Al track 3주차

1. 데이터 분석이란? (Data Analysis)

⇒ 패턴 또는 관계를 찾기 위해 중요함

- 데이터의 성격을 파악하고 데이터 간의 패턴 또는 관계를 찾아내서 더 효과적인 모델을 만들기 위해 필수적임.
- 패턴과 관계는 변수들 사이에 존재함.

윌마트 "기저귀 맥주 사례"

- 기저귀와 맥주는 연관성 x
- 하지만 둘이 함께 구매하는 고객 많음

⇒ 고객들의 구매내역 분석 결과 아이가 있는 20~30대의 남자가 퇴근 무렵인 저녁 6시부터 8시 사이에 기저귀를 구매하는 경우 맥주를 함께 잘 구매하는 현상 발견

⇒ 기저귀와 맥주를 가까이 진열하여 소비자들이 구매를 빠르고 편리하게 만들어 구매율 높이는데 성공

[데이터 분석 단계]

문제 정의 및 계획 -> 원시 데이터 수집 -> 데이터 전처리 - -> 탐색적 데이터 분석 -> 모델 & 알고리즘 -> 결과보고

- 1. **문제 정의 및 계획**: 문제가 명확해야 그 문제를 해결하기 위한 데이터가 어떤 것인지 추정할 수 있고, 어떤 분석기법을 적용해야 할지도 계획 가능
- 2. 원시 데이터 수집: 엑셀 파일, 종이 문서, 필요하다면 크롤링 등의 방식으로 데이터 수집
- 3. **데이터 전처리**: 수집된 데이터는 대부분 RAW DATA(정제되지 않은 데이터)이므로 바로 분석에 사용할 수 없음. 단위 차이, 결측치, 오류 데이터 등이 존재하므로 보정이 필요함, 수집된 데이터를 분석이 가능한 정제된 데이터로 정돈하는 과정을 전처리 과정이라고 함.
- 4. **탐색적 데이터 분석 (EDA)**: 데이터의 특징과 내재하는 구조를 알아내기 위한 통계적 기법들을 말함. 데이터 수집 -> 시각화 탐색 -> 패턴 도출 -> 인사이트 발견 / 문제 정의 단계에서 미처 발견하지 못한 다양한 패턴을 발견하고 이를 통해 기존 가설 수정 및 새로운 가설 도출 가능, 데이터 분포 및 값 검토를 통해 데이터가 표현하는 현상을 더 잘 이해하고 데이터에 대한 잠재적인 문제 파악 가능

- 5. **모델 & 알고리즘**: 데이터 단계에서 파악한 정보를 바탕으로 심화한 분석을 수행하는 단계 머신러닝 기술 및 전통적인 통계 분석 등의 고급 분석 기법이 사용됨
- 6. 결과 보고: 데이터 제품 또는 의사결정을 위한 의사소통 시각화 또는 보고서, 데이터 시각화가 해당 단계에서 중요함

1-3 단계는 여러 배경 지식과 다양한 컴퓨터 기술이 요구되므로 4-5단계에 집중하여 수업 진행

2. 회귀(Regression) vs Classification(분류)

데이터 분석의 종류

- 1. 지도 학습(supervised): 옳고 그름이 있어서 그것을 학습시키는 것
 - 결과를 알고 있는 데이터를 사용
 - o ex) titanic data 사용
 - ⇒ 인공지능으로 하여금 어떤 사람이 살았는지 죽었는지를 학습시키고 그것을다시 예상하게 만들음
- 2. 비지도 학습(unsupervised): 옳고 그름이 없음
 - 분류화가 되지 않은 데이터에서 숨겨진 패턴을 찾아낼 때가 많음
 - 예측할 변수가 존재하지 않는다.

