CESHOSS LECET

						*					
TTC Phe>	CAC His>		TCA Ser>	TCT Ser>	240	AAG Lys>	GAA Glu>		AAA Lys>	AAA Lys>	
TTC	AGC Ser	140	ACC Thr	GAG Glu		GAG Glu	CAT His		GAT Asp	380 GAG Glu	
40 CAT CCT TTC His Pro Phe	GGT	~ 1	ACA Thr	GAA Glu		CAT	280 AAA CAT Lys His		TAC Tyr	3 CAC His	
	ATC Ile		CAA Gln	CAC His		AAA Lys	28 AAA Lys		GAG Glu	GAG Glu	
CGT Arg	ATG Met		ACA Thr	180 AAG Lys		CCA Pro	TGC		GAA Glu	AAA Lys	420
TTT Phe	80 CTA Leu		CAC	GAA Glu		${ m TAC}$	CCC Pro	320	CAC His	CCT	
AAC Asn	TCA		TTC Phe	AAA TAC Lys Tyr	220	GAG Glu	AAA Lys	(1)	GAG Glu	AAG Lys	
CAT	GTC Val		TTA Leu	AAA Lys	22	GAA Glu	CAA Gln		AAG Lys	GAA Glu	
GCT Ala	ACT Thr	120	CAT His	TCA Ser		CAT His	AAA Lys		TCG Ser	360 TGG Trp	,
20 ATG Met	AT'T Ile		CGA Arg	GCT Ala		AAA TAT Lys Tyr	260 GAA Glu		GAA Glu	AAA Lys	
ACC Thr	CTC		GCG GCT Ala Ala	160 CAA TTG Gln Leu		AAA Lys	2 GAG Glu		CGC Arg	CCC	0
TTA	TTA Leu		GCG	160 CAA T Gln Le		CCA Pro	AAG Lys		TCA Ser	TTC	400
${ m TGG}$	60 CTT Leu		TCA	CCA		CAG Gln	\mathtt{TAC}	300	GAG Glu	GAT Asp	
ATT Ile	CAA Gln		TCG Ser	CTG	00:	AAA Lys	ATG Met		CAC His	CCC Pro	
TCT Ser	TTC	0(*	GTC Val		(1)	$ extstyle{T}$	GAA Glu		\mathtt{TAC}	io AAA Lys	
CTT Leu	CTT Leu	1(ACC Thr	TCA Ser		GAA Glu	CCT		GAG Glu	34 GAA Glu	
TCT	TTC	100		GAG Glu	200	$ ext{TAC} ext{TY} ext{T}$	GAA Glu		TAC		

FIGURE 1A

GAA TAT CCG AAA ATA CCC GAG TAC AAG GAC AAA CAA GAT Glu Tyr Pro Lys Ile Pro Glu Tyr Lys Asp Lys Gln Asp> Glu Val GAA GTC CAC His

Ser> 480 TCG TCA CAC GAA Ser His Glu GAG AAT AAG AAA CAT AAA GAT GAA GAG TGC CAG GAG Glu Asn Lys Lys His Lys Asp Glu Glu Cys Gln Glu 460 440

520 200

GAA AAA CCC GAT GAA CAC GAG

TTC CCC AAA TGG Phe Pro Lys Trp> Lys Glu Lys Pro Asp GAG TAC GAG AAA Glu Tyr Glu Lys Glu Glu His AAA Lys

260 AAA 540 GAA AAG CCT

GGG CAC GAG AAA CAT AAA GCC GAA TAT CCG AAA ATA Gly His Glu Lys His Lys Ala Glu Tyr Pro Lys Ile>

620 009 Glu Lys Pro Lys 580

His Glu> GAA CAT AAA CAT GAG Glu Cys Lys Glu Lys Leu Asp Glu Asp Lys Glu His Lys AAG GAA AAA CTA GAT GAG GAT GAG TGC AAG Pro CCI

Glu Lys Glu Glu Glu Lys Lys Pro Glu Lys Gly Ile> CCT GAG AAA GGC ATA 099 CCA AAG CAT GAA AAA GAA GAG GAG AAA 640 Pro Lys His TTC

720 700 680

Tyr> TAC GGT TAA AAT GCC TGA ATG GCC GAA GTC CAT GTT Gly *** Asn Ala *** Met Ala Glu Val His Val CCC TGA GTG Pro *** Val Val

GAG CAC TAA GCC TTA AGC CAT ATG ACA CTG GTG CAT Glu His *** Ala Leu Ser His Met Thr Leu Val His 740 Leu CIC GTC TGG Ser TCA

800 780

FIGURE 1B

DESELLE . LESSAF

GTT	Val>
ATT	Ile
TAT	Tyr
AAT	Asn
${ m TGT}$	Cys
TAT	Tyr
GGA	G1y
ATG	Met
TTC	Phe
AAT	Asn
AGT	Ser
TGC	Cys
TCA	Ser
TCA	Ser
CCA	Pro
GTG	Val

	TGA	∧ ***	
860	CCA	Pro	
ω	CAT	His	
	ATT	$_{\rm Ile}$	
	$^{\mathrm{TGC}}$	Cys	
	GTG	Val	
	TGT		
	ATG	Met	
840	GAA	Glu	
	$^{\mathrm{TGG}}$	Trp	
	GAG	Glu	
	GGT	G1y	
	GAT	Asp	
	AAA	Lys	
820	AAA	Lys	
82	AAT	Asn	

GCA ATG CTG AAT CTC TTT GCA TGC ATA GAG ATT CTG AAT GGT TAT AGT Ala Met Leu Asn Leu Phe Ala Cys Ile Glu Ile Leu Asn Gly Tyr Ser> 900 880

920 940 ... TTA TGT TGT TCT AGT GAA ATT AAT TTT GAA TGT TGT ATG Leu Cys Tyr Ile Val Cys Ser Ser Glu Ile Asn Phe Glu Cys Met>

TAA TGT T *** Cys Xxx>

60 ACTAGTGGAT	, 120	GAAGCTTACT	180 TCAATACACT	240	AGCTAAAAAA	300	AGCTAACCAT	360 AAGATTTTAG	420-	GTTTGAAACA	480 ACACTGAGCT	540	GACCGGGCGG	009	TTTTAAACT
20 ACTAAAGGGA ACAAAAGCTG GAGCTCCACC GCGGTGGCGG CCGCTCTAGA ACTAGTGGAT		CCCCCGTGGA CTAAACAAAA CATGGGAAGA TTTGCTGTAA AAAAATAAAA GAAGCTTACT	180 TATACAAAAG ACTCAATGAA AAACAATAAC TCAATACACT		CTTTATATAG GCTGAAACTA CAACAACTTT AGCTAAAAA		CTAATAGCAA AATCACAATC AGATATTAAA CCATGATTTT AGCTAACCAT	360 TGATATGCCC AAGATTTTAG		GCCACTAACC GATTTGGTGG TGAACTTTAA CATGTCATGC ATTTGTAACT GTTTGAAACA	480 TATATGAACT GTTTGATTAG GTTGAGTTAC ACACTGAGCT		TGTAAGCTCA CTCAAATTTT TCTAATTTCT AAGGTGATCA GCAAACTTAG GACCGGGCGG	. •	
40 GCGGTGGCGG	100	TTTGCTGTAA	160 ACTCAATGAA	220	GCTGAAACTA	280	AGATATTAAA	340 TTTCATCTGC	400	CATGTCATGC	460 GTTTGATTAG	520	AAGGTGATCA	580	AATAAATAAG
GAGCTCCACC		CATGGGAAGA					AATCACAATC	AATTTGAATA		TGAACTTTAA	TATATGAACT		TCTAATTTCT		TTTTCTAGTT
20 ACAAAAGCTG	80	CTAAACAAAA	140 CAATAACACT TTGTGAATTG	200	TTTTTTCACT GATTTACATC	260	CTAATAGCAA	320 TTAACAACTT TATTGAAACT AATTTGAATA	380	GATTTGGTGG	440 AGTTTTTTGC ATTATTTTAC	500	CTCAAATTTT	260	CTCGGATTGA TTTTCTAGTT AATAAATAAG ACGATTTATG
ACTAAAGGGA		CCCCCGTGGA	CAATAACACT		TTTTTTCACT		ATAGGATAAC	TTAACAACTT		GCCACTAACC	AGTTTTTTGC		TGTAAGCTCA		CGTACGAGAG

DESETT COLUMN

									*							
660 TTATTTGCTT	720	ACAAACTAAG	780 TAATCATTTA	840	TAAAAATTGG	006	GGGCGATATC	960 GGCTCATTTT	1020	ATTTTGTAAA	1080 CTTTTGTGTG	1140	GGCATGTGAC	1200	TCTGTTCTAC	1260
TTTTGTTTT		ATATGTTTTT	CAAAATAAAG		AATTTTAACG AGTATTTTCC		ATATGTTACA	AGGGCGAGTG		AAGGTCAAAG	ATGTTTTTT		CAATTCTTAT		ATCTGATGCA	
640 TGGGACTTTA	700	CTGCAAAATT	760 TTTTTCGCTG	820		880	ACACATGTTT	940 GGAGTGTTAC	1000	TTGCATATTC	1060 TTAACGAAAT	1120	TGTTTTATTC	1180	таттаттба	1240
TGTAACTGTT		TATTTTAAA	TAACTTAGAA		АТАААТАААТ	-	GTATGTCAAA	GGCGGGGTTT		GAGTTTTAGA	GATTGTCCGA	-	GTATATAGTA		ATTGATTTGT	
620 TTTTGGACTA	680	TAGTAATTAT	740 CAAAATTCCA	800	CTGTAATAAA	860	ACCAAAATTA	920 ATAACATCTA	980	AGTTAGGGCC	1040 TGATATGTAT	1100	CGTGTGATAA	1160	TTCTAATTAA	1220
ATTATGGACT		$ ext{TTTTGGATT}$	TCACAGTTTT		AGTGTTTTT		AAATTGATTT	GTCTAGGCAA		GAGTAAGTAT	CTTCGATGAA		TGTTTTATCT		ATTGTGGCTA	

