Telco customer churn

by Ketao Li, Kush Halani, Josue Romain, Juan Peña, Priyanka Patil

Abstract Customer churn is a big challenge for large companies, especially in the highly competitive telecom industry. Due to the effect on the revenues of the companies, they are seeking to find ways to predict potential customer to churn. Therefore, identifying the factors that lead to customer churn is very important to take necessary actions to avoid this churn. Our work is to develop a churn prediction model which helps telecom operators to predict customers who are most likely subject to churn.

Background

In an industry as competitive as Telecom, leading companies know that the key to success is not just about acquiring new customers, but rather, retaining existing ones. But how do you know which customers are at risk and why, and which negative experiences and interactions have the biggest impact on churn across touchpoints and channels over time.

Objective

The objective of this research is to find a supervised, binary classification model that would provide accurate forecast of telco customer churn.

Data Analysis

The data set we are going to use for our research contains customer's attributes. There are over 7044 records. It has been sourced from Kaggle.

Data Dictionary

Column Name	Column Description
customerID	Customer ID
gender	Whether the customer is a male or a female
SeniorCitizen	Whether the customer is a senior citizen or
	not (1, 0)
Partner	Whether the customer has a partner or not
	(Yes, No)
Dependents	Whether the customer has dependents or
	not (Yes, No)
tenure	Number of months the customer has stayed
	with the company
PhoneService	Whether the customer has a phone service
	or not (Yes, No)
MultipleLines	Whether the customer has multiple lines or
	not (Yes, No, No phone service)
InternetService	Customer's internet service provider (DSL,
	Fiber optic, No)
OnlineSecurity	Whether the customer has online security
	or not (Yes, No, No internet service)
OnlineBackup	Whether the customer has online backup or
	not (Yes, No, No internet service)
DeviceProtection	Whether the customer has device protection
	or not (Yes, No, No internet service)
TechSupport	Whether the customer has tech support or
	not (Yes, No, No internet service)
StreamingTV	Whether the customer has streaming TV or
	not (Yes, No, No internet service)
StreamingMovies	Whether the customer has streaming
	movies or not (Yes, No, No internet service)

Column Name	Column Description
Contract	The contract term of the customer
	(Month-to-month, One year, Two year)
PaperlessBilling	Whether the customer has paperless billing or not (Yes, No)
PaymentMethod	The customer's payment method
Ž	(Electronic check, Mailed check, Bank
	transfer (automatic), Credit card
	(automatic))
MonthlyCharges	The amount charged to the customer monthly
TotalCharges	The total amount charged to the customer
Churn	Whether the customer churned or not (Yes or No)

Data Exploration

Let's take a close look at the data set.

To have the full picture of the data let's print the data summary and sample.

customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines
0002-ORFBO: 1	Female:3488	Min. :0.0000	No :3641	No :4933	Min.: 0.00	No: 682	No :3390
0003-MKNFE: 1	Male :3555	1st Qu.:0.0000	Yes:3402	Yes:2110	1st Qu.: 9.00	Yes:6361	No phone service: 682
0004-TLHLJ: 1		Median :0.0000			Median :29.00		Yes :2971
0011-IGKFF: 1		Mean :0.1621			Mean :32.37		
0013-EXCHZ: 1		3rd Qu.:0.0000			3rd Qu.:55.00		
0013-MHZWF: 1		Max. :1.0000			Max. :72.00		
(Other):7037							

InternetService	OnlineSecurity	OnlineBackup	DeviceProtection	TechSupport	StreamingTV	Stream
DSL :2421	No :3498	No :3088	No :3095	No :3473	No :2810	No :27
Fiber optic:3096	No internet service:1526	No int				
No :1526	Yes:2019	Yes :2429	Yes :2422	Yes:2044	Yes :2707	Yes :27

PaperlessBilling	PaymentMethod	MonthlyCharges	TotalCharges	Churn
No :2872	Bank transfer (automatic):1544	Min.: 18.25	Min.: 18.8	No :5174
Yes:4171	Credit card (automatic):1522	1st Qu.: 35.50	1st Qu.: 401.4	Yes:1869
	Electronic check :2365	Median: 70.35	Median:1397.5	
	Mailed check :1612	Mean: 64.76	Mean :2283.3	
		3rd Qu.: 89.85	3rd Qu.:3794.7	
		Max. :118.75	Max. :8684.8	
			NA's :11	
			INA 5 .11	

