Inteligência Artificial – ACH2016 Aula 11 – Inferência em Lógica de Primeira Ordem

Norton Trevisan Roman (norton@usp.br)

5 de abril de 2019

Interagindo com uma BC

Fazemos buscas (queries) na base

- Fazemos buscas (queries) na base
 - Feitas por meio de sentenças lógicas em LPO

- Fazemos buscas (queries) na base
 - Feitas por meio de sentenças lógicas em LPO
 - Qualquer query que possa ser inferida logicamente pela base de dados será respondida afirmativamente

- Fazemos buscas (queries) na base
 - Feitas por meio de sentenças lógicas em LPO
 - Qualquer query que possa ser inferida logicamente pela base de dados será respondida afirmativamente
- A BC é composta por:

- Fazemos buscas (queries) na base
 - Feitas por meio de sentenças lógicas em LPO
 - Qualquer query que possa ser inferida logicamente pela base de dados será respondida afirmativamente
- A BC é composta por:
 - Axiomas: informação factual básica da qual conclusões úteis podem ser derivadas

- Fazemos buscas (queries) na base
 - Feitas por meio de sentenças lógicas em LPO
 - Qualquer query que possa ser inferida logicamente pela base de dados será respondida afirmativamente
- A BC é composta por:
 - Axiomas: informação factual básica da qual conclusões úteis podem ser derivadas
 - Ex: $\forall p, f \ Progenitor(p, f) \Leftrightarrow Prole(f, p); \ Homem(Pedro); \ etc$

- Fazemos buscas (queries) na base
 - Feitas por meio de sentenças lógicas em LPO
 - Qualquer query que possa ser inferida logicamente pela base de dados será respondida afirmativamente
- A BC é composta por:
 - Axiomas: informação factual básica da qual conclusões úteis podem ser derivadas
 - Ex: $\forall p, f \ Progenitor(p, f) \Leftrightarrow Prole(f, p); \ Homem(Pedro); \ etc$
 - Teoremas: sentenças acarretadas pelos axiomas

- Fazemos buscas (queries) na base
 - Feitas por meio de sentenças lógicas em LPO
 - Qualquer query que possa ser inferida logicamente pela base de dados será respondida afirmativamente
- A BC é composta por:
 - Axiomas: informação factual básica da qual conclusões úteis podem ser derivadas
 - Ex: $\forall p, f \ Progenitor(p, f) \Leftrightarrow Prole(f, p); \ Homem(Pedro); \ etc$
 - Teoremas: sentenças acarretadas pelos axiomas
 - Não precisam existir na base, bastam os axiomas

- Fazemos buscas (queries) na base
 - Feitas por meio de sentenças lógicas em LPO
 - Qualquer query que possa ser inferida logicamente pela base de dados será respondida afirmativamente
- A BC é composta por:
 - Axiomas: informação factual básica da qual conclusões úteis podem ser derivadas
 - Ex: $\forall p, f \ Progenitor(p, f) \Leftrightarrow Prole(f, p); \ Homem(Pedro); \ etc$
 - Teoremas: sentenças acarretadas pelos axiomas
 - Não precisam existir na base, bastam os axiomas
 - Reduzem o custo computacional de derivar novas sentenças

Inferência

Como em lógica proposicional

- Como em lógica proposicional
 - Uma sentença pode ser inferida de uma BC sse for verdadeira em toda interpretação na qual a BC é verdadeira

- Como em lógica proposicional
 - Uma sentença pode ser inferida de uma BC sse for verdadeira em toda interpretação na qual a BC é verdadeira
- Força bruta está fora de questão

- Como em lógica proposicional
 - Uma sentença pode ser inferida de uma BC sse for verdadeira em toda interpretação na qual a BC é verdadeira
- Força bruta está fora de questão
 - Número enorme (possivelmente ∞) de interpretações

- Como em lógica proposicional
 - Uma sentença pode ser inferida de uma BC sse for verdadeira em toda interpretação na qual a BC é verdadeira
- Força bruta está fora de questão
 - Número enorme (possivelmente ∞) de interpretações
 - Quantificadores ∀ e ∃

- Como em lógica proposicional
 - Uma sentença pode ser inferida de uma BC sse for verdadeira em toda interpretação na qual a BC é verdadeira
- Força bruta está fora de questão
 - Número enorme (possivelmente ∞) de interpretações
 - Quantificadores ∀ e ∃
 - Para ∃ existe skolemização (mais adiante), contudo...

- Como em lógica proposicional
 - Uma sentença pode ser inferida de uma BC sse for verdadeira em toda interpretação na qual a BC é verdadeira
- Força bruta está fora de questão
 - Número enorme (possivelmente ∞) de interpretações
 - Quantificadores ∀ e ∃
 - Para ∃ existe skolemização (mais adiante), contudo...
 - ∀ pode mapear a infinitos elementos, dependendo do domínio

- Como em lógica proposicional
 - Uma sentença pode ser inferida de uma BC sse for verdadeira em toda interpretação na qual a BC é verdadeira
- Força bruta está fora de questão
 - Número enorme (possivelmente ∞) de interpretações
 - Quantificadores ∀ e ∃
 - Para ∃ existe skolemização (mais adiante), contudo...
 - ullet pode mapear a infinitos elementos, dependendo do domínio
- Solução: provas

Provas

 Há versões de primeira ordem para cada técnica vista em lógica proposicional

- Há versões de primeira ordem para cada técnica vista em lógica proposicional
 - Forward Chaining, Backward Chaining e Resolução

- Há versões de primeira ordem para cada técnica vista em lógica proposicional
 - Forward Chaining, Backward Chaining e Resolução
- Forward Chaining e Backward Chaining exigem que a base contenha apenas cláusulas definidas

- Há versões de primeira ordem para cada técnica vista em lógica proposicional
 - Forward Chaining, Backward Chaining e Resolução
- Forward Chaining e Backward Chaining exigem que a base contenha apenas cláusulas definidas
 - Disjunções de literais dos quais exatamente um é positivo

- Há versões de primeira ordem para cada técnica vista em lógica proposicional
 - Forward Chaining, Backward Chaining e Resolução
- Forward Chaining e Backward Chaining exigem que a base contenha apenas cláusulas definidas
 - Disjunções de literais dos quais exatamente um é positivo
- Literais

- Há versões de primeira ordem para cada técnica vista em lógica proposicional
 - Forward Chaining, Backward Chaining e Resolução
- Forward Chaining e Backward Chaining exigem que a base contenha apenas cláusulas definidas
 - Disjunções de literais dos quais exatamente um é positivo
- Literais
 - Literais em LPO podem incluir variáveis

- Há versões de primeira ordem para cada técnica vista em lógica proposicional
 - Forward Chaining, Backward Chaining e Resolução
- Forward Chaining e Backward Chaining exigem que a base contenha apenas cláusulas definidas
 - Disjunções de literais dos quais exatamente um é positivo
- Literais
 - Literais em LPO podem incluir variáveis
 - "Amigo(Pedro)" (constante)

- Há versões de primeira ordem para cada técnica vista em lógica proposicional
 - Forward Chaining, Backward Chaining e Resolução
- Forward Chaining e Backward Chaining exigem que a base contenha apenas cláusulas definidas
 - Disjunções de literais dos quais exatamente um é positivo
- Literais
 - Literais em LPO podem incluir variáveis
 - "Amigo(Pedro)" (constante)
 - "Grande(x)" (variável)

Provas

• Em qualquer técnica, expressões com variáveis são assumidas como universalmente quantificadas

- Em qualquer técnica, expressões com variáveis são assumidas como universalmente quantificadas
 - ullet Ou seja, todas são naturalmente precedidas por \forall

- Em qualquer técnica, expressões com variáveis são assumidas como universalmente quantificadas
 - ullet Ou seja, todas são naturalmente precedidas por \forall
 - "Grande(x)" \equiv " $\forall x \ Grande(x)$ " (literal)

- Em qualquer técnica, expressões com variáveis são assumidas como universalmente quantificadas
 - ullet Ou seja, todas são naturalmente precedidas por \forall
 - "Grande(x)" \equiv " $\forall x \ Grande(x)$ " (literal)
 - " $Tio(x, y) \Leftrightarrow Sobrinho(y, x)$ " \equiv " $\forall x, y \ Tio(x, y) \Leftrightarrow Sobrinho(y, x)$ "

- Em qualquer técnica, expressões com variáveis são assumidas como universalmente quantificadas
 - ullet Ou seja, todas são naturalmente precedidas por \forall
 - "Grande(x)" \equiv " $\forall x \ Grande(x)$ " (literal)
 - " $Tio(x, y) \Leftrightarrow Sobrinho(y, x)$ " \equiv " $\forall x, y \ Tio(x, y) \Leftrightarrow Sobrinho(y, x)$ "
- Começaremos pela resolução, por ser mais geral

Resolução

Lógica de Primeira Ordem – Resolução

Passos

Lógica de Primeira Ordem – Resolução

Passos

Converter de LPO para forma clausal

Lógica de Primeira Ordem – Resolução

Passos

- Converter de LPO para forma clausal
 - Generalização da Forma Normal Conjuntiva para LPO

- Converter de LPO para forma clausal
 - Generalização da Forma Normal Conjuntiva para LPO
 - Uma conjunção de disjunções

- Converter de LPO para forma clausal
 - Generalização da Forma Normal Conjuntiva para LPO
 - Uma conjunção de disjunções
 - Sem quantificadores

Passos

- Converter de LPO para forma clausal
 - Generalização da Forma Normal Conjuntiva para LPO
 - Uma conjunção de disjunções
 - Sem quantificadores

$$\forall x \exists y \ P(x) \Rightarrow R(x,y)$$

$$\neg P(x) \lor R(x,F(x))$$

Determinar que variáveis substituir por quais quando da resolução

- Converter de LPO para forma clausal
 - Generalização da Forma Normal Conjuntiva para LPO
 - Uma conjunção de disjunções
 - Sem quantificadores

$$\forall x \exists y \ P(x) \Rightarrow R(x,y)$$

$$\neg P(x) \lor R(x,F(x))$$

- Determinar que variáveis substituir por quais quando da resolução
 - Processo chamado Unificação

