Preliminares Matemáticos

Teoría de la Computación

Grado en Ingeniería Informática

Contenidos

- Lógica elemental
- 2 Definiciones básicas sobre teoría de conjuntos
- Operaciones con conjuntos
- Relaciones y funciones
- Inducción matemática
- 6 Cardinalidad

Contenidos

- Lógica elemental
- 2 Definiciones básicas sobre teoría de conjuntos
- Operaciones con conjuntos
- 4 Relaciones y funciones
- Inducción matemática
- 6 Cardinalidad

Definición

Una **proposición lógica** es una frase de la cual se puede determinar si es verdadera o falsa.

Ejemplos: "dos más dos es cuatro", "está lloviendo", etc.

Definición

Una **proposición lógica** es una frase de la cual se puede determinar si es verdadera o falsa.

Ejemplos: "dos más dos es cuatro", "está lloviendo", etc.

Para formular razonamientos, las proposiciones se pueden ligar mediante una serie de **conectivas lógicas**, cuyas **tablas de verdad** son:

Р	Q	\overline{P}	$P \wedge Q$	$P \vee Q$	P o Q	$P \Leftrightarrow Q$
\mathcal{V}	\mathcal{V}	\mathcal{F}	\mathcal{V}	\mathcal{V}	\mathcal{V}	\mathcal{V}
\mathcal{V}	${\cal F}$	\mathcal{F}	${\cal F}$	${\mathcal V}$	${\cal F}$	${\cal F}$
${\cal F}$	\mathcal{V}	\mathcal{V}	${\cal F}$	${\mathcal V}$	${\mathcal V}$	${\cal F}$
${\cal F}$	${\cal F}$	\mathcal{V}	${\cal F}$	${\cal F}$	${\mathcal V}$	${\mathcal V}$

Un ejemplo de implicación es "si hace sol (P), Juan juega al fútbol (Q)":

- Si P es cierto, el valor global de la proposición es el valor de Q.
- Si P es falso, el valor global de la proposición es siempre V independientemente del valor de Q, porque la proposición no nos indica realmente qué hace Juan cuando no hace sol.
- En resumen, $P \to Q$ es equivalente a $\overline{P} \lor Q$.

Un ejemplo de implicación es "si hace sol (P), Juan juega al fútbol (Q)":

- Si P es cierto, el valor global de la proposición es el valor de Q.
- Si P es falso, el valor global de la proposición es siempre V independientemente del valor de Q, porque la proposición no nos indica realmente qué hace Juan cuando no hace sol.
- En resumen, $P \to Q$ es equivalente a $\overline{P} \lor Q$.

También es interesante recordar que:

- \overline{P} puede escribirse alternativamente como $\neg P$.
- $P \Leftrightarrow Q$ es equivalente a $(P \to Q) \land (Q \to P)$.
- Leyes de De Morgan:

 - $P \vee \overline{Q} \Leftrightarrow \overline{P} \wedge \overline{Q}.$

Definición

Una **tautología** es una proposición lógica que siempre es verdadera en todos los casos de su tabla de verdad, mientras que una **contradicción** es una proposición lógica que siempre es falsa.

Ejemplo de tautología: las leyes de De Morgan vistas como proposiciones. Ejemplo de contradicción: la negación de una tautología.

Definición

Una **tautología** es una proposición lógica que siempre es verdadera en todos los casos de su tabla de verdad, mientras que una **contradicción** es una proposición lógica que siempre es falsa.

Ejemplo de tautología: las leyes de De Morgan vistas como proposiciones. Ejemplo de contradicción: la negación de una tautología.

Otras propiedades interesantes:

- $P \Leftrightarrow \overline{\overline{P}}$.
- $P \wedge (Q \vee R) \Leftrightarrow (P \wedge Q) \vee (P \wedge R)$.
- $P \lor (Q \land R) \Leftrightarrow (P \lor Q) \land (P \lor R)$.

Definición

Una frase abierta o función proposicional o predicado es una proposición lógica que contiene una variable.

Ejemplo: "x es impar".

Definición

Una frase abierta o función proposicional o predicado es una proposición lógica que contiene una variable.

Ejemplo: "x es impar".

El **conjunto de significados** para la variable de esta frase es \mathbb{N} , mientras que el **conjunto de verdad** para la frase está formado por los elementos que la hacen cierta: 1, 3, 5, 7, ...

Definición

Una frase abierta o función proposicional o predicado es una proposición lógica que contiene una variable.

Ejemplo: "x es impar".

El **conjunto de significados** para la variable de esta frase es \mathbb{N} , mientras que el **conjunto de verdad** para la frase está formado por los elementos que la hacen cierta: 1, 3, 5, 7, ...

Los elementos del conjunto de significados se pueden seleccionar también mediante los **cuantificadores universal y existencial**: $\forall x \ P(x) \ y \ \exists x \ P(x)$.

Definición

Una frase abierta o función proposicional o predicado es una proposición lógica que contiene una variable.

Ejemplo: "x es impar".

El **conjunto de significados** para la variable de esta frase es \mathbb{N} , mientras que el **conjunto de verdad** para la frase está formado por los elementos que la hacen cierta: 1, 3, 5, 7, ...

