ATIVIDADE | MEDIDAS DE TENDENCIA CENTRAL

ALUNO	IZAEL ALVES DA SILVA	
PROFESSOR	DEBORA VIRGILIA CANNE	
DISCIPLINA	ANALISE DE DADOS	

Objetivo do exercício

Aplicar os conceitos de média, mediana e moda em um contexto real de TI. Discutir como diferentes medidas de tendência central podem influenciar a interpretação de dados de performance.

Situação problema

Uma empresa de serviços em nuvem monitora, diariamente, o tempo de resposta (em milissegundos) de um de seus principais servidores de aplicação. O setor de TI coletou os seguintes dados referentes ao tempo de resposta em 20 dias consecutivos:

```
data = { 112, 108, 115, 120, 118, 112, 109, 118, 125, 118, 110, 112, 130, 118, 115, 109, 118, 115, 112, 118 }
```

O gestor de infraestrutura solicitou à equipe de análise de dados que faça um diagnóstico da estabilidade do servidor, respondendo:

- 1. Calcule a média, mediana e moda dos tempos de resposta.
- Média: soma de todos os valores dividida pelo número de observações.

Média: 115.60

• Mediana: valor central da amostra ordenada. Se houver quantidade par de elementos, é a média dos dois centrais.

Mediana: 115.0

• Moda: valor mais frequente.

Moda: 118

- 2. Analise se os tempos de resposta estão concentrados em torno de um valor típico ou se há grande variação.
- Os valores giram em torno de 112 a 118, mas existem picos como 125 e 130, que são maiores que a maioria. Isso indica uma certa concentração próxima de 115, mas com alguns valores fora do padrão.
- 3. Avalie se a média é um bom indicador representativo do comportamento do servidor ou se a mediana/moda descrevem melhor a tendência.
- A média (115,05) e a mediana (115) estão muito próximas, mostrando equilíbrio.
- A moda (118) indica a resposta mais comum.
- Nesse caso, como não há uma dispersão muito forte (apenas 1 ou 2 valores destoantes), a média e mediana são bons representantes.
- 4. Com base nos resultados, sugira se o servidor está operando de forma estável ou se é necessário investigar picos de lentidão.
- O servidor parece estável, já que os tempos estão próximos de 115 ms. Entretanto, como há alguns picos (125 e 130), recomenda-se monitoramento para entender se esses aumentos são ocasionais ou se indicam início de lentidão.

Sugestão de roteiro para a análise

- 1. Calcule as três medidas de tendência central (à mão ou com Excel e Python).
- Resolvendo com google sheets.

-	TEMP_RESP	FX	RESULTADO
1	112	MÉDIA =MÉDIA(TEMP_RESP1:TEMP_RESP20)	115.60
2	108	MEDIANA =MED(TEMP_RESP1:TEMP_RESP20)	115
3	115	MODA =MODO(TEMP_RESP1:TEMP_RESP20)	118
4	120		
5	118		
6	112		

7	109	
8	118	
9	125	
10	118	
11	110	
12	112	
13	130	
14	118	
15	115	
16	109	
17	118	
18	115	
19	112	
20	118	

• Resolvendo com Python.

```
Médias.
import statistics as stats
import matplotlib.pyplot as plt

tempos = [112, 108, 115, 120, 118, 112, 109, 118, 125, 118, 110, 112,

media = stats.mean(tempos)
mediana = stats.median(tempos)
moda = stats.mode(tempos)

print(f"Média: {media:.2f}")
print(f"Mediana: {mediana}")
print(f"Moda: {moda}")

Resultado:

Média: 115.60
Mediana: 115.0
Moda: 118
Gráfico.
```

plt.plot(range(1, len(tempos)+1), tempos, marker="o", linestyle="-")

plt.axhline(y=sum(tempos)/len(tempos), color="red", linestyle="--", la
plt.axhline(y=118, color="blue", linestyle="--", label="Moda 118")
plt.axhline(y=115, color="green", linestyle="--", label="Mediana 115")

plt.title("Tempo de Resposta do Servidor ao Longo de 20 Dias")

plt.xlabel("Dia")

plt.legend()
plt.grid(True)
plt.show()

plt.ylabel("Tempo de Resposta (ms)")

- 2. Compare os valores: se são próximos ou distantes.
- 3. Escreva uma breve conclusão (3 a 5 linhas) justificando qual medida melhor descreve a situação.