An Example Problem

- Data consists of records for 3000 drugs.
 - List of patients taking, dates, diagnoses.
 - About 1M of data per drug.
- Problem is to find drug interactions.
 - Example: two drugs that when taken together increase the risk of heart attack.
- Must examine each pair of drugs and compare their data.

Initial Map-Reduce Algorithm

- The first attempt used the following plan:
 - Key = set of two drugs $\{i, j\}$.
 - Value = the record for one of these drugs.
- Given drug i and its record R_i, the mapper generates all key-value pairs ({i, j}, R_i), where j is any other drug besides i.
- Each reducer receives its key and a list of the two records for that pair: $(\{i, j\}, [R_i, R_i])$.

Example: Three Drugs

Drug 1 data **{1, 2}** Mapper for drug 1 Drug 1 data {1**,** 3} Drug 2 data **{1, 2**} Mapper for drug 2 Drug 2 data {2**,** 3} Drug 3 data **{1, 3}** Mapper for drug 3 Drug 3 data {2, 3}

Reducer for {1,2}

Reducer for {1,3}

Reducer for {2,3}

Example: Three Drugs

Drug 1 data **{1, 2}** Mapper for drug 1 Drug 1 data **{1, 3**} Drug 2 data **{1, 2}** Mapper for drug 2 Drug 2 data {2**,** 3} Drug 3 data **{1, 3}** Mapper for drug 3 Drug 3 data {2, 3}

Reducer for {1,2}

Reducer for {1,3}

Reducer for {2,3}

Example: Three Drugs

What Went Wrong?

- 3000 drugs
- times 2999 key-value pairs per drug
- times 1,000,000 bytes per key-value pair
- = 9 terabytes communicated over a 1GbEthernet
- = 90,000 seconds of network use.

A Better Approach

- The way to handle this problem is to use fewer keys with longer lists of values.
- Suppose we group the drugs into 30 groups of 100 drugs each.
 - Say G_1 = drugs 1-100, G_2 = drugs 101-200,..., G_{30} = drugs 2901-3000.
 - Let g(i) = the number of the group into which drug i goes.

The Map Function

- A key is a set of two group numbers.
- The mapper for drug i produces 29 key-value pairs.
 - Each key is the set containing g(i) and one of the other group numbers.
 - The value is a pair consisting of the drug number i and the megabyte-long record for drug i.

The Reduce Function

- The reducer for pair of groups {m, n} gets that key and a list of 200 drug records – the drugs belonging to groups m and n.
- Its job is to compare each record from group m with each record from group n.
 - Special case: also compare records in group n with each other, if m = n+1 or if n = 30 and m = 1.
- Notice each pair of records is compared at exactly one reducer, so the total computation is not increased.

The New Communication Cost

- The big difference is in the communication requirement.
- Now, each of 3000 drugs' 1MB records is replicated 29 times.
 - Communication cost = 87GB, vs. 9TB.