DRINFELD'S LEMMA FOR ALGEBRAIC STACKS

LEI ZHANG

ABSTRACT. Drinfeld's lemma is a powerful tool for splitting ℓ -adic local systems defined over a product of connected schemes over a finite field. In this paper, we show that Drinfeld's lemma also holds true for algebraic stacks.

1. Introduction

The main motivation of Drinfeld's lemma is to split ℓ -adic local systems defined over a product of schemes. More precisely, let X_1, X_2 be two connected \mathbb{F}_q -schemes, then one would like to get, out of an ℓ -adic local system on $X := X_1 \times_{\mathbb{F}_q} X_2$, an ℓ -adic local system coming from local systems on the individual factors X_1, X_2 . The problem is easy if one considers complex analytic local systems on a product of complex varieties. Indeed, one can split the local system via the Künneth formula for topological fundamental groups:

$$\pi_1^{\text{top}}(X_1^{\text{an}} \times X_2^{\text{an}}) \xrightarrow{\cong} \pi_1^{\text{top}}(X_1^{\text{an}}) \times \pi_1^{\text{top}}(X_2^{\text{an}})$$

One can also do this for ℓ -adic local systems. Indeed, for any connected schemes X_1, X_2 defined over an algebraically closed field k of characteristic θ , one has an isomorphism:

$$\pi_1^{\text{\'et}}(X_1 \times_k X_2) \xrightarrow{\cong} \pi_1^{\text{\'et}}(X_1) \times \pi_1^{\text{\'et}}(X_2)$$

Even when k is of characteristic p > 0 (but still algebraically closed), the above Künneth formula still holds true provided that either X_1 or X_2 is proper over k. However, the Künneth formula fails when k is not algebraically closed: take $X_1 = X_2 = \operatorname{Spec}(\mathbb{F}_p)$, then the Künneth formula would mean that the diagonal map $\hat{\mathbb{Z}} \to \hat{\mathbb{Z}} \times \hat{\mathbb{Z}}$ is an isomorphism.

The issue (for finite fields) can be resolved if partial Frobenii actions are brought into play. More precisely, let ϕ_1 (resp. ϕ_2) denote the partial Frobenius map $X \to X$, which is the q-absolute Frobenius on X_1 (resp. X_2) and the identity on the other. Consider the category $F\acute{E}t(X/\Phi)$ of triples $(Y, \varphi_1, \varphi_2)$, where Y is a finite étale cover of $X = X_1 \times_{\mathbb{F}_q} X_2$ and φ_i is an isomorphism $Y \xrightarrow{\cong} \phi_i^* Y$ satisfying that $\phi_1^*(\varphi_2) \circ \varphi_1 = \phi_2^*(\varphi_1) \circ \varphi_2$ is the identity (by identitying $(\phi_1 \circ \phi_2)^* Y$ with Y via the absolute Frobenius of Y).

Theorem 1.1 (Drinfeld's lemma for schemes). Suppose X_1, X_2 are connected quasi-compact and quasi-separated (qcqs) \mathbb{F}_q -schemes. Then

- FÉt (X/Φ) is a Galois category whose Galois group is denoted by $\pi_1^{\text{\'et}}(X/\Phi)$;
- the natural map $\pi_1^{\text{\'et}}(X/\Phi) \to \pi_1^{\text{\'et}}(X_1) \times \pi_1^{\text{\'et}}(X_2)$ is an isomorphism.

Date: July 29, 2024.

Similarly, one has Drinfeld's lemma for n factors X_1, \ldots, X_n . Please refer to [Dri80, Theorem 2.1], [Laf97, IV.2, Theorem 4], [Lau07, Theorem 8.1.4], [Ked17, Theorem 4.2.12], [Laf18, Lemma 0.18], [SW20, Theorem 16.2.4], and [Mül22, Theorem 1.4] for details. Using Drinfeld's Lemma one can split local systems on a product of schemes equipped with commuting partial Frobenius actions.

The notion of fundamental group of algebraic stacks has been introduced and studied by B. Noohi in [Noo00]. The main purpose of this note is to generalize Drinfeld's lemma to algebraic stacks removing the qcqs assumption.

Theorem I (cf. §6). Let $\mathcal{X}_1, \mathcal{X}_2, \ldots, \mathcal{X}_n$ be connected algebraic stacks over \mathbb{F}_q , and set $\mathcal{X} := \mathcal{X}_1 \times_{\mathbb{F}_q} \cdots \times_{\mathbb{F}_q} \mathcal{X}_n$. Then

- The category FÉt(X/Φ) consisting of finite étale covers of X equipped with commuting partial Frobenii actions is a Galois category, whose Galois group is denoted by π₁^{ét}(X/Φ);
- (2) the natural map $\pi_1^{\text{\'et}}(\mathcal{X}/\Phi) \longrightarrow \pi_1^{\text{\'et}}(\mathcal{X}_1) \times \cdots \times \pi_1^{\text{\'et}}(\mathcal{X}_n)$ is an isomorphism.

The key technique that we are using here is the Drinfeld-Lau descent for fibered categories developed in [PTZ20].

2. The G-Connectedness

One of the difficulties in understanding Drinfeld's lemma is that the partial q-Frobenius maps are, in general, not invertible. Thus "the quotient space X/Φ " is only a suggestive symbol but not an honest space – even when X is a scheme! However, we can first forget this if we only look at the actions on the ambient topologial space $|\mathcal{X}|$.

Definition 2.1. Let G be a group, and let X be a topological space equipped with a G-action $\rho_G \colon G \times X \to X$. The pair (X, ρ_G) is called a G-space. The space X is called G-connected if the quotient space X/G is a connected topological space. A subspace $S \subseteq X$ is called a G-component of X if it is the inverse image of a nonempty clopen subspace of X/G. A ordinary topological space X can be viewed as a G-space via the trivial G-action. In this case, the pair (X, ρ_G) will simply denoted by X.

Let $f:(X,\rho_G) \to (S,\rho_G')$ be a map, *i.e.* a map of topological spaces $f:X\to S$ which is compatible with the G-actions. For each G-stable subset $S_1\subseteq S$ the inverse image $f^{-1}(S_1)\subseteq X$ is a G-stable subspace.

Lemma 2.1. Let $f:(X, \rho_G) \to S$ be map whose fibers are G-connected. Suppose that $X \to S$ is submersive. Then (X, ρ_G) is G-connected if and only if S is connected.

Proof. The map f induces a continuous map $\bar{f}: X/G \to S$ whose fibers are connected (hence nonempty). If (X, ρ_G) is G-connected, then X/G is connected, so S is connected. Conversely, if (X, ρ_G) is not G-connected, then $X/G = U_1 \sqcup U_2$, where U_1, U_2 are two nonempty open subspaces of X/G. Since the fibers of \bar{f} are connected, any fiber is contained either in U_1 or in U_2 . Thus exists subspaces V_1, V_2 of S such that $S = V_1 \sqcup V_2$ and $\bar{f}^{-1}(V_i) = U_i$ (i = 1, 2). That f is submersive implies that \bar{f} is submersive. Hence V_1, V_2 are non-empty opens of S. Then S is not connected.

3. Frobenius and Universal Homeomorphisms

Recall that for any fibered category \mathcal{X} defined over \mathbb{F}_p , the absolute Frobenius map $F_{\mathcal{X}} \colon \mathcal{X} \to \mathcal{X}$ sends a section $x \in \mathcal{X}(T)$ on an \mathbb{F}_p -scheme T to the composition $T \xrightarrow{F_T} T \xrightarrow{x} \mathcal{X} \in \mathcal{X}(T)$, where F_T is the absolute Frobenius of the scheme T.

