

AD-A052 999 ATHENA ENGINEERING CO NORTHPORT ALA
DYNAMIC RESPONSE OF MISSILE STRUCTURES TO IMPULSIVE LOADS CAUSE--ETC(U)
JUN 76 T L COST DAAH01-76-C-0293
UNCLASSIFIED AEC-TR-76-01 F/G 13/13
NL

[OF]
AD
A052999

END
DATE
FILMED
6 -78
DDC

(2)

Technical Report AEC-TR-76-01

DYNAMIC RESPONSE OF MISSILE STRUCTURES TO
IMPULSIVE LOADS CAUSED BY NUCLEAR EFFECTS BLOWOFF

by

Thomas L. Cost

June 1976

Final Report On
Contract DAAH01-76-C-0293

Prepared for

Ground Equipment and Materials Directorate
US Army Missile Research
Development and Engineering Laboratory
US ARMY MISSILE COMMAND
REDSTONE ARSENAL, ALABAMA 35809

This document has been approved
for public release under the
distribution is unlimited.

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM
1. REPORT NUMBER AEC TR-76-01	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER
4. TITLE (and Subtitle) DYNAMIC RESPONSE OF MISSILE STRUCTURES TO IMPULSIVE LOADS CAUSED BY NUCLEAR EFFECTS BLOWOFF.	5. TYPE OF REPORT & PERIOD COVERED Final Report.	
7. AUTHOR(s) Thomas L. Cost	6. PERFORMING ORG. REPORT NUMBER (15) DAAH01-76-C-0293	
9. PERFORMING ORGANIZATION NAME AND ADDRESS ATHENA ENGINEERING COMPANY P.O. Box 235 Northport, Alabama 35476	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
11. CONTROLLING OFFICE NAME AND ADDRESS Commander, US Army Missile Command Attn: DRSMI - RPR Redstone Arsenal, Alabama 35809	12. REPORT DATE (11) Jun 76	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)	13. NUMBER OF PAGES (12) 45 p	
	15. SECURITY CLASS. (of this report) UNCLASSIFIED	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release: distribution unlimited.	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE DDC-TR-76-01-0293 APR 21 1978	
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)		
18. SUPPLEMENTARY NOTES		
19. KEY WORDS (Continue on reverse side if necessary and identify by block number)		
structural response	cylindrical shell response	
nuclear effects	flat plate response	
blowoff effects	energy deposition	
dynamic response	impulsive loads	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number)		
Two dynamic structural analysis computer codes have been developed for the analysis of missile type structures subjected to impulsive loads produced by nuclear effects blowoff. One code, IMPLATE, is applicable to flat plate structures prestressed by inplane mechanical and thermal loads and the other code, IMPSELL, can be applied to thin cylindrical shell type structures preloaded by internal pressure. The impulsive loads are calculated with the aid of a photoelectric energy deposition code,		

DD FORM 1 JAN 73 1473 EDITION OF 1 NOV 65 IS OBSOLETE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. ABSTRACT (Continued)

KNISH, and a blowoff model. A theory for correlating the nuclear effects blowoff impulse with impulse produced by a laboratory simulation exploding foil technique is presented.

A

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

FOREWORD

The two computer programs described in this report were developed by Athena Engineering Company under Contract DAAH01-76-C-0293 with the U.S. Army Missile Command, Redstone Arsenal, Alabama. The development was sponsored and technically monitored by the Ground Equipment and Materials (GEM) Directorate, US Army Missile Research, Development, and Engineering Laboratory. Dr. Bobby Mullinix, GEM Directorate, served as the Contracting Officer's Technical Representative and technically monitored all work on the project. The two computer codes, IMPLATE and IMPHELL, are operational on the MICOM CDC 6600 computer system and on a UNIVAC 1108 system used by Athena Engineering Company. The codes are written in Fortran and should operate satisfactorily on all equivalent computer systems. Copies of the computer code, either on cards or tape, may be obtained upon request from the contract sponsor.

TABLE OF CONTENTS

1. INTRODUCTION	1
2. IMPULSIVE LOAD CALCULATION	2
2.1 General Computational Method	2
2.2 KNISH Computer Code	3
2.3 Flat Plate Model	4
2.4 Cylinder Model	4
3. FLAT PLATE RESPONSE CODE	11
3.1 Description	11
3.2 Modifications	11
3.3 Data Input Format	13
3.4 Sample Problem	15
4. CYLINDRICAL SHELL RESPONSE CODE	22
4.1 Description	22
4.2 Equations of Motion	22
4.3 Data Input Format	24
4.4 Sample Problem	28
5. CORRELATION OF EXPLODING FOIL TESTS WITH CODE PREDICTIONS	33
6. CLOSING REMARKS	37
REFERENCES	39

1. INTRODUCTION

During a nuclear engagement outside the atmosphere a severe threat to the structural integrity of missile structures is posed by the x-ray component of the radiant energy emission from a nuclear weapon detonation. When the levels of absorbed energy are sufficiently high, sublimation of the outer structural surface can occur with a resulting impulsive load being imparted to the structure. This impulsive load can produce stress waves in the structure or gross structural response or both. Although the influence of the stress waves on structural integrity has been studied widely (1-3), the influence of the impulsive loads on the longer-time structural response has received less attention (4,5).

The objective of this project was to develop an ability to study the structural response of isotropic, metallic, flat plate and cylindrical structures subjected to impulsive loads produced by x-ray induced material sublimation. It is assumed in this study that the material remains elastic and that the x-rays damage the structure by decreasing the structural thickness where sublimation occurs. Temperature influence on material properties is neglected for simplicity.

To accomplish this objective, a flat plate structural response code, QTRPLATE, used in experimental studies at the U.S. Army Missile Command (6) was modified to accommodate x-ray deposition loads and a cylindrical shell code, IMPSHELL, developed for predicting structural response to such loads.

2. IMPULSIVE LOAD CALCULATION

The radiant energy component of a nuclear weapon detonation can sublimate the surface layer of structures exposed to the energy flux provided the fluence is sufficiently high. This extremely rapid sublimation can produce impulsive loads on the structure due to the momentum transfer resulting from the rapid movement of the surface particles. The impulsive loads induce structural motion and associated stresses, strains, and deformations.

2.1 General Computational Method

The Whitener (11) analytical model has been incorporated into both the flat plate and circular cylinder structural response codes described in Sections 3. and 4., respectively. The Whitener model requires a knowledge of the energy deposition profile through the thickness of the exposed structure along with appropriate physical properties. The model can be expressed as

$$I_B = \sum_{j=1}^n (\rho_j \Delta x_j) j \sqrt{2F_c (H - E_s)_j} \quad (2.1)$$

where:

I_B = blowoff impulse,* taps/cm²

ρ_j = density of zone j , g/cm³

Δx_j = thickness of zone j , cm

H_j = total energy deposited in zone j , cal/g

E_s = sublimation energy for the material, cal/g

n = number of zones

F_c = conversion factor, 4.186×10^7 ergs/cal

$(H - E_s)_j$ = excess energy in zone j

* A tap is 1 bar - microsecond.

