- ▶ 题目: 结合Matlab环境的contour函数研究二元函数 的等值线变化规律
 - 描述: 平面上任取4个点x₁ 、 x₂ 、 x₃ 、 x₄。研究含有参数的二元函数

$$f(\mathbf{x}) = \sum_{i=1}^{4} \theta_i e^{-\gamma \|\mathbf{x} - \mathbf{x}_i\|^2}$$

的等值的变化规律,其中参数 θ_i 为实数, γ 为正实数。

- 。提示:至少要考虑相邻两点对应的 θ_i 同号和异号的情况;各个参数变化等值线的变化规律;突出0等值线;最后总结出一般规律;最后推广到多于4个点,甚至1000个点!
- ▶ 你能用这些发现做什么?给出具体分析、例证.

可以用来当作分类器,用于分类平面上的点集, θ 的符号正负即两类 点集

1) 相邻两点异号

2) 相邻两点同号

4) 推广到更多的点

分开如下不同颜色的数据!

代码:

```
clc
clear
n = 200;
dot_1 = rand(2,50);
dot_1 = [dot_1, rand(2,50)- ones(2,50)];
dot_2 = rand(2,50) + [zeros(1,50); -ones(1,50)];
dot_2 = [dot_2, rand(2,50) - [ones(1,50); -zeros(1,50)]];
hold on

scatter(dot_1(1,:),dot_1(2,:),'blue')
dot_1(3,:) = -ones(1,100);
scatter(dot_2(1,:),dot_2(2,:),'red')
dot_2(3,:) = ones(1,100);

dot_s = [dot_1, dot_2];
```

要求: 1) 同学甲给同学乙出题: 甲随机方法生成一个较大的低秩矩阵(怎么保证低秩?), 然后随机去掉里面大部分元素,提供给乙,乙用最小二乘法恢复,比较结果异同!(再甲乙角色互换) 2) 选择灰度图象(其实就是一个矩阵),生成一些遮挡块。尝试恢复图象。和原图对比!

代码:

```
生成不完备矩阵代码:
```

```
clear,clc;

m = 10;

n = 12;

r = 2;

p = 50; % 剩余元素个数 <1/2

B = randi(10,m,r);

C = randi(10,r,n);

A = B * C

a = A(:);

I = randperm(length(a));

a(I(p+1:end)) = inf;

Abar = reshape(a,m,n)
```

恢复代码:

```
% A 为 mxn,B 为 mxr, C 为 rxn
r = 2; % 猜测 r
x0 = randi(10,m+n,r);
% 非线性最小二乘法
fun = @(x)fmatrix(x, m, n ,Abar);
x = lsqnonlin(fun,x0);
AbarRecover = round(x(1:m,:)*x(m+1:n+m,:)')
Abar(Abar == Inf) = AbarRecover(Abar == Inf)
function y = fmatrix(x, m, n ,Abar)
```

```
y = Abar - x(1:m ,:) * x(m+1:n+m ,:)';
y(y == inf) = 0;
end
```

输出:

原始:

A = 10×12

209	190	212	151	168	197	157	144	124	157	161	147
196	174	161	137	139	146	137	112	111	119	171	140
243	222	213	129	166	200	206	130	144	163	172	161
173	165	155	105	135	147	126	102	115	91	138	135
193	170	172	179	178	171	115	136	125	126	188	164
112	102	92	86	110	106	82	68	87	69	97	103
254	225	199	187	192	189	171	144	153	146	232	195
221	194	196	133	134	167	177	124	108	161	167	129
171	143	150	96	106	141	163	90	84	158	111	91
175	172	157	86	133	151	138	96	122	85	127	136

随机去值:

Abar = 10×12

Inf Inf 212 151 Inf Inf 157 144 Inf Inf 161 Inf 196 Inf 161 146 137 112 111 171 Inf Inf Inf Inf Inf 222 Inf 129 Inf 200 Inf Inf Inf 163 Inf Inf 173 165 155 Inf Inf Inf Inf 102 115 Inf 138 135 Inf Inf 172 179 178 171 Inf 136 125 164 Inf Inf Inf Inf 92 Inf Inf Inf 82 Inf 87 69 Inf 103 Inf Inf Inf Inf 192 Inf 171 144 Inf Inf Inf Inf Inf Inf 196 Inf Inf Inf Inf Inf Inf 161 Inf Inf Inf Inf 150 Inf 141 Inf 90 84 158 111 Inf Inf Inf Inf Inf Inf 133 Inf Inf 96 122 Inf 127 Inf

拟合低秩矩阵:

AbarRecover = 10×12

20	06	231	212	151	154	196	157	144	104	205	161	161
19	96	185	161	179	151	146	137	112	111	153	171	152
17	72	222	176	129	139	200	133	143	103	163	170	132
17	73	165	155	112	146	140	104	102	115	90	138	135
20	01	214	172	179	178	171	137	136	125	144	202	164
13	34	107	92	127	108	80	82	63	87	69	120	103
25	58	240	194	225	192	211	171	144	172	157	238	183
23	31	204	196	173	160	177	155	119	137	161	167	166

16	65	156	150	128	95	141	127	90	84	158	111	112
20	07	170	179	138	133	152	136	96	122	138	127	144
还原	₹:											
Abar = 10×12												
20	06	231	212	151	154	196	157	144	104	205	161	161
19	96	185	161	179	151	146	137	112	111	153	171	152
17	72	222	176	129	139	200	133	143	103	163	170	132
17	73	165	155	112	146	140	104	102	115	90	138	135
20	01	214	172	179	178	171	137	136	125	144	202	164
13	34	107	92	127	108	80	82	63	87	69	120	103
25	58	240	194	225	192	211	171	144	172	157	238	183
23	31	204	196	173	160	177	155	119	137	161	167	166
16	65	156	150	128	95	141	127	90	84	158	111	112
20	07	170	179	138	133	152	136	96	122	138	127	144