440 Final Project Report

Veton Abazovic, Syed Zaidi, Michael Belmont May 2019

1 Introduction

When starting the project, we decided that we would use the files from the Berkeley AI site because it set a structure to help start the project. The part that was needed/modified was the classifier files. We used 3 different classifiers; Perceptron, Naive Bayes, and Mira.

2 Implementation

2.1 Perceptron

We used the layout and description from the Berkeley site to guide us. Compared to other classifiers, Perceptron procedure is easier to implement as it includes a weighted system and does not use probabilities to make its decisions. The weighted system compares y' to the true label y. If those values are equal then know we are correct, else we must guess y'. The implementation starts off with a global counter to associate with each individual label and then we run a nested loop where the outer loop is the number of iterations we would run. The inner loop iterates through the training data. Within the nested loop we are keep track of each score for each possible label which is a counter of pixels values. After these pixels values are counted for we then update the weights according to which score contains the higher value, the previous or the current one.

2.2 Naive Bayes

Naive Bayes uses probabilities to make decisions. The way this classifier works is that it contains three counters. The first counter is used for the prior distribution over the labels which is what Berkeley describes as P(Y). The way it is estimated is by looking at the training data where we get the number of training instances with the label y and divides it by the total number of training instances. This equations becomes P(Y) = c(y)/n. The second counter is used as a dictionary. It would use 0's and 1's to represent black (0) and white (1) features. This was used for the conditional probability. Third counter is used to count the number

of times we see a specific counter. The first loop goes through the training data and increment the third counter for each feature that we see while also increasing the first counter for each label and places the classification of 0's and 1's. After going through the whole data set we normalize the first counter. After that is done we being to smooth the conditional probabilities by adding adding a number to each feature to avoid features with values of 0's. Then lastly we normalize our conditional probabilities.

2.3 MIRA

We used the Berkeley page for the MIRA classifiers algorithm. It is similar to the perceptron classifier, and as such, scans over the data one instance at a time. It uses a global counter for the weights for each label but updates them if we guess wrong, unlike perceptron. They are updated using the value Tau, and we calculate it using the equation given by Berkeley. Essentially, it is the minimum of the Tau value and the maximum possible value, C. We use Tau to update the weight vectors, training the algorithm.

3 Results

Here are the results for each Classifiers:

NB Digits				
Percent	Time	Accuracy	std	
10	5.3736	72.88	1.4481	
20	5.7640	75.14	1.2219	
30	5.9012	75.34	1.2934	
40	5.5574	76.06	0.3209	
50	6.1066	75.5	1.0050	
60	5.9196	76.28	0.3421	
70	5.9428	76.2	1.0559	
80	6.3222	76.4	0.5657	
90	6.1038	76.46	0.3050	
100	6.6974	76.6	0.0000	

NB Faces					
Percent	Time	Accuracy	std		
10	3.8380	72.33	3.3508		
20	4.3898	81.33	3.2318		
30	4.2700	86.8	2.4221		
40	4.6210	85.73	1.2996		
50	4.7728	87.73	2.8519		
60	4.8750	88.53	2.0763		
70	5.0234	89.2	1.2824		
80	5.3738	89.46	1.4453		
90	5.5062	90.13	0.8692		
100	5.7092	90.0	0.0000		
Perceptron Digit					
Percent	Time	Accuracy	std		
10	11.5112	73.350	1.0504		
20	22.7003	78.6250	1.9704		
30	33.6464	78.350	2.0936		
40	44.4779	81.050	0.9327		
50	55.0219	78.850	1.5264		
60	63.3562	81.0	0.9832		
70	71.3487	81.4750	0.9069		
80	81.4028	81.40	0.7257		
90	90.9719	81.0	0.4082		
100	99.9783	81.0750	0.7136		
	Perceptron Face				
Percent	Time	Accuracy	std		
10	2.1936	81.3333	4.0369		
20	4.0166	87.0	1.6777		
30	5.8025	85.8333	1.374		
40	7.6135	84.8333	3.0		
50	9.4106	87.3333	0.0		
60	10.8560	87.3333	0.0		
70	13.1078	87.3333	0.0		
80	15.0333	87.3333	0.0		
90	16.4522	87.3333	0.0		
100	19.2845	87.3333	0.0		

MIRA Digit					
Percent	Time	Accuracy	std		
10	21.45	71.56	4.0790		
20	36.80	76.46	2.3554		
30	49.43	77.66	2.2854		
40	61.32	76.8	2.2572		
50	71.91	77.06	3.1942		
60	83.81	74.96	3.1777		
70	97.22	79.04	4.6592		
80	110.2	77.52	2.7797		
90	116.3	78.1	1.8193		
100	131.2 80	.52	2.4448		
MIRA Face					
Percent	Time	Accuracy	std		
10	3.655	67.46	13.62		
20	5.332	76.13	8.0884		
30	6.654	80.66	4.6428		
40	7.963	82.93	4.1258		
50	9.489	82.53	1.1926		
60	10.34	83.2	4.9306		
70	11.74	83.86	4.9531		
80	13.45	84.53	2.0763		
90	14.64	85.6	2.3851		
100	16.17	86.53	3.3797		