

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Matige Con

*	
_	
∞	
9	
5	
И	
5	
7	
6	
_	
6	

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 0620/33

Paper 3 (Extended)

October/November 2011

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a pencil for any diagrams, graphs or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

DO NOT WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 12.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

For Examiner's Use		
1		
2		
3		
4		
5		
6		
7		
Total		

This document consists of 11 printed pages and 1 blank page.

- 1 Use your copy of the Periodic Table to answer these questions.
 - (a) Choose an element from the Periodic Table to match each description. You may give either the name or the symbol.

		44.	
		2 A. D.	
Use	you	ur copy of the Periodic Table to answer these questions.	For miner's
(a)		pose an element from the Periodic Table to match each description. I may give either the name or the symbol.	For miner's e
	(i)	It is the most reactive metal.	[1] COM
	(ii)	It is the only non-metal which is a liquid at r.t.p	[1]
	(iii)	An isotope of this element is used as a fuel in nuclear reactors	[1]
	(iv)	This Group VII element is a solid at r.t.p	[1]
	(v)	This element is in Group V and Period 4.	[1]
((vi)	This unreactive gas is used to fill lamps.	[1]
(b)	Pre	dict the formula of each of the following compounds.	
	(i)	germanium oxide	
	(ii)	tellurium bromide	[2]
(c)	Giv	e the formula of each of the following ions.	
	(i)	strontium	
	/ii\	fluoride	[2]

[Total: 10]

www.PapaCambridge.com 2 Starch, a complex carbohydrate, is a natural macromolecule or polymer. It can be formed from its monomer by condensation polymerisation. (a) (i) Explain the terms: monomer condensation polymerisation (ii) Draw the structural formula of starch to include three monomer units. Glucose, the monomer, can be represented as HO-[3] **(b)** Starch can be hydrolysed to simple sugars by heating with dilute sulfuric acid or by warming with a dilute solution of saliva. The reaction can be catalysed by H+ ions from the acid or by the enzymes in saliva. (i) What is an enzyme?[1] (ii) Explain why, if the saliva/starch mixture is heated above 70°C, the hydrolysis stops.[1] (iii) The complete acid-catalysed hydrolysis of starch forms only glucose. The partial acid-catalysed hydrolysis of starch forms a mixture of sugars which includes glucose. Describe how you could identify the different sugars in this mixture.

[Total: 10]

•	For	
1	miner's	
	e	

Fertilisers are used to promote plant growth. Two fertilisers are ammonium phosphate, $(NH_4)_3PO_4$, and calcium dihydrogenphosphate $(Ca(H_2PO_4)_2)_2$. 3

32	
4	6
Fertilisers are used to promote plant growth. Two fertilisers are ammonium phosphate, $(NH_4)_3PO_4$, and calcium dihydrogenphosp $Ca(H_2PO_4)_2$. Ta) Describe a test to distinguish between these two fertilisers. test	OC ON
a) Describe a test to distinguish between these two fertilisers.	•
test	
	[2]
result	
	[1]
b) Many fertilisers are manufactured from ammonia. Describe how ammonia is made i	n the
Haber process. Give the essential conditions and an equation for the process.	
	[4]
c) State the essential plant nutrient not supplied by ammonium phosphate.	
	[1]
d) The soluble compound, calcium dihydrogenphosphate is made by heating the inso mineral rock phosphate, Ca ₃ (PO ₄) ₂ , with sulfuric acid.	luble
(i) Why would rock phosphate not be effective as a fertiliser?	
	[1]
(ii) The phosphate ion, PO ₄ ³⁻ , from the rock phosphate is changed into dihydrogenphosphate ion, H ₂ PO ₄ ⁻ .	the
$PO_4^{3-} + 2H_2SO_4 \rightarrow H_2PO_4^{-} + 2HSO_4^{-}$	
What type of reagent is the phosphate ion? Give a reason for your choice.	
That type of rougent to the phoophate form one a rougen for your one look	
	[2]
e) The extensive use of fertilisers and possibly the effect of acid rain tend to increas acidity of the soil. State why it is necessary to control soil acidity and explain how this be done.	
	[2]