To implement this model the distribution of the deposited energy through the thickness of the structure must be known.

2.2 KNISH Computer Code

The KNISH photon deposition computer program (7) used to compute the energy deposition profiles for use in the Whitener model has evolved from a code written by Dr. John Huntington at the Moleculon Company for the Defense Atomic Support Agency (DASA) in 1968. The code was modified by the Physics International Company in 1972. The code treats Compton single scattering and photoelectric energy deposition in an axisymmetric slab geometry.

The input-output operations of the KNISH code have been modified for use in the codes described here to make data input more concise and to permit direct use of the output in the Whitener model for impulse calculations. The following simplifications have been made in data input:

- 1) the spectrum energy mesh is computed internally by a prescribed formula which takes into account the characteristic temperature of the nuclear weapon detonation,
- 2) only spectra formed by superimposing individual blackbody spectra are permitted,
- 3) the number of regions in the structure is preset to one,
- 4) the number of dose points is set internally in the code to fifty.

This information is provided to relate the simplifications made in KNISH input procedures to the original code described in Reference 7. Data input descriptions for the flat plate code IMPLATE and cylindrical shell code IMPSELL are described in Sections 3.3 and 4.3, respectively.

The accuracy of KNISH was investigated by comparing the accuracy of energy deposition profiles computed with KNISH with standard results.

Such a comparison for copper is illustrated in Figure 2.1 for various blackbody temperatures. As can be seen from the figure, good accuracy is obtained using KNISH for all blackbody temperatures. The printed output from KNISH for this case is contained in Table 2.1.

2.3 Flat Plate Model

As illustrated in Figure 2.2, the radiant energy striking the flat plate is assumed to occur normal to the plate and be uniformly distributed. For purposes of impulse calculation the plate is assumed divided into various regions or zones through the thickness. These zone descriptions are preset in KNISH and used to calculate the energy deposition profile. From a knowledge of this profile the thickness of the sublimated layer is determined by noting where in the structure the deposited energy intensity exceeds the sublimation energy. All material absorbing energy at levels higher than the sublimation energy will be sublimated. This condition is illustrated schematically in Figure 2.3.

Once the deposition profile and thickness of the sublimated layer is determined, the Whitener model, Eq. 2.1, can be used to compute the total impulse in taps per cm^2 . The impulse is assumed imparted to the structure by a uniform pressure load which varies linearly with time as illustrated in Figure 2.4, where t_s , the "shine time", is input as data. The maximum pressure P is computed by use of the equation

$$P = 2I_B/t_s \quad (2.2)$$

where I_B is computed using Eq. 2.1.

2.4 Cylinder Model

Radiant energy is assumed to impinge on the cylindrical shell model as indicated in Figure 2.5a. Only the component of the energy normal to the surface is assumed to be absorbed in the cylindrical structure. This causes the resulting impulse to be imparted to the structure in a nonuniform manner as indicated in Figure 2.5b. The same procedure

Figure 2.1. Energy Deposition in Copper

TABLE 2.1 ENERGY DEPOSITION IN COPPER

***** PROGRAM KNISH *****
 ***** MODIFIED BY THOMAS L COST ATHENA ENGINEERING COMPANY *****

PROBLEM TITLE CHECK PROBLEM - DEPOSITION IN COPPER - S KEY

THE FLUENCE FOR THIS PROBLEM IS 10000.01 CAL/CM**2

THE UPPER BOUNDARIES ON THE HISTOGRAM ARE

90000+00	180000+01	270000+01	360000+01	450000+01	645000+01	840000+01	103500+02
123300+02	142500+02	162000+02	181500+02	201000+02	220500+02	240000+02	259500+02
215300+02	298500+02	318000+02	337500+02	357000+02	376500+02	396000+02	415500+02
435000+02	454500+02	474000+02	493500+02	513000+02	532500+02	552000+02	571500+02
551200+02	610500+02	630000+02	675000+02	720000+02	765000+02	810000+02	855000+02
900000+02	930000+02	1080000+03	1170000+03	1260000+03	1350000+03	1440000+03	1530000+03
1620000+03	270000+03						

BLACK BODY SPECTRUM TEMPERATURES AND RELATIVE WEIGHTS ARE
96666.01 10000.01

THIS PROBLEM CONSISTS OF 1 ZONES AS FOLLOWS

ZONE NO	MATERIAL	FAIR DEPTH	THICKNESS	DENSITY	Z/A	NO EDGES
1	COPPER	1000.01	1000.01	8940.01	4566.00	38

DOSE	DEPTH	DOSE	PRIMARY COMPONENT	SCATTERED COMPONENT
10000.01		31662+02	31662+02	69186+01
20000.01		36629+02	36629+02	69710+01
40000.01		39208+02	39208+02	69663+01
60000.01		28219+02	28219+02	61506+01
80000.01		27413+02	27413+02	62258+01
100000.01		26640+02	26640+02	62933+01
200000.03		23874+02	23874+02	65452+01
400000.03		19922+02	19922+02	68062+01
600000.03		17117+02	17117+02	69158+01
800000.03		15003+02	15003+02	69554+01
1000000.02		13255+02	13255+02	69583+01
2000000.02		86669+01	86669+01	67828+01
4000000.02		51338+01	50779+01	62849+01
6000000.02		26314+01	25731+01	58254+01
8000000.02		27872+01	27399+01	54246+01
10000000.01		26433+01	21926+01	50732+01
20000000.01		10550+01	10169+01	39049+01
40000000.01		42693+00	40373+00	24557+01
60000000.01		23125+00	21382+00	17436+01
80000000.01		14330+00	13023+00	13066+01
100000000.01		96169+01	86022+01	10146+01

NORMAL EXIT EXECUTION TIME 5962 MILLISECONDS

Figure 2.2. Schematic Diagram of Impulsive Loading of a Flat Plate

Figure 2.3. Schematic Diagram of Sublimation Layer in Flat Plate

Figure 2.4. Time Variation of Blowoff Pressure

a) Exposure of Shell to Radiant Energy

b) Impulsive Pressure Distribution on Shell

Figure 2.5. Schematic Loading of Cylindrical Shell

used in the flat plate model to calculate the impulse is used for the circular cylindrical model except the nonuniform impulse distribution is accounted for in the manner indicated.

3. FLAT PLATE RESPONSE CODE

3.1 Description

The computer code QTRPLATE, developed previous to this work (6), is designed to predict the dynamic response of flat plates to air blast loads while, simultaneously, prestressed by inplane thermal and mechanical loads. The code implements a finite difference solution to the governing equations of motion which are based upon small deformation theory and linear elastic material behavior. A mode superposition and shock spectrum approach is used to compute peak values for the stresses, strains, and displacements in the plate. Predicted response has been shown to agree closely with experimental results (8).

3.2 Modifications

To convert the QTRPLATE computer code to accommodate impulse loads due to blowoff, the energy deposition code KNISH and an impulse computational routine IMPULS have been combined with QTRPLATE. The combination has been accomplished by creating a separate master controlling program, referred to as IMPLATE, which simply calls the subprograms KNISH, IMPULS, and QTRPLT to perform the various calculations in a sequential manner. The main program of QTRPLATE was redesignated as QTRPLT. The integrity of the programs KNISH and QTRPLATE has been left largely undisturbed to facilitate ease of understanding. Information is passed between the KNISH, IMPULS and QTRPLT subprograms by means of labeled common statements. An organizational chart of the new code for flat plate response IMPLATE is contained in Table 3.1.

