

CALIBRATION DATA PROBE CALIBRATION DATA

Calibration Laboratory of Schmid & Partner Engineering AG

Servizio svizzero di taratura

editation No.: SCS 0108

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

AGC (Auden)

Certificate No: EX3-3953_Jun18

CALIBRATION CERTIFICATE

Object

EX3DV4 - SN:3953

Calibration procedure(s)

QA CAL-01.v9, QA CAL-12.v9, QA CAL-23.v5, QA CAL-25.v6

Calibration procedure for dosimetric E-field probes

Calibration date

June 26, 2018

This calibration certificate documents the traceability to national standards, which realize the physical units of me. The measurements and the uncertainties with confidence probability are given on the following pages and are part of the pertificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID .	Cal Date (Certificate No.)	Scheduled Calibration
Power meter NRP	SN: 104778	04-Apr-18 (No. 217-02672/02673)	Apr-19
Power sensor NRP-Z91	SN: 103244	04-Apr-18 (No. 217-02672)	Apr-19
Power sensor NRP-Z91	SN: 103245	04-Apr-18 (No. 217-02673)	Apr-19
Reference 20 dB Attenuator	SN: S5277 (20x)	04-Apr-18 (No. 217-02682)	Apr-19
Reference Probe ES3DV2	SN: 3013	30-Dec-17 (No. ES3-3013_Dec17)	Dec-18
DAE4	SN: 660	21-Dec-17 (No. DAE4-550_Dec17)	Dec-18
Secondary Standards	1D	Check Date (in house)	Scheduled Check
Power meter E44198	SN: G841293874	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: MY41498087	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
Power sensor E4412A	SN: 000110210	06-Apr-16 (in house check Jun-18)	In house check: Jun-20
RF generator HP 8648C	SN: US3642U01700	04-Aug-99 (in house check Jun-18)	In house check: Jun-20
Network Analyzer HP 8753E	SN: US37390585	18-Oct-01 (in house check Oct-17)	In house check: Oct-18

Calibrated by Approved by: Issued: June 26, 2018

This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: EX3-3953_Jun18

Page 1 of 11

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu,

Xixiang, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service Hotline: 400 089 2118

Calibration Laboratory of Schmid & Partner

Engineering AG ughausstrasse 43, 8004 Zurich, Switzerla

Service suisse d'étalonnag

Servizio svizzero di taratura Swiss Calibration Service

Accreditation No.: SCS 0108

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

tissue simulating liquid TSL NORMx,y,z sensitivity in free space sensitivity in TSL / NORMx,y,z diode compression point ConvF

CF crest factor (1/duty_cycle) of the RF signal A. B. C. D modulation dependent linearization parameters

Polarization φ e rotation around probe axis

Polarization 9 9 rotation around an axis that is in the plane normal to probe axis (at measurement center).

i.e., 3 = 0 is normal to probe axis

information used in DASY system to align probe sensor X to the robot coordinate system Connector Angle

- Calibration is Performed According to the Following Standards:

 a) IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement
 - Techniques", June 2013
 IEC 62209-1, " "Measurement procedure for the assessment of Specific Absorption Rate (SAR) from handheld and body-mounted devices used next to the ear (frequency range of 300 MHz to 6 GHz)", July 2016
 IEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices
 - used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010 d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Methods Applied and Interpretation of Parameters:

- NORMx,y,z: Assessed for E-field polarization 9 = 0 (f ≤ 900 MHz in TEM-cell; f > 1800 MHz: R22 waveguide). NORMx,y,z are only intermediate values, i.e., the uncertainties of NORMx,y,z does not affect the E²-field uncertainty inside TSL (see below ConvF).
- NORM(f)x,y,z = NORMx,y,z * frequency_response (see Frequency Response Chart). This linearization is implemented in DASY4 software versions later than 4.2. The uncertainty of the frequency response is included in the stated uncertainty of ConvF.
- DCPx,y,z: DCP are numerical linearization parameters assessed based on the data of power sweep with CW signal (no uncertainty required). DCP does not depend on frequency nor media.
- PAR: PAR is the Peak to Average Ratio that is not calibrated but determined based on the signal
- Ax,y,z; Bx,y,z; Cx,y,z; Dx,y,z; VRx,y,z; A, B, C, D are numerical linearization parameters assessed based on the data of power sweep for specific modulation signal. The parameters do not depend on frequency nor media. VR is the maximum calibration range expressed in RMS voltage across the diode.
- ConvF and Boundary Effect Parameters: Assessed in fiat phantom using E-field (or Temperature Transfer Standard for f < 800 MHz) and inside waveguide using analytical field distributions based on power measurements for f > 800 MHz. The same setups are used for assessment of the parameters applied for boundary compensation (alpha, depth) of which typical uncertainty values are given. These parameters are used in DASY4 software to improve probe accuracy close to the boundary. The sensitivity in TSL corresponds to NORMx,y,z * ConvF whereby the uncertainty corresponds to that given for ConvF. A frequency dependent ConvF is used in DASY version 4.4 and higher which allows extending the validity from ± 50 MHz to ± 100
- Spherical isotropy (3D deviation from isotropy): in a field of low gradients realized using a flat phantom exposed by a patch antenna.
- Sensor Offset: The sensor offset corresponds to the offset of virtual measurement center from the probe tip (on probe axis). No tolerance required.
- Connector Angle: The angle is assessed using the information gained by determining the NORMx (no uncertainty required).

