98.
$$2\pi a^3/3$$
. **99.** 1) $8\sqrt{2}a^3/3$; 2) $3a^3$; 3) $2\pi^2(2\pi^2+1)a^3$.

101. 1)
$$1/3$$
; 2) $9/8$; 3) $9/2$; 4) $4/5$; 5) πab ; 6) $27\pi/2$; 7) $3\pi a^2/8$.

102.
$$(7\pi + 3)ab/12$$
.

103. 1)
$$\pi$$
; 2) $a^2/6$; 3) $4/3$; 4) $8\pi/3$; 5) a^2 ; 6) $5\pi a^2/8$;

7)
$$(3\sqrt{3} + 4\pi)/9\sqrt{3}$$
.

104. 1)
$$3/2$$
; 2) $4a^2/3$; 3) $1/30$.

106. 1)
$$\pi(\sinh 2a - 2a)/4$$
; 2) $9\pi^2$; 3) $8\pi/3$; 4) $32\pi a^3/105$; 5) $\pi^2/2$.

107.
$$-8/15$$
. **108.** $-aF_0$. **109.** 1) $4/3$; 2) $17/12$.

111. 1) 0; 2)
$$113/3$$
; 3) $-6\pi a^2$; 4) $-3\pi/2$; 5) πab .

112. 1) a) 4; б)
$$\pi$$
; в) 1; 2) а) $-(\pi R + 2y_0)R$; б) $(\pi R - 2y_0)R$.

113. 1) и 2)
$$\mu(1/r_2-1/r_1)$$
, где $r_j=\sqrt{x_j^2+y_j^2},\; j=1,2.$

114. 1), 2), 3)
$$\pi/2$$
. **115.** 1) 2π ; 2) 0.

116. 1) и 2)
$$\lambda(x_0^2 + y_0^2 + z_0^2)/2$$
.

117. 1) 23; 2)
$$1/2$$
; 3) $-4/3$; 4) $\sin(2\pi b) - \pi a^2$; 5) $2\pi a^2$;

6)
$$(2\sqrt{2}-7/3)a^3$$
; 7) $2\pi R^2/\sqrt{3}$.

118.
$$\int_{r_1}^{r_2} rf(r) dr, \ r_j = \sqrt{x_j^2 + y_j^2 + z_j^2}, \ j = 1, 2.$$

120.
$$-\frac{2k\rho_0}{x^2+y^2}(x;y;0)$$
 (прямая совпадает с осью Oz).

121.
$$(0; 0; kMmh/(a^2 + h^2)^{3/2})$$
. **122.** 1) $RT \ln(p_1/p_2)$.

121.
$$(0; 0; kMmh/(a^2 + h^2)^{3/2})$$
. 122. 1) $RT \ln(p_1/p_2)$.
123. 1) $\oint_{\partial G} \rho(x; y)(v(x; y) dx - u(x; y) dy)$; 2) $\frac{\partial(\rho u)}{\partial x} + \frac{\partial(\rho v)}{\partial y} = 0$.

124. 1) 0 при
$$r = \sqrt{x^2 + y^2} < 1$$
, $-2\pi\mu_0 \ln r$ при $r > 1$;

- $2)~\frac{\pi}{nr^n}\,\cos n\varphi$ при $r>1,~\frac{\pi}{n}r^n\cos n\varphi$ при $r<1~((r;\varphi)$ полярные координаты точки (x;y);
 - $\frac{\pi}{nr^n}\sin n\varphi$ при $r>1, \; \frac{\pi}{n}r^n\sin n\varphi$ при r<1.

125. 1) 0; 2)
$$2\pi$$
.

126. 1) $\pi r^n \cos n \varphi$ при r < 1, $-\pi r^{-n} \cos n \varphi$ при r > 1 $((r; \varphi)$ полярные координаты точки (x; y);

2)
$$\pi r^n \sin n\varphi$$
 при $r < 1$, $-\pi r^{-n} \sin n\varphi$ при $r > 1$.

§ 11. Поверхностные интегралы

СПРАВОЧНЫЕ СВЕДЕНИЯ

1. Поверхностный интеграл первого рода. Пусть поверхность S задана параметрически:

$$x = x(u; v), \quad y = y(u; v), \quad z = z(u; v), \quad (u; v) \in \overline{D},$$
 (1)

причем функции $x(u;v),\ y(u;v),\ z(u;v)$ дифференцируемы в измеримой области D. Пусть на этой поверхности задана функция f(x;y;z).

Поверхностный интеграл первого рода $\iint\limits_S f(x;y;z)\,dS$ от функ-

ции f(x;y;z) по поверхности S может быть определен следующим образом:

$$\iint\limits_{S} f(x;y;z) \, dS = \iint\limits_{D} f(x(u;v);y(u;v);z(u;v)) \sqrt{EG - F^2} \, du \, dv, \quad (2)$$

гле

$$E = \left(\frac{\partial x}{\partial u}\right)^2 + \left(\frac{\partial y}{\partial u}\right)^2 + \left(\frac{\partial z}{\partial u}\right)^2, \quad G = \left(\frac{\partial x}{\partial v}\right)^2 + \left(\frac{\partial y}{\partial v}\right)^2 + \left(\frac{\partial z}{\partial v}\right)^2,$$

$$F = \frac{\partial x}{\partial u}\frac{\partial x}{\partial v} + \frac{\partial y}{\partial u}\frac{\partial y}{\partial v} + \frac{\partial z}{\partial u}\frac{\partial z}{\partial v}.$$

Если подынтегральная функция в правой части равенства (2) непрерывна в D (в частности, если функция f непрерывна на S, а функции (1) непрерывно дифференцируемы в \overline{D} , то интеграл $\iint_S f(x;y;z) \, dS$ заведомо существует.

Поверхностный интеграл может быть определен и как предел соответствующих интегральных сумм (см., например, [3] или [4]).

Если поверхность S задана уравнением

$$z = z(x; y), \quad (x; y) \in \overline{D},$$
 (3)

где z(x;y) — дифференцируемая в D функция, то равенство (2) принимает вид

$$\iint\limits_{S} f(x;y;z) \, dS = \iint\limits_{D} f(x;y;z(x;y)) \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^{2} + \left(\frac{\partial z}{\partial y}\right)^{2}} \, dx \, dy. \quad (4)$$

Часто поверхность S не может быть задана в виде (3) или (1), но ее удается разбить на части S_i так, что каждая из частей допускает представление в нужном виде. В таких случаях под интегралом по поверхности S понимают сумму интегралов по ее частям:

$$\iint_{S} f \, dS = \sum_{i=1}^{n} \iint_{S_{i}} f \, dS_{i}. \tag{5}$$

Если f(x; y; z) — плотность массы, распределенной по поверхности S, то интегралы (2), (4) дают массу всей поверхности.

Потенциалом в точке M_0 простого слоя, распределенного с плотностью $\mu(x;y;z)$ на поверхности S называют интеграл

$$V(x_0; y_0; z_0) = \iint_S \frac{\mu(x; y; z)}{r} dS,$$

где r — расстояние между точкой M(x;y;z) поверхности S и точкой $M_0(x_0;y_0;z_0)$.

