计算物理——Homework Week 11

白博臣、何骐多、夏营 (四川大学 物理学拔尖计划)

Figure 2: 何骐多

Figure 3: 夏营

1 Probelm 1

1.1 题目回顾

用传统的 MC 方法模拟蒲丰投针问题,并进行计算 π 值。

- (a) 在固定 N 下改变 $\mathbf{x}(x=b/a)\,x=b/a$ 的值,讨论影响最终结果的因素,解释 π 的估计值的精度往往随着针头长度的增加而提高。(为了简单起见,选择 $\mathbf{a}=1$)
 - (b) 固定 x 的取值,增加投针次数 N,观察 π 的估计值的变化情况。
 - (c) 讨论一下为什么电脑只能达到这个精度?
- (d) 如果我们定义 x = a/b,这就是长度增加的针头的概率函数,选择 x = 1, 2, 3 ... 14 等,能否正确估计 π 值,将结果打印出来并生成计算 π 值最佳的 x 值。

Figure 4: 蒲丰投针实验示意图

1.2 问题解答

1.2.1 问题 (a) 解答

蒲丰实验生成 n 个服从 $U(0,\pi)$ 的随机数 θ 和 n 个服从 $U(0,\frac{a}{2})$ 的随机数,令 k 为实验成功的次数,初始为 0,对于每对随机数 (θ,x) ,如果 $x \leq \frac{l*sin\theta}{2}$,那么实验就视为

成功,k 加 1. 因此最后针与木条相交的概率 $P = \frac{k}{n}$,从而可得 π 的估计值 $\hat{\pi} = \frac{2ln}{ak}$. 样本点在广义空间的分布情况如下图所示:

Figure 5: 1000 个样本点的分布示意图

使用 Python 编程得到 $\pi(x)$ 随 x 的变化情况,并绘制出相对误差分布如下图所示:

Figure 6: $\pi(x)$ 随 x 变化示意图

Figure 7: 相对误差分布图

我们观察到,随着 x 值的增加, π 的估计值的精度有逐渐提高的趋势,说明在投针次数 N 固定的条件下,针的长度应该和地板的长度相匹配,才能在单词实验中获得最

优的估计结果。

从经验的角度分析,一方面 Monte Carlo 方法要以高精度实现对参数的估计,需要 尽可能满足样本分布的随机性,即针的分布应该足够均匀,针覆盖区域的面积应该足够 大,由于针并非质点,故针的长度会影响覆盖区域面积的均匀性。当针越长的时候,其 均匀性也就越好,最终的估计值也就越精确。

另一方面,本实验主要有三个参数: 针与地板的夹角 θ 以及针的质心位置 (x,y),如果想要达到分布的均匀,就要要求三个参数固定两个参数时,另一个参数的变化要引起结果的变化,否则便会出现样本的重复累计,破坏样本的均匀性。当我们固定质心坐标 (x,y),当针比较长的时候,改变 θ 的取值便会出现针与线相交情况的改变; 当针比较短的时候,改变 θ 并不会改变针与线的相交情况,这就导致了参数的随机性并没有带来结果的随机性。所以当针的长度增加时, π 的估计值的精度也在提高。

1.2.2 问题 (b) 解答

使用 Python 编写投针程序,得到估计结果 $\pi(N)$ 随着投掷次数 N 的变化情况及其相对误差分布如下图所示:

Figure 8: π 估计值随投针次数 N 变化示意图

Figure 9: π 估计值随 N 变化相对误差分布图

1.2.3 问题 (c) 解答

通过反复试验后我们可以发现 MC 方法计算 π 值虽然思想简洁直观,但是在占用相同内存的情况下,估计值的精度远不如级数展开法,可能有以下原因:

1. 首先是随机数的选取,本文所采取的随机数为 random 库中的随机数,其分布可能在较少随机数数量下并不能体现出均匀性,这也就导致最终计算得出的 π 值精度大

打折扣,下图给出了 random 库自带函数在 1000 个样本点下的分布情况,我们可以发现其并不满足均匀情况。

- 2. 统计方法本身的特点造成了这一现象。由于 Monte Carlo 方法的原理是通过大样本下,事件频率趋近事件概率的现象来估计未知参数,由于每次实验的结果不能确定,具有一定的随机性,所以会出现单次实验结果偏差较大的情况。所以应该进行多次实验,将每次实验结果求和取平均值来估计未知参数更为合理。
- 3. 实验的精度很大程度上取决于样本量。如果样本量不够大,那么估计值的误差可能会很大。随着样本量的增加,估计值的精度会逐渐提高,但增加样本量也意味着需要更多的计算资源和时间。
- 4. 实验的设计也会影响精度。例如,平行线之间的距离、针的长度和投掷的方式都会影响相交次数的计算。

Figure 10: 1000 个 Random 样本分布图

1.2.4 问题 (d) 解答

引入长针后,长度增加的针头的概率函数为:

$$P(x) = \begin{cases} \frac{2}{\pi}x & x \le 1\\ \frac{2}{\pi}\left(x - \sqrt{x^2 - 1} + arc\sec x\right) & x > 1 \end{cases}$$

