Package 'sp.gwas'

May 6, 2020

Type Package		
Title Selection probabilities	using glmnet for GWAS	
Version 1.1.0		
Author Kipoong Kim		
Maintainer Kipoong Kim <	kkp7700@gmail.com>	
Description Selection probation for a SNP data in	abilities using generalized linear model with regularizathe hapmap format.	
License GPL-2 GPL-3		
Depends R (>= 2.10)		
Imports ggplot2, compiler, tra, tidyr, gtools, calib	glmnet, dplyr, CMplot, readxl, data.table, writexl, bestNormalize, gridExrate, genetics	
Encoding UTF-8		
LazyData true		
RoxygenNote 7.0.2		
R topics document	ed:	
qqman_manhattan qqman_qq		
Index	10	
sp.gwas-package	Selection probabilities using generalized linear model with regularization for a SNP data in the hapmap format.	

sp.gwas

2 qqman_manhattan

Details

The penalty function of elastic-net is defined as

$$\alpha ||\beta||_1 + (1-\alpha)||\beta||_2/2,$$

where α is a mixing proportion of ridge and the lasso, and β is regression coefficients. This penalty is equivalent to the Lasso penalty if alpha=1.

Value

A list of data files(genotype, phenotype, etc.), results for selection probabilities, and manhattan plot for multiple traits.

References

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the royal statistical society: series B (statistical methodology), 67(2), 301-320.

qqman_manhattan

Creates a manhattan plot

Description

Creates a manhattan plot from PLINK assoc output (or any data frame with chromosome, position, and p-value).

Usage

```
qqman_manhattan(
    x,
    chr = "CHR",
    bp = "BP",
    p = "P",
    snp = "SNP",
    col = c("gray10", "gray60"),
    col.highlight = "green",
    chrlabs = NULL,
    suggestiveline = -log10(1e-05),
    genomewideline = -log10(5e-08),
    highlight = NULL,
    logp = TRUE,
    annotatePval = NULL,
    annotateTop = TRUE,
    ...
)
```

qqman_manhattan 3

Arguments

x	A data frame with columns "BP," "CHR," "P," and optionally, "SNP."
chr	A string denoting the column name for the chromosome. Defaults to PLINK's "CHR." Said column must be numeric. If you have X , Y , or MT chromosomes, be sure to renumber these 23, 24, 25, etc.
bp	A string denoting the column name for the chromosomal position. Defaults to PLINK's "BP." Said column must be numeric.
p	A string denoting the column name for the p-value. Defaults to PLINK's "P." Said column must be numeric.
snp	A string denoting the column name for the SNP name (rs number). Defaults to PLINK's "SNP." Said column should be a character.
col	A character vector indicating which colors to alternate.
col.highlight	A character vector of colors corresponding to the list of "highlight".
chrlabs	A character vector equal to the number of chromosomes specifying the chromosome labels (e.g., $c(1:22, "X", "Y", "MT")$).
suggestiveline	Where to draw a "suggestive" line. Default -log $10(1e-5)$. Set to FALSE to disable.
genomewideline	Where to draw a "genome-wide significant" line. Default - $\log 10(5e-8)$. Set to FALSE to disable.
highlight	A list of character vector of SNPs in your dataset to highlight. These SNPs should all be in your dataset.
logp	If TRUE, the -log10 of the p-value is plotted. It isn't very useful to plot raw p-values, but plotting the raw value could be useful for other genome-wide plots, for example, peak heights, bayes factors, test statistics, other "scores," etc.
annotatePval	If set, SNPs below this p-value will be annotated on the plot.
annotateTop	If TRUE, only annotates the top hit on each chromosome that is below the annotatePval threshold.
	Arguments passed on to other plot/points functions

Value

A manhattan plot.

Examples

```
#\dontrun{
#qqman_manhattan(gwasResults)
#}
```

qqman_qq

Creates a Q-Q plot

Description

Creates a quantile-quantile plot from p-values from a GWAS study.

Usage

```
qqman_qq(pvector, ...)
```

Arguments

pvector A numeric vector of p-values.
... Other arguments passed to plot()

Value

A Q-Q plot.

Examples

```
## Not run:
qqman_qq(gwasResults$P)
## End(Not run)
```

sp.gwas

Selection probabilities using generalized linear model with regularization for a SNP data in the hapmap format.