Los elementos del conjunto de significados se pueden seleccionar también mediante los **cuantificadores universal y existencial**: $\forall x \ P(x) \ y \ \exists x \ P(x)$.

Teorema

$$\overline{\forall x P(x)} \Leftrightarrow \exists x \overline{P(x)}$$

El elemento x se denomina un **contraejemplo** de $\forall x P(x)$.

Contenidos

- Lógica elemental
- 2 Definiciones básicas sobre teoría de conjuntos
- Operaciones con conjuntos
- 4 Relaciones y funciones
- Inducción matemática
- Cardinalidad

2 Definiciones básicas sobre teoría de conjuntos

Definición

Definimos **conjunto potencia de** *A* o **partes de** *A* como:

$$2^A = \{B \mid B \subseteq A\}$$

2 Definiciones básicas sobre teoría de conjuntos

Definición

Definimos **conjunto potencia de** *A* o **partes de** *A* como:

$$2^A = \{B \mid B \subseteq A\}$$

Por ejemplo, si $A = \{a, b, c\}$ entonces:

$$2^{A} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\$$

2 Definiciones básicas sobre teoría de conjuntos

Definición

Definimos **conjunto potencia de** *A* o **partes de** *A* como:

$$2^A = \{B \mid B \subseteq A\}$$

Por ejemplo, si $A = \{a, b, c\}$ entonces:

$$2^{A} = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}\}$$

Obsérvese que $\emptyset \in 2^A$ y también que $A \in 2^A$.

Contenidos

- Lógica elemental
- 2 Definiciones básicas sobre teoría de conjuntos
- Operaciones con conjuntos
- 4 Relaciones y funciones
- Inducción matemática
- 6 Cardinalidad

Las operaciones básicas sobre conjuntos son la unión, la intersección, el complementario y el producto cartesiano.

Las operaciones básicas sobre conjuntos son la **unión**, la **intersección**, el **complementario** y el **producto cartesiano**.

Se cumplen las siguientes propiedades:

$$\emptyset \cup A = A$$
$$\emptyset \cap A = \emptyset$$

Si
$$A \subseteq B$$
, entonces $A \cup B = B$
Si $A \subseteq B$, entonces $A \cap B = A$

$$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$$
$$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$$

Definición

Dados A y B dos conjuntos cualesquiera, el **complementario de** B **con respecto a** A es el conjunto:

$$A - B = \{x \mid x \in A \text{ y } x \notin B\}$$

Definición

Dados *A* y *B* dos conjuntos cualesquiera, el **complementario de** *B* **con respecto a** *A* es el conjunto:

$$A - B = \{x \mid x \in A \text{ y } x \notin B\}$$

Se cumplen las siguientes propiedades:

$$A - B = A \cap \overline{B}$$
 $\overline{\overline{A}} = A$ $\overline{A \cup B} = \overline{A} \cap \overline{B}$ $\overline{A \cap B} = \overline{A} \cup \overline{B}$

Las dos últimas son conocidas también como las leyes de De Morgan para conjuntos.

Definición

Dados A y B dos conjuntos cualesquiera, el **producto cartesiano de** A y B es el conjunto:

$$A \times B = \{(a, b) \mid a \in A \text{ y } b \in B\}$$

Definición

Dados A y B dos conjuntos cualesquiera, el **producto cartesiano de** A y B es el conjunto:

$$A \times B = \{(a, b) \mid a \in A \text{ y } b \in B\}$$

Se cumplen las siguientes propiedades:

$$A \times (B \cup C) = (A \times B) \cup (A \times C)$$

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$

$$A \times (B - C) = (A \times B) - (A \times C)$$

Contenidos

- Lógica elemental
- 2 Definiciones básicas sobre teoría de conjuntos
- Operaciones con conjuntos
- Relaciones y funciones
- Inducción matemática
- Cardinalidad

Definición

Una **relación** del conjunto A con el conjunto B es un subconjunto de $A \times B$.

Por tanto, si $R \subseteq A \times B$ y $(a, b) \in R$ se dice que a está relacionado con b bajo la relación R.

Definición

Una **relación** del conjunto A con el conjunto B es un subconjunto de $A \times B$.

Por tanto, si $R \subseteq A \times B$ y $(a, b) \in R$ se dice que a está relacionado con b bajo la relación R.

La relación $R \subseteq A \times B$ define dos subconjuntos, uno de A y otro de B, que son los siguientes:

Dominio
$$(R) = \{ a \mid a \in A \text{ y } (a, x) \in R \text{ para algún } x \in B \}$$

Imagen $(R) = \{ b \mid b \in B \text{ y } (y, b) \in R \text{ para algún } y \in A \}$

Definición

Una relación $f \subseteq A \times B$ es una **función**, y se escribe $f : A \rightarrow B$, si:

- ① Dominio (f) = A.
- ② Para cualquier par (x, y) y (x, z) pertenecientes a f, y = z. Es decir, ∀x ∈ A existe un único elemento y ∈ B tal que (x, y) ∈ f y se escribe f(x) = y.

