# Electronique - TP n°4

# **Amplificateur Opérationnel**

L'objectif de ce TP est de mettre en œuvre un amplificateur opérationnel de type 741 ou 081. Le brochage du circuit est donné à la figure 1a.

Sauf mention contraire, la polarisation des différents boîtiers se fera de façon symétrique par rapport à la masse du montage (figure 1b) avec  $V_{cc} = 12V$ .



# 1.0 Matériel

Matériel par poste de travail:

- 1 alimentation double
- 1 générateur BF
- 1 oscilloscope + 2 sondes
- amplificateurs opérationnels LM741 ou TL081
- résistances diverses
- · condensateurs divers

# 2.0 Préparation

Faire l'étude théorique des différentes configurations proposées

Déterminer dans chaque cas les composants nécessaires.

# 3.0 Montages en fonctionnement linéaire

Dans cette partie, les montages seront basés sur la configuration ci-dessous. La contre-réaction permet de maintenir l'amplificateur en zone linéaire et le signal de sortie est alors proportionnel au signal d'entrée.



#### 3.1 Montage non-inverseur - Montages en cascade

Construire un amplificateur non-inverseur de gain  $A_1$  = 10 (soit +20 dB) , puis  $A_2$  = 50 (+34 dB), et enfin  $A_3$  = 100 (+40 dB).

Mesurer dans les trois cas la bande passante à -3 dB et vérifier ainsi que le produit gain bande est constant.

Construire ensuite un amplificateur non-inverseur de gain 100 en cascadant deux étages non-inverseurs de gain 10.

Mesurer la bande passante et interpréter le résultat.

#### 3.2 Montage suiveur

Réaliser un montage suiveur et mettre en évidence l'intérêt de cette fonction dans le cas de figure ci-dessous:



# 4.0 Montages en fonctionnement non-linéaire

#### 4.1 Comparateur à hystérésis

Réaliser le montage ci-dessous.



Relever la fonction de transfert.

Mesurer les seuils de basculement, la largeur de l'hystérésis et comparer les valeurs relevées aux résultats théoriques.

# 5.0 Association de fonctions

#### 5.1 Source de courant

Construire une source de courant  $I_0$  commandée par la tension  $(v_{e1}$  -  $v_{e2})$ , telle qu'à la sortie du montage au point A l'on ait  $I_0 = 10^{-5}(v_{e1}$  -  $v_{e2})$ .



Vérifier le fonctionnement.

#### 5.2 Oscillateur

Fixer  $v_{e2}=0\,V$  et construire le montage ci-dessous en utilisant le comparateur à hystérésis étudié précédemment.



Expliquer comment le montage oscille naturellement de façon autonome.

Mesurer la fréquence d'oscillation et justifier cette valeur.

# 6.0 Montage à polarisation dissymétrique

La polarisation de l'amplificateur est maintenant 0 / 12 V (polarisation mono-tension).

On souhaite réaliser un amplificateur inverseur de gain -10 (soit (+20 dB) présentant une dynamique de sortie maximale.



Pour un signal d'entrée de la forme  $v_e = V_e$  . sin  $\omega t$ , déterminer les éléments manquants sur le montage cidessus pour avoir:

- soit  $v_{_S} = V_0 + V_{_S}$  . sin  $\omega t$  (déterminer dans ce cas la valeur de  $V_0$ ),
- soit  $v_s = V_s$  . sin  $\omega t$ .

Expliquer pourquoi la bande passante est limitée en basse fréquence et choisir les composants pour que la fréquence de coupure basse soit inférieure à 100 Hz.

# 7.0 Mise en évidence des imperfections de l'amplificateur opérationnel

#### 7.1 Limitation du courant de sortie

Un montage non-inverseur de gain 10 est chargé par une résistance de  $100 \Omega$ . Le signal d'entrée sinusoïdal a une amplitude notée  $V_e$  de valeur minimale 100 mV. Vérifier l'évolution de la forme du signal de sortie lorsque  $V_e$  augmente pour une fréquence fixe (de l'ordre du kHz).

Justifier le résultat obtenu et conclure sur l'influence de la charge.

#### 7.2 Courant d'entrée

Réaliser un amplificateur inverseur de gain -100 avec des résistances  $R_1$  et  $R_2$  respectivement égales à 1 k $\Omega$  et 100 k $\Omega$  et un amplificateur opérationnel de type 741.

Vérifier le fonctionnement pour un signal d'entrée sinusoïdal d'amplitude 100 mV crête-crête et de fréquence 1 kHz.

En forçant ensuite l'entrée à 0 V, mesurer la tension de sortie. Expliquer pourquoi celle-ci n'est pas nulle.

Placer entre l'entrée + et la masse une résistance égale à  $R_1$  //  $R_2$ . Mesurer de nouveau la tension de sortie et commenter le résultat.

### 7.3 Comportement dynamique - Slew Rate

On utilise toujours l'amplificateur précédent de gain -100, avec un signal d'entrée sinusoïdal.

Fixer dans un premier temps la fréquence du signal à 100 Hz et ajuster son amplitude pour obtenir un signal de sortie de 5 V crête.

Fixer ensuite la fréquence à 30 kHz environ et maintenir l'amplitude de l'entrée pour obtenir un signal de sortie de 5 V crête. Commenter le résultat observé.

Mesurer le slew rate du 741.

Refaire la même expérience avec un 081 et comparer les résultats.

5/5