

NATURE

MACMILLAN JOURNALS LTD

LONDON

4 Little Essex Street, London WC2R 3LF. Tel: 01 836 6633

WASHINGTON

711 National Press Building, Washington DC 20004. Tel: 202 737-2355

CONTENTS OF VOLUME 229

Nature, pp. 1-644. *Nature Physical Science* (PS), pp. 1-244. *Nature New Biology* (NB), pp. 1-256.

ASTRONOMY

Airglow—Excitation at 6300 Å by soft electron fluxes—NICHOL (Tasmania)	PS13
Astrophysics—New interpretation of extragalactic radio sources—REES (Cambridge)	312
Black holes—Extraction of rotational energy—PENROSE and FLOYD (London)	PS177
Binary systems—Collapsar in ε Aur—CAMERON (NASA)	176
—Collapsars, infrared disks and invisible secondaries—STOTHERS (NASA)	178
Cosmic rays—Mechanism for modulation—MATTHEWS, QUENBY and SEAR (London)	246
—Acceleration mechanisms and abundances—HAVNES (Utrecht)	548
Cosmic X-radiation—1/4 keV background—PACHEO (Observatoire de Nice)	PS84
—Reply to Pacheo—BROWN (National Radio Astronomy Observatory)	PS85
Cosmology—Primordial spinning cores may have produced observable γ-ray flux—STECKER (NASA)	105
Crab nebula—Ratio of pulsed to total X-ray flux at 20-80 keV—DEEREN-BERG and BLEEKER (Royal Dutch Academy of Sciences)	PS113
Crab pulsar—Magnetic field direction around pulsar and in wisps—FORMAN and VISVANATHAN (Harvard)	39
—Possible high frequency modulation of light—STURROCK, BRACEWELL and SWITZER (Stanford)	186
—Interactions of possible planets with pulsar and wisps—REES, TRIMBLE (Cambridge) and COHEN (Princeton)	395
γ-rays—Experiment to detect pulsed γ-rays from the Crab nebula—KINZER, NOGGLE, SEEMAN and SHARE (US Naval Research Laboratory)	187

Galactic objects—Compton scattering of low frequency waves as source of radio emission—GETMANSEV (Radioophysical Research Institute, USSR)	PS199
Interplanetary space—No dust cloud detected around the Earth—ROOSEN (NASA)	478
Interstellar dust—Silicate extinction related to the 2200 Å band—HUFFMAN and STAPP (Arizona)	PS45
—Proportions of graphite, iron and silicates—WICKRAMASINGHE (Cambridge) and NANDY (Royal Observatory, Edinburgh)	PS81
—Reply to Wickramasinghe and Nandy—DULEY (York University, Toronto)	PS81
—Possible origin of 2200 Å absorption band—MANNING (Canadian Department of Energy, Mines and Resources)	PS115
—A prediction of the silicate hypothesis—KRISHNA SWAMY (Tata Institute of Fundamental Research)	PS149
—Explanation of the polarization within the 4430 Å absorption band—WICKRAMASINGHE (Cambridge) and NANDY (Edinburgh)	PS234
Interstellar grains—Alignment by galactic X-rays plays negligible role—MACK (Houston)	PS49
Instrumentation in Optical Astronomy—REDDISH (Royal Observatory, Edinburgh)	PS38
Jovian decametric radiation—Variation of source A—GOERTZ (Rhodes)	PS151
Lunar samples—Contaminant identified—GIBERT, FLORY and ORO (Houston)	33
—A possible explanation of some magnetic measurements—PUCHER (Geological Survey of the Federal Republic of Germany)	PS48

Massive stars—Production of helium—TALBOT and ARNETT (Rice) PS150

Neutron stars—Magnetohydrodynamic oscillations and pulsar signals—HIDE (Meteorological Office) PS114

Pulsars—X-ray data for NP0532—RAPPAPORT, BRADT and MAYER (MIT) PS40

—Linear polarization of PSR 2218+47—SHITOV (P. N. Lebedev Physical Institute) PS179

—Circular polarization unexpectedly common—GRAHAM (Jodrell Bank) 326

Quasars—Two radio sources previously identified with galaxies may be quasars—LÜ (Yale) 477

Radio astronomy—Interpretation of Ohio source counts—JAUNCEY and NIELL (Cornell) PS223

Radiogalaxies—Interpretations of rapid evolution—ROWAN-ROBINSON (London) 388

Recent Developments in X-ray Astronomy—POUNDS (Leicester) 303

Redshifts—Are the external galaxies coming or going?—DOLAN (Case Western Reserve) PS47

Relativistic mechanics—An unnoticed theorem—PIETENPOL and SPEISER (Louvain) PS199

Sco X-1—Upper limit on radio emission at 327 MHz—APPARAO (Tata Institute, Bombay) PS114

Solar astronomy—Use of radio observations to distinguish proton events—CROOM (Air Force Cambridge Research Laboratories) PS142

Solar physics—Evidence of quasi-periodic movements in the solar chromosphere and corona—DURASOVA, DOBRIN and YUDIN (Gorki State Institute) PS82

Solar-terrestrial relations —A negative sudden phase anomaly—OHSHIO (Radio Research Laboratories, Tokyo)	PS239
Standard Values for the Solar Constant and its Spectral Components —THE-KAEKARA (NASA) and DRUMMOND (Eppley, Rhode Island)	PS6
Stars —Why some elements are overabundant in Ap stars—WATSON (Cornell)	PS228
Supernovae —Connexion with extinction of dinosaurs—RUSSELL (National Museum of Natural Sciences, Ottawa) and TUCKER (American Science and Engineering)	553
Symmetric cosmology —A reply to Hoyle and Steigman—ALFVEN (Royal Institute of Technology, Stockholm)	184
Venusian clouds —Presence of HCl not possible—ARKING and RAO (California)	PS116
X-ray astronomy —Some southern hemisphere sources—COOKE and POUNDS (Leicester)	PS144
—Explanation of a break in the background spectrum—HORSTMAN and HORSTMAN-MORETTI (CNR, Bologna)	PS148
—Search for iron line emission from Sco X-1—POUNDS (Leicester)	PS175
—Implications of the radial velocity of Sco X-1—WILSON (South Florida)	PS176
—Position of Cen XR-2, April 1967—FRANCEY (Tasmania)	PS229
—Variability of Cygnus X-ray sources—FRANCEY (Tasmania)	PS233
—Observations of Cen XR-4 and Nor XR-2—RAO, CHITNIS, SHARMA, PRAKASA-RAO and JAYANTHI (Ahmedabad)	248
—Variable emission from M87—BYRAM, CHUBB and FRIEDMAN (US Naval Research Laboratory)	544
X-ray source —Energy spectrum of GX 333 + 25—KITAMURA, NAKAGAWA, TAKAGISHI (Osaka), MATSUOKA, MIYAMOTO, ODA and OGAWARA (Tokyo)	
X-ray sources —The nature of the sources near the galactic centre—BRADT, BURNETT, MAYER, RAPPAPORT and SCHNOPPER (MIT)	96
BIOCHEMISTRY	
Acetylcholine —Synthesis in the absence of exogenous choline—HEADING and BUCKLEY (Liverpool)	NB221
Adrenal enzymes —Neural stimuli regulate adrenal enzymes that evoke attack behaviour—REIS, MOORHEAD, RIFKIN (Cornell), JOH and GOLDSTEIN (New York)	562
Aflatoxin —Rats respond differently according to their nutritional status—ROGERS and NEWBERNE (MIT)	62
L-Asparaginase —Effects of microcapsules on implanted mouse tumours—CHANG (McGill)	117
—Duration of <i>in vivo</i> effects on experimental metastasis—FIDLER (Pennsylvania)	564
Bacterial membranes —Inhibition of growth by interference with teichoic acid synthesis—HUGHES, STOW, HANCOCK and BADDILEY (Newcastle upon Tyne)	NB53
—Chloramphenicol inhibits teichoic acid synthesis and glucose transfer—STOW, STARKEY, HANCOCK and BADDILEY (Newcastle upon Tyne)	56
—Shared lipid phosphate carrier for precursors of peptidoglycan and teichoic acids—WATKINSON, HUSSEY and BADDILEY (Newcastle upon Tyne)	57
Bacteriophages —Arrangement of lipid and protein in particle—HARRISON, CASPAR (Children's Cancer Research Foundation, Boston), CAMERINI-OTERO and FRANKLIN (Public Health Research Institute, New York)	NB197
Biochemical systems —Parameter sensitivity as a criterion for evaluating and comparing performance—SAVAGEAU (Michigan)	542
Brain RNA —Hybridization experiments do not confirm new species induced by learning—VON HUNGEN (California)	114
Cell cycle —Binding of proteins to DNA and their relation to growth in cultured mammalian cells—SALAS and GREEN (MIT)	NB165
—DNA synthesis during G1 phase—SEED (Cambridge)	NB218
Cell metabolism —Fibroblast cultures from foetal and post-natal skin differ in mode of glycolysis—CONDON, OSKI, DIMAURO and MELLMAN (Pennsylvania)	NB214
Chlorinated hydrocarbons —Effect on medullary bone formation in birds—OESTREICHER, SHUMAN and WURSTER (New York)	571
Cyclic AMP —Prompt increase in human leucocytes during phagocytosis—PARK and GOOD (Minnesota), BECK and DAVIS (Pittsburgh)	NB27
Cyclic AMP in Metabolism —PASTAN and PERLMAN (NIH, Bethesda)	NB5
DDT —Patterns of geographic and temporal distribution suggest a causal role in chromosomal changes—CORY, FJELD and SERAT (St Mary's College, California)	128
DNA —Direct determination of super helix density of closed circles—REVET, SCHMIR and VINOGRAD (Caltech)	NB10
—Synthesis associated with inner nuclear membrane—MIZUNO, STOOPS and SINHA (Minnesota)	NB22
—Buoyant density and satellite composition of DNA of mouse heterochromatin—MATTOCIA and COMINGS (City of Hope Medical Center, California)	NB175
—Isoxanthopterin affects the activity of transforming DNA in <i>Bacillus subtilis</i> —SMITH and FOREST (Texas)	NB217
DNA polymerase —Ultraviolet mutability of deficient strains of <i>E. coli</i> —WITKIN (State University of New York)	NB81
—Function in host cell reactivation of bacteriophages ϕ X and λ —KLEIN and NIEBCH (Max-Planck-Gesellschaft)	NB82
DNA structure —Detection and isolation of tandemly duplicated genes—POLITO, GRAZIANI, BONCINI-ELLI, MALVA and RITOSSA (CNR, Naples)	NB84
Enzymes —Is the ontogeny of glucuronyl transferase adaptive?—CUSWORTH and SIMONS (College of William and Mary, Virginia)	NB216
Enzymology —Significance of structural similarities between α -lytic protease of <i>Myxobacter 495</i> and elastase—MC-LACHLAN (MRC, Cambridge) and SHOTTON (Bristol)	NB202
Fibroblasts —Survival increased by serotonin—BOUCEK and ALVAREZ (Miami)	NB61
Glycogen metabolism —Effects of acetylcholine on isolated perfused rat liver suggest parasympathetic control—OTTOLENGHI, CANIATO and BARNABEI (Ferrara)	420
Glycolipid synthesis —Decrease in virus transformed cells could result from loss of contact inhibition—ROBBINS and MACPHERSON (Imperial Cancer Research Fund)	569
Hybrid cells —Haemolytic complement activity restored in C5 deficient mice by gene complementation—LEVI (Duke) and LADDA (Walter Reed Army Institute of Research)	NB51
Hypothalamic thermodetectors —Damaged by red pepper agent, capsaicin—SZOLCSANYI, JOO and JANCSÓ GÁBOR (Szeged)	116
Interferon induction —Activity of double stranded RNA—COLBY, STOLLAR and SIMON (California)	NB172
Insecticides —Parathion persists in soil for 16 years—STEWART, CHISHOLM and RAGAB (Agricultural Station, Nova Scotia)	47
Macrophages —Association with specific antibody producing cells—MILLER and AVRAMEAS (Villejuif)	NB184
—Functional heterogeneity in the <i>in vitro</i> induced immune response—WALKER (Public Health Research Institute, New York)	NB211
Membranes — Na^+ and K^+ transport channels are separate—ROJAS (Chile) and ARMSTRONG (Rochester)	NB177
Metabolism —Non-ferritin iron compound in rat intestinal mucosa during iron absorption—WORWOOD, EDWARDS and JACOBS (Welsh National School of Medicine)	409
Monosodium glutamate —No ill effects on infant rodents or dogs—OSER, CARSON, VOGIN and COX (Food and Drug Research Laboratories, Maspath)	411
Neovitamin B₁₂ —Identification as cyanide-13-epicobalamin—BONNETT, GODFREY, MATH (London), EDMOND, EVANS and HODDER (Oxford)	473
Peptides —Sequenced by additive Edman degradation—VANCE and FEINGOLD (Pittsburgh)	121
Pesticides —DDT moves from fat to muscle cell during starvation of pigeons—FINDLAY and DEFREITAS (National Research Council, Ottawa)	63
—Half the DDT applied to crops may enter the atmosphere during evaporation—LLOYD-JONES (Bristol)	65
Phage f1 —Enzymatic synthesis of DNA: RNA hybrid and double stranded RNA—ROBERTSON (Rockefeller)	NB169

