# Multivariate Statistics (I)

2. Principal Component Analysis (PCA)

# Contents

- 2.1 Comprehension of PCA
- 2.2 Concepts of PCs
- 2.3 Algebraic derivation of PCs
- 2.4 Selection and goodness-of-fit of PCs
- 2.5 Algebraic derivation of sample PCs
- 2.6 Visualizations of PCA
- 2.7 R for PCA: Practice Time

## 2.1 Comprehension of PCA

• Definition of Principal Components (PCs) :  $oldsymbol{x}=(x_1,\ ...,\ x_p)^t$   $\sim (\mu,\Sigma)$ 

Algebraic Def.: Particular linear combinations of the original p random variables

kth PC: 
$$p_k = v_{k1}x_1 + v_{k2}x_2 + \cdots + v_{kp}x_p = \boldsymbol{v}_k^t \boldsymbol{x}, \ k = 1,...,p.$$

Geometric Def.: Selection of a new coordinate system obtained by rotating the original system with as the coordinate axes.

• **PCA**: technique for concerning with explaining the variance-covariance structure through PCs.

### Objectives:

- ✓ Data (dimension) reduction: p variables -> k PCs ( $k \ll p$ )
- ✓ Interpretation of variables
- ✓ Checking the normality and outliers
- ✓ PCs scores can be used as a new data

## 2.1 Comprehension of PCA: History

$$oldsymbol{x}_i = (x_{i1}, x_{i2})^t \sim ig(oldsymbol{\mu} = (\mu_1, \mu_2)^t, \mathit{Cov}(oldsymbol{x}) = oldsymbol{arSigma}ig)^t$$



$$egin{aligned} oldsymbol{x}_i^t oldsymbol{x}_i &= (oldsymbol{m}_i + oldsymbol{r}_i)^t (oldsymbol{m}_i + oldsymbol{r}_i^t oldsymbol{m}_i + oldsymbol{r}_i^t oldsymbol{r}_i + 2oldsymbol{r}_i^t oldsymbol{m}_i \ &= oldsymbol{m}_i^t oldsymbol{m}_i + oldsymbol{r}_i^t oldsymbol{r}_i \end{aligned}$$

$$\sum_{i=1}^n oldsymbol{r}_i^t oldsymbol{r}_i = \sum_{i=1}^n oldsymbol{x}_i^t oldsymbol{x}_i - \sum_{i=1}^n oldsymbol{m}_i^t oldsymbol{m}_i$$

$$Min_{oldsymbol{v}_1} \sum_{i=1}^n oldsymbol{r}_i^t oldsymbol{r}_i \Leftrightarrow Max_{oldsymbol{v}_1} \sum_{i=1}^n oldsymbol{m}_i^t oldsymbol{m}_i \Leftrightarrow Max_{oldsymbol{v}_1} nc^2 oldsymbol{v}_1^t oldsymbol{v}_1$$

$$oldsymbol{v}_1^t oldsymbol{v}_k = 0, (1 
eq k)$$



 $K_{art}$   $P_{earson}(1901)$ : best fitting subspace based on the orthogonal projection of a two-dimensional vector onto a one –dimensional subspace

Harold Hotelling (1933): approach for finding the PCs maximizing

$$Var(p_1) = \mathbf{v}_1^t \, \Sigma \, \mathbf{v}_1 \Longrightarrow Max_{\mathbf{v}_1} \mathbf{v}_1^t \, \Sigma \, \mathbf{v}_1 \Leftrightarrow Max_{\mathbf{v}_1} l_1 \mathbf{v}_1^t \, \mathbf{v}_1$$



1895-1973

$$Max_{oldsymbol{v}_k}\sum_{i=1}^noldsymbol{m}_i^toldsymbol{m}_i \Leftrightarrow Max_{oldsymbol{v}_k}nc^2oldsymbol{v}_k^toldsymbol{v}_k \cong Max_{oldsymbol{v}_k}oldsymbol{v}_k^toldsymbol{v}_k \Leftrightarrow Max_{oldsymbol{v}_k}l_koldsymbol{v}_k^toldsymbol{v}_{k_4}$$

### 2.1 Comprehension of PCA: Process Steps for PCA

- [Step 1] Prepare a multivariate data matrix X
- [Step 2] From the X, calculate S ( or R )
- [Step 3] Obtain the eigenvalues and eigenvectors of S (or R) based on the Spectral Decomposition

[Step 4] Choose the first m(
$$\leq p$$
) eigenvalues 
$$t_m = \frac{\sum\limits_{k=1}^{m} l_k}{l_1 + l_2 + \cdots + l_p} \times 100$$

- which are greater than 70% of total sum of eigenvalues
- [Step 5] Obtain the PCs with eigenvectors corresponding the selected eigenvalues in [Step 4] and raw variables.
- [Step 6] Calculate PCs scores from the centred data( or standardised data)
- [Step 7] Consider PCs scores as a new multivariate data which are dimension reduction

Figure 1 gives a plot of 50 observations on two highly correlated variables.

