High active alkaline phosphatase

Patent Number:

EP0955369

Publication date:

1999-11-10

Inventor(s):

BURTSCHER HELMUT DR (DE); MUELLER RAINER DR (DE); HOELKE WERNER

OCT 1 2 2001

DR (DE); MILLAN JOSE LUIS PROF (US)

Applicant(s)::

ROCHE DIAGNOSTICS GMBH (DE)

Requested

Patent:

☐ EP0955369

Application

Number:

EP19990108502 19990430

Priority Number

(s):

DE19981019962 19980505

IPC

Classification:

C12N15/55; C12N9/16; C12N1/21; C12N5/10; C12N15/79

EC Classification: C12N9/16

Equivalents:

AU2692699, DE19819962, DE11332586

Abstract

DNA encoding a eukaryotic high active alkali phosphatase with a specific activity over 3000 U/mg where the amino acid at position 332 is smaller than aspartate is new. Independent claims are also included for: (1) a method to produce a DNA as above, characterized in that the mutated and wild type fragments of the cDNA of one or more alkali phosphatases are ligated into a single gene that encodes for an active alkali phosphatase; (2) a eukaryotic cDNA, that encodes a functional isoenzyme with alkali phosphatase activity and which is an intermediate product during the method of (1); (3) a vector containing a cDNA as above; (4) a eukaryotic or prokaryotic cell containing a vector as in (3); (5) a high active recombinant alkali phosphatase as above; (6) a method to produce a high active alkali phosphatase as above; and (7) a native high active alkali phosphatase having one of two 511 amino acid sequences (bIAP II or bIAP IV).

Data supplied from the esp@cenet database - I2

Europäisches Patentamt

European Patent Offic

Office européen des brevets

(11) EP 0 955 369 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 10.11.1999 Patentblatt 1999/45

(21) Anmeldenummer: 99108502.8

(22) Anmeldetag: 30.04.1999

(51) Int. Cl.⁶: **C12N 15/55**, C12N 9/16, C12N 1/21, C12N 5/10, C12N 15/79

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE
Benannte Erstreckungsstaaten:
AL LT LV MK RO SI

(30) Priorität: 05.05.1998 DE 19819962

(71) Anmelder: Roche Diagnostics GmbH 68298 Mannheim (DE)

(72) Erfinder:

Hoelke, Werner, Dr.
 82377 Penzberg (DE)

- Müller, Rainer, Dr.
 82377 Penzberg (DE)
- Burtscher, Helmut, Dr. 82392 Habach (DE)
- Millan, José Luis, Prof.
 San Diego, CA 92131-3505 (US)

Bemerkungen:

Der Anmelder hat nachträglich ein Sequenzprotokoll eingereicht und erklärt, dass dieses keine neuen Angaben enthält.

(54) Hochaktive alkalische Phosphatase

(57) Die Erfindung betrifft eine DNA kodierend eine eukaryontische hochaktive alkalische Phosphatase mit einer spezifischen Aktivität über 3000 U/mg. Die Erfindung betrifft ferner ein Verfahren zur Herstellung der erfindungsgemäßen DNA, sowie einen Vektor enthaltend die erfindungsgemäße DNA sowie eine Zellinie enthaltend diesen Vektor. Die Erfindung betrifft weiterhin eine rekombinante hochaktive alkalische Phosphatase mit einer spezifischen Aktivität über 3000 U/mg, die durch die erfindungsgemäße DNA kodiert wird.

Beschreibung

[0001] Die Erfindung betrifft eine DNA kodierend eine eukaryontische hochaktive alkalische Phosphatase mit einer spezifischen Aktivität über 3000 U/mg. Die Erfindung betrifft ferner ein Verfahren zur Herstellung der erfindungsgemäßen DNA, sowie einen Vektor enthaltend die erfindungsgemäße DNA sowie eine Zellinie enthaltend diesen Vektor. Die Erfindung betrifft weiterhin eine rekombinante hochaktive alkalische Phosphatase mit einer spezifischen Aktivität über 3000 U/mg, die durch die erfindungsgemäße DNA kodiert wird.

[0002] Alkalische Phosphatasen (AP) sind dimere, zinkhaltige, nichtspezifische Phosphomonoesterasen, die in allen Organismen, von E.coli bis Säugern vorkommen (McComb et al., 1979). Der Vergleich der Primärstruktur verschiedener alkalischer Phosphatasen ergab einen hohen Homologiegrad (25-30% Homologie zw. E.coli- und Säuger-AP) (Millán, 1988; Harris, 1989).

[0003] Im Menschen und höheren Tieren besteht die AP-Familie aus vier Mitgliedern, die auf verschiedenen Genloci codiert sind (Millán, 1988; Harris 1989). Zur alkalischen Phosphatase-Familie zählen die gewebespezifischen APs (Placenta-AP (PLAP), Keimzellen-AP (GCAP) und Darm-AP (IAP)) und die nicht-gewebespezifischen APs (TNAP), die vorwiegend in Leber, Niere und Knochen lokalisiert sind.

[0004] Eine entscheidende Eigenschaft der bislang bekannten APs ist die große Variabilität in der katalytischen Aktivität der Säuger-APs, die eine 10-100 fach höhere spezifische Aktivität besitzen als die E.coli AP. Unter den Säuger-APs zeigt die AP aus dem Rinderdarm (bIAP) die höchste spezifische Aktivität. Diese Eigenschaft macht die bIAP attraktiv für biotechnologische Anwendungen wie Enzymkonjugate als diagnostisches Reagenz oder Dephosphorylierung von DNA. Besman und Coleman belegten 1985 die Existenz zweier IAP-Isoenzyme im Rinderdarm, die IAP aus dem Kälberdarm und die IAP aus dem Darm eines erwachsenen Rindes (bIAPs) durch aminoterminale Ansequenzierung der chromatographisch aufgereinigten AP-Fraktionen. Dabei wurde eine klare Unterscheidung am Aminoterminus zwischen der bIAP des erwachsenen Rindes (LVPVEEED) und der bIAP aus dem Kälberdarm (LIPAEEEN) beschrieben. Weissig et al. gelang 1993 durch Klonierung eine genaue biochemische Charakterisierung einer rekombinanten bIAP (bIAP I) mit einer spezifischen Aktivität von ca. 3000 U/mg und dem N-Terminus LVPVEEED.

[0005] Es sind jedoch auch blAPs aus Kälberdarm mit spezifischen Aktivitäten bis zu 8000 U/mg kommerziell erhältlich (Boehringer Mannheim, Biozyme, Oriental Yeast), die aber bislang nicht weiter charakterisiert waren. Sämtliche Versuche, diese hochaktiven alkalischen Phosphatasen zu klonieren, schlugen fehl. Die Herstellung einer rekombinanten, hochaktiven alkalischen Phosphatase war daher nicht möglich. Um jedoch eine wirtschaftliche Herstellung der hochaktiven alkalischen Phosphatase zu sichern, ist die rekombinante Herstellung zwingend erforderlich.

[0006] Demzufolge war es Aufgabe der vorliegenden Erfindung, hochaktive alkalische Phosphatasen rekombinant zur Verfügung zu stellen, die zudem klonierbar sind. Hochaktiv im Sinne der vorliegenden Erfindung bedeutet, daß die erfindungsgemäße alkalische Phosphatase eine um mindestens 10% gesteigerte Aktivität gegenüber vorbekannten alkalischen Phosphatasen aufweist.

[0007] Die Aufgabe wurde erfindungsgemäß gelöst durch die Bereitstellung einer DNA kodierend eine eukaryontische hochaktive alkalische Phosphatase mit einer spezifischen Aktivität über 3000 U/mg, bevorzugt mindestens 3500 U/mg, wobei der Aminosäurerest an der Position 322 kleiner ist als Aspartat. Bevorzugt im Sinne der vorliegenden Erfindung ist eine eukaryontische DNA. Besonders bevorzugt ist eukaryontische cDNA, das heißt eine DNA, die keine Introns mehr enthält. Unter dem Ausdruck "Aminosäurerest kleiner als Aspartat" ist jede Aminosäure, bevorzugt sind natürliche bzw. von diesen abgeleitete Aminosäuren, zu verstehen, die eine kleinere räumliche Ausdehnung als die Struktur der Aminosäure Aspartat aufweist. Bevorzugt ist die erfindungsgemäße DNA, bei der der Aminosäurerest 322 Glycin, Alanin, Threonin, Valin oder Serin ist. Besonders bevorzugt ist eine erfindungsgemäße DNA, bei der der Aminosäurerest 322 Glycin oder Serin ist. Ganz besonders bevorzugt ist, daß der Aminosäurerest 322 Glycin ist. Eine DNA gemäß SEQ ID No.: 1, 3 und 5 (Figur 1,3,5) und die zugehörige Aminosäuresequenz gemäß SEQ ID No.: 2,4 und 6 (Figur 2,4,6) sind Teil der vorliegenden Erfindung. Gegenstand der vorliegenden Erfindung sind ebenfalls solche cDNAs, die sich von den obengenannten nur darin unterscheiden, daß der N-Terminus länger oder kürzer ist im Vergleich zu den cDNAs gemäß SEQ ID No.: 2,4 und 6. Entsprechend verändert sich dann die Bezeichnung für die Position 322 gemäß SEQ ID No.: 2,4 und 6. Ist beispielsweise der N-Terminus um x Aminosäuren gegenüber der SEQ ID No.: 2,4 und 6 verlängert oder verkürzt, wird die relevante Position 322 ebenfalls um x Aminosäuren verschoben.

[0008] SEQ ID No.: 1 enthält den DNA-Code für die Sequenz des hochaktiven bIAPII-Isoenzyms. Das native Enzym war bekannt, jedoch nicht charakterisiert und nicht klonierbar. Somit ist Gegenstand der vorliegenden Erfindung die Bestimmung der Aminosäuresequenz des hochaktiven bIAP II-Isoenzymes. Zur Sequenzbestimmung wurde eine hoch aufgereinigte Fraktion mit hoher spezifischer Aktivität aus dem Kälberdarm (Boehringer Mannheim) verwendet. Durch Spaltung mit den Endoproteinasen LysC, AspN, GluC, Trypsin sowie chemische Spaltung durch Bromcyan wurden peptide maps der hochaktiven AP erzeugt. Die so erzeugten Peptide wurden getrennt und mittels reversed phase HPLC isoliert. Über Elektrospray Massenspektroskopie wurde jedes Peptid analysiert und mittels Edman-Abbau sequenziert. Die so erhaltenen Sequenzen wurden mit der veröffentlichten Sequenz der bIAP I (Weissig et al., 1993) verglichen. Wie erwartet besitzt der Aminoterminus von bIAP II die Startsequenz LIPAEEEN, wie von Besman und

Coleman beschrieben (*J. Biol. Chem.* **260**, 11190-11193 (1985)). Die komplette Aminosäuresequenz der bIAP II ist gemäß SEQ ID No.: 2 (Figur 2) dargestellt. Danach weist die bIAP II insgesamt 24 Aminosäureaustausche zu bIAP I auf. Die Zahl der Aminosäuren beträgt im isolierten hochaktiven bIAP II Isoenzym 480 Aminosäuren. Die Nukleotidsequenz von 1798 bp (Figur 1) beinhaltet einen kodierenden Bereich von 514 Aminosäuren. Die von Position 481 bis einschließlich 514 möglichen Aminosäuren können dabei in weiten Grenzen variieren.

[0009] Die vorliegende Erfindung beschreibt des weiteren die Klonierung und vollständige Charakterisierung von zwei neuen, bislang unbekannten bIAPs (bIAP III und bIAP IV). Von RNA-Proben aus verschiedenen Rinderdarmabschnitten wurden Northern Blot Analysen durchgeführt. Von den Proben mit dem stärksten Hybridisierungssignal wurde mit einem Oligo dT-primer (Stratagene, San Diego, CA. USA) eine cDNA-Bank im Vektor IZAP II (Stratagene, San Diego, CA, USA) angelegt. Die vollständige Bank (1,0 x 10⁶ rekombinante Klone) wurde mit dem 1075 bp Hindlil-Fragment von bIAP I, das einen Bereich von Exon I bis VIII des bIAP I-Gens abdeckt, gescreent. 65 Klone wurden isoliert und sequenziert. Dabei wurden zwei neue bIAPs identifiziert (bIAP III und bIAP IV), die weder zu bIAP I noch zu bIAP II, deren Charakterisierung weiter unten beschrieben ist, vollständig homolog waren. Die Nukleotidsequenzen von bIAP III und IV sind in Figur 3 und 5 abgebildet. Die Sequenzunterschiede der bIAPs I - IV sind in Figur 7 dargestellt. Keine der neuen bIAPs besitzt jedoch den erwarteten N-Terminus LIPAEEEN, sondern neue, bislang noch nicht beschriebene N-Termini (s. Figur 7). Die cDNA der beiden neuen bIAP-Isoenzyme wurde mit entsprechenden Restriktionsenzymen nachgeschnitten und in den CHO-Expressionsvektor pcDNA-3 (z.B. der Fa. Invitrogen, San Diego, CA, USA) durch Ligation insertiert. Die Klone, die die neuen bIAP-Isoenzyme enthielten, wurden gemäß dem von Invitrogen beschriebenen Verfahren zur Expression gebracht und die Isoenzyme charakterisiert. In WO 93/18139 wird die Expression eines blAP-Gens in verschiedenen Wirten beschrieben (CHO-Zellen, E.coli, Baculovirus-System). Die dort beschriebenen Verfahren, Vektoren und Expressionssysteme gehören zur Offenbarung der vorliegenden Anmeldung. Gegenstand der vorliegenden Erfindung sind des weiteren die nativen und rekombinanten hochaktiven alkalischen Phosphatasen bIAP III und bIAP IV. Besonders bevorzugt sind die alkalischen Phosphatasen gemäß SEQ ID No.: 4 und 6. CHO-Zellinien enthaltend das bIAP III bzw. bIAP IV Gen wurden hinterlegt bei der DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Mascheroder Weg 1b, D-38124 Braunschweig (DSM ACC 2349, DSM ACC 2350).

[0010] Des weiteren beschreibt die Erfindung die Konstruktion der bIAP II-Sequenz durch Ligation von mutierten- und Wildtyp-Fragmenten von bIAP I, III und IV. Durch diesen Prozeß wurden eine Reihe von intermediären Zwischenprodukten (L1N8, INT 1, INT 2 und INT3) generiert, die für funktionelle Isoenzyme codieren. Zur Konstruktion dieser intermediären Zwischenprodukte wurde jeweils ein Teilstück der zu verändernden bIAP-cDNA mit entsprechenden Restriktionsenzymen herausgeschnitten und durch ein die gewünschten Mutationen enthaltendes Teilstück einer anderen bIAP-cDNA, das durch Verdau mit Restriktionsenzymen kompatible Enden besitzt, ersetzt. Mutationen, die nicht durch Ligation von Teilstücken verschiedener bIAP-cDNAs eingeführt werden konnten, wurden via ortsgerichteter Mutagenese eingebracht. Das mutierte Fragment wurde anschließend mit den entsprechenden Restriktionsenzymen nachgeschnitten und in ein ebenfalls geschnittenes bIAP-cDNA Teilstück mit kompatiblen Enden ligiert (Figur 8). Die so eingeführten Mutationen wurden anschließend via Restriktionsanalyse und Sequenzierung überprüft.

