IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

application of:

EXANDER VASILIEVICH BORISENKO

Group Art Unit: 1797

Examiner:

Serial No.:

10/595,847

Receipt Date:

May 16, 2006

For:

APPARATUS AND METHOD FOR

REDUCING AND REMOVING

AIRBORNE OXIDIZED PARTICULATES

Attorney Docket No.: UREC0101PUSA

Commissioner for Patents U.S. Patent & Trademark Office P.O. Box 1450 Alexandria, VA 22313-1450

Sir:

TRANSMITTAL LETTER

In the above-identified application, the Applicant claimed foreign priority benefits under 35 U.S.C. §119 of the foreign applications listed below:

Application No.	Country	Filing Date
2003/1474.1	Kazakhstan	November 17, 2003
2003/1475.1	Kazakhstan	November 17, 2003
2003/1635.1	Kazakhstan	December 1, 2003
2003/1686.1	Kazakhstan	December 10, 2003
2004/0911.1	Kazakhstan	June 28, 2004
2004/0924.1	Kazakhstan	June 30, 2004

By:

Certified copies of this foreign applications are enclosed.

Respectfully Submitted,

ALEXANDER VASILIEVICH BORISENKO

BROOKS KUSHMAN P.C

Dated: March 4, 2009

George Daniel Templeton

Reg. No. 47,130 Attorney of Record 1000 Town Center Twenty-Second Floor Southfield, MI 48075

(248) 358-4400

CERTIFICATE OF MAILING UNDER 37 C.F.R. § 1.8

I hereby certify that this paper, including all enclosures referred to herein, is being deposited with the United States Postal Service as first-class mail, postage pre-paid, in an envelope addressed to: Commissioner for Patents, U.S. Patent & Trademark Office, P.O. Box 1450, Alexandria, VA 22313-1450 on:

March 4, 2009 Date of Deposit George Daniel Templeton
Name of Person Signing

Signature

МИНИСТЕРСТВО ЮСТИЦИИ РЕСПУБЛИКИ КАЗАХСТАН КОМИТЕТ ПО ПРАВАМ ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ РЕСПУБЛИКАНСКОЕ ГОСУДАРСТВЕННОЕ КАЗЕННОЕ ПРЕДПРИЯТИЕ «НАЦИОНАЛЬНЫЙ ИНСТИТУТ ИНТЕЛЛЕКТУАЛЬНОЙ СОБСТВЕННОСТИ»

per. № 751 KP

21 ноября 2006 года

СПРАВКА

РГКП «Национальный институт интеллектуальной собственности» Комитета по правам интеллектуальной собственности Министерства юстиции Республики Казахстан настоящим удостоверяет, что приложенные материалы являются точным воспроизведением первоначального описания, формулы и чертежей заявки на выдачу предварительного патента и патента на изобретение № 2003/1686.1, поданной в декабре месяце 10 дня 2003 года (10.12.2003)

Название изобретения:

Устройство для получения атомарного водорода

(варианты)

Заявитель:

Борисенко Александр Васильевич

Действительные авторы:

Борисенко Александр Васильевич;

Гришин Алексей Васильевич

Уполномоченный заверить копию заявки на изобретение

С. Нюсупов

УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ АТОМАРНОГО ВОДОРОДА

Изобретение относится к электрическим способам получения водорода и может быть использовано в химической, нефтехимической, металлургической отраслях промышленности и в энергетике.

Известно получение атомарного водорода при пропускании тихих электроразрядов через молекулярный водород под давлением 13,3 — 66,5 Па. В качестве источника атомарного водорода используют также вещества, отщепляющие при их облучении атомы водорода. Например, при облучении ультрафиолетовым светом йодистого водорода происходит реакция с образованием атомарного водорода:

$$HI + \hbar \nu \rightarrow H + I$$

(Гамбург Д.Ю., Семенов В.П., Дубовкин Н.Ф., Смирнова Л.Н. Водород, свойства, получение, хранение, транспортирование, применение – М.: Химия, 1989, с. 86).

Данный процесс получения атомарного водорода характеризуется сложностью осуществления, так как требует создания разреженной атмосферы.

Известно устройство для получения атомарного водорода, содержащее герметичный корпус, в котором размещена платиновая, палладиевая или вольфрамовая проволока. С помощью указанного устройства методом термической диссоциации получают атомарный водород из молекулярного водорода на платиновой, палладиевой или вольфрамовой проволоке, нагретой в атмосфере водорода при давлении менее 1,33 Па Диссоциации водорода на атомы можно достигнуть и при использовании радиоактивных веществ.

Термическая диссоциация водорода — это автокаталитическая реакция, протекающая по схеме:

$$H_2 + A \rightarrow H + H + A$$

где А — какая-либо частица, атом или молекула.

Атомарный водород образуется также в результате сенсибилизированных реакций, реагенты которых при добавлении светопоглощающего вещества становятся чувствительными к излучению в спектральной области этого вещества.

Известно устройство для получения атомарного водорода, содержащее реактор и ртутную кварцевую лампу. В водород или его смесь с другим газом, например с азотом

или парами воды, вводят пары ртути и далее эту смесь подвергают облучению ртутной кварцевой лампой. В результате поглощения атомами ртути излучения, соответствующего резонансной линии 2537 $\cdot 10^{-8}$ см, в смеси образуются возбужденные атомы ртути Hg^x (3P_1), которые, взаимодействуя с молекулой водорода, расщепляют его на атомы: $Hg^x(^3P_1) + H_2 \rightarrow Hg(^1S_0) + 2H$ (Гамбург Д.Ю., Семенов В.П., Дубовкин Н.Ф., Смирнова Л.Н. Водород, свойства, получение, хранение, транспортирование, применение – М.: Химия, 1989, с. 87).

