Physik

Be schleunigung-Weg

$$F = m \cdot a$$
$$[N = kg \cdot \frac{m}{c^2}]$$

Physik

Beschleunigung – Kraft

$$x = \frac{1}{2} \cdot a \cdot t^2$$
$$[m = \frac{m}{s^2} \cdot s^2]$$

Physik	# 3	Mechanik
	Haftreibung	or S

$$F_H = \mu_H \cdot F_N$$

$$F_H$$
: Haftreibung μ_H : Haftreibungskonstante F_N : Normalkraft

Physik	# 4	Mechanik
	Gleitreibung	g

$$F_{Gl} = \mu_{Gl} \cdot F_N$$

$$F_{Gl}$$
: Gleitreibung
 μ_{Gl} : Gleitreibungskonstante
 F_{N} : Normalkraft

Mechanik

Haftreibung – Schiefe Ebene

Physik

5 Antwort
$$\mu_H = \tan \alpha$$

Physik # 6 Mechanik

Leistung

6 Antwort
$$P = F \cdot v$$

$$\left[W = N \cdot \frac{m}{s} \right]$$

 $= kg \frac{m}{s^2} \cdot \frac{m}{s}$ $= kg \frac{m^2}{s^3}$

1 Hysik	# 1	Medianik

Mochanik

Physik

Wirkungsgrad

$$\eta = \frac{P_{out}}{P_{in}}$$

Physik

 ${\bf Radial be schleunigung}$

8 Antwort
$$a = \frac{v^2}{r}$$

Physik	# 9	Mechanik
	Arbeit	

9 Antwort
$$W = F \cdot s$$

Mechanik

Physik

potentielle Energie

$$E_{pot} = m \cdot g \cdot h$$
$$J = kg \cdot \frac{m}{s^2} \cdot m$$

 $= kg \frac{m^2}{s^2} \bigg]$

kinteische Energie

11 Antwort
$$E_{\rm kin} = \frac{1}{2} \cdot m \cdot v^2$$

 $\left[J = kg \cdot \frac{m^2}{s^2}\right]$

Mechanik

Physik

Kreisfrequenz

$$\omega = \frac{2\pi}{T}$$
$$\left[s^{-1} = \frac{\text{rad}}{s}\right]$$

Physik	# 13	Mechanik
		_

Kreisfrequenz Hook'sche Feder

13 Antwort

$$\omega = \sqrt{\frac{D}{m}}$$
$$\left[s^{-1} = \sqrt{\frac{\frac{N}{m}}{kg}}\right]$$

Mechanik

Physik

harmonische Schwingung: Beschleunigung

$$a(t) = -\omega^{2} \cdot y_{0} \cdot \sin \omega t = -\omega^{2} \cdot y(t)$$
$$\left[\frac{\mathbf{m}}{\mathbf{s}^{2}} = \mathbf{s}^{-2} \cdot \mathbf{m}\right]$$

Mechanik

Physik

harmonische Schwingung: Geschwindigkeit

$$v(t) = \omega \cdot y_0 \cdot \cos \omega t$$
$$\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{s}^{-1} \cdot \mathbf{m} \right]$$

harmonische Schwingung: Auslenkung

Physik

Mechanik

 $y(t) = y_0 \cdot \sin \omega t$

potentielle Energie Hook'sche Feder

Mechanik

Physik

17 Antwort
$$W = \frac{1}{2} \cdot D \cdot x^2 = E_{pot}$$

$$\int J = \frac{N}{m} m^2$$

 $= \frac{kg\frac{m}{s^2}}{\cdot m^2}$

 $= kg \frac{m^2}{s^2} \bigg]$

Physik	# 18	Mechanik

Kraft Hook'sche Feder

 $\left[N = \frac{N}{m} \cdot m\right]$

Mechanik

Physik

Inelastischer Stoß

$$v' = \frac{m_1 v_1 + m_2 v_2}{m_1 + m_2}$$

$$v' = \frac{m_1 + m_2}{m_1 + m_2}$$

1 Hy SHX	T 20	WICCHGIIIK
-	-	

Mechanik

Physik

Elastischer Stoß

$$v_1' = \frac{(m_1 - m_2)v_1 + 2m_2v_2}{m_1 + m_2}$$

$$(m_2 - m_1)v_2 + 1m_1v_1$$

$$v_2' = \frac{(m_2 - m_1)v_2 + 1m_1v_1}{m_2 + m_1}$$

Physik # 21 Mechanik

Drehimpuls

$$L = \vartheta \cdot \omega$$

$$\label{eq:local_local_local} \left[\text{N m s} = \text{kg m}^2 \cdot \text{s}^{-1} \right]$$

