```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
import statsmodels.api as sma
from statsmodels.stats.outliers influence import variance inflation factor
from sklearn.linear model import LogisticRegression
from sklearn.svm import SVC
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.model selection import cross val score
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import classification report
from sklearn.metrics import confusion_matrix
import warnings
warnings.filterwarnings('ignore')
```

1. Download the dataset: Dataset

2. Load the dataset into the tool.

```
In [4]:
df = pd.read csv("E:\\IBM projects Assignment Sona College\\abalone.csv")
```

3. Perform Below Visualizations.

- · Univariate Analysis
- · Bi-Variate Analysis
- · Multi-Variate Analysis

```
Out[6]:
In [7]:
```

```
df['age'] = df['rings']+1.5 #AS per the problem statement
df.drop('rings', axis = 1, inplace = True)
df.head()
#categorical features
temp = pd.concat([df['age'], df['sex']], axis=1)

f, ax = plt.subplots(figsize=(8, 6))
fig = sns.boxenplot(x='sex', y="age", data=df)
fig.axis(ymin=0, ymax=30);
```


ANALYSIS

(4175, 9)

There is no difference in age of rings for male and female (8-19). But in infants, it lies between (5-10)

Count Plot

```
sns.countplot('sex', data=df)
plt.title('Distributed Classes', fontsize=14)
plt.show()
```

In [8]:

Histograms: Understanding the Distribution of the Numerical Features

ANALYSIS

• Skewness of the height is too high. (need to normalise later...)

Need to check skewness for all varibles

Skewness of the Variables

ANALYSIS:

- Skewness is close to 0 for Normal distribution curve.
- Height has the highest skewness of 3.17.
- May be there are outliers in height, we need to check that and remove them before modeling.
- Will check the coorelation with the dependent variable (Rings)
- Will use IQR algorithm to remove outliers.

Coorelation Plot

```
In [11]:
corr = df.corr()
plt.figure(figsize = (10,10))
ax = sns.heatmap(corr, vmin = -1, center = 0, annot = True, cmap = 'mako')
```


ANALYSIS

- No Negative correlation found
- High coorelation between Length & Diameter
- High corelation between shucked weight, viscera weight Vs Whole_weight & Shell weight vs Whole_weight

```
In [12]:
upper_tri = corr.where(np.triu(np.ones(corr.shape), k=1).astype(np.bool))
columns_to_drop = [column for column in upper_tri.columns if
any(upper_tri[column] > 0.95)] #highly correlated variables to be removed.
print("Columns to drop:\n", columns_to_drop)
Columns to drop:
['diameter', 'shucked_weight', 'viscera_weight', 'shell_weight']
```

ANALYSIS

• We will remove the above columns, before proceeding any further.

4. Perform descriptive statistics on the dataset.

df.	<pre>In [13]: df.head()</pre>									
									Οι	ut[13]:
	se x	lengt h	diamete r	heigh t	whole_weigh t	shucked_weigh t	viscera_wei	gh shell_ t	weigh t	age
0	M	0.455	0.365	0.095	0.5140	0.2245	0.10	10	0.150	16. 5
1	M	0.350	0.265	0.090	0.2255	0.0995	0.04	85	0.070	8.5
2	F	0.530	0.420	0.135	0.6770	0.2565	0.14	15	0.210	10. 5
3	M	0.440	0.365	0.125	0.5160	0.2155	0.11	40	0.155	11. 5
4	I	0.330	0.255	0.080	0.2050	0.0895	0.03	95	0.055	8.5
df.	sha	pe							Ir	า [14]:
(11	.75,	Q)							Οι	ut[14]:
		cribe()							Ir	n [15]:
ar.	ues	CIIDE()							Οι	ut[15]:
		length	diameter	heigh	whole_wei ght	shucked_wei ght	viscera_wei ght	shell_wei ght		age
	ou nt	4175.000 000	4175.000 00	4175.00 00		4175.000000	4175.00000 0	4175.0000 00		5.000 000
m	ea n	0.524065	0.40794	0.13958	3 0.829005	0.359476	0.180653	0.238834	11.4	13509 0
S	td	0.120069	0.09922	0.04172	5 0.490349	0.221954	0.109605	0.139212	3.22	24227
m	in	0.075000	0.05500	0.01000	0.002000	0.001000	0.000500	0.001500	2.50	00000

	length	diameter	height	whole_wei ght	shucked_wei ght	viscera_wei ght	shell_wei ght	age
25 %	0.450000	0.35000	0.115000	0.442250	0.186250	0.093500	0.130000	9.500000
50 %	0.545000	0.42500	0.140000	0.800000	0.336000	0.171000	0.234000	10.50000
75 %	0.615000	0.48000	0.165000	1.153500	0.502000	0.253000	0.328750	12.50000 0
max	0.815000	0.65000	1.130000	2.825500	1.488000	0.760000	1.005000	30.50000
df.ir	nfo()							In [16]:
Int64	AIndex: 41	175 enti	ries, 0 to	4176				
			columns)					
#	Column		Non-Null	Count D	type			
0	sex		4175 non-	null o	 bject			
1	length		4175 non-		loat64			
2	diameter		4175 non-		loat64			
3	height		4175 non-null		float64			
4			4175 non-null		float64			
5	shucked_v		4175 non-		float64			
6	viscera_v	_	4175 non-		float64			
7 8	shell_we:	ight	4175 non- 4175 non-		loat64 loat64			
0	age		41/2 11011-	IIULL L	100104			