- Converter de LPO para forma clausal
 - Generalização da Forma Normal Conjuntiva para LPO
 - Uma conjunção de disjunções
 - Sem quantificadores

$$\forall x \exists y \ P(x) \Rightarrow R(x,y)$$

$$\neg P(x) \lor R(x,F(x))$$

- Determinar que variáveis substituir por quais quando da resolução
 - Processo chamado Unificação
- Executar a resolução

- Converter de LPO para forma clausal sa
 - Generalização da Forma Normal Conjuntiva para LPO
 - Uma conjunção de disjunções
 - Sem quantificadores

$$\forall x \exists y \ P(x) \Rightarrow R(x,y)$$

$$\neg P(x) \lor R(x,F(x))$$

- Determinar que variáveis substituir por quais quando da resolução
 - Processo chamado Unificação
- Executar a resolução

Forma Normal Conjuntiva

 Como no caso proposicional, resolução em LPO também exige que as sentenças estejam na FNC

- Como no caso proposicional, resolução em LPO também exige que as sentenças estejam na FNC
 - Conjunção de cláusulas, onde cada cláusula é uma disjunção de literais

- Como no caso proposicional, resolução em LPO também exige que as sentenças estejam na FNC
 - Conjunção de cláusulas, onde cada cláusula é uma disjunção de literais
 - Lembrando que literais podem conter variáveis universalmente quantificadas

- Como no caso proposicional, resolução em LPO também exige que as sentenças estejam na FNC
 - Conjunção de cláusulas, onde cada cláusula é uma disjunção de literais
 - Lembrando que literais podem conter variáveis universalmente quantificadas
 - Também chamada de Forma Clausal

- Como no caso proposicional, resolução em LPO também exige que as sentenças estejam na FNC
 - Conjunção de cláusulas, onde cada cláusula é uma disjunção de literais
 - Lembrando que literais podem conter variáveis universalmente quantificadas
 - Também chamada de Forma Clausal
- Também como no caso proposicional, toda sentença em LPO pode ser convertida em uma sentença inferencialmente equivalente na FNC

Equivalência Inferencial

 Duas sentenças são tidas como inferencialmente equivalentes quando uma for satisfatível sse a outra for satisfatível também

- Duas sentenças são tidas como inferencialmente equivalentes quando uma for satisfatível sse a outra for satisfatível também
 - Alternativamente, uma será insatisfatível somente quando a outra também o for

- Duas sentenças são tidas como inferencialmente equivalentes quando uma for satisfatível sse a outra for satisfatível também
 - Alternativamente, uma será insatisfatível somente quando a outra também o for
 - A ⊢ B e B ⊢ A

- Duas sentenças são tidas como inferencialmente equivalentes quando uma for satisfatível sse a outra for satisfatível também
 - Alternativamente, uma será insatisfatível somente quando a outra também o for
 - A ⊢ B e B ⊢ A
- Elas n\u00e3o precisam ser logicamente equivalentes

- Duas sentenças são tidas como inferencialmente equivalentes quando uma for satisfatível sse a outra for satisfatível também
 - Alternativamente, uma será insatisfatível somente quando a outra também o for
 - A ⊢ B e B ⊢ A
- Elas não precisam ser logicamente equivalentes
 - Apenas permitem que o mesmo conjunto de inferências seja feito

Convertendo para Forma Clausal

Convertendo para Forma Clausal

$$\alpha \Leftrightarrow \beta \equiv (\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$$
$$\alpha \Rightarrow \beta \equiv \neg \alpha \lor \beta$$

Convertendo para Forma Clausal

- $\alpha \Leftrightarrow \beta \equiv (\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$ $\alpha \Rightarrow \beta \equiv \neg \alpha \lor \beta$
- Mova a negação "para dentro"

Convertendo para Forma Clausal

- $\alpha \Leftrightarrow \beta \equiv (\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$ $\alpha \Rightarrow \beta \equiv \neg \alpha \lor \beta$
- Mova a negação "para dentro"
 - Leis de de Morgan

- Elimine implicações
- Mova a negação "para dentro"
 - Leis de de Morgan

$$\alpha \Leftrightarrow \beta \equiv (\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$$
$$\alpha \Rightarrow \beta \equiv \neg \alpha \lor \beta$$

$$\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$$
$$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$$

- Elimine implicações
- Mova a negação "para dentro"
 - Leis de de Morgan
 - Eliminação de negações duplas

$$\alpha \Leftrightarrow \beta \equiv (\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$$
$$\alpha \Rightarrow \beta \equiv \neg \alpha \lor \beta$$

$$\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$$
$$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$$

- Elimine implicações
- Mova a negação "para dentro"
 - Leis de de Morgan
 - Eliminação de negações duplas

$$\alpha \Leftrightarrow \beta \equiv (\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$$
$$\alpha \Rightarrow \beta \equiv \neg \alpha \lor \beta$$

$$\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$$
$$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$$
$$\neg\neg\alpha \equiv \alpha$$

- Elimine implicações
- Mova a negação "para dentro"
 - Leis de de Morgan
 - Eliminação de negações duplas
 - Extensões a de Morgan

$$\alpha \Leftrightarrow \beta \equiv (\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$$
$$\alpha \Rightarrow \beta \equiv \neg \alpha \lor \beta$$

$$\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$$
$$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$$
$$\neg\neg\alpha \equiv \alpha$$

- Elimine implicações
- Mova a negação "para dentro"
 - Leis de de Morgan
 - Eliminação de negações duplas
 - Extensões a de Morgan

$$\alpha \Leftrightarrow \beta \equiv (\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$$
$$\alpha \Rightarrow \beta \equiv \neg \alpha \lor \beta$$

$$\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$$

$$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$$

$$\neg\neg\alpha \equiv \alpha$$

$$\neg\forall x \alpha \equiv \exists x \neg\alpha$$

$$\neg\exists x \alpha \equiv \forall x \neg\alpha$$

- Elimine implicações
- Mova a negação "para dentro"
 - Leis de de Morgan
 - Eliminação de negações duplas
 - Extensões a de Morgan
- Padronize as variáveis

$$\alpha \Leftrightarrow \beta \equiv (\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$$
$$\alpha \Rightarrow \beta \equiv \neg \alpha \lor \beta$$

$$\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$$

$$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$$

$$\neg\neg\alpha \equiv \alpha$$

$$\neg\forall x \alpha \equiv \exists x \neg\alpha$$

$$\neg\exists x \alpha \equiv \forall x \neg\alpha$$

- Elimine implicações
- Mova a negação "para dentro"
 - Leis de de Morgan
 - Eliminação de negações duplas
 - Extensões a de Morgan

$$\alpha \Leftrightarrow \beta \equiv (\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$$
$$\alpha \Rightarrow \beta \equiv \neg \alpha \lor \beta$$

$$\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$$

$$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$$

$$\neg\neg\alpha \equiv \alpha$$

$$\neg\forall x \alpha \equiv \exists x \neg\alpha$$

$$\neg\exists x \alpha \equiv \forall x \neg\alpha$$

- Padronize as variáveis
 - Cada quantificador deve agir sobre uma variável diferente

- Elimine implicações
- Mova a negação "para dentro"
 - Leis de de Morgan
 - Eliminação de negações duplas
 - Extensões a de Morgan

$$\alpha \Leftrightarrow \beta \equiv (\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)$$
$$\alpha \Rightarrow \beta \equiv \neg \alpha \lor \beta$$

$$\neg(\alpha \lor \beta) \equiv \neg\alpha \land \neg\beta$$
$$\neg(\alpha \land \beta) \equiv \neg\alpha \lor \neg\beta$$
$$\neg\neg\alpha \equiv \alpha$$
$$\neg\forall x \alpha \equiv \exists x \neg\alpha$$

$$\neg \forall x \ \alpha \equiv \exists x \ \neg \alpha$$
$$\neg \exists x \ \alpha \equiv \forall x \ \neg \alpha$$

- Padronize as variáveis
 - Cada quantificador deve agir sobre uma variável diferente
 - Se a sentença usar um mesmo nome de variável duas vezes em escopos diferentes, mude o nome de uma delas

Convertendo para Forma Clausal

Skolemize

- Skolemize
 - **Skolemização** é o processo de remoção de quantificadores existenciais (∃) por eliminação

- Skolemize
 - **Skolemização** é o processo de remoção de quantificadores existenciais (∃) por eliminação
 - Deve-se a Thoralf Skolem

- Skolemize
 - **Skolemização** é o processo de remoção de quantificadores existenciais (∃) por eliminação
 - Deve-se a Thoralf Skolem
- Remova quantificadores universais

- Skolemize
 - **Skolemização** é o processo de remoção de quantificadores existenciais (∃) por eliminação
 - Deve-se a Thoralf Skolem
- Remova quantificadores universais
 - Já removemos \exists e não temos mais o problema do escopo \rightarrow as variáveis restantes estão quantificadas universalmente

- Skolemize
 - **Skolemização** é o processo de remoção de quantificadores existenciais (∃) por eliminação
 - Deve-se a Thoralf Skolem
- Remova quantificadores universais
 - Já removemos \exists e não temos mais o problema do escopo \to as variáveis restantes estão quantificadas universalmente
 - Podemos então mover os quantificadores para a esquerda e sumir com eles (FNC já assume ∀ nas variáveis)

- Skolemize
 - **Skolemização** é o processo de remoção de quantificadores existenciais (∃) por eliminação
 - Deve-se a Thoralf Skolem
- Remova quantificadores universais
 - Já removemos \exists e não temos mais o problema do escopo \to as variáveis restantes estão quantificadas universalmente
 - Podemos então mover os quantificadores para a esquerda e sumir com eles (FNC já assume ∀ nas variáveis)
- Distribua ∨ sobre ∧

