Notational Convention

- $[n] = \{1, 2, \dots, n\}$
- **x**, **y**, **v**: vectors
- A, B: matrices
- $\mathcal{X}, \mathcal{Y}, \mathcal{K}$: domains
- d, m, n: dimensions
- *I*: identity matrix
- ullet X,Y: random variables
- p, q: probability distributions

Calculus

Hessian

$$abla^2 f(\mathbf{x}) = \left[rac{\partial^2 f}{\partial x_i, x_j}(\mathbf{x})
ight]_{1 \leq i,j \leq d}$$

Reference: The Matrix Cookbook

> link <

Linear Algebra

Positive (Semi-)Definite Matrix

Positive Definite matrix => PD, $\forall \mathbf{x} \in \mathbb{R}^d, \mathbf{x}^T A \mathbf{x} > 0 \Leftrightarrow A \succ 0$

Positive Semi-Definite matrix => PSD, $orall \mathbf{x} \in \mathbb{R}^d, \mathbf{x}^T A \mathbf{x} \geq 0 \Leftrightarrow A \succeq 0$

Inner Product

Vector Space:

$$\mathbf{x},\mathbf{y} \in \mathbb{R}^d \ \langle \mathbf{x},\mathbf{y}
angle = \mathbf{x}^T\mathbf{y} = \sum_{i=1}^d x_i y_i$$

• Matrix Space:

$$A,B \in \mathbb{R}^{m imes n} \ \langle A,B
angle = \operatorname{Tr}(A^TB) = \sum_{i=1}^m \sum_{j=1}^n A_{ij} B_{ij}$$

Norm

• Quadratic Norm:

$$\|\mathbf{x}\|_A = \sqrt{\mathbf{x}^T A \mathbf{x}}, A \text{ is positive semi-definite}$$

Dual Norm

$$\|\mathbf{y}\|_* = \sup\{\mathbf{y}^T\mathbf{x} \mid \|\mathbf{x}\| \le 1\}$$

The dual norm of l_p -norm is the l_q -norm with $rac{1}{p}+rac{1}{q}=1$

Hölder's Inequality: $\langle \mathbf{x}, \mathbf{y}
angle \leq \|\mathbf{x}\| \cdot \|\mathbf{y}\|_*$

Norm Relationship

Lemma (Mathematical Equivalence of Norms). Suppose that $\|\cdot\|_a$ and $\|\cdot\|_b$ are norms on \mathbb{R}^d , there exist positive "constants"(**depend on dimension**) α and β , such that

$$\alpha \|\mathbf{x}\|_a \le \|\mathbf{x}\|_b \le \beta \|\mathbf{x}\|_a$$

Cauchy-Schwarz Inequality

$$\left\langle old{x}, old{y}
ight
angle \leq \|old{x}\| \cdot \|old{y}\|_* \ \left(\sum_{i=1}^n a_i b_i
ight)^2 \leq \left(\sum_{i=1}^n a_i^2
ight) \cdot \left(\sum_{i=1}^n b_i^2
ight)$$

$$\left(\int_a^b f(x)g(x)\mathrm{d}x
ight)^2 \leq \left(\int_a^b f^2(x)\mathrm{d}x
ight)\cdot \left(\int_a^b g^2(x)\mathrm{d}x
ight)$$

Matrix Operator Norm

Definition (Matrix Operator Norm). The operator norm (or called induced norm) of a matrix $A \in \mathbb{R}^{m \times n}$ is defined by

$$\|A\|_{{
m op},p} riangleq \max\left\{rac{\|A\mathbf{x}\|_p}{\|\mathbf{x}\|_p}\mid \mathbf{x}\in\mathbb{R}^d,\mathbf{x}
eq \mathbf{0}
ight\}$$

• l_1 norm:

$$\|A\|_{ ext{op},1} = \max_{j \in [n]} \sum_{i=1}^m |A_{ij}|$$

• l_{∞} norm:

$$\|A\|_{\mathrm{op},\infty} = \max_{i \in [m]} \sum_{j=1}^n |A_{ij}|$$

• l_2 norm (Spectral Norm):

$$\|A\|_{\mathrm{op},2} = \max_{i \in [r]} |\sigma_i|$$

Where $A = \sum_{i=1}^r \sigma_i \mathbf{u}_i \mathbf{v}_i^T$, namely, σ_i is the i-th singular value.

