

(1) Numéro d publication : 0 504 005 A1

12

DEMANDE DE BREVET EUROPEEN

(21) Numéro de dépôt : 92400553.1

(51) Int. Cl.5: A61K 7/13, A61K 7/06

(2) Date de dépôt : 03.03.92

(30) Priorité: 08.03.91 FR 9102858

(43) Date de publication de la demande : 16.09.92 Bulletin 92/38

(A) Etats contractants désignés :

AT BE CH DE DK ES FR GB GR IT LI LU NL PT

① Demandeur: PERMA Société Anonyme 29bis, rue d'Astorg F-75384 Paris Cédex 08 (FR) (7) Inventeur: Roure, Myriam
9, rue d'Oseille
F-51100 Reims (FR)
inventeur: Delattre, Paul
88, rue de l'Egalité
F-59700 Marcq en Baroeul (FR)
Inventeur: Froger, Hubert
3, rue Jacques Hillairet
F-75012 Paris (FR)

(4) Mandataire : Phélip, Bruno c/o Cabinet Harlé & Phélip 21, rue de La Rochefoucauld F-75009 Paris (FR)

- (54) Composition pour la coloration enzymatique des fibres kératiniques, notamment des cheveux, et son application dans un procédé de coloration.
- © Composition pour la coloration non éclaircissante des fibres kératiniques et en particulier des cheveux comprenant notamment un enzyme capable de catalyser la formation des polymères colorants, et comprenant aussi des précurseurs de colorant tels que des bases et des coupleurs, dans une solution tamponnée, caractérisée en ce que le pH de ladite composition est proche de la neutralité et ledit enzyme a une activité optimale dans une gamme de pH comprise entre 6,5 et 8 et ne nécessite pas pour son activité la présence de peroxyde d'hydrogène .L'enzyme est avantageusement une laccase en particulier la laccase de Rhizoctonia praticola ou de Rhus vernicifera.

La présent invention a pour objet un c mposition pour la coloration des fibres kératiniques, notamment des cheveux, comprenant un enzyme, de préférence une laccase. Elle est égalem nt relative à un procédé d coloration d s cheveux utilisant ladite composition.

Actuell ment, à la connaissanc de la demanderesse, la seule technique de coloration capillaire capable de couvrir correctement et de façon durable les cheveux est la technique de coloration d'oxydation.

5

10

15

20

25

30

35

40

45

50

Au cours de la réaction d'oxydation, des précurseurs de colorants , qui sont des composés aromatiques appartenant aux familles des diamines, aminophénols (ou aminonaphtols) et des phénols (ou naphtols) , sont oxydés en présence de péroxyde d'hydrogène et d'ammoniaque.

Dans une première étape, ces précurseurs se transforment en radicaux intermédiaires très réactifs qui se couplent entre eux pour former, au cours de la deuxième étape de condensation oxydative, des polymères colorés pouvant se fixer sur la kératine.

Dans cette réaction complexe, le peroxyde d'hydrogène a deux fonctions : décolorer les pigments en place afin d'éviter les variations de teinture résultant de la couleur initiale du cheveu et déclencher le processus oxydatif.

L'ammoniaque facilite la dissolution des colorants et , par alcalinisation du milieu , favorise l'action décolorante du peroxyde .

Bien que cette technique donne de très bons résultats coloristiques, il est reconnu qu'un traitement répété dans de telles conditions oxydantes alcalines peut dégrader la fibre capillaire, et irriter le cuir chevelu. C'est pourquoi, des recherches sont menées pour trouver une méthode de coloration permanente douce, non agressive pour le cuir chevelu et la fibre capillaire mais qui assure cependant une couverture durable des cheveux.

La technique de coloration non éclaircissante par des enzymes oxydases rendant inutile l'emploi de peroxyde d'hydrogène et d'ammoniaque est une alternative possible.

