Non-deterministic Finite Automata (NFA)

NFA versus DFA

- In a DFA, at every state q, for every symbol a, there is a unique a-transition i.e. there is a unique q' such that $q \xrightarrow{a} q'$.
 - This is not necessarily so in an NFA. At any state, an NFA may have multiple a-transitions, or none.
- In a DFA, transition arrows are labelled by symbols from Σ ; in an NFA, they are labelled by symbols from $\Sigma \cup \{ \epsilon \}$. I.e. an NFA may have ϵ -transitions.
- We may think of the non-determinism as a kind of parallel computation wherein several processes can be running concurrently.
 - When the NFA splits to follow several choices, that corresponds to a process "forking" into several children, each proceeding separately. If at least one of these accepts, then the entire computation accepts.

Example: All strings containing a 1 in third position from the end

3

Example: All strings containing a 1 in third position from the end

Example: All strings containing a 1 in third position from the end

NFAs are more compact - they generally require fewer states to recognize a language.

Example: $\{0^k : k \text{ is a multiple of 2 or 3}\}$

Using ϵ -transitions and non-determinism, a language defined by an NFA can be easier to understand.

Definition: NFA

A nondeterministic finite automaton (NFA) is a 5-tuple (Q,Σ,δ,q_0,F) where

- (i) Q is a finite set of states
- (ii) Σ is a finite alphabet
- (iii) $q_0 \in Q$ is the start state
- (iv) $\delta: Q \times (\Sigma \cup \{\,\epsilon\,\}) \to \mathcal{P}(Q)$ is the transition function
- (v) $F \subseteq Q$ is the set of final states.

Note: $\mathcal{P}(Q) \stackrel{\text{def}}{=} \{X : X \subseteq Q\}$ is the *power set* of Q. Equivalently δ can be presented as a relation, i.e. a subset of $(Q \times (\Sigma \cup \{\epsilon\})) \times Q$.

For $a \in \Sigma \cup \{\epsilon\}$ we define $q \xrightarrow{a} q' \stackrel{\text{def}}{=} q' \in \delta(q, a)$.

Some definitions and notations

Fix an NFA $N=(Q,\Sigma,\delta,q_0,F)$.

L(N), the *language accepted by* N, consists of all strings w over Σ satisfying $q_0 \stackrel{w}{\Longrightarrow} q$ where q is a final state. Here $\cdot \stackrel{-}{\Longrightarrow} \cdot$ is defined by:

- $q \stackrel{\epsilon}{\Longrightarrow} q'$ iff q = q' or there is a sequence $q \stackrel{\epsilon}{\longrightarrow} \cdots \stackrel{\epsilon}{\longrightarrow} q'$ of one or more ϵ -transitions in N from q to q'.
- For $w=a_1\cdots a_{n+1}$ where each $a_i\in \Sigma$, $q\overset{w}{\Longrightarrow}q'$ iff there are $q_1,q_1',\cdots,q_{n+1},q_{n+1}'$ (not necessarily all distinct) such that

$$q \xrightarrow{\epsilon} q_1 \xrightarrow{a_1} q'_1 \xrightarrow{\epsilon} q_2 \xrightarrow{a_2} q'_2 \xrightarrow{\epsilon} \cdots q'_n \xrightarrow{\epsilon} q_{n+1} \xrightarrow{a_{n+1}} q'_{n+1} \xrightarrow{\epsilon} q'$$

Intuitively $q \stackrel{w}{\Longrightarrow} q'$ means:

"There is a sequence of transitions from q to q' in N in which the symbols in w occur in the correct order, but with 0 or more ϵ -transitions before or after each one".

We shall sometimes write $\hat{\delta}(q,w)=\{\,q'\in Q:q\stackrel{w}{\Longrightarrow}q'\,\}$, for $w\in\Sigma^*$.

Note: In case N is a DFA, for any $q\in Q$ and $w\in \Sigma^*$, there is a *unique* q' such that $q\stackrel{w}{\Longrightarrow} q'$ (thus, by abuse of notation, we write $\hat{\delta}(q,w)=q'$).

