##Project Name: House Prices- Advance Regression Techniques

The main aim of this project is to predict the house price based on various features

Dataset can be downloaded from the link below (might need accept the competition to download it). https://www.kaggle.com/competitions/house-prices-advanced-regression-techniques/data

Following the below lifecycle for this project

- 1. Data Analaysis
- 2. Feature Engineering
- 3. Feature Scaling
- 4. Model Training and Testing
- 5. Baseline Model for submission

Extracting data directly from kaggle, we will need kaggle.json file which we can upload to our notebook directory

```
! pip install -q kaggle
from google.colab import files
files.upload()
! mkdir ~/.kaggle
! cp kaggle.json ~/.kaggle/
! chmod 600 ~/.kaggle/kaggle.json
```

<IPython.core.display.HTML object>

Saving kaggle.json to kaggle.json

```
#link for downloading the dataset from kaggle
! kaggle competitions download -c house-prices-advanced-regression-techniques
```

```
Downloading house-prices-advanced-regression-techniques.zip to /content 0% 0.00/199k [00:00<?, ?B/s] 100% 199k/199k [00:00<00:00, 20.8MB/s]
```

```
#As the downloaded file is in zip format extracting all the file in the directory
import zipfile
zip_ref =
zipfile.ZipFile('/content/house-prices-advanced-regression-techniques.zip', 'r')
zip_ref.extractall('/content')
zip_ref.close()
```

```
!pip install -q pycaret
```

```
486.1/486.1 kB 4.4 MB/s eta 0:00:00
                         302.2/302.2 kB 9.2 MB/s eta 0:00:00
                         13.4/13.4 MB 26.4 MB/s eta 0:00:00
                         163.8/163.8 kB 11.1 MB/s eta 0:00:00
Preparing metadata (setup.py) ... done
                         258.3/258.3 kB 14.7 MB/s eta 0:00:00
                         81.9/81.9 kB 2.0 MB/s eta 0:00:00
                         194.1/194.1 kB 16.1 MB/s eta 0:00:00
                         79.9/79.9 MB 6.9 MB/s eta 0:00:00
                         106.8/106.8 kB 6.5 MB/s eta 0:00:00
                         80.7/80.7 kB 4.5 MB/s eta 0:00:00
                         21.8/21.8 MB 19.1 MB/s eta 0:00:00
                         44.0/44.0 kB 2.8 MB/s eta 0:00:00
                         2.1/2.1 MB 30.8 MB/s eta 0:00:00
                         130.1/130.1 kB 9.1 MB/s eta 0:00:00
                         12.1/12.1 MB 38.3 MB/s eta 0:00:00
                         1.6/1.6 MB 20.3 MB/s eta 0:00:00
                         7.5/7.5 MB 29.6 MB/s eta 0:00:00
                         141.1/141.1 kB 10.7 MB/s eta 0:00:00
                         2.1/2.1 MB 41.7 MB/s eta 0:00:00
Building wheel for pyod (setup.py) ... done
```

#import required libraries for data analysis import pandas as pd import numpy as np import calendar import matplotlib.pyplot as plt import matplotlib.cm as cm import seaborn as sn pd.set option('display.max columns', None) pd.set option('display.max rows', None) from IPython.display import display from sklearn.preprocessing import OneHotEncoder #for Converting Ordinal categorical features to numerical from sklearn.preprocessing import StandardScaler from sklearn.svm import SVR from sklearn.linear_model import LinearRegression, BayesianRidge, SGDRegressor, Lasso, Ridge, ElasticNet, HuberRegressor, OrthogonalMatchingPursuit from sklearn.neighbors import KNeighborsRegressor from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.ensemble import GradientBoostingRegressor

```
from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor
from sklearn.ensemble import AdaBoostRegressor, BaggingRegressor
import lightgbm as lgb

from sklearn.neural_network import MLPRegressor
from xgboost import XGBRegressor

from pycaret.regression import setup , compare_models
```

```
#loading the dataset
#As we can, we have train and test dataset present separately, and to perform EDA
we will combine it
df_train = pd.read_csv('/content/train.csv')
df_test = pd.read_csv('/content/test.csv')
df_full = pd.concat([df_train, df_test], ignore_index=True)
```

```
print("Shape of train dataset :" , df_train.shape)
print("Shape of test dataset :" , df_test.shape)
print("Shape of concatenated :" , df_full.shape)
```

Shape of train dataset: (1460, 81) Shape of test dataset: (1459, 80) Shape of concatenated: (2919, 81)

df_train.head()

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities
0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub
1	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllPub
2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AllPub
3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AllPub
4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	AllPub

df_test.head()

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilit
0	1461	20	RH	80.0	11622	Pave	NaN	Reg	Lvl	AllPu
1	1462	20	RL	81.0	14267	Pave	NaN	IR1	Lvl	AllPu
2	1463	60	RL	74.0	13830	Pave	NaN	IR1	Lvl	AllPu
3	1464	60	RL	78.0	9978	Pave	NaN	IR1	Lvl	AllPu
4	1465	120	RL	43.0	5005	Pave	NaN	IR1	HLS	AllPu

df_full.head()

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities
0	1	60	RL	65.0	8450	Pave	NaN	Reg	Lvl	AllPub
1	2	20	RL	80.0	9600	Pave	NaN	Reg	Lvl	AllPub
2	3	60	RL	68.0	11250	Pave	NaN	IR1	Lvl	AllPub
3	4	70	RL	60.0	9550	Pave	NaN	IR1	Lvl	AllPub
4	5	60	RL	84.0	14260	Pave	NaN	IR1	Lvl	AllPub

df_full.tail()

	Id	MSSubClass	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	U
2914	2915	160	RM	21.0	1936	Pave	NaN	Reg	Lvl	A
2915	2916	160	RM	21.0	1894	Pave	NaN	Reg	Lvl	A
2916	2917	20	RL	160.0	20000	Pave	NaN	Reg	Lvl	A
2917	2918	85	RL	62.0	10441	Pave	NaN	Reg	Lvl	A
2918	2919	60	RL	74.0	9627	Pave	NaN	Reg	Lvl	A

EDA(Exploratory Data Analysis)

Below are the steps been taken for analysis

- 1. Understanding the data
- 2. Missing Values
- 3. Obtaining all the numerical Variables
- 4. Distribution of Numberical Variables with Target variable
- 5. Obtaining all the Categorical Variables
- 6. Distribution of Categorical Variables with Target variable
- 7. Outlier Detection
- 8. Understanding the data

