Math 4720: Statistical Methods

$$7^{th}$$
 Week Summary $(2/27/25)$

- In practice, we don't know σ , so we substitute s for σ . The resulting statistic does not have a normal distribution.
- Draw a random sample of size n from a normal distribution with mean μ and standard deviation σ . The **one-sample t statistic**: $t = \frac{\bar{x} - \mu}{s/\sqrt{n}}$ has the **t distribution** with n-1 degrees of freedom.

The p-value for a test of $H_0: \mu = \mu_0$ against

 $H_a: \mu > \mu_0$ is p-value $= P(T \ge t)$

 $H_a: \mu < \mu_0$ is p-value = $P(T \le t)$

 $H_a: \mu \neq \mu_0$ is p-value = $2P(|T| \geq |t|)$

These p-values are exact if the population distribution is Normal; they are approximately correct for large n in other cases.

- the t distribution with n-1 degrees of freedom approaches the standard normal distribution N(0,1) as n increases.
- Confidence interval for μ is $\bar{x} \pm t_{\alpha/2} \frac{s}{\sqrt{n}}$ with df = n 1, if

data is coming from normal population having unknown mean μ and unknown σ , or large random sample from a non-normal population having unknown mean μ and unknown σ .

- Comparing the means of two populations
- **Independent samples**: A so-called two-sample problem can arise from a *randomized comparative* experiment that randomly divides subjects into two groups and exposes each group to a different treatment.

To perform inference about $\mu_1 - \mu_2$, the difference between the means of the two populations, we start from $\bar{x}_1 - \bar{x}_2$, the difference between the means of the two samples.

Two Numerical Variables - Population Standard Deviations unknown

	Independent Samples	
	$\sigma_1 = \sigma_2$	$\sigma_1 \neq \sigma_2$
Parameters of Interest:	Mean Difference, $\mu_1 - \mu_2$	Mean Difference, $\mu_1 - \mu_2$
	$\overline{x}_1 - \overline{x}_2 \pm t_{\alpha/2} s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$\overline{x}_1 - \overline{x}_2 \pm t_{\alpha/2} \sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
Confidence Interval Formula:	$df=n_1+n_2-2$, where	$df = \frac{(n_1 - 1)(n_2 - 1)}{(1 - c)^2 (n_1 - 1) + c^2 (n_2 - 1)}$
	$s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$, where $c = \frac{\frac{-1}{n_1}}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}$
Name of Hypothesis Test, H_0	Two-sample T Test, H_0 : $\mu_1 = \mu_2$ or H_0 : $\mu_1 - \mu_2 = 0$	Two-sample T Test, $H_0: \mu_1 = \mu_2$ or $H_0: \mu_1 - \mu_2 = 0$
Test Statistic Formula:	$t = \frac{\overline{x}_1 - \overline{x}_2}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}}$	$t' = rac{\overline{x}_1 - \overline{x}_2}{\sqrt{rac{s_1^2}{n_1} + rac{s_2^2}{n_2}}}$
P-value:	$H_a: \mu_1 \neq \mu_2$, p -value = $2P(T \ge t)$ $H_a: \mu_1 > \mu_2$, p -value = $P(T \ge t)$ $H_a: \mu_1 < \mu_2$, p -value = $P(T \le t)$	