Block I Apollo Guidance Computer (AGC)

How to build one in your basement

Part 2: Control (CTL) Module

John Pultorak December, 2004

Abstract

This report describes my successful project to build a working reproduction of the 1964 prototype for the Block I Apollo Guidance Computer. The AGC is the flight computer for the Apollo moon landings, and is the world's first integrated circuit computer.

I built it in my basement. It took me 4 years.

If you like, you can build one too. It will take you less time, and yours will be better than mine.

I documented my project in 9 separate .pdf files:

Part 1	Overview: Introduces the project.
Part 2	CTL Module: Design and construction of the control module.
Part 3	PROC Module: Design and construction of the processing (CPU) module.
Part 4	MEM Module: Design and construction of the memory module.
Part 5	IO Module: Design and construction of the display/keyboard (DSKY) module.
Part 6	Assembler: A cross-assembler for AGC software development.
Part 7	C++ Simulator: A low-level simulator that runs assembled AGC code.
Part 8	Flight Software: My translation of portions of the COLOSSUS 249 flight software.
Part 9	Test & Checkout: A suite of test programs in AGC assembly language.

Overview

The Control Module (CTL) has 9 subsystems: CMI, MON, CLK, SCL, TPG, SEQ, CPM-A, CPM-B, CPM-C

CMI (Control Module external Interface)

The CMI interfaces the other control module subsystems (described below) to external AGC modules. 40-pin IDE connectors interface to the PROC, MEM, and IO modules. Inputs from those modules are buffered to 1 LSTTL load.

MON (AGC Monitor)

The monitor subsystem has the front-panel switches that control AGC operation, and also implements the power-up reset circuit.

CLK (Clock)

The AGC is controlled by a 2.048 MHz crystal clock. The clock is divided to produce a 2-phase, non-overlapping 1.024 MHz AGC system clock for nominal operation. For test purposes, a low-frequency RC clock can also be selected, or the clock can be single-stepped.

SCL (Scaler)

The 1.024 MHz AGC clock is divided by two to produce a 512 kHz signal called the MASTER FREQUENCY; this signal is further divided through a SCALER, first by five to produce a 102.4 kHz signal. This is then divided by two through 17 successive stages called F1 (51.2 kHz) through F17 (0.78125 Hz).

The F10 stage (100 Hz) is fed back into the AGC to increment the real-time clock and other priority counters in the PROC module. The F17 stage is used to intermittently run the AGC when it operates in the STANDBY mode.

TPG (Time Pulse Generator)

AGC instructions are implemented in groups of 12 steps, called timing pulses. The timing pulses, named TP1 through TP12, are produced by the Time Pulse Generator (TPG). Each set of 12 timing pulses is called an instruction subsequence. Simple instructions, such as TC, execute in a single subsequence of 12 pulses. More complex instructions require several subsequences.

SEQ (Sequence Generator)

The sequence generator has the SQ register, which holds the next op-code, and the CTR

register--a counter used to count instruction subsequences during multiplication. The sequence generator also has the branch register (BR) which controls conditional processing during instruction execution, and the STAGE registers (STA and STB) which select the instruction subsequences for complex instructions that have more than one subsequence.

CPM-A (Control Pulse Matrix A) The CPM-A is the combinational logic matrix that implements most of the control logic. It is driven by inputs from the SQ register (which selects the instruction), the STB stage register (which selects the instruction subsequence), and the BR branch register (which selects conditional steps in a subsequence).

CPM-B (Control Pulse Matrix B) The CPM-B decodes read and write control signals for special

memory location associated with input/output registers, central registers (A, Q, Z, and LP), and the editing registers used for rotation and shifting.

CPM-C (Control Pulse Matrix C)

The CPM-C decodes control signals primarily associated with interrupts, the memory cycle, and the selection of new instructions and instruction subsequences.

This is a functional diagram showing the interrelationships between the Time Pulse Generator (TPG), the Control Pulse Matrix (CPM-A, B, and C), and the registers that are in

the Sequence Generator (SEQ).

The diagram is mine, but the style is borrowed from original AGC documentation: control signals are represented by diamonds. The arrows show the direction of data flow. When a control signal is asserted, data is allowed to flow through the diamond. For example, when WSQ is asserted, the opcode is written from the Read/Write bus into the SQ register.

Registers (LOOPCTR, STA, STB, SQ, BR, and SNI) are represented by rectangles. The lower bit of the 2-bit STA register is set by ST1. The upper bit is set by any one of the 3 control signals flowing into it. The STA register is cleared by CLRSTA.

When WSTB is asserted, the STA register is copied to STB. STB and the SQ register select the instruction subsequence.

The instruction subsequence, time pulse generator, BR register, and SNI all feed into the Control Pulse Matrix to select the active control pulses.

The diagram was developed by analyzing the R-393 document. It was one of my first diagrams; a sort-of conceptual breakthrough that became my gateway for understanding the AGC control module.

The instruction subsequences executed by the AGC are shown in this diagram. Each yellow circle is a subsequence; a set of 12 steps, with each step generating 0-5 control pulses. Eleven steps (TP1-TP11) are in the yellow circle; the 12^{th} step, which selects the next subsequence (TP12), is in the orange circle. This is discussed in more detail in the TPG, SEQ, and CPM-A subsystems.

A late addition to the CTL design fixed a problem with the read bus logic. Due to propagation delays (and some poor design on my part), the tri-state buffers from multiple registers were simultaneously enabled for brief periods causing some transients. I "kludged" in a design change that suppressed output to the read bus during CLK1, thereby giving the bus control logic time to settle.

CTL Internal Subsystem Interconnections

This diagram shows internal interconnections for the subsystems in the CTL module.

APOLLO GUIDANCE COMPUTER AGC4 REPLICA CONTROL MODULE (CTL) 9/8/2003

CTL Module External Interfaces

The CTL module interfaces to the PROC, MEM, and IO modules through 40-pin IDE ribbon cables.

J100-CTL: CTL-to-PROC I/F J100 is a 40-pin IDE ribbon cable that connects the CTL module to the PROC module.

PIN	signal	<u>full name</u>	state definition
1	WA3	WRITE ADDR 3 (74)	0=Write reg at address 3 (LP)
2	WA2	WRITE ADDR 2 (73)	0=Write reg at address 2 (Z)
3	WA1	WRITE ADDR 1 (72)	0=Write reg at address 1 (Q)
4	WAO	WRITE ADDR 0 (71)	0=Write reg at address 0 (A)
5	RA3	READ ADDR 3 (60)	0=Read reg at address 3 (LP)
6	RA2	READ ADDR 2 (59)	0=Read reg at address 2 (Z)
7	RA1	READ ADDR 1 (58)	0=Read reg at address 1 (Q)
8	RAO	READ ADDR 0 (57)	0=Read reg at address 0 (A)
9	WZ	WRITE Z (50)	0=Write Z
10	WYx	WRITE Y NO RESET (49)	0=Write Y (do not reset)
11	WY	WRITE Y (48)	0=Write Y
12	WX	WRITE X (47)	0=Write X
13	WQ	WRITE Q (45)	0=Write Q
14	WOVR	WRITE OVF (41)	0=Write overflow
15	WOVI	WRITE OVF RUPT INH (40)	
16	WOVC	WRITE OVF CNTR (39)	0=Write overflow counter
17	WLP	WRITE LP (38)	O=Write LP
18	WB	WRITE B (36)	0=Write B
19	WALP	WRITE A/LP (35)	0=Write A and LP
20	WA	WRITE A (34)	0=Write A
21	F10X	F10 SCALER ONESHOT	1=timed out (100.0 Hz)
23	R24	READ 24 (25)	0=Read 24
24	R22	READ 22 (24)	0=Read 22
25	R2	READ 2 (23)	0=Read 2
26	R1C	READ 1 COMP (22)	0=Read 1 complimented
27	R1	READ 1 (21)	0=Read 1
28	RZ	READ Z (20)	0=Read Z
29	RU	READ U (19)	0=Read sum
30	RSCT	READ CNTR ADDR (18)	0=Read selected counter address
31	RSB	READ SIGN (17)	0=Read sign bit
32	RRPA	READ RUPT ADDR (16)	0=Read RUPT address
33	RQ	READ Q (15)	0=Read Q
34	RLP	READ LP (13)	0=Read LP
35	RC	READ C (11)	0=Read C
36	RB14	READ BIT 14 (10)	0=Read bit 14
37	RB	READ B (9)	0=Read B
38	RA	READ A (8)	0=Read A
39	KRPT	KNOCK DOWN RUPT (6)	0=Knock down Rupt priority
40	CI	SET CARRY IN (1)	0=Carry in
40	01	JET GARREIN (1)	0 - Odiry III

J101-CTL: CTL-to-PROC I/F J101 is a 40-pin IDE ribbon cable that connects the CTL module to the PROC module.

INPUTS (to CTL):

PIN	<u>signal</u>	<u>full name</u>	state definition
21	SB_01	SUB SEL 01	SB_01 is LSB; SB_02 is MSB
22	SB_02	SUB SEL 02	00=no counter; 01=PINC; 10=MINC
23	IRQ	INT RQST	0=interrupt requested.
25	WB_01	WRITE BUS 01	(Isb)
26	WB_02	WRITE BUS 02	
27	WB_03	WRITE BUS 03	
28	WB_04	WRITE BUS 04	
29	WB_05	WRITE BUS 05	
30	WB_06	WRITE BUS 06	
31	WB_07	WRITE BUS 07	
32	WB_08	WRITE BUS 08	
33	WB_09	WRITE BUS 09	
34	WB_10	WRITE BUS 10	
35	WB_11	WRITE BUS 11	
36	WB_12	WRITE BUS 12	
37	WB_13	WRITE BUS 13	
38	WB_14	WRITE BUS 14	
39	WB_15	WRITE BUS 15	US (overflow) bit
40	WB_16	WRITE BUS 16	SG (sign) bit

PIN	<u>signal</u>	<u>full name</u>	state definition
1	R2000	READ 2000 (101)	0=Read 2000
2	WPCTR	WRITE PCTR (98)	0=Write PCTR (latch priority counter
			sequence)
3	RPT	READ RUPT (94)	0=Read RUPT opcode
4	INH	SET INHINT (93)	0=Set INHINT
5	CLRP	CLEAR RPCELL (92)	0=Clear RPCELL
6	CLINH1	CLEAR INHINT1 (88)	0=Clear INHINT1
7	CLINH	CLEAR INHINT (87)	O=Clear INHINT
8	GENRST	GENERAL RESET (86)	0=General Reset
19	CLK1	CLOCK1	1.024 MHz AGC clock 1 (normally low)
20	CLK2	CLOCK2	1.024 MHz AGC clock 2 (normally low)

J102-CTL: CTL-to-MEM I/F J102 is a 40-pin IDE ribbon cable that connects the CTL module to the MEM module.

INPUTS (to CTL):

<u>PIN</u>	<u>signal</u>	<u>full name</u>	state definition
31	EQU_16	ADDRESS = 016 (1)	0=CADR in register $S = 016$
32	EQU_17	ADDRESS = 017 (2)	0=CADR in register $S = 017$
33	GTR_17	ADDRESS > 017 (3)	0=CADR in register S > 017
34	EQU_25	ADDRESS = 025 (4)	0=CADR in register $S = 025$
35	GTR_27	ADDRESS > 027 (5)	0=CADR in register S > 027
36	GTR_1777	ADDRESS > 01777 (6)	0=CADR in register S > 01777
37	AD_1	ADDRESS (1)	where AD_4 is MSB, AD_1 is LSB:
38	AD_2	ADDRESS (2)	(low-order bits of address)
38	AD_3	ADDRESS (3)	
40	AD_4	ADDRESS (4)	

<u>PIN</u>	<u>signal</u>	<u>full name</u>	state definition
1	WE	WRITE EMEM (97)	0=Write E-MEM from G
2	SBWG	WRITE G (95)	0=Write G from memory
3	GENRST	GENERAL RESET (86)	0=General Reset
4	W23	WRITE ADDR 23 (85)	0=Write into SL
5	W22	WRITE ADDR 22 (84)	0=Write into CYL
6	W21	WRITE ADDR 21 (83)	0=Write into SR
7	W20	WRITE ADDR 20 (82)	0=Write into CYR
8	WGn	WRITE G NORMAL (81)	0=Write G (normal gates)
9	WBK	WRITE BNK (80)	0=Write BNK reg
10	RBK	READ BNK (70)	0=Read BNK reg
11	WS	WRITE S (46)	0=Write S
12	WP2	WRITE P2 (44)	0=Write P2
13	WPx	WRITE P NO RESET (43)	0=Write P (do not reset)
14	WP	WRITE P (42)	O=Write P
15	WGx	WRITE G NO RESET (37)	0=Write G (do not reset)
16	TP	TEST PARITY (30)	0=Test parity
17	RP2	READ PARITY 2 (14)	0=Read parity 2
18	RG	READ G (12)	0=Read G
19	GP	GEN PARITY (5)	0=Generate Parity
20	CLG	CLR G (2)	0=Clear G
21	CLK2	CLOCK2	1.024 MHz AGC clock 2 (normally low)
22	CLK1	CLOCK1	1.024 MHz AGC clock 1 (normally low)
23	NPURST	POWER UP RESET	0=reset, 1=normal operation.
24	SWCLK	DEBOUNCE CLOCK	low freq clk for switch debounce
25	FCLK	CLOCK MODE	1=free-running clk mode; 0=single clk mode

J103-CTL: CTL-to-I/O I/F

J100 is a 40-pin IDE ribbon cable that connects the CTL module to the I/O module.

INPUTS (to CTL):

<u>PIN</u>	<u>signal</u>	<u>full name</u>	state definition
40	OUT1_8	STANDBY ENABLED	1=standby enabled; works with STANDBY
			ALLOWED switch

PIN	<u>signal</u>	<u>full name</u>	state definition
1	CLK1	CLOCK1	1.024 MHz AGC clock 1 (normally low)
2	CLK2	CLOCK2	1.024 MHz AGC clock 2 (normally low)
3	NSA	STANDBY ALLOWED	0=standby allowed
5	GENRST	GENERAL RESET (86)	0=clear the DSKY, OUT1, and OUT2.
6	WA11	WRITE OUT1 (76)	0=write into OUT1 from write bus
7	WA10	WRITE OUTO (75)	0=write into OUTO (DSKY) from write bus
8	RA11	READ OUT1 (66)	0=output OUT1 register to read bus
9	RA4	READ INO (61)	0=output INO register to read bus
20	STBY	STANDBY	0=AGC is in the standby state

CTL side of CTL/PROC I/F

CTL side of CTL/IO I/F

MON (AGC Monitor)

MON INPUTS:

<u>I/F</u>	<u>signal</u>	<u>full name</u>	state definition	
	SW-RUN NSW-RUN	RUN/STEP SELECT SW		MON SW-RIIN
	SW-INS NSW-INS	STEP MODE SW		-SW-RUN NRUN O- -SW-INS -ONSW-INS INST-
	SW-FCL NSW-FCL	CLOCK MODE SW		-SW-FCL -ONSW-FCL FCLK -SW-SA -ONSW-SA
	SW-SA NSW-SA	STANDBY ALLOWED SW		NSA O- -SW-SIP -ONSW-SIP NSTEP O- -SW-MCI
	SW-STP NSW-STP	INST STEP SW		-ONSW-MCL MCLK - -SW-RST NPURST O-
	SW-MCL NSW-MCL	CLOCK STEP SW		
	SW-RST	MASTER RESET SW		

MON OUTPUTS:

CTL CONTROL PANEL SWITCHES

Clock Control:

RATE Controls the slow clock rate when the 1MHZ/SLOW switch is in the SLOW

position.

1MHZ/SLOW Selects the free-running clock rate when the RUN/STEP switch is in the RUN

position. The 1MHZ position gates a 2MHz signal into the 2-phased clock which produces a 1MHz 2-phased clock rate. The SLOW position gates a low

frequency clock; the frequency is controlled by RATE.

RUN/STEP Selects a free-running (RUN) or a single-stepped (STEP) clock. In the RUN

position, the rate is controlled by the 1MHZ/SLOW switch. In the STEP

position, the clock steps each time the STEP button is depressed.

STEP Manually steps the clock when the RUN/STEP switch is in the STEP position.

The clock is 2-phased, so each press steps an alternate phase.

Scaler:

ENAB/DISAB Enables or disables the SCALER.

F10 Manually triggers the F10 stage of the SCALER.
F13 Manually triggers the F13 stage of the SCALER.
F17 Manually triggers the F17 stage of the SCALER.

Execution Control:

RUN/STEP In the RUN position, the AGC free-runs at a rate determined by the clock

controls. In the STEP position, the AGC single-steps to the next instruction or next sequence when the STEP button is depressed; the rate is determined by

the clock controls.

INST/SEQ Selects whether the AGC single-steps all the way to the next instruction

(INST) or just to the next sequence (SEQ). Some instructions, such as TC, have a single sequence; on these instructions, the switch has the same effect

in either position.

STEP Single-steps the AGC when the RUN/STEP switch is in the STEP position.

RESET Reset the entire AGC. Puts the TPG into the standby state.

Standby:

ALLOW/DISA The ALLOWED position authorizes the AGC software to put the AGC in standby

mode. The AGC is released from standby mode by a signal from F17 in the SCALER. If the scaler switch is in the DISAB position, the scaler is disabled, and the AGC will remain in the standby state. When the standby switch is in

the DISAB position, the standby mode is inhibited.

Normal Operation:

Set the following switch positions for nominal operation:

switchposition1MHZ/SLOW1MHZ

RUN/STEP RUN (clock control)

ENAB/DISAB ENAB (scaler)

RUN/STEP RUN (execution control)
ALLOW/DISA ALLOWED (standby)

CTL CONTROL SWITCH CONNECTIONS

<u>PIN</u> 1 2	signal BUS#10, line 1 BUS#10, line 2	state definition Execution control: RUN/STEP
3 4	BUS#10, line 3 BUS#10, line 4	Execution control: INST/SEQ
5 6	BUS#10, line 5 BUS#10, line 6	Clock control: RUN/STEP
7 8	BUS#10, line 7 BUS#10, line 8	STANDBY ALLOWED/DISABLED
9 10	BUS#10, line 9 BUS#10, line 10	Execution control: STEP
11 12	BUS#10, line 11 BUS#10, line 12	Clock control: STEP
13	BUS#10, line 13	RESET
14	BUS#10, line 14	SCALER DISAB
15	RATE	(SLOW) CLOCK CONTROL RATE
16 17	1MHZ SLOW	Clock control: 1MHZ/SLOW
18 19 20	F10 F13 F17	MANUAL TRIGGER F10 MANUAL TRIGGER F13 MANUAL TRIGGER F17

CTL INDICATORS

The CTL module has a panel of indicator lamps (LEDs) to show the state of CTL registers and critical logic signals.

These indicator lamps show the current state of all registers and some additional, important logic signals produced by the CTL module. The matrix of lamps in the lower portion show active subsequences. Much of the control logic is negative (active low) where an illuminated lamp means that the signal is NOT asserted. At the time the photo was taken the AGC was running the COLOSSUS 249

flight software load, executing Verb 16, Noun 36: a monitor verb which displays the AGC real time clock.