Definición

Una relación $f \subseteq A \times B$ es una **función**, y se escribe $f : A \rightarrow B$, si:

- ① Dominio (f) = A.
- ② Para cualquier par (x, y) y (x, z) pertenecientes a f, y = z.
 Es decir, ∀x ∈ A existe un único elemento y ∈ B tal que (x, y) ∈ f y se escribe f(x) = y.

La condición 1 podría ser demasiado restrictiva para nuestros objetivos. Así pues, llamaremos **función total** a este tipo de funciones, pero definiremos también el concepto de **función parcial** como la relación $f \subset A \times B$ que satisface las condiciones:

- **1** Dominio $(f) \subseteq A$.
- 2 La misma que antes.

Definición

- Una función f es "1 a 1" o **inyectiva** cuando, si f(x) = f(y), entonces x = y.
- Una función $f: A \to B$ es **sobreyectiva** cuando $\forall y \in B, \exists x \in A$ tal que f(x) = y.

Definición

- Una función f es "1 a 1" o **inyectiva** cuando, si f(x) = f(y), entonces x = y.
- Una función $f: A \to B$ es **sobreyectiva** cuando $\forall y \in B, \exists x \in A$ tal que f(x) = y.

sí funciónsí inyectivano sobreyectiva

sí funciónno inyectivasí sobreyectiva

sí funciónsí inyectivano sobreyectiva

sí funciónno inyectivasí sobreyectiva

 $f: \mathbb{N} \to \mathbb{N}$

$$f: \mathbb{N} \to \mathbb{N}$$
 $x \leadsto x+1$
 $\mathbf{s}\mathbf{i}$ función
 $\mathbf{s}\mathbf{i}$ inyectiva
 $\mathbf{n}\mathbf{o}$ sobreyectiva
 $(\exists x \in \mathbb{N} \mid f(x) = 0)$

Es interesante recordar también que:

 Si una función es inyectiva y sobreyectiva a la vez, se dice que es una función biyectiva.

Es interesante recordar también que:

- Si una función es inyectiva y sobreyectiva a la vez, se dice que es una función biyectiva.
- Si f es una función biyectiva, entonces f^{-1} (la relación **inversa**) es una función. En cualquier otro caso, esto no está garantizado.

Es interesante recordar también que:

- Si una función es inyectiva y sobreyectiva a la vez, se dice que es una función biyectiva.
- Si f es una función biyectiva, entonces f^{-1} (la relación **inversa**) es una función. En cualquier otro caso, esto no está garantizado.
- Las funciones se pueden asociar a través de la operación de composición.

4 Relaciones y funciones

Es interesante recordar también que:

- Si una función es inyectiva y sobreyectiva a la vez, se dice que es una función biyectiva.
- Si f es una función biyectiva, entonces f^{-1} (la relación **inversa**) es una función. En cualquier otro caso, esto no está garantizado.
- Las funciones se pueden asociar a través de la operación de composición.

La composición de funciones es una operación asociativa, no es conmutativa y su elemento neutro es la función identidad.

Contenidos

- Lógica elemental
- 2 Definiciones básicas sobre teoría de conjuntos
- Operaciones con conjuntos
- 4 Relaciones y funciones
- Inducción matemática
- 6 Cardinalidad

Definición

Se dice que un subconjunto A de $\mathbb N$ es un **conjunto inductivo** si $\forall a \in A, a+1 \in A$.

Ejemplo: el conjunto $\{5,6,7,\ldots\}$. Obviamente, para que un conjunto sea inductivo no puede tener un número finito de elementos.

Definición

Se dice que un subconjunto A de $\mathbb N$ es un **conjunto inductivo** si $\forall a \in A, a+1 \in A$.

Ejemplo: el conjunto $\{5,6,7,\ldots\}$. Obviamente, para que un conjunto sea inductivo no puede tener un número finito de elementos.

El único conjunto inductivo que contiene al 0 es el propio \mathbb{N} , es decir:

Si
$$0 \in A$$
 y si $n \in A \Rightarrow n+1 \in A$, entonces $A = \mathbb{N}$.

Definición

Se dice que un subconjunto A de $\mathbb N$ es un **conjunto inductivo** si $\forall a \in A, a+1 \in A$.

Ejemplo: el conjunto $\{5,6,7,\ldots\}$. Obviamente, para que un conjunto sea inductivo no puede tener un número finito de elementos.

El único conjunto inductivo que contiene al 0 es el propio \mathbb{N} , es decir:

Si
$$0 \in A$$
 y si $n \in A \Rightarrow n+1 \in A$, entonces $A = \mathbb{N}$.

Este hecho se conoce como el **principio de inducción matemática**, el cual se utiliza para realizar:

- Definiciones recursivas inductivas, como por ejemplo el factorial:
 - 0! = 1
 - $(n+1)! = (n+1) \times n!, \forall n > 0$

• Demostraciones formales de planteamientos cuyas proposiones se pueden indexar mediante los elementos de \mathbb{N} .

- Demostraciones formales de planteamientos cuyas proposiones se pueden indexar mediante los elementos de \mathbb{N} .
 - Por ejemplo, la proposición "n+3 < 5 $(n+1), \forall n \in \mathbb{N}$ " se puede demostrar como sigue:

• Demostraciones formales de planteamientos cuyas proposiones se pueden indexar mediante los elementos de \mathbb{N} .