CESUST. CEUSED

										•						
GTTTAACATG	1320	GGGATGATAT	1380 AACCACATAT	1440	TTCTGGAAAT	1500	GGATGGACGA	1560 GAAAAAATT	1620	AATTTTGGTC	1680 TTATTACATT ATATGTGTTT	1740	ATCATTTCAG	1800	TCTCACATCA	1860 GACTAATTTT
ACGATTGCAA		ACATGGGGTT	CTGGTGGTTT		CCCATATCTG		GGTGTGTTTT	GGAAATTTTC		ATGCATTCTC			СААТТАТТТА		GGATTGGTTT	TGGACTGTCT
TGTTAAAGAT	1300	CTTGCATGCT ATGTCACATT ACATGGGGTT	1360 AGTTTAATGA TTTGCACTAT	1420	CGGTTATGGT GGCTCGACCG CCCATATCTG	1480	ATTGTCTACA ATTATTTGTT	1540 GTGTGTTGCG GAGTTGGGTA	1600	TTTTCTGAAA AATATTGCAT TAACATAATC ATGCATTCTC AATTTTGGTC	1660 CCTGAȚCTGT	1720	TAAGTCAAAC ATTGAGATTC ATAGCTCACC CAATTATTA	1780	GACTTAGGAT TGGATGGCGT TCAGGAGCTT GGATTGGTTT	1840 AATTAAAATT TATGGACTTT
TACTGCTTTC										AATATTGCAT	TCTATGATAT		ATTGAGATTC	·	TGGATGGCGT	
AAAGCATGGA ATCTCATGCC TACTGCTTTC TGTTAAAGAT ACGATTGCAA GTTTAACATG	1280	TGATTTTGTC	1340 AAGTTTTGAC	1400	ATCTTGACTG	1460	TTATCTGTGA CTCTGGTGGC	1520 GTCGTGGGGA ACTCTATTTG	1580		1640 TATAAAATTC	1700		1760		1820 AATAATTATT
AAAGCATGGA		CTTACTATTT	GGTAAGGAGG		TTGTTATGGC		TTATCTGTGA	GTCGTGGGGA		TGCATTGTGT	AATTGAACGT		ATGCTTGAGT		GCAATCTGCA	TATTTTATTA

Figure 2C

OBSUPPE SECTIONS

									•						
1920	TTAAATATTC	1980 TTTTTCAAAA TTGAAACGTT	2040	GTTTTTTAGA AAGATTAAAT	2100	TTTGAACATA	2160 TCTTTTTGT	2220	CTTTAAGTAG	2280 AGTTTGCTGT GCTACAGTAG	2340	CTACAACTTT	2400	ATTTATTACG	2460 TTCAATTCAG
	GATAATTATT	TTTTTCAAAA				AATGTATGTT	2160 AATATCTTCT TCTTTTTGT		TTGGGGAGCA AATAATCTAG	AGTTTGCTGT		AGGGTCGAAT		ATCTATAATA ATTTATTACG	TATAAGTCAG
1900	TTTTGGTTTT GGGTTTTTTTTTTTTTTTTTTTTTTTT	1960 GTTCGAATTT	2020	TACTACTGCA AATTCAGAAT AAGTGAATTT	2080	GGTGGAAAGT	2140 TTTTCTAGGG AATAAACGGA	2200		2260 TTCTAGGCTG	2320	ACATGACGTC	2380	TCAAGTTCCG	2460 TTATATCATC CTATTATAAA TATAAGTCAG TTCAATTCAG
	GGGTTTTGTT	TGAAAAGGAT		AATTCAGAAT		AGTTTGATTT	TTTTCTAGGG		AAACAACGTT	TGGTCATAAC		TGACAAAACG	ŕ	TATGGTTGAT	TTATATCATC
1880	TTTTGGTTTT	1940 TTCTGTTATT	2000	TACTACTGCA	2060	AAGTTAGTAT TACGATTTTT AGTTTGATTT GGTGGAAAGT AATGTATGTT TTTGAACATA	2120 ATTATTTGAC AATAATTAAG	2180	AAAATTACTA ATGCAAGAAC AAACAACGTT	2240 TCAGTGTAAC TCTCAAAATC	2300	TAAGTCTATA GAAACTTACC TGACAAAACG ACATGACGTC AGGGTCGAAT	2360	TCCTTTTTCT TCAATTAACA TATGGTTGAT TCAAGTTCCG	2420 TTCAATTACC
	CAGAATTTTA	TGCATAATTT		TAAGAATTTT		AAGTTAGTAT	ATTATTTGAC		AAAATTACTA	TCAGTGTAAC		TAAGTCTATA		TCCTTTTTCT	2420 ATTTATCAAT TTCAATTACC

Figure 2D

osostose lacaz

										<						
2520	ATTCCCTAAA ACCGAAATAG	2580 CCTTTTATAA	2640	ACACTTTAGT	2700	CATCTAAGCA	2760 TGAGTCTTCA	2820	GAACAACAAA	2880 TTGCAAACGG	2940	ACATATAATA	3000	ACGTAAAGTA	3060 TCAAAGTTTG	3120
	ATTCCCTAAA	TCAATTTCAT		TGAAATATT		TCATTTTTCA	ATCAAGCTTT		TTATCAATTT	TTTCTTTTG		TTATGTTTTA		GTGGGGAGAT	CCAAGAGTGA	
2500	TATTAAATTT	2560 CAATCCGATT	2620	AAATTAATTT	2680	ATTTTCACTT TAGAAATTAA	2740 GATTAGTTAG	2800	TTAAAATCAT	2860 GCTTCTTTTG	2920	ТАТТТТТТТ	2980	GAATGTGACA	3040 GCTGGTCTAC	3100
	TTTTGAATTT	TTTCATTTT		CATAAATTTC		ATTTTCACTT	CAAATTTCAT		AAAAACAAAC	CTTAAAAATG		AGATTGACCA	-	ATACTTTGGT	CAAGCAGTTG	
2480	TTCCCAAAAA	2540 CAAATTTAAG	2600	TCTATAATTA	2660	AAAACTATAA	2720 CCAAATGACA	2780	ATTACAAAAA	2840 ATGCTAAGAG	2900	AGGGAAATGA	2960	AATCATAATT	3020 ATACTTTTTG	3080
	TTTTCGAAAG	TTATATCTTT		CTCTCTRTTA		CCCTAAGTTC	TCAAATTTTAA		AAACATAAAA	GCTTGGCCGA		TGGAGAGAAG	·	TTAATAATTT	TTTTAACATT	

Figure 2E

CESELOS LECENTES

_		_	.4	_	• .		_		•	_	•	_			
	3180 GGCCTGGTCA CACACAAAA	3240	TATTTTAAAA	3300	ATTTCGTAAC	3360 CATAATATTA	3420	ATTTTTCAA	3480 CTCATGTTAT	3540	TATTAATTCT	3600	TGATTTATA	3660 TTTATGGAAA	3720
	GGCCTGGTCA		TGTAATATTA		CCATACTATA	AAATTACAAG		AATTTAGTCT	GTTGAAACAA		TTTATTAGTA		ATTTTAACTA	TTATCATAAT	
	3160 AAAATAAGGT	3220	TATTACGGAA TGTAATATTA	3280	TTGGAGCATT CCATACTATA ATTTCGTAAC	3340 AATTAACTTT AAATTACAAG	3400	TATTTTAATT AATTTAGTCT ATTTTTCAA	3460 TTTCCTTAAT	3520	ATATTTACCT TGATGATTTA	3580	TCCACTAAAT ATTTTAACTA	3640 TTTACTTATT AATACATAAT	3700
	AAATGAAATT		TTGAATTTTA		TCTTAATATT	TATAAAGTGT		ТТАТТТСТАТ	АААААТААТТ		ATATTTACCT	•	ACAATCGCTT	TTTACTTATT	
	3140 AATAATGTTA	3200	TGTTGGTTGG	3260	TTATTTAGAT	3320 ATAATATTAA AATATAGTAA	3380	CAATTAATTT	3440 AAATCTAAAT	3500	TATAAGTATT	3560	ATGGTGGGAT	3620 ATTTATTTCA ACATCGTATA	3680
	CTGCTCACAG		AAAAAACTAA		TAAAATTATG	ATAATATTAA		AATTTTGAAT	AATAAAATTT		ACTTCAAAAT		GATTATAATT	ATTTATTTCA	

Figure 2F

DESCRIPTION TO THE PROPERTY OF THE PROPERTY OF

GAAAAAATG
AGACAATTTA
TCTATAACAA A
GAGAACAAAT
GAAACATTAA
TTGAGACCAA

3780 AAATGAACTA	3840	ATAATTTTAT
AATTCAAATC		TTACATTCCC
3760 CAAACACAAA	3820	ACTTGTAATC
TACTCTTAAC		GGAACATCTT
3780 TACTTTTAGG TAATTTTAAG TACTCTTAAC CAAACACAAA AATTCAAATC AAATGAACTA	3800	TATAACATAC
TACTTTTAGG		AATAAGATAA TATAACATAC GGAACATCTT ACTTGTAATC TTACATTCCC ATAATTTTAT

3900	*
3880	
3860	

ATCTAAATAA
AAT AATCTTATAT TACTCGAACT AAATGTTGTC ACAAATTATT ATCTAAA
AAATGTTGTC
TACTCGAACT
ААТСТТАТАТ
TATGAAAAT

3960	ATTTTGTATA
	GAAAGATTAT
3940	TCATATATTT
	TAACATTTTT
3920	TTAATTTTTA
	AGAAAAACAC TTAATTTTTA TAACATTTTT TCATATTTT GAAAGATTAT

4020	ACCATAAGTC	
	ACATAATCCC	
4000	CACCTTCTTA	•
	ATAGATTGAG	
3980	AATATTTGAC	0
	TITACGIAAA AAIAITIGAC AIAGAITGAG CACCITCITA ACAIAAICCC ACCAIAAGIC	

	•
4080	STATGTAG ATGAGAAATT GGTACAAACA ACGTGGGGCC AAATCCCACC AAACCATCTC
	AAATCCCACC
4060	ACGTGGGGCC
	GGTACAAACA
4040	ATGAGAAATT
	AAGTATGTAG

