42 1515

Технический директор ООО "НПЦ "Аналитех" В. Л. Жигалов

ГАЗОАНАЛИЗАТОР АГМ-510 РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ ДКИН.413411.001 РЭ

СОДЕРЖАНИЕ

1 Основные сведения.....

	2 Сведения о приемке	
	3 Описание и работа газоанализатора	5
	3.1 Назначение	5
	3.2 Технические характеристики	5
	3.3. Комплектность	
	3.4 Устройство и работа	
	3.4.1 Принцип работы	
	3.4.2 Наименование узлов прибора	
	3.4.3 Особенности основных узлов прибора	
	3.4.3.1 Встроенный термопринтер	
	3.4.3.2 Дисплей	
	3.4.3.3 Клавиатура	
	3.4.3.4 Аккумулятор	
	3.4.3.5 Сенсорная камера с установленными датчиками	
	3.4.3.6 Инфракрасный измерительный модуль	
	3.4.3.7 Насосы газовой пробы	
	3.4.3.8 Фильтр тонкой очистки	
	3.4.3.9 Пробоотборный зонд	
	3.4.3.10 Интерфейс RS-232	12
	3.5 Маркировка и пломбирование	13
	4. Использование по назначению	13
	4.1 Меры безопасности при работе с прибором	
	4.2 Общие сведения	
	4.3 Назначение клавиш	
	4.4 Обозначения анализируемых величин	
	4.5 Зарядка аккумулятора	
	4.6 Включение и выключение прибора	
	4.7 Режим газоанализатор	
	4.7.1 Подготовка к измерению	
g		
빞	4.7.2 Место измерения	
耳	4.7.3 Индикация результатов измерения	
∄	4.7.4 Измерение содержания компонентов в газовой смеси	
ã	4.7.5 Регистрация результатов измерения	
-	4.7.6 Защита электрохимических датчиков	
	4.7.7 Завершение анализа газовой пробы	
	4.7.8 Работа газоанализатора с блоком подготовки пробы УПП-510	
	4.8 Режим давление/скорость	
-i	4.9 Режим температура	
3	4.10 Режим детектор сажи	
3	4.11 Просмотр памяти	25
Š	4.12 Сведения о приборе	
ģ	4.13 Меню установок	26
Ŧ.	4.13.1 Состояние прибора	
	4.13.2 Сжигаемое топливо	
	4.13.2.1 Характеристики топлива	
OI .	4.13.2.2 Изменение параметров топлива	
Š	4.13.2.3 Редактирование текстовой строки	
ej H	4.13.2.4 Ввод цифрового значения	
\$	4.13.3 Выбор объекта измерения	
ij.	4.13.4 Выбор единиц измерения	
ř	· · · · · · · · · · · · · · · · · · ·	
	4.13.5 Основные установки	
	4.13.6 Cepsuc	
d	4.13.6.1 Проверка герметичности газового тракта	31
함		
7		
d		
=	ЛКИН 413411 001 РЭ	

Изм. Лист № докум Подпись Дата
Разраб. Ремизов С. И. 01.09.10
Провер. 01.09.10

Н. контр. Мухин А. С. 01.09.10
Утв. Жигалов В. Л. 01.09.10

1нв.№ подл.

ДКИН. 413411.001 РЭ

ГАЗОАНАЛИЗАТОР АГМ-510 РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ

Лит.	Лист	Листов
	2	50

ООО "НПЦ "Аналитех"

4.13.6.2 Обслуживание аккумулятора	31
4.13.6.3 Режим NDIR блока	
4.13.6.4 Режим УПП-510	32
4.13.6.5 Заводские установки	32
4.14 Основные формулы для расчета	32
4.14.1 Избыток воздуха	
4.14.2 Содержание CO ₂ в отходящих газах	
4.14.3 Теплопотери при сгорании	
4.14.4 Пересчет результата измерения газов	
4.14.5 Расчет скорости и расхода	
4.15 Уход за газоанализатором при эксплуатации	
4.16 Возможные ошибки в работе, неисправности и способы их устранения	
5 Сведения о техническом обслуживании и ремонте	
6 Поверка	
7 Правила хранения и транспортировки	
8 Утилизация	
9 Гарантийные обязательства	38
Приложение А. Методика поверки газоанализатора	
А.1 Операции поверки	
А.2 Средства поверки	
А.З Требования к квалификации поверителей	
А.4 Требования безопасности	
А.5 Условия поверки	
А.6 Подготовка к поверке	
А.7 Проведение поверки	
А.8 Оформление результатов поверки	
Приложение Б. Внешний вид газоанализатора, подключение периферии	46
Приложение В. Структурная схема газоанализатора АГМ-510	
Приложение Г. Блок схема работы газоанализатора АГМ-510	
Приложение Д. Примеры протоколов печати	
Приложение F. Формат данных интерфейса RS-232	50

. Ме подл. и дата Взам. инв. Ме Инв. Ме дубл. Подл. и да

Изм	Лист	№ докум.	Подп.	Дата

Настоящее руководство содержит необходимые сведения и рекомендации для правильной эксплуатации газоанализатора АГМ-510 и краткое описание прибора.

Газоанализатор АГМ-510 соответствует требованиям стандартов:

ГОСТ 13320-81 Газоанализаторы промышленные автоматические. Общие технические условия.;

ГОСТ Р 50759-95 Анализаторы газов для контроля транспортных и промышленных выбросов. Общие технические условия.

Газоанализатор АГМ-510 ДКИН. 413411.001

Руководство распространяется на все модификации газоанализаторов АГМ-510.

1 Основные сведения

Наименование изделия

Заводской номер

	Изготовитель: ООО "НПЦ " Аналитех"							
	Αμ	дрес из	готовителя:			Россия, 603057 Нижний Новгород, ул. Нартова, д. 2		
	Cı	видетел	ъство об утвержд	ении типа	средств и	ерения RU.C.31.011.A № 42247 (№ 46395-11 в Госреестре).		
	Де	екларац	ция о соответстви	и в систем	ие ГОСТ-F	RU Д-RU.MM04.B.01108, выдана органом по сертификации ООО«	Серконс»	
	01	1.10.201	3.					
		2	Сведения с	о прием	мке			
	Га			•		3411.001ТУ и признан годным к эксплуатации.		
E E				,	,	,		
Подп. и дата	Да	ата вып	уска	-				
ᅴ	И	сполни	гель	-				
+	.,							
	УГ	таковку	произвел	-				
Ę,	Технический директор							
EE EE	10	SANIFICO	кий директор	-				
ž					подпис	расшифровка подписи дата		
Инв. № дубл								
						М.П.		
,01								
Взам. инв. №	Газоанализатор прошел первичную поверку согласно методике поверки,							
图				приведе	нной в при	ожении к РЭ, и признан годным к эксплуатации.		
MG ME								
ã	П	оверите) TL					
	110	оворите	,,,,,,	-	подпис	расшифровка подписи дата		
ara								
и дата								
EL 01								
리								
ZHEB. Nº 110 HJU.								
의 -					1	FIGURE 440444 004 DO	Лист	
	4	П	No -			ДКИН. 413411.001 РЭ	4	
	∕Ізм.	Лист	№ докум.	Подп.	Дата			

3 Описание и работа газоанализатора

3.1 Назначение

- 3.1.1 Газоанализатор АГМ-510, в зависимости от модификации, предназначен для:
- измерения содержания кислорода (O₂), оксида углерода (CO), оксида азота (NO), диоксида азота (NO₂), сернистого ангидрида (SO₂), сероводорода (H₂S), углекислого газа (CO₂) и углеводородов в отходящих газах топливосжигающих установок;
 - измерения температуры в точке отбора пробы и температуры окружающей среды;
 - измерения абсолютного давления, разности давлений, избыточного давления/ разрежения;
- определения расчетным методом в соответствии с ГОСТ 17.2.4.06-90 скорости и расхода газопылевых потоков при работе с измерительным зондом пневмометрической трубкой Пито или НИИОГАЗ;
- определения расчетным методом содержания диоксида углерода (CO₂), в случае отсутствия канала измерения CO₂ и суммы оксидов азота (NO_X);
- определения расчетным методом технологических параметров топливосжигающих установок коэффициента избытка воздуха и коэффициента потерь тепла.
- 3.1.2 Основные области применения газоанализатора: экологический контроль содержания загрязняющих веществ в отходящих газах стационарных и передвижных источников промышленных выбросов, настройка топливосжигающих установок, оптимизация процесса горения топлива.
 - 3.1.3 Климатические условия эксплуатации газоанализатора:
- температура от 5 до 40 °C;
- относительная влажность окружающего воздуха не более 75% при 30°С и более низких температурах без конденсации влаги (группа В2 по ГОСТ 12997-84);
- атмосферное давление от 91 до105 кПа.
 - 3.1.4 Максимальная амплитуда вибрации (с частотой от 5 до 35 Гц) 0,35 мм (группа L2 по ГОСТ 12997-84);
 - 3.1.5 Газоанализатор предназначен для работы в невзрывоопасных условиях.

3.2 Технические характеристики

3.2.1. Газоанализатор АГМ-510 производится в нескольких модификациях, отличающихся количеством измеряемых компонентов, диапазонами измерения и средствами пробоотбора и пробоподготовки. Перечень измеряемых и рассчитываемых параметров, диапазоны измерений и пределы допускаемой основной погрешности газоанализаторов в зависимости от модификации приведены в таблице 3.1.

Инв. № подл. п дата Взам. инв. № Инв. № дубл. Подл. и дата

 Изм. Лист
 № докум.
 Подп.
 Дата

ДКИН. 413411.001 РЭ

Таблица 3.1.						
Определяемый компонент	Единица измерений	Диапазон измерений	Участок диапазона измерений, в котором нормируется основная погрешность	мой осн	допускае- овной по- иности относи- тельной	Единица младшего разряда индикации
	Модифика	ция МВ, моді	ификация ГВ без SO	₂ и H ₂ S		
Оксид углерода (СО)		0 - 40000	$0 - 1000 \\ 1000 - 40000$	± 100 -	± 10 %	1
Оксид азота (NO)	0.5	0 - 2000	$0 - 250 \\ 250 - 2000$	± 25 -	- ± 10 %	1
Диоксид азота (NO ₂)	Объемная доля, млн ⁻¹ (ppm)	0 - 400	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	± 10 -	- ± 10 %	1
Сернистый ангидрид (SO ₂)	(ррш)	0 - 2000	$0 - 250 \\ 250 - 2000$	± 25 -	- ± 10 %	1
Сероводород (Н2S)		0 - 400	0 - 100 $100 - 400$	± 10 -	- ± 10 %	1
	Модифика	ция МС, моді	ификация ГС без SO	₂ и Н ₂ S		
Оксид углерода (СО)		0 - 4000	$0 - 100 \\ 100 - 4000$	± 10 -	± 10 %	1
Оксид азота (NO)	0.5	0 - 400	0-50 $50-400$	± 5	± 10 %	1
Диоксид азота (NO ₂)	Объемная доля, млн ⁻¹ (ppm)	0 - 200	0-50 $50-200$	± 5 -	± 10 %	1
Сернистый ангидрид (SO ₂)		0 - 400	0-50 $50-400$	± 5 -	- ± 10 %	1
Сероводород (H ₂ S)		0 - 200	0-50 $50-200$	± 5 -	- ± 10 %	1
	Модифика	ция МН, моди	ификация ГН без SO	₂ и Н₂Ѕ		
Оксид углерода (СО)		0 - 400	0 - 10 $10 - 400$	± 1 -	- ± 10 %	1
Оксид азота (NO)	Ofg average	0 - 100	0 - 10 $10 - 100$	± 1 -	- ± 10 %	1
Диоксид азота (NO ₂)	Объемная доля, млн ⁻¹ (ppm)	0 - 50	0 -10 10 - 50	± 1 -	- ± 10 %	1
Сернистый ангидрид (SO ₂)	(pp.iii)	0 - 50	0 - 10 10 - 50	± 1 -	± 10 %	1
Сероводород (H ₂ S)		0 - 50	0 - 100 $10 - 50$	± 1 -	± 10 %	1
	Измеряемые	параметры о	бщие для всех моди	фикаций	Γ	
Кислород (О2)		0 - 21	0-4 4-21	± 0,2 -	± 5 %	0,01
Углекислый газ (CO ₂)*	Объемная	0 - 20	0-6 6-20	± 0,3 -	± 5 %	0,01
Угарный газ (СО)*	доля, %	0 - 10	0-0.4 $0.4-10$	± 0,02 -	± 5 %	0,001
Углеводороды (по C ₃ H ₈)*		0 - 1,0	0-0.01 0.01-1.0	± 0,001 -	± 5 %	0,0001
Температура газового потока	°C	минус 20 – 800	минус 20 – 300 300 –800	± 3	±1%	0,1
						П
		_	ДКИН. 4134	11.001	РЭ	Лист 6
Изм. Лист № докум.	Подп. Дата		- •			

		KIIa	2,3				
Избыточ разреже	чное давление /		минус 2,5 – 2,5		± 0,05	_ 	0,001
	ть потока *		2,3	$\pm (1-2,5)$	_	± 5 %	
	слый газ (CO ₂) **						
	оксидов азота		не нормі	ированы (определ	ение по ра	счету)	
	избытка воздуха						
	потерь тепла			*			
	ание: " измерительнь 13мерения.	іе каналы уста	навливаются по с	тдельному заказу; * * в	случае отсуто	ствия соответств	зующего
		мой вариации	показаний, в доля	ях предела допускаемо	й основной		
погрешн	ости					0,5.	
3	3.2.3 Предел допускае	мой суммарно	й дополнительної	и погрешности от измен	нения содержа	РИН	
допусти	мых неизмеряемых ко	мпонентов ана	ализируемой газо	вой смеси, в долях пре	дела допускає	емой	
основно	й погрешности					0,5.	
3	3.2.4 Предел допускае	мой дополните	ельной погрешнос	ти от изменения влаго	содержания		
	•		·	основной погрешности	•	0,5	
	•	•	•	, ия по входам без перек			
			•	ти давления без разру	•		
		• •	·	сти давления, подавае			
	менно, кПа	и тоское давие	nino kanana paono	от давления, подавае	moo na ooa ba	oHα.	
•		ы канапа	абсопитного лав	пения без разрушения	латчика кПа	200	
	3.2.9 Межповерочный	• •	ассолотного дав	попил обо рабрушения	дат тта, кта	1	
	·	·	ируемой газовой (смеси, л/мин, не более		1,5	
	3.2.11 Время прогрева	•	• •	SWICOM, THINMINI, TIC COTICC		10	
	3.2.11 Время прогрева 3.2.12 Время установл					300	
				оказаний, ч, не менее		1000	
		•					
	3.2.14 Напряжение для		• •	гора, в		12±2	
	3.2.15 Потребляемая г			_		20	
		·	т аккумулятора (б	ез энергопотребления	подсветкой ди		
•	принтером), ч, не мен					8	
	3.2.17 Время зарядки					8	
	3.2.18 Габаритные раз	•				280x120)x120
3	3.2.19 Масса газоанал	изатора, кг, не	более			2,5	
3	3.2.20 Средняя наработка на отказ, час, не менее						
3	3.2.21 Средний срок с	лужбы, лет, не	менее			8	
				ПИЛ 440	444 004	DO	Л
1зм. Лист	№ докум.	Подп. Дата		ДКИН. 413	4 11.001	٢J	
ISIVI. JIVICI	IN= ДОКУIVI.	подп. дан	<u>u</u>				

Участок диапазона

измерений, в ко-

тором нормирует-

ся основная по-

грешность

0 - 50

80 - 110

 $\pm (0-2,5)$

Единица

измерений

 $^{\rm o}C$

кПа

Определяемый компонент

Температура окружаю-

Абсолютное давление *

Разность давлений *

щей среды

Инв. № дубл.

쐿

Взам. инв.

Подп. и дата

Инв. № подл.

Диапазон

измерений

0 - 50

80 - 110

минус 2,5 -

Пределы допускае-

мой основной по-

грешности

относи-

тельной

абсолют-

ной

 ± 1

± 1

 $\pm 0,025$

Единица

младшего

разряда

индикации

0,1

0,01

0,0001

3.3. Комплектность

Комплектность поставки газоанализаторов «АГМ510» приведена в таблице 3.2.

Таблица 3.2.