<modeling>

modeling을 한다는 것은 변수들간의 존재하는 존재들간의 대표적인 관계를 찾아내는 것을 의미함

⇒ 우리가 풀어야하는 문제가 무엇인지에 따라서 사용해야하는 매커니즘이 상당히 다름

모델을 사용하는 두가지 이유

- 1. **예측** : classification 분류(죽었냐 살았냐), 회귀(집값을 예측)
- 2 설명
 - a. 수입이 돈을 갚는 것과 영향이 있는가 등
- ⇒ 우리는 **지도학습 중 예측의 회귀와 분류**에 대해 알아볼 것임

회귀 vs 분류

⇒ 회귀와 분류는 결국 둘다 본질적으로 prediction(예측)을 위한 것임

회귀 - 수치형 데이터

수치형 데이터: 연속형, 이산형

• 어떤 수치 값을 예측하려고 하는데, 그 수치값이 이론적으로는 무한히(연속)되는 것

분류 - 범주형 데이터

범주형 데이터: 서열형, 명목형

3. 선형 회귀(Linear Regression)

1. Linear Regression(선형 회귀)

<선형회귀의 종류>

- 단순 선형회귀: 한개의 독립변수를 사용하여 종속변수 예측
 - f(x) = Wx + b (W: 가중치, b: 편향성)
- 다중 선형회귀: 두 개 이상의 독립변수를 사용하여 종속변수 예측
 - \circ f(x, y, z) = W0 + W1x + W2y+ W3z
- ⇒ 학습을 통해 최적의 가중치(w)와 편향성(b)를 찾아냄

최적의 가중치와 편향성: 모든 데이터로부터 나타나는 오차의 평균을 최소화함

*오차의 평균

MSE(Mean squared Erro, 평균 제곱 오차)

MAE(Mean Absolute Error, 평균 절대 오차)

후버 손실(Huber loss, MSE와 MAE를 절충한 오차)

- 손실함수 or 비용함수: 직선과 데이터 사이의 간격을 제곱하여 합한 값
- 모델이 만들어지고 나면 우리가 알아야 하는 값은 weight값 또는 intercept값인데 coef_attribute에 저장됨

<선형 회귀 학습 과정>

- 1. 처음에는 최적의 w(가중치), b(편향성)을 모르기 때문에 임의의 값으로 시작해서, 점점 성능을 개선시켜가며 최적의 값에 도달
 - a. 첨에 최적의 값을 모르기에 선을 하나 그어놓고 그 다음 계속하면서 최적의 값을 찾 아가는 과정

- i. 독립변수가 하나일 때: 단순 선형회귀인 경우 → <u>손실함수(비용함수)가 일차함</u> 수로 그려짐
- ii. 독립변수가 여러개 일 때: 다중 선형회귀인 경우 → 손실함수가 일차함수로 그려지지 않으므로 경사하강법을 사용해서(이차방정식) 비용함수를 최소로 만들어감
 - 1. **경사하강법(Gradient Descent Method):** 비용함수를 최소화하기 위해 반복해서 파라미터를 조정해가는 과정
 - ⇒ 기울기 이용해서 계산
- 2. 학습을 마치면 최종적으로 가중치와 편향성을 도출할 수 있음

<선형회귀의 장, 단점>

장점:

- 1. 다른 기계학습 모델에 비해 상대적으로 학습이 빠름
- 2. 쉽고 간단한 설명 가능
- 3. 데이터가 많고 적음에 따른 큰 영향이 없음

단점:

- 1. 선형 모델의 특성상 과소적합이 일어나기 쉬움
- 2. 현실의 데이터는 선형관계보다는 비선형 관계가 많기 때문에 문제를 해결하지 못하는 경우가 많음

선형회귀는 overfitting(과대적합)을 피할 수 있는 방법이 없음

과소적합 vs 과대적합

- 과소적합(Underfitting)
 - 모델 학습 시, 충분하지 못한 특징만으로 학습되어 특정 특징으로 편향되게 나타나는 것
 - 해결 방안: 데이터 수 증가, 학습에 사용되는 특징(열)의 개수 증가
- 과대적합(Overfitting)
 - 너무 많은 특징들을 알려줘서 학습 데이터에 해당하는 것만 정확도가 높음
 - 학습 데이터에 대한 정확도는 매우 높지만 테스트 데이터 정확도가 낮게 나옴
 - 해결 방안: 데이터 수 줄이기, 전처리 등

