

Chapter 3, Part 1: Constrained Optimization

Advanced Topics in Statistical Machine Learning

Tom Rainforth Hilary 2024

rainforth@stats.ox.ac.uk

Constrained Optimization

- Much of machine learning requires us to perform optimization, e.g. minimizing the empirical risk
- This is often subject to **constraints** on the variables
- In this lecture, we will go through some essential basic results in constrained optimization
- In particular, we will be covering the concept of duality and showing how constrained optimization problems all have a convex dual problem form that can often be useful exploited
- This will form the basis for support vector machines (SVMs)

Lagrange Multipliers

Consider the following optimization problem:

minimize
$$f(x)$$
 subject to $h(x) = 0$

At the optimum x^* , $\nabla_x f(x)|_{x=x^*} = -\nu \nabla_x h(x)|_{x=x^*}$ for some scalar ν , known as a **Lagrange Multiplier**

Lagrange Multipliers

This is equivalent to finding the saddle points 1 of the Lagrangian

$$L(x,\nu) := f(x) + \nu h(x)$$

by noting that

$$\nabla_{x,\nu}L(x,\nu) = 0 \iff \begin{cases} \nabla_x f(x) = -\nu \nabla_x h(x) \\ h(x) = 0 \end{cases}$$

Unfortunately, this no longer necessarily applies in the more general case where we also have inequality constraints

¹Note these must be saddle points, not minima or maxima, as $L(x,\nu)$ is constant over ν for all x:h(x)=0.

The Primal Problem

Consider a general constrained optimization problem with objective function $f_0: \mathbb{R}^n \to \mathbb{R}$, and m inequality and r equality constraints:

minimize
$$f_0(x)$$

subject to $f_i(x) \le 0$ $i = 1, ..., m$
 $h_j(x) = 0$ $j = 1, ... r$.

- This is known as the **primal problem** and we denote its (primal) optimum value as $p^* = f_0\left(x^*\right)$
- Any $x: f_i(x) \le 0 \ \forall i, h_j(x) = 0 \ \forall j$ is known as a **primal** feasible point

A Naive Approach

In principle, we could convert this to an unconstrained problem by instead minimizing

$$\begin{split} \tilde{f}(x) &:= f_0(x) + \sum_{i=1}^m I_-\left(f_i(x)\right) + \sum_{j=1}^r I_0\left(h_j(x)\right), \\ \text{where} \qquad I_-(u) &= \begin{cases} 0, & u \leq 0 \\ \infty, & u > 0 \end{cases} \\ I_0(u) &= \begin{cases} 0, & u = 0 \\ \infty, & u \neq 0 \end{cases} \end{split}$$

However, this is clearly impractical from the perspective of performing the optimization

The Lagrangian

The Lagrangian $L:\mathbb{R}^n\times\mathbb{R}^m\times\mathbb{R}^r\to\mathbb{R}$ is still defined in this setting, namely

$$L(x, \lambda, \nu) := f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{j=1}^r \nu_j h_j(x).$$

where the vectors $\lambda \in \mathbb{R}^m$ and $\nu \in \mathbb{R}^r$ are our Lagrange multipliers, sometimes known as **dual variables**

Now it turns out that if $\lambda \succeq 0$, then the Lagrangian is a lower bound on $\tilde{f}(x)$, that is

$$L(x, \lambda, \nu) \le \tilde{f}(x) \quad \forall x \in \mathbb{R}^n, \nu \in \mathbb{R}^r, \lambda \in \mathbb{R}^m : \lambda \succeq 0$$

 $^{^2}$ By this we mean that each $\lambda_i \geq 0$

Different blue lines represent different values of λ_i and ν_i for left and right plots respectively. We see that regardless of these values, we have a lower bound on $I_-(u)$ and $I_0(u)$ respectively.

More concretely we have the following

$$\sup_{\lambda_{i} \in \mathbb{R}^{+}} \lambda_{i} f_{i}(x) = \begin{cases} 0, & f_{i}(x) \leq 0 \\ \infty, & f_{i}(x) > 0 \end{cases} = I_{-}(f_{i}(x))$$

$$\sup_{\nu_{j} \in \mathbb{R}} \nu_{j} h_{j}(x) = \begin{cases} 0, & h_{j}(x) = 0 \\ \infty, & h_{j}(x) \neq 0 \end{cases} = I_{0}(h_{j}(x))$$

