MIT OpenCourseWare http://ocw.mit.edu

2.830J / 6.780J / ESD.63J Control of Manufacturing Processes (SMA 6303) Spring 2008

For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms.

Control of Manufacturing Processes

Subject 2.830/6.780/ESD.63
Spring 2008
Lecture #6

Sampling Distributions and Statistical Hypotheses

February 26, 2008

Statistics

The field of statistics is about **reasoning** in the face of **uncertainty**, based on evidence from **observed data**

Beliefs:

- Probability Distribution or Probabilistic model form
- Distribution/model parameters

Evidence:

- Finite set of observations or data drawn from a population (experimental measurements/observations)
- Models:
 - Seek to explain data wrt a model of their probability

Topics

- Sampling Distributions (χ² and Student's-t)
 - Uncertainty of Parameter Estimates
 - Effect of Sample Size
 - Examples of Inference
- Inferences from Distributions
 - Statistical Hypothesis Testing
 - Confidence Intervals
- Hypothesis Testing
- The Shewhart Hypothesis and Basic SPC
 - Test statistics xbar and S

Sampling to Determine Parent Probability Distribution

- Assume Process Under Study has a Parent Distribution p(x)
- Take "n" Samples From the Process Output (x_i)
- Look at Sample Statistics (e.g. sample mean and sample variance)
- Relationship to Parent
 - Both are Random Variables
 - Both Have Their Own Probability Distributions
- Inferences about Process via Inferences about the Parent Distribution

Moments of the Population vs. Sample Statistics

Underlying model or Population Probability

Standard Deviation

Covariance

Correlation Coefficient

$$\mu = \mu_x = \mathrm{E}(x)$$

$$\sigma^2 = \sigma_{xx}^2 = \mathrm{E}[(x - \mu_x)^2]$$

$$\sigma = \sqrt{\sigma^2}$$

$$\sigma_{xy}^{2} = \operatorname{E}[(x - \mu_{x})(y - \mu_{y})]$$
$$= \operatorname{E}(xy) - \operatorname{E}(x)\operatorname{E}(y)$$

$$\rho_{xy} = \frac{\sigma^2 xy}{\sigma_x \sigma_y} = \frac{\text{Cov}(xy)}{\sqrt{\text{Var}(x)\text{Var}(y)}}$$

Sample Statistics

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\sigma^2 = \sigma_{xx}^2 = E[(x - \mu_x)^2]$$
 $s^2 = s_x^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})^2$

$$s = \sqrt{s^2}$$

$$s_{xy}^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i - \bar{x})(y_i = \bar{y})$$

$$r_{xy} = \frac{s^2 xy}{s_x s_y}$$

Sampling and Estimation

- Sampling: act of making observations from populations
- Random sampling: when each observation is identically and independently distributed (IID)
- Statistic: a function of sample data; a value that can be computed from data (contains no unknowns)
 - Average, median, standard deviation
 - Statistics are by definition also random variables

Population vs. Sampling Distribution

Sampling and Estimation, cont.

- A statistic is a random variable, which itself has a sampling (probability) distribution
 - I.e., if we take multiple random samples, the value for the statistic will be different for each set of samples, but will be governed by the same sampling distribution
- If we know the appropriate sampling distribution, we can reason about the underlying population based on the observed value of a statistic
 - e.g. we calculate a sample mean from a random sample; in what range do we think the actual (population) mean really sits?

Estimation and Confidence Intervals

Point Estimation:

- Find best values for parameters of a distribution
- Should be
 - Unbiased: expected value of estimate should be true value
 - Minimum variance: should be estimator with smallest variance

Interval Estimation:

- Give bounds that contain actual value with a given probability
- Must know sampling distribution!

