The homomorphism problem: Fourier and L^1 -group algebras

Lecture 1: Fourier algebras

Nico Spronk (Waterloo)

Banach algebras and locally compact groups May 3, 2009, University of Leeds

Thanks:

LMS, EPSRC, School of Maths (Leeds) NSERC (Canada), Hung-Le Pham

The Fourier-Stieltjes and Fourier algebras

G – loc. comp. grp.

$$\mathsf{B}(G) = \{ \langle \pi(\cdot)\xi | \eta \rangle : \pi : G \to \mathcal{U}(\mathcal{H}_{\pi}) \text{ w*-cts rep'n} \}$$

$$u \in \mathsf{B}(G) \Leftrightarrow u \in \mathcal{CB}(G) \text{ with}$$
 $\|u\|_{\mathsf{B}} = \sup \left\{ \left\| \int_{G} uf \right\| : f \in \mathsf{L}^{1}(G), \sup_{\pi} \left\| \int_{G} f\pi \right\|_{\mathcal{B}(\mathcal{H}_{\pi})} \le 1 \right\}$ $< \infty$, Banach algebra [Eymard]

$$\mathsf{A}(G) = \{ \langle \lambda(\cdot) f | g \rangle : f, g \in \mathsf{L}^2(G), \lambda \text{ left reg. rep'n} \}$$
– closed ideal in $\mathsf{B}(G)$, spectrum $\Phi_{\mathsf{A}(G)} \cong G$

$$A(G)^* \cong VN(G) = \lambda(G)''$$

 $B(G)^* \cong W^*(G) = \varpi(G)'', B(G) \cong C^*(G)^*$

H – another loc. comp. grp.

Ques. Struc. homo's $\varphi : A(G) \to B(H)$? – Will give partial answer.

Affine maps

 $C \subset H$ coset if

$$r, s, t \in C \quad \Rightarrow \quad rs^{-1}t \in C$$

Prop. C coset $\Leftrightarrow C^{-1}C, CC^{-1}$ groups; in which case $C = sC^{-1}C = CC^{-1}s$, $\forall s \in C$.

 $\alpha:C\subset H\to G$, for C a coset, $r,s,t\in C$, is

- affine: $\alpha(rs^{-1}t) = \alpha(r)\alpha(s)^{-1}\alpha(t)$ $\Leftrightarrow \alpha_0 : s_0^{-1}C \to G$, fixed $s_0 \in C$ $\alpha_0(s_0^{-1}t) = \alpha(s_0)^{-1}\alpha(t)$ homo.
- anti-affine: $\alpha(rs^{-1}t) = \alpha(t)\alpha(s)^{-1}\alpha(r)$ $\Leftrightarrow \alpha_0 : s_0^{-1}C \to G$, fixed $s_0 \in C$ $\alpha_0(s_0^{-1}t) = \alpha(s_0)^{-1}\alpha(t)$ anti-homo.

Prop. $C \subset H$ open coset

 $\alpha: C \subset H \to G$ cts. affine (anti-affine)

$$\Rightarrow \varphi_{\alpha} : \mathsf{B}(G) \to \mathsf{B}(H)$$

$$\varphi_{\alpha}u(s) = u \circ \alpha(s) \mathbf{1}_{C}(s), \ s \in H$$

is a bdd. homo. Also, α affine $\Rightarrow \varphi_{\alpha}$ c.b.

Pf. Suppose, C subgroup, so α (anti-)homo.

$$1_C(t) = \langle \pi_C(t) \delta_C | \delta_C \rangle$$

 $\pi_C: G \to \mathcal{U}(\ell^2(G/C))$ – left quasi-reg. rep'n

$$u = \langle \pi(\cdot)\xi|\eta\rangle, \, \xi,\eta\in\mathcal{H}_{\pi}, \,\, t\in H$$

$$\varphi_{\alpha}u(t) = \langle \pi \circ \alpha(t)\xi | \eta \rangle \, \mathbf{1}_{C}(t) \Big(= \left\langle \pi \circ \check{\alpha}(t)\bar{\xi} | \bar{\eta} \right\rangle \mathbf{1}_{C}(t) \Big)$$

