

Seminar: Geospatial Web Development – Einführung in WebGIS Technologien

Dozierende: Dr. Michael Auer & Marcel Reinmuth

Referent: Nikolaos Kolaxidis

Universität Heidelberg

12.01.2023

Räumliche Operationen
—

Was sind räumliche Operationen? Was ist GIS?

Turf.js
—
Entwicklung, Hintergründe & Eigenschaften

03 Praxis

Einbindung, Ausführung & Übung

"Räumlich":

- Daten mit räumlichem Bezug (Koordinaten)
- Enthalten oft zusätzliche Sachdaten (Tabellen)
- Vektor- & Rasterdaten

Räumliche Operationen:

- Geoanalyse (Entfernungs-/Größenmessungen, Lagebeziehungen etc.)
- Geodatentransformation (Interpolation, Simplifizierung etc.)
- Geoprozessierung

Equals A is the same as B	(A B)
Touches A touches B	AB
Overlaps A and B have multiple points in common	AB
Contains A contains B	AB
Disjoint A shares nothing with B	AB
Covers A covers B (or vice versa)	AB
Crosses A and B have at least	A B

one point in common

Tools der Geoprozessierung

Was soll ein **Geoinformationssystem** leisten können?

→ "Erfassung, Verwaltung, Analyse und Präsentation räumlicher Daten" (DVAG 2017)

Übung 1	Konzipieren einer HTML-Seite	Präsentation
Übung 2	Layererstellung mit OpenLayers	Präsentation, Verwaltung, Nutzen von Web-Services
Übung 3	Geoserver-Workflow	Präsentation, Verwaltung, Nutzen von Web-Services
Übung 4	Interaktive Karte	Präsentation , Verwaltung , Erfassung , Nutzen von Web-Services

Web-Services:

- WMS: Web Map Service (WMTS)
- WFS: Web Feature Service
- WPS: Web Processing Service

(nicht im Geoserver enthalten)

WPS vs. Turf.js

- Dezentralität von Daten und Rechenleistung
- schneller bei komplexen Aufgaben
- ein Server viele Clients

Nachteile:

- komplexe Infrastruktur
- unnötiger Aufwand für kleine Aufgaben
- internetabhängig (kein Internet, kein WPS)

Vorteile:

- internetunabhängig
- Server = Client
- schnell bei kleinen Aufgaben
- einfach integrierbar

Nachteile:

- alles an einem Ort (große Daten)
- langsamer bei sehr komplexen Aufgaben

Advanced geospatial analysis for browsers and Node.js

Eine **simple**, **modulare** und **schnelle** JavaScript Bibliothek für räumliche Operationen

- entwickelt 2013 von Morgan Herlocker, 2014 übernommen von Mapbox
- Open-Source, kostenlos verfügbar, kein Access Token notwendig
- kann auf drei Arten ausgeführt werden:
 - 1. ohne Webseite (Node.js) offline
 - 2. mit Webseite ohne Kartenanwendung (Konsole) online/offline
 - 3. in Webseite mit Kartenanwendung online/offline
 - → hohe Flexibilität und Unabhängigkeit

11

Was kann Turf.js?

Measurement

Nikolaos Kolaxidis

Assertions

Feature Conversion

Coordinate Mutation Aggregation

Metadata

Randomize

Räumliche Operationen mit Turf.js

Joins

... und mehr

Interpolation

Grids

Geodata Transformation

Classification

Anwendungsbeispiel

Turf.js Beispiel - Measure Distance: https://docs.mapbox.com/mapbox-gl-js/example/measure/

Einbindung & Ausführung

Komplettpaket mit allen Funktionen - online:

```
<script
```

src="https://cdn.jsdelivr.net/npm/@turf/turf@6/turf.min.js">

</script>

Komplettpaket mit allen Funktionen - offline:

<script src="./turf.min.js"></script>

Einzelne Funktionen (Module):

<script src="./myturf.js"></script>

Aufrufen der Funktionen:

turf.tool(params);

turf.buffer(pointA, 40);

GeoJSON & turf/helpers

"type": "FeatureCollection",

8.769622902184153, 49.422133593301794

8.751587180743968.

"type": "Polygon"

"features": [

Kompatible APIs:

OpenLayers, Leaflet, Mapbox.js, Mapbox GS JS, Google Maps JS API, TomTom Maps SDK etc.

→ wird GeoJSON unterstützt, wird auch Turf.js unterstützt

GeoJSON?