№ п/п	Наименование, тип		Наличие
1	Газоанализатор «АГМ-510» модификации		Χ
1.1	Встроенный LL сенсор кислорода (O₂) *		
1.2	Встроенный модуль защиты от перегрузки *		
1.3	Встроенный инфракрасный измерительный модуль (СО, СхНу, СО₂) *		
1.4	Встроенный модуль измерения избыточного давления / разрежения *		
1.5	Встроенный модуль измерения разности давления и абсолютного давления *		
2	Соединительный шланг длиной 1м со штуцером для измерения разности давления, скорости *		
3	Устройство подготовки пробы «УПП-510» *		
4	Пробоотборный зонд (ручка зонда, газовый шланг и термокомпенсационный кабель длиной г конденсатосборник с фильтром грубой очистки, разъем с термодатчиком)	М,	Χ
5	Пробоотборная трубка зонда со встроенной термопарой типа "К" длиной, мм		
6	Футляр для пробоотборной трубки		
7	Программа обмена с АГМ-510 в комплекте с кабелем длиной 2м для ПК		X
8	Дополнительный рулон термобумаги шириной 58 мм		Χ
9	Сетевой адаптер		Х
10	Сумка для транспортирования газоанализатора		χ
12	Комплект фильтров очистки пробы		
11	Руководство по эксплуатации		Χ

Примечание: * Поставляются по отдельному заказу.

Изм.	Лист	№ докум.	Подп.	Дата

ДКИН. 413411.001 РЭ

3.4 Устройство и работа

3.4.1 Принцип работы

Принцип действия газоанализаторов основан на применении комплекта электрохимических измерительных датчиков - для измерения содержания O₂, CO, NO, NO₂, SO₂, и H₂S, инфракрасного оптического блока для измерения содержания углеводородов, диоксида углерода (CO₂) и дополнительного канала оксида углерода (CO), термоэлектрического преобразователя для измерения температуры газового потока, полупроводниковых датчиков - для измерения температуры окружающей среды, измерения абсолютного давления и разности давлений.

Сигналы, поступающие с датчиков, подаются на нормирующие усилители, после чего преобразуются в цифровой вид на аналого-цифровом преобразователе и поступают на обработку в микропроцессорный контроллер. Микропроцессор выполняет температурную компенсацию, устранение перекрестных влияний одного измеряемого газа на другой, перечет сигнала в соответствующую измеряемую величину с учетом единиц измерения и выводит результат измерения дисплей, принтер или персональный компьютер.

3.4.2 Наименование узлов прибора

Нумерация устройств и составных частей прибора представлено по структурной схеме газоанализатора, содержащей номера и условные обозначения составных частей. Структурная схема приведена в Приложении В:

- 1) встроенный термопринтер.
- 2) жидкокристаллический дисплей;
- 3) пленочная клавиатура;
- 4) микропроцессорный контроллер, осуществляющий основные расчеты и управление всеми устройствами прибора;
- 5) преобразователь напряжения, предназначенный для зарядки аккумулятора и питания всех устройств прибора;
- 6) NіМН аккумулятор;

Подп. и

ž

É

쒿

HH

Baam.

Hara

Подп. и

100

光

- 7) аналого-цифровой преобразователь;
- 8) цифро-аналоговый преобразователь;
- 9) аналоговый коммутатор;
- 10) нормирующие усилители сигнала;
- 11) сенсорная камера с установленными датчиками;
- 12) датчик температуры прибора, служит для контроля условий проведения измерений и термокомпенсации;
- 13) датчик абсолютного давления, представляющий полупроводниковый преобразователь давления с аналоговым выходом для измерения абсолютного давления, необходимого для расчетов скорости и расхода газопылевого потока;
- 14) полупроводниковый датчик разности давлений, предназначен для измерения разности давлений между положительным портом, подключенным к гнезду «+pd» (27) и отрицательным, подключенным к гнезду «pa/-pd» (26);
- 15) датчик разности давлений, предназначенный для контроля расхода пробы поступающей на измерение;
- 16) газовый демпфер;
- 17) контроллер инфракрасного измерительного модуля;
- 18) измерительный канал инфракрасного модуля;
- 19) насос газовой пробы;
- 20) фильтр тонкой очистки;
- 21) насос защиты датчиков;

Изм.	Лист	№ докум.	Подп.	Дата

ДКИН. 413411.001 РЭ

温

HO HU

加品

- 22) интерфейс RS-232 «РС»;
- 23) интерфейс RS-232 «УПП-510»;
- 24) разъем «=12В» для подключения сетевого адаптера;
- 25) разъем «ЗОНД» для подключения термопары пробоотборного зонда;
- 26) гнездо «ра/-pd», подключены датчики отрицательный порт датчика разности давления и датчик абсолютного давления;
- 27) гнездо «+pd», подключен положительный порт датчика разности давления;
- 28) гнездо «ПРОБА», предназначенное для подключения пробоотборного зонда или с устройствоа подготовки пробы;
- 29) дренажное отверстие.

3.4.3 Особенности основных узлов прибора

3.4.3.1 Встроенный термопринтер

Работа принтера основана на принципе печати с использованием термочувствительной бумаги, изменяющей цвет при нагреве. Точечный нагрев бумаги осуществляется перемещающейся головкой с семью вертикальными элементами. Для нормальной работы принтера должна применяться термобумага шириной 58⁺⁰⁻¹мм при максимальном диаметре рулона 40 мм, намотанная термочувствительным слоем наружу. Для установки нового рулона необходимо на конце бумаги сделать ножницами косой срез (см. рис. Б.2 приложения Б). Затем аккуратно вставить срез над блестящей планкой печатающего механизма до появления бумаги в месте выхода со стороны головки принтера. За срез вытянуть бумагу на 10-15 см и просунуть в щель крышки принтера. После этого крышку закрыть.

Следует оберегать принтер от попадания пыли, которая сокращает срок его службы, а мелкий мусор, попавший в щель выхода бумаги, может привести к заклиниванию механизма печати.

3.4.3.2 Дисплей

В приборе применяется жидкокристаллический графический дисплей с подсветкой. Яркость подсветки может индивидуально настраиваться пользователем. При работе с прибором следует учитывать значительное энергопотребление включенной подсветки, которое сокращает время автономной работы прибора. При хранении прибора в помещении с отрицательной температурой следует иметь ввиду, что при температуре ниже минус 25 °C дисплей может выйти из строя.

3.4.3.3 Клавиатура

Пленочная клавиатура прибора является стойкой к истиранию, но может быть повреждена острым предметом. Чистить клавиатуру можно влажной тканью без применения едких моющих средств.

3.4.3.4 Аккумулятор

В приборе установлены NiMH перезаряжаемые батареи емкостью 4 Ач напряжением 6.15В, характерным свойством которых является эффект «памяти», выражающийся в частичной потере емкости при зарядке не полностью разряженного аккумулятора. В связи с этим не рекомендуется заряжать аккумулятор, если он не полностью разряжен. Для полной разрядки аккумулятора можно воспользоваться функцией обслуживания аккумулятора, см. п. 4.13.6.2.

Зарядка аккумулятора производится специальным режимом, который автоматически включается, если к газоанализатору, у которого выключено питание, подключить сетевой адаптер включенный в сеть. Во избежание выхода прибора из строя необходимо использовать только сетевой адаптер, входящий в комплект поставки.

Изм.	Лист	№ докум.	Подп.	Дата

Принцип анализа газовой смеси основан на использовании электрохимических ячеек. Они являются основой 2^x , 3^x и 4^x электродных датчиков, применяемых в приборе. Датчики установлены на сенсорной камере, на которую подается измеряемая газовая проба. Большую роль на точность измерения электрохимическими датчиками оказывает скорость поступления газа в сенсорную камеру и давление в сенсорной камере. Поэтому необходимо обеспечить:

- поступление измеряемой газовой смеси без избыточного давления, только за счет встроенного насоса с требуемым расходом, при необходимости анализа газов, находящихся под давлением (например, в баллоне или технологической магистрали), то необходимо выполнить сброс лишнего газа, например через ротаметр, как показано на рисунке А.1 Приложения А настоящего РЭ «Газоанализатор АГМ-510. Методика поверки».
- отсутствие избыточного давления в сенсорной камере, которое может возникнуть при закрытии выходных отверстий на корпусе прибора.

Для гарантии точных измерений нужно всегда обращать внимание на то, чтобы в измерительную камеру не попали пыль, сажа и конденсат. Поэтому необходимо своевременно заменять фильтры и вовремя освобождать ловушки конденсата от жидкости.

Срок службы для электрохимических датчиков до 5 лет, исключая датчик кислорода, который стандартно служит около 2 лет. По дополнительному заказу может быть установлен LL датчик кислорода со сроком службы до 6 лет. Работо-способность датчика кислорода слабо зависит от интенсивности использования прибора, ресурс остальных датчиков уменьшается от времени и концентраций газов, измеряемых прибором при эксплуатации.

3.4.3.6 Инфракрасный измерительный модуль

Этот модуль устанавливается опционально. Он состоит из оптического инфракрасного модуля и контроллера.

Оптический модуль состоит из оптической четырехпроходной газовой кюветы, полупроводниковых ИК излучателя, приемника и датчика температуры, которые установлены на двухкаскадный термоэлектрический охлаждающий модуль, с помощью которого достигается термостабилизация в широком диапазоне рабочих температур. Контроллер обеспечивает управление, измерение, обработку и выдачу результата измерения в цифровом виде по внутреннему последовательному интерфейсу.

Изм. Лист № докум. Подп. Дата

ДКИН. 413411.001 РЭ

подп

y H

3.4.3.7 Насосы газовой пробы.

В газоанализаторе установлены высококачественные, устойчивые к агрессивным средам дымового газа мембранные насосы. Один насос предназначен для отбора пробы с места измерения с разрежением до 10 кПа. Второй насос служит для продувки электрохимических датчиков при превышении диапазонов измерения и отключении отбираемой пробы от всех каналов измерения кроме О₂ и ИК модуля.

3.4.3.8 Фильтр тонкой очистки

Для защиты основных устройств газового тракта газоанализатора на входе за гнездом «Проба» установлен фильтр тонкой очистки. Он обладает достаточным ресурсом и меняется один раз в год при очередном техническом обслуживании газоанализатора. Замена должна производиться только на фильтр аналогичного типа.

3.4.3.9 Пробоотборный зонд

Для газоанализатора АГМ-510 поставляются зонды забора газа следующих модификаций:

- зонд типа A (стандартная комплектация), состоит из пробоотборной металлической трубки длиной 782 мм со встроенной термопарой типа «К» с передвижным конусом для фиксирования зонда, ручки к которой подсоединены газоотводный шланг длиной 2 метра и компенсирующий провод той же длины. В шланг врезан конденсатосборник со встроенным с фильтром грубой очистки. Термокомпенсирующий провод подключается к термопаре через специальное термокомпенсирующее разъемное соединение. На этой трубке также в трубе отходящего газа.
- зонд типа В (поставляется по отдельному заказу), аналогичный зонду типа А, но с ручкой имеющей щель для размещения фильтровальной бумаги, которая устанавливается при нажата на специальный курок.

Примечание: По заказу трубки к зондам типа А и В могут поставляться длиной 332-782-1500- 2500 мм.

ВНИМАНИЕ!

НЕ ДОПУСКАЕТСЯ ПЕРЕЛИВ КОНДЕНСАТА И ПОПАДАНИЕ ВОДЫ В ПРИБОР.

Если это произошло, нужно разобрать ловушку конденсата, затем "высушить" прибор включив режим «газоанализатор» и насос отбора пробы на продолжительное время (по меньшей мере в течение 4-х часов).

После каждого измерения необходимо проверять и при необходимости заменять фильтр грубой очистки, опоражнивать конденсатосборник при наличии конденсата и, желательно, просушить его в разобранном виде.

Зонды забора газа должны регулярно прочищаться, прорезь для фильтровальной бумаги чиститься бензином, при появлении конденсата в газоотводных шлангах его необходимо удалять.

При повреждении термоэлемента необходимо заменить трубку вместе с термоэлементом. Замена может быть произведена на месте самим пользователем.

3.4.3.10 Интерфейс RS-232

Газоанализатор оснащен двумя последовательными портами RS-232:

- для связи с персональным компьютером «РС»;
- для управления устройством подготовки пробы «УПП».

Назначение контактов разъемов и распайка кабеля для связи газоанализатора AГМ-510 и персональным компьютером совместимым с IBM PC приведена в таблице E.1, формат выходных данных в таблице E.2 приложения E.

Рекомендуется пользоваться интерфейсным кабелем нашего производства.

ВНИМАНИЕ! Перед подключением интерфейса проверьте наличие заземления у компьютера. Все соединения необходимо выполнять при выключенном питании.

Изм.	Лист	№ докум.	Подп.	Дата

3.5 Маркировка и пломбирование

На передней панели газоанализатора нанесено наименование и условное обозначение, сведения о предприятии изготовителе, его товарный знак, знак Госреестра СИ, степень защиты прибора.

На основании газоанализатора на этикетке нанесены: обозначение ТУ, заводской номер, дата изготовления.

На боковой стенке прибора возле разъемов и гнезд нанесена соответствующая им маркировка.

Предусмотрено пломбирование газоанализатора после его калибровки и поверки, для этого пломбируется винт, находящийся на основании газоанализатора.

4. Использование по назначению

4.1 Меры безопасности при работе с прибором

К работе с газоанализатором допускаются лица, прошедшие обучение и инструктаж по технике безопасности при работах с радиоизмерительными приборами, ознакомившиеся с настоящим РЭ, имеющие квалификационную группу по электробезопасности не ниже 3-й, усвоившие безопасные приемы и методы работы.

Все подключения кабелей и жгутов разрешается производить только при отключенном питании подключаемого оборудования. Запрещается сброс анализируемой пробы или поверочных газовых смесей в помещении, не оборудованном вытяжной вентиляцией.

4.2 Общие сведения

Приступая к работе с газоанализатором необходимо тщательно изучить все разделы настоящего руководства. При работе необходимо строго выполнять порядок операций, указанных в настоящем РЭ.

После пребывания газоанализатора при пониженной температуре, необходимо выдержать прибор не менее 2х часов, после чего приступать к эксплуатации.

Газоанализатор любой модификации может работать в составе с устройством подготовки пробы УПП-510. Рекомендуется использование устройства подготовки пробы при длительных измерениях, в связи с образованием большого количества конденсата и абсорбции в нем измеряемых компонентов, а так же в условиях, когда невозможно произвести корректную установку «нуля» датчиков по чистому воздуху. Предварительная подготовка пробы особенно актуальна при измерении концентрации загрязняющих веществ, близкой к ПДК рабочей зоны. Особенности работы с устройством подготовки пробы описаны пункте 4.7.8 руководства.

4.3 Назначение клавиш

Внешний вид передней панели прибора с пленочной клавиатурой показан в приложении Б на рисунке Б.1.

Клавиша (1) предназначена для включения и выключения прибора.

Клавишей 🔅 включается и выключается подсветка дисплея.

Изм.	Лист	№ докум.	Подп.	Дата

ДКИН. 413411.001 РЭ

Нажатием клавиши в большинстве случаев на дисплей выводится краткая справочная информация, содержащая рекомендации по текущему режиму работы прибора.

Клавишей Выводятся подменю в измерительных режимах и при работе с памятью, открываются для редактирования справочники объектов измерения и типов сжигаемого топлива.

Клавишей **ESC** осуществляется выход из текущего режима, меню, отказ от редактирования без сохранения изменений, прерывание вывода протокола измерения на принтер.

Клавишей производится ввод строки, подтверждение ввода величины. В измерительных режимах клавиша имеет дополнительное назначение, которое будет описано в соответствующих разделах руководства.

Клавишами от
 до
 производится выбор пункта меню, ввод числового значения при редактировании. Кроме того в режиме измерения и при редактировании эти клавиши имеют дополнительное назначение в соответствии с символами, находящимися над клавишами.

Нажатием клавиши **B** (<X>) в измерительных режимах производится усреднение результатов измерения для снижения нестабильности показаний.

Клавишей (START/STOP) приостанавливается обновление результатов в измерительных режимах и производится управление насосом отбора пробы в режиме. При редактировании клавишей удаляется предшествующий маркеру символ.

4.4 Обозначения анализируемых величин

Обозначения измеряемых и рассчитываемых величин в таблице 4.1.

02	блица 4.1 Содержание кислорода
: CO	содержание угарного газа
CO2	содержание углекислого газа
NO	содержание унтехнолого газа
NO2	содержание окиси азота
NOx	суммарное содержание окислов азота
so2	
H2S	содержание двуокиси серы содержание сероводорода
Qa	суммарный коэффициент потерь
2 <u>a</u> Q2	умімарный коэффициент потерь. - коэффициент потерь, обусловленный разностью температур между смеси топлива с воздухом и отходящими га-
22	-коэффициент потерь, обусловленный разностью температур между смеси топлива с воздухом и отходящими та-
23	коэффициент потерь от химической неполноты сгорания
Alf	коэффициент избытка воздуха
pa	абсолютное давление
pd pd	разность давлений, избыточное давление / разрежение.
gvp	разность давлении, изовточное давление г разрежение. Объемный расход отбираемой на измерение пробы (производительность насоса)
zvp Uac	напряжение аккумулятора
$\overset{\circ}{v}$	скорость газопылевого потока в точке измерения
<u>′</u> v р	средняя скорость газопылевого потока по всем измеренным точкам
<u>v P</u> Qv	объемный расход газа, приведенный к нормальным условиям
¥ tg	температура газа в точке отбора пробы
ta	температура газа в точке отобра пробытемпература окружающего воздуха
td td	температура окружающего воздуха температура внутри прибора
t↑, pd↑	температура воздуха, поступающего на горение
t√, pd√	
t ¢, pd ¢ t ¢, pd ¢	минимальное значение параметра с начала измерения
t v, pd v tp, pdp	
n pap	среднее значение параметра по всем измеренным точкам количество проведенных замеров по сечению газохода

Подп. и дата

№ дубл

ZEE

ž

Baam, MHB.

