

8251A USART

Universal Synchronous Asynchronous Receiver Transmitter

Nenad Petrović

nenad.petrovic@elfak.ni.ac.rs

kancelarija 323

Uvod

- 8251A je programabilni komunikacioni interfejs namenjen sinhronom i asinhronom serijskom prenosu podataka
- Slanje i prijem podataka sa periferijskih uređaja od/ka 8086
- Cilj je da uređaj bude "transparentan" za procesor, odnosno da se ponaša kao jednostavan ulaz/izlaz za bajtovski orijentisane podatke koje prima/šalje procesor

Signalizacija kod serijskog prenosa

- Marking je stanje kada nema prenosa
- Prenos počinje kada signal padne sa 1 na 0
- Signal počinje start bitom koji traje 1 interval
- Šalje se 5 do 8 bitova podataka
- Opcioni bit parnosti
- Stop-bit može trajati 1, 1.5 ili 2 bitska intervala

MARKING START BIT 5-8 BITOVA PODATAKA
BIT STOP MARKING PARNOSTI [opciono] (1/1.5/2)

Arhitektura 8251A

- 8251 se sastoji od 5 blokova:
 - Bafer magistrale podataka
 - Kontrona logika čitanja/upisa
 - Predajnik
 - Primalac
 - Kontrola modema

Interna struktura

Bafer magistrale podataka

- 8 bit magistrala podataka (linije D0-D7)
- Čitanje i upis sa/u 8251
 - Podataka (u oba smera)
 - Kontrolnih reči (8086->8251)
 - Statusa (8086<-8251)

Blok kontrolne logike čitanja/upisa

- Kontrolna logika
 - Interfejs sa 8086, određuje funkcije čipa na osnovu sadržaja kontrolne reči i nadzor protoka podataka
- 6 ulaznih signala
- 3 baferska registra
 - Data register
 - Control register
 - Status register

Ulazni signali kontrolne logike

- CS -
 - Chip Select: Kada postane 0, obavlja se komunikacija sa 8086
- C/ D Control/Data:
 - 1: adresira se kontrolni ili statusni registar
 - 0: obraća se baferu podataka
- WR -:
 - Kada je 0, smer 8086->8251
 - Upis podataka ili kontrolne reči
- RD -:
 - Kada je 0, smer 8086<-8251
 - Čitanje podataka ili statusa
- RESET:
 - Kada se postavi na 1, resetuje 8251 i vraća u idle stanje
- CLK:
 - Taktni ulaz obično povezan na sistemski clock za komunikaciju sa mikroprocesorom

Registar podataka

- Koristi se kao U/I port kada je C/D signal na 0.
- Režimi rada

CS-	C/D-	WR -	RD ⁻	Operacija
0	0	1	0	8086<-bafer podataka
0	0	0	1	8086->bafer podataka
0	1	0	1	8086->kontrolni registar
0	1	1	0	8086<-statusna reč
1	×	×	×	Čip nije selektovan

Kontrolni registar

- Registar kontrolne reči treba da dobije dve 8-bit nezavisne reči
 - mode word
 - command word
- Mode word
 - Parametri prenosa
- Command word
 - Omogućava prijem i predaju podataka

Mode word – asinhroni prenos

- Broj stop bitova
- Bit parnosti
- Broj bitova podataka po prenetom karakteru
- Mod faktora brzine serijskog prenosa (baud rate factor)
 - predtavlja odnos između signala takta na ulazima TxC i RxC i željenog baudrate-a.

S2		S1	EP	PEN	L2	L1	B2	B1
01 – 10 –	stop k · 1 stop · 1.5 st · 2 stop	op bit	Bit parnos 00 – disak 01 – nepa 10 – disak 11- parna	ole irna ole	Broj bitor karakteru 00-5b 01-6b 10 -7b 11-8b	•	Baud rate 00-Sync 01-1x 10-16x 11-64x	factor:

Mode word – sinhroni prenos

- Broj karaktera sinhronizacije
- Mod sinhronizacije
- Bit parnosti
- Broj prenetih bitova podataka
- Baud rate isti kao RxC i TxC takt
- Indikator novog podatka na liniji je prijem jednog ili dva sync karaktera (konfigurabilan broj karaktera)