Table 2: telco customer churn data Summary

	customerID	gender	SeniorCitizen	Partner	Dependents	tenure	PhoneService	MultipleLines	InternetService	OnlineSecurity	OnlineBackup	DeviceProtecti
1	7590-VHVEG	Female	0	Yes	No	1	No	No phone service	DSL	No	Yes	No
2	5575-GNVDE	Male	0	No	No	34	Yes	No	DSL	Yes	No	Yes
3	3668-QPYBK	Male	0	No	No	2	Yes	No	DSL	Yes	Yes	No
4	7795-CFOCW	Male	0	No	No	45	No	No phone service	DSL	Yes	No	Yes
5	9237-HQITU	Female	0	No	No	2	Yes	No	Fiber optic	No	No	No
6	9305-CDSKC	Female	0	No	No	8	Yes	Yes	Fiber optic	No	No	Yes
7	1452-KIOVK	Male	0	No	Yes	22	Yes	Yes	Fiber optic	No	Yes	No
8	6713-OKOMC	Female	0	No	No	10	No	No phone service	DSL	Yes	No	No
9	7892-POOKP	Female	0	Yes	No	28	Yes	Yes	Fiber optic	No	No	Yes
10	6388-TABGU	Male	0	No	Yes	62	Yes	No	DSL	Yes	Yes	No

"SeniorCitizen"

"PhoneService"

"Partner"

"MultipleLines"

TechSupport	StreamingTV	StreamingMovies	Contract	PaperlessBilling	PaymentMethod	MonthlyCharges	TotalCharges	Churn
No	No	No	Month-to-month	Yes	Electronic check	29.85	29.85	No
No	No	No	One year	No	Mailed check	56.95	1889.50	No
No	No	No	Month-to-month	Yes	Mailed check	53.85	108.15	Yes
Yes	No	No	One year	No	Bank transfer (automatic)	42.30	1840.75	No
No	No	No	Month-to-month	Yes	Electronic check	70.70	151.65	Yes
No	Yes	Yes	Month-to-month	Yes	Electronic check	99.65	820.50	Yes
No	Yes	No	Month-to-month	Yes	Credit card (automatic)	89.10	1949.40	No
No	No	No	Month-to-month	No	Mailed check	29.75	301.90	No
Yes	Yes	Yes	Month-to-month	Yes	Electronic check	104.80	3046.05	Yes
No	No	No	One year	No	Bank transfer (automatic)	56.15	3487.95	No

Table 3: telco customer churn data

#To see the names of the rows in the dataset
names(customerData)

"gender"

"tenure"

0

No

No

8

#> [1] "customerID"