Matrix Entrywise Norm

Definition (Matrix Entrywise Norm). The entrywise norm of a matrix $A \in \mathbb{R}^{m imes n}$ is defined by

$$egin{align} \|A\|_{\mathrm{en},p} & riangleq \left(\sum_{i=1}^m \sum_{j=1}^n |A_{i,j}|^p
ight)^{1/p} \ \|A\|_{\mathrm{F}} &= \|A\|_{\mathrm{en},2} \end{aligned}$$

Eigen Value Decomposition

Let A be an $d \times d$ PSD matrix, then it can be factored as

$$A = Q\Lambda Q^T$$

where

ullet $Q=(\mathbf{v}_1,\mathbf{v}_2,\ldots,\mathbf{v}_d)\in\mathbb{R}^{d imes d}$ is orthogonal, and $\mathbf{v}_1,\ldots,\mathbf{v}_d$ are eigenvectors

• $\Lambda = \operatorname{diag}(\lambda_1, \dots, \lambda_d)$, and $\lambda_1, \dots, \lambda_d$ are eigenvalues

Some properties:

ullet $A = \sum_{i=1}^d \lambda_i \mathbf{v}_i \mathbf{v}_i^T$

 $\bullet \det(A) = \prod_{i=1}^{d} \lambda_i$ $\bullet \operatorname{Tr}(A) = \sum_{i=1}^{d} \lambda_i$ $\bullet \|A\|_{\operatorname{F}} = \sqrt{\sum_{i=1}^{d} \lambda_i^2}$

Singular Value Decomposition

Suppose $A \in \mathbb{R}^{m imes n}$ has a rank r, then it can be factored as

$$A = U\Sigma V^T$$

where

• $U=(\mathbf{u}_1,\ldots,\mathbf{u}_r)\in\mathbb{R}^{m imes r}$ satisfies $U^TU=I$; $V=(\mathbf{v}_1,\ldots,\mathbf{v}_r)\in\mathbb{R}^{n imes r}$ satisfies

ullet $\Sigma=(\sigma_1,\ldots,\sigma_r)$ and σ_1,\ldots,σ_r are singular valuess.

Some properties:

• $A = \sum_{i=1}^{r} \sigma_i \mathbf{u}_i \mathbf{v}_i^T$ • $\|A\|_{\mathrm{F}} = \sqrt{\sum_{i=1}^{r} \sigma_i^2}$

Schatten Norm

Definition (Matrix Schatten Norm). The Schatten norm of a matrix $A \in \mathbb{R}^{m \times n}$ with rank r is defined by

$$\|A\|_{\mathrm{Sc},p} riangleq \left(\sum_{i=1}^r \sigma_i^p
ight)^{1/p}$$

Probability and Statistics

Cauchy-Schwarz Inequality in Probability

$$(\mathbb{E}[XY])^2 \leq \mathbb{E}[X^2] \cdot \mathbb{E}[Y^2]$$

Concentration Inequalities

Theorem (Markov's Inequality). Let X be a non-negative random variable with $\mathbb{E}[X] < \infty$, then for all t>0,

$$\Pr[X \geq t\mathbb{E}[X]] \leq rac{1}{t}$$

Theorem (Chebyshev's Inequality). Let X be a non-negative random variable with $\mathbb{E}[X], \mathrm{Var}[X] < \infty$, then for all $\epsilon > 0$,

$$\Pr[|X - \mathbb{E}[X]| \geq \epsilon] \leq rac{\mathrm{Var}[X]}{\epsilon^2}$$

Theorem (Hoeffding's Inequality). Let X_1,\ldots,X_m be independent random variables with X_i taking values in $[a_i,b_i]$ for all $i\in[m]$. Then, for any $\epsilon>0$, the following inequalities hold for $S_m=\sum_{i=1}^m X_i$,

$$egin{aligned} \Pr[S_m - \mathbb{E}[S_m] & \geq \epsilon] \leq \exp\left(rac{-2\epsilon^2}{\sum_{i=1}^m (b_i - a_i)^2}
ight) \ \Pr[S_m - \mathbb{E}[S_m] & \leq -\epsilon] \leq \exp\left(rac{-2\epsilon^2}{\sum_{i=1}^m (b_i - a_i)^2}
ight) \end{aligned}$$

Entropy

Definition (Entropy). The enotropy of a discrete random variable X with probability mass function $\mathbf{p}(x) = \Pr[X = x]$ is denoted by H(X):

$$H(X) = -\sum_{x \in \mathcal{X}} \mathbf{p}(x) \log \mathbf{p}(x)$$

The entropy is a lower bound on lossless data compression.

