CS301-Data Structure
Solved MCQS for Final terms papers
Solved by JUNAID MALIK and Team

AL-Junaid Institude Contact no: 03041659294

LMS Handling

Subject Enrollment

- 1) Online classes available HTML, CSS, Javascript Phyton..etc
- 2) Solved Graded Activities
 - Assignment's
 - Quizze's
 - GDB's
- 3) Sloved Quiz File's
- 4) Short Note's
- 5) Past paper's & Current paper's

Website Link vulmshelp.com

Final project CS619

1) SRS

(Software Requirement's Specification)

2) DD

(Design Document)

- 3) Test phase + viva
- 4) Viva preparation
- 5) Final Deliverable

Gmail junaidfazal08@gmail.com

ALL answers are verified if found any mistake then Correct ACCORDINGLY

1)	If there are 100 elements in a heap and 100 delete Min operation are performed, will get
	list
	a. <mark>Sorted</mark>
	b. Unsorted
	c. Nonlinear
	d. Noe
2)	Sorting procedure normally takestimes
	a) NLogN
	b) 2N
	c) N*N*N
	d) N
3)	The expression if(!heap-> is empty ())
	Checks
	a) Heap is empty
	b) Heap is full
	c) Heap is not empty
4)	If the height of a perfect binary tree is 4. What will be the total number of nodes in it?
	a) 15
	b) 16
	c) 31
	d) 32
5)	A binary relation R over S is called an equivalence relation if it has following property(S)?
	a) Reflexivity
	b) Symmetry
	c) Transitivity
	d) All of the given
6)	If a tree has 20 edges/links, then the total number of nodes in the tree will be:
	a) 19
	b) 20
	c) 21
_`	d) Cannot be determined
7)	For a perfect binary tree of height 4, what will be the sum of highest of node
	a) 31
Ì	b) 30
	c) 27
0)	d) 26
8)	If Ahmed is cousin of Ali and Ali is cousin of Asad then Ahmed is also cousin of Asad.
	This statement has the following property
	a) Reflexivity
	b) Symmetry
	c) Transitivity All of the chave
0)	d) All of the above Which property of activities a relation is active ad if we say
9)	Which property of equivalence relation is satisfied if we say:

Ahmad is cousin of Ali and Ali is also cousin of Ahmed

a) Reflexivity
b) Symmetry
c) Transitivity
d) All of the given
10) Which one of the following is NOT the property of equivalence relation?
a) Reflexive
b) Symmetric
c) Transitive
d) Associative
11) The main reason of using heap in priority queue is
a) Improve performance
b) Code readable
c) Less code
d) Heap can't be used in priority queues
12) The total number of nodes on 10 th level of perfect binary tree are
a) 256
b) 512
c) 1024
d) Can't be determined
13) Suppose there are 100 elements in an equivalence class, so initially there will be 100 trees,
the collection of these trees is called
a) Cluster
b) Class
c) Forest
d) Bunch
14) The percolate Down procedure will move the smaller value and bigger value
a) Left, right
b) Right, left
c) Down, up
d) Up, down
15) For a perfect binary tree of height h, having N nodes, the Sum of height of nodes is
a) N-h-1
b) N - 1
c) N-1+h
d) N - (h - 1)
16) Which of the following method is helpful in creating the heap at once?

a. Insert
b. Add
c. Update
d. percolateDown
10. If ahmad is boss of Ahsan and ehsan is boss of umer then ahmad is also boss
of umer, the above mentioned relation is
a. Reflexive
b. Symmetry
c. Transitive
d. None of given
11. If we want to find 3 rd minimum element from an array of element, then after
applying build heap method. How many times deleteMin method will be called?
a. 1
b. 2
c. 3
d. 4
12. If we want to find median of 50 elements, then after applying builtHeap
method, how many time deleteMin method will be called?
a. 5
b. 25
c. 35
d. 50
13. Which of the following properties are satisfied by equivalence relationship?
a. Reflexive, symmetric
b. Reflexive, transitive
c. Symmetric, transitive
d. Reflexive, symmetric and transitive
14. Sorting procedure normally takes time.
a. NlogN
b. 2N
c. N*N*N
d. N
15. The Expression
if (! heap->isFull()
) Check
a. Heap is empty
b. Heap is full
1
c. Heap is not empty
d. Heap is not full
16. The Expression
if (! heap->isEmpty())
Check
a. Heap is empty
b. Heap is full
c. Heap is not empty
d. Not a valid expression

17. Given the values are the array representation of heap:
12 23 26 31 34 44 56 64 78 100
If we perform 4 deleteMin operation, the last element deleted is .
a. 31
b. 34
c. 44
d. 56
18. Which of the following heap method increase the value if key at position 'p' by
the amount 'delta'?
a. increaseKey(p, delta)
b. decreaseKey(p, delta)
c. percolateDown(p, delta)
d. remove(p, delta)
<u>-</u>
19. Which of the following heap method lowers the value if key at position 'p' by the amount 'delta'?
a. increaseKey(p, delta)
b. decreaseKey(p, delta)
c. percolateDown(p, delta)
d. remove(p, delta)
20. Which property of equivalence relation is
satisfied if we say: Ahmad R(is related to)Ahmad
a. Reflexivity
b. Symmetry
c. Transitivity
d. All of Above
21. The total number of nodes on 5 th level of perfect binary tree are:
a. 16
b. 15
c. 31
d. 32
22. Which property of equivalence relation is satisfied if we
say: Ahmad is cousin of Ali and Ali is also Cousin of
Ahmad
a. Reflexivity
b. Symmetry
c. Transitivity
d. All of the Above
23. If a tree has 50 nodes, then the total edges/links in the tree will be
a. 55
b. 51
c. 50
d. 49
24. If the height of perfect binary tree is 4, what will be the total number of nodes in
it?
a. 15
b. 16
c. 31
d. 32

For More lisit. Williams the last of the l

P	AL-JUNAID INSTITUTE GROUP
25.	Suppose there are set of fruits and the set of vegetables, both sets are sets.
	a. Disjoint
	b. Subset
	c. Whole
26	d. Equal
26.	A binary relation R over S is called an equivalence relation if it has following property(s)
	a. Reflexivity
	b. Symmetryc. Transitivity
	d. All of Above
27.	Heap can be used to implement
	a. Stack
	b. Linked list
	c. Queue
	d. Priority queue
28.	If a tree has 20 edges/links, then the total number of nodes in the tree will be:
	a. 19
	b. 20 c. 21
	d. Can't be determined
29.	If there are 100 elements in heap, and 100 deleteMin operation are performed, will
get_	list.
8 _	a. Sorted
	b. Unsorted
	c. Nonlinear
	d. None of given
30.	If there are 100 elements in an equivalence class, then we will have sets initially.
	a. 50
	b. 100c. 1000
	d. 80
31.	Given the values are the array representation of heap; 12 23
	31 34 44 56 64 78 100
	ne 5th smallest element in the given heap?
	a. 31
	b. 34
	c. 44
	d. 56

Question No: 1

A solution is said to be efficient if it solves the problem within its resource constraints i.e. hardware and time.

- ► True (Page 4)
- ► False

Question No: 2

Which one of the following is known as "Last-In, First-Out" or LIFO Data Structure?

- ► Linked List
- ► Stack (Page 54)
- ► Queue
- ► Tree

Question No: 3

What will be postfix expression of the following infix expression? Infix

Expression: a+b*c-d

- ► ab+c*d-
- ► abc*+d-
- ► abc+*d-
- ► abcd+*-

Ouestion No: 4

For compiler a postfix expression is easier to evaluate than infix expression?

- **►** True
- ► False

Question No: 5

Consider the following pseudo code

declare a stack of characters

```
while ( there are more characters in the word to read )
    {
      read a character
      push the character on the stack
    }
    while ( the stack is not empty )
    {
        pop a character off the stack
            write the character to the screen
    }
}
```

What is written to the screen for the input "apples"?

