Rendimiento de sistemas paralelos

Arquitectura de Computadoras II Fac. Cs. Exactas UNCPBA Prof. Marcelo Tosini

Rendimiento de un sistema paralelo

Rendimiento en un sistema con un procesador:

$$T_{cpu} = RI \times CPI \times t_{ciclo}$$

Con RI: recuento de instrucciones

CPI: ciclos promedio por instrucción

t_{ciclo}: duración del ciclo de reloj

Rendimiento en un sistema con P procesadores:

$$T_{CPU} = \frac{RI}{P} * \frac{1}{IPC} * t_{CICLO}$$

Con P: número de procesadores

IPC: número de instrucciones por ciclo de reloj

t_{ciclo}: duración del ciclo de reloj

Rendimiento de un sistema paralelo

Según Amdahl:

"Cuando la fracción de un trabajo serie (fs) de un problema es pequeña, la máxima aceleración o Speedup alcanzable es sólo 1/fs (incluso para un número infinito de procesadores)"

Límites del paralelismo

Según la ley de Amdahl:

En todo problema hay una parte secuencial, fs, en la que no es posible utilizar la potencia de los p procesadores de un sistema. De este modo, la ganancia de velocidad se ve limitada como se muestra a continuación

$$A = \frac{1}{\alpha + \frac{f_m}{a_m}}$$

Con : factor de mejora $a_m = p$ (procesadores) y $\alpha = f_s$ (parte no paralelizable)

$$A(p, fs) = \frac{p}{p(fs + \frac{1 - fs}{p})} = \frac{p}{p * fs + 1 - fs}$$

$$A(p, fs) = \frac{p}{1 + fs * (p-1)}$$

Problema 1

Sea un sistema que posee 20% del código secuencial y el 80% perfectamente paralelizable.

Calcular la aceleración ($speed-up \ medio \ armónico)$ para p = 16 procesadores.

$$A_{(p,fs)} = \frac{p}{1 + (p-1)fs}$$

Con p = 16 y fs = 0.20 se tiene:

$$A(p,fs) = 16/(1+(15)*0.2) = 4$$

Problema 2...

Sea un sistema con 5% del código secuencial y el 95% perfectamente paralelizable.

Calcular el *speed-up medio armónico* para n = 8 procesadores y n = 16 procesadores.

Grado de paralelismo (DOP)

Representa el grado de mapeo entre el paralelismo del software y el grado de procesamiento paralelo del hardware.

Se mide en intervalos de tiempo cuantos elementos de procesamiento paralelo (HW) se están utilizando para un algoritmo dado (SW)

Si, P = capacidad de procesamiento paralelo del sistema; m = máximo paralelismo posible de un algoritmo dado y DOP = número de elementos paralelos en los que se puede dividir un programa, entonces

Grado de paralelismo (DOP)

Notas...

- El **número de elementos paralelos** es la cantidad de «cosas» que se pueden realizar en paralelo según la granularidad que se analice.
- La capacidad de procesamiento paralelo del sistema es la cantidad de elementos de proceso que dispone el hardware respecto de la granularidad que se analice

Granularidad	Elementos paralelos	Elementos de proceso
Tarea	Tasks	Procesadores
Proceso	Threads	SMT
Variable	Instrucciones	Num Proc Superescalares
Instrucción	Instrucciones	Num Proc Superescalares

Grado de paralelismo (DOP) (cont.)

Carga de trabajo (W)

Número de instrucciones ejecutadas entre todos los procesadores de un sistema para llevar a cabo la ejecución de un programa.

Si un sistema esta formado por suficientes procesadores de \(\Delta \) MIPS y el tiempo esta en segundos, la carga de trabajo del programa, en ese sistema será:

$$W = \Delta \sum_{i=t1}^{t2} i * t_i$$

$$W = \Delta \sum_{i=1}^{m} i * t_i$$

con t1: intervalo inferior de tiempo

t2: intervalo superior de tiempo

i: número de procesos paralelos en el intervalo ti

ti: sumatoria de todos los intervalos en que se ejecutan i procesos

con Δ la capacidad de procesamiento de un procesador, expresada en MIPS o Mflops, sin considerar las penalizaciones debidas al acceso a memoria, latencia de las comunicaciones, o sobrecarga del sistema.

