Aerospace Propulsion

Lecture 2
Thermodynamics Review

Thermodynamics Review

Properties of Gases

The First Law

The Second Law

Thermal Efficiency and Cycles

State Properties

- Extensive properties depend on the system size
 - Examples: volume (V), energy (E)
 - Generally, use an uppercase letter
- Intensive properties are independent of the system size
 - Examples: temperature (T), specific volume (v), specific energy (e)
 - Generally, use a lowercase letter...
 - Mass-based regular letter: [e] = J/kg
 - Mole-based letter with overbar: $[\bar{e}] = J/\text{mol}$
 - *NOTE*: Sutton does not use an overbar

Properties of Gases

- Ideal Gas Law
 - pv = RT or $p = \rho RT$
 - Specific gas constant: $R = \bar{R}/\bar{m}$
 - Universal gas constant: $\bar{R} = 8.314$ J/mol-K

- Internal Energy and Enthalpy
 - Only a function of temperature for ideal gases

$$du = c_v(T)dT$$
$$dh = c_p(T)dT$$

Properties of Gases

- Specific Heats
 - $c_v = \left(\frac{\partial u}{\partial T}\right)_v$
 - $c_p = \left(\frac{\partial h}{\partial T}\right)_p$
- Useful relationships

$$c_p - c_v = R$$

•
$$c_p - c_v = R$$

• $\gamma = c_p/c_v$

Conservation of Energy

$$de = \delta q - \delta w$$

- 1. Change in system energy
- 2. Heat transfer into system
- 3. Work done by system

Remember there is a difference between path-dependent quantities (δq and δw) and path-independent quantities (de)!

- Specific Energy: $e = u + k + \chi$ Internal energy: u
 - Kinetic energy: $k = \frac{1}{2} \mathbf{v} \cdot \mathbf{v}$

Will be neglected in the other this course. Why?

- Compression/Expansion Work
 - Reversible (no friction)
 - $\delta w = p dv$
 - First Law: $\delta q = du + pdv$

- Enthalpy
 - $h \equiv u + pv = (internal energy) + (flow work)$
 - First Law: $\delta q = dh vdp$

enthalpy? Is it ever more useful than internal energy?

Why would we define

NOTE: Kinetic energy is neglected on this slide

- Types of Processes
 - Adiabatic ($\delta q = 0$)
 - du = -pdv
 - dh = vdp
 - Isochoric/Isometric (dv = 0)
 - $du = \delta q$
 - Isobaric (dp = 0)
 - $dh = \delta q \checkmark$
 - Isothermal (dT = 0)

To evaluate internal energy and enthalpy for ideal gas

•
$$u = \int_{T_{ref}}^{T} c_v dT' + u(T_{ref})$$

• $h = \int_{T_{ref}}^{T} c_p dT' + h(T_{ref})$

•
$$h = \int_{T_{ref}}^{T} c_p dT' + h(T_{ref})$$

- Results of these integrals and reference states are tabulated
 - We'll primarily use the JANAF tables (more details soon)
- Often, we treat specific heats as constant (easy!)

- Reversible process
 - A process that can be reversed without leaving any trace on surroundings
- In a reversible system:

$$ds = \frac{\delta q}{T}$$

Using earlier equations, can show

•
$$ds = c_v \frac{dT}{T} + R \frac{dv}{v}$$

•
$$ds = c_p \frac{dT}{T} - R \frac{dp}{p}$$

Irreversible process

$$ds \ge \frac{\delta q}{T}$$
 or alternatively $ds = \frac{\delta q}{T} + \sigma^2$

Entropy generation

- Examples
 - Friction
 - Heat transfer across finite temperature gradients
 - Chemical reactions
- Second Law dictates that processes occur in a certain direction

- Isentropic Process (ds = 0)
 - Technically not required to be adiabatic ($\delta q = 0$) or reversible ($\sigma^2 = 0$)
 - We will always treat isentropic processes as adiabatic and reversible
 - Inverse not necessarily true!
- Adiabatic systems that are not isentropic must be irreversible
 - Thus, these systems tend towards their maximum entropy state

