KREPE Flight Computer Hardware Manual

Matt Ruffner

December 16, 2020

Contents

1	Intr	roduction
	1.1	Primary Activation
	1.2	Secondary Activation
2	\mathbf{Sub}	osystems
	2.1	Activation Redundancy Processor
	2.2	Radio Communications
		2.2.1 Radio Power Control
		2.2.2 Iriduim Radio
		2.2.3 Debug Radio
	2.3	Thermal Measurement
		2.3.1 Thermocouple Connections
	2.4	Visual Status Indicators
	2.5	Auxillary Sensors
	2.6	Power and Batteries
		2.6.1 Battery Status Interface
		2.6.2 Battery Protection
A	Sch	nematics
В	Boa	ard Renderings
C	Tee	ensy 3.5 Reference
		ensy 3.5 Reference etslist
D	Par	
D E	Par Ard	rtslist
D E	Par Ard	rtslist duino Pin Mapping
D E	Par Ard Ger	rtslist duino Pin Mapping neral Requirements Compliance
D E	Par Ard Gen F.1	rtslist duino Pin Mapping neral Requirements Compliance Req. 3.1.1.1
D E	Par Ard Gen F.1 F.2	rtslist duino Pin Mapping neral Requirements Compliance Req. 3.1.1.1
D E	Par Ard Ger F.1 F.2 F.3	rtslist duino Pin Mapping neral Requirements Compliance Req. 3.1.1.1
D E	Par Ard Ger F.1 F.2 F.3 F.4	ttslist duino Pin Mapping neral Requirements Compliance Req. 3.1.1.1
D E	Par Ard Ger F.1 F.2 F.3 F.4 F.5	ttslist duino Pin Mapping neral Requirements Compliance Req. 3.1.1.1 Req. 3.1.1.2 Req. 3.1.1.3 3.1.1.4 3.1.1.5 3.1.1.6
D E	Par Ard Ger F.1 F.2 F.3 F.4 F.5 F.6	ttslist duino Pin Mapping neral Requirements Compliance Req. 3.1.1.1 Req. 3.1.1.2 Req. 3.1.1.3 3.1.1.4 3.1.1.5 3.1.1.6 3.1.1.6
D	Par Ard Gen F.1 F.2 F.3 F.4 F.5 F.6 F.7	ttslist duino Pin Mapping neral Requirements Compliance Req. 3.1.1.1 Req. 3.1.1.2 Req. 3.1.1.3 3.1.1.4 3.1.1.5 3.1.1.6