Подп. и дата

Інв. № подп

ДКИН. 413411.001 РЭ

HOLL

光田

4.5 Зарядка аккумулятора

Для зарядки аккумулятора необходимо к газоанализатору, у которого выключено питание, подключить сетевой

адаптер, входящий в комплект поставки, при этом газоанализатор автоматически включается и индицирует процесс зарядки аккумулятора (рис. 4.1). После достижения полной зарядки аккумулятора (100%), она автоматически прекращается и выводится сообщение «Аккумулятор заряжен». При отключении сетевого адаптера прибор самостоятельно отключается. Для перехода в меню режимов работы необходимо нажать клавишу **ESC**,

Рис. 4.1

зарядка аккумулятора при этом прекращается, даже если она не была завершена. Более подробно о зарядке аккумулятора можно прочитать в п. 3.4.3.4.

4.6 Включение и выключение прибора

Включение производится нажатием клавиши ① на время около одной секунды. После тестирования аппаратных средств и настроек на дисплей выводится меню режимов работы (рисунок 4.2). Если в течение трех минут не будет

ГАЗОАНАЛИЗАТОР	1
ДАВЛЕНИЕ/СКОРОСТЬ	2
ТЕМПЕРАТУРА	3
ДЕТЕКТОР САЖИ	4
ПРОСМОТР ПАМЯТИ	5
СВЕДЕНИЯ О ПРИБОРЕ	6

Рис. 4.2

экранах, стрелки, расположенные с права в верхнем и нижнем поле экрана показывают на наличие продолжения текста справки. Клавиша **ESC** возврат к окну, из которого была вызвана справка. Прибор автоматически отключает режим справки после 3 минут ожидания.

Выключение прибора производится повторным нажатием клавиши (1), в течение 5 секунд до выключения будет издавать прерывистый звуковой сигнал. Звуковой сигнал так же подается в случае необходимости привлечения внимания оператора к сообщениям на дисплее прибора, значкам у символов состояния устройств в измерительных режимах, а так же при необходимости ввода информации. Если во время работы произошло случайное нажатие клавиши выключения, то в течение 5 секунд нажатием любой другой клавиши команду выключения можно отменить. Перед выключением прибора в режиме газоанализатор необходимо выполнить условия, изложенные в п.4.7.7.

4.7 Режим газоанализатор

4.7.1 Подготовка к измерению

Перед включением газоанализатора необходимо выполнить следующие операции:

- проверить отсутствие конденсата в конденсатосборнике и фильтр грубой очистки газа (при загрязнении обязательно заменить другим);
- присоединить к гнезду ЗОНД штекер датчика температуры газа (термопары), расположенного в пробоотборном зонде;
- к гнезду ПРОБА присоединить штуцер газового шланга пробоотборного зонда;

Изм.	Лист	№ докум.	Подп.	Дата

Iнв.№ подл.

Отверстия для выхода газовой пробы в основании газоанализатора должны оставаться открытыми в течение всего времени работы. Случайное их перекрытие приведет к некорректной установке нуля датчиков и недостоверности результатов измерения.

Пробоотборный зонд не должен находиться в потоке дымового газа, так как установка «нуля» датчиков прибора должна производиться по чистому атмосферному воздуху.

Включить газоанализатор. Выбрать режим ГАЗОАНАЛИЗАТОР в меню режимов, после чего прибор автоматически начнет выполнять подготовку к измерению. В ходе подготовки проверяется соответствие условиям проведения измерения, заложенным в программе газоанализатора, следующих параметров:

- напряжение аккумулятора Uac,
- температура газа Tg,
- температура воздуха Та,
- температура внутри прибора Td,
- производительность насоса Qv.

Значения контролируемых в ходе подготовки параметров выводятся на дисплей. При их отклонении больше допустимого подготовка останавливается и выдается сообщение о несоответствии параметра и возможной причине несоответствия. При любой неисправности кроме недостаточного уровня зарядки аккумулятора возможно продолжение работы при нажатии на клавишу **ESC**.

После проверки условий проведения измерений производится установка «нуля» газовых датчиков и инфракрасного канала измерения, которая продолжается в течение 200 секунд. Если за это время не будет достигнута требуемая стабильность выходных сигналов датчиков, то время установки будет автоматически добавлено.

После завершения подготовки к измерению предлагается ввести объект измерения и тип сжигаемого топлива. Название объекта выбирается в справочника «ОБЪЕКТ ИЗМЕРЕНИЯ» из записанных ранее или вводится новое (см. пункт 4.13.3 Выбор объекта измерения). Инструкцию по записи объекта можно так же получить, нажав клавишу ①. Ввод типа и параметров топлива описан в пункте 4.13.2.

Для расчета потерь Q₂, вызванных разностью температур между поступающей в топку смеси топлива с воздухом и отходящими газами, необходимо определить температуру воздуха, поступающего на горение (Ті). Для измерения Ті установить пробоотборный зонд в воздуховод и, после стабилизации показания, подтвердить значение клавишей 荰. Если значение температуры воздуха, поступающего на горение, известно заранее, то его можно ввести с клавиатуры, вызвав режим ввода клавишей 🕮 . Вводимое значение должно иметь значение быть в диапазоне от -20 до 200 °С.

Если не планируется производить теплотехнические расчеты Qa и Q2, то нет необходимости измерения либо ввода Ті, отмена клавиша **£\$С**. После ввода Ті прибор готов к измерению.

4.7.2 Место измерения

Если в выпускной трубе топливосжигающей установки не предусмотрено отверстие для отбора пробы на анализ, или нет соответствующих нормативных требований к месту отбора пробы, то для проведения измерений необходимо просверлить отверстие на расстоянии двух диаметров выпускной трубы от выхода котла топливной установки. Место измерения должно быть легко доступным.

Для проведения измерения необходимо:

- включить насос газовой пробы, если он ранее был выключен;
- ввести зонд в газоход;

Изм.	Лист	№ докум.	Подп.	Дата

ДКИН. 413411.001 РЭ

При необходимости анализа газов, находящихся под давлением (например, в баллоне или технологической магистрали), то необходимо обеспечить поступление газа в прибор без избыточного давления, выполнив сброс лишнего газа например через ротаметр, как показано на рисунке Приложения А.1 настоящего РЭ «Газоанализатор АГМ-510. Методика поверки».

4.7.3 Индикация результатов измерения

Если на дисплее не может одновременно разместиться все результаты измерения и расчета их вывод производится

поэкранно. Информация на дисплей выводится в виде, показанном на рис. 4.3.

На поле 1 содержится порядковый номер экрана и общее количество экранов в текущем измерительном режиме.

На поле 2 индицируются один экран с результатами измерения и расчета. Переключение экранов осуществляется клавишами **5** и **0**.

Рис. 4.3 На поле 3 индицируется количество записей, хранящихся в памяти прибора.

На поле 4 отображаются символы устройств и их состояния, приведенные в таблице 4.2. Символы состояния, обозначающие ошибки и неисправности, дублируются звуковым сигналом.

Таблица 4.2

	Устройство	Состояние		
ac	Газоанализатор, встроенный аккумуля- тор	√ ?	Заряжен, возможна нормальная работа Аккумулятор разрядился, прибор скоро выключится	
ii.	Газоанализатор, насос газовой пробы	?	Насос обеспечивает нормальный поток Насос неисправен или непроходимость газового канала	
•t	Газоанализатор, температурный режим	> <	Температура прибора в норме Перегрев прибора Переохлаждение прибора	
•	Термопара пробоотборного зонда	?	Подключена Не подключена или неисправна	
₩.	Устройств подготовки пробы	? ; ;	УПП исправен и готов к приему газовой пробы Нарушена связь с УПП Не установлен температурный режим УПП Неисправность УПП	
⊫	Сетевой адаптер	✓	Адаптер подключен к прибору и сети	

В строке поля 5 показывается состояние измерительного режима:

измерение - результаты измерения выводятся непрерывно только на дисплей;

пер. печать - результаты измерения выводятся на дисплей непрерывно, на принтер через выбранный интервал периодической записи, установленный в меню дополнительных установок;

зап. в пам. - результаты измерения выводятся на дисплей непрерывно, сохраняются в памяти через выбранный интервал периодической записи;

интерфейс - результаты измерения выводятся на дисплей непрерывно, выводятся на интерфейс через выбранный интервал периодической записи;

cmon - приостанавливается обновление результатов измерения;

усреднение - включен режим усреднения параметров.

В этой строке так же могут выводиться сообщения о состоянии прибора и ошибках в работе.

ИНВ. № Дубл.	
B3aM. MHB. Ne	
Подп. и дата	
ИНВ. № подл.	1
_	

Подп. и

Изм.	Лист	№ докум.	Подп.	Дата

HO HU

y H

4.7.4 Измерение содержания компонентов в газовой смеси

Для получения нормированной точности результата измерение необходимо проводить не менее трех минут. Это обусловлено инерционностью электрохимических датчиков на токсичные газы. Если по истечении трех минут измеряемые величины имеют нестабильные значения, что вызвано характеристиками потока пробы в месте замера, можно включить режим усреднения и получить результат о среднем значении содержания компонентов. Включение/выключение режима усреднения производится клавишей (S)(<X>).

Отбор пробы и обновление результатов измерение можно включать и выключать клавишей (START/STOP). После проведения замера концентраций газов CO, NO, NO2, SO2, H2S превышающих 10% диапазона измерения перед выключением отбора пробы на длительное время рекомендуется «продуть» прибор чистым воздухом до показаний примерно равным погрешности в начале диапазона измерения. Следует учесть, что после включения насоса, начала отбора пробы и обновления результата измерения необходимо время для стабилизации показаний.

Допускается проводить измерения последовательно в нескольких местах отбора пробы или объектах, без дополнительной установки «нуля», если общее время замеров не превышает 30 минут.

Если результаты измерения по каналам CO, NO, NO2, SO2, H2S превышали 50% от диапазона измерения этого канала, то перед измерением концентраций менее 5% от диапазона измерения необходимо произвести установку «нуля».

Рекомендуемые циклы отбора пробы и продувки воздухом при проведении длительных измерений концентраций газов CO, NO, NO2, SO2, H2S приведены в таблице 4.3.

Таблица 4.3.

Измеряемая концентрация,	Время измерения, мин.	Время продувки,
% от диапазона измерения	Времи измерении, мин.	мин.
5	60	5
10	50	5
25	30	10
50	20	10
75	10	20
100	5	30

Недопустимо попадание воды в прибор при отборе пробы. Поэтому при проведении длительного замера пробы с высоким содержанием влаги необходимо периодически контролировать уровень воды в конденсатосборнике и вовремя удалять ее. Разбирать конденсатосборник и сливать конденсат можно только при выключенном насосе.

4.7.5 Регистрация результатов измерения

В приборе предусмотрены следующие виды регистрации результатов измерения:

- печать протокола измерения на встроенном термопринтере;
- запись в память прибора емкостью 3950 ячеек для последующей обработки;
- вывод результатов измерения на компьютер по интерфейсу RS-232.

Регистрировать результаты измерения можно:

- текущий результат измерения нажатием соответствующей клавиши;
- через фиксированный интервал времени, используя функцию периодической записи.

В процессе измерения клавишей (1) производится распечатка текущих результатов измерения. Если нужно получить несколько одинаковых протоколов измерения, то необходимо остановить обновление результата измерения клавишей (START/STOP), затем распечатать нужное количество одинаковых протоколов. Распечатка протокола измерения возможна в трех вариантах: полный, стандартный и краткий, отличающихся содержанием дополнительной информации. Варианты протоколов представлены в Приложении Д.

Изм.	Лист	№ докум.	Подп.	Дата

Если планируется выводить результаты измерения на персональный компьютер, то предварительно необходимо соединить разъем прибора «RS-232 PC» с аналогичным интерфейсом ПК кабелем связи из комплекта АГМ-510 и загрузить программу обмена, например AGM510-PC.exe. Передача результатов измерения на персональный компьютер производится клавишей 3. Если при выводе данных по интерфейсу RS-232 на дисплее (рис. 4.3 поле 5) выдается сообщение «компьютер не готов..» необходимо проверить настройки программы и персонального компьютера, правильность подключения и целостность кабеля связи. Описание работы с программой приведено в «Руководстве пользователя» ДКИН.413411.001РП.

Функция периодической записи позволяет автоматически регистрировать результаты измерения с заданным интервалом времени. Включение этой функции и выбор регистрирующего устройства производится в подменю установок, вызываемом клавишей только в измерительном режиме. Сначала нужно выбрать устройство для регистрации (принтер, память или интерфейс), затем ввести интервал между записями. Ввод производится по аналогии с пунктом 4.13.2.4. Для периодической записи на принтер минимальный интервал при этом составляет 30 секунд, максимальный – 9999 секунд, при записи в память и выводе на компьютер минимальный интервал – 5 секунд, максимальный – 9999 секунд.

4.7.6 Защита электрохимических датчиков

В газоанализаторе реализована защита датчиков CO, NO, NO₂, SO₂ и H_2S от воздействия на них газовой пробы, содержание компонентов в которой превышает порог защиты, установленный оператором. Порог защиты устанавливается в меню установок для каждого датчика в отдельности в диапазоне от 10 до 100 процентов от диапазона измерения данного канала измерения. Порог всегда устанавливается в объемных долях компонента без учета разбавления. Порог может быть установлен как до начала измерения (в меню установок), так и во время проведения измерения (в дополнительном меню установок) см. пункт 4.13.2.4.

Если в приборе не установлен модуль защиты от перегрузки, то при превышении измеренного значения уровня порога защиты газоанализатор выключает насос отбора пробы, выводит сообщение о необходимости отключить пробу от прибора. После подтверждения отключения пробы клавишей **ESC** включается специальный режим продувки датчиков «чистым воздухом», после чего возможно продолжение работы в режиме измерения состава газа.

В случае комплектации газоанализатора модулем защиты от перегрузки, при превышении установленного порога автоматически включается дополнительный насос, который подает на датчики воздух вместо пробы. На дисплей выводится сообщение о необходимости отключить пробу от прибора. После нажатия клавиши **ESC** возможно продолжение измерения датчиком O₂ и инфракрасным модулем (при его наличии). Это дает возможность произвести предварительную настройку топливосжигающей установки по величине избытка воздуха. В этом случае, напротив обозначения отключенного измеряемого компонента индицируется сообщение **откл**. Для возобновления подачи газовой пробы на защищаемые датчики надо отключить дополнительный насос клавишей . Дополнительный насос выключается независимо от состояния основного насоса. Включить дополнительный насос, обеспечив тем самым защиту датчиков, можно и вручную клавишей .

Если порог защиты установлен меньше диапазона измерения, можно увеличить его и попытаться продолжить измерение.

Изм. Лист № докум. Подп. Дата

Подп. и дата

дубл

ž

温

MHB. No

B3am.

Подп. и дата

Iнв.№ подл.

ДКИН. 413411.001 РЭ

По окончании измерений газовой пробы перед выключением питания или началом измерения давления/скорости или температуры необходимо обеспечить продувку газового тракта прибора от измеряемой пробы, что особенно важно, если концентрации газов СО, NO, NO2, SO2, H2S превышающих 10% диапазона измерения. Для этого необходимо переместить пробоотборный зонд из места отбора пробы на воздух, при этом основной насос отбора пробы должен быть включен. После того, как показания газоанализатора приблизятся к значениям содержания загрязняющих веществ в рабочей зоне можно выйти из режима анализа газовой пробы в меню режимов работы, нажав клавишу **ESC**, затем подтвердить выход клавишей , либо отключить питание клавишей .

После завершения работы с прибором необходимо:

- отсоединить все штуцера и разъемы от газоанализатора;
- удалить конденсат из ловушки;
- при необходимости заменить фильтр грубой очистки и произвести чистку пробоотборного зонда;
- подзарядить аккумулятор при его существенном разряде;
- сложить прибор в транспортную упаковку.

4.7.8 Работа газоанализатора с устройством подготовки пробы УПП-510

Перед началом работы необходимо ознакомиться с документом «Устройство подготовки пробы УПП-510. Руководство по эксплуатации. ДКИН.418312.001(2) РЭ». Для подготовки к совместной работе газоанализатора и устройство подготовки пробы УПП-510 (далее УПП) необходимо:

- разместить приборы на месте измерения, соблюдая рекомендации РЭ;
- произвести подключения интерфейсного кабеля и шланга из комплекта УПП между приборами в соответствии с обозначениями у разъемов и гнезд приборов;
- если предполагается длительное проведение измерений, то необходимо обеспечить питание газоанализатора с помощью сетевого адаптера входящего в комплект поставки кабелем газоанализатора;
- подключить разъем термопары пробоотборного зонда к гнезду «ЗОНД» газоанализатора;
- включить питание приборов.

