Scaling ViTs across Training Compute

by Marvin in

A journey across optimization levels

Looking back at when we could only reliably produce Shakespearean poetry with *RNNs*, a thin line between hallucinations and poetry, one can see why Google open sourcing Transformers was the just needed *krabby patty secret formula* to SOTA models toppling leaderboards every coming week, and copyright lawsuits enriching the lawyers in the same way that AI ideas could be well thought out as a well pipelined autocomplete service driving some startups.

This article is a no exception, *thanks Transformers!*, written from the curiosity that inspires I to sit on the shoulders of giants, intellectually speaking, and start off this chain of optimization across languages and hardware stack that only climaxes limited to the largest GPU compute I can access without feeling like I have leaked my AWS cloud keys to the best crypto miners in the east continents!

Back in time

Vaswani et al. didn't understand the gravity of their research when they lightly ended their paper, but it inspired to generalize learning in the natural language domain, being largely parallelizable and solving saturation in training performance for increased training data.

Recurrent Neural Networks² was the precursor to this, its encoder that generates the latent space representation of the input tokens working in such a way that it captures the entire meaning of the input sentence in its final hiddetn state. This processing of the entire input text was its drawback as it could not access intermediate hidden states hence not capturing dependencies within words in the sentence.

Sweet sauce of Transformers

Parallelizability, scaled dot product attention, and scaling of models to unprecedented size while maintaining trainability.

¹ arXiv:1706.03762

Attention is all you need Vaswani et al. 2017

 2 RNNs can be understood using a special key word, recurrent, meaning to recur, where each hidden state would have a loop within itself and also includes the compounded outputs of all the previous hidden states, hugely based on the concept of a Markov model

Markov process is a stochastic process with the properties:

- · number of posssible states is finite
- outcome at any state depends only on outcomes pf previous states
- probabilities are constant over time
 where a *stochastic process* can be said as a probability
 distribution over a space of paths; this path often describing
 the evolution of some random variable over time.

A random variable, despite its name, is never random, and not a variable, it is a deterministic function.

Thanks to Dr Mihai for this awesome video explaining much on this

https://youtu.be/KQHfOZHNZ3k?si=jWPeMLZV0EF76mGz

From a black box approach

Given a text *The ruler of a kingdom is a* with the next likely word being *king*, humanly thinking, how is the input sentence then passed to a Transformers model?

Basically, computational models cannot process strings, hence it needs conversion to a vector of integers, each word (or subword) uniquely mapped to a corresponding integer, a process known as *tokenization*. A basic form would be a hashmap of words to integers and vice versa for getting a word from index of maximum probability in softmaxed one-dimensional distribution of output float values ³.

Implementing a simple tokenizer based on the vocabulary⁴ we have,

```
text = "The ruler of a kingdom is a"
text = text.lower() # making tokenizer case insensitive
text = text.split() # getting individual words
# as separated by spaces
vocab = list(sorted(set(text)))
words_to_ids = {word:i for i, word in enumerate(vocab)}
ids_to_words = {v:k for k,v in words_to_ids.items()}
```

Great, now we have lookup tables (the last two lines), and a naive preprocessing of text needed before tokenization. So then, let's tokenize the kingdom had another ruler. Wait?! The lookup table does not have the words "another", "had", "another"! Let's improve it so any word not part of the original vocabulary be assigned a new unique id⁵.

```
words_to_ids = {word:i for i, word in enumerate(vocab)}
ids_to_words = {v:k for k,v in words_to_ids.items()}
def lookup(word):
    try:
        id = words_to_ids[word]
    except KeyError:
        vocab.append(word)
        words_to_ids[word] = len(vocab) - 1
        ids_to_words[len(vocab)-1] = word
        id = words_to_ids[word]
    return id
```

- 3 the commonly used tokenizer is tiktoken, using a concept called Byte-Pair Encoding to map subwords to ids using a look-up table that takes into account frequencies of subwords.
- 4 vocabulary \sim set of unique words (or subwords based on the tokenization strategy) in all words of the entire training dataset used to train a particular large language model.
- 5 our look-up tables are very much capable of any encoding and decoding (for the tiny tiny vocabulary).

