Esercitazione di Fisica - 8

Riccardo Nicolaidis

15/05/2025

1 Problema 1

n moli di gas perfetto monoatomico si trovano inizialmente in uno stato termodinamico di volume V_0 , pressione P_0 , temperatura T_0 . Il sistema subisce una trasformazione **isoterma** quasi statica fino ad arrivare allo stato termodinamico con volume V_1 . Determinare: variazione di energia interna, lavoro, calore scambiato.

Dati: $P_0 = 10^5$ Pa, $V_0 = 1$ l, $T_0 = 300$ K, $V_1 = 5$ V_0 .

2 Problema 2

n moli di gas perfetto monoatomico si trovano inizialmente in uno stato termodinamico di volume V_0 , pressione P_0 , temperatura T_0 . Il sistema subisce una trasformazione **adiabatica** quasi statica fino ad arrivare allo stato termodinamico con volume V_1 . Determinare: variazione di energia interna, lavoro, calore scambiato.

Dati: $P_0 = 10^5$ Pa, $V_0 = 1$ l, $T_0 = 300$ K, $V_1 = 5$ V_0 .

3 Problema 3

n moli di gas perfetto monoatomico si trovano inizialmente in uno stato termodinamico di volume V_0 , pressione P_0 , temperatura T_0 . Il sistema subisce una trasformazione **isobara** quasi statica fino ad arrivare allo stato termodinamico con volume V_1 . Determinare: variazione di energia interna, lavoro, calore scambiato.

Dati: $P_0 = 10^5$ Pa, $V_0 = 1$ l, $T_0 = 300$ K, $V_1 = 5$ V_0 .

4 Problema 4

Una mole di gas perfetto inizialmente in uno stato termodinamico di volume V_0 e a pressione P_0 , compie una trasformazione di quasi-statica di equazione

$$PV^{\alpha} = \text{costante}$$

con $\alpha > 1$ fino ad arrivare allo stato V_1 . Determinare il lavoro compiuto dal sistema termodinamico. Essendo Q il calore scambiato con l'ambiente, ricavare se si tratti di un gas monoatomico o biatomico.

Dati: $\alpha = 1.5$, $V_0 = 3$ l, $V_1 = 2$ V_0 , $P_0 = 1.2 \times 10^5$ Pa, Q = 53.3 J

5 Problema 5

Una mole di He (gas biatomico) ha una temperatura iniziale T_A ed occupa un volume V_A . Il gas subisce una trasformazione isoterma quasi-statica fino ad occupare un volume $V_B = 2V_A$. Poi subisce un'altra trasformazione adiabatica fino ad arrivare ad una pressione uguale a quella iniziale $P_C = P_A$. Calcolare le temperature ed i volumi del gas negli stati B e C, calore scambiato, lavoro fatto e variazione dell'energia interna

Note

Calori specifici

Calori specifici a volume costante:

- Per un gas monoatomico $c_v = \frac{3}{2}R$
- Per un gas biatomico $c_v = \frac{5}{2}R$

Calore specifico a pressione costante

$$c_p = c_v + R = \begin{cases} \frac{5}{2}R & \text{monoatomico} \\ \frac{7}{2}R & \text{biatomico} \end{cases}$$

Per trasformazioni adiabatiche:

$$PV^{\gamma} = \cos t.$$

dove γ è data da:

$$\gamma = \frac{c_p}{c_v} = \begin{cases} 5/3 & \text{monoatomico} \\ 7/5 & \text{biatomico} \end{cases}$$

Convenzioni sui segni

Considerando il primo principio della termodinamica

$$\delta Q = dU + \delta W$$

- δQ : Calore scambiato con l'ambiente
 - $-\delta Q > 0$ se il sistema **riceve calore**
- \bullet $\delta W\colon$ Lavoro svolto dal gas
 - $-\delta W>0$ se il sistema **svolge lavoro**
- \bullet dU: Variazione di energia interna