Chapter ML:II (continued)

II. Machine Learning Basics

- Regression
- □ Concept Learning: Search in Hypothesis Space
- □ Concept Learning: Search in Version Space
- □ Evaluating Effectiveness

True Misclassification Rate

Definition 8 (True Misclassification Rate)

Let X be a feature space with a finite number of elements. Moreover, let C be a set of classes, let $y:X\to C$ be a classifier, and let c be the target concept to be learned. Then the true misclassification rate, denoted as $\mathit{Err}^*(y)$, is defined as follows:

$$\textit{Err}^*(y) = \frac{|\{\mathbf{x} \in X : y(\mathbf{x}) \neq c(\mathbf{x})\}|}{|X|}$$

True Misclassification Rate

Definition 8 (True Misclassification Rate)

Let X be a feature space with a finite number of elements. Moreover, let C be a set of classes, let $y:X\to C$ be a classifier, and let c be the target concept to be learned. Then the true misclassification rate, denoted as $\mathit{Err}^*(y)$, is defined as follows:

$$\textit{Err}^*(y) = \frac{|\{\mathbf{x} \in X : y(\mathbf{x}) \neq c(\mathbf{x})\}|}{|X|}$$

Problem:

 \Box Usually the *total function* c is unknown.

Solution:

□ Estimation of $Err^*(y)$ with $Err(y, D_{ts})$, i.e., evaluation of y on a subset $D_{ts} \subseteq D$. Recall that for the feature vectors in D the target concept c is known.

- ☐ Instead of the term "true misclassification rate" we may use also the term "true misclassification error" or simply "true error".
- □ The English word "rate" can denote both the mathematical concept of a *flow quantity* (a change of a quantity per time unit) as well as the mathematical concept of a *portion*, a *percentage*, or a *ratio*, which has a stationary (= time-independent) semantics. Note that the latter semantics is meant here when talking about the misclassification rate.
- □ Unfortunately, the German word "Rate" is often (mis)used to denote the mathematical concept of a portion, a percentage, or a ratio. Taking a precise mathematical standpoint, the correct German words are "Anteil" or "Quote". I.e., a semantically correct translation of misclassification rate is "Missklassifikationsanteil", and not "Missklassifikationsrate".

True Misclassification Rate: Probabilistic Foundation

Let X be a feature space, C a set of classes, and P a probability measure on $X \times C$. Then $P(\mathbf{x}, c)$ (precisely: $P(\mathcal{X} = \mathbf{x}, \mathcal{C} = c)$) denotes the probability (1) to observe the vector $\mathbf{x} \in X$ and (2) that \mathbf{x} belongs to class $c \in C$. Illustration:

ML:II-101 Basics

True Misclassification Rate: Probabilistic Foundation (continued)

Let X be a feature space, C a set of classes, and P a probability measure on $X \times C$. Then $P(\mathbf{x}, c)$ (precisely: $P(\mathcal{X} = \mathbf{x}, \mathcal{C} = c)$) denotes the probability (1) to observe the vector $\mathbf{x} \in X$ and (2) that \mathbf{x} belongs to class $c \in C$. Illustration:

True Misclassification Rate: Probabilistic Foundation (continued)

Let X be a feature space, C a set of classes, and P a probability measure on $X \times C$. Then $P(\mathbf{x}, c)$ (precisely: $P(\mathcal{X} = \mathbf{x}, \mathcal{C} = c)$) denotes the probability (1) to observe the vector $\mathbf{x} \in X$ and (2) that \mathbf{x} belongs to class $c \in C$. Illustration:

True Misclassification Rate: Probabilistic Foundation (continued)

Let X be a feature space, C a set of classes, and P a probability measure on $X \times C$. Then $P(\mathbf{x}, c)$ (precisely: $P(\mathcal{X} = \mathbf{x}, \mathcal{C} = c)$) denotes the probability (1) to observe the vector $\mathbf{x} \in X$ and (2) that \mathbf{x} belongs to class $c \in C$. Illustration:

