Aula 5 - Prova Bicondicional e Teoria de Conjuntos

Tutoria de BCC101 - Matemática Discreta I

Departamento de Computação. Universidade Federal de Ouro Preto.

- 1. Seja a um inteiro. Prove que $a^3 + a^2 + a$ é par se e somente se a é par.
- 2. Sejam x e y reais. Prove que $x^3 + x^2y = y^2 + xy$ se e somente se $y = x^2$ ou y = -x
- 3. Determine se as seguintes afirmações são verdadeiras ou falsas:
 - (a) $3 \in \{1, 2\}$
 - (b) Se A = B então |A| = |B|
 - (c) $|\emptyset| = 0$
 - (d) Se $A \subseteq B$ então |A| < |B|
 - (e) $\emptyset \in \{1, 2\}$
 - (f) $\emptyset \subseteq \{1, 2\}$
 - (g) $\emptyset \subset \emptyset$
 - (h) $\emptyset \subseteq \emptyset$
 - (i) $\emptyset \subseteq \{\emptyset\}$
 - $(j) \emptyset \in \{\emptyset\}$
 - (k) $\emptyset \subset \{\emptyset\}$
 - (l) $\{2\} \in \{1, 2\}$
 - (m) $2 \in \{1, 2\}$
 - (n) $\{2\} \subseteq \{1, 2\}$
 - (o) $\mathcal{P}(\{1,2\}) = \{\emptyset, \{1\}, \{2\}\}\$
 - (p) $\mathcal{P}(\emptyset) = \{\emptyset\}$
 - (q) $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B)$
 - (r) $\mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$
 - (s) $|A \times B| = |A| * |B|$
 - (t) $\emptyset \times \{1, 2\} = \{(1), (2)\}$
 - (u) $\emptyset \cap \{1,2\} = \emptyset$

- (v) $\emptyset \cup \{1,2\} = \emptyset$
- (w) $\mathcal{P}(\emptyset \times A) = \emptyset$
- (x) $A \cup \overline{B} = \overline{\overline{A} \cap B}$
- (y) $\mathcal{P}(A) \cup A = 2^{|A|} + |A|$
- (z) $\overline{A} \times \overline{B} = \overline{A \times B}$