•			
		TCATTCTCTC CTATAAAAGG CTTGCTACAC ATAGACAACA ATCCACACA C AAA TAC	TDA 21111
	4120	ATAGACAACA ATG	
		CTTGCTACAC	
	4100	CTATAAAAGG	
		TCATTCTCTC	

4140 ACG TTC TTT TCT TTC TAT TTG ATT AAC CAT GGC TCA TAG CAT TCG TCA <Arg Glu Lys Arg Glu Ile Gln Asn Val Met Ala *** Leu Met Arg ***

4200 4220

CCC TTT CTT CCT TTT CCA ACT TTT ACT CAT AAG TGT CTC ACT AGT GAC <Gly Lys Lys Arg Lys Trp Ser Lys Ser Met Leu Thr Glu Ser Thr Val

CETOEL COCHECE

4280 TTT ATT CGA GAC ACA Lys Asn Ser Val Cys	4320 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AGC CAA AGT ATC ACG Ala Leu Thr Asp Arg	4420	AAA AGG AGG AAA AAC Phe Pro Pro Phe Val	4460 ACG AGT CAC ACG AAT CAA Arg Thr Val Arg Ile Leu	4520	TCGACGAA TTCCCCCGGG	4580 GAATCATATG ACACTGGTGC	4640	TATATCGTAA TATATAGTTA ATAAAAAGA	4700	TCCATGCACT AATGGTGAAT CTCTTTGCAT
4260 TTC GGC AGC GGC TCG ACG Glu Ala Ala Arg Arg	4300 * GCT CCC ACA ATT GGC TTC Ser Gly Cys Asn Ala Glu	4360 AAA AGC CAG AAT ACA AAC Phe Ala Leu Ile Cys Val	4400	TTG AGA AGC CTG AAA TGC Gln Ser Ala Gln Phe Ala	0 AGC ATG AAG AGT ACC Ala His Leu Thr Gly	4500	ACG AGA AAG AAA ATC Arg Ser Leu Phe Asp	4560 AT CTTCGGGCCC GTCGAGCCTT	00 . 4620	ATCATGCAGT AATTTCATGG TATATCGTAA	4680	TGTGCATTCC
4240 CGG TAG CCA CAC TGT <pre></pre>	AGC AAC CTC ATC AGA <ala asp="" glu="" ser<="" td="" val=""><td>4340 GAG AGT CTG AAT ACG <leu arg<="" gln="" ile="" td="" thr=""><td>4380</td><td>AAG AGT ACT CAA AAC <leu leu="" ser="" td="" thr="" val<=""><td>4440 AAA AAC CCT GCA AAC A <phe a<="" arg="" cys="" td="" val=""><td>4480</td><td>AGG AGC AAA AAG AGT <pro ala="" leu="" phe="" td="" thr<=""><td>4540 CGTCGACGGC TAGCGAAGAT</td><td>4600</td><td>ATGTGCCATC ATCATGCA(</td><td>4660</td><td>TGGTGATTGG GAAATGTGTG</td></pro></td></phe></td></leu></td></leu></td></ala>	4340 GAG AGT CTG AAT ACG <leu arg<="" gln="" ile="" td="" thr=""><td>4380</td><td>AAG AGT ACT CAA AAC <leu leu="" ser="" td="" thr="" val<=""><td>4440 AAA AAC CCT GCA AAC A <phe a<="" arg="" cys="" td="" val=""><td>4480</td><td>AGG AGC AAA AAG AGT <pro ala="" leu="" phe="" td="" thr<=""><td>4540 CGTCGACGGC TAGCGAAGAT</td><td>4600</td><td>ATGTGCCATC ATCATGCA(</td><td>4660</td><td>TGGTGATTGG GAAATGTGTG</td></pro></td></phe></td></leu></td></leu>	4380	AAG AGT ACT CAA AAC <leu leu="" ser="" td="" thr="" val<=""><td>4440 AAA AAC CCT GCA AAC A <phe a<="" arg="" cys="" td="" val=""><td>4480</td><td>AGG AGC AAA AAG AGT <pro ala="" leu="" phe="" td="" thr<=""><td>4540 CGTCGACGGC TAGCGAAGAT</td><td>4600</td><td>ATGTGCCATC ATCATGCA(</td><td>4660</td><td>TGGTGATTGG GAAATGTGTG</td></pro></td></phe></td></leu>	4440 AAA AAC CCT GCA AAC A <phe a<="" arg="" cys="" td="" val=""><td>4480</td><td>AGG AGC AAA AAG AGT <pro ala="" leu="" phe="" td="" thr<=""><td>4540 CGTCGACGGC TAGCGAAGAT</td><td>4600</td><td>ATGTGCCATC ATCATGCA(</td><td>4660</td><td>TGGTGATTGG GAAATGTGTG</td></pro></td></phe>	4480	AGG AGC AAA AAG AGT <pro ala="" leu="" phe="" td="" thr<=""><td>4540 CGTCGACGGC TAGCGAAGAT</td><td>4600</td><td>ATGTGCCATC ATCATGCA(</td><td>4660</td><td>TGGTGATTGG GAAATGTGTG</td></pro>	4540 CGTCGACGGC TAGCGAAGAT	4600	ATGTGCCATC ATCATGCA(4660	TGGTGATTGG GAAATGTGTG

Figure 2H

cacatos...ecar

									•						
4760 ATGTTGTAGT GAAATTAATT	4820	TATGTATTTT	4880 TGATCATTAT ACTCTTCTAC	4940	ATGTATAAAT	2000	GTTATTGATG	5060 CAAATAATTA	5120	ATAGCAAATA	5180 GGTCTAACCT	5240	CATATTATTA GAACTCTTTT	5300	CTTAACTAAA
		TATGTTATGT	TGATCATTAT		AAGTTAAGAC		ATCTTAGTAT	ТАААТААТАА		АТААААТААА	ACTGAAATAG		САТАТТАТТА		TATTAATTAT
4740 TATAGTTTAT GTTATAGTGT	4800	TGGCTTGATT	4860 ATTGTTAATT TAACATTGCT	4920	AACTTTTTAC	4980	AATGTTAGCT	5060 AATTCCACTT AAAATTTTAA TAAATAATAA CAAATAATTA	5100	AATGAAATAA	5180 TAATATGTAC CATATTCTTA ACTGAAATAG GGTCTAACCT	5220	TTATACCTAC	5280	TTAATTAAAC
TATAGTTTAT		TAACATCACT	ATTGTTAATT		GTTTTGTTTA		GTTTTAGTTC	AATTCCACTT		TGCAACAAAA	TAATATGTAC	•	TTAAATATTT		TTATACCAAT
4720 ACATAGAAAT TCTAAATGGT	4780	TATCTAATGT TAACATCACT TGGCTTGATT TATGTTATGT	4840 ACTTTAATGA TATTGCATGT	4900	TATTAATTAT AAATGGCACT GTTTTGTTTA AACTTTAC AAGTTAAGAC ATGTATAAAT	4960	ATATGACAAT ATAATTACAG GTTTTAGTTC AATGTTAGCT ATCTTAGTAT GTTATTGATG	5020 ATCTTAATTA CATTTAAACA	5080	TTGTAATATA ATACATTAAA TGCAACAAAA AATGAAATAA ATAAAATAAA	5140 TATTGTAATA	5200	ATAATCCCTA AAATTTCAGT	5260	TAAATATATT AAAATTTTAA TTATACCAAT TTAATTAA
ACATAGAAAT		TTAAATGTTG	ACTTTAATGA		TATTAATTAT		ATATGACAAT	ATCTTAATTA		TTGTAATATA	ATTGTTATAA		ATAATCCCTA		TAAATATATT

Figure 21

CECLER. CECHESE

ATCTAAAATT	5320 5340 ATCTAAAATT TTATTAACC TATTAATAAA TTCCTAATTA TCTTATCTAA TTTAAAACTC	ТАТТААТААА	5340 TTCCTAATTA	ТСТТАТСТАА	5360 TTTAAAACTC	
	5380		5400		5420	
TAATTATCCT	TAATTATCCT AATTTAATTT AAATTCTTAA TTATCTTAAT TTGTAACCTC CTCCACCCAG	AAATTCTTAA	TTATCTTAAT	TTGTAACCTC	CTCCACCCAG	
СТАGАТGСТG	5480 CTAGATGCTG GACCCGAATC CGGGAGATTA CATCGGCCAT TGAGATGGCG TGATCAGGGT	CGGGAGATTA	5460 CATCGGCCAT	TGAGATGGCG	5480 TGATCAGGGT	
	5500		5520		5540	
TTGGCGCGCC	TTGGCGCGCC GGTACCCAAT TCGCCCTATA GTGAGTTCGT ATTACGCGCG CTCACTGCGT	TCGCCCTATA	GTGAGTTCGT	ATTACGCGCG	CTCACTGCGT	
CCGGTTT						

