Dynamic phase diagram

Fabrizio Altarelli, Rémi Monasson and Francesco Zamponi*

its NP-complete extensions

*Service de Physique Théorique, Orme des Merisiers, CEA Saclay, 91191 Gif-sur-Yvette Cedex, France

September 17, 2007

Outline

- Introduction
 - Phase transitions in Random-CSP
 - Algorithmic phase transitions
 - Relation between static and algorithmic PT
- DPLL Search algorithms
 - Definition
 - Heuristics
 - Differential equations
- Phase transitions
 - Leaf removal
 - The potential
 - The phase diagram
- Dynamic phase diagram
 - Transition lines
 - Optimal algorithm
- Conclusions

Random Constraint Satisfaction Problem

Constraint Satisfaction Problem (CSP):

- Set of *N* variables $\{x_1, \dots, x_N\}$
- Set of $M = \alpha N$ constraints $\{c_1, \dots, c_M\}$

Example (k-SAT)

- $x_i \in \{0,1\}$ Boolean variables
- $c_a: \{x_{i_1}, \cdots, x_{i_k}\} \neq \{z_1, \cdots, z_k\}$

Random CSP:

Pick the constraints at random; e.g. uniformly at fixed k, α

Phase transitions in Random CSP

Structure of the solutions:

Phase transitions in Random CSP (see Krzakala's talk):

- $\alpha < \alpha_d$: Most of the solutions form a unique cluster
- $\alpha_d < \alpha < \alpha_c$: The solutions form many $(\sim e^{N\Sigma})$ clusters
- $\alpha_c < \alpha < \alpha_r$: A small number of clusters dominate
- $\alpha_r < \alpha < \alpha_s$: Frozen variables in a cluster
- $\alpha > \alpha_s$: No solutions (UNSAT)

 $\alpha_d, \alpha_c, \alpha_r, \alpha_s$: Discontinuous jump of an "order parameter"

Algorithmic phase transitions

Consider an algorithm attempting to find a solution

• Decimation algorithm (DPLL, SP, ...); fixes sequentially all the variables

 $P_{sol}(\alpha)$ = probability to find a solution:

$$\lim_{N\to\infty} P_{sol}(\alpha) = \begin{cases} p > 0 & \alpha < \alpha_a \\ 0 & \alpha > \alpha_a \end{cases}$$

② Local search algorithm (Walk-SAT, ...): samples configurations $T_{sol}(\alpha)$ = average time to find a solution:

$$T_{sol}(\alpha) \sim \begin{cases} N & \alpha < \alpha_a \\ e^{\gamma N} & \alpha > \alpha_a \end{cases}$$

(similarly for decimation algorithms with backtracking)

Is α_2 related to a static phase transition?

Algorithmic phase transitions

Consider an algorithm attempting to find a solution

 Decimation algorithm (DPLL, SP, ...); fixes sequentially all the variables

 $P_{sol}(\alpha)$ = probability to find a solution:

$$\lim_{N\to\infty} P_{sol}(\alpha) = \begin{cases} p > 0 & \alpha < \alpha_a \\ 0 & \alpha > \alpha_a \end{cases}$$

② Local search algorithm (Walk-SAT, ...): samples configurations $T_{sol}(\alpha)$ = average time to find a solution:

$$T_{sol}(\alpha) \sim \begin{cases} N & \alpha < \alpha_a \\ e^{\gamma N} & \alpha > \alpha_a \end{cases}$$

(similarly for decimation algorithms with backtracking)

Is α_2 related to a static phase transition?

Introduction

Algorithmic phase transitions

Consider an algorithm attempting to find a solution

 Decimation algorithm (DPLL, SP, ...); fixes sequentially all the variables

 $P_{sol}(\alpha)$ = probability to find a solution:

$$\lim_{N\to\infty} P_{sol}(\alpha) = \begin{cases} p > 0 & \alpha < \alpha_a \\ 0 & \alpha > \alpha_a \end{cases}$$

② Local search algorithm (Walk-SAT, ...): samples configurations $T_{sol}(\alpha)$ = average time to find a solution:

$$T_{sol}(\alpha) \sim \begin{cases} N & \alpha < \alpha_a \\ e^{\gamma N} & \alpha > \alpha_a \end{cases}$$

(similarly for decimation algorithms with backtracking)

Is α_a related to a static phase transition?