#> [5] "Dependents"

```
#> [9] "InternetService"
                             "OnlineSecurity"
                                                                      "DeviceProtection"
                                                  "OnlineBackup"
#> [13] "TechSupport"
                                                                      "Contract"
                             "StreamingTV"
                                                  "StreamingMovies"
#> [17] "PaperlessBilling" "PaymentMethod"
                                                  "MonthlyCharges"
                                                                      "TotalCharges"
#> [21] "Churn"
#Display the dataset structure and sumary
str(customerData)
#> 'data.frame':
                     7043 obs. of 21 variables:
                     : Factor w/ 7043 levels "0002-ORFBO", "0003-MKNFE",..: 5376 3963 2565 5536 6512 6552 100
#> $ customerID
                       : Factor w/ 2 levels "Female", "Male": 1 2 2 2 1 1 2 1 1 2 ...
   $ gender
   $ SeniorCitizen : int 0 0 0 0 0 0 0 0 0 ...
   $ Partner : Factor w/ 2 levels "No", "Yes": 2 1 1 1 1 1 1 2 1 ...
   $ Dependents
                       : Factor w/ 2 levels "No", "Yes": 1 1 1 1 1 1 2 1 1 2 ...
                       : int 1 34 2 45 2 8 22 10 28 62 ...
#> $ tenure
                       : Factor w/ 2 levels "No", "Yes": 1 2 2 1 2 2 2 1 2 2 ...
#> $ PhoneService
#> $ MultipleLines : Factor w/ 3 levels "No", "No phone service",..: 2 1 1 2 1 3 3 2 3 1 ...
#> $ InternetService : Factor w/ 3 levels "DSL", "Fiber optic", ...: 1 1 1 1 2 2 2 1 2 1 ...
#> $ OnlineSecurity : Factor w/ 3 levels "No", "No internet service", ...: 1 3 3 3 1 1 1 3 1 3 ...
#> $ OnlineBackup : Factor w/ 3 levels "No", "No internet service", ...: 3 1 3 1 1 1 3 1 3 ...
#> $ DeviceProtection: Factor w/ 3 levels "No", "No internet service", ...: 1 3 1 3 1 3 1 3 1 ...
#> $ TechSupport : Factor w/ 3 levels "No", "No internet service",..: 1 1 1 3 1 1 1 1 3 1 ...
#> $ StreamingTV : Factor w/ 3 levels "No","No internet service",..: 1 1 1 1 1 3 3 1 3 1 ...
#> $ StreamingMovies : Factor w/ 3 levels "No", "No internet service",..: 1 1 1 1 1 3 1 1 3 1 ...
                      : Factor w/ 3 levels "Month-to-month",..: 1 2 1 2 1 1 1 1 1 2 ...
#> $ PaperlessBilling: Factor w/ 2 levels "No", "Yes": 2 1 2 1 2 2 2 1 2 1 ...
#> $ PaymentMethod : Factor w/ 4 levels "Bank transfer (automatic)",...: 3 4 4 1 3 3 2 4 3 1 ...
#> $ MonthlyCharges : num 29.9 57 53.9 42.3 70.7 ...
#> $ TotalCharges : num 29.9 1889.5 108.2 1840.8 151.7 ...
#> $ Churn
                       : Factor w/ 2 levels "No", "Yes": 1 1 2 1 2 2 1 1 2 1 ...
#Display first rows of the dataset
head(customerData)
#>
     customerID gender SeniorCitizen Partner Dependents tenure PhoneService
#> 1 7590-VHVEG Female
                                     0
                                            Yes
                                                         No
                                                                 1
                                                                              No
#> 2 5575-GNVDE
                   Male
                                     0
                                             No
                                                         No
                                                                 34
                                                                              Yes
                                                                 2
#> 3 3668-QPYBK
                   Male
                                     0
                                             No
                                                         No
                                                                              Yes
#> 4 7795-CFOCW
                                     0
                                             No
                                                         No
                                                                 45
                  Male
                                                                              No
#> 5 9237-HQITU Female
                                     0
                                             No
                                                         No
                                                                 2
                                                                              Yes
```