2. Поверхностные интегралы второго рода *). Пусть поверхность S задана параметрически:

$$x = x(u; v), \quad y = y(u; v), \quad z = z(u; v), \quad (u; v) \in \overline{D},$$
 (1)

функции $x(u;v), \ y(u;v), \ z(u;v)$ непрерывно дифференцируемы в D, причем ранг матрицы $\|x', y', z'_{*}\|$

равен 2. В каждой точке (u;v) такой поверхности существуют два противоположно направленных единичных нормальных вектора, каждый из которых является непрерывной функцией точки (u;v) поверхности S. Выбор одного из них называют ориентацией поверхности. Если поверхность S является границей ограниченной области, то говорят, что ее можно ориентировать внешней или внутренней (по отношению к этой области) нормалями. Поверхность S, ориентированную внешней нормалью, называют ее внешней стороной, а ориентированную внутренней нормалью, — ее внутренней стороной.

Для ориентированной поверхности S определяют nosepxhocmhый $uhmerpan\ smoporo\ poda.$

Пусть $\cos \alpha$, $\cos \alpha$, $\cos \gamma$ — направляющие косинусы нормали

$$\left|egin{array}{cccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \ x_u' & y_u' & z_u' \ x_v' & y_v' & z_v' \end{array}
ight|$$

к поверхности (1) (см. § 6, (7)). Пусть поверхность S ориентирована единичным вектором нормали $(\cos\alpha;\cos\beta;\cos\gamma)$, и пусть на поверхности S заданы функции $P(x;y;z),\ Q(x;y;z),\ R(x;y;z)$. Поверхностный интеграл второго рода

$$\iint_{S} P \, dy \, dz + Q \, dz \, dx + R \, dx \, dy \tag{6}$$

определяется через поверхностный интеграл первого рода формулой

$$\iint_{S} P \, dy \, dz + Q \, dz \, dx + R \, dx \, dy =$$

$$= \iint_{S} (P \cos \alpha + Q \cos \beta + R \cos \gamma) \, dS. \quad (7)$$

Если поверхность S ориентирована противоположным образом, т. е. нормалью $(-\cos\alpha; -\cos\beta; -\cos\gamma)$, то у поверхностного интеграла изменяется только знак.

Для интеграла (6) имеет место следующая формула:

$$\iint_{S} P \, dy \, dz + Q \, dz \, dx + R \, dx \, dy = \iint_{D} \begin{vmatrix} P & Q & R \\ x'_{u} & y'_{u} & z'_{u} \\ x'_{v} & y'_{v} & z'_{v} \end{vmatrix} du \, dv. \quad (8)$$

^{*)} В этом и следующих пунктах используются только правые системы координат.

В частном случае $P=0,\ Q=0$ формула (8) имеет вид

$$\iint\limits_{S} R \, dx \, dy = \iint\limits_{D} R(x(u;v);y(u;v);z(u;v)) \, \frac{\partial(x,y)}{\partial(u,v)} \, du \, dv. \tag{9}$$

Аналогично записывают формулы для интегралов

$$\iint\limits_{S} P \, dy \, dz, \quad \iint\limits_{S} Q \, dz \, dx.$$

Если поверхность S задается явно, то формула (9) упрощается.

Пусть, например, поверхность S задана уравнением

$$z = z(x;y), \quad (x;y) \in \overline{D},$$
 (10)

где z(x;y) — непрерывно дифференцируемая в \overline{D} функция. Тогда

$$\iint\limits_{S} R \, dx \, dy = \pm \iint\limits_{D} R(x; y; z(x; y)) \, dx \, dy, \tag{11}$$

где D — проекция поверхности S на плоскость z=0.

Перед двойным интегралом в формуле (11) берется знак плюс, если поверхность S ориентирована нормалями, составляющими с осью z острый угол, и знак минус, если поверхность S ориентирована нормалями, образующими с осью z тупой угол. В первом случае говорят, что интеграл берется по верхней стороне поверхности, во втором — по ее нижней стороне.

Если поверхность S не представима в виде (10) или (1), но ее удается разбить на конечное число частей, каждая из которых представима в таком виде, то под поверхностным интегралом второго рода по поверхности S понимают сумму интегралов по ее частям.

3. Теорема Гаусса-Остроградского. Пусть $G \in \mathbb{R}^3$ — элементарная область (см. § 8, п. 2), ограниченная кусочно гладкой поверхностью, и пусть функции $P(x;y;z),\ Q(x;y;z),\ R(x;y;z)$ вместе со своими производными $\frac{\partial P}{\partial x},\ \frac{\partial Q}{\partial y},\ \frac{\partial R}{\partial z}$ непрерывны в \overline{G} . Тогда

$$\iint_{S} P \, dy \, dz + Q \, dz \, dx + R \, dx \, dy = \iiint_{G} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z} \right) dx \, dy \, dz, \tag{12}$$

где S — внешняя сторона поверхности, ограничивающей область G.

Формулу (12) называют формулой Γ аусса-Остроградского. Иногда ее записывают в виде

$$\iint_{S} (P\cos\alpha + Q\cos\beta + R\cos\gamma) \, dS = \iiint_{G} \left(\frac{\partial P}{\partial x} + \frac{\partial Q}{\partial y} + \frac{\partial R}{\partial z}\right) dx \, dy \, dz,$$
(13)

где $\cos \alpha$, $\cos \beta$, $\cos \gamma$ — направляющие косинусы внешней нормали к поверхности S. Формула Гаусса-Остроградского может быть записана в векторной форме (см. $\S 12$).

4. Теорема Стокса. Пусть S — ориентированная кусочно гладкая поверхность, ограниченная соответственно ориентированным контуром L^*). Пусть функции $P(x;y;z),\ Q(x;y;z),\ R(x;y;z)$ непрерывно дифференцируемы в некоторой области $G\supset S$. Тогда

$$\int_{L} P dx + Q dy + R dz =$$

$$= \iint_{S} \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) dy dz + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial z} \right) dz dx + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$
 (14)

Формулу (14) называют формулой Стокса. Эта формула может быть записана в таком виде:

$$\int_{L} P dx + Q dy + R dz = \iint_{S} \left(\left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} \right) \cos \alpha + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} \right) \cos \beta + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) \cos \gamma \right) dS, \quad (15)$$

где $(\cos\alpha;\cos\beta;\cos\gamma)$ — вектор единичной нормали к поверхности S, направленный соответственно направлению контура L. Формулу (15) иногда записывают в символическом виде

$$\int_{L} P dx + Q dy + R dz = \iint_{S} \begin{vmatrix} \cos \alpha & \cos \beta & \cos \gamma \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ P & Q & R \end{vmatrix} dS. \quad (16)$$

Формула Стокса может быть записана в векторной форме (см. $\S 12$).

Условимся говорить, что замкнутая кривая *ориентирована положительно* относительно некоторого вектора **a**, если направление на кривой (со стороны, в которую направлен вектор **a**) противоположно направлению движения часовой стрелки, и *ориентирована отрицательно* относительно вектора **a**, если направление на кривой совпадает с направлением движения часовой стрелки.

ПРИМЕРЫ С РЕШЕНИЯМИ

Пример 1. Вычислить интеграл $\iint\limits_{S} \frac{dS}{\sqrt{x^2+y^2+z^2}}\,,$ если S —

часть цилиндрической поверхности

$$x = r \cos u$$
, $y = r \sin u$, $z = v$; $0 \leqslant u \leqslant 2\pi$, $0 \leqslant v \leqslant H$.