Por ejemplo, la proposición "n+3 < 5 (n+1), $\forall n \in \mathbb{N}$ " se puede demostrar como sigue:

```
Sea A = \{n \in \mathbb{N} \mid n+3 < 5 (n+1)\}. Debemos demostrar que A = \mathbb{N}.
```

• <u>Demostraciones formales</u> de planteamientos cuyas proposiones se pueden indexar mediante los elementos de \mathbb{N} .

Por ejemplo, la proposición "n+3 < 5 $(n+1), \forall n \in \mathbb{N}$ " se puede demostrar como sigue:

Sea
$$A = \{n \in \mathbb{N} \mid n+3 < 5 (n+1)\}.$$
 Debemos demostrar que $A = \mathbb{N}$.

Si
$$n = 0$$
, $n + 3 = 3$ y 5 $(n + 1) = 5$.
Dado que $3 < 5$, la proposición es cierta.

• <u>Demostraciones formales</u> de planteamientos cuyas proposiones se pueden indexar mediante los elementos de \mathbb{N} .

Por ejemplo, la proposición "n+3 < 5 (n+1), $\forall n \in \mathbb{N}$ " se puede demostrar como sigue:

Sea
$$A = \{n \in \mathbb{N} \mid n+3 < 5 (n+1)\}.$$
 Debemos demostrar que $A = \mathbb{N}$.

Si
$$n = 0$$
, $n + 3 = 3$ y 5 $(n + 1) = 5$.
Dado que $3 < 5$, la proposición es cierta.

Suponemos que $n \in A$ y probamos que (n+1) también pertenece a A:

$$\boxed{5((n+1)+1)} = 5n+10 = 5(n+1)+5 > (n+3)+5 > (n+3)+1 = \boxed{(n+1)+3}.$$

• <u>Demostraciones formales</u> de planteamientos cuyas proposiones se pueden indexar mediante los elementos de \mathbb{N} .

Por ejemplo, la proposición "n+3 < 5 $(n+1), \forall n \in \mathbb{N}$ " se puede demostrar como sigue:

Sea
$$A = \{n \in \mathbb{N} \mid n+3 < 5 (n+1)\}.$$
 Debemos demostrar que $A = \mathbb{N}$.

Si
$$n = 0$$
, $n + 3 = 3$ y 5 $(n + 1) = 5$.
Dado que $3 < 5$, la proposición es cierta.

Suponemos que $n \in A$ y probamos que (n+1) también pertenece a A:

$$5((n+1)+1) = 5n+10 = 5(n+1)+5 > (n+3)+5 > (n+3)+1 = (n+1)+3$$

Dado que $n+1 \in A$ cuando $n \in A$, entonces $A = \mathbb{N}$ y la proposición es cierta para todos los números naturales.

En resumen, los **pasos de una demostración por inducción** son los siguientes:

Paso inicial:

Probar que la proposición se cumple para 0.

Hipótesis de inducción:

Suponer que la proposición es cierta para n.

Paso de inducción:

Probar que la proposición se cumple para n + 1.

En resumen, los **pasos de una demostración por inducción** son los siguientes:

- Paso inicial:
 - Probar que la proposición se cumple para 0.
- Hipótesis de inducción:

Suponer que la proposición es cierta para n.

- Paso de inducción:
 - Probar que la proposición se cumple para n + 1.

En la práctica, este método se puede utilizar también para demostrar planteamientos que afectan a elementos que son mayores o iguales que un cierto valor k, con tan solo substituir 0 por ese valor k en el paso inicial.

Contenidos

- Lógica elemental
- 2 Definiciones básicas sobre teoría de conjuntos
- Operaciones con conjuntos
- 4 Relaciones y funciones
- 5 Inducción matemática
- 6 Cardinalidad

Definición

Diremos que dos conjuntos cualesquiera A y B tienen la misma **cardinalidad** cuando se puede establecer entre ellos una aplicación $f:A\to B$ biyectiva.

Definición

Diremos que dos conjuntos cualesquiera A y B tienen la misma **cardinalidad** cuando se puede establecer entre ellos una aplicación $f:A\to B$ biyectiva.

Ejemplos:

• $\mathbb N$ (los naturales) y $\mathbb P$ (los pares) tienen la misma cardinalidad, ya que podemos construir:

$$f: \mathbb{N} \to \mathbb{P}$$
$$n \leadsto 2n$$

Definición

Diremos que dos conjuntos cualesquiera A y B tienen la misma **cardinalidad** cuando se puede establecer entre ellos una aplicación $f:A\to B$ biyectiva.

Ejemplos:

• \mathbb{N} (los naturales) y \mathbb{P} (los pares) tienen la misma cardinalidad, ya que podemos construir:

$$f: \mathbb{N} \to \mathbb{P}$$
$$n \leadsto 2n$$

• Lo mismo ocurre con $\mathbb N$ y $\mathbb Z$ (los enteros), a través de la función:

$$f: \mathbb{N} \to \mathbb{Z}$$
 $n \leadsto rac{n}{2}$ si n es par, o bien $rac{-(n+1)}{2}$ si n es impar

Definición

Diremos que dos conjuntos cualesquiera A y B tienen la misma **cardinalidad** cuando se puede establecer entre ellos una aplicación $f:A\to B$ biyectiva.