#> 6 9305-CDSKC Female

Yes

Yes

Nο

Yes

No

Yes

```
#>
        MultipleLines InternetService OnlineSecurity OnlineBackup DeviceProtection
#> 1 No phone service
                                   DSL
                                                   No
                                                                Yes
#> 2
                                   DSL
                                                   Yes
                   No
                                                                 No
#> 3
                                   DSI
                                                                Yes
                   Nο
                                                   Yes
#> 4 No phone service
                                   DSL
                                                   Yes
                                                                 No
#> 5
                          Fiber optic
                                                                 No
                   No
                                                   No
#> 6
                  Yes
                          Fiber optic
                                                    No
                                                                 No
     TechSupport StreamingTV StreamingMovies
                                                    Contract PaperlessBilling
#> 1
              No
                          No
                                           No Month-to-month
#> 2
              No
                                                                            No
                                                     One year
#> 3
              No
                          No
                                           No Month-to-month
                                                                            Yes
#> 4
             Yes
                          No
                                           No
                                                     One year
                                                                            No
#> 5
                                           No Month-to-month
                                                                            Yes
              No
                          No
#> 6
              Nο
                                          Yes Month-to-month
                         Yes
                                                                            Yes
                 PaymentMethod MonthlyCharges TotalCharges Churn
#>
#> 1
              Electronic check
                                        29.85
                                                       29.85
                                                                No
#> 2
                  Mailed check
                                         56.95
                                                     1889.50
                                                                No
#> 3
                  Mailed check
                                         53.85
                                                     108.15
                                                               Yes
#> 4 Bank transfer (automatic)
                                         42.30
                                                     1840.75
                                                                No
#> 5
              Electronic check
                                         70.70
                                                      151.65
                                                               Yes
#> 6
              Electronic check
                                         99.65
                                                      820.50
                                                               Yes
#To select just the continuous variables and summarise it
library(dplyr)
continues <- select_if(customerData, is.numeric)</pre>
#Sumarize the variables to find NA's and outliers
summary(continues)
#>
    SeniorCitizen
                          tenure
                                      MonthlyCharges
                                                         TotalCharges
#>
   Min. :0.0000
                     Min. : 0.00
                                      Min. : 18.25
                                                        Min. : 18.8
                     1st Qu.: 9.00
                                      1st Qu.: 35.50
#>
    1st Qu.:0.0000
                                                        1st Qu.: 401.4
#>
   Median :0.0000
                     Median :29.00
                                      Median : 70.35
                                                        Median :1397.5
#>
   Mean
          :0.1621
                     Mean :32.37
                                      Mean
                                            : 64.76
                                                        Mean
                                                              :2283.3
    3rd Qu.:0.0000
#>
                     3rd Qu.:55.00
                                      3rd Qu.: 89.85
                                                        3rd Qu.:3794.7
    Max.
          :1.0000
                     Max.
                            :72.00
                                      Max.
                                            :118.75
                                                        Max.
                                                               :8684.8
#>
                                                        NA's
                                                               :11
#Display the factor columns and summarise it
factorColumns <- select_if(customerData, is.factor)</pre>
summary(factorColumns)
#>
                                                 Dependents PhoneService
         customerID
                         gender
                                     Partner
#>
    0002-ORFBO:
                      Female:3488
                                     No :3641
                                                No:4933
                                                            No: 682
#>
    0003-MKNFE:
                      Male :3555
                                     Yes:3402
                                                Yes:2110
                                                            Yes:6361
#>
    0004-TLHLJ:
#>
    0011-IGKFF:
#>
    0013-EXCHZ:
#>
    0013-MHZWF:
                  1
#>
             :7037
    (Other)
                                                             OnlineSecurity
#>
             MultipleLines
                                InternetService
#>
                    :3390
                            DSL
                                       : 2421
                                                                    :3498
    No
                                                No
#>
                             Fiber optic:3096
    No phone service: 682
                                                No internet service: 1526
#>
    Yes
                     :2971
                                        :1526
                                                Yes
#>
#>
#>
#>
#>
                 OnlineBackup
                                           DeviceProtection
#>
                        :3088
                                                    : 3095
                                No
#>
    No internet service: 1526
                                No internet service: 1526
#>
                        :2429
                                Yes
                                                    :2422
    Yes
#>
#>
#>
#>
```

```
StreamingTV
#>
                 TechSupport
#>
   No
                       :3473
                               No
                                                   :2810
#>
   No internet service:1526
                               No internet service: 1526
#>
                                                   :2707
   Yes
                       :2044
                               Yes
#>
#>
#>
#>
#>
               StreamingMovies
                                          Contract
                                                      PaperlessBilling
#>
                       :2785 Month-to-month:3875
                                                      No :2872
#>
   No internet service:1526
                               One year
                                             :1473
                                                      Yes:4171
#>
                       :2732
                               Two year
                                             :1695
#>
#>
#>
#>
#>
                      PaymentMethod Churn
#>
   Bank transfer (automatic):1544
                                     No:5174
#>
   Credit card (automatic) :1522
                                     Yes:1869
#>
   Electronic check
                             :2365
#>
   Mailed check
                             :1612
#>
#>
#>
```

Continuous Variables

For continuous variables, let's check for their distributions.

The number of current customers with MonthlyCharges below \$25 is extremly high. For the customers with Monthlycharges greater than \$30, the distributions are similar between who churned and who did not churn.

The distribution of TotalCharges is highly positive skew for all customers no matter whether they churned or not.

The distributions for tenure are very different between customers who churned and who didn't churn. For customers who churned, the distribution is positive skew, which means customers who churned are more likely to cancel the service in the first couple of months. For current customers who didn't churn, there are two spikes. The second spike is much more drastic than the first one, which means a large group of current customers have been using the service more than 5 years. There is no obvious outliers for 3 numeric variables.

Missing Data

From the above summary, we can observe that 11 TotalChargesNA. Considering the number of missing data is quite small, we can remove them directly.

Data correlation and other observations

Figure 1

Figure 2

Figure 4

Customer MultipleLines Status

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

Customer StreamingTV Status

Figure 11

Figure 12

Figure 13

Figure 14

Customer PaymentMethod Status

Figure 15: Test1

Figure 16

Figure 17

Figure 18

General Insights From Initial Data Exploration These are simple observations made by looking at the above charts.

