Machine Learning Performance Measures and Statistical Tests

Prof. Matthias Hein

Machine Learning Group
Department of Mathematics and Computer Science
Saarland University, Saarbrücken, Germany

Lecture 15, 13.12.2013

Program of today and next time

How to do model evaluation and model selection (for classification)

- Different performance measures (confusion matrix, ROC-curve and AUC),
- Statistical tests and confidence intervals,
- Test error as an estimator of the true error
 - confidence intervals
 - sample complexity
- Comparison of two/multiple classifiers Which one is better?
 Application of statistical tests.
- Model selection
 - using validation sets,
 - using cross-validation.

Performance Measures

Up to now

- 0-1-loss (count of errors),
- convex surrogates of the 0-1-loss \Rightarrow hinge loss, logistic loss, etc.

But

- error count is not always meaningful (unbalanced classes),
- even if we use a convex surrogate for training, evaluation is done using the desired 0-1-loss.

WARNING!

IMPORTANT: The performance of a learning method has to be evaluated using **independent data** which has **not** been used in the construction of the learning method.

It makes no sense to use the training error because we have optimized it!

Performance Measures II

The basis of all performance measures - the confusion matrix

true pos.
$$tp = \sum_{i=1}^{m} \mathbb{1}_{\hat{f}(X_i)=1} \mathbb{1}_{Y_i=1}$$
, false neg. $fn = \sum_{i=1}^{m} \mathbb{1}_{\hat{f}(X_i)=-1} \mathbb{1}_{Y_i=1}$, false pos. $fp = \sum_{i=1}^{m} \mathbb{1}_{\hat{f}(X_i)=1} \mathbb{1}_{Y_i=-1}$, true neg. $tn = \sum_{i=1}^{m} \mathbb{1}_{\hat{f}(X_i)=-1} \mathbb{1}_{Y_i=-1}$.

	positive Prediction	negative Prediction	total cases
positive cases	true positives (tp)	false negatives (fn)	P = tp + fn
negative cases	false positives (fp)	true negatives (tn)	N = fp + tn
total pred.	$\hat{P} = tp + fp$	$\hat{N} = \mathit{fn} + \mathit{tn}$	$m = N + P = \hat{P} + \hat{N}$

The confusion matrix for a binary classification problem.

Performance Measures III

The basis of all performance measures - the confusion matrix

- all other performance measures can be derived from the confusion matrix
- it makes more sense to report the confusion matrix since then everybody can build its favorite performance measure on its own
- includes all information about class probabilities ⇒ important for cost-sensitive learning

Performance Measures IV

The standard performance measures:

```
Accuracy: accuracy = (tp+tn)/(tp+fp+fn+tn) = (P*tpr + N*tnr)/(P+N),

percentage of examples which are correctly classified,
the accuracy is an estimator of P(f(X) = Y)

Error: error = (fp+fn)/(tp+fp+fn+tn) = (fp+fn)/(N+P),

percentage of examples which are wrongly classified,
the error is an estimator of P(f(X) \neq Y)
```

True/False positive/negative rates

true positive rate:	tpr = tp/(tp+fn)=tp/P,			
(or sensitivity)				
	ratio of pos. ex. correctly classified as pos.			
	the tpr is an estimator of $P(f(X) = 1 Y = 1)$.			
false positive rate:	fpr = fp/(fp+tn)=fp/N,			
	ratio of neg. ex. wrongly classified as pos.			
	the fpr is an estimator of $P(f(X) = 1 Y = -1)$.			
false negative rate:	fnr = fn/(tp+fn)=fn/P,			
	ratio of pos. ex. wrongly classified as neg.			
	the fnr is an estimator of $P(f(X) = -1 Y = 1)$.			
true negative rate:	tnr = tn/(fp+tn)=tn/N,			
(or specificity)				
	ratio of neg. ex. correctly classified as neg.			
	the tnr is an estimator of $P(f(X) = -1 Y = -1)$.			

Performance Measures V

Useful measures in case of highly unbalanced classes:

```
positive predictive ppv = tp/(tp+fp), value ratio of true pos. ex. classified as pos., ppv is an estimator of P(Y=1|f(X)=1). negative predictive npv = tn/(tn+fn) value ratio of true neg. ex. classified as neg., npv is an estimator of P(Y=-1|f(X)=-1).
```

- Measure for how often is the classifier correct when it predicts a certain class.
- In medical applications (diagnosis of diseases), in particular where the class probabilities are highly unbalanced, one uses alternatively to sensitivity and specificity, the negative and positive predictive value.

