A számításelmélet alapjai II. 1. gyakorlat

<u>Cél:</u> A logika tárgyának ismertetetése. Ítéletlogika nyelvének megismerése.

<u>Fogalmak:</u> következtetési forma, állítás, logikai műveletek, ítéletlogika szintaxisa, formula, részformula, formula összetettsége, prioritás, zárójelezés, interpretáció, igazságtábla, szemantikus fa

Logika (és a matematikai logika) tárgya az emberi gondolkodás vizsgálata.

A gondolkodás fontos része a mindennapi életnek.

A gondolkodás fontos része bármely (humán- vagy természet-) tudománynak A logika tárgya, célkitűzése.

Gondolkodási folyamatok vizsgálata

A helyes következtetés törvényeinek feltárása.

KÖVETKEZTETÉS - (ekvivalens megfogalmazások)

Adott ismeretek ⇒ új ismeret premisszák ⇒ konklúzió feltételek ⇒ következmény

állítások ⇒ állítás

A ⇒ jel a gondolkodási folyamatot jelöli, amelynek eredménye a következmény.

<u>Definíció:</u> Gondolkodásforma vagy következtetésforma egy $\mathbf{F} = \{A_1, A_2, ..., A_n\}$ állításhalmaz és egy A állításból álló (\mathbf{F}, A) pár.

Definíció:

Helyes következtetésforma egy(\mathbf{F} ,A) pár, ha minden olyan esetben, amikor az \mathbf{F} -ben minden állítás igaz, akkor a következmény állítás (az A állítás) is igaz.

Logika (és a matematikai logika) feladata, helyes gondolkodásformák kiválasztása és új helyes következtetési formák keresése.

Példa (csak a logikai összekötő jelek értelmén alapuló következtetésre)

Ha nálam van a kapukulcs, akkor ki tudom nyitni a kaput.

Nálam van a kapukulcs. (tehát)

Ki tudom nyitni a kaput.

A következtetés sémája:

Ha A, akkor B.

A. (tehát)

 \mathbf{R}

Egy másik következtetés:

Erika Sándor felesége.

Anna Sándor édesanyja. (tehát)

Anna Erika anyósa.

Kérdés, itt mi a séma?

Az állítás és az állítások közötti kapcsolatok a logika alapját képezik.

Feladat: Helyes-e az alábbi okoskodás? Mi az okoskodás sémája?

Ha a benzin elfogyott az autóból, akkor az autó megáll. Nem fogyott el a benzin. Tehát az autó nem áll meg.

Ha A, akkor B.

Nem A. (tehát??)

Nem B.

Az állítás fogalma, igazságértéke. Hogyan lehet az állítás igazságértékét megállapítani?

Az **állítás** egy olyan kijelentés, amelyről el lehet dönteni, hogy igaz-e vagy nem.

Azt, hogy egy állítás igaz (i) vagy hamis (h) az állítás igazságértékének nevezzük.

Klasszikus kétértékű logikában két igazságértéket használunk.

Ellentmondástalanság elve: egyetlen állítás sem lehet igaz is és hamis is.

Kizárt harmadik elve: nincs olyan állítás, amely sem nem igaz, sem nem hamis.

Az állítás igazságértékét vagy tapasztalati tények, vagy a tudományos eredmények ismeretében állapítjuk meg.

Nem állítás egy mondat, ha

- nem kijelentő mondat,
- nem létező individuumról állít valamit,
- az állítás nem egyértelmű;
- az állítás jövőidejű;
- nem dönthető el, hogy igaz-e vagy nem.

Feladat: Döntsük el, hogy az alábbi mondatok közül melyek állítások!

- 1. Piros a hó.
- 2. Anna tud úszni.
- 3. Amelyik kutya ugat az nem harap.
- 4. Holnap megírom a leckém.
- 5. Ha nem tanulok, akkor rossz eredményt érek el.
- 6. A magyar államfő felesége tanár.
- 7. Iskolánk igazgatója 50 éves.
- 8. Iskolánk tanára 50 éves.
- 9. Péter nem túl öreg.
- 10. Az 5 nagyobb, mint 3.
- 11. x nagyobb, mint 3, ahol x eleme a természetes számoknak.
- 12. "Minden krétai hazudik." Mondta az általam ismert egyetlen krétai.

Megoldás: 1., 2., 3., 5., 7., 10.

Gyakorlat (vagy házi feladat):

Döntsük el, hogy az alábbi mondatok közül melyek állítások!

- 1. Budapesten 2007. szeptember 7-én sütött a nap.
- 2. Egynél több páros törzsszámnak kell lennie.
- 3. Ádám, hol voltál?
- 4. A világháborúban.

- 5. Ami nem azonos önmagával, az különbözik minden mástól is.
- 6. Van-e ennek valami értelme?
- 7. Minden szám osztható vagy kettővel vagy hárommal.
- 8. Semmi nem ugyanaz többé.
- 9. A Vénusz azonos az Esthajnalcsillaggal.
- 10. Vedd tudomásul, ami elromolhat, az el is romlik!

Függvényosztályozás, D: értelmezési tartomány, R: értékkészlet

1. logikai függvény

D tetszőleges, $R = \{i,h\}$

2. matematikai függvény – művelet.

 $D=R^n$.

Logikai műveletek

A lehetséges kétváltozós logikai műveletek közös igazságtáblája.