DESCHES LECET

									•						
60 CCGCTCTAGG ATCCCCCGTG	, 120	CTCAATAACA	180 CTTTTTTCA	240	AAATAGGATA	300	ATTTAACAAC	360 CCAAGATTTT AGGCCACTAA	420	CTGTTTGAAA CAAGTTTTTT	480 CTTGTAAGCT	540	GGCGTACGAG	009	TGTTTTTAAA CTATTATGGA
CCGCTCTAGG		AAGAAGCTTA	ACTCAATACA		TTAGCTAAAA		TTAGCTAACC			CTGTTTGAAA	ACACACTGAG		AGGACCGGGC	a see	TGTTTTAAA
40 GAGCTCCACC GCGGTGGCGG	100	AAAAAATAA	160 AAAAACAATA	220	TACAACAACT	280	AACCATGATT	340 TATITICATCT GCTGATATGC	400	GCATTTGTAA	460 AGGTTGAGTT	520	CAGCAAACTT	580	AGACGATTTA
GAGCTCCACC		GATTTGCTGT	AGACTCAATG		AGGCTGAAAC		TCAGATATTA			AACATGTCAT	460 CTGTTTGATT AGGTTGAGTT ACACACTGAG	•	CTAAGGTGAT		ТГААТАААТА
20 ACTAAAGGGA ACAAAAGCTG	80	GACTAAACAA AACATGGGAA GATTTGCTGT AAAAAAATAA AAGAAGCTTA	140 CTTTGTGAAT TGTATACAAA AGACTCAATG AAAAACAATA ACTCAATACA	200	CTGATTTACA TCCTTTATAT AGGCTGAAAC TACAACAACT TTAGCTAAAA AAATAGGATA	260	ACCTAATAGC AAAATCACAA TCAGATATTA AACCATGATT TTAGCTAACC ATTTAACAAC	320 TTTATTGAAA CTAATTTGAA	380	CCGATTTGGT GGTGAACTTT AACATGTCAT GCATTTGTAA	440 GCATTATTTT ACTATATGAA	500	CACTCAAATT TTTCTAATTT CTAAGGTGAT CAGCAAACTT AGGACCGGGC GGCGTACGAG	260	AGCTCGGATT GATTTTCTAG TTAATAAATA AGACGATTTA
ACTAAAGGGA		GACTAAACAA	CTTTGTGAAT		CTGATTTACA		ACCTAATAGC	TTTATTGAAA		CCGATTTGGT	GCATTATTTT		CACTCAAATT		AGCTCGGATT

Figure 3A

									•							
660 TTTTTTTGGA	720	AGTCACAGTT	780 TAAGTGTTTT	840	GGAAATTGAT	006	TCGTCTAGGC	960 TTGAGTAAGT	1020	AACTTCGATG	1080 TGTGTTTTAT	1140	ACATTGTGGC	1200	CATCTGTTCT ACAAAGCATG	1260
TTTTATTTGC		TTACAAACTA	AGTAATCATT		CGAGTATTTT CCTAAAAATT		CAGGGCGATA	TGGGCTCATT		AGATTTTGTA	TTCTTTTGTG		ATGGCATGTG		CATCTGTTCT	
640 TATTTTGTT	7007	TTATATGTTT	760 TGCAAAATAA	820		880	ттататстта	940 ACAGGGCGAG	1000	TCAAGGTCAA	1060 ATATGTTTTT	1120	TCCAATTCTT	1180	AAATCTGATG	1240
TTTGGGACTT		AACTGCAAAA	AATTTTTCGC		ATAATTTTAA		AAACACATGT	TTGGAGTGTT		GATTGCATAT	GATTAACGAA	÷	TATGTTTTAT		GTTATTATTG	
620 TATGTAACTG	680	ATTATTTTTA	740 CATAACTTAG	800	AAATAAATAA	860	TAGTATGTCA	920 TAGGCGGGGT	980	CCGAGTTTTA	1040 ATGATTGTCC	1100	AAGTATATAG	1160	AAATTGATTT	1220
CTTTTTGGAC		TTTAGTAATT	TTCAAAATTC		TTCTGTAATA		TTACCAAAAT	AAATAACATC		ATAGTTAGGG	AATGATATGT		CTCGTGTGAT		TATTCTAATT	

Figure 3B

ZEEDEL CECHECE

										•						
TGCTTACTAT	1320	ATGGTAAGGA	1380 TTAACCACAT ATTTGTTATG	1440	ATTTATCTGT	1500	riggaigeac gagicgiege	1560 TCGAAAAAA TTTGCATTGT	1620	TCAATTGAAC	1680 TTATGCTTGA	1740	AGGCAATCTG	1800	CATATTTTAT	1860 TTCAGAATTT
AAGTTTAACA		* TCCTTGCATG CTATGTCACA TTACATGGGG TTGGGATGAT ATGGTAAGGA			recegitate elegenceae cecceatate reticiesaa atitatetet					TCAATTTTGG	TTATATGTGT		TAATCATTTC		TTTCTCACAT	CTGACTAATT
ATACGATTGC	1300	* TTACATGGGG	1360 GATTTGCACT ATCTGGTGGT	1420	CGCCCATATC	1480	TTGGTGTGTT	1540 CGGAGTTGGG TAGGAAATTT	1600	TCATGCATTC	1660 GTTTATTACA	1720	CCCAATTATT	1780	TTGGATTGGT	1840 TTTGGACTGT
TCTGTTAAAG		CTATGTCACA	GATTTGCACT		GTGGCTCGAC		CAATTATTTG			ATTAACATAA	ATCCTGATCT		TCATAGCTCA		GTTCAGGAGC	TTTATGGACT
GAATCTCATG CCTACTGCTT TCTGTTAAAG ATACGATTGC AAGTTTAACA TGCTTACTAT	1280		1340 ACAGTTTAAT	1400		1460	GCATTGICIA CAATTAITIG	1520 GAACTCTATT TGGTGTTG	1580	GTTTTTCTGA AAAATATTGC ATTAACATAA TCATGCATTC TCAATTTTGG TCAATTGAAC	1640 GTTATAAAAT TCTCTATGAT ATCCTGATCT GTTTATTACA TTATATGTGT TTATGCTTGA	1700	GTTAAGTCAA ACATTGAGAT TCATAGCTCA CCCAATTATT TAATCATTTC AGGCAATCTG	1760	CAGACTTAGG ATTGGATGGC GTTCAGGAGC TTGGATTGGT TTTCTCACAT CATATTTTAT	1840 TAAATAATTA TTAATTAAAA TYYATGGACT TYYGGACTGT CTGACTAATT TYCAGAATYY
GAATCTCATG	·	TTTGATTTTG	GGAAGTTTTG		GCATCTTGAC		GACTCTGGTG	GAACTCTATT		GTTTTTGTGA	GTTATAAAAT		GTTAAGTCAA		CAGACTTAGG	TAAATAATTA

						•			*						
1920	TCTGCATAAT	1980 TTTAAGAATT	2040	ATAAGTTAGT	2100	TAATTATTTG	2160 GTAAAATTAC	2220	AGCTTTAAGT AGTCAGTGTA	2280 GTGCTACAGT AGTAAGTCTA	2340	TTTTCCTTTTT	2400	CGATTTATCA	2460 AGTTTTCGAA
	TTTTAAATAT	AATTGAAACG		GAAAGATTAA		TTAGTTTGAT TTGGTGGAAA GTAATGTATG TTTTTGAACA	CTTCTTTTT					TCAGGGTCGA ATCTACAACT		ATTCAAGTTC CGATCTATAA TAATTTATTA	2460 AGTTCAATTC AGTTTTCGAA
1900	TAGATAATTA	1960 ATGTTCGAAT TTTTTTCAA	2020	TTGTTTTTA	2080	GTAATGTATG	2140 GAAATATCTT	2200	CAAATAATCT	2260 ACTITCTAGGC TGAGITIGCT	2320	TCAGGGTCGA	2380	CGATCTATAA	2440 AATATAAGTC
	TTGAATTTTT	ATGTTCGAAT		ATAAGTGAAT		TTGGTGGAAA	GGAATAAACG		TTTTGGGGAG	ACTTCTAGGC		CGACATGACG		ATTCAAGTTC	2440 TCCTATTATA AATATAAGTC
1880	TATTITGGTT TIGGGTTTTTG TIGAATTTTT TAGATAATTA TTTTAAATAT TCTGCATAAT	1940 TTTGAAAAGG	2000	TTTACTACTG CAAATTCAGA ATAAGTGAAT TTGTTTTTA GAAAGATTAA ATAAGTTAGT	2060	TTAGTTTGAT	2120 AGTTTTCTAG	2180	ACAAACAACG	2240 TCTGGTCATA	2300	TAGAAACTTA CCTGACAAAA	2360	CATATGGTTG	
	TATTTTGGTT	TTTTCTGTTA		TTTACTACTG		ATTACGATTT	ACAATAATTA		TAATGCAAGA	ACTCTCAAAA		TAGAAACTTA		CTTCAATTAA CATATGGTTG	2420 ATTICAATTA CCTTATATCA

ZETUSI. PUCHBURD

									•	:						
2520	AAACCGAAAT AGTTATATCT	, 2580 r AACTCTCTAT	2640	A GTCCCTAAGT	2700	* CATCAAATTT	2760 CAAAACATAA	2820	AAGCTTGGCC	2880 GGTGGAGAGA	2940	. TATTAATAAT	3000	* TATTTTAACA	3060 TGAGCTGCCT	3120
	AAACCGAAA	ATCCTTTTAT		TTACACTTTA		CACATCTAAG	TTTGAGTCTT		TTGAACAACA	TGTTGCAAAC		TAACATATAA		ATACGTAAAG	GATCAAAGTT	
2500	TTATTCCCTA	2560 TTTCAATTTC	2620	TTTGAAATAT	2680	AATCATTTTT	2740 AGATCAAGCT	2800	АТТТАТСААТ	2860 TGTTTCTTTT	2920	TATTATGTTT	2980	CAGTGGGGAG	3040 ACCCAAGAGT	3100
	TTTATTAAAT	TTCAATCCGA		TCAAATTAAT		TTTAGAAATT	ATGATTAGTT		ACTTAAAATC	TGGCTTCTTT		CATATTTTT	•	GTGAATGTGA	TGGCTGGTCT	
2480	AGTTCCCAAA AATTTTGAAT	2540 AGTTTCATTT	2600	TACATAAATT	2660	AAATTTTCAC	2720 CACAAATTTC	2780	AAAAAAACAA	2840 AGCTTAAAAA	2900	GAAGATTGAC	2960	TTATACTTTG	3020 TGCAAGCAGT	3080
	AGTTCCCAAA	TTCAAATTTA		ТАТСТАТААТ		TCAAAACTAT	AACCAAATGA		AAATTACAAA	GAATGCTAAG		AGAGGGAAAT		TTAATCATAA	TTATACTTTT	