Trying our shiny code

```
sentence = "the kingdom had another ruler"
tokens = [lookup(word) for word in
        sentence.lower().split()]
print(tokens)
# [5, 2, 6, 7, 4]
words_gotten = [ids_to_words[id] for id in tokens]
sentence_gotten = " ".join(words_gotten)
print(sentence_gotten)
# "the kingdom had another ruler"
```

Note that the above implementation of tokenization is to help you understand a baseline of what happens under the hood in conversion of what models cannot deal with, strings, to a format that can be computationally crunched.

Hoever, when looking into the Transformers model architecture as outlined in the paper¹, also in⁶ for convenience, it is seen that the first block is an Embedding block.

What about the Embeddings block?

Well, the vector of integers as input in itself cannot capture rich latent representations of the input tokens, so the Embeddings block^7 does just that, mapping the tokens to higher dimensions. The embeddings block is usually V by D , where V is the size of the vocabulary, and D is an abstract dimension of your choosing, the higher the better, but more computationally expensive and longer to process.

Using PyTorch, an Embeddings block of D being 3 can be implemented as:

```
import torch, torch.nn as nn
V, D = len(vocab), 3
emb = nn.Embedding(V,D)
higher_emb_tokens = emb(torch.tensor(tokens))
print(higher_emb_tokens.shape) # torch.Size([5, 3])
```

One of the best LLMs ever open sourced by Meta, the Llama 3, the 3 billion parameter size variant, has its vocabulary with 128K tokens. and the embedding dimensions, **D**, being 3072.

⁶ Transformers architecture

 7 nn.Embedding is just nn.Linear but only that nn.Embedding simplifies retrieving rows from its weights such that you don't pass it one hot vectors but just indeces basically same as the position of the single 1s in the one-hot vector you would have passed to nn.Linear

Positional Encoding

Before the Multi-Head Attention (MHA) block, the positional encoding is attached to the graph to constitute the position information and this allows the model to easily attend to relative positions. Why is that? Well, the MHA block is permutation-equivariant, and cannot distinguish whether an input comes before another one in the sequence or not.

The meaning of a sentence can change if words are reordered, so this technique retains information about the order of the words in a sequence.

Positional encoding is the scheme through which the knowledge of the order of objects in a sequence is maintained.

This post by Christopher⁸ highlights the evolution of positional encoding in transformer models, a worthy read! For this article, let's focus on the rotary positional embedding (RoPE)⁹.

Let's making a few things clear,

- previous position encodings were done before the MHA block, this is done within it.
- RoPE is only applied to the queries and the keys, not the values.
- RoPE is only applied after the vectors \vec{q} and \vec{k} have been multiplied by the W matrix in the attention mechanism, while in the vanilla transformer they're applied before.

The general form of the proposed approach for RoPE is as in page 5 for a sparse matrix with pre-defined parameters $\Theta=\{\theta_i=10000^{-2(i-1)/d}, i\in[1,2,...,d/2]\}$ which can be implemented in code as

```
assert d % 2 == 0, "dim must be divisible by 2"
i_s = torch.arange(0,d,2).float()
theta_s = 10000 ** (- i_s / d).to(device)
```

where *device* is code that chooses the compute device.

```
device = torch.device(
    "cuda" if torch.cuda.is_available() else (
    "mps" if torch.backends.mps.is_available() else "cpu"
    )
)
```


You could have designed state of the art positional encoding Christopher Fleetwood

