

Unrestringierte Optimierungsprobleme Gradienten- und Trust-Region-Verfahren im Vergleich

Büsra Karaoglan

Fachbereich Mathematik, Naturwissenschaften und Datenverarbeitung Studiengang Wirtschaftsmathematik

2. März 2017

- Einleitung
- 2 Das Gradientenverfahren
- 3 Das Trust-Region-Verfahren
- 4 Numerische Resultate

- Einleitung
- 2 Das Gradientenverfahren
- 3 Das Trust-Region-Verfahren
- 4 Numerische Resultate

Einleitung

Hier ist eine Zielfunktion $f: \mathbb{R}^n \to \mathbb{R}$ gegeben. Das Problem besteht darin, einen Punkt zu finden, in dem diese Zielfunktion minimal ist. Das heißt es wird ein Problem der Form

Minimiere
$$f(x), x \in \mathbb{R}^n$$
 (1)

betrachtet. Es wird zwischen

- einer globalen Lösung von (1), das heißt einem Punkt $\bar{x} \in \mathbb{R}^n$ mit $f(\bar{x}) \leq f(x)$ für alle $x \in \mathbb{R}^n$,
- und einer *lokalen Lösung* von (1), das heißt einem Punkt $\bar{x} \in \mathbb{R}^n$, zu dem es eine Umgebung U gibt, so dass $f(\bar{x}) \leq f(x)$ wenigstens für alle $x \in U$ ist,

unterschieden.

Die Idee

Lineare Approximation:

Linearisierung von f in x ergibt die Funktion

$$\hat{f}(y) = f(x) + \nabla f(x)^T (y - x) \Rightarrow d = \hat{y} - x = -\frac{\nabla f(x)}{\|\nabla f(x)\|}$$

Quadratische Approximation:

f wird lokal durch

$$\hat{f}(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2} (y - x)^T \nabla^2 f(x) (y - x)$$

approximient $\Rightarrow d = \hat{y} - x = -\nabla^2 f(x)^{-1} \nabla f(x)$

- 1 Einleitung
- 2 Das Gradientenverfahren
- 3 Das Trust-Region-Verfahren
- 4 Numerische Resultate

Das Gradientenverfahren

Definition

- 0. Wähle $\beta \in (0,1)$, $\gamma \in (0,1)$ und einen Startpunkt $x^0 \in \mathbb{R}^n$. Für $k=0,1,2,\ldots$:
- 1. Falls $\nabla f(x^k) = 0$, STOP.
- 2. Setze $s^k = -\nabla f(x^k)$.
- 3. Bestimme die Schrittweite $\sigma_k > 0$ mithilfe der Armijo-Regel (2).
- **4.** Setze $x^{k+1} = x^k + \sigma_k s^k$.

Armijo-Schrittweitenregel:

Seien $\beta \in (0,1)$ und $\gamma \in (0,1)$ fest gewählte Parameter. Bestimme die größte Zahl $\sigma_k \in 1, \beta, \beta^2, ...$, für die gilt:

$$f(x^k + \sigma_k s^k) - f(x^k) \le \sigma_k \gamma \nabla f(x^k)^T s^k.$$
 (2)

Die Konvergenzgeschwindigkeit

Satz

Sei $f: \mathbb{R}^n \to \mathbb{R}$ streng konvex und quadratisch. Weiter seien die Folgen (x^k) und (σ_k) durch das Gradientenverfahren mit Minimierungsregel erzeugt. Dann gilt:

$$f(x^{k+1}) - f(\bar{x}) \leq \left(\frac{\lambda_{max}(C) - \lambda_{min}(C)}{\lambda_{max}(C) + \lambda_{min}(C)}\right)^2 \left(f(x^k) - f(\bar{x})\right), \quad (3)$$

$$||x^k - \bar{x}|| \leq \sqrt{\frac{\lambda_{max}(C)}{\lambda_{min}(C)}} \left(\frac{\lambda_{max}(C) - \lambda_{min}(C)}{\lambda_{max}(C) + \lambda_{min}(C)}\right)^k ||x^0 - \bar{x}||, \tag{4}$$

wobei $\bar{x}=-C^{-1}c$ das globale Minimum von f bezeichnet und $\lambda_{max}(C)$ & $\lambda_{min}(C)$ der maximale & minimale Eigenwert von C sind.