Performance Measures VI

Measures used in information retrieval (one class problem):

recall: recall = tp/(tp+fn)=tp/P, (same as true positive rate) ratio of true pos. ex. correctly classified as pos. recall is an estimator of P(f(X) = 1 | Y = 1). precision: precision = tp/(tp+fp), (same as positive predictive value) ratio of true pos. examples of all ex. classified as pos. precision is an estimator of P(Y = 1 | f(X) = 1).

- recall: ratio of the detected relevant documents
- precision: ratio of relevant documents in the result list,

Definition

The **F-score** F is the harmonic mean of precision and recall,

$$F = \frac{2}{\frac{1}{p} + \frac{1}{r}} = \frac{2pr}{p+r}.$$

Performance Measures VII

Performance measures:

- different weighting of false positive and false negatives,
- differences most prominent when data is unbalanced,
- solution: assign cost to false positives and false negatives and then optimize this cost.
- ⇒ In a ROC curve one integrates all possible class probabilities in one plot.

ROC-curve and AUC

Motivation:

- find best threshold for a desired true positive/false positive rate,
- corresponds to a certain ratio of class probabilities,
- ROC= Receiver Operating Characteristic,
- developed in the 2nd world war to access the optimal threshold for radar detection systems,

ROC curve:

• change decision threshold for classifier $f: \mathcal{X} \to \mathbb{R}$,

$$\hat{f}_{\theta}(x) = \operatorname{sign}(f(x) + \theta),$$

- ROC-curve: plot the true positive rate versus the false positive rate by varying the discrimination threshold θ .
- naive way: compute true positive/false positive rate for all thresholds.

ROC-curve and AUC II

Formal definition:

Definition

Let $tpr(\theta)$ and $fpr(\theta)$ the true and false positive error rate of \hat{f}_{θ} , then the ROC-function $ROC: [0,1] \to [0,1]$ is defined as

$$ROC(x) = tpr(fpr^{-1}(x)).$$

Properties:

- ROC(0) = 0 and ROC(1) = 1,
- the ROC function is monotonically increasing,
- the ROC function can be multi-valued.

ROC-curve and AUC III

Practical computation:

- For m test instances there are only m+1 possible thresholds.
 - sort Y_{test} in **decreasing** order of $f(X_{\text{test}})$, and then start with (0,0),
 - for i=1:m
 - if $Y_{test}(i) = 1$, move up by 1/P,
 - if $Y_{\text{test}}(i) = -1$, move right by 1/N,
 - ties in $f(X_{\text{test}})$ require special handling.
 - * move up by n_+/P , where n_+ is the number of positive test points which have the same output $f(X_{\text{test}})$,
 - * move right by n_-/N , where n_- is the number of negative test points which have the same output $f(X_{\text{test}})$.

ROC-curve and AUC V

Ideal ROC-curve:

Left: Three linear soft margin SVM's with C=1,10,10000, **Right:** The ROC-curve of the three SVM's (red, blue, black) together with the baseline of the (interpolated) constant classifier (green) and a random classifier (magenta). We have perfect separation of the classes - ideal ROC curve. What is the ROC curve of the constant classifier ?

ROC-curve and AUC VII

Linear Interpolation of points on the ROC-curve:

- two different thresholds θ_1, θ_2 ,
- tpr_1 , tpr_2 and fpr_1 , fpr_2 are the true and false positive error rates associated to the thresholds θ_1 , θ_2 ,
- Then the linearly interpolated true/false positive error rates

$$tpr(\lambda) = \lambda tpr_1 + (1 - \lambda) tpr_2, \qquad fpr(\lambda) = \lambda fpr_1 + (1 - \lambda) fpr_2,$$

can be generated by combining $\hat{f}_{ heta_1}$ and $\hat{f}_{ heta_2}$ using a weighted coin flip,

$$\forall\,\lambda\in[0,1],\qquad \hat{f}_{\lambda\theta_1+(1-\lambda)\theta_2}(x)=\left\{\begin{array}{ll}\hat{f}_{\theta_1}(x) & \text{with probability }\lambda,\\ \hat{f}_{\theta_2}(x) & \text{with probability }1-\lambda.\end{array}\right.$$

Combination of classifier

 given a set of classifiers and their ROC-curves construct the convex hull of the ROC curves by combining different classifiers.

ROC-curve and AUC VI

Reasonable ROC-curve:

Problem is not separable anymore - ROC-curves come closer to the random baseline For small false positive error rates two of the SVM's perform worse than random. Combination of classifiers - indicated by the dotted line in the ROC plot and the yellow rectangles indicate the classifiers which are combined.

