5.1 The Basics

Notebook: Discrete Mathematics [CM1020]

Created: 2019-10-07 2:31 PM Updated: 2019-11-20 6:00 PM

Author: SUKHJIT MANN

Cornell Notes

Topic:

5.1 The Basics

Course: BSc Computer Science

Class: Discrete Mathematics-Lecture

Date: November 20, 2019

Essential Question:

What is Boolean Algebra, its postulates and/or Boolean functions?

Questions/Cues:

- What is Two-valued Boolean algebra?
- What are the Operations of Boolean Algebra?
- What are Huntington's Postulates for Boolean Algebra?
- What are some other useful theorems derived from Huntington's Postulates?
- What are De Morgan's Theorems for Boolean Algebra?
- What is principle of duality?
- What are the 4 ways of proving theorems in Boolean Algebra?
- What is a Boolean Function?
- What are algebraic forms of a Boolean function?
- What are the standardized forms of a Boolean function?
- What are the steps to building a sum of products form?
- What are some other useful Boolean functions?

Notes

Two-valued Boolean algebra

The most well-known form of Boolean algebra is a two-valued system, where:

- variables take values on the set {0, 1}
- the operators (+) and (.) correspond to (OR) and (AND) respectively

It could be used to describe and design digital circuits.

Operations of Boolean algebra

Boolean algebra is based on three fundamental operations:

AND

- logical product, intersection or conjunction
- represented as $x \cdot y$, $x \cap y$ or $x \wedge y$

OR

- · logical sum, union or disjunction
- represented as x + y, $x \cup y$ or $x \vee y$

NOT

- logical complement or negation
- represented as x', \bar{x} or $\neg x$

When parentheses are not used, these operators have the following order of precedence:

The truth tables for the three operations can be represented as follows:

AND

x. y is true if both x and y are true

x y x · y 0 0 0 0 1 0 1 0 0 1 1 1

OR

x + y is true if either x or y is true

NOT

x' is true if x is not true

		О	О	О
_		0	1	1
x	x'	1	0	1
0	1	1	1	1
1	0	1		

Huntington's postulates

Huntington's postulates define 6 axioms that must be satisfied by any Boolean algebra:

- · closure with respect to the operators:
 - any result of logical operation belongs to the set {0, 1}
- · identity elements with respect to the operators:
 - x + 0 = x, $x \cdot 1 = x$
- commutativity with respect to the operators:
 - x + y = y + x, $x \cdot y = y \cdot x$
- distributivity:
 - $x(y+z) = (x \cdot y) + (x \cdot z), x + (y \cdot z) = (x+y) \cdot (x+z)$
- complements exist for all the elements:
 - x + x' = 1, $x \cdot x' = 0$
- Distinct elements:
 - 0 ≠ 1

Basic theorems

Using the 6 axioms of Boolean algebra, we can establish other useful theorems for analysing and designing circuits:

theorem 1: idempotent laws

$$x + x = x$$
, $x \cdot x = x$

theorem 2: tautology and contradiction

$$x + 1 = 1$$
, $x \cdot 0 = 0$

theorem 3: involution

$$(x')' = x$$

theorem 4: associative laws

$$(x + y) + z = x + (y + z)$$
, $(x \cdot y) \cdot z = x \cdot (y \cdot z)$

· theorem 5: absorption laws

$$x + (x \cdot y) = x$$
, $x \cdot (x + y) = x$

theorem 6: uniqueness of complement

if
$$y + x = 1$$
 and $y \cdot x = 0$, then $x = y'$

theorem 7: inversion law

$$0' = 1$$
, $1' = 0$.

De Morgan's theorems

Theorem 1

– The complement of a product of variables is equal to the sum of the complements of the variables : $\overline{x \cdot y} = \overline{x} + \overline{y}$.

Theorem 2

– The complement of a sum of variables is equal to the product of the complements of the variables : $\overline{x+y} = \overline{x}$. \overline{y}

x	y	<u>x.y</u>	$\overline{x} + \overline{y}$	$\overline{x+y}$	\overline{x} . \overline{y}
О	0	1	1	1	1
О	1	1	1	0	0
1	0	1	1	0	0
1	1	О	0	0	0

Proof of distributivity of + over.

Let's prove the distributivity of + over . using truth tables.

