Control Systems Toolbox SS function and Dynamic System Object Step, and Impulse Function Example: 1DOF Simulation

Module 13 - Higher Order Systems

ME3050 - Dynamics Modeling and Controls

Mechanical Engineering
Tennessee Technological University

Topic 4 - MATLAB Simulation

Control Systems Toolbox SS function and Dynamic System Object Step, and Impulse Function Example: 1DOF Simulation

Topic 4 - MATLAB Simulation

- Control Systems Toolbox
- SS function and Dynamic System Object
- Step, and Impulse Function
- Example: 1DOF Simulation

Control Systems Toolbox

Control System Toolbox provides algorithms and apps for systematically analyzing, designing, and tuning linear control systems. You can specify your system as a transfer function, state-space, zero-pole-gain, or frequency-response model.

It may have been included when you installed MATLAB but if is it not you can easily install it using the add-ins manager in the home tab.

Control Systems Toolbox

Some Toolbox Functions (full list)

- SS
- tf
- pid
- initial
- step
- impulse

The Toolbox also contains specialized blocks for Simulink

SS function and Dynamic System Object

Create a dynamic system object with the ss() function

$$[SYS] = ss(A,B,C,D)$$

- Input 1: A System Matrix
- Input 2: B Input Matrix
- Input 3: C Output Matrix
- Input 4: D Control Matrix
- Output 1: SYS dynamic system object

SS function and Dynamic System Object

SYS - dynamic system object

Step, and Impulse Function

Simulate the step response of dynamic system with the **step()** function

```
[Y,T]=step(SYS,TSPAN,OPTIONS)
```

- Input 1: SYS dynamic system object
- Input 2: TSPAN array of time values for simulation
- Input 3: OPTIONS created by stepDataOptions function
- Output 1: Y simulation response as array
- Output 2: T simulation time as array

Step, and Impulse Function

Simulate the step response of dynamic system with the **step()** function

- Input 1: SYS dynamic system object
- Input 2: TSPAN array of time values for simulation
 - use IMPULSEPLOT for more options
- Output 1: Y simulation response as array
- Output 2: T simulation time as array

Example: 1DOF Simulation

Consider the 1DOF Quarter-Car model with displacement input from the profile of the road.

The standard EOM becomes:

$$m\ddot{x} + c(\dot{x} - \dot{y}) + k(x - y) = 0$$

The second order EOM can be decomposed into a system of first order differential equations and written as a state space model.

Example: 1DOF Simulation

The displacement input requires a *clever* substitution.

Finally, write the state equation.

Example: 1DOF Simulation

It is important that you keep the same substitutions when writing the output equations.

Output 1 - Position:

Output 2 - Velocity:

Control Systems Toolbox SS function and Dynamic System Object Step, and Impulse Function Example: 1DOF Simulation

References

- System Dynamics, Palm III, Third Edition -
- MATLAB-State Space handout FIX TYPO IN HANDOUT!