世界知的所有権機関 際 事 務 局 F協力条約に基づいて公開された

(51) 国際特許分類6 G01T 1/20

A1

(11) 国際公開番号

WO98/36290

(43) 国際公開日

1998年8月20日(20.08.98)

(21) 国際出願番号

PCT/JP98/00550

(22) 国際出願日

1998年2月12日(12.02.98)

(30) 優先権データ 特願平9/30508

1997年2月14日(14.02.97)

(71) 出願人 (米国を除くすべての指定国について) 浜松ホトニクス株式会社

(HAMAMATSU PHOTONICS K.K.)[JP/JP]

〒435-8558 静岡県浜松市市野町1126番地の1 Shizuoka, (JP)

(72) 発明者;および

(75) 発明者/出願人(米国についてのみ)

本月卓也(HOMME, Takuya)[JP/JP]

高林敏雄(TAKABAYASHI, Toshio)[JP/JP]

佐藤宏人(SATO, Hiroto)[JP/JP]

〒435-8558 静岡県浜松市市野町1126番地の1

浜松ホトニクス株式会社内 Shizuoka, (JP)

(74) 代理人

弁理士 長谷川芳樹, 外(HASEGAWA, Yoshiki et al.)

〒104-0031 東京都中央区京橋二丁目13番10号

京橋ナショナルビル6F 創英国際特許事務所 Tokyo, (JP)

AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, (81) 指定国 CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, IIU, ID, IL, IS, JP, KE, KG, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO特許 (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), ユーラシ ア特許 (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), 欧州特許 (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI特許 (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

添付公開書類 国際調査報告書

RADIATION DETECTION DEVICE AND METHOD OF PRODUCING THE SAME (54)Title:

放射線検出素子及びその製造方法 (54)発明の名称

(57) Abstract

A radiation detection device comprising: a light receiving device array (6) formed by disposing two-dimensionally light receiving elements (2) on a substrate (1), arranging bonding pads (4) on the outer periphery of the substrate (1) and electrically connecting them to light receiving elements (2) of each row or column with signal lines (3) and depositing a protective passivation film (5) on the light receiving elements (2) and on the signal lines (3); a scintillator (7) of a CsI columnar crystal deposited on the light receiving surface of the light receiving device array (6); and a protective film (11) formed by sandwiching an Al inorganic film (9) with Parillen organic films (8 and 10) and laminating it on the scintillator (7). The outer periphery of the protective film (11) is cut at such a position at which the bonding pads (4) are exposed, and is bonded closely to the passivation film (5) by a covering resin (12).

(5.7) 要約

基板1上に2次元に受光素子2を配列し、各行又は各列の受光素子2と信号線3で電気的に接続されたボンディングバッド4を基板1の外周辺上に配列させ、受光素子2と信号線3上に保護用のバッシベーション膜5を設けて受光素子アレイ6が形成されている。この受光素子アレイ6の受光面上にCsI柱状結晶のシンチレータ7が堆積され、その上から、A1無機膜9をバリレン製の有機膜8、10で挟み込んだ保護膜11が積層されている。保護膜11の外周は、ボンディングバッド4が露出するような位置で切断されており、バッシベーション膜5に、被覆樹脂12により密着されている。

PCTに基づいて公開される国際出願のパンフレット第一頁に掲載されたPCT加盟国を同定するために使用されるコード(参考情報)

セネガル スティンド ドーゴー トーゴー タジキノメ トールコ

明細書

放射線検出素子及びその製造方法

5 技術分野

本発明は、放射線検出素子、特に、医療用のX線撮影等に用いられる大面積の受光部 を有する放射線検出素子に関する。

背景技術

10 医療、工業用のX線撮影では、従来、X線感光フィルムが用いられてきたが、利便性 や撮影結果の保存性の面から放射線検出素子を用いた放射線イメージングシステムが普 及してきている。このような放射線イメージングシステムにおいては、複数の画素を有 する放射線検出素子を用いて放射線による2次元画像データを電気信号として取得し、 この信号を処理装置により処理して、モニタ上に表示している。代表的な放射線検出素 子は、1次元あるいは2次元に配列された光検出器上にシンチレータを配して、入射す る放射線をシンチレータで光に変換して、検出する仕組みになっている。