If we transform to PCs  $p_1$ ,  $p_2$ , we obtain the plot given Figure 2 wrt PCs. (Jolliffe(2002). *Principal Component Analysis*, Spring-Verlag, New York)



Figure 1: Plot of 50 observations on x1 and x2

Figure 2: Plot of 50 observations on PCs y1 and y2

#### Consideration of variations in both x1 and x2:

- Rather more variation in the direction of x2 than x1.
- Clearly there is greater variation in the direction of  $p_1$  but very little variation in the direction of  $p_2$ .

#### [Example 2.2.1]3 subjects data

| Students  | math | Algebra | Statistics |
|-----------|------|---------|------------|
| Student1  | 65   | 85      | 85         |
| Student2  | 65   | 80      | 90         |
| Student3  | 30   | 40      | 50         |
| Student4  | 70   | 83      | 82         |
| Student5  | 35   | 43      | 52         |
| Student6  | 72   | 82      | 92         |
| Student7  | 40   | 43      | 48         |
| Student8  | 68   | 83      | 82         |
| Student9  | 25   | 32      | 43         |
| Student10 | 17   | 51      | 35         |
|           | I .  |         |            |



$$\boldsymbol{x}_2 = (65, 80, 90)^t$$

$$\boldsymbol{x}_{10} = (10, 17, 35)^t$$



Algebra



-40

-20





1st PC

$$\mathbf{p}_1 = (-33.6248, -4.2539)^t$$

$$\mathbf{p}_2 = (-33.6898, 1.7761)^t$$

enaen

$$\mathbf{p}_{10} = (42.6252, -16.3739)^t$$

40

#### PCA steps for 3 subjects data

[step 1] Prepare a multivariate data matrix X

#### [step 2] From the X, calculate S

|     |            | Mechanics | Algebra | Statistics |
|-----|------------|-----------|---------|------------|
| S = | Mechanics  | 453.344   | 431.511 | 459.078    |
|     | Algebra    | 431.511   | 484.622 | 450.244    |
|     | Statistics | 459.078   | 450.244 | 487.878    |

### [step 3] Obtain the eigenvalues and eigenvectors of S (or R) based on the Spectral Decomposition

• 
$$S = VDV^t$$
:  $V = (\mathbf{v}_1, ..., \mathbf{v}_p), V^tV = VV^t = I$   
 $D = diag(l_1, ..., l_p), l_1 \ge \cdots \ge l_p > 0$ 

• Eigenvalues: 
$$(l_1,\ l_2,\ l_3) = (1369.521,\ 45.161,\ 11.162)$$

• Eigenvectors: 
$$V = (oldsymbol{v}_1, \ oldsymbol{v}_2, \ oldsymbol{v}_3)$$

| $oldsymbol{v_1}$ | $v_2$  | $v_3$  |
|------------------|--------|--------|
| -0.567           | 0.426  | 0.705  |
| -0.576           | -0.817 | 0.030  |
| -0.589           | 0.389  | -0.708 |

#### [step 4] Choose the first $m \le p$ eigenvalues

$$t_{m} = \frac{\sum_{k=1}^{m} l_{k}}{l_{1} + l_{2} + \cdots + l_{p}} \times 100$$

- which are greater than 70% of total sum of eigenvalues
- Explanatoy ratios: 96.05%, 3.17%, 0.78%
- m=1, explanatory ratios of eigenvalues( $l_1=1369.521$ ) is 96.05%

[step 5] Obtain the PCs with eigenvectors corresponding the selected eigenvalues in [Step 4] and raw variables.