Introduction

Relation between static and algorithmic PT: fully connected

Sometimes yes...

Fully connected spherical p-spin model

$$H = \sum_{i_1, \dots, i_p} J_{i_1, \dots, i_p} \sigma_{i_1} \cdots \sigma_{i_p}$$
, $\sum_i \sigma_i^2 = N$

- lacktriangle Clustering and dynamical equilibrium transitions at T_d
- Find a configuration of energy E: clustering and algorithmic transitions at E*

But already at the mean field level the situation is unclear for more complicated models

Relation between static and algorithmic PT: diluted

For k-XORSAT Montanari and Semerjian proved the existence of a dynamical transition at temperature close to the clustering temperature

- No other rigorous or analytical results are known (to me)
- Many conjectures based on numerical results
- What it the role of the freezing transition? (Semerjian, arXiv:0705.2147; Kurchan, Krzakala, arXiv:cond-mat/0702546)

Our result

We will discuss the relation between clustering transition and algorithmic transition for a class of decimation algorithms (DPLL) for XORSAT; we will show that $\alpha_a \leq \alpha_d$, i.e. these algorithms cannot find solutions in polynomial time in the clustered phase

Relation between static and algorithmic PT: diluted

For k-XORSAT Montanari and Semerjian proved the existence of a dynamical transition at temperature close to the clustering temperature

- No other rigorous or analytical results are known (to me)
- Many conjectures based on numerical results
- What it the role of the freezing transition? (Semerjian, arXiv:0705.2147; Kurchan, Krzakala, arXiv:cond-mat/0702546)

Our result

We will discuss the relation between clustering transition and algorithmic transition for a class of decimation algorithms (DPLL) for XORSAT; we will show that $\alpha_a \leq \alpha_d$, i.e. these algorithms cannot find solutions in polynomial time in the clustered phase

Random UE-CSP

$$\rightarrow x_i \in \{0, \cdots, d-1\}; i = 1, \cdots, N.$$

- \rightarrow Uniquely Extendible (UE) Constraint on x_1, \dots, x_k : if one fixes a subset of k-1 variables, there is only one value of the remaining variable that satisfies the constraint (clause)
- \rightarrow Random (k, d)-UE-CSP formula: A collection of $M = \alpha N$ different UE constraints taken uniformly at random

For
$$d=2$$
, $x_i \in 0, 1$ and $x_1 + \cdots + x_k = 0$ (XORSAT)

Random UE-CSP

$$\rightarrow x_i \in \{0, \cdots, d-1\}; i = 1, \cdots, N.$$

- \rightarrow Uniquely Extendible (UE) Constraint on x_1, \dots, x_k : if one fixes a subset of k-1 variables, there is only one value of the remaining variable that satisfies the constraint (clause)
- \rightarrow Random (k, d)-UE-CSP formula: A collection of $M = \alpha N$ different UE constraints taken uniformly at random

Example

For
$$d = 2$$
, $x_i \in 0, 1$ and $x_1 + \cdots + x_k = 0$ (XORSAT)

Note: for d = 2 XORSAT is in P; but...

Dynamic phase diagram

Random UE-CSP

$$\rightarrow x_i \in \{0, \cdots, d-1\}; i = 1, \cdots, N.$$

- \rightarrow Uniquely Extendible (UE) Constraint on x_1, \dots, x_k : if one fixes a subset of k-1 variables, there is only one value of the remaining variable that satisfies the constraint (clause)
- \rightarrow Random (k, d)-UE-CSP formula: A collection of $M = \alpha N$ different UE constraints taken uniformly at random

Example

For
$$d=2$$
, $x_i \in 0,1$ and $x_1 + \cdots + x_k = 0$ (XORSAT)

Note: for d = 2 XORSAT is in P; but...

$\mathsf{Theorem}$ (Connamacher-Malloy)

(3, 4)-UE-CSP is NP-Complete

We consider a class of simple algorithms acting on a formula in an attempt to find solutions.

