Модели многокритериальных аналитических задач при неопределенности

Модель многокритериальной аналитической задачи при неопределенности учитывает неопределенность цели, неопределенность внешней среды, и может быть представлена в виде

$$\Gamma = \langle \mathbf{X}, \mathbf{Z}, \mathbf{F}(\mathbf{x}, \mathbf{z}) \rangle,$$
 (9.1)

где $\mathbf{X} \subset \mathbf{E}^n$ - множество допустимых решений \mathbf{X} ; $\mathbf{Z} \subset \mathbf{E}^k$ - множество допустимых значений неопределенного фактора \mathbf{Z} ;

$$\mathbf{F}(\mathbf{x},\mathbf{z}) = \left[f_1(\mathbf{x},\mathbf{z}), \dots, f_m(\mathbf{x},\mathbf{z}) \right]^T \subset \mathbf{E}^m -$$

векторный критерий, определенный на декартовом произведении $\mathbf{X} \times \mathbf{Z}$, компоненты которого требуется минимизировать.

Особенность задачи (9.1) состоит в том, что каждому фиксированному $\mathbf{x}^* \in \mathbf{X}$ соответствует множество значений векторного критерия.

$$\mathbf{F}(\mathbf{x}^*, \mathbf{Z}) = \bigcup_{\mathbf{z} \in \mathbf{Z}} \mathbf{F}(\mathbf{x}^*, \mathbf{z}). \P$$

Поэтому сравнение любых двух альтернативных решений $\mathbf{x}^1, \mathbf{x}^2 \in \mathbf{X}$ сводится к сравнению двух множеств $\mathbf{F}(\mathbf{x}^1, \mathbf{Z}), \mathbf{F}(\mathbf{x}^2, \mathbf{Z}) \subset \mathbf{E}^m$.

Принцип векторного минимакса. ¶

Каждому решению $\mathbf{x} \in \mathbf{X}$ поставим в соответствие

вектор· $\mathbf{V}(\mathbf{x}) \in \mathbf{E}^m$, компоненты которого

определяются · в · виде¶

$$v_i = \max_{\mathbf{z} \in \mathbf{Z}} f_i(\mathbf{x}, \mathbf{z}), i = \overline{1, m}.\dots(9.2)$$

Вектор· $\mathbf{V}(\mathbf{x}) \in \mathbf{E}^m$ · определяет· на· множестве· $\mathbf{F}(\mathbf{x}, \mathbf{Z})$ · точку· «крайнего· пессимизма» ¶

Определение. \rightarrow Допустимое· решение· $\mathbf{x}_1 \in \mathbf{X}$ · предпочтительнее, чем· $\mathbf{x}_2 \in \mathbf{X}$, относительно· конуса· доминирования· $\mathbf{\Omega} \subset \mathbf{E}^m$ ·если·выполняется·условие¶ $\mathbf{V}(\mathbf{x}_1) - \mathbf{V}(\mathbf{x}_2) \in \mathbf{\Omega}$. · · · · · · · · · (9.3)¶

Определение. - Допустимое решение $\mathbf{x}^* \in \mathbf{X}$ называется векторным минимаксом задачи (9.1), если

 $\mathbf{\Omega} = \mathbf{E}_{\leq}^m$, ·и·не·существует· $\mathbf{x} \in \mathbf{X}$ ·такого, ·что¶

$$\mathbf{V}(\mathbf{x}) - \mathbf{V}(\mathbf{x}^*) \in \mathbf{E}_{\leq}^m \dots (9.4) \P$$

Определение. - Множество всех допустимых решений задачи (9.1), обладающих свойством (9.4), называется множеством векторных минимаксов **задачи**• **(9.1).** Будем обозначать: \mathbf{X}_{p} и $\mathbf{V}_P = \mathbf{V}(\mathbf{X}_P)$ °- °множество векторных минимаксов в пространстве решений и критериальном пространстве соответственно.

Таким образом, для определения множества векторных минимаксов задачи (9.1) необходимо сформулировать и решить вспомогательную детерминированную многокритериальную задачу

$$\Gamma' = \langle \mathbf{X}, \mathbf{V}(\mathbf{x}) \rangle, \dots (9.5) \P$$

в которой множество $\mathbf{X} \subset \mathbf{E}^n$ то же, что и в задаче (9.1), компоненты векторной функции $\mathbf{V}(\mathbf{x}) \in \mathbf{E}^m$ определены в виде (9.2), и их требуется минимизировать. Множество эффективных решений задачи (9.5) является множеством векторных минимаксов задачи (9.1).

Принцип векторного минимаксного сожаления.