The most significant modification made to the code QTRPLATE involved modification of the subroutine SPCTRM. The displacement shock spectrum, defined for each generalized coordinate of the flat plate, is defined as (6),

$$F_i(\omega_i) = \max_{t>0} \left| \frac{1}{M_i \omega_i} \int_0^t P(\tau) \sin \omega_i(t-\tau) d\tau \right| \quad (2.3)$$

Table 3.1 ORGANIZATIONAL CHART FOR IMPLATE

where M_i is the generalized mass, ω_i the natural frequency associated with the i^{th} degree of freedom, and $P(t)$ is the pressure intensity. Using the expression for the pressure contained in Figure 2.4, the value for $F_i(\omega_i)$ can be expressed as

$$F_i(\omega_i) = \frac{P_0(2+t\frac{\omega_i}{s_i})}{t s_i M_i \omega_i^3} \quad (2.4)$$

The value of FMAX in subroutine SPCTRUM has been modified to reflect this change.

In addition to the above changes, minor modifications have been made in the input/output procedures. These changes will be described in the following section.

3.3 Data Input Format

Data is input to the computer code IMPLATE by specifying information on punched cards as follows:

1. Title card
2. Fluence card
3. Spectrum definition cards
4. Material identification card
5. Photoelectric cross-section cards
6. Plate geometry and edge restraint card
7. Material property card
8. Mechanical and thermal preload card

If several problems are to be run sequentially, cards 1 through 8 should be prepared for each problem and stacked sequentially. Normal termination of a run stream is accomplished by placing a card with the letters END in the first three columns at the end of the stacked deck. Details of the information to be specified in cards 1 through 8 above are contained in Table 3.2.

TABLE 3.2 DATA CARD DESCRIPTION FOR IMPLATE

Card	Columns	Format	Data Item
1	1-80	80A1	TITLE - Any alphanumeric characters chosen to describe problem
2	1-10	E10.0	FLOONZ - Fluence (cal/cm^2)
	11-12	E10.0	SHINET - "Shine time" (μs)
3	1-10	E10.0	TT - Blackbody temperature (kev)
	11-12	E10.0	FF - Decimal fraction of total fluence at temperature TT
			Repeat cards of type 3 for as many blackbody spectra needed (5 maximum). End cards with a blank card.
4	1-10	I0A1	ZMAT - Material name
	11-20	E10.0	DD - Material density (g/cm^3)
	21-30	E10.0	ZZ - Ratio of atomic number to atomic weight
	31-40	I10	NED - No. of cards containing photoelectric cross-sections
	41-50	E10.0	ES - Sublimation energy (cal/gm)
5	1-10	E12.0	A1 - Coefficient in cross-section equation
	11-20	E12.0	B1 - Coefficient in cross-section equation
	21-30	E12.0	U - Upper photon energy limit
6	1-10	F10.0	A - Plate width (cm)
	11-20	F10.0	H - Plate thickness (cm)
	21-26	I46	BC - Boundary conditions (CC or SS)
7	1-10	F10.0	E - Young's modulus (GN/m^2)
	11-20	F10.0	ANU - Poisson's ratio
	21-30	F10.0	ALPHA - Thermal expansion coefficient, ($1/\text{^o F}$)
	31-40	F10.0	RHO - Plate density (g/cm^3)
8	1-10	F10.0	TX - x-tension (N/cm)
	11-20	F10.0	TY - y-tension (N/cm)
	21-30	F10.0	TEMP - temperature ($^{\circ}\text{F}$)

3.4 Sample Problem

To illustrate the punched card format, consider the problem in which a square, aluminum plate, $10 \times 10 \times 0.16$ cm is subjected to an inplane tension preload in the x-direction of magnitude 20 N/cm, an inplane tension preload in the y-direction of 10 N/cm, and is heated to a temperature 20°F above the reference state. Finally, the plate is subjected to a fluence of 75 cal/cm^2 , from a nuclear weapon with a blackbody spectrum and a temperature of 5 kev. The shine time of the nuclear weapon is 300. microseconds. Young's modulus for the aluminum is 68.95 GN/m^2 , Poisson's ratio is 0.3, the density 2.71 g/cm^3 , and the thermal expansion coefficient is $4.0 \times 10^{-6}/^{\circ}\text{F}$. The material photoelectric cross-section and atomic number properties are contained in Table 3.3. The plate is assumed to have all edges clamped. The data cards to run this problem are listed in Table 3.3.

The computer code IMFLATE computes the natural frequencies and mode shapes for the prestressed plate and uses these in a spectral analysis method to determine a conservative estimate of the maximum deflections, stresses, and strains in the plate. This information is printed out along with a description of the input data. The results of the sample problem described above are presented in Table 3.4.

TABLE 3:3 DATA CARDS TO EXECUTE IMPLATE SAMPLE PROBLEM

END DATA,

BEST AVAILABLE COPY

PROGRAM IMPLATE
Version 1.0
© 1979 Thomas L. Cost, Athena Engineering Company

PROBLEM TITLE: IMPLATE SAMPLE PROBLEM. 7070 AL PLATE. 75 CAL/CM2. 5 KEV DD

THE FLUENCE FOR THIS PROBLEM IS 75000+02 CAL/CM2

THE UPPER BOUNDARIES ON THE HISTOGRAM ARE

50000+00	100000+01	150000+01	200000+01	250000+01	300000+01	350000+01	400000+01	450000+01	500000+01
60000+01	70167+01	90000+01	100000+01	100000+02	11167+02	12250+02	13333+02	14417+02	15493+02
155000+02	16583+02	17667+02	18750+02	19833+02	20917+02	22000+02	23083+02	24167+02	25150+02
24157+02	25250+02	26333+02	27417+02	28500+02	29583+02	30667+02	31750+02	32833+02	33917+02
32833+02	33917+02	35000+02	35000+02	37500+02	40000+02	42500+02	45000+02	47500+02	50000+02
50000+02	55000+02	60000+02	60000+02	65000+02	70000+02	75000+02	80000+02	85000+02	90000+02

BLACK BODY SPECTRUM. TEMPERATURES AND RELATIVE WEIGHTS ARE
50000+01 100000+01

THIS PROBLEM CONSISTS OF 1 ZONES AS FOLLOWS.

