DEEP LEARNING

Professor: Horacio Larreguy

TA: Eduardo Zago

ITAM Applied Research 2 / Economics Research Seminar, 11/01/2023

General Perspective

Introduction to Deep Learning

PERCEPTRON

Gradient Descent

BACK-PROPAGATION

ACTIVATION FUNCTIONS

REGULARIZERS

NEURAL NET EXAMPLE USING TENSORFLOW

WHAT IS DEEP LEARNING?

- ➤ Subset of ML, involves using **Neural Networks** to learn from data.
- ▶ **Difference from ML:** more complex models with multiple layers that can learn from raw data.
- ▶ Reduces the need for manual feature engineering.
- ▶ They have been found to perform better than ML models in complex tasks such as speech recognition, NLP, Image analysis and robotics.

Neural Networks

- ▶ Inspired by the structure of the brain.
- ➤ Series of interconnected processing nodes which work together to perform complex computations.
- ► Three Types of Layers:
 - 1. **Input layer:** receives the raw data
 - 2. **Hidden layer:** perform a series of mathematical operations on the input data to extract meaningful features and patterns
 - 3. Output layer: makes the prediction or classification.

NEURAL NETWORK

Deep Neural Network

Figure 12.2 Deep network architecture with multiple layers.

PERCEPTRON

- ► To better understand the structure of a NN let us look at the simplest one: the **perceptron**.
- ▶ A **perceptron** is a single neuron (node) connected to one or more input nodes, with a weight associated to each.
- ► The neuron sums up the weighted inputs and applies an activation function to produce an output.
- Let us look at one graphically and mathematically:

PERCEPTRON, GRAPHICALLY

PERCEPTRON, MATHEMATICALLY

▶ Mathematically, if we have a Sigmoid¹ activation function $\sigma(s)$, then:

$$s = w^{T}x,$$

$$= \sum_{n=0}^{N} w_{n}x_{n},$$

$$= \sum_{n=1}^{N} w_{n}x_{n} + w_{0}n_{0}$$

$$(1)$$

And

$$a = \sigma(s)$$

¹Similar to what the Logistic function does in a Logit model.

PERCEPTRON, MATHEMATICALLY

- $ightharpoonup a = \sigma(s)$ would be the output signal, or prediction, that takes the weighted sum of inputs s and applies a non-linearity to them.
- ▶ The immediate question that follows from this is: how can we estimate the parameter w_i ?
- We'll use an iterative minimization algorithm called
 Gradient Descent to update our parameters gradually.

Gradient Descent

- ▶ Before explaining Gradient Descent we must remember a few things:
- ➤ We are using a **data-driven approach**, thus we have a labeled data set.
- ▶ We defined the loss as the difference between the **predicted** output and the **actual** output.
- ► For simplicity:

$$E = (y - \hat{y})^2$$

▶ Recall that we **minimize** the objective function of a given problem by moving our parameters in the opposite direction of the gradient.

Gradient Descent

▶ Therefore, since our parameters are w_i and our objective function (the one we want to minimize) is E, we have that:

$$w^{i+1} = w^i - \nu \frac{\partial E}{\partial w^i}$$

► In our context, since:

$$s = w^{T} x,$$

$$\hat{y} = \sigma(s)$$

$$E = \frac{1}{2} (y - \hat{y})$$

$$\sigma'(s) = \sigma(s)(1 - \sigma(s))$$
(2)

Gradient Descent

▶ We would have that:

$$\frac{\partial E}{\partial w_n^i} = \frac{\partial (y - \hat{y})^2}{\partial w_n^i},
= -(y - \hat{y})\sigma(s)(1 - \sigma(s))x_n$$
(3)

Therefore,

$$w_n^{i+1} = w_n^i + \nu(y - \hat{y})\sigma(s)(1 - \sigma(s))x_n$$

GRADIENT DESCENT, ALGORITHM

- ▶ Thus, the training process for batch i at epoch e, is given by:
- 1. Random initialization of weights $\Longrightarrow w_0$
- 2. Forward pass $\implies \hat{y} = f(x; w)$
- 3. Error estimation $\Longrightarrow E(y, \hat{y})$
- 4. Gradient computation $\Longrightarrow \frac{\partial E}{\partial w_n}$
- 5. Backward pass (weight adjustment) $\Longrightarrow w_{n+1} = w_n \frac{\partial E}{\partial w_n}$

Information Flow

▶ Now, how do we do this for more than one neuron and several hidden layers?