 $\pi \circ \alpha \ (\pi \circ \check{\alpha}) : C \to \mathcal{U}(\mathsf{L}^2(G)) \ \mathsf{cts.} \ \mathsf{rep'n}.$

 $v \mapsto v|_C : \mathsf{B}(H) \twoheadrightarrow \mathsf{B}(C)$ dualises

$$\mathsf{L}^1(C) \hookrightarrow \mathsf{L}^1(H) \leadsto \mathsf{C}^*(C) \hookrightarrow \mathsf{C}^*(H)$$

 $\varphi_{\alpha}^*: W^*(H) \to \pi(G)'', \ \varphi_{\alpha}^*(a) = (\pi \circ \alpha)''(M_{1_C}a)$ is c.b. if α homo., since M_{1_C} expectation

If C coset, fix s_0 in C. For $\varphi_{\alpha}u(t)$ we get

$$\left\langle \pi \circ \alpha_0(s_0^{-1}t)\xi | \pi \circ \alpha(s_0)\eta \right\rangle 1_C(t) = s_0 * [\varphi_{\alpha_0}u](t)$$

If α affine dual is c.b. too.

Mixed piecewise affine maps

 $\Omega(H)$ -coset ring, $\Omega_o(H)$ - open coset ring

$$\alpha: Y \subset H \to G$$
 is $(m.)p.a.$ if
 (i) $Y = \bigcup_{i=1}^n Y_i, Y_i \in \Omega(H)$

(ii) $\forall i \; \exists \; \mathrm{coset} \; C_i \supset Y_i \; \mathrm{and} \; \mathrm{affine} \; \mathrm{or} \; \\ \mathrm{anti-affine} \; \alpha_i : C_i \to G \; \mathrm{s.t.} \; \alpha_i|_{Y_i} = \alpha|_{Y_i}. \; \\ \mathrm{If} \; \mathrm{each} \; \alpha_i \; \mathrm{affine}, \; \alpha \; p.a. \; \\$

Prop. $\alpha: Y \subset H \to G$ cts. m.p.a., $Y_i \in \Omega_o(H)$ $\Rightarrow \varphi_\alpha: B(G) \to B(H), \ \varphi_\alpha u(s) = u \circ \alpha(s) 1_Y(s)$ bdd. homo.; c.b. if α p.a.

Pf. Factor φ_{α}

$$\mathsf{B}(G) \to \ell^1(n) \widehat{\otimes} \mathsf{B}(H), \ u \mapsto \sum_{i=1}^n \delta_i \otimes \varphi_{\alpha_i} u$$
$$\to \mathsf{B}(H), \qquad x \mapsto \sum_{i=1}^n (\chi_i \otimes m_{Y_i}) x$$

 $m_{Y_i}u = 1_{Y_i}u$. Note: $\left\|1_{Y_i}\right\|_{\mathsf{B}} = 1 \Leftrightarrow Y_i \text{ coset. } \square$

The role of graphs

$$\alpha: Y \subset H \to G, \Gamma_{\alpha} = \{(s, \alpha(s)): s \in Y\} \subset H \times G$$

Lem. (i) α homo. $\Leftrightarrow \Gamma_{\alpha}$ subgrp.

- (ii) α affine $\Leftrightarrow \Gamma_{\alpha}$ coset.
- (iii) α p.a. $\Leftrightarrow \Gamma_{\alpha} \in \Omega(H \times G)$

Pf. (ii) Γ_{α} coset $\Rightarrow \forall r, s, t \in Y$

$$(rs^{-1}t,\alpha(r)\alpha(s)^{-1}\alpha(t))$$

$$= (r,\alpha(r))(s,\alpha(s))^{-1}(t,\alpha(t)) \in \Gamma_{\alpha}.$$

 Γ_{α} graph $\Rightarrow \alpha(r)\alpha(s)^{-1}\alpha(t) = \alpha(rs^{-1}t)$.

- (i) Γ_{α} is a coset containing e.
- (iii) Fussier.

 $\mathsf{PA}_c(H,G) = \{\alpha : Y \subset H \to G | \mathsf{cts.}, \ Y_i \in \Omega_o(H) \}$

Ques. Reasonable characterisation Γ_{α} , α m.p.a.?