-Customers with a partner or dependents are much less likely to cancel their service -The longer a customer's tenure, the less likely they are to cancel -Customers with fiber optic internet service are especially likely to cancel -Customers on month-to-month contracts are especially likely to cancel -Customers who use paperless billing are more likely to cancel -Customers who pay by electronic check are more likely to cancel

The last step is to evaluate the correlation between predictor variables. Using a cut-off point of .6 we can say that there is a high level of correlation between the variables tenure, monthly charges, total charges and total services. These will need to be accounted before entering further modelling.

```
customer_churn_tbl = read.csv("../data/WA_Fn-UseC_-Telco-Customer-Churn.csv" )
data("customer_churn_tbl")
customer_churn_binarized_tbl <- customer_churn_tbl %>%
  dplyr::select(-customerID) %>%
  mutate(TotalCharges = ifelse(is.na(TotalCharges), MonthlyCharges, TotalCharges)) %>%
  binarize(n_bins = 5, thresh_infreq = 0.01, name_infreq = "OTHER", one_hot = TRUE)
customer_churn_corr_tbl <- customer_churn_binarized_tbl %>%
  correlate(Churn__Yes)
customer_churn_corr_tbl
#> # A tibble: 60 x 3
     feature bin
                                     correlation
      <fct>
                                            <dbl>
#>
                     <chr>
#> 1 Churn
#> 2 Churn
                                            -1
#> 1 Churn No
#> 2 Churn Yes
#> 3 Contract Month-to-month
                                            1
                                            0.405
#> 4 OnlineSecurity No
                                            0.343
#> 5 TechSupport No
#> 6 tenure -In
                                            0.337
                     -Inf_6
#> 6 tenure
                                            0.309
#> 7 InternetService Fiber_optic
#> 8 Contract Two_year
                                           0.308
                                            -0.302
                                          0.302
#> 9 PaymentMethod Electronic_check
#> 10 OnlineBackup No
                                            0.268
#> # ... with 50 more rows
customer_churn_corr_tbl %>%
  plot_correlation_funnel()
```


We can see that the following features are correlated with Churn:

"Month to Month" Contract Type No Online Security No Tech Support Customer tenure less than 6 months Fiber Optic internet service Pays with electronic check

We can also see that the following features are correlated with Staying (No Churn):

"Two Year" Contract Type Customer Purchases Online Security Customer Purchases Tech Support Customer tenure greater than 60 months (5 years) DSL internet service Pays with automatic credit card

```
customerData = customerData %>%filter(complete.cases(.))
customerData = subset(customerData,select = -customerID)
```

Modeling and Evalutation

Finally we have reached the stage where we can start training and evaluating classification models. At this point we have clear understanding of our data. We have gotten rid of the features that did not present much value. ## Feature Selection

Generally speaking feature evaluation methods can be separated into two groups: those that use the model information and those that do not. Clearly at this stage of our research the models are not ready. Thus we will be exploring the methods that do not require model.

This group of the method could be spit further as follows:

- wrapper methods that evaluate multiple models adding and/or removing predictors. These are some examples:
 - recursive feature elimination
 - genetic algorithms
 - simulated annealing
- filter methods which evaluate the relevance of the predictors outside of the predictive models.

Before we proceed any further let's ensure that all categorical values get converted back to the factors. This is useful for dimentiality reduction algorithms and model training.

```
customerData = mutate(customerData,
         gender = as.factor(unclass(gender)),
         Partner = as.factor(unclass(Partner)),
         Dependents = as.factor(unclass(Dependents)),
         PhoneService = as.factor(unclass(PhoneService)),
         MultipleLines = as.factor(unclass(MultipleLines)),
         InternetService = as.factor(unclass(InternetService)),
         OnlineSecurity = as.factor(unclass(OnlineSecurity)),
         OnlineBackup = as.factor(unclass(OnlineBackup)),
         DeviceProtection = as.factor(unclass(DeviceProtection)),
         TechSupport = as.factor(unclass(TechSupport)),
         StreamingTV = as.factor(unclass(StreamingTV)),
         StreamingMovies = as.factor(unclass(StreamingMovies)),
         Contract = as.factor(unclass(Contract)),
         PaperlessBilling = as.factor(unclass(PaperlessBilling)),
         PaymentMethod = as.factor(unclass(PaymentMethod)),
         Churn = as.factor(unclass(Churn)))
   It is time to run feature selection algorithm.
predictors = subset(customerData,select = -Churn)
label = customerData[,20]
# run the RFE algorithm
rfePrediction = rfe(predictors, label, sizes=c(1:19),
                    rfeControl = rfeControl(functions=rfFuncs, method="cv", number=3))
print(rfePrediction)
#>
#> Recursive feature selection
#>
#> Outer resampling method: Cross-Validated (3 fold)
#>
#> Resampling performance over subset size:
#>
#>
   Variables Accuracy Kappa AccuracySD KappaSD Selected
#>
               0.7490 0.2305 0.0017762 0.039212
           1
#>
           2
               0.7759 0.3782 0.0017762 0.008282
#>
           3
               0.7679 0.2877 0.0071004 0.093271
#>
               0.7760 0.3940 0.0030764 0.017467
#>
           5
               0.7890 0.4116 0.0038711 0.020445
#>
           6
               0.7949 0.4299 0.0049446 0.018672
#>
           7
               0.7962 0.4370 0.0028406 0.018660
               0.7984 0.4417 0.0028406 0.014292
#>
           8
               0.7986 0.4534 0.0008532 0.009382
#>
           9
              0.7989 0.4516 0.0010736 0.008845
#>
          10
#>
              0.7961 0.4459 0.0018596 0.005075
          11
#>
              0.7955 0.4451 0.0030267 0.003626
          12
#>
          13
               0.7985 0.4512 0.0058857 0.008299
#>
          14
               0.7952 0.4362 0.0029863 0.012695
#>
          15
              0.7944 0.4361 0.0015382 0.009314
#>
          16
               0.7935 0.4320 0.0059727 0.009550
#>
          17
               0.7929 0.4282 0.0024998 0.005910
#>
          18
               0.7929 0.4267 0.0036284 0.007292
#>
          19
               0.7952 0.4336 0.0015382 0.008146
#>
#> The top 5 variables (out of 10):
      tenure, TotalCharges, Contract, MonthlyCharges, TechSupport
```