A explanation of entropy: $\log_2(1/\mathbf{p}(x))$ is the code length needed to encode the information, and H(X) measures the expected code length to encode a distribution \mathbf{p} .

Definition (Condition Entropy).

$$egin{aligned} H(Y|X) &= -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mathbf{p}(x,y) \log \left[rac{\mathbf{p}(x,y)}{\mathbf{p}(x)}
ight] \ &= -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mathbf{p}(x,y) \log \mathbf{p}(x,y) + \sum_{x \in \mathcal{X}} \mathbf{p}(x) \log \mathbf{p}(x) \ &= H(X,Y) - H(X) \end{aligned}$$

Definition (Mutual Information).

$$egin{aligned} I(X,Y) &= KL(\mathbf{p}(x,y) \| \mathbf{p}(x) \mathbf{p}(y)) \ &= \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mathbf{p}(x,y) \log \left[rac{\mathbf{p}(x,y)}{\mathbf{p}(x) \mathbf{p}(y)}
ight] \ &= \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} \mathbf{p}(x,y) \log \mathbf{p}(x,y) - \sum_{x \in \mathcal{X}} \mathbf{p}(x) \log \mathbf{p}(x) - \sum_{y \in \mathcal{Y}} \mathbf{p}(y) \log \mathbf{p}(y) \ &= H(X) + H(Y) - H(X,Y) \end{aligned}$$

with the conventions: $0\log 0=0, 0\log \frac{0}{0}=0, \ \mathrm{and} \ a\log \frac{a}{0}=+\infty \ \mathrm{for} \ a>0$

KL Divergence (Relative Entropy)

Definition (KL Divergence). The KL divergence of two distributions p and q is defined by $KL(\mathbf{p}||\mathbf{q})$:

$$KL(\mathbf{p}\|\mathbf{q}) = \sum_{x \in \mathcal{X}} \mathbf{p}(x) \log \left[rac{\mathbf{p}(x)}{\mathbf{q}(x)}
ight]$$

with the conventions: $0\log 0=0, 0\log \frac{0}{0}=0, \ \mathrm{and} \ a\log \frac{a}{0}=+\infty \ \mathrm{for} \ a>0$

Some properties:

- KL divergence is always non-negative
- ullet Pinsker's Inequality: $KL(\mathbf{p}\|\mathbf{q}) \geq rac{1}{2}\|\mathbf{p} \mathbf{q}\|_1^2$
- $KL(\mathbf{p}\|\mathbf{q})$ doesn't always equal to $KL(\mathbf{q}\|\mathbf{p})$

Bregman Divergence

Definition (Bregman Divergence). Let ψ be a convex and differentiable function over a convex set \mathcal{K} , and then for any $\mathbf{x}, \mathbf{y} \in \mathcal{K}$, the bregman divergence \mathcal{D}_{ψ} associated to ψ is defined as

$$\mathcal{D}_{\psi}(\mathbf{x} \| \mathbf{y}) = \psi(\mathbf{x}) - \psi(\mathbf{y}) - \langle
abla \psi(\mathbf{y}), \mathbf{x} - \mathbf{y}
angle$$

Bregman divergence measures the difference of a function and its linear approximation.