L'oxydation des polyphénols et des amines aromatiques utilisés pour la coloration permanente peut être catalysée de façon très spécifique par deux groupes d'enzymes: des phénoloxydases (EC 1.14.18.1) ou des peroxydases (EC 1.11.1.7).

L'oxydation activée par les phénoloxydases ne requiert que la présence d'oxygène moléculaire comme co-substrat alors que l'oxydation activée par les peroxydases, comme décrite dans le brevet US 3.957.424, requiert la présence de peroxyde d'hydrogène dans le milieu.

Le choix de phénoloxydases parmi toutes les oxydases connues est donc plus approprié pour catalyser l'oxydation des précurseurs de colorants qui sont leurs substrats spécifiques en présence d'oxygène atmosphérique.

Les phénoloxydases (benzènediol oxygène oxydoréductases) regroupent deux types d'enzymes:

- les para-diphénoloxydases ou laccases (ancienne classification : EC I.10.3.2).
- les ortho-diphénoloxydases ou catécholoxydases ou tyrosinases (ancienne classification: EC I.10.3.1).

Les laccases catalysent l'oxydation des monophénols, ortho-et paradiphénols, triphénols, para-diamines et de l'acide ascorbique.

Les tyrosinases catalysent l'oxydation des monophénols, des ortho-diphénols, mais pas celle des paradiphénols ni des paradiamines (Mayer et Harel, Phytochem.18, 193-215,1979).

De telles enzymes sont utilisées néanmoins dans des compositions de coloration telle que celle décrite dans le brevet US 2.539.202.

Parmi les phénoloxydases, le choix d'une laccase est préférable pour la coloration capillaire, puisque la para-phénylènediamine ou le para-aminophénol, qui sont les précurseurs primaires les plus employés dans la technique de coloration, ne seront pas oxydés ou seulement très lentement en présence de tyrosinase.

Cette technique de coloration activée par des oxydases a fait l'objet de brevets antérieurs.

Le brevet US 3 251 742 décrit une méthode de coloration capillaire activée par des enzymes de type phénolases (tyrosinase ou laccase). Les enzymes sont utilisées soit pour catalyser l'oxydation en présence d'oxygène d'un mélange de composés aromatiques polyhydriques et d'amines, soit pour accélérer leur vitesse d'oxydation en présence d'un agent chimique comme le peroxyde d'hydrogène à pH neutre ou légèrement alcalin (pH 7 à 8,5).

Le brevet FR-A- 2 112 549 reprend cette méthode avec un système d'oxydation qui n'exige pas la présence d'une combinaison des deux types de précurseurs (composés polyhydriques et amines aromatiques) l'un ou l'autre des composés pouvant être utilisés isolément. Ce brevet préconise l'emploi de plusieurs enzymes de type oxydase parmi le squelles la laccase de Polyporus versicolor, la lactate oxydas de Mycobacterium phlei, la glucose oxydas d'Aspergillus niger, la galactose oxydase de Dactylium dendroides, la glycolate oxydase du cortex rénal de sanglier, l'aldéhyde oxydase du foi de lapin, la monoamine xydase du plasma bovin et l'urate oxydase du foie de sanglier.

Le procédé décrit dans ce brevet c nsiste à mettre n contact les cheveux av c une solution aqueus renfermant 0,01 à 500 ppm d'un d s oxydases citées t d'environ 0,001 à 6% n poids d composés aromatiques et ayant une large gamme de pH,de 4 et IO t préférenti llement de 5,5 à 8. Cette solution est exempte de mélanges d'amines aromatiques ar matiques ou de leurs dérivés avec des polyphénols u leurs dérivés.

La laccase fut découverte en I883 par Yoshida dans le latex de l'Arbre à Laque japonais: Rhus vernicif ra (Yoshida, J.Chem. Soc, 472 (I883)). Il semble qu'elle soit présente dans les canaux sécréteurs de tous les membres des Anacardiacées (Joel et al, Phytochem., I7, 796-797, (1984)), dans les pêches et les chataignes et chez de nombreuses espèces de la famille des Podocarpacées.