Рассмотрим модель многокритериальной аналитической задачи при неопределенности вида (9.1). Каждому значению неопределенного фактора $\mathbf{z} \in \mathbf{Z}$ поставим в соответствие вектор $\mathbf{W}(\mathbf{z}) \subset \mathbf{E}^m$, компоненты которого вычисляются в виде \mathbb{I}

 $w_i = \min_{\mathbf{x} \in \mathbf{X}} f_i(\mathbf{x}, \mathbf{z}), i = \overline{1, m}.\dots(9.6)$

Вектор· $\mathbf{W}(\mathbf{z}) \subset \mathbf{E}^m$ · определяет· на· множестве· $\mathbf{F}(\mathbf{X},\mathbf{z})$ ·«идеальную·точку»¶

Построим · векторную · функцию¶

$$\mathbf{U}(\mathbf{x}, \mathbf{z}) = \mathbf{W}(\mathbf{z}) - \mathbf{F}(\mathbf{x}, \mathbf{z}), \dots (9.7) \P$$

которая называется векторной функцией риска. Значение функции $\mathbf{U}(\mathbf{x},\mathbf{z})$ в точке $(\mathbf{x},\mathbf{z}) \in \mathbf{X} \times \mathbf{Z}$ характеризует отклонение от «идеальной точки» $\mathbf{W}(\mathbf{z})$ при использовании аналитиком решения $\mathbf{x} \in \mathbf{X}$ при реализации значения неопределенного фактора $\mathbf{z} \in \mathbf{Z}$, и называется векторным риском или векторным «сожалением»

Поставим в соответствие задаче (9.1) вспомогательную многокритериальную задачу при неопределенности

$$\Gamma'' = \langle \mathbf{X}, \mathbf{Z}, \mathbf{U}(\mathbf{x}, \mathbf{z}) \rangle, \dots (9.8)$$

где· множества· \mathbf{X} , \mathbf{Z} °-°те· же, что· в· задаче· (9.1), а· векторная· функция· риска· $\mathbf{U}(\mathbf{x},\mathbf{z})$ · определена· в· виде· (9.7).¶

В задаче $\cdot (9.8)$ требуется \cdot определить \cdot решение $\cdot \P$ $\mathbf{x} \in \mathbf{X}$, одновременно минимизирующее по возможности все компоненты векторной функции риска $\cdot \mathbf{U}(\mathbf{x}, \mathbf{z})$. При этом необходимо учитывать возможность реализации любого значения неопределенного фактора $\cdot \mathbf{z} \in \mathbf{Z}$.

Задача·(9.8)· аналогична· задаче·(9.1),· поэтому· для· ее· решения· может· быть· использован· принцип· векторного·минимакса.¶

Применение принципа векторного минимакса для решения задачи (9.8) представляет собой многокритериальное обобщение подхода к решению задачи (9.1) на основе принципа минимаксного сожаления Сэвиджа и называется принципом векторного минимаксного сожаления.

Пример. - Многокритериальная оценка проектов инфокоммуникационной инфраструктуры в условиях неопределенности.

Представлены 8 проектов: $\mathbf{X} = \{x_i, i = 1, 8\}$ Эффективность каждого проекта инфраструктуры \mathcal{X}_i оценивается. векторным. критерием. $\mathbf{F}(x_i,z) = \left[f_1(x_i,z), f_2(x_i,z) \right]^T, \text{ где} f_1(x_i,z) \circ -$ °ожидаемая · годовая · прибыль · от · реализации · проекта, · $f_2(x_i,z)$ °-°степень информационной безопасности проектируемой инфраструктуры, и зависит от неопределенного фактора z Предполагается, что выделено 4 различных состояния неопределенного фактора, каждое из которых означает определенное сочетание состояний внешней среды, влияющих на эффективность инфраструктуры: $\mathbf{Z} = \left\{ z_i, i = \overline{1, 4} \right\}$. \P

Требуется выбрать наиболее предпочтительный проект, используя принципы векторного максимина и векторного минимаксного сожаления

Значения компонент векторного показателя $\mathbf{F}(x_i, z_j)$ эффективности заданы в виде таблицы (9.1).

