Aggregate Effects of Mergers

Iván Rendo

Context

- At the macro level, M&A activity is good:
 - ► Up to 14% of GDP in efficiency gains (David, 2021)

Context

- At the macro level, M&A activity is good:
 - ► Up to 14% of GDP in efficiency gains (David, 2021)

- At the micro level, some mergers might be bad:
 - Anticompetitive Effects > Efficiency Gains

Context

- At the macro level, M&A activity is good:
 - ► Up to 14% of GDP in efficiency gains (David, 2021)

- At the micro level, some mergers might be bad:
 - Anticompetitive Effects > Efficiency Gains

Broad Question:

What are the macro effects of individual mergers?

- Asked T. Vergé. "What are you (ADLC) most interested in?"
 - → "How do effects of a merger in one sector propagate to the rest of the economy?"

- Asked T. Vergé. "What are you (ADLC) most interested in?"
 - → "How do effects of a merger in one sector propagate to the rest of the economy?"

- More specifically, today:
 - → Should the efficiency gains required to approve a merger depend on the centrality of the sector?

- Asked T. Vergé. "What are you (ADLC) most interested in?"
 - → "How do effects of a merger in one sector propagate to the rest of the economy?"

- More specifically, today:
 - ➡ Should the efficiency gains required to approve a merger depend on the centrality of the sector?

Are the aggregate anticompetitive effects of a merger in finance greater than those of an equivalent merger in tourism?

FINAL CONSUMERS

To maximize total final output (GDP):

To maximize total final output (GDP):

↑ Centrality of the Sector of the merger ↑

To maximize total final output (GDP):

A merger in tourism may reduce output, while an equivalent one in finance increases it.

To maximize total final output (GDP):

A merger in tourism may reduce output, while an equivalent one in finance increases it.

Why?

Central sector
internalizes part of the
harm caused to its buyers

To maximize total final output (GDP):

↑ Centrality of the Sector of the merger ↑

A merger in tourism may reduce output, while an equivalent one in finance increases it.

Why?

Central sector

internalizes part of the
harm caused to its buyers

- central sector output
- ↓↓ outputs of other sectors
- ↓↓ demand of the central as an input

- N firms, K sectors, homogeneous goods' Cournot within sector
- A defined $a_{ij} = 1$ iff i and j in the same sector (exogenous)
- \mathbf{M} defined $m_{ij} = 1$ iff i and j have merged (exogenous)
- ${f F}$ technical coefficients matrix; ${f \Omega}$ defined ω_{ij} cost synergies:

- N firms, K sectors, homogeneous goods' Cournot within sector
- A defined $a_{ij} = 1$ iff i and j in the same sector (exogenous)
- \mathbf{M} defined $m_{ij} = 1$ iff i and j have merged (exogenous)
- ${f F}$ technical coefficients matrix; ${f \Omega}$ defined ω_{ij} cost synergies:

Cost pre-merger
$$cq_i$$
 Cost post-merge $\left(\frac{1}{n_i}\sum_{j=1}^n m_{ij}\omega_{ij}\right)cq_i$

Builds on Pellegrino's JMP (2025)

- N firms, K sectors, homogeneous goods' Cournot within sector
- A defined $a_{ij} = 1$ iff i and j in the same sector (exogenous)
- \mathbf{M} defined $m_{ij} = 1$ iff i and j have merged (exogenous)
- ${f F}$ technical coefficients matrix; ${f \Omega}$ defined ω_{ij} cost synergies:

Cost pre-merger
$$cq_i$$
 Cost post-merge $\left(\frac{1}{n_i}\sum_{j=1}^n m_{ij}\omega_{ij}\right)cq_i$

• Inverse Final Demand $\mathbf{p} = \mathbf{b} - \sigma \mathbf{A} \mathbf{q}^c$

Builds on Pellegrino's JMP (2025)

