COL100: Introduction to Computer Science

7.1: More examples of efficiency analysis

Fibonacci numbers

$$F_1 = 1,$$

 $F_2 = 1,$
 $F_n = F_{n-1} + F_{n-2}$ for all $n \ge 3$.

Naive algorithm:

$$fib(n) = \begin{cases} 1 & if n \leq 2, \\ fib(n-1) + fib(n-2) & otherwise. \end{cases}$$

 $F_1 = 1$ $F_2 = 1$ $F_3 = 2$ $F_4 = 3$ $F_5 = 5$ $F_6 = 8$ $F_7 = 13$ $F_8 = 21$ \vdots

Why does it turn out to be so slow?

$$fib(n) = \begin{cases} 1 & if n \leq 2, \\ fib(n-1) + fib(n-2) & otherwise. \end{cases}$$

Show by induction that:

- Number of additions = fib(n) 1
- $fib(n) = (\phi^n \psi^n)/\sqrt{5}$ where ϕ , $\psi = (1 \pm \sqrt{5})/2$, and therefore, $fib(n) = O(\phi^n)$.

So time complexity of fib(n) is exponential in n, which is intractable for large n.

$$fib(n) = \begin{cases} 1 & if n \leq 2, \\ fib(n-1) + fib(n-2) & otherwise. \end{cases}$$

Space complexity of *fib*(*n*):

$$S(n) = \begin{cases} 1 & \text{if } n \leq 2, \\ 1 + \max(S(n-1), S(n-2)) & \text{otherwise.} \end{cases}$$

Show that this is just O(n).

Pairwise comparisons and quadratic time

A function $f: X \rightarrow Y$ is said to be *injective* or *one-to-one* if it maps every input value to a different output value, i.e.

$$f(a) \neq f(b)$$
 for all $a, b \in X$, $a \neq b$.

- f(n) = 2n is injective because $m \neq n \Rightarrow 2m \neq 2n$.
- $f(n) = n^2$ is not injective (on \mathbb{Z}) because $1 \neq -1$ but $1^2 = (-1)^2$.

Design an algorithm to check if $f: \{a, a+1, ..., b\} \rightarrow \mathbb{Z}$ is injective.

f is trivially injective if a = b.

f is injective on domain $\{a, ..., b\}$ if (i) it is injective on $\{a, ..., b-1\}$, and (ii) $f(b) \neq f(i)$ for all $i \in \{a, ..., b-1\}$.

$$isInj(f, a, b) = \begin{cases} true & \text{if } a = b, \\ isInj(f, a, b - 1) \land isDiff(f(b), f, a, b - 1) & \text{otherwise,} \end{cases}$$

isDiff:
$$\mathbb{Z} \times (\mathbb{Z} \to \mathbb{Z}) \times \mathbb{Z} \times \mathbb{Z} \to \mathbb{B}$$

isDiff(y, f, a, b) is true if and only if $y \neq f(i)$ for all $i \in \{a, ..., b\}$.

$$isDiff(y, f, a, b) =$$

$$\begin{cases} true & \text{if } b < a, \\ false & \text{if } y = f(b), \\ isDiff(y, f, a, b - 1) & \text{otherwise.} \end{cases}$$

What is the time complexity of *isInj*(*f*, *a*, *b*)?

Intuitively, islnj checks that

$$f(a+1) \neq f(a)$$

 $\land f(a+2) \neq f(a) \land f(a+2) \neq f(a+1)$
 $\land f(a+3) \neq f(a) \land f(a+3) \neq f(a+1) \land f(a+3) \neq f(a+2)$
 \vdots
 $\land f(b) \neq f(a) \land f(b) \neq f(a+1) \land f(b) \neq f(a+2) \land \cdots \land f(b) \neq f(b-1)$

so it should make about $1 + 2 + \cdots + (n-1) = n(n-1)/2 = O(n^2)$ comparisons, where n = b - a + 1.

Formally,

$$T(1) = 0,$$

 $T(n) = T(n - 1) + T_D(n - 1)$

where $T_D(n)$ is the time complexity of isDiff(y, f, a, b) with n = b - a + 1.

Problem: Time required for *isDiff* also depends on *y* and *f*:

- If a collision y = f(i) is found early, e.g. f = const, $T_D(n) \ll n$.
- If a collision y = f(i) is never found, $T_D(n) = n$.

Formally, the worst-case time complexity of islnj is

$$T(1) = 0,$$

 $T(n) = T(n-1) + T_D(n-1)$
 $= T(n-1) + (n-1)$

since $T_D(n) = n$ is the worst-case time complexity of *isDiff*.

Then one can prove that $T(n) = n(n-1)/2 = O(n^2)$.

A fallacy

Let us prove by induction that T(n) = O(n).

Base case: T(1) = 0 = O(1).

Induction hypothesis: T(n - 1) = O(n - 1) = O(n).

Induction step:

$$T(n) = T(n-1) + T_D(n-1)$$

= $O(n) + n - 1$
= $O(n)$

What's wrong with this argument?

T(n) = O(n) means there are <u>constants</u> C, n_0 <u>independent of</u> n such that $T(n) \le Cn$ for all $n \ge n_0$.

Induction hypothesis: $T(n-1) \le C(n-1)$ if $n-1 \ge n_0$.

Induction step: We need to show that $T(n) \le Cn$ if $n \ge n_0$.

If $n \ge n_0 + 1$,

$$T(n) = T(n-1) + T_D(n-1)$$

 $\leq C(n-1) + (n-1)$
 $= (C+1)n - C - 1.$

(If $n = n_0$, more problems...)

$$O(n) + O(n) = O(n),$$
but
$$O(n) + O(n) + \cdots + O(n) = O(n^2)!$$
(n times)

Afterwards

- The course webpage (http://www.cse.iitd.ac.in/~narain/courses/col100/) has an updated copy of the notes without missing figures.
- Complete the proofs for the time and space complexity of fib(n).
- A function $f: X \to Y$ is *surjective*, or *onto*, if every output value is mapped to by some input value. Design an algorithm to check if a function $f: \{a, ..., b\} \to \{c, ..., d\}$ is surjective, and find its time complexity in terms of m = b a + 1 and n = d c + 1.