117 Classnotes www. math. uh. edu /~ dblecher / 4377 h 1. pdf /4377 h2. pdf.

TA'S office hours: Georgios M,W 10:00-12:00 605 P6H

Blecher office hours: Tu-Th 11:00-12:00

hast time: defined an inner product, inner product space (i.p., i.p.s.) This is a v.s. V with <.,.> satisfying 5 or le properties

Remarks:

(1) $\langle 0, w \rangle = 0$ (since $\langle \cdot, w \rangle$ linear in 1st variable) \Rightarrow $\langle w_i o \rangle = \langle o_i w \rangle = 0$

(2) I.p. satisfies $\langle V, w_1 + w_2 \rangle = \langle V, w_1 \rangle + \langle V, w_2 \rangle, lug$ taking < v,w> = < w,v> and < v,+vz, w> = < v1, w> + < vz, w> => < V, +Vz, w> = < V, , w> + < Vz, w> so by < V, w> = < w, v> we have < w, v, +v2> = < w, v, 7 + < w, v2>

(3) < V, CW> = C < V, W> for C∈ R proof: <v,cw> = < w,v> = c < w,v> = c <v,w> but <v,cw> = C <v,w> if c & C, by tiny modification of last proof.

Consequently, the i.p. is linear in 2^{nd} variable if $F=\mathbb{R}$, but if $F=\mathbb{C}$, it is "conjugate linear".

Norm: IVII def. V<V,V> VV EV note: $||v|| \ge 0$, and $||v|| = 0 \iff \langle v, v \rangle = 0 \iff v = 0$

fact: ||cv|| = |c| ||v|| $proof: ||cv||^2 = \langle cv, cv \rangle = c\overline{c} \langle v, v \rangle = |c|^2 ||v||^2 = ||cv|| =$

IclilyII

consequence: $\forall v \in V$, $v \neq 0$, we have \overline{v} has norm 1 (call it a unit vector) process is called hormalizing or scaling.

Orthogonality - Say \vee is orthogonal (perpendicular) to w if $\langle v,w\rangle = 0$. We write $\vee \perp w$.

Note: $\vee \perp w \implies w \perp \vee (\langle w,v\rangle = \langle v,w\rangle = \overline{0} = 0)$ by remark (1), $0 \perp w \quad \forall w \in V$

Pythagorean Identity - $\frac{1}{V}$ $\frac{1}{W}$ \frac

 $||v+w||^2 = \langle v+w, v+w \rangle = \langle v, v+w \rangle + \langle w, v+w \rangle = \langle v, v \rangle + \langle w, v \rangle + \langle w, w \rangle = ||v||^2 + ||w||^2$

Orthogonal Decomposition - u w

Write u=av+w, where $w \perp v$, and α is a scalar. Formula: $\alpha = \langle u, v \rangle$, $\overrightarrow{w} = u-av$

check to see if it works: we only need to check $(u-av) \perp v$, where $a = \langle u, v \rangle$ since if this holds, set $w = u - av \Longrightarrow ||v||^2$

u=av+w as desired.

Check: $\langle u-av,v\rangle = \langle u,v\rangle - \langle av,v\rangle = \langle u,v\rangle - \langle u,v\rangle = 0$ Let |v| = |v| = 0

So V 1 (u-av)

Lemma 1: (Cauchy-Schwarz Inequality) - $|\langle u,v\rangle| \leq ||u|| ||v||$ also $|\langle u,v\rangle| = ||u|| ||v||$ if and only if $\langle u,v\rangle$ is linearly dependent.

proof

If V=0 there is nothing to prove. So assume $V\neq 0$. Orthogonal decomposition above: u=av+w, where $a=\frac{\langle u,v\rangle}{\|v\|^2}$ $w \perp v$. So lug Pythagorean identity $\|u\|^2 = \|av\|^2 + \|w\|^2$ $\geq \|av\|^2 = |a|^2 \|v\|^2$. So $\|u\| \geq |a| \|v\| = \|\langle u, v \rangle\| \|v\|$

multiply by $||v|| \Rightarrow ||u|| ||v|| \ge 1 < u, v > 1$ Changing $\ge to = 1$, and reversing the argument, we see that $|\langle u, v \rangle| = ||u|| ||v|| \iff ||u||^2 = ||av||^2 + ||w||^2$ $= ||av||^2 = |a|^2 ||v||^2$, which happens iff $||w||^2 = 0$ iff $w = 0 \iff u = av + 0 \iff (u, v)$ linearly dependent. \square

