EXAMEN DE CÁLCULO. GRADO EN INGEN. INFORM. DEL SOFTWARE. 20-06-2019

Se ha de contestar razonadamente. Cualquier resultado (no trivial) no visto en clase o en el material presentado en el Campus Virtual se ha de justificar; en caso contrario no se valorará. No se permite usar calculadora.

1)

- a) Como corolario del teorema de Rolle, demostrar el siguiente resultado: si f es derivable en (a,b) y $f'(x) \neq 0 \quad \forall x \in (a,b)$, se verifica que en dicho intervalo la ecuación f(x) = 0 tiene, a lo sumo, una raíz.
- b) Sea $f(x) = x^5 5x 99$. Usar el resultado anterior para determinar el número máximo de raíces reales de la ecuación f(x) = 0.

(0.6p.+0.65p.)

Solución.

a)

Sea f derivable en (a,b) y supongamos que existieran en dicho intervalo dos raíces(al menos) de la ecuación f(x)=0, denotadas por α y β con $\alpha<\beta$. En este caso, f sería continua en $[\alpha,\beta]$, derivable en (α,β) y $f(\alpha)=f(\beta)=0$; por el teorema de Rolle, existiría un punto $c\in(\alpha,\beta)\subset(a,b)$ tal que f'(c)=0, lo que contradice la hipótesis $f'(x)\neq 0$ $\forall x\in(a,b)$.

b)

La función $f(x) = x^5 - 5x - 99$ es continua y derivable en R, por ser una función polinomica.

$$f'(x) = 5x^4 - 5$$
; $f'(x) = 0 \Leftrightarrow x^4 = 1 \Leftrightarrow x = 1 \text{ ó } x = -1$

Los intervalos de monotonía de f son $(-\infty, -1), (-1, 1)$ y $(1, +\infty)$. Así pues, la ecuación f(x) = 0 tiene, a lo sumo, tres raíces reales (una en cada intervalo de monotonía).

2) Sea
$$f(x) = (x-1)\exp\left(\frac{1}{x-1}\right)$$
 si $x \ne 1$ y $f(1) = 0$

- a) Obtener, si existen y sin aplicar la regla de L'Hôpital, las ecuaciones de las asíntotas verticales de f (por la izquierda y/o por la derecha) y las horizontales (en el $-\infty$ y/o en el $+\infty$).
- b) ¿Es f derivable por la izquierda en x = 1? Determinar, con justificación, los puntos críticos de f.
- c) ¿Alcanza f un extremo local en x=1?

(1p.+1p.+0.5p.)

Solución.

a)

Si $x \ne 1$ la función f(x) es continua por ser producto de dos funciones continuas. La única recta que podría ser asíntota vertical de f es la recta x = 1. Veámoslo.

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (x - 1) \exp\left(\frac{1}{x - 1}\right) = 0. \exp(-\infty) = 0.0 = 0$$

$$\lim_{x \to 1^+} f(x) = \lim_{x \to 1^+} (x - 1) \exp\left(\frac{1}{x - 1}\right) = 0. \exp(\infty) = 0.\infty$$
 indeterminación

Sea
$$t = \frac{1}{x-1}$$
, $\lim_{x \to 1^+} (x-1) \exp\left(\frac{1}{x-1}\right) = \lim_{t \to +\infty} \frac{\exp(t)}{t} = +\infty$

ya que $\exp(t)$ es un infinito de orden superior a t si $t \to +\infty$

Así pues, la recta x = 1 es asíntota vertical de f por la derecha y no lo es por la izquierda.

$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (x - 1) \exp\left(\frac{1}{x - 1}\right) = -\infty. \exp(0) = -\infty. 1 = -\infty$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (x - 1) \exp\left(\frac{1}{x - 1}\right) = +\infty. \exp(0) = +\infty. 1 = +\infty$$

Ninguno de los dos límites anteriores es un no real. Por tanto, la función f no tiene asíntotas horizontales.

b) La función f es continua por la izquierda en x=1. Veamos si es derivable por la izquierda en x=1.

$$\lim_{h \to 0^{-}} \frac{f(1+h) - f(1)}{h} = \lim_{h \to 0^{-}} \frac{h \cdot \exp\left(\frac{1}{h}\right) - 0}{h} = \lim_{h \to 0^{-}} \exp\left(\frac{1}{h}\right) = \exp(-\infty) = 0$$

f es derivable por la izquierda en x=1 y f'(1)=0

La función f no es continua por la derecha en x = 1. Por tanto, no es derivable por la derecha en x = 1.

Los puntos críticos de f serán los x reales donde f'(x) = 0 ó donde no exista f'(x).