- Raw Variable:  $\mathbf{x} = (x_1, x_2, x_3)^t = (\text{Mechanics, Algebra, Statistics})^t$
- Centred variables:  $oldsymbol{y} = (y_1, \ y_2, \ y_3)^t$
- First PC:  $p_1 = \pmb{v}_1^t \pmb{y} = -0.567 y_1 0.576 y_2 0.589 y_3$
- Second PC:  $p_2 = \pmb{v}_2^t \pmb{y} = 0.426 y_1 0.817 y_2 + 0.389 y_3$

[step 6] Calculate PCs scores from the centred data( or standardised data)

$$\mathbf{Y} = \begin{bmatrix} \boldsymbol{y}_1 = (16.3, \ 22.8, \ 19.1)^t \\ \boldsymbol{y}_2 = (16.3, \ 17.8, \ 24.1)^t \\ & \dots & P = YV_{(2)} \end{bmatrix} \qquad V_{(2)} = (\boldsymbol{v}_1, \ \boldsymbol{v}_2) \\ \boldsymbol{y}_{10} = (-31.7, \ -11.2, \ -30.9)^t \end{bmatrix}$$

[step 7] Consider PCs scores as a new multivariate data which are dimension

reduction

$$\textbf{\textit{P}} = \begin{bmatrix} \textbf{\textit{p}}_1 = (-33.6248, \ -4.2539)^t \\ \textbf{\textit{p}}_2 = (-33.6898, \ 1.7761)^t \\ & \dots \\ \textbf{\textit{p}}_{10} = (42.6252, \ -16.3739)^t \end{bmatrix}$$

## 2.3 Algebraic derivation of PCs: [Table 2.3.1]

- Random vector:  $\boldsymbol{x} = (x_1, ..., x_p)^t \sim (\boldsymbol{\mu} = (\mu_1, ..., \mu_p)^t, \quad Cov(\boldsymbol{x}) = \Sigma > 0)$
- Spectral decomposition:  $\boldsymbol{\varSigma} = VDV^t = \sum_{k=1}^p l_k \boldsymbol{v}_k \boldsymbol{v}_k^t$

$$V = (\boldsymbol{v}_1, \ ..., \ \boldsymbol{v}_p) \colon V^t \ V = \ V V^t = I$$
 Orthogonal matrix

$$D\!=diag(l_1,\,...,\,l_p)\colon\; l_1\geq \cdots \geq l_p>0$$
 Diagonal matrix with eigenvalues

- kth PC:  $p_k = v_{k1}x_1 + v_{k2}x_2 + \ \cdots \ + v_{kp}x_p = \pmb{v}_k^t\pmb{x}, \ \ k=1, \ ..., \ p = 0$
- $\begin{array}{|c|c|c|c|c|c|} \bullet & \mathbf{PC \, vector:} & & \boldsymbol{p} = \begin{bmatrix} p_1 \\ \vdots \\ p_p \end{bmatrix} = V^t \boldsymbol{x} \implies Cov(\boldsymbol{p}) = V^t \boldsymbol{\varSigma} V = D \\ \end{array}$

#### **\*** How many PCs?

- ✓ Retain only the components whose variances (eigenvalues) are greater than or equal to 1 for R, or 0 for S(Rule of thumb= Kaiser(1960)'s rule)
- $\checkmark$  Percentage of variation accounted for by the first m PCs

(Goodness-of-fit):

$$t_m = rac{\sum\limits_{k=1}^{m} l_k}{l_1 + l_2 + \cdots + l_p} imes 100$$

for  ${\cal S}$ 



The slope actually increases bt 3 and 4, but then falls sharply



Plot of eigenvalues against components number

#### [Table 2.4.1] PCs coefficients for interpretations of PCs

- Random vector :  $\mathbf{x} = 0$ 

: 
$$\mathbf{x} = (x_1, ..., x_p)^t \sim Cov(\mathbf{x}) = \Sigma$$

- kth PC: 
$$p_k = v_{k1}x_1 + \cdots + v_{kl}x_l + \cdots + v_{kp}x_p$$

Correlation coefficient between the kth PC and lth variable :

$$Corr(x_l, p_k) = \frac{v_{kl}\sqrt{l_k}}{\sqrt{\sigma_{ll}}} = \gamma_{lk}, \ l = 1, ..., p, \ k = 1, ..., p.$$
 (2.4.3)

$$(\text{Proof}) \quad \textit{Corr}(x_l, \, p_k) = \frac{\textit{Cov}(x_l, \, p_k)}{\sqrt{\textit{Var}(x_l)} \, \sqrt{\textit{Var}(p_k)}}$$

