique. Alors, il existe une matrice diagonale réelle D et une matrice P telles que ${}^t\!PP = I_n$ et $M = PD^t\!P$.

III. Trigonalisation

Définition 7 (Trigonalisable).

- (i). L'endomorphisme f est trigonalisable s'il existe une base dans laquelle sa matrice est triangulaire supérieure.
- (ii). La matrice M est trigonalisable si M est semblable à une matrice triangulaire supérieure.

Exercice 20.

1. Soit $u \in \mathcal{L}(E)$ un endomorphisme trigonalisable et $P \in \mathbb{K}[X]$. Montrer que P(u) est trigonalisable.

- 2. Déterminer une matrice qui est trigonalisable mais non diagonalisable.
- **3.** Déterminer une matrice trigonalisable sur \mathbb{C} mais pas sur \mathbb{R} .

Théorème 13 (Trigonalisable & Polynôme caractéristique).

L'endomorphisme f est trigonalisable si et seulement si son polynôme caractéristique χ_f est scindé sur \mathbb{K} .

Exercice 21. En utilisant le théorème de Cayley-Hamilton, trigonaliser l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est $\begin{pmatrix} -3 & -3 & 2 \\ 1 & 1 & -2 \\ 2 & 4 & -4 \end{pmatrix}$.

Corollaire 14.

Tous les endomorphismes de C-espaces vectoriels sont trigonalisables sur C.

Exercice 22.

- **1.** Montrer que $\overline{\mathscr{G}\ell_n(\mathbb{C})} = \mathscr{M}_n(\mathbb{C})$.
- 2. Reprendre l'étude des suites définies par une équation linéaire récurrente d'ordre 2.

Diagonalisation simultanée

Exercice 23. Soient E un espace vectoriel de dimension finie et u, v deux endomorphismes de E. On suppose que u et v sont diagonalisables.

1. Montrer que u et v commutent si et seulement s'ils sont diagonalisables dans une même base. Soient A et B deux matrices de $\mathscr{M}_n(\mathbb{C})$. On pose $\Phi_{A,B}$ l'endomorphisme de $\mathscr{M}_n(\mathbb{C})$ défini pour tout $M \in \mathscr{M}_n(\mathbb{C})$ par

$$\Phi_{A,B}(M) = AM + MB.$$

- **2.** On suppose que A est diagonalisable et B=0. Montrer que $\Phi_{A,B}$ est diagonalisable.
- 3. On suppose que A et B sont diagonalisables. Montrer que $\Phi_{A,B}$ est diagonalisable.

₹ Programme officiel (PSI)

Algèbre linéaire - B - Réduction des endomorphismes et des matrices carrées (p. 7,8)

Mathématiciens

HAMILTON William Stirling (8 mar. 1788 à Glasgow-6 mai 1856 à Edimbourg). CAYLEY Arthur (16 août 1821 à Richmond-26 jan. 1895 à Cambridge).