Weekly Activity & Quiz Week05 Activity 9/26 Review Test Submission: Week05 Quiz Ch04

Review Test Submission: Week05 Quiz Ch04

Started 9/26/15 9:23 PM Submitted 9/26/15 9:27 PM Due Date 9/26/15 11:59 PM Status Completed Attempt Score 12 out of 12 points	User	Keerthi Teja Konuri	
Test Week05 Quiz Ch04 Started 9/26/15 9:23 PM Submitted 9/26/15 9:27 PM Due Date 9/26/15 11:59 PM Status Completed Attempt Score 12 out of 12 points Time Elapsed 4 minutes out of 30 minutes	Course	CS 6364.001 - Artificial Intelligence - F15	
Started 9/26/15 9:23 PM Submitted 9/26/15 9:27 PM Due Date 9/26/15 11:59 PM Status Completed Attempt Score 12 out of 12 points Time Elapsed 4 minutes out of 30 minutes	Test	Week05 Quiz Ch04	
Submitted 9/26/15 9:27 PM Due Date 9/26/15 11:59 PM Status Completed Attempt Score 12 out of 12 points Time Elapsed 4 minutes out of 30 minutes	Started	9/26/15 9:23 PM	
Due Date 9/26/15 11:59 PM Status Completed Attempt Score 12 out of 12 points Time Elapsed 4 minutes out of 30 minutes	Submitted	9/26/15 9:27 PM	
Status Completed Attempt Score 12 out of 12 points Time Elapsed 4 minutes out of 30 minutes	Due Date	9/26/15 11:59 PM	
Attempt Score 12 out of 12 points Time Elapsed 4 minutes out of 30 minutes	Status	Completed	
Time Elapsed 4 minutes out of 30 minutes	Attempt Score	12 out of 12 points	

Question 1 12 out of 12 points

Select one best answer for each question.

Question	Correct Match	Selected Match
is sometimes called greedy local search because it grabs a good neighbor state without thinking ahead about where to go next.	G. Hill climbing	G. Hill climbing
is a peak that is higher than each of its neighboring states but lower than the global maximum.	☑ D.LocalMaximum	✓ D.LocalMaximum
results in a sequence of local maxima that is very difficult for greedy algorithms to navigate	⊘ J. Ridge	⊘ J. Ridge
is a flat area of the state-space landscape. It can be a flat local maximum, from which no uphill exit exists, or a shoulder, from which progress is possible.	C. Plateau	C. Plateau
hill climbing chooses at random from among the uphill moves; the probability of selection can vary with the steepness of the uphill move.	H. Stochastic	H.Stochastic
hill climbing implements stochastic hill climbing by generating successors randomly until one is generated that is better than the current state.	K.First- choice	K. First- choice
hill climbing con-ducts a series of hill-climbing searches from	A.	A.

randomly generated initial states, until a goal is found.	Random- Restart	Random- Restart
If there are few local maxima and Plateaux, hill climbing will find a good solution very quickly.	✓ A.Random-Restart	✓ A.Random-Restart
solution is to start by shaking hard (i.e., at a high temperature) and then gradually reduce the intensity of the shaking (i.e., lower the temperature).	F. Simulated-annealing	F. Simulated-annealing
search algorithm keeps track of k states rather than just one. It begins with k randomly generated states. At each step, all the successors of all k states are generated. If goal is found, it halts. Otherwise, it selects the k best successors and repeats.	✓ E.Local-beam	✓ E.Local-beam
algorithm is a stochastic hill-climbing search in which a large population of states is maintained. New states are generated by mutation and by crossover, which combines pairs of states from the population.	✓ I.Genetic	✓ I.Genetic
In nondeterministic environments, agents can apply search to generate Con-tingent plans that reach the goal regardless of which outcomes occur during execution	✓ B. And-Or	✓ B. And-Or
All Answer Choices		
A. Random-Restart		
B. And-Or		
C. Plateau		
D. Local Maximum		
E. Local-beam		
F. Simulated-annealing		
G. Hill climbing		
H. Stochastic		
I. Genetic		
J. Ridge		
K. First-choice		

 \leftarrow OK