Activation and battery protection schematic overview. Secondary activation rendundancy provided by the safety processor. RF specifications of the AL3A-RS Iridium modem. TTL to RS232 serial converted module. Thermocouple connection wiring with resepect to the analog mux chips IC3 (MUX2) and IC1		2 3.1.1.12
Activation and battery protection schematic overview. Secondary activation rendundancy provided by the safety processor. RF specifications of the AL3A-RS Iridium modem. TTL to RS232 serial converted module. Thermocouple connection wiring with resepect to the analog mux chips IC3 (MUX2) and IC1 (MUX1). Battery protection circuitry. Battery protection circuitry disconnecting the cells after 6ms of over current condition. Blue: current. Purple: pack voltage. Page one of schematics. Page two of schematics. Page two of schematics. Page four of schematics. Page four of schematics. Rendering of the top of the KREPE control board, V1.1. Rendering of the bottom of the KREPE control board, V1.1. Rendering of the bottom of the KREPE control board, V1.1. Teensy 3.5 Back Trinket-MO Arduino Reference (for ARP chip). Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. iist of Tables Inhibits to Ididium radio activation. Radio module interface signals. Analog mux selection and thermocouple fault status pins. Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.	F.1.	3 3.1.1.13
Secondary activation rendundancy provided by the safety processor. RF specifications of the AL3A-RS Iridium modem. TTL to RS232 serial converted module. Thermocouple connection wiring with resepect to the analog mux chips IC3 (MUX2) and IC1 (MUX1). Battery protection circuitry. Battery protection circuitry disconnecting the cells after 6ms of over current condition. Blue: current. Purple: pack voltage. Page one of schematics. Page three of schematics. Page four of schematics. Page five of schematics. Rendering of the top of the KREPE control board, V1.1. Rendering of the bottom of the KREPE control board, V1.1. Teensy 3.5 Front Teensy 3.5 Front Teensy 3.5 Back Trinket-M0 Arduino Reference (for ARP chip). Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. Analog mux selection and thermocouple fault status pins. Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.	List	of Figures
RF specifications of the AL3A-RS Iridium modem. TTL to RS232 serial converted module. Thermocouple connection wiring with resepect to the analog mux chips IC3 (MUX2) and IC1 (MUX1). Battery protection circuitry. Battery protection PCB. The battery protection circuity disconnecting the cells after 6ms of over current condition. Blue: current. Purple: pack voltage. Page one of schematics. Page two of schematics. Page five of schematics. Page five of schematics. Rendering of the bottom of the KREPE control board, V1.1. Rendering of the bottom of the KREPE control board, V1.1. Rendering of the bottom of the KREPE control board, V1.1. Crensy 3.5 Front Teensy 3.5 Back Trinket-M0 Arduino Reference (for ARP chip). Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. Analog mux selection and thermocouple fault status pins. Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.	1	Activation and battery protection schematic overview
TTL to RS232 serial converted module. Thermocouple connection wiring with resepect to the analog mux chips IC3 (MUX2) and IC1 (MUX1). Battery protection circuitry. Battery protection PCB. The battery protection circuity disconnecting the cells after 6ms of over current condition. Blue: current. Purple: pack voltage. Page one of schematics. Page two of schematics. Page five of schematics. Page four of schematics. Rendering of the top of the KREPE control board, V1.1. Rendering of the bottom of the KREPE control board, V1.1. Rendering of the bottom of the KREPE control board, V1.1. Creensy 3.5 Front Teensy 3.5 Back Trinket-M0 Arduino Reference (for ARP chip). Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. Analog mux selection and thermocouple fault status pins. Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.	2	Secondary activation rendundancy provided by the safety processor
Thermocouple connection wiring with resepect to the analog mux chips IC3 (MUX2) and IC1 (MUX1). Battery protection circuitry. The battery protection circuity disconnecting the cells after 6ms of over current condition. Blue: current. Purple: pack voltage. Page one of schematics. Page three of schematics. Page four of schematics. Page four of schematics. Rendering of the top of the KREPE control board, V1.1. Rendering of the bottom of the KREPE control board, V1.1. Teensy 3.5 Front Teensy 3.5 Back Trinket-MO Arduino Reference (for ARP chip). Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. ist of Tables Inhibits to Ididium radio activation. Radio module interface signals. Analog mux selection and thermocouple fault status pins. Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.	3	RF specifications of the AL3A-RS Iridium modem
(MUX1). Battery protection circuitry. Battery protection PCB. The battery protection circuity disconnecting the cells after 6ms of over current condition. Blue: current. Purple: pack voltage. Page one of schematics. Page two of schematics. Page three of schematics. Page four of schematics. Rendering of the top of the KREPE control board, V1.1. Rendering of the bottom of the KREPE control board, V1.1. Teensy 3.5 Front Teensy 3.5 Back Trinket-M0 Arduino Reference (for ARP chip). Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. List of Tables Inhibits to Ididium radio activation. Radio module interface signals. Analog mux selection and thermocouple fault status pins. Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.	4	TTL to RS232 serial converted module
Battery protection circuitry. Battery protection PCB. The battery protection circuity disconnecting the cells after 6ms of over current condition. Blue: current. Purple: pack voltage. Page one of schematics. Page two of schematics. Page three of schematics. Page four of schematics. Page five of schematics. Rendering of the top of the KREPE control board, V1.1. Rendering of the bottom of the KREPE control board, V1.1. Rendering of the bottom of the KREPE control board, V1.1. Teensy 3.5 Front Teensy 3.5 Back Trinket-M0 Arduino Reference (for ARP chip). Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. iist of Tables Inhibits to Ididium radio activation. Radio module interface signals. Analog mux selection and thermocouple fault status pins. Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.	5	Thermocouple connection wiring with resepect to the analog mux chips IC3 (MUX2) and IC1
The battery protection PCB. The battery protection circuity disconnecting the cells after 6ms of over current condition. Blue: current. Purple: pack voltage. Page one of schematics. Page two of schematics. Page three of schematics. Page four of schematics. Rendering of the top of the KREPE control board, V1.1. Rendering of the bottom of the KREPE control board, V1.1. Rendering of the bottom of the KREPE control board, V1.1. Teensy 3.5 Front Teensy 3.5 Back Trinket-M0 Arduino Reference (for ARP chip). Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. Inhibits to Ididium radio activation. Radio module interface signals. Analog mux selection and thermocouple fault status pins. Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.		(MUX1)
The battery protection circuity disconnecting the cells after 6ms of over current condition. Blue: current. Purple: pack voltage. Page one of schematics. Page two of schematics. Page three of schematics. Page four of schematics. Rendering of the top of the KREPE control board, V1.1. Rendering of the bottom of the KREPE control board, V1.1. Rendering of the bottom of the KREPE control board, V1.1. Teensy 3.5 Front Teensy 3.5 Back Trinket-M0 Arduino Reference (for ARP chip). Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. Inhibits to Ididium radio activation. Radio module interface signals. Analog mux selection and thermocouple fault status pins. Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.	6	
