Relation: Part 4 - Operations on Relation

Adila A. Krisnadhi

Faculty of Computer Science, Universitas Indonesia

Reference: Rosen, Discrete Mathematics and Its Applications, 8ed, 2019, Sec. 9.1

Operations on relation to obtain (another) relation

- All set operations: intersection, union, difference, symmetric difference, complement.
- Inverse
- Composition and powers of relation

Set operations over relation

Since every relation is a set (of tuples), then all set operations are applicable to it.

Definition

Given binary relations $R, R_1, R_2 \subseteq A \times B$:

Union.
$$R_1 \cup R_2 = \{(a,b) \in A \times B \mid (a,b) \in R_1 \text{ or } (a,b) \in R_2\}$$

Intersection.
$$R_1 \cap R_2 = \{(a,b) \in A \times B \mid (a,b) \in R_1 \text{ and } (a,b) \in R_2\}$$

Difference.
$$R_1 - R_2 = \{(a, b) \in A \times B \mid (a, b) \in R_1 \text{ but } (a, b) \notin R_2\}$$

Symmetric difference.
$$R_1 \oplus R_2 = (R_1 \cup R_2) - (R_1 \cap R_2)$$

Complement.
$$\overline{R} = (A \times B) - R = \{(a,b) \in A \times B \mid (a,b) \notin R\}$$

The above definition also applies to n-ary relations if (i) R_1 and R_2 have the same arity; and (ii) the Cartesian product used in \overline{R} is over n sets R is defined.

Let $A=\{1,2,3\}$, $B=\{1,2,3,4\}$, $R_1,R_2\subseteq A\times B$ where $R_1=\{(1,1),(2,2),(3,3)\}$ and $R_2=\{(1,1),(1,2),(1,3),(1,4)\}$. Compute $R_1\cup R_2$, $R_1\cap R_2$, R_1-R_2 , R_2-R_1 , $R_1\oplus R_2$, and $\overline{R_2}$

Exercise

Let $R_1 = \{(x,y) \in \mathbb{R}^2 \mid x \leqslant y\}$ and $R_2 = \{(x,y) \in \mathbb{R}^2 \mid x \geqslant y\}$. Find $R_1 \cup R_2$, $R_1 \cap R_2$, $R_1 - R_2$, $R_2 - R_1$, $R_1 \oplus R_2$, and $\overline{R_1}$.

Inverse of binary relation

Definition

Let $R \subseteq A \times B$ be a binary relation from a set A to a set B.

The **inverse** of R, denoted R^{-1} , is a binary relation from B to A defined as

$$R^{-1} = \{ (b, a) \mid (a, b) \in R \}$$

This operation and the symmetric property of relation are similar, but different.

Let $R_1,R_2\subseteq A\times A$ with $A=\{1,2,3,4\}$, $R_1=\{(1,1),(2,2),(3,3)\}$ and $R_2=\{(1,1),(1,2),(1,3),(1,4)\}$. Find R_1^{-1} and R_2^{-1} .

Exercise

Let $R_1 = \{(a,b) \in \mathbb{R}^2 \mid b > a\}$ and $R_2 = \{(a,b) \in \mathbb{R} \times \mathbb{Z} \mid b = \lfloor a \rfloor\}$. Find R_1^{-1} and R_2^{-1} . Express your answer using an expression with b on the left-hand side.

Composition of binary relations

Definition

Let $R \subseteq A \times B$ and $S \subseteq B \times C$. Composition of R and S, denoted $S \circ R$, is

$$S\circ R=\{(a,c)\mid (a,b)\in R \text{ and } (b,c)\in S \text{ for some } b\in B\}$$

This operation and the transitive property of relation is similar, but different.

Let $A=\{1,2,3\}, B=\{1,2,3,4\}, C=\{0,1,2\}.$ Also, $R\subseteq A\times B$ where $R=\{(1,1),(1,4),(2,3),(3,1),(3,4)\},$ and $S\subseteq B\times C$ where $S=\{(1,0),(2,0),(3,1),(3,2),(4,1)\}.$ Find $S\circ R.$

Exercises

- Let $R = \{(a, b) \mid a \text{ is a parent of } b\}$. Then what is $R \circ R$?
- Let $R_1=\{(a,b)\in\mathbb{R}^2\mid a>b\}$ and $R_2=\{(a,b)\in\mathbb{R}^2\mid a\geqslant b\}$. Then what are $R_2\circ R_1$ and $R_2\circ R_2$?

Let $R = \{(a,b) \mid a \text{ is a parent of } b\}$. Then what is $R \circ R$?

Let $R_1 = \{(a, b) \in \mathbb{R}^2 \mid a > b\}$ and $R_2 = \{(a, b) \in \mathbb{R}^2 \mid a \geqslant b\}$. Then what are $R_2 \circ R_1$ and $R_2 \circ R_2$?

Powers of binary relations

Definition

Let $R \subseteq A \times A$. The binary relations $R^n \subseteq A^2$, $n = 1, 2, 3, \ldots$, are defined recursively:

$$R^1 = R \quad \text{ and } \quad R^{n+1} = R^n \circ R$$

Let $R \subseteq \{1,2,3,4\}^2$ with $R = \{(1,1),(2,1),(3,2),(4,3)\}$. Find R^n , $n=2,3,4,\ldots$

Exercise

Let $R = \{(a,b) \in \mathbb{N}^2 \mid 2a < b\}$. Find R^n for $n = 2,3,4,\ldots$

Theorem

Binary relation R over a set A is transitive if and only if $R^n \subseteq R$ for every $n=1,2,3,\ldots$