Si
$$x \ne 1$$
, $f'(x) = \exp\left(\frac{1}{x-1}\right) - (x-1)\exp\left(\frac{1}{x-1}\right) \frac{1}{(x-1)^2} = \exp\left(\frac{1}{x-1}\right) \left[1 - \frac{1}{x-1}\right] = 0 \Leftrightarrow x = 2$

El único punto x donde f'(x) = 0 es x = 2 y el único punto x donde no existe f'(x) es x = 1.

c) En x=1 la función f no es continua. Por tanto, no podemos aplicar el criterio de la derivada primera para determinar si f alcanza un extremo local en dicho punto.

Veamos, aplicando la definición, si f alcanza un extremo local en x = 1.

Si
$$x < 1$$
, $f(x) = (x - 1) \exp\left(\frac{1}{x - 1}\right) < 0$; $f(1) = 0$; Si $x > 1$, $f(x) = (x - 1) \exp\left(\frac{1}{x - 1}\right) > 0$

No existe r > 0 tal que f(x) > f(1) $\forall x \in (1 - r, 1 + r)$; así pues, f NO alcanza un mínimo local en x = 1. No existe r > 0 tal que f(x) < f(1) $\forall x \in (1 - r, 1 + r)$; así pues, f NO alcanza un máximo local en x = 1.

- a) Definir, con rigor, cuando una sucesión de números reales $\{a_n\}$ es divergente.
- b) Sea $\{a_n\} = (-1)^n + \frac{n}{n+1}$. Obtener una sucesión mayorante de $|a_n|$ que sea convergente y utilizarla para justificar que la sucesión $\{a_n\}$ no es divergente ¿es convergente? ¿es oscilante?

(0.25p.+1p.)

Solución.

a)

 $\left\{a_n\right\}$ es divergente \Leftrightarrow : $\lim_{n\to\infty} \left|a_n\right| = +\infty$, es decir, si la sucesión de sus valores absolutos tiende $a + \infty$.

b)
$$|a_n| = \left| (-1)^n + \frac{n}{n+1} \right| \le \left| (-1)^n \right| + \left| \frac{n}{n+1} \right| = 1 + \frac{n}{n+1}$$

La sucesión $\left\{1 + \frac{n}{n+1}\right\}$ es convergente a 2 y es mayorante de $|a_n|$. Por tanto, la sucesión $\{a_n\}$ no es divergente ya que la sucesión mayorante obtenida no tiene límite $+\infty$.

 $\{a_n\}$ no es convergente ya que la subsucesión de los n pares $\left\{1+\frac{2m}{2m+1}\right\}$ tiene límite 2, mientras que la de los n impares $\left\{-1+\frac{2m-1}{2m}\right\}$ tiene límite 0. La sucesión $\left\{a_n\right\}$ es, por tanto, oscilante.

4)

- a) De la serie $\sum_{n=1}^{\infty} a_n$ se conoce que la sucesión de sumas parciales $\{S_n\}$ viene dada por $S_n = \frac{3n+2}{n+4}$ $\forall n \in \mathbb{N}$. Obtener a_1 y el término general a_n $\forall n \ge 2$ ¿es convergente esta serie?
- b) Estudiar el carácter de las dos series numéricas siguientes:

$$\sum_{n=1}^{\infty} \left(1 - \frac{2}{n} \right)^n \quad ; \quad \sum_{n=1}^{\infty} \frac{1}{n \cdot 3^n}$$
(0.75p.+1.25p.)

Solución.

a)

$$a_1 = S_1 = \frac{5}{5} = 1$$

$$a_n = S_n - S_{n-1} = \frac{3n+2}{n+4} - \frac{3n-1}{n+3} = \frac{10}{(n+4)(n+3)} , \forall n \ge 2$$

La serie $\sum_{n=1}^{\infty} a_n$ es convergente a 3 ya que $\lim_{n \to +\infty} S_n = \lim_{n \to +\infty} \frac{3n+2}{n+4} = 3$

b)
$$\lim_{n \to \infty} \left(1 + \frac{a}{n} \right)^n = e^a \quad \forall a \in R \quad \Rightarrow \lim_{n \to \infty} \left(1 - \frac{2}{n} \right)^n = e^{-2} \neq 0$$

La serie $\sum_{n=1}^{\infty} \left(1 - \frac{2}{n}\right)^n$ no verifica la condición necesaria de convergencia. Es divergente a $+\infty$ por tratarse de una serie de términos no negativos $\forall n \ge 2$.

