MATH 2023 • Multivariable Calculus Problem Set #1 • Lines, Planes and Curves

1. (\bigstar) Consider the two straight-lines:

$$L_1: \mathbf{r}_1(t) = \langle 1, 2, 3 \rangle + t \langle 1, -1, -1 \rangle$$

 $L_2: \mathbf{r}_2(t) = \langle 2 + t, 3 - 3t, -2 + 3t \rangle$

- (a) Show that L_1 and L_2 intersects each other. Find the coordinates of the intersection point.
- (b) Find an equation of the plane containing both L_1 and L_2 .
- 2. (★) Consider the following four points in three-dimensional space:

$$A(0,2,-1)$$
, $B(4,0,-1)$, $C(7,-3,0)$ and $D(\frac{1}{3},\frac{1}{6},\frac{1}{9})$

Determine whether or not these four points are coplanar (i.e. contained in a single plane).

3. (\bigstar) A parallelogram in \mathbb{R}^3 has vertices:

$$A(2,-1,4)$$
, $B(1,0,-1)$, $C(1,2,3)$, $D(x_0,y_0,z_0)$

as shown in the figure below. Answer the following questions:

- (a) Find the coordinates of *D*.
- (b) Find the area of the parallelogram ABCD.
- (c) Find an equation of the plane containing the parallelogram *ABCD*.
- (d) Project the parallelogram ABCD orthogonally onto the plane z=-1. Find the coordinates the projection of each vertices, then find the area of the *projected* parallelogram.

4. (★) Consider a particle whose path is represented by:

$$\mathbf{r}(t) = \left(\ln(t^2 + 1)\right)\mathbf{i} + \left(\tan^{-1}t\right)\mathbf{j} + \sqrt{t^2 + 1}\mathbf{k}$$

Find the velocity, speed and acceleration of the particle at t = 0.

5. ($\bigstar \bigstar$) Consider a plane through the point $P_0(x_0, y_0, z_0)$ with normal vector $\mathbf{n} = \langle A, B, C \rangle$. Prove that the perpendicular distance d from a given point $Q(x_1, y_1, z_1)$ to the plane is given by:

$$d = \frac{\left| \overrightarrow{P_0 Q} \cdot \mathbf{n} \right|}{\left| \mathbf{n} \right|} = \left| \frac{Ax_1 + By_1 + Cz_1 - D}{\sqrt{A^2 + B^2 + C^2}} \right|$$

where $D = Ax_0 + By_0 + Cz_0$.

6. (\bigstar) Suppose $\mathbf{r}(t)$ represents the path of a particle traveling on a sphere centered at the origin. Show that the position vector $\mathbf{r}(t)$ and the velocity $\mathbf{r}'(t)$ are orthogonal to each other at any time.

7. $(\bigstar \bigstar)$ Suppose that the path of a particle at time t is given by $\mathbf{r}(t)$ and the force exerted on the particle at time t is $\mathbf{F}(t)$. By Newton's Second Law, $\mathbf{F}(t)$ and $\mathbf{r}(t)$ are related by:

$$\mathbf{F}(t) = m\mathbf{r}''(t),$$

where m is the mass of the particle. The angular momentum $\mathbf{L}(t)$ about the origin of the particle at time t is defined to be:

$$\mathbf{L}(t) := \mathbf{r}(t) \times m\mathbf{r}'(t)$$

(a) Show that

$$\frac{d}{dt}\mathbf{L}(t) = \mathbf{r}(t) \times \mathbf{F}(t).$$

- (b) When $\mathbf{L}(t)$ is a constant vector, we say that the angular momentum is *conserved*. According to the result in (a), under what condition on $\mathbf{r}(t)$ and $\mathbf{F}(t)$ will the angular momentum be conserved? Also, give one example in physics that this condition is satisfied.
- 8. $(\bigstar \bigstar)$ Consider two point particles with masses m_1 and m_2 , and their trajectories are $\mathbf{r}_1(t)$ and $\mathbf{r}_2(t)$ respectively. Denote $\mathbf{F}(t)$ to be the force exerted on the m_1 -particle by the m_2 -particle at time t. By Newton's Third Law, the force exerted on the m_2 -particle by the m_1 -particle at time t (i.e. the reverse force) is given by $-\mathbf{F}(t)$. Assume there are no other forces exerted on any of these particles.
 - (a) Consider the following vector:

$$\mathbf{C}(t) := \frac{m_1 \mathbf{r}_1(t) + m_2 \mathbf{r}_2(t)}{m_1 + m_2}.$$

In physics, this vector is pointing at the center of mass of the two particles. Show that C''(t) = 0 for any t using Newton's Second and Third Laws.

