Relaciones

Clase 11

IIC 1253

Prof. Cristian Riveros

Recordatorio: Pares ordenados

Definición

Para dos elementos a y b, se define el par ordenado (a,b) como:

$$(a,b) = \{ \{a\}, \{a,b\} \}$$

Proposición

$$(a,b) = (c,d)$$
 si, y solo si, $a = c$ y $b = d$

Recordatorio: Producto cartesiano

Definición

■ Para dos conjuntos A y B se define el **producto cartesiano** como:

$$A \times B = \{ (a, b) \mid a \in A \land b \in B \}$$

Para conjuntos A_1, \ldots, A_n se define el **producto cartesiano generalizado**:

$$A_1 \times A_2 \times \ldots \times A_n = \{(a_1, \ldots, a_n) \mid a_i \in A_i\}$$

Outline

Relaciones

Representación

Operaciones

Outline

Relaciones

Representación

Operaciones

Relaciones

Definición

Dado un conjunto A y B, R es una relación binaria sobre A y B si:

$$R \subseteq A \times B$$

Si B = A decimos que R es una relación binaria sobre A.

¿qué relaciones binarias conocen?

Relaciones (ejemplos)

Ejemplo 1

Considere el conjunto A:

$$A = \{a, b, c, d, e\}$$

Considere la siguiente relación:

$$R_2 = \{(a,b),(b,b),(c,b),(c,d),(d,a),(d,d),(d,e)\}$$

- ¿es cierto que $(d, a) \in R_2$?
- ¿es cierto que $(c,c) \in R_2$?

Relaciones (ejemplos)

Ejemplo 2

Curso
Criptografía
Matemáticas Discretas
Lógica
Matemáticas Discretas

Considere los siguientes conjuntos A y B:

```
A = \{Marcelo, Juan, Cristian\}

B = \{Criptografía, Lógica, MD\}
```

Una relación que modela la tabla anterior es:

```
R_1 = \{(Marcelo, Criptografía), (Marcelo, MD), (Juan, Lógica), (Cristian, MD)\}
```

¿cuál es la diferencia entre una "tabla" y una relación?

Relaciones (ejemplos)

Ejemplo 3

Considere el conjunto $\mathbb N$ y las relaciones:

$$T_1 = \{(a,b) \in \mathbb{N} \times \mathbb{N} \mid a \le b\}$$

$$T_2 = \{(a,b) \in \mathbb{N} \times \mathbb{N} \mid a < b\}$$

$$T_3 = \{(a,b) \in \mathbb{N} \times \mathbb{N} \mid a = b\}$$

- ¿es cierto que $T_1 \subseteq T_2$?
- ¿es cierto que $T_3 \subseteq T_1$?
- ¿es cierto que $(T_2 \cup T_3) = T_1$?

Relaciones (notación)

Definición

Para una relación R y un par (a,b) usaremos la siguiente notación:

$$\left. \begin{array}{c} (a,b) \in R \\ \text{o} \\ a \ R \ b \end{array} \right\} \quad \left(a,b \right) \text{ pertenece a la relación } R$$

$$\left(a,b \right) \notin R \\ \text{o} \\ a \ R \ b \end{array} \right\} \quad \left(a,b \right) \text{ NO pertenece a la relación } R$$

Ejemplos

- $(2,3) \in \le$ o $2 \le 3$
- $(5,2) \notin ≤ 0 5 \nleq 2$

Relaciones (mas ejemplos)

Ejemplo 4

Considere el conjunto ℕ y la relación "a divide b":

```
a \mid b si, y solo si \exists k. \ k \in \mathbb{N} \land a \cdot k = b
```

- ¿es cierto que 18 | 72 ?
- ¿es cierto que 7 / 93 ?
- \blacksquare ¿es cierto que = \subseteq | ?
- ¿es cierto que $\leq \subseteq |$?

Outline

Relaciones

Representación

Operaciones

Representación de relaciones

- 1. Grafos dirigidos.
- 2. Matrices sobre bits.