Back-Propagation

- ▶ **Back-propagation** is a method for supervised learning used by NN to update parameters.
- ► For Neural Nets with multiple layers, the backward pass can get really complicated, so we must understand how the information flows.
- ▶ We must do the backward pass (weight adjustment) of all weights in the model.
- ▶ Some of these weights are concatenated inside several activation functions.
- ► Thus, to obtain the derivative, we must calculate the Chain Rule.

BACK-PROP, CHAIN RULE

Recall that the chain rule is used to differentiate any function of the form:

$$h(x) = f(g(x))$$

And the derivative is given by:

$$h'(x) = f'(g(x))g'(x)$$

In a more general context, if we have a function:

$$f_{1..n} = f_1(f_2(f_3(...f_{n-1}(f_n(x))...)))$$

The derivative would be given by:

$$f'_{1..n} = f'_1(f_{2..n}(x)) \cdot f'_2(f_{3..n}(x)) \cdot \cdot \cdot f'_{n-1}(f_{n..n}(x)) \cdot f'_n(x)$$

Back-Prop, Example

▶ As an example, let us look at the next NN:

► Also recall that we defined:

$$s = w^T x,$$

$$a = \sigma(s)$$
(4)

WIDE NEURAL NET

- ▶ Notice we have: 5 activation functions (2 for each hidden layer and one in the final layer)
- ▶ Also, at each node there is a linear combination of the weights and the input data (for the first layer)
- And a linear combination of the output of the last layer and their respective weights.

WIDE NEURAL NET

► The linear combination at node 1 and 3 (for example) would be given by:

$$s_1 = b_1 + w_1 \cdot x_1 + w_3 \cdot x_2, s_3 = b_3 + w_5 \cdot a_1 + w_7 \cdot a_2$$
 (5)

BACK-PROP, TAKING DERIVATIVES

 \triangleright Thus, the derivative of E with respect to w_i is:

$$\begin{split} \frac{\partial E}{\partial w_1} &= \frac{\partial E}{\partial a_5} \frac{\partial a_5}{\partial s_5} \frac{\partial s_5}{\partial a_3} \frac{\partial a_3}{\partial s_3} \frac{\partial s_3}{\partial a_1} \frac{\partial a_1}{\partial s_1} \frac{\partial s_1}{\partial w_1}, \\ &+ \frac{\partial E}{\partial a_5} \frac{\partial a_5}{\partial s_5} \frac{\partial s_5}{\partial a_4} \frac{\partial a_4}{\partial s_4} \frac{\partial s_4}{\partial a_1} \frac{\partial a_1}{\partial s_1} \frac{\partial s_1}{\partial w_1}, \end{split}$$

20 / 45

(6)

BACK-PROP

▶ Why the sum of products?

$$\frac{\partial E}{\partial w_1} = \frac{\partial E}{\partial a_5} \frac{\partial a_5}{\partial s_5} \frac{\partial s_5}{\partial a_3} \frac{\partial a_3}{\partial s_3} \frac{\partial s_3}{\partial a_1} \frac{\partial a_1}{\partial s_1} \frac{\partial s_1}{\partial w_1},
+ \frac{\partial E}{\partial a_5} \frac{\partial a_5}{\partial s_5} \frac{\partial s_5}{\partial a_4} \frac{\partial a_4}{\partial s_4} \frac{\partial s_4}{\partial a_1} \frac{\partial a_1}{\partial s_1} \frac{\partial s_1}{\partial w_1}$$
(7)

WEIGHT UPDATING

► Finally, as seen in the last chapter, weight 1 gets updated in the following form:

$$w_1^{i+1} = w_1^i - \frac{\partial E}{\partial w_1^i}$$

- And this happens to all the weights at each time of training t (batch or epoch).
- ▶ Notice that the impact of back-prop is proportional to the depth of the layer.
- ▶ Weights in shallow layers are updated more softly with respect to those in deeper layers.

ACTIVATION FUNCTIONS

- ▶ An activation function defines how the weighted sum of the input is transformed into an output from a node (or nodes) in a layer of a network.
- ▶ Introduces a **non-linearity** into the output of the neuron.
- ▶ Allows the neural network to learn complex patterns and relationships in the data.
- ▶ In the **hidden layers**, the activation function will control how well the model learns.
- ▶ In the **output layer**, the activation function will define the type of predictions the model can make.

