Transportation problem

- There are *m* supply stations $S_1, ..., S_m$ for product **Q**.
- There are n destination stations $D_1, D_2, ..., D_n$ where **Q** is transported.
- c_{ij} is the cost of transportation of unit amount of **Q** from S_i to D_i .
- a_i is the amount of **Q** available at S_i .
- d_i is the demand of **Q** at D_i .
- To find x_{ij} , i = 1, 2, ..., m, j = 1, 2, ..., n, where x_{ij} is the amount of \mathbf{Q} to be transported from S_i to D_j such that the demand at each D_j is met and the cost of transportation is minimum.
- The problem is given by:

Min
$$\sum_{i,j} c_{ij} x_{ij}$$

subject to
$$\sum_{j=1}^{n} x_{ij} \leq a_{i}, i = 1, 2, ..., m$$

$$\sum_{i=1}^{m} x_{ij} \geq d_{j}, j = 1, 2, ..., n,$$

$$x_{ij} \geq 0 \text{ for } i = 1, 2, ..., m, j = 1, 2, ..., n.$$

- It is clear that for the transportation problem to be **feasible** $\sum_i a_i \ge \sum_j d_j$.
- A transportation problem is called **balanced** if $\sum_i a_i = \sum_i d_i$.
- In that case all the inequalities in the constraints should hold as equalities.
- A balanced transportation problem is given by, $Min \sum_{i,j} c_{ij} x_{ij}$ subject to $\sum_{j=1}^{n} x_{ij} = a_i$, i = 1, 2, ..., m $\sum_{i=1}^{m} x_{ij} = d_j$, j = 1, 2, ..., n, $x_{ij} \ge 0$ for i = 1, 2, ..., m, j = 1, 2, ..., n.
- Since $\sum_{i} a_{i} = \sum_{j} d_{j}$ if $\mathbf{x} = (x_{ij})_{mn \times 1}$ satisfies any (m + n 1) equations then it automatically satisfies all the (m + n) equations.

The constraints are of the form

Ax = b, where

$$A_{(m+n)\times mn} = \begin{bmatrix} \overbrace{111..11}^{n} & \mathbf{0_n} & \mathbf{0_n} & \dots & \mathbf{0_n} \\ \mathbf{0_n} & \overbrace{111..11}^{n} & \mathbf{0_n} & \dots & \mathbf{0_n} \\ \mathbf{0_n} & \mathbf{0_n} & \overbrace{111..11}^{n} & \mathbf{0_n} & \dots & \mathbf{0_n} \\ \vdots & \vdots & \ddots & \vdots & \dots & \vdots \\ \mathbf{0_n} & \vdots & \ddots & \dots & \mathbf{0_n} & \overbrace{111..11}^{n} \\ \overbrace{100...0} & \overbrace{100...0} & \vdots & \dots & \overbrace{100...0}^{n} \\ \overbrace{010...0} & \overbrace{010...0} & \vdots & \dots & \overbrace{010...0}^{n} \\ \vdots & \vdots & \ddots & \dots & \vdots \\ \overbrace{000..01} & \overbrace{000..01} & \vdots & \dots & \underbrace{000..01}^{n} \end{bmatrix}$$

 $\mathbf{b} = [a_1, a_2, ..., a_m, d_1, d_2, ..., d_n]^T$ (the $\mathbf{0_n}$'s are row vectors with n components).

• $\operatorname{rank}(A) = m + n - 1$.

- Remove the last equation (any equation) from the (m + n) equations.
- In the new $A\mathbf{x} = \mathbf{b}$, the dimension of A is $(m+n-1) \times mn$ and $\mathbf{b} = [a_1, a_2, ..., a_m, d_1, d_2, ..., d_{n-1}]^T$.
- Any BFS of this problem will have m + n 1 basic variables and the order of any basis matrix, B is $(m+n-1) \times (m+n-1)$.
- **Theorem 1 :** Let *B* be a basis matrix then:
 - **1.** There exists a row of **B** with exactly one nonzero entry (which is a 1).
 - 2. The sub matrix obtained by deleting the corresponding row and column (containing that nonzero entry) from B will again be nonsingular and will have a row with a single nonzero entry.
- Such matrices (such as B) are called triangular matrices, and because of this special structure of B it is easy to solve system of equations of the form Bx_B = b (which will give a basic solution of the transportation problem).

