CORSO DI LAUREA TRIENNALE IN INFORMATICA PROVA SCRITTA DI ALGEBRA (GRUPPI I, II E III) 16 GENNAIO 2023

Svolgere i seguenti esercizi,

Sui fogli consegnati vanno indicati: **nome**, **cognome**, **matricola**, **gruppo di appartenenza**. **Non** è necessario consegnare la traccia.

Esercizio 1. Dimostrare la tautologia della negazione dell'implicazione e utilizzarla per negare la formula $\exists x (\forall y (f(x,y) \rightarrow g(x,y))).$

Esercizio 2. Siano $A = \{n \in \mathbb{N} \mid n < 10\}$ e $B = \{n \in \mathbb{N} \mid n < 9\}$. Detti T l'insieme delle applicazioni da A ad A ed S l'insieme delle applicazioni da B ad A, sia poi $r: T \to S$ l'applicazione che ad ogni $f \in T$ associa la restrizione di f a B, cioè l'applicazione $x \in B \mapsto f(x) \in A$.

- (i) Esprimere (non calcolare) |T| ed |S|.
- (ii) Vero o falso? Per ogni $f \in T$:
 - (a) f è iniettiva $\Rightarrow r(f)$ è iniettiva;
 - (b) f è suriettiva $\Rightarrow r(f)$ è suriettiva.
- (iii) r è iniettiva? r è suriettiva?

Sia ora \mathcal{R} il nucleo di equivalenza di r, e sia h l'applicazione costante $x \in A \mapsto 3 \in A$.

(iv) Descrivere $[h]_{\mathcal{R}}$, calcolare $|[h]_{\mathcal{R}}|$ e $|T/\mathcal{R}|$.

Esercizio 3. Si consideri la relazione d'ordine ρ in \mathbb{Z} definita da: per ogni $a, b \in \mathbb{Z}$ $a \rho b \iff (a = b \vee \operatorname{rest}(a, 9) \text{ è un divisore proprio di } \operatorname{rest}(b, 9)).^1$

- (i) Determinare gli eventuali minimo, massimo, elementi minimali, elementi massimali in (\mathbb{Z}, ρ) ;
- (ii) sempre in (\mathbb{Z}, ρ) , determinare l'insieme dei minoranti di $\{127, 721\}$ e stabilire quindi se esiste inf $\{127, 721\}$;
- (iii) (\mathbb{Z}, ρ) è un reticolo?
- (iv) Determinare una catena (cioè un sottoinsieme totalmente ordinato) massimale (rispetto all'inclusione) in (\mathbb{Z}, ρ) .
- (v) Posto $L = \{-90, -15, -3, 7, 15, 94, 100\}$, disegnare un diagramma di Hasse di (L, ρ) . Questo insieme ordinato è un reticolo? Nel caso lo sia, è complementato? È distributivo?

Esercizio 4. Sia * l'operazione binaria in \mathbb{Z}_{16} definita da: $\forall a, b \in \mathbb{Z}_{16} (a * b = \overline{3}ab)$.

- (i) Che tipo di struttura risulta essere ($\mathbb{Z}_{16}, *$)? Determinarne l'eventuale elemento neutro e, se le domande hanno senso, gli elementi simmetrizzabili ed il simmetrico di $\overline{1}$.
- (ii) Sia $H = \{\overline{7}, \overline{11}\} \subseteq \mathbb{Z}_{16}$. Decidere se H è una parte chiusa in $(\mathbb{Z}_{16}, *)$ e, se lo è, descrivere la struttura (H, *).
- (iii) Dando per noto che (\mathbb{Z}_{16} , +, *) è un anello (dove + è l'ordinaria addizione in \mathbb{Z}_{16}), determinare i suoi divisori dello zero.

Esercizio 5. Dare la definizione di circuito euleriano e determinare tutti e soli i numeri interi positivi n tali che il grafo completo K_n su n vertici possieda circuiti euleriani.

Esercizio 6. Sia $f = 5x^4 + 10x^2 + 4x + 2 \in \mathbb{Z}[x]$ e, per ogni $n \in \mathbb{N}$, sia $f_n = \overline{5}x^4 + \overline{10}x^2 + \overline{4}x + \overline{2} \in \mathbb{Z}_n[x]$.

- (i) Stabilire se f è irriducibile in $\mathbb{Q}[x]$ e se f_1 è irriducibile in $\mathbb{Z}_1[x]$.
- (ii) Trovare il polinomio monico associato a f_5 in $\mathbb{Z}_5[x]$ e, se possibile, il polinomio monico associato a f_{32} in $\mathbb{Z}_{32}[x]$.
- (iii) Per quali numeri naturali n < 10 il polinomio f_n è cancellabile in $\mathbb{Z}_n[x]$?

¹per ogni intero a, rest(a, 9) significa $a \mod 9$, ovvero a % 9.

Es 1 7(P > q) <=> P / (7Q)] ~ (\(\(\(\(\(\(\(\(\) \) \) \) \) Vx (7y (f(xy) 1 7g(x,y))) V V F F F F U F FFF F F V Es 2 A = 10 A= {nell | n < 10} B1=9 B= {ne|N|ne9} T = 10 10 T = {Applicarion. A > A} |S| = 105 S = {Application: B > A} r: T > S door Yh €T onocia la Restazione h a B, coè × ∈ B → h(x) € A i) |T = 10" |S = 10" ii) a: Si, perchi se p è inttiere tutti qui elementi del doni o homo imagine distinta nel codonicio, ridotto il donico i ristenti elementi homo comunque imagine 6: No perchi A < BI, quinot degli eleventi dell' codenirio non possono avere imagine r e sunties pechi |T| > |S| of potodi |T| \(|S| \) R: mucho equiv. di r e h: x E A >> 3 E A iv) [h]R

Es 3

a p b (a = b V reit (a, 9) è d'avon proprie de rest (b, 9)).

i)
morimoli: [O]

noximoli: [O]

mirinali: [I] g min A

ii) 127 a 721 sono entrombe minimal e non sono in rel tra loso, quind; non esiste un mol.

(ii) No, parchi non esiste un inf per ogni coppie di elementi

(v) { 1,2,4,8,0}

- 90=0 15=6

Es 4

*: $\forall a, b \in \mathbb{Z}_{16} (a * b = 3 a b)$ i) COMMUTATIVA: SI $\forall a, b \in \mathbb{Z}_{16} (a * b = b * a) => \overline{3}ab = \overline{3}ba$

ASSOCIATIVA: SI Va, b, c = Zu(ax (b*c) = (a*b)*c) 3a (3bc) = 3c (3ab)

