

MACHINE LEARNING

LESSON 5: Training II

CARSTEN EIE FRIGAARD

L05: Training II

Agenda

- Important: your feedback (positive as well as negative)...
- Course modification i): more OPTIONAL exercices
- Course modification ii): revision to 'Microlearning' (only one lecure session, beginning of class)
- Installing keras is slow/buggy, see WIKI...
- ▶ L04 Training I: Training a linear regression model OPTIONAL: Exercise: L04/linear_regression_1.ipynb OPTIONAL: Exercise: L04/linear_regression_2.ipynb
- L05 Training II: Training and model concepts

Exercise: L05/gradient_descent.ipynb

Exercise: L05/capacity_under_overfitting.ipynb

Exercise: L05/generalization_error.ipynb

OPTIONAL: Exercise: L05/train_test_split.ipynb

RESUMÉ: Metrics

Precision, recall and accuracy, F_1 -score, and confusion matrix

precision,
$$p = \frac{TP}{TP+FP}$$
recall (or sensitivity),
$$r = \frac{TP}{TP+FN}$$
accuracy,
$$a = \frac{TP+TN}{TP+TN+FP+FN}$$

$$F_1\text{-score}, \qquad F_1 = \frac{2pr}{D+F}$$

Confusion Matrix, binary-class data,

$M_{confusion} =$		
cornusion	actual	
	true	false
predicted true	TP	FP
predicted true predicted false	FN	TN

RESUMÉ: Covariance Matrix

Data matrix for a two-dimensional feature space

$$\mathbf{X} = \begin{bmatrix} x_1^{1_1} & \lambda_2 \\ x_1^{(1)} & x_2^{(1)} \\ x_1^{(2)} & x_2^{(2)} \\ \vdots & \vdots & \vdots \\ x_1^{(n)} & x_2^{(n)} \end{bmatrix} = \begin{bmatrix} 0.35 & -7.62 \\ -4.99 & 13.79 \\ \vdots & \vdots \\ 9.54 & -25.64 \\ 4.21 & -2.25 \end{bmatrix}$$

Covariance matrix, for the two-dimensional feature space

$$\mathbf{\Sigma}(\mathbf{X}) = \begin{bmatrix} \sigma(\lambda_1, \lambda_1) & \sigma(\lambda_1, \lambda_2) \\ \sigma(\lambda_2, \lambda_1) & \sigma(\lambda_2, \lambda_2) \end{bmatrix} = \begin{bmatrix} \sigma(\lambda_1)^2 & \sigma(\lambda_1, \lambda_2) \\ \sigma(\lambda_2, \lambda_1) & \sigma(\lambda_2)^2 \end{bmatrix}$$

$$\sigma(\lambda_1, \lambda_2) = \frac{1}{n} \sum_{i=1}^{n} (x_1^{(i)} - \mu_{\lambda_1})(x_2^{(i)} - \mu_{\lambda_2})$$
Generated I

with

Example: X; a 100 x 2 matrix, see fig..

$$\mathbf{\Sigma}(\mathbf{X}) = \begin{bmatrix} 13.2 & -28.8 \\ -28.8 & 93.3 \end{bmatrix}$$

- Σ is real and symmetric,
- diagonal: the (auto)-variance of a feature, $\sigma(\lambda_i)^2$
- Pearson's r: cross-correlation via cross-covar,
- similar dimension as Confusion matrix,
- python implementation: see L02/Extra/covariance_matrix_demo.ipynb.