AGC MONITOR (MON) #4

AGC MONITOR (MON) #5

CLK (Clock)

The original AGC used asynchronous logic driven by a 4-phase clock. This recreation uses synchronous logic driven by a 2-phase non-

overlapping clock. The synchronous clock logic was designed to produce the following state transitions:

<u>FFA</u>	<u>FFB</u>	
0	0	idle state
0	1	decoded for phase 1
1	1	
1	0	decoded for phase 2

The outputs of FFA and FFB are decoded by combinational logic to produce the non-overlapping phase 1 and phase 2 clock signals. The sequence is arranged so there is a single logic level transition for each state transition to prevent transients.

CLK INPUTS:

<u>I/F</u> <u>signal</u> <u>full name</u> <u>state definition</u>

MON:

MCLK CLOCK STEP 1=step (momentary); triggers a single

clock pulse. Ignored if FCLK is 1.

FCLK CLOCK MODE 1=continuous clock output at 1.024 MHz,

0=single clock whenever MCLK is 1.

NPURST POWER UP RESET 0=power up reset

OUTPUTS:

<u>signal</u>	<u>full name</u>	<u>state definition</u>
CLK1	CLOCK1	1.024 MHz AGC clock 1 (normally low)
CLK2	CLOCK 2	1 024 MHz AGC clock 2 (normally low)

FCLK=1: free-running clock; FCLK=0: manuallystepped clock

SCL (Scaler)

The 1.024 MHz AGC clock is divided by two to produce a 512 kHz signal called the MASTER FREQUENCY; this signal is further divided through a SCALER, first by five to produce a 102.4 kHz signal. This is then divided by two through 17 successive stages called F1 (51.2 kHz) through F17 (0.78125 Hz). The F10 stage (100 Hz) is fed back into the AGC to increment the real-time clock and other priority counters in the PROC module. The F17 stage is used to intermittently run the AGC when it operates in the STANDBY mode.

The F10, F13, and F17 outputs of the SCALER feed into a synchronous one-shot that produces a short output pulse on the rising edge of the input.

SCALER (SCL) ONE-SHOT LOGIC DESIGN

Boolean operators:

Scaler Divide-by-10 Excitation Table:

The divide-by-10 state machine is implemented with a 74161 parallel counter. Control Mode for 74161 Parallel Counter:

NPE	CET	
0	Х	LOAD
1	1	COUNT
1	0	HOLD

	Current	Next		Par In	
State	DCBA	DCBA	NPE	CET	DCBA
0	0000	0 0 0 1	1	1	
1	0 0 0 1	0 0 1 0	1	1	
2	0 0 1 0	0 0 1 1	1	1	
3	0 0 1 1	0 1 0 0	1	1	
4	0 1 0 0	0 1 0 1	1	1	
5	0 1 0 1	0 1 1 0	1	1	
6	0 1 1 0	0 1 1 1	1	1	
7	0 1 1 1	1000	1	1	
8	1000	1 0 0 1	1	1	
9	1 0 0 1	0 0 0 0	0	X	0000

$$NPE = (D * A)'$$

 $CET = 1$

One-shot Excitation Table:

The one-shot state machine is implemented with two J-K FFs.

JK flip-flop excitation table:

<u>J</u>	<u>K</u>	
0	0	Qn-1 (no change)
0	1	0
1	0	1
1	1	Qn-1' (toggle)

FN is the one-shot trigger; Q(A) is the one-shot output.

State	Inp FN		
IDLE	0 1		

HIGH	0 1	0	1 0	1 x	x 1
	0 1	1	1 0	1 x	x 1
LOW	1 0	0	0 0	x 1	0 x
	1 0	1	1 0	x 0	0 x
UNUSED	1 1	0	хх	x x	хх
	1 1	1	хх	хх	хх

The excitation table and logic equations were derived from the CLK subsystem state machine which also performs a one-shot function. The CLK subsystems's FCLK signal was factored out by setting it to zero. The MCLK input is the one-shot trigger; it was renamed FN.

$$ff(B) J = QA$$

$$ff(B) K = FN'$$

$$ff(A) J = QB' * FN$$

$$ff(A) K = QA$$

SCL INPUTS:

<u>1/F</u>	<u>signal</u>	<u>full name</u>	state definition	SCL
CLK:	CLK1	CLOCK1	1.024 MHz AGC clock	SW-SEN NPURST F10X - F13X - F17X -
MON:	SW-SEN	SCALER ENABLE	1=enable counting;	CK1 F1
0 = hole		0 0 / 1 2 11 / 1 2 2		F2 - F3 -
	NPURST	POWER UP RESET	0=power up reset	F4 -
SCL	OUTPUTS:			F6 -
	<u>signal</u>	<u>full name</u>	state definition	F8 - F9 -
	F10X	F10 SCALER ONESHOT	1=timed out (100.0 Hz)	F10 -
	F13X	F13 SCALER ONESHOT	1=timed out (12.5 Hz)	F12 _
	F17X	F17 SCALER ONESHOT	1 = timed out (0.78125	F13 -
		Hz)		F15 - F16 -
	F1	SCALER OUT F1	51.2 KHz square wave	F17 -
	F2	SCALER OUT F2	25.6 KHz square wave	
	F3	SCALER OUT F3	12.8 KHz square wave	
	F4	SCALER OUT F4	6,4 KHz square wave	
	F5	SCALER OUT F5	3.2 KHz square wave	
	F6	SCALER OUT F6	1.6 KHz square wave	
	F7	SCALER OUT F7	0.8 KHz square wave	
	F8	SCALER OUT F8	0.4 KHz square wave	
	F9	SCALER OUT F9	0.2 KHz square wave	
	F10	SCALER OUT F10	0.1 KHz square wave (100 H	łz)
	F11	SCALER OUT F11	50.0 Hz square wave	
	F12	SCALER OUT F12	25.0 Hz square wave	
	F13	SCALER OUT F13	12.5 Hz square wave	
	F14	SCALER OUT F14	6.25 Hz square wave	
	F15	SCALER OUT F15	3.125 Hz square wave	
	F16	SCALER OUT F16	1.5625 Hz square wave	
	F17	SCALER OUT F17	0.78125 Hz square wave	

Note: One shot outputs are active for one clock pulse. State transitions occur on the rising edge of CLK1

TPG (Time Pulse Generator)

TIME PULSE GENERATOR (TPG) LOGIC DESIGN

Boolean operators:

TPG Internal Control Signals:

These are local to the TPG; if the signal is d, TPG makes a state transition. These signals are the inputs to the excitation

$$TPG_0 = PURST' * (FCLK' + F17X)$$

$$TPG_1 = FCLK' + F13X$$

$$TPG_2 = RUN + (SNI' * INST)$$

$$TPG_3 = SNI * OUT1_8 * SA$$

$$TPG_4 = STEP'$$

$$TPG_5 = STEP + RUN$$

asserte decoded table.

TPG Excitation Table:

Control Mode for 74161 Parallel Counter:

<u>NPE</u>	<u>CET</u>	
0	Х	LOAD
1	1	COUNT
1	0	HOLD

^{*}denotes active low

<u>State</u> STBY	Current <u>D C B A</u> 0 0 0 0	*Current <u>Decoder</u> NSTBY	TPG_x 0 1 2 3 4 5 0 x x x x x 1 x x x x x	Next <u>D C B A</u> 0 0 0 0 0 0 0 1	<u>* NPE</u> 1 1	<u>CET</u> 0 1	Par In DCBA
PWRO	NO 0 0 1	NPWRON	x 0 x x x x x 1 x x x x	0 0 0 1 0 0 1 0	1 1	0 1	
TP1 TP2 TP3 TP4 TP5 TP6 TP7	0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0	NTP1 NTP2 NTP3 NTP4 NTP5 NTP6 NTP7	X X X X X X X X X X X X X X X X X X X	0 0 1 1 0 1 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 0 0 1	1 1 1 1 1 1	1 1 1 1 1 1	
TP8 TP9 TP10 TP11	1 0 0 1 1 0 1 0 1 0 1 1 1 1 0 0	NTP8 NTP9 NTP10 NTP11	x x x x x x x x x x x x x x x x x x x	1 0 1 0 1 0 1 1 1 1 0 0 1 1 0 1	1 1 1	1 1 1	

TP12 1101	NTP12	x x x 1 x x x x 1 0 x x x x 0 0 x x	0 0 1 0	0 0 1	x x 1	0000
SRLSE 1 1 1 0	NSRLSE	x x x x 0 x x x x x 1 x		1 1	0 1	
WAIT 1111	NWAIT	x x x x x 1 x x x x x x 0	0010	0 1	x 0	0 0 1 0

<u>Maxterms</u>:

Par In A,B,C = 0

Par In B = $(NTP12' * TPG_3)'$

TPG INPUTS:

<u>I/F</u> MON:	signal	<u>full name</u>	state definition	
	NRUN INST	RUN/HALT INST STEP MODE	0=run, 1=step 1=instruction step,	
0=sec	quence step NSTEP FCLK	SINGLE STEP CLOCK MODE	<pre>0=step (momentary) 1=continuous, 0=single clock</pre>	TPG -CK1 -F13X -F17X
	NSA NPURST	STANDBY ALLOWED POWER UP RESET	0=standby allowed 0=power up reset	-SNI -18 TG3-
CLK:	CLK1	CLOCK1	1024 MHz AGC clock 1	TG2 - TG1 - TG0 -
SEQ:	SNI	SELECT NEXT INST	1=select next instruction	ONPURST ONRUN INST ONSTEP FCLK ONSA
SCL:	F17X F13X	F17 SCALER ONESHOT F13 SCALER ONESHOT	1=timed out 1=timed out	
OUT:	OUT1_8	STANDBY ENABLED	1=standby enabled; works ALLOWED switch	s with STANDBY

TPG OUTPUTS:

signal full name state definition TPG_Q3 TPG STATE where Q0 is LSE TPG_Q2 00 = STBY TPG_Q1 01 = PWRON TPG_Q0 02 = TP1 03 = TP2 04 = TP3 05 = TP4 06 = TP5 07 = TP6 08 = TP7 09 = TP8 10 = TP9 11 = TP10 12 = TP11 13 = TP12 14 = SRLSE 15 = WAIT 15 = WAIT	3, Q3 is MSB:
--	---------------

SEQ (Sequence Generator)

The sequence generator contains the stage registers and branch registers that (along with the time pulse generator) control execution of the microinstruction sequence.

Some back-of-the-envelope design that went into the branch register logic is shown in the next few charts. This is the conceptual design for the branch register. It has 2 flip-flops named BR2 and BR1. The flip-flops are set by the control signals shown as diamonds in this diagram.

The J and K inputs to the BR1 flip-flop are developed in this chart.

This chart shows the J and K inputs to the BR2 flip-flop. Logic to sense a 1's compliment minus zero from the write bus is also developed.

Here are some charts showing the stage register design. This is the conceptual design. There are (2) 2-bit stage registers: STA and STB.

This is my initial cut at STA and STB. My initial attempt at CLSTB is scratched out and then developed into the correct solution on the later charts.

This is the J input to the STA2 flip-flop. The initial design is at the top. In the middle, I "DeMorganize" it using some bubble-pushing to get the final implementation at the bottom.

Here's the J and K inputs to STB1 and STB2. This is the logic that transfers the contents of the STA flipflops to STB.

The J and K inputs to STB1 and STB2 move through a multi-step DeMorganizing process in the next 2 charts to reach their final state:

SEQ INPUTS:

I/F CLK:	<u>signal</u>	<u>full name</u>	state definition	
CLK.	CLK2	CLOCK 2	data transfer occurs on fal	ling edge
CPM-C	GENRST WSQ CLISQ CLSTA WSTB CLSTB	GENERAL RESET WRITE SQ CLEAR SNI CLEAR STA WRITE STB CLEAR STB SET ST1	O=General Reset O=Write SQ O=Clear SNI O=Clear state counter A (STA) O=Write stage counter B (STB) O=Clear state counter B (STB) O=Set the ST1 bit of STB	SEQ -CK2 BR1 - BR2 - -ORST - -OWSQ SQ3 - -ONISQ SQ2 - -OCIQ SQ1 - -OST1 SQ0 - -OST2 - -OTRSM SB1 - -OCSTA SB0 - -OWSTB - -OWSTB LP6 - -OSSTB SNI - -OTSGN - -OTSGN - -OTSGN -
CPM-A	TRSM TSGN TSGN2 ST1 ST2 CLCTR CTR TMZ TOV NISQ	TEST RESUME TEST SIGN TEST SIGN 2 SET STAGE 1 SET STAGE 2 CLR LOOP CTR INCR LOOP CTR TEST MINUS ZERO TEST OVF NEW INSTRUCT SQ reg	0=Test for resume 0=Test sign 0=Test sign 2 0=Stage 1 0=Stage 2 0=Clear loop counter 0=Loop counter 0=Test for minus zero 0=Test for overflow 0=New instruction to the	- TMZ - TSGN2 - CTR - CLCTR - W16 - W15 - W13 - W12 - W11 - W10 - W9 - W8 - W7 - W6 - W5 - W4 - W3
WBUS	WB_01 WB_14 WB_15 WB_16	WRITE BUS 01 WRITE BUS 14 WRITE BUS 15 WRITE BUS 16	US (overflow) bit for write SG (sign) bit for write bus	W2 W1 -∞EQ25 bus
ADR:	EQU_25	ADDRESS = 025	0=CADR in register S eval	uates to = 025

SEQ OUTPUTS:

<u>1/F</u>	<u>signal</u>	<u>full name</u>	state definition
CPM-A	\ :		
	BR1	BRANCH REG 1	where BR1 is MSB, BR2 is LSB
	BR2	BRANCH REG 2	BR00 = 0 BR1 = 0, BR2 = 0
			BR01 = 1 BR1 = 0, BR2 = 1
			BR10 = 2 BR1 = 1, BR2 = 0
			BR11 = 3 BR1 = 1, BR2 = 1

SQ_3 SQ_2 SQ_1 SQ_0	INST REG	where SQ_3 is MSB, SQ_0 is LSB
STB_1 STB_0	STAGE REG	where STB_1 is MSB, STB_0 is LSB
LOOP6	LOOPCNTR EQ 6	0=LOOPCNTR is holding the number 6.
SNI	SELECT NEXT INST	1=select next instruction (SNI register)

CPM-A (Control Pulse Matrix A)

In this AGC replica, the CPM-A subsequences are implemented in EPROM (they were implemented as a diode matrix in the original). The address into the EPROM is constructed as follows (bit 1 is the LSB):

bit
13,14 CTR subsequence (2)
9-12: register SQ (4)
7,8: register STB (2)
3-6: register SG (4)
2: register BR1 (1)
1: register BR2 (1)

Bits 7-14 (STB, SQ, and CTR) select the instruction subsequence. Bits 1-6 select the control pulses (control logic signals) that are asserted from that subsequence.

SELECTING THE INSTRUCTION SUBSEQUENCE

The 11 AGC instructions, priority counter operations, and interrupt operations are implemented in 22 instruction subsequences. Some instructions (TC) have a single subsequence; others have several subsequences.

The instruction subsequence is choosen by CTR, SQ, and STB. These form bits 7-14 of the CPM-A EPROM address.

CTR (EPROM address bits 13-14)

The CTR signal has 2 lines: SB_02 is the MSB; SB_01 is the LSB. The signal comes from the CTR subsystem in the PROC module. It indicates whether processing needs to be briefly interrupted to insert a PINC or MINC subsequence to increment or decrement a priority counter.

CTR00: SB_02=0, SB_01=0 no counter; do the next subsequence CTR01: SB_02=0, SB_01=1 PINC CTR10: SB_02=1, SB_01=0 MINC CTR11: SB_02=1, SB_01=1 both; they cancel out, so do the next subsequence

Register SQ (EPROM address bits 9-12)

The 4-bit SQ register holds the currently executing instruction. The code in the SQ register is the same as the op code for these four instructions.

<u>NMEM</u>	SQ REG	<u>OPCODE</u>	<u>USAGE</u>	DESCRIPTION	CYCLES
TC	00	00	TC K	Transfer Control	1 MCT
CCS	01	01	CCS K	Count, Compare, Skip	2 MCT
INDEX	02	02	INDEX K	Index	2 MCT
XCH	03	03	XCH K	Exchange	2 MCT

The SQ register code for these four instructions is the op code + 010 (octal). This happens because all of these instructions have bit 15 set (the sign (SG) bit) while in memory. When

the instruction is copied from memory to the memory buffer register (G) to register B, the SG bit moves from bit 15 to bit 16 and the sign is copied back into bit 15 (US). Therefore, the CS op code (04) becomes (14), and so on.

<u>NMEM</u>	SQ REG	<u>OPCODE</u>	<u>USAGE</u>	DESCRIPTION	CYCLES
CS	014	04	CS K	Clear and Subtract	2 MCT
TS	015	05	TS K	Transfer to Storage	2 MCT
AD	016	06	AD K	Add	2 or 3 MCT
MASK	017	07	MASK K	Bitwise AND	2 MCT

These are the three extended instructions. They are accessed by executing an INDEX 5777 before each instruction. By convention, address 5777 contains 47777. The INDEX instruction adds 47777 to the extended instruction to form the SQ op code. For example, the INDEX adds 4 to the 4 op code for MP to produce the 11 (octal; the addition generates an end-around-carry). SQ register code (the 7777 part is a negative zero).

NMEM	SQ REG	OPCODE	<u>USAGE</u>	DESCRIPTION	<u>CYCLES</u>
MP	011	04	MP K	Multiply	10 MCT
DV	012	05	DV K	Divide	18 MCT
SU	013	06	SU K	Subtract	4 or 5 MCT

STB (EPROM address bits 7-8)

The stage register B (STB) selects the subsequence for a given instruction. Some instructions have multiple subsequences; others (TC) have only one.

The stage register has 2 bits: STB2 is the MSB; STB1 is the LSB. All instructions initiallly begin with the stage register set to zero. If an instruction needs more than one subsequence, the stage register is incremented to select the next subsequence.

 STB00:
 STB2=0, STB1=0

 STB01:
 STB2=0, STB1=1

 STB10:
 STB2=1, STB1=0

 STB11:
 STB2=1, STB1=1

INSTRUCTION SUBSEQUENCES

There are 22 instruction subsequences:

TCO 0 CCS0 CCS1 2 NDX0 NDX1 4 RSM3 5 XCH0 6 CS0 7 TS0 8 AD0 MASKO 10 MPO 11 MP1 12

MP3	13
DV0	14
DV1	15
SU0	16
RUPT1	17
RUPT3	18
STD2	19
PINCO	20
MINCO	21

If the CTR signals are 01 (SB_02=0, SB_01=1) the PINC subsequence is selected. If the CTR signals are 10 (SB_02=1, SB_01=0) the MINC subsequence is selected. Otherwise, subsequences for each instruction are selected using the 4-bit SQ register and the 2-bit stage register (STB2, STB1, where STB2 is the MSB). Some instructions (TC) have only one subsequence. At the start of each instruction, the stage counter is initially set to zero. The interrupt call and resturn sequences are also stored at SQ=00.