(b) Hence, show that there exist two constant vectors \mathbf{r}_0 and \mathbf{v} such that

$$\frac{m_1\mathbf{r}_1(t) + m_2\mathbf{r}_2(t)}{m_1 + m_2} = \mathbf{r}_0 + t\mathbf{v}.$$

[Question: What is the physical significance of this result?]

- 9. (\bigstar) For each of the following curves, first reparametrize it by arc-length and then compute its curvature function $\kappa(s)$:
 - (a) $\mathbf{r}_1(t) = (R\cos\omega t)\mathbf{i} + (R\sin\omega t)\mathbf{j}, \quad 0 \le t \le \frac{2\pi}{\omega}.$
 - (b) $\mathbf{r}_2(t) = \langle 1, 2, 3 \rangle + (\ln t) \langle 1, 0, -1 \rangle, \quad 0 < t < \infty$
 - (c) $\mathbf{r}_3(t) = (\cos^3 t) \mathbf{i} + (\sin^3 t) \mathbf{j}, \quad 0 \le t \le \frac{\pi}{2}.$

Give an example of a path whose arc-length parametrization cannot be explicitly found even with computer softwares.

10. (★★) Suppose

$$\mathbf{r}(t) = \frac{1}{2}t^2\mathbf{i} + \frac{2\sqrt{2}}{3}t^{\frac{3}{2}}\mathbf{j} + t\mathbf{k}$$

represents the path of a race-car climbing up a hill from (0,0,0) at t=0. A truck, on the other hand, drives slowly in unit speed from (0,0,0) at time t=0 along the same path and direction as the race-car. Find a parametrization which represents the path of the truck.

11. ($\bigstar \bigstar$) We define the curvature of a path by $\kappa(s) = |\mathbf{r}''(s)|$ where $\mathbf{r}(s)$ is the arc-length parametrization of the path. However, the arc-length parametrization $\mathbf{r}(s)$ is often difficult to find explicitly. The purpose of this exercise is to derive an equivalent formula for the curvature which does not require finding an arc-length parametrization.

Given a path $\mathbf{r}(t)$, we let $\mathbf{r}(s)$ be its arc-length parametrization so that s and t are related by:

$$s = \int_0^t \left| \mathbf{r}'(\tau) \right| \ d\tau.$$

(a) Show, using the chain rule, that:

$$\mathbf{r}'(t) = \mathbf{r}'(s) \frac{ds}{dt}$$

$$\mathbf{r}''(t) = \mathbf{r}''(s) \left(\frac{ds}{dt}\right)^2 + \mathbf{r}'(s) \frac{d^2s}{dt^2}$$

(b) Show that:

$$\mathbf{r}'(t) \times \mathbf{r}''(t) = \left(\frac{ds}{dt}\right)^3 \mathbf{r}'(s) \times \mathbf{r}''(s)$$

(c) Using (a) and (b), show that the curvature, which is defined as $\kappa(s) := |\mathbf{r}''(s)|$, can be expressed in terms of t as:

$$\kappa(t) = \frac{|\mathbf{r}'(t) \times \mathbf{r}''(t)|}{|\mathbf{r}'(t)|^3}$$

Although it looks more complicated, this formula does not require the procedure of finding arc-length parametrization.

1. (★) Consider the two straight-lines:

$$L_1: \mathbf{r}_1(t) = \langle 1, 2, 3 \rangle + t \langle 1, -1, -1 \rangle$$

 $L_2: \mathbf{r}_2(t) = \langle 2 + t, 3 - 3t, -2 + 3t \rangle$

- (a) Show that L_1 and L_2 intersects each other. Find the coordinates of the intersection point.
- (b) Find an equation of the plane containing both L_1 and L_2 .

$$\langle 1,-1,-1\rangle^{\frac{1}{4}} + \langle 1,-3,3\rangle$$

$$\langle 1,-1,-1\rangle^{\frac{$$

$$\langle 1,-1,-1 \rangle \times \langle 1,-3,3 \rangle$$

$$= \begin{vmatrix} 1 & -1 & -1 \\ 1 & -1 & -1 \\ 1 & -3 & 3 \end{vmatrix} = \langle -6 & ,-4,-6 \rangle$$

$$= \langle -3,2,1 \rangle$$

$$3x + 2y + 2 = 10$$

2. (★) Consider the following four points in three-dimensional space:

$$A(0,2,-1)$$
, $B(4,0,-1)$, $C(7,-3,0)$ and $D(\frac{1}{3},\frac{1}{6},\frac{1}{9})$

Determine whether or not these four points are coplanar (i.e. contained in a single plane).

