7-29

E. Martins, DET Universidade de Aveiro

Sistemas Electrónicos – 2020/2021

Conversão A/D

Conversores Analógico-Digital

(ADC)

• A função da ADC é produzir uma palavra digital de saída de valor directamente proporcional à tensão analógica de entrada.

Se D for o valor decimal da palavra binária de saída:

$$D = b_{N-1} 2^{N-1} + \dots + b_2 2^2 + b_1 2^1 + b_0 2^0$$

Então o que se pretende da ADC é que

$$D = K.v_a$$
 Sendo K uma constante de proporcionalidade

7-30

7-31

E. Martins, DET Universidade de Aveiro

Sistemas Electrónicos - 2020/2021

ADC paralela ou flash

Saída $\begin{cases} 1 & \text{se } v_a > V_{FS} / 2 \\ 0 & \text{se } v_a < V_{FS} / 2 \end{cases}$

• Baseia-se no simples facto de um comparador ser uma ADC elementar

Saída

ADC paralela ou flash

NOTA: assumindo que as tensões de saturação são V_{CC} e V_{EE} o que nem sempre acontece!

ADC paralela (de 3 bits)

- Sinal analógico, v_a , é comparado simultaneamente com vários níveis de quantização criados por um divisor de tensão resistivo;
- Saída dos comparadores é codificada num valor de N-bits pelo circuito lógico.

Níveis de quantização:

$$V_1 = \frac{R}{R + 15R} V_{REF} = \frac{1}{16} V_{REF}$$

$$V_2 = \frac{3R}{3R + 13R} V_{REF} = \frac{3}{16} V_{REF}$$

• • •

$$V_7 = \frac{13R}{13R + 3R} V_{REF} = \frac{13}{16} V_{REF}$$

E. Martins, DET Universidade de Aveiro

Sistemas Electrónicos - 2020/2021

ADC paralela (de 3 bits)

Exemplo: $V_{REF} = 8V$

ADC paralela (de 3 bits)

Tabela de verdade do circuito lógico

s ₇	s ₆	s ₅	S ₄	s ₃	s_2	s_1	\boldsymbol{b}_2	b_1	b_0
0	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	1	0	0	1
0	0	0	0	0	1	1	0	1	0
0	0	0	0	1	1	1	0	1	1
0	0	0	1	1	1	1	1	0	0
0	0	1	1	1	1	1	1	0	1
0	1	1	1	1	1	1	1	1	0
1	1	1	1	1	1	1	1	1	1

Vantagem: a mais rápida das ADCs $(t_c < 1ns)$;

Desvantagem: número de comparadores e resistências cresce exponencialmente com N.

E. Martins, DET Universidade de Aveiro

 V_{REF} 3R V_{7} 2R V_{6} 2R V_{7} 2R V_{8} V_{9} 2R V_{1} R V_{1} R V_{2} V_{3} V_{2} V_{3} V_{4} V_{5} V_{5} V_{6} V_{7} V_{7} V_{8} V_{9} V_{1} V_{1} V_{2} V_{2} V_{3} V_{4} V_{5} V_{2} V_{1} V_{2} V_{3} V_{4} V_{5} V_{7} V_{8} V_{9} V_{1} V_{1} V_{2} V_{3} V_{4} V_{5} V_{5} V_{1} V_{2} V_{3} V_{4} V_{5} V_{5} V_{7} V_{8} V_{9} V_{1} V_{1} V_{1} V_{2} V_{3} V_{4} V_{5} V_{5} V_{5} V_{5} V_{5} V_{5} V_{5} V_{5} V_{7} V_{8} V_{9} V_{1} V_{1} V_{1} V_{2} V_{3} V_{4} V_{5} V_{7} V_{8} V_{9} V_{1} V_{1} V_{1} V_{2} V_{3} V_{4} V_{5} V_{5} V

Sistemas Electrónicos - 2020/2021

ADC de contagem

ADC de contagem

Uma (de entre várias) ADC que usa uma DAC no loop de feedback;

Funcionamento:

- 1) Impulso em Start faz reset do contador;
- 2) Saída da DAC, v_{dac} , vai a θV ;
- 3) Como $v_a > 0$, /EOC vem a 1;
- 4) Clock faz avançar o contador;
- 5) Assim que $v_{dac} > v_a$ /EOC vem a θ ;
- 6) Entrada Clock no contador fica a θ , pelo que a contagem pára;
- 7) Valor final do contador é o valor digital de saída da ADC.

$$\begin{array}{llll} {\bf Como} & v_{dac} = K.D & {\bf e} & v_{dac} \approx v_a \\ \\ {\bf então} & D \approx \frac{1}{K} v_a & {\bf como~desejado} \end{array}$$

E. Martins, DET Universidade de Aveiro

7-37

Sistemas Electrónicos - 2020/2021

ADC de contagem

Funcionamento – diagrama temporal

Desvantagem: Tempo de conversão, t_c , depende do valor de v_a e pode ser grande.

