

Preliminary Technical Information

TrenchP[™] Power MOSFET

IXTN210P10T

P-Channel Enhancement Mode Avalanche Rated Fast Intrinsic Rectifier

Symbol	Test Conditions	Maximum Ratings		
V _{DSS}	T ₁ = 25°C to 150°C	-100	V	
V _{DGR}	T_J = 25°C to 150°C, R_{GS} = 1M Ω	-100	V	
V _{gss}	Continuous	±15	V	
V _{GSM}	Transient	±25	V	
I _{D25}	T _c = 25°C (Chip Capability)	- 210	A	
LRMS	Lead Current Limit, RMS	- 200	Α	
I _{DM}	$T_{\rm c}$ = 25°C, Pulse Width Limited by $T_{\rm JM}$	- 800	Α	
I _A E _{AS}	$T_c = 25^{\circ}C$ $T_c = 25^{\circ}C$	-100 3	A J	
dv/dt	$I_{S} \leq I_{DM}, V_{DD} \leq V_{DSS}, T_{J} \leq 150^{\circ}C$	10	V/ns	
$\overline{P_{D}}$	T _C = 25°C	830	W	
T _J		- 55 +150	°C	
T _{JM}		150	°C	
T _{stg}		- 55 +150	°C	
V _{ISOL}	50/60 Hz, RMS, t = 1minute	2500	V~	
.001	$I_{ISOL} \le 1 \text{mA}, \qquad t = 1 \text{s}$	3000	٧~	
M_d	Mounting Torque for Base Plate	1.5/13	Nm/lb.in.	
-	Terminal Connection Torque	1.3/11.5	Nm/lb.in.	
Weight		30	g	

Symbol	Test Conditions	Characteristic Values			
$(T_J = 25^{\circ}C)$, Unless Otherwise Specified)	Min.	Тур.	Max.	
BV _{DSS}	$V_{GS} = 0V, I_{D} = -250\mu A$	-100			V
V _{GS(th)}	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$	- 2.5		- 4.5	V
I _{GSS}	$V_{GS} = \pm 15V, V_{DS} = 0V$			±200	nA
I _{DSS}	$V_{DS} = V_{DSS}, V_{GS} = 0V$			- 25	•
	T _J =	= 125°C		- 300	μA
R _{DS(on)}	$V_{GS} = -10V, I_{D} = 0.5 \cdot I_{D25}, Note 1$			7.5	mΩ

 $\begin{array}{lll} V_{_{DSS}} & = & -100 V \\ I_{_{D25}} & = & -210 A \\ R_{_{DS(on)}} \leq & 7.5 m \Omega \\ t_{_{rr}} & \leq & 200 ns \end{array}$

G = Gate D = DrainS = Source

Either Source Terminal S can be used as the Source Terminal or the Kelvin Source (Gate Return) Terminal.

Features

- International Standard Package
- Low Intrinsic Gate Resistance
- miniBLOC with Aluminum Nitride Isolation
- Avalanche Rated
- Extended FBSOA
- Fast Intrinsic Recitifier
- Low $R_{DS(ON)}$ and Q_{G}

Advantages

- · Easy to Mount
- Space Savings
- High Power Density

Applications

- · High-Side Switching
- Push Pull Amplifiers
- DC Choppers
- Automatic Test Equipment
- Current Regulators
- Battery Charger Applications

Symbol	Test Conditions	Chara	acteristic	Values
$(T_J = 25^{\circ}C,$	Unless Otherwise Specified)	Min.	Тур.	Max.
g _{fs}	$V_{DS} = -10V, I_{D} = -60A, Note 1$	90	150	S
C _{iss}			69.5	nF
C _{oss}	$V_{GS} = 0V, V_{DS} = -25V, f = 1MHz$		4070	pF
C _{rss}			1100	pF
t _{d(on)}	Resistive Switching Times		90	ns
t, (•		98	ns
t _{d(off)}	$V_{GS} = -10V$, $V_{DS} = 0.5 \cdot V_{DSS}$, $I_{D} = 0.5 \cdot I_{D25}$ $R_{G} = 1\Omega$ (External)		165	ns
t,)			55	ns
Q _{g(on)}			740	nC
Q _{gs}	$V_{gs} = -10V, V_{DS} = 0.5 \cdot V_{DSS}, I_{D} = 0.5 \cdot I_{D25}$		200	nC
Q _{gd}			155	nC
R _{thJC}				0.15 °C/W
R _{thCS}			0.05	°C/W

SOT-227B (IXTN) Outline (M4 screws (4x) supplied) SYM | INCHES | MILLIMETERS | MILLI

Source-Drain Diode

Symbol $(T_J = 25^{\circ}C, U)$	Test Conditions Unless Otherwise Specified)	Chara Min.	cteristic Typ.	Values Max.
I _s	$V_{GS} = 0V$			- 210 A
I _{sm}	Repetitive, Pulse Width Limited by $T_{_{\rm JM}}$			- 840 A
V _{SD}	$I_F = -100A, V_{GS} = 0V, Note 1$			-1.4 V
$\left\{ egin{array}{ll} \mathbf{t}_{rr} & \\ \mathbf{Q}_{RM} & \\ \mathbf{I}_{RM} & \end{array} ight\}$	$I_F = -105A$, $-di/dt = -100A/\mu s$ $V_R = -100V$, $V_{GS} = 0V$		930 -12.4	200 ns nC A

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

PRELIMINARY TECHNICAL INFORMATION

The product presented herein is under development. The Technical Specifications offered are derived from data gathered during objective characterizations of preliminary engineering lots; but also may yet contain some information supplied during a pre-production design evaluation. IXYS reserves the right to change limits, test conditions, and dimensions without notice.

IXYS Reserves the Right to Change Limits, Test Conditions, $\,$ and $\,$ Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs.
Junction Temperature

Fig. 14. Resistive Turn-on Rise Time vs.

Drain Current

Fig. 15. Resistive Turn-on Switching Times vs.

Fig. 16. Resistive Turn-off Switching Times vs.
Junction Temperature

Fig. 17. Resistive Turn-off Switching Times vs.

Fig. 18. Resistive Turn-off Switching Times vs.

Fig. 19. Maximum Transient Thermal Impedance

