Advanced Digital Signal Processing (ADSP)

徐林

Beampattern of ULA

main properties

ADSP

ULA Beampattern

Assumptions:

- Single source $s(t) = e^{\int \omega t}$
- Frequency relations: $\omega = 2\pi \cdot f = 2\pi \cdot c/\lambda$
- Wavenumber λ
- Speed of propagation: $c \approx 343 \text{ [m/sec]}$
- Directional Of Arrival (DOA): θ
- Far field ⇒ Plane wave
- ULA with distance d between sensors
- J omnidirectional sensors
- Array aperture size: $L = J \cdot d$
- No noise, no interferences: $\underline{\mathbf{x}}[k] = \underline{\mathbf{a}}(\theta) \cdot s[k]$
- ASP unit: Single complex weight for each sensor

ADSP

ULA Beampattern

$$\Rightarrow y[k] = \sum_{i=1}^{J} w_i^* x_i[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{x}}[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\theta) \cdot s[k]$$

with:
$$(\underline{\mathbf{a}}(\theta))_i = a_i(\theta) = \mathrm{e}^{-\mathrm{j}2\pi(i-1)\frac{d\sin(\theta)}{\lambda}}$$

ADSP

ULA Beampattern

Thus:
$$y[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{x}}[k] = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\theta) \cdot s[k] = r(\theta) \cdot s[k]$$

Array response: $r(\theta) = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(\theta)$

Other names: angular repsonse or directivity pattern

Array beam pattern:
$$B(\theta) = \frac{1}{J^2} \cdot |r(\theta)|^2$$

Comparison with FIR:

Frequency response:

$$W(\omega) = \sum_{i=1}^{J} w_i e^{-j\omega(i-1)T} = \underline{\mathbf{w}}^t \cdot \underline{\mathbf{a}}(\omega)$$
 with $a_i(\omega) = (\underline{\mathbf{a}}(\omega))_i = e^{-j\omega \cdot (i-1) \cdot T}$

with
$$a_i(\omega) = (\mathbf{a}(\omega))_i = e^{-\mathrm{j}\omega \cdot (i-1) \cdot T}$$

 \Rightarrow Depending on ω , **not** on θ !

ADSP

ULA Beampattern

Notes:

- Array response vector: (noise free) response to unit-amplitude plane wave from direction θ
- Nonideal sensor characteristics can be incorporated
- Weights effect both temporal and spatial response
- ullet Vector space interpretation: Angle between $\underline{\mathbf{w}}$ and $\underline{\mathbf{a}}$ determine response
- To evaluate beampattern: choose all weights equal

$$\underline{\mathbf{w}} = (1, \cdots, 1)^t$$

ADSP

ULA Beampattern

$$B(\theta) = \frac{1}{J^2} |\underline{1}^t \cdot \underline{\mathbf{a}}(\theta)|^2 = \frac{1}{J^2} \left| \sum_{i=1}^J e^{-\mathbf{j}2\pi(i-1)\frac{d}{\lambda}\sin(\theta)} \right|^2$$
$$= \frac{1}{J^2} \left| \frac{1 - e^{-\mathbf{j}J2\pi\frac{d}{\lambda}\sin(\theta)}}{1 - e^{-\mathbf{j}2\pi\frac{d}{\lambda}\sin(\theta)}} \right|^2 = \frac{1}{J^2} \left| \frac{\sin(J\pi\frac{d}{\lambda}\sin(\theta))}{\sin(\pi\frac{d}{\lambda}\sin(\theta))} \right|^2$$

Important parameters:

- \bullet DOA θ
- ullet Ratio $\frac{d}{\lambda}$ (everything scales with wavelength)
- \bullet Number of sensors J
- Element spacing d
- Array aperture $L = J \cdot d$

ADSP

ULA Beampattern

Example: J=2 and $\frac{d}{\lambda}=\frac{1}{4}$ B = abs(a'*w*w'*a)

ADSP

ULA Beampattern

$$J=$$
 2 and $\frac{d}{\lambda}=\frac{1}{2}$

ADSP

ULA Beampattern

Conclusions:

If
$$\frac{d}{\lambda} \ll \frac{1}{2} \implies$$

- No exact cancelling at $\theta = \pm 90^{\circ}$
- Little difference with single sensor case!

If
$$\frac{d}{\lambda} = \frac{1}{2} \implies$$

- Main lobe beamwidth (DOA 0°): 60°
- Nulls at: $\theta = \pm 90^{\circ}$

ADSP

ULA Beampattern

ADSP

ULA Beampattern

Conclusions:

If
$$\frac{d}{\lambda} = 1 \implies$$
 Nulls migrate to: $\theta = \pm 30^{\circ}$

• Another two sidelobes at: $\theta = \pm 90^{\circ}$

If
$$\frac{d}{\lambda} > \frac{1}{2} \Rightarrow \bullet$$
 Main lobe beamwidth decreases

More nulls ⇒ Spatial aliasing

Spatial aliasing:

- Ambiguity in source locations
- Same response for sources at different positions
- Occurs if sensors are too far away (relative to λ)

ADSP

ULA Beampattern

Increase aperture $L=J{\cdot}d$ by $\boxed{J\uparrow}$, fixed $\dfrac{d}{\lambda}=\dfrac{1}{2}$

ADSP

ULA Beampattern

Conclusions Beampattern:

- For $J \uparrow \Rightarrow$ Mainlobe smaller \Rightarrow more sensitive
- \bullet For $J \uparrow \Rightarrow$ array aperture \uparrow
- For $d/\lambda < 1/2 \Rightarrow$ No spatial aliasing
- For $d/\lambda \ge 1 \Rightarrow \text{Pattern repeats at } \theta = \arcsin(\frac{\lambda}{d})$
- ullet Zeros occur at $\theta = \arcsin\left(i\cdot \frac{1}{J}\cdot \frac{\lambda}{d}\right)$ with $i\in\mathcal{Z}$
- Main lobe at $\theta = 2\arcsin\left(\frac{1}{J}\cdot\frac{\lambda}{d}\right)$