Thm. ([Cohen] G, H abel., [Host] G alm. abel.) [Ilie-S] G amen. \Rightarrow

$$\operatorname{Hom}_{cb}(\mathsf{A}(G),\mathsf{B}(H)) \leftrightsquigarrow \mathsf{PA}_c(H,G)$$

$$\varphi \mapsto \lambda_G^{-1} \circ \varphi^* \circ \varpi_H \text{ on } Y = \operatorname{supp} \varphi(\mathsf{A}(G)))$$

$$\varphi_\alpha \hookleftarrow \alpha$$

Pf. (\mapsto) $\Phi_{\mathsf{A}(G)} = \lambda_G(G) \Rightarrow \varphi^* \circ \varpi_H(H) \subset \lambda_G(G)$, so $\alpha \exists$.

[Effros-Ruan] $A(G \times G) \cong A(G) \widehat{\otimes} A(G)$ (op. proj. tens. prod.) [Losert] $A(G \times G) \neq A(G) \otimes^{\gamma} A(G)$, G not a.a.

[Ruan] G amen. \Rightarrow A $(G \times G)$ has b.a.d. (w_i) Arrange $w_i \in P(G \times G)$, $\lim_i w_i(s,t) = \begin{cases} 1 & s = t \\ 0 & s \neq t \end{cases}$

 $\varphi \text{ c.b. } \Rightarrow \varphi \otimes \text{id} : \mathsf{A}(G) \widehat{\otimes} \mathsf{A}(G) \to \mathsf{B}(H) \widehat{\otimes} \mathsf{A}(G)$ $\tilde{w}_i := \varphi \otimes \text{id}(w_i) \in \mathsf{B}(H) \widehat{\otimes} \mathsf{A}(G) \hookrightarrow \mathsf{B}(H \times G) \hookrightarrow \mathsf{B}(H_d \times G_d)$

For $(s,t) \in H \times G$

$$\tilde{w}_i(s,t) = w_i(\alpha(s),t) \xrightarrow{i} \begin{cases} 1 & t = \alpha(s) \\ 0 & t \neq \alpha(s) \end{cases}$$
$$= 1_{\Gamma_{\alpha}}(s,t)$$

Bdd. nets in B $(H_d \times G_d)$: w*-conv. = ptwise.

$$\Rightarrow 1_{\Gamma_{\alpha}} \in \mathsf{B}(H_d \times G_d)$$

$$\Rightarrow$$
 [Host] $\Gamma_{\alpha} \in \Omega(H \times G)$

 \Rightarrow (Lem. above) α p.a.

More effort \Rightarrow arrange $Y_i \in \Omega_0(H) \& \alpha$ cts. \square

Notes: (i) φ c.pos. $\Leftrightarrow \alpha$ homo.

(ii) φ c.cont've $\Leftrightarrow \alpha$ affine

Cor. G amen., H connect.

 \Rightarrow all φ in $Hom_{cb}(A(G), B(H))$ c.c.

Cor. G amen.

 $\mathsf{Hom}_{cb}(\mathsf{A}(G),\mathsf{A}(H)) \leftrightsquigarrow \{\alpha \in \mathsf{PA}_c(H,G) : \mathsf{proper}\}$

Prop. [Forrest-Runde] $\iota(s) = s^{-1}$ φ_{ι} c.b. $\Leftrightarrow G$ is virt. abel. $\Leftrightarrow \iota$ p.a.

Thm. [Ilie-Stokke] G amen.

 $\mathsf{Hom}^{w^*}_{cb}(\mathsf{B}(G),\mathsf{B}(H)) \leftrightsquigarrow \{\alpha \in \mathsf{PA}_c(H,G) : \mathsf{open}\}$

Ex. (i) translations

(ii) homeo. between open subgrps.

 $\mathsf{B}(G) \stackrel{\mathsf{rest.}}{\longrightarrow} \mathsf{B}(G_0)$

- (iii) $B(G/N) \hookrightarrow B(G)$
- (iv) $\alpha: H \to G$ p.a. homeo.

 $\Rightarrow \varphi_{\alpha} : \mathsf{B}(G) \to \mathsf{B}(H) \text{ w*-cts. c. isomor.}$

Thm. [Pham]

G amen., $\varphi : \mathsf{B}(G) \to \mathsf{B}(H)$ c. isomor.