- If B is a square sub matrix of A with properties 1 and 2 of theorem 1, then $|B| = \pm 1$
- If D is any nonsingular sub matrix of A then D will again have the same structure as B.
- If D is any square submatrix of A, then | D | is either 0,1 or
 -1.
- If the *i* th row of **B** has a **single nonzero entry** at the *j* th column, then one should start by assigning the value \(\begin{align*} x_{ij} = b_i \) (where \(b_i \) is either \(a_i \) or \(d_j \)). Then **remove** the \(i \)th row and the \(j \) th column from **B** which gives the matrix \(B_1 \). Solve the system \(B_1 \) \(\begin{align*} x' = \begin{align*} b', \) where \(\begin{align*} x' \) is obtained from \(\begin{align*} b \) by removing \(\begin{align*} a \) and changing the \(j \) th component from \(b_j \) to \(b_j b_j \). Proceeding in this way one can solve the system of equations \(B_1 \) \(B_2 \) = \(b_1 \).

- In any **basic solution** the **basic variables** takes values of the form, $\sum_{i} \gamma_{i} b_{i}$, where the γ_{i} 's are either **0,1** or **-1**.
- In any **BFS x** of the transportation problem with supplies a_i , i=1,2,...,m and demand d_j , j=1,2,...,n the basic variables taking values of the form, $x_{ij} = \sum_i \alpha_i a_i + \sum_j \beta_j d_j$ where the α_i 's and β_j 's take values **0,1** or **-1**.
- Transportation Array: The mn variables x_{ij} can be arranged in an $m \times n$ array known as the $m \times n$ transportation array.
- In a transportation array each cell corresponds to a variable, that is the (i, j)th cell corresponds to variable x_{ii} .
- The m rows correspond to the m supply constraints, hence the sum of the values of the variables in row i is given by a_i .
- Similarly the n columns correspond to the n demand constraints and the sum of the values of the variables in column j is given by d_i .

- Definition 1: A subset of cells of the transportation array is said to be linearly independent if the set of column vectors in the matrix A corresponding to the variables associated with the cells are linearly independent. Otherwise they are said to be linearly dependent.
- Definition 2: A subset of (m+n-1) cells of the transportation array is said to be a basic set if they are linearly independent. The cells in a basic set are called basic cells.
- Remark 2: Note that a basic set corresponds to a basic solution of the transportation problem, where the variables corresponding to the basic cells are basic variables and the rest are nonbasic variables.
- Remark 3: Let \mathcal{B} be a basic set of cells. If we consider the submatrix of $A_{(m+n-1)\times mn}$ obtained by taking the columns corresponding to the variables associated with the basic set \mathcal{B} , then the submatrix will be a basis matrix, a square nonsingular matrix of dimension m+n-1.

- There exists a row of B with exactly one nonzero entry.
- Since we are now solving $Bx_B = [a_1, ..., a_m, d_1, ..., d_{n-1}]^T$ and each row of B corresponds to a constraint (supply or demand).
- There exists a constraint which has exactly one basic variable.
- Since each **row** and **column** of the transportation array corresponds to a **constraint**, there exists a row or column of the transportation array which has **exactly one** cell from the basic set **B**.

If row i contains a single nonzero entry at (i, j) th position, then the submatrix obtained from B after **deleting** the i th row and the j th column from B again has the same property.

- If B is a basic set of cells and if the row or column having a single basic cell is struck off from the transportation array, then in the reduced (or remaining) array there will again be a row or column with a single basic cell.
- Since every row and column of the array has at least one basic cell, one can continue this process (of striking off a row or column) till all the rows and columns of the transportation array are struck off (or deleted).
- **Example 1:** Consider the transportation problem with a_i and d_i as given below:

0

	j = 1	2	3	4	5	6	a_i
<i>i</i> = 1							7
2							17
3							5
4							24
d_i	15	10	9	3	8	8	

- Let us first start with cell (2,3) is a basic cell and then try to construct a BFS of the above problem.
- Since the minimum of a_2 and d_3 is $d_3 = 9$, we take $x_{23} = 9$. Delete the third column and change a_2 from 17 to $a_2' = 17 9 = 8$.
- In the reduced array choose a basic cell say (2,4). Take $x_{24} = 3$ since $3 = min\{d_4 = 3, a'_2 = 8\}$. Proceeding in this way we get the following BFS.

	j=1	2	3	4	5	6	a _i
i = 1		[7]					7
2			[9]	[3]	[5]		17
3					[3]	[2]	5
4	[15]	[3]				[6]	24
$\overline{d_j}$	15	10	9	3	8	8	

θ -loops

- A collection of cells of the transportation array is said to form a θ loop if it satisfies the following conditions.
 - 1. Nonempty.
 - **2**. Every row and column of the transportation array either has 0 or 2 cells from this collection.
 - No proper subset of this collection satisfies both property 1 and property 2.
 Consider the following examples.

