

Lecture 28 & 29: Feature Selection Part 2

Recap

- Feature Selection
 - Unsupervised methods
 - •Filter and wrapper methods

Feature Selection with Embedded (Intrinsic) methods

- Information gain
- Correlation with target
- Pairwise correlation
- Variance threshold

Embedded Methods

Filter Methods

- L1 (LASSO) regularization
- Decision tree

Wrapper Methods

- Recursive Feature Elimination (RFE)
- Sequential Feature Selection (SFS)
- Permutation importance

Embedded methods

- Always supervised
- No separate feature selection
- Feature Selection happens as part of model training
- E.g.:
 - LASSO
 - Feature Importance with Random Forest
- Returns coeff_ or feature_importances
- Other non parametric methods do not augur well

Feature Selection with LASSO

Cost function adjusted for L1 Regularization

$$\arg\min_{w} \nabla_{w} \mathcal{J} + \lambda \nabla_{w} ||w||_{1}$$

$$\nabla_w \mathcal{J} = \frac{2}{m} X^T (Xw - y) \qquad \nabla_w ||w||_1 = \mathbf{1}$$

$$\mathbf{w} = \mathbf{w} - \eta \nabla_w \mathcal{J} \qquad \mathbf{w} = \mathbf{w} - \eta \nabla_w \mathcal{J} - \eta \lambda$$

Without regularization

$$\mathbf{w} = (\mathbf{w} - \eta \lambda) - \eta \nabla_w \mathcal{J}$$

A FIXED small number keeps getting subtracting from a small w. Net effect w becomes 0

Lasso path

$$\arg\min_{w} \nabla_{w} \mathcal{J} + \lambda \nabla_{w} \|w\|_{1}$$

$$-\sum_{i=1}^{\infty} \left[y^{(i)} \log \left(\sigma(z^{(i)}) \right) + \left(1 - y^{(i)} \right) \log \left(1 - \sigma(z^{(i)}) \right) \right] + \lambda ||w||_{1}$$

Feature Selection with Decision Tree & Random Forest

Sample Tree:

2 Features : X1 & X2

2 Classes : Class1 & Class2

- A feature is important if
 - If used many times for splitting
 - Each split on the feature is high in the tree
 - Split produces lot of decrease in impurity at each node

Sample Tree:

2 Features : X1 & X2

2 Classes : Class1 & Class2

Node Importance

$$ni_{j} = \frac{N_{j}}{N} \left(Gini_{j} - \mathbb{E}[Gini_{j-children}] \right)$$

• Feature Importance

$$fi_i = \frac{\sum_{j \in feature-inodes} ni_j}{\sum_{j \in allnodes} ni_j}$$

• Decrease in impurity for X1 at top:

$$0.5 - (0.7 \times .3 + 0.3 \times 0.1)$$

- Impurity in parent node impurity in child node
- Weighed by the ratio of data N_in/N

$$\frac{100}{100}[0.5 - (0.7 \times .3 + 0.3 \times 0.1)]$$

• How many times?

$$\frac{100}{100}[0.5 - (0.7 \times .3 + 0.3 \times 0.1)] + \frac{50}{100}[0.2 - (0.3 \times 0.1 + 0.2 \times 0.1)]$$

• Normalized Feature Importance = Sum of this feature importance divided by sum of all feature importance

Feature Importance in DT/RF summary

- Node Importance: Mean decrease in entropy/impurity from a parent node to child nodes after a feature split
 - Weighted by tree location (num examples at node)
 - for a given feature
 - for each tree
 - compute impurity decrease (Gini, Entropy)
 - weight by number of examples at that node
 - averaged over all trees
 - normalize importances so that sum of feature importances sum to 1

Sklearn code

```
sorted_idx = model_best_rf.feature_importances_.argsort()
plt.barh(dataset.feature_names[sorted_idx], model_best_rf.feature_importances_[sorted_idx])
plt.xlabel("Random Forest Feature Importance")

$\square 0.3s$
```

Text(0.5, 0, 'Random Forest Feature Importance')

