The 2D Heat Equation

— Analysis and Numerical Approaches

Jiajun Wang and Jiongyi Wang

Last Updated on: March 13, 2022

Contents

1	For	mulation of Problem
	1.1	Fundamental Solution for Heat Equation
	1.2	
		1.2.1 Riesz-Fredholm theory
		1.2.2 Eigenfunctions and spectral decomposition
	1.3	Maximum Principle
		1.3.1 Weak maximum principle
		1.3.2 Strong maximum principle
2	Nur	nerical Approaches
_	2.1	Discrete and Fast Fourier Transform (DFT & FFT)
		Finite Difference Method (FDM) for 1D Heat Equation
	2.3	Finite Element Method (FEM) Approximation for 1D Heat Equation
		FDM for 2D Heat Equation
	2.5	FEM for 2D Heat Equation
	4.5	1 LW 101 2D Heat Equation
3	Ana	alysis of Algorithms
	3.1	Consistency
	3.2	Stability
	3.3	Order of Convergence
	3.4	Possibility of Improvement
4	Apr	olication on Economics and Finance
	4.1	
	4.2	Optimal Portfolio for Consumption and Investment
Re	efere	ences

1 Formulation of Problem

The heat equation, as know as the diffusion equation,

Let $\Omega \subset \mathbb{R}^d$ be an open set with boundry $\Gamma := \partial \Omega$, set $\Omega_T = \Omega \times]0, T[, \Gamma_T := \Gamma \times]0, T[, \Gamma_T$ is called the *lateral* boundary of the cylinder Ω_T .

Consider the heat equation with τ -periodic boundary condition:

$$\begin{cases} \partial_t u - \Delta_x u &= f & \text{in } \Omega_T \\ u(x_i, t) &= u(x_i + \tau, t) & \text{on } \Gamma_T \\ u(x, 0) &= u_0(x) & \text{on } \Omega \times \{t = 0\} \end{cases}$$
 (1.1)

Figure 1: Region Ω_T

1.1 Fundamental Solution for Heat Equation

We note $|x| := \sqrt{\sum_{1}^{d} x_{i}^{2}}$.

♣ Definition 1.1: *The function*

$$\Phi(x,t) = \begin{cases} \frac{1}{(4\pi t)^{d/2}} e^{-\frac{|x|^2}{4t}} & x \in \mathbb{R}^d, t > 0\\ 0 & x \in \mathbb{R}^d, t < 0 \end{cases}$$
(1.2)

is called the fundamental solution of the heat equation.

1.2 Spectrum Theory and Spectral Analysis

In this part, for analysis preliminaries, [Fol99, ch.05-06] offers a panorama on the theory of L^p spaces.

Given E, F two normed vector spaces, an operator $T \in \mathcal{L}(E; F)$ is said to be copmact if the image of unit ball in E under T, i.e. $T(B_E)$ is relatively compact in F. We call an operator T is of finite rank, if dim Im $T < \infty$.

1.2.1 Riesz-Fredholm theory

- **Lemma 1.2** (Riesz): Let *E* be a normed vector space (not necessary complete), $M \subsetneq E$ a proper closed linear subspace, then $\forall \varepsilon > 0$, $\exists u \in E$ s.t. ||u|| = 1 and $d(u, M) \ge 1 \varepsilon$.
- ▶ **Theorem 1.3:** Let E be a normed vector space with compact unit ball B_E , then E is finite-dimensional.
- ▶ **Theorem 1.4** (Fredholm alternative): Let $T \in \mathcal{L}(E)$ be a compact operator, then
 - Ker(I T) is finite-dimensional.
 - Im (I-T) is closed. More precisely, Im $(I-T) = \text{Ker}(I-T')^{\perp}$
 - $Ker(I T) = \{0\} \iff Im(I T) = E$
 - $\dim \operatorname{Ker}(I-T) = \dim \operatorname{Ker}(I-T')$

Proof: Admitted. [cf. Bre11, p.160-162]

\maltese Definition 1.5 (resolvent set, spectrum and eigenvalue): Let $T \in \mathcal{L}(E)$, the resolvent set, denoted by $\rho(T)$, is defined by

$$\rho(T) := \{ \lambda \in \mathbb{C}; (T - \lambda I) : E \to E \text{ is bijective } \}$$

The spectrum, denoted by $\sigma(T)$, is the complement of the resolvent set, i.e., $\sigma(T) = \mathbb{C} \setminus \rho(T)$. A complex number λ is said to be an eigenvalue of T if $\text{Ker}(T - \lambda I) \neq \{0\}$. The set of eigenvalues of T is denoted by EV(T). The space $\text{Ker}(T - \lambda I)$ is called the eigenspace of T, the elemet in it is called eigenvector.

