CLAIMS

In the Claims:

1. (Currently Amended) A compound of formula

wherein

group A₁-T-A₂ is a bond-A₄ and A₂ are each independently of the other a bend or a C₄-C₆alkylene-bridge which is unsubstituted or substituted by from one to six identical or different substituents-selected from halogen and C₂-C₈cycloalkyl;

A₃ is ethylene, propylene or butylene. A₃ is a C₄-C₆alkylene bridge which is unsubstituted or substituted by from one to six identical or different substituents selected from halogen and C₂-C₆evelealkyl:

Y is O. NR7, S. SO or SO2:

X₁ and X₂ are each independently of the other fluorine, chlorine or bromine;

 $R_{1[[\cdot,\cdot]]}$ and R_2 and R_3 are each independently of the other[[s]] H, halogen, OH, SH, CN, nitro, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_2 - C_6 alkenyl, C_2 - C_6 alkonyl, C_1 - C_6 alkyl, C_1 - C_6 alkonyloxy, C_1 - C_6 alkonyloxy, C_1 - C_6 alkyl, C_1 - C_6 alkyl, C_1 - C_6 alkonyloxy, C_1 - C_6 a

R₃ is H;

Q is O. NRs. S. SO or SO2;

W is O. NRs. S. SO. SO2. -C(-0)-O. -O-C(-0)-, -C(-0)-NRs- or -NRs-C(-0)-;

T is a bond, O, NR₅, S, SO, SO₂, -C(=O)-O-, -O-C(=O)-, -C(=O)-NR₅-or -NR₅-C(=O)-;

D is CH-or N:

 $R_4 \text{ is H}_+ \text{halogen}_+, \text{OH}_+, \text{SH}_+, \text{CN}_+, \text{nitro}_+, \text{C}_4\text{-}\text{C}_6 \text{alkyl}_+, \text{C}_4\text{-}\text{C}_6 \text{haloalkyl}_+, \text{C}_4\text{-}\text{C}_6 \text{alkenyl}_+, \text{C}_2\text{-}\text{C}_6 \text{alkenyl}_+, \text{C}_3\text{-}\text{C}_6 \text{alkenyl}_+, \text{C}_3\text{-}\text{C}_6 \text{alkenyl}_+, \text{C}_3\text{-}\text{C}_6 \text{alkenyl}_+, \text{C}_3\text{-}\text{C}_6 \text{-}\text{alkenyl}_+, \text{C}_3\text{-}\text{C}_6 \text{-}\text{alkyl}_+, \text{C}_3\text{-}\text{C}_6 \text{-}\text{alkyl}_+, \text{C}_3\text{-}\text{C}_6 \text{-}\text{alkyl}_+, \text{C}_4\text{-}\text{C}_6 \text{-}\text{alkyl}_+, \text{C}_3\text{-}\text{C}_6 \text{-}\text{alkyl}_+, \text{C}_3\text{-}\text{C}_6 \text{-}\text{alkenyl}_+, \text{C}_3\text{-}\text{C}_6 \text{$

the substituents R4 being independent of one another when k is greater than 1;

k is 1, 2 or 3 when D is nitrogen; or is 1, 2, 3 or 4 when D is CH; m is 1-or 2:

 R_{10} is CN, NO_2 , $-C(=NOR_{14})$ - R_{13} , -C(=O)- R_{15} , $-C_1$ - C_6 alkyl-O- R_{16} , -NH-C(=O)-O- R_{17} or -CH(O- $R_{18})_2$ any radical which comprises from one to three hetero atoms selected from O, N and S; and which may be connected to R_{12} via a C_1 - C_6 alkylene bridge;

R₁₁ is H, C₁-C₁₂alkyl, halogen, or <u>CN or -C(=0)-R₁₅ any radical which comprises from one to three hetero atoms selected from O. N and S; or R₁₁ together with R₁₂ is a bond;</u>

or R_{10} and R_{11} , together with the carbon atom to which they are bonded, are a five- to seven-membered ring which optionally contains from one to three hetero atoms selected from O, N and S and which is unsubstituted or substituted by from one to three identical or different substituents selected from halogen, OH, =O, SH, =S, =N-OH, =N-O-C₁-C₆alkyl, CN, nitro, C_1 -C₆alkyl, C_1 -C₆alkyl, C_1 -C₆alkylcarbonyl, C_2 -C₆alkenyl, C_2 -C₆haloalkenyl, C_2 -C₆alkynyl, C_1 -C₆haloalkoxy;