Chez les champignons, elle est abondamment produite par de nombreux Basidiomycètes qui dégradent la lignine: Collybia velutipes, Fomes annosus, Fomes fomentarius, Lentinus edodes, Phanerochaete chrysosporium, Pholiota mutabilis, Pleurotus ostreatus, Poria subacida, Sporotrichum pulverulentum, Trametes (= Polyporus) sanguinea, Trametes versicolor. On la trouve chez les Ascomycètes tels qu'Aspergillus nidulans, Neurospora crassa, Podospora anserina et chez les Deutéromycètes tels que Botrytis cinerea et Rhizoctonia praticola (Bollag et Leonowicz, Applied and Environ. Microbiol., 48, 849-854, (1984)).

Ces laccases d'origines diverses forment un groupe relativement hétérogène par la variabilité de leur structure (poids moléculaire, composition) et de leurs propriétés (spécificité par rapport au substrat, pH optimum, point isoélectrique). Cependant toutes les laccases connues catalysent les réactions suivantes:

10

15

40

45

55

La grande majorité de ces laccases a un pH optimum d'activité acide (< 6,0) pour l'oxydation des phénols et des amines aromatiques à l'exception des laccases de l'Arbre à Laque (Rhus sp.) et de Rhizoctonia praticola qui ont un pH optimum neutre (Reinhammar, B.B.A, 2O5,35-47,(197O); Bollag et al., Can. J. Microbiol, 25,229-233. (1978)).

Dans le brevet US 3.251.742, la technique de coloration nécessite le mélange d'un composé aromatique mono ou polyhydrique et d'une amine aromatique. Par ailleurs, les exemples décrits ont été réalisés avec la tyrosinase.

Parmi toutes les oxydases citées dans le brevet FR-A-2 112 549, la seule laccase indiquée, qui serait l'enzyme la plus spécifique pour catalyser l'oxydation des colorants, est une laccase fongique produite par Trametes (= Polyporus)versicolor. Or cette laccase, qui a été très étudiée, catalyse l'oxydation de phénols et d'amines aromatiques de façon optimale pour des pH compris entre 3,6 et 5,2, avec une activité presque nulle pour des pH supérieurs à 6,0 (Benfield, Phytochem.,3,79-88,(I964);Bocks, Phytochem, 6, 777-783,-(1967)). Pour des pH aussi acides, la pénétration des polymères colorés dans la fibre capillaire est très difficile, ce qui rend la coloration moins couvrante et moins résistante aux lavages.

Aucune des compositions décrites dans l'art antérieur n perm t donc une coloration satisfaisante t durable des cheveux sans utiliser de peroxyde d'hydrogèn , qui , lors de traitements répétés , dégrade la fibre capillaire et irrite le cuir chevelu

La demanderesse s' st donc attach' e à la mise en oeuvre d'un composition permettant une coloration non éclaircissante fficace, durable et résistant au lavage des fibres kératiniques t notamment des chev ux, et n prés ntant pas les inconvénients précédemment cités, c'est-à-dire global ment n'étant pas agressive pour l' cuir chevelu et la fibre capillaire.

La demanderesse a montré d manière surprenante que l'on pouvait colorer des fibres kératiniques et notamment d s cheveux, sans les éclaircir à un pH proche de la neutralité, et sans utiliser de peroxyd d'hydrogèn , à l'aide d'un composition contenant un enzyme capable de catalyser la formation des polymères colorants, et ayant une activité optimale dans un gamme de pH proch d la neutralité.

De manière encore plus surprenante, la demanderesse a montré que le fait que cette composition ait un pH proche de la neutralité augmente la vitesse initiale de la réaction d'oxydation de certains des précurseurs de colorants.