Corollary 1: (Triangle (D) Inequality) ||v+w|| = ||v|| + ||w||

where ||v|| + ||w|| = ||v|| + ||w|| iff one of v and

where is a positive scalar multiple of
the other.

proof: $||v+w||^2 = \langle v+w, v+w \rangle = \langle v, v \rangle + \langle v_1w \rangle + \langle w, v \rangle + \langle v_1w \rangle$ = $||v||^2 + ||w||^2 + \langle v_1w \rangle + \langle v_1w \rangle = ||v||^2 + ||w||^2 + 2 Re \langle v_1w \rangle$ $\leq ||v||^2 + ||w||^2 + 2 ||v_1w \rangle = ||v||^2 + ||w||^2 + 2 ||v|| ||w|| = (||v|| + ||w||)^2$. Taking $\int : ||v+w|| \leq ||v|| + ||w||$.

Finally ||v+w|| = ||v|| + ||w|| iff $||xv_1w \rangle| = ||v|| + ||w||$ one (say v) is a scalar multiple of other: ||v+w|| = ||v|| + ||w||⇒ ||v+w|| = ||v+w|| = ||v+w|| = ||v+w|| + ||w||⇒ ||v+w|| = ||v+w|| = ||v+w|| = ||v+w|| + ||w||⇒ ||v+w|| = ||v+w|| = ||v+w|| = ||v+w|| = ||v+w|| + ||w||⇒ ||v+w|| = ||v+w|| = ||v+w|| = ||v+w|| = ||v+w|| = ||v+w|| + ||w||⇒ ||v+w|| = ||v+w||

Lemma 2: (parallelograne identity) - ||u+v||2+||u-v||2=(||u||2+||v||2)2

proof: $\langle u+v, u+v \rangle + \langle u-v, u-v \rangle \iff \langle u, u+v \rangle + \langle v, u+v \rangle + \langle u, u-v \rangle + \langle u, u-v \rangle + \langle u, u \rangle + \langle u, u \rangle + \langle v, u$

Definition: Say $(V_1,...,V_n)$ is orthonormal (0,n.) if $V_j \perp V_j$ $\forall i \neq j$, and $||V_k|| = ||Y_k = 1,...,n|$. example: (i,j,k) in \mathbb{R}^3 , more generally, the standard hasis of \mathbb{R}^n .

Slight generalization of Pythogorean identity: <u>Proposition 1</u>: $\frac{(V_1,...,V_n)}{\sum_{k=1}^n |c_k|^2} |V_{c_1},...,c_n \in F$

proof: By induction $n=1: ||c_iv_i|| \stackrel{\text{fact}}{=} ||c_i|| ||v_i|| = ||c_i|| = \sqrt{||c_i||^2}||c_i||^2$. Suppose true $\int_{k=1}^{\infty} \frac{1}{c_k v_k} \frac{1}{||c_i||^2} \frac{1}{||c_i||$

Where W= E-CKVK, and a-11 & CKVKIT

H & CKVKIT

Claim: (W, Vn+1) is o.M.

6/18 Last time: some changes:

Suppose true for k=n. Then for k=n+1, $\left\|\frac{S_{i}}{S_{i}} c_{i}v_{i}\right\|^{2} = \left\|\frac{S_{i}}{S_{i}} c_{i}v_{i} + c_{n+1}v_{n+1}\right\|^{2} = \left\|\frac{S_{i}}{S_{i}} c_{i}v_{i}\right\|^{2} + \left\|c_{n+1}v_{n+1}\right\|^{2}$ by Pythagorean Identity =

 $\frac{9}{2}|c_i|^2+|c_{n+1}|^2$ by induction hypothesis

Throughout rest of this chapter, V is f.d. i.p.s., unless we say otherwise.

Definition: a list (v.,..., vn) is called an orthonormal (o.n.b) hasis for V. if it is orthonormal and is a hasis for V.

example: Standard hasis for R" (eg (i,j,k) in R³)

Note: by the last result any orthonormal list of length dim(V) is an o.n.b.

