VEŽBE IZ MATEMATIČKE ANALIZE I

Novi Sad, 2020.

2		Matematička analiza I
S	adržaj	
1	Vežbe II.7	3
	1.1 Uslovni ekstremi	3

1. Vežbe II.7

1.1. Uslovni ekstremi

Neka je data funkcija $f:D\to\mathbb{R}$ definisana na skupu $D\subset\mathbb{R}^2$ i neka je data funkcija $\varphi:D\to\mathbb{R}$. Neka je skup B dat sa $B=\{(x,y)\in D:\varphi(x,y)=0\}$ i pretpostavimo da je $B\neq\emptyset$. Kažemo da je skup B određen uslovom ili vezom $\varphi(x,y)=0$.

Kažemo da funkcija z=f(x,y) u tački $A(x,y)\in B$ ima uslovni (vezani) lokalni maksimum (odnosno uslovni (vezani) lokalni minimum) pri uslovu

$$\varphi(x,y) = 0,$$

ako postoji broj $\varepsilon > 0$, takav da za svako $X \in (B \setminus \{A\}) \cap L(A, \varepsilon)$ važi

$$f(X) < f(A)$$
 (odnosno $f(X) > f(A)$),

tj.
$$(\exists \varepsilon > 0), (\forall X \in B \cap (L(A, \varepsilon) \setminus \{A\})), f(X) < f(A), (odnosno f(X) > f(A)).$$

Uslovni lokalni maksimum, odnosno uslovni lokalni minimum, jednim imenom zovemo uslovni ili vezani ekstremi. Jednačina $\varphi(x,y)=0$ zove se jednačina veze.

Dakle, u nalaženju uslovnog ekstrema funkcije z=f(x,y) promenljive x i y se ne mogu više smatrati kao nezavisne promenljive jer su one povezane relacijom $\varphi(x,y)=0$.

Postupak nalaženja tačaka koje mogu biti uslovni ekstremi funkcije z=f(x,y) pod uslovom da je $\varphi(x,y)=0$ je predstavljen kroz sledeće korake.

1. Formiramo Lagranžovu funkciju na sledeći način

$$F(x, y, \lambda) = f(x, y) + \lambda \varphi(x, y).$$

2. Tražimo stacionarne tačke tako što izjednačimo prve parcijalne izvode $\frac{\partial F}{\partial x}$, $\frac{\partial F}{\partial y}$ i $\frac{\partial F}{\partial \lambda}$ funkcije $F(x,y,\lambda)$ sa nulom. Dobijamo sistem od tri jednačine

$$\frac{\partial F}{\partial x} = f_x(x, y) + \lambda \varphi_x(x, y) = 0,$$

$$\frac{\partial F}{\partial y} = f_y(x, y) + \lambda \varphi_y(x, y) = 0,$$

$$\frac{\partial F}{\partial \lambda} = \varphi(x, y) = 0,$$

pomoću kojih određujemo vrednosti parametra λ i koordinate x i y potencijalnih tačaka ekstrema. Neka tačka $A(x_0, y_0)$ zadovoljava dati sistem za λ_0 .

- 3. **Diferenciramo uslov** $\varphi(x,y) = 0$, odakle dobijamo vezu dx i dy.
- 4. Totalni diferencijal drugog reda

Pitanje postojanja i prirode uslovnih ekstrema se rešava pomoću znaka totalnog diferencijala drugog reda Lagranžove funkcije

$$d^{2}F(x,y) = \frac{\partial^{2}F}{\partial x^{2}}dx^{2} + 2\frac{\partial^{2}F}{\partial x\partial y}dxdy + \frac{\partial^{2}F}{\partial y^{2}}dy^{2},$$

za skup vrednosti x_0, y_0, λ_0 pod uslovom $\frac{\partial \varphi}{\partial x} dx + \frac{\partial \varphi}{\partial y} dy = 0, (dx, dy) \neq (0, 0).$ Dalje,

- ako je $d^2F(x_0,y_0) < 0$, tada u tački (x_0,y_0) funkcija f(x,y) ima uslovni maksimum,
- ako je $d^2F(x_0,y_0) > 0$, tada u tački (x_0,y_0) funkcija f(x,y) ima **uslovni minimum**,
- a ako $d^2F(x_0, y_0)$ menja znak, tada u tački (x_0, y_0) funkcija f(x, y) nema uslovni ekstrem.

