Multiple Regression: A Model for the Mean

EXTRA SUMS OF SQUARES TESTS

TESTING DIFFERENT HYPOTHESES

A PRELIMINARY LOOK AT PREDICTION

Testing For Groups of Explanatory Variables

Extra Sums of Squares F-Test

Consider comparing the "reduced" model:

```
\mu\{salePrice|ft^2, zipcode, nBedrooms, nBaths\}\\ = \beta_0 + \beta_1 ft^2 + \beta_2 zipcode + \beta_3 nBedrooms + \beta_4 nBaths\\ \text{with a "full" model that interacts each of the main effects with zipcode:}\\ \mu\{salePrice|ft^2, zipcode, nBedrooms, nBaths\}\\ = \beta_0 + \beta_1 ft^2 + \beta_2 zipcode + \beta_3 nBedrooms + \beta_4 nBaths + \beta_5 ft^2 * zipcode + \beta_6 nBedrooms * zipcode + \beta_7 nBaths * zipcode
```

If we want to test for the suitability of the more complex model, we need to test the hypothesis:

$$H_0$$
: $\beta_5 = \beta_6 = \beta_7 = 0$
 H_A : At least one coefficient $\neq 0$

The default t-tests do not address this hypothesis

Extra Sums of Squares F-Test:

General Case

(see lecture notes: 5c_ESSforSpock for a discussion of extra sums of squares tests for ANOVA and Chapter 10.3 in the book)

```
PROC GLM DATA = housing PLOTS=all;
     CLASS zipCode (ref = '75224');
     MODEL salePrice = sqFootage zipCode nBedrooms nBathrooms;
RUN:
                                                                                   Sum of Squares
                                                                  Source
                                                                                                 Mean Square | F Value
                                                                                                                    Pr > F
                                                                  Model
                                                                                     3.988723E13
                                                                                                9.9718076E12
                                                                                                              88.94
                                                                                                                   <.0001
                                                                  Error
                                                                                    2.6908501E12
                                                                                                112118754091
                                                                                      4.257808E13
                                                                  Corrected Total
      H_0: \beta_5 = \beta_6 = \beta_7 = 0
```

 H_A : At least one coefficient $\neq 0$

RUN;

	Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
	Model	7	4.0733679E13	5.8190971E12	66.26	<.0001
	Error	21	1.8444011E12	87828624088		
4	Corrected Total	28	4.257808E13			

```
DATA pval;

p = CDF('F',((2.6908501E12 - 1.8444011E12)/(24-21))/87828624088, 24 - 21, 21);

PROC PRINT DATA = pval;

RUN;

What does this mean?

RUN;
```

Extra Sums of Squares F-Test: Special Cases

There are two special cases of note:

- Testing a single coefficient
- Testing the fit of a model to the intercept-only model

We will cover each of these in the next slides..

Testing a Single Coefficient

Compare the "reduced" model:

```
\begin{split} &\mu\{salePrice|ft^2,zipcode,nBedrooms,nBaths\}\\ &=\beta_0+\beta_1ft^2+\beta_2zipcode+\beta_3nBedrooms+\beta_4nBaths\\ &\text{to the "full" model that adds an interaction of nBaths and zipcode:}\\ &\mu\{salePrice|ft^2,zipcode,nBedrooms,nBaths\}\\ &=\beta_0+\beta_1ft^2+\beta_2zipcode+\beta_3nBedrooms+\beta_4nBaths+\beta_5nBaths*zipcode \end{split}
```

This reduces to testing

$$H_0$$
: $\beta_5 = 0$
 H_A : $\beta_5 \neq 0$

Parameter	Estimate		Standard Error	t Value	Pr > t	95% Confide	ence Limits
Intercept	219885.216	В	338511.8432	0.65	0.5224	-480379.884	920150.317
sqFootage	221.119		93.2692	2.37	0.0265	28.177	414.061
zipcode 75225	-1075799.128	В	381054.9625	-2.82	0.0096	-1864071.376	-287526.880
zipcode 75224	0.000	В					
nBedrooms	-105504.679		107916.4652	-0.98	0.3384	-328746.896	117737.538
nBathrooms	-19026.733	В	150513.2001	-0.13	0.9005	-330387.010	292333.543
nBathrooms*zipcode 75225	437258.280	В	140237.3223	3.12	0.0048	147155.276	727361.284
nBathrooms*zipcede 75224	0.000	В					

```
PROC GLM DATA = housing PLOTS=all;
CLASS zipCode (ref = '75224');
MODEL salePrice = sqFootage zipCode nBedrooms nBathrooms*zipcode/ SOLUTION CLPARM;
RUN;
```

(Exercise: Convince yourself you get the same answer as an extra sums of squares F-test)

Testing the Fit of a Model to the Intercept-only Model

The default PROC GLM output provides this test:

```
PROC GLM DATA = housing PLOTS=all;
     CLASS zipCode (ref = '75224');
    MODEL salePrice = sqFootage zipCode nBedrooms nBathrooms;
RUN;
                                                                Source
                                                                             DF
                                                                                Sum of Squares
                                                                                             Mean Square | F Value
                                                                                                                Pr > F
                                                                Model
                                                                                   3.988723E13
                                                                                             9.9718076E12
                                                                                                           88.94
                                                                                                                <.0001
                                                                Error
                                                                                  2.6908501E12
                                                                             24
                                                                                             112118754091
                                                                Corrected Total
                                                                             28
                                                                                   4.257808E13
```

Exercise: Convince yourself that this output corresponds to an extra sums of squares test for the considered model vs. the "reduced" model

 $\mu\{salePrice|ft^2, zipcode, nBedrooms, nBaths\} = \beta_0$

Returning to Some Scientific Questions

- It is very important to do statistics from the perspective of a scientist
- This means always keeping in mind the scientific question(s) of interest
- What are some scientific questions of interest for the housing data?
- Suppose instead of trying to infer the relationship between aspects of a house and its sales price, we want to get a prediction of the sales price.

