

# ECE 451 - COMMUNICATION SYSTEMS (2) FALL 2020

# **Implementation of a Digital Modulation Project**

# **Submitted to:**

Dr. Bassant Abdelhamid

#### **Submitted by:**

Group(19)

Ahmed Sobhy Mohamed (Code: 1600100)

Ahmed Wael Ibrahim (Code: 1600212)

Islam Adel Gaber Gaber (Code: 1600257)

Eladham Galal Zakaria (Code: 1600285)

Ismail Galal Mohamed (Code: 1600270)

Maria Ahmos Asaad (Code: 16E0138)

#### Modulation Scheme: 128 - QAM

# Constellation Diagrams at different SNR Values: Assuming $N_o = 2x10^{-9}$

a) SNR = 30 dB

#### Input of the AWGN Channel

# 

# b) SNR = 10 dB

## Input of the AWGN Channel



# Output of the AWGN Channel



### Output of the AWGN Channel



#### c) SNR = 5 dB

# Input of the AWGN Channel



#### Output of the AWGN Channel



d) SNR = 0 dB

# Input of the AWGN Channel



# Output of the AWGN Channel



e) SNR = -3 dB

#### Input of the AWGN Channel



#### Output of the AWGN Channel



#### **Comment:**

As SNR decreases while keeping  $N_{\text{o}}$  constant, the signal power decreases with respect to noise power. Thus, the probability of error increases. The result is a 'ball' or 'cloud' of points surrounding each symbol position.

#### **Used Formulas**

$$E_{tot} = 4\left(4\sum_{n=1}^{8}(2n-1)^{2}a^{2} + 8\sum_{n=1}^{4}(2n-1)^{2}a^{2}\right)$$

$$E_{avg} = \frac{E_{tot}}{M} = SNR \times N_o \times 2$$

$$E_b = \frac{E_{avg}}{\log_2(M)}$$

$$SNR = \frac{E_b}{N_o} \times \rho$$

$$a = \sqrt{\frac{E_{avg}}{106}}$$

# BER vs. Eb/No (in dB) Plots

# a) Simulated plot



# Comment:

The BER is measured by comparing the bits detected at the output of the demapper with the transmitted bits.

#### b) Theoretical plot

We calculated BER using the approximated formula (in the slides):

$$\begin{split} \boldsymbol{P}_{e} &= \boldsymbol{P}_{e_{\phi 1}} + \boldsymbol{P}_{e_{\phi 2}} \\ \boldsymbol{P}_{e_{L\_ASK}} &= 2\left(1 - \frac{1}{L_{1}}\right)Q\left(\frac{2a}{\sqrt{2N_{0}}}\right) + 2\left(1 - \frac{1}{L_{2}}\right)Q\left(\frac{2a}{\sqrt{2N_{0}}}\right) \\ \boldsymbol{P}_{e_{b}} &= \frac{\boldsymbol{P}_{e}}{\boldsymbol{log}_{2}(\boldsymbol{M})} \end{split}$$

Where L1=16 & L2=8. It resulted in the figures below:



#### **Comment:**

This calculation resulted in incorrect results as some SER values were larger than 1.

So, we calculated SER using the formula but, neglecting the approximation used in the lecture:

$$\begin{split} \boldsymbol{P}_{e} &= \boldsymbol{P}_{e_{\varphi 1}} + \boldsymbol{P}_{e_{\varphi 2}} - 2 \; \boldsymbol{P}_{e_{\varphi 1}} \boldsymbol{P}_{e_{\varphi 2}} \\ \boldsymbol{P}_{e_{LASK}} &= 2 \left( 1 - \frac{1}{L_{1}} \right) Q \left( \frac{2a}{\sqrt{2N_{0}}} \right) + 2 \left( 1 - \frac{1}{L_{2}} \right) Q \left( \frac{2a}{\sqrt{2N_{0}}} \right) - 2 \left( 2 \left( 1 - \frac{1}{L_{1}} \right) Q \left( \frac{2a}{\sqrt{2N_{0}}} \right) \right) \left( 2 \left( 1 - \frac{1}{L_{2}} \right) Q \left( \frac{2a}{\sqrt{2N_{0}}} \right) \right) \\ \boldsymbol{P}_{e_{b}} &= \frac{\boldsymbol{P}_{e}}{\boldsymbol{log}_{2}(\boldsymbol{M})} \end{split}$$

Using this formula (without neglecting the last term), SER values were smaller than 1, resulting in the figures below:



#### **Comment:**

These readings were achieved without the approximation, but they're also incorrect as it's noticed in the figure that it increases and then decreases whereas it should decrease.