True Misclassification Rate: Probabilistic Foundation (continued)

Let X be a feature space, C a set of classes, and P a probability measure on $X \times C$. Then $P(\mathbf{x}, c)$ (precisely: $P(\mathcal{X} = \mathbf{x}, \mathcal{C} = c)$) denotes the probability (1) to observe the vector $\mathbf{x} \in X$ and (2) that \mathbf{x} belongs to class $c \in C$. Illustration:

$$\underline{\mathit{Err}^*(y)} = \sum_{\mathbf{x} \in X} \sum_{c \in C} P(\mathbf{x}, c) \cdot I(y(\mathbf{x}), c), \quad \text{with } I(y(\mathbf{x}), c) = \left\{ \begin{array}{l} 0 & \text{if } y(\mathbf{x}) = c \\ 1 & \text{otherwise} \end{array} \right.$$

ML:II-105 Basics ©STEIN/LETTMANN 2005-2020

True Misclassification Rate: Probabilistic Foundation (continued)

Let X be a feature space, C a set of classes, and P a probability measure on $X \times C$. Then $P(\mathbf{x}, c)$ (precisely: $P(\mathcal{X} = \mathbf{x}, \mathcal{C} = c)$) denotes the probability (1) to observe the vector $\mathbf{x} \in X$ and (2) that \mathbf{x} belongs to class $c \in C$. Illustration:

$$\underline{\textit{Err}^*(y)} = \sum_{\mathbf{x} \in X} \sum_{c \in C} P(\mathbf{x}, c) \cdot I(y(\mathbf{x}), c), \quad \text{with } I(y(\mathbf{x}), c) = \left\{ \begin{array}{l} 0 \text{ if } y(\mathbf{x}) = c \\ 1 \text{ otherwise} \end{array} \right.$$

 $D = \{(\mathbf{x}_1, c_1), \dots, (\mathbf{x}_n, c_n)\} \subseteq X \times C$, as well as $D_{ts} \subseteq D$, are sets of examples whose elements are drawn independently and according to P.

- \supset \mathcal{X} and \mathcal{C} denote random variables with domains X and C respectively. In particular, X may not be restricted to a finite set.
- \mathcal{X} accounts for the fact that each observation process is governed by a probability distribution, rendering certain observations more likely than others. Note that in the definition of the <u>True Misclassification Rate</u> the elements in X are implicitly treated as uniformly distributed: each $\mathbf{x} \in X$ is considered with the same weight in Err^* .
- \Box C accounts for the fact that in the real world the classification $c(\mathbf{x})$ of a feature vector \mathbf{x} may not be deterministic but the result of a random (measuring) process. Keyword: label noise
- If the elements in D and D_{ts} are not chosen according to P, then $Err(y, D_{ts})$ cannot be used as an estimation of $Err^*(y)$. Keyword: sample selection bias The fact that random variables are both independent of each other and identically distributed is abbreviated with "i.i.d."
- \square P is a probability measure and hence its argument must be an event, such as " $\mathcal{X} = \mathbf{x}$ " or " $\mathcal{X} = \mathbf{x} \mid \mathcal{C} = c$ ". I.e., notations such as $P(\mathbf{x})$ and $P(\mathbf{x} \mid c)$ are abbreviations of $P(\mathcal{X} = \mathbf{x})$ and $P(\mathcal{X} = \mathbf{x} \mid \mathcal{C} = c)$ respectively.

Let A and B denote two events, e.g., $A = \mathbf{x}$ [was observed]" and $B = \mathbf{c}$ [is the class of \mathbf{x}]". Then the following expressions are syntactic variants to denote the probability of the combined event: P(A, B), P(A and B), $P(A \wedge B)$.

