notes on mirror symmetry

3 may (Alex)

We wish to understand

Theorem (Bogomolov-Tian-Todorov). Any Calabi-Yau manifold has unobstructed deformations.

Definition. An *almost compelx structure* is an endomorphism J...

Remark. It is a fact by Borel & Serre (1953) that the only spheres which admit an almost complex structure are S^2 and S^6 .

Example. All complex manifolds are almost complex manifolds.

Theorem. A necessary and sufficient condition for a 2u-smooth manifold M to admit an almost complex structure is that the group of tangent bundle of M could be reduced to U(n).

Theorem (Newlander-Nirenberg). Let (M, J) be an almost complex manifold. Then, the following are equivalent:

1. (six conditions...)

proposition. An almost complex structure on a real 2-dimensional manifold is a complex structure.

Proof. By the Newlander-Nirenberg theorem, given a point $\mathfrak{p}\in U\subset M$ and a vector field $\mathfrak{X}U$, we have that (V,JV) is a frame, and

$$N(V, JV) = [V, JV] + J[V, JV] + J[V, J^2V] - [JV, J^2V] = 0$$

Definition. A *deformation* of complex analytic space M over a germ (S, s_0) of complex analytic space is a triple $\pi_i X, i$) such that

$$\begin{matrix} X \xleftarrow{embedding} & M \\ \pi \downarrow & & \downarrow \\ (S, s_0) \xleftarrow{s_0} & pt \end{matrix}$$

where M is a compact manifold, $M \simeq \pi^{-1}(s_0)$ and π is proper smooth.

Theorem (Ehresmann). Let $\pi: X \to S$ be a proper family of differentiable manifold. If S is connected, then all fibres are diffeomorphic.

Theorem (Kodaira). Let X_0 be a compact Kähler manifold. If $X \to S$ is a deformation, then any fibre X_t is again Kähler.

Theorem (Kuranashi).

- 1. Any compact complex manifold admits a universal deformation.
- 2. If $\Gamma(X_0, T_{x_0}) = 0$ then it admits a universal deformation.

Lemma. Let J be an almost complex structure sufficiently close to J_0 so that it is represented by a form $\lambda \in A^{0,1}T^{1,0}M$. Then J is integrable if and only if

$$\bar{\eth}\lambda_{\mathfrak{i}}+\frac{1}{2}[\lambda_{\mathfrak{j}},\lambda_{\mathfrak{j}}]=0.$$

Theorem (Maurer-Cartan).

$$\bar{\partial} \phi + [\phi, \phi] = 0$$

where

$$\varphi = \varphi(t) = \sum_{i=1} \varphi_i t_i$$

Definition.

- The *Kodaira-Spencer class* of a one-parameter deformation J_t of a complex stucture J is induced by a homology class $\varphi_1 \in H^1(X,Tx)$.
- The Kodaira-Spancer map is

$$T_sS \rightarrow H^1(X_s, T_{X_s}) = T_{[X_s]} \operatorname{Def}(X_{s_0})$$

10 May

1 Sergey: preliminaries

We work in the category of schemes over \mathbb{C} .

Definition. A morphism $f: X \to Y$ is *projective* if

where i is a closed embedding and in fact $Y \times \mathbb{P}^n = \operatorname{Spec} \mathbb{C}$.

Definition. A *Hilbert function* for a given $Z \hookrightarrow \mathbb{P}^N$ is

$$h_Z(n) = \chi(Z, \mathfrak{O}_Z(n))$$

Definition (Found later in [?], p. 273). A morphism $f:(X, \mathcal{O}_X) \to (Y, \mathcal{O}_Y)$ if *flat* if the stalk $\mathcal{O}_{X,x}$ [...]

Claim (Criterium for flatness of projective morphisms). A projective morphism is flat if and only if $h_{X_t}(n)$ is constant as a function of t?

 $Y\to \mathbb{Q}[n].$

Example (non-flat projective morphism (blowup), which is also a non-submersion). Let's find some $f: X \to Y$ projective but not flat. Suppose X, Y are smooth and connected.

A closed embedding.

We tried

but (I think) its differential is not surjective due to the tangent space of the exceptional divisor.

