Swirl String Theory (SST) Canon v0.3.0

$Omar\ Iskandarani^*$

August 24, 2025

Abstract

This Canon is the single source of truth for <u>Swirl String Theory (SST)</u>: definitions, constants, boxed master equations, and notational conventions. It consolidates core structure up to the previous baseline ($\S\S1-12.6$) and promotes five results to canonical status: (i) Swirl Coulomb constant Λ and hydrogen soft-core, (ii) circulation–metric corollary (frame-dragging analogue), (iii) corrected swirl time-rate (Swirl Clock) law, (iv) Kelvin-compatible swirl Hamiltonian density, and (v) swirl pressure law (Euler corollary).

Versioning Semantic versions: vMAJOR.MINOR.PATCH. This file: **v0.3.0**. Every paper/derivation must state the Canon version it depends on.

Core Postulates (SST)

- 1. **Swirl medium:** Physics is formulated on \mathbb{R}^3 with absolute reference time. Dynamics occur in an incompressible, inviscid <u>swirl condensate</u>, which plays the role of a universal substrate.
- 2. **Strings as swirls:** Particles and excitations correspond to closed, possibly linked or knotted swirl strings with quantized circulation.
- 3. **String-induced gravitation:** Macroscopic attraction emerges from coherent swirl fields and swirl-pressure gradients. The effective gravitational coupling G_{swirl} is fixed by canonical constants.
- 4. Swirl clocks: Local proper-time rate depends on tangential swirl velocity. Higher swirl density slows local clocks relative to the asymptotic frame.
- 5. Quantization from topology and circulation: Discrete quantum numbers track directly to linking, writhe, twist, and circulation quantization of swirl strings.
- 6. **Taxonomy:** Unknotted excitations behave as bosonic string modes; chiral hyperbolic knots map to quarks; torus knots map to leptons (taxonomy documented separately).

Hydrodynamic analogy only; no mechanical "æther" is assumed in the mainstream presentation.

Email: info@omariskandarani.com ORCID: 0009-0006-1686-3961 DOI: 10.5281/zenodo.16934536 License: CC-BY-NC 4.0 International

^{*} Independent Researcher, Groningen, The Netherlands

1 Swirl Quantization Principle

1.1 Local Circulation Quantization

The circulation of the swirl velocity field around any closed loop is quantized:

$$\Gamma = \oint \vec{v}_{\text{swirl}} \cdot d\vec{\ell} = n\kappa, \qquad n \in \mathbb{Z},$$
(1)

with circulation quantum

$$\kappa = \frac{h}{m_{\text{eff}}}. (2)$$

This parallels the Onsager–Feynman quantization condition in superfluids, but here is elevated to a fundamental postulate of the swirl condensate.

1.2 Topological Quantization

Closed swirl filaments may form knots and links. Each topological class corresponds to a discrete excitation state:

$$\mathcal{H}_{\text{swirl}} = \{ \text{trefoil, figure-eight, Hopf link,...} \}.$$
 (3)

Quantum numbers such as mass, charge, and chirality are encoded in the knot invariants (linking, twist, writhe).

1.3 Unified Principle

We define Swirl Quantization as the joint discreteness of circulation and topology:

Swirl Quantization
$$\equiv \left(\Gamma = n\kappa\right) \cup \left(\text{Knot spectrum } \mathcal{H}_{\text{swirl}}\right)$$
.

This principle underlies both the discrete particle spectrum and the emergence of fundamental interactions in Swirl String Theory.