Возможны два варианта совместной работы приборов: автоматический режим и ручное управление. Выбор режима у газоанализатора осуществляется в соответствии подменю Сервис с пунктом 4.13.6.4.

Предпочтительно использовать автоматический режим, при котором УПП работает под управлением газоанализатора, не требуя каких либо действий со стороны оператора. В этом случае после выбора режима ГАЗОАНАЛИЗАТОР одним из этапов производится проверка связи с УПП и неисправностей в его работе. При обнаружении неисправностей в работе УПП газоанализатор выводит сообщение: ВНИМАНИЕ НЕИСПРАВНОСТЬ! ПРОВЕРЬТЕ РАБОТУ УПП-510! Для продолжения работы необходимо устранить причину, вызвавшую неисправность, затем нажать клавишу [\$]. Если связь с устройством подготовки пробы отсутствует, на дисплей выдается сообщение: ВНИМАНИЕ! ВКЛ. ПИТАНИЕ УПП-510! НЕТ СВЯЗИ! В этом случае надо проверить правильность и надежность подключения соединительного кабеля и убедиться, что питание УПП включено. Если связь газоанализатора с УПП не установилась, например, из-за неисправности кабеля связи, то можно перейти на ручное управление работой устройства подготовки пробы, нажав клавишу [\$]. В этом случае ручной режим работы УПП будет выполняться до следующей установки «нуля» газоанализатора.

Перед началом установки «нуля» газоанализатор подает команду на переключение выхода УПП к генератору нулевого газа и подготовку к приему газовой пробы. Температура обогреваемого шланга(Tlin) и охладителя пробы(Tplt) УПП

інв. № подл. и дата Взам. инв. № Инв. № дубл. Подп. и дата

Изм. Лист № докум. Подп. Дата

ДКИН. 413411.001 РЭ

Hara

10 H

Hygu

ž

是是

쒿

H

Baam

Hara

И Пот.

HOLL

ž

устанавливается по умолчанию. Изменить значения этих температур можно до начала работы в автоматическом режиме, так как клавиатура УПП в этом режиме заблокирована.

После завершения установки «нуля», УПП по команде газоанализатора переключает выход газовой пробы к тракту отбора пробы и поддерживает режим отбора газовой пробы. Состояние УПП индицируется значком рядом с символом 🖼 на дисплее газоанализатора в соответствии с таблицей 4.2.

Информацию о температурном режиме и состоянии устройства подготовки пробы во время измерения можно получить в пункте СОСТОЯНИЕ ПРИБОРА меню установок.

Если выбрано ручное управление, то подготовка к работе и управление режимами УПП производится в соответствии с руководством по эксплуатации ДКИН.418312.001 РЭ. Газоанализатор в этом случае не управляет устройством подготовки пробы и не контролирует его состояние. В случае ручного управления особенно важно перед началом установи «нуля» у газоанализатора обеспечить переключение выхода ПРОБА УПП на генератор нулевой газа. В противном случае газ с места отбора пробы будет поступать в газоанализатор, что приведет к некорректной установке «нуля» и ошибочным результатам измерения.

4.8 Режим давление/скорость

В зависимости от установленных датчиков давления режим давление/ скорость может:

- отсутствовать (выдается сообщение «Функция не заказана»);
- работать в режиме «давление» (измерение избыточного давления и разрежения);
- работать в режиме «давление / скорость» (измерение абсолютного давления, разности давлений, избыточного давления и разрежения, определения расчетным методом в соответствии с ГОСТ 17.2.4.06-90 скорости и объемного расхода газопылевых потоков при работе с измерительным зондом – напорной пневмометрической трубкой Пито или НИИОГАЗ).

В случае установки в приборе датчика на избыточное давление/разрежение (реализация режима «давление») прибор укомплектован одним гнездом +Pd. При измерении давления к данному гнезду подключается объект измерения с помощью пробоотборного зонда из комплекта поставки или иной пневматической магистрали.

Для начала работы необходимо вклю-

чить прибор и выбрать пункт ДАВЛЕНИЕ/СКОРОСТЬ в меню режимов, после чего прибор автоматически начнет производить установку «нуля» датчика давления. При обнаружении нестабильности сигналов выходного сигнала датчика установка «нуля» может повториться.

После завершения установки «нуля» предлагается выбрать объект, на котором производится измерение (см. пункт 4.13.3 Выбор объекта измерения).

Результаты измерения и символы состояния отображаются на одном экране (рис. Ошибка! Источник ссылки не найден.) в соответствии с пунктом 4.7.3, неактивные символы состояния не отображаются. Обозначения измеряемых величин приведены в таблице 4.1.

Текущее давление pd обновляется один раз в секунду. Положительное значение результата говорить об избыточном давлении в месте измерения, отрицательное значение о разрежении. Если величина рd нестабильна, можно включить функцию усреднения показаний клавишей (В).

Изм.	Лист	№ докум.	Подп.	Дата

ДКИН. 413411.001 РЭ

Прибор позволяет производить анализ изменения давления, используя усреднение по точкам серии замеров. Запись точки производится показаний нажатием клавиши . Максимально можно записать сто значений в серии замера. Расчет среднего давления по точкам **pdp** начинается после первого записанного значения (n>0).

Если усреднение по точкам не проводилось, значения **pd↑**, **pd↓**, **pdФ** отражают изменение величины давления **pd** от начала измерения до текущего момента, если были произведены записи величин давления для усреднения по точкам (n>0), то **pd↑**, **pd↓**, **pdФ** получаются путем анализа значений давления по точкам серии замера. Для сброса значений **pd↑**, **pd↓**, **pdФ**, **n**, **pdp** для начала нового анализа объекта необходимо нажать клавишу .

Регистрация результатов измерения на принтере, в памяти или персональном компьютере производится в соответствии с пунктом 4.7.5. Результаты измерения, содержащие значения давления по точкам усреднения, выводятся при полном или стандартном протоколе печати принтера.

В случае установки в приборе полного комплекта датчиков давления (реализация режима «давление / скорость») прибор укомплектован двумя гнездами **+Pd** и **-Pd/Pa**.

Для точного измерения скорости и объемного расхода газового потока предварительно необходимо определить коэффициент плотности газового потока, который рассчитывается по составу газа в соответствии с разделом 4 ГОСТ 17.2.4.06-90. Для приближенных расчетов плотность дымовых газов принимают равной плотности воздуха (**Кр**=1290 г/м³).

При необходимости производить расчет объемного расхода газов за вычетом доли водяного пара необходимо предварительно определить массовую концентрацию водяных паров **Pn** в газовом потоке в соответствии с ГОСТ 17.2.4.08-90. Если расчет объемного расхода потока нужно выполнить с учетом присутствия водяного пара коэффициент **Pn** необходимо приравнять к нулю.

Начало работы (выбор пункта **ДАВЛЕНИЕ/СКОРОСТЬ**) запускает установку «нуля» датчиков давления. При обнаружении нестабильности сигналов выходных сигналов датчиков установка «нуля» может повториться.

По завершению установки «нуля» предлагается выбрать объект, на котором производится измерение (см. пункт 4.13.3 Выбор объекта измерения). Затем, если планируется производить измерение скорости и (или) расхода газопылевого потока, необходимо определить температуру потока **Tg**, необходимую для расчета скорости. Это значение может быть измерено датчиком температуры пробоотборного зонда, подключенным к гнезду **30HД** и помещенным в газоход, либо введено оператором, если оно известно заранее или измерено другим прибором. Далее в диалоговом режиме ввести параметры, необходимые для расчета скорости потока газа и расхода в анализируемом газоходе:

- Kt коэффициент пневмометрической трубки, указанный в свидетельстве о метрологической аттестации;
- Кр коэффициент плотности газового потока (г/м³);
- Pn массовая концентрация водяных паров в газовом потоке при нормальных условиях (г/м³);
- Sg сечение газохода в месте замера (м³).

Величины введенных параметров, кроме **Tg**, сохраняются в памяти и могут быть использованы в последующих замерах. Для начала измерения необходимо присоединить к гнезду **-Pd/Pa** прибора полость статического давления, а к гнезду **-Pd** полость полного давления пневмометрической трубки при помощи штуцеров и соединительных трубок из комплекта АГМ-510. Пробоотборный зонд может быть отключен от гнезда **30HД**.

Результаты измерения и символы состояния отображаются на одном экране (рис. **Ошибка! Источник ссылки не найден.**) в соответствии с пунктом 4.7.3, неактивные символы состояния не отображаются. Обозначения измеряемых величин приведены в таблице 4.1.

При проведении измерения скорости пневмометрической трубкой следует обратить особое внимание на положение трубки в потоке газа. Измерение следует проводить в зоне ламинарного потока, направление потока должно строго совпа-

Изм.	Лист	№ докум.	Подп.	Дата

쒿

Hara

дать с положением рабочего участка трубки. Индикация скорости v производится, если измеренное значение больше или равно 2.0 м/с, в противном случае выводятся прочерки, как показано на рис. **Ошибка! Источник ссылки не найден.**

Измерение расхода газопылевого потока следует проводить в соответствии с ГОСТ 17.2.4.06-90. Максимальное количество точек замеров при определении скорости не более 100. Пневмометрическую трубку установить в одну из намеченных точек газохода. После стабилизации показаний зафиксировать локальную скорость в данной точке клавишей ... Для снижения нестабильности показаний можно включить функцию усреднения клавишей ... Аналогичные действия произвести для всех точек сечения газохода. Расчет средней скорости потока и приведенного к нормальным условиям расхода газа начинается после первого зафиксированного значения локальной скорости. Если ни одно из значений не будет зафиксировано, расчет производиться не будет.

Если измерения проводятся продолжительное время (более 10 минут), рекомендуется извлечь трубку из газохода и, нажатием клавиши , произвести установку «нуля» датчиков давления. Во время установки «нуля» пневмометрическая трубка не должна находиться в месте, где воздух перемещается со скоростью выше 0,2 м/с. Если это выполнить невозможно, необходимо перед каждой установкой «нуля» производить отключение штуцеров, идущих от пневмометрической трубки, а по окончании подключать их вновь.

Регистрация результатов измерения на принтере, в памяти или персональном компьютере производится в соответствии с пунктом 4.7.5. Результаты измерения, содержащие локальные скорости в каждой точке сечения, выводятся при полном или стандартном протоколе печати принтера, исходные данные для расчетов только при полном протоколе печати.

После окончания серии замеров сечения газохода и сохранения результата измерения, можно выйти из режима ДАВЛЕНИЕ/СКОРОСТЬ или выключить питание. Новую серию замеров для определения расхода газопылевого потока можно начать только из меню режимов.

Если планируется проводить измерение только разницы давлений и (или) абсолютного давления, то после установки «нуля» датчиков давления и выбора объекта измерения клавиша **Е§©** отменяет ввод температуры и коэффициентов, принимающих участие в расчете скорости и расхода газопылевого потока. В этом случае значение рассчитанной скорости и расхода не принимают в расчет.

Для определения разницы давления (дифференциального давления) необходимо подключить объект измерения к гнездам -Pd/Pa и +Pd с помощью штуцеров и шлангов из комплекта поставки газоанализатора. При подключении необходимо обеспечить герметичность всех соединений. Если измеренная величина разницы давления имеет положительный знак, значит, к гнезду +Pd подключен штуцер с большим давлением, а к гнездам -Pd/Pa с меньшим. При отрицательном результате к гнезду +Pd подводиться меньшее давление по отношению к гнезду -Pd/Pa.

При продолжительных измерениях необходимо контролировать «0» канала разницы давления и при необходимости производить его корректировку (клавиша). Перед установкой «0» необходимо отключить штуцера от гнезд измерения давления, а по окончании подключать их вновь.

Измерение избыточного давления или разрежения производится аналогично измерению разницы давлений. Объект измерения подключают только к гнезду **+Pd**, гнездо **-Pd/Pa** остается свободным и связанным с атмосферным давлением. Если измеренная величина давления **pd** имеет положительный знак, значит, измеряется избыточное давление, если отрицательный разрежение. В этом случае канал абсолютного давления **pa** выполняет измерение величины атмосферного давления.

При измерении абсолютного давления **pa** объект измерения подключают к гнезду **-Pd/Pa**. Если гнездо **+Pd** остается свободным, то измеренная величина давления **pd** показывает разницу между величиной измеряемого и атмосферного давления. При большой разности атмосферного и давления объекта измерения величина **pd** может показывать перегрузку.

Изм. Лист № докум. Подп. Дата

ДКИН. 413411.001 РЭ

Предельные значения давления, подаваемого на гнезда **-Pd/Pa** и **+Pd**, указаны в разделе 3.2 настоящего РЭ. Следует учесть, что высокое давление может возникнуть от перегиба и сжатия шлангов, соединяющих газоанализатор с объектом измерения массивными предметами, а так же при различного рода пневматических и гидравлических ударах.

4.9 Режим температура

Режим температура предназначен для использования расширенных возможностей обработки результата при измерении температуры. Газоанализатор рассчитан на использование в качестве датчика температуры термоэлектрического преобразователя типа «К».

1/1] эк	ран	[0045]	память
tg	22.6	ີ °c ່	₩-٧
t1	22.9	°C	't v
t↓	21.1	°C	
t‡	1.8	°C	
n			210000.0
tp			M V
стоп		средн	ение

заборный зонд из комплекта поставки включить прибор и выбрать режим измерения **ТЕМ-ПЕРАТУРА** в меню режимов, затем объект, на котором производится измерение (см. пункт 4.13.3 Выбор объекта измерения). Результаты измерения и символы состояния отображаются на одном экране (рис. 4.5) в соответствии с пунктом 4.7.3, неактивные символы

Для начала работы необходимо подключить датчик температуры, например газо-

Рис. 4.5

состояния не отображаются. Обозначения измеряемых величин приведены в таблице 4.1.

Текущая температура **tg** обновляется один раз в секунду. Если величина **tg** нестабильна, можно включить функцию усреднения показаний клавишей (B).

Прибор позволяет производить анализ температурных режимов объектов, используя усреднение по конкретным точкам объекта измерения. Запись производится после стабилизации показаний нажатием клавиши . Максимально можно записать температуру у ста точек объекта. Расчет средней температуры по точкам **tp** начинается после первого записанного значения (n>0).

Если усреднение по точкам не проводилось, значения $t\uparrow$, $t\downarrow$, $t\updownarrow$ отражают изменение величины температуры tg от начала измерения до текущего момента, если были произведены записи величин температуры для усреднения по точкам (n>0), то $t\uparrow$, $t\downarrow$, $t\updownarrow$ получаются путем анализа значений температуры по точкам усреднения.

Для сброса значений **t**↑, **t**↓, **t**◆, **n**, **tp** для начала нового анализа объекта необходимо нажать клавишу ...

При проведении измерения температуры газозаборным зондом следует обратить особое внимание на положение зонда в потоке газа. Зонд необходимо располагать в потоке газа таким образом, чтобы ось зонда была перпендикулярна оси потока, и поток проходил через отверстия на наконечнике зонда. Это обеспечит максимальный контакт термопары с дымовыми газами и наиболее быстрое измерение температуры. Кончик термопары не должен касаться трубки зонда. Это может привести к неверному результату измерения температуры. При необходимости кончик термопары следует осторожно отогнуть. Искажения результата измерения температуры так же могут быть вызваны присутствием конденсата в газоотборной трубке.

Регистрация результатов измерения на принтере, в памяти или персональном компьютере производится в соответствии с пунктом 4.7.5. Результаты измерения, содержащие значения температуры по точкам усреднения, выводятся при полном или стандартном протоколе печати принтера, исходные данные для расчетов только при полном протоколе печати.

После окончания замеров и сохранения результата измерения, можно выйти из режима **ТЕМПЕРАТУРА** или выключить питание.

4.10 Режим детектор сажи

Определение содержания сажи в отходящих газах производится методом сравнения сажевого пятна со шкалой Бахараха в соответствии с DIN 51402. Сажевое пятно получается путем прокачки через фильтровальную бумагу газопылевого

Изм.	Лист	№ докум.	Подп.	Дата

ž

потока объемом 1,63 литра через калиброванное сечение. Для реализации этой функции прибора необходимы пробоотборный зонда типа В, имеющий зажим и щель для установки специальной фильтровальной бумаги. Данный зонд поставляется по отдельному заказу.