	<u>SQ</u>	<u>STB00</u>	<u>STB01</u>	<u>STB10</u>	STB11
TC/RUPT	00:	TC0	RUPT1	STD2	RUPT3
CCS	01:	CCS0	CCS1		
INDEX	02:	NDXO	NDX1		RSM3
XCH	03:	XCH0		STD2	
	04:				
	05:				
	06:				
	07:				
	10:				
MP	11:	MPO	MP1		MP3
DV	12:	DV0	DV1	STD2	
SU	13:	SU0		STD2	
CS	14:	CS0		STD2	
TS	15:	TS0		STD2	
AD	16:	AD0		STD2	
MASK	17:	MASKO		STD2	

SELECTING THE CONTROL PULSES

Each subsequence consists of 12 steps (TP1 - TP12), with each step asserting up to 5 control pulses (control logic signals). Steps TP1-TP11 are unique to each subsequence; step TP12 is common to all subsequences. Control pulses for TP12 are discussed in CPM-C.

For some steps, selection of the control pulses is also conditional on the state of the 2-bit branch register (BR1 and BR2: BR1 is the MSB and BR2 is the LSB):

```
BR00 BR1=0, BR2=0
BR01 BR1=0, BR2=1
BR10 BR1=1, BR2=0
BR11 BR1=1, BR2=1
```

Bits 1-6 of the CPM-A EPROM address is formed as follows:

3-6: register SG (4)2: register BR1 (1)1: register BR2 (1)

The column on the far left is the step; columns to the right specify the control pulses that are asserted for that step. Some steps have no control pulses.

suhse	quence	TCO.				
TP1	quence	RB	WY	WS	CI	
TP2		ND	VV 1	WS	O1	
TP3		WG				
TP4		RA	WOVI			
TP5		NA .	VVOVI			
TP6						
TP7		RG	RSC	WB	WP	
TP8		RZ	WQ	GP	TP	
TP9						
		RB	WSC	WG		
TP10		RU	WZ			
TP11		NISQ				
subse	quence	CCSO:				
TP1	querree	RB	WS			
TP2		RZ	WY			
TP3		WG				
TP4		VVO				
TP5						
TP6		RG	RSC	WB	TSGN	WP
TP7	BROO,		TMZ	VV D	13GN	V V F
IP7			TMZ			
	BR01,					
	BR10,		TMZ			
TDO	BR11,		TMZ			
TP8	BROO,		TP		 TD	
	BR01,		WX	GP	TP	
	BR10,		WX	GP	TP	
	BR11,		R2	WX	GP	TP,
TP9		RB	WSC	WG		
TP10	BR00,		WA			
	BR01,		R1C			
	BR10,		WA			
	BR11,	WA	R1C			
TP11		RU	ST1	WZ		
subso	quence	CCS1.				
TP1	quence	RZ	WY	WS	CI	
TP2		KΖ	VVI	WS	CI	
		MC				
TP3		WG				
TP4		RU	WZ	01		
TP5		RA	WY	CI		
TP6		D.O.	DCO	WD	WD	
TP7		RG	RSC	WB	WP	
TP8		RU	WB	GP	TP	

TP9					
TP10	RC	WA	WOVI		
TP11	RG	RSC	WB	NISQ	
subsequenc					
TP1	RB	WS			
TP2					
TP3	WG				
TP4	RA	WOVI			
TP5					
TP6					
TP7	RG	RSC	WB	WP	
TP8	GP	TP			
TP9	RB	WSC	WG		
TP10	TRSM				
TP11	ST1				
	311				
subsequenc	e NDX1:				
TP1	RZ	WY	WS	CI	
TP2					
TP3	WG				
TP4	RU	WZ			
TP5					
TP6	RB	WY			
TP7	RG	RSC	WB	WP	
TP8	RB	WX	GP	TP	
TP9	RB	WSC	WG		
TP10	I D				
TP11	RU	WB	WOVI	NISQ	
subsequenc	e RSM3:				
TP1	R24	WS			
TP2					
TP3	WG				
TP4					
TP5					
TP6					
TP7	RG	WZ			
TP8		***			
TP9					
TP10					
TP11	NISQ				
11 11	NISC				
subsequenc	e XCHO:				
subsequenc TP1		WS			
TP1	RB	WS WP			
TP1 TP2	RB RA	WS WP			
TP1 TP2 TP3	RB RA WG	WP			
TP1 TP2 TP3 TP4	RB RA	WP			
TP1 TP2 TP3	RB RA WG	WP			

TP7 TP8		RG GP	RSC TP	WB	WP,	
TP9		RA	WSC	WG	RP2	
TP10		RB	WA	WOVI		
TP11		ST2				
subse TP1 TP2	equence	RB	WS			
TP3 TP4 TP5 TP6		WG				
TP7		RG	RSC	WB	WP,	
TP8		GP	TP	VV D	VV F ,	
TP9		RB	WSC	WG		
TP10		RC	WA	WOVI		
TP11		ST2				
subse	equence	TSO:				
TP1		RB	WS			
TP2		RA	WB	TOV	WP	
TP3		WG				
TP4	BR00,					
	BR01,		WY	CI		 (overflow)
	BR10,		WY	CI		 (underflow)
TDE	BR11,					
TP5	BR00,		 \\\(\(\)			
	BR01,		WA R1C			
	BR10, BR11,					
TP6	DKII,					
TP7	BROO,					
11 /	BR01,		WZ			
	BR10,		WZ			
	BR11,					
TP8		GP				
TP9		RB	WSC	WG		
TP10		RA	WOVI			
TP11		ST2				
	equence					
TP1		RB	WS			
TP2		RA	WY			
TP3 TP4 TP5		WG				
TP6						
TP7		RG	RSC	WB	WP	
TP8		RB	WX	GP	TP	
TP9		RB	WSC	WG		
TP10				-		

TP11 RU WA WOVC ST2 WOVI

SUB_MASKO performs a logical AND using DeMorgan's Theorem: the inputs are inverted, a logical OR is performed, and the result is inverted. The implementation of the OR (at TP8) is somewhat unorthodox: the inverted inputs are in registers U and C. The OR is achieved by gating both registers onto the read/write bus simultaneously. (The bus only transfers logical 1's; register-to-register transfers are performed by clearing the destination register and then transferring the 1's from the source register to the destination). When the 1's from both registers are simultaneously gated onto the bus, the word on the bus is a logical OR of both registers.

subsec	quence	MASKO:				
TP1		RB	WS			
TP2		RA	WB			
TP3		WG				
TP4		RC	WY			
TP5						
TP6						
TP7		RG	RSC	WB	WP	
TP8		RU	RC	WA	GP	TP
TP9					.	
TP10		RA	WB			
TP11		RC	WA	ST2	WOVI	
		NO.	***	312	VV O V I	
subsec	quence	MPO:				
TP1	,	RB	WS			
TP2		RA	WB	TSGN		
TP3		RSC	WG			
TP4	BR00,		WLP			
	BR01,		WLP			
	BR10,		WLP			
	BR11,		WLP			
TP5	DICTT,	RLP	WA			
TP6		IXLI	VVA			
TP7	BR00,	D.C.	WY	WP		
117	BR00,		WY	WP		
	BR10,		WB	WP		
	BR11,		WB	WP		
TDO			TР			
TP8	BROO,					
	BR01,		TP			
	BR10,		WY	GP	TP	
TDO	BR11,		WY	GP	TP	
TP9	D D O O	RU	WB	TSGN2		
TP10	BR00,		WLP	TSGN		
	BR01,		RB14	WLP	TSGN	
	BR10,		WLP	TSGN		
	BR11,		RB14	WLP	TSGN	
TP11	BR00,		WALP			
	BR01,		ST1	WALP	R1C	
	BR10,		ST1	WALP		
	BR11,	RU	ST1	WALP		

subse	quence	MP1:				
TP1	7	RA	WY			
TP2		RLP	WA	TSGN		
TP3	BR00,					
	BR01,					
	BR10,		WX			
	BR11,	RB	WX			
TP4		RA	WLP			
TP5		RLP	TSGN			
TP6		RU	WALP			
TP7		RA	WY			
TP8	BR00,					
	BR01,					
	BR10,	RB	WX			
	BR11,	RB	WX			
TP9		RLP	WA			
TP10		RA	WLP	CTR		
TP11		RU	ST1	WALP		
subse	quence	MP3:				
TP1		RZ	WY	WS	CI	
TP2		RLP	TSGN			
TP3		WG				
TP4		RU	WZ			
TP5		RA	WY			
TP6	BR00,					
	BR01,					
	BR10,	RB	WX			
	BR11,	RB	WX			
TP7		RG	RSC	WB	WP	
TP8		RLP	WA	GP	TP	
TP9		RB	WSC	WG		
TP10		RA	WLP			
TP11		RU	WALP	NISQ		
	quence					
TP1		RB	WS			
TP2		RA	WB	TSGN		
TP3	D D O O	RSC	WG			
TP4	BROO,		WA			
	BR01,		WA			
	BR10,					
TDE	BR11,					
TP5	BROO,		WLP			
	BR01,		WLP			
	BR10,		WLP			
TD/	BR11,		WLP			
TP6		RA	WQ	TCCN	 \\/D	
TP7		RG	WB	TSGN	WP	
TP8	DDOO	RB	WA	GP	TP	
TP9	BR00,	rlr	R2	WB		

	BR01,	RLP	R2	WB		
	BR10,					
	BR11,					
TP10	BROO,		WLP			
	BR01,		WLP			
	BR10,		WA			
	BR11,		WA			
TD11	BRII,					
TP11		R1	ST1	WB		
aubaa		DV1.				
	equence		MC			
TP1		R22	WS			
TP2		RQ	WG			
TP3		RG	WQ	WY	RSB	
TP4		RA	WX			
TP5		RLP	TSGN2			
TP6						
TP7		RU	TSGN			
TP8	BR00,					
0	BR01,					
	BR10,		WQ			
TDO	BR11,		WQ			
TP9	BROO,		RSB	WG		
	BR01,		RSB	WG		
	BR10,		WG			
	BR11,	RB	WG			
TP10		RG	WB	TSGN		
TP11	BR00,	ST1				
	BR01,					
	BR10,		WA	ST2		
	BR11,		WA	ST2		
	DICTT,	ND	VVA	312		
subse	equence	SUO:				
TP1	7	RB	WS			
TP2		RA	WY			
TP3		WG				
		WG				
TP4						
TP5						
TP6						
TP7		RG	RSC	WB	WP	
TP8		RC	WX	GP	TP	
TP9		RB	WSC	WG		
TP10						
TP11		RU	WA	WOVC	ST2	WOVI
					0.2	
subse	equence	RUPT1:				
TP1	•	R24	WY	WS	CI,	
TP2		-		-	- •	
TP3		WG				
TP4		V V 🔾				
TP5						
TP6						

TP7 TP8 TP9	RZ	WG			
TP10	RU	WZ			
TP11	ST1	ST2			
		312			
subsequence		MC			
TP1	RZ	WS			
TP2	RRPA RZ	WZ KRPT			
TP3 TP4	KΖ	KRPI	WG		
TP5					
TP6					
TP7					
TP8					
TP9	RB	WSC	WG		
TP10	KD	WSC	WG		
TP11	ST2				
IPII	312				
subsequence	STD2:				
TP1	RZ	WY	WS	CI,	
TP2					
TP3	WG				
TP4	RU	WZ			
TP5					
TP6					
TP7	RG	RSC	WB	WP	
TP8	GP	TP			
TP9	RB	WSC	WG		
TP10					
TP11	NISQ				
subsequence	PINC:				
TP1	WS	RSCT			
TP2	WS	11301			
TP3	WG				
TP4	R1	WY			
TP5					
TP6	RG	WX	WP		
TP7	TP				
TP8	WP				
TP9	RU	CLG	WPx		
TP10	RU	WGx	WOVR		
TP11					
subsequence					
TP1	WS,	RSCT			
TP2					
TP3	WG				
TP4	WY	R1C			

TP5				
TP6	RG	WX	WP	
TP7	TP			
TP8	WP			
TP9	RU	CLG	WPx	
TP10	RU	WGx	WOVR	
TP11				

Here's some of the analysis used to develop the instruction sequence decoder. This decoder takes in the STB and SQ inputs and decodes the instruction sequence for display to the operator.

CONTROL SIGNAL DEFINITIONS

SIGNAL	<u>#</u>	<u>DESCRIPTION</u>
CI	1	Carry in
CLG	2	Clear G
CLCTR	3	Clear loop counter
CTR	4	Loop counter
GP	5	Generate Parity
KRPT	6	Knock down Rupt priority
NISQ	7	New instruction to the SQ register
RA	8	Read A
RB	9	Read B
RB14	10	Read bit 14
RC	11	Read C
RG	12	Read G
RLP	13	Read LP
RP2	14	Read parity 2
RQ	15	Read Q
RRPA	16	Read RUPT address
RSB	17	Read sign bit
RSCT	18	Read selected counter address
RU	19	Read sum
RZ	20	Read Z
R1	21	Read 1
R1C	22	Read 1 complimented
R2	23	Read 2
R22	24	Read 22
R24	25	Read 24
ST1	26	Stage 1
ST2	27	Stage 2
TMZ	28	Test for minus zero
TOV	29	Test for overflow
TP	30	Test parity
TRSM	31	Test for resume
TSGN	32	Test sign
TSGN2	33	Test sign 2
WA	34	Write A
WALP	35	Write A and LP
WB	36	Write B
Wgx	37	Write G (do not reset)
WLP	38	Write LP
WOVC	39	Write overflow counter
WOVI	40	Write overflow RUPT inhibit
WOVR	41	Write overflow
WP	42	Write P
Wpx	43	Write P (do not reset)
WP2	44	Write P2
WQ	45	Write Q
WS	46	Write S
WX	47	Write X
WY	48	Write Y
Wyx	49	Write Y (do not reset)
- · <i>J</i> · ·	. ,	

WZ 50 Write Z

Control signal outputs from CPM-A used as inputs to CPM-B only (not used outside of CPM):

<u>SIGNAL</u>	<u>#</u>	<u>DESCRIPTION</u>
RSC	51	Read special and central (output to B only, not outside CPM)
WSC	52	Write special and central (output to B only, not outside CPM)
WG	53	Write G (output to B only, not outside CPM)

Control signal outputs from CPM-A used as inputs to CPM-C only (not used outside of CPM):

<u>SIGNAL</u>	<u>#</u>	<u>DESCRIPTION</u>
SDV1	54	Subsequence DV1 is currently active
SMP1	55	Subsequence MP1 is currently active
SRSM3	56	Subsequence RSM3 is currently active

CPM-A INPUTS:

<u>I/F</u> TPG:	<u>signal</u>	<u>full name</u>	state definition CPMA	
	TPG_Q3 TPG_Q2 TPG_Q1 TPG_Q0	TPG STATE	where Q3 is MSB, Q0 is LSB: 00 = STBY 01 = PWRON 02 = TP1 03 = TP2 04 = TP3 05 = TP4 06 = TP5 07 = TP6 08 = TP7 09 = TP8 10 = TP9 11 = TP10 12 = TP11 13 = TP12 14 = SRLSE 15 = WAIT CICLGR CLCTR CTR CTR CTR CTR CTR CTR CTR CTR CTR	YYYYYYYYYYYYYYYYYYYYYYYY
SEQ:			TOV -OIRQ IP	>- >-
	BR1 BR2	BRANCH REG 1 BRANCH REG 2	BR1 is MSB, BR2 is LSB BR00=0:BR1=0, BR2=0 BR01=1:BR1=0, BR2=1 BR10=2:BR1=1, BR2=0 BR11=3:BR1=1, BR2=1 BR2=1 BR2=1 BR2=1 BR3MSM TSGN TSGN WA WALP WALP SB2 WOVC	/
	SQ_3	INST REG	where SQ_3 is MSB, —SB1 WOVI WOVR	<u></u>
	SQ_2 SQ_1 SQ_0		WEX CONTROL OF CONTROL	777777
	STB_1	STAGE REG	where STB_1 is MSB,	<u>></u>
	STB_0		WS10_0 13 L30 WS1	7
	LOOP6	LOOPCNTR EQ 6	0=LOOPCNTR is holding the number 6.	777
	SNI	SELECT NEXT INST	1 = select next instruction (SNI register)	
CTR:	SB_01 SB_02	SUB SEL 01 SUB SEL 02	SB_01 is LSB; SB_02 is MSB 00=no counter; 01=PINC; 10=MINC	

IRQ INT RQST 0=interrupt requested.

MON:

NRUN RUN/HALT 0=run, 1=step

CPM-A OUTPUTS:

<u>signal</u>	<u>full name</u>	state definition
CI	SET CARRY IN	0=Carry in
CLG	CLR G	0=Clear G
CLCTR	CLR LOOP CTR	0=Clear loop counter
CTR	INCR LOOP CTR	0=Loop counter
GP	GEN PARITY	0=Generate Parity
KRPT	KNOCK DOWN RUPT	0=Knock down Rupt priority
NISQ	NEW INSTRUCT	0=New instruction to the SQ reg
RA	READ A	0=Read A
RB	READ B	0=Read B
RB14	READ BIT 14	0=Read bit 14
RC	READ C	0=Read C
RG	READ G	0=Read G
RLP	READ LP	0=Read LP
RP2	READ PARITY 2	0=Read parity 2
RQ	READ Q	0=Read Q
RRPA	READ RUPT ADDR	0=Read RUPT address
RSB	READ SIGN	0=Read sign bit
RSCT	READ CNTR ADDR	0=Read selected counter address
RU	READ U	0=Read sum
RZ	READ Z	0=Read Z
R1	READ 1	0=Read 1
R1C	READ 1 COMP	0=Read 1 complimented
R2	READ 1 COMP	0=Read 1 complimented
R22	READ 2 READ 22	0=Read 2 0=Read 22
R24	READ 24	0=Read 24
ST1	SET STAGE 1	0=Stage 1
ST2	SET STAGE 2	0=Stage 2
TMZ	TEST MINUS ZERO	0=Test for minus zero
TOV	TEST OVF	0=Test for overflow
TP	TEST PARITY	0=Test parity
TRSM	TEST RESUME	0=Test for resume
TSGN	TEST SIGN	0=Test sign
TSGN2	TEST SIGN 2	0=Test sign 2
WA	WRITE A	0=Write A
WALP	WRITE A/LP	0=Write A and LP
WB	WRITE B	0=Write B
WGx	WRITE G NO RESET	0=Write G (do not reset)
WLP	WRITE LP	0=Write LP
WOVC	WRITE OVF CNTR	0=Write overflow counter
WOVI	WRITE OVF RUPT INH	0=Write overflow RUPT inhibit
WOVR	WRITE OVF	0=Write overflow
WP	WRITE P	0=Write P
WPx	WRITE P NO RESET	0=Write P (do not reset)
WP2	WRITE P2	0=Write P2

WQ	WRITE Q	0=Write Q
WS	WRITE S	0=Write S
WX	WRITE X	0=Write X
WY	WRITE Y	0=Write Y
MVV	WDITE V NO DESET	O = Write V (de r)

WYX WRITE Y NO RESET 0=Write Y (do not reset)

WZ WRITE Z 0=Write Z

OUTPUTS TO CPM-B ONLY; NOT USED OUTSIDE CPM

RSC READ SPECIAL REG 0=Read special and central WSC WRITE SPECIAL REG 0=Write special and central

WG WRITE G 0=Write G

OUTPUTS TO CPM-C ONLY; NOT USED OUTSIDE CPM

SDV1 SUBSEQ DV1 0=Subsequence DV1 is selected SMP1 SUBSEQ MP1 0=Subsequence MP1 is selected SRSM3 SUBSEQ RSM3 0=Subsequence RSM3 is selected

(CPM-A) #1

CPM-B (Control Pulse Matrix B)

Some AGC registers are mapped onto low memory addresses (00 - 17 octal), so reading or writing to those addresses causes data to be read from, or written into, flip-flop registers instead of memory. These addresses include the central registers (A, Q, Z, LP), the bank register (BNK), and I/O registers.

