Grundlagen der Raumwissenschaften

BA Al Mobile und räumliche Systeme

# Grundlagen der Raumwissenschaften

Einführung

Technische Hochschule Deggendorf









Prof. Dr. Roland Zink roland.zink@th-deg.de



#### Interdisziplinarität

Software

Raumkompetenz

Kreativität







Programmierung

Entwicklung







Informationen zum Kurs, Prüfung, usw.



Wissen



Übung

#### Lernziele



- Sie können wichtige Begriffe aus der Informatik und Raumwissenschaft kontextbezogen definieren.
- Sie kennen die Schnittstellen zwischen Informatik und Raumwissenschaft.
- Sie kennen aktuelle Entwicklungen des Geoweb und können kreativ neue Anwendungen entwickeln.
- Sie sind befähig, verschiedene qualitative und quantitative Methoden der Raumerfassung anzuwenden, um damit selbstständig Räume erfassen und erkunden zu können.
- Sie können räumliche Phänomene mathematisch und kartographisch abbilden, klassifizieren und in Ansätzen raumplanerisch tätig werden.
- Sie kennen die Grundlagen der Gestaltung, Modellierung und Wahrnehmung von Räumen in der Informatik und der Raumplanung.

# Kursprinzipien

Das Seminar beruht auf folgenden Prinzipien:

- Flexibilität: Diskussionen, Fragen und Einmischungen sind jeder Zeit erwünscht!
- Workshop und Gruppenarbeit: Wir entwickeln gemeinsam Ideen und sind kreativ bei der Bewältigung von Fragestellungen!
- **Teamcoaching**: Wir helfen uns gegenseitig mit Feedback und geben sachliche Kritik!
- Kurzpräsentation: Wichtige Themen werden zuhause aufbereitet und gegenseitig präsentiert.

#### Kursinformationen



- Studiengang "Angewandte Informatik"
- Vertiefungsrichtung "Mobile und räumliche Systeme"
- 4 SWS
- 5 Ects
- Prüfungsleistung: Klausur
- Donnerstag 9.45 bis 11.15 Uhr und 11.30 bis 13.00 Uhr
- Raum: E107 (GIS-Labor)
- Informationsmaterial: Moodle (iLearn)

raumwiss1516

#### Kursinformationen



# Klausur und Prüfungsstoff

Klausurdauer: 90min

# Prüfungsstoff

- Skripte (PP-Folien, im Besondern "W-Folien")
- Im Kurs besprochene Sachverhalte
- Text zu den einzelnen Kapiteln (Literatur)
  - → Texte werden in Moodle eingestellt und als Hausaufgabe zum Lesen aufgeben

# Kurstermine



|    |                            | Datum    | Thema                                                       |       |
|----|----------------------------|----------|-------------------------------------------------------------|-------|
| 1  |                            | 08.10.15 | Einführung: Interpretationen von Raum                       | RZ/FS |
| 2  | Grundlagen                 | 15.10.15 | Raumkategorisierungen                                       | FS    |
| 3  |                            | 22.10.15 | Erfassung von Räumen / GPS                                  | RZ    |
| 4  | Virtuelle Welten           | 29.10.15 | Virtuelle Welten / Cyberspace / WWW                         | FS    |
| 5  |                            | 05.11.15 | Raum in Computerspielen und Immersion                       | FS    |
| 6  | Raum und<br>Visualisierung | 12.11.15 | Möglichkeiten der Modellierung (NetLogo) und Visualisierung | RZ    |
| 7  |                            | 19.11.15 | Virtuelle Globen / Digitale Geovisualisierung               | RZ    |
| 8  | Raum und Bilder            | 26.11.15 | Raum und neue Medien                                        | FS    |
| 9  |                            | 03.12.15 | Bildauswertung und –interpretation                          | FS    |
| 10 | CAD und 3D                 | 10.12.15 | (Geo-)Modellieren in 3D-Räumen (Sketchup)                   | RZ    |
| 11 |                            | 17.12.15 | Photogrammetrische Raumrekonstruktion (Agisoft)             | RZ    |
|    |                            |          | 24.12.2015 und 31.12.2016 Weihnachtsferien                  |       |
| 12 | Fallbeispiele              | 07.01.16 | Raum und Energie / Raumplanung                              | RZ    |
| 13 |                            | 14.01.16 | Raum und Gesellschaft                                       | FS    |
| 14 |                            | 21.01.16 | Ausblick und Klausurvorbereitung                            | RZ/FS |

#### Literatur



- → Beck, K. (2006): Computervermittelte Kommunikation im Internet. München.
- → Ehlers, M. & Schiewe, J. (2012): Geoinformatik. Darmstadt.
- → Günzel, St. (2009): Raumwissenschaften. Frankfurt am Main.
- → Günzel, St. (Hrsg.) (2010): Raum, ein interdisziplinäres Handbuch. Stuttgart.
- → Gebhardt, H. et al. (2012): Geographie: Physische Geographie und Humangeographie. Heidelberg.
- → Knox, P. & Marston, S. (2008): Humangeographie. Heidlberg.
- → Mehler-Bicher, A., Reiß, M. & Steiger, L. (2011): Augmented Reality, Theorie und Praxis. München.
- → Myrach, Th. (Hrsg) (2008): Virtuelle Welten? Die Realität des Internets. Bern.
- → Priebs, A. (2013): Raumordnung in Deutschland. Braunschweig.