Universal homeomorphisms of schemes are radical maps (cf. [Aut, 01S2]) which play a role as the "opposite" of étale maps. The on the nose extension of this notion to stacks could be misleading in certain situations. For example, consider a finite étale group scheme G over a field k. Any base change of the map $f: \mathcal{B}_k G \to \operatorname{Spec}(k)$ is a homeomorphism on the underlying topological spaces, however, the map is étale. This suggests a new definition of the notion of "universal homeomorphism" for algebraic stacks – we should consider not only f but also the diagonal of f which encodes information about the (relative) inertia.

Definition 3.1. A map of algebraic stacks $f: \mathcal{X} \to \mathcal{Y}$ is called a universal homeomorphism on the nose if for any map of algebraic stacks $\mathcal{T} \to \mathcal{Y}$, the base change $f_{\mathcal{T}}: \mathcal{X} \times_{\mathcal{Y}} \mathcal{T} \to \mathcal{T}$ is a homeomorphism on the underlying topological spaces. The map f is called a universal homeomorphism if both f and the diagonal Δ_f are universal homeomorphisms on the nose.

Lemma 3.1. If \mathcal{X} is an algebraic stack over \mathbb{F}_p , then $F_{\mathcal{X}}$ is a universal homeomorphism.

Proof. Suppose $f: \mathcal{Y} \to \mathcal{X}$ is a map of algebraic stacks over \mathbb{F}_p . Then we have the following cartesian diagram

We want to show that F' induces a bijection $|F'|\colon |\mathcal{Y}'|\to |\mathcal{Y}|$. By the universality of a fibered square, there is a factorization of $F_{\mathcal{Y}}\colon \mathcal{Y}\xrightarrow{F_{\mathcal{Y}/\mathcal{X}}} \mathcal{Y}'\xrightarrow{F'} \mathcal{Y}$. If $F_{\mathcal{Y}}$ induces a homeomorphism of $|\mathcal{Y}|$, then we just have to show that $|F_{\mathcal{Y}/\mathcal{X}}|$ is surjective. Take a point $y'\in |\mathcal{Y}'|$ which is represented by a triple (x,y,α) , where $x\in \mathcal{X}(k), y\in \mathcal{Y}(k)$ are geometric points, and α is an isomorphism from $\mathrm{Spec}(k)\xrightarrow{F_k}\mathrm{Spec}(k)\xrightarrow{x}\mathcal{X}$ to $\mathrm{Spec}(k)\xrightarrow{y}\mathcal{Y}\xrightarrow{f}\mathcal{X}$. Consider the k-point $y_1\colon \mathrm{Spec}(k)\xrightarrow{F_{k}^{-1}}\mathrm{Spec}(k)\xrightarrow{y}\mathcal{Y}$ of \mathcal{Y} . Clearly, $F_{\mathcal{Y}}(y_1)=y$ and $x\xrightarrow{\cong} f(y_1)$ via $F_k^{-1}(\alpha)$. We get $(x,y,\alpha)\cong (f(y_1),y,\mathrm{id}_{f(y)})=F_{\mathcal{Y}/\mathcal{X}}(y_1)$. Thus $|F_{\mathcal{Y}/\mathcal{X}}|$ is surjective. Now let's show that $|F_{\mathcal{X}}|$ is bijective for any algebraic stack \mathcal{X} . If $x\in \mathcal{X}(k)$ is a geometric

point, then the k-point $\operatorname{Spec}(k) \xrightarrow{F_k^{-1}} \operatorname{Spec}(k) \xrightarrow{x} \mathcal{X}$ is mapped to x via $F_{\mathcal{X}}$. Hence $|F_{\mathcal{X}}|$ is surjective. Conversely, let $x_1 \in \mathcal{X}(k_1)$ and $x_2 \in \mathcal{X}(k_2)$ are two geometric points such that $F_{\mathcal{X}}(x_1)$ and $F_{\mathcal{X}}(x_2)$ represent the same point in \mathcal{X} , i.e. $F_{\mathcal{X}}(x_1) \sim F_{\mathcal{X}}(x_2)$. Then, by definition, there is an algebraically closed field k containing both k_1 and k_2 such that $\operatorname{Spec}(k) \to \operatorname{Spec}(k_1) \xrightarrow{F_{k_1}} \operatorname{Spec}(k_1) \xrightarrow{x_1} \mathcal{X}$ is isomorphic to $\operatorname{Spec}(k) \to \operatorname{Spec}(k_2) \xrightarrow{F_{k_2}} \operatorname{Spec}(k_2) \xrightarrow{x_2} \mathcal{X}$. But since $(\operatorname{Spec}(k) \to \operatorname{Spec}(k_1) \xrightarrow{F_{k_1}} \operatorname{Spec}(k_1) \to \operatorname{Spec}(k_1)) = (\operatorname{Spec}(k) \xrightarrow{F_k} \operatorname{Spec}(k) \to \operatorname{Spec}(k_1))$ for

i = 1, 2, we have $\operatorname{Spec}(k) \to \operatorname{Spec}(k_1) \xrightarrow{x_1} \mathcal{X}$ is isomorphic to $\operatorname{Spec}(k) \to \operatorname{Spec}(k_2) \xrightarrow{x_2} \mathcal{X}$, so $x_1 \sim x_2$.

We have seen that |F'|, $|F_{\mathcal{Y}/\mathcal{X}}|$, $|F_{\mathcal{Y}}|$ are bijective and continuous. From the very definition of the topology on $|\mathcal{Y}|$ it is clear that $|F_{\mathcal{Y}}|$ is a homeomorphism. The continuity of $|F_{\mathcal{Y}/\mathcal{X}}|$ then implies that |F'| is submersive, hence a homeomorphism.

Let's consider the diagonal $\Delta \colon \mathcal{X} \to \mathcal{X} \times_{F_{\mathcal{X}}} \mathcal{X}$. The map $|\Delta|$ is surjective because any geometric point $(x, y, \alpha) \in (\mathcal{X} \times_{F_{\mathcal{X}}} \mathcal{X})(k)$, where $\alpha \colon (\operatorname{Spec}(k) \xrightarrow{F_k} \operatorname{Spec}(k) \xrightarrow{x} \mathcal{X}) \cong (\operatorname{Spec}(k) \xrightarrow{F_k} \operatorname{Spec}(k) \xrightarrow{y} \mathcal{X})$, induces an isomorphism $F_k^{-1}(\alpha) \colon x \cong y$, so $(x, x, \operatorname{id}_{F_{\mathcal{X}}(x)}) \cong (x, y, \alpha)$. Conversely, if $x \in \mathcal{X}(k_1)$ and $y \in \mathcal{X}(k_2)$ such that $(x, x, \operatorname{id}_{F_{\mathcal{X}}(x)}) \sim (y, y, \operatorname{id}_{F_{\mathcal{X}}(y)})$ in the diagonal, then there is a geometric point $(a, b, \alpha) \in (\mathcal{X} \times_{F_{\mathcal{X}}} \mathcal{X})(k)$, where k contains both k_1 and k_2 , such that (a, b, α) is isomorphic to the pullback of both $(x, x, \operatorname{id}_{F_{\mathcal{X}}(x)})$ and $(y, y, \operatorname{id}_{F_{\mathcal{X}}(y)})$ to k. This implies immediately that $x \sim y$.

