Initializing the libs and data

In [4]:

```
import pandas as pd #for data frame operations
import numpy as np #for mathematical operations
import matplotlib.pyplot as plt #for data visualization
import seaborn as sns #for data visualization
```

In [5]:

```
import warnings#to remove error messages
warnings.filterwarnings('ignore')
```

In [6]:

```
df = pd.read_csv(r"C:\Users\Aditya Singh\Downloads\data.csv")
#importing the csv file
```

Knowing the data

In [5]:

```
1 df.head() #top 5 rows
```

Out[5]:

texture_worst	perimeter_worst	area_worst	smoothness_worst	compactness_worst	concavity_wor
17.33	184.60	2019.0	0.1622	0.6656	0.71
23.41	158.80	1956.0	0.1238	0.1866	0.24
25.53	152.50	1709.0	0.1444	0.4245	0.45
26.50	98.87	567.7	0.2098	0.8663	0.68
16.67	152.20	1575.0	0.1374	0.2050	0.40

In [6]:

```
1 df.tail()#last 5 columns
```

Out[6]:

	id	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_i
564	926424	М	21.56	22.39	142.00	1479.0	0.
565	926682	М	20.13	28.25	131.20	1261.0	0.0
566	926954	М	16.60	28.08	108.30	858.1	0.0
567	927241	М	20.60	29.33	140.10	1265.0	0.
568	92751	В	7.76	24.54	47.92	181.0	0.0

5 rows × 33 columns

In [8]:

1 df.shape#no. of rows and col

Out[8]:

(569, 33)

In [12]:

df.describe().T#for diff stats of data and T for transpose

3 #for the mean , std etc column e get data as e+ so need to standardize it

area_se	569.0	4.033708e+01	4.549101e+01	6.802000	17.850000	24.530000	4.51 ^
smoothness_se	569.0	7.040979e-03	3.002518e-03	0.001713	0.005169	0.006380	8.14
compactness_se	569.0	2.547814e-02	1.790818e-02	0.002252	0.013080	0.020450	3.24
concavity_se	569.0	3.189372e-02	3.018606e-02	0.000000	0.015090	0.025890	4.20
concave points_se	569.0	1.179614e-02	6.170285e-03	0.000000	0.007638	0.010930	1.4
symmetry_se	569.0	2.054230e-02	8.266372e-03	0.007882	0.015160	0.018730	2.34
fractal_dimension_se	569.0	3.794904e-03	2.646071e-03	0.000895	0.002248	0.003187	4.5
radius_worst	569.0	1.626919e+01	4.833242e+00	7.930000	13.010000	14.970000	1.87
texture_worst	569.0	2.567722e+01	6.146258e+00	12.020000	21.080000	25.410000	2.97
perimeter_worst	569.0	1.072612e+02	3.360254e+01	50.410000	84.110000	97.660000	1.25
area_worst	569.0	8.805831e+02	5.693570e+02	185.200000	515.300000	686.500000	1.08
smoothness_worst	569.0	1.323686e-01	2.283243e-02	0.071170	0.116600	0.131300	1.4(
							•

```
In [7]:
```

```
1 df.diagnosis.unique()#finds the no. of types of a value
```

Out[7]:

```
array(['M', 'B'], dtype=object)
```

In [9]:

```
df['diagnosis'].value_counts()#gives the count of values
```

Out[9]:

B 357

M 212

Name: diagnosis, dtype: int64

In [10]:

```
1 sns.countplot(df['diagnosis'],palette='husl')
```

Out[10]:

<AxesSubplot:xlabel='diagnosis', ylabel='count'>

Cleaning the data

In [11]:

```
df.drop('id',axis=1,inplace=True)#dropped the insignifacnt column which are not needed
df.drop('Unnamed: 32',axis=1,inplace=True)
```

In [12]:

```
1 df.head()
```

Out[12]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	com
0	М	17.99	10.38	122.80	1001.0	0.11840	
1	М	20.57	17.77	132.90	1326.0	0.08474	
2	М	19.69	21.25	130.00	1203.0	0.10960	
3	M	11.42	20.38	77.58	386.1	0.14250	
4	М	20.29	14.34	135.10	1297.0	0.10030	

5 rows × 31 columns

In [14]:

```
#as we cant have textual data so we will map it to numeric as we have two values and bo
df['diagnosis']=df['diagnosis'].map({'M':1,'B':0})

df.head()
```

Out[14]:

	diagnosis	radius_mean	texture_mean	perimeter_mean	area_mean	smoothness_mean	com
0	1	17.99	10.38	122.80	1001.0	0.11840	
1	1	20.57	17.77	132.90	1326.0	0.08474	
2	1	19.69	21.25	130.00	1203.0	0.10960	
3	1	11.42	20.38	77.58	386.1	0.14250	
4	1	20.29	14.34	135.10	1297.0	0.10030	