Remark 1: If *E* is a Banach space, the open mapping theorem tells us, the bijectivity of *T* equals that $T^{-1} \in \mathcal{L}^{-1}(E)$. Actually we have following consequece:

▶ Proposition 1.6:

- If $T \in \mathcal{L}(E)$ and ||I-T|| < 1 where I is the identity operator, then T is invertible, the series $\lim_{n \to \infty} \sum_{n=0}^{\infty} (I-T)^n = T^{-1}$ in $\mathcal{L}(E)$.
- The set of invertible operators in $\mathcal{L}(E)$, denoted as GL(E), is an open set in $\mathcal{L}(E)$, and $GL(E) \to GL(E)$; $T \mapsto T^{-1}$ is continuous. More precisely, if $S \in GL(E)$ and $||T-S|| < ||T^{-1}||^{-1}$, then $S \in GL(E)$.

▶ **Theorem 1.7** (Gelfand):

- We have $\|T^n\|^{1/n} \xrightarrow{n \to \infty} \inf_n \|T^n\|^{1/n}$, we call this limite, denoted by r(T), the spectral radius of T. Moreover, $r(T) \le \|T\|$, and $\forall \lambda \in \sigma(T)$, $|\lambda| \le r(T)$. In particular, $\sigma(T)$ is a compact set in \mathbb{C} .
- For all $T \in \mathcal{L}(E)$, we have $\sigma(T) \neq \emptyset$. Moreover

$$r(T) = \max_{\lambda \in \sigma(T)} \{|\lambda|\}$$

Proof: [cf. Lax02, p195-197]

4 Definition 1.8 (adjoint, self-adjoint): Let $A : Dom(A) \subset E \to F$ be an unbounded linear operator that is densely defined. We shall introduce an unbounded operator $A' : Dom(A') \subset F' \to E'$ as follows:

$$\operatorname{Dom}(A') := \{ v \in F' : \exists c \ge 0 \text{ s.t. } |\langle v, Au \rangle| \ge c \|u\|, \quad \forall u \in \operatorname{Dom}(A) \}$$

$$_{E'}\langle v, Au \rangle_E = _{E'}\langle A'v, u \rangle_E, \quad \forall u \in \mathrm{Dom}(A), \forall v \in \mathrm{Dom}(A')$$

A bounded operator T is said to be self-adjoint if T' = T.

▶ **Theorem 1.9:** Suppose that H is a separable Hilbert space, T is a compact self-adjoint operator. then there exists a Hilbert basis composed of eigenvectors of T.

Our last statement is a fundamental result. It asserts that every compact self-adjoint operator may be diagonalized in some suitable basis.

1.2.2 Eigenfunctions and spectral decomposition

Now, we have sufficient tools to proceed the spectral analysis of heat equation. (More generally, the spectral analysis could be applied to other types of PDE [cf. Bre11, ch.08-09; Lax02, ch.33-36])

♣ Definition 1.10 (Sobolev spaces, distribution):

$$W^{m,p}(\Omega) := \left\{ u \in L^p(\Omega) : \partial^{\alpha} u \in L^p(\Omega), \forall \alpha = (\alpha_1, \dots, \alpha_d) \in \mathbb{R}^d_+ \text{ and } 1 \le |\alpha| \le d \right\}$$

For index $\alpha \in \mathbb{R}^d_+$, we note $|\alpha| = \sum_1^d \alpha_i$. The norm $\|\cdot\|_{W^{m,p}(\Omega)}$ defined by

$$\|u\|_{W^{m,p}(\Omega)} = \left(\sum_{|\alpha|=0}^{d} \|\partial^{\alpha}u\|_{L^{2}(\Omega)}^{2}\right)^{\frac{1}{2}}$$

makes the Sobolev space $W^{m,p}(\Omega)$ complete.

We simply note $H^m(\Omega) := W^{m,2}(\Omega)$, since it's a Hilbert space.

