Problem 1. Let G = (V, E) be a bipartite graph with maximum vertex degree Δ .

- (a) Use König's theorem to prove that G has a matching of size at least $|E|/\Delta$.
- (b) Use (a) to conclude that every subgraph of $K_{n,n}$ with more than (k-1)n edges has a matching of size at least k.
- Solution. (a) Let Q be a vertex cover of G. If we cover any $v \in V$ we will cover a maximum of Δ edges, since Δ is the maximum vertex degree. Thus, at minimum, to cover all edges we need $|E|/\Delta$ vertices:

$$|Q| \ge |E|/\Delta$$

Now since G is bipartite, and M is a maximal matching

$$|M| \ge |E|/\Delta$$

by König's theorem.

(b) Let G = (V, E) denote an arbitrary subgraph with of $K_{n,n}$ with |E| > (k-1)n (Eq 1) and Δ denote the maximum vertex degree of G. Let |M| denote some mathcing. By Eq 1 and (a) we write:

$$|M| \ge \frac{|E|}{\Delta} > \frac{(k-1)n}{\Delta}$$

Multplying by Δ/n :

$$|M|\frac{\Delta}{n} \ge \frac{|E|}{n} > (k-1)$$

Because G is $K_{n,n}$, $\Delta \leq n$ so

$$|M| \ge |M| \frac{\Delta}{n} \ge \frac{|E|}{n} > (k-1)$$

Now, since k-1 is an integer, $\frac{|E|}{n}$ is some fraction greater than or equal to this integer, and |M| is an integer, we can say $|M| \ge k$

Problem 2. Fix $k \geq 2$, and let Q_k denote hypercube graph (from HW1). Prove that Q_k has at least $2^{2^{k-2}}$ perfect matchings.

Solution. Prove this by induction.

Base case: k=2. We have a square, and it is clear that there are two perfect matchings: $\{a,c\}$ and $\{b,d\}$.

Inductive step: suppose there are at least $2^{2^{k-2}}$ perfect matchings for $Q_k \Rightarrow$ there are at least $2^{2^{(k+1)-2}}$ matchings for Q_{k+1} . Recall that each vertex in Q_k is represented by some tuple (v_1, \ldots, v_k) and each vertex in Q_{k+1} is either $(1, v_1, \ldots, v_k)$ or $(0, v_1, \ldots, v_k)$. Therefore, Q_{k+1} can be partitioned to two Q_k s: one consists of all tuples starting with '1' and the other starting with '0'. There are edges between two Q_k s. All vertices in Q_{k+1} are in one of the partition, so if each of Q_k has a perfect matching, then so does Q_{k+1} as all vertices are saturated. By the inductive hypothesis, each Q_k has at least $2^{2^{k-2}}$ perfect matchings, so there are at least $(2^{2^{k-2}})^2 = 2^{2^{k-1}}$ perfect matchings in Q_{k+1} . 'At least' because all those matchings do not involve edges between two Q_k s. This holds for every k, so the statement holds.

Problem 3. Determine the stable matchings resulting from the proposal algorithm run with cats proposing and with giraffes proposing, given the preference lists below.

```
Cats \{u, v, w, x, y, z\} Giraffes \{a, b, c, d, e, f\}

u: a > b > d > c > f > e a: z > x > y > u > v > w

v: a > b > c > f > e > d b: y > z > w > x > v > u

w: c > b > d > a > f > e c: v > x > w > y > u > z

x: c > a > d > b > e > f d: w > y > u > x > z > v

y: c > d > a > b > f > e e: u > v > x > w > y > z

z: d > e > f > c > b > a f: u > w > x > v > z > y
```

To receive full credit, you should show your work.

Solution. Note: As permitted by a post on Campuswire, my solution to this problem will exceed a page due to the size of the pictures involved. (I think it's still a page's worth of informational content.)