Importance(contribution) of  $x_l$  to  $p_k$ 

$$- p_k = \boldsymbol{v}_k^t \boldsymbol{x},$$

- 
$$x_l = e_l^t \mathbf{x}$$
 where  $e_l = (0,...,1,...,0)^t$ ,

$$- \Sigma \boldsymbol{v}_k = l_k \boldsymbol{v}_k.$$

$$\Rightarrow \ Cov(x_l, \, p_k) = Cov(e_l^t \, \textbf{\textit{x}}, \, \textbf{\textit{v}}_k^t \, \textbf{\textit{x}}) = e_l^t \, \Sigma \, \textbf{\textit{v}}_k = e_l^t \, l_k \, \textbf{\textit{v}}_k = l_k e_l^t \, \, \textbf{\textit{v}}_k = l_k v_{kl}$$

$$- Var(x_l) = \sigma_{ll}$$

$$- Var(p_k) = l_k$$

$$\Rightarrow \ \mathit{Corr}(x_l, \, p_k) = \frac{l_k v_{kl}}{\sqrt{\sigma_{ll}} \, \sqrt{l_k}} = \frac{\sqrt{l_k} \, v_{kl}}{\sqrt{\sigma_{ll}}}$$

#### [Example 2.4.1] Selection of PCs in PCA by Spectral Decomposition of Covariance Matrix

| Children height and weights: | $x_1$ : $cm$ , $x_2$ : $g$ | $x_1$ : $mm$ , $x_2$ : $g$ |
|------------------------------|----------------------------|----------------------------|
|------------------------------|----------------------------|----------------------------|

| [step 2]<br>covariance matrix                              | $\Sigma_1 = \begin{pmatrix} 80 & 44 \\ 44 & 80 \end{pmatrix}$    | $\varSigma_2 = \begin{pmatrix} 8000 & 440 \\ 440 & 80 \end{pmatrix}$                          |
|------------------------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| [step 3] eigenvlaues : $(l_1, l_2)$                        | $\frac{(l_1, l_2) = (124, 36)}{\mathbf{v}_1  \mathbf{v}_2}$      | $(l_1, l_2) = (8024.369, 55.631)$ $$                                                          |
| eigenvetors : $V = (\boldsymbol{v}_1, \ \boldsymbol{v}_2)$ | 0.707 -0.707<br>explain rate 0.707 0.707                         | -0.998 0.055<br>explain rate 055 -0.998                                                       |
| [step 4]<br>select eigenvalues                             | description ratio of $m=1$ eigenvalue ( $l_1=124$ ) is 77.5%     | explain rate: 99.31%, 0.69% description ratio of $m=1$ eigenvalue( $l_1=8024.369$ ) is 99.34% |
| [step 5] PC coefficeint and PC                             | first PC : $p_1 = 0.707x_1 + 0.707x_2$                           | first PC : $p_1 = -0.998x_1 - 0.055x_2$                                                       |
| interpretation and explnatory power of PC                  | The explanatory power of the first principal component is 77.5%. | The explanatory power of the first principal component is 99.31%.                             |



Difference between PCs for the two scales of measurement in x1

Both variables have the same degree of variation

Most of the variation is the direction of x1

## 2.5 Algebraic derivation of sample PCs

#### [Table 2.5.1] Algebraic Representation of Covariance Matrix and Correlation Matrix

| Centered data $matrix$ : $Y = HX$ | Standardized data matrix : $Z = HXD_s^{-1/2}$ |
|-----------------------------------|-----------------------------------------------|
|-----------------------------------|-----------------------------------------------|

Covariance matrix:

$$S = \frac{1}{n-1} Y^t Y = \frac{1}{n-1} X^t H X$$

Correlation matrix:

$$R = \frac{1}{n-1} Z^t Z = \frac{1}{n-1} D_s^{-1/2} X^t H X D_s^{-1/2}$$

$$R = D_s^{-1/2} S D_s^{-1/2}$$

#### Note:

PCA based on the S in the sensitivity of PCS to the measurement units of variances.

## 2.5 Algebraic derivation of sample PCs

[Table 2.5.2] for **S** 

#### [Table 2.5.3] Derivation & Properties of sample PCs based on the Spectral decomposition of R

- $n \times p$  data matrix :  $X = [\boldsymbol{x}_1,...,\boldsymbol{x}_n]^t$ , where  $\boldsymbol{x}_i = (x_{i1},...,x_{ip})^t$ , i = 1,...,n.
- $n \times p$  standardized data matrix :  $Z = [\mathbf{z}_1, ..., \mathbf{z}_n]^t$ , where  $\mathbf{z}_i = (z_{i1}, ..., z_{ip})^t$ , i = 1, ..., n.
- spectral decomposition :

$$Z^{t}Z/(n-1) = R = VDV^{t} = \sum_{k=1}^{p} l_{k} \mathbf{v}_{k} \mathbf{v}_{k}^{t}$$