5 rows × 31 columns

In [20]:

```
#now we check if any cell is empty/NULL
 2
 3 df.isnull().sum()
fractal_dimension_mean
                            0
radius_se
                            0
texture_se
                            0
perimeter_se
                            0
area_se
                            0
{\tt smoothness\_se}
                            0
compactness_se
                            0
concavity_se
                            0
concave points_se
                            0
symmetry_se
                            0
fractal_dimension_se
                            0
radius_worst
                            0
texture_worst
                            0
perimeter_worst
                            0
area_worst
                            0
smoothness_worst
                            0
compactness_worst
                            0
concavity_worst
                            0
concave points_worst
                            0
cummatau uaact
```

In [19]:

```
#def diagnosis_value(diagnosis):
2
        if diagnosis == 'M':
 3
            return 1
4
   #
       else:
5
            return 0
 6
 7
   #df['diagnosis'] = df['diagnosis'].apply(diagnosis_value)
8
9
10
```

In [21]:

- 1 #knowing the correlation
- 2 df.corr()

Out[21]:

vorst	texture_worst	perimeter_worst	area_worst	smoothness_worst	compactness_worst	concav
'6454	0.456903	0.782914	0.733825	0.421465	0.590998	
9539	0.297008	0.965137	0.941082	0.119616	0.413463	
52573	0.912045	0.358040	0.343546	0.077503	0.277830	
9476	0.303038	0.970387	0.941550	0.150549	0.455774	
32746	0.287489	0.959120	0.959213	0.123523	0.390410	
3120	0.036072	0.238853	0.206718	0.805324	0.472468	
35315	0.248133	0.590210	0.509604	0.565541	0.865809	
18236	0.299879	0.729565	0.675987	0.448822	0.754968	
30318	0.292752	0.855923	0.809630	0.452753	0.667454	
15728	0.090651	0.219169	0.177193	0.426675	0.473200	
53691	-0.051269	-0.205151	-0.231854	0.504942	0.458798	
5065	0.194799	0.719684	0.751548	0.141919	0.287103	
11690	0.409003	-0.102242	-0.083195	-0.073658	-0.092439	
17201	0.200371	0.721031	0.730713	0.130054	0.341919	
57373	0.196497	0.761213	0.811408	0.125389	0.283257	
30691	-0.074743	-0.217304	-0.182195	0.314457	-0.055558	
)4607	0.143003	0.260516	0.199371	0.227394	0.678780	
36904	0.100241	0.226680	0.188353	0.168481	0.484858	
58127	0.086741	0.394999	0.342271	0.215351	0.452888	
!8121	-0.077473	-0.103753	-0.110343	-0.012662	0.060255	
17488	-0.003195	-0.001000	-0.022736	0.170568	0.390159	
)0000	0.359921	0.993708	0.984015	0.216574	0.475820	
59921	1.000000	0.365098	0.345842	0.225429	0.360832	
13708	0.365098	1.000000	0.977578	0.236775	0.529408	
34015	0.345842	0.977578	1.000000	0.209145	0.438296	
6574	0.225429	0.236775	0.209145	1.000000	0.568187	
'5820	0.360832	0.529408	0.438296	0.568187	1.000000	
'3975	0.368366	0.618344	0.543331	0.518523	0.892261	
17424	0.359755	0.816322	0.747419	0.547691	0.801080	
3529	0.233027	0.269493	0.209146	0.493838	0.614441	
13492	0.219122	0.138957	0.079647	0.617624	0.810455	

In [22]:

```
#plotting the histo M,B

plt.hist(df['diagnosis'],color='g')
plt.title('Plot_Diagnosis (M=1,B=0)')
plt.show()
```


In [25]:

```
#plotting corr heatmap

plt.figure(figsize=(20,20))
sns.heatmap(df.corr(),annot=True)
```

Out[25]:

<AxesSubplot:>

In [29]:

```
# generate a scatter plot matrix with the "mean" columns
 2
    cols = ['diagnosis',
 3
             'radius_mean',
            'texture_mean',
 4
 5
            'perimeter_mean',
             'area_mean',
 6
 7
            'smoothness_mean',
 8
            'compactness_mean',
 9
            'concavity_mean',
            'concave points_mean',
10
            'symmetry_mean',
11
12
            'fractal_dimension_mean']
13
    sns.pairplot(data=df[cols], hue='diagnosis', palette='rocket')
```

Out[29]:

<seaborn.axisgrid.PairGrid at 0x25fa3618160>

almost perfectly linear patterns between the radius, perimeter and area attributes are hinting at the presence of multicollinearity between these variables. (they are highly linearly related) Another set of variables that possibly

imply multicollinearity are the concavity, concave points and compactness.

