WHAT IS CLAIMED IS:

1	1. A method of identifying a gene or genes associated with a selected		
2	phenotype, the method comprising the steps of:		
3	(a) providing a nucleic acid library comprising nucleotide sequences that		
4	encode at least partially randomized zinc finger proteins;		
5	(b) transducing cells with expression vectors, each comprising a nucleotide		
6	sequence from the library;		
7	(c) culturing the cells so that zinc finger proteins are expressed in the cells,		
8	wherein the zinc finger proteins modulate gene expression in at least some of the cells;		
9	(d) assaying the cells for a selected phenotype and determining whether or		
10	not the cells exhibit the selected phenotype; and		
11	(e) identifying, in cells that exhibit the selected phenotype, the gene or		
12	genes whose expression is modulated by expression of a zinc finger protein, wherein the		
13	gene so identified is associated with the selected phenotype.		
1	2. The method of claim 1, wherein the zinc finger protein has three,		
2	four, or five fingers.		
2	lour, of five inigers.		
1	3. The method of claim 1, wherein the library comprises no more than		
2	10 ⁷ clones.		
1	4. The method of claim 1, wherein the cells are physically separated,		
2	individual pools of cells and each individual pool of cells is transduced with an		
3	expression vector comprising a nucleotide sequence from the library.		
J	onprocesson vector comprising a macrocatal sequence from the merally.		
1	5. The method of claim 4, wherein the physical separation of the		
2	pools of cells is accomplished by placing each pool of cells in a separate well of a 96,		
3	384, or 1536 well plate.		
1	6. The method of claim 4, wherein the cells are assayed for the		
2	selected phenotype using liquid handling robots.		
1	7. The method of claim 1, wherein the cells are pooled together and		
2	transduced in a batch.		

2

tetracycline.

1 8. The method of claim 7, wherein the cells are assayed for the selected phenotype using flow cytometry. 2 9. The method of claim 1, wherein the library is made by finger 1 2 grafting, DNA shuffling, or codon doping. The method of claim 1, wherein the zinc finger proteins are fusion 10. 1 2 proteins comprising a regulatory domain. 11. The method of claim 10, wherein the zinc finger proteins are fusion 1 2 proteins comprising at least two regulatory domains. 1 12. The method of claim 10, wherein the regulatory domain is selected 2 from the group consisting of a transcriptional repressor, a methyl transferase, a 3 transcriptional activator, a histone acetyltransferase, and a histone deacetylase. The method of claim 10, wherein the regulatory domain is VP16 or 1 13. 2 KRAB. 1 14. The method of claim 1, wherein modulation of gene expression is 2 repression of gene expression. 1 15. The method of claim 1, wherein modulation of gene expression is 2 activation of gene expression. 1 16. The method of claim 1, wherein the cells are selected from the 2 group consisting of animal cells, plant cells, bacterial cells, protozoal cells, or fungal 3 cells. 17. 1 The method of claim 1, wherein the cells are mammalian cells. 18. The method of claim 1, wherein the cells are human cells. 1 19. The method of claim 1, wherein expression of the zinc finger 1 2 proteins is controlled by administration of a small molecule. 20. 1 The method of claim 19, wherein the small molecule is

1	21.	The method of claim 1, wherein the expression vectors are a viral	
2	vector.		
1	22.	The method of claim 21, wherein the expression vectors are a	
2	retroviral expression vector, a lentiviral expression vector, an adenoviral expression		
3	vector, or an AAV expression vector.		
1	23.	The method of claim 1, wherein the selected phenotype is related to	
2	cancer, nephritis, pro	ostate hypertrophy, hematopoiesis, osteoporosis, obesity,	
3	cardiovascular disease, or diabetes.		
1	24.	The method of claim 1, wherein the zinc finger proteins comprise a	
2	Zif268 backbone.		
1	25.	The method of claim 1, wherein genes that are associated with the	
2	selected phenotype are identified by comparing differential gene expression patterns in		
3	the presence and absence of expression of the zinc finger protein.		
1	26.	The method of claim 25, wherein differential gene expression	
2	patterns are compared using an oligonucleotide array.		
1	27.	The method of claim 1, wherein genes that are associated with the	
2	selected phenotype are identified by using zinc finger proteins from the library of		
3	randomized zinc finger proteins to probe YAC or BAC clones.		
1	28.	The method of claim 1, wherein genes that are associated with the	
2	selected phenotype a	are identified by scanning genomic sequences for target sequences	
3	recognized by zinc f	inger proteins from the library of randomized zinc finger proteins.	
1	29.	The method of claim 1, wherein genes that are associated with the	
2	selected phenotype a	are identified by cross-linking the zinc finger protein to DNA with	
3	which it is associated, followed by immunoprecipitation of the zinc finger protein and		
4	sequencing of the DNA.		