

Curso de Bacharelado em Engenharia de Mecânica PG0036 – Mecânica dos Fluidos A Exercício 2

Um tanque cilíndrico, de diâmetro D=50 mm, possui um dreno por uma abertura de diâmetro d=5 mm, em seu fundo. A velocidade do líquido saindo do tanque é dada aproximadamente por $V=(2gy)^{1/2}$, em que y é altura do fundo do tanque até a superfície livre de líquido e g é aceleração da gravidade. Se o tanque inicialmente cheio está com água a $y_0=0,4$ m (t=0 s), determine a profundidade da água em t=6 s, t=12 s, t=18 s e t=24 s. Trace o gráfico da altura y (m) em função do tempo t (s) no intervalo de 0 s a 24 s. As instruções para a apresentação da solução deste problema são descritas a seguir:

- 1. **A solução analítica** deste problema (considerações, hipóteses, dedução das equações, cálculos e resultados) deve ser apresentada por meio de um documento em formato PDF nomeado como "PG0036-E2-Nome(s)_do(s)_Aluno(s).pdf".
- 2. **A solução numérica** deste problema pode ser obtida utilizando o método de Euler (para integração numérica de equações diferenciais ordinárias EDOs), que deve ser implementado num código computacional escrito em qualquer linguagem de programação:
 - Este código deve ser desenvolvido, preferencialmente, num ambiente de programação do tipo IDE *online*, no qual o usuário tem a possibilidade de criar uma conta e compartilhar o *link* do código desenvolvido com outros usuários, por exemplo, Ideone (*Online Compiler and Debugging Tool*), disponível em http://ideone.com/.
 - O código desenvolvido deve estar bem comentado para facilitar o entendimento, como no exemplo de código em Fortran 95 disponível em http://ideone.com/2Ri4oe.
 - O *link* para o código desenvolvido (ou o próprio código) deve ser apresentado no documento em formato PDF nomeado como "PG0036-E2-Nome(s)_do(s)_Aluno(s).pdf". A comparação entre as soluções numérica e analítica também deve ser apresentada neste documento da seguinte forma:
 - i. Uma tabela apresentando os resultados obtidos em função do aumento do número de passos de integração numérica, N, conforme a Tabela 1. O aumento do número de passos de integração numérica, N, deve ser realizado até que se obtenha um valor de erro (entre as soluções numérica e analítica), ε, pequeno o suficiente do ponto de vista de engenharia (justifique).
 - ii. Um gráfico apresentando os valores de erro (entre as soluções numérica e analítica), ε , em função dos valores de tamanho de passo de integração numérica, Δt , conforme o Gráfico 1.
 - O arquivo "PG0036-E2-Nome(s)_do(s)_Aluno(s).pdf" contendo as soluções analítica e numérica, bem como a comparação entre as soluções obtidas, deve ser enviado via Moodle (http://moodle.utfpr.edu.br) até a data limite estabelecida.

Tabela 1 – Resultados obtidos em função do aumento do número de passos de integração numérica, N.

N	$\Delta t / [s]$	y(t) / [n	1]		$y_{\rm analítica}(t) / [m]$					E (t) / [%			
		t = 6 s	t = 12 s	t = 18 s	t = 24 s	t = 6 s	t = 12 s	t = 18 s	t = 24 s	t = 6 s	t = 12 s	t = 18 s	t = 24 s
1	Δt_1	y_I	y_I	y_I	y_1	<i>y</i> _{analítica}	<i>y</i> _{analítica}	<i>y</i> analítica	<i>y</i> _{analítica}	\mathcal{E}_{l}	\mathcal{E}_{l}	\mathcal{E}_{l}	\mathcal{E}_{l}
2	Δt_1	y_2	y_2	y_2	y_2					\mathcal{E}_2	ε_2	\mathcal{E}_2	\mathcal{E}_2
i	i	i	I	i	I					i	i	i	i
n	Δt_n	y_n	y_n	y_n	y_n					\mathcal{E}_n	\mathcal{E}_n	\mathcal{E}_n	\mathcal{E}_n

Gráfico 1 – Valores de erro, ε , em função dos valores do tamanho de passo de integração numérica, Δt .

- Tipo de atividade: em grupo (máximo 5 membros).
- Formato de entrega: em arquivo PDF.
- ✓ Forma de entrega: via Moodle.
- ✓ Prazo de entrega: 20/04/2021.