

Basic Electrical Technology

Parallel Magnetic Circuits

RECAP

- Magnetic Circuit Definitions
- Series Magnetic Circuit
- Why do we take mean length?
- Why Air gap is considered ?
- Leakage and Fringing effect

Parallel Magnetic Circuit

More than one path for flux

$$\Phi = \Phi_1 + \Phi_2$$

$$\mathcal{S}_{AB} = rac{l_{AB}}{\mu_0 \; \mu_{rAB} \; A_{AB}}$$

$$S_{ADCB} = rac{l_{ADCB}}{\mu_0 \, \mu_{rADCB} \, A_{ADCB}}$$

$$S_{AFEB} = rac{l_{AFEB}}{\mu_0 \, \mu_{rAFEB} \, A_{AFEB}}$$

Analogous Electrical Circuit

Parallel Magnetic Circuit...

• (Mmf)_{Total} =
$$\Phi$$
 S_{AB} + Φ ₁ S_{ADCB}

OR

(Mmf)_{Total} = Φ S_{AB} + Φ ₂ S_{AFEB}

Parallel Magnetic Circuit with Air Gap

$$S_{AFEB} = rac{(l_{AFEB} - l_{gleft})}{\mu_0 \, \mu_{rAFEB} \, A_{AFEB}}; \qquad S_{AB} = rac{(l_{AB} - l_{gcenter})}{\mu_0 \, \mu_{rAB} \, A_{AB}}$$

Example 1

The magnetic circuit shown in Fig. is made of a material having relative permeability of 2000. The central limb is wound with 1000 turns and has an airgap of length of 2mm. The side limb airgap is 8 mm. Calculate the current required to set up a flux of 2.6 mWb in the central limb. Mean lengths of various sections are as follows:

AB = 24 cm, ACDB = AFGHEB = 60 cm. Cross sectional area of the structure is 10 cm².

Ans: 4, 98 A

Example 2

A coil carrying a current of 2.8 A is wound on the left limb of the cast steel symmetrical frame of uniform square cross section 16 cm² as shown in Fig. Calculate the number of turns in the coil to produce a flux of 1.8 mWb in the air gap of 0.2 cm length. The relative permeability of cast steel is 1200.

Ans: 1480