- N firms, K sectors, homogeneous goods' Cournot within sector
- A defined $a_{ij} = 1$ iff i and j in the same sector (exogenous)
- \mathbf{M} defined $m_{ij} = 1$ iff i and j have merged (exogenous)
- ${f F}$ technical coefficients matrix; ${f \Omega}$ defined ω_{ij} cost synergies:

Cost pre-merger
$$cq_i$$
 Cost post-merge $\left(\frac{1}{n_i}\sum_{j=1}^n m_{ij}\omega_{ij}\right)cq_i$

subs. degree

• Inverse Final Demand
$$\mathbf{p} = \mathbf{b} - \sigma \mathbf{A} \mathbf{q}^c$$

Builds on Pellegrino's JMP (2025)

- N firms, K sectors, homogeneous goods' Cournot within sector
- A defined $a_{ij} = 1$ iff i and j in the same sector (exogenous)
- \mathbf{M} defined $m_{ij} = 1$ iff i and j have merged (exogenous)
- ${f F}$ technical coefficients matrix; ${f \Omega}$ defined ω_{ij} cost synergies:

Cost pre-merger
$$cq_i$$
 Cost post-merge $\left(\frac{1}{n_i}\sum_{j=1}^n m_{ij}\omega_{ij}\right)cq_i$

• Inverse Final Demand $\mathbf{p} = \mathbf{b} - \sigma \mathbf{A} \mathbf{q}^c$

Builds on Pellegrino's JMP (2025)

- N firms, K sectors, homogeneous goods' Cournot within sector
- A defined $a_{ij} = 1$ iff i and j in the same sector (exogenous)
- \mathbf{M} defined $m_{ij} = 1$ iff i and j have merged (exogenous)
- ${f F}$ technical coefficients matrix; ${f \Omega}$ defined ω_{ij} cost synergies:

Cost pre-merger
$$cq_i$$
 Cost post-merge $\left(\frac{1}{n_i}\sum_{j=1}^n m_{ij}\omega_{ij}\right)cq_i$

Inverse Final Demand

$$\mathbf{p} = \mathbf{b} - \sigma \mathbf{A} \mathbf{q}^c$$

$$\mathbf{q}^c = (\mathbf{I} - \mathbf{F})\mathbf{q}$$

- N firms, K sectors, homogeneous goods' Cournot within sector
- A defined $a_{ii} = 1$ iff i and j in the same sector (exogenous)
- \mathbf{M} defined $m_{ij} = 1$ iff i and j have merged (exogenous)
- ${f F}$ technical coefficients matrix; ${f \Omega}$ defined ω_{ij} cost synergies:

Cost pre-merger
$$cq_i$$
 Cost post-merge $\left(\frac{1}{n_i}\sum_{j=1}^n m_{ij}\omega_{ij}\right)cq_i$

- Inverse Final Demand $\mathbf{p} = \mathbf{b} \sigma \mathbf{A} \mathbf{q}^c$ $\mathbf{q}^c = (\mathbf{I} \mathbf{F})\mathbf{q}$
- Individual profits vector $\boldsymbol{\pi} = diag(\mathbf{q}) (\mathbf{p} \mathbf{Sc} \mathbf{Fp})$

- N firms, K sectors, homogeneous goods' Cournot within sector
- A defined $a_{ij} = 1$ iff i and j in the same sector (exogenous)
- \mathbf{M} defined $m_{ij} = 1$ iff i and j have merged (exogenous)
- ${f F}$ technical coefficients matrix; ${f \Omega}$ defined ω_{ij} cost synergies:

Cost pre-merger
$$cq_i$$
 Cost post-merge $\left(\frac{1}{n_i}\sum_{j=1}^n m_{ij}\omega_{ij}\right)cq_i$ $:= s_{ij}$

- Inverse Final Demand $\mathbf{p} = \mathbf{b} \sigma \mathbf{A} \mathbf{q}^c$ $\mathbf{q}^c = (\mathbf{I} \mathbf{F}) \mathbf{q}$
- Individual profits vector $\pi = diag(\mathbf{q})(\mathbf{p} \mathbf{Sc} \mathbf{Fp})$

