CS1632, Lecture 16: Pairwise and Combinatorial Testing

Wonsun Ahn

Let's Test A Word Processor

- Specifically, its ten possible font effects
 - Italic
 - Bold
 - Underline
 - Strikethrough
 - Superscript
 - Shadow
 - Embossed
 - 3-D
 - Outline
 - Inverse

These can be combined

- Plain text
- Superscript
- Bold
- Italic and strikethrough
- Bold and underlined
- Bold italic strikethrough shadowed superscript

How many tests would you need to test all the possible font combinations?

2¹⁰

1,024 tests!

That's quite a few tests...

ь	i	u	s	h	е	d	0	n
-	T			T	-	T	T	-
т	_	-	-	-	-	т	-	F
т —				-	-	т	F	-
-		-			т	-	F	=
т					-	F	-	-
т —		т		-	т	F		=
					-	F	F	-
						F	F	=
	T	Ŧ			F			
Ŧ	Ŧ	÷	Ŧ	Ŧ		Ŧ	Ŧ	F
'	÷	÷	÷	÷	F	÷	F	Ė
÷	÷	÷	÷	÷	F	Ė	Ŧ	Ŧ
÷	÷	÷	÷	÷	F	F	÷	Ė
÷	÷	÷	÷	÷	F	F	Ė	두
÷	÷	÷	÷	÷	F	F	F	Ė
l ÷	÷	÷	÷	Ė	÷	÷	÷	÷
l ÷	÷	÷	÷	Ė	÷	÷	÷	Ė
÷	÷	÷	÷	=	÷	÷	Ė	÷
÷	÷	÷	÷	Ė	÷	÷	F	Ė
÷	÷	÷	÷	Ė	÷	Ė	÷	÷
l ÷	÷	÷	÷	i	÷	i	÷	Ė
+	Ť	-	Ť	_	-	=	_	-
-	Ť	-	Ť	_	_	=	=	=
-	т	-	_	_	_	_	_	-
-		-	_	=	=	-	-	=
т -				_	_		_	т —
т —				_	_		_	=
	T	-	-	_	_	_	-	т —
т —		-	т			_	-	F
-		-				_		т —
-				=	=	F	=	_
-	_	_	_		-		_	-
-	_	_	F		_	-	_	-
<u> </u>	ェ	T	E	エ		I	=	Ŧ
エ	I	ェ	E	エ	T	T	E	E
T	エ		E	エ		=		I
<u>T</u>	Ŧ	Ŧ	E	Ŧ	Ŧ	F	F	F
T	÷	÷	F	÷	÷	F	F	F
l ÷	÷	÷	F	÷	Ė	Ŧ	Ŧ	Ŧ
Ι÷	÷	÷	F	÷	F	÷	÷	Ė
÷	÷	÷	F	÷	F	÷	Ė	두
l ÷	÷	÷	Ė	÷	Ė	÷	Ė	Ė
÷	÷	÷	F	Ť	F	Ė	Ť	Ť
÷	÷	÷	=	÷	·	F	÷	Ė
l ÷	Ť	-	F	Ť	F	F	=	-

But it's necessary! What if...

... a problem only occurs with 3-D shadowed bold italic superscript text?

That's going to be hard to find.

Turns Out Other People Have Thought About This!

- The National Institute of Standards and Technology did a survey
- See: "Practical Combinatorial Testing", <u>http://nvlpubs.nist.gov/nistpubs/Legacy/SP/</u> nistspecialpublication800-142.pdf
- Study of dozens of applications in 6 domains
 - Medical devices, Web Browser, Web Server, Database, Network Security

Turns Out That's Unlikely!

