Discrete Structures and Theory of Logic Lecture-21

Dharmendra Kumar July 24, 2020

An algebraic structure (R, +, .), where R is a set and + and . are two binary operators defined on set R, is said to be ring if it satisfies following properties:-

- (1) (R, +) is an abelian group.
- (2) (R, .) is a semigroup.
- (3) Distributive property must hold i.e. a.(b+c) = a.b + a.c and (b+c).a = b.a + c.a, \forall $a,b,c \in R$.

1

Commutative ring

A ring R is said to be commutative ring if it satisfies commutative property with respect second operation i.e.

a.b=b.a , $\forall~a,b\in R.$

Ring with unity

A ring R is said to be ring with unity if it contains identity element with respect to second operation that is . operation.

Note: We will denote here identity element with respect to first operation by 0 and identity element with respect to second operation by 1.

Example: Show that the set Z of integers under addition and multiplication is commutative ring with unity.

Solution: (Z, +, .) is a ring if it satisfies all the properties of ring. First we have to show that (Z,+) is an abelian group.

Closure property: We know that the addition of any two integers is also an integers. So, Z is closed under addition operation.

Associative property: We know that the addition of any three integers in any way is equal, therefore we can say, a+(b+c)=(a+b)+c, \forall $a,b,c\in Z$.

Therefore, Z satisfies associative property.

Existence of identity property: Let $a \in Z$. Clearly, $0 \in Z$ such that a+0=a=0+a. Therefore, 0 is an identity element. So, it satisfies identity property.

Existence of inverse property: Let $a \in Z$. Clearly, $-a \in Z$ such that a+(-a)=0. Therefore, -a is an additive inverse of any element a. So, it satisfies inverse property under addition operation.

Commutative property: Clearly, a+b=b+a, \forall $a,b\in Z$. So, Z satisfies commutative property with respect to addition operation. Therefore, (Z,+) is an abelian group.

4

Now, we have to show that (Z, .) is a semigroup.

Closure property: We know that the multiplication of any two integers is also an integers. So, Z is closed under multiplication operation.

Associative property: We know that the multiplication of any three integers in any way is equal, therefore we can say, a.(b.c) = (a.b).c, $\forall a,b,c \in Z$.

Therefore, Z satisfies associative property.

Therefore, (Z, .) is a semigroup.

Now, we have to show distributive property is satisfied.

Clearly, for any three integers a,b,c; followings are satisfied:-

(i)
$$a.(b+c) = a.b + a.c$$

(ii)
$$(b+c).a = b.a + c.a$$

Therefore, distributive property is satisfied in (Z, +, .).

Therefore, (Z, +, .) is a ring.

Example: The set $Z_n = \{0,1,2,3,...,n-1\}$ under addition and multiplication modulo n is a commutative ring with unity.

Solution: $(Z_n, +_n, \times_n)$ is a ring if it satisfies all the properties of ring.

First we have to show that (Z_1+_n) is an abelian group.

Closure property: Consider $a,b \in Z_n$. Clearly, $a+_nb = c \in Z_n$. Therefore, Z_n is closed under addition modulo n operation.

Associative property: Clearly, if we compute $a +_n (b +_n c)$ and $(a +_n b) +_n c)$ then both value will be same. Therefore we can say, $a +_n (b +_n c) = (a +_n b) +_n c)$, \forall a,b,c $\in Z_n$).

Therefore, Z_n satisfies associative property.

Existence of identity property: Let $a \in Z_n$. Clearly, $0 \in Z_n$ such that $a+_n 0 = a = 0+_n a$. Therefore, 0 is an identity element. So, it satisfies identity property.

Existence of inverse property: Let $a \in Z_n$. Clearly, $n-a \in Z_n$ such that $a+_n(n-a)=0$. Therefore, n-a is an additive modulo n inverse of any element a. So, it satisfies inverse property under addition operation.

Commutative property: Clearly, $a+_nb=b+_na$, \forall $a,b\in Z_n$. So, Z_n satisfies commutative property with respect to addition modulo n operation.

Therefore, $(Z_n, +_n)$ is an abelian group.

Now, we have to show that (Z_n, \times_n) is a semigroup.

