Sistemas Digitales

Sistemas de Numeración, Operaciones y Códigos

Números Decimales

Compuesto por diez números: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

El sistema de numeración decimal es un sistema en base 10.

Estructura de pesos de los números decimales

A modo de ejemplo, expresar el número veintitrés:

Sistema Decimal

Sistema de numeración en base 10

El valor de un número decimal es la suma de los dígitos después de haber multiplicado cada dígito por su peso.

Ejemplo:

Expresar el número decimal 47 como una suma de valores de cada dígito.

Como indican sus respectivas posiciones, el dígito 4 tiene un peso de 10, que es 10¹. El dígito 7 tiene un peso de 1, que es 10⁰.

$$47 = (4 \times 10^{1}) + (7 \times 10^{0})$$
$$= (4 \times 10) + (7 \times 1) = 40 + 7$$

Ejemplo:

Expresar el número decimal 568,23 como una suma de valores de cada dígito.

El dígito 5 de la parte entera tiene un peso de 100, que es 10^2 , el dígito 6 tiene un peso de 10, que es 10^1 , el dígito 8 tiene un peso de 1, que es 10^0 ; el dígito 2 de la parte fraccionaria tiene un peso de 0,1, es decir, 10^{-1} , y el dígito 3 de la parte fraccionaria tiene un peso de 0,01, que es 10^{-2} .

$$568,23 = (5 \times 10^{2}) + (6 \times 10^{1}) + (8 \times 10^{0}) + (2 \times 10^{-1}) + (3 \times 10^{-2})$$

$$= (5 \times 100) + (6 \times 10) + (8 \times 1) + (2 \times 0,1) + (3 \times 0,01)$$

$$= 500 + 60 + 8 + 0,2 + 0,03$$

Números Binarios

El sistema de numeración binario utiliza dos dígitos (bits).

- El sistema de numeración binario es un sistema en base 2.
- Este sistema también es de valor posicional, en donde cada bit tiene su propio peso expresado como potencia de 2.

$$2^{n-1} \dots 2^3 \ 2^2 \ 2^1 \ 2^0, \ 2^{-1} \ 2^{-2} \ 2^{-3} \dots 2^{-n}$$
Coma binaria

donde n es el número de bits a partir de la coma binaria

Ejemplo:

¿Cuántos bits se requieren para contar de 0 a 15?

Máximo número decimal = $2^n - 1$

15 =
$$2^n - 1 \rightarrow n = 4$$
 (Se requieren 4 bits)

Número Decimal	Número Binario						
0	0	0	0	0			
1	0	0	0	1			
2	0	0	1	0			
3	0	0	1	1			
4	0	1	0	0			
5	0	1	0	1			
6	0	1	1	0			
7	0	1	1	1			
8	1	0	0	0			
9	1	0	0	1			
10	1	0	1	0			
11	1	0	1	1			
12	1	1	0	0			
13	1	1	0	1			
14	1	1	1	0			
15	1	1	1	1			

Conversión Binario a Decimal

Pesos Binarios

Potencias positivas de dos (Números Enteros)							Potencias negativas de dos (Números Fraccionarios)							
28	2 ⁷	2 ⁶	2 ⁵	2^4	2^3	2^2	2^1	2^0	2-1	2^{-2}	2^{-3}	2^{-4}	2^{-5}	2^{-6}
256	128	64	32	16	8	4	2	1	1/2 0.5	1/4 0.25	1/8 0.125	1/16 0.0625	1/32 0.03125	1/64 0.015625

Ejemplo: Convertir el número entero binario 1101101 a decimal.

Se determina el peso de cada bit que está a 1, y luego se obtiene la suma de los pesos para obtener el número decimal.

Peso:
$$2^6$$
 2^5 2^4 2^3 2^2 2^1 2^0

Número binario: 1 1 0 1 1 0 1

Peso × Número binario: 2^6 2^5 0 2^3 2^2 0 2^0

Sumatoria = 64 + 32 + 0 + 8 + 4 + 0 + 1 = 109

Ejemplo: Convertir el número binario fraccionario 0,1011 a decimal.

Se determina el peso de cada bit que está a 1, y luego se suman los pesos para obtener la fracción decimal.

Peso:
$$2^{0}$$
, 2^{-1} 2^{-2} 2^{-3} 2^{-4}

Número binario: 0 , 1 0 1 1

Peso × Número binario: 0 , 2^{-1} 0 2^{-3} 2^{-4}

Sumatoria = 0 , $0,5$ + 0 + $0,125$ + $0,0625$ = $0,6875$

Conversión Decimal a Binario

Método de la suma de pesos

Halle los pesos binarios que sumados darán dicho número decimal.

Ejemplo: Convertir el número decimal 9 a un número binario.

$$9 = 8 + 1 = 2^3 + 2^0$$

Analíticamente: 2^3 2^2 2^1 2^0

1 0 0 1

Ejercicios:

Convertir a binario los siguientes números decimales (a) 12 (b) 25 (c) 58 (d) 82

(a)
$$12 = 8 + 4 = 2^3 + 2^2$$
 1100
(b) $25 = 16 + 8 + 1 = 2^4 + 2^3 + 2^0$ 11001
(c) $58 = 32 + 16 + 8 + 2 = 2^5 + 2^4 + 2^3 + 2^1$ 111010
(d) $82 = 64 + 16 + 2 = 2^6 + 2^4 + 2^1$ 1010010

Conversión Decimal a Binario

Método de la división sucesiva por 2

Divida el número decimal entre 2 hasta obtener un cociente igual a 0. Los restos forman el número binario.

Ejemplo: Convertir el número decimal 12 a un número binario.

Ejercicios:

Convertir a binario los siguientes números decimales

(a) 19 (b) 45

Conversión de fracciones decimales a binario Método suma de pesos

Ejemplo: Convertir el número decimal fraccionario 0,625 a un número binario.

$$0,625 = 0,5 + 0,125 = 2^{-1} + 2^{-3} = 0,101$$

Analíticamente: 2^{0} , 2^{-1} 2^{-2} 2^{-3}

0, 1 0 1

Conversión de fracciones decimales a binario Método multiplicación sucesiva por 2

Ejemplo: Convertir el número decimal fraccionario 0,625 a un número binario.

Continuar hasta tener el número deseado de posiciones decimales o parar cuando la parte fraccionaria sea toda cero.