Figure 20: Number of Predictors vs Accuracy

Figure 20 illustrates that the accuracy practically flattens out when a number of predictors reaches 8. The accuracy improves a bit more when a number of features reaches 8 but the gain is negligible. Here is the list of features ordered by importance. We take first nine for model training.

```
#> [1] "tenure" "TotalCharges" "Contract" "MonthlyCharges"
#> [5] "TechSupport" "OnlineSecurity" "InternetService" "OnlineBackup"
#> [9] "PaymentMethod" "MultipleLines"
```

Data Upsampling

There is one more step to make before we get to the model training. As shown in Figure ?? our data set is unbalanced. This could cause model over-fitting. So let's split the data into the training and testing sets and up-sample the training set.

As we can see now the training set is balanced.

Thus we have prepared our training and test data sets. We have identified the most important features. We are ready to work on the prediction models.

Decision Tree Model

Decision Tree algorithm is simple to understand, interpret and visualize. Effort required for data preparation is minimal. This is probably why the Decision Tree model tends to be the method of choice for predictive modeling of many.

```
#> Setting levels: control = no, case = yes
#> Setting direction: controls < cases</pre>
#> Conditional Inference Tree
#>
#> 7230 samples
#>
      8 predictor
      2 classes: 'no', 'yes'
#>
#>
#> No pre-processing
#> Resampling: Cross-Validated (5 fold)
#> Summary of sample sizes: 5784, 5784, 5784, 5784, 5784
#> Resampling results across tuning parameters:
#>
#>
     mincriterion ROC
                              Sens
                                         Spec
#>
     0.01
                0.8552514 0.7125864 0.8420470
#>
     0.50
                   0.8506961 0.7195021 0.8320885
#>
     0.99
                  0.8392769 0.6829876 0.8406639
#>
#> ROC was used to select the optimal model using the largest value.
\#> The final value used for the model was mincriterion = 0.01.
confusionMatrix(data = pred.decisionTreeModel.raw, testDataCopy$Churn)
#> Confusion Matrix and Statistics
#>
#>
             Reference
#> Prediction no yes
#>
         no 1050 107
#>
         yes 498 453
#>
#>
                  Accuracy: 0.713
                    95% CI: (0.6932, 0.7322)
#>
       No Information Rate : 0.7343
#>
       P-Value [Acc > NIR] : 0.9871
#>
#>
#>
                     Kappa: 0.3984
#>
#>
   Mcnemar's Test P-Value : <2e-16
#>
#>
               Sensitivity: 0.6783
#>
               Specificity: 0.8089
#>
            Pos Pred Value : 0.9075
#>
            Neg Pred Value: 0.4763
#>
                Prevalence: 0.7343
            Detection Rate: 0.4981
#>
      Detection Prevalence : 0.5489
#>
#>
         Balanced Accuracy: 0.7436
#>
          'Positive' Class : no
#>
```


Figure 21: Classification Tree Model AUC and ROC Curve

Naive Bayes Model

Naïve Bayes classification is a kind of simple probabilistic classification methods based on Bayes' theorem with the assumption of independence between features.