Description

For analysis of high-dimensional genomic data, penalized regression can be a solution to accomodate correlations between predictors. Moreover, selection probabilities do not depend on tuning parameter selection so that it produces a stablity selection. Thresholds are also generated to control the false positives(errors). Thresholds vary with the expected number of false positives to be controlled by the user. Input data is the hapmap formatted SNP data and phenotype data corresponding to SNP data. Output includes files of three types: (1) Matched data files (genotype, numerical, snp info, and phenotype), (2) Results file (selection probabilities and thresholds), (3) Circular manhattan plot with (blue dotted) significant line corresponding to the largest value among user-defined false discoveries.

Usage

```
sp.gwas(
 genotype = NULL,
 phenotype = NULL,
  input.type = c("object", "path"),
 maf.range = c(0, 1),
 HWE.range = c(0, 1),
 heterozygosity.range = c(0, 1),
  remove.missingY = TRUE,
  save.path = "./sp.folder",
 y.col = 2,
 y.id.col = 1,
  normalization = TRUE,
 method = "lasso",
  family = "gaussian",
  false.discovery = c(1, 5, 10),
 permutation = FALSE,
 nperm = 100,
  setseed = 1234,
  plot.ylim = NULL,
  lambda.min.quantile = 0.5,
 n.lambda = 10,
 K = 100,
 psub = 0.5,
 manhattan.type = "c",
 plot.name = ""
 plot.type = "jpg",
 plot.dpi = 300
```

Arguments

genotype

Either R object or file path can be considered. A genotype data is not a data.frame but a matrix with dimension p by (n+11). It is formatted by hapmap which has (rs, allele, chr, pos) in the first four(1-4) columns, (strand, assembly, center, protLSID, assayLSID, panel, Qcode) in the following seven(5-11) columns. If NULL, user can choose a path in interactive use.

phenotype

Either R object or file path can be considered. A phenotype data is an n by p matrix. Since the first some columns can display attributes of the phenotypes, you should enter the arguments, y.col and y.id.col, which represent the columns of phenotypes to be analyzed and the column of sample ID. If NULL, user can choose a path in interactive use.

input.type

Default is "object". If input.type is "object", obejects of genotype/phenotype will be entered, and if "path", paths of genotype/phenotype will be enterd. If you want to use an object, you have to make sure that the class of each column of genotype data is equal to "character".

maf.range

A numeric vector indicating the range of minor allele frequency (MAF) to be used. Default is c(0, 1).

 ${\it HWE.range}$

A numeric vector indicating the range of pvalue by Hardy-Weinberg Equillibrium to be used. Default is c(0, 1).

heterozygosity.range

A numeric vector indicating the range of heterozygosity values to be used, because, in some cases, heterozygosity higher than expected indicates the low quality variants or sample contamination. Default is c(0, 1).

remove.missingY

If TRUE, the samples with missing values in phenotype data are removed. Accordingly, the corresponding genotype samples are also filtered out. Default is TRUE.

save.path A save.path which has all output files. If there exists save.path, sp.gwas will

check if there is an output file. Note that if there is an output RData file in "save.path", sp.gwas will just load the output files(.RData) in there, thereby not providing the results for pay "geneture" and "pheneture"

providing the results for new "genotype" and "phenotype".

y.col The columns of phenotypes. At most 4 phenotypes can be considered, because

the plot of them will be fine. Default is 2.

y.id.col The column of sample ID in the phenotype data file. Default is 1.

normalization If TRUE. phenotypes are converted to be normal-shape using box-cox transfor-

mation when all phenotypes are positive.

method A method of penalized regression. It includes "lasso" for the lasso and "enet"

for the elastic-net.

family A family of response variable(phenotype). It is "gaussian" for continuous re-

sponse variable, "binomial" for binary, "poisson" for count, etc. Now you can use only the same family for the multi phenotypes. For more details, see the

function(stats::glm). Default is "gaussian".

false.discovery

The expected number of false discovery to be controlled. The larger it is, the

higher threshold becomes. Default is c(1, 5, 10).

permutation Permutation-based threshold values can be provided for false.discovery if

permutation is TRUE. Default is FALSE.

nperm The number of permutation replicates. Note that the calculation time increases

as nperm increases. Default is 100.

setseed You have to specify this setseed value to get reproducible results, because it uses

the resampling approach when calculating the selection probability.

plot.ylim A range of the y-axis. If NULL, automatic range in the y-axis will be provided.

