CS6120 Project Presentation

Time series analysis of COVID-19 related emotion detection using natural language processing

Chia-Wei Lin

Khoury College of Computer Sciences Northeastern University, Seattle, WA

Outline

- Motivation
- Goals
- Approach
 - Data
 - Evaluation Method
 - Baseline
 - Experimental Details
- Results
- Analysis
- Conclusion

Motivation

- The outbreak of COVID-19 has changed everyone's life
- Influence human's physical health and mental health
- COVID-19 risk factors, transmission, incubation, diagnostics, therapeutics...
- NLP tasks:
 - Detecting Symptoms, Extracting Diagnosis for Electronic Health Records
 - QA system, Chatbot
 - Fact Check
 - Research summarization
- Semantic analysis and Emotion

Goals

Analyze the association between the global COVID-19 confirmed case number and the emotional response of English Twitter users over time.

Approach

- Build a model with a labeled dataset
 - o SVM, LSTM, bi-LSTM ...
- Use the model to detect emotion on real-world tweets
 - Hydrate tweet from collected COVID-19 related dataset

Labeled Data

• SemEval-2018 Task 1: Affect in Tweets (AIT-2018), El-oc datasets

	Train Set	Dev Set
Anger	1701	388
Fear	2252	389
Joy	1616	290
Sadness	1533	397
Total	7102	1464

Evaluation Method

- Classification Task
- Train classifiers on 7102 tweets, evaluate on 1464 tweets
- Evaluate models with dev set accuracy

Baseline

- Random Guess
 - \circ Accuracy = 0.25
- SVM with raw unigram
 - \circ Accuracy = 0.30

Experimental Details: Tweet Pre-processing

- decode_emoji (=> disappointed face)
- decode_HTML (& => &)
- remove_mention
- remove_URL
- remove_punctuation
- to_lowercase
- lemmatize
- remove_stop_words

Experimental Details: Tweet Pre-processing

- Result:
 - SVM with unigram (without pre-processing): 0.30
 - SVM with unigram (with pre-processing): 0.35

Experimental Details: FastText Classifier

- FastText
 - Facebook AI Research (FAIR) lab, 2016
 - A library for text classification and learning of word embeddings

Experimental Details: FastText classifier

Figure 1: Model architecture of fastText for a sentence with N ngram features x_1, \ldots, x_N . The features are embedded and averaged to form the hidden variable.

- FastText supervised classifier
 - Accuracy: 0.46

Experimental Details: LSTM and Bi-LSTM

Model structure

wiki-news-300d-1M.vec embedding dim: 300

Experimental Details: LSTM Layer

LSTM Layer

LSTM Layer

- 1. Each input is padded to length n (n = max_len of sentences in a batch)
- 2. Take mean of first n words as the output (n = sentence length)

Fixed vs trainable embedding

- Embedding with Trainable weight: Accuracy: 0.4877
- Embedding Fixed weight: Accuracy: 0.4900

LSTM vs Bi-LSTM

- LSTM Accuracy: 0.4709
- Bi-directional LSTM Accuracy: 0.5044

Experimental Details: Nodes, Layers, Dropouts

		Hidden Nodes / Number of Layers								
		16 / 1	16 / 2	16 / 3	32 / 1	32 / 2	32 / 3	64 / 1	64 / 2	64 / 3
	0.0	0.4347	0.4962	0.4511	0.4313	0.4942	0.4976	0.4463	0.4969	0.5085
D	0.1	0.4278	0.4949	0.5017	0.4238	0.4968	0.4990	0.4532	0.5064	0.5079
r o	0.2	0.4224	0.4409	0.4539	0.4217	0.4928	0.4928	0.4504	0.4997	0.5085
р о	0.3	0.4244	0.4915	0.4908	0.4320	0.4962	0.5044	0.4484	0.4907	0.5058
u t	0.4	0.4210	0.4915	0.5079	0.4254	0.4976	0.5051	0.4457	0.5037	0.5099
	0.5	0.4176	0.4867	0.4266	0.4231	0.5010	0.4990	0.4470	0.4997	0.5010

Experimental Details: Nodes, Layers, Dropouts

		Hidden Nodes / Number of Layers									
		128 / 1	128 / 2	128 / 3	128 / 4	128 / 5	256 / 1	256 / 2	256 / 3	256 / 4	256 / 5
	0.0	0.4545	0.5010	0.5113	0.5099	0.4532	0.4662	0.4566	0.4983	0.4484	0.5037
D	0.1	0.4545	0.4949	0.5031	0.4915	0.4443	0.4778	0.5051	0.5099	0.4792	0.3794
r o p o u t	0.2	0.4668	0.5000	0.5100	0.5120	0.4477	0.4730	0.5051	0.5058	0.5065	0.4498
	0.3	0.4621	0.5058	0.5017	0.5106	0.4442	0.4566	0.5092	0.5072	0.4334	0.4901
	0.4	0.4600	0.4983	0.5072	0.4463	0.5071	0.4819	0.5017	0.5085	0.4545	0.4560
	0.5	0.4710	0.5000	0.5099	0.4580	0.3944	0.4566	0.5031	0.5044	0.4402	0.2659

Experimental Details: Learning rate, etc.

- Different learning rates, different weight_decay, different optimizers
- No specific gain on dev set accuracy

Experimental Details: BERT

Model structure

• Accuracy: 0.28

Experimental Details: BERT

Model structure

• Accuracy: 0.22

Experimental Details: BERT

Model structure

• Accuracy: 0.23

Result: The Best Model

Result: The Best Model

	Precision	Recall	F1-score	Support
Anger	0.49	0.43	0.46	388
Fear	0.40	0.58	0.47	389
Joy	0.76	0.71	0.74	290
Sadness	0.47	0.35	0.40	396
Accuracy			0.51	1463
Macro-Avg	0.53	0.52	0.52	1463
Weighted-Avg	0.52	0.50	0.50	1463

Analysis: Real-world Tweets

- Source: COVID-19-TweetIDs (https://github.com/echen102/COVID-19-TweetIDs)
 - Ongoing collection of tweets ID associated with COVID-19 from Jan 28, 2020
 - Keywords: Coronavirus, covid, stay home, etc.
 - Total number of tweet ID: 836, 949, 388
- Collect and Hydrate tweets from Mar 1 to Nov 30
- Sample 2000 English tweets per day
- Use TextBlob to determine the sentiment polarity of tweets
- Use our best Bi-LSTM model to determine the emotion class of tweets

Tweet Counts / New Confirmed cases

Sentiment Polarity / New Confirmed cases

Emotion Response (Percentage) / New Confirmed cases

Conclusion

- Trained classifiers for multi-class emotion detection.
- Classified the tweets into four emotions and investigating the trend of emotions in relation to the COVID-19 new confirmed case number.

Challenges

- Emotion analysis
 - Less work on emotion analysis in text compared with sentiment analysis.
 - Lack of labeling for supervised learning
- Tweet messages
 - Diverse and may include a rich ensemble of emotions, sentiments and moods.
 - May include neutral emotion, no emotion, or more than one emotion
 - Casual Twitter language, length limitation and noise
 - Dictionary size: 12909
 - Unknown words: 2348 (eg. 'inyourneighborhoodnotdc', 'hhaapppyyybday')
 - Large numbers of potential features
 - Affective Lexicon-based features, POS, etc.

Thank you