# Multimodal Compact Bilinear Pooling for Visual Question Answering and Visual Grounding

Akira Fukui\*<sup>1,2</sup> Dong Huk Park\*<sup>1</sup> Daylen Yang\*<sup>1</sup>
Anna Rohrbach\*<sup>1,3</sup> Trevor Darrell<sup>1</sup> Marcus Rohrbach<sup>1</sup>

<sup>1</sup>UC Berkeley EECS, CA, United States

<sup>2</sup>Sony Corp., Tokyo, Japan

<sup>3</sup>Max Planck Institute for Informatics, Saarbrücken, Germany

\*in EMNLP 2016

## Motivation

 Multimodal pooling: efficiently and expressively fuse the visual and textual representations. (Image Caption, VQA, etc.)

$$\hat{a} = \operatorname*{argmax}_{a \in A} p(a|\mathbf{x}, \mathbf{q}; \theta)$$

- Conventional approach: vector concatenation or element-wise operations.
- Only capture first-order interactions or partial second-order interactions.
- Might not be expressive enough to fully capture the complex associations between the two different modalities.
- Second-order models are more powerful!

## Bilinear Models

Outer Product of two vectors:

$$\mathbf{u} \otimes \mathbf{v} = \mathbf{u} \mathbf{v}^ op = egin{bmatrix} u_1 \ u_2 \ u_3 \ u_4 \end{bmatrix} egin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = egin{bmatrix} u_1 v_1 & u_1 v_2 & u_1 v_3 \ u_2 v_1 & u_2 v_2 & u_2 v_3 \ u_3 v_1 & u_3 v_2 & u_3 v_3 \ u_4 v_1 & u_4 v_2 & u_4 v_3 \end{bmatrix}.$$

- Encoding full second-order interactions.
- Bilinear Models: input  $x \in \mathbb{R}^{n_1}, y \in \mathbb{R}^{n_2}$ , output  $z = W[xy^T] \in \mathbb{R}^{n_3}$  where [] denotes linearizing the matrix as a vector, and  $W \in \mathbb{R}^{n_1*n_2*n_3}$
- High dimensionality! 512\*512\*512=134M!
- Reduce dimension and approximation.

## Compact Bilinear Pooling

• Illustration:



- Count Sketch: randomly project  $\mathbb{R}^n$  to  $\mathbb{R}^d$
- Count sketch of the outer product of two vectors can be expressed as convolution of both count sketches:

$$\Psi(x \otimes q, h, s) = \Psi(x, h, s) * \Psi(q, h, s),$$

Convolution in time domain equals element-wise product in frequency domain.

$$x' * q' \longrightarrow FFT^{-1}(FFT(x') \odot FFT(q'))$$

## Experiments

| Method                                             | Accuracy |
|----------------------------------------------------|----------|
| Element-wise Sum                                   | 56.50    |
| Concatenation                                      | 57.49    |
| Concatenation + FC                                 | 58.40    |
| Concatenation + FC + FC                            | 57.10    |
| Element-wise Product                               | 58.57    |
| Element-wise Product + FC                          | 56.44    |
| Element-wise Product + FC + FC                     | 57.88    |
| MCB ( $2048 \times 2048 \to 16$ K)                 | 59.83    |
| Full Bilinear (128 $\times$ 128 $\rightarrow$ 16K) | 58.46    |
| $MCB (128 \times 128 \rightarrow 4K)$              | 58.69    |
| Element-wise Product with VGG-19                   | 55.97    |
| MCB ( $d = 16$ K) with VGG-19                      | 57.05    |
| Concatenation + FC with Attention                  | 58.36    |
| MCB ( $d = 16K$ ) with Attention                   | 62.50    |

| Compact Bilinear $d$ | Accuracy |
|----------------------|----------|
| 1024                 | 58.38    |
| 2048                 | 58.80    |
| 4096                 | 59.42    |
| 8192                 | 59.69    |
| 16000                | 59.83    |
| 32000                | 59.71    |

Table 1: Comparison of multimodal pooling methods. Models are trained on the VQA train split and tested on test-dev.