Figure 3E

resolution as desp

									•						
AACTGCTCAC	3180 CACACACA AAAAAAACT	3240	AATAAAATTA	3300	* ACATAATAT	3360 TAAATTTTGA	3420	ААААТААААТ	3480 ATACTTCAAA	3540	CTGATTATAA	3600	AAATTTTATTT	3660 AATTGAGACC	3720
TGTTTAGTTC			AATGTAATAT TATATTTTAA AATAAAATTA		* TTCCATACTA TAATTTCGTA ACATAATAT	AGCATAATAT		CTATTTTTC	AACTCATGTT		TATATTAATT		TATGATTTAT	3660 ATTTTATGGA AATTGAGACC	
* TCAATGAGCC AATTTTTGCC CATAATGGAT AAAGGCAATT TGTTTAGTTC AACTGCTCAC	3160 TTAAAATAAG GTGGCCTGGT	3220		3280		3340 GTAATTAACT TTAAATTACA AGCATAATAT TAAATTTTGA	3400	TTTTTATTTCT ATTATTTTAA TTAATTTTAGT CTATTTTTTC AAAATAAAAT	3480 TTTTTCCTTA ATGTTGAAAC AACTCATGTT ATACTTCAAA	3520	CTTGATGATT TATTTATTAG	3580	ATATTTTAAC TATGATTTAT	3640 TTAATACATA ATTTATCATA	3700
CATAATGGAT			TATATTACGG		TTTTGGAGCA			ATTATTTAA			CTTGATGATT	-	TTTCCACTAA	TTAATACATA	
AATTTTGCC	3140 AGAATAATGT TAAAATGAAA	3200	AATGTTGGTT GGTTGAATTT	3260	ATTCTTAATA	3320 AAAATATAGT AATATAAAGT	3380	TTTTATTTCT	3440 TTAAATCTAA ATAAAATAA	3500	TTATATTTAC	3560	ATACAATCGC	3620 TATTTACTTA	3680
TCAATGAGCC	AGAATAATGT		AATGTTGGTT		TGTTATTTAG	AAAATATAGT		ATCAATTAAT	TTAAATCTAA		ATTATAAGTA		TTATGGTGGG	CAACATCGTA	

Figure 3F

COMPATANT ANDWOV

PACTITITITA
TGT.
T TAGAAAAAA
AAAGACAAT
ATTCTATAAC
AAGAGAACAA
AAGAAACATT

3780 GGTAATTTTA AGTACTCTTA ACCAAACACA AAAATTCAAA TCAAATGAAC TAAATAAGAT	3840
TCAAATGAAC	
3760 AAAATTCAAA	3820
ACCAAACACA	
3740 AGTACTCTTA	3800
GGTAATTTTA	3

3900 AATATAACAT ACGGAACATC TTACTTGTAA TCTTACATTC CCATAATTTT ATTATGAAAA ATAATCTTAT ATTACTCGAA CTAAATGTTG TCACAAATTA TTATCTAAAT AAAGAAAAAC 3880 3860

3960 ACTTAATTTT TATAACATTT TTTCATATAT TTGAAAGATT ATATTTTGTA TATTTACGTA

4020 4000 3980

AAAATATTTG ACATAGATTG AGCACCTTCT TAACATAATC CCACCATAAG TCAAGTATGT

4080 4080 AGATGAGAAA TIGGTACAAA CAACGTGGGG CCAAATCCCA CCAAACCATC TCTCATTCTC

4120

<Ile Cys Thr Arg TCCTATAAAA GGCTTGCTAC ACATAGACAA CAATCCACAC A CA AAT ACA CGT TCT

4140 TTT CTT TCT ATT TGA TTA ACC ATG G CTCATAGCAT TCGTCACCCT TTCTTCCTTT 4160 <Lys Lys Arg Asn Ser *** Gly. His

4220 4200

TCCAACTITIT ACTCATAAGT GTCTCACTAG TGACCGGTAG CCACACTGTT TCGGCAGCGG

Figure 3G

4260

CECS+D99 ... CECS+D97

.									*					
GCTTCAAAAT	AAGTATCACG		AAACCCTGCA	TACGAGAAAG		ATTCGTCGAG		ATGGTATATC	TTCCTCCATG		TTATGTTATA	CACTTGGCTT		AATTTAACAT
* CCCACAATTG	4340 CGAAGAGTCT GAATACGAAA AGCCAGAATA CAAACAGCCA AAGTATCACG	4420	GGAAAAACAA	4480 GCAAAAAGAG	4540	GCCCGGGGGA	4600	CAGTAATTTC	4660 TGTGTGTGCA	4720	TGGTTATAGT	4780 ATGTTAACAT	4840	ATGTATTGTT
CATCAGAGCT	AGCCAGAATA		TGCAAAAGGA	AATCAAAGGA		AGCCGTCGAC		CATCATCATG	TTGGGAAATG		AAATTCTAAA	GTTGTATCTA		ATGATATTGC
CAAGCAACCT	4340 GAATACGAAA	4400	AAGCCTGAAA	4460 GAGTCACACG	4520	GATCTTCGCT	4580	GTGCATGTGC	4640 AAGATGGTGA	4700	GCATACATAG	4760 AATTTTAAAT	4820	ITTTACTTTA
* CTCGACGTTT ATTCGAGACA CAAGCAACCT CATCAGAGCT CCCACAATTG GCTTCAAAAT	CGAAGAGTCT		AAGAGTACTC AAAACTTGAG AAGCCTGAAA TGCAAAAGGA GGAAAAACAA AAACCCTGCA	4480 AACAGCATGA AGAGTACCAC GAGTCACACG AATCAAAGGA GCAAAAAGAG		AAAATCTCGA CGGGCCCGAA GATCTTCGCT AGCCGTCGAC GCCCGGGGGA ATTCGTCGAG		CCTTGAATCA TATGACGCTG GTGCATGTGC CATCATCATG CAGTAATTTC ATGGTATATC	4640 GTAATATATA GTTAATAAA AAGATGGTGA TTGGGAAATG TGTGTGTG		CACTAATGGT GAATCTCTTT GCATACATAG AAATTCTAAA TGGTTATAGT TTATGTTATA	TAGTGAAAKT		ATGTTATGTA
CTCGACGTTT	4320 ACGAAAAGCA	4380	AAGAGTACTC	4440 AACAGCATGA	4500	AAAATCTCGA	4560	CCTTGAATCA	4620 GTAATATATA	4680	CACTAATGGT	4740 GTGTATGTTG TAGTGAAAKT AATTTTAAAT GTTGTATCTA ATGTTAACAT	4800	GATTTATGTT ATGTTATGTA TTTTACTTTA ATGATATTGC ATGTATTGTT AATTTAACAT

Figure 3H

4900

4880

4860

	CACTCTTTTTC
. Rad II II II. II. II. II. II. II. II.	TTATAAATGG
Vent tem H's theff that	CTACTATTAA 1
min that the	TTATACTCTT
	IGCITIGATICA TTATACTCTT CT

ATTAAACTT	4960 3TTTTA GTTTCAAACTTT	5020	* AGCTATCTTA GTATGTTATT GATGATCTTA ATTACATTTA AACAAAAAAAAAA	5080	GCAAC AAAAAATGAA	5140	ATAAATAAA TAAAATAGCA AATAATTGTT ATAATATTGT AATATAATAT	5200	CAGTITTAAAT ATITITITATIA	5260 TTAATTAAT	" Canilhan'."	5320	ATTA ATTAAATTC	5360 SAACTCTAAT TATCCTAATT TGATTTAAAT TCTTAAATT	5440	CGAATCCGGG AGATTAAAAA	5500	GGCATTGAGA TGGCCTAGTA GTGATCAGGG TYTTTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
CACIO	l'T ACAA(ייר) אַ אַ מיר) אַ אַ		T TAAAT		T AATAT.		r cagity	ттаатч			' TAACCT	TGATT	- ,	CGAATC		, , , , , , , , , , , , , , , , , , ,
	CAATA		ATTACATIT	E	TATATACAT TAAATGCAAC		ATAATATTG		CCTAAAATTT	TATTAAAATT			AAATTTTATT	PATCCTAATT		TGCTGGACC		ביגטעוטעולולי
	4940 AAATATATGA	5000	* GATGATCTTA	5060 84747847484		2120	AATAATTGTT	5180	ACCTATAATC	5240 TTTTTAAATA	5300	*	TAAAATCTA A	5360 AACTCTAAT	,5420	CCCAGCTAG A	5480	TGATCAGGG T
	4920 TTACAAGTTA AGACATGTAT AAATATATGA		GTATGTTATT	5040 TTAATAAATA ATAACAAATA ATTTATTGTTA			TAAAATAGCA		CTTAACTGAA ATAGGGTCTA ACCTATAATC CCTAAAATTT	ATTAGAACTC			attatcitaa (ATCTAATTTA A		ACCTCCTCC A		GGCCTAGTA G
	4920 TTACAAGITA	4980	AGCTATCTTA	5040 TTAATAAATA	5100	*	ATAAATAAAA	5160	CTTAACTGAA	5220 CTGCCATATT ATTAGAACTC	5280	TAAACTATA	TERRICATION ALTRICATION CTARARTICA ARAPTITATIT TARCCTATIA	5340 TAATTATCTT ATCTAATTTA	5400	CTTAATTTGT AACCTCCTCC ACCCAGCTAG ATGCTGGACC	5460	GGCATTGAGA T