And thus

$$\tilde{f}(x) = f_0(x) + \sum_{i=1}^m \sup_{\lambda_i \in \mathbb{R}^+} \lambda_i f_i(x) + \sum_{j=1}^r \sup_{\nu_j \in \mathbb{R}} \nu_j h_j(x)$$

$$= \sup_{\lambda_i \in \mathbb{R}^+, \ \nu_j \in \mathbb{R}, \ \forall i,j} f_0(x) + \sum_{i=1}^m \lambda_i f_i(x) + \sum_{j=1}^r \nu_j h_j(x)$$

$$= \sup_{\lambda \succeq 0, \nu} L(x, \lambda, \nu)$$

The Dual Problem

We now have that the primal problem can be solved using the unconstrained minimax problem

$$p^* = \inf_{x \in \mathcal{D}} \tilde{f}(x) = \inf_{x \in \mathcal{D}} \sup_{\lambda \succ 0, \nu} L(x, \lambda, \nu)$$

The so-called **dual form** of the problem **switches the order** of these optimizations:

$$d^* = \sup_{\lambda \succeq 0, \nu} \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$

The max-min inequality now guarantees that $d^* \leq p^*$. This result is known as weak duality

Proof for Weak Duality

$$\forall x, \lambda, \nu, \qquad \inf_{x'} L(x', \lambda, \nu) \leq L(x, \lambda, \nu)$$

$$\Longrightarrow \forall x, \lambda, \nu \qquad \inf_{x'} L(x', \lambda, \nu) \leq \sup_{\lambda' \succeq 0, \nu'} L(x, \lambda', \nu')$$

$$\Longrightarrow \forall x \qquad \sup_{\lambda \succeq 0, \nu} \inf_{x'} L(x', \lambda, \nu) \leq \sup_{\lambda \succeq 0, \nu} L(x, \lambda, \nu)$$

$$\Longrightarrow \qquad \sup_{\lambda \succeq 0, \nu} \inf_{x} L(x, \lambda, \nu) \leq \inf_{x} \sup_{\lambda \succeq 0, \nu} L(x, \lambda, \nu)$$

The Lagrange Dual Function

We can more formally define the dual problem by first defining the Lagrange dual function (or just "dual function") as

$$g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)$$

A **dual feasible** pair (λ, ν) is a pair where $\lambda \succeq 0$ and the Lagrangian is bounded from below, i.e. $g(\lambda, \mu) > -\infty$

The dual problem is now

maximize
$$g(\lambda, \nu)$$

subject to $\lambda \succeq 0$

We thus find the largest lower bound to original (primal) problem

$$d^* = \sup_{\lambda \succeq 0, \nu} g(\lambda, \nu)$$

noting that $g(\lambda, \nu) \leq p^* \ \forall \lambda, \nu$

Simplest example: minimize $L(x, \lambda) = f_0(x) + \lambda f_1(x)$ w.r.t. x

- Primal problem: $p^* = \inf_{x} \sup_{\lambda \succeq 0, \nu} L(x, \lambda, \nu)$
- Dual problem $d^* = \sup_{\lambda \succeq 0, \nu} g(\lambda, \nu)$ where $g(\lambda, \nu) = \inf_x L(x, \lambda, \nu)$
- p^* is minimum f_0 in constrained set

Simplest example: minimize $L(x, \lambda) = f_0(x) + \lambda f_1(x)$ w.r.t. x

- Primal problem: $p^* = \\ \inf_x \sup_{\lambda \succeq 0, \nu} L(x, \lambda, \nu)$
- Dual problem $d^* = \sup_{\lambda \succeq 0, \nu} g(\lambda, \nu)$ where $g(\lambda, \nu) = \inf_x L(x, \lambda, \nu)$
- p^* is minimum f_0 in constrained set

Simplest example: minimize $L(x,\lambda)=f_0(x)+\lambda f_1(x)$ w.r.t. x

- Primal problem: $p^* = \\ \inf_x \sup_{\lambda \succeq 0, \nu} L(x, \lambda, \nu)$
- $\begin{aligned} \bullet & \text{ Dual problem} \\ d^* = & \sup_{\lambda \succeq 0, \nu} g(\lambda, \nu) \\ & \text{ where} \\ g(\lambda, \nu) = \\ & \inf_x L(x, \lambda, \nu) \end{aligned}$
- p^* is minimum f_0 in constrained set

Simplest example: minimize $L(x,\lambda) = f_0(x) + \lambda f_1(x)$ w.r.t. x

- Primal problem: $p^* = \inf_{x \, \sup_{\lambda \succeq 0, \nu} L(x, \lambda, \nu)}$
- $\begin{aligned} \bullet & \text{ Dual problem} \\ & d^* = \sup_{\lambda \succeq 0, \nu} g(\lambda, \nu) \\ & \text{ where} \\ & g(\lambda, \nu) = \\ & \inf_x L(x, \lambda, \nu) \end{aligned}$
- p^* is minimum f_0 in constrained set

Why Use the Dual?

