HYPOTHESIS TESTING & POINT PATTERN ANALYSIS

計量地理學及實習 2018.11.23 杜承軒

點型態分布

分散

均勻分布 uniform dispersion

隨機

隨機分布 random independent

群聚

聚集分布 cluster aggregated

點型態分布

- ① 設定虛無假設與對立假設
- ② 計算統計量
- ③ 比較p值與顯著水準α
- ④ 決定是否拒絕虛無假設
- ⑤ 得出結論

(1) 虚無假設與對立假設

(2) 計算統計量

③ <mark>比較p值與α</mark>

4) 拒絕虛無假設?

(5) 得出結論

虛無假設: H_0

現狀、沒有關係、沒有區別

對立假設: H_a

現狀為非、有關係、有差別

※通常是研究者希望證明的

雙尾檢定

A和B有沒有區別?

單尾檢定

A有沒有比B大/小?

- ② 計算統計量
- ③ 比較p值與α
- (4) 拒絕虛無假設?
- (5) 得出結論

$$\mu = 170$$
 $H_0 \qquad \mu_1 - \mu_2 = 0$
 $s^2 = \lambda$

$$\mu \neq 170$$

$$H_a \qquad \mu_1 - \mu_2 \neq 0$$

$$s^2 \neq \lambda$$

不等於

$$\mu = 170$$
 $\mu \le 170$ $\mu_1 - \mu_2 = 0$ $\mu_1 - \mu_2 \ge 0$ $\mu_2 \le 170$ $\mu_1 - \mu_2 \ge 0$ $\mu_2 \le 170$ $\mu_1 - \mu_2 \ge 0$ $\mu_2 \le 170$

(兩者的概念是一樣的)

$$\mu > 170$$
 $\mu_1 - \mu_2 < 0$
 $s^2 > \lambda$

大於、小於

- 1 虚無假設與對立假設
- ② 計算統計量
- ③ 比較p值與α
- 4) 拒絕虛無假設?
- (5) <mark>得出結論</mark>

依照你的需求進行檢定,計算統計量。

→例如:t檢定、卡方檢定.....

- t檢定
 - 單一母體平均值
 - 兩母體平均差
- ANOVA 變異數分析 (F檢定)
 - 多母體平均是否一致
- 卡方檢定 (X²檢定)
 - 獨立性檢定:兩個變數是否獨立
 - 齊一性檢定:母體分配是否相同
 - 適合度檢定:樣本是否服從某機率分配

/ 某已知關係

判斷結果

1 虚無假設與對立假設

(2) 計算統計量

③ 比較p值與α

4 拒絕虛無假設?

(5) 得出結論

 H_0 為真

(不應拒絕 H_0)

真

實

狀

況

 H_0 為假

(應拒絕 H_0)

拒絕 H_0

接受 H_0

型一錯誤

正確

α: 顯著水準, 容許型一錯誤發生的機率上限

p: 犯型一錯誤的機率

正確

型二錯誤

 $\alpha = 0.05$

雙尾檢定

單尾檢定

- (1) 虚無假設與對立假設
- ② 計算統計量
- ③ 比較p值與α
- 4) 拒絕虛無假設?
- (5) 得出結論

※統計量落在拒絕域→p値小於 α (→拒絕虛無假設)

雙尾檢定

單尾檢定

- (1) 虚無假設與對立假設
- 2) 計算統計量
- ③ 比較p值與α
- 4 拒絕虛無假設?
- (5) <mark>得出結論</mark>

- (1) 虚無假設與對立假設
- 2 計算統計量
- ③ 比較p值與α
- 4 拒絕虛無假設?
- (5) 得出結論

• p值< α \rightarrow 拒絕 H_0

• p值 $\geq \alpha \rightarrow$ 接受 H_0

- 1 虚無假設與對立假設
- (2) 計算統計量
- ③ 比較p值與α
- (4) 拒絕虛無假設?
- (5) 得出結論

• p值 $< lpha \rightarrow$ 拒絕 H_0

結論:雙尾 - 顯著有差、有關係

單尾 - 顯著較大 / 小

• p值 $\geq \alpha \rightarrow$ 接受 H_0

結論:沒有關係、沒有區別

 $H_0: s^2 = \lambda$ (隨機分布)

- 1 虚無假設與對立假設
- (2) 計算統計量
- ③ 比較p值與α
- 4) 拒絕虛無假設?
- ⑤ 得出結論

• p值 $< \alpha \rightarrow$ 拒絕 H_0

非隨機分布

結論:雙尾 - 顯著有差、有關係

單尾 - 顯著較大 / 小

群聚現象

• p值 $\geq \alpha \rightarrow$ 接受 H_0

結論:沒有關係、沒有區別

隨機分布

Quadrat Analysis

Step 1 - fishnet GridTopology()

Step 2 - calculate counts of points in each grid poly.count()

Step 3 - calculate mean and variance of counts

Step 4 - hypothesis testing: Variance-Mean Ratio Test (t test)

Step 5 - make a conclusion

VMR Test

$$VMR = \frac{vairance}{mean} \; ; \; s.e. = \sqrt{\frac{2}{k-1}}$$
$$t = \frac{VMR - 1}{s.e.}, \qquad df = k-1$$

Nearest Neighbor Analysis (NNA)

Step 1 - 每一個點,找最近的點的距離

Step 2 - 所有距離的平均,得到 r_{obs}

Step 3 - 觀察值與理論隨機值的比值: $R = r_{obs}/r_{exp}$

K-order NNI

每一個點,找第k近的點的距離

Nearest Neighbor Analysis (NNA)

顯著性檢定

1. 理論隨機分布

$$r_{exp} = \frac{0.5}{\sqrt{n/A}}$$
; s.e. = $\frac{0.26136}{\sqrt{n^2/A}}$

$$Z = \frac{r_{obs} - r_{exp}}{s.e.}$$

2. Monte Carlo 顯著性檢定

模擬隨機分布(i.e.1000次)

找出是否落在信賴包絡(confidence envelope)之中

(i.e.1000次中,排序前後25名的數值)

k-NNI實作

點轉換成ppp的格式

ppp(x.coor,y.coor,x.range,y.range)

最鄰近距離(NNA)

nndist(points.ppp,k=1) \rightarrow mean

K order-NNI (i.e.最近第1~100點)

nndist(points.ppp,k=1:100)

apply(nndist(points.ppp,k=1:100),2,mean)

產生隨機點

Windows=owin(xrange=x.range, yrange=y.range)

RandomPoints= $rpoint(n, win=Windows) \rightarrow n$: 個數

概念: 模擬1000次:

mean(nndist(points.ppp,k=1)) 會有1個數值

7有1個數值 1*1000

apply(nndist(points.ppp,k=1:100),2,mean)會有100個數值 100*1000

1000次找前後5%

排序函數:sort()

G Function

「最近的點的距離」的累積頻率分布

G Function 實作

nnd=nndist(School.ppp, k=1)

G = ecdf(nnd) →累積頻率分布

研究區邊界

[2,] 164497.4 2541324 [3,] 164390.8 2541256 [4,] 164288.9 2541191 [5,] 164241.2 2541161 [6,] 164214.4 2541046 [7,] 164223.8 2541030 [8,] 164223.2 2541027 [9,] 164214.4 2541018

```
WindowPolygon= owin(poly=多邊形,用逆時針的點來表示)
ppp(x.coor,y.coor, window=WindowPolygon)
```