KL divergence is a special case when $\mathbf{p}(x)$ is defined as negative entropy: $\mathbf{p}(x) = \sum_i x_i \log x_i$

Asymptotic Notations

Definition

- $\Theta(g(n)) = \{f(n) \mid \text{ there exist positive constants } c_1, c_2, \text{ and } n_0 \text{ such that } 0 \le c_1 g(n) \le f(n) \le c_2 g(n) \text{ for all } n \ge n_0 \}$.
- $\mathcal{O}(g(n)) = \{f(n) \mid \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le f(n) \le cg(n) \text{ for all } n \ge n_0\}.$
- $\Omega(g(n)) = \{f(n) \mid \text{ there exist positive constants } c \text{ and } n_0 \text{ such that } 0 \le cg(n) \le f(n) \text{ for all } n \ge n_0\}.$
- $o(g(n)) = \{f(n) \mid \text{ for any positive constant } c > 0, \text{ there exists a constant } n_0 > 0 \text{ such that } 0 \le f(n) < cg(n) \text{ for all } n \ge n_0 \}.$
- $\omega(a(n)) = \{f(n) \mid \text{ for any positive constant } c > 0. \text{ there exists a constant } c$

 $n_0 > 0$ such that $0 \le cg(n) < f(n)$ for all $n \ge n_0$.

Optimization in Machine Learning

Learning by Optimization

The fundamental goal of (supervised) learning: **Risk Minimization**.

$$\min_{h \in \mathcal{H}} \mathbb{E}_{\mathbf{x},y \in \mathcal{D}}[f(h(\mathbf{x}),y)]$$

where:

- h denotes the hypothesis (model) from the hypothesis space ${\cal H}$
- ullet (\mathbf{x},y) is an instance chosen from a unknown distribution $\mathcal D$
- $f(h(\mathbf{x}), y)$ denotes the loss of using hypothesis h on the instance (\mathbf{x}, y)

Empirical Risk Minimization

The distribution of the data is unavailable, and the risk can't be computed.

In practice, the learner instead tries to optmize empirical risk.

$$\min_{h \in \mathcal{H}} rac{1}{m} \sum_{i=1}^m f(h(\mathbf{x}_i), y_i)$$

- IID assumption: independent and identically distributed random variables.
- ERM approximates RM: All instance are i.i.d. sampled from the same distribution.

Structured ERM

In practice, we often explicitly control the complexity of the learner by adding a **regularization term** in the optimization objective.

$$\min_{h \in \mathcal{H}} rac{1}{m} \sum_{i=1}^m f(h(\mathbf{x}_i), y_i) + \lambda \mathcal{R}(h)$$

(Constrained) Optimization Problem

$$\min f(\mathbf{x}), \quad ext{s.t. } \mathbf{x} \in \mathcal{X}$$

Unconstrained Optimization

Add a barrier/indicator function.

$$egin{aligned} \min h(\mathbf{x}) & riangleq f(\mathbf{x}) + \delta_{\mathcal{X}}(\mathbf{x}), \quad ext{s.t. } \mathbf{x} \in \mathbb{R}^d \ \delta_{\mathcal{X}}(\mathbf{x}) & = egin{cases} 0 & , & \mathbf{x} \in \mathcal{X} \ +\infty & , & ext{otherwise} \end{cases} \end{aligned}$$

Convex Optimization

Convex Set

已经会了

Projection onto Convex Sets

Definition(Projection). The projection a given point y onto a convex set \mathcal{X} is defined as the closet point inside the convex set. Formally,

$$\mathbf{x}^* = \Pi_{\mathcal{X}}[\mathbf{y}] riangleq rg \min_{x \in \mathcal{X}} \lVert \mathbf{x} - \mathbf{y} \rVert$$

Theorem(Pythagoras Theorem). Let $\mathcal{X}\subseteq\mathbb{R}^d$ be a convex, $\mathbf{y}\in\mathbb{R}^d$. Then for any $\mathbf{z}\in\mathcal{X}$ we have

$$\|\mathbf{y} - \mathbf{z}\| \geq \|\Pi_{\mathcal{X}}[\mathbf{y}] - \mathbf{z}\|$$

Convex Function

Definition(Convex Function). A function $f:\mathcal{X} o\mathbb{R}$ is called *convex* if for any $\mathbf{x},\mathbf{y}\in\mathbb{R}^d$,

$$\forall \alpha \in [0,1], f(\alpha \mathbf{x} + (1-\alpha)\mathbf{y}) \leq \alpha f(\mathbf{x}) + (1-\alpha)f(\mathbf{y})$$

