

Home Gameboard Chemistry Organic Organic Reactions Chloro Compound

Chloro Compound

A compound $\bf A$, $C_3H_5O_2Cl$, after boiling for half an hour with aqueous acid, yielded compounds $\bf B$, $C_2H_3O_2Cl$, and $\bf C$, CH_4O . Boiling $\bf A$ for half an hour with aqueous sodium hydroxide, yielded compounds $\bf D$, $C_2H_3O_3Na$, and $\bf C$.

When compound **B** was boiled with aqueous sodium hydroxide, and the mixture acidified, it gave **E**, $HOCH_2CO_2H$. Treatment of **E** with aqueous sodium carbonate resulted in a vigorous effervescence as **E** was converted into **D**.

Deduce the structures of compounds ${\bf A}$ to ${\bf D}$ inclusive.

Use the structure editor to generate SMILES strings as your answers.

Part A	Compound A			
Cor	mpound A is:			
Part B	Compound B			
Cor	mpound B is:			
Part C	Compound C			
Cor	mpound C is:			

Part D	Compound D
The	e <i>anion</i> of compound D is:
Part E	E and C reaction
Wh	at product would be obtained when compounds E and C react together?
Adapted with	permission from OCSEB A Level Structured Science Scheme, January 1997, Unit C3: Essential Organic Chemistry, Question 3.
	All materials on this site are licensed under the Creative Commons license, unless stated otherwise.

Home Gameboard Chemistry Organic Organic Reactions Fruit Alcohols

Fruit Alcohols

Alcohol **A** has esters which are responsible for the flavours of various fruits and has the molecular formula $C_5H_{12}O$. Reaction of **A** with acidified potassium dichromate(VI) produces a compound **B**, $C_5H_{10}O_2$. Heating **A** over Al_2O_3 produces **C**, C_5H_{10} . Reaction of **C** with hydrogen bromide forms 3-bromo-2-methylbutane as one of the products.

Suggest structures for A, B and C.

Use the <u>structure editor</u> to generate a SMILES string.

Part A Alcohol A

Suggest a structure for alcohol A.

Use the structure editor to generate a SMILES string.

Part B Compound B

Suggest a structure for compound **B**.

Use the structure editor to generate a SMILES string.

Part C Compound C

Suggest a structure for compound **C**.

Use the structure editor to generate a SMILES string.

Home Gameboard Chemistry Organic Organic Reactions Geraniol

Geraniol

Geraniol, $C_{10}H_{18}O$, has a rose-like odour and is present in many plants including *Pelargonium odorantissimum*; it has a melting point of $77^{\circ}C$ and a boiling point of $230^{\circ}C$.

It is easily oxidised by acidified potassium dichromate(VI), first to **citral** $C_{10}H_{16}O$, then to **geranic acid**, $C_{10}H_{16}O_2$. Prolonged oxidation of geraniol yields a variety of products, the principal ones being **propanone**, **ethanedioic acid** and **4-oxopentanoic acid**, $CH_3COCH_2CH_2CO_2H$.

One mole of geraniol absorbs two moles of hydrogen when reduced in the presence of a platinum catalyst to give **3,7-dimethyloctanol**; under milder conditions only one mole of hydrogen is absorbed to give **citronellol**, which occurs naturally as an optically active compound but is optically inactive when prepared by reduction of geraniol.

Part A 3,7-dimethyloctanol

Draw the structure of 3,7-dimethyloctanol.

Use the <u>structure editor</u> to generate a SMILES string.

Part B Gernaniol

Suggest a likely structure of geraniol.

Use the <u>structure editor</u> to generate a SMILES string.

Give the structure of citral.
Use the structure editor to generate a SMILES string.
Part D Geranic acid
Give the structure of geranic acid.
Use the structure editor to generate a SMILES string.
Part E Citronellol
Give the structure of citronellol.
Use the structure editor to generate a SMILES string.
Adopted with a consission from UCLES Adopted Chamista, Newspales 4000 Capacial Bones Overtice O

Adapted with permission from UCLES, A-Level Chemistry, November 1989, Special Paper, Question 9.

Gameboard:

Part C Citral

STEM SMART Chemistry Week 48 (extension)

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.

<u>Home</u> <u>Gameboard</u> Chemistry Organic Isomerism Perfumery

Perfumery

The esters of alcohol **J** are used in the perfumery industry. The alcohol exhibits optical isomerism. When treated with hot concentrated sulfuric acid, each optical isomer of **J** produces three substances **K**, **L** and **M**, which are isomers of each other. Only a small quantity of **M** is produced. Both **K** and **L** react with bromine to give 1,2-dibromo-1-phenylpropane, whereas **M** with the same reagent gives 2,3-dibromo-1-phenylpropane.

Part A Compound J

Suggest a structure for alcohol **J**.

Draw the structure using the <u>structure editor</u> and give your answer as a SMILES string.

Part B Compounds K and L

Suggest structures for compounds **K** and **L**.

Draw the structures using the <u>structure editor</u> and give your answer as SMILES strings in the format A, B (space after comma).

Part C Compound M

Suggest a structure for compound M.

Draw the structure using the structure editor and give your answer as a SMILES string.

What type of isomerism do compounds K and L show with respect to each other?
Structural Isomerism - Chain
Stereoisomerism - Geometric
Structural Isomerism - Position
Structural Isomerism - Functional
Stereoisomerism - Optical
Part E Isomerism M and L
What type of isomerism do compounds M and L show with respect to each other?
Stereoisomerism - Optical
Structural Isomerism - Chain
Structural Isomerism - Position
Structural Isomerism - Functional
Stereoisomerism - Geometric
Part F J \longrightarrow K, L, M reaction
What type of reaction does alcohol J undergo to produce compounds K , L and M ?
what type of reaction does alcohol s undergo to produce compounds ix , L and ivi ?

Adapted with permission from UCLES, A-Level Chemistry, November 1994, Paper 1, Question 11.

Part D

Isomerism K and L

All materials on this site are licensed under the **Creative Commons license**, unless stated otherwise.