2. **A.**

Problem Set #04

В.

Proof by contradiction. Assume that language L $0^n 1^m 2^p 3^q$ is a context free language. By the pumping lemma we should be able to chose and string $s \in L$ and split it into s = uvxyz and satisfy these three conditions:

i. for each $i \geq 0$, $uv^i x y^i z \in L$,

ii. |vy| > 0, and

iii. $|vxy| \le p$

To prove that there is a contradiction I will set string s equal to $0^p 1^p 2^p 3^p$.

There are a few cases:

The case where $u = \epsilon$: then $vxy = 0^p$ or some fraction of $0^{p/x}$ but it cannot be greater than that due to the iii condition. We clearly see that this will not work as if we set i = 2 the number of $0s \neq t$ the number of 2's.

The case where $u = 0^p$: then $vxy = 1^p$ or some fraction of $1^{p/x}$ but it cannot be greater than that due to the iii condition. We also know that |vy| > 0 Therefore they must be some portion of 1^p . Again this case is trivial when pumping and setting i = 2 we see the number of $1s \neq 1$ the number of $1s \neq 1$ the number of $1s \neq 1$ and then $1s \neq 1$ and we could keep extending $1s \neq 1$ but we would result in the same conclusion.

The case where $u = 0^{p/2}$: then $vxy = 0^{p/2}1^{p/2}$ This violates case 1 as it states for each $i \ge 0$, $uv^i x y^i z \in L$, if we set i to two then we would have 0101 which $\notin L$.

Since any placement of uvxyz does not follow the pumping lemma conditions this is a contradiction and have proven that this is not a CFL.

$\mathbf{C}.$

Proof by contradiction. Assume that language L $0^n 1^m 2^p 3^q$ is a context free language. By the pumping lemma we should be able to chose and string $s \in L$ and split it into s = uvxyz and satisfy these three conditions:

i. for each i geq 0, $uv^i xy^i z \in L$,

ii. |vy| > 0, and

iii. $|vxy| \le p$

To prove that there is a contradiction I will set string s equal to $0^p1^p2^p3$.

There are a few cases:

vxy = the same number for example vxy = 0^p then when we set i = 0 we will have a greater number of 0s than 1's, therefore we break condition one. The same argument works for if vxy = 1^p or vxy = 2^p . It will still also work if v or y is set to a variable and the other is *epsilon* i.e. v= 0^p and y = ϵ as there will still be an inequality.

We could split the numbers across two different ones i.e. $v = 0^{p/3}x = 1^{p/3}y = 1^{p/3}$ and $u = 0^{p/3}$ $z = 1^{p/3}2^p3$ In this situation if we pump with i = 2 we will get more 1s than 2s therefore be break condition 1. This same argument holds if we set $u = 0^p$ and shift vxy over any amount.

Since any placement of uvxyz does not follow the pumping lemma conditions this is a contradiction and have proven that this is not a CFL.