Por ejemplo: un sistema con 8 procesadores duales (que ejecutan 2 instrucciones en paralelo cada uno) tiene un $P = 8 \text{ con } \Delta = 2$.

Paralelismo promedio y Utilización

Paralelismo promedio: Valor medio del perfil de paralelismo durante Todo el tiempo de ejecución del programa

$$\overline{P} = \frac{\Delta \sum_{i=t1}^{t2} i * t_i}{\Delta \sum_{i=t1}^{t2} t_i} = \frac{\sum_{i=t1}^{t2} i * t_i}{t_2 - t_1}$$

Tasa de utilización: Relación entre el grado medio de paralelismo explotado (referido al número de procesadores disponibles) y el máximo grado de paralelismo

$$\mu = \frac{\overline{P}_e}{m} = \frac{\Delta \sum_{i=t1}^{t2} i * t_i}{(t_2 - t_1)m}$$

Problema 3

Sea un programa con el perfil de paralelismo de software de la figura. Calcule la carga de trabajo total y el paralelismo promedio.

Métricas de rendimiento

Speedup asintótico

Sea $W_i = i\Delta t_i$ el trabajo realizado cuando DOP = i, entonces $W = \sum_{i=1}^m W_i$

El tiempo de ejecución de W_i para un solo procesador (Δ mips) es $t_i(1) = W_i/\Delta$.

El tiempo de ejecución de W_i para un solo procesador (1 mips) es $t_i(1) = W_i$.

El tiempo de ejecución de W_i para k procesadores (Δ mips) es $t_i(k) = W_i/k\Delta$.

El tiempo de ejecución de W_i para ∞ procesadores (Δ mips) es $t_i(\infty) = W_i/i\Delta$ con $1 \le i \le m$

Ejemplo

Para DOP=5, $W_5 = 5\Delta t_5 = 5*4*\Delta = 20\Delta$, entonces

El tiempo de ejecución de W_5 para un solo procesador (Δ mips) será:

$$t_5(1) = W_5/\Delta = 20\Delta/\Delta = 20$$

El tiempo de ejecución de W_5 para 2 procesadores (Δ mips) será:

$$t_5(2) = W_5/i\Delta = 20\Delta/2\Delta = 10$$

El tiempo de ejecución de W₅ para ∞ procesadores será:

$$t_5(\infty) = W_5/i\Delta = 20\Delta/5\Delta = 4$$

Speedup asintótico

Los tiempos de respuesta para 1 procesador y para ∞ procesadores son:

$$T(1) = \sum_{i=1}^{m} t_i(1) = \sum_{i=1}^{M} \frac{W_i}{\Lambda}$$

$$T(\infty) = \sum_{i=1}^{m} t_i(\infty) = \sum_{i=1}^{M} \frac{W_i}{i\Delta}$$

Entonces, el speedup asintótico será el cociente de T(1) y $T(\infty)$, o sea, un parámetro que mide la aceleración del tiempo de cálculo por el hecho de poder paralelizar al máximo la aplicación:

$$S_{\infty} = \frac{T(1)}{T(\infty)} = \frac{\sum_{i=1}^{m} W_{i}}{\sum_{i=1}^{m} \frac{W_{i}}{i}}$$

Con lo que $S_{\infty} = \bar{P}$ en el caso ideal y

 $S_{\infty} \leq \overline{P}$ en el caso real debido a las latencias de comunicaciones y sobrecarga del sistema

Comparación de rendimiento

Si se tiene N programas ejecutando en diferentes máquinas, Como se puede comparar la máquina mas rendidora?