Phage lambda —Exonuclease degrades surplus DNA after recombination— CASSUTO and RADDING (Yale)	NB13
Polyosomes —Regulation by insulin and amino-acids in liver—EKREN, JERVELL and SEGLEN (Oslo)	NB244
Protein —Polymorphism as a phase of molecular evolution—KIMURA and OHTA (Japanese National Institute of Genetics)	467
Protein evolution —Clupeine Z as a cross-over product—FITCH (Wisconsin)	NB245
—Globins and marsupial-eutherian divergence—AIR, THOMPSON, RICHARDSON (New South Wales) and SHARMAN (Macquarie)	391
Protein synthesis —One molecule of guanosine triphosphate present in each 30S initiation complex—THACH and THACH (Harvard)	NB219
—Initiation of adenovirus proteins—CAFFIER, RASKAS, PARSONS and GREEN (St Louis)	NB239
Protein structure —Behaviour of amino-acid residue next to α -helical segment—JERONIMIDIS and DAMIANI (Rome)	NB150
Pyrrolizidine alkaloids —Pyrrolic metabolites but not 1,2-epoxides can initiate chronic liver damage—CULVENOR, EDGAR, SMITH, JAGO and PETERSON (CSIRO, Melbourne)	NB255
Ribonuclease —Simplification of proton magnetic resonance spectrum by difference spectroscopy—KING and BRADBURY (Australian National)	404
Ribosomes —Ester linkages forged by peptidyl transferase—FAHNESTOCK and RICH (MIT)	NB8
—Stabilization of 70S ribosomes by spermidine—HARDY and TURNOCK (Leicester)	NB17
—Cytoplasmic synthesis of ribosomal proteins independent of nuclear rRNA synthesis—CRAIG and PERRY (Philadelphia)	NB75
—60S species in HeLa cell mitochondria—ATTARDI and OJALA (Caltech)	NB133
—Ribonucleoprotein particles involved in mitochondrial protein synthesis in HeLa cells—BREGA and VESCO (MIT)	NB136
—Absence of 5S component in mitochondrial ribosomes of <i>Neurospora crassa</i> —LIZARDI and LUCK (Rockefeller)	NB140
tRNA —Precursor molecules isolated—ALTMAN (MRC, Cambridge)	NB19
—Recognition sites studies using incomplete tRNA Val molecules—MIRZABEKOV, LASTITY, LEVINA and BAYEV (USSR Academy of Sciences)	NB21
—High resolution nuclear magnetic resonance of hydrogen bonded protons in water—KEARNS, PATEL and SHULMAN (Bell Telephone Laboratories)	338
Soil —Accurate determination of acidity of soil water—DOEMEL and BROCK (Indiana)	574
Tobacco mosaic virus —States of aggregation of protein subunits—DURHAM, FINCH and KLUG (MRC, Cambridge)	37
—Polymerization of protein subunits—DURHAM and KLUG (MRC, Cambridge)	NB42
—Assembly of particles from RNA and disks of protein—butLER and KLUG (MRC, Cambridge)	47

Tobacco smoke —Electron spin resonance analysis of free radicals—BLUHM, WEINSTEIN and SOUSA (US Army Natick Laboratories)	500
--	-----

Chemical kinetics —Rate equation in nonisothermal kinetics—GILLES and TOMPA (Union Carbide, Brussels)	PS57
Chemistry —Formation of copper(II) arene complexes on montmorillonite—MORTLAND and PINNAVAIA (Michigan)	PS73

—New example of helical polymerization—BRACK and SPACH (Orleans)	PS124
--	-------

—Dimerization of Biebrich scarlet and the monomer- α -chymotrypsin interaction—HAGUE, HENSHAW, JOHN, POOLEY (Kent) and CHOICK (Max-Planck-Institute)	190
---	-----

—Hydrolysis of benzyl chloride—HILLS and VIANA (Southampton)	194
Clay —Lattice image of organo-montmorillonite—SUITO and YOSHIDA (Kyoto)	PS22

Crystallography —Anomalous X-ray scattering factors for light atoms—ENGEL, ZECHTMEISTER, RÖHRL, BRANDL, NARAYANAN and HOPPE (Max-Planck-Institute, Munich)	PS28
---	------

—Swelling of montmorillonite in water—GRAHAM (CSIRO) and ROLFE (Government Chemical Laboratories, Western Australia)	PS59
--	------

—Transmission of structural information—DISTLER and OBRONOV (USSR Academy of Sciences)	PS242
--	-------

Coffee rust —Airborne spores may spread disease—BOWDEN, GREGORY and JOHNSON (Rothamsted Experimental Station)	500
--	-----

Conserving Rare Plants in Britain —PERRING (Monks Wood Experimental Station) and WALTERS (Cambridge)	375
---	-----

Forests —Climate and nutrients may effect distribution on tropical mountains—GRUBB (Cambridge)	44
---	----

Fungi —Diploid lines of <i>Puccinia graminis tritici</i> in axenic culture—WILLIAMS and HARTLEY (Sydney)	NB181
---	-------

Leaves —New method for measuring surface area—THOMPSON and LEYTON (Oxford)	572
---	-----

Phloem —Filamentous proteins from sieve tubes resemble other structural proteins—KLEINIG, DÖRR, WEBER and KOLLMANN (Freiburg)	NB152
Photosynthesis —Distribution in plant canopies—FISCHER and WILSON (Queensland)	NB30

Phytochemistry —Seeds derive ecological advantage from L-dopa—BELL (Texas) and JANZEN (Chicago)	136
Plant growth —Temperature effects the shoot meristem and leaf extension—WATTS (Nottingham)	46

—Peroxidase involved when hydroxyproline-rich protein in cell walls is increased by ethylene—RIDGE and OSBORNE (Oxford)	NB205
---	-------

CHEMISTRY

Actinolites —New data from Mössbauer spectra—GREAVES (Oxford), BURNS (MIT) and BANCROFT (Western Ontario)	PS60
--	------

Adsorption —Mercury adsorbed on chromium oxide gels—BAKER and SING (Brunel)	PS27
--	------

Anomalous water —It is not "polywater"—PETHICA, THOMPSON and PIKE (Unilever)	PS21
---	------

—Microwave dielectric measurement—HOEKSTRA, SWINZOW and ACKLEY (US Army Research Laboratory, New Hampshire), and DOYLE (Dartmouth College)	PS92
--	------

Chemical bonds —X-ray data on hydrogen bonds—KROON, KANTERS and PEERDEMAN (Utrecht)	PS120
--	-------

Chemical equilibrium —Thermodynamics, chemical reactions and molecular biology—BENZINGER (US Naval Medical Research Institute)	100
---	-----

Defence of the Berkeley Work on Alpha-Emitting Isotopes of Element 104 —GHIORSO, NURMIA, HARRIS, ESKOLA and ESKOLA (California)	603
--	-----

Diamonds —Determination of boron content and profiles—CHRENGO (General Electric)	PS165
---	-------

Diffusion —Through nematic liquid crystals—TEUCHER, BAESSLER and LABES (Drexel)	PS26
--	------

Electrical breakdown —Time lag before breakdown in a dielectric liquid—METZMACHER and BRIGNELL (City University)	PS184
---	-------

Energy —Transfer from excited gas molecules to solids—FORIER, DAUCHOT and VAN CAKENBERGHE (Mons)	488
---	-----

Flash photolysis —Kinetic mass spectrometry of NO_2 —BRADLEY, CAPEY and GILBERT (Essex)	41
---	----

—Reaction of $\text{O}^{(3\text{P})}$ atoms with ozone—ELLIS, McGARVEY and McGRATH (Queen's University, Belfast)	PS153
--	-------

Fluorescence —Three photon excitation induced in a dye by a laser—SELDEN (London)	PS210
--	-------

Fluorine —Decomposition and pyrohydrolysis methods of estimation compared—KAKABADSE, MANOHIN, BATHER, WELLER and WOODBRIDGE (Manchester)	626
---	-----

Hair —Why aromatic compounds are absorbed by hair to a greater extent than their hydroaromatic analogues—BREUER (Unilever)	PS185
---	-------

Hydrated electrons —Mobility activation energy—CERCEK (Christie Hospital and Holt Radium Institute, Manchester)	PS11
--	------

Hydrogenolysis —Extent of carbiding effects role of molybdenum—SINFELT and YATES (Esso, New Jersey)	PS27
--	------

Hyperfiltration —Stabilization of glass membranes with AlCl_3 solution—VERNON BALLOU, LEBAN and WYDEVEN (NASA)	PS123
--	-------

Solar-terrestrial relations —A negative sudden phase anomaly—OHSHIO (Radio Research Laboratories, Tokyo)	PS239	
Standard Values for the Solar Constant and its Spectral Components —THE-KAEKARA (NASA) and DRUMMOND (Eppley, Rhode Island)	PS6	
Stars —Why some elements are overabundant in Ap stars—WATSON (Cornell)	PS228	
Supernovae —Connexion with extinction of dinosaurs—RUSSELL (National Museum of Natural Sciences, Ottawa) and TUCKER (American Science and Engineering)	553	
Symmetric cosmology —A reply to Hoyle and Steigman—ALFVEN (Royal Institute of Technology, Stockholm)	184	
Venusian clouds —Presence of HCl not possible—ARKING and RAO (California)	PS116	
X-ray astronomy —Some southern hemisphere sources—COOKE and POUNDS (Leicester)	PS144	
—Explanation of a break in the background spectrum—HORSTMAN and HORSTMAN-MORETTI (CNR, Bologna)	PS148	
—Search for iron line emission from Sco X-1—POUNDS (Leicester)	PS175	
—Implications of the radial velocity of Sco X-1—WILSON (South Florida)	PS176	
—Position of Cen XR-2, April 1967—FRANCEY (Tasmania)	PS229	
—Variability of Cygnus X-ray sources—FRANCEY (Tasmania)	PS233	
—Observations of Cen XR-4 and Nor XR-2—RAO, CHITNIS, SHARMA, PRAKASA-RAO and JAYANTHI (Ahmedabad)	248	
—Variable emission from M87—BYRAM, CHUBB and FRIEDMAN (US Naval Research Laboratory)	544	
X-ray source —Energy spectrum of GX 333 + 25—KITAMURA, NAKAGAWA, TAKAGISHI (Osaka), MATSUOKA, MIYAMOTO, ODA and OGAWARA (Tokyo)	31	
X-ray sources —The nature of the sources near the galactic centre—BRADT, BURNETT, MAYER, RAPPAPORT and SCHNOPPER (MIT)	96	
BIOCHEMISTRY		
Acetylcholine —Synthesis in the absence of exogenous choline—HEADING and BUCKLEY (Liverpool)	NB221	
Adrenal enzymes —Neural stimuli regulate adrenal enzymes that evoke attack behaviour—REIS, MOORHEAD, RIFKIN (Cornell), JOH and GOLDSTEIN (New York)	562	
Aflatoxin —Rats respond differently according to their nutritional status—ROGERS and NEWBERNE (MIT)	62	
L-Asparaginase —Effects of microcapsules on implanted mouse tumours—CHANG (McGill)	117	
—Duration of <i>in vivo</i> effects on experimental metastasis—FIDLER (Pennsylvania)	564	
Bacterial membranes —Inhibition of growth by interference with teichoic acid synthesis—HUGHES, STOW, HANCOCK and BADDILEY (Newcastle upon Tyne)	NB53	
—Chloramphenicol inhibits teichoic acid synthesis and glucose transfer—STOW, STARKEY, HANCOCK and BADDILEY (Newcastle upon Tyne)	56	
—Shared lipid phosphatidic carrier for precursors of peptidoglycan and teichoic acids—WATKINSON, HUSSEY and BADDILEY (Newcastle upon Tyne)	57	
Bacteriophages —Arrangement of lipid and protein in particle—HARRISON, CASPAR (Children's Cancer Research Foundation, Boston), CAMERINI-OTERO and FRANKLIN (Public Health Research Institute, New York)	NB197	
Biochemical systems —Parameter sensitivity as a criterion for evaluating and comparing performance—SAVAGEAU (Michigan)	542	
Brain RNA —Hybridization experiments do not confirm new species induced by learning—VON HUNGEN (California)	114	
Cell cycle —Binding of proteins to DNA and their relation to growth in cultured mammalian cells—SALAS and GREEN (MIT)	NB165	
—DNA synthesis during G ₁ phase—SEED (Cambridge)	NB218	
Cell metabolism —Fibroblast cultures from foetal and post-natal skin differ in mode of glycolysis—CONDON, OSKI, DIMAURO and MELLMAN (Pennsylvania)	NB214	
Chlorinated hydrocarbons —Effect on medullary bone formation in birds—OESTREICHER, SHUMAN and WURSTER (New York)	571	
Cyclic AMP —Prompt increase in human leucocytes during phagocytosis—PARK and GOOD (Minnesota), BECK and DAVIS (Pittsburgh)	NB27	
Cyclic AMP in Metabolism —PASTAN and PERLMAN (NIH, Bethesda)	NB5	
DDT —Patterns of geographic and temporal distribution suggest a causal role in chromosomal changes—CORY, FJELD and SERAT (St Mary's College, California)	128	
DNA —Direct determination of super helix density of closed circles—REVET, SCHMIR and VINOGRAD (Caltech)	NB10	
—Synthesis associated with inner nuclear membrane—MIZUNO, STOOPS and SINHA (Minnesota)	NB22	
—Buoyant density and satellite composition of DNA of mouse heterochromatin—MATTOCCIA and COMINGS (City of Hope Medical Center, California)	NB175	
—Isoxanthopterin affects the activity of transforming DNA in <i>Bacillus subtilis</i> —SMITH and FOREST (Texas)	NB217	
DNA polymerase —Ultraviolet mutability of deficient strains of <i>E. coli</i> —WITKIN (State University of New York)	NB81	
—Function in host cell reactivation of bacteriophages φX and λ—KLEIN and NIEBCH (Max-Planck-Gesellschaft)	NB82	
DNA structure —Detection and isolation of tandemly duplicated genes—POLITO, GRAZIANI, BONCINELLI, MALVA and RITOSSA (CNR, Naples)	NB84	
Enzymes —Is the ontogeny of glucuronyl transferase adaptive?—CUSWORTH and SIMONS (College of William and Mary, Virginia)	NB216	
Enzymology —Significance of structural similarities between α-lytic protease of <i>Myxobacter</i> 495 and elastase—MC-LACHLAN (MRC, Cambridge) and SHOTTON (Bristol)	NB202	
Fibroblasts —Survival increased by serotonin—BOUCEK and ALVAREZ (Miami)	NB61	
Glycogen metabolism —Effects of acetylcholine on isolated perfused rat liver suggest parasympathetic control—OTTOLENGHI, CANIATO and BARNABEI (Ferrara)	420	
Glycolipid synthesis —Decrease in virus transformed cells could result from loss of contact inhibition—ROBBINS and MACPHERSON (Imperial Cancer Research Fund)	569	
Hybrid cells —Haemolytic complement activity restored in C5 deficient mice by gene complementation—LEVI (Duke) and LADDA (Walter Reed Army Institute of Research)	NB51	
Hypothalamic thermodetectors —Damaged by red pepper agent, capsaicin—SZOLCSÁNYI, JOÓ and JANCSÓ GÁBOR (Szeged)	116	
Interferon induction —Activity of double stranded RNA—COLBY, STOLLAR and SIMON (California)	NB172	
Insecticides —Parathion persists in soil for 16 years—STEWART, CHISHOLM and RAGAB (Agricultural Station, Nova Scotia)	47	
Macrophages —Association with specific antibody producing cells—MILLER and AVRAMEAS (Villejuif)	NB184	
—Functional heterogeneity in the <i>in vitro</i> induced immune response—WALKER (Public Health Research Institute, New York)	NB211	
Membranes —Na ⁺ and K ⁺ transport channels are separate—ROJAS (Chile) and ARMSTRONG (Rochester)	NB177	
Metabolism —Non-ferritin iron compound in rat intestinal mucosa during iron absorption—WORWOOD, EDWARDS and JACOBS (Welsh National School of Medicine)	409	
Monosodium glutamate —No ill effects on infant rodents or dogs—OSER, CARSON, VOGIN and COX (Food and Drug Research Laboratories, Maspath)	411	
Neovitamin B₁₂ —Identification as cyanide-13-epicobalamin—BONNETT, GODFREY, MATH (London), EDMOND, EVANS and HODDER (Oxford)	473	
Peptides —Sequenced by additive Edman degradation—VANCE and FEINGOLD (Pittsburgh)	121	
Pesticides —DDT moves from fat to muscle cell during starvation of pigeons—FINDLAY and DEFREITAS (National Research Council, Ottawa)	63	
—Half the DDT applied to crops may enter the atmosphere during evaporation—LLOYD-JONES (Bristol)	65	
Phage f1 —Enzymatic synthesis of DNA: RNA hybrid and double stranded RNA—ROBERTSON (Rockefeller)	NB169	

