

• *Knight movements*:

- [2, 1]
- [2,-1]
- [-2,1]
- [-2,-1]
- [1,2]
- [1,-2]
- [-1,2]
- [-1,-2]

- Showing a configuration of *K* knight on a N*N board such that no two knights attack each other.
- Constraints:
 - $\forall_{i,j} S_i \neq S_j$ (no two knights are the same)
 - $\forall_{i,j} \ k_i \notin \{k_j + x | x \in Knight \ moves\} (no \ two \ knights \ attack \ each \ other)$

- Each square of the board is given a number based on position
 - index = row * n + column
- Each population is a *sorted* list that shows position of a knight.

	<u>0</u>	<u>1</u>	<u>2</u>	<u>3</u>
<u>0</u>	0	1	2	3
<u>1</u>	4	5	6	7
<u>2</u>	8	9	10	11
<u>3</u>	12	13	14	15

• Examples:

<0,3,5,12,14>

К			К
	К		
К		K	

<0,3>

К		К

<0,3,4,5,7,8,11,12,14,15>

К			К
К	К		К
К			К
К		К	K

• Fitness:

- Low number of Conflicts, high number of knights
- We only count pair of conflicts each conflict once

•
$$f(x) = \begin{cases} k + k_{max}, \ conflict = 0 \\ \frac{k}{conflict}, \ otherwise \end{cases}$$

Crossover

• Single point crossover, on the row

Crossover

- Give each square a number
- Crossover Point = row * n + (n 1)
- Look in each sequence for a lower number and select index before or after that.
- Example:
 - <1, 3, 5, 8, 13, 14>, row = 2
 - -> crossover point = 11
 - *Index* = 5
 - <1, 3, 4, 8> <13, 14>

	<u>0</u>	<u>1</u>	<u>2</u>	<u>3</u>
<u>0</u>	0	1	2	3
<u>1</u>	4	5	6	7
<u>2</u>	8	9	10	11
<u>3</u>	12	13	14	15

Parent Selection

- Stochastic Universal Sampling (sus)
 - Create a scale based on the fitness of each individual (creating the wheel)
 - Partition the scale by the number of selection we want to perform
 - Pointer Scale = F/N
 - r (random start) = [0, Pointer Scale)

Survival Selection

• Tournament Selection

Reverse Selection

- Divide the population based on fitness
- Have at least one example from each subgroup
- Randomly select the other members

Termination Conditions

- Found the answer
 - A board with max number of knights in it
- Evolution steps has ended

- Domination
 - Tried using reverse selection did not get good answer!
 - Number of fitness
 - Percent
- Low improvement

Max Number of Knights

- Max number is $\left\lfloor \frac{n*n}{2} \right\rfloor$
 - Give each row and column a number. $R = \{0, ..., n-1\}$, $C = \{0, ..., n-1\}$
 - Square : $s = \{i, j\}$; $i \in R$, $j \in C$
 - Each Square has a Color $\begin{cases} Black: i\%2 == j\%2 \\ White: i\%2! = j\%2 \end{cases}$
 - Based on the knights movements we can show that knights don't threaten a square with the same color.
 - So coloration of blacks shows that

Max Number of Knights

• We can't have more than $\left\lfloor \frac{n*n}{2} \right\rfloor$