Métodos:

- Rendimiento basado en media aritmética (smith,88)
 - Simple
 - Ponderada
- Rendimiento basado en media geométrica (smith,88)
 - Normalizada
- Rendimiento basado en media armónica

Rendimiento basado en media aritmética (Simple)

Rendimiento inversamente proporcional a la suma de los tiempos de ejecución

$$\frac{1}{R_a} = T_a = \frac{\sum_{i=1}^{n} tiempo_i}{n}$$

Con *tiempo*_i, tiempo de ejecución del programa i-esimo de un total de *n* de la carga de trabajo

Ejemplo

La tabla muestra los tiempos de ejecución de 2 programas en tres máquinas distintas

Segundos	Máquina A	Máquina B	Máquina C
Programa 1	1	10	20
Programa 2	1000	100	20
total	1001	110	40

Se ve que...

- A es 1900% más rápida que C para el programa 1
- B es 100% más rápida que C para el programa 1
- B es 900% más rápida que A para el programa 2
-
- B es 810% más rápida que A para los programas 1 y 2
- C es 2400% más rápida que A para los programas 1 y 2
- C es 175% más rápida que B para los programas 1 y 2

Ejemplo...

La media aritmética para las 3 máquinas A, B y C será:

$$T_{A} = \frac{1+1000}{2} = 500,5 seg.$$

$$\rightarrow R_A = 1/T_A = 0,002$$

$$\rightarrow R_B = 1/T_B = 0.018$$

$$T_{B} = \frac{10 + 100}{2} = 55seg.$$

$$\rightarrow R_c = 1/T_c = 0.05$$

$$T_c = \frac{20+20}{2} = 20seg.$$

$$\rightarrow R_C > R_B > R_A$$

Ejemplo...

Media aritmética normalizada para las 3 máquinas A, B y C.

	Normalizado para A (%)		Normalizado para B (%)			Normalizado para C (%)			
	A	В	C	A	В	C	A	В	C
Prog. 1	100	1000	2000	10	100	200	5	50	100
Prog. 2	100	10	2	1000	100	20	5000	500	100
M. arit.	100	505	1001	505	100	110	2502,5	275	100
Tiempo total	200	22	8	1820	200	72,72	5005	550	200

• El rendimiento de la media aritmética varía dependiendo de cual sea la máquina de referencia

$$R_A > R_B$$
 $R_A < R_B$

Rendimiento basado en media aritmética (Ponderado)

Rendimiento inversamente proporcional a la suma de los tiempos de ejecución ponderados por la frecuencia del programa en la carga de trabajo

$$\frac{1}{R_a} = \sum_{i=1}^n f_i * tiempo_i$$

Con $tiempo_i$, tiempo de ejecución del programa i-esimo de un total de n de la carga de trabajo y f_i , la frecuencia relativa del i-esimo programa en la carga de trabajo

Ejemplo...

Media aritmética ponderada para las 3 máquinas A, B y C según 2 cargas distintas

f1 = 50% f2 = 50%	A	В	C
Prog. 1	1	10	20
Prog. 2	1000	100	20
total	1001	110	40
media aritmética	500,5	55	20

ponderación equivalente (media aritmética simple)

$$f_i = \frac{1}{T_i * \sum_{j=1}^n \frac{1}{T_j}}$$

ponderación inversamente proporcional a los tiempos de ejecución en la máquina A

$$f1 = 1000/1001 = 0,999$$

$$f2 = 1/1001 = 0,001$$

f1 = 99,9% f2 = 0,1%	A	В	C
Prog. 1	1	10	20
Prog. 2	1000	100	20
total	1001	110	40
media aritmética	2,0	10,09	20,0

Rendimiento basado en media geométrica (Normalizado)

Rendimiento inversamente proporcional al producto de los tiempos de ejecución

$$\frac{1}{R_g} = T_g = \sqrt[n]{\prod_{i=1}^n f_i * tiempo_i}$$

Con $tiempo_i$, tiempo de ejecución del programa i-esimo de un total de n de la carga de trabajo y f_i , la frecuencia relativa del i-esimo programa en la carga de trabajo

Ejemplo...