Ejemplos:

• \mathbb{N} (los naturales) y \mathbb{P} (los pares) tienen la misma cardinalidad, ya que podemos construir:

$$f: \mathbb{N} \to \mathbb{P}$$
$$n \leadsto 2n$$

ullet Lo mismo ocurre con $\mathbb N$ y $\mathbb Z$ (los enteros), a través de la función:

$$f: \mathbb{N} \to \mathbb{Z}$$
 $n \leadsto rac{n}{2}$ si n es par, o bien $rac{-(n+1)}{2}$ si n es impar

• Lo mismo ocurre con \mathbb{N} y \mathbb{Q} (los racionales).

El cardinal de \mathbb{N} se denota como \aleph_0 .

El cardinal de \mathbb{N} se denota como \aleph_0 .

Otros conjuntos con distinta cardinalidad son, por ejemplo, \mathbb{R} (los reales) o $2^{\mathbb{N}}$ (partes de \mathbb{N}):

$$|\mathbb{R}| = |2^{\mathbb{N}}| = \aleph_1$$

El cardinal de \mathbb{N} se denota como \aleph_0 .

Otros conjuntos con distinta cardinalidad son, por ejemplo, \mathbb{R} (los reales) o $2^{\mathbb{N}}$ (partes de \mathbb{N}):

$$|\mathbb{R}|=|2^{\mathbb{N}}|=\aleph_1$$

Existen más variedades y, de hecho, no está probado que entre \aleph_0 y \aleph_1 no haya más cardinalidades diferentes.

El cardinal de \mathbb{N} se denota como \aleph_0 .

Otros conjuntos con distinta cardinalidad son, por ejemplo, \mathbb{R} (los reales) o $2^{\mathbb{N}}$ (partes de \mathbb{N}):

$$|\mathbb{R}|=|2^{\mathbb{N}}|=\aleph_1$$

Existen más variedades y, de hecho, no está probado que entre \aleph_0 y \aleph_1 no haya más cardinalidades diferentes.

Defin<u>ición</u>

Un conjunto A es **enumerable** si $|A| = |\mathbb{N}| = \aleph_0$.

Un conjunto es numerable si es finito o enumerable.

Finalizamos mostrando algunos ejemplos de conjuntos no numerables y lo probamos mediante la **técnica de la diagonal** (Cantor):

Finalizamos mostrando algunos ejemplos de conjuntos no numerables y lo probamos mediante la **técnica de la diagonal** (Cantor):

• $2^{\mathbb{N}}$ no es numerable:

Finalizamos mostrando algunos ejemplos de conjuntos no numerables y lo probamos mediante la **técnica de la diagonal** (Cantor):

• $2^{\mathbb{N}}$ no es numerable: Suponemos que lo es, entonces $2^{\mathbb{N}} = \{A_0, A_1, A_2, \dots\}$.

Finalizamos mostrando algunos ejemplos de conjuntos no numerables y lo probamos mediante la **técnica de la diagonal** (Cantor):

• 2^N no es numerable:

Suponemos que lo es, entonces
$$2^{\mathbb{N}} = \{A_0, A_1, A_2, \dots\}$$
. Ahora construimos la siguiente retícula:

	A_0	A_1	A ₂	A ₃	
0	×		×	×	
1	×		×		
2		×	×		
3				×	
:	:	:	:	:	٠

Finalizamos mostrando algunos ejemplos de conjuntos no numerables y lo probamos mediante la **técnica de la diagonal** (Cantor):

• $2^{\mathbb{N}}$ no es numerable:

Suponemos que lo es, entonces
$$2^{\mathbb{N}} = \{A_0, A_1, A_2, \dots\}$$
. Ahora construimos la siguiente retícula:

	A_0	A_1	A ₂	A_3	
0	×		×	×	
1	×		×		
2		×	×		
3				×	
:	:	:	:	:	· ·

Consideramos la diagonal y construimos el conjunto $D = \{n \mid n \notin A_n\}$.

Finalizamos mostrando algunos ejemplos de conjuntos no numerables y lo probamos mediante la **técnica de la diagonal** (Cantor):

• $2^{\mathbb{N}}$ no es numerable:

Suponemos que lo es, entonces $2^{\mathbb{N}} = \{A_0, A_1, A_2, \dots\}$. Ahora construimos la siguiente retícula:

	<i>A</i> ₀	A_1	A ₂	A_3	
0	×		×	×	
1	×		×		
2		×	×		
3				×	
:		:	:	:	·

Consideramos la diagonal y construimos el conjunto $D = \{n \mid n \notin A_n\}$. Suponemos que D es igual a un cierto A_k , entonces:

$$\begin{array}{l} - \text{ o bien } k \in A_k \Rightarrow k \not\in D \\ - \text{ o bien } k \not\in A_k \Rightarrow k \in D \end{array} \right\} \Rightarrow \text{ absurdo, ya que } D = A_k.$$

