# Produit scalaire - Spé maths 1ère

Le produit scalaire est le produit de deux vecteurs à partir duquel on obtient un résultat algébrique (scalaire)

### Formule trigonométrique :

Soient deux vecteurs  $\vec{u}$  et  $\vec{v}$  non nuls, l'angle formés par ces deux vecteurs (ils faut qu'ils aient la même origine) se note :  $(\vec{u}, \vec{v})$ 

Le produit scalaire de  $\vec{u}$  et  $\vec{v}$  s'écrit donc :  $\vec{u} \cdot \vec{v} = ||\vec{u}|| * ||\vec{v}|| * \cos(\vec{u}, \vec{v})$ 

 $\|\vec{u}\|$  est la norme (la longueur) de  $\vec{u}$ 

# Formule du projeté orthogonal :

On a  $\overrightarrow{AB}$  et  $\overrightarrow{AC}$  deux vecteurs <u>qui forment un angle aigu</u>, H est le projeté orthogonal de C sur la droite (AB) :



On peut écrire le produite scalaire de  $\overrightarrow{AB}$  et  $\overrightarrow{AC}$ :  $\overrightarrow{AB}$ .  $\overrightarrow{AC}$  = AB \* AH

On a  $\overrightarrow{AB}$  et  $\overrightarrow{AC}$  deux vecteurs <u>qui forment un angle obtus</u>. H est le projeté orthogonal de C sur la droite (AB) :



On peut écrire le produite scalaire de  $\overrightarrow{AB}$  et  $\overrightarrow{AC}$ :  $\overrightarrow{AB}$ .  $\overrightarrow{AC}$  = -  $\overrightarrow{AB}$  \*  $\overrightarrow{AH}$ 

## Dans un repère orthonormé:

Soient deux vecteurs  $\vec{u}$  et  $\vec{v}$  non nuls, ils ont respectivement pour coordonnées (x ; y) et (x' ; y')

Donc le produit scalaire de  $\vec{u}$  et  $\vec{v}$  est :  $\vec{u} \cdot \vec{v} = x^*x' + y^*y'$ 

## Formule du « défaut d'orthogonalité » :

Soit ABC un triangle quelconque:

On peut écrire le produite scalaire de  $\overrightarrow{AB}$  et  $\overrightarrow{AC}$  :  $\overrightarrow{AB}$  .  $\overrightarrow{AC}$  = ½ (AB^2 + AC^2 – BC^2)

### Bilinéarité et symétrie :

Pour tout vecteurs  $\vec{u}$ ,  $\vec{v}$  et  $\vec{w}$ 

Le produit scalaire est distributif :

$$\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$$

Le produit scalaire est bilinéaire :

$$\vec{u}$$
 .(k\*  $\vec{v}$ ) = (k\*  $\vec{u}$ ).  $\vec{v}$  = k ( $\vec{u}$  .  $\vec{v}$ ) avec k un réel

Le produit scalaire est symétrique :

$$\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$$

### Orthogonalité:

Les vecteurs  $\overrightarrow{AB}$  et  $\overrightarrow{AC}$  sont dits orthogonaux lorsque les droites (AB) et (AC) sont perpendiculaires.

Si deux vecteurs sont orthogonaux alors leurs produit scalaire est égal à 0.

#### **Vecteur normal:**

Un vecteur normal à une droite d est un vecteur non nul perpendiculaire à un vecteur directeur de d (se trouvant sur d).

### **Equation cartésienne:**

On imagine une droite d d'équation : ax + by +c = 0 son vecteur directeur est  $\vec{u}$  et son vecteur normal est  $\vec{n}$ , les coordonnées de  $\vec{u}$  sont (-b; a) et celles de  $\vec{n}$  sont (a; b)

Méthode pour trouver une équation cartésienne d'une droite :

J'ai une droite d passant par le point A (5 ; -1) et avec un vecteur normal  $\vec{n}$  (2 ; -3)

On aura une équation de la forme ax + by + c = 0

On sait déjà d'après les coordonnées de  $\vec{n}$  que a = 2 et que b = -3, pour trouver c on va utiliser les coordonnées de A en les mettant dans l'équation à la place de x et y

Donc: 
$$2*5 - 3*(-1) + c = 0$$
 donc  $10 + 3 = -c$  donc  $13 = -c$  donc  $c = -13$ 

On a donc l'équation finale :

$$2x - 3y - 13 = 0$$