 $\Rightarrow \varphi = \varphi_{\alpha}, \ \alpha : H \to G$ p.a. homeo., & H amen.

Spine of B(H)

 (η_{ap}, H^{ap}) – almost periodic comp'n, τ_H - topol.

$$\mathcal{T}_{ap}(H) = \left\{ egin{array}{ll} \exists \ \mathrm{l.c.grp.} \ G, \ \mathrm{cts.} \ \mathrm{homo.} \ \eta : H
ightarrow G \ \mathrm{s.t.} \ au = \eta^{-1}(au_G)
ight\} \ \& \ au_{ap} \subset au \end{array}
ight.$$

 $\tau_1 \vee \tau_2 = \delta^{-1}(\tau_1 \times \tau_2), \ \delta(s) = (\eta_1(s), \eta_2(s))$ $\mathcal{T}_{ap}(H)$ semi-lattice, unit τ_{ap} , ideal τ_G

Thm. Let $A_{\tau}(H) = A(G) \circ \eta_{\tau}$ if $\tau = \eta^{-1}(\tau_G)$

- (i) $A_{\tau_1}(H) \cap A_{\tau_2}(H) = \{0\} \text{ if } \tau_1 \neq \tau_2 \text{ in } T_{ap}(H)$
- (ii) $A_{\tau_1}(H)A_{\tau_2}(H) \subset A_{\tau_1 \vee \tau_2}(H)$
- (iii) $A^*(H) = \ell^1 \bigoplus_{\tau \in \mathcal{T}_{ap}(H)} A_{\tau}(H)$ $\mathcal{T}_{ap}(H)$ -graded subalg. of B(H)

Thm. (i) Idem(B(H)) = $\{u : u^2 = u\} \subset A^*(H)$ (ii) $\alpha \in MPA_c(H,G) \Rightarrow \varphi_\alpha(A(G)) \subset A^*(H)$

Note. $(\varepsilon_{A^*}, \Phi_{A^*(H)})$ semi-top'l comp'n of H $(\varepsilon_{A^*}, \Phi_{A^*(H)}) \leq (\varepsilon_e, G^e)$ - sub. to Eberlein comp'n

Conj. $A^*(H)$ largest regular subalg. in B(H)

When G not amenable

Thm. [Leinert, Bozejko-Fendler] G discrete, $E \subset G$ inf. free set $\Rightarrow 1_E \in \mathsf{M}_{cb}\mathsf{A}(G)$.

Consequence. $u \mapsto 1_E u : A(G) \to A(G)$ c.b. $m_{1_E} = \varphi_{\alpha}, \ \alpha : E \hookrightarrow G$ $E \not\in \Omega(G)$ since $1_E \not\in B(G)$ $\Rightarrow \alpha$ not m.p.a.

 m_{1_E} does extend to Hom(B(G),B(G))

A discretisation procedure

Lem. [Pham] Let $\varphi \in \operatorname{Hom}(A(G), B(H))$ $Y = \operatorname{supp} \varphi(A(G)), \ \alpha = \lambda_G^{-1} \circ \varphi^* \circ \varpi_H \text{ so } \varphi = \varphi_\alpha.$ Then $\varphi_\alpha(A(G_d)) \subset B(H_d).$ φ pos. (i.e. pres'ves pos. def.) $\Rightarrow \varphi_\alpha|_{A(G_d)}$ pos.

Pf. $A_c(G_d)$ dense in $A(G_d)$.

Typ. elem. of $A_c(G)_{\|\cdot\|_{\mathsf{R}} \leq 1}$:

$$u = \left\langle \lambda_{G_d}(\cdot) \sum_{i=1}^n \alpha_i \delta_{s_i} | \sum_{i=1}^n \beta_i \delta_{t_i} \right\rangle$$

wh. $\sum_{i=1}^n |\alpha_i|^2 = \sum_{i=1}^n |\beta_i|^2 \le 1$, each $s_i, t_i \in G$

Let $(\gamma_k)_{k=1}^m \subset \mathbb{C}$, $e_H \in (x_k)_{k=1}^m \subset H$ sat'y

$$\left\| \sum_{k=1}^{m} \gamma_k \varpi_H(x_k) \right\|_{\mathsf{C}^*(H_d)} \le 1. \tag{*}$$