= \frac{1}{3} + \frac{10}{3} \tau 0. coplander

- ', They are

Made with Goodnotes

3. (\bigstar) A parallelogram in \mathbb{R}^3 has vertices:

$$A(2,-1,4)$$
, $B(1,0,-1)$, $C(1,2,3)$, $D(x_0,y_0,z_0)$

as shown in the figure below. Answer the following questions:

(a) Find the coordinates of *D*.

- (c) Find an equation of the plane containing the parallelogram *ABCD*.
- (d) Project the parallelogram ABCD orthogonally onto the plane z=-1. Find the coordinates the projection of each vertices, then find the area of the *projected* parallelogram.

4. (\bigstar) Consider a particle whose path is represented by:

$$\mathbf{r}(t) = \left(\ln(t^2 + 1)\right)\mathbf{i} + \left(\tan^{-1}t\right)\mathbf{j} + \sqrt{t^2 + 1}\mathbf{k}$$

Find the velocity, speed and acceleration of the particle at t = 0.

$$\frac{1}{t^{2}+1} = \frac{2t}{t^{2}+1} = \frac{1}{1+t^{2}} \int t^{2} + \frac{1}{2} (t^{2}+1)^{-\frac{1}{2}} (2t)^{k}$$

$$At t=0: \langle 0, 1, 0 \rangle$$

$$= \frac{2t}{t^{2}+1} = \frac{1}{1+t^{2}} \int t^{2} + \frac{1}{t^{2}+1} \int t^{2}$$

$$(\text{paid} = |v^{2}|t^{2}) = \sqrt{\frac{4t^{2}+t^{2}+1}{(t^{2}+1)^{2}}}$$

$$|v^{2}|t^{2}| = \sqrt{\frac{-t^{2}+1}{(t^{2}+1)^{2}}}$$

$$|v^{2}|t^{2}| = \sqrt{\frac{-t^{2}+1}{(t^{2}+1)^{2}}}$$

$$|v^{2}|t^{2}| = \sqrt{\frac{-t^{2}+1}{(t^{2}+1)^{2}}}$$

$$a(t)$$
 = $\frac{z(t^2+1)-(zt)(zt)}{(t^2+1)^2}$; +

AL tw , all < 2, 1, 1 >

5. ($\bigstar \bigstar$) Consider a plane through the point $P_0(x_0, y_0, z_0)$ with normal vector $\mathbf{n} = \langle A, B, C \rangle$. Prove that the perpendicular distance d from a given point $Q(x_1, y_1, z_1)$ to the plane is given by:

$$d = \frac{\left|\overrightarrow{P_0Q} \cdot \mathbf{n}\right|}{|\mathbf{n}|} = \left|\frac{Ax_1 + By_1 + Cz_1 - D}{\sqrt{A^2 + B^2 + C^2}}\right|$$

where $D = Ax_0 + By_0 + Cz_0$.

distance = poo project on n

POQ- N

6. (\bigstar) Suppose $\mathbf{r}(t)$ represents the path of a particle traveling on a sphere centered at the origin. Show that the position vector $\mathbf{r}(t)$ and the velocity $\mathbf{r}'(t)$ are orthogonal to each other at any time.

$$r(t) \cdot r(t) = |r(t)|^{2}$$

$$2r(t) \cdot r'(t) = 0$$

7. $(\bigstar \bigstar)$ Suppose that the path of a particle at time t is given by $\mathbf{r}(t)$ and the force exerted on the particle at time t is $\mathbf{F}(t)$. By Newton's Second Law, $\mathbf{F}(t)$ and $\mathbf{r}(t)$ are related by:

$$\mathbf{F}(t) = m\mathbf{r}''(t),$$

where m is the mass of the particle. The angular momentum $\mathbf{L}(t)$ about the origin of the particle at time *t* is defined to be:

$$\mathbf{L}(t) := \mathbf{r}(t) \times m\mathbf{r}'(t)$$

(a) Show that

$$\frac{d}{dt}\mathbf{L}(t) = \mathbf{r}(t) \times \mathbf{F}(t).$$

(b) When L(t) is a constant vector, we say that the angular momentum is *conserved*. According to the result in (a), under what condition on $\mathbf{r}(t)$ and $\mathbf{F}(t)$ will the angular momentum be conserved? Also, give one example in physics that this condition is satisfied.