For plot.ylim=c(0,1), the y-axis has a range of 0 and 1.

lambda.min.quantile

A range of lambda sequence. Default is 0.5 (median). If the range is so small that it can have many tied selection probabilities which is 1. To handle with this

problem, you should increase the value of "lambda.min.quantile".

n.lambda The length of lambda sequence. The larger n.lambda, the more detailed lambda

sequence will be.

K The number of iterations in resampling when calculating the selection probabil-

ities.

psub The subsampling proportion. For efficiency, default is 0.5.

manhattan.type A type of manhattan plot to be drawn includes circular('c') and rectangular('m').

plot.name A name of plot file.

plot.type A type of plot file which includes "jpg", "pdf", "tiff", etc.

plot.dpi A resolution of plot. If you want to get a high-resolution image, plot.dpi should

be large.

Details

The penalty function of elastic-net is defined as

$$\alpha ||\beta||_1 + (1-\alpha)||\beta||_2/2,$$

where α is a mixing proportion of ridge and the lasso, and β is regression coefficients. This penalty is equivalent to the Lasso penalty if alpha=1.

An algorithm of selection probabilities with elastic-net.

```
0: Let us assume that a genomic data has n samples and p variables.
```

1: For all $\Lambda = (\alpha, \lambda)$, where $\alpha in[0, 1], \lambda > 0$.

2: for k=1 to K do.

3 : ——— Subsample I_k with size [n/2]. 4 : ——— Compute $\hat{\beta}_j^{\Lambda}(I_k)$ with regularization model.

 $5: \mathsf{end} \ \mathsf{for}.$

 $\begin{aligned} &6:SP_j^{\Lambda}=\frac{1}{K}\#\{k\leq K:\hat{\beta}_j^{\Lambda}(I_k)\neq 0\}.\\ &7:SP_j=\max_{\Lambda}SP_j^{\Lambda},\ j=1,\cdots,p.\\ &8:\mathsf{return}\,\mathsf{SP=}(SP_1,\cdots,SP_p). \end{aligned}$

Value

Histogram of original and transformed phenotypes

Histogram of phenotypes with p-value by Shapiro-test on the top right corner.

myDATA A list of myX, myGD, myGM, myGT, myY, and myY.original(for "gaussian").

A list of sp.df and threshold. sp.res

Circular Manhattan plot

Manhattan plot for the first phenotype is the innermost circle. Colors for chromosome is fixed, so that if you want to change colors, you would edit the R code of sp.manhattan function.

The dataframe with new mean and sum columns

Author(s)

Kipoong Kim <kkp7700@gmail.com>

References

Zou, H., & Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the royal statistical society: series B (statistical methodology), 67(2), 301-320.

Meinshausen, N., & Bühlmann, P. (2010). Stability selection. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 72(4), 417-473.

Kim, K., Koo, J., & Sun, H. (2020). An empirical threshold of selection probability for analysis of high-dimensional correlated data. Journal of Statistical Computation and Simulation, 1-12.

