LENDING CLUB Case Study

Problem Statement:

Business Understanding

You work for a **consumer finance company** that specializes in lending various types of loans to urban customers. When the company receives a loan application, the company must decide for loan approval based on the applicant's profile. Two *types of risks* are associated with the bank's decision:

- → If the applicant is **likely to repay the loan**, then not approving the loan results in a **loss of business** to the company
- → If the applicant is **not likely to repay the loan**, i.e. he/she is likely to default, then approving the loan may lead to a *financial loss* for the company

The data given below contains information about past loan applicants and whether they 'defaulted' or not. The aim is to identify patterns that indicate if a person is likely to default, which may be used for taking actions such as denying the loan, reducing the amount of loan, lending (to risky applicants) at a higher interest rate, etc.

In this case study, you will use EDA to understand how **consumer attributes** and **loan attributes** influence the tendency of default.

When a person applies for a loan, two types of decisions could be taken by the company:

Loan accepted: If the company approves the loan, there are 3 possible scenarios described below:

- → Fully paid: Applicant has fully paid the loan (the principal and the interest rate)
- → Current: Applicant is in the process of paying the instalments, i.e. the tenure of the loan is not yet completed. These candidates are not labelled as 'defaulted'.
- → Charged-off: Applicant has not paid the instalments in due time for a long period of time, i.e. he/she has defaulted on the loan

Loan rejected: The company had rejected the loan (because the candidate does not meet their requirements etc.). Since the loan was rejected, there is no transactional history of those applicants with the company and so this data is not available with the company (and thus in this dataset)

Business Objectives

This company is the largest online loan marketplace, facilitating personal loans, business loans, and financing of medical procedures. Borrowers can easily access lower-interest-rate loans through a fast online interface.

Like most other lending companies, lending loans to 'risky' applicants is the largest source of financial loss (*called credit loss*). Credit loss is the amount of money lost by the lender when the borrower refuses to pay or runs away with the money owed. In other words, borrowers who **default** cause the largest amount of loss to the lenders. In this case, the customers labelled as 'charged-off' are the 'defaulters'.

If one can identify these risky loan applicants, then such loans can be reduced thereby cutting down the amount of credit loss. Identification of such applicant's using EDA is the aim of this case study.

In other words, the company wants to understand the **driving factors** (*or driver variables*) behind loan default, i.e. the variables that are strong indicators of default. The company can utilize this knowledge for its portfolio and risk assessment.

To develop your understanding of the domain, you are advised to independently research a little about risk analytics (understanding the types of variables and their significance should be enough).

Plot for loan_status

- → 13.6% of loans are 'Charged-Off'
- → 83.5% of loans are 'Fully-Paid'

Plots for verification_status

- → 37.0% of Not Verified loans against 'loan_status' are Not-defaults
- → 37.4% of Verified loans against 'Charged Off' are *Defaults*

Plots for home_ownership

- → 41.2% of RENT loans against 'loan_status' are Not-defaults
- → 38.6% of MORTGAGE loans against 'loan_status' are Not-defaults
- → 51.0% of RENT loans aginst 'Charged Off' are Defaults
- → 41.7% of MORTGAGE loans aginst 'Charged Off' are *Defaults*

Plots for grade

- → 26.8% of 'grade' B loans against 'loan_status' are Not-defaults → 24.4% of 'grade' A loans against 'loan_status' are Not-defaults
- → 25.3% of 'grade' B loans against 'Charged Off' are *Defaults*→ 23.7% of 'grade' C loans against 'Charged Off' are *Defaults*
- → 19.8% of 'grade' D loans against 'Charged Off' are Defaults

Plots for sub_grade

- → 8.2% of 'sub_grade' A4 loans against 'Fully Paid' are Not-defaults
- → 7.6% of 'sub_grade' A5 loans against 'Fully Paid' are Not-defaults
- → 7.5% of 'sub_grade' B3 loans against 'Fully Paid' are Not-defaults
- → 6.7% of 'sub_grade' **B5** loans against 'Charged Off' are *Defaults*
- → 6.2% of 'sub_grade' B3 loans against 'Charged Off' are Defaults
- → 5.8% of 'sub_grade' C1 loans against 'Charged Off' are Defaults
- → 5.7% of 'sub_grade' B4 & C2 loans against 'Charged Off' are Defaults

