עבודה עצמית 1 סדרות

שאלה 1 רשום את חמשת האיברים הראשונים של כל אחת מהסדרות הבאות:

$$a_n = 2^{n-1} - n^2 + 1$$
 (x

$$a_{n+1} = 2a_n + 3(-1)^n$$

$$a_n = (-1)^n + 1$$
 (x)

$$a_n = \sin\left(\frac{n\pi}{2}\right)$$
 (7

שאלה 2 רשום את האיבר הכללי של כל אחת מהסדרות הבאות:

$$1, \frac{1}{4}, \frac{1}{9}, \frac{1}{25}, \dots$$
 (8)

$$1, \frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \dots$$
 (2

$$2, 1\frac{1}{2}, 1\frac{1}{3}, 1\frac{1}{4}, \dots$$
 (3

$$-1, 2, -3, 4, -5, \dots$$

שאלה 3 בדקו אם הסדרות הבאות חסומות:

$$a_n = rac{n^2 + 1}{n^3 + 10n + 1}$$
 (8

$$a_n = \frac{n^2 + 1}{n + 2} \qquad \textbf{(2)}$$

$$a_n = \sqrt{n^2 + 1} - n$$
 (2

$$a_n = \tan\left(\frac{1}{n}\right)$$

$$a_n = \sin(n)$$
 (7

שאלה 4 בדקו את המונוטוניות של הסדרות הבאות:

$$a_n = \frac{2^n}{n}$$
 (x

- $a_n = n^2 + n 5$ (2)
 - $a_n = \frac{n}{2n^2 + 1} \qquad (3)$
 - $a_n = \sin(n)$ (7
 - $.a_n = \sqrt{n} + rac{1}{n}$ (ក

שאלה **5** בדקו אם הסדרות הבאות חסומות:

$$a_n = rac{2n^2 + 3}{n^3 + 8n + 2}$$
 (8

$$a_n = \frac{3n^2 + 2}{n+4} \qquad \textbf{(2)}$$

$$a_n = \sqrt{n^2 + 1} - \sqrt{n}$$
 (2)

$$a_n = \sin\left(\frac{1}{n}\right)$$
 (7

$$a_n = \cos\left(\frac{1}{n}\right)$$
 (7)

$$a_n = \tan\left(\frac{1}{n}\right)$$
 (1)

שאלה 6 בדקו את המונוטוניות של הסדרות הבאות:

$$a_n = \frac{3^n}{n}$$
 (x

$$a_n = n^2 + n - 7$$
 (2

$$a_n = \frac{3n}{4n^2 + 5} \qquad \textbf{(3)}$$

$$a_n = \cos(n)$$
 (7

$$a_n = \sqrt{n} + \frac{1}{n}$$
 (7)

. יורדת מונוטונית. $a_n=rac{n+5}{4n^2+n}$ הוכיחו כי הסדרה אולה 7

יבאה: מחדרה הנסיגה הבאה נתונה על אדי נוסחת הנסיגה הבאה: a_n

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{1}{a_n} \right) , \qquad a_1 = 3 .$$

- $a_n \geq 1$ מתקיים n מרכיחו כי לכל
- הוכיחו כי הסדרה a_n מונוטונית יורדת. $.\sqrt{xy} \leq \frac{x+y}{2}$ מתקיים כי $x,y \geq 0$ לכל
- . הוכיחו כי הסדרה a_n מתכנסת וחשבו את גבולה.

שאלה 9 סדרה נתונה על ידי נוסחאת נסיגה (רקורסיה)

$$\begin{cases} a_{n+1} = \sqrt{6 + a_n} \\ a_1 = 1 \end{cases}$$

- $a_n < 3$ מתקיים $n \geq 1$ א
 - ביחו כי a_n עולה מונוטונית.
- **ג)** הוכיחו כי הסדרה מתכנסת וחשבו את גבולה.

שאלה 10 סדרה נתונה על ידי נוסחאת נסיגה (רקורסיה)

$$\begin{cases} a_{n+1} = \sqrt{3a_n} \\ a_1 = 1 \end{cases}$$

- א) הוכיחו כי הסדרה מונוטונית עולה.
 - ב) הוכיחו כי הסדרה חסומה.
- ג) הוכיחו כי הסדרה מתכנסת וחשבו את גבולה.

