

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Report No: CCIS15120102002

FCC REPORT

(BLE)

Applicant: Aqua trading (shenzhen) limited

Address of Applicant: No.22D, NEO Building Block B, No.6011. Shennan avenue

Futian District, Shenzhen China

Equipment Under Test (EUT)

Product Name: Smartphone

Model No.: EK4

Trade mark: AKUA

FCC ID: 2AGE2-EK4

Applicable standards: FCC CFR Title 47 Part 15 Subpart C Section 15.247

Date of sample receipt: 31 Dec., 2015

Date of Test: 31 Dec., to 12 Jan., 2016

Date of report issued: 13 Jan., 2016

Test Result: PASS *

Authorized Signature:

Bruce Zhang Laboratory Manager

This report details the results of the testing carried out on one sample. The results contained in this test report do not relate to other samples of the same product and does not permit the use of the CCIS product certification mark. The manufacturer should ensure that all products in series production are in conformity with the product sample detailed in this report.

This report may only be reproduced and distributed in full. If the product in this report is used in any configuration other than that detailed in the report, the manufacturer must ensure the new system complies with all relevant standards.

This document cannot be reproduced except in full, without prior written approval of the Company. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law. Unless otherwise stated the results shown in this test report refer only to the sample(s) tested and such sample(s) are retained for 90 days only.

^{*} In the configuration tested, the EUT complied with the standards specified above.

2 Version

Version No.	Date	Description
00	13 Jan., 2016	Original

Tested by: Date: 13 Jan., 2016

Test Engineer

Reviewed by: Date: 13 Jan., 2016

Project Engineer

3 Contents

			Page
1	COV	ER PAGE	1
2	VER	SION	2
3		TENTS	
4		SUMMARY	
5		ERAL INFORMATION	
	_	CLIENT INFORMATION	
	5.2	GENERAL DESCRIPTION OF E.U.T	
	5.3	TEST ENVIRONMENT AND MODE	
	5.4	DESCRIPTION OF SUPPORT UNITS	
	5.5	LABORATORY FACILITY	
	5.6	LABORATORY LOCATION	
	5.7	TEST INSTRUMENTS LIST	8
6	TEST	RESULTS AND MEASUREMENT DATA	9
	6.1	ANTENNA REQUIREMENT:	9
	6.2	CONDUCTED EMISSION	10
	6.3	CONDUCTED OUTPUT POWER	13
	6.4	OCCUPY BANDWIDTH	15
	6.5	POWER SPECTRAL DENSITY	18
	6.6	BAND EDGE	20
	6.6.1	Conducted Emission Method	20
	6.6.2	Radiated Emission Method	
	6.7	Spurious Emission	
	6.7.1	Conducted Emission Method	
	6.7.2		
7	TEST	SETUP PHOTO	35
8	FUT	CONSTRUCTIONAL DETAILS	36

4 Test Summary

Test Item	Section in CFR 47	Result
Antenna requirement	15.203/15.247 (c)	Pass
AC Power Line Conducted Emission	15.207	Pass
Conducted Peak Output Power	15.247 (b)(3)	Pass
6dB Emission Bandwidth	15.247 (a)(2)	Pass
Power Spectral Density	15.247 (e)	Pass
Band Edge	15.247(d)	Pass
Spurious Emission	15.205/15.209	Pass

Pass: The EUT complies with the essential requirements in the standard.

5 General Information

5.1 Client Information

Applicant:	Aqua trading (shenzhen) limited
Address of Applicant:	No.22D, NEO Building Block B, No.6011. Shennan avenue Futian District, Shenzhen China
Manufacturer:	Aqua trading (shenzhen) limited
Address of Manufacturer:	No.22D, NEO Building Block B, No.6011. Shennan avenue Futian District, Shenzhen China
Factory:	ShenZhen IDWELL Technology CO., Ltd
Address of Factory:	Building A2, Zhengfeng Industrial Park, Fengtang Road, Fuyong, Baoan, Shenzhen, China

