HumanActivityRecognition

This project is to build a model that predicts the human activities such as Walking, Walking_Upstairs, Walking_Downstairs, Sitting, Standing or Laying.

This dataset is collected from 30 persons(referred as subjects in this dataset), performing different activities with a smartphone to their waists. The data is recorded with the help of sensors (accelerometer and Gyroscope) in that smartphone. This experiment was video recorded to label the data manually.

How data was recorded

By using the sensors(Gyroscope and accelerometer) in a smartphone, they have captured '3-axial linear acceleration'(_tAcc-XYZ_) from accelerometer and '3-axial angular velocity' (_tGyro-XYZ_) from Gyroscope with several variations.

prefix 't' in those metrics denotes time.

suffix 'XYZ' represents 3-axial signals in X, Y, and Z directions.

Feature names

- 1. These sensor signals are preprocessed by applying noise filters and then sampled in fixed-width windows(sliding windows) of 2.56 seconds each with 50% overlap. ie., each window has 128 readings.
- 2. From Each window, a feature vector was obtianed by calculating variables from the time and frequency domain.

In our dataset, each datapoint represents a window with different readings

- 3. The acceleration signal was saperated into Body and Gravity acceleration signals(*tBodyAcc-XYZ*) using some low pass filter with corner frequecy of 0.3Hz.
- 4. After that, the body linear acceleration and angular velocity were derived in time to obtian *jerk* signals (tBodyAccJerk-XYZ and tBodyGyroJerk-XYZ).
- The magnitude of these 3-dimensional signals were calculated using the Euclidian norm. This
 magnitudes are represented as features with names like tBodyAccMag_, _tGravityAccMag_,
 tBodyAccJerkMag, _tBodyGyroMag and tBodyGyroJerkMag.
- Finally, We've got frequency domain signals from some of the available signals by applying a
 FFT (Fast Fourier Transform). These signals obtained were labeled with *prefix 'f'* just like
 original signals with *prefix 't'*. These signals are labeled as *fBodyAcc-XYZ*, *fBodyGyroMag*etc...
- These are the signals that we got so far.
 - tBodyAcc-XYZ

- tGravityAcc-XYZ
- tBodyAccJerk-XYZ
- tBodyGyro-XYZ
- tBodyGyroJerk-XYZ
- tBodyAccMag
- tGravityAccMag
- tBodyAccJerkMag
- tBodyGyroMag
- tBodyGyroJerkMag
- fBodyAcc-XYZ
- fBodyAccJerk-XYZ
- fBodyGyro-XYZ
- fBodyAccMag
- fBodyAccJerkMag
- fBodyGyroMag
- fBodyGyroJerkMag
- 8. We can esitmate some set of variables from the above signals. ie., We will estimate the following properties on each and every signal that we recoreded so far.
 - mean(): Mean value
 - std(): Standard deviation
 - mad(): Median absolute deviation
 - max(): Largest value in array
 - min(): Smallest value in array
 - sma(): Signal magnitude area
 - energy(): Energy measure. Sum of the squares divided by the number of values.
 - iqr(): Interquartile range
 - entropy(): Signal entropy
 - arCoeff(): Autorregresion coefficients with Burg order equal to 4
 - correlation(): correlation coefficient between two signals
 - maxinds(): index of the frequency component with largest magnitude
 - meanFreq(): Weighted average of the frequency components to obtain a mean frequency
 - **skewness()**: skewness of the frequency domain signal
 - kurtosis(): kurtosis of the frequency domain signal
 - bandsEnergy(): Energy of a frequency interval within the 64 bins of the FFT of each window.
 - angle(): Angle between to vectors.
- 9. We can obtain some other vectors by taking the average of signals in a single window sample. These are used on the angle() variable'
 - gravityMean
 - tBodyAccMean
 - tBodyAccJerkMean
 - tBodyGyroMean
 - tBodyGyroJerkMean

Y_Labels(Encoded)

In the dataset, Y labels are represented as numbers from 1 to 6 as their identifiers.

- WALKING as 1
- WALKING UPSTAIRS as 2
- WALKING_DOWNSTAIRS as 3
- SITTING as 4
- STANDING as 5
- LAYING as 6

Train and test data were saperated

The readings from 70% of the volunteers were taken as trianing data and remaining 30% subjects recordings were taken for test data

Data

Data set can be found here
 https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones
 (https://archive.ics.uci.edu/ml/datasets/Human+Activity+Recognition+Using+Smartphones)

Quick overview of the dataset:

- Accelerometer and Gyroscope readings are taken from 30 volunteers(referred as subjects)
 while performing the following 6 Activities.
 - 1. Walking
 - 2. WalkingUpstairs
 - 3. WalkingDownstairs
 - 4. Standing
 - 5. Sitting
 - 6. Lying.
- Readings are divided into a window of 2.56 seconds with 50% overlapping.
- Accelerometer readings are divided into gravity acceleration and body acceleration readings, which has x,y and z components each.
- Gyroscope readings are the measure of angular velocities which has x,y and z components.
- Jerk signals are calculated for BodyAcceleration readings.
- Fourier Transforms are made on the above time readings to obtain frequency readings.
- Now, on all the base signal readings., mean, max, mad, sma, arcoefficient, engerybands,entropy etc., are calculated for each window.
- We get a feature vector of 561 features and these features are given in the dataset.
- Each window of readings is a datapoint of 561 features.

Problem Framework

- 30 subjects(volunteers) data is randomly split to 70%(21) test and 30%(7) train data.
- · Each datapoint corresponds one of the 6 Activities.

Problem Statement

Given a new datapoint we have to predict the Activity

```
In [1]: from google.colab import drive
drive.mount('/content/drive')
```

Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_i d=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redi rect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20h ttps%3a%2f%2fwww.googleapis.com%2fauth%2fdcs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly (https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdcs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos

```
Enter your authorization code:
.....
Mounted at /content/drive
```

```
In [2]: import numpy as np
import pandas as pd

# get the features from the file features.txt
features = list()
with open('/content/drive/My Drive/HAR/UCI_HAR_Dataset/features.txt') as f:
    features = [line.split()[1] for line in f.readlines()]
print('No of Features: {}'.format(len(features)))
```

