

Implemental changing of GDU reliability

[Reduction of Gas Loss Opportunity when GDU One Train is stopped]

Starting Date: [01 01 2019]

Completion Date: [30 12 2020]

Number of Team Members: [16]

Category: Production and Process

Merger & Acquisition (M&A)

Exploration

Team Member

No.	ID	Name-Surname	Contribution (Core Team, Major Support, Or On-call Support)		Dept.	Company Name
1	20167	Hein Thiha Thwae	Core Team	PDT	PMO/M	PTTEP
2	20166	Ever Kyaw	Core Team	PDT	PMO/M	PTTEP
3	90706	Anugoon Cumson	Core Team	PDT	PMO/M	PTTEP
4	90846	Kittipong Poota	Core Team	PDT	PMO/M	PTTEP
5	54034	Wetin Thongyoo	On-call Support	PDT	PMO/M	PTTEP
6	23463	Myo Min Htet	On-call Support	PDT	PMO/P	PTTEP
7	23515	Thant Zin	On-call Support	PDT	PMO/P	PTTEP
8	55076	Tasaporn Visawameteekul	On-call Support	PDT	PMO/I	PTTEP
9	52823	Anucha Leelaratsameephanit	On-call Support	PDT	PMO/O	PTTEP
10	40657	Sawian Sri-lamai	Major Support	PDT	PMO/M	PTTEP
11	45815	Phatsawat Thanachirat	Major Support	PDT	PMO/M	PTTEP
12	40532	Jumnongwit Pengsri	Major Support	PDT	PMO/M	PTTEP
13	40479	Chaitat Promyotha	Major Support	PDT	PMO/M	PTTEP
Project Leader NameWichan Anawachsiriwongext.no1415Mobile phone814-1415_						
Pres	Presenter NameHtet Paing Heinext.no1415Mobile phone814-1415_					
Pres	senter Na	meZayar Linn	ext.no1415_	Mobile	phone	_814-1415

Project Objectives

Introduction: Zawtika gas compression system consists of three (3x33%) trains (GTC-4200, GTC-4300 and GTC-4400) designed to compress gas from inlet separator (V-4100) to the required pressure for exporting to the 28-inch subsea pipeline. It is equipped with two stages of compression with dehydration system (V-4510 and V-4520) in between. The system incorporates 1st and 2nd stage suction scrubbers and 1st and 2nd stages compressor discharge coolers. Gas from 1st stage compressor discharge header is routed to Gas Dehydration Unit (V-4510 and V-4520) to dry the gas to pipeline transport specifications. Dry gas exits through the contactor via a wire mesh mist eliminator to remove any entrained glycol from process gas. Gas from gas dehydration trains is combined into a common 24-inch header and then feeds to 2nd stage compressor section and supplies the required gas to fuel gas conditioning system. After 2nd stage compression, the sales gas is sent to pipeline for export.

Project Objectives (Cont')

Background: One of the vital parts of Gas Dehydration System is Glycol Regeneration which can turn rich glycol into lean glycol. Three major causes of Glycol Regeneration Skids (SK-4700 and SK4800) trips are Pilot flame off, Burner flame off and Combustion air pressure. The recorded number of unit shutdowns are around 214 times from 2014 to 2019. Therefore, GDU downtime improvement has been implemented in 2019 to reduce the number of unit trips. After implementing small alterations at SK-4700 and SK-4800, the unexpected shutdown rate is reduced to around 50% in 2020.

During the past five years from 2014 to 2019, total number of GDU tripped = 214 times.

Objective: To reduce the ionization rods deterioration rate with optimization of fuel gas pressure and to reduce man-hour by elimination of activities during performing Preventive Maintenance are the main targets of this project. Both objectives can also reduce sales gas loss opportunity when one train of GDU stops.

Project Objectives (Cont')

By utilizing Agile Method: Incremental changing step by step and developing over time by making small alterations can be seen at GDU package.

- Submitted IA052 GDU Downtime Improvement during Monsoon Season.
- Submitted IA053: GDU recovery time improvement.

2019

2020

2021

ZTK-MOD-20005, changing of pressure transmitter (PT) to pressure diff. transmitter (PDT) type.