5

10

20

25

30

35

50

55

La présente invention a donc pour objet une composition pour la coloration non éclaircissante des fibres kératiniques et en particulier des cheveux, comprenant notamment un enzyme capable de catalyser la formation des polymères colorants et comprenant aussi des précurseurs de colorants tels que des bases et des coupleurs, dans une solution tamponnée, caractérisée en ce que le pH de ladite composition est proche de la neutralité, et ledit enzyme a une activité optimale dans une gamme de pH comprise entre 6,5 et 8 et ne nécessite pas pour son activité la présence de peroxyde d'hydrogène.

Cette composition permet une pénétration efficace des polymères dans les fibres des cheveux, et permet donc d'obtenir une coloration ton sur ton couvrante et résistante au lavage.

Du fait de la mise en oeuvre d'un enzyme ayant une activité optimale dans une gamme de pH comprise entre 6,5 et 8, la composition peut avoir un pH proche de la neutralité, ce qui permet ainsi d'éviter les inconvénients des compositions décrites dans l'art antérieur, qui ont une certaine agressivité vis-à-vis du cuir chevelu et des fibres capillaires.

Des mesures dynamométriques réalisées sur des mèches de cheveux naturels, colorées par différents procédés de coloration permanente ont permis de mesurer la dégradation provoquée par ces traitements sur la fibre capillaire (altération de ses propriétés élastiques). Les résultats ont montré qu'une teinture d'oxydation traditionnelle à pH 9,5 renfermant 3% de peroxyde d'hydrogène provoque une dégradation 4 fois supérieure à celle observée avec une coloration enzymatique à pH neutre (II% et 3% de dégradation respectivement).

De plus, la composition selon l'invention offre l'avantage d'éviter l'utilisation de peroxyde d'hydrogène.

En effet, le peroxyde d'hydrogène qui est habituellement utilisé en présence d'ammoniaque provoque à pH alcalin (9 <pH < 11) une décoloration des pigments en place. Ce phénomène apparaît ultérieurement à la racine des cheveux lorsque la fibre s'est allongée de quelques centimètres avec sa pigmentation naturelle. C'est le problème, souvent inesthétique, des "racines", qui nécessite l'application d'une nouvelle coloration.

Un autre avantage de ce type de composition est son caractère non mutagène.

De manière préférentielle, l'enzyme compris dans la composition est une laccase, en particulier la laccase de Rhizoctonia praticola ou de l'Arbre à Laque (Rhus vemicifera).

Ces deux enzymes, dont l'existence est connue dans l'art antérieur, n'ont jamais été utilisés à la connaissance de la demanderesse dans des compositions pour la coloration des cheveux.

Avantageusement, la laccase de R.praticola est obtenue par fermentation.

La laccase de R.vemicifera peut, quant à elle, être isolée à partir de matériel végétal.

Les bases ou intermédiaires primaires peuvent être des amines aromatiques, des diaminophénols et des aminophénols dont les groupements NH₂ et OH sont en position ortho ou para les uns par rapport aux autres . Ils sont responsables de la nuance profonde et peuvent se coupler sur eux-mêmes pour former des pigments très colorés .

Ils peuvent être notamment la para-phénylènediamine (pPD), l'ortho-aminophénol (oAP), le para-méthylaminophénol (pMAP), le paraaminophénol (pAP), la para-toluylènediamine (pTD) et/ou la N-phényl-para-phénylènediamine (NpPD).

Les coupleurs ou modificateurs peuvent être des méta-diamines , des métaaminophénols, des polyphénols ou des naphtols. Pris isolément ou en couplage entre eux , ils ne donnent qu'une très faible coloration ; en couplage avec une base , ils modifient la nuance .

Ils peuvent être notamment le méta-aminophénol (mAP), le pyrocatéchol (PyC), le pyrogallol(PyG), le résorcinol (R), le l-naphtol (l-N), la méta-phénylènediamine(mPD), le para-aminoorthocrésol (pAOC),l'hydroquinone (Hq), le l,5 dihydroxynaphtalène (l.5 DHN) et/ou le 2,7-dihydroxynaphtalène (2.7 DHN).

