CS222: Processor Design: Multi-Cycle Design

Dr. A. Sahu

Dept of Comp. Sc. & Engg.

Indian Institute of Technology Guwahati

Outline

- Previous:
 - -Control Path Implementation
- Multi-cycle Design
 - -Problems with single cycle datapath
 - Analyzing delays in single cycle datapath
 - Clock periods in single cycle and multicycle designs
 - Improving resource utilization
 - Add registers and multiplexers

MIPS subset for implementation

- Arithmetic logic instructions
 - -add, sub, and, or, slt
- Memory reference instructions
 - -lw, sw
- Control flow instructions
 - -beq, j

All control inputs

Instru ction	Opcode	Rdst	RW	Asrc	MW	MR	M2R	Brn	Jmp
Rtype	000000	1	1	0	0	0	0	0	0
Sw	101011	X	0	1	1	0	X	0	0
Lw	100011	0	1	1	0	1	1	0	0
Beq	000100	X	0	0	0	0	X	1	0
J	000010	X	0	X	0	0	X	X	1

Encoding opc

Ins	Opc ode	OPC	Rdst	RW	Asrc	MW	MR	M2R	Brn	Jmp
R	000000	10	1	1	0	0	0	0	0	0
Sw	101011	00	X	0	1	1	0	X	0	0
Lw	100011	00	0	1	1	0	1	1	0	0
Beq	000100	01	X	0	0	0	0	X	1	0
J	000010	XX	X	0	X	0	0	X	X	1

ALU

ALU control input

Туре	ОРС	INS	FUN	Action	ОР
R-Type	10	Add	100000	Add	010
R-Type	10	Sub	100010	Sub	110
R-Type	10	And	100100	And	000
R-Type	10	Or	100101	Or	001
R-Type	10	SLT	101010	SetOnLess	111
Sw	00	Sw	Xxxxxx	Add	010
Lw	00	Lw	Xxxxxx	Add	010
Beq	01	Beq	Xxxxxx	Sub	110
J	XX	J	Xxxxxx	Xxx	XXX

Implementing controllers

AND-OR PLA

Revisit: Analyzing performance

Components	Delay
Register	0
Adder	t ₊
ALU	t _A
MUX	0
RF	t _R
Instruction Memory	t _l
Data Memory	t _m
Bit manipulation	0

Delay for {add, sub, and, or, slt}

Delay for {sw}

Delay for {lw}

Delay for {beq}

Delay for { j}

Overall clock period

$$\max \begin{cases} R: t_{+}, t_{I} + t_{R} + t_{A} + t_{R} \\ SW: t_{+}, t_{I} + t_{R} + t_{A} + t_{M} \\ LW: t_{+}, t_{I} + t_{R} + t_{A} + t_{M} + t_{R} \\ Beq: t_{+} + t_{+}, t_{I} + t_{+}, t_{I} + t_{R} + t_{A} \\ J: t_{+}, t_{I} \end{cases}$$

or

$$\max \begin{cases} t_{\text{I}} + t_{\text{R}} + t_{\text{A}} + t_{\text{M}} + t_{\text{R}} \\ t_{\text{I}} + t_{\text{I}} \\ t_{\text{I}} + t_{\text{I}} \end{cases}$$

Analyzing performance

Components	Delay	Example
Register	0	0ns
Adder	t ₊	4ns
ALU	t _A	5ns
MUX	0	0ns
RF	t _R	3ns
Instruction	tı	6ns
Memory		
Data Memory	t _m	6ns
Bit manipulation	0	0ns

INS	Delay
R	17ns
SW	20ns
LW	23ns
Beq	14ns
J	6ns

Multi-cycle Data Path

1. Clock period in single cycle design

1. Clock period in multi-cycle design

Improving resource utilization

- Can we eliminate two adders?
- How to share (or reuse) a resource (say ALU) in different clock cycles?

- Store results in registers.
- Of course, more multiplexing may be required!
- Resources in this design: RF, ALU, MEM.

Thanks