Blue: current. Purple: pack voltage. 9 Page one of schematics. 10 Page two of schematics. 11 Page three of schematics. 12 Page four of schematics. 13 Page five of schematics. 14 Rendering of the top of the KREPE control board, V1.1. 15 Rendering of the bottom of the KREPE control board, V1.1. 16 Teensy 3.5 Front 17 Teensy 3.5 Back 18 Trinket-M0 Arduino Reference (for ARP chip). 19 Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. 2 Radio module interface signals. 3 Analog mux selection and thermocouple fault status pins. 4 Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. 6 Pins connecting to the ADXL377 and ICM-20948.	7	
9 Page one of schematics. 10 Page two of schematics. 11 Page three of schematics. 12 Page four of schematics. 13 Page five of schematics. 14 Rendering of the top of the KREPE control board, V1.1. 15 Rendering of the bottom of the KREPE control board, V1.1. 16 Teensy 3.5 Front 17 Teensy 3.5 Back 18 Trinket-M0 Arduino Reference (for ARP chip). 19 Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. ist of Tables 1 Inhibits to Ididium radio activation. 2 Radio module interface signals. 3 Analog mux selection and thermocouple fault status pins. 4 Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. 6 Pins connecting to the ADXL377 and ICM-20948.	8	
10 Page two of schematics. 11 Page three of schematics. 12 Page four of schematics. 13 Page five of schematics. 14 Rendering of the top of the KREPE control board, V1.1. 15 Rendering of the bottom of the KREPE control board, V1.1. 16 Teensy 3.5 Front 17 Teensy 3.5 Back 18 Trinket-M0 Arduino Reference (for ARP chip). 19 Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. 1st of Tables 1 Inhibits to Ididium radio activation. 2 Radio module interface signals. 3 Analog mux selection and thermocouple fault status pins. 4 Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. 6 Pins connecting to the ADXL377 and ICM-20948.		
Page three of schematics. Page four of schematics. Rendering of the top of the KREPE control board, V1.1. Rendering of the bottom of the KREPE control board, V1.1. Teensy 3.5 Front Teensy 3.5 Back Trinket-M0 Arduino Reference (for ARP chip). Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. Inhibits to Ididium radio activation. Radio module interface signals. Analog mux selection and thermocouple fault status pins. Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.	_	
Page four of schematics. Page five of schematics. Rendering of the top of the KREPE control board, V1.1. Rendering of the bottom of the KREPE control board, V1.1. Teensy 3.5 Front Teensy 3.5 Back Trinket-M0 Arduino Reference (for ARP chip). Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. Inhibits to Ididium radio activation. Radio module interface signals. Analog mux selection and thermocouple fault status pins. Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.		
Page five of schematics. Rendering of the top of the KREPE control board, V1.1. Rendering of the bottom of the KREPE control board, V1.1. Teensy 3.5 Front Teensy 3.5 Back Trinket-M0 Arduino Reference (for ARP chip). Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. Inhibits to Ididium radio activation. Radio module interface signals. Analog mux selection and thermocouple fault status pins. Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.		
Rendering of the top of the KREPE control board, V1.1. Rendering of the bottom of the KREPE control board, V1.1. Rendering of the bottom of the KREPE control board, V1.1. Rensy 3.5 Front Teensy 3.5 Back Trinket-M0 Arduino Reference (for ARP chip). Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. Inhibits to Ididium radio activation. Radio module interface signals. Analog mux selection and thermocouple fault status pins. Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.		
15 Rendering of the bottom of the KREPE control board, V1.1. 16 Teensy 3.5 Front 17 Teensy 3.5 Back 18 Trinket-M0 Arduino Reference (for ARP chip). 19 Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. ist of Tables 1 Inhibits to Ididium radio activation. 2 Radio module interface signals. 3 Analog mux selection and thermocouple fault status pins. 4 Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. 6 Pins connecting to the ADXL377 and ICM-20948.		
16 Teensy 3.5 Front 17 Teensy 3.5 Back 18 Trinket-M0 Arduino Reference (for ARP chip). 19 Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. ist of Tables 1 Inhibits to Ididium radio activation. 2 Radio module interface signals. 3 Analog mux selection and thermocouple fault status pins. 4 Truth table for multiplexer select pins and their relation to the pairs of TC that are selected. 5 Debug LED Connections. 6 Pins connecting to the ADXL377 and ICM-20948.		•
17 Teensy 3.5 Back 18 Trinket-M0 Arduino Reference (for ARP chip). 19 Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. ist of Tables 1 Inhibits to Ididium radio activation. 2 Radio module interface signals. 3 Analog mux selection and thermocouple fault status pins. 4 Truth table for multiplexer select pins and their relation to the pairs of TC that are selected. 5 Debug LED Connections. 6 Pins connecting to the ADXL377 and ICM-20948.	_	
Trinket-M0 Arduino Reference (for ARP chip). Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. ist of Tables Inhibits to Ididium radio activation. Radio module interface signals. Analog mux selection and thermocouple fault status pins. Truth table for multiplexer select pins and their relation to the pairs of TC that are selected. Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.		
Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition. ist of Tables Inhibits to Ididium radio activation. Radio module interface signals. Analog mux selection and thermocouple fault status pins. Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.		· · · · · · · · · · · · · · · · · · ·
abnormal power condition. ist of Tables Inhibits to Ididium radio activation. Radio module interface signals. Analog mux selection and thermocouple fault status pins. Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.	_	
ist of Tables 1 Inhibits to Ididium radio activation. 2 Radio module interface signals. 3 Analog mux selection and thermocouple fault status pins. 4 Truth table for multiplexer select pins and their relation to the pairs of TC that are selected 5 Debug LED Connections. 6 Pins connecting to the ADXL377 and ICM-20948.	19	
Inhibits to Ididium radio activation. Radio module interface signals. Analog mux selection and thermocouple fault status pins. Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.		abnormal power condition
Inhibits to Ididium radio activation. Radio module interface signals. Analog mux selection and thermocouple fault status pins. Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.	ist	of Tables
Radio module interface signals. Analog mux selection and thermocouple fault status pins. Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.		
Analog mux selection and thermocouple fault status pins. Truth table for multiplexer select pins and their relation to the pairs of TC that are selected Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.		
Truth table for multiplexer select pins and their relation to the pairs of TC that are selected. Debug LED Connections. Pins connecting to the ADXL377 and ICM-20948.		
5 Debug LED Connections		
6 Pins connecting to the ADXL377 and ICM-20948		
	_	

1 Introduction

This document contains information about the flight computer for the KREPE mission as well as the safety precautions taken to ensure the flight hardware is not a danger to the ISS or its astronauts. In addition to electrical designs and schematics, this document contains pin names, links to datasheets, and implementation notes. The following sections outline the subsystems of the flight computer, pin names for software usage, and datasheets. The flight computer provides integrated battery charging for easy charging prior to integration. Other details about the power subsystem including battery type and rating are also included.

The entire flight ready assembly is referred to as KREPE, which consists of a capsule containing the science (flight computer, batteries, etc.) and an metal shell known as KREM that acts as a Faraday cage inhibiting any inadvertent RF radiation from the probe. Both primary and secondary activation must occur for the capsule to become fully active and begin RF transmissions. To avoid accidental activation of hazardous subsystems, multiple secondary activation criteria must be met. Primary and secondary activation processes are discussed in sections 1.1,1.2, and 2.2.1.

The subsystems of the flight computer are outlined in Sec. ??. Pin definitions are listed with each hardware or sensor component along with any relevant information regarding safety or implementation. Electrical schematics, microcontroller reference cards, and a partslist are shown in Appendices A, E, and D, respectively.

1.1 Primary Activation

Primary activation is triggered by a pin pulled out of KREPE by astronauts. Once the pin is pulled, a mechanical switch¹ is closed and the flight computer boots to standby mode where it consumes minimal power. The Iridium radio is not powered on in standby mode. The flight computer wakes up periodically to log sensor data and determine if conditions for secondary activation have been met. A schematic showing battery protection and primary activation circuitry activation is shown in Fig. 1. Less than 5 inches of copper 20 AWG PVC insulated wire is used to connect the batteries to the first power function (battery protection circuitry).

Figure 1: Activation and battery protection schematic overview.

https://www.digikey.com/product-detail/en/omron-electronics-inc-emc-div/D2SW-3L1H/Z12268-ND/1811989

1.2 Secondary Activation

Once primary activation is complete and the flight computer is in standby mode, sensors are polled to check for conditions necessary for secondary activation. Secondary activation is only engaged once the KREM has separated from the probe. No radio transmissions are attempted before secondary activation.

Thermocouples and the capacitive sensing subsystem are polled to check for conditions sufficient for secondary activation. As KREPE re-enters the atmosphere, heating of the metal KREM will melt the plastic bolts that hold it together. This ambient temperature increase of the probe is sensed by the thermal measurement subsystem and is one criteria for secondary activation. The presence of KREM around the probe is detected by capacitive sensors, this is the secondary criteria for secondary activation. Once the thermal and capacitive sensing subsystems have detected the separation of the metal enclosure, the Iridium radio is powered on and packet transmission begins.

An activation redundancy processor (ARP) was added in Rev. 1.1 of the flight computer, if the flight computer needs to be tested without the ARP, there is a solder jumper on the bottom of the PCB (SJ1) that, when shorted together, bypasses the AND gate that controls Iridium radio activation, reducing the system to single activation.

2 Subsystems

2.1 Activation Redundancy Processor

Revision 1.1 of the KREPE flight computer adds a secondary safety processor as a schedule risk mitigation step should the KREM fail to provide the expected function as a Faraday cage and EMI testing shows unacceptable exceedances of EMI emissions. If the KREM functions as expected as a faraday cage, the safety processor hardware will be physically disabled and the ARP hardware will not be functional for flight.

The SAMD21 Cortex-M0 safety processor polls the thermal monitoring subsystem to independently determine if temperature conditions for secondary activation are met. Figure 2 shows the interaction that the ARP has between the thermal monitoring hardware and the Iridium radio activation hardware, including the provisions for disabling it in the case that the KREM is an effective Faraday cage.

The rest of this subsection contains details related to board bring-up and programming.

KREPE Flight Computer Redundant Secondary Activation

Figure 2: Secondary activation rendundancy provided by the safety processor.

Bootloading the ARP The SAMD21 must be flashed with the UF2 bootloader https://learn.adafruit.com/programming-microcontrollers-using-openocd-on-raspberry-pi.

show picture of header for programming, reset pin, swelk, swdio pins.

Programming the ARP The microUSB port next to the ARP (CN1) is used to upload program flash using the Arduino IDE. This is only possible once the bootloader has been flashed with OpenOCD.

Arduino Board File Modifications In order to have access to all GPIO used on the ARP, the Adafruit Trinket M0 default pin variant used by the Arduino IDE must be modified to include two more pins.

2.2 Radio Communications

KREPE has two radios, a debug radio used for ground work and an Iridium satellite modem used both on the ground and during the mission. The following subsections explain the conditions necessary for enabling the satellite modem during the mission and also restate that the debug radio is physically disabled prior to final integration and is never powered on or used during the actual mission.

2.2.1 Radio Power Control

Say that before this stuff happens we need to physically activate.

different revs for after environmental testing

An AND gate controls the power to the solid state relay controlling power to the Iridium radio. The secondary processor is connected to the other input of this AND gate to make sure that erroneous action on behalf the Teensy (or secondary safety processor) is not able to solely activate the radio. In addition to the thermocouple measurements, another inhibit to powering on the Iridium radio is the detection of KREM separation, performed by capacitive sensing. Table 1 summarizes the inhibits to radio activation.

Table 1: Inhibits to Ididium radio activation.

Sensor	Monitored by	Description
Thermocouples	Teensy	Thermocouple temperature reported by Teensy
Thermocouples	ARP	Thermocouple temperature reported by secondary ARP
Capacitance	Teensy	KREM presence detected by Teensy

2.2.2 Iriduim Radio

We are using the A3LA-RS type modem seen on the NAL Research site (http://www.nalresearch.com/IridiumHardware.html). The RF specifications, taken from the module's datasheet are shown in Fig. 4.

Operating Frequency: 1616 to 1626.5 MHz

Duplexing Method: TDD

Multiplexing Method: TDMA/FDMA Link Margin: 12 dB average

Average Power during a Transmit Slot (Max): 7W Average Power during a Frame (Typical): 0.6W Receiver Sensitivity at 50Ω (Typical): -118 dBm

Figure 3: RF specifications of the AL3A-RS Iridium modem.