- $V = (\boldsymbol{v}_1, ...., \boldsymbol{v}_p)$  : orthogonal matrix satisfying  $V^t V = V V^t = I$
- $D = diag(l_1,...,l_p)$  : diagonal matrix of eigenvalues satisfying  $l_1 \ge \cdots \ge l_p > 0$

$$-k-th \ \text{PC} : \ \left[p_k = v_{k1}z_1 + v_{k2}z_2 + \cdots + v_{kp}z_p = \mathbf{v}_k^t \mathbf{z}, \ k = 1, \dots, p\right]$$
 (2.5.2)

- PC score : 
$$\mathbf{p}_i = \begin{bmatrix} p_{i1} \\ \vdots \\ p_{ip} \end{bmatrix} = V^t \mathbf{z}_i$$
,  $i = 1, ..., n$ . 
$$\Rightarrow \boxed{P = \begin{bmatrix} \mathbf{p}_1, ..., \mathbf{p}_n \end{bmatrix}^t = ZV} : n \times p \text{ PC score matrix.}$$

- Goodness-of-fit : 
$$t_m = \frac{\displaystyle\sum_{k=1}^m l_k}{p} \times 100$$

- Correlation coefficient matrix between principal component and variable :

$$\Gamma = VD^{1/2}$$

- 
$$D^{1/2} = diag(\sqrt{l_1}, ..., \sqrt{l_p}): l_1 \ge \cdots \ge l_p > 0$$

## 2.5 Algebraic inducement of sample pc

#### • [Example 2.5.1] KLPGA player's grades (www.klpga.com, 2006)

[Data 1.3.2] KLPGA player scores (klpga.txt)

- Raw variable :  $\mathbf{x} = (x_1, x_2, x_3, x_4, x_5, x_6)^t$ 

= (<mark>평균퍼팅수, 그린적중율, 파세이브율, 파브레이크율</mark>, <mark>평균타수, 상금율) <sup>t</sup></mark> Putting average, Green in regulation %, Par save %, Par break %, Scoring average, Prize rate

- standardization variable :  $\mathbf{z} = (z_1, z_2, z_3, z_4, z_5, z_6)^t$ 

- first PC :  $p_1 = \pmb{v}_1^t \pmb{z} = -0.215z_1 + 0.39z_2 + 0.44z_3 + 0.45z_4 - 0.48z_5 + 0.43z_6$   $p_2 = \pmb{v}_2^t \pmb{z} = 0.84z_1 + 0.53z_2 + 0.04z_3 - 0.05z_4 + 0.00z_5 - 0.07z_6$ 







Scree Graph





British Open: 2013 — Muirfield, Gullane, Scotland

## 2.5 Algebraic inducement of sample PCs

• [Example 2.5.2] [Data 2.5.1] Skull data(22 man, 18 woman of ancient race Naqada from Egypt)

|   | skull | L       | В       | Н       | ОН      | U       | S       | Q       | FH      | NB      | ИН      | BL     | HL      |
|---|-------|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|--------|---------|
|   | 5F    | -2.2700 | -0.7810 | -1.7400 | -1.3300 | -1.8900 | -0.9020 | -1.4800 | -1.9000 | -1.4100 | -1.0600 | 1.4120 | 0.4960  |
| - | 7M    | 0.0364  | 0.3764  | -0.9660 | -0.6850 | 0.3166  | -0.6520 | -0.9220 | 0.1855  | -0.4530 | 0.4895  | 0.2161 | -1.1200 |
|   | 10F   | -0.7070 | 1.5570  | -0.3270 | 0.1476  | -0.4180 | -0.4010 | 1.1240  | 0.5110  | 0.6635  | -0.8000 | 1.7180 | 0.3807  |
|   | 13M   | 0.9280  | 1.4390  | -0.6750 | -0.0960 | 1.2610  | 0.1838  | 1.5570  | 1.3570  | 2.5770  | 0.7475  | 0.2161 | -1.6600 |