ADC de aproximações sucessivas

E. Martins, DET Universidade de Aveiro

Sistemas Electrónicos - 2020/2021

ADC de aproximações sucessivas

- É uma das ADCs mais usadas em realizações práticas;
- Algoritmo de Aproximações Sucessivas é semelhante ao processo de pesagem numa balança de dois pratos:

E. Martins, DET Universidade de Aveiro

7-40

7-39

ADC de aproximações sucessivas

- Balança é realizada por um comparador (OpAmp em loop aberto);
- Bits b_3 a b_0 correspondem aos pesos conhecidos a colocar num dos pratos da balança (DAC);
- SAR: circuito sequencial síncrono que implementa o Algoritmo de Aproximações Sucessivas;
- SAR testa um bit de cada vez, começando no MSB (b_3) e terminando no LSB (b_0) .

E. Martins, DET Universidade de Aveiro

7-41

Sistemas Electrónicos - 2020/2021

ADC de aproximações sucessivas

Algoritmo de Aproximações Sucessivas

E. Martins, DET Universidade de Aveiro

Sistemas Electrónicos - 2020/2021

ADC de aproximações sucessivas

• Evolução de v_{dac} durante a conversão, supondo $v_{dac} = -\frac{V_{REF}}{2^4}D$

$$com \ V_{REF} = -16V$$

• ADCs comerciais apresentam resoluções até 16 bits e tempos de conversão de 1 μs ou menos.

7-45

E. Martins, DET Universidade de Aveiro

Sistemas Electrónicos - 2020/2021

ADC de dupla rampa

• Uma das ADCs mais lentas, mas que permite obter grandes resoluções;

ADC de dupla rampa

• Baseia-se no circuito integrador com OpAmp:

• RC é a constante de tempo de integração.

$$v_{out} = -\left(\frac{1}{RC} \int_{0}^{t} V_{i} dt + v_{C}(0)\right)$$

• Se $v_c(\theta) = \theta V$ e V_i for uma tensão DC, então

$$v_{out} = -\frac{V_i}{RC}t$$

• Portanto v_{out} varia segundo uma rampa.

ADC de dupla rampa

- Funciona em duas fases:
 - 1) A tensão V_a é integrada durante um intervalo de tempo fixo;
 - 2) A carga acumulada no condensador é descarregada com uma corrente constante.

ullet Do funcionamento do circuito pode provar-se que o tempo de descarga do condensador é proporcional ao valor digital de V_a .

E. Martins, DET Universidade de Aveiro

7-47

Sistemas Electrónicos - 2020/2021

ADC de dupla rampa

Funcionamento da
ADC é orquestrado
pelo circuito
Controlo, que executa
a sequência seguinte:

- 1) S_1 fecha $\Rightarrow v_I = \theta V$;
- 2) Res = $1 \Rightarrow reset$ do contador;
- 3) S_2 fica na posição 1 (liga a $V_a > 0$);
- 4) Tensão v_I desce em rampa; $V_C = 1 \Rightarrow$ contador conta;
- 5) Quando o contador dá a volta, TC = 1;
- 6) S_2 muda para a posição 0 (liga a $V_{REF} < 0$);
- 7) Tensão v_I sobe em rampa;
- 8) Quando $v_I > \theta V$, $V_C = 0 \Rightarrow$ contador pára contagem;
- 9) Valor no contador (D) é o valor digital da ADC.

• Os valores de T_1 e T_2 são:

$$T_1 = 2^N T$$

$$T_2 = D.T$$

E. Martins, DET Universidade de Aveiro

7-49

Sistemas Electrónicos - 2020/2021

ADC de dupla rampa

• Do gráfico tira-se:

$$\left|V_{F}\right| = \frac{V_{a}}{RC}T_{1} = -\frac{V_{REF}}{RC}T_{2}$$

$$|V_F| = V_a 2^N T = -V_{REF} DT$$

$$portanto D = -\frac{2^N}{V_{RFF}} V_a$$

• O tempo de conversão depende de V_a , sendo, no máximo,

$$t_{cMAX} = 2.2^N T$$

- Na prática t_c é da ordem dos mili-segundos;
- ADC é muito usada em aplicações de instrumentação: e.g. multímetros.