典型的なシンチレータ材料である Cs I は、吸湿性材料であり、空気中の水蒸気(湿気)を吸収して溶解する。この結果、シンチレータの特性、特に解像度が劣化するという問題があった。

20 シンチレータを湿気から保護する構造とした放射線検出素子としては、特開平5-1 96742号公報に開示された技術が知られている。この技術では、シンチレータ層の上部に水分不透過性の防湿バリヤを形成することにより、シンチレータを湿気から保護している。

25 発明の開示

しかし、この技術では、シンチレータ層外周部の防湿バリヤを放射線検出素子の基板

10

15

20

25

に密着させることが難しく、特に、胸部X線撮影などに用いる大面積の放射線検出素子においては、外周部の長さが長いため、防湿バリヤがはがれやすくなって、シンチレータ層が完全に密封されず、水分がシンチレータ層に侵入してその特性が劣化しやすいという欠点がある。

また、この技術では、防湿バリヤの水分シール層は、シリコーンポッティング材等を 液状の状態でシンチレータ層に塗工するか、放射線検出素子の受光面側に設置する窓材 の内側にこのシリコーンポッティング材等を塗工した後、水分シール層の乾燥前にこの 窓材をシンチレータ層上に設置することにより、水分シール層を固定する製造方法が開 示されている。この製造方法では、水分シール層を表面形状が不規則なシンチレータ層 上に均一に形成することが難しく、密着性が低下する可能性がある。この点は、特に、 大面積の放射線検出素子で起こりやすい。

本発明は、上記の問題点に鑑みてシンチレータの防湿用に均一で製造が容易な保護膜を有する放射線検出素子及びその製造方法を提供することを課題とするものである。

この課題を解決するために、本発明の放射線検出素子は、(1)複数の受光素子を基板上に1次元あるいは2次元に配列して受光部を形成し、この受光部の各行又は各列の受光素子と電気的に接続された複数のボンディングパッドを受光部の外部に有する受光素子アレイと、(2)受光素子上に堆積された放射線を可視光に変換するシンチレータ層と、(3)少なくとも有機膜とその上に積層された無機膜を含む2層以上の多層膜からなり、少なくともシンチレータ層を覆うとともに、受光素子アレイのボンディングバッド部分を露出させている放射線透過性の耐湿保護膜と、(4)耐湿保護膜を受光素子アレイの露出部分との境界部分である縁に沿ってコーティングしてこの耐湿保護膜の縁を受光素子アレイに密着させている被覆樹脂と、を備えていることを特徴とする。

これにより、入射した放射線は、シンチレータ層で可視光に変換される。この可視光像を1次元あるいは2次元に配列された受光素子により検出することで、入射する放射線像に対応する電気信号が得られる。シンチレータ層は吸湿によって劣化する性質を有するが、本発明によれば、シンチレータ層は耐湿保護膜により覆われており、この耐湿

10

15

20

保護膜の縁は被覆樹脂によりコーティングされているので、シンチレータ層は完全に密 封されて外気から隔離され、空気中の水蒸気から保護されている。さらに、外部回路と の接続用のボンディングパッド部は露出されている。

一方、本発明の放射線検出素子の製造方法は、(1)複数の受光素子を基板上に1次元あるいは2次元に配列して受光部を形成し、この受光部の各行又は各列の受光素子と電気的に接続された複数のボンディングパッドを受光部の外部に配置した受光素子アレイの受光素子上に放射線を可視光に変換するシンチレータ層を堆積させる工程と、(2)受光素子アレイ全体を包み込むように放射線透過性の第1の有機膜を形成する工程と、(3)第1の有機膜上に無機膜を含む1層以上の膜を積層して、2層以上の多層膜からなる放射線透過性の耐湿保護膜を形成する工程と、(4)シンチレータ層の外側であって、少なくともボンディングパッドを覆っている部分の耐湿保護膜を切断して除去し、少なくともボンディングパッドを含む領域の受光素子アレイ部分を露出させる工程と、(5)耐湿保護膜を受光素子アレイの露出部分との境界である縁部分に沿って樹脂によりコーティングし、耐湿保護膜の縁を受光素子アレイに密着させる工程と、を有することを特徴とする。