Plots for purpose

- → 47.4% of debt_consolidation loans against 'Fully Paid' are Not-defaults
- → 50.8% of debt_consolidation loans against 'Charged Off' are Defaults

Plots for term

→ 66.9% of SHORT 'term' 36 months loans against 'loan_status' are Not-defaults
→ 19.2% of LONG 'term' 60 months loans against 'loan_status' are Not-defaults

→ 55.3% of SHORT 'term' 36 months loans against 'Charged Off' are Defaults → 44.7% of LONG 'term' 60 months loans against 'Charged Off' are Defaults

Plots for pub_rec_bankruptcies

- → 82.8% of 'pub_rec_bankruptcies' 0 loans against 'loan_status' are Not-defaults
- → 13.1% of 'pub_rec_bankruptcies' 0 loans against 'loan_status' are Defaults
- → 3.2% of 'pub_rec_bankruptcies' 1 loans against 'loan_status' are Not-defaults
- → 93.7% of 'pub_rec_bankruptcies' 0 loans against 'Charged Off' are Defaults
- → 6.3% of 'pub_rec_bankruptcies' 1 loans against 'Charged Off' are Defaults

Plots for pub_rec

- → 81.9% of 'pub_rec' 0 loans against 'loan_status' are Not-defaults
- → 12.8% of 'pub_rec' 0 loans against 'loan_status' are Defaults
- → 4.0% of 'pub_rec' 1 loans against 'loan_status' are Not-defaults
- → 92.0% of 'pub_rec' 0 loans against 'Charged Off' are Defaults
- → 7.8% of 'pub_rec' 1 loans against 'Charged Off' are *Default*s

Plots for inq_last_6mths

- → 42.9% of 'inq_last_6mths' 0 loans against 'loan_status' are Not-defaults
 → 23.4% of 'inq_last_6mths' 1 loans against 'loan_status' are Not-defaults
 → 12.4% of 'inq_last_6mths' 2 loans against 'loan_status' are Not-defaults
- → 40.6% of 'inq_last_6mths' 0 loans against 'Charged Off' are Defaults
 → 30.1% of 'inq_last_6mths' 1 loans against 'Charged Off' are Defaults
 → 16.8% of 'inq_last_6mths' 2 loans against 'Charged Off' are Defaults
- → 11.0% of 'inq_last_6mths' 3 loans against 'Charged Off' are Defaults

Plots for emp_length

→ 19.2% of 'emp_length' 10 years loans against 'loan_status' are Not-defaults

→ 24.9% of 'emp_length' 10 loans years against 'Charged Off' are *Defaults*

Plots for delinq_2yrs

→ 76.8% of 'delinq_2yrs' 0 loans against 'loan_status' are Not-defaults

→ 88.1% of 'delinq_2yrs' 0 loans against 'Charged Off' are Defaults

Plots for open_acc

→ >10% of 'open_acc' are between 5-12.5 loans against 'loan_status' are Not-defaults
 → >7% of 'open_acc' are between 5-11 loans against 'Charged Off' are Defaults

Plots for total_acc

- → 31.5% of 'total_acc' 20 loans against 'loan_status' are Not-defaults
- → 24.1% of 'total_acc' 30 loans against 'loan_status' are Not-defaults
- → >12% of 'total_acc' are between 10-30 loans against 'Charged Off' are *Defaults*

Plots for int_rate

- → 17.1% of 'int_rate' 12 loans against 'loan_status' are Not-defaults
- → 13.8% of 'int_rate' 13 loans against 'loan_status' are Not-defaults
- → 12.4% of 'int_rate' 7 loans against 'loan_status' are Not-defaults
- → >8% of 'int_rate' are between 11-16 loans against 'Charged Off' are Defaults