Sampling and Estimation – An Example

- Suppose we know that the thickness of a part is normally distributed with std. dev. of 10:
- $T \sim N(\mu_{\text{unknown}}, 100)$

- We sample n = 50 random parts and compute the mean part thickness:
- $\bar{T} = \frac{1}{n} \sum_{i=1}^{n} T_i = 113.5$
- First question: What is distribution of the mean of $T = \bar{T}$?

$$E(\bar{T}) = \mu$$
$$Var(\bar{T}) = \sigma^2/n = 100/50$$
Normally distributed

$$\bar{T} \sim N(\mu, 2)$$

• Second question: can we use knowledge of \bar{T} distribution to reason about the actual (population) mean μ given observed (sample) mean?

Confidence Intervals: Variance Known

- We know σ , e.g. from historical data
- Estimate mean in some interval to $(1-\alpha)100\%$ confidence

$$\bar{x} - z_{\alpha/2} \cdot \left(\frac{\sigma}{\sqrt{n}} \right) \le \mu \le \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}$$

Remember the unit normal percentage points
Apply to the **sampling distribution** for the sample mean

Example, Cont'd

• Second question: can we use knowledge of \bar{T} distribution to reason about the actual (population) mean μ given observed (sample) mean?

Reasoning & Sampling Distributions

- Example shows that we need to know our sampling distribution in order to reason about the sample and population parameters
- Other important sampling distributions:
 - Student's-t
 - Use instead of normal distribution when we don't know actual variation or $\boldsymbol{\sigma}$
 - Chi-square
 - Use when we are asking about variances
 - F
 - Use when we are asking about ratios of variances

Sampling: The Chi-Square Distribution

If $x_i \sim N(0,1)$ for i=1,2,...,n and $y=x_1^2+x_2^2+\cdots+x_n^2$, then $y\sim\chi_n^2$ or chi-square with n degrees of freedom.

- Typical use: find distribution of variance when mean is known
- Ex:

$$x_i \sim N(\mu, \sigma^2)$$

$$\frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$$

So if we calculate s^2 , we can use knowledge of chi-square distribution to put bounds on where we believe the actual (population) variance sits

Note:
$$E(\chi_n^2) = n$$

Sampling: The Chi-Square Distribution

$$\frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$$

$$E(\chi_n^2) = n$$

Sampling: The Student's-t Distribution

If $z \sim N(0,1)$ then $\frac{z}{y/k} \sim t_k$ with $y \sim \chi_k^2$ is distributed as a student t with k degrees of freedom.

- Typical use: Find distribution of average \overline{x} when σ is NOT known
- Consider $x \sim N(\mu, \sigma^2)$. Then $\frac{x-\mu}{\sigma/\sqrt{n}} \sim N(0,1)$

$$\frac{\bar{x} - \mu}{s/\sqrt{n}} = \frac{\frac{\bar{x} - \mu}{\sigma/\sqrt{2}}}{s/\sigma} \sim \frac{N(0, 1)}{\sqrt{\frac{1}{n-1}\chi_{n-1}^2}} \sim t_{n-1}$$

 This is just the "normalized" distance from mean (normalized to our estimate of the sample variance)

Sampling: The Student-t Distribution

Back to Our Example

 Suppose we do not know either the variance or the mean in our parts population:

$$T \sim N(\mu, \sigma^2) = N(\mu_{\text{unknown}}, \sigma_{\text{unknown}}^2)$$

• We take our sample of size n = 50, and calculate

$$\bar{T} = \frac{1}{50} \sum_{i=1}^{50} T_i = 113.5$$
 $s_T^2 = \frac{1}{49} \sum_{i=1}^{50} (T_i - \bar{T})^2 = 102.3$

 Best estimate of population mean and variance (std.dev.)?

$$\hat{\mu} = \bar{T} = 113.5$$
 $\hat{\sigma} = \sqrt{s_T^2} = 10.1$

• If had to pick a range where μ would be 95% of time?