No of Features: 561

```
In [7]: print(features)
        o-arCoeff()-X,1', 'tBodyGyro-arCoeff()-X,2', 'tBodyGyro-arCoeff()-X,3', 'tBod
        yGyro-arCoeff()-X,4', 'tBodyGyro-arCoeff()-Y,1', 'tBodyGyro-arCoeff()-Y,2',
         'tBodyGyro-arCoeff()-Y,3', 'tBodyGyro-arCoeff()-Y,4', 'tBodyGyro-arCoeff()-Z,
        1', 'tBodyGyro-arCoeff()-Z,2', 'tBodyGyro-arCoeff()-Z,3', 'tBodyGyro-arCoeff
        ()-Z,4', 'tBodyGyro-correlation()-X,Y', 'tBodyGyro-correlation()-X,Z', 'tBody
        Gyro-correlation()-Y,Z', 'tBodyGyroJerk-mean()-X', 'tBodyGyroJerk-mean()-Y',
        'tBodyGyroJerk-mean()-Z', 'tBodyGyroJerk-std()-X', 'tBodyGyroJerk-std()-Y',
        'tBodyGyroJerk-std()-Z', 'tBodyGyroJerk-mad()-X', 'tBodyGyroJerk-mad()-Y',
        BodyGyroJerk-mad()-Z', 'tBodyGyroJerk-max()-X', 'tBodyGyroJerk-max()-Y', 'tBo
        dyGyroJerk-max()-Z', 'tBodyGyroJerk-min()-X', 'tBodyGyroJerk-min()-Y', 'tBody
        GyroJerk-min()-Z', 'tBodyGyroJerk-sma()', 'tBodyGyroJerk-energy()-X', 'tBodyG
        yroJerk-energy()-Y', 'tBodyGyroJerk-energy()-Z', 'tBodyGyroJerk-iqr()-X', 'tB
        odyGyroJerk-iqr()-Y', 'tBodyGyroJerk-iqr()-Z', 'tBodyGyroJerk-entropy()-X',
        'tBodyGyroJerk-entropy()-Y', 'tBodyGyroJerk-entropy()-Z', 'tBodyGyroJerk-arCo
        eff()-X,1', 'tBodyGyroJerk-arCoeff()-X,2', 'tBodyGyroJerk-arCoeff()-X,3', 'tB
        odyGyroJerk-arCoeff()-X,4', 'tBodyGyroJerk-arCoeff()-Y,1', 'tBodyGyroJerk-arC
        oeff()-Y,2', 'tBodyGyroJerk-arCoeff()-Y,3', 'tBodyGyroJerk-arCoeff()-Y,4', 't
        BodyGyroJerk-arCoeff()-Z,1', 'tBodyGyroJerk-arCoeff()-Z,2', 'tBodyGyroJerk-ar
        Coeff()-Z,3', 'tBodyGyroJerk-arCoeff()-Z,4', 'tBodyGyroJerk-correlation()-X,
```

Obtain the train data

Obtain the test data

```
In [0]: # get the data from txt files to pandas dataffame
        X_test = pd.read_csv('UCI_HAR_dataset/test/X_test.txt', delim_whitespace=True, he
        # add subject column to the dataframe
        X test['subject'] = pd.read csv('UCI HAR dataset/test/subject test.txt', header=N
        # get y labels from the txt file
        y_test = pd.read_csv('UCI_HAR_dataset/test/y_test.txt', names=['Activity'], sque
        y_test_labels = y_test.map({1: 'WALKING', 2:'WALKING_UPSTAIRS',3:'WALKING_DOWNSTA
                                 4: 'SITTING', 5: 'STANDING', 6: 'LAYING'})
        # put all columns in a single dataframe
        test = X test
        test['Activity'] = y test
        test['ActivityName'] = y_test_labels
        test.sample()
        D:\installed\Anaconda3\lib\site-packages\pandas\io\parsers.py:678: UserWarning:
        Duplicate names specified. This will raise an error in the future.
           return read(filepath or buffer, kwds)
Out[4]:
               tBodyAcc- tBodyAcc- tBodyAcc- tBodyAcc- tBodyAcc- tBodyAcc- tBodyAcc- tBodyAcc-
                mean()-X
                          mean()-Y
                                    mean()-Z
                                                std()-X
                                                          std()-Y
                                                                    std()-Z
                                                                             mad()-X
                                                                                       mad()-Y
                0.279196
                                   -0.103376
         2261
                         -0.018261
                                             -0.996955
                                                       -0.982959
                                                                 -0.988239
                                                                             -0.9972
                                                                                     -0.982509
         1 rows × 564 columns
In [0]: test.shape
Out[5]: (2947, 564)
```

Data Cleaning

1. Check for Duplicates

```
In [0]: print('No of duplicates in train: {}'.format(sum(train.duplicated())))
    print('No of duplicates in test : {}'.format(sum(test.duplicated())))

    No of duplicates in train: 0
    No of duplicates in test : 0
```

2. Checking for NaN/null values

```
In [0]: print('We have {} NaN/Null values in train'.format(train.isnull().values.sum()))
    print('We have {} NaN/Null values in test'.format(test.isnull().values.sum()))
```

We have 0 NaN/Null values in train We have 0 NaN/Null values in test

3. Check for data imbalance

```
In [0]: import matplotlib.pyplot as plt
import seaborn as sns

sns.set_style('whitegrid')
plt.rcParams['font.family'] = 'Dejavu Sans'
```

```
In [0]: plt.figure(figsize=(16,8))
    plt.title('Data provided by each user', fontsize=20)
    sns.countplot(x='subject',hue='ActivityName', data = train)
    plt.show()
```


We have got almost same number of reading from all the subjects

```
In [0]: plt.title('No of Datapoints per Activity', fontsize=15)
    sns.countplot(train.ActivityName)
    plt.xticks(rotation=90)
    plt.show()
```


Observation

Our data is well balanced (almost)

4. Changing feature names

5. Save this dataframe in a csv files

```
In [0]: train.to_csv('UCI_HAR_Dataset/csv_files/train.csv', index=False)
test.to_csv('UCI_HAR_Dataset/csv_files/test.csv', index=False)
```

Exploratory Data Analysis

"Without domain knowledge EDA has no meaning, without EDA a problem has no soul."

1. Featuring Engineering from Domain Knowledge

- Static and Dynamic Activities
 - In static activities (sit, stand, lie down) motion information will not be very useful.
 - In the dynamic activities (Walking, WalkingUpstairs, WalkingDownstairs) motion info will be significant.