Here are some geometric properties of universal homeomorphisms for algebraic stacks. Note that Lemma 3.2 (2) is not true if g is only a universal homeomorphisms on the nose.

Lemma 3.2. Let $\mathcal{X} \xrightarrow{f} \mathcal{Y} \xrightarrow{g} \mathcal{Z}$ be a sequence of maps of algebraic stacks. Set $h := g \circ f$.

- (1) If f, g are universal homeomorphisms, then so is f.
- (2) If g is a universal homeomorphism and h is a universal homeomorphism on the nose, then f is a universal homeomorphism on the nose.

Proof. (1) is obvious. Let's look at (2). The map f factorizes as $\mathcal{X} \xrightarrow{\Gamma_f} \mathcal{X} \times_{\mathcal{Z}} \mathcal{Y} \xrightarrow{h \times \mathrm{id}_{\mathcal{Y}}} \mathcal{Y}$, where Γ_f is the graph of f. If h is a universal homeomorphism on the nose and the diagonal g is a universal homeomorphism, then Γ_f and $h \times \mathrm{id}_{\mathcal{Y}}$ are universal homeomorphisms on the nose, and so is the composition f.

Note that the absolute Frobenius is only \mathbb{F}_p -linear. In order to make it \mathbb{F}_q -linear we take the q-absolute Frobenius map $\phi_{\mathcal{X}} := F_{\mathcal{X}}^n$, where $n := \log_p q$. Just as in the scheme case, the pullback of the étale maps along the q-absolute Frobenius map of algebraic stacks induces an equivalence of étale sites (actually the identity!).

Proposition 3.3. Let \mathcal{X} be a Deligne-Mumford stack (resp. an algebraic stack) over \mathbb{F}_q , and let $f: \mathcal{Y} \to \mathcal{X}$ be an étale map (resp. a representable étale map). Then we have the following cartesian diagram.

Proof. One just has to show that the natural map $\lambda \colon \mathcal{Y} \to \mathcal{X} \times_{\phi_{\mathcal{X}}} \mathcal{Y}$ is an equivalence. For this, one can take an atlas of $X \twoheadrightarrow \mathcal{X}$, where X is a scheme and show that the pullback of λ to X is an equivalence. Thus we are reduced to the case when $\mathcal{X} = X$ is a scheme. If f is

representable by schemes, then we are done. If f is only representable by algebraic spaces, then $\mathcal{Y} = Y$ is an algebraic space. Take an étale atlas $Z \to Y$. The following diagram

$$Z \xrightarrow{\lambda_Z} X \times_{\phi_X} Z$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Y \xrightarrow{\lambda} X \times_{\phi_X} Y$$

is cartesian, because its extension via the projections $X \times_{\phi_X} Z \to Z$ and $X \times_{\phi_X} Y \to Y$ is cartesian (as $Z \to Y$ is representable by schemes). Since λ_Z is an isomorphism by the scheme case, λ is an isomorphism as well. If \mathcal{Y} is only a Deligne-Mumford stack, then we take an étale atlas $Z \to \mathcal{Y}$ and repeat the above argument to reduce the problem to the case when f is representable by algebraic spaces which has just been proven.

4. Partial Frobenius Maps

Let's come back to our original setting. Let $\mathcal{X}_1, \mathcal{X}_2, \ldots, \mathcal{X}_n$ be connected algebraic stacks over \mathbb{F}_q , and set $\mathcal{X} := \mathcal{X}_1 \times_{\mathbb{F}_q} \cdots \times_{\mathbb{F}_q} \mathcal{X}_n$. Then there are partial Frobenius maps $\phi_i \colon \mathcal{X} \to \mathcal{X}$, which is the q-absolute Frobenius on X_i and the identity on the others. These ϕ_i s are commuting endomorphisms of \mathcal{X} (resp. automorphisms of $|\mathcal{X}|$) whose composition $\phi_1 \circ \cdots \circ \phi_n$ is the q-Frobenius of \mathcal{X} (resp. the identity of $|\mathcal{X}|$). Thus each ϕ_i is completely determined by all the others, so we can drop any of the partial Frobenius maps, e.g. ϕ_n . They provide \mathcal{X} (resp. $|\mathcal{X}|$) with a strict action (resp. an action) $\rho_{\mathcal{X}}$ by the monoid $M := \phi_1^{\mathbb{N}} \times \phi_2^{\mathbb{N}} \times \cdots \phi_{n-1}^{\mathbb{N}}$ (resp. the group $G := \phi_1^{\mathbb{Z}} \times \phi_2^{\mathbb{Z}} \times \cdots \phi_{n-1}^{\mathbb{Z}}$).

Lemma 4.1. Let $G_i := \bigoplus_{j \in \{1,...,n\} \setminus \{i\}} \phi_j^{\mathbb{Z}}$. Then $|\mathcal{X}|$ is G-connected if and only if it is G_i -

connected.

Proof. This is just because that a subset of $|\mathcal{X}|$ is G-stable (resp. G_i -stable) iff it is stable under all the partial Frobenius actions.

Corollary 4.2. The space $|\mathcal{X}_1 \times_{\mathbb{F}_q} \cdots \times_{\mathbb{F}_q} \mathcal{X}_n|$ equipped with the \mathbb{Z}^{n-1} -action by n-1 of the partial Frobenius maps is \mathbb{Z}^{n-1} -connected.

Proof. Consider the projection map $|\operatorname{pr}_n|$: $|\mathcal{X}_1 \times_{\mathbb{F}_q} \cdots \times_{\mathbb{F}_q} \mathcal{X}_n| \to |\mathcal{X}_n|$, where the former is equipped with the \mathbb{Z}^{n-1} -action via the ϕ_i s, and the latter is equipped with the trivial \mathbb{Z}^{n-1} -action. Let $x \in \mathcal{X}_n(k)$ be a geometric point representing a point in $|\mathcal{X}_n|$. Then the topological space of the stack fiber $\mathcal{X}_1 \times_{\mathbb{F}_q} \cdots \times_{\mathbb{F}_q} \mathcal{X}_{n-1} \times_{\mathbb{F}_q} k$ maps surjectively to the topological fiber of x along the map $|\operatorname{pr}_n|$. This surjection moreover preserves the \mathbb{Z}^{n-1} -actions. In light of Lemma 2.1, it is enough to show that the space $|\mathcal{X}_1 \times_{\mathbb{F}_q} \cdots \times_{\mathbb{F}_q} \mathcal{X}_{n-1} \times_{\mathbb{F}_q} k|$ is \mathbb{Z}^{n-1} -connected.

Suppose $\mathcal{U} \subseteq \mathcal{X}_1 \times_{\mathbb{F}_q} \cdots \times_{\mathbb{F}_q} \mathcal{X}_{n-1} \times_{\mathbb{F}_q} k$ is a clopen substack which is stable under the \mathbb{Z}^{n-1} -action. Then \mathcal{U} is also stable under the \mathbb{Z}^{n-1} -action defined by $\phi_1, \ldots, \phi_{n-2}, \phi_k$. By [PTZ20, Theorem 4.1], \mathcal{U} is the preimage of a clopen substack $\mathcal{U}_0 \subseteq \mathcal{X}_1 \times_{\mathbb{F}_q} \cdots \times_{\mathbb{F}_q} \mathcal{X}_{n-1}$,

and \mathcal{U}_0 is obviously stable under the \mathbb{Z}^{n-2} -action $\phi_1, \ldots, \phi_{n-2}$. Then \mathcal{U}_0 is either empty or the whole stack by the connectedness of \mathcal{X}_{n-1} in the case n=2, or by the induction hypothesis in the case n>2. Thus \mathcal{U} is also either empty or the whole stack. This finishes the proof.

