CELLS CAPABLE OF DIFFERENTIATING INTO HEART MUSCLE CELLS

Patent number:	WO0148151	Also published as:
Publication date:	2001-07-05	EP1254952 (A
Inventor:	UMEZAWA AKIHIRO; HATA JUN-ICHI; FUKUDA KEIICHI; OGAWA SATOSHI; SAKURADA KAZUHIRO; GOJO SATOSHI; YAMADA YOJI	CA2395950 (A
Applicant:	KYOWA HAKKO KOGYO KK (JP)	Cited documents:
Classification:		T XP002938938
- international:	A61K33/44; A61K35/28; A61K38/18; A61P9/04;	XP002938939
	A61P9/06; C12N5/06; C12N5/08; C12N15/12;	XP002938940
	C12P21/08; C12Q1/02; A61K33/44; A61K35/28;	XP002938941
	A61K38/18; A61P9/00; C12N5/06; C12N5/08;	XP002938942
	C12N15/12; C12P21/08; C12Q1/02; (IPC1-7):	
	A61K38/18; C12N15/12; C12N5/06; A61K33/44;	
	A61K35/28; A61P9/04; A61P9/06; C12N5/08;	
	C12P21/08; C12Q1/02	
- european:		
Application number	: WO2000JP09323 20001227	
Priority number(s):	JP19990372826 19991228; WO2000JP01148	

Report a data error he

Abstract of WO0148151

Methods of isolating, purifying, culturing and differentiation-inducing cells which are capable of differentiating into heart muscle cells; a method of proliferating cells which are capable of differentiating into heart muscle cells and a method of regulating the differentiation thereof into heart muscle cells by using various cytokines, transcriptional factors, etc.; a method of acquiring a surface antigen specific to cells which are capable of differentiating into heart muscle cells; a method of acquiring a gene encoding this surface antigen; a method of acquiring an antibody specific to the above surface antigen; a method of acquiring a protein and a gene participating in the proliferation of cells which are capable of differentiatin into heart muscle cells and differentiation thereof into heart muscle cells; remedies for various heart diseases with the use of cells which are capable of differentiating into heart muscle cells; and a method of inducing the differentiation of various cells (nerve cells, liver cells, fat cells, skeletal muscle cells, vascula endothelial cells, osteoblasts, etc.) and tissues by using cells which are capable of differentiating into heart muscle cells.

Data supplied from the esp@cenet database - Worldwide

(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001 年7 月5 日 (05.07.2001)

PCT

(10) 国際公開番号 WO 01/48150 A1

(51) 国際特許分類7: C12N 5/06, 5/10, 15/09, A61K 31/203, 35/28, 38/19, 38/39, 38/45, 48/00, A61P 9/10, 41/00, C07K 16/28, C12P 21/08, C12Q 1/02, 1/48, G01N 33/577

(21) 国際出願番号:

PCT/JP00/07741

(22) 国際出願日:

2000年11月2日(02.11.2000)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願平PCT/JP00/01148

特願平11/372826 1999年12月28日(28.12.1999)

2000年2月28日 (28.02.2000) JP

(71) 出願人 /米国を除く全ての指定国について): 協和酸酵工業株式会社 (KYOWA HAKKO KOGYO CO., LTD.) [JP/JP]; 〒100-8185 東京都千代田区大手町一丁目6番1号 Tokyo (JP).

(72) 発明者; および

(75) 発明者/出願人 (米国についてのみ): 梅澤明弘 (UMEZAWA, Akihiro) [JP/JP]; 〒270-0014 千葉県松戸市小金316 Chiba (JP). 秦 順一 (HATA, Jun-ichi) [JP/JP]; 〒141-0031 東京都品川区西五反田2-13-10 Tokyo (JP). 福田恵一 (FUKUDA, Keiichi) [JP/JP]; 〒176-0006 東京都練馬区栄町3-2 Tokyo (JP). 小川 聡 (OGAWA, Satoshi) [JP/JP]; 〒157-0066 東京都世田谷

区成城5-12-15 Tokyo (JP). 桜田一洋 (SAKURADA, Kazuhiro) [JP/JP]; 〒194-8533 東京都町田市旭町3丁目6番6号 協和醱酵工業株式会社 東京研究所内 Tokyo (JP). 五條理志 (GOJO, Satoshi) [JP/JP]; 〒350-0414 埼玉県入間郡越生町越生東2-7-3-303 Saitama (JP). 山田陽史 (YAMADA, Yoji) [JP/JP]; 〒194-8533 東京都町田市旭町3丁目6番6号 協和醱酵工業株式会社 東京研究所内 Tokyo (JP).

- (81) 指定国 (国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

添付公開書類:

- 国際調査報告書
- 明細書とは別に規則13の2に基づいて提出された 生物材料の寄託に関する表示。

2文字コード及び他の略語については、定期発行される各PCTガゼットの巻頭に掲載されている「コードと略語のガイダンスノート」を参照。

(54) Title: CELLS CAPABLE OF DIFFERENTIATING INTO HEART MUSCLE CELLS

┥(54) 発明の名称: 心筋細胞への分化能を有する細胞

(57) Abstract: A methods of isolating, purifying and culturing cells capable of differentiating into heart muscle cells and inducing the differentiation thereof; a method of proliferating cells capable of differentiating into heart muscle cells and a method of controlling the differentiation thereof into heart muscle cells with the use of various cytokines, transcription factors, etc.; a method of acquiring a surface antigen specific to cells capable of differentiating into heart muscle cells; a method of acquiring a gene encoding this surface antigen; a method of acquiring an antibody specific to this surface antigen; a method of acquiring a protein and a gene participating in the proliferation of cells capable of differentiating into heart muscle cells and the differentiation thereof into heart muscle cells; remedies for various heart diseases with the use of cells capable of differentiating into heart muscle cells; and a method of inducing the differentiation of various cells and tissues such as nerve cells, liver cells, fat cells, skeleton muscle cells, vascular endothelial cells and ostoblasts by using cells capable of differentiating into heart muscle cells.

/続葉有/

(57) 要約:

本発明は、心筋細胞への分化能を有する細胞の単離、精製、培養、分化誘導法に関する。また本発明は、各種サイトカイン、転写因子などを用いた、心筋細胞への分化能を有する細胞の増殖方法および心筋細胞への分化を制御する方法に関する。本発明はさらに、心筋細胞への分化能を有する細胞に特異的な表面抗原の取得方法、該表面抗原をコードする遺伝子の取得方法、該表面抗原特異的な抗体の取得方法、心筋細胞への分化能を有する細胞の増殖および心筋細胞への分化に関与する蛋白質および遺伝子の取得方法に関する。本発明はまた、心筋細胞への分化能を有する細胞を用いた各種心臓疾患の治療薬に関する。本発明はさらに心筋細胞への分化能を有する細胞を用いて、神経系細胞、肝細胞、脂肪細胞、骨格筋細胞、血管内皮細胞、骨芽細胞など様々な細胞、組織を分化誘導する方法に関する。

明細書

心筋細胞への分化能を有する細胞

技術分野

本発明は、心筋細胞への分化能を有する細胞の単離、精製、培養、分化誘導法に関する。また本発明は、各種サイトカイン、転写因子などを用いた、心筋細胞への分化能を有する細胞の増殖方法および心筋細胞への分化を制御する方法に関する。本発明はさらに、心筋細胞への分化能を有する細胞に特異的な表面抗原の取得方法、該表面抗原をコードする遺伝子の取得方法、該表面抗原特異的な抗体の取得方法、心筋細胞への分化能を有する細胞の増殖および心筋細胞への分化に関与する蛋白質および遺伝子の取得方法に関する。本発明はまた、心筋細胞への分化能を有する細胞を用いた各種心臓疾患の治療薬に関する。

背景技術

心筋細胞は、出生前は自律拍動しながら活発に細胞分裂を行っている。しかし、出生と同時にその分裂能は喪失し、肝細胞のように再び細胞分裂能を獲得することはなく、また骨格筋細胞とも異なり衛星細胞といった未分化な前駆細胞を持つこともない。従って、心筋梗塞、心筋炎または老化等に伴い心筋細胞が壊死すると、生体内では残存心筋細胞の細胞分裂ではなく細胞の肥大がおきる。心肥大は初期においては生理的適応であるが、また共存する心線維芽細胞の増殖による間質の線維化と相まって心臓自体の拡張機能の低下、さらには収縮機能の低下へと結びつき心不全を呈するようになる。心筋梗塞等による心不全のこれまでの治療は心収縮力の増強、血管拡張薬による心臓の圧負荷・容量負荷の軽減、利尿薬による血流量の減少等の対症療法を中心に行われてきた。これに対し、心臓移植は重症心不全に対する根本的な治療法であるが、臓器提供者の不足、脳死判定の難しさ、拒絶反応、医療費の高騰等の問題から心臓移植が一般的な医療に普及するのは簡単ではない。実際、心臓病は我が国の死亡原因の第3位となっており(厚生自書平成10年)、失われた心筋細胞を再生することができれば医療福祉の大きな前進につながると考えられる。

現在までに、心筋細胞の性質を保存した細胞株としては、心房性ナトリウム利尿ホルモンのプロモーターに SV40 の large T 抗原を組み換えて作製したトランスジェニックマウスの心房に生じた腫瘍から株化された AT-1 細胞があげられる[Science, 239; 1029-1038 (1988)]。しかしながら、該細胞は in vivo に移植すると腫瘍を形成するため、細胞移植には適さないという問題がある。そこで、このような背景のもと、心筋を再構築するため以下の方法が考えられた。

1つ目の方法は、心筋細胞以外の細胞を心筋細胞に変換する方法である。これは、線維芽細胞に MyoD を導入すると骨格筋細胞に変換できることから類推された。これまでに、マウスの胎児性癌細胞である P 1 9 細胞での成功例は示されているものの [Cell Struc. & Func., 21: 101-110 (1996)]、非ガン細胞での成功例は報告されていない。

2つ目の方法は、心筋細胞に再び分裂能を付与する方法である。これは、胎児期 に心筋が拍動しながら分裂できる現象に基づいている。しかしながら、これまでに 成功例は報告されていない。

3つ目の方法は、未分化な幹細胞から心筋細胞を誘導する方法である。すでに、 胚性幹細胞 (ES 細胞) から心筋細胞を誘導できることが示されているが、胚性幹細 胞自身を成体に移植するとカルシノーマを形成すること、抗原性などの問題が存在 する[Nature Biotechnology, 17, 139-142 (1999)]。

従って、胚性幹細胞を現実の医療へと応用するためには、少なくとも心筋前駆細胞あるいは、心筋細胞を純粋に精製する技術が不可欠である。抗原性の問題はクローン化の技術により解決できる可能性は示唆されているが、煩雑な操作を必要とすることから一般的な医療への応用は容易ではない。

中絶胎児から未分化な細胞である心筋前駆細胞を取得して移植に用いる方法も考えられており、動物を用いた実験では心筋細胞として有効に機能することが知られている[Science, 264, 98-101 (1994)]。しかしながら、この方法で大量の心筋前駆細胞を取得することは困難であり、倫理の観点からも一般的な医療への応用は容易ではない。

成体骨髄には造血系幹細胞および血管幹細胞以外に間葉系幹細胞が存在し、間葉

系幹細胞からは骨細胞、軟骨細胞、腱細胞、靱帯細胞、骨格筋細胞、脂肪細胞、ストローマ細胞、肝臓 oval 細胞が分化誘導できることが報告されている[Science, 284, 143-147 (1999); Science, 284, 1168-1170 (1999)]。一方、最近、マウス成体の骨髄から取得した細胞から、心筋細胞が分化誘導できることを見い出した[J. Clinical Investigation, 103, 10-18 (1999)]。該報告は患者自身から骨髄液を取得して、in vitroで細胞培養および薬剤処理を行った後に、心臓の障害部位へ移植する細胞治療が現実的な医療として可能になることを示唆している[J. Clinical Investigation, 103, 591-592 (1999)]。しかしながら、該報告は、成体マウスの骨髄から樹立した不死化細胞の一部が心筋細胞に分化できることを示したものにすぎない。また、成体骨髄中の心筋細胞に分化する能力を有する細胞の特性の同定、該細胞を増殖する方法、該細胞から効率的に心筋細胞に分化誘導する方法については明らかでなかった[J. Clinical Investigation, 103, 591-592 (1999)]。

生体内の組織から目的の細胞を取得する方法として、各種表面抗原を認識する抗体が用いられている。例えば、未熟な造血幹細胞では CD 3 4 + / CD 3 8 - / H L A - D R - / CD 9 0 (T h y - 1) + の特性を有していること、また、造血幹細胞が分化するに従い、CD 3 8 が発現し CD 9 0 (T h y - 1) が消失することが知られている[蛋白質核酸酵素 Vol. 45, No13, 2 0 5 6 - 2 0 6 2 (2 0 0 0)]。血管内皮細胞では、CD 3 4、CD 3 1、F 1 k - 1、T i e - 2、E - セレクチン等のマーカーを発現しており[分子心血管病 V o 1. 1, N o . 3, 2 9 4 - 3 0 2 (2 0 0 0)]、骨髄の間葉系幹細胞では CD 9 0、CD 1 0 5、CD 1 4 0 等のマーカーを発現している[Science, 284, 143-147 (1999); Science, 284, 1168-1170 (1999)]。しかしながら、心筋や血管内皮細胞を誘導できる幹細胞の表面マーカーについては明らかにされていない。

発明の開示

現在の心疾患治療より安全かつ確実な治療が望まれている。そこで、骨髄細胞中より心筋細胞への分化能を有する骨髄細胞を選別し、心筋細胞への分化能を有する骨髄細胞の増殖または分化をコントロールすることは、骨髄由来の細胞を用いた心筋の再生治療の開発に有用である。そのために、骨髄中の細胞から心筋細胞への分

化能を有する細胞を特定して、該細胞の増殖または分化に働くサイトカインまたは 転写因子を同定することが必要である。

本発明者は上記問題点を開発すべく鋭意研究し、以下の結果を得た。すなわち、 マウス骨髄由来の細胞を1細胞レベルにまず分離を行い、多数の細胞株を取得した。 これら細胞株を一つ一つ、5ーアザシチジン処理を行うことで心筋形成能を有する 細胞株を複数取得した。次に選られた細胞株を、GFP(Green Fluorescent Protein)を発 現するレトロウイルスベクターを用いて標識し、1つの細胞を蛍光顕微鏡下で追跡 することで、心筋細胞への分化能を有する細胞が、心筋細胞および脂肪細胞の少な くとも 2 種類の異なる細胞を分化誘導できる多分化能(Purulipotent)を持った幹細胞 であることを見い出した。さらに、該幹細胞は通常の培養条件下ではすでに報告さ れている5-アザシチジンだけでなく、DMSO (dimethyl sulfoxide) などの他のゲノ ム DNA の脱メチル化剤の投与によっても、確率的 (stochastic) に心筋細胞、脂肪細 胞および骨格筋細胞の系列に分化することを見出し、ゲノム DNA の脱メチル化が骨 髄由来の細胞からの心筋細胞への分化誘導に有効であることを明らかにした。また FGF-8, ET1, Midkine, BMP4の4種類のサイトカインをそれぞ れ5ーアザシチジンと組み合わせて添加することで骨髄由来の細胞に心筋特異的な 遺伝子である ANP, cTnl の発現を促進できることを見出した。 同様に Nkx2.5, GATA4 の2種類の転写因子をウイルスベクターを用いて骨髄由来細胞に強制発現を行った 後、5-アザシチジン処理を行うことで、心筋細胞への分化が約50倍促進できる ことを見出した。また骨髄由来の細胞を心筋細胞の細胞外基質をコートした培養皿 で培養することで、骨髄由来の細胞に心筋特異的な遺伝子である ANP, cTnI の発現を 特異的に促進できることを見出した。さらに、骨髄由来の細胞を心筋由来の初代培 養細胞と共培養を行うことで骨髄由来の細胞から心筋の形成が約10倍促進するこ とを見出した。また、Nkx2.5, GATA4の2種類の転写因子をウイルスベクターを用 いて骨髄由来細胞に強制発現させることと、心筋細胞との共培養を組み合わせるこ とで、約500倍心筋への分化が促進することを見出した。

次に移植実験により、骨髄由来の細胞の分化能力を検討した。まずマウス成体心

臓に移植することで、骨髄由来の細胞が心筋と血管に分化することを見出した。さらに成体マウスの筋肉に移植することで骨格筋を形成できることを見出した。またマウス胚盤胞に移植すると、誕生したマウスの中枢神経系、肝臓、心臓で移植した細胞由来の組織が形成された。これらの結果は、本発明で見出した骨髄由来の細胞が今まで知られていた骨髄中の造血幹細胞や間葉系幹細胞とは異なり、外胚葉系、中胚葉系ならびに内胚葉系の3胚葉すべてに分化できる全能性を有していることを示している。

次に本発明で見出した骨髄由来の細胞を造血系細胞の表面抗原 CD 3 4、CD 1 1 7、CD 1 4、CD 4 5、CD 9 0、S c a - 1、Ly 6 c、Ly 6 gを認識する抗体、血管内皮細胞の表面抗原 F 1 k - 1、CD 3 1、CD 1 0 5、CD 1 4 4 を認識する抗体、間葉系細胞の表面抗原 CD 1 4 0 を認識する抗体、インテグリン CD 4 9 b、CD 4 9 d、CD 2 9、CD 4 1 を認識する抗体、マトリックス受容体 CD 5 4、CD 1 0 2、CD 1 0 6、CD 4 4 を認識する抗体で該幹細胞の表面抗原の発現を解析することで、今までに知られていない全く新しい発現形態を示していることを見出し、本発明を完成させた。

すなわち、本発明は以下の(1)~(150)を提供するものである。

- (1) 骨髄または臍帯血から単離され、心筋細胞に分化する能力を有する細胞。
- (2) 細胞が、少なくとも心筋細胞、脂肪細胞、骨格筋細胞、骨芽細胞に分化する能力を有する多分化能幹細胞である、上記(1)記載の細胞。
- (3) 細胞が、少なくとも心筋細胞、血管内皮細胞に分化する能力を有する多分 化能幹細胞である、上記(1)記載の細胞。
- (4) 細胞が、少なくとも心筋細胞、脂肪細胞、骨格筋細胞、骨芽細胞、血管内皮細胞に分化する能力を有する多分化能幹細胞である、上記(1)記載の細胞。
- (5) 細胞が、少なくとも心筋細胞、脂肪細胞、骨格筋細胞、血管内皮細胞、骨芽細胞、神経系細胞、肝細胞に分化する能力を有する多分化能幹細胞である、上記 (1)記載の細胞。
- (6) CD 3 4 陰性、CD 1 1 7 陰性、CD 1 4 4 陰性および CD 1 4 0 陽性である、

上記(1)または(2)記載の細胞。

(7) CD 3 4 陽性、CD 1 1 7 陽性および CD 1 4 0 陽性である、上記 (1) または (3) 記載の細胞。

- (8) CD 3 4 陽性、CD 1 1 7 陽性、CD 1 4 4 陽性および CD 1 4 0 陽性である、上記(1)または(3)記載の細胞。
- (9) CD 3 4 陰性、CD 1 1 7 陽性、CD 1 4 4 陰性および CD 1 4 0 陽性である、上記(1)、(4)または(5)記載の細胞。
- (10) CD 117陽性および CD 140陽性である、上記(1)、(4)または(5) 記載の細胞。
- (11) CD 34陰性、CD 117陰性、CD 14陽性、CD 45陰性、CD 90陰性、Flk-1陰性、CD 31陰性、CD 105陰性、CD 144陰性、CD 140陽性、CD 49 b陽性、CD 49 d陰性、CD 29陽性、CD 54陽性、CD 102陰性、CD 106 陽性およびCD 44陽性である、上記(2)記載の細胞。
- (12) CD 3 4 陽性、CD 1 1 7 陽性、CD 1 4 陰性、CD 4 5 陰性、CD 9 0 陰性、F1k-1陰性、CD 3 1 陰性、CD 1 0 5 陰性、CD 1 4 4 陽性、CD 1 4 0 陽性、CD 4 9 b 陰性、CD 4 9 d 陰性、CD 2 9 陽性、CD 5 4 陰性、CD 1 0 2 陰性、CD 1 0 6 陰性およびCD 4 4 陽性である、上記(3)記載の細胞。
- (13) Hoechst 33342を取り込まない、上記(1)記載の細胞。
- (14) 上記(1) \sim (13)のいずれか1項に記載の細胞から誘導される心筋細胞のみに分化誘導される心筋前駆細胞。
- (15) 心室筋細胞に分化する能力を有する、上記(1) \sim (14) のいずれか 1項に記載の細胞。
- (16) 洞結節細胞に分化する能力を有する、上記(1)~(14)のいずれか 1項に記載の細胞。
- (17) 骨髄または臍帯血がほ乳動物由来のものである、上記(1)~(16)のいずれか1項に記載の細胞。
- (18) ほ乳動物がヒト、ラットおよびマウスから選ばれるものである、上記 (17)記載の細胞。

(19) 細胞が、マウス骨髄由来多分化能幹細胞 BMSC(FERM BP-7043)である、 上記 (1) に記載の細胞。

- (20) 染色体 DNA の脱メチル化により心筋細胞に分化する能力を有する、上記 (1)~(19)のいずれか 1 項に記載の細胞。
- (21) 染色体 DNA の脱メチル化が、デメチラーゼ、5 ーアザシチジンおよびジメチルスルフォキシド (DMSO) からなる群から選ばれる少なくとも1種によるものであることを特徴とする、上記(20)記載の細胞。
- (22) デメチラーゼが、配列番号1記載で表されるアミノ酸配列を有するデメ チラーゼである、上記(21)記載の細胞。
- (23) 胎児の心臓発生領域で発現している因子により心筋細胞への分化が促進される上記(1)~(19)のいずれか1項に記載の細胞。
- (24) 胎児の心臓発生領域で発現している因子がサイトカイン、接着分子、ビタミン、転写因子および細胞外基質からなる群から選ばれる少なくとも1種であることを特徴とする、上記(23)記載の細胞。
- (25) 胎児の心臓発生段階において心筋細胞への分化に働く因子により心筋細胞への分化が促進される上記(1)~(19)いずれか1項に記載の細胞。
- (26) 胎児の心臓発生段階において心筋細胞への分化に働く因子がサイトカイン、接着分子、ビタミン、転写因子および細胞外基質からなる群から選ばれる少なくとも1種であることを特徴とする、上記(25)記載の細胞。
- (27) サイトカインが血小板由来増殖因子 (PDGF) である、上記 (24) または (26) 記載の細胞。
- (28) PDGF が配列番号 3 または 5 で表されるアミノ酸配列を有する PDGF である、上記 (27) 記載の細胞。
- (29) サイトカインが繊維芽細胞増殖因子8 (FGF-8) である、上記 (24) または (26) 記載の細胞。
- (30) FGF-8 が配列番号 6 4 で表されるアミノ酸配列を有する FGF-8 である、上記 (29) 記載の細胞。
- (31) サイトカインがエンドセリン1(ET1)である、上記(24)または(26) ·

記載の細胞。

(32) ET1 が配列番号66で表されるアミノ酸配列を有するET1である、上記(31)記載の細胞。

- (33) サイトカインがミドカイン(Midkine)である、上記 (24) または (26) 記載の細胞。
- (34) ミドカインが配列番号68で表されるアミノ酸配列を有するミドカインである、上記(33)記載の細胞。
- (35) サイトカインが骨形成因子 4 (BMP-4)である、上記 (24) または (26) 記載の細胞。
- (36) BMP-4 が配列番号70で表されるアミノ酸配列を有する BMP-4 である、上記(35)記載の細胞。
- (37) 接着分子がフィブロネクチンである、上記(24)または(26)記載の細胞。
- (38) ビタミンがレチノイン酸である、上記(2^4) または(26) 記載の細胞。
- (39) 転写因子が、Nkx2.5/Csx、GATA4、MEF-2A、MEF-2B、MEF-2C、MEF-2D、dHAND、eHAND、TEF-1、TEF-3、TEF-5 および MesP1 からなる群から選ばれるものである、上記(24)または(26)記載の細胞。
- (40) Nkx2.5/Csx が配列番号 9 で表されるアミノ酸配列を有する Nkx2.5/Csx である、上記 (39) 記載の細胞。
- (41) GATA4 が配列番号11で表されるアミノ酸配列を有する GATA4 である、上記(39)記載の細胞。
- (42) MEF-2A が配列番号13で表されるアミノ酸配列を有する MEF-2A である、上記(39)記載の細胞。
- (43) MEF-2B が配列番号15で表されるアミノ酸配列を有する MEF-2B である、上記(39)記載の細胞。
- (44) MEF-2C が配列番号17で表されるアミノ酸配列を有する MEF-2C である、上記(39)記載の細胞。

(45) MEF-2D が配列番号19で表されるアミノ酸配列を有する MEF-2D である、上記(39)記載の細胞。

- (46) dHAND が配列番号21で表されるアミノ酸配列を有する dHAND である、上記(39)記載の細胞。
- (47) eHAND が配列番号23で表されるアミノ酸配列を有する eHAND である、上記(39)記載の細胞。
- (48) TEF-1 が配列番号25で表されるアミノ酸配列を有する TEF-1 である、上記(39)記載の細胞。
 - (49) TEF-3 が配列番号 27 で表されるアミノ酸配列を有する TEF-3 である、上記 (39) 記載の細胞。
 - (50) TEF-5 が配列番号29で表されるアミノ酸配列を有する TEF-5 である、上記(39)記載の細胞。
 - (51) MesP1 が配列番号62で表されるアミノ酸配列を有する MesP1 である、上記(39)記載の細胞。
 - (52) 細胞外基質が心筋細胞由来の細胞外基質であることを特徴とする上記(24)または(26)記載の細胞。
 - (53) 線維芽細胞増殖因子-2 (FGF-2) により心筋細胞への分化が抑制される上記(1)記載の細胞。
 - (54) FGF-2が配列番号7または8記載のアミノ酸配列を有するFGF-2である、上記(53)記載の細胞。
 - (55) 心臓に移植することにより心筋細胞に分化する能力を有する上記(1) $\sim (19)$ のいずれか 1 項に記載の細胞。
 - (56) 心臓に移植することにより血管に分化する能力を有する上記(1)~(19)のいずれか1項に記載の細胞。
 - (57) 胚盤胞に移植することで、心筋に分化する能力を有する上記(1)~(19)のいずれか1項に記載の細胞。
- (58) 心筋細胞と共培養を行うことで、心筋に分化する能力を有する上記(1)~(19)のいずれか1項に記載の細胞。

(59) 核内受容体 PPAR- γ を活性化因子により脂肪細胞に分化する能力を有する上記(1)~(19)のいずれか1項に記載の細胞。

- (60) 核内受容体 PPAR-γの活性化因子がチアゾリジオン骨格を有する化合物であることを特徴とする上記(59)記載の細胞。
- (61) チアゾリジオン骨格を有する化合物がトログリタゾン、ビオグリタゾン、ロジグリタゾンからなる群から選ばれる少なくとも1種であることを特徴とする上記(60)記載の細胞。
- (62) 胚盤胞に移植することで、神経系細胞に分化する能力を有する上記(1) $\sim (19)$ のいずれか 1 項に記載の細胞。
- (63) 脳または脊髄に移植することで、神経系細胞に分化する能力を有する上記 $(1) \sim (19)$ のいずれか 1 項に記載の細胞。
- (64) 胚盤胞に移植することで、肝細胞に分化する能力を有する上記 (1) ~ (19) のいずれか1項に記載の細胞。
- (65) 肝臓に移植することで肝細胞に分化する能力を有する上記(1)~(1 9)のいずれか1項に記載の細胞。
- (66) 染色体 DNA の脱メチル化剤を用いて、骨髄由来の細胞から心筋を形成する方法。
- (67) 染色体 DNA の脱メチル化剤が、デメチラーゼ、5 ーアザシチジンおよび DMSO からなる群から選ばれる少なくとも1種であることを特徴とする、上記(6)記載の方法。
- (68) デメチラーゼが、配列番号1記載のアミノ酸配列で表されるデメチラーゼである、上記(67)記載の方法。
- (69) 胎児の心臓発生領域で発現している因子を用いることを特徴とする、骨髄由来の細胞から心筋を形成する方法。
- (70) 胎児の心臓発生領域で発現している因子がサイトカイン、接着分子、ビタミン、転写因子および細胞外基質からなる群から選ばれる少なくとも1種であることを特徴とする、上記(69)記載の方法。
- (71) 胎児の心臓発生段階において心筋細胞への分化に働く因子を用いること

を特徴とする、骨髄由来の細胞から心筋を形成する方法。

(72) 胎児の心臓発生段階において心筋細胞への分化に働く因子がサイトカイン、接着分子、ピタミン、転写因子および細胞外基質からなる群から選ばれる少なくとも1種であることを特徴とする、上記(71)記載の方法。

- (73) サイトカインが PDGF である、上記 (70) または (72) 記載の方法。
- (74) PDGF が配列番号3または5記載のアミノ酸配列で表されるPDGF である、上記(63)記載の方法。
- (75) サイトカインが繊維芽細胞増殖因子8 (FGF-8) である、上記 (70) または (72) 記載の方法。
- (76) FGF-8 が配列番号 6 4のアミノ酸配列で表される FGF-8 である、上記(75) 記載の方法。
- (77) サイトカインがエンドセリン 1(ET1)である、上記(70) または(72) 記載の方法。
- (78) ET1 が配列番号66で表されるアミノ酸配列を有するET1である、上記(77)記載の方法。
- (79) サイトカインがミドカイン(Midkine)である、上記(70)または(72) 記載の方法。
- (80) ミドカインが配列番号 68で表されるアミノ酸配列を有するミドカイン である、上記 (79) 記載の方法。
- (81) サイトカインが骨形成因子 4 (BMP-4)である、上記 (70) または (72) 記載の方法。
- (82) BMP-4 が配列番号70で表されるアミノ酸配列を有する BMP-4 である、上記(81)記載の方法。
- (83) 接着分子がフィブロネクチンである、上記 (70) または (72) 記載 の方法。
- (84) ビタミンがレチノイン酸である、上記(70)または(72)記載の方法。
- (85) 転写因子が、Nkx2.5/Csx、GATA4、MEF-2A、MEF-2B、MEF-2C、MEF-2D、

dHAND、eHAND、TEF-1、TEF-3、TEF-5 および MesP1 からなる群から選ばれる、上記(70)または(72)記載の方法。

- (86) Nkx2.5/Csx が、配列番号 9 で表されるアミノ酸配列を有する Nkx2.5/Csx である、上記(85)記載の方法。
- (87) GATA4が、配列番号11で表されるアミノ酸配列を有する GATA4である、上記(85)記載の方法。
- (88) MEF-2A が、配列番号 13 で表されるアミノ酸配列を有する MEF-2A である、上記 (85) 記載の方法。
- (89) MEF-2Bが、配列番号15で表されるアミノ酸配列を有するMEF-2Bである、上記(85)記載の方法。
- (.90) MEF-2Cが、配列番号17で表されるアミノ酸配列を有するMEF-2Cである、上記(85)記載の方法。
- (91) MEF-2D が、配列番号19で表されるアミノ酸配列を有する MEF-2D である、上記 (85) 記載の方法。
- (92) dHANDが、配列番号21で表されるアミノ酸配列を有するdHANDである、上記(85)記載の方法。
- (93) eHAND が、配列番号23で表されるアミノ酸配列を有する eHAND である、上記(85)記載の方法。
- (94) TEF-1が、配列番号25で表されるアミノ酸配列を有するTEF-1である、上記(85)記載の方法。
- (95) TEF-3が、配列番号27で表されるアミノ酸配列を有するTEF-3である、上記(85)記載の方法。
- (96) TEF-5が、配列番号29で表されるアミノ酸配列を有するTEF-5である、上記(85)記載の方法。
- (97) MesP1 が、配列番号62で表されるアミノ酸配列を有する MesP1 である、上記(85)記載の方法。
- (98) 細胞外基質が心筋細胞由来の細胞外基質であることを特徴とする上記(70) または (72) 記載の方法。

(99) 核内受容体 PPAR-γを活性化因子により骨髄由来の細胞から脂肪細胞を 形成する方法。

- (100) 核内受容体 PPAR-γの活性化因子がチアゾリジオン骨格を有する化合物であることを特徴とする上記(99)記載の方法。
- (101) チアゾリジオン骨格を有する化合物がトログリタゾン、ビオグリタゾン、ロジグリタゾンからなる群から選ばれる少なくとも1種であることを特徴とする上記(100)記載の方法。
- (102) 染色体 DNA の脱メチル化剤を有効成分として含有することを特徴とする心筋形成剤。
- (103) 染色体 DNA の脱メチル化剤がデメチラーゼ、5-アザシチジンおよび DMSO からなる群から選ばれる少なくとも1種である、上記(102)記載の心筋 形成剤。
- (104) デメチラーゼが、配列番号 1 記載のアミノ酸配列で表されるデメチラーゼである、上記 (103) 記載の心筋形成剤。
- (105) 胎児の心臓発生領域で発現している因子を有効成分として含有する心 筋形成剤。
- (106) 胎児の心臓発生領域で発現している因子がサイトカイン、接着分子、 ビタミン転写因子および細胞外基質からなる群から選ばれる少なくとも1種である ことを特徴とする、上記(105)記載の心筋形成剤。
- (107) 胎児の心臓発生段階において心筋細胞への分化に働く因子を有効成分 として含有することを特徴とする心筋形成剤。
- (108) 胎児の心臓発生段階において心筋細胞への分化に働く因子がサイトカイン、接着分子、ビタミン、転写因子および細胞外基質からなる群から選ばれる少なくとも1種であることを特徴とする、上記(107)記載の心筋形成剤。
- (109) サイトカインが PDGF である、上記 (106) または (108) 記載 の心筋形成剤。
- (110) PDGF が配列番号3または5記載のアミノ酸配列で表される、上記(109)記載の心筋形成剤。

(111) サイトカインが繊維芽細胞増殖因子8 (FGF-8) である、上記(106) または(108) 記載の心筋形成剤。

- (112) FGF-8 が配列番号 64のアミノ酸配列で表される FGF-8 である、上記 (111) 記載の心筋形成剤。
- (113.) サイトカインがエンドセリン1(ET1)である、上記(106)または(108)記載の心筋形成剤。
- (114) ET1 が配列番号 6 6 で表されるアミノ酸配列を有する ET1 である、上記 (113) 記載の心筋形成剤。
- (115) サイトカインがミドカイン(Midkine)である、上記(106)または(108)記載の心筋形成剤。
- (116) ミドカインが配列番号68で表されるアミノ酸配列を有するミドカインである、上記(115)記載の心筋形成剤。
- (117) サイトカインが骨形成因子 4 (BMP-4)である、上記 (106) または (108) 記載の心筋形成剤。
- (118) BMP-4 が配列番号 70 で表されるアミノ酸配列を有する BMP-4 である、 上記 (117) 記載の心筋形成剤。
- (119) 接着分子がフィブロネクチンである、上記(106)または(108) 記載の心筋形成剤。
- (120) ビタミンがレチノイン酸である、上記(106)または(108)記載の心筋形成剤。
- (121) 転写因子が、Nkx2.5/Csx、GATA4、MEF-2A、MEF-2B、MEF-2C、MEF-2D、dHAND、eHAND、TEF-1、TEF-3、TEF-5 および MesP1 からなる群から選ばれる、上記(106)または(108)記載の心筋形成剤。
- (122) Nkx2.5/Csx が、配列番号9記載のアミノ酸配列で表されるNkx2.5/Csxである、上記(121)記載の心筋形成剤。
- (123) GATA4 が、配列番号11記載のアミノ酸配列で表される GATA4 である、上記(121)記載の心筋形成剤。
- (124) MEF-2A が、配列番号13記載のアミノ酸配列で表される MEF-2A で

- ある、上記(121)記載の心筋形成剤。
- (125) MEF-2Bが、配列番号15記載のアミノ酸配列で表される MEF-2Bである、上記(121)記載の心筋形成剤。
- (126) MEF-2C が、配列番号 17記載のアミノ酸配列で表される MEF-2C である、上記 (121) 記載の心筋形成剤。
- (127) MEF-2D が、配列番号19記載のアミノ酸配列で表される MEF-2D である、上記(121)記載の心筋形成剤。
- (128) dHAND が、配列番号 21記載のアミノ酸配列で表される dHAND である、上記 (121)記載の心筋形成剤。
- (129) eHAND が、配列番号 23記載のアミノ酸配列で表される eHAND である、上記 (121) 記載の心筋形成剤。
- (130) TEF-1 が、配列番号 25記載のアミノ酸配列で表される TEF-1 である、上記 (121)記載の心筋形成剤。
- (131) TEF-3 が、配列番号 27記載のアミノ酸配列で表される TEF-3 である、上記 (121)記載の心筋形成剤。
- (132) TEF-5が、配列番号29記載のアミノ酸配列で表されるTEF-5である、 上記(121)記載の心筋形成剤。
- (133) MesPlが、配列番号62記載のアミノ酸配列で表される MesPlである、上記(121)記載の心筋形成剤。
- (134) 細胞外基質が心筋細胞由来の細胞外基質であることを特徴とする上記 (106)または(108)記載の心筋形成剤。
- (135) 上記(1)~(65)のいずれか1項に記載の細胞を用いることを特徴とする、心臓疾患により破壊された心臓を再生する方法。
- (136) 上記(1)~(65)のいずれか1項に記載の細胞を有効成分とする 心臓再生治療薬。
- (137) 心臓の先天性遺伝子疾患での変異遺伝子に対する野生型遺伝子が導入された上記(1)~(65)のいずれか1項に記載の細胞を用いることを特徴とする、先天性遺伝子疾患での変異遺伝子に対する野生型遺伝子を心筋へ特異的に輸送

する方法。

(138) 心臓の先天性遺伝子疾患での変異遺伝子に対する野生型遺伝子が導入された上記(1)~(65)のいずれか1項に記載の細胞を有効成分として含有する心臓疾患治療薬。

- (139) 上記(1)~(65)のいずれか1項に記載の細胞を免疫原として用いることを特徴とする、該細胞を特異的に認識する抗体を取得する方法。
- (140) 上記(139)記載の方法で取得された抗体を用いることを特徴とする、ヒト骨髄から心筋細胞への分化能を有する成体骨髄由来細胞を単離・精製する方法。
- (141) 上記(1)~(65)のいずれか1項に記載の細胞を用いることを特徴とする、該細胞に特異的な表面抗原を取得する方法。
- (142) 上記(1)~(65)のいずれか1項に記載の細胞を用いることを特徴とする、該細胞を増殖する因子をスクリーニングする方法。
- (143) 上記(1)~(65)のいずれか1項に記載の細胞を用いることを特 徴とする、該細胞の心筋細胞への分化を誘導する因子をスクリーニングする方法。
- (144) 上記(1)~(65)のいずれか1項に記載の細胞を用いることを特徴とする、該細胞を不死化する因子をスクリーニングする方法。
- (145) 上記(1)~(65)のいずれか1項に記載の細胞にテロメラーゼを 発現させることを特徴とする、該細胞の不死化方法。
- (146) テロメラーゼが、配列番号31記載で表されるアミノ酸配列を有する テロメラーゼである上記(145)記載の方法。
- (147) テロメラーゼを発現させることにより、不死化させた上記(1)~(65)のいずれか1項に記載の細胞を有効成分として含有する心臓疾患治療薬。
- (148) テロメラーゼが、配列番号31記載で表されるアミノ酸配列を有する テロメラーゼである上記(147)記載の治療薬。
- (149) 上記(1)~(65)のいずれか1項に記載の細胞を含んだ培養上清。
- (150) 上記(149)記載の培養上清を用いることを特徴とする、上記(1)記載の細胞を心筋細胞に分化誘導する方法。

本発明の心筋細胞への分化能を有する細胞としては、骨髄、筋肉、脳、膵臓、肝臓、腎臓などの成体組織または臍帯血から単離された多分化能幹細胞があげられる。

多分化能幹細胞としては、心筋細胞とそれ以外の細胞を誘導できる細胞であればいずれでもよいが、好ましくは少なくとも心筋細胞、脂肪細胞、骨格筋細胞、骨芽細胞に分化する能力を有する細胞、少なくとも心筋細胞、血管内皮細胞に分化する能力を有する細胞、少なくとも心筋細胞、骨格筋細胞、骨芽細胞、血管内皮細胞に分化する能力を有する細胞、少なくとも心筋細胞、脂肪細胞、骨格筋細胞、血管内皮細胞、骨芽細胞、神経系細胞、肝細胞に分化する能力を有する細胞などがあげられる。

成体組織または臍帯血は哺乳類由来であればいかなるものでもよいが、好ましく はマウス、ラット、ヒトなどがあげられる。ヒトの治療用途にはヒト由来であるこ とが好ましい。

マウス、ラット、ヒトなどのほ乳類の成体組織または臍帯血から心筋細胞への分 化能を有する細胞を単離し、培養した後に、心筋細胞への分化能を有する細胞を分 化、誘導することにより、心筋細胞を得ることができる。

また、本発明の多分化能幹細胞を用いて、心筋細胞だけでなく、血管内皮細胞、 平滑筋、骨格筋細胞、脂肪細胞、骨、軟骨、膵内分泌系細胞、膵外分泌系細胞、肝 細胞、腎糸球体細胞、腎尿細管細胞、ニューロン、グリア、オリゴデンドロサイト などへの分化を誘導することにより、各種細胞を得ることができる。

以下、本発明を詳細に説明する。

1. 心筋細胞への分化能を有する細胞の単離

本発明の心筋細胞への分化能を有する細胞は、成体組織または臍帯血など心筋細胞への分化能を有する細胞を取得することが可能な組織であればいかなる組織でもよい。以下に、骨髄から心筋細胞への分化能を有する骨髄細胞を単離する方法を述べる。

(1) 骨髄から心筋細胞への分化能を有する骨髄細胞を単離する方法 ヒトの骨髄より心筋細胞への分化能を有する骨髄細胞を取得する方法としては、

安全かつ効率的に取得される方法であれば特に限定されないが、S. E. Haynesworth et al. Bone, 13, 81 (1992)に記載された方法に基づき行うことができる。

胸骨または腸骨から骨髄穿刺を行う。骨髄穿刺を行う場所の皮膚面を消毒し、局所麻酔を行う。特に骨膜下を充分に麻酔する。骨髄穿刺針の内筒を抜き、5000unitsのヘパリンを入れた 10ml 注射器を装着して必要量の骨髄液を速やかに吸引する。平均的には 10ml~20ml の骨髄液を吸引する。骨髄穿刺針を取り外し、10 分間程圧迫止血する。取得した骨髄液を 1,000×g の遠心分離により骨髄細胞を回収した後、該骨髄細胞を PBS (Phosphate Buffered Saline)で洗浄する。本ステップを 2 回繰り返した後、該骨髄細胞を 10%の FBS (牛胎仔血清)を含む α-MEM (α-modified MEM)、DMEM (Dulbecco's modified MEM)あるいは IMDM (Isocove's modified Dulbecco's medium)等の細胞培養用培地に再浮遊させることにより骨髄細胞液を得ることができる。

該骨髄細胞液から心筋細胞への分化能を有する骨髄細胞を単離する方法としては、溶液中に混在する他の細胞、例えば血球系細胞、造血幹細胞、血管幹細胞および線維芽細胞などを除去できれば特に限定されないが、M. F. Pittenger et al. Science, 284, 143 (1999)に記載された方法に基づき骨髄細胞液を密度 1.073g/ml の percoll に重層した後、1,100×gで 30 分間遠心分離して界面の細胞を回収することにより単離することができる。また、該骨髄細胞液に 10×PBS を加えて 9/10 に希釈した percoll を同容量加えて混合した後に、20,000×gで 30 分間遠心分離し、密度 1.075~1.060 の画分を回収することにより、該心筋細胞への分化能を有する骨髄細胞を含む骨髄細胞混合物を取得することができる。

上記方法により取得した該心筋細胞への分化能を有する骨髄細胞を含む骨髄細胞混合物は、96 穴の培養プレートの各穴に1細胞のみが注入されるように希釈して、1細胞由来のクローンを多数調製した後、以下に記載した心筋細胞への分化能を有する骨髄細胞から心筋細胞を誘導する方法を用いて該クローンを処理し、自律拍動する細胞が出現するクローンを選択することにより、該心筋細胞への分化能を有する骨髄細胞を得ることができる。

ラットやマウスから心筋細胞への分化能を有する骨髄細胞を取得する方法として は、特に限定されないが以下の手順で取得することができる。ラットあるいはマウ

スを頚椎脱臼により致死させ、70%エタノールで充分消毒した後、大腿骨の皮膚ならびに大腿四頭筋を切除する。膝関節の部分にハサミをいれて関節をはずし、大腿骨背面の筋肉を除去する。股関節の部分にハサミを入れて関節を外し、大腿骨を取り出す。大腿骨に付着している筋肉をハサミでできるだけ除去した後、大腿骨の両端をハサミで切断する。骨の太さに応じた適当なサイズの針を 2.5ml の注射器に装着し、10%の FBS (牛胎仔血清)を含む α-MEM、DMEM、あるいは IMDM 等の細胞培養用培地約 1.5ml を注射器に充填した後、注射針の先端を大腿骨の膝関節側の断端に差し込む。注射器内の培養液を骨髄内に注入することで、股関節側の断端から骨髄細胞が押し出される。得られた骨髄細胞はピペッテイングにより培養液中に浮遊させる。該骨髄液からは、上記のヒト骨髄液からの骨髄細胞の単離と同様の方法により、心筋細胞への分化能を有する骨髄細胞を単離することができる。以上の方法により単離した細胞の例としては、マウス骨髄由来多分化能幹細胞があげられる。マウス骨髄由来多分化能幹細胞 BMSC は、平成12年2月22日付けで通商産業省工業技術院生命工学工業技術研究所(日本国茨城県つくば市東1丁目1番3号)に FERM BP-7043 として寄託されている。

(2) 骨髄以外の組織から心筋細胞への分化能を有する細胞を単離する方法 後述する12に記載の抗体を用いた分離方法により、心筋細胞への分化能を有す る細胞を、骨髄以外の組織からも取得することができる。

骨髄以外の組織としては、好ましくは臍帯血があげられる。具体的には、以下の 方法で行うことができる。

まず臍帯から臍帯血を分取し、ただちに 500units/ml の終濃度になるようにヘパリンを加える。よく混合した後、遠心分離して臍帯血から細胞を分取し、10%の FBS (牛胎仔血清)を含む α -MEM (α -modified MEM)、DMEM (Dulbecco's modified MEM) あるいは IMDM (Isocove's modified Dulbecco's medium)等の細胞培養用培地に再浮遊させる。得られた細胞液から上述した抗体を利用して、心筋細胞への分化能を有する細胞を分離することができる。

2. 心筋細胞への分化能を有する細胞の培養

上記1の方法により単離した、心筋細胞への分化能を有する細胞を培養するため

に用いる培地としては、通常公知(組織培養の技術基礎編 第三版、朝倉書店 1996)の組成の細胞培養用培地を用いることができるが、好ましくは牛等の血清を 5~20%添加した、α-MEM、DMEM あるいは IMDM 等の細胞培養用培地などが用いられる。培養条件は、細胞が培養可能であればいかなる条件でもよいが、培養温度は 33~37℃が好ましく、さらに 5~10%の二酸化炭素ガスで満たした孵卵器で培養することが好ましい。心筋細胞への分化能を有する骨髄細胞は、通常の組織培養用のプラスチック製培養皿に接着して増殖することが好ましい。細胞が培養皿一面に増殖する頃、培地を除去して、トリプシン EDTA 溶液を加えることで細胞を浮遊させる。浮遊した細胞は、PBS あるいは該細胞培養用の培地で洗浄後、該細胞培養用の培地で 5 倍から 20 倍希釈して新しい培養皿に添加することで、さらに継代培養することができる。

3. 心筋細胞への分化能を有する細胞からの心筋細胞の誘導

心筋細胞への分化能を有する細胞より心筋細胞を誘導する方法としては、(1). DNA の脱メチル化剤処理による分化誘導、(2)胎児の心臓発生領域で発現している因子または胎児の心臓発生段階において心筋細胞への分化に働く因子による分化誘導、(3)心筋細胞への分化能を有する細胞または該細胞から分化した心筋細胞の培養上清による分化誘導などの方法を挙げることができる。これらの方法を単独あるいは組み合わせることにより、心筋細胞への分化能を有する細胞から心筋細胞を誘導することができる。

DNA の脱メチル化剤としては、DNA に対して脱メチル化を引き起こす化合物であればいかなるものでもよい。DNA の脱メチル化剤としては、染色体 DNA 中の GpC 配列中のシトシン残基のメチル化を特異的に阻害する酵素であるデメチラーゼ、5-アザシチジン(以下 5-aza-C と略す)、DMSO (dimethyl sulfoxide) などがあげられる。デメチラーゼとしては、配列番号 1 記載のアミノ酸配列を有するデメチラーゼ [Nature, 397, 579-583 (1999)]などがあげられる。DNA の脱メチル化剤処理による分化誘導の具体例を以下に示す。

 $3 \mu \text{ mol/l}$ から $10 \mu \text{ mol/l}$ の間の濃度になるように 5-aza-C を心筋細胞への分化能を有する細胞を含む培地中に添加し、24 時間上記培養条件下でインキュベーション

する。培地を交換することで 5-aza-C を除去し、さらに 2~3週間培養することで 心筋細胞を取得することができる。形成される心筋細胞は培養 2~3週間目では洞 結節細胞が中心であるが、培養 4週間目以降心室型心筋細胞を分化誘導することが できる。

胎児の心臓発生領域で発現している因子または胎児の心臓発生段階において心筋 細胞への分化に働く因子としては、サイトカイン、ビタミン、接着分子、転写因子 などをあげることができる。

サイトカインとしては、心筋細胞への分化能を有する細胞に、心臓の発生段階で 心筋細胞への分化を促進するものであればいかなるサイトカインでもよい。

具体的には、10~40ng/mlの血小板由来増殖因子(以下、PDGFと略記する。)、 線維芽細胞増殖因子8(FGF8)、エンドセリン1(ET1)、ミドカイン(midkine)、骨形成 因子4(BMP4)などをあげることができる。PDGFとしては配列番号3または5のア ミノ酸配列で表されるものが、線維芽細胞増殖因子8(FGF8)としては配列番号64 のアミノ酸配列で表されるものが、エンドセリン1(ET1)としては配列番号66のア ミノ酸配列で表されるものが、ミドカイン(midkine)としては配列番号68のアミノ酸 配列で表されるものが、骨形成因子4(BMP4)としては配列番号70のアミノ酸配列 で表されるものが好ましく用いられる。

また、心筋細胞への分化を抑制するサイトカインに対する阻害剤を用いることにより、心筋細胞への分化能を有する細胞に、心臓の発生段階で心筋細胞への分化を促進することも可能である。

心筋細胞への分化を抑制するサイトカインとしては、線維芽細胞増殖因子-2 (以下、FGF-2 と略記する。)、具体的には、配列番号7または8で表される FGF-2 などをあげることができる。