Figure 31

TGAGTCGT

50	86 :	146	194	242	290	338	386	434	482
ACT GCA AGA TTT ATC AAG TGT GTC ACG GTC GGT GAT Thr Ala Arg Phe Ile Lys Cys Val Thr Val Gly Asp 5	AAA ACT TGT ATG CTC ATT TCA TAT ACC AGC AAT ACT Lys Thr Cys Met Leu Ile Ser Tyr Thr Ser Asn Thr 20	TAT GTT CCA ACA GTA TTT GAT AAC TTT AGT GCC AAT Tyr Val Pro Thr Val Phe Asp Asn Phe Ser Ala Asn 35	GGC AGC ACA GTG AAC CTT GGC CTA TGG GAC ACT GCC Gly Ser Thr Val Asn Leu Gly Leu Trp Asp Thr Ala 55	TAT AAT AGG CTA AGG CCA CTG AGT TAT AGA GGA GCT Tyr Asn Arg Leu Arg Pro Leu Ser Tyr Arg Gly Ala 70	TTG GCC TTT TCT CTT ATA AGC AAG GCC AGT TAT GAA Leu Ala Phe Ser Leu Ile Ser Lys Ala Ser Tyr Glu 90	AAG TGG ATC CCA GAG CTA AGA CAT TAT GCT CAT AAT Lys Trp Ile Pro Glu Leu Arg His Tyr Ala His Asn 100	CTT GTT GGA ACC AAA CTA GAT TTG CGA GAT GAC AAG Leu Val Gly Thr Lys Leu Asp Leu Arg Asp Asp Lys 115	GAT CAC CCT GGA GCA ACA CCA ATA TCA ACA TCT CAG ASP His Pro Gly Ala Thr Pro Ile Ser Thr Ser Gln 135	AAG AAG ATG ATA GGA GCA GTT ACT TAT ATA GAA TGC
ATG AG Met Se 1	G GGG 1 Gly	G GAT r Asp	g gat 1 Asp 50	A GAT u Asp 5	T TTG e Leu	c aaa r Lys	r Grg 1 Val	c ATT u Ile 130	A CTA
AGC ACT Ser Thr									AAG
	r GTG a Val	A ACG o Thr	G GTG 1 Val	A GAA n Glu 65	TG TTT al Phe 80	C TAC e Tyr	A GTT o Val	c CTC e Leu	A GAA
аааааса	GGA GCT Gly Ala 15	TTC CCA Phe Pro	GTG GTG Val Val	GGG CAA Gly Gln	GAT GTG Asp Val 80	AAC ATC Asn Ile 95	GTA CCA Val Pro	CAG TTC Gln Phe	GGA GAA

FIGURE 4A

OSSHOGS LEOSS

	530	578	626	989	746	908	998	910
	H1.2	u ,	U					01
ζXs	ATA Ile	AGG Arg 190		rtta	AACC	rtt	ATGI	
1n (GCA A	AAA AGG Lys Arg 190		TGG	ATC	TTC	ACA	
le G	GCT G Ala A	TGC A	AAA	T T	C AT	ົວ ວ	A TT	
77' I.	GAT G	AAG CCT TGC Lys Pro Cys	CAA	ľŦĠŦ	TAT	raat	IGTC	
r Ty		G.CC S.Pi	CAGI	AGT"	AAAC	rtti	ACA1	AA
T.	TTC Phe 170		TA	AT	S	S	; AA	AA 1
Val	Grr Val	AGA Arg 185	l'TAT	rgcı	AAAC	AGTT	CTAC	AAA?
Ala	GCT Ala	AAG Lys	TCA.	ATC'	AGA	ATA	TCC	AAA
$_{ m G1y}$	AAG Lys	CCA AAG Pro Lys	GG &	TGA	CTP	AGT	TGI	AAA
[]e (GTG	AAA Lys	ratt	ACAC	ATCT	rcgc	ATAA	PACT
Gly Glu Glu Leu Lys Lys Met Ile Gly Ala Val Thr Tyr Ile Glu Cys 145	AAT GTG Asn Val 165	CCA	TGAATATTGG ATCATTATTA CAGTCAAAAA	CAGTTAACAA AAGCTGTTGC AGATAAACAC TGAATCTGCT ATAGTTTGTT TTTGGTTTAC	ATATGTTCCA CGTGAAACTA TGAAGCATCT CTAAGAAAAC CCAAACTATC ATATCAACCC	ATCGATCAAT GAATCGATTT CAATTTTCGC AGTATAAGTT CCTTTTAATC CTTTCTTTTT	ACTTCATTTT ATAACGAATT CTATGGATAA TGTTCCCTAC AAACATGTCA TTACAATGTT	TAATTATAAA TTCCATTCTT CTATTTTACT AAAAAAAA
ıys]	AG 1	CCA (Pro 180	CTT ' Leu	AG.	TG	CA	CT	CT
ys I	AAA ACC CAA CAG Lys Thr Gln Gln	AGG CCA Arg Pro 180	TTC C Phe I 195	TTGC	ACTA	ATTI	AATT	TCT
υ Ή	O H	TTG A Leu A	E G H	CTG	GAA	TCG.	ACG	CAT
Le	Th		GCT	AAG	CGI	GAA	ATA	TTC
Glu 145	AAA Lys	GCT Ala	TGT	:AA	CA	λΑΤ	·	AAA
Glu	TCC Ser 160	GTA Val	ACA Thr	TAA('GT'T('ATC'	CAT	TAT
$_{ m G1y}$	AGC Ser	AAA Lys 175	AGA Arg	CAGI	ATAT	ATCG	ACTT	TAAT

	ACATAAAAA AATTGTACAC ATTTACAAGC CCATATACAA ATAATTATAT AAATATTCAT	ATAATTATA	CCATATACAA	ATTTACAAGC	AATTGTACAC	ACATAAAAA	
	* 009	, er	580		260		
	T TGATATTTTA	AATTTTTAG	TTTGTCGCCA AATTTTTAGT	TCTAATTTTA	TTTTTTTATC	AGTTATATTA	
	540		520	٠	500		
	480 ATTGTGTTTA AATAATTTAC		460 TATAATAAAA	CTTCAAATTT	440 ATATATATAT	GTGTACATAT	
	TATGGTGTGA TCTTCACTTT TGAACTTTGA TAAGTCACCA AACTTTAACA AAGTTTGATT	AACTTTAAC	TAAGTCACCA	TGAACTTTGA	TCTTCACTTT	TATGGTGTGA	
r	420		400		380		
	360 ATAAGTCGAC ATAANCGAAA		340 TTGTATGATG	CATTTTGAGT	320 TCACATATCA	GTCTTTTAAA	
	T GATGTACGAT	TAGGTGTATT	GCTTTGGTGA	TTTTCATCTT AATGTTTGTG		TGGACATGTA	
	300		280		260		
	AGTCTTAACC ATCTTTAATA TTTGTAGATG TAATTTAAAT GAAAGATAAA TACATATTCT	GAAAGATAA	TAATTTAAAT	TTTGTAGATG	ATCTTTAATA	AGTCTTAACC	
	240		220		200		
	180 A TTCAAATTGA	ATAAATTTT	160 ATAATAAATA CATCGTAGAA ATAAATTTTA		140 GTGTTACAAT	GAATTTTCTT	
	T TGGCAATCGA	CCTCTAGGCT	ATTTTGCTTT	GAGCTTTTAT TCATTCTTCT	GAGCTTTTAT	CCTAGTACAA	
	120		100		08		
	60 TTTTAATAAT AAAGCTGACT		40 AATAGTAAAN CCTAACCAAT		20 TTGGATGAGA ACCAATTTTT	TTGGATGAGA	

FIGURE 5/A

CEECLE. FED482

1260	1240	1220
ATTAATTTA CTTATTTTCC	AATAGAAAGG GTCAAATTGT TATTTGATCT AACACGTAGG GATTAATTTA CTTATTTTCC	AATAGAAAGG GTCAAATTGT
1200	1180	1160
SAAATGAAT GTAATTTTTA	ATTCTATCAA TCACGCTAAT TTTTAACAGT AGAAATGAAT	CTATCTGGTT ATTCTATCAA
1140	1120	1100
1080 ATGTTACATG CCACGTATAA	1060 TTTACATTAA AATAAGGTAC A	1040 TATTGTTAAA AGCTGGTCCG
ACTAGATTT TGTCCCATTC	GTACATTAGA TCAAAGAACA AACTAGATTT	TAATAGATAA ATTAATTGTG
1020	1000	086
960 TTTTGTCGCA TCTACTTAAA	940 TTACTAATAG TCATATTGCA T	920 AAAATATAAT GAAAGTCGTT
ATAATTAAG GATTGAATGA	TATACAAAAT ATTTAAATAA AATAATTAAG GATTGAATGA	TTTCTTCTTT TTAATATTTT
006	880	098
TACATAATG AAGTTGATGT	AGTAAGTTCA TGTTTATATT ATACATAATG	AAATGGAAGG GAAATTTGAG
840	. 820	008
780 GTTTTGAAGT TCCAAAAAGA	760 CCATTTTTAT TAACTTCTTG G	740 GTCGTAAACA TAATCACTAA
TTGTAAAGAT GAGTATATAT	TAATTAATAA GGTTAGTTTA T	GATAACATAG GTTAAATGTA
720	700	089
660 TTAGAATTAT TCTACTTTAA	640 AGGATATAAA TATAACTATT T	620 TAAAAATAT ATTTAAATAT

FIGURE 5/B

CESSAC. LESSA

TAAAGAAATA AGTAAAATAT AATTTGAATC TTAATACAAA AACTTTCATG ATACTTTTAT

1320	CATATTTTAC TTATAATTTA ATATTGTGAG AGTAACAAAR TTAAAAAACA TAGAAACACC	1340 TATGGTGTGA CTCATATACA CAGTTAAAAT TTGAATAAAT TTTTTTTTTT	1440	GTCATTAATT CCATCATGGG TTTTTTTTT TCTAGTTAAG CCATAATTAT CAAAATAATC	1500	ATCATTAATC CTATCAATAC CCCGCCCTGC CTCCCTCCCT CAATACTTAA ACCCAACTAA	1540 CACCCAGCAC CAAACGCACT TTAATAGCCA CCTATTTCTA GCCATGTCCT TGCACTTAAA	1620
	TTAAAA	TTGAA		CCATA		CAATAC	GCCATC	
1300	AGTAACAAAR	1360 CAGTTAAAAT	1420	TCTAGTTAAG	1480	CTCCCTCCCT	1540 CCTATTTCTA	1600
	ATATTGTGAG	CTCATATACA		TYPTTTTTTT		CCCGCCCTGC	TTAATAGCCA	
1280	TTATAATTTA	1340 TATGGTGTGA	1400	CCATCATGGG	1460	СТАТСААТАС	1520 CAAACGCACT	1580
	CATATTTAC	AAAAGTTAGT		GTCATTAATT		ATCATTAATC	CACCCAGCAC	