Finalizamos mostrando algunos ejemplos de conjuntos no numerables y lo probamos mediante la **técnica de la diagonal** (Cantor):

• $2^{\mathbb{N}}$ no es numerable:

Suponemos que lo es, entonces
$$2^{\mathbb{N}} = \{A_0, A_1, A_2, \dots\}$$
. Ahora construimos la siguiente retícula:

A_0	A_1	A_2	A_3	
×		×	×	
×		×		
	×	×		
			×	
:	:	:	:	٠
	×	×	× × ×	× × × × × ×

Consideramos la diagonal y construimos el conjunto $D = \{n \mid n \notin A_n\}$. Suponemos que D es igual a un cierto A_k , entonces:

$$\begin{array}{l} - \text{ o bien } k \in A_k \Rightarrow k \not\in D \\ - \text{ o bien } k \not\in A_k \Rightarrow k \in D \end{array} \right\} \Rightarrow \text{ absurdo, ya que } D = A_k.$$

Por tanto, el conjunto D es distinto de cualquier A_i .

Finalizamos mostrando algunos ejemplos de conjuntos no numerables y lo probamos mediante la **técnica de la diagonal** (Cantor):

• $2^{\mathbb{N}}$ no es numerable:

Suponemos que lo es, entonces $2^{\mathbb{N}} = \{A_0, A_1, A_2, \dots\}$. Ahora construimos la siguiente retícula:

	A ₀	A_1	A ₂	A_3	
0	×		×	×	
1	×		×		
2		×	×		
3				×	
:		:	:	:	٠

Consideramos la diagonal y construimos el conjunto $D = \{n \mid n \notin A_n\}$. Suponemos que D es igual a un cierto A_k , entonces:

$$\begin{array}{l} - \text{ o bien } k \in A_k \Rightarrow k \not\in D \\ - \text{ o bien } k \not\in A_k \Rightarrow k \in D \end{array} \right\} \Rightarrow \text{ absurdo, ya que } D = A_k.$$

Por tanto, el conjunto D es distinto de cualquier A_i .

Por tanto, en $2^{\mathbb{N}} = \{A_0, A_1, A_2, \dots\}$ no están todos los posibles subconjuntos de \mathbb{N} .

Finalizamos mostrando algunos ejemplos de conjuntos no numerables y lo probamos mediante la **técnica de la diagonal** (Cantor):

• $2^{\mathbb{N}}$ no es numerable:

Suponemos que lo es, entonces $2^{\mathbb{N}} = \{A_0, A_1, A_2, \dots\}$. Ahora construimos la siguiente retícula:

	A_0	A_1	A ₂	A ₃	
0	×		×	×	
1	×		×		
2		×	×		
3				×	
:	:	:	:	:	· ·

Consideramos la diagonal y construimos el conjunto $D = \{n \mid n \notin A_n\}$. Suponemos que D es igual a un cierto A_k , entonces:

$$\begin{array}{l} - \text{ o bien } k \in A_k \Rightarrow k \not\in D \\ - \text{ o bien } k \not\in A_k \Rightarrow k \in D \end{array} \right\} \Rightarrow \text{ absurdo, ya que } D = A_k.$$

Por tanto, el conjunto D es distinto de cualquier A_i .

Por tanto, en $2^{\mathbb{N}} = \{A_0, A_1, A_2, \dots\}$ no están todos los posibles subconjuntos de \mathbb{N} . Por tanto, $2^{\mathbb{N}}$ no es numerable.

R no es numerable:

■ R no es numerable:

Basta con ver que el intervalo (0,1) no es numerable.

■ R no es numerable:

Basta con ver que el intervalo (0,1) no es numerable.

Suponemos que lo es, entonces cada número del intervalo (0,1) se puede representar con los elementos del conjunto $\{a_0,a_1,a_2,\dots\}$ construidos como sigue:

```
\begin{array}{l} a_0 \ = \ 0. \ d_{00} \ d_{01} \ d_{02} \ d_{03} \ \dots \\ a_1 \ = \ 0. \ d_{10} \ d_{11} \ d_{12} \ d_{13} \ \dots \\ a_2 \ = \ 0. \ d_{20} \ d_{21} \ d_{22} \ d_{23} \ \dots \\ a_3 \ = \ 0. \ d_{30} \ d_{31} \ d_{32} \ d_{33} \ \dots \\ \vdots \ \end{array}
```

\bullet \mathbb{R} no es numerable:

Basta con ver que el intervalo (0,1) no es numerable.

Suponemos que lo es, entonces cada número del intervalo (0,1) se puede representar con los elementos del conjunto $\{a_0,a_1,a_2,\dots\}$ construidos como sigue:

$$\begin{array}{l} a_0 \ = \ 0. \ d_{00} \ d_{01} \ d_{02} \ d_{03} \ \dots \\ a_1 \ = \ 0. \ d_{10} \ d_{11} \ d_{12} \ d_{13} \ \dots \\ a_2 \ = \ 0. \ d_{20} \ d_{21} \ d_{22} \ d_{23} \ \dots \\ a_3 \ = \ 0. \ d_{30} \ d_{31} \ d_{32} \ d_{33} \ \dots \\ \vdots \ \end{array}$$

Pero se puede construir también el número z = 0. $z_0 z_1 z_2 z_3 \dots$, donde:

$$z_k = \begin{cases} 5 & \text{si } d_{kk} \neq 5, \\ 3 & \text{si } d_{kk} = 5. \end{cases}$$

\bullet \mathbb{R} no es numerable:

Basta con ver que el intervalo (0,1) no es numerable.