Grafos dirigidos

Definición

Un grafo dirigido G es un par (V, E) donde:

- *V* es un conjunto (vertices),
- $E \subseteq V \times V$ es una relación binaria sobre V (aristas).

Ejemplo

- $V = \{1, 2, 3, 4\}$
- $E = \{(1,4),(2,1),(2,3),(3,3),(3,4)\}$

Grafos dirigidos

Propiedad

Toda relación binaria R sobre A se puede ver como un grafo dirigido $G_R = (A, R)$.

Ejemplo

Considere el conjunto $A = \{a, b, c, d, e\}$ y la relación:

$$R = \{(a,b),(b,b),(c,b),(c,d),(d,a),(d,d),(d,e)\}$$

Representación matricial

Definición

Sea $A = \{a_1, a_2, ..., a_n\}$ un conjunto ordenado arbitrariamente y R una relación binaria sobre A. Definimos la matriz M_R de tamaño $n \times n$ como:

$$M_R[i,j] = \begin{cases} 1 & \text{si } a_i \ R \ a_j \\ 0 & \text{si } a_i \ R \ a_j \end{cases}$$

para todo $1 \le i \le n$ y $1 \le j \le n$.

Representación matricial

Ejemplo

Considere el conjunto $A = \{a, b, c, d, e\}$ y la relación:

$$R = \{(a,b),(b,b),(c,b),(c,d),(d,a),(d,d),(d,e)\}$$

Entonces la matriz M_R que representa a R es:

$$\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

¿qué ventaja tiene la representación matricial de una relación?

Operaciones de bits y matrices

Operaciones sobre matrices

Dada dos matrices de bits M y N de tamaño n, definimos las matrices:

$$(M \lor N)[i,j] = M[i,j] \lor N[i,j]$$

$$(M \land N)[i,j] = M[i,j] \land N[i,j]$$

$$(\neg M)[i,j] = \neg M[i,j]$$

Para dos relacions $R \vee S$, ¿qué representa $M_R \vee M_S$? ¿ $M_R \wedge M_S$? ¿ $M_R \wedge M_S$?

Operaciones de bits y matrices

Operaciones sobre matrices

Dada dos matrices de bits M y N de tamaño n definimos el orden $M \le N$:

$$M[i,j] \leq N[i,j]$$

para todo $1 \le i \le n$ y $1 \le j \le n$ suponiendo que $0 \le 1$.

Para dos relacions R y S, ¿qué representa $M_R \le M_S$?

Outline

Relaciones

Representación

Operaciones

Sea A un conjunto y $R \subseteq A \times A$.

Definición

Se definen las siguientes operaciones entre relaciones:

■ Proyección 1: $\pi_1(R)$ son todos los elementos que estan en la primera componente de R.

$$\pi_1(R) = \{x \mid \exists y \in A. (x, y) \in R\}$$

■ Proyección 2: $\pi_2(R)$ son todos los elementos que estan en la segunda componente de R.

$$\pi_2(R) = \{ y \mid \exists x \in A. (x, y) \in R \}$$

$$\pi_1(R) = \{x \mid \exists y \in A. (x, y) \in R\}$$

$$\pi_2(R) = \{y \mid \exists x \in A. (x, y) \in R\}$$

Ejemplo

Considere el conjunto $A = \{a, b, c, d, e\}$ y la relación:

$$R = \{(a,b),(b,b),(c,b),(c,d),(d,a),(d,d),(d,e)\}$$

¿cuál es el conjunto $\pi_1(R)$?

$$\pi_1(R) = \{a, b, c, d\}$$

¿cuál es el conjunto $\pi_2(R)$?

$$\pi_2(R) = \{a, b, d, e\}$$

$$\pi_1(R) = \{x \mid \exists y \in A. (x, y) \in R\}$$

$$\pi_2(R) = \{y \mid \exists x \in A. (x, y) \in R\}$$

Ejemplo

Considere el conjunto $A = \{a, b, c, d, e\}$ y la relación:

$$R = \{(a,b), (b,b), (c,b), (c,d), (d,a), (d,d), (d,e)\}$$

$$\pi_1(R) = \{a,b,c,d\} \qquad \pi_2(R) = \{a,b,d,e\}$$

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

¿a qué corresponde $\pi_1(R)$ en ambas representaciones? ¿ $\pi_2(R)$?