⁹ arXiv:2104.09864

RoFormer: Enhanced Transformer with Rotary Position Embedding Su et al. 2022 Given the computational efficient realization which is what we're aiming at getting

$$\boldsymbol{R}_{\Theta,m}^{d}\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ \vdots \\ x_{d-1} \\ x_d \end{pmatrix} \otimes \begin{pmatrix} \cos m\theta_1 \\ \cos m\theta_1 \\ \cos m\theta_2 \\ \cos m\theta_2 \\ \vdots \\ \cos m\theta_{d/2} \\ \cos m\theta_{d/2} \\ \cos m\theta_{d/2} \end{pmatrix} + \begin{pmatrix} -x_2 \\ x_1 \\ -x_4 \\ x_3 \\ \vdots \\ -x_d \\ x_{d-1} \end{pmatrix} \otimes \begin{pmatrix} \sin m\theta_1 \\ \sin m\theta_1 \\ \sin m\theta_2 \\ \sin m\theta_2 \\ \vdots \\ \sin m\theta_2 \\ \vdots \\ \sin m\theta_{d/2} \\ \sin m\theta_{d/2} \\ \sin m\theta_{d/2} \\ \sin m\theta_{d/2} \end{pmatrix}$$

Having implemented $\vec{\theta}$, next let's implement $m\vec{\theta}$ by way of an outer product 10

```
m = torch.arange(context_len, device=device)
freqs = torch.outer(m, theta_s).float()
```

$$m\vec{\theta} = \text{freqs} = \begin{pmatrix} m_1\theta_1, m_1\theta_2, \dots, m_1\theta_{d/2-1}, m_1\theta_{d/2} \\ m_2\theta_1, m_2\theta_2, \dots, m_2\theta_{d/2-1}, m_2\theta_{d/2} \\ \vdots & \vdots & \ddots & \vdots \\ m_{\text{ctx_len}}\theta_1, m_{\text{ctx_len}-1}\theta_2, \dots, m_{\text{ctx_len}-1}\theta_{d/2-1}, m_{\text{ctx_len}-1}\theta_{d/2} \end{pmatrix}$$

It is then needed to get the complex numbers for the resulting matrix of size context len by d/2.

```
freqs_complex = torch.polar(torch.ones_like(freqs),freqs)
```

which then gives the polar form of each element in the matrix, such that

$$e^{im\vec{\theta}} = \begin{pmatrix} \cos(m_1\theta_1) + i\sin(m_1\theta_1), \cos(m_1\theta_2) + i\sin(m_1\theta_2), \dots, \cos(m_1\theta_{d/2}) + i\sin(m_1\theta_{d/2}) \\ \cos(m_2\theta_1) + i\sin(m_2\theta_1), \cos(m_2\theta_2) + i\sin(m_2\theta_2), \dots, \cos(m_2\theta_{d/2}) + i\sin(m_2\theta_{d/2}) \\ \vdots & \vdots & \dots & \vdots \\ \cos(m_{cl}\theta_1) + i\sin(m_{cl}\theta_1), \cos(m_{cl}\theta_2) + i\sin(m_{cl}\theta_2), \dots, \cos(m_{cl}\theta_{d/2}) + i\sin(m_{cl}\theta_{d/2}) \end{pmatrix}$$

Let's consider a subset of the inputs and a subset of the matrix above, then

$$\begin{split} \vec{x} &= \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} (x_1 & x_2) \\ (x_3 & x_4) \end{pmatrix} = \begin{pmatrix} x_1 + ix_2 \\ x_3 + ix_4 \end{pmatrix} \otimes \begin{pmatrix} f_{11} + i\hat{f}_{11} \\ f_{12} + i\hat{f}_{12} \end{pmatrix} \text{, where } \begin{cases} f_{11} &= \cos(m_1\theta_1) \\ \hat{f}_{11} &= \sin(m_1\theta_1) \\ f_{12} &= \cos(m_1\theta_2) \\ \hat{f}_{12} &= \sin(m_1\theta_2) \end{cases} \\ &= (x_1 + ix_2)(f_{11} + i\hat{f}_{11}) = x_1f_{11} - x_2\hat{f}_{11} + i(x_1\hat{f}_{11} + x_2f_{11}) \\ &= (x_1 + ix_2) \begin{pmatrix} x_1 + ix_2 \\ x_3 + ix_4 \end{pmatrix} \otimes \begin{pmatrix} f_{11} + i\hat{f}_{11} \\ f_{12} + i\hat{f}_{12} \end{pmatrix} \\ &= \begin{pmatrix} x_1f_{11} - x_2\hat{f}_{11} + i(x_1\hat{f}_{11} + x_2f_{11}) \\ x_3f_{12} - x_4\hat{f}_{12} + i(x_3\hat{f}_{12} + x_4f_{12}) \end{pmatrix} = \begin{pmatrix} (x_1f_{11} - x_2\hat{f}_{11} & x_1\hat{f}_{11} + x_2f_{11}) \\ (x_3f_{12} - x_4\hat{f}_{12} & x_3\hat{f}_{12} + x_4f_{12}) \end{pmatrix} \\ &= \begin{pmatrix} x_1f_{11} - x_2\hat{f}_{11} \\ x_1\hat{f}_{11} + x_2f_{11} \\ x_1\hat{f}_{11} + x_2f_{11} \\ x_3f_{12} - x_4\hat{f}_{12} \end{pmatrix} \Rightarrow \begin{pmatrix} x_1\cos m_1\theta_1 - x_2\sin m_1\theta_1 \\ x_1\sin m_1\theta_1 + x_2\cos m_1\theta_1 \\ x_3\cos m_1\theta_2 - x_4\sin m_1\theta_2 \\ x_3\sin m_1\theta_2 + x_4\cos m_1\theta_2 \end{pmatrix} \end{split}$$

