

APONTE O SEU SMARTPHONE,

Escaneie e ingresse!

Horários de Aula do prof. Massaki

,		SEG	TER	QUA	QUI	SEX	
MATUTINO	07h30 - 08h20				Linguagem de Programação <mark>Sala S01</mark>	Inovação e Des. De Prod.	
	08h20 - 09h10					Inovação e Des. De Prod.	
	09h20 - 10h10				Linguagem de Programação Lab06/4ºAndar		
	10h10 - 11h00	Análise de Dados				Inovação e Des. De Prod.	
	11h00 - 11h50	Análise de Dados				Inovação e Des. De Prod.	
VESPERTINO	13h15 - 14h05						
	14h05 – 14h55						
	15h05 – 15h55						
	15h55 - 16h45						
	16h45 - 17h35						
	17h35 - 18h25						
NOTURNO	18h30 - 19h20						
	19h20 – 20h10	SI aplic. à Gestão					
	20h10 – 21h00	SI aplic. à Gestão					
	21h10 - 22h00	Inf. Básica ADM	Metodologia Cientícica				
	22h00 - 22h50	Inf. Básica ADM	Metodologia Cientícica				

Linguagem de Programação - LP

Prof. Ms. Massaki de O. Igarashi massaki.igarashi@mackenzie.br

Semana 03

Ao longo da sua evolução o ser humano fez uso de símbolos para representar, coisas, animais, elementos, etc.

Historiadores acreditam que inicialmente os pastores começaram a colocar em potes ou sacolas pedrinhas para identificar a quantidade de animais de seu rebanho, onde cada pedrinha representava um animal

UMA PEDRA EQUIVALE A UMA OVELHA

Dessa forma, ao final do dia, ficava fácil verificar se todos os animais tinham sido devidamente recolhidos

QUANTIDADE DE PEDRAS EQUIVALE NÚMERO DE ANIMAIS DO REBANHO

Um número interessante para agrupamentos era o 10 (dez), uma vez que temos dez dedos nas mãos

UMA PEDRA EQUIVALE AO NÚMERO DEZ

Logo percebeu-se que um número mais interessante para aglomerar aves, ovelhas, bois e outras mercadorias seria o número 12 (doze), ou como conhecemos hoje a "dúzia". É fácil encontrar a metade, um terço e um quarto de uma dúzia!

UMA PEDRA EQUIVALE AO NÚMERO DOZE

E na sacola do pastor de ovelhas, uma pedrinha logo se transformou na representação de uma dúzia de ovelhas

UMA PEDRA EQUIVALE A DOZE OVELHAS

Agradecimentos pela colaboração dos professores:

Edson De Almeida Rego Barros, Melanie Lerner Grinkraut Ricardo Concilio, Ubirajara Carnevale De Moraes.

Agradecimentos pela colaboração dos professores:

Edson De Almeida Rego Barros, Melanie Lerner Grinkraut Ricardo Concilio, Ubirajara Carnevale De Moraes.

As linguagens de Programação também fazem uso de símbolos

OPERADORES ARITMÉTICOS

5 OPERADORES BÁSICOS

- + SOMA
- SUBTRAÇÃO
- * MULTIPLICAÇÃO
- / DIVISÃO
- % RESTO

OPERADOR %

Dado um **número inteiro de** dígitos, elaborar programa para exibir cada um de seus dígitos em uma linha do vídeo. Utilizar os operadores % (resto) e / (divisão inteira) para solução deste problema.

OPERADOR %

Dado um número inteiro de 3 dígitos,

elaborar um programa para exibir cada um

de seus dígitos em uma linha do vídeo.

Utilizar os operadores

% (resto) e / (divisão

inteira) para a solução

deste problema.

Acesse o Qrcode p/ visualizar o

código do exercício resolvido!

EXERCÍCIOS

- **01)** Dado um número inteiro de 4 dígitos na base binária, elaborar um programa para convertê-lo para um número inteiro na base decimal. Utilizar os operadores % (resto) e / (divisão inteira) para a solução deste problema.
- **02)** Dado um número inteiro de 5 dígitos, elaborar um programa para exibir cada um de seus dígitos em uma linha do vídeo. Utilizar os operadores % (resto) e / (divisão inteira) para a solução deste problema.
- **03)** Dado o preço de um produto (valor inteiro), elaborar um programa para verificar qual a menor quantidade de notas necessárias para efetuar o pagamento da compra. Considerar os valores das notas atuais (1, 2, 5, 10, 20, 50 e 100). Utilizar os operadores % (resto) e / (divisão inteira) para a solução deste problema.

DICA

29 Decimal = 11101 Binário

29

OPERADOR %

DICAS!

01) Conversão Binário p/ nº inteiro decimal.

$$\begin{array}{cccc}
\mathbf{1} \times 2^{0} &= 01 \\
\mathbf{0} \times 2^{1} &= 0 \\
\mathbf{1} \times 2^{2} &= 04 \\
\mathbf{1} \times 2^{3} &= 08 \\
\mathbf{1} \times 2^{4} &= 16
\end{array}$$

03) Dado o preço de um produto (valor inteiro), elaborar um programa para verificar qual a menor quantidade de notas necessárias para efetuar o pagamento da compra. Considerar os valores das notas atuais (1, 2, 5, 10, 20, 50 e 100). Utilizar os operadores % (resto) e / (divisão inteira) para a solução deste problema.

LINKS

https://www.terra.com.br/noticias/ciencia/desenhos-pre-historicos-ignorados-podem-revelar-o-mais-antigo-codigo-de-escrita,461d5ec0fd1f33df07280f9fd5c1bcc6qoorfm2o.html

https://br.pinterest.com/pin/859765385086609600/

https://br.pinterest.com/pin/489414684514417211/

REFERÊNCIAS BIBLIOGRÁFICAS

BARROS, E. A. R. Notas de aula. Instituto Federal de São Paulo - IFSP, Itapetininga, 2020.

HORSTMANN, Cay. **Conceitos de computação com o essencial de C++**. Tradução: Carlos A. L. Lisbôa e Maria Lúcia B. Lisbôa. Porto Alegre: Bookman Editora (Grupo A), 2005.p.36; p.157-199.Disponível em: < https://integrada.minhabiblioteca.com.br/#/books/9788577801770/pageid/155>

IGARASHI, M. de O. Notas de aula. Centro de ciências e Tecnologia, Universidade Presbiteriana Mackenzie, Campinas, 2020.

MANZANO, José Augusto Navarro Garcia. **Programação de Computadores com C/C++ 1. ed.**. São Paulo: Editora Érica, 2014. p.50 -62. Disponível em: https://integrada.minhabiblioteca.com.br/#/books/9788536519487/pageid/49

PAMBOUKIAN, Sergio Vicente D.; ZAMBONI, Lincoln César; BARROS, Edson de A. R. **Aplicações científicas em (C++):** da programação estruturada à programação orientada a objetos. 3. ed. São Paulo: Páginas & Letras, 2013. 577 p.

REFERÊNCIAS BIBLIOGRÁFICAS

https://www.upgrad.com/blog/why-learn-python/

https://spectrum.ieee.org/top-programming-languages-2021#toggle-gdpr

REFERÊNCIAS BIBLIOGRÁFICAS PYTHON e GOOGLE COLABORATORY

BORGES, Luiz Eduardo. Python para desenvolvedores: aborda Python 3.3. Novatec Editora, 2014.

VANDERPLAS, Jake. **Python data science handbook: Essential tools for working with data**. "O'Reilly Media, Inc.", 2016.

https://colab.research.google.com/notebooks/intro.ipynb