Builds on Pellegrino's JMP (2025)

- N firms, K sectors, homogeneous goods' Cournot within sector
- A defined $a_{ii} = 1$ iff i and j in the same sector (exogenous)
- \mathbf{M} defined $m_{ij} = 1$ iff i and j have merged (exogenous)
- ${f F}$ technical coefficients matrix; ${f \Omega}$ defined ω_{ij} cost synergies:

Cost pre-merger
$$cq_i$$
 Cost post-merge $\left(\frac{1}{n_i}\sum_{j=1}^n m_{ij}\omega_{ij}\right)cq_i$ $:= s_{ij}$

- Inverse Final Demand $\mathbf{p} = \mathbf{b} \sigma \mathbf{A} \mathbf{q}^c$ $\mathbf{q}^c = (\mathbf{I} \mathbf{F}) \mathbf{q}$
- Individual profits vector $\pi = diag(\mathbf{q}) \big(\mathbf{p} \mathbf{S}\mathbf{c} \mathbf{F}\mathbf{p} \big)$

Game: Firms choose quantities simultaneously

Game written as a potential game. Equilibrium quantities:

$$\mathbf{q}^* = \left\{ \left(\mathbf{I} + \mathbf{1} \mathbf{1}' \right) \odot \left[\sigma \left(\mathbf{A} + \mathbf{M} \odot \mathbf{A} \right) \left(\mathbf{I} - \mathbf{F} \right)' \right] \right\}^{-1} \left[\left(\mathbf{I} - \mathbf{F} \right) \mathbf{b} - \mathbf{S} \mathbf{c} \right]$$

Game written as a potential game. Equilibrium quantities:

$$\mathbf{q}^* = \left\{ \left(\mathbf{I} + \mathbf{1} \mathbf{1}' \right) \odot \left[\sigma \left(\mathbf{A} + \mathbf{M} \odot \mathbf{A} \right) \left(\mathbf{I} - \mathbf{F} \right)' \right] \right\}^{-1} \left[\left(\mathbf{I} - \mathbf{F} \right) \mathbf{b} - \mathbf{S} \mathbf{c} \right]$$

Simulation exercise: Some sectors are more central/important than others. Everything else is symmetric, what is the change in output after a merger?

Game written as a potential game. Equilibrium quantities:

$$\mathbf{q}^* = \left\{ \left(\mathbf{I} + \mathbf{1} \mathbf{1}' \right) \odot \left[\sigma \left(\mathbf{A} + \mathbf{M} \odot \mathbf{A} \right) \left(\mathbf{I} - \mathbf{F} \right)' \right] \right\}^{-1} \left[\left(\mathbf{I} - \mathbf{F} \right) \mathbf{b} - \mathbf{S} \mathbf{c} \right]$$

Simulation exercise: Some sectors are more central/important than others. Everything else is symmetric, what is the change in output after a merger?

Game written as a potential game. Equilibrium quantities:

$$\mathbf{q}^* = \left\{ \left(\mathbf{I} + \mathbf{1} \mathbf{1}' \right) \odot \left[\sigma \left(\mathbf{A} + \mathbf{M} \odot \mathbf{A} \right) \left(\mathbf{I} - \mathbf{F} \right)' \right] \right\}^{-1} \left[\left(\mathbf{I} - \mathbf{F} \right) \mathbf{b} - \mathbf{S} \mathbf{c} \right]$$

Simulation exercise: Some sectors are more central/important than others. Everything else is symmetric, what is the change in output after a merger?

Some discussion

- Two *strong* assumptions:
 - No substitution on inputs! (Leontief Technology)
 - Prices depend only on the final consumer demand

Some discussion

- Two strong assumptions:
 - No substitution on inputs! (Leontief Technology)
 - Prices depend only on the final consumer demand

- Empirically:
 - What is the Commission actually, even implicitly, doing? Is the Commission stricter/more lenient in central sectors? (Duso's database?)
 - Can anything else be observed through data? Perhaps studying a large merger in a specific sector to analyze the effects? Not sure!