2. Stationary and Moving activities are completely different


```
In [0]: # for plotting purposes taking datapoints of each activity to a different datafro
        df1 = train[train['Activity']==1]
        df2 = train[train['Activity']==2]
        df3 = train[train['Activity']==3]
        df4 = train[train['Activity']==4]
        df5 = train[train['Activity']==5]
        df6 = train[train['Activity']==6]
        plt.figure(figsize=(14,7))
        plt.subplot(2,2,1)
        plt.title('Stationary Activities(Zoomed in)')
        sns.distplot(df4['tBodyAccMagmean'],color = 'r',hist = False, label = 'Sitting')
        sns.distplot(df5['tBodyAccMagmean'],color = 'm',hist = False,label = 'Standing')
        sns.distplot(df6['tBodyAccMagmean'],color = 'c',hist = False, label = 'Laying')
        plt.axis([-1.01, -0.5, 0, 35])
        plt.legend(loc='center')
        plt.subplot(2,2,2)
        plt.title('Moving Activities')
        sns.distplot(df1['tBodyAccMagmean'],color = 'red',hist = False, label = 'Walking'
        sns.distplot(df2['tBodyAccMagmean'],color = 'blue',hist = False,label = 'Walking'
        sns.distplot(df3['tBodyAccMagmean'],color = 'green',hist = False, label = 'Walkir'
        plt.legend(loc='center right')
        plt.tight layout()
        plt.show()
```


3. Magnitude of an acceleration can saperate it well

Observations :

- If tAccMean is < -0.8 then the Activities are either Standing or Sitting or Laying.
- If tAccMean is > -0.6 then the Activities are either Walking or WalkingDownstairs or WalkingUpstairs.
- If tAccMean > 0.0 then the Activity is WalkingDownstairs.
- We can classify 75% the Acitivity labels with some errors.

4. Position of GravityAccelerationComponants also matters

```
In [0]: sns.boxplot(x='ActivityName', y='angleXgravityMean', data=train)
plt.axhline(y=0.08, xmin=0.1, xmax=0.9,c='m',dashes=(5,3))
plt.title('Angle between X-axis and Gravity_mean', fontsize=15)
plt.xticks(rotation = 40)
plt.show()
```


Observations :

- If angleX,gravityMean > 0 then Activity is Laying.
- We can classify all datapoints belonging to Laying activity with just a single if else statement.

```
In [0]: sns.boxplot(x='ActivityName', y='angleYgravityMean', data = train, showfliers=Fal
    plt.title('Angle between Y-axis and Gravity_mean', fontsize=15)
    plt.xticks(rotation = 40)
    plt.axhline(y=-0.22, xmin=0.1, xmax=0.8, dashes=(5,3), c='m')
    plt.show()
```


Apply t-sne on the data

```
In [0]: import numpy as np
    from sklearn.manifold import TSNE
    import matplotlib.pyplot as plt
    import seaborn as sns
```

In [0]: # performs t-sne with different perplexity values and their repective plots.. def perform tsne(X data, y data, perplexities, n iter=1000, img name prefix='t-sr for index,perplexity in enumerate(perplexities): # perform t-sne print('\nperforming tsne with perplexity {} and with {} iterations at max X reduced = TSNE(verbose=2, perplexity=perplexity).fit transform(X data) print('Done..') # prepare the data for seaborn print('Creating plot for this t-sne visualization..') df = pd.DataFrame({'x':X_reduced[:,0], 'y':X_reduced[:,1] ,'label':y_data # draw the plot in appropriate place in the grid sns.lmplot(data=df, x='x', y='y', hue='label', fit_reg=False, size=8,\ palette="Set1", markers=['^','v','s','o', '1','2']) plt.title("perplexity : {} and max_iter : {}".format(perplexity, n_iter)) img_name = img_name_prefix + '_perp_{}_iter_{}.png'.format(perplexity, n_ print('saving this plot as image in present working directory...') plt.savefig(img name) plt.show() print('Done')

```
In [0]: X pre tsne = train.drop(['subject', 'Activity','ActivityName'], axis=1)
        y pre tsne = train['ActivityName']
        perform_tsne(X_data = X_pre_tsne,y_data=y_pre_tsne, perplexities =[2,5,10,20,50])
        performing tsne with perplexity 2 and with 1000 iterations at max
        [t-SNE] Computing 7 nearest neighbors...
        [t-SNE] Indexed 7352 samples in 0.426s...
        [t-SNE] Computed neighbors for 7352 samples in 72.001s...
        [t-SNE] Computed conditional probabilities for sample 1000 / 7352
        [t-SNE] Computed conditional probabilities for sample 2000 / 7352
        [t-SNE] Computed conditional probabilities for sample 3000 / 7352
        [t-SNE] Computed conditional probabilities for sample 4000 / 7352
        [t-SNE] Computed conditional probabilities for sample 5000 / 7352
        [t-SNE] Computed conditional probabilities for sample 6000 / 7352
        [t-SNE] Computed conditional probabilities for sample 7000 / 7352
        [t-SNE] Computed conditional probabilities for sample 7352 / 7352
        [t-SNE] Mean sigma: 0.635855
        [t-SNE] Computed conditional probabilities in 0.071s
        [t-SNE] Iteration 50: error = 124.8017578, gradient norm = 0.0253939 (50 iterat
        ions in 16.625s)
        [t-SNE] Iteration 100: error = 107.2019501, gradient norm = 0.0284782 (50 itera
        tions in 9.735s)
        [t-SNE] Iteration 150: error = 100.9872894, gradient norm = 0.0185151 (50 itera
        tions in 5.346s)
        [t-SNE] Iteration 200: error = 97.6054382, gradient norm = 0.0142084 (50 iterat
        ions in 7.013s)
        [t-SNE] Iteration 250: error = 95.3084183, gradient norm = 0.0132592 (50 iterat
        ions in 5.703s)
        [t-SNE] KL divergence after 250 iterations with early exaggeration: 95.308418
        [t-SNE] Iteration 300: error = 4.1209540, gradient norm = 0.0015668 (50 iterati
        ons in 7.156s)
        [t-SNE] Iteration 350: error = 3.2113254, gradient norm = 0.0009953 (50 iterati
        ons in 8.022s)
        [t-SNE] Iteration 400: error = 2.7819963, gradient norm = 0.0007203 (50 iterati
        ons in 9.419s)
        [t-SNE] Iteration 450: error = 2.5178111, gradient norm = 0.0005655 (50 iterati
        ons in 9.370s)
        [t-SNE] Iteration 500: error = 2.3341548, gradient norm = 0.0004804 (50 iterati
        ons in 7.681s)
        [t-SNE] Iteration 550: error = 2.1961622, gradient norm = 0.0004183 (50 iterati
        ons in 7.097s)
        [t-SNE] Iteration 600: error = 2.0867445, gradient norm = 0.0003664 (50 iterati
        ons in 9.274s)
        [t-SNE] Iteration 650: error = 1.9967778, gradient norm = 0.0003279 (50 iterati
        ons in 7.697s)
        [t-SNE] Iteration 700: error = 1.9210005, gradient norm = 0.0002984 (50 iterati
        ons in 8.174s)
        [t-SNE] Iteration 750: error = 1.8558111, gradient norm = 0.0002776 (50 iterati
        ons in 9.747s)
        [t-SNE] Iteration 800: error = 1.7989457, gradient norm = 0.0002569 (50 iterati
        ons in 8.687s)
        [t-SNE] Iteration 850: error = 1.7490212, gradient norm = 0.0002394 (50 iterati
        ons in 8.407s)
        [t-SNE] Iteration 900: error = 1.7043383, gradient norm = 0.0002224 (50 iterati
        ons in 8.351s)
        [t-SNE] Iteration 950: error = 1.6641431, gradient norm = 0.0002098 (50 iterati
```

ons in 7.841s)

[t-SNE] Iteration 1000: error = 1.6279151, gradient norm = 0.0001989 (50 iterations in 5.623s)

[t-SNE] Error after 1000 iterations: 1.627915 Done..