A В данном случае применима формула (2), причем $E=r^2,\;G=1,\;G=0.$ Поэтому

$$\iint_{S} \frac{dS}{\sqrt{x^2 + y^2 + z^2}} = \int_{0}^{2\pi} \int_{0}^{H} \frac{r \, du \, dv}{\sqrt{r^2 + v^2}} = 2\pi r \int_{0}^{H} \frac{dv}{\sqrt{r^2 + v^2}} =$$

^{*)} Говорят, что поверхность и ограничивающий ее контур ориентированы соответственно, если наблюдатель, движущийся по контуру и смотрящий на поверхность с той стороны, куда направлена нормаль к поверхности, видит поверхность слева.

$$=2\pi r \ln \frac{H+\sqrt{r^2+H^2}}{r}. \quad \blacktriangle$$

Пример 2. Вычислить интеграл $I=\iint_S z^2\,dS,$ где S — полная поверхность конуса $\sqrt{x^2+y^2}\leqslant z\leqslant 2.$

lacktriangle Пусть S_1 — боковая поверхность конуса, S_2 — его основание; $I=\iint\limits_{S_1}z^2\,dS_1+\iint\limits_{S_2}z^2\,dS_2.$

K первому интегралу применим формулу (4). На боковой поверхности конуса

$$z = \sqrt{x^2 + y^2},$$
 $\frac{\partial z}{\partial x} = \frac{x}{\sqrt{x^2 + y^2}}, \quad \frac{\partial z}{\partial y} = \frac{y}{\sqrt{x^2 + y^2}}, \quad \sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} = \sqrt{2}.$

Следовательно,

$$\iint_{S_1} z^2 dS_1 = \iint_{x^2 + y^2 \leqslant 4} (x^2 + y^2) \sqrt{2} dx dy = \sqrt{2} \int_{0}^{2\pi} \int_{0}^{2} r^3 dr d\varphi = 8\sqrt{2} \pi.$$

На основании конуса z=2, поэтому второй интеграл равен учетверенной площади основания конуса $4\pi 2^2$. Итак, $I=8\pi(2+\sqrt{2})$.

Пример 3. Вычислить интеграл $\iint_S z\,dx\,dy$, где S — нижняя сторона части конической поверхности $z^2=x^2+y^2,\ 0< z\leqslant H.$

 \blacktriangle Поверхность S ориентирована нормалями, составляющими тупой угол с осью z. По формуле (11), взяв в ней знак "минус", сводим интеграл к двойному, который вычисляем, переходя к полярным координатам:

$$\iint_{S} z \, dx \, dy = - \iint_{x^2 + y^2 \leqslant H^2} \sqrt{x^2 + y^2} \, dx \, dy = - \int_{0}^{2\pi} d\varphi \int_{0}^{H} r^2 \, dr = -\frac{2}{3} \, \pi H^3. \quad \blacktriangle$$

Пример 4. Вычислить интегралы: а) $\iint_S z^2\,dx\,dy;$ б) $\iint_S z\,dx\,dy;$ где S — полусфера $x^2+y^2+z^2=R^2,\ y\geqslant 0,$ ориентированная внешней нормалью.

A а) Разобьем поверхность S на части S_1 и S_2 , расположенные соответственно выше и ниже плоскости z=0. Тогда

$$\iint_{S} z^{2} dx dy = \iint_{S_{1}} z^{2} dx dy + \iint_{S_{2}} z^{2} dx dy.$$

Поверхности S_1 и S_2 имеют одну и ту же проекцию D на плоскость z=0. Согласно формуле (11) получаем

$$\iint_{S_1} z^2 \, dx \, dy = \iint_{D} (R^2 - x^2 - y^2) \, dx \, dy,$$

так как внешняя нормаль к поверхности S_1 образует с осью z острый угол;

 $\iint_{S_1} z^2 \, dx \, dy = -\iint_{D} (R^2 - x^2 - y^2) \, dx \, dy,$

так как внешняя нормаль к поверхности S_2 образует тупой угол с осью z. Следовательно,

$$\iint\limits_{S} z^2 \, dx \, dy = 0.$$

б) Как и в случае а), разбивая поверхность S на части S_1 и S_2 и применяя формулу (11), получаем

$$\iint_{S_1} z \, dx \, dy = \iint_{D} \sqrt{R^2 - x^2 - y^2} \, dx \, dy,$$

$$\iint_{S_2} z \, dx \, dy = -\iint_{D} (-\sqrt{R^2 - x^2 - y^2}) \, dx \, dy.$$

Следовательно,

$$\iint_{S} z \, dx \, dy = 2 \iint_{D} \sqrt{R^2 - x^2 - y^2} \, dx \, dy = 2 \cdot \frac{\pi}{3} \, R^3 = \frac{2\pi}{3} \, R^3,$$

так как последний интеграл равен объему четвертой части шара радиуса R. \blacktriangle

Пример 5. Вычислить интеграл $K=\iint\limits_{S}rac{dy\,dz}{x}+rac{dz\,dx}{y}+rac{dx\,dy}{z},$

где S — часть эллипсоида

$$x = a \cos u \cos v$$
, $y = b \sin u \cos v$, $z = c \sin v$, $u \in [\pi/4; \pi/3]$, $v \in [\pi/6; \pi/4]$,

ориентированного внешней нормалью.

A Заметим, что функции 1/x, 1/y, 1/z положительные, а углы, образованные внешней нормалью с осями координат, — острые, поэтому K>0. Воспользуемся формулой (8). Так как

$$x'_{u} = -a \sin u \cos v, \quad y'_{u} = b \cos u \cos v, \quad z'_{u} = 0,$$

 $x'_{v} = -a \cos u \sin v, \quad y'_{v} = -b \sin u \sin v, \quad z'_{v} = c \cos v,$

TO

$$\begin{vmatrix} \frac{1}{x} & \frac{1}{y} & \frac{1}{z} \\ x'_u & y'_u & z'_u \\ x'_v & y'_v & z'_v \end{vmatrix} = \begin{vmatrix} \frac{1}{a\cos u\cos v} & \frac{1}{b\sin u\cos v} & \frac{1}{c\sin v} \\ -a\sin u\cos v & b\cos u\cos v & 0 \\ -a\cos u\sin v & -b\sin u\sin v & c\cos v \end{vmatrix} = p\cos v,$$

где

$$p = \frac{ab}{c} + \frac{ac}{b} + \frac{bc}{a}.$$

Поэтому по формуле (8) получаем

$$K = p \int_{\pi/4}^{\pi/3} du \int_{\pi/6}^{\pi/4} \cos v \, dv = p \frac{\pi}{12} \left(\frac{\sqrt{2}}{2} - \frac{1}{2} \right) = \frac{\pi(\sqrt{2} - 1)}{24} \left(\frac{ab}{c} + \frac{ac}{b} + \frac{bc}{a} \right). \blacktriangle$$

Пример 6. Вычислить интеграл

$$I = \iint_{S} x^{3} \, dy \, dz + y^{3} \, dz \, dx + z^{3} \, dx \, dy,$$

где S — внешняя сторона боковой поверхности конуса $G\colon x^2+y^2\leqslant\leqslant z^2,\ 0\leqslant z\leqslant 1.$

