Zadanie 1 z listy 6 - "Kompresja Danych"

Łukasz Klasiński

10 maja 2020

Zadanie 1

Pokaż, że optymalna gramatyka dla słowa

$$w_k = a^{k(k+1)/2} (ba^k)^{(k+1)^2}$$

ma wielkość O(logk), a kodowanie LZ78 daje w wyniku kod o rozmiarze (liczbie elementów) $\Omega(k^2)$ # Rozwiązanie

Zobaczmy najpierw jak wygląda konstrukcja gramatyki dla w_k , która ma wielkość $O(log_k)$. Najpierw mamy produkcję słowa startowego: $S \to LR$ Gdzie L będzie prawymi a, natomiast R prawymi.

Jak wygląda tworzenie słowa złożonego z a^k elementów: Rozkładamy wpierw k na postać binarną $k = 2^{i_1} + 2^{i_2} + 2^{i_3} \dots$ Wtedy produkcja a^k wygląda następująco:

$$A_K \rightarrow A_{i_1} A_{i_2} A_{i_3} \dots$$

Natomiast kolejne produkcje A_j tworzymy następująco:

$$A_j \to A_{j/2} A_{j/2}$$

$$A_1 \rightarrow a$$

Otrzymujemy wtedy $\lceil log k \rceil = O(log k)$ produkcji.

Teraz chcemy znaleźć produkcję tworzącą słowo składające się z (k+1)/2 elementów x. Robimy to tak samo jak wcześniej - szukamy rozkładu binarnego i robimy dodatkowe produkcje:

$$A_{\frac{K+1}{2}} \to A_{\frac{K+1}{2}} A_{\frac{K+1}{2}} A_{\frac{K+1}{2}} \dots$$
$$A_{\frac{K+1}{2}} \to x$$

Możemy teraz stworzyć produkcję konstruującą słowo $a^{k(k+1)/2}$ podstawiając pod x z poprzedniej produkcji A_K

$$L \to A_{\frac{K+1}{2}}$$

Mamy już zatem lewe wyrażenie szukanego słowa. Zostało stworzenie produkcji dla $(ba^k)^{(k+1)^2}$. Zauważmy, że

$$(k+1)^2 = k^2 + 2k + 1$$

Zatem wystarczy znaleźć produkcje dające kolejne długości tej sumy. Jedynkę mamy za darmo bo $(ba^k)^1 = bA_K \ (ba^k)^{2k} = 2 \times prod(ba^k)^k$ natomiast $k^2 = k \cdot k = k \times prod(ba^k)^k$ Wystarczy zatem zrobić produkcję, które aplikuje elementy k razy oraz produkcję $(ba^k)^k$ Najpierw $(ba^k)^k$ - podobnie jak wcześniej korzystamy z rozkładu k i robimy produkcję

$$BA_K \to BA_{i_1}BA_{i_2}\dots$$

 $BA_j \to BA_{j/2}BA_{j/2}$

Oraz identycznie produkcję która zaaplikuje produkcję BA_K - k razy:

$$K_K \to K_K i_1 K_K i_2 \dots$$

$$K_1 \to B A_K$$

Ostatecznie mamy produkcję dla prawej strony:

$$R \to bA_KBA_KBA_KK_K$$

Wystarczy teraz zlepić całość w

$$S \to A_{\frac{K+1}{2}}$$

Jaka mamy wielkość gramatyki - $4 \cdot O(logk) = O(logk)$

Dlaczego to jest optymalna wielkość gramatyki? Wiemy z wykładu, że gramatyka konstruowana przez algorytm LZ77 jest większa od optymalnej gramatyki o jakąś stałą $\leq logn$ gdzie n = |w|. Algorytm na początku dopasuje długi ciąg złożony z samych a i zapisze to jako jedna krotka. Następnie zmachuje ba^k jednokrotnie, następnie dwukrotnie, czterokrotnie - łącznie $log(k+1)^2 = 2log(k+1)$ razy ostatecznie mamy zatem kod długości $2log(k+1) \cdot log(|w|) = O(logk) \cdot log(|w|)$. Zatem O(logk) musi być optimum (na mocy tw. z wykładu).

Jak wygląda kodowanie LZ78 - zakładamy nieograniczony słownik. Wpierw zobaczmy L. Na początku wstawi do pustego słownika a i wypluje (0,a). W następnym kroku zmatchuje a i doda do słownika aa (wypluje (1, a)). I tak dalej - łącznie zamieni a^1 na krotkę, a^2 na krotkę ... a^k na krotkę, ponieważ $\sum_{1}^{k} = k(k+1)/2$.

Prawa część będzie wyglądać następująco - algorytm zobaczy b na początku wyrazu, zatem nie znajdzie tego w słowniku i doda to jako nową krotkę. Następnie zobaczy że a^k jest w słowniku i doda do słownika a^kb . W kolejnej iteracji dodamy a^kba . Potem $a^{k-1}b$. Ogólnie otrzymamy w słowniku wszystkie możliwe kombinacje a^iba^j , gdzie i, j = 0..k. Zatem ustawiamy i, j na k^2 sposobów. Zatem na wyjściu otrzymamy co najmniej $O(k^2)$ krotek. Ostatecznie mamy $O(k) + O(k^2) \ge \Omega(k^2)$