- ► selpa
- **▶** selppa
- **▶** apples
- ► aaappppplleess

Question No: 7

If there are N external nodes in a binary tree then what will be the no. of internal nodes in this binary tree?

► N -1 (Page 304)

<u> </u>	T THIN A ID INCOM	
$\underline{\mathbf{A}}$	L-JUNAID INSTI	HULL GROUP
▶ N+1		
► N+2		
► N		
Question No	o: 8	
If there are N	N internal nodes in a binary tree then what will be	e the no. of external nodes in this binary tre

If we have 1000 sets each containing a single different person. Which of the following relation will be true on

The easiest case of deleting a node from BST is the case in which the node to be deleted

If there are N elements in an array then the number of maximum steps needed to find an element using Binary

If there

each set:

► N -1 \triangleright N

► N +2 **Question No: 9**

 \triangleright N +1 (Page 303)

► Reflexive (page 387)

► Associative (page 387)

A binary tree of N nodes has_____.

► Log₂ N levels (Page 212)

► Is a leaf node (Page 173)

► Has both left and right subtree

 $ightharpoonup log_2N$ (page 440)

► Has left subtree only ► Has right subtree only

► Log₁₀ N levels

► N / 2 levels ► N x 2 levels

Which one of the following is NOT the property of equivalence relation:

▶ Symmetric **▶** Transitive Associative

Question No: 10

Question No: 11

Question No: 12

Question No: 13

Search is **▶** N $ightharpoonup N^2$ ► Nlog₂N

► Reflexive **▶** Symmetric **►** Transitive

HING IN INCTITUTE COALD

	AL-JUNA			l E Gi	KUUP
Ones	stion No: 14				
•	ge sort and quick sort both fall	into the same cates	gory of sorting algo	orithms. What i	s this category?

- ► O(nlogn) sorts ► Interchange sort (not sure)
- ► Average time is quadratic
- ► None of the given options. (Page 488)

Ouestion No: 15

If one pointer of the node in a binary tree is NULL then it will be a/an_____

- ► External node (Page 303)
- ► Root node
- ► Inner node
- ► Leaf node

Question No: 16

We convert the _____ pointers of binary to threads in threaded binary tree.

- ► Left
- ► Right
- **► NULL** (Page 312)
- ► None of the given options

Ouestion No: 17

If the bottom level of a binary tree is NOT completely filled, depicts that the tree is NOT

- ► Expression tree
- ► Threaded binary tree
- **▶** complete Binary tree (Page 323)
- ► Perfectly complete Binary tree

Question No: 18

What is the best definition of a *collision* in a hash table?

- ► Two entries are identical except for their keys.
- ► Two entries with different data have the exact same key
- ► Two entries with different keys have the same exact hash value. (page 464)
- ▶ Two entries with the exact same key have different hash values.

Question No: 19

Suppose that a selection sort of 100 items has completed 42 iterations of the main loop. How many items are now guaranteed to be in their final spot (never to be moved again)

- **▶** 21
- **▶** 41
- **42**
- **4**3

Question No: 20

Suppose you implement a Min heap (with the smallest element on top) in an array. Consider the different arrays below; determine the one that *cannot* possibly be a heap:

- **►** 16, 18, 20, 22, 24, 28, 30
- **►** 16, 20, 18, 24, 22, 30, 28
- ► 16, 24, 18, 28, 30, 20, 22
- ► 16, 24, 20, 30, 28, 18, 22 (page 334)

Ouestion No: 21

Do you see any problem in the code of nextInOrder below:

```
TreeNode * nextInorder(TreeNode * p)
{
  if(p->RTH == thread)
    return( p->R );
  else {
    p = p->R;
    while(p->LTH == child)
    p = p->R;
    return p;
  }
}
```

- ▶ The function has no problem and will fulfill the purpose successfully.
- ► The function cannot be compile as it has syntax error.
- ► The function has logical problem, therefore, it will not work properly.
- ▶ The function will be compiled but will throw runtime exception immediately after the control is transferred to this function.

Question No: 22

Which of the following statement is correct about find(x) operation:

- \blacktriangleright A find(x) on element x is performed by returning exactly the same node that is found.
- \triangleright A find(x) on element x is performed by returning the root of the tree containing x.
- \triangleright A find(x) on element x is performed by returning the whole tree itself containing x.
- \triangleright A find(x) on element x is performed by returning TRUE.

Question No: 23

Which of the following statement is NOT correct about find operation:

- ▶ It is not a requirement that a find operation returns any specific name, just that finds on two elements return the same answer if and only if they are in the same set.
- ► One idea might be to use a tree to represent each set, since each element in a tree has the same root, thus the root can be used to name the set.
- ► Initially each set contains one element.
- ▶ Initially each set contains one element and it does not make sense to make a tree of one node only.

Ouestion No: 24

In complete binary tree the bottom level is filled from

- ► Left to right (Page 323)
- ► Right to left
- ▶ Not filled at all
- ► None of the given options

Ouestion No: 25

Here is an array of ten integers:

5389170264

The array after the FIRST iteration of the large loop in a selection sort (sorting from smallest to largest).

- 6 4 03 8 9 1 6 4 9 1 7 0.3 8
- 0 3 8 2 6 4 9 1 5

Question No: 26

What requirement is placed on an array, so that binary search may be used to locate an entry?

- ► The array elements must form a heap.
- ► The array must have at least 2 entries.
- ► The array must be sorted.
- ► The array"s size must be a power of

Question No: 27

Which one of the following operations returns top value of the stack?

- ► Push
- ► Pop
- **▶** Top (page 53)
- ► First

Question No: 28

Compiler uses which one of the following in Function calls,

- ► Stack (page 80)
- **▶** Oueue
- ► Binary Search Tree
- ► AVL Tree

Question No: 29

Every AVL is

- ► Binary Tree
- ► Complete Binary Tree
- ▶ None of these

Binary Search TreeQuestion No 30

If there are 56 internal nodes in a binary tree then how many external nodes this binary tree will have?

- **>** 54
- **▶** 55 **>** 56
- (page 303) **▶** 57

Question No: 31

If there are 23 external nodes in a binary tree then what will be the no. of internal nodes in this binary tree?

- **▶** 23
- **▶** 24
- ▶ 21
- **≥ 22** (page 303)

Question No: 32

Which one of the following is not an example of equivalence relation?

- ► Electrical connectivity
- ► Set of people
- ► <= relation (page 388)
- ► Set of pixels

Question No: 33

Binary Search is an algorithm of searching, used with the data.

- ► Sorted (page 432)
- **▶** Unsorted
- ► Heterogeneous
- ► Random

Question No: 34

Which one of the following is NOT true regarding the skip list?

- \blacktriangleright Each list S_i contains the special keys + infinity and infinity.
- ightharpoonup List S₀ contains the keys of S in non-decreasing order.
- ► Each list is a subsequence of the previous one.
- ► List S_h contains only the n special keys. (page 446)

Question No: 35

A simple sorting algorithm like selection sort or bubble sort has a worst-case of

- ightharpoonup O(1) time because all lists take the same amount of time to sort
- \triangleright O(n) time because it has to perform n swaps to order the list.
- ► O(n²) time because sorting 1 element takes O(n) time After 1 pass through the list, either of these algorithms can guarantee that 1 element is sorted. (page 487)
- $ightharpoonup O(n^3)$ time, because the worst case has really random input which takes longer to sort. Question No: 36 Which of the following is a property of binary tree?
 - ► A binary tree of N external nodes has N internal node.
 - ► A binary tree of N internal nodes has N+ 1 external node. (page 303)
 - ► A binary tree of N external nodes has N+ 1 internal node.
 - ► A binary tree of N internal nodes has N-1 external node.