Iridium Serial Interface A 3.3V TTL to RS232 adapter is needed to interface with the AL3A-RS. This small serial converter board is wired in between the flight computer and Iridium module.

Figure 4: TTL to RS232 serial converted module.

2.2.3 Debug Radio

The KREPE flight computer features a secondary debug radio used for ground testing that is not enabled for the real mission. Maximum output power according to the radio datasheet (https://cdn.sparkfun.com/datasheets/Wireless/General/RFM69HCW-V1.1.pdf) is 100mW.

Table 2: Radio module interface signals.

Teensy Pin	Net Name	Description	Teensy Configuration
28	RESET_ISM	Pull low to enable RFM69	OUTPUT
29	INT_ISM	GPIO0 interrupt from RFM69	INPUT
33	RADIO_OFF_SIG	Pulled high when the RFM69 is disabled	INPUT

The datasheet for this antenna can be found at https://cdn.taoglas.com/datasheets/FXP290.07.0100A.pdf.

2.3 Thermal Measurement

The thermal measurement subsystem is used to take readings from up to eight thermocouples (TCs) to characterize the temperature profile that is experienced by the probe upon re-entry. As KREPE heats during re-entry, this subsystem detect the increase in temperature and is also used as a secondary activation criteria. Table 3 shows the pins used to control the TC conversion chips and analog multiplexers making multi-TC readings possible.

Table 3: Analog mux selection and thermocouple fault status pins.

Teensy Pin	Net Name	Description	Teensy Configuration
16	MUX0	MUX select pin 0	OUTPUT
17	MUX1	MUX select pin 1	OUTPUT
25	TC1_FAULT	U13 fault (active low)	INPUT
26	TC2_FAULT	U12 fault (active low)	INPUT

2.3.1 Thermocouple Connections

The 8 TC connections are done with 2 analog multiplexers IC1 and IC3 (MUX1 and MUX2). The MUX select pins go to both of these chips to select a certain channel. The table of MUX(0/1) select values versus two selected TCs are shown in Table 4.

Table 4: Truth table for multiplexer select pins and their relation to the pairs of TC that are selected.

MUX0	MUX1	TC number
0	0	1, 5
0	1	2, 6
1	0	3, 7
1	1	4, 8

Pin connections on headers P1 and P2 show the connections for TC 1-8 lead wire pairs. Figure 5 shows the pinout on the silkscreen.

Figure 5: Thermocouple connection wiring with resepect to the analog mux chips IC3 (MUX2) and IC1 (MUX1).

2.4 Visual Status Indicators

The KREPE flight computer features several light emitting diodes (LEDs) to provide visual feedback during ground testing. Pin mappings and intended information denoted by each LED is shown in Table 5.

Table 5: Debug LED Connections.

Teensy Pin	Net Name	Teensy Configuration
3	LED1 - IRIDIUM ON	OUTPUT
4	LED2 - IRIDIUM SIGNAL OK	OUTPUT
5	LED3 - IRIDIUM RADIO TRANSMITTING	OUTPUT
6	LED4 - ISM RADIO TRANSMITTING	OUTPUT
7	LED5 - GENERAL ACTIVITY	OUTPUT

2.5 Auxillary Sensors

The KREPE flight computer features several auxillary sensors that will be used to better characterize reentry. Measurements from an ADXL377 3-axis ± 200 g accelerometer, ICM-20948 9-axis IMU, and DSP310 barometric pressure sensor are collected after secondary activation. Measurements from these auxiliary sensors are not used for activation.

Table 6: Pins connecting to the ADXL377 and ICM-20948.

Teensy Pin	Net Name	Description	Teensy Configuration
36 A17	XOUT	Analog out from accel (x axis)	INPUT
37 A18	YOUT	Analog out from accel (y axis)	INPUT
38 A19	ZOUT	Analog out from accel (z axis)	INPUT
35	INT	Interrupt from ICM-20948	INPUT
34	FSYNC	Synchronization signal to ICM-20948	OUTPUT

2.6 Power and Batteries

Batteries are provided by JSC and are Sanyo XXX rated at 3200mAh. System power is provided by two of these cells tabbed in parallel (tabbing performed and documented by JSC).

Charge current is limited to to 450 milliamps (mA), a charge rate of C/12 with the two (2) 3200 milliamphour (mAh) system Battery Charge power can be delivered via Teensy USB or the CHARGE header. Charging input voltage is expected to be 5 volts. Charge voltage to the batteries is regulated to 4.2 volts by the charge management IC, an MCP73831², with status connections to the Teensy as shown in Table 7.

charging when not installed vs charging when installed.

Charging is only performed on the ground and there is no provision for charging in flight. Schematics and electrical connections are shown in Fig. 11 in Appendix A.

2.6.1 Battery Status Interface

Table 7: Pins to monitor battery voltage and charging status.

Teensy Pin	Net Name	Description	Teensy Configuration
14	BAT_STAT	LiPo charge state	OUTPUT
22 A8	BAT_SENSE	Halved battery voltage for monitoring	INPUT

2.6.2 Battery Protection

Protection circuitry is implemented on the flight board to support 2P1S LiIon packs for system power. We are using a DW108 Voltage and Current Protection IC (https://cdn.sparkfun.com/assets/learn_tutorials/2/5/1/DW01-P_DataSheet_V10.pdf).

The battery protection circuitry is pre assembled and not shown in the appendix a.