Phage lambda —Exonuclease degrades surplus DNA after recombination— CASSUTO and RADDING (Yale) NB13		
Polysomes —Regulation by insulin and amino-acids in liver—EKREN, JERVELL and SEGLEN (Oslo) NB24		
Protein —Polymorphism as a phase of molecular evolution—KIMURA and OHTA (Japanese National Institute of Genetics) 467		
Protein evolution —Clupeine Z as a cross-over product—FITCH (Wisconsin) NB245 —Globins and marsupial-eutherian divergence—AIR, THOMPSON, RICHARDSON (New South Wales) and SHARMAN (Macquarie) 391		
Protein synthesis —One molecule of guanosine triphosphate present in each 30S initiation complex—THACH and THACH (Harvard) NB219 —Initiation of adenovirus proteins—CAFFIER, RASKAS, PARSONS and GREEN (St Louis) NB239		
Protein structure —Behaviour of amino-acid residue next to α -helical segment—JERONIMIDIS and DAMIANI (Rome) NB150		
Pyrrolizidine alkaloids —Pyrrolic metabolites but not 1,2-epoxides can initiate chronic liver damage—CULVENOR, EDGAR, SMITH, JAGO and PETERSON (CSIRO, Melbourne) NB255		
Ribonuclease —Simplification of proton magnetic resonance spectrum by difference spectroscopy—KING and BRADBURY (Australian National) 404		
Ribosomes —Ester linkages forged by peptidyl transferase—FAHNESTOCK and RICH (MIT) NB8 —Stabilization of 70S ribosomes by spermidine—HARDY and TURNOCK (Leicester) NB17 —Cytoplasmic synthesis of ribosomal proteins independent of nuclear rRNA synthesis—CRAIG and PERRY (Philadelphia) NB75 —60S species in HeLa cell mitochondria—ATTARDI and OJALA (Caltech) NB133 —Ribonucleoprotein particles involved in mitochondrial protein synthesis in HeLa cells—BREGA and VESCO (MIT) NB136 —Absence of 5S component in mitochondrial ribosomes of <i>Neurospora crassa</i> —LIZARDI and LUCK (Rockefeller) NB140		
tRNA —Precursor molecules isolated—ALTMAN (MRC, Cambridge) NB19 —Recognition sites studies using incomplete tRNA Val molecules—MIRZABEKOV, LASTITY, LEVINA and BAYEV (USSR Academy of Sciences) NB21 —High resolution nuclear magnetic resonance of hydrogen bonded protons in water—KEARNS, PATEL and SHULMAN (Bell Telephone Laboratories) 338		
Soil —Accurate determination of acidity of soil water—DOEMEL and BROCK (Indiana) 574		
Tobacco mosaic virus —States of aggregation of protein subunits—DURHAM, FINCH and KLUG (MRC, Cambridge) 37 —Polymerization of protein subunits—DURHAM and KLUG (MRC, Cambridge) NB42 —Assembly of particles from RNA and disks of protein—butLER and KLUG (MRC, Cambridge) 47		
Tobacco smoke —Electron spin resonance analysis of free radicals—BLUHM, WEINSTEIN and SOUSA (US Army Natick Laboratories) 500		
BOTANY		
Coffee rust —Airborne spores may spread disease—BOWDEN, GREGORY and JOHNSON (Rothamsted Experimental Station) 500		
Conserving Rare Plants in Britain —PERRING (Monks Wood Experimental Station) and WALTERS (Cambridge) 375		
Forests —Climate and nutrients may effect distribution on tropical mountains—GRUBB (Cambridge) 44		
Fungi —Diploid lines of <i>Puccinia graminis tritici</i> in axenic culture—WILLIAMS and HARTLEY (Sydney) NB181		
Leaves —New method for measuring surface area—THOMPSON and LEYTON (Oxford) 572		
Phloem —Filamentous proteins from sieve tubes resemble other structural proteins—KLEINIG, DÖRR, WEBER and KOLLMANN (Freiburg) NB152		
Photosynthesis —Distribution in plant canopies—FISCHER and WILSON (Queensland) NB30		
Phytochemistry —Seeds derive ecological advantage from L-dopa—BELL (Texas) and JANZEN (Chicago) 136		
Plant growth —Temperature effects the shoot meristem and leaf extension—WATTS (Nottingham) 46 —Peroxidase involved when hydroxyproline-rich protein in cell walls is increased by ethylene—RIDGE and OSBORNE (Oxford) NB205		
CHEMISTRY		
Actinolites —New data from Mössbauer spectra—GREAVES (Oxford), BURNS (MIT) and BANCROFT (Western Ontario) PS60		
Adsorption —Mercury adsorbed on chromium oxide gels—BAKER and SING (Brunel) PS27		
Anomalous water —It is not "polywater"—PETHICA, THOMPSON and PIKE (Unilever) PS21 —Microwave dielectric measurement—HOEKSTRA, SWINZOW and ACKLEY (US Army Research Laboratory, New Hampshire), and DOYLE (Dartmouth College) PS92		
Chemical bonds —X-ray data on hydrogen bonds—KROON, KANTERS and PEERDEMAN (Utrecht) PS120		
Chemical equilibrium —Thermodynamics, chemical reactions and molecular biology—BENZINGER (US Naval Medical Research Institute) 100		
Chemical kinetics —Rate equation in nonisothermal kinetics—GILLES and TOMPA (Union Carbide, Brussels) PS57		
Chemistry —Formation of copper(II) arene complexes on montmorillonite—MORTLAND and PINNAVAIA (Michigan) PS73 —New example of helical polymerization—BRACK and SPACH (Orleans) PS124 —Dimerization of Biebrich scarlet and the monomer- α -chymotrypsin interaction—HAGUE, HENSHAW, JOHN, POOLEY (Kent) and CHOCK (Max-Planck-Institute) 190 —Hydrolysis of benzyl chloride—HILLS and VIANA (Southampton) 194		
Clay —Lattice image of organo-montmorillonite—SUITO and YOSHIDA (Kyoto) PS22		
Crystallography —Anomalous X-ray scattering factors for light atoms—ENGEL, ZECHTMEISTER, RÖHRL, BRANDL, NARAYANAN and HOPPE (Max-Planck-Institute, Munich) PS28 —Swelling of montmorillonite in water—GRAHAM (CSIRO) and ROLFE (Government Chemical Laboratories, Western Australia) PS59 —Transmission of structural information—DISTLER and OBRONOV (USSR Academy of Sciences) PS242		
Defence of the Berkeley Work on Alpha-Emitting Isotopes of Element 104 —GHIORSO, NURMIA, HARRIS, ESKOLA and ESKOLA (California) 603		
Diamonds —Determination of boron content and profiles—CHRENGO (General Electric) PS165		
Diffusion —Through nematic liquid crystals—TEUCHER, BAESSLER and LABES (Drexel) PS26		
Electrical breakdown —Time lag before breakdown in a dielectric liquid—METZMACHER and BRIGNELL (City University) PS184		
Energy —Transfer from excited gas molecules to solids—FORIER, DAUCHOT and VAN CAKENBERGHE (Mons) 488		
Flash photolysis —Kinetic mass spectrometry of NO ₂ —BRADLEY, CAPEY and GILBERT (Essex) 41 —Reaction of O ^{3(P)} atoms with ozone—ELLIS, McGARVEY and McGRATH (Queen's University, Belfast) PS153		
Fluorescence —Three photon excitation induced in a dye by a laser—SELDEN (London) PS210		
Fluorine —Decomposition and pyrohydrolysis methods of estimation compared—KAKABADSE, MANOHIN, BATHER, WELLER and WOODBRIDGE (Manchester) 626		
Hair —Why aromatic compounds are absorbed by hair to a greater extent than their hydroaromatic analogues—BREUER (Unilever) PS185		
Hydrated electrons —Mobility activation energy—CERCEK (Christie Hospital and Holt Radium Institute, Manchester) PS11		
Hydrogenolysis —Extent of carbiding effects role of molybdenum—SINFELT and YATES (Esso, New Jersey) PS27		
Hyperfiltration —Stabilization of glass membranes with AlCl ₃ solution—VERNON BALLOU, LEBAN and WYDEVEN (NASA) PS123		