- On average, percentage of defects covered by ...
 - A single variable: 17 68%
 - Two interacting variables: 53 97%
 - Three interacting variables: 74 99%
 - Four interacting variables: 89 100%
 - Five interacting variables: 96 100%
 - Six interacting variables: 100%
- Majority of defects are found just by testing all possible pairs
- At max, just SIX variables were involved in a defect

Error detection rates for interactions 1 to 6

Similar Distribution Found In Many Domains

- Web browser
- Avionics software
- Telecommunications software
- Flight Traffic Control
- Network security software

Pairwise Testing

- This is called "pairwise", or "all-pairs" testing.
- We are testing all possible pairs of interactions, e.g.:
 - Not-Bold / Not-Italic
 - Bold / Not-Italic
 - Not-Bold / Italic
 - Bold / Italic

Remember our exhaustive 10-font-effect testing plan?

- It was 1,024 (2 ^ 10) tests.
- How many tests would it require to test all pairs of interactions?
 - That is, all possible combinations of:
 - bold/italic,
 - subscript/bold
 - underline/strikethrough
 - Every possible pairing of two variables

• Choose 2 from
$$10 = {10 \choose 2} = \frac{10*9}{2} = 45$$
?

• No! A single test can test multiple pairs of interactions at the same time

Answer: 10

	BOLD	ITALIC	STRIKETHROUGH	UNDERLINE	THREED	SHADOW	SUPERSCRIPT	SUBSCRIPT	EMBOSSED	ENGRAVED
1	true	true	false	false	false	false	false	false	false	false
2	true	false	true	true	true	true	true	true	true	true
3	false	true	true	false	true	false	true	false	true	false
4	false	false	false	true	false	true	false	true	false	true
5	false	true	false	true	true	false	true	true	false	false
6	false	false	true	false	false	true	false	false	true	true
7	true	true	false	false	false	true	true	true	true	false
8	false	false	true	true	true	false	false	false	false	true
9	false	true	true	false	true	false	false	true	true	true
10	true	false	false	false	false	false	true	false	true	false

- Reduced number of tests by two orders of magnitude! (1024 ightarrow 10)
- Is this always good enough test coverage?

Of course not

- But we can "dial up" the number of possible interactions to check for any t number of interactions
- For example, check every three-way combination (t = 3):
 - Bold / Italic / Underline
- Or four-way (t = 4)
 - Bold / Italic / Underline / Superscript
- Up to whatever number of interactions possible
 - At this point, would be the same as exhaustive testing

Combinatorial Testing

- This generalized version of pairwise testing is known as "combinatorial testing"
- Note that pairwise testing is technically just a specific kind of combinatorial testing where t=2

Combinatorial Testing Example

- The maximum number of interactions causing a defect found in the NIST studies was six. So let's test all six-way combinations of our font effects.
- Recall that:
 - # tests required for full pairwise testing was 10
 - # tests required for exhaustive testing was 1,024
 - How many to test all six-way interactions?

Actually a difficult question to answer off the top of your head

- Determining the exact number necessary is an NP-Hard problem.
- But there are some good algorithms out there that approximate it
- See "IPOG: A General Strategy for T-Way Software Testing" https://www.nist.gov/publications/ipog-general-strategy-t-way-software-testing

... and the answer is...

- The best answer IPOG software could come up with is 178.
- Approximately an order of magnitude less than exhaustive testing!
- But in any piece of software tested by NIST, would have found the same number of defects

Interesting!

- Pairwise testing (10 tests): catches 90% of defects
- Six-way testing (178 tests): catches ~99.999999% of defects
- Exhaustive testing (1024 tests): catch ~100% of defects

IF THEY ARE DONE RIGHT!