ROC-curve and AUC VIII

Bad ROC-curve:

A very difficult problem, where the classes are largely overlapping. The ${\rm ROC}\text{-}{\rm curves}$ of the three SVM's are still above random.

ROC-curve and AUC IV

How to compare different ROC curves ?

- A ROC curve can only be said to be better than another curve if the curve always lies above the second one,
- alternative: summarize the curve with a single number,
- measure the Area under the Curve (AUC),

ROC-curve and AUC IX

Interpretation of the AUC:

The AUC measures basically the quality of the ranking of a classifier.

- ullet all positive ex. are ranked higher than all negative ones $\Longrightarrow {
 m AUC}{=}$ 1,
- ullet all negative ex. are ranked higher than all positive ones $\Longrightarrow {
 m AUC} = {
 m 0}$,
- If the ordering is random, then the expectation of the AUC is 0.5.

Definition

Let $f: \mathcal{X} \to \mathbb{R}$ be the original classifier and denote by X_1^+, \dots, X_P^+ and X_1^-, \dots, X_N^- the set of points from positive and negative class in the test set (drawn i.i.d.). Then the **AUC** is defined as,

AUC =
$$\frac{1}{NP} \sum_{j=1}^{N} \sum_{i=1}^{P} \mathbb{1}_{f(X_i^+) > f(X_j^-)}$$
.

(equivalent to the 2-sample Mann-Whitney U-test or Wilcoxon rank sum test).

ROC-curve and AUC X

Proposition

Proof:

Let X^+ be distributed as P(X|Y=1) and X^- as P(X|Y=-1), then

$$\mathbb{E}[\text{AUC}] = P(f(X^+) > f(X^-)).$$

 X_1^-, \dots, X_{m-p}^- from positive and negative class. Note, that

Decompose test sample X_{test} into the samples X_1^+, \dots, X_n^+ and

$$\mathbb{E}_{\{(X_1,Y_1),(X_2,Y_2),\dots,(X_m,Y_m)\}}[\operatorname{AUC}] = \mathbb{E}_{\rho}[\mathbb{E}_{\{(X_1^+,\dots,X_{\rho}^+),(X_1^-,\dots,X_{m-\rho}^-)\}}[\operatorname{AUC}\mid\rho]],$$

where $p \sim \text{Bin}(m, P(Y=1))$ and X_i^+ and X_j^- are i.i.d. samples from P(X|Y=1) and P(X|Y=-1). Thus,

$$\mathbb{E}[\text{AUC}] = \mathbb{E}_{\rho} \left[\frac{1}{(m-\rho)\rho} \sum_{i=1}^{p} \sum_{j=1}^{m} \mathbb{E}_{X_{i}^{+}, X_{j}^{-}} \mathbb{1}_{f(X_{i}^{+}) > f(X_{j}^{-})} | \rho \right]$$

$$= \mathbb{E}_{\rho} \left[\frac{1}{(m-\rho)\rho} (m-\rho)\rho \, P(f(X^{+}) > f(X^{-})) | \rho \right] = P(f(X^{+}) > f(X^{-})),$$

where we have used that the pairs X_i^+ and X_i^- are i.i.d.

Multiclass performance measures

- generalization of binary measures to the multi-class case can be difficult.
- Class balanced error: Let X_j^k denote the samples from class k and let N_k be the cardinality of class k in the test set, then

$$\mathrm{error}_{\mathrm{balanced}} = \frac{1}{K} \sum_{k=1}^K \frac{1}{N_k} \sum_{j=1}^{N_k} \mathbbm{1}_{f(X_j^k) \neq k}.$$

	prediction class 1	 prediction class K	total cases	
pred. class 1	$ \{f(X_i)=1, Y_i=1\} $	 $ \{f(X_i)=K,Y_i=1\} $	$ \{Y_i=1\} $	
:	:	<u>:</u>	:	
pred. class K	$ \{f(X_i)=1,Y_i=K\} $	 $ \{f(X_i)=K,Y_i=K\} $	$ \{Y_i=K\} $	
total pred.	$ \{f(X_i)=1\} $	 $ \{f(X_i)=K\} $		

Table: The confusion matrix for a multi-class problem.

Golden rule for your machine learning problem

Golden rule for solving problems:

Think about what is the correct performance measure/cost matrix for your problem and then optimize that and not something else!

Relation between test and true error

Test error = True error ?

Given the test error of the classifier on m test samples.