Addresses 16 and 17 are used in conjunction with the INDEX instruction to inhibit or enable interrupts; this is a trick used to extend the instruction set; to cram more instructions into a 3-bit op code.

The addresses from 20-23 are in eraseable memory, but any data written into those addresses is rotated or shifted. This is implemented through the G register in the MEM module.

Addresses 24-27 are reserved for saving the central register before servicing an interrupt. Registers Z and B are automatically saved by the interrupt subsequence. Registers A and Q must be saved by the interrupt service routine.

SPECIAL REGISTERS

These addresses called special registers. All numbers are in octal.

```
addr
      Flip-Flop registers
             register (accumulator)
00
      Α
01
      Q
             register
02
      Ζ
             register (program counter)
03
      LP
             reaister
04
             input register 0
      INO
             input register 1
05
      IN1
06
      IN2
             input register 2
07
      IN3
             input register 3
10
      OUTO output register 0
      OUT1 output register 1
11
12
      OUT2 output register 2
      OUT3 output register 3
13
14
      OUT4 output register 4
      BANK bank register
15
16
      RFLINT
17
      INHINT
      Eraseable memory registers
20
      CYR
             cycle right
             shift right
21
      SR
             cycle left
22
      CYL
             shift left
23
      SI
24
      7RUPT
                    save register Z
25
      BRUPT
                    save register B
      ARUPT
                    save register A
26
27
      QRUPT
                    save register Q
```

CPM-B translates the WG, RSC, and WSC signals generated by SUBSYSTEM A into signals that read from or write to these registers. The logic is given below (all numbers are in octal):

if WG is asserted from CPM-A,

```
...and the address bus = 020: assert: W20 

...and the address bus = 021: assert: W21 

...and the address bus = 022: assert: W22 

...and the address bus = 023: assert: W23
```

...otherwise, if the address bus > 17: assert: WGn (not a central register)

if RSC is asserted from CPM-A

```
...and the address bus = 00:
                                   assert: RAO
...and the address bus = 01:
                                   assert: RA1
...and the address bus = 02:
                                   assert:RA2
...and the address bus = 03:
                                   assert: RA3
...and the address bus = 04:
                                   assert:RA4
...and the address bus = 05:
                                   assert: RA5
...and the address bus = 06:
                                   assert:RA6
...and the address bus = 07:
                                   assert:RA7
...and the address bus = 010:
                                   assert: RA10
...and the address bus = 011:
                                   assert: RA11
...and the address bus = 012:
                                   assert: RA12
...and the address bus = 013:
                                   assert: RA13
...and the address bus = 014:
                                   assert: RA14
...and the address bus = 015:
                                   assert:RBK
...and the address bus = 016:
                                   do nothing
...and the address bus = 017:
                                   do nothing
```

if WSC is asserted from CPM-A,

```
...and the address bus = 00:
                                   assert:WA0
...and the address bus = 01:
                                   assert: WA1
...and the address bus = 02:
                                   assert:WA2
...and the address bus = 03:
                                   assert:WA3
...and the address bus = 010:
                                   assert: WA10
...and the address bus = 011:
                                   assert: WA11
...and the address bus = 012:
                                   assert: WA12
...and the address bus = 013:
                                   assert: WA13
...and the address bus = 014:
                                   assert: WA14
...and the address bus = 015:
                                   assert: WBK
...and the address bus = 016:
                                   do nothing
...and the address bus = 017:
                                   do nothing
```

Here's a table I developed to work out the relationships between addresses and CPM-B logic signals:

CPM-B			I F ASSERTED		
	GTR 17 GTR 27	AOR.	W6	RSC	WSC
A 00		00	NA	RAO	WAD
Q 01		0.1	1 1	RAI	WAI
02	1	0 2		RAZ	WAZ
LP 03	1	03		RA3	WA3
. 0.4.		6 4		RAY	NA
0.5		0.5		RAS	
06		06		RAL	1.1.
0.7	. / /	0.7	1 . 1	RA7	V
	I_{i} . I_{i} .	10		RAIO	WAID
		/ / / / .		RAII	WAIL
12.		. / : 2 .		RAIZ.	WA12
. 13.	-1 L	. 1.3 .		RAI3	WAI3
/ 4	.1	. 1.4 .	1 . 1	RA14	WA)4 .
+ / 5		.15	1 : 1: - 1	RBK	WBK
16		1.6	1 + 4 +	NA	NA
17		1.7	<u></u>	. [.] [.	
20	0 1	,0,0,	WZO		
21	0	.011.	WZI		
2 2 2 2 3	0 1	0.2	wzz		
2 4	0	0.3.	WZ3		
25	0 1	0.5	Men .		
26	0 1	0.5	1 1 1 1 1	1 1	f. i
27	0	07			
30	0 0	10			
31	0 0	1 1			
32	0 0	1 2			
3 3	0 0	1 3			
3 4	0 0	1 4			
35	0 0	.1.5			
36	0 0	16			
37	. 0	.17.			
40	0 0	.010.	1		:
1 + 1 + 4 1 + 1	0 0	0.1.	V		,, V ;
			53	51	. 52
CPM	R	* * *			
L CTM	-D		1		
1/4 - 1	0 (000000000000000000000000000000000000			- -	
- NAT - N	O CONTROL SIGNA	zs 17586	KIEU		- 0 - 0

CPM-B CONTROL SIGNALS

SIGNAL	<u>#</u>	DESCRIPTION
RA0	57	Read register at address 0 (A)
RA1	58	Read register at address 1 (Q)
RA2	59	Read register at address 2 (Z)
RA3	60	Read register at address 3 (LP)
RA4	61	Read register at address 4
RA5	62	Read register at address 5
RA6	63	Read register at address 6
RA7	64	Read register at address 7
RA10	65	Read register at address 10 (octal)
RA11	66	Read register at address 11 (octal)
RA12	67	Read register at address 12 (octal)
RA13	68	Read register at address 13 (octal)
RA14	69	Read register at address 14 (octal)
RBK	70	Read BNK
WAO	71	Write register at address 0 (A)
WA1	72	Write register at address 1 (Q)
WA2	73	Write register at address 2 (Z)
WA3	74	Write register at address 3 (LP)
WA10	75	Write register at address 10 (octal)
WA11	76	Write register at address 11 (octal)
WA12	77	Write register at address 12 (octal)
WA13	78	Write register at address 13 (octal)
WA14	79	Write register at address 14 (octal)
WBK	80	Write BNK
WGn	81	Write G (normal gates)
W20	82	Write into CYR
W21	83	Write into SR
W22	84	Write into CYL
W23	85	Write into SL

CPM-B I NPUTS:

<u>I/F</u> CPM-A	<u>signal</u>	<u>full name</u>	state definition	
· /	RSC WSC WG	READ SPECIAL REG WRITE SPECIAL REG WRITE G	0=Read special and central 0=Write special and central 0=Write G	
ADR:			CPM -ORSC	IB RAO O-
	AD_4 AD_3	ADDRESS		RA1 0- RA2 0- RA3 0- RA4 0-
	AD_2 AD_1		-AD4 -AD3 -AD2 R -AD1 R	RA6 0- RA7 0- A10 0- A11 0-
	GTR_17	ADDRESS > 017	0=CADR in register S > R 017	A12 0- A13 0- A14 0-
	GTR_27	ADDRESS > 027	0=CADR in register S > -OGR17 027	RBK 0- WA0 0- WA1 0- WA2 0- WA3 0- (A10 0- (A11 0- (A12 0-
			W. W.	MBK 0-
CPM	-B OUTPUT	S:		WGN 0- W20 0- W21 0- W22 0- W23 0-

<u>I/F</u>	<u>signal</u>	<u>full name</u>	state definition
	RA0	READ ADDR 0	0=Read reg at address 0
		(A)	
	RA1	READ ADDR 1	0=Read reg at address 1 (Q)
	RA2	READ ADDR 2	0=Read reg at address 2 (Z)
	RA3	READ ADDR 3	O=Read reg at address 3 (LP)
	RA4	READ ADDR 4	0=Read reg at address 4
	RA5	READ ADDR 5	0=Read reg at address 5
	RA6	READ ADDR 6	0=Read reg at address 6
	RA7	READ ADDR 7	0=Read reg at address 7
	RA10	READ ADDR 10	0=Read reg at address 10 (octal)
	RA11	READ ADDR 11	0=Read reg at address 11 (octal)
	RA12	READ ADDR 12	0=Read reg at address 12 (octal)
	RA13	READ ADDR 13	0=Read reg at address 13 (octal)
	RA14	READ ADDR 14	0=Read reg at address 14 (octal)
	RBK	READ BNK	0=Read BNK reg
	WAO	WRITE ADDR 0	0=Write reg at address 0 (A)
	WA1	WRITE ADDR 1	0=Write reg at address 1 (Q)
	WA2	WRITE ADDR 2	0=Write reg at address 2 (Z)
	WA3	WRITE ADDR 3	0=Write reg at address 3 (LP)
	WA10	WRITE ADDR 10	0=Write reg at address 10 (octal)
	WA11	WRITE ADDR 11	0=Write reg at address 11 (octal)
	WA12	WRITE ADDR 12	0=Write reg at address 12 (octal)
	WA13	WRITE ADDR 13	0=Write reg at address 13 (octal)
	WA14	WRITE ADDR 14	0=Write reg at address 14 (octal)
	WBK	WRITE BNK	0=Write BNK reg
			S .

WGn	WRITE G NORMAL	0=Write G (normal gates)
W20	WRITE ADDR 20	0=Write into CYR
W21	WRITE ADDR 21	0=Write into SR
W22	WRITE ADDR 22	0=Write into CYL
W23	WRITE ADDR 23	0=Write into SL

CPM-C (Control Pulse Matrix C)

The CPM-C subsystem issues control signals for the memory cycle, selecting the next instruction, and performing priority counter subsequences. These signals are issued at specific points in the 12-step cycle of the time pulse generator (TPG).

STBY: assert: GENRST Resets various AGC registers.

PWRON: assert: R2000 Put the starting address on the read bus.

CPM-A asserts: WB, which copies the data into register B, which is the prefetch register for the next instruction. Since the opcode for a branch is 0, the instruction in B becomes TC 2000, which is the first instruction always executed by the AGC.

TP1: assert:CLISQ SNI <- 0. Moved from TP12 to TP1 because

CLISQ was getting cleared in this hardware AGC replica before TPG was clocked;

therefore TPG was not seeing the SNI

indication.

TP5: if: the address bus > 17 (not a central register)

and the address bus < 2000 (not fixed memory; must be erasable) and SDV1 or SMP1 are not asserted (not a loop counter subsequence)

then: assert: SBWG read erasable memory into G by TP6

if: the address bus = 17

then: assert: INH INHINT instruction (INDEX 017)

if: the address bus = 16

if:

then: assert: CLINH RELINT instruction (INDEX 016)

TP6: if: the address bus > 1777 (not eraseable memory)

and SDV1 or SMP1 are not asserted (not a loop counter subsequence)

then: assert: SBWG read fixed memory into G register by TP7

TP11: if: the address bus > 17 (not a central register)

and the address bus < 2000 (not fixed memory; must be erasable)

and SDV1 or SMP1 are not asserted (not a loop counter subsequence)
then: assert: WE G register written to memory beginni

en: assert: WE G register written to memory beginning at TP11; Memory updates are in G by TP10 for all normal and extracode instructions, but the PINC and MINC sequences write to

G in TP10 because they need to update the

parity bit.
SRSM3 is asserted

then: assert: CLRP Additional interrupts are inhibited during

servicing of an interrupt; Remove the inhibition when RESUME is executed

(INDEX 025)

TP12: assert:WPCTR

Check the priority counters; service any waiting inputs on the next memory cycle.

if: the SNI register = 1

then:

if: IRQ is asserted

then:

assert: RPT

assert: SETSTB

else:

assert: CLSTB

endif

assert:WSQ

assert: CLSTA

assert: CLINH1

else:

if: CTR00 or CTR11

then:

assert: WSTB

assert: CLSTA

(if SNI is set, get next instruction)

(if interrupt requested (see CPM-A for

similar assertion))

Read the interrupt vector.

STB <- 1. Will cause the RUPT1

subsequence to execute.

(not an interrupt; a normal instruction)

STB < - 0 . The CPM-A will assert RB here,

which, when accompanied by WSQ

(below), will read the next instruction from register B onto the bus. WSQ will write it

into SQ.

Write the next instruction (on the write

bus) into the SQ register.

Clear STA register.

Clear INHINT1. Removes inhibition of interrupts (if they were) AFTER the next

instruction

(not a new instruction)

if previous sequence was not a PINC or

MINC, get next subsequence for same instruction. if the previous sequence was PINC or MINC, we already have the

subsequence, but it was interrupted by the

counter.

Copy STB < - STA. Gets next sequence for

same instruction.

STA <- 0

This truth table shows the logic needed at TP12 to produce the RPT, SETSTB, CLSTB, CLSTA, WSQ, WSTB, CLISQ, and CLINH1 signals, given the SNI, IRQ, NRUN, and SB inputs.

	INPUT	3		1 1 1		Datha	<u> </u>		. 1 - 41
		-	SIS				CLSTA.	CLSTA	C4/5Q
SWI	IRQ	NRUN	02 01	RPTS	ETSTB	CLSTB	wsq.	WISTO	COMAI
				1	1	1	, /		/
0	0	0	0	1	1	1	I = I	0	0
0	0	0	1	1	1	1	; / , .	. / .	0
0	0	1	0	. 1	1.	1. 1	. 1	O.	. 0
0	0	1	1	1	1	1	11.	1/;	0 .
0	1	0	0	1	1	1		0	. 0
0	, ,	0	1	1	1	1	. 1	. / .	
0	1	1	0	1	1	1	1	0.	. 0
0	1	1	1		1.	1	1	11.	0
+ 1	0	0	0	0	0	1	D	1	. 0
- 1 - 1	0	0	1	0	0	1	0	1	0
. ',	. 0	7.	0	1	1	Ö	0	1	0
1/,:	0	1	1	,		0	0	1	٥
. (: :	, , , ,	0	0	1,1	,	0	0	,	0
. / .	: : / : .	0	, ,	. ,	· /	0	0	1	0
- ', :	· · ', · ·	,	0	1 1	7	0	0	/	0
. / .	: • /; : -	7	Ĭ	1 1 1	7	0	Ŏ	1	0
:7 ,		. , ', :		//	-		1	7 7	

This chart shows the logic for some of the more simple control pulses generated by CMP-C. Some pulses reduce to states from the TPG, such as CLISQ, WPCTR, and CLINH1, which reduce to TP12.

TP1Z=0 # Z

IRQ=0

NRUN=0

SNI=1

TP1Z

IRQ

NRUN 0 0 0 R

SETSTB

RPT

SETSTB

SNI

Demokganize0

(13) TP1Z

IRQ

NRUN

Demokganize0

SETSTB (94)

SETSTB (96)

This is the logic for RPT and SETSTB.

The design for CLSTB is a little more complex. The truth table to the left is reduced through the Karnaugh map to the Minterm equation below the map. A little bubble pushing DeMorganizes the logic to the final solution at the bottom right.

This is the logic for WE and SBWG, two signals that control memory access.

CPM-C CONTROL SIGNALS

<u>SIGNAL</u>	<u>#</u>	<u>DESCRIPTION</u>
GENRST	86	General Reset
CLINH	87	Clear INHINT
CLINH1	88	Clear INHINT1
CLSTA	89	Clear state counter A (STA)
CLSTB	90	Clear state counter B (STB)
CLISQ	91	Clear SNI
CLRP	92	Clear RPCELL
INH	93	Set INHINT
RPT	94	Read RUPT opcode
SBWG	95	Write G from memory
SETSTB	96	Set the ST1 bit of STB
WE	97	Write E-MEM from G
WPCTR	98	Write PCTR (latch priority counter sequence)
WSQ	99	Write SQ
WSTB	100	Write stage counter B (STB)
R2000	101	Read 2000

CPM INPUTS:

<u>I/F</u> TPG:	<u>signal</u>	<u>full name</u>	state definition
Tr G.	TPG_Q3 TPG_Q2 TPG_Q1 TPG_Q0	TPG STATE	where Q3 is MSB, Q0 is LSB: 00 = STBY 01 = PWRON 02 = TP1 03 = TP2 04 = TP3 05 = TP4 06 = TP5 07 = TP6 08 = TP7 09 = TP8 10 = TP9 11 = TP10 12 = TP11 13 = TP12 14 = SRLSE 15 = WAIT
ADR:	EQU_16 EQU_17 GTR_17 GTR_1777	ADDRESS = 016 ADDRESS = 017 ADDRESS > 017 ADDRESS > 01777	<pre>0=CADR in register S = 016 0=CADR in register S = 017 0=CADR in register S > 017 0=CADR in register S > 01777</pre>
CPM-A	A: SDV1 SMP1 SRSM3	SUBSEQ DV1 SUBSEQ MP1 SUBSEQ RSM3	0=Subsequence DV1 is selected 0=Subsequence MP1 is selected 0=Subsequence RSM3 is selected
CTR:	SB_01 SB_02	SUB SEL 01 SUB SEL 02	SB_01 is LSB; SB_02 is MSB 00=no counter; 01=PINC; 10=MINC
SEQ:	SNI	SELECT NEXT INST	1=select next instruction (SNI register)
INT:	IRQ	INT RQST	0=interrupt requested.
MON:	NRUN	RUN/HALT	O=run, 1=step

CPM OUTPUTS:

<u>I/F</u>	<u>signal</u>	<u>full name</u>	state definition
	GENRST	GENERAL RESET	0=General Reset
	CLINH	CLEAR INHINT	O=Clear INHINT
	CLINH1	CLEAR INHINT1	0=Clear INHINT1
	CLSTA	CLEAR STA	0=Clear state counter A (STA)
	CLSTB	CLEAR STB	0=Clear state counter B (STB)
	CLISQ	CLEAR SNI	0=Clear SNI
	CLRP	CLEAR RPCELL	0=Clear RPCELL
	INH	SET INHINT	0=Set INHINT
	RPT	READ RUPT	0=Read RUPT opcode
	SBWG	WRITE G	0=Write G from memory
	SETSTB	SET ST1	0=Set the ST1 bit of STB
	WE	WRITE EMEM	0=Write E-MEM from G
	WPCTR	WRITE PCTR	0=Write PCTR (latch priority counter sequence)
	WSQ	WRITE SQ	0=Write SQ
	WSTB	WRITE STB	0=Write stage counter B (STB)
	R2000	READ 2000	0=Read 2000

Fabrication

The CTL module is (3) 13"x5" circuit boards, and 1 control panel.