[0011] Gegenstand der vorliegenden Erfindung ist somit ein Verfahren zur Herstellung der erfindungsgemäßen DNA, dadurch gekennzeichnet, daß mutierte und Wildtyp-Fragmente der DNA von einer oder mehreren alkalischen Phosphatasen ligiert wurden. Des weiteren ist Gegenstand der vorliegenden Erfindung eine cDNA, die funktionelle Isoenzyme kodiert und die als Zwischenprodukte während des obengenannten erfindungsgemäßen Verfahrens entsteht. Des weiteren ist Gegenstand der vorliegenden Erfinder ein Vektor enthaltend die erfindungsgemäße cDNA.

[0012] Des weiteren ist Gegenstand der vorliegenden Erfindung eine Zellinie enthaltend den erfindungsgemäßen Vektor. Geeignete Zellen sind beispielsweise eukaryontische Zellen wie CHO, Pichia, Hansenula oder Saccharomyces cerevisiae und Aspergillus oder prokaryontische Zellen, wie E. coli. Besonders bevorzugt sind E. coli, Hefe- und CHO-Zellen. Geeignete Ausgangsvektoren für E.coli-Stämme sind beispielsweise pTE, pTaq, pPL, pBluescript. Als E. coli-Stämme kommen beispielsweise XL1-Blue, HB 101, RR1 Δ M15, BL 21 (DE), MC 1000 etc. in Frage. Geeignete Pichia Vektoren sind beispielsweise pGAPZα und pPICZα (Invitrogen, San Diego, CA, USA). Ein geeigneter Vektor für CHO-Zellinien ist beispielsweise pcDNA-3 (Invitrogen, San Diego, CA, USA). Eine CHO-Zellinie enthaltend das bIAP II Gen wurde hinterlegt bei der DSMZ, Deutsche Sammlung von Mikroorgánismen und Zellkulturen GmbH, Mascheroder Weg 1b, D-38124 Braunschweig (DSM ACC 2348).

[0013] Die kinetische Charakterisierung der rekombinanten bIAP I, II, III und IV-Isoenzyme ergab deutliche Unterschiede hinsichtlich der katalytischen Eigenschaften (Figur 9). bIAP II zeigt beispielsweise eine um über 300% gesteigerte, d.h. über dreifach höhere spezifische Aktivität (ca. 8600 U/mg) als bIAP I (ca. 2700 U/mg). Aber auch bIAP III und bIAP IV zeigen eine etwa 1,8fach (ca. 4700 U/mg) bzw. etwa 2,6fach (>6700 U/mg) höhere Aktivität als bIAP I (Figur 9), was einer prozentualen Steigerung von ca. 170% bzw. 250% entspricht. Zudem war ein beträchtlicher Unterschied der Isoenzyme bezüglich der Stabilität gegenüber Hitze meßbar. bIAP I list das hitzestabilste Isoenzym, der T_m-Wert von bIAP II und III liegt 7°C niedriger und der T_m-Wert von bIAP IV 13°C niedriger als bIAP I (Figur 9). Unter dem T_m-Wert ist der Temperaturwert zu verstehen, bei dem 50% Restaktivität nach einer Inkubationszeit von 10 Minuten

gemessen wird.

10

20

[0014] Des weiteren beschreibt die Erfindung die Identifikation der Aminosäurereste, die Einfluß auf die spezifische Aktivität der bIAPs besitzen. Dabei waren die intermediären Zwischenprodukte hilfreich. Die Expression der intermediären Chimāren L1N8, INT 1, INT 2 und INT 3 ermöglichten es, bereits 11 der 24 Aminosäuren als Effektor für die Aktivitätserhöhung auszuschließen (Figur 7).

- Das L1N8-Mutantenenzym zeigte eine vergleichbare spezifische Aktivität wie bIAP I, demnach sind die hier eingeführten Mutationen V2I, V4A und D8N für die Erhöhung der spezifischen Aktivität nicht relevant. Die Bezeichnung
 V2I bedeutet, daß in Position 2 die Aminosäure Valin gegen Isoleucin ersetzt wird.
- Die INT 1-Mutante besitzt eine vergleichbare spezifische Aktivität mit bIAP II, demzufolge ist dieser Bereich entscheidend.
- Die INT 2-Mutante besitzt eine vergleichbare spezifische Aktivität wie INT 1 und bIAP II, demzufolge k\u00f6nnen die
 Mutationen S380G, D411G, D416E, Q420R, Q427L, E453Q und T480A aus INT 2 ebenfalls ausgeschlossen werden.
 - Bei der Generierung der INT 3-Mutante konnte ebenfalls keine Änderung der hohen spezifischen Aktivität festgestellt werden, somit ist ein Effekt der Mutation N192Y auszuschließen.
 - [0015] Zur Identifikation, welche der 13 verbliebenen Reste entscheidend für die hohe spezifische Aktivität ist, wurde in der vorliegenden Erfindung die bIAP II-cDNA als Template für Einzelmutationen gegen die entsprechende Aminosäure von bIAP I verwendet. Es wurden die Einzelmutanten N122K, I133M, A142S, K180M, M205K, E210V, E236A, G322D, und I332G sowie eine kombinierte A289Q-A294V-Q297R-L299V-bIAP II-Mutante erstellt (Figur 9).
 - [0016] Überraschenderweise konnte hierbei festgestellt werden, daß hauptsächlich die Mutation G322D in der Lage ist, die hohe spezifische Aktivität von bIAP II (ca. 8600U/mg) um mehr als den Faktor 3 zu senken (2817 U/mg) und somit in die vergleichbar niedrige spezifische Aktivität der bIAP I umzuwandeln.
- [0017] Zur Verifikation dieses Ergebnisses wurde in der vorliegenden Erfindung die umgekehrte Mutation D322G in bIAP I eingeführt. Überraschenderweise konnte hier der umgekehrte Effekt, nämlich ein Anstieg der spezifischen Aktivität um mehr als Faktor 3 auf 10148 U/mg gemessen werden und somit ein vergleichbarer Wert mit bIAP II erzielt werden (Figur 9). Ein Vergleich der Aminosäuresequenzen der relativ höheraktiven bIAP III (ca. 4700 U/mg) und der höheraktiven bIAP IV (>6700 U/mg) bestätigt dieses Ergebnis nochmals. bIAP III besitzt in Position 322 ein Serin, bIAP IV wiederum ein Glycin.
 - [0018] Des weiteren wurden in der vorliegenden Erfindung die erzeugten Mutanten wiederum auf Stabilität gegenüber Hitze untersucht. Demzufolge ist der Unterschied in der Hitzestabilität zwischen bIAP I und bIAP II aufeinen Kombinationseffekt von mehr als einem Austausch zurückzuführen. Sowohl die [G³²²]bIAP I- wie auch die [D³²²]bIAP II-Mutante zeigen Stabilitätswerte, die zwischen denen der bIAP I- und bIAP II-Isoenzyme liegen (Figur 9). Die D322G-Mutation hat einen geringen destabilisierenden Effekt (annähernd 4°C in T₅₀) auf das bIAP I-Isozym, während die Substitution G322D in bIAP II eine entsprechende Erhöhung der Stabilität dieses Mutantenenzymes zufolge hat. Jedoch wird die Stabilität gegenüber Hitze der Wildtyp-bIAP I nicht erreicht.
 - [0019] Somit besteht der Gegenstand der vorliegenden Erfindung insbesondere darin, eine hochaktive rekombinante alkalische Phosphatase mit einer Aktivität über 3000 U/mg zur Verfügung zu stellen, die durch eine eukaryontische cDNA kodiert wird. Besonders bevorzugt ist die erfindungsgemäße hochaktive rekombinante alkalische Phosphatase, wobei an der Position 322 ein Glycin, Alanin, Threonin, Valin oder Serin ist. Besonders bevorzugt ist die erfindungsgemäße alkalische Phosphatase, wobei an der Position 322 ein Glycin ist.
 - [0020] Die erfindungsgemäße hochaktive rekombinante alkalische Phosphatase kann bevorzugt zusätzlich an einer oder mehreren der folgenden Positionen eine Mutation aufweisen:
 - [0021] Aminosäurereste in Position 1, 108, 125, 149, 181, 188, 219, 221, 222, 223, 224, 231, 252, 258, 260, 282, 304, 321, 330, 331, 354, 383, 385, 400, 405, 413, 428, 431 und 461, wobei durch die Mutation eine Aktivitätssteigerung bewirkt wird. Gegenstand der vorliegenden Erfindung ist des weiteren ein Verfahren zur Herstellung der erfindungsgemäßen hochaktiven alkalischen Phosphatase. Die erfindungsgemäßen alkalischen Phosphatasen können durch gezielte Mutagenese auch weiter verbessert werden, z.B. hinsichtlich ihrer Thermostabilität.
 - [0022] Die Aktivität der erfindungsgemäßen hochaktiven alkalischen Phosphatase wurde nach E. Mössner et al., Z. Physiol. Chem. 361 (1980), 543-549 bestimmt; mit dem Unterschied, daß der Test nicht, wie in der Publikation beschrieben, bei 25°C, sondern bei 37°C durchgeführt wurde. Die Bestimmung bei 37°C ist die weltweit übliche Temperatur, bei der die Aktivität im Diethanol-puffer (BM Test Method 5426) gemessen wird.
 - [0023] Die Proteinbestimmung der erfindungsgemäßen und bekannten APs erfolgte durch Messen der Absorption der Proteinlösung bei 280 nm gegen Wasser. Die Extinktion einer nieder und hochaktiven AP-Lösung mit einer Konzen-

tration von 1 mg/ml ist bei 280 nm 1,0 (A 280 nm (1 mg/ml) gleich 1).

[0024] Die spezifische Aktivität wird durch Verhältnisbildung von Aktivität mit der zugehörigen Proteinmenge ermittelt.

Erläuterung der Figuren

[0025]

35

5

10

20

25

30

Figur 1:

SEQ ID No.: 1 Nukleotidsequenz von bIAP II (1798 bp)

Start des kodierenden Bereiches für die reife bIAP II in Pos 108, Ende in Pos 1649

Figur 2:

SEQ ID No.: 2 Aminosäuresequenz von bIAP II (480 Aminosäuren) mit Spaltstellen

15 <u>Figur 3:</u>

SEQ ID No.: 3 Nukleotidsequenz von bIAP III (2460 bp)

Start des kodierenden Bereiches für die reife bIAP III in Pos 123, Ende in Pos 1655

Figur 4:

SEQ ID No.: 4 Aminosäuresequenz von bIAP III (511 Aminosäuren)

Figur 5:

SEQ ID No.: 5 Nukleotidsequenz von bIAP IV (2542 bp)

Start des kodierenden Bereiches für die reife bIAP IV in Pos 122, Ende in Pos 1654

Figur 6:

SEQ ID No.: 6 Aminosäuresequenz von bIAP IV (511 Aminosäuren)

Figur 7:

Aminosäureunterschiede zwischen bIAP I, bIAP II, bIAP III und bIAP IV Isoenzymen Lediglich die unterschiedlichen Reste werden gezeigt. Mit einem Stern werden solche Positionen identifiziert, die zur individuellen Mutagenese ausgewählt wurden, um die Reste zu identifizieren, die für die erhöhte katalytische Aktivität der bIAP II verantwortlich sind.

35 Figur 8:

Ligationsstrategie für die bIAP II - DNA

Figur 9:

Kinetische Parameter und Hitzestabiität der rekombinanten Wildtyp, chimären und durch ortsgerichtete Mutagenese veränderten Mutanten der bIAP Enzyme.

* [QVRV]bIAP II ist die Abkürzung für die [Q²⁸⁹, V²⁹⁴, R²⁹⁷, V²⁹⁹]bIAP II Mutante.

[0026] Die folgenden Beispiele erläutern die Erfindung weiter:

45 Beispiel 1: Klonierung

[0027] Eine λgt 11 cDNA Bank präpariert aus Darm von erwachsenen Rindern (Clontech Laboratories, Palo Alto, CA, USA) wurde unter Verwendung eines 1075 bp Hind III Fragments vom 5' Ende der blAP I cDNA (Weissig et al., 1993) als Sonde gescreent. Klone aus dieser cDNA Bank wurden zum Screenen einer EMBL-3 SP6/T7 genomischen cDNA Bank verwendet, die aus der Leber von erwachsenen Rindern hergestellt war (Clontech Laboratories, Palo Alto, CA, USA). Eine nicht amplifizierte □ZAP II cDNA Bank wurde mittels eines Oligo dT - primers (Stratagene, San Diego, CA. USA) aus mRNA angelegt, die unter Verwendung des Trisolv™ Reagenz aus dem Dünndarm eines erwachsenen Rindes isoliert und mit dem 1075 bp Hind III Fragment der blAP I cDNA als Sonde gescreent wurde. Die Proben wurden unter Verwenden eines random primed DNA labeling kit radiomarkiert (Boehringer Mannheim). Phagen DNA wurde wie beschrieben für λgt 11 und EMBL-3 SP6/T7 Klone hergestellt (Tsonis & Manes, 1988). Das in vivo Schneiden der □ZAP II Klone wurde nach der Anweisung des Herstellers durchgeführt (Stratagene, San Diego, CA). Genomische Klone wurden mit Southern blot Analyse, wie beschrieben, charakterisiert (Sambrook et al., 1989). EcoRI cDNA Fragmente von □gt 11 Klonen und unterschiedliche Restriktionsfragmente aus Klonen anderer Banken wurden in den KS+

-Vektor (Stratagene, San Diego, CA, USA) subkloniert. Plasmid DNA wurde durch alkalische Lyse hergestellt (Sambrook et al., 1989). Die Sequenzierung erfolgte unter Verwendung von Sequenase gemäß Herstellerprotokoll (Amersham). Die für die Sequenzierung von blAPs III und IV verwendeten Oligonukleotide sind nachfolgend beschrieben. 1s: SEQ ID No. 7: GCC AAG AAT GTC ATC CTC; 1a: SEQ ID No. 8: GAG GAT GAC ATT CTT GGC; 2s: SEQ ID No. 9: GGT GTA AGT GCA GCC GC; 2a: SEQ ID No. 10: GCG GCT GCA CTT AGA CC; 3s: SEQ ID No. 11: AAT GTA CAT GTT TCC TG; 3a: SEQ ID No. 12: CAG GAA ACA TGT ACA TT; 4s: SEQ ID No. 13: CCA GGG CTT CTA CCT CTT; 4a: SEQ ID No. 14: AAG AGG TAG AAG CCC TGG; 5s: SEQ ID No. 15: ACC AGA GCT ACC ACC TCG; 5a: SEQ ID No. 16: AAG CAG GAA ACC CCA AGA; 6s: SEQ ID No. 17: CTT CAG TGG CTT GGG ATT; 6a: SEQ ID No. 18: AAT CCC AAG CCA CTG AAG. Die Nukleinsäuresequenzen wurden mit dem MacVector Sequenzanalysen-Programmm analysiert (International Biotechnologies, Inc. New Haven, CT, USA).