#Checking all the columns to understand varibales present in our dataset, taking
only training dataset as I need to compare the target variables
df = df_train.copy()

#Getting statistical information of features
df.describe()

	Id	MSSubClass	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt
count	1460.000000	1460.000000	1201.000000	1460.000000	1460.000000	1460.000000	1460.000000
mean	730.500000	56.897260	70.049958	10516.828082	6.099315	5.575342	1971.267808
std	421.610009	42.300571	24.284752	9981.264932	1.382997	1.112799	30.202904
\min	1.000000	20.000000	21.000000	1300.000000	1.000000	1.000000	1872.000000
25%	365.750000	20.000000	59.000000	7553.500000	5.000000	5.000000	1954.000000
50%	730.500000	50.000000	69.000000	9478.500000	6.000000	5.000000	1973.000000
75%	1095.250000	70.000000	80.000000	11601.500000	7.000000	6.000000	2000.000000
max	1460.000000	190.000000	313.000000	215245.000000	10.000000	9.000000	2010.000000

print(len(df['Id']))

#As we can see ID is unique identifier so we can remove it from the dataset later or set it as index but I decided to drop it.

1460

```
df.drop('Id', axis=1, inplace=True)
df_full.drop('Id', axis=1, inplace=True)
df_train.drop('Id', axis=1, inplace=True)
test_id = df_test['Id']
df_test.drop('Id', axis=1, inplace=True)
```

```
df['MSSubClass'] = df['MSSubClass'].astype(str)
```

2. Missing Values

```
# We can also see there are null values persent in the dataset, Let see what how
many null values are present
# Creating list of feature which have null(nan) values in percentage for better
understanding
Feature_with_na = [features for features in df.columns if
df[features].isna().sum()]

print ("Number of variables having missing values :" , len(Feature_with_na))
for features in Feature_with_na:
    print(features, np.round(df[features].isna().sum()/len(df[features])*100,4), '
% missing values')
```

```
Number of variables having missing values: 19
LotFrontage 17.7397 % missing values
Alley 93.7671 % missing values
MasVnrType 59.726 % missing values
MasVnrArea 0.5479 % missing values
BsmtQual 2.5342 % missing values
BsmtCond 2.5342 % missing values
```

BsmtExposure 2.6027 % missing values BsmtFinType1 2.5342 % missing values BsmtFinType2 2.6027 % missing values Electrical 0.0685 % missing values FireplaceQu 47.2603 % missing values GarageType 5.5479 % missing values GarageYrBlt 5.5479 % missing values GarageFinish 5.5479 % missing values GarageQual 5.5479 % missing values GarageCond 5.5479 % missing values PoolQC 99.5205 % missing values Fence 80.7534 % missing values MiscFeature 96.3014 % missing values

```
#Visualizing the missing values
plt.figure(figsize=(16,9))
sn.heatmap(df.isna())
```


Since there are alot of missing values, we will need to check if there is a relationship between missing values with Target Variable, which in this case is Sales Price

Let's analyze it with diagram for better understanding

As we can observe clearly that the missing values has relationship with Target variable (Sales Price).

```
# Calculating the number of rows and columns for subplots, as I want 3 columns
and rest will be with number of features present
n_plots = len(Feature_with_na)
n_{cols} = 3
n_rows = -(-n_plots // n_cols)
# Creating the subplots
fig, axs = plt.subplots(nrows=n_rows, ncols=n_cols, figsize=(5 * n_cols, 5 *
n rows))
# Flattening the axs array if more than one row
if n rows > 1:
   axs = axs.flatten()
else:
   axs = [axs]
# Defining colors for bars representing 1s and 0s
colors = {0: 'blue', 1: 'red'}
# Ploting each feature
for idx, feature in enumerate(Feature_with_na):
    # Copy the dataset so the changes are not reflected in actual dataset
    data_for_null = df.copy()
    # Creating a variable indicating missing values
    data_for_null[feature] = np.where(data_for_null[feature].isna(), 1, 0)
    # Calculating the median SalePrice where information is missing or present
    plot_data = data_for_null.groupby(feature)['SalePrice'].median()
    # Creating the bar plot
    plot_data.plot.bar(ax=axs[idx], color=[colors[val] for val in
plot_data.index])
    axs[idx].set_title(feature)
# Hiding any unused subplots
for i in range(n_plots, len(axs)):
    fig.delaxes(axs[i])
plt.subplots_adjust(wspace=0.4, hspace=0.6)
plt.tight_layout(pad=2.0)
plt.show()
```



```
#Let's check if we need to drop any feature where more than 50% of data is
missing
Features_nan = np.round(df.isna().sum()/len(df[features])*100,4)
Feature_with_nan_more_than_50 = Features_nan[Features_nan > 50]
Feature_with_nan_more_than_50
sn.heatmap(df[Feature_with_nan_more_than_50.keys()].isna())
```


#Let's check if we need to drop any feature where missing data is between 20 and
50
Feature_with_nan_bw_20_50 = Features_nan[(Features_nan < 50) & (Features_nan > 20)]
Feature_with_nan_bw_20_50
sn.heatmap(df[Feature_with_nan_bw_20_50.keys()].isna())


```
#Let's check if we need to drop any feature where missing data is between 5 and
20
Feature_with_nan_bw_5_20 = Features_nan[(Features_nan < 20 ) & (Features_nan > 5)]
Feature_with_nan_bw_5_20
sn.heatmap(df[Feature_with_nan_bw_5_20.keys()].isna())
```



```
Feature_with_nan_below_5 = Features_nan[(Features_nan < 5 ) & (Features_nan >
0.5)]
Feature_with_nan_below_5
sn.heatmap(df[Feature_with_nan_below_5.keys()].isna())
```


After checking the NA values description in the dataset from the provided documentation we can see that the NA is label for some specific feature is not present but it was captured so cannot drop the feature. All the features having missing values as NA as label will be replaced as constant value and other will be replaced with imputation

3. Performing Analysis on Numerical Variables

```
#list of numerical values
numerical_features = [features for features in df.columns if df[features].dtypes
!='0' ]
print('Number of numerical features:' , len(numerical_features))
df[numerical_features].head()
```

Number of numerical features: 36

	LotFrontage	LotArea	OverallQual	OverallCond	YearBuilt	YearRemodAdd	MasVnrArea	BsmtFin
0	65.0	8450	7	5	2003	2003	196.0	706
1	80.0	9600	6	8	1976	1976	0.0	978
2	68.0	11250	7	5	2001	2002	162.0	486
3	60.0	9550	7	5	1915	1970	0.0	216
4	84.0	14260	8	5	2000	2000	350.0	655

```
#Let analyze the sales price over the Year
#Obtaining the features with year
year_features =[features for features in numerical_features if 'Yr' in features
or 'Year' in features]
year_features
```