Module Rack

The module framework is designed to resemble a relay rack, but scaled to fit the circuit board dimensions. It is constructed out of 1"x2" pine and spray-painted semi-gloss gray.

Circuit boards are mounted to the rack by 2 phillips screws at either end. Nylon spacers (1/4") are used as standoffs to hold the board edges above the rack. The boards are mounted so the chips are in the back and the pins are wiring are visible from the front.

Power is distributed by 2 heavy aluminum bus bars mounted vertically, one per side, on the back of the module. Machine screws are mounted through the bus bars at evenly-spaced intervals to provide connection points for the boards.

Solid copper wire (24 gauge) connects the boards to the bus bars. Ring terminals are used on the bus bar side of the connection. On the circuit board size, the wires are soldered directly to the supply rails.

Materials were purchased from Home Depot, ACE Hardware, and Radio Shack.

Circuit Boards

The circuit boards are 13"x5" general purpose prototyping boards, epoxy glass with double-side plated through pads on 0.1" centers (JAMECO 21477CL).

ICs are mounted in level 3 machine tooled wire-wrap sockets: 8, 14, 16, 20, 24, and 28 pin (JAMECO). Each socket has the pin-out labeled with a wire-wrap socket ID marker, which slips onto the socket before wrapping (JAMECO). The part number is written onto the ID marker.

Sockets are arranged in 4 horizontal rows on each board, with about 10 sockets per row.

Power is distributed on the back-side of each board by bare 24-gauge solid copper wire supply rails soldered at equal intervals to Klipwrap terminals: 3-prong terminals with a square tail for wire-wrapping (JAMECO 34163CL). A +5V rail runs above each row of sockets and a ground rail runs below. Each rail connects directly to the aluminum module power bus using a ring tail connector.

On the pin side of the board, all connections are made with 30 AWG Kynar wire-wrap wire (JAMECO). Red wire is used for direct

connections to the +5V supply rail. Black wire is used for direct connections to ground. White wire is used for everything else.

Power connections from the supply rails to each ICs are double-wrapped. Bypassing capacitors (.1 uf disc) are soldered across the supply rails at the Klipwrap terminals; about 1 capacitor for every 2 IC packages.

All connections were stripped and hand-wrapped using a Radio Shack hand-wrap tool. As each connection was made, the corresponding line on the schematic was marked with a colored highlighter.

DIP resistor networks (JAMECO) plugged into 20-pin wire-wrap sockets were used as current limiting resistors for the panel indicators.

CTL Printed Circuit Board (PCB) A

The A board contains the clock (CLK), the scaler (SCL), and the time pulse generator (TPG).

CTL Printed Circuit Board (PCB) B

The B board contains the display indicators, their current-limiting resistor networks, and the open collector drivers. The display panel is a sheet of white styrene plastic. A push pin was used to make holes through the plastic, and the LEDs were inserted in rows. The panel was hand-lettered with an indelible marker. A few chips near the bottom right of the B board are associated with subsystems on the C board.

CTL Printed Circuit Board (PCB) C

The C board contains the sequence generator (SEQ) and control pulse matrixes (CPM-A, CPM-B, and CPM-C). The big ICs at the bottom are the EPROMs that hold the control pulse matrix table for CPM-A. Each EPROM holds the tables for 8 control signals. The large ICs at the top are decoders for the CPM-B and CPM-C logic.

Parts (ICs)

```
74LS00
            (14)
                   U74,U26,U27,U25,U79,U78,U55,U54,U53,U48,U13,U42,U34,U28
74LS02
            (9)
                   U4,U77,U9,U73,U45,U43,U3,U38,U32
74LS04
                   U62,U29,U76,U69,U64,U57,U71,U59,U58,U56,U49,U41,U40,U39,U33
            (15)
74LS06
            (11)
                   U22,U21,U20,U23,U14,U17,U18,U19,U16,U15,U1
74LS08
                   U65,U10
            (2)
74LS10
                   U12,U70,U52,U51
            (4)
                   U67,U68,U66,U63,U75,U61,U60,U6
74LS20
            (8)
74LS27
            (3)
                   U7,U44,U2
74LS32
            (3)
                   U72,U11,U5
74LS74
            (1)
                   U24
                   U8, U50, U47, U46, U35, U36, U37, U31
74LS112
            (8)
74LS138
            (1)
74LS154
            (7)
                   U81,U82,U83,U98,U100,U101,U106
74LS161
            (8)
                   U104,U107,U108,U109,U110,U111,U112,U113
74LS244
            (10)
                   U80, U84, U85, U93, U94, U95, U96, U97, U102, U103
74LS273
            (1)
                   U105
27C128
                   U86, U87, U88, U89, U90, U91, U92
            (7)
4001
            (1)
                   U30
555
            (1)
                   U114
```

IC's, sockets, PCB's, resistors, capacitors, wire-wrap wire were purchased from JAMECO. The 2.048 MHz crystal and the IDE wire-wrap were from DigiKey. Wire ties, wire-wrap tools, and copper wire were purchased from Radio Shack. IDE ribbon cables were purchased from an online computer supplier.

Power Budget

	<u>qty</u>	mA (e	<u>a)</u>	mA (tot)
74LS0	00	14	2.4	33.6
74LS0)2	9	2.4	21.6
74LS0)4	15	3.6	54.0
74LS0)6	11	3.6	39.6
74LS0	8(2	4.4	8.8
74LS1	0	4	1.8	7.2
74LS2	20	8	1.2	9.6
74LS2	27	3	3.4	10.2
74LS3	32	3	4.9	14.7
74LS7	7 4	1	4.0	4.0
74LS1	12	8	4.0	32.0
74LS1	38	1	6.3	6.3
74LS1	154	7	6.2	43.4
74LS1	161	8	19.0	152.0
74LS2	244	10	32.0	320.0
74LS2	273	1	17.0	17.0
27C12	28	7	25.0	175.0
4001	1	0.4	0.4	
555	1	3.0	3.0	
LED	61	20.0	1220.0)

- 2.2 Amps total
- 1.0 Amps (excluding LEDs)

EPROM generator program

This C++ program generates all files needed to program the CPM-A EPROMs. The files are generated in Motorola S-Record format.

```
* CPM-A EPROM GENERATOR
*9/14/01
        Derived from AGC C++ simulator 1.15.
Operation:
        Generates all of the CPM-A EPROM files in Motorola s2f S-Record format
        suitable for EPROM programmers.
#include < string.h >
#include < stdlib.h>
#include <ctype.h>
#include <iostream.h>
#include <stdio.h>
#define MAXPULSES 15
#define MAX_IPULSES 5 // no more than 5 instruction-generated pulses active at any time
enum cpType { // **inferred; not defined in orignal R393 AGC4 spec.
        NO_PULSE=0,
        // OUTPUTS FROM SUBSYSTEM A
               =1, // Carry in
                         = 2,
                                  // Clear G
                         = 3,
= 4,
                                 // Clear loop counter
// Loop counter
        CLCTR
        CTR
                         = 5 ,
        GΡ
                                 // Generate Parity
        KRPT
                         = 6,
                                  // Knock down Rupt priority
        NISQ
                         = 7,
                                  // New instruction to the SQ register
                                  // Read A
        RA
                         = 8,
        RB
                         = 9,
                                  // Read B
        RB14
                         = 10,
                                  // Read bit 14
        RC
                         = 11,
                                  // Read C
                                  // Read G
        RG
                         = 12.
        RLP
                          = 13,
                                  // Read LP
        RP2
                          = 14,
                                  // Read parity 2
                                  // Read Q
                          = 15,
        RRPA
                                  // Read RUPT address
                          = 16.
        RSB
                                  // Read sign bit
                          = 17,
        RSCT
                          = 18,
                                   // Read selected counter address
                          = 19,
                                  // Read sum
        RΖ
                          =20,
                                   // Read Z
                                   // Read 1
        R1
                          =21,
        R1C
                          =22,
                                   // Read 1 complimented
                          = 23,
                                   // Read 2
        R22
                          = 24,
                                  // Read 22
        R24
                                  // Read 24
                          =25,
        ST1
                          = 26,
                                   // Stage 1
        ST2
                          = 27,
                                   // Stage 2
        TMZ
                          =28,
                                  // Test for minus zero
        TOV
                          = 29,
                                  // Test for overflow
                                  // Test parity
        TP
                         = 30,
        TRSM
                          = 31,
                                  // Test for resume
        TSGN
                          = 32,
                                  // Test sign
        TSGN2
                                  // Test sign 2
                         = 33,
                                  // Write A
        WA
                          = 34,
```

```
WALP
                   = 35,
                             // Write A and LP
WB
                             // Write B
                   = 36.
                   = 37.
WGx
                             // Write G (do not reset)
WIP
                   = 38,
                             // Write LP
WOVC
                             // Write overflow counter
                   = 39.
WOVI
                   =40,
                             // Write overflow RUPT inhibit
WOVR
                   =41,
                             // Write overflow
WP
                   =42.
                             // Write P
                   =43,
WPx
                             // Write P (do not reset)
WP2
                   = 44,
                             // Write P2
                             // Write Q
WQ
                   = 45.
                             // Write S
WS
                   =46,
WX
                   =47,
                             // Write X
WY
                   =48,
                             // Write Y
WYx
                   = 49.
                             // Write Y (do not reset)
W Z
                   =50.
                             // Write Z
// OUTPUTS FROM SUBSYSTEM A; USED AS INPUTS TO SUBSYSTEM B ONLY;
// NOT USED OUTSIDE CPM
RSC
                   =51,
                             // Read special and central (output to B only, not outside CPM)
WSC
                   =52,
                             // Write special and central (output to B only, not outside CPM)
WG
                   =53,
                             // Write G (output to B only, not outside CPM)
// OUTPUTS FROM SUBSYSTEM A; USED AS INPUTS TO SUBSYSTEM C ONLY;
// NOT USED OUTSIDE CPM
SDV1
                             // Subsequence DV1 is currently active
                   = 54,
SMP1
                   = 55,
                             // Subsequence MP1 is currently active
SRSM3
                             // Subsequence RSM3 is currently active
                   =56,
// EXTERNAL OUTPUTS FROM SUBSYSTEM B
RAO
                   =57.
                             // Read register at address 0 (A)
RA1
                   =58,
                             // Read register at address 1 (Q)
RA2
                   =59,
                             // Read register at address 2 (Z)
                             // Read register at address 3 (LP)
RA3
                   =60,
                             // Read register at address 4
RA4
                   = 61.
RA5
                   =62
                             // Read register at address 5
RA6
                   =63,
                             // Read register at address 6
RA7
                             // Read register at address 7
                   = 64,
RA10
                   =65,
                             // Read register at address 10 (octal)
RA11
                   = 66.
                             // Read register at address 11 (octal)
RA12
                   = 67,
                             // Read register at address 12 (octal)
RA13
                   =68,
                             // Read register at address 13 (octal)
RA14
                   =69,
                             // Read register at address 14 (octal)
RBK
                   = 70.
                             // Read BNK
WAO
                             // Write register at address 0 (A)
                   = 71.
WA1
                   =72,
                             // Write register at address 1 (Q)
WA2
                   = 73,
                             // Write register at address 2 (Z)
WA3
                   = 74,
                             // Write register at address 3 (LP)
WA10
                             // Write register at address 10 (octal)
                   = 75,
WA11
                   = 76,
                             // Write register at address 11 (octal)
WA12
                   =77,
                             // Write register at address 12 (octal)
WA13
                   =78,
                             // Write register at address 13 (octal)
WA14
                   = 79
                             // Write register at address 14 (octal)
                             // Write BNK
WBK
                   =80.
WGn
                   = 81,
                             // Write G (normal gates)**
                             // Write into CYR
W20
                   = 82,
                             // Write into SR
W21
                   =83.
W22
                   = 84.
                             // Write into CYL
W23
                   = 85.
                             // Write into SL
// THESE ARE THE LEFTOVERS -- THEY'RE PROBABLY USED IN SUBSYSTEM C
GENRST
                   =86,
                             // General Reset**
CLINH
                             // Clear INHINT * *
                   = 87,
                             // Clear INHINT1 * *
CLINH1
                   =88.
                             // Clear state counter A (STA) **
CLSTA
                   =89,
CLSTB
                   = 90,
                             // Clear state counter B (STB)**
                   = 91,
                             // Clear SNI**
CLISQ
CLRP
                   =92,
                             // Clear RPCELL**
                   = 93,
                             // Set INHINT * *
INH
                             // Read RUPT opcode **
RPT
                   =94,
SBWG
                   = 95,
                             // Write G from memory
SETSTB
                   =96,
                             // Set the ST1 bit of STB
```

```
WF
                           = 97,
                                    // Write E-MEM from G
         WPCTR
                           =98.
                                    // Write PCTR (latch priority counter sequence) * *
         WSO
                           = 99
                                    // Write SQ
         WSTB
                           =100,
                                    // Write stage counter B (STB) **
                           = 101,
                                    // Read 2000 **
         R2000
};
static cpType glbl_cp[MAXPULSES]; // current set of asserted control pulses (MAXPULSES)
enum scType { // identifies subsequence for a given instruction
         SUB0=0,
                          //ST2=0, ST1=0
         SUB1=1,
                           // ST2 = 0, ST1 = 1
         SUB2 = 2,
                           // ST2 = 1, ST1 = 0
         SUB3=3
                           // ST2=1, ST1=1
};
enum brType {
         BR00
                           //BR1=0, BR2=0
                  =0,
         BR01
                           // BR1=0, BR2=1
                  = 1.
         BR10
                           //BR1 = 1, BR2 = 0
                  = 2,
         BR11
                  = 3,
                           //BR1 = 1, BR2 = 1
         NO_BR
                           // NO BRANCH
                 = 4
};
struct controlSubStep {
         brType br; // normally no branch (NO_BR)
         cpType pulse[MAX_IPULSES]; // contains 0 - MAXPULSES control pulses
}:
struct controlStep {
         controlSubStep substep[4]; // indexed by brType (BR00, BR01, BR10, BR11)
};
struct subsequence {
         controlStep tp[11]; // indexed by tpType (TP1-TP11)
};
struct sequence {
         subsequence* subseq[4]; // indexed by scType
#define STEP_INACTIVE \
         NO_BR, {NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE}, \
         NO BR.
                  {NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE}, \
         NO_BR, {NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE}, \
         NO_BR, {NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE}
#define STEP(p1, p2, p3, p4, p5) \
         NO_BR, { p1, p2, p3, p4, p5}, \
         NO_BR, {NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE}, \
                 {NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE}, \
         NO BR,
         NO_BR, {NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE}
subsequence SUB_TC0 = {
        STEP ( RB,
STEP_INACTIVE, // TP 2
                                    WY
                                                      WS
                                                                        CI
                                                                                          NO PULSE
                                                                                                            ), // TP 1
         STEP ( WG,
                                    NO_PULSE,
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                          NO_PULSE
                                                                                                            ), // TP 3
         STEP (
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                          NO_PULSE
                                                                                                            ), // TP 4
                  RA,
                                    WOVI,
         STEP_INACTIVE, // TP 5
         STEP_INACTIVE, // TP 6
         STEP (
                 RG,
                                    RSC.
                                                      WB.
                                                                        WP.
                                                                                          NO_PULSE
                                                                                                            ), // TP 7
         STEP (
                                                      GP,
                                                                        TP,
                                                                                          NO_PULSE
                                                                                                            ), // TP 8
                  RZ,
                                    WQ,
                                                                        NO_PULSE,
         STEP (
                                    WSC,
                                                      WG,
                                                                                          NO_PULSE
                                                                                                            ), // TP 9
                  RB.
                                                                        NO_PULSE,
                                                                                                            ), // TP 10
         STEP (
                                                      NO PULSE.
                                                                                          NO_PULSE
                  RU.
                                    WZ.
                                    NO_PULSE,
         STEP (
                  NISQ,
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                          NO_PULSE
                                                                                                            ), // TP 11
subsequence SUB_CCS0 = {
         STEP (
                                                      NO PULSE.
                                                                        NO PULSE.
                                                                                          NO PULSE
                  RB.
                                    WS.
                                                                                                            ), // TP 1
                                                                                                            ), // TP 2
         STEP (
                  RZ,
                                    WY,
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                          NO_PULSE
         STEP (
                                    NO_PULSE,
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                          NO_PULSE
                                                                                                            ), // TP 3
                  WG,
         STEP_INACTIVE, // TP 4
         STEP_INACTIVE, // TP 5
                                                                                                            ), // TP 6
         STEP ( RG,
                                    RSC,
                                                      WB,
                                                                        TSGN,
                                                                                          WP
         BR00,
                  RC,
                                    TMZ,
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                          NO_PULSE,
                                                                                                              // TP 7
         BR01,
                  RC,
                                    TMZ,
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                          NO_PULSE,
```