Beispiel 2: Bestimmung der Aminosäuresequenz von bIAP II

[0028] Ungefähr 500 μg einer gereinigten, hochaktiven (ca. 6000 U/mg) Rinderdarm AP wurde in 450 μl 6M Guanidinhydrochlorid, 0.25 M Tris, 1mM EDTA, pH 8.5 gelöst und anschließend 30 μl Mercaptoethanol hinzugefügt. Nach Reduktion in 30 Minuten bei 100°C wurden die Cysteine durch Zugabe von 35 μl Vinylpyridin alkyliert und diese Mischung 45 Minuten bei Raumtemperatur im Dunkeln inkubiert. Das Reaktionsgemisch wurde dann sofort über eine kurze Reversed phase HPLC Aquapore RP300 column entsalzt (30 x 2.1 mm, Applied Biosystems, Weiterstadt). Ein Stufengradient von Acetonitril in 0,1% Trifluoressigsäure wurde verwendet, um gebundene Enzyme zu eluieren. Protein enthaltende Fraktionen wurden bis zur Trockne eingedampft. Um das Enzym zu deglykosilieren, wurden 125 µg AP in 15 μl destilliertem Wasser und 6 μl Inkubationspuffer (250 mM Na₂HPO₄, 50 mM EDTA, pH 7.2) und 15 U EndoF/PNGase gelöst (Boehringer Mannheim, Penzberg). Die Mischung wurde über Nacht bei 37°C gehalten und anschließend zur Spaltung verwendet. Reduzierte und alkylierte AP wurde mit verschiedenen Enzymen gemäß den Anweisungen aufden Datenblättern der einzelnen Enzyme enzymatisch gespalten (Endoproteinase LysC, Endoproteinase AspN, Endoproteinase GluC und Trypsin (Boehringer Mannheim, Penzberg). Cyanbromid Spaltung wurde mit 10% (w/w) CNBr in 70% (v/v) Ameisensäure über 8 Stunden durchgeführt. Nach Lösen mit Wasser wurde die Lösung mit einem SpeedVac Konzentrator (Savant) im Volumen reduziert und für eine Reversed phase HPLC verwendet. Der Verdau des C-terminalen tryptischen Peptids wurde über 4 Minuten mit Carboxypeptidase Y (8 ng/µl) durchgeführt und die freigesetzten Peptide mit einer Matrix-unterstützten Laserdesorption/Ionisationsmassenspektrometrie über ein Bruker Reflex III Gerät gemäß Anweisung des Herstellers analysiert. 2,5 Dihydroxybenzoesäure (10 mg/ml) in Acetonitril/Wasser (50/50, v/v) wurde als Matrix verwendet. Peptide aus enzymatischen oder chemischen Spaltungen wurden mit Reversed phase HPLC auf einer LiChrospher C18 selB Säule 125x2 mm (Merck, Darmstadt) unter Einsatz eines 0.1% Trifluoressigsaeure/Acetonitril Lösungsmittelsystems getrennt. Die Fluβrate betrug 300 μl/min. Der Auslauf wurde mit UV Monitor bei 206 nm detektiert und die Fraktionen manuell gesammelt. Die Massenbestimmung der Peptide wurde mit einem API III Elektrospray Massenspektrometer (PE-Sciex, Langen) nach den Anweisungen des Herstellers ausgeführt. Die Aminosäuresequenz wurde mit einem 492A Proteinsequenzer (Applied Biosystems, Weiterstadt) gemäß den Herstelleranweisungen ermittelt.

Beispiel 3: Herstellung der bIAP II cDNA und bIAP II Mutagenese

[0029] Zur Herstellung einer cDNA, die für bIAP II codiert, wurden Wildtyp Restriktionsfragmente und ortsgerichtet mutagenisierte PCR Fragmente von den cDNAs blAP I, III und IV miteinander ligiert und die L1N8 (3 Fragmente) and INT 1 (9 Fragmente) cDNA Zwischenkonstrukte geschaffen. INT 1 und bIAP III dienten dann als Vorlage für die ortsgerichtete Mutagenese und Fragmente hieraus wurden zu der kompletten INT 2 (8 Fragmente) cDNA zusammengesetzt. Restriktionsfragmente von INT 2 und ortsgerichtet mutagenisierte Fragmente von INT 2 wurden dann zu der INT 3 (5 Fragmente) cDNA und schließlich zur bIAP II (4 Fragmente) cDNA zusammengesetzt. Die ortsgerichtete Mutagenese wurde nach der Methode von Tomic et al. (1990) durchgeführt, wobei Bsa I (Typ II s) als Restriktionsenzym verwendet wurde, welches in einem Abstand von seiner Erkennungssequenz schneidet (GGTCTCN1/N5). Alle PCR-Produkte wurden sequenziert, um die Abwesenheit von Sekundär-Mutationen zu verifizieren. Alle Konstrukte wurden durch Sequenzierung und Restriktionsverdau bestätigt. Die Sequenz der verwendeten Oligonukleotid-primer zur Amplifikation der ortsgerichteten, mutagenisierten Fragmente sind wie folgt: der Name des primers wird zuerst genannt, gefolgt von der Sequenz (Positionen, die die Mutation anzeigen, sind unterstrichen): KS: SEQ ID No. 19: CGA GGT CGA CGG TAT CG; 1L: SEQ ID No. 20: GCA GGT CTC TCA GCT GGG ATG AGG GTG AGG; 8N: SEQ ID No. 21: GCA GGT CTC AGC TGA GGA GGA AAA CCC CGC; 122: SEQ ID No. 22: GCA GGT CTC TGT TGT GTC GCA CTG GTT; 1s: SEQ ID No. 7: GCC AAG AAT GTC ATC CTC; M133I:SEQ ID No. 23: GGT CTC TTT CTT GGC CCG GTT GAT CAC; S142A: SEQ ID No. 24: GGT CTC AAG AAA GCA GGG AAG GCC GTC; 180: SEQ ID No. 25: GGT CTC GTG CAT CAG CAG GCA GGT CGG C; M180K: SEQ ID No. 26: GGT CTC ATG CAC AGA AGA ATG GCT GCC AG; K205M: SEQ ID No. 27: GGT CTC AAA CAT GTA CAT TCG GCC TCC ACC; V210E: SEQ ID No. 28: GT CTC CAT GTT TCC TGA GGG

GAC CCC A; A236E: SEQ ID No. 29: GGT CTC CTG CCA TTC CTG CAC CAG GTT; 236: SEQ ID No. 30: GGT CTC TGG CAG GCC AAG CAC CAG GGA; 289: SEQ ID No. 31: GGT CTC CAG GGT CGG GTC CTT GGT GTG; E289A: SEQ ID No. 32: GGT CTC GAC CCT GGC GGA GAT GAC G; 330: SEQ ID No. 33: GGT CTC CTC AGT CAG TGC CAT ATA; 330E, V332I: SEQ ID No. 34: GGT CTC ACT GAG GCG ATC ATG TTT GAC; XIa: SEQ ID No. 35: TG CAC CAG GTG CGC CTG CGG GCC; N192Y: SEQ ID No. 36: GCC GCA CAG CTG GTC TAC AAC ATG GAT; S380G: SEQ ID No. 37: GCT GTC TAA GGC CTT GCC GGG GGC; N192Y: SEQ ID No. 38: GCC GCA CAG CTG GTC TAC AAC ATG GAT; D411G: SEQ ID No. 39: GGG GGT CTC GCT TGC TGC CAT TAA C; D416E: SEQ ID No. 40: GTT AAT GGT CTC ACA AGC GAG GAA CCC TCG; S428A: SEQ ID No. 41: CCC GTG GGT CTC GCT AGC CAG GGG CAC; D416E: SEQ ID No. 42: GTT AAT GGT CTC ACA AGC GAG GAA CCC TCG; T480S: SEQ ID No. 43: GAT GCT GGT CTC GGT GGA GGG GGC TGG CAG; 480: SEQ ID No. 44: CTG CCA GGT CTC ACC ACC GCC ACC AGC ATC; SP6: SEQ ID No. 45: CAT ACG ATT TAG GTG ACA CTA TAG; 236: SEQ ID No. 46: GGT CTC TGG CAG GCC AAG CAC CAG GGA; Q304R-: SEQ ID No. 47: GTA GAA GCC CCG GGG GTT CCT GCT; Q304+: SEQ ID No. 48: AGC AGG AAC CCC CGG GGC TTG TAC; E321D: SEQ ID No. 49: TGC CAT ATA AGC TTT GCC GTC ATG GTG. Die verschiedenen PCR - Reaktionen sind von 1 - 16 numeriert, die Vorlagen sind entweder Wildtyp cDNAs bIAP I, III oder IV, oder die chimaeren Konstrukte INT 1 oder INT 2. Die Oligonukleotid primer (in Klammern) sind die oben angegebenen. 1. bIAP IV (KS, 1L); 2. bIAP IV (8N, 122); 3.bIAP III (1S, M133I); 4. bIAP I (S142A, 180); 5. bIAP I (M180K, K205M); 6. bIAP I (V210E, A236E); 7. bIAP I (236, 289); 8. bIAP IV (E289A, 330); 9. bIAP III (330E, V332I, XIa); 10. INT1 (N192Y, S380G); 11. INT1 (N192Y, D411G); 12. bIAPIII (D416E, S428A); 13. INT1 (D416E, T480S); 14. INT1 (480, SP6); 15. INT2 (236, Q304R-); 16. INT2 (Q304R+, E321D). Die folgenden Ligationsreaktionen wurden in allen Fällen unter Verwendung des pcDNA-3 (Invitrogen, San Diego, CA) Expressionsvektors durchgeführt. Die Fragmente sind gemäß der oben genannten PCR Reaktionsnummer beziffert oder mit dem Namen des Wildtyps oder der chimären cDNA benannt, gefolgt von den Restriktionsenzymen, die zur Bildung des kohäsiven Terminus dieses Fragments benutzt werden. L1N8 = pcDNA-3/EcoRi-Xbai + 1/EcoRi-Bsai + 2/Bsai-BamHi + bIAP I/BamHi-Xbai. INT 1 = pcDNA-3/EcoRi-Xbai + L1N8/EcoRI-Ncoi + 3/Ncoi-Bsai + 4/Bsai + 5/Bsai + 6/Bsai + 7/Bsai + 8/Bsai + 9/Bsai-Stui + biAP I/Stui-Xbai. INT 2 = pcDNA-3/EcoRI-Notl + INT1/EcoRI-PstI + 10/PstI-StuI + 11/StuI-BsaI + 12/BsaI + 13/BsaI + 14/BsaI + bIAP I/Bsal-Noti. INT 3 = pcDNA-3/EcoRi-Xbal + INT2/EcoRi-Ncol + INT2/Ncol-Pvull + 10/Pvull-Eagl + INT2/Eagl-HindIII + INT2/HindIII-Xbal. bIAP II = pcDNA-3/EcoRI-Xbal + INT3/EcoRI-EagI + 15/EagI-Smal + 16/Smal-HindIII + INT3/Hindill-Xbal.

10 zusätzliche Konstrukte wurden hergestellt, um den Rest (die Reste) zu identifizieren, die für die unterschiedlichen kinetischen Eigenschaften von bIAP I und II verantwortlich sind. Alle Konstrukte wurden in pcDNA-3/EcoRI-Xbal subcloniert. 5 Konstrukte wurden durch den Austausch von Restriktionsfragmenten zwischen L1N8 oder bIAP I (I) und bIAP II (II) hergestellt. L1N8 EcoRI-PmII und (II) PmII-XbaI wurden ligiert, um die [N122K]bIAP II Mutante cDNA herzustellen. (II) EcoRI-BstEII, (I) BstEII-PvuII, (II) PvuII Xbal wurden für die [K180M]bIAP II Mutante cDNA kombiniert. (II) EcoRI-Eagl, (1) Eagl-BstEII, (II) BstEII-Xbal wurden für die [A289Q, A294V, Q297R, L299V]bIAP II Mutante ligiert. (II) EcoRI-Eagl, (II) Eagl-BstEll, (I) BstEll-Hindlll, (II) Hindlll-Xbal fuer die [G322D]bIAP II Mutante. (II) EcoRI-HindIII, (I) HindIII-SacI, (II) SacI-XbaI fuer die [I332G]bIAP II Mutante. 5 andere Positionen erforderten neue ortsgerichtete Mutagenese. Hierfür wurden die folgenden Oligonukleotide verwendet: I133M-: SEQ ID No. 50: GGT CTC TTT CTT GGC CCG GTT CAT CAC; A142S-: SEQ ID No.: 51: TGG TCA CCA CTC CCA CGG ACT TCC CTG; M205K-: SEQ ID No. 52; GGT CTC AAA CAT GTA TTT TCG GCC TCC ACC; E210V+; SEQ ID No. 53; GGT CTC ATG TTT CCT GTG GGG ACC CCA GAC; E236A: SEQ ID No. 54: GGT CTC CTG CCA TGC CTG CAC CAG GTT. Unter Verwendung dieser und der vorher aufgelisteten Oligonukleotide wurden die folgenden 8 PCR Reaktionen (a-h) mit bIAP II als Vorlage durchgeführt: a. 1s, l133M-; b. S142A+, M205K-; c. 1s, A142S-; d. V210E+, 330-; e. E210V+, 330-; f. M180K+, E236A-; g. 236+, 330-; h. S142A, K205M-. Die hieraus entstandenen Produkte wurden subkloniert und sequenziert und dann Fragmente für die folgenden Ligationen isoliert: (II) EcoRI-Ncol, (a) Ncol-Bsal, (b) Bsal, Pvull, (II) Pvull-Xbal fuer I133M. (II) EcoRi-Ncol, (c) Ncol-BstEII, (II) BstEII-PvuII, (II) PvuII-Xbai fuer A142S. (II) EcoRi- BstEII, (b) BstEII-Bsal, (d) Bsal-Hindlll, (II) Hindlll-Xbal fuer M205K. (II) EcoRI-BstEII, (h) BstEII- Bsal, (e) Bsal-Hindlll, (II) Hindlll-Xbal fuer E210V. (II) EcoRI-Ncol, (II) Ncol-Pvull, (f) Pvull-Bsal, (g) Bsal-HindIII, (II) HindIII-Xbal fuer E236A.

