

深圳市海凌科电子有限公司

HLK-ZW0608 规格书 方形指纹模组

目 录

1. 产品简介	1
1.1. 概述	
1.2. 应用范围	
2. 技术参数	
2.1. 常规技术参数	
2.2. 重要技术参数	
2.3. 结构参数	
3. 硬件说明	
3.1. 模组实物图和三防漆涂刷样例	
3.2. 接口定义	
3.3. 结构尺寸图	
4. 设计约束和注意事项	
4.1. 中断信号处理	
4.2. 指纹模块内部电路说明:	
4.3. 电源纹波噪声要求	7
4.4. 指纹模块外部电路说明:	
4.5. 触摸供电设计	7
4.6. 休眠指令设计	8
4.7. 时序设计要求	8
4.8. 指纹芯片 FD 模式应用注意事项	. 9
4.8.1. 指纹传感器芯片供电要求	9
4.8.2. 对指纹芯片供电需要采用瞬态响应快的 LDO 模块;	9
4.8.3. LDO 选型	10
4.9. 其他要求	11
5. 版本修订记录	12

1. 产品简介

1.1. 概述

HLK-ZW0608 指纹模块是电容式指纹识别模组。消费者将指纹识别模组用于使用者身份判定,当使用者用手指触摸指纹识别模组时,指纹识别模组就会扫描使用者的指纹,然后与指纹库进行匹配,判定。

HLK-ZW0608 指纹模组具有指纹图像处理、模板提取、模板匹配、指纹搜索和模板存储等项功能。和同类指纹产品相比,该指纹模组具有下列特色:

● 指纹适应性强

指纹图像读取过程中,采用自适应参数调节机制,使干湿手指都有较好的成像质量,适用人群更广泛。

● 简单易用方便扩充

无需具备指纹识别专业知识即可应用。用户按照 HLK-ZW0608 模块提供的丰富控制命令,可自行开发 出功能强大的指纹识别应用系统。

● 灵活设置安全等级

面对不同应用场合,用户可自行设定不同安全等级。

1.2. 应用范围

HLK-ZW0608 模块应用广泛,适合从低端到高端的所有指纹识别系统。如:

- 门锁;较复杂的门禁系统;
- 指纹 IC 卡识别终端机;
- 与 PC 联机的指纹识别及认证系统。

用户可按照本手册提供的技术资料,开发出多种多样基于指纹识别的应用系统。

2. 技术参数

2.1.常规技术参数

序号	ヺ		技术参数
1	模块尺寸	t	19*19mm
2	sensor	尺寸	12.05*12.05mm
3	分辨率		508 dpi
4	像素数		160*160 pixel
5	数据连挂	妾	USART
6	接口协议	Ϋ́	RS232 (TTL)
7	串口通	飛波特率	默认波特率 57600 bps, 1起始位, 1停止位, 3.3V TTL电平
8	接口和组	浅序	6pin, 1.25mm 卧贴,线序参见实物图
9	指纹库等	· 章	100 枚
10	存储温质	度和湿度	-40°C ~+85°C; 45%~95%RH
11	工作温度	度和湿度	-25°C ~+85°C; 45%~85%RH
12	认假率		<0.001%
13	拒真率		<=1%
14	比对方式		1:N
15	初始化等	完成主动发握手指令	支持
16	自学习现	力能	无
17	指纹唯一	一序列号	支持
18	指纹录入缓冲区定义		160*160 指纹头: 缓冲区 CharBuffer1 、CharBuffer2 或 CharBuffer3 分别为 0x00 、0x01 、0x02
19	指令用到缓冲区定义		支持
20	指纹头安全等级		默认为 3 级
	sensor 方案		Sensor 唤醒
		休眠指令可靠性	建议流程中锁端下发休眠指令,支持模组主动休眠 sensor
21	Sensor	Sensor 扫描时间	默认 200ms
		静态电流	平均电流 9-10uA
		输出电平	平时为高电平, 手指触摸指纹传感器时输出低电平