[Total: 13]

www.PapaCambridge.com (a) Steel rusting is an example of an oxidation reaction. (i) Define the term steel. (ii) Define oxidation in terms of electron transfer.[1] **(b)** A method of preventing steel rusting is sacrificial protection. steel pipe connectedblock of electrically magnesium to steel pipe Give an explanation, in terms of electron transfer, why the steel does not rust. **(c)** Another method of preventing steel rusting is cathodic protection. power steel girder inert anode cathode titanium rod bubbles of hydrogen gas sea water (i) Write an equation for the formation of the gas given off at the steel cathode during cathodic protection.[2] (ii) Give one difference between the two methods.

[Total: 9]

	For	
٩	miner	<u>'</u>

			O	Q.					
5	The	rea	ctions in this question are all examples of photoche	emical reactions.					
	(a)	Exp	lain the phrase photochemical reaction.						
				[2]					
	(b)	con	ny millions of years ago, the Earth's atmosphere tained negligible amounts of oxygen. After the teria, the proportions of these two gases in the atm	appearance of green plant-like					
		(i)	What are the approximate percentages of these tw	vo gases in the atmosphere now?					
			carbon dioxide =	[1]					
			oxygen =	[1]					
		(ii)	Explain how the green plant-like bacteria changed th	ne composition of the atmosphere.					
						(c)	The	reduction of silver(I) bromide to silver is the basis	of film photography.
								$2AgBr \rightarrow 2Ag + Br_2$	
								white black	
			opaque object is placed on a piece of paper coate n exposed to a bright light. The light is switched off						
	е	opad .g. th rdbo	nick	white					
			before exposed to light	after exposed to light cardboard removed					
		Exp	lain how the image is formed.						

[Total: 12]

.....[4]

Nickel is a transition element. 6

	7 Kel is a transition element	J
Nic	itter is a transition cionient.	For miner's
(a)	Predict three differences in the chemical properties of nickel and barium.	Midde C
		ac. con
		13
	[3]	
(b)	Nickel ores are converted into nickel(II) oxide. This can be reduced to impure nickel by heating with carbon. The nickel is purified by the following reversible reaction.	"

$$Ni(s) + 4CO(g) \rightleftharpoons Ni(CO)_4(g)$$
nickel carbonyl

(i) Impure nickel is heated at 60 °C. The forward reaction occurs.

$$Ni(s) + 4CO(g) \rightarrow Ni(CO)_4(g)$$
 impure

The nickel carbonyl, a gas, moves into a hotter chamber at 200 °C. The backward reaction occurs and the nickel carbonyl decomposes.

$$Ni(CO)_4(g) \rightarrow Ni(s) + 4CO(g)$$
pure

	Is the forward reaction exothermic or endothermic? Give a reason for your answer	
		[2]
` ,	Explain why the forward reaction is favoured by an increase in pressure.	
(iii)	Suggest what happens to the impurities.	
		[1]

www.PapaCambridge.com (iv) Suggest another method of refining nickel. Give a brief description of the which you have suggested. A labelled diagram is acceptable.

[4]

[Total: 12]

- 7 The alkenes are a series of unsaturated hydrocarbons. They have the general motormula C_nH_{2n} .
 - (a) Deduce the molecular formula of an alkene which has a relative molecular mass of 126. Show your working.

(b) The structural formula of propene is drawn below.

- (i) Draw a diagram showing the arrangement of the valency electrons in one molecule of this covalent compound.
 - Use x to represent an electron from an atom of carbon.
 - Use o to represent an electron from an atom of hydrogen.

[3]

(ii) Draw the structure of the polymer formed from propene

www.PapaCambridge.com (iii) Bond energy is the amount of energy, in kJ, which must be supplied to bre mole of the bond.

bond	bond energy in kJ/mol
Н—Н	+436
C=C	+610
C—C	+346
C—H	+415

Use the data in the table to show that the following reaction is exothermic.

- (c) This question is concerned with some of the addition reactions of but-1-ene.
 - (i) Name the product formed when but-1-ene reacts with water.