Dual pairing:

$$\left| \sum_{k=1}^{m} \gamma_k \varphi(u)(x_k) \right| = \left| \sum_{x_k \in Y} \sum_{i,j=1}^{n} \gamma_k \alpha_i \overline{\beta}_j \delta_{s_i t_j^{-1}}(\alpha(x_k)) \right|$$

Let V nbhd. of e be so

$$VV^{-1} \cap \{s_i^{-1}\alpha(x_k)t_j\} = \{e\}.$$

Let

$$v = \frac{1}{m(V)} \left\langle \lambda_G(\cdot) \sum_{i=1}^n \alpha_i 1_{s_i V} | \sum_{i=1}^n \beta_i 1_{t_i V} \right\rangle \in \mathsf{A}(G)$$

so $||v||_{\mathsf{B}} \le 1$.

$$\|\varphi\| \ge \|\varphi(v)\|_{\mathsf{B}} \ge \left| \sum_{\substack{k=1\\x_k \in Y}}^m \gamma_k u \circ \alpha(x_k) \right|$$
$$= \left| \sum_{\substack{x_k \in Y\\i,j=1}}^n \gamma_k \alpha_i \bar{\beta}_j \delta_{s_i t_j^{-1}}(\alpha(x_k)) \right|$$

Take sup over (*), on right; then $\sup_{u \in A_c(G_d), ||u||_{\mathsf{B}} \le 1}$ $\Rightarrow ||\varphi|| \ge ||\varphi_\alpha|_{\mathsf{A}(G_d)}||.$

Positivity is checked similarly.

Thm. [Pham]

 $\varphi \in \text{Hom}(A(G), B(H))$ pos., $\varphi = \varphi_{\alpha}$ $\Rightarrow Y$ open subgp. & α homo. or anti-homo.

Sketch. φ homo. $\Rightarrow \varphi(\varpi_H(H)) \subset \lambda_G(G)$ φ pos. $\Rightarrow \varphi^*$ pos. $\Rightarrow \varphi^*(\varpi_H(e_H)) = \lambda_G(e_G)$ Also $\varphi(u)(s^{-1}) = \overline{\varphi(u)(s)} = \overline{u \circ \alpha(s)} = u(\alpha(s)^{-1})$ $\Rightarrow Y^{-1} = Y \& \alpha(s^{-1}) = \alpha(s)^{-1}$.

Claim. $s, t \in Y$, $\{\alpha(st), \alpha(ts)\} = \{\alpha(s)\alpha(t), \alpha(t)\alpha(s)\}$. For $\alpha, \beta \in \mathbb{C}$ let

$$a_{\alpha,\beta} = \alpha \varpi_H(s) + \beta \varpi_H(t) + \bar{\alpha} \varpi_H(s^{-1}) + \bar{\beta} \varpi_H(t^{-1}).$$

Kadison's ineq.: $\varphi^*(a_{\alpha,\beta})^2 \ge \varphi^*(a_{\alpha,\beta}^2)$. (‡)

Trick: $\operatorname{Re}[\alpha^2 a + \beta^2 b + \alpha \bar{\beta} c + \bar{\alpha} \beta d] \ge 0 \ \forall \alpha, \beta \text{ in } \mathbb{C}$

 $\Rightarrow a, b, c, d = 0$

Expand out $\varphi^*(a_{\alpha,\beta})^2 - \varphi^*(a_{\alpha,\beta}^2) \ge 0$ in VN(G).

Conseq. $\alpha^{-1}(e_G)$ cl. norm. subgrp. in Y

$$H_0 := Y/\alpha^{-1}(e_G) \rightsquigarrow \alpha_0 : H_0 \rightarrow G, G_0 := \alpha(Y)$$

 $\rho := \varphi_{\alpha_0}|_{\mathsf{A}(G_{0,d})} : \mathsf{A}(G_{0,d}) \rightarrow \mathsf{B}(H_{0,d}),$
 $\alpha \text{ bijec. } \Rightarrow \rho(\mathsf{A}(G_{0,d})) \subset \mathsf{A}(H_{0,d})$

For a,b in $\mathrm{span}\lambda_{H_{0,d}}(H_{0,d})$ compute that

$$\rho^*(ab) + \rho^*(ba) = \rho^*(a)\rho^*(b) + \rho^*(b)\rho^*(a)$$

– Jordan *-homo., extend to $VN(H_{0,d})$ [Kadison] ρ^* isomet'c & onto, hence ρ isomet'c [Walter] $\Rightarrow \alpha_0$ isom. or anti-isom.

$$\Rightarrow \alpha$$
 homo. or anti-homo.

