Zeru-Zhou-project10

November 8, 2021

1 Project 10 – Zeru Zhou

TA Help: NA

Collaboration: NA

• Get help from Dr. Ward's video

1.1 Question 1

```
[2]: library(data.table)
 [3]: elections <- fread("/depot/datamine/data/election/itcont2014.txt", sep="|")
 [4]: benfords_law_old <- function(digit) {
          if ((digit < 1) | (digit > 9)) {stop("digit is out of range")}
          log((digit+1)/digit)/log(10)
      benfords_law <- function(v) {</pre>
          sapply(v, benfords_law_old)
      get_starting_digit <- function(transaction_vector) {</pre>
          as.numeric(substr(transaction vector,1,1))
      }
 [7]: T <-
       →table(get_starting_digit(elections$TRANSACTION_AMT)[elections$TRANSACTION_AMT]
       \rightarrow ! = 0])
     Warning message in get_starting_digit(elections$TRANSACTION_AMT):
     "NAs introduced by coercion"
[14]: plot(T/sum(T))
      lines(benfords_law(1:9))
```


There are modifications needed because 0 is included in our dataset but benfords law only accept 1 to 9. We need to remove 0 when analyzing.

1.2 Question 2

```
[14]: T < -_{\sqcup} \hookrightarrow table(get_starting_digit(elections$TRANSACTION_AMT)[elections$TRANSACTION_AMT_\sqcup \hookrightarrow!= 0])
```

Warning message in get_starting_digit(elections\$TRANSACTION_AMT): "NAs introduced by coercion"

```
[8]: plot(T/sum(T), main="Comparison under Benfords law") lines(benfords_law(1:9))
```

Comparison under Benfords law

This should not be considered as anomalous because except for starting value 2 and 5, the rest of digits are following benfords law. This is because maybe many transactions are like \$500, or \$2000. Benfords law aimed to analyze real world data and this should be normal case.

1.3 Question 3

```
[11]: compare_to_benfords <- function(values,title="Comparison under Benfords law") {
        T <- table(get_starting_digit(values)[values != 0])
        plot(T/sum(T), main=title)
        lines(benfords_law(1:9))</pre>
```

}

[5]: compare_to_benfords(elections\$TRANSACTION_AMT)

Warning message in get_starting_digit(values):
"NAs introduced by coercion"

Comparison under Benfords law

Here I combined the process together and created function "compare_to_benfords". The result is exactly the same as in question 2.

1.4 Question 4

The transaction amount in each entity are combined into one graph, as shown above.

1.5 Question 5

[14]: names(elections)

- 1. 'CMTE_ID' 2. 'AMNDT_IND' 3. 'RPT_TP' 4. 'TRANSACTION_PGI' 5. 'IMAGE_NUM' 6. 'TRANSACTION_TP' 7. 'ENTITY_TP' 8. 'NAME' 9. 'CITY' 10. 'STATE' 11. 'ZIP_CODE'
- 12. 'EMPLOYER' 13. 'OCCUPATION' 14. 'TRANSACTION DT' 15. 'TRANSACTION AMT'
- 16. 'OTHER_ID' 17. 'TRAN_ID' 18. 'FILE_NUM' 19. 'MEMO_CD' 20. 'MEMO_TEXT'
- 21. 'SUB ID'

[5]: head(elections)

	CMTE_ID	AMNDT_IND	RPT_TP	TRANSACTION_PGI	$IMAGE_NUM$	TRA
A data.table: 6×21	<chr $>$	<chr></chr>	<chr $>$	<chr $>$	<int64></int64>	<chr< td=""></chr<>
	C00403477	N	12S		13961108044	15
	C00403477	N	12S		13961108042	15
	C00403477	N	12S		13961108042	15
	C00403477	N	12S		13961108042	15
	C00403477	N	12S		13961108043	15
	C00403477	N	12S		13961108043	15

```
Warning message in get_starting_digit(values):
"NAs introduced by coercion"
```


I compared transaction amount in four states: VA, PA, IL, and IN, with benfords law appears to check anormality. I find that these four states has extremely similiar pattern in the percentage pattern of transaction amount when checking the first digit. Transactions with starting digits 2 and 5 are extremely common in all of the four states. Also, except for these two digits, the others follows the benfords law tightly.

1.6 Pledge

By submitting this work I hereby pledge that this is my own, personal work. I've acknowledged in the designated place at the top of this file all sources that I used to complete said work, including but not limited to: online resources, books, and electronic communications. I've noted all collaboration with fellow students and/or TA's. I did not copy or plagiarize another's work.

As a Boilermaker pursuing academic excellence, I pledge to be honest and true in all

that I do. Accountable together – We are Purdue.