Algorithm (DPLL

At each time step assign a variable according to the following rules:

- If there is at least one clause of length one then satisfy it (Unit Propagation)
- Else, choose a variable according to some heuristic rule and assign it at random

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + x_2 + x_4 = 1 \end{cases}$$

We consider a class of simple algorithms acting on a formula in an attempt to find solutions.

Algorithm (DPLL)

At each time step assign a variable according to the following rules:

- If there is at least one clause of length one then satisfy it (Unit Propagation)
- Else, choose a variable according to some heuristic rule and assign it at random

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + x_2 + x_4 = 1 \end{cases}$$

We consider a class of simple algorithms acting on a formula in an attempt to find solutions.

Algorithm (DPLL)

At each time step assign a variable according to the following rules:

- If there is at least one clause of length one then satisfy it (Unit Propagation)
- Else, choose a variable according to some heuristic rule and assign it at random

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + x_2 + x_4 = 1 \end{cases}$$
 assign $x_2 = 0$

We consider a class of simple algorithms acting on a formula in an attempt to find solutions.

Algorithm (DPLL)

At each time step assign a variable according to the following rules:

- If there is at least one clause of length one then satisfy it (Unit Propagation)
- Else, choose a variable according to some heuristic rule and assign it at random

$$\begin{cases} x_1 + x_3 = 0 \\ x_1 + x_4 = 1 \end{cases}$$

assign
$$x_3 = 1$$

Search algorithms

We consider a class of simple algorithms acting on a formula in an attempt to find solutions.

Algorithm (DPLL)

At each time step assign a variable according to the following rules:

- If there is at least one clause of length one then satisfy it (Unit Propagation)
- Else, choose a variable according to some heuristic rule and assign it at random

$$\begin{cases} x_1 = 1 \ x_1 + x_4 = 1 \end{cases}$$
 UP $x_1 = 1$, $x_4 = 0$

After
$$T$$
 iterations, $C_j(T)$ = number of clauses of length j . $C = \{C_j\}_{j=1,\dots,k}$.

We consider the following heuristic: pick a variable from a clause of length j with probability $p_j(\mathcal{C})$, or completely at random; $\sum_{j=1}^k p_j \leq 1$ Unit Propagation implies that if $C_1 \neq 0 \Rightarrow p_i = \delta_1$:

Example

- Unit Clause (UC): pick variables uniformly at random
- Generalized Unit Clause (GUC): always pick variables from the shortest clauses

After
$$T$$
 iterations, $C_j(T)$ = number of clauses of length j . $C = \{C_j\}_{j=1,\dots,k}$.

We consider the following heuristic: pick a variable from a clause of length j with probability $p_j(\mathcal{C})$, or completely at random;

$$\sum_{j=1}^k p_j \le 1$$

Unit Propagation implies that if $\mathcal{C}_1
eq 0
ightarrow \mathcal{p}_j = \delta_{1j}$

Example

- Unit Clause (UC): pick variables uniformly at random
- Generalized Unit Clause (GUC): always pick variables from the shortest clauses

After
$$T$$
 iterations, $C_j(T) = \text{number of clauses of length } j$. $C = \{C_j\}_{j=1,\dots,k}$.

We consider the following heuristic: pick a variable from a clause of length j with probability $p_j(\mathcal{C})$, or completely at random; $\sum_{j=1}^k p_j \leq 1$ Unit Propagation implies that if $\mathcal{C}_1 \neq 0 \rightarrow p_i = \delta_{1j}$

Example

- Unit Clause (UC): pick variables uniformly at random
- Generalized Unit Clause (GUC): always pick variables from the shortest clauses

After
$$T$$
 iterations, $C_j(T) = \text{number of clauses of length } j$. $C = \{C_j\}_{j=1,\dots,k}$.