Exercise. Writing $w=a_1\cdots a_{n+1}$, we have $q\stackrel{w}{\Longrightarrow} q'$ is equivalent to: there exist q_1,\cdots,q_n such that

$$q \xrightarrow{a_1} q_1 \xrightarrow{a_2} \cdots \xrightarrow{a_{n+1}} q'$$

Equivalence of NFAs and DFAs: The Subset Construction

Observation. Every DFA is an NFA!

Say two automata are equivalent if they accept the same language.

Theorem (Determinization). Every NFA has an equivalent DFA.

Proof. Fix an NFA $N=(Q_N,\Sigma_N,\delta_N,q_N,F_N)$, we construct an equivalent DFA $\mathcal{P}N=(Q_{\mathcal{P}N},\Sigma_{\mathcal{P}N},\delta_{\mathcal{P}N},q_{\mathcal{P}N},F_{\mathcal{P}N})$ such that $L(N)=L(\mathcal{P}N)$:

- $\bullet \ Q_{\mathcal{P}N} \stackrel{\text{def}}{=} \{ S : S \subseteq Q_N \}$
- $\bullet \ \Sigma_{\mathcal{P}N} \stackrel{\text{def}}{=} \Sigma_N$
- $S \xrightarrow{a} S'$ in $\mathcal{P}N$ iff $S' = \{ q' : \exists q \in S. (q \Longrightarrow q' \text{ in } N) \}$
- $\bullet \ q_{\mathcal{P}N} \stackrel{\text{def}}{=} \{ q : q_N \stackrel{\epsilon}{\Longrightarrow} q \}$
- $F_{\mathcal{P}N} \stackrel{\text{def}}{=} \{ S \in Q_{\mathcal{P}N} : F_N \cap S \neq \emptyset \}$

Example. All words that begin with a string of 0's followed by a string of 1's.

Note. State $\{q_0\}$ is redundant.

Proof of " $L(N) \subseteq L(\mathcal{P}N)$ ":

Suppose $\epsilon \in L(N)$. Then $q_N \stackrel{\epsilon}{\Longrightarrow} q'$ for some $q' \in F_N$. Hence $q' \in q_{\mathcal{P}N}$, and so, $q_{\mathcal{P}N} = \{ q'' : q_N \stackrel{\epsilon}{\Longrightarrow} q'' \} \in F_{\mathcal{P}N}$ i.e. $\epsilon \in L(\mathcal{P}N)$.

Now take any non-null $u=a_1\cdots a_n$. Suppose $u\in L(N)$. Then there is a sequence of N-transitions

$$q_N \stackrel{a_1}{\Longrightarrow} q_1 \stackrel{a_2}{\Longrightarrow} \cdots \stackrel{a_n}{\Longrightarrow} q_n \in F_N$$
 (1)

Since $\mathcal{P}N$ is deterministic, feeding a_1,\cdots,a_n to it results in the sequence of $\mathcal{P}N$ -transitions

$$q_{\mathcal{P}N} \xrightarrow{a_1} S_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} S_n$$
 (2)

where

$$S_1 = \{ q' : \exists q \in q_{\mathcal{P}N}. (q \xrightarrow{a_1} q' \text{ in } N) \}$$

$$S_2 = \{ q' : \exists q \in S_1. (q \xrightarrow{a_2} q' \text{ in } N) \}$$

$$\vdots \qquad \vdots$$

By definition of $\delta_{\mathcal{P}N}$, from (1), we have $q_1 \in S_1$, and so $q_2 \in S_2, \cdots$, and so

 $q_n \in S_n$, and hence $S_n \in F_{\mathcal{P}N}$ because $q_n \in F_N$. Thus (2) shows that $u \in L(\mathcal{P}N)$.

Proof of " $L(\mathcal{P}N) \subseteq L(N)$ ":

Suppose $\epsilon \in L(\mathcal{P}N)$. Then $q_{\mathcal{P}N} \in F_{\mathcal{P}N}$ i.e. $F_N \cap \{q: q_N \stackrel{\epsilon}{\Longrightarrow} q\} \neq \emptyset$, or equivalently, for some $q' \in F_N$, $q_N \stackrel{\epsilon}{\Longrightarrow} q'$. Hence $\epsilon \in L(N)$.