Problems with Tree based Feature Importance

- Inflated feature importance for numerical feature
- Inflated feature importance for categorical feature with high cardinality

pclass	sex	age	sibsp	parch	fare	embarked	random_cat	random_num	survived
3.0	male	32.0	0.0	0.0	56.4958	S	0	-2.553921	1
2.0	male	27.0	0.0	0.0	26.0000	S	0	0.963879	0
3.0	male	35.0	0.0	0.0	7.8958	S	0	0.536653	0
3.0	female	26.0	1.0	1.0	22.0250	S	2	0.323079	1
3.0	male	33.0	0.0	0.0	8.6542	S	1	0.884045	0

Wrapper methods

- **Filter Methods**
- **Embedded Methods**
- Wrapper Methods

- Information gain
- Correlation with target
- Pairwise correlation
- Variance threshold
- •
- L1 (LASSO) regularization
- Decision tree
- ...
- Recursive Feature Elimination (RFE)
- Sequential Feature Selection (SFS)
- Permutation importance

Wrapper methods

- General working
 - Wrap any algorithm to measure metrics
 - Make slight changes and run the algorithm again
 - •The quantum of "slight changes" gives idea of feature importance
- E.g.:
 - RFE
 - Permutation Importance
 - Selective Feature Selection

Permutation based feature importance

Permutation importance

model.fit(X_train, y_train), model.score(X_test)

feature importance = baseline performance – shuffled dataset performance

Permutation importance

- Train a baseline model
- Record model performance (any metric) on test dataset
- For each feature column in test dataset,
 - Shuffle that feature column alone, everything else unchanged
 - Observe performance and compare to original feature importance =
 baseline performance – shuffled dataset performance
- Do the shuffling for training dataset also & record feature importance

Column Drop Variant of permutation importance

- Train a baseline model
- Record model performance (any metric) on test dataset
- For each feature column in test dataset,
 - Drop column
 - Fit model
 - Compare test data set performance to original
- Accurate but very expensive

Fixes the random_cat issue as well

Wrapper methods general features (except as noted)

- Permutation importance is model agnostic
 - No need for coeff_ or feature_importance implementation
 - (this is not applicable to other wrapper methods)
- Feature Importance is specific to model

- Permutation importance is flexible, can use any metric
- Feature importance is tied to impurity measure
- Permutation importance is easy to understand
- Feature importance is slightly tricky

Recursive Feature Elimination

RFE

- Suppose you have number (or range) of features in mind
- Algorithm
 - Fit model to dataset
 - Eliminate feature with lowest coefficient (or lowest feature importance)
 - Repeat steps until desired features is reached
- Can be applied along with cross validation
- Comprehensive but expensive

Why repeat steps?
Why not delete all low coefficient features at the outset?

Feature Selection with Chi Squared Test

Dimensionality Reduction Information gain Correlation with target Feature Selection Pairwise correlation Variance threshold Chi-Squared ANOVA Filter Methods L1 (LASSO) regularization **Embedded Methods** Decision tree Wrapper Methods Recursive Feature Elimination (RFE) Sequential Feature Selection (SFS) Permutation importance

Standard Normal Distribution

Standard Normal distribution and p-values

$$\bullet P(X > k)$$

Why normal distribution?

Not everything follows normal distribution

- Accidents on road follow Poisson distribution
- Volcanic eruption, asteroid strike: exponential distribution
- Why do we keep talking about normal distribution?
- The answer is in Central Limit theorem

Central Limit Theorem

- Most fundamental to inferential statistics
- Provides convenient mechanism to apply normal distribution to everything

Central Limit Theorem – Sampling distribution of mean

Population distribution

Sampling distribution of sample mean with n=5

Sample size n = 5

Sampling	Mean
1	7.5
2	9.5
3	11
4	9
5	11.5
6	10.5
7	9.75
8	9
9	9.25
10	9.8

Central Limit Theorem – Sampling distribution of mean

Population distribution

Sampling distribution of sample mean with n=30

Sampling distribution approximates normal distribution when n>=30

Sample size n = 30

Sampling	Mean
1	7.5
2	9.5
3	11
4	12
5	11.5
6	10.5
7	9.75
8	10
9	10.25
10	9.8

Central Limit Theorem – Sampling distribution of mean

Population distribution

Sampling distribution of sample mean with n=5

37

Sampling distribution of sample mean with n=30

$$Mean = \bar{x}$$

$$SD = s$$

$$z \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$$

Made in India iPhone 15 battery life

- •iPhone 15 has mean battery life $\,\mu_0$ & variance σ_0
- Population has some unknown distribution