L'association bases et coupleurs est choisie en fonction de la couleur désirée.

La formulation globale doit être adaptée au résultat coloristique désiré. On utilise le plus souvent une pluralité d'associations base-coupleur. De bons résultats sont obtenus avec des quantités s nsiblement équimolaires pour chaque association base-coupleur prise individu llement.

Les quantités totales d ces molécules sont comprises dans une gamme allant de O,O5% à O,3% en poids d la compositi n et sont préférentiellement de l'ordre de O,12% environ.

Un autre avantage de la présente composition réside dans le fait qu'il n'est pas obligatoire de mélang r des précurseurs de colorants de type amine avec d s précurseurs de type phénol.

Les deux types d précurseurs p uvent être utilisés isolément aussi bien qu'en mélange, ce qui augment

les possibilités coloristiques.

Il st ainsi possible d'obtenir une coloration chatain grâce à un mélange composé uniquement de deux amines aromatiques t lles que la p- et la m-phénylènedimaine.

La présente invention a d'autre part pour objet un procédé de coloration des cheveux dans lequel les cheveux sont traités avec la composition précédemment décrite , durant un temps de traitement de IO à 40 minutes et préférentiellement de 20 à 35 minutes . Le traitement est généralement effectué à la température ambiante , mais il peut être accéléré par chauffage doux à 30°C environ . La température ne doit cependant pas excéder 40°C .

La description qui suit donne à titre non limitatif des exemples illustratifs de l'invention.

Les figures 1 et 2 représentent l'effet du pH sur l'oxydation respectivement de la pPD et du pAP par des laccases de R.praticola et R.vernicifera (Arbre à Laque). Le pH est mentionné en abscisse, l'ordonnée indiquant le taux en pourcentage de l'activité mesurée par rapport à l'activité maximale des enzymes.

EXEMPLE 1

15

5

10

Procédé de production de la laccase de Rhizoctonia praticola.

Le présent exemple décrit une méthode particulière de culture en fermenteur d'une espèce du genre Rhizoctonia en vue de la production et de la purification de laccase induite.

Ce champignon tellurique produit une phénoloxydase extracellulaire qui a un pH optimum d'activité proche de 7,0 alors que la plupart des laccases fongiques ont un pH optimum inférieur à 5,0. Elle est de ce fait très spécifique.

1. Conditions de culture.

25

30

40

45

20

Les conditions de culture décrites ici et en particulier les teneurs de certains éléments nutritifs, la nature de l'inoculum, les paramètres d'oxygénation, de température, d'agitation, ainsi que les moments d'apport de l'inducteur et de récolte de la culture ont été définis à la suite de nombreux essais qui ont permis d'optimiser la production de l'enzyme.

Nature de la souche: souche sauvage de l'espèce Rhizoctonia praticola (Vaartaja n°1347= R. solani type AG 4).

Composition du milieu de culture : milieu Czapeck Dow modifié contenant pour un litre:

NaNO₃: 3g/K₂HPO₄: Ig/KCL: O,5g/MgSO₄, 7H2O: O,5 g/ Saccharose: 2Og/ Asparagine: 2,5 g/1ml d'une solution d'oligo-éléments contenant : (FeSO₄: Ig/CaCl₂, 5H₂O: 2,Og/CuSO₄, 5H₂O: O,I5g/ ZnSO₄, 7H₂O: O,IO g/H₂O qsp IOO ml)/biotine: 25μg/thiamine:5Oμg. Conditions de fermentation: les paramètres ont été définis avec un réacteur de 7 l contenant 4,5 l utiles, de 42O mm de hauteur et I5O mm de diamètre intérieur:

- temps zéro: ensemencement avec un broyat de mycélium obtenu à partir d'une culture jeune en milieu liquide statique (70 ml d'inoculum pour 4,5 l de milieu).
- pendant 48 heures: agitation à 300 RPM, température = 28°C, taux d'oxygène dissous = 65%.
- à tO + 48 heures: apport de l'inducteur = 4-méthoxy benzèneamine 2.10-4 M dans le milieu; augmentation de l'agitation à 400 RPM; abaissement de la température à 20°C et apport d'antimousse (silicones par exemple).
- à tO + 7O à 74 heures: maximum de production de l'enzyme, récolte du milieu et mycélium et filtration pour conserver le milieu qui constitue l'extrait brut.