Analogno tražimo i ekstreme funkcije $z = f(x_1, x_2, \ldots, x_n)$ pod uslovom da je $\varphi_1(x_1, x_2, \ldots, x_n) = 0, \varphi_2(x_1, x_2, \ldots, x_n) = 0, \ldots, \varphi_m(x_1, x_2, \ldots, x_n) = 0$, gde je $1 \leq m < n$. Lagranžova funkcija u ovom slučaju ima sledeći oblik

$$\begin{split} F(x_1, x_2, ..., x_n, \lambda_1, \lambda_2, ..., \lambda_m) &= f(x_1, x_2, ..., x_n) \\ &+ \lambda_1 \varphi_1(x_1, x_2, ..., x_n) + ... + \lambda_m \varphi_m(x_1, x_2, ..., x_n). \end{split}$$

Zadatak 1.1. Naći ekstreme funkcije

$$z(x,y) = y^2 - x^2 + 5$$

pod uslovom

$$y + 2x - 16 = 0$$
.

Rešenje.

Lagranžova funkcija: $F(x, y, \lambda) = y^2 - x^2 + 5 + \lambda(y + 2x - 16)$ Stacionarne tačke:

$$\begin{split} \frac{\partial F}{\partial x} &= -2x + 2\lambda = 0 \Leftrightarrow x = \lambda, \\ \frac{\partial F}{\partial y} &= 2y + \lambda = 0 \Leftrightarrow y = -\frac{\lambda}{2}, \\ \frac{\partial F}{\partial \lambda} &= y + 2x - 16 = 0 \Leftrightarrow -\frac{\lambda}{2} + 2\lambda - 16 = 0 \Leftrightarrow 3\lambda - 32 = 0 \Rightarrow \lambda = \frac{32}{3}. \end{split}$$

Dalje, dobijamo da je $x=\lambda=\frac{32}{3}$ i $y=-\frac{\lambda}{2}=-\frac{32}{3}=-\frac{16}{3}$, pa sledi da je stacionarna tačka tačka $A(\frac{32}{3},-\frac{16}{3}).$

Diferenciranje uslova: Diferenciranjem uslova dobija se dy + 2dx = 0, odnosno

$$dy = -2dx$$
.

Totalni diferencijal drugog reda:

Uvrštavanjem vrednosti parcijalnih izvoda drugog reda u tački A u totalni diferencijal drugog reda dobijamo

$$d^{2}F(A) = -2dx^{2} + 2dy^{2}$$
$$= -2dx^{2} + 8dx^{2}$$
$$= 6dx^{2} > 0.$$

odakle sledi da funkcija z(x,y)ima uslovni minimum u tački Ai on iznosi $-\frac{241}{3}.$

Zadatak 1.2. Proveriti da li funkcija

$$u(x, y, z) = xy + yz$$

u tački A(1,1,1) ima uslovni ekstrem ako je

$$x^2 + y^2 = 2$$
 i $y + z = 2$.

Rešenje.

Lagranžova funkcija: $F(x,\ y,z,\lambda_1,\lambda_2)=xy+yz+\lambda_1(x^2+y^2-2)+\lambda_2(y+z-2)$

Stacionarne tačke:

$$\begin{split} \frac{\partial F}{\partial x} &= y + 2\lambda_1 x = 0 \Leftrightarrow \lambda_1 = -\frac{y}{2x}, \\ \frac{\partial F}{\partial y} &= x + z + 2\lambda_1 y + \lambda_2 = 0, \\ \frac{\partial F}{\partial z} &= y + \lambda_2 = 0 \Leftrightarrow y = -\lambda_2, \\ \frac{\partial F}{\partial \lambda_1} &= x^2 + y^2 - 2 = 0, \\ \frac{\partial F}{\partial \lambda_2} &= y + z - 2 = 0. \end{split}$$

Kako je zadatak da se proveri da li funkcija u(x, y, z) ima ekstremnu vrednost u tački A(1, 1, 1), primetimo prvo da su četvrta i peta jednačina zadovoljene za x = y = z = 1.

