Curve Fitting

Lesson 1: Straight Line and Quadratic Curve

Scatter Diagram:

From the scatter diagram, it is expected to obtain a functional relationship in the form of y = f(x) between two sets of variables x and y, giving an approximate curve which fit the data $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$. This method is called curve fitting.

Method of Least Squares:

This method assumes that the best fit curve of a given type is the curve that has the minimum least squares error (sum of the squares of the deviations) from a given data set.

Let the data set be $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ where y is dependent variable and x is independent variable.

Dr. Tanwi Bandyopadhyay, AIIE, 3rd Semester, Sep 2021

Then deviations or errors of estimate or residuals of y_i from each data point is given by

According to the principle of least squares, the summation of squares of these residuals should be minimum, i.e,

$$D = d_1^2 + d_2^2 + d_3^2 + \dots + d_n^2$$

$$= \sum_{i=1}^n d_i^2$$

$$= \sum_{i=1}^n [y_i - f(x_i)]^2 - \dots (1)$$

should be minimum

Straight Line:

Let the equation of the best fit line be y = a + bx ----- (2)

Applying the least squares method, we need to find values of a and b so that from equation (1), D is minimum. We can write D as

$$D = \sum_{i=1}^{n} [y_i - a - bx_i]^2 - - - -(3)$$

In order that D is minimum, we must have $\frac{\partial D}{\partial a} = 0$ and $\frac{\partial D}{\partial b} = 0$ from equation (3). These two conditions give the following two restrictions involving the unknowns a and b as

$$\sum_{i=1}^{n} y_i = na + b \sum_{i=1}^{n} x_i$$

Dr. Tanwi Bandyopadhyay, AIIE, 3rd Semester, Sep 2021

and
$$\sum_{i=1}^{n} x_i y_i = a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} x_i^2$$

These two equations are called normal equations or least square equations. Solving them, we get the values of a and b and with these values of a and b, equation (2) gives the line of best fit to the given data set of points (x_i, y_i) , i = 1, 2, ..., n.

Problems:

Ex.1. Using the method of least squares, find the best fitting straight line to the given data:

X	1	2	3	4	5
y	1	3	5	6	5

Solution: Let us consider that y = a + bx is the required straight line of the best fit. Let us now make the table for calculation:

x_i	y_i	$x_i y_i$	x_i^2
1	1	1	1
2	3	6	4
3	5	15	9
4	6	24	16
5	5	25	25
15	20	71	55

We have the normal equations as:

$$20 = 5a + 15b$$

and
$$71 = 15a + 55b$$

Solving we get, a = 0.7 and b = 1.1

Hence the line of best fit is given by: y = 0.7 + 1.1x.

Ans.

Ex.2. Fit a straight line to the following data:

X	1	2	3	4	5
y	3	4	5	6	8

Solution: Let y = a + bx is the line of the best fit. Let us make the table for calculation:

x_i	y_i	$x_i y_i$	x_i^2
1	3	3	1
2	4	8	4
3	5	15	9
4	6	24	16
5	8	40	25
15	26	90	55

Thus the normal equations are:

$$26 = 5a + 15b$$

and
$$90 = 15a + 55b$$

Solving we get, a = 1.6 and b = 1.2

Hence the line of best fit is given by: y = 1.6 + 1.2x.

Ans.

Quadratic Curve:

Let the equation of the second degree curve be given as

$$y = a + bx + cx^2 - - - (4)$$

which is the curve of best fit. Applying the principle of least squares, we get the normal equations in this case as

$$\sum_{i=1}^{n} y_i = na + b \sum_{i=1}^{n} x_i + c \sum_{i=1}^{n} x_i^2$$

$$\sum_{i=1}^{n} x_i y_i = a \sum_{i=1}^{n} x_i + b \sum_{i=1}^{n} x_i^2 + c \sum_{i=1}^{n} x_i^3$$
and
$$\sum_{i=1}^{n} x_i^2 y_i = a \sum_{i=1}^{n} x_i^2 + b \sum_{i=1}^{n} x_i^3 + c \sum_{i=1}^{n} x_i^4$$

Solving these equations, we get the values of a, b and c and with these values of a, b and c, equation (4) gives the quadratic curve of best fit to the given data set of points (x_i, y_i) , i = 1, 2, ..., n.

Problems:

Ex.1. Find the quadratic curve of best fit by the method of least squares from the following data:

X	1	2	3	4
y	6	11	18	27

Solution: Let $y = a + bx + cx^2$ be the required quadratic curve of best fit. Let us make the table for calculation:

x_i	y_i	x_i^2	x_i^3	x_i^4	$x_i y_i$	$x_i^2 y_i$
1	6	1	1	1	6	6
2	11	4	8	16	22	44
3	18	9	27	81	54	162
4	27	16	64	256	108	432
10	62	30	100	354	190	644

The normal equations are:

$$62 = 4a + 10b + 30c$$

$$190 = 10a + 30b + 100c$$
and
$$644 = 30a + 100b + 354c$$

Solving these equations, we get a = 3, b = 2 and c = 1. Therefore the required quadratic curve of best fit is given by: $y = 3 + 2x + x^2$

Ans.

Ex.2. Find a second degree curve to fit the following data:

X	1	2	3	4	5	6	7	8	9
y	2	6	7	8	10	11	11	10	9

Solution: Let $y = a + bx + cx^2$ be the required quadratic curve of best fit. Let us make the table for calculation:

x_i	y_i	x_i^2	x_i^3	x_i^4	$x_i y_i$	$x_i^2 y_i$
1	2	1	1	1	2	2
2	6	4	8	16	12	24
3	7	9	27	81	21	63
4	8	16	64	256	32	128
5	10	25	125	625	50	250
6	11	36	216	1296	66	396
7	11	49	343	2401	77	539
8	10	64	512	4096	80	640
9	9	81	729	6561	81	729
45	74	285	2025	15333	421	2771

The normal equations are:

$$74 = 9a + 45b + 285c$$

$$421 = 45a + 285b + 2025c$$
and
$$2771 = 285a + 2025b + 15333c$$

Solving these equations, we get a = -0.9283,

$$b = 3.523$$
 and $c = -0.2673$

Therefore the required quadratic curve of best fit is given by:

$$y = -0.9283 + 3.523x - 0.2673x^2$$

Ans.