DATA STRUCTURE ALGORITHMS AND APPLICATIONS (CT- 159)

Lecture – 12 Graph – Representation, Traversal & Shortest Path Algorithm

Instructor: Engr. Nasr Kamal

Department of Computer Science and Information Technology

Graph: Definition

- A graph consists of a set of vertices and a set of edges
- Think of a map of your state.
- Each town is connected with other towns via some type of road.
- A map is a type of graph.
- Each town is a vertex and a road that connects two towns is an edge.
- Edges are specified as a pair, (v1, v2), where v1 and v2 are two vertices in the graph.
- A vertex can also have a weight, sometimes also called a cost.

Graphs

- $lue{}$ A graph G=(V,E), where V is a set of vertices and E is a set of edges.
- Consist of:
 - Vertices
 - Edges

Vertices can be considered "sites" or locations.

Edges represent connections.

Applications

Air flight system

- Each vertex represents a city
- · Each edge represents a direct flight between two cities
- · A query on direct flights becomes a query on whether an edge exists
- · A query on how to get to a location is "does a path exist from A to B"
- · We can even associate costs to edges (weighted graphs), then ask "what is the cheapest path from A to B"

Definition

Undirected graph

An undirected graph is specified by an ordered pair (V,E), where V is the set of vertices and E is the set of edges

$$V = \{a, b, c, d, e, f\}$$

$$E = \{\{a,b\},\{a,c\},\{b,d\},\{c,d\},\{b,e\},\{c,f\},\{e,f\}\}$$

Graph Representation

Two popular computer representations of a graph. Both represent the vertex set and the edge set, but in different ways.

- Adjacency Matrix
 Use a 2D matrix to represent the graph
- Adjacency List
 Use 2D array of linked lists

Adjacency Matrix

	a	b	c	d	e
a	0	0	1	1	1
b	0	0	0	0	0
c	1	0	0	0	1
d	1	0	0	0	1
e	1	0	1	1	0

- 2D array A[0..n-1, 0..n-1], where n is the number of vertices in the graph
- Each row and column is indexed by the vertex id.
 - e,g a=0, b=1, c=2, d=3, e=4
- An array entry A [i] [j] is equal to 1 if there is an edge connecting
- vertices i and j. Otherwise, A [i] [j] is 0.
- The storage requirement is $\Theta(n^2)$. Not efficient if the graph has few edges.
- We can detect in O(1) time whether two vertices are connected.

Adjacency list

- The adjacency list is an array A[O..n-1] of lists, where n is the number of vertices in the graph.
- Each array entry is indexed by the vertex id (as with adjacency matrix)
- The list A[i] stores the ids of the vertices adjacent to i.

	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	1	0
1	0	0	1	1	0	0	0	1	0	1
2	0	1	0	0	1	0	0	0	1	0
3	0	1	0	0	1	1	0	0	0	0
4	0	0	1	1	0	0	0	0	0	0
5	0	0	0	1	0	0	1	0	0	0
6	0	0	0	0	0	1	0	1	0	0
7	0	1	0	0	0	0	1	0	0	0
8	1	0	1	0	0	0	0	0	0	1
9	0	1	0	0	0	0	0	0	1	0

Adjacency Lists vs. Matrix

Both representations have their use cases:

Adjacency Lists

- Efficient in terms of memory for sparse graphs, but slower for edge existence checks.
- More compact than adjacency matrices if graph has few edges Requires more time to find if an edge exists

Adjacency Matrix

- Fast to check if an edge exists, but uses more memory for sparse graphs.
- Always require n² space. This can waste a lot of space if the number of edges are sparse
- Can quickly find if an edge exists

Path between Vertices

A path is a sequence of vertices $(v_0, v_1, v_2, ..., v_k)$ such that

For $0 \le i < k$, $\{v_i, v_{i+1}\}$ is an edge

For $0 \le i < k-1, v_i \ne v_{i+2}$ That is, the edge $\{v_{i'}, v_{i+1}\} \ne \{v_{i+1'}, v_{i+2}\}$

Note: a path is allowed to go through the same vertex or the same edge any number of times!

