

Linux System Architecture

By: Amir Hossein Payberah

payberah@yahoo.com

- What is Kernel?
- Kernel Architecture Overview
 - User Space
 - Kernel Space
- Kernel Functional Overview
 - File System
 - Process Management
 - Device Driver
 - Memory Management
 - Networking

What is Kernel?

- Modules or sub-systems that provide the operating system functions.
- The Core of OS
- It is written in C

What is Kernel?

- Kernel Architecture Overview
 - User Space
 - Kernel Space
- Kernel Functional Overview
 - File System
 - Process Management
 - Device Driver
 - Memory Management
 - Networking

Kernel Architecture Overview

- User Space
- Kernel Space
- Data Flow Between User Space and Kernel Space

User Space

- The User Space is the space in memory where user processes run.
 This memory is above the Kernel.
 - It includes the rest of available memory.
- This Space is protected.
 - The system prevents one process from interfering with another process.
 - Only Kernel processes can access a user process

Kernel Space

- The Kernel Space is the space in memory where all kernel services are provided via kernel processes.
- The user has access to it only through the system call.
 - A user process becomes a kernel process when it executes a system call.

System Call

- User Space and Kernel Space are in different spaces.
- When a System Call is executed, the arguments to the call are passed from User Space to Kernel Space.

User Space and Kernel Space Relationship

- What is Kernel?
- Kernel Architecture Overview
 - User Space
 - Kernel Space

Kernel Functional Overview

- File System
- Process Management
- Device Driver
- Memory Management
- Networking

Kernel Functional Overview

- File System
- Process Management
- Device Driver
- Memory Management
- Networking

Functional Layer & Architectural Layer

- What is Kernel?
- Kernel Architecture Overview
 - User Space
 - Kernel Space
- Kernel Functional Overview

- File System
- Process Management
- Device Driver
- Memory Management
- Networking

File System

 It is responsible for storing information on disk and retrieving and updating this information.

The File System is accessed through system calls such as: open, read, write,

Example :

- FAT16, FAT32, NTFS
- ext2, ext3
- ...

File System (Cont.)

- The Unix system has the following types of files:
 - Ordinary Files
 - Contain information entered into them by a user, an application or ...
 - Directory Files
 - Manage the cataloging of the file system
 - Special Files (devices)
 - Used to access the peripheral devices
 - FIFO Files for Pipes

File System (Cont.)

File System Structure

Tehran Polytechnic

University

Boot Super inode Block Block Block List List

- Boot Block: information needs to boot the system
- Super Block : File System Specifications
 - Size
 - Max. number of files
 - Free blocks
 - Free inodes
- inode List
- Block List : The files data

Inode

- Each file has an inode structure that is identified by an i-number.
- The inode contains the information required to access the file.
- It doesn't contain file name.

Inode (Cont.)

Directories

File Name

inode Number

- What is Kernel?
- Kernel Architecture Overview
 - User Space
 - Kernel Space
- Kernel Functional Overview
 - File System
 - Process Management
 - Device Driver
 - Memory Management
 - Networking

Process Management

- The Unix OS is a time-sharing system.
- Every process is scheduled to run for a period of time (time slice).
- Kernel creates, manages and deletes the processes

Process Management (Cont.)

- In the Unix system process 0, called the swapper, is always assigned to the process and CPU scheduler.
- It manages the complete operation of process scheduling and swapping.
- Process 0 is create as a part of system boot-up.
- Every other process in the system is create as the result of a fork system call.

Tehran Polytechnic

University

- The fork system call splits a process into two processes (Parent and Child).
- Each process has a unique identifier (Process ID).

Process Management (cont.)

- Each process is represented by a task_struct data structure.
 - It contains the specifications of each process such as:
 - State
 - Scheduling information
 - Identifier
 - ...
- The task_vector is an array of pointers to every task_struct data structure in the system.
 - This means that the maximum number of processes in the system is limited by the size of the task vector

Type of Processes

Running

The process is either running or it is ready to run.