Creating plot for this t-sne visualization..

saving this plot as image in present working directory...

Done

```
performing tsne with perplexity 5 and with 1000 iterations at max

[t-SNE] Computing 16 nearest neighbors...

[t-SNE] Indexed 7352 samples in 0.263s...

[t-SNE] Computed neighbors for 7352 samples in 48.983s...

[t-SNE] Computed conditional probabilities for sample 1000 / 7352

[t-SNE] Computed conditional probabilities for sample 2000 / 7352

[t-SNE] Computed conditional probabilities for sample 3000 / 7352

[t-SNE] Computed conditional probabilities for sample 4000 / 7352

[t-SNE] Computed conditional probabilities for sample 5000 / 7352

[t-SNE] Computed conditional probabilities for sample 6000 / 7352

[t-SNE] Computed conditional probabilities for sample 7000 / 7352

[t-SNE] Computed conditional probabilities for sample 7352 / 7352

[t-SNE] Computed conditional probabilities in 0.122s

[t-SNE] Computed conditional probabilities in 0.122s

[t-SNE] Iteration 50: error = 114.1862640, gradient norm = 0.0184120 (50 iterat
```

[t-SNE] Iteration 100: error = 97.6535568, gradient norm = 0.0174309 (50 iterat

ions in 55.655s)

```
ions in 12.580s)
[t-SNE] Iteration 150: error = 93.1900101, gradient norm = 0.0101048 (50 iterat
ions in 9.180s)
[t-SNE] Iteration 200: error = 91.2315445, gradient norm = 0.0074560 (50 iterat
ions in 10.340s)
[t-SNE] Iteration 250: error = 90.0714417, gradient norm = 0.0057667 (50 iterat
ions in 9.458s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 90.071442
[t-SNE] Iteration 300: error = 3.5796804, gradient norm = 0.0014691 (50 iterati
ons in 8.718s)
[t-SNE] Iteration 350: error = 2.8173938, gradient norm = 0.0007508 (50 iterati
ons in 10.180s)
[t-SNE] Iteration 400: error = 2.4344938, gradient norm = 0.0005251 (50 iterati
ons in 10.506s)
[t-SNE] Iteration 450: error = 2.2156141, gradient norm = 0.0004069 (50 iterati
ons in 10.072s)
[t-SNE] Iteration 500: error = 2.0703306, gradient norm = 0.0003340 (50 iterati
ons in 10.511s)
[t-SNE] Iteration 550: error = 1.9646366, gradient norm = 0.0002816 (50 iterati
ons in 9.792s)
[t-SNE] Iteration 600: error = 1.8835558, gradient norm = 0.0002471 (50 iterati
ons in 9.098s)
[t-SNE] Iteration 650: error = 1.8184001, gradient norm = 0.0002184 (50 iterati
ons in 8.656s)
[t-SNE] Iteration 700: error = 1.7647167, gradient norm = 0.0001961 (50 iterati
ons in 9.063s)
[t-SNE] Iteration 750: error = 1.7193680, gradient norm = 0.0001796 (50 iterati
ons in 9.754s)
[t-SNE] Iteration 800: error = 1.6803776, gradient norm = 0.0001655 (50 iterati
ons in 9.540s)
[t-SNE] Iteration 850: error = 1.6465144, gradient norm = 0.0001538 (50 iterati
ons in 9.953s)
[t-SNE] Iteration 900: error = 1.6166563, gradient norm = 0.0001421 (50 iterati
ons in 10.270s)
[t-SNE] Iteration 950: error = 1.5901035, gradient norm = 0.0001335 (50 iterati
ons in 6.609s)
[t-SNE] Iteration 1000: error = 1.5664237, gradient norm = 0.0001257 (50 iterat
ions in 8.553s)
[t-SNE] Error after 1000 iterations: 1.566424
Creating plot for this t-sne visualization..
```

Done..

saving this plot as image in present working directory...


```
performing tsne with perplexity 10 and with 1000 iterations at max
[t-SNE] Computing 31 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.410s...
[t-SNE] Computed neighbors for 7352 samples in 64.801s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.133828
[t-SNE] Computed conditional probabilities in 0.214s
[t-SNE] Iteration 50: error = 106.0169220, gradient norm = 0.0194293 (50 iterat
ions in 24.550s)
[t-SNE] Iteration 100: error = 90.3036194, gradient norm = 0.0097653 (50 iterat
ions in 11.936s)
[t-SNE] Iteration 150: error = 87.3132935, gradient norm = 0.0053059 (50 iterat
ions in 11.246s)
[t-SNE] Iteration 200: error = 86.1169128, gradient norm = 0.0035844 (50 iterat
ions in 11.864s)
[t-SNE] Iteration 250: error = 85.4133606, gradient norm = 0.0029100 (50 iterat
ions in 11.944s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 85.413361
[t-SNE] Iteration 300: error = 3.1394315, gradient norm = 0.0013976 (50 iterati
ons in 11.742s)
[t-SNE] Iteration 350: error = 2.4929206, gradient norm = 0.0006466 (50 iterati
ons in 11.627s)
[t-SNE] Iteration 400: error = 2.1733041, gradient norm = 0.0004230 (50 iterati
ons in 11.846s)
[t-SNE] Iteration 450: error = 1.9884514, gradient norm = 0.0003124 (50 iterati
ons in 11.405s)
[t-SNE] Iteration 500: error = 1.8702440, gradient norm = 0.0002514 (50 iterati
ons in 11.320s)
[t-SNE] Iteration 550: error = 1.7870129, gradient norm = 0.0002107 (50 iterati
ons in 12.009s)
[t-SNE] Iteration 600: error = 1.7246909, gradient norm = 0.0001824 (50 iterati
ons in 10.632s)
[t-SNE] Iteration 650: error = 1.6758548, gradient norm = 0.0001590 (50 iterati
```

ons in 11.270s) [t-SNE] Iteration 700: error = 1.6361949, gradient norm = 0.0001451 (50 iterati ons in 12.072s) [t-SNE] Iteration 750: error = 1.6034756, gradient norm = 0.0001305 (50 iterati ons in 11.607s) [t-SNE] Iteration 800: error = 1.5761518, gradient norm = 0.0001188 (50 iterati ons in 9.409s) [t-SNE] Iteration 850: error = 1.5527289, gradient norm = 0.0001113 (50 iterati ons in 8.309s) [t-SNE] Iteration 900: error = 1.5328671, gradient norm = 0.0001021 (50 iterati ons in 9.433s) [t-SNE] Iteration 950: error = 1.5152045, gradient norm = 0.0000974 (50 iterati ons in 11.488s) [t-SNE] Iteration 1000: error = 1.4999681, gradient norm = 0.0000933 (50 iterat ions in 10.593s) [t-SNE] Error after 1000 iterations: 1.499968 Done..