We consider the following heuristic: pick a variable from a clause of length j with probability $p_j(\mathcal{C})$, or completely at random; $\sum_{j=1}^k p_j \leq 1$ Unit Propagation implies that if $\mathcal{C}_1 \neq 0 \rightarrow p_i = \delta_{1i}$

Example

- Unit Clause (UC): pick variables uniformly at random
- Generalized Unit Clause (GUC): always pick variables from the shortest clauses

Search algorithms

Introduction

Differential equations

We wish to analyze the performance of the algorithm on a random instance as function of α for $N \to \infty$

The average dynamics is described by a set of differential equations for $c_i(t) = \langle C_i(Nt) \rangle / N$:

$$\dot{c}_j = rac{(j+1)c_{j+1} - jc_j}{1-t} -
ho_j(t)$$
 $ho_j(t) = \lim_{\Delta T o \infty} \lim_{N o \infty} rac{1}{\Delta T} \sum_{T=tN}^{tN+\Delta T-1} (p_j - p_{j+1})$

It is easy to show that $\sum_{j=1}^k \rho_j \leq \sum_{j=1}^k j \rho_j \leq 1$

One has to solve these equations with initial datum $c_j(0) = \alpha \delta_{jk}$ to obtain $c_i(t)$; then

- ① if at some time $c_2(t)/(1-t)=1/2\Rightarrow$ contradiction, $\alpha>\alpha_a$
- ② else, at some time $c_j(t)=0$ \Rightarrow solution, $lpha<lpha_a$

Search algorithms Differential equations

Introduction

We wish to analyze the performance of the algorithm on a random instance as function of α for $N \to \infty$

The average dynamics is described by a set of differential equations for $c_j(t) = \langle C_j(Nt) \rangle / N$:

$$\dot{c}_{j} = \frac{(j+1)c_{j+1} - jc_{j}}{1-t} - \rho_{j}(t)$$

$$\rho_{j}(t) = \lim_{\Delta T \to \infty} \lim_{N \to \infty} \frac{1}{\Delta T} \sum_{T=tN}^{tN+\Delta T - 1} (p_{j} - p_{j+1})$$

It is easy to show that $\sum_{j=1}^k \rho_j \leq \sum_{j=1}^k j \rho_j \leq 1$

One has to solve these equations with initial datum $c_j(0) = \alpha \delta_{jk}$ to obtain $c_j(t)$; then

- ① if at some time $c_2(t)/(1-t)=1/2\Rightarrow$ contradiction, $\alpha>\alpha_a$
- ② else, at some time $c_j(t)=0$ \Rightarrow solution, $\alpha < \alpha_a$

Search algorithms Differential equations

Introduction

We wish to analyze the performance of the algorithm on a random instance as function of α for $N \to \infty$

The average dynamics is described by a set of differential equations for $c_i(t) = \langle C_i(Nt) \rangle / N$:

$$\dot{c}_j = rac{(j+1)c_{j+1} - jc_j}{1-t} -
ho_j(t)$$
 $ho_j(t) = \lim_{\Delta T o \infty} \lim_{N o \infty} rac{1}{\Delta T} \sum_{T=tN}^{tN+\Delta T-1} (p_j - p_{j+1})$

It is easy to show that $\sum_{i=1}^k \rho_i \leq \sum_{i=1}^k j \rho_i \leq 1$

One has to solve these equations with initial datum $c_i(0) = \alpha \delta_{ik}$ to obtain $c_i(t)$; then

- If at some time $c_2(t)/(1-t)=1/2 \Rightarrow$ contradiction, $\alpha>\alpha_a$
- ullet else, at some time $c_j(t)=0$ \Rightarrow solution, $lpha<lpha_a$

Leaf removal

If a variable occurs only in one clause \Rightarrow the clause can always be satisfied

Algorithm (Leaf Removal)

- Remove one of the clauses containing a uniquely occurring (UO) variable
- 2 If (there are UO variables) goto 1; else stop

This procedure corresponds to eliminate subsequently the leaves in the factor graph representing the formula.

Example

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + x_2 + x_4 = 1 \end{cases}$$

eliminate the first clause (x_3)

Leaf removal

If a variable occurs only in one clause \Rightarrow the clause can always be satisfied

Algorithm (Leaf Removal)

- Remove one of the clauses containing a uniquely occurring (UO) variable
- ② If (there are UO variables) goto 1; else stop

This procedure corresponds to eliminate subsequently the leaves in the factor graph representing the formula.

