G. KARCH & M. KRUPSKI & SZ. CYGAN

"Scio me nihil scire." i

Sokrates

Przedłużanie rozwiązań i metoda Eulera

Zadanie 1. Załóżmy, że funkcja f=f(t,x) jest klasy C^1 na zbiorze $t_0 \le t < \infty$, $-\infty < y < \infty$ oraz spełnia dodatkowe oszacowanie $|f(t,y)| \le K$ na całym tym zbiorze dla pewnej stałej K>0. Udowodnić, że rozwiązanie zagadnienia

$$x' = f(t, x), \quad x(t_0) = x_0$$

istnieje dla wszyskich $t \geq t_0$.

Zadanie 2. Udowodnij, że poniższe równania uzupełnione warunkiem początkowym x(0)=1 mają rozwiązanie dla wszystkich $t\geq 0$:

a)
$$x' = t^3 - x^3$$
, b) $x' = tx + e^{-x}$.

Zadanie 3. Uzasadnij, że zagadnienie $y'=1+y^2,\ y(0)=0$ nie ma rozwiązania określonego na całej prostej.

Zadanie 4. Rozważamy równanie y'=f(t,y). Krzywe opisane równaniem f(t,y)=k dla różnych stałych k nazywamy *izoklinami*. Z równania wynika, że dana izoklina jest przecinana przez wszystkie rozwiązania pod stałym kątem. W poniższych przykładach narysuj izokliny i przy ich pomocy naszkicuj przebieg przykładowych rozwiązań:

$$y' = -t$$
, $y' = -\frac{t}{y}$, $y' = 1 + y^2$, $y' = \frac{t+y}{t-y}$, $y' = t^2 + y^2$.

Zadanie 5. Używając metody Eulera z krokiem h=0,1 wyznacz przybliżoną wartość rozwiązania dla t=1. Oszacuj błąd jaki popełniamy. Nastęnie znajdź rozwiązanie podanego zagadnienienia i porównaj otrzymaną wartość z wartością rzeczywistą.

$$y' = 1 + t - y, y(0) = 0;$$
 $y' = 2ty, y(0) = 2;$ $y' = 1 + y^2 - t^2, y(0) = 0.$

Zadanie 6. Oszacuj błąd jaki popełniamy używając metody Eulera z krokiem h aby znaleźć przybliżoną wartość rozwiązania zagadnienia $y'=(t^2+y^2)/2,\quad y(0)=1$ dla dowolnego $t\in[0,2/5]$. Wskazówka: Rozważaj prostokąt R: $0\leq t\leq 1,\ 0\leq y\leq 2$.

ⁱWiem, że nic nie wiem.

Powtórzenie materiału z wykładu: schemat Eulera – numeryczna aproksymacja rozwiązań

Na wykładzie podano metodę numerycznego przybliżania rozwiązań zagadnienia Cauchy'ego

$$y' = f(t, y), \quad y(t_0) = y_0,$$

na odcinku $[t_0, t_0 + a]$. Dzielimy ten przedział na N równych części tworząc ciąg:

$$t_k = t_0 + k \frac{a}{N}, \quad k = 0, 1, 2, 3, ..., N.$$

Alternatywnie, możemy zapisać ten ciąg następująco: $t_{k+1} = t_k + h$, gdzie $h = \frac{a}{N}$. Ciąg liczb przybliżających rozwiązanie w punktach $y(t_k)$, zwany schematem Eulera, ma postać:

$$y_1 = y_0 + hf(t_0, y_0), \quad y_2 = y_1 + hf(t_1, y_1)$$

i ogólnie

$$y_{k+1} = y_k + h f(t_k, y_k), \quad y_0 = y(t_0).$$

Wprowadźmy prostokąt $R=\{(t,y)\ :\ t_0\leq t\leq t_0+a,\ y_0-b\leq y\leq y_0+b\}.$ Załóżmy, że

$$\max_{(t,y)\in R}\left|\frac{\partial f(t,y)}{\partial y}\right| \leq L \quad \text{oraz} \quad \max_{(t,y)\in R}\left|\frac{\partial f(t,y)}{\partial t} + f\frac{\partial f(t,y)}{\partial y}\right| \leq D.$$

Na wykładzie oszacowano błąd jaki popełniamy przybliżając rozwiązanie ciągiem y_k . Przy założeniu, że $kh \leq a$ udowodniono, że

$$|y(t_k) - y_k| \le \frac{Dh}{2L} [e^{aL} - 1], \quad k = 1, ..., N.$$