Now suppose some non-null $u=a_1\cdots a_n\in L(\mathcal{P}N)$. I.e. there is a sequence of $\mathcal{P}N$ -transitions of the form (2) with $S_n\in F_{\mathcal{P}N}$ i.e. with S_n containing some $q_n\in F_N$. Now since $q_n\in S_n$, by definition of $\delta_{\mathcal{P}N}$, there is some $q_{n-1}\in S_{n-1}$ with $q_{n-1}\stackrel{a_n}{\Longrightarrow}q_n$ in N. Working backwards in this way, we can build up a sequence of N-transitions like (1), until we deduce that $q_N\stackrel{a_1}{\Longrightarrow}q_1$. Thus we get a sequence of N-transitions with $q_n\in F_N$, and hence $u\in L(N)$.

Closure under regular operations revisited

Using nondeterminism makes some proofs much easier.

Theorem. Regular languages are closed under union.

Take NFAs N_1 and N_2 .

Define N that accepts $L(N_1) \cup L(N_2)$ by adding a new start state q to the disjoint union of (the respective state transition graphs of) N_1 and N_2 , and a ϵ -transition from q to each start state of N_1 and N_2 .

Regular languages are closed under union (cont'd)

More formally, given NFAs
$$N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$
 and $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, we define $N=(Q,\Sigma,\delta,q,F)$ by
$$Q \qquad = \qquad Q_1\times\{1\}\cup Q_2\times\{2\}\cup\{q\}$$

$$F \qquad = \qquad F_1\times\{1\}\cup F_2\times\{2\}$$

$$\delta(q,\epsilon) \qquad = \qquad \{(q_1,1),(q_2,2)\}$$

$$\delta((r,1),a) \qquad = \qquad \{(r',1)\mid r'\in\delta_1(r,a)\}$$

$$\delta((r,2),a) \qquad = \qquad \{(r',2)\mid r'\in\delta_2(r,a)\}$$

Regular languages are closed under union (cont'd)

Proof of " $L(N_1) \cup L(N_2) \subseteq L(N)$ ":

Suppose $w = a_1 \cdots a_n \in L(N_1)$ then there exist $r_1, \ldots, r_n \in Q_1$ such that

$$q_1 \stackrel{a_1}{\Longrightarrow} r_1 \stackrel{a_2}{\Longrightarrow} \cdots \stackrel{a_n}{\Longrightarrow} r_n$$

with $r_n \in F_1$. Then in N we got the sequence

$$q \xrightarrow{\epsilon} (q_1, 1) \xrightarrow{a_1} (r_1, 1) \xrightarrow{a_2} \cdots \xrightarrow{a_n} (r_n, 1)$$

with $(r_n, 1) \in F$. Hence $w \in L(N)$.

Similarly we can show that $w \in L(N_2)$ implies $w \in L(N)$.

Regular languages are closed under union (cont'd)

Proof of " $L(N) \subseteq L(N_1) \cup L(N_2)$ ":

Suppose $w=a_1\cdots a_n\in L(N)$ then there exist $i\in\{1,2\}$ and $r_1,\ldots,r_n\in Q_i$ such that

$$q \xrightarrow{\epsilon} (q_i, i) \xrightarrow{a_1} (r_1, i) \xrightarrow{a_2} \cdots \xrightarrow{a_n} (r_n, i)$$

with $(r_n,i)\in F$. But then, in N_i , we have the sequence

$$q_i \stackrel{a_1}{\Longrightarrow} r_1 \stackrel{a_2}{\Longrightarrow} \cdots \stackrel{a_n}{\Longrightarrow} r_n$$

with $r_n \in F_i$. Hence $w \in L(N_i)$.

Theorem. Regular languages are closed under concatenation.

Take NFAs N_1 and N_2 .

An NFA N that accepts $L(N_1) \cdot L(N_2)$ can be obtained from the disjoint union of N_1 and N_2 by making the start state of N_1 the start state of N, and by adding an ϵ -transition from each accepting state of N_1 to the start state of N_2 . The accepting states of N are those of N_2 .

