

HEANAMPONG CLEMENT OSAFO, NANA AMOABEA AKUA **DEBRAH DESMOND**

SUPERVISOR:- PROF. JAMES DZISI GADZE

INTRODUCTION

FEDERATED LEARNING

SPECIFIC OBJECTIVE ONE(1)

Evaluate the performance of the model developed by a classical deep neural network

Perform hyperparameter tuning to improve the performance of the model.

DATASET DESCRIPTION

ANOMALIES: ATTACKS

CIC-IOT 2023 dataset.

Size of dataset: 1177098 x 34

Number of features: 33 features + 1 label

FLOODING

WEB-BASED

SPOOFING

MODEL SUMMARY

Layer (type)	Output Shape	Param #
dense_6 (Dense)	(None, 4)	136
activation_6 (Activation)	(None, 4)	0
dense_7 (Dense)	(None, 4)	20
activation_7 (Activation)	(None, 4)	0
dense_8 (Dense)	(None, 1)	5
activation_8 (Activation)	(None, 1)	0

Model summary

TRADITIONAL MACHINE LEARNING RESULTS

Training and validation accuracy curves

Training and validation loss curves

TRADITIONAL MACHINE LEARNING RESULTS CONT'D

Confusion Matr [[99893 2706] [3375 70591]				
Evaluation met	rics			
	precision	recall	f1-score	support
0	0.96732	0.97363	0.97046	102599
1	0.96308	0.95437	0.95871	73966
accuracy			0.96556	176565
macro avg	0.96520	0.96400	0.96458	176565
weighted avg	0.96554	0.96556	0.96554	176565

Evaluation metrics	Values in %
Precision score	96.52
Recall	96.40
F1 score	96.46
Accuracy	96.56

Model's performance on unseen data

Summary of the results

SPECIFIC OBJECTIVE TWO(2)

Evaluate the performance of the model developed by federated learning.

Perform hyperparameter tuning to improve the performance of the model.

FEDERATED LEARNING RESULTS

0.99 -

framework

Flower

scenarios

- > Impact of increased clients
- > Accuracy Trend as the number of rounds is varied

Federated Learning Result: IID With Increasing Number of Clients

FEDERATED LEARNING RESULTS

FEDERATED LEARNING RESULTS

We observed an upward trend in model performance as the number of clients increased.

ANALYSIS

Suggests that the model might benefit even further if scaled to an even larger number of devices.

The model converges in 20 rounds regardless of client count, indicating no increase in communication cost as the client base expands.

SPECIFIC OBJECTIVE THREE(3)

Comparative analysis of Classical Deep Learning and Federated learning techniques

COMPARATIVE ANALYSIS

Federated learning vs classical deep learning

FEDERATED LEARNING RESULTS: NON-IID

PARTITIONING STRATEGIES FOR NON-IID

- Label Distribution Skew
- Feature Distribution Skew
- •Quantity Distribution Skew

Number of Clients	Main Attacks	Total number of Samples	Label Ratio 0:1
CLIENT 1	DDos	519,478	2:8
CLIENT 2	Web Based	34,306	9:1
CLIENT 3	Spoofing	25,921	6:4
CLIENT 4	Dos	234,299	5:2

FEDERATED LEARNING RESULTS: NON-IID

FEDERATED LEARNING RESULTS: NON-IID CONT'D

Federated learning (non-iid) vs classical deep learning

CONCLUSION

We can detect network anomalies 96.56% of the time if traditional machine learning is used.

However, we can detect network anomalies 98.68% of the time and still preserve privacy if federated learning is used in an IID context.

We can detect anomalies of the same distribution 99.3% of the time, but the system's effectiveness at detecting anomalies of mixed distribution decreases to 91.2% and drops to a 40% detection rate at detecting anomalies of different distributions.

However, federated learning, irrespective of the different distributions and heterogeneity, achieves a 96.4% detection rate.

REFERENCE

FEDERATED LEARNING METRICS AFTER EVERY 10 ROUNDS

Summary of the results