10 context_len is an integer which refers to the maximum number of tokens the model can consider in a single forward pass

Implementing the rotation mechanism

the previously derived mathematical algorithm can then be translated into code as below.

```
def apply_rotary_embs(x, freqs_complex, device):
   # x rearrange and make complex => result => x1 + jx2
   # [B, context_len, H, head_dim] => [B, context_len, H, head_dim/2]
   x_c = torch.view_as_complex(
       x.float().reshape(*x.shape[:-1], -1, 2)
   # [context_len, head_dim/2] => [1, context_len, 1, head_dim/2]
   f_c = freqs_complex.unsqueeze(0).unsqueeze(2)
   # [B, context_len, H, head_dim/2] * [1, context_len, 1, head_dim/2]
   # => [B, context_len, H, head_dim/2]
   x_rotated = x_c * f_c
   # [B, context_len, H, head_dim/2] => [B, context_len, H,
        head_dim/2, 2]
   x_out = torch.view_as_real(x_rotated)
   # [B, context_len, H, head_dim/2, 2] => [B, context_len, H,
   x_{out} = x_{out.reshape}(*x.shape)
   return x_out.type_as(x).to(device)
```

And now to the most interesting part of this architecture....

Multi-Head Attention¹³

a picture is worth a thousand words! Let it do the talking!

- 11 nn.Linear is an instance initialization of a stack of perceptrons in a single layer in PyTorch, with d_in previously known as the abstract dim of the word embedding, and d_out is initialized as d_in
- 12 proving the invocation that initializes Q, K and V $_{\rm matrices}$

```
import torch
import torch.nn as nn
x = torch.randn(10, 3)
Wq = torch.nn.Linear(3, 40, bias=False)
torch.equal(Wq(x), x.dot(Wq.weight.T))
torch.equal(Wq(x), x@Wq.weight.T) # True
```

- 13 the MHA has its core in attention mechanism whose goal is to dynamically decide on which inputs we want to "attend" more than others based on
- query ~ a feature vector that describes what we are looking for in the sequence, i.e. what would we maybe want to pay attention to.
- keys ~ for each input element, we have a key which is again a feature vector. This feature vector roughly describes what the element is "offering", or when it might be important. The keys should be designed such that we can identify the elements we want to pay attention to based on the query.

high-dimensional latent embeddings rich token Batch x Seq_len x d_in representation as input embeddings denoted as x Wal Wkl and Wv are nn.Linear instances of $Q=W_{q}(x)$ $V=W_{V}(x)$ $K=W_k(x)$ dimensions invokes x@Wa.T where Wa is nn.Linear with (d_out,d_in) dims d_in x d_out, but weights stored as d_out x d_in Batch x Sea_ler Batch x Seq_len x d_out x d_out Batch x Seq_len x d_out h=8 for the original linearly project Q h times linearly project K linearly project VI Transformers architecture d_out % h == 0 must be met head_dim = d_out // h Batch x Seq_len x h x head_dim Batch x Seq_len x h x head_dim Batch x Seq_len x h x head_dim Scaled Dot Product Attention output heads head, ..., headh Batch x Seq_len concatenate the heads combine h x head_dim to be d_out Batch x Seq_len x d_out out = Wo(concat_h) where Wo is nn.Linear instance of d_out x d_out