Lead vapour—Nucleation in shock tube
—HOMER, HURLE and SWAIN
(Shell Research Limited) 251

Nitromethane—Quadruple splitting in
microwave spectrum—COX, WAR-
ING (Bristol) and MORGENSTERN
(Ulm) PS22

Nucleotide bases—Bridging capability of
adenine and Cu(adenine)₂ Cl₂.3H₂O
crystal structure—DE MEESTER,
GOODGAME, PRICE and SKAP-
SKI (London) 191

Oxidation—Why addition of Al and Si
makes iron more resistant—VON
FRAUNHOFER (London), HOAR
(Cambridge) and PICKUP (Gas
Council) PS88

Physical chemistry—Strong effect of
nitrocellulose on electrical resistivity
of arylethynyl copper(I) compounds
—OKAMOTO, MINCER (New
York), GOLUBOVIC and DIMOND
(Air Force Cambridge Research
Laboratories) PS157

Salts—Random heap structure of molten
salts—PELTON (Toronto) PS57

Solvated electrons—Structure in liquid
ammonia—CATTERALL (Salford) PS10

Antarctic cirques—Some may be of Ter-
tiary age—SELBY and WILSON
(Waikato) 623

Asian geology—Faults in south-east Asia
—RIDD (BP, Singapore) PS51

Astrogeology—Possible meteoritic origin
of Pretoria Salt Pan—MILTON and
NAESER (US Geological Survey) PS211

Atmosphere—Mechanism for the fixation
of nitrogen by lightning—FERGU-
SON (Colorado) and LIBBY (Calif-
ornia and Colorado) 37

Atmospheric dust—Analysis of collec-
tions made off the coast of West Africa
—CHESTER and JOHNSON (Liver-
pool) 105

Atmospheric SO₂—High rate of oxida-
tion to sulphuric acid—COX and
PENKETT (AERE, Harwell) 486

Benthic foraminifera—Bathymetric pat-
terns of calcareous and arenaceous
assemblages in the southern oceans—
THEYER (Southern California) PS207

Crustal structure—Deep underwater
trough in channel between New
Britain and New Ireland—BROOKS,
CONNELLY, FINLAYSON and
WIEBENGA (Australian Bureau of
Mineral Resources, Geology and
Geophysics) PS207

Dating—Ion exchange method for terrace
sediments—MORTIMER (Santiago
de Chile), CLARK (Queen's University,
Ontario) and SCHUFLE (New
Mexico Highlands University) PS54

Deep currents—Measurements in the
South Indian Ocean—WARREN
(Woods Hole Oceanographic Insti-
tution) PS18

Earthquakes—New Zealand data and
stresses around an island arc—HATH-
ERTON (Wellington) PS119

Earth's crust—Central part of Baffin Bay
is oceanic—BARRETT, KEEN,
MANCHESTER and ROSS (Bedford
Institute, Nova Scotia) 551

Environment—Decrease in clear air trans-
mission above Los Angeles—HODGE
(Seattle) 549

F layer—Solar cycle variations in F₂ at
low latitudes—RASTOGI (Physical
Research Laboratory, Ahmedabad) PS240

Geochronology—Potassium argon ages
from the volcanic province of northern
Tanzania—EVANS, FAIRHEAD and
MITCHELL (Newcastle) PS19

—Age of the Devonian
polar shift—EVANS, MITCHELL,
EMBLETON and CREEER (Newcastle
upon Tyne) PS50

Geology—Regional and global fault slip
rates from seismicity—DAVIES (Cal-
tech) and BRUNE (California, San
Diego) PS101

Geomagnetic micropulsations—Signifi-
cance of Alfvén irregularities—KIK-
UCHI (NAS) PS79

Geophysics—Gondwanaland and conti-
nental drift—TARLING (Newcastle) 17
—Evidence for crust in the
deep ocean derived from continental
crust—BACON and GRAY (Cam-
bridge) 331

Geotectonics—Evolution of Kenya Rift
Valley—BAKER and WOHLEN-
BERG (Nairobi) 538

Glacial relicts—Teesdale rarities in Flan-
drian times—SQUIRES (Durham) 43

Glaciology—Hot spot and surge move-
ments of Fox Glacier—CLASSEN and
CLARKE (British Columbia) 481

Gondwanaland—New positions for India
and Australia—VEEVERS, JONES
and TALENT (Macquarie) 383

Iceberg drift—Four icebergs tracked off
Labrador—JONES and DIEHL
(Defence Research Board, Canada) 189

Ionosphere—What is the origin of spread-
F?—BOWMAN (Queensland) PS117

Irish geology—Permian-Triassic transi-
tion sequence at Kingscourt—GAR-
DINER (Geological Survey of Ireland)
and VITSCHER (Utrecht) PS209

Lake water—Precipitation of the vaterite
form of calcium carbonate in a Nor-
folk lake—ROWLANDS and WEB-
STER (AERE, Harwell) PS158

Lake sediments—Inorganic aragonite
precipitated in freshwater—MÜLLER
(Heidelberg) PS18

Late Quaternary—Meteorology and
oceanography in the equatorial Pacific
—QUINN (Oregon State) 330

Lightning—Calculation of field recovery
—ILLINGWORTH and WORMELL
(Cambridge) PS213

Magnetic anomalies—Possible clue to
relation in time of oceanic rises and
island arcs—JONES (Macquarie) 400

Meteorites—A new carbide found in iron
meteorites—SCOTT (Cambridge) PS61
—Probable impact crater in
Sweden—SVENSSON (The Norrland
Foundation) PS90

—Age of Bovedy fragments—
TOBAILEM, NORDEMANN and
GRJEBINE (CNRS) PS118

Meteorology—Stratospheric properties
of Bali dust—SPARROW (Minne-
sota) 107
—Consequences of the
Clean Air Act not as simple as they
seem—LAWRENCE (Meteorological
Office) 334

Microseisms—Refraction of microseisms
approaching Cochin—KRISHNA
KARTHA (Makapuu Oceanic Center,
Hawaii) PS202

Nitrates—Limestones may release nit-
rates to ground waters—CHALK and
KEENEY (Wisconsin) 42

Observatories—Atmospheric noise at
Mauna Kea and Los Alamos—
BEERY and SHIPLEY (California) PS236

Ocean crust—Is it Pre-Mesozoic in the
Wharton Basin?—DIETZ and HOL-
DEN (ESSA) 309

Ocean floor—Location of ancient mid-
ocean rises—BROOKFIELD (Guelph)
. PS204

Ocean wave spectra—Doppler radio
return method—HASSELMANN
(Woods Hole Oceanographic Insti-
tution) PS16

Oceanography—Carbon dioxide in the
Bering Sea—KELLEY and HOOD
(Alaska) 37
—Measurement of tilt of a
frozen sea—WEBER (Canada Depart-
ment of Energy, Mines and Resources)
and LILLESTRAND (Control Data
Corporation) 550

Optical radar—Measuring atmospheric
temperatures and aerosol to molecule
ratios in the troposphere—FIOCCO,
BENEDETTI - MICHELANGELO,
MAISCHBERGER and MADONNA
(European Space Research Institute) PS78

Palaeogeography—Expanding Earth
hypothesis not confirmed—VEIZER
(Australian National) 480

Petrology—Immiscibility between felds-
pathic and gabbroic magmas—PHIL-
POTTS (Connecticut) PS107

GENERAL

Decimalization under Cromwell—WEB-
STER (Oxford) 463

Evolution—Denial of Anderson's viral
hypothesis—WEST (Virginia Poly-
technic Institute) 637

Human crowds—Sexual differences show
up in velocity distributions—HEN-
DERSON (Sydney) 381

Marriage and Fertility in Academic Life
—HUDSON and JACOT (Edinburgh) 531

Pangloss and Jeremiah in Science—
ROSE (London) 459

Problems facing University Science—
JEVONS (Manchester) 601

Statistics—Non-parametric roughness
penalty for probability densities—
GOOD (Virginia) PS29