- \bullet In general, $\tilde{f}(x)$ is very difficult to work with as it equals ∞ for any input that does not satisfy the constraints
- If we can calculate, $g(\lambda,\nu)$ we can exploit the fact that it is concave: it is a pointwise infimum of affine functions of (λ,ν)

Figure 1: Example: Lagrangian with one inequality constraint, $L(x,\lambda) = f_0(x) + \lambda f_1(x)$, where x here can take one of four values

Strong Duality and Constraint Qualifications

- The difference $p^* d^*$ is called the **optimal duality gap**.
- In some cases, the optimal duality gap is zero, i.e.

$$d^* = \sup_{\lambda \succeq 0, \nu} \inf_x L(x, \lambda, \nu) = \inf_x \sup_{\lambda \succeq 0, \nu} L(x, \lambda, \nu) = p^*.$$

This is known as **strong duality**.

- The conditions under which this happens are known as constraint qualifications
- Most common (but not only) sufficient condition is for both the following to hold:
 - 1. Primal problem is **convex**: each $f_i(x)$ is a convex function and each $h_j(x)$ is affine (i.e. $h_j(x) = a_j^T x b_j = 0$, such that we can represent the equality constraints as Ax = b)
 - 2. Slater's condition: there exists a strictly feasible input, i.e.

$$\exists x : f_0(x) < \infty; f_i(x) < 0 \ \forall i = 1, \dots, m; h_j(x) = 0 \ \forall j = 1, \dots, r$$

Complementary Slackness

- When strong duality holds, we can use the dual problem to find both p^* and x^* , i.e. the solution of our original problem
- It also means that a condition called **complimentary slackness** holds at the optimum: denoting $(\lambda^*, \nu^*) = \arg\max_{\lambda \succeq 0, \nu} g(\lambda, \nu)$, we have

$$\lambda_i^* f_i(x^*) = 0 \ \forall i$$

and thus

$$\lambda_i^* > 0 \implies f_i(x^*) = 0,$$

 $f_i(x^*) < 0 \implies \lambda_i^* = 0.$

Proof for Complementary Slackness

Denote by x^* the optimum solution of the original problem, and by (λ^*, ν^*) the solutions to the dual. Then strong duality implies

$$f_{0}(x^{*}) = g(\lambda^{*}, \nu^{*})$$

$$= \inf_{x} \left(f_{0}(x) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x) + \sum_{i=1}^{r} \nu_{i}^{*} h_{i}(x) \right)$$

$$\leq f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x^{*}) + \sum_{i=1}^{r} \nu_{i}^{*} \underbrace{h_{i}(x^{*})}_{=0}$$

$$= f_{0}(x^{*}) + \sum_{i=1}^{m} \lambda_{i}^{*} f_{i}(x^{*}).$$

Now as $\lambda_i^* \geq 0$ and $f_i(x^*) \leq 0$, none of the terms in the sum can be positive, so the inequality can only hold if each term is exactly zero, i.e. $\lambda_i^* f_i(x^*) = 0 \ \forall i$.

Optimality

If strong duality holds and the Lagrangian is differentiable, then $\nabla_x L(x,\lambda^*,\nu^*)|_{x=x^*}=0 \text{ as otherwise it would be possible to achieve a better dual solution by moving down the gradient}$

Using the shorthand $\nabla_x f(x^*) = \nabla_x f(x)|_{x=x^*}$ we thus have

$$\nabla_x f_0(x^*) + \sum_{i=1}^m \lambda_i^* \nabla_x f_i(x^*) + \sum_{i=1}^r \nu_i^* \nabla_x h_i(x^*) = 0$$

at the optimum if strong duality holds

The KKT Conditions

Combining everything together now gives the **KKT** conditions for a optimality of a tuple (x, λ, ν) if

$$\nabla_{x} f_{0}(x) + \sum_{i=1}^{m} \lambda_{i} \nabla_{x} f_{i}(x) + \sum_{i=1}^{r} \nu_{i} \nabla_{x} h_{i}(x) = 0$$

$$f_{i}(x) \leq 0, \ i = 1, \dots, m,$$

$$h_{i}(x) = 0, \ i = 1, \dots, r,$$

$$\lambda_{i} \geq 0, \ i = 1, \dots, m,$$

$$\lambda_{i} f_{i}(x) = 0, \ i = 1, \dots, m.$$

The KKT conditions are **sufficient and necessary** for global optimality if our problem is convex, satisfies Slater's condition, and has differentiable objective and constraint functions.

Recap

- Directly solving minimization problems with inequality (and equality) constraints is typically challenging
- All such problems have a convex dual form where we maximize a lower bound on the optimum with respect to the Lagrange multipliers (aka dual variables)
- If the dual form is itself tractable this can form a means of (approximately) solving the original optimization problem
- Many convex problems exhibit strong duality, such that the primal and dual problems have the same optima
- We can use the KKT conditions to confirm global optimality in such cases

Further Reading

Chapter 5 of Stephen P Boyd and Lieven Vandenberghe.
 Convex optimization. Cambridge university press, 2004, https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf