| b |     |   |      | nterpola<br>at x=2. | formula | to fi | t a | polynomial | to the | e data į | given | 12 | 4 | 2 | 2 |
|---|-----|---|------|---------------------|---------|-------|-----|------------|--------|----------|-------|----|---|---|---|
|   | x 1 | 3 | 3 4  |                     |         |       |     |            |        |          |       |    |   |   |   |
|   | y 0 | 6 | 5 12 |                     |         |       |     |            |        |          |       |    |   |   |   |

30, a. In a machine a slider moves along a fixed straight rod. Its distance x cms along the rod is given below for various values of time t secs. Estimate the velocity and acceleration of the slider when t=0.3

| t (sec): | 0.0   | 0.1   | 0.2   | 0.3   | 0.4   | 0.5   |
|----------|-------|-------|-------|-------|-------|-------|
| x (cm):  | 29.91 | 31.63 | 32.87 | 33.64 | 33.95 | 33.81 |

(OR) Apply trapezoidal and Simpson's rule to evaluate  $\int \sin x dx$ , by dividing the range into ten equal parts.

31. a. Given that  $y' = x + x^2y$ , y(0) = 1. Compute y(0.1) and y(0.2) by applying Euler's method and R-K method of fourth order respectively.

b. Applying Milne's predictor-corrector method, compute y(4.4), given 12 4 4 2  $5xy'+y^2-2=0$ , y(4)=1, y(4.1)=1.0049, y(4.2)=1.0097, y(4.3)=1.0143.

32. a. Solve  $\nabla^2 u = 0$  for square region with the given boundary conditions using numerical techniques.



b.i. Solve  $u_{rr} = 16u_t$ , 0 < x < 1, t > 0 given u(x, 0) = 0, u(0, t) = 0, u(1, t) = 100t. Compute u for one step in t direction taking h=0.25 using Crank-Nicholson scheme.

with the given conditions numerically,  $4u_{xx} = u_{tt}$ ii. Solve  $u(0,t) = 0, u(4,t) = 0, u_t(x,0) = 0, u(x,0) = x(4-x),$  taking h=1 upto t=2 secs.

\*\*\*\*

| Reg. No. | American de la constitución de l | To property and the state of th | The state of the s |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

## **B.Tech. DEGREE EXAMINATION, MAY 2023**

Fourth Semester

## 18MAB202T - NUMERICAL METHODS FOR ENGINEERS

(For the candidates admitted from the academic year 2018-2019 to 2021-2022)

Note:

- Part A should be answered in OMR sheet within first 40 minutes and OMR sheet should be handed over to hall invigilator at the end of 40th minute
- (i

| (ii)    | Fart - B & Part - C should be answered in                                                |                                                                                   |        |       |       |    |
|---------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------|-------|-------|----|
| Time: 3 | 3 hours                                                                                  |                                                                                   | Max. N | Viarl | cs: 1 | 00 |
|         | $PART - A (20 \times 1 = 2)$ Answer ALL Que                                              | *                                                                                 | Marks  | BL    | CO    | PO |
| 1       | . In fitting a straight line by the method o given by                                    | f least squares, the error committed is                                           | 1      | 1     | 1     | 1  |
|         | (A) $E = \sum y^2 - a \sum xy - b \sum y$ (C) $E = \sum y^2 - a \sum x^2y - b \sum xy$ ( | 3) $E = \sum y + a \sum xy - b \sum y^2$ 3) $E = \sum y^2 - a \sum xy + b \sum y$ |        |       |       |    |
| 2.      | . In solving simultaneous linear equation by matrix is reduced to                        |                                                                                   | 1      | 1     | 1     | 1  |
|         | (A) Lower triangular matrix (                                                            | Diagonal matrix     Null matrix                                                   |        |       |       |    |
| 3.      | . Write the condition for convergence in No                                              | wton-Raphson method.                                                              | Į      | 1     | 1     | 1  |
|         | (A) $ f(x)f''(x)  >  f'(x) ^2$                                                           | $ f(x)f'(x)   f''(x) ^2$                                                          |        |       |       |    |
|         | (6)                                                                                      | 2                                                                                 |        |       |       |    |

- (C)  $|f(x)f''(x)| \langle f'(x)|^2$  (D)  $|f(x)f'(x)|^2 |f''(x)|$ 4. Power method is used to determine the
  - (B) Positive eigen values (A) Smallest eigen value (C) Negative eigen value (D) Numerically largest eigen value
- 5. The operator E is equivalent to (A)  $(1+\Delta)^{-1}$ (B)  $(1-\Delta)^{-1}$ (C)  $(1+\nabla)^{-2}$ (D)  $(1-\nabla)^{-1}$
- 6. The missing term in the following table using finite difference technique is  $x : 0 \ 1 \ 2 \ 3 \ 4$ 
  - f(x): 1 3 9 81 (A) 27 (B) 31 (D) 29 (C) 30
- 1 2 2 1 7. Find the factorial polynomial for the equation  $3x^3 - 2x^2 + 7x - 6$ , by taking h=1. (B)  $3x^{(3)} + 7x^{(2)} + 8x^{(1)} - 6$ (A)  $3x^{(3)} + x^{(2)} + 8x^{(1)} + 6$ 
  - (C)  $x^{(3)} + 7x^{(2)} 8x^{(1)} 6$ 
    - (D)  $2x^{(3)} + 7x^{(2)} + 8x^{(1)} + 6$
- 8. The first divided difference of y(x) for the arguments  $x_0$ ,  $x_1$  is given by (B)  $y_1 + y_0$ (A)  $y_1 - y_0$ 
  - $x_1 x_0$  $x_1 + x_0$ (C)  $y_2 - y_0$ (D)  $y_2 + y_1$  $x_2 - x_0$  $x_2 + x_1$

12 4 3 2

1 1 2 1

1 1 1 1

1 1 2 1

1 2 2 1

| 9.  | . Newton's forward difference formula to get the first order derivative                                                                   | at x=x <sub>0</sub> is | 1 | 1 | 3 | 1 |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---|---|---|---|
|     | (A) $\frac{dy}{dx} = \frac{1}{h} \left[ \nabla y_n - \frac{1}{2} \nabla^2 y_n + \frac{1}{3} \nabla^3 y_n - \dots \right]$                 |                        |   |   |   |   |
|     |                                                                                                                                           |                        |   |   |   |   |
|     | (B) $\frac{dy}{dx} = \frac{1}{h} \left[ \nabla y_n + \frac{1}{2} \nabla^2 y_n + \frac{1}{3} \nabla^3 y_n + \dots \right]$                 |                        |   |   |   |   |
|     | (C) $\frac{dy}{dx} = \frac{1}{h} \left[ \Delta y_0 - \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 - \dots \right]$                 |                        |   |   |   |   |
|     |                                                                                                                                           |                        |   |   |   |   |
|     | (D) $\frac{dy}{dx} = \frac{1}{h} \left[ \Delta y_0 + \frac{1}{2} \Delta^2 y_0 + \frac{1}{3} \Delta^3 y_0 + \dots \right]$                 |                        |   |   |   |   |
| 10. | The error in the trapezoidal rule is                                                                                                      |                        | 1 | 1 | 3 | 1 |
|     | (A) $ E  < \frac{(b-a)^2}{12} h^4$ (B) $ E  < \frac{(b-a)}{24} h^4$                                                                       |                        |   |   |   |   |
|     | (C) $ E  < \frac{(b-a)^2}{24}h^2$ (D) $ E  < \frac{(b-a)}{12}h^2$                                                                         |                        |   |   |   |   |
| 11. | The error in Simpson's one-third rule is or order                                                                                         |                        | 1 | 1 | 3 | 1 |
|     | (A) $h^6$ (B) $h^3$                                                                                                                       |                        |   |   |   |   |
| 1.0 | (C) $h^4$ (D) $h^2$                                                                                                                       |                        | • | 1 | 2 | , |
| 12. | Simpson's three-eight rule can be applied only when the number of i  (A) Multiple of 3  (B) Even                                          | ntervals is            | 1 | 1 | 3 | I |
|     | (C) Odd (D) Any number                                                                                                                    |                        |   |   |   |   |
| 13. | Which of the following is a multi-step method?                                                                                            |                        | 1 | 1 | 4 | 1 |
|     | (A) Euler method (B) Adam's predictor method                                                                                              | corrector              |   |   |   |   |
|     | (C) Taylor's method (D) Runge-kutta method                                                                                                |                        |   |   |   |   |
| 14. | The modified Euler method is based on the averages of                                                                                     |                        | 1 | 1 | 4 | 1 |
|     | (A) Points (B) Slopes (C) Centres (D) Tangents                                                                                            | :                      |   |   |   |   |
| 15. | . How many prior values are required to predict the next value in Milno                                                                   | e's method?            | 1 | 1 | 4 | 1 |
|     | (A) 1 (B) 2                                                                                                                               |                        |   |   |   |   |
|     | (C) 4 (D) 3                                                                                                                               |                        |   |   |   |   |
| 16. | If $y' = x + y$ , $y(0) = 1$ , $h = 0.2$ , then the value of $y(0.2)$ using Euler's                                                       | method is              | 1 | 2 | 4 | 1 |
|     | (A) 1<br>(C) 1.5<br>(B) 2<br>(D) 1.2                                                                                                      |                        |   |   |   |   |
| 17  |                                                                                                                                           |                        | 1 | 2 | 5 | 1 |
| 1/. | The nature of the partial differential equation $f_{xx} - 2 f_{xy} = 0$ is  (A) Hyperbolic (B) Elliptic                                   |                        |   |   |   |   |
|     | (C) Parabolic (D) Cyclic                                                                                                                  |                        |   |   |   |   |
| 18. | a <sup>2</sup> 1 a                                                                                                                        |                        | 1 | i | 5 | 1 |
|     | The partial differential equation $\frac{\partial^2 u}{\partial x^2} = \frac{1}{\alpha^2} \frac{\partial u}{\partial t}$ is classified as |                        |   |   |   |   |
|     | (A) Elliptic (B) Parabolic                                                                                                                |                        |   |   |   |   |
|     | (C) Hyperbolic (D) Cyclic                                                                                                                 |                        |   |   |   |   |
| 19. | . Bender-Schmidt recurrence equation is valid only if                                                                                     |                        | 1 | 1 | 5 | 1 |
|     | (A) $k = \frac{ah}{2}$ (B) $k = \frac{a^2h}{4}$                                                                                           |                        |   |   |   |   |
|     | (A) $k = \frac{ah}{2}$ (B) $k = \frac{a^2h}{4}$ (C) $k = \frac{ah^2}{3}$ (D) $k = \frac{ah^2}{3}$                                         |                        |   |   |   |   |
|     | (C) $k = \frac{ah^2}{a}$ (D) $k = \frac{ah^2}{a}$                                                                                         |                        |   |   |   |   |
|     | 3 2                                                                                                                                       |                        |   |   |   |   |

