

Escola Politécnica da Universidade de São Paulo **PTC-5890 Filtros Adaptativos**

2º período de 2019

P2 - Parte Computacional

Data de entrega: 03/07/2019

Considere o diagrama da Figura 1, para o qual valem as seguintes definições:

- s(n) é o sinal que se deseja medir, após eliminada a interferência. Assuma que s(n) é um ruído branco, Gaussiano, de média nula e variância $\sigma_s^2 = 0.01$;
- a interferência que se deseja eliminar é dada por $x(n) = \sin(2\pi n/10 + \pi/6 + \phi_v)$, sendo ϕ_v uma variável aleatória distribuída uniformemente entre $0 \in 2\pi$;
- u(n) é um sinal correlacionado com a interferência e dado por $u(n) = 5 \operatorname{sen}(2\pi n/10 + \phi_u)$ com $\phi_u = \phi_v$;
- d(n) = s(n) + x(n) é a resposta desejada para o filtro adaptativo;
- e(n) = d(n) y(n) é o erro de estimação.

Figura 1: Filtragem adaptativa para eliminação de interferências

Assumindo que o filtro adaptativo tenha M=2 coeficientes, pede-se:

- a) Utilize a identidade $\operatorname{sen}(a)\operatorname{sen}(b) = \frac{1}{2}\cos(a-b) \frac{1}{2}\cos(a+b)$ para obter a matriz $\mathbf{R} = \mathrm{E}\{\mathbf{u}(n)\mathbf{u}^{\mathrm{T}}(n)\}$ de autocorrelação da entrada e o vetor $\mathbf{p} = \mathrm{E}\{\mathbf{u}(n)d(n)\}$ de correlação cruzada entre a entrada e o sinal desejado. Calcule:
 - o vetor de coeficientes ótimos $\mathbf{w}_{o} = \mathbf{R}^{-1}\mathbf{p};$
 - o erro quadrático médio mínimo $J_{\min} = \sigma_d^2 \mathbf{p}^{\scriptscriptstyle T} \mathbf{w}_{\rm o}$, justificando a relação entre J_{\min} e σ_s^2 ; e
 - a resposta em freqüência do filtro ótimo na freqüência da interferência e compare com x(n) e u(n).
- b) Com a matriz ${\bf R}$ e a função eig.m do Matlab, calcule a faixa de valores do passo de adaptação μ que garante a convergência do algoritmo Steepest Descent.
- c) Aplique o algoritmo LMS com $\mu = 0.03$ e N = 500 iterações. Neste caso, pede-se:

- observe inicialmente os sinais de entrada u(n), de erro e(n) e s(n) em gráficos na mesma escala;
- compare os coeficientes do filtro adaptativo com os coeficientes ótimos calculados no item a), fazendo um gráfico dos coeficientes ao longo das iterações;
- trace as curvas de nível da superfície de erro e sobre elas, a trajetória dos coeficientes;
- trace a curva do erro quadrático $e^2(n)$ em dB.
- d) Determine experimentalmente o valor máximo de μ para convergência do algoritmo LMS e compare-o com o valor calculado no item b) para o algoritmo Steepest Descent.
- e) Obtenha uma aproximação para $J(n) = \mathbb{E}\{e^2(n)\}$ considerando uma média de 500 realizações de $e^2(n)$. Note que em cada realização, um novo valor de ϕ e um novo s(n) devem ser considerados. Pede-se:
 - obtenha graficamente o valor do MSE em regime;
 - a partir do valor do MSE experimental e do J_{\min} calculado no item a), estime os valores experimentais do EMSE e do desajuste;
 - calcule os valores teóricos do desajuste e do EMSE e compare com os valores experimentais.
- f) Repita o item e) para $\mu = 0.01$ e $\mu = 0.05$. Trace num mesmo gráfico as curvas de J(n) em dB para $\mu = 0.01$, $\mu = 0.03$ e $\mu = 0.05$ e verifique o compromisso entre velocidade de convergência e erro quadrático médio.