Dalje, ispitaćemo da li je moguće izračunati vrednost parametara λ_1 i λ_2 tako da važe i preostale tri navedene jednačine. Za x=y=z=1, iz prve jednačine dobijamo da je $\lambda_1=-\frac{1}{2}$, a iz treće da je $\lambda_2=-1$. Kako je za ove vrednosti parametara λ_1 i λ_2 zadovoljena i druga jednačina, zaključujemo da je stacionarna tačka tačka

$$A(1,1,1)$$
.

Diferenciranje uslova: Diferenciranjem prvog uslova y+z=2 dobija se dy+dz=0, odnosno

$$dz = -dy$$
.

Diferenciranjem drugog uslova $x^2+y^2=2$ dobija se 2xdx+2ydy=0, odnosno dx+dy=0. Odavde je

$$dx = -dy.$$

Totalni diferencijal drugog reda:

$$\begin{split} \frac{\partial^2 F}{\partial x^2} &= 2\lambda_1 = -1, \quad \frac{\partial^2 F}{\partial x \partial y} = 1, & \frac{\partial^2 F}{\partial x \partial z} = 0, \\ \frac{\partial^2 F}{\partial y^2} &= 2\lambda_1 = -1, \quad \frac{\partial^2 F}{\partial y \partial z} = 1, \\ \frac{\partial^2 F}{\partial z^2} &= 0, \end{split}$$

Uvrštavanjem parcijalnih izvoda drugog reda u totalni diferencijal drugog reda dobijamo

$$d^{2}F(A) = -dx^{2} - dy^{2} + 2dxdy + 2dydz$$

$$= -(dx - dy)^{2} + 2dydz$$

$$= -(2dy)^{2} - 2dy^{2}$$

$$= -6dy^{2} < 0,$$

odakle sledi da funkcija u(x,y,z)ima uslovni maksimum u tački Ai on iznosi 2.

Zadatak 1.3. Broj 27 predstaviti kao proizvod tri broja tako da je zbir ta tri broja minimalan.

Rešenje.

Funkcija koju treba da minimiziramo je u(x, y, z) = x + y + z pod uslovom da je xyz = 27.

Lagranžova funkcija: $F(x, y, z, \lambda) = x + y + z + \lambda(xyz - 27)$ Stacionarne tačke:

$$\frac{\partial F}{\partial x} = 1 + \lambda yz = 0,$$

$$\frac{\partial F}{\partial y} = 1 + \lambda xz = 0,$$

$$\frac{\partial F}{\partial z} = 1 + \lambda xy = 0,$$

$$\frac{\partial F}{\partial \lambda} = xyz - 27 = 0.$$

Ako iz prve jednačine izrazimo $\lambda = -\frac{1}{yz}$ i uvrstimo u drugu i treću jednačinu dobijamo da je x = y = z, pa je $x^3 = 27$, tj. x = y = z = 3 za $\lambda = -\frac{1}{9}$. Dakle, stacionarna tačka je A(3,3,3) za $\lambda = -\frac{1}{9}$.

Diferenciranje uslova: yzdx + xzdy + xydz = 0, a uvrštavanjem vrednosti za A dobijamo da je

$$dx = -dy - dz$$
.

Totalni diferencijal drugog reda: Za parcijalne izvode drugog reda dobijamo

$$\begin{split} \frac{\partial^2 F}{\partial x^2} &= 0, \quad \frac{\partial^2 F}{\partial x \partial y} = \lambda z, \quad \frac{\partial^2 F}{\partial x \partial z} = \lambda y, \\ \frac{\partial^2 F}{\partial y^2} &= 0, \quad \frac{\partial^2 F}{\partial y \partial z} = \lambda x, \\ \frac{\partial^2 F}{\partial z^2} &= 0, \end{split}$$

pa je totalni diferencijal drugog reda u tački A

$$d^{2}F(A) = -\frac{2}{3}dxdy - \frac{2}{3}dxdz - \frac{2}{3}dydz$$
$$= -\frac{2}{3}(-dy^{2} - dydz - dz^{2})$$
$$= \frac{1}{3}((dy + dz)^{2} + dy^{2} + dz^{2}) > 0.$$

Dakle, u tački A funkcija dostiže uslovni minimum u(3,3,3)=9, tj. broj 27 treba predstaviti kao $27=3\cdot 3\cdot 3$.