心筋細胞への分化を抑制するサイトカンに対する阻害剤としては、サイトカイン の情報伝達を阻害する物質、例えばサイトカインを中和する抗体、低分子化合物な どをあげることができる。

ビタミンとしては、レチノイン酸など心筋細胞への分化能を有する細胞に、心臓 の発生段階で心筋細胞への分化を促進するものであればいかなるビタミンでもよい。

具体的には、10⁻⁹M のレチノイン酸などをあげることができる。

接着分子としては、フィブロネクチンなど心臓の発生段階で心臓発生領域で発現していればいかなる接着分子でもよい。具体的には、フィブロネクチンをコートした培養皿で該心筋細胞への分化能を有する細胞を培養することにより心筋細胞への分化を促進することができる。

転写因子としては、ホメオポックス型転写因子 Nkx2.5/Csx (配列番号9:アミノ酸配列、配列番号10:塩基配列)、GATAファミリーに属する Zinc finger 型転写因子 GATA4 (配列番号11:アミノ酸配列、配列番号12:塩基配列)、myocyte enhancer factor-2(MEF-2)ファミリーに属する転写因子 MEF-2A (配列番号13:アミノ酸配列、配列番号14:塩基配列)、MEF-2B (配列番号15:アミノ酸配列、配列番号16:塩基配列)、MEF-2C (配列番号17:アミノ酸配列、配列番号18:塩基配列)と MEF-2D (配列番号19:アミノ酸配列、配列番号20:塩基配列)、basic helix loop helix 型転写因子に属する dHAND (配列番号21:アミノ酸配列、配列番号22:塩基配列)、eHAND (配列番号23:アミノ酸配列、配列番号24:塩基配列)と MesP1 (配列番号61:アミノ酸配列、配列番号23:アミノ酸配列、配列番号24:塩基配列)と MesP1 (配列番号61:アミノ酸配列、配列番号25:アミノ酸配列、配列番号26:塩基配列)、TEF-3 (配列番号27:アミノ酸配列、配列番号28:塩基配列)と TEF-5 (配列番号29:アミノ酸配列、配列番号27:アミノ酸配列、配列番号28:塩基配列)と TEF-5 (配列番号29:アミノ酸配列、配列番号30:塩基配列)などをあげることができる。

上述した転写因子は、該因子をコードする DNA を心筋細胞への分化能を有する細胞中に導入し、DNA を発現させることにより心筋細胞への分化を誘導させることができる。

また、自律拍動する心筋細胞から取得した細胞外基質をコートした培養皿を用いること、自律拍動する心筋細胞と共培養すること、自律拍動する心筋細胞の培養上清を添加することで、心筋細胞への分化能を有する細胞を心筋細胞へ分化誘導させることができる。

また、4に示す方法で得られる心筋細胞への分化を誘導する因子 (以下、心筋分化誘導因子と称する)を用いても、心筋細胞への分化能を有する細胞を心筋細胞に分化誘導することができる。

4. 心筋分化誘導因子の取得

心筋分化誘導因子の取得方法としては、自律拍動する細胞の培養上清に各種プロテアーゼ阻害剤を添加して、透析、塩析ならびにクロマトグラフィーなどを組み合わせることにより取得することができる。

さらにマイクロシーケンサーを用いて、上記の心筋分化誘導因子の部分アミノ酸配列を決定し、該アミノ酸配列に基づき設計した DNA プローブを用いて該自律拍動する細胞より作製した CDNA ライブラリーをスクリーニングすることにより、心筋分化誘導因子の遺伝子を取得することができる。

5. 心筋細胞への分化能を有する細胞を含む心臓再生治療薬または心臓疾患治療薬

本発明の心筋細胞への分化能を有する細胞は、心臓再生または心臓疾患の治療薬として用いることができる。

心臓疾患としては、心筋梗塞、虚血性心疾患、うっ血性心不全、不整脈、肥大型 心筋症、拡張型心筋症、心筋炎、弁膜症などをあげることができる。

心臓再生の治療薬としては、心筋細胞への分化能を有する細胞を高純度で含み、心臓の障害部位ならび大きさに応じて、該心筋細胞への分化能を有する細胞を増殖させたもの、好ましくは、心筋細胞への分化能を有する細胞から、心筋内皮細胞 (Endocardial endothelial cell)、クッション細胞(Cushion cell)、心室型心筋細胞、心房型心筋細胞、洞結節細胞等の心臓を形成する様々な細胞へ分化誘導できる細胞が用いられる。

該治療薬は、心筋梗塞の患者骨髄液中から上述した密度勾配遠心分離法、後述する心筋細胞への分化能を有する細胞を特異的に認識する抗体を用いたパニング法[J. Immunol., 141(8), 2797-2800 (1988)]あるいは FACS 法[Int. Immunol., 10(3), 275-283 (1998)]、または心筋細胞への分化能を有する細胞に特異的な遺伝子のプロモーターを用いたレポーター系を構築する方法により該心筋細胞への分化能を有する細胞の精製を行うことにより、製造することができる。

また該治療薬には、後述する心筋形成剤を用いて、該心筋細胞への分化能を有する細胞を心筋細胞へ分化誘導させた細胞、高齢者の骨髄から取得した骨髄細胞より、

後述する不死化方法を利用して細胞分裂能を賦活させた心筋細胞への分化能を有する細胞も含まれる。

上記方法で製造した治療薬は、上記心筋細胞への分化能を有する細胞を特異的に 認識する抗体と FACS 法を組み合わせることで純度を検定することができる。

上記の治療薬を障害部位に輸送する方法としては、カテーテルを利用する方法等 が用いられる。以下虚血性心疾患を例に具体的な方法を示す。虚血性心疾患で障害 を受けた心筋細胞は、血管狭窄部位の下流に存在することから、上記の細胞を注入 する前に、冠動脈造影法(図説病態内科講座 循環器—1、MEDICAL VIEW,1993) により血管の狭窄部位を同定しておく必要がある。器質的狭窄病変は狭窄病態に応 じて求心性狭窄、偏心性狭窄、多発性壁不整に分類され、特に偏心性狭窄はタイプⅠ およびタイプ‼の2つのタイプに細分類される。狭窄形態は狭心症の経過、予後に. 関連することが知られており、タイプ II の偏心性狭窄や多発性壁不整は不安定狭心 症例に多く、心筋梗塞に移行する可能性が高い。血管が完全に狭窄している場合に は、注入する細胞が障害部位に到達しない可能性があるので、事前に経皮的冠動脈 形成術(PTCA)あるいは血栓溶解療法などにより狭窄部位を再開することが必要であ る。障害を受けた心筋細胞の部位に応じて、注入する細胞を心室型や心房型のよう に区別することができる。カテーテルの挿入法は右上腕動脈より挿入する Sones 法 (図説病態内科講座 循環器-1、MEDICAL VIEW, 1993) あるいは大腿動脈よ り挿入する Jundkins 法(図説病態内科講座 循環器—1、MEDICAL VIEW,1993)を 利用することができる。

<u>6. 心筋形成剤</u>

本発明の心筋形成剤は、染色体 DNA の脱メチル化剤、胎児の心臓発生領域で発現している因子、あるいは胎児の心臓発生段階で心筋細胞への分化に働く因子、心筋分化誘導因子の少なくとも一種類を有効成分として含有し、心筋細胞への分化能を有する細胞を心筋細胞へ分化誘導させることができる。

当該心筋形成剤としては、サイトカイン、ビタミン、接着分子、転写因子などを あげることができる。

サイトカインとしては、心筋細胞への分化能を有する細胞に、心臓発生段階で心

筋細胞への分化を促進するものであればいかなるサイトカインでもよい。

具体的には、10~40ng/mlのPDGF、線維芽細胞増殖因子8(FGF8)、エンドセリン1(ET1)、ミドカイン(midkine)、骨形成因子4(BMP4)などをあげることができる。PDGFとしては配列番号3または5のアミノ酸配列で表されるものが、線維芽細胞増殖因子8(FGF8)としては配列番号64のアミノ酸配列で表されるものが、エンドセリン1(ET1)としては配列番号66のアミノ酸配列で表されるものが、ミドカイン(midkine)としては配列番号68のアミノ酸配列で表されるものが、骨形成因子4(BMP4)としては配列番号70のアミノ酸配列で表されるものが好ましく用いられる。

ビタミンとしては、レチノイン酸など心筋細胞への分化能を有する細胞に、心臓発生段階で心筋細胞への分化を促進するものであればいかなるビタミンでもよい。 具体的には、10⁻³ Mのレチノイン酸などをあげることができる。

接着分子としては、フィブロネクチンなど心臓発生段階で心臓発生領域で発現していればいかなる接着分子でもよい。具体的には、フィブロネクチンをコートした培養皿で該心筋細胞への分化能を有する細胞を培養することにより心筋細胞への分化を促進することができる。

転写因子としては、ホメオボックス型転写因子 Nkx2.5/Csx (配列番号9:アミノ酸配列、配列番号10:塩基配列)、GATAファミリーに属する Zinc finger 型転写因子 GATA4 (配列番号11:アミノ酸配列、配列番号12:塩基配列)、myocyte enhancer factor-2(MEF-2)ファミリーに属する転写因子 MEF-2A (配列番号13:アミノ酸配列、配列番号14:塩基配列)、MEF-2B (配列番号15:アミノ酸配列、配列番号16:塩基配列)、MEF-2C (配列番号17:アミノ酸配列、配列番号18:塩基配列)と MEF-2D (配列番号19:アミノ酸配列、配列番号20:塩基配列)、basic helix loop helix 型転写因子に属する dHAND (配列番号21:アミノ酸配列、配列番号22:塩基配列)、eHAND (配列番号23:アミノ酸配列、配列番号24:塩基配列)と MesP1 (配列番号61:アミノ酸配列、配列番号25:アミノ酸配列、配列番号26:塩基配列)、TEA-DNA結合型転写因子ファミリーに属する TEF-1 (配列番号25:アミノ酸配列、配列番号26:塩基配列)、TEF-3 (配列番号27:アミノ酸配列、配列番号28:塩基配列)と TEF-5 (配列番号29:アミノ酸配列、配列番号30:塩基配列)などをあげることができる。

該心筋形成剤には心筋分化誘導因子の遺伝子を主成分とするものと、心筋分化誘導因子の本体である蛋白質を含むものがある。

(1)遺伝子を主成分とする心筋形成剤

以下に本発明の心筋形成剤が心筋分化誘導因子をコードする遺伝子を主成分とする場合の調製法について述べる。

まず、心筋分化誘導因子の遺伝子 DNA 断片、あるいは全長 CDNA をウイルスベクタープラスミド内のプロモーターの下流に挿入することにより、組換えウイルスベクタープラスミドを造成する。

該組換えウイルスベクタープラスミドを、該ウイルスベクタープラスミドに適合 したパッケージング細胞に導入する。

パッケージング細胞としては、ウイルスのパッケージングに必要なタンパク質をコードする遺伝子の少なくとも1つを欠損している組換えウイルスベクタープラスミドの該欠損する蛋白質を補給できる細胞であればいかなるものも用いることができる。例えばヒト腎臓由来のHEK293 細胞、マウス線維芽細胞 NIH3T3 などを用いることができる。

パッケージング細胞で補給する蛋白質としては、レトロウイルスベクターの場合はマウスレトロウイルス由来の gag、pol、env などの蛋白質、レンチウイルスベクターの場合は HIV ウイルス由来の gag、pol、env、vpr、vpu、vif、tat、rev、nef などの蛋白質、アデノウイルスベクターの場合はアデノウイルス由来の E1A、E1B などの蛋白質、アデノ随伴ウイルスの場合は Rep(p5,p19,p40)、Vp(Cap)などの蛋白質を用いることができる。

ウイルスベクタープラスミドとしては上記パッケージング細胞において組換えウイルスが生産でき、心臓先天性遺伝子疾患の原因遺伝子に対する野生型の遺伝子を 心筋細胞で転写できる位置にプロモーターを含有しているものが用いられる。

ウイルスベクタープラスミドとしては MFG [Proc. Natl. Acad. Sci. USA, <u>92</u>, 6733-6737 (1995)]、pBabePuro [Nucleic Acids Research, <u>18</u>, 3587-3596 (1990)], LL-CG、CL-CG、CS-CG、CLG [Journal of Virology, <u>72</u>, 8150-8157 (1998)]、pAdex1 [Nucleic Acids Res., 23, 3816-3821 (1995)]等が用いられる。

プロモーターとしては、ヒト組織中で発現できるものであればいずれも用いることができ、例えば、サイトメガロウイルス(ヒト CMV)の IE(immediate early)遺伝子のプロモーター、SV40 の初期プロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒートショック蛋白質プロモーター、SR αプロモーター等をあげることができる。また、ヒト CMV の IE 遺伝子のエンハンサーをプロモーターと共に用いてもよい。また、Nkx2.5/Csx 遺伝子のような心筋細胞特異的な遺伝子のプロモーターを用いることで、心筋細胞で特異的に目的の遺伝子を発現させることができる。

上記組換えウイルスベクタープラスミドを上記パッケージング細胞に導入することで組換えウイルスベクターを生産することができる。上記パッケージング細胞への上記ウイルスベクタープラスミドの導入法としては、例えば、リン酸カルシウム法 [特開平 2-227075]、リポフェクション法 [Proc. Natl. Acad. Sci. USA, <u>84</u>, 7413 (1987)] 等をあげることができる。

上述した組換えウイルスベクターは、遺伝子治療剤に用いる基剤と共に調合して心筋形成剤を製造することができる[Nature Genet., 8, 42 (1994)]。遺伝子治療剤に用いる基剤としては、通常注射剤に用いる基剤であればいかなるものでも用いることができる。例えば、蒸留水、塩化ナトリウム又は塩化ナトリウムと無機塩との混合物等の塩溶液、マンニトール、ラクトース、デキストラン、グルコース等の溶液、グリシン、アルギニン等のアミノ酸溶液、有機酸溶液又は塩溶液とグルコース溶液との混合溶液等があげられる。また常法に従い、これらの基剤に浸透圧調整剤、pH調整剤、ゴマ油、ダイズ油等の植物油又はレシチンもしくは非イオン界面活性剤等の界面活性剤等の助剤を用いて、溶液、懸濁液、分散液として注射剤を調製してもよい。これらの注射剤を、粉末化、凍結乾燥等の操作により用時溶解用製剤として調製することもできる。上記の心筋形成剤は、液体の場合はそのままで、固体の場合は治療の直前に必要により減菌処理をした上記の基剤に溶解して遺伝子治療に使用することができる。本発明の心筋形成剤の投与方法は、患者の治療部位の心筋に吸収されるように、カテーテル等を用いて局所的に投与する方法等が用いられる。

上述した組換えウイルスベクターは試験管内で該心筋細胞への分化能を有する細

胞に感染させた後、上述した心筋形成剤として調製し、患者に投与することができる。または、組換えウィルスベクターを患者の患部に直接投与することもできる。

(2)蛋白質を主成分とする心筋形成剤

以下に本発明の心筋形成剤が心筋分化誘導因子蛋白質を主成分とする場合の調製 法について述べる。

心筋分化誘導因子蛋白質の完全長 CDNA をもとに、必要に応じて、該蛋白質をコードする部分を含む適当な長さの DNA 断片を調製する。

該 DNA 断片、あるいは完全長 CDNA を発現ベクター内のプロモーターの下流に挿入することにより、該蛋白質の組換発現ベクターを造成する。

該組換発現ベクターを、該発現ベクターに適合した宿主細胞内に導入する。

宿主細胞としては、目的とする DNA を発現できるものは全て用いることができ、例えば、エシェリヒア(Escherichia)属、セラチア (Serratia) 属、コリネバクテリウム (Corynebacterium) 属、ブレビバクテリウム (Brevibacterium) 属、シュードモナス (Pseudomonas) 属、バチルス (Bacillus) 属、ミクロバクテリウム (Microbacterium) 属等に属する細菌、クルイベロミセス (Kluyveromyces) 属、サッカロマイセス (Saccharomyces) 属、シゾサッカロマイセス (Shizosaccharomyces) 属、トリコスポロン (Trichosporon) 属、シワニオミセス (Schwanniomyces) 属等に属する酵母や動物細胞、昆虫細胞等を用いることができる。

発現ベクターとしては、上記宿主細胞において自立複製可能ないしは染色体中への組込みが可能で、心筋分化誘導因子蛋白質の遺伝子 DNA を転写できる位置にプロモーターを含有しているものが用いられる。

細菌を宿主細胞として用いる場合は、心筋分化誘導因子蛋白質の組換え発現ベクターは該細菌中で自立複製可能であると同時に、プロモーター、リボソーム結合配列、心筋分化誘導因子蛋白質をコードする DNA および転写終結配列より構成された組換え発現ベクターであることが好ましい。プロモーターを制御する遺伝子が含まれていてもよい。

発現ベクターとしては、例えば、pBTrp2、pBTac1、pBTac2 (いずれもベーリンガーマンハイム社より市販)、pKK233-2 (Amersham Pharmacia Biotech 社製)、pSE280

(Invitrogen 社製)、pGEMEX-1 (Promega 社製)、pQE-8 (QIAGEN 社製)、pKYP10 [特開昭 58-110600] 、pKYP200 [Agricultural Biological Chemistry, 48, 669 (1984)] 、pLSA1 [Agric. Biol. Chem., 53, 277 (1989)]、pGEL1 [Proc. Natl. Acad. Sci. USA, 82, 4306 (1985)] 、pBluescript II SK(一) (Stratagene 社製)、pGEX (Amersham Pharmacia Biotech 社製)、pET-3 (Novagen 社製)、pTerm2(USP4686191、USP4939094、USP5160735)、pSupex、pUB110、pTP5、pC194、pEG400 [J. Bacteriol., 172, 2392 (1990)] 等を例示することができる。

発現ベクターとしては、リボソーム結合配列であるシャインーダルガノ (Shine-Dalgarno) 配列と開始コドンとの間を適当な距離 (例えば $6\sim18$ 塩基) に調節したものを用いることが好ましい。

本発明の心筋分化誘導因子蛋白質の遺伝子 DNA の蛋白質をコードする部分の塩基 配列を、宿主の発現に最適なコドンとなるように、塩基を置換することにより、目 的とする蛋白質の生産率を向上させることができる。

本発明の心筋分化誘導因子蛋白質の遺伝子 DNA の発現には転写終結配列は必ずし も必要ではないが、好適には構造遺伝子直下に転写終結配列を配置することが望ま しい。

宿主細胞としては、エシェリヒア属、セラチア属、コリネバクテリウム属、ブレビバクテリウム属、シュードモナス属、パチルス属、ミクロバクテリウム属等に属する微生物、例えば、Escherichia coli XL1-Blue、Escherichia coli XL2-Blue、Escherichia coli XL2-Blue、Escherichia coli DH1、Escherichia coli MC1000、Escherichia coli KY3276、Escherichia coli W1485、Escherichia coli JM109、Escherichia coli HB101、Escherichia coli No.49、Escherichia coli

W3110、Escherichia coli NY49、Bacillus subtilis、Bacillus amyloliquefaciens、Brevibacterium ammoniagenes、Brevibacterium immariophilum ATCC14068、Brevibacterium saccharolyticum ATCC14066、Corynebacterium glutamicum ATCC13032、Corynebacterium glutamicum ATCC14067、Corynebacterium glutamicum ATCC13869、Corynebacterium acetoacidophilum ATCC13870、Microbacterium ammoniaphilum ATCC15354、Pseudomonas sp. D-0110 等をあげることができる。

組換えベクターの導入方法としては、上記宿主細胞へ DNA を導入する方法であればいずれも用いることができ、例えば、カルシウムイオンを用いる方法 [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)]、プロトプラスト法 (特開昭 63-248394)、またはGene, 17, 107 (1982)や Molecular & General Genetics, 168, 111 (1979)に記載の方法等をあげることができる。

酵母を宿主細胞として用いる場合には、発現ベクターとして、例えば、YEp13 (ATCC37115)、YEp24 (ATCC37051)、YCp50 (ATCC37419)、pHS19、pHS15 等を例示することができる。

プロモーターとしては、酵母中で発現できるものであればいかなるものでもよく、例えば、PHO5 プロモーター、PGK プロモーター、GAP プロモーター、ADH プロモーター、gal 1 プロモーター、gal 1 プロモーター、ヒートショック蛋白質プロモーター、MF α 1 プロモーター、CUP 1 プロモーター等をあげることができる。

宿主細胞としては、サッカロミセス・セレビシエ(Saccharomyces cerevisiae)、シソサッカロミセス・ポンベ(Schizosaccharomyces pombe)、クリュイベロミセス・ラクチス(Kluyveromyces lactis)、トリコスポロン・プルランス(Trichosporon pullulans)、シュワニオミセス・アルビウス(Schwanniomyces alluvius)等をあげることができる。 組換えベクターの導入方法としては、酵母に DNA を導入する方法であればいずれ も用いることができ、例えば、エレクトロポレーション法 [Methods in Enzymol., 194, 182 (1990)] 、スフェロブラスト法 [Proc. Natl. Acad. Sci. USA, 75, 1929 (1978)] 、酢酸リチウム法[J. Bacteriol., 153, 163 (1983)、Proc. Natl. Acad. Sci. USA, 75, 1929 (1978)] 等をあげることができる。

動物細胞を宿主細胞として用いる場合には、発現ベクターとして、例えば、

pCDNAI(Invitrogen 社製)、pCDM8 (Invitrogen 社製)、pAGE107 [特開平 3-22979; Cytotechnology, 3, 133 (1990)]、pAS3-3 (特開平 2-227075)、pCDM8 [Nature, 329, 840 (1987)]、pCDNAI/Amp (Invitrogen 社製)、pREP4 (Invitrogen 社製)、pAGE103 [J. Biochem., 101, 1307 (1987)]、pAGE210 等を例示することができる。

プロモーターとしては、動物細胞中で発現できるものであればいずれも用いることができ、例えば、サイトメガロウイルス (ヒト CMV) の IE(immediate early)遺伝子のプロモーター、SV40 の初期プロモーター、レトロウイルスのプロモーター、メタロチオネインプロモーター、ヒートショック蛋白質プロモーター、SR αプロモーター等をあげることができる。また、ヒト CMV の IE 遺伝子のエンハンサーをプロモーターと共に用いてもよい。

宿主細胞としては、ヒトの細胞であるナマルバ (Namalwa) 細胞、サルの細胞である COS 細胞、チャイニーズ・ハムスターの細胞である CHO 細胞、HBT5637 [特開 昭 63-299] 等をあげることができる。

組換えベクターの導入法としては、動物細胞に DNA を導入できるいかなる方法も用いることができ、例えば、エレクトロポーレーション法 [Cytotechnology, 3, 133 (1990)]、リン酸カルシウム法 (特開平 2-227075)、リポフェクション法 [Proc. Natl. Acad. Sci., USA, 84, 7413 (1987)、Virology, 52, 456 (1973)] 等を用いることができる。形質転換体の取得および培養は、特開平 2-227075 号公報あるいは特開平 2-257891 号公報に記載されている方法に準じて行なうことができる。

昆虫細胞を宿主として用いる場合には、例えばバキュロウイルス・エクスプレッション・ベクターズ,ア・ラボラトリー・マニュアル[Baculovirus Expression Vectors, A Laboratory Manual, W.H. Freeman and Company, New York (1992)]、カレント・プロトコールズ・イン・モレキュラー・バイオロジー サプルメント 1-38(1987-1997)、Bio/Technology, 6, 47 (1988)等に記載された方法によって、蛋白質を発現することができる。

即ち、組換え遺伝子導入ベクターおよびバキュロウイルスを昆虫細胞に共導入して昆虫細胞培養上清中に組換えウイルスを得た後、さらに組換えウイルスを昆虫細胞に感染させ、蛋白質を発現させることができる。

該方法において用いられる遺伝子導入ベクターとしては、例えば、pVL1392、pVL1393、pBlueBacIII (ともに Invitrogen 社製) 等をあげることができる。

バキュロウイルスとしては、例えば、夜盗蛾科昆虫に感染するウイルスであるアウトグラファ・カリフォルニカ・ヌクレアー・ポリヘドロシス・ウイルス(Autographa californica nuclear polyhedrosis virus)等を用いることができる。

昆虫細胞としては、<u>Spodoptera frugiperda</u>の卵巣細胞である Sf9、Sf21 [Baculovirus Expression Vectors, A Laboratory Manual、W.H.Freeman and Company, New York, (1992)]、 <u>Trichoplusia ni</u> の卵巣細胞である High 5 (Invitrogen 社製) 等を用いることができる。

組換えウイルスを調製するための、昆虫細胞への上記組換え遺伝子導入ベクターと上記バキュロウイルスの共導入方法としては、例えば、リン酸カルシウム法 [特開平 2-227075]、リポフェクション法 [Proc. Natl. Acad. Sci. USA, <u>84</u>, 7413 (1987)] 等をあげることができる。

遺伝子の発現方法としては、直接発現以外に、モレキュラー・クローニング 第 2版 [Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989)] に記載されている方法等に準じて、分泌生産、融合蛋白質 発現等を行うことができる。

酵母、動物細胞または昆虫細胞により発現させた場合には、糖あるいは糖鎖が付加された蛋白質を得ることができる。

心筋分化誘導因子をコードする DNA を組み込んだ組換え体 DNA を保有する形質 転換体を培地に培養し、培養物中に心筋分化誘導因子蛋白質を生成蓄積させ、該培 養物より該蛋白質を採取することにより、心筋分化誘導因子蛋白質を製造すること ができる。

心筋分化誘導因子蛋白質を製造する形質転換体を培地に培養する方法は、宿主の 培養に用いられる通常の方法に従って行うことができる。

大腸菌等の原核生物あるいは酵母等の真核生物を宿主として得られた形質転換体 を培養する培地としては、該宿主が資化し得る炭素源、窒素源、無機物等を含有し、 形質転換体の培養を効率的に行える培地であれば天然培地、合成培地のいずれでも よい。

炭素源としては、それぞれの宿主が資化し得るものであればよく、グルコース、フラクトース、スクロース、これらを含有する糖蜜、デンプンあるいはデンプン加水分解物等の炭水化物、酢酸、プロピオン酸等の有機酸、エタノール、プロパノールなどのアルコール類を用いることができる。

窒素源としては、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アン モニウム、リン酸アンモニウム等の各種無機酸若しくは有機酸のアンモニウム塩、 その他含窒素化合物、並びに、ペプトン、肉エキス、酵母エキス、コーンスチープ リカー、カゼイン加水分解物、大豆粕および大豆粕加水分解物、各種発酵菌体およ びその消化物等が用いられる。

無機物としては、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅、炭酸カルシウム等を用いることができる。

培養は、振盪培養または深部通気攪拌培養などの好気的条件下で行う。培養温度は 15~40℃がよく、培養時間は、通常 16 時間~7日間である。培養中 pH は、3.0~9.0 に保持する。 p H の調整は、無機あるいは有機の酸、アルカリ溶液、尿素、炭酸カルシウム、アンモニアなどを用いて行う。

また培養中必要に応じて、アンピシリンやテトラサイクリン等の抗生物質を培地 に添加してもよい。

プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した 微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。 例えば、lac プロモーターを用いた発現ベクターで形質転換した微生物を培養すると きにはイソプロピルーβーDーチオガラクトピラノシド (IPTG) 等を、trp プロモー ターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールア クリル酸 (IAA) 等を培地に添加してもよい。

動物細胞を宿主細胞として得られた形質転換体を培養する培地としては、一般に使用されている RPMI1640 培地 [The Journal of the American Medical Association, 199, 519 (1967)] 、Eagle の MEM 培地 [Science, 122, 501 (1952)] 、ダルベッコ改変 MEM 培地 [Virology, 8, 396 (1959)] 、199培地 [Proceeding of the Society for the Biological

Medicine, <u>73</u>, 1 (1950)] またはこれら培地に牛胎児血清等を添加した培地等を用いることができる。

培養は、通常 pH6~8、30~40℃、5%CO,存在下等の条件下で1~7日間行う。

また、培養中必要に応じて、カナマイシン、ペニシリン等の抗生物質を培地に添加してもよい。

昆虫細胞を宿主細胞として得られた形質転換体を培養する培地としては、一般に使用されている TNM-FH 培地(Pharmingen 社製)、Sf-900 II SFM 培地(Life Technologies 社製)、ExCell400、ExCell405 (いずれも JRH Biosciences 社製)、Grace's Insect Medium [Grace, T.C.C., Nature, 195, 788 (1962)] 等を用いることができる。

培養は、通常 pH6~7、25~30℃等の条件下で、1~5 日間行う。

また、培養中必要に応じて、ゲンタマイシン等の抗生物質を培地に添加してもよい。

上述の形質転換体の培養物から、心筋分化誘導因子蛋白質を単離精製するには、 通常の蛋白質の単離、精製法を用いればよい。

例えば、心筋分化誘導因子蛋白質が、細胞内に溶解状態で発現した場合には、培養終了後、細胞を遠心分離により回収し水系緩衝液にけん濁後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー、ダイノミル等により細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られた上清から、通常の蛋白質の単離精製法、即ち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)ーセファロース、DIAION HPA-75 (三菱化学社製)等レジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(Amersham Pharmacia Biotech 社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の手法を単独あるいは組み合わせて用い、精製標品を得ることができる。

また、該蛋白質が細胞内に不溶体を形成して発現した場合は、細胞を回収後破砕し、遠心分離することにより、沈殿画分として蛋白質の不溶体を回収する。

回収した該蛋白質の不溶体を蛋白質変性剤で可溶化する。

該可溶化液を、希釈あるいは透析により、該可溶化液中の蛋白質変性剤の濃度を下げることにより、該蛋白質の構造を正常な立体構造に戻した後、上記と同様の単離精製法により該蛋白質の精製標品を得る。

心筋分化誘導因子蛋白質またはその糖修飾体等の誘導体が細胞外に分泌された場合には、培養上清から、該蛋白質またはその糖鎖付加体等の誘導体を回収することができる。即ち、培養物から遠心分離等の手法により培養上清を回収し、該培養上清から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。

このようにして取得される蛋白質として、例えば、配列番号 5、6、10、12、14、16、18、20、22、24、26、28 および 30 で表されるアミノ酸配列を有する蛋白質等をあげることができる。

また、上記方法により発現させた蛋白質を、Fmoc 法(フルオレニルメチルオキシカルボニル法)、tBoc 法(t-ブチルオキシカルボニル法)等の化学合成法によっても製造することができる。また、米国 Advanced ChemTech 社製、Perkin-Elmer 社製、Amersham Pharmacia Biotech 社製、米国 Protein Technology Instrument 社製、米国 Synthecell-Vega 社製、米国 PerSeptive 社製、島津製作所社製等のペプチド合成機を利用して合成することもできる。

心筋細胞への分化を誘導できる蛋白質は、上記(1)と同様にして心筋形成剤を 形成し使用することができる。

7. 先天性遺伝子疾患の治療への利用

心不全を来す疾患の中には、一部であるが単一遺伝子の変異により、本来必要な蛋白質が全て欠損するために心不全を来す一群がある。このような疾患としては、家族性肥大型心筋症、Fabri病、QT延長症候群、マルファン症候群、大動脈弁狭窄症、ミトコンドリア心筋症、Duchenne型筋ジストロフィー症等があげられる。これらの疾患は、ミオシン、トロボニン、トロボミオシン、電位依存性 Na チャンネル、ドチャンネル、フィブリン、エラステイン、ミトコンドリア、ジストロフィンなどの遺伝子異常が原因であることが知られている[治療学,30,1302-1306(1996)]。す

なわち、これら患者より本発明の心筋細胞への分化能を有する細胞を取得し、正常な遺伝子を導入して心臓に移植することで上記疾患を治療することができる。正常な遺伝子は、上記6(1)で記載した遺伝子治療用のベクターを用いることで本発明の心筋細胞への分化能を有する細胞に導入することができる。

8. 心筋細胞への分化能を有する細胞特異的な表面抗原を特異的に認識する抗体の取得

以下に、本発明の心筋細胞への分化能を有する細胞で発現している表面抗原を特異的に認識する抗体の調製法について述べる。

本発明の心筋細胞への分化能を有する細胞で特異的に発現している表面抗原を認識する抗体は、心筋梗塞などの心臓病の細胞治療を実施する上で必要な心筋細胞への分化能を有する細胞の純度検定や精製に用いることができる。

該抗体を取得する方法として、本発明の心筋細胞への分化能を有する細胞 3~5× 10⁵cells/匹、あるいは該細胞から調製した細胞膜画分 1~10mg/匹程を抗原として、ウサギ、ヤギまたは 3~20 週令のラット、マウスもしくはハムスター等の非ヒトほ乳動物の皮下、静脈内または腹腔内に、適当なアジュバント[例えば、フロインドの完全アジュバント(Complete Freund's Adjuvant)または、水酸化アルミニウムゲル、百日咳菌ワクチンなど]とともに投与する。

該抗原の投与は、1回目の投与の後1~2週間おきに3~10回行う。各投与後、3~7日目に眼底静脈叢より採血し、該血清が免疫に用いた抗原と反応するか否かを酵素免疫測定法 [酵素免疫測定法 (ELISA 法):医学書院刊 1976年、AntibodiesーA Laboratory Manual, Cold Spring Harbor Laboratory, 1988] などで調べる。

免疫に用いた抗原に対し、その血清が充分な抗体価を示した非ヒトほ乳動物を、 血清または抗体産生細胞の供給源とする。

ポリクローナル抗体は、該血清を分離、精製することにより調製することができる。

モノクローナル抗体は、該抗体産生細胞と非ヒトほ乳動物由来の骨髄腫細胞とを 融合させてハイブリドーマを作製し、該ハイブリドーマを培養するか、動物に投与 して該動物を腹水癌化させ、該培養液または腹水を分離、精製することにより調製

することができる。

抗体産生細胞としては、脾細胞、リンパ節、末梢血中の抗体産生細胞、特に脾細胞が好適に用いられる。

骨髄腫細胞としては、8 ーアザグアニン耐性マウス (BALB/c 由来) 骨髄腫細胞株である P3-X63Ag8-U1(P3-U1)株 [Current Topics in Microbiology and Immunology, 18, 1 (1978)]、P3-NS1/1-Ag41(NS-1)株 [European J. Immunology, 6, 511 (1976)]、SP2/O-Ag14(SP-2)株 [Nature, 276, 269 (1978)]、P3-X63-Ag8653(653)株 [J. Immunology, 123, 1548 (1979)]、P3-X63-Ag8(X63)株 [Nature, 256, 495 (1975)] 等、マウス由来の株化細胞が好適に用いられる。

ハイブリドーマ細胞は、以下の方法により作製できる。

抗体産生細胞と骨髄腫細胞を混合し、HAT培地(正常培地にヒポキサンチン、チミジンおよびアミノブテリンを加えた培地)に懸濁したのち、7~14日間培養する。培養後、培養上清の一部をとり酵素免疫測定法などにより、抗原に反応し、抗原を含まない蛋白質には反応しないものを選択する。ついで、限界希釈法によりクローニングを行い、酵素免疫測定法により安定して高い抗体価の認められたものをモノクローナル抗体産生ハイブリドーマ細胞として選択する。

ポリクローナル抗体またはモノクローナル抗体を分離、精製する方法としては、 遠心分離、硫安沈殿、カプリル酸沈殿、または DEAE ーセファロースカラム、陰イオ ン交換カラム、プロテイン A または Gーカラムあるいはゲル濾過カラム等を用いる クロマトグラフィー等を、単独または組み合わせて処理する方法があげられる。

上記方法で取得した、該心筋細胞への分化能を有する細胞で発現している表面抗原を特異的に認識する抗体を用いて、検体細胞に対する反応性と造血系幹細胞、神経系幹細胞などの対照となる細胞に対する反応性とを比較することで、検体細胞が上記特異的表面抗原を発現しているかどうかを容易に検定することができる。

9. 心筋細胞への分化能を有する細胞で発現している表面抗原および該表面抗原をコードする遺伝子の取得

該心筋細胞への分化能を有する細胞で特異的に発現している表面抗原遺伝子の取得方法としては、二つの異なる由来のサンプル間で異なる発現形態を取る遺伝子を

取得する方法であるサブトラクション法[Proc. Natl. Acad. Sci. USA <u>85</u>, 5738-5742 (1988)]や Representational difference analysis[Nucleic Acids Research, <u>22</u>, 5640-5648 (1994)]による方法をあげることができる。

まず、心筋細胞への分化能を有する細胞より作製した CDNA ライブラリーを、造血系幹細胞や神経系幹細胞などの心筋細胞への分化能を有する細胞以外の対照細胞より取得した mRNA を用いてサブトラクションを行う。心筋細胞への分化能を有する細胞特異的な遺伝子を濃縮した差分化 CDNA ライブラリーを調製した後、該差分化 CDNA ライブラリーの挿入 CDNA 配列を 5'側よりランダムに塩基配列解析を行い、分泌シグナル配列を持つものだけを選択する。このようにして得られた CDNA の全長塩基配列を決定することにより、該 CDNA がコードする蛋白質が分泌蛋白質か膜蛋白質かを区別することができる。

上記の方法において、ランダム配列解析の代わりに、シグナルシーケンストラップ法も用いることもできる [Science, <u>261</u>, 600-603 (1993); Nature Biotechnology, <u>17</u>, 487-490 (1999)]。シグナルシーケンストラップ法とは、分泌シグナル配列をもつ遺伝子を選択的にスクリーニングする方法である。

効率よく特異的な表面抗原を取得するためには、シグナルシーケンストラップライブラリーをサプトラクションが行えるベクターを用いて作製し、心筋細胞への分化能を有する細胞から作製したシグナルシーケンストラップライブラリーを造血系幹細胞や神経系幹細胞などの対照となる細胞より取得した mRNA を用いてサブトラクションを行う方法が望ましい。このようにして取得された分泌シグナル配列を含む DNA 断片は全長 CDNA をクローン化するためのプローブとして用いることができる。

全長 CDNA はその全長塩基配列を解析することで、該 CDNA がコードする蛋白質が分泌蛋白質か膜蛋白質かを区別することができる。

ランダム配列解析あるいはシグナルシーケンストラップ法を用いた場合でも、得られたクローンが膜蛋白質をコードする場合は、塩基配列から類推されるアミノ酸配列に基づき合成ペプチドを作製し、該合成ペプチドを抗原として上記方法により特異的な抗体を取得することができる。

また、膜蛋白質の場合は、受容体をコードしているものがあり、このような受容体は該心筋細胞への分化能を有する細胞の特異的な増殖または心筋細胞への分化の調節に働いている可能性があり、当該受容体のリガンドの探索に用いることができる。分泌蛋白質の場合は、直接心筋細胞への分化能を有する細胞を増殖あるいは分化させるために用いることができる。

10. 心筋細胞への分化能を有する細胞の増殖因子および心筋細胞への分化誘導因子のスクリーニング

心筋細胞への分化能を有する細胞の増殖因子および心筋細胞への分化誘導因子のスクリーニング方法としては、心筋細胞への分化能を有する細胞を無血清培地中で培養させる際に、検体である種々の物質を添加させ、該細胞が増殖するか、または心筋細胞へ分化誘導されるかで調べることにより行うことができる。

検体となる物質としては、各種サイトカインや増殖因子などの分泌蛋白質、細胞接着分子などの膜結合蛋白質、組織抽出液、合成ペプチド、合成化合物、微生物培養液等などいかなるものでもよい。

増殖能力はコロニー形成能や BrdU の取り込みなどで調べることができる。

コロニー形成能は、本発明の心筋細胞への分化能を有する細胞を低密度で播種することにより調べることができる。

BrdU の取り込みは、BrdU を特異的に認識する抗体を用いた免疫染色により調べることができる。

心筋細胞への分化を評価する方法としては、自律拍動を指標にするかまたは筋細胞で特異的に発現する遺伝子のプロモーターと GFP(Gleen fluorescent protein)、ルシフェラーゼ、ベーターガラクトシダーゼなどのレポーター遺伝子とを組み合わせたベクターDNA を該心筋細胞への分化能を有する細胞に導入したレポーター細胞を用いてレポーター遺伝子の発現を指標にする方法があげられる。

レポーター系の構築には cardiac troponin I(cTNI)のプロモーターを用いる方法があげられる[J. Biological Chemistry, <u>273</u>, 25371-25380 (1998)]。

11. 心筋細胞への分化能を有する細胞の不死化

心臓疾患の患者、特に高齢者に本発明の治療薬を投与する場合、本発明の心筋細

胞への分化能を有する細胞をガン化させずに細胞分裂の回数を増やすことが望ましい。

細胞をガン化させずに細胞分裂の回数を増やす方法としては、テロメラーゼを本 発明の心筋細胞への分化能を有する細胞に発現させる方法をあげることができる。

例えば、テロメラーゼの触媒サブユニットである TERT 遺伝子、具体的には配列番号 32 で表される DNA を、レトロウイルスベクターに導入した後に心筋細胞への分化能を有する細胞に導入する方法、または心筋細胞への分化能を有する細胞に内在する TERT 遺伝子を誘導発現させる因子を心筋細胞への分化能を有する細胞に投与する方法、あるいは TERT 遺伝子を誘導発現させる因子をコードする DNA を含むベクターを心筋細胞への分化能を有する細胞に導入する方法などをあげることができる。

このような TERT 遺伝子を誘導発現させる因子は、心筋細胞への分化能を有する 細胞に TERT 遺伝子プロモーターと GFP(Green Fluorescent protein)、ルシフェラーゼ、 あるいはベーターガラクトシダーゼを組み合わせたレポーター系を心筋細胞への分 化能を有する細胞に導入することで選別することができる。

12. 心筋細胞への分化能を有する細胞を抗体を用いて分離する方法

生体内から取り出した各種組織から目的の表面抗原を発現している細胞を取得する方法としては、ソーテイング機能を有したフローサイトメーターを用いる方法、 磁気ビーズを用いる方法があげられる。

フローサイトメーターのソーティングの方式としては、水滴荷電方式、セルキャプチャー方式などがあげられる(フローサイトメーター自由自在、p14-23、秀潤社、1999年)。どちらの方法も、細胞の表面に発現している分子に結合した抗体から発せられる蛍光強度を電気信号に変換することにより抗原の発現量を定量することができる。また、使用する蛍光の種類を組み合わせることで、複数の表面抗原を利用して分離することも可能である。蛍光としては、FITC(fluorescein isothiocyanate)、PE(phycoerythrin)、APC(Allo-phycocyanin)、TR(TexasRed)、Cy3、CyChrome、Red613、Red670、PerCP、TRI-Color、QuantumRed などがあげられる(フローサイトメーター自由自在、p3-13、秀潤社、1999年)。

生体内から取り出した各種組織、具体的には骨髄または臍帯血から、遠心分離などの方法で細胞を分離したのち、直接抗体で染色する方法と、一度適当な培地中で培養・増殖を行った後に抗体で染色する方法が利用できる。細胞の染色はまず、表面抗原を認識する一次抗体と目的の細胞サンプルを混合し、氷上で30分間~1時間、インキュベーションする。一次抗体が蛍光で標識されている場合には、洗浄後フローサイトメーターで分離を行う。一次抗体が蛍光標識されていない場合には、洗浄後一次抗体に対して結合活性を有する蛍光標識された二次抗体と一次抗体が反応した細胞とを混合し、再び氷上で30分間~1時間、インキュベーションする。洗浄後、一次抗体と二次抗体で染色された細胞をフローサイトメーターで分離を行う。

磁気ビーズを用いる方法では、目的の表面抗原を発現している細胞を大量に分離することができる。分離の純度は上述のフローサイトメーターを用いる方法には及ばないが、精製を繰り返すことにより、十分高い細胞純度を確保することができる。細胞を一次抗体で染色後、残存する一次抗体を除去し、一次抗体と特異的に結合する磁気ビーズを結合させた二次抗体を結合させる。残存する二次抗体を洗浄除去した細胞は磁石を設置したスタンドで分離することができる。これらの操作に必要な材料および装置は DYNAL 社から入手することができる。

磁気ビーズを用いる方法は、細胞サンプル中より不要な細胞を除去するのにも同様に利用することができる。不要な細胞をより効率的に除去するには Stem Cell Technologies Inc(Vancouver, Canada)より販売されている StemSep 法を用いることができる。

上述の方法で用いられる抗体としては、前記8で取得された抗体、または造血系細胞の表面抗原 CD34、CD117、CD14、CD45、CD90、Sca-1、Ly6c、Ly6g を認識する抗体、血管内皮細胞の表面抗原 Flk-1、CD31、CD105、CD144 を認識する抗体、間葉系細胞の表面抗原 CD140 を認識する抗体、インテグリン CD49b、CD49d、CD29、CD41 を認識する抗体、マトリックス受容体 CD54、CD102、CD106、CD44 を認識する抗体があげられる。これらの抗体を組み合わせることで、より高い純度で目的の細胞を取得することができる。

具体的には、CD34 陰性、CD117 陽性、CD144 陰性および CD140 陽性の性質を有する 細胞を取得するには、ヒト骨髄細胞から CD34 陽性細胞と CD144 陰性細胞を上述した 免疫磁気ビーズの方法などを利用して除去した後、CD117 陽性および CD140 陽性の細胞面分を分取することで目的の細胞を分離することができる。

13. 心筋特異的な遺伝子のプロモーターレポーターベクターを用いた心筋前駆 細胞の分離

心筋細胞への分化能を有する細胞から誘導した心筋細胞や心筋細胞の前駆細胞を 効率的に分離するために、発光オワンクラゲの緑色蛍光蛋白質(green fluorescent protein; GFP)を遺伝子導入のためのレポーター遺伝子の指標として用いることがで きる。

具体的には、心筋で特異的に発現している遺伝子または前記9項で取得した心筋 細胞への分化能を有する細胞で特異的に発現している遺伝子のプロモーターの下流 に GFP 遺伝子をつないだベクターを作製し、心筋細胞への分化能を有する細胞に導入する。このようなレポーターベクターを導入された細胞を薬剤耐性などの指標で 分離後、心筋細胞へと分化誘導する。分化誘導した細胞は GFP を発現し、蛍光を発生する。蛍光を発生した心筋細胞ならびに心筋前駆細胞はフローサイトメーターを 用いて容易に分離することができる (フローサイトメーター自由自在、 p 4 4 - 5 2、秀潤社、1999年)。

心筋で特異的に発現している遺伝子のプロモーターとしては MLC2v やトロポニン Iを用いることができる。

ベクターとしては、上述した動物細胞用のプラスミドベクター、アデノウイルス ベクターなどを用いることができる。

- 14. 心筋細胞への分化能を有する細胞から各種細胞への分化の誘導
- (1) 心筋細胞への分化能を有する細胞から脂肪細胞への分化の誘導

心筋細胞への分化能を有する細胞から脂肪細胞への分化を誘導する方法としては、 $PPAR\gamma$ 受容体のアゴニストである Pioglitazone、 Troglitazone を $0.4~\mu$ Mから $2~\mu$ Mの終濃度となるよう培地中に添加する方法が挙げられる。

または、培養皿一面に密集した細胞の培地中に、終濃度1μM dexamethasone、0.5

mM methyl-isobutylxanthine、0.01 mg/ml insulin、0.2 mM indomethacin となるように、それぞれすべて添加する方法も挙げられる。

(2) 心筋細胞への分化能を有する細胞から軟骨細胞への分化の誘導

(3) 心筋細胞への分化能を有する細胞から骨芽細胞への分化の誘導

心筋細胞への分化能を有する細胞から骨芽細胞への分化を誘導する方法としては、細胞の培地中に終濃度 $0.1~\mu{
m M}$ dexamethasone、 $0.05~{
m mM}$ ascorbic acid-2-phosphate、 $10~{
m mM}\beta$ -glycerophosphate となるように、それぞれを添加した培地中で培養する方法が挙げられる。

以下に実施例をあげて、本発明を具体的に示す。

発明を実施するための最良の形態

実施例1.マウス骨髄からの心筋細胞への分化能を有する骨髄細胞の取得と培養 5週齢の C3H/He マウス 10 匹をエーテルを用いて麻酔し、そのうえで頚椎脱臼に より致死させた。マウスを半側臥位にして、70%エタノールを充分かけ消毒した。

次に大腿骨周辺の皮膚を広い範囲にわたり切開し、大腿骨全面の大腿四頭筋をはさみで切除した。膝関節の部分に軽くはさみを入れ、関節を外し、さらに大腿骨背面の筋肉を切除した。股関節の部分にはさみを入れ関節を外し、大腿骨を取り出した。大腿骨に付着している筋肉をはさみで切除し、大腿骨全体を露出させた。大腿骨の両端をはさみで切断後、テルモ製 23G の針を装着した 2.5ml 注射器に 20%FCSを含有する IMDM 培地を約 1.5ml 入れ、注射針の先端を大腿骨の膝関節側の断端に差し込み、試験管の中に培養液を吹き出すことで、骨髄細胞を押し出した。取得した細胞は、20%FCS、100mg/ml penicillin、250ng/ml streptomycin、85mg/ml amphotericinを含有する IMDM 培地中で 33°Cで、5% CO2 濃度の孵卵機を用いて培養を行った。継代を続けることで、細胞は間葉系の細胞へと均一化し、造血系の細胞は消失した。

約4ヶ月上記条件で培養を行い、不死化した細胞を選択した後、希釈により 192 種類の独立した単一細胞(single cell)由来の細胞株を樹立した (以下、骨髄由来初代不

死化細胞株と称する)。これら独立のクローン由来の細胞にそれぞれに 3μ M の終濃度になるように 5-aza-C を添加し 24 時間培養した後、培地を IMDM 培地に代えてさらに 2 週間培養することで拍動する細胞を産生するクローンを選択した。骨髄由来初代不死化細胞 192 個のうち、心筋細胞への分化能を有する骨髄細胞は 3 個であった。このうちの 1 つが KUM2 である。以後、骨髄細胞 KUM2 ならびに後述する多分化能幹細胞 BMSC は特別な指定がない限り、20%FCS、100mg/ml penicillin、250ng/ml streptomycin、85mg/ml amphotericin を含有する IMDM 培地中で 33°Cで、5% CO $_2$ 濃度の孵卵機を用いて培養を行った。KUM2 細胞は 3μ M の終濃度の 5-aza-C に 24 時間 曝露することで、非特異的に自己拍動する心筋細胞が分化誘導してくるが、その頻度は非常に低かった(10^7 cell に 1 つ以下)。

しかし、KUM2 細胞から出現する自己拍動する細胞周辺をクローニングシリンジで採取すると、増殖能の高い多分化能幹細胞 BMSC(FERM BP-7043)と、限られた回数のみ増殖し心筋細胞へと分化する細胞(以下、単に心筋前駆細胞と称する)の少なくとも2種類の細胞が観察された。BMSC 細胞は、クローニングシリンジで回収した後、細胞を総代培養し、不死化する細胞を選別することで、クローン化を行った。BMSC 細胞は、その親株となる KUM2 よりも 100 倍以上効率的に分化誘導することが観察された。また心筋前駆細胞は再び5-aza-Cを添加し24時間培養した後、培地をIMDM 培地に代えてさらに2~3週間培養することで多くの自律拍動する細胞が効率的に出現した。該心筋前駆細胞は、増殖条件下では、単核の線維芽細胞様の形態を呈し、心筋収縮蛋白質はほとんど発現していない。しかし5-aza-Cにより最終分化を誘導すると形態は著しく変化した。

