

Outline

Introduction

Emerald Ash Borer (EAB) problem

Project

Cedar Rapids Ash Inventory

Model

Agent-Based Modeling

Results

Comparison with some (available) observables

EAB in North America

Detroit 2002

Investigating ash die-off EABs of Chinese origin Infested crates, 1990s

EAB Spread

Insect Flight (~2 km/year)
Insect Ride (~20 km/year)
Infested firewood
Hitchhiking
Tree transplanting
American + European Ash
Critically endangered

Initial detection of EAB in North America. Figure from Haack et al. (2015)

Project

Model Spread of EAB

Computer simulation Protected data

Cedar Rapids Street Tree Inventory

As of 03/29/2017 (~60,000 trees)

Type, Location, Condition, DBH, etc.

Filter for:

Type = Ash
Condition ≠ Dead
DBH > 5 cm

⇒ 7044 trees

Ash Trees in Cedar Rapids

LIFE CYCLE OF THE EMERALD ASH BORER

1 Female ash borers lay 40 to 70 eggs on the bark of an ash tree.

2

After hatching, the larvae bore into the tree layers just below the bark to feed. They remain there for 1 or 2 years, then pupate into adults.

Adults, which can fly, then seek out new trees, and the process begins again.

Emerald Ash Borer (enlarged view)

The adults then chew a telltale D-shaped exit hole in the bark.

Model

Larval Death

Maximum densities

300 – 1000 larvae / m² Larvae don't survive

Logistic Death Rate[†]

$$r_{death}(x; x_0 = 150, \sigma = 25)$$

 $x \mapsto \frac{x - x_0}{\sigma}$

[†]Similar to BenDor et al. (2006)

Larval Death

Woodpeckers

Density threshold Highly variable

Uniformly Random

 $r_{death} \sim U[0, 0.6]$

Mortality attributed to woodpeckers at 24 Michigan sites. Figure from Cappaert et al. (2005)

Other Functions & Parameters

Age

Set to zero (Pupate)

Eggs

$$n_{deposit} \sim U_{INT}[1,10]$$

Tree Death

$$T - T_{infest} = 3 \ years$$

Beetle Status (age in days)				
		Pupate	≤	0
0	<	Forage	<u> </u>	7
7	<	Mate	<u>≤</u>	10
10	<	Reproduce	<u>≤</u>	22
22	<	Dead		

Dispersal Function

Host Preferences

Ash Abundance, Type Condition (e.g. stressed, infested) Distance

Simple Model

$$w_i \propto \frac{\sigma_i}{(d_\star)_i^{\chi}}$$

$$p_i = \frac{w_i}{\sum_j w_j}$$

 $\sigma = Surface Area$

$$d_{\star} = \begin{cases} \sqrt{d^2 + \epsilon^2} & d < 2.8 \text{ km} \\ \infty & d \ge 2.8 \text{ km or dead} \end{cases}$$

 ϵ = buffering parameter (10 meters)

 $\chi = \text{power index } (\geq 0)$

Simulation

5-year Simulation

 $\chi \in \{1, 2, 3\}$

Starting Point
1 infested tree
50 larvae

Compare dispersion, larval densities, and exit holes with observed values

 $\chi = 3$

Dispersal

Observations

~2 km / year

Simulation Results

Closest: $\chi = 1$

Exit Holes

Observations

$$\approx 90 \frac{exit \ holes}{m^2}$$
 (McCullough 2007)

Simulation Results

Select dead trees after 5 years Less exit holes than expected

Larval Densities

Observations

< 300 larvae / m²

Simulation Results

Select dead trees after 5 years

$$\chi = 1$$

small trees attacked too often

$$\chi = 3$$

range too concentrated

Area of study too small?

Cumulative Larvae / m²

Conclusions

Model

Host selection algorithm

Too simple ⇒ decision theory

Need appropriate data

Cedar Rapids

EAB infestation underway, 2018

References

- T. BenDor, S. Metcalf, L. Fontenot, B. Sangunett, and B. Hannon. Modeling the spread of the emerald ash borer. Ecological Modelling, 197(1-2):221–236,8 2006. ISSN 0304-3800.
- D. Cappaert, D. G. McCullough, T. M. Poland, and N. W. Siegert. Emerald ash borer in north america: A research and regulatory challenge. American Entomologist, 51(3):152–165, 2005
- R. A. Haack, Y. Baranchikov, L. S. Bauer, and T. M. Poland. Emerald ashborer biology and invasion history, 2015
- D. McCullough and N. Siegert. Estimating potential emerald ash borer (coleoptera: Buprestidae) populations using ash inventory data. Journal of economic entomology, 100:1577–86, 10 2007.