Regular languages are closed under concatenation (cont'd)

More formally, given NFAs
$$N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$$
 and $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$, we define $N=(Q,\Sigma,\delta,(q_1,1),F)$ by
$$Q=Q_1\times\{1\}\quad \cup\quad Q_2\times\{2\}$$

$$F=F_2\times\{2\}$$

$$\delta((r,1),a)=\{(r',1)\mid r'\in\delta_1(r,a)\} \qquad \text{for } a\neq\epsilon \text{ or } r\notin F_1$$

$$\delta((r,1),\epsilon)=\{(r',1)\mid r'\in\delta_1(r,\epsilon)\}\cup\{(q_2,2)\} \quad \text{for } r\in F_1$$

$$\delta((r,2),a)=\{(r',2)\mid r'\in\delta_2(r,a)\}$$

Regular languages are closed under concatenation (cont'd)

Proof of " $L(N_1) L(N_2) \subseteq L(N)$ ":

Suppose $w \in L(N_1) L(N_2)$ then there exist $u = a_1 \cdots a_n \in L(N_1)$ and $v = b_1 \cdots b_m \in L(N_2)$ with w = uv.

Therefore there exist $r_1,\ldots,r_n\in Q_1$ with $r_n\in F_1$ such that, in N_1 ,

$$q_1 \stackrel{a_1}{\Longrightarrow} r_1 \stackrel{a_2}{\Longrightarrow} \cdots \stackrel{a_n}{\Longrightarrow} r_n$$

 $s_1,\ldots,s_m\in Q_2$ with $s_m\in F_2$ such that, in N_2 ,

$$q_2 \stackrel{b_1}{\Longrightarrow} s_1 \stackrel{b_2}{\Longrightarrow} \cdots \stackrel{b_m}{\Longrightarrow} s_m$$

Then in N we got the sequence

$$(q_1, 1) \xrightarrow{a_1} (r_1, 1) \xrightarrow{a_2} \cdots \xrightarrow{a_n} (r_n, 1) \xrightarrow{\epsilon} (q_2, 2) \xrightarrow{b_1} (s_1, 2) \xrightarrow{b_2} \cdots \xrightarrow{b_m} (s_m, 2)$$

with $(s_m, 2) \in F$. Hence $w \in L(N)$.

Regular languages are closed under concatenation (cont'd)

Proof of " $L(N) \subseteq L(N_1) L(N_2)$ ":

Suppose $w = a_1 \cdots a_k \in L(N)$, then there exist $r_1, \ldots, r_k \in Q$ such that,

$$(q_1,1) \xrightarrow{a_1} r_1 \xrightarrow{a_2} \cdots \xrightarrow{a_k} r_k$$

with $r_k \in F$. By definition of F there is an $s_k \in F_2$ such that $r_k = (s_k, 2)$. The definition of δ implies that there is exactly one ϵ -transition to get from the first to the second component, i.e. there are states $s_1, \ldots, s_n \in Q_1$ and $s_{n+1}, \ldots, s_{k-1} \in Q_2$ such that

$$(q_1,1) \xrightarrow{a_1} (s_1,1) \xrightarrow{a_2} \cdots \xrightarrow{a_n} (s_n,1) \xrightarrow{\epsilon} (q_2,2) \xrightarrow{a_{n+1}} (s_{n+1},2) \xrightarrow{a_{n+2}} \cdots \xrightarrow{a_k} (s_k,2)$$

Then, in N_1 , we have the sequence $q_1 \stackrel{a_1}{\Longrightarrow} s_1 \stackrel{a_2}{\Longrightarrow} \cdots \stackrel{a_n}{\Longrightarrow} s_n$ with $s_n \in F_1$ and in N_2 we have the sequence $q_2 \stackrel{a_{n+1}}{\Longrightarrow} s_{n+1} \stackrel{a_{n+2}}{\Longrightarrow} \cdots \stackrel{a_k}{\Longrightarrow} s_k$ with $s_k \in F_2$ Hence $u = a_1 \cdots a_n \in L(N_1)$ and $v = a_{n+1} \cdots a_k \in L(N_2)$, and therefore $w = uv \in L(N_1)$ $L(N_2)$.

Theorem. Regular languages are closed under star.