Beispiel 4: Produktion und Charakterisierung von rekombinanten Enzymen

50

[0031] Alle cDNAs (bIAP I, bIAP II, bIAP III, bIAP IV und entsprechende Mutanten) wurden in den pcDNA-3 Expressionsvektor kloniert (Invitrogen, San Diego, CA, USA), in Eierstockzellen eines chinesischen Hamsters (CHO Zellen) übertragen und stabile Transfektanten durch Wachsen der Zellen in Gegenwart von 500 µg/ml Geneticin ausgewählt (Gibco, BRL). Recombinante APs wurden aus stabilen übertragenen CHO Zellen wie beschrieben extrahiert (Hoylaerts et al., 1997). Zur Messung von k_{cat} wurden Mikrotiterplatten, die mit 0.1 µg/ml hochaffinem Anti-Rinder AP monoklonalem Antikörper beschichtet waren (Scottish Antibody Production Unit, Lanarkshire, Scotland), mit zunehmenden Enzymkonzentrationen inkubiert. Die Aktivität des gebundenen Enzyms wurde als zeitliche Änderung der Absorption bei 405 nm und 20°C nach Hinzufügen von 30 mM p-Nitrophenylphosphat (pNPP) als Substrat in 1.0 M Diethanolamin

Puffer (pH 9.8), 1 mM MgCl₂ und 20 μM ZnCl₂gemessen. Die gebildete p-Nitrophenol Konzentration wurde mit einem Extinktionskoeffizienten von 10,080 liter mol⁻¹ cm⁻¹ errechnet. Handelspräparate mit bekannten spezifischen Aktivitäten (Biozyme Laboratories, 7822 U/mg und Boehringer Mannheim, 3073 U/mg) als auch aufgereinigte bIAP II (8600 U/mg) wurden als Standards verwendet. Die Enzymkonzentration in diesen Lösungen, die den Antikörper absättigten (E°), wurde aus einer Standardkurve Aktivität gegenüber bekannten Enzymkonzentrationen unter identischen Testbedingungen berechnet. Die maximale Substratumsetzung (Vmax) wurde dann durch E° geteilt, um k_{cat} zu errechnen. Zur Berechnung von K_m wurde die Substratkonzentration zwischen 0.25 - 2.0 mM p-Nitrophenylphosphat (pNPP) verändert und die Anfangsreaktionsgeschwindigkeit bei 20°C in einem Zeitraum von 10 Minuten gemessen. Regressionskurven von [pNPP]/v gegen [pNPP] (Hanes Kurven) zur x-Achse ergaben -Km. Teilen der Standardabweichung des berechneten y-Wertes für jeden x-Wert in der Regression durch die Regressionsneigung ergab die Standardabweichung von K_m . V_{max} \pm Standardabweichung wurde unter Verwendung der zugehörigen Gleichungen durch Teilen von $K_m \pm Standardabweichung mit dem y-Achsenabschnitt \pm Standardabweichung berechnet. Die spezifischen Aktivitäten$ wurden auf der Basis Antikörper-gesättigte Aktivität im Vergleich zu Biozyme errechnet. Hitzestabiitätskurven wurden durch Inkubation von Extrakten bei 45 - 75 °C erstellt, Zunahme in 5 °C Schritten je 10 Minuten, wie vorher beschrieben (Weissig et al., 1993). Die Aktivität jeder Probe wurde dann wie oben bestimmt und die Restaktivität als verbleibender Prozentanteil, verglichen mit der nicht erhitzten Probe, berechnet. Die Temperatur, bei der 50% Restaktivität übrigbleibt (T_{50}) , wurde aus der Restaktivität gegenüber den Temperaturkurven errechnet.

20

25

30

35

45

50

SEQUENCE LISTING

```
<110> Roche Diagnostics GmbH
5
             <120> Hochaktive alkalische Phosphatase
              <130> 489300ep
10
              <140> 99108502.8-2105
              <141> 1999-04-30
              <160> 54
15
              <170> PatentIn Ver. 2.1
              <210> 1
              <211> 1798
20
              <212> DNA
              <213> Bovine intestinal
              <400> 1
              gaattoggca ogagocaggt occatootga occtoogoca toacacagot atgcagtggg 60
25
              cetgtgtgct getgctgctg ggcctgtggc tacagetete ecteaceete ateccagetg 120
              aggaggaaaa ccccgccttc tggaaccgcc aggcagccca ggcccttgat gtagccaaga 180
              agttgcagec gatccagaca gctgccaaga atgtcatect ettettgggg gatgggatgg 240
              gggtgcctac ggtgacagcc actcggatcc taaaggggca gatgaatggc aaactgggac 300
               ctgagacace cetggecatg gaccagttee catacgtgge tetgtecaag acatacaacg 360
30
              tggacagaca ggtgccagac agcgcaggca ctgccactgc ctacctgtgt ggggtcaagg 420
               gcaactacag aaccatcggt gtaagtgcag ccgcccgcta caatcagtgc aacacgacac 480
               gtgggaatga ggtcacgtct gtgatcaacc gggccaagaa agcagggaag gccgtgggag 540
               tggtgaccae caccagggtg cageatgeet ecceageegg ggeetaegeg cacaeggtga 600
               accgaaactg gtactcagac gecgaectge etgetgatge acagaagaat ggetgecagg 660
 35
               acategeege acagetggte tacaacatgg atattgaegt gateetgggt ggaggeegaa 720
               tgtacatgtt teetgagggg acceeagace etgaatacee agatgatgee agtgtgaatg 780
               gagteeggaa ggacaageag aacetggtge aggaatggea ggecaageae eagggageee 840
               agtatgtgtg gaaccgcact gcgctccttc aggcggccga tgactccagt gtaacacacc 900
               tcatgggcct ctttgagccg gcagacatga agtataatgt tcagcaagac cacaccaagg 960
               accegaceet ggeggagatg acggaggegg ceetgeaagt getgageagg aaceeeeggg 1020
               gcttctacct cttcgtggag ggaggccgca ttgaccacgg tcaccatgac ggcaaagctt 1080
               atatggcact gactgaggcg atcatgtttg acaatgccat cgccaaggct aacgagctca 1140
               ctagcgaact ggacacgetg atcettgtca etgcagacca eteccatgte ttetettttg 1200
 45
               gtggctacac actgcgtggg acctccattt tcggtctggc ccccggcaag gccttagaca 1260
               gcaagteeta caectecate etetatggea atggeecagg etatgegett ggeggggget 1320
               cgaggcccga tgttaatggc agcacaagcg aggaaccctc ataccggcag caggcggccg 1380
               tgeceetgge tagegagace caegggggeg aagaegtgge ggtgttegeg egaggeegge 1440
               aggogoacet ggtgcacggc gtgcaggagg agacettegt ggcgcacate atggcetttg 1500
               cgggctgcgt ggagccctac accgactgca atctgccagc ccccgccacc gccaccagca 1560
               tocccgacge egegeacetg geggecagee egectecact ggegetgetg getgggggga 1620
```

5	tgeto cccgo cccao	ctct	cc to	ccca	aaaq	cto	ccaq	gctc	aggo	ccta	icc g	gage	tacc	a co	ctcag	agtc	1680 1740 1798
10	<210 <211 <212 <213	> 48 > PR		into	esti	nal											
15	<400 Leu 1	Ile			5					10					15		
			Ala	20					25					30			
20	Ala	Lys	Asn 35	Val	Ile	Leu	Phe	Leu 40	Gly	Asp	Gly	Met	Gly 45	Val	Pro	Thr	
	Val	Thr 50	Ala	Thr	Arg	Ile	Leu 55	Lys	Gly	Gln	Met	Asn 60	Gly	Lys	Leu	Gly	
25	Pro 65	Glu	Thr	Pro	Leu	Ala 70	Met	Asp	Gln	Phe	Pro 75	Tyr	Val	Ala	Leu	Ser 80	
30	Lys	Thr	Tyr	Asn	Val 85	Asp	Arg	Gln	Val	Pro 90	Asp	Ser	Ala	Gly	Thr 95	Ala	
	Thr	Ala	Tyr	Leu 100	Cys	Gly	Val	Lys	Gly 105	Asn	Tyr	Arg	Thr	11e	Gly	Val	
35	Ser		Ala 115	Ala	Arg	Tyr	Asn	Gln 120	Cys	Asn	Thr	Thr	Arg 125	Gly	Asn	Glu	
40	Val	. Thr 130	: Ser	Val	Ile	Asn	Arg 135		Lys	Lys	Ala	Gly 140		Ala	Val	Gly	
	Va]		LThx	Thr	The	150		Gln	His		Ser 155		Ala	Gly	Ala	160	
4 5	Ala	a Hi:	s Thi	· Val	Asr 16:		g Asr	Trp	Туг	170		Ala	Asp	Let	175	Ala 5	
ΕΛ	As	p Al	a Glı	180		n Gl	у Су:	s Glr	18:		a Ala	a Ala	Glr	19	u Val	l Tyr	
50	As	n Me	t As;		e As	p Va	l Il	e Le:		y Gl	y Gl	y Arq	9 Met 20:	t Ty 5	r Me	t Phe	

		Pro	Glu 210	Gly	Thr	Pro	Asp	Pro 215	Glu	Tyr	Pro	Asp	Asp 220	Ala	Ser	Val	Asn
		Gly 225	Val	Arg	Lys	Asp	Lys 230	Gln	Asn	Leu	Val	Gln 235	Glu	Trp	Gln	Ala	Lys 240
10		His	Gln	Gly	Ala	Gln 245	Tyr	Val	Trp	Asn	Arg 250	Thr	Ala	Leu	Leu [.]	Gln 255	Ala
•		Ala	Asp	Asp	Ser 260	Ser	Val	Thr	His	Leu 265	Met	Gly	Leu	Phe	Glu 270	Pro	Ala
15	. *	Asp	Met	Lys 275	Tyr	Asn	Val	Gln	Gln 280	Asp	His	Thr	Lys	Asp 285	Pro	Thr	Leu
20			290				Ala	295					300				
,	·.	305		-			310					315					320
25						325			-		330					335	
30					340)				349	5				350	•	Ile
·				35	5				360)				365) ,		Thr
35			37	0				379	5				380)			a Asp
40		38	5				39	D				39	5			••	Ala 400
		Le	u Gl	y Gl	y Gl	y Se 40		g Pr	o As	p Va	1 As:		y Se	r Th	r Se:	r Gl:	u Glu 5
45	•	Pr	o Se	r Ty	r Ar 42		n Gl	n Al	a Al	a Va 42		o Le	u Al	a Se	r Gl 43		r His
- 50		G1	.y G)	y G1 43		sp Va	al Al	a Va	1 Ph		ia Ar	g Gl	y Pr	o Gl 44		a Hi	s Leu
-		Va		ls G1	Ly Va	1 G	ln Gl	.u Gl 45		ır Pl	he Va	ıl Al	a Hi 46		.e Me	t Al	a Phe

475

480

Ala Gly Cys Val Glu Pro Tyr Thr Asp Cys Asn Leu Pro Ala Pro Ala

470

465

5

55

```
10
            <210> 3
            <211> 2460
            <212> DNA
            <213> Bovine intestinal
15
            <400> 3
            gaatteggea egagegagae ecagaetece eaggteecat cetgaecete egecateaca 60
            cagetatgea gggggeetge gtgetgetge tgetgggeet gtggetacag eteteceteg 120
            cetteatece agttgaggag gaagaceeeg cettetggaa eegecaggea geceaggeee 180
            ttgatgtggc taagaagctg cagcccatcc agaaagccgc caagaatgtc atcctcttct 240
20
            tgggagatgg gatggggtg cctacggtga cagccactcg gatactgaag gggcagatga 300
            atgacaaget gggacetgag acaeceetgg ceatggacea gtteceatae gtggetetgt 360
             ccaagacata caacgtggac agacaggtgc cagacagcgc aggcactgcc actgcctacc 420
             tgtgtggggt caagggcaac tacagaacca tcggtgtaag tgcagccgcc cgctacaatc 480
             agtgcaacac gacacgtggg aatgaggtca cgtctgtgat gaaccgggcc aagaaagcag 540
25
             ggaagtcagt gggagtggtg accaccacca gggtgcagca cgcctcccca gccggtgctt 600
             atgcacacac ggtgaaccgt gactggtact cagacgccga cctgcctgcc gatgcacaga 660
             cgtatggctg ccaggacatc gccacacaac tggtcaacaa catggatatt gacgtgatcc 720
             tgggtggagg ccgaaagtac atgtttcctg aggggacccc agaccctgaa tacccacacg 780
30
             atgccagtgt gaatggagtc cggaaggaca agcggaatct ggtgcaggag tggcaggcca 840
             agcaccaggg agcccagtat gtgtggaacc gcacggagct cettcaggca gccaatgact 900
             ccagtgttac acateteatg ggeetetttg ageeggeaga catgaagtat aatgtteage 960
             aagaccccac caaggacccg accctggagg agatgacgga ggcggccctg caagtgctga 1020
             geaggaacce ecagggette tacetetteg tggagggagg ecgeattgae caeggteace 1080
35
             atgatagosa agettatatg gegetgactg aggeggteat gtttgaesat geestegees 1140
             aggetaacga geteactage gaactggaea egetgateet tgteactgea gaccaeteee 1200
             atgtottoto tittggtggo tacacactgo gtgggacete cattiteggt etggececca 1260
             gcaaggcete agacaagaag teetacaeet ceatecteta tggcaatgge eetggetaeg 1320
             tgcttggtgg gggctcaagg cccgatgtta atgacagcat aagcgaggac ccctcatacc 1380
             ggcagcaggc ggccgtgccc ctgtctagcg agacccacgg gggcgaagac gtggcggtgt 1440
             tegegegagg ecegeaggeg cacetggtge aeggegtgea ggaggagaee ttegtggege 1500
             acgtcatggc ctttgcgggc tgcgtggagc cctacaccga ctgcaatctg ccggcccct 1560
             ctggcctctc cgacgccgcg cacctggcgg ccagcgcgcc ttcgctagcg ctgctggccg 1620
 45
             gggcgatget getgetgetg gegeeegeet tgtactgace eccaecaact ecaggtettg 1680
             gggtttcccg ctttcttgcc ccaaaatctc ccagcgcagg ccccatctga gctaccacct 1740
              cagagtecee accetgaagt ectatetage geactecaga eegegaetea geeceaceae 1800
              cagagettea ceteccagea acgaaggage ettageteae ageettteat ggeecagace 1860
             attetggaga etgaggeest gatttteesg acceaactte agtggettga gattttgtgt 1920
 50
              tetgecacce eggatecetg taaggggget eggaceatee agaetecece cactgeceae 1980
              agecgaacet gaggaceagg etggcaeggt eccaggggte ecaggeeegg etggaaceca 2040
```

