Лабораторна робота № 2

Перевірка статистичної гіпотези про вигляд розподілу (критерії Колмогорова, χ^2 та пустих ящиків) і гіпотези однорідності (критерій Смирнова)

Спостерігається вибірка $\overline{X}=(X_1,\ldots,X_n)$, де $\{X_i\}$ — незалежні однаково розподілені випадкові величини, які мають показниковий розподіл з параметром λ , тобто $F(u;\lambda)=\mathbf{P}\{X_i< u\}=1-\exp\{-\lambda u\},\ u\geq 0$.

Якщо $\{\omega_i\}$ — незалежні рівномірно розподілені на відрізку [0,1] в.в., то

$$X_i = F^{-1}(1 - \omega_i; \lambda) = -\frac{1}{\lambda} \ln \omega_i.$$

Перевірку статистичних гіпотез вести при рівні значимості $\gamma = 0.05$. Кожне з наступних чотирьох завдань виконувати для n = 1000, $n = 10\,000$ та $n = 100\,000$. Користуючись перетворенням $Y_i = F(X_i; \lambda), i = 1, ..., n$, перевіряти на рівномірність випадкові величини $\{Y_i\}$ (лише перші три завдання).

Завдання 1: за допомогою критерія Колмогорова перевірити гіпотези:

- а) H_0 : $X_i \square F(u;1)$, коли насправді $X_i \square F(u;1)$;
- b) H_0 : $X_i \square F(u;1)$, коли насправді $X_i \square F(u;1.3)$.

<u>Завдання 2</u>: за допомогою критерія χ^2 перевірити гіпотези:

- а) H_0 : $X_i \square F(u;1)$, коли насправді $X_i \square F(u;1)$;
- b) $H_0: X_i \square F(u;1)$, коли насправді $X_i \square F(u;1.3)$.

<u>Зауваження</u>. Кількість проміжків r обирати з умови: $r = 30 \cdot \frac{n}{1000}$.

<u>Завдання 3</u>: за допомогою критерія пустих ящиків (асимптотична теорема) перевірити гіпотези:

- а) $H_0: X_i \square F(u;1)$, коли насправді $X_i \square F(u;1)$;
- b) H_0 : $X_i \square F(u;1)$, коли насправді $X_i \square F(u;1.3)$.

<u>Зауваження</u>. Кількість проміжків r обирати з умови: $\rho = 2$, тобто із співвідношення $\frac{n}{r} = \rho$ випливає, що $r = \frac{n}{2}$.

Завдання 4: за допомогою критерія однорідності Смирнова перевірити гіпотези:

a)
$$H_0: \overline{X}^{(1)} = (X_1^{(1)}, \dots, X_n^{(1)}) \square F(u; 1), \qquad \overline{X}^{(2)} = (X_1^{(2)}, \dots, X_m^{(2)}) \square F(u; 1)$$

(саме так ці вибірки і генерувались);

b)
$$H_0: \overline{X}^{(1)} = (X_1^{(1)}, ..., X_n^{(1)}) \square F(u; 1), \qquad \overline{X}^{(2)} = (X_1^{(2)}, ..., X_m^{(2)}) \square F(u; 1)$$

(насправді: $\overline{X}^{(1)} \square F(u;1), \quad \overline{X}^{(2)} \square F(u;1.3)$).

Зауваження. Обирати $m = \frac{n}{2}$.