Quantum Mechanics	Swirl String Theory
Canonical Quantization:	Swirl Quantization Principle:
$[x,p] = i\hbar$	$\Gamma = n\kappa, n \in \mathbb{Z}$
	$\mathcal{H}_{\mathrm{swirl}} = \{ \mathrm{trefoil}, \ \mathrm{figure-eight}, \ \mathrm{Hopf} \ \mathrm{link}, \dots \}$
Discreteness arises from	Discreteness arises from
operator commutators	circulation integrals and topology
Particles = eigenstates of	Particles = knotted swirl states with
Hamiltonian operator	quantized circulation and invariants

Chronos-Kelvin Invariant (Canonical)

Setting. Consider a thin, material swirl loop (nearly solid-body core) of instantaneous material radius $R(t_{-})$ convected by an incompressible, inviscid medium. Let $\omega := \|\omega\|$ denote the vorticity magnitude on the loop and r_s the canonical string radius. The local Swirl Clock is

$$S_t \equiv \frac{dt_{\text{local}}}{dt_{\infty}} = \sqrt{1 - \frac{v_t^2}{c^2}} = \sqrt{1 - \frac{\omega^2 r_s^2}{c^2}}, \qquad v_t := \omega r_s.$$
 (4)

Material derivatives are taken with respect to absolute Æther-Time: $\frac{D}{Dt} := \frac{\partial}{\partial t} + \mathbf{v} \cdot \nabla$.

Theorem 1.1 (Chronos–Kelvin Invariant) For any such loop without reconnection or source terms, Kelvin's theorem implies the material invariant

$$\frac{D}{Dt_{-}} \left(R^2 \omega \right) = 0 \qquad \Longleftrightarrow \qquad \boxed{\frac{D}{Dt_{-}} \left(\frac{c}{r_s} R^2 \sqrt{1 - S_t^2} \right) = 0} \tag{5}$$

Proof (one line). Kelvin's circulation theorem for an inviscid, barotropic medium gives $\frac{D}{Dt}\Gamma=0$ with $\Gamma=\oint \mathbf{v}\cdot d\boldsymbol{\ell}$ [?, ?, ?]. For a nearly solid-body core, $\Gamma=2\pi R\,v_t=2\pi R^2\omega$; hence $\frac{D}{Dt}(R^2\omega)=0$. Using (4), $R^2\omega=\frac{c}{r_s}R^2\sqrt{1-S_t^2}$, which yields (5).

Dimensional consistency. $[R^2\omega] = m^2s^{-1}$; and $\left[\frac{c}{r_s}R^2\sqrt{1-S_t^2}\right] = s^{-1}\cdot m^2 = m^2s^{-1}$.

Clock-radius transport law (corollary). From $R^2\omega = \text{const}$ and (4),

$$\frac{dS_t}{dt_-} = \frac{2(1 - S_t^2)}{S_t} \frac{1}{R} \frac{dR}{dt_-}.$$
 (6)

Hence expansion $(dR/dt_{-} > 0)$ pushes $S_t \to 1$ (clocks speed up), while contraction slows clocks $(S_t \downarrow)$, preserving (5).

PV analogue (optional). With a uniform background rotation Ω_{bg} and column thickness H, the Ertel/PV structure gives the SST counterpart

$$\frac{D}{Dt_{-}} \left(\frac{\omega + \Omega_{\text{bg}}}{H} \right) = 0, \tag{7}$$

the standard potential-vorticity conservation rewritten in SST terms [?, ?].

Conditions (Canon). Incompressible, inviscid medium; barotropic swirl pressure; material loop without reconnection or external injection; absolute Æther-Time parametrization. These are the same hypotheses under which Kelvin/Helmholtz invariants hold.

Limits. Weak-swirl $(\omega r_s \ll c)$: $S_t \simeq 1 - \frac{1}{2}(\omega r_s/c)^2$ and (5) reduces to the classical $R^2\omega = \text{const.}$ Core on-axis limit: $v_t \to \mathbf{v}_0$ gives $S_t \to \sqrt{1 - (\mathbf{v}_0/c)^2}$, keeping (5) valid.