受光素子アレイ全体を包みこむように第1の有機膜を形成することで、シンチレータ 層と有機膜の密着度が向上し、均一な膜が形成される。こうして均一な耐湿保護膜を形成してから、ボンディングバッド部分上の耐湿保護膜を取り除くことにより、ボンディングバッドが確実に露出される。さらに、露出部分との境界である縁部分に沿って耐湿保護膜を樹脂によりコーティングすることで耐湿保護膜の縁がその下の受光素子アレイ表面に密着し、耐湿保護膜下のシンチレータ層は封止される。

本発明は以下の詳細な説明および添付図面によりさらに十分に理解可能となる。これ らは単に例示のために示されるものであって、本発明を限定するものと考えるべきでは ない。

25 本発明のさらなる応用範囲は、以下の詳細な発明から明らかになるだろう。しかしながら、詳細な説明および特定の事例は本発明の好適な実施形態を示すものではあるが、

20

25

例示のためにのみ示されているものであって、本発明の思想および範囲における様々な変形および改良はこの詳細な説明から当業者には明らかであることははっきりしている。

図面の簡単な説明

5 図1は、本発明の一実施形態の上面図であり、図2はそのA-A線断面図である。 図3~図10は、図1に係る実施形態の製造工程を順に示す図である。

図11は、本発明の別の実施形態の上面図であり、図12はそのB-B線断面図である。

10 発明を実施するための最良の形態

以下、本発明の好適な実施形態を図面に基づいて説明する。なお、理解を容易にする ために各図面において同一の構成要素に対しては可能な限り同一の参照番号を附し、重 複する説明は省略する。また、各図面における寸法、形状は実際のものとは必ずしも同 一ではなく、理解を容易にするため誇張している部分がある。

図1は、本発明の一実施形態の上面図であり、図2はその外周辺部のA-A線拡大断面図である。

まず、図1、図2を参照して本実施形態の構成を説明する。絶縁性、例えばガラス製の基板1上に、光電変換を行う受光素子2が2次元上に配列されて、受光部を形成している。この受光素子2は、アモルファスシリコン製のフォトダイオード(PD)や薄膜トランジスタ(TFT)から構成されている。各行又は各列の受光素子2の各々は、信号読み出し用の信号線3により電気的に接続されている。外部回路(図示していない)へ信号を取り出すための複数のボンディングバッド4は、基板1の外周辺、例えば隣接する2辺、に沿って配置されており、信号線3を介して対応する複数の受光素子2に電気的に接続されている。受光素子2及び信号線3上には、絶縁性のバッシベーション膜5が形成されている。このバッシベーション膜5には、窒化シリコン、又は酸化シリコンを用いることが好ましい。一方、ボンディングバッド4は、外部回路との接続のため

10

15

20

25

に露出されている。以下、この基板及び基板上の回路部分を受光素子アレイ6と呼ぶ。 受光素子アレイ6の受光部上には、入射した放射線を可視光に変換する柱状構造のシンチレータ7が形成されている。シンチレータ7には、各種の材料を用いることができるが、発光効率が良いT1ドープのCsI等が好ましい。シンチレータ7の上には、X線を透過して水蒸気を遮断する第1の有機膜8と、無機膜9と、第2の有機膜10とがそれぞれ積層されて保護膜11を形成している。

第1の有機膜8と第2の有機膜10には、ボリバラキシリレン樹脂(スリーボンド社製、商品名バリレン)、特にポリバラクロロキシリレン(同社製、商品名バリレンC)を用いることが好ましい。バリレンによるコーティング膜は、水蒸気及びガスの透過が極めて少なく、撥水性、耐薬品性も高いほか、薄膜でも優れた電気絶縁性を有し、放射線、可視光線に対して透明であるなど有機膜8、10にふさわしい優れた特徴を有している。バリレンによるコーティングの詳細については、スリーボンド・テクニカルニュース(平成4年9月23日発行)に記されており、ここでは、その特徴を述べる。

バリレンは、金属の真空蒸着と同様に真空中で支持体の上に蒸着する化学的蒸着(CVD)法によってコーティングすることができる。これは、原料となるPーキシレンを熱分解して、生成物をトルエン、ベンゼンなどの有機溶媒中で急冷しダイマーと呼ばれるジパラキシリレンを得る工程と、このダイマーを熱分解して、安定したラジカルパラキシリレンガスを生成させる工程と、発生したガスを素材上に吸着、重合させて分子量約50万のポリパラキシリレン膜を重合形成させる工程からなる。