A survey of housing data + multiple regression could be used

Prediction

- Prediction is a very important task that seems very similar to inference
 - Here, we want to estimate a function $\hat{\mu}\{Y|X\}$ such that I can produce an "estimate" or "prediction" of Y with only observing X
- However, the details and motivation are quite different
- Primarily:
 - Confounding is not a concern when building a predictive model
 - Confounding is a primary concern when attempting to do inference

 What is a good example that demonstrates the difference between building a predictive model and an inferential model?

Prediction

• Suppose that the true relationship between Y and X is given by a function $\mu\{Y|X\}$ and some random error ε :

$$Y = \mu\{Y|X\} + \varepsilon$$

- Then the quality of our prediction can be decomposed into three quantities:
 - Approximation error: $\mu\{Y|X\} \left(\beta_0 + \sum_{j=1}^p \beta_j x_j\right)$
 - Estimation error: $(\beta_0 + \sum_{j=1}^p \beta_j x_j) (\widehat{\beta_0} + \sum_{j=1}^p \widehat{\beta_j} x_j)$
 - Irreducible error: $\mu\{Y|X\} \varepsilon$
- The best possible prediction is given by $\mu\{Y|X\}$, which is unknown
- A good prediction $\hat{\mu}\{Y|X\}$ has small Approximation and Estimation errors

Returning to: Including "Wrong" Explanatory Variables

There are roughly four possible (unknown) outcomes:

- Model is correctly specified. All relevant explanatory variables are included
- Model is under specified. Some important explanatory variables are omitted
- Model includes unimportant explanatory variables

 Model is over specified. Some redundant (or nearly redundant) explanatory variables are included

- Ideal case. Estimates are unbiased
- 2. Estimates are biased and we are overestimating σ . We can get incorrect inferences due to confounding
- Estimates are unbiased. However, the inclusion of irrelevant parameters decreases power
- 4. We'll return to this during multicollinearity

When the scientific question of interest is primarily about making predictions, the decrease in power from too large a model is important

If we want to build a predictive model for housing prices, confounding isn't a concern

Let's return to the "main effects" fitted model

$$\hat{\mu}\{salePrice|ft^2, zipcode, nBedrooms, nBaths\}$$

= $\hat{\beta}_0 + \hat{\beta}_1 ft^2 + \hat{\beta}_2 zipcode + \hat{\beta}_3 nBedrooms + \hat{\beta}_4 nBaths$

Parameter	Estimate		Standard Error	t Value	Pr > t	95% Confidence Limits	
Intercept	-413793.0938	В	316100.7504	-1.31	0.2029	-1066192.978	238606.7902
sqFootage	252.8059		108.2575	2.34	0.0282	29.3733	476.2384
zipcode 75225	-77819.1511	В	241444.0896	-0.32	0.7500	-576135.2603	420496.9581
zipcode 75224	0.0000	В					
nBedrooms	-181430.9105		122758.9588	-1.48	0.1524	-434792.9490	71931.1280
nBathrooms	380639.9690		92117.7525	4.13	0.0004	190518.2722	570761.6658

- Previously, we left the zipcode and nBedroom terms in the model, due to being more concerned about confounding
- When considering building a predictive model, it makes sense to make sure that each of the terms in the model are important
- •In this case, we can try and jointly test for inclusion of zipcode and nBedroom

$$\begin{split} \hat{\mu}\{salePrice|ft^2,zipcode,nBedrooms,nBaths\}\\ &= \widehat{\beta_0} + \widehat{\beta_1}ft^2 + \widehat{\beta_2}zipcode + \widehat{\beta_3}nBedrooms\\ &+ \widehat{\beta_4}nBaths \end{split}$$

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	4	3.988723E13	9.9718076E12	88.94	<.0001
Error 24		2.6908501E12	112118754091		
Corrected Total	28	4.257808E13			

Fail to reject... What does that mean?

Source	DF	SS	MS	F	Pr > F
Model	2	2.7E11	1.08E11	0.97	0.394
Error	24	2.69E12	1.12E11		
Corrected Total	26	2.96E12			

$$\hat{\mu}\{salePrice|ft^2, zipcode, nBedrooms, nBaths\}$$

= $\hat{\beta_0} + \hat{\beta_1}ft^2 + \hat{\beta_2}nBaths$

Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model 2		3.9622781E13	1.9811391E13 174.30		<.0001	
Error	26	2.955299E12	113665344887			
Corrected Total	28	4.257808E13				

```
DATA prediction;
   INPUT salePrice sqFootage nBedrooms nBathrooms zipcode $;
   DATALINES;
   . 2500 3 2 75224
;

DATA prediction;
   SET prediction housing;

PROC GLM DATA = prediction;
   CLASS zipCode (ref = '75224');
   MODEL salePrice = sqFootage nBathrooms / CLI CLM;
RUN;
```

Observation		Observed	Predicted	Residual			
1	*		336342.847		117097.203	555588.492	
2		2250000.000	2558628.486	-308628.486	2291147.232	2826109.740	
2		2650000 000	2611165 815	3003/ 105	2200662 172	2022660 459	

$$\hat{\mu}\{salePrice|ft^2, nBaths\}$$

$$= \widehat{\beta_0} + \widehat{\beta_1}ft^2 + \widehat{\beta_2}nBaths$$

$$= \$336342.84$$

The confidence limits we choose again depends on the scientific question..

(details in 7b_linearRegressionDarren)

(This discussion is from Chapter 10.2.4. We will return to this again in Chapter 12 when we discuss model selection)