Certificate No: EX3-3953_Jun18

Page 2 of 11

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu,

Xixiang, Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com Service Hotline: 400 089 2118

EX3DV4 - SN:3953

June 26, 2018

Probe EX3DV4

SN:3953

Manufactured: Repaired: Calibrated:

August 6, 2013 June 5, 2018 June 26, 2018

Calibrated for DASY/EASY Systems (Note: non-compatible with DASY2 system!)

Certificate No: EX3-3953_Jun18

Page 3 of 11

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu,

Xixiang, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com

EX3DV4- SN:3953

June 26, 2018

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3953

Basic Calibration Parameters

	Sensor X	Sensor Y	Sensor Z	Unc (k=2)
Norm (μV/(V/m) ²) ^A	0.51	0.53	0.47	± 10.1 %
DCP (mV) ⁸	97.9	97.5	98.0	

Modulation Calibration Parameters

UID	Communication System Name		Α	В	С	D	VR	Unc
			dB	dB√μV		dB	m۷	(k=2)
0	CW	. X	0.0	0.0	1.0	0.00	125.6	±2.7 %
		Y	0.0	0.0	1.0		127.0	
	****	Z	0.0	0.0	1.0		138.9	

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: EX3-3953_Jun18

Page 4 of 11

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu,

Xixiang, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com

[^] The uncertainties of Norm X,Y,Z do not affect the E²-field uncertainty inside TSL (see Pages 5 and 6).

^B Numerical linearization parameter: uncertainty not required.

^E Uncertainty is determined using the max. deviation from linear response applying rectangular distribution and is expressed for the square of the field value.

EX3DV4- SN:3953

June 26, 2018

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3953

Calibration Parameter Determined in Head Tissue Simulating Media

					_			
f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) ^F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	52.3	0.76	13.23	13.23	13.23	0.00	1.00	± 13.3 %
450	43.5	0.87	11.28	11.28	11.28	0.16	1.30	± 13.3 %

^c Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

FAI frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3953_Jun18

Page 5 of 11

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu,

Xixiang, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com

EX3DV4-- SN:3953

June 26, 2018

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3953

Calibration Parameter Determined in Body Tissue Simulating Media

f (MHz) ^C	Relative Permittivity ^F	Conductivity (S/m) F	ConvF X	ConvF Y	ConvF Z	Alpha ^G	Depth ^G (mm)	Unc (k=2)
150	61.9	0.80	12.96	12.96	12.96	0.00	1.00	± 13.3 %
450	56.7	0.94	11.51	11.51	11.51	0.09	1.30	± 13.3 %

^C Frequency validity above 300 MHz of \pm 100 MHz only applies for DASY v4.4 and higher (see Page 2), else it is restricted to \pm 50 MHz. The uncertainty is the RSS of the ConvF uncertainty at calibration frequency and the uncertainty for the indicated frequency band. Frequency validity below 300 MHz is \pm 10, 25, 40, 50 and 70 MHz for ConvF assessments at 30, 64, 128, 150 and 220 MHz respectively. Above 5 GHz frequency validity can be extended to \pm 110 MHz.

Falt frequencies below 3 GHz, the validity of tissue parameters (ϵ and σ) can be relaxed to \pm 10% if liquid compensation formula is applied to measured SAR values. At frequencies above 3 GHz, the validity of tissue parameters (ϵ and σ) is restricted to \pm 5%. The uncertainty is the RSS of the ConvF uncertainty for indicated target tissue parameters.

Alpha/Depth are determined during calibration. SPEAG warrants that the remaining deviation due to the boundary effect after compensation is always less than \pm 1% for frequencies below 3 GHz and below \pm 2% for frequencies between 3-6 GHz at any distance larger than half the probe tip diameter from the boundary.

