ResNet

Deeper residual module (bottleneck)

- Directly performing 3×3 convolutions with 256 feature maps at input and output:
 - $256 \times 256 \times 3 \times 3 \approx 600 K$ operations
- Using 1×1 convolutions to reduce 256 to 64 feature maps, followed by 3×3 convolutions, followed by 1×1 convolutions to expand back to 256 maps:

$$256\times64\times1\times1 \approx 16K$$

 $64\times64\times3\times3 \approx 36K$
 $64\times256\times1\times1 \approx 16K$
Total $\approx 70K$

K. He, X. Zhang, S. Ren, and J. Sun, <u>Deep Residual Learning for Image</u>
<u>Recognition</u>, CVPR 2016 (Best Paper)

ResNet

• Architectures for ImageNet:

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112	7×7, 64, stride 2					
		3×3 max pool, stride 2					
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$ \left[\begin{array}{c} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{array} \right] \times 3 $	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3 $	
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 4 $	$ \left[\begin{array}{c} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{array}\right] \times 8 $	
conv4_x	14×14	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,256\\ 3\times3,256 \end{array}\right]\times6$	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 6 $	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$ \left[\begin{array}{c} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{array}\right] \times 36 $	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	$ \left[\begin{array}{c} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{array}\right] \times 3 $	
	1×1	average pool, 1000-d fc, softmax					
FLOPs		1.8×10 ⁹	3.6×10 ⁹	3.8×10^9	7.6×10 ⁹	11.3×10 ⁹	

K. He, X. Zhang, S. Ren, and J. Sun, <u>Deep Residual Learning for Image</u>
<u>Recognition</u>, CVPR 2016 (Best Paper)

Why do ResNets work?

 ResNets are collections of many paths of different length, and shorter paths predominantly contribute to training

Figure 1: Residual Networks are conventionally shown as (a), which is a natural representation of Equation (1). When we expand this formulation to Equation (6), we obtain an *unraveled view* of a 3-block residual network (b). Circular nodes represent additions. From this view, it is apparent that residual networks have $O(2^n)$ implicit paths connecting input and output and that adding a block doubles the number of paths.

A. Veit, M. Wilber, S. Belongie, <u>Residual Networks Behave Like Ensembles of Relatively Shallow Networks</u>, NIPS 2016

Summary: ILSVRC 2012-2015

Team	Year	Place	Error (top-5)	External data
SuperVision – Toronto (AlexNet, 7 layers)	2012	-	16.4%	no
SuperVision	2012	1st	15.3%	ImageNet 22k
Clarifai – NYU (7 layers)	2013	-	11.7%	no
Clarifai	2013	1st	11.2%	ImageNet 22k
VGG – Oxford (16 layers)	2014	2nd	7.32%	no
GoogLeNet (19 layers)	2014	1st	6.67%	no
ResNet (152 layers)	2015	1st*	3.57%	

^{*}Officially, there was no longer a classification competition and ResNet-based systems won in localization and detection

Comparing architectures

https://culurciello.github.io/tech/2016/06/04/nets.html

Outline

- AlexNet (2012-2013)
- VGGNet (2014)
- GoogLeNet (2014)
- ResNet (2015)
- Beyond ResNet (2016 and onward): Wide ResNet, ResNeXT, DenseNet

Beyond ResNet: Wide ResNet

- Reduce number of residual blocks, but increase number of feature maps in each block
 - More parallelizable, better feature reuse
 - 16-layer WRN outperforms 1000-layer ResNets, though with much larger # of parameters

S. Zagoryuko and N. Komodakis, Wide Residual Networks, BMVC 2016

Beyond ResNet: ResNeXt

- Propose "cardinality" as a new factor in network design, apart from depth and width
- Claim that increasing cardinality is a better way to increase capacity than increasing depth or width

S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, <u>Aggregated Residual Transformations</u> for <u>Deep Neural Networks</u>, CVPR 2017

Beyond ResNet: ResNeXt

	setting	top-1 error (%)
ResNet-50	1 × 64d	23.9
ResNeXt-50	$2 \times 40d$	23.0
ResNeXt-50	$4 \times 24d$	22.6
ResNeXt-50	8 × 14d	22.3
ResNeXt-50	$32 \times 4d$	22.2
ResNet-101	1 × 64d	22.0
ResNeXt-101	$2 \times 40d$	21.7
ResNeXt-101	$4 \times 24d$	21.4
ResNeXt-101	8 × 14d	21.3
ResNeXt-101	$32 \times 4d$	21.2

Table 3. Ablation experiments on ImageNet-1K. (**Top**): ResNet-50 with preserved complexity (\sim 4.1 billion FLOPs); (**Bottom**): ResNet-101 with preserved complexity (\sim 7.8 billion FLOPs). The error rate is evaluated on the single crop of 224×224 pixels.

S. Xie, R. Girshick, P. Dollar, Z. Tu, and K. He, <u>Aggregated Residual Transformations</u> for Deep Neural Networks, CVPR 2017

Beyond ResNet: DenseNets

G. Huang, Z. Liu, and L. van der Maaten, <u>Densely Connected Convolutional Networks</u>, CVPR 2017 (Best Paper Award)

DenseNets

			1		I	
Layers	Output Size	DenseNet-121	DenseNet-169	DenseNet-201	DenseNet-264	
Convolution 112 × 112		7 × 7 conv, stride 2				
Pooling	56 × 56	3 × 3 max pool, stride 2				
Dense Block	56 × 56	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 6$	
(1)	30 × 30	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 6$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 6}$	
Transition Layer	56 × 56	$1 \times 1 \text{ conv}$				
(1)	28×28	2 × 2 average pool, stride 2				
Dense Block	28 × 28	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ \end{bmatrix} \times 12$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 1 \times 12 \end{bmatrix}$	
(2)	26 × 26	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 12}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{12}$	
Transition Layer	28×28	$1 \times 1 \text{ conv}$				
(2)	14 × 14	2 × 2 average pool, stride 2				
Dense Block	14 × 14	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 24 \end{bmatrix} \times 24$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix} \times 32$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 3 \end{bmatrix} \times 48$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 64$	
(3)	14 × 14	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 24}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 46}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}$	
Transition Layer	14 × 14	1 × 1 conv				
(3)	7 × 7	2 × 2 average pool, stride 2				
Dense Block	7 × 7	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 16$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 32 \end{bmatrix}$	$\begin{bmatrix} 1 \times 1 \text{ conv} \\ 2 & 2 \end{bmatrix} \times 48$	
(4)		$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 10}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix} \times 32$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 32}$	$\begin{bmatrix} 3 \times 3 \text{ conv} \end{bmatrix}^{\times 46}$	
Classification	1 × 1		7 × 7 global	average pool		
Layer		1000D fully-connected, softmax				

G. Huang, Z. Liu, and L. van der Maaten, <u>Densely Connected Convolutional Networks</u>, CVPR 2017 (Best Paper Award)