Scaled dot product attention

The term, first introduced in the *Vaswani et al.* paper, involves the following key operations:

- compute the dot product of queries and keys of dimension d_k , QK^T
- scaling by a factor $1/\sqrt{d_k}$ to counteract the effect of extremely small gradients in the softmax computation as will be seen in the next step when d_k becomes very large¹⁴. This begets the attention scores.
- softmax computation of the normalized result attention scores. The result is the attention weights.
- dot product of the attention weights and the values.

the infamous equation is therefore

$$\operatorname{attention}(Q,K,V) = \operatorname{softmax}\left(\frac{QK^T}{\sqrt{d_k}}\right)V$$

From the diagram above, there's a new block, *Mask*, that does something called masking. A transformer usually has two phases, encoding phase and the decoding phase. From the Transformers architecture diagram, encoder is on the left and the decoder on the right for the two phases.

from previous 13...

- values ~ for each input element, we also have a value vector. This feature vector is the one we want to average over
- score function ~ to rate which elements we want to pay attention to, we need to specify a score function. The score function takes the query and a key as input, and outputs the score (attention weight) of the query-key pair. It is usually implemented by simple similarity metrics like a dot product, or a small MLP.

courtesy of UvA course notes

 14 d_k is the size of the last dimension of the keys after linear projection and transpose, to be implemented later. It is the head dimension for each attention head. Sanity check states that your key dimension be B x Seq_len x h x head_dim before this step where d_k is gotten by k.shape[-1]

During the decoding phase, at each step of predicting a word¹⁵, the network needs take a look at the words previous to that step, and output a softmax prediction for what it thinks the next word is. Since transformers attend to the entire sequence, before and after, it becomes a trivial task to predict the next word, simply by putting 100% attention to the word after it.

This of course is cheating, it won't learn anything really. During the inference pipeline, the entire sequence won't be present, hence why we need the masking block, we don't want each word in the decoder to see the words that come after it.

Implementing masking in code

Let's use the sequence below

Eiffel Tower is in Paris

and consider the llama 2 tokenizer¹⁶, *sentencepiece*, as the final Transformers model built on these progressive learnings while building on the architecture is Llama 2.

```
import sentencepiece as spm
sequence = "Eiffel Tower is in Paris"
sp = spm.SentencePieceProcessor("llama-2-7b-tok.model")
tokens = sp.encode_as_ids(sequence)
```

Considering V and D used for *Llama2 model 7B* variant, let's initialize an embedding instance.

```
V,D=32_000,4_096
emb = nn.Embedding(V, D)
emb_tokens = emb(torch.tensor(tokens))
print(emb_tokens.shape)
# torch.Size([7, 4096])
```

Our embeddings output being the input to scaled dot product attention, let's compute QK^T then scale keeping in mind that the batch dimension, multiple heads, and the positional encoding is not incorporated for the sake of focusing on masking.

```
Wq, Wk, Wv = nn.Linear(D,D),nn.Linear(D,D),nn.Linear(D,D)
q, k, v = Wq(emb_tokens), Wk(emb_tokens), Wv(emb_tokens)
scores=q@k.T
scaled_scores=scores/k.shape[-1]**.5
print(scaled_scores.shape) # torch.Size([7, 7])
```

- 15 the model actually predicts a token which, by using a lookup table, is decoded to a word which is what humans understand.
- 16 the lookup-table $\it tokenizer.model$ can be found from the huggingface model card for $\it Llama-2-7b$

https://huggingface.co/meta-llama/Llama-2-7b/tree/main

Now onto a mask with ones from the first upper off-diagonal onwards. Then, fill them with $-\infty$ such that the exponential of those values will be zero in the weights.