The length of a path is the number of edges on the path

Types of Paths

- A path is simple if and only if it does not contain a vertex more than once.
- A path is a cycle if and only if $v_0 = v_k$ The beginning and end are the same vertex!
- A path contains a cycle if some vertex appears twice or more

Graph Traversal

Two common graph traversal algorithms

- Breadth-First Search (BFS)
- Depth-First Search (DFS)

BFS and DFS are fundamental graph traversal algorithms, commonly used to explore nodes and edges of a graph

Breadth First Search - BFS

- BFS is a method for traversing a graph in layers.
- It is particularly useful for finding the shortest path in an unweighted graph, testing connectivity, and solving a variety of graph-related problems.
- Starting from a given node (often referred to as the **source node**), BFS explores all of the node's neighbors first, then the neighbors of those neighbors, and so on.
- It uses a queue data structure to keep track of nodes to visit next, ensuring that nodes are visited level by level.

BFS and Shortest Path Problem

• Given any source vertex **s**, BFS visits the other vertices at increasing distances away from s. In doing so, BFS discovers paths from s to other vertices

• What do we mean by "distance"? The number of edges on a path

from s.

1 2 9 1

1 3 7 1

6 2

Example

Consider s=vertex 1

Nodes at distance 1? 2, 3, 7, 9

Nodes at distance 2? 8, 6, 5, 4

Nodes at distance 3?

BSF Algorithm

```
Algorithm BFS(s)
Input: s is the source vertex
Output: Mark all vertices that can be visited from s.
    for each vertex v
        do flag[v] := false;
    Q = \text{empty queue};
                                      Why use queue? Need FIFO
    flag[s] := true;
    enqueue(Q, s);
5.
    while Q is not empty
       do v := dequeue(Q);
7.
           for each w adjacent to v
8.
               do if flag[w] = false
9.
                     then flag[w] := true;
10.
                           enqueue(Q, w)
11.
```

BFS Algorithm

The algorithm for breadth-first search uses a queue. The algorithm is as follows:

- Find an unvisited vertex that is adjacent to the current vertex, mark it as visited, and add to a queue.
- If an unvisited, adjacent vertex can't be found, remove a vertex from the queue (as long as there is a vertex to remove), make it the current vertex, and start over.
- If the second step can't be performed because the queue is empty, the algorithm is finished.

BFS

000000 00 00000

0 0 0

$$Q = \{ \}$$

Initialize Q to be empty

Adjacency List

0000

Visited Table (T/F)

	0000000
10	- F0000
00000000	0000
000000000	00000
	00000
	0000 0
000000000000000000000000000000000000000	F
<u> </u>	00 00
0000000	
3	E.
00000000	_
4	F
00 00	
0000	F
0 0 0	0
0 0 0	0
6	F
6	F
6 7	F
6	F
6 7	F
6 7	F
6 7 8	F
6 7 8	F
6 7 8	F

Initialize visited table (all False)

$$Q = \{ 2 \}$$

Place source 2 on the queue.

Adjacency List

Visited Table (T/F)

0 (00000	00000	0
0 4	0000	0 🖂 0 0	9
0 (0 U) 0 0	0 0 0 0 0	0
0 6	00000	00000	8
0 (00000	0 0 0 0	0
0 (00000	0 0 0	
0 (00000	0 0 0 0 0	
0 (00000	00000	P
0 1	9	0 0	
0 (0 0 0 0	
0 6	00000	8.6	
0 0	2	F	
0 0	3		
0 0	00000		Ú.
000	00000	0	
00	4	%F	
0.0	00000		
0.0	0.0		
0 (5	0 F	
- 1	5	_ I	
ď	0.0	0.0	
- (C		
- 6	6	F	
	0 0 0		
	0_000	0.0	
	00 00	F.,	
	6		
	001		
	R	°E.	
	8	• F	
		°F	
		F	
	8	F.	
		F.	888

Flag that 2 has been visited.

Adjacency List

$$Q = \{2\} \rightarrow \{8, 1, 4\}$$

Dequeue 2.