		. + + ~,	~~ +t	ttcac	mama	CCC	taaa	act	atao	iaatt	tc c	agga	ggcg	ıt go	rctto	ttgg	2100
,	catçı		ct t		aaat	ggg	ttcc	gag	aaqq	icata	ige t	ccct	gtco	t go	jaacc	accc	2160
	agge	3499	te t			. 222	gato	tct	ada	icaaa	iga g	tgcc	- 9999	g ac	cctg	gaca	2220
5	cacas	ggma stati	to a	acaac	ccct	cct	agga	acc	cago	:agta	icc a	ttat	agaç	ja gç	ggad	accg	2280
	acac:	2000	ga g	aaaaa	ractt	ato	ccad	atc	cct	caget	gc t	gtga	gggg	gt ga	ecct	tggt	2340
•	tooci	ayay atta	CC 9	aacto	aaaa	ato	ccad	ıgag	cago	sagad	iga c	ctgg	rgggt	g gg	gaca	cagg	2400
	0000	900 0	te e	taaa	3000	, aga	agca	acc	ctn	aaata	aa c	tgtt	cct	eg to	geega	attc	2460
10	CCCC	2020		-999	-222-	- 33		•									
,,,	<210	> 4							٠.								
	<211		1				-				-					-	
	<212																
			vine	int	esti	nal											
15	1213	, ,,	,														·
	<400	> 4															
			Pro	Val •	Glu (Glu (Glu i	Asp	Pro	Ala	Phe ?	rp /	Asn .	Arg	Gln i	Ala	
	1	,	•		5			_		10					15		
· ·	_																
20	Ala	Gln	Ala	Leu	Asp '	Val :	Ala :	Lys	Lys	Leu	Gln :	Pro :	lle	Gln	Lys .	Ala	
				20	_			•	25	•				30			
	Ala	Lvs	Asn	Val	Ile	Leu	Phe	Leu	Gly	Asp	Gly I	Met	GΣΥ	Val	Pro	Thr	
25		-	35		-			40					45				
25									•	٠.					•		
	Val	Thr	Ala	The	Arg	Ile	Leu	Lys	Gly	Gln	Met .	Asn	Ąsp	Lys	Leu	Gly	
		50					55					60					
30	Pro	Glu	Thr	Pro	Leu	Ala	Met	Asp	Gln	Phe	Pro	Tyr	Val	Ala	Leu	Ser	
	65					70					75					80	
	Lys	Thr	Tyr	Asn	Val	Asp	Arg	Gln	Val	•	Asp	Ser	Ala	GLA	Thr	ATA	
			•		85					90					95		
35										_	_		5 1	7 3.		t/n l	
es nie	Thr	Ala	Tyr	Leu	Cys	Gly	Val	Lys			Tyr	Arg	Thr		GIY	ATT	
	٠	-		100					105					110			
2 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -								_	_	_	_,			61	3	C1	
	Ser	Ala	Ala	Ala	Arg	Tyr	Asn			Asn	Thr	Thr			ASII	GIU	
40		•	115	•			-	120					125				
	•			_		_	_		_	•	21-	۳۱	7	Car	Val	Gly	
	Val			. Val	Met	Asn		Ala	Lys	гла	Ala		råz	Ser	AGT	GLY	
		130)				135					140					
45	_			.	-1	3	12- 1	61 -		. 11.	Sor	Bro	21=	G) v	, Ala	Tur	٠
•			l Thi	Thr	Thr			GIN	Hls	. Ala	Ser	PIO	VIG	. 613	ALU	160	•
	145					150					155						
•		•	1	, .	x	R			. T	- 5	- Aen	Δla	` Aer	ום, ז	ı Pro	Ala	
	Ala	A His	ותד פ	c val			nsp	trb	, r.A.	170		err a	, ausp	(175	Ala	
50					165	•				2,0					_ · •	•	
	· •	. אי	. (1)	o ም느-	. Ter-	e Clu	Cue	6 1-	l Acr	5 Tle	. Ala	Thr	Glr	ı Lev	ı Val	Asn	
	Asi	, MT	מ פאן	11 1111	. туг	. GIY	- Cys	. 4.1							- -		

				180				·	185					190		
5	Asn		Asp 195	Ile	Asp	Val		Leu 200	Gly	Gly	Gly .		Lys 205	Tyr	Met	Phe
		Glu 210	Gly	Thr	Pro	Asp	Pro 215	Glu	Tyr	Pro		Asp 220	Ala	Ser	Val	Asn
	Gly 225	Val	Arg	Lys	Asp	Lys 230	Arg	Asn	Leu	Val	Gln 235	Glu	Trp	Gln	Ala	Lys 240
15	His	Gln	Gly	Ala	Gln 245	Tyr _.	Val	Trp		Arg 250	Thr	Glu	Leu	Leu	Gln 255	Ala
	Ala	Asn	Asp	Ser 260	Ser	Val	Thr	His	Leu 265	Met	Gly	Leu	Phe	Glu 270	Pro	Ala
20	Asp	Met	Lys 275	Tyr	Asn	Val	Gln	Gln 280		Pro	Thr	Lys	Asp 285		Thr	Leu
25		290		Thr			295					300				
,	305					310					315					His 320
30					325					330					335	
35				340					345	5			•	350)	l Ile
	<u>.</u>		355	j.				. 360	0				365	5		Thr
40		370					375	5				380)	•		r Asp
46	385	.			•	39	0		·		39	5				400
45					40	5 .				41	0				41	·
50				42	D				42	:5			•	43	(0	r His
	Gl	y Gl	y Gl	u As	p Va	l Al	a Va	l Ph	ie Al	a Ar	g Gl	y Pr	o G1	n Al	a Hi	s Leu

	435	440	445	
5	Val His Gly Val Gln 450	Glu Glu Thr Phe V	al Ala His Val Met A	Ala Phe
10	Ala Gly Cys Val Glu 465	Pro Tyr Thr Asp C	ys Asn Leu Pro Ala 475	Pro Ser 480
	Gly Leu Ser Asp Ala 485		la Ser Ala Pro Ser 90	Leu Ala 495
15	Leu Leu Ala Gly Ala 500	Met Leu Leu Leu I 505	eu Ala Pro Ala Leu 510	Tyr
	<210> 5	· .		
20	<211> 2542 <212> DNA <213> Bovine intest	inal		
	<400> 5		teneste etgaceetee (accatcacac 60
25	agreat geag toggest	to toctoctoct oct	toccato otgacoctoc (gggcotg tggctacago	Ecteceteae 120
	restetagee asgaagt	go agoogatoca gao	ctggaac cgccaggcag agctgcc aagaatgtca	ECCECETCE 240
	gggggatagg atggggg	ge ctaeggtgae age	cactogg atoctaaagg	ggcagatgaa 300
30	tggtaagctg ggacctg	aga cacceetgge cat aga gacaggtgee aga	ggaccag ttcccatacg cagcgca ggcactgcca	ctgcctacct 420
	atatagagte aagggea	act acaaaaccat tgg	tgtaagt gcagccgccc	gctacaacca 400
	ntocaacaca acaaqtq	gca atgaggtcac gto	tgtgatg aaccgggcca	agaaagcagg 340
<i>35</i>	aaantranto ooaqtoo	tga ccacctccag ggt	gcagcat gcctccccag	eeggtgetta 000
	tgcacacacg gtgaacc	gaa actggtactc aga	tgccgac ctgcctgccg	acotoatect 720
	gtatggctgc caggaca	tog coacacaact ggt	ggaccceg gatectgaat	acccatacga 780
	gggtggaggc cgaacgc	too qqaaqqacaa go	ggaatctg gtgcaggagt	ggcaggccaa 840
	graceadda decead	atg tgtggaaccg ca	eggagete etteaggeag	ccaatgaccc 900
40	cantotaaca cacctca	tgg gcctctttga gc	cggcagac atgaagtata	atgttcagca 300
	agaccccacc aaggaco	cga ccctggagga ga	tgacggag gcggccctgc	aagtgetgag 1020
	cannaacccc cannoct	tot acctettegt gg	agggaggc cgcattgacc	acggtcacca 1000
	tgaaggcaaa gcttata	itgg cactgactga ta	cagteatg tttgacaatg	accastssca 1200
45	ggctaacgag ctcact	agog aactggacac go	tgatectt gecaetgeag	tggccccag 1260
	tgtcttctct tttggt	gget acacactgeg to	ggacetec atttteggte teetetat ggcaatggee	ctggctacgt 1320
_	caaggeetea gacaac	age cogatottaa to	acagcata agcgaggacc	cctcgtaccg 1380
•	grageagge geegtg	cccc tgtctagtga gt	cccacggg ggcgaggacg	tggcggtgtt 1440
50	cococoadoc ccqcaq	gege acetggtgca co	igogtgeag gaggagaeet	tegtggegem 1900
	catcatages titiges	ggot gogtggagoo ct	acaccgae tgeaatetge	eddececerr 1200
	tggcctctcc gacgcc	gcgc acctggcggc ca	geeegeet tegetggege	tgctggccgg 1620

t	ggcgatgctg ctgctgctgg cgcctgcctt gtactgaccc ccaccaactc caggtcttgg 1680
	ggtttcctgc tttcctgcca aaaatctccc agcgcagacc ccaccagagc taccacctcg 1740
_	gagtotocac cotgaagtoo tatottagog gocactooog gatocoogac caggooccac 1800
5	tagcagaget teacetecca gaaatgaagg atteacette cagcaacgaa gaageeteag 1860
	ctcacagece ttcatggece ageceateca gaggetgagg ceetgattte estgtgacae 1920
	cogtagacot actgooogac cocaacttoa gtggottggg attttgtgtt ctgccaccoc 1980
	taaccccagt aagggggcte ggaccateca gacteteeec actgeecaca acceeacetg 2040
10	agaaccagge tagcacggte ccaaggttee caggeeegge tagaacceae accatgeett 2100
	traggagare etggggeter ggggttterg ggaggegtgg etttettagg aggegtggaa 2160
	actgaggagg cacggtttct gaggaggcgt gcgtcctggg gagctgtggc ttccggtcct 2220
4	coccatgooc tgtgggotoc tocctaacca aggagacggo caaggagacg totggaacca 2280
	ggagcggcgg gggaacettg cagagceete agcaacecet cetaggaace cagggtaceg 2340
15	ttagagagag gagacagcga cacagaggag aggagacttg teccaggtet etcagetget 2400
•	atgaaggtgg ccccggtgcc ccttccaggc tgggagatcc caggagcagc gggggagctg 2460
	gtgggtgggg acacagecee geetteatgg gagggaggaa geageeetea aataaactgt 2520
	0540
	tctaagtgtg aaaaaatcta ga 2542
20	
	<210> 6
	<211> 511
	<212> PRT
	<213> Bovine intestinal
25	
	<400> 6
,	Phe Ile Pro Ala Glu Glu Asp Pro Ala Phe Trp Asn Arg Gln Ala
	1 5 10 15
	•
30	Ala Gln Ala Leu Asp Val Ala Lys Lys Leu Gln Pro Ile Gln Thr Ala
	20 25 30
	r ·
	Ala Lys Asn Val Ile Leu Phe Leu Gly Asp Gly Met Gly Val Pro Thr
	35 40 45
35	
	Wal Thr Ala Thr Arg Ile Leu Lys Gly Gln Met Asn Gly Lys Leu Gly
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	50 55 60
	Pro Glu Thr Pro Leu Ala Met Asp Gln Phe Pro Tyr Val Ala Leu Ser
40	75
40	65 70 75 80
	and the state of t
	Lys Thr Tyr Asn Val Asp Arg Gln Val Pro Asp Ser Ala Gly Thr Ala
	90 95
45	
75	Thr Ala Tyr Leu Cys Gly Val Lys Gly Asn Tyr Lys Thr Ile Gly Val
	100 105 110
,	
	Ser Ala Ala Ala Arg Tyr Asn Gln Cys Asn Thr Thr Ser Gly Asn Glu
50	115 120 125
50	
	Val Thr Ser Val Met Asn Arg Ala Lys Lys Ala Gly Lys Ser Val Gly
•	

		130					135					140				
5	Val 145	Val	Thr	Thr		Arg 150	Va]	Gln	His	Ala	Ser 155	Pro	Ala	Gly		Tyr 160
	Ala	His	Thr	Val	Asn 165	Arg	Asn	Trp		Ser 170	Asp	Ala	Asp	Leu	Pro 175	Ala
10	Asp	Ala		Thr 180	Tyr	Gly	Суз		As p 185	Ile	Ala	Thr	Gln	Leu 190	Val	Asn
15	Asn	Met	Asp 195	Ile	Asp	Val	Ila	Leu 200	Gly	GJĀ	Gly	Arg	Met 205	Tyr	Met	Phe
	Pro	Glu 210	Gly	Thr	Pro	Asp	Pro 215	Glu	Tyr	Pro	Tyr	Asp 220	Val	Asn	Gln	Thr
20	Gly 225	Val	Arg	Lys	As p	Lys 230	Arg	Asn	Leu	Val	Gln 235	Glu	Trp	Gln	Ala	Lys 240
25	His	Gln	Gly	Ala	Gln 245	Tyr	Val	Trp	Asn	Arg 250	Thr	Glu	Leu	Leu	Gln 255	Ala
	Ala	Asn	Asp	Pro 260	Ser	Val	Thr	His	Leu 265	Met	Gly	Leu	Phe	Glu 270		Ala
30	Asp	Met	Lys 275	Tyr	Asn	Val	Gln	Gln 280	Asp	Pro	Thr	Lys	Asp 285	-	Thr	Leu
35	Glu	Glu 290		Thr	Glu	Ala	Ala 295		Gln	Val	Leu	Ser 300	•	Asn	Pro	Gln
	Gly 305		Tyr	Leu	Phe	Val 310		Gly	Gly	' Arg	315		His	Gly	' His	320
40	Glu	Gly	Lys	Ala	1yr 325		Ala	Leu	Thr	330		Val	Met	Phe	335	Asn S
45	Ala	lle	Ala	Lys 340		Asn	Glu	Leu	345		r Glu	. Leu	Asp	350		ı Ile
	Lev	a Ala	355		Asp	His	s Ser	360		L Phe	e Ser	Phe	365		у Туз	Thr
50	Let	370		Thi	r Sei	r Ile	9 Phe		/ Let	ı Ala	a Pro	380		s Ala	a Se	r Asp
	Ası	n Ly:	s Sei	ту:	r Thu	r Sei	116	e Lei	ту:	r Gl	y Ası	a Gly	y Pr	o Gl	у Ту	r Val