Konvergenzgeschw. mittels Kondition

Mit der spektralen Konditionszahl $\kappa:=\kappa(\nabla^2 f)=\kappa(C)=\frac{\lambda_{max}}{\lambda_{min}}$ lassen sich älle Abschätzungen wie folgt formulieren:

$$f(x^{k+1}) - f(\bar{x}) \le \left(\frac{\kappa - 1}{\kappa + 1}\right)^2 (f(x^k) - f(\bar{x}))$$
$$\|x^k - \bar{x}\| \le \sqrt{\kappa} \left(\frac{\kappa - 1}{\kappa + 1}\right)^k \|x^0 - \bar{x}\|$$

- 1 Einleitung
- 2 Das Gradientenverfahren
- 3 Das Trust-Region-Verfahren
- 4 Numerische Resultate

Das Trust-Region-Verfahren

Durch Taylor-Entwicklung von $f(x^k+s)$ um s=0 entsteht ein ${\it quadratisc}^{\it Tichniscrible}$ Modell

$$q_k(s) = f_k + g^{kT}s + \frac{1}{2}s^T H_k s$$

 $\text{mit } f_k = f(x^k), \ g^k = \nabla f(x^k) \ \text{und } H_k = \nabla^2 f(x^k).$

Die Schrittberechnung erfolgt durch Lösen des Trust-Region Teilproblems:

$$\min_{s \in \mathbb{R}^n} \{ q_k(s); ||s|| \le \Delta_k \}. \tag{5}$$

Anpassung des Vertrauensbereichs I

Wie sollte Δ_k gewählt werden?

Die Bewertung der Qualität des berechneten Schritts erfolgt durch Vergleich der **Abnahme der Modellfunktion** q_k (predicted reduction)

$$pred_k(s^k) = q_k(0) - q_k(s^k) = f_k - q_k(s^k)$$

und der tatsächlichen Abnahme (actual reduction) der Zielfunktion

$$ared_k(s^k) = f_k - f(x^k + s^k).$$

$$\Rightarrow \rho_k(s^k) = \frac{ared_k(s^k)}{pred_k(s^k)} \tag{6}$$

Cauchy-Abstiegsbedingung

TECHNISCHE HOCHSCHULE MITTELHESSEN

Es gibt von k unabhängige Konstanten $\alpha \in (0,1]$ und $\beta \geq 1$ mit

$$||s^k|| \le \beta \Delta_k, \ pred_k(s^k) \ge \alpha \cdot pred_k(s_c^k),$$

wobei der *Cauchy-Schritt* $s_c{}^k$ die eindeutige Lösung des folgenden eindimensionalen Minimierungsproblems ist:

$$min \ q_k(s)$$
 u.d.N $s = \tau \cdot s_l^k, \ \tau \ge 0, \ \|s\| \le \Delta_k.$

Trust-Region-Algorithmus

Definition

Wähle Parameter

$$\alpha \in (0,1], \beta \geq 1, 0 < \eta_1 < \eta_2 < 1, 0 < \gamma_0 < \gamma_1 < 1 < \gamma_2 \text{ und } \Delta_{min} \geq 0.$$

Wähle einen Startpunkt $x^0 \in \mathbb{R}^n$ und einen Trust-Region-Radius

$$\Delta_0 > 0$$
 mit $\Delta_0 \ge \Delta_{min}$. Für $k = 0, 1, 2, \ldots$:

- 1. Falls $g^k = 0$, dann STOP mit Resultat x^k .
- 2. Wähle eine symmetrische Matrix $H_k \in \mathbb{R}^{n \times n}$.
- 3. Berechne einen Schritt s^k , der die Cauchy-Abstiegsbedingung (7) erfüllt.
- 4. Berechne $\rho_k(s^k)$ gemäß (6).
- 5. Falls $\rho_k(s^k) > \eta_1$, dann akzeptiere den Schritt s^k , das heißt setze $x^{k+1} = x^k + s^k$. Andernfalls verwerfe den Schritt, das heißt setze $x^{k+1} = x^k$.
- 6. Berechne Δ_{k+1} gemäß Algorithmus 4.

Update des Trust-Region-Radius

Definition

Seien η_1, η_2 und $\gamma_0, \gamma_1, \gamma_2$ wie in Algorithmus 3 gewählt.

