Properties of expectation, covariance and variance

$$\mathbb{E}(X+Y) = \mathbb{E}(X) + \mathbb{E}(Y)$$

$$\mathbb{E}(aX+b) = a\mathbb{E}(X) + b$$

$$\mathbb{C}(X+Y,Z) = \mathbb{C}(X,Z) + \mathbb{C}(Y,Z)$$

$$\mathbb{C}(aX+b,cY) = ac\mathbb{C}(X,Y)$$

$$\mathbb{V}(aX+bY+c) = a^2\mathbb{V}(X) + b^2\mathbb{V}(Y) + 2ab\mathbb{C}(X,Y)$$

If
$$X \sim \mathcal{N}\left(\mu_x, \sigma_x^2\right)$$
 and $Y \sim \mathcal{N}\left(\mu_y, \sigma_y^2\right)$ and $\sigma_{x,y} = \mathbb{C}\left(X, Y\right)$

$$aX + bY \sim \mathcal{N}\left(a\mu_x + b\mu_y, a^2\sigma_x^2 + b^2\sigma_y^2 + 2ab\sigma_{x,y}\right)$$

Central limit theorem. If X_1, \ldots, X_n are iid random variables with expected value μ and variance σ^2 , then

$$Z_n = \sqrt{n} \frac{\overline{X}_n - \mu}{\sigma} \stackrel{d}{\to} Z \sim \mathcal{N}\left(0, 1\right) \qquad \bar{X}_n \approx \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

Let Z and Y be two independent r.v. $Z \sim \mathcal{N}(0,1)$ and $Y \sim \chi_n^2$ then $T_n = \frac{Z}{\sqrt{Y/n}} \sim t_n$

Let X and Y be two independent r.v. with $X \sim \chi_{n_1}^2$ and $Y \sim \chi_{n_2}^2$. Then $F = \frac{X/n_1}{Y/n_2} \sim F_{n_1,n_2}$.

The gamma function is $\Gamma(z) := \int_0^{+\infty} t^{z-1} e^{-t} dt$, satisfies $\Gamma(z+1) = z\Gamma(z)$, and, $\forall n \in \mathbb{N}$, we have $\Gamma(n+1) = n!$ The moment generating function of a r.v. X is defined as $m_X(t) := E[e^{tX}]$. It has the following properties

$$m_{aX+b}(t) = e^{bt} m_X(at)$$

$$m_{S_n}(t) = \prod_{i=1}^n m_{X_i}(t)$$

where $S_n = \sum_{i=1}^n X_i$ and the X_i 's are independent r.v. The moment generating function characterizes the distribution and helps us retrieve the moments, i.e. $E[X^k] = \frac{\partial^k m_X(t)}{\partial t^k}\Big|_{t=0}$

Properties of \bar{X} and S^2 , 1 population

	Distribution of X	μ	σ^2	Distribution result
\bar{X}	unknown and large n	ok	ok	$\frac{\bar{X}-\mu}{\sqrt{\sigma^2/n}} \sim \mathcal{N}(0,1)$
S^2	$\mathcal{N}\left(\mu,\sigma^2 ight)$	-	ok	$(n-1)\frac{S^2}{\sigma^2} \sim \chi_{n-1}^2$
\bar{X}	$\mathcal{N}\left(\mu,\sigma^2 ight)$	ok	ļ	$rac{ar{X}-\mu}{\sqrt{rac{S^2}{n}}} \sim t_{n-1}$

Properties of \bar{X} and S^2 , 2 normal populations

$$S_{pool}^2 = \frac{\left(n_1 - 1\right)S_1^2 + \left(n_2 - 1\right)S_2^2}{n_1 + n_2 - 2} \,,$$

		μ_1, μ_2	σ_1^2, σ_2^2	Statistics
$\bar{X}_1 - \bar{X}_2$	$\sigma_1^2 \neq \sigma_2^2$	ok	ok	$\frac{\left(\bar{X}_{1} - \bar{X}_{2}\right) - (\mu_{1} - \mu_{2})}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}} \sim \mathcal{N}\left(0, 1\right)$
S_{pool}^2	$\sigma_1^2 = \sigma_2^2$	_	ok	$(n_1 + n_2 - 2) \frac{S_{pool}^2}{\sigma^2} \sim \chi_{n_1 + n_2 - 2}^2$.
S_1^2, S_2^2	$\sigma_1^2 eq \sigma_2^2$	-	ok	$\frac{S_1^2 \sigma_2^2}{S_2^2 \sigma_1^2} \sim F_{n_1 - 1, n_2 - 1}$
$\bar{X}_1 - \bar{X}_2$	$\sigma_1^2 = \sigma_2^2$	ok	-	$\frac{\left(\bar{X}_1 - \bar{X}_2\right) - (\mu_1 - \mu_2)}{S_{pool}\sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \sim t_{n_1 + n_2 - 2}$

In what follows, the notation t_{n-1} α denotes the α -quantile of a Student distribution with n-1 degrees of freedom. The same notation is used for the Chi-squared and Fisher distribution.