Creating plot for this t-sne visualization.. saving this plot as image in present working directory...

Done

```
performing tsne with perplexity 20 and with 1000 iterations at max
[t-SNE] Computing 61 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.425s...
[t-SNE] Computed neighbors for 7352 samples in 61.792s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.274335
[t-SNE] Computed conditional probabilities in 0.355s
[t-SNE] Iteration 50: error = 97.5202179, gradient norm = 0.0223863 (50 itera
tions in 21.168s)
[t-SNE] Iteration 100: error = 83.9500732, gradient norm = 0.0059110 (50 iter
ations in 17.306s)
[t-SNE] Iteration 150: error = 81.8804779, gradient norm = 0.0035797 (50 iter
ations in 14.258s)
[t-SNE] Iteration 200: error = 81.1615143, gradient norm = 0.0022536 (50 iter
ations in 14.130s)
[t-SNE] Iteration 250: error = 80.7704086, gradient norm = 0.0018108 (50 iter
ations in 15.340s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 80.770409
[t-SNE] Iteration 300: error = 2.6957574, gradient norm = 0.0012993 (50 itera
tions in 13.605s)
[t-SNE] Iteration 350: error = 2.1637220, gradient norm = 0.0005765 (50 itera
tions in 13.248s)
[t-SNE] Iteration 400: error = 1.9143614, gradient norm = 0.0003474 (50 itera
tions in 14.774s)
[t-SNE] Iteration 450: error = 1.7684202, gradient norm = 0.0002458 (50 itera
tions in 15.502s)
[t-SNE] Iteration 500: error = 1.6744757, gradient norm = 0.0001923 (50 itera
tions in 14.808s)
[t-SNE] Iteration 550: error = 1.6101606, gradient norm = 0.0001575 (50 itera
tions in 14.043s)
[t-SNE] Iteration 600: error = 1.5641028, gradient norm = 0.0001344 (50 itera
tions in 15.769s)
[t-SNE] Iteration 650: error = 1.5291905, gradient norm = 0.0001182 (50 itera
tions in 15.834s)
[t-SNE] Iteration 700: error = 1.5024391, gradient norm = 0.0001055 (50 itera
tions in 15.398s)
[t-SNE] Iteration 750: error = 1.4809053, gradient norm = 0.0000965 (50 itera
tions in 14.594s)
[t-SNE] Iteration 800: error = 1.4631859, gradient norm = 0.0000884 (50 itera
tions in 15.025s)
[t-SNE] Iteration 850: error = 1.4486470, gradient norm = 0.0000832 (50 itera
tions in 14.060s)
```

[t-SNE] Iteration 900: error = 1.4367288, gradient norm = 0.0000804 (50 iterations in 12.389s)

[t-SNE] Iteration 950: error = 1.4270191, gradient norm = 0.0000761 (50 iterations in 10.392s)

[t-SNE] Iteration 1000: error = 1.4189968, gradient norm = 0.0000787 (50 iterations in 12.355s)

[t-SNE] Error after 1000 iterations: 1.418997 Done..

Creating plot for this t-sne visualization.. saving this plot as image in present working directory...

Done

```
performing tsne with perplexity 50 and with 1000 iterations at max
[t-SNE] Computing 151 nearest neighbors...
[t-SNE] Indexed 7352 samples in 0.376s...
[t-SNE] Computed neighbors for 7352 samples in 73.164s...
[t-SNE] Computed conditional probabilities for sample 1000 / 7352
[t-SNE] Computed conditional probabilities for sample 2000 / 7352
[t-SNE] Computed conditional probabilities for sample 3000 / 7352
[t-SNE] Computed conditional probabilities for sample 4000 / 7352
[t-SNE] Computed conditional probabilities for sample 5000 / 7352
[t-SNE] Computed conditional probabilities for sample 6000 / 7352
[t-SNE] Computed conditional probabilities for sample 7000 / 7352
[t-SNE] Computed conditional probabilities for sample 7352 / 7352
[t-SNE] Mean sigma: 1.437672
[t-SNE] Computed conditional probabilities in 0.844s
[t-SNE] Iteration 50: error = 86.1525574, gradient norm = 0.0242986 (50 itera
tions in 36.249s)
[t-SNE] Iteration 100: error = 75.9874649, gradient norm = 0.0061005 (50 iter
ations in 30.453s)
[t-SNE] Iteration 150: error = 74.7072296, gradient norm = 0.0024708 (50 iter
ations in 28.461s)
[t-SNE] Iteration 200: error = 74.2736282, gradient norm = 0.0018644 (50 iter
ations in 27.735s)
[t-SNE] Iteration 250: error = 74.0722427, gradient norm = 0.0014078 (50 iter
ations in 26.835s)
[t-SNE] KL divergence after 250 iterations with early exaggeration: 74.072243
[t-SNE] Iteration 300: error = 2.1539080, gradient norm = 0.0011796 (50 itera
tions in 25.445s)
[t-SNE] Iteration 350: error = 1.7567128, gradient norm = 0.0004845 (50 itera
tions in 21.282s)
[t-SNE] Iteration 400: error = 1.5888531, gradient norm = 0.0002798 (50 itera
tions in 21.015s)
[t-SNE] Iteration 450: error = 1.4956820, gradient norm = 0.0001894 (50 itera
tions in 23.332s)
[t-SNE] Iteration 500: error = 1.4359720, gradient norm = 0.0001420 (50 itera
tions in 23.083s)
[t-SNE] Iteration 550: error = 1.3947564, gradient norm = 0.0001117 (50 itera
tions in 19.626s)
[t-SNE] Iteration 600: error = 1.3653858, gradient norm = 0.0000949 (50 itera
tions in 22.752s)
[t-SNE] Iteration 650: error = 1.3441534, gradient norm = 0.0000814 (50 itera
tions in 23.972s)
[t-SNE] Iteration 700: error = 1.3284039, gradient norm = 0.0000742 (50 itera
tions in 20.636s)
[t-SNE] Iteration 750: error = 1.3171139, gradient norm = 0.0000700 (50 itera
tions in 20.407s)
[t-SNE] Iteration 800: error = 1.3085558, gradient norm = 0.0000657 (50 itera
```

```
tions in 24.951s)
[t-SNE] Iteration 850: error = 1.3017821, gradient norm = 0.0000603 (50 itera tions in 24.719s)
[t-SNE] Iteration 900: error = 1.2962619, gradient norm = 0.0000586 (50 itera tions in 24.500s)
[t-SNE] Iteration 950: error = 1.2914882, gradient norm = 0.0000573 (50 itera tions in 24.132s)
[t-SNE] Iteration 1000: error = 1.2874244, gradient norm = 0.0000546 (50 iterations in 22.840s)
[t-SNE] Error after 1000 iterations: 1.287424
Done..
Creating plot for this t-sne visualization..
saving this plot as image in present working directory...
```


