Problem 2.4. (a) State the existence and uniqueness theorem for autonomous systems $\dot{x} = f(x)$ about a point x_0 .

(b) Find two solutions for

$$\dot{x} = |x|^{1/3}, \quad x(0) = 0.$$

Does this example contradict the existence and uniqueness theorem?

a) Consider the TUP
$$\begin{cases} \dot{x} = f(x) \\ \dot{x}(t_0) = x_0 \end{cases}$$
 for $f \in C'(\mathbb{R}^n)$. Then

a solution exists 4 is unique; i.e., $\exists a>0$ such that $x:(t_0-a,t_0+a) \to \mathbb{R}^n$ is unique & satisfies the EVP.

b) One solution is x = 0. We can find another by splitting into left & right solutions:

$$\frac{dx}{dt} = x^{1/3}$$

$$x^{-1/3} dx = dt$$

$$\int x^{-1/3} dx = \int dt$$

$$\frac{3}{2} x^{2/3} = t + C$$

The initial condition forces
$$C=0$$
, so $\frac{3}{2}$

$$\frac{2}{3} = \frac{2}{3} = \frac{2}{$$

We can get a solution on the negative x-axis similarly. There is no $\frac{1}{2}$ to ERV because $|x|^{1/3}$ is not C^{1} .