4. 데이터 설명: Boston Housing

칼럼 설명: Boston Housing

- CRIM: 자치시(town) 별 1인당 범죄율
- ZN: 25,000 평방피트를 초과하는 거주지역의 비율
- INDUS:비소매상업지역이 점유하고 있는 토지의 비율
- CHAS: 찰스강에 대한 더미변수(강의 경계에 위치한 경우는 1, 아니면 0)
- NOX: 10ppm 당 농축 일산화질소
- RM:주택 1가구당 평균 방의 개수
- AGE: 1940년 이전에 건축된 소유주택의 비율
- DIS: 5개의 보스턴 직업센터까지의 접근성 지수
- RAD: 방사형 도로까지의 접근성 지수
- TAX: 10,000 달러 당 재산세율
- PTRATIO: 자치시(town)별 학생/교사 비율
- B: 1000(Bk-0.63)^2, 여기서 Bk는 자치시별 흑인의 비율을 말함.
- LSTAT: 모집단의 하위계층의 비율(%)
- CMEDV: 본인 소유의 주택가격(중앙값) (단위: \$1,000)

코드 설명: 0. 데이터 불러오기

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
```

pandas, numpy, matplotlib.pyplot, seaborn 파이썬 패키지 사용

- pandas: 데이터 구조를 제공하는 파이썬 패키지
- numpy: 수학, 과학 연산을 위한 파이썬 패키지
- matplotlib: 데이터를 시각화하는 파이썬 패키지
- seaborn: matplotlib와 같이 데이터를 시각화하는 파이썬 패키지, 조금 더 예쁘게 가능

```
from sklearn import datasets
boston = datasets.load_boston()
```

- Sklearn: 파이썬을 대표하는 머신러닝 라이브러리
- 사이킷런에서 제공하는 보스턴 주택 가격 데이터를 boston 이라는 이름으로 불러옴

```
boston.keys() #데이터 key 값 확인하기
bt = pd.DataFrame(boston['data'],columns=boston['feature_names'])
target = pd.DataFrame(boston['target'],columns=['Target'])
df = pd.concat([bt,target],axis=1) #데이터 통합하기
```

- boston 데이터의 키값을 확인하고 data와 칼럼 이름으로 나눠져있는 데이터를 사용할 수 있게 데이터 통합 진행
- pd.concat(): 데이터 통합

