USN					

RV COLLEGE OF ENGINEERING®

(An Autonomous Institution affiliated to VTU)

IV Semester B. E. Fast Track Examinations Oct-2020

Computer Science and Engineering THEORY OF COMPUTATION

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Answer all questions from Part A. Part A questions should be answered in first three pages of the answer book only.
- 2. Answer FIVE full questions from Part B. In Part B question number 2, 7 and 8 are compulsory. Answer any one full question from 3 and 4 & one full question from 5 and 6

PART-A

1	1.1	Find a string of minimum length in {0,1}* not in the language	0.1
	4.0	corresponding to the regular expression 0*(100*)*1*	01
	1.2	Consider the two regular expressions	
		$r=0^* + 1^*$ and $s = 01^* + 10^* + 1^*0 + (0^*1)^*$	
		Find a string corresponds to s but not in r	01
	1.3	An NFA with states 1 to 5 and input alphabet $\{a, b\}$ has the following	
		transition table.	
		$q \mid \delta (q,a) \mid \delta(q,b)$	
		$\overrightarrow{}_{1} \mid \{1,2\} \mid \{1\}$	
		2 {3} {3}	
		3 {4} {4}	
		4 {4} {Ø}	
		5 Φ {5}	
		Draw the transition diagram and calculate $\delta^*(1, abaab)$	02
	1.4	Let $M = (Q, \Sigma, \delta, q_0.F)$ be an NFA. Show that for any $q \in Q$ and a	
		$\Sigma, \delta^*(q,a) = \delta(q,a)$	01
	1.5	Suppose M is an NFA - \in accepting $\subseteq \Sigma^*$. Describe how to modify M to	
		obtain an $NFA = \text{recognizing rev}(L) = \{x^r x\} \in L\}$	01
	1.6	Consider two $NFA = $ below. Decide whether the two $NFA = $ accept the	
		same language and give reasons for your answer.	
		Ca, Cabo	
		the same of the same	
		76 20 76 20	
		€ M, M2-	
			01
	1.7	Describe the decision algorithm to answer the following equation	
		"Given a regular expression γ and DFAM, are the corresponding	
		language are same?"	01
	1.8	Consider the CFG with productions	
		$S \rightarrow aSbScS aScSbS bSaScS bScSaS cSbSaS \in .$	
		Does this grammar generates the language.	
		$L = \{x x \in \{a, b, c\}^* \ \& \ n_a(x) = n_b(x) = n_{c(x)} \}$. Justify your answer.	02
	1.9	Show that <i>CFG</i> with productions $S \rightarrow a Sa bSS SSb SbS$ is ambiguous	01
1	1.7	Show that of a with productions 3-7 apalpos pools to annoignous	1 0 1

1.10	In the <i>CFG</i> below, identify the null productions and the unit productions. $S \rightarrow ABCBCDA, A \rightarrow CD, B \rightarrow Cb, C \rightarrow a \in, D \rightarrow bD \in$.	01
1.11	Show that if L is accepted by a PDA in which no symbols are ever removed from the stack then L is regular	01
1.12	If <i>L</i> is <i>CFL</i> then there exists a <i>DPDA</i> which accepts <i>L</i> . is this statement true or false. Justify your answer.	01
1.13	Describe the language generated by the regular grammar with productions $S \rightarrow aA bC b$, $A \rightarrow aS bB$, $B \rightarrow aC \setminus bA a$, $C \rightarrow aB bS$.	01
1.14	Given below a <i>DFA</i> accepting the language L , find a regular grammar generating $L - \{ \epsilon \}$.	
	Do o Bop Op p	
1.15	Give the unrestricted grammar to generate the language L over	01
	$\Sigma = \{a, b, c\}, \text{ where } L = \{w n_a(w) = n_b(w) = n_c(w)\}.$	02
1.16	Give the transition diagram of a turing machine that accepts $L = \{w w \in \{a, b\}^* \& w \in \{a, b\}^* aba$.	02