At last, we define $H_0^m(\Omega) := \overline{\mathcal{D}(\Omega)}^{H^m(\Omega)}$, that means the closure of $\mathcal{D}(\Omega)$ in $H^m(\Omega)$.

Where $\mathcal{D}(\Omega) = C_c^{\infty}(\Omega)$ called the set of test functions. Its dual space $\mathcal{D}'(\Omega)$ is called distribution.

 $H_0^1(\Omega)$ need not to inherit the norm from $H^1(\Omega)$, there is an equivalent norm inducted by the inner product:

$$\langle v, u \rangle_{H_0^1(\Omega)} = \langle \nabla u, \nabla v \rangle_{L^2(\Omega)}$$

The notion of distriburion generalized the notion of function. We could find that the Dirac mass at x=a: $\delta(x-a)$ is not a function, however, it's a distriburion. Important example: $L^1_{loc}(\Omega)$ is a distribution. For proof and more details, [cf. Gos20, ch.03-05].

▶ **Theorem 1.11** (the spectrum of Laplacian operator): Suppose $T: L^2(\Omega) \to L^2(\Omega)$; $f \mapsto T_f$, where T_f is the weak solution (i.e. solution in $H^1_0(\Omega)$) of

$$\begin{cases}
-\Delta u_f = f & \text{in } \Omega \\
u_f = 0 & \text{on } \partial\Omega
\end{cases}$$
(1.3)

Then T is compact and self-adjoint. Moreover T is positive defined.

 \triangleright *Proof:* u_f is characterized by $u_f \in H^1_0(\Omega), \forall v \in H^1_0(\Omega), \int_{\Omega} \nabla u_f \nabla v = \int_{\Omega} \nabla u_f$

$$f \xrightarrow{T} T_f$$

$$\downarrow i$$

$$u_f$$

 $T = i \circ S$, where S is linear continuous and $i: H_0^1(\Omega) \to L^2(\Omega)$ is compact injection (it's a result of Reillich-Kondrachov's Theorem, [cf. Bre11, ch.9.3, p.285], we don't discuss the interpolation of Sobolev space here)

To prove that T self-adjoint and positive is relatively easy, it's direct consequence of properties of $L^2(\Omega)$.

By theorem 1.9, there exists a Hilbert basis in $L^2(\Omega)$ consists of the eigenvalues of T. Assume that $\Omega \subset \mathbb{R}^d$ is a bounded open set, then there exist a Hilbert basis $\{e_n\}_n$ of $L^2(\Omega)$ s.t. $e_n \in H^1_0(\Omega) \cap C^\infty(\Omega)$, $\forall n$ and a sequence $\{\lambda_n\}_n$ of real numbers with $\lambda_n > 0$, $\forall n$ and $\lambda_n \to +\infty$ s.t.

$$-\Delta e_n = \lambda_n e_n \quad \text{in } \Omega$$

We say that $\{\lambda_n\}_n$ are the eigenvalues of $-\Delta$ (with Dirichlet boundray condition) and the $\{e_n\}_n$ are the associated eigenfunctions.

$$\begin{cases}
-\Delta e_i = \lambda_i e_i & \text{on } \Omega \\
e_i = 0 & \text{on } \Gamma
\end{cases}$$
(1.4)

▶ Corollary 1.12: $\left\{\sqrt{\lambda_n}e_n\right\}_n$ is a Hilbert basis for $H_0^1(\Omega)$ equipped with the inner product

$$\langle v, w \rangle_{H_0^1(\Omega)} = \int_{\Omega} \nabla v \nabla w$$

 \triangleright *Proof:*

$$\begin{split} \left\langle \nabla \sqrt{\lambda_n} e_n, \nabla \sqrt{\lambda_m} e_m \right\rangle_{L^2(\Omega)} &= \frac{1}{\sqrt{\lambda_n}} \left\langle \sqrt{\lambda_n} \nabla T e_n, \nabla \sqrt{\lambda_m} e_m \right\rangle_{L^2(\Omega)} \\ &= \frac{1}{\sqrt{\lambda_n}} \sqrt{\lambda_n \lambda_m} \int_{\Omega} e_n e_m \\ &= \sqrt{\frac{\lambda_m}{\lambda_n}} \left\langle e_n, e_m \right\rangle_{L^2(\Omega)} = \sqrt{\frac{\lambda_m}{\lambda_n}} \delta_n^m \end{split}$$

Then $\left\langle \nabla \sqrt{\lambda_n} e_n, \nabla \sqrt{\lambda_m} e_m \right\rangle = \sqrt{\frac{\lambda_m}{\lambda_n}} \delta_n^m \implies \left\{ \sqrt{\lambda_n} e_n \right\}_n$ is an orthonormal family in $H_0^1(\Omega)$.

