Examenul de bacalaureat național 2016

Proba E. c)

Matematică *M_pedagogic*

BAREM DE EVALUARE ȘI DE NOTARE

Varianta 2

Filiera vocațională, profilul pedagogic, specializarea învățător-educatoare

- Pentru orice soluție corectă, chiar dacă este diferită de cea din barem, se acordă punctajul corespunzător.
- Nu se acordă fracțiuni de punct, dar se pot acorda punctaje intermediare pentru rezolvări parțiale, în limitele punctajului indicat în barem.
- Se acordă 10 puncte din oficiu. Nota finală se calculează prin împărțirea la 10 a punctajului total obținut pentru lucrare.

SUBIECTUL I (30 de puncte)

1.	$\sqrt{25} = 5$, $\sqrt{64} = 8$, $\sqrt{169} = 13$	3 p
	5 + 8 - 13 = 0	2p
2.	$x+2 \le 3$	2p
	$x \le 1$, deci $x \in (-\infty, 1]$	3 p
3.	2x-8=2	3 p
	x = 5, care verifică ecuația	2p
4.	După prima ieftinire cu 10%, prețul obiectului este 1000-10% ·1000 = 900 de lei	3 p
	După a doua ieftinire cu 10%, prețul obiectului este $900-10\% \cdot 900=810$ lei	2 p
5.	$x_A + x_C = x_O + x_B = 5$	2p
	$y_A + y_C = y_O + y_B = 6$, adică segmentele AC și OB au același mijloc, deci $AOCB$ este paralelogram	3p
6.	paralelogram $\mathcal{A}_{\Delta ABC} = \frac{AB \cdot AC \cdot \sin A}{2} = \frac{6 \cdot 6 \cdot \frac{\sqrt{3}}{2}}{2} = 9\sqrt{3}$	3 p
	$=9\sqrt{3}$	2p

SUBIECTUL al II-lea (30 de puncte)

1.	(-2)*7 = (-2)+7-5 =	3 p
	=5-5=0	2p
2.	(x*y)*z = (x+y-5)*z = (x+y-5)+z-5 = x+y+z-10	2p
	x*(y*z) = x*(y+z-5) = x+(y+z-5)-5 = x+y+z-10 = (x*y)*z, pentru orice numere reale x , y și z , deci legea de compoziție "*" este asociativă	3 p
3.	(1*2)*(8*9) = (1+2-5)*(8+9-5) = (-2)*12 = -2+12-5=5	2p
	(1*9)*(2*8)=(1+9-5)*(2+8-5)=5*5=5+5-5=5=(1*2)*(8*9)	3 p
4.	x * x = 2x - 5, $(x * x) * x = 3x - 10$	3 p
	$3x - 10 = x \Leftrightarrow x = 5$	2p
5.	$9^{x} + 3^{x} - 5 = 7 \Leftrightarrow (3^{x} + 4)(3^{x} - 3) = 0$	3 p
	Cum $3^x > 0$, obţinem $x = 1$	2p
6.	$x^2 * \frac{1}{x^2} \ge -3 \Leftrightarrow x^2 + \frac{1}{x^2} - 5 \ge -3$	2p
	$x^2 + \frac{1}{x^2} - 2 \ge 0 \Leftrightarrow \left(x - \frac{1}{x}\right)^2 \ge 0$, relație adevărată, pentru orice număr real nenul x	3 p

SUBIECTUL al III-lea (30 de puncte)

1.	$\det B = \begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1 \cdot 1 - 1 \cdot 0 =$	3 p
	=1-0=1	2p
2.	$aA(a) = \begin{pmatrix} a^2 & a \\ 2a & 3a \end{pmatrix} \Rightarrow \det(aA(a)) = \begin{vmatrix} a^2 & a \\ 2a & 3a \end{vmatrix} = 3a^3 - 2a^2$	3p
	$3a^3 - 2a^2 = 0 \Leftrightarrow a = 0 \text{ sau } a = \frac{2}{3}$	2p
3.	$\det(A(a)) = \begin{vmatrix} a & 1 \\ 2 & 3 \end{vmatrix} = 3a - 2$	2p
	Matricea $A(a)$ este inversabilă $\Leftrightarrow \det(A(a)) \neq 0 \Leftrightarrow 3a - 2 \neq 0 \Leftrightarrow a \in \mathbb{R} \setminus \left\{\frac{2}{3}\right\}$	3p
4.	$A(a-1) = \begin{pmatrix} a-1 & 1 \\ 2 & 3 \end{pmatrix}, \ A(a+1) = \begin{pmatrix} a+1 & 1 \\ 2 & 3 \end{pmatrix}$	2p
	$A(a-1)+A(a+1)=\begin{pmatrix} 2a & 2\\ 4 & 6 \end{pmatrix}=2\begin{pmatrix} a & 1\\ 2 & 3 \end{pmatrix}=2A(a)$, pentru orice număr real a	3 p
5.	$A(a) + B = $ $ \begin{pmatrix} a+1 & 2 \\ 2 & 4 \end{pmatrix} \Rightarrow \det(A(a) + B) = \begin{vmatrix} a+1 & 2 \\ 2 & 4 \end{vmatrix} = 4a$	3p
	$4a = a + 3 \Leftrightarrow a = 1$	2 p
6.	$A(1) = \begin{pmatrix} 1 & 1 \\ 2 & 3 \end{pmatrix} \Rightarrow \det A(1) = 1 \neq 0, \ \left(A(1) \right)^{-1} = \begin{pmatrix} 3 & -1 \\ -2 & 1 \end{pmatrix}$	3p
	$X = B \cdot (A(1))^{-1} \Leftrightarrow X = \begin{pmatrix} 1 & 0 \\ -2 & 1 \end{pmatrix}$	2p