Place all unvisited neighbors of 2 on the queue

Visited Table (T/F

00000	000	,	0
0	0000	F	ı
00000	000	1000	0
	000		6
00000	000	100000	Ĭ
200	000	16-00	1
) (Z 00	000		
10000		0 00	┨
0000		F	
00000	00	70	4
00800		Т	
0 0 1 1 0 0		•	
000		_	1
5		F	
	0		1
6		F	ı
	0 0	h	-
	0 0	·F.	
-			
ا ه		T	
0		0 0 0	
			1
	0) 0 <u>0 0</u> 0 0 0	- 1
9	000	F	

Mark neighbors as visited.

Adjacency List

0 T 1 T 2 T 3 F 4 T 5 F 6 F 7 F 8 T	8 T 9 T
-------------------------------------	------------

Mark new visited Neighbors.

- $Q = \{ 8, 1, 4 \} \rightarrow \{ 1, 4, 0, 9 \}$
 - Dequeue 8.
 - -- Place all unvisited neighbors of 8 on the queue.
 - -- Notice that 2 is not placed on the queue again, it has been visited!

Adjacency List

$$Q = \{ 1, 4, 0, 9 \} \rightarrow \{ 4, 0, 9, 3, 7 \}$$

Dequeue 1.

- -- Place all unvisited neighbors of 1 on the queue.
- -- Only nodes 3 and 7 haven't been visited yet.

Visited Table (T/F)

0	1999	10000
a	000	10 10 1
~ 1		
91		
0.0	0000	0000
8	0.0) (C
0		000
ō.		10 d
9		, , , , ,
9 (1886
a	000	0.00
Ξ		
91		9 199
0	0 0	10 0
ā	0.00	A 6
9	•	@ @
0	0 6	9.6
6.1	1.00	
-		
91	100	
0	0 0	_
ă	-4	
9	0.0	
	9	
_		
	5	F
0	5	F
0	5	F
0 0	0	F
0 0	0	
0 0	0	
0 0	5	F
00	0	
000	0	
000	0	
000	0	
000	0	
000000000000000000000000000000000000000	0	
000000000000000000000000000000000000000	6 7	
000000000000000000000000000000000000000	6 7	
000 000	6 7	
000000000000000000000000000000000000000	0	
00000000	6 7	
00 0 0	6 7 8	
00 0 0	6 7 8	
00 0 0	6 7	
00 0 0	6 7 8	
00 0 0	6 7 8	

Mark new visited Neighbors.

Adjacency List

Visited Table (T/F)

00000	00000
0000	00 00
0000	00000
00000	00000
000000	0 0 0 0
	0000
	00000
0000	00000
0 00	0 0 10 0
-	
00000	0000
000000	0.0
0003	00 0
0000	0 6
000	0.0
0000	100
4	
0000	
0000	_
5	l F
0.0	
6	ΙF
00/	
7	
0 0 0	
0 0 0	0.00
8	T
0 0 0	T
8	T
8	T
0 0 0	T
8	T

$$Q = \{4, 0, 9, 3, 7\} \rightarrow \{0, 9, 3, 7\}$$

Dequeue 4.

-- 4 has no unvisited neighbors!

source

Adjacency List

Visited Table (T/F)

	5	F
	Δ	T
	3	- To
	2	T
		To
9 1	000	0

Q =	{ 0.	9.	3.	7	$\rightarrow \{$	9.	3.	7	}
Q =	ιυ,	Ο,	Ο,	"]	r	ι Ο,	Ο,	′ .	ſ

Dequeue 0.

-- 0 has no unvisited neighbors!

$$Q = \{9, 3, 7\} \rightarrow \{3, 7\}$$

Dequeue 9.

-- 9 has no unvisited neighbors!

Adjacency List

Visited Table (T/F)

	-		
	F	999	1000
	0	O) (
	Ð		
	b	0001	0000
	ь	000	0000
	Ь	0101	00100
	ь	0.00	0000
	Ŀ		
	I	000	
	I	22	1000
	r) (II)
	H	8	0 000 0
	P		
	P	3	0 (
	0	*	6 0
		00	
	b	9 %	_
	0	O (
	b	_	_
	r		
	ı	5	F
	ı	J	
	L	- 0	
	ı	9	
	ı	6	F
	I	_	9
	H		
	P	9_9	
	P	~7	0 (
		-	.0
	1		1
	1	8	T
	ı	0	0 (
	L		0000
			0000
	ı	9	0000
	ı	0 0 0	0 0 0
	L		

3 source 4 5 6

 $Q = \{3, 7\} \rightarrow \{7, 5\}$

Dequeue 3.

