Санкт-Петербургский политехнический университет Петра Великого

Институт прикладной математики и механики Кафедра «Прикладная математика»

Отчёт по лабораторной работе №2 по дисциплине «Математическая статистика»

Выполнил студент:

Кондратьев Д. А. группа: 3630102/70301

Проверил:

к.ф.-м.н., доцент Баженов Александр Николаевич

Санкт-Петербург 2020 г.

Содержание

1.	Пос	тановка задачи	2
2.	Teo	рия	2
	2.1.	Распределения	2
		Вариационный ряд	3
	2.3.	Выборочные числовые характеристики	3
		2.3.1. Характеристики положения	3
		2.3.2. Характеристики рассеяния	4
3.	Pea	лизация	4
4.	Рез	ультаты	5
		Характеристики положения и рассеяния	5
5.	Обс	уждение	6
6.	Лиз	гература	7
7.	При	иложение	7
\mathbf{C}	пис	сок таблиц	
	1	Нормальное распределение	5
	2	Распределение Коши	
	3	Распределение Лапласа	
	4	Распределение Пуассона	6
	5	Равномерное распределение	6

1. Постановка задачи

Для 5-ти рапределений:

- Нормальное распределение N(x, 0, 1);
- Распределение Коши C(x,0,1);
- Распределение Лапласа $L(x, 0, \frac{1}{\sqrt{2}})$;
- Распределение Пуассона P(k, 10);
- Равномерное Распределение $U(x, -\sqrt{3}, \sqrt{3})$;

Сгенерировать выборки размером 10, 100 и 1000 элементов. Для каждой выборки вычислить следующие статистические характеристики положения данных: \overline{x} , $med\ x$, z_R , z_Q , z_{tr} . Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:

$$E(z) = \overline{z} \tag{1}$$

Вычислить оценку дисперсии по формуле:

$$D(z) = \overline{z^2} - \overline{z}^2 \tag{2}$$

Представить полученные данные в виде таблиц.

2. Теория

2.1. Распределения

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{-\frac{x^2}{2}} \tag{3}$$

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi(1+x^2)} \tag{4}$$

• Распределение Лапласа

$$L\left(x,0,\frac{1}{\sqrt{2}}\right) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|}\tag{5}$$

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{6}$$

• Равномерное Распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & |x| \leqslant \sqrt{3} \\ 0 & |x| > \sqrt{3} \end{cases}$$
 (7)

2.2. Вариационный ряд

Вариационным рядом называется последовательность элементов выборки, расположенных в неубывающем порядке. Одинаковые элементы повторяются [1, с. 409].

Запись вариационного ряда: $x_1, x_2, ..., x_n$.

Элементы вариационного ряда x_i (i=1,2,...,n) называются порядковыми статистиками.

2.3. Выборочные числовые характеристики

С помощью выборки образуются её числовые характеристики. Это числовые характеристики дискретной случайной величины X^* , принимающей выборочные значения $x_1, x_2, ..., x_n$ [1, c. 411].

2.3.1. Характеристики положения

• Выборочное среднее:

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{8}$$

• Выборочная медиана:

$$med \ x = \begin{cases} x_{k+1}, & n = 2k+1\\ \frac{1}{2} (x_k + x_{k+1}), & n = 2k \end{cases}$$
 (9)

• Полусумма экстремальных выборочных элементов:

$$z_R = \frac{1}{2} (x_1 + x_n) \tag{10}$$

• Полусумма квартилей:

$$z_Q = \frac{1}{2} \left(z_{\frac{1}{4}} + z_{\frac{3}{4}} \right) \tag{11}$$

• Усечённое среднее:

$$z_{tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_i, \ r \approx \frac{n}{4}$$
 (12)

2.3.2. Характеристики рассеяния

Выборочная дисперсия:

$$D = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
 (13)

3. Реализация

Лабораторная работа выполнена на программном языке Python 3.8 в среде разработки $Jupyter\ Notebook\ 6.0.3$. В работе использовались следующие пакеты языка Python:

- numpy для генерации выборки и работы с массивами;
- scipy.stats содержит все необходимые распределения.

Ссылка на исходный код лабораторной работы приведена в приложении.