BR10, RB,					
	TMZ,	NO_PULSE,	NO_PULSE,	NO_PULSE,	
BR11, RB,	TMZ,	NO_PULSE,	NO_PULSE,	NO_PULSE,	
BROO, GP,	TP,	NO_PULSE,	NO_PULSE,	NO_PULSE,	// TP 8
					// 11 0
BR01, R1,	WX,	GP,	TP,	NO_PULSE,	
BR10, R2,	WX,	GP,	TP,	NO_PULSE,	
BR11, R1,	R2,	WX,	GP,	TP,	
STEP (RB,	WSC,	WG,	NO_PULSE,	NO_PULSE), // TP 9
BROO, RC,	WA,	NO_PULSE,	NO_PULSE,	NO_PULSE,	// TP 10
BR01, WA,	R1C,	NO_PULSE,	NO_PULSE,	NO_PULSE,	
BR10, RB,	WA,	NO_PULSE,	NO_PULSE,	NO_PULSE,	
BR11, WA,	R1C,	NO_PULSE,	NO_PULSE,	NO_PULSE,	
STEP (RU,	ST1,	WZ,	NO_PULSE,	NO_PULSE) // TP 11
} ;					
subsequence SUB_CCS1 = {					
STEP (RZ,	WY,	WS,	CI,	NO_PULSE), // TP 1
STEP_INACTIVE, // TP 2	•	•	•		,,,,,,
STEP (WG,	NO_PULSE,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 3
STEP (RU,	WZ,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 4
STEP (RA,	WY,	CI,	NO_PULSE,	NO_PULSE), // TP 5
STEP_INACTIVE, // TP 6					
STEP (RG,	RSC,	WB,	WP,	NO_PULSE), // TP 7
STEP (RU,	WB,	GP,	TP,	NO_PULSE), // TP 8
STEP_INACTIVE, // TP 9	*****	G. ,	,		<i>)</i> , , , ,
	14/4	WOVI	NO DULCE	NO DILLE) // TD 10
STEP (RC,	WA,	WOVI,	NO_PULSE,	NO_PULSE), // TP 10
STEP (RG,	RSC,	WB,	NISQ,	NO_PULSE) // TP 11
};					
subsequence SUB_NDX0 = {					
STEP (RB,	WS,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 1
	VV 3 ,	NO_FOLSE,	NO_FOLSE,	NO_FOLSE), // 15 1
STEP_INACTIVE, // TP 2					
STEP (WG,	NO_PULSE,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 3
STEP (RA,	WOVI,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 4
STEP_INACTIVE, // TP 5					
STEP_INACTIVE, // TP 6					
STEP (RG,	RSC,	WB,	WP,	NO_PULSE), // TP 7
STEP (GP,	TP,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 8
· · · · · · · · · · · · · · · · · · ·					
STEP (RB,	WSC,	WG,	NO_PULSE,	NO_PULSE), // TP 9
STEP (TRSM,	NO_PULSE,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 10
STEP (ST1,	NO_PULSE,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 11
};					
subsequence SUB_NDX1 = {					
STEP (RZ,	WY,	WS,	CI,	NO_PULSE), // TP 1
	VV I ,	ws,	CI,	NO_FOLSE), // 15 1
STEP_INACTIVE, // TP 2					
STEP (WG,	NO_PULSE,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 3
STEP (RU,	WZ,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 4
STEP_INACTIVE, // TP 5					
STEP (RB,	WY,	NO_PULSE,			
		NO PULSE,	NO PULSE,	NO PULSE), // TP 6
STEP (RG	RSC		NO_PULSE, WP	NO_PULSE), // TP 6
STEP (RG,	RSC,	WB,	WP,	NO_PULSE), // TP 7
STEP (RB,	WX,	WB, GP,	WP, TP,	NO_PULSE NO_PULSE), // TP 7), // TP 8
STEP (RB, STEP (RB,		WB,	WP,	NO_PULSE), // TP 7
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10	WX, WSC,	WB, GP, WG,	WP, TP, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU,	WX,	WB, GP,	WP, TP,	NO_PULSE NO_PULSE), // TP 7), // TP 8
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10	WX, WSC,	WB, GP, WG,	WP, TP, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU, };	WX, WSC,	WB, GP, WG,	WP, TP, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU,	WX, WSC,	WB, GP, WG,	WP, TP, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU, }; subsequence SUB_RSM3 = {	WX, WSC, WB,	WB, GP, WG, WOVI,	WP, TP, NO_PULSE, NISQ,	NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU,); subsequence SUB_RSM3 = { STEP (R24,	WX, WSC,	WB, GP, WG,	WP, TP, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU, }; subsequence SUB_RSM3 = { STEP (R24, STEP_INACTIVE, // TP 2	WX, WSC, WB,	WB, GP, WG, WOVI,	WP, TP, NO_PULSE, NISQ, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU, }; subsequence SUB_RSM3 = { STEP (R24, STEP_INACTIVE, // TP 2 STEP (WG,	WX, WSC, WB,	WB, GP, WG, WOVI,	WP, TP, NO_PULSE, NISQ,	NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU, }; subsequence SUB_RSM3 = { STEP (R24, STEP_INACTIVE, // TP 2 STEP (WG, STEP_INACTIVE, // TP 4	WX, WSC, WB,	WB, GP, WG, WOVI,	WP, TP, NO_PULSE, NISQ, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU, }; subsequence SUB_RSM3 = { STEP (R24, STEP_INACTIVE, // TP 2 STEP (WG, STEP_INACTIVE, // TP 4 STEP_INACTIVE, // TP 5	WX, WSC, WB,	WB, GP, WG, WOVI,	WP, TP, NO_PULSE, NISQ, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU, }; subsequence SUB_RSM3 = { STEP (R24, STEP_INACTIVE, // TP 2 STEP (WG, STEP_INACTIVE, // TP 4	WX, WSC, WB,	WB, GP, WG, WOVI,	WP, TP, NO_PULSE, NISQ, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU, }; subsequence SUB_RSM3 = { STEP (R24, STEP_INACTIVE, // TP 2 STEP (WG, STEP_INACTIVE, // TP 4 STEP_INACTIVE, // TP 5	WX, WSC, WB,	WB, GP, WG, WOVI,	WP, TP, NO_PULSE, NISQ, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU, }; subsequence SUB_RSM3 = { STEP (R24, STEP_INACTIVE, // TP 2 STEP (WG, STEP_INACTIVE, // TP 4 STEP_INACTIVE, // TP 5 STEP_INACTIVE, // TP 6	WX, WSC, WB, WS, NO_PULSE,	WB, GP, WG, WOVI, NO_PULSE, NO_PULSE,	WP, TP, NO_PULSE, NISQ, NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11), // TP 1
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU, }; subsequence SUB_RSM3 = { STEP (R24, STEP_INACTIVE, // TP 2 STEP (WG, STEP_INACTIVE, // TP 4 STEP_INACTIVE, // TP 5 STEP_INACTIVE, // TP 6 STEP (RG,	WX, WSC, WB, WS, NO_PULSE,	WB, GP, WG, WOVI, NO_PULSE, NO_PULSE,	WP, TP, NO_PULSE, NISQ, NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11), // TP 1
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU, }; subsequence SUB_RSM3 = { STEP (R24, STEP_INACTIVE, // TP 2 STEP (WG, STEP_INACTIVE, // TP 4 STEP_INACTIVE, // TP 5 STEP_INACTIVE, // TP 6 STEP (RG, STEP_INACTIVE, // TP 8 STEP_INACTIVE, // TP 9	WX, WSC, WB, WS, NO_PULSE,	WB, GP, WG, WOVI, NO_PULSE, NO_PULSE,	WP, TP, NO_PULSE, NISQ, NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11), // TP 1
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU, }; subsequence SUB_RSM3 = { STEP (R24, STEP_INACTIVE, // TP 2 STEP (WG, STEP_INACTIVE, // TP 4 STEP_INACTIVE, // TP 5 STEP_INACTIVE, // TP 6 STEP (RG, STEP_INACTIVE, // TP 8 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 9	WX, WSC, WB, WS, NO_PULSE,	WB, GP, WG, WOVI, NO_PULSE, NO_PULSE,	WP, TP, NO_PULSE, NISQ, NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11), // TP 3
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU, }; subsequence SUB_RSM3 = { STEP (R24, STEP_INACTIVE, // TP 2 STEP (WG, STEP_INACTIVE, // TP 4 STEP_INACTIVE, // TP 5 STEP_INACTIVE, // TP 6 STEP (RG, STEP_INACTIVE, // TP 8 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 10 STEP (NISQ,	WX, WSC, WB, WS, NO_PULSE,	WB, GP, WG, WOVI, NO_PULSE, NO_PULSE,	WP, TP, NO_PULSE, NISQ, NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11), // TP 1
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU, }; subsequence SUB_RSM3 = { STEP (R24, STEP_INACTIVE, // TP 2 STEP (WG, STEP_INACTIVE, // TP 4 STEP_INACTIVE, // TP 5 STEP_INACTIVE, // TP 6 STEP (RG, STEP_INACTIVE, // TP 8 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 9	WX, WSC, WB, WS, NO_PULSE,	WB, GP, WG, WOVI, NO_PULSE, NO_PULSE,	WP, TP, NO_PULSE, NISQ, NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11), // TP 1), // TP 3
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU, }; subsequence SUB_RSM3 = { STEP (R24, STEP_INACTIVE, // TP 2 STEP (WG, STEP_INACTIVE, // TP 4 STEP_INACTIVE, // TP 5 STEP_INACTIVE, // TP 6 STEP (RG, STEP_INACTIVE, // TP 8 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 10 STEP (NISQ, };	WX, WSC, WB, WS, NO_PULSE,	WB, GP, WG, WOVI, NO_PULSE, NO_PULSE,	WP, TP, NO_PULSE, NISQ, NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11), // TP 3
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU, }; subsequence SUB_RSM3 = { STEP (R24, STEP_INACTIVE, // TP 2 STEP_INACTIVE, // TP 4 STEP_INACTIVE, // TP 5 STEP_INACTIVE, // TP 6 STEP_INACTIVE, // TP 6 STEP_INACTIVE, // TP 8 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 10 STEP (NISQ, }; subsequence SUB_XCH0 = {	WX, WSC, WB, WS, NO_PULSE, WZ, NO_PULSE,	WB, GP, WG, WOVI, NO_PULSE, NO_PULSE,	WP, TP, NO_PULSE, NISQ, NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11), // TP 3
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU, }; subsequence SUB_RSM3 = { STEP (R24, STEP_INACTIVE, // TP 2 STEP (WG, STEP_INACTIVE, // TP 4 STEP_INACTIVE, // TP 5 STEP_INACTIVE, // TP 6 STEP (RG, STEP_INACTIVE, // TP 8 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 10 STEP (NISQ, };	WX, WSC, WB, WS, NO_PULSE,	WB, GP, WG, WOVI, NO_PULSE, NO_PULSE,	WP, TP, NO_PULSE, NISQ, NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11), // TP 3
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU, }; subsequence SUB_RSM3 = { STEP (R24, STEP_INACTIVE, // TP 2 STEP (WG, STEP_INACTIVE, // TP 4 STEP_INACTIVE, // TP 5 STEP_INACTIVE, // TP 6 STEP (RG, STEP_INACTIVE, // TP 8 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 10 STEP (NISQ, }; subsequence SUB_XCH0 = { STEP (RB,	WX, WSC, WB, WS, NO_PULSE, WZ, NO_PULSE,	WB, GP, WG, WOVI, NO_PULSE, NO_PULSE, NO_PULSE,	WP, TP, NO_PULSE, NISQ, NO_PULSE, NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11), // TP 3), // TP 7), // TP 11
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU,); subsequence SUB_RSM3 = { STEP (R24, STEP_INACTIVE, // TP 2 STEP (WG, STEP_INACTIVE, // TP 4 STEP_INACTIVE, // TP 5 STEP_INACTIVE, // TP 6 STEP_INACTIVE, // TP 6 STEP_INACTIVE, // TP 8 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 10 STEP (NISQ,); subsequence SUB_XCH0 = { STEP (RB, STEP (RA,	WX, WSC, WB, WS, NO_PULSE, WZ, NO_PULSE,	WB, GP, WG, WOVI, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE,	WP, TP, NO_PULSE, NISQ, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11), // TP 3), // TP 7), // TP 11
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU, }; subsequence SUB_RSM3 = { STEP (R24, STEP_INACTIVE, // TP 2 STEP (WG, STEP_INACTIVE, // TP 4 STEP_INACTIVE, // TP 5 STEP_INACTIVE, // TP 6 STEP (RG, STEP_INACTIVE, // TP 8 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 10 STEP (NISQ, }; subsequence SUB_XCH0 = { STEP (RB, STEP (RA, STEP (WG,	WX, WSC, WB, WS, NO_PULSE, WZ, NO_PULSE, WS, WP, NO_PULSE,	WB, GP, WG, WOVI, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE,	WP, TP, NO_PULSE, NISQ, NO_PULSE,	NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11), // TP 3), // TP 7), // TP 11), // TP 11
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU,); subsequence SUB_RSM3 = { STEP (R24, STEP_INACTIVE, // TP 2 STEP (WG, STEP_INACTIVE, // TP 4 STEP_INACTIVE, // TP 5 STEP_INACTIVE, // TP 6 STEP_INACTIVE, // TP 6 STEP_INACTIVE, // TP 8 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 10 STEP (NISQ,); subsequence SUB_XCH0 = { STEP (RB, STEP (RA, STEP (WG, STEP (WP2,	WX, WSC, WB, WS, NO_PULSE, WZ, NO_PULSE,	WB, GP, WG, WOVI, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE,	WP, TP, NO_PULSE, NISQ, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11), // TP 3), // TP 7), // TP 11
STEP (RB, STEP (RB, STEP_INACTIVE, // TP 10 STEP (RU, }; subsequence SUB_RSM3 = { STEP (R24, STEP_INACTIVE, // TP 2 STEP (WG, STEP_INACTIVE, // TP 4 STEP_INACTIVE, // TP 5 STEP_INACTIVE, // TP 6 STEP (RG, STEP_INACTIVE, // TP 8 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 9 STEP_INACTIVE, // TP 10 STEP (NISQ, }; subsequence SUB_XCH0 = { STEP (RB, STEP (RA, STEP (WG,	WX, WSC, WB, WS, NO_PULSE, WZ, NO_PULSE, WS, WP, NO_PULSE,	WB, GP, WG, WOVI, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE,	WP, TP, NO_PULSE, NISQ, NO_PULSE,	NO_PULSE), // TP 7), // TP 8), // TP 9), // TP 11), // TP 3), // TP 7), // TP 11), // TP 11

```
STEP_INACTIVE, // TP 6
         STEP (
                                     RSC.
                                                        WB.
                                                                          WP.
                                                                                             NO PULSE
                                                                                                                ), // TP 7
                  RG.
                                                        NO_PULSE,
                                                                          NO_PULSE,
         STEP (
                                     TP.
                                                                                             NO_PULSE
                                                                                                                ), // TP 8
                  GP
                                                                                                                ), // TP 9
         STEP (
                  RA,
                                     WSC.
                                                        WG,
                                                                          RP2,
                                                                                             NO_PULSE
                                                                                                                ), // TP 10
                                                        WOVI,
                                                                          NO_PULSE,
                                                                                             NO_PULSE
         STEP (
                  RB.
                                     WA,
                                                                                                                ), // TP 11
         STEP (
                  ST2,
                                     NO_PULSE,
                                                        NO_PULSE,
                                                                          NO_PULSE,
                                                                                             NO_PULSE
};
subsequence SUB_CS0 = {
         STEP ( RB,
                                     WS,
                                                        NO_PULSE,
                                                                          NO_PULSE,
                                                                                             NO_PULSE
                                                                                                                ), // TP 1
         STEP_INACTIVE, // TP 2
                                     NO_PULSE,
         STEP ( WG,
                                                        NO_PULSE,
                                                                          NO PULSE,
                                                                                             NO PULSE
                                                                                                                ), // TP 3
         STEP_INACTIVE, // TP 4
         STEP_INACTIVE, // TP 5
         STEP_INACTIVE, // TP 6
         STEP (
                                                                                                                ), // TP 7
                  RG,
                                     RSC,
                                                        WB
                                                                          WP
                                                                                             NO PULSE
                                                                          NO_PULSE,
                                                                                             NO_PULSE
         STEP (
                  GP.
                                     TP.
                                                        NO_PULSE,
                                                                                                                ), // TP 8
         STEP (
                                     WSC,
                                                        WG,
                                                                          NO_PULSE,
                                                                                             NO_PULSE
                                                                                                                ), // TP 9
                  RB,
                                                                          NO_PULSE,
                                                                                                                ), // TP 10
         STEP (
                  RC,
                                                        WOVI,
                                                                                             NO_PULSE
                                     WA.
                                     NO_PULSE,
                                                                                                                ), // TP 11
         STEP (
                                                        NO PULSE,
                                                                          NO PULSE,
                                                                                             NO PULSE
                  ST2,
};
subsequence SUB_TS0 = {
         STFP (
                  RB.
                                     WS,
                                                        NO PULSE,
                                                                          NO PULSE,
                                                                                             NO PULSE
                                                                                                                ), // TP 1
                                                                                                      NO_PULSE
         STEP (
                                                                          WP,
                  RA,
                                                        TOV.
                                     WB.
), // TP 2
         STEP (
                                                                                             NO_PULSE
                                     NO_PULSE,
                                                        NO_PULSE,
                                                                          NO_PULSE,
                                                                                                                ), // TP 3
         BROO,
                  NO_PULSE,
                                     NO_PULSE,
                                                        NO_PULSE,
                                                                          NO_PULSE,
                                                                                             NO_PULSE,
                                                                                                                  // TP 4
                                                                          NO_PULSE,
         BR01,
                                                                                             NO_PULSE,
                                                                                                                  //
                  RZ,
                                     WY,
                                                        CI,
overflow
         BR10,
                  RZ,
                                     WY,
                                                        CI.
                                                                          NO_PULSE,
                                                                                             NO_PULSE,
                                                                                                                  //
underflow
                  NO PULSE.
                                     NO PULSE.
                                                        NO PULSE.
                                                                          NO PULSE.
                                                                                             NO PULSE.
         BR11.
                                     NO_PULSE,
                                                        NO_PULSE,
         BR00,
                                                                          NO_PULSE,
                                                                                             NO_PULSE,
                  NO_PULSE,
                                                                                                                  // TP 5
         BR01,
                  R1,
                                     WA,
                                                        NO_PULSE,
                                                                          NO_PULSE,
                                                                                             NO_PULSE,
         BR10,
                                                        NO_PULSE,
                                                                          NO_PULSE,
                                                                                             NO_PULSE,
                  WA.
                                     R1C
         BR11.
                  NO PULSE,
                                     NO_PULSE,
                                                        NO PULSE,
                                                                          NO PULSE,
                                                                                             NO PULSE,
         STEP_INACTIVE, // TP 6
                                                        NO_PULSE,
                                                                          NO_PULSE,
         BROO.
                  NO_PULSE,
                                     NO PULSE.
                                                                                             NO_PULSE,
                                                                                                                  // TP 7
                                                        NO_PULSE,
                                                                          NO_PULSE,
                                                                                             NO_PULSE,
         BR01,
                                     WZ,
         BR10,
                  RII
                                     WZ,
                                                        NO_PULSE,
                                                                          NO_PULSE,
                                                                                             NO_PULSE,
                  NO_PULSE,
                                     NO_PULSE,
                                                        NO_PULSE,
                                                                          NO_PULSE,
                                                                                             NO_PULSE,
         BR11.
                                     NO_PULSE,
                                                        NO_PULSE,
                                                                          NO_PULSE,
         STEP (
                  GP.
                                                                                             NO_PULSE
                                                                                                                ), // TP 8
         STEP (
                  RB,
                                     WSC,
                                                        WG,
                                                                                    NO_PULSE,
                                                                                                      NO_PULSE
), // TP 9
         STEP (
                  RA.
                                     WOVI,
                                                        NO PULSE,
                                                                          NO PULSE,
                                                                                             NO PULSE
                                                                                                                ), // TP 10
                                                                                                                ), // TP 11
                                     NO PULSE.
                                                        NO PULSE.
                                                                          NO PULSE.
                                                                                             NO PULSE
         STEP (
                  ST2,
};
subsequence SUB_AD0 = {
         STEP (
                                                                          NO_PULSE,
                                                                                                                ), // TP 1
                                                        NO PULSE,
                                                                                             NO PULSE
                                     WS.
                  RB.
                                                                          NO_PULSE,
         STEP (
                  RA.
                                     WY.
                                                        NO_PULSE,
                                                                                             NO_PULSE
                                                                                                                ), // TP 2
         STEP (
                  WG,
                                     NO_PULSE,
                                                        NO_PULSE,
                                                                          NO_PULSE,
                                                                                             NO_PULSE
                                                                                                                ), // TP 3
         STEP_INACTIVE, // TP 4
         STEP_INACTIVE, // TP 5
         STEP_INACTIVE, // TP 6
         STEP (
                  RG.
                                     RSC,
                                                        WB.
                                                                          WP.
                                                                                             NO_PULSE
                                                                                                                ), // TP 7
         STEP (
                                                                                             NO_PULSE
                                                                                                                ), // TP 8
                                     WX,
                                                        GP.
                                                                                                                ), // TP 9
                                                        WG,
                                                                          NO_PULSE,
                                                                                             NO_PULSE
         STEP (
                  RB.
                                     WSC.
         STEP_INACTIVE, // TP 10
         STEP ( RU,
                                     WA.
                                                        WOVC.
                                                                          ST2.
                                                                                             WOVI
                                                                                                                ), // TP 11
};
// Note: AND is performed using DeMorgan's Theorem: the inputs are inverted, a
// logical OR is performed, and the result is inverted. The implementation of the
// OR (at TP8) is somewhat unorthodox: the inverted inputs are in registers U
// and C. The OR is achieved by gating both registers onto the read/write bus
// simultaneously. (The bus only transfers logical 1's; register-to-register transfers
// are performed by clearing the destination register and then transferring the
\//\ 1's from the source register to the destination). When the 1's from both
// registers are simultaneously gated onto the bus, the word on the bus is a logical
// OR of both registers.
subsequence SUB_MASK0 = {
                                                        NO_PULSE,
                                                                          NO_PULSE,
         STEP (
                  RB,
                                     WS.
                                                                                             NO_PULSE
                                                                                                                ), // TP 1
                                                                                                                ), // TP 2
         STEP (
                  RA,
                                     WB,
                                                        NO_PULSE,
                                                                          NO_PULSE,
                                                                                             NO_PULSE
         STEP (
                  WG,
                                     NO_PULSE,
                                                        NO_PULSE,
                                                                          NO_PULSE,
                                                                                             NO_PULSE
                                                                                                                ), // TP 3
```

