Compute Shaders

CSCI 4239/5239
Advanced Computer Graphics
Spring 2017

Purpose of Compute Shaders

- Lightweight general purpose computing
 - Perform arbitrary computations outside of the vertex/fragment paradigm
 - Access to textures and buffers
 - Does not require additional drivers or run time
 - Easier initialization and invocation than OpenCL
- Requires OpenGL 4.3
 - Example 22 requires GL 4.4

Using the Compute Shader

Compiles just like other shaders
 CreateShader(prog,GL_COMPUTE_SHADER,file)
 Link only one shader into program

```
    Bind and access buffers
        glBindBuffer(GL_SHADER_STORAGE_BUFFER,x)
        glBufferData()
```

Set size and type of buffer glMapBufferRange()

Access to buffer on CPU glUnmapBuffer(GL_SHADER_STORAGE_BUFFER);

Running the Compute Shader

- glUseProgram(compute_shader)
 - Select program
- glDispatchCompute(Nx,Ny,Nz)
 - Run Nx,Ny,Nz groups
- glDispatchComputeGroupSize(Nx,Ny,Nz,x,y,z)
 - Set both number of groups and work groups
- glMemoryBarrier(gl_shader_storage_barrier_bit)
 - Wait for compute shaders

Pre-set Variables in Shader

- uvec3 gl_NumWorkGroups
- uvec3 gl_WorkGroupSize
- uvec3 gl WorkGroupID
- uvec3 gl LocalInvocationID
- uvec3 gl_GlobalInvocationID
- uvec3 gl_LocalInvocationIndex
- gl_GlobalInvocationID = gl_WorkGroupID *gl_WorkGroupSize + gl_LocalInvocationID
- gl_LocalInvocationIndex =
 gl_LocalInvocationID.z*gl_WorkGroupSize.y *gl_WorkGroupSize.x +
 gl_LocalInvocationID.y * gl_WorkGroupSize.x +
 gl LocalInvocationID.x