SCS	ESD	EP	PEN	L2	L1	0	0
Broj sync karaktera: 0- dva 1- jedan	Sync mod: 0-interna 1-eksterna	Bit parnosti 00 – disable 01 – neparr 10 – disable 11- parna	e na	Broj bitova karakteru: 00-5b 01-6b 10 -7b 11-8b	po	Nisu u upotr	ebi

Command word

- Napomena za primere koje radimo
 - Uvek Normal mode
 - RTS i DTR na 0
 - SBRK u normalnom režimu

ЕН	IR	RTS	ER	SBRK	RXE	DTR	TXEN
0:Normal 1:Hunt mode	0:Normal 1:Internal reset	0:-RTS->1 1: -RTS->0	0:Normal 1: Reset error flag	0:Normalan režim 1:Slanje karaktera prekida	Omogućiti prijemnik	0:-DTR->1 1: -DTR->0	Omogućiti predajnik

Incijalizacija 8251

- Nakon paljenja uređaja, ne možemo tačno znati u kojem režimu rada se našao uređaj (da li očekuje MODE, SYNC CHARACTER ili COMMAND instrukciju)
- Zbog toga je potrebno izvršiti "worst-case" inicijalizacionu sekvencu
 - pretpostavićemo da uređaj očekuje MODE instrukciju, pa ćemo ga inicijalizovati u sinhroni režim rada, sa 2 sinhronizaciona karaktera – ovo postižemo upisom na kontrolnu adresu 3 uzastopna bajta kojima su vrednosti svih bita = 0
 - zatim softverski resetujemo uređaj, tako što šaljemo COMMAND instrukciju, u kojoj bit D6 ima vrednost 1

Dijagram stanja 8251

- Svaka kontrolna reč upisana u kontolni registar posle MODE reči se tumači kao COMMAND reč, što znači da se COMMAND reč može promeniti bilo kada.
- Međutim, neophodno je resetovati 8251 pre nego da se upiše MODE reč.

Statusni registar

- Proverava status periferijskog uređaja i sadrži informacije o greškama nastalih u prenosu:
- Framing Error
 - Nije detektovan start ili stop bit
- Overrun Error
 - Procesor nije pročitao prethodni podatak koji se nalazio u internom baferu
- Parity Error
 - Greška parnosti

DSR	SYNDET BRKDET	FE	OE	PE	TxE	RxRDY	TxRDY
Data set ready	Sync detect/break error	Framing error	Overrun error	Parity error	Predajnik prazan	Prijemnik spreman	Predajnik spreman

Predajnik

- Prihvata paralelne podatke sa 8086 i konvertuje ih u serijske
- Predajnik ima dva bafera:
 - Baferski registar za držanje 8-bit paralelnih podataka
 - Izlazni registar koji konvertuje paralelne podatke u serijske

• Kada je izlazni registar prazan, podaci se prebacuju iz bafera u izlazni registar. Tada procesor može da učita ponovo nove podatke u baferski registar i generiše TxRDY

Signali predajnika

- 8086 upisuje bajt u baferski registar za slanje
- Kada je izlazni registar prazan, sadržaj bafera se prebacuje u izlazni
- 3 izlana signala i jedan ulazni:
 - TxD Transmitted Data Output : Izlazni signal za prenos podataka na periferijske uređaje
 - TxC Transmitter Clock Input: Ulazni signal za kontrolu brzine slanja ka 8251
 - TxRDY Transmitter Ready : Izlazni signal koji označava da je baferski registar prazan i da 8255 može primiti sledeći bajt
 - TxE Transmitter Empty : Izlazni signal koji označava da je izlazni registar prazan

Prijemnik

- Prihvata serijske podatke sa RxD pina i pretvara ih u paralelne
- Poseduje dva registra:

Prijemnik - objašnjenje

- Prihvata serijske podatke i konvertuje ih u paralelne
- Dvostruko je baferovan:
 - Ulazni registar za prijem serijskih podataka i konverziju u paralelne
 - Baferski registar za držanje paralelnih podataka
- Kada je napon linije RxD nizak, kontrolna logika pretpostavlja da je to START bit, čeka u periodu od pola bita, zatim ponovo čita liniju.
- Ako je i dalje nizak napon na liniji, onda ulazni registar prihvata naredne bitove, dok se ne popuni do 8bit i učitava u baferski registar
- 8086 čita paralelne podatke iz baferskog registra.
- Kada su sa ulaznog registra učitani paralelni podaci u baferski registar, linija RxRDY dobija visok naponski nivo
- RxC (clock signal) kontroliše brzinu kojom su bitovi primljeni od strane 8251
- U asinhronom modu, signal SYNDET/BRKDET označava prekid u prenosu podataka
- U sinhronom modu, signal SYNDET/BRKDET označava prijem karaktera sinhronizacije

Signali prijemnika

- RxRDY Receiver Ready Output: Izlazni signal, postaje 1 kada 8251 ima bajt u baferskom registru i spreman je da ga pošalje ka 8086
- RxD Receive Data Input : Bitovi se na ovoj liniji primaju serijski
- RxC Receiver Clock Input: Taktni signal za kontrolu brzine kojom se bitovi primaju od strane 8251

Slanje i prijem podataka

- Dva načina:
 - Interrupt
 - Polling
- Interrupt:
 - Za generisanje interrupta ka procesoru koriste se linije RxRDY i TxTDY
 - Mehanizam biće detaljnije obrađen u narednom terminu računskih vežbi
- Polling:
 - zasniva se na proveri bita statusnog registra
 - čitamo i proveravamo u petlji bitove: D0 (za slanje TxRDY) ili D1 (za prijem RxRDY) sve dok ne dobiju vrednost 1
 - zatim šaljemo/čitamo podatak, a analogno mehanizmu interrupt-a, nakon slanja/čitanja, odgovarajući bit u statusnom registru će se resetovati, sve dok uređaj nije spreman da primi novi podatak za slanje, odnosno dok ne primi novi podatak sa periferije, kada se odgovarajući bit u statusnom registru ponovo postavlja na visok nivo

Dodatni alati za simulaciju serijskog prenosa

- Virtual Serial Port Driver
 - https://www.virtual-serial-port.org/
 - Služi za upravljanje raspoloživim COM portovima za serijsku komunikaciju
 - Dodavanje virtuelnih COM portova za simulaciju
- stc-isp
 - http://www.stcmicro.com/rjxz.html
 - Alat sa grafičkim interfejsom za prijem i slanje serijskih podataka
 - Karakteri ili hex

COMPIM serijski port u Proteus-u - prijem podataka

- Virtual Serial Driver
 - Dodati virtuelni par
 - COM2->COM3
- Proteus
 - Dodati COMPIM
 - Povezati RXD i TXD sa 8251
- COMPIM
 - Odredišni COM3 port
 - Parametri prenosa
 - Broj bitova podataka
 - Baud rate
 - Stop bitovi
 - Parnost

Slanje preko STC-ISP

- Otvoriti izvorišni port
 - COM2->COM3
- Podesiti parametre prenosa
- Odabrati mod slanja
 - TXT-Mode (karakteri)
 - HEX-Mode
- Uneti podatke
- Poslati podatke (SendData)

Taktovanje 8251A

- Dovesti clock elemente na dva pina
 - CLK
 - TxC/RxC
- Formula za TxC/RxC clock
 - Transceiving clock frequency = Transceiving baud rate × baud rate coefficient
- CLK je bar 4.5 puta veći od TxC/RxC
- Primer
 - Transceiver baud rate je 1200 (podešavamo COM)
 - Physical baud rate parametar
 - Baud rate (podešavamo u 8251) je 16
 - Rxc/TxC CLK=1200 x 16=19 200 Hz
 - CLK=19.2KHz x 4.5 = 86.4 KHz

Zadatak 8251 - 1

- Projektovati sistem zasnovan na Intel 8086, koji prima karaktere preko 8251
 - 'a' inkrementira sadržaj na 7s displeju
 - 'b' vrši dekrementiranje
- Na raspolaganju je i 8255 za povezivanje 7s displeja (PORTA)
- Komponente proizvoljno rasporediti proizvoljno na adresama počevši od A4H