	1	2	3	4
1	0			0
2	0	0		
3		0	0	
4			0	0

	1	2	3	4
1	0			0
2	0	0		
3		0		
4				

	1	2	3	4
1	0	0		
2	0	0		
3			0	0
4			0	0

- In the second and third example, the marked cells do not form a θ loop of the 4 \times 4 transportation array, since it violates properties 2 and 3, respectively.
- The first one however is a θ loop.

- **Theorem 4:** The cells in a θ loop are linearly dependent.
- **Theorem 5**: If \triangle is a nonempty collection of cells of the transportation array which contains no θ loop then it satisfies,
 - **1.** There exists a row or column of the array with **exactly** one cell from \triangle .
 - **2.** Every nonempty subset of \triangle should satisfy property 1.

Theorem 6 : If $\triangle \neq \phi$ is a collection of cells of the transportation array which contains no θ loop, then \triangle is **linearly independent**.

Corollary 6: So from the previous theorems we can conclude that a subset of cells \triangle of the transportation array is **linearly independent** if and only if it contains **no** θ loop.

- **Theorem 7:** If \mathcal{B} is a collection of m+n-1 basic cells of the transportation array and $(p,q) \notin \mathcal{B}$, then $\mathcal{B} \cup \{(p,q)\}$ contains one and only one θ -loop and this loop includes the cell (p,q).
- How to get the optimal solution from a given basic feasible solution?
 Let x = (x_{ii}) be the initial BFS.
- The dual of the transportation problem is given by Max∑_{i=1}^m a_iu_i + ∑_{j=1}ⁿ b_jv_j subject to, u_i + v_i ≤ c_{ij} for all i = 1,..,m, j = 1,..,n.

- Step 1: For the basic cells corresponding to $\mathbf{x} c_{ij} = u_i + v_j$.
- Solve this set of m + n 1 equations for u_i and v_i .
- Since there are m + n 1 equations and m + n, u_i , v_j 's we can fix the value of any one of the variables and solve for the others.
- Since any one of the (m+n) equations of the transportation problem can be removed, one can take the corresponding variable of the dual say $v_n = 0$ and can consider that variable as absent from the equations $c_{ij} = u_i + v_j$.
- This set of equations is obtained from $\mathbf{y}^T B = \mathbf{c}_B^T$, where $\mathbf{y}^T = [u_1, ..., u_m, v_1, ..., v_{n-1}]$.
- We have m + n 1 equations and m + n 1 unknowns, which can be easily solved.

- Step 2: Check if this y is feasible for the dual, that is if $u_i + v_j \le c_{ij}$ for all the non basic cells. If yes, then stop.
- The corresponding BFS is then optimal for the primal.
- If not, then go to Step 3.
- Step 3: Find the θ loop in $\mathcal{B} \cup \{(p,q)\}$, where the cell (p,q) is such that

$$c_{p,q} - u_p - v_q = min\{c_{ij} - u_i - v_j : c_{ij} - u_i - v_j < 0\}$$

- Step 4: Assign value $+\theta$ to cell (p,q) and alternately assign $+\theta$ and $-\theta$ to all the cells in the θ loop, so that sum of the allocations $(+\theta)$ and $-\theta$ allocations in each row and column add up to zero.
- Take $+\theta = min\{x_{ij} \in \theta\text{-loop} : cell (i, j) \text{ is assigned value} \theta\}.$ Find the new BFS say \mathbf{x}' where \mathbf{x}'_{ij} is either equal to \mathbf{x}_{ij} , $\mathbf{x}_{ij} + \theta$ or $\mathbf{x}_{ij} \theta$.

- Now (p, q) is a basic cell.
- If $x_{rs} = min\{x_{ij} \in \theta\text{-loop} : (i, j) \text{ is assigned value} \theta\}$, then the variable x_{rs} becomes a nonbasic variable in \mathbf{x}' .
- If there is a **tie** for **this minimum value**, choose any **one** amongst them as the leaving variable (or cell) arbitrarily such that you again have (m+n-1) basic cells in the next iteration.
- Step 5: Go to Step 1.
- If x_{pq} is a nonbasic variable in a BFS and if the column corresponding to this variable in the corresponding simplex table be denoted by $B^{-1}\tilde{\mathbf{a}}_{p,q} = \mathbf{u}_{pq}$, then the \mathbf{k} th component of this column, $u_{\mathbf{k},pq} = -1,1$, or 0 depending on whether the \mathbf{k} th basic variable gets the allocation θ , $-\theta$ or is not included in the θ -loop containing the cell (p,q) in $\mathcal{B} \cup \{(p,q)\}$.