Single mean test, $H_0: \mu = \mu_0$. We reject H_0 at the level α if $T(x) = \sqrt{n} \frac{\bar{x} - \mu_0}{s}$

a) $H_1: \mu > \mu_0$ $T(x) > t_{n-1} \frac{1-\alpha}{1-\alpha}$

 $b) \quad H_1 : \quad \mu < \mu_0 \qquad T(\boldsymbol{x}) < t_{n-1} \frac{\alpha}{\alpha}$

c) $H_1: \mu \neq \mu_0$ $T(x) < t_{n-1} \frac{\alpha}{2}$ or $T(x) > t_{n-1} \frac{1-\alpha}{2}$

Single variance test, $H_0: \sigma^2 = \sigma_0^2$. We reject H_0 at the level α if $T(\boldsymbol{x}) = (n-1)\frac{s^2}{\sigma_0^2}$

 $T(x) < \chi^2_{n-1} \frac{\alpha}{\alpha/2}$ or $T(x) > \chi^2_{n-1} \frac{1-\alpha/2}{1-\alpha/2}$ $a) \quad H_1 : \sigma^2 \neq \sigma_0^2$

b) $H_1 : \sigma^2 > \sigma_0^2$ c) $H_1 : \sigma^2 < \sigma_0^2$ $T(\boldsymbol{x}) > \chi_{n-1}^2 \, \frac{1-\alpha}{1-\alpha}$

 $T(x) < \chi^2_{n-1}$

Test on 2 sample means. $T(\boldsymbol{X}_1, \boldsymbol{X}_2) = \frac{(\bar{X}_1 - \bar{X}_2) - \delta}{S_{pool} \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$. We reject $H_0: \mu_1 - \mu_2 = \delta$ at the level α if

a)
$$H_1: \mu_1 - \mu_2 > \delta$$
 $T(x_1, x_2) > t_{n_1 + n_2 - 21 - \alpha}$

b)
$$H_1: \mu_1 - \mu_2 < \delta$$
 $T(x_1, x_2) < t_{n_1 + n_2 - 2\alpha}$

c)
$$H_1: \mu_1 - \mu_2 \neq \delta$$

$$\begin{cases} T(\boldsymbol{x}_1, \boldsymbol{x}_2) < t_{n_1 + n_2 - 2\alpha} \\ T(\boldsymbol{x}_1, \boldsymbol{x}_2) < t_{n_1 + n_2 - 2\alpha/2} \end{cases} or$$
$$\begin{cases} T(\boldsymbol{x}_1, \boldsymbol{x}_2) < t_{n_1 + n_2 - 2\alpha/2} \\ T(\boldsymbol{x}_1, \boldsymbol{x}_2) > t_{n_1 + n_2 - 21 - \alpha/2} \end{cases}$$

Test on 2 variances. $T(\boldsymbol{X}_1, \boldsymbol{X}_2) = \frac{S_1^2}{S_2^2} \sim F_{n_1-1, n_2-1}$. We reject $H_0: \sigma_1^2 = \sigma_2^2$ at the level α if

a)
$$H_1: \sigma_1 \neq \sigma_2$$

$$\begin{cases} T(\boldsymbol{x}_1, \boldsymbol{x}_2) < F_{n_1 - 1, n_2 - 1, 1 \alpha/2} & or \\ T(\boldsymbol{x}_1, \boldsymbol{x}_2) > F_{n_1 - 1, n_2 - 1, 1 - \alpha/2} \end{cases}$$

b)
$$H_1: \sigma_1 > \sigma_2 \qquad T(x_1, x_2) > F_{n_1 - 1, n_2 - 1, 1 - \alpha}$$

c)
$$H_1: \sigma_1 < \sigma_2 \qquad T(x_1, x_2) < F_{n_1-1, n_2-1}$$

Simple linear regression $Y_i = \beta_0 + \beta_1 x_i + \epsilon_i$, where $\epsilon_i \sim N(0, \sigma^2)$:

$$\widehat{\beta}_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sum_{i=1}^{n} (x_{i} - \bar{x})^{2}} = \frac{S_{xy}}{S_{xx}} , \qquad \widehat{\beta}_{0} = \bar{y} - \widehat{\beta}_{1}\bar{x}$$

If $\overline{x^2} = \frac{1}{n} \sum_{i=1}^n x_i^2$, the variances of estimators are

$$\mathbb{V}\left(\widehat{\beta}_{0}\right) = \frac{\sigma^{2} \overline{x^{2}}}{S_{xx}} \qquad \mathbb{V}\left(\widehat{\beta}_{1}\right) = \frac{\sigma^{2}}{S_{xx}} \quad \mathbb{C}\left(\widehat{\beta}_{0}, \widehat{\beta}_{1}\right) = \frac{-\sigma^{2} \overline{x}}{S_{xx}}$$

Multiple linear regression $Y = X\beta + \epsilon$, where X is a $n \times (k+1)$ matrix and $\epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_n)$

$$\widehat{oldsymbol{eta}} = \left(oldsymbol{X}^ op oldsymbol{X}
ight)^{-1} oldsymbol{X}^ op oldsymbol{y} \qquad \widehat{oldsymbol{eta}} \sim \mathcal{N}\left(oldsymbol{eta}, \sigma^2 \ \left(oldsymbol{X}^ op oldsymbol{X}
ight)^{-1}
ight)$$

