Solving Equations

Edward Jex

February 21, 2020

Equations with Indices

If we can write an equation in terms of the same bases, we can equate the powers to help us solve them.

Example 1

$$\begin{cases} 2^{x-y} = 64^2 \\ 3^{x+y} = 1 \end{cases}$$
Find x, y

$$\begin{cases} 2^{x-y} = 2^1 2 \Rightarrow x - y = 12 \\ 3^{x+y} = 3^0 \Rightarrow x + y = 0 \end{cases}$$

$$2x = 12$$

$$\begin{cases} x = 6 \\ y = -6 \end{cases}$$

Quadratics

Factorising

$$(x - \alpha)$$
 is a factor $\iff x = \alpha$

Given an equation of the form $x^2 + bx + c$, the roots should add to b and multiply to c.

Difference of two squares $x^2 - y^2 = (x + y)(x - y)$

Completing the square Given an equation x^2+bx+c , complete square form is $(x + \frac{b}{2}) - \frac{b^2}{4} + c$. This can easily be rearranged to get x as the subject.

Given the equation ax^2+bx+c , the completed square form can be rearranged to produce the quadratic formula.

The Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
 for an equation $ax^2 + bx + c = 0$.

The Discriminant

Looking at the quadratic formula, you can see that there would be no real solutions if $b^2 - 4ac < 0$.

$$> 0 \iff 2 \text{ real roots}$$

$$= 0 \iff 1 \text{ real root (repeated)}$$

Hidden Quadratics

Polynomials of higher power can be solved like quadratics if they fit the form $ax^{2d} + bx^d + c.$

Example 2

For which values of k, does the following equation have repeated roots?

$$x^{2} + kx + 2k = 0$$

$$k^{2} - 8k = 0$$

$$k(k - 8) = 0$$

$$k = 0$$

$$k = -8$$

Example 3

$$x^{4} - 3x^{2} - 4 = 0$$
$$(x^{2} - 4)(x^{2} + 1) = 0$$
$$x = \pm 2$$