S

GAAAAGTAAA GCTAACCTGC AATCATTCCA TATCGAGGCC TCAACAGATA AAGTTGGTTG

1680 ATGGGTTTGC ACCAAGTTGT TAAAACCCGG CCCTCAACTT CCCTTTTTCTT TTCATCCTCC

AATCAAGATA AGTCCTCAGC AAACAAAAA CCATGGCTCT CGAGCAAGAT CTGGACTAGT

CCACTCCACA CCCTCCAATT TTCTTCATAT GGTTCTATTA TAAGTTCTTT ATAATCACAG

CAGAGCTCTG AATATTGGAT CATTATTACA GTCAAAAACA GTTAACAAAA GCTGTTGCAG

FIGURE 5/C

CEECET CECHBOSC

2460 CTCGAAATAT	2460 TTCAACCCAG CTCGAAATAT	2440 TTTTCCAAA	2440 GTACTITATA TTTTTCCAAA	2420 GACTTAAGCA TGATATTGAC	GACTTAAGCA
* GTTTGAGCTG	CAGAGGTAAT AATGGGCCGG		TGCAGAGGTG ATAATAATCT TAATTTGATG	ATAATAATCT	TGCAGAGGTG
2400		2380	,	2360	
CTTAATTTGA	TAGTCCTAAT	AAATCCTTCA	TTTTCGTGCA ACTATTACAA AAATCCTTCA TAGTCCTAAT CTTAATTTGA		ATTTCTCAAT
2340		2320		2300	
2280 AAATGAATTA	2280 CAAAAACATA AATTTTTGAC AAATTAAAAT AAATGAATTA	2260 AATTTTTGAC		2240 TTTTATTAAA	ATTTCTCAAT
TTAATATTAT TATTATTAT		ACAACAATAT	CAATAATTTA	GATTATTTT	TTGTTAGAAT
2220		2200		2180	
2160 TATTTATAAA	ACTAATTTAT	2140 ACTICAAACT GCTGATTTTT	ACTTCAAACT	2120 ATTTTACTAA GATATTAGTA	ATTTTACTAA
CCATTCTTCT	АТТАТАААТТ	ACAATGTTTA	* TTCCCTACAA ACATGTCATT ACAATGTTTA ATTATAAATT CCATTCTTCT		ATGGATAATG
2100		2080		2060	
TTCATTTTAT AACGAATTCT		TTCTTTTAC	TTTTAATCCT	TATAAGTTCC	ATTTTCGCAG
2040		2020		2000	
1980 CGATCAATGA ATCGATTTCA		1960 ATCAACCCAT	AAACTATCAT	1940 AAGCATCTCT AAGAAAACCC	AAGCATCTCT
ATAAACACTG AATCTGCTAT AGTTTGTTTT TGGTTTACAT ATGTTCCACG TGAAACTATG	ATGTTCCACG	TGGTTTACAT	AGTTTGTTTT	AATCTGCTAT	ATAAACACTG
1920		1900		ORRT	

CECLEL POPABO

										•					
2520	GAGTCTAAAA TTTTGTCCAA TTTAATCCAA GCCCATTTTA AGTTCGTCCA TATTATTTT	2580 TATTTTATAT ATTTTTTATT	2640	TGTTTATATT AGAGTAGTAT	2700	AATGGGTC TTGTGGGCTA	2760 TTTTAAACAG GCTTAATATT	2820	CGAGTCTAGA TTAATAACAC	2880 TGAGCTTAAT TAATATTCCA	2940	GGTTAAAG AGTATGGGAT	3000	TGAGTCAG TATCACATAC	TCTTG
	AG			TG		AA				TG		AA		CI	
2500	GCCCATTTA	2560 AATATTTAAT	2620	ATTATGTTAA	2680	AATAAACTTA AAAATGGGTC	2740 TTAATTCATA	2800	GAAATATCTT	2860 GAAATCATAT	2920	GAGTTACATT	2980	CATCCAAAAA	3040 TGGCATTATT
	TTTAATCCAA	2560 ATTTTATTTT AATATTTAAT		TCATCTTAAC ATTATGTTAA		TTATTTTGTT	2740 AAACTCAAAC TTAATTCATA		TTTTTCGGGT	2860 CAATGAAAAT GAAATCATAT		CAAGCAATTC GAGTTACATT AAGGTTAAAG	•	TCTCTTCAAC	TTATTGAAAT
2480	TTTTGTCCAA	2540 ТААТТТАААА ААТТТАТАТС	2600	TTTTATATAG	2660	TAGTATAGGT	2720 TTAAATGCTC	2780	CTGTTTCAAA TTTTTCGGGT GAAATATCTT	2840 CACAGGTCTA ATTTGATGCT	2900	CTGAAAGGAC	2960	CCGCCAAACC TGCCCCAATG TCTCTTCAAC CATCCAAAAA CTTGAGTCAG	3020 ATTTATTTAT
	GAGTCTAAAA	TAATTTAAAA		TATTGAAAAT		TATATATT	GACTTGGACC		TTTATTTACA	CACAGGTCTA		TTCTTCTTTG		CCGCCAAACC	ATGTACCGNT

FIGURE 5/E

FIGURE 6

TOSSWOSS LEOSS

1080	CTTACAAGTT	AACCATTTTC	CAATCAGCAA TACTCCAAGC		CTCAACCCCT AACCACGCAA	CTCAACCCCT
1020	CCCTCCTACC	GCAATAAAAA	TCAACTTTTG	AAAATAAAAC	TGAAAAAAAG	ACCACCAAGC
960	AATCCCTGTT	AAAACAAAAG	AGTACAGAGG	AACAACCAAA	ACCCAAAAAC	TAAAGGAATC
906	CAAACAAGCC	ACACAGCCTA AAAACAGCAG	ACACAGCCTA	TTTGACAGAG	GTACATCTGT	CACACAATCA
840	AGTTGGCACA	TTATGATTCA AGTGAAAGAA	TTATGATTCA	GGAGGGGGA	ACCTATTTG	TTTTAGGTT
780	CGTGCGCAAA	GGTTTACTTC	CAACTATAGG	TATAAGCAAG	TTTTTTTT	AAAGATAAGG
720	CATGTTTATG	CCTGATTGCC AACCCCAATA ACACGTGTTG TAGGTTTAAC	ACACGTGTTG	AACCCCAATA		GTGTCCGTTG
099	AACAATGCAC	CCGAATTAGA	AAGTCAGAAT	GAACACCTCT	GATTATGATT	CCGTACGCTG
009	TGCGAAGCTA	AAGCTAGGGG	CTTAGTTGAA	GGTCATCGCA	TCACGCAATT	AACCATTGAT
540	ATACGAGAGG	ATTCAACTTA	CACAATAGTA	ATGGTCACAT	TATCTTACTG	AGATTAGTTT
480	GTCATGAGAC	GGTTTAGACC	TATTCACAAG	TGGGATTAAA	GCCCCATTAT	CTATATATTC
420	AATCGTTAAT	TTATTTTGAA ATGTATTAAA AATCGTTAAT	TTATTTGAA	AACATTTTAT	ACAAGAGTTC	CAAATCAATC
360	CCTTGACCGC	GGTGAACAAC	AGGTTTTATG	TATTTCGAGT	TTTGTAGTGT	AAGGCATTTG
300	TACTATTTCA	TTAATTTTGT	TGTTTTATTT	GTATAACTCT	TTTAGATATT	ATTATTATTT
240	TAGGGGTTTT	GGTTAGGGGGT	AGCGAAGAGG	CTAATCCGTT	GCCCGTGACC	TNGTAGTAAT
180	TTGATTGATT	GATTGATTAA	CTTTAATTAT	GTAATTTATA	GACTAAATGT	TCGTATTTAG
120	TCTTGTAAAC	CATTTTAGGA	GTTCTTAAAT	GCCCCTATTT	TTTCAAATTA	TCTAGAGTTG
09	CACCTAAACT	GGGCATTCCA CACGACCATG TGTCCCCTAT TTCCAGGCAT TTTGAGACTT CACCTAAACT	TTCCAGGCAT	TGTCCCCTAT	CACGACCATG	GGGCATTCCA

FIGURE 7A

CEEDS. LEDSTY

TGTTTTTCTT GTGATTAATC CAT ATG GCT AGC TCC ATG TCC CTT AAG CTT GCA 1133 Met Ala Ser Ser Met Ser Leu Lys Leu Ala>	
TGT CTG CTA GTG TTG TGC ATG GTG GTG GGT GCA CCC CTG GCT CAA GGG 1181 Cys Leu Leu Val Leu Cys Met Val Val Gly Ala Pro Leu Ala Gln Gly>	
GAC GTA ACC CGT GCT GAT GGC GTA GTC ACC CTT CCA CGC TGC CTT CCT 1229 Asp Val Thr Arg Ala Asp Gly Val Val Thr Leu Pro Arg Cys Leu Pro>	
TTA TTG ATA GGG AAT GGT AAT GGT GCT GAT GCT GAT GTT GAT GCC CCA 1277 Leu Leu Ile Gly Asn Gly Asn Gly Ala Asp Ala Asp Val Asp Ala Pro>	
GCT TGC TGC GAC ATC GTC AGG GGT CTC TTG AGC TCG CTG CTC TGT GGT 1325 Ala Cys Cys Asp Ile Val Arg Gly Leu Leu Ser Ser Leu Leu Cys Gly>	
GGT GTT TAGGAACCG ATCTAGCTTG AAATCGGGTT CGGATACGGG TGGAGTTTCA 1380	
AATTGGTGTG TTATGGAATC CCAACTTAAT CGTGTTTAGG GGTGGGATCC AATTGTGTGA 1440	
TACATTACAG AGCATGGTTG TGGATTGTTT TCTCATATGT TTTGATTGAC TTGCTTGATA 1500	
CATTGGATGA TTCGATAAGG TGACCGGTTT ACCTGGGTAT CCAACCATCA TCCGATTACT 1560	
TTTTAATAAT TATTTGTTTC TTCTTTATGT TGTCTGTCTT TTTGTTTCTT GATCTATAAC 1620	
ATTATATITG CCCAAATTTT CGCATTTTCC ATATGTAGCT TATATATGTA TATATATT 1680	
CAATAAAGTA TATTGATTTA GCAGATGATT TGTGTATATA TTTAAATCAA ATCAAACATT 1740	
AATGATCATT CACTAGCGTC TTAATCTTGA AAAATTCATC AACGGTTATC CTTTGCAGCA 1800	
TATATAAAAA AAATTGCCAA CCCTATGCTT TTACACCTAA TTCAAGGGAT AACATAAGTC 1860	
GATTAAAACG A 1871	