 $kg\frac{m^2}{s} = kg\frac{m^2}{s} \bigg]$

$$kg\frac{m}{s^2}m \ s = kg\frac{m^2}{s}$$

Physik	# 22	Mechanik

Kinetische Energie Drehbewegung

$$E_{kin} = \frac{1}{2} \cdot \vartheta \cdot \omega^2$$
$$\int J = kg \ m^2 \cdot s^{-2}$$

 $= kg \frac{m^2}{s^2}$

Physik	# 23	Mechanik
	Impuls	

$$p = m \cdot v$$

$$\left[\frac{\text{kg m}}{\text{s}} = \text{kg} \cdot \frac{\text{m}}{\text{s}} \right]$$

Physik	# 24	Mechanik
		_

Kreisfrequenz Fadenpendel

Antwort

$$\omega = \sqrt{\frac{g}{l}}$$
$$\left[s^{-1} = \sqrt{\frac{m}{s^2} \cdot \frac{1}{m}}\right]$$
$$= \sqrt{s^{-2}} = s^{-1}$$

Nur bei $\alpha < 5^{\circ}$

Mechanik

Physik

Trägheitsmoment Stab um Stabende

 $\left[kg \ m^2 = kg \cdot m^2 \right]$

 $\vartheta = \frac{1}{3} \cdot m \cdot l^2$

l: Länge des homogenen Stabes

Mechanik

Physik

Trägheitsmoment Stab um Schwerpunkt

$$\vartheta = \frac{1}{12} \cdot m \cdot l^2$$
$$\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$$

l: Länge des homogenen Stabes

Mechanik

Physik

Trägheitsmoment Vollzylinder

Antwort

 $\vartheta = \frac{1}{2} \cdot m \cdot r^2$

$$\left[kg \ m^2 = kg \cdot m^2 \right]$$

Mechanik

Physik

Trägheitsmoment Hohlzylinder

$$\vartheta = m \cdot r^2$$

$$\left[kg \ m^2 = kg \cdot m^2 \right]$$

Mechanik

Physik

Transformation Geschwindigkeit – Winkelgeschwindigkeit

 $v = r \cdot \omega$

$$v = r \cdot \omega$$

$$\left[\frac{\mathbf{m}}{\mathbf{s}} = \mathbf{m} \cdot \mathbf{s}^{-1} \right]$$

Mechanik

Physik

Trägheitsmoment Kugel

30 Antwort
$$\vartheta = \frac{2}{5} \cdot m \cdot r^2$$

$$\vartheta = \frac{2}{5} \cdot m \cdot r$$
$$\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$$

Mechanik

Physik

Trägheitsmoment Stab um Stabende

31 Antwort
$$\vartheta = \frac{1}{3} \cdot m \cdot L^2$$

$$\left[\text{kg m}^2 = \text{kg} \cdot \text{m}^2 \right]$$

Mechanik

Physik

Leistung Translation

$$P = F \cdot v = M \cdot \omega$$
$$W = N \cdot \frac{m}{s} = Nm \cdot s^{-1}$$

 $\begin{bmatrix} W = N \cdot \frac{m}{s} = N \\ kg \frac{m^2}{s^3} = kg \frac{m}{s^2} \cdot \frac{m}{s} \end{bmatrix}$

Mechanik

Physik

Drehmoment

$$M = F \cdot r$$
$$\left[Nm = N \cdot m \right]$$

Physik	# 34	Mechanik
		_

Kreisfrequenz Drehschwingung

34 Antwort
$$\omega = \sqrt{\frac{D}{\vartheta}}$$

$$\omega = \sqrt{}$$

$$\omega = \sqrt{\frac{N}{\vartheta}}$$
$$\left[s^{-1} = \sqrt{\frac{N}{m} \cdot \frac{1}{\lg m^2}}\right]$$

Mechanik

Physik

Rückstellmoment Drehschwingung

$$M = -D_{\varphi} \cdot \varphi$$
$$[\text{Nm} = \text{Nm}?]$$

$$\begin{array}{ll} D_{\varphi}: & \text{Torsionsfederkonstante} \\ \varphi: & \text{Verdrillungswinkel} \end{array}$$

Mechanik

Physik

Präzessionsfrequenz

$$\omega_p = \frac{M}{L} = \frac{F \cdot r \cdot \sin \varphi}{\vartheta \cdot \omega_r}$$

$$\omega_p = \frac{1}{L} = \frac{1}{\vartheta \cdot \omega_r}$$
$$\left[s^{-1} = \frac{Nm}{N \text{ m s}} = \frac{N \cdot m}{\log m^2 \cdot s^{-1}}\right]$$

Mechanik

Physik

Satz von Steiner

Antwort

$$\vartheta = m \cdot a^2 + \vartheta_{SP}$$
$$\left[\text{kg m}^2 = \text{m}^2 \cdot \text{kg} + \text{kg m}^2 \right]$$