Adresna šema

A15	A14	A13	A12	A11	A10	A9	A8	A7	A6	A5	A4	А3	A2	A1	Α0	
0	0	0	0	0	0	0	0	1	0	1	0	0	1	0	0	8251 DATA (A4H)
0	0	0	0	0	0	0	0	1	0	1	0	0	1	1	0	8251 CTRL (A6H)
0	0	0	0	0	0	0	0	1	0	1	0	1	0	0	0	8255 PORTA (A8H)
0	0	0	0	0	0	0	0	1	0	1	0	1	0	1	0	8255 PORTB (AAH)
	0	0	0	0	0	0	0	1	0	1	0	1	1	0	0	8255 PORTC (ACH)
0	0	0	0	0	0	0	0	1	0	1	0	1	1	1	0	8259 CONF (AEH)

Konfiguracija

- 8255 u izlaznom režimu
- 8251
 - Mode word: 01001110
 - 01 1 stop bit
 - 00 bez bita parnosti
 - 11 8 bit podaci
 - 10 16x baud rate
 - Command word: 00010101
 - 0 Normal mode
 - 0 Normal
 - 0 RTS
 - 1 Reset error flag
 - 0 SBRK
 - 1 omogućen prijemnik
 - 0 DTR
 - 1 omogućen predajnik

```
; MAIN CODE
CODE
        SEGMENT PUBLIC 'CODE'
        ASSUME CS:CODE, DS:DATA, SS:STEK
       ORG OEOOOH
START:
       MOV AX, DATA
       MOV DS, AX
       MOV AX, STEK
       MOV SS, AX
       LEA SP, TOS
       CLI
       IN AL, OOH
       OUT OOH, AL
       ; Configuration
       ;8255
       MOV DX, PORT_CONFIG
       MOV AL, 1000000B
       OUT DX, AL
       ; MOV DX, PORTA
       MOV DX, PORTA
       MOV SI, 0
       MOV AL, CIFRE[SI]
       OUT DX, AL
       ;8251
       ;3X0
       MOV DX, CONTROL
       MOV AL, 00H
       OUT DX, AL
       MOV AL, OOH
       OUT DX, AL
       MOV AL, 00H
       OUT DX, AL
       MOV AL, 40H
       OUT DX, AL
       ; MODE WORD
       MOV AL, 01001110B
       OUT DX, AL
       ; COMMAND WORD
       MOV AL, 00010101B
       OUT DX, AL
       STI
```

Glavna petlja

- Čitamo status 8251
- Provera da li je došlo do greške
 - TEST AL, 38H
 - 38H: 0011 1000 (1 na poziciji ERROR flagov-a)
- Provera da li je spreman za prijem
 - TEST AL, 02H
 - 02H: 0000 0010 (1 na poziciji RxRDY)
- Ispitivanje da li je primljen karakter a
 - Inkrement
 - Voditi računa o prekoračenju
- Ispitivnaje da li je primljen karakter b
 - Dekrement
 - Voditi računa o potkoračenju

```
PETLJA:
       MOV DX, CONTROL
       IN AL, DX
       TEST AL, 38H
       JZ CONTINUE
       JMP PETLJA
       CONTINUE:
       TEST AL, 02H
       JZ PETLJA
       MOV DX, DAT
       IN AL, DX
       CMP AL, 'a'
       JE INKREMENT
       CMP AL, 'b'
       JE DEKREMENT
       JMP PETLJA
       INKREMENT:
       INC SI
       CMP SI, 10
       JE DESET
       JMP GOTOVO
       DESET:
       MOV SI, 0
       JMP GOTOVO
       DEKREMENT:
       CMP SI, 0
       JE NULA
       DEC SI
       JMP GOTOVO
       NULA:
       MOV SI, 9
       GOTOVO:
       MOV AL, CIFRE[SI]
       MOV DX, PORTA
       OUT DX, AL
JMP PETLJA
CODE
        ENDS
END START
```

Šema povezivanja

- 8086
- 8255
- 8251
 - A1 linija (K0) na C/-D
- 7seg displej
- 2 clock elementa
- 1 COM element