Law of Diminishing Returns

- We already saw increasing t in t-way interactions does not get us much beyond t = 2 or t = 3
- How about testing cost?
 - Cost increases exponentially as we increase t!
 - Cost = $O(d^t * log n)$
 - t: number of interactions
 - *d*: domain size (number of values a parameter can take)
 - *n*: number of parameters

Number of Tests when n = 10, d = 5

t-way	2	3	4	5	6
Size	48	308	1843	10119	50920
Time	0.11	0.56	6.38	63.8	791.35

Covering Arrays

- Covering array: set of test cases covering all t-way combinations
- At below is a covering array where t = 3

Steps To Make Your Own Covering Array

- Make a truth table with all variables
 - Each line in truth table indicates a test
 - Running all these tests would be an exhaustive test
- Make a list of all t-way interactions for desired t
 - Example: Bold, Italic, Underline. t = 2
 - Bold / Italic
 - Bold /Underline
 - Italic/Underline

Generating Covering Arrays

- Look for tests which make a complete truth table for each t-way interaction
- Mark these tests as "Tests To Be Executed"
- Continue adding t-way interactions tests
 - Prefer using tests which are already scheduled to be executed
- When all t-way interaction "mini truth tables" have been completed, put together all tests to be executed

Covering Array Example

Bold	Italic	Underline	Mini-	Truth
F	F	F	F	F
F	F	T	F	T
F	T	F	T	F
F	T	T	T	T
Т	F	F		
Т	F	T		
T	T	F		
Т	T	T		

Covering Array Example

Test	Bold	Italic	Underline	
1	F	F	F	Bold / Italic
2	F	F	T	Bold / Underline
3	F	T	F	Italic / Underline
4	F	T	T	
5	T	F	F	
6	T	F	T	
7	T	T	F	
8	T	Т	Т	

Covering Array Example – Bold / Italic

Test	Bold	Italic	Underline	
1	F	F	F	Bold / Italic
2	F	F	T	Bold / Underline
3	F	T	F	Italic / Underline
4	F	T	T	
5	T	F	F	
6	T	F	T	
7	Т	T	F	
8	Т	Т	Т	

Covering Array Example – Bold / Underline

Test	Bold	Italic	Underline	
1	F	F	F	Bold / Italic
2	F	F	T	Bold / Underline
3	F	T	F	Italic / Underline
4	F	T	Т	
5	Т	F	F	
6	T	F	Т	
7	T	T	F	
8	Т	Т	Т	

Covering Array Example – Italic / Underline

Test	Bold	Italic	Underline	
1	F	F	F	Bold / Italic
2	F	F	T	Bold / Underline
3	F	T	F	Italic / Underline
4	F	T	T	
5	T	F	F	
6	T	F	T	
7	T	T	F	
8	Т	Т	Т	

Run a Subset of Tests

Test	Bold	Italic	Underline	
1	F	F	F	Bold / Italic
2	F	F	T	Bold / Underline
3	F	T	F	Italic / Underline
4	F	T	T	
5	T	F	F	Necessary Tests
6	T	F	T	Unnecessary Tests
7	T	T	F	
8	Т	Т	Т	

Can Minimize Further Using Better Algorithms

Bold	Italic	Underline	
F	F	F	Bold / Italic
F	F	T	Bold / Underline
F	T	F	Italic / Underline
F	T	T	
Т	F	F	Necessary Tests
Т	F	Т	Unnecessary Tests
Т	Т	F	
Т	Т	Т	
	F F T T	F F F F T T F T T T	F F F F F T F T F T T F T F T T T F T F

OK, this works for small numbers of variables, but what about big ones?

- Imagine a 34-variable system
 - Exhaustive testing: 17 billion tests
 - All 3-way interactions: 33 tests
 - All 4-way interactions: 85 tests
- Actually gets BETTER the higher the number of variables (n)
 - Size of exhaustive testing: $O(2^n) \rightarrow$ Exponential!
 - Size of coverage array: $O(2^t * log n) \rightarrow Logarithmic!$
- Not just a little better many orders of magnitude better

Remember at the beginning of the term when I talked about the impossibility of testing every combination of inputs?

This is a possible amelioration.

Won't It Take Long To Manually Make Covering Arrays For Large Number of Variables?

YES

- Are you kidding? I already told you it is an NP-Hard problem.
- You can use a program to do it for you.
- Example: NIST ACTS

https://csrc.nist.gov/Projects/automated-combinatorial-testing-for-software/downloadable-tools