RESUMÉ: Covariance Matrix, Take II

For a dataset, X; features cat and dog; classifying cat/non-cat

Covariance matrix (dim = features x features)

$$\mathbf{\Sigma}(\mathbf{X}) = \begin{bmatrix} \sigma_{\text{cat,cat}} & \sigma_{\text{cat,dog}} \\ \sigma_{\text{dog,cat}} & \sigma_{\text{dog,dog}} \end{bmatrix} = \begin{bmatrix} & \text{cat} & \text{dog} \\ \hline \text{cat} & \sigma_{\text{cat}}^2 & \sigma_{\text{cat,dog}} \\ \hline \text{dog} & \sigma_{\text{dog,cat}} & \sigma_{\text{dog}}^2 \end{bmatrix}$$

$$\sigma_{\text{cat,dog}} = \frac{1}{n} \sum_{i=1}^{n} (x_{\text{cat}}^{(i)} - \mu_{\text{cat}}) (x_{\text{dog}}^{(i)} - \mu_{\text{dog}})$$
Example $\mathbf{\Sigma}(\mathbf{X}) = \begin{bmatrix} 13.2 & -28.8 \\ -28.8 & 93.3 \end{bmatrix}$

Example
$$\Sigma(X) = \begin{vmatrix} 13.2 & -28.8 \\ -28.8 & 93.3 \end{vmatrix}$$

Confusion matrix, cat/non-cat

$$\begin{aligned} \text{(dim = classes x classes)} & & \textit{actual} \\ \mathbf{M} = \begin{bmatrix} \text{TP FP} \\ \text{FN TN} \end{bmatrix} = & & \text{cat} & \text{non-cat} \\ \hline & \text{cat} & \text{T, cat} & \text{F, cat} \\ \hline & \text{dog} & \text{F, dog} & \text{T, non-cat} \end{aligned}$$

RESUMÉ: Covariance Matrix

python implementation: see L02/Extra/covariance_matrix_demo.ipynb.

not so scarry, afterall...

```
# Covariance
    def cov(x, y, bias=True):
         assert len(x) == len(y)
         xbar, ybar = x.mean(), y.mean()
         if bias:
             n=len(x)
        else:
             n=len(x) - 1
         assert n>0
         return np.sum((x - xbar)*(y - ybar))/n
    # Covariance matrix
    def cov_mat(X, bias=True):
         return np.array([ \
14
15
           [cov(X[0], X[0], bias), cov(X[0], X[1], bias)], \setminus
           [cov(X[1], X[0], bias), cov(X[1], X[1], bias)] \setminus
16
         ])
```

RESUMÉ: Training a Linear Regressor

Minimizing the Linear Regression: The argmin concept

Our linear regression cost function was

$$J(\mathbf{X}, \mathbf{y}; \mathbf{w}) = \frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 \quad \uparrow$$

and training amounts to finding a value of \mathbf{w} , that minimizes J. This is denoted as

$$\mathbf{w}^* = \operatorname{argmin}_{\mathbf{w}} J(\mathbf{X}, \mathbf{y}; \mathbf{w})$$

= $\operatorname{argmin}_{\mathbf{w}} \frac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2$

and by minima, we naturally hope for

thought for non-linear models this cannot be guarantied, hitting some

local minimum

RESUMÉ: L04/linear_regression_1.ipynb

Training: The Closed-form Linear-Least-Squares Solution

To solve for \mathbf{w}^* in closed form, we find the gradient of J with respect to \mathbf{w}

$$\nabla_{\mathbf{w}} J = \left[\frac{\partial J}{\partial w_1}, \frac{\partial J}{\partial w_2}, \dots, \frac{\partial J}{\partial w_m} \right]^{\top}$$

Taking the partial deriverty $\partial/\partial_{\mathbf{w}}$ of the J via the gradient (nabla) operator

$$\nabla_{\mathbf{w}} J(\mathbf{X}, \mathbf{y}; \mathbf{w}) = \mathbf{X}^{\top} (\mathbf{X} \mathbf{w} - \mathbf{y}) = 0$$
$$0 = \mathbf{X}^{\top} \mathbf{X} \mathbf{w} - \mathbf{X}^{\top} \mathbf{y}$$

with a small amount of matrix algebra, this gives the normal equation

$$\begin{aligned} \mathbf{w}^* &= \operatorname{argmin}_{\mathbf{w}} \ \tfrac{1}{2} ||\mathbf{X}\mathbf{w} - \mathbf{y}||_2^2 \\ &= \left(\mathbf{X}^\top \mathbf{X}\right)^{-1} \, \mathbf{X}^\top \mathbf{y} \end{aligned}$$