Now, for the weights, pre-matrix multiply with V for the result of Scaled Dot Product Attention

```
out = weights @ v
print(out.shape) # torch.Size([7, 4096])
```

Nice! Now onto *Add & Norm* layer, which from the paper, is a Layer normalization that computes

```
LayerNorm(x + Multihead(x))
```

where x is basically the same sequence (as an embedding) input to the Q, K&V. This layer hence is a residual connection necessary for enabling smooth gradient flow through the model and retaining information from the original sequence prior to the multi-head attention. This is simply implemented as

```
out_attn = multiheadAttn(x)
out = x + out_attn
norm_out = norm(out)
```

What about the Feed Forward Network layer

Always forming a crucial layer in most models, the FFN, in this case, maps context rich vectors onto a higher dimension¹⁷ which increases learning so it can model more complex relationships and also adds an activation function to introduce non-linear, even better relations.

 17 Feed Forward NN layer for Transformer model

Feed Forward NN layer for GPT-2

Feed Forward NN layer for Llama-2-7b

 18 disjointed for it does not exist in a nn.Module class with the updatable weights in the init part of the class

Building Llama-2 from the SDPA outwards...

Gladly having gone through the layers in the Transformer model, it is of essence to build the Llama-2 model graph and load the weights for the 7B variant. It is a decoder-only architecture, as is most State of The Art common LLMs. Why is that? Well, decoder-only architectures worked very well for next token prediction and translation tasks, and were easier to train. And so, they picked up as the *de facto* baselines for most current outstanding models.

Earlier, we had the graph for the Multi-head Attention, let's add codes to it to map it to implementation.

But wait! what about the RoPE implementation, remember that as has been discussed earlier, positional encodings should be somewhere in the above disjointed ¹⁸ graph of a code. Let's figure out where?

Recap on Rotational Positional Encoding

```
applied to the queries and keys only and not the values
                                                                                           (refer to page 4).
def precompute_freqs_cis(d, context_len, theta =
     10_000, device = "gpu"):
                                                                                                 As the paper says, "...to any
                                                                                                 x_i \in R^d where d is even..."
      #
      assert d % 2 == 0, "dim must be divisible by 2"
      i_s = torch.arange(0,d,2)[:(d//2)].float() \leftarrow
                                                                                       i_s = 2(i-1) for
      theta_s = theta ** (- i_s / d).to(device)
                                                                                       i \in \{1, 2, \dots, d/2\}
      m = torch.arange(context_len, device=device)
                                                                                         10000^{-i_s/d} which expands to 10000^{-2(i-1)/d}
      freqs = torch.outer(m, theta_s).float() <</pre>
      freqs_cis = torch.polar(torch.ones_like(freqs),
                                                                                         outer product of ec{m} \ \& \ ec{	heta} to give
                                                                                             m_1\theta_1, m_1\theta_2, \ldots, m_1\theta_{d/2-1}, m_1\theta_{d/2}
            freqs)←
                                                                                              m_2\theta_1, m_2\theta_2, \ldots, m_2\theta_{d/2-1}, m_2\theta_{d/2}
      return freqs_cis
                                                                                             (m_{	extit{cl}}	heta_1,m_{	extit{cl}-1}	heta_2,\ldots,m_{	extit{cl}-1}	heta_{d/2-1},m_{	extit{cl}-1}	heta_{d/2})
                                                elementwise mapping i.e.
                                                m_1\theta_1 \Rightarrow \cos(m_1\theta_1) + i\sin(m_1\theta_1)
                                                where the ones are the absolute value arguments
                                                                                            takes each group of 2s of elements,...
                                                                                            [x, y],
                                                                                            [m, n], \dots
def apply_rotary_embs(x, freqs_cis, device):
                                                                                            to single elements of
                                                                                            m+jn...
     #
      x_c = torch.view_as_complex(
                                                                                    dynamically expands the last dimension
           x.float().reshape(*x.shape[:-1], -1, 2)
                                                                                    (...,d1) to (...,\frac{d1}{2},2) where d1 is even
                           - dims transformed from (\ldots,d) - to \left(\ldots,rac{d}{2}
ight)
     f_c = freqs_cis.unsqueeze(0).unsqueeze(2)
     x_rotated = x_c * f_c
     x_out = torch.view_as_real(x_rotated)
```

