CLASSIFICATION

1) Bank data file opened and viewed

2)

The mean loan balance is 1,422.66 and the average number of contacts made to a customer is 2.79

```
In [4]: 1 datBank.mean()

Out[4]: age 41.170095
balance 1422.657819
day 15.915284
campaign 2.793630
pdays 39.766645
previous 0.542579
dtype: float64
```

3) Balance histogram

Balance is not a normal distribution, it is right-skewed.

4) Age histogram

Age is not a normal distribution, it is right-skewed.

6) Correlation table:

The variable that is most correlated with purchase_code is 'previous' (number of total contacts before this campaign began), and the variable that is least correlated is 'day' (day of the month of last contact). This is important because we want to be able to determine which variables ultimately have the greatest impacts on whether a customer decides to purchase a term deposit or not.

7) Aggregates:

	1 dat	Bank.g	roupb	y('job')	.mean()				
:			age	e bala	nce	day camp	aign pda	ys previou	s purchase_ye
		job							
	ad	imin. 39	9.682008	1226.736	402 16.324	268 2.63	1799 49.9937	24 0.64435	1 0.12133
	blue-c	ollar 40	0.156448	1085.161	734 15.482	030 2.846	6723 41.5909	09 0.49365	8 0.07293
	entrepre	neur 42	2.011905	1645.125	000 15.255	952 2.589	9286 32.2738	10 0.42857	1 0.08928
	house	maid 47	7.339286	2083.803	571 15.294	643 2.500	0000 26.4017	86 0.35714	3 0.12500
	manager	ment 40	0.540764	1766.928	793 16.254	902 2.97	3168 40.9680	0.54902	0.13519
	re	tired 6	1.869565	2319.191	304 15.556	522 2.46	5217 35.0739	13 0.59130	4 0.23478
	self-emple	oyed 4	1.453552	2 1392.409	836 16.180	328 3.278	3689 28.2568	31 0.59016	4 0.10929
	serv	vices 38	8.570743	1103.956	835 15.515	588 2.822	2542 36.3717	03 0.44364	5 0.09112
	stu	ident 26	6.821429	1543.821	429 16.392	857 2.392	2857 45.7142	86 0.96428	6 0.22619
	techni	ician 39	9.470052	1330.996	094 16.183	594 2.73	1771 39.2656	25 0.57682	3 0.10807
	unempl	oyed 40	0.906250	1089.421	875 16.093	750 2.679	9688 36.6250	00 0.48437	5 0.10156
	unkn	nown 48	8.105263	1501.710	526 15.842	105 2.552	2632 36.2368	42 0.50000	0 0.18421
:	1 da	tBank.	group	by('mar	ital').m	ean()			
[16]:			000	balance	do	, compole	n ndava	provious	nurahasa was
	marita		age	balance	e day	y campaig	n pdays	previous	purchase_yes
	divorced		5270 1	122.390152	15.753788	3 2.60416	7 38.827652	0.439394	0.145922
									0.145833
	married			463.195567				0.519128	0.099035
	single	e 33.92°	7258 I	460.414716	16.00836	1 2.75167	2 43.220736	0.642977	0.139632
:	1 dat	Bank.	grouph	y('educ	ation').	mean()			
			age	balance	e day	y campaig	n pdays	previous	purchase_yes
	educatio	n	ugo	Dalano	J Ga.	, campaig	paajo	provious	parendoo_yee
	primar		13333 1	1411.544248	3 15.505900	2.86578	2 35.069322	0.460177	0.094395
	secondar	-		1196.814397				0.528621	0.106245
		-							
	tertiar			1775.423704 1701.245989				0.612593	0.142963 0.101604
: [datBank.groupby('housing').mean()								
:		a	age	balance	day	campaign	pdays	previous	purchase_yes
	housing								
	no	43.5117	723 15	95.277268	16.209990	2.80632	26.402141	0.467890	0.153415
	yes	39.3747	756 12	90.309496	15.689332	2.78390	50.013286	0.599844	0.085971
:	1 da	tBank	.grou	pby('lo	an').mea	ın()			
:									
		age	е	balance	day	campaign	pdays	previous	purchase_yes
	loan								
	no 4	1.22062	7 1513	3.857963	15.932376	2.771018	41.088512	0.558486	0.124804

There are a few interesting things that can be gleaned from these aggregates. There is a high correlation of purchases among people who are retired or students. There is a low correlation of purchases among people who are blue-collar workers, entrepreneurs, or in the services industry. Likewise, there is a low correlation of purchases among people who already have home loans or personal loans. This is important because it allows us to direct our marketing campaigns specifically towards those who are more likely to purchase the term loans.