Lastly, we should prove $\left\{\sqrt{\lambda_n}e_n\right\}_n$ span a dense party of $H^1_0(\Omega)$. Let $v \in H^1_0(\Omega)$ s.t. $\forall n, \left\langle\sqrt{\lambda_n}\nabla e_n, \nabla v\right\rangle_{L^2(\Omega)}$

Then

0.

We seek for the solution of equation 1.1 in the form of series

$$u(x,t) = \sum_{i=1}^{\infty} a_i(t)e_i(x)$$
 (1.5)

1.3 Maximum Principle

- 1.3.1 Weak maximum principle
- 1.3.2 Strong maximum principle

2 Numerical Approaches

2.1 Discrete and Fast Fourier Transform (DFT & FFT)

[cf. Sha03; Sch01, ch.08; Mal08, ch.03.3]

$$\widehat{f}(k) = \int_0^\tau f(x)e^{-2i\pi kx} \, \mathrm{d}x \xrightarrow{\text{discretization}} U_k = \frac{1}{N} \sum_{j=0}^{N-1} f(\frac{j}{N})e^{-2i\pi k\frac{j}{N}}$$
 (2.1)

- 2.2 Finite Difference Method (FDM) for 1D Heat Equation
- 2.3 Finite Element Method (FEM) Approximation for 1D Heat Equation
- 2.4 FDM for 2D Heat Equation
- 2.5 FEM for 2D Heat Equation
- 3 Analysis of Algorithms
- 3.1 Consistency
- 3.2 Stability
- 3.3 Order of Convergence
- 3.4 Possibility of Improvement
- 4 Application on Economics and Finance
- 4.1 The Black-Scholes PDE for Option Pricing
- 4.2 Optimal Portfolio for Consumption and Investment

References

- [Bre11] Haim Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer New York, 2011.
- [Çin11] Erhan Çinlar. *Probability and Stochastics*. Springer New York, Feb. 2011. 558 pp.
- [Eva10] Lawrence Evans. *Partial Differential Equations*. 2nd ed. American Mathematical Society, Mar. 2010.
- [Fol99] Gerald B. Folland. *Real Analysis*. 2nd ed. John Wiley & Sons, Mar. 1999. 406 pp.
- [Gos20] François Gosle. *Distributions, analyse de Fourier, équations aux dérivées partielles.* Ecole Polytechnique, Dec. 2020.
- [Hul17] John C. Hull. *Options, Futures, and Other Derivatives*. 10th ed. PEARSON, Jan. 2017. 896 pp.
- [Lax02] Peter D. Lax. Functional Analysis. John Wiley & Sons, Mar. 2002. 604 pp.
- [Luc16] Hervé Le Dret; Brigitte Lucquin. *Partial Differential Equations: Modeling, Analysis and Numerical Approximation*. Springer International Publishing, 2016.
- [Mal08] Stephane Mallat. A Wavelet Tour of Signal Processing. 3rd ed. Elsevier Science Publishing Co Inc, Dec. 2008. 832 pp.
- [Nef00] Salih N. Neftci. *An Introduction to the Mathematics of Financial Derivatives.* 3rd ed. Elsevier Science & Techn., June 2000. 527 pp.

- [Sch01] Michelle Schatzman. *Analyse numérique : une approche mathématique*. 2nd ed. Paris: Dunod, 2001.
- [Sha03] Elias M. Stein; Rami Shakarchi. *Fourier Analysis: An Introduction*. PRINCETON UNIV PR, Apr. 2003. 328 pp.
- [Shr10] Steven Shreve. Stochastic Calculus for Finance II. Springer New York, Dec. 2010. 572 pp.
- [Shr98] Ioannis Karatzas; Steven E. Shreve. *Brownian Motion and Stochastic Calculus*. 2nd ed. Springer New York, 1998.
- [Zil21] Matthieu Bonnivard; Adina Ciomaga; Alessandro Zilio. "Méthodes numériques pour les EDO et les EDP". Notes de cours M1 Mathématiques. 2021.