Topic 14 - Regression Diagnostics

STAT 525 - Fall 2013

STAT 525

Outline

- Partial Regression Plots
- Residuals
 - Studentized
 - Studentized Deleted
- Identifying outlying X's
- Identifying influential cases

Topic 14

STAT 525

Example Page 386

- Surveyed 18 managers age 30-39. Interested in relating the amount of life insurance carried to risk aversion and salary.
- Y is dollar amount of life insurance carried (thousands)
- Two predictor variables
 - $-X_1$ average annual income in past two years (thousands)
 - $-X_2$ risk aversion score (higher \rightarrow more averse)

STAT 525

Partial Regression Plots

- Also called added variable plots or adjusted variable plots
- Recall partial correlation / coefficient of determination
- These provide visual display of that relationship
- One plot for each X_i
- Allows check of "adjusted" relationship

Topic 14

3

Topic 14

__

STAT 525

Partial Regression Plots

- Procedure for X_i vs Y
 - Predict Y using other X's
 - Predict X_i using other X's
 - Plot residuals from first regression vs residuals from the second regression
- Shows the <u>strength</u> of the marginal relationship in terms of the **full** model
- Can detect:
 - Nonlinear relationship
 - Heterogeneous variance
 - Unusual observations

Topic 14

Output

Analysis of Variance

		Sum OI	nean		
Source	DF	Squares	Square	F Value	Pr > F
Model	2	173919	86960	542.33	<.0001
Error	15	2405.14763	160.34318		

Corrected Total 17 176324

Root MSE 12.66267 R-Square 0.9864

Dependent Mean 134.44444 Adj R-Sq 0.9845

Coeff Var 9.41851

Parameter Estimates

		Parameter	Standard		
Variable	DF	Estimate	Error	t Value	Pr > t
Intercept	1	-205.71866	11.39268	-18.06	<.0001
income	1	6.28803	0.20415	30.80	<.0001
risk	1	4.73760	1.37808	3.44	0.0037

Topic 14

SAS Commands

```
proc reg data=a1;
  model insur=income risk/r partial influence tol;
  id income risk; plot r.*(p. risk income);

proc reg data=a1;
  model insur risk = income;
  output out=a2 r=resins resris; Generate
proc sort data=a2; by resris; plot for
proc gplot data=a2; approact
plot resins*resris;
proc reg data=a2; model resins = resris;
  output out=new1 r=res p=pred;
proc gplot data=new1;
  plot res*pred;
run;
```

Topic 14

Topic 14 10

Output

Analysis of Variance

Sum of Mean Squares Square Source F Value Pr > FModel 1 1895.04339 1895.04339 12.61 0.0027 Error 16 2405.14763 150.32173

Corrected Total 17 4300.19102

Root MSE 12.26058 R-Square 0.4407 **Partial R-Square

Dependent Mean -1.204E-14 Adj R-Sq 0.4057

Coeff Var -1.01834E17

Parameter Standard

Variable DF Estimate Error t Value Pr > |t| Intercept 1 -9.4683E-15 2.88985 -0.00 1.0000 4.73760 1.33432 resris 3.55 0.0027

**Note that the parameter estimate for the slope is the same as the parameter estimate for RISK in the full model

Topic 14

STAT 525

Output

Analysis of Variance C-----

		Sum OI	Mean		
Source	DF	Squares	Square	F Value	Pr > 1
Model	1	152119	152119	1011.96	<.000
Error	16	2405.14763	150.32173		
Corrected Total	17	154524			

Root MSE 12.26058 R-Square 0.9844 **Partial R-square Dependent Mean -6.3159E-15 0.9835 Adj R-Sq

Coeff Var -1.94121E17

> Parameter Std

Variable DF Estimate Error t Value Pr > |t| Intercept 1 1.0000 1.10593E-14 2.88985 0.00 resinc 6.28803 0.19767 31.81 <.0001

**Note that the parameter estimate for the slope is the same as the parameter estimate for INCOME in the full model

STAT 525

Topic 14

STAT 525

Output - Adding Income²

Analysis of Variance

Sum of Source Squares Square F Value 176249 Model 58750 10958.0 <.0001

Error 75.05895 5.36135

Corrected Total 17 176324

Root MSE 2.31546 R-Square 0.9996 Dependent Mean 134.44444 Adj R-Sq 0.9995 1.72224