$$X \sim Unknown(\mu_0, \sigma_0)$$

- How was population mean & variance found?
 - Draw samples (each of size >= 30) 10 times in population
 - Sampling distribution of mean battery life is gaussian

$$Y \sim \mathcal{N}(\mu_0, \frac{\sigma_0}{\sqrt{n}})$$

Made in India iPhone 15 battery life

Historical sampling distribution

- •v/s distribution after new machinery is installed
- Should new distribution exactly align with historical distribution? What is confidence interval?
- Where is the mean of new distribution?

Clinical Trial of a new cancer medicine

- Current medicine has some efficacy
- Efficacy of current medicine decided by equation
- Central Limit Theorem "sort of" gives bell curve (t distribution)

New medicine efficacy based on n samples

•(n-1 degrees of freedom)

Efficacy of current medicine follows t distribution

$$t_{n-1} \sim \mathcal{T}(\mu, \frac{\sigma}{\sqrt{n}})$$

Mean efficacy

is here

T Distribution

- Adjusted normal distribution for small sample sizes
- Number of samples = Degrees of freedom

$$z \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$$

z statistic follows from this

t statistic follows from this

$$t_{n-1} \sim \mathcal{T}(\mu, \frac{o}{\sqrt{n}})$$

Intro to Hypothesis Test

- Null hypothesis Ho,
- Alternate hypothesis Ha

$$z \sim \mathcal{N}(\mu, \frac{\sigma}{\sqrt{n}})$$

$$t_{n-1} \sim \mathcal{T}(\mu, \frac{\sigma}{\sqrt{n}})$$

Convert x to z/t

$$t_{n-1} = \frac{x - \mu}{\sigma / \sqrt{n}}$$

Intro to p-values in Hypothesis Test

Indicates what is the probability value >= t-statistic

$$t_{n-1} = \frac{x - \mu}{\sigma / \sqrt{n}}$$

p-values in Hypothesis Test

- How likely for the Ha value to occur if Ho is true?
- What is the probability of observing a value of Ha larger than current value if there was no true effect?
- P(Ha | Ho)
- Definite Integral
 - Lookup table or coding

Hypothesis Test in Machine Learning

- p values & statistical significance
- Machine Learning
 - Prediction on each X_test record is hypothesis testing

Regression - Population versus Sample

- Sample Regression Functions
 - Different Regression Line/Plane/Hyperplane

$$\hat{y} = h(x) =$$

$$w_1 TV + w_2 radio +$$

$$w_3 new spaper$$

P value tells us total probability of given value under null hypothesis

Null Hypothesis is coefficient = 0

Alternate
Hypothesis is
coefficient not 0

OLS Regression Results			
Dep. Variable:	sales	R-squared (uncentered):	0.982
Model:	OLS	Adj. R-squared (uncentered):	0.982
Method:	Least Squares	F-statistic:	3566.
Date:	Sun, 28 Mar 2021	Prob (F-statistic):	2.43e-171
Time:	13:42:33	Log-Likelihood:	-423.54
No. Observations:	200	AIC:	853.1
Df Residuals:	197	BIC:	863.0
Df Model:	3		
Covariance Type:	nonrobust		

 Omnibus:
 5.982
 Durbin-Watson:
 2.038

 Prob(Omnibus):
 0.050
 Jarque-Bera (JB):
 7.039

 Skew:
 -0.232
 Prob(JB):
 0.0296

Kurtosis: 3.794 Cond. No. 12.6

47

Chi-squared Distribution

$$Z \sim N(0,1)$$

Standard Normal Distribution

Chi-Squared Distribution

Chi-squared Distribution with two degrees of freedom

•Two random var Z_1, Z_2 with std normal distribution

$$Z_1 \sim N(0,1)$$
 $Z_2 \sim N(0,1)$

$$Q = Z_1^2 + Z_2^2 \sim \chi_2^2$$

Chi-squared Distribution with n degrees of freedom

•n random var $Z_1,...Z_n$ with std normal distribution

$$Z_1 \sim N(0,1)$$
 $Z_n \sim N(0,1)$