其中 $x = \frac{b}{a}$ 是地板长度 a 和针长 b 的比值,对于地板长度 a 小于针长 b 的情况,我

们同样可以得到 π 的估计公式:

$$\pi(x) = \frac{2}{P} \left(x - \sqrt{x^2 - 1} + arc \sec x \right) = N \frac{2}{k} \left(x - \sqrt{x^2 - 1} + arc \sec x \right)$$

经过编程后我们可以得到 π 的估计值随着长度比 x 的变化关系及其相对误差分布的图像:

Relative Error of Estimated Value of Pi

0.14

0.12

0.10

0.08

0.04

0.02

0.00

2 4 6 8 10 12 14

Figure 11: π 估计值随 x 变化示意图

Figure 12: π 估计值随 x 变化相对误差分布图

2 Problem 2

2.1 题目回顾

使用传统的 Acceptance-Rejection Method 来计算 π 值。

- (a) 使用不同的 N 值来查看可以获得的精度大小。
- (b) 讨论一下为什么电脑只能达到这个精度?

2.2 问题解答

使用 Acceptance-Rejection Method 模拟实验来计算 π 的近似值,我选取了一些情况并对它们进行了可视化。

Figure 13: π 的 1000 样本点示意图

Figure 14: π 的 5000 样本点示意图

Figure 15: π 的 10000 样本点示意图

Figure 16: π 的 100000 样本点示意图

具体试验结果列在下表中,可以观察到随着打靶次数 N 的增加,所得到的 π 的精度有统计规律上的增加趋势,但由于随机性,单次实验中,有可能出现 N 较小时的精度 比 N 较大时的精度要高的情况,但是整体上呈现统计规律上的增加趋势。

Table 1: π 估计值与相对误差

N	Estimated value of π	Relative Error
1000	3.176000	0.010952
5000	3.156800	0.004841
10000	3.162000	0.006496
50000	3.152000	0.003313
100000	3.143136	0.000491
500000	3.141599	0.000002
1000000	3.140476	0.000355
5000000	3.141884	0.000093
10000000	3.141018	0.000183

通过反复试验后我们可以发现 MC 方法计算 π 值虽然思想简洁直观,但是在占用相同内存的情况下,估计值的精度远不如级数展开法,可能有以下原因:

- 1. 首先是随机数的选取,本文所采取的随机数为 random 库中的随机数,其分布可能在较少随机数数量下并不能体现出均匀性,这也就导致最终计算得出的 π 值精度大打折扣,下图给出了 random 库自带函数在 1000 个样本点下的分布情况,我们可以发现其并不满足均匀情况。
- 2. 统计方法本身的特点造成了这一现象。由于 Monte Carlo 方法的原理是通过大样本下,事件频率趋近事件概率的现象来估计未知参数,由于每次实验的结果不能确定,具有一定的随机性,所以会出现单次实验结果偏差较大的情况。所以应该进行多次实验,将每次实验结果求和取平均值来估计未知参数更为合理。
- 3. 实验的精度很大程度上取决于样本量。如果样本量不够大,那么估计值的误差可能会很大。随着样本量的增加,估计值的精度会逐渐提高,但增加样本量也意味着需要更多的计算资源和时间。
- 4. 实验的设计也会影响精度。例如,平行线之间的距离、针的长度和投掷的方式都会影响相交次数的计算。

3 Problem 3

3.1 题目回顾

问题 3: 在黑暗时代,哈佛、达特茅斯和耶鲁只招收男生。假设当时,1.哈佛男人80%的儿子上了哈佛,其余的上了耶鲁,

- 2. 耶鲁男性 40% 的儿子上过耶鲁, 其余的平均分配在哈佛和达特茅斯;
- 3. 达特茅斯的人们 (此处题目疑似有错位,我们是按照自己的理解进行后续做答)70% 去了达特茅斯,20% 去了哈佛,10% 去了耶鲁。
 - (a) 找出一个哈佛人的孙子上哈佛的概率。
- (b) 通过假设哈佛人的儿子总是上哈佛来修改上面的内容。再次找出一个哈佛人的孙子上哈佛的概率。

3.2 问题解答

3.2.1 问题 (a) 解答

取四维列向量,其各分量分别为 Harvard Yale Dartmouth woman 的概率对 (a) Markov 矩阵如下

$$T = \begin{pmatrix} 0.40 & 0.15 & 0.15 & 0.35 \\ 0.00 & 0.20 & 0.20 & 0.10 \\ 0.10 & 0.15 & 0.15 & 0.05 \\ 0.50 & 0.50 & 0.50 & 0.50 \end{pmatrix}$$

对 (b) Markov 矩阵如下

$$T = \begin{pmatrix} 0.50 & 0.15 & 0.15 & 0.35 \\ 0.00 & 0.20 & 0.20 & 0.10 \\ 0.00 & 0.15 & 0.15 & 0.05 \\ 0.50 & 0.50 & 0.50 & 0.50 \end{pmatrix}$$

