2.6 Logical Operations

MIPS Arithmetic Operations

Category	Instruction	Example		Meaning	Comments
	add	add	\$s1,\$s2,\$s3	\$s1 = \$s2 + \$s3	Three operands; overflow detected
	subtract	sub	\$s1,\$s2,\$s3	\$s1 = \$s2 - \$s3	Three operands; overflow detected
	add immediate	addi	\$s1,\$s2,100	\$s1 = \$s2 + 100	+ constant; overflow detected
	add unsigned	addu	\$s1,\$s2,\$s3	\$s1 = \$s2 + \$s3	Three operands; overflow undetected
	subtract unsigned	subu	\$s1,\$s2,\$s3	\$s1 = \$s2 - \$s3	Three operands; overflow undetected
	add immediate unsigned	addiu	\$s1,\$s2,100	\$s1 = \$s2 + 100	+ constant; overflow undetected
	move from coprocessor register	mfc0	\$s1,\$epc	\$s1 = \$epc	Copy Exception PC + special regs
Arithmetic	multiply	mult	\$s2,\$s3	Hi, Lo = \$s2 × \$s3	64-bit signed product in Hi, Lo
	multiply unsigned	multu	\$s2,\$s3	Hi, Lo = \$s2 × \$s3	64-bit unsigned product in Hi, Lo
	divide	div	\$s2,\$s3	Lo = \$s2 / \$s3, Hi = \$s2 mod \$s3	Lo = quotient, Hi = remainder
	divide unsigned	divu	\$s2,\$s3	Lo = \$s2 / \$s3, Hi = \$s2 mod \$s3	Unsigned quotient and remainder
	move from Hi	mfhi	\$s1	\$s1 = Hi	Used to get copy of Hi
	move from Lo	mflo	\$s1	\$s1 = Lo	Used to get copy of Lo

2.6 MIPS logical operations

	AND	AND	\$s1,\$s2,\$s3	\$s1 = \$s2 & \$s3	Three reg. operands; bit-by-bit AND
	OR	OR	\$s1,\$s2,\$s3	\$s1 = \$s2 \$s3	Three reg. operands; bit-by-bit OR
	NOR	NOR	\$s1,\$s2,\$s3	\$s1 = ~ (\$s2 \$s3)	Three reg. operands; bit-by-bit NOR
Logical	AND immediate	ANDi	\$s1,\$s2,100	\$s1 = \$s2 & 100	Bit-by-bit AND with constant
	OR immediate	ORi	\$s1,\$s2,100	\$s1 = \$s2 100	Bit-by-bit OR with constant
	shift left logical	s11	\$s1,\$s2,10	\$s1 = \$s2 << 10	Shift left by constant
	shift right logical	srl	\$s1,\$s2,10	\$s1 = \$s2 >> 10	Shift right by constant

논리 연산	NOT(논리부정)		AND(논리곱)			OR(논리합)		
수식	$X = A' = \bar{A} = \sim A$		$X = A \cdot B = A \wedge B = AB$			$X = A + B = A \lor B$		
진리표	A	X	Α	В	X	A	В	X
	0	0 1	0	0	0	0	0	0
	U		0	1	0	0	1	1
	1 0	0	1	0	0	1	0	1
			1	1	1	1	1	1

• A:1은 짝수다(거짓)

• B: 3 은 짝수다 (거짓)

논리 연산	NOT(논리부정)		AND(논리곱)			OR(논리합)		
수식	$X = A' = \bar{A} = \sim A$		$X = A \cdot B = A \wedge B = AB$			$X = A + B = A \lor B$		
진리표	A	X	A	В	X	Α	В	X
	0 1	0	0	0	0	0	0	
	U	1	0	1	0	0	1	1
	1	0	1	0	0	1	0	1
			1	1	1	1	1	1

• A:1은 짝수다(거짓)

• B: 3 은 홀수다 (참)

논리 연산	NOT(논리부정)		AND(논리곱)			OR(논리합)		
수식	$X = A' = \bar{A} = \sim A$		$X = A \cdot B = A \wedge B = AB$			$X = A + B = A \vee B$		
진리표	A	X	A	В	X	A	В	X
	0	1	0	0	0	0	0	0
	O	1	0	1	0	0	1	1
	1	0	1	0	0	1	0	1
			1	1	1	1	1	1

• A:1은 홀수다(참)

• B: 3 은 짝수다 (거짓)

논리 연산	NOT(논리부정)		AND(논리곱)			OR(논리합)		
수식	$X = A' = \bar{A} = \sim A$		$X = A \cdot B = A \wedge B = AB$			$X = A + B = A \lor B$		
진리표	A	X	A	В	X	A	В	X
	0	0 1	0	0	0	0	0	0
	O		0	1	0	0	1	1
	1	0	1	0	0	1	0	1
			1	1	1	1	1	1

• A:1은 홀수다(참)

• B: 3 은 홀수다 (참)

bitwise logical operators

Α	В	A AND B	A OR B	NOT A
False	False	False	False	True
False	True	False	True	True
True	False	False	True	False
True	True	True	True	False