BL shows the shape of head and classify the pattern of race and people

2.5 Algebraic inducement of sample PCs

|     | PC so  | ore    |        |
|-----|--------|--------|--------|
|     | $p_1$  | $p_2$  | $p_3$  |
|     |        |        |        |
| 5F  | 4.925  | -0.288 | -0.671 |
| 7M  | 0.830  | 1.231  | 1.141  |
| 10F | 0.258  | 1.768  | -2.052 |
| 13M | -2.613 | 3.266  | 0.714  |
| 26M | -4.388 | 0.779  | -1.067 |
| 32M | 2.012  | 2.637  | 0.628  |
| 43F | 3.066  | 1.197  | -0.511 |
| 45F | 3.539  | 0.612  | 1.645  |
| 46F | 1.682  | 1.057  | -2.648 |
| 52M | 0.653  | 0.617  | 0.151  |
|     |        |        |        |
|     |        |        |        |
|     |        |        |        |

| 145F | -1.904 | -1.610 | -1.400 |  |
|------|--------|--------|--------|--|
| 146F | 1.169  | -0.933 | 0.997  |  |
| 148M | 0.311  | -2.109 | 1.109  |  |
| 151M | 1.087  | -1.148 | -0.596 |  |
| 152M | -4.170 | 0.295  | -0.575 |  |

|   |         |       |              |              | Head         |             |              | Face         |              |              | Index           | <           |                 |
|---|---------|-------|--------------|--------------|--------------|-------------|--------------|--------------|--------------|--------------|-----------------|-------------|-----------------|
| Ī | PCs     | L     | В            | I            | НО           | U           | S            | Q            | FH           | NB           | ИН              | BL          | HL              |
| l | . 65    | $z_1$ | $z_2$        | $z_3$        | $z_4$        | $z_5$       | $z_6$        | $z_7$        | $z_8$        | $z_{9}$      | z <sub>10</sub> | $z_{11}$    | z <sub>12</sub> |
|   | $p_1 =$ | -0.39 | <u>-0.16</u> | <u>-0.31</u> | <u>-0.34</u> | -0.40       | <u>-0.38</u> | <u>-0.33</u> | <u>-0.25</u> | <u>-0.25</u> | <u>-0.17</u>    | 0.21        | 0.07            |
| _ | $p_2 =$ | -0.03 | <u>0.50</u>  | -0.38        | -0.22        | <u>0.12</u> | -0.20        | 0.15         | 0.18         | 0.32         | <u>0.20</u>     | <u>0.39</u> | 0.38            |
| _ | $p_3 =$ | 0.25  | -0.38        | -0.21        | -0.25        | 0.06        | -0.08        | -0.36        | 0.22         | 0.11         | 0.11            | -0.48       | -0.49           |





## 2.5 Algebraic inducement of sample pc



• Biplot : Gabriel(1971)

plots of the *n* observations and *p* variables in 2-dimensional space with providing relationships between them.

$$Y=U\Lambda\ V^t=\sum_{k=1}^p \lambda_k \pmb{u}_k \pmb{v}_k^t$$
 SVD: Singular Value Decomposition  $Y=U(V\Lambda)^t=GH^t$  Factorization

Geometric Properties: Choi and Shin(2013, Chapter 1)

$$(1) \ \, \boldsymbol{h}_{j}^{t}\boldsymbol{h}_{k} \doteq s_{jk} : \\ (2) \ \, \|\boldsymbol{h}_{j}\|^{2} \doteq s_{j}^{2} : \\ (3) \ \, \cos(\theta_{jk}) \doteq r_{jk} : \\ \hline (3) \ \, \cos(\theta_{jk}) \doteq r_{jk} : \\ \hline (3) \ \, |\boldsymbol{y}_{r} - \boldsymbol{y}_{s}||_{S^{-1}}^{2} = \left[ (\boldsymbol{y}_{r} - \boldsymbol{y}_{s})^{t}S^{-1}(\boldsymbol{y}_{r} - \boldsymbol{y}_{s}) \right] = (n-1)\|\boldsymbol{g}_{r} - \boldsymbol{g}_{s}\|^{2}$$

#### Remark:

PC scores Matrix:  $P = YV = U\Lambda V^t V = U\Lambda = G\Lambda \implies P \cong G$ 

### • [Example 2.6.1]5subjects-Pcbiplot



### • [Example 2.6.1]5subjects-Pcbiplot



### • [Example 2.6.2] klpga-PCbiplot



R-code:

| PCA and PC Biplot |                                                           |
|-------------------|-----------------------------------------------------------|
| princomp()        | Spectral Decomposition of S or R                          |
| prcomp()          | SVD of Y and Z                                            |
| PCA               | klpga-PCAfunctions.R<br>klpga-PCAsteps.R<br>kull-PCAsvd.R |
| PC Biplot         | 5subjects-PCbiplot                                        |