```
df.info()
```

• 데이터 칼럼 및 특징 확인하기

코드 설명: 1. 문제 정의 및 계획

1. 문제 정의 및 계획

• 보스턴 지역 주택 가격에 영향을 미치는 요소들을 살펴보고, 보스턴 지역 주택 가격을 회귀 방식으로 예측하여 실제값과의 오차 비교해보기

df #위에서 데이터를 df라는 변수로 저장함

df # 데이터 확인하기

	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	LSTAT	Target
0	0.00632	18.0	2.31	0.0	0.5380	6.575	65.2	4.0900	1.0	296.0	15.3	396.90	4.98	24.0
1	0.02731	0.0	7.07	0.0	0.4690	6.421	78.9	4.9671	2.0	242.0	17.8	396.90	9.14	21.6
2	0.02729	0.0	7.07	0.0	0.4690	7.185	61.1	4.9671	2.0	242.0	17.8	392.83	4.03	34.7
3	0.03237	0.0	2.18	0.0	0.4580	6.998	45.8	6.0622	3.0	222.0	18.7	394.63	2.94	33.4
4	0.06905	0.0	2.18	0.0	0.4580	7.147	54.2	6.0622	3.0	222.0	18.7	396.90	5.33	36.2
5	0.02985	0.0	2.18	0.0	0.4580	6.430	58.7	6.0622	3.0	222.0	18.7	394.12	5.21	28.7
6	0.08829	12.5	7.87	0.0	0.5240	6.012	66.6	5.5605	5.0	311.0	15.2	395.60	12.43	22.9
7	0.14455	12.5	7.87	0.0	0.5240	6.172	96.1	5.9505	5.0	311.0	15.2	396.90	19.15	27.1
8	0.21124	12.5	7.87	0.0	0.5240	5.631	100.0	6.0821	5.0	311.0	15.2	386.63	29.93	16.5
9	0.17004	12.5	7.87	0.0	0.5240	6.004	85.9	6.5921	5.0	311.0	15.2	386.71	17.10	18.9
10	0.22489	12.5	7.87	0.0	0.5240	6.377	94.3	6.3467	5.0	311.0	15.2	392.52	20.45	15.0
11	0.11747	12.5	7.87	0.0	0.5240	6.009	82.9	6.2267	5.0	311.0	15.2	396.90	13.27	18.9

df.describe() #평균, 최솟값, 최댓값, 사분위 수 등 확인하기

df.des	cribe()												
	CRIM	ZN	INDUS	CHAS	NOX	RM	AGE	DIS	RAD	TAX	PTRATIO	В	
count	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	506.000000	
mean	3.613524	11.363636	11.136779	0.069170	0.554695	6.284634	68.574901	3.795043	9.549407	408.237154	18.455534	356.674032	
std	8.601545	23.322453	6.860353	0.253994	0.115878	0.702617	28.148861	2.105710	8.707259	168.537116	2.164946	91.294864	
min	0.006320	0.000000	0.460000	0.000000	0.385000	3.561000	2.900000	1.129600	1.000000	187.000000	12.600000	0.320000	
25%	0.082045	0.000000	5.190000	0.000000	0.449000	5.885500	45.025000	2.100175	4.000000	279.000000	17.400000	375.377500	
50%	0.256510	0.000000	9.690000	0.000000	0.538000	6.208500	77.500000	3.207450	5.000000	330.000000	19.050000	391.440000	
75%	3.677083	12.500000	18.100000	0.000000	0.624000	6.623500	94.075000	5.188425	24.000000	666.000000	20.200000	396.225000	
max	88.976200	100.000000	27.740000	1.000000	0.871000	8.780000	100.000000	12.126500	24.000000	711.000000	22.000000	396.900000	

df.info() #행의 개수 차이가 존재하지 않음 => 동일하게 506개의 행이 존재함

: df.info() #개수 확인해도 결측치 자체 존재하지 않음. 모두 동일하게 508개왕 row가 존재

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 506 entries, 0 to 505
Data columns (total 14 columns):
             Non-Null Count Dtype
    Column
    CRIM
0
             506 non-null
                             float64
    ZΝ
             506 non-null
                             float64
    INDUS
             506 non-null
                             float64
3
    CHAS
             506 non-null
                             float64
    NOX
             506 non-null
                             float64
    BM
             506 non-null
                            float64
    AGE
             506 non-null
                            float64
7
             506 non-null
    DIS
                            float64
    RAD
             506 non-null
                             float64
             506 non-null
    TAX
                             float64
10 PTRATIO 506 non-null
                            float64
11 B
             506 non-null
                            float64
12 LSTAT
             506 non-null
                            float64
13 Target
             506 non-null
                             float64
dtypes: float64(14)
memory usage: 55.5 KB
```

2. 원시 데이터 수집

- 생략
- 크롤링, 공공 데이터 수집 등 다양한 방법이 존재

3. 데이터 전처리

전처리란 ? 깔끔하지 않은 데이터를 머신러닝 즉 기계가 학습할 수 있도록 깔끔하게 만드는 것

특히, 회귀 문제를 해결할 경우 회귀 문제에서 다룰 수 있는 데이터 = 수치형 데이터이므로 서열형, 명목형 데이터로 이루어진 범주형 데이터의 형식을 바꿔야함

⇒ One Hot Encoding, Label encoding 등의 방식을 이용함

1) 데이터 결측값 확인하기

• (Null 값 확인)

```
df.isnull().sum() #결촉치 자체가 존재하지 않음
CRIM
          0
ZΝ
INDUS
          0
CHAS
          0
NOX
          0
RM
          0
AGE
          0
DIS
          0
          0
RAD
TAX
          0
PTRATIO
          0
          0
LSTAT
          0
Target
          0
dtype: int64
```

```
df.isnull().sum()
```

• 중복값 확인

```
df.duplicated().sum() #중복과 존재하지 않음
O
```

⇒ 현재 상황에서 할 수 있는 데이터 전처리가 없으므로, EDA 과정을 진행하면서 추가적인 데이터 결측값이 존재하는지 혹은 이상치가 존재하는지 파악해야함