True Misclassification Rate: Probabilistic Foundation (continued)

Illustration of the marginal probabilities P(c) and $P(\mathbf{x})$:

- P_c (precisely: $P_{c=c}$) is the probability distribution of the $\mathbf{x} \in X$ under class c. $P_c(\mathbf{x}) \equiv P(\mathcal{X} = \mathbf{x} \mid \mathcal{C} = c)$.
 - P_c is a probability measure, also called "class-conditional *probability* [density] function".
 - In the illustration: the distribution of the x (consider a row) for a certain class c. Summation/integration over the $x \in X$ yields the marginal probability P(c).
- $P_{\mathbf{x}}$ (precisely: $P_{\mathcal{X}=\mathbf{x}}$) is the probability distribution of the $c \in C$ under feature vector \mathbf{x} . $P_{\mathbf{x}}(c) \equiv P(\mathcal{C} = c \mid \mathcal{X} = \mathbf{x})$.
 - $P_{\mathbf{x}}$ is a probability measure, also called "conditional class probability function".
 - In the illustration: the distribution of the c (consider a column) for a certain feature vector \mathbf{x} . Summation over the $c \in C$ yields the marginal probability $P(\mathbf{x})$.
- \square $P(\mathbf{x},c) = P(\mathbf{x} \mid c) \cdot P(c)$, where P(c) is the a-priori probability for (observing) event c, and $P(\mathbf{x} \mid c)$ is the probability for (observing) event \mathbf{x} given event c.
 - Likewise, $P(\mathbf{x}, c) = P(c, \mathbf{x}) = P(c \mid \mathbf{x}) \cdot P(\mathbf{x})$, where $P(\mathbf{x})$ is the a-priori probability for (observing) event \mathbf{x} , and $P(c \mid \mathbf{x})$ is the probability for (observing) event c given event \mathbf{x} .
- Let both events \mathbf{x} and c have occurred already, and, let \mathbf{x} be known and c be unknown. Then, $P(\mathbf{x} \mid c)$ is called *likelihood* (for event \mathbf{x} given event c).

Training Error [True Misclassification Rate]

- $D = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_n, c(\mathbf{x}_n))\} \subseteq X \times C \text{ is a set of examples.}$
- \Box $D_{tr} = D$ is the training set.
- $\neg y: X \to C$ is a classifier learned on the basis of D_{tr} .

Training error = misclassification rate with respect to D_{tr} :

$$Err(y, D_{tr}) = \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D_{tr} : y(\mathbf{x}) \neq c(\mathbf{x})\}|}{|D_{tr}|}$$

Training Error [True Misclassification Rate]

- $D = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_n, c(\mathbf{x}_n))\} \subseteq X \times C \text{ is a set of examples.}$
- \Box $D_{tr} = D$ is the training set.
- $\neg y: X \to C$ is a classifier learned on the basis of D_{tr} .

Training error = misclassification rate with respect to D_{tr} :

$$Err(y, D_{tr}) = \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D_{tr} : y(\mathbf{x}) \neq c(\mathbf{x})\}|}{|D_{tr}|}$$

Problems:

- \Box *Err*(y, D_{tr}) is based on examples that are also exploited to learn y.
- \rightarrow $Err(y, D_{tr})$ quantifies memorization but not the generalization capability of y.
- \rightarrow $Err(y, D_{tr})$ is an optimistic estimation, i.e., it is constantly lower compared to the error incurred when applying y in the wild.

Holdout Estimation [True Misclassification Rate]

- $D = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_n, c(\mathbf{x}_n))\} \subseteq X \times C \text{ is a set of examples.}$
- \square $D_{tr} \subset D$ is the training set.
- $\neg y: X \to C$ is a classifier learned on the basis of D_{tr} .
- $D_{ts} \subset D$ with $D_{ts} \cap D_{tr} = \emptyset$ is a test set.