We begin with the cats proposing. The proposals in round 1 are shown on the left, and the resulting matchings on the right:

The new proposals for round 2 are shown in gray below (atop the existing matchings from round 1; note that prior proposals are listed above each proposer), with the results to the right:

Round 3 goes as follows:

Then round 4:

In round 5, u proposes to b and is rejected. In round 6, u proposes to d and is turned down again. In round 7, u proposes to c and is snubbed once more. Finally, in round 8, u proposes to f, who accepts, giving us the following final stable matching:

Now for the giraffes. (I don't bother to write down prior proposals this time because the process is much shorter.) Here's round 1:

In round 2, e proposes to v and is rejected. In round 3, e proposes to x and is accepted, giving the following final stable matching:

Problem 4. Let $G = (X \sqcup Y, E)$ be a bipartite graph satisfying |N(S)| > |S| for each nonempty $S \subset X$. Prove that every edge of G belongs to some matching that saturates X.

Solution. Let $\{x,y\} \in E$. Consider the subgraph of G with x,y, and all edges incident to x and y removed, G'. Let $S \subset G'$ and let N(S) be the neighbors of S in G and N'(S) be the neighbors of S in G'. Note that we have only removed one vertex from Y so we have removed at most one neighbor of S from the set of neighbors in G. Thus, $|N'(S)| + 1 \ge |N(S)|$. Thus, as we know that |N(S)| > |S|, we have that |N'(S)| + 1 > |S| so, as these are integers, $|N'(S)| \ge |S|$. Thus, by Hall's theorem, we know that there is a matching of G' that saturates $X \setminus \{x\}$. By the way we have constructed G', we know that this matching will not contain x or y. Thus, we know that we can take this matching in G and add $\{x,y\}$ to it such that we have a matching saturating X in G containing $\{x,y\}$. Thus, as our choice of edge was arbitrary, we know that for any edge in E, we can find a matching that saturates X containing it.

Problem 5. Complete the proof of König's theorem that we started in class.

Solution. We will consider each case in turn:¹

b=y:

- (i) If there is an M-alternating path starting from an unsaturated vertex of X and passing through $e, y \in Q$ by construction, so $b \in Q$, so f is covered by Q.
- (ii) If there is not an M-alternating path starting from an unsaturated vertex of X and passing through e, we know that a must be saturated (otherwise we would in fact have such a path). Thus, there is some edge $h = \{a, c\} \in M$. We claim there is not an M-alternating path starting from an unsaturated vertex of X and passing through h. If there were, it would start with an edge not in M going from a vertex in X to a vertex in Y, and every edge in M would be used going from Y to X, so it would go through h by going first to e and then e, so the path could then be extended by adding e and then e to create an alternating path from an unsaturated vertex in e passing through e, which contradicts our assumption for this case. Thus, e is an edge in e that is not part of such a path, so e is e by construction, so e is covered by e.

a=x:

- (i) If there is an M-alternating path starting from an unsaturated vertex of X and passing through e, we know that b must be saturated by M (otherwise we have an M-augmenting path by adding f to the alternating path, which is guaranteed to end at x/a for reasons similar to the ones discussed above). Thus, there is some edge $h = \{c, b\} \in M$. Note that by adding f and h to the M-alternating path from an unsaturated vertex of X passing through e, we get such a path passing through h, so h0 by construction. Thus, h1 is covered by h2.
- (ii) If there is not an M-alternating path starting from an unsaturated vertex of X and passing through e, then $x \in Q$ by construction, so $a \in Q$, so f is covered by Q.

We have shown that all edges are covered by Q, so Q is in fact a vertex cover, and we have proven König's theorem.

¹See Campuswire post #63 for the beginning of the proof being assumed in this problem.

Problem 6. A deck with mn cards with m values and n suits consists of one card for each value in each suit. The cards are dealt into an $n \times m$ array. Prove that there is a set of m cards, one in each column, having distinct values.

Solution. We can create a bipartite graph $G = (X \sqcup Y, E)$, with each vertex in X representing a value, and each vertex in Y representing a column. For every card, create an edge between it's value and the column it's in and allow for multiple edges between vertices. Because there n rows, each column must have n cards and therefore it's corresponding vertex must have a degree of n. Likewise, because there are n cards for every value, each value vertex must have a degree of n. So we constructed a n-regular bipartite graph and by Hall's Theorem, there must be a perfect matching. This perfect matching is a set of m cards each in a unique column.