CFD – aerodinamika pregled

JAKA PETERNEL

Kaj je izziv?

- ▶ Ugotoviti, kako aero naprava vpliva na zrak, ki obteka telo
- Ugotoviti kakšne so sile "Downforce"-a in zračnega upora
- Ovrednotiti vpliv oblike telesa na ti dve sili

Ključne lastnosti toka okoli teles

- ► Laminaren/Turbulenten
 - Pri nizkih Re laminaren
 - Pri visokih Re turbulenten
- Ustaljen / Neustaljen
 - Pri majhnih Re in zelo visokih Re ustaljen
 - Pri prehodnih Re neustaljen!
- Stisljiv/Nestisljiv
 - ▶ Nestisljiv za pline za hitrosti Ma < 0.3

 $Re = \frac{U \cdot D}{v}$; $U ...hitrosti, D ...karakteristična dimenzija, <math>v ...kinematična \ viskoznost$

https://www.grc.nasa.gov/www/K-12/airplane/dragsphere.html

Fizikalni opis problema (nestisljiv tok)

Continuity

X-momentum

$$\rho\left(\frac{\partial U}{\partial t} + U\frac{\partial U}{\partial x} + V\frac{\partial U}{\partial y} + W\frac{\partial U}{\partial z}\right) = -\frac{\partial P}{\partial x} + \rho g_x + \mu\left(\frac{\partial^2 U}{\partial x^2} + \frac{\partial^2 U}{\partial y^2} + \frac{\partial^2 U}{\partial z^2}\right)$$

Y-momentum

$$\rho\left(\frac{\partial V}{\partial t} + U\frac{\partial V}{\partial x} + V\frac{\partial V}{\partial y} + W\frac{\partial V}{\partial z}\right) = -\frac{\partial P}{\partial y} + \rho g_y + \mu\left(\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}\right)$$

Z-momentum

$$\rho\left(\frac{\partial W}{\partial t} + U\frac{\partial W}{\partial x} + V\frac{\partial W}{\partial y} + W\frac{\partial W}{\partial z}\right) = -\frac{\partial P}{\partial z} + \rho g_z + \mu\left(\frac{\partial^2 W}{\partial x^2} + \frac{\partial^2 W}{\partial y^2} + \frac{\partial^2 W}{\partial z^2}\right)$$

Sprememba hitrosti v opazovani točki (če je tok ustaljen, odvod po času = 0)

Viskozna sila (če je tok turbulenten se viskoznost navidezno poveča)

Postopek reševanja

Robni pogoji

(Začetni pogoji)

Pre-procesing Simulacija Postprocesing Izračun Izračun Geometrija aerodinamičnih sil Mreženje Prikaz tokovnic Materialni parametri Prikaz tlačnega polja

Preprocesing - geometrija

- Geometrija:
 - Brez nepotrebnih detajlov
 - Brez čudnih geometrij
 - ▶ Tanka telesa
 - ► Konice, ostri robovi
 - ▶ Tanke reže

Za geometrijo bomo uporabili NX

https://forums.autodesk.com/t5/cfd-forum/can-t-import-inventor-part-to-cfd/td-p/5405125

https://www.cfd-online.com/Forums/cfx/80831-problematic-geometry.html

Preprocessing - Mreženje

- Strukturirano enostavne geometrije, lepši rezultati
- Nestrukturirano –kompleksne geometrije, slabši rezultati
- Če je tok turbulenten (uporabljamo turbulenčni model), strog predpis za velikost prve celice ob steni!
- Več kot je celic, bolj natančna je rešitev
 - Uporabimo toliko celic, kot je le možno
- Celice naj bodo čim bolj podobne kockam
- Če uporabimo na različnih področjih različno velike celice, naj bodo prehodi med temi področji postopni

Strukturirana

Nestrukturirana

https://web.math.pmf.unizg.hr/nastava/nrpdj/Grid-general.html

Preprocessing - Materialni parametri

- Za nestisljiv turbulentni tok potrebujemo dva:
 - Gostota (density)
 - Kinematična viskoznost (kinematic viscosity)
- Ker ne računamo temperature toka okoli telesa, izberemo prametre pri pričakovani povprečeni temperature in tlaku

Preprocessing – Robni pogoji

- ▶ Robne pogoje moramo definirati za vsa polja, ki nastopajo v izračunu:
 - Tlačno
 - Hitrostno
 - ▶ Turbulenčna energija k
 - Disipacije turbulenčne energije epsilon

Preprocessing – Robni pogoji – vožnja naravnost

Preprocessing – Robni pogoji – vožnja naravnost

- Inlet: predpišemo velikost in smer hitrosti, in ničelni gradient tlaka. Vrednost turbulenčne intenzitete je v vetrovniku nizka, reda močno pod 1% -> izračun vrednosti omega oz. epsilon
- Atmosphere: enako kot inlet (v tem primeru računamo aerodinamiko, kot da bi bil avtomobil v tunelu), bolj pravilno bi bilo predpisati tlak in za hitrost izbrati pressurelnletOutlet ...
- Ground: gibajoči se zid ("movingWall"), s hitrostjo enako hitrosti na inletu, ničelnim gradientom za tlak in stenskimi funkcijami za k in epsilon/omega

Preprocessing – Robni pogoji – vožnja naravnost

- Outlet: vrednost nadtlaka = 0 Pa, ničelni gradient za hitrosti in ostalih polj.
- Symmetry: simetrijska ravnina, tu predpišemo ničelni gradient za vse spremenljivke
- Površine opazovanega telesa: nepremični zidovi, hitrost = 0 m/s, za tlak predpišemo ničelni gradient. Za k in epsilon/omega uporabimo stenske funkcije.
- Pnevmatike: na mesto nepremičnega zidu uporabimo vrteči se zid ("rotatingWall") in predpišemo lokacijo osi in smer ter hitrosti vrtenja. Za k in epsilon/omega uporabimo stenske funkcije.

Simulacija

- Nastavimo željeno število iteracij
- Nastavimo željene spremljane veličine (npr. Silo "Downforce"-a)
- Poženemo simulacijo in počakamo, da se izračun konča

Postprocessing – izračun aerodinamičnih sil

Aerodinamična sila:

$$\mathbf{F} = \int_{A} p \cdot \vec{n} \cdot dA$$

Aerodinamični moment okoli težišča:

$$\mathbf{F} = \int_{A} (p \cdot \vec{n}) \times \vec{r} \cdot dA \qquad \longrightarrow \qquad \text{Stabilnost!}$$

Postprocessing - Prikaz tokovnic

Opazujemo tok, pozorni smo na:

- Ali tokovnice sledijo obliki kril? (na sliki vidimo, da tok okoli zadnjega krila teče lepo)
- Ali tok v domeni kje zastaja?
- Od kje prihaja zrak na določeno mesto?

Postprocessing - Prikaz tokovnic

 S pomočjo tokovnic lahko ugotovimo kje v difuzor vdirajo neželni tokovi (označeno z rdečo puščico)

Postprocessing - Prikaz tokovnic

- Prikaz tlačnega polja:
 - Spodnje ploskve morajo imeti nizek tlak, zgornje ploskve visok!

