Budget Overruns: First Implementation of QuickPay (2009-2012)

Sep 26, 2021

1 Note

- Below is the definition of base_and_all_options_value from the data dictionary:
 - The change (from this transaction only) to the potential contract value (i.e., the base contract and any exercised or unexercised options).
- This means that every observation in raw data shows incremental change from previous budget. So some of the values can be zero.
- We, therefore, need to calculate the new budget at each point in time (by adding all previous values). We did this in the resampling step, but mentioning here for reference.
- This is different from calculation of delays, where period_of_performance_current_end_date indicated the new deadline of the project.

2 Budget Overrun over Time

2.1 Normalized Overrun

3 Notation

- Project i, Year-Quarter t
- X_i denotes project level controls: initial duration, initial budget, number of offers received
- $\mu_t, \theta_{firm}, \lambda_{task}$: Year-Quarter, Firm, and Product/Service code Fixed effects
- $\bullet\,$ All continuous variables are winsorized at the 5% level

$$Treat_i = \begin{cases} 1, & \text{if project } i \text{ is a small business} \\ 0, & \text{otherwise} \end{cases}$$

$$Post_t = \begin{cases} 1, & \text{if year-quarter } t > \text{ April 27, 2011} \\ 0, & \text{otherwise} \end{cases}$$

4 Baseline Regressions

$$Overrun_{it} = \alpha + \beta_0 Treat_i + \beta_1 Post_t + \beta_2 (Treat_i \times Post_t) + \epsilon_{it}$$

$$Overrun_{it} = \alpha + \beta_0 Treat_i + \beta_1 Post_t + \beta_2 (Treat_i \times Post_t) + X_i + (Post_t \times X_i) + \mu_t + \theta_{firm} + \lambda_{task} + \epsilon_{it}$$

Table 1: Quickpay 2009-2011

	$Overrun_{it}$ (in days)						
	(1)	(2)	(3)	(4)	(5)		
$Treat_i$	$-2,244.11^{***}$ (333.21)	$-1,377.52^{***}$ (333.45)	$-1,280.64^{***}$ (331.61)	$-1,144.28^{***}$ (355.70)	$-2,552.92^{**}$ (1,114.07)		
$Post_t$	3,444.55*** (303.12)	$-1,746.45^{***}$ (364.88)					
$Treat_i \times Post_t$	$-1,323.31^{***}$ (400.76)	-710.86^* (407.64)	-731.80^* (405.93)	-559.47 (406.24)	-371.98 (438.97)		
Constant	9,543.11*** (249.87)	2,405.81*** (647.47)					
Duration, Budget, Bids	No	Yes	Yes	Yes	Yes		
$Post_t \times$ (Duration, Budget, Bids)	No	Yes	Yes	Yes	Yes		
Project Age Tercile	No	Yes	Yes	Yes	Yes		
Year-Quarter Fixed Effects	No	No	Yes	Yes	Yes		
Task Fixed Effects	No	No	No	Yes	Yes		
Firm Fixed Effects	No	No	No	No	Yes		
Observations	$127,\!056$	117,671	$117,\!671$	117,671	$117,\!671$		
R^2	0.004	0.06	0.07	0.10	0.24		
Adjusted R^2	0.004	0.06	0.07	0.09	0.17		

Note:

*p<0.1; **p<0.05; ***p<0.01

Each observation is a project-quarter.

SEs are robust and clustered at the project level.

5 Percentage Overrun

$$PercentOverrun_{it} = \beta_0 + \beta_1 Treat_i + \beta_2 Post_t + \beta_3 (Treat_i \times Post_t) + e_{it}$$

$$PercentOverrun_{it} = \alpha + \beta_0 Treat_i + \beta_1 Post_t + \beta_2 (Treat_i \times Post_t)$$

$$+ X_i + (Post_t \times X_i) + \mu_t + \theta_{firm} + \lambda_{task} + \epsilon_{it}$$

5.1 Percentage Overrun over time

- Sample restricted to projects with modification zero when they first appeared in our sample.
- $PercentOverrun_{it} = 100 \times Overrun_{it}/Budget_{i,t-1}$

5.1.1 Normalized Overrun

Table 2: Effect of QuickPay on project overrun rates

	$PercentOverrun_{it}$					
	(1)	(2)	(3)	(4)	(5)	
$Treat_i$	-0.55***	-0.54^{***}	-0.50^{***}	-0.31***	-0.41	
	(0.08)	(0.09)	(0.09)	(0.09)	(0.25)	
$Post_t$	-0.32***	-0.95***				
	(0.07)	(0.13)				
$Treat_i \times Post_t$	0.15	0.11	0.09	0.10	0.12	
	(0.10)	(0.10)	(0.10)	(0.10)	(0.11)	
Constant	2.61***	4.19***				
	(0.06)	(0.17)				
Duration, Budget, Bids	No	Yes	Yes	Yes	Yes	
$Post_t \times$ (Duration, Budget, Bids)	No	Yes	Yes	Yes	Yes	
Project age	No	Yes	Yes	Yes	Yes	
Year-Quarter fixed effects	No	No	Yes	Yes	Yes	
Task fixed effects	No	No	No	Yes	Yes	
Contractor fixed effects	No	No	No	No	Yes	
Observations	$124,\!419$	116,240	116,240	116,240	116,240	
R^2	0.001	0.01	0.01	0.06	0.19	
Adjusted R^2	0.001	0.01	0.01	0.05	0.12	

Note:

 $\label{eq:proposition} ^*p{<}0.1;~^{**}p{<}0.05;~^{***}p{<}0.01$ Each observation is a project-quarter.

SEs are robust and clustered at the project level.

Relative Overrun 6

Relative overruns over time

- Sample restricted to projects with modification zero when they first appeared in our sample.
- $RelativeOverrun_{it} = 100 \times RelativeOverrun_{it}/IntialBudget_i$

6.1.1 Normalized overrun

Table 3: Effect of QuickPay on project overrun rates

	$Relative Overrun_{it}$							
	(1)	(2)	(3)	(4)	(5)			
$Treat_i$	-0.69^{***}	-0.60***	-0.57^{***}	-0.32^{***}	-0.65**			
	(0.10)	(0.10)	(0.10)	(0.11)	(0.31)			
$Post_t$	-0.24***	-0.92***						
	(0.08)	(0.14)						
$Treat_i \times Post_t$	0.10	0.03	0.02	0.04	0.07			
	(0.12)	(0.12)	(0.12)	(0.12)	(0.13)			
Constant	3.07***	4.53***						
	(0.07)	(0.20)						
Duration, Bids	No	Yes	Yes	Yes	Yes			
$Post_t \times \text{(Duration, Bids)}$	No	Yes	Yes	Yes	Yes			
Project age	No	Yes	Yes	Yes	Yes			
Year-Quarter fixed effects	No	No	Yes	Yes	Yes			
Task fixed effects	No	No	No	Yes	Yes			
Contractor fixed effects	No	No	No	No	Yes			
Observations	127,056	117,671	117,671	117,671	117,671			
R^2	0.001	0.004	0.01	0.06	0.20			
Adjusted R ²	0.001	0.004	0.01	0.05	0.12			

Note:

 $\label{eq:proposition} ^*p{<}0.1;~^{**}p{<}0.05;~^{***}p{<}0.01$ Each observation is a project-quarter.

SEs are robust and clustered at the project level.