LECO6 Expertation - Mousi mizetion

p(2)

10(2 |Z)

The state of the s then to extimate 6?

How to estimate 0?

Mago (ns. on)

max $f_{\Theta}(n) = \int f_{\Theta}(n,z) dz \iff \Xi \log f(n)$

=TT p(ni)

= $\int \mu(z) \int_{0}^{\infty} (n|z) dz$

= #\(\rightarrow\) [\land (\alpha (\alpha | 2)] \ \tag{\text{MC}} \\ \tag{\text{2}} \land \land \land \land \land \\ \tag{\text{Previous times}} \\ \tag{\text{3}} \land \land \land \land \\ \text{B} \land \text{5} \land \land \land \land \\ \text{B} \land \text{5} \land \land \land \land \\ \text{B} \land \text{5} \land \land \\ \text{B} \land \text{5} \land \land \\ \text{B} \land \text{5} \land \\ \text{5} \land \text{6} \land \text{8} \land \text{6} \land \\ \text{1} \rand \text{2} \land \text{6} \land \\ \text{1} \rand \text{2} \land \text{6} \land \text{1} \\ \text{1} \\ \text{1} \land \text{6} \land \text{1} \\ \text{2} \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{1} \\ \text{2} \\ \text{1} \\ \text{2} \\ \text{1} \\ \text{2} \\ \text{1} \\ \text{2} \\ \

/!

Par approximation when m is longe due to the own of dimensionality.

I. Expectation-Maximization Cheh deinstron

$$h_{\Theta}(a) = \mathbb{E}_{\mu(a)} \left[h_{\Theta}(n|z) \right]$$

log $h_0(n) = log \mathbb{E}_{q(2)} \left[\frac{h(2)}{q(2)} h_0(n/2) \right]$

Euro (2) [lay $\frac{h(2)}{9(2)}$ to (n|2)]

Euro (2) [lay $\frac{h(2)}{9(2)}$ (2)

= \(\frac{1}{9(2)} \) [log \(\frac{1}{9(2)} \)]

= #q(2) [lay to (a | 2)]

- KL (9(2) | 1 p(2))

ELBO(9,0)

or mystim of the monistional fue

= log po(n) - KL (9(2)11/2(212))

Se to white

KL(119)=眠[如去]

ELSO
$$(q, \phi) = \mathbb{E}_{q(z)} \left[\log \frac{h_0(n, z)}{q(z)} \right]$$

$$= \mathbb{E}_{h_0}(z|n) \left[\log h_0(n, z) \right]$$

$$- \mathbb{E}_{h_0}(z|n) \left[\log h_0(n, z) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H} \left[h_0 \left(z|n \right) \right]$$

$$= Q\left(\theta_1\theta_1\right) + \mathbb{H}$$

II. Voiotiend infram. What if fo(z|z) is not tractable? Refore 9 mills or voiotienal formily $9\phi(z)$ and solve

VI:

$$\theta'', \phi''' = sy max ELBO (90, 0)$$

both = over max $E_{90}(z)$ [lay $\frac{18(2, 2)}{90(2)}$]
taythr! = θ, ϕ

Stochestic VI

for toth fitting & (to 10 (2/2).

Notebook example

incomplete deter likelihood:

$$d(n,\mu,\delta^2,n) = \pi \in \mathcal{T}_{h} \mathcal{N}(n; |M_h, \delta_h^2)$$

- Complete deta likelihooed

E- rten

$$h(z=h|n;) = \frac{\pi_{\lambda}W(n;|\mu_{\lambda}|\delta_{\lambda}^{2})}{\sum_{\lambda}W(n;|\mu_{\lambda}'|\delta_{\lambda}^{2})}$$

$$= h(n;|z)h(z)$$

$$h(n;|\mu_{\lambda}'|\delta_{\lambda}^{2})$$

$$= \frac{h(n_i|2)h(2)}{h(n_i)}$$

[p(n,2 |0)4]

To plinipled alternation to K-Meons

(K-meons 2 MLE for 3 > provider a)

political