线性卷积(convolution)

查连续信号

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau$$

圖离散信号

$$y(n) = x(n) * h(n) = \sum_{m=-\infty}^{\infty} x(m)h(n-m)$$

卷积的运算

$$y(t) = x(t) * h(t) = \int_{-\infty}^{\infty} x(\tau)h(t - \tau)d\tau$$

- 平移
- ②相乘

②积分

$$y(t) = x(t) * h(t - \tau)$$

 T_0

(2)
$$t = T_0/2HJ$$
, $y(T_0/2) = 3A^2 T_0/2$

$$y(t) = x(t) * h(t - \tau)$$

$$y(t) = x(t) * h(t - \tau)$$

(4)
$$t = 3T_0/2HJ$$
, $y(3T_0/2) = A^2 T_0/2$

$$y(t) = x(t) * h(t - \tau)$$

(5)
$$t = 2T_0 H f$$
, $y(2T_0) = 0$

$$y(t) = x(t) * h(t - \tau)$$

(6)
$$t = -T_0/2HJ$$
, $y(-T_0/2) = 3A^2T_0/2$

$$y(t) = x(t) * h(t - \tau)$$

(7)
$$t = -T_0 H J, y(-T_0) = A^2 T_0$$

$$y(t) = x(t) * h(t - \tau)$$

(8)
$$t = -3T_0/2HJ$$
, $y(-3T_0/2) = 3A^2T_0/2$

$$y(t) = x(t) * h(t - \tau)$$

卷积的运算示例(2)

②含有脉冲函数的卷积

设

$$h(t) = [\delta(t-T) + \delta(t+T)]$$

卷积为

$$y(t) = \int_{-\infty}^{\infty} h(\tau)x(t-\tau)d\tau$$
$$= \int_{-\infty}^{\infty} [\delta(\tau-T) + \delta(\tau+T)]x(t-\tau)d\tau$$
$$= x(t-T) + x(t+T)$$

计算函数x(t)和脉冲函数的卷积,就是简单地将x(t)在发生脉冲函数的坐标位置上(以此作为坐标原点)重新构图。

相关运算(correlation)

②连续信号相关运算

■ 函数 x(t)与 y(t)的互相关函数定义为

$$r_{xy}(\tau) = \int_{-\infty}^{\infty} x(t)y^*(t+\tau)dt = \int_{-\infty}^{\infty} x(t-\tau)y^*(t)dt$$

$$r_{yx}(\tau) = \int_{-\infty}^{\infty} y(t)x^*(t+\tau)dt = \int_{-\infty}^{\infty} y(t-\tau)x^*(t)dt$$

$$r_{xy}(\tau) = r_{yx}^*(-\tau)$$

■ 函数 x(t)的自相关函数定义为

$$r_{x}(\tau) = \int_{-\infty}^{\infty} x(t)x^{*}(t+\tau)dt = \int_{-\infty}^{\infty} x(t-\tau)x^{*}(t)dt$$

相关运算

研究变量 x(t) 与延迟时间 τ 后的 x(t+ 这间的关系,称为自相关

研究变量 x(t) 与延迟时间 τ 后的另一个变量 $y(t+\tau)$ 之间的关系,称为互相关

对功率信号,除以周期长度

$$R_{x}(\tau) = \lim_{T \to \infty} \frac{1}{T} \int_{0}^{T} x(t) x(t + \tau) d\tau$$

• 实际工程应用中

$$R_{x}(\tau) = \frac{1}{N-\tau} \sum_{t=1}^{N-\tau} \underline{x(t)} \underline{x(t+\tau)}$$

乘积、加和、求平均

$$R_{x}(\tau) = \frac{1}{N - \tau} \sum_{t=1}^{N - \tau} x(t) x(t + \tau)$$

时间延迟 $\tau=0$

$$R(0) = \frac{\left[x(1)x(1) + x(2)x(2) + \dots + x(N)x(N)\right]}{N}$$

$$R_{x}(\tau) = \frac{1}{N - \tau} \sum_{t=1}^{N - \tau} x(t) x(t + \tau)$$

时间延迟 $\tau=1$

 $R(1) = \frac{\left[x(1)x(2) + x(2)x(3) + \dots + x(N-1)x(N)\right]}{N-1}$

 (τ)

$$R_{x}(\tau) = \frac{1}{N - \tau} \sum_{t=1}^{N - \tau} x(t) x(t + \tau)$$

自相关的计算--仿真信号

- X
- 周期函数的自相关结果仍为同频率的周期函数
- 幅值与原周期信号的幅值有关
- 丢失原信号的相位信息

自相关的计算--仿真信号

自相关的计算--仿真信号

能从复杂信号中提取出周期成分

自相关的应用

- 当 $\tau = 0$ 时,相关程度最大;
- 对于周期函数,当 $(\tau = nT)$ 时,相关程度最大;
- 原来为周期的函数,自相关后仍为周期函数;

用于检测混于随机噪声中的确定性信号

宽带随机信号及其自相关函数

宽带随机信号+周期信号 及其自相关函数