

Plasma spray coatings for IDs

HCAT Program Review
Park City, UT
July 2004

9. SPONSORING/MONITO	RING AGENCY NAME(S) A	ND ADDRESS(ES)	10. SPONSOR/M	IONITOR'S ACRONYM(S)	
	ZATION NAME(S) AND AE 7 Group,1590 S. Mil , 60048		REPORT NUMB		
			5e. TASK NUME 5f. WORK UNIT		
6. AUTHOR(S)			5d. PROJECT NUMBER		
			5c. PROGRAM F	ELEMENT NUMBER	
Plasma spray coatings for IDs			5b. GRANT NUM	MBER	
4. TITLE AND SUBTITLE			5a. CONTRACT	NUMBER	
1. REPORT DATE JUL 2004		2. REPORT TYPE	3. DATES COVE	ERED 4 to 00-00-2004	
VA 22202-4302. Respondents sho does not display a currently valid 0	this burden, to Washington Headqualled be aware that notwithstanding an	arters Services, Directorate for Inf	or any other aspect of the s, 1215 Jefferson Davis	Highway, Suite 1204, Arlington	

Report Documentation Page

Form Approved OMB No. 0704-0188

Progress

- Data on all materials complete (Praxair W-121 added)
 - Corrosion
 - Wear
 - > Structure, hardness, microstructure
 - 4-point bend testing done at NRC
- Spray visualization system developed at NRC
- Corrosion:
 - Potentiodynamic measurements found to be not useful as corrosion current only through Cr cracks to substrate, but all over thermal spray surface
 - Will run B117 as well
 - Specimens sprayed at Sulzer Metco
 - To be sprayed at Praxair in a week
- Sulzer to spray ID of demo part (F-18 LG outer cylinder) and 3" tube for cut-up

ID guns and spray rates

Plasma spray coatings optimized

Powder	Chemistry	Comments
Diamalloy 2003 (Sulzer Metco)	WC-12Co	Fused and crushed. Contains WC and W ₂ C.
Diamalloy 2002 (Sulzer Metco)	55%(WC 12Co) 45%(66Ni 18Cr 7Fe 4Si 4B 1C)	~55/45 mixture of WC-Co in self fluxing binder
Ni-988 (Praxair)	50%(WC 12Co) 50%(66Ni 18Cr 7Fe 4Si 4B 1C)	50/50 mixture of WC-Co in self fluxing binder
Co-109-3, Tribaloy 400 (Praxair)	Co-28 Mo-8 Cr-2 Si	Fine cut powder
W-121 (Praxair)	WC-Cr ₃ C ₂ -NiCr	Precipitated

Additional coatings tested by Sulzer Metco, but no advantage over existing coating Hastelloy, NiCr, Cr₃C₂-NiCr, fine WC-Co

Optical overspray monitoring

Configuration of the gun

- F sensor head
- P is the plasma gun
- L refers to left-hand side
- R refers to right-hand side

Type of Air Jets Used

Multiple

Spray direction (left, right)

Straight

The jets were installed on both sides of the plasma gun alternately for the measurements

Multiple nozzles

Left configuration

Right configuration

Left and right nozzles

Left configuration

Right configuration

Straight left and right

Left configuration

Right configuration

Fumespector Signal Processing

Raw Data

Treated Data

Signal strength as traverse in, then out again in a closed-end tube

Signals from the Detector

Configuration	Mean signal (mV)	RMS (mV)
1 multiple right	1781	22.3
2 multiple left	2098	26.2
3 spray direction right	2980	37.3
4 spray direction left	3013	37.7
5 straight right	2648	33.1
6 straight left	1729	21.6

The highest overspray was with the nozzle pointing at the wall, while the lowest was from the straight left and multiple right.

Overspray dust control

Performance

Hardness

Abrasion resistance – ASTM G-65

Rubber wheel + dray sand

WC-Cr3C2-NiCr not very good

With best overspray removal, self-fluxing material is as good as WC-12Co

Test: Rubber wheel, dry sand abrasion

Test relevance: Debris in hydraulic fluid

Note: Abrasion resistance increases with hardness, but depends also on material.

Sliding Wear

WC-Cr3C2-NiCr not very good for coating wear

Washer

•Dry sliding, 5200 steel rotor

•What is most important is total wear

- •All coatings show more coating wear than EHC, although WC coatings are similar
- •Only Tribaloy shows significantly more total wear than EHC, primarily from coating wear

Coated disc

Fatigue

Conclusion from data so far

- In general plasma spray works well for ID >2.75" most guns (1.6"ID for Sulzer F300 gun)
 - High deposition rate
 - Quality similar to OD coatings when properly optimized and flushed
- Technical properties generally acceptable
 - Abrasive wear better than EHC, but not
 - Longer repair cycle (lower LCC, less pollution)
 - Pin on disc wear not as good
 - Not a good measure of actual service performance
 - Corrosion current worse than EHC
 - Different mechanism, in common with other thermal spray
 - Probably need sealer for corrosion and high pressure leak-by
 - B117 testing to be done
- Producibility
 - Good, especially for shops already using HVOF for OD chrome replacement