- basiert auf JSON (entwickelt 1997)
- in nahezu allen Programmiersprachen nutzbar
- Dictionary mit key-value Paaren wie z.B. {...{"type": "Polygon"}...}
- eingesetzt seit 2007, erst 2016 RFC 7946
- "Geo": zusätzlich zu Attributen **Geometrien & Koordinaten**

Helper-Modul:

turf.tool([coords], options);

turf.point([-75.343, 39.984], {name: 'Location A'});

featureCollection

feature

geometryCollection

lineString

multiLineString multiPoint

multiPolygon

point

polygon

Download der Workshop-Daten von Moodle und Aufrufen von turfjs.org

Gegeben seien 3 Punkte: ein Referenzpunkt (RP) und zwei weitere willkürlich gewählte

Nach Feststellen des Nearest Neighbor (NN) zum RP möchten wir herausfinden, ob der andere Punkt (FP)

weniger als doppelt so weit vom RP weg ist wie der NN zum RP

anders ausgedrückt:

 $Ist \overrightarrow{RP FP} < 2 * \overrightarrow{RP NN} ?$

Nochmal: was ist Turf.js?

Advanced geospatial analysis for browsers and Node.js

Simple

Modular, simple-to-understand JavaScript functions that speak GeoJSON

Modular

Turf is a collection of small modules, you only need to take what you want to use

Fast

Takes advantage of the newest algorithms and doesn't require you to send data to a server

Willkommen auf dem nächsten Level des WebMappings: WebGIS!

Weiterführende Links

Bibliotheken für einzelne Operationen: https://www.akselipalen.com/2021/06/10/2d-geometry-libraries-for-javascript/

Geolib auf GitHub: https://github.com/manuelbieh/ Geolib

Morgan Herlocker: https://www.linkedin.com/in/morgan-herlocker-1948671b/

Turf.js auf GitHub: https://github.com/Turfjs/turf

Turf.js Dokumentation: https://turfjs.org

Turf.js in OpenLayers: https://openlayers.org/en/latest/examples/turf.html

Turf.js Beispiel - Measure Distance: https://docs.mapbox.com/mapbox-gl-js/example/measure/

Turf.js - kurzes Tutorial: https://store.extension.iastate.edu/product/Mapping-APIs-Turfjs-in-the-Browser-Console

Literatur

DVAG [Deutscher Verband für Angewandte Geographie e.V.] (2017): Arbeitskreis Geoinformationssysteme (GIS). - URL: https://geographie-dvag.de/geoinformationssysteme-gis/ [08.01.2023].

ESRI (2006): An overview of commonly used tools. - URL: https://webhelp.esri.com/arcgisdesktop/9.2/index.cfm?TopicName=An_overview_of_commonly_used_tools [08.01.2023].

GIS-Trainer (2022): Turf.js - Geoverarbeitung im Browser. - URL: https://gis-trainer.de/de/Turf [09.01.2023].

Gremling, Numa (2016): Turf.js - Geoverarbeitung im Browser. Präsentationm auf der Fossgis 2016. - URL: http://geosysnet.de/custom/downloads/Gremling_TurfJS_FOSSGIS2016.pdf [06.01.2023].

Mapbox (2023): Measure distances. - URL: https://docs.mapbox.com/mapbox-gl-js/example/measure/ [09.01.2023].

Pennsylvania State University (2020): Spatial Relationships. - URL: https://www.e-education.psu.edu/maps/l2 p5.html [10.01.2023].

Pepple, S. (2015): Javascript for Geospatial and Advanced Maps - URL: https://codepen.io/stevepepple/post/javascript-geospatial-examples [09.01.2023].

Seip, C./Korduan, P./Zehner, M. L. (2017): Web-GIS. Grundlagen, Anwendungen und Implementierungsbeispiele. Wichmann.

SEWilco (2007): GeoServer and GeoNetwork with interfaces and applications sketch. - URL: https://commons.wikimedia.org/wiki/File:GeoServer_GeoNetwork_with_web_app.png [09.01.2023].

Turf.js. (2023): Turf.js. - URL: https://turfjs.org/docs [07.01.2023].

Winsemius, R. (2016): turf-builder. - URL: https://github.com/rowanwins/turf-builder [09.01.2023].

console.log("Vielen Dank für die Aufmerksamkeit!")

Seminar: Geospatial Web Development – Einführung in WebGIS Technologien

Referent: Nikolaos Kolaxidis

Universität Heidelberg

12.01.2023