. יורדת מונוטונית. $a_n = \frac{(n+1)^4}{n^5}$ יורדת מונוטונית.

שאלה 12 על ידי דוגמה נגדית: a_n מתבדרת ו- מתבדרת הוכיחו או הפריכו על ידי דוגמה נגדית: a_n מתבדרת. $a_n b_n$

שאלה 13 בניח כי a_n סדרה מתכנסת ו- b_n סדרה מתבדרת. הוכיחו או הפריכו על ידי דוגמה נגדית: $a_n b_n$ מתבדרת.

. יורדת מונוטונית. $a_n = \frac{(n+2)^3}{n^6}$ הוכיחו כי הסדרה **14 שאלה**

שאלה 15 סדרה נתונה על ידי נוסחאת נסיגה (רקורסיה)

$$\begin{cases} a_{n+1} = -\sqrt{24 - 2a_n} \\ a_1 = 11 \end{cases}$$

- $-6 < a_n < 0$ מתקיים $n \geq 2$ מרכיחו כי לכל
 - ביחו כי a_n יורדת מונוטונית.
- ג) הוכיחו כי הסדרה מתכנסת וחשבו את גבולה.

שאלה 16 נניח כי a_n מתבדרת ו- a_n מתבדרת ו- מתבדרת הוכיחו או הפריכו על ידי דוגמה נגדית: $a_n b_n$ מתכנסת.

נגדית: מתכנסת כי a_n סדרה מתכנסת ו- a_n סדרה מתבדרת. הוכיחו או הפריכו על ידי דוגמה נגדית: מניח כי a_n מתכנסת.

פתרונות

שאלה 1

$$a_n = 2^{n-1} - n^2 + 1$$
 (x

$$a_1 = 1, \ a_2 = -1, \ a_3 = -4, \ a_4 = -7, \ a_5 = -8$$
.

$$a_{n+1} = 2a_n + 3(-1)^n$$

$$a_1 = 1$$
, $a_2 = -1$, $a_3 = 1$, $a_4 = -1$, $a_5 = 1$.

$$a_n = (-1)^n + 1$$

$$a_1 = 0$$
, $a_2 = 1$, $a_3 = 0$, $a_4 = 1$, $a_5 = 0$.

$$a_n = \sin\left(\frac{n\pi}{2}\right)$$
 (7

$$a_1 = 1$$
, $a_2 = 0$, $a_3 = -1$, $a_4 = 0$, $a_5 = 1$.

שאלה 2

$$a_n=rac{1}{n^2}$$
 (x

$$a_n = \frac{1}{2n-1} \qquad \textbf{(2)}$$

$$a_n = \frac{n+1}{n} \qquad (3)$$

$$a_n = n \cdot (-1)^n$$

שאלה 3

$$n\in\mathbb{N}$$
 לכל (א

١

$$a_n = \frac{n^2 + 1}{n^3 + 10n + 1} = \frac{n^2}{n^3 + 10n + 1} + \frac{1}{n^3 + 10n + 1} < \frac{n^2}{n^3} + 1 = \frac{1}{n} + 1 < 2$$

$$a_n = \frac{n^2 + 1}{n^3 + 10n + 1} > 0 ,$$

לכן הסדרה חסומה:

$$0 < a_n < 2$$
.

 $n \geq 2$ עבור (ב

()

$$a_n = \frac{n^2 + 1}{n + 2} \ge \frac{n^2 + 1}{2n} = \frac{n}{2} + \frac{1}{2n} > \frac{n}{2}$$
.

