МГУ лаба №102 Кинематика и динамика движения тела вдоль скамьи с воздушной подушкой.

Сергей Слепышев 109 группа

Октябрь 2022 (последний день до дедлайна)

0.1 Вступление

Цель работы

Изучение равноускоренного поступательного движения.

Идея эксперимента

Изучение равноускоренного движения проводится на примере движения тела по наклонной плоскости. Использование скамьи с воздушной подушкой позволяет практически полностью устранить трение между движущимся телом и поверхностью наклонной плоскости.

0.2 Эксперимент и обработка

0.2.1 Упражнение 1. Юстировка скамьи с воздушной подушкой и определение ее параметров.

Провел замеры величин в соответствии с инструкцией в методичке и получил:

Таблица 1

X	1	2	3	Mean	SE of mean	sigma syst	sigma full
L, sm	122,60	122,50	122,80	122,63	0,09	0,02	0,09
I, sm	5,0	5,0	5,0	5,0	0,0	0,1	0,1
M, g	158,830	158,830	158,820	158,827	0,003	0,001	0,003
sigma h, mm	0,25						
g, m/s^2	9,82						

где $\mathbf{sigma}\ \mathbf{h}$ - погрешность установления горизонтального положения, \mathbf{g} - табличная величина ускорения свободного падения.

0.2.2 Упражнение 2. Анализ закона движения и определение ускорения тележки.

Взял экспериментальные данные (все расчетные формулы представлены в методичке):

Таблица 2

х	t1	t2	t3	Mean t	SE of mean
M	MC	мс	МС	мс	МС
	dh1 = 3mm				
0,2	739	732	734	735	2
0,4	467	475	476	473	3
0,6	327	336	321	328	4
0,8	282	282	275	280	2
1	245	250	241	245	3
	dh2 = 6mm				
0,2	458	466	460	461	2
0,4	293	300	298	297	2
0,6	224	227	227	226	1
0,8	193	195	193	194	1
1	170	171	172	171	1
	dh3 = 9mm				
0,2	368	368	368	368	0
0,4	236	235	236	236	0
0,6	182	182	184	183	1
0,8	156	155	157	156	1
1	139	139	139	139	0

Обработал результаты, получил v и v^2 :

Таблица 3

х	V	V^2	sigma V^2
М	м/с	(M/c)^2	(M/c)^2
dh1 = 3mm			
0,2	0,0680	0,00463	0,00019
0,4	0,1058	0,0112	0,0005
0,6	0,1524	0,0232	0,0011
0,8	0,1788	0,0320	0,0014
1	0,2038	0,0415	0,0019
dh2 = 6mm			
0,2	0,1084	0,0117	0,0005
0,4	0,1684	0,0283	0,0012
0,6	0,2212	0,0489	0,0020
0,8	0,2582	0,0667	0,0027
1	0,2924	0,0855	0,0035
dh3 = 9mm			
0,2	0,1359	0,0185	0,0007
0,4	0,2122	0,0450	0,0018
0,6	0,2737	0,0749	0,0030
0,8	0,3205	0,1027	0,0042
1	0,3597	0,1294	0,0052

Методом МНК с весами получил коэффициенты A и B из y=Ax+B, получил ускорение a и записал в следующую таблицу, также рассчитал теоретические значения ускорения a_{teor} :

Таблица 4

Delta h2	Α	sigma A	В	sigma B	а ехр	sigma a	a teor	sigma a teor
mm	m/s^2	m/s^2	(m/s)^2	(m/s)^2	m/s^2	m/s^2	m/s^2	m/s^2
3	0,0478	0,0000	-0,00616	0,00003	0,0239	0,0000	0,0240	0,0020
6	0,0933	0,0000	-0,00780	0,00000	0,0467	0,0000	0,0480	0,0020
9	0,1393	0,0001	-0,00937	0,00000	0,0696	0,0000	0,0721	0,0020

См. следующую страницу.