5.2 General Description of E.U.T.

Product Name:	Smartphone
Model No.:	EK4
Operation Frequency:	2402-2480 MHz
Channel numbers:	40
Channel separation:	2 MHz
Modulation technology:	GFSK
Data speed :	1Mbps
Antenna Type:	Internal Antenna
Antenna gain:	0.1 dBi
Power supply:	Rechargeable Li-ion Battery DC3.8V-1400mAh
AC adapter:	Model: aifeng4S
	Input:100-240V AC,50/60Hz 0.15A
	Output:5V DC MAX 1000mA

Operation Frequency each of channel									
Channel	Frequency	Channel	Frequency	Channel	Frequency	Channel	Frequency		
0	2402MHz	10	2422MHz	20	2442MHz	30	2462MHz		
1	2404MHz	11	2424MHz	21	2444MHz	31	2464MHz		
2	2406MHz	12	2426MHz	22	2446MHz	32	2466MHz		
3	2408MHz	13	2428MHz	23	2448MHz	33	2468MHz		
4	2410MHz	14	2430MHz	24	2450MHz	34	2470MHz		
5	2412MHz	15	2432MHz	25	2452MHz	35	2472MHz		
6	2414MHz	16	2434MHz	26	2454MHz	36	2474MHz		
7	2416MHz	17	2436MHz	27	2456MHz	37	2476MHz		
8	2418MHz	18	2438MHz	28	2458MHz	38	2478MHz		
9	2420MHz	19	2440MHz	29	2460MHz	39	2480MHz		

Note:

In section 15.31(m), regards to the operating frequency range over 10 MHz, the Lowest frequency, the middle frequency, and the highest frequency of channel were selected to perform the test, and the selected channel see below:

Channel	Frequency
The lowest channel	2402MHz
The middle channel	2442MHz
The Highest channel	2480MHz

Report No: CCIS15120102002

5.3 Test environment and mode

Operating Environment:	Operating Environment:					
Temperature:	24.0 °C					
Humidity:	54 % RH					
Atmospheric Pressure:	1010 mbar					
Test mode:						
Operation mode	Keep the EUT in continuous transmitting with modulation					

The sample was placed 0.8m above the ground plane of 3m chamber. Measurements in both horizontal and vertical polarities were performed. During the test, each emission was maximized by: having the EUT continuously working, investigated all operating modes, rotated about all 3 axis (X, Y & Z) and considered typical configuration to obtain worst position, manipulating interconnecting cables, rotating the turntable, varying antenna height from 1m to 4m in both horizontal and vertical polarizations. The emissions worst-case are shown in Test Results of the following pages. Duty cycle setting during the transmission is 100% with maximum power setting for all modulations.

5.4 Description of Support Units

N/A

5.5 Laboratory Facility

The test facility is recognized, certified, or accredited by the following organizations:

• FCC - Registration No.: 817957

Shenzhen Zhongjian Nanfang Testing Co., Ltd. EMC Laboratory has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in out files. Registration 817957, February 27, 2012.

• IC - Registration No.: 10106A-1

The 3m Semi-anechoic chamber of Shenzhen Zhongjian Nanfang Testing Co., Ltd. has been Registered by Certification and Engineering Bureau of Industry Canada for radio equipment testing with Registration No.: 10106A-1.

• CNAS - Registration No.: CNAS L6048

Shenzhen Zhongjian Nanfang Testing Co., Ltd. is accredited to ISO/IEC 17025:2005 General Requirements for the Competence of Testing and Calibration laboratories for the competence of testing. The Registration No. is CNAS L6048.

5.6 Laboratory Location

Shenzhen Zhongjian Nanfang Testing Co., Ltd.