Media geométrica normalizada para las 3 máquinas A, B y C.

	Normalizado para A (%)		Normalizado para B (%)			Normalizado para C (%)			
	A	В	C	A	В	C	A	В	C
Prog. 1	100	1000	2000	10	100	200	5	50	100
Prog. 2	100	10	2	1000	100	20	5000	500	100
M. arit.	100	505	1001	505	100	110	2502,5	275	100
M. Geom.	100	100	63	100	100	63	158	158	100
Tiempo total	200	22	8	1820	200	72,72	5005	550	200

• El rendimiento de la media aritmética varía dependiendo de cual sea la máquina de referencia

$$R_A > R_B$$
 $R_A < R_B$

• El rendimiento de la media geométrica es más consistente independientemente de la normalización

$$R_C$$
= 63% de R_A y R_C = 63% de R_B y R_A = R_B

Rendimiento basado en media armónica (ponderado)

$$R_{_{i}}=rac{1}{T_{_{i}}}$$

 $R_{i} = \frac{1}{T}$ Rendimiento o velocidad de ejecución para el programa i-esimo de un total de n de la carga de trabajo de trabajo

$$R_{_{h}} = \frac{1}{\sum_{_{i=1}}^{_{n}} (f_{_{i}}/R_{_{i}})}$$

 $R_{i} = \frac{1}{\sum_{i=1}^{n} (f_{i}/R_{i})}$ Con f_{i} , la frecuencia relativa del i-esimo programa en la carga de trabajo

Problema 4...

Tres programas se ejecutan en tres procesadores diferentes para medir sus prestaciones. La tabla muestra los tiempos de ejecución de los programas en cada máquina.

Calcular:

- a) Media aritmética normalizada y
- b) Media geométrica normalizada Ambas expresan la misma relación de rendimientos?

Segundos	Máquina A	Máquina B	Máquina C
Programa 1	10	100	200
Programa 2	100	100	20
Programa 3	50	25	1

Modelos de computadores paralelos

3 modelos de medición del speed-up:

- Limitación por carga de trabajo fija:
 - Modelo sugerido por Amdahl (1967)
 - Basado en una carga de trabajo fija o en un problema de tamaño fijo
- Limitación por tiempo fijo:
 - Modelo sugerido por Gustafson (1987)
 - Problemas escalables
 - El tamaño del problema se incrementa al aumentar el tamaño de la máquina
 - Se dispone de un tiempo fijo para realizar una determinada tarea
- Limitación por memoria fija:
 - Modelo sugerido por Sun & Ni (1993)
 - Se aplica a problemas escalables limitados por la capacidad de memoria

Usada en aplicaciones donde es importante la respuesta más rápida posible.

La carga de trabajo se mantiene fija y es el tiempo de ejecución lo que se debe intentar reducir

El factor de speed-up está acotado superiormente por el cuello de botella secuencial

2 casos posibles:

$DOP = i \ge P$

Los P procesadores se usan para ejecutar Wi

$$t_i(P) = \frac{W_i}{i\Delta} \left[\frac{i}{P} \right]$$

$$T(P) = \sum_{i=1}^{m} \frac{W_i}{i\Delta} \left| \frac{i}{P} \right|$$

DOP = i < P

i procesadores se usan para ejecutar Wi

$$t_i(P) = \frac{W_i}{i\Lambda}$$

$$T(P) = \sum_{i=1}^{m} \frac{W_i}{i\Delta}$$

Tiempo de ejecución decreciente

De T(1) y T(P) se puede derivar el speed-up para P procesadores.

$$S_{P} = \frac{T(1)}{T(P)} = \frac{\sum_{i=1}^{m} W_{i}}{\sum_{i=1}^{m} \frac{W_{i}}{i} \left[\frac{i}{P}\right]} \approx P$$
 En el caso ideal

En un caso real se debe considerar factores como latencias de sincronización, demoras de acceso a memoria, accesos a buses, etc

Entonces, sea Q(P) la suma de todas las sobrecargas.

$$S_{P} = \frac{T(1)}{T(P) + Q(P)} = \frac{\sum_{i=1}^{m} W_{i}}{\sum_{i=1}^{m} \frac{W_{i}}{i} \left[\frac{i}{P}\right] + Q(P)}$$

Supongamos un caso particular en el que la computadora opera en un modo totalmente secuencial (DOP = 1) o un modo totalmente paralelo (DOP = P) O sea, $W_i = 0$ para $i \neq 1$ ó $i \neq P$.