GEOPHYSICS

African geology—Seismic measurements
in the Gregory rift—GRIFFITHS,
KING (Birmingham), KHAN (Leices-
ter) and BLUNDELL (Lancaster) PS69

—Gravity measurements
in the Gregory rift—KHAN and
MANSFIELD (Leicester) PS72

Planetary science —Malakal meteorite in the Sudan—DAWoud and VAIL (Khartoum)	PS212
Plate tectonics —Pan African orogeny in Nigeria—McCURRY (Ahmadu Bello)	PS154
Plio-Pleistocene —Correlation of K-Ar dates for Omo Valley formations—BROWN (California) and LAJOIE (Lamont-Doherty Geological Laboratory, New York)	483
Pozzuoli Event in 1970 —YOKOYAMA (Hokkaido)	532
Rainfall —Less rain seems to fall at sea than on the coast—ELLIOTT, EGAMI and ROSSKNECHT (Oregon State)	108
Rock magnetism —Decay of marine magnetic anomalies by ferrous ion diffusion—BANERJEE (Franklin Institute)	PS181
Rock shear waves —Propagation anisotropies and seismic studies—CHRISTENSEN (Seattle)	549
Scottish geology —Supposed corals from the Dalradian sequence—BORRADAILE (Durham), ROBERTS and SCRUTTON (Newcastle upon Tyne)	PS179
—Reply—DEWEY and PANKHURST (Oxford)	PS181
Sea floor spreading —East Pacific Rise existed in early Pliocene—TAYLOR, BRENNAN and O'NEILL (US Naval Oceanographic Office)	396
Seismology —Ground motions associated with acoustic waves—SORRELLS, McDONALD and HERRIN (Southern Methodist University, Dallas)	PS14
—Deep seismic reflexions from random data—MERZER (Cambridge)	PS243
—Natural Earth oscillations by cryogenic gravity meter—TUMAN (Stanislaus State College)	618
Storm clouds —Changes in brightness given the name crown flash—GALL and GRAVES (Michigan)	184
Subglacial limestones —Pressure melt-water interpretation—PAGE (Exeter)	42
Submarine canyons —Measurements of currents—FENNER (Park Forest, Illinois), KELLING (Wales) and STANLEY (Washington)	PS52
Tyrrhenian Sea —Evidence for subsidence of a continental terrain—HEESEN (Columbia), GRAY (Libya), SEGRE (Messina) and ZARUDSKI (Woods Hole)	327
Upper atmosphere —Variation of ion drag causes super-rotation—RISHBETH (Radio and Space Research Station)	333
MEDICAL SCIENCE	
Acetylcholine —Postsynaptic effects on potassium and chloride activities in identifiable neurones of <i>Aplysia</i> —KUNZE and BROWN (Utah)	NB229
Allergic response —Effectiveness of mixed skin-cell-leucocyte reaction in induction of DNA synthesis—MAIN, COCHRUM, JONES and KOUNTZ (California)	NB89
Allergy —Essential chemical requirements for encephalomyelitis—WESTALL and ROBINSON (California), CACCIAM, JACKSON and EYLAR (Salk Institute)	22
d-Amphetamine —Response of brain-stem neurones abolished by reserpine—BOAKES, BRADLEY and CANDY (Birmingham)	496
Anaemia —In bursectomized irradiated chickens—ALM and PETERSON (Chicago)	201
Angiotensin —Characteristics of angiotensin I converting enzyme from lung of dog—BAKHLE and REYNARD (London)	NB187
—New view of cross-reactions in antisera—GIESE, NIELSEN and JØRGENSEN (Glostrup Hospital, Copenhagen)	NB189
Animal viruses —Leukaemic viruses act as helpers for spleen focus-forming virus—ECKNER and STEEVES (Roswell Park Memorial Institute)	NB241
Antibodies —Impairment of response to malaria in rodents by antilymphocyte serum—BARKER and POWERS (US National Institutes of Health)	429
Antibody synthesis —Enhanced by irradiation of spleen of pre-immunized rats—SIMIC and PETROVIC (Belgrade)	263
Anti-lymphocyte serum —Preparation of highly radioactive bovine anti-mouse lymphocyte antibody—DRESSER (MRC, Mill Hill)	630
Antitumour agents —Actinomycin D activity on tumours—CURTIS and PERKINS (MRC)	198
L-Asparaginase and Human Malignant Disease —CROWTHER (St. Bartholomew's Hospital, London)	168
Australia antigen —RNA isolated from preparations from patients with Au antigenaemia—JÓZWIAK, KOŚCIELAK, MADALIŃSKI, BRZOSKO, NOWOSŁAWSKI and KŁOCZEWIĘK (Warsaw)	NB92
Autoimmunity —Ultrastructural localization of pemphigus antibodies in epidermis—WOLFF and SCHREINER (Vienna)	59
Bacterial cells —Salt induces changes in turbidity and volume of <i>E. coli</i> —KNOWLES (Kent)	NB54
Bacterial infection —Antigenic components of a new heptavalent <i>Pseudomonas</i> vaccine—HANESSIAN, REGAN, WATSON and HASSELL (Parke-Davis)	NB209
Bacteriology —Autolytic enzymes involved in growth—FORSBERG and ROGERS (MRC, London)	272
Biochemical embryology —Induction of acetylcholinesterase activity in mouse neuroblastoma tissue culture cells—KATES, WINTERTON and SCHLESSINGER (Colorado)	345
Blood cells —Reduction of methaemoglobin catalysed by erythrocyte cytochrome b_5 and cytochrome b_5 reductase—HULTQUIST and PASSON (Michigan)	NB252
Blood groups —Xg ^a antigen less common in Thais than Europeans—RATA-NAUBOL and RATANASIRIVANICH (Bangkok)	430
Bone —Control of growth in rats—KEMBER and WALKER (London)	428
Brain biochemistry —Tryptophan increased by treatment with drugs which stimulate synthesis of serotonin—TAGLIAMONTE, TAGLIAMONTE, PEREZ-CRUET and GESELL (US National Institutes of Health)	NB125
Breast cancer —Cross-antigenic relationship between mouse and human tumour viruses—CHARNEY and MOORE (Institute for Medical Research, NJ)	627
Calcium absorption —Effect of artificial lighting in the elderly—NEER, DAVIS, WALCOTT, KOSKI, SCHAPIRA, TAYLOR, THORNTON and WURTMAN (Massachusetts General Hospital)	255
Cancer —Association with specific chromosome anomaly—MULDAL, ELEJALDE and HARVEY (Christie Hospital, Manchester)	48
—Mitochondrial DNA synthesis induced by polyoma virus—VESCO (CNR, Rome) and BASILICO (New York)	336
—Effect of oncogenic and non-oncogenic derivatives of 4-nitroquinoline 1-oxide on DNA repair synthesis—STICH, SAN (British Columbia) and KAWAZOE (Tokyo)	416
—Search for a human breast cancer virus—MOORE, CHARNEY, KRAMARSKY, LASFARGUES, SARKAR (Institute for Medical Research, NJ), BRENNAN, BURROWS (Michigan Cancer Foundation), SIRSAT, PAYMASTER and VAIDYA (Tata Memorial Center, Bombay)	611
— <i>In vitro</i> assay of leucocyte migration inhibitory factor—WOLBERG and GOELZER (Wisconsin)	632
Cathepsins —Inhibition of Yoshida ascites sarcoma growth in rats—ALLEGRETTI, ANDREIS (Zagreb), KOPITAR and LEBEZ (Ljubljana)	NB180
Cell culture —New way of obtaining synchronized populations grown in suspension culture—SHALL and McCLELLAND (Sussex)	NB59
Cell fusion —Hybrids and heterokaryons from fusion of enucleated and nucleated cells—POSTE and REEVE (London)	NB123
Cell hybridization —Hybrids between human and mosquito cells induced by ultraviolet-inactivated Sendai virus—ZEPP, CONOVER, HIRSCHHORN and HODES (Mount Sinai)	NB119
Cell-mediated immunity —Lentinan as an immuno-accelerator—MAEDA and CHIHARA (National Cancer Centre, Tokyo)	634
Cellulose —Initiation of chain growth—MANLEY, JONKER, COOPER and POUND (McGill)	NB88
Cerebral cortex —Localization of ^3H -GABA by electron microscopic autoradiography—BLOOM and IVERSEN (Cambridge)	628
Cholera —Toxin stimulates intestinal adenyl cyclase—SHARP and HYNIE (Massachusetts General Hospital)	266
Choline acetyltransferase —Multiple forms in rat brain—MALTHE-SØRENSEN and FONNUM (Norwegian Defence Research Establishment)	NB127
Cholinergic receptors —Isolation of membrane protein to which toxin binds in electric tissue of <i>Torpedo</i> —MILEDI, MOLINOFF and POTTER (London)	554
Chromosomes —Isolabelling not incompatible with single stranded model—COMINGS (Hope Medical Centre)	NB24
—Univalents segregate on separate spindle at meiosis—FORD (Sydney)	570
Collagen —Previously undetected long spacing form—ARMITAGE and CHAPMAN (Manchester)	NB151
—Possible <i>in vivo</i> mechanism for assembly of triple helix—SPEAKMAN (Leeds)	241