Theorem 1: If (v_1, \dots, v_n) is an orthonormal leasis for V then $V = \sum_{k=1}^{\infty} \langle v_1, v_k \rangle |v_k| \quad \forall v \in V$ also $||v||^2 = \sum_{k=1}^{\infty} |\langle v_1, v_k \rangle|^2$.

proof:

Let $v \in V$, then $\exists c_k \in F$ s.t. $v = \underbrace{\sum c_k v_k}$. So $\langle v, v_j \rangle = \underbrace{\langle k c_k v_k, v_j \rangle} = \underbrace{\langle c_k c_k v_k, v_j \rangle} = \underbrace{\langle c_j c_k v_j, v_j \rangle} =$

Hence $V = \begin{cases} c_j v_j = \begin{cases} c_j v_j = \\ c_j \end{cases} < v_j > v_j \end{cases}$. Second assertion follows

from the first and Prop. 1.

Lemma 3: (Gram-Schmidt procedure)

If $(u_1,...,u_n)$ is L.I in V, then \exists orthonormal set $(v_1,...,v_n)$ s.t. Span $(u_1,...,u_j) = \text{Span}(v_1,...,v_j) \ \forall j=1,...,n$.

proof: Let v, = ||u|| . Suppose at the end of step j-1 that (v,,..., vj-1) has been found is orthonormal and satisfies spanning condition involving u,,..., uj-1. Step j: first set $w_j = u_j - \frac{1}{k} < u_j, v_k > v_k$ and let $v_j = \frac{w_j}{\|w_j\|_1}$ Note: if icj then < wj, vi> = < uj, -15, < uj, vk> vk, vi> = $\langle u_j, v_j \rangle - \mathcal{E}_{k=1} \langle \langle u_j, v_k \rangle v_k, v_i \rangle = \langle u_j, v_i \rangle - \langle u_j, v_i \rangle \langle v_i, v_i \rangle = 0$ Hence $\langle v_j, v_i \rangle = \langle \frac{\omega_j}{\|w_i\|}, v_i \rangle = \frac{1}{\|w_j\|} \langle w_j, v_i \rangle = 0$. So $(v_1,...,v_j)$ are orthonormal. Note: $w_i \neq 0$, since if $w_j = 0$ then $u_j \in span(v_1,...,v_{j-1})$ by span($u_1,...,u_{j-1}$) which is impossible since (u,,..., uj) are h.I. Note: Wie span (u,, ,, uj) by the definition of wi, and because $V_k \in span (u_1, ..., u_{j-1})$ by the induction hypothesis. Thus vj € span(u,,..., uj), so span(v,,...,vj) ⊆ span (u,,...,uj). Since all the u's, v's are all L.I. these spans are two V.S. of dimension j, so they are equal by HW ch. 2 #11. This completes the step j. So keep iterating till step n. -

Corollary 3: Every f.d. i.p.s. has an o.n.b. proof:

Take a leasis and apply Gram-Schmidt (Lemma 3) to get an o.n. set which has the same length = dim V. This set is L.I. by Cor. 2; so its a hasis by Ch. 2 Prop. 7.

Corollary 4: Every o.n. list in V is a subset of an o.n.b. for V. proof:

it is h. I by cor. 250

If (u,,..., um) is orthonormal, I v,,..., vn e V s.t.

(u,,..., um, v,,...vn) is a hasis for V, luy

ch. 3 Thm. 3. Apply 6 ram-Schmidt to this list. It

is easy to see that the algorithm does not change

the u vectors at all. (ie w₂ = u₂ - < u₂, u, 7 u, = u₂ = v₂)

So we preduce an orthonormal set u,,..., um, d₁,..., dn

This is the same number of elements as the

earlier hasis for V (ie dim V elements) and since

they are h. I. (luy cor. 2), they are a hasis luy

ch. 2 prop. 7. 11

Corollary 5: If $T \in Z(V)$ and $\mathcal{A}(T,B,B)$ is upper Δ with respect to some O.n.b. C.

proof:

 $y = (u_1, ..., u_n)$ apply Gram-Schmidt to get $C = (v_1, ..., v_n)$ an o.n.b. By Prop. 1 ch.5, $T(u_j) \in Span(u_1, ..., u_j)$ $Y_j = 1, ..., n$. By Gram-Schmidt lemma, $Span(u_1, ..., u_j) = Span(v_1, ..., v_j)$ and T and $Sover V_j = E_{k} c_k u_k$ then $T(v_j) = E_{k} c_k T(v_k) \in Span(u_1, ..., u_j) = Span(v_1, ..., v_j)$. By Prop. 1 ch.5, $Y_j = Y_j c_k T(v_k) \in Span(u_1, ..., u_j) = Span(v_1, ..., v_j)$. By Prop. 1 ch.5, $Y_j = Y_j c_k T(v_k) \in Span(u_1, ..., u_j) = Span(v_1, ..., v_j)$.