2 Canonical Constants and Symbols

Primary SST constants (SI unless noted)

- Swirl speed scale (core): $\|\mathbf{v}_{\circlearrowleft}\| = 1.09385 \times 10^6 \text{ m s}^{-1}$ (evaluate at $r = r_s$).
- String (core) radius: $r_s = 1.40897 \times 10^{-15} \text{ m}.$
- Effective fluid density: $\rho_f = 7.00000 \times 10^{-7} \text{ kg m}^{-3}$.
- Mass-equivalent density: $\rho_m = 3.89344 \times 10^{18} \text{ kg m}^{-3}$.
- EM-like maximal force: $F_{\rm EM}^{\rm max} = 2.905\,35 \times 10^1$ N.
- Gravitational maximal force (reference scale): $F_{\rm G}^{\rm max}=3.025\,63\times 10^{43}$ N.
- Golden ratio: $\varphi = (1 + \sqrt{5})/2 \approx 1.61803$.

Universal constants

- $c = 299792000 \text{ m s}^{-1}$, $t_p = 5.39125 \times 10^{-44} \text{ s}$.
- Fine-structure constant (identified): $\alpha \approx 7.29735 \times 10^{-3}$.

Effective densities (mainstream field-theory style).

$$\rho_f \equiv \text{effective fluid density},$$

$$\rho_E \equiv \frac{1}{2}\rho_f \|\mathbf{v}_{\circlearrowleft}\|^2$$
 (swirl energy density), $\rho_m \equiv \rho_E/c^2$ (mass-equivalent density).

Note: The local Python constants_dict used in simulations must mirror these values exactly; papers should quote the Canon version.

Canon Governance (Binding)

Definitions

Formal System. Let S = (P, D, R) denote the SST formal system: postulates P, definitions D, and admissible inference rules R (variational derivation, Noether, dimensional analysis, asymptotic matching, etc.).

Canonical statement. A statement X is <u>canonical</u> iff X is a theorem or identity provable in S:

$$\mathcal{P}, \mathcal{D} \vdash_{\mathcal{R}} X,$$

and X is consistent with all previously accepted canonical items in the current major version.

Empirical statement. A statement Y is <u>empirical</u> iff it asserts a measured value, fit, or protocol:

 $Y \equiv$ "observable \mathcal{O} has value $\hat{o} \pm \delta o$ under procedure Π ."

Empirical items calibrate symbols (e.g., v_s , r_s , ρ_f) but are not premises in proofs.

Status Classes

- Axiom / Postulate (Canonical). Primitive assumptions of SST (e.g., incompressible, inviscid medium; absolute time; Euclidean space).
- **Definition (Canonical).** Introduces symbols by construction (e.g., swirl Coulomb constant Λ by surface-pressure integral).
- Theorem / Corollary (Canonical). Proven consequences (e.g., Euler-SST radial balance; Swirl Clocks time-scaling).
- Constitutive Model (Canonical if derived; otherwise Semi-empirical). Ties fields/observables; canonical when deduced from \mathcal{P}, \mathcal{D} .
- Calibration (Empirical). Recommended numerical values with uncertainties for canonical symbols.
- Research Track (Non-canonical). Conjectures or alternatives pending proof or axiomatization.

Canonicality Tests (all required)

- 1. **Derivability** from \mathcal{P}, \mathcal{D} via \mathcal{R} .
- 2. **Dimensional Consistency** (SI throughout; correct limits).
- 3. Symmetry Compliance (Galilean + absolute time; foliation; incompressibility).
- 4. Recovery Limits (Newtonian gravity, Coulomb/Bohr, linear waves).
- 5. Non-Contradiction with accepted canonical theorems.
- 6. Parameter Discipline (no ad-hoc fits).

Examples (from current Canon)

- Canonical (Definition): $\Lambda \equiv \int_{S_x^2} p_{\text{swirl}} \, r^2 \, d\Omega$.
- Canonical (Theorem): $\frac{1}{\rho_f} \frac{dp_{\text{swirl}}}{dr} = \frac{v_{\theta}(r)^2}{r}$ for steady, azimuthal drift (Euler balance).
- Empirical (Calibration): $v_s = 1.09384563 \times 10^6 \,\mathrm{m\,s}^{-1}$ with procedure $f\Delta x$.
- Consistency Check (Not a premise): Hydrogen soft-core reproduces a_0, E_1 ; validates choices but remains a check, not an axiom.