 ϑ_{SP} Trägheitsmoment durch Schwerpunkt ϑ Trägheitsmoment durch neue Achse, \parallel zur Achse von ϑ_{SP}

Mechanik

Physik

Gravitationkonstante

$$\gamma = 6,6742 \cdot 10^{-11} \frac{\text{N m}^2}{\text{kg}^2}$$

Mechanik

Physik

Gravitationspotential

39 Antwort
$$\varphi = -\frac{\gamma \cdot m}{}$$

$$\varphi = -\frac{\gamma \cdot m}{r}$$

$$\left[\frac{m^2}{s^2} = \frac{\frac{N m^2}{kg^2} \cdot kg}{m}\right]$$

$$\left[\frac{\mathbf{m}^2}{\mathbf{s}^2} = \frac{\mathbf{kg}^2 - \mathbf{kg}}{\mathbf{m}}\right]$$
$$= N\frac{\mathbf{m}}{\mathbf{kg}} = kg\frac{\mathbf{m}}{\mathbf{s}^2}\frac{\mathbf{m}}{\mathbf{kg}}$$

Mechanik

Physik

pot. Energie Gravitation

40 Antwort
$$E_{\text{pot}} = -\frac{\gamma \cdot m_1 \cdot m_2}{2}$$

 $J = \frac{\frac{N \ m^2}{kg^2} \cdot kg \cdot kg}{m}$

= Nm

Mechanik

Physik

Gravitationfeldstärke

Antwort

$$g = -\frac{r^2}{r^2}$$

$$\left[\frac{m}{s^2} = \frac{\frac{N m^2}{kg^2} \cdot kg}{m^2}\right]$$

$$= \frac{N}{m} = \frac{kg}{m^2}$$

M : Planetenmasse

Mechanik

Physik

Gravitationskraft

 $F_G = -\gamma \cdot \frac{m_1 m_2}{r^2}$ $\left[N = \frac{\text{N m}^2}{\text{kg}^2} \cdot \frac{\text{kg}^2}{\text{m}^2} \right]$

Mechanik

Physik

Erhaltungssätze der klassischen Physik

43 Antwort • Energien • Impulse

• elektrische Ladungen

• Drehimpulse

Mechanik

Physik

Corioliskraft

$$\left[N = \text{kg} \cdot \frac{\text{m}}{\text{s}^2} = \text{kg} \cdot \frac{\text{m}}{\text{s}} \cdot \text{s}^{-1} \right]$$
Coriolisbeschleunigung

 $F_C = m \cdot a_c = 2 \cdot m \cdot v_{\perp} \cdot \omega$

a_c: Coriolisbeschleunigung v_{\perp} : Geschwindigkeit des Körpers, rel. zum rotierenden Bezugssystem ω : Winkelgeschwindigkeit Bezugssystem

Mechanik

Physik

Keplersche Gesetze

- //	-	
	•	Planeten auf Ellipsen mit Sonne im gemein-
		samen Brennpunkt

Antwort

45

• Radiusvektor überstreicht in gleicher Zeit gleiche Fläche: $\frac{\Delta A}{\Delta t}=\mathrm{const}$

• Umlaufzeit
$$T_{1,2}$$
, große Halbachse $a_{1,2}$ zweier Planeten: $\frac{T_1^2}{T_2^2} = \frac{a_3^3}{a_3^2}$

Mechanik

Physik

Planet auf Kreisbahn

$$\frac{r_p^3}{T_p^2} = \gamma \frac{m_s}{4\pi^2} = const.$$

$$r_{\rm p}$$
: Radius Planetenbahn $T_{\rm p}$: Umlaufzeit Planet $m_{\rm s}$: Masse der Sonne

Mechanik

Physik

Gebundener und ungebundener Zustand

$$E = E_{\text{kin}} + E_{\text{pot}} = \frac{1}{2}m_2v^2 - \gamma \frac{m_1m_2}{r}$$

$$E \geq 0$$
: ungebunder Zustand, m_2 kann sich
beliebig weit von m_1 entfernen
 $E < 0$: gebunder Zustand

Hinweise zur Nutzung dieser Karteilernkarten:

Die Karten wurden von allen Beteiligten nach bestem Wissen und Gewissen erstellt, für Fehlerfreiheit und Klausurgelingen kann aber keine Garantie gegeben werden. Moritz Augsburger (and others, see https://github.com/maugsburger/exph) wrote this file. As long as you retain this notice

you can do whatever you want with this stuff.

If we meet some day and you think this stuff is worth it, you can buy me a beer or a coffee in

is worth it, you can buy me a beer or a coffee in return.