Question No: 37

By using _____ we avoid the recursive method of traversing a Tree, which makes use of stacks and consumes a lot of memory and time.

- ▶ Binary tree only
- ► Threaded binary tree (page 306)
- ► Heap data structure
- ► Huffman encoding

Question No: 38

Which of the following statement is true about dummy node of threaded binary tree?

- ► This dummy node never has a value.
- ► This dummy node has always some dummy value.

- ► This dummy node has either no value or some dummy value. (Page 321)
- ► This dummy node has always some integer value.

Question No: 39

For a perfect binary tree of height h, having N nodes, the sum of heights of nodes is

- \triangleright N (h 1)
- ightharpoonup N (h + 1) (page 373)
- \triangleright N 1
- N 1 + h

Ouestion No: 40

What is the best definition of a *collision* in a hash table?

- ► Two entries are identical except for their keys.
- ► Two entries with different data have the exact same key

► Two entries with different keys have the same exact hash value. (page 464)

► Two entries with the exact same key have different hash values.

Question No: 41

Which formula is the best approximation for the depth of a heap with n nodes?

- **▶** log (base 2) of n (page 353)
- ▶ The number of digits in n (base 10), e.g., 145 has three digits
- ► The square root of n
- **▶** r

Question No: 42

Which of the following statement is NOT correct about find operation:

- ▶ It is not a requirement that a find operation returns any specific name, just that finds on two elements return the same answer if and only if they are in the same set.
- ► One idea might be to use a tree to represent each set, since each element in a tree has the same root, thus the root can be used to name the set.
 - ► Initially each set contains one element.
 - ▶ Initially each set contains one element and it does not make sense to make a tree of one node only.

Ouestion No: 43

Which of the following is not true regarding the maze generation?

- ▶ Randomly remove walls until the entrance and exit cells are in the same set.
- ▶ Removing a wall is the same as doing a union operation.
- ► Remove a randomly chosen wall if the cells it separates are already in the same set. (page 424)
- ▶ Do not remove a randomly chosen wall if the cells it separates are already in the same set.

Ouestion No: 44

In threaded binary tree the NULL pointers are replaced by,

- ▶ preorder successor or predecessor
- ► inorder successor or predecessor (page 307)
- ▶ postorder successor or predecessor
- ► NULL pointers are not replaced

Question No: 45

Which of the given option is NOT a factor in Union by Size:

► Maintain sizes (number of nodes) of all trees, and during union.

- ► Make smaller tree, the subtree of the larger one.
- ► Make the larger tree, the subtree of the smaller one. (page 408)
- ▶ Implementation: for each root node i, instead of setting parent[i] to -1, set it to -k if tree rooted at i has k nodes.

Question No: 46

Suppose we had a hash table whose hash function is "n % 12", if the number 35 is already in the hash table, which of the following numbers would cause a collision?

- **1**44
- ▶ 145
- **▶** 143
- ▶ 148

Question No: 47

What requirement is placed on an array, so that binary search may be used to locate an entry?

- ► The arror elements must form a heap.
- ► The array must have at least 2 entries.
- ► The array must be sorted.
- ► The array"s size must be a power of two

Question No: 48

A binary tree with 24 internal nodes has _____ external nodes.

- 22
- 23
- 48
- 25 (page 303)

Question No: 49

In case of deleting a node from AVL tree, rotation could be prolong to the *root* node.

- **▶** Yes (Page 267)
- ► No

Question No: 49

when we have declared the size of the array, it is not possible to increase or decrease it during the ______of the program.

- **▶** Declaration
- ► Execution (page 17)
- **▶** Defining
- ▶ None of the above

Question No: 50

it will be efficient to place stack elements at the start of the list because insertion and removal take time.

- ► Variable
- ► Constant (page 60)
- ► Inconsistent
- ► None of the above

Question No: 51 is the stack characteristic but	vas implemented because of the size limitation of the
array. ▶ isFull(),isEmpty()	
 pop(), push() isEmpty(), isFull() (page 59) push(),pop() 	

Question No: 52

What kind of list is best to answer questions such as "What is the item at position n?"

- ► Lists implemented with an array.
- ▶ Doubly-linked lists.
- ► Singly-linked lists.
- ▶ Doubly-linked or singly-linked lists are equally best

Question No: 53

Each node in doubly link list has,

- ▶ 1 pointer
- **2** pointers (page 39)
- ► 3 pointers
- ► 4 pointers

Question No: 54

If there are 56 internal nodes in a binary tree then how many external nodes this binary tree will have?

- **▶** 54
- **►** 55
- **>** 56
- **57** (page 303)

Question No: 55

If there are N internal nodes in a binary tree then what will be the no. of external nodes in this binary tree?

- ► N -1
- **▶** N
- ► N +1 (page 303)
- \triangleright N +2

Question No: 56

A binary tree with N internal nodes has _____links, _____links to internal nodes and _____links to external nodes

- ► N+1, 2N, N-1
- ► N+1, N-1, 2N
- **2N, N-1, N+1** (page 304)
- ► N-1, 2N, N+1

Question No: 57

The definition of Transitivity property is

- ► For all element x member of S, x R x
- For all elements x and y, x R y if and only if y R x
- For all elements x, y and z, if x R y and y R z then x R z (page 385)
- For all elements w, x, y and z, if x R y and w R z then x R z

AL-JUNAID INSTITUTE GROUP
Question No: 58 Which one of the following is not an example of equivalence relation: ► Electrical connectivity ► Set of people ► <= relation (page 388) ► Set of pixels
Question No: 59 Union is atime operation. Constant (page 405) Polynomial Exponential None of the given options
Question No: 60 Binary Search is an algorithm of searching, used with thedata. ➤ Sorted (page 432) ➤ Unsorted ➤ Heterogeneous ➤ Random
Question No: 61 A simple sorting algorithm like selection sort or bubble sort has a worst-case of
 O(1) time because all lists take the same amount of time to sort O(n) time because it has to perform n swaps to order the list. O(n²) time because sorting 1 element takes O(n) time - After 1 pass through the list, either of these algorithms can guarantee that 1 element is sorted. (page 487) O(n³) time, because the worst case has really random input which takes longer to sort.
Question No: 62 Merge sort and quick sort both fall into the same category of sorting algorithms. What is this category?
 ▶ O(nlogn) sorts ▶ Interchange sort ▶ Average time is quadratic ▶ None of the given options. (Page 488)
Question No: 63 Huffman encoding uses tree to develop codes of varying lengths for the letters used in the original message. ▶ Linked list ▶ Stack ▶ Queue ▶ Binary tree (page 287)

Question No: 64

Which of the following statement is true about dummy node of threaded binary tree?

- ▶ The left pointer of dummy node points to the itself while the right pointer points to the root of tree.
- ► The left pointer of dummy node points to the root node of the tree while the right pointer points itself i.e. to *dummy* node (page 321)
- ► The left pointer of dummy node points to the root node of the tree while the right pointer is always NULL.
 - ▶ The right pointer of dummy node points to the itself while the left pointer is always NULL.

Question No: 65

Consider a min heap, represented by the following array:

10,30,20,70,40,50,80,60

After inserting a node with value 31. Which of the following is the updated min heap?

- ► 10,30,20,31,40,50,80,60,70 (page 336)
- **►** 10,30,20,70,40,50,80,60,31
- ► 10,31,20,30,40,50,80,60,31
- **►** 31,10,30,20,70,40,50,80,60

Question No: 66

Consider a min heap, represented by the following array:

11,22,33,44,55

After inserting a node with value 66. Which of the following is the updated min heap?

- **11,22,33,44,55,66 (page 336)**
- **►** 11,22,33,44,66,55
- **►** 11,22,33,66,44,55
- **►** 11,22,66,33,44,55

Question No: 67

Suppose that a selection sort of 100 items has completed 42 iterations of the main loop. How many items are now guaranteed to be in their final spot (never to be moved again)?