Corollary le: If Te L(V) then I oin.b. s.t. matrix of T with respect to this chases is upper 1.

proof:

Corollary 5 + Ch.5 Thm. 3. 1

Orthogonal Projections: Let UEV and define U= zveV:

facts: $V^{\perp} = (0) \quad [v \in V^{\perp} \implies \langle v, v \rangle = 0 \implies v = 0]$

· (0) = V · $U_1 \subseteq U_2 \subseteq V \implies U_2^{\perp} \subseteq U_1^{\perp}$ · $U \subseteq (U_1^{\perp})$

· U' is a subspace of V proof: 0 = U', c = IF v, w = U' then < cv + w, u > = $C < V_1 u > + < w_1 u > = CD + D = D$ if $u \in U$.

« < u, v> = < w, v> = < w, v> = < w, v> = v = V=(0)] Theorem 2: 4 U is a sulespace of V then V=UDU

proof:

y vell net then <v, v> = 0 => v=0. Thus $U \cap U^{\perp} = (0)$, Let (u_1, \dots, u_n) be an o.n.b. for U, and extend it they cor. 4 to an o.n.b. $(u_1,...,u_n,v_1,...,v_m)$ for V. Then write any $V = (\frac{2}{k} < v_1 u_k) + (\frac{2}{k} < v_1 v_k) v_k)$ they Theorem 1. The first parenthesis is in U. The second parenthesis is in Ut, since VKEUT. (since $\langle \hat{\mathcal{E}}_{c_j} u_j, v_k \rangle = \mathcal{E}_{c_j} \langle u_j, v_k \rangle = 0$) So $V = U + U^{\dagger}$, so $V = U \oplus U^{\dagger}$.

Corollary 7: 4 U is a sulespace of V then U=(U+)+ proof:

already said $U \subseteq (U^{\perp})^{\perp}$. Let $v \in (U^{\perp})^{\perp}$, by Thm. 2. JueU, well' s.t. v=u+w. Hence w=v-u ∈(U) (since both vand u live in $(U^{\perp})^{\perp}$) On the other hand $W \in U^{\perp}$, then $W = O(\langle w, w \rangle = 0)$. So $V = u \in U$ so these sets are equal.

Definition: If U is a subspace of V, the orthogonal projection Pu of V onto U is defined by Pu (v) = u if V = u+w with u = U, w = U -

(2) Pu & & (V)

(3) Ran $P_u = U$

(4) Ker Pu = U

(5) $P_{u}^{2} = P_{u}$

(6) || Pu(V) | = ||V| \ \\ \\ \\

(1) proof: follows from proof of Thm. 2 (wrote V=(V) + ())

(2) proof: follows from (1) eg. $P_u(cv) = \hat{Z}, \langle cv, u_k \rangle u_k = (cP_u(v))$

(3) proof: Clearly Ran Pu & U, but if uell, then Pulu) = u so ue Ran (Pu)

(5) proof: by proof of (3) if $P_u(v) = u$ then $P_u^2(v) = P_u(u) = u = P_u(v)$.

(4) proof: $V \in \ker(P_u) \iff P_u(v) = 0 \iff V = w \in W$ (see def. of P_u)

(6) proof: by Pythagorean identity $||v||^2 = ||u+w||^2 = ||u||^2 + ||w||^2 \ge ||u||^2 = ||P_u(v)||^2$ where u, w are as in dyf. of P_u above. \square

Proposition 2: If Pu is as above and VEV then

11 V-Pu(V)|| \(\text{V-ull} \) \(\text{Vuell} \) (This is

saying that Pu(V) is the closest point in

U to V.

 $proof: \|V - P_u(v)\|^2 \le \|V - P_u(v)\|^2 + \|P_u(v) - u\|^2$ and

 $V-P_{u}(v)=V-u=w\in U^{\perp}$ in the dep. of P_{u} . By the Pythagorean = $||v-P_{u}(v)+P_{u}(v)-u||^{2}$ = $||v-u||^{2}$