Address: No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road,

Bao'an District, Shenzhen, Guangdong, China

Tel: +86-755-23118282 Fax: +86-755-23116366

Shenzhen Zhongjian Nanfang Testing Co., Ltd. No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366

5.7 Test Instruments list

Radiated Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)			
1	3m SAC	SAEMC	9(L)*6(W)* 6(H)	CCIS0001	08-23-2014	08-22-2017			
2	BiConiLog Antenna	SCHWARZBECK	VULB9163	CCIS0005	03-28-2015	03-28-2016			
3	Horn Antenna	SCHWARZBECK	BBHA9120D	CCIS0006	03-28-2015	03-28-2016			
4	Pre-amplifier (10kHz-1.3GHz)	HP	8447D	CCIS0003	04-01-2015	03-31-2016			
5	Pre-amplifier (1GHz-18GHz)	Compliance Direction Systems Inc.	PAP-1G18	CCIS0011	04-01-2015	03-31-2016			
6	Pre-amplifier (18-26GHz)	Rohde & Schwarz	AFS33-18002 650-30-8P-44	GTS218	04-01-2015	03-31-2016			
7	Horn Antenna	ETS-LINDGREN	3160	GTS217	04-01-2015	03-31-2016			
8	Spectrum analyzer 9k-30GHz	Rohde & Schwarz	FSP30	CCIS0023	03-28-2015	03-28-2016			
9	EMI Test Receiver	Rohde & Schwarz	ESRP7	CCIS0167	03-28-2015	03-28-2016			
10	Loop antenna	Laplace instrument	RF300	EMC0701	04-01-2015	03-31-2016			

Con	Conducted Emission:									
Item	Test Equipment	Manufacturer	Model No.	Inventory No.	Cal. Date (mm-dd-yy)	Cal. Due date (mm-dd-yy)				
1	Shielding Room	ZhongShuo Electron	11.0(L)x4.0(W)x3.0(H)	CCIS0061	08-23-2014	08-22-2017				
2	EMI Test Receiver	Rohde & Schwarz	ESCI	CCIS0002	03-28-2015	03-28-2016				
3	LISN	CHASE	MN2050D	CCIS0074	03-28-2015	03-28-2016				
4	Coaxial Cable	CCIS	N/A	CCIS0086	04-01-2015	03-31-2016				
5	EMI Test Software	AUDIX	E3	N/A	N/A	N/A				

6 Test results and Measurement Data

6.1 Antenna requirement:

Standard requirement: FCC Part 15 C Section 15.203 /247(c)

15.203 requirement:

An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator, the manufacturer may design the unit so that a broken antenna can be replaced by the user, but the use of a standard antenna jack or

electrical connector is prohibited.

15.247(c) (1)(i) requirement:

(i) Systems operating in the 2400-2483.5 MHz band that is used exclusively for fixed. Point-to-point operations may employ transmitting antennas with directional gain greater than 6dBi provided the maximum conducted output power of the intentional radiator is reduced by 1 dB for every 3 dB that the directional gain of the antenna exceeds 6dBi.

E.U.T Antenna:

The BLE antenna is an internal antenna which cannot replace by end-user, the best case gain of the antenna is 0.1 dBi.

6.2 Conducted Emission

Test Requirement:	FCC Part 15 C Section 15.207	7				
Test Method:	ANSI C63.4: 2009					
Test Frequency Range:	150 kHz to 30 MHz					
Class / Severity:	Class B					
Receiver setup:	RBW=9kHz, VBW=30kHz					
Limit:	·	Limit (c	IRuV)			
Eiriit.	Frequency range (MHz)	Quasi-peak	Average			
	0.15-0.5	66 to 56*	56 to 46*			
	0.5-5	56	46			
	5-30	60	50			
	* Decreases with the logarithm					
Test procedure	 The E.U.T and simulators are connected to the main power through a line impedance stabilization network (L.I.S.N.), which provides a 50ohm/50uH coupling impedance for the measuring equipment. The peripheral devices are also connected to the main power through a LISN that provides a 50ohm/50uH coupling impedance with 50ohm termination. (Please refer to the block diagram of the test setup and photographs). Both sides of A.C. line are checked for maximum conducted interference. In order to find the maximum emission, the relative positions of equipment and all of the interface cables must be changed according to ANSI C63.4: 2009 on conducted measurement. 					
Test setup:	LISN 40cm		er — AC power			
Test Uncertainty:			±3.28 dB			
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Neutral:

Trace: 11 Site

: CCIS Shielding Room : FCC CLASS-B QP LISN NEUTRAL : 1020RF Condition

Pro EUT : Smartphone Model : EK4 Test Mode : BLE mode
Power Rating : AC 120/60Hz
Environment : Temp: 23 °C Huni:56% Atmos:101KPa

Test Engineer: Carey

Kemark	:							
		Read	LISN	Cable		Limit	Over	
	Freq	Level	Factor	Loss	Level	Line	Limit	Remark
	MHz	dBu∀	₫B	₫B	dBu₹	dBu₹	dB	
1	0.354	41.95	0.25	10.73	52.93	58.87	-5.94	QP
2	0.354	34.34	0.25	10.73	45.32	48.87	-3.55	Average
3	0.437	33.34	0.27	10.74	44.35	47.11	-2.76	Average
4	0.454	43.22	0.27	10.74	54.23	56.80	-2.57	QP
1 2 3 4 5 6 7 8 9	0.486	34.20	0.29	10.76	45.25	46.23	-0.98	Average
6	0.697	42.68	0.18	10.77	53.63	56.00	-2.37	
7	0.708	32.22	0.18	10.77	43.17	46.00	-2.83	Average
8	0.792	42.55	0.19	10.81	53.55	56.00	-2.45	
9	0.853	32.32	0.20	10.83	43.35	46.00	-2.65	Average
10	0.914	42.65	0.21	10.84	53.70	56.00	-2.30	QP
11	0.989	30.74	0.22	10.87	41.83	46.00	-4.17	Average
12	1.303	41.37	0.25	10.90	52.52	56.00	-3.48	QP

Line:

Trace: 9

: CCIS Shielding Room : FCC CLASS-B QP LISN LINE Site Condition

1020RF Pro EUT Smartphone Model : EK4 Test Mode : BLE mode Power Rating : AC 120/60Hz

Environment : Temp: 23 °C Huni: 56% Atmos: 101KPa

Test Engineer: Carey Remark

emark	: Freq	Read Level	LISN Factor	Cable Loss	Level	Limit Line	Over Limit	Remark
	MHz	dBu₹	dB	<u>dB</u>	−−dBuV	dBu₹	<u>d</u> B	
1	0.361	30.75	0.27	10.73	41.75	48.69	-6.94	Average
2	0.373	42.73	0.28	10.73	53.74	58.43	-4.69	QP
3	0.442	32.38	0.28	10.74	43.40	47.02	-3.62	Average
4 5	0.466	43.56	0.29	10.75	54.60	56.58	-1.98	QP
5	0.486	43.53	0.29	10.76	54.58	56.23	-1.65	QP
6	0.486	32.95	0.29	10.76	44.00	46.23	-2.23	Average
7	0.708	28.30	0.22	10.77	39.29	46.00	-6.71	Average
8	0.796	28.57	0.23	10.81	39.61	46.00	-6.39	Average
8 9	0.853	29.14	0.24	10.83	40.21	46.00	-5.79	Average
10	0.857	42.11	0.24	10.83	53.18	56.00	-2.82	QP
11	0.918	42.25	0.24	10.84	53.33	56.00	-2.67	QP
12	1.077	37.98	0.25	10.88	49.11	56.00	-6.89	QP

Notes:

- 1. An initial pre-scan was performed on the live and neutral lines with peak detector.
- 2. Quasi-Peak and Average measurement were performed at the frequencies with maximized peak emission.
- 3. Final Level = Receiver Read level + LISN Factor + Cable Loss

6.3 Conducted Output Power

Test Requirement:	FCC Part 15 C Section 15.247 (b)(3)
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 9.2.2
Limit:	30dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	Maximum Conducted Output Power (dBm)	Limit(dBm)	Result
Lowest	-2.47		
Middle	-2.38	30.00	Pass
Highest	-2.64		