8) Numerical encoding for 'job':

```
1 datBank = pd.concat([datBank, pd.get_dummies(datBank['job'], drop_first=True)], axis=1)
           3 datBank
Out[19]:
         ault balance housing loan
         no
          no
                                                      0
                                                                0
                                                                                         0
         no
                           no
          no
                                                      0
                                                                0
                                                                                         0
                0
          no
                                         5 ...
                                                                                         0
                                                                                                 0
          no
                                 cellular
                                        23 ...
```

9) 9, 10, 11 code all in pic below 11)

10)

11)

12) Decision tree & confusion matrix:

```
1 from sklearn.metrics import confusion_matrix
            2 y_train_pred = class_tree.predict(X_train)
            3 confusion_matrix(y_train,y_train_pred)
Out[29]: array([[2784, 14],
                  [ 338,
In [30]: 1 pd.crosstab(y_train['purchase_yes'], y_train_pre
Out[30]:
           Predicted
                 0 2784 14 2798
                 1 338 28 366
                All 3122 42 3164
In [31]: 1 from sklearn.metrics import accuracy_score
         2 accuracy = accuracy_score(y_true=y_train, y_pred=y_train_pred)
Out[311: 0.889
In [32]: 1 from sklearn.metrics import precision_score
           precision = precision_score(y_true=y_train, y_pred=y_train_pred,
         3 precision.round(3)
Out[32]: array([0.892, 0.667])
In [33]: 1 from sklearn.metrics import recall_score
         2 recall = recall_score(y_true=y_train, y_pred=y_train_pred, avera
3 recall.round(3)
Out[33]: array([0.995, 0.077])
In [35]: 1 F1 = 2 * (precision * recall) / (precision + recall)
Out[35]: array([0.94054054, 0.1372549])
In [34]: 1 pd.Series(data=class_tree.fea
Out[34]: pdays
                              0.706
                              0.207
           age
                              0.048
           day
           student
                             0.039
          entrepreneur
                              0.000
          balance
                             0.000
          campaign
                             0.000
          previous
                              0.000
          blue-collar
                              0.000
                             0.000
          unknown
                            0.000
          unemployed
          management
                              0.000
          retired
                             0.000
           self-employed 0.000
          services
                              0.000
           technician
                              0.000
                              0.000
           housemaid
           dtype: float64
```

The decision tree accuracy is 88.9%. It is 89.2% accurate at predicting "no" and 66.7% accurate at predicting "yes." This means that out of all the "yes" outcomes preicted, 66.7% of them actually ended up being "yes." However, it's recall for "no" is 99.5% while it's recall for "yes" is only 7.7%, which is not very encouraging, since our primary interest here is predicting "yes." The recall score means that out of the entire population of actual "yes" outcomes, the model only correctly predicted 7.7% of them. It's F-Measure is 0.94 for "no" and 0.13 for "yes." It also shows the primary predictor as "pdays" which is the number of days that passed after the client was last contacted

from a previous campaign. While this shows the importance of marketing, I do not feel it should be used exclusively since we can see that "age" also plays a noticeable role too.

13) Validation partition:

The accuracy has dropped ever so slightly from 88.9% to 88.3% which indicates maybe a tiny amount of overfitting. However, of greater concern is that it's precision in predicting "yes" has dropped from 66.7% to only 30%.

14) Naïve Bayes:

```
In [38]:
          1 from sklearn.naive_bayes import GaussianNB
            nb = GaussianNB()
          nb.fit(X_train, y_train)
y_train_pred_nb = nb.predict(X_train)
          5 confusion_matrix(y_train,y_train_pred_nb)
Out[38]: array([[2494, 304],
               [ 270, 96]])
In [46]: 1 pd.crosstab(y_train['purchase_yes'], y_train_pre
Out[46]:
             True
              0 2494 304 2798
               1 270 96 366
              All 2764 400 3164
            accuracy = accuracy_score(y_true=y_train, y_pred=y_train_pred_nb)
         2 accuracy.round(3)
Out[47]: 0.819
In [48]: 1 precision = precision_score(y_true=y_train, y_pred=y_train_pred_nb, average = None)
Out[48]: array([0.902, 0.24 ])
         recall = recall_score(y_true=y_train, y_pred=y_train_pred_nb, average = None)
In [49]:
          2 recall.round(3)
Out[49]: array([0.891, 0.262])
In [50]: 1 F1 = 2 * (precision * recall) / (precision + recall)
Out[50]: array([0.89679971, 0.25065274])
            1 y_test_pred_nb = nb.predict(X_test)
            2 confusion_matrix(y_test,y_test_pred_nb)
Out[51]: array([[1061, 141],
                   [ 118,
            accuracy = accuracy_score(y_true=y_test, y_pred=y_test_pred_nb)
            2 accuracy.round(3)
```

The overall accuracy of the NB model is at 81.9% and the validation partition accuracy is 80.9%, so noticeable lower than that of the decision tree model, and there is evidence

- of more overfitting in the NB model than there was with the decision tree. Precision and recall of "no" are at 90.2% and 89.1% respectively, so in the range of the decision model. However, for "yes" the precision and recall are at 24% and 26.2%, vs 66.7% and 7.7% for the decision tree model. The NB F-Measures are 0.897 for "no" and 0.251 for "yes."
- 15) In deciding which model is a better fit for our goals here, I've tried to focus in on exactly what we are hoping to achieve, which in my opinion is maximizing the number of the general population that get converted to "yes" outcomes (i.e. purchasing a term deposit). So the "no" outcomes are not as important to us when looking at these models. In addition, their statistics on their handling of "no" outcomes are pretty much the same anyway, making them a wash. So we are focused on the "yes" outcomes, and I feel that it is more important to look at the recall stats, as opposed to the precision stats, since recall is more closely related to our goal of converting the maximum amount of the general population. With these models, the Naïve Bayes has almost triple the recall score of the decision tree model (26.2% vs 7.7%). I believe this outweighs the lower overall accuracy of the Naïve Bayes model. So in my opinion, the Naïve Bayes model is the better choice to go with here.