Para estudiar el carácter de la serie $\sum_{n=1}^{\infty} \frac{1}{n \cdot 3^n}$ la comparamos con la serie geométrica $\sum_{n=1}^{\infty} \left(\frac{1}{3}\right)^n$ que es convergente ya que la razón $1/3 \in (-1,1)$. Ambas son de términos positivos.

$$\lim_{n \to \infty} \frac{1/(n \, 3^n)}{1/3^n} = \lim_{n \to \infty} \frac{1}{n} = 0$$

En base al criterio de comparación concluimos que la serie $\sum_{n=1}^{\infty} \frac{1}{n \cdot 3^n}$ es convergente

5) Sea
$$f(x) = \begin{cases} sen(\pi x) & \text{si } x \le 0 \\ log(x^2 + 1) & \text{si } x > 0 \end{cases}$$

Obtener una función F(x) que sea una primitiva de f(x) en R y calcular la integral definida de f(x) en el intervalo [-1,1] sin utilizar F(0).

(1.5p.)

Solución.

Si $x \ne 0$ la función f(x) es continua. Se comprueba fácilmente que es continua en todo R ya que los límites laterales de f(x) en x = 0 son iguales a f(0) = 0.

Por tanto, la función f(x) tiene primitiva en R. Para obtener una primitiva de f(x) en R, vamos a calcular las integrales indefinidas (conjunto de primitivas) de las funciones $sen(\pi x)$ y $log(x^2 + 1)$.

$$\int sen(\pi x)dx = -\frac{1}{\pi}\cos(\pi x) + C$$

$$\int \log(x^2 + 1)dx = x.\log(x^2 + 1) - \int \frac{2x^2}{x^2 + 1}dx = x.\log(x^2 + 1) - \int \left(2 - \frac{2}{x^2 + 1}\right)dx =$$

$$= x.\log(x^2 + 1) - 2x + 2arctg(x) + K$$

$$F(x) = \begin{cases} -\cos(\pi x) / \pi + C, & x \le 0\\ x \cdot \log(x^2 + 1) - 2x + 2arctg(x) + K, & x > 0 \end{cases}$$

sería una primitiva de f(x) en R. Para ello, la función F(x) habría de ser continua en x=0

F(x) es continua en $x = 0 \iff -1/\pi + C = K \iff C = K + 1/\pi$. Si elegimos K = 0 resulta $C = 1/\pi$

$$F(x) = \begin{cases} -\cos(\pi x)/\pi + 1/\pi, & x \le 0 \\ x \cdot \log(x^2 + 1) - 2x + 2arctg(x), & x > 0 \end{cases}$$
 es una primitiva de $f(x)$ en R

Aplicando la regla de Barrow, calculamos la integral definida de f(x) en el intervalo $\begin{bmatrix} -1,1 \end{bmatrix}$

$$\int_{-1}^{1} f(x)dx = F(1) - F(-1) = \log(2) - 2 + 2 \arctan(1) - \left(-\cos(-\pi)/\pi + 1/\pi\right) = \log(2) - 2 + \pi/2 - 2/\pi$$

6) Calcular el área determinada por la curva $y = \frac{x-1}{1+\sqrt{x}}$, las rectas x=0, x=4 y el eje de abscisas (usando la fórmula del cambio de variable en la integral definida). (1.5p.) Solución.

Sea
$$f(x) = \frac{x-1}{1+\sqrt{x}}$$
. Si $x \in [0,1] \Rightarrow f(x) \le 0$. Si $x \in [1,4] \Rightarrow f(x) \ge 0$

$$A = \int_{0}^{4} |f(x)| dx = -\int_{0}^{1} \frac{x-1}{1+\sqrt{x}} dx + \int_{1}^{4} \frac{x-1}{1+\sqrt{x}} dx = -\int_{0}^{1} \frac{t^{2}-1}{1+t} 2t dt + \int_{1}^{2} \frac{t^{2}-1}{1+t} 2t dt$$

Se ha realizado el cambio de variable $x = t^2$ con $t \in [0,1]$ y $t \in [1,2]$.

$$A = -2\int_{0}^{1} (t-1)t \, dt + 2\int_{1}^{2} (t-1)t \, dt = -2\left[\frac{t^{3}}{3} - \frac{t^{2}}{2}\right]_{0}^{1} + 2\left[\frac{t^{3}}{3} - \frac{t^{2}}{2}\right]_{1}^{2} = -2\left(\frac{1}{3} - \frac{1}{2}\right) + 2\left(\frac{8}{3} - 2 - \frac{1}{3} + \frac{1}{2}\right) = \frac{1}{3} + \frac{5}{3}$$

$$A = 2u^{2}$$