²(https://www.microchip.com/wwwproducts/en/MCP73831)

Figure 6: Battery protection circuitry.

Protection circuitry as implemented on the KREPE flight computer PCB is shown in Fig. 6. Our two batteries are in parallel where the battery image is shown in Fig. 6, and BATT+ and BATT- face system power i.e. to the flight computer. This protection circuitry is upstream of the primary activation switch. The battery protection PCB can be seen in Fig. 7.

Figure 7: Battery protection PCB.

Over-current protection The battery protection PCB can be seen preventing over current draw in Fig. 8. After 6 milliseconds, the battery cells are disconnected from the output and current draw

Figure 8: The battery protection circuity disconnecting the cells after 6ms of over current condition. Blue: current. Purple: pack voltage.

A Schematics

Figure 9: Page one of schematics.

Figure 10: Page two of schematics.

Figure 11: Page three of schematics.

Figure 12: Page four of schematics.

Figure 13: Page five of schematics.

B Board Renderings

Figure 14: Rendering of the top of the KREPE control board, V1.1.

Figure 15: Rendering of the bottom of the KREPE control board, V1.1.

C Teensy 3.5 Reference

Figure 16: Teensy 3.5 Front

Figure 17: Teensy 3.5 Back

Figure 18: Trinket-M0 Arduino Reference (for ARP chip).

D Partslist

Partlist ${\it Exported from flight-computer.sch at 7/23/20~8:11~PM}$ ${\it EAGLE Version 9.6.2 Copyright (c) 1988-2020 Autodesk, Inc.}$ ${\it Assembly variant:}$

Part	Value	Device	Package	Library	Shee
ACTIVATION_SW		PINHD-1X2	1 X 0 2	pinhead	3
ANT	U.FL-R-SMT-1(10)	U.FL-R-SMT-1(10)	$CONN_R-SMT-1(10)$	ufl	4
BATTERY	2 PIN JST	S2B-PH-SM4-TB(LF)(SN)	JST_S2B-PH-SM4-TB(LF)(SN)	S2B-PH-SM4-TB_LFSN_	3
C1	10uF	C-EUC0603	C0603	rcl	3
C2	1 uF	C-EUC0603	C0603	rcl	3
C3	0.1 uF	C-USC0603	C0603	adafruit	2
C4	0.1 uF	C-USC0603	C0603	adafruit	2
C5	0.1 uF	C-USC0603	C0603	adafruit	2
C6	0.1 uF	C-USC0603	C0603	adafruit	2
C7	1 uF	CAP_CERAMIC0603_NO	0603-NO	microbuilder	5
C8	10uF	C-USC0603	C0603	adafruit	1
C9	0.01uF	C-USC0603	C0603	adafruit	1
C10	0.01uF	C-USC0603	C0603	adafruit	1
C11	0.01uF	C-USC0603	C0603	adafruit	1
C12	0.1 uF	C-EUC0603	C0603	rcl	4
C13	0.1 uF	C-EUC0603	C0603	rcl	4
C14	0.1 uF	C-USC0603	C0603	adafruit	3
C15	0.1 uF	C-EUC0603	C0603	rcl	1
C16	0.1 uF	C-EUC0603	C0603	rcl	1
C17	0.1 uF	C-EUC0603	C0603	rcl	1
C18	0.1 uF	C-USC0603	C0603	rcl	3
C19	2.2 uF	C-USC0603	C0603	rcl	3
C20	0.01uF	C-USC0603	C0603	rcl	3
C22	1 uF	C-EUC0603	C0603	rcl	4
C24	0.01uF	C-USC0603	C0603	adafruit	2
C25	$0.01\mathrm{uF}$	C-USC0603	C0603	adafruit	2