Для оценки адекватности модели и проведенных измерений построил линейные зависимости $v^2(x)$:

Выглядит балдежно.

Далее по методичке надобно вкарячить графики $a_{exp}(\Delta h)$ и $a_{teor}(\Delta h)$:

Вывод: экспериментальные значения практически совпадают с теоретическими, следовательно модель верна, как исправна и установка, которая эту модель обеспечивает.

0.2.3 Упражнение 3. Проверка независимости ускорения тележки от ее массы.

Провел измерения масс грузов, данные записал в таблицу:

Таблица 5

x	m1	m2	m3	Mean	SE of mean	sigma syst	sigma full
T T	Г	r	г	г	T .	г	Г
m1	45,33	45,34	45,33	45,33	0,00	0,01	0,01
m2	50,43	50,44	50,44	50,44	0,00	0,01	0,01

Далее основные измерения:

Таблица 6

x	t1	t2	t3	Mean	SE of mean
M	мс	мс	мс	МС	МС
	m1				
0,2	465	470	471	469	2
0,4	303	301	298	301	1
0,6	231	232	228	230	1
0,8	196	197	198	197	1
1	174	175	176	175	1
	m1 + m2				
0,2	480	476	474	477	2
0,4	307	307	307	307	0
0,6	232	233	233	233	0
0,8	203	204	204	204	0
1	183	182	184	183	1

Обработку делаю аналогичную упр. 2, те сейчас будет таблица с v^2 :

Таблица 7

x	V	V^2	sigma V^2
M	м/с	(м/с)^2	(м/с)^2
dh1 = 3mm			
0,2	0,1067	0,0114	0,0005
0,4	0,1663	0,0277	0,0011
0,6	0,2171	0,0471	0,0019
0,8	0,2538	0,0644	0,0026
1	0,2857	0,0816	0,0033
0,2	0,1049	0,0110	0,0004
0,4	0,1629	0,0265	0,0011
0,6	0,2149	0,0462	0,0019
0,8	0,2455	0,0603	0,0024
1	0,2732	0,0747	0,0030

И полученные ускорения аналогично упр. 2:

Таблица 8

M + mi	а ехр	sigma a exp	a teor	sigma a teor
gr	m/s^2	m/s^2	m/s^2	m/s^2
204,2	0,044	0,000	0,048	0,002
254,6	0,039	0,000	0,048	0,002

Для анализа адекватности модели снова построю графики $v^2(x)$:

Выглядит хорошо.

Вывод: расхождение экспериментальных величин от теоретических все равно мало, но оно увеличивается при увеличении массы. Вероятнее всего там просто от веса каретка проседает и начинает тереться об трубу, в итоге наша модель
"с воздушной подушкой "перестает работать.

В качестве дополнительного задания лабник попросил узнать ускорение g, его я рассчитал по формуле:

$$g = \frac{a_{exp}*L}{\Delta h}$$

Данные приписал к таблице из упражнения 2:

Таблица 4

Delta h2	A	sigma A	В	sigma B	а ехр	sigma a	a teor	sigma a teor	g exp
mm	m/s^2	m/s^2	(m/s)^2	(m/s)^2	m/s^2	m/s^2	m/s^2	m/s^2	m/s^2
3	0,0478	0,0000	-0,00616	0,00003	0,0239	0,0000	0,0240	0,0020	9,76
6	0,0933	0,0000	-0,00780	0,00000	0,0467	0,0000	0,0480	0,0020	9,53
9	0,1393	0,0001	-0,00937	0,00000	0,0696	0,0000	0,0721	0,0020	9,49

В сравнении с табличным $g = 9.82 m/s^2$ видно, что они практически совпадают, тут такой же вывод как и к упр.3.

Все расчетные таблицы (файл формата originlab), как и остальное, что мне понадобилось при выполнении, находятся на моем гитхабе:

https://github.com/serega-drakon/msu-labs