5. Galois Categories

Let \mathcal{X} be an algebraic stack over \mathbb{F}_q . When \mathcal{X} is connected, it is known (cf. [Noo00, Theorem 4.2] or [Noo04, §4]) that $F\acute{E}t(\mathcal{X})$ is a Galois category. Let's now adapt this to our setting. Suppose M is a commutative monoid acting strictly (cf. **Rom05**) on \mathcal{X} via universal homeomorphisms. Let $\rho_{\mathcal{X}} : M \to \operatorname{End}_{\mathbb{F}_q}(\mathcal{X})$ be the action map. If G denotes the Grothendieck group associated with M, then $|\mathcal{X}|$ is a G-space. Let $F\acute{E}t(\mathcal{X}/G)$ denote the category whose objects are 2-commutative diagrams

$$\mathcal{Y} \xrightarrow{\rho_{\mathcal{Y}}(m)} \mathcal{Y}$$
 $f \downarrow \qquad \qquad \downarrow^{\sigma_m} \qquad \downarrow^f$
 $\mathcal{X} \xrightarrow{\rho_{\mathcal{X}}(m)} \mathcal{X}$

where $\mathcal{Y} \xrightarrow{f} \mathcal{X} \in F\acute{E}t(\mathcal{X})$ and $\rho_{\mathcal{Y}}$ is a strict action of M on \mathcal{Y} via \mathbb{F}_q -endomorphisms of \mathcal{Y} which are universal homeomorphisms, such that $\rho_{\mathcal{Y}}$ is compatible with $\rho_{\mathcal{X}}$, in the sense of **Rom05**, *i.e.* $\sigma_{m_1m_2}$ is equal to the composition

and $\sigma_0 = \mathrm{id}_f$. One easier way to characterize $F\acute{\mathrm{E}}\mathrm{t}(\mathcal{X}/G)$ is the following.

Lemma 5.1. The following categories are equivalent

- (a) the category $F\acute{E}t(\mathcal{X}/G)$;
- (b) the category of 2-cartesian diagrams

(2)
$$\begin{array}{ccc}
\mathcal{Y} & \xrightarrow{\rho_{\mathcal{V}}(m)} & \mathcal{Y} \\
\downarrow & & \downarrow^{\sigma_m} & \downarrow^f \\
\mathcal{X} & \xrightarrow{\rho_{\mathcal{X}}(m)} & \mathcal{X}
\end{array}$$

where $\mathcal{Y} \xrightarrow{f} \mathcal{X} \in F\acute{E}t(\mathcal{X})$ and $\rho_{\mathcal{Y}}$ is a strict action of M on \mathcal{Y} via \mathbb{F}_q -endomorphisms and σ is the compatibility condition, i.e. $\sigma_{m_1m_2}$ equals (1) and $\sigma_0 = f$.

(c) the category of pairs $(\mathcal{A}, \{\alpha_{\mathcal{A},m}\}_{m\in\mathcal{M}})$, where \mathcal{A} is a finite étale $\mathcal{O}_{\mathcal{X}}$ -algebra and $\alpha_{\mathcal{A},m} \colon m^*\mathcal{A} \to \mathcal{A}$ $(m^*\mathcal{A} := \rho_{\mathcal{X}}(m)^*\mathcal{A})$ is an $\mathcal{O}_{\mathcal{X}}$ -algebra isomorphism satisfying $\alpha_{\mathcal{A},e} = \mathrm{id}_{\mathcal{A}}$ and $\alpha_{\mathcal{A},m_1m_2} = \alpha_{\mathcal{A},m_1} \circ m_1^*\alpha_{\mathcal{A},m_2}$.

Proof. Let's first show (a) \Leftrightarrow (b). For any $m \in M$ and $\mathcal{Y} \in F\acute{E}t(\mathcal{X})$ set $m^*\mathcal{Y} := \mathcal{Y} \times_{\rho_{\mathcal{X}}(m)} \mathcal{X}$. Consider the 2-commutative diagram:

Suppose the square defined by $\rho_{\mathcal{Y}}(m)$ and $\rho_{\mathcal{X}}(m)$ is cartesian, then $\alpha_{\mathcal{Y},m}$ is an equivalence, so $\rho_{\mathcal{Y}}(m)$, as a pullback of $\rho_{\mathcal{X}}(m)$, is a universal homeomorphism, *i.e.* the square belongs to FÉt(\mathcal{X}/G). Conversely, if $\rho_{\mathcal{Y}}(m)$ is a universal homeomorphism, then $\alpha_{\mathcal{Y},m}$ is an isomorphism. Indeed, if $\rho_{\mathcal{Y}}(m)$ is a universal homeomorphism, then the fact that $m^*\mathcal{Y} \to \mathcal{Y}$ is a universal homeomorphism implies that $\alpha_{\mathcal{Y},m}$ is a universal homeomorphism on the nose (cf. Lemma 3.2). Since both \mathcal{Y} and $m^*\mathcal{Y}$ are in FÉt(\mathcal{X}), $\alpha_{\mathcal{Y},m}$ is an isomorphism at all geometric fibers of \mathcal{X} , so it is a degree 1 finite étale map, *i.e.* an equivalence, hence the square defined by $\rho_{\mathcal{Y}}(m)$ and $\rho_{\mathcal{X}}(m)$ is cartesian.

The equivalence (b) \Leftrightarrow (c) follows from the universality of 2-cartesian diagrams and the equivalence FÉt(\mathcal{X}) \simeq {finite étale $\mathcal{O}_{\mathcal{X}}$ -algebras}: \mathcal{A} corresponds to \mathcal{Y} ; $\alpha_{\mathcal{A},m}$ corresponds to the unique map $\alpha_{\mathcal{Y},m}$; the conditions on α correspond to the conditions on σ .

Lemma 5.2. Suppose that \mathcal{X} is G-connected, then $F\acute{E}t(\mathcal{X}/G)$ is a Galois category.

Proof. Set $\mathcal{C} := \text{F\'{E}t}(\mathcal{X}/G)$. If \bar{x} is a geometric point of \mathcal{X} , then take $F : \text{F\'{E}t}(\mathcal{X}/G) \to (\text{Set})$ to be the composition of the forgetful functor with the fiber functor $\text{F\'{E}t}(\mathcal{X}) \to (\text{Set})$. Let's verify the four axioms in [Aut, 0BMY].