ADSP

ULA Beampattern

Variable element spacing d, fixed $L = J \cdot d = 10\lambda$

ADSP

ULA Beampattern

Conclusion fixed aperture:

• $d < \frac{\lambda}{2} \Leftrightarrow$ Oversampling:

No additional info

• $d > \frac{\lambda}{2} \Leftrightarrow$ Undersampling:

Grating lobes = spatial ambiguities

ADSP

ULA Beampattern

Variable aperture size $L = J \cdot d$ and fixed $d = \frac{\lambda}{2}$

ADSP

ULA Beampattern

Conclusion fixed element spacing:

- Variable aperture ⇔ variable resolution
- $L\uparrow \Leftrightarrow \text{Improved resolution} \Leftrightarrow$ Better angle estimation capabilities

ADSP

ULA Beampattern

Near field:
$$|\underline{\mathbf{p}}| < \frac{2L^2}{\lambda}$$

ADSP

ULA Beampattern: frequency dependence

Variable frequency, fixed J and d

ADSP

ULA Beampattern: frequency dependence

Wish: Frequency "independence" over angular range

Use J different FIR filters (each of length N) for each sensor:

ADSP

ULA Beampattern: frequency dependence

Array response:
$$r(f, \theta) = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(f, \theta) = \sum_{i=0}^{J-1} \underline{\mathbf{w}}_i^*[l] a_i(f, \theta)$$

 \Rightarrow Frequence response for ULA: (T_s is sampling frequency)

$$W(f,\theta) = \sum_{i=0}^{J-1} \sum_{l=0}^{N-1} w_{i,l}^* e^{-\mathbf{j}2\pi \cdot f \cdot l \cdot T_s} e^{-\mathbf{j}2\pi f \frac{d \sin(\theta)}{c} i}$$
Normalized temporal frequency: $f_1 = f \cdot T_s$
Normalized spatial frequency: $f_2 = \frac{f d \sin(\theta)}{c}$

ADSP

ULA Beampattern: frequency dependence

$$\Rightarrow W(f_1, f_2) = \sum_{i=0}^{J-1} \sum_{l=0}^{N-1} w_{i,l}^* e^{-\mathbf{j}2\pi l f_1} e^{-\mathbf{j}2\pi i f_2} : 2D\text{-DFT of } w_{i,l}^*$$

Note:
$$f_2 = \left(\frac{d\sin(\theta)}{cT_s}\right) \cdot f_1 \implies \text{Slope through origin of } f_1, f_2 \text{ plane}$$

Choose:
$$T_s = \frac{d}{c} \left(= \frac{d}{\lambda_{min}} \cdot \frac{1}{f_{max}} = \frac{1}{2} \cdot \frac{1}{f_{max}} \right) \implies f_2 = \sin(\theta) \cdot f_1$$

ADSP

ULA Beampattern: DFT view

ULA is related to regular temporal sampling:

Spatial sampling frequency : $U_s = \frac{1}{d}$

Spatial frequency : $U = \frac{\sin(\theta)}{\lambda}$

Normalized spatial frequency : $u = \frac{U}{U_s} = \frac{d \sin(\theta)}{\lambda}$

⇒ Steering vector:

 $\underline{\mathbf{a}}(u) = \left(1, e^{-\mathbf{j}2\pi u}, \cdots, e^{-\mathbf{j}2\pi(J-1)u}\right)^{t}$

Note: Avoid aliasing $\Rightarrow -\frac{1}{2} \le u \le \frac{1}{2} \Leftrightarrow d \le \frac{\lambda}{2}$

since range of unambiguous angles: $-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}$

ADSP

ULA Beampattern: DFT view

Notes:

 $X[k] = \sum_{n=0}^{N-1} x_p[n] e^{-\mathbf{j} \frac{2\pi}{N} kn}$

• Definition of length *J* DFT:

$$F_l = \sum_{i=0}^{J-1} f_i e^{-j\frac{2\pi}{J}il}$$
 for $l = 0, \dots, J-1$ (resolution $\frac{2\pi}{J}$)

• Zero padding for improved resolution:

$$F_l = \sum_{i=0}^{J-1} f_i e^{-j\frac{2\pi}{N}il}$$
 for $l = 0, \dots, N-1$

with $N \geq J$ and $f_i \equiv 0$ for $i \geq J \Rightarrow$ resolution $\frac{2\pi}{N}$

ADSP

ULA Beampattern: DFT view

Array response with $u = \frac{d\sin(\theta)}{\lambda}$:

$$r(u) = \underline{\mathbf{w}}^h \cdot \underline{\mathbf{a}}(u) = \sum_{i=1}^J w_i^* e^{-\mathbf{j}2\pi(i-1)u}$$

With $N \geq J$ and $w_i \equiv 0$ for $i \geq J \Rightarrow$

$$r_l = \sum_{i=0}^{J-1} w_{i+1}^* e^{-j\frac{2\pi}{N}il}$$
 for $l = 0, \dots, N-1$

with
$$l = N \cdot u = N \cdot \frac{d \sin(\theta)}{\lambda}$$

Zero padded DFT of \underline{w}

ADSP

ULA Beampattern: DFT view

w=(1/J)*ones(J); abs_r=fftshift(abs(fft(w,N)))

Compute corresponding angle via: $\theta = \arcsin(\frac{l \cdot \lambda}{N \cdot d})$