IA052: GDU Downtime Improvement

IA053: GDU recovery time improvement

Changing of pressure transmitter type from PT to PDT type.

Ignition rod orientation setup at 12 o'clock experiment + Fuel gas pressure adjustment + PM Optimization (Non-value activity Elimination by lean technique) + Ignition rod re-conditioning.
 ZTK-MOD-19015, Optimize fuel gas pilot supply pressure.

Ignition rod orientation setup

Fuel gas pressure optimization

PM optimization by lean techniques

Ignition rod re-conditioning

- Deeply focus on Digital Transformation to improve ionization monitoring GDU's pilot, by adding additional AAC75 4-20 mA O/P module and can monitor via DCS screen.
 (WO #500312377 and WO #500314210 reserved for spare controller and cable respectively).
- Trial test new shape ignition rod installation.
- Trial test new design of pilot mixing chamber.
- ZTK-RPIN20027, Study additional UV flame monitoring model D-UV55-10 for pilot flame off.

Adding additional AAC75 module

New shapes of ignition rod

New design of pilot mixing chamber

UV flame model D-UV55-10

Project Summary

Situation: Zawtika offshore platform handles the moisture content of sale gas specification by Gas Dehydration Package (GDU-4700 and GDU-4800). GDU package shutdown leads to increasing of moisture content in export gas more than sales gas specification at ZOC (metering station). Daily contractual quantity that is committed to deliver is \approx 345 MMscfd. Based on equipment design, reduction of export gas to \approx 300 MMscfd is needed to be done in the event of one GDU train stopping. In regarding this scenario, when one train of GDU shutdown, gas production is reduced to \approx 300 MMscfd with 3 compressors running; consequently, opportunity loss will be \approx 45 MMscfd. Every year the GDU will be periodically stopped according to 4MPM fire tube heater activities.

Table 4-11 : Glycol Contractor

Item	Glycol Contractor
Tag no.	V-4510/4520 (2×60%)
Туре	TEG dehydration
Design gas capacity/equipment (MMscfd)	252 (280 NOTE 2)
Operating pressure (barg)	50 - 63
Operating temperature (°C)	43 - 47
Mechanical design pressure (barg)	75 / FV
Mechanical design temperature (°C)	115/ -29
Water content in feed (lb/MMscf)	93 -106 (NOTE 1)
Dehydration specification (water/gas, b/MMscf)	5 (7 NOTE 2)
Equipment rating	ANSI 600#
Material of construction	CS + SS316L internal cladding,
	SS316L for internals

NOTE:

- Water content after free water knock out in Inlet scrubber section.
- One compressor stopped running scenario i.e. the maximum flow of 280 MMscfd (not including internal leakage). Design for two compressors running and one glycol dehydration unit running, but specification of 7 lb/MMscf.

Glycol Contractor specification

Instruction when one GDU Trip

Project Summary (Cont')

Target:

- Optimization of fuel gas pressure to reduce the deterioration rate for ionization rods including fuel gas consumption.
- Preventive maintenance optimization of GDU Fire Tube Heater by extending PM timeline from 4 months to 6 months.
- Elimination of non-value-added activities from PM Fire Tube Heater and maximizing team performance by utilizing lean techniques. (Reducing no of hours from 8 hours to 2 hours)

Project Summary (Cont')

Action Plan:

Project Summary (Cont')

Result:

The optimal fuel gas supply pressure sets at 0.6 bar with 50% open air mixing ratio. Based on the test result, the ionization rods deterioration rate is also significantly improved and proposed to raise for PM optimization from 4MPM to 6 MPM.

Original fuel gas at 0.8 Bar after 4 months

Resulting 75% activity elimination from base line, the major elimination of activity is setting up ionization rods, installation in pilot fire tube and testing.

Pilot ignition tube complete set (ready to use)

Ignition test at workshop (by using ignition tester)

Set up and installation of ignition rod

1) Benefits to PTTEP

Estimated Benefits Value Calculation: Zawtika daily contractual production capacity is 345 MMscfd. In case GDU stops 1 train for PM activity that can lead to reduction of production rate to (≈ 300 MMscfd) with 3 compressors running, then production opportunity loss will be (≈45 MMscfd). Extending PM intervals can save 0.41 million USD per year and details can be seen in the following tables.