- 1. Falls $\rho_k(s^k) \leq \eta_1$, so wähle $\Delta_{k+1} \in [\gamma_0 \Delta_k, \gamma_1 \Delta_k]$.
- 2. Falls $\rho_k(s^k) \in (\eta_1, \eta_2]$, so wähle $\Delta_{k+1} \in [\max{\{\Delta_{min}, \gamma_1 \Delta_k\}}, \max{\{\Delta_{min}, \Delta_k\}}].$
- 3. Falls $\rho_k(s^k) > \eta_2$, so wähle $\Delta_{k+1} \in [\max{\{\Delta_{min}, \Delta_k\}}, \max{\{\Delta_{min}, \gamma_2 \Delta_k\}}].$

- 1 Einleitung
- 2 Das Gradientenverfahren
- 3 Das Trust-Region-Verfahren
- 4 Numerische Resultate

Numerische Resultate I

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x) = 100(x_2 - x_1^2)^2 + (1 - x_1)^2$$

Numerische Resultate II

Die Parameter für das Gradientenverfahren:

$$x^0 = (-1,9;2)^T$$
 , $\varepsilon = 10^{-3}$, $\beta = 0,5$ and $\gamma = 10^{-4}$

Die Parameter für das Trust-Region-Verfahren:

$$x^0=(-1,9;2)^T$$
, $\Delta_0=2$, $\varepsilon=10^{-3}$, $\beta=2$, $\alpha=0,5$, $\eta_1=0,1$, $\eta_2=0,9$, $\gamma_1=0,5$ und $\gamma_2=2$

$$\nabla f(x) = \begin{pmatrix} 400x_1^3 - 400x_1x_2 + 2x_1 - 2 \\ -200x_1^2 + 200x_2 \end{pmatrix} & \nabla^2 f(x) = \begin{pmatrix} 1200x_1^2 - 400x_2 + 2 & -400x_1 \\ -400x_1 & 200 \end{pmatrix}$$

$$\nabla f(x) \stackrel{!}{=} 0 \Rightarrow \bar{x} = (1,1)^T \& \nabla^2 f(\bar{x}) = \begin{pmatrix} 802 & -400 \\ -400 & 200 \end{pmatrix} \Rightarrow \lambda_1 \approx 1001, 6 \& \lambda_2 \approx 0, 4$$

Für die Konditionszahl der Rosenbrock-Funktion gilt

$$\kappa(\nabla^2 f(\bar{x})) = \frac{\lambda_{max}(\nabla^2 f)}{\lambda_{min}(\nabla^2 f)} = 2508, 01.$$

Numerische Resultate III

1000		
k	x^k	$f(x^k)$
0	(-1,9; 2)	267, 62
1	(-1,29971; 2,15723)	27, 1899
2	(-1,53281; 2,06582)	14,4632
3	(-1,35800; 2,12123)	13,2361
4	(-1,50037; 2,06712)	9,63696
5	(-1,38765; 2,10305)	8,85048
6	(-1,47919; 2,06839)	7,57699
:	1	:
42	(-1,41995; 2,02053)	5,85799
43	(0,997336; 1,16747)	2,98557
44	(1,06466; 1,13372)	0,00418556
45	(1,06362; 1,13231)	0,00415279
46	(1,06392; 1,13211)	0,00408911
:	:	
4030	(1,00078; 1,00157)	$6,13034\cdot 10^{-7}$
4031	(1,00078; 1,00157)	$6,12058 \cdot 10^{-7}$

Numerische Resultate IV

Numerische Resultate V

Numerische Resultate VI

1700			
k	x^k	$ ho_k$	s^k
0	(-1,9; 2)	1.0001	N
1	$(-1,89102;\ 3,57588)$	1,00108	N
2	(-1,88898; 3,57589)	0,999999	C
3	(-1,88891; 3,56772)	-712,817	N
4	(-1,88891; 3,56772)	-712,817	N
5	(-1,88891; 3,56772)	1,0011	N
6	(-1,88683; 3,56773)	0,999996	C
7	(-1,88669; 3,55914)	-634,505	N
8	(-1,88669; 3,55914)	-634,505	N
9	(-1,88669; 3,55914)	1,00113	N
10	(-1,88456; 3,55918)	0,99999	C
11	(-1,88436; 3,55011)	-560,602	N
:	:	:	:
1188	$(0,983646;\ 0,966281)$	1,17659	N
1189	(0,996671; 0,993183)	1,10757	N
1190	(0,999891; 0,999771)	1,02508	N
1191	(1; 1)	1,00109	N

Numerische Resultate VII