Cet extrait brut est ensuite purifié pour isoler l'enzyme par les techniques d'ultrafiltration et de chromatographie d'exclusion.

Il subit une ultrafiltration sur membranes de seuil de coupure de IO.OOO daltons puis une séparation par filtration sur Ultrogel AcA 34 (20 000- 350 000 daltons).

2-Caractérisation de l'enzyme:

2-1- pH optimum d'oxydation des phénols et amines aromatiqu s:

A la diff rence d'autres laccases d'origine fongique, la laccase de R.praticola a un pH optimum d'activité proche de la neutralité pour oxyder les diphénols ul s p-diamines (pH 6,8 à 7,5). Seule la laccas de l'Arbre à Lacque (Rhus vernicifera) agit de façon optimale à pH neutre pour oxyder les mêm s substrats.

2-2- poids mol 'culaire (PM):

Il a été déterminé par électrophorès de l'enzyme sur gel de polyacrylamide contenant du Sodium D décyl Sulfate (SDS-PAGE 5-20%) avec d s marqueurs protéiques d PM connus:lactate déshydrogénase 140000,

Albumine Bovine 67 OOO, bêta-glucosidase 36 OOO, Cytochrome C 12 5OO). L g l col ré par le Bleu de Coomassie a révélé la présence de deux bandes protéiques corr spondant à deux iso-enzymes appelés "L1 et L2" d PM égaux à 135 OOO et 155 OOO respectivement.

2-3- point isoélectrique (pl):

Deux techniques de Focalisation Isoélectrique ont indiqué avec précision les pl des 2 isoenzymes séparés. 2-3-1- Focalisation Isoélectrique analytique: Sur Ampholine PAG Plate (LKB), pH 3,5-9,5 en présence de marqueurs protéiques de pl connus: Amyloglucosidase 3,5; Ferritine 4,4; Albumine Bovine 4,7; bêta lactoglobuline 5,4: Conalbumine 5,9; Myoglobine cheval 7,3; Ribonucléase 9,45; Cytochrome C IO,65. La révélation au Bleu de Coomassie a montré que les 2 isoenzymes L1 et L2 ont des pl égaux à 4,9 et 4,4 respectivement.

2-3-2-Focalisation isoélectrique préparative:

Sur Ultrodex avec Ampholites pH3-10 a confirmé le pl de la bande L2 possédant la meilleure activité spécifique à 4,4.

CONCLUSION:

5

10

15

La caractérisation de la laccase de R.praticola par son pH optimal d'activité, son poids moléculaire et son point isoélectrique a mis en évidence des propriétés différentes de celles décrites pour d'autres laccases. Ces propriétés spécifiques permettent donc d'identifier aisément la laccase induite de R.praticola produite par fermentation par rapport aux autres laccases (voir tableau ci-après).

20	<u>Tableau</u>	comparatif	des pro	priétés	<u>de différentes</u>
20	laccases	<u>:</u>			
	espèce	classe	PM	pΙ	pH optimum(1)
	Polyporu	s Basidio	62000	?	3,8
25	versicol	or mycète			
	Rigidopo	rus Basidio	55000	3,5	5,6
	lineatus	mycète			
30	Agaricus	Basidio	102 000	?	5,6
	bisporus	mycète			
	Botrytis	Asco	65 000	2,5	4,7
	cinerea	mycète			
35	Rhus	Dicoty	110 000	8,5	7,0
	vernicif	era lédon e			
	Rhizocto	nia Deutéro	78 000	?	7,0
40	praticol	a mycète			
	(2)				
	R.prati-	Deutéro	140 000	4,4	7,0
45	cola(3)	mycète			
₩					

- (1) pH optimum d'oxydation de diphénols
- (2) culture statique (travaux de J.M. Bollag précédemment cités).
- (3) culture en fermenteur.

