



## 5b.

# **Senzory SAW**

(Senzory s povrchově akustickou vlnou)

Přednášející: prof. Ing. Miroslav Husák, CSc.

husak@fel.cvut.cz,

http://micro.fel.cvut.cz

tel.: 2 2435 2267

Cvičící: Ing. Adam Bouřa, Ph.D.

Ing. Alexandr Laposa, Ph.D.



# A) Princip SAW

(Surface Acoustic Wave)

Využití piezoelektrických materiálů pro SAW princip

https://www.youtube.com/watch?v=NgbXULs669Y



## SAW senzor – princip činnosti

- Základním principem je závislost mechanické rezonanční frekvence pružného prvku na deformaci vyvolané vnějším působením
- ☐ Senzory SAW využívají změn parametrů vlnění šířícího se z hřebenové struktury vysílače do místa přijímače





## SAW senzor – princip činnosti

Zkou ška

# Rayleighova povrchová akustická vlna

- podélná a příčná složka
- vzniká, pokud má podložka piezoelektrické vlastnosti
- Podložka monokrystalický Si nebo LiNbO<sub>3</sub>









91999, Baniel M. Russell

? SAW senzory: Nakreslete základní princip činnosti senzorů s povrchově akustickou vlnou, význam budící a snímací interdigitální struktury

Zdroj: http://www.kettering.edu/physics/drussell/Demos/waves/wavemotion.html

## SAW senzor – princip činnosti

- Akusticko-elektrické součástky šíření akustické vlny po povrchu piezoelektrické monokrystalické podložky, na které je interdigitální měnič (IDT – Inter Digital Transducers).
- Využití tzv. Rayleighova vlnění a piezoelektrického efektu
- Rychlost šíření po povrchu je ovlivněna vlastnostmi materiálu a působením vnějších neelektrických veličin
- Základním principem je závislost mechanické rezonanční frekvence pružného prvku na deformaci vyvolané vnějším působením
- Senzory SAW využívají změn parametrů vlnění šířícího se z hřebenové struktury vysílače do místa přijímače
- □ Nejčastější se SAW uplatňuje v pásmových filtrech 3 300 MHz
- v rezonátorech a zpožďovacích vedeních je zpožděním signálu 1 μs až 1 ms





## SAW senzor – elektronické vyhodnocovací obvody



Měření změny parametrů Rayleighovy vlny v závislosti na prostředí mezi elektrodami (nejčastěji změna frekvence)

#### Lze měřit:

- a) frekvence oscilátoru se SAW ve zpětné vazbě
- b) rozdíl amplitud na vstupu a výstupu SAW

c) rozdíl fází mezi vstupem a výstupem SAW

? Vyhodnocování signálu ze SAW senzorů: Nakreslete senzor se základním elektronickým vyhodnocovacím obvodem, nakreslete výstup signálu, v jaké formě je výstupní signál.





## SAW senzor – elektronické vyhodnocovací obvody



Fig. 1. Schematic circuit diagram of (a) a pierce oscillator with two-port SAW resonator (TPSR) and (b) a colpitt oscillator with one-port SAW resonator (OPSR) devices at 433.92 MHz.



## SAW senzor – piezoelektrické materiály pro substráty SAW

- □ SiO<sub>2</sub> je nejpoužívanější
- ☐ GaAs, ZnO vrstvy
- PZT keramika
- GaPo₄ (Gallium Phosphate) pro teploty převyšující 600 °C



# B) Aplikace SAW senzorů



## SAW senzor – měření síly a mechanického namáhání

- Podložka je na jednom konci pevně uchycená a na druhém konci je namáhaná axiální nebo radiální silou.
- Frekvence oscilátoru je 100 MHz, citlivost při axiálním namáhání je 50 až 90 Hz/N,





## SAW senzor – měření síly a mechanického namáhání

#### Směrová citlivost

- a) kruhová piezoelektrická podložka přizpůsobená proti sobě působící síly
- b) závislost citlivosti na úhlu působení síly







## SAW senzor – měření tlaku (mechanické namáhání)



Výstup teplotně nekompenzovaného systému (přímá frekvence f<sub>p</sub>)





