DNA modelling report.

Part 1.

From the protein bank 1 DAU structure was chosen — analog of dickerson-drew DNA dodecamer with 6'-alpha-methyl carbocyclic thymidines, NMR, minimized average structure. It's not a standard DNA due to 'tt' in the sequence as well as not distorted by other molecules. The file with "simple" base-pair and step parameters:

12	12 # base-pairs												
0 # ***local base-pair & step parameters***													
#	Shear	Stretch	Stagger	Buckle	Prop-Tw	Opening	Shift	Slide	Rise	Tilt	Roll	Twist	
C-G	-0.078	-0.057	-0.617	6.703	-28.705	5.498	0.000	0.000	0.000	0.000	0.000	0.000	
G-C	-0.167	0.010	0.474	5.641	-1.098	-1.123	-0.336	-0.032	3.437	-11.921	12.691	34.385	
C-G	0.862	-0.187	0.201	-0.118	-7.451	-2.077	0.065	-0.820	3.443	1.761	4.009	40.563	
G-C	-0.116	0.064	0.180	10.393	5.457	0.092	0.428	-1.045	3.003	-1.376	0.080	24.809	
A-t	0.679	-0.046	-1.003	-11.665	-3.588	-2.333	-0.109	-1.273	3.979	9.365	9.054	40.041	
A-t	0.445	0.044	-0.717	-2.625	1.878	-0.194	0.432	-0.963	3.202	-2.505	0.620	28.676	
t-A	-0.444	0.044	-0.718	2.630	1.901	-0.188	0.000	-1.622	3.286	0.010	1.966	24.841	
t-A	-0.679	-0.046	-1.003	11.663	-3.600	-2.338	-0.432	-0.963	3.202	2.498	0.627	28.671	
C-G	0.117	0.064	0.181	-10.397	5.477	0.085	0.109	-1.273	3.980	-9.368	9.061	40.046	
G-C	-0.863	-0.187	0.202	0.125	-7.440	-2.073	-0.427	-1.045	3.002	1.370	0.070	24.803	
C-G	0.167	0.010	0.474	-5.636	-1.097	-1.116	-0.065	-0.820	3.443	-1.748	4.006	40.562	
G-C	0.079	-0.057	-0.617	-6.694	-28.714	5.484	0.335	-0.032	3.437	11.915	12.694	34.392	

Plot of the values in R:

There are a lot of differences between experimental and model plots. Comparing the coordinate values of the experimental and model structures, twist, shift, roll and propeller coordinates differ most. The reason is also 'tt' addition in structure. Constructed the cgDNA+ model for the sequence (CGCGAAttCG):

Both structures look similar, so the cgDNA+ model prediction is appropriate.

Part 2. Seq1 - AAAAA, seq2 - AACAA, seq3 - AAGAA, seq4 - AATAA.The 2D coordinate plots:

Inter basepair coordinates

Intra basepair coordinates

All sequences are not so far from one another, however some coordinates are affected much. The most affected coordinate, from my point of view, is roll. Both A to G and A to T mutations have an impact on the shape of DNA.

When an A to G mutation occurs, the purine-pyrimidine base pairing in DNA is disrupted, as guanine (G) is a purine and adenine (A) is a pyrimidine. This can cause changes in the local DNA structure, such as altered base stacking, helix geometry, and minor groove width.

Similarly, when an A to T mutation occurs, the base pairing between adenine (A) and thymine (T) is disrupted, leading to changes in local DNA structure. However, since both A and T are pyrimidines, the impact of an A to T mutation may be less pronounced than that of an A to G mutation.

Poly A sequence: A_205 and sequence with change: A_102CA_102

This change disrupts the continuous string of adenine nucleotides in the poly(A) sequence and the shape of new DNA is different.

Generated random sequences:

- 1 tttagtgtca
- 2 gacccaaatt
- 3 tggcctcgtc
- 4 gtggttaatg

I presume that the 2 last seq are the closest in shape.

Inter basepair coordinates