分化誘導 1 週間目頃より、一部の細胞は細胞質が大きくなり円形あるいは棒状を呈し、後に自律拍動を開始する細胞となるが、この時点では自律拍動を行うことは少なかった。分化誘導後 2 週間になると、自己拍動を開始した。この自己拍動した細胞は互いに連結しあい、縦に連結して筋管細胞様となった。3 週間以後には多くの細胞が縦に 1 列にならび、同期して収縮した。分化後 4 週間以後には培養皿の上の直接連結される細胞は、すべて同期して収縮し心筋組織様になった。マウスの心臓は、毎分 300~400 回程度の心拍数で収縮するが、これに対してマウス成体骨髄由来

の細胞より分化した心筋細胞は、培養条件下において毎分 120~250 回の速さで規則 的に収縮した。

実施例2. マウス骨髄細胞から誘導される心筋細胞の特性

骨髄由来細胞から形成される自律拍動する心筋様細胞が、実際に心筋細胞の性質 を保有しているかどうかの解析を行った。

実施例1で取得した、骨髄由来初代不死化細胞株、マウス骨髄由来多分化能幹細胞 BMSC および心筋前駆細胞から分化誘導した心筋細胞から、それぞれ Trizol Reagents(GIBCO BRL 社製)を用いて全 RNA を取得した。次に、該全 RNA を基質として SupersciptII reverse transcriptase(GIBCO BRL 社製)を用いて First strand CDNA を合成した。

次に、心筋細胞特異的な遺伝子の発現を検討するために、該 First strand CDNA を基質として、配列番号 33~58 に示した塩基配列を有する合成 DNA を用いて定量的 PCR を行った。心筋細胞特異的な遺伝子としては、ナトリウム利尿ペプチドである ANP および BNP、ミオシン重鎖である α -MHC および β -MHC、アクチンである α -skeletal actin および β -skeletal actin、ミオシン軽鎖である MLC-2a、MLC-2v、心筋 細胞特異的転写因子である Nkx2.5/Csx、GATA4、TEF-1、MEF-2C、MEF-2D、MEF-2A を用いた。

ANP の増幅には配列番号 33、34 の塩基配列を有する合成 DNA を、BNP の増幅には配列番号 35、36 の塩基配列を有する合成 DNA を、α-MHC の増幅には配列番号 37、38 の塩基配列を有する合成 DNA を、β-MHC の増幅には配列番号 39、40 の塩基配列を有する合成 DNA を、α-skeletal actin の増幅には配列番号 41、42 の塩基配列を有する合成 DNA を、β-skeletal actin の増幅には配列番号 43、44 の塩基配列を有する合成 DNA を、β-skeletal actin の増幅には配列番号 43、44 の塩基配列を有する合成 DNA を、MLC-2a の増幅には配列番号 45、46 の塩基配列を有する合成 DNA を、MLC-2v の増幅には配列番号 47、48 の塩基配列を有する合成 DNA を、Nkx2.5/Csx の増幅には配列番号 49、50 の塩基配列を有する合成 DNA を、GATA4 の増幅には配列番号 51、52 の塩基配列を有する合成 DNA を、TEF-1 の増幅には配列番号 55、56 の塩基配列を有する合成 DNA を、MEF-2C の増幅には配列番号 55、56 の塩基配列を有する合成 DNA を、MEF-2D の増幅には配列番号 57、58 の塩基配列を

有する合成 DNA を、MEF-2A の増幅には配列番号 59、60 の塩基配列を有する合成 DNA を用いた。

生体内で分化誘導する心筋細胞は、心筋収縮の心拍数またはエネルギー効率に違いを持たせるために、胎児期、新生児期あるいは成熟期によって、または心房筋あるいは心室筋の相違によって、心筋収縮蛋白質のアイソフォームに違いがある。

培養系で心筋細胞に分化した骨髄細胞の場合、アイソフォームの発現様式は α ー アクチンの場合は骨格筋型のほうが心筋型より多く発現し、ミオシン重鎖の場合は β 型のほうが α 型よりも多く発現していた。ミオシン軽鎖では2 v型が発現しているのに対し、2 α 型の発現は観察されなかった。

また、培養系で心筋細胞に分化した骨髄細胞の分化誘導後には、ナトリウム利尿 ペプチドである ANP および BNP の発現が見られた。以上の心筋収縮蛋白質の発現様 式より判断すると、培養系で心筋細胞に分化した骨髄細胞の表現型は胎児型心室筋 細胞の形質を有すると考えられる。

培養系で心筋細胞に分化した骨髄細胞では、Nkx2.5/Csx、GATA4、MEF-2A、MEF-2C、MEF-2D、TEF-1 遺伝子の発現が観察された。増殖中の骨髄由来初代不死化細胞株ではこれらの転写因子の発現は認められなかったが、増殖中の骨髄由来心筋前駆細胞ではNkx2.5/Csx、GATA4 および MEF-2C の発現が観察され、心筋細胞への分化誘導に伴い、遅れて MEF-2A および MEF-2D の発現誘導が観察された。

次に、ガラス微少電極により、培養系で心筋細胞に分化した骨髄細胞の活動電位を記録した。活動電位は、細胞を 1.49mM CaCl₂、4.23mM KCl、25mM HEPES(pH7.4)を添加した IMDM 培地中で培養し、Diaphoto-300 実体顕微鏡(ニコン社製)下、温度25℃で測定した。ガラス電極は電極抵抗を 15~30 Ωに設定して 3M KCl を充填した。膜電位の測定は MEZ-8300 (日本光電社製)を用いて電流クランプモードで行った。測定結果は RTA-1100M (日本光電社製)を用いて熱感紙に記録した。その結果、培養系で心筋細胞に分化した骨髄細胞は、洞結節細胞型と心室筋細胞型の 2 種類が観察された。両者に共通する活動電位の特徴は、①活動電位持続時間が長いこと、②比較的浅い静止期電位を持つこと、③ペースメーカー細胞にみられる静止期電位の緩やかな脱分極が認められることであった。また、心室筋細胞型では活動電位は

Peak&Dome 型(活動電位第1相を持つ)を呈した。洞結節細胞型の活動電位持続時間、拡張期膜電位、活動電位振幅は従来ウサギやラットで報告されている洞結節の活動電位と近似していた。心室筋細胞型ではこれに比べて、静止期膜電位は深く、活動電位振幅は大きい傾向を示した。分化誘導後、2~3週間の細胞はすべて洞結節細胞型が記録されたが、分化誘導後4週間頃より心室筋細胞型が観察され時間経過とともに次第に増加した。

実施例3. サイトカインを用いた心筋細胞への分化の促進

心筋細胞への分化能を有するマウス骨髄細胞の心筋分化誘導率を増加させるため、 5-aza-Cで分化誘導をおこなう際に、各種サイトカインを添加して誘導率が増加する かどうか解析をおこなった。

心筋細胞への分化能を有するマウス骨髄由来多分化能幹細胞(BMSC)を 2×10⁴細胞/ml となるように 60mm 培養ディッシュあるいは 60mm フィブロネクチン付着ディッシュ(fibronectin-coated dish:Becton Dickinson 社製) に蒔き、33℃、5%CO₂ 濃度の孵卵機を用いて培養を行った。

翌日、該培養液に 5-aza-C を終濃度 3 μ M となるよう添加した上で、更に、PDGF のみ添加(培養ディッシュA)、PDGF とレチノイン酸の両方添加(培養ディッシュB)、添加なし(培養ディッシュ C)の 3 種類の異なる処理を行い培養を継続した(終濃度は PDGF は 10ng/ml、レチノイン酸は 10ml)。

翌日 5-aza-C を培地から除去するために、培地を新しいものに交換し、再び培養ディッシュ Aには PDGF を終濃度 10 ng/ml になるように添加し、培養ディッシュ B には PDGF を終濃度 10 ng/ml とレチノイン酸を終濃度 10^{-9}M になるように添加した。それから更に 2 日後、4 日後にも同様の培地交換と PDGF あるいはレチノイン酸の添加を行った。

薬剤を加えてから4週間後、細胞の形態を位相差顕微鏡下で観察した。その結果、5-aza-C のみを添加した培養ディッシュでは約3割の細胞が筋管様細胞となるのに対し、PDGF を添加すると約4割、PDGF とレチノイン酸を同時に添加すると約5割の細胞が筋管様細胞となった。また、フィブロネクチン付着ディッシュの3群では、培養ディッシュの3群に比べて、筋管様細胞になる細胞数が約1割程度ずつ増加し

た。

得られた、筋管様細胞から RNA を回収して、該筋管様細胞で発現している遺伝子を配列番号 7 1 ~ 7 8 で示した合成オリゴヌクレオチドを用いて定量的 PCR を解析したところ、PDGF あるいはレチノイン酸は骨格筋に関係する MyoD、fTnI 遺伝子の発現を亢進するが、心筋に特異的に関係する cTnI, ANP の発現は誘導しなかった。

次に、心筋細胞への分化能を有するマウス骨髄由来多分化能幹細胞(BMSC)を 2× 10 細胞/ml となるように 60mm 培養ディッシュに蒔き、33℃、5%CO₂ 濃度の孵卵機を用いて培養を行った。

翌日、該培養液に 5-aza-C を終濃度 3 μ Mとなるよう添加した上で、更に、FGF-8 を終濃度 10ng/mlになるように添加 (培養ディッシュD)、ET-1 を終濃度 10ng/mlになるように添加 (培養ディッシュE)、Midkine を終濃度 10ng/mlになるように添加 (培養ディッシュF)、BMP4 を終濃度 10ng/mlになるように添加 (培養ディッシュG),添加なし(培養ディッシュH)の5 種類の異なる処理を行い培養を継続した。

翌日 5-aza-C を培地から除去するために、培地を新しいものに交換し、再び培養ディッシュ Dには FGF-8 を終濃度 10 ng/ml になるように添加し、培養ディッシュ E には ET-1 を終濃度 10 ng/ml になるように添加、培養ディッシュ F には Midkine を終濃度 10 ng/ml になるように添加、培養ディッシュ Gには BMP4 を終濃度 10 ng/ml になるように添加して培養を継続した。それから更に 2 日後、4 日後にも同様の培地交換と FGF-8, ET-1, Midkine あるいは BMP4 の添加を行った。

5-aza-C を加えてから 4 週間後、細胞の形態を位相差顕微鏡下で観察した。その結果、5-aza-C のみを添加した培養ディッシュでは約 3 割の細胞が筋管様細胞となるのに対し、FGF-8, ET-1, Midkine あるいは BMP4 を添加した培養ディッシュでは約 5 割の細胞が筋管様細胞となった。

得られた、筋管様細胞から RNA を回収して、該筋管様細胞で発現している遺伝子を配列番号 $7.1 \sim 7.8$ で示した合成オリゴヌクレオチドを用いて定量的 PCR 解析を行ったとところ、FGF-8, ET-1, Midkine あるいは BMP4 は、それぞれ単独で心筋に特異的な遺伝子である cTnl, ANP の発現を亢進することが観察された。

実施例4.DMSO を用いた骨髄由来幹細胞からの心筋細胞への分化誘導

実施例 1 に示した方法により、取得した心筋細胞への分化能のあるマウス骨髄由来多分化能幹細胞(BMSC)に 3 μ M の 5-aza-C の代わりに 10 μ M の DMSO を添加し 2 4時間培養した後、培地を IMDM 培地に代えて、さらに 6 週間培養を続けた。

その結果、拍動する心筋細胞が分化誘導されることを見出し、これらの細胞には Nkx2.5/Csx および GATA4 遺伝子が発現しており、5-aza-C を添加したときと同様の 性質を有した心筋細胞であることが示された。この解析結果は、5-aza-C と DMSO の共通の機能である染色体 DNA の脱メチル化が心筋細胞の分化に必要であることを 示している。

実施例 5. 心筋細胞への分化能を有するマウス骨髄由来多分化能幹細胞が多分化能を有する幹細胞および心筋前駆細胞であることの証明

マウス骨髄由来多分化能幹細胞(BMSC)から分化誘導する拍動細胞が心筋細胞の性質を保有していることは示されたが、心筋細胞への分化能を有するマウス骨髄由来多分化能幹細胞(BMSC)に、心筋前駆細胞が存在しているのか、もっと未分化で心筋細胞以外の、例えば脂肪細胞などに分化可能な幹細胞が存在するかを調べるため、シングルセル・マーキング (Single cell marking)の実験を行った。

具体的には、分化誘導を行う前に、ある1つの細胞に GFP 遺伝子をウィルスベクターを導入して標識し、その後分化誘導させて標識した細胞がどのような細胞に分化したかで判断した。

まず、GFP 遺伝子を発現させるレトロウイルスベクタープラスミド GAR3-GFP および、Ecotropic 遺伝子を発現させる pCMV-Eco プラスミドベクターを、Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989)等に記載のアルカリ中和法および PEG 沈殿法を用いて、純度の高い DNA を取得した。

この DNA をトランスフェクションさせる前日に、コンフルエントになった、gag および pol 遺伝子を保有する 293 細胞を 1/5 希釈で 10cm ディッシュに継代し、一晩 37℃、5%CO₂濃度の孵卵機を用いて培養をおこなった。

トランスフェクションは以下の通りに行った。

GAR3-GFP レトロウイルスベクタープラスミド DNA 1 5 μgと pCMV-Eco プラスミドベクターDNA 5 μgを 250mM CaCl₂ (pH6.95) 0.5ml に加えて溶解させ、その溶液を 15ml のチュープに入れた 2×BBS [50mM BES(N,N-bis(2-hydroxyethl)-2-

aminoethanesulfonic acid)、280mM NaCl、1.5mM Na₂HPO₄(pH6.95)] 0.5ml に滴下して 10 分間室温で静置させた。その後、この DNA 溶液を、前日に用意した 293 細胞培地中に滴下させ、37°C、5%CO₂ 濃度の孵卵機を用いて培養を行った。翌日、培地を交換し、更に 37°C、5%CO₂ 濃度の孵卵機を用いて培養を行った。

培地を交換して 2 日後に、培養上清を $0.45~\mu$ m のフィルター (Millipore 社製) で ろ過し、ウィルスベクターを含む溶液を回収した。この溶液を IMDM 培地で 10^{-1} 、 10^{-2} 、 10^{-3} 、 10^{-4} 、 10^{-5} に希釈した。

ウィルスベクターを導入される側の心筋細胞への分化能を有するマウス骨髄由来 多分化能幹細胞は、ウィルスをインフェクションさせる前日に 2×10 細胞/ウェル となるように 6 ウェル・ディッシュに蒔いた。

希釈した、ウィルスベクターを含む溶液には、終濃度 8 μ g/ml となるように、Hexadimethrine bromide(polybrene) (Sigma社製)を添加し、心筋細胞への分化能を有するマウス骨髄由来多分化能幹細胞(BMSC)の培養上清 2 m 1 をウイルス液 2ml と置換し、33°C、5%CO2濃度の孵卵機を用いて培養をおこなった。 5 時間後、培養上清を新しい IMDM 培地に交換し、更に 33°C、5%CO2濃度の孵卵機を用いて培養を行った。

2日間培養を行った後、蛍光顕微鏡下で GFP を発現している細胞を観察し、細胞 1000 個あたり 1 つの GFP 陽性細胞があるような細胞群を得た。

該細胞を 8×10³細胞/ディッシュとなるよう、35mm ガラスベースディッシュ (旭 テクノグラス社製) に蒔き、33℃、5%CO₂濃度の孵卵機を用いて培養を行った。

翌日、5-aza-C (Sigma 社製)、PDGF-BB (Peprotech 社製)、all trans レチノイン酸 (Sigma 社製)をそれぞれ終濃度 3 μ M、10ng/ml、10⁻⁹M となるよう添加し、添加して 2 日後および 4 日後には、培地交換を行うとともに、再度 PDGF-BB (以降 PDGF と略す)、all trans レチノイン酸を上述と同じ濃度で添加した。

4週間後、蛍光顕微鏡で GFP 陽性細胞がどのように分化したかを観察すると、心筋細胞のみが GFP 陽性になっている細胞集団、心筋細胞と未分化幹細胞が GFP 陽性になっている細胞集団、ならびに心筋細胞、脂肪細胞および未分化幹細胞の3者が GFP 陽性になっている細胞集団の3種類の細胞集団が見られた。すなわち、多分化能幹細胞から心筋前駆細胞が確率的 (stochastic) に分化誘導してくることが明らかとなった。またこの結果は、心筋細胞への分化能を有するマウス骨髄細胞には多分化能をを有する幹細胞が存在することを示した。

実施例6. 転写因子の強制発現による心筋細胞分化の促進

マウス心筋細胞への分化能を有するマウス骨髄由来多分化能幹細胞(BMSC)に心筋細胞分化に関係する転写因子を強制的に発現させることによる心筋細胞への分化に与える影響を解析した。

具体的には、分化誘導を行う前に、Nkx2.5/Csx または GATA4 遺伝子をウィルスベクターを用いて導入して、その後分化誘導させて心筋細胞への分化の効率を検討した。

まず、Nkx2.5/Csx を発現させる目的で、レトロウイルスベクタープラスミド pCLNCX (Imgenex 社)に Nkx2.5/Csx を組み込み、pCLNC-Nkx2.5/Csx を調製した。

また、GATA4を発現させる目的で、レトロウイルスベクタープラスミド pCLNCX (Imgenex社)の G418 耐性遺伝子部分をピューロマイシン耐性遺伝子に置換したプラスミド pCLPCX に、GATA4 を組み込み、pCLPC-GATA4 を調製した。レトロウイルスベクタープラスミド pCLNC-Nkx2.5/Csx と pCLPC-GATA4 および、Ecotropic 遺伝子を発現させる pCMV-Eco プラスミドベクター (Imgenex 社)を、Molecular Cloning、A Laboratory Manual、Second Edition、Cold Spring Harbor Laboratory Press (1989)等に記載のアルカリ中和法および PEG 沈殿法を用いて、純度の高い DNA を取得した。

これらの DNA をトランスフェクションさせる前日に、コンフルエントになった、gag および pol 遺伝子を保有する 293 細胞を 1/5 希釈で 10cm ディッシュに継代し、一晩 37°C、5%CO $_2$ 濃度の孵卵機を用いて培養を行った。

トランスフェクションは以下の通りにおこなった。

pCLNC-Nkx2.5/Csx あるいは pCLPC-GATA4 レトロウイルスペクタープラスミド

DNA15 μ g と pCMV-Eco プラスミドベクターDNA 5 μ g を 250mMCaCl₂ (pH6.95) 0.5ml に加えて溶解させ、その溶液を 15ml のチューブに入れた 2×BBS [50mM BES(N,N-bis(2-hydroxyethl)-2-aminoethanesulfonic acid)、280mM NaCl、1.5mM Na₂HPO₄(pH6.95)] 0.5ml に滴下して 10 分間室温で静置させた。その後、この DNA 溶液を、前日に用意した 293 細胞培地中に滴下させ、37°C、5%CO₂ 濃度の孵卵機を用いて培養を行った。翌日、培地を交換し、更に 37°C、5%CO₂ 濃度の孵卵機を用いて培養を行った。

培地を交換して 2 日後に、培養上清を $0.45~\mu$ m のフィルター (Millipore 社製) で ろ過し、ウィルスベクターを含む溶液を回収した。

ウィルスベクターを導入される側の心筋細胞への分化能を有するマウス骨髄由来 多分化能幹細胞(BMSC)は、ウィルスをインフェクションさせる前日に 2×10⁴細胞/ ウェルとなるように 6 ウェル・ディッシュに蒔いておいた。

上記で取得したウィルスベクターを含む溶液に、終濃度 $8 \mu \text{ g/ml}$ となるように、Hexadimethrine bromide(polybrene)(Sigma 社製)を添加し、心筋細胞への分化能を有するマウス骨髄由来多分化能幹細胞(BMSC)の培地と置換し、 33° C、 $5\%CO_2$ 濃度の孵卵機を用いて培養を行った。5 時間後、新しい IMDM 培地に交換し、更に 33° C、 $5\%CO_2$ 濃度の孵卵機を用いて培養を行い、さらに 2 日間培養を行った。

その後、pCLNC-Nkx2.5 と pCMV-Eco 導入で産生されたウィルスをインフェクションした細胞には、G418 を終濃度 300 μ g/ml になるように添加し、さらに 7 日間培養した。

一方、pCLPC-GATA4 と pCMV-Eco 導入で産生されたウィルスをインフェクションした細胞には、ピューロマイシンを終濃度 300ng/ml になるように添加し、さらに7日間培養した。

どちらの細胞も、この間に一部の細胞は死滅して浮遊した。生き残った細胞をトリプシンで浮遊させ、新しい培養皿に播種した。

このようにして、取得した Nkx2.5/Csx あるいは GATA4 の安定形質転換細胞について、上記実施例3の方法により分化誘導を行い、心筋細胞への分化の効率を検定した。

Nkx2.5/Csx を強制発現した心筋細胞への分化能を有する骨髄細胞(BMSC-Nkx2.5) と GATA4 を強制発現した心筋細胞への分化能を有する骨髄細胞(BMSC-GATA4)を 2 ×10⁴細胞/ml となるように 60mm 培養ディッシュに蒔き、33°C、5%CO₂ 濃度の孵卵機を用いて培養を行った。翌日、該培養液に 5-aza-C を終濃度 3 μMとなるよう添加した。さらに 24 時間、33°C、5%CO₂ 濃度の孵卵機を用いて培養を行った後に培地を新しいものに交換することで 5-aza-C を除去し、さらに 4 週間培養を続けた。位相差顕微鏡での筋管様細胞の数は Nkx2.5/Csx あるいは GATA4 の強制発現によっては大きく変化しなかった。次に得られた、筋管様細胞から RNA を回収して、該筋管様細胞で発現している遺伝子を配列番号 7 1~7 8 で示した合成オリゴヌクレオチドを用いて定量的 PCR 解析を行った。その結果、Nkx2.5/Csx あるいは GATA4 の強制発現により心筋に特異的な遺伝子である cTnI, ANP の発現を亢進することが観察された。.

次にまず、Nkx2.5/Csx と GATA4 の両遺伝子を同時に心筋細胞への分化能を有する骨髄細胞に発現させる目的で、レトロウイルスベクタープラスミドpCLPC-GATA4を、上述した方法に従い、組み換えウイルスを生産し、Nkx2.5/Csx を強制発現させた心筋細胞への分化能を有する骨髄細胞(BMSC-Nkx2.5)に感染させた後、 300ng/ml の終濃度になるようにピューロマイシンを添加し、薬剤耐性クローン(BMSC-Nkx2.5-GATA4)を取得した。

Nkx2.5/Csx と GATA4 の両遺伝子を強制発現した心筋細胞への分化能を有する骨髄細胞(BMSC-Nkx2.5-GATA4)を 2×10^4 細胞/ml となるように 60mm 培養ディッシュに蒔き、33°C、5%CO $_2$ 濃度の孵卵機を用いて培養を行った。

翌日、該培養液に 5-aza-C を終濃度 3 μMとなるよう添加した。さらに 24 時間、33℃、5%CO₂ 濃度の孵卵機を用いて培養を行った後に培地を新しいものに交換することで 5-aza-C を除去し、さらに 4 週間培養を続けた。位相差顕微鏡での筋管様細胞の数は Nkx2.5/Csx と GATA4 の両遺伝子の強制発現によっては大きく変化しなかったが、拍動する心筋細胞の数は両遺伝子を強制発現していない心筋細胞への分化能を有する骨髄細胞と比較して 50 倍以上増加した。次に得られた、筋管様細胞からRNA を回収して、該筋管様細胞で発現している遺伝子を配列番号 7 1~7 8 で示し

た合成オリゴヌクレオチドを用いて定量的 PCR 解析を行った。その結果、Nkx2.5/Csx と GATA4 の強制発現により心筋に特異的な遺伝子である cTnI, ANP の発現を亢進することも観察された。

実施例8.転写因子の強制発現とサイトカインの組み合わせによる心筋細胞分化 の促進

上述した心筋分化促進能のある転写因子(Nkx2.5/Csx, GATA4)とサイトカイン (FGF-8, ET-1, Midkine, BMP4)を組み合わせることによる、心筋細胞分化に及ぼす影響を解析した。

Nkx2.5/Csx と GATA4 の両遺伝子を強制発現した心筋細胞への分化能を有する骨髄細胞(BMSC-Nkx2.5-GATA4)を 2×10⁴細胞/ml となるように 60mm 培養ディッシュに蒔き、33℃、5%CO₂ 濃度の孵卵機を用いて培養を行った。

Nkx2.5/Csx と GATA4 の両遺伝子を強制発現した心筋細胞への分化能を有する骨髄細胞(BMSC-Nkx2.5-GATA4)を 2×10^4 細胞/ml となるように 60mm 培養ディッシュに蒔き、33°C、5%CO $_2$ 濃度の孵卵機を用いて培養を行った。翌日、該培養液に 5-aza-Cを終濃度 $3\,\mu$ Mとなるよう添加した上で、更に、FGF-8 を終濃度 10ng/ml になるように添加 (培養ディッシュ I)、ET-1 を終濃度 10ng/ml になるように添加 (培養ディッシュ J)、Midkine を終濃度 10ng/ml になるように添加 (培養ディッシュ K)、BMP4 を終濃度 10ng/ml になるように添加 (培養ディッシュ L),添加なし(培養ディッシュM)の 5 種類の異なる処理を行い培養を継続した。

翌日 5-aza-C を培地から除去するために、培地を新しいものに交換し、再び培養ディッシュ I には FGF-8 を終濃度 10 ng/ml になるように添加し、培養ディッシュ J には ET-1 を終濃度 10 ng/ml になるように添加、培養ディッシュ Kには Midkine を終濃度 10 ng/ml になるように添加、培養ディッシュ L には BMP4 を終濃度 10 ng/ml になるように添加して培養を継続した。それから更に 2 日後、4 日後にも同様の培地交換と FGF-8, ET-1, Midkine あるいは BMP4 の添加を行った。

5-aza-C を加えてから4週間後、細胞の形態を位相差顕微鏡下で観察した。その結果、5-aza-C のみを添加した培養ディッシュでは約3割の細胞が筋管様細胞となるの

に対し、FGF-8, ET-1, Midkine あるいは BMP4 を添加した培養ディッシュでは約 5割の細胞が筋管様細胞となった。一方、拍動する心筋の数は FGF-8, ET-1, Midkine あるいは BMP4 の添加により増加しなかった。

次に得られた、筋管様細胞から RNA を回収して、該筋管様細胞で発現している遺伝子を配列番号 $7.1 \sim 7.8$ で示した合成オリゴヌクレオチドを用いて定量的 PCR 解析を行った。その結果、FGF-8, ET-1, Midkine あるいは BMP4 は Nkx2.5/Csx と GATA4 の強制発現により促進される cTnI, ANP の発現をさらに亢進することはなかった。

実施例9. 心筋細胞への分化能を有するマウス骨髄細胞の心臓への移植

心筋細胞への分化能を有する骨髄細胞が生体内で心筋に分化し心臓に定着するかどうかを明らかにするために、実施例 5 で作製した、GFP で標識した心筋細胞への分化能を有する骨髄細胞(BMSC-GFP)を、マウスへ移植するためのドナー細胞とした。具体的には、以下の方法を実施した。GFP で標識した BMSC 細胞を予め 5-aza-C で 2 4時間処理した後、1×10⁸cells/ml となるよう PBS に懸濁し、移植直前まで氷上で保存した。なお、BMSC 細胞は 0.05%エリスロシン染色により 95%程度生存していることを確認している。

一方、レシピエントの C3H/He マウス (日本チャールズリバー社製) は、エーテルを用いて麻酔の導入を行い、テルモ製のテルモシリンジ (1ml) を用いてチオペンタール 30mg の腹腔内投与することで麻酔の維持を行った。マウスの四肢をテープでコルク板に固定し、さらに首が反り返るように上顎をゴムでコルク板に固定した。この時点で左右の上肢及び右下肢に心電図電極を刺入し心電図のモニタリングを行った。続いて、メーヨ剪刀(NONAKA RIKAKI CO.,LTD NK-174-14)で頚部を気管にそって1 cm ほど切開し、白十字社のベビー綿棒で甲状腺を左右に剥離をし、気管周囲の筋肉をマイクロ剪刀(NONAKA RIKAKI CO.,LTD NY-334-08)で切開し気管を露出した。ついでマイクロフェザー (メス) で気管を 1mm ほど切開しここから J型に変型させたテルモ製サーフローフラッシュ (22G) の針を挿入し口腔から外に出し、この針をガイドにサーフローフラッシュ (20G) の外筒を気管内に挿入した。この外筒にレスピレータ(シナノ製作所製の MODEL SN-480-7)をつなぎ 100 パーセント酸素を 1ml/

分で流し、一回換気量は 1ml、呼吸回数は 120/分で人工呼吸を開始した。このときにガイド針を挿入した穴からエアーがもれるので気管周囲の皮膚をモスキート鉗子(NONAKA RIKAKI CO.,LTD)を用いて気管をおおうようにして閉鎖した。つぎに、胸骨柄より頚部に向かい 2cm ほどメーヨ剪刀で切開、ついで胸骨を 2cm ほど胸骨柄から頚部に向かい切開をした。出血をバイボーラの電気メスで止血し、テルモ製のテルモシリンジ(1ml)にジーエルサイエンス社製の 30G の針(メタルハブ交換針N730)をつけて心尖部にドナー細胞を PBS に浮遊した液体を 0.1ml 注入した。ついで ETHICON 社製の 4-0 ETHIBOND X761 を用いて胸骨の閉鎖、皮膚の閉鎖を行い、同じ針糸で頚部の皮膚の閉鎖をした。自発呼吸の出現を確認しレスピレータをはずしインファントウオーマーを 37℃に加熱しこの中で覚醒を待った。なお本実験の操作は DESIGN FOR VISON 4.5× SURGICAL TELESCOPES を用いて行った

移植して 77 日後のマウスから組織を摘出し、10%ホルマリンで固定し、パラフィンで包埋した。包埋した組織サンプルをミクロトームで 6μ mの厚さに薄切し、予め poly-L-lysine でコーティングしておいたスライドグラス上に貼り付けた。 100 0%キシレンに浸して脱パラフィンをした後、エタノールで洗浄し、更に 0.3%H₂O₂ 溶液に 30 分間浸して抗体反応の前処理をおこなった。

その後、PBS で洗浄したサンプルに対し、5%正常ブタ血清溶液を30 分間反応させ、プロッキングをおこなった。ブロッキング後、PBS で洗浄し、PBS で100 倍に希釈したマウス抗 GFP モノクローナル抗体 (CLONTECH 社製) で4°Cに一晩置き、抗体反応をおこなった。PBSで洗浄後、パーオキシダーゼ標識デキストラン結合ヤギ抗マウスイムノグロブリン抗体 (DACO 社製) を室温で30 分間反応させた。更に PBS で洗浄後、発色液〔 $10~\mu$ g/ml 3、3°-Diaminobenzidine(DAB) Tetrahydrochloride)、0.01% H_2O_2 、0.05M Tris-HCl(pH6.7)〕を添加して1~0分間程度反応をおこない、PB Sで洗浄して反応を停止させた。更に、そのスライドグラスに対して、メチルグリーン染色もおこなった。

一方、組織切片の形態を明らかにするため、連続切片の一部をヘマトキシリン・ エオジンで染色した。

その結果、心筋細胞および血管内皮細胞において、GFP 抗体陽性細胞が見られた。

従って、マウス骨髄細胞は、移植により心筋細胞および血管内皮細胞に分化したといえる。

実施例10.培養心筋細胞由来の因子による骨髄細胞の心筋分化促進

実施例9で示したように、心筋細胞への分化能を有する骨髄細胞(BMSC)を心臓に移植することで心筋への分化が観察された。この結果は、心筋細胞自身が骨髄細胞を心筋細胞へ分化誘導する因子を発現している可能性を示唆している。この仮説を検証する目的で妊娠16日目のC3H/Heマウスから胎児心臓を摘出し、公知の方法(心臓血管研究方法の開発。江橋節朗編集、学会出版センター発行、1983)に従って、心筋細胞の初代培養細胞を樹立した(以後、培養心筋細胞と称する)。

まず、培養心筋細胞から分泌される因子に心臓分化を促進させる活性があるかどうかを検証するために、培養心筋細胞を 6cm の培養ディッシュに 5×10⁶ cells を 72 時間培養した後、培養上清を 0.45 μ m のフィルター (Millipore 社製) でろ過し、ろ過した培養上清と等量の培地を加えて、培養心筋細胞から分泌される因子を含む培養液 (以後コンディションド・ミイディアムと称する) を調整した。

あらかじめ心筋細胞への分化能を有する骨髄細胞(BMSC)あるいは Nkx2.5 と GATA4 の両遺伝子を強制発現した心筋細胞への分化能を有する骨髄細胞(BMSC-Nkx2.5-GATA4)を 6cm の培養デイッシュに 1×10⁶ 細胞となるよう培養し、その後コンデイションド・ミイデイアムと培地を置換した。このとき同時に 5-aza-C を終濃度 3 μ M になるように添加した。翌日、培地を新しいコンデイションド・ミイデイアムに交換し、さらに 4 週間培養を続けた。この間、3 日に一度培地を新しいコンデイションド・ミイデイアムの添加により、心筋細胞への分化能を有する骨髄幹細胞(BMSC)からの筋管様細胞の増加は観察されなかったが、ANP,cTnI の二つの心筋特異的な遺伝子の発現が亢進することが観察された。一方、Nkx2.5 と GATA4 の両遺伝子を強制発現した心筋細胞への分化能を有する骨髄細胞(BMSC-Nkx2.5-GATA4)はコンデイションド・ミイデイアムの添加により、筋管細胞の数は増加せず、ANP,cTnI の二つの心筋特異的な遺伝子の発現はNkx2.5 と GATA4 以上による発現亢進と同じレベルであり、促進効果は観察されな

かった。

次に、心筋細胞が発現している細胞外基質(ECM)に心筋分化促進活性があるかどう かを検証するために、心筋細胞を培養した培養ディッシュから 0.45%のトリプシン・ EDTA を 30 分間程度処理することで心筋細胞を除去し、培養心筋細胞の細胞外基質を コートした培養デイッシュ (以後 ECM コート・デイッシュと称する)を作製した。 次に、この 6cm の ECM コート・デイッシュ上に心筋細胞への分化能を有する骨髄細 胞(BMSC)あるいは Nkx2.5 と GATA4 の両遺伝子を強制発現した心筋細胞への分化能 を有する骨髄細胞(BMSC-Nkx2.5-GATA4)を1×10⁵細胞となるよう培養し、その後 5-aza-C を終濃度 3 μ M になるように添加した。翌日、5-aza-C を除去するために新 しい培地に交換し、さらに4週間培養を続けた。この間、3日に1回程度、培地を新 しいものに交換した。心筋細胞への分化能を有する骨髄細胞 (BMSC)は ECM コート・ デイッシュにより筋管様細胞の数は増加しなかったが、ANP,cTnI の二つの心筋特異 的な遺伝子の発現が亢進することが観察された。一方、Nkx2.5 と GATA4 の両遺伝子 を強制発現した心筋細胞への分化能を有する骨髄細胞(BMSC-Nkx2.5-GATA4)は ECM コート・デイッシュにより、筋管細胞の数は増加せず、ANP,cTnIの二つの心筋特異 的な遺伝子の発現は Nkx2.5 と GATA4 以上による発現亢進と同じレベルであり、促進 効果は観察されなかった。

次に、2×10⁴個の培養心筋細胞と、8×10⁴個の心筋細胞への分化能を有する骨髄細胞(BMSC)または8×10⁴個のNkx2.5とGATA4の両遺伝子を強制発現した心筋細胞への分化能を有する骨髄細胞(BMSC-Nkx2.5-GATA4)とを6cmの培養デイッシュで共培養を行った。培養心筋細胞と骨髄細胞を識別するために、2種類の骨髄細胞(BMSCとBMSC-Nkx2.5-GATA4)は実施例5で示した方法によりGFPで標識したものを利用した。共培養を開始した翌日に5-aza-Cを終濃度3μMになるように添加し、その翌日に5-aza-Cを除去するために新しい培地に交換し、さらに4週間培養を続けた。この間、3日に1回程度、培地を新しいものに交換した。その結果、BMSCまたはBMSC-Nkx2.5-GATA4を単独で培養したときと比較して、約10倍拍動する心筋の数が増加した。この結果、Nkx2.5とGATA4遺伝子の強制発現と心筋細胞との共培養を組み合わせることで、心筋分化効率は500倍以上上昇することが明らかになっ

た。

実施例11. KUM2 細胞と BMSC 細胞の表面抗原の解析

KUM2 細胞と BMSC 細胞の異同を明らかにすること、骨髄中から効率的に心筋形成能を有する単離・精製する方法を開発する目的で、KUM2 細胞と BMSC 細胞の表面抗原の解析を行った。

解析に用いたのは、血管内皮細胞の表面抗原として知られている CD105、Flk-1、CD31、CD144、造血系細胞の表面抗原として知られている CD34、CD117、CD14、CD45、CD90、Sca-1、Ly6c、Ly6g、間葉系細胞の表面抗原として知られている CD140、インテグリン CD49b、CD49d、CD29 マトリックス受容体 CD54、CD102、CD106、CD44 の 20種類である。

まず KUM2 細胞 1×10^4 個を 9 6 ウェル U字プレートに分注した。公知の方法 [酵素抗体法:学際企画刊 (1985)] でビオチン標識した抗マウス CD105 抗体 (Pharmingen 社製)を FACS 用緩衝液 (1%BSA-PBS、0.02%EDTA、 $0.05\%NaN_3$ 、pH7.4)に加えウェルに添加し、氷中で 30 分間反応させた。陰性対象としては、ラット IgG2a、 κ 精製抗体 (Pharmingen 社製)を用いた。緩衝液で 2 回洗浄後、ストレプトアビジン-PE (日本ベクトン・ディッキンソン社製)を 20 μ 1 加えた。遮光し氷中で 3 0 分間反応後、緩衝液で 3 回洗浄し、最終的に 500 μ 1 に懸濁して、フローサイトメーターで蛍光強度を測定し、抗体の添加により蛍光強度が増加するか否かで抗体の発現の有無を調べた。その結果、KUM2 細胞は CD105 陰性であった。

Flk1 抗原の発現についても、同様にビオチン化した抗マウス Flk1 抗体(Pharmingen 社製; PM-28181D) を用いて抗体反応をおこない、フローサイトメーターで測定した。その結果、KUM2 細胞は Flk1 陰性細胞であった。

CD31 抗原の発現の有無については、FITC 標識された抗マウス CD31 抗体 (Pharmingen 社製; PM-01954D) を用いて抗体反応をおこない、フローサイトメーターで測定した。その結果、KUM2 細胞は CD31 陰性であった。

CD144 抗原の発現については、ビオチン化した抗マウス CD144 抗体 (Pharmingen 社製; PM-28091D) を用いて抗体反応を行い、フローサイトメーターで測定した。そ

の結果、KUM2 細胞は CD144 陰性細胞であった。

CD34 抗原の発現の有無については、FITC 標識された抗マウス CD34 抗体 (Pharmingen 社製; PM-09434D) を用いて抗体反応を行い、フローサイトメーターで 測定した。その結果、KUM2 細胞は、CD34 陰性細胞であった。

CD117 (c-kit) 抗原の発現については、FITC 標識された抗マウス CD117 抗体 (Pharmingen 社製; PM-01904D) を用いて抗体反応を行い、フローサイトメーターで 測定した。その結果、KUM2 細胞は、CD117 陰性細胞であった。

CD14 抗原の発現については、FITC 標識した抗マウス CD 1 4 抗体 (Pharmingen 社製; PM-09474) を用いて抗体反応を行い、フローサイトメーターで測定した。その結果、KUM2 細胞は、CD14 陽性細胞であった。

CD45 抗原の発現については、FITC 標識した抗マウス CD45 抗体 (Pharmingen 社製; PM-01114) を用いて抗体反応を行い、フローサイトメーターで測定した。その結果、KUM2 細胞は、CD45 陰性細胞であった。

CD90 抗原の発現については、FITC 標識した抗マウス CD90 抗体 (Pharmingen 社製; PM-22214) を用いて抗体反応を行い、フローサイトメーターで測定した。その結果、KUM2 細胞は、CD90 陰性細胞であった。

Ly6A/E(Sca-1)抗原の発現については、FITC 標識した抗マウス Ly6A/E(Sca-1)抗体 (Pharmingen 社製; PM-01164A) を用いて抗体反応を行い、フローサイトメーターで 測定した。その結果、KUM2 細胞は、Ly6A/E(Sca-1)陽性細胞であった。

Ly6c 抗原の発現については、FITC 標識した抗マウス Ly6c 抗体 (Pharmingen 社製; PM-01152) を用いて抗体反応を行い、フローサイトメーターで測定した。その結果、KUM2 細胞は、Ly6c 陽性細胞であった。

Ly6g 抗原の発現については、FITC 標識した抗マウス Ly6g 抗体 (Pharmingen 社製; PM-01214) を用いて抗体反応を行い、フローサイトメーターで測定した。その結果、KUM2 細胞は、Ly6g 陰性細胞であった。

CD140 抗原の発現については、ビオチン化した抗マウス CD140 抗体 (Pharmingen 社製; PM-28011A) を用いて抗体反応を行い、フローサイトメーターで測定した。その結果、KUM2 細胞は、CD140 陽性細胞であった。

CD49b 抗原の発現については、FITC 標識した抗マウス CD49b 抗体 (Pharmingen 社製; PM-09794) を用いて抗体反応を行い、フローサイトメーターで測定した。その結果、KUM2 細胞は、CD49b 陽性細胞であった。

CD49d 抗原の発現については、FITC 標識した抗マウス CD49d 抗体 (Pharmingen 社製; PM-01274) を用いて抗体反応を行い、フローサイトメーターで測定した。その結果、KUM2 細胞は、CD49d 陰性細胞であった。

CD29 抗原の発現については、FITC 標識した抗マウス CD29 抗体 (Pharmingen 社製; PM-22634) を用いて抗体反応を行い、フローサイトメーターで測定した。その結果、KUM2 細胞は、CD29 陽性細胞であった。

CD54 抗原の発現については、FITC 標識した抗マウス CD54 抗体 (Pharmingen 社製; PM-01544) を用いて抗体反応を行い、フローサイトメーターで測定した。その結果、KUM2 細胞は、CD54 陽性細胞であった。

CD102 抗原の発現については、FITC 標識した抗マウス CD102 抗体 (Pharmingen 社製; PM-01804) を用いて抗体反応を行い、フローサイトメーターで測定した。その結果、KUM2 細胞は、CD102 陰性細胞であった。

CD106 抗原の発現については、FITC 標識した抗マウス CD106 抗体 (Pharmingen 社製; PM-01814) を用いて抗体反応を行い、フローサイトメーターで測定した。その結果、KUM2 細胞は、CD106 陽性細胞であった。

CD44 抗原の発現については、FITC 標識した抗マウス CD44 抗体 (Pharmingen 社製; PM-28154) を用いて抗体反応を行い、フローサイトメーターで測定した。その結果、KUM2 細胞は、CD44 陽性細胞であった。

上述したのと同様の方法により、BMSC 細胞で発現している表面抗原を解析した結果、CD34、CD117、Ly6c、Ly6A/E(Sca-1)、CD140、CD29、CD44の7種類の抗原について陽性であった。また Flk1、CD31、CD105、CD144、CD14、CD45、CD90、Ly6g、CD49b、CD49d、CD54、CD102、CD106の13種類の抗原に関しては陰性であった。表1にフローサイトメーターで測定した解析結果をまとめた。

表 1	•	
	KUM2	BMSC
Hemat	0	
CD34	_	+
CD117(c-kit)	_	+
CD14	.+	•
CD45	-	-
CD90(Thy1)	-	-
Ly-6a/e(Sca1)	+	+
Ly6c	+	+
Ly6g · ·	-	-
Enodthel	lial	
Flk-1	_	_
CD31	: -	_
CD105	_	-
· CD144	_	-
Mesenchy	/am1	
CD140 (PDGFR)	+	+
Integr	in	
$CD49b(\alpha 2)$	111 †	_
$CD49d(\alpha 4)$	-	_
CD29(\$1)	‡	+
0000(101)	•	•
Matri	x	
CD54(ICAM-1)	+	-
CD102(ICAM-2)	_	_
CD106(VCAM-1)	+	-
CD44(Hyaluronate)	+	+

実施例12. マウス MLC2v プロモーターを利用した分化前駆細胞の濃縮

心筋細胞への分化を有するマウス骨髄由来細胞から心筋に分化する細胞を効率よく取得するため、心筋細胞に特異的に発現するマウス MLC2v (myosin light chain-2v) 遺伝子のプロモーター発現系を構築した。具体的には、マウス MLC2v 遺伝子の

プロモーター配列下に EGFP 遺伝子 (CLONTECH 社製) をつなぎ、neomycin 耐性遺伝子の発現ユニット含んだ pMLC-2-EGFP プラスミドを構築した。このプラスミドの DNA を、Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press(1989)等に記載のアルカリ中和法により取得した。

上記 DNA $2 \mu g \varepsilon$ 、予め $6 穴 プレートに <math>1 \times 10^5$ 個となるように培養しておいた KUM2 細胞に対し、リポフェクトアミン(LIFE TECHNOLOGY 社製)を用いて遺伝子導入をおこなった。具体的な方法は製品の添付プロトコルに従った。遺伝子導入して 48 時間後に 6418 (Sigma 社製)を終濃度 1 mg/ml となるよう添加し、生存している遺伝子導入細胞だけを選択した。

遺伝子を導入して 14 日目の細胞に対し、5-aza-C を終濃度 3 μ M となるように添加し、24 時間後に培地を交換して、分化誘導をおこなった。分化誘導後、3 日目より GFP 陽性細胞が観察された。分化誘導後 4 日目の細胞うち、1 × 10⁴ 個の細胞を FACS Caliber (Becton Dickinson 社製)で GFP 陽性細胞のみを分取し更に培養を続けた。その結果、9 割以上の細胞が筋管様構造を有する細胞に分化しており、効率的に分化する細胞を濃縮できたといえる。この GFP 陽性細胞は FACS で分取後、実施例 11 の方法に従い、移植を行うと血管内皮への分化は認められず、骨格筋や心筋などの筋肉系組織への分化が特異的に観察された。

実施例13. 心筋細胞への分化能を有するマウス骨髄細胞からの脂肪細胞の誘導

心筋細胞への分化能を有する骨髄細胞 (BMSC) は心筋細胞以外に脂肪細胞に分化誘導することができる。この脂肪細胞への分化を制御する目的で分化誘導条件の検討を行った。まず、PPAR γ 受容体の発現を定量的 PCR 法により解析を行った結果、BMSC 細胞は PPAR γ 1 受容体は発現しているが、PPAR γ 2 受容体は発現していないことが観察された。次に、PPAR γ 受容体のアゴニストである Pioglitazone、troglitazone を、様々な濃度で心筋細胞への分化能を有する骨髄細胞 (BMSC) に添加したところ、濃度依存的に脂肪細胞分化が促進され、 $0.4~\mu$ M で約 50%、 $2~\mu$ M ではほぼ 100%の細胞が脂肪細胞へと分化した。

実施例 1 4. 心筋細胞への分化能を有するマウス骨髄細胞を胚盤胞への移植による神経系細胞、肝細胞、心筋細胞への分化誘導

はじめに、心筋細胞への分化能を有する骨髄細胞(BMSC)を GFP で標識した安定形質転換細胞を得るため、以下の方法で遺伝子導入をおこなった。

まず、レトロウイルスベクタープラスミド pCLNCX (Imgenex 社)に GFP を組み込み、pCLNC-GFP を調製した。レトロウイルスベクタープラスミド pCLNC-GFP と Ecotropic 遺伝子を発現させる pCMV-Eco プラスミドベクター (Imgenex 社)を、 Molecular Cloning, A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1989)等に記載のアルカリ中和法および PEG 沈殿法を用いて、純度の高い DNA を取得した。

これらの DNA をトランスフェクションさせる前日に、コンフルエントになった、gag および pol 遺伝子を保有する 293 細胞を 1/5 希釈で 10cm ディッシュに継代し、一晩 37℃、5%CO₂ 濃度の孵卵機を用いて培養を行った。

「トランスフェクションは以下の通りにおこなった。

pCLNC-GFP レトロウイルスベクタープラスミド DNA15 μ g と pCMV-Eco プラスミドベクターDNA 5 μ g を 250mMCaCl₂ (pH6.95) 0.5ml に加えて溶解させ、その溶液を 15ml のチューブに入れた 2×BBS [50mM BES(N,N-bis(2-hydroxyethl)-2-aminoethanesulfonic acid)、280mM NaCl、1.5mM Na₂HPO₄(pH6.95)] 0.5ml に滴下して 10 分間室温で静置させた。その後、この DNA 溶液を、前日に用意した 293 細胞培地中に滴下させ、37°C、5%CO₂ 濃度の孵卵機を用いて培養を行った。翌日、培地を交換し、更に 37°C、5%CO₂ 濃度の孵卵機を用いて培養を行った。

培地を交換して 2 日後に、培養上清を $0.45~\mu$ m のフィルター (Millipore 社製) で ろ過し、ウィルスベクターを含む溶液を回収した。

. ウィルスベクターを導入される側の心筋細胞への分化能を有するマウス骨髄細胞 (BMSC)は、ウィルスをインフェクションさせる前日に 2×10 細胞/ウェルとなるように 6 ウェル・ディッシュに蒔いておいた。

上記で取得したウィルスベクターを含む溶液に、終濃度 8 μ g/ml となるように、 Hexadimethrine bromide(polybrene)(Sigma 社製)を添加し、心筋細胞への分化能を有す

るマウス骨髄細胞(BMSC)の培地と置換し、33℃、5%CO₂濃度の孵卵機を用いて培養を行った。5時間後、新しい IMDM 培地に交換し、更に 33℃、5%CO₂濃度の孵卵機を用いて培養を行った。

2日間培養を行った後、G418 を終濃度 300 μ g/ml になるように添加し、さらに 7日間培養した。この間に一部の細胞は死滅して浮遊した。生き残った細胞をトリプシンで浮遊させ、新しい培養皿に播種した。

このようにして取得した、GFP 標識された心筋細胞への分化能を有する骨髄細胞 を、6cm の培養デイッシュで増殖させ、培地を除去後、0.5ml の 0.25%のトリプシン EDTA を添加して1分間処理した後、1.5ml の新しい培地を添加して、細胞を懸濁し たところに、ウシ胎児血清(Lexicon Genetics 社製)を加えて混合し、該細胞懸濁液を マウス胚盤胞への注入に用いた。マウス胚盤胞は過排卵処理を施した雌の C57Bl/6J マウスを同系の雄マウスと自然交配させ、4 日後に摘出した子宮の内部を M15 培地 で灌流することにより取得した。これらを37℃、5%CO₂条件下で胚盤胞腔が十分に 膨らむまで放置した後、約4℃に冷却した 20mM の HEPES を含む M15 培地中に移し、 マイクロインジェクター(成茂科学社製)及びマイクロマニピュレーター(成茂科 学社製)を装備した倒立顕微鏡(ニコン社製)下で観察しながら、注入針を操作し 10~15 個の BMSC 細胞を胚盤胞腔内へ顕微注入した。該胚盤胞を 3 7 ℃、5% CO₂条 件下で胚盤胞腔が膨らむまで放置した後、Manipulating the Mouse Embryo A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press (1994)に記載の 方法に従い、偽妊娠の雌 MCH 系統のマウスの卵管側子宮部分に移植後、着床させた。 偽妊娠の雌MCH系統のマウスは、10 週以降の精管結さつ雄MCH系統マウスと 移植 3 日前の 17:00 に 1:1 で同居、交配させ、翌朝 9:00 に膣栓確認を行い、2 日後に 上記の目的で使用した。

