Lojistik regresyon (logistic regression) sınıflandırma (classification) için kullanılan bir makine öğrenmesi algoritmasıdır.

- Email: spam / spam değil
- Resim: kedi / köpek
- Röntgen: iyi huylu / kötü huylu

$$x \rightarrow Loj.Reg. \rightarrow y \quad y \in \{0, 1\}$$

Lineer Regresyon	Lojistik Regresyon
Sürekli (Continuous) bağımlı değişken	Kategorik (Categorical) bağımlı değişken
Sınav notuTümör boyutuSenelik giderAylık gelir	 Dersten geçme / kalma İyi huylu / kötü huylu Büyük / küçük Kredi onayı / reddi

$$x \rightarrow Lin.Reg. \rightarrow y \quad y \in \mathbb{R}$$
 $x \rightarrow Loj.Reg. \rightarrow y \quad y \in \{0,1\}$

Lineer Regresyon: $h_{\theta}(x) = \theta^T x$

Lojistic Regresyon: $0 \le y \le 1$

$$0 \le f(h_{\theta}(x)) \le 1 \implies f = ?$$

- i. $f(-\infty) \approx 0$
- ii. $f(\infty) \approx 1$

Sigmoid (Logistic) Fonksiyonu

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Loj. Reg. Hata (Cost) Fonksiyonu

$$h_{\theta}(x) = \frac{1}{1 + e^{-\theta^T x}}$$

Loj. Reg. Hata (Cost) Fonksiyonu

$$Hata(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)), & \text{e} \check{g}er \ y = 1\\ -\log(1 - h_{\theta}(x)), & \text{e} \check{g}er \ y = 0 \end{cases}$$

Loj. Reg. Hata (Cost) Fonksiyonu

$$Hata(h_{\theta}(x), y) = \begin{cases} -\log(h_{\theta}(x)), & e \ \ \text{e} \ \ \text{ger} \ y = 1 \\ -\log(1 - h_{\theta}(x)), & e \ \ \text{ger} \ y = 0 \end{cases}$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} Hata(h_{\theta}(x^{(i)}), y^{(i)})$$

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} -y^{(i)} \log h_{\theta}(x^{(i)}) - (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

Loj. Reg. Dereceli Alçalma

$$J(\theta) = \frac{1}{m} \sum_{i=1}^{m} -y^{(i)} \log h_{\theta}(x^{(i)}) - (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)}))$$

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

Yakınsayana kadar tekrar et {

$$\theta_j \coloneqq \theta_j - \alpha \frac{\partial}{\partial \theta_j} J(\theta)$$

Loj. Reg. Dereceli Alçalma

$$J(\theta) = -\frac{1}{m} \left[\sum_{i=1}^{m} y^{(i)} \log h_{\theta}(x^{(i)}) + (1 - y^{(i)}) \log(1 - h_{\theta}(x^{(i)})) \right]$$

$$\frac{\partial}{\partial \theta_j} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Yakınsayana kadar tekrar et {

$$\theta_j \coloneqq \theta_j - \alpha \frac{1}{m} \sum_{i=1}^m (h_\theta(x^{(i)}) - y^{(i)}) x_j^{(i)}$$

Çoklu Sınıflandırma

İkili Sınıflandırma (Binary Classification)

Çoklu Sınıflandırma (Multi-class Classification)

Çoklu Sınıflandırma

Hepsine karşı birisi (One vs all classification)