First attempt:

Take an NFA $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ that accepts $A_1.$ Construct N that accepts

$$A_1^* = \{\epsilon\} \cup A_1 \cup A_1 A_1 \cup \cdots$$

Obtain N from N_1 by making the start state accepting, and by adding a new ϵ -transition from each accepting state to the start state.

What is wrong with this?

The above construction gives the NFA ${\cal N}$

$$\begin{array}{c}
0\\
\\
0\\
\\
\end{array}$$

The above construction gives the NFA ${\cal N}$

But
$$N$$
 accepts $(0+0^*1)^*=(0+1)^*\neq (0^*1)^*$. E.g. N accepts 010 which is not in $L(N_1)^*$

The above construction gives the NFA ${\cal N}$

But
$$N$$
 accepts $(0+0^*1)^*=(0+1)^*\neq (0^*1)^*$. E.g. N accepts 010 which is not in $L(N_1)^*$

The NFA
$$M$$
 accepts $L(N_1)^{st}$

$$M \longrightarrow 0$$

$$\downarrow 1$$

$$\epsilon$$

Proof: Regular languages are closed under star

Second (correct) attempt:

Take an NFA $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ that accepts $A_1.$

Define
$$N=(Q_1\cup \{\,q_0\,\}, \Sigma, \delta, q_0, F_1\cup \{\,q_0\,\})$$
 where

$$\delta(q,a) = \begin{cases} \delta_1(q,a) & q \in Q_1 \text{ and } q \not\in F_1 \\ \delta_1(q,a) & q \in F_1 \text{ and } a \neq \epsilon \end{cases}$$

$$\delta_1(q,a) \cup \{q_1\} & q \in F_1 \text{ and } a = \epsilon$$

$$\{q_1\} & q = q_0 \text{ and } a = \epsilon$$

$$\emptyset & q = q_0 \text{ and } a \neq \epsilon$$

Regular languages are closed under star (cont'd)

Proof of " $L(N_1)^* \subseteq L(N)$ ":

Obviously $\epsilon \in L(N)$ because $q_0 \in F$.

Suppose $w\in L(N_1)^*$ and $w\neq \epsilon$ then there exist $k\geq 1$ and v_1,\ldots,v_k such that $w=v_1\ldots v_k$ and $v_i=a_{i1}\ldots a_{in_i}\in L(N_1)$ for each i. Then for each i there exist $r_{i1},\ldots,r_{in_i}\in Q_1$ such that

$$q_1 \stackrel{a_{i1}}{\Longrightarrow} r_{i1} \stackrel{a_{i2}}{\Longrightarrow} \cdots \stackrel{a_{in_i}}{\Longrightarrow} r_{in_i}$$

with $r_{in_i} \in F_1$. Then in N we got the sequence

$$q_0 \xrightarrow{\epsilon} q_1 \xrightarrow{a_{11}} r_{11} \xrightarrow{a_{12}} \cdots \xrightarrow{a_{1n_1}} r_{1n_1} \xrightarrow{\epsilon} q_1 \xrightarrow{a_{21}} \cdots \xrightarrow{a_{kn_k}} r_{kn_k}$$

with $r_{kn_k} \in F$. Hence $w \in L(N)$.

Regular languages are closed under star (cont'd)

Proof of " $L(N) \subseteq L(N_1)^*$ ":

If $w = \epsilon$, $w \in L(N_1)^*$ by definition of star.

Suppose $w = a_1 \cdots a_n \in L(N)$ then there exist $r_1, \ldots, r_n \in Q$ such that

$$q \xrightarrow{\epsilon} q_1 \xrightarrow{a_1} r_1 \xrightarrow{a_2} \cdots \xrightarrow{a_n} r_n$$

with $r_n \in F$.

Let k-1 be the number of occurrences of the "new" ϵ -transitions $r_j \stackrel{\epsilon}{\longrightarrow} q_1$ with $r_j \in F_1$. If we split the transition sequence at these transitions, we get k transition sequences $q_1 \stackrel{v_i}{\Longrightarrow} r_i$ such that $w = v_1 \dots v_k$ and for each i $v_i \in L(N_1)$.

Hence $w = v1 \dots v_k \in L(N_1)^*$