Questions:

- Can we make any assertions if the true error is close to the test error ?
- For a given confidence level and sample size can we give a confidence interval for the true error given the error on an independent test set ?
- For a given confidence interval and confidence level how many test samples do we need ?
- Can we test if the classifier is significantly better than random guessing ?

Statistical Test

What is a statistical test?

- try to falsify a given null hypothesis H_0 (e.g. SVM and LDA perform equally on data set XYZ),
- define a region of rejection which if H_0 is true has probability (less than) α (where α is the significance level),
- compute a test statistic T (e.g. difference of the test errors of SVM and LDA),
- we reject the null hypothesis if T attains a value in the region of rejection otherwise we keep the null hypothesis,
 - ► If we reject the null hypothesis, we say that the difference between SVM and LDA is **statistically different**,
 - ▶ In the other case we can make no statement about the relation between SVM and LDA.

Statistical Test II

Formal definition of a statistical test

- Let Θ be a set of values, then the null hypothesis H_0 is an assertion that $\theta \in \Theta_0 \subset \Theta$ whereas the alternative hypothesis H_1 is that $\theta \in \Theta \backslash \Theta_0$,
- ② A significance level α is chosen (common values are 0.05 or 0.01),
- **3** A test statistic $T: \mathbb{R}^n \to \mathbb{R}^d$ and a region of rejection B_n is chosen, such that if the null hypothesis is true

$$\forall \theta \in \Theta_0, \quad P_{\theta} \Big(T(X_n) \in B_n \Big) \leq \alpha,$$

where X_n is a set of n sample points,

- **4** An experiment is done which gives X_n ,

Test can be **parametric** or **nonparametric**. If $\Theta = \mathbb{R}$, $H_0: \theta \ge \theta_0$ is a **one-sided test** and $H_0: \theta = \theta_0$ is a **two-sided test**.

Statistical Test III

Confusion matrix of a statistical test:

decision\ reality	H ₀ is correct	H_1 is correct			
H_0 is not rejected	correct decision	type II error with prob. $1-eta(heta)$			
H ₀ is rejected	type I error (prob. $\leq \alpha$)	correct decision			

Definition

Let P_{θ} be the probability measure with parameter θ , then the **power** function of a test is

$$\beta(\theta) = P_{\theta}(T(X_n) \in B_n).$$

The rejection region B_n has been chosen such that,

$$\beta(\theta) \leq \alpha$$
, for all $\theta \in \Theta_0$.

The **type II error** is $1 - \beta(\theta)$ for $\theta \in \Theta \backslash \Theta_0 \Longrightarrow \textbf{Goal}$: high power

p-Value

Definition

Suppose that for every $\alpha \in (0,1)$ we have a test of size α with a corresponding rejection region $B_n(\alpha)$. Then, the **p-value** is defined as

p-value =
$$\inf\{\alpha \mid T(X_n) \in B_n(\alpha)\}.$$

The p-value is thus the smallest significance level α at which the null-hypothesis would be rejected.

If we have

- ullet a test statistic of the form $T:\mathbb{R}^n o [0,\infty)$,
- ullet and the rejection region is given as $[c(\alpha),\infty)$ for $c:(0,1) o\mathbb{R}.$

and the computed test statistic has value $t_{\rm obs}$, then

p-value =
$$P_{\theta_0}(T(X_n) \ge t_{obs})$$
.

Example - Gauss test

- Parametric test: Gaussians $\mathcal{N}(\mu, \sigma^2)$ on \mathbb{R} of fixed variance.
- Null hypothesis: $\mu = \mu_0$ and significance level α ,
- The test statistic, is

$$T(X) = \sqrt{n} \frac{\frac{1}{n} \sum_{i=1}^{n} X_i - \mu_0}{\sigma}.$$

• Reject the null hypothesis if $|T(X)| > q_{1-\frac{\alpha}{2}}$, where q_{γ} is the γ -Quantile of $\mathcal{N}(0,1)$. Under the null hypothesis, $T(X) \sim \mathcal{N}(0,1)$, and thus

$$P(|T(X)| > q_{1-\frac{\alpha}{2}}) = \alpha.$$

• Power function: $T(X) \sim \mathcal{N}(\sqrt{n} \frac{\mu - \mu_0}{\sigma}, 1)$, with

$$\begin{split} \Phi(x) &= \frac{1}{\sqrt{2\pi}} \int\limits_{-\infty}^{x} e^{-\frac{x^2}{2}} dx, \\ \beta(\mu) &= P_{\mu} \left(|T(X)| > q_{1-\frac{\alpha}{2}} \right) \\ &= 1 - \Phi\left(q_{1-\frac{\alpha}{2}} - \sqrt{n} \frac{\mu - \mu_0}{\sigma}\right) + \Phi\left(-q_{1-\frac{\alpha}{2}} - \sqrt{n} \frac{\mu - \mu_0}{\sigma}\right). \end{split}$$

Example - Gauss test II

Figure : Left: The distribution of the test-statistic under the null hypothesis together with the rejection region for the significance level $\alpha=0.05$. Right: The computation of the power of the test for $\mu=-1$ and n=10.