誕生したマウスを解剖して、臓器を摘出し、GFP の発現を観察した。その結果、 脳内ならびに肝臓で GFP の発現が観察され BMSC が神経系ならびに肝臓に分化する ことが示された。また、別の個体から取得した心臓より、ゲノム DNA を取得し、配 列番号 79、80 のプライマーを用いて PCR を行った結果、BMSC が心臓にも取り込ま れことが確認された。これらの結果は、BMSC が、神経、心臓、肝臓の 3 胚葉すべ

てに分化できる全能性を有していることを示した。

実施例15. 心筋細胞への分化能を有するマウス骨髄細胞でのテロメラーゼ活性

心筋細胞への分化能を有するマウス骨髄細胞のテロメラーゼ活性は Telomeric Repeat Amplification Protocol(TRAP)法により検討した(Oncor 社製 TRAPeze Telomerase Detection Kit)。テロメラーゼ活性の測定は原則的に添付されていたプロトコールに従ったが、具体的には以下の通りに行った。まず、6cm 径の培養皿上で培養した心筋細胞への分化能を有するマウス骨髄細胞(およそ 10⁶個)を PBS で洗浄した後、200 μ1の 1×CHAPS 液を加え、氷上で 30 分間静置した。その後、溶液と共に細胞を 1.5ml 容遠沈管に回収し、14,000rpm で 20 分間遠心分離(4°C、HITACHI 社製 himacCF15)し、上清を細胞抽出液として回収した。Protein assay(BioRad 社製)を用いて蛋白質含有量を測定したところ、上記条件で取得した心筋細胞への分化能を有するマウス骨髄細胞の細胞抽出液はおよそ 1mg/ml であった。

次にこの細胞抽出液を用いて、プロトコールに従ってテロメア伸長反応及びPCR 増幅を行った。Taq ポリメラーゼはEX Taq polymerase (宝酒造製)を用いた。反応終了後の試料は10×染色液(0.25%bromophenol blue, 0.25%Xylene cyanol FF, 30% glycerol)を 1/10 量添加し、12.5%ポリアクリルアミドゲル(TRAPeze Telomerase Detection Kit のプロトコールに記載されている通り調製)に載せ、250mV 定電圧下で泳動した。泳動後、ゲルをサイバーグリーン(FMC 社製)で染色し、蛍光色素分析装置、Fluorolmager(Molecular Dynamics 社製)を用いて解析した。その結果、細胞抽出液の終濃度が0.4~4 μ g/ml の試料でテロメラーゼ活性が検出された。

実施例16.ラット骨髄からの心筋細胞への分化能を有する骨髄細胞の取得と培養

5週齢のWistar rat(日本 SLC 株式会社)雌 6 匹を頚椎脱日した後、70%エタノールを充分かけ消毒した。次に足部の皮膚を広範囲に渡り切開し、大腿骨や脛骨を覆う筋肉を切除しながら、大腿骨と脛骨を取り出した。取り出した大腿骨と脛骨は PBS (GibcoBRL 社製)の入った 10cm 径培養皿(岩城硝子社製)に移し、筋肉及び関節を完全に切除した。続いてこれらの骨の両端をハサミで切り、20G 注射針を付けた 10ml

用注射器 (テルモ社製)を用いて、培養液 (D-PBS、GibclBRL 社製)の水流で骨髄 中の内容物を押し出した。取得した細胞塊はさらに注射器を通して一様になるよう にほぐした。このようにして得た細胞浮遊液は50ml 容遠沈管 (BECTON DICKINSON 社製) に回収し、1,500rpm で 10 分間遠心分離し (TOMY 社製低速遠心機)、沈殿し た細胞を 6ml の D-PBS 中に懸濁した。改良ノイバウエル型血球計算盤にて細胞数を 計測したところ、回収した細胞は合計 2.6×10^9 個であった。大腿骨または脛骨 1 本 当たりから 1×108個の細胞を回収したことになる。回収した細胞は 1ml 当たり 1.3 $imes 10^8$ 個の濃度になるよう希釈し、 $50 imes 10^8$ では、 $50 imes 10^8$ では、5Percoll(Amersham Pharmacia Biotech 社製)/D-PBS 液 (25ml) 上に 5ml 重層した後、室 温で 3,100rpm で 30 分間遠心分離した。遠心分離後、Percoll 液と細胞浮遊液との界 面より細胞を回収し、D-PBSで4倍に希釈した後、2300rpmで10分間遠心分離し、 分画した細胞集団を回収した。回収した細胞は20%FCS、100 µ g/ml penicillin,250 ng/ml streptomycin, 85 μ g/ml amphotericin (GibcoBRL 社製) を含む IMDM 培地 (GibcoBRL 社製) に懸濁した。この時点で再度細胞数を計測したところ、回収した 骨髄由来細胞は合計 4.7×10⁷個あり、処理前の細胞の約 2%相当を回収したことにな る。このようにして分画した骨髄由来細胞は 2~5×105個/cm2になるように 10cm 径 の動物細胞用の培養皿(岩城硝子社製、以下 10cm 培養皿と略す) 3枚に撒き、CO2 培養器 (タバイ社製) にて 33℃、5%CO₂ 濃度で培養を開始した。 培地は 24 時間後、 72 時間後にそれぞれ半分交換した。その3~4日後に培地を半分交換した。15日経 過し、コロニーが密集してきたので、細胞をトリプシン EDTA 処理ではがし、2/3 は 4ml の保存液 (10%DMSO、50%の骨髄由来細胞培養上清、40%の未使用上記培地) に懸濁し、2ml 容チューブ (住友ベークライト社製) に 1 本当たり 1ml 分注して凍結 保存し、残り 1/3 は 10cm 培養皿 2 枚に蒔き直し継代した。

実施例17.ラット骨髄由来細胞の心筋細胞への分化能の検討

上記で継代したラット骨髄由来細胞は密集したところを再度トリプシン EDTA 処理ではがし、6 ウェルプレート (BECTON DICKINSON 社製) には 1 ウェル当たり 5 × 10^4 個になるように、またヒトフィプロネクチンをコートした 6cm 径の培養皿

(BECTON DICKINSON 社製 Biocoat) には 1.3×10⁶ 個になるように細胞を蒔き直した。1 日後に 5-アザシチジン (Sigma 社製、終濃度 10 μM) のみを加えたものと、5-アザシチジン、PDGF-BB (Pepro Tech EC LTD.社製、終濃度 10ng/ml)、all-transレチノイン酸 (RA、Sigma 社製、終濃度 10⁹M)を加えた二種類の異なる培養条件培養を行い、2 日間培養した後に培地を交換した (後者の場合は培地交換時に再度 PDGF、all-trans レチノイン酸を加え、2 日後と4日後にさらに加えた)。その3~4日後に、培地を交換し、3 週間培養した。その結果 5-アザシチジン、PDGF-BB、レチノイン酸を加えたもので筋管様細胞の分化が観察された。

産業上の利用可能性

本発明によれば、心筋細胞の破壊ならびに変性を伴う心疾患の治療ならびに治療薬の探索に有効な骨髄細胞、増殖因子、ビタミン、接着分子、及びこれらの利用法が提供される。

「配列表フリーテキスト」

配列番号 3 3 - 人工配列の説明:合成 DNA

配列番号 3 4 - 人工配列の説明:合成 DNA

配列番号 3 5 一人工配列の説明:合成 DNA

配列番号36-人工配列の説明:合成 DNA

配列番号37-人工配列の説明:合成 DNA

配列番号38-人工配列の説明:合成 DNA

配列番号 3 9 - 人工配列の説明:合成 DNA

配列番号 4 0 - 人工配列の説明:合成 DNA

配列番号 4 1 - 人工配列の説明:合成 DNA

配列番号 4 2 - 人工配列の説明:合成 DNA

配列番号 4 3 - 人工配列の説明:合成 DNA

配列番号 4 4 - 人工配列の説明:合成 DNA

配列番号 4 5 -人工配列の説明:合成 DNA

配列番号 4 6 - 人工配列の説明:合成 DNA

配列番号 47-人工配列の説明:合成 DNA

配列番号 4 8 - 人工配列の説明:合成 DNA 配列番号 49 - 人工配列の説明:合成 DNA 配列番号 50 - 人工配列の説明:合成 DNA 配列番号 5 1 - 人工配列の説明:合成 DNA 配列番号 5 2 - 人工配列の説明:合成 DNA 配列番号 5 3 -人工配列の説明:合成 DNA 配列番号 5 4 - 人工配列の説明:合成 DNA 配列番号 5 5 - 人工配列の説明:合成 DNA 配列番号 5 6 - 人工配列の説明:合成 DNA 配列番号 5 7 -人工配列の説明:合成 DNA 配列番号 5 8 - 人工配列の説明:合成 DNA 配列番号 5 9 -人工配列の説明:合成 DNA 配列番号 60 - 人工配列の説明:合成 DNA 配列番号 6 1 - 人工配列の説明:合成 DNA 配列番号 6 2 - 人工配列の説明:合成 DNA 配列番号 6 3 - 人工配列の説明:合成 DNA 配列番号 6 4 - 人工配列の説明:合成 DNA 配列番号 6 5 - 人工配列の説明:合成 DNA 配列番号 6 6 - 人工配列の説明:合成 DNA 配列番号 6 7 - 人工配列の説明:合成 DNA 配列番号 6 8 - 人工配列の説明:合成 DNA 配列番号 6 9 - 人工配列の説明:合成 DNA 配列番号 70 - 人工配列の説明:合成 DNA 配列番号 7 1 - 人工配列の説明:合成 DNA 配列番号 7 2 - 人工配列の説明:合成 DNA 配列番号 73 - 人工配列の説明:合成 DNA 配列番号 7 4 - 人工配列の説明:合成 DNA

配列番号 7 5 - 人工配列の説明:合成 DNA

配列番号76-人工配列の説明:合成 DNA

配列番号77-人工配列の説明:合成 DNA

配列番号78-人工配列の説明:合成 DNA

配列番号 7 9 -人工配列の説明:合成 DNA

配列番号80-人工配列の説明:合成 DNA

請求の範囲

- 1. 骨髄または臍帯血から単離され、心筋細胞に分化する能力を有する細胞。
- 2. 細胞が、少なくとも心筋細胞、脂肪細胞、骨格筋細胞、骨芽細胞に分化する能力を有する多分化能幹細胞である、請求項1記載の細胞。
- 3. 細胞が、少なくとも心筋細胞、血管内皮細胞に分化する能力を有する多分化能幹細胞である、請求項1記載の細胞。
- 4. 細胞が、少なくとも心筋細胞、脂肪細胞、骨格筋細胞、骨芽細胞、血管内皮細胞に分化する能力を有する多分化能幹細胞である、請求項1記載の細胞。
- 5. 細胞が、少なくとも心筋細胞、脂肪細胞、骨格筋細胞、血管内皮細胞、骨芽細胞、神経系細胞、肝細胞に分化する能力を有する多分化能幹細胞である、請求項 1 記載の細胞。
- 6. CD34 陰性、CD117 陰性、CD144 陰性および CD140 陽性である、請求項 1 または 2 記載の細胞。
- 7. CD34 陽性、CD117 陽性および CD140 陽性である、請求項 1 または 3 記載の細胞。
- 8. CD34 陽性、CD117 陽性、CD144 陽性および CD140 陽性である、請求項 1 または 3 記載の細胞。
- 9. CD34 陰性、CD117 陽性、CD144 陰性および CD140 陽性である、請求項 1 、 4 または 5 記載の細胞。
- 10. CD117 陽性および CD140 陽性である、請求項1、4または5記載の細胞。
- 11. CD34 陰性、CD117 陰性、CD14 陽性、CD45 陰性、CD90 陰性、F1k-1 陰性、CD31 陰性、CD105 陰性、CD144 陰性、CD140 陽性、CD49b 陽性、CD49d 陰性、CD29 陽性、CD54 陽性、CD102 陰性、CD106 陽性および CD44 陽性である、請求項 2 記載の細胞。
- 12. CD 3 4 陽性、CD117 陽性、CD14 陰性、CD45 陰性、CD90 陰性、Flk-1 陰性、CD31 陰性、CD105 陰性、CD144 陽性、CD140 陽性、CD49b 陰性、CD49d 陰性、CD29 陽性、CD54 陰性、CD102 陰性、CD106 陰性および CD44 陽性である、請求項 3 記載の細胞。
- 13. Hoechst33342 を取り込まない、請求項1記載の細胞。
- 14. 請求項1~13のいずれか1項に記載の細胞から誘導される心筋細胞のみに 分化誘導される心筋前駆細胞。

15. 心室筋細胞に分化する能力を有する、請求項1~14のいずれか1項に記載の 細胞。

- 16. 洞結節細胞に分化する能力を有する、請求項1~14のいずれか1項に記載の細胞。
- 17. 骨髄または臍帯血がほ乳動物由来のものである、請求項 $1\sim16$ のいずれか1項に記載の細胞。
- 18. ほ乳動物がヒト、ラットおよびマウスから選ばれるものである、請求項17記載の細胞。
- 19. 細胞が、マウス骨髄由来多分化能幹細胞 BMSC(FERM BP-7043)である、請求項1に記載の細胞。
- 20. 染色体 DNA の脱メチル化により心筋細胞に分化する能力を有する、請求項1~19のいずれか1項に記載の細胞。
- 21. 染色体 DNA の脱メチル化が、デメチラーゼ、5 ーアザシチジンおよびジメチルスルフォキシド (DMSO) からなる群から選ばれる少なくとも1種によるものであることを特徴とする、請求項20記載の細胞。
- 22. デメチラーゼが、配列番号1記載で表されるアミノ酸配列を有するデメチラーゼである、請求項21記載の細胞。
- 23. 胎児の心臓発生領域で発現している因子により心筋細胞への分化が促進される請求項1~19のいずれか1項に記載の細胞。
- 24. 胎児の心臓発生領域で発現している因子がサイトカイン、接着分子、ビタミン、 転写因子および細胞外基質からなる群から選ばれる少なくとも1種であることを特 徴とする、請求項23記載の細胞。
- 25. 胎児の心臓発生段階において心筋細胞への分化に働く因子により心筋細胞への分化が促進される請求項1~19いずれか1項に記載の細胞。
- 26. 胎児の心臓発生段階において心筋細胞への分化に働く因子がサイトカイン、接着分子、ビタミン、転写因子および細胞外基質からなる群から選ばれる少なくとも 1種であることを特徴とする、請求項25記載の細胞。
- 27. サイトカインが血小板由来増殖因子 (PDGF) である、請求項 2 4 または 2 6

記載の細胞。

28. PDGF が配列番号 3 または 5 で表されるアミノ酸配列を有する PDGF である、 請求項 2 7 記載の細胞。

- 29. サイトカインが繊維芽細胞増殖因子8 (FGF-8) である、請求項24または26記載の細胞。
- 30. FGF-8 が配列番号 6 4 で表されるアミノ酸配列を有する FGF-8 である、請求項2 9 記載の細胞。
- 31. サイトカインがエンドセリン 1 (ET1)である、請求項 2 4 または 2 6 記載の細胞。
- 32. ET1 が配列番号 6 6 で表されるアミノ酸配列を有する ET1 である、請求項 3 1 記載の細胞。
- 33. サイトカインがミドカイン(Midkine)である、請求項24または26記載の細胞。
- 34. Midkine が配列番号 6 8 で表されるアミノ酸配列を有する Midkine である、請求項3 3 記載の細胞。
- 35. サイトカインが骨形成因子 4 (BMP-4)である、請求項 2 4 または 2 6 記載の細胞。
- 36. BMP-4 が配列番号 7 0 で表されるアミノ酸配列を有する BMP-4 である、請求項3 5 記載の細胞。
- 37. 接着分子がフィブロネクチンである、請求項24または26記載の細胞。
- 38. ビタミンがレチノイン酸である、請求項24または26記載の細胞。
- 39. 転写因子が、Nkx2.5/Csx、GATA4、MEF-2A、MEF-2B、MEF-2C、MEF-2D、dHAND、eHAND、TEF-1、TEF-3、TEF-5 および MesP1 からなる群から選ばれるものである、請求項 2 4 または 2 6 記載の細胞。
- 40. Nkx2.5/Csx が配列番号 9 で表されるアミノ酸配列を有する Nkx2.5/Csx である、 請求項 3 9 記載の細胞。
- 41. GATA4 が配列番号 1 1 で表されるアミノ酸配列を有する GATA4 である、請求項3 9 記載の細胞。
- 42. MEF-2A が配列番号 1 3 で表されるアミノ酸配列を有する MEF-2A である、請求項 3 9 記載の細胞。

43. MEF-2B が配列番号 1 5 で表されるアミノ酸配列を有する MEF-2B である、請求項 3 9 記載の細胞。

- 44. MEF-2C が配列番号 1 7 で表されるアミノ酸配列を有する MEF-2C である、請求項 3 9 記載の細胞。
- 45. MEF-2D が配列番号 1 9 で表されるアミノ酸配列を有する MEF-2D である、請求項 3 9 記載の細胞。
- 46. dHAND が配列番号 2 1 で表されるアミノ酸配列を有する dHAND である、請求項3 9 記載の細胞。
- 47. eHAND が配列番号 2 3 で表されるアミノ酸配列を有する eHAND である、請求項 3 9 記載の細胞。
- 48. TEF-1 が配列番号 2 5 で表されるアミノ酸配列を有する TEF-1 である、請求項3 9 記載の細胞。
- 49. TEF-3 が配列番号 2 7 で表されるアミノ酸配列を有する TEF-3 である、請求項3 9 記載の細胞。
- 50. TEF-5 が配列番号 2 9 で表されるアミノ酸配列を有する TEF-5 である、請求項 3 9 記載の細胞。
- 51. MesP1 が配列番号 6 2 で表されるアミノ酸配列を有する MesP1 である、請求項3 9 記載の細胞。
- 52. 細胞外基質が心筋細胞由来の細胞外基質であることを特徴とする請求項24 または26記載の細胞。
- 53. 線維芽細胞増殖因子 2 (FGF-2) により心筋細胞への分化が抑制される請求項1記載の細胞。
- 54. FGF-2 が配列番号 7 または 8 記載のアミノ酸配列を有する FGF-2 である、請求項 5 3 記載の細胞。
- 55. 心臓に移植することにより心筋細胞に分化する能力を有する請求項1~19 のいずれか1項に記載の細胞。
- 56. 心臓に移植することにより血管に分化する能力を有する請求項1~19のいずれか1項に記載の細胞。

57. 胚盤胞に移植することで、心筋に分化する能力を有する請求項1~19のいずれか1項に記載の細胞。

- 58. 心筋細胞と共培養を行うことで、心筋に分化する能力を有する請求項1~19 のいずれか1項に記載の細胞。
- 59. 核内受容体 PPAR-γを活性化因子により脂肪細胞に分化する能力を有する請求項1~19のいずれか1項に記載の細胞。
- 60. 核内受容体 PPAR-γの活性化因子がチアゾリジオン骨格を有する化合物であることを特徴とする請求項59記載の細胞。
- 61. チアゾリジオン骨格を有する化合物がトログリタゾン、ピオグリタゾン、ロジグリタゾンからなる群から選ばれる少なくとも1種であることを特徴とする請求項60記載の細胞。
- 62. 胚盤胞に移植することで、神経系細胞に分化する能力を有する請求項1~19 いずれか1項に記載の細胞。
- 63. 脳または脊髄に移植することで、神経系細胞に分化する能力を有する請求項1 ~19いずれか1項に記載の細胞。
- 64. 胚盤胞に移植することで、肝細胞に分化する能力を有する請求項1~19のいずれか1項に記載の細胞。
- 65. 肝臓に移植することで肝細胞に分化する能力を有する請求項1~19のいずれか1項に記載の細胞。
- 66. 染色体 DNA の脱メチル化剤を用いて、骨髄由来の細胞から心筋を形成する方法。
- 67. 染色体 DNA の脱メチル化剤が、デメチラーゼ、5 アザシチジンおよび DMSO からなる群から選ばれる少なくとも 1 種であることを特徴とする、請求項 6 6 記載の方法。
- 68. デメチラーゼが、配列番号1記載のアミノ酸配列で表されるデメチラーゼである、請求項67記載の方法。
- 69. 胎児の心臓発生領域で発現している因子を用いることを特徴とする、骨髄由来の細胞から心筋を形成する方法。

70. 胎児の心臓発生領域で発現している因子がサイトカイン、接着分子、ビタミン、 転写因子および細胞外基質からなる群から選ばれる少なくとも1種であることを特 徴とする、請求項69記載の方法。

- 71. 胎児の心臓発生段階において心筋細胞への分化に働く因子を用いることを特徴とする、骨髄由来の細胞から心筋を形成する方法。
- 72. 胎児の心臓発生段階において心筋細胞への分化に働く因子がサイトカイン、接着分子、ビタミン、転写因子および細胞外基質からなる群から選ばれる少なくとも 1種であることを特徴とする、請求項71記載の方法。
- 73. サイトカインが PDGF である、請求項70または72記載の方法。
- 74. PDGF が配列番号 3 または 5 記載のアミノ酸配列で表される PDGF である、請求項 6 3 記載の方法。
- 75. サイトカインが繊維芽細胞増殖因子 8 (FGF-8) である、請求項 7 0 または 7 2 記載の方法。
- 76. FGF-8 が配列番号 6 4 のアミノ酸配列で表される FGF-8 である、請求項 7 5 記載の方法。
- 77. サイトカインがエンドセリン 1 (ET1)である、請求項70または72記載の方法。
- 78. ET1 が配列番号 6 6 で表されるアミノ酸配列を有する ET1 である、請求項 7 7 記載の方法。
- 79. サイトカインがミドカイン(Midkine)である、請求項70または72記載の方法。
- 80. Midkine が配列番号 6 8 で表されるアミノ酸配列を有する Midkine である、請求項7 9 記載の方法。
- 81. サイトカインが骨形成因子 4 (BMP-4)である、請求項 7 0 または 7 2 記載の方法。
- 82. BMP-4 が配列番号 7 0 で表されるアミノ酸配列を有する BMP-4 である、請求項 8 1 記載の方法。
- 83. 接着分子がフィブロネクチンである、請求項70または72記載の方法。
- 84. ビタミンがレチノイン酸である、請求項70または72記載の方法。
- 85. 転写因子が、Nkx2.5/Csx、GATA4、MEF-2A、MEF-2B、MEF-2C、MEF-2D、

dHAND、eHAND、TEF-1、TEF-3、TEF-5 および MesP1 からなる群から選ばれる、 請求項70または72記載の方法。

- 86. Nkx2.5/Csx が、配列番号 9 で表されるアミノ酸配列を有する Nkx2.5/Csx である、請求項 8 5 記載の方法。
- 87. GATA4 が、配列番号 1 1 で表されるアミノ酸配列を有する GATA4 である、請求項 8 5 記載の方法。
- 88. MEF-2A が、配列番号 1 3 で表されるアミノ酸配列を有する MEF-2A である、 請求項 8 5 記載の方法。
- 89. MEF-2B が、配列番号 1 5 で表されるアミノ酸配列を有するMEF-2 Bである、請求項 8 5 記載の方法。
- 90. MEF-2C が、配列番号 1 7 で表されるアミノ酸配列を有する MEF-2C である、 請求項 8 5 記載の方法。
- 91. MEF-2D が、配列番号 1 9 で表されるアミノ酸配列を有する MEF-2D である、 請求項 8 5 記載の方法。
- 92. dHAND が、配列番号 2 1 で表されるアミノ酸配列を有する dHAND である、請求項 8 5 記載の方法。
- 93. eHANDが、配列番号23で表されるアミノ酸配列を有するeHANDである、請求項85記載の方法。
- 94. TEF-1 が、配列番号 2 5 で表されるアミノ酸配列を有する TEF-1 である、請求項 8 5 記載の方法。
- 95. TEF-3 が、配列番号 2 7 で表されるアミノ酸配列を有する TEF-3 である、請求項 8 5 記載の方法。
- 96. TEF-5 が、配列番号 2 9 で表されるアミノ酸配列を有する TEF-5 である、請求項 8 5 記載の方法。
- 97. MesP1 が、配列番号 6 2 で表されるアミノ酸配列を有する MesP1 である、請求項 8 5 記載の方法。
- 98. 細胞外基質が心筋細胞由来の細胞外基質であることを特徴とする請求項70 または72記載の方法。

99. 核内受容体 PPAR-γを活性化因子により骨髄由来の細胞から脂肪細胞を形成する方法。

- 100. 核内受容体 PPAR-γの活性化因子がチアゾリジオン骨格を有する化合物であることを特徴とする請求項99記載の方法。
- 101. チアゾリジオン骨格を有する化合物がトログリタゾン、ビオグリタゾン、ロジグリタゾンからなる群から選ばれる少なくとも1種であることを特徴とする請求項 100記載の方法。
- 102. 染色体 DNA の脱メチル化剤を有効成分として含有することを特徴とする心筋 形成剤。
- 103. 染色体 DNA の脱メチル化剤がデメチラーゼ、 5 ーアザシチジンおよび DMSO からなる群から選ばれる少なくとも 1 種である、請求項 1 0 2 記載の心筋形成剤。
- 104. デメチラーゼが、配列番号1記載のアミノ酸配列で表されるデメチラーゼである、請求項103記載の心筋形成剤。
- 105. 胎児の心臓発生領域で発現している因子を有効成分として含有する心筋形成剤。
- 106. 胎児の心臓発生領域で発現している因子がサイトカイン、接着分子、ビタミン 転写因子および細胞外基質からなる群から選ばれる少なくとも1種であることを特 徴とする、請求項105記載の心筋形成剤。
- 107. 胎児の心臓発生段階において心筋細胞への分化に働く因子を有効成分として含有することを特徴とする心筋形成剤。
- 108. 胎児の心臓発生段階において心筋細胞への分化に働く因子がサイトカイン、接着分子、ビタミン、転写因子および細胞外基質からなる群から選ばれる少なくとも1種であることを特徴とする、請求項107記載の心筋形成剤。
- 109. サイトカインが PDGF である、請求項 1 0 6 または 1 0 8 記載の心筋形成剤。
- 110. PDGF が配列番号 3 または 5 記載のアミノ酸配列で表される、請求項 1 0 9 記載の心筋形成剤。
- 111. サイトカインが繊維芽細胞増殖因子8 (FGF-8) である、請求項106または108記載の心筋形成剤。

112. FGF-8 が配列番号 6 4 のアミノ酸配列で表される FGF-8 である、請求項 1 1 1記載の心筋形成剤。

- 113. サイトカインがエンドセリン1(ET1)である、請求項106または108記載の心筋形成剤。
- 114. ET1 が配列番号 6 6 で表されるアミノ酸配列を有する ET1 である、請求項 1 1 3 記載の心筋形成剤。
- 115. サイトカインがミドカイン(Midkine)である、請求項106または108記載の 心筋形成剤。
- 116. Midkine が配列番号 6 8 で表されるアミノ酸配列を有する Midkine である、請求項 1 1 5 記載の心筋形成剤。
- 117. サイトカインが骨形成因子 4 (BMP-4)である、請求項 1 0 6 または 1 0 8 記載の心筋形成剤。
- 118. BMP-4 が配列番号 7 0 で表されるアミノ酸配列を有する BMP-4 である、請求項117記載の心筋形成剤。
- 119. 接着分子がフィブロネクチンである、請求項106または108記載の心筋形成剤。
- 120. ビタミンがレチノイン酸である、請求項106または108記載の心筋形成剤。
- 121. 転写因子が、Nkx2.5/Csx、GATA4、MEF-2A、MEF-2B、MEF-2C、MEF-2D、dHAND、eHAND、TEF-1、TEF-3、TEF-5 および MesP1 からなる群から選ばれる、請求項106または108記載の心筋形成剤。
- 122. Nkx2.5/Csx が、配列番号 9 記載のアミノ酸配列で表される Nkx2.5/Csx である、請求項 1 2 1 記載の心筋形成剤。
- 123. GATA4が、配列番号 1 1 記載のアミノ酸配列で表される GATA4 である、請求項 1 2 1 記載の心筋形成剤。
- 124. MEF-2A が、配列番号 1 3 記載のアミノ酸配列で表される MEF-2A である、 請求項 1 2 1 記載の心筋形成剤。
- 125. MEF-2B が、配列番号 1 5 記載のアミノ酸配列で表される MEF-2B である、請求項 1 2 1 記載の心筋形成剤。

126. MEF-2C が、配列番号 1 7 記載のアミノ酸配列で表される MEF-2C である、 請求項 1 2 1 記載の心筋形成剤。

- 127. MEF-2D が、配列番号 1 9 記載のアミノ酸配列で表される MEF-2D である、 請求項 1 2 1 記載の心筋形成剤。
- 128. dHAND が、配列番号 2 1 記載のアミノ酸配列で表される dHAND である、請求項 1 2 1 記載の心筋形成剤。
- 129. eHAND が、配列番号 2 3 記載のアミノ酸配列で表される eHAND である、請求項 1 2 1 記載の心筋形成剤。
- 130. TEF-1 が、配列番号 2.5 記載のアミノ酸配列で表される TEF-1 である、請求項121記載の心筋形成剤。
- 131. TEF-3 が、配列番号 2 7 記載のアミノ酸配列で表される TEF-3 である、請求項121記載の心筋形成剤。
- 132. TEF-5 が、配列番号 2 9 記載のアミノ酸配列で表される TEF-5 である、請求項121記載の心筋形成剤。
- 133. MesP1 が、配列番号 6 2 記載のアミノ酸配列で表される MesP1 である、請求項121記載の心筋形成剤。
- 134. 細胞外基質が心筋細胞由来の細胞外基質であることを特徴とする請求項106または108記載の心筋形成剤。
- 135. 請求項 $1 \sim 65$ のいずれか1項に記載の細胞を用いることを特徴とする、心臓疾患により破壊された心臓を再生する方法。
- 136. 請求項1~65のいずれか1項に記載の細胞を有効成分とする心臓再生治療薬。
- 137. 心臓の先天性遺伝子疾患での変異遺伝子に対する野生型遺伝子が導入された 請求項1~65のいずれか1項に記載の細胞を用いることを特徴とする、先天性遺 伝子疾患での変異遺伝子に対する野生型遺伝子を心筋へ特異的に輸送する方法。
- 138. 心臓の先天性遺伝子疾患での変異遺伝子に対する野生型遺伝子が導入された 請求項1~65のいずれか1項に記載の細胞を有効成分として含有する心臓疾患治 療薬。

139. 請求項1~65のいずれか1項に記載の細胞を免疫原として用いることを特徴とする、該細胞を特異的に認識する抗体を取得する方法

- 140. 請求項139記載の方法で取得された抗体を用いることを特徴とする、ヒト骨髄から心筋細胞への分化能を有する成体骨髄由来細胞を単離・精製する方法。
- 141. 請求項1~65のいずれか1項に記載の細胞を用いることを特徴とする、該細胞に特異的な表面抗原を取得する方法。
- 142. 請求項 1 ~ 6 5 のいずれか 1 項に記載の細胞を用いることを特徴とする、該細胞を増殖する因子をスクリーニングする方法。
- 143. 請求項1~65のいずれか1項に記載の細胞を用いることを特徴とする、該細胞の心筋細胞への分化を誘導する因子をスクリーニングする方法。
- 144. 請求項1~65のいずれか1項に記載の細胞を用いることを特徴とする、該細胞を不死化する因子をスクリーニングする方法。
- 145. 請求項 $1 \sim 65$ のいずれか1項に記載の細胞にテロメラーゼを発現させることを特徴とする、該細胞の不死化方法。
- 146. テロメラーゼが、配列番号31記載で表されるアミノ酸配列を有するテロメラーゼである請求項145記載の方法。
- 147. テロメラーゼを発現させることにより、不死化させた請求項1~65のいずれか1項に記載の細胞を有効成分として含有する心臓疾患治療薬。
- 148. テロメラーゼが、配列番号31記載で表されるアミノ酸配列を有するテロメラーゼである請求項147記載の治療薬。
- 149. 請求項1~65のいずれか1項に記載の細胞を含んだ培養上清。
- 150. 請求項149記載の培養上清を用いることを特徴とする、請求項1記載の細胞を心筋細胞に分化誘導する方法。

> 列 配 表

SEQUENCING LISTING

<110> KYOWA HAKKO KOGYO CO., LTD

<111> THE CELL HAVING THE POTENTIALITY OF DIFFERENTIATION **CARDIOMYOCYTES**

<130> 11217

<140>

<141>

<150> H11-372826

<151> 1999-12-28

<150> PCT-JP00-01448

<151> 2000-02-28

<160>60

<170> PatentIn Ver.2.0

<210> 1

<211> 411

<212> PRT

<213> Homo sapiens

<400>1

Met Arg Ala His Pro Gly Gly Gly Arg Cys Cys Pro Glu Gln Glu Glu 1

5 15

Gly Glu Ser Ala Ala Gly Gly Ser Gly Ala Gly Gly Asp Ser Ala Ile 20 25

Glu Gln Gly Gln Gly Ser Ala Leu Ala Pro Ser Pro Val Ser Gly 35 40 45

Val Arg Arg Glu Gly Ala Arg Gly Gly Gly Arg Gly Arg Trp

Lys Gln Ala Gly Arg Gly Gly Gly Val Cys Gly Arg Gly Arg Gly Arg

65					70					75					80
Gly	Arg	Gly	Arg	Gly	Arg	Gly	Arg	Gly	Arg	Gly	Arg	Gly	Arg	Gly	Arg
				85					90					95	
Pro	Pro	Ser	Gly	Gly	Ser	Gly	Leu	Gly	Gly	Asp	Gly	Gly	Gly	Cys	Gly
			100					105					110		
Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Ala	Pro	Arg	Arg	Glu	Pro	Val	Pro
		115					120					125			
Phe	Pro	Ser	Gly	Ser	Ala	Gly	Pro	Gly	Pro	Arg	Gly	Pro	Arg	Ala	Thr
	130					135					140				
Glu	Ser	Gly	Lys	Arg	Met	Asp	Cys	Pro	Ala	Leu	Pro	Pro	Gly	Trp	Lys
145		•	·	Ū	150	•				155					160
	Glu	Glu	Val	Ile		Lys	Ser	Gly	Leu		Ala	Glv	Lvs	Ser	
				165	0	- , -		0	170			0	_, _	175	
Val	Tyr	Tyr	Phe		Pro	Ser	Gly	Lys		Phe	Arg.	Ser	Lvs		Gln
	- 0 -		180					185					190		
Leu	Ala	Arg		Leu	Gly	Asn	Thr		Asp	Leu	Ser	Ser		Asp	Phe
		195					200					205			
Arg	Thr	Gly	Lys	Met	Met	Pro	Ser	Lys	Leu	Gln	Lys	Asn	Lys	Gln	Arg
	210					215		•			220		•		J
Leu	Arg	Asn	Asp	Pro	Leu	Asn	Gln	Asn	Lys	Gly	Lys	Pro	Asp	Leu	Asn
225			_		230					235	•		-		240
Thr	Thr	Leu	Pro	Ile	Arg	Gln	Thr	Ala	Ser	Ile	Phe	Lys	Gln	Pro	Val
				245	_				250					255	
Thr	Lys	Val	Thr	Asn	His	Pro	Ser	Asn	Lys	Val	Lys	Ser	Asp	Pro	Gln
			260					265			·		270		
Arg	Met	Asn	Glu	Gln	Pro	Arg	Gln	Leu	Phe	Trp	Glu	Lys	Arg	Leu	Gln
		275					280					285			
Gly	Leu	Ser	Ala	Ser	Asp	Val	Thr	Glu	Gln	Ile	Ile	Lys	Thr	Met	Glu
_	290				_	295					300	·			
Leu	Pro	Lys	Gly	Leu	Gln	Gly	Val	Gly	Pro	Gly	Ser	Asn	Asp	Glu	Thr
305		_	·		310	-				315			-		320
	Leu	Ser	Ala	Val		Ser	Ala	Leu	His	Thr	Ser	Ser	Ala	Pro	
				325					330					335	
Thr	Gly	Gln	Val		Ala	Ala	Val	Glu		Asn	Pro	Ala	Val		Len
			340					345	_, _				350	P	
Asn	Thr	Ser		Pro	Len	Cvs	Lvs		Phe	He	Val	Thr		Glu	Asn

		355					360					365				
Ile	Arg	Lys	Gln	Glu	Glu	Arg	Val	Gln	Gln	Val	Arg	Lys	Lys	Leu	Glu	
	370					375			•		380					
Glu	Ala	Leu	Met	Ala	Asp	Ile	Leu	Ser	Arg	Ala	Ala	Asp	Thr	Glu	Glu	
385					390					395					400	
Met	Asp	Ile	Glu	Met	Asp	Ser	Gly	Asp	Glu	Ala						
				405					410							
<210)> 2															
<21	l> 12	233												•		
<212	2> Dì	AV									•					
<213	3> Ho	omo s	sapi	ens												
<220)>															
<221	l> CI	SC														
<223	3> (1	L)((1236	3)												
<400)> 2															
atg	cgc	gcg	cac	.ccg	ggg	gga	ggc	cgc	tgc	tgc	ccg	gag	cag	gag	gag	48
Met	Arg	Ala	His	${\bf Pro}$	Gly	Gly	Gly	Arg	Cys	Cys	${\bf Pro}$	Glu	Gln	Glu	Glu	
1		•		5					10					15		
ggg	gag	agt	gcg	gcg	ggc	ggc	agc	ggc	gct	ggc	ggc	gac	tcc	gcc	ata	96
Gly	Glu	Ser	Ala	Ala	Gly	Gly	Ser	Gly	Ala	Gly	Gly	Asp	Ser	Ala	Ile	
			20					25					30			
														agc		144
Glu	Gln	Gly	Gly	Gln	Gly	Ser	Ala	Leu	Ala	Pro	Ser	${\tt Pro}$	Val	${\tt Ser}$	Gly	
		35					40					45				
														cgg		192
Val		Arg	Glu	Gly	Ala	Arg	Gly	Gly	Gly	Arg	Gly	Arg	Gly	Arg	Trp	
	50					55					60					
								_	-		_			ggc		240
	Gln	Ala	Gly	Arg	Gly	Gly	Gly	Val	Cys	Gly	Arg	Gly	Arg	Gly	Arg	
65					70					75					80	
														ggc		288
Gly	Arg	Gly	Arg	Gly	Arg	Gly	Arg	Gly	Arg	Gly	Arg	Gly	Arg	Gly	Arg	
				85					90					95		
														tgc		336
Pro	Pro	Ser		Gly	Ser	Gly	Leu		Gly	Asp	Gly	Gly	Gly	Cys	Gly	
			100					105					110			

	ggc			_												384
Gly	Gly	Gly	Ser	Gly	Gly	Gly	Gly	Ala	Pro	Arg	Arg	Glu	Pro	Val	Pro	
		115					120					125				
ttc	ccg	tcg	ggg	agc	gcg	ggg	ccg	ggg	ccc	agg	gga	ccc	cgg	gcc	acg	432
Phe	Pro	Ser	Gly	Ser	Ala	Gly	Pro	Gly	Pro	Arg	Gly	Pro	Arg	Ala	Thr	
	130					135					140	•				
gag	agc	ggg	aag	agg	atg	gat	tgc	ccg	gcc	ctc	ccc	ccc	gga	tgg	aag	480
Glu	Ser	Gly	Lys	Arg	Met	Asp	Cys	Pro	Ala	Leu	Pro	Pro	Gly	Trp	Lys	
145					150					1 55					160	
aag	gag	gaa	gtg	atc	cga	aaa	tct	ggg	cta	agt	${\tt gct}$	ggc	aag	agc	gat	- 528
Lys	Glu	Glu	Val	Ile	Arg	Lys	Ser	Gly	Leu	${\tt Ser}$	Ala	Gly	Lys	Ser	Asp	
				165					170					175		
gtc	tac	tac	ttc	agt	cca	agt	ggt	aag	aag	ttc	aga	agc	aag	cct	cag	576
Val	Tyr	Tyr	Phe	Ser	Pro	Ser	Gly	Lys	Lys	Phe	Arg	Ser	Lys	Pro	Gln	
			180					185					190			
ttg	gca	agg	tac	ctg	gga	aat	act	${\tt gtt}$	gat	ctc	agc	agt	ttt	gac	ttc	624
Leu	Ala	Arg	Tyr	Leu	Gly	Asn	Thr	Val	Asp	Leu	${\tt Ser}$	Ser	Phe	Asp	Phe	
		195					200					205				
aga	act	gga	aag	atg	atg	cct	agt	aaa	tta	cag	aag	aac	aaa	cag	aga ·	672
Arg	Thr	Gly	Lys	Met	Met	${\tt Pro}$	${\tt Ser}$	Lys	Leu	Gln	Lys	Asn	Lys	Gln	Arg	
	210					215					220					
ctg	cga	aac	gat	cct	ctc	aat	caa	aat	aag	ggt	aaa	cca	gac	ttg	aat	720
Leu	Arg	Asn	Asp	${\bf Pro}$	Leu	Asn	Gln	Asn	Lys	'Gly	Lys	${\bf Pro}$	Asp	Leu	Asn	
225					230					235					240	
aca	aca	ttg	cca	\mathbf{att}	aga	caa	aca	gca	tca	${\bf att}$	ttc	aaa	caa	ccg	gta	768
Thr	Thr	Leu	Pro	Ile	Arg	Gln	Thr	Ala	Ser	Ile	Phe	Lys	Gln	Pro	Val	
				245					250					255		
acc	aaa	gtc	aca	aat	cat	${\tt cct}$	agt	aat	aaa	gtg	aaa	tca	gac	cca	caa	816
Thr	Lys	Val	Thr	Asn	His	${\tt Pro}$	${\tt Ser}$	Asn	Lys	Val	Lys	Ser	Asp	Pro	G1n	
			260					265					270			
cga	atg	aat	gaa	cag	cca	cgt	cag	$\operatorname{\mathbf{ctt}}$	ttc	tgg	gag	aag	agg	cta	caa	864
Arg	Met	Asn	Glu	Gln	\mathbf{Pro}	Arg	Gln	Leu	Phe	Trp	Glu	Lys	Arg	Leu	Gln	
		275					280					285				
gga	ctt	agt	gca	tca	gat	gta	aca	gaa	caa	att	ata	aaa	acc	atg	gaa	912
Gly	Leu	Ser	Ala	Ser	Asp	Val	Thr	Glu	Gln	Ile	Ile	Lys	Thr	Met	Glu	
	290					295					300					

cta	ccc	aaa	ggt	ctt	caa	gga	gtt	ggt	cca	ggt	agc	aat	gat	gag	acc	960
Leu	Pro	Lys	Gly	Leu	Gln	Gly	Val	Gly	Pro	Gly	Ser	Asn	Asp	Glu	Thr	
305					310					315					320	
ctt	tta	tct	gct	gtt	gcc	agt	gct	ttg	cac	aca	agc	tct	gcg	cca	atc	1008
Leu	Leu	Ser	Ala	Val	Ala	Ser	Ala	Leu	His	Thr	Ser	Ser	Ala	Pro	Ile	
				325					330					335		
aca	ggg	caa	gtc	tcc	gct	gct	gtg	gaa	aag	aac	cct	gct	gtt	tgg	ctt	1056
Thr	Gly	Gln	Val	${\tt Ser}$	Ala	Ala	Val	Glu	Lys	Asn	Pro	Ala	Val	Trp	Leu	
			340					345					350			
aac.	aca	tct	caa	ccc	ctc	tgc	aaa	gct	ttt	att	gtc	aca	gat	gaa	gac	1104
Asn	Thr	Ser	Gln	Pro	Leu	Cys	Lys	Ala	Phe	Ile	Val	Thr	Asp	Glu	Asp	
		355					360					365				
atc	agg	aaa	cag	gaa	gag	cga	gta	cag	caa	gta	cgc	aag	aaa	ttg	gaa	1152
Ile	Arg	Lys	Gln [.]	Glu	Glu	Arg	Val	Gln	Gln	Val	Arg	Lys	Lys	Leu	Glu	
	370					375					380					
gaa	gca	ctg	atg	gca	gac	atc	ttg	tcg	cga	gct	gct	gat	aca	gaa	gag	1200
Glu	Ala	Leu	Met	Ala	Asp	Ile	Leu	Ser	Arg	Ala	Ala	Asp	Thr	Glu	Glu	
385					390					395					400	
atg	gat	att	gaa	atg	gac	agt	gga	gat	gaa	gcc						1233
Met	Asp	Ile	Glu	Met	Asp	Ser	Gly	Asp	Glu	Ala						
				405					410							
<210)> 3					•										
<211	> 19	96														
<212	PF	T.														
<213	8> Hc	omo s	sapie	ens												
<400	> 3															
Met	Arg	Thr	Leu	Ala	Cys	Leu	Leu	Leu	Leu	Gly	Cys	Gly	Tyr	Leu	Ala	
1				5					10					15		
His	Val	Leu	Ala	Glu	Glu	Ala	Glu	Ile	Pro	Arg	Glu	Val	Ile	Glu	Arg	
			20					25					30			
Leu	Ala	Arg	Ser	Gln	Ile	His	Ser	Ile	Arg	Asp	Leu	Gln	Arg	Leu	Leu	
		35					40					45		-		
Glu	Ile	Asp	Ser	Val	Gly	Ser	Glu	Asp	Ser	Leu	Asp	Thr	Ser	Leu	Arg	
	50		•			55					60					
Ala	His	Gly	Val	His	Ala	Thr	Lys	His	Val	Pro	Glu	Lys	Arg	Pro	Leu	
65					70					75					80	

Pro	Ile	Arg	Arg	Lys 85	Arg	Ser	Ile	Glu	Glu 90	Ala	Val	Pro	Ala	Val 95	Cys	
Lys	Thr	Arg	Thr	Val	Ile	Tyr	Glu			Arg	Ser	Gln			Pro	•
			100					105					110			
Thr	Ser	Ala 115	Asn	Phe	Leu	Ile	Trp 120	Pro	Pro	Cys	Val	Glu 125	Val	Lys	Arg	
Cys	Thr 130		Cys	Cys	Asn	Thr 135		Ser	Val	Lys	Cys 140		Pro	Ser	Arg	
Val		His	Arg	Ser	Val		Val	Ala	Ī.vg	Val		Tvr	Va1	Aro	I.ve	
145					150	2,0	101	1110	DJ C	155	ulu	IJI	141	m 8	160	
		Lys	Leu			Val	Gln	Val	Arg		Glu	Glu	His	Leu		
		•		165					170					175		
Cys	Ala	Cys	Ala	Thr	Thr	Ser	Leu	Asn	Pro	Asp	Tyr	Arg	Glu	Glu	Asp	
			180					185					190			
Thr	Asp	Val	Arg						•							
		195														
<210)> 4															
<211	L> 58	38														
<212	2> D1	ΝA														
<213	3> Ho	omo s	sapie	ens												
<220)>															
<221	l> CI	S														
<223	3> (1	l)((591))												
<400)> 4					•										
atg	agg	acc	ttg	gct	tgc	ctg	ctg	ctc	ctc	ggc	tgc	gga	tac	ctc	gcc	48
Met	Arg	Thr	Leu	Ala	Cys	Leu	Leu	Leu	Leu	Gly	Cys	Gly	Tyr	Leu	Ala	
1				5					10					15		-
cat	gtt	ctg	gcc	gag	gaa	gcc	gag	atc	ccc	cgc	gag	gtg	atc	gag	agg	96
His	Val	Leu	Ala	Glu	Glu	Ala	Glu	Ile	Pro	Arg	Glu	Val	Ile	Glu	Arg	
			20					25					30			
ctg	gcc	cgc	agt	cag	atc	cac	agc	atc	cgg	gac	ctc	cag	cga	ctc	ctg	144
Leu	Ala	Arg	Ser	Gln	He	His	Ser	Ile	Arg	Asp	Leu	Gln	Arg	Leu	Leu	
		35					40					45				
gag	ata	gac	tcc	gta	ggg	agt	gag	gat	tct	$\boldsymbol{ttg}_{\!\scriptscriptstyle{\boldsymbol{L}}}$	gac	acc	agc	ctg	aga	192
Glu	Ile	Asp	Ser	Val	Gly	Ser	Glu	Asp	Ser	Leu	Asp	Thr	Ser	Leu	Arg	•
	50					55					60					

gct	cac	ggg	gtc	cac	gcc	act	aag	cat	gtg	ccc	gag	aag	cgg	ccc	ctg	-	240
Ala	His	Gly	Val	His	Ala	Thr	Lys	His	Val	Pro	Glu	Lys	Arg	Pro	Leu		
65					70					7 5					80		
ccc.	att	cgg	agg	aag	aga	agc	atc	gag	gaa	gct	gtc	ccc	gct	gtc	tgc		288
Pro	Ile	Arg	Arg	Lys	Arg	Ser	Ile	Glu	Glu	Ala	Val	Pro	Ala	Val	Cys		
				85					90					95			
aag	acc	agg	acg	gtc	${\tt att}$	tac	gag	att	cct	cgg	agt	cag	gtc	gac	ccc		336
Lys	Thr	Arg	Thr	Val	He	Tyr	Glu	Ile	Pro	Arg	Ser	Gln	Val	Asp	Pro		
			100					105					110				
acg	tcc	gcc	aac	ttc	ctg	atc	tgg	ccc	ccg	tgc	gtg	gag	gtg	aaa	cgc		384
Thr	Ser	Ala	Asn	Phe	Leu	Ile	Trp	Pro	Pro	Cys	Val	·Glu	Val	Lys	Arg		
		115					120					125					
tgc	acc	ggc	tgc	tgc	aac	acg	agc	agt	gtc	aag	tgc	cag	ccc	tcc	cgc		432
Cys	Thr	Gly	·Cys	Cys	Asn	Thr	Ser	Ser	Val	Lys	Cys	Gln	Pro	Ser	Arg		
	130					135					140						
gtc	cac	cac	cgc	agc	gtc	aag	gtg	gcc	aag	gtg	gaa	tac	gtc	agg	aag		480
Val	His	His	Arg	Ser	Val	Lys	Val	Ala	Lys	Val	Glu	Tyr	Val	Arg	Lys		
145					150				•	155					160		
												gag		_			528
Lys	Pro	Lys	Leu		Glu	Val	Gln	Val	Arg	Leu	Glu	Glu	His	Leu	Glu		
				165					170					175			
												cgg			_	į	576
Cys	Ala	Cys		Thr	Thr	Ser	Leu		Pro	Asp	Tyr	Arg	Glu	Glu	Asp		
			180					185					190				
		gtg														!	588
Thr	Asp	Val	Arg														
		195															
<210	_																
	> 24																
	> PI																
		omo s	sapie	ens													
<400		A	0	т	41.	T	nh -	T	O	T	Λ	0	m	T	A		
	ASII	AI'g	СУS		Ala	ьeu	rne	геп		ьeu	Uys	Cys	lyr		Arg		
1	Va 1	C	A 1 -	5	01 -	١	D	T7.	10	01	Λ1	T	<i>m</i>	15	M. (
րբп	val	nel.	A1a 20	ulu	αŢΆ	АЗР	110	25	11.0	ulu	ulu	Leu	1yr 30	иIП	мет		

```
Leu Ser Asp His Ser Ile Arg Ser Phe Asp Asp Leu Gln Arg Leu Leu
        35
                            40
                                               45
His Gly Asp Pro Gly Glu Glu Asp Gly Ala Glu Leu Asp Leu Asn Met
                        55
Thr Arg Ser His Ser Gly Gly Glu Leu Glu Ser Leu Ala Arg Gly Arg
65
                    70
                                        75
Arg Ser Leu Gly Ser Leu Thr Ile Ala Glu Pro Ala Met Ile Ala Glu
                85
Cys Lys Thr Arg Thr Glu Val Phe Glu Ile Ser Arg Arg Leu Ile Asp
           100
                               105
                                                  110
Arg Thr Asn Ala Asn Phe Leu Val Trp Pro Pro Cys Val Glu Val Gln
       115
                           120
                                              125
Arg Cys Ser Gly Cys Cys Asn Asn Arg Asn Val Gln Cys Arg Pro Thr
                       135
Gln Val Gln Leu Arg Pro Val Gln Val Arg Lys IIe Glu IIe Val Arg
145
                . 150
                                       155
                                                          160
Lys Lys Pro Ile Phe Lys Lys Ala Thr Val Thr Leu Glu Asp His Leu
               165
                                   170
                                                      175
Ala Cys Lys Cys Glu Thr Val Ala Ala Ala Arg Pro Val Thr Arg Ser
           180
                               185
                                                  190
Pro Gly Gly Ser Gln Glu Gln Arg Ala Lys Thr Pro Gln Thr Arg Val
       195
                           200
Thr lle Arg Thr Val Arg Val Arg Arg Pro Pro Lys Gly Lys His Arg
   210
                       215
                                          220
Lys Phe Lys His Thr His Asp Lys Thr Ala Leu Lys Glu Thr Leu Gly
225
                   230
                                       235
                                                          240
Ala
<210> 6
<211> 723
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<223> (1)..(726)
<400> 6
```