バリレン蒸着時の圧力は、金属真空蒸着の場合の圧力 0.001トールに比べて高い 0.1~0.2トールである。そして、蒸着時には、単分子膜が被着物全体を覆った後、その上にさらにパリレンが蒸着していく。したがって、0.2μm厚さからの薄膜をピンホールのない状態で均一な厚さに生成することができ、液状材料によるコーティングでは不可能だった鋭角部やエッジ部、ミクロンオーダの狭い隙間へのコーティングも可能である。また、コーティング時に熱処理等を必要とせず、室温に近い温度でのコーティングが可能なため、硬化に伴う機械的応力や熱歪みが発生せず、コーティングの安定

10

15

20

25

性にも優れている。さらに、ほとんどの固体材料へのコーティングが可能である。

一方、無機膜9には、X線透過性であれば、可視光に対しては、透明、不透明、反射性などの各種の材料を用いることができ、Si、Ti、Crの酸化膜や金、銀、アルミなどの金属薄膜が使用できる。特に、可視光に対して反射性の膜を用いると、シンチレータ7で発生した蛍光が外に漏れるのを防ぎ感度を上昇させる効果があるので好ましい。ここでは、成形が容易なAlを用いた例について説明する。Al自体は空気中で腐蝕しやすいが、無機膜9は、第1の有機膜8及び第2の有機膜10で挟まれているため、腐蝕から守られている。

この保護膜11の外周は、受光部と受光素子アレイ6のそれぞれの外周の間で、ボンディングパッド4の内側まで広がっており、ボンディングパッド4が外部回路への接続用に露出されている。ここで、保護膜11は、前述したパリレンコーティングによって形成されるが、CVD法により形成されるため、受光素子アレイ6の表面全体を覆うように形成される。そのため、ボンディングパッド4を露出させるには、ボンディングパッド4より内側でパリレンコーティングで形成された保護膜11を切断して、外側の保護膜11を除去する必要がある。この場合、切断部である外周部分から保護膜11がはがれやすくなる。このため、保護膜11の外周部とこれの外周の受光素子アレイ6のパッシベーション膜5部分とを覆うように被覆樹脂12がコーティングされている。

被覆樹脂12には、保護膜11及びパッシベーション膜5への接着性が良好な樹脂、例えばアクリル系接着剤である協立化学産業株式会社製WORLD ROCK No. 801-SET2 (70,000cPタイプ)を用いることが好ましい。この樹脂接着剤は、100mW/cm²の紫外線照射により約20秒で硬化し、硬化皮膜は柔軟かつ十分な強度を有し、耐湿、耐水、耐電触性、耐マイグレーション性に優れており、各種材料、特にガラス、プラスチック等への接着性が良好で、被覆樹脂12として好ましい特性を有する。

次に、図3~図10を参照して、この実施形態の製造工程について説明する。図3に 示されるような受光素子アレイ6の受光面上に、図4に示されるように、T1をドープ

10

15

20

25

した C s I の柱状結晶を蒸着法によって 6 0 0 μ mの厚さだけ成長させてシンチレータ 7層を形成する。

このシンチレータ 7層を形成する CsIは、吸湿性が高く、露出したままにしておくと空気中の水蒸気を吸湿して溶解してしまう。そこで、これを防止するために、図 5 に示されるように CVD法によりパリレンを基板全体の表面に 10μ m厚さだけ被覆して第 10π 0 の有機膜 8 を形成する。 CsI0 位状結晶には隙間があるが、パリレンはこの狭い隙間に入り込むので、第 10π 0 の有機膜 8 は、シンチレータ 10π 0 層に密着する。 さらに、パリレンコーティングにより、凹凸のあるシンチレータ 10π 0 層表面に均一な厚さの精密薄膜コーティングが得られる。また、パリレンの 10π 0 ので 10π 0 ので、前述したように、金属蒸着時よりも低真空で、かつ常温で行うことができるため、加工が容易である。

さらに、図 6 に示されるように、入射面側の第 1 の有機膜 8 表面に 0 . 15 μ m厚さのA 1 膜を蒸着法により積層して無機膜 9 を形成する。そして、再度 C V D 法により、図 7 に示されるようにパリレンを基板全体の表面に 10 μ m厚さで被覆して第 2 の有機膜 10 を形成する。この第 2 の有機膜 10 は、無機膜 9 の腐蝕による劣化を防ぐ。