. הסדרה $\{a_n\}$ לא חסומה, לכן גם $\{a_n\}$ לא חסומה הסדרה

 $a_n = \sqrt{n^2 + 1} - n = \frac{\left(\sqrt{n^2 + 1} - n\right)\left(\sqrt{n^2 + 1} + n\right)}{\sqrt{n^2 + 1} + n} = \frac{1}{\sqrt{n^2 + 1} + n} < 1$

. חסומה $0 < a_n < 1$ לכן $a_n > 0$

$$a_n = \tan\left(\frac{1}{n}\right)$$
 (7

עולה מונוטונית, לכן tan [0,1] בקטע . $0<rac{1}{n}<1$

$$0<\frac{1}{n}<1 \qquad \Rightarrow \qquad \tan(0)<\tan\left(\frac{1}{n}\right)<\tan(1)$$

. מסומה a_n לכן

 $a_n = \sin(n)$ (7

sin פונקתיה חסונה:

 $-1 < \sin(n) < 1$

. חסומה $\{a_n\}$ לכן

<u>שאלה 4</u>

(1

 $n \geq 2$ לכל (א

$$\frac{a_n}{a_{n+1}} = \frac{2^n}{2^{n+1}} \cdot \frac{n+1}{n} = \frac{n+1}{2n} = \frac{1}{2} + \frac{1}{2n} < 1$$

. אייא הסדרה עולה מונוטונית. $a_n < a_{n+1} \Leftarrow \dfrac{a_n}{a_{n+1}} < 1$ לכך $n \in \mathbb{N}$ לכל $a_n > 0$

 $a_{n+1} = (n+1)^2 + n + 1 - 5 > n^2 + n - 5 = a_n$

. לכן מונוטונית עולה עולה לכן לכן $a_{n+1}>a_n$ א"ג

$$.f(x)=rac{x}{2x^2+1}$$
 נגדיר $a_n=rac{n}{2n^2+1}$

$$f'(x) = \frac{2x^2 + 1 - 4x^2}{(2x^2 + 1)^2} = \frac{1 - 2x^2}{(2x^2 + 1)^2} = 0 \qquad \Rightarrow \qquad x = \pm \sqrt{1}\sqrt{2} = \pm 0.7$$

עבור $x>rac{1}{\sqrt{2}}pprox 0.7$ עבור אפונקציה יורדת	$x > 1/\sqrt{2}$	$-1/\sqrt{2} < x < 1/\sqrt{2}$	$x < -1/\sqrt{2}$	$x \mid$
	_	+	_	f'(x)
	×	7	¥	f(x)

מונוטונית. לכ הסדרה $\{a_n\}$ יורדת מונוטונית.

 $k\in\mathbb{N}$, $[k\pi,(k+1)\pi]$ נבדוק מונוטוניות בקטע

 $(k+1)\pi - k\pi = \pi > 3$ אורך הקטע הוא

 $a_n = \sin(n) > 0$, $k\pi < n < \pi(k+1)$ נניח שעבור גניח היים מספר טבעי ת לכן ליים מספר א $\pi < n < \pi(k+1)$ נניח שעבור

, $a_m < 0$ כך ש (k+1), כך ש (k+2), אז קיים

 $a_t > 0$ ע כך ש (k+2) כך ש (k+3), כך פר נקיים נקיים ל

 $a_n > a_m$, $a_m < a_t$ 1 n < m < t N"

לכן הסדרה לא מונוטונית.

$$f(x) = \sqrt{x} + \frac{1}{x}$$
 נגדיר

$$f'(x) = \frac{1}{2\sqrt{x}} - \frac{1}{x^2} = \frac{x^{3/2} - 2}{2x^2} > 0$$

לכל $\{a_n\}$ עולה מונוטונית בתחום ($2\sqrt{2},\infty$). א"א הסדרה f(x) עולה מונוטונית החל מ $x>2\sqrt{2}$ לכל $x>2\sqrt{2}$

<u>שאלה 5</u>

 $n\in\mathbb{N}$ לכל

$$a_n = \frac{2n^2 + 3}{n^3 + 8n + 2} = \frac{2n^2}{n^3 + 8n + 2} + \frac{3}{n^3 + 8n + 2} < \frac{2n^2}{n^3} + \frac{3}{2} = \frac{2}{n} + \frac{3}{2} < \frac{7}{2}$$

 $a_n = \frac{2n^2 + 3}{n^3 + 8n + 2} > 0$

לכן הסדרה חסומה:

$$0 < a_n < \frac{7}{2} .$$

 $n \geq 4$ עבור (ב

$$a_n = \frac{3n^2 + 2}{n+4} \ge \frac{3n^2 + 2}{2n} = \frac{3n}{2} + \frac{1}{n} > \frac{3n}{2}$$
.