Definition (Wiki). In algebraic geometry, a morphism $f: X \to S$ between schemes is said to be *smooth* if

- 1. it is locally of finite presentation.
- 2. it is flat, and
- 3. for every geometric point $\bar{s} \to S$ the fiber $X_{\bar{s}} = X \times_X \bar{s}$.

2 Bruno: more on deformation

Definition (of smooth submersion). A map whose differential is surjective.

Definition ([?]). A *deformation* X consists of a smooth proper morphism $\mathcal{X} \to S$, where \mathcal{X} and S are connected complex spaces, and an isomorphism $X \cong \mathcal{X}_0$, where $0 \in S$ is a distinguished point. We call $\mathcal{X} \to S$ a *family of complex manifolds*.

In order to define the deformation space Def(X) suppose X is Kähler with $H^0(X, \mathcal{T}_X) = 0$. Then there exists a universal deformation:

Definition ([?]). A deformation $X \to (S,0)$ of X is called *universal* if any other deformation $X' \to (S',0')$ is isomorphic to the pullback under a uniquely determined morphism $\varphi: S' \to S$ with $\varphi(0') = 0$.

$$\begin{array}{ccc} \mathcal{X}_S & \longrightarrow & \mathcal{X} \\ \pi_S & & \downarrow & \\ S & \xrightarrow{\exists !} & Def_S(X) \end{array}$$

Definition. The *Teichmüller space* of X is

$$Teich(X) = \frac{complex \ structures \ on \ M}{Diff_0}$$

and it is such that

$$\mathcal{I}_X \operatorname{Teich}(X) = H^1(X, \mathcal{I}_I X^{1,0})$$

Remark (The Misha Verbitsky way). Let X=(M,I) and $\bar{\eth}:C^\infty(M)\to\Omega^1(M,\mathbb{C})$ and remember that

- $img \bar{\partial} = \Omega^{0,1}_{(I)}(M)$
- $\bar{\partial}^2 = 0$.

Take a solution of the Maurer-Carten equation:

$$\bar{\partial}\gamma + [\gamma, \gamma] = 0$$

where $\gamma \in T^{1,0} \otimes \Omega^{0,1}$. Then we do

$$\begin{split} (\bar{\eth} + \gamma)(\bar{\eth} f + \gamma f) &= \bar{\eth} (\gamma f) + \gamma \bar{\eth} f + \gamma (\gamma f) \\ \bar{\eth}_{new} f &= \bar{\eth} f + \gamma f. \\ \dots ? \end{split}$$

Now take $s \in T^{1,0} \otimes \Omega^{0,1}$ such that

$$\bar{\partial}s + [s,s] = 0$$

and consider also its cohomology class $[s] \in H^1(T^{1,0})$. We have the *Kodaira-Spencer map*

$$KS: T_{s_0}S \to H^1(T^{1,0}) \cong T_X \text{ Def } X$$
$$s \mapsto [s]$$

which is useful because de deformation space of X is

$$(Def X, 0) = \frac{solutions \ to \ Maurer-Cartan}{Diff_0}$$

Ok, but what is the bracket? Answer: take the usual vector field commutator on vector fields and the wedge product on differential forms. This makes $(\mathcal{T}_X^{1,0} \otimes \Omega_X^{0,\bullet}, [,], \bar{\mathfrak{d}})$ into a *differential graded Lie algebra (DGLA*).

So suppose

$$s = \sum_{n \geqslant 1} t^m s_m$$

and we wish to find

$$ar{\eth} s_1 = 0$$
 and $ar{\eth} s_n = \sum_{i+j=n-1} [s_i, s_j]$

The right-hand-side equation says s_n is $\bar{\partial}$ -exact.

Now since our objective is to understand Bogomolov-Tian-Todorov, we are interested in what *unobsturctedness* is. It means that

$$\bar{\delta}s_1 = 0$$
 and $\bar{\delta}s_2 = [s_1, s_2]$

Also recall that

Definition. Two manifolds $M_1, M_2 \subseteq \mathbb{C}^n$ define the same *germ* at $0 \in \mathbb{C}^n$ if there is an open set $U \subseteq \mathbb{C}^n$ containing 0 such that

$$M_1 \cap U = M_{\cap}U$$
.

and then...

Theorem (Bogomolov-Tian-Todorov). content...