5. Check for Missing values and deal with them.

dtypes: float64(8), object(1)

memory usage: 326.2+ KB

df[df.duplic	ated()]					In [17]:
sex length	diameter	height	whole_weight	shucked_weight	viscera_weight	Out[17]: shell_weight age
df.isna().su	m ()					In [18]:
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	`,					Out[18]:
sex	0					
length	0					
diameter	0					
height	0					
whole_weight	0					
shucked_weig	ht 0					
viscera_weig	ht 0					

```
shell_weight 0
age 0
dtype: int64
```

0.3

0.2

there is no missing values and duplicates in dataframe

6. Find the outliers and replace them outliers

```
In [19]:
for i in df:
    if df[i].dtype=='int64' or df[i].dtypes=='float64':
        q1=df[i].quantile(0.25)
        q3=df[i].quantile(0.75)
        iqr=q3-q1
        upper=q3+1.5*iqr
        lower=q1-1.5*iqr
        df[i] = np.where(df[i] > upper, upper, df[i])
        df[i]=np.where(df[i] <lower, lower, df[i])</pre>
After removing outliers, boxplot will be like
                                                                          In [20]:
import matplotlib.pyplot as mtp
                                                                          In [21]:
def box_scatter(data, x, y):
    fig, (ax1, ax2) = plt.subplots(nrows=2, ncols=1, figsize=(16,6))
    sns.boxplot(data=data, x=x, ax=ax1)
    sns.scatterplot(data=data, x=x,y=y,ax=ax2)
                                                                          In [22]:
for i in df:
    if df[i].dtype=='int64' or df[i].dtypes=='float64':
        mtp.boxplot(df[i])
        mtp.show()
 0.8
 0.7
 0.6
 0.5
 0.4
```


7. Check for Categorical columns and perform encoding.

In [23]:

df.head()

								Οι	ıt[23]:
	se x	lengt h	diamete r	heigh t	whole_weigh t	shucked_weigh t	viscera_weigh t	shell_weigh t	age
0	M	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16. 5
1	M	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
2	F	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10. 5
3	M	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11. 5
4	I	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5

In [24]:

from sklearn.preprocessing import LabelEncoder
encoder=LabelEncoder()
df['sex']=encoder.fit_transform(df['sex'])

In [25]:

df.head()

								Οι	ıt[25]:
	se x	lengt h	diamete r	heigh t	whole_weigh t	shucked_weigh t	viscera_weigh t	shell_weigh t	age
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	16. 5
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	8.5
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	10. 5
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	11. 5
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	8.5

8. Split the data into dependent and independent variables.

In [26]:

x=df.iloc[:,:-1]
x.head()

Out[26]:

	sex	length	diameter	height	whole_weight	shucked_weight	viscera_weight	shell_weight	
0	2	0.455	0.365	0.095	0.5140	0.2245	0.1010	0.150	
1	2	0.350	0.265	0.090	0.2255	0.0995	0.0485	0.070	
2	0	0.530	0.420	0.135	0.6770	0.2565	0.1415	0.210	
3	2	0.440	0.365	0.125	0.5160	0.2155	0.1140	0.155	
4	1	0.330	0.255	0.080	0.2050	0.0895	0.0395	0.055	

In [27]:

y=df.iloc[:,-1]
y.head()

Out[27]:

0 16.5

```
1 8.5
2 10.5
3 11.5
4 8.5
Name: age, dtype: float64
```

9. Scale the independent variable

In [28]:
from sklearn.preprocessing import StandardScaler
scaler=StandardScaler()
x=scaler.fit_transform(x)

10. Split the data into training and testing

```
In [29]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.33)

In [30]:
x_train.shape

Out[30]:
(2797, 8)

In [31]:
x_test.shape

Out[31]:
```

11. Build the Model

In [32]:
from sklearn.ensemble import RandomForestRegressor
reg=RandomForestRegressor()

12. Train the Model

```
In [33]:
reg.fit(x_train, y_train)
Out[33]:
RandomForestRegressor()
```

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

13. Test the Model

y_pred=reg.predict(x_test)

In [34]:

14. Measure the performance using Metrics.

In [35]:

from sklearn.metrics import mean_squared_error
import math
print(math.sqrt(mean squared error(y test,y pred)))