Teoria degli Automi e Calcolabilità a.a. 2021/22 Prova scritta 14 giugno 2022

Esercizio 1 Si consideri il seguente automa a stati finiti non deterministico con transizioni ϵ .

- 1. Si dia un'espressione regolare che denoti il linguaggio riconosciuto.
- 2. Si definisca la ϵ -closure di ogni stato e si dia un NFA senza transizioni ϵ equivalente.

Soluzione

- 1. Un'espressione regolare che denota il linguaggio riconosciuto è $(ab)^*(bc)^*(ca)^*$.
- 2. Si ha ϵ -closure $(q_0) = \{q_0, q_1, q_2\}$, ϵ -closure $(q_1) = \{q_1, q_2\}$, per tutti gli altri stati la ϵ -closure contiene solo lo stato stesso. Un NFA senza transizioni ϵ equivalente è il seguente:

	a	b	c
$\rightarrow *q_0$	q_3	q_4	q_5
$*q_1$		q_4	q_5
$*q_2$			q_5
q_3		q_0, q_1, q_2	
q_4			q_1, q_2
q_5	q_2		

Esercizio 2 Si consideri il seguente linguaggio:

$$\{a^n b^m a^n \mid n, m \ge 0 \land m \text{ dispari}\}$$

- 1. Si dia un automa a pila che lo riconosca (per pila vuota).
- 2. È possibile che questo automa a pila sia deterministico?
- 3. È possibile riconoscere il linguaggio con un NFA?

Soluzione

1. Un automa a pila che riconosce il linguaggio per pila vuota è il seguente:

- 2. Non è possibile riconoscere il linguaggio con un automa a pila deterministico in quanto esistono due stringhe appartenenti al linguaggio delle quali una è prefisso dell'altra, per esempio b e bbb.
- 3. Non è possibile riconoscere il linguaggio con un NFA in quanto non regolare, come si può provare con il pumping lemma. Infatti, dato $n \geq 0$, consideriamo per esempio la stringa a^nba^n che appartiene al linguaggio. Decomponendo la stringa in uvw, con $|uv| \leq n$ e |v| > 0, si ha necessariamente che u e v sono formate di sole v, ossia:

$$u = a^{x}$$

$$v = a^{y}$$

$$w = a^{z}ba^{n}, \text{ con } x + y + z = n, y > 0.$$

Quindi, per esempio, la stringa uv^0w ha un numero (x+z) di a strettamente minore di n e quindi non appartiene al linguaggio.

Esercizio 3 Si consideri la funzione ricorsiva primitiva che restituisce la somma di due numeri naturali vista a lezione.

$$sum(x, Z) = x$$

$$sum(x, S(y)) = S(sum(x, y))$$

Abbreviamo con \bar{x} l'espressione $S^x(Z)$.

Si diano due diverse computazioni per l'espressione $sum(sum(Z, \bar{1}), \bar{1})$.

Soluzione Due diverse computazioni sono le seguenti.

$$sum(sum(Z,\bar{1}),\bar{1}) \rightarrow sum(S(sum(Z,Z)),\bar{1}) \rightarrow sum(\bar{1},\bar{1}) \rightarrow S(sum(\bar{1},Z)) \rightarrow \bar{2} \\ sum(sum(Z,\bar{1}),\bar{1}) \rightarrow S(sum(sum(Z,\bar{1}),Z)) \rightarrow S(sum(Z,\bar{1})) \rightarrow S(S(sum(Z,Z))) \rightarrow \bar{2}$$

Esercizio 4 Si provino le seguenti affermazioni (\overline{A} denota il complementare di A).

- 1. Se \overline{A} è finito, allora A è ricorsivo.
- 2. Se A < B, allora $\overline{A} < \overline{B}$.

Soluzione

- 1. Un insieme finito è ricorsivo, e il complentare di un insieme ricorsivo è ricorsivo.
- 2. Se $A \leq B$, allora esiste una funzione di riduzione da A in B, ossia una $f : \mathbb{N} \to \mathbb{N}$ calcolabile, totale, e tale che $x \in A$ se e solo se $f(x) \in B$. Possiamo dire equivalentemente che $x \in \overline{A}$ se e solo se $f(x) \in \overline{B}$, quindi f è anche una funzione di riduzione da \overline{A} in \overline{B} .

Esercizio 5 Data una stringa u, per ogni $n \leq |u|$, indichiamo con $[u]^n$ il prefisso di u di lunghezza n. Per esempio, se u = abc, si ha $[u]^0 = \epsilon$, $[u]^1 = a$, $[u]^2 = ab$, $[u]^3 = abc$.

1. Assumiamo che L sia decidibile, e sia \mathcal{A}_L un algoritmo che decide L. Descrivere un algoritmo che decide $\{u \mid u' \in L \text{ per qualche } u' \text{ prefisso di } u\}$.

```
input u for n=0 to |u| if (\mathcal{A}_L([u]^n)) return true return false
```

2. Assumiamo che L sia semidecidibile, e sia \mathcal{A}_L^k l'esecuzione di (al più) k passi di un algoritmo che semi-decide L, che restituisce false se dopo k passi l'algoritmo che semi-decide L non è terminato. Descrivere un algoritmo che semi-decide $\{u \mid u' \in L \text{ per qualche } u' \text{ prefisso di } u\}$.

```
input u k=0 while (true) for n=0 to |u| if (\mathcal{A}_L^k([u]^n)) return true
```