Tea

2019年8月5日

题目名称	序列	箱子	旅行
题目类型	传统型	传统型	传统型
目录	sequence	case	travel
源文件名	sequence.cpp	case.cpp	travel.cpp
输入文件名	sequence.in	case.in	travel.in
输出文件名	sequence.out	case.out	travel.out
每个测试点时限	1s	1s	1s
内存限制	128MB	128MB	128MB
是否有下发样例	是	是	是
是否开启 O2	是	否	否

注意事项:

- 1. 评测时开启无限栈与 c++11。
- 2. 评测将在 linux 环境下用 LemonPlus 进行。
- 3. 如发现原题,请不要大叫"这不是 XXX 上的原题吗!"。
- 4. AK 后可以离场,不要大声喧哗。
- 5. Best wishes!

序列 (sequence)

【题目描述】

小 x 是一个喜欢摆弄序列的孩子。

小 x 有一个由二元组构成的长度为 n 的序列 A (n 为偶数),

其中 $A_i = (x_i, y_i)$, 其中 $x_i, y_i \in \{0, 1\}$

他现在想通过**若干次交换序列中的两个元素**,使得

$$\sum_{i=1}^{\frac{n}{2}} x_i = \sum_{i=\frac{n}{2}+1}^n y_i$$

他想知道**任意一种构造方法**,但是由于序列太长所以他希望你能帮他解决这个问题。

【输入格式】

从文件 sequence.in 中读入数据。

第一行一个正整数 n, 表示序列长度。

接下来 n 行, 每行两个数 x, y, 表示 A 序列。

【输出格式】

输出到文件 sequence.out 中。

输出 n 个正整数,每两个数字用空格隔开,第 i 个数表示构造的序列中第 i 项对应的是 A 的哪一项。

如果有多组解,输出任意一组。

无解输出-1。

【输入输出样例 1】

sequence.in	sequence.out
4	1 4 2 3
0 0	
0 1	
1 0	
1 1	

【样例 1 解释】

原序列为 (0,0), (0,1), (1,0), (1,1), 新序列为 (0,0), (1,1), (0,1), (1,0)。 等式两边都是 1。

【样例 2】

见下发文件。

【数据范围与提示】

子任务	分值	限制
1	10	$n \le 16$
2	30	$n \le 5000$
3	60	$n \le 3 \times 10^6$

对于 100% 的数据, $1 \le n \le 3 \times 10^6$

注意: 本题读入输出规模较大, 请使用较快的读入与输出方法。

NOIP2019 模拟赛 Tea

箱子 (case)

【题目描述】

小 h 是个有收集癖的孩子。

一天他回到家,发现各种物品排成了一列,每个物品都有一个重量 w_i 和高度 h_i 。他觉得这一列太长了,于是打算用若干个箱子把它们**按从左到右的顺序**装起来。每个箱子的最大装载量为 W,即只能装**重量总和不超过** W 的物品。

箱子的高度就是其中物品高度的最大值。

箱子的重量就是其中物品重量的总和。

用箱子当然是要有费用的, **第 i 个箱子的费用为当前用的箱子的个数 (包括 i) 乘以这个箱子的重量再加上这个箱子的高度。**

它希望最小化费用, 你能帮帮他吗?

【输入格式】

从文件 case.in 中读入数据。

第一行为两个整数 n, W, 表示物品数量和箱子的最大载重。

接下来 n 行,每行两个整数 h_i 与 w_i ,表示物品的高度与重量。

【输出格式】

输出到文件 case.out 中。

第一行,一个整数,表示最小花费。

【输入输出样例 1】

case.in	case.out
5 10	70
5 7	
9 2	
8 5	
13 2	
3 8	

【样例 1 解释】

分 [1], [2, 3, 4], [5] 装进 3 个箱子。 费用分别为 $7\times1+5,\ 9\times2+13,\ 8\times3+3$ 。 和为 70。

【样例 2】

见下发文件。

【数据范围与提示】

子任务	分值	限制
1	10	$n \le 10$
2	20	$n \le 100$
3	30	$n \le 5000$
4	40	$n \le 10^5$

对于 100% 的数据, $1 \le n \le 10^5, 0 \le w_i \le W \le 10^9, 0 \le h_i \le 10^6$

NOIP2019 模拟赛 Tea

旅行 (travel)

【题目描述】

小 b 是个爱好旅行的孩子。

他尤其喜欢在观光公交上一边旅行,一边欣赏沿途的风景。

乘坐观光公交可以从一个城市旅行到另一个城市,并且可以欣赏沿途的风景,**观光公交的线路既有单向的也有双向的。**

这天他来到了 Q 省,发现这个省的风光甚好.他现在在省会城市 1,**他希望欣赏完这** 个省所有线路上的风景最后回到省会 1,并且他不希望重复欣赏一条线路的风景。

值得注意的是:对于一条双向的线路,视作来回的风景是相同的。

你能告诉他这是否可能吗。

【输入格式】

从文件 travel.in 中读入数据。

第一行两个整数 T, type 表示数据组数与测试点类型, type=0 表示无特殊限制, **type=1** 表示所有线路是双向的, type=2 表示所有线路是单向的。

每组数据的第一行两个整数 n, m 表示城市最大编号, 观光公交线路个数。

接下来 m 行,每行两个整数 u, v, 一个字符串 dir, 表示城市 u 到城市 v 有一条线路,且 dir='D' 表示为单向,dir='U' 表示为双向。

【输出格式】

输出到文件 travel.out 中。

对每一组数据, 若能满足小 b 的需求, 则输出"YES", 否则输出"NO"。

【输入输出样例 1】

travel.in	travel.out
2 0	YES
5 6	NO
1 2 D	
1 3 D	
1 5 U	
2 4 D	
3 5 D	
4 1 U	
3 3	
1 2 D	
2 3 U	
1 3 D	

【样例 2-4】

见下发文件。

【数据范围与提示】

子任务	分值	限制
1	20	$m \le 10$
2	20	$type \in \{1, 2\}$
3	60	$n \le 1000, \ m \le \min\{6500, \frac{n(n-1)}{2}\}$

对于 100% 的数据, $1 \le n \le 1000$, $m \le \min\{6500, \frac{n(n-1)}{2}\}$, $type \in \{0,1,2\}$, $T \le 50$ 。 有些城市可能没有路线经过。

保证数据随机。