In [28]:

```
# Generate and visualize the correlation matrix
   corr = df.corr().round(2)
 2
 3
 4
   # Mask for the upper triangle
 5
   mask = np.zeros_like(corr, dtype=np.bool)
   mask[np.triu_indices_from(mask)] = True
 7
 8
   # Set figure size
9
   f, ax = plt.subplots(figsize=(20, 20))
10
   # Define custom colormap
11
12
   cmap = sns.diverging_palette(220, 10, as_cmap=True)
13
14
   # Draw the heatmap
   sns.heatmap(corr, mask=mask, cmap=cmap, vmin=-1, vmax=1, center=0,
15
16
                square=True, linewidths=.5, cbar_kws={"shrink": .5}, annot=True)
17
18
   plt.tight_layout()
```


also there is multicollinearity between the attributes compactness, concavity, and concave points. So we can choose just ONE out of these, I am going for Compactness.

In [30]:

```
# first, drop all "worst" columns
 2
   cols = ['radius_worst',
 3
            'texture_worst',
 4
            'perimeter worst',
 5
            'area_worst',
 6
            'smoothness_worst',
 7
            'compactness_worst',
 8
            'concavity_worst',
 9
            'concave points_worst',
10
            'symmetry worst',
            'fractal_dimension_worst']
11
   df = df.drop(cols, axis=1)
12
13
   # then, drop all columns related to the "perimeter" and "area" attributes
14
15
   cols = ['perimeter_mean',
16
             'perimeter_se',
            'area_mean',
17
            'area_se']
18
   df = df.drop(cols, axis=1)
19
20
   # lastly, drop all columns related to the "concavity" and "concave points" attributes
21
22
   cols = ['concavity_mean',
            'concavity_se',
23
24
            'concave points_mean',
            'concave points se']
25
26 df = df.drop(cols, axis=1)
27
28 # verify remaining columns
   df.columns
```

Out[30]:

In [31]:

Building Model

```
In [32]:

1  X=df.drop(['diagnosis'],axis=1)
2  y=df['diagnosis']
```

```
In [33]:
```

```
from sklearn.model_selection import train_test_split
```

In [34]:

```
1 X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=40)
```

Feature Scaling

```
In [35]:
```

```
from sklearn.preprocessing import StandardScaler
ss=StandardScaler()

X_train=ss.fit_transform(X_train)
X_test=ss.fit_transform(X_test)
```

Models and finding out the Best one

#Logistic Regression

```
In [36]:
```

```
from sklearn.linear_model import LogisticRegression
lr=LogisticRegression()

model1=lr.fit(X_train,y_train)
prediction1=model1.predict(X_test)
```

In [37]:

```
from sklearn.metrics import confusion_matrix

cm=confusion_matrix(y_test,prediction1)
cm
```

Out[37]:

```
array([[110, 5],
[ 2, 54]], dtype=int64)
```

In [38]:

```
sns.heatmap(cm,annot=True)
plt.savefig('h.png')
```


In [39]:

from sklearn.metrics import accuracy_score

In [40]:

1 accuracy_score(y_test,prediction1)

Out[40]:

0.9590643274853801

Decision Tree

In [41]:

```
from sklearn.tree import DecisionTreeClassifier

dtc=DecisionTreeClassifier()
model2=dtc.fit(X_train,y_train)
prediction2=model2.predict(X_test)
cm2= confusion_matrix(y_test,prediction2)
```

In [42]:

1 accuracy_score(y_test,prediction2)

Out[42]:

0.9122807017543859

Random Forest

```
In [43]:
```

```
from sklearn.ensemble import RandomForestClassifier

rfc=RandomForestClassifier()
model3 = rfc.fit(X_train, y_train)
prediction3 = model3.predict(X_test)
confusion_matrix(y_test, prediction3)
```

Out[43]:

```
array([[109, 6], [ 5, 51]], dtype=int64)
```

In [44]:

```
1 accuracy_score(y_test, prediction3)
```

Out[44]:

0.935672514619883

K Nearest Neighbor (K NN)

Support Vector Machine

Naive Bayes

In [45]:

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.naive_bayes import GaussianNB
```

In [47]:

```
1 clf = GaussianNB()
2 clf.fit(X_train,y_train)
3 pred = clf.predict(X_test)
4 accuracy_score(pred,y_test)
5
```

Out[47]:

0.9298245614035088

In [48]:

```
clf = SVC(kernel="linear")
clf.fit(X_train,y_train)
pred1 = clf.predict(X_test)
accuracy_score(y_test,pred1)
```

Out[48]:

0.9590643274853801

In [52]:

```
clf_knn = KNeighborsClassifier(n_neighbors=4)
clf_knn.fit(X_train,y_train)
pred11 = clf_knn.predict(X_test)
accuracy_score(y_test,pred11)
```

Out[52]:

0.9590643274853801

We get the highest accuracy of approx 96% from SVM and KNN

In []:

1