LECTURA 9

HERRAMIENTAS CUANTITATIVAS: RELACIONES ENTRE EL OPERADOR Y LA MÁQUINA

RELACIONES COMPLEJAS

Las combinaciones de servicio sincrónico y aleatorio son quizás el tipo más común de relación entre operador y máquina. En este caso, el tiempo de servicio es relativamente constante, a pesar de que las máquinas son operadas de manera aleatoria. Además, se supone que el tiempo entre fallas tiene una distribución particular. A medida que el número de máquinas aumenta y la relación entre el operador y la máquina se hace más compleja, la interferencia con la máquina y, como consecuencia, el tiempo de retardo, aumentan.

En la práctica, la interferencia con la máquina predominantemente representa de 10 a 30% del tiempo total de trabajo, con valores extremos de hasta 50%. Se han desarrollado varios métodos para lidiar con dichas situaciones.

Uno de ellos supone una carga de trabajo esperada por el operador basada en el número de máquinas asignadas y en los tiempos promedio de operación de las máquinas y los tiempos promedios de servicio. Para un total de hasta seis máquinas, se recomienda el uso de las curvas empíricas que se muestran en la figura: (al final del documento dispone de un formato más grande)

La interferencia entre máquinas expresada como porcentaje del tiempo de servicio cuando el número de máquinas asignadas a un operador es seis o menor.

FÓRMULA DE WRIGHT

Para siete o más máquinas, puede utilizarse la fórmula de Wright (Wright, Dubai y Freeman, 1936):

$$I = 50 \left\{ \sqrt{[(1+X-N)^2 + 2N]} - (1+X-N) \right\}$$

Donde

I = interferencia, expresada como el porcentaje del tiempo medio de servicio

X = relación entre el tiempo promedio de operación de la máquina y el tiempo promedio de servicio de la máquina

N = número de máquinas asignadas a un operador

MÉTODO ASHCROFT

Mediante el uso de la teoría de colas, y bajo el supuesto de que el lapso de tiempo entre los tiempos muertos tiene una distribución exponencial, Ashcroft (1950) extendió el método anterior y desarrolló tablas para determinar los tiempos de interferencia de las máquinas. Dichos tiempos se muestran en la tabla de la siguiente página y proporcionan valores de tiempo de operación de las máquinas y de tiempo de interferencia entre ellas para valores de la relación de servicio k:

$$k = l/m$$

donde

I = tiempo de servicio

m = tiempo de operación de las máquinas

El tiempo total del ciclo para producir una pieza es

$$C = m + l + i$$

Donde

c = tiempo total del ciclo

i = tiempo de interferencia con las máquinas

Observe que los valores del tiempo de operación de la máquina y el tiempo de interferencia entre máquinas de la tabla que se muestra en la siguiente página están dados como porcentaje del tiempo total del ciclo.

Además, cualquier tiempo de desplazamiento o tiempo de trabajador *w* debe incluirse como parte del tiempo de servicio.

Tablas de tiempo interferencia de máquinas (i) y tiempo de operación de máquina (m) para constantes de servicio seleccionadas (k = l/m) (Los valores se expresan como porcentaje del tiempo total, donde m + l + i = 100%)

