

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015

QUÍMICA

TEMA 3: ENLACES QUÍMICOS

- Junio, Ejercicio 2, Opción A
- Reserva 1, Ejercicio 2, Opción A
- Reserva 2, Ejercicio 2, Opción B
- Reserva 4, Ejercicio 3, Opción B
- Septiembre, Ejercicio 3, Opción B

- a) Razone si una molécula de fórmula AB_2 debe ser siempre lineal.
- b) Justifique quién debe tener un punto de fusión mayor, el CsI o el CaO.
- c) Ponga un ejemplo de una molécula con un átomo de nitrógeno con hibridación sp 3 y justifíquelo.

QUÍMICA. 2015. JUNIO. EJERCICIO 2. OPCIÓN A

RESOLUCIÓN

- a) Una molécula de fórmula AB₂ será lineal siempre que el átomo central no contenga pares de electrones no enlazantes. Por ejemplo, la molécula de BeCl₂ es lineal.
- b) Cuanto mayor es la energía reticular, mayor es el punto de fusión. La energía reticular depende de las cargas de los iones. Como las cargas en el CaO son mayores que en el CsI, entonces tendrá mayor energía reticular y, por lo tanto, mayor punto de fusión.
- c) En el NH_3 , el átomo de nitrógeno presenta hibridación sp^3 . Tres de los orbitales hibridos sp^3 se solapan con los hidrógenos y el otro orbital hibrido sp^3 tiene un par de electrones no enlazantes.

Para las siguientes moléculas: NF 3 y SiF 4

- a) Escriba las estructuras de Lewis.
- b) Prediga la geometría molecular mediante la aplicación del método de la teoría de Repulsión de Pares de Electrones de la Capa de Valencia.
- c) Justifique la polaridad de las moléculas.
- QUÍMICA. 2015. RESERVA 1. EJERCICIO 2. OPCIÓN A

RESOLUCIÓN

- b) Según el método de RPECV el NF_3 , es una molécula del tipo AB_3E , (tres pares de electrones enlazantes y uno no enlazante), tendrá forma de pirámide triangular. La molécula de tetrafluoruro de silicio es una molécula del tipo AB_4 , (cuatro pares de electrones compartidos y 0 pares de electrones sin compartir), tendrá forma tetraédrica.
- c) En el NF_3 tenemos 3 enlaces polares, que según la geometría de la molécula dan lugar a un momento dipolar resultante no nulo, luego la molécula será polar. En el SiF_4 , debido a su geometría es una molécula apolar.

Dadas las sustancias: N $_2$, KF , H $_2$ S , PH $_3$, C $_2$ H $_4$ y Na $_2$ O , indique razonadamente cuáles presentan:

- a) Enlaces covalentes con momento dipolar resultante distinto de cero.
- b) Enlaces iónicos.
- c) Enlaces múltiples.
- QUÍMICA. 2015. RESERVA 2. EJERCICIO 2. OPCIÓN B

RESOLUCIÓN

- a) La molécula de sulfhídrico es una molécula del tipo AB ₂E ₂, (dos pares de electrones enlazantes y dos no enlazantes), tendrá forma angular y, por lo tanto, la molécula es polar. La molécula de fosfano es una molécula del tipo AB ₃E, (tres pares de electrones enlazantes y uno no enlazante), tendrá forma de pirámide triangular y, por lo tanto, la molécula es polar.
- b) Presentan enlace iónico el KF y el Na 2O ya que los elementos implicados tienen elevadas diferencias de electronegatividad y se produce una transferencia electrónica casi total de un átomo a otro formándose iones de diferente signo y colocándose en una red cristalina que forman todos los compuestos iónicos
- c) En la molécula de nitrógeno hay un triple enlace entre los dos átomos. En cada átomo hay tres orbitales p que tiene cada uno un electrón desapareado. Al aproximarse los dos núcleos de nitrógeno los orbitales p_x se unen formando un enlace σ , mientras que los orbitales p_y y p_z se unen formando enlaces π . En la molécula de C_2H_4 hay un doble enlace entre los átomos de carbono.

En función del tipo de enlace explique por qué:

- a) El NH 3 tiene un punto de ebullición más alto que el CH 4.
- b) El KCl tiene un punto de fusión mayor que el Cl 2.
- c) El CH $_4$ es poco soluble en agua y el KCl es muy soluble.

QUÍMICA. 2015. RESERVA 4. EJERCICIO 3. OPCIÓN B

RESOLUCIÓN

- a) Ya que el NH₃ tiene enlaces covalentes y su molécula es polar, mientras que el CH₄ tiene enlaces covalentes, pero su molécula es apolar.
- b) Ya que el KCl es un compuesto iónico y el Cl₂ un compuesto covalente.
- c) Ya que el KCl es un compuesto iónico y el CH₄ es un compuesto covalente no polar.

Indica, razonadamente, si cada una de las siguientes proposiciones es verdadera o falsa:

- a) Según el método RPECV, la molécula de amoniaco se ajusta a una geometría tetraédrica.
- b) En las moléculas SiH₄ y H₂S, en los dos casos el átomo central presenta hibridación sp³.
- c) La geometría de la molécula BCl, es plana triangular.
- **OUÍMICA. 2015. SEPTIEMBRE. EJERCICIO 3. OPCIÓN B**

RESOLUCIÓN

a) Falsa. La teoría de Repulsión de Pares de Electrones de la Capa de Valencia establece que los pares de electrones (enlazantes y no enlazantes) de la última capa se disponen en el espacio de forma que su separación sea la máxima posible para que de esa forma la repulsión eléctrica entre cargas del mismo signo sea lo más pequeña posible.

En la molécula de NH₃ el átomo central (el de nitrógeno) presenta tres pares de electrones enlazantes y un par no enlazante, por tanto, la geometría de los pares de electrones es tetraédrica (se dirigen hacia los vértices de un tetraedro) pero la geometría de la molécula es piramidal trigonal ya que el átomo de N estaría en el vértice superior de una pirámide y los tres átomos de H estarían en la base formando un triángulo.

b) Verdadera.

c) Verdadera. Según RPECV, es una molécula del tipo AB 3, (tres pares de electrones enlazantes), tendrá forma plana tiangular.