. הסומה לא $\{a_n\}$ גם לכן אחסומה, לא חסומה לא $\{\frac{3n}{2}\}$

$$a_n=\sqrt{n^2+1}-\sqrt{n}=rac{\left(\sqrt{n^2+1}-\sqrt{n}
ight)\left(\sqrt{n^2+1}+\sqrt{n}
ight)}{\sqrt{n^2+1}+\sqrt{n}}=rac{n^2+1-n}{\sqrt{n^2+1}+\sqrt{n}}$$
לכל $n\geq 1$

$$a_n \ge \frac{n^2 + 1 - n}{\sqrt{2n^2} + \sqrt{n}} = \frac{n^2 + 1 - n}{\sqrt{2}n + \sqrt{n}}$$

$$\ge \frac{n^2 + 1 - n}{\sqrt{2}n + n} = \frac{n^2 + 1 - n}{(\sqrt{2} + 1)n} = \frac{n^2 + 1}{(\sqrt{2} + 1)n} - \frac{1}{\sqrt{2} + 1}$$

$$\ge \frac{n^2}{(\sqrt{2} + 1)n} - \frac{1}{\sqrt{2} + 1} = \frac{n}{\sqrt{2} + 1} - \frac{1}{\sqrt{2} + 1}$$

. לכן a_n לכן לכן היים כך שnקיים לכל לכל לכל לכן לכן לא לכן לכן לכן לכן $M\in\mathbb{R}$

$$a_n = \sin\left(\frac{1}{n}\right)$$
 (7

sin פונקתיה חסונה:

$$-1 < \sin\left(\frac{1}{n}\right) < 1$$

. חסומה $\{a_n\}$ לכן

$$a_n = \cos\left(\frac{1}{n}\right)$$
 (7)

sin פונקתיה חסונה:

$$-1 < \cos\left(\frac{1}{n}\right) < 1$$

. חסומה $\{a_n\}$ לכן

$$a_n = \tan\left(\frac{1}{n}\right)$$
 (1)

עולה מונוטונית, לכן tan [0,1] בקטע $0<rac{1}{n}<1$

$$0<\frac{1}{n}<1 \qquad \Rightarrow \qquad \tan(0)<\tan\left(\frac{1}{n}\right)<\tan(1)$$

.לכן a_n חסומה

$$a_n=rac{3^n}{n}$$
 לכל מ $a_n=rac{3^n}{n}$

$$\frac{a_{n+1}}{a_n} = \frac{3^{n+1}}{3^n} \cdot \frac{n}{n+1} = 3 \cdot \frac{n}{n+1} > 3 \cdot \frac{n}{2n} = 3 \cdot \frac{1}{2} > 1.$$

,
$$n \in \mathbb{N}$$
 לכל $a_n > 0$

. עולה מונוטונית. לכן
$$\{a_n\}$$
 לכן $a_{n+1}>a_n \Leftarrow \frac{a_{n+1}}{a_n}>1$ לכן

$$a_n=n^2+n-7$$
 נכל $n\in\mathbb{N}$

$$a_{n+1} = (n+1)^2 + n + 1 - 7 > n^2 + n - 7 = a_n$$

. לכן $\{a_n\}$ עולה מונוטונית. לכן $a_{n+1}>a_n$

$$a_n = \frac{3n}{4n^2 + 5} \qquad (3)$$

$$\frac{a_n}{a_{n+1}} = \frac{\left(\frac{3n}{4n^2+5}\right)}{\left(\frac{3(n+1)}{4(n+1)^2+5}\right)} = \frac{12n^3 + 24n^2 + 12 + 15n}{12n^3 + 12n^2 + 15n + 15}$$

$$\frac{a_{n+1}}{a_n} \le 1$$

$$\Rightarrow \frac{12n^3 + 12n^2 + 15n + 15}{12n^3 + 24n^2 + 27n} \le 1$$

$$\Rightarrow 12n^3 + 12n^2 + 15 + 15n \le 12n^3 + 24n^2 + 27n$$

$$\Rightarrow 15 \le 12n^2 + 12n$$

. לכן הסדרה יורדת מונוטונית. לכן $\frac{a_{n+1}}{a_n} < 1$ לכן לכל $15 < 12n^2 + 12n$ הרי הרי

לא מונוטונית: $a_n = \cos(n)$

,
$$n \in \{1,2,3\}$$
 לכל $a_{n+1} < a_n$

,
$$n \in \{4,5,6\}$$
 לכל $a_{n+1} > a_n$

$$n \in \{7, 8, 9\}$$
 לכל $a_{n+1} < a_n$

$$n \in \{10, 11, 12\}$$
 לכל $a_{n+1} > a_n$

וכן הלה.

