

The Dose Makes the Poison - Leveraging Uncertainty for Effective Malware Detection

Ruimin Sun, Xiaoyong Yuan, Andrew Lee, Matt Bishop, Donald E. Porter, Xiaolin Li, André Grégio, Daniela Oliveira

¹University of Florida(US), ⁴University of North Carolina at Chapel Hill(US), ³University of California at Davis(US), ⁵Federal University of Parana(Brazil), ²Duke University(US)

Malware Detection

Motivation

- Resourceful attacker can eventually get in.
- Pure traditional ML and DL has Pros and Cons.
 - Why not combine the best of the two worlds?
- Rate-limit potential malware is in need.

Chameleon

Making the combination of ML and DL possible

Interference Set

- Interference Set
 - 37 system calls representing OS functionalities relevant for malware
 - Most are I/O-bound

Category	System call
File related	sys_open, sys_openat, sys_creat, sys_read, sys_readv, sys_write, sys_writev, sys_lseek, sys_close, sys_stat, sys_lstat, sys_fstat, sys_stat64, sys_lstat64, sys_fstat64, sys_dup, sys_dup2, sys_dup3, sys_unlink, sys_rename
Network related	sys_bind, sys_listen, sys_connect, sys_accept, sys_accept4, sys_sendto, sys_recvfrom, sys_sendmsg, sys_recvmsg, sys_socketcall
Process related	sys_preadv, sys_pread64, sys_fork, sys_clone, sys_nanosleep

Strategies

- Perturbations to software
 - E.g. slow down, temporary function lost
 - Non-intrusive Strategies for whitelisted software
 - System call silencing with error return
 - Process delay
 - Process priority decrease
 - Intrusive strategies for non-whitelisted software
 - System call silencing
 - Buffer bytes change
 - Connection restriction
 - File offset change

Chameleon Architecture

Fig. 1: **System architecture**. When a process running in the uncertain environment invokes a system call in the interference set (1), the *Uncertainty Module* checks if the process is running in the uncertain environment (2), and depending on the execution of the *corruption protection* mechanism (3), **randomly** selects an interference strategy to apply to the system call. The corruption protection mechanism prevents interferences during accesses to critical files, such as libraries.

Experiments

- 113 software
 - From GNU projects, SPEC CPU2006, and Phoronix-test-suite
 - 47 I/O-bound and 66 CPU-bound
- 100 Linux malware
 - From THC and VirusShare
 - 22 flooders, 14 worms, 15 spyware, 24 Trojans and 25 viruses
- Threshold
 - **10%**, 50%
- Logging execution-related data
 - whether or not the program was adversely affected
 - Succeeded, Hampered, Crashed
 - the number of invoked system calls

Evaluation Results

	Thresh	old = 50%	Threshold = 10%		
Malware	Intrusive	Non-	Intrusive	Non-intrusive	
Category		intrusive			
Spyware	27%	40%	53%	60%	
Viruses	24%	24%	24%	28%	
Worm	21%	21%	29%	21%	
Trojans	17%	29%	46%	38%	
Flooders	9%	9%	41%	18%	
All	19%	24%	38%	32%	

	Thresh	old = 50%	Threshold = 10%		
Software	Intrusive	Non-	Intrusive	Non-intrusive	
Category		intrusive			
Text Editors	0%	33%	53%	73%	
Compilers	18%	36%	55%	73%	
Network Tools	38%	50%	56%	56%	
Scientific Tools	33%	40%	53%	60%	
Others	82%	79%	86%	86%	
All	41%	51%	63%	70%	

The ratio of Succeeded execution.

Evaluation Results

Malware Category	# of syscalls monitored	% of syscalls perturbed	% of connection- related syscalls perturbed	% of buffer- related syscalls perturbed
Spyware	50.37	2.89%	7.14%	3.06%
Viruses	423.44	5.02%	9.56%	4.96%
Worm	68880.64	0.05%	9.86%	8.97%
Trojans	523.80	8.09%	9.52%	7.14%
Flooders	930.50	9.74%	10.13%	6.58%
All	9992.49	0.41%	9.87%	6.83%

Goodware Category	# of syscalls monitored	% of syscalls perturbed	% of connection- related syscalls perturbed	% of buffer- related syscalls perturbed
Text Editors	6693.20	0.42%	0.04%	0.40%
Compilers	167303.36	0.04%	0.00%	0.00%
Network Tools	515.50	2.85%	10.99%	1.54%
Scientific Tools	2071.59	1.13%	0.00%	0.46%
Others	566.31	0.54%	0.00%	0.19%
All	20863.74	0.10%	0.40%	0.03%

Comparison on system call perturbation (with Non-intrusive strategies at threshold 10%).

APT

Simulated watering hole attack similar to the Black Vine APT from Symantec

Environment	None	Threshol	d = 10%	Threshold = 50%	
Environment	None	Non-intrusive	Intrusive	Non-intrusive	Intrusive
# of syscalls monitored	85	81	82	20	25
% of syscalls lost	0	5	4	76	71
% of connection- related syscalls lost	0	8	6	79	69
% of buffer- related bytes lost	0	9	9	95	96

Execution details of the APT in the standard and uncertain environment.

Discussion

- A resourceful adversary can bypass any protection mechanism
 - Highly fault-tolerant malware can escape the uncertain OS.
- There are trade-offs in selecting an interference strategy
 - Intrusive strategies are more aggressive.
 - Suitable for organizations with high security demands.
- The worst case scenario for effectiveness
 - SW receiving borderline classification all the time.
 - Stays in the uncertain environment.
- Can be adapted to Windows as well

Conclusions

CHAMELEON

- A Linux framework using uncertainty to rate-limit possible malware.
- Provides a "safety net" for failures of standard intrusion detection.

Results

 Malware were disproportionately disrupted by the uncertain environment than common software (38% vs. 70%).

Other contributions

- Making systems diverse by design.
- Increasing attackers' work factor.
- Decreasing the success probability and speed of attacks.
- Supports the combination of traditional ML and emerging DL methods.

Thank you!

Questions?

Ruimin Sun gracesrm@ufl.edu