407.78

6/19 <u>hinear functionals</u> are elements of $\mathcal{L}(V,F)$, V any V.S. over F. (eg. $f:\mathbb{R}^3 \longrightarrow \mathbb{R}$ by f(x,y,z) = 3x-2y+z) Example: $f(p) = \int p dx$ for $p \in \mathcal{P}(\mathbb{R})$ Example: $f(g) = \int g(x) \sin x \, dx$ for $g \in V = 2f : [0,1] \to \mathbb{R}$ continuous 3 There are n'special' linear functionals on F^n , defined by $T_k\left(\begin{bmatrix} x_1 \\ x_n \end{bmatrix}\right) = x_k$. In IR^3 for example $T_2\left(\begin{bmatrix} -\frac{1}{3} \\ -\frac{3}{2} \end{bmatrix}\right) = -3$. * Note that these have the property that if $(\vec{e}_i, \vec{e}_2, ..., \vec{e}_n)$ is Standard Basis then $T_i(\vec{e}_j) = S_{ij} = \begin{cases} 1 & i=j \\ 0 & i\neq j \end{cases}$ * On important fact for general v.s's, V is that if (V.,..., Vm) is L.I. in V, F (f.,..., fm) $\subseteq \mathcal{X}(V,F)$ s.t. $f_i(v_j) = S_{ij}$ as in Θ above. proof: assume $B = (v_1, ..., v_m)$ is a hasis Let $S(v) = [v]_B$ in notation above Ch.3 prop. G_i ,

you $v \in V$ and let $f_i \stackrel{\text{def}}{=} T_i \circ S_i$, where T_i is as

Example: Let V be an i.p.s. and $w \in V$ and define $f(v) = \langle v, w \rangle$, for $\forall v \in V$.

above, Check fi(vj) = Sii

Theorem 3: If V is a f.d. i.p.s. then every linear functional on V is of the form $f(v) = \langle v, w \rangle$ $\forall v \in V$. (This w is unique)

If f is the functional and (v_1, \dots, v_n) is an o.n.b.then $\forall v \in V$, $f(v) = f(\underbrace{\hat{S}}_{k=1} \langle v_1 v_k \rangle v_k) = \underbrace{\hat{S}}_{k=1} \langle v_1 v_k \rangle f(v_k) = \underbrace{\hat{S}}_{k=1} f(v_k) v_k$ and let $w = \underbrace{\hat{S}}_{k=1} f(v_k) v_k$. If $\langle v_1 w_2 \rangle = \langle v_1 w_2 \rangle$ trev then <vr w-u> = <vr w> - <vr u> = 0 trev => w-v=0; (by setting v= w-u) so, w=u.

Henceforth, let V, W be f.d. nonzero i.p.s.'s over F.

Definition: The adjoint T* of TeX(V,W) is defined as follows, Fix weW:

Noticing the function on V defined by $f(v) = \langle T(v), w \rangle$ is linear $(= composition \ of \ T$ with Example 5 above). By Thm. 3, $\exists \land u \in W \ s.t. \ f(v) = \langle T(v), w \rangle = \langle v, u \rangle$

VVEV. Define T*(w) = u.

Key Formula: <TV, W> = <V, T*w> ∀v ∈ V, w ∈ W]

Example: Let $T: \mathbb{R}^3 \to \mathbb{R}^2$ be defined by T(x,y,z) = (y+3z, 2x)Find $T^*: \mathbb{R}^2 \to \mathbb{R}^3$. $Soln: \langle T(x,y,z), (v,w) \rangle = \langle (y+3z, 2x), (v,w) \rangle = (y+3z)v+2xw$ $= 2xw + yv + 3zv = \langle (x,y,z), (2w,v,3v) \rangle \Longrightarrow T^*(v,w) = (2w,v,3v)$

Proposition 3: $\forall S, T \in \mathcal{L}(V, W)$, we have $1) T^* \in \mathcal{L}(W, V)$

1) $T^* \in \mathcal{L}(W, V)$ 2) $(S+T)^* = S^* + T^*$ 3) $(cT)^* = \overline{c}T^* \quad \forall c \in F$ 4) $(T^*)^* = T$

REX(W,Z) where Z is another i.p.s.

proof: 11

Homework For example, to see 3) $\langle cT(v), w \rangle = c \langle T(v), w \rangle = c \langle T(v), w \rangle = c \langle V, T^*w \rangle = \langle V, \overline{c}T^*w \rangle \Longrightarrow (cT)^* = \overline{c}T^*$

Ô

Proposition 4: 4 T & & (V, W) then

(a) $\ker(T^*) = (\operatorname{Ran} T)^{\perp}$

(b) Ran(T*) = Ker (T) +

(c) ker (T) = $Ran(T^*)^{\perp}$

(d) Ran(T) = ker (T*) +

proof.

