Following the reaction: Computational spectroscopy of perovskite BaZrS₃

Prakriti Kayastha, Giulia Longo, Lucy D. Whalley

1. Background Chalcogenide perovskites Long term Tunable (e.g. BaZrS₃) fit the bill bandgaps stability for high efficiency photovoltaics (PV) High defect Low toxicity tolerance Ideal PV Zr has a high boiling material point, which typically Good Low voltage absorption requires losses coefficient high temperature **Efficient** synthesis conditions

LDA-DFT vs experimental IR spectra for competing ternary phases²

transport

properties

Scalability

 Ba_2ZrS_4 (I4/mmm) $Ba_3Zr_2S_7$ (I4/mmm) $BaZrS_3$ (Pnma)

 $ZrS_2 \longrightarrow BaZrS_3$

Competing phases form during the reaction which have similar vibrational signatures, hence IR/Raman spectra for each material is needed

3. Results

of predictions

Accuracy

Compuational

Identify possible materials that form during synthesis

Binary and ternary phases of Ba, Zr and S from Materials Project

Convex hull/ Gibbs' triangle

Electronic structure

Vibrational spectra

 Online databases are a goldmine for experimentally reported materials

My iPad was placed here to

website. Please scan 6.

view the contents on the online

- Exploration of phases 0.5 eV above the reported thermodynamically stable phase
- Band gaps, density of states
- Formation energy, reconstruction of the convex hull/Gibbs' triangle
- Harmonic phonon bandstructure,
 Born effective charges,
 dielectric tensor

2. Objectives

- Thin film synthesis at low temperature
- Monitor reaction using computational and experimental spectroscopy
- Follow the reaction with a library of IR/Raman spectra of the perovskite and competing phases of Ba, Zr and S

3. Methodology

Experimental setup:

Solid state synthesis with ball milling BaS and ZrS₂ powders

Solution based reaction with hot injection method for nanoparticle synthesis

Computational setup:

- Density functional theory with FHI-aims with PBEsol for geometries and phonons and HSE06 for bandgaps
- IR/Raman spectral lines with Phonopy-Spectroscopy
 - Spin-orbit (SO) coupling is applied to check for relativistic effects
 - Further Phono3py calculation for spectral widths and thermal transport properties

- The phases we explore are: BaS ($Fm\overline{3}m$), BaS₂ (C2/c), BaS₃ ($P42_1m$) ZrS₂ ($P\overline{3}m1$), ZrS (P4/nmm), ZrS₃ ($P2_1/m$), ZrS ($Fm\overline{3}m$), Ba₃Zr2S₇ ($P4_2/mnm$), BaZrS₃ (Pnma), Ba₃Zr₂S₇ (I4/mmm), Ba₂ZrS₄ (I4/mmm)
- Hybrid DFT on BaZrS₃ has a bandgap 1.78 eV, agrees well with experimental bandgap 1.81 eV ⁴
- Zr d-bands in CBM, S p-bands in VBM Split-off band observed with SO coupling
- Imaginary modes found in the phonon bandstructure away from the Γ point, but these do not necessarily mean the structure is unstable ⁵

4. Next steps

- Non-analytical corrections to phonon bandstructure with Born effective charges
- Phonopy-Spectroscopy with FHI-aims to predict IR/Raman peak positions of competing phases during the reaction
- Peak widths with Phono3py calculations

5. References

- ¹ Tiwari *et al*, 2021 J Phys. Energy **3** 034010.
- ² Ishii *et al*, 1993 Mater. Res. Bull. **28** 493.
- ³ Skelton *et al*, 2017 PCCP **19** 12452.
- ⁴ Niskigaki *et al*, 2020 Solar RRL **4** 1900555.
- ⁵ Pallikara *et al*, 2022 arXiv:2203.01244

6. More at:

