- 1. How many positions are needed to represent the following numbers in base-2 with no error?
 - a. $(1.5)_{10}$

 $\log_2(0.5) = 1$ fraction bit

... only 2 bits (one integer, one fraction) are needed to accurately represent $(1.5)_{10}$: $(1.1)_2 = (1 \times 2^0) + (1 \times 2^{-1}) = (1.5)_{10}$

b.
$$(1.05)_{10}$$

Impossible to store with complete accuracy, since $\log_2(0.05) \approx -4.321$ is not an integer. This indicates there is no finite number of bits that can be picked to store it. Someone call the IEEE wizards!

- 2. Given n=4 positions, put the fraction point in a position for the following numbers in base-2 to minimize the conversion error.
 - a. $(1.5)_{10}$

xxx.x will have precision 0.5 (2^{-1}), thus at least one bit must be allocated to the fraction to have perfect precision. Thus, the following are all valid and completely accurate representations:

- $-(001.1)_2$
- $-(01.10)_2$
- $-(1.100)_2$
- b. $(5.5)_{10}$

xxx.x will still have precision 0.5 (2^{-1}) , so at least one fraction bit is required, however $(5)_{10}$ requires 3 bits so the only perfect representation is $(101.1)_2$.

c.
$$(10.5)_{10}$$

The glaring issue with this number is that there are only 4 bits to represent the number, but 4 bits are needed for the integer. Thus, the only solution is to minimize error. 0.5 is less than 3 (10 - 7, the max for a 3-digit binary number), so we must forego the fraction bit. Therefore the most accurate binary representation possible is $(1010.)_2$.