

OF TECHNOLOGY

Networked Systems Security

Hash Chain

Module TA: Mohammad Khodaei (khodaei@kth.se)

Panos Papadimitratos http://www.ee.kth.se/nss

Hash Function

• Arbitrary length message → Fixed length message (Hash Value)

$$\rightarrow$$
H(m) \rightarrow x

• Hash value, Message Digest or Fingerprint

- Properties
 - > Collision resistance $H(m1) \rightarrow x$, $H(m2) \rightarrow x$, $m1 \neq m1$
 - \triangleright Pre-Image resistance (one-way(-ness)) x → H(m1)
 - ➤ Low computational cost (efficiency)

Hash Chain

- Pick a random number r
- Generate k elements by hashing r successively k times

- H₀ is the hash chain anchor
- The remaining k-1 elements can be used for authentication
- Example:
 - \rightarrow A \rightarrow B: H(H^{k-1}(r), Data), Data
 - \triangleright Data can be verified later using H^{k-1}(r)

Hash Chain Example: S/KEY (one-time password)

- One Time Password Scheme
 - >Untrusted public computers to counter password sniffing
- Generate Hash Chain of n elements from a secret 'W' (password)
 - \rightarrow H(W), H(H(W)), ..., Hⁿ(W)
- Hⁿ(W) becomes public password
- Client uses Hⁿ⁻¹(W) for one-time authentication
- Server checks if $H(H^{n-1}(W)) = H^n(W)$

Hash Chain Limitations for Authentication

- Cannot be used as a standalone solution
 - The hash chain anchor (H_0) should be either signed, or sent out using out-of-band mechanism
- The verification is delayed
 - Late key exposure (E.g., A. Perrig "The TESLA Broadcast Authentication Protocol", 2005)
- Challenging when missing some of the hash values
 - ➤One has to know the number of missed values
- Integration with Public Key Infrastructure (PKI)

NOVOMODO: Scalable Certificate Validation And Simplified PKI Management

- \bullet C = SIG_{CA}(SN, PK, U, D₁, D₂, ...)
- Traditional Certificate Validation
 - ➤ CRL and OCSP
 - > Challenges: Bandwidth, computation, communication (if centralized), security (if distributed)
- The system works as below:
 - \triangleright CA Randomly selects two 20-byte values: Y_0 , X_0
 - $Y_1=H(Y_0)$, the revocation target
 - $X_1 = H(X_0), X_2 = H(X_1), ..., X_{365} = H(X_{364}),$ the validity target
 - \succ C = SIG_{CA}(SN, PK, U, D₁, D₂, ..., Y₁, X₃₆₅)
 - S. Macali, "Scalable Certificate Validation And Simplified PKI Management", 2002.

Revocation and Validation of a Certificate

- One day granularity for all certificates
- •On the i-th day, the CA releases 20-byte proof of status
- •If C is revoked, the CA releases Y_{0} , H-inverse of the revocation target Y_{1}
- •Otherwise, CA releases X_{365-i} , i.e., the i-th H-inverse of the validity target X_{365}
 - \triangleright E.g., the proof of certificate C on day 100 after issuance is X_{265}
 - S. Macali, "Scalable Certificate Validation And Simplified PKI Management", 2002.

Networked Systems Security

Hash Chain

ROYAL INSTITUTE OF TECHNOLOGY

Questions?