Cost comparison between 4MPM and 6MPM

4MPM + GDU stop 8hr

V	

Estimate total cost 4M PM , 4E&I+2Operator with 8 Hr.					
		Month 0-4	Month 4-8	Month 9-12	Total Cost (USD)
	Spare part cost	460	460	460	1,380
GDU-4700	Man Hour cost	600	600	600	1,800
	Opportunity loss 8Hr.	100,800	100,800	100,800	302,400
	Spare part cost	460	460	460	1,380
GDU-4800	Man Hour cost	600	600	600	1,800
	Opportunity loss 8Hr.	100,800	100,800	100,800	302,400
Total cost per year					611,160

Estimate total cost 6M PM and Reduce PM time, 4E&I+2Operator with 2 Hr.				
		Month 0-6	Month 6-12	Total Cost (USD)
	Spare part cost	460	460	920
GDU-4700	Man Hour cost	150	150	300
	Opportunity loss 2Hr.	25,200	25,200	50,400
	Spare part cost	460	460	920
GDU-4800	Man Hour cost	150	150	300
	Opportunity loss 2Hr.	25,200	25,200	50,400
Total cost ner year				103 240

6MPM + GDU stop 2hr

Estimate Benefits Value Calculation Reference:

Average gas price at 7 USD/1 MMscf, Man hour cost 12.5 USD/hr

Opportunity loss: 45 MMscfd x 960 MMBTU/MMscf x 7 USD/MMBTU x 8 hours/year x 1/24 hours

Man hour cost: 6 Man x 12.5 USD/hr x Working hr

PTTEP Net Benefits: Total benefits x 0.8

PTTEP Net Benefits: 0.41 M.USD/Year

2) Benefit / Cost Ratio

Total of 12,240 USD (12,000 USD as CAPEX and 240 USD as OPEX, is invested in this
project of GDU reliability improvement. The calculated Benefit-Cost Ratio (BCR) is 33.20.
 The project is expected to generate incremental value.

Description	Qty	Unit	Unit Cost (USD)	Total (USD)	
Complete pilot ignition tube with ignition rod Model: TBP-XK-100-S-EI	4	Set	3000	12,000	
Ignition tester+ man-hour	1	Set	240	240	
	12,240				
PTTEP	406,336				
Benefit/Cost Ratio				33.20	

Benefit / Cost Ratio: 33.20

3) Activity Elimination for PM Optimization

Activities elimination by using Lean techniques.

Activity	Time (minutes)	Time (minutes)	
PTW preparation	10	10	
PTW opening	10	10	
Pilot tube removal	30	30	
Pilot tube cleaning	60		
Pilot MIXER cleaning and inspection	15		
Ignition rod removal	15	Bankas vilat fire tube (semulate set)	
Ignition rod inspection	20	Replace pilot fire tube (complete set	
Ignition rod replacement	180		
Ignition rod insulation test	40		
Ignition rod function test	30		
Pilot tube re-installation	30	30	
UV flame monitoring inspection	15	15	
Pilot flame monitor signal measurement	15	15	
House keeping	10	101	
Total time (minute)	480	120	

Non-Value Activity Elimination: 75%

4) Knowledge Management

- Conducted Internal knowledge sharing session for GDU ignition rod replacement technique.
- Educating PMO/P on how to unblock pilot fuel nozzles in the case of pilot flame failure during unit start-up.

Lessons & Learnt and knowledge sharing with E&I Team and Production Team.

5) Team Collaboration Effort

- Major support form PMO/I & PMO/M, ZTK-MOD-20005 for changing PT-47552 & PT-48552 pressure transmitters from in-line transmitter type to differential pressure transmitter type.
- On-call support PMO/P, ZTK-MOD-19015 for reducing GDU-4700 and GDU-4800 pilot fuel gas supply pressure to prolong pilot ionization rod's service life.
- On-call support PMO/O, ZTK-MOD-20013 for improving GDU pilot flame detector by using UV-type flame detector.

Team Collaboration Effort : Across Dept

Appendix