Suponemos que lo es, entonces cada número del intervalo (0,1) se puede representar con los elementos del conjunto $\{a_0,a_1,a_2,\dots\}$ construidos como sigue:

$$\begin{array}{l} a_0 \ = \ 0. \ d_{00} \ d_{01} \ d_{02} \ d_{03} \ \dots \\ a_1 \ = \ 0. \ d_{10} \ d_{11} \ d_{12} \ d_{13} \ \dots \\ a_2 \ = \ 0. \ d_{20} \ d_{21} \ d_{22} \ d_{23} \ \dots \\ a_3 \ = \ 0. \ d_{30} \ d_{31} \ d_{32} \ d_{33} \ \dots \\ \vdots \ \vdots \ \end{array}$$

Pero se puede construir también el número z = 0. $z_0 z_1 z_2 z_3 \dots$, donde:

$$z_k = \begin{cases} 5 & \text{si } d_{kk} \neq 5, \\ 3 & \text{si } d_{kk} = 5. \end{cases}$$

Es decir, todos los decimales de z son distintos de los de la diagonal de los a_i .

■ R no es numerable:

Basta con ver que el intervalo (0,1) no es numerable.

Suponemos que lo es, entonces cada número del intervalo (0,1) se puede representar con los elementos del conjunto $\{a_0,a_1,a_2,\dots\}$ construidos como sigue:

$$\begin{array}{l} a_0 \ = \ 0. \ d_{00} \ d_{01} \ d_{02} \ d_{03} \ \dots \\ a_1 \ = \ 0. \ d_{10} \ d_{11} \ d_{12} \ d_{13} \ \dots \\ a_2 \ = \ 0. \ d_{20} \ d_{21} \ d_{22} \ d_{23} \ \dots \\ a_3 \ = \ 0. \ d_{30} \ d_{31} \ d_{32} \ d_{33} \ \dots \\ \vdots \ \vdots \ \end{array}$$

Pero se puede construir también el número z = 0. $z_0 z_1 z_2 z_3 \dots$, donde:

$$z_k = \begin{cases} 5 & \text{si } d_{kk} \neq 5, \\ 3 & \text{si } d_{kk} = 5. \end{cases}$$

Es decir, todos los decimales de z son distintos de los de la diagonal de los a_i . Por tanto, z difiere de cada a_i al menos en el decimal de la diagonal.

■ R no es numerable:

Basta con ver que el intervalo (0,1) no es numerable.

Suponemos que lo es, entonces cada número del intervalo (0,1) se puede representar con los elementos del conjunto $\{a_0,a_1,a_2,\dots\}$ construidos como sigue:

$$\begin{array}{l} a_0 \ = \ 0. \ d_{00} \ d_{01} \ d_{02} \ d_{03} \ \dots \\ a_1 \ = \ 0. \ d_{10} \ d_{11} \ d_{12} \ d_{13} \ \dots \\ a_2 \ = \ 0. \ d_{20} \ d_{21} \ d_{22} \ d_{23} \ \dots \\ a_3 \ = \ 0. \ d_{30} \ d_{31} \ d_{32} \ d_{33} \ \dots \\ \vdots \ \end{array}$$

Pero se puede construir también el número z = 0. $z_0 z_1 z_2 z_3 \dots$, donde:

$$z_k = \begin{cases} 5 & \text{si } d_{kk} \neq 5, \\ 3 & \text{si } d_{kk} = 5. \end{cases}$$

Es decir, todos los decimales de z son distintos de los de la diagonal de los a_i . Por tanto, z difiere de cada a_i al menos en el decimal de la diagonal.

Por tanto, los a_i no cubren todo el intervalo (0,1).

■ R no es numerable:

Basta con ver que el intervalo (0,1) no es numerable.

Suponemos que lo es, entonces cada número del intervalo (0,1) se puede representar con los elementos del conjunto $\{a_0,a_1,a_2,\dots\}$ construidos como sigue:

$$\begin{array}{l} a_0 \ = \ 0. \ d_{00} \ d_{01} \ d_{02} \ d_{03} \ \dots \\ a_1 \ = \ 0. \ d_{10} \ d_{11} \ d_{12} \ d_{13} \ \dots \\ a_2 \ = \ 0. \ d_{20} \ d_{21} \ d_{22} \ d_{23} \ \dots \\ a_3 \ = \ 0. \ d_{30} \ d_{31} \ d_{32} \ d_{33} \ \dots \\ \vdots \ \end{array}$$

Pero se puede construir también el número z = 0. $z_0 z_1 z_2 z_3 \dots$, donde:

$$z_k = \begin{cases} 5 & \text{si } d_{kk} \neq 5, \\ 3 & \text{si } d_{kk} = 5. \end{cases}$$

Es decir, todos los decimales de z son distintos de los de la diagonal de los a_i .

