Пусть K — любое поле (можно считать, что это любое поле из $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Z}/p\mathbb{Z}$).

Определение 1. Векторным или линейным пространством над полем K называется любое множество V, элементы которого (векторы) можно складывать друг с другом и умножать на элементы поля так, что снова получаются векторы из этого пространства, причём выполнены следующие аксиомы:

- 1. u + v = v + u для любых $u, v \in V$;
- 2. u + (v + w) = (u + v) + w для любых $u, v, w \in V$;
- 3. существует *нулевой* вектор 0 такой, что u + 0 = u для любого $u \in V$;
- 4. для любого $v \in V$ существует противоположный вектор -v такой, что v + (-v) = 0;
- 5. 1v = v для любого $v \in V$;
- 6. $(\lambda \mu)v = \lambda(\mu v)$ для любых $\lambda, \mu \in K$ и $v \in V$;
- 7. $(\lambda + \mu)v = \lambda v + \mu v$ для любых $\lambda, \mu \in K$ и $v \in V$;
- 8. $\lambda(u+v) = \lambda u + \lambda v$ для любых $\lambda \in K$ и $u, v \in V$.

Задача 1. Являются ли линейными пространствами **a)** \mathbb{R} над \mathbb{Q} ; **б)** \mathbb{Q} над \mathbb{R} ;

- **в**) множество всех векторов на плоскости над \mathbb{R} ;
- Γ) многочлены с коэффициентами из поля K (обозначение: K[x]) над K;
- д) многочлены степени не выше n над \mathbb{R} ; ровно степени n и нулевой многочлен, над \mathbb{R} ;
- **e)** многочлены над \mathbb{R} , равные в точке x = 1 нулю; единице;
- **ж**) строки (или столбцы) из n элементов поля K (обозначение: K^n);
- з) бесконечные последовательности действительных чисел;
- и) сходящиеся последовательности действительных чисел;
- **к)** последовательности Фибоначчи (последовательности, удовлетворяющие условию $x_{n+1} = x_{n-1} + x_n$);
- л) множество решений однородной системы линейных уравнений; неоднородной;
- м) поле характеристики p над полем $\mathbb{Z}/p\mathbb{Z}$?

Задача 2 $^{\varnothing}$. Докажите, что элементы 0 и -v в третьей и четвертой аксиомах определены однозначно.

Определение 2. Вектор $b \in V$ линейно выражается через векторы $a_1, \ldots, a_m \in V$, если существуют такие $\mu_1, \ldots, \mu_m \in K$, что $b = \mu_1 a_1 + \cdots + \mu_m a_m$. (Вектор 0 линейно выражается через пустую систему векторов.)

Определение 3. Система векторов (a_1, \ldots, a_m) называется *линейно зависимой*, если выполняется одно из следующих эквивалентных условий:

- 1) существуют такие $\lambda_1, \ldots, \lambda_m$, не все равные нулю, что $\lambda_1 a_1 + \cdots + \lambda_m a_m = 0$;
- 2) хотя бы один из векторов a_1, \ldots, a_m линейно выражается через остальные.

Пустая система векторов считается линейно независимой.

Задача 3. Являются ли линейно независимыми векторы следующих множеств:

a)
$$\{(1,-1,0),(-1,0,1),(0,1,-1)\}\subset\mathbb{R}^3$$
; 6) $\{(1,1,0),(1,0,1),(0,1,1)\}\subset\mathbb{R}^3$?

Задача 4 Если система векторов $\{a_1,\ldots,a_m\}$ линейно независима, а система векторов $\{a_1,\ldots,a_m,b\}$ линейно зависима, то вектор b линейно выражается через векторы a_1,\ldots,a_m .

Задача 5. В задаче 18, 6 предыдущего листка выберем из весов коров минимальное количество так, чтобы любой оставшийся вес линейно выражался над $\mathbb Q$ через выбранные. Докажите, что все равенства из условия задачи будут тогда выполняться покомпонентно (отдельно для коэффициентов при первом выбранном весе, отдельно — при втором, ...) и получите ещё одно решение задачи про коров.