### R-code list of Chapter 2 Principal Component Analysis

| 3subjects-PCAsteps.R       | [R-코드 2.2.1] | [자료 1.1.1]의 [PCA 수행단계]                             |
|----------------------------|--------------|----------------------------------------------------|
| 5subjects-PCAsteps.R       | [R-코드 2.2.2] | [자료 1.3.1]의 [PCA 수행단계]                             |
| 5subjects-PCAsteps-scree.R | [보기 2.2.2]   | [그림 2.4.1]의 스크리그림                                  |
| example241-PCAsteps.R      | [R-코드 2.4.1] | [보기 2.4.1]의 [PCA 수행단계]와 상관계수 $\gamma_{lk}$ 계산      |
| klpga-PCAsteps.R           | [R-코드 2.5.1] | [자료 1.3.1]의 스펙트럼분해에 의한 [PCA 수행단계]                  |
| skull-PCAsteps.R           | [R-코드 2.5.2] | 두개골 자료의 스펙트럼분해에 의한 [PCA 수행단계]                      |
| skull-PCAsvd.R             | [R-코드 2.5.3] | 두개골 자료의 비정칙값분해에 의한 [PCA 수행단계]                      |
| 5subjects-PCbiplot.R       | [R-코드 2.6.1] | 두 가지 시험성적자료에 대한 주성분행렬도                             |
| klpga-PCbilpot.R           | [R-코드 2.6.2] | KLPGA 선수 성적의 주성분 행렬도                               |
| klpga-PCAfunctions.R       | [R-코드 2.7.1] | KLPGA 선수 성적의 주성분분석을 위한 함수 princomp()와 prcomp()를 활용 |
| censustract-PCbiplot.R     | [연습문제 2.7]   | 61개 지역의 총인구조사 상관행렬의 주성분행렬도                         |
| total - DCL in lat D       | [연습문제 2.11]  | 거북이 등딱지 자료의 공분산행렬에 대한 주성분행                         |
| turtle-PCbiplot.R          | [인급문제 2.11]  | 렬도 26                                              |

#### [R-code 2.5.1] klpga-PCAsteps.R: Spectral Decomposition

```
# PCA Steps for KLPGA
#[Step 1] Data Matrix X
Data1.3.2<-read.table("klpga.txt", header=T)
X=Data1.3.2
rownames <- rownames (X)
#[Step 2] Covariance Matrix S(or Correlation Matix R)
R=round(cor(X),3)
R
#[Step 3] Spectral Decomposition
eigen.R=eigen(R)
round(eigen.R$values, 2) # Eigenvalues
V=round(eigen.R$vectors, 2) # Eigenvectors
#[Step 4] Choice of Eigenvalues and Eigenvectors
gof=eigen.R$values/sum(eigen.R$values)*100 # Goodness-of fit
round(gof, 2)
#[Step 5] PCs: liner combination of original variables
V2=V[.1:2]
V2
#[Step 6] PCS, PCs Scores and New Data Matrix P
Z=scale(X, scale=T) # Standardized Data Matrix
Z
P=7%*%V2
                      # PCs Scores
round(P, 3)
#[Step 7] Plot of PCs Scores
plot(P[,1], P[, 2], main="Plot of PCs Scores", xlab="1st PC", ylab="2nd PC")
text(P[,1], P[, 2], labels=rownames, cex=0.8, col="blue", pos=3)
abline(v=0, h=0)
#Correlations bt PCs and variables
D=diag(sqrt(eigen.R$values[1:2]))
corr=V2%*%D
corr
```

#### [R-code 2.5.3] skull-PCAsvd.R : Singular Value Decomposition

```
# PCA Steps based on the SVD for Skull Data
#[Step 1] Data Matrix X
Data1.3.2<-read.table("skull.txt", header=T)
Z=as.matrix(Data1.3.2)
rownames < - rownames (Z)
colnames < - colnames (Z)
n=nrow(Z)
#[Step 2] Singular Values Decomposition
svd.Z = svd(Z)
U=svd.Z$u # Right singular vectors
V=svd.Z$v # Left singular vectors : Eigenvectors
round(V, 2)
D=diag(svd.Z$d)
#[Step 3] Choice of Singular Values and Eigenvectors
round(svd.Z$d, 2)
eigen=(svd.Z$d)^2
round(eigen/(n-1), 2)
gof=eigen/sum(eigen)*100 # Goodness-of fit
round(gof, 2)
#[Step 5] PCs: liner combination of original variables
V3=V[,1:3]
V3
round(t(V3), 2)
#[Step 6] PCS, PCs Scores and New Data Matrix P
Z # Standardized Data Matrix
P=U%*%D
                      # PCs Scores : P=7%*%V3
round(P, 3)
```

```
#[Step 7] Plot of PCs Scores
par(mfrow=c(2,2))
plot(P[,1], P[, 2], main="(a) Plot of PCs Scores", xlab="1st PC", ylab="2nd PC")
text(P[,1], P[, 2], labels=rownames, cex=0.8, col="blue", pos=1)
abline(v=0, h=0)
plot(P[,1], P[, 3], main="(b) Plot of PCs Scores", xlab="1st PC", ylab="3rd PC")
text(P[,1], P[, 3], labels=rownames, cex=0.8, col="blue", pos=1)
abline(v=0, h=0)
plot(P[,2], P[, 3], main="(c) Plot of PCs Scores", xlab="2nd PC", ylab="3rd PC")
text(P[,2], P[, 3], labels=rownames, cex=0.8, col="blue", pos=1)
abline(v=0, h=0)
#Correlations bt PCs and variables
D=diag(svd.Z$d[1:3]/sqrt(n-1))
corr=V3%*%D
round(corr, 3)
```