Coeff Var

Parameter Standard

Variable DF Estimate Error t Value Pr > |t| Intercept 1 93.71759 1.63501 57.32 <.0001 income 1 91.56523 0.65352 140.11 <.0001 income2 1 12.30855 0.59042 20.85 <.0001 1 5.40039 0.25399 21.26 <.0001 risk

Topic 14

Fit Diagnostics for insur 0.2 0.4 0.6 0.8 100 200 100 200 Predicted Value Predicted Value 300 0.20 -2.5 . ⊒ 200 0.15 -100 --5.0 -10 15 Quantile Predicted Value Observation Fit-Mean 30 100 Parameters 20 -Error DF 14 R-Square 0.9996 Adj R-Square 0.9995 -6 -4 -2 0 2 4 6 0.0 0.4 0.8 0.0 0.4 0.8 Proportion Less

Topic 14

18

STAT 525

STAT 525

17

STAT 525

Topic 14

Studentized Deleted Residual

• Can express deleted residual as

$$Y_i - \hat{Y}_{i(i)} = \frac{e_i}{1 - h_{ii}}$$

• Based on following identity (Gauss 1821)

$$\left(\mathbf{X}_{(\mathbf{i})}^{\prime}\mathbf{X}_{(\mathbf{i})}\right)^{-1} = \left(\mathbf{X}^{\prime}\mathbf{X}\right)^{-1} + \frac{\left(\mathbf{X}^{\prime}\mathbf{X}\right)^{-1}X_{i}X_{i}^{\prime}\left(\mathbf{X}^{\prime}\mathbf{X}\right)^{-1}}{1 - h_{ii}}$$

• Relationship between $MSE_{(i)}$ and MSE

$$(n-p)MSE = (n-p-1)MSE_{(i)} + \frac{e_i^2}{1 - h_{ii}}$$

Topic 14

STAT 525

Residuals

• Standard residual

$$e_i = Y_i - \hat{Y}_i \rightarrow \mathbf{e} \sim \text{MVN}(\mathbf{0}, (\mathbf{I} - \mathbf{H})\sigma^2)$$

• Studentized residual

$$r_i = \frac{e_i}{\sqrt{\text{MSE}(1 - h_{ii})}}$$

• Studentized deleted residual

$$t_{i} = \frac{Y_{i} - \hat{Y}_{i(i)}}{\sqrt{\text{MSE}_{(i)}/(1 - h_{ii})}} \sim t(n - p - 1)$$
$$= e_{i} \left[\frac{n - p - 1}{\text{SSE}(1 - h_{ii}) - e_{i}^{2}} \right]^{1/2}$$

Topic 14

STAT 525

22

Output

Output Statistics

				Std Error	Student
Obs	income	risk	Residual	Residual	Residual
1	-0.323145222	6	-6.8164	2.201	-3.097
2	0.4607431878	4	1.8799	2.108	0.892
3	-1.490427964	5	-0.5901	1.713	-0.344
4	1.0448345518	7	-0.6278	2.151	-0.292
5	-0.583241377	5	1.4981	2.218	0.675
6	1.4759281779	10	1.3223	1.816	0.728
7	1.8863221101	1	0.3641	1.150	0.317
8	0.175447406	8	0.6355	2.096	0.303
9	0.377944412	6	1.5153	2.165	0.700
10	-0.765938675	4	1.5932	2.196	0.726
11	-0.912636506	6	0.1940	2.160	0.0898
12	1.6559255166	9	-1.6975	1.815	-0.935
13	-0.811837997	5	0.5043	2.203	0.229
14	0.2789458757	2	-1.0179	1.935	-0.526
15	-0.24754634	7	2.3920	2.166	1.104
16	-0.251146287	4	-2.0992	2.169	-0.968
17	-1.264531303	3	0.1865	1.978	0.0943
18	-0.705639567	5	0.7637	2.214	0.345