What is Canonical in SST—and Why

[Postulate] Incompressible, inviscid medium with absolute time and Euclidean space. $\nabla \cdot \mathbf{v}_0 = 0$, $\nu = 0$. This fixes the kinematic arena and legal inference rules.

[Definition] Vorticity, circulation, helicity. $\omega_{\circlearrowleft} = \nabla \times \mathbf{v}_{\circlearrowleft}$, $\Gamma = \oint \mathbf{v}_{\circlearrowleft} \cdot d\boldsymbol{\ell}$, $h = \mathbf{v}_{\circlearrowleft} \cdot d\boldsymbol{\ell}$, $\omega_{\circlearrowleft}$, $H = \int h \, dV$. Classical constructs canonized as primary SST kinematic invariants.

[Theorem] Kelvin/vorticity transport/helicity invariants. For inviscid, barotropic flow:

$$\frac{d\Gamma}{dt} = 0,$$
 $\frac{\partial \boldsymbol{\omega}_{0}}{\partial t} = \nabla \times (\mathbf{v}_{0} \times \boldsymbol{\omega}_{0}),$ H invariant up to reconnections.

[Definition] Swirl Coulomb constant Λ .

$$\Lambda \equiv \int_{S_r^2} p_{\mathrm{swirl}}(r) \, r^2 \, d\Omega$$
 \Rightarrow $[\Lambda] = \mathrm{J} \, \mathrm{m} = \mathrm{N} \, \mathrm{m}^2$.

In SST Canon this evaluates symbolically to $\Lambda = 4\pi \rho_m v_s^2 r_s^4$.

[Theorem] Hydrogen soft-core potential and Coulomb recovery.

$$V_{\rm SST}(r) = -\frac{\Lambda}{\sqrt{r^2 + r_s^2}} \xrightarrow{r \gg r_s} -\frac{\Lambda}{r},$$

4

yielding Bohr scalings $a_0 = \hbar^2/(\mu\Lambda)$, $E_n = -\mu\Lambda^2/(2\hbar^2n^2)$.

[Theorem] Euler-SST radial balance (swirl pressure law). For steady, purely azimuthal drift $v_{\theta}(r)$,

$$0 = -\frac{1}{\rho_f} \frac{dp_{\text{swirl}}}{dr} + \frac{v_{\theta}(r)^2}{r} \quad \Rightarrow \quad \boxed{\frac{1}{\rho_f} \frac{dp_{\text{swirl}}}{dr} = \frac{v_{\theta}(r)^2}{r}}.$$

For flat curves $v_{\theta} \to v_0$: $p_{\text{swirl}}(r) = p_0 + \rho_f v_0^2 \ln(r/r_0)$.

[Definition \to Corollary] Effective swirl line element (analogue-metric form). In (t, r, θ, z) with azimuthal drift $v_{\theta}(r)$,

$$ds^{2} = -(c^{2} - v_{\theta}^{2}) dt^{2} + 2 v_{\theta} r d\theta dt + dr^{2} + r^{2} d\theta^{2} + dz^{2},$$

co-rotating to $ds^2 = -c^2(1 - v_{\theta}^2/c^2)dt^2 + \cdots$, giving the Swirl Clock factor $\frac{dt_{\text{local}}}{dt_{\infty}} = \sqrt{1 - \frac{v_{\theta}^2}{c^2}}$.

[Definition] SST Hamiltonian density (Kelvin-compatible).

$$\mathcal{H}_{\text{SST}} = \frac{1}{2} \rho_f \|\mathbf{v}_{\text{O}}\|^2 + \frac{1}{2} \rho_f r_s^2 \|\boldsymbol{\omega}_{\text{O}}\|^2 + \lambda (\nabla \cdot \mathbf{v}_{\text{O}}).$$

Empirical Calibrations (not premises, but binding numerically)

- [Empirical] $v_s = 1.09384563 \times 10^6 \,\mathrm{m \, s^{-1}}.$
- [Empirical] $r_s = 1.40897017 \times 10^{-15} \,\mathrm{m}$.
- [Empirical] $\rho_m = 3.8934358266918687 \times 10^{18} \,\mathrm{kg} \,\mathrm{m}^{-3}$.