Have to use the appropriate sampling distribution: In this case – the t-distribution (rather than normal distribution)

Confidence Intervals: Variance Unknown

- Case where we don't know variance a priori
- Now we have to estimate not only the mean based on our data, but also estimate the variance
- Our estimate of the mean to some interval with $(1-\alpha)100\%$ confidence becomes

$$\bar{x} - t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}} \le \mu \le \bar{x} + t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}}$$

Note that the t distribution is slightly wider than the normal distribution, so that our confidence interval on the true mean is not as tight as when we know the variance.

Example, Cont'd

• Third question: can we use knowledge of \bar{T} distribution to reason about the actual (population) mean μ given observed (sample) mean – even though we weren't told σ ?

Once More to Our Example

 Fourth question: how about a confidence interval on our estimate of the variance of the thickness of our parts, based on our 50 observations?

Confidence Intervals: Estimate of Variance

$$\frac{(n-1)s^2}{\chi^2_{\alpha/2,n-1}} \le \sigma^2 \le \frac{(n-1)s^2}{\chi^2_{1-\alpha/2,n-1}}$$

The appropriate sampling distribution is the Chi-square. Because χ^2 is asymmetric, c.i. bounds not symmetric.

$$\frac{(n-1)s^2}{\sigma^2} \sim \chi_{n-1}^2$$

Example, Cont'd

• Fourth question: for our example (where we observed $s_T^2 = 102.3$) with n = 50 samples, what is the 95% confidence interval for the population variance?

Sampling: The F Distribution

If $y_1 \sim \chi_u^2$ and $y_2 \sim \chi_v^2$, then $R = \frac{y_1/u}{y_2/v} \sim F_{u,v}$ is an F distribution with u, v degrees of freedom.

- Typical use: compare the spread of two populations
- Example:
 - $x \sim N(\mu_x, \sigma^2_x)$ from which we sample $x_1, x_2, ..., x_n$
 - $y \sim N(\mu_y, \sigma^2_y)$ from which we sample $y_1, y_2, ..., y_m$
 - Then

$$\frac{s_x^2/\sigma_x^2}{s_y^2/\sigma_y^2} \sim F_{n-1,m-1}$$
 or $\frac{\sigma_y^2}{\sigma_x^2} \sim \frac{s_x^2}{s_y^2} F_{n-1,m-1}$

Concept of the F Distribution

- Assume we have a normally distributed population
- We generate two different random samples from the population
- In each case, we calculate a sample variance s_i²
- What range will the ratio of these two variances take?
 F distribution
- Purely by chance (due to sampling) we get a range of ratios even though drawing from same population

Example:

- Assume *x* ~ N(0,1)
- Take 2 samples setss of size n = 20
- Calculate s₁² and s₂² and take ratio

$$\frac{s_1^2}{s_2^2} \sim F_{19,19}$$

• 95% confidence interval on ratio

$$F_{\frac{\alpha}{2},19,19} = F_{0.025,19,19} = 2.53$$

$$F_{1-\frac{\alpha}{2},19,19} = F_{0.975,19,19} = 0.40$$

Large range in ratio!

Use of the F Distribution

Agenda

- Models for Random Processes
 - Probability Distributions & Random Variables
- Estimating Model Parameters with Sampling
- Key distributions arising in sampling
 - Chi-square, t, and F distributions
- Estimation: Reasoning about the population based on a sample
- Some basic confidence intervals
 - Estimate of mean with variance known
 - Estimate of mean with variance not known
 - Estimate of variance
- Next: Hypothesis tests

Statistical Inference and the Shewhart Hypothesis

- Statistical Hypotheses
 - Confidence of Predictions based on known or estimated pdf
- Relationship to Manufacturing Processes

Statistical Hypothesis

- e.g. hypothesize that mean has specific value
 - Based on Assumed Model (Distribution)
- Accept or reject hypothesis based on data and statistical model
 - i.e. based on degree of acceptable uncertainty or probability of error

Hypothesis Testing

Given the hypothesis for the statistic φ (e.g. the mean)