STEP	RC,	WY,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 4
	INACTIVE, // TP 5				_	, ,
	INACTIVE, // TP 6					
STEP		RSC,	WB,	WP,	NO_PULSE), // TP 7
STEP		RC,	WA,	GP,	TP), // TP 8
(CHANGED)	•					
STEP_	INACTIVE, // TP 9					
STEP	(RA,	WB,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 10
(CHANGED)						
STEP	(RC,	WA,	ST2,	WOVI,	NO_PULSE), // TP 11
} ;						
subsequence SU						
STEP	(RB,	WS,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 1
STEP	(RA,	WB,	TSGN,	NO_PULSE,	NO_PULSE), // TP 2
STEP		WG,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 3
BROO,		WLP,	NO_PULSE,	NO_PULSE,	NO_PULSE,	// TP 4
BR01,		WLP,	NO_PULSE,	NO_PULSE,	NO_PULSE,	
BR10,		WLP,	NO_PULSE,	NO_PULSE,	NO_PULSE,	
BR11,		WLP,	NO_PULSE,	NO_PULSE,	NO_PULSE,	
STEP		WA,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 5
	INACTIVE, // TP 6	14/1/		NO DUI OF	NO DUI OF	// TD 7
BROO,		WY,	WP,	NO_PULSE,	NO_PULSE,	// TP 7
BR01,		WY,	WP,	NO_PULSE,	NO_PULSE, NO_PULSE,	
BR10,		WB, WB,	WP,	NO_PULSE,		
BR11,	RG,		WP,	NO_PULSE,	NO_PULSE, NO_PULSE,	// TP 8
BR00,		TP, TP,	NO_PULSE,	NO_PULSE, NO_PULSE,	NO_PULSE,	// IP 0
BR01, BR10,		WY,	NO_PULSE, GP,	TP,	NO_PULSE,	
BR11,		WY,	GP,	TP,	NO_PULSE,	
STEP (WB,	TSGN2,	NO_PULSE,	NO_PULSE), // TP 9
BR00,		WLP,	TSGN,	NO_PULSE,	NO_PULSE,	// TP 10
BR01,	RA,	RB14,	WLP,	TSGN,	NO_PULSE,	77 11 10
BR10,		WLP,	TSGN,	NO_PULSE,	NO_PULSE,	
BR11,		RB14,	WLP,	TSGN,	NO_PULSE,	
BROO,		WALP,	NO_PULSE,	NO_PULSE,	NO_PULSE,	// TP 11
BR01,	R1,	ST1,	WALP,	R1C,	NO_PULSE,	
BR10,	RU,	ST1,	WALP,	NO_PULSE,	NO_PULSE,	
BR11,	RU,	ST1,	WALP,	NO_PULSE,	NO_PULSE,	
};						
subsequence SU	$B_MP1 = {$					
STEP	(RA,	WY,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 1
STEP	(RLP,	WA,	TSGN,	NO_PULSE,	NO_PULSE), // TP 2
BROO,	NO_PULSE,	NO_PULSE,	NO_PULSE,	NO_PULSE,	NO_PULSE,	// TP 3
BR01,	NO_PULSE,	NO_PULSE,	NO_PULSE,	NO_PULSE,	NO_PULSE,	
BR10,	RB,	WX,	NO_PULSE,	NO_PULSE,	NO_PULSE,	
BR11,		WX,	NO_PULSE,	NO_PULSE,	NO_PULSE,	
STEP	•	WLP,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 4
STEP		TSGN,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 5
STEP		WALP,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 6
STEP		WY,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 7
BROO,		NO_PULSE,	NO_PULSE,	NO_PULSE,	NO_PULSE,	// TP 8
BR01,		NO_PULSE,	NO_PULSE,	NO_PULSE,	NO_PULSE,	
BR10,		WX, WX,	NO_PULSE, NO_PULSE,	NO_PULSE, NO_PULSE,	NO_PULSE, NO_PULSE,	
BR11, STEP		WA,	NO_PULSE,	NO_PULSE,	NO_PULSE, NO_PULSE), // TP 9
STEP		WLP,	CTR,	NO_PULSE,	NO_PULSE), // TP 10
STEP		ST1,	WALP,	NO_PULSE,	NO_PULSE), // TP 10
);	1.0,	511,	*****	140_1 0101,	140_1 OLOL	7, 7, 11 11
J /						
subsequence SU	B MP3 = {					
STEP		WY,	WS,	CI,	NO_PULSE), // TP 1
STEP		TSGN,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 2
STEP	KLP,		NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 3
		NO_PULSE,	NO_I OLDE,			
STEP	(WG,	NO_PULSE, WZ,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 4
STEP ((WG, (RU,), // TP 4), // TP 5
	(WG, (RU, (RA,	WZ,	NO_PULSE,	NO_PULSE,	NO_PULSE	
STEP	(WG, (RU, (RA, NO_PULSE,	WZ, WY,	NO_PULSE, NO_PULSE,	NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE), // TP 5
STEP BROO,	(WG, (RU, (RA, NO_PULSE, NO_PULSE,	WZ, WY, NO_PULSE, NO_PULSE, WX,	NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE,	NO_PULSE, NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE,), // TP 5
STEP BR00, BR01, BR10, BR11,	(WG, (RU, (RA, NO_PULSE, NO_PULSE, RB, RB,	WZ, WY, NO_PULSE, NO_PULSE, WX, WX,	NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE,	NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE,), // TP 5 // TP 6
STEP (BR00, BR01, BR10,	(WG, (RU, (RA, NO_PULSE, NO_PULSE, RB, RB,	WZ, WY, NO_PULSE, NO_PULSE, WX,	NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE,	NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE NO_PULSE, NO_PULSE, NO_PULSE,), // TP 5
STEP BR00, BR01, BR10, BR11,	(WG, (RU, (RA, NO_PULSE, NO_PULSE, RB, RB, RB,	WZ, WY, NO_PULSE, NO_PULSE, WX, WX, RSC, WA,	NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE,	NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, TP,	NO_PULSE NO_PULSE NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE,), // TP 5 // TP 6
STEP BROO, BRO1, BR11, BR11, STEP STEP STEP	(WG, RU, RA, NO_PULSE, NO_PULSE, RB, RB, (RG, RLP, RB,	WZ, WY, NO_PULSE, NO_PULSE, WX, WX, RSC, WA, WSC,	NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, WB, GP, WG,	NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, TP, NO_PULSE,	NO_PULSE NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE NO_PULSE), // TP 5 // TP 6), // TP 7), // TP 8), // TP 9
STEP BROO, BRO1, BR10, BR11, STEP STEP STEP STEP STEP	(WG, RU, RA, NO_PULSE, NO_PULSE, RB, RB, (RG, RLP, RB, (RA,	WZ, WY, NO_PULSE, NO_PULSE, WX, WX, WX, RSC, WA, WSC, WLP,	NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, WB, GP, WG, NO_PULSE,	NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, VP, TP, NO_PULSE, NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 5 // TP 6), // TP 7), // TP 8), // TP 9), // TP 10
STEP BROO, BRO1, BR11, BR11, STEP STEP STEP	(WG, RU, RA, NO_PULSE, NO_PULSE, RB, RB, (RG, RLP, RB, (RA,	WZ, WY, NO_PULSE, NO_PULSE, WX, WX, RSC, WA, WSC,	NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, WB, GP, WG,	NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, TP, NO_PULSE,	NO_PULSE NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE NO_PULSE), // TP 5 // TP 6), // TP 7), // TP 8), // TP 9
STEP BROO, BRO1, BR10, BR11, STEP STEP STEP STEP STEP	(WG, RU, RA, NO_PULSE, NO_PULSE, RB, RB, (RG, RLP, RB, (RA,	WZ, WY, NO_PULSE, NO_PULSE, WX, WX, WX, RSC, WA, WSC, WLP,	NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, WB, GP, WG, NO_PULSE,	NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, VP, TP, NO_PULSE, NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE, NO_PULSE NO_PULSE NO_PULSE NO_PULSE NO_PULSE), // TP 5 // TP 6), // TP 7), // TP 8), // TP 9), // TP 10

```
};
subsequence SUB_DV0 = {
         STEP (
                  RB,
                                                                                                             ), // TP 1
                                    WS.
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE
                                                                        NO_PULSE,
                                                                                           NO_PULSE
                                                                                                             ), // TP 2
         STEP (
                  RA.
                                    WB.
                                                      TSGN,
         STEP (
                  RSC,
                                    WG,
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE
                                                                                                             ), // TP 3
                                                      NO_PULSE,
                                                                                           NO_PULSE,
         BROO.
                                    WA,
                                                                        NO_PULSE,
                                                                                                               // TP 4
                  RC.
                                                                        NO_PULSE,
         BR01.
                  RC.
                                    WA,
                                                      NO PULSE.
                                                                                           NO PULSE.
         BR10,
                  NO_PULSE,
                                    NO_PULSE,
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE,
         BR11,
                  NO_PULSE,
                                    NO_PULSE,
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE,
                                    WLP,
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE,
         BROO.
                                                                                                               // TP 5
                  R1.
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE,
         BR01,
                  R1,
                                    WIP.
         BR10,
                  R2,
                                    WLP,
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE,
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE,
         BR11,
                  R2.
                                    WLP.
         STEP (
                  RA.
                                    WQ,
                                                      NO PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE
                                                                                                             ), // TP 6
         STEP (
                                                                                                             ), // TP 7
                  RG.
                                    WB
                                                      TSGN
                                                                        WP
                                                                                           NO PULSE
         STEP (
                  RB.
                                    WA,
                                                      GP
                                                                        TP.
                                                                                           NO_PULSE
                                                                                                             ), // TP 8
         BR00,
                                    R2,
                                                      WB,
                                                                        NO_PULSE,
                                                                                           NO_PULSE,
                                                                                                               // TP 9
                  RLP,
                                                                        NO_PULSE,
         BR01,
                  RLP,
                                                      WB,
                                                                                           NO_PULSE,
                                    R2.
                                                      NO_PULSE,
                                                                                           NO_PULSE,
                                    NO_PULSE,
                  NO_PULSE,
                                                                        NO PULSE,
         BR10.
                                                                        NO_PULSE,
         BR11.
                  NO_PULSE,
                                    NO PULSE,
                                                      NO_PULSE,
                                                                                           NO PULSE,
         BR00,
                  RB.
                                    WLP,
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE,
                                                                                                               // TP 10
                                                      NO_PULSE,
         BR01,
                  RB,
                                    WLP,
                                                                        NO_PULSE,
                                                                                           NO_PULSE,
         BR10.
                  RC.
                                    WA.
                                                      NO PULSE,
                                                                        NO PULSE,
                                                                                           NO PULSE,
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE,
         BR11.
                  RC.
                                    WA.
         STEP (
                  R1,
                                    ST1,
                                                      WB.
                                                                        NO_PULSE,
                                                                                           NO_PULSE
                                                                                                             ), // TP 11
};
subsequence SUB_DV1 = {
                                                      NO_PULSE,
                                                                        NO_PULSE,
         STEP (
                  R22.
                                    WS.
                                                                                           NO_PULSE
                                                                                                             ), // TP 1
                                                                                                             ), // TP 2
         STEP (
                  RQ,
                                    WG,
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE
         STEP (
                  RG,
                                    WQ,
                                                      WY.
                                                                        RSB,
                                                                                           NO_PULSE
                                                                                                             ), // TP 3
                                                                                           NO_PULSE
                                                                                                             ), // TP 4
                                                      NO PULSE.
                                                                        NO_PULSE,
         STEP (
                                    WX.
                  RA.
                                                                        NO_PULSE,
         STEP (
                  RLP
                                    TSGN2,
                                                      NO_PULSE,
                                                                                           NO_PULSE
                                                                                                             ), // TP 5
         STEP_INACTIVE, // TP 6
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE
                                                                                                             ), // TP 7
         STEP (
                  RU.
                                    TSGN,
                                                      NO PULSE,
         BROO,
                  NO PULSE,
                                    NO PULSE,
                                                                        NO PULSE,
                                                                                           NO_PULSE,
                                                                                                               // TP 8
                                    NO_PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE,
                                                      NO_PULSE,
         BR01.
                  NO PULSE.
         BR10.
                  RII
                                    WQ.
                                                      NO PULSE.
                                                                        NO PULSE.
                                                                                           NO_PULSE,
         BR11,
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE,
                  RU,
                                    WQ,
         BR00,
                  RB,
                                    RSB,
                                                      WG,
                                                                        NO_PULSE,
                                                                                           NO_PULSE,
                                                                                                               // TP 9
                                                                        NO_PULSE,
                                                                                          NO_PULSE,
         BR01.
                  RB.
                                    RSB.
                                                      WG.
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE,
         BR10,
                  RB,
                                    WG,
         BR11,
                  RB,
                                    WG,
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE,
                                                                        NO_PULSE,
         STEP (
                                    WB,
                                                      TSGN,
                                                                                           NO_PULSE
                                                                                                             ), // TP 10
                  RG,
                                    NO PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE,
         BROO,
                  ST1.
                                                      NO PULSE,
                                                                                                               // TP 11
         BR01,
                                    NO_PULSE,
                                                                        NO_PULSE,
                                                      NO PULSE.
                                                                                           NO PULSE.
                  ST1.
         BR10,
                  RC,
                                    WA,
                                                      ST2,
                                                                        NO_PULSE,
                                                                                           NO_PULSE,
                                                                                           NO_PULSE,
                                                                        NO_PULSE,
         BR11,
                  RB,
                                    WA,
                                                      ST2,
}:
subsequence SUB_SU0 = {
         STEP (
                  RB.
                                    WS.
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE
                                                                                                             ), // TP 1
         STEP (
                  RA,
                                    WY.
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE
                                                                                                             ), // TP 2
                                    NO_PULSE,
                                                                                                             ), // TP 3
                                                      NO PULSE.
                                                                        NO PULSE.
                                                                                          NO PULSE
         STEP (
                  WG
         STEP_INACTIVE, // TP 4
         STEP_INACTIVE, // TP 5
         STEP_INACTIVE, // TP 6
                                                      WB,
                                                                        WP,
                                                                                           NO PULSE
         STEP (
                  RG.
                                    RSC.
                                                                                                             ), // TP 7
                                                                                                             ), // TP 8
         STEP (
                                                                                           NO PULSE
                  RC.
                                    WX.
                                                      GP.
                                                                        TP.
         STEP (
                  RB.
                                    WSC.
                                                      WG,
                                                                        NO_PULSE,
                                                                                           NO_PULSE
                                                                                                             ), // TP 9
         STEP_INACTIVE, // TP 10
         STEP ( RU,
                                                      WOVC,
                                                                        ST2,
                                                                                           WOVI
                                                                                                             ), // TP 11
                                    WA.
}:
subsequence SUB_RUPT1 = {
         STEP ( R24,
                                    WY.
                                                      WS.
                                                                        CI.
                                                                                           NO_PULSE
                                                                                                             ), // TP 1
         STEP_INACTIVE, // TP 2
                                    NO PULSE.
                                                      NO PULSE.
                                                                        NO PULSE.
         STEP ( WG,
                                                                                          NO PULSE
                                                                                                             ). // TP 3
         STEP_INACTIVE, // TP 4
         STEP_INACTIVE, // TP 5
         STEP_INACTIVE, // TP 6
         STEP_INACTIVE, // TP 7
         STEP_INACTIVE, // TP 8
         STEP (
                 RZ,
                                    WG,
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                           NO_PULSE
                                                                                                             ), // TP 9
         STEP (
                                    WZ,
                                                      NO_PULSE,
                                                                        NO_PULSE,
                                                                                          NO_PULSE
                                                                                                             ), // TP 10
                  RU,
```