-- place neighbor 5 on the queue.

Adjacency List

Visited Table (T/F)

0 1 2 3 4	T
4000	10000
1000	9 9 9 9
0000	00000
0000	0000
	1000
9	0
0.40	9 (9
0.0	10 0
0.0	06
) (i) (i)	0.0
0 0	0
100	
0 %	T
0	
)	
5	T
5	T
5	T
0	T
5	F
0	F
0	F
0	F
0	F
6 7	F
6 7	F
6 7	F
0	F
6 7	F
6 7 8	F T
6 7	F
6 7 8	F T

Mark new visited Vertex 5.

source

$$Q = \{7, 5\} \rightarrow \{5, 6\}$$

Dequeue 7.

-- place neighbor 6 on the queue.

Adjacency List

Visited Table (T/F)

		10000	00
0	0	0 1 0 1	00
0 (
0	0000		
(S)	1	101	0
0	0000		Ö
	000	1000	ē
0	9	0 1	
0	040	0	0 0
0	100	10 0	0
(E) (3	To 6	
0	3	0 0	
0	100		
0	4		
0	0 (1		
9)	\vdash	
	5	т	
0	5	Т	
0 0	5	T	
0	5	T	
0 0	6		
	5 6		
0.0	6		
	6		
	6 7		
•	6 7		00
•	6 7	T	0
•	6		00
•	6 7	T	0
•	6 7	T	0

Mark new visited Vertex 6.

source 2 1 9 Neighbors

Adjacency List

Visited Table (T/F)

0	32	8			
1		3	7	9	2
2		8	1	4	
3		4	5	1	
4	100	2	3		
5 6	- 2	3	6	à	
6		7	5		
7		1	6		
8		2	0	9	
9		1	8		30

$$Q = \{5, 6\} \rightarrow \{6\}$$

Dequeue 5.

-- no unvisited neighbors of 5.

Adjacency List

Visited Table (T/F)

9	1888	10000	000
0	0	0 9 9 0	000
9 (
(P)			
0	10	10 10 1	0
ō (0000	00000	0
ē		0000	0
0	9	0	
9 (020	00	0.0
0	100	0 0	0
0	3	100	
0 (00	
0	100		
0 (4	T	
0	0.0	•	
9	3		
	5	Т	
0	5	T	
0	-	T	
0 0	-	Т	
0 0	5 6	Т	
000	6	T	
	6	H	
	-	T	0
	6 7	⊢	
	6 7	T T	
	6 7 8	T	
	6 7 8	0000	
	6 7	T	
	6 7 8	0000	

$$Q = \{6\} \rightarrow \{\}$$

Dequeue 6.

-- no unvisited neighbors of 6.

Q = { } STOP!!! Q is empty!!!

Adjacency List

What did we discover?

Look at "visited" tables.

There exists a path from source vertex 2 to all vertices in the graph.

Visited Table (T/F)

0 T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 T

Shortest Path Recording

BFS we saw only tells us whether a path exists from source s, to other vertices v.

- It doesn't tell us the path!
- · We need to modify the algorithm to record the path.

How can we do that?

Note: we do not know which vertices lie on this path until we reach v!

Efficient solution:

- Use an additional array pred[0..n-1]
- Pred[w] = v means that vertex w was visited from v

Steps to Modify BFS for Shortest Path

- Track Distances: Maintain an array or map to keep track of the shortest distance from the source to each node.
- Track Predecessors: Keep an array or map to store the predecessor (or parent) of each node in the shortest path. This will help in reconstructing the path at the end.
- Perform BFS: Start from the source node, explore neighbors level by level, and update distances and predecessors as you go.

$$Q = \{ \}$$

Initialize Q to be empty

Adjacency List

Visited Table (T/F)

Pred

Initialize visited table (all False)

Initialize Pred to -1

$$Q = \{ 2 \}$$

Place source 2 on the queue.

