ARF - 2018fev année 2017-2018

TD 8

Exercice 1 – Algorithme des K-moyennes

La taille du dictionnaire K est fixée, c'est un paramètre de l'algorithme.

- \bullet Initialiser aléatoiremet les K prototypes.
- Répéter jusqu'à (critère d'arrêt) :
 - ▶ partitionner les exemples en les affectant aux prtotypes dont ils sont le plus proche;
 - ▶ redéfinir les protoypes (i.e. centres de gravité des partitions).
- Q 1.1 Soit l'ensemble d'exemples en dimension 2 :
- $D = \{(0, -4), (0, -3), (1, -3), (1, -2), (0, 4), (-1, 1), (-1, 2), (0, 3)\}$

Faire tourner l'algorithme des K-moyennes en prenant comme point de départ les prototypes (0, -6) et (-1, 1).

Q 1.2 Quels critères d'arrêt préconisez-vous pour les méthodes de QV?

Exercice 2 - Clustering et mélange de lois

On souhaite estimer une densité de probabilité par un modèle de type mélange de gaussiennes. La probabilité d'une observation x est donnée par : $p(x) = \sum_{l=1}^L \tau_l.p(x|\lambda_l)$ où les τ_l sont les probabilités a priori des lois et les $p(x|\lambda_l)$ sont des lois gaussiennes multi-dimentionnelles caractérisées par leur moyenne μ_l et leur matrice de co-variance Σ_l , i.e. $\lambda_l = (\mu_l, \Sigma_l)$.

- **Q 2.1** Dessiner la loi de probabilité pour $L = 2, \tau_1 = \tau_2 = 0.5$, et $\mu_1 = 1, \mu_2 = 3, \Sigma_1 = 1, \Sigma_2 = 10$.
- **Q 2.2** Quelles est la probabilité a posteriori qu'un exemple x ait été produit par la gaussienne multidimentionnelle l, $p(\lambda_l|x)$?
- **Q 2.3** Expliquer comment l'apprentissage d'un mélange de lois peut être utilisé pour faire du clustering.

Exercice 3 – Apprentisage d'un mélange de lois et maximum de vraissemblance

On souhaite apprendre le modèle de l'exercice précedent avec un critère de maximum de vraisemblance (MV) sur une base d'apprentissage $X = \{x_i\}, i = 1..N$.

- **Q 3.1** Exprimer la log-vraisemblance des données par le modèle en supposant que les x_i sont indépendants.
- Q 3.2 Quelle est la difficulté avec cette log-vraissemblance?
- \mathbf{Q} 3.3 L'idée de l'algorithme EM (Expectation-Maximization) est de se dire que si l'on avait des informations supplémentaires \mathbf{Z} , on pourrait optimiser cette vraissemblance plus facilement. Quelles informations seraient utiles ici? Donner la vraissemblance complétée par ces informations.
- **Q 3.4** On peut alors utiliser un algorithme dit algorithme EM (Expectation-Maximization) pour l'estimation de ce mélange de gaussiennes. Une variante de l'algorithme EM est la suivante :
 - initialiser les paramètres $(\tau_i, \mu_i, \sigma_i)_{i=1..L}$;
 - Répéter :
 - ▶ déterminer pour chaque x_i la gaussienne qui l'a poduit avec la plus grande vraisseblance : pour i = 1..N, $I(x_i) = argmax_l \ p(\lambda_l|x_i)$;

 $\mathrm{ARF} - 2018 \mathrm{fev}$ page 2

ré-estimer les paramètres des lois à partir des exemples qui lui ont été affectés : pour l=1..L, ré-estimer λ_l à partir des $\{x_i \in E | I(x_i) = l\}$

Dans le cas où tous les τ_i sont égaux (equi-probabilité des gaussiennes) et où les matrices de covariance des lois sont fixées à l'identité, montrer que l'algorithme précédent est équivalent à un algorithme des K-Moyennes.

- **Q 3.5** L'algorithme précédent procède par affectations successives des éléments aux différents clusters. Quelle est la limite de ce genre d'approche?
- Q 3.6 La version classique de l'algorithme EM travaille en deux étapes :
 - Expectation step (E step) : Calcul de l'espérance de la log-vraissemblance en fonction des probabilités conditionnelles des données manquantes Z étant donné les observations X selon les estimations courantes des paramètres $\theta^{(t)}$:

$$Q(\theta|\theta^{(t)}) = \mathbf{E}_{Z|X,\theta^{(t)}} \left[\log L(\theta;X;Z) \right]$$

• Maximization step (M step) : Recherche des paramètres θ qui maximisent cette quantité :

$$\theta^{(t+1)} = \underset{\theta}{\arg\max} \ Q(\theta|\theta^{(t)})$$

Donner la formulation de l'espérance $Q(\theta|\theta^{(t)})$ selon les paramètres courants $\theta^{(t)}$.

 ${f Q}$ 3.7 Donner alors les formulations des estimations des paramètres à l'itération t+1 selon les estimations à l'itération t