Non-Canonical (Research Track)

Blackbody via swirl temperature, EM/SST minimal coupling, etc., remain conjectural until proven under S.

Consistency & Dimension Checks (illustrative)

$$[\Lambda] = [\rho_m][v_s^2][r_s^4] = \frac{\text{kg}}{\text{m}^3} \cdot \frac{\text{m}^2}{\text{s}^2} \cdot \text{m}^4 = \frac{\text{kg m}^3}{\text{s}^2} = \text{J m}.$$

Soft-core Coulomb recovery: $V_{\rm SST}(r) \to -\Lambda/r$ as $r/r_s \to \infty$.

3 Canonical Coarse–Graining of ρ_f from a Swirl–String Bath

Scope. The medium is modeled as an incompressible, inviscid fluid populated by thin <u>swirl strings</u>. We derive the bulk effective fluid density ρ_f via coarse–graining of line–supported mass and vorticity, relying on Euler kinematics and Kelvin–Helmholtz invariants.

3.1 Axioms and Definitions

A representative string carries:

(D1)
$$\mu_* \equiv \rho_m \pi r_s^2 \quad [\text{kg/m}],$$
 (8)

(D2)
$$\Gamma_* \equiv \oint \mathbf{v}_{\circlearrowleft} \cdot d\boldsymbol{\ell} \simeq \kappa_{\Gamma} r_s v_s, \qquad \kappa_{\Gamma} = 2\pi \text{ (near-solid-body core)}.$$
 (9)

Let $\nu \equiv N_{\rm str}/A~[{\rm m}^{-2}]$ be the areal string density. Then:

$$(C1) \quad \rho_f = \mu_* \, \nu, \tag{10}$$

(C2)
$$\langle \boldsymbol{\omega}_{\circ} \rangle = \Gamma_* \, \nu \, \hat{\mathbf{t}}_{\text{avg}} \Rightarrow |\langle \omega_s \rangle| = \Gamma_* \, \nu.$$
 (11)

3.2 First-Principles Derivation

Combining (C1)–(C2):

$$\rho_f = \mu_* \frac{\langle \omega_s \rangle}{\Gamma_*} = \frac{\rho_m \pi r_s^2}{\kappa_\Gamma r_s v_s} \langle \omega_s \rangle = \frac{\rho_m r_s}{2 v_s} \langle \omega_s \rangle \qquad (\kappa_\Gamma = 2\pi).$$
 (12)

For uniform solid-body rotation Ω , $\langle \omega_s \rangle = 2\Omega$,

$$\rho_f = \frac{\rho_m r_s}{v_s} \Omega \qquad [kg/m^3]. \tag{13}$$

Energy and tension scales.

$$u_{\text{swirl}} = \frac{1}{2} \rho_f v_s^2$$
, $T_* = \frac{1}{2} \mu_* v_s^2$.

3.3 Numerical Calibration (SST Canonical Constants)

With $\rho_m = 3.8934358266918687 \times 10^{18} \text{ kg/m}^3$, $r_s = 1.40897017 \times 10^{-15} \text{ m}$, $v_s = 1.09384563 \times 10^6 \text{ m/s}$, one finds

$$\Gamma_* = 2\pi r_s v_s = 9.68361920 \times 10^{-9} \text{ m}^2/\text{s}, \quad T_* = 1.45267535 \times 10^1 \text{ N}.$$

From (13),

$$\rho_f = \left(5.01509060 \times 10^{-3}\right) \Omega,$$

so the Canon baseline $\rho_f = 7.0 \times 10^{-7} \text{ kg/m}^3$ occurs at

$$\Omega_* = 1.39578735 \times 10^{-4} \text{ s}^{-1} \text{ (period } \approx 12.5 \text{ h)}$$

