Sheaves on Manifolds Exercise I.38 の解答

ゆじとも

2021年2月9日

Sheaves on Manifolds [Exercise I.38, KS02] の解答です。

I Homological Algebra

問題 I.38. I,I' を filtered な圏として、 $\varphi:I\to I'$ を函手とする。 φ が cofinal であるとは、以下の条件を満たすことを言う:

- (1) 任意の $i' \in I'$ に対してある $i \in I$ と射 $i' \to \varphi(i)$ が存在する。
- (2) 任意の $i \in I$ と $i' \in I'$ と射 $(f : \varphi(i) \to i') \in I'$ に対してある射 $(g : i \to i_1) \in I$ と $(h : i' \to \varphi(i_1)) \in I'$ が存在して $h \circ f = g$ となる。

C を圏、 I, I_1 を filtered な圏、 $F: I \to \mathcal{C}, G: I^{\mathrm{op}} \to \mathcal{C}$ を函手、 $\varphi: I_1 \to I$ を cofinal とする。自然な射 $\mathrm{colim}(F \circ \varphi) \to \mathrm{colim}\,F$, " $\mathrm{colim}\,(F \circ \varphi) \to \mathrm{"colim}\,F$, " $\mathrm{colim}\,(F \circ \varphi) \to \mathrm{"colim}\,F$, " $\mathrm{lim}\,G \to \mathrm{lim}(G \circ \varphi)$, " $\mathrm{lim}\,G \to \mathrm{lim}\,G \to \mathrm{lim}(G \circ \varphi)$ はいずれも同型射であることを示せ。

証明. $\operatorname{colim}(F \circ \varphi) \to \operatorname{colim} F$ が同型射であることがわかれば、 $\mathcal{C} \to \hat{\mathcal{C}} = \operatorname{Set}^{\mathcal{C}^{\operatorname{op}}}$ を合成して函手 $I \to \hat{\mathcal{C}}$ に対してその事実を適用することにより " colim " $(F \circ \varphi) \to$ " colim " F が同型射であることが従う。 lim に関しても同様である。 さらに $\operatorname{colim}(F \circ \varphi) \to \operatorname{colim} F$ が同型射であることがわかれば、 $G^{\operatorname{op}}: I \to \mathcal{C}^{\operatorname{op}}$ に対してその事実を適用することにより $\operatorname{lim} G \to \operatorname{lim}(G \circ \varphi)$ が同型射であることが従う。以上より、問題 $\operatorname{I.38}$ を示すためには、 $\operatorname{colim}(F \circ \varphi) \to \operatorname{colim} F$ が同型射であることを示すことが十分である。

 $X\in\mathcal{C}$ を任意にとる。 $\operatorname{colim}(F\circ\varphi)\to\operatorname{colim} F$ が同型射であることを示すためには、米田の補題より、自然な射 $\Psi:\lim_{i\in I}\operatorname{Hom}_{\mathcal{C}}(F(i),X)\to\lim_{i_1\in I_1}\operatorname{Hom}_{\mathcal{C}}(F(\varphi(i_1)),X)$ が全単射であることを示すことが十分である。 $(f_i),(g_i)\in\lim_{i\in I}\operatorname{Hom}_{\mathcal{C}}(F(i),X)$ が $\Psi((f_i))=\Psi((g_i))$ を満たすとする。このとき、各 $i_1\in I_1$ に対して $f_{\varphi(i_1)}=g_{\varphi(i_1)}$ が成り立つ。 $i\in I$ を任意にとる。 $\varphi:I_1\to I$ は cofinal であるから、一つめの条件より、ある $i_1\in I_1$ と射 $p:i\to\varphi(i_1)$ が存在する。 $(f_i),(g_i)$ はそれぞれ $\lim_{i\in I}\operatorname{Hom}_{\mathcal{C}}(F(i),X)$ の元であるから、 $f_{\varphi(i_1)}\circ F(p)=f_i,g_{\varphi(i_1)}\circ F(p)=g_i$ を満たす。 $f_{\varphi(i_1)}=g_{\varphi(i_1)}$ であるので、従って $f_i=g_i$ が成り立つ。これは $(f_i)=(g_i)$ を意味し、よって Ψ は単射である。