55

EXEMPLE 2-

Comparaison de l'activité oxydative des laccases de Rhizoctonia praticola et de Rhus vernicifera en fonction du pH.

5

Une unité d'activité p-phénylène diamine (upPD) ou une unité d'activité p-aminophénol (upAP) est définie comme la quantité de laccase nécessaire pour provoquer une variation de DO à 525 nm ou à 380 nm d'une unité par minute, à 25°C dans un mélange réactionnel de 2,5 ml de solution tampon phosphate 0,02 M pH 7,0 contenant 0,4 g/l de p-phénylènediamine ou de p-aminophénol.

10

Les expérimentations ont été effectuées avec des concentrations de précurseurs de colorants d'environ O,4 g par litre et O,I unité enzymatique . Les études effectuées aussi bien sur l'oxydation de la para-phénylène diamine (pPD) que sur l'oxydation

du para-aminophénol (pAP) montrent que ces deux laccases ont des activités optimales dans des pH proches de la neutralité, comme on peut le voir sur les figures 1 et 2 résumant les résultats obtenus.

15

EXEMPLE 3-

Coloration de tissus de laine par la composition selon l'invention.

20 CO (e)

Les colorations sont obtenues sur des tissus de laine plongés 35 mn à 25°C dans un mélange réactionnel constitué de 25 ml de solution tampon phosphate O,O2 M, pH 7;,O,5 u de laccase, un mélange équimolaire (environ 2mM) de deux colorants (une base + un coupleur) pour une teneur totale de O,4 g/l.

Les résultats sont résumés dans le tableau I .

25

L'étude a montré qu'en raison de la grande spécificité des précurseurs de colorants pour l'enzyme (en particulier des molécules aromatiques substituées en ortho et en para), les teneurs en colorants requises pour obtenir une nuance naturelle sont beaucoup plus faibles que celles utilisées en coloration d'oxydation traditionnelle. Par exemple, la teneur maximale en colorants est de 4% environ pour une coloration traditionnelle et de 0,2% environ pour une coloration enzymatique selon l'invention. Malgré ces faibles quantités de colorants, les teintures obtenues montrent une résistance aux shampooings tout à fait comparable à celle d'une teinture traditionnelle.

35

30

40

45

50

10	
15	
20	
25	
30	
35	
40	
45	

TABLEAU I	I : Coloration de tissus de laine.	
Coupleur/base	дър	PAP
рРD	gris souris légèrement violet	marron beige légèrement rosé
pAP	marron beige légèrement rosé	marron beige légèrement rosé
OAP	gris vert légèrement jaune	ocre
тАР	gris marron légèrement rosé	beige légèrement orangé
PyC	gris	marron gris
PyG	beige orangé	beige clair
æ	beige marron	beige clair rosé
1-N	mauve	vieux rose clair
mPD	bleu gris	beige marron
pAoC	vieux rose	Baumon
Н	violet bleu	ocre
1.5 DHN	mauve clair	rose très clair
2.7 DHN	Deige	marron beige

