Romeo Capozziello HW 4

Problem 1:

Consider the following recurrent algorithm complexity. Note that the Master Algorithm cannot be applied directly as it is not in the $T(n) = aT(\frac{n}{h}) + f(n)$ format.

$$T(n) = 2T(\frac{n}{8}) + 2T(\frac{n}{3}) + n$$

(a) Use the Master Algorithm to find the Θ complexity of the lower bound $T_L(n) = 4T_L(\frac{n}{8}) + n$

Answer

(b) Use the Master Algorithm to find the Θ complexity of the upper bound $T_U(n) = 4T_U(\frac{n}{3}) + n$

Answer

(c) Do the upper and lower bound Θ complexities agree? If $f(n) = n^2$, would your lower and upper bound Θ complexities agree?

Answer

(d) Using only the results from (a) and (b), fins the tightest complexity values (Use Big O, little o, Big Ω , or little ω) based on each result (a) and (b).

Answer

Problem 2:

Use a recurrence tree to find the Θ complexity of $T(n) = 2T(\frac{n}{8}) + 2T(\frac{n}{3}) + n$ [Hint: Look for the geometric series, as we did in class lecture and class notes]

Answer

Problem 3:

Towers of Hanoi is an Algorithm to solve the famous problem of moving disks from one peg onto another. The complexity is goven as T(n) = 2T(n-1) + 1.

(a) Explain why the Master Algorithm cannot be applied to solve its complexity.

Answer

(b) Draw a Recurrence Tree for Towers of Hannoi, to find its complexity.

Answer

Problem 4:

In this problem, we have a recurrence. $Algorithm_1$ calls $Algorithm_2$ and $Algorithm_2$ calls $Algorithm_1$, and so forth until the problem is solved. Use a recurrence Tree to find the complexity $T_1(n)$ of $Algorithm_1$.

$$T_1(n) = 2T_2(\frac{n}{2}) + n$$
 $T_2(n) = 2T_1(\frac{n}{2}) + n^2$

Answer