 \mathcal{C} has finite limits and finite colimits. Suppose $\{(\mathcal{Y}_j, \rho_{\mathcal{Y}_i}, \sigma_i)\}_{j \in J}$ is a finite projective system in \mathcal{C} . For any $m \in M$, the pullback along $\mathcal{X} \xrightarrow{\rho_{\mathcal{X}}(m)} \mathcal{X}$ (denoted by m^*) is obviously a left exact endomorphism of $F\acute{\mathrm{E}}\mathrm{t}(\mathcal{X})$. Thus for each $m \in M$, we have natural maps $\rho_{\varprojlim \mathcal{Y}_j} \colon \varprojlim_{j \in J} \mathcal{Y}_j \longrightarrow \varprojlim_{j \in J} \mathcal{Y}_j$ and $\sigma \coloneqq \varprojlim_{j \in J} \sigma_j$ which make the following diagram

cartesian (as the diagram for each $\rho_{\mathcal{Y}_i}$ is so by Lemma 5.1). Hence the diagram is an object in FÉt(\mathcal{X}/G), and it is clearly the limit. As for the colimit, we first conclude, by the proof of [Aut, 0BN9], that the pullback functor m^* is right exact. Indeed, thanks to [Aut, 0GMN] one just has to check that m^* commutes with coproducts and coequalizers in FÉt(\mathcal{X}). It's easy for coproducts. For coequalizers one considers two maps $a, b \colon \mathcal{Z} \to \mathcal{Y}$

in FÉt(\mathcal{X}). Suppose $\mathcal{Y} = \operatorname{Spec}_{\mathcal{O}_{\mathcal{X}}}(\mathcal{B})$ and $\mathcal{Z} = \operatorname{Spec}_{\mathcal{O}_{\mathcal{X}}}(\mathcal{C})$, where \mathcal{B}, \mathcal{C} are two finite étale $\mathcal{O}_{\mathcal{X}}$ -algebras. Then a, b correspond to $a^{\#}, b^{\#} \colon \mathcal{B} \to \mathcal{C}$. The coequalizer of a, b is $\operatorname{Spec}_{\mathcal{O}_{\mathcal{X}}}(\mathcal{A})$, where $\mathcal{A} = \operatorname{Ker}(a^{\#} - b^{\#})$. In [Aut, 0BN9] it was shown that \mathcal{B}, \mathcal{C} are, étale locally, sums of $\mathcal{O}_{\mathcal{X}}$ and $a^{\#} - b^{\#}$ is then a map rearranging the summands. Thus \mathcal{A} is a finite étale $\mathcal{O}_{\mathcal{X}}$ -algebra and $\mathcal{B}/\mathcal{A}, \mathcal{C}/\operatorname{im}(a^{\#} - b^{\#})$ are locally free. This implies that m^* preserves the coequalizers. Now the proof of the existence of limits works mutatis mutandis for colimits.

Every object of \mathcal{C} is a finite (possibly empty) coproduct of connected objects. It is easy to check that for any object $f: \mathcal{X}' \to \mathcal{X}$ in $F\acute{\text{E}}t(\mathcal{X}/G)$, the induced map $\bar{f}: |\mathcal{X}'|/G \to |\mathcal{X}|/G$ enjoys the following property.

Let $u: |\mathcal{X}| \to |\mathcal{X}|/G$ (resp. $v: |\mathcal{X}'| \to |\mathcal{X}'|/G$) be the quotient map. Then for any subset $S \subseteq |\mathcal{X}'|/G$, $f(v^{-1}(S)) = u^{-1}(\bar{f}(S))$. Indeed, since $u \circ f(v^{-1}(S)) = \bar{f} \circ v(v^{-1}(S)) = \bar{f}(S)$, we have $f(v^{-1}(S)) \subseteq u^{-1}(\bar{f}(S))$. Conversely, suppose $x' \in |\mathcal{X}'|, x \in |\mathcal{X}|, v(x') \in S$, and $\bar{f}(v(x')) = u(x)$, then u(f(x')) = u(x), so $\exists g \in G$ such that x = gf(x') = f(gx'). That $v(gx') = v(x') \in S$ implies that $gx' \in v^{-1}(S)$, so $x \in f(v^{-1}(S))$.

Then f clopen $\Longrightarrow \bar{f}$ clopen. Moreover, the fibers of \bar{f} are finite, as for each $\bar{s} \in |\mathcal{X}|/G$ and any lift $x \in |\mathcal{X}|$ of \bar{s} , $\bar{f}^{-1}(\bar{s})$ is the v-image of the finite set $f^{-1}(x)$ (take, in the above, $S = \{s\}$, where $\bar{f}(s) = \bar{s}$). Now applying [Aut, 07VB], we see that $|\mathcal{X}'|/G$ is a coproduct of finitely many connected components, *i.e.* \mathcal{X}' is a coproduct of finitely many G-components.

We'll show that a G-connected object $\mathcal{Y} \in \mathcal{C}$ is a connected object in \mathcal{C} (cf. [Aut, 0BMY]). Suppose $a: \mathcal{Y}_1 \to \mathcal{Y}$ is a nonempty monomorphism in \mathcal{C} . Then the diagonal map $\mathcal{Y}_1 \to \mathcal{Y}_1 \times_{\mathcal{Y}} \mathcal{Y}_1$ is an isomorphism. This implies that a is also a monomorphism in FÉt(\mathcal{X}), *i.e.* a exhibits \mathcal{Y}_1 as a clopen subset of \mathcal{Y} . As \mathcal{Y} is G-connected, $\mathcal{Y}_1 = \mathcal{Y}$, *i.e.* a is an isomorphism.

 $F(\mathcal{X}')$ is finite for all $\mathcal{X}' \in \mathcal{C}$. This is clear.

F is conservative and exact. The functor F is, by its very definition, the composition

$$F\text{\'Et}(\mathcal{X}/G) \xrightarrow{\text{Forget}} F\text{\'Et}(\mathcal{X}) \xrightarrow{F_{\bar{x}}} (\text{Set})$$

where Forget is the obvious forgetful functor, which is conservative and preserves finite limits and finite colimits (given how finite limits and finite colimits in $F\acute{E}t(\mathcal{X}/G)$ are constructed), and $F_{\bar{x}}$ is the classical fiber functor which is conservative and exact. Thus F is conservative and exact.

6. Drinfeld's Lemma

Let $\mathcal{X}_1, \mathcal{X}_2, \ldots, \mathcal{X}_n$ be algebraic stacks over \mathbb{F}_q , and set $\mathcal{X} := \mathcal{X}_1 \times_{\mathbb{F}_q} \mathcal{X}_2 \times_{\mathbb{F}_q} \cdots \times_{\mathbb{F}_q} \mathcal{X}_n$. Let ϕ_i be the q-Frobenius of \mathcal{X}_i for $1 \leq i \leq n$. Then \mathcal{X} is equipped with a strict $M := \phi_1^{\mathbb{N}} \times \phi_2^{\mathbb{N}} \times \cdots \oplus_{n-1}^{\mathbb{N}}$, and let G (resp. G_0) denote the free abelian group generated by M (resp. M_0). The category $\text{FÉt}(\mathcal{X}/G_0)$ can be understood as 2-cartesian diagrams

where the φ_i s (resp. σ_i s) are mutually commute. Morally, $F\acute{E}t(\mathcal{X}/G_0)$ is just a collection of commuting universally homeomorphic \mathbb{F}_q -endomorphisms $\{\varphi_1, \varphi_2, \ldots, \varphi_{n-1}\}$ of \mathcal{Y} . Note that here we have dropped φ_n in the collection, but we could drop any ϕ_i for $1 \leq i \leq n$ which would yield the same category.

Lemma 6.1. Let Y be a scheme. For any geometric point \bar{x} : Spec $(k) \to Y$ the base change functor induces an equivalence:

$$\varinjlim_{(U,\bar{u})} F \acute{\mathrm{E}} \mathrm{t}(\mathcal{X} \times_{\mathbb{F}_q} U/G) \longrightarrow F \acute{\mathrm{E}} \mathrm{t}(\mathcal{X} \times_{\mathbb{F}_q} \bar{x}/G)$$

where (U, \bar{u}) runs over all the affine étale neighborhood of \bar{x} .

