

Universidad Tecnológica de la Mixteca

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA		
Física Moderna		

SEMESTRE	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Ouinto	172052	101

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Proporcionar al estudiante el conocimiento de los conceptos fundamentales de la física desarrollada en el siglo XX y acentuar la importancia de la física moderna en el desarrollo tecnológico.

TEMAS Y SUBTEMAS

1. Relatividad especial.

- 1.1. La teoría especial de la relatividad.
- 1.2. La dilatación del tiempo.
- 1.3. La contracción de la longitud.
- 1.4. La transformación de Lorentz.
- 1.5. La relatividad de la masa.
- 1.6. Masa y energía.

2. Teoría cuántica de la radiación electromagnética.

- 2.1. Radiación de cuerpo negro.
- 2.2. Cuantización de la energía.
- 2.3. Efecto fotoeléctrico.
- 2.4. Efecto Compton.
- 2.5. Rayos X y su difracción.
- 2.6. Producción de pares

3. Propiedades ondulatorias de la materia.

- 3.1. Ondas de De Broglie
- 3.2. Función de onda.
- 3.3. La difracción de partículas.
- 3.4. La dualidad onda partícula.
- 3.5. El principio de incertidumbre.

4. Introducción a la teoría cuántica del átomo.

- 4.1. Modelos del átomo.
- 4.2. Los espectros del átomo y los niveles de energía.
- 4.3. El átomo de Bohr.
- 4.4. Cuantización de la cantidad de movimiento angular.
- 4.5. El principio de correspondencia.

5. Postulados y herramientas de la mecánica cuántica.

- 5.1. Espacios de Hilbert, funciones de onda, notación de Dirac y operadores.
- 5.2. Representación en bases discretas y continuas.
- 5.3. Mecánica matricial.
- 5.4. Postulados de la mecánica cuántica y ecuación de Schrödinger.
- 5.5. Definición de estado cuántico y observable

Universidad Tecnológica de la Mixteca 00061

Clave DGP: 200089

Ingeniería en Física Aplicada

PROGRAMA DE ESTUDIOS

ACTIVIDADES DE APRENDIZAJE

Sesiones dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como los retroproyectores, pizarrón, computadora y la realización de prácticas que ilustrarán los fenómenos

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrán una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales, prácticas y sesiones de laboratorio; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final.

Además, se considerará el trabajo extraclase, la participación durante las sesiones del curso y la asistencia a las asesorías.

La suma de todos los criterios y procedimientos de evaluación deberán integrar el 100% de la calificación final.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL Y AÑO)

Concepts of Modern Physics, Beiser A., McGraw-Hill, 6th Ed., 2003.

Introduction to Quantum Mechanics, Griffits D.J., Prentice Hall, 1995.

Quantum Mechanics, Concepts and Applications, 2nd Ed., Zettili N., Wiley, 2009. 3.

Física, Vols. 1, 2, Resnick R., Halliday D. y Krane K. S., CECSA, 1999.

Física, Vols. 1, 3, Alonso M. y Finn E. J., Fondo Educativo Interamericano, 4ª Ed., 1976.

Consulta:

Modern Quantum Mechanics, Revised Edition, Sakurai J. J., Addison-Wesley, 1994.

Fundamentos de Física Moderna, Eisberg R. M., Limusa, 1980.

Conceptos de Relatividad y Física Cuántica, Resnick R., Limusa Noriega, 1994.

The Feynman Lectures on Physics, Vol. 3: Quantum Mechanics, Feynman R. P., Leighton R. B., and Sands M., Addison-Wesley, 1965.

Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, Eisberg R. and Resnick R., John Wiley & Sons, 2nd Ed., 1985.

PERFIL PROFESIONAL DEL DOCENTE

Maestría en Física, o Doctorado en Física con experiencia en docencia TRCMOLOGICA DA

> DR. SALOMÓN GONZÁLEZEMARVÍNEZE CARRERA JEFE DE CARRERA INGENIERIA EN FÍSICA APLICADA

DR. AGUSTIN SANTIAGO ALVARADO VICE-RECTOR ACADÉMICO

AUTORIZ

ACADÉMICA