▲ Обозначим через I_1 интеграл по внешней стороне полной поверхности S_1 конуса, через I_2 — интеграл по верхней стороне его основания S_2 . Тогда $I=I_1-I_2$. К интегралу I_1 применим формулу Гаусса—Остроградского

$$I_1 = 3 \iiint\limits_C (x^2 + y^2 + z^2) \, dx \, dy \, dz.$$

Переходя к цилиндрическим координатам, вычислим полученный тройной интеграл $_{1}$ $_{2\pi}$ $_{z}$

$$I_1 = 3 \int\limits_0^1 dz \int\limits_0^{2\pi} darphi \int\limits_0^z (r^2 + z^2) r \, dr = rac{9}{10} \; \pi.$$

Вычислим интеграл по основанию конуса:

$$I_2 = \iint\limits_{S_2} x^3 \, dy \, dz + y^3 \, dz \, dx + z^3 \, dx \, dy = \iint\limits_{S_2} dx \, dy = \pi.$$

Следовательно, $I=-\pi/10$. \blacktriangle

Пример 7. Вычислить интеграл

$$A = \int_{L} (y^{2} - z^{2}) dx + (z^{2} - x^{2}) dy + (x^{2} - y^{2}) dz,$$

где L — кривая пересечения параболоида $x^2 + y^2 + z = 3$ с плоскостью x + y + z = 2, ориентированная положительно относительно вектора (1; 0; 0).

▲ Применим формулу Стокса. За поверхность S, ограниченную кривой L, примем часть секущей плоскости x+y+z=2, лежащей внутри параболоида. Единичным вектором нормали к S, направленным соответственно направлению кривой L, является вектор $(1/\sqrt{3};1/\sqrt{3};1/\sqrt{3})$. Так как $P=y^2-z^2,\ Q=z^2-x^2,\ R=x^2-y^2$, то $\frac{\partial P}{\partial R}$ $\frac{\partial Q}{\partial R}$

$$\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z} = -2(z+y), \quad \frac{\partial P}{\partial z} - \frac{\partial R}{\partial x} = -2(x+z),$$
$$\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} = -2(y+x).$$

Применяя формулу (15), получаем

$$A = -\frac{4}{\sqrt{3}} \iint_{S} (x + y + z) \, dS = -\frac{8}{\sqrt{3}} \iint_{S} dS.$$

Так как z=2-x-y на поверхности S, то

$$\sqrt{1 + \left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2} = \sqrt{3}.$$

По формуле (4) находим

$$A = -8 \iint_D dx \, dy,$$

где D — проекция S на плоскость xOy. Исключая z из уравнений $x^2 + y^2 + z = 3$, x + y + z = 2.

получаем

$$(x-1/2)^2 + (y-1/2)^2 = 3/2,$$

т. е. D — есть круг радиуса $\sqrt{3/2}$. Следовательно,

$$\iint\limits_{D} dx \, dy = \frac{3}{2} \, \pi, \quad A = -12\pi. \quad \blacktriangle$$

ЗАДАЧИ

Вычислить интегралы (1-13).

1.
$$\iint\limits_{S}\left(x+y+z\right) dS,\text{ где:}$$

- 1) \tilde{S} часть плоскости x+2y+4z=4, выделяемая условиями $x \geqslant 0$, $y \geqslant 0$, $z \geqslant 0$;
 - 2) S часть сферы $x^2+y^2+z^2=1$, выделяемая условием $z\geqslant 0$.

2.
$$\iint_{S} (x^2 + y^2) dS$$
, где:

- 1) S cope $x^2 + y^2 + z^2 = R^2$;
- 2) S поверхность конуса $\sqrt{x^2 + y^2} \leqslant z \leqslant 1$.

3.
$$\iint_S (x^2 + y^2 + z^2) dS$$
, где:

- 1) S coppax $x^2 + y^2 + z^2 = R^2$;
- 2) S поверхность куба $|x| \leqslant a$, $|y| \leqslant a$, $|z| \leqslant a$;
- 3) S поверхность октаэдра $|x|+|y|+|z|\leqslant a;$ 4) S полная поверхность цилиндра $x^2+y^2\leqslant r^2,\ 0\leqslant z\leqslant H.$
- 4. $\iint \frac{dS}{(1+x+y)^2}$, S поверхность тетраэдра $x+y+z\leqslant 1,\ x\geqslant$ $\geqslant 0, \ u \geqslant 0, \ z \geqslant 0.$

5. 1) $\iint_S xyz\,dS;\ 2)$ $\iint_S |xy|z\,dS;$ где S — часть параболоида $z=x^2+y^2,$ выделяемая условием $z\leqslant 1.$

6. 1) $\iint_S (x^2 + y^2) \, dS$; 2) $\iint_S \sqrt{x^2 + y^2} dS$; где S — часть кони-

ческой поверхности $z = \sqrt{x^2 + y^2}$, выделяемая условием $z \leqslant 1$.

7. 1)
$$\iint\limits_{S} \left(xy + yz + zx \right) dS; \quad 2) \quad \iint\limits_{S} \left(x^2y^2 + y^2z^2 + z^2x^2 \right) dS; \quad \text{где}$$

S — часть конической поверхности $z=\sqrt{x^2+y^2},$ расположенная внутри цилиндра $x^2+y^2=2x.$

8. 1)
$$\iint_{S} f(x; y; z) dS$$
; 2) $\iint_{S} \frac{dS}{f(x; y; z)}$;

3)
$$\iint_{S} (x^2 + y^2 + z^2)^{-3/2} \frac{dS}{f(x;y;z)};$$

где $f=\sqrt{rac{x^2}{a^4}+rac{y^2}{b^4}+rac{z^2}{c^4}},\;\;S$ — эллипсоид $rac{x^2}{a^2}+rac{y^2}{b^2}+rac{z^2}{c^2}=1.$

10.
$$\iint_S z^2 \, dS, \ S$$
 — часть конической поверхности
$$x = u \cos v \sin \alpha, \quad y = u \sin v \sin \alpha, \quad z = u \cos \alpha,$$

 $\alpha=\mathrm{const},\ \alpha\in(0;\pi/2),$ выделяемая условиями $u\in[0;1],\ v\in[0;2\pi].$

11. $\iint_S z \, dS$, S — поверхность

 $x = u \cos v, \quad y = u \sin v, \quad z = v, \quad u \in [0; 1], \quad v \in [0; 2\pi].$

12.
$$\iint_S f(r) \, dS, \quad \text{где} \quad r = \sqrt{x^2 + y^2 + z^2}, \quad f(r) = \left\{ \begin{array}{cc} 1 - r^2, & r \leqslant 1, \\ 0, & r \geqslant 1, \end{array} \right.$$

S — плоскость x + y + z = a.

13.
$$\iint_S f(r;z) \, dS$$
, где $r = \sqrt{x^2 + y^2}$, $f(r;z) = \begin{cases} r^2, & r \leqslant z, \\ 0, & r \geqslant z, \end{cases}$ S — сфера $x^2 + y^2 + z^2 = R^2$.

14. Доказать формулу Пуассона

$$\iint_{S} f(ax + by + cz) dS = 2\pi \int_{-1}^{1} f(\sqrt{a^{2} + b^{2} + c^{2}}t) dt,$$

где $f(t), |t| \leqslant \sqrt{a^2 + b^2 + c^2},$ — непрерывная функция, S — сфе-

pa
$$x^2 + y^2 + z^2 = 1$$
.