Для проведения теста на содержание сажи необходимо выбрать пункт **ДЕТЕКТОР САЖИ** в меню режимов и следовать рекомендациям, указанным на дисплее прибора. Для определения содержания сажи рекомендуется провести, по меньшей мере, три теста и взять среднее значение. Определение содержания сажи производилось правильно, если фильтровальная бумага:

- не изменила своего цвета от перегрева;
- не влажная от образования конденсата;
- на ней нет масляных пятен;
- равномерно окрашена по всей поверхности.

4.11 Просмотр памяти

Этот функция предназначена для работы с записанными в память прибора результатами измерений. После выбора

пункта **ПРОСМОТР ПАМЯТИ** в меню режимов на дисплей выводится запись в память с первым номером. Каждая запись в память выводится на дисплей на нескольких экранах в виде, показанном на рисунке 4.6. Разница между выводом информации записанной в память и соответствующим режимам измерения в том, что добавляется дополнительное окно, в котором выводится общая информация о режиме измерения, месте и времени проведения замера.

Рис. 4.6

Назначение полей дисплея при выводе информации в режиме просмотра содержимого памяти:

- 1 порядковый номер экрана / общее количество экранов для текущей записи;
- 2 номер текущей записи;
- 3 информация, записанная в память;
- 4 общее количество записей в память;
- 5 шкала положения текущей записи в массиве памяти;
- 6 символы устройств и их состояние (см. пункт 4.2);

Переключение экранов осуществляется клавишами 5 и 0. Переход на последующую или предыдущую запись производится клавишами 7 и 9. Причем при выводе первой записи в память, нажатие на клавишу 7 вызывает переход к последней ячейке, а при выводе последней записи, нажатие на клавишу 9 вызывает переход к первой ячейке.

Ввиду того, что результаты измерений записываются в память, которой для нормальной работы необходимо питание, сохраненные результаты измерения будут потеряны при полной разрядке аккумулятора. Аккумулятор разряжается, даже если с прибором не работают из-за того, что от него запитаны постоянно часть электрохимических датчиков и часы. Поэтому при необходимости сохранить результаты измерения, записанные в память, необходимо поддерживать аккумулятор в заряженном состоянии. Если в процессе работы прибор выключился сам из-за разряда аккумулятора необходимо при первой возможности зарядить аккумулятор. Если информация, ввиду какого-либо сбоя в работе, была искажена только в одной ячейке памяти, результат измерения в данной ячейке полстью обнуляется.

Изм.	Лист	№ докум.	Подп.	Дата

Hara

И Пот.

HOLL

ž

Hara

При просмотре результатов измерения записанных в память можно распечатать текущую запись на принтере, нажав клавишу (1) или передать на компьютер, нажав клавишу (3). Варианты протоколов измерений выведенных из памяти на встроенный принтер приведены в Приложении Д.

ПЕРЕХОД К	ЯЧЕЙКЕ?	1
поиск по	ДАТЕ	2
поиск по	МЕСТУ	3
вывод на	ПРИНТЕР	4
вывод на	КОМПЬЮТЕР	5
СТИРАНИЕ	NTRMAN	6

Рис. 4.7

Дополнительные возможности поиска, блочной печати и вывода информации на компьютер и удаления данных из памяти предоставляет меню управления памятью (см. рисунок 4.7), которое можно вызвать при просмотре записей в память клавишей 🚇). При использовании меню управления памятью следует учесть следующее:

- при выполнении частичного стирания записей в память и последующем поиске результатов измерения обратите внимание на то, что номера результатов сохраненных в памяти

- поиск по дате будет производиться корректно, если не производилась коррекция даты и времени встроенных часов;

изменяется, если будут удалены записи, сделанные до этих них (с меньшими номерами);

- ввиду того, что в память записывается не наименование объекта измерения, а его номер в списке, при редактировании списка объектов измерения, ранее произведенные записи в память с номерами объекта измерения, который был откорректирован, изменят объект измерения в соответствии со сделанными изменениями;
- при выводе на принтер или компьютер большого количества результатов измерений (распечатка на принтере всей полностью заполненной памяти займет больше суток) можно прервать выполнение операции, нажав клавишу

4.12 Сведения о приборе

Этот пункт меню выводит информацию о заводском номере прибора, дате последнего технического обслуживания, версии программного обеспечения, установленных в приборе электрохимических датчиках в формате «газ – тип – дата установки – диапазон измерения» и диапазонах измерения каналов давления и температуры. Информация выводится на трех экранах, переключение которых производится клавишами (5) и (1). Возможно распечатать сведения о приборе на встроенном принтере, нажав клавишу 1

4.13 Меню установок

В меню установок производится настройка и контроль прибора. Вызов производится клавишей 🕮 . Основное меню установок доступно только из меню режимов (Рис. 4.8). При измерении состава газов, давления, температуры доступны дополнительные меню установок, содержащие набор функций, необходимый для работы в конкретном режиме измерения.

Меню режимов		Измерение состава газа	
СЕРВИС	6	защита датчиков	6
ОСНОВНЫЕ УСТАНОВКИ	5	периодич. Запись	5
ЕДИНИЦЫ ИЗМЕРЕНИЯ	4	ЕДИНИЦЫ ИЗМЕРЕНИЯ	4
ОБЪЕКТ ИЗМЕРЕНИЯ	3	ОБЪЕКТ ИЗМЕРЕНИЯ	3
СЖИГАЕМОЕ ТОПЛИВО	2	СЖИГАЕМОЕ ТОПЛИВО	2
СОСТОЯНИЕ ПРИБОРА	1	АЧОВИЧП ВИНКОТОО	1

СОСТОЯНИЕ ПРИБОРА 1 ОБЪЕКТ ИЗМЕРЕНИЯ 2 ПЕРИОДИЧ. ЗАПИСЬ

Измерение давления/скорости Измерение температуры

Рис.4.8 Основное и дополнительные меню установок

4.13.1 Состояние прибора

После выбора этого пункта на дисплей выводится:

- время и дату встроенных часов;

Изм.	Лист	№ докум.	Подп.	Дата

ДКИН. 413411.001 РЭ

- температура внутри газоанализатора (Td);
- расход отбираемой газовой пробы (Qvp);
- состояние УПП-510 (температура охладителя пробы Тр и обогреваемого шланга ТI, готовность, наличие ошибок). Если УПП-510 не подключен к газоанализатору, выводится сообщение: **Нет связи, проверьте подключение УПП-510**.

Информация о температуре прибора позволяет оценить соответствие температурного режима прибора требуемым условиям эксплуатации.

Данные о расходе пробы дают возможность проверить насос отбора пробы и поиска мест непроходимости и утечек газового тракта. В режиме просмотра состояния прибора насос можно включить или выключить клавишей (START/STOP). При работающем насосе отбора пробы расход должен быть не менее 0,5 литра в минуту. К снижению расхода пробы приводит неисправность насоса или непроходимость газового тракта. Насос исправен, если при отключенном от гнезда ПРОБА штуцере газового тракта расход больше 0.80 литра в минуту. Причину непроходимости в газовом тракте определяют методом последовательного исключения частей пробоотборной магистрали. Место утечки пробоотборной магистрали определяют последовательно заглушая газовый канал. Критерий герметичности газового канала – постепенное снижение расхода до значения менее 0,03 литра в минуту.

Более корректно проверить исправность газового канала и насоса отбора пробы можно с помощью специальной функции тест герметичности см. 4.13.6.1.

4.13.2 Сжигаемое топливо

4.13.2.1 Характеристики топлива

Выбор типа сжигаемого топлива необходим для правильного расчета величин CO₂ и коэффициентов потерь, и на остальные величины влияния не оказывает. При обращении к данной функции выводится справочник с 12 стандартными и 4 свободнопрограммируемыми типами топлива. Необходимо выбрать одно из предлагаемых видов топлива. Тип топлива и его характеристики выводятся на протоколе измерения встроенного принтера, если включен полный протокол печати (см. пункт 4.13.5 и приложение Д).

Используемые в приборе стандартные типы топлива и их характеристики приведены в таблице 4.4, а в таблице 4.5 приведены характеристики этих типов топлива, зависящих от температуры продуктов сгорания.

Инв. № подл. подп. и дата Взам. инв. № Инв. № дубл. Подп. и дата

Изм.	Лист	№ докум.	Подп.	Дата

ДКИН. 413411.001 РЭ

Таблица 4.4.					
Топливо	CO ₂ мах %	В	T'max, °C	Р, ккал/м³	O2ref %
Природный газ	11.8	0.81	2010	1000	3
Сжиженный газ	14.0	0.85	2080	1000	3
Нефтепромыслов. газ	13.0	0.84	2050	1000	3
Коксовый газ	10.4	0.77	2090	1090	3
Сланцевый газ	16.2	0.82	1950	1000	3
Доменный газ	24.2	0.98	1470	620	3
Дизельное топливо	15.6	0.87	2098	975	3
Мазут	16.3	0.88	2115	965	3
Антрацит	20.2	0.95	2160	915	3
Каменный уголь	18.7	0.89	2050	940	3
Дрова сухие	20.5	0.75	1610	875	3
Торф	19.5	0.86	1970	930	3

где:

CO₂ max - теоретическое максимальное содержание CO₂ для данного вида топлива;

Т'тах - жаропроизводительность топлива, с учетом содержания в воздухе влаги;

Р - количество теплоты, выделяемое при полном сжигании при α =1, отнесенное к 1 3 сухих продуктов сгорания;

В - соотношение объемов влажных и сухих продуктов сгорания;

 O_2 ref - стандарт O_2 для мг/м³.

Коэффициенты С' и К приведенные в таблице 4.5 задаются для температуры уходящего газа 200°С и автоматически вычисляются в зависимости от измеренной величины Tg.

Таблица 4.5.

Ta 0C	Топливо табл. 4.4 кроме д	оменного газа, дров и торфа	Доменный га:	з, дрова и торф
Tg,°C	C'	K	C,	K
100	0.82	0.77	0.83	0.79
200	0.83	0.78	0.84	0.79
300	0.84	0.79	0.86	0.80
400	0.86	0.80	0.87	0.81
500	0.87	0.81	0.88	0.82
600	0.88	0.82	0.90	0.83
700	0.89	0.83	0.91	0.84
800	0.90	0.83	0.92	0.85
900	0.91	0.84	0.93	0.86
1000	0.92	0.85	0.94	0.87

где:

- C' отношение теплоемкостей продуктов полного сгорания при α =1 в интервале температур от 0 °C до Ti к их теплоемкости в интервале температур от 0 °C до Tmax;
- К отношение объемной теплоемкости воздуха в интервале температур от 0 °C до Ті к объемной теплоемкости продуктов сгорания при коэффициенте избытка воздуха в интервале температур от 0 °C до Ттах.

4.13.2.2 Изменение параметров топлива

Если оператора не устраивают параметры стандартных типов топлива, он может изменить их характеристики (включая название), либо запрограммировать один из свободнопрограммируемых типов топлива (четыре последние строки в списке типов топлива). Следует учесть, что изменения сделанные для стандартных типов топлива сохраняются только до следующего вызова функции **Сжигаемое топливо**, а введенные параметры свободнопрограммируемых типов топлива записываются в энергонезависимую память и сохраняются при выключении питания.

Изм.	Лист	№ докум.	Подп.	Дата

Для изменения параметров топлива надо выбрать в списке соответствующую строку в списке типов топлива и нажать клавишу , на дисплее отобразятся название топлива и его коэффициенты. Далее необходимо выбирая мигающим маркером изменяемые параметры топлива ввести нужный текст и значения коэффициентов (см. пункты 4.13.2.3 и 4.13.2.4). Ввод изменений подтверждается клавишей .

4.13.2.3 Редактирование текстовой строки

Активной для ввода или редактирования является мигающая строка. Для внесения изменений в эту текстовую строку надо нажать клавишу Д, после чего на дисплее остается редактируемая строка и появляется таблица, содержащая символы, которые может содержать строка. Редактирование производится вводом символов из предлагаемой таблицы в строку. Маркер в строке обозначает позицию вводимого символа. Маркер перемещается клавишами 7 (◄) и 9 (►). Символ из таблицы добавляется в уже существующую строку. Строка может содержать максимум 21 символ. Если при вводе количество символов превышает максимальное, последний символ отбрасывается. Маркер переводится из строки в таблицу символов клавишей Д (▼). Для выбора символа из таблицы надо установить на него маркер клавишами с символами 5 (▲), Д (▼). Удаление символа слева от маркера производится клавишей Д, если необходимо стереть всю строку, необходимо переместить маркер в самый ее конец и последовательно удалить каждый символ клавишей Д.

Редактирование строки завершается нажатием клавиши —. От редактирования можно отказаться в любой момент. Выход без сохранения изменений – нажатием клавиши **ESC**.

4.13.2.4 Ввод цифрового значения

Для ввода или редактирования числового значения, содержащегося в строке справочника, надо выделить строку, содержащую число, и нажать клавишу . Числовое значение редактируется заменой цифр в позиции, отмеченной мигающим маркером. К завершению редактирования числа приводит последовательный ввод всех значащих цифр либо нажатие клавиши . Попытка ввода числа вне допустимого диапазона значений, обозначается звуковым сигналом, ввод числа повторяется заново.

Редактирование строки завершается нажатием клавиши . От редактирования можно отказаться в любой момент без сохранения изменений нажатием клавиши **ESC**.

Ввод числового значения какого-либо коэффициента аналогичен вводу числового значения, содержащегося в строке справочника, но в этом случае маркер сразу устанавливается на первую значащую цифру.

4.13.3 Выбор объекта измерения

Справочник названий объектов имеет 16 строк для записи и хранения информации. Название объекта измерения вводится и редактируется согласно п. 4.13.2.3 настоящего руководства. Оно записываются в энергонезависимую память прибора, которая сохраняет данные при полном разряде аккумулятора.

4.13.4 Выбор единиц измерения

Результат измерения содержания газов может выводиться в объемных частях % и ppm (parts per million, 1/1000000 часть объема) или в миллиграммах на кубометр при нормальных условиях (давлении 101,3 кПа, температуре 273,15 К).

Изм.	Лист	№ докум.	Подп.	Дата

ДКИН. 413411.001 РЭ

100

光田

При необходимости можно привести результат измерения токсичных газов к стандартному содержанию кислорода и учитывать преобразование оксида азота в диоксид азота при выбросе отходящих газов топливосжигающих установок в атмосферу. Формулы пересчет результата измерения газов приведены в пункте 4.14.4.

Измерение углеводородов СхНу производится оптическим инфракрасным бездисперсионным методом. Виду того, что поглощение излучения в измерительной полосе инфракрасного спектра у различных углеводородов меняется, при измерении необходимо переключить канал СхНу на газ, который преобладает в отбираемой пробе. Газоанализатор позволяет получать результат измерения в пересчете на метан (СН4), пропан (СЗН8) и гексан (С6Н14).

Выбор единиц измерения и режимов пересчета результата измерения содержания токсичных газов производится в пункте 4 меню установок. У выбранной строки клавишами 7 или 9 можно установить один из вариантов в соответствии с таблицей 4.6. Сохранение изменений подтверждаются клавишей . Отображение единиц измерения при выводе на дисплей и принтер согласно таблице 4.7.

Таблица 4.6

	_				
Изменяемый параметр	Варианты установки		ВКИ		
Единицы измерения	ppm			mg	
Учет разбавления	да		нет		
Пересч. NOx к NO2	да		нет		
Пересч. СхНу к	C6H14	C3	H8	CH4	

Таблица 4.7

Единицы измерения	Учет разбавления	Отображение единиц измерения *
ppm	нет	ppm
ppm	да	pO2
mg	нет	mg
mg	да	mO2

^{*} При включенном пересчете NO_x к NO_2 (ПЕРЕСЧ. NOx к NO2 да), в строке NO_x к обозначению единиц измерения добавляется символ «↑».

4.13.5 Основные установки

Подменю основных установок (рис. 4.9) позволяет менять настройки газоанализатора относящиеся к выводу и регистрации результатов измерения. Протокол измерения, выводимый на принтер, может быть полный, стандартный и краткий.

ПРОТОКОЛ ПРИНТЕРА	1
КОНТРАСТН. ПЕЧАТИ	2
КОНТРАСТН. ДИСПЛЕЯ	3
ЯРКОСТЬ ПОДСВЕТКИ	4
ЗАЩИТА ДАТЧИКОВ	5
УСТАНОВ.ДАТЫ/ВРЕМЯ	6

Рис. 4.9

В зависимости от типа протокола меняется объем выводимой информации. Варианты протоколов представлены в Приложении Д.

Регулировка контрастности печати предусмотрена для подстройки принтера под конкретный тип термобумаги. Изменение контрастности от минимальной до максимальной производится клавишами 7 и 9, подтверждается клавишей . Можно полу-

чить тестовую распечатку нажав клавишу 1.

Аналогично выполняется настройка контрастности и яркости подсветки дисплея. Не следует устанавливать яркость подсветки больше необходимой и включать без необходимости, так как её энергопотребление сокращает время работы прибора без подзарядки аккумулятора.