באופן כללי,

$$\begin{cases} a_{n+1} < a_n & (-1)^{\lceil \frac{n}{3} \rceil} = -1 \\ a_{n+1} > a_n & (-1)^{\lceil \frac{n}{3} \rceil} = 1 \end{cases}$$

או שקול

$$egin{cases} a_{n+1} < a_n & \left\lceil rac{n}{3}
ight
ceil^n a_{n+1} > a_n & \left\lceil rac{n}{3}
ight
ceil^n a_n \end{cases}$$
 זוגי

$$.f(x)=\sqrt{x}+rac{1}{x}$$
 נגדיר $a_n=\sqrt{n}+rac{1}{n}$ (ה

$$f'(x) = \frac{1}{2\sqrt{x}} - \frac{1}{x^2} = \frac{x^{3/2} - 2}{2x^2} > 0$$

לכל $\{a_n\}$ עולה מונוטונית בתחום ($2\sqrt{2},\infty$). א"א הסדרה לכל f(x) עולה מונוטונית החל מ $x>2\sqrt{2}$ לכל n=2

שאלה 7

$$a_n = \frac{n+5}{4n^2+n} = \frac{n+5}{n(4n+1)} = \frac{1+\frac{5}{n}}{4n+1}$$
$$a_{n+1} = \frac{1+\frac{5}{n+1}}{4(n+1)+1} < \frac{1+\frac{5}{n}}{4(n+1)+1} < \frac{1+\frac{5}{n}}{4n+1} = a_n$$

.כלומר $a_{n+1} < a_n$ לכן הסדרה יורדת מונוטונית

שאלה 8

א) נוכיח את הטענה באינדוקציה.

בסיס:

עבור n=1 מתקיים

$$a_1 = 3 \ge 1$$
.

:אעבר

כי ברמז) אם כן, מתקיים (לפי אי-השיוויון ברמז) כי
. $a_n \geq 1$ כי

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{1}{a_n} \right) \ge \sqrt{a_n \cdot \frac{1}{a_n}} = 1$$
.

ב) מכיוון ש- $a_n \geq 1$ לכל מתקיים כי

$$\frac{1}{a_n} \le 1 \le a_n \qquad \Rightarrow \qquad a_n + \frac{1}{a_n} \le 2a_n \qquad \Rightarrow \qquad a_{n+1} = \frac{1}{2} \left(a_n + \frac{1}{a_n} \right) \le a_n$$

כנדרש.

מהסעיפים הקודמים, הסדרה מונוטונית יורדת ומתקיים כי $1 \leq a_n \leq 3$ לכל חסומה מחסומית לכן מתכנסת. נסמן ומונוטונית ולכן מתכנסת. נסמן

$$L = \lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1} .$$

ומכאן שמתקיים

$$L = \lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \frac{1}{2} \left(a_n + \frac{1}{a_n} \right) = \frac{1}{2} \left(L + \frac{1}{L} \right)$$

כלומר,

$$2L^2 = L^2 + 1 \quad \Rightarrow \quad L^2 = 1 \quad \Rightarrow \quad L = \pm 1 .$$

מכאן אי-שלילי. מרח אי-שלילי. מכאן מכיוון שהסדרה היא סדרה חיובית, הגבול מכיוון שהסדרה a_n

$$L = \lim_{n \to \infty} a_n = 1 .$$

שאלה 9

. נוכיח כי לכל $n \geq 1$ מתקיים מתקיים מתקיים אינדוקציה נוכיח כי לכל מקרה מתקיים $a_n \geq 1$ אם כן: מקרה בסיס: עבור $a_n = 1$ מרח מקרה בסיס: עבור אם מתקיים מתקיים מתקיים מתקיים מתקיים מתקיים אוניים מתקיים מת

$$a_{n+1} = \sqrt{6 + a_n} < \sqrt{7} > 1$$

.מ"א $a_{n+1} > 1$ כנדרש,

. מתקיים הינדוקציה אינדוקציה מתקיים כי לכל $n\geq 1$ מתקיים לוכיח נוכיח

מקרה בסיס:

$$a_1 = 1 < 3$$
.