['YearBuilt', 'YearRemodAdd', 'GarageYrBlt', 'YrSold']

```
#getting unique values of year features
for features in year_features:
    print(features, len(df[features].unique()))
```

YearBuilt 112 YearRemodAdd 61 GarageYrBlt 98 YrSold 5

```
#From above, lets check the realtionship of Year Sold with Sales Price
df.groupby('YrSold')['SalePrice'].median().plot()
plt.xlabel('Year Sold')
plt.ylabel('Sales Price')
plt.title('Sales Price over the year')
```

Text(0.5, 1.0, 'Sales Price over the year')

From above, looks like the house price decrease over the year which is usually not the case

```
# Calculating the number of rows and columns for subplots
n_plots = len(year_features)-1
n_cols = n_plots # All plots in a single row
n_rows = 1
# Creating the subplots
fig, axs = plt.subplots(nrows=n_rows, ncols=n_cols, figsize=(5 * n_cols, 5 *
n_rows))
# Ploting chart for each feature
for idx, feature in enumerate(year_features):
    if feature != 'YrSold':
        # Copying the dataset so we do not make any changes to actuall dataset
       data_for_year = df.copy()
        # Calculating the difference
       data_for_year[feature] = data_for_year['YrSold'] - data_for_year[feature]
        # Scatter plot for each feature
        axs[idx].scatter(data_for_year[feature], data_for_year['SalePrice'])
```

```
axs[idx].set_xlabel(f'Number of year took to sell since {feature}')
axs[idx].set_ylabel('SalePrice')
axs[idx].set_title(f'Sales Price with {feature}')

# Adjusting layout
plt.subplots_adjust(wspace=0.4)
plt.tight_layout(pad=2.0)
plt.show()
```


4. Distribution of Numberical Variables with Target variable Numerical Varibales

```
#There are usually 2 type of Numerical varibales (Discrete and Continous)

#Getting Discrete variable
discrete_variables = [features for features in numerical_features if
len(df[features].unique())<25]
discrete_variables</pre>
```

```
['OverallQual',
'OverallCond',
'LowQualFinSF',
'BsmtFullBath',
 'BsmtHalfBath',
 'FullBath',
'HalfBath',
'BedroomAbvGr',
'KitchenAbvGr',
'TotRmsAbvGrd',
'Fireplaces',
 'GarageCars',
 '3SsnPorch',
'PoolArea',
 'MiscVal',
'MoSold',
 'YrSold']
```

df[discrete_variables].head()

	OverallQual	OverallCond	LowQualFinSF	BsmtFullBath	BsmtHalfBath	FullBath	HalfBath	Bedro
0	7	5	0	1	0	2	1	3
1	6	8	0	0	1	2	0	3
2	7	5	0	1	0	2	1	3
3	7	5	0	1	0	1	0	3
4	8	5	0	1	0	2	1	4

```
# Calculating the number of rows and columns for subplots, as I want 3 columns
and rest will be with number of feat
n_plots = len(discrete_variables)
n_{cols} = 3
n_rows = -(-n_plots // n_cols)
# Creating the subplots
fig, axs = plt.subplots(nrows=n_rows, ncols=n_cols, figsize=(5 * n_cols, 5 *
n_rows))
# Flattening the axs array if more than one row
if n_rows > 1:
   axs = axs.flatten()
else:
   axs = [axs]
# Ploting chart for each feature
for idx, feature in enumerate(discrete_variables):
    # Copying the dataset
    data_for_discrete = df.copy()
    # Calculating the median SalePrice with discrete variables
   plot_data = data_for_discrete.groupby(feature)['SalePrice'].median()
    # Creating a colormap for better visuals
    colors = cm.rainbow(np.linspace(0, 1, len(plot_data)))
    # Creating the bar plot
    plot_data.plot.bar(ax=axs[idx], color = colors)
    axs[idx].set_title(f'Sales Price with {feature}')
# Hiding any unused subplots
for i in range(n_plots, len(axs)):
   fig.delaxes(axs[i])
```

```
plt.subplots_adjust(wspace=0.4, hspace=0.6)
plt.tight_layout(pad=2.0)
plt.show()
```


Continous Variable

```
#Obtaining all the continous variables
continous_varibales = [features for features in numerical_features if features
not in discrete_variables+year_features]
print('Count of Continous varibables :{}'.format(len(continous_varibales)))
```

Count of Continous varibables :16

```
# Calculating the number of rows and columns for subplots, as I want 3 columns
and rest will be with number of feat
n_plots = len(continous_varibales)
n_{cols} = 3
n_rows = -(-n_plots // n_cols)
# CreatING the subplots
fig, axs = plt.subplots(nrows=n_rows, ncols=n_cols, figsize=(5 * n_cols, 5 *
n_rows))
# Flatteing the axs array if more than one row
if n_rows > 1:
    axs = axs.flatten()
else:
    axs = [axs]
# Ploting chart for each feature
for idx, feature in enumerate(continous_varibales):
    # Copy the dataset
    data_for_continous = df.copy()
    # Creating the histogram
    data_for_continous[feature].plot.hist(ax=axs[idx], bins=25)
    axs[idx].set_xlabel(feature)
    axs[idx].set_ylabel('SalePrice')
    axs[idx].set_title(f'Sales Price over {feature}')
# Hiding any unused subplots
for i in range(n_plots, len(axs)):
    fig.delaxes(axs[i])
plt.subplots_adjust(wspace=0.4, hspace=0.6)
plt.tight_layout(pad=2.0)
plt.show()
```


5. Categorical Variables

'PavedDrive',
'PoolQC',

```
df[features].dtypes =='0']
categorical_features
['MSSubClass',
 'MSZoning',
 'Street',
 'Alley',
 'LotShape',
 'LandContour',
 'Utilities',
 'LotConfig',
 'LandSlope',
 'Neighborhood',
 'Condition1',
 'Condition2',
 'BldgType',
 'HouseStyle',
 'RoofStyle',
 'RoofMatl',
 'Exterior1st',
 'Exterior2nd',
 'MasVnrType',
 'ExterQual',
 'ExterCond',
 'Foundation',
 'BsmtQual',
 'BsmtCond',
 'BsmtExposure',
 'BsmtFinType1',
 'BsmtFinType2',
 'Heating',
 'HeatingQC',
 'CentralAir',
 'Electrical',
 'KitchenQual',
 'Functional',
 'FireplaceQu',
 'GarageType',
 'GarageFinish',
 'GarageQual',
 'GarageCond',
```

categorical_features = [features for features in df.columns if

```
'Fence',
```

df[categorical_features].head()

