Definitions and Formula Sheet

Connectives The truth table below lists the truth values of each connective.

A	B	$A \wedge B$	$A \lor B$	$A \rightarrow B$	$A \leftrightarrow B$	A'
\overline{T}	T	T	T	T	T	F
T	F	F	T	F	F	
F	T	F	T	T	F	T
F	F	F	F	T	T	

Note: prime (\prime) is an unary connective. It operates on a single statement; hence, it only has two possible truth values.

Order of Precedence of Connectives The order of precedence of connectives from highest to lowest priority is

- 1. (), Parentheses
- 2. ', Negation
- 3. \wedge , \vee , Conjunction and Disjunction
- 4. \rightarrow , Implication
- 5. \leftrightarrow , Equivalence

Note: connectives are evaluated from left to right.

Equivalence Rules					
Expression	Equivalent to	Name - Abbreviation of Rule			
$A \lor B$	$B \vee A$	Commutative - comm			
$A \wedge B$	$B \wedge A$				
$(A \lor B) \lor C$	$A\vee (B\vee C)$	Associative - assoc			
$(A \wedge B) \wedge C$	$A \wedge (B \wedge C)$				
$A \vee (B \wedge C)$	$(A \vee B) \wedge (A \vee C)$	Distributive - dis			
$A \wedge (B \vee C)$	$(A \wedge B) \vee (A \wedge C)$				
$A \lor 0$	A	Identity - iden			
$A \wedge 1$	A				
$A \lor 1$	1	Domination - dom			
$A \wedge 0$	0				
$A \lor A'$	1	Complement - neg			
$A \wedge A'$	0				
$(A \vee B)'$	$A' \wedge B'$	De Morgan's Law - deMor			
$(A \wedge B)'$	$A' \vee B'$				
$A \to B$	$A' \vee B$	Implication - imp			
$A \to B$	$B' \to A'$	Contrapositive - cp			
A	A''	Double Negation - dn			
$A \wedge A$	A	Idempotent - self			
$A \lor A$	A				
$A \leftrightarrow B$	$(A \to B) \land (B \to A)$	Equivalence - equ			

$A \lor (A \land B)$ $A \land (A \lor B)$	A A	Absorption - abs				
$A \to (B \to C)$	$A \wedge B \to C$	Deductive - ded				
$\left[\left(\forall x\right)P(x)\right]'$	$(\exists x) [P(x)]'$	Negation - ng				
$\left[\left(\exists x\right)P(x)\right]'$	$(\forall x)[P(x)]'$					
Inference Rules						
Expression	Derives	Name - Abbreviation of Rule				
$(A \to B) \wedge A$	В	Modus ponens - mp				
$(A \to B) \land B'$	A'	Modus tollens - mt				
$(A \wedge B)$	A B	Simplification - sim				
$A \wedge B$	$(A \wedge B)$	Conjunction - con				
A	$A \lor B$	Addition - add				
$(A \lor B) \land A'$ $(A \lor B) \land B'$	В А	Disjunctive syllogism - ds				
$(A \to B) \land (B \to C)$	$A \to C$	Hypothetical Syllogism - hs				
$(\forall x)P(x)$	P(c)	Universal Instantiation - ui _†				
$(\exists x)P(x)$	P(c)	Existential Instantiation - ei††				
P(c)	$(\forall x)P(x)$	Universal Generalization - ug _‡				
P(c)	$(\exists x)P(x)$	Existential Generalization - eg _{‡‡}				
$(\forall x)(\forall y)P(x,y)$	$(\forall y)(\forall x)P(x,y)$	Reordering - ord				
$(\exists x)(\exists y)P(x,y)$	$(\exists y)(\exists x)P(x,y)$	Twordering - ord				

 $[\]dagger$ If c is a variable, then it must not have already be quantified in P(x).

Set A set is an unordered collection of distinct elements.

 $[\]dagger\dagger$ c must be a new constant.

 $[\]ddagger c$ cannot be a free variable or derived from ei.

 $[\]ddagger \ddagger \ x$ cannot be an existing variable or constant in P(c).