4. Результаты

4.1. Характеристики положения и рассеяния

Таблица 1. Нормальное распределение

	n =	= 10	n = 100		n = 1000			
	E(x) (1)	D(x) (2)	E(x)	D(x)	E(x)	D(x)		
\overline{x} (8)	0.00	0.0985	0.00	0.0107	-0.002	0.0010		
$med \ x \ (9)$	0.0	0.1337	0.00	0.0149	-0.001	0.0016		
$z_R (10)$	0.0	0.1847	0.00	0.0928	-0.01	0.0630		
$z_Q (11)$	0.0	0.1177	-0.01	0.0132	-0.004	0.0012		
$z_{tr}(12)$	0.0	0.1113	0.00	0.0123	-0.002	0.0012		

Таблица 2. Распределение Коши

	r	n = 10	n =	= 100	n = 1000	
	E(x)	D(x)	E(x)	D(x)	E(x)	D(x)
\overline{x}	2.9	8261.4971	-0.3	282.5623	-0.7	1680.6291
med x	0.00	0.3821	-0.01	0.0260	-0.002	0.0024
z_R	14.2	206063	-10.5	693687	-358.5	417271337
z_Q	0.0	1.2177	-0.03	0.0493	-0.003	0.0049
z_{tr}	0.0	0.5952	0.00	0.0261	-0.001	0.0026

Таблица 3. Распределение Лапласа

	n = 10		n =	100	n = 1000	
	E(x)	D(x)	E(x)	D(x)	E(x)	D(x)
\overline{x}	-0.02	0.0897	-0.002	0.0099	0.002	0.001
med x	-0.02	0.0648	0.003	0.0058	0.0003	0.0005
z_R	0.0	0.3887	0.0	0.409	0.0	0.4084
z_Q	-0.01	0.0943	-0.01	0.01	-0.001	0.001
z_{tr}	-0.01	0.0662	0.001	0.0063	0.0007	0.0006

Таблица 4. Распределение Пуассона

	n = 10		n = 100		n = 1000	
	E(x)	D(x)	E(x)	D(x)	E(x)	D(x)
\overline{x}	10.02	1.0132	10.00	0.0976	9.994	0.0098
med x	9.9	1.4617	9.9	0.1944	9.995	0.005
z_R	10.4	1.9290	10.95	1.0299	11.8	0.6673
z_Q	9.9	1.2086	9.9	0.1590	9.995	0.0037
z_{tr}	9.9	1.1459	9.9	0.1166	9.85	0.0107

Таблица 5. Равномерное распределение

	n = 10		n = 100		n = 1000	
	E(x)	D(x)	E(x)	D(x)	E(x)	D(x)
\overline{x}	-0.02	0.0893	0.000	0.0099	0.001	0.001
med x	0.0	0.2088	0.01	0.0294	0.001	0.003
z_R	-0.01	0.0392	0.0002	0.0006	0.0001	0.0000
z_Q	0.0	0.1282	-0.02	0.0146	-0.001	0.0014
z_{tr}	0.0	0.1479	0.00	0.0200	0.001	0.0019

5. Обсуждение

Исходя из полученных результатов можно сделать следующие выводы:

- Дисперсия может гарантировать порядок точности среднего значения только до первой значащей цифры после запятой в дисперсии включительно. Поэтому есть необходимость проверки данных результатов на совпадение этой точности.
- При увеличении количества выборки гарантируемая точность будет возрастать.
- Предыдущие выводы касаются всех распределений, кроме распределения Коши. Так как оно имеет бесконечную дисперсию и, следовательно, никакой точности гарантировать не может.

- Можно вывести следующее отношение для характеристик положения при n=1000:
 - 1) для нормального распределения: $z_R < z_Q < z_{tr} \le \overline{x} < med x$;
 - 2) для распределения Коши: $z_R < \overline{x} < z_Q < med \ x < z_{tr};$
 - 3) для распределения Лапласа: $z_Q < z_R < med \ x < z_{tr} < \overline{x};$
 - 4) для распределения Пуассона: $z_{tr} < \overline{x} < z_Q \leq med \ x < z_R;$
 - 5) для равномерного распределения: $z_Q < z_R < z_{tr} \leq med \ x \leq \overline{x}.$

6. Литература

1) Вероятностные разделы математики. Учебник для бакалавров технических направлений.//Под ред. Максимова Ю.Д. — Спб.: «Иван Федоров», 2001. - 592 с., илл.

7. Приложение

- 1) Код лабораторной. URL: https://github.com/DmitriiKondratev/MatStat/blob/master/Lab_2/Lab_2.ipynb
- 2) Код отчёта. URL: https://github.com/DmitriiKondratev/MatStat/blob/master/Lab_2/Lab_report_2.tex