Данное устройство характеризуются сложностью, так как предусматривает наличие герметичного реактора и необходимость использования паров ртути, которые очень токсичны.

Все известные устройства и процессы для получения атомарного водорода должны проводиться с использованием дорогостоящих компонентов, таких как платиновая или палладиевая проволока, в разреженной атмосфере или с обязательным применением ультрафиолетового излучения с добавлением реагентов, или с использованием радиоактивных веществ или токсичных веществ.

Задачей изобретения является разработка доступного и безопасного устройства для получения атомарного водорода.

Технический результат изобретения — расширение арсенала средств для получения атомарного водорода, исключение использования реагентов и упрощение устройства — достигается тем, что устройство для получения атомарного водорода, согласно изобретению, содержит высоковольтный источник питания и электрод, который выполнен в виде иглы и подключен к высоковольтному источнику питания.

Изобретение поясняется чертежом, где на фиг. 1 представлена схема устройства с двумя электродами; на фиг. 2 – схема устройства с одним электродом.

Устройство для получения атомарного водорода содержит высоковольтный источник питания 1 и электрод 2, который выполнен в виде иглы и подключен к высоковольтному источнику питания. Устройство может содержать второй электрод 3, который заземлен или подключен к высоковольтному источнику питания 1.

Атомарный водород получают следующим образом.

Пример 1. Атомарный водород получают с помощью электрода 2 в виде иглы, подключенного к отрицательному полюсу высоковольтного источника питания 1 и электрода 3, который образован потоком воды, стекающей из заземленной емкости. На электрод 2 подают напряжение 10 кВ. При этом происходит выделение атомарного водорода в результате разложения воды. Процесс идет по следующей схеме:

$$H_2O = OH^- + H^+$$

 $H^+ + e^- = H$

Пример 2. Для получения атомарного водорода электрод 2 в виде иглы подключают к отрицательному полюсу источника тока 1, другой электрод 3, выполненный из металла, заземляют. На электрод в виде иглы подают напряжение 3000 кВ. При подаче напряжения на указанный электрод происходит выделение атомарного водорода из воздуха.

Пример 3. На электрод 2 подают напряжение 1500 кВ от высоковольтного источника питания 1. Процесс осуществляется при наличии только одного электрода 2. При этом происходит выделение атомарного водорода в результате разложения водородсодержащих соединений, находящихся в воздухе, в том числе паров воды.

Потенциал электрода в виде иглы может быть как положительным (дефицит электронов) так и отрицательным (избыток электронов). Величина потенциала может быть постоянной или переменной. Факторами, приводящими к разложению воды и других водородсодержащих соединений и выделению атомарного водорода, являются высокая напряженность электрического поля вокруг острия иглы электрода 2; высокий градиент напряженности электрического поля у острия; насыщение электронами области вокруг острия вследствие их автоэлектронной эмиссии из материала иглы, или вследствие контактной передачи их молекулам воды, воздуха или частицам аэрозоля, окружающим иглу при соударении с острием при отрицательном потенциале иглы; этой области электронами вследствие обеднение аналогичных процессов при положительном ее потенциале.

Процессами, происходящими в окружающей острие иглы среде, в частности, являются ионизация молекул и частиц аэрозолей; их поляризация и возникновение вследствие этого силы, действующей на них и приводящей их в движение; направленное движение частиц среды при обретении ими высоких энергий от действующих на них сил; разрыв и коагуляция частиц аэрозолей; диссоциация молекул на составляющие их части; активация химических реакций вследствие высокой энергии молекул при их столкновении; электромагнитное излучение ионов, движущихся с ускорением; электромагнитное излучение столкновения молекул.

Полученный атомарный водород может быть использован для очистки газов, для восстановления различных химических компонентов, а также может быть направлен на хранение.

Для хранения и стабилизации используют так называемый матричноизолированный способ хранения свободных атомов водорода. Атомы водорода захватываются инертным твердым телом, находящимся при криогенной температуре. Для этого атомный водород, полученный в газообразном состоянии, необходимо быстро сконденсировать и захватить вмораживанием в узлы или межузловые места криогенной инертной кристаллической решетки. Свободные атомы водорода можно также сохранять локальным методом, при котором диссоциация молекулы водорода происходит исключительно в заранее приготовленной матрице. Чтобы избежать рекомбинации атомного водорода, его необходимо стабилизировать. Стабилизация достигается при очень низких температурах (0,1—0,5 K) и очень сильных магнитных полях (5—10 T), которые могут создаваться сверхпроводящими магнитами.

При рекомбинации атомарного водорода по уравнению $2H \to H_2 + 22 \cdot 10^5$ кДж/кг выделяется тепла в 17 раз больше, чем при сжигании молекулярного водорода по уравнению $2H_2 + O_2 \to 2H_2O + 1,3 \cdot 10^4$ кДж/кг. Это открывает возможности использования атомарного водорода в качестве однокомпонентного горючего.

Формула изобретения

Устройство для получения атомарного водорода, отличающееся тем, что оно содержит высоковольтный источник питания и электрод, который выполнен в виде иглы и подключен к высоковольтному источнику питания.

атомарного водорода.

quer. 2