What is characteristic of an open and a closed loop circuit?

Open

$$+ \circ A$$

 $i = 0$
 $- \circ B$
 $V = V_A - V_B$

COLLEGE OF ENGINEERING

Capacitors and Inductors

- Learning Objectives:
 - Define the i-v relationship for capacitors and inductors.
 - Determine voltage and current across capacitors and inductors under DC and steady state conditions

Capacitors

- Stores energy in electric field between two conducting plates.
- For DC, capacitor looks like open circuit.

A i-v characteristic
$$C = \text{Capacitance} = \text{Fanads} [F]$$
 $V = IR$
 $i_c(t) = C \cdot \frac{dV_c(t)}{dt}$
 $V_c(t) = \frac{1}{c} Si_c(t) dt$

Capacitors

Calculating equivalent capacitance:

- Capacitors in series combine like resistors in parallel.
- Capacitors in parallel combine like resistors in series.

In a DC system and steady state:

Inductors

- Stores energy in magnetic field of a conducting coil.
- Inductor in a DC circuit equivalent to a short circuit

Calculating equivalent inductance

- Inductors in series combine like resistors in series.
- Inductors in parallel combine like resistors in parallel.

Inductor

$$v_L(t) = L \frac{di_L(t)}{dt}$$

$$i_L(t) = \frac{1}{L} \int_0^t v_L(\tau) d\tau + i_0$$

In a DC system and steady state:

Can be modeled as short cirvit

Example 1

Determine the current i_1 and i_2 in the circuit under DC condition.

Determine voltage v1 to v4 in the circuit under dc conditions.