| 20.    | The partial differential equation $\nabla^2 u = f(x, y)$ is called as                                                                                                                                                        | 1           | 1       | 5       | 1           |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------|---------|-------------|
|        | <ul> <li>(A) Poisson equation</li> <li>(B) Laplace equation</li> <li>(C) Parabolic equation</li> <li>(D) Hyperbolic equation</li> </ul>                                                                                      |             |         |         |             |
|        | $PART - B (5 \times 4 = 20 Marks)$<br>Answer ANY FIVE Questions                                                                                                                                                              | Marks       | BL      | €O      | PO          |
| 21.    | Using Newton-Raphson method derive the iterative formula to find $\sqrt{N}$ , where N is a positive integer.                                                                                                                 | 4           | 2       | 1       | 2           |
| 22.    | Find the value of x and y for the following system of equation using Gauss-Elimination method. $11x+3y=17$                                                                                                                   | 4           | 2       | 1       | 2           |
|        | 2x + 7y = 16                                                                                                                                                                                                                 |             |         |         |             |
| 23.    | Form the divided difference table for the following data.    x   4   5   7   10   11   13     y   48   100   294   900   1210   2028                                                                                         | 4           | 2       | 2       | 2           |
| 24.    | The velocity v of a particle moving in a straight line covers a distance x in time t. They are related as follows.                                                                                                           | 4           | 3       | 3       | 2           |
| 25.    | Solve $\frac{dy}{dx} = x + y$ , given y(1)=0 and get y(1.1) by Taylor series method.                                                                                                                                         | 4           | 3       | 4       | 2           |
| 26.    | Using improved Euler method compute y at $x=0.1$ given that $\frac{dy}{dx} = y - \frac{2x}{y}$ , $y(0) = 1$ .                                                                                                                | 4           | 3       | 4       | 2           |
| 27.    | Solve $\frac{\partial^2 u}{\partial x^2} = 2 \frac{\partial u}{\partial t} = 0$ given $u(0,t) = 0, u(4,t) = 0, u(x,0) = x(4-x)$ . Assume h=1. Estimate the values of u upto t=5, using Bender-Schmidt's method.              | 4           | 3       | 5       | 2           |
|        | $PART - C (5 \times 12 = 60 Marks)$                                                                                                                                                                                          |             |         |         |             |
| 28. a. | Answer ALL Questions  Fit a straight line and parabola by the method of least square for the following data and analyze which curve is more appropriate. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$              | Marks<br>12 | BL<br>4 | CO<br>1 | <b>PO</b> 2 |
| b.     | (OR)<br>Solve the following system of equation by Gauss-Seidel method.<br>4x + 2y + z = 14                                                                                                                                   | 12          | 3       | I       | 2           |
|        | x + 5y - z = 10                                                                                                                                                                                                              |             |         |         |             |
|        | x + y + 8z = 20                                                                                                                                                                                                              |             |         |         |             |
| 29. a. | The following table gives the marks got by 100 students in mathematics examination. Estimate how many students got more than 55 marks.  Marks 30-40   40-50   50-60   60-70   70-80   No. of students: 25   35   22   11   7 | 12          | 4       | 2       | 2           |

(OR)