Skolemização

 No caso do padrão simples "∃x P(x)", basta substituir a variável x por uma constante inédita (não existente na base de conhecimento)

- No caso do padrão simples " $\exists x \ P(x)$ ", basta substituir a variável x por uma constante inédita (não existente na base de conhecimento)
- Ex:

- No caso do padrão simples "∃x P(x)", basta substituir a variável x por uma constante inédita (não existente na base de conhecimento)
- Ex:
 - $\exists x \ Unicórnio(x)$

- No caso do padrão simples " $\exists x \ P(x)$ ", basta substituir a variável x por uma constante inédita (não existente na base de conhecimento)
- Ex:
 - $\exists x \ Unicórnio(x)$
 - Se existe um unicórnio, vamos chamá-lo de Fred

- No caso do padrão simples " $\exists x \ P(x)$ ", basta substituir a variável x por uma constante inédita (não existente na base de conhecimento)
- Ex:
 - $\exists x \ Unic \acute{o}rnio(x)$
 - Se existe um unicórnio, vamos chamá-lo de Fred
 - Funciona se não houver nenhum outro objeto chamado <u>Fred</u>, pois nesse caso afirmaríamos que ele é um unicórnio

- No caso do padrão simples " $\exists x \ P(x)$ ", basta substituir a variável x por uma constante inédita (não existente na base de conhecimento)
- Ex:
 - $\exists x \ Unicórnio(x)$
 - Se existe um unicórnio, vamos chamá-lo de Fred
 - Funciona se não houver nenhum outro objeto chamado *Fred*, pois nesse caso afirmaríamos que ele é um unicórnio
 - Podemos então trocar ∃x Unicórnio(x) por Unicórnio(Fred) livremente

Skolemização

Então

- Então
 - $\bullet \ \exists x \ P(x) \to P(C_1)$

- Então
 - $\exists x \ P(x) \rightarrow P(C_1)$
 - $\exists x, y \ R(x, y) \rightarrow R(C_1, C_2)$ (2 variáveis)

- Então
 - $\exists x \ P(x) \rightarrow P(C_1)$
 - $\exists x, y \ R(x, y) \rightarrow R(C_1, C_2)$ (2 variáveis)
 - $\exists x \ P(x) \land Q(x) \rightarrow P(C_1) \land Q(C_1)$

- Então
 - $\exists x \ P(x) \rightarrow P(C_1)$
 - $\exists x, y \ R(x, y) \rightarrow R(C_1, C_2)$ (2 variáveis)
 - $\exists x \ P(x) \land Q(x) \rightarrow P(C_1) \land Q(C_1)$
 - Cada ocorrência da variável é mapeada ao mesmo nome

- Então
 - $\exists x \ P(x) \rightarrow P(C_1)$
 - $\exists x, y \ R(x, y) \rightarrow R(C_1, C_2)$ (2 variáveis)
 - $\exists x \ P(x) \land Q(x) \rightarrow P(C_1) \land Q(C_1)$
 - Cada ocorrência da variável é mapeada ao mesmo nome
 - $\exists x \ P(x) \land \exists x \ Q(x) \rightarrow P(C_1) \land Q(C_2)$

- Então
 - $\exists x \ P(x) \rightarrow P(C_1)$
 - $\exists x, y \ R(x, y) \rightarrow R(C_1, C_2)$ (2 variáveis)
 - $\exists x \ P(x) \land Q(x) \rightarrow P(C_1) \land Q(C_1)$
 - Cada ocorrência da variável é mapeada ao mesmo nome
 - $\exists x \ P(x) \land \exists x \ Q(x) \rightarrow P(C_1) \land Q(C_2)$
 - Diferentes quantificadores exigem nomes diferentes

- Então
 - $\exists x \ P(x) \rightarrow P(C_1)$
 - $\exists x, y \ R(x, y) \rightarrow R(C_1, C_2)$ (2 variáveis)
 - $\exists x \ P(x) \land Q(x) \rightarrow P(C_1) \land Q(C_1)$
 - Cada ocorrência da variável é mapeada ao mesmo nome
 - $\exists x \ P(x) \land \exists x \ Q(x) \rightarrow P(C_1) \land Q(C_2)$
 - Diferentes quantificadores exigem nomes diferentes
 - Note que isso fica claro após a padronização:

$$\exists x \ P(x) \land \exists x \ Q(x) \equiv \exists x \ P(x) \land \exists y \ Q(y) \rightarrow P(C_1) \land Q(C_2)$$

Skolemização

• $\exists y \forall x \; Ama(x,y)$

Skolemização

• $\exists y \forall x \ Ama(x, y)$ (Existe um y que é amado por todos)

- $\exists y \forall x \ Ama(x, y)$ (Existe um y que é amado por todos)
 - Skolemização padrão: $\exists y \forall x \; Ama(x,y) \rightarrow \forall x \; Ama(x,C_1)$

- $\exists y \forall x \ Ama(x, y)$ (Existe um y que é amado por todos)
 - Skolemização padrão: $\exists y \forall x \; Ama(x,y) \rightarrow \forall x \; Ama(x,C_1)$
- E quanto a " $\forall x \exists y \ Ama(x, y)$ "?

- $\exists y \forall x \ Ama(x, y)$ (Existe um y que é amado por todos)
 - Skolemização padrão: $\exists y \forall x \; Ama(x,y) \rightarrow \forall x \; Ama(x,C_1)$
- E quanto a " $\forall x \exists y \; Ama(x, y)$ "? (Todo mundo ama alguém)

- $\exists y \forall x \ Ama(x, y)$ (Existe um y que é amado por todos)
 - Skolemização padrão: $\exists y \forall x \; Ama(x,y) \rightarrow \forall x \; Ama(x,C_1)$
- E quanto a " $\forall x \exists y \; Ama(x, y)$ "? (Todo mundo ama alguém)
 - " $\forall x \; Ama(x, C_1)$ "?

- $\exists y \forall x \ Ama(x, y)$ (Existe um y que é amado por todos)
 - Skolemização padrão: $\exists y \forall x \; Ama(x,y) \rightarrow \forall x \; Ama(x,C_1)$
- E quanto a " $\forall x \exists y \; Ama(x, y)$ "? (Todo mundo ama alguém)
 - " $\forall x \; Ama(x, C_1)$ "?
 - Certamente não é "Todo mundo ama C_1 " que pretendíamos dizer...

- $\exists y \forall x \ Ama(x, y)$ (Existe um y que é amado por todos)
 - Skolemização padrão: $\exists y \forall x \; Ama(x,y) \rightarrow \forall x \; Ama(x,C_1)$
- E quanto a " $\forall x \exists y \; Ama(x, y)$ "? (Todo mundo ama alguém)
 - " $\forall x \; Ama(x, C_1)$ "?
 - Certamente não é "Todo mundo ama C₁" que pretendíamos dizer...
 - Simples substituição não funciona

Skolemização

• O que aconteceu?

- O que aconteceu?
 - Embora possamos sim dizer que " $\forall x \exists y \; Ama(x, y)$ " se refere a um alguém específico, ele o faz para <u>cada</u> valor de x, ou seja, potencialmente um alguém diferente para cada x

- O que aconteceu?
 - Embora possamos sim dizer que " $\forall x \exists y \; Ama(x, y)$ " se refere a um alguém específico, ele o faz para <u>cada</u> valor de x, ou seja, potencialmente um alguém diferente para cada x
 - " $\forall x \; Ama(x, C_1)$ " força que todo x ame um único sujeito

- O que aconteceu?
 - Embora possamos sim dizer que " $\forall x \exists y \; Ama(x, y)$ " se refere a um alguém específico, ele o faz para <u>cada</u> valor de x, ou seja, potencialmente um alguém diferente para cada x
 - " $\forall x \; Ama(x, C_1)$ " força que todo x ame um único sujeito
- Que fazer então?

- O que aconteceu?
 - Embora possamos sim dizer que " $\forall x \exists y \; Ama(x, y)$ " se refere a um alguém específico, ele o faz para <u>cada</u> valor de x, ou seja, potencialmente um alguém diferente para cada x
 - " $\forall x \; Ama(x, C_1)$ " força que todo x ame um único sujeito
- Que fazer então?
 - ullet Fazer com que a constante utilizada dependa de x

- O que aconteceu?
 - Embora possamos sim dizer que " $\forall x \exists y \; Ama(x, y)$ " se refere a um alguém específico, ele o faz para <u>cada</u> valor de x, ou seja, potencialmente um alguém diferente para cada x
 - " $\forall x \; Ama(x, C_1)$ " força que todo x ame um único sujeito
- Que fazer então?
 - ullet Fazer com que a constante utilizada dependa de x
 - $\forall x \exists y \ Ama(x,y) \rightarrow \forall x \ Ama(x,AmadoPor(x))$

- O que aconteceu?
 - Embora possamos sim dizer que " $\forall x \exists y \; Ama(x, y)$ " se refere a um alguém específico, ele o faz para <u>cada</u> valor de x, ou seja, potencialmente um alguém diferente para cada x
 - " $\forall x \; Ama(x, C_1)$ " força que todo x ame um único sujeito
- Que fazer então?
 - ullet Fazer com que a constante utilizada dependa de x
 - $\forall x \exists y \ Ama(x, y) \rightarrow \forall x \ Ama(x, AmadoPor(x))$
 - Em vez de substituirmos por uma constante, substituímos por uma Função de Skolem

- Função de Skolem Regra geral:
 - Os argumentos da função de Skolem são todas as variáveis universalmente quantificadas em cujo escopo o quantificador existencial aparecer

- Função de Skolem Regra geral:
 - Os argumentos da função de Skolem são todas as variáveis universalmente quantificadas em cujo escopo o quantificador existencial aparecer
- Ex:

- Função de Skolem Regra geral:
 - Os argumentos da função de Skolem são todas as variáveis universalmente quantificadas em cujo escopo o quantificador existencial aparecer
- Ex:
 - $\forall x \exists y \forall z \exists w \ P(x, y, z) \land R(y, z, w)$
 - $\rightarrow \forall x \forall z \ P(x, F(x), z) \land R(F(x), z, G(x, z))$