		1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
X	Y	X∧Y	X∨Y	$X \rightarrow Y$	$X \leftrightarrow Y$	$\neg \leftrightarrow$	$\neg \wedge$	¬∨	$\neg \rightarrow$	→ ←	X←	$\neg X$	$\neg Y$	X	Y	i	h
											Y						
i	i	i	i	i	i	h	h	h	h	h	i	h	h	i	i	i	h
i	h	h	i	h	h	i	i	h	i	h	i	h	i	i	h	i	h
h	i	h	i	i	h	i	i	h	h	i	h	i	h	h	i	i	h
h	h	h	h	i	i	h	i	i	h	h	i	i	i	h	h	i	h

A táblázat tartalmazza a 16 db. 2-változós műveletet (köztük található a 4.db.1- és a 2.db. 0-változós művelet).

Az ítéletlogika leíró nyelve

ábécé= ítéletváltozók X, Y, X_i ,...együttesen V_{ν} -vel jelöljük unér és binér logikai műveleti jelek $\neg, \land, \lor, \rightarrow$ elválasztójelek () a teljes ábécé V_0

Szintaxis (L₀ ítéletlogika)

- 1. (alaplépés) minden ítéletváltozó ítéletlogikai formula. (prímformula)
- 2. (rekurzív lépés)

Ha A ítéletlogikai formula, akkor ¬A is az.

Ha A és B ítéletlogikai formulák, akkor (A°B) is ítéletlogikai formula (°) a három binér művelet bármelyike.

3. Minden ítéletlogikai formula az 1, 2 szabályok véges sokszori alkalmazásával áll elő.

<u>Definició:</u> Formula logikai összetettsége **l(A)** (rekurzív definíció)

- 1. Ha A ítéletváltozó, akkor l(A)=0
- 2. $l(\neg A) = l(A) + 1$
- 3. $l(A^{\circ}B) = l(A) + l(B) + 1$

Annak érdekében, hogy a formulákat kevesebb zárójellel írhassuk fel bevezetjük a műveletek **prioritását** csökkenő sorrendben: \neg , \land , \lor , \rightarrow

Feladat: a) Adjuk meg, hogy mennyire összetettek az alábbi formulák!

b) Hagyjuk el a lehető legtöbb zárójelet az alábbi formulákból!

- 1. $(((X \rightarrow Y) \land (Y \rightarrow Z)) \rightarrow (\neg X \lor Z))$
- 2. $((P \rightarrow Q) \rightarrow (Q \rightarrow P))$
- 3. $(((X \rightarrow (\neg Y \land Z)) \lor (X \land Y)) \land Z)$
- 4. $((Q \rightarrow (P \land R)) \land \neg ((P \lor R) \rightarrow Q))$

Feladat: Döntsük el, hogy mi igaz az alábbi karakter sorozatokra!

- a) $P \rightarrow Q \rightarrow R \land \neg(P) \rightarrow P$ nem formula/konjunkciós/diszjunkciós/implikációs
- b) $(P \lor Q) \lor R \land (\neg P \to P)$ nem formula/konjunkciós/diszjunkciós/implikációs
- c) $P \wedge Q \rightarrow (Q \vee R) \wedge \neg (P \rightarrow P)$ nem formula/konjunkciós/diszjunkciós/implikációs
- d) $(P \rightarrow R) \rightarrow ((Q \rightarrow R) \rightarrow (P \lor Q \rightarrow R)$ nem formula/ konjunkciós/ diszjunkciós/ implikációs
- e) $Q \rightarrow (P \land R) \land \neg (P \lor R) \lor Q$ nem formula/konjunkciós/diszjunkciós/implikációs

<u>Definició:</u> *Interpretáció:* I: $V_v \rightarrow \{i,h\}$

Egy formula véges sok ítéletváltozót tartalmaz és így a formula vizsgálatához csak ezeknek az interpretációja szükséges. Szerepeljenek egy formulában az {X,Y,Z} ítéletváltozók. E változók egy sorrendjét bázisnak nevezzük. Legyen most a bázis X,Y,Z. Ekkor az összes interpretációt megadhatjuk *táblázattal* vagy *szemantikus fával*.

<u>Definíció:</u> Egy **n-változós formula igazságtáblája** egy olyan n+1 oszlopból és 2ⁿ+1 sorból álló táblázat, ahol a fejlécben a bázis (a formula változói rögzített sorrendben) és a formula szerepel. A sorokban a változók alatt az **interpretációk** (a **változók igazságkiértékelései**), a formula alatt a formula **helyettesítési értéke**i találhatók.

<u>Definíció:</u> Egy *n-változós szemantikus fa* egy **n-szintű bináris fa**, ahol a szintek a bázisbeli változóknak vannak megfeleltetve. Egy X változó szintjén a csúcsokból kiinduló élpárokhoz X, $\neg X$. cimkéket rendelünk. X jelentése X **igaz**, $\neg X$ jelentése X **hamis**, így egy n-szintű szemantikus fa ágain az összes (2^n) lehetséges igazságkiértékelés (*I interpretáció*) megjelenik.

Feladat: Készítsük el az alábbi formula igazságtábláját!

$$P \rightarrow O \rightarrow R \land \neg (R \rightarrow P)$$

<u>Feladat:</u> Bizonyítsuk be igazságtáblával, hogy ($\{A \rightarrow B, \neg A\}, \neg B$) következtetési forma nem helyes!