More Moth CHY 10/18/24

		More over, $P_n \cong \mathbb{R}^{n+1}$ $\overrightarrow{\rho} = \begin{pmatrix} \rho_0 \\ \rho_1 \end{pmatrix}$	
Recall: P =	{ pobnomiuls with Pr coeffs to day en}		
	is a vector Space	P(6) = Po + Pit + Pat	

```
ex: Let C(R) := \{ \text{ continuous functions on } R \}
F(t) = t^2 + 2t, \quad g(t) = 5int \quad etc.
F(t) + g(t) = t^2 + 2t + 5int \quad e(R)
```

Fact: ((R) is a vector sponce (And It's infinite dimensional)

Note: Pn ((R); "Pn is a subset of ((R)"

Def &: A subspace of a vector Sp. V is a subset #CV S.E. OG&H

(3) IF \$\vec{u}_1, \vec{v}_2 \in H, then \$\vec{u}_1 \vec{v}_2 \in H. (3) \$\forall c \in R, c\vec{u}_2 \in H

ex: Pn < ((R) is a subspace 4, 20. Let P:= {all R-coap Polys}. Pn < P is a subspace

 $\underline{\mathbf{R}}^{2}$ is not a subspace of \mathbb{R}^{3} in "nonive" sense! $\mathbb{R}^{2} = \left\{ \begin{pmatrix} a \\ b \end{pmatrix} : a, b \in \mathbb{R} \right\} \cong \mathbb{H} := \left\{ \begin{pmatrix} a \\ b \end{pmatrix} : a, b \in \mathbb{R} \right\} \cong \mathbb{H} := \left\{ \begin{pmatrix} a \\ b \end{pmatrix} : a, b \in \mathbb{R} \right\}$ then: $\mathbb{H} \subset \mathbb{R}^{3}$ is a Subspace (Most be 0 to remain stopping)

(must have O vector to be subspace)

Prop: For v, v2 GV, spon {v,v2} =: H is a subspace of V.

Proof: (1) 0 = 0v, + 0v, so 0 ∈ HV

(2) Let v, v ∈ H, thus there is a charge of coefficients S.E. v = C, v, + c, v, ≠ w = a, v, + a,

Boli = a ((, vi + 6, vi) = (ac,) vi + (ac,) vi + (black)

Thm: If vi,..., vi eV, then span {vi... vi} is a subspace of V

ex: Let
$$\# = \left\{ \begin{pmatrix} a-3b \\ b-a \\ a \\ b \end{pmatrix} : a,b \in \mathbb{R} \right\}$$
 is a subspace of \mathbb{R}^4

$$\begin{pmatrix} \alpha - 3b \\ b - a \\ a \\ b \end{pmatrix} = \begin{pmatrix} a \\ -a \\ b \end{pmatrix} + \begin{pmatrix} -3 \\ b \\ b \end{pmatrix} = a \begin{pmatrix} -1 \\ -1 \end{pmatrix} + b \begin{pmatrix} -3 \\ 0 \\ 0 \end{pmatrix} + b \begin{pmatrix} -3 \\$$

4.2 Null spaces and Column spaces
Def: The null space of AEMat(m,n) is
Def: The null space of $A \in Mat(m,n)$ is $Nul(A) := \{\vec{x} \in \mathbb{R}^n : A\vec{x} = \vec{0}\}$
The Consult of Marking and a second
Proof 1: A o = o e B O . Let a, v eme(A). Then Acoto) = Ao + Ao = o, so a + o e Noll (A)
(3) For CER & JE Not (A), A CCJ = CAJ = OT