Задача 1.1. При каких значениях λ квадратичная форма

$$\lambda x_1^2 - 2x_2^2 - 3x_3^2 + 2x_1x_2 - 2x_1x_3 + 2x_2x_3$$

является отрицательно определённой?

Указание: найдите три главных минора и получите, применив критерий Сильвестра, систему из трёх неравенств относительно λ . Кстати говоря, в этой задаче можно решать систему из трёх неравенств, а можно ограничиться и одним. Пожалуйста, не забудьте, что когда вы пишете матрицу квадратичной формы, надо кое-что делить пополам.

Задача 1.7. Найдите все значения a и b, при которых билинейная функция

$$f(x,y) = x_1y_1 + x_1y_2 + x_2y_1 + ax_2y_2 + bx_2y_3 - x_3y_2 + 2x_3y_3$$

задаёт скалярное произведение.

Указание: скалярное произведение — симметричная билинейная положительно определённая функция. Билинейность уже ясна, симметричность проверить совсем просто. Для проверки положительной определённости воспользуйтесь критерием Сильвестра.

Евклидово пространство

Евклидово пространство задаётся собственно пространством и скалярным произведением (\cdot, \cdot) на нём, а скалярное произведение вы будете чаще всего задавать в координатах с помощью матрицы Γ рама G:

$$(x,y) = x^T G y$$

Обычно если в задаче надо что-то посчитать в координатах и при этом просто говорится «скалярное произведение» без уточнения матрицы Грама, то имеется в виду скалярное произведение с матрицей грама E:

$$(x,y) = x^T y = x_1 y_1 + x_2 y_2 + \ldots + x_n y_n.$$

В целом, появление нетривиальной матрицы Грама редко делает задачу нерешаемой (в конце концов, вы всегда можете перейти к базису, где матрица Грама станет единичной: ведь любую симметричную положительно определённую матрицу можно привести к такому виду), но может добавить боли.

Расстояния и углы

Напомню, что расстояние между точками (векторами) x и y в евклидовом пространстве вычисляется как |x-y|, а косинус угла между этими векторами — как

$$\cos \angle(x,y) = \frac{(x,y)}{|x| \cdot |y|},$$

где
$$|x| = \sqrt{(x,x)}$$
.

Давайте немного потенируемся искать их в каких-нибудь странных евклидовых пространствах.

Задача 1.3. В пространстве многочленов степени не выше n рассмотрим скалярное произведение

$$(f,g) = \int_0^1 f(t)g(t)dt$$

Таким образом, у нас получается евклидово пространство. Найдите в нём длину вектора x^n , а также угол между векторами x^n и $x^2 + x + 1$ (будем считать, что $n \geqslant 2$).

1

Задача 1.4. В евклидовом пространстве матриц размера 2×2 со скалярным произведением $(X,Y) = \operatorname{tr}(X^TY)$ найдите расстояние (то есть длину вектора A-B) и угол между матрицами

$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$
 и $B = \begin{pmatrix} 0 & -1 \\ 1 & 3 \end{pmatrix}$

Задача 1.5. Найдите длины сторон и внутренние углы треугольника ABC, где $A=(2,4,2,4,2),\ B=(6,4,4,4,6),\ C=(5,7,5,7,2).$ Всё происходит в обычном евклидовом пространстве с матрицей Грама E (то есть со скалярным произведением $(x,y)=x^Ty=x_1y_1+x_2y_2+x_3y_3+x_4y_4).$

Указание. Длина стороны AB — это длина вектора \overrightarrow{AB} , а внутренний угол $\angle BAC$ — это угол между векторами \overrightarrow{AB} и \overrightarrow{AC} (обратите внимание, что именно \overrightarrow{AB} и \overrightarrow{AC} , а не \overrightarrow{AB} и \overrightarrow{BC} — это был бы смежный к нему угол; если это не очень понятно, нарисуйте картинку!)

Матрицы Грама систем векторов

Напомню, что матрица Грама системы векторов v_1, \ldots, v_k евклидова пространства — это матрица, состоящая из попарных скалярных произведений (v_i, v_j) . Зачем она нужна — разберёмся на следующих семинарах (на самом деле, с помощью неё можно ловко считать всякие многомерные объёмы и расстояния), а пока вам надо знать, что:

- Если у нас скалярное произведение с матрицей грама E, то матрица Грама системы v_1, \ldots, v_k равна $V^T V$, где V матрица, в которой по столбцам записаны эти векторы.
- Если у нас скалярное произведение с матрицей грама G, то матрица Грама системы v_1, \ldots, v_k равна $V^T G V$, где V матрица, в которой по столбцам записаны эти векторы.

Пример. Существует ли система векторов с матрицей Грама

$$A = \begin{pmatrix} 5 & -1 & 3 \\ -1 & 1 & -1 \\ 3 & -1 & 2 \end{pmatrix}$$

Во-первых, обратите внимание, что ничего не сказано про *матрицу Грама скалярного произведения*. То есть она равна E.

Начнём с того, что отметим про себя: она симметричная. Ну, уже хоть чтото хорошее. Дальше логика такая: если она неотрицательно определённая, то ответ «да», а противном случае — «нет». Проверять будем с помощью приведения к нормальному виду, и не только потому, что Сильвестр может дать осечку при проверке неотрицательной определённости, а ещё и потому, что нам понадобится базис.

