CSE250

ASSIGNMENT 2 (SUMMER 2023)

SECTION 05, 06, 22

Instructions

- There are 10 Questions covering different topics in this assignment.
- Try to solve them and understand them properly.
- Make a PDF file containing all your answers and submit it before 11:59 PM, 20th July, 2023.
- Your Cover page must be **Handwritten** and should contain your **Name**, **ID**, Course Code, Section, whom you are submitting to, and submission date.
- The file naming convention is as follows: NAME_ID_ASSIGNMENT_2_CSE250.pdf.
- Also, **keep the hard copy**. We may need to submit that to the authority depending on the instructions.

Remember, if you can't solve or even attempt all the questions, **No Problem!** But you must try. Try to solve at least some questions from each topic. If you can't solve a question by yourself, discuss specific details in the **Queries** channel in Discord. Your classmates may help you and vice-versa. But don't give your answers to anybody directly. **Any kind of plagiarism will result in a harsh penalty. Good luck with your Exams!**

Questions

Mesh Analysis

1. Apply mesh analysis to find i in the circuit below.

2. Find vo and io in the circuit shown below:

3. Use mesh analysis to find the current **io** in the circuit given below:

4. Use mesh analysis to find i1, i2, and i3 in the circuit shown below:

5. Calculate the **power dissipated** in **each resistor** in the circuit given below. Use Mesh Analysis.

Source Transformation

6. Use source transformation to reduce the circuit in the figure below to a single voltage source in series with a single resistor.

7. Use source transformation to find the voltage Vx in the circuit below.

8. Obtain vo in the circuit shown below using source transformation.

9. Apply source transformation to find $\mathbf{v}\mathbf{x}$ in the circuit below.

10. Use source transformation to find **vo** in the circuit given below.