Test plot as follows:

Date: 6.JAN.2016 03:00:56 Lowest channel

Date: 6.JAN.2016 03:01:29 Middle channel

Highest channel

6.4 Occupy Bandwidth

Test Requirement:	FCC Part 15 C Section 15.247 (a)(2)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 8.1					
Limit:	>500kHz					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Measurement Data

Test CH	6dB Emission Bandwidth (MHz)	Limit(kHz)	Result
Lowest	0.732		
Middle	0.714	>500	Pass
Highest	0.708		

Test CH	99% Occupy Bandwidth (MHz)	Limit(kHz)	Result
Lowest	1.026		
Middle	1.032	N/A	N/A
Highest	1.032		

Test plot as follows:

6dB EBW

Date: 6.JAN.2016 03:14:42

Lowest channel

Date: 6..TAN.2016 03:14:06

Middle channel

Date: 6.JAN.2016 03:12:44

Highest channel

99% OBW

Date: 6.JAN.2016 03:15:00

Lowest channel

Date: 6..TAN.2016 03:13:42

Middle channel

Date: 6.JAN.2016 03:12:10

Highest channel

6.5 Power Spectral Density

Test Requirement:	FCC Part 15 C Section 15.247 (e)
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 10.2
Limit:	8 dBm
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane
Test Instruments:	Refer to section 5.7 for details
Test mode:	Refer to section 5.3 for details
Test results:	Passed

Measurement Data

Test CH	Power Spectral Density (dBm)	Limit(dBm)	Result
Lowest	-3.29		
Middle	-3.20	8.00	Pass
Highest	-3.38		

Test plots as follow:

Date: 6.JAN.2016 03:15:15

Lowest channel

Date: 6.JAN.2016 03:13:26

Middle channel

Date: 6..TAN.2016 03:13:06

Highest channel

6.6 Band Edge

6.6.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009 and KDB558074v03r03 section 13					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:						
	Spectrum Analyzer E.U.T Non-Conducted Table					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plots as follow:

Date: 6.JAN.2016 03:05:15

Lowest channel

Date: 6.JAN.2016 03:04:27

Highest channel

6.6.2 Radiated Emission Method

Above 1GHz	nark Value
Test Frequency Range: 2.3GHz to 2.5GHz Test site: Measurement Distance: 3m Receiver setup: Frequency Detector RBW VBW Related Peak 1MHz 3MHz Peak RMS 1MHz 3MHz Peak RMS 1MHz 3MHz Average RMS 1MHz 3MHz Average RMS 1MHz 3MHz Average Setup: Limit: Frequency Limit (dBuV/m @3m) Related Setup: Above 1GHz 54.00 Average	Value
Test site: Measurement Distance: 3m	Value
Frequency Detector RBW VBW Receiver setup: Above 1GHz Peak 1MHz 3MHz Peak RMS 1MHz 3MHz Average Above 1GHz S4.00 Average S4.00 Average	Value
Above 1GHz	Value
Above 1GHz	
Limit: Frequency Limit (dBuV/m @3m) Rei	
Above 1GHz 54.00 Average	nark
74.00 Peak	e Value
Test Procedure: 1. The EUT was placed on the top of a rotating table 0.8 meters	Value
the ground at a 3 meter camber. The table was rotated 360 to determine the position of the highest radiation. 2. The EUT was set 3 meters away from the interference-rece antenna, which was mounted on the top of a variable-heigh tower. 3. The antenna height is varied from one meter to four meters the ground to determine the maximum value of the field stre Both horizontal and vertical polarizations of the antenna are make the measurement. 4. For each suspected emission, the EUT was arranged to its case and then the antenna was tuned to heights from 1 me meters and the rota table was turned from 0 degrees to 360 to find the maximum reading. 5. The test-receiver system was set to Peak Detect Function a Specified Bandwidth with Maximum Hold Mode. 6. If the emission level of the EUT in peak mode was 10 dB lothe limit specified, then testing could be stopped and the peof the EUT would be reported. Otherwise the emissions that have 10 dB margin would be re-tested one by one using pepeak or average method as specified and then reported in sheet.	degrees iving t antenna above ength. e set to worst er to 4 degrees and wer than ak values t did not ak, quasi-
Test setup: Horn Antenna Tower Ground Reference Plane Test Receiver	
Test Instruments: Refer to section 5.7 for details	
Test mode: Refer to section 5.3 for details	
Test results: Passed	