	MSSubClass	MSZoning	Street	Alley	LotShape	LandContour	Utilities	LotConfig	LandSlope	N
0	60	RL	Pave	NaN	Reg	Lvl	AllPub	Inside	Gtl	C
1	20	RL	Pave	NaN	Reg	Lvl	AllPub	FR2	Gtl	Ve
2	60	RL	Pave	NaN	IR1	Lvl	AllPub	Inside	Gtl	C_0
3	70	RL	Pave	NaN	IR1	Lvl	AllPub	Corner	Gtl	\mathbf{C}_{1}
4	60	RL	Pave	NaN	IR1	Lvl	AllPub	FR2	Gtl	N

```
for features in categorical_features:
  print('Feature is {} and the number of categories are {}:'.format(features,
    len(df[features].unique())))
```

```
Feature is MSSubClass and the number of categories are 15:
Feature is MSZoning and the number of categories are 5:
Feature is Street and the number of categories are 2:
Feature is Alley and the number of categories are 3:
Feature is LotShape and the number of categories are 4:
Feature is LandContour and the number of categories are 4:
Feature is Utilities and the number of categories are 2:
Feature is LotConfig and the number of categories are 5:
Feature is LandSlope and the number of categories are 3:
Feature is Neighborhood and the number of categories are 25:
Feature is Condition1 and the number of categories are 9:
Feature is Condition2 and the number of categories are 8:
Feature is BldgType and the number of categories are 5:
Feature is HouseStyle and the number of categories are 8:
Feature is RoofStyle and the number of categories are 6:
Feature is RoofMatl and the number of categories are 8:
Feature is Exterior1st and the number of categories are 15:
Feature is Exterior2nd and the number of categories are 16:
Feature is MasVnrType and the number of categories are 4:
Feature is ExterQual and the number of categories are 4:
Feature is ExterCond and the number of categories are 5:
Feature is Foundation and the number of categories are 6:
Feature is BsmtQual and the number of categories are 5:
Feature is BsmtCond and the number of categories are 5:
Feature is BsmtExposure and the number of categories are 5:
Feature is BsmtFinType1 and the number of categories are 7:
Feature is BsmtFinType2 and the number of categories are 7:
```

^{&#}x27;MiscFeature',

^{&#}x27;SaleType',

^{&#}x27;SaleCondition']

```
Feature is Heating and the number of categories are 6:
Feature is HeatingQC and the number of categories are 5:
Feature is CentralAir and the number of categories are 2:
Feature is Electrical and the number of categories are 6:
Feature is KitchenQual and the number of categories are 4:
Feature is Functional and the number of categories are 7:
Feature is FireplaceQu and the number of categories are 6:
Feature is GarageType and the number of categories are 7:
Feature is GarageFinish and the number of categories are 4:
Feature is GarageQual and the number of categories are 6:
Feature is GarageCond and the number of categories are 6:
Feature is PavedDrive and the number of categories are 3:
Feature is PoolQC and the number of categories are 4:
Feature is Fence and the number of categories are 5:
Feature is MiscFeature and the number of categories are 5:
Feature is SaleType and the number of categories are 9:
Feature is SaleCondition and the number of categories are 6:
```

6. Distribution of Numberical Variables with Target variable

```
# Calculating the number of rows and columns for subplots, as I want 3 columns
and rest will be with number of feat
n_plots = len(categorical_features)
n_{cols} = 3
n_rows = -(-n_plots // n_cols)
# Creating the subplots
fig, axs = plt.subplots(nrows=n_rows, ncols=n_cols, figsize=(5 * n_cols, 5 *
n rows))
# Flattening the axs array if more than one row
if n rows > 1:
    axs = axs.flatten()
   axs = [axs]
# Ploting chart for each feature
for idx, feature in enumerate(categorical_features):
    # Copying the dataset
    data_for_discrete = df.copy()
    # Calculating the median SalePrice with discrete variables
    plot_data = data_for_discrete.groupby(feature)['SalePrice'].median()
    # Creating a colormap
    colors = cm.rainbow(np.linspace(0, 1, len(plot_data)))
```

```
# Creating the bar plot
plot_data.plot.bar(ax=axs[idx], color = colors)
axs[idx].set_title(f'Sales Price with {feature}')

# Hide any unused subplots
for i in range(n_plots, len(axs)):
    fig.delaxes(axs[i])

plt.subplots_adjust(wspace=0.4, hspace=0.6)
plt.tight_layout(pad=2.0)
plt.show()
```


7. Outliers

```
# Calculating the number of rows and columns for subplots, as I want 3 columns
and rest will be with number of feat
n_plots = len(continous_varibales)
n_{cols} = 3
n_rows = -(-n_plots // n_cols)
# Creating the subplots
fig, axs = plt.subplots(nrows=n_rows, ncols=n_cols, figsize=(5 * n_cols, 5 *
n_rows))
# Flattening the axs array if more than one row
if n_rows > 1:
    axs = axs.flatten()
else:
    axs = [axs]
# Ploting chart for each feature
for idx, feature in enumerate(continous_varibales):
    # Copying the dataset
    data_for_continous = df.copy()
    # Creating the histogram
    data_for_continous.boxplot(column = [feature], ax= axs[idx])
    axs[idx].set_xlabel(feature)
# Hiding any unused subplots
for i in range(n_plots, len(axs)):
    fig.delaxes(axs[i])
plt.subplots_adjust(wspace=0.4, hspace=0.6)
plt.tight_layout(pad=2.0)
plt.show()
```



```
# Calculating the number of rows and columns for subplots, as I want 3 columns
and rest will be with number of feat
n_plots = len(continous_varibales)
n_{cols} = 3
n_rows = -(-n_plots // n_cols)
# Creating the subplots
fig, axs = plt.subplots(nrows=n_rows, ncols=n_cols, figsize=(5 * n_cols, 5 *
n rows))
# Flattening the axs array if more than one row
if n_rows > 1:
    axs = axs.flatten()
else:
    axs = [axs]
# Ploting for each feature
for idx, feature in enumerate(continous_varibales):
    # Copying the dataset
    data_for_continous = df.copy()
    if 0 in data_for_continous[feature].unique():
      pass
    else:
      data_for_continous[feature] = np.log(data_for_continous[feature])
    # Creating the histogram
    data_for_continous.boxplot(column = [feature], ax= axs[idx])
    axs[idx].set_xlabel(feature)
# Hiding any unused subplots
for i in range(n_plots, len(axs)):
    fig.delaxes(axs[i])
plt.subplots_adjust(wspace=0.4, hspace=0.6)
plt.tight_layout(pad=2.0)
plt.show()
```


