Criterio AIC

Joel Alejandro Zavala Prieto

Contents

Información de contacto	2
Introducción	3
Descripción	3
Visualización	3
ACF y PACF	4
Estimando parámetros por linea de comando	5
${\bf Modelando~diferentes~modelos~AR(p)}$	5
Graficando SSE y AIC	6

Información de contacto

```
Mail: alejandro.zavala1001@gmail.com
Facebook: https://www.facebook.com/AlejandroZavala1001
Git: https://github.com/AlejandroZavala98

## Warning: package 'forecast' was built under R version 4.1.1

## Registered S3 method overwritten by 'quantmod':
## method from
## as.zoo.data.frame zoo

##

## Attaching package: 'forecast'

## The following object is masked from 'package:astsa':
##

## gas
```

Introducción

Hay varias formas de juzgar la calidad de un modelo de serie temporal. Se veran dos formas comunes: SSE y AIC. Desarrollando algunos datos a partir de un proceso AR (p)

Descripción

Se simulara el modelo

$$x_t = 0.35x_{t-1} + 0.25x_{t-2} + Z_t$$
$$Z_t \sim N(0, 15)$$

Visualización

```
## [1] 5.64335375 5.44524487 -0.28291216 -1.28361079 -0.65192062 -9.29506104
## [7] -5.44471850 0.37179645 4.63892110 2.42673582 1.74357661 7.61020443
## [13] 8.62217153 -0.63309396 2.42101251 3.29730316 2.18305949 2.01235978
## [19] 0.63404519 -0.04870261
```

Ar(2) simulado con phi1= 0.35 phi2= 0.25

ACF y PACF

ACF of time series

PACF of time series

Estimando parámetros por linea de comando

Si estimamos los parámetros del modelo por linea de comando obtenemos:

```
##
## Call:
## arima(x = ar2.process, order = c(2, 0, 0), include.mean = FALSE)
##
## Coefficients:
## ar1 ar2
## 0.3542 0.2471
## s.e. 0.0112 0.0112
##
## sigma^2 estimated as 15.04: log likelihood = -20807.54, aic = 41621.08
Que es equivalente a:
```

$$x_t = 0.3542x_{t-1} + 0.2471x_{t-2} + Z_t$$

$$Z_t \sim N(0, 15.04)$$

Modelando diferentes modelos AR(p)

Si modelamos para AR(p) para p=1,2,3,4,5,6,7,8, obteniendo los valores SSE y AIC correspondientes se tiene

Orden del modelo	SSE	AIC
1	120132.9	42091.05
2	112804.2	41621.08
3	112792.8	41622.33
4	112775.0	41623.14
5	112773.9	41625.07
6	112773.7	41627.06
7	112767.1	41628.62
8	112754.9	41629.81

Graficando SSE y AIC

Si graficamos estos valores llegamos a:

SSE del modelo AR(p)

AIC del modelo AR(p)