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ x_1 + x_2 + x_4 = 1 \end{cases}$$
 eliminate the first clause (x_3)

Leaf removal

If a variable occurs only in one clause \Rightarrow the clause can always be satisfied

Algorithm (Leaf Removal)

- Remove one of the clauses containing a uniquely occurring (UO) variable
- 2 If (there are UO variables) goto 1; else stop

This procedure corresponds to eliminate subsequently the leaves in the factor graph representing the formula.

$$\begin{cases} x_1 + x_2 + x_4 = 1 \end{cases}$$
 eliminate the second clause

Leaf removal

The leaf removal algorithm can be analyzed using differential equations.

Two possible outputs:

- The algorithm removes all the clauses ⇒ no clusters
- A 2-core of variables remains⇒ clusters

The phase diagram is simpler than k-SAT: $\alpha_d = \alpha_f$, $\alpha_c = \alpha_s$

The potential for the backbone

For a system defined by $C(t) = \{c_j(t)\}_{j=2,\dots,k}$, define

$$G(b,t) = \sum_{j=2}^{k} c_j(t)b^j$$

$$V(b,t) = -\frac{G(b,t)}{1-t} + b + (1-b)\log(1-b)$$

The phase space structure is manifested by the shape of the potential:

The potential for the backbone

For a system defined by $C(t) = \{c_j(t)\}_{j=2,\cdots,k}$, define

$$G(b,t) = \sum_{j=2}^{k} c_j(t)b^j$$

$$V(b,t) = -\frac{G(b,t)}{1-t} + b + (1-b)\log(1-b)$$

The phase space structure is manifested by the shape of the potential:

- V has a single minimum in $b = 0 \Rightarrow$ no clusters
- ② V has a secondary minimum in $b^* \neq 0 \Rightarrow$ clusters

Note:
$$d_0 = 1/2, d_1 = (1 - b^*)/2$$

The phase diagram

Phase diagram for k = 4

- Clustering transition surface Σ_d (black)
- ② Sat/Unsat transition surface Σ_s (red)
- 3 Contradiction surface Σ_q , $c_2 = 1/2$
- ① Critical line (blue), $\Sigma_{crit} = \{c_2 = 1/2, c_3 = 1/6\}$

The phase diagram

Phase diagram for k = 4

- Clustering transition surface Σ_d (black)
- 2 Sat/Unsat transition surface Σ_s (red)
- 3 Contradiction surface Σ_q , $c_2 = 1/2$
- ① Critical line (blue), $\Sigma_{crit} = \{c_2 = 1/2, c_3 = 1/6\}$

The phase diagram

Phase diagram for k = 4

- Clustering transition surface Σ_d (black)
- 2 Sat/Unsat transition surface Σ_s (red)
- 3 Contradiction surface Σ_q , $c_2 = 1/2$
- Gritical line (blue), $\Sigma_{crit} = \{c_2 = 1/2, c_3 = 1/6\}$

The phase diagram

Phase diagram for k = 4

- Clustering transition surface Σ_d (black)
- 2 Sat/Unsat transition surface Σ_s (red)
- 3 Contradiction surface Σ_q , $c_2=1/2$
- Critical line (blue), $\Sigma_{crit} = \{c_2 = 1/2, c_3 = 1/6\}$

The phase diagram

Phase diagram for k = 4

- Clustering transition surface Σ_d (black)
- 2 Sat/Unsat transition surface Σ_s (red)
- 3 Contradiction surface Σ_q , $c_2=1/2$
- **4** Critical line (blue), $\Sigma_{crit} = \{c_2 = 1/2, c_3 = 1/6\}$

Dynamic phase diagram Transition lines

For a given heuristic, define $t_d(\alpha)$, $t_s(\alpha)$, $t_q(\alpha)$ as the times where the trajectory starting at $c_k = \alpha$ crosses the phase boundary surfaces

Dynamic phase diagram Transition lines

For a given heuristic, define $t_d(\alpha)$, $t_s(\alpha)$, $t_q(\alpha)$ as the times where the trajectory starting at $c_k = \alpha$ crosses the phase boundary surfaces

