

Proposal draft for experimental plan - Version 0.2

Mohammad Rahmani

DECIDE Doctoral School

26 August 2020

Scientific goal

■ The null hypothesis will probably be testing a method derived from slide 9 (**Probable solutions**) to improve the (at least one of the) **self-awareness** challenges mentioned in Slide 3 (**Challenges**).

Technical goal

 Collective areal manipulation (load transportation) in tight corridors

Challenges

Based on an autonomous self-aware paradigm

- Motion (Path) planning (Generative Model generation)
- Trajectory tracking which involves
 - State estimation techniques
- Collision avoidance which involves
 - Major abnormal detection (A new model is needed)
 - Descriminative Flight model selection
- Disturbance rejection (dealing with minor abnormalities)
 - Minor abnormally detection (Current Trajectory needs to be modified)
 - Decision making and control
- ...

There are existing solutions for all aforementioned problems in individual drones and drone swarms but not necessarily in cooperative areal payload transportation.

www.aau.a

Scenarios - Reference

Rigid load transportation from one location to another by tracking a straight line at a fixed height

Scenarios - Horizontal collision avoidance

Scenarios - Vertical collision avoidance

Scenarios - Turning

Scenarios - Altogether scenario

Together, all the following three scenarios must make payload transportation possible in tight corridors

Probable solutions to improve the state of the art

- Swarm intelligence to model emergence of a collective behavior from local, agents behavior
- Local Communication through sharing practicing generative models with neighbors using
 - An individual agent state description language with words made of alphabets of different derivatives of time
 - A collective state description language with words made of alphabets of possible co-occurrence of different generalized state space regions
- Formation control which involve studying architecture such as
 - Static Leader-follower architecture
 - Dynamic Leader Follower architecture
 - Leaderless architecture

