Exercise 5.2 (student presents)

We want to move the following system

$$\dot{x} = 2x + u$$

from an arbitrary initial state x_0 to the origin in minimal time, while the control is constrained $|u| \leq 1$. There are some initial states that can not be moved to the origin with any allowed control u. Find those initial states.

Solution

The solution for the state equation is

where $\phi(t) = e^{2t}$. Lets assume we have a control for which x(T) = 0; then

$$0 = x_0 + \int_0^T \phi(-\tau)u(\tau)d\tau, \quad \Leftrightarrow \quad \times_{\mathcal{O}} = \int_{\mathcal{O}} \int_{\mathcal{O}} d\tau$$

which implies that

$$|x_0| = \left| \int_0^T \phi(-\tau)u(\tau)d\tau \right|$$

On the other hand

$$\left| \int_0^T \phi(-\tau) u(\tau) d\tau \right| \leq \int_0^T |\phi(-\tau)| |u(\tau)| d\tau \qquad \left| \text{ auchy-Schwarts} \right|$$

and because $|u| \leq 1$, we get

$$|x_{0}| \leq \int_{0}^{T} |\phi(-\tau)| d\tau = \int_{0}^{T} e^{-2\tau} d\tau = \int_{0}^{T}$$

i.e.

$$2|x_0| - 1 \le -e^{-2T} \Rightarrow e^{-2T} \le 1 - 2|x_0|$$

Because the exponential function is positive for all T, this last condition can only be satisfied if $|x_0| < 1/2$, which is the answer we were looking for.

$$\frac{-x}{2} > 0 = 0 < 1 - 2 |x_0| \Rightarrow |x_0|$$