Done

In [0]: import numpy as np
import pandas as pd

Obtain the train and test data

```
In [0]: |train = pd.read_csv('UCI_HAR_dataset/csv files/train.csv')
        test = pd.read csv('UCI HAR dataset/csv files/test.csv')
        print(train.shape, test.shape)
         (7352, 564) (2947, 564)
In [0]: train.head(3)
Out[3]:
            tBodyAccmeanX tBodyAccmeanY tBodyAccmeanZ tBodyAccstdX tBodyAccstdY tBodyAccstdZ
         0
                  0.288585
                                 -0.020294
                                               -0.132905
                                                            -0.995279
                                                                          -0.983111
                                                                                      -0.913526
                  0.278419
                                 -0.016411
                                               -0.123520
                                                            -0.998245
                                                                         -0.975300
                                                                                      -0.960322
         2
                  0.279653
                                -0.019467
                                               -0.113462
                                                            -0.995380
                                                                         -0.967187
                                                                                      -0.978944
         3 rows × 564 columns
In [0]: # get X train and y train from csv files
        X_train = train.drop(['subject', 'Activity', 'ActivityName'], axis=1)
        y train = train.ActivityName
In [0]: # get X test and y test from test csv file
        X_test = test.drop(['subject', 'Activity', 'ActivityName'], axis=1)
        y test = test.ActivityName
In [0]: print('X_train and y_train : ({},{})'.format(X_train.shape, y_train.shape))
        print('X_test and y_test : ({},{})'.format(X_test.shape, y_test.shape))
        X train and y train : ((7352, 561), (7352,))
        X_test and y_test : ((2947, 561),(2947,))
```

Let's model with our data

Labels that are useful in plotting confusion matrix

```
In [0]: labels=['LAYING', 'SITTING', 'STANDING', 'WALKING', 'WALKING_DOWNSTAIRS', 'WALKING_UF
```

Function to plot the confusion matrix

```
In [0]: import itertools
        import numpy as np
        import matplotlib.pyplot as plt
        from sklearn.metrics import confusion matrix
        plt.rcParams["font.family"] = 'DejaVu Sans'
        def plot confusion matrix(cm, classes,
                                   normalize=False,
                                   title='Confusion matrix',
                                   cmap=plt.cm.Blues):
            if normalize:
                cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]
            plt.imshow(cm, interpolation='nearest', cmap=cmap)
            plt.title(title)
            plt.colorbar()
            tick marks = np.arange(len(classes))
            plt.xticks(tick_marks, classes, rotation=90)
            plt.yticks(tick_marks, classes)
            fmt = '.2f' if normalize else 'd'
            thresh = cm.max() / 2.
            for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):
                plt.text(j, i, format(cm[i, j], fmt),
                         horizontalalignment="center",
                          color="white" if cm[i, j] > thresh else "black")
            plt.tight_layout()
            plt.ylabel('True label')
            plt.xlabel('Predicted label')
```

Generic function to run any model specified

```
In [0]: from datetime import datetime
        def perform_model(model, X_train, y_train, X_test, y_test, class_labels, cm_norma
                        print cm=True, cm cmap=plt.cm.Greens):
           # to store results at various phases
           results = dict()
           # time at which model starts training
           train_start_time = datetime.now()
           print('training the model..')
           model.fit(X_train, y_train)
           print('Done \n \n')
           train end time = datetime.now()
           results['training time'] = train end time - train start time
           print('training_time(HH:MM:SS.ms) - {}\n\n'.format(results['training_time']))
           # predict test data
           print('Predicting test data')
           test start time = datetime.now()
           y_pred = model.predict(X_test)
           test end time = datetime.now()
           print('Done \n \n')
           results['testing time'] = test end time - test start time
           print('testing time(HH:MM:SS:ms) - {}\n\n'.format(results['testing time']))
           results['predicted'] = y pred
           # calculate overall accuracty of the model
           accuracy = metrics.accuracy_score(y_true=y_test, y_pred=y_pred)
           # store accuracy in results
           results['accuracy'] = accuracy
           print('----')
           print('| Accuracy |')
           print('----')
           print('\n {}\n\n'.format(accuracy))
           # confusion matrix
           cm = metrics.confusion_matrix(y_test, y_pred)
           results['confusion matrix'] = cm
           if print cm:
               print('----')
               print('| Confusion Matrix |')
               print('----')
               print('\n {}'.format(cm))
           # plot confusin matrix
           plt.figure(figsize=(8,8))
           plt.grid(b=False)
           plot confusion matrix(cm, classes=class labels, normalize=True, title='Normal
           plt.show()
           # get classification report
           print('----')
```

```
print('| Classifiction Report |')
print('-----')
classification_report = metrics.classification_report(y_test, y_pred)
# store report in results
results['classification_report'] = classification_report
print(classification_report)

# add the trained model to the results
results['model'] = model
return results
```

Method to print the gridsearch Attributes

```
In [0]: def print grid search attributes(model):
         # Estimator that gave highest score among all the estimators formed in GridSe
         print('----')
         print('| Best Estimator |')
         print('----')
         print('\n\t{}\n'.format(model.best estimator ))
         # parameters that gave best results while performing grid search
         print('----')
         print('| Best parameters |')
         print('----')
         print('\tParameters of best estimator : \n\n\t{}\n'.format(model.best params
         # number of cross validation splits
         print('----')
         print('| No of CrossValidation sets |')
         print('----')
         print('\n\tTotal numbre of cross validation sets: {}\n'.format(model.n splits)
         # Average cross validated score of the best estimator, from the Grid Search
         print('----')
         print('| Best Score |')
         print('----')
         print('\n\tAverage Cross Validate scores of best estimator : \n\n\t{}\n'.form
```

