Finite Automata Part Two

Recap from Last Time

DFAs

- A **DFA** is a
 - **D**eterministic
 - Finite
 - Automaton
- DFAs are the simplest type of automaton that we will see in this course.

DFAs

- A DFA is defined relative to some alphabet Σ .
- For each state in the DFA, there must be **exactly one** transition defined for each symbol in Σ .
 - This is the "deterministic" part of DFA.
- There is a unique start state.
- There are zero or more accepting states.

A language L is called a **regular language** if there exists a DFA D such that $\mathcal{L}(D) = L$.

NFAs

- An **NFA** is a
 - Nondeterministic
 - Finite
 - Automaton
- Can have missing transitions or multiple transitions defined on the same input symbol.
- Accepts if *any possible series of choices* leads to an accepting state.

h | i |

h|i

h i p

NFA Languages

The *language of an NFA* is

$$\mathcal{L}(N) = \{ w \in \Sigma^* \mid N \text{ accepts } w \}.$$

What is the language of this NFA? (Assume $\Sigma = \{h, i\}$.)

NFA Languages

The language of an NFA is

$$\mathcal{L}(N) = \{ w \in \Sigma^* \mid N \text{ accepts } w \}.$$

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

ε-Transitions

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

ε-Transitions

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.

ε-Transitions

- NFAs have a special type of transition called the ε-transition.
- An NFA may follow any number of ε-transitions at any time without consuming any input.
- NFAs are not *required* to follow ε-transitions. It's simply another option at the machine's disposal.

Intuiting Nondeterminism

- Nondeterministic machines are a serious departure from physical computers. How can we build up an intuition for them?
- There are two particularly useful frameworks for interpreting nondeterminism:
 - Perfect positive guessing
 - Massive parallelism

a b a b a

- We can view nondeterministic machines as having *Magic Superpowers* that enable them to guess choices that lead to an accepting state.
 - If there is at least one choice that leads to an accepting state, the machine will guess it.
 - If there are no choices, the machine guesses any one of the wrong guesses.
- There is no known way to physically model this intuition of nondeterminism – this is quite a departure from reality!

a b a b a

We're in at least one accepting state, so there's some path that gets us to an accepting state.

a b a b a

a b a b

We're not in any accepting state, so no possible path accepts.

Massive Parallelism

- An NFA can be thought of as a DFA that can be in many states at once.
- At each point in time, when the NFA needs to follow a transition, it tries all the options at the same time.
- (Here's a rigorous explanation about how this works; read this on your own time).
 - Start off in the set of all states formed by taking the start state and including each state that can be reached by zero or more ϵ -transitions.
 - When you read a symbol **a** in a set of states *S*:
 - Form the set *S'* of states that can be reached by following a single a transition from some state in *S*.
 - Your new set of states is the set of states in S', plus the states reachable from S' by following zero or more ϵ -transitions.

So What?

- Each intuition of nondeterminism is useful in a different setting:
 - Perfect guessing is a great way to think about how to design a machine.
 - Massive parallelism is a great way to test machines and has nice theoretical implications.
- Nondeterministic machines may not be feasible, but they give a great basis for interesting questions:
 - Can any problem that can be solved by a nondeterministic machine be solved by a deterministic machine?
 - Can any problem that can be solved by a nondeterministic machine be solved *efficiently* by a deterministic machine?
- The answers vary from automaton to automaton.

Designing NFAs

Designing NFAs

- Embrace the nondeterminism!
- Good model: **Guess-and-check**:
 - Is there some information that you'd really like to have? Have the machine *nondeterministically guess* that information.
 - Then, have the machine *deterministically check* that the choice was correct.
- The *guess* phase corresponds to trying lots of different options.
- The *check* phase corresponds to filtering out bad guesses or wrong options.

```
L = \{ w \in \{0, 1\}^* \mid w \text{ ends in 010 or 101} \}
```



```
L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \}
```


 $L = \{ w \in \{a, b, c\}^* \mid \text{at least one of } a, b, \text{ or } c \text{ is not in } w \}$

Nondeterministically guess which character is missing.

Deterministically check whether that character is indeed missing.

Just how powerful are NFAs?

NFAs and DFAs

- Any language that can be accepted by a DFA can be accepted by an NFA.
- Why?
 - Every DFA essentially already is an NFA!
- Question: Can any language accepted by an NFA also be accepted by a DFA?
- Surprisingly, the answer is yes!