Holdout estimation = misclassification rate with respect to D_{ts} :

$$Err(y, D_{ts}) = \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D_{ts} : y(\mathbf{x}) \neq c(\mathbf{x})\}|}{|D_{ts}|}$$

Holdout Estimation [True Misclassification Rate]

- $D = \{(\mathbf{x}_1, c(\mathbf{x}_1)), \dots, (\mathbf{x}_n, c(\mathbf{x}_n))\} \subseteq X \times C \text{ is a set of examples.}$
- \square $D_{tr} \subset D$ is the training set.
- $\neg y:X\to C$ is a classifier learned on the basis of D_{tr} .
- $D_{ts} \subset D$ with $D_{ts} \cap D_{tr} = \emptyset$ is a test set.

Holdout estimation = misclassification rate with respect to D_{ts} :

$$Err(y, D_{ts}) = \frac{|\{(\mathbf{x}, c(\mathbf{x})) \in D_{ts} : y(\mathbf{x}) \neq c(\mathbf{x})\}|}{|D_{ts}|}$$

Requirements:

- \Box D_{tr} and D_{ts} must be governed by the same distribution.
- \Box D_{tr} and D_{ts} should have similar sizes.

- \Box A typical value for splitting D into training set D_{tr} and test set D_{ts} is 2:1.
- \Box When splitting D into D_{tr} and D_{ts} one has to ensure that the underlying distribution is maintained. Keywords: stratification, sample selection bias

k-Fold Cross-Validation [Holdout Estimation]

- \supset Form k test sets by splitting D into disjoint sets D_1, \ldots, D_k of similar size.
- \Box For $i = 1, \ldots, k$ do:
 - 1. $y_i: X \to C$ is a classifier learned on the basis of $D \setminus D_i$

2.
$$Err(y_i, D_i) = \frac{|\{(\mathbf{x}, c(\mathbf{x}) \in D_i : y_i(\mathbf{x}) \neq c(\mathbf{x})\}|}{|D_i|}$$

Cross-validated misclassification rate:

$$\textit{Err}_{cv}(y,D) = rac{1}{k} \sum_{i=1}^{k} \textit{Err}(y_i,D_i)$$

n-Fold Cross-Validation (Leave One Out)

Special case with k = n:

 \Box Determine the cross-validated misclassification rate for $D \setminus D_i$ where

$$D_i = \{(\mathbf{x}_i, c(\mathbf{x}_i))\}, i \in \{1, \dots, n\}$$
.

n-Fold Cross-Validation (Leave One Out)

Special case with k = n:

Determine the cross-validated misclassification rate for $D \setminus D_i$ where $D_i = \{(\mathbf{x}_i, c(\mathbf{x}_i))\}, i \in \{1, ..., n\}$.

Problems:

- \Box High computational effort if D is large.
- \Box Singleton test sets ($|D_i|=1$) are never stratified since they contain a single class only.

- \Box For large k the set $D \setminus D_i$ is of similar size as D. Hence $Err(y_i, D_i)$ is close to Err(y, D), where y is the classifier learned on the basis of the entire set D.
- $\ \square$ *n*-fold cross-validation is a special case of exhaustive cross-validation methods, which learn and test on all possible ways to divide the original sample into a training and a validation set. [Wikipedia]

Misclassification Costs [Holdout Estimation]

Use of a cost measure for the misclassification of a feature vector \mathbf{x} in class c' instead of in class c:

$$cost(c' \mid c)$$
 $\begin{cases} \geq 0 & \text{if } c' \neq c \\ = 0 & \text{otherwise} \end{cases}$

Estimation of $\mathit{Err}^*_{\mathit{cost}}(y)$ based on a sample $D_{ts} \subseteq D$:

$$\textit{Err}_{\textit{cost}}(y, D_{ts}) = \frac{1}{|D_{ts}|} \cdot \sum_{(\mathbf{x}, c(\mathbf{x})) \in D_{ts}} \textit{cost}(y(\mathbf{x}) \mid c(\mathbf{x}))$$

□ The misclassification rate *Err* is a special case of Err_{cost} with $cost(c' \mid c) = 1$ for $c' \neq c$.

ML:II-120 Basics