

Ethernet

Network Fundamentals – Chapter 9

Cisco Networking Academy® Mind Wide Open®

Objectives

- Identify the basic characteristics of network media used in Ethernet.
- Describe the physical and data link features of Ethernet.
- Describe the function and characteristics of the media access control method used by Ethernet protocol.
- Explain the importance of Layer 2 addressing used for data transmission and determine how the different types of addressing impacts network operation and performance.
- Compare and contrast the application and benefits of using Ethernet switches in a LAN as apposed to using hubs.
- Explain the ARP process.

Characteristics of Network Media used in Ethernet

 Identify several characteristics of Ethernet in its early years.

Characteristics of Network Media used in Ethernet

 Describe the emergence of the LAN switch as a key innovation for managing collisions on Ethernet-based networks

Migration to Ethernet Switches

Characteristics of Network Media used in Ethernet

 Identify the characteristics of state-of-the-art Ethernet and describe its utilization of cabling and point-to-point topography

Gigabit Ethernet

Standards and Implementation

 Describe how the Ethernet operates across two layers of the OSI model

Layer 2 Addresses Layer 1 Limitations

Layer 1 Limitations	Layer 2 Functions	
Cannot communicate with upper layers	Connects to upper layers via Logical Link Control (LLC)	
Cannot identify devices	Uses addressing schemes to identification devices	
Only recognizes streams of bits	Uses frames to organize bits into groups	
Cannot determine the source of a transmission when multiple devices are transmitting	Uses Media Access Control (MAC) to identify transmission sources	

Logic Link Control – Connecting the Upper Layers

Logical Link Control (LLC)

- Makes the connection with the upper layers
- · Frames the Network layer packet
- · Identifies the Network layer protocol
- Remains relatively independent of the physical equipment

Media Access Control (MAC)

MAC—Getting Data to the Media

MEDIA ACCESS CONTROL

- Data Encapsulation
 - · Frame delimiting
 - Addressing
 - Error detection
- Media Access Control
 - Control of frame placement on and off the media
 - media recovery

Physical Implementations of the Ethernet

Physical Devices Implementing Ethernet

UTP patch panels in a rack

Ethernet switches

Ethernet fiber connectors

Function and Characteristics of the Media Access Control Method

MAC in Ethernet

Media Access Control in Ethernet

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

CSMA/CD controls access to the shared media. If there is a collision, it is detected and frames are retransmitted.

Function and Characteristics of the Media Access Control Method

Carrier Sense Multiple Access with Collision Detection

Media Access Control in Ethernet

Carrier Sense Multiple Access with Collision Detection (CSMA/CD)

Function and Characteristics of the Media Access Control Method

Ethernet Timing

Ethernet Delay (Latency)

An Ethernet frame takes a measurable time to travel from the sending device to the receiver. Each intermediary device contributes to the overall latency.

The Frame – Encapsulating the Packet

Comparison of 802.3 and Ethernet Frame Structures and Field Size

The Ethernet MAC Address

The MAC Address—Addressing in Ethernet

All Ethernet nodes share the media.

To receive the data sent to it, each node needs a unique address.

Hexadecimal Numbering and Addressing

Hexadecimal Numbering

Decimal and Binary equivalents of 0 to F Hexadecimal

Decimal	Binary	Hexadecimal
0	0000	0
1	0001	1
2	0010	2
3	0011	3
4	0100	4
5	0101	5
6	0110	6
7	0111	7
8	1000	8
9	1001	9
10	1010	Α
11	1011	В
12	1100	С
13	1101	D
14	1110	E
15	1111	F

Selected Decimal, Binary and Hexadecimal equivalents

Decimal	Binary	Hexadecimal	
0	0000 0000	00	
1	0000 0001	01	
2	0000 0010	02	
3	0000 0011	03	
4	0000 0100	04	
5	0000 0101	05	
6	0000 0110	06	
7	0000 0111	07	
8	0000 1000	08	
10	0000 1010	0A	
15	0000 1111	0F	
16	0001 0000	10	
32	0010 0000	20	
64	0100 0000	40	
128	1000 0000	80	
192	1100 0000	C0	
202	1100 1010	CA	
240	1111 0000	F0	
255	1111 1111	FF	

Another Layer of Addressing

Different Layers of Addressing

Ethernet Unicast, Multicast and Broadcast

Compare and Contrast the Use of Ethernet Switches versus Hubs in a LAN.

Legacy Ethernet – Using Hubs

Poor Performance of Hub-based LANs

Compare and Contrast the Use of Ethernet Switches versus Hubs in a LAN.

Ethernet – Using Switches

Switch Uses

Compare and Contrast the Use of Ethernet Switches versus Hubs in a LAN.

 Describe how a switch can eliminate collisions, backoffs and re- transmissions, the leading factors in

Mapping IP to MAC Addresses

The ARP Process—ARP Entry Enables Frame to be Sent

ARP – Destinations Outside the Local Network

The ARP Process—ARP Entry Enables Frame to be Sent A's ARP CACHE 10.10.0.3 = 00-0d-56-09-fb-d110.10.0.254 = 00-10-7b-e7-fa-ef10.10.0.1 10.10.0.3 10.10.0.2 10.10.0.4 00-0D-88-C7-9A-24 00-08-a3-b6-ce-04 00-0d-56-09-fb-d1 00-12-3f-d4-6d-1b FFFF.FFFF.FFFF FFFF.FFFF.FFFF FFFF.FFFF.FFFF FFFF.FFFF.FFFF D I will forward the packet in this frame I can now send based on a the frame with route in my fa-ef a packet to routing table. FFFF 172.16.0.10 with the MAC Network address 00-10-7b-e7-fa-ef.

ARP – Removing Address Mappings

ARP Broadcasts - Issues

ARP Issues:

- · Broadcasts, overhead on the Media
- Security

A false ARP message can provide an incorrect MAC address that will then hijack frames using that address (called a spoof).

Ethernet					
8	6	6	2	46 to 1500	4
Preamble	Destination Address	Source Address	Туре	Data	Frame Check Sequence

Summary

In this chapter, you learned to:

- Identify the basic characteristics of network media used in Ethernet.
- Describe the Physical and Data Link layer features of Ethernet.
- Describe the function and characteristics of the media access control method used by Ethernet protocol.
- Explain the importance of Layer 2 addressing used for data transmission and determine how the different types of addressing impacts network operation and performance.
- Compare and contrast the application and benefits of using Ethernet switches in a LAN as opposed to using hubs.
- Explain the ARP process.