Output

Output Statistics

						Cook's	
Obs	income	risk	-2-1	0 1 2		D	RStudent
1	-0.323145222	6	****	*	1	0.255	-5.3155
2	0.4607431878	4	1	*	1	0.041	0.8848
3	-1.490427964	5	1	1	1	0.025	-0.3333
4	1.0448345518	7	1	1	1	0.003	-0.2822
5	-0.583241377	5	1	*	1	0.010	0.6618
6	1.4759281779	10	1	*	1	0.083	0.7153
7	1.8863221101	1	1	1	1	0.077	0.3063
8	0.175447406	8	1	1	1	0.005	0.2931
9	0.377944412	6	1	*	1	0.018	0.6866
10	-0.765938675	4	1	*	1	0.015	0.7127
11	-0.912636506	6	1	1	1	0.000	0.0866
12	1.6559255166	9	1	*	1	0.137	-0.9308
13	-0.811837997	5	1	1	1	0.001	0.2210
14	0.2789458757	2	1 :	*	1	0.030	-0.5120
15	-0.24754634	7	1	**	1	0.044	1.1138
16	-0.251146287	4	1	*	1	0.033	-0.9653
17	-1.264531303	3	1	1	1	0.001	0.0909
18	-0.705639567	5	1	1	1	0.003	0.3338

With 18 observations and 3 predictors, the df for the studentized deleted residuals are 13. The P-value associated with Obs #1 is 0.00014. Using Bonferroni, we'd compare this to .05/18 = 0.00278. Conclusion: observation does appear to be unusual.

Topic 14 2.

STAT 525

Hat Matrix Diagonals

- Residual $e_i = (1 h_{ii})Y_i$
- $\operatorname{Var}(e_i) = \sigma^2 (1 h_{ii})$
- If h_{ii} large, small residual variance
- This implies \hat{Y}_i will be close to Y_i (i.e., model forced to fit observation closely)
- Look for large h_{ii} : usually considered large if it is more than double the mean leverage value (p/n)
- When predicting, can compute $X'_{i(new)}(X'X)^{-1}X_{i(new)}$ to see if there is the danger of extrapolating

Hat Matrix Diagonals

- Used to identify outlying X observations
- Diagonals $0 \le h_{ii} \le 1$ and sum to p
- Also known as the leverage of *i*th case
- Is a measure of distance between the X value and the mean of the X values for all n cases $(\overline{X}_1, \overline{X}_2, ..., \overline{X}_{p-1})$
- Since $\hat{\mathbf{Y}} = \mathbf{H}\mathbf{Y}$

$$\hat{Y}_i = h_{i1}Y_1 + h_{i2}Y_2 + \dots + h_{in}Y_n$$

• Thus h_{ii} is a measure of how much Y_i is contributing to the prediction of \hat{Y}_i

Topic 14

Output

STAT 525

			Hat Diag	Cov	
Obs	income	risk	H	Ratio	DFFITS
1	-0.323145222	6	0.0962	0.0147	-1.7339
2	0.4607431878	4	0.1711	1.2842	0.4020
3	-1.490427964	5	0.4524	2.3742	-0.3029
4	1.0448345518	7	0.1373	1.5215	-0.1126
5	-0.583241377	5	0.0826	1.2842	0.1986
6	1.4759281779	10	0.3848	1.8735	0.5656
7	1.8863221101	1	0.7535	5.3027	0.5356
8	0.175447406	8	0.1802	1.5981	0.1374
9	0.377944412	6	0.1258	1.3342	0.2604
10	-0.765938675	4	0.1006	1.2830	0.2384
11	-0.912636506	6	0.1297	1.5420	0.0334
12	1.6559255166	9	0.3856	1.6912	-0.7373
13	-0.811837997	5	0.0951	1.4643	0.0717
14	0.2789458757	2	0.3018	1.7786	-0.3366
15	-0.24754634	7	0.1249	1.0675	0.4209
16	-0.251146287	4	0.1222	1.1616	-0.3601
17	-1.264531303	3	0.2705	1.8390	0.0553
18	-0.705639567	5	0.0856	1.4216	0.1022

The critical value in this case would be if a diagonal value was greater than 2(4)/18 = 0.44. It does appear that there are some outlying X observations (Obs #3 and #7). For Obs #7, the largest income and lowest risk. For Obs #3, the smallest income.