(‡) Kadison's inequality:

 ψ pos. on C*-alg. \mathcal{A} , $aa^*=a^*a$ in \mathcal{A} $\tilde{\psi}=\psi|_{\overline{\mathrm{alg}(a,a^*)}}$ is c.p. as $\overline{\mathrm{alg}(a,a^*)}$ abelian. Thus $\tilde{\psi}$ is 2-pos. and Kadison ineq.

$$\psi(a)^*\psi(a) = \tilde{\psi}(a)^*\tilde{\psi}(a) \ge \tilde{\psi}(a^*a) = \psi(a^*a)$$

is easy.

Thm. [Pham] $\varphi \in \text{Hom}(A(G), B(H))$ cont've $\Rightarrow \varphi = \varphi_{\alpha}$, α affine or anti-affine

Pf.
$$Y = \operatorname{supp}\varphi(A(G)), \ \alpha = \lambda_G^{-1}\circ\varphi^*\circ\varpi_H$$

Fix s_0 in Y, $\alpha_0 : s_0^{-1}Y \to G$, $\alpha_0(s_0^{-1}t) := \alpha(s_0)^{-1}\alpha(t)$ $\alpha_0(e_H) = e_G \& \varphi_{\alpha_0} \in \text{Hom}(A(G), B(G)) \text{ cont.}$ If $u \in A(G)$ pos.

$$||u||_{\mathsf{B}} \ge ||\varphi_{\alpha_0}(u)||_{\mathsf{B}} \ge u \circ \alpha_0(e_H) = u(e_G) = ||u||_{\mathsf{B}}$$

 $\Rightarrow \varphi_{\alpha_0}(u) \Rightarrow \varphi \text{ pos.}$

Cor. $\varphi \in \text{Hom}(A(G), A(H))$ $\varphi(A(G))$ sep. points $\Rightarrow \varphi$ onto

Cor. $\varphi : A(G) \to A(H)$ cont. isom. $\Rightarrow \varphi = \varphi_{\alpha}$, α affine of anti-affine homeo.

Gen. form of cont've homo.:

$$\mathsf{A}(G) \stackrel{\mathsf{trans.}}{\longrightarrow} \mathsf{A}(G) \stackrel{\mathsf{rest.}}{\longrightarrow} \mathsf{A}(G_0) \stackrel{\cong}{\longrightarrow} \mathsf{A}(H_0/K)$$
 $\hookrightarrow \mathsf{A}(H_0) \stackrel{\hookrightarrow}{\hookrightarrow} \mathsf{A}(H) \stackrel{\mathsf{trans.}}{\longrightarrow} \mathsf{A}(H)$

Questions

- (i) General form of $\varphi \in \text{Hom}(A(G), B(H))$?
- (i') When G amenable?
- (ii) General form of $\varphi \in \text{Hom}_{cb}(A(G), B(G))$, when G not amenable?
- (ii') When G a non-abelian free group?
- (ii₀) What are $Idem(M_{ch}A(G))$?

[Forrest-Runde] Contractive $u \in Idem(M_{cb}A(G))$ is $u = 1_C$, where C is a coset.

References

- M. Ilie, N. Spronk, Completely bounded homomorphisms of the Fourier algebras, *J. Funct. Anal.*, 225 (2005), 480-499.
- M. Ilie, N. Spronk, The spine of a Fourier-Stieltjes algebra, *Proc. Lond. Math. Soc.*, 94 (2007), 273-301.
- M. Ilie, R. Stokke, Weak*-continuous homomorphisms of Fourier-Stieltjes algebras, *Proc. Camb. Phil. Soc.*, 145 (2008), 107-121.
- H. Pham, Contractive homomorphisms on Fourier algebras, *Bull. Lond. Math. Soc.*, to appear.