Feature Engineering

Below are the steps followed for feature Engineering (not in the same order) 1. Handling Missing Values 2. Temporal variables 3. Converting Numerical Features to Categorical features (if required) 4. Converting Categorical features in numerical features 5. Converting Nominal Categorgies using OneHot Encoding (we can use any encoding method)

```
#making sure until to keep a copy of dataset which does not effect anything to
the original dataset
df_FE = df_full.copy()
```

```
df_FE['MSZoning'].isna().sum()
```

4

1. Handling Missing Values

Categorical Variables

```
Missing_categorical_features = [feature for feature in
df_FE[categorical_features] if df_FE[feature].isna().sum()]

for feature in Missing_categorical_features:
    print("{} : {}% missing values".format(feature,np.round(df_FE[feature].isna().
        sum()/len(df_FE[feature])*100,4)))
```

MSZoning : 0.137% missing values Alley: 93.2169% missing values Utilities: 0.0685% missing values Exterior1st : 0.0343% missing values Exterior2nd: 0.0343% missing values MasVnrType : 60.5002% missing values BsmtQual: 2.7749% missing values BsmtCond: 2.8092% missing values BsmtExposure : 2.8092% missing values BsmtFinType1 : 2.7064% missing values BsmtFinType2 : 2.7407% missing values Electrical: 0.0343% missing values KitchenQual : 0.0343% missing values Functional: 0.0685% missing values FireplaceQu: 48.6468% missing values GarageType : 5.3786% missing values GarageFinish: 5.4471% missing values GarageQual : 5.4471% missing values GarageCond : 5.4471% missing values PoolQC: 99.6574% missing values Fence: 80.4385% missing values

MiscFeature : 96.4029% missing values SaleType : 0.0343% missing values

```
Constant_Label_cat_features = ['Alley',
                                 'BsmtQual',
                                 'BsmtCond',
                                 'BsmtExposure',
                                 'BsmtFinType1',
                                 'BsmtFinType2',
                                 'Electrical',
                                 'FireplaceQu',
                                 'GarageType',
                                 'GarageFinish',
                                 'GarageQual',
                                 'GarageCond',
                                 'PoolQC',
                                 'Fence',
                                 'MiscFeature' ]
Mode_Label_cat_features = ['MSZoning',
                            'MasVnrType',
                            'Utilities',
                            'Exterior1st',
                            'Exterior2nd',
                            'KitchenQual',
                             'Functional',
                             'SaleType']
```

```
#Replacing all the missing (nan) values with a label,

for features in Constant_Label_cat_features:
    df_FE[features] = df_FE[features].fillna('NA')

for features in Mode_Label_cat_features:
    df_FE[features] = df_FE[features].fillna(df_FE[features].mode()[0])

df_FE[Missing_categorical_features].isna().sum()
```

0 MSZoning 0 Alley 0 Utilities 0 Exterior1st Exterior2nd 0 0 MasVnrType BsmtQual 0 BsmtCond 0 BsmtExposure 0 BsmtFinType1 0

```
BsmtFinType2
                0
Electrical
                0
KitchenQual
                0
Functional
                0
FireplaceQu
                0
GarageType
                0
GarageFinish
                0
GarageQual
GarageCond
                0
PoolQC
                0
                0
Fence
                0
MiscFeature
SaleType
                0
dtype: int64
```

Numerical Variables

```
Missing_numerical_features = [feature for feature in df_FE.columns if
df_FE[feature].dtypes != '0' and df_FE[feature].isna().sum() > 0]

for feature in Missing_numerical_features:
    print("{} : {}% missing
    values".format(feature,np.round(df_FE[feature].isna().mean(),4)))
```

LotFrontage: 0.1665% missing values
MasVnrArea: 0.0079% missing values
BsmtFinSF1: 0.0003% missing values
BsmtFinSF2: 0.0003% missing values
BsmtUnfSF: 0.0003% missing values
TotalBsmtSF: 0.0003% missing values
BsmtFullBath: 0.0007% missing values
BsmtHalfBath: 0.0007% missing values
GarageYrBlt: 0.0545% missing values
GarageCars: 0.0003% missing values
GarageArea: 0.0003% missing values
SalePrice: 0.4998% missing values

```
#Replacing all the missing (nan) values with a label
for feature in Missing_numerical_features:
    median_values = df_FE[feature].median()

df_FE[feature+'nan'] = np.where(df_FE[feature].isna(),1,0)
    df_FE[feature].fillna(median_values, inplace = True)

df_FE[Missing_numerical_features].isna().sum()
```

LotFrontage 0 MasVnrArea 0

```
BsmtFinSF1
                0
BsmtFinSF2
                0
BsmtUnfSF
                0
TotalBsmtSF
                0
BsmtFullBath
                0
BsmtHalfBath
                0
GarageYrBlt
                0
GarageCars
                0
GarageArea
                0
SalePrice
                0
dtype: int64
```

```
df_FE.columns.isna().sum()
```

0

2. Temporal Variables

```
for feature in ['YearBuilt', 'YearRemodAdd', 'GarageYrBlt']:
    df_FE[feature] = df_FE['YrSold']-df_FE[feature]
```

```
df_FE.head()
```

	${\it MSSubClass}$	MSZoning	LotFrontage	LotArea	Street	Alley	LotShape	LandContour	Utilities	Lo
0	60	RL	65.0	8450	Pave	NA	Reg	Lvl	AllPub	In
1	20	RL	80.0	9600	Pave	NA	Reg	Lvl	AllPub	Fl
2	60	RL	68.0	11250	Pave	NA	IR1	Lvl	AllPub	In
3	70	RL	60.0	9550	Pave	NA	IR1	Lvl	AllPub	C_0
4	60	RL	84.0	14260	Pave	NA	IR1	Lvl	AllPub	Fl

3. Converting Numerical Features to Categorical features

```
num_conv = ['MSSubClass','YrSold' ,'MoSold']

df_FE['MoSold'] = df_FE['MoSold'].apply(lambda x : calendar.month_abbr[x])

df_FE['MoSold'].value_counts()
```

