Zadanie: ZEP

Zerowe przedziały

Warsztaty ILO 2017-2018, grupa olimpijska. Dostępna pamięć: 128 MB.

Dany jest ciąg n liczb dodatnich całkowitych. Chcemy wiedzieć, na ile sposobów możemy wybrać jakiś niepusty przedział, a następnie przypisać znak każdej z liczb w tym przedziałe, aby ich suma wynosiła 0. Dwie konfiguracje uznajemy za różne, gdy przedziały zaczynają się lub kończą w innym miejscu, lub jeden z elementów przedziału ma różne znaki w obu konfiguracjach.

Wejście

W pierwszym wierszu wejścia znajdują się jedna liczba całkowita n ($1 \le n \le 1000$), oznaczająca długość ciągu. W drugim wierszu znajduje się n liczb całkowitych a_1, a_2, \cdots, a_n ($1 \le a_i \le 1000$). Możesz założyć, że suma liczb ciągu nie przekracza 10000.

Wyjście

Na wyjściu powinna znaleźć się jedna liczba całkowita oznaczająca liczbę poprawnych konfiguracji. Ponieważ wynik może być duży, wypisz go modulo $10^9 + 7$.

Przykład

Dla danych wejściowych:

poprawnym wynikiem jest:

12

1 1 1 1

Wyjaśnienie

Poprawne konfiguracje to: [1+, 2-], [1-, 2+], [2+, 3-], [2-, 3+], [3+, 4-], [3-, 4+], [1+, 2+, 3-, 4-], [1+, 2-, 3+, 4-], [1-, 2+, 3+, 4+] oraz [1-, 2-, 3+, 4+].

Ocenianie

Podzadanie	Ograniczenia	Punkty
1	$n \le 300 \text{ oraz } a_1 + a_2 + \dots + a_n \le$	40
	300	
2	brak dodatkowych założeń	60