

Development of the Nervous System

BIO 344/376-1305-00L/10L

https://lms.uzh.ch/dmz/

Check OLAT BIO344 regularly for information about

- -lectures
- -exams (date, location)
- -to download PDFs of lectures and additional material that is relevant for the exam

Note: All PDFs of reviews and papers uploaded on OLAT are mandatory reading for the exams

Students enrolled at the ETH should be able to access the website via the link on the ETH website (login via aai-logon.ethz.ch with your nethz username and password)

recommended text books:

Purves, Augustine, Fitzpatrick, Hall, LaMantia, McNamara, Williams

fifth edition, 2012, Sinauer

recommended text book for neuroscience in general

For developmental neuroscience:

Sanes, Reh, Harris

third edition, 2012 Academic Press ISBN: 978-0-12-374539-2

excellent text book for developmental neuroscience

For developmental neuroscience:

Price, Jarman, Mason, Kind

1st edition, 2011 Wiley-Blackwell ISBN 978-0-470-71229-0

Proliferation

Differentiation Cell migration

Connectivity Axonal pathfinding
Synapse formation

Circuit formation

Maturation

Cell death Pruning

Aberrant development can lead to disease

18.09.2017	Introduction	ES
25.09.2017	Neurogenesis	ES
02.10.2017	Axon Growth & Survival	ES
09.10.2017	Axon Guidance	ES
16.10.2017	Neural Circuits	ES
23.10.2017	Cell Migration	DZ
30.10.2017	Synapse Formation	MM
06.11.2017	Synaptic Homeostasis	MM
13.11.2017	Neural Circuits of Behavior	AH
20.11.2017	Adult Neural Stem Cells	SJ
07.44.0047		
27.11.2017	Sleep and Development	RH
04.12.2017	Sleep and Development Neural Crest Cells	RH LS
	·	

	BIO344/376-1305		Development of the Nervous System	Purves
				Neuroscience
Date	Title	Lecturer	Content	required knowledge
18.09.2017	Introduction	ES	Overview/Introduction	Ch. 1,22,23
25.09.2017	Neurogenesis	ES	Neurulation, generation of cells in the NS, patterning	22
02.10.2017	Axon Growth & Survival	ES	Molecular mechanisms of axon growth and neuronal survival	23
09.10.2017	Axon Guidance	ES	How do axons navigate through the preexisting tissue?	23
16.10.2017	Neural Circuits	ES	Integration of basic mechanisms to neural circuit formation and maturation	23
23.10.2017	Cell Migration	DZ	Mechanisms and importance of cell migration in neural development	22, 23
30.10.2017	Synapse Formation	MM	Molecular mechanisms of synapse formation	23
06.11.2017	Synaptic Plasticity and Homeostasis	MM	How are synapses changing during learning and memory? How is synaptic strength maintained?	
13.11.2017	Neural Circuits of Behavior	АН	How can we use a simple NS to study the correlation between structure and function?	
20.11.2017	Adult neural stem cells	SJ	Contribution of stem cells in the adult NS, therapeutic potential of adult stem cells	25
27.11.2017	Neural Development & Sleep	RH	Importance of sleep during neural development, changes in sleep patterns during brain development	
04.12.2017	Neural Crest Cells	LS	Generation of the PNS, contribution of NC stem cells to neural development and function	22, 25
11.12.2017	Neurodevelopmental Disorders	ES	What are the consequences of aberrant neural development? Examples that will be discussed are autism, schizophrenia, intellectual disability	
18.12.2017	Neurodevelopmental Disorders	ES		

Note:

Papers and review articles on OLAT are part of the exam!

Proliferation

Differentiation Cell migration

Connectivity Axonal pathfinding
Synapse formation

Circuit formation

Maturation

Cell death Pruning

Aberrant development can lead to disease

Development means increase in size and increase in complexity!

The size of the forebrain increased during evolution

Structures may look very different in the adult organism but their development is very similar in invertebrates and vertebrates

Gastrulation

Neurulation

Proliferation

Cells proliferate in the ventricular zone of the neural tube

Radial and tangential migration

Copyright © 2002, Elsevier Science (USA). All rights reserved.

Radial glia can give rise to neuronal precursors

Stem cells

(From Noctor et al., 2001.)

Radial migration is essential for cortical development

Copyright © 2002, Elsevier Science (USA). All rights reserved.

The peripheral nervous system of vertebrates is segmented

Somites are essential for the segmentation of the peripheral nervous system

Migration and differentiation cannot be separated in

The caudal part of the somite is inhibitory for neural crest cell migration

Differentiation and Patterning

Lateral Inhibition defines the number of neuronal cells

How do cells become different from each other?

The French Flag Model

Neural connectivity -

the basis of neural function

Neurons extend long processes to connect to their targets

14 000 000 000 neurons are interconnected by fibers with a total length of 500 000 km

Axons use guidepost cells as intermediate targets

How is extracellular guidance information transmitted to intracellular signaling?

Synapse Formation

On average every neurons is connected to 1000 neurons

The neuromuscular junction is the best understood model for synapse formation

Both in the PNS and in the CNS synapses are eliminated

during development and maturation

The formation of neural circuits

The stretch reflex

From neural development to behavior

How simple nervous systems control behavior or what we can learn about the neural basis of behavior using simple model organisms

What happens when neural development goes wrong?

Overview on developmental disorders and their molecular bases

mental retardation/intellectual disability autism spectrum disorders schizophrenia You need to know:

Components of the Nervous System

Central nervous system

neurons are arranged into nuclei or into layers axons from tracts

Peripheral nervous system

neurons are located in ganglia axons form nerves

cortical pyramidal cell

cerebellar Purkinje cell

Dendrites

The neuron is the basic cellular element of the nervous system

Synapse

afferent neurons

neurons that carry information toward the CNS

interneurons

neurons participating in local aspects of a circuit

efferent neurons

neurons that carry information away from the CNS

Glial cells

3 types of glial cells in the mature central nervous system:

astrocyte

oligodendrocyte

microglial cell

astrocytes

maintain chemical environment of neurons

oligodendrocytes (Schwann cells) myelination

microglial cells

scavenger cells

Myelination increases speed of action potential propagation

Copyright © 2002, Elsevier Science (USA). All rights reserved.

Similarities and differences of myelination in PNS and CNS

next week:

Neurogenesis