Skolemização

- Função de Skolem Regra geral:
 - Os argumentos da função de Skolem são todas as variáveis universalmente quantificadas em cujo escopo o quantificador existencial aparecer
- Ex:

y = F(x) porque y está apenas no escopo de $\forall x$

• $\forall x \exists y \forall z \exists w \ P(x, y, z) \land R(y, z, w)$

$$\rightarrow \forall x \forall z \ P(x, F(x), z) \land R(F(x), z, G(x, z))$$

Skolemização

- Função de Skolem Regra geral:
 - Os argumentos da função de Skolem são todas as variáveis universalmente quantificadas em cujo escopo o quantificador existencial aparecer Já w = G(x, z) porque
- Ex:
 - $\forall x \exists y \forall z \exists w \ P(x, y, z) \land R(y, z, w)$

há 2 quantificadores universais ($\forall x \in \forall z$) em cujo escopo está w

$$\rightarrow \forall x \forall z \ P(x, F(x), z) \land R(F(x), z, G(x, z))$$

Skolemização

- Função de Skolem Regra geral:
 - Os argumentos da função de Skolem são todas as variáveis universalmente quantificadas em cujo escopo o quantificador existencial aparecer

 Já w = G(x, z) porque
- Ex:
 - universais $(\forall x \in \forall z)$ • $\forall x \exists y \forall z \exists w \ P(x, y, z) \land R(y, z, w)$ em cujo escopo está w $\rightarrow \forall x \forall z \ P(x, F(x), z) \land R(F(x), z, G(x, z))$
- A sentença Skolemizada é satisfatível exatamente quando a sentença original for satisfatível

há 2 quantificadores

Convertendo para Forma Clausal: Exemplo

Convertendo para Forma Clausal: Exemplo

 Todo mundo que ama todos os animais é amado por alguém

- Todo mundo que ama todos os animais é amado por alguém
 - $\forall x \ [\forall y \ Animal(y) \Rightarrow Ama(x,y)] \Rightarrow [\exists y \ Ama(y,x)]$

- Todo mundo que ama todos os animais é amado por alguém
 - $\forall x \ [\forall y \ Animal(y) \Rightarrow Ama(x,y)] \Rightarrow [\exists y \ Ama(y,x)]$
- Passos:

- Todo mundo que ama todos os animais é amado por alguém
 - $\forall x \ [\forall y \ Animal(y) \Rightarrow Ama(x,y)] \Rightarrow [\exists y \ Ama(y,x)]$
- Passos:
 - Elimine implicações

- Todo mundo que ama todos os animais é amado por alguém
 - $\forall x \ [\forall y \ Animal(y) \Rightarrow Ama(x,y)] \Rightarrow [\exists y \ Ama(y,x)]$
- Passos:
 - Elimine implicações
 - $\forall x \ [\forall y \ \neg Animal(y) \lor Ama(x,y)] \Rightarrow [\exists y \ Ama(y,x)]$

- Todo mundo que ama todos os animais é amado por alguém
 - $\forall x \ [\forall y \ Animal(y) \Rightarrow Ama(x,y)] \Rightarrow [\exists y \ Ama(y,x)]$
- Passos:
 - Elimine implicações
 - $\forall x \ [\forall y \ \neg Animal(y) \lor Ama(x,y)] \Rightarrow [\exists y \ Ama(y,x)]$ $\forall x \ [\neg \forall y \ \neg Animal(y) \lor Ama(x,y)] \lor [\exists y \ Ama(y,x)]$

- Todo mundo que ama todos os animais é amado por alguém
 - $\forall x \ [\forall y \ Animal(y) \Rightarrow Ama(x,y)] \Rightarrow [\exists y \ Ama(y,x)]$
- Passos:
 - Elimine implicações
 - $\forall x \ [\forall y \ \neg Animal(y) \lor Ama(x,y)] \Rightarrow [\exists y \ Ama(y,x)]$ $\forall x \ [\neg \forall y \ \neg Animal(y) \lor Ama(x,y)] \lor [\exists y \ Ama(y,x)]$
 - Mova a negação "para dentro"

- Todo mundo que ama todos os animais é amado por alguém
 - $\forall x \ [\forall y \ Animal(y) \Rightarrow Ama(x,y)] \Rightarrow [\exists y \ Ama(y,x)]$
- Passos:
 - Elimine implicações
 - $\forall x \ [\forall y \ \neg Animal(y) \lor Ama(x,y)] \Rightarrow [\exists y \ Ama(y,x)]$ $\forall x \ [\neg \forall y \ \neg Animal(y) \lor Ama(x,y)] \lor [\exists y \ Ama(y,x)]$
 - Mova a negação "para dentro"
 - $\forall x \ [\exists y \ \neg(\neg Animal(y) \lor Ama(x,y))] \lor [\exists y \ Ama(y,x)]$

- Todo mundo que ama todos os animais é amado por alguém
 - $\forall x \ [\forall y \ Animal(y) \Rightarrow Ama(x,y)] \Rightarrow [\exists y \ Ama(y,x)]$
- Passos:
 - Elimine implicações
 - $\forall x \ [\forall y \ \neg Animal(y) \lor Ama(x,y)] \Rightarrow [\exists y \ Ama(y,x)]$ $\forall x \ [\neg \forall y \ \neg Animal(y) \lor Ama(x,y)] \lor [\exists y \ Ama(y,x)]$
 - Mova a negação "para dentro"
 - $\forall x \ [\exists y \ \neg(\neg Animal(y) \lor Ama(x,y))] \lor [\exists y \ Ama(y,x)]$ $\forall x \ [\exists y \ \neg\neg Animal(y) \land \neg Ama(x,y)] \lor [\exists y \ Ama(y,x)]$

- Todo mundo que ama todos os animais é amado por alguém
 - $\forall x \ [\forall y \ Animal(y) \Rightarrow Ama(x,y)] \Rightarrow [\exists y \ Ama(y,x)]$
- Passos:
 - Elimine implicações
 - $\forall x \ [\forall y \ \neg Animal(y) \lor Ama(x,y)] \Rightarrow [\exists y \ Ama(y,x)]$ $\forall x \ [\neg \forall y \ \neg Animal(y) \lor Ama(x,y)] \lor [\exists y \ Ama(y,x)]$
 - Mova a negação "para dentro"
 - $\forall x \ [\exists y \ \neg(\neg Animal(y) \lor Ama(x,y))] \lor [\exists y \ Ama(y,x)]$ $\forall x \ [\exists y \ \neg\neg Animal(y) \land \neg Ama(x,y)] \lor [\exists y \ Ama(y,x)]$ $\forall x \ [\exists y \ Animal(y) \land \neg Ama(x,y)] \lor [\exists y \ Ama(y,x)]$

- Passos (cont.):
 - $\forall x \ [\exists y \ Animal(y) \land \neg Ama(x,y)] \lor [\exists y \ Ama(y,x)]$
 - Padronize as variáveis

- Passos (cont.):
 - $\forall x \ [\exists y \ Animal(y) \land \neg Ama(x,y)] \lor [\exists y \ Ama(y,x)]$
 - Padronize as variáveis
 - $\forall x \ [\exists y \ Animal(y) \land \neg Ama(x,y)] \lor [\exists z \ Ama(z,x)]$

- Passos (cont.):
 - $\forall x \ [\exists y \ Animal(y) \land \neg Ama(x,y)] \lor [\exists y \ Ama(y,x)]$
 - Padronize as variáveis
 - $\forall x \ [\exists y \ Animal(y) \land \neg Ama(x,y)] \lor [\exists z \ Ama(z,x)]$
 - Skolemize

- Passos (cont.):
 - $\forall x \ [\exists y \ Animal(y) \land \neg Ama(x,y)] \lor [\exists y \ Ama(y,x)]$
 - Padronize as variáveis
 - $\forall x \ [\exists y \ Animal(y) \land \neg Ama(x,y)] \lor [\exists z \ Ama(z,x)]$
 - Skolemize
 - $\forall x \ [Animal(F(x)) \land \neg Ama(x, F(x))] \lor [Ama(G(x), x)]$

- Passos (cont.): $\forall x \ [\exists y \ Animal(y) \land \neg Ama(x,y)] \lor [\exists y \ Ama(y,x)]$
 - Padronize as variáveis
 - $\forall x \ [\exists y \ Animal(y) \land \neg Ama(x,y)] \lor [\exists z \ Ama(z,x)]$
 - Skolemize
 - $\forall x \ [Animal(F(x)) \land \neg Ama(x, F(x))] \lor [Ama(G(x), x)]$ F(x): o animal potencialmente não amado por x

- Passos (cont.): $\forall x \ [\exists y \ Animal(y) \land \neg Ama(x,y)] \lor [\exists y \ Ama(y,x)]$
 - Padronize as variáveis
 - $\forall x \ [\exists y \ Animal(y) \land \neg Ama(x,y)] \lor [\exists z \ Ama(z,x)]$
 - Skolemize
 - ∀x [Animal(F(x)) ∧ ¬Ama(x, F(x))] ∨ [Ama(G(x), x)]
 F(x): o animal potencialmente não amado por x
 G(x): alguém que poderia amar x

- Passos (cont.): $\forall x \ [Animal(F(x)) \land \neg Ama(x, F(x))] \lor [Ama(G(x), x)]$
 - Remova quantificadores universais

- Passos (cont.):
 - $\forall x \ [Animal(F(x)) \land \neg Ama(x, F(x))] \lor [Ama(G(x), x)]$
 - Remova quantificadores universais
 - $[Animal(F(x)) \land \neg Ama(x, F(x))] \lor [Ama(G(x), x)]$

- Passos (cont.):
 - $\forall x \ [Animal(F(x)) \land \neg Ama(x, F(x))] \lor [Ama(G(x), x)]$
 - Remova quantificadores universais
 - $[Animal(F(x)) \land \neg Ama(x, F(x))] \lor [Ama(G(x), x)]$
 - De fato, não foram removidos, apenas tornados implícitos

