Multivariable Calculus

Avery Karlin Fall 2015

Contents

1	\mathbf{Seq}	quence Theorems	3
	1.1	Sunrise Lemma	
		1.1.1 Well-Ordering Property	
		1.1.2 Proof	
	1.2	Bolzano-Weierstrass Theorem	
2	\mathbf{Ext}	treme Value Theorem	:

1 Sequence Theorems

1.1 Sunrise Lemma

The Sunrise Lemma states for any sequence $(a_n)_n^{\infty} = 1$ in \mathbb{R} , \exists monotone subsequence $a_{n_k} = 1$, where $a_k = 1$ is a strictly increasing sequence in \mathbb{N} and $a_k \geq k$ for all $k \in \mathbb{N}$

Vistas are points in a sequence, a_n , where $N \in \mathbb{N}$, such that $a_N > a_n$ for all n > N

This means that for any sequence, there exists a subset of points within, such that within that sequence, the sequence is monotone

1.1.1 Well-Ordering Property

For any set $A \subseteq \mathbb{N}, A \neq \emptyset, min(A)$ exists

1.1.2 **Proof**

<u>Case I:</u> The set V of vistas, is infinite, such that $n_1 = min(v)$ and $n_k = min(V \cap n_{k-1}^{\infty})$, where $k \ge 2$, then a_{n_k} is strictly decreasing

Case II:

$$n_1 = \begin{cases} 1 & ifv = \emptyset \\ 1 + max(v) & ifv \neq \emptyset \end{cases}$$

 $n_k = choice\{n > n_{k-1} | a_n \ge a_{n_{k-1}}, \text{ thus } n_k \ne \emptyset \text{ because V is finite, thus } a_{n_k} \text{ is increasing } a_{n_k} = choice\{n > n_{k-1} | a_n \ge a_{n_{k-1}}, \text{ thus } n_k \ne \emptyset \text{ because V is finite, thus } a_{n_k} = choice\{n > n_{k-1} | a_n \ge a_{n_{k-1}}, \text{ thus } n_k \ne \emptyset \text{ because V is finite, thus } a_{n_k} = choice\{n > n_{k-1} | a_n \ge a_{n_{k-1}}, \text{ thus } n_k \ne \emptyset \text{ because V is finite, thus } a_{n_k} = choice\{n > n_{k-1} | a_n \ge a_{n_{k-1}}, \text{ thus } n_k \ne \emptyset \text{ because V is finite, thus } a_{n_k} = choice\{n > n_{k-1} | a_n \ge a_{n_{k-1}}, \text{ thus } n_k \ne \emptyset \text{ because V is finite, thus } a_{n_k} = choice\{n > n_{k-1} | a_n \ge a_{n_k}, \text{ thus } n_k \ne \emptyset \text{ because V is finite, thus } a_{n_k} = choice\{n > n_{k-1} | a_n \ge a_{n_k}, \text{ thus } n_k \ne \emptyset \text{ because V is finite, thus } a_{n_k} = choice\{n > n_{k-1} | a_n \ge a_{n_k}, \text{ thus } n_k \ne \emptyset \text{ because V is finite, thus } a_{n_k} = choice\{n > n_{k-1} | a_n \ge a_{n_k}, \text{ thus } n_k \ne \emptyset \text{ because V is finite, thus } a_{n_k} = choice\{n > n_{k-1} | a_n \ge a_{n_k}, \text{ thus } n_k \ne \emptyset \text{ because V is finite, thus } a_{n_k} = choice\{n > n_{k-1} | a_n \ge a_{n_k}, \text{ thus } a_{n_k} = choice\{n > n_{k-1} | a_n \ge a_{n_k}, \text{ thus } a_{n_k} = choice\{n > n_{k-1} | a_n \ge a_{n_k}, \text{ thus } a_{n_k} = choice\{n > n_{k-1} | a_n \ge a_{n_k} = choice(n > n_k) \}$

1.2 Bolzano-Weierstrass Theorem

Every bounded sequence in \mathbb{R} has at least one convergent subsequence

2 Extreme Value Theorem

For some function f : [a, b]