Certificate No: EX3-3953_Jun18

Page 6 of 11

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu,

Xixiang, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail: agc@agc-cert.com

EX3DV4- SN:3953 June 26, 2018

Frequency Response of E-Field (TEM-Cell:ifi110 EXX, Waveguide: R22)

Uncertainty of Frequency Response of E-field: ± 6.3% (k=2)

Certificate No: EX3-3953_Jun18

Page 7 of 11

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

June 26, 2018 EX3DV4- SN:3953

Receiving Pattern (\$\phi\$), 9 = 0°

Uncertainty of Axial Isotropy Assessment: ± 0.5% (k=2)

Certificate No: EX3-3953_Jun18

Page 8 of 11

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

EX3DV4-SN:3953 June 26, 2018

Dynamic Range f(SAR_{head}) (TEM cell , f_{eval}= 1900 MHz)

Uncertainty of Linearity Assessment: ± 0.6% (k=2)

Certificate No: EX3-3953_Jun18

Page 9 of 11

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

June 26, 2018 EX3DV4-SN:3953

Conversion Factor Assessment

Deviation from Isotropy in Liquid Error (\$\phi\$, \$\partial\$), f = 900 MHz

Certificate No: EX3-3953_Jun18

Page 10 of 11

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu,

Xixiang, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com

EX3DV4- SN:3953

June 26, 2018

DASY/EASY - Parameters of Probe: EX3DV4 - SN:3953

Other Probe Parameters

Sensor Arrangement	Triangular
Connector Angle (°)	32.5
Mechanical Surface Detection Mode	enabled
Optical Surface Detection Mode	disabled
Probe Overall Length	337 mm
Probe Body Diameter	10 mm
Tip Length	9 mm
Tip Diameter	2.5 mm
Probe Tip to Sensor X Calibration Point	1 mm
Probe Tip to Sensor Y Calibration Point	1 mm
Probe Tip to Sensor Z Calibration Point	1 mm
Recommended Measurement Distance from Surface	1.4 mm

Certificate No: EX3-3953_Jun18

Page 11 of 11

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

DAE CALIBRATION DATA

Add: No.51 Xueyusn Road, Haidian District, Beijing, 100191, China Tel: +86-10-62304633-2512 Fnx: +86-10-62304633-2504 E-mail: cttl@chinattl.com Http://www.chinattl.cn INC. MRA CNAS

Certificate No: Z19-60040

CALIBRATION CERTIFICATE

Client :

Object DAE4 - SN: 1398

agc-cert

Calibration Procedure(s) FF-Z11-002-01

Calibration Procedure for the Data Acquisition Electronics

(DAEx)

Calibration date: February 16, 2019

This calibration Certificate documents the traceability to national standards, which realize the physical units of measurements(SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature(22±3)°C and humidity<70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards ID # Cal Date(Calibrated by, Certificate No.) Scheduled Calibration

Process Calibrator 753 1971018 20-Jun-18 (CTTL, No.J18X05034) June-19

Calibrated by: Yu Zongying SAR Test Engineer

Reviewed by: Lin Hao SAR Test Engineer

Approved by: Qi Dianyuan SAR Project Leader

Issued: February 18, 2019

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: Z19-60040

Page 1 of 3

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu,

Xixiang, Bao'an District, Shenzhen, Guangdong, China

an District, Beijing, 100191, China Fax: +86-10-62304633-2504 Tel: +86-10-62304633-2512 E-mail: cttl@chinattl.com Http://www.chinattl.cn

Glossary:

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X

to the robot coordinate system.

Methods Applied and Interpretation of Parameters:

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The report provide only calibration results for DAE, it does not contain other performance test results.

Certificate No: Z19-60040

Page 2 of 3

Xixiang, Bao'an District, Shenzhen, Guangdong, China Tel: +86-755 2523 4088 E-mail:agc@agc-cert.com Service Hotline: 400 089 2118

ian District, Beijing, 100191, China Fax: +86-10-62304633-2504 Http://www.chinattl.cn Tel: +86-10-62304633-2512 E-mail: ent/gechinattl.com

DC Voltage Measurement
A/D - Converter Resolution nominal
High Range: 1LSB = High Range: 1LSB = 6.1µV, full range = -100...+300 mV Low Range: 1LSB = 61nV, full range = -1.....+3mV DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	X	Υ	Z
High Range	404.181 ± 0.15% (k=2)	404.162 ± 0.15% (k=2)	403.625 ± 0.15% (k=2)
Low Range	Temporario e de contrato de Comiti		3.97155 ± 0.7% (k=2)