FIGURE 8

CECCT. SCO+BCBC

																				•																	
LCh, h	88.4	84.2	88.6	86.1	84.1	79.4	87.9	87.9	80.2	84	87.3	938.10	85.28	3.22	88.6-79.4	2.64	A MANAGEMENT AND A STATE OF THE																				
CCH,C	5.51	6.48	5.04	5.01	5.87	7.26	4.05	4.99	4.48	6.92	4.00	59.61	5.45	1.11	7.26-4.00	06.0																				-	
LCh, L	91.84	9.06	92.12	91.75	90.33	88.76	92.76	92.66	92.21	89.9	92.69	1005.62	91.42	1.33	92.76-88.76	1.11																	,				
Lab,b	5.51	6.45	5.04	5.00	5.84	7.14	4.05	4.99	4.42	6.89	4.00	59.33	5.39	1.08	7.14-4.00	0.88	tes e subscribbomatorius com e cabi i																				
Lab,a	0.16	99.0	0.13	0.35	0.61	1.35	0.15	0.19	0.77	0.74	0.19	5.30	0.48	0.38	1.3513	0.31	-													,							
Lab, L	91.84	9.06	92.12	91.75	90.33	88.76	92.76	92.66	92.21	89.9	92.69	1005.62	91.42	1.33	92.76-88.76	1.11																					FIGURE 9
Yxy, y	0.3266	0.3282	0.3257	0.3255	0.3271	0.3293	0.3237	0.3255	0.3241	0.329	0.3236	3.5883	.3262	.0020	0.32933236	.0017		Hunter B	5.42	6.27	4.98	4.94	5.69	6.85	4.03	4.95	4.38	6.65	3.98		58.14	5.29	0.99	6.85-3.98	0.81		
Yxy, x	.3206	.3232	.3197	.3200	.3220	.3258	.3178	.3196	.3194	.3243	.3178	3.5302	.3209	.0026	.38583178	.0021		Hunter a	0.15	99.0	0.13	0.36	0.61	1.35	0.15	0.19	0.78	0.75	0.19		5.32	0.48	0.39	1.3513	0.31		
Yxy, Y	80.35	77.62	80.98	80.16	77.03	73.67	82.43	82.21	81.19	76.11	82.28	874.03	79.46	2.91	82.43-73.67	2.44		Hunter L	89.63	88.10	89.98	89.53	87.76	85.83	90.79	90.67	90.10	87.23	90.70		980.32	89.12	1.65	90.79-85.83	1.37		
Coker 130	-	2	င	4	5	9	7	8	6	10	11	TOTAL	MEAN	S.D.	RANGE	AVER DEV.		Coker 130	-	2	က	4	5	9	7	8	6	10	11		TOTAL	MEAN	S.D.	RANGE	AVER DEV.		

DESELCS LECST

					FIGURE 10				
	¢.								
~·.									
						90.9	6.	-6.35 6.	
						71	10.71	0.69 10.	-
					÷	75	12.75	1.92 12.	
						13.35	13.	2.25 13.	
		•				er B	Hunter B	Hunter a Hunte	
135.2	11.29	53.48	7.97	-8.01	53.48	6	0.3489	.3155 0.348	
		,							
9.98	11.31	90.95	11.29	0.68	90.95	5	0.3375	0.3324 0.337	
82.2	14.44	82.85	14.31	1.97	82.82		0.34	0.34 0.34	0.34
81.3	15.28	82.24	15.11	2.32	82.24		0.35	0.34 0.35	
LCh, h	LCh,C	LCh, L	Lab,b	Lab,a	Lab, L	>	Yxy, y	Yxy, x Yxy,	

LCh, h 82.3 80.4 82.3 98.6 83.3 80.4 79.7 79.5 81.3 80.2 81 14.75 17.79 14.78 15.98 15.99 14.36 16.26 14.64 12.29 15.07 15.17 15.93 13.11 LCh,C 11.92 5.93 9.87 84.18 82.36 81.46 85.56 84.13 84.02 87.09 84.86 93.76 84.46 83.97 83.77 82.51 LCh, L 83.2 14.19 16.03 14.41 12.15 17.63 14.58 14.85 15.04 15.76 15.85 Lab,b 15.84 14.57 5.87 9.81 Lab,a 2.14 0.89 2.26 2.74 2.34 2.64 1.88 2.48 2.58 2.05 2.14 1.17 2.4 2.4 FIGURE 11 84.13 84.18 82.36 93.76 84.46 85.56 83.86 84.86 83.19 84.02 87.09 Lab, L 83.97 81.46 83.77 82.51 83.2 Hunter B 0.3278 0.3354 0.3436 0.3475 0.3444 0.3445 12.75 14.09 13.05 11.65 11.14 15.36 0.3474 0.3409 0.3394 0.3511 0.3442 0.3447 0.3468 10.89 13.28 0.3474 0.3447 14.02 13.68 Yxy, y 90.6 13.07 5.81 Hunter a .3423 0.3442 0.3428 0.3457 0.3351 0.3458 .3196 .3316 .3433 0.3443 0.3372 0.3502 0.3434 .3458 2.68 2.29 2.56 Yxy, x 2.09 1.15 2.35 1.86 2.33 2.43 2.53 0.34 2.08 0.91 2.21 2.04 0.71 2.3 Hunter L 79.09 92.04 78.08 83.79 64.02 64.42 79.08 80.25 80.01 81.92 78.26 62.54 62.56 84.72 64.97 59.32 63.64 67.12 61.26 64.34 64.12 63.81 80.6 77.01 79.77 80.07 70.21 81.08 80.2 50-3-1 17-15-1 17-15-1 17-2 5149 17-3 21-3 21-6 68-2 68-3 5149 21-1 21-3 21-6 50-3-1 68-2 68-3 17-2 21-1 68-1 67-1 68-1 68-1 68-1 67-1 68-1 68-1 68-1 68-1 8-1 68-1 68-1 8-1

THUELE L

LCh, h	77.8	85.9	69	79.8	78.4	76.1	84.9	79.3	79.1	81.2	84.2	78.2	80.5	78.4	80.1	80.1																			
LCh,C	5.17	8.38	9.87	9.67	8.82	8.64	7.54	8.08	7.8	11.5	12.47	10.11	10.36	7.73	8.48	12				*										_					
LCh, L	88.09	81.12	77.74	87.98	88.13	87.95	88.45	89.78	88.25	86.51	86.75	88.06	87.22	89.66	88.5	84.65																			
Lab,b	5.06	8.36	9.22	9.52	8.64	8.39	7.51	7.94	7.66	11.37	12.41	9.6	10.22	7.58	8.36	11.83															*				
Lab,a	1.1	9.0	3.55	1.72	1.79	2.09	0.68	1.52	1.48	1.78	1.26	2.09	1.73	1.56	1.46	2.07																			
Lab, L	88.09	81.12	77.74	87.98	88.13	87.95	88.45	89.78	88.25	86.51	86.75	88.06	87.22	89.66	88.5	84.65										-									FIGURE 12
Yxy, y	0.3254	0.3335	0.3335	0.3338	0.332	0.3313	0.3305	0.3306	0.3303	0.3377	0.3401	0.3343	0.3353	0.3299	0.3316	0.3388		Hunter B	4.89	7.64	8.22	8.97	8.2	7.96	7.18	7.62	7.31	10.52	11.43	9.32	9.56	7.29	7.96	10.81	
Yxy, x	0.3215	0.3284	0.3358	0.3312	0.3295	0.3295	0.3256	0.3274	0.3271	0.3352	0.3364	0.3324	0.3327	0.3268	0.3284	0.3371		Hunter a	1.09	0.58	3.38	1.72	1.79	2.08	79.0	1.52	1.48	1.76	1.25	2.08	1.72	1.57	1.46	2.04	
Yxy, Ÿ	72.26	58.69	52.78	72.03	72.34	71.98	73.01	75.85	72.6	69.02	69.5	72.21	70.46	75.59	73.13	65.33		Hunter L	85	76.61	72.64	84.87	85.05	84.84	85.44	87.08	85.2	83.07	83.36	84.97	83.94	86.94	85.51	80.82	
5616	11-1	11-2	11-2	11-1	11-1	11-1	11-1	17-1-2	17-3-1	17-4-1	25-11-1	25-28-1	25-36-2	35-35-1	50-12-1	KS-11-2		5616	11-1	11-2	11-2	11-1	11-1	11-1	11-1	17-1-2	17-3-1	17-4-1	25-11-1	25-28-1	25-36-2	35-35-1	50-12-1	KS-11-2	

A CANDAR OF OF CANDAR

		1	1		, -	 	_				_	,		,	,		
	LCh, h	80.1	75.2	6.99	77.8												
	, Ch,C	24.54	24.11	27.77	21.62												
	LCh, L	66.01	68.15	56.31	74.08								-	-			
,	Lab,b	24.18	23.31	25.52	21.13												
Start that there is it then; there there the	Lab,a	4.24	6.18	10.96	4.6												
Ting dad	Lab, L	66.01	68.15	56.31	74.08											FIGURE 13	
	Yxy, y	0.3717	0.3662	0.3728	0.3599		Hunter B	17.92	17.69	17.14	17.02						
	Yxy, x	0.3779	0.3778	0.4055	0.3657		Hunter a	3.79	5.62	9.42	4.31						
	Yxy, Y	33.34	38.18	24.23	46.84		Hunter L	59.44	61.78	49.22	68.43						
	28	12 Green	22 Brown	3 Red	4 Ivory		B C	12 Green	22 Brown	3 Red	4 Ivory						