 $R_{12} \text{ is H, C}_1\text{-}C_6alkyl, halo-}C_1\text{-}C_6alkyl, C_1\text{-}C_6alkyl, C_1\text{-}C_6alkyl, C_2\text{-}C_6cycloalkyl,} \\ phenoxy-C_1\text{-}C_6alkyl, CN, -C(=O)C_1\text{-}C_{12}alkyl, unsubstituted heterocyclyl, heterocyclyl which is substituted by one to three substituents sedesetedselected form the group consisting of OH, =O, SH, =S, halogen, CN, nitro, C_1\text{-}C_6alkyl, C_1\text{-}C_6haloalkyl, C_1\text{-}C_6alkylcarbonyl, C_2\text{-}C_6alkenyl, C_2\text{-}C_6haloalkenyl, C_1\text{-}C_6alkoxy and C_1\text{-}C_6haloalkoxy; or R_{12} together with R_{11} a bond; or is a C_2\text{-}C_6alkylene bridge which is connected to R_{10};$

 $\begin{array}{l} R_{13} \text{ is } C_1\text{-}C_{12}\text{alkyl}. C_2\text{-}C_6\text{haloalkyl}. C_2\text{-}C_6\text{cycloalkyl}. C_1\text{-}C_6\text{alkoxy}. C_2\text{-}C_5\text{haloalkoxy}. C_2\text{-}C_6\text{-}\\ \text{alkylamino}. C_2\text{-}C_6\text{alkenyl}. C_2\text{-}C_6\text{alkenyl}. C_2\text{-}C_6\text{-}\\ \text{haloalkenyl}. C_2\text{-}\\ \text{haloal$

R₁₄ is H, C₁-C₆alkyl, C₃-C₆cycloalkyl-C₁-C₆alkyl, C₃-C₆alkenyl or C₃-C₆alkynyl;

 R_{15} is H. OH, C_1 - C_1 2alkyl, C_1 - C_6 alkoxy, C_1 - C_{12} haloalkyl, C_2 - C_6 haloalkoxy, C_3 - C_6 alkenyloxy, C_3 - C_6 haloalkenyloxy, -N(R_{18}), C_3 - C_6 cycloalkyl, aryl, aryloxy, benzyloxy or heterocyclyl; or R_{15} together with R_{12} is an C_1 - C_6 alkylene bridge; and

R₁₆ is H. C₁-C₆alkyl, C₁-C₆haloalkyl, C₃-C₆alkenyl, C₃-C₆haloalkenyl, C₃-C₆alkynyl, C₃-C₆cycloalkyl, C₃-C₆cycloalkyl-C₁-C₆alkyl, C₁-C₆alkyl, C₁-C₆alkyl, C₁-C₆haloalkoxy-C₁-C₆alkyl, C₁-C₈alkoxy-C₁-C₈alkoxy-C₁-C₈alkyl, C₁-C₈haloalkoxy-C₁-C₈alkoxy-C₁-C₈alkyl, C₃-C₈alkynloxy-C₁-C₈alkyl, C₃-C₈alkynloxy-C₁-C₈alkyl, C₃-C₈alkyl, C₃

C3-C6cycloalkyl-C1-C6alkoxyC1-C6alkyl or benzyl;

 $\underline{R_{17} \text{ is H. } C_1\text{-}C_6 \text{alkyl, } C_2\text{-}C_6 \text{haloalkyl, } C_3\text{-}C_6 \text{alkenyl, } C_3\text{-}C_6 \text{haloalkenyl, } C_3\text{-}C_6 \text{alkynyl, } C_3\text{-}C_6 \text{cycloalkyl-}C_1\text{-}C_6 \text{alkyl, } C_1\text{-}C_6 \text{alkoxy-}C_1\text{-}C_6 \text{alkyl, } \text{or benzyl; }$

the two substituents R₁₈ are each independently of the other C₁-C₁₂alkyl or benzyl or together are a C₂-C₆alkylene bridge;

or[[and]], where applicable, their possible E/Z isomers, E/Z isomeric mixtures and/or tautomers, in each case in free form or in salt form.

- 2. (Original) A compound of formula (I) according to claim 1 in free form.
- (Original) A compound of formula (I) according claim 2, wherein X₁ and X₂ are chlorine or bromine.
- 4. (Cancelled).
- 5. (Currently Amended) A compound of formula (I) according claim $\underline{1}[[4]]$, wherein A_3 is propylene.
- 6. (Original) A compound of formula (I) according to claim 1, wherein R_{11} and R_{12} together are a bond.
- 7. (Original) A pesticidal composition which comprises as active ingredient at least one compound of formula (I) according to claim 1 in free form or in agrochemically acceptable salt form, and at least one adjuvant.
- 8. (Original) A method of controlling pests, which comprises applying a pesticidal composition as described in claim 7 to the pests or to the locus thereof.
- 9. (New) A compound of formula (I) according to claim 1, wherein Y is oxygen.

10. (New) A compound of formula (I) according to claim 1, wherein R_1 and R_2 are bromine or chlorine.