An unbiased estimator of σ^2 is $\widehat{\sigma}^2 = \frac{1}{n - (k+1)} \underbrace{\left(\boldsymbol{Y} - \boldsymbol{X} \widehat{\boldsymbol{\beta}} \right)^{\top} \left(\boldsymbol{Y} - \boldsymbol{X} \widehat{\boldsymbol{\beta}} \right)}_{==-\infty}$ and $(n - (k+1)) \frac{\widehat{\sigma}^2}{\widehat{\sigma}^2} = \frac{SSE}{\sigma^2} \sim \chi^2_{n - (k+1)}$

$$SST = \sum_{i=1}^{n} (y_i - \bar{y})^2 = \boldsymbol{y}^{\top} \left(\boldsymbol{I}_n - \frac{1}{n} \boldsymbol{J}_n \right) \boldsymbol{y} \qquad \frac{SST}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^{n} \left(Y_i - \bar{Y} \right)^2 \sim \chi_{n-1}^2$$

$$SSR = \sum_{i=1}^{n} (\hat{y}_i - \bar{y})^2 = \boldsymbol{y}^{\top} \left(\boldsymbol{H} - \frac{1}{n} \boldsymbol{J}_n \right) \boldsymbol{y} \qquad \frac{SSE}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^{n} \left(Y_i - \hat{Y}_i \right)^2 \sim \chi_{n-(k+1)}^2$$

$$SSE = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 = \boldsymbol{y}^{\top} \left(\boldsymbol{I}_n - \boldsymbol{H} \right) \boldsymbol{y} \qquad \frac{SSR}{\sigma^2} = \frac{1}{\sigma^2} \sum_{i=1}^{n} \left(\hat{Y}_i - \bar{Y} \right)^2 \sim \chi_k^2$$

$$F^* = \frac{SSR/k}{SSE/(n-k-1)} \sim F_{k, n-(k+1)}$$

Test on significance of the model. We reject $H_0: \beta_1 = \ldots = \beta_k = 0$ against $H_1: \beta_j \neq 0$ for some $j \in \{1, \ldots, k\}$, if

$$F^* > F_{k,n-(k+1)} \frac{1-\alpha}{1-\alpha}$$

Test on regression coefficients. Let $c_{j,j}$ be the j^{th} diagonal element of $(X^{\top}X)^{-1}$.

We reject $H_0: \beta_j = \beta_{j,0}$ at the level α if $T_j^* = \frac{\beta_j - \beta_{j,0}}{\widehat{\sigma}_{\sqrt{c_{jj}}}}$

a)
$$H_1: \beta_j > \beta_{j,0} \qquad T_i^* > t_{n-k-1} \frac{1-\alpha}{1-\alpha}$$

b)
$$H_1: \beta_i < \beta_{i,0} \qquad T_i^* < t_{n-k-1,0}$$

a)
$$H_1: \beta_j > \beta_{j,0}$$
 $T_j^* > t_{n-k-1} \frac{1-\alpha}{1-\alpha}$
b) $H_1: \beta_j < \beta_{j,0}$ $T_j^* < t_{n-k-1} \frac{\alpha}{\alpha}$
c) $H_1: \beta_j \neq \beta_{j,0}$ $T_j^* < t_{n-k-1} \frac{\alpha}{\alpha/2}$ or $T_j^* > t_{n-k-1} \frac{1-\alpha/2}{1-\alpha/2}$

In what follows, we focus on simple linear regression. In that case: $c_{0,0} = \frac{\overline{x^2}}{S_{xx}}$ $c_{1,1} = \frac{1}{S_{xx}}$. The confidence intervals for β_1 and β_0 at level α are provided respectively by

$$\begin{split} \beta_1 \in \left[\widehat{\beta}_1 - t_{n-k-1} \, {}_{1-\alpha/2} \, \widehat{\sigma} \sqrt{S_{xx}^{-1}} \, ; \, \widehat{\beta}_1 + t_{n-k-1} \, {}_{1-\alpha/2} \, \widehat{\sigma} \sqrt{S_{xx}^{-1}} \right] \\ \beta_0 \in \left[\widehat{\beta}_0 - t_{n-k-1} \, {}_{1-\alpha/2} \, \widehat{\sigma} \sqrt{\bar{x^2} S_{xx}^{-1}} \, ; \, \widehat{\beta}_0 + t_{n-k-1} \, {}_{1-\alpha/2} \, \widehat{\sigma} \sqrt{\bar{x^2} S_{xx}^{-1}} \right] \end{split}$$

The prediction interval for Y_0 at level α is provided by

$$[\widehat{y}_0 - S_{pred} t_{n-2; 1-\frac{\alpha}{2}} ; \widehat{y}_0 + S_{pred} t_{n-2; 1-\frac{\alpha}{2}}],$$

$$S_{pred}^2 = \widehat{\sigma}^2 \left(1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{S_{xx}} \right)$$