DFFITS

- Measures influence of case i on \hat{Y}_i
- Closely related to h_{ii}

$$DFFITS_i = \frac{\hat{Y}_i - \hat{Y}_{i(i)}}{\sqrt{MSE_{(i)}h_{ii}}} = t_i \sqrt{\frac{h_{ii}}{1 - h_{ii}}}$$

- Adjusts studentized deleted residual by function of h_{ii}
- Concern if absolute value greater than 1 for small data sets or greater than $2\sqrt{p/n}$ for large data sets

Topic 14

29

STAT 525

Cook's Distance

- Measures influence of case i on all \hat{Y}_i 's
- Standardized version of sum of squared differences between fitted values with and without case i

$$D_i = \frac{\sum (\hat{Y}_j - \hat{Y}_{j(i)})^2}{p \text{MSE}}$$

- Compare with F(p, n-p)
- Concern if D_i above the 50%-tile
- Can show $D_i = \text{MSE}_{(i)}(\text{DFFITS}_i)^2/(p\text{MSE})...$ Thus another cutoff is 4/n provided $\text{MSE}_{(i)}/\text{MSE} \approx 1$

Output

			Hat Diag	Cov	
Obs	income	risk	H	Ratio	DFFITS
1	-0.323145222	6	0.0962	0.0147	-1.7339
2	0.4607431878	4	0.1711	1.2842	0.4020
3	-1.490427964	5	0.4524	2.3742	-0.3029
4	1.0448345518	7	0.1373	1.5215	-0.1126
5	-0.583241377	5	0.0826	1.2842	0.1986
6	1.4759281779	10	0.3848	1.8735	0.5656
7	1.8863221101	1	0.7535	5.3027	0.5356
8	0.175447406	8	0.1802	1.5981	0.1374
9	0.377944412	6	0.1258	1.3342	0.2604
10	-0.765938675	4	0.1006	1.2830	0.2384
11	-0.912636506	6	0.1297	1.5420	0.0334
12	1.6559255166	9	0.3856	1.6912	-0.7373
13	-0.811837997	5	0.0951	1.4643	0.0717
14	0.2789458757	2	0.3018	1.7786	-0.3366
15	-0.24754634	7	0.1249	1.0675	0.4209
16	-0.251146287	4	0.1222	1.1616	-0.3601
17	-1.264531303	3	0.2705	1.8390	0.0553
18	-0.705639567	5	0.0856	1.4216	0.1022

This is a small data set, so we'll be concerned about values greater than 1. In this case, Obs #1 has strong influence. Recall this observation had a very large studentized deleted residual. None of the others are a concern.

Topic 14

Topic 14

STAT 525

Output

Output Statistics

							Cook's	
Obs	income	risk		-2-1 0 1	2		D	RStudent
1	-0.323145222	6	,	*****		1	0.255	-5.3155
2	0.4607431878	4	1	*		1	0.041	0.8848
3	-1.490427964	5	1	1		1	0.025	-0.3333
4	1.0448345518	7	1	1		1	0.003	-0.2822
5	-0.583241377	5	1	*		1	0.010	0.6618
6	1.4759281779	10	1	*		1	0.083	0.7153
7	1.8863221101	1	1	1		1	0.077	0.3063
8	0.175447406	8	1	1		1	0.005	0.2931
9	0.377944412	6	1	*		1	0.018	0.6866
10	-0.765938675	4	1	*		1	0.015	0.7127
11	-0.912636506	6	1	1		1	0.000	0.0866
12	1.6559255166	9	1	*		1	0.137	-0.9308
13	-0.811837997	5	1	1		1	0.001	0.2210
14	0.2789458757	2	1	*		1	0.030	-0.5120
15	-0.24754634	7	1	**		1	0.044	1.1138
16	-0.251146287	4	1	*		1	0.033	-0.9653
17	-1.264531303	3	1	1		1	0.001	0.0909
18	-0.705639567	5	1	1		1	0.003	0.3338

With 18 observations and 3 predictors, the df for the F are 4 and 14. The 30, 40, and 50%-tiles are 0.553, 0.707, and 0.881 respectively. None of the observations appear to have an undue amount of influence.

Topic 14

DFBETAS

- Measures influence of case i on <u>each</u> of the regression coefficients
- ullet Standardized version of the difference between regression coefficient computed with and without case i

DFBETAS_{k(i)} =
$$\frac{b_k - b_{k(i)}}{\sqrt{\text{MSE}_{(i)} c_{kk}}}$$

where c_{kk} is from $(\mathbf{X}'\mathbf{X})^{-1}$

• Concern if greater than 1 for small data sets or greater than $2/\sqrt{n}$ for large data sets