Waiting

The process is waiting for an event or for a resource.

Stopped

The process has been stopped, usually by receiving a signal.

Tehran

Polytechnic Zombie

University

This is a halted process which, for some reason, still has a task struct data structure in the task vector.

- What is Kernel?
- Kernel Architecture Overview
 - User Space
 - Kernel Space
- Kernel Functional Overview
 - File System
 - Process Management
 - Device Driver
 - Memory Management
 - Networking

Device Driver

- Associated with each physical device or virtual device is a piece of code, called device driver, which manage the device hardware.
- The main functions of device driver:
 - Setting up hardware on initialization.
 - Bringing the associated devices into and out of services.
 - Receiving data from the hardware and passing it back to the kernel.
 - Sending data from the kernel to the device.
 - Detecting and handling device errors.

Type of devices

- Every thing in Unix is a file.
 - Each device is like a file.
- Character devices
 - A character (char) device is one that can be accessed as a stream of bytes.
 - Example : Keyboard, Mouse, ...
- Block devices
 - A block device can be accessed only as multiples of a block, where a block is usually one kilobyte of data or another power of 2.
 - Example : disk, ...

University

Major Number and Minor Number

- The major number identifies the driver associated with the device.
- Minor Number
 - The minor number is used only by the driver specified by the major number; other parts of the kernel don't use it.
 - It is common for a driver to control several devices, the minor number provides a way for the driver to differentiate among them.
- Tehran
 Polytechnic
 University

Device Driver (Cont.)


```
root 1, 3 Feb 23 1999
                                            null
crw-rw-rw- 1 root
                         10, 1
                                Feb 23 1999
         1 root
                  root
                                            psaux
crw----- 1 rubini tty 4, 1
                                Aug 16 22:22
                                            tty1
                  dialout 4, 64
                                Jun 30 11:19
                                            ttvSO
crw-rw-rw- 1 root
                  dialout 4, 65
                                Aug 16 00:00
                                            ttvS1
crw-rw-rw- 1 root
                          7, 1
                                Feb 23 1999
                                            vcs1
crw----- 1 root
                  SYS
                          7, 129 Feb 23 1999
crw----- 1 root
                  SVS
                                            vcsa1
                          1, 5
                                Feb 23 1999
crw-rw-rw- 1 root
                  root
                                            zero
```


- What is Kernel?
- Kernel Architecture Overview
 - User Space
 - Kernel Space
- Kernel Functional Overview
 - File System
 - Process Management
 - Device Driver
 - Memory Management
 - Networking

Memory Management

- Physical memory is divided into segments of equal size, called pages.
- Type of memory:
 - Physical memory
 - Virtual memory
 - Swap memory

Virtual and swap memory

Swap

- It is a configurable partition on disk treated in a manner similar to memory.
- Virtual memory
 - Processes swapping in and out of memory on a recurring basis fragment physical memory.
 - It is impossible to guarantee that exactly the same physical memory blocks will be available to a specific process.
 - Virtual address space solves this problem by assigning contiguous virtual memory blocks to a process.
 - These blocks are mapped to physical memory when a process is swap in, and to swap device memory when the process is swapped out.

Physical and Virtual memory

- What is Kernel?
- Kernel Architecture Overview
 - User Space
 - Kernel Space
- Kernel Functional Overview
 - File System
 - Process Management
 - Device Driver
 - Memory Management
 - Networking

Polytechnic

Networking

- The first integrated communication capability in Unix was developed for Berkeley Unix 4.2bsd as the sockets implementation.
- Sockets provide a programming interface for networking.

- What is Kernel?
- Kernel Architecture Overview
 - User Space
 - Kernel Space
- Kernel Functional Overview
 - File System
 - Process Management
 - Device Driver
 - Memory Management
 - Networking

Question?