Листок №54 Страница 2

Определение 4. Векторное пространство V называется *бесконечномерным*, если в нем существуют линейно независимые системы из сколь угодно большого числа векторов. В противном случае пространство V называется *конечномерным*.

Задача 6. Приведите примеры конечномерных и бесконечномерных векторных пространств.

Определение 5. $\mathit{Базисом}$ (конечномерного) векторного пространства V называется всякая линейно независимая система векторов, через которую выражаются все векторы пространства V.

Задача 7. Докажите, что если $\{e_1, \ldots, e_n\}$ — базис пространства V, то всякий вектор $x \in V$ однозначно выражается через e_1, \ldots, e_n . Коэффициенты этого выражения называются $\kappa oop \partial u натами$ вектора x в базисе $\{e_1, \ldots, e_n\}$.

Определение 6. Всякая система векторов (не обязательно линейно независимая), через которую линейно выражаются все векторы пространства V, называется noposedaoueй.

Задача 8[®]. Докажите, что в конечномерном векторном пространстве

- **a)** всякая линейно независимая система векторов может быть дополнена до базиса (в частности, существует хотя бы один базис);
- б) из всякой порождающей системы векторов можно выбрать базис.

Задача 9 $^{\varnothing}$. Докажите, что все базисы конечномерного векторного пространства V содержат одно и то же число векторов.

Определение 7. Число векторов в базисе конечномерного пространства V называется pазмерностью пространства V и обозначается $\dim V$.

Задача 10. Пусть n — размерность конечного поля F характеристики p как векторного пространства над полем $\mathbb{Z}/p\mathbb{Z}$. Сколько элементов в F?

- Задача 11. а) На табло расположены лампочки. Есть несколько кнопок. Каждая кнопка меняет состояние соединенных с ней лампочек. Докажите, что число узоров, которые можно получить, нажимая на кнопки, есть степень двойки. 6)* Пусть для любого набора лампочек существует кнопка, соединенная с нечётным числом из них. Докажите, что все лампочки можно погасить. в) Пусть лампочки образуют квадрат 4 × 4 и рядом с каждой лампочкой есть кнопка, соединенная со всеми лампочками в том же столбце и в той же строке. Как изменить состояние ровно одной лампочки?
- Задача 12. а) Докажите, что в дереве нет непустых подграфов, у которых степень каждой вершины четна. 6) Пусть a число подграфов данного графа, у которых степень каждой вершины четна. Докажите, что число a степень двойки. в) На ребрах дерева стоят знаки + и —. Разрешается менять знак на всех ребрах, выходящих из одной вершины. Докажите, что из любого узора можно получить любой другой. г) Пусть b наибольшее количество узоров на данном графе, ни один из которых нельзя получить из другого операциями, описанными в предыдущем пункте. Докажите, что число b степень двойки. д)* Докажите, что для любого графа a = b.
- Задача 13. а) Докажите, что через любые четыре точки плоскости проходит бесконечное количество кривых второго порядка (линий, заданных уравнениями вида $ax^2 + bxy + cy^2 + dx + ey + f = 0$, где не все a, b, c равны нулю). б) Докажите, что через любые пять точек плоскости проходит хотя бы одна кривая второго порядка. в) Существуют такие пять точек, через которые проходит ровно одна кривая второго порядка; бесконечное количество кривых второго порядка.

$\begin{bmatrix} 1 \\ a \end{bmatrix}$	1 б	1 B	1 г	1 Д	1 e	1 ж	1	1 и	1 K	1 л	1 M	2	3 a	36	4	5	6	7	8 a	8 6	9	10	11 a	11 б	11 B	12 a	12 б	12 B	12 Г	12 Д	13 a	13 б	13 B