Happy Ladybugs is a board game having the following properties:

- The board is represented by a string, b, of length n. The i^{th} character of the string, b[i], denotes the i^{th} cell of the board.
 - \circ If $\boldsymbol{b[i]}$ is an underscore (i.e., _), it means the $\boldsymbol{i^{th}}$ cell of the board is empty.
 - \circ If b[i] is an uppercase English alphabetic letter (ascii[A-Z]), it means the i^{th} cell contains a ladybug of color b[i].
 - \circ String **b** will not contain any other characters.
- A ladybug is happy only when its left or right adjacent cell (i.e., $b[i\pm 1]$) is occupied by another ladybug having the same color.
- In a single move, you can move a ladybug from its current position to any empty cell.

Given the values of n and b for g games of Happy Ladybugs, determine if it's possible to make all the ladybugs happy. For each game, print YES on a new line if all the ladybugs can be made happy through some number of moves. Otherwise, print NO.

As an example, $b = [YYR_B_BR]$. You can move the rightmost B and R to make $b = [YYRRBB_]$ and all the ladybugs are happy.

Function Description

Complete the *happyLadybugs* function in the editor below. It should return an array of strings, either 'YES' or 'NO', one for each test string.

happyLadybugs has the following parameters:

b: an array of strings that represents the initial positions and colors of the ladybugs

Input Format

The first line contains an integer g, the number of games.

The next \boldsymbol{q} pairs of lines are in the following format:

- The first line contains an integer n, the number of cells on the board.
- ullet The second line contains a string $oldsymbol{b}$ describing the $oldsymbol{n}$ cells of the board.

Constraints

 $\begin{array}{l} \bullet \ 1 \leq g, n \leq 100 \\ \bullet \ b[i] \in \{_, ascii[A-Z]\} \end{array}$

Output Format

For each game, print YES on a new line if it is possible to make all the ladybugs happy. Otherwise, print No.

Sample Input 0

Sample Output 0

YES NO YES

Explanation 0

The four games of Happy Ladybugs are explained below:

1. Initial board:

Now all the ladybugs are happy, so we print YES on a new line.

- 2. There is no way to make the ladybug having color Y happy, so we print NO on a new line.
- 3. There are no unhappy ladybugs, so we print YES on a new line.
- 4. Move the rightmost B and R to form $b = [BBRRR_]$.

Sample Input 1

5 5 AABBC 7 AABBC_C 1 ___ 10 DD___FQ_QQF 6 AABCBC

Sample Output 1

NO YES YES YES NO