Survey: Learning Strategies for Self-Attention

Jie Hao

March 20, 2019

Jie Hao Short title March 20, 2019 1 / 12

Outline

- Overview for Optimization Methods
 - ullet SGD o SGDM o NAG o AdaGrad o AdaDelta o Adam

2 Learning Rate Decay

3 Exploratory Experiments

Jie Hao Short title March 20, 2019 2 / 12

Framework

Objective function: $f(\theta)$, Parameters: θ , Initial learning rate: α

- 1. Compute the gradient for current parameters: $g_t = \nabla f(\theta_t)$.
- 2. Based on history gradients to compute the first-order momentum and second-order momentum: $m_t = \phi(g_1, ..., g_t)$, $V_t = \psi(g_1, ..., g_t)$.
- 3. Compute current descent gradient: $\eta_t = \alpha \cdot m_t/V_t$
- 4. Update parameters: $\theta_{t+1} = \theta_t \eta_t$.

Jie Hao Short title March 20, 2019 3 / 12

SGD:
$$m_t = g_t, V_t = I^2 \rightarrow \eta_t = \alpha \cdot g_t$$

SGD with Momentum(SGDM):
$$m_t = \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$$

SGD with Nesterov Acceleration(NAG):

$$g_t = \nabla f(\theta_t - \alpha \cdot m_{t-1} / \sqrt{V_{t-1}})$$

AdaGrad: $V_t = \Sigma_{\tau=1}^t g_{\tau}^2$

AdaDelta: $V_t = \beta_2 \cdot V_{t-1} + (1 - \beta_2)g_t^2$.

Adam: $m_t = \beta_1 \cdot m_{t-1} + (1 - \beta_1) \cdot g_t$, $V_t = \beta_2 \cdot V_{t-1} + (1 - \beta_2)g_t^2$.

→□▶ →□▶ → □▶ → □ ♥ ♀○

Jie Hao Short title March 20, 2019 4 / 12

Overview

Methods	First-order Momentum	Second-order Momentum
SGD	×	×
SGDM		×
NAG		×
AdaGrad	×	V
AdaDelta	×	
Adam	$\sqrt{}$	

Jie Hao Short title March 20, 2019 5 / 12

Learning Rate Decay

Why decay the learning rate?

- To reach the minimum of strongly convex function, we should decay the learning rate to slow down the learning process (Robbins et al., 1951; Smith et al., 2018).
- The scale of random fluctuations in the SGD dynamics: $g = \epsilon (N/B-1)$, where ϵ is learning rate, N is training set size, B is batch size. (Smith&Le et al., 2017)

Jie Hao Short title March 20, 2019 6 / 12

Learning Rate Decay Strategies

Methods	Fomula		
Discrete staircase	e.g. halve the Ir after fixed steps		
Exponential	e.g. $Ir = \alpha_0 * 0.95^{epochs}$		
Natural exponential	e.g. $Ir = \alpha_0 * e^{epochs}$		
Inverse square root	e.g. $Ir = \alpha_0 * k / \sqrt{epochs}$		
Cosine	e.g. $Ir = 0.5 * \alpha_0 * (1 + cos(\pi * epochs))$		

Learning Strategies for Self-Attention on Different Tasks

SAN on NMT (Vaswani et al., 2017)

Adam. $Ir = d_{model}^{-0.5} * min(step_num^{-0.5}, step_num * warmup_steps^{-1.5})$

SAN on SRL (Tan et al., 2018)

Adadelta. lr = 1.0, halve the learning rate every 100K steps.

SAN on SNLI (Shen et al., 2018)

Adadelta. lr = 0.5, exponential decay.

BERT (Devlin et al., 2019)

Adam. Ir = 0.0001, Warm-up 10000 steps, linear decay.

Jie Hao Short title March 20, 2019 8 / 12

Exploratory Experiments

Transfomer on WMT14 EN-De, training step=10000.

Learning Strategies	Dev Bleu	Decay	Warm-up
Baseline	22.38	Υ	4000
Baseline	0.35	Υ	N
lr=0.001	19.50	N	N
lr=0.0001	18.38	N	N
Ir=0.0005	22.69	N	N

Jie Hao Short title March 20, 2019 9 / 12

References

- [1] Herbert Robbins, Sutton Monro. 1951. A Stochastic Approximation Method. The Annals of Mathematical Statistics.
- Samuel L. Smith, Pieter-Jan Kindermans, Chris Ying, Quoc V. Le. 2018. Don't Decay the Learning Rate, Increase the Batch Size. In ICLR.
- [3] Samuel L. Smith, Quoc V. Le. 2018. A Bayesian Perspective on Generalization and Stochastic Gradient Descent. In ICLR.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, JakobUszkoreit, Llion Jones, Aidan N Gomez, ukaszKaiser, and Illia Polosukhin. 2017. Attention is allyou need. In NIPS.
- [5] Tao Shen, Tianyi Zhou, Guodong Long, Jing Jiang, Shirui Pan, and Chengqi Zhang. 2018a. DiSAN: di-rectional self-attention network for RNN/CNN-freelanguage understanding. In AAAI.
- [6] Zhixing Tan, Mingxuan Wang, Jun Xie, Yidong Chen, Xiaodong Shi. 2018. Deep Semantic Role Labeling with Self-Attention. In AAAI.

[7] Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova. 2019. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. In NAACL.

Thank you!