Infinitesimal Calculus 3

Lecture 18, Sunday January 1, 2023 Ari Feiglin

Definition 18.1:

A symmetric matrix $A \in \mathbb{R}^{n \times n}$ is

- (1) Positive if $k^t A k > 0$ for all $0 \neq k \in \mathbb{R}^n$.
- (2) Negative if $k^t A k < 0$.
- (3) Nonnegative if $k^t Ak > 0$.
- (4) Nonpositive if $k^t A k \leq 0$.
- (5) Nonsigned if there are vectors k_1 and k_2 such that $k_1^t A k_1 > 0$ and $k_2^t A k_2 < 0$.

Proposition 18.2:

A symmetric matrix A is positive if and only if for every $1 \le k \le n$, M_k is positive where M_k is defined as

$$M_k = \det \begin{pmatrix} a_{11} & \cdots & a_{1k} \\ \vdots & \ddots & \vdots \\ a_{k1} & \cdots & a_{kk} \end{pmatrix}$$

This proof is pretty lengthy, so we will not prove it.

Proposition 18.3:

A symmetric matrix A is negative if and only if -A is positive.

The proof of this is trivial. But this means that A is negative if and only if $(-1)^k M_k > 0$ for all k.

Proposition 18.4:

Suppose $f: \mathbb{R}^n \longrightarrow \mathbb{R}$ is defined and in C^2 in a neighborhood of $x^0 \in \mathbb{R}^n$. Further suppose x^0 is a critical point of f. Let H(x) be the Hessian matrix of f, if

- (1) If $H(x^0)$ is positive, then x^0 is a local minimum.
- (2) If $H(x^0)$ is negative, then x^0 is a local maximum.
- (3) If $H(x^0)$ is nonsigned, then x^0 is not a local maximum nor minimum.
- (4) Otherwise, it is unknown.

Proof:

By Taylor's expansion we have that:

$$f(x^{0} + k) = f(x^{0}) + \nabla f \big|_{x_{0}} \cdot k + k^{t} H(x^{0} + \theta k) k = f(x^{0}) + k^{t} H(x^{0} + \theta k) k$$

Since f is in C^2 , its second order derivatives are continuous, if $k^t H(x^0)k > 0$ then it is positive in a neighborhood of x^0 , and so $f(x^0 + k) > f(x^0)$ in this neighborhood, and so x^0 is a local minimum. And similarly if H is negative. If $H(x^0)$ is nonsigned, we can take k such that $k^t H k > 0$ since we can scale k we can assume it has any norm, that is we can find such a k in any neighborhood of x^0 . So for any neighborhood of x^0 we can find a k such that $f(x^0 + k) > f(x^0)$ and similarly we can find a k where $f(x^0 + k) < f(x^0)$ so x^0 is not a minimum nor a maximum.

Definition 18.5:

Suppose (X, ρ) is a metric space and $T: X \longrightarrow X$ is a contraction mapping if there exists a 0 < k < 1 such that for every x_1, x_2 :

$$\rho(T(x_1), T(x_2)) \le k \, \rho(x_1, x_2)$$

Theorem 18.6:

If T is a contraction mapping over a complete metric space then T has a unique fixed point.

Proof:

Let $x_0 \in X$, then we define $x_{i+1} = T(x_i)$, that is $x_n = T^n(x_0)$. Then notice that

$$\rho(x_i, x_{i+1}) = \rho(T(x_{i-1}), T(x_i)) \le k \, \rho(x_{i-1}, x_i)$$

And so on we have that

$$\rho(x_i, x_{i+1}) \le k^i \cdot \rho(x_0, T(x_0)) = k^i \cdot c$$

Notice then that if n < m:

$$\rho(x_n, x_m) \le \sum_{j=n}^{m-1} \rho(x_j, x_{j+1}) \le c \sum_{j=n}^{\infty} k^j$$

since 0 < k < 1, the infinite series converges and thus the sum on the right converges to 0 as the tail of a convergent series. That is, for any $\varepsilon > 0$ there is an N such that

$$c\sum_{j=n}^{\infty}k^{j}<\varepsilon$$

and threfore for any $N \leq n, m, \rho(x_n, x_m) < \varepsilon$, so $\{x_n\}_{n=1}^{\infty}$ is a Cauchy sequence, which converges to $x \in X$ since X is complete.

Since T is a contraction it is continuous, so:

$$0 = \lim \rho(T(x), T(x_n)) = \lim \rho(T(x), x_n)$$

And:

$$\rho(T(x), x) \le \rho(T(x), x_n) + \rho(x_n, x)$$

which converges to 0 so $\rho(T(x), x) = 0$ so T(x) = x as required.

Now suppose $T(x_1) = x_1$ and $T(x_2) = x_2$ then

$$\rho(x_1, x_2) = \rho(T(x_1), T(x_2)) < k \, \rho(x_1, x_2)$$

which means that $k \ge 1$ which is a contradiction, or $\rho(x_1, x_2) = 0$, ie $x_1 = x_2$. So the fixed point is unique.

Lemma 18.7:

Suppose $S \subseteq \mathbb{R}^n$ is a neighborhood of $x_0 \in \mathbb{R}^n$, and $f \colon S \longrightarrow \mathbb{R}^n$. Suppose f's components are in C^1 and $df\big|_{x_0} = 0$ then for every $\varepsilon > 0$ there is a r > 0 such that for every $x_1, x_2 \in B_r(x_0)$, $||f(x_1) - f(x_2)|| < \varepsilon ||x_1 - x_2||$.

Proof:

Suppose $f(x) = (f_1(x), \dots, f_n(x))$ where $x \in S$. Then for some $0 \le \theta \le 1$, $f_k(x) = f_k(x_0) + \nabla f_k(x_0 + \theta h)$. Since $\nabla f_k(0)$ and $f_k \in C^1$, so there exists a radius r > 0 such that for all $x \in B_r(x_0)$:

$$\|\nabla f_k(x)\| < \frac{\varepsilon}{\sqrt{n}}$$

$$||f_k(x) - f_k(x_0)|| = ||\nabla f_k \cdot (\theta(x - x_0))|| \le ||\nabla f_k|| ||x - x_0|| \le \frac{\varepsilon}{\sqrt{n}} \cdot ||x - x_0||$$

And by Cauchy-Schwarz:
$$\|f_k(x) - f_k(x_0)\| = \|\nabla f_k \cdot (\theta(x - x_0))\| \le \|\nabla f_k\| \|x - x_0\| \le \frac{\varepsilon}{\sqrt{n}} \cdot \|x - x_0\|$$
 And so:
$$\|f(x) - f(x_0)\|^2 = \sum_{k=1}^n \|f_k(x) - f_k(x_0)\|^2 \le \sum_{k=1}^n \frac{\varepsilon^2}{n} \|x - x_0\|^2 = \varepsilon^2 \|x - x_0\|^2$$
 so $\|f(x) - f(x_0)\|^2 \le \varepsilon \|x - x_0\|$ as required.