Г	4.1	1
	11	1
		4

(ii) Complete the equation.

$$CH_3-CH_2-CH=CH_2 + Br_2 \rightarrow \dots$$
 [2]

(iii) Deduce the formula of the compound which reacts with but-1-ene to form 1-iodobutane.

[1]

[Total: 14]

BLANK PAGE

www.PapaCambridge.com

The Periodic Table of the Elements **DATA SHEET**

	0	4 He lium	20 Ne Neon	40 Ar Argon	84 Kry pton 36	Xe Xenon 54	Radon 86		175 Lu Lutetium
	II/		19 Fluorine	35.5 C1 Chlorine	80 Br Bromine	127 I lodine 53	At Astatine 85		173 Yb
			16 O Oxygen 8	32 Sul fur 16	79 Se Selenium 34	128 Te Tellurium	Polonium 84		169 Tm
	>		14 Nitrogen 7	31 P Phosphorus 15	75 AS Arsenic	122 Sb Antimony 51	209 Bi Bismuth		167 Er Erbium
	>		12 C Carbon	28 Si Silicon	73 Ge Germanium 32	Sn In	207 Pb Lead		165 Ho Holmium
	=		11 Boron 5	27 A1 Aluminium 13	70 Ga Gallium 31	115 In Indium 49	204 T t Thallium		162 Dy Dysprosium
					65 Zn Zinc	Cadmium 48	201 Hg Mercury 80		159 Tb
					64 Cu Copper	108 Ag Silver 47	Au Gold 797		157 Gd Gadolinium
Group					59 R Nickel	106 Pd Palladium 46	195 Pt Platinum 78		152 Eu Europium
Gre					59 Cobalt	103 Rh Rhodium 45	192 Ir Iridium		Samarium
		Hydrogen			56 Fe Iron	Ruthenium 44	190 Os Osmium 76		Pm Promethium
					Mn Manganese	Tc Technetium	186 Re Rhenium 75		Neodymium
					Cr Chromium 24	96 Mo Molybdenum 42	184 W Tungsten 74		Praseodymium
					51 V Vanadium 23	93 Nobium	181 Ta Tantalum 73		140 Ce
					48 T Titanium	91 Zr Zirconium 40	178 # Hafnium * 72		
					45 Scandium	89 ×	139 La Lanthanum 57 *	227 AC Actinium 89	series eries
	=		9 Be Beryllium	24 Mg Magnesium	40 Ca Catcium	Sf Strontium	137 Ba Barium 56	226 Ra Radium 88	*58-71 Lanthanoid series 190-103 Actinoid series
	_		7 L.i Lithium	23 Na Sodium	39 K Potassium	85 Rb Rubidium	CS Caesium 55	Francium 87	*58-71 Lɛ 190-103 A

anoid series	140	141	144		150	152	157	159	162	165	167	169	173	175	-
oid series	Cerium 58	Pr Praseodymium 59	Neodymium 60	Pm Promethium 61	Samarium 62	Eu Europium 63	Gd Gadolinium 64	Terbium	Dy Dysprosium 66	H olmium 67	Erbium 68	Tmulium 69	Yb Ytterbium 70	Lu Lutetium 71	
a = relative atomic mass X = atomic symbol b = proton (atomic) number	232 Th Thorium	Pa Protactinium 91	238 U Uranium	Np Neptunium 93	Pu Plutonium 94	Am Americium 95	Cm Curium 96	Bk Berkelium 97	Californium 98	Einsteinium	Fm Fermium	Md Mendelevium 101	No Nobelium 102	Lawrendum 103	Md No Lr Indefinition Note from Lawrendium Note from Lawrendium Note from 102 103
		5	35	25	45	Co	06	/6	000	SS .	8	5	201	301	N. A.
	The \	The volume of one mole of any gas is 24 dm ³ at room temperature and pressure (r.t.p.).	one mole	of any ga	s is 24 dn	n³ at roor	n tempera	ature and	pressure	(r.t.p.).					No.
							-							C	1
													1	ana	\
													3	Srie	
												•	Oc.	1	
													CON		

Key

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included the publisher will be pleased to make amends at the earliest possible opportunity.