#### Inhalt

- Was ist ein Raum?
- 2. Beispiel Georaum
- 3. Beispiel Raum in der Informatik
- 4. Folgerungen für den Kurs
- 5. Fallbeispiel: Hochwasser 2013







# Gruppenarbeit

Recherchieren Sie im Internet welche verschiedenen Räume es gibt und in welchen Zusammenhängen von Räumen gesprochen wird!

Halten Sie "gefundene Räume" an der Tafel fest und versuchen Sie diese zu strukturieren!

# **Erste Annäherung**



# "Raum ist ein Grundkonzept menschlicher Anschauung und Orientierung."

in Günzel 2010, S. 1

Raumerfahrung entstand durch die Wechselwirkung zwischen Mensch und Umwelt (haptische und visuelle Erfahrungen)

→ Anschauungsraum



# Gruppenarbeit

Wie lassen sich die Räume kategorisieren und beschreiben? (10 min)

- → Bilden Sie hierzu Teams (2 Personen) und befassen Sie sich mit einem Raum Ihrer Wahl näher!
- → Gestalten Sie eine kurze Übersicht über Ihren Begriff "Raum" und präsentieren Sie kurz Ihre Ergebnisse!

#### Raumwissenschaft



#### **Ursprung ist die Vermessung also Geometrie**

- → Bezug zur Euklidischen Geometrie (Naturwissenschaften)
- → Bezug zu Immanuel Kant: drei Abmessungen

#### Bis ins 19. Jhdt. Besteht das Verständnis

- → Euklid: "Elemente der Geographie"
- → Raumwissenschaften = apriorische Wissenschaft, d.h. eine Voraussetzung für "alles" (Leitbild jedweder Logik, Günzel 2008, S. 8)

#### Ende des 19. Jhdt.

- → Hermann von Helmholtz: Axiome der Geometrie begründen sich auf der Fähigkeit der Menschen, sie wahrnehmen zu können
- → Geographie bildet sich aus: nicht die Bestimmung eines r\u00e4umlichen oder k\u00f6rperlichen Apriori sondern Analyse des empirischen Raumes (→ Naturraum und Kulturraum)

#### Raumwissenschaft



#### Anfang 20. Jhdt. (Weltkriegen)

- → Instrumentalisierung der politischen Geographie zu Geopolitik: "Volk ohne Raum"
- → Entwicklung der Anthropogeographie von einer Raumwissenschaft zu einer Gesellschaftswissenschaft, nicht mehr der Raum wird untersucht, sondern die handelnden Subjekte, die untereinander agieren: Raum wird ein soziales Konstrukt

#### Ab den 1970er/80er Jahren

- → Spatial turn
- → Edward Soja: die Aufmerksamkeit nicht mehr nur auf Geschichte (Zeit) und Soziales (Subjekt) sondern auch auf Raum

#### Allerdings bleibt umstritten:

- → Edward Soja: Wahrgenommener Raum = physischer Raum
- → Henri Lefebvre: "Die Produktion des Raums", Raum ist Wirkung und Folge gesellschaftlicher Verhältnisse

#### Raumwissenschaft



#### Heute

- → Raumwissenschaften im Plural
- → Sehr viele verschiedene Definitionen
- → Vorteil der räumlichen Betrachtung: Erfassung von Konstellationen, Einmaligkeit und Häufigkeit (qualitativ und quantitativ)

#### **Ausblick**

→ Beherrschung des Raums?

#### **Grundlagen der Raumwissenschaften**



http://www.trainerscity.com/startrek/wgc\_media/shipssource/Star-Trek-gallery-ships-1719.jpg





# Übung

Lesen Sie den Beitrag "Mediengeographie: Für eine Geomedienwissenschaft (2009), Seite 9 bis 14!

- Was sind Vorzüge des Geoweb?
- Wo verbergen sich Potenziale vom Geoweb?

https://books.google.de/books?hl=de&lr=&id=i2OlaNlc3H8C&oi=fnd&pg=PA9&dq=Mediengeographie&ots=hdG8onRQ1G&sig=2GnvH6VCVFf-A89fRvBLB5Q4ilw#v=onepage&q=Mediengeographie&f=false





Klimatologe

Land-See-Windsystem

"Am Strand"

Wirtschaftswissenschaftler

**Tourismus** 

**Biologe** Artenreichtum Oceanograph Meeresspiegelanstieg Soziologe Strandnutzer Geologe Sandbeschaffenheit

Was könnte einen Forscher "am Strand" interessieren?