- Assuming an ideal gas with constant specific heats

 15= (pdT RdP p

The property of the second second
$$\frac{T_2}{T_1} = \left(\frac{p_2}{p_1}\right)^{\frac{\gamma-1}{\gamma}}$$

$$\frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{\gamma-1}$$

$$\frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{\gamma}$$

$$\frac{p_2}{p_1} = \left(\frac{v_1}{v_2}\right)^{\gamma}$$

$$\frac{T_2}{T_1} = \left(\frac{v_1}{v_2}\right)^{\gamma - 1}$$

$$0 = C_{1} \frac{dT}{T} - R \frac{dI}{P} \qquad T_{1} \qquad p_{1}$$

$$\frac{dT}{T} = \frac{R}{C_{1}} \frac{dP}{P} \qquad N \left(\frac{T_{2}}{T_{1}}\right) = IN \left(\frac{P_{1}}{P_{1}}\right)^{P/C_{1}}$$

$$\frac{dT}{T} = \frac{R}{C_{1}} \frac{dP}{P_{1}} \qquad \frac{T_{2}}{T_{1}} = \left(\frac{P_{1}}{T_{1}}\right)^{P/C_{1}} \qquad \frac{R}{C_{2}} = \frac{SH}{S}$$

$$In \left(\frac{T_{2}}{T_{1}}\right) = \frac{R}{C_{1}} \ln \left(\frac{I_{2}}{T_{1}}\right)$$

$$\frac{p_2}{p_1} = \left(\frac{v_1}{v_2}\right)^{\gamma}$$

$$R = CP - Cv$$

$$8 = CP / cv$$

$$\frac{R}{CP} = \frac{8H}{8}$$

Evaluating Entropy

$$J = C_{p} \frac{dT}{T} - R \frac{dI}{p} \qquad S(T, P) = S(T_{ref}, P_{ref}) + \int_{T_{ref}}^{T} c_{p} \frac{dT'}{T'} - R \ln \frac{P}{P_{ref}}$$

$$J = \int_{S_{ref}}^{T} \int_{T_{ref}}^{T} c_{p} \frac{dT'}{T'} - R \ln \frac{P}{P_{ref}}$$

$$J = \int_{S_{ref}}^{T} \int_{T_{ref}}^{T} c_{p} \frac{dT'}{T'} - R \ln \frac{P}{P_{ref}}$$

$$J = \int_{S_{ref}}^{T} \int_{T_{ref}}^{T} c_{p} \frac{dT'}{T'} - R \ln \frac{P}{P_{ref}}$$

$$J = \int_{S_{ref}}^{T} \int_{T_{ref}}^{T} c_{p} \frac{dT'}{T'} - R \ln \frac{P}{P_{ref}}$$

$$J = \int_{S_{ref}}^{T} \int_{T_{ref}}^{T} c_{p} \frac{dT'}{T'} - R \ln \frac{P}{P_{ref}}$$

As for internal energy and enthalpy, these quantities are tabulated

JANAF Tables

We derived enthalpy and entropy as:

$$h = \int_{T_{ref}}^{T} c_p dT' + h(T_{ref}) \qquad s(T, P) = s(T_{ref}, P_{ref}) + \int_{T_{ref}}^{T} c_p \frac{dT'}{T'} - R \ln \frac{P}{P_{ref}}$$

- How do we compute the various complex terms?
 - https://janaf.nist.gov/
 - Search for your gas (e.g., N2)

JANAF Tables

Nitrogen (N ₂)			T_{ref}		P_{re}	N ₂ (ref)		
Enthalpy	Reference T	Cemperature =	$T_{\rm r} = 298.15~{\rm K}$	Standard S	Standard State Pressure = p° = 0.1 MPa			
		J·K ⁻¹ 1	nol ⁻¹	kJ·mol ⁻¹				
T/\mathbf{K}	C_p°	s°	$-[G^{\circ}-H^{\circ}(T_{\mathbf{r}})]/T$	$H-H^{\circ}(T_{\mathbf{r}})$	$\triangle_{\mathbf{f}} H^{\circ}$	$\triangle_{\mathbf{f}}G^{\circ}$	$\log K_f$	
0	0.	0.	$\overline{S}(T_{ref}, P_r)$	٠)	0.	0.	0.	
100	29.104	159.811	's (Tref', Tr	ef)	0.	0.	0.	
200	29.107	179.985	194.272	-2.857	0.	0.	0.	
250	29.111	186.481	192.088	-1.402	0.	0.	0.	
298.15	29.124	191.609	191.609	0.	$\overline{h}(T_{re})$	$_{f})$	0.	
300	29.125	191.789	191.610	0.054	0.	0.	0.	
350	29.165	196.281	191.964	1.511	0.	0.	0.	
400	29.249	200.181	192.753	2.971	0.	0.	0.	
450	29.387	203.633	193.774	4.437	0.	0.	0.	
500	29.580	206.739	194.917	5.911	0.	0.	0.	