#### [R-code 2.6.1] 5subjects-pcbiplot.R: Biplot based on the SVD

```
# PC Biplots for 5 Subjects Exam
library("MVT")
data(examScor)
X=examScor
n < - nrow(X)
rownames(X)
colnames(X)
joinnames=c(rownames(X),colnames(X))
Y <- scale(X,scale=F)
# Biplot based on the Singular Value Decomposition
svd.Y < - svd(Y)
U <- svd.Y$u
V \leftarrow svd.Y$v
D <- diag(svd.Y$d)
G <- (sqrt(n-1)*U)[,1:2]
H <- (sqrt(1/(n-1))*V%*%D)[,1:2]
C<- rbind(G. H)
rownames(G)<-rownames(X)
rownames(H)<-colnames(X)
rownames(C)<-joinnames
# Godness-of-fit
eig <- (svd.Y$d)^2
per <- eig/sum(eig)*100
gof <- sum(per[1:2])
per
gof
```

```
# Biplots
par(mfrow=c(2,2))
par(pty="s")
lim1 <- range(pretty(H))
plot(H[,1],H[,2],xlab="1st PC",ylab="2nd PC", main="(a) 5 Subjects",
         xlim=lim1,ylim=lim1,pch=15,col=2, type="n")
abline(v=0,h=0)
text(H[,1], H[,2],colnames(X),cex=0.8,col=1,pos=3)
arrows(0,0,H[,1],H[,2],col=2,code=2, length=0.1)
lim2 <- range(pretty(G))
plot(G[,1],G[,2],xlab="1st PC",ylab="2nd PC", main="(b) 88 Students",
           xlim=lim2,ylim=lim2,pch=16, type="n")
abline(v=0,h=0)
text(G[,1],G[,2],rownames(X),cex=0.8,pos=3)
lim3 <- range(pretty(C))
plot(C[,1],C[,2],xlab="1st PC",ylab="2nd PC", main="(c) 5 Subjects and 88
Students".
          xlim=lim3,ylim=lim3,pch=16, type="n")
abline(v=0,h=0)
text(C[,1],C[,2],joinnames,cex=0.8,pos=3)
arrows(0,0,C[89:93,1],C[89:93,2],col=2,code=2, length=0.1)
biplot(G,H, xlab="1st PC",ylab="2nd PC", main="(d) biplot function",
                  xlim=lim2,ylim=lim2,cex=0.8,pch=16)
                                                                     29
abline(v=0,h=0)
```

#### [R-code 2.7.1] klpga-PCAfunctions.R : princomp(), prcomp()

```
Data1.3.2<-read.table("klpga.txt", header=T)
X<-Data1.3.2
# PCA based on the SD using princomp()
pca.R<-princomp(X, cor=T)
summary(pca.R, loadings=T) # 설명력, 주성분계수
round(pca.R$scores, 3) # 주성분점수
screeplot(pca.R, type="lines") # 스크리그림
# 주성분 행렬도
biplot(pca.R, scale=0, xlab="1st PC",ylab="2nd PC",
               main="PC Biplot for KLPGA Data ")
abline(v=0, h=0)
# PCA on the SVD using prcomp()
pcasvd.Z < -prcomp(X, scale = T)
summary(pcasvd.Z) # 설명력
round(pcasvd.Z$rotation, 3) # 주성분계수
screeplot(pcasvd.Z, type="lines") #스크리그림
# 주성분 행렬도
biplot(pcasvd.Z, scale=0, xlab="1st PC",ylab="2nd PC",
               main="PC Biplot for KLPGA Data ")
abline(v=0, h=0)
```