Por tanto, z difiere de cada a_i al menos en el decimal de la diagonal.

Por tanto, los a_i no cubren todo el intervalo (0,1).

Por tanto, \mathbb{R} no es numerable.

• El conjunto de las funciones $f : \mathbb{N} \to \mathbb{N}$ no es numerable:

• El conjunto de las funciones $f : \mathbb{N} \to \mathbb{N}$ no es numerable: Suponemos que lo es y construimos la siguiente retícula:

	f_0	f_1	f_2	f ₃	
0	$f_0(0)$	f ₁ (0)	f ₂ (0)	f ₃ (0)	
1	f ₀ (1)	$f_1(1)$	f ₂ (1)	f ₃ (1)	
2	f ₀ (2)	f ₁ (2)	f ₂ (2)	f ₃ (2)	
3	f ₀ (3)	f ₁ (3)	f ₂ (3)	$f_3(3)$	
:	•	•	•		٠

• El conjunto de las funciones $f : \mathbb{N} \to \mathbb{N}$ no es numerable: Suponemos que lo es y construimos la siguiente retícula:

	f_0	f_1	f_2	f ₃	
0	$f_0(0)$	f ₁ (0)	f ₂ (0)	f ₃ (0)	
1	f ₀ (1)	$f_1(1)$	f ₂ (1)	f ₃ (1)	
2	f ₀ (2)	f ₁ (2)	$f_2(2)$	f ₃ (2)	
3	f ₀ (3)	f ₁ (3)	f ₂ (3)	$f_3(3)$	
:	•	•	•	•	

Pero también podemos construir la función $f(n) = f_n(n) + 1$.

• El conjunto de las funciones $f : \mathbb{N} \to \mathbb{N}$ no es numerable: Suponemos que lo es y construimos la siguiente retícula:

	f_0	f_1	f_2	f ₃	
0	$f_0(0)$	f ₁ (0)	f ₂ (0)	f ₃ (0)	
1	f ₀ (1)	$f_1(1)$	$f_2(1)$	f ₃ (1)	
2	f ₀ (2)	f ₁ (2)	$f_2(2)$	f ₃ (2)	
3	f ₀ (3)	f ₁ (3)	f ₂ (3)	$f_3(3)$	
:	•	•		•	

Pero también podemos construir la función $f(n) = f_n(n) + 1$.

Esta función difiere de todas las demás al menos en el valor de la diagonal:

$$\left. \begin{array}{l}
-f_k(k) = f_k(k) \\
-f(k) = f_k(k) + 1
\end{array} \right\} \Rightarrow f \neq f_k, \forall k.$$

El conjunto de las funciones f : N → N no es numerable:
 Suponemos que lo es y construimos la siguiente retícula:

	f_0	f_1	f_2	f ₃	
0	$f_0(0)$	f ₁ (0)	f ₂ (0)	f ₃ (0)	
1	f ₀ (1)	$f_1(1)$	f ₂ (1)	f ₃ (1)	
2	f ₀ (2)	f ₁ (2)	f ₂ (2)	f ₃ (2)	
3	f ₀ (3)	f ₁ (3)	f ₂ (3)	$f_3(3)$	
:	:	:	i	:	

Pero también podemos construir la función $f(n) = f_n(n) + 1$.

Esta función difiere de todas las demás al menos en el valor de la diagonal:

$$\left. \begin{array}{l}
-f_k(k) = f_k(k) \\
-f(k) = f_k(k) + 1
\end{array} \right\} \Rightarrow f \neq f_k, \forall k.$$

Por tanto, las f_i de la cuadrícula no cubren todo el conjunto de las posibles funciones de \mathbb{N} en \mathbb{N} .

El conjunto de las funciones f : N → N no es numerable:
 Suponemos que lo es y construimos la siguiente retícula:

	f_0	f_1	f_2	f ₃	
0	$f_0(0)$	f ₁ (0)	f ₂ (0)	f ₃ (0)	
1	f ₀ (1)	$f_1(1)$	f ₂ (1)	f ₃ (1)	
2	f ₀ (2)	f ₁ (2)	f ₂ (2)	f ₃ (2)	
3	f ₀ (3)	f ₁ (3)	f ₂ (3)	$f_3(3)$	
:	:	:	:	:	·

Pero también podemos construir la función $f(n) = f_n(n) + 1$.

Esta función difiere de todas las demás al menos en el valor de la diagonal:

$$\left. \begin{array}{l}
-f_k(k) = f_k(k) \\
-f(k) = f_k(k) + 1
\end{array} \right\} \Rightarrow f \neq f_k, \forall k.$$

Por tanto, las f_i de la cuadrícula no cubren todo el conjunto de las posibles funciones de \mathbb{N} en \mathbb{N} .

Por tanto, $\{f : \mathbb{N} \to \mathbb{N}\}$ no es numerable.

Fin del capítulo

Fin del capítulo

"Preliminares Matemáticos"