	395	390	395	400	
5	Leu Gly Gly	Gly Leu Arg Pro A 405	sp Val Asn Asp Se 410	r Ile Ser Glu Asp 415	
	Pro Ser Tyr	Arg Gln Gln Ala A	la Val Pro Leu Se 425	er Ser Glu Ser His 430	
10	Gly Gly Glu 435		Phe Ala Arg Gly Pr 140	co Gln Ala His Leu 445	
15	Val His Gly 450	Val Gln Glu Glu 3		is Val Met Ala Phe 60	
·	Ala Gly Cys	Val Glu Pro Tyr (Thr Asp Cys Asn Lo	eu Pro Ala Pro Ser 480	
20	Gly Leu Ser	Asp Ala Ala His	Leu Ala Ala Ser P 490	ro Pro Ser Leu Ala 495	
25	Leu Leu Ala	Gly Ala Met Leu 500	Leu Leu Leu Ala P 505	ro Ala Leu Tyr 510	
-	<210> 7				
30	<211> 18 <212> DNA <213> Arti:	ficial Sequence		-	
35	<220> <223> Desc	ription of Artific	cial Sequence: Art	tificial	
	<400> 7 gccaagaatg	tcatcctc			18
40	<210> 8				
•	<211> 18				
	<212> DNA	e:_:_1	,		
	<213> Arti	ficial Sequence			
45	<220> <223> Desc	cription of Artifi	cial Sequence: Ar	tificial	
	<400> 8				
50		a ttettgge			18
J0			.*		
	<210> 9				-
	<211> 17				•

	<212> DNA	
•	<213> Artificial Sequence	
	<220>	
•	<223> Description of Artificial Sequence: Artificiall	
	<400> 9	
10	ggtgtaagtg cagccgc	17
	gg cg care y c y	
	<210> 10	
	<211> 17	
	<212> DNA	
15	<213> Artificial Sequence	
	(213) Mitilitial bedacing	
		•
	<220> <223> Description of Artificial Sequence: Artificial	
	<223> Description of Altificial Bequestion	
20		
	<400> 10	17
	geggetgeac ttagace	
	<210> 11	
25	<211> 17	
	<212> DNA	
	<213> Artificial Sequence .	
	<220>	•
30	<223> Description of Artificial Sequence: Artificial	
		•
	<400> 11	17
	aatgtacatg tttcctg	1,
35	<210> 12	
	A	
	<212> DNA	
	<213> Artificial Sequence	
	보면 보다	
40	<220>	
	<223> Description of Artificial Sequence: Artificial	
	(223) BCGCLLP	
	<400> 12	•
		17
45	caggaaacat gtacatt	
	c210> 13	
	<210> 13	
	<211> 18	•
	<212> DNA	
50	<213> Artificial Sequence	
	<220>	

	<223> Description of Aftificial Dequence. (CCC)	
5	<400> 13	
	ccagggette tacetett'	18
	<210> 14	
	<211> 18	
10	<212> DNA	
	<213> Artificial Sequence	
	<220>	
15	<223> Description of Artificial Sequence: Artificial	
	<400> 14	
-	aagaggtaga agccctgg	18
	<210> 15	
20	<211> 18	
	<212> DNA	
	<213> Artificial Sequence	
25	<220> ·	
	<223> Description of Artificial Sequence: Artificial	
	<400> 15	18
	accagageta ccaecteg	
30	<210> 16	
	<211> 18	
	<212> DNA	
	<213> Artificial Sequence	
<i>35</i>		
	<220> <223> Description of Artificial Sequence: Artificial	
	ing of Mills To the Marketine The Control of Marketine	
40	<400> 16	18
40	aagcaggaaa ccccaaga	, 20
	<210> 17	
	<211> 18	
45	<212> DNA	
	<213> Artificial Sequence	-
	<220> <223> Description of Artificial Sequence: Artificial	
	<223> Description of Millicial Dequence, interest	
50	<400> 17	
		18
	cttcagtggc ttgggatt	

	<210> 18	
	<211> 18	
5	<212> DNA	
	<213> Artificial Sequence	
	<220>	
10	<223> Description of Artificial Sequence: Artificial	
	<400× 10	
	<400> 18	18
	aatcccaagc cactgaag	
15	<210> 19	
,,,	<211> 17	
	<212> DNA	
	<213> Artificial Sequence	
20	<220>	
	<223> Description of Artificial Sequence: Artificial	
	<400> 19	٠.
25	cgaggtcgac ggtatcg	17
	<210> 20	
	<211> 30	
•	<212> DNA	
30	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Artificial	
oc.		
35	· <400> 20	30
	geaggtetet eagetgggat gagggtgagg	30
40	<210> 21	
	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
4 5	<220>	
	<223> Description of Artificial Sequence: Artificial	
	<400> 21	
50	gcaggtetca getgaggagg aaaaceeege	30
	<210> 22	
	<211> 27	

	<212> DNA	
	<213> Artificial Sequence	
<u>ج</u>		
•	<220>	
	<223> Description of Artificial Sequence: Artificial	
-	<400> 22	
10 .	geaggtetet gttgtgtege aetggtt	27
	<210> 23	
	<211> 27	
15	<212> DNA	
,,,	<213> Artificial Sequence	
•	4320 \	
	<220> <223> Description of Artificial Sequence: Artificial	
	2235 Description of Artificial Sequence. Artificial	
20	<400> 23	
	ggtetettte ttggceeggt tgateae	27
	990000000000990 -90000	_
	<210> 24	
25	<211> 27	
	<212> DNA	•
	<213> Artificial Sequence	
	<220>	
30	<223> Description of Artificial Sequence: Artificial	
•		
	<400> 24	
	ggtctcaaga aagcagggaa ggccgtc	27
35 .		
	_<210> 25	
	<211> 28	
	<212> DNA	
	<213> Artificial Sequence	
40	4000	
	<220>	
• .	<223> Description of Artificial Sequence: Artificial	
•	<400> 25	
45	ggtctcgtgc atcagcaggc aggtcggc	28
-		
	<210> 26	
	<211> 29	
	<212> DNA	
50	<213> Artificial Sequence	
	<220>	

5

	<223> Description of Artificial Sequence: Artificial	
ī	<400> 26	20
	ggtctcatgc acagaagaat ggctgccag	29
	<210> 27	
	<211> 30	
10	<212> DNA	
	<213> Artificial Sequence	•
	<220>	
15	<223> Description of Artificial Sequence: Artificial	•
	<400> 27	70
	ggtctcaaac atgtacattc ggcctccacc	30
20	<210> 28	
20	<211> 27	k
	<212> DNA	
	<213> Artificial Sequence	
25	<220>	
	<223> Description of Artificial Sequence: Artificial	
	<400> 28	22
•	gtotocatgt ttootgaggg gaccoca	27
30		
	<210> 29	
•	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	-
35		-
	<220>	
्र देखें संस्थान	<223> Description of Artificial Sequence: Artificial	
erine Marie III. Anna Salaman III.		
40	<400> 29	27
	ggtctcctgc cattcctgca ccaggtt	
·	<210> 30	,
•	<211> 27	
45	<212> DNA	
	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Artificial	
50	-	
	<400> 30	27
	ggtetetgge aggecaagea ceaggga	21

	<210> 31	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
•	<220>	
	<223> Description of Artificial Sequence: Artificial	
10	·	
	<400> 31	
	ggtctccagg gtcgggtcct tggtgtg	27
	<210> 32	
15	<211> 25	
•	<212> DNA	
	<213> Artificial Sequence	
20	<220>·	
	<223> Description of Artificial Sequence: Artificial	
	<400> 32	25
0E	ggtctcgacc ctggcggaga tgacg	
25		
	<210> 33	
	<211> 24	
	<212> DNA <213> Artificial Sequence	
30	ZZI37 AFCIIICIAI Sequence	
	<220>	
	<223> Description of Artificial Sequence: Artificial	
35	<400> 33	24
	ggtctcctca gtcagtgcca tata	
	<210> 34	
	<211> 27	
40	<212> DNA	
	<213> Artificial Sequence	,
	<220>	
45	<223> Description of Artificial Sequence: Artificial	
	<400> 34	
	ggtctcactg aggcgatcat gtttgac	27
50	<210> 35	
	<211> 23	
	/2125 DNB	

	<213> Artificial Sequence	
5	<220>	
,	<223> Description of Artificial Sequence: Artificial	
	<400> 35	
	tgcaccaggt gcgcctgcgg gcc 23	
10		
	<210> 36	
	<211> 27	
	<212> DNA	
15	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Artificial	
	<400> 36	
20	geogracage tggtetacaa catggat 27	
	<210> 37	
	<211> 24	
25	<212> DNA	
23	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Artificial	
30	· · · · · · · · · · · · · · · · · · ·	
	<400> 37	i
	gctgtctaag gccttgccgg gggc	r
	<210> 38	
35 ;	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
	<220>	
40	<223> Description of Artificial Sequence: Artificial	
	<400> 38	
	gccgcacage tggtctacaa catggat 2	7
4 5		
	<210> 39	
	<211> 25	
	<212> DNA	
	<213> Artificial Sequence	
50	·	
	<220>	
	<223> Description of Artificial Sequence: Artificial	

	<400> 39	25
	gggggteteg ettgetgeea ttaac	23
;		
	<210> 40	
	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
10	-	
	<220>	
	<223> Description of Artificial Sequence: Artificial	
	<400> 40	3.0
15	gttaatggtc tcacaagcga ggaaccctcg `	30
	<210> 41	
20	<211> 27	
20	<212> DNA	
	<213> Artificial Sequence	
	<220>	
25	<223> Description of Artificial Sequence: Artificial	
•	<400> 41	. .
	cccgtgggtc tcgctagcca ggggcac	27
30	<210> 42	
	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
05		
35	<220>	
	<223> Description of Artificial Sequence: Artificial	
. 96		•
40	<400> 42 **********************************	30
40	gttaatggtc tcacaagcga ggaaccctcg	
	<210> 43	
	<211> 30	
4.00	<212> DNA	
45	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Artificial	
50		
	<400> 43	30
•	gatgctggtc tcggtggagg gggctggcag	30

	<210> 44	
	<211> 30	
5	<212> DNA	
	<213> Artificial Sequence	
	<220>	
10	<223> Description of Artificial Sequence: Artificial	
	<400> 44	30
	ctgccaggte teaceaecge caceageate	30
15	<210> 45	
,	<211> 24	·
	<212> DNA	_
	<213> Artificial Sequence	
20	<220>	
	<223> Description of Artificial Sequence: Artificial	
	<400> 45	24
25	catacgattt aggtgacact atag	4.1
	<210> 46	
	<211> 27	
	<212> DNA	
30	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Artificial .	
35	<400> 46	27
	ggtctctggc aggccaagca ccaggga	2,
	<210> 47	
40	<211> 24	
40	<212> DNA	•
	<213> Artificial Sequence	
	<220>	
45	<223> Description of Artificial Sequence: Artificial	
	<400> 47	24
	gtagaagccc cgggggttcc tgct	24
50	<210> 48	
	<211> 24	
	(212) DVA	

. *55*

	<213> Artificial Sequence	
	<220>	
ţ	<223> Description of Artificial Sequence: Artificial	
	<400> 48	
	ageaggaace ceeggggett etac	24
10		
	<210> 49	
	<211> 27	
	<212> DNA	
	<213> Artificial Sequence	
15	•	
	<220>	
,	<223> Description of Artificial Sequence: Artificial	
20	<400> 49	27
20	tgccatataa gctttgccgt catggtg	21
	<210> 50	
	<211> 27	
25	<212> DNA	
23	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Artificial	
30		
	<400> 50	07
	ggtctctttc ttggcccggt tcatcac	27
	<210> 51	
35	<211> 27	
Page	(1) (2) 2) DNA	
<i>3</i>	<213> Artificial Sequence	
	<220>	
40	<220> <223> Description of Artificial Sequence: Artificial	
	<400> 51	27
	tggtcaccac teccaeggae ttecetg	
45	<210> 52	
	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
50	•	
	<220> <223> Description of Artificial Sequence: Artificial	
	<223> Description of Artificial Sequence: Artificial	-

	<400> 52	
	ggtctcaaac atgtattttc ggcctccacc	30
	<210> 53	•
	<211> 30	
	<212> DNA	
J	<213> Artificial Sequence	
	<220>	
15	<223> Description of Artificial Sequence: Artificial	
	<400> 53	30
	ggtctcatgt ttcctgtggg gaccccagac	30
20	<210> 54	
	<211> 27	
	<212> DNA	
25	<213> Artificial Sequence	
	<220>	
	<223> Description of Artificial Sequence: Artificial	-
30	<400> 54	27
	ggtctcctgc catgcctgca ccaggtt	27

Patentansprüche

- DNA kodierend eine eukaryontische hochaktive alkalische Phosphatase mit einer spezifischen Aktivität über 3000 U/mg, wobei der Aminosäurerest an der Position 322 kleiner ist als Aspartat.
 - 2. DNA gemäß Anspruch 1, wobei der Aminosäurerest 322 Glycin, Alanin, Threonin, Valin oder Serin sein kann.
- 3. DNA gemäß Anspruch 1 oder 2, wobei der Aminosäurerest 322 Glycin oder Serin sein kann.
 - 4. DNA gemäß einem der Ansprüche 1-3, wobei der Aminosäurerest 322 Glycin ist.
 - 5. DNA gemäß SEQ ID No.: 1 (bIAP II).
 - 6. DNA gemäß SEQ ID No.: 3 (bIAP III).
 - 7. DNA gemäß SEQ ID No.: 5 (bIAP IV).
- 8. Verfahren zur Herstellung einer DNA gemäß einem der Ansprüche 1-7, dadurch gekennzeichnet, daß mutierte und Wildtyp-Fragmente der cDNA von einer oder mehreren akalischen Phosphatasen zu einem Gen, das für eine aktive alkalische Phosphatase kodiert, ligiert wurden.

- 9. Eukaryontische cDNA, die funktionelle Isoenzyme mit alkalischer Phosphatase-Aktivität kodiert und die als Zwischenprodukt während eines Verfahrens gemäß Anspruch 8 entsteht.
- 10. Vektor enthaltend eine cDNA gemäß einem der Ansprüche 1-9.

5

10

25

30

55

- 11. Eukaryontische oder prokaryontische Zelle enthaltend einen Vektor gemäß Anspruch 10.
- 12. Hochaktive rekombinante alkalische Phosphatase mit einer spezifischen Aktivität über 3000 U/mg, die kodiert wird durch eine DNA gemäß einem der Ansprüche 1-7.
- 13. Hochaktive rekombinante alkalische Phosphatase gemäß Anspruch 12, wobei die Aminosaure in Position 322 Glycin ist.
- 14. Hochaktive rekombinante alkalische Phosphatase gemäß einem der Ansprüche 12 bis 13, wobei zusätzlich in eine oder in mehrere der folgenden Aminosäurepositionen eine Mutation eingeführt wurde: 1, 108, 125, 149, 181, 188, 219, 221, 222, 223, 224, 231, 252, 258, 260, 282, 304, 321, 330, 331, 354, 383, 385, 400, 405, 413, 428, 431 und 461.
- 15. Verfahren zur Herstellung der hochaktiven alkalischen Phosphatase gemäß einem der Ansprüche 12-14, dadurch gekennzeichnet, daß eine DNA gemäß der Ansprüche 1 bis 11 verwendet wird.
 - 16. Native hochaktive alkalische Phosphatase kodiert durch die SEQ ID No.: 4 (bIAP III) oder SEQ ID No.: 6 (bIAP IV).

