1. (1 point) To find u_1 and u_2 we would need to integrate which of the following? Mark all that apply.

- A. $-\frac{f(x)W}{y_2}$
- B. $\frac{y_2 f(x)}{W}$
- C. $\frac{f(x)W}{y_1}$
- D. $-\frac{y_2W}{f(x)}$
- E. $\frac{y_1 f(x)}{W}$
- F. $-\frac{y_1 f(x)}{W}$
- G. $-\frac{y_2f(x)}{W}$
- H. $\frac{y_1W}{f(x)}$
- I. None of the above

Consider the differential equation $x^4y'' - 16y = 3x^7$. Note that the general solution to the underlying homogeneous differential equation is $y_h = c_1e^{4x} + c_2e^{-4x}$. With the notation given in the video, what are the y_1 , y_2 , and f(x) that we would use to find u'_1 and u'_2 ?

• A.
$$y_1 = e^{4x}$$
, $y_2 = e^{-4x}$, $f(x) = x^{16}$

• B.
$$y_1 = e^{4x}$$
, $y_2 = e^{-4x}$, $f(x) = 3x^7$

• C.
$$y_1 = e^{4x}$$
, $y_2 = e^{-4x}$, $f(x) = 3x^3$

• D.
$$y_1 = x^4$$
, $y_2 = x^{-4}$, $f(x) = 3x^3$

3. (1 point) Suppose we have a differential equation $y'' + P(x)y' + Q(x)y = x^6$, and we know $y_1 = x^2$ and $y_2 = x^5$ form a fundamental set of solutions for the homogeneous differential equation y'' + P(x)y' + Q(x)y = 0.

Then

 $W(y_1, y_2) = \underline{\hspace{1cm}}$

 $u_1 =$ ______.

 $u_2 =$ _____

4. (1 point)

1

Enter a value for π

Generated by ©WeBWorK, http://webwork.maa.org, Mathematical Association of America