Logical operations	C operators	Java operators	MIPS instructions
Shift left	<<	<<	sll
Shift right	>>	>>>	srl
Bit-by-bit AND	&	&	and, andi
Bit-by-bit OR			or, ori
Bit-by-bit NOT	~	~	nor

```
.text
    .globl main
    main:
        addi $t1, $0, 0x3C00
 5
        addi $t2, $0, 0x0DC0
 6
        or $t0, $t1, $t2
 8
        ori $t3, $t1, 0
9
10
        and $t4, $t1, $t2
        andi $t5, $t1, -1
11
12
        nor $t6, $t1, $t2
13
14
        nor $t7, $t1, $t1
15
        ori $s0, $0, 9
16
        sll $t2, $s0, 4
17
18
19
        srl $t4, $t2, 2
```

or / ori

```
$t1: 0000 0000 0000 0000 0011 1100 0000 0000<sub>two</sub>
$t2: 0000 0000 0000 0000 0000 1101 1100 0000 two
        or $t0, $t1, $t2
$t0:
      0000 0000 0000 0000 0011 1101 1100 0000<sub>two</sub>
        ori $t3, $t1, 0
                                             A \text{ or } O = A
      0000 0000 0000 0000 0011 1100 0000 0000
      0000 0000 0000 0000 0000 0000 0000 0000
     0000 0000 0000 0000 0011 1100 0000 0000
$t3:
```

당분간 out of range error는 무시하고 실행하세요.


```
.text
    .globl main
    main:
 3
        addi $t1, $0, 0x3C00
 4
 5
        addi $t2, $0, 0x0DC0
 6
        or $t0, $t1, $t2
 8
        ori $t3, $t1, 0
9
        and $t4, $t1, $t2
10
11
        andi $t5, $t1, -1
12
        nor $t6, $t1, $t2
13
14
         nor $t7, $t1, $t1
15
        ori $s0, $0, 9
16
        sll $t2, $s0, 4
17
18
19
         srl $t4, $t2, 2
```

and / andi

```
$t1:
      0000 0000 0000 0000 0000 1101 1100 0000<sub>two</sub>
$t2:
      and $t4, $t1, $t2
$t4:
    andi $t5, $t1, -1
                                    A and 1 = A
      0000 0000 0000 0000 0011 1100 0000 0000
      1111 1111 1111 1111 1111 1111 1111 1111
$t5:
      0000 0000 0000 0000 0011 1100 0000 0000
```



```
.text
    .globl main
    main:
 3
        addi $t1, $0, 0x3C00
 4
        addi $t2, $0, 0x0DC0
 5
 6
        or $t0, $t1, $t2
8
        ori $t3, $t1, 0
9
10
        and $t4, $t1, $t2
        andi $t5, $t1, -1
11
12
        nor $t6, $t1, $t2
13
         nor $t7, $t1, $t1
14
15
        ori $s0, $0, 9
16
         sll $t2, $s0, 4
17
18
19
         srl $t4, $t2, 2
```

nor = not or

```
$t1: 0000 0000 0000 0001 1100 0000 0000
$t2:
    0000 0000 0000 0000 0000 1101 1100 0000
     nor $t6, $t1, $t2
$t6:
    1111 1111 1111 1111 1100 0010 0011 1111
                               not(A) = not(A \text{ or } A) = A \text{ nor } A
                                   = not (A or 0) = A nor 0
     nor $t7, $t1, $t1 # $t7 = ~$t1
     0000 0000 0000 0000 0011 1100 0000 0000
     0000 0000 0000 0000 0011 1100 0000 0000
```



```
.text
    .globl main
    main:
 3
        addi $t1, $0, 0x3C00
 4
 5
        addi $t2, $0, 0x0DC0
 6
        or $t0, $t1, $t2
8
        ori $t3, $t1, 0
9
        and $t4, $t1, $t2
10
        andi $t5, $t1, -1
11
12
        nor $t6, $t1, $t2
13
14
        nor $t7, $t1, $t1
15
        ori $s0, $0, 9
16
        sll $t2, $s0, 4
17
18
19
        srl $t4, $t2, 2
```

sll: shift left logical

\$t2 : 0000 0000 0000 0000 0000 0000 1001 0000_{two} = 144_{ten}

왼쪽으로 i bits shift 하는 것은 2ⁱ 만큼 곱하는 것과 같은데 연산 속도는 곱셈보다 빠르다.


```
.text
    .globl main
    main:
 3
        addi $t1, $0, 0x3C00
 4
 5
        addi $t2, $0, 0x0DC0
 6
        or $t0, $t1, $t2
8
        ori $t3, $t1, 0
9
10
        and $t4, $t1, $t2
        andi $t5, $t1, -1
11
12
        nor $t6, $t1, $t2
13
14
        nor $t7, $t1, $t1
15
        ori $s0, $0, 9
16
        sll $t2, $s0, 4
17
18
19
        srl $t4, $t2, 2
```

srl: shift right logical

\$t2:0000 0000 0000 0000 0000 0000 1001 0000 = 0x90 srl \$t4, \$t2, 2

\$t4: 0000 0000 0000 0000 0000 0000 0010 0100 = 0x24

오른쪽으로 i bits shift 하는 것은 2ⁱ 로 나누는 것과 같은데 연산 속도는 나눗셈보다 빠르다.

	AND	AND	\$s1,\$s2,\$s3	\$s1 = \$s2 & \$s3	Three reg. operands; bit-by-bit AND
	OR	OR	\$s1,\$s2,\$s3	\$s1 = \$s2 \$s3	Three reg. operands; bit-by-bit OR
	NOR	NOR	\$s1,\$s2,\$s3	\$s1 = ~ (\$s2 \$s3)	Three reg. operands; bit-by-bit NOR
Logical	AND immediate	ANDi	\$s1,\$s2,100	\$s1 = \$s2 & 100	Bit-by-bit AND with constant
	OR immediate	ORi	\$s1,\$s2,100	\$s1 = \$s2 100	Bit-by-bit OR with constant
	shift left logical	s11	\$s1,\$s2,10	\$s1 = \$s2 << 10	Shift left by constant
	shift right logical	srl	\$s1,\$s2,10	\$s1 = \$s2 >> 10	Shift right by constant