reverses the effect of torch.view as complex

 19 Reminder that the rotational transformation is to be

With the knowledge of the implementation of the rotational positional encodings, let's inject it into the graph for the MultiHead Attention, focusing on the part after the transformation to the dimensions

x_out = x_out.reshape(*x.shape)

return x_out.type_as(x).to(device)

 $[batch \times seq len \times n heads \times head dim]$

but before the high-dimensional transpose to get the batch of heads each with dimensions (seq_len,head_dim)¹⁹.

* which is then done below²⁰

```
# Already defined earlier
dim=4096; n_heads=32; context_len=4096
Q,K,V=... # each dims being (Batch,SeqLen,Heads,HDim)
m_theta_polar_tensor =
    precompute_freqs_cis(dim//n_heads,
    context_len*2,"cpu")
m_theta_polar_seq = m_theta_polar_tensor[:seq_len]
Q=apply_rotary_emb(Q,m_theta_polar_seq)
K=apply_rotary_emb(K,m_theta_polar_seq)
```

Unwrapping the Transformer Block

As much as the original Transformer does the normalization as

$$LayerNorm(x + Multihead(x))$$

Llama2 does a prenormalization given by

$$x_n = \operatorname{RMSNorm}(x)$$
 out $= x + \operatorname{Multihead}(x_n)$ where
$$\operatorname{RMSNorm}(x) = \frac{x_i}{\operatorname{RMS}(x)} * \gamma_i$$

$$\operatorname{RMS}(x) = \sqrt{\epsilon + \frac{1}{n} \sum_{i=1}^n x_i^2}$$

which works out in code as

```
class RMSNorm(torch.nn.Module):
    def __init__(self, dim: int, eps: float = 1e-5):
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(dim))

    def forward(self, x):
        means = x.pow(2).mean(-1, keepdim=True)
        norm_x = x * torch.rsqrt(means + self.eps)
        return (norm_x * self.weight).to(x.dtype)

rmsNorm=RMSNorm(dim) # dim=4096

x_norm=rmsNorm(x) # x => embeddings => (Batch,SeqLen,Dim)
# some mhAttention already instantiated called below
attn_out=mhAttention(x_norm)
# then add
out = x + attn_out
```

with the pre-normalization done to the input to the attention block and to the input to the feed-forward networks. 20 full neat implementation
https://github.com/Marvin-desmond/
ScalingViTsAcrossTrainingCompute/blob/main/mha/
mha_with_rope.py
Llama 2 Multi-Head Attention with ROPE

However, the original FFN, as can be seen from the side notes on pg.9, does two linear transformations with a ReLU ²¹ activation function applied between the two linear transformations.

$$FFN(x, W_1, W_2, b_1, b_2) = \max(0, xW_1 + b_1)W_2 + b_2$$

the above equation being representative of the graph computation in the linear topology on the just aforementioned page.

Llama2, the current LLM architecture of interest in implementation in this section of the article, focuses on a Linear Unit known by few as SwiGLU, a Swish-Gated Linear Unit²², a variation of the Transformer FFN layer which then uses a variant of the Gated Linear Unit ²³. This leads to the FFN layer having three weight matrices as opposed to the original two. Hence, from these clarifications, then the Transformer block is visualized as below

21 https://proceedings.mlr.press/v15/glorot11a.html Deep Sparse Rectifier Neural Networks Glorot et al. 2011

²² https://arxiv.org/abs/2002.05202v1 GLU Variants Improve Transformer Noam Shazeer 2020

https://arxiv.org/abs/1606.08415
 Gaussian Error Linear Units (GELUs)
 Dan Hendrycks, Kevin Gimpel 2016

With the above nice input-output mapping translating to code as

hey side note

NEW PAGE PENDING......

lorem ipsum dwffffef