C26	0.01uF	C-USC0603	C0603	adafruit	2
C27	0.01uF	C-USC0603	C0603	adafruit	2
C28	0.01 uF	C-USC0603	C0603	adafruit	2
C29	0.01 uF	C-USC0603	C0603	adafruit	2
C30	0.01 uF	C-USC0603	C0603	adafruit	2
C31	0.01 uF	C-USC0603	C0603	adafruit	2
C32	0.1 uF	C-USC0603	C0603	adafruit	2
C33	0.1 uF	C-USC0603	C0603	adafruit	2
CAPSENSE	53048 - 0810	53048 - 0810	53048 - 0810	con-molex-picoblade	4
CHARGE		PINHD-1X2	1 X 0 2	pinhead	3
CHG	RED	LED-RED0603	LED-0603	SparkFun-LED	3
CN1	4U#20329	USB_MICRO_20329_V2	4UCONN_20329_V2	microbuilder	5
D3	MBR120	MBR120	SOD123FL	gsynth	3
H1	MOUNT-PAD-ROUND2.8	MOUNT-PAD-ROUND2.8	2,8-PAD	holes	1
H2	MOUNT-PAD-ROUND2.8	MOUNT-PAD-ROUND2.8	2,8-PAD	holes	1
H3	MOUNT-PAD-ROUND2.8	MOUNT-PAD-ROUND2.8	2,8-PAD	holes	1
H4	MOUNT-PAD-ROUND2.8	MOUNT-PAD-ROUND2.8	2,8-PAD	holes	1
H5	MOUNT-PAD-ROUND2.8	MOUNT-PAD-ROUND2.8	2,8-PAD	holes	1
H6	MOUNT-PAD-ROUND2.8	MOUNT-PAD-ROUND2.8	2,8-PAD	holes	1
					2
IC1	ADG609RU	ADG609RU	TSSOP16	analog-devices	
IC2	ATSAMD21E	ATSAMD21E	QFN32_5MM	microbuilder	5
IC3	ADG609RU	ADG609RU	TSSOP16	analog-devices	2
JP1		PINHD-1X4	1 X 0 4	pinhead	5
JP2		PINHD-1X2	1 X 0 2	pinhead	3
JP3		PINHD-1X2	1 X 0 2	pinhead	4
LED1		LEDCHIP-LED0603	CHIP-LED0603	adafruit	4
LED2		LEDCHIP-LED0603	CHIP-LED0603	adafruit	4
LED3		LEDCHIP-LED0603	CHIP-LED0603	adafruit	4
LED4		LEDCHIP-LED0603	CHIP-LED0603	adafruit	4
LED5		LEDCHIP-LED0603	CHIP-LED0603	adafruit	4
P1	53048 - 0810	53048 - 0810	53048 - 0810	con-molex-picoblade	2
P2	53048-0810	53048-0810	53048-0810	con-molex-picoblade	2
R1				rcl	3
	1 k	R-US_R0603	R0603		
R2	2.2 k	R-US_R0603	R0603	r c l	3
R3	288	R-US_R0603	R0603	adafruit	3
R4	470	R-US_R0603	R0603	rcl	4
R5	100k	R-US_R0603	R0603	rcl	3
R6	100k	R-US_R0603	R0603	r c l	3
R7	100 k	R-US_R0603	R0603	r c l	3
R8	470		R0603	rcl	4
		R-US_R0603			
R9	470	R-US_R0603	R0603	r c l	4
R10	470	R-US_R0603	R0603	rcl	4
R11	470	R-US_R0603	R0603	rcl	4
R12	2.2 k	R-US_R0603	R0603	rcl	1
R13	200k	R-US_R0603	R0603	rcl	1
R14	2.2 k	R-US_R0603	R0603	r c l	1
					1
R15	2.2 k	R-US_R0603	R0603	rcl	
R16	2.2 k	R-US_R0603	R0603	rcl	1
R17	10 k	R-US_R0603	R0603	rcl	5
R18	100k	R-US_R0603	R0603	r c l	3
R19	100	R-US_R0603	R0603	rcl	4
SJ1		SJ	SJ	jumper	5
U\$1	TEENSY 3.5/3.6 BASIC	TEENSY_3.5/3.6_BASIC	TEENSY_3.5/3.6_BASIC	Teensy356	1
U\$29	AQV252GA	AQV252GA	DIP6	TI_radio	3
U1	MCP73831/OT	MCP73831/OT	SOT23-5L	adafruit	3
U2	LP2985IM5 - 1.8/NOPB	LP2985IM5-1.8/NOPB	MF05A	gsynth	3
U3	COM-13909	COM-13909	MOD_COM-13909	COM-13909	4
U4	ADXL377	ACCEL_ADXL377	LFCSP16_LQ	microbuilder	1
U5	ICM - 20948	ICM-20948	QFN40P300X300X105-25N	ICM-20948	1
U6	PCA9306DCUR	PCA9306DCUR	DCU8	gsynth	1
U7	SN74LVC1T45DRLR	SN74LVC1T45DRLR	DRL6	gsynth	1
U8	SN74LVC1T45DRLR	SN74LVC1T45DRLR	DRL6	gsynth	1
U9	DMP3099L	DMP3099L	SOT23	gsynth	3
U10	SN74LVC1G08DCKR	SN74LVC1G08DCKR	SOT65P210X110-5N	SN74LVC1G08DCKR	5
U11	DPS310XTSA1	DPS310XTSA1	XDCR_DPS310XTSA1	DPS310XTSA1	4
U12	MAX31856MUD+	MAX31856MUD+	SOP65P640X110-14N	MAX31856	2
U13	MAX31856MUD+	MAX31856MUD+	SOP65P640X110-14N	MAX31856	2
VBAT_PTH		PINHD-1X2	1X02	pinhead	3
X3		HEADER_POS6_43650 - 0600		con-molex-micro-fit -3-0	
20		HEADER -1 030-43030 - 0000	40000 -0000	con-motex-micro-fit -3=0	3

E Arduino Pin Mapping

Arduino Pin	Net
Teensy 3.5	
0	CAPSENSE0
1	CAPSENSE1
3	LED_IRIDIUM_ON
4	LED_IRIDIUM_SIGNAL_OK
5	LED_IRIDIUM_TRANSMITTING
6	LED_ISM_TRANSMITTING
7	LED_ACTIVITY
8	CS_DSP
$\overset{\circ}{9}$	CS_ISM
11	MOSI
12	MISO
13	SCLK
14	BAT.STAT
15	CAPSENSE2
16	MUX0
17	MUX1
18	SDA
19	SCL
20	CS@TC1
21	CS@TC2
A8	BAT_SENSE (A8)
23	PRI_ACT (IRIDIUM ON/OFF)
24	BUZZER
25	TC1_FAULT (ACTIVE LOW)
26	TC2_FAULT (ACTIVE LOW)
27	SEC_CTRL_2
28	RESETJSM
28	INT_ISM
30	CAPSENSE3
31	RIRI (IRIDIUM OUTPUT)
32	TIRI (IRIDIUM INPUT)
33	RADIO_OFF_SIG
34	FSYNC (IMU)
35	INT (IMU)
36	XOUT (A17)
37	YOUT (A18)
38	ZOUT (A19)
39	SEC_CTRL_1
A21	IRIDIUM_TX_ACT
A22	IRIDIUM_STATUS
*	r (ATSAMD21E16B)
1	CS@TC1
13	CS@TC2
7	SEC_ACT
8	SEC_CTRL_1