Proof. Let $u: \mathcal{X}' \to \mathcal{X}$ be an M-equivariant map of \mathbb{F}_q -algebraic stacks, and $\mathcal{X}'' := \mathcal{X}' \times_{\mathcal{X}} \mathcal{X}'$, $\mathcal{X}''' := \mathcal{X}'' \times_{\mathcal{X}} \mathcal{X}'$, then there are natural 2-commutative diagrams

$$(4) \qquad \varinjlim_{(U,\bar{u})} \operatorname{F\acute{e}t}(\mathcal{X} \times_{\mathbb{F}_q} U/G) \longrightarrow \varinjlim_{(U,\bar{u})} \operatorname{F\acute{e}t}(\mathcal{X}' \times_{\mathbb{F}_q} U/G) \xrightarrow{} \varinjlim_{(U,\bar{u})} \operatorname{F\acute{e}t}(\mathcal{X}'' \times_{\mathbb{F}_q} U/G) \xrightarrow{} \varinjlim_{(U,\bar{u})} \operatorname{F\acute{e}t}(\mathcal{X}'' \times_{\mathbb{F}_q} U/G)$$

$$\downarrow \lambda \qquad \qquad \downarrow \lambda' \qquad \qquad \downarrow \lambda'' \qquad \qquad \downarrow \lambda''' \qquad \qquad \downarrow \Lambda'' \qquad \qquad \downarrow \Lambda' \qquad \qquad \downarrow \Lambda'$$

Suppose that the horizontal sequences are exact, then λ' is fully faithful (resp. an equivalence) and λ'' is faithful (resp. fully faithful and λ''' is faithful) imply that λ is fully faithful (resp. an equivalence). Note also that by [Aut, 07SK] we have a natural equivalence:

(5)
$$\lim_{(U,\bar{u})} \operatorname{F\acute{E}t}(\mathcal{X} \times_{\mathbb{F}_q} U/G) \xrightarrow{\simeq} \operatorname{F\acute{E}t}(\mathcal{X} \times_{\mathbb{F}_q} \varprojlim_{(U,\bar{u})} U/G)$$

where $\varprojlim_{(U,\bar{u})} U$ is the strict henselization of Y at \bar{x} , so the rows of (4) are exact when u is an

fpqc-covering (the actions descend together).

Using these simple observations, we'll proceed in several dévissage steps:

Step 1, reduction to $\mathcal{X}_i = X_i$ a connected \mathbb{F}_q -scheme of finite type. Replacing each \mathcal{X}_i by an atlas X_i , we may assume that it is an algebraic space. Replacing each algebraic space X_i by an atlas, we may assume that it is a scheme. Replacing each X_i by a disjoint union of affine opens, we may assume that each X_i is affine. Note that although X'' in (4) may not be a disjoint union of affines anymore, we can cover each $X_i' \times_{X_i} X_i'$ by affines and show that λ is fully faithful for any scheme X. Using this and applying affine coverings again, we get the desired equivalence for any scheme X. We then write each affine scheme X_i as a filtered limit of affine schemes of finite type over \mathbb{F}_q . Thus we may assume that X_i is of finite type over \mathbb{F}_q . Replacing X_i by a connected component, we may assume that X_i is connected.

Step 2, reduction to Y excellent, reduced, and strictly henselian. Since the problem is Zariski-local around \bar{x} , we may assume that Y is affine. Writing Y as a filtered limit of affine finite type \mathbb{F}_q -schemes and using [Aut, 07SK], we may assume that Y is of finite type over \mathbb{F}_q . Replacing Y with its reduced closed structure, we may assume that Y is reduced. Now replacing Y by its strict henselization at \bar{x} (cf. (5)), we may assume that

 $Y = \operatorname{Spec}(A)$, where A is strictly henselian and reduced. By [Aut, 06LJ], A is Noetherian; by [Aut, 07QR], A is a G-ring; by [Gro67, 18.8.17, 18.7.5.1], A is universially catenary; and by [Gre76, 5.3] is J-2. In conclusion, A is excellent.

Step 3, the functor (5) is faithful and essentially surjective. Consider the following 2-commutative diagram, where $X := \mathcal{X} = \operatorname{Spec}(A)$.

We have to show that λ is an equivalence. Let ϕ_{κ} denote the absolute Frobenius of κ . Then $F\acute{E}t(X\times_{\mathbb{F}_q}\mathrm{Spec}(\kappa)/G)$ can also be described via the action of $G_0\times\phi_{\kappa}^{\mathbb{Z}}$. By [PTZ20, Theorem II, (C)] we have $F\acute{E}t(X)\simeq F\acute{E}t(X\times_{\mathbb{F}_q}\mathrm{Spec}(\kappa)/\phi_{\kappa}^{\mathbb{Z}})$. This immediately implies that $F\acute{E}t(X/G_0)\simeq F\acute{E}t(X\times_{\mathbb{F}_q}\mathrm{Spec}(\kappa)/G)$. Therefore, v is an equivalence. By Lemma 4.2 and Lemma 5.2 all the categories in the above diagram are Galois categories; since all the functors in the diagram commute with the forgetful fiber functors (which are faithful), they are faithful. This implies that u is fully faithful and λ is essentially surjective. Thus to conclude, it is enough to show that λ is fully faithful or u is essentially surjective.

Step 4, reduction to X_1 , Y normal and Y has algebraically closed field of fractions. Since v-covers are morphisms of effective descent for étale maps (cf. [HS23, Theorem 1.5]), and "being quasi-compact" as well as "satisfying the valuative criteria for properness" are obviously properties of maps local on the target for the v-topology (cf. [Aut, 02KO]), v-covers are also morphisms of effective descent for finite étale maps. As each X_i is excellent, its normalization map is finite. Using diagram (4) for the product of normalization maps and the fact that λ'' is faithful (as X'' is a finite disjoint union of connected components), we can assume that each X_i is normal.

For Y, we first note that there are finitely many irreducible components of Y, each of which is a spectrum of a strictly henselian excellent domain (cf. [Aut, 0C2Z]). If Y has m irreducible components Y_1, \dots, Y_m , then we set $Y' := Y_1 \sqcup (Y_2 \cup \dots \cup Y_m)$, which is a v-cover of Y. Consider the following diagram (diagram (4) "with the other factor")

where $\bar{x}' := \bar{x} \sqcup \bar{x}$ and $\bar{x}'' := \bar{x}' \times_{\bar{x}} \bar{x}'$. Thanks to v-descent, the rows in (6) are exact. Using induction on m, we are reduced to the case when A is a domain.

Now let K be the field of fractions of A, and let B be the normalization of A in some finite extension L/K. Since

- B is finite over A (as A is excellent) and,
- B as well as $B \otimes_A B$ are local and strictly henselian (cf. [Aut, 04GH]),

applying diagram (6) to the normalization map and $\bar{x}'' = \bar{x}' = \bar{x}$, we are reduced to the case when Y is normal.

Let $\bar{Y} = \operatorname{Spec}(\bar{A})$ be the normalization of Y in \bar{K} . Then \bar{A} is normal and strictly henselian (cf. [Aut, 04GI]). If $T_1, T_2 \in \operatorname{F\acute{E}t}(X \times_{\mathbb{F}_q} Y/G)$ and $t \colon T_1 \otimes_A \kappa \to T_2 \otimes_A \kappa$ is a map in $\operatorname{F\acute{E}t}(X \times_{\mathbb{F}_q} \bar{x}/G)$. Suppose t lifts to some $\bar{a} \in \operatorname{F\acute{E}t}(X \times_{\mathbb{F}_q} \bar{Y}/G)$. Since \bar{a} is defined over some finite middle extension $A \subseteq B \subseteq \bar{A}$, we can apply diagram (6) again to conclude that t lifts to a map $a \in \operatorname{F\acute{E}t}(X \times_{\mathbb{F}_q} Y/G)$. Thus we are reduced to the case when the fraction field K of A is algebraically closed and A is normal (but not necessarily Noetherian).

