0.1 Parameterisations of NB1

All the Wikipedia article were accessed on 4th August 2015.

English Wikipedia

Interpretation: distribution of the number of successes, k, until r failures have occurred.

$$P_{NB}(k; r, p) = {k+r-1 \choose k} p^k (1-p)^r, \quad E(X=k) = \frac{rp}{(1-p)}$$

- Support
 - $-k \in \{0,1,2,3,\dots\}$ number of successes
- Parameters
 - -r > 0 number of **failures** until the experiment is stopped
 - $-p \in (0,1)$ success probability in each experiment

French Wikipedia

Interpretation: distribution of the number of failures, k, before obtaining n successes

$$P_{NB}(k; n, p) = {k+n-1 \choose k} p^n (1-p)^k, \quad E(X=k) = \frac{n(1-p)}{p}$$

• Support

10

20

- $-k \in \{0,1,2,3,\dots\}$ number of **failures**
- Parameters
 - -n > 0 number of successes until the experiment is stopped (fr. le nombre de succès attendus)
 - $-p \in (0,1)$ success probability in each experiment (fr. la probabilitè d'un succès)

15 German Wikipedia

The german Wiki page describes two alternative representations and interpolations of this distribution. We present here there one which is presented in the overview box on the right-hand side, denoted as the alternative representation.

Interpretation: distribution of the number of failures, k, before obtaining r successes. (ger.: NB Distribution beschreibt die Anzahl, k, der Misserfolge bis zum Eintreten des r-ten Erfolgs.)

$$P_{NB}(k;r,p) = {k+r-1 \choose k} p^r (1-p)^k, \quad E(X=k) = \frac{r(1-p)}{p}$$

- Support
 - $-k \in \{0,1,2,3,\dots\}$ number of **failures** (ger: Anzahl Misserfolge)
- Parameters
 - -r > 0 number of successes until the experiment is stopped (ger: Anzahl Erfolge bis zum Abbruch)
 - $-p \in (0,1)$ success probability in each experiment, (ger: Einzel-Erfolgs-Wahrscheinlichkeit)

$$P_{NB}(k; r, p) = {k + r - 1 \choose k} p^r (1 - p)^k.$$