Examples

```
genotype <- sp.gwas::genotype # load("genotype.rda")</pre>
phenotype <- sp.gwas::phenotype # load("phenotype.rda")</pre>
# elastic-net model
```

```
sp.gwas(genotype = genotype,
        phenotype = phenotype,
        input.type = c("object", "path")[1],
        maf.range = c(1e-3, 1),
        HWE.range = c(0, 1),
        heterozygosity.range = c(0, 1),
        remove.missingY = TRUE,
        save.path = "./EXAMPLE",
        y.id.col = 1,
        v.col = 2:4,
        normalization = FALSE,
        method="enet",
        family="gaussian",
        false.discovery = c(1,5,10),
        permutation=FALSE,
        setseed=2019,
        plot.ylim = NULL,
        lambda.min.quantile = 0.5,
        n.lambda = 10.
        K = 20,
        psub = 0.5,
        manhattan.type = c("c", "r")[1],
        plot.name = "Test",
        plot.type = "jpg",
        plot.dpi = 300)
# Manhattan plot for the first phenotype (Y1)
results <- read.csv("./EXAMPLE/[2]sp.results.csv")</pre>
class(results$chr) <- "numeric"</pre>
class(results$pos) <- "numeric"</pre>
thresholds <- read.csv("./EXAMPLE/[2]sp.thresholds.csv")</pre>
threshold_Y1_FD1 <- subset( subset(thresholds, Method=="Theoretical"), FD==1)$Y1
threshold_Y1_FD10 <- subset( subset(thresholds, Method=="Theoretical"), FD==10)$Y1
highlight1 <- results$rs[results$Y1 > threshold_Y1_FD1]
\label{light10} $$ \leftarrow setdiff( results$rs[results$Y1 > threshold_Y1_FD10], highlight1 ) $$
jpeg("./EXAMPLE/Manhattan_from_qqman.jpeg", width=12, height=5, unit="in", res=600)
qqman_manhattan(results,
                chr="chr", bp="pos", snp="rs", p="Y1", logp=FALSE,
                suggestiveline = threshold_Y1_FD1,
                genomewideline = threshold_Y1_FD10,
                highlight = list(highlight1, highlight10),
                col.highlight = c("blue", "red"),
                ylab="Selection probabilities", ylim=c(0,1))
dev.off()
# Lasso model with permuted threshold
sp.gwas(genotype = genotype,
        phenotype = phenotype,
        input.type = c("object", "path")[1],
        maf.range = c(1e-3, 1),
        HWE.range = c(0, 1),
        heterozygosity.range = c(0, 1),
```

```
remove.missingY = TRUE,
        save.path = "./EXAMPLE_perm",
        y.id.col = 1,
        y.col = 2,
        normalization = FALSE,
        method="lasso",
        family="gaussian",
        false.discovery = c(1,5,10),
        permutation=TRUE,
        nperm=10,
        setseed=2020,
        plot.ylim = NULL,
        lambda.min.quantile = 0.5,
        n.lambda = 10,
        K = 20,
        psub = 0.5,
        manhattan.type = c("c", "r")[1],
        plot.name = "Test_perm",
        plot.type = "jpg",
        plot.dpi = 300)
# Manhattan plot for the first phenotype (Y1) with permuted threshold
results <- read.csv("./EXAMPLE_perm/[2]sp.results.csv")</pre>
class(results$chr) <- "numeric"</pre>
class(results$pos) <- "numeric"</pre>
thresholds <- read.csv("./EXAMPLE_perm/[2]sp.thresholds.csv")</pre>
threshold_theory_FD1 <- subset( subset(thresholds, Method=="Theoretical"), FD==1)$Y1</pre>
threshold_perm_FD1 <- subset( subset(thresholds, Method=="Permuted"), FD==1)$Y1</pre>
highlight_theory <- results$rs[results$Y1 > threshold_theory_FD1]
highlight_perm <- results$rs[results$Y1 > threshold_perm_FD1]
highlight_intersect <- intersect(highlight_theory, highlight_perm)</pre>
jpeg("./EXAMPLE_perm/Manhattan_from_qqman.jpeg", width=12, height=5, unit="in", res=600)
qqman_manhattan(results,
                chr="chr", bp="pos", snp="rs", p="Y1", logp=FALSE,
                suggestiveline = threshold_theory_FD1,
                genomewideline = threshold_perm_FD1,
                highlight = list(highlight_theory, highlight_perm, highlight_intersect),
                col.highlight = c("blue", "red", "purple"),
                ylab="Selection probabilities", ylim=c(0,1))
dev.off()
```

Index

```
*Topic gwas
     sp.gwas-package, 1
*Topic hapmap
    sp.gwas-package, 1
*Topic manhattan
    {\tt qqman\_manhattan, 2}
*Topic qqplot
    qqman_qq, 3
*Topic qq
    \mathsf{qqman\_qq}, \textcolor{red}{3}
*Topic regularization
    sp.gwas-package, 1
*Topic selection
    sp.gwas-package, 1
*Topic visualization
    qqman\_manhattan, 2
    qqman_qq, 3
{\tt qqman\_manhattan}, {\tt 2}
qqman_qq, 3
sp.gwas, 4
{\tt sp.gwas-package}, 1
```