0	SEC_CTRL_2
PA14	TC1_FAULT
PA15	TC2_FAULT
PA17	MUX0
PA18	MUX1

F General Requirements Compliance

Upon both power up (after primary activation via pull-tab) and detection of a termination or off-nominal power condition, the Teensy processor will enter a safe reset state, where all GPIO pins controlling critical system functions are set to a high impedance value. This high impedance state, in addition to the flight computer PCB, ensure requirements in the *General Requirements for the Computer-Based Control System Safety Requirements for the ISS* are met. Overcurrent and undervoltage protection for battery cells is implemented upstream of the flight computer, limiting the off-nominal power conditions expected (see KREPE Flight Computer Hardware Manual). See Fig. 19 for an overview of the main execution lifecycle and how upon both power up and detection of an abnormal power condition both put the CBCS back into the safe high impedance state. CBCS General Requirements are discussed below.

F.1 Req. 3.1.1.1

Teensy 3.5 controller documentation shows that the controller powers up into the known safe reset state. No outputs occur until the processing state is initiated (see Fig. 19). Verification for this requirement will monitor the state of Teensy output pins with external hardware upon power up to make sure specific signals (i.e. iridium soli state relay activation signal) do not transition unexpectedly.

F.2 Req. 3.1.1.2

KREPE flight computer software on the Teensy 3.5 controller enters a safe state in the event that a termination condition is detected (e.g. low system battery voltage; see Fig. 19). As the KREPE capsule is incapable of receiving any external commands, the detection of a termination command scenario is not applicable. Testing for compliance with this requirement entails monitoring of Flight computer pin state with external hardware while the system experiences low battery voltage to make sure it places critical pins in a high impedance or off state.

F.3 Req. 3.1.1.3

The KREPE battery protection subsystem prevents any overcurrent or undervoltage conditions from reaching the flight computer. The main off-nominal power condition the flight computer may encounter is power failure. The Teensy 3.5 controller features a power management controller that will place it in a safe reset state if a power failure is detected. The KREPE flight computer also monitors system battery voltage to preemtively detect an off-nominal power condition and place the system in the safe state (see Fig. 19).

Testing of all flown cells will be done including full charge/discharging cycling, under-voltage, over-voltage, and over-current testing with the battery protection circuitry in place. Analysis will be performed via debug interface and external hardware to make sure the flight computer returns to the prescribed safe reset state upon recovery from these off-nominal power conditions.

F.4 3.1.1.4

N/A

F.5 3.1.1.5

N/A

F.6 3.1.1.6

The metal enclosure that houses the KREPE module acts as a Faraday cage and mitigates the risk imposed to the CBCS by inadvertent memory modification. Inspection See 3.1.1.4 Suggest putting a transmitter inside and see if we can detect any leakage at MSFC if possible.

Figure 19: Overview of main execution cycle showing return to safe high-Z reset state upon startup and abnormal power condition.

F.7 3.1.1.7

Upon detection of an anomaly internal to the CBCS there is watchdog timer functionality that will return the CBCS to the known safe initialization state. Verification procedures for this requirement entail physical disruption/disconnection of flight computer hardware to ensure control software can recover.

F.8 3.1.1.8

The external sources in this case would be the ambient temperature of capsule and the presence of the metal enclosure around the KREPE capsule. The capsule uses the Fault flags on the thermocouple to digital converter are used to discern if a valid thermocouple reading has been collected or not. There are also multiple thermocouples whos values are cross checked for consistency in valid readings. Capacitive sensing is also used to detect the presence of the metal enclosure around the KREPE capsule. Both of these inputs are used to discern between valid and invalid input.

Verification for this requirement entails physical disconnection/perturbation of thermocouple and capacitive sensing leads to analyze the induced effect on measurement values and fault conditions.

F.9 3.1.1.9

Inspection Inspection of software code verifies all lines of code are traceable to system or software requirements. Test Coverage analysis of flight code will ensure lack of dead code and all system software acts for a requirement. See Fig. 19 for KREPE software design requirements.

F.10 3.1.1.10

All flight software is developed to first meet system requirements. The system requirements outline what functionality will be required from the software as well as what will be available to serve as sources of infor-

mation. Another consideration that is taken during this phase of software development is the hardware that the software will be running on. As the development cycle gets into writing the software itself, the primary method of configuration management follows a traditional Agile development cycle with team meetings every week to address concerns and defects. The codebase itself is structured and modular in nature so making isolated changes to configure the software to a different hardware or mission spec is controlled and reversible if need be.

Version control is also used to maintain both productivity and preserve proper versioning of the codebase once large sets of requirements are successfully encompassed and have passed testing. For testing and building release versions of the software, all merge requests must be approved by at least 1 other engineer to preserve main version branch functionality and which requirements each version completes will be documented in the repository itself. Verification and validation processes happen under formal testing conditions when hardware is readily available to run simulated mission conditions and ensure the checklist of requirements is fulfilled.

F.11 3.1.1.11

N/A - the single board design of the KREPE module is designed such that complicated transmission and reception lines between devices, e.g. 1553 busses, are not necessary.

F.12 3.1.1.12

N/A - KREPE has no requirement for audio communication. KREPE has no uplink capability, therefore unauthorized third party control is not possible for KREPE.

F.13 3.1.1.13

N/A - KREPE does not receive any commands.