- **▶** 21
- **▶** 41
- **42**
- **4**3

Question No: 68

is a data structure that can grow easily dynamically at run time without having to copy existing elements.

- ► Array ()
- ► List
- ► Both of these (page 10)
- ► None of these

Ouestion No: 74

A binary tree with 24 internal nodes has external nodes.

- **▶** 22
- **▶** 23
- **►** 48
- **25 (page 303)**

Question No: 75

it will be efficient to place stack elements at the start of the list because insertion and removal take time.

- ► Variable
- ► Constant (page 60)
- ► Inconsistent
- ► None of the above

Question No: 76

"+" is a operator.

- **►** Unary
- **▶** Binary (page 64)
- ► Ternary
- ► None of the above

Question No: 77

A kind of expressions where the operator is present between two operands called _____expressions.

- ► Postfix
- ► Infix (page 64)
- ► Prefix
- ▶ None of the above.

Question No: 78

Here is a small function definition:

```
void f(int i, int &k)
{
    i = 1;
    k = 2;
}
```

Suppose that a main program has two integer variables x and y, which are given the value 0. Then the main program calls f(x,y); What are the values of x and y after the function f finishes?

- ightharpoonup Both x and y are still 0.
- \triangleright x is now 1, but y is still 0.
- \triangleright x is still 0, but y is now 2.
- \triangleright x is now 1, and y is now 2.

Question No: 79

A binary tree with N internal nodes has _____links, _____links to internal nodes and _____links to external nodes

- ► N+1, 2N, N-1
- ► N+1, N-1, 2N
- ► 2N, N-1, N+1 (page 304)
- ► N-1, 2N, N+1

Question No: 80

Each node in doubly link list has,

- ▶ 1 pointer
- ▶ 2 pointers (Page 39)
- ► 3 pointers
- ► 4 pointers

Question No: 81

If you know the size of the data structure in advance, i.e., at compile time, which one of the following is a good data structure to use.

- ► Array
- ► List
- ▶ Both of these (page 10)
- ▶ None of these

Question No:82

Which one of the following is not an example of equivalence relation:

- ► Electrical connectivity
- ► Set of people
- <= relation (Page 388)</p>
- ► Set of pixels

Question No: 83

If a complete binary tree has height h then its no. of nodes will be,

- **►** Log (h)
- \triangleright 2^{h+1}- 1 (page 125)
- ► Log (h) 1
- ► 2^h 1

Question No: 84

If a max heap is implemented using a partially filled array called data, and the array contains n elements (n > 0), where is the entry with the greatest value?

Data[0] is correct

- ► data[1]
- ► data[n-1]
- ► data[n]
- ► data[2*n+1]

Question No: 85

Which one is a self-referential data type?

- ► Stack
- ► Queue
- **►** Link list
- ► All of these

Ouestion No: 86

There is/are _____ case/s for rotation in an AVL tree,

- **>** 3
- **>** 2
- ► 4 (page 229)

Question No: 87

Which of the following can be the inclusion criteria for pixels in image segmentation.

- ► Pixel intensity
- **▶** Texture
- ► Threshold of intensity
- ► All of the given options (page 421)

Question No: 88

Consider te following array

23 15 5 12 40 10 7

After the first pass of a particular algorithm, the array looks like

15 5 12 23 10 7 40

Name the algorithm used

- ► Heap sort
- ► Selection sort
- ► Insertion sort
- **►** Bubble sort

Question No: 89	
------------------------	--

In a perfectly balanced tree the insertion of a node needs_____.

- **▶** One rotation (Page 225)
- ► Two rotations
- ► Rotations equal to number of levels
- ▶ No rotation at all

Question No: 89

If there are N elements in an array then the number of maximum steps needed to find an element using Binary Search is_____.

- **▶** N
- $ightharpoonup N^2$
- ► Nlog₂N
- \triangleright log₂N (page 440)

Question No: 90

Which of the following is NOT a correct statement about Table ADT.

- ▶ In a table, the type of information in columns may be different.
- ► A table consists of several columns, known as entities. (page 408)
- ► The row of a table is called a record.
- ▶ A major use of table is in databases where we build and use tables for keeping information.

Question No: 91

If both pointers of the node in a binary tree are NULL then it will be a/an

- ► Inner node
- ► Leaf node (page 120)
- ► Root node
- ► None of the given options

Ouestion No: 92

Suppose we are sorting an array of eight integers using quick sort, and we have just finished the first partitioning with the array looking like this:

25179121110

Which statement is correct?

- ► The pivot could be either the 7 or the 9.(page 506)
- ► The pivot could be the 7, but it is not the 9.
- ► The pivot is not the 7, but it could be the 9.
- ► Neither the 7 nor the 9 is the pivot.

Ouestion No 93

What is the best definition of a *collision* in a hash table?

- ► Two entries are identical except for their keys.
- ► Two entries with different data have the exact same key
- ► Two entries with different keys have the same exact hash value. (page 464)
- ► Two entries with the exact same key have different hash values.

Ouestion No: 94

For a perfect binary tree of height h, having N nodes, the sum of heights of nodes is

- \triangleright N (h 1)
- ightharpoonup N (h + 1) (Page 373)
- \triangleright N 1
- N 1 + h

Ouestion No: 95

A binary tree with 33 internal nodes has ______links to internal nodes.

- **▶** 31
- **▶** 32 (Page 304)
- **▶** 33
- **▶** 66

Question No: 96

Suppose you implement a Min heap (with the smallest element on top) in an array. Consider the different arrays below; determine the one that *cannot* possibly be a heap:

- **►** 16, 18, 20, 22, 24, 28, 30
- **▶** 16, 20, 18, 24, 22, 30, 28
- **►** 16, 24, 18, 28, 30, 20, 22
- ► 16, 24, 20, 30, 28, 18, 22 (see min heap property at page 337)

Ouestion No: 97

Which of the following is not true regarding the maze generation?

- ▶ Randomly remove walls until the entrance and exit cells are in the same set.
- ▶ Removing a wall is the same as doing a union operation.
- ▶ Remove a randomly chosen wall if the cells it separates are already in the same set. (Page 424)
- ▶ Do not remove a randomly chosen wall if the cells it separates are already in the same set.

Question No: 98

Which formula is the best approximation for the depth of a heap with n nodes?

- ► log (base 2) of n (Page 353)
- ▶ The number of digits in n (base 10), e.g., 145 has three digits
- ► The square root of n
- **▶** n

Ouestion No: 99

In threaded binary tree the NULL pointers are replaced by,

- ▶ preorder successor or predecessor
- ► inorder successor or predecessor (Page 307)
- ▶ postorder successor or predecessor
- ► NULL pointers are not replaced

Question No: 100

The _____ method of list will position the *currentNode* and *lastCurrentNode* at the start of the list.

- ► Remove
- ► Next
- ► Start (Page 38)
- ► Back

Question No: 101

Mergesort makes two recursive calls. Which statement is true after these recursive calls finish, but before the merge step?

- ▶ Elements in the first half of the array are less than or equal to elements in the second half of the array.
- ► None of the given options.
- ► The array elements form a heap.
- Elements in the second half of the array are less than or equal to elements in the first half of the array.

Question No: 102

Suppose we had a hash table whose hash function is "n % 12", if the number 35 is already in the hash table, which of the following numbers would cause a collision?

- **▶** 144
- **►** 145
- **▶** 143
- **▶** 148

Question No: 103

The arguments passed to a function should match in number, type and order with the parameters in the function definition.

► True

► False

Question No: 104

If numbers 5, 222, 4, 48 are inserted in a queue, which one will be removed first?