Установка порога защиты датчиков доступна как из меню режимов, так и при работе в режиме «газоанализатор». Ввод значения порога защиты описан в пункте 4.13.2.4.

Установка даты и время производится последовательным вводом чисел клавишами 🔲 ... 🧐.

Изм.	Лист	№ докум.	Подп.	Дата

ДКИН. 413411.001 РЭ

4.13.6 Сервис

4.13.6.1 Проверка герметичности газового тракта

Функция проверка герметичности газового тракта доступна при наличии в приборе модуля «Д» из подменю сервис

ТЕСТ ГЕРМЕТИЧНОСТИ 1 ОБСЛУЖ.АККУМУЛЯТОРА 2 РЕЖИМ NDIR БЛОКА 3 РЕЖИМ УПП-510 4 РЕЖИМ ПРИ ВКЛЮЧЕНИИ 5 ЗАВОДСКИЕ УСТАНОВКИ 0 (рис. 4.10), которое вызывается в меню режимов. Тест герметичности позволяет проверить газовый тракт и насос отбора пробы, что дает возможность избежать ошибок, вызванных разбавлением газовой пробы из-за подсоса атмосферного воздуха в канал отбора пробы. Под газовым трактом понимается газовый канал самого газоанализатора и все устройства на пути прохождения газовой пробы: шланг с конденсатосборником, устройство подготовки

Рис. 4.10

пробы с соединительным и обогреваемым шлангом и пробоотборный зонд.

Проверка герметичности проходит в несколько этапов:

- проверка и установка «нуля» датчиков давления;
- проверка работоспособности насоса с подключенным к гнезду **ГАЗ** полным газовым трактом (рис. Б.3 Приложения Б);
- подключение входа зонда отбора пробы к штуцеру **-Pd/Pa** с помощью переходника из комплекта поставки для создания замкнутого объема и контроля давления в газовом тракте (рис. Б.4 Приложения Б);
- создание газоанализатором разрежения с помощью насоса отбора пробы;
- проверка герметичности путем контроля изменения давления в газовом тракте при выключенном насосе отбора пробы;
- индикация результата теста.

При вызове функции проверки герметичности на дисплей последовательно выводятся рекомендации по проведению теста и дополнительная справочная информация о режимах проверки. После при обнаружении ошибки или неисправности тест прерывается и выдается соответствующее сообщение. В случае прохождения всех тестов с положительным результатом выдается сообщение о герметичности газового тракта.

В случае негерметичности газового тракта надо установить негерметичное устройство и устранить причину. Поиск негерметичного устройства можно вести по производительности насоса Qvp как показано в пункте 4.13.1. После устранения причины подсоса воздуха повторить тест герметичности. Обычно в процессе эксплуатации нарушение герметичности может возникать в результате износа уплотнительных резиновых колец на штуцерах, в результате неаккуратной сборки конденсатосборника после удаления конденсата, при механических повреждениях шлангов и корпуса конденсатосборника.

4.13.6.2 Обслуживание аккумулятора

Ввиду того, что в приборе установлены NiMH перезаряжаемые батареи, характерным свойством которых является эффект "памяти", выражающийся в потере емкости при зарядке не полностью разряженного аккумулятора. Поэтому не рекомендуется заряжать аккумулятор, если он не полностью разряжен. Функция «Обслуживание аккумулятора» предназначена для профилактики встроенного аккумулятора. При включении этой функции выполняется полная разрядка аккумулятора, для чего у газоанализатора автоматически включаются наиболее мощные потребители энергии: подсветка дисплея, основной и дополнительный насосы газовой пробы. По мере завершения разрядки энергопотребители поочередно отключаются. На дисплее прибора индицируется продолжительность разрядки и напряжение на аккумуляторе. При снижении напряжения на аккумуляторе до значения, установленного в программе прибора, на дисплей выводится сообщение «АККУМУЛЯТОР РАЗРЯЖЕН», и питание отключается. После этого необходимо подключить сетевой адаптер и зарядить аккумулятор.

Подп. и д	
Инв. № дубл.	
Взам. инв. №	
Подп. и дата	
Инв. № подл.	

Изм.	Лист	№ докум.	Подп.	Дата

ДКИН. 413411.001 РЭ

Этот пункт подменю доступен только при наличии в приборе инфракрасного измерителя. ИК измеритель обладает значительным энергопотреблением. Рекомендуется включать инфракрасный измеритель только если при анализе газовой смеси предполагается проводить измерение содержания углеводородов. Это позволит увеличить время автономной работы прибора от аккумулятора.

4.13.6.4 Режим УПП-510

При работе газоанализатора совместно с устройством подготовки пробы УПП-510 в этом пункте подменю оператором устанавливается режим работы УПП-510: автоматический или ручное управление. Описание режимов приводится в п. 4.7.8 настоящего РЭ.

4.13.6.5 Заводские установки

В этом режиме на дисплей выводится значения нормированных сигналов поступающих с датчиков газоанализатора. Показания представленные в данном виде служат для проверки технического состояния и настройки газоанализатора. Ввиду того, что диагностика и настройка прибора возможна только квалифицированными специалистами при наличии специализированного оборудования, доступ к основным функциям данного режима при эксплуатации закрыт. Пользователь может только получить сервис-протокол состояния прибора нажатием на клавишу 1, который может помочь при определении причины неисправности. При получении сообщения об ошибке перед тем как связаться со специалистами службы сервиса предприятия-изготовителя рекомендуем распечатать и иметь при себе сервис-протокол.

4.13.6.6 Режим при включении

При работе совместно со стационарным устройством подготовки пробы УПП-510 в этом пункте подменю оператором устанавливается режим работы "Дистанционное управл. ", во всех остальных случаях "Ручной режим работы".

4.14 Основные формулы для расчета

4.14.1 Избыток воздуха

На практике очень сложно обеспечить идеальный режим сгорания топлива, поэтому топливные установки всегда работают с избыточным количеством воздуха. Отношение действительного количества воздуха к теоретически необходимому называют избытком воздуха. Избыток воздуха должен быть минимальным, но при этом должно обеспечиваться полное сгорание топлива. Он рассчитывается следующим образом:

Alf =
$$N_2 / [N_2 - 3.76 \bullet (O_2 - 0.5 \bullet CO)];$$
 (1)

где:

10 H

ž

É

쒿

HE

Baam

Hara

Подп. и

О2, СО - измеренное значение компонентов в процентах объема;

 N_2 - содержание азота в отходящих газах: N_2 = 100 - RO_2 - O_2 - CO.

Расчет избытка воздуха начинается в случае, если величина O₂ меньше 20 % . Если расчет избытка воздуха не ведется, тогда на дисплей вместо значения выводится "---".

				1
Изм.	Лист	№ докум.	Подп.	Дата

ДКИН. 413411.001 РЭ

Содержание CO₂ в отходящих газах зависит от доли углерода и водорода в топливе, количества воздуха поступающего на горение и режима сжигания топлива. Газоанализатор АГМ-510 непосредственного измерения CO₂ не производит, а вычисляет, исходя из содержания кислорода и угарного газа. Для правильного расчета необходимо чтобы тип топлива, выбранного до начала измерения соответствовал сжигаемому топливу, и не было разбавления продуктов сгорания воздухом. Если характеристики сжигаемого топлива отличаются от стандартных или сжигается смесь из нескольких топлив, необходимо изменить характеристики выбранного топлива, руководствуясь пунктом 4.13.2.2 настоящего РЭ.

Содержание СО₂ рассчитывается следующим образом:

$$CO_2 = CO_2$$
 макс.топ. • ($100 - 4.76$ • (O_2 изм. - 0.4 • CO изм.)) / 100 - CO изм. (2)

где:

СО₂ макс. - теоретическое максимальное содержание углекислого газа при стехиометрическом горении топлива;

О2 изм. - жаропроизводительность топлива;

СО изм. - отношение теплоемкостей продуктов полного сгорания *.

4.14.3 Теплопотери при сгорании

При сжигании топлива в энергосистемах стремятся, как можно больше использовать освобождающееся при сгорании тепло и возможно уменьшить его потери.

Существует следующие виды потерь.

- Потери освобождающегося тепла происходят вследствие разницы между поступающей в топку температурой смеси топлива с воздухом и отходящими газами. Чем больше избыток воздуха и, следовательно, объем отходящих дымовых газов и чем выше температура отходящих газов, тем выше потери тепла. Прибор АГМ-510 производит расчет потерь теплоты с уходящими газами в соответствии с формулой:

$$Q_2 = \underbrace{(Tg-Ti) \bullet [C' + (h-1) \bullet B \bullet K] \bullet 100}_{T'max} \qquad (h=CO_{2max}/(CO_2+CO)); \tag{3}$$

где:

Подп. и дата

ž

温

쒿

HH

Baam.

Hara

Подп. и

100

ž

CO₂ max - теоретическое максимальное содержание CO₂;

Т'тах - жаропроизводительность топлива;

С' - отношение теплоемкостей продуктов полного сгорания *;

К - отношение объемной теплоемкости воздуха и продуктов сгорания *;

В - соотношение объемов влажных и сухих продуктов сгорания;

Tg - измеренная температура уходящих газов;

Ті - температура поступающего в топку воздуха.

- * зависят от температуры уходящих газов и находятся табличным способом для стандартных видов топлива или вычисляются для свободнопрограммируемых видов топлива исходя из значений С' и К при 200 °С, которые вводятся при установке топливных коэффициентов (см. п.п. установка параметров топлива).
- Потери тепла, связанные с химической неполнотой сгорания топлива (Q3), обусловленные содержанием в продуктах сгорания горючих компонентов (окиси углерода). Химическая неполнота сгорания наблюдается при недостаточном количестве воздуха, участвующего в горении, или плохом его перемешивании с топливом, при снижении температуры в зоне горения. Прибор производит расчет по формуле:

$$Q_3 = (30.2 \bullet CO \bullet 100 \bullet h) / P;$$
 (4)

где:

Изм.	Лист	№ докум.	Подп.	Дата

ДКИН. 413411.001 РЭ

Лист

33

Р - количество теплоты, выделяемое при полном сжигании 1м³ сухих продуктов сгорания.

- Общие потери тепла (Qa) рассчитываются как сумма предыдущих потерь: Qa = Q₂ + Q₃. (5)
- Потери вследствие теплоизлучения (величина потери вследствие теплоизлучения зависит от конструкции и изоляции котла и составляет от 0.5 до 4 %).
- Потери от механической неполноты сгорания топлива (провал топлива сквозь колосниковые решетки, содержания топлива в в золе и шлаках, унос топлива с уходящими газами) не учитываются прибором и могут быть учтены по значениям, указанным в документации на котел. По таблице 4.8 можно приближенно оценить потери из-за механической неполноты сгорания топлива.

Таблица 4.8

Вид топки	Топливо	Потери от мех. неполноты сгорания Q4 %
	бурые угли	0.5 - 1.0
	каменные угли с выходом летучих более 25 %	1.5 - 2.5
Пылеугольные топки	каменные угли с выходом летучих менее 25 %	2 – 3
	полуантрацит	3 – 5
	Антрацит	4 – 5
Шахтно-мельничные	Фрезерный торф, бурые угли и сланец	1 – 2
ТОПКИ	каменные угли с выходом летучих более 30 %	4 – 6
	торф кусковой	2
	Сланцы	3
	бурые угли с умеренной зольностью	5 – 7
Слоевые топки	каменные угли	5 – 7
	антрацит сортированный	7
	бурые угли высокозольные	9 – 11
	антрацит несортированный	14 – 18

Чтобы определить общие потери установки, эти потери должны быть просуммированы с общими потерями Qa, рассчитанными прибором.

Расчет потерь начинается в случае, если величина CO₂ больше 1.0 % и разность между температурой газа и температурой воздуха больше 20°C. Если расчет потерь не ведется, то на дисплей вместо значений выводится "——". Более подробно познакомиться с использованной методикой теплотехнических расчетов можно в книге «Эффективность использования топлива», Равич М. Б., изд. «Наука», г. Москва, 1977 г.

4.14.4 Пересчет результата измерения газов

Сигналы о величине концентрации измеряемых газов, поступающие с датчиков, пропорциональны объемным долям измеряемых компонентов. В зависимости от выбранных единиц измерения и режимов расчета измеренное в объемных долях содержание газов в пробе Em(ppm) пересчитывается согласно формулам, приведенным в таблице 4.9, и выводится как результат измерения. Коэффициенты пересчета от объемных долей (ppm) в весовые концентрации (mg на м³ при нормальных условиях 101,3 кПа и температуре 273,15 К) приведены в таблице 4.10.

Инв. № подл. и дата Взам. инв. № Инв. № дубл.	Подп. и да	
їнв.№ подл. Подл. и дата В	Инв. № дубл.	
1нв.№ подл. П	Взам. инв. №	
4	Подп. и дата	
	4	

⁄1зм.	Лист	№ докум.	Подп.	Дата

. № подл.

Таблица 4.9

Единицы	Учет	Результат
измерения	разбавления	измерения
ppm	нет	Em (ppm)
ppm	да	Kdil • Em (ppm)
mg	нет	Kmv • Em (ppm)
mg	да	Kdil • Kmv • Em (ppm)

Примечание: * если при выборе единиц измерения выбран пересчет NOx к NO₂ (ПЕРЕСЧ. NOx К NO2 да), то Kmv для NO будет 2.05.

Таблица 4.10

Kmv, mg/ppm
1.26
1.34
2.05
2.93
1.52
0,72
2,05

Коэффициент разбавления относительно образцовой концентрации кислорода рассчитывается по формуле:

$$Kdil = (20.9 - O_2ref) / (20.9 - O_2m);$$
 (6)

где:

O₂ref - значение образцового содержания кислорода в объемных процентах см. п. 4.13.2.1;

O₂m - измеренное значение содержания кислорода в объемных процентах.

4.14.5 Расчет скорости и расхода

Скорость газового потока, измеряемая с помощью пневмометрических трубок, по измеренному динамическому давлению рассчитывается по формуле:

$$v = \sqrt{\frac{2 \cdot \mathsf{Kt} \cdot \mathsf{p} \cdot (273 + \mathsf{Ti}) \cdot 101.3}{\mathsf{Kp} \cdot \mathsf{Pa} \cdot 273}},_{\mathcal{M}/C}; \tag{7}$$

где:

р – измеренный перепад давления, Па;

Ті – температура измеренного газопылевого потока, °С;

Ра – абсолютное давление в месте замера, кПа;

Кт – коэффициент преобразования пневмометрической трубки;

Kp – плотность газопылевого потока в нормальных условиях (кг/м³). Для приближенных расчетов плотность дымовых газов принимают равной плотности воздуха ($p = 1,29 \text{ кг/м}^3$). Точный расчет плотности среды производится в соответствии с разделом 4 ГОСТ 17.2.4.06-90.

Средняя скорость по всем измеренным точкам в серии определяется по формуле:

$$v p = 1/N \cdot \sum v pi, m3/c.$$

Формула справедлива при разбиении сечения газохода на равные площади, внутри которых локальная скорость Vpi считается одинаковой.

Среднее значение объемного расхода сухого потока газа приведенного к нормальным условиям по всем уже измеренным точкам в серии рассчитывается как:

Qvg = Sg •
$$Vp$$
 • $\frac{273,15 • Pa}{(273,15 + Ti) • 101,3}$ • 1 -Pn • $\frac{V_M}{\mu}$), $M3/c$; (8)

где:

Sg – площадь сечения газохода, м²;

 $v_{\rm p}$ - средняя скорость по всем точкам сечения;

Ті – температура измеренного газопылевого потока, °С;

Ра – абсолютное давление в месте замера, кПа;

Pn — массовая концентрация водяных паров в газовом потоке при нормальных условиях, г/м³, определяемая в соответствии с ГОСТ 17.2.4.08-90 в и вводимая как константа до начала измерения;

Изм.	Лист	№ докум.	Подп.	Дата

- V_м молярный объем водяных паров при нормальных условиях (V_м = 22,14х10-3 м³/моль);
- μ молярная масса водяных паров (μ = 18,0 г/моль).

4.15 Уход за газоанализатором при эксплуатации

При эксплуатации пользователь регулярно должен выполнять следующее:

- Своевременно заменять фильтры грубой очистки по мере их загрязнения (почернения);
- Опоражнивать ловушку и конденсата и регулярно ее чистить (обращать внимание на уплотнение);
- Регулярно чистить зонды забора газа. У зонда типа В регулярно чистить бензином приемник фильтровальной бумаги;
- Для сохранности данных, сохраненных в памяти, регулярно, не реже 1 раза в месяц (примерно на 8 часов).
- При загрязнении сам прибор чистить влажной тряпкой, не применяя растворители и моющие средства.

4.16 Возможные ошибки в работе, неисправности и способы их устранения

Перечень наиболее часто встречающихся ошибок в работе с прибором, неисправностей и способов их устранения приведены в табл.4.11.

Таблица 4.11

Ne gybn.

盟

쐿

Взам. инв.