ZONE NO	MATERIAL	FAR DEPTH	THICKNESS	DENSITY	Z/A	NO EDGES
1	AL 7079	10000+00	10000+00	2700+00	.4814+00	30
2						
3						
4						
5						
6						
7						
8						
9						
10						
11						
12						
13						
14						
15						
16						
17						
18						
19						
20						
21						
22						
23						
24						
25						
26						
27						
28						
29						
30						
31						
32						
33						
34						
35						
36						
37						
38						
39						
40						
41						
42						
43						
44						
45						
46						
47						
48						
49						
50						
51						
52						
53						

Table 3.4 OUTPUT FROM IMPLATE SAMPLE PROBLEM (continued)

BEST AVAILABLE COPY

BEST AVAILABLE COPY

IMPULSE DESCRIPTION	SUBLIMATION LAYER THICKNESS (CM)
IMPULSE (TAPS)	00002000
IMPULSE (4)	00752045
IMPULSE (4 MICROSECONDS/MICRO)	44867676
MAXIMUM PRESSURE (N/SQ. CM)	6665663
	2671

Table 3.4 (continued)

95 DYNAMIC RESPONSE OF AN ELASTIC SQUARE PLATE
 96 PRESTRESSED BY MECHANICAL AND THERMAL LOADS AND SUBJECTED
 97 TO AN EXPONENTIALLY DECAYING BLAST LOADING
 98
 99 IMPLATE SAMPLE PROBLEM. 7079 AL PLATE. 76 CAL/CHE. 5 KEY 33

100:	A ('Y-WIDTH)	-	100000	H
101:	102			
102:	103			
103:	104			
104:	105			
105:	106			
106:	107			
107:	108			
108:	109			
109:	110			
110:	111			
111:	112			
112:	113			
113:	114			
114:	115			
115:	116			
116:	117			
117:	118			
118:	119			
119:	120			
120:	121			
121:	122			
122:	123			
123:	124			
124:	125			
125:	126			
126:	127			
127:	128			
128:	129			
129:	130			
130:	131			
131:	132			
132:	133			
133:	134			
134:	135			
135:	136			
136:	137			
137:	138			
138:	139			
139:	140			
140:	141			
141:	THE NUMBER OF MODES CONSIDERED	-	6	

Table 3.4 (continued)

REAL EIGENVALUES	FREQUENCIES IN CPS
1.43	
1.44	
1.45	24796433+00
1.46	26804926+01
1.47	26885742+01
1.48	75491892+01
1.49	93119614+01
1.50	93677850+01
1.51	15979933+02
1.52	16003736+02
1.53	17404882+02
1.54	17622244+02
1.55	26372529+02
1.56	26425686+02
1.57	32059961+02
1.58	44211874+02
1.59	44288228+02
1.60	58937926+02
1.61	38181798+08
1.62	12879496+09
1.63	12292899+09
1.64	21614339+09
1.65	24065589+09
1.66	24673571+09
1.67	31446920+09
1.68	31476463+09
1.69	32219137+09
1.70	33004688+09
1.71	40398711+09
1.72	40442465+09
1.73	44582348+09
1.74	522307152+09
1.75	52347572+09
1.76	60393338+09
1.77	
1.78	
1.79	
1.80	
1.81	
1.82	
1.83	
1.84	
1.85	
1.86	
1.87	
1.88	
1.89	

Table 3.4 (continued)

INPLATE SAMPLE NO. 7070 AL PLATE. NO CAL/TEST. S REV 30

STRAIN, STRESS, AND DISPLACEMENT FOR MIDLINE STATIONS

NODE	STATION COORDINATE	X-STRAIN (CH/CM)	V-STRAIN (CH/CM)	XY-STRAIN (CH/CM)	X-STRESS (N/mm ²)	Y-STRESS (N/mm ²)	Z-STRESS (N/mm ²)	DISPLACEMENT (MM)
1	012	-972-05	408-05	000	-852+07	-773+07	000	419-05
2	025	746-05	103-04	000	-703+07	-693+07	000	303-04
3	037	148-04	154-04	000	-641+07	-637+07	000	149-04
4	050	178-04	175-04	000	-614+07	-615+07	000	366-04
5	062	148-04	154-04	000	-641+07	-637+07	000	349-04
6	075	746-05	103-04	000	-703+07	-693+07	000	303-04
7	087	-972-05	408-05	000	-852+07	-773+07	000	419-05
								END 2474

Table 3.4 (continued)

4. CYLINDRICAL SHELL RESPONSE CODE

4.1 Description

A computer code, designated as IMPSHELL, has been developed to predict the dynamic response of a linear, elastic cylindrical shell to an impulsive load produced by "blowoff". The cylindrical shell can be subjected to an internal pressure. A finite difference approximate solution method is used to solve the governing equations of motion. The code IMPSHELL uses a different solution technique from the technique used in IMPLATE. Whereas the mode superposition method is used in IMPLATE, a Newmark-Beta (12) time intergration procedure is used in IMPSHELL. This permits an exact determination of the transient response of the shell to be computed for comparison with experimental data.

4.2 Equations of Motion

Applying the principle of virtual displacements to the shell structure illustrated in Figure 4.1 permits the governing equations of motion of the cylindrical shell in the v and w directions to be expressed as

$$R(p-q)(v-w_{,\theta}) + N_{\theta,\theta}(R+v_{,\theta}+w) + N_{\theta}(v_{,\theta\theta}+2w_{,\theta}-v) = \rho h R^2 \ddot{v} \quad (4.1)$$

and

$$R(p-q)(R+v_{,\theta}+w) + N_{\theta}(w_{,\theta\theta}-2v_{,\theta}-R) + N_{\theta,\theta}(w_{,\theta}-v) = \rho h R^2 \ddot{w} \quad (4.2)$$

q = external pressure

Figure 4.1. Coordinate System for Cylindrical Shell

In Eqs. 4.1 and 4.2, p , q , v , w , R , h , and θ are defined in Figure 4.2. N is the force per unit length in the circumferential direction, and ρ is the density. Subscripts preceded by a comma denote differentiation with respect to a spatial coordinate and dots over a variable are used to designate time differentiation. Eqs. 4.1 and 4.2 are based upon the assumption of only extensional motion, i.e., bending effects are not included. Such effects have been shown by Humphreys and Winter (9) to be of little consequence for the application considered here.

A solution to Eqs. 4.1 and 4.2 has been obtained by linearizing the equations about the prestressed state. This state corresponds to the deformed position after application of the internal pressure. The resulting linearized equations are then solved using standard finite difference techniques for both the space and time variables. A Nemark-Beta stepforward solution method is used to determine the transient response. The organization of the code IMPSHELL is indicated in Table 4.1.

4.3 Data Input Format

Data is supplied to the computer code IMPSHELL by specifying certain information on the following punched cards:

1. Title card
2. Fluence card
3. Spectrum definition cards
4. Material identification card
5. Photoelectric cross-section cards
6. Shell geometry and internal pressure card
7. Structural property card
8. Time and print sequence card

If several problems are to be run sequentially, cards 1 through 8 should be prepared for each problem and stacked sequentially. Normal termination of a run stream is accomplished by placing an END card at the end of the stacked data deck. Details of data card preparation for cards 1 through 8 are contained in Table 4.2.