};	STEP (ST1,	ST2,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 11
subsequence SUB_RUPT3 = {						
subsequ	STEP (RZ, STEP (RRPA,	WS, WZ,	NO_PULSE, NO_PULSE,	NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE), // TP 1), // TP 2
	STEP (RZ, STEP_INACTIVE, // TP 4 STEP_INACTIVE, // TP 5 STEP_INACTIVE, // TP 6 STEP_INACTIVE, // TP 7 STEP_INACTIVE, // TP 8	KRPT,	WG,	NO_PULSE,	NO_PULSE), // TP 3
	STEP (RB, STEP_INACTIVE, // TP 10	WSC,	WG,	NO_PULSE,	NO_PULSE), // TP 9
} ;	STEP (ST2,	NO_PULSE,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 11
subsequence SUB_STD2 = {						
subsequ	STEP (RZ, STEP_INACTIVE, // TP 2	WY,	WS,	CI,	NO_PULSE), // TP 1
	STEP (WG, STEP (RU, STEP_INACTIVE, // TP 5 STEP_INACTIVE, // TP 6	NO_PULSE, WZ,	NO_PULSE, NO_PULSE,	NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE), // TP 3), // TP
	STEP (RG,	RSC,	WB,	WP,	NO_PULSE), // TP 7
	STEP (GP, STEP (RB, STEP_INACTIVE, // TP 10	TP, WSC,	NO_PULSE, WG,	NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE), // TP 8), // TP 9
};	STEP (NISQ,	NO_PULSE,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 11
subsequ	uence SUB_PINC = { STEP (WS, STEP_INACTIVE, // TP 2	RSCT,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 1
	STEP (WG,	NO_PULSE,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 3
	STEP (R1, STEP_INACTIVE, // TP 5	WY,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 4
	STEP (RG, STEP (TP,	WX, NO_PULSE,	WP, NO_PULSE,	NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE), // TP 6), // TP 7
	STEP (WP,	NO_PULSE,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 8
	STEP (RU,	CLG,	WPx,	NO_PULSE,	NO_PULSE), // TP 9
	STEP(RU, STEP_INACTIVE, // TP 11	WGx,	WOVR,	NO_PULSE,	NO_PULSE), // TP 10
<pre>};</pre>						
subsequ	uence SUB_MINC = {					
	STEP (WS, STEP_INACTIVE, // TP 2	RSCT,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 1
	STEP_INACTIVE, // TP 2 STEP (WG,	NO_PULSE,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 3
	STEP (WY, STEP_INACTIVE, // TP 5	R1C,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 4
	STEP (RG,	WX,	WP,	NO_PULSE,	NO_PULSE), // TP 6
	STEP (TP, STEP (WP,	NO_PULSE, NO_PULSE,	NO_PULSE, NO_PULSE,	NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE), // TP 7), // TP 8
	STEP (RU,	CLG,	WPx,	NO_PULSE,	NO_PULSE), // TP 9
	STEP (RU, STEP_INACTIVE, // TP 11	WGx,	WOVR,	NO_PULSE,	NO_PULSE), // TP 10
STEP_INACTIVE, // TP TT };						
subsequence SUB_SHINC = {						
·	STEP (WS, STEP_INACTIVE, // TP 2	RSCT,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 1
	STEP (WG, STEP (WY,	NO_PULSE, NO_PULSE,	NO_PULSE, NO_PULSE,	NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE), // TP 3), // TP 4
	STEP_INACTIVE, // TP 5 STEP (RG,	WYx,	WX,	WP,	NO_PULSE), // TP 6
	STEP (TP,	NO_PULSE,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 7
	STEP (WP,	NO_PULSE,	NO_PULSE,	NO_PULSE,	NO_PULSE), // TP 8
	STEP (RU, STEP (RU,	CLG, WGx,	WPx, WOVR,	NO_PULSE, NO_PULSE,	NO_PULSE NO_PULSE), // TP 9), // TP 10
	STEP_INACTIVE, // TP 11	VV O A,	VV U V IV,	NO_1 0LJL,	140_1 0L3L), // IF IO
3:						
<pre>char* subseqString[] = {</pre>						
{ "TCO",						

```
"CCSO",
         "CCS1",
"NDX0",
         "NDX1",
         "RSM3",
         "XCHO",
         "CSO",
         "TSO",
         "ADO",
         "MASKO",
         "MPO",
         "MP1",
         "MP3",
         "DV0",
         "DV1",
         "SUO",
         "RUPT1",
         "RUPT3",
         "STD2",
         "PINCO",
         "MINCO",
         "SHINCO",
         "NO_SEQ"
};
enum subseq {
         TCO
                   =0,
         CCSO
                   = 1,
         CCS1
                   = 2,
         NDXO
                   = 3,
         NDX1
                   = 4,
         RSM3
                   = 5,
         хсно
                   = 6.
         CS0
                   =7,
         TS0
                   = 8,
         AD0
                   = 9,
         MASKO
                  = 10,
         MPO
                   = 11,
         MP1
                   = 12,
         MP3
                   = 13,
         DVO
                   = 14,
         DV1
                   = 15,
         SU0
                   = 16,
         RUPT1
                   = 17,
         RUPT3
                   = 18,
         STD2
                   = 19.
         PINCO
                   =20,
         MINCO
                   = 21,
         SHINCO = 22,
         NO_SEQ =23
};
enum tpType {
         STBY
                             =0,
         PWRON
                             = 1 ,
         TP1
                             = 2,
                                      // TIME PULSE 1: start of memory cycle time (MCT)
         TP2
                            = 3,
         TP3
                            = 4,
         TP4
                             = 5,
         TP5
                            = 6,
                                      // EMEM is available in G register by TP6
         TP6
                            = 7,
         TP7
                                      // FMEM is available in G register by TP7
                            = 8.
         TP8
                            =9,
         TP9
                            = 10,
         TP10
                            = 11,
                                      // G register written to memory beginning at TP10
                            = 12,
         TP11
                                      // TIME PULSE 11: end of memory cycle time (MCT)
         TP12
                             = 13,
                                      // select new subsequence/select new instruction
         SRLSE
                             = 14,
                                      // step switch release
         WAIT
                             = 15
};
subseq instructionSubsequenceDecoder(
         int SB2_field, int SB1_field, int SQ_field, int STB_field)
```

```
{
                  // Combinational logic decodes instruction and the stage count
                  // to get the instruction subsequence.
         static subseq decode[16][4] = {
                            TCO,
                                              RUPT1,
                                                                 STD2,
                                                                                    RUPT3 }, // 00
                  {
                            CCSO,
                                              CCS1,
                                                                 NO_SEQ,
                                                                                    NO_SEQ }, // 01
                                                                 NO_SEQ,
                                                                                             }, // 02
                            NDXO,
                                              NDX1,
                                                                                    RSM3
                  {
                            XCHO,
                                              NO_SEQ,
                                                                 STD2,
                                                                                    NO_SEQ }, // 03
                            NO_SEQ,
                                              NO_SEQ,
                                                                 NO_SEQ,
                                                                                    NO_SEQ }, // 04
                                              NO_SEQ,
                                                                 NO_SEQ,
                            NO_SEQ,
                                                                                    NO_SEQ }, // 05
                                              NO_SEQ,
                                                                 NO_SEQ,
                            NO_SEQ,
                                                                                    NO_SEQ }, // 06
                            NO_SEQ,
                                              NO_SEQ,
                                                                 NO_SEQ,
                                                                                    NO_SEQ }, // 07
                            NO_SEQ,
                                              NO_SEQ,
                                                                 NO_SEQ,
                                                                                    NO_SEQ }, // 10
                                              MP1,
                            мро,
                                                                 NO_SEQ,
                                                                                             }, // 11
                                                                                    MP3
                                                                                    NO_SEQ }, // 12
                            DVO.
                                              DV1,
                                                                 STD2,
                            SUO,
                                              NO_SEQ,
                                                                 STD2,
                                                                                    NO_SEQ }, // 13
                  {
                            CSO,
                                              NO_SEQ,
                                                                 STD2,
                                                                                    NO_SEQ }, // 14
                                              NO_SEQ,
                            TSO,
                                                                 STD2,
                                                                                    NO_SEQ }, // 15
                            ADO,
                                              NO_SEQ,
                                                                 STD2,
                                                                                    NO_SEQ }, // 16
                            MASKO,
                                                                 STD2,
                                                                                    NO_SEQ } // 17
                                              NO_SEQ,
                  {
         };
         if(SB2_field == 0 && SB1_field == 1)
                  return PINCO;
         else if(SB2_field == 1 && SB1_field == 0)
                  return MINCO;
         else
                  return decode[SQ_field][STB_field];
}
void clearControlPulses()
{
         for (unsigned i=0; i<MAXPULSES; i++)
                  glbl_cp[i] = NO_PULSE;
}
void assert(cpType* pulse)
         int i=0;
         for (unsigned i=0; i<MAXPULSES && j<MAX_IPULSES && pulse[j] != NO_PULSE; i++)
         {
                  if(glbl_cp[i] == NO_PULSE)
                  {
                            glbl_cp[i] = pulse[j];
                            j + +;
                  }
         }
}
void assert(cpType pulse)
         for(unsigned i=0; i<MAXPULSES; i++)</pre>
         {
                  if(glbl_cp[i] == NO_PULSE)
                  {
                            glbl_cp[i] = pulse;
                            break;
                  }
         }
}
void get_CPM_A (int CPM_A_address)
                  // EPROM address bits (bit 1 is LSB)
                                     register BR2
                  // 1:
                  // 2:
                                     register BR1
                  // 3-6:
                           register SG (4)
                  // 7,8:
                           register STB (2)
                  // 9-12: register SQ (4)
                  // 13:
                                     STB_01
                  //
                            14:
                                              STB_02
```

```
// EPROM emulator
                             int SB2_field = (CPM_A_address >> 13) & 0x1;
                             int SB1_field = (CPM_A_address >> 12) & 0x1;
                             int SQ_field = (CPM_A_address >> 8) & 0xf;
                            int STB_field = (CPM_A_address >> 6) & 0x3;
                            int SG_field = (CPM_A_address >> 2) & 0xf;
                            int BR1_field = (CPM_A_address >> 1) & 0x1;
                             int BR2_field = (CPM_A_address ) & 0x1;
                                                         // Decode the current instruction subsequence (glbl_subseq).
                             subseq glbl_subseq = instructionSubsequenceDecoder(SB2_field, SB1_field, SQ_field, STB_field);
                             static subsequence* subsp[] =
                             &SUB_TCO,
                                                                                      &SUB_CCSO,
                                                                                                                                                 &SUB_CCS1,
                                                                                                                                                                                                          &SUB_NDXO,
                                                                                                                                                                                                                                                                &SUB_NDX1,
                                                                                                                                                                                                                                                                                                                               &SUB_RSM3,
                             &SUB_XCHO,
                                                                                      &SUB_CSO,
                                                                                                                                                 &SUB_TSO,
                                                                                                                                                                                                          &SUB_ADO,
                                                                                                                                                                                                                                                                    &SUB_MASKO,
                                                                                                                                                                                                                                                                                                                                &SUB_MPO,
                             &SUB_MP1,
                                                                                     &SUB_MP3,
                                                                                                                                                &SUB_DVO,
                                                                                                                                                                                                          &SUB_DV1,
                                                                                                                                                                                                                                                                  &SUB_SUO,
                                                                                                                                                                                                                                                                                                                                &SUB_RUPT1,
                             &SUB_RUPT3,
                                                                                   &SUB_STD2,
                                                                                                                                              &SUB_PINC,
                                                                                                                                                                                                         &SUB_MINC,
                                                                                                                                                                                                                                                                 &SUB_SHINC,0
                             };
                                                         // Clear old control pulses.
                            clearControlPulses():
                                                         // Get new control pulses for the current instruction subsequence.
                             if(glbl_subseq != NO_SEQ && // THIS TESTS OUT OK
                                                         SG_field >= TP1 &&
                                                         SG_field <= TP11)
                             {
                                                         subsequence* subseqP = subsp[glbl_subseq];
                                                         if(subseqP)
                                                         {
                                                                                              // index t-2 because TP1=2, but array is indexed from zero
                                                                                       controlStep& csref = subseqP->tp[SG_field-2];
                                                                                       brType b = (brType) ((BR1_field << 1) | BR2_field);</pre>
                                                                                       controlSubStep& cssref = csref.substep[b];
                                                                                       if(cssref.br == NO_BR)
                                                                                                                   cssref = csref.substep[0];
                                                                                      cpType* p = cssref.pulse;
                                                                                       assert(p);
                                                         }
                            }
                                                         // Implement these here, because the instruction sequence decoder % \left( 1\right) =\left( 1\right) \left( 1\right) \left
                                                         // function is buried in the CPM-A ROM and so, identification of
                                                         // the sequences is not available outside CPM-A. CPM-C needs info
                                                         // on these 3 sequences.
                             switch(glbl_subseq)
                             case DV1:
                                                                                    assert(SDV1); break;
                            case MP1:
                                                                                     assert(SMP1); break;
                            case RSM3:
                                                                                     assert(SRSM3); break;
                             //***************
char* cpTypeString[] =
                             "NO_PULSE",
                             // OUTPUTS FROM SUBSYSTEM A
                             "CI", "CLG", "CLCTR", "CTR", "GP", "KRPT", "NISQ", "RA", "RB",
                             "RB14", "RC", "RG", "RLP", "RP2", "RQ", "RRPA", "RSB", "RSCT",
                            "RU", "RZ", "R1", "R1C", "R2", "R22", "R24", "ST1", "ST2", "TMZ", "TOV", "TP", "TRSM", "TSGN", "TSGN2", "WA", "WALP", "WB", "WGx",
                             "WLP", "WOVC", "WOVI", "WOVR", "WP", "WPx", "WP2", "WQ", "WS",
                             "WX", "WY", "WYx", "WZ",
                             // OUTPUTS FROM SUBSYSTEM A; USED AS INPUTS TO SUBSYSTEM B ONLY;
                             // NOT USED OUTSIDE CPM
```

}

//***************

```
"RSC", "WSC", "WG",
         // OUTPUTS FROM SUBSYSTEM A; USED AS INPUTS TO SUBSYSTEM C ONLY;
         // NOT USED OUTSIDE CPM
         "SDV1", "SMP1", "SRSM3",
         // EXTERNAL OUTPUTS FROM SUBSYSTEM B
         //
         "RAO", "RA1", "RA2", "RA3", "RA4", "RA5", "RA6", "RA7", "RA10", "RA11",
         "RA12", "RA13", "RA14", "RBK", "WA0", "WA1", "WA2", "WA3", "WA10",
         "WA11", "WA12", "WA13", "WA14", "WBK", "WGn", "W20", "W21", "W22", "W23",
         // THESE ARE THE LEFTOVERS -- THEY'RE PROBABLY USED IN SUBSYSTEM C
         "GENRST", "CLINH", "CLINH1", "CLSTA", "CLSTB", "CLISQ", "CLRP", "INH",
         "RPT", "SBWG", "SETSTB", "WE", "WPCTR", "WSQ", "WSTB", "R2000"
};
         // for debug purposes only
char* printControlPulses()
{
         static char buf[MAXPULSES*6];
         strcpy(buf,"");
         for(unsigned i=0; i<MAXPULSES && glbl_cp[i] != NO_PULSE; i++)
         {
                   strcat(buf, cpTypeString[glbl_cp[i]]);
                   strcat(buf, " ");
         //if(strcmp(buf,"") == 0) strcat(buf,"NONE");
         return buf:
}
         // return the EPROM word corresponding to the pulses
         // in albl cp.
unsigned writeEPROM (int lowBit)
         unsigned EPROMword = 0x00; // no pulses; default
         for(unsigned i=0; i<MAXPULSES && glbl_cp[i] != NO_PULSE; i++)
         {
                   int pulse = glbl_cp[i] - lowBit;
                   if(pulse < 0 | | pulse > 7)
                            continue; // pulse is not in this EPROM
                   EPROMword | = 0x01 <  pulse;
         printf("%02X\n",EPROMword);
         //return EPROMword;
         // The CPM-A control signals are negative logic, so we need to
         // bit-flip the word. No signal is a 1, and an asserted signal is
         // a 0:
         return ((~EPROMword) & 0xff);
}
const unsigned agcMemSize = 0x3fff+1; // # of cells in a 16-bit address range
void writeEPROM(FILE * fpObj, int lowBit)
                   // Write an EPROM file using Motorola's S-Record format (s2f).
                   // Some parameters that control file format. You can change maxBytes
                   // without affecting anything else. 'addressBytes' is determined by
                   // the choosen S-Record format.
         const int maxBytes = 20; // set limit on record length
         const int addressBytes = 3; // 24-bit address range
         const int sumCheckBytes = 1;
         const int maxdata = maxBytes - addressBytes - sumCheckBytes;
         int i=0; // current EPROM address
         int sumCheck = 0;
         while (i < agcMemSize)
         {
```

```
// get dataByteCount; the number of bytes of EPROM data per record.
                    int dataByteCount = maxdata;
                    if(i + dataByteCount >= agcMemSize)
                              dataByteCount = agcMemSize - i;
                    }
                              // write record header (*** 3 byte address assumed ***)
                    int totalByteCount = dataByteCount + addressBytes + sumCheckBytes;
                    fprintf(fpObj, "S2%02X%06X", totalByteCount, i);
                    sumCheck = totalByteCount & 0xff;
                    sumCheck = (sumCheck + ((i & 0xff0000) >> 16)) % 256;
                    sumCheck = (sumCheck + ((i & 0x00ff00) >> 8)) % 256;
                    sumCheck = (sumCheck + ((i \& 0x0000ff))) % 256;
                              // write data bytes into record
                    for (int j=0; j<dataByteCount; j++)
                              get_CPM_A(i+j); // get CPM-A pulses for address i+j
                              int data = writeEPROM(lowBit); // comvert pulses to EPROM format
                              fprintf(fpObj, "%02X", data);
                              sumCheck = (sumCheck + data) % 256;
                              // terminate record by adding the checksum and a newline.
                    fprintf(fpObj, "%02X\n", (~sumCheck) & 0xff);
                    i += dataByteCount;
          }
                    // write an end-of-file record here
          i = 0; // use address zero for last record
          sumCheck = 0x04; // byte count
          sumCheck = (sumCheck + ((i & 0xff0000) >> 16)) % 256;
          sumCheck = (sumCheck + ((i & 0x00ff00) >> 8)) % 256;
sumCheck = (sumCheck + ((i & 0x0000ff) )) % 256;
          fprintf(fpObj, "S804%06X%02X", i, (~sumCheck) & 0xff);
}
void main(int argc, char* argv[])
         FILE* fpObj = 0;
          fpObj = fopen("CPM1_8.hex", "w");
         if(!fpObj)
          {
                    perror("fopen failed for object file");
                    exit(-1):
          writeEPROM(fpObj, 1); // pulses 1-8
          fclose(fpObj);
          fpObj = fopen("CPM9_16.hex", "w");
          if(!fpObj)
          {
                    perror("fopen failed for object file");
                    exit(-1);
          writeEPROM(fpObj, 9); // pulses 9-16
          fclose(fpObj);
          fpObj = fopen("CPM17_24.hex", "w");
          if(!fpObj)
          {
                    perror("fopen failed for object file");
          writeEPROM(fpObj, 17); // pulses 17-24
          fclose(fpObj);
          fpObj = fopen("CPM25_32.hex", "w");
```

```
if(!fpObj)
{
           perror("fopen failed for object file");
           exit(-1);
writeEPROM(fpObj, 25); // pulses 25-32
fclose(fpObj);
fpObj = fopen("CPM33_40.hex", "w");
if(!fpObj)
{
           perror("fopen failed for object file");
}
writeEPROM(fpObj, 33); // pulses 33-40
fclose(fpObj);
fpObj = fopen("CPM41_48.hex", "w");
if(!fpObj)
{
           perror("fopen failed for object file");
exit(-1);
}
writeEPROM(fpObj, 41); // pulses 41-48
fclose(fpObj);
fpObj = fopen("CPM49_56.hex", "w");
if(!fpObj)
{
          perror("fopen failed for object file");
exit(-1);
writeEPROM(fpObj, 49); // pulses 49-56
fclose(fpObj);
```

}