1. (30 pts) Suppose
$${}^{1}\mathbf{x}_{2} = \frac{1}{2} \begin{bmatrix} -\sqrt{3} \\ -1 \end{bmatrix}$$
.

- (a) (10pts) What is ${}^{1}\mathbf{y}_{2}$? Draw a diagram showing the orientation of axes 2 relative to axes 1.
- (b) (10pts) What is the matrix ${}^{1}\mathbf{R}_{2}$?
- (c) (10pts) What is the rotation angle θ such that ${}^{1}\mathbf{R}_{2} = \mathbf{R}(\theta)$?

2. (30pts) Suppose
$${}^{1}\mathbf{x}_{2} = \frac{1}{5} \begin{bmatrix} 4 \\ 3 \end{bmatrix}$$
.

- (a) (6pts) What is ${}^{1}\mathbf{y}_{2}$?
- (b) (6pts) What is ${}^{1}\mathbf{R}_{2}$?
- (c) (6pts) What is ${}^{2}\mathbf{R}_{1}$?
- (d) (6pts) Given ${}^2\mathbf{p}=\begin{bmatrix} -1\\-1 \end{bmatrix}$, what is the numerical value of ${}^1\mathbf{p}$?

(e) (6pts) Given
$${}^{1}\mathbf{q} = \begin{bmatrix} 1 \\ -3 \end{bmatrix}$$
, what is the numerical value of ${}^{2}\mathbf{q}$?

- 3. (30 pts) Consider the coordinate system 2 in relation to coordinate system 1 below. Suppose O_2 is located at (-1,2) relative to coordinate system 1, and point P is located at (1,2) relative to coordinate system 2. Let $\mathbf{p}_i = P O_i$. What are the following vectors (i.e., their x and y components)?
 - (a) $(6 \text{ pts})^{1}\mathbf{x}_{2}$ and $^{1}\mathbf{y}_{2}$.
 - (b) $(8 \text{ pts})^2 \mathbf{p}_2$ and $^1 \mathbf{p}_2$.
 - (c) (8 pts) $^{1}\mathbf{p}_{1}$ and $^{2}\mathbf{p}_{1}$.
 - (d) (8 pts) 1 d₁₂ and 2 d₁₂.

4. (40 pts) Consider the combination of robot, table, block, and camera in the figure below, with associated coordinate systems as shown.

- (a) (28pts) Find $^0\mathbf{R}_1,\,^1\mathbf{R}_2,\,^2\mathbf{R}_3$ and $^0\mathbf{R}_3$ by inspection.
- (b) (12pts) Suppose ${}^{0}\mathbf{p}=\left[\begin{array}{c}1\\2\end{array}\right]$. By inspection, find ${}^{1}\mathbf{p}$, ${}^{2}\mathbf{p}$, and ${}^{3}\mathbf{p}$.