22	HBS 系统识别码	按 HBS 通信协议, 读取系统参数(ReadSysPara)中系统识别码按 HBS 分配识别码定义,便于锁端识别指纹头类型。			
23	模组版本号 硬件版本: HLK-ZW0608-V1.0 软件版本: G1.10.4				
24	三防漆涂刷要求	1、按 HBS 工程部定义规范执行,要求厚度大于 0.05mm,涂刷均匀。 2、整锁 96H 盐雾之后,指纹头不出现异常(如功能失效或功耗异常)。			
25	ESD 要求: 接触放电: ±8KV 空气放电: ±15KV	HBS 静电要求: 1、指纹头需要打接触放电和空气放电两种,每种电压至少6组x10次放电,不能出现功能失效或功耗异常问题。 2、测试样本数量要求大于5pcs			
26	公安三所检测报告	支持认证			
27	技术标准	满足 GA701-2007/GA374-2019 标准,含抗辐射干扰能力			

2.2.重要技术参数

大类	小类 最		典型	最大	单位	备注说明
次数	录入次数	-	3	-	次	
	上电初始化时间		100		ms	
	采图时间	145	150	155	ms	
	生成特征值时间	185	190	195	ms	
时间参数	融合存储时间	80	90	100	ms	合并时间+存储时间
	算法比对时间(1:99)	10	80	150	ms	此处仅适用于比对成功的应 答时间
	锁端等待指令超时时间		1000	1500	ms	比对指令时有效
	供电电压 (算法)	2. 7	3. 3	3.6	V	
	供电电压 (Sensor)	2. 7	3. 3	3.6	V	
电压/电流	工作电流 (算法)		37	48	mA	
	静态电流(Sensor)		9	10	uA	

2.3.结构参数

项目	材料	注释
金属环	不锈钢	冲压, 本色, 厚度 1.5±0.1mm
sensor	树脂	黑色, 厚度 0.68±0.05mm
PCB	FR-4	哑绿色, 厚度 0.8±0.1mm

项目	参数	单位
sensor 尺寸	12. 05*12. 05	mm
窗口尺寸	12*12	mm
感应区域	8*8	mm
连接方式	SPI	/
型号	HLK-ZW0608	/

3. 硬件说明

3.1. 模组实物图和三防漆涂刷样例

模块正面

HLK-ZW0608 模块反面(未刷三防漆)

备注:

上图为 HLK-ZW0608 指纹模组实物样例, 出货时按 HBS 三防漆规范涂刷, 厚度>0.05mm。

3.2. 接口定义

引脚	定 义	
6	GND	
5	RXD	
4	TXD	
3	VDD_3.3V	
2	Detect	
1	SENSOR_3.3V	

指纹模组接口

接口详细定义如下:

脚引号	名称	定义	类型	备注	
1	SENSOR_3.3V	SENSOR 模块电源	Р	要求常供电,不用断电	
2	Detect	感应上电信号	0	手指触摸指纹传感器时输出高电平	
3	VDD_3.3V	用于指纹模块整体供电	Р	请确保在待机状态下,关断该电源	
4	TXD	串口发送端 TXD	0	接锁端 RX	
5	RXD	串口发送端 RXD	0	接锁端 TX	
6	GND	地	Р	接锁端地	

说明:

- 1. 串口为 3.3V 的 TTL 电平。如需与 PC 机的串口连接,则需接上 TTL-USB 转接板后才可通信。
- 2. **1 脚(SENSOR 模块电路电源)需要一直供电。**请确保该电源有较小的纹波,且不受其它电源的干扰。
- 3. MCU上电后,手指按压 sensor 或采图命令, Detect 脚仍有中断信号,此时锁板可以不处理该信号。
- 4. 按以下符号区分型号: P---电源、地; I---信号输入; 0---信号输出。

3.3. 结构尺寸图

- 1、未注公差: ±0.20; 2、带<n>序号为重点管控尺寸;
- 3、带[CPK]为CPK尺寸, CPK≥1.33。

4. 设计约束和注意事项

中断信号处理 4.1.

对于锁板,中断信号仅用于唤醒系统,唤醒后可以屏蔽中断,在指纹模块休眠之后打开。

指纹模块内部电路说明: 4.2.

