paper	Nos es de utilidad	Tecnología	Datos de entrada
Twittomender: Rec. usuarios	Profiling de usuarios	Lucene	ts + ers + ers.ts + ees + ees.ts
Prop. analysis: grafos	Conclusiones sobre topología	Ta. grafos	ts + ers + ees
Buzzer: Rec. artículos	Identificar breaking events	Lucene	ts
Influential users; LDA Model	find usuarios influyenyes	TODO	top users + ts + ers + ees
Homophily	7 tipos de relaciones	Teórico	

1)Twittomender

Paper

Resumen Sistema de recomendación de usuarios basado en contenido y con filtros colaborativos.

Nos es de utilidad... técnicas para profiling de usuarios

Herramienta principal Lucene

Perfil de usuario documento para indexar con Lucene => genera un vector con pesos {word: weight}

Datos de entrada Tweets + ers + ers.tweets + ees + ees.tweets

Puntos interesantes

- 1. El peso de cada término en el documento para el perfilado de usuarios es el TF-IDF propocionado por Lucene: proporcional a la frecuencia de aparición en el perfil del usuario e inversamente propocional a la frecuencia en el resto de perfiles; un peso alto implica que se trata de algo común en el perfil del usuario pero inusual en el resto de la población.
- 2. Sistema de entrenamiento con casos de prueba de los que se conoce la solución.
 - Tomando como medida la precisión: la mejor opción es tomar los perfiles de los ees y la peor opción los tweets de los ees
 - Tomando como medida la efectividad: funciona bien los tweets de los ees pero tomando una K muy alta
- 3. Falla la medida de acierto (sólo se considera buena solución si ya era un folowee)

Cifras concretas

- "Últimos tweets del usuario" => últimos 100 tweets
- Trainig set de usuarios: 19.000
- Conjunto de usuarios para testear el sistema (conocemos su solución):
 1.000
- Tiempo de prueba real: 1 mes
- Usuarios de prueba reales: 34
- Resultados reales: 6.9 tasa de acierto

2) Twitter properties analysis

Paper

Resumen Topología de twitter: teoría de grafos. Métricas para twitter

Nos es de utilidad... conclusiones relacionadas con la topología de twitter

Topología Usuarios = Nodos ; Relaciones = Aristas dirigidas (contrarías al flujo de información).

Datos de entrada Tweets + ers + ees

Puntos interesantes

- Dos términos interesantes: *Dynamics of the network* (cambios en la estructura) y *Dynamics on the network* (interacción entre nodos y condicionamiento por vecinos)
- 2. *Following ratio* (followers / following)
 - ~ 0 ⇒ spider coleccionando información sobre trending topics
 - < 1 => buscamos colectar información
 - 1 => standard
 - 1 => generador de contendio apreciado por sus propia comunidad
 - 10+ => nodos jefes Huge impact around general media
- 3. Los bots aparecen y desaparecen según las tendencias temporales.
- 4. Al llegar a 600 ers, la cifra se dispara a 100.000 ers.
- 5. Rapidez en recibir la información 30% le llegará la información en periodo t (casi instantáneo). La media está entre 0.22 y 0.3 de closeness

Cifras concretas

- Recrea el grafo con más de 14.000 nodos (usuarios)
- 80% usuarios han hecho 1500 tweets. La media es 9Tweets / día / persona
- 25% usaurios tiene 50 ers.
- 50% tiene un rating 1:1

3) Buzzer

Paper

Resumen Sistema de recomendación de artículos por contenido

Nos es de utilidad... Estado del arte de Buzzer; identificar topical news stories

Tecnología principal Lucene

RSS Identificar en twitter los breaking events para modificar una RSS

Datos de entrada Últimos tweets generados

Puntos de interés

- 1. Decripción detallada de la arquitectura y el funcionamiento de buzzer:
 - Dos conjuntos: artículos R y tweets T
 - Cada conjunto se indexa por separado con Lucene: MR y MT
 - Intersección t = (MR X MT)
 - Usamos ti € t como query para sacar el conjunto A de artículos que contienen t.
 - Cada articulo ai € A tiene una puntuación IDF
 - Sumatorio de puntuaciones para cada Aij
 - Resultado: actualizar los artículos de RSS
- 2. Estado del arte de Buzzer: Digg.com; Krakatoa Chronicle; News dude

Cifras concretas

1. Usuarios reales para las pruebas: 10

4) Influential users

Paper

Nota: sin terminar

resumen técnicas para localizar los usuarios influyentes

Latent Dirichlet Allocation (LDA) Model

Puntos interesantes

1. El 72% de los usuarios cumplen que el 80% de sus ees son debido a la reciprocidad.

Dataset: $S = top 1000 twitters S' = S \{lsl s.ers + s.ees\} |S'| = 6748 T = \{tweets\} |T| = 1.000.000$

S' - no publicadores - robots

En el conjunto S en el que vamos a movernos hay 50.000 relaciones

Topic Distillation

Usa LDA Latent Dirichlet Allocation (LDA) model => Partimos de una bolsa de palabras. each topic is represented as a probabil- ity distribution over a number of words. => Cada documento es un vector-conteo de palabras. each document is represented as a probability distribution over some topics

5) Homophily in social networks

Paper

Nota: sin terminar

Resumen

Puntos de interés

- 1. La información en la red se queda concentra en ciertos sub-grafos.
- 2. Clasificación de las relaciones personales entre usuarios
 - marriage
 - discussing important matters
 - friendship
 - career support at work
 - contact
 - knowing about

- appearing with them in a public place
- 3. Clasifciación de homophily
 - status: race, ethnicity, sex, age, religion, education, occupation & social class.
 - values, attitudes and beliefs: internal states presumed to shape our orientation toward futurre behaviour

Cifras concretas

1. Ninguna

Un dato que no conocía; Twitter creció un 2565% el año de su lanzamiento