MoSold

Jun 503 Jul 446 May 394 Apr 279 Aug 233

```
232
Mar
Oct
       173
       158
Sep
Nov
       142
Feb
       133
       122
Jan
Dec
       104
Name: count, dtype: int64
for feature in num_conv:
  df_FE[feature] = df_FE[feature].astype(str)
```

4. Converting Categorical features in numerical features

```
order mappings = {
    'ExterQual': ['Po', 'Fa', 'TA', 'Gd', 'Ex'],
    'ExterCond': ['Po', 'Fa', 'TA', 'Gd', 'Ex'],
    'BsmtQual': ['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'],
    'BsmtCond': ['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'],
    'BsmtExposure': ['NA', 'No', 'Mn', 'Av', 'Gd'],
    'BsmtFinType1': ['NA', 'Unf', 'LwQ', 'Rec', 'BLQ', 'ALQ', 'GLQ'],
    'BsmtFinType2': ['NA', 'Unf', 'LwQ', 'Rec', 'BLQ', 'ALQ', 'GLQ'],
    'HeatingQC': ['Po', 'Fa', 'TA', 'Gd', 'Ex'],
    'KitchenQual': ['Po', 'Fa', 'TA', 'Gd', 'Ex'],
    'FireplaceQu': ['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'],
    'GarageQual': ['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'],
    'GarageCond': ['NA', 'Po', 'Fa', 'TA', 'Gd', 'Ex'],
    'PoolQC': ['NA', 'Fa', 'TA', 'Gd', 'Ex'],
    'Functional': ['Sal', 'Sev', 'Maj2', 'Maj1', 'Mod', 'Min2', 'Min1', 'Typ'],
    'GarageFinish': ['NA', 'Unf', 'RFn', 'Fin'],
    'Fence': ['NA', 'MnWw', 'GdWo', 'MnPrv', 'GdPrv'],
    'PavedDrive': ['N', 'P', 'Y'],
    'CentralAir': ['N', 'Y'],
    'Utilities': ['ELO', 'NoSeWa', 'NoSewr', 'AllPub']
}
```

```
# Function to apply ordered label encoding for specific columns
def apply_label_encoding(df, order_mappings):
    df_encoded = df_FE.copy()
    for col, order_list in order_mappings.items():
        df_encoded[col] = df_FE[col].apply(lambda x: order_list.index(x))
    return df_encoded
```

```
# Apply ordered label encoding to specific columns
df_encoded_ordered = apply_label_encoding(df_FE, order_mappings)
```

df_encoded_ordered['Utilities'].value_counts()

Utilities 3 2918 1 1

Name: count, dtype: int64

df_FE['Utilities'].value_counts()

Utilities AllPub 2918 NoSeWa 1

Name: count, dtype: int64

df_encoded_ordered.dtypes

MSSubClass object MSZoning object LotFrontage float64 LotArea int64Street object Alley object LotShape object LandContour object Utilities int64 LotConfig object LandSlope object Neighborhood object Condition1 object Condition2 object BldgType object HouseStyle object OverallQual int64OverallCond int64 YearBuilt int64 YearRemodAdd int64 RoofStyle object RoofMatl object Exterior1st object Exterior2nd object MasVnrType object MasVnrArea float64 ExterQual int64 ExterCond int64 Foundation object int64 ${\tt BsmtQual}$

BsmtCond	int64
BsmtExposure	int64
BsmtFinType1	int64
BsmtFinSF1	float64
BsmtFinType2	int64
BsmtFinSF2	float64
BsmtUnfSF	float64
TotalBsmtSF	float64
Heating	object
HeatingQC	int64
CentralAir	int64
Electrical	object
1stFlrSF	int64
2ndFlrSF	int64
	int64
LowQualFinSF	
GrLivArea	int64
BsmtFullBath	float64
BsmtHalfBath	float64
FullBath	int64
HalfBath	int64
BedroomAbvGr	int64
KitchenAbvGr	int64
KitchenQual	int64
TotRmsAbvGrd	int64
Functional	int64
Fireplaces	int64
FireplaceQu	int64
GarageType	object
GarageYrBlt	float64
GarageFinish	int64
GarageCars	float64
GarageArea	float64
GarageQual	int64
GarageCond	int64
PavedDrive	int64
WoodDeckSF	int64
OpenPorchSF	int64
EnclosedPorch	int64
3SsnPorch	int64
ScreenPorch	int64
PoolArea	int64
PoolQC	int64
Fence	int64
MiscFeature	object
MiscVal	int64
MoSold	object
YrSold	•
	object
SaleType	object

```
SaleCondition
                    object
SalePrice
                   float64
LotFrontagenan
                      int64
MasVnrAreanan
                      int64
BsmtFinSF1nan
                      int64
BsmtFinSF2nan
                      int64
BsmtUnfSFnan
                      int64
TotalBsmtSFnan
                      int64
BsmtFullBathnan
                      int64
BsmtHalfBathnan
                      int64
GarageYrBltnan
                      int64
GarageCarsnan
                      int64
GarageAreanan
                      int64
SalePricenan
                      int64
dtype: object
```

5. Converting Nominal Categorgies using OneHot Encoding

```
Cat_features_to_encode = df_encoded_ordered.select_dtypes(include =
'object').columns.to_list()
print(len(Cat_features_to_encode))
Cat_features_to_encode
```

27

```
['MSSubClass',
 'MSZoning',
'Street',
 'Alley',
'LotShape',
 'LandContour',
'LotConfig',
 'LandSlope',
 'Neighborhood',
 'Condition1',
 'Condition2',
 'BldgType',
 'HouseStyle',
'RoofStyle',
 'RoofMatl',
'Exterior1st',
 'Exterior2nd',
 'MasVnrType',
 'Foundation',
 'Heating',
 'Electrical',
 'GarageType',
 'MiscFeature',
```

```
'MoSold',
 'YrSold',
 'SaleType',
 'SaleCondition']
def one_hot_encode(df, columns):
    encoder = OneHotEncoder(sparse_output = False , drop='first')
    # Encode each column and concatenate the result
    encoded_dfs = []
    for column in columns:
        encoded = encoder.fit_transform(df[[column]])
        encoded_df = pd.DataFrame(encoded,
columns=encoder.get_feature_names_out([column]))
        encoded_dfs.append(encoded_df)
    # Drop the original columns and concatenate the new one-hot encoded columns
    df = df.drop(columns=columns)
    encoded_df = pd.concat(encoded_dfs, axis=1)
    df = pd.concat([df, encoded_df], axis=1)
    return df
df_after_encoding =df_encoded_ordered.copy()
encoded_df = one_hot_encode(df_after_encoding, Cat_features_to_encode)
```

```
encoded_df.shape
```