こうして形成した保護膜11を図8に示されるように受光部と受光素子アレイ6の外周部の間のボンディングバッド4の内側部分で受光部の外周に沿ってエキシマレーザ等を用いて切断し、図9に示されるように切断部から外側及び入射面裏側の不要な保護膜11を除去して、外部回路との接続用のボンディングバッド4を露出させる。バッシベーション膜5と保護膜11の最下層の第1の有機膜7は密着性が悪いため、切断した外周部をそのまま放置しておくと、保護膜11が外周部からはがれやすい。そのため、図10に示されるように保護膜11の外周部とその周囲のバッシベーション膜5部分を覆うように被覆樹脂12でコーティングし、紫外線を照射して、被覆樹脂12を硬化させ、保護膜11を受光素子アレイ6上に密着させる。これにより、シンチレータ7は密封され、吸湿による解像度劣化を防止することができる。

続いて、図1、図2を参照して、この実施形態の動作について説明する。入射したX線 (放射線) は、第1の有機膜8と無機膜9と第2の有機膜10からなる保護膜11を

10

15

20

25

透過してシンチレータ7に達する。シンチレータ7はこのX線を吸収して、X線光量に 比例した可視光を放出する。放出された可視光のうち、X線入射方向に向かった光は、 無機膜9で反射されるため、シンチレータ7で放出された可視光は、ほとんどすべてが シンチレータ7の先にある受光素子2に達する。このため、効率の良い検出が可能とな る。

各々の受光素子2では、光電変換によりこの可視光の光量に対応する電気信号が生成され、一定時間蓄積される。受光素子2に到達する可視光の光量は、入射するX線の光量に対応しているから、各々の受光素子2に蓄積されている電気信号は入射するX線の光量に対応しており、X線画像に対応する画像信号となる。受光素子2に蓄積されたこの画像信号を信号線3を介してボンディングパッド4から順次読み出すことにより、外部に転送し、これを所定の処理回路で処理することにより、X線画像を表示することができる。

以上の説明では、保護膜11としてパリレン製の第1の有機膜8、10の間に無機膜9を挟み込んだ構造のものについて説明したが、第1の有機膜8と第2の有機膜10の材料は異なるものでも良い。また、無機膜9として腐蝕に強い材料を使用しているような場合は、第2の有機膜10自体を設けなくてもよい。

また、ここでは、被覆樹脂12が受光素子アレイ6の受光素子2部分の外側のバッシベーション膜5上に形成されている例を説明したが、受光素子2とボンディングバッド4が近接している場合には、その境界部分に被覆樹脂12を形成するのは困難である。ボンディングバッド4を確実に露出させ、かつ保護膜11の周囲を被覆樹脂12で確実にコーティングするためには、被覆樹脂12の位置を受光素子2側にずらすことが好ましい。そのためには、シンチレータ7を受光素子2上の全面に形成するのではなく、ボンディングバッド4近傍の画素を除いた有効画面領域の受光素子2上に形成し、形成したシンチレータ7の層全部を覆って保護膜11を形成して、シンチレータ7を上面に形成していない受光素子2の画素上で保護膜11を被覆樹脂12によりコーティングすればよい。この場合、ボンディングバッド4近傍の画素は被覆樹脂12で覆われるか、前

10

15

20

25

面にシンチレータ7が存在しないので、その放射線に対する感度が低下し、結果として これらの画素は使用できず受光素子2の有効画素数、有効画面面積が減少することとな るが、受光素子2が大画面で全画素数が多い場合には、無効画素の比率は少なく、素子 の構成によっては製作が容易になるメリットがある。

次に、図11、図12を参照して本発明の別の実施形態について説明する。図11はこの実施形態の放射線検出素子の上面図であり、図12はそのB-B線拡大断面図である。この素子の基本的な構成は、図1および図2に示される実施形態の素子と同一であり、相違点のみを以下、説明する。