Contraceptive steroids —Progesterone can cause rupture of the aorta in hamsters—COBB, BLOOM, ROE and MAC-KENZIE (Chester Beatty)	50	Nucleic acids —Double stranded RNA from rat liver homologous with the cellular genome—HAREL (Villejuif) and MONTAGNIER (Orsay) NB106
Control of Transcription in Bacteria —TRAVERS (MRC, Cambridge)	NB69	—Double stranded RNA from liver induces interferon in rat cells—DE MAEYER, DE MAEYER-GUIGNARD and MONTAGNIER (Orsay) NB109
Cornea —Renewal of epithelium from pericorneal papillary structure—DAV-ANGER and EVENSEN (Makere) 560		—Sequence of 6S RNA of <i>E. coli</i> —BROWNLEE (MRC, Cambridge) NB147
L-dopa —Possible new metabolites mediating its action—SOURKES (McGill) 413		
—Therapeutic implications of formation of <i>m</i> -tyramine—SANDLER, GOODWIN, RUTHVEN (Queen Charlotte's Maternity Hospital, London) and CALNE (Royal Postgraduate Medical School, London)	414	Obstetric analgesics —Pethidine and chlorpromazine metabolized by human neonates—O'DONOGHUE (Rotunda Hospital, Dublin) 124
Drugs —Excretion of <i>p</i> -methoxyamphetamine by humans—SCHWEITZER, FRIEDHOFF, ANGRIST and GER-SHON (New York)	133	Origin of Satellite DNA —WALKER (MRC, Edinburgh) 306
— <i>L</i> -dopa induces hypomania in manic depressives—MURPHY, BRODIE, GOODWIN and BUNNEY (US National Institutes of Health) 135		Ozone —Inhibits bactericidal activity of mouse lung—GOLDSTEIN, TYLER, HOEPFICH and EAGLE (California) 262
—Hypnotics and hangover effects—WALTERS and LADER (London) 637		
Drug addiction —Methadone antidote increases mouse brain serotonin—BOWES and KLEBER (Yale) 134		Penicillium —Lytic plaques produced by viruses—BORRE, MORGANTINI, ORTALI and TONOLO (Rome) 568
Drug testing —A possible experimental artefact—MCARTHUR, DAWKINS and SMITH (Kings College Hospital, London) 66		Pesticides —DDT makes frog tadpoles hyperactive and then more open to predation by newts—COOKE (Monks Wood Experimental Station) 275
Encephalitogenic protein —Amino-acids sequenced and neuroceptor role suggested—CARNEGIE (Melbourne) 25		Plague —Host-specificity of <i>Pasteurella pestis</i> from Brazilian focus—BURROW and GILLETT (Porton Down) 51
—Metabolic activity of myelin basic protein of rat brain—WOOD and KING (Emory) 56		—Toxins labelled with ⁷⁵ Se-methionine—LEON, KADIS and KOLLMANN (Albert Einstein Medical Center, Philadelphia) 120
Enterosereotypic proteins —Relationships between secreted proteins of vertebrates—ADELSON (Harvard) 321		Prostaglandin —Difference in haemodynamic response to prostaglandins A and E—KANNEGIESER and LEE (St. Louis) 498
Enzyme induction — α -Glucosidase in Mycoplasmatales—SLATER and FOLSOME (Hawaii) NB117		— $F_{\alpha \beta}$ induces lactogenesis and abortion in pregnant rats—DEIS (Cordoba) 568
Graft immunology —Activated initiator cells resistant to hydrocortisone when responding to H ₂ antigens—COHEN and CLAMAN (Colorado) 274		Psychotomimetics —Psychotropic potency of methoxy-amphetamines and their inhibition of norepinephrine uptake—HENDLEY and SNYDER (Johns Hopkins) 264
Haematology —Effect of prostaglandin E ₁ on clot retraction—MÜRER (Oslo) 112		Radiation damage —Removal of bases from nucleic acid after X-ray treatment—HARIHARAN and CERUTTI (Princeton) NB247
Haemoglobin —Regulation of oxygen affinity by diphosphoglycerate—HAMASAKI, MINAKAMI and AONO (Kyushu) NB215		Regulation mutants —Analysis of <i>ade12 pur 1</i> system in yeast suggests adenylosuccinate synthetase as a regulatory enzyme—LOMAX and WOODS (Sheffield) NB116
Haemoglobin genetics —Polymorphic alleles of the gene for the β -chain—GALIZZI (Johns Hopkins) NB142		Retina —Differential response of ganglion cells to images in or out of focus—IKEDA (London) and HILL (Ohio State) 557
—Specific synthesis by allelic genes in human heterozygotes—ESAN, ADESINA and LUZZATTO (Ibadan) NB143		Retinal pigments —Implications of torsional potential of isomers for visual excitation—HONIG and KARPLUS (Harvard) 559
—Evidence for duplication of γ -chain locus in <i>Macaca nemestrina</i> —NUTE and STAMA-TOYANNOPOULOS (Washington) NB145		Reverse transcriptases —Enzymes similar to those of mouse leukaemia virus present in normal human and mouse cells—SCOLNICK, AARONSON, TODARO and PARKS (US National Institutes of Health) 318
Histones —Proton magnetic resonance studies of interactions with DNA—BOUBLIK, BRADBURY, CRANE-ROBINSON and RATTLE (Portsmouth Polytechnic) NB149		Rhodopsin —Sedimentation of micelles formed with digitonin—INCARDONA, MILES and BAKER (Florida State) NB250
—Heterogeneity and polymorphism in chicken erythrocyte fraction V—GREENAWAY and MURRAY (Edinburgh) NB233		Rifampicin —Antiviral effect on vaccinia in volunteers—MOSHKOWITZ, GOLDBLUM and HELLER (Jerusalem) 422
Human chromosomes —Distinguishing spermatozoa by fluorescence and DNA content—SUMNER, ROBINSON and EVANS (MRC, Edinburgh) NB231		Scrapie —Infected brain tissue cultures grow more rapidly—CASPARY, BELL and COWSHALL (MRC, Newcastle) 269
		Sex chromosomes —Early replication patterns in cattle—GUSTAVSSON (Royal Veterinary College, Stockholm) 339

Sleep —Correlation between concentrations of testosterone and rapid eye movement sleep—EVANS, MacLEAN, ISMAIL and LOVE (Edinburgh)	261	Bimolecular Homolytic Substitution at a Metal Atom —DAVIES and ROBERTS (London) PS221	
Structure of chromatin —Reactivity of DNA—CLARK and FELSENFELD (US National Institutes of Health) NB101		Density functions —Statistical estimation of derivatives—BARTLETT and MACDONALD (Oxford) PS126	
Tetracycline resistance —Evidence from mutant <i>E. coli</i> suggests that resistance carried by wild type R factor is inducible—FRANKLIN and COOK (ICI Limited)	273	Doppler velocity —Measurements using white light—SCHIWAR (London) 621	
Thymus lymphocyte heterogeneity —Evidence for a mature subpopulation in mouse thymus—RAFF (MRC, London)	NB182	Drag —Clusters of submicron spheres in gravitational and electrical fields—MEGAW and WELLS (AERE, Harwell) 624	
Toxicology —Isolation and proof of structure of wildfire toxin—STEWART (US National Institutes of Health)	172	Electrons —Cyclic delocalization in molecules analysed—MAGNUSSON (Avondale College, NSW) PS167	
Tumour viruses —RNAase-resistant nucleic acid of cells transformed with RSV—REDDI (Rockefeller University) NB25		Experimental Programme at the CERN Intersecting Storage Rings —JENT-SCHIKE (Deutsches Elektronen-Synchrotron) PS133	
—Effects of rifampicin and actinomycin D on DNA polymerase—GURGO, RAY, THIRY and GREEN (St. Louis) NB111		Field Reversal or Self-Reversal? —SMITH (Open University) 378	
—Differences between murine sarcoma virus passaged in hamster cells <i>in vitro</i> and <i>in vivo</i> —KELLOFF, HUEBNER (US National Cancer Institute), CHANG, OROSZ-LAN and GILDEN (Flow Laboratories Inc.) NB155		Flash photolysis —Reactions involved in photolysis of dimethyl ketene—NG, LIM and NORRISH (Cambridge) PS42	
Vaccination —BCG vaccine confers resistance to Friend disease virus in mice—LARSON, USHIJIMA, FLOREY, BAKER and BAKER (Montana) NB243		Fluid flow —More about drag reduction by polymer additives—BELOKON and KALASHNIKOV (USSR Academy of Sciences) PS55	
Viral envelopes —Glycoprotein found in the spikes of the membrane of <i>Sindbis</i> —COMPANS (Rockefeller) NB114		Gas breakdown —Classical prediction of laser threshold field—ZERNIK (Princeton) PS46	
Viral immunology —Bovine enterovirus shares antigen with polio virus—NATH, BALAYA and MOHAPATRA (All India Institute of Medical Sciences) 342		General relativity —Interaction of gravitational and electromagnetic fields reconsidered—REINHARDT (Bonn) 36	
Virology —Newcastle disease virus induces cell fusion in the absence of RNA synthesis—REEVE and POSTE (London) NB157		—Reply to Reinhardt—WOODWARD and YOURGRAU (Denver) 36	
—RNA dependent DNA polymerase in visna virus—STONE, SCOLNICK, TAKEMOTO and AARONSON (US National Institutes of Health) 257		—Scattering of gravitational waves—KHAN and PENROSE (London) 185	
—Estimating the time of juncture of an object with an observer—WEINBERGER (National Physical Laboratory of Israel) 562		Geometries of coordinated ligands —MINGOS (Sussex) PS193	
Vision —Source of cortical evoked potential components located by recording from human scalp—JEFFREYS (Keele) 502		Glass surface cracks —Hertzian fracture data and a new analytical method—POLONIECKI and WILSHAW (Sussex) PS226	
—Linkage of retinal to opsin—ANDERSON (Baylor), HOFFMAN and HALL (California) NB249		Gravitational radiation —Possible new means of detection—ANDERSON (Uppsala) 547	
PHYSICS		Gravitational waves —Detectors that distinguish between scalar and tensor radiation—DOUGLASS (Rochester) and TYSON (Bell Telephone Laboratories, Murray Hill) 34	
Atomic packing —Minimum energy clusters with Lennard-Jones potential—BURTON (Columbia) 335		Hardness —Deformation of asperities—THOMAS, UPPAL and PROBERT (University College, Swansea) PS86	
Holophones —Collisionless plasma can record electrical signals and subsequently play them back—WATSON (UKAEA, Abingdon) 28		Interferometry —Microtopographical interference pattern described by Goethe TOLANSKY (London) 248	
Masers —Frequency of the hydrogen maser—ESSEN, DONALDSON, BANGHAM and HOPE (NPL) 110		Materials science —Critical resolved shear stress for [001] slip in polyethylene—BOWDEN and YOUNG (Cambridge) PS23	
Metallurgy —Void lattice in molybdenum EVANS (AERE, Harwell) 403		Neutron diffraction —Analysis by a piezoelectric resonator—ENGLEHART and JACOBS (Pennsylvania State) 111	
PSYCHOLOGY		Animal behaviour —Posterior buccal and subfrontal lobes essential for "reject" reflex in <i>Octopus</i> —ALTMAN (London) 204	
Behaviour —Chemical stimulation of aggression in rats at midbrain and hypothalamus—BANDLER (Yale) NB223		—Independent circadian rhythms control drinking and eating—OATLEY (Sussex) 494	