_	Asn	Arg	Cys		Ala	Leu	Phe	Leu		Leu	Cys	Cys	Tyr		Arg	
1	~ -			5					10					15		0.0
			gcc Ala					Ile					Tyr		_	96
ct a	art	œn o	20	+00	a t à	000	t 0 0	25	an t	t	a+ a		30			1 4 4
			cac His												_	144
Dou	501	35	1110	BOI	110	шь	40	Inc	лор	лор	Бец	45	мg	ъец	ьeu	
cac	gga	gac	.ccc	gga	gag	gaa	gat	ggg	gcc	gag	ttg	gac	ctg	aac	atg	192
His	Gly	Asp	Pro	Gly	Glu	Glu	Asp	Gly	Ala	Glu	Leu	Asp	Leu	Asn	Met	
	50					55					60					
			cac													240
Thr 65	Arg	Ser	His	Ser	Gly 70	Gly	Glu	Leu	Glu	Ser 75	Leu	Ala	Arg	Gly	Arg 80	
agg	agc	ctg	ggt	tcc	ctg	acc	att	gct	gag	ccg	gcc	atg	atc	gcc	gag.	288
Arg	Ser	Leu	Gly		Leu	Thr	Ile	Ala		Pro	Ala	Met	Ile		Glu	
		•		85					90					95		
			cgċ													336
cys	ьys	IIII.	Arg. 100	ınr	GIU	vai	rne	105	116	ser	Arg	Arg	ьеи 110	He	Asp	
cgc	acc	aac	gcc	aac	ttc	ctg	gt.g		cca	ccc	t.et.	et.e		gtg	റമഴ	384
			Ala												_	001
		115					120				- 0 -	125				
cgc	tgc	tcc	ggc	tgc	tgc	aac	aac	cgc	aac	gtg	cag	tgc	cgc	ССС	acc	432
Arg	Cys	Ser	Gly	Cys	Cys	Asn	Asn	Arg	Asn	Val	Gln	Cys	Arg	Pro	Thr	
	130					135					140					
			ctg													480
	Val	Gln	Leu	Arg		Val	Gln	Val	Arg		He	Glu	Ile	Val		
145					150					155					160	
			atc										_		_	528
ьys	гуз	rro	Ile	165	Lys	гуs	Ala	ınr	vai 170	inr	ren	GIU	Asp		Leu	
er a	tøc	aag	tgt		aca	oto	gra.	ant		നൽൽ	cet	at a	200	175	200	570
			Cys													576
	-0-	_0 -	180			,		185	.,	*** 0	110	, 41	190	ın P	DOI	
ccg	ggg	ggt		cag	gag	cag	cga		aaa	ace	ccc	caa		ር <mark>ው</mark> ው	σtσ	624

```
Pro Gly Gly Ser Gln Glu Gln Arg Ala Lys Thr Pro Gln Thr Arg Val
      195
                             200
                                                 205
acc att cgg acg gtg cga gtc cgc cgg ccc ccc aag ggc aag cac cgg
                                                                    672
Thr Ile Arg Thr Val Arg Val Arg Arg Pro Pro Lys Gly Lys His Arg
    210
                         215
                                             220
aaa ttc aag cac acg cat gac aag acg gca ctg aag gag acc ctt gga
                                                                    720
Lys Phe Lys His Thr His Asp Lys Thr Ala Leu Lys Glu Thr Leu Gly
225
                    230
                                         235
                                                              240
gcc
                                                                    723
Ala
<210> 7
<211> 155
<212> PRT
<213> Homo sapiens
<400> 7 . .
Met Ala Ala Gly Ser Ile Thr Thr Leu Pro Ala Leu Pro Glu Asp Gly
  1
                  5
                                      10
Gly Ser Gly Ala Phe Pro Pro Gly His Phe Lys Asp Pro Lys Arg Leu
           . 20
                                  25
                                                       30 -
Tyr Cys Lys Asn Gly Gly Phe Phe Leu Arg Ile His Pro Asp Gly Arg
         35
                              40
                                                  45
Val Asp Gly Val Arg Glu Lys Ser Asp Pro His Ile Lys Leu Gln Leu
                          55
                                              60
Gln Ala Glu Glu Arg Gly Val Val Ser Ile Lys Gly Val Cys Ala Asn
 65
                      70
                                          75
                                                               80
Arg Tyr Leu Ala Met Lys Glu Asp Gly Arg Leu Leu Ala Ser Lys Cys
                 85
                                      90
Val Thr Asp Glu Cys Phe Phe Phe Glu Arg Leu Glu Ser Asn Asn Tyr
            100
                                 105
                                                      110
Asn Thr Tyr Arg Ser Arg Lys Tyr Thr Ser Trp Tyr Val Ala Leu Lys
                             120
                                                 125
Arg Thr Gly Gln Tyr Lys Leu Gly Ser Lys Thr Gly Pro Gly Gln Lys
    130
                         135
                                             140
Ala Ile Leu Phe Leu Pro Met Ser Ala Lys Ser
145
                    150
<210> 8
```

<212 <213	l> 46 2> DN 3> Ho	A	sapie	ens												
<220		٠.														
	i> CI		' ACO \													
	3> (1)> 8		400	,												
				0.00	a t a	222	000	a+		~~~	++~		~	 +		40
					atc											48
	Ala	Ala	ary	5 5	Ile	1111.	ш	ьец		Ala	ъeц	rro	ulu		GIY	
l gga	0.00	ara o	œ.o.	-	000	222	~~~		10	000	~ 0.0		000	15	a+ a	0.e
			_		ccg								_		_	96
ary	ser	ary	A1a 20	rne	Pro	Pro	uly	птs 25	rne	ьys	ASP	PIO	-	Arg	Leu	
too	+ ~~	000		~~~	<i></i>	++~	++-			2+0			30	~~~		144
_	_	_			ggc	_	_									144
ıyı.	Cys	ьуs 35	ASII	GLY	Gly	rne		ьец	Alg	116	нта		ASP	ыу	Arg	
æt+	# 0.0		æŧ o		~~ ~		40	~~	a a t		a+:a	45	.+.		.44	100
					gag							_				192
vai	-	GIA	vai	Arg	Glu	-	ser.	Asp	Pro	пıs		гàг	ьец	GIII	ьeu	
	50	700	~~			55		4.4	-4-		60		LL			0.40
_		_			gga							-	-	-		240
	Ala	GIU	ulu	Arg	Gly	Val	vai	ser	11e		GLY	vai	Cys	Ala		
65	. .			-4	. 70					75			4.4		80	000
					aag											288
Arg	lyr	ьец	Ala		Lys	GIU	Asp	ыу		Leu	Leu	Ala	ser		Cys	
-4-A		+		85	44.	TTT	***		90	44		4.4	4	95	4	000
_	-	-		_	ttc			_	_	_	_					336
vai	ınr	Asp		Cys	Phe	rne	Pne			Leu	GIU	ser		Asn	Tyr	
+	+	4	100				4	105			4.4		110	LL		004
					agg										•	384
ASN	Inr		Arg	ser	Arg	ьуs		ınr	ser	1rp	lyr		Ala	ьeu	Lys	
		115					120					125				400
					aaa											432
Arg		игу	GIN	Tyr	Lys		GIA	Ser	Lys	Thr	-	Pro	Gly	GIn	Lys	
· •	130	_44		, .		135	4.4				140					10-
		_			cca		_									465
Ala	116	ьeu	rne	Leu	Pro	met	oer	A1a.	LYS	Ser						

145					150					155					
<210	0> 9														
<21	1> 32	24													
<212	2> PI	RT													
<213	3> Ho		sapi	ens											
<400	0> 9														
Met 1	Phe	Pro	Ser	Pro 5	Ala	Leu	Thr	Pro	Thr 10	Pro	Phe	Ser	Val	Lys 15	Asp
Ile	Leu	Asn	Leu 20	Glu	Gln	Gln	G1n	Arg 25	Ser	Leu	Ala	Ala	Ala 30	Gly	Glu
Leu	Ser	Ala 35	Arg	Leu	Glu	Ala	Thr 40	Leu	Ala	Pro	Ser	Ser 45	Cys	Met	Leu
Ala	Ala 50	Phe	Lys	Pro	Glu	Ala 55	Tyr	Ala	Gly	Pro	Glu 60	Ala	Ala	Ala	Pro
Gly 65	Leu	Pro	Glu	Leu	Arg 70	Ala	Glu	Leu	Gly	Arg 75	Ala	Pro	Ser	Pro	Ala 80
Lys	Cys	Ala	Ser	Ala 85	Phe	Pro	Ala	Λla	Pro 90	Ala	Phe	Tyr	Pro	Arg 95	Ala
Tyr	Ser	Asp	Pro 100	Asp	Pro	Ala	Lys	Asp 105	Pro	Arg	Ala	Glu	Lys 110	Lys	Glu
Leu	Cys	Ala 115	Leu	Gln	Lys	Ala	Val 120	Glu	Leu	Glu	Lys	Thr 125	Glu	Ala	Asp
Asn	Ala 130	Glu	Arg	Pro	Arg	Ala 135	Arg	Arg	Arg	Arg	Lys 140	Pro	Arg	Val	Leu
Phe 145	Ser	Gln	Ala	Gln	Val 150	Tyr	Glu	Leu	Glu	Arg 155	Arg	Phe	Lys	Gln	Gln 160
Arg	Tyr	Leu	Ser	Ala 165	Pro	Glu	Arg	Asp	Gln 170	Leu	Ala	Ser	Val	Leu 175	Lys
Leu	Thr	Ser	Thr 180	Gln	Val	Lys	Ile	Trp 185	Phe	Gln	Asn	Arg	Arg 190	Tyr	Lys
Cys	Lys	Arg 195	Gln	Arg	Gln	Asp	Gln 200	Thr	Leu	Glu	Leu	Val 205	Gly	Leu	Pro
Pro	Pro 210	Pro	Pro	Pro	Pro	Ala 215	Arg	Arg	Ile	Ala	Val 220	Pro	Val	Leu	Val
Arg 225	Asp	Gly	Lys	Pro	Cys 230	Leu	Gly	Asp	Ser	Ala 235	Pro	Tyr	Ala	Pro	Ala 240

Tyr [.]	Gly	Val	Gly	Leu 245	Asn	Pro	Tyr	Gly	Tyr 250	Asn	Ala	Tyr	Pro	Ala 255	Tyr	
Pro	Gly	Tyr	Gly 260		Ala	Ala	Cys	Ser 265		Gly	Tyr	Ser	Cys 270		Ala	
Ala	Tyr	Pro 275	Ala	Gly	Pro	Ser	Pro 280	Ala	Gln	Pro	Ala	Thr 285		Ala	Ala	
Asn	Asn 290		Phe	Val	Asn	Phe 295		Val	Gly	Asp	Leu 300		Ala	Val	Gln	
Ser 305	Pro	Gly	Ile	Pro	Gln 310		Asn	Ser	Gly	Val 315		Thr	Leu	His	Gly 320	
Ile	Arg	Ala	Trp													
<21	0> 1(1> 97 2> Di	72														
<213		omo s	sapi	ens												
	1> CI	S	•													
<223	3> (1	l)((975))												
<400)> 10)														
atg	ttc	ccc	agc	cct	gct	ctc	acg	ccc	acg	ccc	ttc	tca	gtc	aaa	gac	48
Met 1	Phe	Pro	Ser	Pro 5	Ala	Leu	Thr	Pro	Thr 10	Pro	Phe	Ser	Val	Lys 15	Asp	
					cag Gln											96
					gag Glu											144
		ttc			gag Glu		tac					gcg				192
					cgc Arg 70						gcg					240
	tgt	gcg	tct	gcc	ttt	ССС	gcc	gcc	ccc		ttc	tat	cca	cgt		288

Lys	Cys	Ala	Ser	Ala 85	Phe	Pro	Ala	Ala	Pro 90	Ala	Phe	Tyr	Pro	Arg 95	Ala	
				gac Asp												336
				cag Gln										_	_	384
				ccc Pro												432
				cag Gln											_	480
_				gcc Ala 165										-	aaa Lys	528
				cag Gln											aag [.] Lys	576
				cgg Arg												624
				ccg Pro												672
				cca Pro												720
				ctc Leu 245												768
				ggc Gly												816
gct	tac	ccc	gcc	ggg	cct	tcc	cca	gcg	cag	ccg	gcc	act	gcc	gcc	gcc	864

Ala	Tyr	Pro 275	Ala	Gly	Pro	Ser	Pro 280	Ala	Gln	Pro	Ala	Thr 285	Ala	Ala	Ala	
aac	aac	aac	ttc	gtg	aac	ttc	ggc	gtc	ggg	gac	ttg	aat	gcg	gtt	cag	912
Asn	Asn 290	Asn	Phe	Val	Asn	Phe 295	Gly	Val	Gly	Asp	Leu 300	Asn	Ala	Val	Gln	
agc	ccc	ggg	att	ccg	cag	agc	aac	tcg	gga	gtg	tcc	acg	ctg	cat	ggt	960
Ser	${\tt Pro}$	Gly	Ile	Pro	Gln	Ser	Asn	Ser	Gly	Val	Ser	Thr	Leu	His	Gly	
305					310					315					320	
atc	cga	gcc	tgg													972
lle	Arg	Ala	Trp 324													
<210)> 11	l														
	1> 44 2> PI															
	3> Ho		sapie	ens ·												
)> 1:		July 1			-										
			Ser	Leu	Ala	Met	Ala	Ala	Asn	His	Gly	Pro	Pro	Pro	Glv	
1	•	٠.		5					10		~-0			15	41,	
Ala	Tyr	Gln	Ala 20	Gly	Gly	Pro	Gly	Pro 25		Met	His	Gly	Ala 30		Ala	
Ala	Ser	Ser 35		Val	Tyr	Leu	Pro 40		Pro	Arg	Val	Pro 45		Ser	Val	
Leu	Gly 50	Leu	Ser	Tyr	Leu	Gln 55	Gly	Gly	Gly	Ala	Gly 60		Ala	Ser	Gly	
Gly	Pro	Ser	Gly	Gly	Ser	Pro	Gly	Gly	Ala	Ala	Ser	Gly	Ala	Gly	Pro	
65					70					7 5					80	
Gly	Thr	Gln	Gln	Gly 85	Ser	Pro	Gly	Trp	Ser 90	Gln	Ala	Gly	Ala	Thr 95	Gly	
Ala	Ala	Tyr	Thr 100	Pro	Pro	Pro	Val	Ser 105	Pro	Arg	Phe	Ser	Phe 110	Pro	Gly	
Thr	Thr	Gly 115	Ser	Leu	Ala	Ala	Ala 120	Ala	Ala	Ala	Ala	Ala 125	Ala	Arg	Glu	
Ala	Ala 130	Ala	Tyr	Ser	Ser	Gly 135	Gly	Gly	Ala	Ala	Gly 140		Gly	Leu	Ala	
Gly	Arg	Glu	Gln	Tyr	Gly	Arg	Ala	Gly	Phe	Ala		Ser	Tyr	Ser	Ser	
145					150					155					160	

Pro	Tyr	Pro	Ala	Tyr 165	Met	Ala	Asp	Val	Gly 170	Ala	Ser	Trp	Ala	Ala 175	Ala
Ala	Ala	Ala	Ser 180	Ala	Gly	Pro	Phe	Asp 185	Ser	Pro	Val	Leu	His 190	Ser	Leu
Pro	Gly	Arg 195	Ala	Asn	Pro	Ala	Ala 200	Arg	His	Pro	Asn	Leu 205	Asp	Met	Phe
Asp	Asp 210	Phe	Ser	Glu	Gly	Arg 215	Glu	Cys	Val	Asn	Cys 220	Gly.	Äla	Met	Ser
225				Arg	230					235					240
Cys	Gly	Leu	Tyr	His 245	Lys	Met	Asn	Gly	11e 250	Asn	Arg	Pro	Leu	Ile 255	Lys
			260	Leu				265					270		
		275		Thr			280					285			
Glu	Pro 290	Val	Cys	Asn	Ala	Cys 295	Gly	Leu	Tyr	Met	Lys 300	Leu	His	Gly	Val
Pro 305	Arg	Pro	Leu	Ala	Met 310	Arg	Lys	Glu	Gly	Ile 315	Gln	Thr	Arg	Lys	Arg 320
Lys	Pro	Ļys	Asn	Leu 325	Asn	Lys	Ser	Lys	Thr 330	Pro	Ala	Ala	Pro	Ser 335	Gly
Ser	Glu	Ser	Leu 340	Pro	Pro	Ala	Ser	Gly 345	Ala	Ser	Ser	Asn	Ser 350	Ser	Asn
Ala	Thr	Thr 355	Ser	Ser	Ser	Glu	G1u 360	Met	Arg	Pro	Ile	Lys 365	Thr	Glu	Pro
Gly	Leu 370			His		Gly 375			Ser		Val 380	Ser	Gln	Thr	Phe
Ser 385	Val	Ser	Ala	Met	Ser 390	Gly	His	Gly	Pro	Ser 395	Ile	His	Pro	Val	Leu 400
Ser	Ala	Leu	Lys	Leu 405	Ser	Pro	G1n	Gly	Tyr 410		Ser	Pro	Val	Ser 415	Gln
Ser	Pro	Gln	Thr 420	Ser	Ser	Lys		Asp 425	Ser	Trp	Asn	Ser	Leu 430	Val	Leu
Ala	Asp	Ser 435	His	Gly	Asp	Ile	Ile 440	Thr	Ala						

<210)> 12	2														
<211	> 13	326														
<212	2> Di	ΝA														
<213	3> Ho	omo s	sapi	ens												
<220)>															
<221	l> CI	SC														
<223	3> (l)	(132	9)												
<400)> 12	2														
atg	tat	cag	agc	ttg	gcc	atg	gcc	gcc	aac	cac	ggg	ccg	ccc	ccc	ggt	48
Met	Tyr	Gln	Ser	•	Ala	Met	Ala	Ala	Asn	His	Gly	Pro	Pro	Pro	Gly	
1				5					10					15		
						ccc				_					_	96
Ala	Tyr	Gln		Gly	Gly	Pro	Gly		Phe	Met	His	Gly		Gly	Ala	
			20					25					30			
_						ctg									_	144
Ala	Ser		Pro	Val	Tyr	Leu		Thr	Pro	Arg	Val		Ser	Ser	Val	
a .b .m		35			- 4		40					45				100
						cag										192
ren	50	ьeu	261.	ıyı.	ьeu	Gln 55	uly	uly	uly	Ala	60	ser	Ala	ser	uly	
gge		tro	aac	oo c	200	CCC	aat	aaa	go e	aca		aat	mo m	atatat	000	240
						Pro			-							440
65	110	501	ulj	arj	70	110	ulj	arj	mu	75	DCI	uly	AIG	uly	80	
	a.c.c	cag	cag	ggc		ccg	gga	t.gg	agc		gcg	gga	ድርድ	acc		288
						Pro										200
0				85			0		90					95	u I J	
gcc	gct	tac	acc	ccg	ccg	ccg	gtg	tcg	ccg	cgc	ttc	tcc	ttc		ggg	336
						Pro										
			100					105					110		•	
acc	acc	ggg	tcc	ctg	gcg	gcg	gcg	gcg	gcg	gct	gcc	gcc	gcc	cgg	gaa	384
Thr	Thr	Gly	Ser	Leu	Ala	Ala	Ala	Ala	Ala	Ala	Ala	Ala	Ala	Arg	Glu	
		115					120					125				
gct	gcg	gcc	tac	agc	agt	ggc	ggc	gga	gcg	gcg	ggt	gcg	ggc	ctg	gcg	432
Ala	Ala	Ala	Tyr	Ser	Ser	Gly	Gly	Gly	Ala	Ala	Gly	Ala	Gly	Leu	Ala	
	130					135					140					
ggc	cgc	gag	cag	tac	ggg	cgc	gcc	ggc	ttc	gcg	ggc	tcc	tac	tcc	agc	480

Gly 145	Arg	Glu	Gln	Tyr	Gly 150	Ärg	Ala	Gly	Phe	Ala 155	Gly	Ser	Tyr	Ser	Ser 160	
						gcc Ala								_	_	528
						ccc Pro					_	-		_	_	576
						gcc Ala							_	_		624
						aga Arg 215								-		672
_						gat Asp										720.
						atg Met				Asn						768
						gcc Ala										816
						acc Thr										864
						tgc Cys 295										912
						cgg Arg										960
						aaa Lys										1008
agt	gag	agc	ctt	cct	ссс	gcc	agc	ggt	gct	tcc	agc	aac	tcc		aac	1056

Ser	Glu	Ser	Leu 340	Pro	Pro	Ala	Ser	Gly 345	Ala	Ser	Ser	Asn	Ser 350	Ser	Asn	
					agc Ser							_	_			1104
1110		355		501	501	ulu	360	ncc	w 8	110	110	365	1111	UIU	110	
					tac											1152
Gly	Leu 370	Ser	Ser.	His	Tyr	Gly 375	His	Ser	Ser	Ser	Val 380	Ser	Gln	Thr	Phe	
					tct											1200
Ser 385	Val	Ser	Ala	Met	Ser 390	Gly	His	Gly	Pro	Ser 395	Ile	His	Pro	Val	Leu 400	
tcg	gcc	ctg	aag	ctc	tcc	cca	caa	ggc	tat	gcg	tct	ccc	gtc	agc	cag	1248
Ser	Ala	Leu	Lys	Leu 405	Ser	Pro	Gln	Gly	Tyr 410	Ala	Ser	Pro	Val	Ser 415	Gln	
															ttg.	1296
Ser	Pro	Gln	Thr 420	Ser	Ser	Lys	Gln	Asp 425	Ser	Trp	Asn	Ser	Leu 430	Val	Leu	
gcc	gac	agt	cac	ggg	gac	ata	atc	act	gcg							1326
Ala	Asp		His	Gly	Asp	Ile		Thr	Ala							
40.47)	435					440									
)> 13 l> 5(
	1/ 50 2> PI															
	3> Ho		sapie	ens												
<400)> 13	}														
Met 1	Gly	Arg	Lys	Lys 5	Ile	Gln	Ile	Thr	Arg 10	Ile	Met	Asp	Glu	Arg 15	Asn	
Arg	Gln	Val	Thr 20	Phe	Thr	Lys	Arg	Lys 25	Phe	Gly	Leu	Met	Lys 30	Lys	Ala	
Tyr	Glu	Leu 35	Ser	Val	Leu	Cys	Asp 40	Cys	Glu	Ile	Ala	Leu 45	Ile	Ile	Phe	
Asn	Ser 50	Ser	Asn	Lys	Leu	Phe 55	Gln	Tyr	Ala	Ser	Thr 60	Asp	Met	Asp	Lys	
Val	Leu	Leu	Lys	Tyr	Thr	Glu	Tyr	Asn	Glu	Pro	His	Glu	Ser	Arg	Thr	
65					70					75					80	
Asn	Ser	Asp	He	Val	Glu	Ala	Len	Asn	J.ve	I.ve	Glii	Hie	Aro	Glv	Cvs	

				85					90					95	
Asp	Ser	Pro	Asp	Pro	Asp	Thr	Ser	Tyr	Val	Leu	Thr	Pro	His	Thr	Glu
			100					105					110		
Glu	Lys	Tyr	Lys	Lys	Ile	Asn	Glu	Glu	Phe	Asp	Asn	Met	Met	Arg	Asn
		115					120					125			
His	Lys	Ile	Ála	Pro	Gly	Leu	Pro	Pro	Gln	Asn	Phe	Ser	Met	Ser	Val
	130					135					140				
Thr	Val	Pro	Val	Thr	Ser	Pro	Asn	Ala	Leu	Ser	Tyr	Thr	Asn	Pro	Gly
145					150					155					160
Ser	Ser	Leu	Val		Pro	Ser	Leu	Ala	Ala	Ser	Ser	Thr	Leu	Thr	Asp
	_			165					170					175	
Ser	Ser	Met		Ser	Pro	Pro	Gln		Thr	Leu	His	Arg	Asn	Val	Ser
_	~ 3		180	~ .		_	_	185					190		•
Pro													Gly	Gly	Met
		. 195				:						205	~		_
Leu		Inr	Thr	Asp	Leu		Val	Pro	Asn	Gly		Gly	Ser	Ser	Pro
V-1	210	۸	01	nt.	W., 1	215	C	1	11.	O	220 Page 1	A	T	71.	03
	uly	ASII	ыу	Pne		ASI	9er.	Arg	Ala				Leu	11e	
225	Thn	<u>۳1</u>	41.	A an	230	Lou	C1**	I	V- 1		D===			C	240
Ala	ш	ary	Ala	245		Leu					PPO		Lys	255	Pro
Pro	Pro	Pro	Glaz										Lys		lan
110	110	110	260	иц	uly	пы	ьсц				561		270	110	voh
Leu	Arg	Val		He	Pro	Pro	Ser						Pro	Pro	I.em
	***	275	, 41	110	110		280	501		ulj	1100	285	110	110	Dou
Ser	Glu		Glu	Glu	Leu	Glu				Gln	Arg		Ser	Ser	Ser
	290					295		,			300				
Gln	Ala	Thr	Gln	Pro	Leu	Ala					Ser	Val	Thr	Thr	Pro
305					310					315					320
Ser	Leu	Pro	Pro	Gln	Gly	Leu	Val	Tyr	Ser	Ala	Met	Pro	Thr	Ala	Tyr
				325					330					335	
Asn	Thr	Asp	Tyr	Ser	Leu	Thr	Ser	Ala	Asp	Leu	Ser	Ala	Leu	Gln	Gly
			340					345					350		
Phe	Asn	Ser	Pro	Gly	Met	Leu	Ser	Leu	Gly	Gln	Val	Ser	Ala	Trp	Gln
		355					360					365			
Gln	His	His	Leu	Glv	Gln	Ala	Ala	Len	Ser	Ser	Len	Val	Ala	Glv	Glv

	370					375					380					
Gln 385	Leu	Ser	Gln	Gly	Ser 390	Asn	Leu	Ser	Ile	Asn 395	Thr	Asn	Gln	Asn	Ile 400	
Ser	Ile	Lys	Ser	Glu 405	Pro	·Ile	Ser	Pro	Pro 410	Arg	Asp	Arg	Met	Thr 415	Pro	
Ser	Gly	Phe	Gln 420	Gln	Gln	Gln	Gln	Gln 425	Gln	Gln	Gln	Gln	Gln 430	Pro	Pro	
Pro	Pro	Pro 435	Gln	Pro	Gln	Pro	Gln 440	Pro	Pro	Gln	Pro	Gln 445	Pro	Arg	Gln	-
Glu	Met 450	Gly	Arg	Ser		Val 455	Asp	Ser	Leu	Ser	Ser 460	Ser	Ser	Ser	Ser	
Tyr 465	Asp	Gly	Ser	Asp	Arg 470	Glu	Asp	Pro	Arg	Gly 475	Asp	Phe	His	Ser	Pro 480	
Ile	Val	Leu	Gly	Arg 485	Pro	Pro	Asn	Thr	Glu 490	Asp	Arg	Glu	Ser	Pro 495	Ser	
Val.	Lys	Arg	Met 500	Arg	Met	Asp	Ala	Trp 505	Val	Thr			-			
<210)> 14	1														
<21	1> 15	521														
<212	2> Dì	AV														
<213	3> Ho	omo s	sapi	ens												
<220)>															
	l> CI														•	
	3> (1		(1524	4)												
)> 14															
	ggg															48
met 1	Gly	Arg	гàг	ьуs 5	116	GIN	116	ınr		116	Met	Asp	GIU		Asn	
	റമന	ot o	ant		202	220	242	000	10	d do	+ +0	o t a	004	15	or o	ብ ሮ
	cag Gln															96
			20					. 25					30			
	gaa	_														144
lyr	Glu	Leu 35	Ser	Val	Leu	Cys	Asp 40	Cys	Glu	He	Ala	Leu 45	He	He	Phe	
	agc	_											_	_		192
Asn	Ser	Ser	Asn	Lys	Leu	Phe	Gln	Tyr	Ala	Ser	Thr	Asp	Met.	Asp	Lvs	

					60					55					50	
240	acc	aga	agc	gaa	cat	cct	gaa	aat	tat	gaa	aca	tat	aag	ctc	ctt	gtt
	Thr	Arg	Ser	Glu	His	Pro	Glu	Asn	Tyr	Glu	Thr	Tyr	Lys	Leu	Leu	Val
	80					75					70					65
288	tgc	ggg	aga	cac	gaa	aag	aag	aac	ctg	gct	gag	gtt	att	gat	tcg	aac
	Cys	Gly	Arg	His	Glu	Lys	Lys	Asn	Leu	Ala	Glu	Val	Ile	Asp	Ser	Asn
		95					90					85				
336	gaa	aca	cat	cca	act	cta	gtg	tat	tca	act	gat	cct	gac	cca-	agc	gac
	Glu	Thr	His	Pro	Thr	Leu	Val	Tyr	Ser	Thr	Asp	Pro	Asp	Pro	Ser	Asp
		٠.	110					105					100	-		٠.
384	aat	cgg	atg	atg	aat	gat	ttt	gaa	gag	aat	att	aaa	aaa	tat	aaa	gaa
	Asn	Arg	Met		Asn	Asp	Phe	Glu		Asn	Ile	Lys	Lys		Lys	Glu
				125					120					115		
432		tct														
	Val	Ser	Met	Ser		Asn	Gln	Pro	Pro		Gly	Pro	Ala	He		
400					140					135					130	
480		cca														
		Pro	Asn	Thr	Tyr		Leu	Ala	Asn	Pro		Thr	vai	Pro	val	
۲00	160				4	155			44	4. 4.	150	4		. 4	4	145
528	-	aca		_											_	_
	ASP	Thr	Leu	inr	261.	261.		Ala	Leu	ei.	Pro	3er 165	Vai	ren	ser.	ser.
E70	+ a +	175	oot.	0.00	oot	++0	170	000	000	aat	0.00		oto	o t or	orro	tan
576		gtg Val		-												
	ser.	Val	190	Arg	1112	ьeu	1111	185	GIII	110	110	per	180	Met	pel	DCI.
624	ato	ggg		gca	aat	øør.	act		cca	cca	១៩១	റമർ		øct	gga	cct
024	•	Gly		-				_			_	_				
	1100	u i j	ulj	205	71011	ulj	1111	DOI	200		*** 0	4111	110	195	~ _ J	
672	cca	agt	agc		gct	gga.	aat.	cca		aca	ctc	gac	aca		agc	ttg
0,2		Ser														
				0	220	0	•••			215		•			210	
720	gga	att	ttg	aat	cca	tct	gct	aga	tca	aac	gta	ttt	gga	aat	ggg	gtg
		Ile														
	240					235		J			230				•	225
768		tct	aag	aca	cct	atg	gtc	aaa	ggc	tta	agc	aat	gca	ggt	act	gct
		Ser	_			-	_									

				245					250					255		
cct	cca	cca	ggt	ggt	ggt	\mathbf{aat}	ctt	gga	atg	aac	agt	agg	aaa	cca	gat	816
Pro	Pro	Pro	Gly	Gly	Gly	Asn	Leu	Gly	Met	Asn	Ser	Arg	Lys	Pro	Asp	
			260					265					270			
ctt	cga	gtt	gtc	atc	ccc	cct	tca	agc	aag	ggc	atg	atg	cct	cca	cta	864
Leu	Arg	Val	Val	Ile	Pro	Pro	Ser	Ser	Lys	Gly	Met	Met	Pro	Pro	Leu	
		275					280					285				
_	gag				_								_	_		912
Ser	Glu	Glu	Glu	Glu	Leu		Leu	Asn	Thr	Gln		Ile	Ser	Ser	Ser	•
•	290					295					300					
	gcc	_														960
	Ala	Thr	Gln	Pro		Ala	Thr	Pro	Val		Ser	Val	Thr	Thr		
305	4.4				310			,		315					320	4000
	ttg													_		1008
9er.	Leu	Pro	Pro		GIY	Leu	val	Tyr		Ala	Met	Pro	Thr		.Tyr	
000	oot	ma t	tot	325	a+ a			~~±	330	.+.	+		-1-1	335		1050
	act.															1056
NSII	Thr	vsh	340	DGI.	ьец	ш	961.	345	Asp	ren	ser.	Ala		GII	uly	
tta	220	tea		o o o o	ator	cta	ter		ưưa -	ഗരന	ort or	t a m	350	+ ~~	000	1104
	Asn														cag .	1104
1110	поп	355	110	ulj	1100	DCu	360	исц	uly	UIII	Yaı	365	піа	пр	d I II	
cag	cac		cta	gga	caa	gra		ctc	age	tct	ctt		get	o o a	or or or	1152
	His															1102
	370		Dou	u I J	4111	375	1114	Dou	DOL	DOI	380	741	ma	ulj	uly	
cag	tta	tct	cag	ggt	tcc		tta	tcc	att	aat		aac	caa	aac	at.c	1200
_	Leu															1200
385					390					395					400	
	atc	aag	tcc	gaa		att	tca	cct	cct		gat	cgt	atg	acc		1248
	Ile										_		_			
				405					410		_			415		
tcg	ggc	ttc	cag	cag	cag	cag	cag	cag	cag	cag	cag	cag	cag	ccg	ccg	1296
	Gly															
			420					425					430			
cca	cca	ccg	cag	ccc	cag	cca	caa	ccc	ccg	cag	ссс	cag	ccc	cga	cag	1344
Pro	Pro	Pro	Gln	Pro	Gln	Pro	Gln	Pro	Pro	Gln	Pro	Gln	Pro	Arg	Gln	

		435					440					445	•			
സമ	atg		ege	tee	cct	ot o		agt.	ctø	മെറ	age		agt	agc	tee	1392
	Met	_														1002
u i u	450	uly	мŞ	BCI	110	455	пор	DOI	nca	DCI	460	DOL	DOI	DOI	DOI	
+-+		~~0	oæt	ant.	orr		ant.	000	oaa	or or o		ttc	cat	tot	cca	1440
	gat														_	1440
	Asp	Gly	2er.	Asp		GIU	ASP	PPO	Arg		Asp	rne	пта	ser		
465					470					475					480	1.400
	gtg															1488
He	Val	Leu	Gly		Pro	Pro	Asn	Thr		Asp	Arg	Glu	Ser		Ser	
				485					490					495		
gta	aag	cga	atg	agg	atg	gac	gcg	tgg	gtg	acc						1521
Val	Lys	Arg	Met	Arg	Met	Asp	Ala	Trp	Val	Thr						
		•	500					505								
<21	0> 1	5														
<21	1> 36	3 5														
<21	2> PI	RT														
<21	3> He	omo :	sapi	ens								-				
•	0> 1		_									•				
	Gly		Lys	Lys	Ile	Gln	Ile	Ser	Arg	Ile	Leu	Asp	Gln	Arg	Asn	
1	•			5					10					15		
	Gln	Val	Thr		Thr	Lys	Arg	Lys		Gly	Leu	Met	Lys	Lys	Ala	
	~		20			-0 -	0	25					30			
Tyr	Glu	T.e.n		Val	T.em	Cvs	Asp		Glu	He	Ala	Leu		He	Phe	
131	uru	35	UCI	141	DСu	0,5	40	0,0	ulu	110	ma	45	110	110	1 110	
A an	Ser		Aan	Ang	Lou	Dha		Туг	412	Sar	Thr		Mot	Aen	Δrσ	
ASII		Ald	ASII	Mrg	ьeu	55	UIII	131	Λια	per	60	лэр	ncc	nsp	шБ	
₩. 1	50	T	T	Л	መኤኤ		Т	C	61.	Dno		Cl.,	Con	Ana	Thn	
vai	Leu	ьeu	гя	ıyı.			1 y I	ser.	ulu			ulu	ser	Arg		
. 65				_	70		.			75		71	03	T	80	
Asn	Thr	Asp	He		Glu	Inr	Leu	Lys			Gly	11e	Gly			
				85					90			_	~ 7	95		
Gly	Pro	Glu	Leu	Glu	Pro	Asp	Glu	Gly	Pro	Glu	Glu	Pro			Lys	
			100					105					110			
Phe	Arg	Arg	Leu	Ala	Gly	Glu	Gly	Gly	Asp	Pro	Ala	Leu	Pro	Arg	Pro	
		115					120					125				
Arg	Leu	Tyr	Pro	Ala	Ala	Pro	Ala	Met	Pro	Ser	Pro	Asp	Val	Val	Tyr	
	130					135					140					

Gly	Ala	Leu	Pro	Pro	Pro	Gly	Cys	Asp	Pro	Ser	Gly	Leu	Gly	Glu	Ala
145					150					155					160
Leu	Pro	Ala	Gln	Ser	Arg	Pro	Ser	Pro	Phe	Arg	Pro	Ala	Ala	${\tt Pro}$	Lys
				165					170					175	
Ala	Gly	Pro	Pro	Gly	Leu	Val	His	Pro	Leu	Phe	Ser	Pro	Ser	His	Leu
			180					185					190		
Thr	Ser	Lys	Thr	Pro	Pro	Pro	Leu	Tyr	Leu	Pro	Thr	Glu	Gly	Arg	Arg
		195					200					205			
Ser		Leu	Pro	Gly	Gly		Ala	Gly	Pro	Arg	Gly	Gly	Leu	Asn	Thr
	210	_				215					220				
	Arg	Ser	Leu	Tyr	Ser	Gly	Leu	Gln	Asn		Cys	Ser	Thr	Ala	
225			_	_	230	-		_		235	_				240
Pro	Gly	Pro			Gly	Ser	Phe	Pro		Leu	Pro	Gly	Gly		Pro
** 3	0.1	. 7		245	m				250	_		_		255	
Val	Gly	Ala		Ala	Trp	Ala	Arg		Val	Pro	Gin	Pro		Ala	Pro
D	A	A	260 D	D	Δ1	a .	. 7	265	0				270	_	
Pro			Pro	Pro	Gln	ser		Ser	Ser	Leu	Ser		Ser	Leu	Arg
Dno		275	A1.	Dma	A 1 a	m.	280	T	A	D	α	285 D	т1.	ъ.	
Pro	290	ary	Ala	Pro	Ala		Pne	Leu	Arg	Pro		Pro	116	Pro	Cys
Car		Dno	C137	Dno	Trp	295	Can	Lou	Cara	C127	300	01	Dma	Dna	O
305	DCI	110	uly	FFO	310	am	oer.	ьец	Uys	315	ьeu	all	Pro	Pro ·	
	Clv	Cve	Dro	Trn	Pro	The	110	C137	Dno		Ana	٨٣٨	Con	Dno	320
Mid	ulj	Uy S	110	325	110	1111	VIO	uly	330	ary	Arg	Mrg	ser.	335	uly
Glv	Thr	Ser	Pro		Arg	Ser	Pro	Glv		Δla	Arc	Δla	Arc		A cm
41,	1111	501	340	ulu	111 S	DOI	110	345	1111	Mid	мб	Ala	350	uly	voh
Pro	Thr	Ser		Gln	Ala	Ser	Ser		Lvs	Thr	Gln	Gln	000		
		355					360		1,0	1111	411	ulli			
<210)> 16														
<211	> 10	95													
<212	2> DN	IA													
<213	3> Hc	то з	sapie	ens											
<220)>														
<221	> CI	20													
<223	> (1	.)(1098	3)											
	> 16														

o+ m	cccc		000	000	ata	000	0+0	+	000	at a	a+ m	~~~			+	40
														agg		48
	бІУ	Arg	Lys	_	11e	GIN	11e	ser		116	Leu	Asp	GIN	Arg	Asn	
1				5					10					15		
											-	_	_	aag	_	96
Arg	Gln	Val	Thr	Phe	Thr	Lys	Arg	Lys	Phe	Gly	Leu	Met	Lys	Lys	Ala	
			20					25					30			
tat	gag	${\tt ctg}$	agc	gtg	ctc	tgt	gac	tgt	gag	ata	gcc.	ctc	atc	atc	ttc	144
Tyr	Glu	Leu	Ser	Val	Leu	Cys	Asp	Cys	Glu	Ile	Ala	Leu	Ile	Ile	Phe	
		35	•				40					45	-			
aac	agc	gcc	aac	cgc	ctc	ttc	cag	tat	gcc	agc	acg	gac	atg	gac	cgt ·	192
Asn	${\tt Ser}$	Ala	Asn	Arg	Leu	Phe	${\tt Gln}$	Tyr	Ala	Ser	Thr	Asp	Met	Asp	Arg.	
	50					55					60					
gtg	ctg	$\operatorname{\mathtt{ctg}}$	aag	tac	aca	gag	tac	agc	gag	ccc	cac	gag	agc	cgc	acc	240
Val	Leu	Leu	Lys	Tyr	Thr	Glu	Tyr	${\tt Ser}$	Glu	${\bf Pro}$	His.	Glu	Ser	Arg	Thr	
65	•				70					75	:				80	
aac	act	gac	atc	ctc	gag	acg	ctg	aag	cgg	agg	ggc	att	ggc	ctc	gat	288
Asn	Thr	Asp	Ile	Leu	Glu	Thr	Leu	Lys	Arg	Arg	Gly	Ile	Gly	Leu	Asp	
				85					90					95		
ggg	cca.	gag	ctg	gag	ccg	gat	gaa	ggg	cct	gag	gag	cca	gga	gag	aag	336
Gly	${\tt Pro}$	Glu	Leu	Glu	Pro	Asp	${\tt Glu}$	Gly	Pro	Glu	Glu	Pro	Gly	Glu	Lys	
			100					105					110			
ttt	cgg	agg	ctg	gca	ggc	gaa	ggg	ggt	gat	ccg	gcc	ttg	ccc	cga	ccc	384
Phe	Arg	Arg	Leu	Ala	Gly	Glu	Gly	Gly	Asp	Pro	Ala	Leu	Pro	Arg	Pro	
		115					120					125				
cgg	ctg	tat	cct	gca	gct	cct	gct	atg	ccc	agc	cca	gat	gtg	gta	tac	432
Arg	Leu	Tyr	Pro	Ala	Ala	Pro	Ala	Met	Pro	Ser	Pro	Asp	Val	Val	Tyr	
	130					135					140					
ggg	gcc	tta	ccg	cca	cca	ggc	tgt	gac	ccc	agt	ggg	ctt	ggg	gaa	gca	480
														Glu		
145					150					155					160	
ctg	ccc	gcc	cag	agc	cgc	cca	tct	ccc	ttc	cga	cca	gca	gcc	ссс	aaa	528
Leu	Pro	Ala	Gln	Ser	Arg	Pro	Ser	Pro	Phe	Arg	Pro	Ala	Ala	Pro	Lys	
				165					170					175	-	
gcc	ggg	ccc	cca	ggc	ctg	gtg	cac	cct	ctc	ttc	tca	cca	agc	cac	ctc	576
														His		
	-		180	•				185				-	190			

acc	agc	aag	aca	cca	ccc	cca	ctg	tac	ctg	ccg	acg	gaa	ggg	cgg	agg	624
Thr	Ser	Lys	Thr	Pro	Pro	Pro	Leu	Tyr	Leu	Pro	Thr	Glu	Gly	Arg	Arg	
		195					200					205				
tca	gac	ctg	cct	ggt	ggc	ctg	gct	ggg	ccc	cga	ggg	gga	cta	aac	acc	672
Ser	Asp	Leu	${\tt Pro}$	Gly	Gly	Leu	Ala	Gly	Pro	Arg	Gly	Gly	Leu	Asn	Thr	
	210					215					220					
.tcc	aga	agc	ctc	tac	agt	ggc	ctg	cag	aac	ccc	tgc	tec	act	gca	act	720
${\tt Ser}$	Arg	Ser	Leu	Tyr	${\tt Ser}$	Gly	Leu	Gln	Asn	Pro	Cys	Ser	Thr	Ala	Thr	
225					230					235					240	
ccc	gga	ccc	cca	ctg	ggg	agc	ttc	ccc	ttc	ctc	ccc	gga	ggc	ccc	cca.	768
Pro	Gly.	Pro	\mathbf{Pro}	Leu	Gly	${\tt Ser}$	Phe	Pro	Phe	Leu	Pro	Gly	Gly	Pro	Pro	
				245					250					255		
gtg	ggg	gcc	gaa	gcc	tgg	gcg	agg	agg	gtc	ccc	caa	ccc	gcg	gcg	cct	816
Val	Gly	Ala	Glu	Ala	Trp	Ala	Arg	Arg	Val	Pro	Gln	Pro	Ala	Ala	Pro	
			260					265					270			
ccc	cgc	cga	ccc	ccc	cag	tca	gca	tca	agt	ctg	agc	gcc	tct	ctc	cgg	864
Pro	Arġ	Arg	${\tt Pro}$	Pro	Gln	${\tt Ser}$	Ala	Ser	Ser	Leu	Ser	Ala	Ser	Leu	Arg	
		275					280					285				
ccc	ccg	ggg	gcc	ccg	gcg	act	\mathbf{ttc}	cta	aga	cct	tcc.	cct	atc	cct	tgc	912
Pro	Pro	Gly	Ala	${\tt Pro}$	Ala	Thr	Phe	Leu	Arg	Pro	${\tt Ser}$	Pro	Ile	Pro	Cys	
	290					295					300					
tcc	tcg	ccc	ggt	ccc	tgg	cag	agc	ctc	tgc	ggc	ctg	ggc	ccg	ccc	tgc	960
Ser	${\tt Ser}$	Pro	Gly	Pro	Trp	Gln	Ser	Leu	Cys	Gly	Leu	Gly	Pro	Pro	Cys	
305					310					315					320	
gcc	ggc	tgc	cct	tgg	ccg	acg	gct	ggc	ccc	ggt	agg	aga	tca	ccc	ggt	1008
Ala	Gly	Cys	Pro	Trp	Pro	Thr	Ala	Gly	Pro	Gly	Arg	Arg	Ser	Pro	Gly	
				325					330					335		
ggc	acc	agc	cca	gag	cgc	tcg	cca	ggt	acg	gcg	agg	gca	cgt	ggg	gac	1056
					Arg											
			340					345					350			
ccc	acc	tcc	ctc	cag	gcc	tct	tca	gag	aag	acc	caa	cag				1095
Pro	Thr	Ser	Leu	Gln	Ala	Ser	Ser	Glu	Lys	Thr	Gln	Gln				
		355					360					365				
<210	> 17	7														
<211	> 46	5														
<212	> PB	2T														