Zadatak 1.4. Neka su x,y i z stranice kvadra čija površina omotača iznosi $24cm^2$. Odrediti za koje x,y i z će zapremina kvadra biti maksimalna.

Rešenje.

Treba odrediti maksimalnu zapreminu kvadra čija površina omotača iznosi $24cm^2$, tj. treba maksimizirati funkciju

$$V(x, y, z) = xyz$$

pod uslovom 2xy + 2xz + 2yz = 24, odnosno

$$xy + xz + yz - 12 = 0.$$

Lagranžova funkcija: $F(x,y,z,\lambda) = xyz + \lambda(xy + xz + yz - 12)$ Stacionarne tačke:

$$\begin{split} \frac{\partial F}{\partial x} &= yz + \lambda y + \lambda z = 0, \\ \frac{\partial F}{\partial y} &= xz + \lambda x + \lambda z = 0, \\ \frac{\partial F}{\partial z} &= xy + \lambda x + \lambda y = 0, \\ \frac{\partial F}{\partial \lambda} &= xy + xz + yz - 12 = 0. \end{split}$$

Rešenje datog sistema jednačina je tačka A(2,2,2) koja se dobija za $\lambda = -1$. **Diferenciranje uslova:** Diferenciranjem uslova dobijamo

$$(y+z)dx + (x+z)dy + (x+y)dz = 0,$$

tj. u tački A imamo da je

$$4dx + 4dy + 4dz = 0,$$

pa je

$$dx = -dy - dz$$
.

Totalni diferencijal drugog reda: Za parcijalne izvode drugog reda dobijamo

$$\begin{split} \frac{\partial^2 F}{\partial x^2} &= 0, \quad \frac{\partial^2 F}{\partial x \partial y} = z + \lambda, \quad \frac{\partial^2 F}{\partial x \partial z} = y + \lambda, \\ \frac{\partial^2 F}{\partial y^2} &= 0, \quad \frac{\partial^2 F}{\partial y \partial z} = x + \lambda, \\ \frac{\partial^2 F}{\partial z^2} &= 0, \end{split}$$

pa važi
$$\frac{\partial^2 F}{\partial x \partial y}(A) = \frac{\partial^2 F}{\partial x \partial z}(A) = \frac{\partial^2 F}{\partial y \partial z}(A) = 1.$$

Uvrštavanjem parcijalnih izvoda drugog reda u totalni diferencijal drugog reda dobijamo

$$d^{2}F(A) = 2dxdy + 2dxdz + 2dydz$$

= 2(-dy - dz)dy + 2dxdz + 2dydz
= -dy^{2} - dz^{2} - (dy + dz)^{2} < 0,

pa u tački A(2,2,2) funkcija dostiže maksimum. Dakle, kvadar čija je površina omotača $24cm^2$ ima maksimalnu zapreminu ukoliko su njegove stranice x=y=z=2 i ona iznosi $V=8cm^3$.

Literatura

- [1] Ilija Kovačević, Nebojša Ralević, Biljana Carić, Vojislav Marić, Momčilo Novaković, Slavica Medić. *Matematička analiza 1, Uvodni pojmovi i granični procesi*. FTN Izdavaštvo, Novi Sad 2018.
- [2] Ilija Kovačević, Nebojša Ralević, Biljana Carić, Vojislav Marić, Momčilo Novaković, Slavica Medić. *Matematička analiza 1, Diferencijalni i integralni račun; obične diferencijalne jednačine*. FTN Izdavaštvo, Novi Sad 2018.
- [3] Ilija Kovačević, Biljana Carić, Slavica Medić, Vladimir Ćurić. *Testovi sa ispita iz Matematičke analize 1.* FTN Izdavaštvo, Novi Sad 2018.
- [4] Ilija Kovačević, Biljana Carić, Slavica Medić, Vladimir Ćurić, Momčilo Novaković. Zbirka rešenih zadataka iz Matematičke analize 1. FTN Izdavaštvo, Novi Sad 2018.