- Passos (cont.):
 - $\forall x \ [Animal(F(x)) \land \neg Ama(x, F(x))] \lor [Ama(G(x), x)]$
 - Remova quantificadores universais
 - $[Animal(F(x)) \land \neg Ama(x, F(x))] \lor [Ama(G(x), x)]$
 - De fato, não foram removidos, apenas tornados implícitos
 - O Distribua ∨ sobre ∧

- Passos (cont.):
 - $\forall x \ [Animal(F(x)) \land \neg Ama(x, F(x))] \lor [Ama(G(x), x)]$
 - Remova quantificadores universais
 - $[Animal(F(x)) \land \neg Ama(x, F(x))] \lor [Ama(G(x), x)]$
 - De fato, não foram removidos, apenas tornados implícitos
 - O Distribua ∨ sobre ∧
 - $[Animal(F(x)) \lor Ama(G(x), x)] \land [\neg Ama(x, F(x)) \lor Ama(G(x), x)]$

- Passos (cont.):
 - $\forall x \ [Animal(F(x)) \land \neg Ama(x, F(x))] \lor [Ama(G(x), x)]$
 - Remova quantificadores universais
 - $[Animal(F(x)) \land \neg Ama(x, F(x))] \lor [Ama(G(x), x)]$
 - De fato, não foram removidos, apenas tornados implícitos
 - O Distribua ∨ sobre ∧
 - $[Animal(F(x)) \lor Ama(G(x), x)] \land [\neg Ama(x, F(x)) \lor Ama(G(x), x)]$

Convertendo para Forma Clausal: Exemplo

- Passos (cont.):
 - $\forall x \ [Animal(F(x)) \land \neg Ama(x, F(x))] \lor [Ama(G(x), x)]$
 - Remova quantificadores universais
 - $[Animal(F(x)) \land \neg Ama(x, F(x))] \lor [Ama(G(x), x)]$
 - De fato, não foram removidos, apenas tornados implícitos
 - O Distribua ∨ sobre ∧
 - $[Animal(F(x)) \lor Ama(G(x), x)] \land [\neg Ama(x, F(x)) \lor Ama(G(x), x)]$ cláusula cláusula

(Conjunção de disjunções de literais)

Passos

- Converter de LPO para forma clausal
 - Generalização da Forma Normal Conjuntiva para LPO
 - Uma conjunção de disjunções
 - Sem quantificadores

$$\forall x \exists y \ P(x) \Rightarrow R(x,y)$$

$$\neg P(x) \lor R(x,F(x))$$

- Determinar que variáveis substituir por quais quando da resolução
 - Processo chamado Unificação
- Executar a resolução

Passos

- Converter de LPO para forma clausal
 - Generalização da Forma Normal Conjuntiva para LPO
 - Uma conjunção de disjunções
 - Sem quantificadores

$$\forall x \exists y \ P(x) \Rightarrow R(x,y)$$

$$\neg P(x) \lor R(x,F(x))$$

- Determinar que variáveis substituir por quais quando da resolução
 - Processo chamado Unificação
- Executar a resolução

Passos

- Converter de LPO para forma clausal
 - Generalização da Forma Normal Conjuntiva para LPO
 - Uma conjunção de disjunções
 - Sem quantificadores

$$\forall x \exists y \ P(x) \Rightarrow R(x,y)$$

$$\neg P(x) \lor R(x,F(x))$$

- Determinar que variáveis substituir por quais quando da resolução
 - Processo chamado Unificação
- Executar a resolução

Unificação: Substituição

 Para entender unificação, precisamos antes do concento de substituição

Unificação: Substituição

- Para entender unificação, precisamos antes do concento de substituição
- Considere a sentença atômica $P(v_1, v_2, \dots, v_n)$

Unificação: Substituição

- Para entender unificação, precisamos antes do concento de substituição
- Considere a sentença atômica $P(v_1, v_2, \dots, v_n)$
 - Uma substituição é um mapeamento finito de <u>variáveis</u> a termos

$$\{v_1/t_1, v_2/t_2, \ldots, v_n/t_n\}$$

em que

Unificação: Substituição

- Para entender unificação, precisamos antes do concento de substituição
- Considere a sentença atômica $P(v_1, v_2, \dots, v_n)$
 - Uma substituição é um mapeamento finito de <u>variáveis</u> a termos

$$\{v_1/t_1, v_2/t_2, \ldots, v_n/t_n\}$$

em que

 Toda e qualquer variável v_i é substituída pelo termo t_i (que pode ser uma constante, outra variável, ou função)

Unificação: Substituição

- Para entender unificação, precisamos antes do concento de substituição
- Considere a sentença atômica $P(v_1, v_2, \dots, v_n)$
 - Uma substituição é um mapeamento finito de <u>variáveis</u> a termos

$$\{v_1/t_1, v_2/t_2, \ldots, v_n/t_n\}$$

em que

- Toda e qualquer variável v_i é substituída pelo termo t_i (que pode ser uma constante, outra variável, ou função)
- Não pode haver mais de uma substituição para cada variável

Unificação: Substituição

	Substituição	Resultado	Obs
Ī			
Ī			

Unificação: Substituição

Substituição	Resultado	Obs
$\{x/z,y/w\}$		

Unificação: Substituição

Substituição	Resultado	Obs
$\{x/z,y/w\}$	P(z, f(w), B)	

Unificação: Substituição

Substituição	Resultado	Obs
$\{x/z,y/w\}$	P(z, f(w), B)	Variação alfabética

Unificação: Substituição

Substituição	Resultado	Obs
$\{x/z,y/w\}$	P(z, f(w), B)	Variação alfabética
$\{y/A\}$		

Unificação: Substituição

Substituição	Resultado	Obs
$\{x/z, y/w\}$	P(z, f(w), B)	Variação alfabética
$\{y/A\}$	P(x, f(A), B)	

Unificação: Substituição

Substituição	Resultado	Obs
$\{x/z,y/w\}$	P(z, f(w), B)	Variação alfabética
$\{y/A\}$	P(x, f(A), B)	
$\{x/g(z),y/A\}$		

Unificação: Substituição

Substituição	Resultado	Obs
$\{x/z,y/w\}$	P(z, f(w), B)	Variação alfabética
$\{y/A\}$	P(x, f(A), B)	
$\{x/g(z),y/A\}$	P(g(z), f(A), B)	

Unificação: Substituição

Substituição	Resultado	Obs	
$\{x/z,y/w\}$	P(z, f(w), B)	Variação alfabética	
$\{y/A\}$	P(x, f(A), B)		
$\{x/g(z),y/A\}$	P(g(z), f(A), B)		
$\{x/C,y/A\}$			

Unificação: Substituição

Substituição	Resultado	Obs	
$\{x/z,y/w\}$	P(z, f(w), B)	Variação alfabética	
{ <i>y</i> / <i>A</i> }	P(x, f(A), B)		
$\{x/g(z),y/A\}$	P(g(z), f(A), B)		
$\{x/C, y/A\}$	P(C, f(A), B)		

Unificação: Substituição

Substituição	Resultado	Obs	
$\{x/z,y/w\}$	P(z, f(w), B)	Variação alfabética	
$\{y/A\}$	P(x, f(A), B)		
$\{x/g(z),y/A\}$	P(g(z), f(A), B)		
$\{x/C, y/A\}$	P(C, f(A), B)	Sentença constante	

Unificação: Substituição

Substituição	Resultado	Obs
$\{x/z,y/w\}$	P(z, f(w), B)	Variação alfabética
$\{y/A\}$	P(x, f(A), B)	
$\{x/g(z),y/A\}$	P(g(z), f(A), B)	
$\{x/C, y/A\}$	P(C, f(A), B)	Sentença constante
$\{y/A, x/y\}$		

Unificação: Substituição

Substituição	Resultado	Obs
$\{x/z,y/w\}$	P(z, f(w), B)	Variação alfabética
$\{y/A\}$	P(x, f(A), B)	
$\{x/g(z),y/A\}$	P(g(z), f(A), B)	
$\{x/C, y/A\}$	P(C, f(A), B)	Sentença constante
${y/A, x/y}$	P(A, f(A), B)	

Unificação: Substituição

Substituição	Resultado	Obs	
$\{x/z,y/w\}$	P(z, f(w), B)	Variação alfabética	
$\{y/A\}$	P(x, f(A), B)		
$\{x/g(z),y/A\}$	P(g(z), f(A), B)		
$\{x/C, y/A\}$	P(C, f(A), B)	Sentença constante	
${y/A, x/y}$	P(A, f(A), B)	Sentença constante	

Unificação: Substituição

• Ex: P(x, f(y), B)

Substituição	Resultado	Obs	
$\{x/z,y/w\}$	P(z, f(w), B)	Variação alfabética	
{ <i>y</i> / <i>A</i> }	P(x, f(A), B)		
$\{x/g(z),y/A\}$	P(g(z), f(A), B)		
$\{x/C, y/A\}$	P(C, f(A), B)	Sentença constante	
$\{y/A, x/y\}$	P(A, f(A), B)	Sentença constante	

 Variação alfabética: Quando apenas substituímos por variáveis diferentes

Unificação: Substituição

Substituição	Resultado	Obs	
$\{x/z,y/w\}$	P(z, f(w), B)	Variação alfabética	
{ <i>y</i> / <i>A</i> }	P(x, f(A), B)		
$\{x/g(z),y/A\}$	P(g(z), f(A), B)		
$\{x/C, y/A\}$	P(C, f(A), B)	Sentença constante	
${y/A, x/y}$	P(A, f(A), B)	Sentença constante	

- Variação alfabética: Quando apenas substituímos por variáveis diferentes
- Sentença constante (Ground instance): Sentença atômica sem variáveis

Unificação: Substituição

• Sentenças com substituições são mais específicas

- Sentenças com substituições são mais específicas
 - Possuem menos interpretações sob as quais são verdadeiras