Connector Angle

Connector Angle to be used in DASY system	196° ± 1 °

Certificate No: Z19-60040

Page 3 of 3

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

DIPOLE CALIBRATION DATA

Calibration Laboratory of Schweizerischer Kalibrierdienst Service suisse d'étalonnage Schmid & Partner Servizio svizzero di taratura Engineering AG Swiss Calibration Service isstrasse 43, 8004 Zurich, Switzerland Accreditation No.: SCS 0108 Accredited by the Swiss Accreditation Service (SAS) The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates Certificate No: CLA150-4008_Jan17 AGC (Auden) **CALIBRATION CERTIFICATE** CLA150 - SN: 4008 Object **QA CAL-15.v8** Calibration procedure(s) Calibration procedure for system validation sources below 700 MHz January 19, 2017 Calibration date: This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI): The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate. All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70% Calibration Equipment used (M&TE critical for calibration) Scheduled Calibration Cal Date (Certificate No.) 10# Primary Standards Apr-17 SN: 104778 06-Apr-16 (No. 217-02288/02289) Power meter NRP Apr-17 Power sensor NRP-Z91 SN: 103244 06-Apr-16 (No. 217-02286) Apr-17 06-Apr-16 (No. 217-02289) Power sensor NRP-Z91 SN: 100245 05-Apr-16 (No. 217-02294) Apr-17 Reference 30 dB Attenuator SN: 5129 (30b) 05-Apr-16 (No. 217-02295) Apr-17 Type-N mismatch combination SN: 5047.2 / 06327 31-Dec-16 (No. EX3-3877_Dec16) Dec-17 SN: 3877 erence Probe EX30V4 12-Aug-18 (No. DAE4-664_Aug16) Aug-17 DAE4 SN: 654 Check Date (in house) Scheduled Check ID-# Secondary Standards 06-Apr-16 (No. 217-02285/02284) In house check: Jun-18 SN: GB41293874 Power meter E44198 In house check: Jun-18 06-Apr-16 (No. 217-02285) SN: MY41498087 Power sensor E4412A In house check: Jun-18 SN: 000110210 06-Apr-16 (No. 217-02284 Power sensor E4412A In house check: Jun-18 RF generator HP 8649C SN: US3642U01700 04-Aug-99 (in house check Jun-16) In house check: Oct-17 SN: US37390585 18-Oct-01 (in house check Oct-16) Network Analyzer HP 8753E Function Laboratory Technician Calibrated by: Jeton Kastrati Katja Poković Technical Manager Approved by: Issued: January 24, 2017 This calibration certificate shall not be reproduced except in full without written approval of the laboratory

Certificate No: CLA150-4008_Jan17

Page 1 of 8

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu,

Xixiang, Bao'an District, Shenzhen, Guangdong, China

Calibration Laboratory of

Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdien
C Service suisse d'étalonnage
Servizio svizzero di taratura

Accreditation No.: SCS 0108

S Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid
ConvF sensitivity in TSL / NORM x,y,z
N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- IEEE Std 1528-2013, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", June 2013
- b) IEC 62209-1, "Procedure to measure the Specific Absorption Rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", February 2005
- iEC 62209-2, "Procedure to determine the Specific Absorption Rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", March 2010
- d) KDB 865664, "SAR Measurement Requirements for 100 MHz to 6 GHz"

Additional Documentation:

e) DASY4/5 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The source is mounted in a touch configuration below the center marking of the flat phantom.
- Return Loss: This parameter is measured with the source positioned under the liquid filled phantom (as described in the measurement condition clause). The Return Loss ensures low reflected power. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

The reported uncertainty of measurement is stated as the standard uncertainty of measurement multiplied by the coverage factor k=2, which for a normal distribution corresponds to a coverage probability of approximately 95%.

Certificate No: CLA150-4008_Jan17

Page 2 of 8

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu,

Xixiang, Bao'an District, Shenzhen, Guangdong, China

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY5	V52.6.8
Extrapolation	Advanced Extrapolation	
Phantom	ELI4 Flat Phantom	Shell thickness: 2 ± 0.2 mm
EUT Positioning	Touch Position	
Zoom Scan Resolution	dx, dy = mm, dz = mm	Graded Ratio = 1.4 (Z direction)
Frequency	150 MHz ± 1 MHz	

Head TSL parameters

te ronowed paremeters and dated another waite appr	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	52.3	0.76 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	50.1 ± 6 %	0.75 mho/m ± 6 %
Head TSL temperature change during test	< 0.5 °C	****	-

SAR result with Head TSL

SAR averaged over 1 cm2 (1 g) of Head TSL	Condition	
SAR measured	1 W input power	3.89 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	3.90 W/kg ± 18.4 % (k=2)