Step 5, final conclusion. Let K be the field of fractions of A. Then the functor

$$F\acute{\mathrm{E}}\mathrm{t}(X/G_0) \longrightarrow F\acute{\mathrm{E}}\mathrm{t}(X \times_{\mathbb{F}_q} \mathrm{Spec}(K)/G)$$

is an equivalence and

$$\operatorname{F\acute{E}t}(X \times_{\mathbb{F}_q} \operatorname{Spec}(A)/G) \longrightarrow \operatorname{F\acute{E}t}(X \times_{\mathbb{F}_q} \operatorname{Spec}(K)/G)$$

is fully faithful. Thus u is an equivalence, as desired.

Lemma 6.2 (Stein factorization). Suppose that \mathcal{X} is a G_0 -connected algebraic stack and \mathcal{X}_{n+1} is an arbitrary algebraic stack. For any $(\mathcal{Y}, \rho_{\mathcal{Y}}, \sigma) \in \text{F\'{E}t}(\mathcal{X}/G)$, there exists $\mathcal{T} \in \text{F\'{E}t}(\mathcal{X}_{n+1})$ and a 2-commutative diagram

(7)
$$\begin{array}{cccc}
\mathcal{Y} & \longrightarrow \mathcal{T} \\
\downarrow & & \downarrow \\
\mathcal{X} \times_{\mathbb{F}_a} \mathcal{X}_{n+1} & \longrightarrow \mathcal{X}_{n+1}
\end{array}$$

where $\rho_{\mathcal{Y}}$ acts over \mathcal{T} and each geometric fiber $\mathcal{Y}_{\bar{t}}$ of $\mathcal{Y} \to \mathcal{T}$ is G-connected. If diagram (7) exists, then it has the following universal property: For any $\mathcal{T}' \in F\acute{E}t(\mathcal{X}_{n+1})$ and any commutative diagram (7) with \mathcal{T} replaced by \mathcal{T}' , where $\rho_{\mathcal{Y}}$ acts over \mathcal{T}' , there is a unique arrow $\lambda \colon \mathcal{T} \to \mathcal{T}'$ making all the natural diagrams 2-commutative. Since the natural commutativity forces λ into an object in $F\acute{E}t(\mathcal{X}_{n+1})$, which is equivalent to a set, λ is automatically unique up to a unique isomorphism.

Proof. Step 1, the case when \mathcal{X}_{n+1} is a point. Let's first consider the case when $\mathcal{X}_{n+1} = \operatorname{Spec}(k)$, where k is an algebraically closed field containing \mathbb{F}_q . In this case, we take \mathcal{T} to be $\sqcup_{i \in I} \operatorname{Spec}(k)$, where I is the set of G-components of $|\mathcal{Y}|$. To prove the universality, we first observe that both \mathcal{T} and \mathcal{T}' are finite disjoint unions of $\operatorname{Spec}(k)$. Since each element of I corresponds to a point of \mathcal{T} and it is mapped to a point of \mathcal{T}' by $\mathcal{Y} \to \mathcal{T}'$, this defines a unique map $\mathcal{T} \to \mathcal{T}'$ in $\operatorname{F\acute{e}t}(\mathcal{X}_{n+1})$ making all the natural diagrams commutative.

Step 2, the universal property for \mathcal{X}_{n+1} general. We first observe that $\mathcal{Y} \to \mathcal{T}$ is faithfully flat, so the desired arrow $\mathcal{T} \to \mathcal{T}'$ is unique if it exists (note that $F\acute{E}t(\mathcal{X}_{n+1})$ is a 1-category, so this makes sense). This allows us to define $\mathcal{T} \to \mathcal{T}'$ fppf locally on

 \mathcal{X}_{n+1} . Thus we may assume that \mathcal{T} is a finite disjoint union of \mathcal{X}_{n+1} . Working with each pieces of \mathcal{T} we may assume that $\mathcal{T} = \mathcal{X}_{n+1}$. Notice that the map $f : \mathcal{Y} \to \mathcal{T}'$ is universally open. Indeed, f can be factorized as $\mathcal{Y} \xrightarrow{f_1} \mathcal{X} \times_{\mathbb{F}_q} \mathcal{T}' \xrightarrow{f_2} \mathcal{T}'$, while f_1 is finite étale and f_2 is universally open by [Aut, 0383]. Let $\mathcal{U} := f(\mathcal{Y})$ be the image. We have to show that there exists a unique \mathcal{X}_{n+1} -map $\mathcal{T} = \mathcal{X}_{n+1} \to \mathcal{U}$. Now it follows from Step 1 that on each geometric fiber over \mathcal{X}_{n+1} the factorization exists and is bijective, therefore each fiber of the projection map $u : \mathcal{U} \to \mathcal{X}_{n+1}$, which is representable and étale, consists of exactly one point. Thus u is an isomorphism and the desired arrow is u^{-1} .

Step 3, reduction to \mathcal{X}_{n+1} affine. By Step 2, to prove the existence of the Stein factorization, it is enough to prove it fppf-locally. Thus we may assume that $\mathcal{X}_{n+1} = \operatorname{Spec}(A)$ is affine.

Step 4, reduction to \mathcal{Y} is a pullback from FÉt (\mathcal{X}/G_0) . By Lemma 6.1 and [PTZ20, Theorem II, (C)], for any geometric point \bar{x} of X_{n+1} one can find a connected affine étale neighborhood $U \to X_{n+1}$ such that the pullback of $(\mathcal{Y}, \rho_{\mathcal{Y}}, \sigma)$ to FÉt $(\mathcal{X} \times_{\mathbb{F}_q} U/G)$ comes from an object $\mathcal{Z} \in \text{FÉt}(\mathcal{X}/G_0)$. By Step 2, it is enough to construct the Stein factorization over U. So we assume that \mathcal{Y} comes from $\mathcal{Z} \in \text{FÉt}(\mathcal{X}/G_0)$.

Step 5, final conclusion. Let $\mathcal{Z}_1, \mathcal{Z}_2, \ldots, \mathcal{Z}_m$ be the G_0 -components of \mathcal{Z} (remember that $F\acute{\mathrm{E}}\mathrm{t}(\mathcal{X}/G_0)$ is Galois), then for any geometric point $\bar{x} \in X_{n+1}(k)$, the pullback $(\mathcal{Z}_i, \rho_{\mathcal{Z}_i}, \sigma_i)_k$ of $(\mathcal{Z}_i, \rho_{\mathcal{Z}_i}, \sigma_i)$ to $F\acute{\mathrm{E}}\mathrm{t}(\mathcal{X} \times_{\mathbb{F}_q} k/G)$ has underlying object $\mathcal{Z}_i \times_{\mathbb{F}_q} k$ and action $\rho_{\mathcal{Z}_i} \times \phi_k$. It's G-connected, as any clopen G-equivariant subset of $\mathcal{Z}_i \times_{\mathbb{F}_q} k$ is the inverse image of a G_0 -equivariant clopen subset of \mathcal{Z}_i (cf. [PTZ20, Theorem 4.1]). Thus we can take $T := \bigsqcup_{i=1}^m X_{n+1}$ and the map $\mathcal{Y} \to T$ to be the sum of the projections $\mathcal{Z}_i \times_{\mathbb{F}_q} X_{n+1} \to X_{n+1}$.