4. 탐색적 데이터 분석 [EDA]

• 탐색적 데이터 분석 과정에서 데이터 특징과 내재하는 구조 알아내기 위해 데이터를 다 룸

데이터 수집 -> 시각화 탐색 -> 패턴 도출 -> 인사이트 발견

1) 가설 설정

⇒ 해당 데이터를 보고 궁금했던 점 혹은 주관적인 견해를 넣어 새로운 패턴 및 인사이트를 발견할 수 있다고 생각하는 부분을 가설로 설정하여 탐구

ex) 사회적 통념 상 흑인 비율이 많은 지역에 범죄율이 높을 것이라 보기에 해당 부분을 확인 하고, 범죄율이 높을 경우 주택가격이 하락하기에 흑인 비율이 높은 지역의 주택 가격이 낮 을 것이다

⇒ 가설 설정: 흑인 비율이 높은 지역에 주택 가격이 낮을 것이다.

```
low = df[['B','CRIM','Target']] #흑인비율과 자치시 1인당 범죄율과 Target
low
         В
               CRIM Target
  0 396.90
             0.00632
                       24.0
  1 396.90
             0.02731
                       21.6
  2 392.83
             0.02729
                       34.7
  3 394.63
                       33.4
             0.03237
  4 396.90
             0.06905
                       36.2
  5 394.12
             0.02985
                       28.7
  6 395.60
             0.08829
                       22.9
  7 396.90
             0.14455
                       27.1
  8 386.63
             0.21124
                       16.5
  9 386.71
                       18.9
             0.17004
 10 392.52
             0.22489
                       15.0
  11 396.90
             0.11747
                       18.9
```

```
low = df[['B','CRIM','Target']]
low
```

• low라는 변수에 df라는 데이터 셋에 저장되어있던 흑인비율, 범죄율, 그리고 주택가격 (우리가 예측하고자 하는 것)을 저장하여 새로운 데이터 프레임으로 만들음

시각화 (산점도로 확인하기)


```
ax = sns.scatterplot(x='B',y='Target',hue='Crim',data=df)
```

- x축: 흑인 비율
- y축: 타겟(즉, 집 값)
- hue: 카테고리별로 다르게 나타낸다 . 여기서 hue를 범죄율이라 했으니, 내부적으로 범죄율을 단위별로 나눠서 색깔로 표시해줌. 색깔이 진할 수록 범죄율이 높은 것임

• 가설 검증

- ⇒ 가설 설정: 흑인 비율이 높은 지역에 주택 가격이 낮을 것이다.
- 해당 가설이 참이기 위해서는 우상향 그래프가 나타나야하는데, 현재 해당 그래프를 보면 정확한 상관관계가 있다고 말하기는 어려움. 오히려 흑인 비율이 높을 수록 가격이 높은 것으로 나타남.
- 범죄율과 흑인 비율간의 큰 연관은 없지만, 흑인 비율이 높을수록 집의 가격이 낮다는 것은 성립하지 않는 듯 보임. 하지만, 데이터 자체의 불균형이 존재할 수도 있기때문에 흑인 인구 데이터를 자세히 탐색해봄
- ⇒ 흑인 비율 분포 자체가 몰려 있을 수도 있기 때문에 그래프를 통해 확인

```
# row 생략 없이 출력
pd.set_option('display.max_rows', None)
# col 생략 없이 훌력
pd.set_option('display.max_columns', None)
Black=df['B'].value_counts()
Black
396.90
          121
393.74
            3
395,24
            3
            2
376.14
            2
394.72
395.63
            2
392.80
            2
            2
395.56
390.94
            2
            2
393.68
            2
395.11
            2
395.58
            2
396.21
            2
392.78
            2
393.23
            2
395.69
            2
396.06
            2
393.37
            2
389.71
```

pd.set_option('display.max_rows', None)

⇒ 해당 코드를 통해 데이터를 눈으로 확인 해볼 수 있음

df['B'].plot.bar()