 $a_n < 3$ מעבר: נניח כי $a_n < 3$ אם כן:

$$a_{n+1} = \sqrt{6 + a_n} < \sqrt{9} = 3 ,$$

. כנדרש, $a_{n+1} < 3$ מ"א

נוכיח כי a_n עולה מונוטונית בעזרת אינדוקציה. מקרה הבסיס:

$$a_2 = \sqrt{6 + a_1} = \sqrt{7} > a_1$$
.

:מעבר

נניח כי $a_{n+1} \geq a_n$ אם כן, מכיוון שאיברי הסדרה חיוביים, אז

$$a_{n+2} = \sqrt{6 + a_{n+1}} > \sqrt{6 + a_n} = a_{n+1}$$

. כנדרש, $a_{n+2} > a_{n+1}$ מייא

מכיוון שהוכחנו שהסדרה יורדת וחסומה, היא גם מתכנסת. נסמן

$$L = \lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1} .$$

מתקיים הי, מתקיימת מתקיים מתקיים מתקיים מתקיים מתקיים מתקיים מכיוון שמשוואת הרקורסיה

$$L = \sqrt{6+L} \implies L^2 = 6+L \implies L^2 - L - 6 = 0 \implies (L-3)(L+2) = 0$$
.

אבל מכיוון שהחל מ- a_1 כל איברי הסדרה חיוביים, בהכרח

$$L = \lim_{n \to \infty} a_n = 3.$$

א) עולה דרך אינדוקציה. (נוכיח כי a_n

שלב הבסיס

$$.a_2 = \sqrt{3} > a_1$$

שלב המעבר

(ההנחת האינדוקציה). $a_{n+1} > a_n$ נניח כי

$$\Rightarrow a_{n+2} = \sqrt{3a_{n+1}} > \sqrt{3a_n} = a_{n+1}$$

 $.a_{n+2} > a_{n+1}$ $\aleph'' \wr$

 $a_{n+1}>a_n$ לכל אינדוקציה לכל

בוכיח כי a_n חסומה מלמטה.

 $a_n>a_1=1$ לכל ממש) מונוטונית לכן עולה (ממש)

נוכיח כי $a_n \leq 3$ באינדוקציה.

שלב הבסיס:

 $.a_1 = 1 < 3$

שלב המעבר:

 $a_{n+1} < 3$ נניח כי $a_n < 3$ (ההנחת האינדוקציה). נראה כי

$$a_{n+1} = \sqrt{3a_n} < \sqrt{9} = 3$$

 $.a_{n+1} < 3$ א"ז

 $a_n < 3$ לכל מינדוקציה לכן על פי אינדוקציה

. הוכחנו כי $a_n \leq 3$ לכל n לכל n לכל $a_n \leq 3$ הוכחנו כי a_n מונוטונית לכן a_n מתכנסת

געמן $L=\lim_{n o\infty}a_n=\lim_{n o\infty}a_{n+1}$ נסמן

$$\lim_{n \to \infty} a_{n+1} = \lim_{n \to \infty} \sqrt{3a_n} \quad \Rightarrow \quad L = \sqrt{3L} \quad \Rightarrow \quad L^2 = 3L \quad \Rightarrow \quad L(L-3) = 0 \ .$$

L=3 או L=3 או ברור כיL=3 לא אפשרי כי הסדרה חסומה בין L=3 או L=3 מכאן

$$a_{n+1} = \frac{1}{n+1} \left(1 + \frac{1}{n+1} \right)^4 < \frac{1}{n} \left(1 + \frac{1}{n} \right)^4 = a_n$$

. לכן a_n לכן $a_{n+1} < a_n$ כלומר

שאלה 12

 $a_n \cdot b_n = (-1)^{2n} = 1$ מתבדרת אבל $b_n = (-1)^n$ מתבדרת $a_n = (-1)^n$ מתכנסת.