	0	1
$*q_0$	q_1	q_0
q_1	q_3	\boldsymbol{q}_2
q_2	q_3	q_0
$*q_3$	q_3	q_3

Question to ponder: Why isn't there a column here for Σ ?

My Turn to Code Things Up!

```
int kTransitionTable[kNumStates][kNumSymbols] = {
     \{0, 0, 1, 3, 7, 1, ...\},\
bool kAcceptTable[kNumStates] = {
    false,
    true,
    true,
bool SimulateDFA(string input) {
    int state = 0;
    for (char ch: input) {
        state = kTransitionTable[state][ch];
    return kAcceptTable[state];
```

Thought Experiment:

How would you simulate an NFA in software?

a b a b a

	а
$\{q_0\}$	$\{q_0, q_1\}$

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_{0}\}$

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_{0}\}$

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$		

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$		

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$		

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$		

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$		

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$		

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_{0}\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$		

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_{0}\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_{0}\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$		

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$		

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$		

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$		

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$		

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$		

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_{0}\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_{0}\}$
$\{q_0, q_1, q_3\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$*{q_0, q_1, q_3}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$*{q_0, q_1, q_3}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

	а	b
$\{q_0\}$	$\{q_0, q_1\}$	$\{q_0\}$
$\{q_0, q_1\}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$
$\{q_0, q_2\}$	$\{q_0, q_1, q_3\}$	$\{q_0\}$
$*{q_0, q_1, q_3}$	$\{q_0, q_1\}$	$\{q_0, q_2\}$

a b a a b a

a b a a b a

a b a a b a

Some Caveats

- *Question*: what about ε-transitions?
 - Answer: always include any states you can reach by following ϵ -transitions.
- *Question*: what happens if there are *no* transitions to follow from a set of states for the character you're trying to fill in?
 - Answer: then the set of states you can reach is the empty set!
- Example included in the appendix of this lecture showing this construction with both of these scenarios.

The Subset Construction

- This construction for transforming an NFA into a DFA is called the *subset construction* (or sometimes the *powerset construction*).
 - Each state in the DFA is associated with a set of states in the NFA.
 - The start state in the DFA corresponds to the start state of the NFA, plus all states reachable via ϵ -transitions.
 - If a state *q* in the DFA corresponds to a set of states *S* in the NFA, then the transition from state *q* on a character a is found as follows:
 - Let S' be the set of states in the NFA that can be reached by following a transition labeled a from any of the states in S. (This set may be empty.)
 - Let S'' be the set of states in the NFA reachable from some state in S' by following zero or more epsilon transitions.
 - The state *q* in the DFA transitions on a to a DFA state corresponding to the set of states *S*''.
- Read Sipser for a formal account.

The Subset Construction

- For the purposes of this class, we won't ask you to actually perform the subset construction.
- Hopefully though, you've been convinced that, in principle, you *could* follow this procedure to turn any NFA into a DFA.

The Subset Construction

- In converting an NFA to a DFA, the DFA's states correspond to sets of NFA states.
- Useful fact: $|\wp(S)| = 2^{|S|}$ for any finite set S.
- In the worst-case, the construction can result in a DFA that is *exponentially larger* than the original NFA.
- **Question to ponder:** Can you find a family of languages that have NFAs of size n, but no DFAs of size less than 2^n ?

A language L is called a **regular language** if there exists a DFA D such that $\mathcal{L}(D) = L$.

Theorem: A language L is regular iff there is some NFA N such that $\mathcal{L}(N) = L$.

Theorem: A language L is regular iff there is some NFA N such that $\mathcal{L}(N) = L$.

Proof Sketch:

Theorem: A language L is regular iff there is some NFA N such that $\mathcal{L}(N) = L$.

Proof Sketch: If L is regular, there exists some DFA for it, which we can easily convert into an NFA.

Theorem: A language L is regular iff there is some NFA N such that $\mathcal{L}(N) = L$.

Proof Sketch: If L is regular, there exists some DFA for it, which we can easily convert into an NFA.

If L is accepted by some NFA, we can use the subset construction to convert it into a DFA that accepts the same language, so L is regular.

Theorem: A language L is regular iff there is some NFA N such that $\mathcal{L}(N) = L$.

Proof Sketch: If L is regular, there exists some DFA for it, which we can easily convert into an NFA.