Test channel: Lowest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL : 1020RF Condition

Job No. EUT : Smartphone : EK4 Model

Test mode : BLE-L mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%
Test Engineer: Carey

Remark

	Freq		Antenna Factor						
	MHz	dBu∀	—dB/m	dB	dB	dBuV/m	$\overline{dBuV/m}$	dB	
1	2390.000	18.98	27.58	6.63	0.00	53.19	74.00	-20.81	Peak
2	2390.000	7.55	27.58	6.63	0.00	41.76	54.00	-12.24	Average

Test channel: Lowest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

Job No. EUT : 1020RF : Smartphone : EK4 Model : BLE-L mode

Test mode Power Rating : AC 120V/60Hz Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

Remark

	0		Antenna Factor						
	MHz	dBu₹	dB/m	<u>dB</u>	<u>dB</u>	dBuV/m	dBuV/m	dB	
1 2	2390.000 2390.000				0.00 0.00				

Test channel: Highest

Horizontal:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) HORIZONTAL Condition

: 1020RF Job No. EUT : Smartphone : EK4 Model Test mode : BLE-H mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey Remark :

1 2

ları	κ :								
		Read	Antenna	Cable	Preamp		Limit	Over	
	Freq	Level	Factor	Loss	Factor	Level	Line	Limit	Remark
	MHz	dBu∜	dB/m	<u>dB</u>	<u>dB</u>	$\overline{dBuV/m}$	dBuV/m	<u>dB</u>	
	2483.500 2483.500							-19.20 -11.81	Peak Average
-	2403.000	1.02	21.02	0.00	0.00	42.10	04.00	-11.01	uverage

Test channel: Highest

Vertical:

Site

: 3m chamber : FCC PART 15 (PK) 3m BBHA9120(1G18) VERTICAL Condition

: 1020RF Job No. EUT : Smartphone Model : EK4
Test mode : BLE-H mode
Power Rating : AC 120V/60Hz
Environment : Temp:25.5°C Huni:55%

Test Engineer: Carey

Remark

			Antenna Factor					Over Limit	Remark	
	MHz	dBu∀	dB/m	dB	dB	dBuV/m	dBuV/m	dB		-
1 2	2483.500 2483.500									

6.7 Spurious Emission

6.7.1 Conducted Emission Method

Test Requirement:	FCC Part 15 C Section 15.247 (d)					
Test Method:	ANSI C63.10:2009 and KDB558074 section 11					
Limit:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement.					
Test setup:	Spectrum Analyzer E.U.T Non-Conducted Table Ground Reference Plane					
Test Instruments:	Refer to section 5.7 for details					
Test mode:	Refer to section 5.3 for details					
Test results:	Passed					

Test plot as follows:

