Лабораторная работа «Множественная регрессия».

 (\mathbf{R})

Цель работы: Для модели множественной регрессии научиться находить оценки ее параметров по методу наименьших квадратов, проводить анализ качества построенной модели.

Теоретическая часть.

Рассмотрим случай одной зависимой переменной Y и p факторов $X^{(1)}, X^{(2)}, ..., X^{(p)}$ и ограничимся рассмотрением простейшей зависимости, когда имеется n наблюдений вида

$$y_i = \sum_{i=1}^p x_i^{(j)} \cdot \theta_j + \varepsilon_i, i = \overline{1, n},$$

где θ_i , $j = \overline{1, p}$ – неизвестные параметры,

 $x_i^{(j)},\ i=\overline{1,n},\ j=\overline{1,p}-i$ -тое значение j-того фактора. Функция регрессии (отклика) имеет вид

$$M\{Y \mid X^{(1)}, X^{(2)}, ..., X^{(p)}\} = \eta(X^{(1)}, X^{(2)}, ..., X^{(p)}, \theta_1, \theta_2, ..., \theta_m) = \sum_{i=1}^{p} x_i^{(j)} \cdot \theta_j$$

Модель может быть записана в матричном виде

$$Y = X^{T}\theta + \varepsilon$$
,

где

$$Y = \begin{bmatrix} y_1 \\ \dots \\ y_n \end{bmatrix}, \ \theta = \begin{bmatrix} \theta_1 \\ \dots \\ \theta_n \end{bmatrix}, \ \varepsilon = \begin{bmatrix} \varepsilon_1 \\ \dots \\ \varepsilon_n \end{bmatrix},$$

 $X = ||x_i^{(j)}||_{p \times n}$ — матрица планирования эксперимента.

Предположим, что выполнены условия Гаусса-Маркова:

- 1. $M\varepsilon_i = 0$, $\forall i = \overline{1,n}$,
- 2. $M\varepsilon_{i}\varepsilon_{j} = \begin{cases} \sigma^{2}, i = j \\ 0, i \neq j \end{cases}, \forall i, j = \overline{1, n},$
- 3. $D\varepsilon_i = \sigma^2$, $\forall i = \overline{1, n}$,

тогда

- $MY = M(X^T\theta + \varepsilon) = X^T\theta$ вектор средних,
- $DY = M \{ (Y X^T \theta)(Y X^T \theta)^T \} = \sigma^2 I$ дисперсионная матрица. МНК оценки имеют вид $\hat{\theta} = (XX^T)^{-1} XY$.

Математическое ожидание и дисперсия полученных оценок соответственно равны $M\hat{\theta} = \theta$, $D\hat{\theta} = \sigma^2 \left(XX^T \right)^{-1}$.

Несмещенная оценка σ^2 определяется формулой

$$S^{2} = \frac{1}{n-m} (Y - X^{T} \hat{\boldsymbol{\theta}})^{T} (Y - X^{T} \hat{\boldsymbol{\theta}}).$$

Пусть выдвигается гипотеза $H_{\scriptscriptstyle 0}$: $\theta_{\scriptscriptstyle i}=\theta_{\scriptscriptstyle i}^{\;*}$, $i=\overline{1,p}$, где, например, $\theta_{\scriptscriptstyle i}^{\;*}$ может быть равно истинному значению параметра или $\theta_{\scriptscriptstyle i}^{\;*}=0$, тогда проверяется гипотеза о значимости параметра $\theta_{\scriptscriptstyle i}$.

Тогда при

$$|t| = \left| \frac{\hat{\theta}_i - \theta_i^*}{S\sqrt{(XX^T)^{-1}_{ii}}} \right| \ge t_{1-\frac{\alpha}{2},n-m}$$

гипотеза H_0 отклоняется.

Границы доверительного интервала для параметра θ_i , $i=\overline{1,p}$:

$$\hat{\theta}_{i} - t_{\frac{1-\alpha}{2}, n-m} S \sqrt{(XX^{T})_{ii}^{-1}} < \theta_{i} < \hat{\theta}_{i} + t_{\frac{1-\alpha}{2}, n-m} S \sqrt{(XX^{T})_{ii}^{-1}}.$$

Коэффициент детерминации

$$R^{2} = 1 - \frac{S_{\varepsilon}^{2}}{S_{y}^{2}} = 1 - \frac{\sum (y_{i} - \hat{y}_{i})^{2}}{\sum (y_{i} - \overline{y})^{2}}.$$

Проверка гипотезы об адекватности уравнения регрессии осуществляется с помощью статистики

$$F = \frac{R^2}{1 - R^2} \frac{(n - p - 1)}{p},$$

имеющей распределение Фишера с числом степеней свободы $f_1=p$, $f_2=n-p-1$.

Если значение $F < F_{1-\alpha}(p, n-p-1)$ при заданном уровне значимости α , то принимаем нулевую гипотезу о неадекватности модели.

Задание 1. Сгенерировать полиномиальную модель регрессии, с функцией отклика, описываемой полиномом второй степени.

$$y_i = a + bx_i + cx_i^2 + \varepsilon_i$$
, $i = 1..n$.

Оценить параметры построенной модели, проверить их значимость, оценить общую адекватность модели.

Построить 3d диаграмму рассеяния.

Задание 2. Для набора данных Rent.csv построить парную модель регрессии арендной платы от площади и множественной регрессии арендной платы на все представленные в наборе факторы, кроме района города (distirct). Определить значимые факторы. Построить модель только на значимые факторы. Построить точечный и интервальный прогноз для «своей» квартиры, задав значения факторов произвольно самостоятельно.

Построить 3d диаграмму рассеяния арендной платы от площади и этажа.