SAR averaged over 10 cm3 (10 g) of Head TSL	condition	
SAR measured	1 W input power	2.59 W/kg
SAR for nominal Head TSL parameters	normalized to 1W	2,60 W/kg ± 18.0 % (k=2)

Body TSL parameters

	Temperature	Permittivity	Conductivity
Nominal Body TSL parameters	22.0 °C	61.9	0.80 mho/m
Measured Body TSL parameters	(22,0 ± 0.2) °C	61.4 ± 6 %	0.82 mho/m ± 6 %
Body TSL temperature change during test	< 0.5 °C		

SAR result with Body TSL

SAR averaged over 1 cm ⁵ (1 g) of Body TSL	Condition	
SAR measured	1 W input power	4.03 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	3.95 W/kg ± 18.4 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Body TSL	condition	
SAR measured	1 W input power	2.67 W/kg
SAR for nominal Body TSL parameters	normalized to 1W	2.62 W/kg ± 18.0 % (k=2)

Certificate No: CLA150-4008_Jan17

Page 3 of 8

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

Appendix (Additional assessments outside the scope of SCS 0108)

Antenna Parameters with Head TSL

Impedance, transformed to feed point	44.1 Ω - 6.0 Ω
Return Loss	- 20.9 dB

Antenna Parameters with Body TSL

Impedance, transformed to feed point	47.6 Ω - 9.0 jΩ	
Return Loss	- 20.5 dB	

Additional EUT Data

Manufactured by	SPEAG	
Manufactured on	December 16, 2013	

Certificate No: CLA150-4006_Jan17

Page 4 of 8

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

DASY5 Validation Report for Head TSL

Date: 23.01.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA-150; Type: CLA-150; Serial: 4008

Communication System: UID 0 - CW; Frequency: 150 MHz

Medium parameters used: f = 150 MHz; $\sigma = 0.75 \text{ S/m}$; $\varepsilon_r = 50.1$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(12.04, 12.04, 12.04); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 12.08.2016
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Area Scan

(81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 5.38 W/kg

CLA Calibration for HSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan,

dist=1.4mm (8x10x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 84.22 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 7.04 W/kg

SAR(1 g) = 3.89 W/kg; SAR(10 g) = 2.59 W/kg

Maximum value of SAR (measured) = 5.42 W/kg

0 dB = 5.38 W/kg = 7.31 dBW/kg

Certificate No: CLA150-4008_Jan17

Page 5 of 8

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu,

Xixiang, Bao'an District, Shenzhen, Guangdong, China

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$

DASY5 Validation Report for Body TSL

Date: 23.01.2017

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: CLA-150; Type: CLA-150; Serial: 4008

Communication System: UID 0 - CW; Frequency: 150 MHz

Medium parameters used: f = 150 MHz; $\sigma = 0.82 \text{ S/m}$; $\epsilon_r = 61.4$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

Measurement Standard: DASY5 (IEEE/IEC/ANSI C63.19-2011)

DASY52 Configuration:

- Probe: EX3DV4 SN3877; ConvF(11.54, 11.54, 11.54); Calibrated: 31.12.2016;
- Sensor-Surface: 1.4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn654; Calibrated: 12.08.2016
- Phantom: ELI v4.0; Type: QDOVA001BB; Serial: TP:1003
- DASY52 52.8.8(1258); SEMCAD X 14.6.10(7372)

CLA Calibration for MSL-LF Tissue/CLA150, touch configuration, Pin=1W/Area Scan

(81x81x1): Interpolated grid: dx=1.500 mm, dy=1.500 mm Maximum value of SAR (interpolated) = 5.72 W/kg

CLA Calibration for MSL-LF Tissue/CLA150, touch configuration, Pin=1W/Zoom Scan,

dist=1.4mm (8x10x7)/Cube 0: Measurement grid: dx=4mm, dy=4mm, dz=1.4mm

Reference Value = 82.65 V/m; Power Drift = 0.01 dB

Peak SAR (extrapolated) = 7.67 W/kg

SAR(1 g) = 4.03 W/kg; SAR(10 g) = 2.67 W/kg

Maximum value of SAR (measured) = 5.66 W/kg

0 dB = 5.72 W/kg = 7.57 dBW/kg

Certificate No: CLA150-4008_Jan17

Page 7 of 8

Attestation of Global Compliance(Shenzhen)Co.,Ltd.

Add: 2/F., Building 2, No.1-4, Chaxi Sanwei Technial Industrial Park, Gushu,

Xixiang, Bao'an District, Shenzhen, Guangdong, China

 $Attestation\ of\ Global\ Compliance (Shenzhen) Co., Ltd.$