5.1 Eigenvectors and Eigenvalues

Learning Objectives:

Solution:

- Determine if a vector is an eigenvector for a matrix
- Find the eigenspace for given eigenvalues
- Relate distinct eigenvalues to linear independence

We will study certain simple ways that matrices "act on" vectors. From an alternative perspective, certain vectors for which the transformation $\mathbf{x} \to A\mathbf{x}$ is fairly simple.

Example 1. Let $A = \begin{bmatrix} 4 & -2 \\ 1 & 1 \end{bmatrix}$. Find the images of $\mathbf{v} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$ under multiplication by A. Compare the vectors to their images.

Definition 1.	An	of an		mat	rix	is a		vector	
such that	t	for some			. A scalar		is called an		of
if there i	s a nontrivial solu	ition of	of	. Such an	is c	alled a	n		

Example 2. Let $A = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$. Determine if $\mathbf{v} = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$ and $\mathbf{w} = \begin{bmatrix} -3 \\ 2 \end{bmatrix}$ are eigenvectors for A. If so, find their corresponding eigenvalues.

Solution:

Example 3. Show that 5 is an eigenvalue of the eigenvectors.	e matrix $A = \begin{bmatrix} 2 \\ 4 \end{bmatrix}$	$\begin{bmatrix} 3 \\ 1 \end{bmatrix}$, then find	ad the corres	sponding
Solution:				
Warning: Although we can use	to find		if we know	
we can not, in general,	a matrix in order	to find its	jii we kilow _	. We
wll outline a strategy for this in the next section.		00 IIII 100 <u> </u>		
Remark 1. Looking back at the last example, we only if the equation	see that is an		for	if and
has a solution. Any such to .	will be an		that cor	responds
Definition 2. . The set of all that	correspond to	i	s called the	
	t is the	of		, it is a
of \square .				

Example 4. Find a basis for the eigenspace corresponding to $\lambda=3$ of the matrix $A=\begin{bmatrix} 4 & 2 & -1 \\ 2 & 7 & -2 \\ -1 & -2 & 4 \end{bmatrix}$. Then describe the eigenspace.

Solution:

1. Is $\lambda = 2$ an eigenvalue of $\begin{bmatrix} 3 & 2 \\ 3 & 8 \end{bmatrix}$? Why or why not? Exercise 1.

2. Is
$$\begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
 an eigenvector for $\begin{bmatrix} 3 & 0 & -1 \\ 2 & 3 & 1 \\ -3 & 4 & 5 \end{bmatrix}$? If so, find its eigenvalue.

3. Find a basis for the eigenspace of
$$A$$
 corresponding to $\lambda=3$ if $A=\begin{bmatrix} 4 & 2 & 3 \\ -1 & 1 & -3 \\ 2 & 4 & 9 \end{bmatrix}$.

Now that we know	the basic computational tools regarding eigenvectors and eigenvalues, we shall start to
expand the theory.	We begin with a situation where eigenvalue are easily obtained.

Theorem 1. The on the

Proof.

Example 5. Find the eigenvalues of the following matrices.

$$A = \begin{bmatrix} 5 & 7 & -1 \\ 0 & 0 & 1 \\ 0 & 0 & 3 \end{bmatrix}, \qquad B = \begin{bmatrix} 4 & 0 & 0 \\ 5 & -7 & 0 \\ -5 & 2 & 9 \end{bmatrix}.$$

Solution:

Remark 2. If for a matrix it means that has a nontrivial solution, which means the equation has a nontrivial solution. That is, ! In this case, is an for if and only if is not for the is the same as

To finish this section, we present a theorem relating eigenvalues to linear independence of eigenvectors which will be used later.

Theorem 2. If are that correspond to of an matrix, then the set is

of an , then the set Proof.

Exercise 2. 1. Find the eigenvalues of the matrix $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 2 & 5 \\ 0 & 0 & -1 \end{bmatrix}$.

5.1 Eigenvectors and Eigenvalues

2. Find the eigenvalues of the matrix $\left[\begin{array}{ccc} 4 & 0 & 0 \\ 7 & 0 & 0 \\ 1 & 0 & -3 \end{array} \right]$

3. Find one eigenvalue of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$ without any computation. Explain your answer.

4. Construct a 3×3 matrix with only two distinct eigenvalues.