Figur 1/1

1	GAATTCGGCA	CGAGCCAGGT	CCCATCCTGA	CCCTCCGCCA	TCACACAGCT
51	ATGCAGTGGG	CCTGTGTGCT	GCTGCTGCTG	GGCCTGTGGC	TACAGCTCTC
101	CCTCACCCTC	ATCCCAGCTG	AGGAGGAAAA	CCCCGCCTTC	TGGAACCGCC
151	AGGCAGCCCA	GGCCCTTGAT	GTAGCCAAGA	AGTTGCAGCC	GATCCAGACA
201	GCTGCCAAGA	ATGTCATCCT	CTTCTTGGGG	GATGGGATGG	GGGTGCCTAC
251	GGTGACAGCC	ACTCGGATCC	TAAAGGGGCA	GATGAATGGC	AAACTGGGAC
301	CTGAGACACC	CCTGGCCATG	GACCAGTTCC	CATACGTGGC	TCTGTCCAAG
351	ACATACAACG	TGGACAGACA	GGTGCCAGAC	AGCGCAGGCA	CTGCCACTGC
401	CTACCTGTGT	GGGGTCAAGG	GCAACTACAG	AACCATCGGT	GTAAGTGCAG
451	CCGCCCGCTA	CAATCAGTGC	AACACGACAC	GTGGGAATGA	GGTCACGTCT
501	GTGATCAACC	GGGCCAAGAA	AGCAGGGAAG	GCCGTGGGAG	TGGTGACCAC
551	CACCAGGGTG	CAGCATGCCT	CCCCAGCCGG	GGCCTACGCG	CACACGGTGA
601	ACCGAAACTG	GTACTCAGAC	GCCGACCTGC	CTGCTGATGC	ACAGAAGAAT
651	GGCTGCCAGG	ACATCGCCGC	ACAGCTGGTC	TACAACATGG	ATATTGACGT
701	GATCCTGGGT	GGAGGCCGAA	TGTACATGTT	TCCTGAGGGG	ACCCCAGACC
751	CTGAATACCC	AGATGATGCC	AGTGTGAATC	GAGTCCGGAA	GGACAAGCAG
801	AACCTGGTGC	AGGAATGGCA	GGCCAAGCAC	CAGGGAGCCC	AGTATGTGTG
851	GAACCGCACT	GCGCTCCTTC	AGGCGGCCGA	TGACTCCAGT	GTAACACACC
901	TCATGGGCCT	CTTTGAGCCC	G GCAGACATGA	A AGTATAATGT	TCAGCAAGAC
951	CACACCAAGO	ACCCGACCC	GGCGGAGAT	G ACGGAGGCGG	CCCTGCAAGT
1001	GCTGAGCAG	AACCCCCGG	G GCTTCTACC	T CTTCGTGGAG	GGAGGCCGCA
1051	TTGACCACG	TCACCATGA	C GGCAAAGCT	r ATATGGCACI	GACTGAGGCG
1101	ATCATGTTT	G ACAATGCCA	r cgccaaggc	r AACGAGCTCA	CTAGCGAACT
1151	GGACACGCT	G ATCCTTGTC	A CTGCAGACC	A CTCCCATGT	TTCTCTTTTG
1201	GTGGCTACA	C ACTGCGTGG	G ACCTCCATT	T TCGGTCTGG	CCCCGGCAAG

Figur 2 Figur 1/2

	1251	GCCTTAGACA	GCAAGTCCTA	CACCTCCATC	CTCTATGGCA	ATGGCCCAGG
	1301	CTATGCGCTT	GGCGGGGGCT	CGAGGCCCGA	TGTTAATGGC	AGCACAAGCG
	1351	AGGAACCCTC	ATACCGGCAG	CAGGCGGCCG	TGCCCCTGGC	TAGCGAGACC
	1401	CACGGGGGCG	AAGACGTGGC	GGTGTTCGCG	CGAGGCCCGC	AGGCGCACCT
	1451	GGTGCACGGC	GTGCAGGAGG	AGACCTTCGT	GGCGCACATC	ATGGCCTTTG
	1501	CGGGCTGCGT	GGAGCCCTAC	ACCGACTGCA	ATCTGCCAGC	CCCCGCCACC
	1551	GCCACCAGCA	TCCCCGACGC	CGCGCACCTG	GCGGCCAGCC	CGCCTCCACT
	1601	GGCGCTGCTG	GCTGGGGCGA	TGCTGCTGCT	GCTGGCGCCC	ACCTTGTACT
٠.	1651	AACCCCCACC	AGTTCCAGGT	CTCGGGATTT	CCCGCTCTCC	TGCCCAAAAC
	1701	CTCCCAGCTC	AGGCCCTACC	GGAGCTACCA	CCTCAGAGTC	CCCACCCCGA
	1751	AGTGCTATCC	TAGCTGCCAC	TCCTGCAGAC	CCGACCCAGC	CGGAATTC

Figur 2

10 Lipaeeenpafwnr	20 Qaaqaldvak	30 KLQPIQTAAI	40 KNVILFLGDGMG	50 VPTVTATR	60 LKGQMNGKLO	70 SPETPLAMOQI	80 PPYVALS
							•
90 TYNVDRQVPDSAG	100 TATAYLCGVI	110 GNYRTIGVS:	120 () AAARYNQCNTTE	130 RGNEVTSVII	140 NRAKKAGKAVO	150 SVVTTTRVQH	160 ASPAGAY
				м	 -		
170 AHTVNRNWYSDADI	180 CPADAQKNGC	190 ODIAAQLVYN	200 MDIDVILGGGR	210 MYMFPEGTP	220 DPEYPDDASV	230 NGVRKDKQNL	240 VQEWQAK
				•			
250 HQGAQYVWNRTAL	260	270 HLMGLFEPAD	280 MKYNVQQDHTK	290 OPTLAEMTE	300 Aalqvisrnp	310 RGFYLFVEGG	 320 RIDHGHH
330 OGKAYMALTEAIM	340	350	360 VTADHSHVFSF	370 GGYTLRGTS	380 I FGLAPGKAL	390 DSKSYTSILY	400 GNGPGYA
GRAYMALTEAIM	- UNATAKAN D				s		
4 (d) LGGGSRPDVNGST	420 SEEPSYRQQA	430 AVPLASETHO					480 CNLPAPA
State (B)							T
		0	Cleavage W	ith endor ith tryps ith cyand ith endor ith endor tidase di	proteinase sin ogen bromid proteinase proteinase	le AspN	•••••••

Figur 3/1

.

_	
1	GAATTCGGCA CGAGCGAGAC CCAGACTCCC CAGGTCCCAT CCTGACCCTC
51	CGCCATCACA CAGCTATGCA GGGGGCCTGC GTGCTGCTGC TGCTGGGCCT
101	GTGGCTACAG CTCTCCCTCG CCTTCATCCC AGTTGAGGAG GAAGACCCCG
151	CCTTCTGGAA CCGCCAGGCA GCCCAGGCCC TTGATGTGGC TAAGAAGCTG
201	CAGCCCATCC AGAAAGCCGC CAAGAATGTC ATCCTCTTCT TGGGAGATGG
251	GATGGGGGTG CCTACGGTGA CAGCCACTCG GATACTGAAG GGGCAGATGA
301	ATGACAAGCT GGGACCTGAG ACACCCCTGG CCATGGACCA GTTCCCATAC
351	GTGGCTCTGT CCAAGACATA CAACGTGGAC AGACAGGTGC CAGACAGCGC
401	AGGCACTGCC ACTGCCTACC TGTGTGGGGT CAAGGGCAAC TACAGAACCA
451	TCGGTGTAAG TGCAGCCGCC CGCTACAATC AGTGCAACAC GACACGTGGG
501	AATGAGGTCA CGTCTGTGAT GAACCGGGCC AAGAAAGCAG GGAAGTCAGT
551	GGGAGTGGTG ACCACCACCA GGGTGCAGCA CGCCTCCCCA GCCGGTGCTT
601	ATGCACACAC GGTGAACCGT GACTGGTACT CAGACGCCGA CCTGCCTGCC
651	GATGCACAGA CGTATGGCTG CCAGGACATC GCCACACAAC TGGTCAACAA
701	CATGGATATT GACGTGATCC TGGGTGGAGG CCGAAAGTAC ATGTTTCCTG
751	AGGGGACCCC AGACCCTGAA TACCCACACG ATGCCAGTGT GAATGGAGTC
801	CGGAAGGACA AGCGGAATCT GGTGCAGGAG TGGCAGGCCA AGCACCAGGG
851	AGCCCAGTAT GTGTGGAACC GCACGGAGCT CCTTCAGGCA GCCAATGACT
901	CCAGTGTTAC ACATCTCATG GGCCTCTTTG AGCCGGCAGA CATGAAGTAT
951	
1001	GGCGGCCCTG CAAGTGCTGA GCAGGAACCC CCAGGGCTTC TACCTCTTCG
1051	
1101	·
1151	
1201	ATGTCTTCTC TTTTGGTGGC TACACACTGC GTGGGACCTC CATTTTCGGT

Figur 3/2 CTGGCCCCCA GCAAGGCCTC AGACAAGAAG TCCTACACCT CCATCCTCTA TGGCAATGGC CCTGGCTACG TGCTTGGTGG GGGCTCAAGG CCCGATGTTA 1301 ATGACAGCAT AAGCGAGGAC CCCTCATACC GGCAGCAGGC GGCCGTGCCC 1351 CTGTCTAGCG AGACCCACGG GGGCGAAGAC GTGGCGGTGT TCGCGCGAGG CCCGCAGGCG CACCTGGTGC ACGGCGTGCA GGAGGAGACC TTCGTGGCGC 1451 ACGTCATGGC CTTTGCGGGC TGCGTGGAGC CCTACACCGA CTGCAATCTG 1501 CCGGCCCCT CTGGCCTCTC CGACGCCGCG CACCTGGCGG CCAGCGCGCC TTCGCTAGCG CTGCTGGCCG GGGCGATGCT GCTGCTGCTG GCGCCCGCCT 1601 TGTACTGACC CCCACCAACT CCAGGTCTTG GGGTTTCCCG CTTTCTTGCC 1651 CCAAAATCTC CCAGCGCAGG CCCCATCTGA GCTACCACCT CAGAGTCCCC 1701 ACCCTGAAGT CCTATCTAGC GCACTCCAGA CCGCGACTCA GCCCCACCAC 1751 CAGAGCTTCA CCTCCCAGCA ACGAAGGAGC CTTAGCTCAC AGCCTTTCAT 1801 GGCCCAGACC ATTCTGGAGA CTGAGGCCCT GATTTTCCCG ACCCAACTTC 1851 AGTGGCTTGA GATTTTGTGT TCTGCCACCC CGGATCCCTG TAAGGGGGGCT 1901 CGGACCATCC AGACTCCCCC CACTGCCCAC AGCCGAACCT GAGGACCAGG CTGGCACGGT CCCAGGGGTC CCAGGCCCGG CTGGAACCCA CATCTTTGCC 2001 TTTCAGGAGA CCCTGGGACT GTGGGGTTTC CAGGAGGCGT GGCTTCTTGG AGGCGTGGCT TCGGAGGGGT GGCTTCCGAG AAGGCGTGGC TCCCTGTCCT 2101 GGAACCACCC TGTGGGNATC TGGGGCCCAA GGAGATGTCT GGGGCAAAGA 2151 GTGCCGGGGG ACCCTGGACA CAGAATCTTC AGCGGCCCCT CCTAGGAACC 2201 CAGCAGTACC ATTATAGAGA GGGGACACCG ACACAGAGGA GAGGAGACTT 2251 GTCCCAGGTC CCTCAGCTGC TGTGAGGGGT GACCCTTGGT TCCCGTTACC 2301 AGGCTGGGGG ATCCCAGGAG CAGCGGGGGA CCTGGGGGTG GGGACACAGG 2351 CCCCACACTC CTGGGAGGGA GGAAGCAGCC CTNAAATAAA CTGTTCCTCG 2401 2451 TGCCGAATTC

Figur 4

1	FIPVEEEDPA	FWNRQAAQAL	DVAKKLQPIQ	KAAKNVILFL	GDGMGVPTVT
51	ATRILKGQMN	DKLGPETPLA	MDQFPYVALS	KTYNVDRQVP	DSAGTATAYI
101	CGVKGNYRTI	GVSAAARYNQ	CNTTRGNEVT	SVMNRAKKAG	KSVGVVTTTF
151	VQHASPAGAY	AHTVNRDWYS	DADLPADAQT	YGCQDIATQL	VNNMDIDVII
201	GGGRKYMFPE	GTPDPEYPHD	ASVNGVRKDK	RNLVQEWQAK	HQGAQYVWNF
251	TELLQAANDS	SVTHLMGLFE	PADMKYNVQQ	DPTKDPTLEE	MTEAALQVLS
301	RNPQGFYLFV	EGGRIDHGHH	DSKAYMALTE	AVMFDNAIAK	ANELTSELD
351	LILVTADHSH	VFSFGGYTLR	GTSIFGLAPS	KASDKKSYTS	ILYGNGPGY
401	LGGGSRPDVN	DSISEDPSYR	QQAAVPLSSE	THGGEDVAVF	ARGPQAHLVI
451	GVQEETFVAH	VMAFAGCVEP	YTDCNLPAPS	GLSDAAHLAA	SAPSLALLA
501	AMLLLLAPAL	Y			,