Linear vs. Non-Linear Problems

► Activation functions allow the Neural Net to perform well in non-linear separable problems²:

²Image taken from VitalFlux

LINEAR AND RELU ACTIVATIONS

▶ Linear: used at the output layer for unbounded regression, but also works for binary classification.

$$a = \sum_{n=0}^{N} x_n w_n, \quad \frac{\partial a}{\partial w_i} = x_i$$

▶ **ReLU:** maps its input to the maximum of 0 and the input value. Very efficient and works well in tons of contexts.

$$a = max(0, x)$$

SIGMOID AND TANH ACTIVATIONS

▶ **Sigmoid:** mostly used at the output layer for binary classification problems and regression with $0 \le y \le 1$.

$$a = \sigma(s) = \frac{1}{1 + e^{-s}}, \quad \sigma'(s) = \sigma(s)(1 - \sigma(s))$$

▶ **TanH:** Better than sigmoid in hidden layers since it resembles the identity function more closely, tan(0) = 0.

$$a = \frac{e^s - e^{-s}}{e^s + e^{-s}}, \quad a' = 1 - a^2$$

SOFTMAX

- ▶ Used for multi-class classification
- ▶ Used to exaggerate the most probable of the elements of the vector.
- ▶ It maps its input to a probability distribution over the output classes, allowing the neural network to produce a probability score for each class.

$$a_i = \frac{e^{s_i}}{\sum_j e^{s_j}}, \quad a'_i = a_i(1 - a_i)$$

ACTIVATION FUNCTIONS GRAPHICALLY

tanh

ReLU

$$\max(0, x)$$

Maxout

$$\max(w_1^T x + b_1, w_2^T x + b_2)$$

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

REGULARIZERS

- Recall that regularizers are techniques used to reduce over-fitting sometimes at the expense of increased under-fitting.
- ▶ In a ML context we went over two techniques: L1 and L2 regularization.
- ▶ They both could be used in DL models, as we have an objective function (the Error).
- Other techniques used are: Dataset Augmentation,
 Early Stopping and DropOut.

DATASET AUGMENTATION

- ► This technique consists of increasing the dataset by creating **fake data** and adding it to the training set.
- Usually used in classification tasks to increase the model's robustness.
- ▶ Prediction needs to be invariant to a wide variety of transformations.
- ▶ A good example of a context where it can be used is in object recognition, since you can rotate, change the color and scale images, to generate new data points.³

³Image taken from DataCamp.

DATA AUGMENTATION

datacaмр

EARLY STOPPING

- ▶ Refers to returning to the parameters, epoch, where the validation accuracy last improved, and use them as if they were the last parameters.
- ▶ Or, stopping the algorithm when no parameters have improved over the best recorded validation error.
- Very unobtrusive technique.
- ightharpoonup Could be seen as a restriction to the parameters to a neighborhood near w^0 .

Drop Out

- ► This technique limits the capacity of the model at random by deactivating neurons (dropout) or weights (drop-connect).
- ▶ We must choose the dropout probability, which becomes then another hyper-parameter.
- ▶ Very popular technique since it is very computationally cheap (in contrast to L1 or L2)
- ▶ Helps the network be robust against variations.

Drop Out

(a) Standard Neural Net

(b) After applying dropout.

NEURAL NET EXAMPLE USING TENSORFLOW

- ► Tensorflow is an end-to-end open source platform for machine learning.
- ► TensorFlow's high-level APIs are based on the Keras API standard for defining and training neural networks.
- ► Keras enables fast prototyping, state-of-the-art research, and production—all with user-friendly APIs.
- Let's install them:

```
!pip install keras
!pip install tensorflow
```

LOAD THE PACKAGES AND DEFINE THE PROBLEM

Let's first load the packages and the data set:

```
from sklearn.model_selection import train_test_split
import tensorflow as tf
from tensorflow.keras.models import Model
from tensorflow.keras.layers import Input, Dense

from sklearn.datasets import load_iris
iris = load_iris()
```

- ▶ We will again use the Iris Data Set, but we will increase the difficulty of the problem by a lot.
- ▶ We will try to predict the length and width of sepals using the length and width of the petals.