1. Logistic Regression with Grid Search

```
In [0]: from sklearn import linear_model
from sklearn import metrics
from sklearn.model_selection import GridSearchCV
```

```
In [0]:
        # start Grid search
        parameters = {'C':[0.01, 0.1, 1, 10, 20, 30], 'penalty':['12','11']}
        log reg = linear model.LogisticRegression()
        log_reg_grid = GridSearchCV(log_reg, param_grid=parameters, cv=3, verbose=1, n_j
        log_reg_grid_results = perform_model(log_reg_grid, X_train, y_train, X_test, y_t
        training the model..
        Fitting 3 folds for each of 12 candidates, totalling 36 fits
        [Parallel(n_jobs=-1)]: Done 36 out of 36 | elapsed: 1.2min finished
        Done
        training_time(HH:MM:SS.ms) - 0:01:25.843810
        Predicting test data
        Done
        testing time(HH:MM:SS:ms) - 0:00:00.009192
               Accuracy
            0.9626739056667798
        | Confusion Matrix |
         [[537
                 0
                     0
                                 01
            1 428 58
                        0
                                4]
            0
               12 519
                        1
                                0]
                   0 495
                                0]
            0
                0
                    0
                        3 409
                                8]
                      22
                            0 449]]
```


Classifiction Report |

	precision	recall f1-score		support			
LAYING	1.00	1.00	1.00	537			
SITTING	0.97	0.87	0.92	491			
STANDING	0.90	0.98	0.94	532			
WALKING	0.95	1.00	0.97	496			
WALKING_DOWNSTAIRS	1.00	0.97	0.99	420			
WALKING_UPSTAIRS	0.97	0.95	0.96	471			
avg / total	0.96	0.96	0.96	2947			

```
In [0]: plt.figure(figsize=(8,8))
    plt.grid(b=False)
    plot_confusion_matrix(log_reg_grid_results['confusion_matrix'], classes=labels, opt.show()
```



```
In [0]: # observe the attributes of the model
        print_grid_search_attributes(log_reg_grid_results['model'])
              Best Estimator
                LogisticRegression(C=30, class_weight=None, dual=False, fit_intercept=T
        rue,
                  intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,
                  penalty='12', random_state=None, solver='liblinear', tol=0.0001,
                 verbose=0, warm start=False)
              Best parameters |
                Parameters of best estimator :
                {'C': 30, 'penalty': '12'}
        No of CrossValidation sets
                Total numbre of cross validation sets: 3
                Best Score
                Average Cross Validate scores of best estimator :
                0.9461371055495104
```

2. Linear SVC with GridSearch

```
In [0]: parameters = {'C':[0.125, 0.5, 1, 2, 8, 16]}
        lr svc = LinearSVC(tol=0.00005)
        lr_svc_grid = GridSearchCV(lr_svc, param_grid=parameters, n_jobs=-1, verbose=1)
        lr_svc_grid_results = perform_model(lr_svc_grid, X_train, y_train, X_test, y_test
        training the model..
        Fitting 3 folds for each of 6 candidates, totalling 18 fits
        [Parallel(n_jobs=-1)]: Done 18 out of 18 | elapsed:
                                                               24.9s finished
        Done
        training_time(HH:MM:SS.ms) - 0:00:32.951942
        Predicting test data
        Done
        testing time(HH:MM:SS:ms) - 0:00:00.012182
              Accuracy
            0.9660671869697998
        | Confusion Matrix |
         [[537 0
                                01
            2 426 58
                       0
                               5]
              14 518
                       0
                               0]
            0
                0
                   0 495 0
                               1]
            0
                0
                   0
                       2 413
                               5]
```

0 12

1 458]]

١	C	1	a	s	s	i	f	i	c	t	i	o	n	R	e	р	o	r	t	I	

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING	0.97	0.87	0.92	491
STANDING	0.90	0.97	0.94	532
WALKING	0.97	1.00	0.99	496
WALKING_DOWNSTAIRS	1.00	0.98	0.99	420
WALKING_UPSTAIRS	0.98	0.97	0.97	471
avg / total	0.97	0.97	0.97	2947

3. Kernel SVM with GridSearch

```
In [0]: from sklearn.svm import SVC
        parameters = {'C':[2,8,16],\
                      'gamma': [ 0.0078125, 0.125, 2]}
        rbf svm = SVC(kernel='rbf')
        rbf_svm_grid = GridSearchCV(rbf_svm,param_grid=parameters, n_jobs=-1)
        rbf_svm_grid_results = perform_model(rbf_svm_grid, X_train, y_train, X_test, y_text)
        training the model..
        Done
        training_time(HH:MM:SS.ms) - 0:05:46.182889
        Predicting test data
        Done
        testing time(HH:MM:SS:ms) - 0:00:05.221285
              Accuracy
            0.9626739056667798
        | Confusion Matrix |
         [[537
                                 0]
                 0
            0 441 48
                                2]
                        0
            0
               12 520
                        0
                            0
                                0]
                  0 489 2
                                5]
                    0 4 397 19]
            0
                            1 453]]
                    0 17
```


Classifiction Report										
	precision	recall	f1-score	support						
LAYING	1.00	1.00	1.00	537						
SITTING	0.97	0.90	0.93	491						
STANDING	0.92	0.98	0.95	532						
WALKING	0.96	0.99	0.97	496						

WALKING_DOWNSTAIRS 0.99 0.95 0.97 420 WALKING_UPSTAIRS 0.95 0.96 0.95 471 avg / total 0.96 0.96 0.96 2947

4. Decision Trees with GridSearchCV

```
In [0]: from sklearn.tree import DecisionTreeClassifier
        parameters = {'max_depth':np.arange(3,10,2)}
        dt = DecisionTreeClassifier()
        dt grid = GridSearchCV(dt,param grid=parameters, n jobs=-1)
        dt_grid_results = perform_model(dt_grid, X_train, y_train, X_test, y_test, class)
        print_grid_search_attributes(dt_grid_results['model'])
        training the model..
        Done
        training_time(HH:MM:SS.ms) - 0:00:19.476858
        Predicting test data
        Done
        testing time(HH:MM:SS:ms) - 0:00:00.012858
              Accuracy
            0.8642687478791992
        | Confusion Matrix |
         [[537
                    0
                        0
                                0]
                0
            0 386 105
                       0
                           0
                               0]
            0
              93 439
                       0
                           0
                               0]
               0 0 472 16
                               8]
                0 0 15 344 61]
            0
                   0 73 29 369]]
```


-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
		C	1	a	s	s	i	f	i	c	t	i	o	n		R	e	p	o	r	t			

	precision	recall	f1-score	support							
LAYING	1.00	1.00	1.00	537							
SITTING	0.81	0.79	0.80	491							
STANDING	0.81	0.83	0.82	532							
WALKING	0.84	0.95	0.89	496							
WALKING_DOWNSTAIRS	0.88	0.82	0.85	420							
WALKING_UPSTAIRS	0.84	0.78	0.81	471							
avg / total	0.86	0.86	0.86	2947							

| Best Estimator |

DecisionTreeClassifier(class_weight=None, criterion='gini', max_depth=

7,
 max_features=None, max_leaf_nodes=None,
 min_impurity_decrease=0.0, min_impurity_split=None,

```
min_samples_leaf=1, min_samples_split=2,
    min_weight_fraction_leaf=0.0, presort=False, random_state=None,
    splitter='best')

Best parameters |

Parameters of best estimator :
    {'max_depth': 7}

| No of CrossValidation sets |

Total numbre of cross validation sets: 3

Average Cross Validate scores of best estimator :
```

