#### 1<sup>a</sup> Lista de Exercícios de Geometria Computacional

## Questão 1:

Assinale V ou F nas afirmações abaixo, justificando suas respostas:

- a) Um algoritmo é O(f(n)) quando  $\exists$  k,  $n_0$  tal que existe alguma instância de tamanho  $n \ge n_0$ , onde o número de passos é  $\ge kf(n)$ .
- b) Um algoritmo é  $\Omega(f(n))$  quando  $\exists$  k,  $n_0$  tal que para qualquer instância de tamanho  $n \ge n_0$ , o número de passos é  $\le$  kf(n).
- c) Se um algoritmo é O(n), ele é também  $O(n^2)$ .
- d) Todo algoritmo é pelo menos  $\Omega(n)$ .
- e) A etapa mais importante no algoritmo de ordenação quicksort é a combinação, enquanto que no algoritmo de ordenação mergesort é a separação.

#### **Ouestão 2**

Seja o pseudo-ângulo orientado  $\theta(a, b)$  o comprimento do arco medido sobre o quadrado unitário e orientado de a (vetor a) para b (vetor b) (onde  $0 \le \theta(a, b) < 8$ ). Pede-se:

- a) Exprima  $\theta(a, b)$  em termos de  $\theta(a)$  e  $\theta(b)$ .
- b) Diga como usar  $\theta(a, b)$  para decidir se a está à esquerda ou direita de b.
- c) Mostre que se a e b são ortogonais, com a à esquerda de b, então  $\theta(a, b) = 6$ .

#### **Questão 3:**

A técnica de Graham acha o fecho convexo 2D em O(nlogn). Dito isso e considerando o conjunto de pontos dados abaixo, pede-se:

- a) Mostre como é o polígono estrelado dos pontos dados, já ordenados, usando baricentro.
- b) Iniciando por p<sub>1</sub>, mostre como é o fecho convexo corrente para cada ponto considerado.
- c) Explique, resumidamente, porque o fecho convexo é O(nlogn) e não  $O(n^2)$ .

(Observação:  $p_1(y) = p_2(y) = p_3(y)$  e  $p_7(y) = p_8(y)$ , para os pontos dados abaixo).



### Questão 4:

Seja o conjunto C de pontos dado por  $C = \{p_1, p_2, p_3, p_4, p_5, p_6\}$  onde os pontos são dados pelas coordenadas  $p_1=(0;0;-5), p_2=(2;0;0), p_3=(0;3;0), p_4=(0;-5;0), p_5=(-5;0;0), p_6=(0;5;0).$  Dito isso, pede-se:

- a) Ache uma face inicial que pertença ao fecho convexo desses pontos.
- b) Mostre, passo a passo, como é a formação do fecho convexo desses pontos, usando a técnica de embrulho para presente e mostrando os cálculos.
- c) Qual é o poliedro que representa esse fecho convexo?

#### Questão 5:

Seja o tetraedro abaixo, suas respectivas faces, arestas e vértices. Supondo-se que o tetraedro foi modelado usando uma estrutura de winged-edge, pede-se:

- d) Mostre como é a tabela de vértices para o modelo, usando como exemplo o vértice V<sub>1</sub>.
- e) Mostre como é a tabela de faces para o modelo, usando como exemplo a face F<sub>1</sub>.
- f) Mostre como é a tabela de arestas para o modelo, usando como exemplo a aresta A<sub>6</sub>.



# Questão 6:

Sejam  $p_1$ ,  $p_2$ , ...,  $p_n$  pontos do plano. Explique como seria um algoritmo linear para determinar se  $p_1$  é um vértice do fecho convexo de  $\{p_1, p_2, ..., p_n\}$ , sem usar nenhuma estrutura de dados especial e mostre o algoritmo em pseudo-código para esse problema.

(Dica: p<sub>1</sub> é do fecho se e somente se existe uma reta passando por esse ponto e outro ponto entre os pontos dados onde todos os outros pontos estão em um dos semi-planos dessa reta)