	3> H		sapi	ens											
<400	0> 1'	7													
Met 1	Gly	Arg	Lys	Lys 5	Ile	Gln	Ile	Thr		Ile	Met	Asp ·	Glu		Asn
	01 -	W - 1	тъ		M1	T	A	т'	10	a 1	_	1 5 (.	15	
Arg	GIN	vaı	20	Pne	Thr	ьуs	Arg	ьуs 25	Pne	Gly	Leu	Met	30	Lys	Ala
Tyr	Glu	Leu 35	Ser	Val	Leu	Cys	Asp 40	Cys	Glu	Ile	Ala.	Leu 45	Ile	Ile	Phe
Asn	Ser		Aen	Lve	Leu	Pho		Туг	11 0	Con	Th p		Mot	Aan	I wa
	. 50		ион			· 55	GIII	1 7 1	nıa	per	60	ysb		ASP	гàг
	Leu	Leu	Lys	Tyr	Thr	Glu	Tyr	Asn	Glu		His	Glu	Ser	Arg	
65	_				70		_			75					80
Asn	Ser	Asp	He	Val 85	Glu	Thr	Leu	Arg	Lys 90	Lys	Gly	Leu	Asn	Gly 95	Cys
Asp	Ser	Pro	Asp	Pro	Asp	Ala	Asp	Asp	Ser	Val	Gly	His	Ser	Pro	Glu
			100					105					110		
Ser	Glu	Asp 115	Lys	Tyr	Arg	Lys	Ile 120	Asn	Glu	Asp	Ile	Asp 125	Leu	Met	He
Ser	Arg		Arg	Len	Cys	Ala		Pro	Pro	Pro	Asn		Glu	Met	Pro
	130		0	204	0,15	135	, 41			110	140	THO	ulu	1100	110
Val	${\tt Ser}$	Ile	${\bf Pro}$	Val	Ser	${\tt Ser}$	His	Asn	Ser	Leu	Val	Tyr	Ser	Asn	Pro
145					150					155					160
Val	Ser	Ser	Leu	Gly 165	Asn	Pro	Asn	Leu	Leu 170	Pro	Leu	Ala	His	Pro 175	Ser
Leu	Gln	Arg	Asn		Met	Ser	Pro	Glv		Thr	His	Arg	Pro		Ser
		U	180					185					190	110	501
Ala	Gly	Asn	Thr	Gly	Gly	Leu	Met	Gly	Gly	Asp	Leu	Thr	Ser	Gly	Ala
		195					200					205			
Gly.	Thr 210	Ser	Ala	Gly	Asn	Gly 215	Tyr	Gly	Asn	Pro	Arg 220	Asn	Ser	Pro	Gly
Leu		Val	Ser	Pro	Gly		Len	Asn	I.vs	Asn		Gln	Ala	Ī.ve	Ser
225			201		230		Dou	71011	11,10	235	1100	0111	1110	шуо	240
Pro	Pro	Pro	Met	Asn	Leu	Gly	Met	Asn	Asn	Arg	Lys	Pro	Asp	Leu	Arg
				245					250					255	
Val	Leu	Ile	Pro 260	Pro	Gly	Ser	Lys	Asn 265	Thr	Met	Pro	Ser	Val 270	Asn	Gln

```
Arg Ile Asn Asn Ser Gln Ser Ala Gln Ser Leu Ala Thr Pro Val Val
        275
                             280
                                                 285
Ser Val Ala Thr Pro Thr Leu Pro Gly Gln Gly Met Gly Gly Tyr Pro
                         295
                                             300
Ser Ala Ile Ser Thr Thr Tyr Gly Thr Glu Tyr Ser Leu Ser Ser Ala
305
                    310
                                         315
                                                              320
Asp Leu Ser Ser Leu Ser Gly Phe Asn Thr Ala Ser Ala Leu His Leu
                325
                                                          335
Gly Ser Val Thr Gly Trp Gln Gln Gln His Leu His Asn Met Pro Pro
                                 345
                                                      350
Ser Ala Leu Ser Gln Leu Gly Ala Cys Thr Ser Thr His Leu Ser Gln
        355
                             360
                                                 365
Ser Ser Asn Leu Ser Leu Pro Ser Thr Gln Ser Leu Asn Ile Lys Ser
                         375
Glu Pro Val Ser Pro Pro Arg Asp Arg Thr Thr Thr Pro Ser Arg Tyr.
385
                    390
                                         395
                                                              400
Pro Gln His Thr Arg His Glu Ala Gly Arg Ser Pro Val Asp Ser Leu
                405
                                     410
Ser Ser Cys Ser Ser Ser Tyr Asp Gly Ser Asp Arg Glu Asp His Arg
            420
                                 425
                                                      430
Asn Glu Phe His Ser Pro Ile Gly Leu Thr Arg Pro Ser Pro Asp Glu
                             440
                                                 445
Arg Glu Ser Pro Ser Val Lys Arg Met Arg Leu Ser Glu Gly Trp Ala
    450
                         455
                                             460
Thr
<210> 18
<211> 1395
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<223> (1)..(1398)
<400> 18
atg ggg aga aaa aag att cag att acg agg att atg gat gaa cgt aac
Met Gly Arg Lys Lys Ile Gln Ile Thr Arg Ile Met Asp Glu Arg Asn
 1
                  5
                                      10
                                                           15
```

aga	cag	gtg	aca	ttt	aca	aag	agg	aaa	ttt	ggg	ttg	atg	aag	aag	gct	96
Arg	Gln	Val	Thr	Phe	Thr	Lys	Arg	Lys	Phe	Gly	Leu	Met	Lys	Lys	Ala	
			20					25					30			
tat	gag	ctg	agc	gtg	ctg	tgt	gac	tgt	gag	${\tt att}$	gcg	ctg	atc	atc	ttc	144
Tyr	Glu	Leu	${\tt Ser}$	Val	Leu	Cys	Asp	Cys	Glu	Ile	Ala	Leu	Ile	Ile	Phe	
		35					40					45				
aac	agc	acc	aac	aag	ctg	ttc	cag	tat	gcc	agc	acc	gac	atg	gac	aaa	192
Asn	${\tt Ser}$	Thr	Asn	Lys	Leu	Phe	Gln	Tyr	Ala	Ser	Thr	Asp	Met	Asp	Lys	
٠	. 50					55					60					
gtg	${\bf ctt}$	ctc	aag	tac	acg	gag	tac	aac	gag	ccg	cat	gag	agc	cgg	aca	240
Val	Leu	Leu	Lys	Tyr	Thr	Glu	Tyr	Asn	Glu	Pro	His	Glu	Ser	Arg	Thr	
65					70					75					80	
aac	tca	gac	atc	gtg	gag	acg	ttg	aga	aag	aag	ggc	ctt	aat	ggc	tgt	288
Asn	${\tt Ser}$	Asp	Ile	Val	Glu	Thr	Leu	Arg	Lys	Lys	Gly	Leu	Asn	Gly	Cys	
	٠.	٠.		85					90	-		:		95		
gac	agc	cca	gac	ccc	gat	gcg	gac	gat	tcc	gta	ggt	cac	agc	cct	gag	336
Asp	${\tt Ser}$	Pro	Asp	${\bf Pro}$	Asp	Ala	Asp	Asp	Ser	Val	Gly	His	Ser	Pro	Glu	
			100					105					110		•	
tct	gag	gac	aag	tac	agg	aaa	${\bf att}$	aac	gaa	gat	att	gat	cta	atg	atc	384
Ser	Glu	Asp	Lys	Tyr	\mathbf{Arg}	Lys	Ile	Asn	Glu	Asp	Ile	Asp	Leu	Met	Ile	
		115					120					125				
agc	agg	caa	aga	ttg	tgt	gct	gtt	cca	cct	ccc	aac	ttc	gag	atg	cca	432
Ser	Arg	Gln	Arg	Leu	Cys	Ala	Val	${\tt Pro}$	${\bf Pro}$	Pro	Asn	Phe	Glu	Met	Pro	
	130					135					140				•	
gtc	tcc	atc	cca	$\mathbf{g}\mathbf{t}\mathbf{g}$	tcc	agc	cac	aac	agt	ttg	gtg	tac	agc	aac	cct	480
Val	Ser	Ile	Pro	Val	Ser	Ser	His	Așn	Ser	Leu	Val	Tyr	Ser	Asn	Pro	
145					150					155					160	
gtc	agc	tca	ctg	gga	aac	ccc	aac	cta	ttg	cca	ctg	gct	cac	cct	tct	528
Val	Ser	Ser	Leu	Gly	Asn	Pro	Asn	Leu	Leu	${\bf Pro}$	Leu	Ala	His	${\bf Pro}$	Ser	
				165					170					175		
ctg	cag	agg	aat	agt	atg	tct	\mathtt{cct}	ggt	gta	aça	cat	cga	cct	cca	agt	576
Leu	Gln	Arg	Asn	Ser	Met	Ser	Pro	Gly	Val	Thr	His	Arg	Pro	${\bf Pro}$	Ser	
			180					185		•			190			
gca	ggt	aac	aca	ggt	ggt	ctg	atg	ggt	gga	gac	ctc	acg	tct	ggt	gca	624
Ala	Gly	Asn	Thr	Gly	Gly	Leu	Met	Gly	Gly	Asp	Leu	Thr	Ser	Gly	Ala	
		195					200					205				

ggc	acc	agt	gca	ggg	aac	ggg	tat	ggc	aat	ccc	cga	aac	tca	cca	ggt	672
Gly	Thr	Ser	Ala	Gly	Asn	Gly	Tyr	Gly	Asn	Pro	Arg	Asn	Ser	Pro	Gly	
	210					215					220					
ctg	ctg	gtc	tca	cct	ggt	aac	ttg	aac	aag	aat	atg	caa	gca	aaa	tct	720
Leu	Leu	Val	${\tt Ser}$	${\bf Pro}$	Gly	Asn	Leu	Asn	Lys	Asn	Met	Gln	Ala	Lys	Ser	
225					230		•			235					240	
cct	ccc	cca	atg	aat.	tta	gga	atg	aat	aac	cgt	aaa	cca	gat	ctc	cga	768
Pro	${\bf Pro}$	Pro	Met	Asn	Leu	Gly	Met	Asn	Asn	Arg	Lys	Pro	Asp	Leu	Arg	
	•			245					250					255		
gtt	ctt	att	cca-	cca	ggc	agc	aag	aat	acg	atg	cca	tca	gtg	aat	caa	816
Val	Leu	Ile	${\bf Pro}$	${\tt Pro}$	Gly	Ser	Lys	Asn	Thr	${\tt Met}$	${\bf Pro}$	Ser	Val.	Asn	Gln	
			260					265					270			
agg	ata	aat	aac	tcc	cag	tcg	gct	cag	tca	ttg	gct	acc	cca	gtg	gtt	864
Arg	·Ile	Asn	Asn	Ser	Gln	${\tt Ser}$	Ala	Gln	Ser	Leu	Ala	Thr	Pro	Val	Val	
		275					280					285				
tcc	gta	gca	act	cct	act	tta	cca	gga	caa	gga	atg	gga	gga	tat	cca	912
Ser	Val	Ala	Thr	${\tt Pro}$	Thr	Leu	${\tt Pro}$	Gly	Gln	Gly	Met	Gly	Gly	·Tyr	Pro	
	290					295					300					
tca	gcc	att	tca	aca	aca	tat	ggt	acc	gag	tac	tct	ctg	agt	agt	gca	960
Ser	Ala	Ile	${\tt Ser}$	Thr	Thr	Tyr	Gly	Thr	Glu	Tyr	Ser	Leu	Ser	Ser	Ala	
305					310					315					320	
gac	$\operatorname{\mathbf{ctg}}$	tca	tct	ctg	tct	ggg	ttt	aac	acc	gcc	agc	gct	ctt	cac	ctt	1008
Asp	Leu	Ser	Ser	Leu	Ser	Gly	Phe	Asn	Thr	Ala	Ser	Ala	Leu	His	Leu	
				325					330					335		
ggt	tca	gta	act	ggc	\mathbf{tgg}	caa	cag	caa	cac	cta	cat	aac	atg	cca	cca	1056
Gly	${\tt Ser}$	Val	Thr	Gly	Trp	Gln	Gln	Gln	His	Leu	His	Asn	Met	Pro	Pro	
			340					345					350			
tct	gcc	ctc	agt	cag	ttg	gga	gct	tgc	act	agc	act	cat	tta	tct	cag	1104
Ser	Ala	Leu	Ser	Gln	Leu	Gly	Ala	Cys	Thr	Ser	Thr	His	Leu	Ser	Gln	
		355					360					365				
agt	tca	aat	ctc	tcc	ctg	cct	tct	act	caa	agc	ctc	aac	atc	aag	tca	1152
Ser	${\tt Ser}$	Asn	Leu	Ser	Leu	Pro	Ser	Thr	Gln	Ser	Leu	Asn	Ile	Lys	Ser	
	370					375					380					
gaa	cct	gtt	tct	cct	cct	aga	gac	cgt	acc	acc	acc	cct	tcg	aga	tac	1200
											Thr					
385					390					395				_	400	

cca	caa	cac	acg	cgc	cac	gag	gcg	ggg	aga	tct	cct	gtt	gac	agc	ttg	1248
Pro	Gln	His	Thr	Arg	His	Glu	Ala	Gly	Arg	Ser	Pro	Val	Asp	Ser	Leu	
				405					410					415		
	agc															1296
Ser	Ser	Cys		Ser	Ser	Tyr	Asp		Ser	Asp	Arg	Glu		His	Arg	
		44.	420	4		- 1.4		425			4		430			1044
	gaa															1344
ASII	Glu	435	пте	. ser	rro	116	440	ьeu	IIII.	Arg	Pro	ser 445	Pro	ASP	ulu	
agg	gaa		ccc	tca	øtc	ลลฮ		atø	ega	ctt	tot		ರ್ಥ-	t.o.o	gr.a	1392
	Glu															1000
	450			201	,	455	, O	1100	*** 0	Dou	460	ulu	ulj	пр	niu	
aca																1395
Thr																
465																
<210	0> 19															
<21	1> 52	21.														
<212	2> PI	RT														
	3> Ho		sapie	ens												
	0> 19		_	_	- 1	~ 1										
	Gly	Arg	Lys		lle	Gln	He	Gln		He	Thr	Asp	Glu		Asn	
1	<i>(</i> 11	17 . 1	/D1	5 ni.	M1	, T	.	T	10	01	7	V F (,	15		
Arg	Gln	vai	20	rne	Inr	гàг	Arg	цуs 25	rne	GIY	Leu	Met		Lys	Ala	
Tyr	Glu	Ĭ.e.11		Val	Ι.Δ11	Cve	Aen		Gl 11	ماآ	۸۱۵	Lon	30	ľΙΔ	Dho	
1,71	Ulu	35	DCI	Val	пси	0,3	40	Uys	ulu	116	VIG	45	116	116	THE	
Asn	His		Asn	Lvs	Leu	Phe		Tyr	Ala.	Ser	Thr		Met.	Asp	Lvs	
	50	-		-0 -		55		-0-	•		60	-1F			-, -	
Val	Leu	Leu	Lys	Tyr	Thr	Glu	Tyr	Asn	Glu	Pro		Glu	Ser	Arg	Thr	
65					70					75					80	
Asn	Ala	Asp	Ile	Ile	Glu	Thr	Leu	Arg	Lys	Lys	Gly	Phe	Asn	Gly	Cys	
				85					90					95		
Asp	Ser	Pro	Glu	Pro	Asp	Gly	Glu	Asp	Ser	Leu	Glu	Gln	Ser	Pro	Leu	
			100					105					110			
Leu	Glu	Asp	Lys	Tyr	Arg	Arg	Ala	Ser	Glu	Glu	Leu	Asp	Gly	Leu	Phe	
		115					120					125				٠

Arg	Arg	Tyr	Gly	Ser	Thr	Val	Pro	Ala	Pro	Asn	Phe	Ala	Met	Pro	Val
	130					135					140				
	Val	Pro	Val	Ser	Asn	Gln	Ser	Ser	Leu		Phe	Ser	Asn	Pro	
145	_	_		479.3	150	_	_			155	_	_			160
Gly	Ser	Leu	Val		Pro	Ser	Leu	Val		Ser	Ser	Leu	Thr		Pro
A ====	T	T	C	165 D	<u>۸</u> 1	n1	D	A7.	170	O1	A	۸	O	175	g
Arg	Leu	Leu	ser 180	·Pro	Gln	GIN	Pro	185	Leu	GIN	Arg	ASI		vaı	Ser
Pro	G1v	I.a.1		G1n	Arg	Pro	Ala		Δla	Glv	Δla	Mo+	190	Clv	Clv
					ur 8				MIG		MIG	205	псц	uıy	uıj
Asp					Asn						Pro		Gly	Asn	Gly
•	210					215									
Tyr	Val	Ser	Ala	Arg	Ala	Ser	Pro	Gly	Leu	Leu	Pro	Val	Ala	Asn	Gly
225					230					235					240
Asn	Ser	Leu	Asn	Lys	Val	Ile	Pro	Ala	Lys	Ser	Pro	Pro	Pro	Pro	Thr
	_			245					250					255	
His	Ser	Thr			Gly										
11.	Т Ъ	C	260		01			265	М. Д				270		
116	IIII	275			Gly		280		мес	nis	nis	ьеи 285	inr	GIU	Asp
His	Leu				Asn					Glv	Val		Gln	Ser	Thr
	290					295		0			300		~	201	
His	Ser	Leu	Thr	Thr	Pro	Val	Val	Ser	Val	Ala	Thr	Pro	Ser	Leu	Leu
305					310					315					320
Ser	Gln	Gly	Leu	Pro	Phe	Ser	Ser	Met	Pro	Thr	Ala	Tyr	Asn	Thr	Asp
				325					330					335	
Tyr	Gln	Leu			Ala										Ser
D	01.	01	0 10						m1				350		0.1
Pro	Gly		Leu	Ser	Leu	Gly		vai	Thr	Ala	Trp		GIN	Pro	GIn
Cln	Dno	355	Cln	Dno	Gln	Cln	360 Pro	G1n	Dno	Dno	Gln	365	Cln	Dno	Dno
uIII	370	OIH	UIII	110	UIII	375	110	UIII	110	110	380	отп	UIII	rro	rro
Gln		Gln	Gln	Pro	Gln		Gln	Gln	Pro	Gln		Pro	Gln	Gln	Pro
385					390					395					400
	Gln	Gln	Gln	Ser	His	Leu	Val	Pro	Val		Leu	Ser	Asn	Leu	
	•													415	

Pro	Gly	Ser	Pro 420	Leu	Pro	His	Val	Gly 425	Ala	Ala	Leu	Thr	Val 430	Thr	Thr	
His	Pro	His 435	Ile	Ser	Ile	Lys	Ser 440	Glu	Pro	Val	Ser	Pro 445	Ser	Arg	Glu	
Arg	Ser 450	Pro	Ala	Pro	Pro	Pro 455	Pro	Ala	Val	Phe	Pro 460	Ala	Ala	Arg	Pro	
Glu 465	Pro	Gly	Asp	Gly	Leu 470	Ser	Ser	Pro	Ala	Gly 475	Gly	. Ser	Tyr	Glu	Thr 480	
Gly	Asp	Arg	Asp	Asp 485		Arg	Gly	Asp	Phe 490	Gly	Pro	Thr	Leu	Gly 495	Leu	
Leu	Arg	Pro	Ala 500	Pro	Glu	Pro	Glu	Ala 505	Glu	Gly	Ser	Ala	Val. 510	Lys	Arg	
Met	Arg	Leu 515	Asp	Thr	Trp	Thr	Leu 520	Lys								
<21	0> .20)														
<21	1> 18	563														
	2> Di															
	3> Ho		sapi	ens												
<22																
	1> CI	S														
	3> ()		(1566	3)												
	0> 20		•	•												
atg	ggg	agg	aaa	aag	att	cag	atc	cag	cga	atc	acc	gac	gag	cgg	aac	48
	Gly															
1				5					10			-		15		
cga	cag	gtg	act	ttc	acc	aag	cgg	aag	ttt	ggc	ctg	atg	aag	aag	gcg	96
	Gln													_		
			20					25					30	Ť		
tat	gag	ctg	agc	gtg	cta	tgt	gac	tgc	gag	atc	gca	ctc	atc	atc	ttc	144
Tyr	Glu	Leu	Ser	Val	Leu	Cys	Asp	Cys	Glu	Ile	Ala	Leu	Ile	Ile	Phe	
		35					40					45				
aac	cac	\mathbf{tcc}	aac	aag	ctg	ttc	cag	tac	gcc	agc	acc	gac	atg	gac	aag	192
Asn	His	Ser	Asn	Lys	Leu	Phe	Gln	Tyr	Ala	Ser	Thr	Asp	Met	Asp	Lys	
	50					55					60					
gtg	ctg	ctc	aag	tac	acg	gag	tac	aat	gag	cca	cac	gag	agc	cgc	acc	240
Val	Leu	Leu	Lys	Tyr	Thr	Glu	Tyr	Asn	Glu	Pro	His	Glu	Ser	Arg	Thr	

65					70					75					80	
aac	gcc	gac	atc	atc	gag	acc	ctg	agg	aag	aag	ggc	ttc	aat	ggc	tgc	288
Asn	Ala	Asp	Ile		Glu	Thr	Leu	Arg	Lys	Lys	Gly	Phe	Asn	Gly	Cys	
				85					90					95		
		ccc														336
Asp	Ser	Pro		Pro	Asp	Gly	Glu		Ser	Leu	Glu	Gln		Pro	Leu	
	٠٠.		100			•		105					110			
		gac														384
Leu	Glu	Asp	_	Tyr	Arg	Arg		Ser	Glu	Glu			.Gly	Leu	Phe	
		115					120					125				
		tat													_	432
Arg		Tyr	ату	26L	inr		Pro	Ala	Pro	Asn		Ala	Met	Pro	Val	
200	130	000	a+a	t 0 0	oot.	135	0.00	+	a+ ~		140					400
		Pro													agc.	480
145	Vai	110	vai	pel	150	UIII	per	pe1	Leu	155	rne	pel.	ASH	PPO	160	
	tee	ctg	gt.c	acc		tee	cte	oto	aca		tee	ete	a (ga c		528
		Leu											_	_	_	020
0	201	204		165		501	Dou	141	170	DOI	DOI	Dou	111,1	175	110	
cgg	ctc	ctg	tcc		cag	cag	cca	gca		cag	agg	aac	agt.		t.ct	576
		Leu														0,0
			180					185			0		190			
cct	ggc	ctg	ccc	cag	cgg	cca	gct	agt	gcg	ggg	gcc	atg	ctg	ggg	ggt	624
		Leu														
		195					200					205	•			
gac	$\operatorname{\mathtt{ctg}}$	aac	agt	gct	aac	gga	gcc	tgc	ccc	agc	cct	gtt	ggg	aat	ggc	672
Asp	Leu	Asn	Ser	Ala	Asn	Gly	Ala	Cys	Pro	Ser	${\bf Pro}$	Val	Gly	Asn	Gly	
	210					215					220					
tac	gtc	agt	gct	cgg	gct	tcc	cct	ggc	ctc	ctc	cct	gtg	gcc	aat	ggc	720
Tyr	Val	Ser	Ala	Arg	Ala	Ser	Pro	Gly	Leu	Leu	Pro	Val	Ala	Asn	Gly	
225					230					235					240	
		cta														768
Asn	Ser	Leu	Asn		Val	Ile	Pro	Ala	Lys	Ser	Pro	Pro	Pro	Pro	Thr	
				245					250					255		
		acc														816
HIS	Ser	Thr	Gin	Leu	Glv	Ala	Pro	Ser	Arg	Lvs	Pro	Asp	Len	Arg	Val	

	Thr				gga	aag	ggg	t.t.a	ate	rat	cac	ttø	act	gag	gac	864
Ile			Gln	Ala.			000	000	408	Cut	ouo	0.02	400	040	Suc	004
	tta	275			Gly	Lys	Gly	Leu	Met	His	His	Leu	Thr	Glu	Asp	
	tta						280					285				
cat		gat	ctg	aac	aat	gcc	cag	cgc	ctt	ggg	gtc	tcc	cag	tct	act	912
His	Leu	Asp	Leu	Asn	Asn	Ala	Gln	Arg	Leu	Gly	Val	Ser	Gln	Ser	Thr	
	290					295					300		•			
											acg		-			960
	Ser	Leu	Thr	Thr	Pro	Val	Val	Ser	Val	Ala	Thr	Pro	Ser	Leu	Lėu	
305					310					315					320	
											gcc					1008
Ser	Gln	Gly	Leu		Phe	Ser	Ser	Met		Thr	Ala	Tyr	Asn	Thr	Asp	
				325					330					335		
											cca			_		1056
Tyr	Gln	Leu		Ser	Ala	Glu	Leu		Ser	Leu	Pro	Ala		Ser	Ser	
			340					345					350			
											tgg					1104
Pro	GIY		Leu	Ser	Leu	Gly		Val	Thr	Ala	Trp		Gln.	Pro	Gln	
		355					360					365	••			44
											cag		_		_	1152
GIII	370	GIII	uIII	Pro	GIII		Pro	GIN	Pro	Pro	Gln	GIN	Gln	Pro	Pro	
oo or		000	000	000	000	375			+		380					1000
											cag					1200
385	rro	GIII	GIII	LLO	390	rro	alli	GIII	Pro	395	Gln	Pro	.uin	GIN		
	റമത	caa	റമത്	too		ota	ata	oot	at a		ctc	0.00	222	a+a	400	1940
											Leu					1248
110	O I II	uIII	UIII	405	1113	пси	Vai	110	410	Del	ъсц	Del.	VOII	415	116	
ccg	88C	age	ccc		ccc	cac	oto	oot		ታ ቦ ቦ	ctc	202	ort c		200	1296
Pro																1290
	41,	501	420	1104	110	1110	, 41	425	nia	11117	БСЦ	7111	430	1111	1111	
cac	ccc	cac		agc	atc	ลลฮ	tca		ccø	ert er	tcc	cca		cort	ന മന	1344
His																1044
		435	110	201	110	_, 5	440	JIU		141	, JOI	445	201	шξ	uid	
cgc	agc		gcg	cct	ccc	cct		gct.	gt.g	tte	cca		gcc	ርያሳ	cct	1392
Arg														_		1000

	450					455					460					
gag	cct	ggc	gat	ggt	ctc	agc	agc	cca	gcc	ggg	gga	tcc	tat	gag	acg	1440
Glu	${\bf Pro}$	Gly	Asp	Gly	Leu	Ser	Ser	Pro	Ala	Gly	Gly	Ser	Tyr	Glu	Thr	
465					470					475					480	
gga	gac	cgg	gat	gac	gga	cgg	ggg	gac	ttc	ggg	ccc	aca	ctg	ggc	ctg	1488
Gly	Asp	Arg	Asp	Asp	Gly	Arg	Gly	Asp	Phe	Gly	${\bf Pro}$	Thr	Leu	Gly	Leu	
				485					490					495		
ctg	cgc	cca	gcc	cca	gag	cct	gag	gct	gag	ggc	tca	gct	gtg	aag	agg	1536
Leu	Arg	Pro	Ala	Pro	Glu	Pro	Glu	Ala	Glu	Gly	Ser	Ala	Val	Lys	Arg	
			500					505					510			
atg	cgg	ctt	gat	acc	tgg	aca	tta	aag								1563
Met	Arg		Asp	Thr	Trp	Thr		Lys								
		515					520									
	0> 21															
	1> 21															
	2> PI															
	3> Ra		s noi	rvegi	cus											
)> 2:1		V ₀ 1	C1	۸۱	Dha	Dma	II: _	m! _	D	17_ 1	17 - 1	11.5	TT.	01	
1	Ser	neu	Val	61y 5	GLY	rne	PIO	піз	10	Pro	vai	vai	HIS		GIU	
	Tyr	Pro	Pho		Δla	Δla	Δla	41a		۸1۵	A10	۸1۵	۸1۵	15	110	
u I J	1,71	110	20	ma	nia	Mid	Ми	25	Ala	піа	піа	Міа	30	піа	Λια	
Ser	Arg	Cvs		His	Gln	Glu	Asn		Tvr	Phe	His	Glv		Len	ماآ	
	0	35					40		-0-	Ino	1110	45	11 P	Dou	110	
Gly	His		Glu	Met	Ser	Pro		Asp	Tyr	Ser	Met		Leu	Ser	Tvr	
·	50					55			-0-		60			201	-,-	
Ser	Pro	Glu	Tyr	Ala	Ser	Gly	Ala	Ala	Gly	Leu		His	Ser	His	Tyr	
65									·	75	-				80	
Gly	Gly	Val	Pro	Pro	Gly	Ala	Gly	Pro	Pro	Gly	Leu	Gly	Gly	Pro		
				85					90					95		
Pro	Val	Lys	Arg	Arg	Gly	Thr	Ala	Asn	Arg	Lys	Glu	Arg	Arg	Arg	Thr	
			100					105					110			
Gln	Ser	Ile	Asn	Ser	Ala	Phe	Ala	Glu	Leu	Arg	Glu	Cys	Ile	Pro	Asn	
		115					120					125				
Val	Pro	Ala	Asp	Thr	Lys	Leu	Ser	Lys	Ile	Lys	Thr	Leu	Arg	Leu	Ala	
	130					135					140					

	Ser	Tyr	Ile	Ala		Leu	Met	Asp	Leu		Ala	Lys	Asp	Asp		
145					150		_			155					160	
Asn	Gly	Glu	Ala	Glu 165	Ala	Phe	Lys	Ala	Glu 170	Ile	Lys	Lys	Thr	Asp 175	Val	
Lys	Glu	Glu	Lys		Lys	Lys	Glu	Leu		Glu	Ile	Leu	Lvs		Thr	
-0 -			180			_, _		185				Dou	190			
Val	Ser			Asp	Lvs	Lvs	Thr		Glv	Arg	Thr	Glv			Gln	
		195			-0 -	0	200	-0-				205				
His	Val		Ala	Leu	Glu	Leu	Lys	Gln								
	210					215	•									
<210)> 22	2														
<211	l> 68	51														
<212	2> D1	۱A														
<213	3> Ra	attus	s noi	rveg	icus											
<220)>															
<22	l> CI	S														
<223	3> ()	L)((654))												
<400)> 22	2														
atg	agt	ctg	gtg	ggg	ggc	ttt	ccc	cac	cac	ccc	gtg	gtg	cac	cat	gag	48
Met	${\tt Ser}$	Leu	Val	Gly	Gly	Phe	Pro	His	His	Pro	Val	Val	His	His	Glu	
1				5					10					15		
ggc	tac	ccg	ttc	gcc	gca	gcc	gca	gcc	gcc	gct	gct	gct	gcc	gcc	gcc	. 96
Gly	Tyr	${\tt Pro}$	Phe	Ala	Ala	Ala	Ala	Ala	Ala	Ala	Ala	Ala	Ala	Ala	Ala	
			20					25					30			
agc	cgc	tgc	agt	cac	gag	gag	aac	ccc	tat	ttc	cac	ggc	tgg	ctt	att	144
Ser	Arg	Cys	Ser	His	Glu	Glu	Asn	Pro	Tyr	Phe	His	Gly	\mathbf{Trp}	Leu	Ile	
		35					40			•	•	45				
ggc	cac	ccg	gag	atg	tcg	ccc	ccc	gac	tac	agc	atg	gcc	ctg	tcc	tac	192
Gly	His	Pro	Glu	Met	Ser	Pro	Pro	Asp	Tyr	Ser	Met	Ala	Leu	Ser	Tyr	
•	50					55					60					
agt	ccc	gag	tac	gcc	agc	ggt	gcc	gcg	ggc	ctg	gac	cac	tcc	cat	tat	240
Ser	Pro	Glu	Tyr	Ala	Ser	Gly	Ala	Ala	Gly	Leu	Asp	His	Ser	His	Tyr	
65					70					75					80	
							ggg									288
Gly	Gly	Val	Pro	Pro	Gly	Ala	Gly	Pro	Pro	Gly	Leu	Gly	Gly	Pro	Arg	
				85					90					95		

ccg	gtg	aag	cgt	cgg	ggc	acc	gcc	aac	cgc	aag	gag	cgg	cgc	agg	act	336
Pro	Val	Lys	Arg	Arg	Gly	Thr	Ala	Asn	Arg	Lys	Glu	Arg	Arg	Arg	Thr	
			100					105					110			
cag	agc	atc	aac	agc	gcc	ttc	gcc	gag	ctg	cgc	gag	tgc	atc	ccc	aac	384
Gln	Ser	Ile	Asn	Ser	Ala	Phe	Ala	Glu	Leu	Arg	Glu	Cys	Ile	Pro	Asn	
		115					120					125				
gtg	ccc	gcc	gac	acc	aaa	ctc	tcc	aaa	atc	aag	act	ctg	cgc	ctg	gcc	432
Val	Pro	Ala	Asp	Thr	Lys	Leu	Ser	Lys	Ile	Lys	Thr	Leu	Arg	Leu	Ala	
	130					135					140					
acc	agc	tac	atc	gcc	tac	ctc	atg	gat	ctg	ctg	gcc	aag	gac	gac	cag	480
Thr	Ser	Tyr	Ile	Ala	Tyr	Leu	Met	Asp	Leu	Leu	Ala	Lys	Asp	Asp	Gln	
145					150					155					160	
aac	gga	gag	gcg	gag	gcc	ttc	aag	gcg	gag	atc	aag	aag	acc	gac	gtg	528
Asn	Gly	Glu	Ala	Glu	Ala	Phe	Lys	Ala	Glu	Ile	Lys	Lys	Thr	Asp	Val	
				165					170					175		
aaa	gag	gag	aag	agg	aag	aaa	gag	ctg	aat	gaa	atc	ttg	aaa	agt	aca	576
Lys	Glu	Glu	Lys	Arg	Lys	Lys	Glu	Leu	Asn	Glu	Ile	Leu	Lys	Ser	Thr	
			180					185					190			
gtg	agc	agc	aac	gac	aag	aaa	acc	aaa	ggc	cgg	aca	ggc	tgg	cca	cag	624
Val	Ser	Ser	Asn	Asp	Lys	Lys	Thr	Lys	Gly	Arg	Thr	Gly	Trp	Pro	Gln	
		195					200					205				
eac	gtc	tgg	gcc	ctg	gag	ctc	aag	cag								651
His		Trp	Ala	Leu	Glu	Leu	Lys	Gln								
	210					215										
)> 23															
	l> 21															
	2> PF															
<213	3> Ho		sapie	ens							•					
<400)> 23	3														
Met	Asn	Leu	Val	Gly	Ser	Tyr	Ala	His	His	His	His	His	His	His	Pro	
1				5					10					15		
His	Pro	Ala	His	Pro	Met	Leu	His	Glu	Pro	Phe	Leu	Phe	Gly	Pro	Ala	
			20					25					30			
Ser	Arg	Cys	His	Gln	Glu	Arg	Pro	Tyr	Phe	Gln	Ser	Trp	Leu	Leu	Ser	
		35					40					45				
Pro	Ala.	Asp	Ala	Ala	Pro	Asp	Phe	Pro	Ala	Glv	Glv	Pro	Pro	Pro	Δla	

	50					55					60					
Ala	Ala	Ala	Ala	Ala	Thr	Ala	Tyr	Gly	Pro	Asp	Ala	Arg	Pro	Gly	Gln	
65					70					75					80	
Ser	Pro	Gly	Arg	Leu	Glu	Ala	Leu	Gly	Gly	Arg	Leu	Gly	Arg	Arg	Lys	
				85					90					95		
Gly	Ser	Gly	Pro	Lys	Lys	Glu	Arg		Arg	Thr	Glu	Ser	Ile	Asn	Ser	
			100	_				105	_				110	•	•	
Ala	Phe		Glu	Leu	Arg	Glu		Ile	Pro	Asn	Val		Ala	Asp	Thr	
	~	115				mi	120		-		m1	125	_			
Lys		Ser	Lys	116	Lys		Leu	Arg	Leu	Ala		Ser	Tyr	He	Ala	
Tun	130	Ma+	1 ~~	Va I	I	135	T	A	41.	01	140		A	D., .	a1	
145	Leu	пес	Asp	vai	150	Ala	гî	Asp	Ala	155	96L	ицу	ASP	Pro		
	Phe.	Ī.vc	Ala	Glu		Lve	Lve	Δla	1 en		Glw	Ara	Clu	Son	160	
MIG	I IIC	ц		165	пси	цуз	цуо	VIG	170	ary	uly	Λις	·uıu	175	пуs	
Arg	Lys	Arg	Glu		Gln	Gln	His	Glu	-	Phe	Pro	Pro	Ala		Glv	
J	·	J	180	•				185					190			
Pro	Val	Glu	Lys	Arg	Ile	Lys	Gly		Thr	Gly	Trp	Pro		Gln	Val	
		195					200					205				
Trp	Ala	Leu	Glu	Leu	Asn	Gln										
	210															
	0> 24															
	1> 64															
	2> D1															
		omo s	sapie	ens												
<220	<i>)></i> 1> CI	20				•										
			(648)	,												
)> 24		(040)	,												
			gtg	ggc	agc	tac	gca	cac	cat	cac	cac	cat	cac	cac	ccg	48
		_	Val												_	10
1				5		•			10					15		
cac	cct	gcg	cac	ccc	atg	ctc	cac	gaa	ccc	ttc	ctc	ttc	ggt	ccg	gcc	96
His	Pro	Ala	His	Pro	Met	Leu	His	Glu	Pro	Phe	Leu	Phe	Gly	Pro	Ala	
			20					25					30			
tcg	cgc	tgt	cat	cág	gaa	agg	ccc	tac	ttc	cag	agc	tgg	ctg	ctg	agc	14

Ser	Arg	Cys 35	His	Gln	Glu	Arg	Pro 40	Tyr	Phe	Gln	Ser	Trp 45	Leu	Leu	Ser	
ccg	gct	gac	gct	gcc	ccg	gac	ttc	cct	gcg	ggc	ggg	ccg	ccg	ccc	gcg	192
	Ala															
	50					55					60					
gcc	gct	gca	gcc	gcc	acc	gcc	tat	ggt	cct	gac	gcc	agg	cct	ggg	cag	240
Ala	Ala	Ala	Ala	Ala	Thr	Ala	Tyr	Gly	Pro	Asp	Ala	Arg	Pro	Gly	Gln	
65					7 0					75					80	
agc	ccc	ggg	cgg	ctg	gag	gcg	ctt	ggc	ggc	cgt	ctt	ggc	cgg	cgg	aaa	288
Ser	Pro	Gly	Arg	Leu	Glu	Ala	Leu	Gly	Gly	Arg	Leu	Gly	Arg	Arg.	Lys	
				85					90					95		
ggc	tca	gga	ccc	aag	aag	gag	cgg	aga	cgc	act	gag	agc	att	aac	agc	336
Gly	Ser	Gly	Pro	Lys	Lys	Glu	Arg	Arg	Arg	Thr	Glu	Ser	Ile-	Asn	Ser	
			100	٠.				105					110			
	ttc															384
Ala	Phe		Glu	Leu	Arg	Glu	Cys	Ile	Pro	Asn	Val	Pro	Ala	Asp	Thr	
		115					120					125				
	cţc															432
Lys	Leu	Ser	Lys	Ile	Lys		Leu	Arg	Leu	Ala		Ser	Tyr	Ile	Ala	
	130					135					140					
	ctg															480
	Leu	Met	Asp	Val		Ala	Lys	Asp	Ala		Ser	Gly	Asp	Pro		
145					150					155					160	
	ttc															528
Ala	Phe	Lys	Ala		Leu	Lys	Lys	Ala		Gly	Gly	Arg	Glu		Lys	
				165					170		_			175		
	aaa												_	_		576
Arg	Lys	Arg		Leu.	GIN	GIN	H1S		Gly	Phe	Pro	Pro		Leu	Gly	
			180		- 4-4-			185					190			20.4
	gtc															624
Pro	Val		гàг	Arg	116	гàг		Arg	Inr	Gly	Trp		GIn	GIn	Val	
4	~~~	195		44.			200					205				0.45
	gcg															645
тьр	Ala	ьец	ulu	ьeu	ASD											
<210	210					215										

<21	1> 4	11													
<212	2> Pl	RT													
<21	3> H	omo s	sapi	ens											
<40	0> 29	5													
Met	Glu	Arg	Met	Ser	Asp	Ser	Ala	Asp	Lys	Pro	Ile	Asp	Asn	Asp	Ala
1	٠.			5					10					15	
Glu	Gly	Val	Trp	Ser	Pro	Asp	Ile	Glu	Gln	Ser	Phe	Gln	Glu	Ala	Leu
			20					25					30		
Ala	Ile	Tyr	Pro	Pro	Cys	Gly	Arg	Arg	Lys	Ile	Ile	Leu	Ser	Asp	Glu
				•			40					45	•		
Gly	Lys	Met	Tyr	Gly	Arg	Asn	Glu	Leu	Ile	Ala	Arg	Tyr	Ile	Lys	Leu
	50					55					60				
	Thr	Gly	Lys	Thr					Gln		Ser	Ser	His	Ile	Gln
65			· ·.		70					75					80
Val	Leu	Ala	Arg		Lys	Ser	Arg	Asp		His	Ser	Lys	Leu	Lys.	Asp
~~		·	_	. 85	_		_		90					95	
Gln	Thr	Ala		Asp	Lys	Ala	Leu		His	Met	Ala	Ala		Ser	
	0.7		100			mi		105			_	_	110	٠.	
Ala	Gin		val	Ser	Ala	Thr		He	His	Asn	Lys		Gly	Leu	Pro
C1	11.	115 Date	A	n	Φ Ι	nL -	120	۵1	41.	D	0.1	125	m		0.1
игу		Pro	Arg	Pro	Inr		Pro	GIY	Ala	Pro		Phe	Trp	Pro	Gly
Mot	130	C15	Тhъ	/1	<i>ر</i> ا ب	135	/ 1	C	o	Ω1	140	17 - 1	T	D	n1
145	116	am	ш	GLY	150	Pro	ary	ei.	9er		Asp	Val	гàг	Pro	
	Gln.	Gln.	۸1۵	Ťτzn		Ιlο	Cln	Dno	۸1۵	155	ጥኤኤ	430	Dno	Ile	160
141	OIII	UIII	Ala	165	110	TTC	UIII	110	170	Val	1111	Ala	LLO	175	Pro
Glv	Phe	Gl 11	Pro		Ser	Δla	Pro	Δla		Ser	Va 1	Dro	Δla	Trp	G1n
ulj	1110	uru	180	ш	DCI	Mid	110	185	110	DCI	Vai	110	190	11 P	uIII
Glv	Are	Ser		Glv	Thr	Thr	I.vs		Arg	T.em	Val	Glu		Ser	Ala
,		195	110	u 1,	1111	1111	200	поц	,,, o	Dou	74.1	205	1 IIC	DCI	Mid
Phe	Leu		Gln	Gln	Arg	Asp		Asp	Ser	Tvr	Asn		His	Leu	Phe
	210					215		···	501	-7-	220	1,5	1110	поц	1110
Val		Ile	Gly	His	Ala		His	Ser	Tvr	Ser		Pro	Leu	Leu	Glu
225		•	0		230			~ ~ .		235				u	240
	Val	Asp	Ile	Arg		Ile	Tyr	Asp	Lys		Pro	Glu	Lys	Lys	
				245			- 	F	250				_, _	255	~ = 0

Gly	Leu	Lys	Glu 260	Leu	Phe	Gly	Lys	Gly 265	Pro	Gln	Asn	Aļa	Phe 270	Phe	Leu	
Val	Lys	Phe 275	Trp	Ala	Asp	Leu	Asn 280	Cys	Asn	Ile	Gln	Asp 285		Ala	Gly	
Ala	Phe 290	Tyr	Gly	Val	Thr	Ser 295	Gln	Tyr	Glu	Ser	Ser 300	Glu	Asn	Met	Thr	
Val 305	Thr	Cys	Ser	Thr	Lys 310	Val	Cys	Ser	Phe	Gly 315	Lys	Gln	Val.	Val	Glu 320	
Lys	Val	Glu	Thr	Glu 325	Tyr	Ala	Arg	Phe	Glu 330		Gly	Arg	Phe	Val 335		
Arg	Ile	Asn	Arg 340	Ser	Pro	Met	Cys	Glu 345	Tyr	Met	Ile	Asn	Phe 350	Ile	His	
Lys	Leu	Lys 355	His	Leu	Pro	Glu	Lys 360	Tyr	Met	Met	Asn	Ser 365	Val	Leu	Glu	
Asn	Phe 370	Thr	Ile	Leu	Leu	Val 375	Val	Thr	Asn	Arg.	Asp 380	Thr	Gln	Glu	Thr	
Leu 385	Leu	Cys	Met	A·la	Cys 390	Val	Phe	Glu	Val	Ser 395	Asn	Ser	Glu	His	Gly 400	
Ala	Gln	His	His	Ile 405	Tyr	Arg	Leu	Val	Lys 410	Asp						
<211 <212 <213 <220 <221	0> 26 1> 12 2> DN 3> Ho 0> 1> CI 3> (1	233 NA omo s														
)> 26		ato	agt	gac	tet	gra	øat	aag	cca	att	ወደር	aat	oat	ora.	48
									Lys 10							10
						_			caa Gln	_		_		_	_	96
_		_				_			aaa Lys	_						144

		35					40					45				
ggc	aaa	atg	tat	ggt	agg	aat	gaa	ttg	ata	gcc	aga	`tac	atc	aaa	ctc	192
Gly	Lys	Met	Tyr	Gly	Arg	Asn	Glu	Leu	He	Ala	Arg	Tyr	Ile	Lys	Leu	
	50					55					60					
															cag	240
		Gly	Lys	Thr		Thr	Arg	Lys	Gln	Val	Ser	Ser	His	Ile	Gln	
65					70		٠			75		•			80	
								gat						_	_	288
vai	Leu	Ala	Arg		Lys	Ser	Arg	Asp		His	Ser	Lys	Leu			
000	0.0+	~ 00	000	85		~~~	- 4		90					95		200
															tca	. 336
ulli	1111	ита	. цуз 100	лор	пуо	nia	Leu	Gln 105	піѕ	мес	Ala	Ala	мет 110		5er	
gcc	cag	atc		tce	ምሮር	act	ጀርር		cat	220	220	cta			cct.	384
								Ile								304
		115					120			11011	2,5	125	·uij	БСЦ	210	
ggg	att			ccg	acc	ttc		ggg	gcg	ccg	ggg		tgg	ccg	gga	432
								Gly								101
	130					135					140		Ī		•	
atg	att	caa	aca	ggg	cag	cca	gga	tcc	tca	caa	gac	gtc	aag	cct	ttt	480
Met	Ile	Gln	Thr	Gly	Gln	Pro	Gly	Ser	Ser	Gln	Asp	Val	Lys	Pro	Phe	
145					150					155					160	
								cca								528
Val	Gln	Gln	Ala		Pro	Ile	Gln	Pro	Ala	Val	Thr	Ala	Pro	Ile	Pro	
				165					170					175		
								gct								576
пГЛ	Pne	GIU		Ala	Ser	Ala	Pro	Ala	Pro	Ser	Val	Pro		Trp	GIn	
aat	ogo	taa	180	Ͼ0		000	000	185					190			00.4
								ctt								624
uly	шŞ	195	116	uly	1111	1111	200	Leu	AI'g	ьец	val		rne	ser	Ala	
t.t.t.	ete		റമഴ	റമഴ	ന മ്മ	gac		gac	tea	tac	220	205	000	ata	tta	679
								Asp								672
	210		~ 111	4111	6	215	110	, rob	DOI	171	220	n) o	ш19	ոշո	1 116	
gtg		att	ggg	cat	gcc		cat	tct	tac	agt.		cca	t.t.o	ctt	ខ្លួន	720
	His														-	120

225					230					235					240	
tca	gtg	gac	att	cgt	cag	att	tat	gac	aaa	ttt	cct	gaa	aag	aaa	ggt	768
Ser	Val	Asp	Ile	Arg	Gln	Ile	Tyr	Asp	Lys	Phe	Pro	Glu	Lys	Lys	Gly	
				245					250					255		
ggc	tta	aag	gaa	ctg	ttt	gga	aag	ggc	cct	caa	aat	gcc	ttc	ttc	ctc	816
Gly	Leu	Lys	Glu	Leu	Phe	Gly	Lys	Gly	${\bf Pro}$	Gln	Asn	Ala	Phe	Phe	Leu	
			260					265					270			
gta	aaa	ttc	tgg	gct	gat	tta	aac	tgc	aat	att	caa	gat	gat	gct	ggg	864
Val	Lys	Phe	Trp	Ala	Asp	Leu	Asn	Cys	Asn	Ile	Gln	Asp	Asp	Ala	Gly	
		275	::	•			280					285				
gct	ttt	tat	ggt	gta	acc	agt	cag	tac	gag	agt	tct	gaa	aat	atg	aca	912
Ala	Phe	Tyr	Gly	Val	Thr	Ser	Gln	Tyr	Glu	Ser	Ser	Glu	Asn	Met	Thr	
	290					295					300					
gtc	acc	tgt	tcc	acc	aaa	gtt	tgc	tcc	ttt	ggg	aag	caa	gta	gta	gaa	960
Val.	Thr	Cys	Ser.	Thr	Lys	Val	Cys	Ser	Phe	Gly	Lys.	Gln.	Val	Val	Glu	
305					310					315	•				320	
						gca										1008
Lys	Val	Glu	Thr		Tyr	Ala	Arg	Phe	Glu	Asn	Gly	Arg	Phe	Vál	Tyr	
				325					330					335	•	
						atg										1056
Arg	He	Asn		Ser	Pro	Met	Cys		Tyr	Met	Ile	Asn	Phe	Ile	His	
			340				-	345					350			
						gag										1104
Lys	Leu		His	Leu	Pro	Glu		Tyr	Met	Met	Asn		Val	Leu	Glu	
		355					360					365				
						gtg								_		1152
Asn		Thr	He	Leu	Leu	Val	Val	Thr	Asn	Arg		Thr	Gln	Glu	Thr	
	370					375					380					
						gtg										1200
	Leu	Cys	мет	Ala		Val	Pne	Glu	Val		Asn	Ser	Glu		•	
385					390					395					400	
						agg		_	_	_						1233
Ala	GIN	нıs	HIS		Tyr	Arg	Leu	Val	-	Asp						
Z0 1 0	N 95	,		405					410							
	> 27															
<211	> 42	7														

<212	2> PI	RT													
<213	3> Ho	omo s	sapie	ens											
<400)> 27	7													
Ile 1	Thr	Ser	Asn	Glu 5	Trp	Ser	Ser	Pro	Thr 10	Ser	Pro	Glu	Gly	Ser 15	Thr
	Ser	Gly	Gly 20		Gln	Ala	Leu	Asp 25		Pro	Ile	Asp	Asn		Ala
Glu	Gly	Val 35	Trp	Ser	Pro	Asp	Ile 40	Glu		Ser		Gln 45		Ala	Leu
Ala	Ile 50	Tyr	Pro	Pro	Cys	Gly 55								Asp	Glu
Gly 65	Lys	Met	Tyr	Gly	Arg 70	Asn	Glu	Leu	Ile	Ala 75	Arg	Tyr	Ile	Lys	Leu 80
Arg	Thr		Lys.	Thr 85		Thr			Gln 90	Val	Ser	Ser	His		Gln
Val	Leu	Ala	Arg 100		Lys ·			Glu -105	Ile	Gln	Ala	Lys	Leu 110	Lys	_
Gln	Ala	Ala 115	Lys	Asp	Lys	Ala	Leu 120	Gln		Met	Ala	Ala 125	Met	Ser	Ser
Ala	Gln 130	Ile	Ile	Ser	Ala	Thr 135	Ala	Phe	His	Ser	Ser 140	Met	Ala	Leu	Ala
Arg 145	Gly	Pro	Gly	Arg	Pro 150			Ser		Phe 155	Trp	Gln	Gly	Ala	Leu 160
Pro	Gly	Gln	Ala	Gly 165		Ser	His	Asp	Val 170	-	Pro	Phe	Ser	Gln 175	Gln
Thr	Tyr	Ala	Val 180	Gln	Pro	Pro	Leu	Pro 185	Leu	Pro	Gly	Phe	Glu 190	Ser	Pro
Ala	Gly	Pro 195	Ala	Pro	Ser	Pro	Ser 200	Ala	Pro	Pro	Ala	Pro 205	Pro	Trp	Gln
Gly	Arg 210	Ser	Val	Ala	Ser	Ser 215	Lys	Leu	Trp	Met	Leu 220	Glu	Phe	Ser	Ala
Phe 225	Leu	Glu	Gln	Gln	Gln 230	Asp	Pro	Asp	Thr	Tyr 235	Asn	Lys	His	Leu	Phe 240
Val	His	Ile	Gly	Gln 245	Ser	Ser	Pro	Ser	Tyr 250	Ser	Asp	Pro	Tyr	Leu 255	Glu
Ala	Val	Asp	He	Arg	Gln	He	Tvr	Asn	I.vs	Phe	Pro	Glu	Ĭ.ve	I.vs	Glv

