Mathematische Berechnung

Niklas Leukroth

September 4, 2022

1 Grundlegendes

$$G = 6.673 \cdot 10^{-11}$$

$$AU = 149597870.700km = 149597870700m$$

$$MP = 6.72006 \cdot 10^{33}kg$$

Newtonsches Gravitationsgesetz

$$F = \frac{G \cdot m_1 \cdot m_2}{r^2}$$
$$a = \frac{F}{m}$$

Daraus folgende Berechnungen

$$\vec{a_i} = \Delta t \cdot \sum_{i \neq j} \frac{G \cdot m_j}{\|p_i - p_j\|_2^3} \cdot (p_j - p_i)$$
$$\vec{v_i} = \Delta t \cdot (\vec{v_i} + \vec{a_i})$$
$$\vec{p_i} = \vec{p_i} + \vec{v_i}$$

2 Verwendete Optimierungen

Da $F_{i \to j} = F_{j \to i}$ gilt, kann die Kraft F zwischen 2 Objekten nur einmal berechnet werden und auf beide Objekte angewendet werden. Die eigentliche entstehende Beschleunigung hängt von der eigenen Richtung und Masse ab. Folglich wird zunächst $F_{i \to j}$ in der Richtung $i \to j$ berechnet und auf Objekt o_i angewendet. Dieses Objekt teilt den eingehenden Vektor durch seine eigene Masse und addiert das Ergebnis mit Zeitfaktor multipliziert. Anschließend wird der selbige Vektor mit dem Faktor -1 auf Objekt o_j in gleicher Vorgehensweise angewendet.

Daraus resultierend sind die Mengen die jedes Objekt betrachtet wie folgt aufgebaut:

$$s_{1} = \{o_{2}, o_{3}, \cdots, o_{n}\}$$

$$s_{2} = \{o_{3}, o_{4}, \cdots, o_{n}\}$$

$$\vdots$$

$$s_{n-1} = \{o_{n}\}$$

$$s_{n} = \{\}$$

Da die Masse für die Sonne $m_{Sonne}=1.9891\cdot 10^{30}kg$ beträgt, wird diese aufgeteilt. Somit ist für die Sonne exemplarisch die Speicherung nur wie folgt: $m_{Sonne}=1.9891\cdot 10^{20}\cdot 10^{10}$. Der Faktor 10^{10} wird aus allen Massen entnommen und in der anschließenden Berechnung wieder betrachtet. Da die Berechnung über $F=\frac{G\cdot m_1\cdot m_2}{r^2}$ erfolgt, die eigene Masse über $a=\frac{F}{m}$ allerdings wieder dividiert wird, muss die Skalierung der Masse nur einmal in der Berechnung betrachtet werden. Folglich beträgt die angepasste Formel:

$$F = \frac{G \cdot m_1 \cdot m_2 \cdot 10^{10}}{r^2}$$

und nicht:

$$F = \frac{G \cdot m_1 \cdot m_2 \cdot 10^{10} \cdot 10^{10}}{r^2}$$

3 Finale Formeln

Durch die Anpassungen im JSON Skript, um die Daten speicherbar zu machen, ergeben sich folgende Anpassungen:

Achtung: Die folgenden Anderungen sind exemplarisch und repräsentieren nicht garantiert die eigentlich verwendete Skalierung. Diese ändert sich durch die Umstellung der Parameterliste aktuell sehr oft und ist nicht final.

$$F = \frac{G \cdot m_1 \cdot m_2}{r^2} \cdot \frac{p_2 - p_1}{\|p_2 - p_1\|_2} = F = \frac{G \cdot m_1 \cdot m_2 \cdot 10^{10}}{AU^2 \cdot \|p_2 - p_1\|_2^3} \cdot (p_2 - p_1)$$

$$F = \frac{6.673 \cdot 10^{-11} \cdot m_1 \cdot m_2 \cdot 10^{10}}{AU^2 \cdot \|p_2 - p_1\|_2^3} \cdot (p_2 - p_1) = F = \frac{6.673 \cdot m_1 \cdot m_2}{AU^2 \cdot 10 \cdot \|p_2 - p_1\|_2^3} \cdot (p_2 - p_1)$$