Equations for the lines follow from the equation of motion and the potential:

$$\frac{d\alpha_d}{dt} = -\left. \frac{1 - F'(b, t)}{\partial_\alpha G'(b, t)} \right|_{\alpha_d, b_d}$$

$$\frac{d\alpha_s}{dt} = -\left. \frac{b - F(b, t)}{\partial_{\alpha} G(b, t)} \right|_{\alpha_s, b_s}$$

where
$$F(b, t) = \sum_{i=1}^{k} \rho_{i}(t)b^{j}$$

Dynamic phase diagram Transition lines

For a given heuristic, define $t_d(\alpha)$, $t_s(\alpha)$, $t_q(\alpha)$ as the times where the trajectory starting at $c_k = \alpha$ crosses the phase boundary surfaces

Equations for the lines follow from the equation of motion and the potential:

$$\frac{d\alpha_d}{dt} = -\left. \frac{1 - F'(b,t)}{\partial_{\alpha} G'(b,t)} \right|_{\alpha_d,b_d}$$

$$\frac{d\alpha_s}{dt} = -\left. \frac{b - F(b,t)}{\partial_{\alpha} G(b,t)} \right|_{\alpha_s,b_s}$$

where
$$F(b,t) = \sum_{j=1}^k \rho_j(t)b^j$$

We have $F(b,t)/b \le F'(b,t) \le 1$ as a consequence of $\sum_{j=1}^k j\rho_j \le 1$

Main result

The trajectories cannot escape from the clustered phase $\Rightarrow \alpha_a \leq \alpha_d$

Dynamic phase diagram Optimal algorithm

The best algorithm in this class can reach $\alpha_{\it a}=\alpha_{\it d}$ if $\frac{d\alpha_{\it d}}{dt}\equiv 0$

One can try to optimize the performances of the algorithm, e.g. by minimizing $\frac{d\alpha_d}{dt}$

Global optimization difficult for finite k

The problem is simple for $k \to \infty$: one can argue that for GUC $\dot{\alpha}_d \to 0$

Optimality of GUC

In the limit $k \to \infty$, $\alpha_a^{GUC} \sim \alpha_d \sim \frac{\log k}{k}$; therefore GUC is optimal in the class of Poissonian search algorithms

This result is supported by numerical simulations (direct solution of the differential equations and finite size scaling for $k\to\infty$) that show a correction $\sim 1/k$

Dynamic phase diagram Optimal algorithm

The best algorithm in this class can reach $\alpha_{\it a}=\alpha_{\it d}$ if $\frac{d\alpha_{\it d}}{dt}\equiv 0$

One can try to optimize the performances of the algorithm, e.g. by minimizing $\frac{d\alpha_d}{dt}$

Global optimization difficult for finite k

The problem is simple for $k \to \infty$: one can argue that for GUC $\dot{\alpha}_d \to 0$

Optimality of GUC

In the limit $k \to \infty$, $\alpha_a^{GUC} \sim \alpha_d \sim \frac{\log k}{k}$; therefore GUC is optimal in the class of Poissonian search algorithms

This result is supported by numerical simulations (direct solution of the differential equations and finite size scaling for $k\to\infty$) that show a correction $\sim 1/k$

Conclusions

- DPLL algorithms that preserve the uniform distribution cannot find solutions above the clustering transition
- 2 In the limit $k \to \infty$ GUC is optimal within this class and works up to α_d
- We could not prove that GUC is optimal for finite k. What is the optimal heuristic?

but...

- Tor UE-CSP, clustering coincides with the appearance of a finite fraction of frozen variables in each cluster. These phenomena are in generally distinct. Which one is relevant?
- The generalization of this work to k-SAT could solve this problem; however in that case an algorithm able to identify the clusters similarly to the Leaf Removal is not known

Conclusions

- DPLL algorithms that preserve the uniform distribution cannot find solutions above the clustering transition
- 2 In the limit $k \to \infty$ GUC is optimal within this class and works up to α_d
- We could not prove that GUC is optimal for finite *k*. What is the optimal heuristic?

but...

- For UE-CSP, clustering coincides with the appearance of a finite fraction of frozen variables in each cluster. These phenomena are in generally distinct. Which one is relevant?
- ② The generalization of this work to *k*-SAT could solve this problem; however in that case an algorithm able to identify the clusters similarly to the Leaf Removal is not known