Lowest channel

Date: 6.JAN.2016 03:10:06

30MHz~25GHz

Middle channel

Date: 6.JAN.2016 03:10:54

30MHz~25GHz

Highest channel

Date: 6.JAN.2016 03:11:43

30MHz~25GHz

6.7.2 Radiated Emission Method

Test Requirement:	FCC Part 15 C	Section 15.20	9 and 15.205						
Test Method:	ANSI C63.10:2009								
Test Frequency Range:	9KHz to 25GHz								
Test site:	Measurement D	istance: 3m							
Receiver setup:	Frequency Detector RBW VBW Remark 30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value								
	30MHz-1GHz Quasi-peak 120KHz 300KHz Quasi-peak Value								
	Above 1GHz Peak 1MHz 3MHz Peak Value								
	Above IGIIZ	RMS	1MHz	3MHz	Average Value				
Limit:	Frequency		Limit (dBuV/m	@3m)	Remark				
	30MHz-88MHz		40.0		Quasi-peak Value				
	88MHz-216MHz		43.5		Quasi-peak Value				
	216MHz-960MH	z	46.0		Quasi-peak Value				
	960MHz-1GHz		54.0		Quasi-peak Value				
	Above 1GHz		54.0		Average Value				
			74.0		Peak Value				
Test Procedure:	the ground to determin 2. The EUT antenna, we tower. 3. The antenre the ground Both horizon make the make the make the meters and to find the meters and the meters and to find the meters and the	at a 3 meter the the position was set 3 meter was set 3 meter was more to determine the anter th	camber. The nof the highest teters away funted on the training of the maximulatical polarization. The example of the maximulatical polarization was turned ding. The example of the maximum Hamilton of the extension of the extens	table was a st radiation. Tom the in op of a variance meter to um value or ions of the EUT was and to height from 0 degrate Deak Dold Mode. The stopped wise the end one by one stopped to be stopped wise the end one by one	le 0.8 meters above rotated 360 degrees terference-receiving able-height antenna of four meters above of the field strength, antenna are set to tranged to its worst is from 1 meter to 4 rees to 360 degrees etect Function and as 10 dB lower than and the peak values missions that did not e using peak, quasing reported in a data				

Below 1GHz

Horizontal:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) HORIZONTAL Condition

: 1020RF : Smartphone Job No. EUT Model : EK4 Test mode : BLE mode Power Rating : AC 120V/60Hz

Environment : Temp: 25.5°C Huni: 55%

Test Engineer: Carey Remark :

SMALK									
	Freq		Antenna Factor					Over Limit	
-	MHz	dBu∜	—dB/m	dB	dB	dBuV/m	dBuV/m	dB	
1	40.702	29.34	13.58	0.53	29.89	13.56	40.00	-26.44	QP
2	54.261	29.79	13.07	0.64	29.80	13.70	40.00	-26.30	QP
2	100.229	35.26	13.11		29.53				
4 5	207.850	49.40	10.80	1.42	28.78	32.84	43.50	-10.66	QP
5	261.975	34.36	12.13	1.66	28.52	19.63	46.00	-26.37	QP
6	417.641	38.43	15.43	2.17	28.81	27.22	46.00	-18.78	QP

Vertical:

Site

: 3m chamber : FCC PART15 CLASS B 3m VULB9163(30M1G) VERTICAL Condition

: 1020RF Job No. EUT Smartphone Model : EK4 Test mode : BLE mode Power Rating : AC 120V/60Hz

Environment : Temp:25.5°C Huni:55% Test Engineer: Carey Remark :

