DevLab Module Datasheet

Complete Technical Specifications

 $\begin{array}{c} DevLab \ Team \\ 2025\text{-}07\text{-}18 \end{array}$

DevLab Electronics Versión: v1.0

Contents

L	Dev	Lab Overview 4	Ŀ
	1.1	Features	1
	1.2	Technical Specifications	1
		1.2.1 Processor & Memory	1
		1.2.2 Power Specifications	1
		1.2.3 Wireless Capabilities	1
	1.3	GPIO Configuration	5
		1.3.1 Available Pins	5
		1.3.2 ADC Capabilities	5
	1.4	Communication Interfaces	5
		1.4.1 UART	5
		1.4.2 SPI	3
		1.4.3 I2C	3
	1.5	Physical Characteristics	3
		1.5.1 Package Information	3
		1.5.2 Environmental Specifications)
	1.6	Software Support	7
		1.6.1 Development Environment	7
		1.6.2 Key Libraries	7
	1.7	Applications	7
	1.8	Safety & Compliance	3
		1.8.1 Certifications	3
		1.8.2 Safety Features	3
	1.9	Ordering Information	3
	1.10	Revision History	3
	1.11	Schematics	3

List of Figures

1	System Topology	4
2	Pinout Diagram	5
3	Physical Dimensions	6
4	Top View	6
5	Bottom View	6
6	Circuit Schematic	8

List of Tables

System Topology

Figure 1: System Topology

1 DevLab Overview

DevLab is a compact embedded module with Wi-Fi and Bluetooth capabilities, designed for IoT applications and rapid prototyping.

1.1 Features

- Dual-core microcontroller (240 MHz)
- Up to 27 GPIOs configurable
- Integrated wireless support (Wi-Fi & Bluetooth)
- Low power consumption modes
- Extensive peripheral support

1.2 Technical Specifications

1.2.1 Processor & Memory

Parameter	Value	Unit	Notes
CPU	Dual-core Xtensa LX6	$240~\mathrm{MHz}$	32-bit RISC
Flash Memory	4 MB	MB	External SPI Flash
SRAM	$520~\mathrm{KB}$	KB	Internal SRAM
RTC Memory	16 KB	KB	Ultra Low Power

1.2.2 Power Specifications

Parameter	Min	Тур	Max	Unit	Conditions
Supply Voltage	2.2	3.3	3.6	V	Normal Operation
Active Current	-	160	260	mA	Wi-Fi Tx @ 19.5dBm
Sleep Current	-	5	10	ţA	Deep Sleep Mode
Standby Current	-	240	350	ţA	Light Sleep Mode

1.2.3 Wireless Capabilities

Wi-Fi Specifications

• Standards: 802.11 b/g/n (2.4 GHz)

Pinout Diagram

Figure 2: Pinout Diagram

• Data Rate: Up to 150 Mbps

• Output Power: +19.5 dBm max

• Antenna: Integrated PCB antenna

Bluetooth Specifications

• Version: Bluetooth v4.2 BR/EDR and BLE

• Output Power: +9 dBm max

• Range: Up to 100m (open field)

1.3 GPIO Configuration

1.3.1 Available Pins

Pin	Function	Voltage	Drive Current	Special Features
GPIO0	Digital I/O	3.3V	40 mA	Boot control
GPIO1	$UART0_TXD$	3.3V	$40~\mathrm{mA}$	Default debug output
GPIO2	Digital I/O	3.3V	$40~\mathrm{mA}$	LED control
GPIO3	$UART0_RXD$	3.3V	-	Default debug input
GPIO4-5	Digital I/O	3.3V	$40~\mathrm{mA}$	General purpose

1.3.2 ADC Capabilities

The module includes a 12-bit SAR ADC with the following characteristics:

• **Resolution**: 12-bit (4096 levels)

• Input Range: 0 - 3.3V

• Channels: 8 channels available

• Sampling Rate: Up to 2 Msps

1.4 Communication Interfaces

1.4.1 UART

• Channels: 3 hardware UART controllers

• Baud Rate: Up to 5 Mbps

• Features: Hardware flow control, DMA support

Physical Dimensions

Figure 3: Physical Dimensions

Top View

Figure 4: Top View

1.4.2 SPI

• Channels: 4 SPI controllers

• **Speed**: Up to 80 MHz

• Modes: Master/Slave operation

• Features: DMA support, flexible pin mapping

1.4.3 I2C

• Channels: 2 I2C controllers

• Speed: Standard (100 kHz), Fast (400 kHz), Fast+ (1 MHz)

• Features: Multi-master support, 7/10-bit addressing

1.5 Physical Characteristics

1.5.1 Package Information

Parameter	Value	Unit
Package Type	QFN-48	-
Dimensions	$6 \ge 6 \ge 0.9$	mm
Pin Pitch	0.4	mm
Weight	0.5	g

1.5.2 Environmental Specifications

Parameter	Min	Max	Unit	Conditions
Operating Temperature	-40	+85	řC	Commercial grade
Storage Temperature	-55	+125	řC	_

Bottom View

Figure 5: Bottom View

Parameter	Min	Max	Unit	Conditions
Humidity	10	95	%RH	Non-condensing

1.6 Software Support

1.6.1 Development Environment

• Arduino IDE: Full support with ESP32 core

• ESP-IDF: Native Espressif framework

• PlatformIO: Cross-platform IDE support

• MicroPython: Python support for rapid development

1.6.2 Key Libraries

• WiFi & Bluetooth connectivity

• FreeRTOS real-time operating system

• Hardware abstraction layer (HAL)

• Over-the-air (OTA) update support

1.7 Applications

The DevLab module is ideal for:

1. IoT Sensors & Actuators

- Environmental monitoring
- Smart home devices
- Industrial automation

2. Prototyping & Development

- Rapid proof-of-concept
- Educational projects
- Research applications

3. Commercial Products

- Smart appliances
- Wearable devices
- Connected lighting

Circuit Schematic

Figure 6: Circuit Schematic

1.8 Safety & Compliance

1.8.1 Certifications

• **FCC**: Part 15.247 (USA)

• **CE**: EN 300 328, EN 301 489 (Europe)

• IC: RSS-210 (Canada)

1.8.2 Safety Features

• ESD Protection: ś2kV HBM on all pins

• Latch-up Immunity: ś100mA

• Thermal Protection: Automatic thermal shutdown

1.9 Ordering Information

Description	Package	MOQ
Standard Module	Tray	100
RoHS Compliant	Tape & Reel	1000
Development Kit	Individual Box	1
	Standard Module RoHS Compliant	Standard Module Tray

1.10 Revision History

Version	Date	Changes
1.0	2025-07-18	Initial release

1.11 Schematics

 $For \ technical \ support \ and \ additional \ information, \ visit \ our \ website \ or \ contact \ our \ engineering \\ team.$