It is simple (both intuitively and computationally), fast, performs well with small amounts of training data, and scales well to large data sets. The greatest weakness of the naïve Bayes classifier is that it relies on an often-faulty assumption of equally important and independent features which results in biased posterior probabilities. Although this assumption is rarely met, in practice, this algorithm works surprisingly well and accurate; however, on average it rarely can compete with the accuracy of advanced tree-based methods (random forests & gradient boosting machines) but is definitely worth having in our toolkit.

```
#> Naive Bayes
#>
#> 7230 samples
#>
      8 predictor
#>
      2 classes: 'no', 'yes'
#>
#> No pre-processing
#> Resampling: Cross-Validated (5 fold)
#> Summary of sample sizes: 5784, 5784, 5784, 5784, 5784
#> Resampling results across tuning parameters:
#>
#>
     usekernel ROC
                           Sens
                                      Spec
#>
     FALSE
                0.8262922 0.5836791 0.8824343
#>
      TRUE
                0.8297156 0.3695712 0.9380360
#>
\#> Tuning parameter 'fL' was held constant at a value of 0
#> Tuning
#> parameter 'adjust' was held constant at a value of 1
#> ROC was used to select the optimal model using the largest value.
\#> The final values used for the model were fL = 0, usekernel = TRUE and adjust
#> = 1.
```

confusionMatrix(data = pred.naiveBayesModel.raw, testDataCopy\$Churn)

```
#> Confusion Matrix and Statistics
#>
#>
             Reference
#> Prediction no yes
          no 550 47
#>
#>
          yes 998 513
#>
#>
                  Accuracy : 0.5043
#>
                    95% CI : (0.4827, 0.5258)
#>
       No Information Rate : 0.7343
#>
       P-Value [Acc > NIR] : 1
#>
#>
                      Kappa : 0.176
#>
#>
    Mcnemar's Test P-Value : <2e-16
#>
#>
               Sensitivity : 0.3553
#>
               Specificity : 0.9161
#>
            Pos Pred Value : 0.9213
#>
            Neg Pred Value : 0.3395
#>
                Prevalence : 0.7343
#>
            Detection Rate : 0.2609
#>
      Detection Prevalence : 0.2832
#>
         Balanced Accuracy : 0.6357
#>
          'Positive' Class : no
#>
#>
```


Figure 22: Naive Bayes Model AUC and ROC Curve

Random Forest Model

Random Forest is also considered as a very handy and easy to use algorithm, because it's default hyperparameters often produce a good prediction result. Random Forest adds additional randomness to the model, while growing the trees. Instead of searching for the most important feature while splitting a node, it searches for the best feature among a random subset of features. This results in a wide diversity that generally results in a better model. The main limitation of Random Forest is that a large number of trees can make the algorithm to slow and ineffective for real-time predictions. In general, these algorithms are fast to train, but quite slow to create predictions once they are trained.

```
#>
           system elapsed
#>
     27.96
              0.43
                     28.41
#> Random Forest
#>
#> 7230 samples
#>
     8 predictor
#>
      2 classes: 'no', 'yes'
#>
#> No pre-processing
#> Resampling: Cross-Validated (3 fold)
#> Summary of sample sizes: 4820, 4820, 4820
  Resampling results across tuning parameters:
#>
#>
     mtry
           ROC
                      Sens
                                  Spec
           0.8549601 0.6921162 0.8511757
#>
     2
#>
     7
           0.9332195 0.7892116 0.9297372
#>
     13
           0.9311195 0.7869986 0.9253112
#>
#> ROC was used to select the optimal model using the largest value.
#> The final value used for the model was mtry = 7.
confusionMatrix(data = pred.randomForestModel.raw, testDataCopy$Churn)
#> Confusion Matrix and Statistics
#>
#>
             Reference
#> Prediction no yes
         no 1257 213
#>
#>
         yes 291 347
#>
#>
                  Accuracy : 0.7609
#>
                    95% CI: (0.7421, 0.779)
#>
       No Information Rate : 0.7343
#>
       P-Value [Acc > NIR] : 0.0028607
#>
#>
                     Kappa: 0.4133
#>
    Mcnemar's Test P-Value : 0.0006039
#>
#>
#>
               Sensitivity: 0.8120
#>
               Specificity: 0.6196
            Pos Pred Value : 0.8551
#>
#>
            Neg Pred Value: 0.5439
                Prevalence: 0.7343
#>
            Detection Rate: 0.5963
#>
#>
      Detection Prevalence: 0.6973
#>
         Balanced Accuracy: 0.7158
#>
#>
          'Positive' Class : no
#>
```