PART-B

b Transition diagrams for two DFA 's $M1$ and $M2$ are shown below. Draw the DFA recognizing each of the following languages. i) $L1 \cup L2$ ii) $L1 - L2$ M1 M2 c Find a minimum state DFA for the below DFA	2	а	Find the equivalent DFA to the given $NFA-\epsilon$ whose transition diagram is as follows.	
i) $L1 \cup L2$ ii) $L1 - L2$ M1 M2 C Find a minimum state DFA for the below DFA		b		08
c Find a minimum state DFA for the below DFA			the DFA recognizing each of the following languages. i) $L1 \cup L2$ ii) $L1 - L2$	
04		С		04
			O,9	04

3	a b	State and prove pumping lemma for regular languages. Apply this lemma to show that $L = \{0^n n \text{ is prime}\}$ is not regular Find the <i>CFG</i> to generate each of the following languages: i) $L = \{a^i b^j c^k i = j + k\}$	08
	c	ii) $L = \{a^i b^j c^k i = jor j = k\}$ Simplify the below <i>CFG</i> with productions	04
		$S \rightarrow ABCBCDA, A \rightarrow CD, B \rightarrow Cb, C \rightarrow \alpha \in, D \rightarrow bD \in$	04
		OR	
4	а	Find the language generated by the below grammar $S \rightarrow SS bTT TbT TTb \in$	
	b	$T \rightarrow aS SaS Sa a$ Show that the <i>CFG</i> with productions	04
	С	$S \rightarrow S(S) \mid \epsilon$ is unambiguous. For the <i>CFG</i> , <i>G</i> given below, find a <i>CFG</i> , G^{\mid} in <i>GNF</i> generating $L(G) - \{\epsilon\}$.	04
		$S \rightarrow AaA cA BaB, A \rightarrow aaBa CDA aa DC, B \rightarrow bB bAB bb aS, C \rightarrow Ca bC D, D \rightarrow bD \in$	08
5	a b	Let L be $L(M1)$ for some PDA with final state, $M1 = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$, prove that there exists an empty stack PDA , $M2$ such that $L(M1) = L(M2)$. Construct final state PDA to accept $L = \{a^i b^j c^k i = jor j = k\}$. Convert it into equivalent empty stack PDA . Define $DPDA$. Construct $DPDA$ to accept the language $L = \{x \mid x \in \{a,b\}^* \ \& n_a(x) > n_b(x)\}$. Illustrate the operation of this machine on the input string abbabaa	09
		OR	
6	a	How to find an equivalent <i>CFG</i> from a given <i>PDA</i> . Find the equivalent <i>CFG</i> to the <i>PDA</i> whose transition diagram is shown below. Show that the string <i>abacaba</i> is accepted by the <i>PDA</i> and it is generated by the equivalent <i>CFG</i> .	
		6,2 b2 b1 bb bb	
			08
	b	Apply pumping lemma for CFL to show that the language $L = \{a^i b^j c^k i < j < k \text{ is not context free.} \}$	03
	c	Consider two languages over $\Sigma = \{a, b, c\}$. $L1 = \{a^i b^j c^k i < j \text{ and } i < j < j \text{ and } i < j < j < j < j < j < j < j < j < j <$	03
		$L2 = \{a^i b^j c^k i < k.$ Show that $L1$ and $L2$ are context free language but $L1 \cap L2$ and $L1$ are not context free.	05

7	a b	Construct <i>LBA</i> to accept the language $L = \{ww w \in \{a,b\}^*$. Show that the string abbabb is accepted Find the equivalent left linear grammar to the language accepted by the following <i>DFA</i> .	08
		A b De a	
			05
	С	Show that all regular grammars are linear but every linear grammars need not be regular.	03
8	a	Construct a turing machine to accept the language	1
		$L = \{w w \in \{a, b\}^* \& n_a(w) = n_b(w)$. Trace the machine for the string	1
		abbbabaa.	08
	b	Find the unrestricted grammar to generate the language	
		$L = \{w w \in \{a, b\}^*$. Show the derivation for the string <i>baabaa</i> .	04
	c	If L1 and L2 are recursively enumerable language over Σ then L1 \cup L2	
		and $L1 \cap L2$ are also recursively enumerable.	04