	(a)			(b)		(a)		(b)		(a)		(b)		(a)		(b)			(a)		(b)			(:		((b)		
n	i	m	i	m	n	i	m	i	m	n	i	m	i	m	n	i	m	i	m	n	i	m	i	m	n	i	m	i	m
k = 0.01					k = 0.02 (cont.)					k = 0.03 (cont.)					k = 0.04 (cont.)				k = 0.06 (cont.)					k = 0.08					
1 10 20 30 40 50 60 70 80 85 90 95 100 105 110	0.0 0.1 0.1 0.2	99.0 99.0 99.9 98.9 98.8	0.0 0.1 0.2 0.4 0.6 0.9 1.3 1.8 2.7 3.4 4.2 5.2 6.7 8.5 10.7	99.0 98.9 98.8 98.6 98.4 98.1 97.8 97.8 96.3 95.7 94.9 93.8 92.4 88.4 85.8	10 15 20 25 30 35 40 45 50 51 52 53 54 55 56	0.2 0.4 0.6 0.8 1.2	97.8 97.7 97.5 97.2 96.9	0.4 0.7 1.1 1.6 2.2 3.1 4.3 6.1 8.7 9.3 10.0 10.7 11.5 12.3 13.1 14.0	97.6 97.4 97.0 96.5 95.9 95.0 93.8 92.0 89.5 88.9 88.3 87.6 86.8 86.0 85.2 84.3	32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47	. 3,30 (0.03 (2	8.9 9.7 10.6 11.6 12.6 13.7 14.9 16.1 17.4 18.8 20.1 21.6 23.0 24.4 25.9 27.3	87.7 28 86.8 29 85.9 30 84.9 31 83.8 32 86.8 33 81.4 34 80.2 35 77.5 37 76.2 74.8 12 73.4 12 70.6 3	27 28 29 30 31 32 33 34 35 36 37	28 11.9 29 13.6 30 15.5 31 32 33 34 35 36 37 1 0.0 2 0.1 3 0.2	86.2 84.7 83.0 81.3 k = 0.05 95.2 95.1 95.0	0.0 0.2 0.5	83.2 81.9 80.5 79.0 77.4 75.7 74.0 72.3 70.6 68.9 67.2 95.2 95.0 94.8	3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	0.4 0.6 0.8 1.1 1.4 1.7 2.1 2.6 3.1 3.8 4.5 5.4 6.5 7.8 9.3 11.1 13.2	94.0 93.8 93.6 93.3 93.1 92.7 92.4 91.9 91.8 90.1 89.2 88.2 87.0 85.6 83.9 81.9	0.7 1.1 1.5 2.0 2.5 3.1 3.7 4.5 5.3 6.2 7.3 8.4 9.7 11.2 12.8 14.6.5	93.7 93.3 92.9 92.5 92.0 91.4 90.8 90.1 89.4 88.5 87.5 86.4 85.2 83.8 80.6 78.8	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	0.0 0.3 0.6 1.0 2.6 3.4 4.3 5.4 6.7 8.4 10.4 12.8 15.6 18.8 22.2	92.6 92.3 92.0 91.7 91.2 90.8 90.2 89.5 88.6 87.6 86.4 84.8 83.0 80.8 78.2 75.2 72.0	0.0 0.5 1.2 1.9 2.7 3.5 4.5 5.7 7.0 8.5 10.1 12.0 14.2 16.5 19.0 21.8 24.6	92.6 92.1 91.5 90.9 90.1 89.3 88.4 87.3 86.1 84.8 83.2 81.4 79.5 77.3 75.0 72.4 69.8
120 121 122		16.3 82.9 16.9 82.3 17.5 81.7			58 59 60			14.9 15.9 16.8	83.4 82.5 81.5	48	k = 0.04 69.2		69.2	5 6 7	0.4 0.5 0.7	94.9 94.7 94.6	1.0 5 1.4	94.5 94.3 94.0	20 21 22	15.6	79.7	18.6 20.8 23.1	76.8 74.7 72.5	18 19	25.7	68.8 66.5	27.6 30.5	67.1 64.4	
