

## planetmath.org

Math for the people, by the people.

## tangent bundle

Canonical name TangentBundle

Date of creation 2013-03-22 13:58:59 Last modified on 2013-03-22 13:58:59

Owner bwebste (988) Last modified by bwebste (988)

Numerical id 5

Author bwebste (988)
Entry type Definition
Classification msc 58A32
Related topic VectorField
Related topic LieAlgebroids

Let M be a differentiable manifold. Let the tangent bundle TM of M be(as a set) the disjoint union  $\coprod_{m\in M} T_mM$  of all the tangent spaces to M, i.e., the set of pairs

$$\{(m,x)|m\in M, x\in T_mM\}.$$

This naturally has a manifold structure, given as follows. For  $M=\mathbb{R}^n,\,T\mathbb{R}^n$  is obviously isomorphic to  $\mathbb{R}^{2n}$ , and is thus obviously a manifold. By the definition of a differentiable manifold, for any  $m\in M$ , there is a neighborhood U of m and a diffeomorphism  $\varphi:\mathbb{R}^n\to U$ . Since this map is a diffeomorphism, its derivative is an isomorphism at all points. Thus  $T\varphi:T\mathbb{R}^n=\mathbb{R}^{2n}\to TU$  is bijective, which endows TU with a natural structure of a differentiable manifold. Since the transition maps for M are differentiable, they are for TM as well, and TM is a differentiable manifold. In fact, the projection  $\pi:TM\to M$  forgetting the tangent vector and remembering the point, is a vector bundle. A vector field on M is simply a section of this bundle.

The tangent bundle is functorial in the obvious sense: If  $f: M \to N$  is differentiable, we get a map  $Tf: TM \to TN$ , defined by f on the base, and its derivative on the fibers.