Entonces:

$$S_{P} = \frac{W_{1} + W_{P}}{W_{1} + W_{P}/P}$$

El tiempo de la parte secuencial W₁ no cambia, pero la parte paralela W_P se ejecuta en P procesadores y por lo tanto se ejecuta P veces más rápido

Si $W_P = 1-a$ y $W_1 = a$, entonces:

$$S_{P} = \frac{\alpha + 1 - \alpha}{\alpha + (1 - \alpha)/P} = \frac{1}{\alpha + (1 - \alpha)/P}$$

que es la ley de Amdahl que expresa la aceleración de rendimiento en una máquina con P procesadores y una parte secuencial a, donde $S_p max = 1/a$ es la máxima aceleración que se puede esperar.

Modelo de Amdahl:

La carga de trabajo permanece fija aún cuando aumento la potencia de cálculo

Modelo de Gustafson:

Lo que debe quedar fijo es el tiempo de cálculo... Entonces, si aumenta la potencia de cálculo, se puede aumentar la **precisión!!!**

En aplicaciones de precisión crítica, se desea resolver el **problema de mayor tamaño** en una **máquina mayor** en (aproximadamente) el mismo tiempo de ejecución que costaría resolver un **problema menor** en una **máquina menor**

Carga de trabajo escalada

Tiempo de ejecución fijo

Sea

m el máximo DOP del problema original m' el máximo DOP del problema escalado W'_i la carga de trabajo para DOP=*i*

con

 $W_i' > W_i$ para $2 \le i \le m'$ (la carga de trabajo escalada es mayor que la original) $W_1' = W_1$

y el supuesto de que T(1) = T'(P)

(Tiempo del problema original sin escalar es igual al tiempo de ejecución del problema escalado)

Entonces:

Y el speed-up será:

$$\sum_{i=1}^{m} W_{i} = \sum_{i=1}^{m} \frac{W_{i}}{i} \left\lceil \frac{i}{P} \right\rceil + Q(P) \qquad S'_{p} = \frac{T'(1)}{T'(P)} = \frac{T'(1)}{T(1)} = \frac{\sum_{i=1}^{m'} W'_{i}}{\sum_{i=1}^{m} W_{i}} \left\lceil \frac{i}{P} \right\rceil + Q(P) = \frac{\sum_{i=1}^{m'} W'_{i}}{\sum_{i=1}^{m} W_{i}}$$

En el particular en el que la computadora opera en un modo totalmente secuencial (DOP=1) o un modo totalmente paralelo (DOP=P); o sea $W_i = 0$ para $i \neq 1$ ó $i \neq P$.

el speed-up será:

$$S_P = \frac{W_1' + W_P'}{W_1 + W_P} = \frac{W_1 + PW_P}{W_1 + W_P}$$

Al aumentar el número de procesadores se aumenta la carga de trabajo en forma proporcional asegurando que el tiempo no varíe.

Si $W_P = 1-a$ y $W_1 = a$, entonces:

$$S_{P} = \frac{\alpha + P(1-\alpha)}{\alpha + (1-\alpha)} = P - \alpha(P-1)$$

que es la ley de Gustafson permite soportar el rendimiento escalable al aumentar el tamaño de la máquina.