When Ut) = constant, of uct)=0 1).

- 8. (\bigstar) Consider two point particles with masses m_1 and m_2 , and their trajectories are $\mathbf{r}_1(t)$ and $\mathbf{r}_2(t)$ respectively. Denote $\mathbf{F}(t)$ to be the force exerted on the m_1 -particle by the m_2 -particle at time t. By Newton's Third Law, the force exerted on the m_2 -particle by the m_1 -particle at time t (i.e. the reverse force) is given by $-\mathbf{F}(t)$. Assume there are no other forces exerted on any of these particles.
 - (a) Consider the following vector:

$$\mathbf{C}(t) := \frac{m_1 \mathbf{r}_1(t) + m_2 \mathbf{r}_2(t)}{m_1 + m_2}.$$

In physics, this vector is pointing at the center of mass of the two particles. Show that C''(t) = 0 for any t using Newton's Second and Third Laws.

(b) Hence, show that there exist two constant vectors \mathbf{r}_0 and \mathbf{v} such that

$$\frac{m_1\mathbf{r}_1(t) + m_2\mathbf{r}_2(t)}{m_1 + m_2} = \mathbf{r}_0 + t\mathbf{v}.$$

[Question: What is the physical significance of this result?]

- 9. (\bigstar) For each of the following curves, first reparametrize it by arc-length and then compute its curvature function $\kappa(s)$:
 - (a) $\mathbf{r}_1(t) = (R\cos\omega t)\mathbf{i} + (R\sin\omega t)\mathbf{j}, \quad 0 \le t \le \frac{2\pi}{\omega}.$
 - (b) $\mathbf{r}_2(t) = \langle 1, 2, 3 \rangle + (\ln t) \langle 1, 0, -1 \rangle, \quad 0 < t < \infty$
 - (c) $\mathbf{r}_3(t) = (\cos^3 t) \mathbf{i} + (\sin^3 t) \mathbf{j}, \quad 0 \le t \le \frac{\pi}{2}.$

Give an example of a path whose arc-length parametrization cannot be explicitly found even with computer softwares.

a).
$$r'(t) = (-Rw \sin wt)i + (Rw \cos wt)j$$

$$|v'(t)| = |Rw|$$

$$S = \int_{0}^{t} |Rw| dt$$

$$S = Rwt$$

$$t = |Rw|$$

(b)
$$\mathbf{r}_2(t) = \langle 1, 2, 3 \rangle + (\ln t) \langle 1, 0, -1 \rangle, \quad 0 < t < \infty$$

$$r_{2}(t) = \langle 1,2,3 \rangle + (ne^{\frac{5}{4}}) \langle 1,0,-1 \rangle$$
 $r_{2}(t) \stackrel{?}{=} \langle 1,2,3 \rangle + \sum_{12}^{5} \langle 1,0,-1 \rangle$

(c)
$$\mathbf{r}_3(t) = (\cos^3 t) \mathbf{i} + (\sin^3 t) \mathbf{j}, \quad 0 \le t \le \frac{\pi}{2}.$$

$$|3'(t)| = (-3 \omega s^2 t \sin t)i + (4 \sin^2 t \cos t)j$$

 $|3'(t)| = \sqrt{9 \cos^2 t \sin^2 t \cos^2 t}$
 $|3'(t)| = \sqrt{9 \cos^2 t \sin^2 t \cos^2 t}$
 $|3'(t)| = \sqrt{9 \cos^2 t \sin^2 t \cos^2 t}$

$$\vec{r_3}(t) = \omega^3(\frac{4}{3})\vec{1} + 5m^3(\frac{4}{3})\vec{5}$$

$$\mathbf{r}(t) = \frac{1}{2}t^2\mathbf{i} + \frac{2\sqrt{2}}{3}t^{\frac{3}{2}}\mathbf{j} + t\mathbf{k}$$

represents the path of a race-car climbing up a hill from (0,0,0) at t=0. A truck, on the other hand, drives slowly in unit speed from (0,0,0) at time t=0 along the same path and direction as the race-car. Find a parametrization which represents the path of the truck.