Numerical Solution: Gradient Descent (GD)

The GD Algorithm

First, find the deriverty of J, via $\nabla_{\mathbf{w}}J$, that after some matrix algebra gives

$$\nabla_{\mathbf{w}}J(\mathbf{w}) = \frac{2}{m}\mathbf{X}^{\top}(\mathbf{X}\mathbf{w} - \mathbf{y})$$

Then move along in the opposite direction of this gradient, taking a step of size η

$$\mathbf{w}^{(ext{step }N+1)} = \mathbf{w}^{(ext{step }N)} - \eta
abla_{\mathbf{w}} J(\mathbf{w})$$

The SG-algo in python code

for iteration in range(n_iterations):
 gradients=2/m*X_b.T.dot(X_b.dot(theta)-y)
 theta=theta - eta * gradients

NOTE: The X_b is a X with a all-1 column prepended, and using the contant factor 2/m instead of just 1/2 and with $\mathbf{w} = \theta$

Learning rate, η

And understanding Scikit-learn's SGDRegressor

Scikit-learn η updating schemes: constant, adaptive, invscaling, optimal

The SGDRegressor in Scikit-learn has a *hyperparameter* for this:

learning_rate: string, optional

Learning rate, η

And understanding Scikit-learn's SGDRegressor

The SGDRegressor constructor in Scikit-learn

```
class sklearn.linear_model.SGDRegressor(
    loss ='squared_loss', penalty ='12',
    alpha =0.0001.
                          l1_ratio = 0.15.
                        shuffle
    tol =None,
                                   =True,
                   epsilon =0.1,
  verbose =0.
                          power_t =0.25,
    eta0 = 0.01.
   n_iter_no_change=5, warm_start =False,
7
    fit_intercept =True, max_iter
                                   =None.
    average =False, n_iter
                                    =None
    random_state =None, learning_rate='invscaling',
    early_stopping =False,
                         validation_fraction=0.1
```

Important for now...(hyperparam search in L07)

- ▶ loss, penalty (our MSE and \mathcal{L}_2 norm),
- eta0, learning_rate,
- shuffle, early_stopping,
- and perhaps random_state.

Stochastic Gradient Descent (SGD) Method

Exercise: gradient_descent.ipynb

The problem with the GD Algorithm, it takes \boldsymbol{X} as input, the complete dataset

$$\nabla_{\mathbf{w}}J(\mathbf{w}) = \frac{2}{m}\mathbf{X}^{\top}(\mathbf{X}\mathbf{w} - \mathbf{y})$$

That's a big mouthful to matrix transpose and multiply! Introducing a per-data-sample, or stochastic, method

$$abla_{\mathbf{w}} J(\mathbf{w})^{(i)} = \frac{2}{m} \mathbf{x}^{(i)\top} \left(\mathbf{x}^{(i)} \mathbf{w} - \mathbf{y} \right)^{-1}$$

```
for epoch in range(n_epochs):

for i in range(m):

...

r = np.random.randint(m)

xi = X_b[r:r+1]

yi = y[r:r+1]

grads = 2*xi.T.dot(xi.dot(theta)-yi)

eta = ...

theta = ...
```

NOTE: Notice the use of epoch in SGD, that is different from iteration in GD.

Model capacity and under/overfitting

Exercise: capacity_under_overfitting.ipynb

Dummy and Paradox classifier:

capacity fixed \sim 0, cannot generalize at all!

Linear regression for a polynomial model:

capacity \sim degree of polynomial, x^n

Polynomial linear reg. fit for underlying model: cos(x)

- underfitting: capacity of model too low,
- overfitting: capacity to high.

Generalization Error

Exercise: generalization_error.ipynb

RMSE-capacity plot for lin. reg. with polynomial features (capacity = degree of poly)

Inspecting the plots from [HOML] and [DL], extracting the concepts

- training/generalization error,
- generalization gab,
- underfit/overfit zone,
- optimal capacity (best-model, early stop).

