IN THE CLAIMS

1-24 (canceled)

- 25 (currently amended): A method of labeling a glass, plastic or metal container or surface by means of a water based adhesive composition, said method comprising:
- (a) selecting a microvoided polymeric patch label that will will readily feed from a label magazine or gripper and will allow a water based adhesive to migrate into said microvoided polymeric label;
- (b) applying a water based adhesive to said polymeric label to form a fastenable polymeric label;
- (c) fastening said fastenable polymeric label to a glass, plastic or metal container or surface; and
- (d) allowing said polymeric label to dry on said glass, plastic or metal surface or container.
- 26 (previously presented): A method for labeling a glass, plastic or metal container as defined in claim 25 wherein a hydrophilic layer is applied to said microvoided polymeric film before said water based adhesive is applied.
- 27 (previously presented): A method for labeling a glass, plastic or metal container as defined in claim 26 wherein water is applied to said hydrophilic layer to form a fastenable microvoided label.
- 28 (previously presented): A method for labeling a glass, plastic or metal container as defined in claim 26 wherein a waterbased adhesive layer containing a catalyst is applied to said hydrophilic layer to form a fastenable microvoided polymeric label.
- 29 (previously presented): A method for labeling a glass,

plastic or metal container as defined in claim 26 wherein a reactive catalyst crosslinkable with either the hydrophilic layer or the water based adhesive layer or both layers is added to the hydrophilic layer.

- 30 (previously presented): A method for labeling a glass, plastic or metal container as defined in claim 26 wherein the hydrophilic layer is a coated, coextruded or extruded layer.
- 31 (previously presented): A method for labeling glass, plastic or metal container as defined in claim 30 where hydrophilic layer is a coated layer.
- 32 (previously presented): A method for labeling a glass, plastic or metal container as defined in claim 26 wherein the adhesive is applied with 100% coverage or a pattern to the hydrophilic layer.
- 33 (currently amended): A method for labeling a glass, plastic or metal container as defined in claim 26 wherein from 0.25 to 6mils of a water based adhesive is applied.
- 34 (previously presented): A method for labeling a glass, plastic or metal container as defined in claim 26 wherein the polymeric label is a mono-layer or coextruded film selected from white or colored polypropylene, polyethylene, polyester, polystyrene, polycarbonate or compatibilized polymer blends.
- 35 (previously presented): A method for labeling a glass, plastic or metal container as defined in claim 26 wherein the polymeric label includes a reverse printed clear polymeric film which is laminated to a low density polymeric label surface.
- 36 (previously presented): A method for labeling a glass, plastic or metal container as defined in claim 26 wherein an adhesion promoting tie layer or primer is used to promote

adhesion of the hydrophilic layer to the polymer label.

37 (canceled):

- 38 (previously presented): A method for labeling a glass, plastic or metal container as defined in claim 26 wherein an adhesion promoting layer is used on a print surface on the polymer label to promote indicia adhesion.
- 39 (previously presented): A method for labeling a glass, plastic or metal container as defined in claim 26 wherein a protective coating over a surface of printed indicia is present which is formulated with slip aids and/or anti-static agents to control the coefficient of friction and static properties between the hydrophilic layer and protective coating for optimum high speed application.
- 40 (previously presented): A method for labeling a glass, plastic or metal container as defined in claim 26 wherein a protective coating over a surface of printed indicia is present which is formulated with anti-block and/or anti-stick aids to control the blocking tendency of the moisture activated hydrophilic layer for optimum high speed application.
- 41 (previously presented): A method for labeling a glass, plastic or metal container as defined in claim 26 wherein a protective coating over an exposed surface of the microvoided polymeric label is formulated with slip aids and/or anti-static agents known to those in the art to control the coefficient of friction and static properties between the hydrophilic layer and protective coating for optimum high speed application.
- 42 (previously presented): A method for labeling a glass, plastic or metal container as defined in claim 26 wherein a protective coating over the surface of the exposed polymer layer is formulated with anti-block and/or anti-stick aids to

control the blocking tendency of the moisture activated hydrophilic layer for optimum high speed application.

- 43 (previously presented): A method for labeling a glass, plastic or metal container as defined in claim 26 wherein the hydrophilic layer is formulated with humectants for curl control and/or anti-block aids to control the layflat and blocking properties of the label for optimum high speed application.
- 44 (previously presented): A method for labeling a glass, plastic or metal container as defined in claim 26 wherein the aqueous label adhesive is based on starch, casein, synthetic polymer or blends of starch, casein or synthetic polymers.
- 45 (previously presented): A method for labeling a glass, plastic or metal container as defined in claim 26 wherein the hydrophilic layer activated by water into an adhesive layer is a derivative of polyacrylic acid or polyacrylic acid copolymer.
- 46 (currently amended): A method for labeling a glass, plastic or metal container as defined in claim [[454]] $\underline{45}$ wherein the hydrophilic layer activated by water into an adhesive layer is a carboxylated sodium polyacrylate.
- 47 (currently amended): A method of labeling a glass, plastic or metal container or surface by means of a water based adhesive composition, said method comprising:
- (a) selecting a microvoided polypropylene patch label that will readily feed from a label magazine or gripper and will allow a water based adhesive to migrate into said microvoided polypropylene film;
- (b) applying a water based adhesive to said microvoided polypropylene label to form a fastenable label;
- (c) fastening said fastenable label to a glass or plastic container or surface; and

- (d) curing said microvoided polypropylene label on said glass or plastic container or surface.
- 48 (previously presented): A plastic, metal or glass container having a polymer patch label comprising a microvoided polymer that allows a water based adhesive to migrate into said microvoided polymer, a dried water based adhesive which affixes said microvoided polymer label to said container, said polymer label containing a portion of said dried water based adhesive within said polymer.
- 49(currently amended): A method of labeling a plastic container by means of a water based adhesive composition as defined in claim 25 wherein step (a) further comprises selecting a microvoided polymeric patch label having a density of less than 0.9 and step (c) further comprises fastening said fastenable polymeric label to a plastic container or surface.
- 50. (currently amended): A method of labeling a plastic container or surface by means of a water based adhesive composition, said method comprising:
- (a) selecting a microvoided polymeric patch label that will readily feed from a label magazine or gripper and having a density of less than 0.9 which allows a water based adhesive to migrate into said microvoided polymeric label;
- (b) applying a water based adhesive to said polymeric label to form a fastenable polymeric label;
- (c) fastening said fastenable polymeric label to a plastic container or surface; and
- (d) allowing said polymeric label to dry on said plastic surface or container.