If L is accepted by some NFA, we can use the subset construction to convert it into a DFA that accepts the same language, so L is regular. \blacksquare

Why This Matters

- We now have two perspectives on regular languages:
 - Regular languages are languages accepted by DFAs.
 - Regular languages are languages accepted by NFAs.
- We can now reason about the regular languages in two different ways.

Properties of Regular Languages

- Given a language $L \subseteq \Sigma^*$, the **complement** of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$

- Given a language $L \subseteq \Sigma^*$, the *complement* of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$

- Given a language $L \subseteq \Sigma^*$, the *complement* of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$

- Given a language $L \subseteq \Sigma^*$, the *complement* of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$

- Given a language $L \subseteq \Sigma^*$, the *complement* of that language (denoted \overline{L}) is the language of all strings in Σ^* that aren't in L.
- Formally:

$$\overline{L} = \Sigma^* - L$$

$$\begin{array}{c} \text{Good proofwriting} \\ \text{exercise: prove } \overline{L} = L \\ \text{for any language } L. \end{array}$$

Complementing Regular Languages

 $L = \{ w \in \{a, b\}^* \mid w \text{ contains } aa \text{ as a substring } \}$

 $\overline{L} = \{ w \in \{a, b\}^* \mid w \text{ does not contain as a substring } \}$

Complementing Regular Languages

 $\overline{L} = \{ w \in \{a, *, /\}^* \mid w \text{ doesn't } \text{ represent a C-style } \text{ comment } \}$

Complementing Regular Languages

 $\overline{L} = \{ w \in \{a, *, /\}^* \mid w \text{ doesn't } \text{ represent a C-style } \text{ comment } \}$

Closure Properties

- **Theorem:** If L is a regular language, then \overline{L} is also a regular language.
- As a result, we say that the regular languages are *closed under complementation*.

- If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?

- If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?

- If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?

- If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?

- If L_1 and L_2 are languages over the alphabet Σ , the language $L_1 \cup L_2$ is the language of all strings in at least one of the two languages.
- If L_1 and L_2 are regular languages, is $L_1 \cup L_2$?

- If L_1 and L_2 are languages over Σ , then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2 .
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

- If L_1 and L_2 are languages over Σ , then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2 .
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

 $L_{_1}$

- If L_1 and L_2 are languages over Σ , then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2 .
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

- If L_1 and L_2 are languages over Σ , then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2 .
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

$$\overline{L}_1 \cup \overline{L}_2$$

- If L_1 and L_2 are languages over Σ , then $L_1 \cap L_2$ is the language of strings in both L_1 and L_2 .
- Question: If L_1 and L_2 are regular, is $L_1 \cap L_2$ regular as well?

Concatenation

String Concatenation

- If $w \in \Sigma^*$ and $x \in \Sigma^*$, the *concatenation* of w and x, denoted wx, is the string formed by tacking all the characters of x onto the end of w.
- Example: if w = quo and x = kka, the concatenation wx = quokka.
- Analogous to the + operator for strings in many programming languages.
- Some facts about concatenation:
 - The empty string ε is the *identity element* for concatenation:

$$w\varepsilon = \varepsilon w = w$$

• Concatenation is *associative*:

$$wxy = w(xy) = (wx)y$$

Concatenation

• The *concatenation* of two languages L_1 and L_2 over the alphabet Σ is the language

```
L_1L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \}
```

Concatenation Example

- Let $\Sigma = \{$ a, b, ..., z, A, B, ..., Z $\}$ and consider these languages over Σ :
 - **Noun** = { Puppy, Rainbow, Whale, ... }
 - **Verb** = { Hugs, Juggles, Loves, ... }
 - *The* = { The }
- The language *TheNounVerbTheNoun* is
 - ThePuppyHugsTheWhale, TheWhaleLovesTheRainbow, TheRainbowJugglesTheRainbow, ... }

Concatenation

• The *concatenation* of two languages L_1 and L_2 over the alphabet Σ is the language

$$L_1L_2 = \{ wx \in \Sigma^* \mid w \in L_1 \land x \in L_2 \}$$

- Two views of L_1L_2 :
 - The set of all strings that can be made by concatenating a string in L_1 with a string in L_2 .
 - The set of strings that can be split into two pieces: a piece from L_1 and a piece from L_2 .

- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Machine for L_1

Machine for L_2

- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

b o o k k e e p e r

- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

b o o k k e e p e r

- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

Machine for L_1

Machine for L_2

b	0	0	k
---	---	---	---

k e e p e r

- If L_1 and L_2 are regular languages, is L_1L_2 ?
- Intuition can we split a string w into two strings xy such that $x \in L_1$ and $y \in L_2$?