- **►** 48
- **4**
- ▶ 222
- **5**

Question No: 105

Suppose currentNode refers to a node in a linked list (using the Node class with member variables called data and nextNode). What statement changes currentNode so that it refers to the next node?

- currentNode ++;
- currentNode = nextNode;
- currentNode += nextNode;
- currentNode = currentNode->nextNode;

Question No: 106

A **Compound Data Structure** is the data structure which can have multiple data items of same type or of different types. Which of the following can be considered compound data structure?

- ► Arrays
- ► LinkLists
- ► Binary Search Trees
- ► All of the given options

Question No: 107

Here is a small function definition:

```
void f(int i, int &k)
{
i = 1;
k = 2;
}
```

Suppose that a main program has two integer variables x and y, which are given the value 0. Then the main program calls f(x,y); What are the values of x and y after the function f finishes?

- ightharpoonup Both x and y are still 0.
- \triangleright x is now 1, but y is still 0.
- \triangleright x is still 0, but y is now 2.
- \triangleright x is now 1, and y is now 2.

Ouestion No: 108

The difference between a binary tree and a binary search tree is that,

- ► a binary search tree has two children per node whereas a binary tree can have none, or two children per node
 - ▶ in binary search tree nodes are inserted based on the values they contain
 - ▶ in binary tree nodes are inserted based on the values they contain
 - ▶ none of these

Ouestion No: 109

Compiler uses which one of the following to evaluate a mathematical equation,

- ► Binary Tree
- ► Binary Search Tree
- ► Parse Tree (Page 274)
- ► AVL Tree

Question No: 110

If there are 56 internal nodes in a binary tree then how many external nodes this binary tree will have?

- **>** 54
- **►** 55
- **▶** 56
- **▶** 57 (Page 303)

Question No: 111

If there are 23 external nodes in a binary tree then what will be the no. of internal nodes in this binary tree?

- **▶** 23
- **▶** 24
- **▶** 21
- ► 22 (n-1) (Page 304)

Question No: 112

Which of the following method is helpful in creating the heap at once?

- **▶** insert
- ► add
- **▶** update
- ► preculateDown (Page 358)

AL-JUNAID INSTITUTE GROUT
Question No: 113 The definition of Transitivity property is
 For all element x member of S, x R x For all elements x and y, x R y if and only if y R x For all elements x, y and z, if x R y and y R z then x R z (Page 385) For all elements w, x, y and z, if x R y and w R z then x R z
Question No: 114 A binary tree of N nodes has Log ₁₀ N levels Log ₂ N levels (Page 349) N / 2 levels N x 2 levels
Question No: 115 If there are N elements in an array then the number of maximum steps needed to find an element using Binar Search is ▶ N ▶ N² ▶ Nlog ₂ N ▶ log ₂ N (page 440)
Question No: 116 Consider te following array 23 15 5 12 40 10 7 After the first pass of a particular algorithm, the array looks like 15 12 23 10 7 40 Name the algorithm used Heap sort Selection sort Insertion sort
Bubble sort

Question No: 117

If both pointers of the node in a binary tree are NULL then it will be a/an_____.

- ► Inner node
- ► Leaf node (Page 313)
- ► Root node
- ► None of the given options

Ouestion No: 118

By using _____ we avoid the recursive method of traversing a Tree, which makes use of stacks and consumes a lot of memory and time.

- ► Binary tree only
- ► Threaded binary tree (page 306)
- ► Heap data structure
- ► Huffman encoding

Question No: 119

A complete binary tree of height 3 has between _____nodes.

- ▶ 8 to 14
- ▶ 8 to 15 (Page 124)
- ▶ 8 to 16
- ▶ 8 to 17

 $2^{(d+1)} - 1 = 2^{(3+1)} - 1 = 2^4 - 1 = 16 - 1 = 15$

Question No: 120

Consider a min heap, represented by the following array:

3,4,6,7,5,10

After inserting a node with value 1. Which of the following is the updated min heap?

- **▶** 3,4,6,7,5,10,1
- **▶** 3,4,6,7,5,1,10
- **►** 3,4,1,5,7,10,6
- ► 1,4,3,5,7,10,6 close to correct but correct ans is 1,4,3,7,5,10,6 (page 337)

Question No: 121

Consider a min heap, represented by the following array:

10,30,20,70,40,50,80,60

After inserting a node with value 31. Which of the following is the updated min heap?

- ► 10,30,20,31,40,50,80,60,70 (page 337)
- **►** 10,30,20,70,40,50,80,60,31
- ► 10,31,20,30,40,50,80,60,31
- **►** 31,10,30,20,70,40,50,80,60

Question No: 122

Which one of the following algorithms is most widely used due to its good average time,

- ▶ Bubble Sort
- ► Insertion Sort
- Quick Sort
- ► Merge Sort

Ouestion No: 123

Which of the following statement is correct about find(x) operation:

- \blacktriangleright A find(x) on element x is performed by returning exactly the same node that is found.
- ► A find(x) on element x is performed by returning the root of the tree containing

X

- \blacktriangleright A find(x) on element x is performed by returning the whole tree itself containing x. (Page 10)
- ightharpoonup A find(x) on element x is performed by returning TRUE.

Question No 124

Which of the following statement is NOT correct about find operation:

- ▶ It is not a requirement that a find operation returns any specific name, just that finds on two elements return the same answer if and only if they are in the same set.
- ➤ One idea might be to use a tree to represent each set, since each element in a tree has the same root, thus the root can be used to name the set.
 - ► Initially each set contains one element.
 - ▶ Initially each set contains one element and it does not make sense to make a tree of one node only.

Question No: 125

The following are statements related to queues.

The last item to be added to a queue is the first item to be removed

A queue is a structure in which both ends are not used

The last element hasn't to wait until all elements preceding it on the queue are removed queue is said to be a last-in-first-out list or LIFO data structure.

Which of the above is/are related to normal queues?

- ► (iii) and (ii) only
- \blacktriangleright (i), (ii) and (iv) only
- ► (ii) and (iv) only
- **►** None of the given options

		TA T	10/
. 1	uestion	N ••	1 76
、 ,	ucsuul	TIV.	120

The maximum number of external nodes (leaves) for a binary tree of height H is

- **≥** 2^H
- $\triangleright 2^{H} + 1$
- ► 2^H-1
- $\triangleright 2^{H} + 2$

Ouestion No: 127

In complete binary tree the bottom level is filled from

- ► Left to right (Page 323)
- ► Right to left
- ► Not filled at all
- ► None of the given options

Question No: 128

We are given N items to build a heap, this can be done with successive inserts.

- ► N-1
- **►** N (Page 353)
- ► N+1
- ► N^2

Question No: 129

Suppose we had a hash table whose hash function is "n % 12", if the number 35 is already in the hash table, which of the following numbers would cause a collision?

- ▶ 144
- ▶ 145
- **▶** 143
- **▶** 148

Ouestion No: 130

Here is an array of ten integers:

5389170264

The array after the FIRST iteration of the large loop in a selection sort (sorting from smallest to largest).

0 3 8 9 1 7 5 2 6 4 (Page 477)

- ► 2 6 4 03 8 9 1 7 5
- **▶** 2 6 4 9 1 7 03 8 5
- **▶** 0 3 8 2 6 4 9 1 7 5

Question No: 131

What requirement is placed on an array, so that binary search may be used to locate an entry?

- ► The array elements must form a heap.
- ► The array must have at least 2 entries.
- ► The array must be sorted.
- ► The array"s size must be a power of two.

Question No: 132

In case of deleting a node from AVL tree, rotation could be prolong to the *root* node.

- **►** Yes (Page 267)
- ► No

Duestion No 133

only removes items in reverse order as they were entered.