## Hadamard Product for Low-Rank Bilinear Pooling

#### Jin-Hwa Kim

Interdisciplinary Program in Cognitive Science Seoul National University Seoul 08826, Republic of Korea jhkim@bi.snu.ac.kr

#### Kyoung-Woon On

School of Computer Science and Engineering Seoul National University Seoul 08826, Republic of Korea kwon@bi.snu.ac.kr

#### **Woosang Lim**

School of Computing, KAIST Daejeon 34141, Republic of Korea quasar17@kaist.ac.kr

#### Jeonghee Kim & Jung-Woo Ha

NAVER LABS Corp. & NAVER Corp. Gyeonggi-do 13561, Republic of Korea {jeonghee.kim, jungwoo.ha}@navercorp.com

#### Byoung-Tak Zhang

School of Computer Science and Engineering & Interdisciplinary Program in Cognitive Science Seoul National University & Surromind Robotics Seoul 08826, Republic of Korea btzhang@bi.snu.ac.kr

## Low-Rank Bilinear Model

• Original: 
$$f = W[xy^T] + b$$
 
$$f_i = \sum_{i=1}^N \sum_{b=1}^M w_{ijk} x_j y_k + b_i = \mathbf{x}^T \mathbf{W}_i \mathbf{y} + b_i$$

Assume W is low-rank (at most d), then:

$$\mathbf{W}_i = \mathbf{U}_i \mathbf{V}_i^T$$
  $\mathbf{U}_i \in \mathbb{R}^{N \times d}$  and  $\mathbf{V}_i \in \mathbb{R}^{M \times d}$ 

• Re-write the bilinear model:

$$f_i = \mathbf{x}^T \mathbf{W}_i \mathbf{y} + b_i = \mathbf{x}^T \mathbf{U}_i \mathbf{V}_i^T \mathbf{y} + b_i = \mathbb{1}^T (\mathbf{U}_i^T \mathbf{x} \circ \mathbf{V}_i^T \mathbf{y}) + b_i$$

$$\mathbf{f} = \mathbf{P}^T (\mathbf{U}^T \mathbf{x} \circ \mathbf{V}^T \mathbf{y}) + \mathbf{b}$$

d is the dimension of joint embedding.

linear -> element-wise product -> linear

## Experiments

Table 3: The VQA *test-standard* results for ensemble models to compare with state-of-the-art. For unpublished entries, their team names are used instead of their model names. Some of their figures are updated after the challenge.

|                            | Open-Ended |       |       | MC           |       |
|----------------------------|------------|-------|-------|--------------|-------|
| MODEL                      | ALL        | Y/N   | NUM   | ETC          | ALL   |
| RAU (Noh & Han, 2016)      | 64.12      | 83.33 | 38.02 | 53.37        | 67.34 |
| MRN (Kim et al., 2016b)    | 63.18      | 83.16 | 39.14 | 51.33        | 67.54 |
| DLAIT (not published)      | 64.83      | 83.23 | 40.80 | 54.32        | 68.30 |
| Naver Labs (not published) | 64.79      | 83.31 | 38.70 | 54.79        | 69.26 |
| MCB (Fukui et al., 2016)   | 66.47      | 83.24 | 39.47 | <b>58.00</b> | 70.10 |
| MLB (ours)                 | 66.89      | 84.61 | 39.07 | 57.79        | 70.29 |
| Human (Antol et al., 2015) | 83.30      | 95.77 | 83.39 | 72.67        | 91.54 |

## Low-Rank Bilinear Pooling for Multi-Head

Eight heads rather than two heads?

$$\mathbf{f} = \mathbf{P}^T (\mathbf{U}^T \mathbf{x} \circ \mathbf{V}^T \mathbf{y}) + \mathbf{b}$$

- Example: 3 heads, a, b, c
- Method 1: a -> a1, b->b1, c->c1, then a1°b1°c1, then linear projection.
  - Slow and not good performance.
- Method 2: d = [a, b, c], [] denotes concatenation, let x=d, y=d.
  - Fast and good performance: 28.35 (+0.71) on En-De test set.
- Also consider first-order interactions?
  - Concatenate with d before the linear projection.
  - 28.59 (+0.95) on En-De test set.