Assignment 31 (Constraint Handling in MOP)

Consider the following bi-objective minimization problem with 2 decision variables and 1 inequality constraint:

min
$$F(\vec{x}) = (f_1(\vec{x}), f_2(\vec{x})) = (x_1^2 + x_2^2, |x_1 - x_2 - 2 \cdot x_1 \cdot x_2 + 2|)$$

subject to $g_1(\vec{x}) = |x_1 + x_2| > 2$

And a population consisting of the following eight solutions:

$$x^{(a)} = (0,0)$$
 $x^{(b)} = (1,1)$ $x^{(c)} = (2,2)$ $x^{(d)} = (-3,0)$ $x^{(e)} = (1,2)$ $x^{(f)} = (-1,0)$ $x^{(g)} = (3,-2)$ $x^{(h)} = (1,3)$

Take a look at the constraint handling techniques in MOPs and answer the following questions.

• What advantages and disadvantages do you find between using penalty function for each objective and constrain-domination?

Penalized objective function

Advantages:

- Using a penalty function convert a constrained problem to an unconstrained one.
- The new fitness value is computed based on value of fitness function
 & penalty term.
- The amount of constraint violation is indicated by the **penalty term**.

<u>Disadvantages</u>:

- Penalty term sometimes distorts the objective function. (static penalty)
- Small R-value ⇒ lesser distortion ⇒ optimum may not be found.
- Large R-value ⇒ distortion creates artificial local minima ⇒ near true optimum.

Constrain-domination

Advantages:

 No conversion involved instead, measure the constraint violation for the solutions. • Which solutions of the population are constrain-dominated by solution $x^{(d)}$?

Solutions, (x*)	Fitness, $F(\vec{x})$	Constraint, $g_1(\vec{x})$
X ^(a)	(0, 2)	0 ≯ 2
X (p)	(2, 0)	2 ≯ 2
X (c)	(8, 6)	4 > 2
X _(q)	(9, 1)	3 > 2
X ^(e)	(5, 3)	3 > 2
X ^(f)	(1, 1)	1 ≯ 2
X (a)	(13, 19)	1 ≯ 2
X ^(h)	(10, 6)	4 > 2

 $x^{(d)}$ constraint dominates $x^{(a)}$, $x^{(b)}$, $x^{(f)}$, $x^{(g)}$, $x^{(h)}$

- Which solutions are constrain-dominated by solution $x^{(b)}$? $\mathbf{x}^{(b)}$ constraint dominates none. It has a larger constraint violation value than any other solutions.
 - Which solutions are non-dominated according to constrain-domination?

$${\bf X}^{(c)}, \ {\bf X}^{(d)}, \ {\bf X}^{(e)}$$

• Which solutions are the most reliable?

$$X^{(c)}, X^{(d)}, X^{(e)}, X^{(h)}$$