(a) $w \in \ker(T^*) \iff T^*(w) = 0 \iff \langle v, T^*w \rangle = 0 \quad \forall v \in V$ $\iff \langle Tv, w \rangle = 0 \quad \forall v \in V \iff w \in \operatorname{Ran}(T)^{\perp}$ Take \perp of (a): $\ker(T^*)^{\perp} = (\operatorname{Ran}(T)^{\perp})^{\perp} = \operatorname{Ran}(T) \implies$ (d) Switching T and T^* in (a) and (d) gives
(b) and (c): \square

Definition: The conjugate transpose A* of a matrix A = [aij] is [aji].

Example: $\begin{bmatrix} 1 & i \end{bmatrix}^* = \begin{bmatrix} 1 & 2 \\ -i & -3i \end{bmatrix}$

Proposition 5: If $T \in \mathcal{L}(V, W)$ and B, C are o, n, b, for V and W respectively, then $\mathcal{M}(T, B, C)^* = \mathcal{M}(T^*, C, B)$

proof:

 \mathcal{Y} $\mathcal{B}=\{u_i,\ldots,u_n\},\ \mathcal{C}=\{f_1,\ldots,f_m\}$ then by Thm.1 we have $Tu_j=\mathcal{Z}_i < Tu_j,f_i > f_i >$

also $T^*f_j \stackrel{\text{Thim 1}}{=} \stackrel{\text{S}}{\leq} \langle T^*f_j, u_i \rangle u_i = \stackrel{\text{S}}{\leq} \langle u_i, T^*f_j \rangle u_i =$

 \mathcal{L} $< \overline{\mathsf{Tu}_{i},f_{j}} > \mathsf{u}_{i}$ 80 $\mathcal{M}(T^{*},C,B) = [<\overline{\mathsf{Tu}_{i},f_{j}} >] = \mathcal{M}(T,B,C)^{*}$

CHAPTER 7: Operators on inner product spaces

Throughout this chapter, V is a nonzero f.d. i.p.s. over F.

Definition: TEX(V) is selfadjoint if T=T* Example: T: R2 -> R2 be given by T(x,y) = (2x+3y, 3x+7y) Show T=T* soln: compute 4(T) with respect to standard leasis [23] So M(T)*=M(T), By Prop. 5 Ch. le, $\mathcal{M}(T^*)=\mathcal{M}(T)$ so $\theta(T^*)=\theta(T)$; θ as in Ch.3 Thm.2 \Rightarrow $T^*=T$ since θ is one-to-one. Proposition 1: Eigenvalues of a selfadjoint TEX(V) are Let $v \neq 0$, $Tv = \lambda v$, $\Longrightarrow 2 ||v||^2 = \lambda \langle v, v \rangle = \langle \lambda v, v \rangle = \langle \lambda v, v \rangle = \langle \lambda v, v \rangle$ < TV, V>= < V, T*V> = < V, TV> = < V, ZV> = 2 < V, V> = $\overline{2} ||v||^2$ bividing by $||v||^2$, $2=\overline{2}$ so $2 \in \mathbb{R}$. \square Proposition 2: 4 V is an i.p.s. over C, TEX(V) with $\langle Tv, v \rangle = 0$ $\forall v \in V$, then T = 0. $\langle Tu, w \rangle = \frac{\langle T(u+i\omega) \rangle - \langle T(u-i\omega), u-i\omega \rangle}{4} + i \frac{\langle T(u+i\omega), u+i\omega \rangle - \langle T(u-i\omega), u-i\omega \rangle}{4}$ \Rightarrow Tu \in $V^{\perp} = (0)$ \Rightarrow Tu \in 0 $\forall u \Rightarrow T = 0$ Corollary 1: 4 V is an i.p.s. over C, TeX(V), then

T=T* \(\subseteq \tau\tau_1, v > \in R\) \(\tau\tau \)

 $\langle TV, V \rangle - \langle TV, V \rangle = \langle TV, V \rangle - \langle V, T^*V \rangle = \langle TV, V \rangle - \langle T^*V, V \rangle = \langle TV, V \rangle - \langle T^*V, V \rangle = \langle TV, V \rangle - \langle TV, V \rangle - \langle TV, V \rangle = \langle TV, V \rangle - \langle TV, V \rangle$

<(T-T*)v,v> VeV. So <Tv,v> eR VeV <>
0=<(T-T*)v,v> VeV </br>

Definition: TEX(V) is normal if TT*=T*T

· Every selfadioiset T is normal. (but converse is false):

* T(x,y) = (y,0) is not normal.