• *Idea*:

- Run a DFA/NFA for L_1 on w.
- Whenever it reaches an accepting state, optionally hand the rest of w to a DFA/NFA for L_2 .
- If the automaton for L_2 accepts the rest, $w \in L_1L_2$.
- If the automaton for L_2 rejects the remainder, the split was incorrect.

Machine for $L_{\scriptscriptstyle 1}$

Machine for L_1

Machine for L_2

Lots and Lots of Concatenation

- Consider the language $L = \{ aa, b \}$
- LL is the set of strings formed by concatenating pairs of strings in L.

```
{ aaaa, aab, baa, bb }
```

• LLL is the set of strings formed by concatenating triples of strings in L.

```
{ aaaaaa, aaaab, aabaa, aabb, baaaa, baab, bbaa, bbb}
```

• LLLL is the set of strings formed by concatenating quadruples of strings in L.

```
{ aaaaaaaa, aaaaaab, aaaabaa, aaaabb, aabaaaa, aabaab, aabbaa, aabbb, baaaaaa, baaaab, baabaa, baabb, bbaaaa, bbbb}
```

Language Exponentiation

- We can define what it means to "exponentiate" a language as follows:
- $L_0 = \{ \epsilon \}$
 - The set containing just the empty string.
 - Idea: Any string formed by concatenating zero strings together is the empty string.
- $L^{n+1} = LL^n$
 - Idea: Concatenating (n+1) strings together works by concatenating n strings, then concatenating one more.
- *Question to ponder:* Why define $L^0 = \{\epsilon\}$?
- **Question to ponder:** What is Ø⁰?

The Kleene Closure

• An important operation on languages is the *Kleene Closure*, which is defined as

$$L^* = \{ w \in \Sigma^* \mid \exists n \in \mathbb{N}. \ w \in L^n \}$$

• Mathematically:

$$w \in L^*$$
 iff $\exists n \in \mathbb{N}. \ w \in L^n$

- Intuitively, all possible ways of concatenating zero or more strings in L together, possibly with repetition.
- **Question to ponder:** What is Ø*?

The Kleene Closure

```
If L=\{ a, bb \}, then L*=\{ \epsilon, a, bb, aa, abb, bba, bbbb, aaa, aabb, abba, abbbb, bbaa, bbbbb, bbbbbb, ...
```

Think of L* as the set of strings you can make if you have a collection of stamps - one for each string in L - and you form every possible string that can be made from those stamps.

- If L is regular, is L^* necessarily regular?
- A Bad Line of Reasoning: A
 - $L^0 = \{ \epsilon \}$ is regular.
 - $L^1 = L$ is regular.
 - $L^2 = LL$ is regular
 - $L^3 = L(LL)$ is regular
 - •
 - Regular languages are closed under union.
 - So the union of all these languages is regular.

0.9 < 1

0.99 < 1

0.999 < 1

0.9999 < 1

 $0.9999\overline{9} < 1$

 $0.99999\overline{9} < 1$

∞ is finite

∞ is finite
^ not

Reasoning About the Infinite

- If a series of finite objects all have some property, the "limit" of that process *does* not necessarily have that property.
- In general, it is not safe to conclude that some property that always holds in the finite case must hold in the infinite case.
 - (This is why calculus is interesting).

Idea: Can we directly convert an NFA for language L to an NFA for language L^* ?

Machine for L^*

Closure Properties

- Theorem: If L_1 and L_2 are regular languages over an alphabet Σ , then so are the following languages:
 - \overline{L}_1
 - $L_1 \cup L_2$
 - $L_1 \cap L_2$
 - L_1L_2
 - L₁*
- These properties are called closure properties of the regular languages.

Next Time

- Regular Expressions
 - Building languages from the ground up!
- Thompson's Algorithm
 - A UNIX Programmer in Theoryland.
- Kleene's Theorem
 - From machines to programs!