Таблица 9.1

z_j	z_1	z_2	z_3	z_4
x_i				
x_1	(3, 6)	(6, 4)	(12,7)	(7, 9)
x_2	(6, 3)	(5,9)	(7, 6)	(9,5)
x_3	(3, 3)	(5,2)	(9, 3)	(6, 6)
x_4	(2, 6)	(4, 5)	(6,7)	(5,8)
x_5	(4, 6)	(5,4)	(6,8)	(7,7)
x_6	(4,3)	(3,4)	(5,6)	(4,7)
x_7	(7,2)	(5,7)	(9, 6)	(8,8)
x_8	(2,4)	(5,3)	(3, 7)	(7,5)

А.-Решение на основе принципа векторного максимина. ¶

Шаг°1. Построим множество точек «крайнего пессимизма» $\mathbf{V}(\mathbf{X})$, используя формулу (9.2) и операцию минимизации:

Таблица 9.2

x_i	x_1	x_2	x_3	x_4	x_5	x_6	x_7	x_8
$v_1(x_i)$	3	5	3	2	4	3	5	2
$v_2(x_i)$	4	3	2	5	4	3	2	3

Шаг°2. → Решаем · вспомогательную · задачу · (9.5), · используя · алгоритм · многокритериального · ранжирования · или · алгоритм · исключения · заведомо · неэффективных · решений. ¶

Множество эффективных решений задачи (9.5): $\mathbf{V}_P = \{\mathbf{V}_2, \mathbf{V}_4, \mathbf{V}_5\}$. Множество оптимальных проектов, удовлетворяющих принципу векторного минимакса: $\mathbf{X}_P = \{x_2, x_4, x_5\}$. \P

Геометрическая интерпретация П

Шаг 3. Выбор на множестве векторных максиминов единственного решения. Используем функцию Гермейера:

$$\Phi(x_i) = \min\{v_1(x_i), v_2(x_i)\}.$$

Решаем задачу:

$$\Phi(x_i) \to \max_{x_i \in X} .$$

\mathcal{X}_{i}	x_1	x_2	x_3	\mathcal{X}_4	x_5	x_6	\mathcal{X}_7	x_8
$\Phi(x_i)$	3	3	2	2	4	3	2	2

Получаем:

$$\Phi(x_5) = \Phi_{max} = 4.$$

Следовательно, проект x_5 является оптимальным, т.к. имеет наиболее сбалансированные значения компонент точки «крайнего пессимизма».

Б. Решение на основе принципа векторного минимаксного сожаления. ¶

Шаг°1. \rightarrow Построим множество «идеальных точек» $\mathbf{W}(\mathbf{Z})$, используя формулу (9.6) и операцию максимизации:¶

Таблица 9.3

z_j	z_1	z_2	z_3	z_4	
$w_1(z_j)$	7	6	12	9	
$w_2(z_j)$	6	9	8	9	

Шаг°2. - Построим таблицу значений функции векторных рисков $\mathbf{U}(x_i, z_j)$ по формуле (9.7), используя данные из таблиц°9.1 и 9.3.¶

Таблица 9.4

z_j	z_1	z_2	z_3	z_4
X_i				
x_1	(4,0)	(0, 5)	(0, 1)	(2,0)
x_2	(1,3)	(1,0)	(5,2)	(0,4)
x_3	(4,3)	(1,7)	(3,5)	(3, 3)
x_4	(5,0)	(2,4)	(6, 1)	(4, 1)
x_5	(3, 0)	(1, 5)	(6,0)	(2,2)
x_6	(3, 3)	(3, 5)	(7, 2)	(5, 2)
x_7	(0,4)	(1, 2)	(3, 2)	(1, 1)
x_8	(5, 2)	(1,6)	(9, 1)	(2, 4)

Шаг°3. - Решаем вспомогательную задачу (9.8). Для этого построим множество точек «крайнего пессимизма» $\mathbf{V}(\mathbf{X})$, используя формулу (9.2) и данные таблицы 9.4.

Таблица 9.5

x_i	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6	x_7	<i>x</i> ₈
$v_1(x_i)$	4	5	4	6	6	7	3	9
$v_2(x_i)$	5	4	7	4	5	5	4	6

Шаг°4. → Применяем · алгоритм · многокритериального · ранжирования · или · алгоритм · исключения · заведомо · неэффективных · решений, · используя · данные · таблицы°9.5. · Получаем · множество · оптимальных · решений, · удовлетворяющих · принципу · векторного · минимаксного · сожаления:¶

$$\mathbf{V}_P = \{\mathbf{V}_7\}; \mathbf{X}_P = \{x_7\}. \P$$

Шаг 5. Выбор на множестве векторных минимаксов единственного решения. Используем функцию Гермейера:

$$\Phi(x_i) = max\{v_1(x_i), v_2(x_i)\}$$

Решаем задачу:

$$\Phi(x_i) \to \min_{x_i \in \mathbf{X}}$$

X_i	\mathcal{X}_1	x_2	x_3	X_4	X_5	x_6	x_7	\mathcal{X}_{8}
$\Phi(x_i)$	5	5	7	6	6	7	4	9

Получаем:

$$\Phi(x_7) = \Phi_{min} = 4$$

Следовательно, проект x_7 является оптимальным, т.к. имеет наиболее сбалансированные значения компонент точки «крайнего пессимизма».