Подп. и дата

1нв.№ подл.

Наименование неисправности,	Возможная причина	Метод устранения
внешнее проявление	неисправности	,
Прибор не включается кнопкой ①	Разряжен аккумулятор	Подключите сетевой адаптер на 8 часов
		Нажмите и удерживайте кнопку включения прибора 30 сек.
Прибор не включается при подключении		Проверьте сетевую розетку, напряжение
сетевого адаптера	Неисправен сетевой адаптер	Замените адаптер
Прибор не выключается кнопкой ①	Встроенный микропроцессор «завис»	Нажмите и удерживайте кнопку включения прибора 30 сек.
➡ ? или температура Тg -20°C	Неисправна термопара	Замените термопару
- : Will Tellineparypa rg -20 O	Обрыв термокомпенсац. кабеля	Найдите и устраните обрыв
	Засорился фильтр грубой очистки	Замените фильтр
🜬? (низкий поток, зонд подключен)	Перегиб пробоотборной магистрали	Проверьте трассу пробоотборной магистрали
	Неправильное подключение зонда	Проверьте правильность подключения зонда
(низкий поток, зонд отключен)	Неисправен насос	Обратитесь в службу сервиса
E1 ?	Отсутствует связь с УПП-510	Проверьте подключение УПП-510 и наличие у него питани:
⊞ X	Неисправность УПП-510	См. УПП-510 Руководство по эксплуатации ДКИН.418312.001
Не изменяются показания на дисплее при помещении зонда в точку отбора пробы: Tg≈Ta, O2≈20,9, COH2S=0	Не включено измерение	Нажмите на кнопку START/STOP
Температура газа Тg соответствует дейст- вительности и изменяется, а О2≈20,9,	Штуцер пробоотборной магистрали подключен не к тому гнезду	Выполните правильное подключение
COH2S=0.	Негерметичный пробоотборный тракт	Проверьте тракт в соответствии с п.4.13.6.1 и п.4.13.1.
Температура газа Тg соответствует действительности и изменяется, О2 выше ожидаемых значений, СОН2S ниже ожидаемых значений.	Негерметичный пробоотборный тракт	Проверьте тракт в соответствии с п.4.13.6.1 и п.4.13.1.
Измеренные параметры соответствуют	Неправильно выбран тип топлива	Выберите правильный вид топлива, для контроля включит полны тип протокола принтера
ожидаемым, расчетные параметры (CO2, Qa, Alf) не соответствуют ожидаемым.	Неправильно введены характеристи- ки выбранного типа топлива	Правильно введите характеристики выбранного типа топлі ва, для контроля включите полны тип протокола принтера
При измерении состава газа прибор инди- цирует перегрузку датчиков COH2S не достигнув верхнего предела измерения	Установлен порог защиты датчиков ниже измеряемой величины одного из каналов СОН2S.	Измените порог защиты датчиков выше измеряемого значиния по каналам COH2S.
XXX - датчик неисправен	Неправильный отбор «чистого возду- ха» при проведении установки «нуля»	Проверьте нахождение зонда на «чистом» воздухе , правильность подключения УПП-510, ресурс генератора нуле вого газа у УПП-510
	Неисправность датчика	Обратитесь в службу сервиса для замены датчика

Изм.	Лист	№ докум.	Подп.	Дата	

5 Сведения о техническом обслуживании и ремонте

Наименование технического обслуживания и ремонта

Газоанализатор АГМ-510 является сложным прибором с гаммой измеряемых параметров, основанными на различных принципах измерения. Техническое обслуживание требует специализированного оборудования и должно производиться квалифицированными специалистами. Техническое обслуживание производится на предприятии изготовителе и его филиалах. В межповерочный интервал прибор не требует технического обслуживания. Сведения о техническом обслуживании и ремонте вносятся в таблицу 6.1.

Таблица 6.1.

дата	Transfer barrie Tokini feekere eesifykiibarrii in pemerra
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	

6 Поверка

Подп. и дата

ž

陌

MHB. No

Baam.

Подп. и дата

HO HI

y H Поверка газоанализатора должна производиться лицами с квалификацией государственного поверителя в соответствии с документом «Методика поверки газоанализатора АГМ-510» (Приложению А. к РЭ на газоанализатор АГМ-510), утвержденной ГЦИ СИ «Нижегородский ЦСМ», с межповерочным интервалом 12 месяцев.

7 Правила хранения и транспортировки

Газоанализатор должен храниться в заводской упаковке в закрытых помещениях с температурой от плюс 5 до плюс 40 °C и относительной влажностью до 80 % при температуре 25 °C (условия хранения 2 по ГОСТ 15150). Данные условия хранения относятся к хранилищам изготовителя и потребителя. В помещении для хранения не должно быть пыли, паров кислот и щелочей, агрессивных газов и других вредных примесей, вызывающих коррозию.

Газоанализатор транспортируются в заводской упаковке любым видом крытого транспорта и в отапливаемых герметизированных отсеках самолетов без ограничения скорости на любые расстояния при температуре от минус 20 до плюс

Изм.	Лист	№ докум.	Подп.	Дата

ДКИН. 413411.001 РЭ

8 Утилизация

Утилизация не требует специальных мер безопасности и производится обычным способом.

9 Гарантийные обязательства

- 1. Гарантийный срок стандартного исполнения 12 месяцев, с LL сенсором кислорода 36 месяцев при общей наработке не более 1000 часов в год. Гарантия исчисляется со дня отгрузки прибора потребителю, предусматривает бесплатный ремонт или замену запчастей.
- 2. Изготовитель гарантирует соответствие характеристик изделия требованиям, изложенным в разделе «Технические характеристики», в течение гарантийного срока при соблюдении условий эксплуатации, изложенных в настоящем руководстве и проведении ежегодного обслуживания на предприятии изготовителе или его филиалах.
- 3. Гарантийное обслуживание выполняется на территории предприятия-изготовителя. Доставка неисправного прибора выполняется за счет и силами потребителя, если в договоре на поставку не указано иное.
 - 4. Срок гарантийного ремонта не более 30 рабочих дней.
- 5. Замененные (сломанные) запасные части и комплектующие являются собственностью изготовителя. Для всех частей, которые устанавливаются в течении гарантийного срока, гарантия заканчивается вместе с гарантией прибора.
 - 6. Гарантия действительна в том случае, если:
- прибор используется строго в соответствии с руководством по эксплуатации;
- не нарушена заводская пломбировка прибора;
- если дефекты не связаны с внешними воздействиями;
- ремонт производился только представителями предприятия-изготовителя;
- если прибор после установления дефекта незамедлительно передан представителю предприятия-изготовителя.

По вопросам гарантийного обслуживания обращайтесь по адресу:

ООО "НПЦ "Аналитех",

Россия, 603057, г. Н. Новгород, ул. Нартова, 2.

Тел. 831-4120494 / 18, факс 831-4120670.

e-mail: info@analitech, http://www.analitech.ru.

Инв. № подл. п дата Взам. инв. № Инв. № дубл. Подл. и дата

Изм. Лист № докум. Подп. Дата

ДКИН. 413411.001 РЭ

Приложение А. Методика поверки газоанализатора

Газоанализатор АГМ-510

МЕТОДИКА ПОВЕРКИ

ДКИН. 413411.001 МП

Технический директор

Подп. и дата

№ дубл.

2000

Взам. инв.

Подп. и дата

Инв. № подл.

ООЙ "НПЦ "Аналитех"

В. Л. Жигалов

Изм.	Лист	№ докум.	Подп.	Дата

ДКИН. 413411.001 РЭ

Лист

39

Настоящая методика поверки распространяется на все модификации газоанализатора АГМ-510.

Газоанализатор АГМ-510 (в дальнейшем газоанализатор), предназначен для контроля выбросов загрязняющих веществ и оптимизации процесса горения топлива в топливосжигающих установках путем измерения содержания в отходящих газах следующих компонентов: содержания кислорода (O₂), оксида углерода (CO), оксида азота (NO), диоксида азота (NO₂), сернистого ангидрида (SO₂), сероводорода (H₂S), углекислого газа (CO₂) и углеводородов (C_xH_y).

Периодичность поверки - 12 месяцев.

А.1 Операции поверки

1.1 При проведении поверки должны быть выполнены операции согласно таблице А.1.

Таблица А.1

Наимонования операции	Номер пункта	кта Обязательность проведения операции п		
Наименование операции	методики поверки	первичной поверке	периодической поверке	
1. Внешний осмотр	7.1	да	да	
2. Определение электрической прочности изоляции	7.2	да	нет	
3. Опробование	7.3	да	да	
4. Определение основной погрешности	7.4	да	да	
5. Оформление результатов поверки	8	да	да	

1.2 Если при проведении той или иной операции поверки получен отрицательный результат, поверка прекращается.

А.2 Средства поверки

2.1 Для проведения поверки газоанализатора должны быть применены средства, указанные в таблице А.2.

Таблица А.2

Подп. и дата

№ дубл

盟

쒿

HE

Baam.

Подп. и дата

Інв. № подп

Номер пункта методики	Наименование и основные технические характеристики образцовых средств измерений или вспомогательного оборудования
7.2	Универсальная пробойно-испытательная установка УПУ-10М ОН 097 2029-80.
7.4.1	ГСО – ПГС в баллонах под давлением. Ротаметр РМФ2-0,25ГУЗ-К с верхним пределом измерения 0,25 м³/ч. Гигрометр Мб 2.844.000, диапазон измерения относительной влажности (20-90) %.
7.4.2	Барометр-анероид БАММ-1 ТУ 25-04-1513-79, диапазон измерения 80 - 106 кПа, погрешность ± 200 Па. Помпа ручная пневматическая «П-0,25», диапазон задаваемых давлений от минус 63 до 250 кРа. Микроманометр МКВ-250 ТУ14-13-015-79, пределы измерения от 0 до 2500 Па, класс точности 0,02. Термометр ртутный лабораторный по ГОСТ 215-73, диапазон измерений 055°С, погрешность ± 0,2°С.
7.4.3	Термопары и термоэлектрические термометры, диапазон измерений от минус 20 до 800°C, класс точности 0.5.

Примечание:

Параметры ПГС приведены в таблице А.4 приложения.

Допускается применять другие средства поверки, удовлетворяющие условиям проведения поверки.

А.3 Требования к квалификации поверителей

Поверку газоанализаторов должны проводить лица, аттестованные Госстандартом России на право поверки. Все действия по проведению измерений при поверке газоанализатора и обработке результатов измерений должны проводить лица, изучившие настоящую методику и руководство по эксплуатации.

Изм.	Лист	№ докум.	Подп.	Дата

ДКИН. 413411.001 РЭ

4.2 Помещение, в котором проводится поверка, должно быть оборудовано приточно-вытяжной вентиляцией. Не допускается сбрасывать поверочные газовые смеси (в дальнейшем ПГС) в атмосферу рабочих помещений.

А.5 Условия поверки

- 5.1. При проведении поверки должны быть соблюдены следующие условия:
- температура окружающего воздуха 20 ±5°C;
- относительная влажность окружающего воздуха от 45 до 75 %;
- атмосферное давление от 86 до 106 кПа;
- механические воздействия и внешние электрические и магнитные поля должны находиться в пределах, не влияющих на работу газоанализатора;
- баллоны с ПГС должны быть выдержаны при температуре (20 ± 5) $^{\circ}$ С не менее 24 ч.

А.6 Подготовка к поверке

- 6.1. Перед проведением поверки должны быть выполнены следующие подготовительные работы:
- газоанализатор установить в рабочее положение и подготовить к работе в соответствии с руководством по эксплуатации;
- выдержать прибор при температуре поверки не менее 2-х часов;
- средства измерений, применяемые при испытаниях, должны быть аттестованы, и иметь действующие свидетельства о поверке;
- поверочные газовые смеси и испытательное оборудование должны иметь паспорта и отметки, подтверждающие их годность;
- должна быть включена приточно-вытяжная вентиляция.

А.7 Проведение поверки

- 7.1. Внешний осмотр.
- 7.1.1 При внешнем осмотре должна быть проверена комплектность, наличие четкой маркировки заводского номера газоанализатора. Установлено отсутствие внешних повреждений, влияющих на работу газоанализатора.

Газоанализатор считается выдержавшим внешний осмотр, если он соответствует перечисленным требованиям.

- 7.2 Проверка электрической прочности изоляции.
- 7.2.1 Проверку проводить на универсальной пробойно-испытательной установке.
- 7.2.2 Испытанию подвергается отключенный от сети и газоанализатора адаптер.
- 7.2.3 Испытательное синусоидальное напряжение 1500 В с частотой 50 Гц прикладывать между соединенными между собой сетевыми контактами и выходными цепями адаптера. Испытательное напряжение изменять от нуля до заданного значения за время от 5 до 20 с, через одну минуту производить снижение испытательного напряжения от заданного значения до нуля в течение от 5 до 20 с.

Изм.	Лист	№ докум.	Подп.	Дата

ДКИН. 413411.001 РЭ

Лист

41

Подп. и дата

- 7.2.4 Адаптер считается выдержавшим испытание, если за время испытания не возникали разряды или повторяющиеся поверхностные пробои, сопровождающиеся резким возрастанием тока в испытуемой цепи.
 - 7.3 Опробование.
 - 7.3.1 При проведении опробования должны быть выполнены следующие операции:
- прогрев и проверка общего функционирования газоанализатора;
- автоматическая установка нулевых показаний газоанализатора.

Результаты опробования считаются удовлетворительными, если после автоматической установки нуля на дисплее газоанализатора устанавливаются следующие показания:

- по каналам CO, NO, NO₂, SO₂ H₂S от 0 до 1 ppm;
- по каналу O₂ от 20.85 до 20.95 об.%;
- по каналу углеводородов от 0 до 5 ppm.
 - 7.4 Определение метрологических характеристик
 - 7.4.1 Определение основной погрешности канала измерения содержания газов
 - 7.4.1.1 Соединить газоанализатор и испытательное оборудование в соответствии с рисунком А.1.

1. Баллон ПГС;

Подп. и

Mee. No gryfar.

쒿

HH

B3aM.

Hara

Подп. и

ив.№ подп

- 2. Редуктор БАЗО-5МГ ТУ 3645-032-0022531-97 с давлением на выходе от 0,1 до 0,2 МПа;
- 3. Трубка поливинилхлоридная гибкая ПВЧ 4х1,5 ТУ 6-01-2-120-73;
- 4. Вентиль точной регулировки ВТР-4 Ду 3, Ру 6 атм.;
- 5. Ротаметр РМФ2-0,063ГУ3-К с потоком от 0,2 до 0,5 лит/мин в установившемся режиме при отборе пробы газоанализатором;
- 6. Тройник ГС-ТВ ГОСТ 25336-82.
- 7. Газоанализатор АГМ-510.

			·		
Изм.	Лист	№ докум.	Подп.	Дата	

ДКИН. 413411.001 РЭ

- 8. Пробоотборный зонд газоанализатора АГМ-510.
 - 7.4.1.2 Подготовить газоанализатор к измерению содержания газов согласно п. 4.7.1 руководства по эксплуатации.
 - 7.4.1.3 Подать на вход «ГАЗ» газоанализатора ПГС (таблица А.4 приложения) в последовательности: №№ 1-2-3-2-1-
- 3. Подачу каждой ПГС производить в течение 5 минут, после чего фиксировать показания газоанализатора.
 - 7.4.1.4 Повторить операции по п.7.4.2 для каждого измеряемого компонента.
 - 7.4.1.5 Значение основной погрешности (D), в зависимости от части диапазона, определять по формуле:

$$D = [A_i - A_o], (7.1)$$

или

$$D = [A_i - A_o] / A_o \times 100 \%, (7.2)$$

где: Аі - показания газоанализатора, %, (ppm);

 A_{\circ} - действительное значение концентрации измеряемого компонента в проверяемой точке, указанное в паспорте на ГСО-ПГС, %, (ppm).

Полученные значения основной погрешности для каждого определяемого компонента не должны превышать значения, указанные в таблице 3.1 РЭ.

- 7.4.2 Определение основной погрешности измерения абсолютного давления и разности давлений.
- 7.4.2.1 Подготовить газоанализатор к измерению давления согласно п. 4.8 руководства по эксплуатации.
- 7.4.2.2 Изменение температуры в процессе проверки не должно превышать $\pm 0.5^{\circ}$ С.
- 7.4.2.3 Определение основной погрешности производить согласно методике поверки МИ 1997-89 «Преобразователи давления измерительные. Методика поверки».

Значения основной погрешности не должны превышать значений, указанных в таблице 3.1 РЭ.

- 7.4.3 Определение основной погрешности измерения температуры.
- 7.4.3.1 Подготовить газоанализатор к измерению температуры согласно п. 4.9 руководства по эксплуатации.
- 7.4.3.2 Определение основной погрешности измерения температуры производится в соответствии с ГОСТ 8.338-78 «Термопреобразователи технических термоэлектрических термометров. Методы и средства поверки».

