$$T(m)$$
 { 100, $m=4$
 $T(m-1)+m+1$, $m>4$ } Y $M > 4 \in \mathbb{N}$

$$P(m): T(m) > \frac{m^2}{2}, \forall m > 4$$

$$T(4) = 100$$
 $P(4) : T(4) > \frac{1}{2}$
 $100 > 8$

• Suponha que
$$\forall K \in \mathbb{N}$$
; $M \supset K$ tinhamos:
$$T(K) \supset \frac{K^2}{3}$$

· Pano indutives

Prove
$$P(K+1) : T(K+1) > (K+1)^{2}$$

Hipótere indutiva : $T(K) > \frac{K^{2}}{2}$
 $T(K+1) = T((K+1)-1) + (K+1) + J$

$$T(K+1) > \frac{K^{2}}{2} + K + 2$$
 $T(K+1) > \frac{K^{2}+2K+4}{2}$
 $T(K+1) > \frac{K^{2}+2K+4}{2} + 3$
 $T(K+1) > \frac{K^{2}+2K+1}{2} + \frac{3}{2}$
 $T(K+1) > \frac{(K+1)^{2}}{2} + \frac{3}{2}$

$$T(K+1) > T(K)$$