3D Data Processing Point Clouds Processing

Hyoseok Hwang

Today

- Representation of 3D data
 - Voxel
 - Point Clouds
 - Mesh
- Point Clouds
 - How to Get?
- Point Clouds processing overview

• How can we represent 3D shape?

depth map

voxel grid

point clouds

mesh

- Depth map
 - For each pixel, depth map gives distance e from the camera to the object in the world at that pixel
- RGB image + Depth image
 - = RGB-D Image (2.5D)
- This type of data can be recorded directly for some types of 3D sensors (e.g. Microsoft Kinect)

RGB Image: 3 x H x W Depth Map: H x W

• 3D reconstruction using depth map

- Voxel grid
 - voxel: volume pixel
 - a voxel represents a value on a regular grid in 3D space.
 - Represent a shape with a V x V x V grid of occupancies
 - Pros
 - Conceptually simple: just a 3D grid
 - Convolution is possible
 - Cons
 - Need high spatial resolution to capture fine structures
 - Most of volume space is empty!
 - Scaling to high resolutions is nontrivial
 - Good for representing object
 - Bad for representing environment (maybe impossible)

- Voxel grid
 - Trade-off between density and resolution

Point Clouds

- Simplest representation: **only points,** no connectivity.
- Type of data: Set, no order.
- Collection of (x,y,z) coordinates, possibly with normal of colors

(x, y, z)

(x, y, z, nx, ny, nz)

(x, y, z, r, g, b)

Point Clouds

- Represent shape as a <u>set of P points</u> in 3D space
- Pros
 - Can represent fine structures
 - The simplest method which can represent 3D data
- Cons
 - Doesn't explicitly represent the surface of the shape
 - Weak approximation power.
 - Noise and outliers

Point Clouds

• Examples

Mesh

- Represent each manifold surface as a triangle mesh using graph
- Vectices
 - Location $(x,y,z) \rightarrow Same$ as point clouds.
- Edge
 - a line between two vertices and connects two faces
- Face
 - a surface created between the edges.
 - Triangle is widely used

- Bird-eye View (BEW)
 - Represents data at a very far distance on the axis corresponding to height in the WORLD coordinate system.
 - 2-dimensional data
 - Images and 3D data can be represented as BEW

Why Point Clouds?

To chart the cha

- Point clouds are easy to edit, filter and non-intrusive
 - There are many point cloud formats
 - There are many point cloud library (PCL, open3D, etc.)
- Typically, PC are a kind of standard
 - Nearly all 3d scanning devices produce point clouds
- Locality: sometimes, easier to handle, especially in hardware.

Why Point Clouds?

- Point clouds can be easily converted to other formats.
 - Convert To voxel by dividing sections in 3D
 - Convert To BEW by accumulate points to Z-axis
 - Convert to 3D Mesh by connecting edges using Delaunay triangulation

And The Park of th

- Stereo or Multiview images
 - Images from two cameras
 - Very cheap
 - 3D Quality is lower (especially for texture-less scenes)

- RGB-D camera
 - RGB camera + depth camera
 - Depth camera produces dense depth corresponding RGB image
 - Triangulation method is the same with stereo camera
 - Difficult to use outdoors.

An Article of State o

- 3D Sensor
 - 3D Lidar
 - Horizontal range: 360 deg
 - Vertical range: up to 30 deg
 - Solid-state Lidar
 - FOV is similar with cameras or RGBD

3D sensors

- Triangulation
 - Laser line sweep
 - Structured light
- Stereo / computer vision
 - Passive stereo
 - Active stereo
- Photometric 3D

Line-sweep

Structured light

Photometry 3D

active stereo

Autonomous driving

As Articles of the Control of the Co

- 3D reconstruction
 - Registration

- Manufacturing:
 - One shape is a model and the other is a scan of a product. Finding defects.
- Medicine:
 - Finding correspondences between 3D MRI scans of the same person or different people.
- Animation Reconstruction & 3D Video.
- Statistical Shape Analysis:
 - Building models for a collection of shapes.

And Andrews of Andrews

- Classification
- Detection
- Segmentation

Deep neural Networks

Point Clouds Processing

- PC Generation
- Preprocessing
 - Downsampling
 - Outlier removal
 - Cropping
- Segmentation
 - Plane segmentation
 - Object segmentation
 - Clustering
- Features
 - 3D Keypoint
- Registration

Thank you