Implementation Assessment and Cost Benefit Analysis

Methodology

- We are doing an Implementation
 Assessment rather than a simple CBA because it tells us much more
- Using C-MAT cost model developed under SERDP Stainless Steel Landing Gear program

Implementation Assessment

Replacement of Internal Diameter Hard Chrome with Plasma Spray Coatings at NADEP Jacksonville

Authored by: Keith Legg Rowan Technology Group

> Organization: HCAT Project #: SERDP PP-1151

Report Number: Final Implementation

Assessment

Date: April 4. 2004

DISTRIBUTION STATEMENT:

ROWAN TECHNOLOGY GROUP

1590 S. Milwaukee Ave., Suite 205, Libertyville, IL 60048, USA • 847-680-9420 • Fax: 847-680-968; Email: rowan@rowantechnology.com • www.rowantechnology.com

TABLE OF CONTENTS

1. Introduction	1	
2. Process/Product to be Replaced	2	
3. New Process/Product Description	4	
4. Gap Analysis	6	
5. Cost/Benefit Analysis	9	
6. Impact on readiness	29	
7. Risk Analysis	30	
8. Environmental Assessment	32	
9. Recommendations and Conclusions		33

Comparison of EHC vs APS process cost

Linking Global Technologies with Markets

Plasma spray with large ID gun is essentially same cost as EHC, but small gun is twice as high (lower rate, longer time).

EHC cost data from F-35 analysis, with APS cost data from HCAT and ID team

Use a big gun!

Keith Legg, klegg@rowantechnology.com

Is there a cost driver for replacement?

- If the process cost is the same or higher, when you add in the capital cost and the qualification and adoption cost, it cannot be cost-effective
- But there are two other cost issues
 - Performance
 - Abrasive wear rate looks as though it could be ½ EHC
 - Will need service data to know if same or better
 - Double overhaul cycle
 - New OSHA PEL
 - O Probable PEL of 1 μ gm m⁻³ (as against today's 100 μ gm m⁻³)
 - Navy/Industry task force estimated high costs at this level
 - Analysis of their evaluation shows EHC cost doubles
 - Raises the risk of sticking with EHC

Some simple calculations

NRWas function of how far but you look for simple process cost comparisons.

Linking Global Technologies with Markets

Realistic calculations

So, what is the likelihood it will really be cost-effective?

Linking Global Technologies with Markets

Can predict probability of a particular NPV, e.g.

- •Assume 33% chance wear rate will really be ½
- •Assume 50% chance of PEL adoption and cost

Areas under curves – 50% probability of coming out ahead

Reducing the financial risk

- Use large ID gun to make as efficient as possible
 - > Will coat most items of importance
- Keep on top of OSHA to see where PEL headed
- Calculate real potential cost of lower PEL at any depot wanting to adopt plasma spray
 - Remember cost based on overall Navy costs, which could be way off (high or low) for specific location
- Get some early rig test data of true wear rate on components in rig test or service
 - > Is there an improvement in wear in service?

But is it worth doing anyway?

- The real reason JAX wants to use ID plasma spray or nCo-P is turnaround time
- All depots have high war-footing workloads
- Any item in the depot is not available to the fleet
- Faster turntime reduces work-in-process
 - Faster return to action
 - Reduces total inventory of spares needed by the fleet (Col Diehl, Tinker AFB)
 - Improves both war-readiness and logistics
- Faster depot processing also increases total depot workload that can be processed
 - Higher depot cash flow
 - Better finances to implement improvements

Thus faster turnaround is critical to readiness and reduces fleet costs, even though it makes no direct financial impact on that specific component or process being assessed

Cost impact should be considered on a broader basis since readiness impact is now critically important

Where to on environmental cost analysis?

- New ESTCP-funded effort with OC-ALC and Pratt & Whitney to create a simplified cost model for strategic decision making
 - Idea is to make a simple model that engineers can use to show materials change is sound business policy, not just ESOH mandate
 - It will include all the true costs to DoD of using hazmats
 - It will have default values for average costs and will link cost reduction with hazmat reductions through P&W's Hazmat Index for quick assessment of potential costs, benefits and hazmat reduction
 - Prioritization of environmental projects
 - Strategic decision making

What will this new tool do?

- Give a global estimate of average costs that captures the true costs of using hazmats (and therefore the true benefits of using clean technologies)
 - Cost to DoD over the life cycle, not cost to the plating shop
 - Provide comparable costs for clean technologies
- Provide a DoD-recognized approach with standard "default" costs so people can compute costs and benefits in a consistent manner
 - Initial estimate of costs since only one depot to be improved and refined with additional depots later