- 15. Определить массу, распределенную:
- 1) по поверхности куба $0\leqslant x\leqslant a,\ 0\leqslant y\leqslant a,\ 0\leqslant z\leqslant a$ с поверхностной плотностью $\rho=\rho_0xyz;$
 - 2) по сфере $x^2 + y^2 + z^2 = R^2$ с плотностью:
 - a) $\rho = \rho_0 \sqrt{x^2 + y^2}$, 6) $\rho = \rho_0 (x^2 + y^2)$;
- 3) по части эллиптического параболоида $x^2+y^2=2z,\ z\leqslant 1$ с плотностью $\rho=\rho_0z;$
- 4) по части гиперболического параболоида $x^2-y^2=2z$, вырезаемой цилиндром $x^2+y^2=1$, с плотностью $\rho=\rho_0|z|,\ \rho_0={\rm const.}$
- **16.** Определить статический момент относительно плоскости z=0 однородной ($\rho=\rho_0={
 m const}$) поверхности:
 - 1) x + y + z = a, $x \ge 0$, $y \ge 0$, $z \ge 0$; 2) $x^2 + y^2 + z^2 = R^2$, $z \ge 0$.
- 17. Определить аппликату центра масс полусферы $x^2 + y^2 + z^2 = R^2$, $z \ge 0$ с поверхностной плотностью:
 - 1) $\rho = \rho_0$; 2) $\rho = \rho_0 \sqrt{x^2 + y^2}$; 3) $\rho = \rho_0 (x^2 + y^2)$, $\rho_0 = \text{const.}$
- **18.** Определить координаты центра масс однородных поверхностей:
 - 1) $x^2 + y^2 + z^2 = R^2$, $x \ge 0$, $y \ge 0$, $z \ge 0$;
 - 2) $z = \sqrt{R^2 x^2 y^2}$, $x \ge 0$, $y \ge 0$, $x + y \le R$;
 - 3) $z = \sqrt{x^2 + y^2}$, $x^2 + y^2 \le x$; 4) $z = 2 (x^2 + y^2)/2$, $z \ge 0$;
 - 5) $x = u \cos v$, $y = u \sin v$, z = v, $u \in [0; 1]$, $v \in [0; \pi]$.
- **19.** Вычислить моменты инерции относительно координатных плоскостей однородной ($\rho = \rho_0 = {\rm const}$) поверхности:
 - 1) x + y + z = 1, $x \ge 0$, $y \ge 0$, $z \ge 0$;
 - 2) $z = \frac{h}{r} \sqrt{x^2 + y^2}$, $x^2 + y^2 \leqslant r^2$.
- **20.** Вычислить момент инерции однородной ($\rho = \rho_0 = {\rm const}$) поверхности:
 - 1) $x^2 + y^2 = 2az$, $z \le a$, относительно оси Oz;
- $x^2/a^2+y^2/a^2=z^2/b^2,\ 0\leqslant z\leqslant b,$ относительно прямой y=0, z=b.
 - 21. Найти величину силы, с которой однородная поверхность:
 - 1) $x = a\cos\varphi$, $y = a\sin\varphi$, z = z, $\varphi \in [0; 2\pi]$, $z \in [0; H]$;
- 2) $x=r\cos\varphi,\ y=r\sin\varphi,\ z=r,\ \varphi\in[0;2\pi],\ r\in[a;b],\ a>0;$ плотности ρ_0 притягивает точку массы m, помещенную в начале координат.
- **22.** Найти величину силы, с которой однородная сфера радиуса R и плотности $\rho = \rho_0$ притягивает точку массы m.
 - 23. Определить электрический заряд, распределенный с плот-

ностью $ho=
ho_0|z|$ по поверхности:

- 1) $x^2/a^2 + y^2/a^2 z^2/c^2 = 0$, $|z| \le c$;
- 2) $z^2 x^2 y^2 = a^2$, $|z| \le a\sqrt{2}$.
- **24.** Найти потенциал в точке $M_0(x_0;y_0;z_0)$ простого слоя (п. 1), распределенного:
 - 1) на сфере $x^2 + y^2 + z^2 = R^2$ с постоянной плотностью μ_0 ;
- 2) на сфере $x^2+y^2+z^2=R_1^2$ с постоянной плотностью μ_1 и на сфере $x^2+y^2+z^2=R_1^2$ с постоянной плотностью $\mu_2,\ R_1< R_2.$
- **25.** Найти в точке (0;0;z) потенциал простого слоя, распределенного с плотностью μ :
- 1) на боковой поверхности цилиндра $x^2+y^2=R^2,\ 0\leqslant z\leqslant H,$ $\mu=\mu_0;$
 - 2) на сфере $x^2 + y^2 + z^2 = R^2$, $\mu = \mu_0 z^2$.

Вычислить интегралы (26-43).

- **26.** $\iint\limits_{S} (x^2+y^2)\,dx\,dy,\,\,S$ нижняя сторона круга $x^2+y^2\leqslant 4,$ z=0.
- **27.** $\iint\limits_{S} (2z-x)\,dy\,dz + (x+2z)\,dz\,dx + 3z\,dx\,dy, \quad S \quad \ \quad$ верхняя сторона треугольника $x+4y+z=4, \ x\geqslant 0, \ y\geqslant 0, \ z\geqslant 0.$
- **28.** 1) $\iint_S xz\,dx\,dy; \quad 2) \quad \iint_S yz\,dy\,dz + zx\,dz\,dx + xy\,dx\,dy; \quad S \quad -$ внутренняя сторона поверхности тетраэдра $x+y+z\leqslant 1, \quad x\geqslant 0,$ $y\geqslant 0, \ z\geqslant 0.$
- **29.** $\iint_S f_1(x) \, dy \, dz + f_2(y) \, dz \, dx + f_3(z) \, dx \, dy$, где f_1 , f_2 , f_3 непрерывные функции, S внешняя сторона поверхности параллеления $0 \leqslant x \leqslant a, \ 0 \leqslant y \leqslant b, \ 0 \leqslant z \leqslant c.$
- ${f 30.}\,\,\,1)\,\,\iint\limits_S y\,dz\,dx;\,\,\,2)\,\,\iint\limits_S x^2\,dy\,dz;\,\,S\,$ внешняя сторона сферы $x^2+y^2+z^2=R^2.$
- **31.** 1) $\iint_S (x^5+z)\,dy\,dz;$ 2) $\iint_S x^2y^2\,z\,dx\,dy;$ S внутренняя сторона полусферы $x^2+y^2+z^2=R^2,\ z\leqslant 0.$
- **32.** $\iint_S x^2\,dy\,dz+z^2\,dx\,dy,\ S$ внешняя сторона части сферы $x^2+y^2+z^2=R^2,\ x\leqslant 0,\ y\geqslant 0.$
 - **33.** $\iint_S x^2 \, dy \, dz + y^2 \, dz \, dx + z^2 \, dx \, dy$, S внешняя сторона сфе-

ры $(x-a)^2 + (y-b)^2 + (z-c)^2 = R^2$.