х	у	z	y.z	x+y	x+z	$x + (y \cdot z)$	(x+y).(x+z)
О	0	0	0	О	0	О	0
О	0	1	0	0	1	О	0
О	1	О	0	1	О	О	0
О	1	1	1	1	1	1	1
1	О	О	0	1	1	1	1
1	О	1	О	1	1	1	1
1	1	0	0	1	1	1	1
1	1	1	1	1	1	1	1

Principle of duality

Starting with a Boolean relation, we can build another equivalent Boolean relation by:

- changing each OR (+) sign to an AND (.) sign
- changing each AND (.) sign to an OR (+) sign
- · changing each 0 to 1 and each 1 to 0.

Example

Since A + BC = (A+B)(A + C) (by distributive law), we can build another relation using the duality principle: A(B + C) = AB + AC.

Examples

Let's consider the Boolean equations:

- el: $(a.1).(0+\bar{a})=0$
- e2: $a + \bar{a}$. b = a + b

The dual equations of e1 and e2 are obtained by interchanging + and . , and interchanging 0 and 1, as follows:

- dual of el: $(a + 0) + (1. \bar{a}) = 1$
- dual of e2: a. $(\bar{a} + b) = a \cdot b$

Ways of proving theorems

In general, there are 4 ways to prove the equivalence of Boolean relations:

- perfect induction: by showing the two expressions have identical truth tables. This is can be tedious if there are more than 3 or 4 variables
- axiomatic proof: by applying Huntington's postulates or theorems (that have already been proven) to the expressions, until identical expressions are found
- duality principle: every theorem in Boolean algebra remains valid if we interchange all AND's and OR's and interchange all 0's and 1's
- contradiction: by assuming that the hypothesis is false and then proving that the conclusion is false.

Examples

Let's consider proving the absorption theorem.

• The absorption theorem can be proved using perfect induction, by writing a truth table.

x	у	x+(x.y)
o	0	О
o	1	О
1	0	1
1	1	1

· It can also be proved directly as follows:

$$x + (x \cdot y) = (x \cdot 1) + (x \cdot y)$$
 by $x \cdot 1 = x$
 $= x \cdot (1 + y)$ by distributivity
 $= x \cdot (y + 1)$ by commutativity
 $= x \cdot 1$ by $x + 1 = x$
 $= x$ by $x \cdot 1 = x$

• From $x + (x \cdot y) = x$, if we apply the duality principle, we can deduce: $x \cdot (x + y) = x$

Definition

- A function defines a mapping from one or multiple Boolean input values to a Boolean output value
- For n Boolean input values, there are 2ⁿ possible combinations.
- For example:

a 3-input function **f** can be completely defined with an 8-row truth table.

X	у	z	f(x,y,z)
o	О	0	1
0	О	1	0
О	1	o	О
О	1	1	1
1	О	0	0
1	0	1	0
1	1	0	0
1	1	1	1

Algebraic forms

- There is only one way to represent a Boolean function in a truth table
- In algebraic form, a function can be expressed in a variety of ways

x	y	f(x,y)
О	0	О
О	1	1
1	О	1
1	1	1

For example:

f(x) = x + x'. y and f(x) = x + y are both algebraic representations of the same truth Table.

Standardised forms of a function

The two most common standardised forms are the **sum-of-products** form and the **product-of-sums** form

- The sum-of-products form: such as: f(x, y, z) = xy + xz + yz
- The product-of-sums form: such as: f(x, y, z) = (x + y)(x + z)(y + z)
- The sum-of-products form is easier to use and to simplify.

Building a sum of products form

- 1. We focus on the values of the variables that make the function equal to 1
- 2. Then if an input equals 1, it appears uncomplemented in the expression and stays as it is
- 3. If an input equals 0, it appears complemented in the expression and its corresponding complement is used
- 4. The function f is then expressed as the sum of products of all the terms for which f = 1

Example

- Let's consider the function f represented by following truth table.
- · can be expressed as

$$f(x,y) = x'y + xy' + xy$$

x	y	f(x,y)
О	О	О
o	1	1
1	0	1
1	1	1

Useful functions

The **'exclusive-or'** function: $x \oplus y$:

- · defined as "true if either x or y is true, but not both"
- represented by the following truth table
- · can be expressed as:

$$x \oplus y = x'y + xy'$$

x	y	$x \oplus y$
o	o	О
О	1	1
1	0	1
1	1	0

The **'implies'** function: $x \rightarrow y$:

- · defined as "if x then y"
- · represented by the following truth table
- can be expressed as:

$$x \rightarrow y = x' + y$$

x	y	$x \rightarrow y$
О	О	1
О	1	1
1	0	О
1	1	1

Summary

In this week, we learned what Boolean Algebra is, the postulates of Boolean Algebra and what is Boolean function is.