Table 4.1 ORGANIZATIONAL CHART FOR IMPSHELL

TABLE 4.2 DATA CARD DESCRIPTION FOR IMPSHELL

Card	Columns	Format	Data Item
1	1-80	80A1	TITLE - Any alphanumeric characters chosen to describe problem
2	1-10	E10.0	FLOONZ - Fluence (cal/cm^2)
	11-12	E10.0	SHINET - "Shine time" (μs)
3	1-10	E10.0	TT - Blackbody temperature (kev)
	11-12	E10.0	FF - Decimal fraction of total fluence at temperature TT
			Repeat cards of type 3 for as many blackbody spectra needed (5 maximum).
			End cards 3 with a blank card.
4	1-10	10A1	ZMAT - Material name
	11-20	E10.0	DD - Material density (g/cm^3)
	21-30	E10.0	ZZ - Ratio of Atomic number to atomic weight
	31-40	I10	NED - No of cards containing photoelectric cross-sections
	41-50	E10.0	ES - Sublimation energy (cal/g)
5	1-10	E12.0	A1 - Coefficient in cross-section equation
	11-20	E12.0	B1 - Coefficient in cross-section equation
	21-30	E12.0	U - Upper photon energy limit
6	1-5	I5	NODES - Number of nodes
	6-10	I5	NOUT - Increment between nodes selected for printing results
7	1-10	F10.0	DELT - Time increment (ms)
	11-15	I5	NINCS - No. of time steps
	16-20	I5	DELP - Time steps between each print command.
8	1-10	F10.0	PINT - Internal pressure (KN/m^2)

Card	Columns	Format	Data Item
9	1-15	F15.0	R - Shell radius (cm)
	16-30	F15.0	H - Shell thickness (cm)
	31-45	F15.0	E - Young's modulus (GN/m ²)
	46-60	F15.0	ANU - Poisson's ratio
	61-75	F15.0	RHO - Density (g/cm ³)

4.4 Sample Problem

To illustrate the data preparation steps, consider the problem of a cylindrical aluminum shell, 40 cm in radius, 0.6 cm thick, and pressurized internally by a pressure of 6895 KN/m^2 subjected to the energy flux from a 5 kev nuclear weapon detonation such that the fluence is 75 cal/cm^2 . The weapon "shine time" is 300 microseconds. Young's modulus for the aluminum is 68.95 GN/m^2 , Poisson's ratio is 0.3, and the density is 2.71 g/cm^3 . The data cards required to execute IMPSELL for this problem are listed in Table 4.3.

As mentioned previously, IMPSELL computes the displacements, stresses, and strains in the cylindrical shell as a function of time. The values at each node around the shell are printed at the frequency specified by the value of DELP. The results of the sample problem described above are presented in Table 4.4.

Table 4.3 DATA CARDS TO EXECUTE IMPSHELL SAMPLE PROBLEM

BEST AVAILABLE COPY

PROGRAM IMPHELL. ATHENA ENGINEERING COMPANY 8000
DEVELOPED BY THOMAS L COOT.

PROBLEMS 7079 AL CYLINDER. 75 CAL/SEC. 5 KEL DB
PROBLEMS 7080 SHELL SAMPLE PROBLEM. 7079 AL CYLINDER.

75000-02 CAL/CRIMS

THE HISTORICAL SERIES ON THE HISTORICAL SERIES

卷之三

SPECTRUM 1
BLACK BODY

160000-01
500000-01
SPECIMEN
EXHIBIT B
DEPARTMENT OF DEFENSE

LINE NO	MATERIAL	FAR DEPTH	THICKNESS	1 ZONES AS FOLLOWS	
				1800-00	1000-00
AL 7973					

31522	30655	29671	28684	27695	26705	25717	24729	23739	22751	21763	20775	19787	18791	17793	16795	15797	14798	13799	12799	11799	10799	9799	8799	7799	6799	5799	4799	3799	2799	1799	799
31522	30655	29671	28684	27695	26705	25717	24729	23739	22751	21763	20775	19787	18791	17793	16795	15797	14798	13799	12799	11799	10799	9799	8799	7799	6799	5799	4799	3799	2799	1799	799
31522	30655	29671	28684	27695	26705	25717	24729	23739	22751	21763	20775	19787	18791	17793	16795	15797	14798	13799	12799	11799	10799	9799	8799	7799	6799	5799	4799	3799	2799	1799	799
31522	30655	29671	28684	27695	26705	25717	24729	23739	22751	21763	20775	19787	18791	17793	16795	15797	14798	13799	12799	11799	10799	9799	8799	7799	6799	5799	4799	3799	2799	1799	799
31522	30655	29671	28684	27695	26705	25717	24729	23739	22751	21763	20775	19787	18791	17793	16795	15797	14798	13799	12799	11799	10799	9799	8799	7799	6799	5799	4799	3799	2799	1799	799