•				-				
Freq								Remark
MHz	dBu₹	dB/m		dB	dBuV/m	dBuV/m	<u>d</u> B	
83.230	46.27	9.72	0.87	29.61	27.25	40.00	-12.75	QP
126.329	42.27	9.51	1.17	29.35	23.60	43.50	-19.90	QP
137.903	42.55	8.35	1.25	29.28	22.87	43.50	-20.63	QP
209.313	35.09	10.87	1.43	28.77	18.62	43.50	-24.88	QP
305.680	34.87	13.13	1.79	28.46	21.33	46.00	-24.67	QP
419.108	35.69	15.43	2.17	28.82	24.47	46.00	-21.53	QP
	MHz 83.230 126.329 137.903 209.313	MHz dBuV 83.230 46.27 126.329 42.27 137.903 42.55 209.313 35.09 305.680 34.87	Freq Level Factor MHz dBuV dB/m 83.230 46.27 9.72 126.329 42.27 9.51 137.903 42.55 8.35 209.313 35.09 10.87 305.680 34.87 13.13	Freq Level Factor Loss MHz dBuV dB/m dB 83.230 46.27 9.72 0.87 126.329 42.27 9.51 1.17 137.903 42.55 8.35 1.25 209.313 35.09 10.87 1.43 305.680 34.87 13.13 1.79	MHz dBuV dB/m dB dB 83.230 46.27 9.72 0.87 29.61 126.329 42.27 9.51 1.17 29.35 137.903 42.55 8.35 1.25 29.28 209.313 35.09 10.87 1.43 28.77 305.680 34.87 13.13 1.79 28.46	MHz dBuV dB/m dB dB dBuV/m 83.230 46.27 9.72 0.87 29.61 27.25 126.329 42.27 9.51 1.17 29.35 23.60 137.903 42.55 8.35 1.25 29.28 22.87 209.313 35.09 10.87 1.43 28.77 18.62 305.680 34.87 13.13 1.79 28.46 21.33	MHz dBuV dB/m dB dB dBuV/m dBuV/m dBuV/m 83.230 46.27 9.72 0.87 29.61 27.25 40.00 126.329 42.27 9.51 1.17 29.35 23.60 43.50 137.903 42.55 8.35 1.25 29.28 22.87 43.50 209.313 35.09 10.87 1.43 28.77 18.62 43.50 305.680 34.87 13.13 1.79 28.46 21.33 46.00	MHz dBuV dB/m dB dB dB dBuV/m dBuV/m dBuV/m dB 83.230 46.27 9.72 0.87 29.61 27.25 40.00 -12.75 126.329 42.27 9.51 1.17 29.35 23.60 43.50 -19.90 137.903 42.55 8.35 1.25 29.28 22.87 43.50 -20.63 209.313 35.09 10.87 1.43 28.77 18.62 43.50 -24.88 305.680 34.87 13.13 1.79 28.46 21.33 46.00 -24.67

Above 1GHz

Т	Test channel:			Lowest		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	44.05	31.53	10.57	40.24	45.91	74.00	-28.09	Vertical
4804.00	44.09	31.53	10.57	40.24	45.95	74.00	-28.05	Horizontal

Т	Test channel:			Lowest		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4804.00	35.62	31.53	10.57	40.24	37.48	54.00	-16.52	Vertical
4804.00	35.98	31.53	10.57	40.24	37.84	54.00	-16.16	Horizontal

Т	Test channel:			Middle		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	45.19	31.58	10.66	40.15	47.28	74.00	-26.72	Vertical
4884.00	44.71	31.58	10.66	40.15	46.80	74.00	-27.20	Horizontal

Т	Test channel:			Middle		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4884.00	35.49	31.58	10.66	40.15	37.58	54.00	-16.42	Vertical
4884.00	35.46	31.58	10.66	40.15	37.55	54.00	-16.45	Horizontal

Т	Test channel:			Highest		vel:	Peak	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	44.78	31.69	10.73	40.03	47.17	74.00	-26.83	Vertical
4960.00	44.22	31.69	10.73	40.03	46.61	74.00	-27.39	Horizontal

Т	Test channel:			Highest		vel:	Average	
Frequency (MHz)	Read Level (dBuV)	Antenna Factor (dB/m)	Cable Loss (dB)	Preamp Factor (dB)	Level (dBuV/m)	Limit Line (dBuV/m)	Over Limit (dB)	Polarization
4960.00	35.86	31.69	10.73	40.03	38.25	54.00	-15.75	Vertical
4960.00	35.81	31.69	10.73	40.03	38.20	54.00	-15.80	Horizontal

Remark:

- 1. Final Level =Receiver Read level + Antenna Factor + Cable Loss Preamplifier Factor
- 2. The emission levels of other frequencies are very lower than the limit and not show in test report.

Shenzhen Zhongjian Nanfang Testing Co., Ltd.
No. B-C, 1/F., Building 2, Laodong No.2 Industrial Park, Xixiang Road, Bao'an District, Shenzhen, Guangdong, China
Telephone: +86 (0) 755 23118282 Fax: +86 (0) 755 23116366