Prepare the Data

As always, let's prepare our data by splitting the sample into training and test:

```
X = iris.data[:, :2]
Y = iris.data[:, 2:]
L = iris.target

# Train Test Split:
from sklearn.model_selection import train_test_split
x_train, x_test, y_train,
    y_test, l_train, l_test = train_test_split(X, Y, L,
    test_size=0.2, random_state = 42)
```

VISUALIZING THE DATA

➤ We can visualize the problem by graphing each set of features and their classes:

```
plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.scatter(X[L==0, 0], X[L==0, 1], c='b', label='setosa')
plt.scatter(X[L==1, 0], X[L==1, 1], c='r', label='versicolor')
plt.scatter(X[L==2, 0], X[L==2, 1], c='g', label='virginica')
plt.legend()
plt.grid(True)
plt.xlabel('petal length')
plt.ylabel('petal width')
plt.title('Input variables X')
plt.subplot(1, 2, 2)
plt.scatter(Y[L==0, 0], Y[L==0, 1], c='b', label='setosa')
plt.scatter(Y[L==1, 0], Y[L==1, 1], c='r', label='versicolor')
plt.scatter(Y[L==2, 0], Y[L==2, 1], c='g', label='virginica')
plt.legend()
plt.grid(True)
plt.xlabel('sepal length')
plt.vlabel('sepal width')
plt.title('Output variables Y')
plt.show()
```

VISUALIZING THE DATA

▶ It is indeed a more complex problem, since we are estimating a function that goes from \mathbb{R}^2 to \mathbb{R}^2 .

Defining the Model

- Let's start defining our model:
- ▶ We have two inputs, thus the input layer takes a shape of (2,):

```
i = Input(shape=(2,), name='input')
```

- ▶ We will define a model with **3 hidden layers**, 32 neurons in the first and the third, and 64 in the 2nd one.
- ► For activations we will use ReLu for the hidden layer and Linear in the final:

```
h = Dense(units=32, activation='relu', name='hidden1')(i)
h = Dense(units=64, activation='relu', name='hidden2')(h)
h = Dense(units=32, activation='relu', name='hidden3')(h)
o = Dense(units=2, activation='linear', name='output')(h)
```

Defining the Model

► Finally, we aggregate our model using the Model() function and obtain an overall description of it:

```
MLP = Model(inputs=i, outputs=o)
MLP.summary()
```

```
Model: "model"
 Layer (type)
                              Output Shape
                                                         Param #
 input (InputLayer)
                              [(None, 2)]
 hidden1 (Dense)
                              (None, 32)
                                                         96
 hidden2 (Dense)
                              (None, 64)
                                                         2112
 hidden3 (Dense)
                              (None, 32)
                                                         2080
 output (Dense)
                              (None, 2)
                                                         66
Total params: 4,354
Trainable params: 4,354
Non-trainable params: 0
```

Compiling the Model

- ➤ To start training the model, we first need to choose another set of hyper-parameters: the optimization procedure and the error function.
- ▶ We will use the ones we have seen, Stochastic Gradient Descent (SGD) for optimization and Mean Square Error (MSE) for Error:

```
# Compile it
MLP.compile(optimizer='sgd', loss='mse')
```

Training the Model

And we can start training it using our data sets. We choose the last two hyper-parameters: batch size and epochs.

- ▶ We have 100 values for the loss and the accuracy, both in training in validation.
- ➤ To visualize them we will use the Learning Curve we saw in the ML lecture.

VISUALIZING METRICS

```
plt.figure(figsize=(12, 5))
plt.plot(MLP.history.history['loss'], label='Training', linewidth=2)
plt.plot(MLP.history.history['val_loss'], label='Validation', linewidth=2)
plt.legend()
plt.xlabel('Epoch')
plt.ylabel('Loss')
plt.grid(True)
plt.show()
```


Model's Performance

- ▶ And we can conclude that the model is not under-fitted, since the loss is really low in training.
- ▶ We also notice that the training loss and the validation loss are really similar at all epochs, therefore the model is not over-fitted.

```
# Evaluate on the test set
MLP.evaluate(x=x_test, y=y_test, verbose=False)
### Output: 0.10164663195610046
```

▶ We obtained an average loss of 10%, which given that this is a regression problem, is very good.