			260					265					270			
Gly	Leu	Lys 275	Asp	Leu	Phe	Glu	Arg 280	Gly	Pro	Ser	Asn	Ala 285	Phe	Phe	Leu	
Val	Lys 290	Phe	Trp	Ala	Asp	Leu 295	Äsn	Thr	Asn	Ile	Glu 300	Asp	Glu	Gly	Ser	
Ser 305	Phe	Tyr	Gly	Val	Ser 310	Ser	Gln	Tyr	Glu	Ser 315	Pro	Glu	Asn	Met	11e 320	
Ile	Thr	Cys	Ser	Thr 325	Lys	Val	Cys	Ser	Phe 330	Gly	Lys	Gln	Val	Val 335	Glu	
Lys	Val-	Glu	Thr 340	·Glu	Tyr	Ala	Arg	Tyr 345	Glu	Asn	Gly	His	Tyr 350	Ser	Tyr	
Arg	Ile	His 355	Arg	Ser	Pro	Leu	Cys 360	Glu	Tyr	Met	Ile	Asn 365	Phe	Ile	His	
Lys	Leu 370	Lys	His	Leu	Pro	Glu 375	Lys	Tyr	Meţ	Met	Asn 380	Ser	Val	Leu	Glu	-
Asn 385	Phe	Thr	Ile	Leu	Gln 390	Val	Val	Thr	Asn	Arg 395	Asp	Thr	Gln.	Glu	Thr - 400	
Leu	Leu	Cys	Ile	Ala 405	Tyr	Val	Phe	Glu	Val 410	Ser	Ala	Ser	Glu	His 415	Gly	
Ala	Gln	His	His 420	Ile	Tyr	Arg	Leu	Val 425	Lys	Glu						
<210)> 28	3														
<213	l> 12	281														
<212	2> D1	ΝA														
<213 <220		omo s	sapie	ens												
<221	l> CI	20														
<223	3> ()	l)((1284	1)												
<400)> 28	3														
att	acc	tcc	aac	gag	tgg	agc	tct	ccc	acc	tcc	cct	gag	ggg	agc	acc	48
Ile 1	Thr	Ser	Asn	Glu 5	Trp	Ser	Ser	Pro	Thr 10	Ser	Pro	Glu	Gly	Ser 15	Thr	
gcc	tct	ggg	ggc	agt	cag	gca	ctg	gac	aag	ccc	atc	gac	aat	gac	gca	96
Ala	Ser	Gly	Gly 20	Ser	Gln	Ala	Leu	Asp 25	Lys	Pro	Ile	Asp	Asn 30	Asp	Ala	
gag	ggc	gtg	tgg	agc	ccg	gat	att	gag	cag	agt	ttc	cag		gcc	ctc	144

Glu	Gly	Val 35	Trp	Ser	Pro	Asp	11e 40	Glu	Gln	Ser	Phe	Gln 45	Glu	Ala	Leu	
gcc	atc		ccg	ссс	tgt	ggc		cgc	aaa	atc	atc		tcg	gac	gag	192
					Cys								-			
	50					55					60					
ggc	aag	atg	tat	ggt	cgg	aac	gag	ctg	att	gcc	cgc	tac	atc	aag	ctc	240
Gly	Lys	Met	Tyr	·Gly	Arg	Asn	Glu	Leu	Ile	Ala	Arg	Tyr	Ile	Lys	Leu	
65					70					75					80	
					cgc					_		_			_	288
Arg	Thr	Gly	Lys		Arg	Thr	Arg	Lys		Val	Ser	Ser	His		Gln.	. •
ort or	ata	rat	art	85	000	go t	040	go g	90	000	œ.o.o		at a	95	 .	226
					aaa Lys											336
, ,	. Dou	nia.	100	mb	цуз	Ala	ni 8	105	116		ЛΙα	υjs	110	ப்த	voh	
cag	gca	gct		gac	aag	gcc	ctg		agc	atg	gct	gcc		tcg	tct	. 384
					Lys		_		_	_	_	_	_	_		
		115					120					125				
gca	cag	atc	atc	tcc	gcc	acg	gcc	ttc	cac	agt	agc	atg	gcc	ctc	gcc	432
Ala	Gln	Ile	Ile	Ser	Ala	Thr	Ala	Phe	His	Ser	Ser	Met	Ala	Leu	Ala	
	130					135					140					
					cca									_	_	480
	Gly	Pro	Gly	Arg	Pro	Ala	Val	Ser	Gly		Trp	Gln	Gly	Ala		
145	~~~	000	# 0.0	~~~	150	+	oo+	mo.t	t	155	4	44.	4.4		160	500
					acg Thr					_				_		528
110	uıy	a I II	ма	165	1111	DCI	1112	voh	170	цуз	FFO	rne	oer.	175	GIII	
acc	tat	gct	gtc		cct	ccg	ctg	cct		cca.	888	ttt	gag		cct	576
					Pro											0,0
	Ū		180					185					190			
gca	ggg	ccc	gcc	cca	tcg	ccc	tct	gcg	ccc	ccg	gca	ccc	cca	tgg	cag	624
Ala	Gly	Pro	Ala	Pro	Ser	Pro	Ser	Ala	Pro	Pro	Ala	Pro	Pro	Trp	Gln	
		195					200	•				205				
					agc											672
Gly		Ser	Val	Ala	Ser		Lys	Leu	Trp	Met		Glu	Phe	Ser	Ala	
	210					215					220					
ttc	ctg	gag	cag	cag	cag	gac	CCg	gac	acg	tac	aac	aag	cac	ctg	ttc	720

Phe 225	Leu	Glu	Gln	Gln	Gln 230	Asp	Pro	Asp	Thr	Tyr 235	Asn	Lys	His	Leu	Phe 240	
	_			_							gac Asp				_	768
_											ccg Pro				-	816
											aat Asn					864
											gag Glu 300					912
											ccc. Pro				atc. Ile 320	960
					_	_	-				aag Lys	_				1008
_	_		_	Glu		_					gga Gly					1056
										-	atc Ile				•	1104
											aac Asn 380				_	1152
											gac Asp		-			1200
											'gcc Ala					1248
gct	cag	cac	cac	atc	tac	agg	ctg	gtg	aaa	gaa						1281

Ala	Gln	His	His 420	Ile	Tyr	Arg	Leu	Val 425	Ļys	Glu					
<21	0> 29	9					-								
<21	1> 43	35													
	2> P1														
	3> He		sapi	ens											
	0> 2		•												
	Ala		Asn	Ser	Trp	Asn	Ala	Ser	Ser	Ser	Pro	Glv	Glu	Ala	Arg
1				5	•				10					15	0
Glu	Asp	Gly	Pro	Glu	Gly	Leu	Asp	Lys		Leu	Asp	Asn	. Asp		Glu
		•	20				•	25	·		•		30		
Gly	Val	Trp	Ser	Pro	Asp	Ile	Glu	Gln	Ser	Phe	Gln	Glu	Ala	Leu	Ala
		35					40					45			
Ile	Tyr	Pro	Pro	Cys	Gly	Arg	Arg	Lys	Ile	Ile	Leu	Ser	Asp	Glu	Gly
	50					55					60				
Lys	Met	Tyr	Gly	Arg	Asn	Glu	Leu	Ile	Ala	Arg	Tyr	Ile	Lys	Leu	Arg
65					70					75					80
Thr	Gly	Lys	Thr	Arg	Thr	Arg	Lys	Gln	Val	${\tt Ser}$	Ser	His	He	Gln	Val
				85					90					95	
Leu	Ala	Arg	Lys	Lys	Val	Arg	Glu	Tyr	Gln	Val	Gly	Ile	Lys	Ala	Met
			100					105					110		
Asn	Leu	Asp	Gln	Val	Ser	Lys	Asp	Lys	Ala	Leu	Gln	Ser	Met	Ala	Ser
		115		•			120					125			
Met	Ser	Ser	Ala	Gln	Ile	Val	Ser	Ala	Ser	Val	Leu	Gln	Asn	Lys	Phe
	130					135					14 0				
	Pro	Pro	Ser	Pro	Leu	Pro	Gln	Ala	Val	Phe	Ser	Thr	Ser	Ser	Arg
145					150					155					160
Phe	Trp	Ser	Ser		Pro	Leu	Leu	Gly	Gln	Gln	Pro	Gly	Pro	Ser	Gln
	_			165					170					175	
Asp	Ile	Lys		Phe	Ala	Gln	Pro		Tyr	Pro	Ile	Gln	Pro	Pro	Leu
			180		•			185					190		
Pro	Pro		Leu	Ser	Ser	Tyr		Pro	Leu	Ala	Pro	Leu	Pro	Ser	Ala
		195					200					205			
Ala	Ala	Ser	Val	Pro	Val		Gln	Asp	Arg	Thr	Ile	Ala	Ser	Ser	Arg
	210	_				215					220				
Leu	Arg	Leu	Leu	Glu	Tvr	Ser	Ala	Phe	Met.	Glu	Val	Gln	Arg	Asn	Pro

```
225
                     230
                                         235
                                                              240
Asp Thr Tyr Ser Lys His Leu Phe Val His Ile Gly Gln Thr Asn Pro
                 245
                                     250
                                                          255
Ala Phe Ser Asp Pro Pro Leu Glu Ala Val Asp Val Arg Gln Ile Tyr
            260
                                 265
Asp Lys Phe Pro Glu Lys Lys Gly Gly Leu Lys Glu Leu Tyr Glu Lys
        275
                             280
                                                 285
Gly Pro Pro Asn Ala Phe Phe Leu Val Lys Phe Trp Ala Asp Leu Asn
    290
                         295
                                             300
Ser Thr Ile Glu Gly Pro Gly Ala Phe Tyr Gly Val Ser Ser Gln
305
                     310
                                         315
Tyr Ser Ser Ala Asp Ser Met Thr Ile Ser Val Ser Thr Lys Val Cys
                 325
                                     330
                                                          335
Ser Phe Gly Lys Gln Val Val Glu Lys Val Glu Thr Glu Tyr Ala Arg
                                 345
                                                      350
Leu Glu Asn Gly Arg Phe Val Tyr Arg Ile His Arg Ser Pro Met Cys
        355
                             360
                                                 365
Glu Tyr Met Ile Asn Phe Ile His Lys Leu Lys His Leu Pro Glu Lys
    370
                         375
                                             380
Tyr Met Met Asn Ser Val Leu Glu Asn Phe Thr Ile Leu Gln Val Val
385
                     390
                                         395
                                                              400
Thr Ser Arg Asp Ser Gln Glu Thr Leu Leu Val Ile Ala Phe Val Phe
                405
                                     410
Glu Val Ser Thr Ser Glu His Gly Ala Gln His His Val Tyr Lys Leu
            420
                                 425
                                                      430
Val Lys Asp
<210> 30
<211> 1305
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<223> (1)..(1305)
<400> 30
ata gcg tcc aac agc tgg aac gcc agc agc agc ccc ggg gag gcc cgg
                                                                    48
Ile Ala Ser Asn Ser Trp Asn Ala Ser Ser Ser Pro Gly Glu Ala Arg
```

1				5					10					15		
gag	gat	ggg	ccc	gag	ggc	ctg	gac	aag	ggg	ctg	gac	aac	gat	gcg	gag	96
Glu	Asp	Gly	${\tt Pro}$	${\tt Glu}$	Gly	Leu	Asp	Lys	Gly	Leu	Asp	Asn	Asp	Ala	Glu	
•			20			•		25					30			
ggc	gtg	tgg	agc	ccg	gac	atc	gag	cag	agc	ttc	cag	gag	gcc	ctg	gcc	144
Gly	Val	Trp	Ser	Pro	Asp	Ile	Glu	Gln	Ser	Phe	Gln	Glu	Ala	Leu	Ala	
		35					40					45				
	tac															192
Ile	Tyr	Pro	Pro	Cys	Gly		Arg	Lys	He	He	Leu	Ser	Asp	Glu	Gly	
	50	•	: :	•		55			•		60	•				
aag	atg	tac	ggc	cga	aat	gag	.ttg	att	gca	cgc	tat	att	aaa	ctg	agg	240
•	Met	Tyr	Gly	Arg		Glu	Leu	Ile	Ala	_	Tyr	He	Lys	Leu	Arg	
65					70					75					· 80	
	ggg.										_			_	_	288
Thr	Gly	Lys	Thr		Thr	Arg	Lys	Gin		Ser	Ser	His	He		Val	
	4			85					90		•			95		
_	gct	_		_												336
Leu	Ala	Arg		Lys	Val	Arg	Glu		Gin	Val	Gly	lle	•	Ala	Met	
	.+		100	-4-				105		. 4.4			110			004
	ctg												_			384
ASII	Leu		GIII	val.	261.	ьys		гàг	Ala	Leu	GIN		Met	Ala	5er	
o t a	+00	115	~~	000	o+ o	at a	120		o mt	a+ a	.+	125			44.	420
	tcc										_			_		432
rie c	Ser 130	net	Ala	GIII	116	135	Sel	Ala	261.	Vai	140	am	ASII	гуѕ	rne	
age	cca	cct	tee	cct	cto		റമർ	g e e	ort c	tte		act	too	tor	oaa	480
	Pro															400
145	110	110	DOI	110	150	110	UIII	MIG	141	155	PCI	1111	DCI	DCI	160	
	tgg	age	agc	ccc		etc	ctø	gga	cag		cct	gga	ccc	tet		528
	Trp															020
- 110	F	201	501	165	110	поц	nou	ulj	170	GII	110	arj	110	175	o I II	
gac	atc	aag	ccc		gca	cag	cca	gcc		CCC	atc	cag	ccø		ctø	576
	Ile														_	010
F		-, -	180					185	- 0 -		110	~ 411	190	110	204	
CCE	ccg	acg		agc	agt.	tat	gag		ct.g	gcc	CCE	ctc		tca	gct.	624
	Pro										-				_	v u I

		195					200					205				
gct	gcc	tct	gtg	cct	gtg	tgg	cag	gac	cgt	acc	att	gcc	tcc	tcc	cgg	672
Ala	Ala	Ser	Val	Pro	Val	Trp	Gln	Asp	Arg	Thr	Ile	Ala	Ser	Ser	Arg	
	210					215					220					
ctg	cgg	ctc	ctg	gag	tat	tca	gcc	ttc	atg	gag	gtg	cag	cga	gac	cct	720
Leu	Arg	Leu	Leu	Glu	Tyr	Ser	Ala	Phe	Met	Glu	Val	Gln	Arg	Asp	Pro	
225					230					235		-			240	
	acg															768
Asp	Thr	Tyr	Ser		His	Leu	Phe	Val	His	Ile	Gly	Gln	Thr	Asn	Pro	
		•		245					250					255	.:	
	ttc															816
Ala	Phe	Ser		Pro	Pro	Leu	Glu		Val	Asp	Val	Arg		Ile	Tyr	
			260					265					270			
															aag:	864
Asp	Lys		Pro	GIU.	Lys	Lys		Gly	Leu	Lys	Glu		Tyr	Glu	Lys	
		275	4		44	44.	280					285				040
	CCC															912
ary	Pro 290	Pro	ASII	Ala	rne		Leu	vai	Lys	Pne		Ala	Asp	Leu	Asn	
200		ata	004	ao a	~~	295	~~~		++.	+-+	300					000
	acc Thr												-		_	960
305	1111	116	UIII	ulu	310	110	uly	nia	rne	315	gry	Val	oei.	oer.	320	
	agc	tet	get	gat		atø	acc	atc	age		tee	200	220	ata		1008
	Ser															1000
-0-	501	501	1114	325	DOI	1100	1111	110	330	741	DCI	1111	د بر	335	Uys	
tcc	ttt	ggc	ลลล		et.e	gta	gag	ลลฮ		ខ្នួងខ្	act	gag	tat		ឧទទ	1056
_	Phe			_										-		1000
			340					345					350		**** 0	
ctg	gag	aac	ggg	cgc	ttt	gtg	tac	cgt	atc	cac	cgc	tcg	ccc	atg	tgc	1104
	Glu													_	_	
		355					360	Ū			Ū	365		•	- •	
gag	tac	atg	atc	aac	ttc	atc	cac	aag	ctg	aag	cac	ctg	ссс	gag	aag	1152
	Týr															
	370					375					380					
tac	atg	atg	aac	agc	gtg	ctg	gag	aac	ttc	acc	atc	ctg	cag	gtg	gtc	1200
	Met															

385					390					395					400	
acg	agc	cgg	gac	tcc	cag	gag	acc	ttg	ctt	gtc	att	gct	ttt	gtc	ttc	1248
Thr	Ser	Arg	Asp	Ser	Gln	Glu	Thr	Leu	Leu	Val	Ile	Ala	Phe	Val	Phe	
				405					410					415		
gaa	gtc	tcc	acc	agt	gag	cac	ggg	gcc	cag	cac	cat	gtc	tac	aag	ctc	1296
Glu	Val	Ser		Ser	Glu	His	Gly	Ala	Gln	His	His	Val	Tyr	Lys	Leu	
			420					425					430			
gtc	aaa	gac														1305
Val	Lys	_									٠					
)> 3]															
	l> 11															
	2> PI															
	3> Ho		sapie	ens												
)>. 31		A 1 -	D	.	0	A	17.	17 1						0	
	Pro	Arg	Ala		Arg	. Cys	Arg	Ala		Arg	Ser	Leu	Leu	_	Ser	
1	Ф	4	c1	5 V-1	T	D	T	47-	10	DL -	¥7 = 1.	A	.	15	01	
пта	Tyr	WI.R	20	Val	ьец	Pro	Leu		IMI.	Pne	var	Arg	_	Leu	Gly	
Dno	.Gln	G1 v		Ana	Lon	Vol	Cln	25	۲1 بر	A an	Dno	410	30	Dh.a	Ama	
110	.ulii	35	пр	ni g	ьса	Val	40	MIR	ary	vsh	rro	45	Ala	rne	Arg	
Ala	Leu		Ala	Gln	Cvs	Ĭ.e11		Cvs	Val	Pro	Trn		Δla	Ara	Dro	
1114	50	TUI	1110	OIII	0,0	55	741	0,5	, aı	110	60	лэр	Λια	шБ	110	
Pro	Pro	Ala	Ala	Pro	Ser		Arg	Gln	Val	Ser		Leu	Lvs	Glu	Leu	
65					70					75	0, 5	Dou	1 , 0	oru	80	
	Ala	Arg	Val	Leu		Arg	Leu	Cys	Glu		Glv	Ala	Lvs	Asn		
		Ū		85					90	0			-0 -	95		
Leu	Ala	Phe	Gly	Phe	Ala	Leu	Leu	Asp	Gly	Ala	Arg	Gly	Gly		Pro	
			100					105	·			•	110			
Glu	Ala	Phe	Thr	Thr	Ser	Val	Arg	Ser	Tyr	Leu	Pro	Asn	Thr	Val	Thr	
		115					120	•				125				
Asp	Ala	Leu	Arg	Gly	Ser	Gly	Ala	Trp	Gly	Leu	Leu	Leu	Arg	Arg	Val	
	130					135					140					
Gly	Asp	Asp	Val	Leu	Val	His	Leu	Leu	Ala	Arg	Cys	Ala	Leu	Phe	Val	
145					150					155					160	
Leu	Val	Ala	Pro	Ser	Cys	Ala	Tyr	Gln	Val	Cys	Gly	Pro	Pro	Leu	Tyr	

				165					170					175	
Gln	Leu	Gly	Ala 180	Ala	Thr	Gln	Ala	Arg 185	Pro	Pro	Pro	His	Ala 190	Ser	Gly
Pro	Arg	Arg 195	Arg	Leu	Gly	Ċys	Glu 200	Arg	Ala	Trp	Asn	His 205	Ser	Val	Arg
Glu	Ala 210	Gly	Val	Pro	Leu	Gly 215	Leu	Pro	Ala	Pro	Gly 220	Ala	Arg	Arg	Arg
Gly 225	Gly	Ser	Ala	Ser	Arg 230	Ser	Leu	Pro	Leu	Pro 235		Arg	Pro	Arg	Arg 240
Gly	Ala	Ala	Pro	Glu 245	Pro	Glu	Arg	Thr	Pro 250	Val	Gly	Gln	Gly		_
Ala	His	Pro	Gly 260	Arg	Thr	Arg	Gly	Pro 265	Ser		Arg	Gly	Phe 270	Cys	Val
Val [.]	Ser	Pro 275	Ala	Arg	Pro	Ala	Glu 280	Glu	Ala	Thr	Ser.			Gly	Ala
Leu	Ser 290	Gly	Thr	Arg	His	Ser 295	His	Pro	Ser	Val	Gly 300	Arg	Gln	His	His
Ala 305	Gly	Pro	Pro	Ser	Thr 310		Arg	Pro	Pro	Ärg 315	Pro	Trp	Asp	Thr	Pro 320
Cys	Pro	Pro	Val	Tyr 325	Ala	Glu	Thr	Lys	His 330	Phe	Leu	Tyr	Ser	Ser 335	Gly
Asp	Lys	Glu	Gln 340	Leu	Arg	Pro	Ser	Phe 345	Leu	Leu	Ser	Ser	Leu 350	Arg	Pro
Ser	Leu	Thr 355	Gly	Ala	Arg	Arg	Leu 360	Val	Glu	Thr	Ile	Phe 365	Leu	Gly	Ser
Arg	Pro 370	Trp	Met	Pro	Gly	Thr 375	Pro ·	Arg	Arg	Leu	Pro 380	Arg	Leu	Pro	Gln
Arg 385	Tyr	Trp	Gln	Met	Arg 390	Pro	Leu	Phe	Leu	Glu 395	Leu	Leu	Gly	Asn	His 400
Ala	Gln	Cys	Pro	Tyr 405	Gly	Val	Leu	Leu	Lys 410	Thr	His	Cys	Pro	Leu 415	Arg
Ala	Ala	Val	Thr 420	Pro	Ala	Ala	Gly	Val 425	Cys	Ala	Arg	Glu	Lys 430	Pro	Gln
Gly	Ser	Val 435	Ala	Ala	Pro	Glu	Glu 440	Glu	Asp	Thr	Asp	Pro 445	Arg	Arg	Leu
Val	Gln	Leu	Leu	Arg	Gln	His	Ser	Ser	Pro	Trp	Gln	Val	Tyr	Glv	Phe

	450					455					460				
Val 465	Arg	Ala	Cys	Leu	Arg 470	Arg	Leu	Val	Pro	Pro 475	Gly	Leu	Trp	Gly	Ser 480
	His	Asn	Glu	Arg 485		Phe	Leu	Arg	Asn 490	Thr	Lys	Lys	Phe	Ile 495	
Leu	Gly	Lys	His 500	Ala	Lys	Leu	Ser	Leu 505			Leu	Thr	Trp 510		· Met
Ser	Val	Arg 515	Asp	Cys	Ala	Trp	Leu 520	Arg	Arg	Ser	Pro	Gly 525	Val	Gly	Cys
Val	Pro 530	Ala	Ala	Glu	·His	Arg 535	Leu	Arg	Glu	Glu	Ile 540	Leu	Ala	Lys	Phe
Leu 545	His	Trp	Leu	Met	Ser 550	Val	Tyr	Val	Val		Leu	Leu	Arg	Ser	Phe 560
Phe:	.Tyr	.Val	Thr	Glu 565	Thr	Thr	Phe	Gln	Lys 570	Asn	Arg	Leu	Phe	Phe 575	Tyr
Arg	Lys	Ser	Val 580	Trp	Ser	Lys	Leu	Gln 585	Ser	Ile	Gly	Ile	Arg 590	Gln	His
Leu	Lys	Arg 595	Val	Gln	Leu	Arg	Glu 600	Leu	Ser	Glu	Ala	· Glu 605	Val	Arg	Gln
His	Arg 610	Glu	Ala	Arg	Pro	Ala 615	Leu	Leu	Thr	Ser	Arg 620	Leu	Arg	Phe	Ile
Pro 625	Lys	Pro	Asp	Gly	Leu 630		Pro	Ile	Val	Asn 635	Met	Asp	Tyr	Val	Val 640
Gly	Ala	Arg	Thr	Phe 645	Arg	Arg	Glu	Lys	Arg 650	Ala	Glu	Arg	Leu	Thr 655	Ser
Arg	Val	Lys	Ala 660	Leu	Phe	Ser	Val	Leu 665	Asn	Tyr	Glu	Arg	Ala 670	Arg	Arg
Pro	Gly	Leu 675	Leu	Gly	Ala	Ser	Val 680	Leu	Gly	Leu	Asp	Asp 685	Ile	His	Arg
Ala	Trp 690	Arg	Thr	Phe	Val	Leu 695	Arg.	Val	Arg	Ala	Gln 700	Asp	Pro	Pro	Pro
Glu 705	Leu	Tyr	Phe	Val	Lys 710	Val	Asp	Val	Thr	Gly 715	Ala	Tyr	Asp	Thr	Ile 720
Pro	Gln	Asp	Arg	Leu 725	Thr	Glu	Val	Ile	Ala 730	Ser	Ile	Ile	Lys	Pro 735	Gln
Asn	Thr	Tyr	Cys	Val	Arg	Arg	Tyr	Ala	Val	Val	Gln	Lys	Ala	Ala	His

			740					745		•			750		
Gly	His	Val 755	Arg	Lys	Ala	Phe	Lys 760	Ser	His	Val	Ser	Thr 765	Leu	Thr	Asp
Leu	Gln 770	Pro	Tyr	Met	Arg	Gln 775	Phe	Val	Ala	His	Leu 780	Gln	Glu	Thr	Ser
Pro 785	Leu	Arg	Asp	Ala	Val 790	Val	Ile	Glu	Gln	Ser 795	Ser	Ser	Leu	Asn	Glu 800
Ala	Ser	Ser	Gly	Leu 805	Phe	Asp	Val	Phe	Leu 810	Arg	Phe	Met	Cys	His 815	His
Ala	Val	Arg	11e 820	Ärg	Gly	Lys	Ser	Tyr 825	Val	Gln	Cys	Gln	Gly 830	Ile	Pro
Gln	Gly	Ser 835	Ile	Leu	Ser	Thr	Leu 840	Leu	Cys	Ser	Leu	Cys 845	Tyr	Gly	Asp
Met	Glu 850	Asn	Lys	Leu	Phe	Ala 855	Gly	Ile	Arg	Arg	Asp 860	Gly	Leu	Leu	Leu
Arg 865	Leu	Val	Asp	Asp	Phe 870	Leu	Leu	Val	Thr	Pro 875	His		Thr	His	Ala 880
Lys	Thr	Phe	Leu	Arg 885	Thr	Leu	Val	Arg	Gly 890	Val	Pro	Glu	Tyr	Gly 895	Cys
Val	Val	Asn	Leu 900	Arg	Lys	Thr	Val	Val 905	Asn	Phe	Pro	Val	.Glu 910	Asp	Glu
Ala	Leu	Gly 915	Gly	Thr	Ala	Phe	Val 920	Gln	Met	Pro	Ala	His 925	Gly	Leu	Phe
Pro	Trp 930	Cys	Gly	Leu	Leu	Leu 935	Asp	Thr	Arg	Thr	Leu 940	Glu	Val	Gln	Ser
Asp 945	Tyr	Ser	Ser	Tyr	Ala 950	Arg	Thr	Ser	Ile	Arg 955	Ala	Ser	Leu	Thr	Phe 960
Asn	Arg	Gly	Phe	Lys 965	Ala	Gly	Arg	Asn	Met 970	Arg	Arg	Lys	Leu	Phe 975	Gly
Val	Leu	Arg	Leu 980	Lys	Cys	His	Ser	Leu 985	Phe	Leu	Asp	Leu	Gln 990	Val	Asn
Ser	Leu	Gln 995	Thr	Val	Cys		Asn 1000	He	Tyr	Lys		Leu 1005	Leu	Leu	Gln
	Tyr 1010	Arg	Phe	His	Ala 1	Cys 1015	Val	Leu	Gln		Pro 1020	Phe	His	Gln	Gln
		Lys	Asn	Pro	Thr		Phe	Len	Arg			Ser	Asn	Thr	Ala

102	5				1030)				103	5				1040	
Ser	Leu	Cys	Tyr	Ser	Ile	Leu	Lys	Ala	Lys	Asn	Ala	Gly	Met	Ser	Leu	
				1045					1050					1055		
Gly	Ala	Lys	Gly	Ala	Ala	Gly	Pro	Leu	Pro	Ser	Glu	Ala	Val	Gln	Trp	
			1060					1065					1070			
Leu	Cys	His	Gln	Ala	Phe	Leu	Leu	Lys	Leu	Thr	Arg	His	Arg	Val	Thr	
		1075					1080					1085				
Tyr	Val	Pro	Leu	Leu	Gly	Ser	Leu	Arg	Thr	Ala	Gln	Thr	Gln	Leu	Ser	
	1090					1095		·		•	1100					
Arg	Lys	·Leu	Pro	Gly	Thr	Thr	Leu	Thr	Ala	Leu	Glu	Ala	Ala	Ala	Asn.	
110	5				1110)				111	5				1120	
Pro	Ala	Lèu	Pro	Ser	Asp	Phe	Lys	Thr	Ile	Leu	Asp					
				1125					1130							
<21	0> 32	2 ·														
<21	1> 3	396														
<212	2> D1	NA.			-											
<21	3> H	omo s	sapi	ens	•											
<220)> .	• •														
<22	1> C)	DS														
<223	3> (1)((3399	9)												
<400	0> 32	2														
atg	ccg	cgc	gct	ccc	cgc	tgc	cga	gcc	gtg	cgc	tcc	ctg	ctg	cgc:	agc	48
Met	Pro	Arg	Ala	${\tt Pro}$	Arg	Cys	Arg	Ala	Val	Arg	Ser	Leu	Leu	Arg	Ser	
1				5					10	•				15		
cac	tac	cgc	gag	gtg	ctg	ccg	ctg	gcc	acg	ttc	gtg	cgg	cgc	ctg	ggg	96
His	Tyr	Arg	Glu	Val	Leu	${\bf Pro}$	Leu	Ala	Thr	Phe	Val	Arg	Arg	Leu	Gly	
			20					25					30			
ccc	cag	ggc	\mathbf{tgg}	cgg	${\tt ctg}$	gtg	cag	cgc	ggg	gac	ccg	gcg	gct	ttc	cgc	144
Pro	Gln	Gly	Trp	Arg	Leu	Val	Gln	Arg	Gly	Asp	${\tt Pro}$	Ala	Ala	Phe	Arg	
		35					40					45				
gcg	ctg	gtg	gcc	cag	tgc	ctg	gtg	tgc	gtg	ccc	tgg	gac	gca	cgg	ccg	192
Ala	Leu	Val	Ala	Gln	Cys	Leu	Val	Cys	Val	Pro	Trp	Asp	Ala	Arg	Pro	
	50					55					. 60					
ccc	ccc	gcc	gcc	ссс	tcc	ttc	cgc	cag	gtg	tcc	tgc	ctg	aag	gag	ctg	240
		Ala														
65					70					75					80	

gtg	gcc	cga	gtg	ctg	cag	agg	ctg	tgc	gag	cgc	ggc	gcg	aag	aac	gtg	288
Val	Ala	Arg	Val	Leu	Gln	Arg	Leu	Cys	Glu	Arg	Gly	Ala	Lys	Asn	Val	
				85					90					95		
ctg	gcc	ttc	ggc	ttc	gcg	ctg	ctg	gac	ggg	gcc	cgc	ggg	ggc	ccc	ccc	336
Leu	Ala	Phe	Gly	Phe	Ala	Leu	Leu	Asp	Gly	Ala	Arg	Gly	Gly	${\bf Pro}$	Pro	
.•			100	•				105					110			
gag	gcc	ttc	acc	acc	agc	gtg	cgc	agc	tac	ctg	ccc	aac	acg	gtg	acc	384
Glu	Ala	Phe	Thr	Thr	Ser	Val	Arg	Ser	Tyr	Leu	Pro	Asn	Thr	Val	Thr	
		115					120					125				
										_	_	_	_	_	gtg: .	432
Asp	Ala	Leu	Arg	Gly	Ser	Gly	Ala	Trp	Gly	Leu	Leu	Leu	Arg	Arg	Val	
	130					135					140					
										-	_	-	ctc			480
Gly	Asp	Asp	Val	Leu	Val	His	Leu	Leu	Ala	Arg	Cys	Ala	Leu	Phe	Val	
145					150					155					160	
													ccg			528
Leu	Val	Ala	Pro	Ser	Cys	Ala	Tyr	Gln	Val	Cys	Gly	Pro	Pro	Leu	Tyr	
•				165					170					175		
cag	ctc	ggc	gct	gcc	act	cag	gcc	cgg	ccc	ccg	cca	cac	gct	agt	gga	576 .
Gln	Leu	Gly	Ala	Ala	Thr	Gln	Ala	Arg	Pro	Pro	Pro	His	Ala	Ser	Gly	
			180					185					190			
													agc			624
Pro	Arg	Arg	Arg	Leu	Gly	Cys	Glu	Arg	Ala	Trp	Asn	His	Ser	Val	Arg	
		195					200					205				
													agg			672
Glu		Gly	Val	Pro	Leu	Gly	Leu	Pro	Ala	Pro	Gly	Ala	Arg	Arg	Arg	
	210					215					220					
													ccc		_	720
Gly	Gly	Ser	Ala	Ser	Arg	Ser	Leu	Pro	Leu	Pro	Lys	Arg	Pro	Arg	Arg	
225					230					235					240	
ggc	gct	gcc	cct	gag	ccg	gag	cgg	acg	ccc	gtt	ggg	cag	ggg	tcc	tgg	768
Gly	Ala	Ala	Pro	Glu	Pro	Glu	Arg	Thr	Pro	Val	Gly	Gln	Gly	Ser	Trp	
				245					250					255		
gcc	cac	ccg	ggc	agg	acg	cgt	gga	ccg	agt	gac	cgt	ggt	ttc	tgt	gtg	816
Ala	His	Pro	Gly	Arg	Thr	Arg	Gly	Pro	Ser	Asp	Arg	Gly	Phe	Cys	Val	
			260					265					270			

gt.g	tca	cct.	gcc	aga	ccc	gcc	gaa	gaa	gee	acc	tet	ttø	gag	oot	σcσ	864
						Ala						_				001
	-	275		0			280	414		****	501	285	ulu	ulj	7114	
ctc	tct	ggc	acg	cgc	cac	tcc	cac	cca	tcc	gtg	ggc	cgc	cag	cac	cac	912
Leu	Ser	Gly	Thr	Arg	His	Ser	His	Pro	Ser	Val	Gly.	Arg	Gln	His	His.	
	290					295					300					
						tcg										960
Ala	Gly	Pro	Pro	Ser	Thr	Ser	Arg	Pro	Pro	Arg	Pro	Trp	Asp	Thr	Pro	
305					310					315				•	320	
tgt	ccc	ccg	gtg	tac	gcc	gag	acc	aag	cac	ttc	ctc	tac	tcc	tca	ggc	1008
Cys	Pro	Pro	Val	Tyr	Ala	Glu	Thr	Lys	His	Phe	Leu	Tyr	.Ser	Ser	Gly	
				325					330					335		
gac	aag	gag	cag	ctg	cgg	ccc	\mathbf{tcc}	ttc	cta	ctc	agc	tct	ctg	agg	ccc	1056
Asp	Lys	Glu	Gln	Leu	Arg	${\bf Pro}$	Ser	Phe	Leu	Leu-	Ser	Ser.	Leu	Arg	Pro:	
			340					345					350			
agc.	ctg	act	ggc	gct	cgg	agg	ctc	gtg	gag	acc	atc	ttt	ctg.	ggt	tcc	1104
Ser	Leu	Thr	Gly	Ala	Arg	Arg	Leu	Val	Glu	Thr	·Ile	Phe	Leu	Gly	Ser	
		355	•		ė		360					365			•	
agg	ccc	tgg	atg	cca	ggg	act	ccc	cgc	agg	ttg	ccc.	cgc	ctg	ccc	cag	1152.
Arg	Pro	Trp	Met	Pro	Gly	Thr	Pro	Arg	Arg	Leu	Pro	Arg	Leu	${\bf Pro}$	Gln	
	370	•				375					380					
cgc	tac	tgg	caa.	atg	cgg	ccc	ctg	ttt	ctg	gag	ctg	ctt.	ggg	aac	cac	1200
Arg	Tyr	Trp	Gln	Met	Arg	Pro	Leu	Phe	Leu	Glu	Leu	Leu	Gly	Asn	His	
385					390					395					400	
gcg	cag	tgc	ccc	tac	ggg	gtg	ctc	ctc	aag	acg	cac	tgc	ccg	$\operatorname{\mathtt{ctg}}$	cga	1248
Ala	Gln	Cys	Pro	Tyr	Gly	Val	Leu	Leu	Lys	Thr	His	Cys	${\tt Pro}$	Leu	Arg	
				405					410					415		
gct	gcg	gtc	acc	cca	gca	gcc	ggt	gtc	tgt	gcc	cgg	gag	aag	ccc	cag	1296
Ala	Ala	Val	Thr	Pro	Ala	Ala	Gly	Val	Cys	Ala	Arg	Glu	Lys	Pro	Gln	
			420					425					430			
ggc	tct	gtg	gcg	gcc	ccc	gag	gag	gag	gac	aca	gac	ccc	cgt	cgc	ctg	1344
Gly	Ser	Val	Ala	Ala	Pro	Glu	Glu	Glu	Asp	Thr	Asp	Pro	Arg	Arg	Leu	
		435					440					445				
gtg	cag	ctg	ctc	cgc	cag	cac	agc	agc	ccc	tgg	cag	gtg	tac	ggc	ttc	1392
Val	Gln	Leu	Leu	Arg	Gln	His	Ser	Ser	Pro	Trp	Gln	Val	Tyr	Gly	Phe	
	450					455					460					

gtg	cgg	gcc	tgc	ctg	cgc	cgg	ctg	gtg	ccc	cca	ggc	ctc	tgg	ggc	tcc	1440
Val	Arg	Ala	Cys	Leu	Arg	Arg	Leu	Val	Pro	Pro	Gly	Leu	Trp	Gly	Ser	
465					470					475					480	
agg	cac	aac	gaa	cgc	cgc	ttc	ctc	agg	aac	acc	aag	aag	ttc	atc	tcc	1488
Arg	His	Asn	Glu	Arg	Arg	Phe	Leu	Arg	Asn	Thr	Lys	Lys	Phe	Ile	Ser	
				485					490					495		
ctg	ggg	aag	cat	gcc	aag	ctc	tcg	ctg	cag	gag	ctg	acg.	tgg	aag	atg	1536
Leu	Gly	Lys	His	Ala	Lys	Leu	${\tt Ser}$	Leu	${\tt Gln}$	Glu	Leu	Thr	Trp	Lys	Met	
			500	•				505					510		٠	
agc	gtg	cgg	gac	tgc	.gct	tgg	ctg	cgc	agg	agc	cca	ggg	gtt.	ggc	tgt	1584
Ser	Val	Arg	Asp	Cys	Ala	\mathbf{Trp}	Leu	Arg	Arg	Ser	Pro	Gly	Val	Gly	Cys	
		515					520					525				
gtt	ccg	gcc	gca	gag	cac	cgt	ctg	cgt	gag	gag	atc	ctg	gcc	aag	ttc	1632
Val	${\bf Pro}$	Ala	Ala	${\tt Gl}{\tt u}$	His	Arg	Leu	Arg	Glu	Glu	Пe	Leu.	Ala	Lys	Phe ·	
	530	,,				535					540					
ctg	cac	tgg	ctg	atg	agt	gtg	tac	gtc	gtc	gag	ctg	ctc	agg	tct	ttc	1680
Leu	His	Trp	Leu	Met	Ser	Val	Tyr	Val	Val	Glu	Leu	Leu	Arg	Ser	Phe	
545					550					555	•				560	
ttt	tat	gtc	acg	gag	acc	acg	ttt	caa	aag	aac	agg	ctc	ttt	ttc	tac	1728
Phe	Tyr	Val	Thr	Glu	Thr	Thr	Phe	Gln	Lys	Asn	Arg	Leu	Phe	Phe	Tyr	
				565					570					575		
cgg	aag	agt	gtc	\mathbf{tgg}	agc	aag	ttg	caa	agc	att	gga	atc	aga	cag	cac	1776
Arg	Lys	Ser	.Val	Trp	Ser	Lys	Leu	${\tt Gln}$	Ser	Ile	Gly	Ile	Arg	Gln	His	
			580					585					590			
ttg	aag	agg	gtg	cag	ctg	cgg	gag	$\operatorname{\mathtt{ctg}}$	tcg	gaa	gca	gag	gtc	agg	cag	1824
Leu	Lys	Arg	Val	Gln	Leu	Arg	Glu	Leu	Ser	Glu	Ala	Glu	Val	Arg	Gln	
		595					600					605				
cat	cgg	gaa	gcc	agg	ccc	gcc	$\operatorname{\mathtt{ctg}}$	$\operatorname{\mathtt{ctg}}$	acg	tcc	aga	ctc	cgc	ttc	atc	1872
His	Arg	Glu	Ala	Arg	Pro	Ala	Leu	Leu	Thr	Ser	Arg	Leu	Arg	Phe	Ile	
	610					615					620					
ccc	aag	cct	gac	ggg	ctg	cgg	ccg	att	gtg	aac	atg	gac	tac	gtc	gtg	1920
Pro	Lys	Pro	Asp	Gly	Leu	Arg	Pro	Ile	Val	Asn	Met	Asp	Tyr	Val	Val	
625					630					635					640	
gga	gcc	aga	acg	ttc	cgc	aga	gaa	aag	agg	gcc	gag	cgt	ctc	acc	tcg	1968
Gly	Ala	Arg	Thr	Phe	Arg	Arg	Glu	Lys	Arg	Ala	Glu	Arg	Leu	Thr	Ser	
				645					650					655		

																•
agg	gtg	aag	gca	ctg	ttc	agc	gtg	ctc	aac	tac	gag	cgg	gcg	cgg	cgc	2016
Arg	Val	Lys	Ala	Leu	Phe	Ser	Val	Leu	Asn	Tyr	Glu	Arg	Ala	Arg	Arg	
			660					665					670	•		
ccc	ggc	ctc	ctg	ggc	gcc	tct	gtg	${\tt ctg}$	ggc	ctg	gac	gat	atc	cac	agg	2064
${\tt Pro}$	Gly	Leu	Leu	Gly	Ala	${\tt Ser}$	Val	Leu	Gly	Leu	Asp	Asp	Ile	His	Arg	
	•	675					680					685	•			
gcc	tgg	cgc	acc	ttc	gtg	ctg	cgt	gtg	cgg	gcc	cag.	gac	ccg	ccg	cct	2112
Ala	Trp	Arg	Thr	Phe	Val	Leu	Arg	Val	Arg	Ala	Gln	Asp	Pro	Pro	Pro	
	690					695					700					
gag.	ctg	tac	ttt.	gtc	aag	gtg	gat	gtg	acg	ggc	gcg.	tac	gac	acc	atc	2160
Glu	Leu	Tyr	Phe	Val	Lys	Val	Asp	Val	Thr	Gly	Ala	·Tyr	Asp	Thr	Ile	
705					710					715					720	
ccc	cag	gac	agg	ctc	acg	gag	gtc	atc	gcc	agc	atc	atc	aaa	ссс	cag	2208
Pro	Gln	Asp	Arg	Leu	Thr	Glu	Val	Ile	Ala	Ser	Ile	Ile	Lys	Pro	Gln:	
				725					730					735		
aac	acg	tac	tgc	gtg	cgt	cgg	tat	gcc	gtg	gtc	cag	aag	gcc	gcc	cat	2256
Asn	Thr	Tyr	Cys	Val	Arg	Arg	Tyr	Ala	Val	Val	Gln	Lys	Ala	Ala	His	
			740					745					750			
ggg	cac	gtc	cgc.	aag	gcc	ttc	aag	agc	cac	gtc	tct	acc	ttg	aca	gac	2304
Gly	His	Val	Arg	Lys	Ala	Phe	Lys	Ser	His	Val	Ser	Thr	Leu.	Thr	Asp	
		755					760					765				
ctc	cag	ccg	tac	atg	cga	cag	ttc	gtg	gct	cac	ctg	cag	gag	acc	agc	2352
Leu	Gln	Pro	Tyr	${\tt Met}$	Arg	${\tt Gln}$	Phe	Val	Ala	His	Leu	Gln	Glu	Thr	Ser	
	770					775					780					
ccg	ctg	agg	gat	gcc	gtc	gtc	atc	gag	cag	agc	tcc	tcc	ctg	aat	gag	2400
\mathbf{Pro}	Leu	Arg	Asp	${\bf Ala}$	Val	Val	Ile	Glu	Gln	Ser	Ser	Ser	Leu	Asn	Glu	
785					790					795					800	
gcc	agc	agt	ggc	ctc	ttc	gac	gtc	ttc	cta	cgc	ttc	atg	tgc	cac	cac	2448
Ala	${\tt Ser}$	Ser	Gly	Leu	Phe	Asp	Val	Phe	Leu	Arg	Phe	Met	Cys	His	His	
				805					810					815		
gcc	gtg	cgc	atc	agg	ggc	aag	tcc	tac	gtc	cag	tgc	cag	ggg	atc	ccg	2496
Ala	Val	Arg	Ile	Arg	Gly	Lys	Ser	Tyr	Val	Gln	Cys	Gln	Gly	Ile	Pro	
			820					825					830			
cag	ggc	tcc	atc	ctc	tcc	acg	ctg	ctc	tgc	agc	ctg	tgc	tac	ggc	gac	2544
Gln	Gly	Ser	Ile	Leu	Ser	Thr	Leu	Leu	Cys	Ser	Leu	Cys	Tyr	Gly	Asp	
		835					840					845				

					ttt											2592
Met		Asn	Lys	Leu	Phe		Gly	He	Arg	Arg		Gly	Leu	Leu	Leu	
	850					855					860					2010
					ttc											2640
		Val	Asp	Asp	Phe	Leu	Leu	Val	Thr		His	Leu	Thr	His		
865.					870					875					880	
					acc										-	2688
Lys	Thr	Phe	Leu		Thr	Leu	Val	Arg		Val	Pro	Glu	Tyr		Cys	
				885					890					895	•	
gtg	gtg	aac	ttg	cgg	aag	aca	gtg	gtg	aac	ttc	cct	gta	gaa	gac	gag	2736
Val	Val	Asn	Leu	Arg	Lys	Thr	Val	Val	Asn	Phe	Pro	Val	Glu	· Asp	Glu	
			900					905					910			
gcc	ctg	ggţ	ggc	acg	gct	ttt	gtt	cag	atg	ccg	gcc	cac	ggc	cta	ttc	2784
Ala	Leu	Gly	Gly	Thr	.Ala	Phe	Val	Gln	Met	Pro	Ala	His	Gly.	Leu	Phe	
		915					920					925				
ccc	tgg	tgc	ggc	ctg	ctg	ctg	gat	acc	cgg	acc	ctg	gag	gtg	cag	agc	2832
Pro.	Trp	Cys	Glý	Leu	Leu	Leu	Asp	Thr	Arg	Thr	Leu	Glu	Val	Gln	Ser	
	930					935					940					
gac	tac	tcc	agc	tat	gcc	cgg	acc	tcc	atc	aga	gcc	agt	ctc	acc	ttc	2880
Asp	Tyr	Ser	${\tt Ser}$	Tyr	Ala	Arg	Thr	Ser	Ile	Arg	Ala	${\tt Ser}$	Leu	Thr	Phe	
945					950					955					960	
aac	cgc	ggc	ttc	aag	gct	ggg	agg	aac	atg	cgt	cgc	aaa	ctc	ttt	ggg	2928
Asn	Arg	Gly	Phe	Lys	Ala	Gly	Arg	Asn	Met	Arg	Arg	Lys	Leu	Phe	Gly	
				965					970					975		
gtc	ttg	cgg	ctg	aag	tgt	cac	agc	ctg	ttt	ctg	gat	ttg	cag	gtg	aac	2976
Val	Leu	Arg	Leu	Lys	Cys	His	Ser	Leu	Phe	Leu	Asp	Leu	Gln	Val	Asn	
			980					985					990			
agc.	ctc	cag	acg	gtg	tgc	acc	aac	atc	tac	aag	atc	ctc	ctg	ctg	cag	3024
_					Cys											
		995					1000		•	•			005			
gcg	tac	agg	ttt	cac	gca	tgt	gtg	ctg	cag	ctc	cca	ttt	cat	cag	caa	3072
					Ala									_		
	1010)15					1020				
gtt			aac	ccc	aca			cte	cgc	gtc	atc			ace	ጀርር	3120
					Thr	_										0140
1025		_, 5	11011	110)30	~ 110	Lou	111 B	, 41	1035		,rob	1111	.,,,,,	1040
	-				Τ,						7000	,				TOTO

tcc ctc tgc tac t				_	
Ser Leu Cys Tyr S		Lys Ala I		la Gly Met	
	1045		1050		1055
ggg gcc aag ggc g					
Gly Ala Lys Gly A 1060	Ala Ala Gly	Pro Leu F		lu Ala Val	-
ctg tgc cac caa g	gan tto atg			ro one est	1070
Leu Cys His Gln A					
1075	·	1080	ocu ini ni	1085	
tac gtg cca ctc c	ctg ggg tca		aca gcc ca		
Tyr Val Pro Leu I			_		
1090)95		1100	
cgg aag ctc ccg g	ggg acg acg	ctg act g	gcc ctg ga	ag gcc gca	gcc aac 3360
Arg Lys Leu Pro (Gly Thr Thr	Leu Thr A	Ala Leu Gl	lu Ala: Ala	Ala: Asn
1105	1110		11	115.	1120
ccg gca ctg ccc t	_	-			3396
Pro Ala Leu Pro S		Lys Thr 1	lle Leu As	sp	
	1125		1130		
<210> -33					
<211> 21					
<212> DNA <213> Artificial	Cognopae				
<220>	, peddelice				
<223> Description	n of Artific	ial Sequen	nce artif	icially sy	nthesized nrimer
sequence	1 01 111 01110	idi boquon	ioo. di oii	TOTALLY SUL	ionedized primer
<400> 33			•		
ttggcttcca ggccat	taatt g				21
<210> 34					
<211> 20					
<212> DNA		•			
<213> Artificial	Sequence				
<0.00					
<220>		:-10			.,
<223> Description	OF APTIFIC	rai sequen	ice: artif	icially syr	itnesized primer
sequence					
<400> 34					

```
aagagggcag atctatcgga
                                                                      20
<210> 35
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 35
atggatetee tgaaggtget
                                                                      20
<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 36
aagagggcag atctatcgga
                                                                      20
<210> 37
<211> 23
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 37
ggaagagtga gcggccatca agg
                                                                      23
<210> 38
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 38
```

```
ctgctggaga ggttattcct cg
                                                                      22
<210> 39
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 39
gccaacacca acctgtccaa gttc
                                                                   · 24
<210> 40
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 40
tgcaaaggct ccaggtctga gggc
                                                                     24
<210> 41
<211> 19
<212> DNA -
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 41
ctctctctc tcaggacaa
                                                                     19
<210> 42
<211> 22
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 42
```

```
tggagcaaaa cagaatggct gg
                                                                     22
<210> 43
<211> 24
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 43
                                                                     24
ctgagatgtc tctctctct ttag
<210> 44
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 44
                                                                     20
acaatgactg atgagagatg
<210> 45
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 45
cagacctgaa ggagacct
                                                                     18
<210> 46
<211> 18
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 46
```

```
gtcagcgtaa acagttgc
                                                                       18
 <210> 47
<211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: artificially synthesized primer
 sequence
 <400> 47
 gccaagaagc ggatagaagg
                                                                      20
 <210> 48
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: artificially synthesized primer
 sequence
 <400> 48
 ctgtggttca gggctcagtc
                                                                      20
 <210> 49
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: artificially synthesized primer
 sequence
 <400> 49
 cagtggagct ggacaaagcc
                                                                      20
 <210> 50
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Description of Artificial Sequence: artificially synthesized primer
 sequence
 <400> 50
```

```
20
tagcgacggt tctggaacca
<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 51
                                                                      20
ctgtcatctc actatgggca
<210> 52
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 52
ccaagtccga gcaggaattt
                                                                      20
<210> 53
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 53
aagacgtcaa gccctttgtg
                                                                      20
<210> 54
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 54
```

```
20
aaaggagcac actttggtgg
<210> 55
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 55
                                                                     20
agcaagaata cgatgccatc
<210> 56
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223>Description of Artificial Sequence: artificially
     synthesized primer sequence
<400> 56
                                                                     20
gaaggggtgg tggtacggtc
<210> 57
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 57
tgggaatggc tatgtcagtg
                                                                     20
<210> 58
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 58
```

```
ctggtaatct gtgttgtagg
                                                                     20
<210> 59
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 59
caagggcctc tccaaacttg
                                                                     20
<210> 60
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Description of Artificial Sequence: artificially synthesized primer
sequence
<400> 60
gccccagaga cagcattcca
                                                                     20 -
<210> 61
<211> 268
<212> PRT
<213> Homo sapiens
<400> 61
Met Ala Gln Pro Leu Cys Pro Pro Leu Ser Glu Ser Trp Met Leu Ser
  1
                  5
                                      10
                                                           15
Ala Ala Trp Gly Pro Thr Arg Arg Pro Pro Pro Ser Asp Lys Asp Cys
             20
                                  25
                                                       30
Gly Arg Ser Leu Val Ser Ser Pro Asp Ser Trp Gly Ser Thr Pro Ala
         35
                              40
                                                   45
Asp Ser Pro Val Ala Ser Pro Ala Arg Pro Gly Thr Leu Arg Asp Pro
     50
                         55
                                              60
```