3 Griffiths transversality (Victor)

Claim. Let X be a complex manifold. For a 1-parameter family of complex structures (X,J_t) and forms $\alpha_t \in \Omega^{p,q}(X,J_T)$ we have

$$\frac{d}{dt}\Big|_{t=0}\alpha_t\in\Omega^{p+1,q-1}(X)\oplus\Omega^{p,q}(X)\oplus\Omega^{p-1,q+1}(X).$$

Proof. content...

4 Hodge Theory for Calabi-Yau (afternoon)

4.1 Preliminaries (Sergey)

Let's first recall that

Definition. The *Hodge star* operator is

$$*: H^{p,q}_{\mathfrak{d}} \to H^{n-q,n-p}_{\bar{\mathfrak{d}}}$$

proposition. For any complex manifold,

$$\begin{split} H^{p,q}_{\bar{\eth}} \times H^{n-p,n-q}_{\bar{\eth}} &\to H^{n,n}_{\bar{\eth}} \cong \mathbb{C} \\ ([\alpha],[\beta]) &\mapsto \int_{[X]} \alpha \wedge \beta := (\alpha,\beta) \end{split}$$

is bilinear and non-degenerate.

Proof. $\forall \alpha \exists \beta = *\bar{\alpha} \text{ such that } (\alpha, \beta) \neq 0 \text{ so}$

$$0 < \|\alpha\|^2 = \int \alpha \wedge *\bar{\alpha}$$
$$\langle \alpha, \beta \rangle = \int \alpha \wedge *\bar{\beta}$$

where $\langle -, - \rangle$ is the induced metric by some hermitian/riemannian metric on X?

Theorem (Serre duality). For any complex manifold,

$$\begin{split} H^{p,q}_{\bar{\eth}} \times H^{n-p,n-q}_{\bar{\eth}} &\to H^{n,n}_{\bar{\eth}} \cong \mathbb{C} \\ ([\alpha],[\beta]) &\mapsto \int_{[X]} \alpha \wedge \beta \end{split}$$

is a perfect pairing. That is

$$\mathsf{H}^{\mathsf{p},\mathsf{q}} \cong (\mathsf{H}^{\mathsf{n}-\mathsf{p},\mathsf{n}-\mathsf{q}})^*$$

And we also have

Theorem (Hodge). For Kähler manifolds

$$H^{p,q} \cong \overline{H^{q,p}}$$

4.2 Pseudoholomorphic curves (Victor)

We follow [?], lecture 3.

Remark. For every Calabi-Yau manifold X,

$$H^{p,0} = H^{n,n-p} = H^{n-p}_{\delta}(X,\Omega^n_X) = H^{n-p}_{\delta}(X,\Omega_X) = H^{0,n-p} = H^{n-p,0}$$

So we have some symmetry:

Definition. Let (X^{2n}, ω) be a symplectic manifold, J a compatible almost-complex structure, $\omega(\cdot, J_{\cdot})$ the associated Riemannian metric. Furthermore, let (Σ, j) be a Riemann surface of genus g and z_1, \ldots, z_k marked points.

There is a well-defined moduli space of $\mathcal{M}_{g,k} = \{(\Sigma, z_1, \dots, z_k)\}$ which is a complex manifold of dimension 3k - 3 + k.

 $u: \Sigma \to X$ is a J-holomorphic (or pseudoholomorphic) map if

$$J \circ du = du \circ j$$

that is,

$$\bar{\eth}_J u = \frac{1}{2} (du + J duj) = 0. \tag{.1}$$

For $\beta \in H_2(X, \mathbb{Z})$, we obtain an associated space

$$M_{\mathfrak{q},k}(X,J,\beta) = \{(\Sigma,j,z_1,\ldots,z_k,u:\Sigma\to X|u_*[\Sigma]=\beta,\bar{\mathfrak{d}}_{J}u=0\}/\sim$$

where \sim is the equivalence given by ϕ below:

$$\Sigma, z_1, \dots, z_k \xrightarrow{u} X$$

$$\downarrow \cong \qquad \qquad u'$$

$$\Sigma', z'_1, \dots, z'_k$$

Question. Where does the object in eq. (.1) live? The differential of any map of complex manifolds can be decomposed in ∂ and $\bar{\partial}$. The operator $\bar{\partial}_J u$ is an element of $\Omega^{0,1}(\Sigma, u \otimes TX) = \Gamma(\Sigma, \Omega^{0,1}(\Sigma) \otimes u^*TX)$.