Figur 5/1

1	GAATTCGGCA	CGAGGAGACC	CGGCCTCCCC	AGGTCCCATC	CTGACCCTCC
51	GCCATCACAC	AGCCATGCAG	TGGGCCTGTG	TGCTGCTGCT	GCTGGGCCTG
101	TGGCTACAGC	TCTCCCTCAC	CTTCATCCCA	GCTGAGGAGG	AAGACCCCGC
151	CTTCTGGAAC	CGCCAGGCAG	CCCAGGCCCT	TGATGTAGCC	AAGAAGTTGC
201	AGCCGATCCA	GACAGCTGCC	AAGAATGTCA	TCCTCTTCTT	GGGGGATGGG
251	ATGGGGGTGC	CTACGGTGAC	AGCCACTCGG	ATCCTAAAGG	GGCAGATGAA
301	TGGTAAGCTG	GGACCTGAGA	CACCCTGGC	CATGGACCAG	TTCCCATACG
351	TGGCTCTGTC	CAAGACATAC	AACGTGGACA	GACAGGTGCC	AGACAGCGCA
401	GGCACTGCCA	CTGCCTACCT	GTGTGGGGTC	AAGGGCAACT	ACAAAACCAT
451	TGGTGTAAGT	GCAGCCGCCC	GCTACAACCA	GTGCAACACA	ACAAGTGGCA
501	ATGAGGTCAC	GTCTGTGATG	AACCGGGCCA	AGAAAGCAGG	AAAGTCAGTG
551	GGAGTGGTGA	CCACCTCCAG	GGTGCAGCAT	GCCTCCCCAG	CCGGTGCTTA
601	TGCACACACG	GTGAACCGAA	ACTGGTACTC	AGATGCCGAC	CTGCCTGCCG
651	ATGCACAGAC	GTATGGCTGC	CAGGACATCG	CCACACAACT	GGTCAACAAC
701	ATGGATATTG	ACGTGATCCT	GGGTGGAGGC	CGAATGTACA	TGTTTCCTGA
751	GGGGACCCCG	GATCCTGAAT	ACCCATACGA	TGTCAATCAG	ACTGGAGTCC
801	GGAAGGACAA	GCGGAATCTG	GTGCAGGAGT	GGCAGGCCAA	GCACCAGGGA
851	GCCCAGTATO	TGTGGAACCG	CACGGAGCTC	CTTCAGGCAG	CCAATGACCC
901	CAGTGTAACA	CACCTCATGO	GCCTCTTTGA	GCCGGCAGAC	ATGAAGTATA
951	ATGTTCAGC	AGACCCCACC	AAGGACCCGA	CCCTGGAGGA	GATGACGGAG
1001	GCGGCCCTGC	CAAGTGCTGAG	CAGGAACCC	CAGGGCTTCT	ACCTCTTCGT
1051	GGAGGGAGG	CGCATTGACC	CACGGTCACCA	TGAAGGCAAA	GCTTATATGG
1101	CACTGACTG	TACAGTCAT	TTTGACAATO	CCATCGCCA	GGCTAACGAG
1151	CTCACTAGC	G AACTGGACA	C GCTGATCCTT	r GCCACTGCAG	ACCACTCCCA
1201	TGTCTTCTC	r TTTGGTGGC	T ACACACTGC	G TGGGACCTC	ATTTTCGGTC

Figur 5/	$oldsymbol{2}$.
1251	TGGCCCCCAG CAAGGCCTCA GACAACAAGT CCTACACCTC CATCCTCTAT
1301	GGCAATGGCC CTGGCTACGT GCTTGGTGGG GGCTTAAGGC CCGATGTTAA
1351	TGACAGCATA AGCGAGGACC CCTCGTACCG GCAGCAGGCG GCCGTGCCCC
1401	TGTCTAGTGA GTCCCACGGG GGCGAGGACG TGGCGGTGTT CGCGCGAGGC
1451	CCGCAGGCGC ACCTGGTGCA CGGCGTGCAG GAGGAGACCT TCGTGGCGCA
1501	CGTCATGGCC TTTGCGGGCT GCGTGGAGCC CTACACCGAC TGCAATCTGC
1551	CGGCCCCTC TGGCCTCTCC GACGCCGCGC ACCTGGCGGC CAGCCCGCCT
1601	TCGCTGGCGC TGCTGGCCGG GGCGATGCTG CTGCTGGCCTT
1651	GTACTGACCC CCACCAACTC CAGGTCTTGG GGTTTCCTGC TTTCCTGCCA
1701	AAAATCTCCC AGCGCAGACC CCACCAGAGC TACCACCTCG GAGTCTCCAC
1751	CCTGAAGTCC TATCTTAGCG GCCACTCCCG GATCCCCGAC CAGGCCCCCAC
1801	TAGCAGAGCT TCACCTCCCA GAAATGAAGG ATTCACCTTC CAGCAACGAA
1851	GAAGCCTCAG CTCACAGCCC TTCATGGCCC AGCCCATCCA GAGGCTGAGG
1901	CCCTGATTTC CCTGTGACAC CCGTAGACCT ACTGCCCGAC CCCAACTTCA
1951	GTGGCTTGGG ATTTTGTGTT CTGCCACCCC TAACCCCAGT AAGGGGGCTC
2001	GGACCATCCA GACTCTCCCC ACTGCCCACA ACCCCACCTG AGAACCAGGC
2051	TAGCACGGTC CCAAGGTTCC CAGGCCCGGC TAGAACCCAC ACCATGCCTT
2101	TCAGGAGACC CTGGGGCTCC GGGGTTTCCG GGAGGCGTGG CTTTCTTAGG
2151	AGGCGTGGAA ACTGAGGAGG CACGGTTTCT GAGGAGGCGT GCGTCCTGGG
2201	GAGCTGTGGC TTCCGGTCCT CCCCATGCCC TGTGGGCTCC TCCCTAACCA
2251	AGGAGACGGC CAAGGAGACG TCTGGAACCA GGAGCGGCGG GGGAACCTTG
2301	CAGAGCCCTC AGCAACCCCT CCTAGGAACC CAGGGTACCG TTAGAGAGAG
2351	GAGACAGCGA CACAGAGGAG AGGAGACTTG TCCCAGGTCT CTCAGCTGCT
2401	ATGAAGGTGG CCCCGGTGCC CCTTCCAGGC TGGGAGATCC CAGGAGCAGC
2451	GGGGGAGCTG GTGGGTGGGG ACACAGCCCC GCCTTCATGG GAGGGAGGAI
2501	GCAGCCCTCA AATAAACTGT TCTAAGTGTG AAAAAATCTA GA

Figur 6

1	FIPAEEEDPA	FWNRQAAQAL	DVAKKLQPIQ	TAAKNVILFL	GDGMGVPTVT
51	ATRILKGQMN	GKLGPETPLA	MDQFPYVALS	KTYNVDRQVP	DSAGTATAYL
101 _	CGVKGNYKTI	GVSAAARYNQ	CNTTSGNEVT	SVMNRAKKAG	KSVGVVTTSR
151	VQHASPAGAY	AHTVNRNWYS	DADLPADAQT	YGCQDIATQL	VNNMDIDVIL
201	GGGRMYMFPE	GTPDPEYPYD	VNQTGVRKDK	RNLVQEWQAK	HQGAQYVWNR
251	TELLQAANDP	SVTHLMGLFE	PADMKYNVQQ	DPTKDPTLEE	MTEAALQVLS
301	RNPQGFYLFV	EGGRIDHGHH	EGKAYMALTD	TVMFDNAIAK	ANELTSELDT
351		VFSFGGYTLR	GTSIFGLAPS	KASDNKSYTS	ILYGNGPGYV
401	LGGGLRPDVN	DSISEDPSYR	QQAAVPLSSE	SHGGEDVAVF	ARGPQAHLVH
451	GVQEETFVAH	VMAFAGCVEP	YTDCNLPAPS	GLSDAAHLAA	SPPSLALLAG
501	AMLLLLAPAL	Y			
	51 101 151 201 251 301 351 401	51 ATRILKGQMN 101 CGVKGNYKTI 151 VQHASPAGAY 201 GGGRMYMFPE 251 TELLQAANDP 301 RNPQGFYLFV 351 LILATADHSH 401 LGGGLRPDVN 451 GVQEETFVAH	51 ATRILKGQMN GKLGPETPLA 101 CGVKGNYKTI GVSAAARYNQ 151 VQHASPAGAY AHTVNRNWYS 201 GGGRMYMFPE GTPDPEYPYD 251 TELLQAANDP SVTHLMGLFE 301 RNPQGFYLFV EGGRIDHGHH 351 LILATADHSH VFSFGGYTLR 401 LGGGLRPDVN DSISEDPSYR 451 GVQEETFVAH VMAFAGCVEP	51 ATRILKGQMN GKLGPETPLA MDQFPYVALS 101 CGVKGNYKTI GVSAAARYNQ CNTTSGNEVT 151 VQHASPAGAY AHTVNRNWYS DADLPADAQT 201 GGGRMYMFPE GTPDPEYPYD VNQTGVRKDK 251 TELLQAANDP SVTHLMGLFE PADMKYNVQQ 301 RNPQGFYLFV EGGRIDHGHH EGKAYMALTD 351 LILATADHSH VFSFGGYTLR GTSIFGLAPS 401 LGGGLRPDVN DSISEDPSYR QQAAVPLSSE 451 GVQEETFVAH VMAFAGCVEP YTDCNLPAPS	101 CGVKGNYKTI GVSAAARYNQ CNTTSGNEVT SVMNRAKKAG 151 VQHASPAGAY AHTVNRNWYS DADLPADAQT YGCQDIATQL 201 GGGRMYMFPE GTPDPEYPYD VNQTGVRKDK RNLVQEWQAK 251 TELLQAANDP SVTHLMGLFE PADMKYNVQQ DPTKDPTLEE 301 RNPQGFYLFV EGGRIDHGHH EGKAYMALTD TVMFDNAIAK 351 LILATADHSH VFSFGGYTLR GTSIFGLAPS KASDNKSYTS 401 LGGGLRPDVN DSISEDPSYR QQAAVPLSSE SHGGEDVAVF 451 GVQEETFVAH VMAFAGCVEP YTDCNLPAPS GLSDAAHLAA

~	•
1	1
=	
.5	
Œ	

210	> ш ш ш •	330	ш ш ш С	
205	₹ ₹ ₹ ₹	322	മയ യ •	480 × × × × × × × × × × × × × × × × × × ×
192	> z z ·	321		194 ->>
188	4 4	304	αασσ	<u>გ</u> ლი <u>ი</u> ი∗
181	z z > >	299	> <u> </u>	£ + ⊢ ⊢ ° °
180	≥ × ⊢ + •	297	~ aaa•	4 28 A N N
167	ZZOZ	294	> < < < +	24 0
149	<u>⊢</u> ⊢⊢	289	о ∢ ш ш •	5 0 K K K +
142	ω < ω ω •	282	工工工 C C	2 0 m 0 0 *
133	Z - Z Z *	260	လ့⊹လ လ ⊄	£
125	~ ~ ~ ~ ~	258	0°0 Z Z	£ 0000.
122	× z z z *	252	⋖ ∵∢шш	
80	$\alpha \alpha \alpha x$	236	⋖ шшш•	64
64	თ ი ი	234	G C C	86 N N X Z
31	× -	224	ZZZH	
8	0 Z 0 0 ·	223	> > > 0	စ္က တတ္တ
4	> < > < •	222	oroo z	% >>>∢
7	> •	22	∢ ∢ ∢ >	337 - C - D - 337
-		219		6 44€
Residue #	biap i biap ii biap iii biap iv	Residue #	biap i biap ii biap iii biap iv	Residue # blAP i blAP II blAP III blAP III

$\widetilde{\infty}$
Ħ
Бp
逗

		5' cohesive 3' cohesive termini termini	AATT CAGC GCTG GATC GATC CTAG	CTAG AATT	AATT CATG CATG AGAA TGCA TGCA AACA TGTT TGCC GGCA CGGT ACCC TCAG ACCC TCAG ACCC TCAG ACCC AATT
	te constructs	Restriction 5 Enzymes ter	EcoRI – Bsal A Bsa I – BamHI G BamHI – Xbal G	Xbal – EcoRl	EcoRI - Ncol Ncol - Bsal Bsal - Bsal Bsal - Bsal Bsal - Bsal Bsal - Bsal Bsal - Bsal Bsal - Stul Stul - Xbal Xbal - EcoRI
	Ligation reactions to generate (Relevant residues in fragment	1, 2, 4 8, 31 61,149, 167, 181, 188, 219, 221, 222, 223, 224, 231, 252, 258, 260, 282, 383, 385, 400, 405,	413, 401	108, 122, 125, 133 142, 180, 205 210, 236 289, 294, 297, 299, 322 330, 331, 332, 354
	Ligation	Fragment Origin (PCR or cDNA)	KS - 1 L 8N - 122 1	pcDNA-3	LIN8bIAP 1s - M1331 S142A - 180 M180K - K205M V210E - A236E 236 - 289 E289A - 330 E330,V3321 - Xia I pcDNA-3
		PCR number (template)	1 (TV) 2 (TV)		3 (III) 4 (I) 5 (I) 6 (I) 8 (IV) 9 (III)
		original blAPs in fragment			\(\frac{1}{2} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\
Figur 8/1		Construct	LIN8bIAP		I L

3'ACGTS' blunt CTTG CTAG TCCT GTGG GGAT	CATG blunt GGCC AGCT CTAG AATT	GGCC blunt AGCT CTAG AATT
AATT 3'ACGTS' blunt CAAG CTAG AGGA CCAC	AATT CATG blunt GGCC AGCT CTAG	AATT GGCC blunt AGCT CTAG
EcoRJ - Pstl Pstl - Stul Stul - Bsal Bsal - Bsal	EcoRI - Ncol Ncol - Pvull Pvull - Eagl Eagl - Hindlll Hindlll - Xbal	Eagl - Eagl Smal - Hindlil Hindlil - Xbal
380 411 416, 428 431, 453 480	192	30 4 321
INT1 N192Y - S380G N192Y - D411G D416E - S428A III D416E - T480S 480 - SP6	pcDNA-3 INT2 NI92Y - S380G INT2 INT2 INT2 INT2	INT 3 236 - Q304R- Q304R+ - E321D INT 3 pcDNA-3
10 (INT1) 11 (INT1) 12 (III) 13 (INT1) 14 (INT1)	10 (INT1)	15 (INT2) 16 (INT2)
IV,I,III,I,IV,III III III III II	1V,I,III,I III,I I,IV I,IV IV,III,III,I	IV,I,III,I I,IV IV IV,III,III,I
Figur 8/2 INT2	INT 3	bIAP II

Figur 9

AP mutant	$V_{max} \pm sd$	V _{max} [U/mg]	T 50 (10 min)
Wild-type		٠.	
bIAP I	5.26 ±0.44	2.723 ± 249	66,2
bIAP II	16.61 ±0.88	8.600 ± 843	58,8
biap III	9.07 ±0.79	4.696 ± 494	59,1
bIAP IV	13.11 ±0.85	6.787 ± 571	52,9
Chimaeric	. '		
L1N8	5.90 ±0.40	3.055 ± 336	65,8
INT 1	19.22 ±1.08	9.951±1.565	59,7
INT 2	16.95 ±0.95	8.776±1.431	55,6
INT 3	17.17 ±0.90	8.890 ±1.413	57,9
Mutants			
[K ¹²²]bIAP II	16.21 ±2.33	8.393±1.328	58,0
[M ¹³³]bIAP II	17.69 ±1.45	9.159±1.099	58,1
[S ¹⁴²]bIAP II	16.53 ±1.06	8.559 ± 603	57,9
- [M ¹⁸⁰]bIAP II	17.81 ±0.80	10.433± 900	58,6
[K ²⁰⁵]bIAP II	20.29 ±1.25	9.454 ± 819	57,5
[V ²¹⁰]bIAP II	17.98 ±1.40	8.377 ± 908	58,1
[A ²³⁸]bIAP II	19.61 ±2.81	10.153±1.565	58,1
"[QVRV]bIAP II	19.25 ±0.99	9.967 ± 534	59,0
[D 322]bIAP II	5.44 ±0.34	2.817 ± 307	61,4
[G ³³²]bIAP II	16.53 ±1.30	8.559±1.075	59,2
[G ³²²]bIAP1	19.60 ±0.99	10.148±1.021	60,6