- **34.** $\iint_S z^2 \, dx \, dy$, S внутренняя сторона полусферы $(x-a)^2 + (y-b)^2 + z^2 = R^2, \; z \geqslant 0.$
- **35.** $\iint\limits_{S} (x-1)^3 dy\, dz, \ S$ внешняя сторона полусферы $x^2+y^2+z^2=2x, \ z\leqslant 0.$
- **36.** 1) $\iint_S dz \, dx$; 2) $\iint_S x \, dy \, dz$; 3) $\iint_S x^2 \, dy \, dz$; 4) $\iint_S \frac{dx \, dy}{z}$; S внешняя сторона эллипсоида $x^2/a^2 + y^2/b^2 + z^2/c^2 = 1$.
- **37.** 1) $\iint_S yz\,dz\,dx;\ 2)$ $\iint_S x^3\,dy\,dz+y^3\,dz\,dx;\ S$ внешняя сторона части эллипсоида $x^2/a^2+y^2/b^2+z^2/c^2=1,\ z\geqslant 0.$
- **38.** $\iint_S (2x^2 + y^2 + z^2) \, dy \, dz$, S внешняя сторона боковой поверхности конуса $\sqrt{y^2 + z^2} \leqslant x \leqslant H$.
- **39.** $\iint_S (y-z) \, dy \, dz + (z-x) \, dz \, dx + (x-y) \, dx \, dy$, S одна из сторон поверхности $x^2 + y^2 = z^2$, $0 < z \leqslant H$.
- **40.** $\iint_S yz^2 \, dx \, dz$, S внутренняя сторона части цилиндрической поверхности $x^2 + y^2 = r^2$, $y \leqslant 0$, $0 \leqslant z \leqslant r$.
- **41.** $\iint_S yz\,dx\,dy+zx\,dy\,dz+xy\,dz\,dx,\;S$ внешняя сторона части цилиндра $x^2+y^2=r^2,\;x\leqslant 0,\;y\geqslant 0,\;0\leqslant z\leqslant H.$
- **42.** $\iint_S x^6\,dy\,dz+y^4\,dz\,dx+z^2\,dx\,dy,\,\,S$ нижняя сторона части эллиптического параболоида $z=x^2+y^2,\,\,z\leqslant 1.$
- **43.** $\iint_S x\,dy\,dz + y\,dz\,dx + z\,dx\,dy,\ S$ верхняя сторона части гиперболического параболоида $z=x^2-y^2,\ |y|\leqslant x\leqslant a.$

С помощью теоремы Гаусса-Остроградского вычислить интегралы (44-48).

- **44.** $\iint\limits_{S} (1+2x) \, dy \, dz + (2x+3y) \, dz \, dx + (3y+4z) \, dx \, dy, \quad \text{где} \quad S:$
- 1) внешняя сторона поверхности пирамиды $x/a + y/b + z/c \le 1$, $x \ge 0, \ y \ge 0, \ z \ge 0$;
 - 2) внутренняя сторона поверхности |x-y+z| + |y-z+x| +

$$+|z-x+y|=a.$$

45.
$$\iint_{S} z \, dx \, dy + (5x + y) \, dy \, dz$$
, где S :

- 1) внешняя сторона полной поверхности конуса $x^2 + y^2 \leqslant z^2$, $0 \leqslant z \leqslant 4$;

 - 2) внутренняя сторона эллипсоида $x^2/4 + y^2/9 + z^2 = 1;$ 3) внешняя сторона границы области $1 < x^2 + y^2 + z^2 < 4.$

46.
$$\iint_{S} x^2 \, dy \, dz + y^2 \, dz \, dx + z^2 \, dx \, dy$$
, где S :

- 1) внутренняя сторона поверхности параллелепипеда $0 \leqslant x \leqslant a,$ $0 \leqslant y \leqslant b, \ 0 \leqslant z \leqslant c;$
- 2) внешняя сторона полной поверхности $x^2/a^2 + y^2/b^2 \leqslant z^2/c^2, \ 0 \leqslant$ $\leq z \leq c$ (конус).

47.
$$\iint_{S} x^3 \, dy \, dz + y^3 \, dz \, dx + z^3 \, dx \, dy$$
, где S :

- 1) внешняя сторона поверхности тетраэдра $x+y+z\leqslant a,\ x\geqslant 0,$ $y \geqslant 0, \ z \geqslant 0;$
 - 2) внутренняя сторона сферы $x^2 + y^2 + z^2 = R^2$.

48.
$$\iint_{S} x^4 \, dy \, dz + y^4 \, dz \, dx + z^4 \, dx \, dy$$
, где S :

- 1) cфepa $x^2 + y^2 + z^2 = R^2$;
- 2) внешняя сторона полной поверхности полушара $x^2 + y^2 + z^2 \leqslant$ $\leqslant R^2, \ z \geqslant 0.$
- $oldsymbol{49.}$ Доказать для объема V тела, ограниченного гладкой поверхностью S, формулу

$$V = \left| \frac{1}{3} \iint_{S} x \, dy \, dz + y \, dz \, dx + z \, dx \, dy \right|.$$

- 50. Используя формулу из задачи 49, найти объем тела, ограниченного:
- 1) поверхностью $x = u \cos v$, $y = u \sin v$, $z = -u + a \cos v$ ($u \ge 0$, a > 0) и плоскостями x = 0, z = 0;
- 2) поверхностью $x=(b+a\cos u)\cos v,\ y=(b+a\cos u)\sin v;\ z=$ $= a \sin u, \ b \geqslant a > 0;$
- 3) поверхностью $x = a \cos u \cos v + b \sin u \sin v$, $y = a \cos u \sin v -b\sin u\cos v,\ z=c\sin u$ и плоскостями $z=c,\ z=-c.$

Вычислить интегралы (51-55).

 $\iint x\,dy\,dz + y\,dz\,dx + z\,dx\,dy$, где S — внешняя сторона поверхности, образованной вращением вокруг оси z кривой:

1)
$$y = 2 - |z - 1|, z \in [0, 2];$$
 2) $x = 1 + \sin z, z \in [0, \pi].$

52.
$$\iint_S x^2 \, dy \, dz + y^2 \, dz \, dx + z^2 \, dx \, dy$$
, где S :

- 1) нижняя сторона полусферы $x^2 + y^2 + z^2 = R^2, \ z \geqslant 0;$
- 2) верхняя сторона части поверхности параболоида $x^2+y^2+2az=a^2,\ z\geqslant 0;$
- 3) нижняя сторона части конической поверхности $x^2+y^2=z^2,$ $0< z\leqslant H.$
 - **53.** $\iint_{S} (z^2 y^2) \, dy \, dz + (x^2 z^2) \, dz \, dx + (y^2 x^2) \, dx \, dy, \quad S \quad -$

верхняя сторона полусферы $x^2 + y^2 + z^2 = R^2, \ z \geqslant 0.$

- **54.** $\iint_S x^2 y\,dy\,dz + xy^2\,dz\,dx + xyz\,dx\,dy, S$ нижняя сторона части сферы $x^2+y^2+z^2=R^2, \ x\geqslant 0, \ y\geqslant 0, \ z\geqslant 0.$
 - **55.** $\iint_S x^2 y \, dy \, dz xy^2 \, dz \, dx + (x^2 + y^2)z \, dx \, dy$, S внешняя сто-