Topic 14

3

35

Output

Output Statistics

				DF	BETAS	
Obs	income	risk	Intercept	income	income2	risk
1	-0.323145222	6	-0.4440	0.0662	0.9168	-0.3686
2	0.4607431878	4	0.3372	0.2513	-0.2579	-0.2064
3	-1.490427964	5	0.0874	0.2513	-0.2312	-0.0525
4	1.0448345518	7	-0.0067	-0.0692	0.0230	-0.0299
5	-0.583241377	5	0.0831	-0.0566	-0.0580	-0.0108
6	1.4759281779	10	-0.3129	0.1183	0.1704	0.3901
7	1.8863221101	1	0.2554	0.2235	0.2233	-0.3381
8	0.175447406	8	-0.0162	0.0245	-0.0712	0.0788
9	0.377944412	6	0.1121	0.1333	-0.1799	0.0084
10	-0.765938675	4	0.1267	-0.0988	-0.0084	-0.0773
11	-0.912636506	6	-0.0064	-0.0244	0.0091	0.0126
12	1.6559255166	9	0.3453	-0.1728	-0.3486	-0.3821
13	-0.811837997	5	0.0137	-0.0427	0.0063	0.0030
14	0.2789458757	2	-0.3279	-0.1746	0.1861	0.2583
15	-0.24754634	7	-0.0046	-0.0195	-0.2036	0.2003
16	-0.251146287	4	-0.2937	-0.0774	0.2177	0.1654
17	-1.264531303	3	0.0101	-0.0383	0.0317	-0.0150
18	-0.705639567	5	0.0310	-0.0471	-0.0097	-0.0003

Nothing looks real troubling here except for Obs #1 and its influence on the quadratic coefficient. Since this had such a large residual, we will remove it and refit the model.

Topic 14 34

STAT 525

Topic 14

Output

Analysis of Variance

		Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	3	174302	58101	31934.2	<.0001
Error	13	23.65205	1.81939		

Corrected Total 16 174326

Root MSE 1.34885 R-Square 0.9999

Dependent Mean 137.00000 Adj R-Sq 0.9998

Coeff Var 0.98456

Parameter Estimates

Parameter Standard

Variable	DF	Estimate	Error	t Value	Pr > t
${\tt Intercept}$	1	94.14049	0.95577	98.50	<.0001
income	1	91.54004	0.38073	240.43	<.0001
income2	1	11.99324	0.34902	34.36	<.0001
risk	1	5.45493	0.14831	36.78	<.0001

STAT 525

Topic 14 37

Output

risk Intercept 0.4607431878 0.4210 0.3079 -1.490427964 0.1587 0.4590 -0.4154 1.0448345518 -0.0246 -0.2058 0.0768 -0.0927 0.0906 -0.0592 -0.0692 -0.0069 1.4759281779 -0.44220.1685 -0.912636506 1.6559255166 -0.811837997 -0.2068 0.6230 -0.02540.0205 -0.0098

Now Obs #6 is influential. This was Obs #7 before we discarded the first observation. It would be worth investigating how much the model changes with and without this observation.

Topic 14

STAT 525

Variance Inflation Factor

- The VIF is related to the variance of the estimated regression coefficients
- Looks at standardized model using correlation transformation
- Can show $\sigma^2(\mathbf{b}) = (\sigma')^2 r_{XX}^{-1}$
- VIF_k is the the kth diagonal element of r_{XX}^{-1}
- Can show $VIF_k = (1 R_k^2)^{-1}$

STAT 525

Variance Inflation Factor

- VIF of 10 or more suggests strong multicollinearity
- Also compare mean VIF to 1

$$\overline{\text{VIF}} = \frac{\sum \text{VIF}_k}{p-1}$$

- Tolerance(TOL) = 1/VIF
- SAS gives TOL results for each predictor
- Trouble if TOL < .1

Topic 14

Topic 14

4

Output

Analysis of Variance

Sum of Mean Source Squares Square F Value Pr > F Model 174302 58101 31934.2 <.0001 Error 13 23.65205 1.81939 Corrected Total 16 174326 Root MSE 1.34885 R-Square 0.9999 Dependent Mean Adj R-Sq 0.9998 137.00000 Coeff Var 0.98456

Parameter Standard

Variable DF Estimate Error t Value Pr > |t| Tolerance

Intercept 1 94.14049 0.95577 98.50 <.0001 .
income 1 91.54004 0.38073 240.43 <.0001 0.74314
income2 1 11.99324 0.34902 34.36 <.0001 0.79731
risk 1 5.45493 0.14831 36.78 <.0001 0.92021

Topic 14 41

Background Reading

- KNNL Chapter 10
- knnl386.sas
- KNNL Sections 11.1, 11.5, 11.6

Topic 14 42