Запускаем симметричный метод Гаусса. Я буду отмечать преобразования только перед преобразованиями строк (зачем повторяться?).

$$\begin{pmatrix}
5 & -1 & 3 \\
-1 & 1 & -1 \\
3 & -1 & 2 \\
\hline
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{I \leftrightarrow II}$$

$$\begin{pmatrix}
-1 & 1 & -1 \\
5 & -1 & 3 \\
3 & -1 & 2 \\
\hline
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\rightarrow
\begin{pmatrix}
1 & -1 & -1 \\
-1 & 5 & 3 \\
-1 & 3 & 2 \\
\hline
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{pmatrix}
\xrightarrow{II \to III + I}$$

$$III \to III + I \\
III \to II + I \\
III \to$$

$$\rightarrow \begin{pmatrix} 1 & -1 & -1 \\ 0 & 4 & 2 \\ 0 & 2 & 1 \\ \hline 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 4 & 2 \\ \hline 0 & 2 & 1 \\ \hline 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \xrightarrow{II \rightarrow III - 2 \cdot III} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ \hline 0 & 2 & 1 \\ \hline 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ \hline 0 & 0 & 0 \\ \hline 0 & 0 & 1 \\ \hline 0 & 1 & 0 \\ \hline 1 & -1 & 1 \\ 0 & -2 & 1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ \hline 0 & 0 & 0 \\ \hline 0 & 1 & 0 \\ \hline 0 & 0 & 1 \\ \hline 1 & 1 & -1 \\ 0 & 1 & -2 \end{pmatrix}$$

Сверху стоит нормальный вид. В нём только нули и единицы, значит, матрица A неотрицательно определена и может быть матрицей Грама. Осталось найти такую систему векторов.

То, что внизу — это матрица замены C, для которой

$$C^T A C = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Нам потребуется её обратная:

$$C^{-1} = \begin{pmatrix} -1 & 1 & -1 \\ 2 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$

Теперь

$$A = C^{-T} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix} C^{-1}$$

Настал черёд магии. Побьём матрицу C^{-1} на блоки (будет 2+1 строк, по числу единиц и нулей в нормальном виде):

$$C^{-1} = \begin{pmatrix} -1 & 1 & -1 \\ 2 & 0 & 1 \\ \hline 1 & 0 & 0 \end{pmatrix}$$

Тогда

$$A = \begin{pmatrix} -1 & 2 & 1 \\ 1 & 0 & 0 \\ \hline -1 & 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ \hline 0 & 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} -1 & 1 & -1 \\ 2 & 0 & 1 \\ \hline 1 & 0 & 0 \end{pmatrix} = \dots$$

Как нетрудно проверить, это произведение совпадает с произведением только красных блоков:

$$\dots = \begin{pmatrix} -1 & 2 \\ 1 & 0 \\ -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} -1 & 1 & -1 \\ 2 & 0 & 1 \end{pmatrix}$$

А это равно V^TV , где

$$V = \left(\begin{array}{rrr} -1 & 1 & -1 \\ 2 & 0 & 1 \end{array}\right)$$

По столбцам в этой матрице написана система векторов, матрицей Грама которых является исходная матрица.

Задачи 1.6-8. Существует ли система векторов с матрицей Грама

$$(1.4) \begin{pmatrix} 2 & 1 & -3 \\ 1 & 6 & 4 \\ -3 & 4 & 10 \end{pmatrix}, \qquad (1.5) \begin{pmatrix} 2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -1 & 2 \end{pmatrix}, \qquad (1.6) \begin{pmatrix} 4 & 3 & 0 \\ 3 & 3 & 2 \\ 0 & 2 & 2 \end{pmatrix}?$$

Если существует, то укажите эту систему.

Задача 2.1. Назовём n-мерным кубом множество точек (x_1,\ldots,x_n) в пространстве \mathbb{R}^n , у которых все $x_i \in \{0;1\}$ (нарисуйте двумерный и трёхмерный кубы, чтобы убедиться, что это действительно то, что вы привыкли называть квадратом и кубом соответственно). Диагональю n-мерного куба называют отрезок, соединяющий две противоположные точки куба, то есть такие точки x и y, для которых $x_i + y_i = 1$ для всех $i = 1, \ldots, n$ (для квадрата это обычная диагональ, а для куба - так называемая длинная диагональ; опять же, нарисуйте картинки, чтобы понимать, о чём речь).

Найдите длину d_n диагонали n-мерного куба. Убедитесь, что длины всех диагоналей одинаковы совпадают. Вычислите $\lim_{n\to\infty} d_n$.

Задача 2.2. (Теорема Пифагора) Докажите, что если векторы x и y в евклидовом пространстве ортогональны, то

$$|x - y|^2 = |x|^2 + |y|^2$$

Указание: воспользуйтесь тем, что $|z|^2 = (z, z)$

Задача 2.3. (Неравенство треугольника) С помощью неравенства Коши-Буняковского докажите, что

$$||x| - |y|| \le |x + y| \le |x| + |y|$$

Указание: возведите эти неравенства в квадрат.

Задачи 2.4-5. Как решать задачи 1.6-8, если матрица Грама не единичная, а какая-то? Скажем,

$$G = \begin{pmatrix} 2 & -1 & 2 \\ -1 & 2 & 0 \\ 2 & 0 & 3 \end{pmatrix}$$
?

Задача 2.6. Может ли для заданной матрицы A размера $n \times n$ найтись несколько систем u_1, \ldots, u_n , матрицей Γ рама которых являлась бы A? А может ли таких систем найтись бесконечно (или даже несчётно) много?