Sheaves on Manifolds Exercise I.11 の解答

ゆじとも

2021年2月9日

Sheaves on Manifolds [Exercise I.11, KS02] の解答です。

I Homological Algebra

問題 **I.11.** C をアーベル圏、 $X \in \mathsf{Ch}(C)$ を複体であって、任意の $Y \in C$ に対してアーベル群の複体 $\mathsf{Hom}_{\mathcal{C}}(Y,X)$ が完全であるものとする。このとき X は $\mathsf{K}(C)$ で 0 であることを示せ。

証明. $\operatorname{Hom}_{\mathcal{C}}(Y,-)$ は左完全函手であるから、任意の n に対して、自然に

$$\operatorname{Hom}_{\mathcal{C}}(Y, \ker(d_X^n)) \xrightarrow{\sim} \ker(d_X^n \circ (-) : \operatorname{Hom}_{\mathcal{C}}(Y, X^n) \to \operatorname{Hom}_{\mathcal{C}}(Y, X^{n+1}))$$

となる。 $\operatorname{Hom}_{\mathcal{C}}(Y,X)$ は完全であるから、任意のn に対して、自然に

$$\operatorname{Hom}_{\mathcal{C}}(Y, \operatorname{Im}(d_X^n)) \cong \operatorname{Hom}_{\mathcal{C}}(Y, \ker(d_X^{n+1})) \cong \ker(d_X^{n+1} \circ (-)) \cong \operatorname{Im}(d_X^n \circ (-))$$

となる。従って、任意の n に対して、自然な射 $\mathrm{Im}(d_X^n\circ (-))\to \mathrm{Hom}_{\mathcal{C}}(Y,\mathrm{Im}(d_X^n))$ は同型射であり、任意の n に対して、完全列

$$0 \longrightarrow \ker(d_X^n) \longrightarrow X^n \longrightarrow \operatorname{Im}(d_X^n) \longrightarrow 0$$

に $\operatorname{Hom}_{\mathcal{C}}(Y,-)$ を施した後のアーベル群の列も完全である。よって [Exercise 1.4, KS02] より、任意の n に対して、 $X^n \cong \operatorname{Im}(d_X^n) \oplus \ker(d_X^n)$ となることが従う。

X が $\mathsf{K}(\mathcal{C})$ において 0 であるためには、 $\mathrm{id}_X: X \to X$ が homotopic to zero であることが十分である。 $s^n: X^n \to X^{n-1}$ を、 $\mathrm{ker}(d_X^n) \to X^n$ の分裂 $p^n: X^n \to \mathrm{ker}(d_X^n)$ と、同型射 $l^n: \mathrm{Im}(d_X^{n-1}) \overset{\sim}{\to} \mathrm{ker}(d_X^n)$ の逆射 と、 $X^{n-1} \to \mathrm{Im}(d_X^{n-1})$ の分裂 $i^{n-1}: \mathrm{Im}(d_X^{n-1}) \to X^{n-1}$ の、三つの射の合成射として $s^n: \overset{\mathrm{def}}{=} i^{n-1} \circ (l^n)^{-1} \circ p^n$ と定める。 このとき、 $s^{n+1} \circ d_X^n: X^n \to X^n$ は自然なエピ射 $X^n \to \mathrm{Im}(d_X^n)$ と $i^n: \mathrm{Im}(d_X^n) \to X^n$ の合成射に等しく、 $d_X^{n-1} \circ s^n: X^n \to X^n$ は $p^n: X^n \to \mathrm{ker}(d_X^n)$ と自然なモノ射 $\mathrm{ker}(d_X^n) \to X^n$ の合成射に等しい。 従って $\mathrm{id}_{X^n} = s^{n+1} \circ d_X^n + d_X^{n-1} \circ s^n$ となり、 id_X は homotopic to zero であることがわかる。以上で問題 $\mathrm{I}.11$ の解答を完了する。

References

[KS02] M. Kashiwara and P. Schapira. Sheaves on Manifolds. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2002. ISBN: 9783540518617. URL: https://www.springer.com/jp/book/9783540518617.