• 흑인 비율 분포를 그래프를 통해 확인하기 ⇒ 현저히 낮은 값이 존재한다는 것을 발견

⇒ 이상치 존재 확인

이상치란? 데이터 분포 특성상 현저하게 낮거나 높은 값을 의미함

⇒ 이상치로 인해 기계 학습시 편향되어 학습될 가능성도 있으므로 다양한 방법(사분위수, scaling 등)을 통해 이상치 제거를 해줌

5. 모델 & 알고리즘

1) Train, Test 데이터 셋 나누기

⇒ 결국, 기계에 학습시키기 위해서는 어떤 데이터를 학습에 사용할 것인지, 어떤 데이터를 테스트 데이터로 사용할 것이지 나눠주는 작업이 필요함

from sklearn.model_selection import train_test_split

- 사이킷런에서 제공해줌
 - train test split: 데이터를 train 데이터 셋과 test 데이터 셋으로 분리해줌

```
feature_columns = list(df.columns.difference(['Target'])) #Target를 제외한 나머지 칼럼을 featrue_columns로 묶음 X = df[feature_columns] y = df['Target'] X_train, X_test, y_train, y_test = train_test_split(X,y, random_state=42) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
```

(379, 14) (127, 14) (379,) (127,)

- feature columns에 target을 제외한 모든 특징 데이터를 저장
- X: 특징
- y: target(예측하고 싶은 주택 가격)
- X_train, X_test, y_train, y_test = train_test_split(X,y,random_state=42)
 - 。 X_train, X_test, y_train, y test 라는 이름으로 X, y의 데이터를 나눠줌
- print(X_train.shape, X_test.shape, y_train.shape, y_test.shape)
 - 。 데이터 프레임의 행과 열의 개수를 반환

2) 모델(알고리즘) 선정: 선형 회귀

- 어떤 알고리즘의 모델을 선정할지 고민
 - 우리의 목표 = 주택 가격 예측(회귀)
 - ⇒ **회귀 알고리즘** 사용: 선형회귀(linear regression)

3) 모델 활용하여 학습 데이터 학습

```
from sklearn import linear_model
linear_regression = linear_model.LinearRegression()
linear_regression.fit(X_train,y_train)

* LinearRegression
LinearRegression()
```

```
from sklearn import linear_model
linear_regression = linear_mode.LinearRegression()
linear_regression.fit(X_train,y_train)
```

- sklearn의 linearmodel 에서 제공하는 linearregression 모델
- linear regression.fit(X train, y train)
 - X train,y train 데이터를 linear regression로 학습

4) 예측 값 확인

```
prediction = linear_regression.predict(X_test)
p= pd.DataFrame(prediction)
p

0
0 28.846163
1 36.002095
2 15.158330
3 25.227891
4 18.909692
5 23.254205
6 17.614401
7 14.338896
8 23.070873
9 20.635981
10 24.812991
11 18.704515
```

```
prediction = linear_regression.predict(X_test)
p = pd.DataFrame(prediction)
p
```

- linear_regression은 위에서 학습 데이터로 학습이 되었기 때문에 X_test 데이터를 활용해 y값을 예측
- ⇒ linear_regression.predict(X_test)
 - ⇒ 학습한 데이터를 바탕으로 X_test를 통해 예측한 y 값을 출력함

```
pre_real = pd.concat([p,y],axis=1)
pre_real
```

	predict	Target
0	28.838854	24.0
1	36.007833	21.6
2	15.083248	34.7
3	25.230909	33.4
4	18.878641	36.2
501	NaN	22.4
502	NaN	20.6
503	NaN	23.9
504	NaN	22.0
505	NaN	11.9

506 rows × 2 columns

• 예측한 값과 원래 값을 비교

⇒ NaN 값이 존재하는 이유는?

⇒ p값은 X_test값을 통해 예측한 y_test값이므로 126개만 예측 (나머지는 예측하지 않은것임) 반면에 y값 자체는 원래 506개의 데이터를 가지고 있으므로 밑부터는 값이 없다는 의미의 NaN 나타남

5) 모델 성능 평가

```
linear_regression.score(X_train,y_train)
0.7481438828141436
linear_regression.score(X_test,y_test)
0.6849551738716659
```

```
linear_regression.score(X_train, y_train)
linear_regression.score(X_test, y_test)
```

• linear_regression.score() : 모델의 성능을 평가