Definition(Concave Function). A function $f:\mathcal{X} o\mathbb{R}$ is called *concave* if for any $\mathbf{x},\mathbf{y}\in\mathbb{R}^d$,

$$\forall \alpha \in [0,1], f(\alpha \mathbf{x} + (1-\alpha)\mathbf{y}) \geq \alpha f(\mathbf{x}) + (1-\alpha)f(\mathbf{y})$$

Theorem. A function f is convex iff $\mathrm{dom}\ f$ is convex and one one of the following properties

hold, for all $\mathbf{x},\mathbf{y}\in\mathrm{dom}\ f$ and $lpha\in[0,1]$,

1.
$$f(\alpha \mathbf{x} + (1 - \alpha)\mathbf{y}) \le \alpha f(\mathbf{x}) + (1 - \alpha)f(\mathbf{y})$$

2.
$$f(\mathbf{x}) + \langle \nabla f(\mathbf{x}), \mathbf{y} - \mathbf{x} \rangle \leq f(\mathbf{y})$$

3.
$$\nabla^2 f(\mathbf{x}) \succeq 0$$

Jensen's Inequality

Theorem(Jesen Inequality). If X is a random variable such that $X \in \mathrm{dom}\ f$ with probability 1, and f is convex, then we have

$$f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)]$$

Convex Optimization Problem

· minimization language:

$$egin{aligned} \min f(\mathbf{x}) \ ext{s.t.} \quad g_i(\mathbf{x}) \leq 0, i = 1, \dots, m \end{aligned}$$

 $\operatorname{dom} f$ should be convex or half-plane.

Subgradient

Definition(Subgradient). Let $f: \mathcal{X} \to \mathbb{R}$ be a proper function and let $\mathbf{x} \in \mathcal{X} \subseteq \mathbb{R}^d$. A vector $\mathbf{g} \in \mathbb{R}^d$ is called *subgradient* of f at \mathbf{x} if

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \left\langle \mathbf{g}, \mathbf{y} - \mathbf{x}
ight
angle, orall \mathbf{y} \in \mathbb{R}^d$$

- ullet If $orall x \in \mathcal{X}$, its subgradients exist, then f is convex.
- f is convex doesn't imply that if $\forall x \in \mathcal{X}$, its subgradients exist. (e.g. $f = -\sqrt{x}, \ x \geq 0$. When x = 0, the subgradient doesn't exist). \Rightarrow Only consider interial point of feasible domain of f.

Subdifferential

Definition(Subdifferential). The set of all subgradients of f at \mathbf{x} is called *subdifferential* of f at \mathbf{x} and is denoted as by $\partial f(\mathbf{x})$,

$$\partial f(\mathbf{x}) riangleq \left\{ \mathbf{g} \in \mathbb{R}^d | f(\mathbf{y}) \geq f(\mathbf{x}) + \left\langle \mathbf{g}, \mathbf{y} - \mathbf{x}
ight
angle, orall \mathbf{y} \in \mathbb{R}^d
ight\}$$

Optimality Condition

Fermat's Optimality Condition

Unconstrained case

Theorem(Fermat's Optimality Condition). Let $f:\mathbb{R}^d o (-\infty,+\infty]$ be a proper convex function. Then

$$\mathbf{x}^* \in rg \min\{f(\mathbf{x}) | \mathbf{x} \in \mathbb{R}^d\}$$

iff $\mathbf{0} \in \partial f(\mathbf{x}^*)$.

First-order Optimality Condition

Constrained case

Theorem(First-order Optimality Condition). Let f be convex and $\mathcal X$ be a closed convex set on which f is differentiable. Then $\mathbf x^* = \arg\min_{\mathbf x \in \mathcal X} f(\mathbf x)$ iff there exists $\mathbf g \in \partial f(\mathbf x)$ such that

$$\langle \mathbf{g}, \mathbf{x} - \mathbf{x}^*
angle \geq 0, orall \mathbf{x} \in \mathcal{X}$$

KKT Conditions

Theorem(KKT Conditions). Consider the minimization problem

$$\min f(\mathbf{x}), \quad \text{s.t.} \quad g_i(\mathbf{x}) \le 0, \quad i \in [m]$$

where f,g_1,\ldots,g_m are real-valued convex functions.