Proposition 3: TeL(V) is normal if and only if

proof:

 $||T_{V}||^{2} = ||T^{*}_{V}|| \quad \forall_{V} \iff \langle T_{V}, T_{V} \rangle = \langle T^{*}_{V}, T^{*}_{V} \rangle \iff \langle T^{*}_{V}, V \rangle = \langle T^{*}_{V}, V \rangle = 0$ $\forall_{V} \in V \iff T^{*}_{V} = 0 \iff T \text{ normal.} \quad \Box$

Corollary 2: If Te L(V) is normal with eigenvector v corresponding to e-value 2, then v is an e-vector corresponding to e-value 2.

proof!

We can assume V is an i.p.s. over C. If T is normal, so is T-2I. $(T-2I)^*(T-2I)^*(T-2I) = (T^*-2I^*)(T-2I) = TT^*-2T-2T^*+22I$ $(T-2I)(T-2I)^* = (T-2I)(T^*-2I) = TT^*-2T-2T^*+22I$ which are the same. Since (T-2I)V = 0, $||(T-2I)^*V||$ $\stackrel{\text{CE}}{=} 1|(T-2I)V|| = 0$. So $(T^*-2I)V = 0$ $\longrightarrow T^*V = 2V$ $\stackrel{\text{CE}}{=} V$ e-vector corresponding to 2. \square

Corollary 3: $T \in \mathcal{L}(V)$ is normal and if V, w are e-vectors corresponding to two distinct e-values, then $V \perp w$.

proof:

. (1)

Suppose $Tv = \alpha V$, $Tw = \beta w$, $\alpha \neq \beta$, then $(\alpha - \beta) < u, v > = \alpha < v, w > -\beta < v, w > -\langle v, w \rangle = \langle x, w \rangle = 0$

Divide ly x-B: <v, w>=0

Thenem 1: The Spectral Theorem - C version)

Let V lu an i.p.s. over C, TEL(V), the following are equivalent (1) T is normal (2) I o.n.b. for V with respect to which M(T) is diagonal. (3) I o.n.b. for V consisting entirely of e-vectors of T (4) T = 2 1kPk, where Pk are orthogonal projections with PiPj = 0 if i = j. In (4) 2, ..., 2n are the distinct e-values and Px is the orthogonal projection onto e-space Eax. (3) implies (2) \rightarrow obvious by definition of 4(T) (2) implies (1) If M(T) = $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$, then by Prop. 5 Ch.le. $\mathcal{M}(T^*) = \mathcal{M}(T)^* = \begin{bmatrix} 2 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \\ 0 & 2 & 2 & 2 \end{bmatrix}$ and so clearly M(T) M(T*) = M(T*) M(T). By another result in Ch.3 we get $\mathcal{M}(TT^*) = \mathcal{M}(T^*T)$ so in language of Ch.3 Thm 2 O(TT*) = O(T*T) => TT*=T*T => Tis normal. (1) implies (3). Suppose T is normal, by Ch. le Cor. 6 \exists o.n.b. (u_1, \dots, u_n) with respect to which $\mathcal{M}(T)$ is upper triangular: $\mathcal{M}(T) = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & a_{2n} & \cdots & \vdots \\ \vdots & \cdots & \cdots & \vdots \\ \vdots & \cdots & \cdots & \vdots \\ \vdots & \cdots & \cdots & \cdots \end{bmatrix}$ $\|Tu_1\|^2 = \|a_n u_1\|^2 = |a_n|^2 \cdot 1 \xrightarrow{\text{frop.3}} \|T(u_1)\|^2 = \frac{2}{\kappa^2} |a_{1K}|^2 \text{ since}$ $\mathcal{M}(T^{*}) = \mathcal{M}(T)^{*} = \begin{bmatrix} \overline{a_{11}} & \overline{a_{22}} & \dots & \overline{a_{nd}} \\ \overline{a_{1n}} & \overline{a_{2n}} & \dots & \overline{a_{nd}} \end{bmatrix} \implies |a_{1k}|^{2} = 0 \quad \forall k = 2, \dots, n$ $\Rightarrow a_{1k} = 0 \quad \forall k = 2, ..., n.$ $||Tu_2||^2 = |a_{22}|^2 = ||T * u_2|| = \frac{\hat{S}}{k-2} |a_{2k}|^2 \Rightarrow a_{2k} = 0 \quad \forall k = 3, 4, ..., n.$

Similarly, axj=0 +j>k. So M(T) is diagonal.

proof:

(4) implies (1): $T^*T = \left(\sum_{k=1}^{n} \lambda_k P_k\right)^* \left(\sum_{j=1}^{n} \lambda_j P_j\right)$ $= \left(\sum_{k=1}^{n} \overline{\lambda}_k P_k\right) \left(\sum_{j=1}^{n} \lambda_j P_j\right)$ $= \sum_{k=1}^{n} \overline{\lambda}_k \lambda_k P_k$ $= \sum_{k=1}^{n} \overline{\lambda}_k \lambda_k P_k$ $= \sum_{k=1}^{n} \overline{\lambda}_k \lambda_k P_k$

and a similar argument shows this also equals TT^* (3) implies (4): Let $(u_1, ..., u_m)$ be an o.n.b. of e-vectors and suppose $u_1, ..., u_{k_1}$ correspond to e-value 2a, etc. Let P_1 be projection onto e-space for 2a, $T(v) = T(\sum_{k=1}^{m} C_k u_k) = \sum_{k=1}^{m} C_k T(u_k) = \sum_{k=1}^{m} C_k \lambda_{jk} u_k$ where λ_{jk} is e-value for e-vector u_k . Similarly, $(\hat{S}\lambda_{j}P_{j})(\hat{S}C_k u_k) = \hat{S}\sum_{k=1}^{m} \lambda_{j} C_k P_{j}(u_k) = \sum_{k=1}^{m} C_k \lambda_{jk} u_k$. So

T = \(\frac{2}{2} \) Pj. \(\O \)

HW. Ch.b to be graded.

Axler Q4 4 ||u||=3, ||u+v||=4, ||u-v||=6, what's ||v||?

10) $P_2(\mathbb{R})$ with $\times f, g > = \int_0^1 f g dx$ apply Gram-schmidt to $\mathbb{E}[1, X, X^2]$ to find an o.n.b.

(14) Find an o.n.b. for $P_2(\mathbb{R})$ s.t. 'differentiation' has matrix upper Δ .

(27) $T(\mathbb{E}, ..., \mathbb{E}_n) = \{0, \mathbb{E}, \mathbb{E}_2, ..., \mathbb{E}_{n-1}\}$ Find $T^*: \mathbb{R}^n \to \mathbb{R}^n$ (32) At $M_{min}(\mathbb{R})$ reshow dim span(columns of A)

Fact I should have emphasized earlier (use often sitently)

• In an i.p.s. V, if $\langle u,v\rangle = \langle w,v\rangle \forall v \in V \implies u=w$.

proof: $\langle u-w,v\rangle = 0 \quad \forall v \in V \implies u-w \in V^{\perp} = (0) \implies u-w=0 \implies u-w$

Add a Ine of explanation to end of last proof

(C spectral theorem) $P_j(u_k) \neq (0)$ iff u_k is the jth eigenspace $E_{\lambda_j} \iff \lambda_j = \lambda_{j_k}$ in the notation of proof above so $\lambda_j P_j(u_k) = \lambda_{j_k} u_k$. The spectral theorem if T = TR) is an i.p.s. over

R and TeZ(V) then TFAE:

(i) T is selfadjoint (T=T*)

(ii) I o.n.b. of V with respect to which M(T) is diagonal with real entries.

(rows of A)

(iii) All e-values of T are real and F o.n.h. for V consisting of e-vectors of T. (iv) $T = \sum_{k=1}^{n} \lambda_k P_k$ where P_k are orthogonal projections with $P_i P_j = 0$ if $i \neq j$ and $\lambda_k \in IR$ $\forall k = 1,...,n$.

In (iv) we can take $\lambda_1,...,\lambda_n$ to be the distinct e-values of T, and P_k projection onto eigenspace E_{2_K} $\forall k = 1,...,n$.

proof:

(iii) \Rightarrow (ii) obvious as in Thm. 1

(ii) \Rightarrow (i) essentially just as in proof of Thm. 1, with slight adjustments. Assuming (ii) we have $\mathcal{M}(T) = \mathcal{M}(T)^* = \mathcal{M}(T^*) \Rightarrow \theta(T) = \theta(T^*) \Rightarrow T = T^*$ (iii) \Rightarrow (iv) as in Thm. 1.

(iv) \Rightarrow (iii) $T^* = (\mathcal{E}_{\lambda_k} P_k)^* = \mathcal{E}_{\lambda_k} P_k \stackrel{\text{tw}}{=} \mathcal{E}_{\lambda_k} P_k = T$ (i) \Rightarrow (iii) Omitted. See text. \Box