Theorem 6.3. Suppose that \mathcal{X}_i $(1 \leq i \leq n)$ and \mathcal{X}_{n+1} are connected algebraic stacks over \mathbb{F}_q . Then for any geometric point \bar{x} of $\mathcal{X} \times_{\mathbb{F}_q} \mathcal{X}_{n+1}$, the top sequence in

is exact, where k is the field of definition of \bar{x} .

Proof. The left exactness of the top sequence is provided by the retraction α , whose existence is a consequence of [PTZ20, Theorem II, (C)]. Thus we are left to show the middle exactness. In view of [Aut, 0BTQ] we only have to show that the following condition holds:

Let $(\mathcal{Y}, \rho_{\mathcal{Y}}) \in F\acute{\text{E}}t(\mathcal{X} \times_{\mathbb{F}_q} \mathcal{X}_{n+1}/G)$ be a connected object. Suppose the pullback $(\mathcal{Y}_{\overline{x}}, \rho_{\mathcal{Y}_{\overline{x}}})$ of $(\mathcal{Y}, \rho_{\mathcal{Y}})$ to $F\acute{\text{E}}t(\mathcal{X} \times_{\mathbb{F}_q} k/G)$ has a G-component which is mapped isomorphically to $\mathcal{X} \times_{\mathbb{F}_q} k$, then the Stein factorization of $(\mathcal{Y}, \rho_{\mathcal{Y}})$ induces a

REFERENCES 13

Cartesian diagram.

One has to show that $\lambda: \mathcal{Y} \to \mathcal{X} \times_{\mathbb{F}_q} \mathcal{T}$ is an isomorphism. For each geometric point \bar{s} of \mathcal{T} the pullback $\mathcal{X} \times_{\mathbb{F}_q} \kappa(\bar{s})$ is G-connected by 4.2. It follows that $\lambda_s: \mathcal{Y}_s \to \mathcal{X} \times_{\mathbb{F}_q} \kappa(\bar{s})$ as well as λ are surjective (\mathcal{Y}_s is a G-component, hence is not empty). That \mathcal{Y} is G-connected implies that $\mathcal{X} \times_{\mathbb{F}_q} \mathcal{T}$ is G-connected, thus λ is finite étale of constant degree. Therefore to show that λ is an isomorphism, it is enough to show that the degree of λ equals 1.

The G-component of $(\mathcal{Y}_{\bar{x}}, \rho_{\mathcal{Y}_{\bar{x}}})$ which goes isomorphically to $\mathcal{X} \times_{\mathbb{F}_q} k$ is mapped to a geometric point $\bar{s} \in \mathcal{T}(k)$ lying over $\bar{x} \in \mathcal{X}_{n+1}(k)$. It is moreover the inverse image of \bar{s} by the very construction of the Stein factorization. Thus λ is an isomorphism at \bar{s} , and the degree of λ is 1, as desired.

Proof of Theorem I. By Theorem 8 and diagram (8) we have

$$\pi_1^{\text{\'et}}(\mathcal{X}/\phi_1^{\mathbb{Z}}\times\cdots\times\phi_{n-1}^{\mathbb{Z}}) \xrightarrow{\cong} \pi_1^{\text{\'et}}(\mathcal{X}_1\times\cdots\times\mathcal{X}_{n-1}/\phi_1^{\mathbb{Z}}\times\cdots\times\phi_{n-2}^{\mathbb{Z}})\times\pi_1^{\text{\'et}}(\mathcal{X}_n)$$

By induction on n, we get the result.

REFERENCES

- [Aut] The Stacks Project Authors. Stacks Project. URL: https://stacks.math.columbia.edu/.
- [Dri80] V. G. Drinfeld. "Langlands' conjecture for GL(2) over functional fields". In: Proceedings of the International Congress of Mathematicians (Helsinki, 1978). Acad. Sci. Fennica, Helsinki, 1980, pp. 565–574. ISBN: 951-41-0352-1.
- [Gre76] Silvio Greco. "Two theorems on excellent rings". In: Nagoya Math. J. 60 (1976), pp. 139–149. ISSN: 0027-7630,2152-6842. URL: http://projecteuclid.org/euclid.nmj/1118795639.
- [Gro67] Alexander Grothendieck. "Éléments de géométrie algébrique : IV. Étude locale des schémas et des morphismes de schémas, Quatrième partie". In: *Publications Mathématiques de l'IHÉS* 32 (1967), pp. 5–361. URL: http://www.numdam.org/item/PMIHES_1967__32__5_0/.
- [HS23] David Hansen and Peter Scholze. "Relative perversity". In: Comm. Amer. Math. Soc. 3 (2023), pp. 631–668. ISSN: 2692-3688. DOI: 10.1090/cams/21. URL: https://doi.org/10.1090/cams/21.
- [Ked17] Kiran S. Kedlaya. Sheaves, stacks, and shtukas. 2017. URL: http://swc.math.arizona.edu/aws/2017/2017KedlayaNotes.pdf.
- [Laf18] Vincent Lafforgue. "Chtoucas pour les groupes réductifs et paramétrisation de Langlands globale". In: J. Amer. Math. Soc. 31.3 (2018), pp. 719–891. ISSN: 0894-0347,1088-6834. DOI: 10.1090/jams/897. URL: https://doi.org/10.1090/jams/897.

14 REFERENCES

- [Laf97] Laurent Lafforgue. "Chtoucas de Drinfeld et conjecture de Ramanujan-Petersson". In: Astérisque 243 (1997), pp. ii+329. ISSN: 0303-1179.
- [Lau07] Eike Lau. "On degenerations of \mathcal{D} -shtukas". In: Duke Math. J. 140.2 (2007), pp. 351–389. ISSN: 0012-7094. DOI: 10.1215/S0012-7094-07-14025-0. URL: https://doi.org/10.1215/S0012-7094-07-14025-0.
- [Mül22] Benedikt Müller. "Drinfeld's Lemma for Schemes". PhD thesis. 2022. URL: https://www.mathematik.tu-darmstadt.de/media/algebra/homepages/richarz/20221108_Benedikt_Mueller.pdf.
- [Noo00] Behrang Noohi. Fundamental groups of algebraic stacks. Thesis (Ph.D.)—Massachusetts Institute of Technology. ProQuest LLC, Ann Arbor, MI, 2000, (no paging). URL: http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:0802388.
- [Noo04] B. Noohi. "FUNDAMENTAL GROUPS OF ALGEBRAIC STACKS". In: Journal of the Institute of Mathematics of Jussieu 3.1 (2004), pp. 69–103. DOI: 10. 1017/S1474748004000039.
- [PTZ20] Valentina Di Proietto, Fabio Tonini, and Lei Zhang. *Drinfeld-Lau descent.* 2020. arXiv: 2012.14075 [math.AG].
- [SW20] Peter Scholze and Jared Weinstein. Berkeley lectures on p-adic geometry. Vol. 207. Annals of Mathematics Studies. Princeton University Press, Princeton, NJ, 2020, pp. x+250. ISBN: 978-0-691-20209-9; 978-0-691-20208-2; 978-0-691-20215-0.

Lei Zhang, Sun Yat-Sen University, School of Mathematics (Zhuhai), Zhuhai, Guangdong, P. R. China

Email address: cumt559@gmail.com