Closure property: Consider $a,b \in Z_n$. Clearly, $a \times_n b = c \in Z_n$.

Therefore, Z_n is closed under multiplication modulo n operation.

Associative property: Clearly, if we compute $a \times_n (b \times_n c)$ and $(a \times_n b) \times_n c)$ then both value will be same. Therefore we can say, $a \times_n (b \times_n c) = (a \times_n b) \times_n c)$, \forall a,b,c $\in Z_n$).

Therefore, Z_n satisfies associative property.

Therefore, (Z_n, \times_n) is a semigroup.

Now, we have to show **distributive property** is satisfied.

Clearly, for any three elements a,b,c Z_n ; followings are satisfied:-

(i)
$$a \times_n (b +_n c) = a \times_n b +_n a \times_n c$$

(ii)
$$(b+_nc)\times_n a = b\times_n a +_n c\times_n a$$

Therefore, distributive property is satisfied in $(Z_n, +_n, \times_n)$.

Therefore, $(Z_n, +_n, \times_n)$ is a ring.

Now, if this ring satisfies commutative property and identity property with respect to multiplication modulo n operation, then it is said to be commutative ring with unity.

Commutative property: Clearly, $a \times_n b = b \times_n a$, \forall $a,b \in Z_n$. So, Z_n satisfies commutative property with respect to multiplication modulo n operation.

Existence of identity property: Let $a \in Z_n$. Clearly, $1 \in Z_n$ such that $a \times_n 1 = a = 1 \times_n a$. Therefore, 1 is an identity element. So, it satisfies identity property with respect to multiplication modulo n operation.

Therefore, this ring $(Z_n, +_n, \times_n)$ is commutative ring with unity.

Elementary properties of a ring

Let a,b,c $\in R$, then

- 1. a.0 = 0.a = 0
- 2. a.(-b) = (-a).b = -(a.b)
- 3. (-a).(-b) = a.b
- 4. a.(b-c) = a.b a.c and (b-c).a = b.a c.a

Proof: (1)
$$a.0 + a.a = a.(0+a)$$

$$= a.a$$

$$= 0 + a.a$$
using right cancellation law, $a.0 = 0$
Similarly, $0.a + a.a = (0+a).a$

$$= a.a$$

$$= 0 + a.a$$
using right cancellation law, $0.a = 0$
Therefore, $a.0 = 0.a = 0$
(2) $a.(-b) + a.b = a.(-b+b)$

$$= a.0$$

$$= 0$$
therefore, $a.(-b) = -(a.b)$

Similarly,
$$(-a).b + a.b = (-a+a).b$$

 $= 0.b$
 $= 0$
Therefore, $(-a).b = -(a.b)$
Therefore, $a.(-b) = (-a).b = -(a.b)$
(3) $(-a).(-b) = -((-a).b) = -(-(a.b)) = a.b$
(4) $a.(b-c) = a.(b+(-c))$
 $= a.b + a.(-c)$
 $= a.b - a.c$
Similarly, $(b-c).a = (b+(-c)).a$
 $= b.a - c.a$

Example: If R is a ring such that $a^2 = a$, $\forall a \in R$, prove that

- (1) $a{+}a=0$, $\forall~a\in R$ i.e. each element of R is its own additive inverse.
- (2) $a+b=0 \Rightarrow a=b$
- (3) R is a commutative ring.

Solution:

(1)
$$(a+a)^2 = a+a$$

 $\Rightarrow a^2 + a^2 + a^2 + a^2 = a+a$
 $\Rightarrow a+a+a+a = a+a$
 $\Rightarrow a+a = 0$ using cancellation law It is proved.

(2)
$$a+b = 0 \Rightarrow a+b = a+a$$
 (using part (1))
 $\Rightarrow b = a$ (using cancellation law)

It is proved.

(3)
$$(a + b)^2 = a + b$$

 $\Rightarrow a^2 + ab + ba + b^2 = a + b$
 $\Rightarrow a + ab + ba + b = a + b$
 $\Rightarrow ab + ba = 0$ (using cancellation law)
 $\Rightarrow ab = ba$ (using part (2))
Therefore, R is commutative ring. Now, It is

Therefore, R is commutative ring. Now, It is proved.