Figure 23: Random Forest Model AUC and ROC Curve

Logistic Regression Model

Logistic regression is an efficient, interpretable and accurate method, which fits quickly with minimal tuning. Logistic regression prediction accuracy will benefit if the data is close to Gaussian distribution. Thus we apply addition transformation to the training data set. We will also be employing 5-fold cross-validation resampling procedure to improve the model. In addition to the above we are going to convert *Location* categorical value to numeric data type. We could have used dummy encoding but having 49 locations such approach does not seem beneficial.

confusionMatrix(data = pred.logRegModel.raw, testDataCopy\$Churn)

```
#> Confusion Matrix and Statistics
#>
#>
             Reference
#> Prediction
                1
                      2
#>
            1 1129 125
#>
            2 419 435
#>
                  Accuracy : 0.7419
#>
                    95% CI: (0.7227, 0.7605)
#>
#>
       No Information Rate : 0.7343
#>
       P-Value [Acc > NIR] : 0.2228
#>
#>
                     Kappa : 0.4335
#>
#>
   Mcnemar's Test P-Value : <2e-16
#>
#>
               Sensitivity: 0.7293
#>
               Specificity: 0.7768
            Pos Pred Value : 0.9003
#>
#>
            Neg Pred Value : 0.5094
#>
                Prevalence: 0.7343
            Detection Rate: 0.5356
#>
```

```
#> Detection Prevalence : 0.5949
#> Balanced Accuracy : 0.7531
#>
#> 'Positive' Class : 1
#>
```


Figure 24: Logistic Regression Model AUC and ROC Curve

Model Comparison

Now it is time to compare the models side by side and pick a winner.

Figure 25: Model AUC Comparison

```
#> model auc
#> 1 logRegModel 0.7530569
#> 2 decisionTreeModel 0.7436116
#> 4 randomForestModel 0.7158292
#> 3 naiveBayesModel 0.6356843
```

AUC - ROC perfomance AUC stands for Area under the ROC Curve and ROC for Receiver operating characteristic curve. This is one of the most important KPIs of the classification algorithms. These two metrics measure how well the models distinguishing between the classes. The higher AUC the better model predicts positive and negative outcome.

Figures 21, 22, 23, 24 and accompanying data show that on the test data set all the models demonstrated very close results. Random Forest has the highest overall accuracy (85%) but performs poorly predicting rainy days (65%), thus the balanced accuracy is lower (about 78%).

Naive Bayes has lesser overall accuracy in comparison with the Random Forest but is more balanced, demonstrating consistent power to predict rainy and sunny days with almost equal accuracy. It scored over 78% on the balanced accuracy.

Logistic regression model scores the best having the highest AUC and all other metrics. It's balanced accuracy is 80%.

The Decision Tree performance is close to the other models with the balanced accuracy of 76%.

Model interpretibility Logistic Regression, Decision Tree and Naive Bayes are all highly interpreatable models. It is easy to explain to the business what impact each input parameter has. The decision tree could be visualized (provided if it is not too large).

Random Forest on the other hand is a black-box model, complex algorithm which is difficult to explain in simple terms.

Model Deployment

The model can demonstrate how various customer elements affect the probability of the churn. It is simple to understand and deploy.

Conclusion

Through exploring customer churn dataset, we selected and tuned a model to predict whether one customer could churn.

We commenced our research analyzing and understanding available data . Then we identified the missing data, its distribution and feasibility of imputing it. We continued our research selecting the most impactful data attributes to use as an input for our future model. We apply the feature identification algorithm to do the job.

When the data preparation phase was finished we picked and analysed four different classification models: Decision Tree, Naive Bayes, Random Forest and Logistic Regression. We conducted comparative analysis of the models, reviewed their strength and weaknesses. We fitted each model using K-fold cross-validation technique. Subsequently we evaluated performance of each model applying them to the test data set and comparing AUC - ROC and balanced accuracy metrics.

Finally we moved to identifying a winning model. In order to so we reviewed each model from different angles namely:

- performance
- interpretability
- · data quality sensitivity and data preparation effort

The winning model scored the highest in the majority of the categories. It was Logistic Regression, which we employed to build a Shiny App Web application.

We consider the project to be a success.

Note from the Authors

This file was generated using *The R Journal* style article template, additional information on how to prepare articles for submission is here - Instructions for Authors. The article itself is an executable R Markdown file that could be downloaded from Github with all the necessary artifacts.

Ketao Li York University

liketao@yahoo.com

Kush Halani York University

kush.halani@ontariotechu.net

Josue Romain York University

josue.rolland.romain@gmail.com

Juan Peña York University

jppena62@my.yorku.ca

Priyanka Patil York University

priyanka181994@gmail.com