Arg 65	Ala	Pro	Ser	Val	Gly 70	Arg	Arg	Gly	Ala	Arg 75	Ser	Ser	Arg	Leu	Gly 80
Ser	Gly	Gln	Arg	Gln 85	Ser	Ala	Ser	Glu	Arg 90	Glu	Lys	Leu	Arg	Met 95	Arg
Thr	Leu	Ala	Arg 100	Ala	Leu	His	Glu	Leu 105	Arg	Arg	Phe	Leu	Pro 110	Pro	Ser
Val	Ala	Pro 115	Ala	Gly	Gln	Ser	Leu 120	Thr	Lys	Ile	Glu	Thr 125	Leu	Arg	Leu
Ala	Ile 130	Arg	Tyr	Ile	Gly	His 135	Leu	Ser	Ala	Val	Leu 140	Gly	Leu	Ser	Glu
Glu 145	Ser	Leu	Gln	Arg	Arg 150	Cys	Arg	Gln	Arg	Gly 155	Asp	Ala	Gly.	Ser.	Pro 160
Arg	Gly	Cys	Pro	Leu 165	Cys	Pro	Asp	Asp	Cys 170	Pro	Ala	Gln	Met	Gln 175	Thr
Arg	Thr	Gln	Ala 180	Glu	Gly	Gln	Gly	Gln 185	Gly	Arg	Gly	Leu	Gly 190	Leu	Val
Ser	Ala	Val 195	Arg	Ala	Gly	Ala	Ser 200	Trp	Gly	Ser	Pro	Pro 205	Ala	Cys	Pro
Gly	Ala 210	Arg	Ala	Ala	Pro ·	Glu 215	Pro	Arg	Asp	Pro	Pro 220	Ala	Leu	Phe	Ala
Glu 225	Ala	Ala	Cys	Pro	Glu 230	Gly	G1n	Ala	Met	Glu 235	Pro	Ser	Pro	Pro	Ser 240
Pro	Leu	Leu	Pro	Gly 245	Asp	Val	Leu	Ala	Leu 250	Leu	Glu	Thr	Trp	Met 255	Pro

Leu	Ser	Pro	Leu 260	Glu	Trp	Leu	Pro	Glu 265	Glu	Pro	Lys					
<210)> 62	2														
<211	l> 80	04														
<212	2> Di	NΑ														
<213	3> Ho	omo s	sapi	ens												
<220			_													
<223	l> CI	SC														
<223	3> (:	1)	(807))												
<400)> 62	2														
atg	gcc	cag	· ccc	ctg	tgc	ccg	ccg	ctc	tcc	gag	tcc	tgg	atg.	ctc	tct	48
						Pro										
1				. 5					10					15		
gcg	gcc	tgg	ggc	cca	act	cgg	cgg	ccg	ccg	ССС	tcc	gac	aag	gac	tgc	96
Ala	Ala	Trp	Gly	Pro	Thr	Arg	Arg	Pro	Pro	Pro	Ser	Asp	Lys	Asp	Cys	
			20					25					30			
ggc	cgc	tcc	ctc	gtc	tcg	tcc	cca	gac	tca	tgg	ggc	agc	acc	cca	gcc	144
Gly	Arg	Ser	Leu	Val	Ser	Ser	Pro	Asp	Ser	Trp	Gly	Ser	Thr	Pro	Ala	
		35					40					45				
				-												
gac	agc	ccc	gtg	gcg	agc	ccc	gcg	cgg	cca	ggc	acc	ctc	cgg	gac	ccc	192
Asp	Ser	Pro	Val	Ala	Ser	Pro	Ala	Arg	${\bf Pro}$	Gly	Thr	Leu	Arg	Asp	Pro	
	50					55					60					
cgc	gcc	ccc	tcc	gta	ggt	agg	cgc	ggc	gcg	cgc	agc	agc	cgc	\mathbf{ctg}	ggc	240
Arg	Ala	Pro	Ser	Val	Gly	Arg	Arg	Gly	Ala	Arg	Ser	Ser	Arg	Leu	Gly	
65					70					7 5					80	
agc	ggg	cag	agg	cag	agc	gcc	agt	gag	cgg	gag	aaa	ctg	cgc	${\tt atg}$	cgc	288
Ser	Gly	Gln	Arg	Gln	Ser	Ala	Ser	Glu	Arg	Glu	Lys	Leu	Arg	Met	Arg	
			•	85					90					95		
acg	ctg	gcc	cgc	gcc	ctg	cac	gag	ctg	cgc	cgc	ttt	cta	ccg	ccg	tcc	336
Thr	Leu	Ala	Arg	Ala	Leu	His	Glu	Leu	Arg	Arg	Phe	Leu	Pro	Pro	Ser	

	100			105			110			
							_	cgc Arg	_	384
								agc Ser	gag. Glu	432
								tcc Ser		480
								cag GIn 175	aca. Thr.	528
								ctg Leu	gta Val	576
								tgc Cys		624
								ttc Phe		672
								ccg Pro		720
	ccg Pro								ccc Pro	768

245 250 255

ctc tcg cct ctg gag tgg ctg cct gag gag ccc aag
Leu Ser Pro Leu Glu Trp Leu Pro Glu Glu Pro Lys

260 265

<210> 63

<211> 215

<212> PRT

<213> Homo sapiens

<400> 63

Met Gly Ser Pro Arg Ser Alà Leu Ser Cys Leu Leu Leu His Leu Leu 1 5 10 15

Val Leu Cys Leu Gln Ala Gln Val Thr Val Gln Ser Ser Pro Asn Phe 20 25 30

Thr Gln His Val Arg Glu Gln Ser Leu Val Thr Asp Gln Leu Ser Arg. 35 40 45

Arg Leu Ile Arg Thr Tyr Gln Leu Tyr Ser Arg Thr Ser Gly Lys His 50 55 60

Val Gln Val Leu Ala Asn Lys Arg Ile Asn Ala Met Ala Glu Asp Gly 65 70 75 80

Asp Pro Phe Ala Lys Leu Ile Val Glu Thr Asp Thr Phe Gly Ser Arg 85 90 95

Val Arg Val Arg Gly Ala Glu Thr Gly Leu Tyr Ile Cys Met Asn Lys 100 105 110

Lys Gly Lys Leu Ile Ala Lys Ser Asn Gly Lys Gly Lys Asp Cys Val 115 120 125

Phe Thr Glu Ile Val Leu Glu Asn Asn Tyr Thr Ala Leu Gln Asn Ala 130 135 140

Lys Tyr Glu Gly Trp Tyr Met Ala Phe Thr Arg Lys Gly Arg Pro Arg 145 150 155 160 Lys Gly Ser Lys Thr Arg Gln His Gln Arg Glu Val His Phe Met Lys 165 175 170 Arg Leu Pro Arg Gly His His Thr Thr Glu Gln Ser Leu Arg Phe Glu 180 185 190 Phe Leu Asn Tyr Pro Pro Phe Thr Arg Ser Leu Arg Gly Ser Gln Arg 195 200 205 Thr Trp Ala Pro Glu Pro Arg 210 <210> 64 . <211> 645 <212> DNA <213> Homo sapiens <220> <221> CDS <223> (1)..(648) <400> 64 atg ggc agc ccc cgc tcc gcg ctg agc tgc ctg ctg ttg cac ttg ctg 48 Met Gly Ser Pro Arg Ser Ala Leu Ser Cys Leu Leu His Leu Leu 1 5 10 15 gtc ctc tgc ctc caa gcc cag gta act gtt cag tcc tca cct aat ttt 96 Val Leu Cys Leu Gln Ala Gln Val Thr Val Gln Ser Ser Pro Asn Phe 20 25 30 aca cag cat gtg agg gag cag agc ctg gtg acg gat cag ctc agc cgc 144 Thr Gln His Val Arg Glu Gln Ser Leu Val Thr Asp Gln Leu Ser Arg

45

40

35

						caa								_		192
Arg	Leu 50	Ile	Arg	Thr	Tyr	Gln 55	Leu	Tyr	Ser	Arg	Thr 60	Ser	Gly	Lys	His	
						aag Lys										240
					Leu	atc Ile									-	288
						gag Glu										336
			Leu			aag Lys									_	384
						gag Glu 135										432
						atg Met										480
						cag Gln										528
						cac His										576

ttc ctc aac tac ccg ccc ttc acg cgc agc ctg cgc ggc agc cag agg 624 Phe Leu Asn Tyr Pro Pro Phe Thr Arg Ser Leu Arg Gly Ser Gln Arg 195 200 205 act tgg gcc ccg gaa ccc cga 645 . Thr Trp Ala Pro Glu Pro Arg 210 215 <210> 65 <211> 212 <212> PRT <213> Homo sapiens <400> 65 Met Asp Tyr Leu Leu Met Ile Phe Ser Leu Leu Phe Val Ala Cys Gln .1 . 5 10 Gly Ala Pro Glu Thr Ala Val Leu Gly Ala Glu Leu Ser Ala Val Gly .50 25 30 Glu Asn Gly Gly Glu Lys Pro Thr Pro Ser Pro Pro Trp Arg Leu Arg 35 40 45 Arg Ser Lys Arg Cys Ser Cys Ser Ser Leu Met Asp Lys Glu Cys Val 50 55 Tyr Phe Cys His Leu Asp Ile Ile Trp Val Asn Thr Pro Glu His Val 65 70 75 80 Val Pro Tyr Gly Leu Gly Ser Pro Arg Ser Lys Arg Ala Leu Glu Asn 85 90 95 Leu Leu Pro Thr Lys Ala Thr Asp Arg Glu Asn Arg Cys Gln Cys Ala 100 105 110 Ser Gln Lys Asp Lys Lys Cys Trp Asn Phe Cys Gln Ala Gly Lys Glu 115 120 125

140

Leu Arg Ala Glu Asp Ile Met Glu Lys Asp Trp Asn Asn His Lys Lys

135

130

Gly Lys Asp Cys Ser Lys Leu Gly Lys Lys Cys Ile Tyr Gln Gln Leu 145 150 155 160 Val Arg Gly Arg Lys Ile Arg Arg Ser Ser Glu Glu His Leu Arg Gln 165 170 175 Thr Arg Ser Glu Thr Met Arg Asn Ser Val Lys Ser Ser Phe His Asp 180 185 190 Pro Lys Leu Lys Gly Lys Pro Ser Arg Glu Arg Tyr Val Thr His Asn 195 200 205 Arg Ala His Trp 210 <210> 66 <211> 636 <212> DNA <213> Homo sapiens <220> <221> CDS <223> (1)..(639) <400> 66 atg gat tat ttg ctc atg att ttc tct ctg ctg ttt gtg gct tgc caa 48 Met Asp Tyr Leu Leu Met Ile Phe Ser Leu Leu Phe Val Ala Cys Gln 1 5 10 15 gga gct cca gaa aca gca gtc tta ggc gct gag ctc agc gcg gtg ggt 96 Gly Ala Pro Glu Thr Ala Val Leu Gly Ala Glu Leu Ser Ala Val Gly 20 25 30 gag aac ggc ggg gag aaa ccc act ccc agt cca ccc tgg cgg ctc cgc 144 Glu Asn Gly Gly Glu Lys Pro Thr Pro Ser Pro Pro Trp Arg Leu Arg 35 40 45

			tcc Ser							_	_	192
			gac Asp 70									240
			gga Gly								aat Asn	288
			gca Ala									336
			aag Lys					_			_	384
	_		att Ile							_		432
			aag Lys 150						_	_		480
			atc Ile		-		_			_		528
			atg Met								_	576

			aaa													624
Pro	Lys	Leu	Lys	Gly	Lys	Pro	Ser	Arg	Glu	Arg	Tyr	Val	Thr	His	Asn	
		195					200					205				
cga	gca	cat	tgg													636
Arg	Ala	His	Trp													
	210															
<210)> 6'	7														
<211	l>. 14	13 .														
<212	2> PI	RT												•		
<213	3> Ho	omo s	sapie	ens												
)> 67		_													
			Arg	Gly	Phe	Leu	Leu	Leu	Thr	Leu	Leu	Ala	Leu	Leu	Ala	
1			J	· .5					10					15		
														10		
Leu	Thr	Ser	Ala	Val	Ala	Lvs	Lvs	Lvs	Asp	Lvs	Val	Lvs	I.vs	Glv	Glv	
			20			2,0	_, _	25	P	2,0	, 62	2,0	30	ulj	ulj	
			40					20					00			
Pro	Glv	Ser	Glu	Cvs	Ala	Glu	Trp	Ala	Trn	Glv	Pro	Cve	Thr	Pro	Ser	
110	41,	35	ulu	0,0	1114	olu	40	1114	пр	ulj	110	45	1111	110	per	
		00					10					70				
Ser	I.ve	Asn	Cys	Glv	Val	Glv	Phe	Aro	Gla	Glv	Thr	Cvc	Cl _w	110	G1n	
501	50	пор	0,0	u I J	741	55	THO	111 6	ulu	uly	60	Oys	uly	піа	um	
	00					00					UU					
Thr	Gln	Aro	Ile	Aro	Cve	Aro	Val	Pro	Cve	Aen	Trn	Lvc	Lvc	<u>@</u> 111	Dho	
65	ulii	111 6	110	шь	70	W P	Y CLI	110	Oy 3	75	пр	பர்வ	ъуs	uiu		
UU					10					10					80	
Clv	Λla	Aen	Cvc	T 170	Тъгр	Twa	Dho	Clar	A an	Tnn	C1	41.	0	A	01	
uly	піа	лор	Cys	B5	1 9 1	цуз	THE	uıu	90	пр	ary	Ala	Cys		uly	
				00					90					95		
C1	The	<u>را</u>	グトゥ	T	Wo I	A	C1-	C1	/DL	T	T	T	.1.	A	m	
gry	IIII.	GIA	Thr	ьуs	vai	Arg	GIII		ınr	Leu	Lys	ьуs		Arg	lyr	
			100					105					110			
	4.7	Δ1.	0	0.7	0.1	mı	T 7		** *	m1		_	_		_	
Asn	Ala		Cys	Gin	Glu	Thr		Arg	Val	Thr	Lys		Cys	Thr	Pro	
		115					120					125				

140

Lys Thr Lys Ala Lys Ala Lys Lys Gly Lys Gly Lys Asp

135

130

<21	0> 6	8														
<21	1> 4	29														
<21	2> D	NA														
<213	3> H	omo :	sapi	ens												
<22	0>															
<22	1> C	DS														
<223	3> (1)	(432)												
<40	0> 6	8														
			cga									_	_	_		48
Met	Gln	His	Arg	Gly	Phe	Leu	Leu	Leu	Thr	Leu	Leu	Ala	Leu	Leu	Ala	
·1		•	٠.	·5					10					15		
			•													
			gcg													96
Leu	Thr	Ser	Ala	Val	Ala	Lys	Lys		Asp	Lys	Val	Lys	_	Gly	Gly	
			20					25					30			
				4	4											4.4.4
	_		gag												_	144
Pro	uly		Glu	Cys	Ala	GIU	_	Ala	Trp	Gly	Pro		Thr	Pro	Ser	
		35					40					45				
200	220	ost	tgc	aan	ort or	aat	+ + 0	oro	oro or	ara o	000	+ 00	atatat	a 00		109
			Cys													192
UCI	50	пор	0,5	ulj	vu.i	55	1 110	мь	ulu	uly	60	Uys	uly	Ala	GIH	
	00					00				•	UU		•	•		
acc	cag	cgc	atc	cgg	tgc	agg	gtg	ccc	tgc	aac	tgg	ลลซ	ลลฮ	ฮลฮ	ttt	240
			Ile									_	_			410
65		•			70			•	-, -	75		_, _	2, 0		80	
										, -						
gga	gcc	gac	tgc	aag	tac	aag	ttt	gag	aac	tgg	ggt	gcg	tgt	gat	ggg	288
			Cys										-	_		
				85	-				90	•	·		• -	95		
											•					
ggc	aca	ggc	acc	aaa	gtc	cgc	caa	ggc	acc	ctg	aag	aag	gcg	cgc	tac	336
											_			-		

Gly	Thr	Gly	Thr 100	Lys	Val	Arg	Gln	Gly 105	Thr	Leu	Lys	Lys	Ala 110	Arg	Tyr	
			tgc Cys													384
Lys <210 <211 <212 <213	Thr 130 >> 69 > 40 > PH S> Ho	Lys))8 ?T omo :	gca Ala Sapie	Lys				_			_		_	_		429
)> 69 Ile		Gly	Asn 5	Arg	Met	Leu	Met	Val 10	Val	Leu	Leu	Cys	Gln 15	Val	
Leu	Leu	Gly	Gly 20	Ala	Ser	His	Ala	Ser 25	Leu	Ile	Pro	Glu	Thr 30	Gly	Lys	
Lys	Lys	Val 35	Ala	Glu	.Ile	Gln	Gly 40	His	Ala	Gly	Gly	Arg 45	Arg	Ser	Gly	
Gln	Ser 50	His	Glu	Leu	Leu	Arg 55	Asp	Phe	Glu	Ala	Thr 60	Leu	Leu	Gln	Met	
Phe 65	Gly	Leu	Arg	Arg	Arg 70	Pro	Gln	Pro	Ser	Lys 75	Ser	Ala	Val	Ile	Pro 80	
Asp	Tyr	Met	Arg	Asp 85	Leu	Tyr	Arg	Leu	Gln 90	Ser	Gly	Glu	Glu	Glu 95	Glu	
Glu	G1n	Ile	His 100	Ser	Thr	Gly	Leu	Glu 105	Tyr	Pro	Glu	Arg	Pro 110	Ala	Ser	

Arg	Ala	Asn 115	Thr	Val	Arg	Ser	Phe 120	His	His	Glu	Glu	His 125	Leu	Glu	Asn
Ile	Pro 130	Gly	Thr	Ser	Glu	Asn 135	Ser	Ala	Phe	Arg	Phe 140	Leu	Phe	Asn	Leu
Ser 145	Ser	Ile	Pro	G1u	Asn 150	Glu	Ala	Ile	Ser	Ser 155	Ala	Glu	Leu	Arg	Leu 160
Phe	Arg	Glu	Gln	Val 165	Asp	Gln	Gly	Pro	Asp 170	Trp	Glu	Arg	Gly	Phe 175	His
Arg	Ile	Asn	Ile 180	Tyr	Glu	Val	Met	Lys 185	Pro	Pro	Ala	G1u	Val 190	Val	Pro
Gly	His	Leu 195	Ile	Thr	Arg	Leu	Leu 200	Asp	Thr	Arg	Leu	Val 205	His	His	Asn
Val	Thr 210	Arg	Trp	Glu	Thr	Phe 215	Asp	Val	Ser	Pro	Ala 220	Val	Leu	Arg	Trp
Thr 225	Arg	Glu	Lys	Gln	Pro 230	Asn	Tyr	Gly	Leu	Ala 235	Ile	Glu	Val	Thr	His 240
Leu	His	Gln	Thr	Arg 245	Thr	His	Gln	Gly	Gln 250	His	Val	Arg	Ile	Ser 255	Arg
Ser	Leu	Pro	Gln 260	Gly	Ser	Gly	Asn	Trp 265	Ala	Gln	Leu	Arg	Pro 270	Leu	Leu
Val	Thr	Phe 275	Gly	His	Asp	G1y	Arg 280	Gly	His	Ala	Leu	Thr 285	Arg	Arg	Arg
Arg	Ala 290	Lys	Arg	Ser	Pro	Lys 295	His	His	Ser	Gln	Arg 300	Ala	Arg	Lys	Lys

Asn Lys Asn Cys Arg Arg His Ser Leu Tyr Val Asp Phe Ser Asp Val 305 310 315 320 Gly Trp Asn Asp Trp Ile Val Ala Pro Pro Gly Tyr Gln Ala Phe Tyr 325 330 335 Cys His Gly Asp Cys Pro Phe Pro Leu Ala Asp His Leu Asn Ser Thr 340 345 350 Asn His Ala Ile Val Gln Thr Leu Val Asn Ser Val Asn Ser Ser Ile 355 360 365 Pro Lys Ala Cys Cys Val Pro Thr Glu Leu Ser Ala Ile Ser Met Leu 380 370 375 Tyr Leu Asp Glu Tyr Asp Lys Val Val Leu Lys Asn Tyr Gln Glu Met 385 390 395 400 Val Val Glu Gly Cys Gly Cys Arg 405 <210> 70 <211> 1224 <212> DNA <213> Homo sapiens <220> <221> CDS <223> (1)..(1227) <400> 70 atg att cct ggt aac cga atg ctg atg gtc gtt tta tta tgc caa gtc Met Ile Pro Gly Asn Arg Met Leu Met Val Val Leu Leu Cys Gln Val 1 5 10 15 ctg cta gga ggc gcg agc cat gct agt ttg ata cct gag acg ggg aag 96 Leu Leu Gly Gly Ala Ser His Ala Ser Leu Ile Pro Glu Thr Gly Lys 20 25 30

					cac His						144
Gln					ttc Phe	 		_	_	•	192
					cct Pro			-		_	240
					ctt Leu						288
					gag Glu 105				-	_	336
					cac His				_		384
				•	gct Ala	-					432
					atc Ile						480
					cct Pro						528

		gag Glu							576
		cga Arg							624
		act Thr							672
		cca Pro 230							720
		acc Thr	•					cga Arg	. 7 68
		agt Ser							816
		gat Asp							864
		cct Pro							912
		cgc Arg 310							960

					att Ile							_	_			1008
ulj	пр	Non		325	110	vai	ліа	110	330	uly	191	UIII	nia	335	lyr	
tgc	cat	ggg	gac	tgc	ccc	ttt	cca	ctg	gct	gac	cac	ctc	aac	tca	acc	1056
Cys	His	Gly	Asp 340	Cys	Pro-	Phe	Pro	Leu 345	Ala	Asp	His	Leu	Asn 350	Ser	Thr	
aac	cat	gcc	att	gtg	cag	acc	ctg	gtc	aat	tct	gtc	aat	tcc	agt	atc	1104
Asn	His	Ala 355	Ile	Val	Gln	Thr	Leu 360	Val	Asn	Ser	Val	Asn 365	Ser	Ser	∏e [.]	
ccc	aaa	gcc	tgt	tgt	gtg	ссс	act	gaa	ctg	agt	gcc	atc	tcc	atg	ctg	1152
Pro	Lys 370	Ala	Cys	Cys	Val	Pro 375	Thr	Glu	Leu	Ser	Ala 380	Ile	Ser	·Met	·Leu ,	
tac	ctg	gat	gag	tat	gat	aag	gtg	gta	ctg	aaa	aat	tat	cag	gag	atg	1200
	Leu	Asp	Glu	Tyr	Asp	Lys	Val	Val	Leu	Lys	Asn	Tyr	Gln	Glu	Met	
385					390					395					400	
gta	gta	gag	gga	tgt	ggg	tgc	cgc									1224
	_			Cys	Gly		-									
.044				405												
)> 71															
	l> 24 2> DN															
			icial	رموا ا	quenc	٠										
)> 71		LCIA	L DCC	<u> </u>	,6										
			caact	tgcto	et ga	ıtg										24
<210)> 72	2														
<211	> 2 4	ļ														
	2> DN															
			icia]	Sec	quenc	e										
)> 72				na -											
tgcc	tace	gt e	gtgc	gccc	ct ct	gc										24

<210> 73	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<400> 73	
gaagcgcaac agggccatca cg	2
•	
<210> 74	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<400> 74	
ccacgtcacg. caggtcccgt tc	23
•	
<210> 75	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<400> 75	
gatcctgttc tctgcctctg ga	22
<210> 76	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<400> 76	
tcatccactt tgtccacccg ag	22
<210> 77	
<211> 21	
<211> Z1 <212> DNA	
<213> Artificial Sequence	
<400> 77	
ttcctcgtct tggccttttg g	2
ひひしし ひつち ひし ひ しんたしし ししし と た	4

<210> 78	
<211> 21	
<212> DNA	
<213> Artificial Sequence	
<400> 78	
gctggatctt cgtaggctcc g	21
<210> 79	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<400> 79	
ggcaagetga ccetgaagt	19
·	
<210> 80	
<211> 19	
<212> DNA	
<213> Artificial Sequence	
<400> 80	
gggtgctcag gtagtggtt	19

出願人又は代理人の書類記号

1217WO2

国際出願番号

PCT/JP00/07741

寄託された微生物に関する表示 (PCT規則13の2)

	· · · · · · · · · · · · · · · · · · ·
A. 以下に示される表示は、明細書中に言及されてい	る微生物に関するものである。
19 頁、14	行
B. 寄託の表示	他の寄託が別紙に記載されている
寄託機関の名称 通商産業省工業技術院生命工	学工業技術研究所
寄託機関のあて名 (郵便番号及び国名を含む)	
日本国茨城県つくば市東1丁目	31番3号(郵便番号305-8566)
寄託の日付 22.02.00	受託番号 FERM BP-7043
C. 追加の表示(該当しない場合には記載しない)	この情報は別紙に続いている
ヨーロッパ特許が求められているそれぞれの指定国はを付与する旨の告示が公表されるまで、又は欧州特許れたとみなされる日まで標本の請求人により指名される (Rule 28 (4) EPC)。 D. この表示を行うための指定国 (すべての指定	H出願が拒絶され、取下げられ若しくは取下げら lた専門家に分譲することによってのみ可能であ
E. 追加事項の表示の提出(該当しない場合には	
下記の表示は後に国際事務局に届け出る予定である。(例外	
一品の女が代表に国際、学が周に出り出る「定てのる。(例)	CM「文化番号」のように次が事項を切削する)
/ 受理官庁記入欄	国際事務局記入欄
◯ この用紙は国際出願とともに受理した	この用紙が国際事務局に受理された日 17 NOV 2000 《17.11.00
権限のある職員 株式PCT/RO/134 (1992年7月)	権限のある職員

International application No.

PCT/JP00/07741

A CLASS Int.	IFICATION OF SUBJECT MATTER C1 C12N 5/06, 5/10, 15/09, A61K: A61P 9/10, 41/00, C07K 16/	31/203, 35/28, 38/19, 38/3 28	9,38/45,48/00,			
•	C12P 21/08, C12Q 1/02, 1/4					
According to	International Patent Classification (IPC) or to both na	tional classification and IPC				
	SEARCHED					
Minimum do Int.	ocumentation searched (classification system followed of C12N 5/00-5/28, 15/00-15/9	by classification symbols) 0, C07K 14/00-14/825				
Documentat	ion searched other than minimum documentation to the	extent that such documents are included	in the fields searched			
	ata base consulted during the international search (nam. INE (STN), WPI (DIALOG), BIOSIS (DIAL		rch terms used)			
	Jank/EMBL/DDBJ/GeneSeq,SwissProt					
	•	•				
C. DOCUI	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate of the relainnt passages	Relevant to claim No.			
P, X	WO, 00/06701, A (GENZYME CORPOR					
£ , A.	10 February, 2000 (10.02.00)	CATION),	1-5,14,17-18, 20-21,52,55,			
	& AU, 9955454, A		58,66-67,98,			
			102-103,134,			
			136,139-140, 149-150			
P,Y						
х	X Kagaku to Seibutsu, Vol.37, No.12 1-5,14,17-18,					
37	25 December, 1999 55,136 Y Kazuhiro SAKURADA, "Saisei Iryou; Stem Cell ni yoru Zouki 56,59-61,					
У	Chikkan Chiryou no Kanousei.",	pp.772-774	56,59-61, 99-101			
Х	Shinji Tomita et al., "Autologo Bone Marrow Cells Improves Dama	ged Heart Function.",	1-5,14,17-18, 20-21,55,			
	Circulation (November 1999) Vol pp.247-256	100 (suppl.II),	66-67,102-103, 136,139-140, 149-150			
Y			22,56,59-61,			
		1	68,99-101,104			
Further	r documents are listed in the continuation of Box C.	See patent family annex.				
	categories of cited documents:	"T" later document published after the inter	mational filing data or			
"A" docume	ent defining the general state of the art which is not red to be of particular relevance	priority date and not in conflict with th understand the principle or theory unde	e application but cited to erlying the invention			
date	document but published on or after the international filing ent which may throw doubts on priority claim(s) or which is	"X" document of particular relevance; the considered novel or cannot be consider step when the document is taken alone	red to involve an inventive			
cited to special	establish the publication date of another citation or other reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive step	claimed invention cannot be when the document is			
means	means combination being obvious to a person skilled in the art					
"P" document published prior to the international filing date but later "&" document member of the same patent family than the priority date claimed						
	actual completion of the international search fanuary, 2001 (24.01.01)	Date of mailing of the international sear 06 February, 2001 (0	-			
	ailing address of the ISA/	Authorized officer				
Japa	nese Patent Office					
Facsimile No	о.	Telephone No.				

Form PCT/ISA/210 (second sheet) (July 1992)

International application No.

PCT/JP00/07741

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
<u> </u>		
X	HUMAN CELL (Nippon Hito Saibou Gakkai Kaishi),	1-5,14-18,
	Vol.12, No.3, September, 1999	20-21,23-26,
	Keiichi FUKUDA, "Kotsuzui Saibou kara no Shinkin Saibou	38-42,44-48,
	no Yudou.", pp.159-162	52,55,58,
		66-67,69-72,
		84-88,90-94, 98,102-103,
		105-108,
		120-124,
		126-130,134,
		136,138-140,
		142-143,
		149-150
Y	' I	22,27-37,43,
		49-51,53-54,
		56,59-61,68,
		73-83,89,
		95-97,99-101,
		104,109-119, 125,131-133,
		144-148
X	Jikken Igaku, Vol.17, No.11, August, 1999	1-5,14-18,
	Keiichi FUKUDA, "Shinkin Saibou no Shinsei;	20-21,23-26,
	Saisei Ryohou to Saibou Ishoku.", pp.1324-1328	39-42,44-48,
		52,55,58,
		66-67,69-72,
		85-88,90-94,
		98,102-103, 105-108,
		121-124,
		126-130,134,
		136,138-140,
		142-143,
		149-150
Y		22,27-37,43,
		49-51,53-54,
		56,59-61,68,
		73-83,89,
		95-97,99-101,
		104,109-119, 125,131-133,
		144-148
Х	Shinji Makino et al., "Cardiomyocytes can be generated	1-5,14-18,
	from marrow stromal cells in vitro.",	20-21,23-26,
	J. Clin. Invest. (March, 1999) Vol.103, No.5, pp.697-705	39-42,44-48,
		52,55,58,
		66-67,69-72,
		85-88,90-94, 98,102-103,
		105-108,
		121-124,
		126-130,134,
		136,138-140,
		142-143,
		149-150
Y		22,27-37,43,
	ı	49-51,53-54,

International application No.

PCT/JP00/07741

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
		56,58-61,68, 73-83,89, 95-97,99-101, 104,109-119, 125,131-133, 144-148
x	Junkanki Senmon I, Vol.6, No.2, 1998 Keiichi FUKUDA et al., "Kotsuzui Saibou kara Shinkin Saibou eno Bunka Yuudou to sono Keitaigaku teki Denki Seirigaku teki Bunshi Seibutsugaku teki Kaiseki.", pp.185-190	1-5,14-18, 20-21,23-26, 39-42,44-48, 52,55,58, 66-67,69-72, 85-88,90-94, 98,102-103, 105-108, 121-124, 126-130,134, 136,138-140, 142-143,
Y		149-150 22,27-37,43, 49-51,53-54, 56,58-61,68, 73-83,89, 95-97,99-101, 104,109-119, 125,131-133, 144-148
Y .	DAVID T.BONTHRON et al., "Platelet-derived growth factor A chain: Gene structure, chromosomal location, and basis for alternative mRNA splicing.", Proc. Natl. Acad. Sci. USA (1988) Vol.85, No.5, pp.1492-1496	27-28,73-74, 109-110
Y	Tucker Collins et al., "Cultured human endothelial cells express platelet-derived growth factor B chain: cDNA cloning and structural analysis.", Nature (1985) Vol.316, No.6030, pp.748-750	27-28,73-74, 109-110
Y	Robert A. Payson et al., "The human FGF-8 gene localizes on chromosome 10q24 and is subjected to induction by androgen in breast cancer cells.", Oncogene (1996) Vol.13, No.1, pp.47-53	29-30,75-76, 111-112
Y	Yasuaki Itoh et al., "Cloning and sequence analysis of cDNA encoding the precursor of a human endothelium-derived vasoconstrictor peptide, endothelin: identity of human and porcine endothelin.", FEBS Lett. (1988) Vol.231, No.2, pp.440-444	31-32,77-78, 113-114
Y	PETER J.KRETSCHMER et al., "Cloning, Characterization and Developmental Regulation of Two Members of a Novel Human Gene Family of Neurite Outgrowth-promoting Proteins.", Growth Factors (1991) Vol.5, No.2, pp.99-114	33-34,79-80, 115-116
Y	JOHN M.WOZNEY et al., "Novel Regulators of Bone Formation: Molecular Clones and Activities.", Science (1991) Vol.242, No.4885, pp.1528-1534	35-36,81-82, 117-118

International application No.
PCT/JP00/07741

0.00- 11	The poor of the property of th	· · · · · · · · · · · · · · · · · · ·
	tion). DOCUMENTS CONSIDERED TO BE RELEVANT	
Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	Jikken Igaku (Bessatsu) Bio Science Yougo Library Saibou Secchaku, 1998 (Kabushiki Kaisha Youdosha) "Fibronectin" pp.62-63	37,83,119
Y	Roy Pollock et al., "Human SRF-related proteins: DNA-binding properties and potential regulatory targets.", Gene Dev. (1991) Vol.5, No.12A, pp.2327-2341	43,89,125
Y	Patrick Jacquemin et al., "A Novel Family of Developmentally Regulated Mammalian Transcription Factors Containing the TEA/ATTS DNA Binding Domain.", J. Biol. Chem. (1996) Vol.271, No.36, pp.21775-21785	49,95,131
Y	Patrick Jacquemin et al., "Human TEF-5 Is Preferentially Expressed in Placenta and Binds to Multiple Functional Elements of the Human Chorionic Somatomammotropin-B Gene Enhancer.", J. Biol. Chem. (1997) Vol.272, No.20, pp.12928-12937	50,96,132
Y	Yumiko Saga et al. "MesP1: a novel basic helix-loop- helix protein expressed in the nascent mesodermal cells during mouse gastrulation.", Development (1996) Vol.122, No.9, pp.2769-2778	51,97,133
Y	A. ELISABETH ERIKSSON et al., "Three-dimensional structure of human basic fibroblast growth factor.", Proc. Natl. Acad. Sci. USA (1991) Vol.88, No.8, pp.3441-3445	53-54
Y	Matthew Meyerson et al., "hEST2, the Putative Human Telomerase Catalytic Subunit Gene, Is Up-Regulated in Tumor Cells and during Immortalization.", Cell (1997) Vol.90, No.4, pp.785-795	144-148
Y	Sanjoy K. Bhattacharya et al., "A mammalian protein with specific demethylase activity for mCpG DNA.", Nature (February, 1999) Vol.397, No.6720, pp.579-583	22,68,104
Y	Jeffrey M. Isner et al., "Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization.", J. Clin. Invest. (May, 1999) Vol.103, No.9, pp.1231-1236	56
Y	Maria Adams et al., "Activators of Peroxisome Proliferator-activated Receptory Have Depot-specific Effects on Human Preadipocyte Differentiation.", J. Clin. Invest. (1997) Vol.100, No.12, pp.3149-3153	59-61,99-101
A	Jeffrey M. Leiden et al., "Beating the odds: a cardiomyocyte cell line at last.", J. Clin. Invest. (March, 1999) Vol.103, No.5, pp.591-592	1-150
A	Mark F. Pittenger et al., "Multilineage Potential of Adult Human Mesenchymal Stem Cells.", Science (April, 1999) Vol.284, No.5411, pp.143-147	1-150
A	B. E. Petersen et al., "Bone Marrow as a Potential Source of Hepatic Oval Cells.",	1-150

International application No.

PCT/JP00/07741

	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		
ategory*	Citation of document, with indication, where appropriate, of the relevant Science (May, 1999) Vol.284, No.5417, pp.1168		Relevant to claim No
A	Mark H. Soonpaa et al., "Formation of Nascent Into Disks Between Grafted Fetal Cardiomyocytes an Myocardium.", Science (1994) Vol.264, No.5155, pp.98-101	ercalated	1-150
	Science (1994) Vol.264, No.5155, pp.98-101 WO, 96/23059, A (GENZYME CORPORATION), 01 August, 1996 (01.08.96) & AU, 9647469, A & EP, 805853, A1 & US, 5736396, A & JP, 10-512756, A & US, 5942225, A		1-150

International application No.

PCT/JP00/07741

Box I O	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inter	mational search report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
	Claims Nos.: 135,137 because they relate to subject matter not required to be searched by this Authority, namely:
	They pertain to methods for treatment of the human body by therapy.
	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.:
Box II	because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a). Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
	rnational Searching Authority found multiple inventions in this international application, as follows:
1.	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. C1 C12N 5/06, 5/10, 15/09, A61K 31/203, 35/28, 38/19, 38/39, 38/45, 48/00, A61P 9/10, 41/00, C07K 16/28 C12P 21/08, C12Q 1/02, 1/48, G01N 33/577

B. 調査を行った分野

調査を行った最小限資料(国際特許分類(IPC))

Int. C17 C12N 5/00-5/28, 15/00-15/90, C07K 14/00-14/825

長小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)

MEDLINE (STN), WPI (DIALOG), BIOSIS (DIALOG), JICSTファイル (JOIS) GenBank/EMBL/DDBJ/GeneSeq, SwissProt/PIR/GeneSeq

と認められる文献	
	関連する
引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
WO, 00/06701, A (GENZYME CORPORATION) 10. 2月. 2000 (10. 02. 00) & AU, 9955454, A	1-5, 14, 17-1 8, 20-21, 52, 5 5, 58, 66-67, 9 8, 102-103, 13, 4, 136, 139-14 0, 149-150 22, 56, 68, 104
	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 WO,00/06701, A (GENZYME CORPORATION) 10.2月.2000(10.02.00)

区欄の続きにも文献が列挙されている。

□ パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献 (理由を付す)
- 「O」ロ頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以 上の文献との、当業者にとって自明である組合せに よって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査を完了した日 24.01.01 国際調査報告の発送日 06.02.01 国際調査機関の名称及びあて先 日本国特許庁 (ISA/JP) 本間 夏子 東京都千代田区霞が関三丁目4番3号 電話番号 03-3581-1101 内線 3488

国際出願番号 PCT/JP00/07741

		<u> </u>	
C(続き).	関連すると認められる文献		
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときり	は、その関連する箇所の表示	関連する 請求の範囲の番号
<u>X</u> Y	化学と生物, Vol. 37, No. 12 25. 12月. 1999 桜田 一洋「再生医療-Stem Cel 可能性」p. 772-774	1による朦器疾患治療の	1-5, 14, 17-1 8, 55, 136 56, 59-61, 99- 101
<u>X</u> Y	Shinji Tomita et al. "Autologous Transp Marrow Cells Improves Damaged Heart Fu Circulation(1999, Nov.)Vol. 100(suppl. II	unction.",	1-5, 14, 17-1 8, 20-21, 55, 6 6-67, 102-10 3, 136, 139-14 0, 149-150 22, 56, 59-61, 68, 99-101, 10
X Y	HUMAN CELL (日本ヒト細胞学会: 9月.1999 福田 恵一「骨髄細胞からの心筋細胞の誘う		1-5, 14-18, 20 -21, 23-26, 38 -42, 44-48, 5 2, 55, 58, 66-6 7, 69-72, 84-8 8, 90-94, 98, 1 02-103, 105-1 08, 120-124, 1 26-130, 134, 1 36, 138-140, 1 42-143, 149-1 50 22, 27-37, 43, 49-51, 53-54, 56, 59-61, 68, 73-83, 89, 95- 97, 99-101, 10 4, 109-119, 12 5, 131-133, 14 4-148

C(続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
$\frac{X}{Y}$	実験医学, Vol. 17, No. 11, 8月. 1999 福田 恵一「心筋細胞の新生・再生療法と細胞移植」p. 1324-1328	1-5, 14-18, 20 -21, 23-26, 39 -42, 44-48, 5 2, 55, 58, 66-6 7, 69-72, 85-8 8, 90-94, 98, 1 02-103, 105-1 08, 121-124, 1 26-130, 134, 1 36, 138-140, 1 42-143, 149-1 50 22, 27-37, 43, 49-51, 53-54, 56, 59-61, 68, 73-83, 89, 95- 97, 99-101, 10 4, 109-119, 12 5, 131-133, 14 4-148
<u>X</u> Y	Shinji Makino et al. "Cardiomyocytes can be generated from marrow stromal cells in vitro.", J. Clin. Invest. (1999, Mar.) Vol. 103, No. 5, p. 697-705	1-5, 14-18, 20 -21, 23-26, 39 -42, 44-48, 5 2, 55, 58, 66-6 7, 69-72, 85-8 8, 90-94, 98, 1 02-103, 105-1 08, 121-124, 1 26-130, 134, 1 36, 138-140, 1 42-143, 149-1 50 22, 27-37, 43, 49-51, 53-54, 56, 58-61, 68, 73-83, 89, 95- 97, 99-101, 10 4, 109-119, 12 5, 131-133, 14 4-148

国際調查報告

C(続き).	関連すると認められる文献	
引用文献の		関連する
カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	請求の範囲の番号
XY	循環器専門医, Vol. 6, No. 2, 1998 福田 恵一、他「骨髄細胞から心筋細胞への分化誘導とその形態学的, 電気生理学的, 分子生物学的解析」p. 185-190	1-5, 14-18, 20 -21, 23-26, 39 -42, 44-48, 5 2, 55, 58, 66-6 7, 69-72, 85-8 8, 90-94, 98, 1 02-103, 105-1 08, 121-124, 1 26-130, 134, 1 36, 138-140, 1 42-143, 149-1 50 22, 27-37, 43, 49-51, 53-54, 56, 58-61, 68, 73-83, 89, 95- 97, 99-101, 10 4, 109-119, 12 5, 131-133, 14 4-148
Y	DAVID T. BONTHRON et al. "Platelet-derived growth factor A chain: Gene structure, chromosomal location, and basis for alternative mRNA splicing.", Proc. Natl. Acad. Sci. USA (1988) Vol. 85, No. 5, p. 1492-1496	27–28, 73–74, 109–110
Y	Tucker Collins et al. "Cultured human endothelial cells express platelet-derived growth factor B chain:cDNA cloning and structural analysis.", Nature(1985)Vol. 316, No. 6030, p. 748-750	27-28, 73-74, 109-110
Y .	Robert A. Payson et al. "The human FGF-8 gene localizes on chromosome 10q24 and is subjected to induction by androgen in breast cancer cells.", Oncogene (1996) Vol. 13, No. 1, p. 47-53	29–30, 75–76, 111–112
Y	Yasuaki Itoh et al. "Cloning and sequence analysis of cDNA encoding the precursor of a human endothelium-derived vasoconstrictor peptide, endothelin: identity of human and porcine endothelin.", FEBS Lett. (1988) Vol. 231, No. 2, p. 440-444	31-32, 77-78, 113-114

C (続き).	関連すると認められる文献	田本土マ
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	PETER J. KRETSCHMER et al. "Cloning, Characterization and Developmental Regulation of Two Members of a Novel Human Gene Family of Neurite Outgrowth-promoting Proteins.", Growth Factors (1991) Vol. 5, No. 2, p. 99-114	33-34, 79-80, 115-116
Y	JOHN M. WOZNEY et al. "Novel Regulators of Bone Formation: Molecular Clones and Activities.", Science(1991) Vol. 242, No. 4885, p. 1528-1534	35-36, 81-82, 117-118
Y	実験医学別冊 Bio Science 用語ライブラリー 細胞接着, 1998 (株式会社 羊土社) 「フィブロネクチン」p.62-63	37, 83, 119
Y	Roy Pollock et al. "Human SRF-related proteins: DNA-binding properties and potential regulatory targets.", Gene Dev. (1991) Vol. 5, No. 12A, p. 2327-2341	43, 89, 125
Y	Patrick Jacquemin et al. "A Novel Family of Developmentally Regulated Mammalian Transcription Factors Containing the TEA/ATTS DNA Binding Domain.", J. Biol. Chem. (1996) Vol. 271, No. 36, p. 21775-21785	49, 95, 131
Y	Patrick Jacquemin et al. "Human TEF-5 Is Preferentially Expressed in Placenta and Binds to Multiple Functional Elements of the Human Chorionic Somatomammotropin-B Gene Enhancer.", J. Biol. Chem. (1997) Vol. 272, No. 20, p. 12928-12937	50, 96, 132
Y	Yumiko Saga et al. "MesP1:a novel basic helix-loop-helix protein expressed in the nascent mesodermal cells during mouse gastrulation.", Development (1996) Vol. 122, No. 9, p. 2769-2778	51, 97, 133
Υ .	A. ELISABETH ERIKSSON et al. "Three-dimensional structure of human basic fibroblast growth factor.", Proc. Natl. Acad. Sci. USA(1991) Vol. 88, No. 8, p. 3441-3445	53-54
Y	Matthew Meyerson et al. "hEST2, the Putative Human Telomerase Catalytic Subunit Gene, Is Up-Regulated in Tumor Cells and during Immortalization.", Cell(1997) Vol. 90, No. 4, p. 785-795	144-148
Y	Sanjoy K. Bhattacharya et al. "A mammalian protein with specific demethylase activity for mCpG DNA.", Nature(1999, Feb) Vol. 397, No. 6720, p. 579-583	22, 68, 104

C (統き) .	関連すると認められる文献	•
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
Y	Jeffrey M. Isner et al. "Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization.", J. Clin. Invest. (1999, May) Vol. 103, No. 9, p. 1231-1236	56
Y	Maria Adams et al. "Activators of Peroxisome Proliferator-activated Receptor γ Have Depot-specific Effects on Human Preadipocyte Differentiation.", J. Clin. Invest. (1997) Vol. 100, No. 12, p. 3149-3153	59-61, 99-101
A	Jeffrey M. Leiden et al. "Beating the odds:a cardiomyocyte cell line at last.", J. Clin. Invest. (1999, Mar.) Vol. 103, No. 5, p. 591-592	1–150
A	Mark F. Pittenger et al. "Multilineage Potential of Adult Human Mesenchymal Stem Cells.", Science(1999, Apr.) Vol. 284, No. 5411, p. 143-147	1-150
A	B. E. Petersen et al. "Bone Marrow as a Potential Source of Hepatic Oval Cells.", Science(1999, May) Vol. 284, No. 5417, p. 1168-1170	1-150
Α.	Mark H. Soonpaa et al. "Formation of Nascent Intercalated Disks Between Grafted Fetal Cardiomyocytes and Host Myocardium.", Science (1994) Vol. 264, No. 5155, p. 98-101	1-150
A	WO, 96/23059, A (GENZYME CORPORATION) 1. 8月. 1996 (01. 08. 96) & AU, 9647469, A & EP, 805853, A1 & US, 5736396, A & JP, 10-512756, A & US, 5942225, A	1-150

第1欄 請求の範囲の一部の調査ができないときの意見 (第1ページの2の続き)
法第8条第3項 (PCT17条(2)(a)) の規定により、この国際調査報告は次の理由により請求の範囲の一部について作成しなかった。
1. × 請求の範囲 <u>135,137</u> は、この国際調査機関が調査をすることを要しない対象に係るものである。 つまり、
治療による人体の処置方法である。
2. [請求の範囲 は、有意義な国際調査をすることができる程度まで所定の要件を満たしていない国際出願の部分に係るものである。つまり、
·
3. 請求の範囲 は、従属請求の範囲であってPCT規則6.4(a)の第2文及び第3文の規定に 従って記載されていない。
第Ⅱ欄 発明の単一性が欠如しているときの意見(第1ページの3の続き)
-
次に述べるようにこの国際出願に二以上の発明があるとこの国際調査機関は認めた。
1. 出願人が必要な追加調査手数料をすべて期間内に納付したので、この国際調査報告は、すべての調査可能な請求 の範囲について作成した。
2. 〕 追加調査手数料を要求するまでもなく、すべての調査可能な請求の範囲について調査することができたので、追加調査手数料の納付を求めなかった。
3. 出願人が必要な追加調査手数料を一部のみしか期間内に納付しなかったので、この国際調査報告は、手数料の納
付のあった次の請求の範囲のみについて作成した。
4. 出題人が必要な追加調査手数料を期間内に納付しなかったので、この国際調査報告は、請求の範囲の最初に記載されている発明に係る次の請求の範囲について作成した。
追加調査手数料の異議の申立てに関する注意
□ 追加調査手数料の納付と共に出願人から異議申立てがあった。
□ 追加調査手数料の納付と共に出願人から異議申立てがなかった。

様式PCT/ISA/210 (第1ページの綻棄 (1)) (1998年7月)