Table 4.4 OUTPUT FROM IMP SHELL SAMPLE PROBLEM

32891-01
 34861-01
 36661-01
 38461-01
 40261-01
 42061-01
 43861-01
 45661-01
 47461-01
 49261-01
 51061-01
 52861-01
 54661-01
 56461-01
 58261-01
 60061-01
 61861-01
 63661-01
 65461-01
 67261-01
 69061-01
 70861-01
 72661-01
 74461-01
 76261-01
 78061-01
 79861-01
 81661-01
 83461-01
 85261-01
 87061-01
 88861-01
 90661-01
 92461-01
 94261-01
 96061-01
 97861-01
 99661-01
 101461-01
 103261-01
 105061-01
 106861-01
 108661-01
 110461-01
 112261-01
 114061-01
 115861-01
 117661-01
 119461-01
 121261-01
 123061-01
 124861-01
 126661-01
 128461-01
 130261-01
 132061-01
 133861-01
 135661-01
 137461-01
 139261-01
 141061-01
 142861-01
 144661-01
 146461-01
 148261-01
 150061-01
 151861-01
 153661-01
 155461-01
 157261-01
 159061-01
 160861-01
 162661-01
 164461-01
 166261-01
 168061-01
 169861-01
 171661-01
 173461-01
 175261-01
 177061-01
 178861-01
 180661-01
 182461-01
 184261-01
 186061-01
 187861-01
 189661-01
 191461-01
 193261-01
 195061-01
 196861-01
 198661-01
 200461-01
 202261-01
 204061-01
 205861-01
 207661-01
 209461-01
 211261-01
 213061-01
 214861-01
 216661-01
 218461-01
 220261-01
 222061-01
 223861-01
 225661-01
 227461-01
 229261-01
 231061-01
 232861-01
 234661-01
 236461-01
 238261-01
 240061-01
 241861-01
 243661-01
 245461-01
 247261-01
 249061-01
 250861-01
 252661-01
 254461-01
 256261-01
 258061-01
 259861-01
 261661-01
 263461-01
 265261-01
 267061-01
 268861-01
 270661-01
 272461-01
 274261-01
 276061-01
 277861-01
 279661-01
 281461-01
 283261-01
 285061-01
 286861-01
 288661-01
 290461-01
 292261-01
 294061-01
 295861-01
 297661-01
 299461-01
 301261-01
 303061-01
 304861-01
 306661-01
 308461-01
 310261-01
 312061-01
 313861-01
 315661-01
 317461-01
 319261-01
 321061-01
 322861-01
 324661-01
 326461-01
 328261-01
 330061-01
 331861-01
 333661-01
 335461-01
 337261-01
 339061-01
 340861-01
 342661-01
 344461-01
 346261-01
 348061-01
 349861-01
 351661-01
 353461-01
 355261-01
 357061-01
 358861-01
 360661-01
 362461-01
 364261-01
 366061-01
 367861-01
 369661-01
 371461-01
 373261-01
 375061-01
 376861-01
 378661-01
 380461-01
 382261-01
 384061-01
 385861-01
 387661-01
 389461-01
 391261-01
 393061-01
 394861-01
 396661-01
 398461-01
 400261-01
 402061-01
 403861-01
 405661-01
 407461-01
 409261-01
 411061-01
 412861-01
 414661-01
 416461-01
 418261-01
 420061-01
 421861-01
 423661-01
 425461-01
 427261-01
 429061-01
 430861-01
 432661-01
 434461-01
 436261-01
 438061-01
 440861-01
 442661-01
 444461-01
 446261-01
 448061-01
 450861-01
 452661-01
 454461-01
 456261-01
 458061-01
 460861-01
 462661-01
 464461-01
 466261-01
 468061-01
 470861-01
 472661-01
 474461-01
 476261-01
 478061-01
 480861-01
 482661-01
 484461-01
 486261-01
 488061-01
 490861-01
 492661-01
 494461-01
 496261-01
 498061-01
 500861-01
 502661-01
 504461-01
 506261-01
 508061-01
 510861-01
 512661-01
 514461-01
 516261-01
 518061-01
 520861-01
 522661-01
 524461-01
 526261-01
 528061-01
 530861-01
 532661-01
 534461-01
 536261-01
 538061-01
 540861-01
 542661-01
 544461-01
 546261-01
 548061-01
 550861-01
 552661-01
 554461-01
 556261-01
 558061-01
 560861-01
 562661-01
 564461-01
 566261-01
 568061-01
 570861-01
 572661-01
 574461-01
 576261-01
 578061-01
 580861-01
 582661-01
 584461-01
 586261-01
 588061-01
 590861-01
 592661-01
 594461-01
 596261-01
 598061-01
 600861-01
 602661-01
 604461-01
 606261-01
 608061-01
 610861-01
 612661-01
 614461-01
 616261-01
 618061-01
 620861-01
 622661-01
 624461-01
 626261-01
 628061-01
 630861-01
 632661-01
 634461-01
 636261-01
 638061-01
 640861-01
 642661-01
 644461-01
 646261-01
 648061-01
 650861-01
 652661-01
 654461-01
 656261-01
 658061-01
 660861-01
 662661-01
 664461-01
 666261-01
 668061-01
 670861-01
 672661-01
 674461-01
 676261-01
 678061-01
 680861-01
 682661-01
 684461-01
 686261-01
 688061-01
 690861-01
 692661-01
 694461-01
 696261-01
 698061-01
 700861-01
 702661-01
 704461-01
 706261-01
 708061-01
 710861-01
 712661-01
 714461-01
 716261-01
 718061-01
 720861-01
 722661-01
 724461-01
 726261-01
 728061-01
 730861-01
 732661-01
 734461-01
 736261-01
 738061-01
 740861-01
 742661-01
 744461-01
 746261-01
 748061-01
 750861-01
 752661-01
 754461-01
 756261-01
 758061-01
 760861-01
 762661-01
 764461-01
 766261-01
 768061-01
 770861-01
 772661-01
 774461-01
 776261-01
 778061-01
 780861-01
 782661-01
 784461-01
 786261-01
 788061-01
 790861-01
 792661-01
 794461-01
 796261-01
 798061-01
 800861-01
 802661-01
 804461-01
 806261-01
 808061-01
 810861-01
 812661-01
 814461-01
 816261-01
 818061-01
 820861-01
 822661-01
 824461-01
 826261-01
 828061-01
 830861-01
 832661-01
 834461-01
 836261-01
 838061-01
 840861-01
 842661-01
 844461-01
 846261-01
 848061-01
 850861-01
 852661-01
 854461-01
 856261-01
 858061-01
 860861-01
 862661-01
 864461-01
 866261-01
 868061-01
 870861-01
 872661-01
 874461-01
 876261-01
 878061-01
 880861-01
 882661-01
 884461-01
 886261-01
 888061-01
 890861-01
 892661-01
 894461-01
 896261-01
 898061-01
 900861-01
 902661-01
 904461-01
 906261-01
 908061-01
 910861-01
 912661-01
 914461-01
 916261-01
 918061-01
 920861-01
 922661-01
 924461-01
 926261-01
 928061-01
 930861-01
 932661-01
 934461-01
 936261-01
 938061-01
 940861-01
 942661-01
 944461-01
 946261-01
 948061-01
 950861-01
 952661-01
 954461-01
 956261-01
 958061-01
 960861-01
 962661-01
 964461-01
 966261-01
 968061-01
 970861-01
 972661-01
 974461-01
 976261-01
 978061-01
 980861-01
 982661-01
 984461-01
 986261-01
 988061-01
 990861-01
 992661-01
 994461-01
 996261-01
 998061-01
 1000861-01
 1002661-01
 1004461-01
 1006261-01
 1008061-01
 1010861-01
 1012661-01
 1014461-01
 1016261-01
 1018061-01
 1020861-01
 1022661-01
 1024461-01
 1026261-01
 1028061-01
 1030861-01
 1032661-01
 1034461-01
 1036261-01
 1038061-01
 1040861-01
 1042661-01
 1044461-01
 1046261-01
 1048061-01
 1050861-01
 1052661-01
 1054461-01
 1056261-01
 1058061-01
 1060861-01
 1062661-01
 1064461-01
 1066261-01
 1068061-01
 1070861-01
 1072661-01
 1074461-01
 1076261-01
 1078061-01
 1080861-01
 1082661-01
 1084461-01
 1086261-01
 1088061-01
 1090861-01
 1092661-01
 1094461-01
 1096261-01
 1098061-01
 1100861-01
 1102661-01
 1104461-01
 1106261-01
 1108061-01
 1110861-01
 1112661-01
 1114461-01
 1116261-01
 1118061-01
 1120861-01
 1122661-01
 1124461-01
 1126261-01
 1128061-01
 1130861-01
 1132661-01
 1134461-01
 1136261-01
 1138061-01
 1140861-01
 1142661-01
 1144461-01
 1146261-01
 1148061-01
 1150861-01
 1152661-01
 1154461-01
 1156261-01
 1158061-01
 1160861-01
 1162661-01
 1164461-01
 1166261-01
 1168061-01
 1170861-01
 1172661-01
 1174461-01
 1176261-01
 1178061-01
 1180861-01
 1182661-01
 1184461-01
 1186261-01
 1188061-01
 1190861-01
 1192661-01
 1194461-01
 1196261-01
 1198061-01
 1200861-01
 1202661-01
 1204461-01
 1206261-01
 1208061-01
 1210861-01
 1212661-01
 1214461-01
 1216261-01
 1218061-01
 1220861-01
 1222661-01
 1224461-01
 1226261-01
 1228061-01
 1230861-01
 1232661-01
 1234461-01
 1236261-01
 1238061-01
 1240861-01
 1242661-01
 1244461-01
 1246261-01
 1248061-01
 1250861-01
 1252661-01
 1254461-01
 1256261-01
 1258061-01
 1260861-01
 1262661-01
 1264461-01
 1266261-01
 1268061-01
 1270861-01
 1272661-01
 1274461-01
 1276261-01
 1278061-01
 1280861-01
 1282661-01
 1284461-01
 1286261-01
 1288061-01
 1290861-01
 1292661-01
 1294461-01
 1296261-01
 1298061-01
 1300861-01
 1302661-01
 1304461-01
 1306261-01
 1308061-01
 1310861-01
 1312661-01
 1314461-01
 1316261-01
 1318061-01
 1320861-01
 1322661-01
 1324461-01
 1326261-01
 1328061-01
 1330861-01
 1332661-01
 1334461-01
 1336261-01
 1338061-01
 1340861-01
 1342661-01
 1344461-01
 1346261-01
 1348061-01
 1350861-01
 1352661-01
 1354461-01
 1356261-01
 1358061-01
 1360861-01
 1362661-01
 1364461-01
 1366261-01
 1368061-01
 1370861-01
 1372661-01
 1374461-01
 1376261-01
 1378061-01
 1380861-01
 1382661-01
 1384461-01
 1386261-01
 1388061-01
 1390861-01
 1392661-01
 1394461-01
 1396261-01
 1398061-01
 1400861-01
 1402661-01
 1404461-01
 1406261-01
 1408061-01
 1410861-01
 1412661-01
 1414461-01
 1416261-01
 1418061-01
 1420861-01
 1422661-01
 1424461-01
 1426261-01
 1428061-01
 1430861-01
 1432661-01
 1434461-01
 1436261-01
 1438061-01
 1440861-01
 1442661-01
 1444461-01
 1446261-01
 1448061-01
 1450861-01
 1452661-01
 1454461-01
 1456261-01
 1458061-01
 1460861-01
 1462661-01
 1464461-01
 1466261-01
 1468061-01
 1470861-01
 1472661-01
 1474461-01
 1476261-01
 1478061-01
 1480861-01
 1482661-01
 1484461-01
 1486261-01
 1488061-01
 1490861-01
 1492661-01
 1494461-01
 1496261-01
 1498061-01
 1500861-01
 1502661-01
 1504461-01
 1506261-01
 1508061-01
 1510861-01
 1512661-01
 1514461-01