1. Let \mathbf{x}^* be optimal solution of (1), and assume that Slater's condition is satisfied. Then there exist $\lambda_1,\ldots,\lambda_m\geq 0$ for which

$$\mathbf{0} \in \partial f(\mathbf{x}) + \sum_{i=1}^m \lambda_i \partial g_i(\mathbf{x}^*)$$
 (2)

$$\lambda_i \partial g_i(\mathbf{x}^*) = 0, \quad i \in [m]$$

2. If \mathbf{x}^* satisfies conditions (2) and (3) for some $\lambda_1, \ldots, \lambda_m \geq 0$, then it is an optimal solution of problem (1).

Function Properties

Lipschitz Continuity

Lipschitzness and Subgradient

Theorem Let $f:\mathcal{X} \to \mathbb{R}$ be a convex function. Consider the following two claims:

1. Lipschitzness: $|f(\mathbf{x}) - f(\mathbf{y})| \leq G \|\mathbf{x} - \mathbf{y}\|, orall \mathbf{x}, \mathbf{y} \in \mathcal{X}$

2. Bounded subgradient: $\|\mathbf{g}\|_* \leq G, orall \mathbf{g} \in \partial f(\mathbf{x}), x \in \mathcal{X}$

Then

2 ⇒ 1

o Proof:

$$egin{aligned} |f(\mathbf{y}) - f(\mathbf{x})| &\leq |\langle \mathbf{g}, \mathbf{y} - \mathbf{x}
angle \, | \leq \|\mathbf{y} - \mathbf{x}\| \cdot \|\mathbf{g}\|_* \ & dots \, \|\mathbf{g}\|_* \leq G \ & dots \, |f(\mathbf{x}) - f(\mathbf{y})| \leq G \|\mathbf{x} - \mathbf{y}\| \end{aligned}$$

• If \mathcal{X} is open, then $1 \Leftrightarrow 2$

Smoothness

Definition(Smoothness). A function f is L-smooth with repect to the $\|\cdot\|$ norm if, for any $\mathbf{x}, \mathbf{y} \in \mathrm{dom}\ f$,

$$\|\nabla f(\mathbf{x}) - \nabla f(\mathbf{y})\|_* \le L\|\mathbf{x} - \mathbf{y}\|$$

Why use dual norm?

$$egin{aligned} |raket{
abla f(\mathbf{x}) -
abla f(\mathbf{y}), \mathbf{x} - \mathbf{y}}| &\leq \|
abla f(\mathbf{x}) -
abla f(\mathbf{y})\|_* \cdot \|\mathbf{x} - \mathbf{y}\| \\ &|raket{
abla f(\mathbf{x}) -
abla f(\mathbf{y}), \mathbf{x} - \mathbf{y}}| &\leq L\|\mathbf{x} - \mathbf{y}\|^2 \end{aligned}$$

Lemma(Descent Lemma). Let f be L-smooth function over a given convex set $\mathcal X$. Then for any $\mathbf x, \mathbf y \in \mathcal X$

$$f(\mathbf{y}) \leq f(\mathbf{x}) +
abla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + rac{L}{2} \|\mathbf{y} - \mathbf{x}\|^2$$

Theorem(First-order Characterizations of L-smoothness). Let $f: \mathcal{X} \to \mathbb{R}$ be a convex function, differentiable over \mathcal{X} . Then the following claims are equivalent:

1. f is L-smoothness

2.
$$f(\mathbf{y}) \leq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{L}{2} \|\mathbf{y} - \mathbf{x}\|^2$$
, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$

3.
$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) + \frac{1}{2L} \|\nabla f(\mathbf{y}) - \nabla f(\mathbf{x})\|_*^2$$
, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$

4.
$$\langle
abla f(\mathbf{x}) - f(\mathbf{y}), \mathbf{x} - \mathbf{y}
angle \geq rac{1}{L} \|
abla f(\mathbf{x}) -
abla f(\mathbf{y}) \|_*^2$$
, for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$

5.
$$f(\lambda \mathbf{x} + (1 - \lambda)\mathbf{y}) \ge \lambda f(\mathbf{x}) + (1 - \lambda)f(\mathbf{y}) - \frac{L}{2}\lambda(1 - \lambda)\|\mathbf{x} - \mathbf{y}\|^2$$
 for any $\mathbf{x}, \mathbf{y} \in \mathcal{X}, \lambda \in [0, 1]$

Theorem(Second-order Characterizations of L-smoothness). Let f be a twice continuously differentiable function over \mathbb{R}^d . L-smoothness w.r.t. the l_p -norm($p \in [0, +\infty]$) is equivalent to

$$\|\nabla^2 f(\mathbf{x})\|_{\text{op},p} \leq L$$

for any $x \in \mathbb{R}^d$.

