

Atomic number, Mass number, Atomic species

- **49.** (c) In Xe_{89}^{231} number of protons and electrons is 89 and No. of neutrons = A Z = 231 89 = 142.
- 50. (c) $Li^+ \rightarrow Li$ has atomic number $3 \rightarrow Li^+$ has 3 1 = 2 electrons same as Be^{2^+} .
- **51.** (a) NO_2^- and O_3 are isostere. The number of atoms in these (= 3) and number of electrons (24) are same.
- 52. (c) Number of electrons in nitrogen = 7 and number of electron is oxygen = 8 we know that formula of nitrate ion is NO_3^- we also know that number of electron = $(1 \times \text{Number of electrons in nitrogen}) + (3 \times \text{number of electrons in oxygen}) + 1 = <math>(1 \times 7) + (3 \times 8) + 1 = 32$.

53. (b) Atomicity =
$$\frac{\text{Molecular mass}}{\text{Atomic mass}} = \frac{256}{32} = 8 = S_8$$
.

54. (a) In case of N^{3-} , p = 7 and c = 10

Three electron

- **55.** (c) Chlorine $Cl_{17} = [Ne]$ $3s^{2} 3p^{5}$ 1 1 1 1
- **56.** (a) Bromine consists of outer most electronic configuration $[Ar]3d^{10}4s^24p^5$.
- 57. (d) $Na^+ = 1s^2 2s^2 2p^6$ $Mg^{++} = 1s^2 2s^2 2p^6$

$$0^{2-} = 1s^2 2s^2 2p^6$$

 $Cl^- = 1s^2 2s^2 2p^6 3s^2 3p^6$

58. Step 1 – Atomic number of Li:

Lithium (Li) has atomic number = $3 \rightarrow 3$ protons, 3 electrons (neutral).

Step 2 - Li⁺ ion:

 Li^+ means it has lost 1 electron \rightarrow protons (3) > electrons (2).

So, net charge = +1 (because of one extra proton compared to electrons).

Step 3 - Value of charge:

Charge of 1 elementary unit = 1.6×10^{-19} C.

Hence, Li⁺ has charge = $+1.6 \times 10^{-19}$ C.

Correct answer: (c) 1.6×10^{-19} C

59. Correct answer: (a) F^- , O^{2-}

 $F^- \rightarrow$ Atomic number of F = 9, +1 electron \rightarrow 9 + 1 = **10 electrons**

 O^{2-} \rightarrow Atomic number of O = 8, +2 electrons \rightarrow 8 + 2 = 10 electrons

- **60.** (a) Ar_{18}^{40} = atomic number 18 and no. of Neutron in case of Ar_{22} Neutron = Atomic mass Atomic number = 40 18 = 22
- **61.** (d) Nucleus of tritium contain $[H_1^3]$ p=1, e=1, n=2
- **62.** (b) N^{3-} , F^{-} and Na^{+} (These three ions have $e^{-}=10$, hence they are isoelectronic)
- **63.** (a) NO_3^- and CO_3^{2-} consist of same electron and show same isostructural.

IIT-JEE CHEMISTRY

- **64.** (c) Atomic number of chlorine 17 and in Cl^- ion total no. of electron =18.
- **65.** (b) Tritium (H_1^3) has one proton and two neutron.
- **67.** (c) $X_{35} = 1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^{10} 4s^2 4p^5$ Total no. of e^- is all p-orbitals = 6 + 6 + 5 = 17.
- **68.** (a) Since its nucleus contain 9 proton so its. atomic number is 9 and its electronic configuration is 2, 7. So it require one more electron to complete its octet. Hence its valency is 1.
- **69.** (d) K_2S formed by K^+ and S^{2-} ion. We know that atomic number of K is 19 and in K^+ ion its atomic number would be 18 similarly atomic number of S is 16 and in form S^{2-} ion its atomic number would be 18 so the K^+ and S^{2-} are isoelectronic with each other in K_2S .
- 70. (d) 20Ca = 2,8,8,2 $Ca^{2+} = 2, 8, 8$ Hence, Ca^{2+} has 8 electrons each in outermost and penultimate shell.
- **71.** (c) Atomic no. of C = 6 so the number of protons in the nucleus = 6
- **72.** (a) No. of P = Z = 7; No. of electrons in $N^{3-} = 7 + 3 = 10$.
- **73.** (b) Heavy hydrogen is ${}_{1}^{2}D$. Number of neutrons = 1
- **74.** (d) Atomic number is always whole number.