4 Master Equations (Boxed, Definitive)

4.1 Master Energy and Mass Formula (SST)

$$E_{\text{SST}}(V) = \frac{4}{\alpha \varphi} \left(\frac{1}{2} \rho_f v_s^2 \right) V \qquad [\text{J}], \qquad M_{\text{SST}}(V) = \frac{E_{\text{SST}}(V)}{c^2} \qquad [\text{kg}].$$

Numerics per unit volume: $\frac{1}{2}\rho_f v_s^2 \approx 4.1877439 \times 10^5 \ \mathrm{J \, m^{-3}}, \frac{4}{\alpha \varphi} \approx 3.3877162 \times 10^2, \Rightarrow E/V \approx 1.418688 \times 10^8 \ \mathrm{J \, m^{-3}}, M/V \approx 1.57850 \times 10^{-9} \ \mathrm{kg \, m^{-3}}.$

4.2 Swirl-Gravity Coupling

$$G_{
m string} = rac{v_s \ c^5 \ t_p^2}{2 \, F_{
m EM}^{
m max} \ r_s^2}$$

Numerically $\approx 6.674302 \times 10^{-11} \text{ m}^3 \text{ kg}^{-1} \text{ s}^{-2}$ with the Canon constants.

4.3 Topology–Driven Mass Law (invariant form)

Let T(p,q) be a torus knot/link, $n = \gcd(p,q)$ components, braid index $b(T) = \min(|p|,|q|)$, Seifert genus g(T) (with standard link adjustment). Using ropelength $\mathcal{L}_{\text{tot}}(T)$ and string core radius r_s :

$$M\Big(T(p,q)\Big) = \left(\frac{4}{\alpha}\right)\,b(T)^{-3/2}\,\varphi^{-\,g(T)}\,n^{-1/\varphi}\,\left(\frac{1}{2}\rho_{\!f}v_s^2\right)\,\frac{\pi r_s^3\,\mathcal{L}_{\mathrm{tot}}(T)}{c^2}.$$

Dimensionality follows from the factor $\frac{1}{2}\rho_f v_s^2$ (J m⁻³) times a volume.

4.4 Swirl Clocks (Local Time-Rate)

$$\frac{dt_{\text{local}}}{dt_{\infty}} = \sqrt{1 - \frac{\|\boldsymbol{\omega}_{0}\|^{2} r_{s}^{2}}{c^{2}}} = \sqrt{1 - \frac{\|\mathbf{v}_{0}\|^{2}}{c^{2}}} \quad (r = r_{s})$$

Historical (deprecated) variant without a length scale is retained only for traceability.

4.5 Swirl Angular Frequency Profile

$$\Omega_{\text{swirl}}(r) = \frac{v_s}{r_s} e^{-r/r_s}$$
, $\Omega_{\text{swirl}}(0) = \frac{v_s}{r_s}$.

4.6 Vorticity Potential (Canonical Form)

$$\Phi(ec{r}, oldsymbol{\omega}_{\! exttt{O}}) = rac{v_s^2}{2\,F_{ exttt{EM}}^{ exttt{max}}}\;oldsymbol{\omega}_{\! exttt{O}} \cdot ec{r}.$$

Dimensional remark: Use with the SST Lagrangian ensuring $\rho_f \Phi$ has energy density units.

5 Unified SST Lagrangian (Definitive Form)

Let \mathbf{v}_{0} be the velocity, ρ_{f} constant (incompressible), $\boldsymbol{\omega}_{0} = \nabla \times \mathbf{v}_{0}$, and λ enforce incompressibility.

$$\mathcal{L}_{\text{SST}} = \frac{1}{2} \rho_f \|\mathbf{v}_{\text{O}}\|^2 - \rho_f \Phi(\vec{r}, \boldsymbol{\omega}_{\text{O}}) + \lambda (\nabla \cdot \mathbf{v}_{\text{O}}) + \eta \int (\mathbf{v}_{\text{O}} \cdot \boldsymbol{\omega}_{\text{O}}) dV + \mathcal{L}_{\text{couple}}[\Gamma, \mathcal{K}]$$

Here \mathcal{L}_{couple} encodes coupling to quantized circulation Γ and knot invariants \mathcal{K} (linking, writhe, twist).