# Vorgehensweise der Raumwissenschaft

Erfassen der Ereignisse mit der Lage im Raum



U



# Vorgehensweise der Raumwissenschaft







#### Vorgehensweise der Raumwissenschaft













# Begrifflichkeiten

| Begriff  | Erklärung                                                                                                                                       |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Raum     | In einer ersten Definition verstanden als Ausdehnung oder ein Gebiet der Erdoberfläche.  → Sehr abstrakt  → unterschiedliche Räume (Abgrenzung) |
| Standort |                                                                                                                                                 |
| Ort      |                                                                                                                                                 |

## Raum: Abgrenzung, Fragestellung und Maßstabsebenen





Sichthöhe 3km → Lokale Strukturen (Siedlungsstruktur)

# Raum: Abgrenzung, Fragestellung und Maßstabsebenen global regional lokal Wechsel der Maßstabsebene und der Perspektive (top-down & bottom up) Variation der Problem- und Fragestellung Zunehmende Detailschärfe Zunehmende Abstraktion

Die räumliche Abgrenzung, Formulierung der Fragestellung und Wahl der Maßstabsebene erfolgen nutzerspezifisch und problemorientiert!

# Begrifflichkeiten

| Begriff  | Erklärung                                                                                                                                       |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Raum     | In einer ersten Definition verstanden als Ausdehnung oder ein Gebiet der Erdoberfläche.  → Sehr abstrakt  → unterschiedliche Räume (Abgrenzung) |
| Standort | Bedeutet eine bestimmte Lage im Raum (gewöhnlich auf der Erdoberfläche)  → Ebenfalls abstrakt (Wo?)                                             |
| Ort      |                                                                                                                                                 |

#### **Standort**



### Der Standort bezeichnet eine Position

- innerhalb eines Referenzsystems (z.B. geometrischen Bezugssystems) oder
- im geographischem Sinne eine Position auf der Erdoberfläche (z.B. geographisches Koordinatensystem)

→ Standort ist folglich eine Lagebestimmung oder Ortsangabe.

# Begrifflichkeiten



| Begriff  | Erklärung                                                                                                                                                                                                                                |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Raum     | In einer ersten Definition verstanden als Ausdehnung oder ein Gebiet der Erdoberfläche.  → Sehr abstrakt  → unterschiedliche Räume (Abgrenzung)                                                                                          |
| Standort | Bedeutet eine bestimmte Lage im Raum (gewöhnlich auf der Erdoberfläche)  → Ebenfalls abstrakt (Wo?)                                                                                                                                      |
| Ort      | Bedeutet ebenfalls eine bestimmte Lage im Raum, die jedoch nicht abstrakt formuliert ist, sondern bereits bestimmte Eigenschaften besitzt ("Örtlichkeit")  → Durch das Beifügen von Informationen zu einem Standort wird daraus ein Ort. |

# Bauphysikalisch: ein Gebäude





/gl. www.fanlager.de

→ Das Gebäude erhält Identität/Information und wird damit zum Ort!





#### Web3D

Dreidimensionale Darstellung im WWW

#### Virtuelle Realität

Computergenerierte, physisch nicht existente Wirklichkeit

## **Augmented Reality**

Computergestützte Erweiterung der Realitätswahrnehmung

# Beispiele zur Verwendung des Begriffes Raum in der

**Informatik** 

#### Cyberspace

Kybernetischer Raum bzw.
Datenraum

# **Tupel**

Geordnete Reihe von Elementen (Zustands- & Mengenraum)

#### **World Wide Web**

System von elektronischen Hypertexten

#### Immersion = Eintauchen in die künstliche Welt

Interaktion mit einem System



www.wikipedia.org / www.3dfocus.co.uk

#### **Virtuelle Welten**

# SECOND LSECOND LSECOND

http://www.tourismuszukunft.de/wp-content/uploads/2010/12/Logo.jpg

#### **Virtuelle Landschaft**



http://www.zvw.de/media.media.196adee6-a554-4b67-8866-bfb6c079e031.normalized.jpeg

# Virtuelle Realität?

# **Augmented Reality**





#### Folgerungen für die Geographie und die Informatik

- → Erkennen der Zusammenhänge (Mensch-Umwelt) (geo)
- → Entwicklung von Software/Hardware zum zeitnahen und schnellen Informationsabruf (info)
- → Entwicklung von Algorithmen zur Darstellung und Beschreibung der Zusammenhänge (info)
- → Digitale Datenanalyse (info)
- → Interpretation der Ergebnisse (geo)





Zahlreiche Berufsmöglichkeiten an der Schnittstelle zwischen Geographie und Informatik

# **→** Geoinformatik





# Räume am Beispiel der Hochwasserkatastrophe





Informieren Sie sich auf der Homepage des DLR über die Flutkatastrophe 2013 in Deggendorf und laden Sie die Geoinformation zur betroffenen Fläche (.kmz-File) in Google Earth.

Beschreiben Sie verschiedene "Räume" anhand der Flutkatastrophe 2013 in Deggendorf und grenzen Sie diese in Google Earth ab.

Diskutieren Sie, wie die "Räume" erfasst werden könnten!





Prof. Dr. Roland Zink Fakultät Elektrotechnik und Medientechnik

Tel: +49 - 8551 - 91 764 - 28

Email: roland.zink@th-deg.de

Edlmairstr. 6+8 94469 Deggendorf

www.th-deg.de/