рона части цилиндрической поверхности $x^2+y^2=R^2,\ 0\leqslant z\leqslant H.$

56. Доказать, что если S — замкнутая гладкая поверхность, \mathbf{n} — ее внешняя нормаль, \mathbf{l} — некоторый постоянный вектор, то

$$\iint\limits_{S} \cos(\widehat{\mathbf{l}, \mathbf{n}}) \, dS = 0.$$

- **57.** Пусть $G \in \mathbb{R}^3$ ограниченная область с гладкой границей S, \mathbf{n} внешняя нормаль к $S, \ \mathbf{r} = (\xi x)\mathbf{i} + (\eta y)\mathbf{j} + (\zeta z)\mathbf{k}$:
 - 1) доказать формулу

$$\iint_{S} \cos(\widehat{\mathbf{r}, \mathbf{n}}) dS = 2 \iiint_{G} \frac{d\xi \, d\eta \, d\zeta}{|\mathbf{r}|};$$

2) вычислить интеграл Гаусса

$$I(x;y;z) = \iint\limits_{S} \frac{\cos(\widehat{\mathbf{r},\mathbf{n}})}{\mathbf{r}^2} \ dS, \quad (x;y;z) \not\in S.$$

58. Доказать, что если $G \in \mathbb{R}^3$ — ограниченная область с гладкой границей $S,\ \mathbf{n}$ — внешняя нормаль $S,\ u(x;y;z)$ и v(x;y;z) — дважды непрерывно дифференцируемые в \overline{G} функции, то

$$\iiint\limits_{G} \left| \begin{array}{cc} \Delta u & \Delta v \\ u & v \end{array} \right| \, dx \, dy \, dz = \iint\limits_{S} \left| \begin{array}{cc} \frac{\partial u}{\partial \mathbf{n}} & \frac{\partial v}{\partial \mathbf{n}} \\ u & v \end{array} \right| \, dS.$$

59. Доказать, что если u(x;y;z) — гармоническая функция в ограниченной замкнутой области \overline{G} с гладкой границей S, \mathbf{n} — внешняя нормаль к S, $\mathbf{r}=(\xi-x)\,\mathbf{i}+(\eta-y)\,\mathbf{j}+(\zeta-z)\,\mathbf{k},$ то

$$u(x;y;z) = \frac{1}{4\pi} \iint_{S} \left(u \frac{\cos(\widehat{\mathbf{r}, \mathbf{n}})}{\mathbf{r}^{2}} + \frac{1}{|\mathbf{r}|} \frac{\partial u}{\partial \mathbf{n}} \right) dS.$$

60. Доказать, что если u(x;y;z) — функция, гармоническая внутри сферы S радиуса R с центром в точке $(x_0;y_0;z_0)$, то

$$u(x_0;y_0;z_0) = rac{1}{4\pi R^2} \iint\limits_S u(x;y;z) \, dS.$$

Используя формулу Стокса, вычислить интегралы (61-68).

61.
$$\int\limits_{L} \left(x+z\right) dx + \left(x-y\right) dy + x \, dz, \ L$$
 — эллипс $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1, \ z = 1$

=c, ориентированный отрицательно относительно вектора (0;0;1).

62.
$$\int\limits_{L}y^{2}\,dx+z^{2}\,dy+x^{2}\,dz,\,\,L$$
 — граница треугольника с верши-

нами в точках (a;0;0), (0;a;0), (0;0;a), ориентированная положительно относительно вектора (0;1;0).

63. 1)
$$\int_{L} y \, dx + z \, dy + x \, dz;$$

2)
$$\int\limits_{L} rac{x\,dy-y\,dx}{x^2+y^2} + z\,dz;$$
 где L — окружность $x^2+y^2+z^2=R^2,$

x+y+z=0, ориентированная положительно относительно вектора (0;0;1).

64.
$$\int\limits_L \left(y^2-z^2\right) dx + \left(z^2-x^2\right) dy + \left(x^2-y^2\right) dz, \ L$$
 — кривая пере-

сечения поверхности куба $|x| \leqslant a, \ |y| \leqslant a, \ |z| \leqslant a$ плоскостью x+y+z=3a/2, ориентированная положительно относительно вектора (1;0;0).

65.
$$\int_{L} (y-z) dx + (z-x) dy + (x-y) dz, \text{ где:}$$

- 1) L окружность $x^2+y^2+z^2=R^2,\ y=x \operatorname{tg} \varphi,\ \varphi \in (0;\pi),$ ориентированная положительно относительно вектора (1;0;0);
- 2) L эллипс $x^2+y^2=a^2,\ x/a+z/c=1,\ a>0,\ c>0,$ ориентированный отрицательно относительно вектора (1;0;0).

66.
$$\int\limits_{L} y\,dx-z\,dy+x\,dz,\,\,L$$
 — кривая $x^2+y^2+2z^2=2a^2,\,\,y-x=$

=0, ориентированная положительно относительно вектора (1;0;0).

67.
$$\int\limits_L \left(y^2+z^2\right)dx+\left(z^2+x^2\right)dy+\left(x^2+y^2\right)dz,\ L$$
 — кривая x^2+z^2

 $+y^2+z^2=2ax, \ x^2+y^2=2bx, \ z>0, \ 0< b< a,$ ориентированная положительно относительно вектора (0;0;1).

68.
$$\int\limits_{L}z^{3}dx+x^{3}dy+y^{3}dz,\; L$$
 — кривая $2x^{2}-y^{2}+z^{2}=a^{2},\; x+y=$

= 0, ориентированная положительно относительно вектора (1;0;0).

Вычислить интегралы (69-72), если кривая L ориентирована в направлении возрастания параметра t.

69.
$$\int\limits_{L}x\,dx+(x+y)\,dy+(x+y+z)\,dz,\ L$$
 — кривая $x=a\sin t,$ $y=a\cos t,\ z=a(\sin t+\cos t),\ t\in[0;2\pi).$

70.
$$\int\limits_L y^2 z^2\,dx + x^2 z^2\,dy + x^2 y^2 dz, \ L$$
 — кривая $x=a\cos t, \ y=a\cos 2t, \ z=a\cos 3t, \ t\in [0;2\pi).$

71.
$$\int\limits_L (y+z)\,dx+(z+x)\,dy+(x+y)\,dz,\ L$$
 — кривая $x=a\sin^2t,$ $y=a\sin2t,\ z=a\cos^2t,\ t\in[0;\pi).$

72.
$$\int\limits_L (x^2-yz)\,dx+(y^2-zx)\,dy+(z^2-xy)\,dz,\ L$$
 — кривая $x=a\cos t,\ y=a\sin t,\ z=ht/(2\pi),\ t\in[0;2\pi].$

ОТВЕТЫ

1. 1)
$$7\sqrt{21}/3$$
; 2) π . **2.** 1) $8\pi R^4/3$; 2) $\pi(1+\sqrt{2})/2$.

3. 1)
$$4\pi R^4$$
; 2) $40a^4$; 3) $2\sqrt{3}a^4$; 4) $\pi r(r^3 + 2r^2H + rH^2 + 2H^3/3)$.

4.
$$(\sqrt{3}-1)(\ln 2+\sqrt{3}/2)$$
. **5.** 1) 0; 2) $(125\sqrt{5}-1)/420$. **6.** 1) $\pi/\sqrt{2}$; 2) $2\pi\sqrt{2}/3$. **7.** 1) $64\sqrt{2}/15$; 2) $29\pi\sqrt{2}/8$.