Sea A un conjunto y R, R_1 y R_2 relaciones sobre A.

Definición

Se definen las siguientes operaciones entre relaciones:

■ Inverso: R^{-1} son todos los pares (x, y) tal que $(y, x) \in R$.

$$R^{-1} = \{(x,y) \mid (y,x) \in R\}$$

Composición: $R_1 \circ R_2$ son todos los elementos (x, y) tal que existe un z que cumple $(x, z) \in R_1$ y $(z, y) \in R_2$.

$$R_1 \circ R_2 = \{(x,y) \mid \exists z \in A. (x,z) \in R_1 \ y \ (z,y) \in R_2\}$$

$$R^{-1} = \{(x,y) \mid (y,x) \in R\}$$

 $R_1 \circ R_2 = \{(x,y) \mid \exists z \in A. (x,z) \in R_1 \ y \ (z,y) \in R_2\}$

Ejemplo

Considere el conjunto $A = \{a, b, c, d, e\}$ y la relación:

$$R = \{(a,b),(b,b),(c,b),(c,d),(d,a),(d,d),(d,e)\}$$

¿cuál es la relación R^{-1} ?

$$R^{-1} = \{(b,a),(b,b),(b,c),(d,c),(a,d),(d,d),(e,d)\}$$

¿cuál es la relación $R \circ R$?

$$R \circ R \ = \ \{(a,b),(b,b),(c,b),(c,a),(c,d),(c,e),(d,b),(d,a),(d,d),(d,e)\}$$

$$R^{-1} = \{(x,y) \mid (y,x) \in R\}$$

 $R_1 \circ R_2 = \{(x,y) \mid \exists z \in A. (x,z) \in R_1 \ y \ (z,y) \in R_2\}$

Ejemplo

Considere el conjunto $A = \{a, b, c, d, e\}$ y la relación:

$$R^{-1} = \{(b,a),(b,b),(b,c),(d,c),(a,d),(d,d),(e,d)\}$$

$$R \circ R = \{(a,b),(b,b),(c,b),(c,a),(c,d),(c,e),(d,b),(d,a),(d,d),(d,e)\}$$

$$\begin{bmatrix}
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix}$$

¿a qué corresponde R^{-1} en ambas representaciones? ¿ $R \circ R$?

Caminos en grafos dirigidos

Sea G = (V, E) un grafo dirigido.

Definición

- Un camino en G es una secuencia v_0, v_1, \ldots, v_n tal que:
 - $v_i \in V$ para todo $0 \le i \le n$.
 - $(v_i, v_{i+1}) \in E$ para todo $0 \le i < n$.
- Un camino simple en G es un camino donde todos los nodos son distintos en la secuencia.
- El largo de un camino v_0, v_1, \ldots, v_n es igual a n, esto es, el al largo de la secuencia menos uno.

Caminos en grafos dirigidos

Ejemplo

- ¿cuál es un camino de largo 2? ¿y de largo 3?
- ¿cuál es un camino simple de largo 4? ¿y de largo 5?

¿qué significa el grafo de $R \circ R$? ¿y de $(R \circ R) \circ R$?

Multiplicación de matrices de bits

Definición

Dado dos matrices de bits M y N de tamaño $n \times n$, se define la multiplicación $M \cdot N$ tal que:

$$(M \cdot N)[i,j] = \bigvee_{k=1}^{n} M[i,k] \wedge N[k,j]$$

para todo $1 \le i \le n$ y $1 \le j \le n$.

Ejemplo

$$\begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 1 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Dada una relación R, ¿qué representa $M_R \cdot M_R$?