5. Random Forest Classifier with GridSearch

0.8369151251360174

```
In [0]: from sklearn.ensemble import RandomForestClassifier
        params = {'n_estimators': np.arange(10,201,20), 'max_depth':np.arange(3,15,2)}
        rfc = RandomForestClassifier()
        rfc grid = GridSearchCV(rfc, param grid=params, n jobs=-1)
        rfc_grid_results = perform_model(rfc_grid, X_train, y_train, X_test, y_test, class
        print_grid_search_attributes(rfc_grid_results['model'])
        training the model..
        Done
        training_time(HH:MM:SS.ms) - 0:06:22.775270
        Predicting test data
        Done
        testing time(HH:MM:SS:ms) - 0:00:00.025937
               Accuracy
            0.9131319986426875
        | Confusion Matrix |
         [[537
                         0
                                 0]
            0 427 64
                        0
                                0]
                            0
            0
               52 480
                        0
                            0
                                0]
                    0 484 10
                                2]
            0
                    0 38 332
                               50]
            0
                            6 431]]
                    0 34
```


Ξ	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
ı		C	٦	2	c	c	i	£	i	_	+	i	^	n		P	۵	n	^	n	+		Ι	
ı		·	_	a	3	3	_	•	_	·	·	_	U	• •		ı١	C	Ρ	U	•	L		ı	
_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING	0.89	0.87	0.88	491
STANDING	0.88	0.90	0.89	532
WALKING	0.87	0.98	0.92	496
WALKING_DOWNSTAIRS	0.95	0.79	0.86	420
WALKING_UPSTAIRS	0.89	0.92	0.90	471
avg / total	0.92	0.91	0.91	2947

```
Best Estimator
       RandomForestClassifier(bootstrap=True, class_weight=None, criterion='gi
ni',
          max_depth=7, max_features='auto', max_leaf_nodes=None,
          min_impurity_decrease=0.0, min_impurity_split=None,
          min_samples_leaf=1, min_samples_split=2,
           min weight fraction leaf=0.0, n estimators=70, n jobs=1,
           oob score=False, random state=None, verbose=0,
           warm_start=False)
   Best parameters
       Parameters of best estimator :
       {'max_depth': 7, 'n_estimators': 70}
No of CrossValidation sets
_____
       Total numbre of cross validation sets: 3
______
       Best Score
       Average Cross Validate scores of best estimator :
       0.9141730141458106
```

6. Gradient Boosted Decision Trees With GridSearch

```
In [0]: from sklearn.ensemble import GradientBoostingClassifier
        param_grid = {'max_depth': np.arange(5,8,1), \
                     'n_estimators':np.arange(130,170,10)}
        gbdt = GradientBoostingClassifier()
        gbdt_grid = GridSearchCV(gbdt, param_grid=param_grid, n_jobs=-1)
        gbdt_grid_results = perform_model(gbdt_grid, X_train, y_train, X_test, y_test, c]
        print_grid_search_attributes(gbdt_grid_results['model'])
        training the model..
        Done
        training time(HH:MM:SS.ms) - 0:28:03.653432
        Predicting test data
        Done
        testing time(HH:MM:SS:ms) - 0:00:00.058843
               Accuracy
            0.9222938581608415
        | Confusion Matrix |
                                 0]
         [[537
                 0
                     0
                             0
            0 396 93
                        0
                            0
                                2]
               37 495
                                0]
                            7
            0
                0
                   0 483
                                6]
                    0 10 374
            0
                0
                               36]
            0
                1
                    0 31
                            6 433]]
```


-	-			-			-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	
I		C:	la	s	s	Ĺf	i	c	t	i	o	n		R	e	р	o	r	t		I		

	precision	recall	f1-score	support
LAYING	1.00	1.00	1.00	537
SITTING	0.91	0.81	0.86	491
STANDING	0.84	0.93	0.88	532
WALKING	0.92	0.97	0.95	496
WALKING_DOWNSTAIRS	0.97	0.89	0.93	420
WALKING_UPSTAIRS	0.91	0.92	0.91	471
avg / total	0.92	0.92	0.92	2947

Best Estimator |

min_weight_fraction_leaf=0.0, n_estimators=140,
presort='auto', random_state=None, subsample=1.0, verbose=0,
warm start=False)

```
| Best parameters |
| Parameters of best estimator:
| {'max_depth': 5, 'n_estimators': 140}
| No of CrossValidation sets |
| Total numbre of cross validation sets: 3
| Best Score |
| Average Cross Validate scores of best estimator:
| 0.904379760609358
```

7. Comparing all models

```
In [0]: print('\n
                                                                                                                                                      Accuracy
                                                                                                                                                                                                     Error')
                                                                                                                                                                                                 ----')
                                print('
                                print('Logistic Regression : {:.04}%
                                                                                                                                                                                                         {:.04}%'.format(log_reg_grid_results[
                                                                                                                                                                                                                                     100-(log reg grid results['accu
                                print('Linear SVC
                                                                                                                                     : {:.04}%
                                                                                                                                                                                                {:.04}% '.format(lr_svc_grid_results[
                                                                                                                                                                                                                                                             100-(lr svc grid results)
                                print('rbf SVM classifier : {:.04}%
                                                                                                                                                                                                     {:.04}% '.format(rbf svm grid results[
                                                                                                                                                                                                                                                                     100-(rbf_svm_grid_resu]
                                                                                                                                                                                                 {:.04}% '.format(dt_grid_results['accur
                                print('DecisionTree
                                                                                                                     : {:.04}%
                                                                                                                                                                                                                                                             100-(dt_grid_results['acc
                                                                                                                    : {:.04}%
                                print('Random Forest
                                                                                                                                                                                                    {:.04}% '.format(rfc grid results['accu
                                                                                                                                                                                                                                                                          100-(rfc_grid_results|
                                print('GradientBoosting DT : {:.04}% '.format(rfc_grid_results['acculated acculated acculat
                                                                                                                                                                                                                                                             100-(rfc_grid_results['ad
```

Accuracy	Error
: 96.27%	3.733%
: 96.61%	3.393%
: 96.27%	3.733%
: 86.43%	13.57%
: 91.31%	8.687%
: 91.31%	8.687%
	: 96.61% : 96.27% : 86.43% : 91.31%

We can choose *Logistic regression* or *Linear SVC* or *rbf SVM*, but Linear SVC is better