- Sentenças com substituições são mais específicas
 - Possuem menos interpretações sob as quais são verdadeiras
 - Ex: P(g(z), f(A), B) é mais específica que P(x, f(y), B)

- Sentenças com substituições são mais específicas
 - Possuem menos interpretações sob as quais são verdadeiras
 - Ex: P(g(z), f(A), B) é mais específica que P(x, f(y), B)
- Não é permitido substituir constantes ou termos compostos (funções etc)

- Sentenças com substituições são mais específicas
 - Possuem menos interpretações sob as quais são verdadeiras
 - Ex: P(g(z), f(A), B) é mais específica que P(x, f(y), B)
- Não é permitido substituir constantes ou termos compostos (funções etc)
 - Podemos apenas substituir as variáveis, mesmo que estas estejam dentro de um termo composto (como o y em f(y))

Unificação: Substituição

Não confunda com interpretação semântica:

- Não confunda com interpretação semântica:
 - A substituição troca uma variável por um termo (sintaxe) de modo a produzir uma nova sentença

- Não confunda com interpretação semântica:
 - A substituição troca uma variável por um termo (sintaxe) de modo a produzir uma nova sentença
 - A interpretação mapeia a variável a um objeto no domínio (semântica)

Unificação

 Trata-se de encontrar uma substituição que faça com que duas expressões se igualem

- Trata-se de encontrar uma substituição que faça com que duas expressões se igualem
 - Estamos interessados em modos de fazer expressões se equivalerem, em toda interpretação de seus símbolos

- Trata-se de encontrar uma substituição que faça com que duas expressões se igualem
 - Estamos interessados em modos de fazer expressões se equivalerem, em toda interpretação de seus símbolos
- Expressões unificáveis:

- Trata-se de encontrar uma substituição que faça com que duas expressões se igualem
 - Estamos interessados em modos de fazer expressões se equivalerem, em toda interpretação de seus símbolos
- Expressões unificáveis:
 - ω_1 e ω_2 são unificáveis sse existir uma substituição s tal que $\omega_1 s = \omega_2 s$

- Trata-se de encontrar uma substituição que faça com que duas expressões se igualem
 - Estamos interessados em modos de fazer expressões se equivalerem, em toda interpretação de seus símbolos
- Expressões unificáveis:
 - ω_1 e ω_2 são unificáveis sse existir uma substituição s tal que $\omega_1 \, s = \omega_2 \, s$
 - Se existir uma substituição s que, quando aplicada a ω_1 e ω_2 , nos leva à mesma expressão

- Trata-se de encontrar uma substituição que faça com que duas expressões se igualem
 - Estamos interessados em modos de fazer expressões se equivalerem, em toda interpretação de seus símbolos
- Expressões unificáveis:
 - ω_1 e ω_2 são unificáveis sse existir uma substituição s tal que $\omega_1 \, s = \omega_2 \, s$
 - Se existir uma substituição s que, quando aplicada a ω_1 e ω_2 , nos leva à mesma expressão
 - s é então um unificador de ω_1 e ω_2

Unificação

• Ex: $\omega_1 = x$ e $\omega_2 = y$

- Ex: $\omega_1 = x$ e $\omega_2 = y$
 - Unificadores:

5	$\omega_1 s$	$\omega_2 s$

- Ex: $\omega_1 = x$ e $\omega_2 = y$
 - Unificadores:

5	$\omega_1 s$	$\omega_2 s$
$\{y/x\}$		

- Ex: $\omega_1 = x$ e $\omega_2 = y$
 - Unificadores:

5	$\omega_1 s$	$\omega_2 s$
$\{y/x\}$	X	

- Ex: $\omega_1 = x$ e $\omega_2 = y$
 - Unificadores:

5	$\omega_1 s$	$\omega_2 s$
$\{y/x\}$	X	X

- Ex: $\omega_1 = x$ e $\omega_2 = y$
 - Unificadores:

S	$\omega_1 s$	$\omega_2 s$
$\{y/x\}$	X	X
$\{x/y\}$		

- Ex: $\omega_1 = x \ e \ \omega_2 = y$
 - Unificadores:

S	$\omega_1 s$	$\omega_2 s$
$\{y/x\}$	X	X
$\{x/y\}$	у	

- Ex: $\omega_1 = x \ e \ \omega_2 = y$
 - Unificadores:

S	$\omega_1 s$	$\omega_2 s$
$\{y/x\}$	X	X
$\{x/y\}$	у	у

- Ex: $\omega_1 = x \ e \ \omega_2 = y$
 - Unificadores:

S	$\omega_1 s$	ω ₂ s
$\{y/x\}$	X	X
$\{x/y\}$	у	у
$\{x/f(f(A)), y/f(f(A))\}$		

- Ex: $\omega_1 = x$ e $\omega_2 = y$
 - Unificadores:

S	$\omega_1 s$	$\omega_2 s$
$\{y/x\}$	X	X
$\{x/y\}$	у	У
$\{x/f(f(A)), y/f(f(A))\}$	f(f(A))	

- Ex: $\omega_1 = x \ e \ \omega_2 = y$
 - Unificadores:

5	$\omega_1 s$	$\omega_2 s$
$\{y/x\}$	X	X
$\{x/y\}$	у	У
$\{x/f(f(A)), y/f(f(A))\}$	f(f(A))	f(f(A))

- Ex: $\omega_1 = x$ e $\omega_2 = y$
 - Unificadores:

S	$\omega_1 s$	$\omega_2 s$
$\{y/x\}$	X	X
$\{x/y\}$	у	У
$\{x/f(f(A)), y/f(f(A))\}$	f(f(A))	f(f(A))
$\{x/A,y/A\}$		

- Ex: $\omega_1 = x$ e $\omega_2 = y$
 - Unificadores:

5	ω_1 s	$\omega_2 s$
$\{y/x\}$	X	X
$\{x/y\}$	У	У
$\{x/f(f(A)), y/f(f(A))\}$	f(f(A))	f(f(A))
$\{x/A,y/A\}$	Α	

- Ex: $\omega_1 = x$ e $\omega_2 = y$
 - Unificadores:

5	$\omega_1 s$	$\omega_2 s$
$\{y/x\}$	X	X
$\{x/y\}$	у	У
$\{x/f(f(A)), y/f(f(A))\}$	f(f(A))	f(f(A))
$\{x/A,y/A\}$	Α	Α

Unificação

- Ex: $\omega_1 = x$ e $\omega_2 = y$
 - Unificadores:

S	ω_1 s	$\omega_2 s$
$\{y/x\}$	X	X
$\{x/y\}$	У	У
$\{x/f(f(A)), y/f(f(A))\}$	f(f(A))	f(f(A))
$\{x/A,y/A\}$	Α	Α

 Pode haver vários unificadores para o mesmo par de expressões, alguns mais gerais que outros

- Ex: $\omega_1 = x$ e $\omega_2 = y$
 - Unificadores:

S	$\omega_1 s$	$\omega_2 s$
$\{y/x\}$	X	X
$\{x/y\}$	У	У
$\{x/f(f(A)), y/f(f(A))\}$	f(f(A))	f(f(A))
$\{x/A, y/A\}$	Α	Α

- Pode haver vários unificadores para o mesmo par de expressões, alguns mais gerais que outros
 - Ex: $\{y/x\}$ é mais geral que $\{x/A, y/A\}$, por impor menos restrições aos valores das variáveis

Unificação

 Para um algoritmo computacional, seria desejável possuir uma única substituição – um único unificador

- Para um algoritmo computacional, seria desejável possuir uma única substituição – um único unificador
- Ocorre que, para todo par de expressões unificáveis, há um único unificador mais geral

- Para um algoritmo computacional, seria desejável possuir uma única substituição – um único unificador
- Ocorre que, para todo par de expressões unificáveis, há um único unificador mais geral
 - Este é único até o ponto de renomeação de variáveis

- Para um algoritmo computacional, seria desejável possuir uma única substituição – um único unificador
- Ocorre que, para todo par de expressões unificáveis, há um único unificador mais geral
 - Este é único até o ponto de renomeação de variáveis
 - Ex: $\{x/Pedro\}$ e $\{y/Pedro\}$ são consideradas equivalentes

- Para um algoritmo computacional, seria desejável possuir uma única substituição – um único unificador
- Ocorre que, para todo par de expressões unificáveis, há um único unificador mais geral
 - Este é único até o ponto de renomeação de variáveis
 - Ex: $\{x/Pedro\}$ e $\{y/Pedro\}$ são consideradas equivalentes
 - Só diferem pelo nome das variáveis

- Para um algoritmo computacional, seria desejável possuir uma única substituição – um único unificador
- Ocorre que, para todo par de expressões unificáveis, há um único unificador mais geral
 - Este é único até o ponto de renomeação de variáveis
 - Ex: $\{x/Pedro\}$ e $\{y/Pedro\}$ são consideradas equivalentes
 - Só diferem pelo nome das variáveis
 - Assim como $\{x/Pedro, y/x\}$ e $\{y/Pedro, x/z\}$

Unificador mais Geral (UMG)

• g é um unificador mais geral de ω_1 e ω_2 sse, para todo unificador s, houver um s' tal que

- g é um unificador mais geral de ω_1 e ω_2 sse, para todo unificador s, houver um s' tal que
 - $\omega_1 s = (\omega_1 g) s'$, e

- g é um unificador mais geral de ω_1 e ω_2 sse, para todo unificador s, houver um s' tal que
 - $\omega_1 s = (\omega_1 g) s'$, e
 - $\omega_2 s = (\omega_2 g) s'$

- g é um unificador mais geral de ω_1 e ω_2 sse, para todo unificador s, houver um s' tal que
 - $\omega_1 s = (\omega_1 g) s'$, e
 - $\omega_2 s = (\omega_2 g) s'$
- Ou seja, um unificador g é o mais geral se todo outro unificador s puder ser expressado como uma substituição extra s' adicionada ao mais geral