Example - Gauss Test III

Numerical example:

- 10 samples from Gaussians with $\sigma = 2$.
- Test $H_0: \mu = 0$ with $\alpha = 0.05 \Longrightarrow$ acceptance region: $[q_{0.025}, q_{0.975}] = [-1.96, 1.96].$

	X_1	X_2	<i>X</i> ₃	<i>X</i> ₄	<i>X</i> ₅	X_6	<i>X</i> ₇	<i>X</i> ₈	<i>X</i> ₉	X ₁₀
Sample 1	-2.80	-0.62	-0.37	-0.58	0.58	-0.66	0.38	-4.40	-2.04	-2.31
Sample 2	0.59	-2.67	1.43	3.25	-1.38	1.72	2.51	-3.19	-2.88	1.14

- test statistic for sample 1 is T=-2.03 \Longrightarrow reject null hypothesis (true: $\mu=-1$),
- test statistic for sample 2 is T=0.08 we do not reject the null hypothesis (true: $\mu=0$).

Example - Gauss Test IV

Numerical test for α and power

- we draw 10000 samples of size 10 from the same distributions and plot histograms of the value of the test statistic
- rejections: 5.2% for the true parameter and 87.9% for the distribution with true parameter -1.

Confidence regions

Confidence regions

- Hypothesis tests are directly connected to confidence sets of estimated quantities.
- tests make sense if one wants to check some hypothesis about the data.

Definition

A **confidence interval** for a parameter $\theta \in \mathbb{R}$ is an interval $C_n = (a, b)$, where the interval borders $a = a(X_n)$ and $b = b(X_n)$ are functions of the data, such that

$$P_{\theta}(\theta \in C_n) \ge 1 - \alpha$$
, for all $\theta \in \Theta \subseteq \mathbb{R}$.

The value $1-\alpha$ is called the **coverage** of the confidence interval. If $\theta \in \mathbb{R}^d$ a **confidence set** (usually an ellipsoid) is a set $C_n \in \mathbb{R}^d$, which depends on the data X_n , such that

$$P_{\theta}(\theta \in C_n) \ge 1 - \alpha$$
, for all $\theta \in \Theta \subseteq \mathbb{R}^d$.

Confidence regions II

Remark:

- the confidence set C_n is random and θ is fixed,
- it is common to use 95% intervals, that is $\alpha = 0.05$,
- there are two ways of interpreting in probabilistic terms a confidence interval.
 - ① If one repeats the same experiment over and over again the true parameter θ will be contained in the interval in 95% of the cases. This interpretation is valid but practically usually difficult to realize, since one does an experiment once.
 - ② One does k different experiments with data from different sources and constructs for each case a confidence interval. Then, in the limit $k \to \infty$, 95% of the constructed k confidence intervals will contain the true parameter.

Confidence regions III

- ullet normal distributions $\mathcal{N}(\mu,\sigma^2)$ with fixed variance σ^2
- i.i.d. samples X_i from $\mathcal{N}(\mu_0, \sigma^2)$, where μ_0 denotes the true parameter.
- the empirical mean, $\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} X_i$ has distribution given by $\mathcal{N}(\mu_0, \frac{\sigma^2}{n}) \Longrightarrow \sqrt{n} \frac{\hat{\mu} \mu_0}{\sigma} \sim \mathcal{N}(0, 1)$.

Thus, for every true mean $\mu \in \mathbb{R}$ and every $\alpha \in (0,1)$, we have

$$P_{\mu}\left(\left|\sqrt{n}\frac{\hat{\mu}-\mu}{\sigma}\right| \leq q_{1-\frac{\alpha}{2}}\right) = 1 - \alpha,$$

where q_{γ} is the γ -quantile of $\mathcal{N}(0,1)$. Thus,

$$a(X_n) = \hat{\mu} - \frac{\sigma}{\sqrt{n}} q_{1-\frac{\alpha}{2}}, \qquad b(X_n) = \hat{\mu} + \frac{\sigma}{\sqrt{n}} q_{1-\frac{\alpha}{2}},$$

are the boundaries of the confidence interval $[a(X_n), b(X_n)]$ for the parameter μ .