Appendix: Extended Subset Construction Example

	а	b
$\{q_0, q_3\}$		
		-

	а	b
$\{q_0, q_3\}$		
		-

	а	b
$\{q_0, q_3\}$		

	а	b
$\{q_0, q_3\}$		

	а	b
$\{q_0, q_3\}$		

b

b

b

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	

b

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$

а	b
$\{q_1, q_4\}$	$\{q_4\}$

а	b
$\{q_1, q_4\}$	$\{q_4\}$

а	b
$\{q_1, q_4\}$	$\{q_4\}$

	a	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$		

а	b
$\{q_1, q_4\}$	$\{q_4\}$

а	b	
$\{q_1, q_4\}$	$\{q_4\}$	
Ø		
	$\{q_1, q_4\}$	

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	

а	b	
$\{q_1, q_4\}$	$\{q_4\}$	
Ø		
	$\{q_1, q_4\}$	

а	b	
$\{q_1, q_4\}$	$\{q_4\}$	
Ø		
	$\{q_1, q_4\}$	

а	b	
$\{q_1, q_4\}$	$\{q_4\}$	
Ø		
	$\{q_1, q_4\}$	

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$

а	b	
$\{q_1, q_4\}$	$\{q_4\}$	
Ø	$\{q_2, q_3\}$	
	$\{q_1, q_4\}$	

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$		

а	b
$\{q_1, q_4\}$	$\{q_4\}$
Ø	$\{q_2, q_3\}$
	$\{q_1, q_4\}$

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$		

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$		
_		

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$		

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	

а	b
$\{q_1, q_4\}$	$\{q_4\}$
Ø	$\{q_2, q_3\}$
Ø	
	{ q1, q4} Ø

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	

_		
	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$		

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$		

_		
	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$		

		L
	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$		

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$		

		L
	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$		

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$		

	a	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$		

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$		

	a	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$		

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$		

	a	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$		

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$

	a	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$		

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$		

	a	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$		

	a	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$		

 $\{q_4\}$

 $\{q_2, q_3\}$

 $\{q_3\}$

 $\{q_0, q_3, q_4\}$

 $\{q_4\}$

	a	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$		

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$
$\{q_3, q_4\}$		

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$
$\{q_3, q_4\}$		

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$
$\{q_3, q_4\}$		

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$
$\{q_3, q_4\}$		

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$
$\{q_3, q_4\}$		

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$
$\{q_3, q_4\}$		

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$
$\{q_3, q_4\}$	$\{q_4\}$	

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$
$\{q_3, q_4\}$	$\{q_4\}$	

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$
$\{q_3, q_4\}$	$\{q_4\}$	

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$
$\{q_3, q_4\}$	$\{q_4\}$	

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$
$\{q_3, q_4\}$	$\{q_4\}$	

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$
$\{q_3, q_4\}$	$\{q_4\}$	

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$
$\{q_3, q_4\}$	$\{q_4\}$	$\{q_3, q_4\}$

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$
$\{q_3, q_4\}$	$\{q_4\}$	$\{q_3, q_4\}$

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$
$\{q_3, q_4\}$	$\{q_4\}$	$\{q_3, q_4\}$
Ø		

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$
$\{q_3, q_4\}$	$\{q_4\}$	$\{q_3, q_4\}$
Ø	Ø	Ø

	а	b
$\{q_0, q_3\}$	$\{q_1, q_4\}$	$\{q_4\}$
$\{q_1, q_4\}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$\{q_2, q_3\}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
$\{q_3\}$	$\{q_4\}$	$\{q_4\}$
$\{q_0, q_3, q_4\}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$
$\{q_3, q_4\}$	$\{q_4\}$	$\{q_3, q_4\}$
Ø	Ø	Ø

	а	b
*{q ₀ , q ₃ }	$\{q_1, q_4\}$	$\{q_4\}$
$*{q_1, q_4}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$*{q_2, q_3}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
*{ <i>q</i> ₃ }	$\{q_4\}$	$\{q_4\}$
$*{q_0, q_3, q_4}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$
*{q ₃ , q ₄ }	$\{q_4\}$	$\{q_3, q_4\}$
Ø	Ø	Ø

	а	b
*{q ₀ , q ₃ }	$\{q_1, q_4\}$	$\{q_4\}$
$*{q_1, q_4}$	Ø	$\{q_2, q_3\}$
$\{q_4\}$	Ø	$\{q_3\}$
$*{q_2, q_3}$	$\{q_0, q_3, q_4\}$	$\{q_0, q_3, q_4\}$
*{ <i>q</i> ₃ }	$\{q_4\}$	$\{q_4\}$
$*{q_0, q_3, q_4}$	$\{q_1, q_4\}$	$\{q_3, q_4\}$
*{q ₃ , q ₄ }	$\{q_4\}$	$\{q_3, q_4\}$
Ø	Ø	Ø