Plots for loan_amnt

- → 28.5% of 'loan_amnt' 5k loans against 'loan_status' are Not-defaults
- → 26.1% of 'loan_amnt' 10k loans against 'loan_status' are Not-defaults
- → 19.0% of 'loan_amnt' 15k loans against 'loan_status' are Not-defaults
- → 19.2% of 'loan_amnt' 5k loans against 'Charged Off' are Defaults
- → 17.6% of 'loan_amnt' 10k loans against 'Charged Off' are *Defaults*

Plots for funded_amnt

→ 31.1% of 'funded_amnt' 5k loans against 'loan_status' are Not-defaults
→ 24.1% of 'funded_amnt' 10k loans against 'loan_status' are Not-defaults
→ 18.8% of 'funded_amnt' 15k loans against 'loan_status' are Not-defaults

→ 18.7% of 'funded_amnt' 5k loans against 'Charged Off' are Defaults

Plots for revol_util

→ 9.9% of 'revol_util' is 5 loans against 'loan_status' are Not-defaults

→ >5% of 'revol_util' is >40 loans against 'Charged Off' are *Default*s

Plots for total_rec_late_fee

→ 87.8% of 'total_rec_late_fee' are between 0.0 to 0.4 loans against 'loan_status' are Not-defaults
→ 12.2% of 'total_rec_late_fee' are between 0.0 to -0.4 loans against 'loan_status' are Defaults

Plots for collection_recovery_fee

→ 4.6% of 'collection_recovery_fee' are between 0.0 to 0.4 loans against 'loan_status' are *Defaults*→ 95.4% of 'collection_recovery_fee' are between 0.0 to -0.4 loans against 'loan_status' are *Not-defaults*

Plots for dti

→ 14.7% 'dti' have Simmetry arround 14 value loans against 'loan_status' are *Not-defaults*→ >7% 'dti' are between 12-22 value loans against 'Charged Off' are *Defaults*

Plots for recoveries

→ 3.5% of 'recoveries' are between 0.0 to 0.4 loans against 'loan_status' are *Defaults*→ 96.5% of 'recoveries' are between 0.0 to -0.4 loans against 'loan_status' are *Not-defaults*

Plots for annual_inc

- → 38.5% of 'annual_inc' 40k loans against 'loan_status' are Not-defaults
- → 28.5% of 'annual_inc' 70k loans against 'loan_status' are Not-defaults
- → 22.9% of 'annual_inc' 55k loans against 'loan_status' are Defaults
- → 22.3% of 'annual_inc' 40k loans against 'loan_status' are Defaults
- → 17.5% of 'annual_inc' 65k loans against 'loan_status' are Defaults
- → 13.8% of 'annual_inc' 30k loans against 'loan_status' are Defaults

Plots for total_rec_prncp

- → 33.2% of 'total_rec_prncp' 10k loans against 'loan_status' are *Not-defaults*→ 23.8% of 'total_rec_prncp' 5k loans against 'loan_status' are *Not-defaults*
- → 19.8% of 'total_rec_prncp' 15k loans against 'loan_status' are Not-defaults
- → 52.2% of 'total_rec_prncp' 1k loans against 'loan_status' are Defaults
- → 23.7% of 'total_rec_prncp' 3k loans against 'loan_status' are Defaults
- → 11.4% of 'total_rec_prncp' 5k loans against 'loan_status' are Defaults
- → Graph gradually decreased with an increase in 'total_rec_prncp'

Plots for funded_amnt_inv

- → 33.7% of 'funded_amnt_inv' 7k loans against 'loan_status' are *Not-defaults*→ 23.5% of 'funded_amnt_inv' 11k loans against 'loan_status' are *Not-defaults*
- → 22.2% of 'funded_amnt_inv' 2k loans against 'loan_status' are Not-defaults
- → 17.9% of 'funded_amnt_inv' 5k loans against 'loan_status' are Defaults
- → 16.0% of 'funded_amnt_inv' 4k loans against 'loan_status' are Defaults
- → 14.5% of 'funded_amnt_inv' 11k loans against 'loan_status' are Defaults

Plots for installment

→ >14% of 'installment' are between 100-300 loans against 'loan_status' are Not-defaults