- ① 直接采用指纹传感器 FD 模式, SENSOR 唤醒可靠性高,降低误触发风险。
- ② 无手指触摸状态下, Detect 信号线为高电平, 当手指触摸指纹传感器时该信号触发成低电平, 直到手指 离开时再变为高电平。
- ③ 使用 Detect 信号进行二次开发时需要注意以下事项:

在 HLK-ZW0608 指纹识别模块休眠状态下 , 作为唤醒信号使用。当手指接触指纹传感器时, 触 控信号会被激活,继而唤醒系统(给指纹模块上电)。此时二次开发者可无视该信号,并等待指纹模块 的正常操作(采集、注册、比对等)完毕后,对模组 MCU 电源(CON3.3V)进行掉电(对 CON3.3V 电源的控 制可参考下文 3.3V 电源控制电路部分),再次触摸指纹模块时,可重复使用该信号。

4.3. 电源纹波噪声要求

sensor 源需控制电源纹波在 200mV 以内,避免电源纹波过大导致 sensor 低压复位,导致 sensor 无法正常工作。

4.4. 指纹模块外部电路说明:

外部主控可以通过控制 CON3. 3V 电源关断来降低功耗 , 电路如下图所示 :

3.3V 电源控制电路

左上部电路作用是通过外部的 MCU 的 PWR_ON/OFF 信号控制 Q2 三极管导通关断,从而降低电路功耗。当 3.3V 电源被切断时,整个模组只有 sensor 模块在工作,且 sensor 处于检测模式时,功耗小于 $10\,\mu\,A$ 。

4.5. 触摸供电设计

sensor 唤醒, 无触摸 IC, 为确保触摸功能正常, 需保证 sensor 供电稳定, 避免低压复位; 为确保 sensor 休眠时处于 FD 模式, 建议延时掉电或掉电前下发休眠指令。

4.6. 休眠指令设计

针对 sensor 唤醒的模组,休眠命令主要目的是为了确保 sensor 正常进入 FD 模式,在 MCU 掉电后可以正常检测手指,输出有效中断信号。休眠命令发送后需接受到命令的对应应答才可控制 MCU 掉电,在命令执行过程会执行软件复位、校准,如在复位完成之前掉电,则会导致 sensor 异常。

4.7. 时序设计要求

为保证算法芯片正常上电运行,需严格按照以下上电时序上、下电:上电需等待 100ms,再进行指令交互。

①主控 MCU 收到 INT 唤醒信号后, 先控制 MCU3. 3V 上电, 再打开串口。

特别强调:禁止先打开串口,再控制 MCU3. 3V 上电,否则会因串口信号线漏电导致上电异常,模组无法使用。

②完成指纹开锁后,进入休眠前,先关闭串口,再控制 MCU3.3V, 避免串口漏电导致功耗过大; 避免漏电导致 MCU 异常。

特别强调:休眠后必须关闭串口,拉低 TX、RX。

时序图

4.8. 指纹芯片 FD 模式应用注意事项

4.8.1. 指纹传感器芯片供电要求

指纹芯片自身特性,在 FD(FingerDetect)工作状态下即指纹芯片处于扫描检测指纹时,会出现有 4us 的 200mA 左右的峰值电流。因此对指纹芯片的电源供电有严格的要求。

指纹芯片 FD 模式下的工作电流如上图所示

4.8.2. 对指纹芯片供电需要采用瞬态响应快的 LDO 模块;

负载瞬态响应波形

4.8.3. LDO 选型

- 1. 指纹供电 LDO 输出电流建议≥250mA;
- 2. 选用快速响应的 LDO;

3. 建议使用单独一个 LDO 给指纹模块供电。LDO 输出走线一路给到指纹芯片常供电,分开一路用 MOS 开关控制给指纹模块算法 MCU 供电。

4. 指纹模块与其它模块共用 LDO 供电时,指纹模块供电在 PCB Layout 上需从 LDO 输出端单独走线。

4.9. 其他要求

- 1、以下情况,可能会导致 sensor 休眠失败,失去触摸唤醒功能,需给算法芯片重新上电,初 始化 sensor
 - ① sensor 供电不稳, 电压被拉低
 - ② 未下发休眠指令,且算法芯片突然掉电
 - 2 、以下情形可能会导致指纹模块重新唤醒或自唤醒
 - ① sensor 表面保护膜未撕除
 - ② 长时间手指按压 sensor (仅针对电平触发唤醒)
 - 3、 sensor 表面附着大面积水珠,会导致待机功耗偏高,使用时需注意清洁。
 - 4、 指纹模组组装需避免烧录点与金属结构件直接接触,否则可能会引起功能以及功耗异常

5. 版本修订记录

版本	修订说明	日期	修订人
V1. 0	初稿	2024-1-26	Chrales