(2919, 245)

7. Transforming the dataset

```
def log_transform(df, columns):
    transformed_df = encoded_df.copy()

for column in transformed_df.columns:
    if (transformed_df[column] == 0).any():
        transformed_df[column] = np.log(transformed_df[column] + 0.000001)
    else:
        transformed_df[column] = np.log(transformed_df[column])
    return transformed_df

# Applying the log transformation
transformed_encoded_data = log_transform(df, numerical_features)
```

transformed_encoded_data.head()

	LotFrontage	LotArea	Utilities	OverallQual	OverallCond	YearBuilt	${\bf Y} {\bf e} {\bf a} {\bf r} {\bf R} {\bf e} {\bf m} {\bf o} {\bf d} {\bf A} {\bf d} {\bf d}$	MasVnrArea
0	4.174387	9.041922	1.098612	1.945910	1.609438	1.609438	1.609438	5.278115
1	4.382027	9.169518	1.098612	1.791759	2.079442	3.433987	3.433987	-13.815511
2	4.219508	9.328123	1.098612	1.945910	1.609438	1.945910	1.791760	5.087596
3	4.094345	9.164296	1.098612	1.945910	1.609438	4.510860	3.583519	-13.815511
4	4.430817	9.565214	1.098612	2.079442	1.609438	2.079442	2.079442	5.857933

6. Spliting data for Training and Testing

```
len_train = df_train.shape[0]
X_train = encoded_df[: len_train].drop('SalePrice', axis = 1)
y_train = encoded_df["SalePrice"][ :len_train]
X_test = encoded_df[len_train:].drop('SalePrice', axis = 1)

print("Shape of X train :" , X_train.shape)
print("Shape of Y train :" , y_train.shape)
print("Shape of X test :" , X_test.shape)
```

Shape of X train: (1460, 244) Shape of Y train: (1460,) Shape of X test: (1459, 244)

Feature Scaling

```
sc = StandardScaler()
sc.fit(X_train)

X_train = sc.transform(X_train)
X_test = sc.transform(X_test)
```

```
log_y_train = np.log(y_train)
```

Training and Testing the Model

```
_ = setup(data = X_train, target = log_y_train)
```

Table 11

	Description	Value
0	Session id	5969
1	Target	SalePrice
2	Target type	Regression
3	Original data shape	(1460, 245)
4	Transformed data shape	(1460, 245)
5	Transformed train set shape	(1021, 245)
6	Transformed test set shape	(439, 245)
7	Numeric features	244
8	Preprocess	True
9	Imputation type	simple
10	Numeric imputation	mean
11	Categorical imputation	mode
12	Fold Generator	KFold
13	Fold Number	10
14	CPU Jobs	-1
15	Use GPU	False
16	Log Experiment	False
17	Experiment Name	reg-default-name
18	USI	f943

compare_models()

<IPython.core.display.HTML object>

Table 12

-	Model	MAE	MSE	RMSE	
br	Bayesian Ridge	0.0891	0.0187	0.1345	
gbr	Gradient Boosting Regressor	0.0927	0.0196	0.1379	
omp	Orthogonal Matching Pursuit	0.0921	0.0200	0.1387	
lightgbm	Light Gradient Boosting Machine	0.0950	0.0200	0.1399	
ridge	Ridge Regression	0.0947	0.0206	0.1414	
rf	Random Forest Regressor	0.0990	0.0218	0.1462	
et	Extra Trees Regressor	0.0982	0.0221	0.1477	
xgboost	Extreme Gradient Boosting	0.1032	0.0238	0.1517	
ada	AdaBoost Regressor	0.1329	0.0318	0.1776	
knn	K Neighbors Regressor	0.1507	0.0448	0.2108	
dt	Decision Tree Regressor	0.1533	0.0484	0.2187	
lasso	Lasso Regression	0.3169	0.1674	0.4082	
en	Elastic Net	0.3169	0.1674	0.4082	
llar	Lasso Least Angle Regression	0.3169	0.1674	0.4082	
dummy	Dummy Regressor	0.3169	0.1674	0.4082	
huber	Huber Regressor	0.3130	2.8025	1.4317	

	Model	MAE	MSE	RMSE
par	Passive Aggressive Regressor	0.3368	2.8477	1.4470
lr	Linear Regression	25.2739	93601.6944	178.210
lar	Least Angle Regression	153664718626.5088	23886325223386061731790848.0000	154634

Processing: 0% | 0/81 [00:00<?, ?it/s]

<IPython.core.display.HTML object>

BayesianRidge()

```
#Taking only top 3 models
lgbm = lgb.LGBMRegressor()
gbr = GradientBoostingRegressor()
etr = ExtraTreesRegressor()
rfr = RandomForestRegressor()
xgb = XGBRegressor()
brm = BayesianRidge()
orl = OrthogonalMatchingPursuit()
```

```
models = {
    "a" : ["BayesianRidge", brm],
    "b" : ["GradientBoostingRegressor", gbr],
    "c" : ["OrthogonalMatchingPursuit", orl],
    "d" : ["LGBMRegressor", lgbm],
    "e" : ["XGBRegressor", xgb]
}
```

```
from sklearn.model_selection import KFold, cross_val_score

def test_model(model, X_train, y_train):
    cv = KFold(n_splits=10, shuffle=True, random_state= 45)
    r2_val_score = np.exp(np.sqrt(-cross_val_score(model, X_train, y_train, cv=
cv, scoring='neg_mean_squared_error')))
    score = [r2_val_score.mean()]
    return score
```

```
model_score = []
for model in models:
    score = test_model(models[model][1], X_train, log_y_train)
    model_score.append([models[model][0], score[0]])
```

[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.007683 seconds.

You can set `force_row_wise=true` to remove the overhead.

And if memory is not enough, you can set `force_col_wise=true`.

[LightGBM] [Info] Total Bins 3394

[LightGBM] [Info] Number of data points in the train set: 1314, number of used features: 158

[LightGBM] [Info] Start training from score 12.026196

[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.002674 seconds.

You can set `force_row_wise=true` to remove the overhead.

And if memory is not enough, you can set `force_col_wise=true`.