Strong Convexity

Definition(Strong Convexity). A function f is σ -strongly convex with respect to norm $\|\cdot\|$ if, for any $\mathbf{x}, \mathbf{y} \in \mathrm{dom}\ f$ and $\lambda \in [0,1]$,

$$f(\lambda \mathbf{x} + (1-\lambda)\mathbf{y}) \leq \lambda f(\mathbf{x}) + (1-\lambda)f(\mathbf{y}) - rac{\sigma}{2}\lambda(1-\lambda)\|\mathbf{x} - \mathbf{y}\|^2$$

Theorem(First-order Characterizations of Strong Convexity). Let f be a proper closed and convex function. The followings equal:

- 1. f is σ -strongly convex.
- 2. For any $\mathbf{x} \in \mathrm{dom}(\partial f), \mathbf{y} \in \mathrm{dom}(f)$ and $\mathbf{g} \in \partial f(\mathbf{x})$,

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \langle \mathbf{g}, \mathbf{y} - \mathbf{x}
angle + rac{\sigma}{2} \|\mathbf{y} - \mathbf{x}\|^2$$

3. For any $\mathbf{x},\mathbf{y}\in\mathrm{dom}(\partial f),\mathbf{g_x}\in\partial f(\mathbf{x}),\mathbf{g_y}\in\partial f(\mathbf{y})$,

$$\langle \mathbf{g}_{\mathbf{x}} - \mathbf{g}_{\mathbf{y}}, \mathbf{x} - \mathbf{y} \rangle \geq \sigma \|\mathbf{x} - \mathbf{y}\|^2$$

4. $f(\cdot) - \frac{\sigma}{2} \|\cdot\|^2$ is convex.

Theorem(Second-order Characterizations of Strong Convexity). Let $\mathcal X$ be a Eucildean space. Then f is σ -strongly convex iff for $\mathbf x, \mathbf w \in \mathcal X$,

$$\mathbf{w}^T
abla^2 f(\mathbf{x}) \mathbf{w} = \|\mathbf{w}\|_{
abla^2 f(\mathbf{x})} \geq \sigma \|\mathbf{w}\|^2$$

When using l_2 -norm, $\nabla^2 f(\mathbf{x}) \succeq \sigma I$.

Theorem Let f be a proper closed and σ -strongly convex function. Then

- 1. f has a unique minimizer, denoted by \mathbf{x}^* .
- 2. $f(\mathbf{x}) f(\mathbf{x}^*) \geq \frac{\sigma}{2} \|\mathbf{x} \mathbf{x}^*\|^2, orall \mathbf{x} \in \mathrm{dom}\ f$.

Strongly Convex and Smooth

If function f is both σ -strongly convex and L-smooth w.r.t. l_2 -norm, then

1.
$$\sigma I \preceq
abla^2 f(\mathbf{x}) \preceq LI$$

2. f is γ -well-conditioned where $\gamma \triangleq \sigma/L \leq 1$ is called the condition number.

Theorem(Conjugate Correspondence). Consider the conjugate function:

$$f^*(\mathbf{y}) riangleq \max_{\mathbf{x} \in \mathcal{X}} \{ \langle \mathbf{y}, \mathbf{x}
angle - f(\mathbf{x}) \}$$

- 1. If the function f is convex and $1/\sigma$ -smooth w.r.t. the norm $\|\cdot\|$, then its conjugate f^* is σ -strongly convex w.r.t. the dual norm $\|\cdot\|_*$.
- 2. If the function f is convex and σ -strongly convex w.r.t. the norm $\|\cdot\|$, then its conjugate f^* is $1/\sigma$ -smooth w.r.t. the dual norm $\|\cdot\|_*$.

Some understanding from Kimi.