

Inteligência Artificial II

Engenharia de Computação

Computação Evolucionária

Programação Genética

Prof. Anderson Luiz Fernandes Perez Email: anderson.perez@ufsc.br

Sumário

- Introdução
- Estrutura dos Programas em PG
- População Inicial
- Operadores Genéticos em PG
- Programação Genética Linear

Introdução

- Técnica para geração automática de programas de computador.
- Criada por John Koza em 1992.
- Objetivo:
 - Ensinar computadores a se programar, isto é, a partir de especificações de comportamento, o computador deve ser capaz de evoluir um programa que as satisfaça.

Introdução

- Em PG um conjunto de programas de computador, que são soluções candidatas para resolver um determinado problema, são submetidos a um processo evolutivo.
- A cada programa é atribuído um valor de mérito represetando o quanto ele é capaz de resolver o problema.
- O processo inicia-se com a geração randômica de uma população inicial de programas compostos de funções e terminais apropriados para o domínio do problema.

Estrutura dos Programas

em PG

Universidade Federal de Santa Catarina

Estrutura dos Programas em PG

- Estruturas dos programas em PG
 - Os programas em PG são estruturas como uma árvore de sintaxe abstrata composta por funções em seus nós internos e por terminais em seus nós folhas.
 - O domínio do problema é especificado através da definição dos conjuntos de funções F e de terminais T.
 - O espaço de busca é determinado por todas as árvores que possam ser criadas pela livre combinação de elementos dos conjuntos F e T.

- Representação Genotípica
 - Estrutura em árvore
 - Conjunto de funções {F}
 - Conjunto de terminais {T}

Estrutura dos Programas em PG

- Propriedades de Fechamento e Suficiência
 - Fechamento: cada membro do conjunto F deve aceitar, como seus argumentos, qualquer membro de C.
 - Suficiência: o conjunto de funções e de terminais devem ser capazes de representar uma solução para o problema.

População Inicial

- Criação da População Inicial
 - A população inicial é composta por árvores aleatoriamente a partir dos conjuntos das funções F de terminais T.
 - O processo incia-se com a escolha aleatória de uma função f. Para cada um dos argumentos de f, escolhe-se um elemento de C.
 - O processo prossegue até que tenha apenas terminais como nós-folha da árvore.

em PG

- Operadores Genéticos
 - –Os operadores genéticos utilizados em PG são:
 - Cruzamento
 - Mutação
 - Reprodução

em PG

em PG

Operador de cruzamento

em PG

Operador de mutação

em PG

Operador de reprodução

Programação Genética

Linear

- Na PGL os programas são estruturados de maneira linear, usando um linguagem de programação imperativa.
- Os indivíduos são representados por uma seqüência variada de instruções da linguagem imperativa.

Programação Genética

Linear

Exemplo:

```
void PGL(double v[8]) {
  v [0] = v[5] + 73;
  v[7] = v[3] . 59;
  if (v[1] > 0)
  v[4] = v[2] . v[1];
  v[2] = v[5] + v[4];
  v[1] = sin(v[6]);
  if (v[0] > v[1])
  v[3] = v[5] . v[5];
  v[5] = v[7] + 115;
  if (v[1] <= v[6])
  v[1] = sin(v[7]);
}</pre>
```