- ► Stack (Page 81)
- **▶** Oueue
- ▶ Both of these
- ▶ None of these

Question No:134

Here is a small function definition:

```
void f(int i, int &k)
{
i = 1;
k = 2;
}
```

Suppose that a main program has two integer variables x and y, which are given the value 0. Then the main program calls f(x,y); What are the values of x and y after the function f finishes?

- ightharpoonup Both x and y are still 0.
- \triangleright x is now 1, but y is still 0.
- \triangleright x is still 0, but y is now 2.
- \triangleright x is now 1, and y is now 2.

Question No:135

Select the one *FALSE* statement about binary trees:

- ► Every binary tree has at least one node. (Page 113)
- ► Every non-empty tree has exactly one root node.
- ► Every node has at most two children.
- ► Every non-root node has exactly one parent.

Question No: 136

Every AVL is _____

- ► Binary Tree
- ► Complete Binary Tree
- ► None of these
- ► Binary Search Tree

Question No: 137

Searching an element in an AVL tree take maximum_____time (where n is no. of nodes in AVL tree),

- ightharpoonup Log₂(n+1)
- ightharpoonup Log₂(n+1) -1
- ► 1.44 Log₂n (Page 227)
- ► 1.66 Log₂n

Question No: 138

Suppose that we have implemented a *priority queue* by storing the items in a heap. We are now executing a reheapification downward and the out-of-place node has priority of 42. The node's parent has a priority of 72, the left child has priority 52 and the node's right child has priority 62. Which statement best describes the status of the reheapification.

- ► The reheapification is done.
- ▶ The next step will interchange the two children of the out-of-place node.
- ► The next step will swap the out-of-place node with its parent.
- ► The next step will swap the out-of-place node with its left child.

Question No: 139

Suppose you implement a heap (with the largest element on top) in an array. Consider the different arrays below, determine the one that *cannot* possibly be a heap:

- **▶** 7654321
- **▶** 7362145
- **▶** 7643521
- **▶** 7364251

According to max heap property

Ouestion NO 140

If there are 23 external nodes in a binary tree then what will be the no. of internal nodes in this binary tree?

- **▶** 23
- **▶** 24
- **▶** 21
- **▶** 22 (N-1)

Question No 141

If there are N external nodes in a binary tree then what will be the no. of internal nodes in this binary tree?

- ► N -1 (Page 304)
- ► N+1
- ► N+2
- N

Ouestion No: 142

Which one of the following is NOT the property of equivalence relation:

- ► Reflexive
- ► Symmetric
- **►** Transitive
- ► Associative (Page 385)

Question No: 143

The definition of Transitivity property is

- ► For all element x member of S, x R x
- For all elements x and y, x R y if and only if y R x
- ► For all elements x, y and z, if x R y and y R z then x R z (Page 385)
- ► For all elements w, x, y and z, if x R y and w R z then x R z

Ouestion No: 144

Union is a _____time operation.

- ► Constant (Page 120)
- ► Polynomial
- ► Exponential
- ► None of the given option

Ouestion No: 145

Which of the following is NOT a correct statement about Table ADT.

- ▶ In a table, the type of information in columns may be different. yes
- ► A table consists of several columns, known as entities. (Page 408)
- ► The row of a table is called a record.
- ▶ A major use of table is in databases where we build and use tables for keeping information.

Question No: 146

In the worst case of deletion in AVL tree requires .

- ► Only one rotation
- ► Rotation at each non-leaf node
- ► Rotation at each leaf node
- ► Rotations equal to log2 N (Page 441)

Question No: 147

Binary Search is an algorithm of searching, used with the data.

- ► Sorted (Page 432)
- **▶** Unsorted
- ► Heterogeneous
- ► Random

Question No: 148

Which of the following statement is correct?

- ▶ A Threaded Binary Tree is a binary tree in which every node that does not have a left child has a THREAD (in actual sense, a link) to its INORDER successor.
- ► A Threaded Binary Tree is a binary tree in which every node that does not have a right child has a THREAD (in actual sense, a link) to its PREOREDR successor.
- ► A Threaded Binary Tree is a binary tree in which every node that does not have a right child has a THREAD (in actual sense, a link) to its INORDER successor. (Page 307)
- ► A Threaded Binary Tree is a binary tree in which every node that does not have a right child has a THREAD (in actual sense, a link) to its POSTORDER successor.

we avoid the recursive method of traversing a Tree, which makes use of stacks and

Question No: 149		

consumes a lot of memory and time.

- ► Binary tree only
- ► Threaded binary tree (page 306)
- ► Heap data structure
- ► Huffman encoding

Ouestion No: 150

Which of the following statement is NOT true about threaded binary tree?

- ▶ Right thread of the right-most node points to the *dummy* node.
- ▶ Left thread of the left-most node points to the *dummy* node.
- ▶ The left pointer of dummy node points to the root node of the tree.
- ► Left thread of the right-most node points to the *dummy* node. (page 321)

Ouestion No: 151

Consider a min heap, represented by the following array:

11,22,33,44,55

After inserting a node with value 66. Which of the following is the updated min heap?

- ► 11,22,33,44,55,66 (page 337)
- **►** 11,22,33,44,66,55
- **►** 11,22,33,66,44,55
- **►** 11,22,66,33,44,55

Question No: 152

Consider a min heap, represented by the following array:

3,4,6,7,5

After calling the function deleteMin(). Which of the following is the updated min heap?

- **►** 4,6,7,5
- **►** 6,7,5,4
- ► 4,5,6,7 (page 349)
- **►** 4,6,5,7

Question No: 153

We can build a heap in time.

- ► Linear (Page 353)
- ► Exponential
- ► Polynomial
- ► None of the given options

Ouestion No: 154

Suppose we are sorting an array of eight integers using quick sort, and we have just finished the first partitioning with the array looking like this:

25179121110

Which statement is correct?

- ► The pivot could be either the 7 or the 9. (page 506)
- ► The pivot could be the 7, but it is not the 9.
- ► The pivot is not the 7, but it could be the 9
- ▶ Neither the 7 nor the 9 is the pivot.

Ouestion No: 155

Which formula is the best approximation for the depth of a heap with n nodes?

- ▶ log (base 2) of n (Page 353)
- ► The number of digits in n (base 10), e.g., 145 has three digits
- ► The square root of n
- **▶** n

Question No 156

Suppose you implement a Min heap (with the smallest element on top) in an array. Consider the different arrays below; determine the one that *cannot* possibly be a heap:

- **►** 16, 18, 20, 22, 24, 28, 30
- **►** 16, 20, 18, 24, 22, 30, 28
- ► 16, 24, 18, 28, 30, 20, 22
- **►** 16, 24, 20, 30, 28, 18, 22

Question No: 157

While joining nodes in the building of Huffman encoding tree if there are more nodes with same frequency, we choose the nodes .

- ► Randomly (Page 289)
- ► That occur first in the text message
- ► That are lexically smaller among others.
- ► That are lexically greater among others

Question No: 158

Consider the following paragraph with blanks.

A is a linear list where and take place at the same end . This end is called the

What would be the correct filling the above blank positions?

- ► (i) queue (ii) insertion (iii) removals (iv) top
- ► (i) stack (ii) insertion (iii) removals (iv) bottom
- ► (i) stack (ii) insertion (iii) removals (iv) top (Page 52)
- ► (i) tree (ii) insertion (iii) removals (iv) top

Question No: 159

A binary tree with 33 internal nodes has ______links to internal nodes.

- **▶** 31
- ▶ 32 (n-1 links to internal nodes) (Page 304)
- **▶** 33
- **▶** 66

Question No: 160

Which traversal gives a decreasing order of elements in a heap where the max element is stored at the top?

- **post-order**
- ► level-order
- **▶** inorder
- ► None of the given options

Question No: 161

What requirement is placed on an array, so that binary search may be used to locate an entry

- ► The array elements must form a heap.
- ► The array must have at least 2 entries.
- ► The array must be sorted
- ► The array"s size must be a power of two.

