Hardiness update

Faith Jones, April 28th

What I will cover

- Added site alpha effect
- Split data spring and autumn
- Added a curve (if we get time)

My model

My current model:

Linear (no quadratic)

Site and variety intercept effect

Variety slope effect

Co-varience for variety (un-centred in stand Code)

nonCentre_slopeSiteVarietyCov.stan

$$ltePred_{i} \sim Normal(\mu_{i}, \sigma)$$

$$\mu_{i} = \alpha_{var,i} + \alpha_{site,i} + \beta_{var,i} * x_{i}$$

$$\begin{bmatrix} \alpha_{var} \\ \beta_{var} \end{bmatrix} \sim MVnorm \begin{pmatrix} \alpha \\ \beta \end{bmatrix}, S$$

$$S = \begin{pmatrix} \sigma_{\alpha Var} & 0 \\ 0 & \sigma_{\beta Var} \end{pmatrix} \rho \begin{pmatrix} \sigma_{\alpha Var} & 0 \\ 0 & \sigma_{\beta Var} \end{pmatrix}$$

$$\alpha_{site} \sim normal(0, \sigma_{\alpha Site})$$

$$\beta \sim lognormal(0, 1)$$

$$\sigma \sim truncNormal(0, 5)$$

$$\sigma_{\alpha Var} \sim truncNormal(0, 5)$$

$$\sigma_{\alpha Site} \sim truncNormal(0, 5)$$

$$\sigma_{\beta Var} \sim truncNormal(0, 1)$$

$$\rho \sim LKJcorr(2)$$

Results for whole dataset

Underestimatimng hardiness?

Variety more influencial than site, but less certain?

Slopes dont vary much

No correlation between effects of variety on intercept and slope

Split Data

Endodormancy (before 1st Jan) Mostly acclimation

Ectodormance (after 1st Jan) Mostly deacclimation

Grand parameters

timePeriod

Similar alphas, but steeper slope for ectodormancy (spring deacclimation)

Variety effect

timePeriod

Site Effect

timePeriod

Site differences less pronounced during endodormancy (winter acclimation)

Maybe because vines are more sensitive to microclimactic variation as they react more quickly to changes in temperature?

timePeriod

Ectodormancy
Endodormancy

Quadratic model

- Similar model, but with quadratic element
- Also no site
- Data z scored
- quad_nonCentre_slopeVarietyCov.stan

$$ltePred_{i} \sim Normal(\mu_{i}, \sigma)$$

$$\mu_{i} = \alpha_{var,i} + \beta_{var,i} * x_{i} + \beta_{quad} * x_{i}^{2}$$

$$\begin{bmatrix} \alpha_{var} \\ \beta_{var} \end{bmatrix} \sim MVnorm \begin{pmatrix} \alpha \\ \beta \end{pmatrix}, S$$

$$S = \begin{pmatrix} \sigma_{\alpha Var} & 0 \\ 0 & \sigma_{\beta Var} \end{pmatrix} \rho \begin{pmatrix} \sigma_{\alpha Var} & 0 \\ 0 & \sigma_{\beta Var} \end{pmatrix}$$

```
\alpha \sim Normal(-15, 12)
\beta \sim lognormal(0, 1)
\beta_{quad} \sim Normal(0, 1)
\sigma \sim truncNormal(0, 5)
\sigma_{\alpha Var} \sim truncNormal(0, 5)
\sigma_{\beta Var} \sim truncNormal(0, 1)
\rho \sim LKJcorr(2)
```


A generally more linear relationship, But still some wierd stuff going on.

Lots of scatter/error (4ish degrees c) around the trend, but less than linear Model (but standardised data?)

Next steps

- Include a dummy variable endo/ecto that affects grand mean alpha and beta. But how to let it affect variety effects?
- Does the quadratic model make sense?