Plots for revol_bal

- → LOW 'revol_bal' loans against 'loan_status' are *Not-defaults*
- → Graph gradually decreased with an increase in 'revol_bal'
- → LOW 'revol_bal' loans against 'Charged Off' are *Defaults*

Plots for last_pymnt_amnt

→ 62.9% of 'last_pymnt_amnt' 1k loans against 'loan_status' are Not-defaults

→ 95.8% of 'last_pymnt_amnt' 1k loans against 'Charged Off' are Defaults

Plots for total_rec_int

- → LOW 'total_rec_int' loans against 'loan_status' are *Not-defaults*
- → LOW 'total_rec_int' loans against 'Charged Off' are *Defaults*
- → Graphs gradually decreased with an increase in 'total_rec_int'

Plots for total_pymnt_inv

- → >16% of 'total_pymnt_inv' are between 5k-10k loans against 'loan_status' are Not-defaults
- → LOW 'total_pymnt_inv' loans against 'Charged Off' are *Defaults*
- → Graph gradually decreased with an increase in 'total_pymnt_int'

Plots for total_pymnt

- → >17.5% of 'total_pymnt' are between 5k-10k loans against 'loan_status' are Not-defaults
- → LOW 'total_pymnt' loans against 'Charged Off' are *Defaults*
- → Graph gradually decreased with an increase in 'total_pymnt'

Plots for issue_d

- → RECENT **2012** 'issue_d' loans against 'loan_status' are *Not-defaults*
- → 2012 'issue_d' loans against 'Charged Off' are *Defaults*

Plots for last_credit_pull_d

- → 41.5% of 'last_credit_pull_d' year 2016 loans against 'loan_status' are Not-defaults
- → 96.2% of 'last_credit_pull_d' year 2016 loans against 'Charged Off' are *Default*s

Plots for last_pymnt_d

- → >20% of 'last_pymnt_d' are between year 2013-2014 loans against 'loan_status' are *Not-defaults* [after COVID]
- → 12.7% of 'last_pymnt_d' year 2012 loans against 'Charged Off' are *Defaults* [COVID]

Plots for earliest_cr_line

→ >14% of 'earliest_cr_line' are between years 1995-2005 loans against 'loan_status' are *Not-defaults*

→ >9% of 'earliest_cr_line' are between years 1998-2001 loans against 'Charged Off' are *Defaults*

→ HIGH 'int_rate' have more *Defaults* but needs to impose HIGH 'int_rate' on *Defaults* [*CONTRADICT*]

issue_d vs loan_amnt vs loan_status

→ 'loan_amnt' increased with recent years, HIGH 'loan_amnt' after COVID have high *Defaults* [*RISK*]

verification_status vs loan_amnt vs loan_status

→ HIGHER 'loan_amnt' are **Verified** more often and have huge *Defaults* [*RISK*]

term vs int_rate vs loan_status

→ HIGH 'int_rate' for LONG 'term' has more *Defaults* [*RISK*]

→ HIGH 'loan_amnt' for LONG 'term' have high *Defaults* [*RISK*]

grade vs loan_amnt vs loan_status

→ HIGHER 'loan_amnt' for LOWER 'grade' are high *Defaults* [*RISK*]

int_rate vs sub_grade vs loan_status

→ LOWER 'sub_grade' have HIGHER 'int_rate' [SAFE]

loan_amnt vs annual_inc vs loan_status

→ HIGHER 'loan_amnt' for LOWER 'annual_inc' have *Defaults* [*RISK*]

installment vs int_rate vs loan_status 25 20 10 loan status Fully Paid Charged Off

→ HIGH 'int_rate' for LONG 'instalment' have high *Defaults* but to Compensate it is necessary [*CONTRADICT*]

600

800

400

installment

200

0

→ HIGH 'int_rate' after COVID have high *Defaults* [*RISK*]

HEAT-MAP

→ 'int_rate' is 49% correlated to 'revol_util' [**SAFE**]

→ 'loan_amnt' is 33% correlated with 'revol_bal' [RISK]