Question No: 162

Which of the following is a non linear data structure?

- ► Linked List
- ► Stack
- ► Queue
- **►** Tree (Page 112)

Question No: 163

The data of the problem is of 2GB and the hard disk is of 1GB capacity, to solve this problem we should

- ► Use better data structures
- ► Increase the hard disk space (Page 5)
- ► Use the better algorithm
- ▶ Use as much data as we can store on the hard disk

Question No: 164

In an array list the current element is

- **►** The first element
- **►** The middle element
- ► The last element
- ► The element where the current pointer points to

Question No: 165

Which one of the following is a valid postfix expression?

- ► ab+c*d-
- abc*+d- (According to rule)
- ► abc+*d-
- ► (abc*)+d-

Ouestion No: 166

In sequential access data structure, accessing any element in the data structure takes different amount of time. Tell which one of the following is sequential access data structure,

- ► Arrays
- **Lists**
- ▶ Both of these
- ► None of these

Ouestion No: 167

I have implemented the queue with a circular array. If data is a circular array of CAPACITY elements, and last is an index into that array, what is the formula for the index after last?

- ► (last % 1) + CAPACITY
- \blacktriangleright last % (1 + CAPACITY)
- **▶** (last + 1) % CAPACITY
- ► last + (1 % CAPACITY)

This expression will point to field after last that will be the first field.

Question No: 168

Which one of the following is TRUE about recursion?

► Recursion extensively uses stack memory. (page 149)

- ► Threaded Binary Trees use the concept of recursion.
- ▶ Recursive function calls consume a lot of memory.
- ► Iteration is more efficient than iteration.

Ouestion No: 169

Compiler uses which one of the following to evaluate a mathematical equation,

- ► Binary Tree
- ► Binary Search Tree
- ► Parse Tree (Page 274)
- ► AVL Tree

Ouestion No: 170

Which one of the following is TRUE about iteration?

- ► Iteration extensively uses stack memory.
- ► Threaded Binary Trees use the concept of iteration.
- ► Iterative function calls consumes a lot of memory.
- ► Recursion is more efficient than iteration.

Question No: 171

If a max heap is implemented using a partially filled array called data, and the array contains n elements (n > 0), where is the entry with the greatest value?

Data[0] is correct

- ► data[1]
- ightharpoonup data[n-1]
- ► data[n]
- \rightarrow data[2*n+1]

Question No: 172

If there are 56 internal nodes in a binary tree then how many external nodes this binary tree will have?

- **▶** 54
- **▶** 55
- **▶** 56
- ► 57 (n+1)

Question No: 173

Which of the following heap method increase the value of key at position "p" by the amount "delta"?

- ► increaseKey(p,delta) (Page 363)
- ► decreaseKey(p,delta)
- ► preculateDown(p,delta)
- ► remove(p,delta)

Ouestion No: 174

If we have 1000 sets each containing a single different person. Which of the following relation will be true on each set:

- ► Reflexive (page 387)
- **▶** Symmetric
- **▶** Transitive
- Associative

Question No: 175

Which one of the following is not an example of equivalence relation?

- ► Electrical connectivity
- ► Set of people
- **►** <= relation (Page 388)
- ► Set of pixels

Question No: 176

A binary tree of N nodes has .

- ► Log₁₀ N levels
- ► Log₂ N levels (Page 212)
- ► N / 2 levels
- ► N x 2 levels

Question No: 177

Binary Search is an algorithm of searching, used with the _____data.

- ► Sorted (Page 432)
- **▶** Unsorted
- ► Heterogeneous
- ► Random

Question No: 178

Consider te following array

23 15 5 12 40 10 7

After the first pass of a particular algorithm, the array looks like

15 5 12 23 10 7 40

Name the algorithm used

- ► Heap sort
- ► Selection sort
- ► Insertion sort
- **▶** Bubble sort (According to rule)

Ouestion No: 179

Which of the following statements is correct property of binary trees?

- ► A binary tree with N internal nodes has N+1 internal links.
- ► A binary tree with N external nodes has 2N internal nodes.
- ► A binary tree with N internal nodes has N+1 external nodes. (page 304)
- ▶ None of above statement is a property of the binary tree.

Question No: 180

Which of the following is a property of binary tree?

- ► A binary tree of N external nodes has N internal node.
- ► A binary tree of N internal nodes has N+ 1 external node. (Page 304)
- ► A binary tree of N external nodes has N+ 1 internal node.
- ► A binary tree of N internal nodes has N-1 external node.

Question No: 181

Which of the following statement is true about dummy node of threaded binary tree?

- ▶ The left pointer of dummy node points to the itself while the right pointer points to the root of tree.
- The left pointer of dummy node points to the root node of the tree while the right pointer points itself i.e. to *dummy* node (Page 321)
- ► The left pointer of dummy node points to the root node of the tree while the right pointer is always NULL.
 - ▶ The right pointer of dummy node points to the itself while the left pointer is always NULL.

Question No: 182

If the bottom level of a binary tree is NOT completely filled, depicts that the tree is NOT a

- ► Expression tree
- ► Threaded binary tree
- **complete Binary tree** (Page 323)
- ► Perfectly complete Binary tree

Ouestion No: 183

In a selection sort of n elements, how many times the swap function is called to complete the execution of the algorithm?

- ▶ n-1
- ► n log n
- $ightharpoonup n^2$

Question No: 184

Which of the following statement is correct about find(x) operation:

- \triangleright A find(x) on element x is performed by returning exactly the same node that is found.
- \triangleright A find(x) on element x is performed by returning the root of the tree containing x.
- \blacktriangleright A find(x) on element x is performed by returning the whole tree itself containing x.
- \triangleright A find(x) on element x is performed by returning TRUE.

Ouestion No: 185

Which of the following statement is NOT correct about find operation:

- ▶ It is not a requirement that a find operation returns any specific name, just that finds on two elements return the same answer if and only if they are in the same set.
- One idea might be to use a tree to represent each set, since each element in a tree has the same root, thus the root can be used to name the set.
 - ► Initially each set contains one element.
 - ▶ Initially each set contains one element and it does not make sense to make a tree of one node only.

Consider the following postfix expression S and the initial values of the variables.

 $S = A B - C + D E F - + ^$

Assume that A=3, B=2, C=1, D=1, E=2, F=3

What would be the final output of the stack?

- **▶** 1
- **>** 2
- ▶ 0
- **▶** -1

Ouestion No: 187

The maximum number of external nodes (leaves) for a binary tree of height H is _____

- **▶** 2^H
- ► 2^H+1
- ► 2^H-1
- $\triangleright 2^{H} + 2$

Question No: 188

In threaded binary tree the NULL pointers are replaced by,

- ▶ preorder successor or predecessor
- ▶ inorder successor or predecessor (Page 307)
- ▶ postorder successor or predecessor
- ► NULL pointers are not replaced

Question No: 189

In a min heap, preculateDown procedure will move smaller value_____and bigger value____.

- ► left,right
- ► right,left
- ▶ up,down (Page 358)
- ► down,up

Question No: 190

Which of the following statement is correct about union:

- To perform Union of two sets, we merge the two trees by making the root of one tree point to the root of the other. (Greedy algorithms, Page 7)
- ▶ To perform Union of two sets, we merge the two trees by making the leaf node of one tree point to the root of the other.
 - ► To perform Union of two sets, merging operation of trees in not required at all.
 - ► None of the given options.

Question No: 191

Suppose A is an array containing numbers in increasing order, but some numbers occur more than once when using a binary search for a value, the binary search always finds _

- the first occurrence of a value.
- ▶ the second occurrence of a value.
- ▶ may find first or second occurrence of a value.
- ▶ None of the given options.

