

ACADEMICS

MATEMÁTICA III

Navegación por el cuestionario

Andy Josue Ambrosio Caal

Mostrar una página cada vez

Finalizar revisión

← Back to course

Comenzado el

viernes, 7 de julio de 2023, 19:51

Estado

Finalizado

Finalizado en

viernes, 7 de julio de 2023, 20:44

Tiempo empleado

52 minutos 52 segundos

Calificación

10,00 de 10,00 (**100**%)

Correcta

Se puntúa 1,00 sobre 1,00

Resuelva la siguiente integral, debe dejar costancia paso a paso de como la fue resolviendo

$$\int (x-4)^2 dx$$

Nota: Para indicar la constante, escriba C mayúscula. También debe de dejar separada la "dx".

Por ejemplo en donde quede xdx, debe dejar espacio x dx

En la respuesta final, debe escribir + C mayúscula

Paso 1: desarrollar el cuadrado del binomio, recuerde escribir el "dx", debe dejar una separación con espacio entre las operaciones y los paréntesis si los utilizó.

$$\int (x-4)^2 dx = \int (x^2-8x+16) dx$$

~

Una posible respuesta correcta sería: $(x^2 - 8*x + 16) dx$

Paso 2: Aplicando las reglas de derivada. Recuerde colocar signos donde corresponda.

Al resolver la integral queda f(x) (x^3/3)-4x^2+16x + C

V

Una posible respuesta correcta sería: $1/3x^3 - 4*x^2 + 16*x + C$

Correcta

Se puntúa 1,00 sobre 1,00

Resuelva la siguiente integral y encuentre su resultado numérico

$$\int_2^5 (4-6x)dx$$

La integral queda de la siguiente forma $f(x) = 4x-3x^2$

Una posible respuesta correcta sería: 4*x - 3*x^2

El resultado numérico de la integral definida es: -51

Una posible respuesta correcta sería: -51

Correcta

Se puntúa 1,00 sobre 1,00

Resuelva la siguiente integral y encuentre su resultado numérico

$$\int_2^4 x(3+4x)^2 dx$$

Resolviendo las operaciones indicadas, queda de la siguiente forma $\int_2^4 = (16x^3 + 24x^2 + 9x) dx$

Una posible respuesta correcta sería: $(9*x + 24*x^2 + 4*4*x^3)dx$

Al resolver la integral queda $f(x) = 4x^4+8x^3+(9x^2/2)$

Una posible respuesta correcta sería: (9/2*x^2 + 24/3*x^3+ 4*4/4*x^4)

Al evaluar la integral con el límite superior se obtiene 1608

Una posible respuesta correcta sería: 1608

Al evaluar con el límite inferior se obtiene 146

Una posible respuesta correcta sería: 146

El resultado numérico de la integral definida queda: 1462

Una posible respuesta correcta sería: 1462

Correcta

Se puntúa 1,00 sobre 1,00

Nota: Para indicar la constante, escriba C mayúscula. También debe de dejar separada la "dx"

La integral quedaría $f(x) = (7x^3/3) + 2x^2 + C$

Una posible respuesta correcta sería: 7*x^3/3 + 4*x^2/2 + C

Correcta

Se puntúa 1,00 sobre 1,00

Resuelva la siguiente integral y encuentre su resultado numérico

$$\int_3^5 (2+4x)^2 dx$$

El cuadrado del binomio desarrollado que de la siguiente forma $\int_3^5 = (4+16x+16x^2)dx$

Una posible respuesta correcta sería: (4 + 16*x + 4*4*x^2)dx

Al resolver la integral queda $f(x) = 4x+8x^2+(16x^3/3)$

Una posible respuesta correcta sería: 4*x + 4*2*x^2 + 4*4/3*x^3

Al evaluar la integral con el límite superior se obtiene 886.6667

Una posible respuesta correcta sería: 886.6666666667

Al evaluar con el límite inferior se obtiene 228

Una posible respuesta correcta sería: 228

El resultado numérico de la integral definida queda: 658.66667

Una posible respuesta correcta sería: 658.6666666667

Correcta

Se puntúa 1,00 sobre 1,00

Resuelva la siguiente integral y encuentre su resultado numérico

$$\int_{-3}^{-2} (2 - 6x)^2 dx$$

El cuadrado del binomio desarrollado que de la siguiente forma $\int_{-3}^{-2} = \sqrt{4-24x+36x^2} dx$

Una posible respuesta correcta sería: $(4 - 24*x + 6*6*x^2)dx$

Al resolver la integral queda $f(x) = 4x-12x^2+12x^3$

Una posible respuesta correcta sería: $4*x - 6*2*x^2 + 6*6/3*x^3$

El resultado numérico de la integral definida queda: 292

Una posible respuesta correcta sería: 292

Correcta

Se puntúa 1,00 sobre 1,00

Resuelva la siguiente integral y encuentre su resultado numérico

$$\int_{-2}^{-1} x (1 - 2x)^2 dx$$

Resolviendo las operaciones indicadas, queda de la siguiente forma $\int_{-2}^{-1} = (x-4x^2+4x^3)dx$

Una posible respuesta correcta sería: (1*x - 4*x^2 + 2*2*x^3)dx

Al resolver la integral queda $f(x) = (x^2/2)-(4x^3/3)+x^4$

Una posible respuesta correcta sería: (1/2*x^2 - 4/3*x^3+ 2*2/4*x^4)

Al evaluar la integral con el límite superior se obtiene 2.8333

Una posible respuesta correcta sería: 2.83333333333333

Al evaluar con el límite inferior se obtiene 28.6667

Una posible respuesta correcta sería: 28.66666666667

El resultado numérico de la integral definida queda: -25.8333

Una posible respuesta correcta sería: -25.8333333333333

Correcta

Se puntúa 1,00 sobre 1,00

Resuelva la siguiente integral, debe dejar constancia paso a paso de como la fue resolviendo $\int 4x^8 \mathrm{dx}$

Nota: Para indicar la constante, escriba C mayúscula

La integral queda

$$f(x) = 4x^9/9 + C$$

Una posible respuesta correcta sería: 0.44444444444444+ x^9 + C

Respuesta correcta

PREGUNTA 9

Correcta

Se puntúa 1,00 sobre 1,00

Resuelva la siguiente integral, debe dejar costancia paso a paso de como la fue resolviendo $\int x^5 dx$

Nota: Para indicar la constante, escriba C mayúscula

La integral queda
$$f(x) =: x^6/6 + C$$

Una posible respuesta correcta sería: $x^{(5+1)/(5+1)} + C$

Correcta

Se puntúa 1,00 sobre 1,00

Resuelva la siguiente integral, debe dejar constancia paso a paso de como la fue resolviendo $\int 4x^3 \mathrm{dx}$

Nota: Para indicar la constante, escriba C mayúscula

La integral queda:

$$f(x) = 4x^4/4 + C$$

Una posible respuesta correcta sería: x^4 + C

Respuesta correcta

← Back to course

www.kinal.edu.gt

Copyright © 2022 Fundación Kinal todos los derechos reservados.