ANALYZING KING COUNTY CRIME USING GEOGRAPHIC DATA

IBM DATA SCIENCE CAPSTONE PROJECT

Analyzing Crime Rate Using Location Data is Valuable for

- House buyers or renters who want to settle in relatively safe neighborhood can use this as a rough guidance by examining the surrounding venues.
- Optimize allocation of police patrol resources based on surroundings in the locations.
- Optimize use of County funds to improve public safety.
- ... and more

Data Source

- King County Population by City: http://worldpopulationreview.com/us-counties/wa/king-county-population/
- King County Sheriff's Office Crime Data: https://moto.data.socrata.com/dataset/King-County-Sheriff-s-Office/4h35-4mtu
- Simplemaps Geographic Data: https://simplemaps.com/data/us-cities
- FourSqure API Location Data: http://www.foursquare.com

Final Dataset after Cleaning

	City	ATM	Accessories Store	Adult Boutique	Airport	Airport Food Court	Airport Lounge	Airport Service	Airport Terminal	Alternative Healer "	Vap Sto		ie Ç	ideo Store	Vietnamese Restaurant	Weight Loss Center		Wine Shop	Women's Store	Yoga Studio	Crime_per_100K_std
0	ALGONA	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0.0127
1	AUBURN	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0.1173
2	BEAUX ARTS VILLAGE	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0.0175
3	BELLEVUE	0	0	0	0	0	0	0	0	0		0	0	1	0	0	0	0	0	0	0.0026
4	BLACK DIAMOND	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	0	0	0	0.0560

Crime per 100K Population by City

- Incidents: 2019 Jan August
- Population: growth projected to 2018

Correlation Matrix Heatmap

- Low correlation between features and target due to sparsity
- Some features are strongly correlated

Ridge Regression

- Cross Validation applied to determine the optimal tuning parameter Alpha
- Most positive/negative coefficients: crime happen more frequently in neighborhoods that has more venues that people visit on daily basis
- Model MSE: 0.0547

Principle Component Regression

- Cross Validation applied to determine best n-components
- Model MSE: 0.0569

Conclusions

- Crime rate seems to be correlated with the venues data
- Ridge regression seems to be better in terms of prediction
- Ridge regression also yields interpretable results where we could see the most predictive features associated with crime rate
- Venues that people visit on daily basis will have more crimes, whereas places that people don't visit regularly have less crimes