Integration by parts for tensors

Andrea Brugnoli

April 15, 2020

1 Differential operators

The space of all, symmetric and skew-symmetric $d \times d$ matrices are denoted by \mathbb{M} , \mathbb{S} , \mathbb{K} respectively. The space of \mathbb{R}^d vectors is denoted by \mathbb{V} . $\Omega \subset \mathbb{R}^d$ is an open connected set. For a scalar field $u: \Omega \to \mathbb{R}$ the gradient is defined as

$$\operatorname{grad}(u) = \nabla u := (\partial_{x_1} u \dots \partial_{x_d} u)^{\top}.$$

For a vector field $u: \Omega \to \mathbb{V}$, with components u_i , the gradient (Jacobian) is defined as

$$\operatorname{grad}(\boldsymbol{u})_{ij} := (\nabla \boldsymbol{u})_{ij} = \partial_{x_i} u_j.$$

The symmetric part of the gradient operator Grad (i. e. the deformation gradient in continuum mechanics) is thus given by

$$\operatorname{Grad}(\boldsymbol{u}) := \frac{1}{2} \left(\nabla \boldsymbol{u} + (\nabla \boldsymbol{u})^{\top} \right) \in \mathbb{S}.$$

The Hessian operator of u is then computed as follows

$$\operatorname{Hess}(u) = \nabla^2 u = \operatorname{Grad}(\operatorname{grad}(u)),$$

For a tensor field $U: \Omega \to \mathbb{M}$, with components u_{ij} , the divergence is a vector, defined column-wise as

$$\operatorname{Div}(\boldsymbol{U}) = \nabla \cdot \boldsymbol{U} := \left(\sum_{i=1}^{d} \partial_{x_i} u_{ij}\right)_{j=1,\dots,d}$$

The double divergence of a tensor field \boldsymbol{U} is then a scalar field defined as

$$\operatorname{div}(\operatorname{Div}(\boldsymbol{U})) := \sum_{i=1}^{d} \sum_{j=1}^{d} \partial_{x_i} \partial_{x_j} u_{ij}.$$

2 Integration by parts

Consider a smooth tensor-valued function $\mathbf{A} \in \mathbb{R}^{d \times d}$ and vector-valued function $\mathbf{b} \in \mathbb{V} = \mathbb{R}^d$. The following integration by parts formula holds

$$\int_{\Omega} \{ \operatorname{Div}(\boldsymbol{A}) \cdot \boldsymbol{b} + \boldsymbol{A} : \operatorname{grad}(\boldsymbol{b}) \} \ d\Omega = \int_{\Omega} \operatorname{div}(\boldsymbol{A}\boldsymbol{b}) \ d\Omega = \int_{\partial\Omega} (\boldsymbol{A}^{\top}\boldsymbol{n}) \cdot \boldsymbol{b} \ dS,$$
(1)

where n is the outward normal at the boundary and dS the infinitesimal surface.

Proof 1 Consider the components expression of Eq. (1)

$$\int_{\Omega} \left\{ \operatorname{Div}(\boldsymbol{A}) \cdot \boldsymbol{b} + \boldsymbol{A} : \operatorname{grad}(\boldsymbol{b}) \right\} d\Omega = \int_{\Omega} \sum_{i=1}^{d} \sum_{j=1}^{d} \left\{ (\partial_{x_i} A_{ij}) b_j + A_{ij} (\partial_{x_i} b_j) \right\} d\Omega,$$

$$= \int_{\Omega} \sum_{i=1}^{d} \sum_{j=1}^{d} \partial_{x_i} (A_{ij} b_j) d\Omega = \int_{\Omega} \operatorname{div}(\boldsymbol{A} \boldsymbol{b}) d\Omega, \qquad (2)$$

$$= \int_{\partial \Omega} \sum_{i=1}^{d} \sum_{j=1}^{d} (n_i A_{ij}) b_j dS = \int_{\partial \Omega} (\boldsymbol{A}^{\mathsf{T}} \boldsymbol{n}) \cdot \boldsymbol{b} dS.$$