Thermodynamic Cycles

- A thermodynamic cycle is a series of processes that returns a system to its initial state
 - Generally used to convert energy between different forms
 - Refrigeration cycle uses work input to move energy from cold to hot reservoir
 - Power cycle generates work output by moving energy from hot to cold reservoir

Power Cycles Efficiency

- Thermodynamic Efficiency
 - For power cycles, we're interested in how much useful work we can extract from given heat input (e.g., from burning fuel)

$$\eta = \frac{w_{net}}{q_{in}} = 1 - \frac{q_{out}}{q_{in}}$$

$$\int_{-\infty}^{\infty} q_{in} = 1 - \frac{q_{out}}{q_{in}}$$

Thermodynamic Process Example

- Consider a thermodynamic process with Oxygen (O₂), assumed to be an ideal gas with variable specific heats
 - The gas begins at state 1 with $T_1 = 298.15 K$ and $p_1 = 200.0 kPa$
 - While keeping the volume constant, heat is added up to a final temperature of $T_2 = 1000 \, K$
 - Determine h_2 , s_2 , and q_{in}

Thermodynamic Process Example

Oxygen	(O ₂)				Ī		O ₂ (ref)	ef) R= Roz = R = 8.314 min
Enthalpy	Enthalpy Reference Temperature = T_r = 298.15 K				Standard State Pressure = p° = 0.1 MPa			Pa 5 (1/1/1)
	J·K ⁻¹ mol ⁻¹			kJ	kJ·mol ⁻¹			Mon 2(16 3/m1)
T/\mathbf{K}	c_p°	S °	$-[G^{\circ}-H^{\circ}(T_{\mathbf{r}})]$	$/T$ H - H $^{\circ}(T_{\rm r})$	∆ _f l	H° $\triangle_{\mathbf{f}}G^{\circ}$	log K _f	K _f
0	0.	0.	INFINITE	-8.683	0.	0.	0.	" R = 251.84
100	29.106	173.307	231.094	-5.779	0.	0.	0.	kyk
200	29.126	193.485	207.823	-2.868	0.	0.	0.	
250	29.201	199.990	205.630	-1.410	0.	0.	0.	\\\ \=\\\\ \ \
298.15	29.376	205.147	205.147	0.	0.	0.	0.	
300	29.385	205.329	205.148	0.054	0.	0.	0.	Ideal gas Low
350	29.694	209.880	205.506	1.531	0.	0.	0.	
400	30.106	213.871	206.308	3.025	0.	0.	0.	$P_{U} = RT$
450	30.584	217.445	207.350	4.543	0.	0.	0.	1/2 F 1
500	31.091	220.693	208.524	6.084	0.	0.	0.	V = RT1 = (259.84 T) (298.154)
600	32.090	226.451	211.044	9.244	0.	0.	0.	19.7
700	32.981	231.466	213.611	12.499	0.	0.	0.	
800	33.733	235.921	216.126	15.835	0.	0.	0.	(300,000 (4)
900	34.355	239.931	218.552	19.241	0.	0.	0.	
1000	34.870	243.578	220.875	22.703	0.	0.	0.	V1= 0.387 m/k2
State	T (I	K) p	o (kPa)	v (m3/kg)	h	(kJ/kg)	s (s (kJ/kg-K)

701.5

0.347

0.387

298.15

1000

$P_2 = RT_2$ V_2
Pz= (259.84 xyk) (1000k)
(0.387 ~ 1/ kg)
Pz=671 421 la
h= hree + ft cp JT'
h, = 278.15k cp JT
$h_1 = \left(\delta \frac{k_2}{m_0}\right) \left(\frac{1}{m_{02}}\right)$
$= \left(0 \frac{kJ}{N-1}\right) \left(\frac{1}{0.037} \frac{k_1}{N-1}\right) = 0 \frac{kJ}{K_2}$

$$S = S_{per} \perp \int_{Trep}^{T} C_{p} \frac{dT}{T_{1}} + R \ln \left(\frac{1}{r_{rap}}\right)$$

$$S = \frac{S}{m} = \int_{Trep}^{T} S_{per} \int_{Trep}^{T} \left(\frac{1}{r_{rap}}\right) \frac{1}{r_{rap}} \int_$$

$$dh = \delta q + V dP$$

$$\delta q = dh - V dP$$

$$\int_{1}^{2} \delta q = \int_{1}^{2} dh - V \int_{1}^{2} dP$$