IMPULSE DESCRIPTION
 SUBLIMATION LAYER THICKNESS (CM) : 0.000000
 IMPULSE (TAPS) : 4
 IMPULSE (IN-MICROSECONDS/MS) : 400753.842857
 MAXIMUM PRESSURE (N/M²) : 2571.656250
 888 DYNAMIC RESPONSE OF A CIRCULAR CYLINDER 888
 PROBLEM TITLE : IMPHELL SAMPLE PROBLEM. 7079 AL CYLINDER. 75 CAL/CME. 5 KEY 88
 NUMBER OF NODES : 62
 NUMBER OF TIME INCREMENTS : 4
 BLAST LOADING TIME : 0.003200
 TIME STEP : 0.001600
 INTERNAL PRESSURE : 6.89499998
 CYLINDER RADIUS : 4.99999999
 BLAST LOAD MAGNITUDE : 3571.535937
 NODAL JOINT OUTPUT FREQUENCY : 30
 SHELL THICKNESS : 0.000000
 MODULUS OF ELASTICITY : 6894999915
 POISSON'S RATIO : 0.250000
 MATERIAL DENSITY : 25000000
 SOLUTION OUTPUT FREQUENCY : 1
 I/O TYPE - REAL(0) OR NOR(1) : 0

BEST AVAILABLE COPY

Table 4.4 (continued)

BEST AVAILABLE COPY

TIME	INCREMENT	1	U-VEL	STRESS	STRAIN
NODE	THETA	U-DISP	U-VEL	U-VEL	U-VEL
1: 21 88 52	- 15320074-03	- 58077000-03	- 11810000-03	- 48320000-03	- 10201000-03
61 177 85	- 14131515-03	- 58077000-03	- 20140000-03	- 12740000-03	- 16250000-03
END DATA		- 15013150-04	- 10107344-04	- 14025000-04	- 14823000-04
TIME	INCREMENT	2	U-VEL	STRESS	STRAIN
NODE	THETA	U-DISP	U-VEL	U-VEL	U-VEL
1: 21 88 52	- 26490023-05	- 14711000-03	- 24700730-16	- 95244300-15	- 25700048-05
61 177 85	- 26520000-03	- 47095000-04	- 67820722-15	- 36917416-15	- 25621512-05
END DATA		- 26516000-04	- 22740000-18	- 31566117-16	- 25552000-05
TIME	INCREMENT	3	U-VEL	STRESS	STRAIN
NODE	THETA	U-DISP	U-VEL	U-VEL	U-VEL
1: 21 88 52	- 7698354-05	- 29433000-03	- 33042256-16	- 12726256-14	- 51547614-05
61 177 85	- 21073116-03	- 56003369-04	- 9849921-15	- 41218007-15	- 5123658-05
END DATA		- 98098760-05	- 30323659-15	- 42089727-16	- 51144711-05
TIME	INCREMENT	4	U-VEL	STRESS	STRAIN
NODE	THETA	U-DISP	U-VEL	U-VEL	U-VEL
1: 21 88 52	- 76981215-05	- 29431000-03	- 44057871-16	- 16959992-14	- 5156960-05
61 177 85	- 21072208-03	- 9509900-04	- 12857872-14	- 54952651-15	- 5129640-05
END DATA		- 76684336-05	- 40436379-19	- 56124011-16	- 5114368-05

Table 4.4 (continued)

5. CORRELATION OF EXPLODING FOIL IMPULSE TESTING WITH NUCLEAR EFFECTS LOADS

The impulsive loads produced by sublimation effects of nuclear weapons is often simulated in the laboratory by the use of "exploding foil" techniques (10). In such test programs, thin films of metallic foils are bonded to the structural surface which experiences the impulsive loads. Large doses of electrical energy are discharged into the conducting foils from capacitor banks resulting in sublimation of the foil material. This sublimation, in turn, loads the structure impulsively. It is desirable to be able to correlate the simulation loads produced by the exploding foil techniques with the actual loads produced by nuclear weapon effects.

One procedure for correlating the results of the two phenomena is based on the equivalence of deposited energy and total impulse. It is assumed that the source of energy is unimportant and only the amount of energy deposited in the sublimated layer affects the impulse. Action times of the two effects are assumed to be approximately the same.

The procedure for calculating the impulsive loads due to nuclear weapon effects has been described in detail in Section 2.1. This procedure involves first determining the energy deposition profile in the material due to exposure to radiant energy from a nuclear weapon. This profile is calculated using an energy deposition code such as KNISH. After the profile is known, the total impulse is calculated using the Whitener model described in Section 2.1. A calculation which yields the total impulse per unit area (amps/cm^2) produced by the nuclear weapon effects.