Adjacency List

Visited Table (T/F)

9 9			
	0000	0000	0000
0	0000	Æ	0000
	0000	00000	0000
00	1000	0000	0000
0.0	040	00 000 0	0000
0	0000	00000	0000
0	0000	10001	
0	0000	0.0.0	
0	070	00000	
0 (0000	00000	0
00	1000	10000	0
000	3	0 0 0	0
0	- O	0 0 0 0	
0	0000	0.6	0.0
00	00 _ 0	000	0
0	∘4		
0	0.0	9.6	
0.0	100	- 00	
00	0		
0	5		
00) O	F	
	9		
	6		
	6	F	·
	6	F	
	6	F	
	6	F	
	6		
	6 7	F	
	6 7	F	
	6	F	
0 0 0	6 7	F	0
	6 7	F	0 0
0 0 0	6 7	F	
0 0 0	6 7	F	

Pred

Flag that 2 has been visited.

Adjacency List

0

Visited Table (T/F)

	0			
	0 U 0	1000	0	
	0000	0000	0	
	0000) <u>0 0 0</u> (0	
	0000	0000	0	
	0000) 0 5 6 (0	
	0000	9000	0	
	2	1070	0	
	0 2 0		9	
	1000	1000	ļ.	
	2	0000	L	
	1 3	0000	0	
	0000	00000	0	
	0000	10-00	-	
	1 4	10	0	
	0	10 1	0	
	0.00	8 1		
	5	_ Eal	6	
	3	B		
	000		ı	
	0.00			
	6	F		
	6	F		
	7			
	7			
	6 7	F		
	7 °			
	7 °			
	7 °			
	7	F		
	7 °			
	7 °	F		

0		0 0				n	
10	0000						0,0
2	10	0				0	
3	F						•
4	T	000					4
5	E						•
6	F						
7 ₀	F						
8	Т						4
9	F	0 0					

Mark neighbors as visited

Dequeue 2.

 $Q = \{2\} \rightarrow \{8, 1, 4\}$

Place all unvisited neighbors of 2 on the queue

Record in Pred that we came from

Adjacency List

0	- 3	8			
1		3	7	9	2
2		8	1	4	
2 3 4 5 6		4	5	1	
4	100	2	3		
5		3	6	ė.	
6		7	5		
7		1	6		
- 8		2	0	9	
9		1	8		

Visited Table (T/F)

0	Т	00000	8
	T 0 0 0		2
2			000
3		00	-
4		00	
5	F		
7	F		
8	T		2
9	T		8

$$Q = \{ 8, 1, 4 \} \rightarrow \{ 1, 4, 0, 9 \}$$

Dequeue 8.

- -- Place all unvisited neighbors of 8 on the queue.
- -- Notice that 2 is not placed on the queue again, it has been visited!

Mark new visited Neighbors.

Prea

Record in Pred that we came from 8.

Adjacency List

0	- 3	8			
1		3	7	9	2
2		8	1	4	
2 3 4 5 6		4	5	1	
4		2	3	6	
5		3	6	2	
6		7	5	i.	
7		1	6	10	
7 8		2	0	9	
9		1	8		

Visited Table (T/F)

0			00
2			
3	00 TO 00 00 00 00 00 00 00 00 00 00 00 00 00	000	0
5	F	0	
6	F		
7	Т		
8	Т		
9	T		

Pred

Mark new visited Neighbors.

Record in Pred that we came from 1.

$$Q = \{ 1, 4, 0, 9 \} \rightarrow \{ 4, 0, 9, 3, 7 \}$$

Dequeue 1.

- -- Place all unvisited neighbors of 1 on the queue.
- -- Only nodes 3 and 7 haven't been visited yet.

Visited Table (T/F)

0			8
	100		2
2	F	0 0	ı
3			1
4	Т		2
5	F		ı
6	F		ı
7	Τ,	0	1
8	Ţ	0	2
9		000	8

Pred

Dequeue 4.

