

Московский государственный университет имени М. В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра математической физики

Турганбаев Сатбек Амангельдыулы

Исследование метода восстановления волнового фронта по его наклонам на основе вейвлетов Хаара

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА

Научный руководитель:

д.ф-м.н. Разгулин Александр Витальевич

Москва, 2018

Цель работы

- Реализовать вейвлет метод
- ullet Проверить работу метода на различных $g_1,\,g_2$
- Реализовать вариационный метод
- Исследовать случай восстановления по средним локальным апертурам значений наклонов

Вейвлет метод

$$g_1 = \frac{u(x_i, y_j) - u(x_{i-1}, y_j)}{h_1}$$
$$g_2 = \frac{u(x_i, y_j) - u(x_i, y_{j-1})}{h_2}$$

м-3 нь м-3 нн м-3 нн	м-2Ф нL	M-1db
м-2Ф LH	^{м-2} Ф	^{M-1} Φ
м-: Ф		^{М-1} Ф

Первые разностные производные

$$g_1 = \frac{u(x_i, y_j) - u(x_{i-1}, y_j)}{h_1}$$
$$g_2 = \frac{u(x_i, y_j) - u(x_i, y_{j-1})}{h_2}$$

Точные значение производных

$$g_1 = u_x(x_i, y_j); g_2 = u_y(x_i, y_j)$$

Вариационный метод

$$J(u) = \int_{0}^{2\pi} \int_{0}^{2\pi} ((u_x - g_1)^2 + (u_y - g_2)^2 + \alpha u^2) dx dy \to min$$

$$(u_x, \phi_x) + (u_y, \phi_y) + \alpha (u, \phi) = (g_1, \phi_x) + (g_2, \phi_y), \quad \forall \phi \in W_{2\pi}^1(\Omega)$$

$$B_2 \Lambda_1 u + B_1 \Lambda_2 u + \alpha B_1 B_2 u + \gamma \Lambda_1 \Lambda_2 u = F(g_1, g_2)$$

$$u_{kl} = \frac{f_{kl}}{\mu_l \lambda_k + \mu_k \lambda_l + \alpha \mu_k \mu_l + \gamma \lambda_k \lambda_l}$$

$$g_{1} = u_{x}(x_{i}, y_{j}); \ g_{2} = u_{y}(x_{i}, y_{j})$$

$$g_{1} = \frac{1}{h_{1}h_{2}} \sum_{n=1}^{N_{1}-1} \sum_{m=1}^{N_{2}-1} \int_{\Delta_{nm}} u_{\xi}(\xi, \eta) d\xi d\eta \overset{\circ}{\varphi}_{nm}(x, y)$$

$$g_{2} = \frac{1}{h_{1}h_{2}} \sum_{n=1}^{N_{1}-1} \sum_{m=1}^{N_{2}-1} \int_{\Delta_{nm}} u_{\eta}(\xi, \eta) d\xi d\eta \overset{\circ}{\varphi}_{nm}(x, y)$$

$$\Delta_{nm} = [x_{n-1}, x_{n}] \cup [y_{n-1}, y_{n}]$$

$$\overset{\circ}{\varphi}_{nm}(x, y) = \begin{cases} 1, & x \in \Delta_{nm} \\ 0, & else \end{cases}$$

Частотная характеристика

Частотная характеристика

Частотная характеристика

Восстановление полиномов Цернике