 $H_0: \phi = \phi_0$ $H_1: \phi \neq \phi_0$ $\begin{cases} H_0: \phi = \mu_0 \\ H_1: \phi \neq \mu_0 \end{cases}$

- No single sampled value ϕ will equal ϕ_0
- How do we test the hypothesis given ϕ ?
 - What is $p(\phi)$? (Sample Distribution?)
 - How well do we want to test H_o?
 - Significance
 - Confidence

The Test

- Assume a Distribution (e.g. $p(\hat{\phi})$ is Normal)

 α is the <u>significance</u> of the test

Errors

 H_o is rejected when it is in fact true (Type I) (Significance)

$$-p = ?$$

 $p=\alpha$ for two sided and $\alpha/2$ for one sided tests

H_o is accepted when it is in fact false (Type II)

$$-p = ?$$

$$=\beta$$

... What is β ?

Type II Errors

• Assume a shift in the true distribution $p(\hat{\phi})$ of δ

• Assess the probability that we fall in the acceptance region after a shift of δ occurred

Type II Errors

Calculating β

$$\beta = \Phi(Z_{1-\alpha/2} - \Delta) - \Phi(Z_{\alpha/2} - \Delta)$$

$$\Delta = \frac{\delta}{\sigma/\sqrt{n}} \quad \text{Normalized deviation}$$

Applications

- Tests on the Mean
 - Is the mean of "new" data the same as prior data (I.e from the same distribution?)

Or

- Did a significant change occur?
- Variances of a Population
 - Is the variance of "new" data the same as prior data (i.e from the same distribution?)
- What are the "parent distributions" if we only have sample data?
 - Sample distributions

Example: Average Weight

- Hypothesize that average weight of a population is 68 kg and σ=3.6
 - H_0 : $\mu = 68$
 - H_1 : µ ≠ 68
 - Assume an acceptance region of +- 1 kg
 - What is α or significance of test?
 - Probability of a type I error
 - What is β
 - Probability of type II error

Significance from Interval

$$\alpha = P(Z < -1.67) + P(Z > 1.76) = 2P(Z < -1.67) = 0.095$$

9.5% chance of rejecting H₀ even if true

Effect of increasing range? Effect of increasing n?

β Error

Assume we must reject H_0 if μ <66 or μ >70

i.e.
$$\beta = P(67 \le xbar \le 69)$$
 when $\mu = 70$

$$\beta = P(-6.67 \le Z \le -2.22) = 0.0132$$

1.3% chance of accepting H_o when it is false From symmetry - same result for μ = 66

Effect of increasing range? Effect of increasing n?

Operating Characteristic Curve Dependence of α and β

Note that the expression for β : depends on α , n and δ

From Montgomery "Introduction to Statistical Quality Control, 4th ed. 2000

Some Typical Hypothesis

- Inference about Variance from Samples
 - Test Statistic?
 - Which Distribution to Use ?
- Inference about Mean
 - Knowing σ
 - Not knowing σ

Summary

- Pick Significance Level α
- Determine an acceptable β
 - $(1-\beta)$ is call the "power" of the test
- What is the effect of the number of samples (n)?

On to Process Control

- How does all this relate to our problem?
- What assumptions must we make?
- What statistical tests should we use?
- What are the best procedures to use in a production environment?

"In-Control"

"Not In-Control"

"Not In-Control"

Xbar and S Charts

- Shewhart:
 - Plot sequential average of process
 - Xbar chart
 - Distribution?
 - Plot sequential sample standard deviation
 - S chart
 - Distribution?

Conclusions

- Hypothesis Testing
 - Use knowledge of PDFs to evaluate hypotheses
 - Quantify the degree of certainty (α and β)
 - Evaluate effect of sampling and sample size
- Shewhart Charts
 - Application of Statistics to Production
 - Plot Evolution of Sample Statistics \overline{x} and S
 - Look for Deviations from Model