- g é um unificador mais geral de ω_1 e ω_2 sse, para todo unificador s, houver um s' tal que
 - $\omega_1 s = (\omega_1 g) s'$, e
 - $\omega_2 s = (\omega_2 g) s'$
- Ou seja, um unificador g é o mais geral se todo outro unificador s puder ser expressado como uma substituição extra s' adicionada ao mais geral
 - É então a substituição mais geral capaz de tornar as duas expressões iguais

ω_1	ω_2	$\mathit{UMG}(\sigma)$	ω_1' e ω_2'
P(x)	P(A)	{x/A}	
P(f(x), y, g(x))	P(f(x), x, g(x))	$\{y/x\}$ (ou $\{x/y\}$)	
P(f(x), y, g(y))	P(f(x), z, g(x))	$\{y/x,z/x\}$	
P(x, B, B)	P(A, y, z)	$\{x/A, y/B, z/B\}$	
P(g(f(v)),g(u))	P(x,x)	$\{x/g(f(v)), u/f(v)\}$	
P(x, f(x))	P(x,x)		

ω_1	ω_2	$\mathit{UMG}(\sigma)$	ω_1' e ω_2'
P(x)	P(A)	$\{x/A\}$	P(A)
P(f(x), y, g(x))	P(f(x), x, g(x))	$\{y/x\}$ (ou $\{x/y\}$)	
P(f(x), y, g(y))	P(f(x), z, g(x))	$\{y/x,z/x\}$	
P(x, B, B)	P(A, y, z)	$\{x/A, y/B, z/B\}$	
P(g(f(v)),g(u))	P(x,x)	$\{x/g(f(v)), u/f(v)\}$	
P(x, f(x))	P(x,x)		

ω_1	ω_2	$\mathit{UMG}(\sigma)$	ω_1' e ω_2'
P(x)	P(A)	$\{x/A\}$	P(A)
P(f(x), y, g(x))	P(f(x), x, g(x))	$\{y/x\}$ (ou $\{x/y\}$)	P(f(x), x, g(x))
P(f(x), y, g(y))	P(f(x), z, g(x))	$\{y/x,z/x\}$	
P(x, B, B)	P(A, y, z)	$\{x/A, y/B, z/B\}$	
P(g(f(v)),g(u))	P(x,x)	$\{x/g(f(v)), u/f(v)\}$	
P(x, f(x))	P(x,x)		

ω_1	ω_2	$\mathit{UMG}(\sigma)$	ω_1' e ω_2'
P(x)	P(A)	$\{x/A\}$	P(A)
P(f(x), y, g(x))	P(f(x), x, g(x))	$\{y/x\}$ (ou $\{x/y\}$)	P(f(x), x, g(x))
P(f(x), y, g(y))	P(f(x), z, g(x))	$\{y/x,z/x\}$	P(f(x), x, g(x))
P(x, B, B)	P(A, y, z)	$\{x/A, y/B, z/B\}$	
P(g(f(v)),g(u))	P(x,x)	$\{x/g(f(v)), u/f(v)\}$	
P(x, f(x))	P(x,x)		

ω_1	ω_2	$\mathit{UMG}(\sigma)$	ω_1' e ω_2'
P(x)	P(A)	$\{x/A\}$	P(A)
P(f(x), y, g(x))	P(f(x), x, g(x))	$\{y/x\}$ (ou $\{x/y\}$)	P(f(x), x, g(x))
P(f(x), y, g(y))	P(f(x), z, g(x))	$\{y/x,z/x\}$	P(f(x), x, g(x))
P(x, B, B)	P(A, y, z)	$\{x/A, y/B, z/B\}$	P(A, B, B)
P(g(f(v)),g(u))	P(x,x)	$\{x/g(f(v)), u/f(v)\}$	
P(x, f(x))	P(x,x)		

ω_1	ω_2	$\mathit{UMG}(\sigma)$	ω_1' e ω_2'
P(x)	P(A)	$\{x/A\}$	P(A)
P(f(x), y, g(x))	P(f(x), x, g(x))	$\{y/x\}$ (ou $\{x/y\}$)	P(f(x), x, g(x))
P(f(x), y, g(y))	P(f(x), z, g(x))	$\{y/x,z/x\}$	P(f(x), x, g(x))
P(x, B, B)	P(A, y, z)	$\{x/A, y/B, z/B\}$	P(A, B, B)
P(g(f(v)),g(u))	P(x,x)	$\{x/g(f(v)), u/f(v)\}$	P(g(f(v)),g(f(v)))
P(x, f(x))	P(x,x)		

ω_1	ω_2	$\mathit{UMG}(\sigma)$	ω_1' e ω_2'
P(x)	P(A)	$\{x/A\}$	P(A)
P(f(x), y, g(x))	P(f(x), x, g(x))	$\{y/x\}$ (ou $\{x/y\}$)	P(f(x), x, g(x))
P(f(x), y, g(y))	P(f(x), z, g(x))	$\{y/x,z/x\}$	P(f(x), x, g(x))
P(x, B, B)	P(A, y, z)	$\{x/A, y/B, z/B\}$	P(A, B, B)
P(g(f(v)),g(u))	P(x,x)	$\{x/g(f(v)), u/f(v)\}$	P(g(f(v)),g(f(v)))
P(x, f(x))	P(x,x)	Não há	

Unificador mais Geral (UMG): Funcionamento

• O algoritmo recursivamente compara a estrutura de duas expressões, x e y, elemento por elemento

- O algoritmo recursivamente compara a estrutura de duas expressões, x e y, elemento por elemento
 - Ao longo do caminho, constrói um unificador s para as expressões

- O algoritmo recursivamente compara a estrutura de duas expressões, x e y, elemento por elemento
 - Ao longo do caminho, constrói um unificador s para as expressões
 - Falha se dois pontos correspondentes nas estruturas não baterem

- O algoritmo recursivamente compara a estrutura de duas expressões, x e y, elemento por elemento
 - Ao longo do caminho, constrói um unificador s para as expressões
 - Falha se dois pontos correspondentes nas estruturas não baterem
 - Usa assim s para garantir que comparações futuras sejam consistentes com ligações estabelecidas anteriormente

Unificador mais Geral (UMG): Funcionamento

 Ao comparar uma variável com um termo complexo, o algoritmo faz a checagem de ocorrência:

- Ao comparar uma variável com um termo complexo, o algoritmo faz a checagem de ocorrência:
 - Verifica se essa variável já não ocorre dentro desse termo

- Ao comparar uma variável com um termo complexo, o algoritmo faz a checagem de ocorrência:
 - Verifica se essa variável já não ocorre dentro desse termo
 - Se sim, falha, pois nenhum unificador consistente pode ser construído