 Ψ が全射であることを示す。 $(h_{\varphi(i_1)})_{i_1\in I_1}\in\lim_{i_1\in I_1}\operatorname{Hom}_{\mathcal{C}}(F(\varphi(i_1)),X)$ を任意にとる。各 $i\in I$ に対して一つ $i_1\in I_1$ と射 $p_1:i\to \varphi(i_1)$ を選ぶ $(\varphi$ が cofinal であることの一つめの条件を用いる)。 $h_i\stackrel{\mathrm{def}}{=}h_{i_1}\circ F(p_1)$ と定義する。まずこれが i_1,p_1 の取り方に依存しないことを示す。そのためには、別の $p_2:i\to \varphi(i_2)$ に対して $h_{i_1}\circ F(p_1)=h_{i_2}\circ F(p_2)$ が成り立つことが十分である。 I_1 は filtered であるから、 $i_3\in I_1$ と $a_1:i_1\to i_3,a_2:i_2\to i_3$ が存在する。I は filtered であるから、二つの並行な射

 $\varphi(a_1)\circ p_1, \varphi(a_2)\circ p_2: i\to \varphi(i_3)$ に対してある射 $g:\varphi(i_3)\to i'$ が存在して $g\circ\varphi(a_1)\circ p_1=g\circ\varphi(a_2)\circ p_2$ が成り立つ。さらに φ は cofinal であるから、 $g:\varphi(i_3)\to i'$ に二つめの条件を用いることで、ある $(b:i_3\to i_4)\in I_1$ と $(g':i'\to \varphi(i_4))\in I$ が存在して $g'\circ g=\varphi(b)$ が成り立つ。このとき

$$\varphi(b \circ a_1) \circ p_1 = g' \circ g \circ \varphi(a_1) \circ p_1 = g' \circ g \circ \varphi(a_2) \circ p_2 = \varphi(b \circ a_2) \circ p_2$$

が成り立つ。 $p_4 : \stackrel{\text{def}}{=} \varphi(b \circ a_1) \circ p_1$ とおけば、

$$h_{i_1} \circ F(p_1) = h_{i_4} \circ F(\varphi(b \circ a_1) \circ p_1) = h_{i_4} \circ F(\varphi(b \circ a_2) \circ p_2) = h_{i_2} \circ F(p_2)$$

が成り立つ。以上で h_i の定義が $p_1:i\to \varphi(i_1)$ の取り方に依存しないことが示された。次に $(h_i)_{i\in I}$ が $\lim \operatorname{Hom}_{\mathcal{C}}(F(i),X)$ の元を定めることを示す。射 $(p:i\to i')\in I$ を任意にとる。 $q:i'\to \varphi(i_1)$ を一つ選べば、 h_i の定義が $p_1:i\to \varphi(i_1)$ の取り方に依存しないことから、

$$h_i = h_{i_1} \circ F(q \circ p) = h_{i_1} \circ F(q) \circ F(p) = h_{i'} \circ F(p)$$

が成り立つ。これは $(h_i)_{i\in I}$ が F(p) たちと両立的であることを意味し、従って $(h_i)_{i\in I}$ は $\lim \operatorname{Hom}_{\mathcal{C}}(F(i),X)$ の元を定める。各 $i_1\in I$ に対して $h_{\varphi(i_1)}=h_{i_1}$ であるから、 $\Psi((h_i)_{i\in I})=(h_{i_1})_{i_1\in I_1}$ が成り立つ。よって Ψ は全射である。以上で Ψ が全単射であることが従い、問題 I.38 の証明を完了する。

References

[KS02] M. Kashiwara and P. Schapira. Sheaves on Manifolds. Grundlehren der mathematischen Wissenschaften. Springer Berlin Heidelberg, 2002. ISBN: 9783540518617. URL: https://www.springer.com/jp/book/9783540518617.