Trabajo 2 ICD: Modelo Base

Expectativas económicas Empresariales

Abad Aniceto Anguiela, Navarro Lozada Damaris, Robledo Jimenez Meyli, Pizarro Otero Alberto

Introducción a Ciencia de Datos y Machine Learning con Python

21 de octubre de 2025

Motivación

- El objetivo de este trabajo es plantear un modelo base para el análisis de la pregunta de investigación:
- ¿Cómo influyen el tipo de cambio interbancario, la inflación mensual, el PBI mensual y la tasa de referencia del BCRP en el índice de expectativas sobre la economía a tres meses en el Perú durante el periodo 2015–2025?
- Se evaluará distintos modelos (lineales y no lineales) y analizar su capacidad predictiva mediante métricas adecuadas.

Metodología general

Training y Test:

- **1** División de datos: entrenamiento (70 %) y prueba (30 %).
- Estandarización: se utiliza StandardScaler para normalizar variables numéricas.
- Modelado: se emplean modelos de regresión lineal y logística según la naturaleza de la variable dependiente.
- Validación: se aplican técnicas de cross-validation (KFold) y métricas de desempeño.

Modelo de Regresión Lineal

El modelo de regresión lineal se plantea como:

$$ExpEconomicas = \beta_0 + \beta_1 TC + \beta_2 TPM + \beta_3 PBI + \beta_4 IPC + \varepsilon$$

- Donde ExpEconómicas representa el valor estimado de la variable objetivo.
- Modelo simple: El coeficiente de nuestra variable Tipo de Cambio mostró tener efecto estadísticamente significativo y negativo (-20.8211).
- Modelo complejo: Las variables independientes con ecepción de TPM- si muestran un efectos estadísticamente significativo. Sin embargo, la validación cruzada nos muestra que en terminos predictivos el modelo no mejora, dado que su MSE y desviación estandar aumentan a 267.2365 y 192.6637 respectivamente.

Modelo de Regresión Lineal

Figura: Tabla Comparativa de Rendimiento Predictivo

El modelo OLS Simple se ajusta mejor a nuestra variable dependiente (Expectativas Económicas a 3 meses), lo que evidencia que el añadir variables no mejora el modelo, o que dichas variables no son las más indicadas.

Modelo de Regresión Logística

Transformamos nuestra variable de Expectativas en una variable categórica, donde:

- 1 = optimismo si > 50
- -0 = Pesimismo si < 50

Cuando la variable objetivo es categórica, se aplicó un modelo logístico:

$$P(ExpEconómicas = 1|X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 TC + \beta_2 TPM + \beta_3 PBI + \beta_4 IPC)}}$$

Modelo de Regresión Logística

						-
					95	
Model:		Logit	Df Residuals:		9	10
Method:	MLE		Df Model:		4	
Date:	Mon, 20 Oct 2025				0.2752	
Time:			Log-Likelihood:		-47.538	
converged:			LL-Null:		-65.591	
Covariance Type:		nonrobust	LLR p-value:		2.752e-€	17
	coe.	f std er	r z	P> z	[0.025	0.975
const	19.531	5 5.45	3 3.582	0.000	8.844	30.219
Tasa Referencia PM	-0.252	6 0.17	5 -1.444	0.149	-0.596	0.096
Tipo_Cambio_Promedio	-11.410	7 2.58	3 -4.418	0.000	-16.473	-6.348
PBI_Mensual	0.022	2 0.02	9 0.764	0.445	-0.035	0.079
IPC	0.180	4 0.06	2 2.901	0.004	0.059	0.302
Odds Ratios						
const	303,691	.284.5258				
Tasa Referencia PM	.,	0.7767				
Tipo Cambio Promedio		0.0000				
PBI Mensual		1.0225				
IPC_		1.1977				
dtype: float64						

Figura: Modelo Logit

- Solo Tipo de Cambio y el IPC muestran ser predictores significativos del evento de interés.
- Pseudo R-cuadrado: Nos indica que el modelo explica al rededor de un 27.52 % de la variabilidad del evento.
- En conclusión tiene capacidad explicativa modera y mejora.

Comparación y Decisión del Problema

- Regresión: El modelo OLS simple, a pesar de su mejor ajuste debido a un menor MSE y desviasión standar en comparación con el modelo complejo, posee un poder predictivo de solo el 27.7 %, lo que evidencia un posible problema de sobre ajuste.
- Clasificación: En base al Accuracy promedio el modelo acierta en un 60 % de los casos al predicir . El valor ±0.1886 indica la variabilidad del desempeño entre los distintos pliegues (folds) de la validación cruzada. El F1-Score promedio nos indica un equilibrio moderado (59.72 %).
- Es más relevante tener la capacidad de predecir si las Expectativas Económicas que tienen los empresarios resultan ser positivas o negativas ante la variación de variables ecnómicas como el Tipo de Cambio y el PBI.

Conclusiones

- Se implementaron modelos de regresión lineal y logística para analizar la influencia de variables macroeconómicas (Tipo de Cambio, IPC, PBI y TPM) sobre las expectativas económicas empresariales a 3 meses en Perú.
- Aunque el modelo de regresión lineal simple ofreció un mejor ajuste que el modelo múltiple, su bajo poder predictivo sugiere limitaciones para capturar relaciones complejas o no lineales.
- El modelo de regresión logística resultó más adecuado al transformar la variable dependiente en una categoría binaria (optimismo vs pesimismo). Esto permitió interpretar mejor los efectos direccionales y la probabilidad de eventos económicos relevantes.
- El Tipo de Cambio y el IPC fueron identificados como predictores estadísticamente significativos en el modelo logístico, lo que resalta su impacto directo en la percepción empresarial del entorno económico.

9/9