Cycles in Social Behaviour—YOUNG (Institute of Community Studies) and ZIMAN (Bristol)	91	Wood—Behaviour under tensile axial strain—PAGE, EL-HOSSEINY and WINKLER (Pulp and Paper Research Institute of Canada)	252	Human ear wax—Implications of lyso- zyme and immunoglobulins—PET- RAKIS, DOHERTY, LEE, SMITH and PAGE (California)	119
Divergent thinking—Poor performance of science students—RUMP and DUNN (Adelaide)	349			Indian Hippo—First appearance may have been in the Nagri and not the Chingi deposits—SIMONS, PIL- BEAM and BOYER (Yale)	408
Handedness—Relationship with birth order—BAKAN (Michigan State)	195			Insect hormone—Juvenile hormone from silkworm is not toxic to mice— SIDDALL and SLADE (Zoecon Cor- poration)	NB158
Imprinting—Young deer respond socially to dummies carrying scent of other species—MÜLLER-SCHWARZE and MÜLLER-SCHWARZE (Utah) —Effects on uracil incorpora- tion into brain RNA in the "split- brain" chick—HORN, HORN, BATESON (Cambridge) and ROSE (Open University)	55 131	ZOOLOGY		LSD—Modification of response of cells in the lateral geniculate of cat— McKAY and HORN (Cambridge)	347
Learning—Incorporation of uridine into mouse brain during extinction— COLEMAN, WILSON and GLASS- MAN (North Carolina)	54	Ageing—Lifespan of <i>Drosophila</i> length- ened by increasing duration of larval development—LINTS and LINTS (Louvan)	NB86	Mosquitoes—Pupae escape from the surface of the water by moving their spiracles—HOULIHAN (Aberdeen)	489
Menstrual cycle—Synchrony among women in a dormitory—MCCLIN- TOCK (Harvard)	244	—Ethoxyquin increases longevity of C3H mice—COMFORT, YOUNG- HOTSKY-GORE and PATHMAN- ATHAN (MRC, London)	254	Mycoplasmas—Smallest viable organ- isms may be larger than filtration experiments have suggested— LEMCKE (Lister Institute)	492
Psychopharmacology—ACTH adminis- tered during acquisition of a learned response blocks its effect on extinction —GRAY (Oxford)	52	Ageing of Mammals—BULLOUGH (London)	608	Neanderthals—Geography not rickets can account for morphology—MAYR (Harvard) and CAMPBELL (Cam- bridge)	253
Visual preferences—For colour and brightness in rhesus monkeys—HUM- PHREY (Oxford)	615	Axons—Uptake of protein by giant squid axon—GIUDITTA, D'UDINE and PEPE (International Institute of Gene- tics and Biophysics, Naples)	NB29	—Did syphilis cause bone changes?—WRIGHT (London)	409
TECHNOLOGY		Ciliates— <i>Vorticella</i> contracts by means of a reversible mechanochemical cycle —AMOS (Cambridge)	127	Parturition—Onset may be induced by an increase in circulating oestrogens in sheep—CHALLIS (ARC, Cam- bridge)	208
Ceramics—Tough silicon nitride compo- sites—LINDLEY and GODFREY (Admiralty Materials Laboratory)	192	Cricket song—Patterned response in a central neurone—ZARETSKY (Califor- nia)	195	Placenta—No adrenergic nerves found —WALKER (Monash) and Mc- CLEAN (Melbourne)	344
Corrosion—A product of the corrosion of zinc in concrete—SCHWICK (Brunswick), DIEHL and CARPEN- TIER (Freiburg)	PS184	Development—Muscle cells cultured in the presence of cytochalasin B— SANGER (Pennsylvania), HOLTZER and HOLTZER (MRC, Cambridge)	NB121	Predation—Octopuses will attack motionless prey—WODINSKY (Brand- eis)	493
Cryobiology—Cu(II) porphine may be use- ful in magnetic cooling experiments— COWEN, FAIRALL and WORTHY (Michigan State)	PS244	—DNA synthesis in chick embryonic skin as a function of age— ROTHBERG and EKEL (US National Institutes of Health)	341	Proprioceptors—Transduction processes of movement and position sensitive cells in a crustacean limb—MILL and LOWE (Leeds)	206
Dowsing Experiments—FOULKES (In- stitute for Industrial Research and Standards, Dublin)	164	Dinosaurs—Were brontosaurs land ani- mals?—BAKKER (Yale)	170	Reproduction—Uterine changes during capitulation in hamster—LAKSHAM (Laurentian University)	49
Fibres—Row nucleation in pyrolysed polyacrylonitrile fibres—TYSON (Rolls-Royce)	PS121	Dryopithecus—Forelimb bones indicate affinity with hominoids and not with cercopithecoids—PILBEAM and SIMONS (Yale)	406	Schistosome granulomas—New model using soluble egg antigen and bentonite particles—VON LICHTEN- BERG, SMITH, LUCIA and DOUGHTY (Harvard and Mississippi)	199
Planning Complex Building Systems— ENGLAND (London)	233	Embryology—ATP and ADP in rabbit blastocysts—BROOKS and LUT- WAK-MANN (ARC, Cambridge)	202	—Specific hyper- sensitivity elicited by bentonite par- ticles coated with soluble antigens from schistosome eggs and tubercle bacilli—BOROS and WARREN (Case Western Reserve)	200
Polymers—Electrical resistivity of poly- mer insulations—KUSY and TUR- NER (Drexel University, Philadelphia)	PS58	Experimental embryology—Human blas- tocysts grown in culture—STEPTOE, EDWARDS and PURDY (Cam- bridge)	132	Serotonin—Inhibition of spontaneous ovulation in rats—LABHSETWAR (ICI)	203
Pottery—Examination by Mössbauer spectroscopy—GANGAS, KOSTI- KAS and SIMOPOULOS (University of Ioannina, Athens) and VOCOTO- POULOU (Archaeological Service of Ioannina)	485	—Human blas- tocyst grown <i>in vitro</i> in ovulation cervical mucus—SHETTLES (Colum- bia)	343	Slugs—Overlapping generations found in field studies—HUNTER (Depart- ment of Education and Science) and SYMONDS (National Agricultural Advisory Service)	349
Tribology—Mechanism of iodine lubri- cation—OWENS and ROBERTS (General Electric)	PS183	Fingerprints—Detection with $^{35}\text{SO}_4$ — SPEDDING (Auckland)	123	Uses of Artificial Insemination—JONES (Zoological Society of London)	534
		Fisheries research—Acoustic tag for tracking fish—GREER, WALKER, MITSON and STORETON-WEST (MAFF Fisheries Laboratory)	197	Weight regulation—Sensory feedback in regulation of body weight—CABAN- AC, DUCLAUX and SPECTOR (Lyon)	126
		Fog—Echolocation by bats—PYE (London)	572	Zoology—"New" sense organ in primi- tive gastropods—SZAL (Hopkins Marine Station)	490
		Glycoproteins—Genetic variation of con- nective tissue of twins—SRINIVASA- NARAYANA-KRISHNA-MURTHY, PARGAONKAR and BEREN- SON (Louisiana)	58		