[LightGBM] [Info] Total Bins 3384

[LightGBM] [Info] Number of data points in the train set: 1314, number of used features: 158

[LightGBM] [Info] Start training from score 12.022179

[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.002523 seconds.

You can set `force_row_wise=true` to remove the overhead.

And if memory is not enough, you can set `force_col_wise=true`.

[LightGBM] [Info] Total Bins 3381

[LightGBM] [Info] Number of data points in the train set: 1314, number of used features: 157

[LightGBM] [Info] Start training from score 12.022273

[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing was 0.003889 seconds.

You can set `force_col_wise=true` to remove the overhead.

[LightGBM] [Info] Total Bins 3396

[LightGBM] [Info] Number of data points in the train set: 1314, number of used features: 158

[LightGBM] [Info] Start training from score 12.023139

[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.001981 seconds.

You can set `force_row_wise=true` to remove the overhead.

And if memory is not enough, you can set `force_col_wise=true`.

[LightGBM] [Info] Total Bins 3383

[LightGBM] [Info] Number of data points in the train set: 1314, number of used features: 156

[LightGBM] [Info] Start training from score 12.023622

[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.001778 seconds.

You can set `force_row_wise=true` to remove the overhead.

And if memory is not enough, you can set `force_col_wise=true`.

[LightGBM] [Info] Total Bins 3396

[LightGBM] [Info] Number of data points in the train set: 1314, number of used features: 157

[LightGBM] [Info] Start training from score 12.021762

[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.001780 seconds.

You can set `force_row_wise=true` to remove the overhead.

And if memory is not enough, you can set `force_col_wise=true`.

[LightGBM] [Info] Total Bins 3397

[LightGBM] [Info] Number of data points in the train set: 1314, number of used features: 158

[LightGBM] [Info] Start training from score 12.027423

[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.001733 seconds.

You can set `force_row_wise=true` to remove the overhead.

And if memory is not enough, you can set `force_col_wise=true`.

[LightGBM] [Info] Total Bins 3387

[LightGBM] [Info] Number of data points in the train set: 1314, number of used features: 157

[LightGBM] [Info] Start training from score 12.022772

[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.001735 seconds.

You can set `force_row_wise=true` to remove the overhead.

And if memory is not enough, you can set `force_col_wise=true`.

[LightGBM] [Info] Total Bins 3380

[LightGBM] [Info] Number of data points in the train set: 1314, number of used features: 158

[LightGBM] [Info] Start training from score 12.024812

[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.001767 seconds.

You can set `force_row_wise=true` to remove the overhead.

And if memory is not enough, you can set `force_col_wise=true`.

[LightGBM] [Info] Total Bins 3389

[LightGBM] [Info] Number of data points in the train set: 1314, number of used features: 158

[LightGBM] [Info] Start training from score 12.026331

```
score_df = pd.DataFrame(model_score, columns=['Model', 'Score'])
print(score_df.to_string(index=False))
```

Model Score

BayesianRidge 1.158860

GradientBoostingRegressor 1.138959

OrthogonalMatchingPursuit 1.163576

LGBMRegressor 1.138143

XGBRegressor 1.157024

BaseLine Model

```
#selected only the top model we get late we can do the bagging as well
test cv = KFold(n splits=10, shuffle=True, random state= 45)
test_r2_val_score = cross_val_score(lgbm, X_train, log_y_train, cv= test_cv,
scoring='neg_mean_squared_error')
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing
was 0.001793 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 3394
[LightGBM] [Info] Number of data points in the train set: 1314, number of used
features: 158
[LightGBM] [Info] Start training from score 12.026196
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing
was 0.004168 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 3384
[LightGBM] [Info] Number of data points in the train set: 1314, number of used
features: 158
[LightGBM] [Info] Start training from score 12.022179
[LightGBM] [Info] Auto-choosing col-wise multi-threading, the overhead of testing
was 0.003803 seconds.
You can set `force_col_wise=true` to remove the overhead.
[LightGBM] [Info] Total Bins 3381
[LightGBM] [Info] Number of data points in the train set: 1314, number of used
features: 157
[LightGBM] [Info] Start training from score 12.022273
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing
was 0.005467 seconds.
You can set `force row wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 3396
[LightGBM] [Info] Number of data points in the train set: 1314, number of used
features: 158
[LightGBM] [Info] Start training from score 12.023139
[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing
was 0.001807 seconds.
You can set `force_row_wise=true` to remove the overhead.
And if memory is not enough, you can set `force_col_wise=true`.
[LightGBM] [Info] Total Bins 3383
[LightGBM] [Info] Number of data points in the train set: 1314, number of used
features: 156
[LightGBM] [Info] Start training from score 12.023622
```

[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.001803 seconds.

You can set `force_row_wise=true` to remove the overhead.

And if memory is not enough, you can set `force_col_wise=true`.

[LightGBM] [Info] Total Bins 3396

[LightGBM] [Info] Number of data points in the train set: 1314, number of used features: 157

[LightGBM] [Info] Start training from score 12.021762

[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.002258 seconds.

You can set `force_row_wise=true` to remove the overhead.

And if memory is not enough, you can set `force_col_wise=true`.

[LightGBM] [Info] Total Bins 3397

[LightGBM] [Info] Number of data points in the train set: 1314, number of used features: 158

[LightGBM] [Info] Start training from score 12.027423

[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.001774 seconds.

You can set `force_row_wise=true` to remove the overhead.

And if memory is not enough, you can set `force_col_wise=true`.

[LightGBM] [Info] Total Bins 3387

[LightGBM] [Info] Number of data points in the train set: 1314, number of used features: 157

[LightGBM] [Info] Start training from score 12.022772

[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.002456 seconds.

You can set `force_row_wise=true` to remove the overhead.

And if memory is not enough, you can set `force_col_wise=true`.

[LightGBM] [Info] Total Bins 3380

[LightGBM] [Info] Number of data points in the train set: 1314, number of used features: 158

[LightGBM] [Info] Start training from score 12.024812

[LightGBM] [Info] Auto-choosing row-wise multi-threading, the overhead of testing was 0.001855 seconds.

You can set `force_row_wise=true` to remove the overhead.

And if memory is not enough, you can set `force_col_wise=true`.

[LightGBM] [Info] Total Bins 3389

[LightGBM] [Info] Number of data points in the train set: 1314, number of used features: 158

[LightGBM] [Info] Start training from score 12.026331

```
np.exp(np.sqrt(np.mean(-test_r2_val_score)))
```

1.1391308492278458

```
baseline_model = gbr.fit(X_train, log_y_train)
```