所求均为计算

$$T^2 \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

的第一个元素。

用 Java 代码实现,见附件 MatrixCall.java,运行结果如下

The probability that the grandson of a man from Harvard went to Harvard in case 1: 0.3500000000 The probability that the grandson of a man from Harvard went to Harvard in case 2: 0.425

Figure 17: MatrixCall 运行结果

4 Problem 4

4.1 题目回顾

- 一只老鼠穿过下面的迷宫。在每走一步的时候,它都会随机选择一扇门离开房间
- (a) 给出这个 Markoy 链的转移矩阵 P
- (b) 证明它是不可约的, 但不是非周期的
- (c) 找到平稳分布
- (d) 现在假设一块成熟的切达干酪被放在 5 号房间的一个致命陷阱上。鼠标在 1 号房间启动。从 1 号房间开始,在第一次到达 5 号房间之前找到预期的步数
 - (e) 找到返回 1 号房间的预期时间

4.2 问题解答

4.2.1 问题 (a) 解答

Markov 链的转移矩阵为:

$$\begin{bmatrix} 0 & 0 & \frac{1}{4} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{4} & 0 & 0 & 0 \\ 1 & 1 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{4} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$

4.2.2 问题 (b) 解答

考虑在该 Markov 链中的多个时间,用 Java 代码实现,见附件 MatrixCal2.java,运行结果如下

Figure 18: 从 room1 出发

Figure 19: 初始各 room 概率相等

可见,当时间足够长后,呈现一定的周期分布,不同的初始导向不同的循环。

4.2.3 问题 (c) 解答

利用 matlab 计算特征向量,实现如下 结果即 J 中 1 的值在 V 中对应的列(归一化后)

$$\eta_0 = \begin{pmatrix} \frac{1}{10} \\ \frac{1}{10} \\ \frac{2}{5} \\ \frac{1}{5} \\ \frac{1}{5} \end{pmatrix}$$

4.2.4 问题 (d) 解答

该问题即到达 room 5 后, 到其他 room 的概率全为 0, 对转移矩阵作以下调整

$$P = \begin{pmatrix} 0 & 0 & \frac{1}{4} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{4} & 0 & 0 & 0 \\ 1 & 1 & 0 & \frac{1}{2} & 0 & 0 \\ 0 & 0 & \frac{1}{4} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{4} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & \frac{1}{2} & 0 & 0 \end{pmatrix}$$

再利用 Java 代码计算均值即可,见附件 MatrixCal2.java (设置 index = 4)。

观察得,在一定的时间后,均值稳定在 6.00000000000003,此时 room 5 的概率已 经趋近于 0。

4.2.5 问题 (e) 解答

该问题即到达 room 1 后,到其他 room 的概率全为 0,对转移矩阵作以下调整

$$P = \begin{pmatrix} 0 & 0 & \frac{1}{4} & 0 & 0 & 0 \\ 0 & 0 & \frac{1}{4} & 0 & 0 & 0 \\ 0 & 1 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{4} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & \frac{1}{4} & 0 & 0 & \frac{1}{2} \\ 0 & 0 & 0 & \frac{1}{2} & \frac{1}{2} & 0 \end{pmatrix}$$

再利用 Java 代码计算均值即可,见附件 MatrixCal2.java (设置 index = 0)。

5 Problem 5

5.1 题目回顾

考虑一个矩形网格,垂直线间隔 a 个单位,水平线间隔 b 个单位。长度 l < min(a,b) 的针随机落在网格上,设 A 表示针穿过垂直线的事件,设 B 表示针穿过水平线的事件。

(a)
$$P(A) = 2l/(\pi a)$$

(b)
$$P(B) = 2l/(\pi b)$$

(c)
$$P(A \cap B) = l^2/(\pi ab)$$

利用传统的 MC 方法,使用上述三种公式来模拟蒲丰投针问题,计算 π 。哪一种能得到最好的结果,绘制 (c) 的结果。

5.2 问题解答

当夹角为 θ 时,针的纵向长度为 $l\sin\theta$,横向长度 $l\cos\theta$

与纵向线相交的概率 $\frac{l\cos\theta}{a}$,与横向线相交的概率 $\frac{l\sin\theta}{b}$,两条都相交的概率为 $\frac{l^2\sin\theta\cos\theta}{ab}$ 。对角度的均值

$$P(A) = \frac{1}{\pi/2} \int_0^{\pi/2} \frac{l \cos \theta}{a} d\theta$$

$$= \frac{2l}{\pi a}$$

$$P(B) = \frac{1}{\pi/2} \int_0^{\pi/2} \frac{l \sin \theta}{b} d\theta$$

$$= \frac{2l}{\pi b}$$

$$P(C) = \frac{1}{\pi/2} \int_0^{\pi/2} \frac{l^2 \sin \theta \cos \theta}{ab} d\theta$$

$$= \frac{2l^2}{\pi ab}$$

利用 Java 代码实现上述问题的计算,见附件 Buffon2D.java,运行结果如下

Figure 20: Buffon2D 运行结果

Figure 21: Buffon2D 运行结果

对比回归斜率,2维并没有明显优势,不过略微有提高收敛速度。