שאלה 13

$$a_n=rac{1}{n^2}\;, b_n=n\;$$
לא נכונה. דוגמה נגדית

שאלה 14

$$a_n = \frac{(n+2)^3}{n^6} = \frac{1}{n^3} \cdot \frac{(n+2)^3}{n^3} = \frac{1}{n^3} \cdot \left(\frac{n+2}{n}\right)^3 = \frac{1}{n^3} \cdot \left(1 + \frac{2}{n}\right)^3 .$$

$$a_{n+1} = \frac{1}{(n+1)^3} \cdot \left(1 + \frac{2}{n+1}\right)^3 < \frac{1}{n^3} \cdot \left(1 + \frac{2}{n+1}\right)^3 < \frac{1}{n^3} \cdot \left(1 + \frac{2}{n}\right)^3 = a_n .$$

. לכל $a_{n+1} < a_n$ לכל לכן הסדרה יורדת מונוטונית לפיכך

שאלה 15

א) נוכיח כי לכל $n \geq 1$ מתקיים $n \geq 1$ בעזרת אינדוקציה.

מקרה בסיס:

$$a_2 = -\sqrt{24 - 2a_1} = -\sqrt{24 - 22} = -\sqrt{2} > -6$$
.

 $-6 < a_n$ אם כן: מעבר: נניח כי

$$a_{n+1} = -\sqrt{24 - 2a_n} > -\sqrt{24 - 2(-6)} = -\sqrt{36} = -6$$

. כנדרש, $a_{n+1} > -6$

. נוכיח כי לכל $n \geq 2$ מתקיים $n \geq 2$ בעזרת אינדוקציה נוכיח

מקרה בסיס:

$$a_2 = -\sqrt{24 - 2a_1} = -\sqrt{24 - 22} = -\sqrt{2} < 0$$
.

 $a_n < 0$ מעבר: נניח כי $a_n < 0$

$$a_{n+1} = -\sqrt{24 - 2a_n} < -\sqrt{24} = < 0$$
.

.מנדרש. $a_{n+1} < 0$ מנדרש.

נוכיח כי a_n יורדת מונוטונית בעזרת אינדוקציה. מקרה הבסיס:

$$a_2 = -\sqrt{24 - 2a_1} = -\sqrt{24 - 22} = -\sqrt{2} < a_1$$
.

:מעבר

n>2 כיוון שאיברי הסדרה שליליים עבור

$$a_{n+2} = -\sqrt{24 - 2a_{n+1}}$$
 \Rightarrow $a_{n+2}^2 = 24 - 2a_{n+1} > 24 - 2a_n = a_{n+1}^2$

אי , $n \geq 2$ לפיכך. לפיכך וון שאיברי הסדרה שליליים עבור $|a_{n+1}| > |a_{n+1}| > a_{n+2}^2 > a_{n+1}^2$ אי

$$a_{n+2} < a_{n+1}$$
.

מכיוון שהוכחנו שהסדרה יורדת וחסומה, היא גם מתכנסת. נסמן

$$L = \lim_{n \to \infty} a_n = \lim_{n \to \infty} a_{n+1} .$$

מתקיים גם n מתקיימת לכל מתקיים מ $a_{n+1} = -\sqrt{24-2a_n}$ מתקיים לכל מכיוון שמשוואת הרקורסיה

$$L = -\sqrt{24 - 2L} \quad \Rightarrow \quad L^2 = 24 - 2L \quad \Rightarrow \quad L^2 + 2L - 24 = 0 \quad \Rightarrow \quad (L+6)(L-4) = 0$$
.

אבל מכיוון שהחל מ- a_2 כל איברי הסדרה שליליים, בהכרח

$$L = \lim_{n \to \infty} a_n = -6.$$

שאלה 16

. מתכנסת. $a_n \cdot b_n = n^2$ אבל מתבדרת מתבדרת מתבדרת מתבדרת $a_n = n$ מתכנסת. דוגמה לא נכונה. דוגמה מתכנסת

$$a_n=rac{1}{n}\;, b_n=n^2\;$$
לא נכונה. דוגמה נגדית: