Theory of Computation

L.EIC, 2nd Year

João M. P. Cardoso

Email: jmpc@acm.org

Outline

- ▶ Pumping Lemma for CFLs
- ► Chomsky Normal Form (CNF)
- ► Properties of CFLs
- ▶ Decision Problems about CFLs

Pumping Lemma for CFLs

For infinite CFLs

Pumping Lemma for CFLs

Assume L is a CFL. There exists a constant n such that for every z in L with $|z| \ge n$ we can write z = uvwxy

 $|vwx| \le n$

(the middle part is not too long)

> vx ≠ ε

(at least one, v or x, is not the empty string)

For all $i \ge 0$, $uv^iwx^iy \in L$

(double pumping starting in 0)

- Let's focus on the length of the string, z, and on terminals alone (i.e., only in productions like $A \rightarrow a$)
- ► With *n* variables and without repetition:
 - ► The longest string z considering n variables occurs with S \rightarrow V₁ V₂...V_{n-1} and $|z| \le n-1$
 - For $|z| \ge n$, variables need to be repeated
- If the string z is sufficiently long, there must be a repetition of symbols (variables)

Grammar contains **n variables**, string z in L, |z| $\geq n$

▶ To have a yield of length $\geq n$, there must be repetitions of variables in the tree (there must be recursivity)

- Let's split the tree:
 - w is the string in the leaves of the subtree A_i
 - v and x are such that vwx is the string represented by the subtree A_i (at least one v or x is not null)
 - u and y are the parts of z in the left and in the right of vwx, respectively

- As $A_i = A_i$, we can
 - ► Substitute the subtree of A_i by the subtree of A_i, obtaining the case i=0, uwy
 - ► Substitute the subtree of A_j by the subtree of A_i, obtaining the case i=2, uv²wx²y, and repeat for i=3, ... (pumping)
- With repetitions of at least one variable A, one can have S → U A Y and A → W | V W X where |VX| ≠ ε

- Previously, we considered that the terminals were alone in each variable (productions $A \rightarrow a$)
- The general case, where terminals may exist in any variable and in a finite number
 - \triangleright only means that the length of string z is proportional to the number of variables (i.e., it might be the number of variables, n, plus the length of the yield of the terminals in the variables)
 - similar when we repeat variables in productions but without recursivity

Pumping Lemmas

- In case of RL: the pumping lemma results from the fact that the number of states of a DFA is finite
 - ▶ To accept a string sufficiently long the processing needs to repeat states
- In case of CFL: the pumping lemma results from the fact that the number of symbols in a CFG is finite
 - ▶ To accept a string sufficiently long the derivations must repeat variables

Prove that a Language is not a CFL

- Assume L is a CFL. There exists a constant n such that for every z in L with |z|≥n we can write z=uvwxy
 |vwx|≤ n
 vx ≠ ε
 For all i ≥ 0, uviwxiy ∈ L
- Consider L = $\{0^k 1^k 2^k \mid k \ge 1\}$. Show that L is not a CFL.
 - Supposing that L is a CFL, then there exist a constant n indicated by the pumping lemma; Let's select $z = 0^n 1^n 2^n$ which belongs to L and $|z| = 3n \ge n$
 - Decomposing z=uvwxy, such that $|vwx| \le n$ and v, v not both the empty string, we have vwx which cannot contain simultaneously 0s and 2s
 - ▶ In case vwx does not contain 2s: then vx includes only 0s and 1s and has at least one symbol. Then by the pumping lemma, uwy would have to belong to L, but it has n 2s and less than n 0s or 1s and thus not belong to L.
 - In case vwx does not contain 0s: similar argument.
 - We obtain the contradiction in both cases. Thus, the hypothesis is false and L is not a CFL qed

Using the lemma to prove

- Consider L = $\{0^k 1^k \mid k \ge 0\}$. Prove that L is not a CFL
 - Supposing that L is a CFL, then exists a constant n indicated by the pumping lemma; Let's select $z = 0^n 1^n$ ($n \ge 0$) which belongs to L
 - ▶ Decomposing z=uvwxy, such that $|vwx| \le n$ and v, x are not both the empty string, and if we select $v=0^n$ e $x=1^n$
 - In this case uviwxiy belongs to L
 - We do not obtain the intended contradiction as we found a decomposition of z that meets the pumping lemma
- ▶ We cannot prove that L is not a CFL: because it is a CFL!
- Note that we can select a decomposition of z that does not meet the lemma and that cannot lead us to conclude that L is not a CFL!!!

Chomsky Normal Form (CNF)

A form to represent Context-Free Grammars (CFGs)

Simplification of CFGs

- Elimination of non-useful symbols
 - ► Useful symbol: $S \stackrel{*}{\Rightarrow} \alpha X \beta \stackrel{*}{\Rightarrow} w$, $w \in T^*$
 - ▶ Generator symbol: X ⇒ w▶ Any terminal is generator of itself!
 - ► Reachable symbol: $S \Rightarrow \alpha X\beta$
 - ► Useful = generator + reachable
 - ► Eliminate first the non-generators and then the non-reachable

- Example
 - \triangleright S \rightarrow AB | a
 - \rightarrow A \rightarrow b
 - ►S → a [B is not generator]
 - \triangleright S \rightarrow a
 - $\triangleright A \rightarrow b$ [A is not reachable]
 - then:
 - \triangleright S \rightarrow a

Elimination of Non-useful Symbols

- ► Algorithm: identify the generator symbols
 - ► Terminals are generators
 - $ightharpoonup A
 ightharpoonup \alpha$ and α only has generators then A is generator
- ► Algorithm: identify the reachable symbols
 - ► S is reachable
 - \triangleright A is reachable, A $\rightarrow \alpha$; then all the symbols in α are reachable

Elimination of ε -Productions

- Nullable variables: $A \Rightarrow \varepsilon$
- ► Transformation:
 - ▶ B → CAD is transformed in B → CD | CAD and A is changed to anymore derive ε
- ► Algorithm: identify the nullable variables
 - \rightarrow C₁ C₂ ... C_k, if all C_i are nullables then A is nullable
- ▶ If a language L has a CFG then L- $\{\epsilon\}$ has a CFG without ϵ -productions
 - ► Identify all the nullable symbols
 - ► For each A \rightarrow X₁ X₂ ... X_k if m X_i's are nullables substitute by 2^m productions with all the combinations of presences of X_i
 - Exception: if m=k, we don't include the case of all X_i removed
 - \triangleright Productions A $\rightarrow \varepsilon$ are eliminated

Example 1

- Grammar G:
 - \triangleright S \rightarrow AB
 - $\triangleright A \rightarrow aAA \mid \epsilon$
 - \triangleright B → bBB | ε

- (1) A and B are nullable, then S is nullable as well:
 - \triangleright S \rightarrow AB | A | B
 - ►A → aAA | aA | aA | a
 - ▶B → bBB | bB | b
- (2) Grammar without ε -productions:
 - \triangleright S \rightarrow AB | A | B
 - ►A → aAA | aA | a
 - ▶ B → bBB | bB | b
- In this case, L(new grammar) = L(G) − {ε}

Elimination of Unit Productions

- \triangleright Unit production: A \rightarrow B, where A and B are variables
 - They can be useful in the elimination of ambiguity (example: language of arithmetic expressions)
 - ► They are not unavoidable as they introduce extra steps in derivations
- Elimination by expansion (see example in next slides)

Example 2: Elimination of Unit Productions

► Elimination by expansion (E is the start variable)

- \triangleright E \rightarrow T | E + T
- ightharpoonup F | T × F
- ightharpoonup F \rightarrow I | (E)
- ▶ I → a | b | Ia | Ib | IO | I1
- From E → T we can step to E → F | T × F, and E → I | (E) | T × F, and finally to E → a | b | Ia | Ib | I0 | I1 | (E) | T × F
 - ▶ Problem in the case of cycles (A \rightarrow B, B \rightarrow C, C \rightarrow A)

Example 2: Elimination of Unit Productions

- ▶ Algorithm: determine all the unit pairs, derived only with unit productions
 - ► (A, A) is a unit pair
 - \triangleright (A, B) is a unit pair and B \rightarrow C, C variable; then (A, C) is a unit pair
- Example: (E, E), (T, T), (F, F), (E, T), (E, F), (E, I), (T, F), (T, I), (F, I)
- Elimination: substitute the existent productions in order that each unit pair (A, B) includes all the productions of the form $A \rightarrow \alpha$ in which $B \rightarrow \alpha$ is a non unit production (includes A=B)

Example 2: Grammar without Unit Productions

- \triangleright E \rightarrow T|E+T
- ightharpoonup F | T × F
- ightharpoonup F \rightarrow I | (E)
- ▶ I → a | b | Ia | Ib | IO | I1

Pair	Productions
(E, E)	$E \rightarrow E + T$
(E, T)	$E \rightarrow T \times F$
(E, F)	$E \rightarrow (E)$
(E, I)	$E \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
(T, T)	$T \rightarrow T \times F$
(T, F)	$T \rightarrow (E)$
(T, I)	$T \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
(F, F)	$F \rightarrow (E)$
(F, I)	$F \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
(I, I)	I → a b Ia Ib I0 I1

Simplification Sequence

- ▶ If G is a CFG which generates a language with at least one string different from ε , there exist a CFG G₁ without ε -productions, unit productions and non-useful symbols and L(G₁) = L(G) { ε }
 - ► Eliminate ε-productions
 - ► Eliminate unit productions
 - ► Eliminate non-useful symbols

Chomsky Normal Form (CNF)

- ▶ All the CFLs without ε have a grammar in CNF, without non-useful symbols and in which all productions have the form:
 - \triangleright A \rightarrow BC (A, B, C are variables) or
 - \rightarrow A \rightarrow a (A is a variable and "a" is a terminal)
- ► Transformation
 - \blacktriangleright Start with a grammar without ϵ -productions, unit productions or non-useful symbols
 - ▶ Keep the productions A → a
 - ▶ Transform all bodies with length greater or equal than 2 into bodies consisting of only variables
 - \triangleright New variables D for terminals in those bodies, substitute D \rightarrow d
 - ▶ Split bodies of length greater or equal than 3 in cascade productions with the form $A \rightarrow B_1B_2...B_k$ in $A \rightarrow B_1C_1$, $C_1 \rightarrow B_2C_2$, ...

Example 2: Conversion to CNF

► Grammar of expressions

$$E \rightarrow T \mid E + T$$
 $T \rightarrow F \mid T \times F$
 $F \rightarrow I \mid (E)$
 $I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$

Productions
$E \rightarrow E + T$
$E \rightarrow T \times F$
$E \rightarrow (E)$
$E \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
$T \rightarrow T \times F$
$T \rightarrow (E)$
T → a b Ia Ib I0 I1
$F \rightarrow (E)$
$F \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
$I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$

► Variables for the terminals in bodies are isolated

$$\triangleright$$
 A → a B → b Z → 0 O → 1
 \triangleright P → + M → × L → (R →)

- ▶ Substitute terminals by those variables
 - \triangleright E \rightarrow EPT | TMF | LER | a | b | IA | IB | IZ | IO
 - ightharpoonup TMF | LER | a | b | IA | IB | IZ | IO
 - ightharpoonup F \rightarrow LER | a | b | IA | IB | IZ | IO
 - ▶ I → a | b | IA | IB | IZ | IO

Example 2: Conversion to CNF

- \triangleright A \rightarrow a B \rightarrow b Z \rightarrow 0 O \rightarrow 1
- $\triangleright P \rightarrow + M \rightarrow \times L \rightarrow (R \rightarrow)$
- \triangleright E \rightarrow EPT | TMF | LER | a | b | IA | IB | IZ | IO
- ightharpoonup TMF | LER | a | b | IA | IB | IZ | IO
- ightharpoonup F \rightarrow LER | a | b | IA | IB | IZ | IO
- ▶ I → a | b | IA | IB | IZ | IO

- Substitute long bodies

 - ightharpoonup TC₂ | LC₃ | a | b | IA | IB | IZ | IO
 - \triangleright F \rightarrow LC₃ | a | b | IA | IB | IZ | IO
 - ightharpoonup PT
 - $\triangleright C_2 \rightarrow MF$
 - $ightharpoonup C_3 \rightarrow ER$

Example 2: Conversion to CNF

CFG original (E is the start variable):

- I -> a | b | Ia | Ib | IO | I1
- $F \rightarrow I \mid (E)$
- $T \rightarrow F \mid T \times F$
- $E \rightarrow T \mid E + T$

CFG in CNF:

- $\blacktriangleright \ \mathsf{E} \xrightarrow{} \ \mathsf{EC}_1 \ | \ \mathsf{TC}_2 \ | \ \mathsf{LC}_3 \ | \ \mathsf{a} \ | \ \mathsf{b} \ | \ \mathsf{IA} \ | \ \mathsf{IB} \ | \ \mathsf{IZ} \ | \ \mathsf{IO}$
- $\blacktriangleright \mathsf{T} \xrightarrow{} \mathsf{TC}_2 \mid \mathsf{LC}_3 \mid \mathsf{a} \mid \mathsf{b} \mid \mathsf{IA} \mid \mathsf{IB} \mid \mathsf{IZ} \mid \mathsf{IO}$
- ightharpoonup F ightharpoonup LC₃ | a | b | IA | IB | IZ | IO
- $ightharpoonup C_1 \rightarrow PT$
- $ightharpoonup C_2 \rightarrow MF$
- $ightharpoonup C_3 \rightarrow ER$
- ightharpoonup a | b | IA | IB | IZ | IO

$$A \rightarrow a$$

$$B \rightarrow b$$

$$Z \rightarrow 0$$

$$0 \rightarrow 1$$

$$P \rightarrow +$$

$$M \rightarrow x$$

$$L \rightarrow ($$

$$R \rightarrow)$$

Exercise 1

- Consider the grammar and perform the following steps:
 - ►S \rightarrow ASB | ε
 - \rightarrow A \rightarrow aAS | a
 - \triangleright B \rightarrow SbS | A | bb
- a) Eliminate the ε -productions
- b) Eliminate the unit productions
- c) Eliminate the non-useful symbols
- d) Write the grammar in the Chomsky Normal Form (CNF)

CNF in Practice

- ▶ When the language L of the original grammar includes ϵ , the language of the CNF grammar excludes ϵ
- ► In practice it is common to add a new start variable to the CNF grammar which has two productions,
 - one producing the start variable of the CNF grammar and
 - \triangleright the other producing ϵ
- Example:
 - ▶ Being S → AB the start variable of the CNF grammar
 - One can add the following variable to have a grammar generating ε
 - ► S1 \rightarrow S | ϵ (S1 is now the start variable)

Closure Properties of CFLs

Substitution

- ▶ Be Σ an alphabet; foreach of its symbols a define a function (substitution) which associates a language L_a to the symbol
 - Strings: if $w = a_1...a_n$ then s(w) is the language of all the strings $x_1...x_n$ such that x_i is in $s(a_i)$
 - Languages: s(L) is the union of all s(w) such that $w \in L$
- Example:
 - $\Sigma = \{0,1\}, s(0) = \{a^nb^n \mid n \ge 1\}, s(1) = \{aa,bb\}$
 - ► If w=01, $s(w) = s(0)s(1) = \{a^nb^naa \mid n \ge 1\} \cup \{a^nb^{n+2} \mid n \ge 1\}$
 - If L=L(0*), $s(L) = (s(0))^* = a^{n1}b^{n1}...a^{nk}b^{nk}$, for n1, ..., nk
- ▶ Theorem: if L is a CFL and s() a substitution, which associates to each symbol a CFL, then s(L) is a CFL.

The CFLs are closed for:

- **►** Union
- Concatenation
- ► Closure (*)
- ► Substitution
- ► Homomorphism and homomorphism inverse
- Reverse
- Intersection with an RL
 - Note: intersection with a CFL is not guaranteed to result in a CFL! (see next slide)

CFLs and Intersection

- ► Consider $L_1 = \{0^n 1^n 2^i \mid n \ge 1, i \ge 1\}$ and $L_2 = \{0^i 1^n 2^n \mid n \ge 1, i \ge 1\}$
- $ightharpoonup L_1$ and L_2 are CFLs
 - \triangleright S \rightarrow AB S \rightarrow AB
 - \triangleright A \rightarrow 0A1 | 01 A \rightarrow 0A | 0
 - \triangleright B → 2B | 2 B → 1B2 | 12
- $L_1 \cap L_2 = \{0^n 1^n 2^n \mid n \ge 1\}$
 - Has been already proved that it is not a CFL
- ► Thus, the CFLs are not closed for the intersection

Test if String belongs to a CFL

The Example of the CYK algorithm (note that there are other alternatives, including the use of a PDA)

Test if String belongs to a CFL

- Cocke-Younger-Kasami (CYK) Algorithm : CFG in CNF
 - ► X_{ii} represents the set of variables that produce string[i:j]
 - ► O(n³), using dynamic programming, fill of a table

Input	string:	baaba
-------	---------	-------

X ₁₅				
X ₁₄	X ₂₅			
X ₁₃	X ₂₄	X ₃₅		
X ₁₂	X ₂₃	X ₃₄	X ₄₅	
X ₁₁	X ₂₂	X ₃₃	X ₄₄	X ₅₅
a_1	\mathbf{a}_2	a_3	a_4	a_5

$$S \rightarrow AB \mid BC$$
 $A \rightarrow BA \mid a$
 $B \rightarrow CC \mid b$
 $C \rightarrow AB \mid a$

{S,A,C}						
	{S,A,C}					
	{B}	{B}				
{S,A}	{B}	{S,C}	{S,A}			
{B}	{A,C}	{A,C}	{B}	{A,C}		
Ъ	a	a	b	a		
$X_{12}: X_{11}X_{22}; X_{24}: X_{22}X_{34} \cup X_{23}X_{44}$						

$$X_{12}: X_{11}X_{22}; X_{24}: X_{22}X_{34} \cup X_{23}X_{44}$$

Conclusion: answer is positive if S is in X_{15} ; and is negative, otherwise

Seminal papers about CNF and CYK

CNF:

Noam Chomsky, "On Certain Formal Properties of Grammars." Inf. Control. 2 (1959): 137-167. https://doi.org/10.1016/S0019-9958(59)90362-6

CYK:

- ▶ John Cocke, "Programming languages and their compilers: Preliminary notes," New York University, USA, 1969.
- ► T. Kasami, "An efficient recognition and syntax algorithm for context-free languages," Scientific report AFCRL-65-758, Air Force Cambridge Research Laboratory, Bedford, MA, 1965.
- D. Younger, "Recognition and parsing of context-free languages in time n³," Information and Control, 10, pp. 189-208, 1967. https://doi.org/10.1016/S0019-9958(67)80007-X
- ► Itiroo Sakai, "Syntax in universal translation," In Proceedings 1961 International Conference on Machine Translation of Languages and Applied Language Analysis, Her Majesty's Stationery Office, London, p. 593-608, 1962. https://aclanthology.org/1961.earlymt-1.31.pdf