QUANTENMECHANIK, BLATT 6, SOMMERSEMESTER 2015, C. KOLLATH

Abgabe Di 19.5. vor der Vorlesung. Besprechung 22.5

I. OPERATOREN - FORMALISMUS

- (a) Die Pauli-Matrizen sind gegeben durch $\hat{\sigma}_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $\hat{\sigma}_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}$, $\hat{\sigma}_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ und der Vektor $|\psi\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$. Stellen Sie $|\psi\rangle$ in der Basis der Eigenvektoren der $\hat{\sigma}_i$ dar und berechnen Sie die Mittelwerte $\langle \psi | \hat{\sigma}_i | \psi \rangle$.
- (b) Seien zwei Operatoren \hat{A} und \hat{B} in Matrixform gegeben:

$$\hat{A} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{pmatrix} , \qquad \hat{B} = \begin{pmatrix} 0 & i & 0 \\ -i & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} . \tag{1}$$

Sind diese Operatoren hermitesch? Bestimmen Sie ihre Eigenwerte und Eigenvektoren. Geben Sie die Spektralzerlegung vom Operator \hat{B} an.

- (c) Finden Sie die Matrix \hat{U} der unitären Transformation, die \hat{B} diagonalisiert, d.h. $\hat{B}' = \hat{U}^{\dagger} \hat{B} \hat{U}$, wobei \hat{B}' eine Diagonalmatrix ist.
- (d) Vertauschen A und B?

II. PROJEKTOREN

Die Zustände $|n\rangle$ $(n=1,\ldots,N)$ bilden eine Basis des Hilbertraums \mathcal{H} und $\hat{P}_n=|n\rangle\langle n|$ sind die zugehörigen Projektoren. Beweisen Sie die folgenden Eigenschaften :

- $(a) (\hat{P}_n)^2 = \hat{P}_n,$
- (b) $\sum_{n=1}^{N} \hat{P}_n = \hat{I}$, wobei \hat{I} die Identität von \mathcal{H} ist.
- (c) Zeigen Sie, dass die Matrizen $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ und $\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$ Projektoren sind, d.h. als $\hat{P}_n = |n\rangle\langle n|$ dargestellt werden können, und bestimmen Sie ihre Unterräume.

(d) Ist die Matrix $\begin{pmatrix} 1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}$ auch ein Projektor? Falls ja, bestimmen Sie seinen Unterraum.

III. MATRIXDARSTELLUNG VON OPERATOREN

In einem dreidimensionalen (N=3) Hilbertraum mit orthonormaler Basis $\{|1\rangle, |2\rangle, |3\rangle\}$ ist der Operator \hat{A} definiert durch $(\alpha, \beta, \gamma \text{ sind komplexe Skalare})$

$$\hat{A}|1\rangle = 5|1\rangle + \alpha|2\rangle,$$

$$\hat{A}|2\rangle = \beta|1\rangle + i|3\rangle,$$

$$\hat{A}|3\rangle = -i|2\rangle + \gamma|3\rangle,$$

- (a) Berechnen Sie die Matrixdarstellung des Operators \hat{A} in der Basis $\{|1\rangle, |2\rangle, |3\rangle\}$.
- (b) Welche Bedingungen müssen α , β und γ erfüllen damit \hat{A} hermitesch ist ?

Für die folgenden Aufgaben verwenden Sie \hat{A} wie oben aber setzen $\alpha = \beta = 0$.

- (c) Bestimmen Sie die Eigenvektoren von \hat{A} .
- (d) Bestimmen Sie den Mittelwert von \hat{A} für den Zustand $|\psi\rangle = a|1\rangle + b|2\rangle$.
- (e) Was sind die möglichen Messergebnisse einer Messung des Operators \hat{A} falls sich das System im Zustand $|\psi\rangle$ befindet? Was ist die Wahrscheinlichkeit, diese Messwerte zu beobachten?
- (f) In welchen Zuständen kann sich das System nach einer Messung von \hat{A} befinden?

IV. ZWEI-NIVEAU SYSTEM

- (a) Wir betrachten $\hat{H} = A\hat{\sigma}_3$, wobei A eine reelle Konstante ist. Stellen Sie den Zeitentwicklungsoperator als Linearkombination der Operatoren \hat{I} und $\hat{\sigma}_i$ dar (berechnen Sie zunächst $\hat{\sigma}_i^2$ und verwenden Sie dieses Ergebnis in der Reihenentwicklung).
- (b) \hat{P} ist eine Observable. Gegeben sind $\langle 1|\hat{P}|1\rangle=1/2$ und $\langle 1|\hat{P}^2|1\rangle=1/4$. Finden Sie so viele Eigenzustände von \hat{P} wie möglich.