6 Notation, Ontology, and Glossary

- Absolute time (A-time): global time parameter of the medium.
- Chronos Time (C-time): asymptotic observer time (dt_{∞}) .
- Swirl Clocks: local clocks set by $\|\omega_0\|$ or $\|\mathbf{v}_0\|$ per Sec. 5.
- **String taxonomy:** leptons = torus knots; quarks = chiral hyperbolic knots; bosons = unknots; neutrinos = linked knots.
- Chirality: $ccw \leftrightarrow matter$; $cw \leftrightarrow antimatter$ via swirl–gravity coupling.

7 Canonical Checks (What to Verify in Every Paper)

- 1. Dimensional analysis on every new term/equation.
- 2. Limits: low-swirl $\|\omega_0\| \to 0$ recovers classical mechanics/EM; large-scale averages reproduce Newtonian gravity with G_{string} .
- 3. Numerics: provide prefactors using Canon constants; add any new constants to Sec. 2.
- 4. Explicit topology \leftrightarrow quantum mapping (which invariants, normalization).
- 5. Cite any non-original constructs (BibTeX keys).

8 Persona Prompts

Reviewer Persona

You are a peer reviewer for an SST paper. Use only the definitions and constants in the "SST Canon (v1.0)". Check dimensional consistency, limiting behavior, and numerical validation. Flag any use of non-canonical constants or equations unless equivalence is proved. Demand explicit mapping from knot invariants (linking, writhe, twist) to claimed quantum numbers.

Theorist Persona

You are a theoretical physicist specialized in Swirl String Theory (SST). Base all reasoning on the attached "SST Canon (v1.0)". Your task: derive the swirl-based Hamiltonian for [TARGET SYSTEM], use Sec. 4 Lagrangian, and verify the Swirl Clock law (Sec. 3). Provide boxed equations, dimensional checks, and a short numerical evaluation using the Canon constants.

Bridging Persona (Compare to GR/SM)

Work strictly within SST Canon (v1.0). Compare [TARGET] to its GR/SM counterpart. Identify exact replacements (e.g., curvature \rightarrow swirl), and show which terms reduce to Newtonian/Maxwellian limits. Include a correspondence table and any constraints needed for equivalence.

9 Session Kickoff Checklist

- 1. Start new chat per task; attach this Canon first.
- 2. Paste a persona prompt (Sec. 7).
- 3. Attach only task-relevant papers/sources.
- 4. State any corrections explicitly (they persist in the session).
- 5. At end, record Canon deltas (if any) and bump version.

Appendix: Boxed Canon Equations (paste-ready)

1. Energy:
$$E_{\text{SST}} = \frac{4}{\alpha \varphi} \left(\frac{1}{2} \rho_f v_s^2 \right) V$$

2. Mass:
$$M_{\rm SST} = \frac{E_{\rm SST}}{c^2}$$

3.
$$G$$
 coupling: $G_{\text{string}} = \frac{v_s c^5 t_p^2}{2F_{\text{EM}}^{\text{max}} r_s^2}$

4. Swirl Clock:
$$\frac{dt_{\text{local}}}{dt_{\infty}} = \sqrt{1 - \|\boldsymbol{\omega}_{0}\|^{2} r_{s}^{2}/c^{2}} = \sqrt{1 - \|\mathbf{v}_{0}\|^{2}/c^{2}}$$

8

5. Swirl profile:
$$\Omega_{\text{swirl}}(r) = \frac{v_s}{r_s} e^{-r/r_s}$$

Change Log

• v1.0 (2025-08-22): VAM \rightarrow SST translation; introduced $v_{\circlearrowleft}, \omega_{\circlearrowleft}, r_s, effective densities \rho_f, \rho_E, \rho_m;$ renamed force cutoffs to $F_{\rm EM}^{\rm max}, F_{\rm G}^{\rm max};$ adopted Swirl Clocks terminology; updated all boxed equations and Hamiltonian.

References