

AVL Trees

Problem

Let's create a Binary Search Tree from the following input.

Input: [11, 2, 16, 20, 14, 1, 8]

Binary Search Tree

Let's create a Binary Search Tree from the following input.

Input: [11, 2, 16, 20, 14, 1, 8]

What will be the worst Time Complexity of searching in the Binary Search Tree?

Time Complexity: O(h) where h is the height of the tree

 $h = \log_2(n)$

What will be the worst Time Complexity of searching in the Binary Search Tree?

Time Complexity: $O(\log_2(n))$

Binary Search Tree

Let's create a Binary Search Tree from the following input.

Input: [1, 2, 8, 11, 14, 16, 20]

Binary Search Tree

Let's create a Binary Search Tree from the following input.

Binary Search Tree: Food for Thought?

What is the special name of this Binary Search Tree?

Binary Search Tree: Food for Thought?

What is the special name of this Binary Search Tree?

Binary Search Tree: Linked List?

So, it means if the data is given in sorted order then there is not difference in BST and Linked List.

Binary Search Tree: Linked List?

Now, the question is what is the benefit of Binary Search Tree when the worst case of Searching in a Binary Search Tree and Linked List is the same?

Binary Search Tree

There is no benefit of binary search trees unless we make a binary search tree whose height is always $\log_2(n)$ when the input data is given in any order.

Binary Search Tree

There is no benefit of binary search trees unless we make a binary search tree whose height is always $\log_2(n)$ when the input data is given in any order.

Balanced Binary Search Tree

Why is this tree a Balanced Binary Search Tree?

Balanced Binary Search Tree

A balanced binary search tree (height-balanced binary search tree) is defined as a tree in which the height of the left and right subtree of any node differ by not

Balanced Binary Search Tree

Balance Factor (BF)

=

Height of left SubTree - Height of right SubTree

Balanced BST: Balance Factor

Balance Factor (BF)

Height of left SubTree - Height of right SubTree

Balanced BST: Balance Factor

Balance Factor (BF)

Height of left SubTree - Height of right SubTree

Balanced Tree

Now, the question is How to Create a Balanced Binary Search Tree?

Let's start inserting the input values in the Tree and see what happens when the balance factor is greater than 1 or less than -1.

Inserted the Node and calculated the Balance Factor of the node.

Input: 11

Input: 11, 14

Inserted the Node and calculated the Balance Factor of the node.

Balanced BST Input: 11, 14, 20

Inserted the Node and calculated the Balance Factor of the node.

Balanced BST Input: 11, 14, 20

If the balance factor is less than -1 and if the node is inserted in the right subtree of the right child then do the Left Rotation.

Balanced BST Input: 11, 14, 20, 2

Inserted the Node and calculated the Balance Factor of the node.

Balanced BST Input: 11, 14, 20, 2, 1

Inserted the Node and calculated the Balance Factor of the node.

Balanced BST Input: 11, 14, 20, 2, 1

If the balance factor is greater than 1 and the node is inserted in the left subtree the left child then apply Right Rotation

Balanced BST Input: 11, 14, 20, 2, 1, 8

Inserted the Node and calculated the Balance Factor of the nodes.

If the balance factor is greater than 1 and the node is inserted in the right subtree left child then apply 2 rotations. Left Rotation then Right Rotation.

Balanced BST

If the balance factor is greater than 1 and the node is inserted in the right subtree left child then apply 2 rotations. Left Rotation then Right Rotation.

Balanced BST Input: 11, 14, 20, 2, 1, 8, 16

Inserted the Node and calculated the Balance Factor of the nodes.

Balanced BST

Input: 11, 14, 20, 2, 1, 8, 16

If the balance factor is less than -1 and the node is inserted 2 in the left subtree of right child then apply 2 rotations. Right Rotation and

then Left Rotation.

Balanced BST

Input: 11, 14, 20, 2, 1, 8, 16

If the balance factor is less than -1 and the node is inserted 2 in the left subtree of right child then apply 2 rotations. Right Rotation and then Left Rotation.

Self Balancing BST Input: 11, 14, 20, 2, 1, 8, 16

Self-Balancing Binary Search Trees are height-balanced binary search trees that automatically keeps height as small as possible when insertion and deletion operations are performed on the tree

Input: 11, 14, 20, 2, 1, 8, 16

Such Self Balancing BST in which the heights of the two child subtrees of any node differ by at most one are known as AVL trees (named after inventors Adelson-Velsky and Landis)

Case 1 (LL Case): Insertion into left subtree of left child of node x

Case 1 (LL Case): Insertion into left subtree of left child of node x

Case 2 (RR Case): Insertion into right subtree of right child of node x

Case 2 (RR Case): Insertion into right subtree of right child of node x

Case 3 (LR Case): Insertion into right subtree of left child of node x

Case 3 (LR Case): Insertion into right subtree of left child of node x

Case 4 (RL Case): Insertion into left subtree of right child of node x

Case 4 (RL Case): Insertion into left subtree of right child of node x

AVL Trees: Working Example

Build an AVL tree with the following values.

Input: 15, 20, 24, 10, 13, 7, 30, 36, 25

AVL Trees: Working Example

Build an AVL tree with the following values.

Input: 15, 20, 24, 10, 13, 7, 30, 36, 25

Learning Objective

Students should be able to insert elements in the AVL trees.

Self Assessment

In the following tree, write the Balance Factor of each node.

Self Assessment

Draw all the rotations that you must perform and the final AVL tree after the following elements are inserted in the given order starting from an empty tree.

Input:

1, 10, 5, 7, 3, 13, 6, 4, 8, 9