Remark. See wiki for interpretation of this definition as a map satisfying the Cauchy-Riemann equations.

Remark. See What is... a pseudoholomorphic curve? for another friendly explanation:

A pseudoholomorphic curve is just the natural modification of the notion of a holomorphic curve to the case when the ambient manifold is almostcomplex.

May 17

1 Pseudoholomorphic curves cont. (Victor)

We continue to read [?].

Definition. We say that $u : \Sigma \to X$ is *simple* if there exists $z \in \Sigma$ such that $du(z) \neq 0$ and $u^{-1}(u(z)) = z$.

Which roughly means that the function is not generically one to one on its image.

Example. The function

$$u: \mathbb{P}^1 \to \mathbb{P}^2$$
$$[x:y] \mapsto [x^2:y^2:0]$$

is not simple. Indeed, near a point $[x:y] \in \mathbb{P}^1$ with $x \neq 0$, the differential of u may be expressed in coordinates as the linear map $du = \begin{pmatrix} 2 & 0 \end{pmatrix} \neq 0$; however $u^{-1}([x^2:y^2:0]) = \{[x:y], [-x:y]\}$. The case of $y \neq 0$ is analogous. We also see there are no singular points, so u cannot be simple.

Then we define

$$\mathsf{D}_{\bar{\eth}}: W^{\mathsf{r}+1,\mathfrak{p}}(\Sigma, \mathfrak{u}^*\mathsf{TX}) \times \mathsf{T} \mathcal{M}_{\mathsf{g},\mathsf{k}} \to W^{\mathsf{r},\mathfrak{p}}(\Sigma, \Omega^{0,1}_{\Sigma} \otimes \mathsf{U}^*\mathsf{TX})$$

by

$$D_{\bar{\eth}}(\nu,j') = \bar{\eth}\nu + \frac{1}{2}(\nabla_{\nu}J)du \cdot j + \frac{1}{2}J \cdot du \cdot j'$$

where $W^{r,p}$ is a completion of $C^{\infty}(-)$ of (?) to $L^{r,p}$ norm defined by $\|f\|_{r,p} = \left(\sum_{i=0}^r \int |f^{(i)}(t)|^p dt\right)^{1/p}$.

 $D_{\bar{0}}$ is Fredholm, (meaning the dimensions of its kernel and cokernel are finite), with index (the difference of such numbers)

index_R
$$D_{\bar{a}} := 2d = 2\langle c_1(TX), \beta \rangle + n(2-2g) + (6g-6+2k).$$

We may interpret this equation as differentiation of the Cauchy-Riemann equations.

2 Dirichlet energy (Alex)

Consider a map

$$u:(\Sigma,j)\to(X,\omega,J,g)$$

and define the energy functional

$$\varepsilon = \int_{\Sigma} |d\mathbf{u}|_g^2 \operatorname{Vol}_g$$

Now, we may take local isothermic coordinates where the metric is expressed as

$$q = \lambda(x, y)(dx^2 + dy^2)$$

giving

$$\begin{split} du &= \vartheta_x u \otimes dx + \vartheta_y u \otimes dy \\ |du|^2 &= |\vartheta_x u|^2 \lambda^{-2} + |\vartheta_y u|^2 \lambda^{/2} \\ Vol_{\Sigma g'} &= \lambda^2 dx \wedge dy \end{split}$$

Then

$$\varepsilon(\mathfrak{u}) = \int_{\Sigma} |\partial_{x}\mathfrak{u}|_{g}^{2} + |\partial_{y}\mathfrak{u}|_{g}^{2} dx \wedge dy.$$

The following equality shows that the energy functional attains its minimum on pseudoholomorphic maps (in virtue of eq. (.1)).

Claim. For a pseudoholomorphic map,

$$\epsilon(u) = \int_{\Sigma} 2|\bar{\eth}_{J}|^{2} \, Vol + \int_{\Sigma} u^{*} \omega$$

Proof. content...