Question No: 192

Let heap stored in an array as H = [50, 40, 37, 32, 28, 22, 36, 13]. In other words, the root of the heap contains the maximum element. What is the result of deleting 40 from this heap

- ► [50,32, 37,13, 28, 22, 36] according to max heap property.
- ► [37, 28, 32, 22, 36, 13]
- **►** [37, 36, 32, 28, 13, 22]
- **►** [37, 32, 36, 13, 28, 22]

Question No: 193

In an array we can store data elements of different types.

- ► True
- False

Question no 194

Which one of the following statement is NOT correct?

- ► In linked list the elements are necessarily to be contiguous
- ► In linked list the elements may locate at far positions in the memory (page 18)
- ▶ In linked list each element also has the address of the element next to it
- ► In an array the elements are contiguous

Question no 195

Doubly Linked List always has one NULL pointer.

- ► True
- ► False(page 39)

Ouestion No: 196

A queue is a data structure where elements are,

- inserted at the front and removed from the back. . (page #89 nd 90)
- ▶ inserted and removed from the top.
- inserted at the back and removed from the front.
- inserted and removed from both ends.

Ouestion No: 197

Each node in doubly link list has,

- ▶ 1 pointer
- 2 pointers(page 39)
- ► 3 pointers
- ▶ 4 pointers

Question No: 198

I have implemented the queue with a linked list, keeping track of a front pointer and a rear pointer. Which of these pointers will change during an insertion into an *EMPTY* queue?

- ► Neither changes
- ► Only front pointer changes.
- ▶ Only rear pointer changes.
- **Both change.**

Since it is an empty queue the front and rear are initialize to -1, so on insertion both the pointers will change and point to 0.

Question No: 199

Compiler uses which one of the following to evaluate a mathematical equation,

- **▶** Binary Tree
- ► Binary Search Tree
- Parse Tree(page 274)
- ► AVL Tree

Ouestion No: 200

If a complete binary tree has n number of nodes then its height will be,

- $ightharpoonup Log_2 (n+1) -1(page 139)$
- **≥**2ⁿ
- ightharpoonup Log₂ (n) 1
- $\triangleright 2^n 1$

Question No: 201

If a complete binary tree has height h then its no. of nodes will be,

- ► Log (h)
- $\triangleright 2^{h+1}$ 1(page 324)
- ► Log (h) 1
- ► 2^h 1

Question No: 202

A binary relation R over S is called an equivalence relation if it has following property(s)

- **►** Reflexivity
- **►** Symmetry
- **►** Transitivity

▶ All of the given options (page 387)

Question No: 203

Binary Search is an algorithm of searching, used with the data.

- ► Sorted (page 432)
- **▶** Unsorted
- ► Heterogeneous

► Random

Question No: 204

If there are N elements in an array then the number of maximum steps needed to find an element using Binary Search is .

- ▶ N
- $ightharpoonup N^2$
- ► Nlog₂N
- **▶** log₂N (page 440)

Ouestion No: 205

Use of binary tree in compression of data is known as . .

- ► Traversal
- ► Heap
- **▶** Union
- ► Huffman encoding (page 287)

Question No: 206

While building Huffman encoding tree the new node that is the result of joining two nodes has the frequency.

- ► Equal to the small frequency
- ► Equal to the greater
- ► Equal to the sum of the two frequencies (page 293)
- ► Equal to the difference of the two frequencies

Question No: 207

Which of the following statements is correct property of binary trees?

- ► A binary tree with N internal nodes has N+1 internal links.
- ► A binary tree with N external nodes has 2N internal nodes.
- ► A binary tree with N internal nodes has N+ 1 external node. (page 303)
- ▶ None of above statement is a property of the binary tree.

Ouestion No 208

Which of the following is a property of binary tree?

- ► A binary tree of N external nodes has N internal node.
- ► A binary tree of N internal nodes has N+ 1 external node. (page 303)
- ► A binary tree of N external nodes has N+ 1 internal node.
- ► A binary tree of N internal nodes has N-1 external node.

Question No: 209

Which of the following statement is correct?

- ▶ A Threaded Binary Tree is a binary tree in which every node that does not have a left child has a THREAD (in actual sense, a link) to its INORDER successor.
- ▶ A Threaded Binary Tree is a binary tree in which every node that does not have a right child has a THREAD (in actual sense, a link) to its PREOREDR successor.

- A Threaded Binary Tree is a binary tree in which every node that does not have a right child has a THREAD (in actual sense, a link) to its INORDER successor. (Page 307)
- ▶ A Threaded Binary Tree is a binary tree in which every node that does not have a right child has a THREAD (in actual sense, a link) to its POSTORDER successor.

Question No: 210

Which of the following statement is correct?

- ▶ A Threaded Binary Tree is a binary tree in which every node that does not have a left child has a THREAD (in actual sense, a link) to its INORDER successor.
- ▶ A Threaded Binary Tree is a binary tree in which every node that does not have a right child has a THREAD (in actual sense, a link) to its PREOREDR successor.
- A Threaded Binary Tree is a binary tree in which every node that does not have a left child has a THREAD (in actual sense, a link) to its INORDER predecessor.
- ▶ A Threaded Binary Tree is a binary tree in which every node that does not have a right child has a THREAD (in actual sense, a link) to its POSTORDER predecessor.

Question No: 211

A Threaded Binary Tree is a binary tree in which every node that does not have a right child has a THREAD (in actual sense, a link) to its______ successor.

- ► levelorder
- ► Preorder
- Inorder
- ► Postorder

Question No: 212

Which of the following statement is true about dummy node of threaded binary tree?

- ► This dummy node never has a value.
- ► This dummy node has always some dummy value.
- This dummy node has either no value or some dummy value. .(page 321)
- ► This dummy node has always some integer value.

Question No: 213

A complete binary tree is a tree that is______filled, with the possible exception of the bottom level.

- **▶** partially
- completely (page 323)
- **▶** incompletely

▶ partly

Question No: 214

A complete binary tree of height 3 has between _____nodes.

- ▶ 8 to 14
- ► 8 to 15 (page 124)
- ▶ 8 to 16
- ▶ 8 to 17

Question No: 215

We can build a heap in time

- Linear (page 353)
- ► Exponential
- ► Polynomial
- ► None of the given options

Ouestion No: 216

Suppose that a selection sort of 100 items has completed 42 iterations of the main loop. How many items are now guaranteed to be in their final spot (never to be moved again)?

- **▶** 21
- **▶** 41
- **42**
- **▶** 43

Ouestion No: 217

Suppose you implement a Min heap (with the smallest element on top) in an array. Consider the different arrays below; determine the one that *cannot* possibly be a heap:

- **►** 16, 18, 20, 22, 24, 28, 30
- **►** 16, 20, 18, 24, 22, 30, 28
- ► 16, 24, 18, 28, 30, 20, 22
- ► 16, 24, 20, 30, 28, 18, 22 It's not satisfy the min heap property

Ouestion No: 218

Which of the following statement is NOT correct about find operation:

- ► It is not a requirement that a find operation returns any specific name, just that finds on two elements return the same answer if and only if they are in the same set.
- One idea might be to use a tree to represent each set, since each element in a tree has the same root, thus the root can be used to name the set.
 - ► Initially each set contains one element.
 - ► Initially each set contains one element and it does not make sense to make a tree of one node only.

Ouestion No: 219

(Consider the following infix

expression: x - y a + b / c

Which of the following is a correct equivalent expression(s) for the above?

Question No: 220

A complete binary tree of height has nodes between 16 to 31.

- **>** 2
- **▶** 3
- **4** (page 124)
- **▶** 5

Question No: 221

What requirement is placed on an array, so that binary search may be used to locate an entry?

- ► The array elements must form a heap.
- ► The array must have at least 2 entries.
- ► The array must be sorted.
- ▶ The array"s size must be a power of two.