Значения основной погрешности не должны превышать значений, указанных в таблице 3.1 РЭ.

Подп. и дата	
Инв. № дубл.	
Взам. инв. №	
Подп. и дата	
Инв. № подл.	

Изм.	Лист	№ докум.	Подп.	Дата

А.8 Оформление результатов поверки.

8.1 Результаты поверки заносятся в протокол, приведенный в таблице А.3;

Таблица А.3.

		Протокол поверки га	зоанализатора		
Заводской номер	D:				
Условия поверки	1:				
Средства поверк	(И:				:
Наименс	вание проверяемого пар	аметра : Допускаемое зн	ачение параметра : На	айденное значение параме	етра ; Заключение
	электрической прочности		:		:
2. Опробование		:	:		
		3. Определение основ	вной погрешности		
Измеряемый параметр	Диапазон измерения	Предел допустимой основной погрешности	Заданное значение	Измеренное значение	Основная погрешность
1.					
2.	:			· · · · · · · · · · · · · · · · · · ·	
	:			:	
	•				
На основании ре	зультатов поверки выдан	но свидетельство №			
Извещение о нег	тригодности №.				-
Дата поверки					
Поверитель					

- 8.2 Положительные результаты поверки оформляются свидетельством о поверке установленной формы.
- 8.3 При отрицательных результатах поверки выпуск в обращение и применение газоанализатора запрещается и выдается извещение о непригодности с указанием причин.

Перечень документов, на которые даны ссылки в настоящей методике

Таблица А.4

1407/1447	
Наименование документа, на который дана ссылка	Номер раздела, пункта, подпункта, в котором дана ссылка
"Правилами устройства и безопасной эксплуатации сосудов, работающих под давлением", утвержденные Госгортехнадзором 25.12.78 г.	4.1
МИ 1997-89 Преобразователи давления измерительные. Методика поверки.	7.4.2.3
ГОСТ 8.338-78 Термопреобразователи технических термоэлектрических термометров. Методы и средства поверки.	7.4.3.2

Инв. № подл. и дата Взам. инв. № Инв. № дубл. Подп. и дата

Изм. Лист № докум. Подп. Дата

ДКИН. 413411.001 РЭ

Перечень поверочных газовых смесей, применяемых при поверке газоанализатора.

Номинальное значение объ-

емной доли определяемого

компонента*, %

Абсолютная по-

грешность, %

№ ΓСО ПГС

Таблица А.4

Компо-

нент

Модификация

AΓM-510

Диапазон изме-

рения

Nº

ПГ

Подп. и дата

Инв. № дубл.

쐿

Взам. инв.

Подп. и дата

Инв. № подл.

C			•	компонента", %	' '	
1.				0,95	0,02	ΓCO 3718-87
2.	O_2	Для всех мо-	0-21.0 об.%	10.0	0,04	ГСО 3729-87
3.		дификаций		Воздух	-	_
1.		Для всех	-	Азот нулевой	_	ГОСТ 9293-74
		ГВ, МВ	0 – 40000 ppm	2.0	0.006	ΓCO 3822-87
2.		ΓC, MC	0 – 4000 ppm	0.2	2×10 ⁻³	ΓCO 3812-87
	СО	ΓH, MH	0 – 400 ppm	0.018	4×10-4	ГСО 3806-87
		ГВ, МВ	0 – 40000 ppm	3.8	0.015	ΓCO 3822-87
3.		FC, MC	0 – 4000 ppm	0.38	3×10 ⁻³	ГСО 3813-87
٥.		ΓH, MH	0 – 400 ppm	0.038	1×10-3	ГСО 3808-87
1.		Для всех		Азот нулевой	-	ΓΟCT 9293-74
· ·		ГВ, МВ	0 – 2000 ppm	0.1	3×10-3	ΓCO 8738-2006
2.		ΓC, MC	0 – 400 ppm	0.02	7×10 ⁻⁴	ΓCO 8737-2006
۷.	NO	ΓH, MH	0 – 100 ppm	0.005	2×10 ⁻⁴	ΓCO 8736-2006
	110	ГВ, МВ	0 – 2000 ppm	0.180	9×10 ⁻³	ΓCO 8738-2006
3.		ΓC, MC	0 – 2000 ppm	0.035	1×10-3	ΓCO 8730-2000 ΓCO 8737-2006
٠.		TH, MH	0 – 400 ppm	0.009	3×10 ⁻⁴	ΓCO 8737-2006
1.		Для всех	5 – 100 ppiii	Азот нулевой	-	FOCT 9293-74
· ·	1	ГВ, МВ	0 – 400 ppm	0.02	8×10 ⁻⁴	ΓCO 9187-2008
2.		ΓC, MC	0 – 400 ppm	0.02	4×10-4	ΓCO 9187-2008
۷.	NO ₂	TH, MH	0 – 200 ppm	2.5×10 ⁻³	1×10 ⁻⁴	ΓCO 9167-2006 ΓCO 8740-2006
	1102	ΓB, MB	0 – 30 ppm	0.038	1×10 ⁻³	ΓCO 9187-2008
3.			0 – 400 ppm	0.036	7×10 ⁻⁴	ΓCO 9187-2008
٥.		FC, MC	0 – 200 ppm	4.5×10 ⁻³	2×10-4	ΓCO 9187-2008
1		ГН, МН	0 – 30 ppm			
١		Для всех	-	Азот нулевой	- 0403	FOCT 9293-74
		MB	0 – 2000 ppm	0.12	2×10 ⁻³	ΓCO 5894-91
2.	00	MC	0 – 400 ppm	0.02	8×10 ⁻⁴	FCO 9198-2008
	SO ₂	MH	0 – 50 ppm	2.5×10-3	1×10-4	ΓCO 9198-2008
		MB	0 – 2000 ppm	0.185	7×10-3	ΓCO 5894-91
3.		MC	0 – 400 ppm	0.038	1×10-3	ΓCO 9198-2008
		MH	0 – 50 ppm	4.5×10 ⁻³	2×10-4	ΓCO 9198-2008
1.		Для всех	-	Азот нулевой		ГОСТ 9293-74
		MB	0 – 400 ppm	0.02	8×10-4	ΓCO 9172-2008
2.	H ₂ S	MC	0 – 200 ppm	0.01	4×10-4	ΓCO 9172-2008
		MH	0 – 50 ppm	2.5×10 ⁻³	1×10-4	ΓCO 9172-2008
_		MB	0 – 400 ppm	0.038	1×10-3	ГСО 9172-2008
3.		MC	0 – 200 ppm	0.0185	7×10-4	ГСО 9172-2008
		MH	0 – 50 ppm	4.5×10 ⁻³	2×10-4	ГСО 9172-2008
1.	C ₃ H ₈	Для всех мо-		Азот нулевой	-	ГОСТ 9293-74
2.		для всех мо-	0 – 1.0 % об.	0.5	2×10 ⁻³	ГСО 9142-2008
				0.9	4×10 ⁻³	ГСО 9142-2008
		Для всех мо-		Азот нулевой	-	ГОСТ 9293-74
3.			0 – 10 % об.	5.0	1×10 ⁻²	ГСО 3829-87
3. 1.	CO		0 - 10 /0 00.			
3. 1. 2.	CO	для всех мо-	0 - 10 70 00.	9.0	2×10-2	ГСО 3830-87
3. 1. 2. 3.	СО	дификаций	0 - 10 70 00.		2×10 ⁻²	ГСО 3830-87 ГОСТ 9293-74
2. 3. 1. 2. 3. 1. 2.	CO CO ₂		0 – 10 % об.	9.0 Азот нулевой 10.0	2×10 ⁻² - 4×10 ⁻²	ΓCO 3830-87 ΓΟCT 9293-74 ΓCO 3777-87

Примечание:

					1
Изм.	Лист	№ докум.	Подп.	Дата	١

ДКИН. 413411.001 РЭ

^{*} приводится концентрация газа в азоте.

Приложение Б. Внешний вид газоанализатора, подключение периферии

Рис Б.1. Газоанализатор АГМ-510, лицевая панель.

Рис Б.2. Газоанализатор АГМ-510, замена бумаги в принтере.

Изм.

Лист

№ докум.

Подп.

Дата

n>0	Из памяти: давление и скорость n>0	Измерение: давление и скорость n=0	Из памяти: давление и с n=0	кор
ГАЗОАНАЛИЗАТОР АГМ-510 заводской №51003030001 23.04.2004 10.37.33 Протокол измерения давления, скорости и расхода газопыле-	ГАЗОАНАЛИЗАТОР АГМ-510 заводской №51003030001 запись в память № 0027 23.04.2004 10.37.33	ГАЗОАНАЛИЗАТОР АГМ-510 заводской №51003030001 23.04.2004 10.37.33 Протокол измерения давления, скорости и расхода газопыле-	ГАЗОАНАЛИЗАТОР АГМ заводской №5100303 запись в память № 23.04.2004 10.37	000
жего потока ра : 0.3722 kPa ра : 102.19 kPa v : 15.80 m/s Кt : 0.400 Кр : 1290 g/m³ Тд : 26.6 °C Рп : 0000000034.0 g/m³ Sg : 1.000 m² 001 : 14.00 m/s 002 : 16.00 m/s п : 4 vp : 15.00 m/s	СКОРОСТИ И РАСХОДА ГАЗОПЫЛЕ- ВОГО ПОТОКА Объект: 16 БАЛАХНИНСКАЯ ТЭЦ рф : 0.3722 kPa ра : 102.19 kPa v : 16.00 m/s n : 2 vp : 15.00 m/s Qv : 15.000 m³/s	ВОГО ПОТОКА Объект: БАЛАХНИНСКАЯ ТЭЦ рd : 0.3722 kPa ра : 102.19 kPa v : 15.00 m/s Кt : 0.400 Кр : 1290 g/m³ Тд : 26.6 °C Sg : 1.000 m²	скорости и расхода га вого потока Объект: 16 БАЛАХНИНСК ра : 0.3722 kPa ра : 102.19 kPa v : 15.00 m/s	1301
Qv : 15.000 m ³ /s Измерение: газоанализатор	Из памяти: газоанализатор	Измерение: температура n>0	Из памяти: температур	a n
ГАЗОАНАЛИЗАТОР АГМ-510 заводской №51003030001 23.04.2004 10.37.33 Протокол концентраций газов Объект: 16 БАЛАХНИНСКАЯ ТЭЦ Топ-во: ПРИРОДНЫЙ ГАЗ Усреднение показаний включ Ттах : 2010 СО2тах: 11.800 В : 0.810	ГАЗОАНАЛИЗАТОР АГМ-510 заводской №51003030001 запись в память № 0015 23.04.2004 10.37.33 Протокол концентраций газов Объект: 16 БАЛАХНИНСКАЯ ТЭЦ ТОП-во: ПРИРОДНЫЙ ГАЗ Ттах : 2010 СО2тах: 11.800 В : 0.810	ГАЗОАНАЛИЗАТОР АГМ-510 заводской №51003030001 23.04.2004 10.37.33	ГАЗОАНАЛИЗАТОР АГМ Заводской №5100303 Запись в память № 23.04.2004 10.37 Протокол измер-я темп Объект: 16 БАЛАХНИНСК Тд : 121.7 °C Т↑ : 121.9 °C Т↓ : 19.8 °C Т↑ : 102.1 °C	000 003 1.33
C : 0.833 K : 0.780 P : 1000 02ref : 3 Tg : 167.8 °C Ta : 26.6 °C Ti : 24.6 °C 02 : 2.56 %of	C: 0.833 K: 0.780 P: 1000 O2ref: 3 Tg: 167.8 °C Ta: 26.6 °C Ti: 24.6 °C O2: 2.56 %of	001 : 120.0 °C 002 : 121.0 °C 	n : 6 Тр : 120.5 °C	 :==:
CO2 : 10.39 %o6 CO : 115 ppm NO : 74 ppm NO2 : 7 ppm NOx : 81 ppm SO2 : 180 ppm	CO2 : 10.39 %o6 CO : 115 ppm NO : 74 ppm NO2 : 7 ppm NOx : 81 ppm SO2 : 180 ppm	ГАЗОАНАЛИЗАТОР АГМ-510 заводской №51003030001 23.04.2004 10.37.33	ГАЗОАНАЛИЗАТОР АГМ заводской №5100303 запись в память № 23.04.2004 10.37	00
H2S : 28 ppm CH : 16 ppm Q2 : 6.57 % Q3 : 0.01 % Qa : 6.58 % Alf : 1.12	H2S : 28 ppm CH : 16 ppm Q2 : 6.57 % Q3 : 0.01 % Qa : 6.58 % Alf : 1.12	Тg : 121.7 °C Т↑ : 121.9 °C Т↓ : 19.8 °C Т↓ : 102.1 °C	Протокол измер-я темп Объект: 16 БАЛАХНИНСК Тg : 121.7 °C T↑ : 121.9 °C T↓ : 19.8 °C T↓ : 102.1 °C	
Примечание:	Строка, выводится при кратком, ста Строка, выводится при стандартног Строка, выводится при полном про	•	1	
t				

Инв. № дубл.

Baam, mes. No

Подп. и дата

Инв.№ подп.

Приложение E. Формат данных интерфейса RS-232

Назначение контактов разъемов и распайка кабеля для связи газоанализатора АГМ-510 и персональным компьютером совместимым с IBM PC приведена в таблице Е.1. Формат выходных данных у интерфейса RS-232: 9600 Бод, восемь бит плюс стоп-бит. Данные передаются в ASCII кодах блоками, построчно с окончаниями строки CR, LF (0DH, 0AH). Газоанализатор формирует различные выходные посылки в зависимости от режима измерения, в котором находится прибор или режима, из которого данные были записаны в память. Последовательность данных приведена в таблице Е.2.

Таблица Е.1.

АГМ-510 (ви	лка 9 конт.)	РС/УПП-510 (розетка 9 конт.)		
Сигнал	Контакт	Сигнал	Контакт	
CTS	8	RTS	7	
GND	5	GND	5	
TXD	3	RXD	2	
RXD	2	TXD	3	
RTS	7	CTS	8	

Таблица Е.2.

Режим измерения	Посылаемые данные	Множитель/Формат	Размерность/Примечание	Пример
•	старт посылки	-	идентификатор типа посылки	>G
	номер замера в памяти	число 04000	0 – текущее измерение/номер ячейки памяти	0
	дата	день.месяц.год	-	14.11.2005
	время	час:минуты:секунды	-	10:30:30
	объект измерения	кодировка Win Cyr		ТЭЦ 5
	топливо	кодировка Win Cyr	максимум 21 символ	МАЗУТ
	единицы измерения	0/1	0-ppm/1-mg	0
	приведение к О2	0/1		
	приведение к NO2	0/1	-0-выкл/1-вкл	0
0	Та	*10		33
δ	Tg	*10 *10	- - -	755
иза	<u> 19</u> Ti	*10 *10	- ~	56
Ш	02	10 *100	 всегда в % об.	2090
oa H	02 CO		всегда в % 00.	12090 In
Газоанализатор	NO	*10 *10	-	0
_		*10	-	U
	NO2	*10	в соответствии с выбранными единицами измерения	0
	SO2	*10		0
	H2S	*10	_	0
	СН	*10		[0
	CO2	*100	всегда в % об.]0
	q2	*100	0/_	0
	q3	*100	//0	0
	alf	*100	-	0
	стоп посылки	-	-	<
	старт посылки	-	идентификатор типа посылки	>T
	номер замера в памяти	число 04000	0 – текущее измерение/номер ячейки памяти	0
	дата	день.месяц.год	-	14.11.2005
	время	час:минуты:секунды		10:30:30
ра	объект измерения	кодировка Win Cyr	максимум 21 символ	ТЭЦ 9
Гемпература	Tg	*10		33
дер	· 9 ↑↑	*10	-	33
e W	<u> </u>	*10	-loC	33
<u> </u>	t≎ 	*10 *10	- ~	33 33 33
	to	*10 *10		33
	lih	10	VOTINIOTED TROPOTOLINI IV COMODOD	100
			количество проведенных замеров	<u> </u>
	стоп посылки	-	- 	< >P
	старт посылки	- 	идентификатор типа посылки	<
	номер замера в памяти	число 04000	0 – текущее измерение/номер ячейки памяти	0
۰.	дата	день.месяц.год	- -	14.11.2005
Давление/скорость	время	час:минуты:секунды	-	10:30:30
obc Obc	объект измерения	кодировка Win Cyr	максимум 21 символ	ТЭЦ 9
3∕¢	Pd	*10	-Pa	998619
Ĭ	Pa	*10		
эле	v	*1000	-м/сек	3378
Дан	u p	*1000	IW/OCIX	0
=	Qvg	*1000	M3/c	0
	n	-	количество проведенных замеров	0 0 12
	!			

Изм.	Лист	№ докум.	Подп.	Дата

Baam.

Подп. и дата

Инв. № подл.