The previous result can be specialized for symmetric tensor field (see Chapter 1 of book mixed element by Boffi etc 2013). Consider a smooth tensor-valued function $\mathbf{M} \in \mathbb{S} = \mathbb{R}^{d \times d}_{\text{sym}}$ and vector-valued function $\mathbf{b} \in \mathbb{V} = \mathbb{R}^d$. Then, it holds

$$\int_{\Omega} \{ \operatorname{Div}(\boldsymbol{S}) \cdot \boldsymbol{b} + \boldsymbol{M} : \operatorname{Grad}(\boldsymbol{b}) \} \ d\Omega = \int_{\Omega} \operatorname{div}(\boldsymbol{M}\boldsymbol{b}) \ d\Omega = \int_{\partial\Omega} (\boldsymbol{M} \, \boldsymbol{n}) \cdot \boldsymbol{b} \ dS.$$
 (3)

Proof 2 Consider the components expression of Eq. (3)

$$\int_{\Omega} \left\{ \operatorname{Div}(\boldsymbol{M}) \cdot \boldsymbol{b} + \boldsymbol{M} : \operatorname{Grad}(\boldsymbol{b}) \right\} d\Omega = \int_{\Omega} \sum_{i=1}^{d} \sum_{j=1}^{d} \left\{ (\partial_{x_i} M_{ij}) b_j + M_{ij} \frac{1}{2} (\partial_{x_i} b_j + \partial_{x_j} b_i) \right\} d\Omega,$$
(4)

The term $M_{ij} \frac{1}{2} (\partial_{x_i} b_j + \partial_{x_j} b_i)$ can be manipulated exploiting the symmetry of the tensor M

$$\sum_{i=1}^{d} \sum_{j=1}^{d} \frac{1}{2} (M_{ij} \partial_{x_i} b_j + M_{ij} \partial_{x_j} b_i) = \sum_{i=1}^{d} \sum_{j=1}^{d} \frac{1}{2} (M_{ij} \partial_{x_i} b_j + M_{ji} \partial_{x_i} b_j),$$

$$= \sum_{i=1}^{d} \sum_{j=1}^{d} \frac{1}{2} (M_{ij} + M_{ji}) \partial_{x_i} b_j \qquad Since \ \mathbf{M} \ is \ symmetric,$$

$$= \sum_{i=1}^{d} \sum_{j=1}^{d} M_{ij} \partial_{x_i} b_j = \mathbf{M} : \operatorname{grad}(\mathbf{b})$$
(5)

Then it holds

$$\int_{\Omega} \{ \operatorname{Div}(\boldsymbol{M}) \cdot \boldsymbol{b} + \boldsymbol{M} : \operatorname{Grad}(\boldsymbol{b}) \} d\Omega = \int_{\Omega} \{ \operatorname{Div}(\boldsymbol{M}) \cdot \boldsymbol{b} + \boldsymbol{M} : \operatorname{grad}(\boldsymbol{b}) \} d\Omega$$
 (6)

Using Eq (1) then

$$\int_{\Omega} \{ \operatorname{Div}(\boldsymbol{M}) \cdot \boldsymbol{b} + \boldsymbol{M} : \operatorname{Grad}(\boldsymbol{b}) \} d\Omega = \int_{\Omega} \{ \operatorname{Div}(\boldsymbol{M}) \cdot \boldsymbol{b} + \boldsymbol{M} : \operatorname{grad}(\boldsymbol{b}) \} d\Omega,
= \int_{\partial \Omega} (\boldsymbol{M}^{\top} \boldsymbol{n}) \cdot \boldsymbol{b} dS, \quad Since \ \boldsymbol{M} \text{ is symmetric,}
= \int_{\partial \Omega} (\boldsymbol{M} \ \boldsymbol{n}) \cdot \boldsymbol{b} dS.$$
(7)

This concludes the proof.