To calculate the impulse produced by an exploding foil, use is made of the single-zone approximate method for impulse calculation defined as

$$I_B = 9150 \text{ ph} \sqrt{E_d - E_s} \quad (5.1)$$

where

I_B = impulse per unit area of foil (taps/cm^2)

ρ = material density (g/cm^3)

h = foil thickness (cm)

E_d = energy density in foil from capacitor discharge (cal/g)

E_s = sublimation energy of material (cal/g)

To use Eq. 5.1 to calculate the impulse produced by an exploding foil, assume the known total amount of energy discharged by the capacitor bank, minus any losses, is deposited uniformly throughout the foil. This allows an energy density E_d to be calculated by dividing the net deposited energy by the number of grams of foil used. Substitution of E_d into Eq. 5.1, along with the thickness h and the material properties ρ and E_s , allows the impulse per unit area to be calculated.

Conversely, if the impulse produced by a given nuclear effects loading is known, the energy density required by the exploding foil technique to produce a similar impulse can be determined by solving Eq. 5.1 for E_d , i.e.,

$$E_d = E_s + \left[\frac{I_B}{9150\rho h} \right]^2 \quad (5.2)$$

Eq. 5.2 has been evaluated for the particular case of aluminum ($E_s = 3200 \text{ cal/gm}$, $\rho = 2.71 \text{ gm/cm}^3$) for different thicknesses and the results presented graphically in Figure 5.1. This illustration permits a rapid determination to be made of the energy density requirements to simulate the results for a particular nuclear effects produced impulsive load.

As an example of how to use this information, assume that it is desired to simulate a nuclear explosive which produced an impulsive load of 1000 taps/cm^2 . The foil material to be sublimated is aluminum with $\rho = 2.71 \text{ g/cm}^3$ and $E_s = 3200 \text{ cal/g}$ and is 0.0508 mm thick. Evaluating Eq. 5.2 gives a value for E_d of 3263 cal/g required to sublimate

Figure 5.1. Correlation of Impulse and Deposited Energy

the foil at the desired impulse level. If the structural surface area to be loaded impulsively is 50 cm^2 , the total energy requirement is

$$E_T = (3263)(50)(0.00508)(2.71) = 2,246 \text{ calories}$$

or, $E_T = 9,401$ joules. Thus 9,401 joules would have to discharge from the capacitor bank into the foil to simulate the desired result.

6. CLOSING REMARKS

The computer codes described in this report were designed to meet a particular need of the project sponsor. No attempt was made to create general purpose computer codes capable of assessing the spectrum of problems associated with the response of structures to electromagnetic radiation from a nuclear weapon. The codes serve the purpose for which they were intended: correlating specific experimental measurements with specific mathematical models. However, due to limitations placed on the models, the codes are not presently capable of assessing the vulnerability or survivability of missile structures. Still further code developments are needed to address these problems. The codes should be extended to include the following characteristics to make them more accurate:

1. material property dependence on temperature

At the high temperatures in question the material stiffness is decreased significantly which, in turn, significantly affects the structural response.

2. large deformation effects

The loads produced by nuclear weapon effects are sufficiently severe that large deformations are experienced before the structure fails.

3. failure criteria

Missile structures can withstand some permanent damage before failure occurs. The specific details of structural failure is important.

4. elastic-plastic material behavior

Material yielding and plastic deformations occur before the structure fails.

5. combined blast, impulsive, and operational loads

The operational loads produced by acceleration and pressurization are high as well as the blast and impulsive loads produced by nuclear weapon effects. The combined effects of all loads produces failure.

6. arbitrary geometrical shapes

More complex geometries than plates and cylinders must be evaluated.

7. composite material response

The response of layered, reinforced, composite materials to nuclear effects loads is important.

Each of these items is important in evaluating missile structural integrity and should be included in survivability/vulnerability studies.

REFERENCES

1. Cost, T.L., "Influence of Viscoelastic Properties on Dynamic Interlaminar Bond Stresses," Proceedings of the Second Annual Meeting of the Nuclear Survivability Working Groups on Propulsion and Ordnance Systems, Aerospace Corporation, San Bernadino, California, Report No. TOR-0172 (S2320-01)-6, Vol. II., pp. 21.1-21.21, September 1971.
2. Cost, T.L., "Thermoviscoelastic Material Response to Dynamic Loads," in Applied Mechanics Aspects of Nuclear Effects in Materials, edited by C. C. Wan, ASME, New York, pp. 169-200, 1971.
3. Cost, T.L. and Weeks, G.E., "Automated Evaluation of Interceptor Rocket Motor Designs Under Combined Operational and Nuclear Effects Loads," The University of Alabama, Bureau of Engineering Research, Report No. 176-97, Final Report on USAMICOM Contract No. DAAH01-73-C-0667, July 1974.
4. Wisniewski, Henry, "Coupling of X-Ray Deposition to Structural Response," US Army Ballistics Research Laboratories, Aberdeen Proving Ground, Maryland, Interim Memorandum Report No. 474, February 1976.
5. Huffington, Norris J., Jr. and Wisniewski, Henry L., "Structural Response Induced by X-Rays," Bulletin of the Fifth Annual Meeting of the Nuclear Survivability Working Group on Propulsion and Ordnance Systems, Stanford Research Institute, Menlo Park, California, October 1975.
6. Cost, T. L., Griffin, J. R., and Pettey, R. H., "Analysis and Design of Thermally and Mechanically Prestressed Flat Plates Subjected to Transverse Blast Loads," U.S. Army Missile Command, Redstone Arsenal, Alabama, Technical Report RL-72-18, May 1973.
7. Case, J., Huntington, J. H., and Staggs, V. E., "The KNISH/AMGO Photon Energy Deposition and Viscoelastic Material Response Computer Program," Physics International Company, San Leandro, California, Report No. PITR-307-3, Prepared for USAMICOM Under Contract No. DAAH01-71-C-0576, August 1972.
8. Ranson, W. F., et.al., "An Experimental Assessment of Nuclear Weapons Effects on Structures," U.S. Army Missile Command, Redstone Arsenal, Alabama, Technical Report RL-76-9, November 1975.

9. Humphreys, J. S., and Winter, R., "Dynamic Response of a Cylinder to a Side Pressure Pulse," AIAA Journal, Vol. 3, No. 1, January 1965, pp. 27-32.
10. Richert, Erich H. and Hodge, William S., "Exploding Foil Techniques Interim Report," U. S. Army Missile Command, Redstone Arsenal, Alabama, Report No. RS-TR-70-3, April 1970.
11. "Blowoff Impulse: A Comparison of Theory and Experiment", Sandia Laboratories, Albuquerque, New Mexico, Document No. SC-DR-68-384, 1968.
12. Newmark, N.M., "A Method of Computation for Structural Dynamics", Journal of the Engineering Mechanics Division, ASCE, Vol. 85, No. EM3, July 1975, pp 67-94.

DISTRIBUTION LIST

No. of Copies

Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

6

Commander
U.S. Army Missile Command
ATTN: DRSMI - RLA 10
 2
 1
DRSMI - RBD
DRSMI - RPR
Redstone Arsenal, Alabama 35809