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144		18.1 81.1 18.8 80.4 19.4 79.8 20.0 79.2 20.6 78.6 21.2 78.1 21.8 77.5 22.4 76.9 22.9 76.3 23.5 75.7 24.1 75.2 24.6 74.6 25.2 74.1 25.7 73.5 26.3 73.0 26.8 72.5 27.3 71.9 27.9 71.4 28.4 70.9 28.9 70.4 29.4 69.9 29.9 69.4	79.8 79.2 78.6 78.1 77.5 76.9 76.3 75.7 74.6 74.1 73.5 73.0 72.5 71.9 70.4 69.9 69.4	61 62 63 64 65 66 67 68 69 70 71 72 1 5 10 15 20 25 26 27 28 29	0.0 0.2 0.5 1.0 1.6 2.8 3.1 3.4 3.8 4.3	k = 0.0 97.1 96.9 96.6 96.2 95.5 94.4 94.1 93.7 93.4 92.9	17.9 18.9 19.9 21.0 22.0 23.1 24.2 25.2 27.2 28.2 29.2 3 0.0 0.4 1.8 3.0 4.7 5.2 5.7 6.2	80.5 79.5 78.5 77.5 76.4 75.4 74.4 73.3 72.3 71.3 70.4 69.4	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23	0.0 0.1 0.2 0.2 0.3 0.5 0.6 0.7 0.8 1.0 1.1 1.3 2.0 2.3 3.2 6.0 3.4 4.5 5.2 6.6 8	96.2 96.1 96.0 95.9 95.8 95.7 95.6 95.2 95.1 94.9 94.7 94.5 94.2 94.0 93.6 93.3 92.9 92.4 91.8 91.2 90.4	0.0 96. 0.2 96. 0.3 95. 0.5 95. 0.7 95. 0.9 95. 1.1 95. 1.3 94. 1.5 94. 2.1 94. 2.4 93. 2.8 93. 3.2 93. 3.6 92. 4.0 92. 4.5 91. 5.7 90. 6.4 90. 7.1 89. 8.0 88.	96.2 96.0 95.9 95.7 95.5 95.3 94.7 94.4 94.1 93.5 93.1 92.7 92.3 91.3 90.7 90.0 89.3 88.5 87.6	8 9 10 11 12 13 14 15 16 17 7 18 19 20 21 22 23 24 25 26 27 28		94.4 94.2 93.9 93.7 93.4 93.0 92.6 92.2 91.7 91.0 90.3 89.5 87.3 85.9 84.3 82.5 75.9 73.6 71.2 68.8 k = 0.0	2.1 2.5 3.0 3.5 4.1 4.7 5.4 6.2 7.1 8.1 9.1 10.4 11.7 16.5 18.3 20.2 22.2 24.3 26.4 28.5	93.6 93.3 92.9 92.4 91.9 91.4 90.1 89.3 88.5 87.6 86.5 85.4 84.1 82.7 81.2 79.6 74.1 72.1 70.1 68.1	23 24 25 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	0.0 0.2 0.5 0.8 1.1 1.5 1.9 2.4 3.1 3.8 4.7 7.0 8.6 10.4 12.6 15.2 18.1 21.1	0.2 93.2 0.5 93.0 0.8 92.7 1.1 92.4 1.5 92.1 1.9 91.7 2.4 91.2 3.1 90.6 3.8 89.9 4.7 89.1 5.7 88.1 7.0 86.9 3.6 85.4 0.4 83.7 2.6 81.6 5.2 79.3	25.5 27.9 30.3	70.3 68.0 65.8 93.5 93.1 92.6 92.1 91.6 91.0 90.3 89.5 88.6 87.6 86.4 85.1 80.3 78.3 76.2 73.9 71.5	1 2 3 4	0.0 0.4 0.8 1.3 1.9 2.6 3.4 4.5 5.7 7.3 9.3 11.7 14.5 21.5 25.3 29.2	$\begin{array}{c} k = 0.0 \\ \hline 91.5 \\ 91.4 \\ 91.0 \\ 90.6 \\ 90.0 \\ 89.4 \\ 88.6 \\ 87.6 \\ 85.0 \\ 83.2 \\ 81.0 \\ 78.4 \\ 72.0 \\ 68.5 \\ 65.0 \\ \hline \\ k = 0.1 \\ \hline \\ 90.5 \\ 90.0 \\ 89.5 \\ \end{array}$	0.0 0.7 1.4 2.3 3.3 4.5 5.8 7.3 9.0 10.9 13.1 15.6 18.3 21.2 24.2 27.4 30.6 0	91.7 91.1 90.4 89.6 88.7 86.5 85.1 83.5 77.5 75.0 72.3 69.5 66.6 63.7	
1 5	0.0 0.1	98.0 98.0	0.0 0.2	98.0 97.9	30 31	4.8	92.4	7.4 8.1	89.9 89.2	24 25 26	7.9 9.0	88.6 87.5	9.9 11.0 12.2	85.6 84.5	1 2	0.0 0.2	94.3 94.2	0.0	94.3 94.0	20 21	24.4	70.7	26.2 28.9	69.0 66.5	5 6	2.3 2.2	88.8 88.0	4.1 5.5	87.2 85.9

Fuente: Niebel, B. y Freivalds, A. (2014). Ingeniería Industrial: Métodos, Estándares y Diseño del Trabajo. 13ª Edición. México: McGraw Hill Interamericana.