Limitación por memoria fija (Fixed Memory)

- Modelo de speed-up limitado por memoria
- Generaliza la ley de Amdahl y de Gustafson para minimizar el uso de CPU y memoria
- Idea básica: resolver el mayor problema posible limitado por el espacio de memoria
- Aplicable a problemas que involucren cálculos científicos o aplicaciones de ingeniería con modelos de datos que requieren grandes cantidades de memoria
- En la mayoría de las computadoras con capacidad de multiproceso, la memoria crece proporcionalmente al número de nodos (procesadores) de cálculo

Limitación por memoria fija (Fixed Memory)

Sea

- M la demanda de memoria para un problema dado
- W la carga computacional para dicho problema
- Sean g la relación entre M y W dependiendo de las restricciones de la arquitectura de modo que W = g(M) y $M = g^{-1}(W)$
- $W = \sum_{i=1}^{m} W_{i}$ la carga para una ejecución secuencial del programa en un único nodo
- $W^* = \sum_{i=1}^{m^*} W_i^*$ La carga para el problema aplicado a P nodos
- m* el máximo DOP del problema escalado

Entonces el speed-up será:

$$S^*_{P} = rac{\sum\limits_{i=1}^{m^*} W_i^*}{\sum\limits_{i=1}^{m^*} rac{V_i^*}{i} \left\lceil rac{i}{P}
ight
ceil + Q(P)}$$

Limitación por memoria fija (Fixed Memory)

La carga de trabajo para la ejecución secuencial en un solo procesador es independiente del tamaño del problema o del tamaño del sistema.

$$W_1 = W'_1 = W^*_1$$

En ejecución paralela, la mejora de memoria para un sistema de P nodos se puede expresar con la ecuación:

$$W_{p}^{*} = g^{*}(PM) = G(P)g(M) = G(P)W_{p}$$

Siendo G(n) el incremento en la carga al aumentar la memoria n veces

En el particular en el que la computadora opera en un modo totalmente secuencial (DOP=1) o un modo totalmente paralelo (DOP=P); o sea $W_i = 0$ para $i \neq 1$ ó $i \neq P$. el speed-up será:

$$S_{P}^{*} = \frac{W_{1}^{*} + W_{P}^{*}}{W_{1}^{*} + W_{P}^{*}/P} = \frac{W_{1} + G(P)W_{P}}{W_{1} + G(P)W_{P}/P}$$

Limitación por memoria fija (Fixed Memory)

3 casos particulares de aplicación:

- G(P) = 1, entonces el tamaño del problema es fijo y el modelo se corresponde a la ley de amdahl.
- G(P) = P, se aplica al caso en que la carga se incrementa P veces cuando la memoria se incrementa P veces. En estas condiciones el sistema se comporta según la ley de Gustafson con un tiempo de ejecución fijo.
- G(P) > P, es el caso en que la carga computacional se incrementa más rápido que los requisitos de memoria.

Limitación por memoria fija (Fixed Memory)

Carga de trabajo escalada

Tiempo de ejecución incrementado

Problema 5...

¿Cuál es la fracción de código paralelo de un programa que, ejecutado en paralelo en 8 procesadores tarda un tiempo de 100 ns, durante 50 ns utiliza un único procesador y durante otros 50 ns utiliza 8 procesadores distribuyéndose la carga de trabajo por igual entre los procesadores y despreciando la sobrecarga?.

Problema 6...

Suponga que un simulador representa una superficie de un objeto por una rejilla n x n. El proceso de simulación consta de dos fases: en la primera se recorre toda la rejilla y en cada nodo ejecuta una subrutina independiente que calcula el valor asignado a ese punto. En la segunda fase de la simulación recorre secuencialmente toda la retícula y suma todos los valores anteriores para calcular la suma global.

- a) Estime los tiempos para la primera y segunda fase y calcule el speed-up, si dispone de p procesadores pero la segunda fase es totalmente secuencial.
- b) Calcule el Speed-up si se mejora la segunda fase de tal manera que cuando se ejecuta con p procesadores hay dos partes: se calcula la suma intermedia correspondiente a p procesadores y en otra etapa posterior sólo se debe sumar estos valores intermedios.