Výstup teplotně kompenzovaného systému (rozdílová frekvence f<sub>d</sub>)





## SAW senzor – měření teploty



## Teplotní senzor

#### Příklad realizace:

- $\lambda$ = 85,2 um,  $\lambda$ /8 = 10,65 um, 15 elektrodových párů s rozměrem a = 6,1 mm = 72 λ, plocha 7x6 mm, substrát LiNbO<sub>3</sub> o tloušťce 0,5 mm je přilepen na keramické destičce, střed frekvence oscilátoru je 43 MHz.
- ☐ Změna frekvence oscilátoru je funkcí teploty v rozmezí -40 °C až +160 °C
- ☐ Citlivost senzoru je 4 kHz/°C,
- Δf mezi nejvyšší a nejnižší teplotou je Δf =800 kHz.
- Vyhodnocování změny fáze nebo amplitudy přijímaného signálu s rezonátorem





? SAW senzory: Nakreslete základní princip činnosti senzoru SAW pro měření teploty



## SAW senzor – měření vlhkosti



#### Senzor vlhkosti



? SAW senzory: Nakreslete základní princip činnosti senzoru SAW pro měření vlhkosti



## SAW senzor – měření chemických látek



## Chemické senzory - princip činnosti

- Selektivně citlivá vrstva na různé plyny nebo páry na povrchu SAW.
- Vrstvy reagují s daným plynem nebo párou (Přímá reakce senzoru na absorbované plyny nebo páry by nebyla výrazná a reprodukovatelná).
- Reakcí se mění hmotnost nebo mechanické vlastnosti vrstvy.
- Větší citlivosti se dosahuje při větších tloušťkách.
- Změna hustoty nebo tloušťky citlivé vrstvy způsobují posuv Δf rezonanční frekvence senzoru.





## SAW senzor – měření chemických látek

## Chemické senzory – konstrukce senzoru

#### **Příklad**

Senzor - dva interdigitální měniče na Si substrátu.

IDT obsahuje 50 dvojic palců z dvojvrstvy Cr/Au, šířka palců je 25 um, vzdálenost 25 mm, překrytí palců je 7250 nm.Vzdálenost obou IDT je 2 cm. Citlivá vrstva je z polymetylmetakrylátu nebo polyizoprénu.

#### Poznámka

Lze detekovat přítomnost plynů (SO<sub>2</sub>) s koncentrací menší než např. 100 ppb

(tj. 100 mg SO<sub>2</sub> v 1 t plynu (vzduchu)).



h [um]

## SAW senzor – senzor magnetického pole

Působením vnějšího magnetického pole na tenkou magnetickou vrstvu, kterou se šíří povrchově akustická vlna, dochází k modulaci akustických parametrů magnetoelastických materiálů.





## SAW senzor – měření tlaku v pneumatikách automobilu

Senzory SAW se často používají v automobilovém průmyslu - například pro monitorování tlaku v pneumatikách.

Senzor je umístěn přímo v pneumatice a je spojen rádiově s řídicí jednotkou.



TPMS (Tire Pressure Monitoring System) je elektronický senzor tlaku v pneumatice. U většiny aut se senzor načte automaticky po ujetí cca 10 km, ale u některých je třeba spárovat senzory s řídicí jednotkou.

Frekvence senzoru 433 MHz, obsahuje baterii s výdrží 5-7 let, zpravidla se nedá vyměnit, je třeba koupit nový senzor .

• **Výhodou** je především rychlost a přesnost měření a možnost zobrazit konkrétní hodnoty pro každé kolo zvlášť na palubní desce vozidla.

Nevýhodou je cena





# C) Aplikace implantovatelných SAW senzorů v biomedicíně



Implantovatelný senzor pro lokální měření tlaku pro dlouhodobé sledování pacientů v nemocnici nebo doma s minimálním rizikem.

#### Aplikace v klinické péči

Tam, kde by implantace mohla doprovázet stávající zásah nebo nahradit katetrizaci:

Kardiovaskulární systém: Po transplantaci srdce

Chronické srdeční onemocnění

Arteriální štěpy

Oprava aneuryzmatu

Hypertenze

Neurologický systém: Intrakraniální tlak

Gastrointestinální systém: Tlak močového měchýře







### Some Contributions to Market Size UK Figures

- Implantované srdeční chlopně (mechanické nebo biologické) c. 6,500 pa
- Transplantace srdce nebo srdce a plic. 400 pa
- Asistenční zařízení pro srdce (implanted variety) n/a

Major cardiac intervention where implanting would marginally alter the risk.