• If (p, q) is the **entering variable** of the new basis then according to the minimum ratio rule given by the simplex algorithm, the **leaving variable** is (r, s) if $x_{rs} = min\{x_{ij} \in \theta\text{-loop} : cell <math>(i, j)$ is assigned value $-\theta\}$.

• **Example:** Consider the following transportation problem (P) with c_{ij} 's, a_i 's (40,30,30) and d_j 's (30,50,20) as given below:

 2	5	1	40
1	4	5	30
1	5	3	30
30	50	20	

• Check whether the initial basic feasible solution \mathbf{x}_0 with basic cells

Also find the optimal solution.

 $\mathcal{B} = \{(1,1), (1,2), (2,2), (2,3), (3,2)\}$, is optimal for (P) (by taking $v_2 = 0$, where v_2 is the dual variable corresponding to the second demand constraint).

4 ロ ト 4 周 ト 4 ヨ ト 4 ヨ ト 9 Q (^

• The following table shows the $c_{ii} - u_i - v_i$ values against each cell, where we have taken $v_2 = 0$ for easier calculations.

• The BFS with $\mathcal{B} = \{(1,1), (1,2), (2,2), (2,3), (3,2)\}$ as the

 $x_{11} = 30, x_{12} = 10, x_{22} = 10, x_{23} = 20, x_{32} = 30$ as the

basic cells is given by

values of the basic variables.

• The other u_i , v_i values are obtained by solving the equations given by $c_{ij} - u_i - v_j = 0$ for the basic cells, that is by solving the 5 equations given below:

is by solving the 5 equations given below:

$$c_{11} - u_1 - v_1 = 0$$
, where $c_{11} = 2$
 $c_{12} - u_1 - v_2 = 0$, where $c_{12} = 5$

- $c_{22} u_2 v_2 = 0$, where $c_{22} = 4$ $c_{23} - u_2 - v_3 = 0$, where $c_{23} = 5$
- $c_{32} u_3 v_2 = 0$, where $c_{32} = 5$.
- On solving we get, $u_1 = 5$, $v_1 = -3$, $u_2 = 4$, $v_3 = 1$, $u_3 = 5$).
- Check that $c_{13}-u_1-v_3=1-5-1=-5, c_{21}-u_2-v_1=1-4-(-3)=0,$ $c_{31} - u_3 - v_1 = 1 - 5 - (-3) = -1$

 0	0	-5	40
0	0	0	30
_1	0	-3	30
30	50	20	

- Since all the $c_{ij} u_i v_j$ values are not non negative, the above table is not optimal.
- The most negative value of $c_{ij} u_i v_j$ is in cell (1,3), so this will be the entering variable of the new BFS.
- The unique θ loop in $\mathcal{B} \cup (1,3)$ is given by $\{(1,2),(2,2),(2,3),(1,3)\}.$
- Since (1,3) is the entering variable, so if we give $+\theta$ allocation to cell (1,3) (or value of $x_{13}=+\theta$) then $x_{12}=10-\theta$, $x_{22}=10+\theta$, $x_{23}=20-\theta$.

- $x_{13} = 10$ is in the basis of the new BFS and x_{12} leaves the basis.
- New $\mathcal{B} = \{(1,1), (1,3), (2,2), (2,3), (3,2)\}$ and the values of the basic variables are given by:
 - $X_{11} = 30, X_{13} = 10, X_{22} = 20, X_{23} = 10, X_{32} = 30.$ • If we take $u_1 = 0$, then solving for $c_{ij} - u_i - v_j = 0$ for the
- basic cells, that is by solving the 5 equations given below, $c_{11} - u_1 - v_1 = 0$, where $c_{11} = 2$
- $c_{13} u_1 v_3 = 0$, where $c_{13} = 1$ $c_{23} - u_2 - v_3 = 0$, where $c_{23} = 5$
 - $c_{22} u_2 v_2 = 0$, where $c_{22} = 4$ $c_{32} - u_3 - v_2 = 0$, where $c_{32} = 5$.
 - we get \bullet $V_1 = 2, V_2 = 0, V_3 = 1, U_2 = 4, U_3 = 5.$
 - $c_{21} u_2 v_1 = 1 4 2 = -5$, $c_{12} u_1 v_2 = 5 0 0 = 5$, $c_{31} - u_3 - v_1 = 1 - 5 - 2 = -6$. $c_{33} - u_3 - v_3 = 3 - 5 - 1 = -3.$
- The following table gives the $c_{ij} u_i v_j$ values for the above BFS with $\mathcal{B} = \{(1, 1), (1, 3), (2, 3), (2, 2), (3, 2)\}$