6. 1)
$$\pi/\sqrt{2}$$
; 2) $2\pi\sqrt{2}/3$. **7.** 1) $64\sqrt{2}/15$; 2) $29\pi\sqrt{2}/8$.

8. 1)
$$\frac{4}{3}\pi abc\left(\frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}\right)$$
; 2) $4\pi abc$; 3) 4π .

9.
$$\frac{2\pi R}{a(n-2)}(|a-R|^{2-n}-|a+R|^{2-n}),\ n\neq 2;\ \frac{2\pi R}{a}\ln\left|\frac{a+R}{a-R}\right|,\ n=2,$$
если $a\neq 0;\ 4\pi R^{2-n},$ если $a=0.$

10. $(\pi \sin \alpha \cos^2 \alpha)/2$. **11.** $\pi^2(\sqrt{2} + \ln(1 + \sqrt{2}))$.

12.
$$\pi(a^2-3)^2/18$$
, если $|a|\leqslant \sqrt{3}$; 0, если $|a|>\sqrt{3}$.

13.
$$\pi(8-5\sqrt{2})R^4/6$$
.

15. 1)
$$3\rho_0 a^3/4$$
; 2) a) $\rho_0 \pi^2 R^3$; 6) $8\rho_0 \pi R^4/3$; 3) $2\pi (1 + 6\sqrt{3})\rho_0/15$;

4)
$$8(1+\sqrt{2})\rho_0/15$$
.

16. 1)
$$\sqrt{3}\rho_0 a^3/6$$
; 2) $\pi \rho_0 R^3$. **17.** 1) $R/2$; 2) $4R/3\pi$; 3) $3R/8$.

18. 1)
$$\left(\frac{R}{2}; \frac{R}{2}; \frac{R}{2}\right)$$
; 2) $\left(\frac{\sqrt{2}}{4}R; \frac{\sqrt{2}}{4}R; \frac{\sqrt{2}+1}{\pi}R\right)$; 3) $\left(\frac{1}{2}; 0; \frac{16}{9\pi}\right)$;

4)
$$\left(0; 0; \frac{307 - 15\sqrt{5}}{310}\right); 5) \left(0; \frac{2(2\sqrt{2} - 1)}{3\pi(\sqrt{2} + \ln(1 + \sqrt{2}))}; \frac{\pi}{2}\right).$$

20. 1)
$$4\pi \frac{6\sqrt{3}+1}{15}\rho_0 a^4$$
, 2) $\pi \rho_0 a(3a^2+2b^2)\frac{\sqrt{a^2+b^2}}{12}$.

21. 1)
$$2\pi\rho_0 ma \left(\frac{1}{a} - \frac{1}{\sqrt{a^2 + H^2}}\right)$$
; 2) $\pi\rho_0 m \ln\left(\frac{b}{a}\right)$.

22. $4\pi \rho_0 m R^2/r^2$, если r > R; 0, если r < R; $2\pi \rho_0 m$, если r = R; r — расстояние точки от центра сферы.

23. 1)
$$\frac{4}{3}\pi\rho_0 ac\sqrt{a^2+c^2}$$
; 2) $2\pi\rho_0\left(\sqrt{3}-\frac{1}{3}\right)a^3$.

24. 1)
$$\frac{4\pi\mu_0R^2}{a}$$
, если $a\geqslant R$; $a=\sqrt{x_0^2+y_0^2+z_0^2}$;

2)
$$4\pi(\mu_1R_1 + \mu_2R_2)$$
, если $a \leqslant R_1$; $4\pi\left(\frac{\mu_1R_1^2}{a} + \mu_2R_2\right)$, если $R_1 \leqslant a \leqslant R_2$; $\frac{4\pi}{a}(\mu_1R_1^2 + \mu_2R_2^2)$, $a \geqslant R_2$; $a = \sqrt{x_0^2 + y_0^2 + z_0^2}$.

25. 1)
$$2\pi\mu_0 R \ln \frac{\sqrt{R^2 + (H-z)^2} + H - z}{\sqrt{R^2 + z^2} - z}$$
;

2)
$$\frac{4\pi\mu_0R^2}{3z}\Big(1+\frac{2R^2}{5z^2}\Big),$$
 если $|z|\geqslant R;$

$$rac{4\pi\mu_0R}{3}\Big(1+rac{2z^2}{5R^2}\Big),$$
 если $|z|\leqslant R.$

26. -8π . **27.** 128/3. **28.** 1) -1/24; 2) 0.

29. $(f_1(a) - f_1(0))bc + (f_2(b) - f_2(0))ac + (f_3(c) - f_3(0))ab$.

30. 1) $4\pi R^3/3$; 2) 0. **31.** 1) $-2\pi R^7/7$; 2) $-2\pi R^7/105$.

32. $-\pi R^4$. **33.** $8\pi(a+b+c)R^3/3$. **34.** $-\pi R^4/2$. **35.** $-2\pi/5$.

36. 1) 0; 2) $4\pi abc/3$; 3) 0; 4) $4\pi ab/c$.

37. 1) $\pi abc^2/4$; 2) $2\pi(a^2+b^2)abc/5$. **38.** $-3\pi H^4/2$. **39.** 0.

40. $-\pi r^5/6$. **41.** $(\pi H/8 - r/3)r^2H$. **42.** $-\pi/3$. **43.** $-a^4/3$.

44. 1) 3abc/2; 2) $-3a^3$. **45.** 1) 128π ; 2) -48π ; 3) 56π .

46. 1) (a+b+c)abc; 2) $\pi abc^2/2$. **47.** 1) $3a^5/20$; 2) $12\pi R^5/5$.

48. 1) 0; 2) $\pi R^6/3$. **50.** 1) $2a^3/9$; 2) $2\pi^2a^2b$; 3) $2\pi(2a^2+b^2)|c|/3$.

51. 1) 12π ; 2) $\pi(24+7\pi)/2$.

52. 1) $-\pi R^4/2$; 2) $\pi a^4/12$; 3) $-\pi H^4/2$. **53.** 0. **54.** $-R^5/3$.

55. 0. **57.** 2) 4π , если $(x; y; z) \in \overline{G}$; 0, если $(x; y; z) \notin \overline{G}$.

61. $-\pi ab$. **62.** $-a^3$. **63.** 1) $\pi \sqrt{3}R^2$; 2) 2π . **64.** $-45a^3/8$.

65. 1) $2\sqrt{2}\pi a^2 \sin(\pi/4 - \varphi)$; 2) $2(a+c)a\pi$. **66.** $2\pi a^2$. **67.** $2\pi ab^2$.

68. $3\pi R^4/2$. **69.** $-\pi a^2$. **70.** 0. **71.** 0. **72.** h^3 .

§ 12. Скалярные и векторные поля

СПРАВОЧНЫЕ СВЕДЕНИЯ

1. Скалярное и векторное поле. Пусть Ω — область в трехмерном пространстве.

Скалярным полем на Ω называют числовую функцию u(M), заданную на точках $M \in \Omega.$

Векторным полем на Ω называют векторную функцию $\mathbf{a}(M),$ заданную на точках $M\in\Omega.$