-- 4 has no unvisited neighbors!

source 2 9 9 6

Adjacency List

991	9991			0000
	0	To	0000	8
	10		0	2
	2	T	00	-
	3	Ţ)	1
	4	Т		2
0	5	F		-
	6	F		-
0 0 0	7	·T.	0	1
0	8	T	0	2
	9		000	8
9.1			0000	

$$Q = \{0, 9, 3, 7\} \rightarrow \{9, 3, 7\}$$

Dequeue 0.

-- 0 has no unvisited neighbors!

Pred

$$Q = \{9, 3, 7\} \rightarrow \{3, 7\}$$

Dequeue 9.

-- 9 has no unvisited neighbors!

Adjacency List

Visited Table (T/F)

0	T		8
	- To		2
2	Ť	0 0	-
3	Ţ)	1
4	Т		2
5 6	F		-
6	F		-
7	·T.	0	1
8	T	0	2
9			8
0000		00000	

Pred

$$Q = \{3, 7\} \rightarrow \{7, 5\}$$

Dequeue 3.

-- place neighbor 5 on the queue.

Adjacency List

Visited Table (T/F)

901		1		
	0			٠ ع
		700		0 5
	2	70 To	0000	00
	3		0 0	1
	4	T	0 0	2
	5	T		3
	6	F		_
	7	Т		1
	8	Т		2
	9	T	0	2
	00	0.0		_

Mark new visited Vertex 5.

Prea

Record in Pred that we came from 3

Adjacency List

Visited Table (T/F)

0	. <u>T</u>
2	T
3	T
4	T
5	T
6	Т
7	Т
8	Т
9	T

Mark new visited Vertex 6.

Pred

Record in Pred that we came from 7.

$Q = \{7, 5\} \rightarrow \{5, 6\}$

Dequeue 7.

-- place neighbor 6 on the queue.

$$Q = \{5, 6\} \rightarrow \{6\}$$

Dequeue 5.

-- no unvisited neighbors of 5.

Adjacency List

	<u> </u>					
0		8				
1		3	7	9	2	
2	Î	0	1	4		

3 4 5 1

6 7 5

7 1 6

8 2 0 9 1 8

Visited Table (T/F)

9 6	9999	90000	00000	000
	0	F	0000	8
0	1:		0 0	[®] 2
	2	T	0 0	-
	3	Ţ		1
	4	T		3
0	5	Т		3
	6	T		7
0	7	٠Ţ,	0	1
	8	T		2
	9		000	8

Pred

Source 2 1 9 8 1 4 3 7 9 8 1 4 4 5 1 4 5 1 4 5 1 5 7 5 7 1 6

Adjacency List

9

Visited Table (T/F)

				0000
	0		0000	8
000		0000	0 0	[®] 2
	2	T	0 0	-
	3	T		1
	4	Т		2 3 7
0 0	5	_		3
9	6	Т		7
0	7	Τ,		1
	8	Ţ		2
	9		000	8
	000			

$$Q = \{6\} \rightarrow \{\}$$

Dequeue 6.

-- no unvisited neighbors of 6.

Pred

Q = { } STOP!!! Q is empty!!!

Adjacency List

Visited Table (T/F)

Pred now can be traced backward to report the path!

Prea

Path reporting

Visited from/ lodes Parent Nodes

9	2
7	
6	7
5	3
4	2
3	
2	0000000
	2
0	8

BFS Tree

The paths found by BFS is often drawn as a rooted tree (called BFS tree), with the starting vertex as the root of the tree.

Weighted Graph

- A weighted graph is a graph in which each edge has an associated weight or cost.
- These weights could represent various values depending on the context, such as distances, costs, or times.
- Weighted graphs can be either directed or undirected.

Consider a graph with four vertices A, B, C, and D, representing cities, and edges representing roads between them. The weights on the edges represent distances between the cities:

- 1. A to B has a weight of 5 (distance = 5 km).
- 2. A to C has a weight of 3.
- 3. B to D has a weight of 2.
- 4. C to D has a weight of 7.

Representation of Weighted Graph

2. Adjacency list Representation

An adjacency list for a weighted graph is an array of lists. Each list contains pairs representing the adjacent vertices and the weights of the edges to them.