- Ao comparar uma variável com um termo complexo, o algoritmo faz a checagem de ocorrência:
 - Verifica se essa variável já não ocorre dentro desse termo
 - Se sim, falha, pois nenhum unificador consistente pode ser construído
 - Ex: S(x) não pode ser unificado a S(S(x))

```
Função Unifica(x,y,s): substituição
    se s = falha então retorna falha
    se x = y então retorna s
    se x for uma variável então
      retorna UnificaVar(x,y,s)
    se y for uma variável então
         retorna UnificaVar(y,x,s)
    se x e y forem expressões compostas então
         retorna Unifica(args(x), args(y), Unifica(op(x),op(y),s))
    se x e y forem listas então
         retorna Unifica(resto(x), resto(y), Unifica(primeiro(x),
           primeiro(y), s)
    retorna falha
```

```
Função Unifica(x,y,s): substituição
    se s = falha então retorna falha
    se x = y então retorna s
                                               Variável, constante, lista
    se x for uma variável então
                                               ou expressão composta
      retorna UnificaVar(x,y,s)
    se y for uma variável então
         retorna UnificaVar(y,x,s)
    se x e y forem expressões compostas então
          retorna Unifica(args(x), args(y), Unifica(op(x),op(y),s))
    se x e y forem listas então
          retorna Unifica(resto(x), resto(y), Unifica(primeiro(x),
           primeiro(y), s)
     retorna falha
```

```
Função Unifica(x,y,s): substituição
    se s = falha então retorna falha
    se x = y então retorna s
                                              A substituição construída
    se x for uma variável então
                                             até então (no início, vazia)
       retorna UnificaVar(x,y,s)
    se y for uma variável então
         retorna UnificaVar(y,x,s)
    se x e y forem expressões compostas então
         retorna Unifica(args(x), args(y), Unifica(op(x),op(y),s))
    se x e y forem listas então
         retorna Unifica(resto(x), resto(y), Unifica(primeiro(x),
           primeiro(y), s)
    retorna falha
```

```
Função Unifica(x,y,s): substituição
    se s = falha então retorna falha
    se x = y então retorna s
                                           Retorna uma substituição, se x e
    se x for uma variável então
                                           y forem unificáveis no contexto
         retorna UnificaVar(x,y,s)
                                              de s. Do contrário, falha
    se y for uma variável então
         retorna UnificaVar(y,x,s)
    se x e y forem expressões compostas então
         retorna Unifica(args(x), args(y), Unifica(op(x),op(y),s))
    se x e y forem listas então
         retorna Unifica(resto(x), resto(y), Unifica(primeiro(x),
           primeiro(y), s)
    retorna falha
```

```
Função Unifica(x,y,s): substituição
    se s = falha então retorna falha
                                             x e y contém valores ou ex-
    se x = y então retorna s \leftarrow
                                               pressões idênticos (esses
    se x for uma variável então
                                               podem ter sido atribuídos
      retorna UnificaVar(x,y,s)
                                                a elas em UnificaVar)
    se y for uma variável então
         retorna UnificaVar(y,x,s)
    se x e y forem expressões compostas então
          retorna Unifica(args(x), args(y), Unifica(op(x),op(y),s))
    se x e y forem listas então
          retorna Unifica(resto(x), resto(y), Unifica(primeiro(x),
           primeiro(y), s)
     retorna falha
```

```
Função Unifica(x,y,s): substituição
    se s = falha então retorna falha
    se x = y então retorna s
                                           Se x ou y forem variáveis, tenta
    se x for uma variável então
                                             unificá-las à outra expressão
       retorna UnificaVar(x,y,s)
    se y for uma variável então
         retorna UnificaVar(y,x,s)
    se x e y forem expressões compostas então
         retorna Unifica(args(x), args(y), Unifica(op(x),op(y),s))
    se x e y forem listas então
          retorna Unifica(resto(x), resto(y), Unifica(primeiro(x),
           primeiro(y), s)
    retorna falha
```

```
Função Unifica(x,y,s): substituição
    se s = falha então retorna falha
                                              UnificaVar tenta unificar a
    se x = y então retorna s
                                               variável do primeiro argu-
    se x for uma variável então
                                              mento com a expressão do
         retorna UnificaVar(x,y,s) \leftarrow
                                              segundo, no contexto de s
    se y for uma variável então
         retorna UnificaVar(y,x,s)
    se x e y forem expressões compostas então
          retorna Unifica(args(x), args(y), Unifica(op(x),op(y),s))
    se x e y forem listas então
          retorna Unifica(resto(x), resto(y), Unifica(primeiro(x),
           primeiro(y), s)
     retorna falha
```

```
Função Unifica(x,y,s): substituição
    se s = falha então retorna falha
                                            Em uma expressão composta,
    se x = y então retorna s
                                            como F(A, B), op() captura
    se x for uma variável então
                                             o símbolo de função F, en-
         retorna UnificaVar(x,y,s)
                                            quanto que args() captura a
                                             lista de argumentos (A, B)
    se y for uma variável então
         retorna UnificaVar(y,x,s)
    se x e y forem expressões compostas então
         retorna Unifica(args(x), args(y), Unifica(op(x), op(y), s))
    se x e y forem listas então
          retorna Unifica(resto(x), resto(y), Unifica(primeiro(x),
           primeiro(y), s)
    retorna falha
```

```
Função Unifica(x,y,s): substituição
    se s = falha então retorna falha
    se x = y então retorna s \in
                                           Unificamos antes os operadores.
    se x for uma variável então
                                            E estes precisam ser idênticos
       retorna UnificaVar(x,y,s)
    se y for uma variável então
         retorna UnificaVar(y,x,s)
    se x e y forem expressões compostas então
          retorna Unifica(args(x), args(y), Unifica(op(x), op(y), s))
    se x e y forem listas então
          retorna Unifica(resto(x), resto(y), Unifica(primeiro(x),
           primeiro(y), s)
     retorna falha
```

```
Função Unifica(x,y,s): substituição
    se s = falha então retorna falha
    se x = y então retorna s
                                          Unificamos então a lista de argu-
    se x for uma variável então
                                          mentos de x e y no contexto de s
      retorna UnificaVar(x,y,s)
    se y for uma variável então
         retorna UnificaVar(y,x,s)
    se x e y forem expressões compostas então
         retorna Unifica(args(x), args(y), Unifica(op(x), op(y), s))
    se x e y forem listas então
         retorna Unifica(resto(x), resto(y), Unifica(primeiro(x),
           primeiro(y), s)
    retorna falha
```

```
Função Unifica(x,y,s): substituição
    se s = falha então retorna falha
                                               No caso de listas, tenta-
    se x = y então retorna s
                                                mos unificar o primeiro
    se x for uma variável então
                                             elemento, para então recur-
       retorna UnificaVar(x,y,s)
                                             sivamente unificar os demais
    se y for uma variável então
         retorna UnificaVar(y,x,s)
    se x e y forem expressões compostas então
         retorna Unifica(args(x), args(y), Unifica(op(x),op(y),s))
    se x e y forem listas então
          retorna Unifica(resto(x), resto(y), Unifica(primeiro(x), v))
           primeiro(y), s))
     retorna falha
```

```
Função Unifica(x,y,s): substituição
    se s = falha então retorna falha
    se x = y então retorna s
                                               Nesse ponto, x e y são
    se x for uma variável então
                                                 constantes distintas
      retorna UnificaVar(x,y,s)
    se y for uma variável então
         retorna UnificaVar(y,x,s)
    se x e y forem expressões compostas então
         retorna Unifica(args(x), args(y), Unifica(op(x), op(y), s))
    se x e y forem listas então
          retorna Unifica(resto(x), resto(y), Unifica(primeiro(x),
           primeiro(y), s))
    retorna falha
```

```
Função UnificaVar(var,x,s): substituição
    se \{var/val\} \in s então
     retorna Unifica(val, x, s)
    se \{x/val\} \in s então
     retorna Unifica(var, val, s)
    se var ocorre em x, com a substituição s aplicada a ele (x s)
     então
        retorna falha (teste de ocorrência)
    Adicione \{var/x\} a s
    retorna s
```

```
Função Unifica Var(var,x,s): substituição
    se \{var/val\} \in s então
     retorna Unifica(val, x, s)
                                                    Variável
    se \{x/val\} \in s então
      retorna Unifica(var, val, s)
    se var ocorre em x, com a substituição s aplicada a ele (x s)
     então
        retorna falha (teste de ocorrência)
    Adicione \{var/x\} a s
    retorna s
```

```
Função Unifica Var(var, x, s): substituição
    se \{var/val\} \in s então
     retorna Unifica(val, x, s)
                                                   Expressão
    se \{x/val\} \in s então
      retorna Unifica(var, val, s)
    se var ocorre em x, com a substituição s aplicada a ele (x s)
     então
        retorna falha (teste de ocorrência)
    Adicione \{var/x\} a s
    retorna s
```

```
Função UnificaVar(var,x,s): substituição
    se \{var/val\} \in s então
     retorna Unifica(val, x, s)
                                               Substituição atual
    se \{x/val\} \in s então
      retorna Unifica(var, val, s)
    se var ocorre em x, com a substituição s aplicada a ele (x s)
     então
        retorna falha (teste de ocorrência)
    Adicione \{var/x\} a s
    retorna s
```

```
Função UnificaVar(var,x,s): substituição
    se \{var/val\} \in s então \leftarrow
                                               Primeiro aplicamos as
     retorna Unifica(val, x, s)
                                                substituições existen-
    se \{x/val\} \in s então
                                                 tes em s a var e x
      retorna Unifica(var, val, s)
    se var ocorre em x, com a substituição s aplicada a ele (x s)
      então
         retorna falha (teste de ocorrência)
    Adicione \{var/x\} a s
    retorna s
```

```
Função UnificaVar(var,x,s): substituição
    se \{var/val\} \in s então \leftarrow
     retorna Unifica(val, x, s)
                                                val pode ser um va-
                                                 lor ou expressão
    se \{x/val\} \in s então
      retorna Unifica(var, val, s)
    se var ocorre em x, com a substituição s aplicada a ele (x s)
     então
         retorna falha (teste de ocorrência)
    Adicione \{var/x\} a s
    retorna s
```

```
Função UnificaVar(var,x,s): substituição
    se \{var/val\} \in s então
                                             Unificamos então a subs-
     retorna Unifica(val, x, s)
                                               tituição recém feita à
    se \{x/val\} \in s então
                                            outra expressão (x ou var)
      retorna Unifica(var, val, s)
    se var ocorre em x, com a substituição s aplicada a ele (x s)
     então
        retorna falha (teste de ocorrência)
    Adicione \{var/x\} a s
    retorna s
```

```
Função UnificaVar(var,x,s): substituição
    se \{var/val\} \in s então
     retorna Unifica(val, x, s)
                                                 No início, s = \emptyset \rightarrow
                                                   Ps = P, \forall P
    se \{x/val\} \in s então
      retorna Unifica(var, val, s)
    se var ocorre em x, com a substituição s aplicada a ele (x s)
      então
         retorna falha (teste de ocorrência)
    Adicione \{var/x\} a s
    retorna s
```

```
Função UnificaVar(var,x,s): substituição
    se \{var/val\} \in s então
     retorna Unifica(val, x, s)
                                           Evita Iaços como \{x/f(x)\}
    se \{x/val\} \in s então
      retorna Unifica(var, val, s)
    se var ocorre em x, com a substituição s aplicada a ele (x s)
     então
        retorna falha (teste de ocorrência)
    Adicione \{var/x\} a s
    retorna s
```

```
Função UnificaVar(var,x,s): substituição
                                             Se nem var nem x partici-
    se \{var/val\} \in s então
                                             parem de s, e passarem no
     retorna Unifica(val, x, s)
                                             teste de ocorrência, então
                                               substituímos a variável
    se \{x/val\} \in s então
                                               var pelo que estiver em
      retorna Unifica(var, val, s)
                                              x, de modo a alinhá-las
    se var ocorre em x, com a substituição s aplicada a ele (x s)
      então
        retorna falha (teste de ocorrência)
    Adicione \{var/x\} a s
    retorna s
```

```
Função UnificaVar(var,x,s): substituição
    se \{var/val\} \in s então
                                               Substituímos a variável
     retorna Unifica(val, x, s)
                                               justamente por ser mais
                                                flexível \rightarrow por aceitar
    se \{x/val\} \in s então
                                                atribuições facilmente
        retorna Unifica(var, val, s)
    se var ocorre em x, com a substituição s aplicada a ele (x s)
      então
         retorna falha (teste de ocorrência)
    Adicione \{var/x\} a s
    retorna s
```

Referências

- Russell, S.; Norvig P. (2010): Artificial Intelligence: A Modern Approach. Prentice
 Hall. 3a ed.
 - Slides do livro: http://aima.eecs.berkeley.edu/slides-pdf/
- Hiż, A. (1957): Inferential Equivalence and Natural Deduction. The Journal of Symbolic Logic, 22(3). pp. 237-240.
- http://ocw.mit.edu/OcwWeb/Electrical-Engineeringand-Computer-Science/6-034Spring-2005/LectureNotes/index.htm
- http://jmvidal.cse.sc.edu/talks/learningrules/first-orderlogicsdefs.xml
- https: //www.sciencedirect.com/topics/computer-science/unification-algorithm
- http://logic.stanford.edu/intrologic/secondary/notes/chapter_12.html