

09/214708

300 Res'd PCT/PTO 11 JAN 1999

-1-

DESCRIPTION

CLEANING GAS

TECHNICAL FIELD

The present invention relates to a cleaning gas
5 suitable for use in production of semiconductors.

BACKGROUND ART

Sub B1
Perfluoro compounds such as CF_4 , C_2F_6 , C_4F_8
(perfluorocyclobutane) and SF_6 are used in large amounts
as cleaning gases for plasma CVD chambers in production
10 of semiconductors. Since the perfluoro compounds are
stable and have long atmospheric lifetimes and high
infrared absorbency, they have extremely high global
warming potential (GWP) as compared with carbonic acid
gas. CF_4 is 6300 times, C_2F_6 is 1250 times, C_4F_8 is 9100
15 times and SF_6 is 24900 times as high as carbonic acid gas
in GWP. Therefore, development of a substitute gas
having a low global warming potential is an urgent task.

An object of this invention is to provide a
substitute gas which is suitable for use as a cleaning
20 gas for plasma CVD chambers in production of
semiconductors, the gas having a low global warming
effect.

DISCLOSURE OF INVENTION

The present invention provides the following
25 cleaning gas and cleaning method:

1. A chamber cleaning gas comprising at least one gas selected from the group consisting of $\text{CF}_3\text{CF}=\text{CF}_2$, $\text{CF}_3\text{CF}-\text{CF}_2$ and $\text{CF}_3\text{C}=\text{O}$.

5 2. A chamber cleaning method comprising cleaning a plasma CVD chamber of a semiconductor integrated circuit production device using at least one gas selected from the group consisting of $\text{CF}_3\text{CF}=\text{CF}_2$, $\text{CF}_3\text{CF}-\text{CF}_2$ and $\text{CF}_3\text{C}=\text{O}$.

10 As the chamber cleaning gas of the invention, any of $\text{CF}_3\text{CF}=\text{CF}_2$, $\text{CF}_3\text{CF}-\text{CF}_2$ and $\text{CF}_3\text{C}=\text{O}$ can be used; they can be used singly or in combination of two or more. The chamber cleaning gas of the invention may be used in combination with a monomer gas such as He, Ne, Ar, H_2 , N_2 or O_2 .

15 There is no limitation on materials of the chamber. The chamber may be made of known materials such as stainless steel or aluminum alloy. Without adversely affecting the materials of the chamber, the chamber cleaning gas of the invention can quickly remove reaction byproducts attached to the wall of the chamber.

20 Examples of byproducts removed by the cleaning method of the invention are silicon, polysilicon, tungsten, titanium and their oxides, nitrides and

carbides.

As the chamber cleaning conditions of the invention, conventional conditions using perfluoro compounds may be used as they are.

5 All the three kinds of chamber cleaning gases of the invention have satisfactory levels of properties so that they can be used as substitutes for conventionally used chamber cleaning gasses, namely, CF_4 , C_2F_6 and SF_6 . Moreover, the gases of the invention have much lower
10 global warming potential than CF_4 , C_2F_6 and SF_6 .

For example, when used under known chamber cleaning conditions (pressure = 100 m Torr; input high-frequency power = 300 W; gas flow rate = 50 cc/min) for 30 minutes, $\text{CF}_3\text{CF}=\text{CF}_2$ of the invention fully and quickly
15 removes attached byproducts from the chamber without damaging the chamber. Thus $\text{CF}_3\text{CF}=\text{CF}_2$ of the invention is suitable for use in practice.

When $\text{CF}_3\text{CF}-\text{CF}_2$ is used in place of $\text{CF}_3\text{CF}=\text{CF}_2$
20 under the above conditions, $\text{CF}_3\text{CF}-\text{CF}_2$ fully and quickly removes attached byproducts from the chamber without damaging the chamber, thus being usable in practice.

Similarly, when $\text{CF}_3\text{C}=\text{O}$ is used in place of
25 CF_3

$\text{CF}_3\text{CF}=\text{CF}_2$, $\text{CF}_3\underset{\text{CF}_3}{\text{C}}=\text{O}$ fully and quickly removes attached byproducts from the chamber without damaging the chamber, thus being usable in practice.

5 According to the present invention, chamber cleaning can be done satisfactorily, without using any of CF_4 , C_2F_6 , C_4F_8 and SF_6 that have extremely high global warming potential as compared with carbonic acid gas.

DRAFT - 2023-07-20