Rev ndicati n

- 1. Composition pour la coloration non éclaircissante des fibres kératiniques et en particulier des cheveux comprenant notamment un enzyme capable de catalyser la formation des polymères colorants, et comprenant aussi des précurseurs de colorant tels que des bases et des coupleurs, dans une solution tamponnée, caractérisée en ce que le pH de ladite composition est proche de la neutralité et ledit enzyme a une activité optimale dans une gamme de pH comprise entre 6,5 et 8 et ne nécessite pas pour son activité la présence de peroxyde d'hydrogène.
 - Composition selon la revendication I, caractérisée en ce que l'enzyme est une laccase, en particulier la laccase de Rhizoctonia praticola ou de Rhus vernicifera.
- Composition selon l'une des revendications I et 2,caractérisée en ce que la laccase de Rhizoctonia praticola est obtenue par fermentation.
 - 4. Composition selon l'une des revendications I à 3, caractérisée en ce que les bases sont notamment des amines aromatiques, des diaminophénols et/ou des aminophénols dans lesquels les groupements amines et alcools sont de manière préférentielle en position ortho ou para.
 - 5. Composition selon la revendication 4, caractérisée en ce que les bases sont notamment la para-phénylènediamine, l'ortho-aminophénol, le para-méthylaminophénol, le para-aminophénol, la para-toluylènediamine et/ou la N-phényl-paraphénylènediamine.
- 6. Composition selon l'une des revendications I à 5, caractérisée en ce que les coupleurs sont des métadiamines, des métadiamines, des métadiamines, des métadiamines, des polyphénols ou des naphtols, notamment le métadiamine pyrocatéchol, le pyrogallol, le résorcinol, le l-naphtol, la métaphénylènediamine, le para-amino-orthocrésol, l'hydroquinone, le l,5-dihydroxynaphtalène, et/ou le 2,7-dihydroxynaphtalène.
- 7. Composition selon l'une des revendications I à 6, caractérisée en ce que le milieu est tamponné à l'aide d'un tampon phosphate.
 - 8. Composition selon l'une des revendications I à 7, caractérisée en ce que la quantité totale de précurseur est prise dans la gamme allant de O,O5% à O,3% en poids de la composition et préférentiellement de l'ordre de O,12%.
 - 9. Procédé de coloration des cheveux , caractérisé en ce que les cheveux sont traités avec la composition selon l'une des revendications I à 8 .
- 40 Procédé selon la revendication 9 , caractérisé en ce que le temps de traitement est pris dans la gamme allant de IO à 40 minutes et préférentiellement de 20 à 35 minutes, cette durée pouvant être réduite par chauffage doux à une température n'excèdant pas 40°C environ.

55

50

20

35

FIG.1

FIG.2

Office européen RAPPORT DE RECHERCHE EUROPEENNE Numero de la demande

EP 92 40 0553

	Citation du document avec in	RES COMME PERTINE	Revendication	CLASSEMENT DE LA
atégorie	des parties perti	nentes	concernée	DEMANDE (Int. Cl.5)
D,X	FR-A-2 112 549 (THE PROC	TER & GAMBLE CO.)	1,4,5	A61K7/13
	* le document en entier			A61K7/06
x,ם	US-A-3 251 742 (S. SOLO)	(YA	1,4-6	
U.^	* le document en entier			
		•		
A	US-A-2 539 202 (S. M. PE	ECK)	1	
`	* le document en entier			
		•		
A	US-A-3 957 424 (ZEFFREN	ET AL.)	1	
	* revendications *			
				DOMAINES TECHNIQUES
				RECHERCHES (Int. Cl.5)
				A61K
			İ	WOTK
			1 1	
			1	
		•		
	ł			
				1
			1	
i.e i	présent rapport a été établi pour to	utes les revendications		
	Lien de la recharche	Date d'achèvement de la recherche		Bonisser
	LA HAYE	24 JUIN 1992	COM	CKUYT P.J.R.
CATEGORIE DES DOCUMENTS CITES X : particulièrement pertinent à tui seul Y : particulièrement pertinent en combinaison avec un autre document de la même catégorie A : arrière-pian tochnologique O : divalgation non-écrite P : document intercalaire		E : document é date de dép n avec un D : cité dans l L : cité cour d'	autres raisons	ars public a ta
A:a	utre document de la même catégorie rrière-plan tochnologique itvalgation non-écrite pcument intercalaire	· · · · · · · · · · · · · · · · · · ·		ument correspondant