0	5	0	40
-5	0	0	30
-6	0	-3	30
30	50	20	

- The entering variable for the new BFS is x_{31} .
- The unique θ loop in $\mathcal{B} \cup (3,1)$ which is given by $\{(3,1),(3,2),(2,2),(2,3),(1,3),(1,1)\}.$
- (3, 1) is the entering variable, so if we give $+\theta$ allocation to cell (3, 1) (or value of $x_{31} = +\theta$) then $x_{11} = 30 \theta$, $x_{13} = 10 + \theta$, $x_{23} = 10 \theta$, $x_{22} = 20 + \theta$, $x_{32} = 30 \theta$.
- So $\theta = 10$.
- The entering variable for the new BFS is $x_{31} = 10$ and x_{23} is the leaving variable.
- The values of the basic variables in the new BFS is given by $x_{11} = 20, x_{13} = 20, x_{22} = 30, x_{31} = 10, x_{32} = 20.$
- The basic set of cells is given by $\mathcal{B} = \{(1,1), (1,3), (2,2), (3,1), (3,2)\}.$

• We take $u_1 = 0$, then by solving the 5 equations given below:

$$c_{11} - u_1 - v_1 = 0$$
, where $c_{11} = 2$
 $c_{13} - u_1 - v_3 = 0$, where $c_{13} = 1$
 $c_{22} - u_2 - v_2 = 0$, where $c_{22} = 4$
 $c_{31} - u_3 - v_1 = 0$, where $c_{31} = 1$
 $c_{32} - u_3 - v_2 = 0$, where $c_{32} = 5$.

- Check that $v_1 = 2$, $v_2 = 6$, $v_3 = 1$, $u_2 = -2$, $u_3 = -1$.
- Check that $c_{23} u_2 v_3 = 5 (-2) 1 = 6$, $c_{21} u_2 v_1 = 1 (-2) 2 = 1$, $c_{12} u_1 v_2 = 5 0 6 = -1$, $c_{33} u_3 v_3 = 3 (-1) 1 = 3$.
- The following table gives the $c_{ij} u_i v_j$ values for the above BFS with

$$\mathcal{B} = \{(1,1), (1,3), (2,2), (3,1), (3,2)\}.$$

0	_1	0	40
1	0	6	30
0	0	3	30
30	50	20	

- The entering variable is x_{12} .
- The θ -loop is $\{(3,1),(3,2),(1,2),(1,1)\}$.
- If $x_{12} = +\theta$) then $x_{11} = 20 \theta$, $x_{31} = 10 + \theta$, $x_{32} = 20 \theta$.
- Take $\theta = 20$. Any one of x_{11} or x_{32} can be the leaving variable.
- Let x_{32} leave the basis.
- If we take $u_1 = 0$, then by solving the 5 equations given below:

$$c_{11} - u_1 - v_1 = 0$$
, where $c_{11} = 2$
 $c_{13} - u_1 - v_3 = 0$, where $c_{13} = 1$
 $c_{22} - u_2 - v_2 = 0$, where $c_{22} = 4$
 $c_{31} - u_3 - v_1 = 0$, where $c_{31} = 1$
 $c_{12} - u_1 - v_2 = 0$, where $c_{12} = 5$.
we get

- \bullet $v_1 = 2, v_2 = 5, v_3 = 1, u_2 = -1, u_3 = -1.$
- $c_{23} u_2 v_3 = 5 (-1) 1 = 5$, $c_{21} u_2 v_1 = 1 (-1) 2 = 0$, $c_{32} u_3 v_2 = 5 (-1) 5 = 1$, $c_{33} u_3 v_3 = 3 (-1) 1 = 3$.
- Since $c_{ij} u_i v_j \ge 0$ for all i, j, the above BFS is optimal and the optimal value is given by: $c_{11}x_{11} + c_{12}x_{12} + c_{13}x_{13} + c_{22}x_{22} + c_{31}x_{31} = 2 \times 0 + 5 \times 20 + 1 \times 20 + 4 \times 30 + 1 \times 30 = 270$.