- A -> B|5, C|3
- B -> D 2
- C -> D 7
- D -> (no outgoing edges)

Dijekstra's Algorithms

Dijkstra's Algorithm is a **greedy algorithm** used to find the **shortest path** from a source vertex to all other vertices in a weighted graph. It guarantees the shortest path for graphs with **non-negative weights**.

Key Concepts

- 1. Weighted Graph: A graph where edges have weights representing costs, distances, or other measures.
- 2. Shortest Path: The path between two vertices that has the smallest sum of edge weights.
- Greedy Approach: The algorithm selects the shortest path to expand at each step.

Algorithms Steps

Initialize:

- Create a distance array, initialized as infinity (∞\infty∞) for all vertices, except the source vertex (set it to 0).
- Mark all vertices as unvisited.
- Use a priority queue (or a similar structure) to always expand the vertex with the smallest tentative distance.

Iterate:

- Pick the unvisited vertex with the smallest distance.
- Update the distances to its neighbors if a shorter path is found through this vertex.
- Mark the current vertex as visited (processed).

Repeat:

Continue until all vertices are visited or the shortest path to the target vertex is found.

Example with Step by Step Execution

Vertices: A, B, C, D, E, F

Edges (with weights):

A-B (4), A-C (2), B-C (1), B-D (5), C-D (8), C-E (10), D-E (2), D-F (6), E-F (3)

1. Initialization:

Start at vertex A.

- Distance array: [A:0,B:∞,C:∞,D:∞,E:∞,F:∞]
- Priority queue: [(A,O)]

2. Iteration 1 (Expand A):

- Current vertex: A (distance = 0).
- Neighbors of A: B (4), C (2).
- Update distances:
 - O B:min(∞,0+4)=4
 - C:min(∞,0+2)=2
- Distance array: [A:0,B:4,C:2,D:∞,E:∞,F:∞]
- Priority queue: [(C,2),(B,4)]

Iteration 2 (Expand C):

- Current vertex: C (distance = 2).
- Neighbors of C: B (1), D (8), E (10).
- Update distances:
 - \circ B:min(4,2+1)=3
 - D:min(∞ ,2+8)=10
 - $E:min(\infty,2+10)=12$
- Distance array: [A:0,B:3,C:2,D:10,E:12,F:∞]
- Priority queue: [(B,3),(B,4),(D,10),(E,12)]

Iteration 3 (Expand B):

- o Current vertex: B (distance = 3)
- o Neighbors of B: D (5).
- o Update distances:
 - i. D:min(10,3+5)=8
- o Distance array: [A:0,B:3,C:2,D:8,E:12,F:∞]
- o Priority queue: [(D,8),(E,12),(D,10)]

- Iteration 4 (Expand D):
 - Current vertex: D (distance = 8).
 - Neighbors of D: E (2), F (6).
 - Update distances:
 - i. E:min(12,8+2)=10
 - ii. F:min(∞,8+6)=14
- Distance array: [A:0,B:3,C:2,D:8,E:10,F:14]
 - Priority queue: [(E,10),(F,14)]

Iteration 5 (Expand E):

- Current vertex: E (distance = 10).
- Neighbors of E: F (3)
- Update distances:
 - \circ F:min(14,10+3)=13
 - Distance array: [A:0,B:3,C:2,D:8,E:10,F:13]
- Priority queue: [(F,13)][(F, 13)][(F,13)]

- Iteration 6 (Expand F):
 - Current vertex: F (distance = 13).
 - All neighbors already processed.

Final Distance Array:

[A:0,B:3,C:2,D:8,E:10,F:13]

Shortest Path

00000 0 000000

000 0 00

0 00 00

00 0

Shortest Paths from A:

- To B: 3
- To C: 2
- To D: 8
- To E: 10
- To F: 13

Applications of Dijekstra's Algorithm

1. Navigation Systems:

 Google Maps and GPS use Dijkstra's algorithm to find the shortest path.

2. Network Routing:

Used in protocols like OSPF (Open Shortest Path First)

3. Scheduling:

Optimizing tasks in resource-constrained environments.

4. Game Development:

Al pathfinding in grid-based games.