- Benefits: Local pressure measurement in one or more chambers.
  - Continuous and instantaneous measurement.
  - No further intervention (catheterisation)

#### **Abdominal Aortic Aneurism**

- (High mortality 8,500 deaths/year (England & Wales)
- High volume (15,000 year (England & Wales)
- Small increase in Risk



## Some Contributions to Market: Hypertension & Risk

## Hypertension

- High total number: c. 1 million
- Risk assessment by classification: Grade 1,2,3
   (Systolic >140, 160, 180 and
   Diastolic >90, 100, 110)

#### WHO/ISH¹ Stratification of Risk to Quantify Prognosis

| Other Risk Factors and                             | <b>Blood Pressure</b> |         |         |
|----------------------------------------------------|-----------------------|---------|---------|
| Disease History                                    | Grade 1               | Grade 2 | Grade 3 |
| I No other risk factors                            | Low                   | Medium  | High    |
| II 1-2 risk factors                                | Medium                | Medium  | High    |
| <pre>III &gt;/= 3 risk factors or TOD or ACC</pre> | High                  | High    | High    |

Factors: Age, Smoking, Cholesterol >61mmol/L, Family history, Obesity.

ACC, associated clinical condition; TOD, target organ damage

<sup>1</sup>International Society of Hypertension



#### SAW Wireless Passive Remote Sensor

- SAW Sensor Unit
- Local Readout (Interrogation Unit)
   Transmitter/Receiver held in close vicinity of implanted sensor. Could be worn.
- Remote Readout
   Logs data from local readout via
   wire/Bluetooth/GSM network to a physician on duty in the hospital.

## Features for Long Term Use

#### Frequency Range in Use

Industrial Scientific Medical (ISM) band, which requires no licence.

#### Power Requirement

Passive; no battery; infinite life.

There is a maximum allowed radiated power, but it is adequate.

#### Range & Accuracy

Measurable range (0-250mm Hg), with an accuracy of approx. 1%.

#### Biocompatibility & Safety

Made from inert silicon and hermetically encapsulated.

Extremely stable and do not suffer from drift.

No battery; no replacement; no leaking chemicals.



# Advantages of implantation

- •Single intervention –v- multiple catheterisations (cost)
  - •Single intervention greatly reduced infection risk
- •Continuous monitoring possible over years; cf Holter ECG

Alarm Control

- Confirmed monitoring site
- No interference with normal physiology



## Development programme

- Proof of Principle: Use existing SAW pressure sensors + readers
  - •Bench-testing: Simulated implants immersed in saline communication optimisation and physiological pressure range sensitivity and accuracy.
    - •Animal testing: Biocompatability, fixing, thrombogenesis.
- •Approvals: Manufacturing process (BS 9002/IEC) and MHRA / FDA
  - •Human clinical testing : Trials : Integrated with arterial grafts
    Intra-cardiac : single, then multiple
- •Reader development for remote monitoring : Bluetooth/GSM-linked.



# Alternative /Competing Technologies

MEMS devices: Pressure-dependent

Capacitance

Pressure-dependent Inductance

CardioMEMS Inc. Atlanta GA USA





## Otázky ke zkoušce

- 1. SAW senzory: Nakreslete základní princip činnosti senzorů s povrchově akustickou vlnou, význam budící a snímací interdigitální struktury.
- 2. Vyhodnocování signálu ze SAW senzorů: Nakreslete senzor se základním elektronickým vyhodnocovacím obvodem, nakreslete výstup signálu, v jaké formě je výstupní signál.
- 3. SAW senzory: Nakreslete základní princip činnosti senzoru SAW pro měření teploty
- 4. SAW senzory: Nakreslete základní princip činnosti senzoru SAW pro měření vlhkosti
- 5. SAW senzory: Nakreslete základní princip činnosti senzoru SAW pro měření chemických látek