図11、図12に示されるこの実施形態では、保護膜11は受光素子アレイ6の受光面側および裏面側の前面に形成されており、ボンディングアレイ4部分のみが露出されている。そして、露出されたボンディングアレイ4部分を囲むように、保護膜11の境界(縁)に沿って被覆樹脂12がコーティングされている。本実施形態でも、ボンディングパッド4部が確実に露出されるとともに、保護膜11は被覆樹脂12により受光素子アレイ6に確実に密着されるのでシンチレータ7層が密封されて、吸湿による劣化を防止することができる。

これは特にボンディングバッド4部が小さいCCDやMOS型の撮像素子の場合に保護膜のはがれを引き起こすおそれのある境界部分である縁部分の長さを減らすことができ有効である。

さらに、以上の説明では、受光素子上のシンチレータ側から放射線を入射させるいわゆる表面入射型の放射線検出素子について説明してきたが、本発明は、基板側から放射線を入射させるいわゆる裏面入射型の放射線検出素子への適用も可能である。こうした裏面入射型の放射線検出素子は、高エネルギーの放射線検出素子として用いることができる。

以上、説明したように、本発明によれば、吸湿性の高いシンチレータを保護するために、シンチレータ上にパリレン等からなる保護膜が形成されており、この保護膜の縁はアクリル等の樹脂コーティングにより受光素子アレイに接着されているので、シンチレ

ータ層が密封される。特に、保護膜の縁からのはがれが防止されているので、耐湿性が 向上する。

本発明の製造方法によれば、保護膜を形成後不要部分を除去するので、必要部分のみに保護膜を形成する場合に比べて均一な状態の保護膜形成が容易であり、ボンディングバッドが確実に露出される。また、堆積しているシンチレータの結晶の隙間にも保護膜が浸透するので保護膜とシンチレータ層の密着性が増す。

以上の本発明の説明から、本発明を様々に変形しうることは明らかである。そのような変形は、本発明の思想および範囲から逸脱するものとは認めることはできず、すべての当業者にとって自明である改良は、以下の請求項の範囲に含まれるものである。

10

5

産業上の利用可能性

本発明の放射線検出素子は、特に医療、工業用のX線撮影で用いられる大面積の放射線イメージングシステムに適用可能である。特に、現在広く用いられているX線フィルムに代えて胸部X線撮影等に使用することができる。

10

請求の範囲

1. 複数の受光素子を基板上に1次元あるいは2次元に配列して受光部を形成し、前記受光部の各行又は各列の前記受光素子と電気的に接続された複数のボンディングバッドを前記受光部の外部に有する受光素子アレイと、

前記受光素子上に堆積された放射線を可視光に変換するシンチレータ層と、

有機膜とその上に積層された無機膜を含む2層以上の多層膜からなり、前記シンチレータ層を覆うとともに、前記受光素子アレイの前記ボンディングバッド部分を露出させている放射線透過性の耐湿保護膜と、

前記耐湿保護膜を前記受光素子アレイの露出部分との境界部分である前記耐湿保護膜の縁に沿ってコーティングして前記耐湿保護膜の縁を前記受光素子アレイに密着させている被覆樹脂と、

を備えている放射線検出素子。

- 2. 前記ボンディングパッドは、前記基板の外周辺部に位置しており、前記耐湿保護 膜は、前記受光部の外辺と前記受光素子アレイ外辺の間まで覆って形成され、前記被覆 樹脂は、前記耐湿保護膜外周部をコーティングしている請求項1記載の放射線検出素子。
- 3. 複数の受光素子を基板上に1次元あるいは2次元に配列して受光部を形成し、前 20 記受光部の各行又は各列の前記受光素子と電気的に接続された複数のボンディングバッ ドを前記受光部の外部に配置した受光素子アレイの前記受光素子上に放射線を可視光に 変換するシンチレータ層を堆積させる工程と、

前記受光素子アレイ全体を包み込むように放射線透過性の第1の有機膜を形成する工程と、

25 前記第1の有機膜上に無機膜を含む1層以上の膜を積層して、2層以上の多層膜からなる放射線透過性の耐湿保護膜を形成する工程と、

10

15

20

前記シンチレータ層の外側であって、少なくとも前記ボンディングパッドを覆っている部分の前記耐湿保護膜を切断して除去し、少なくとも前記ボンディングパッドを含む 領域の前記受光素子アレイ部分を露出させる工程と、

前記耐湿保護膜を前記受光素子アレイの露出部分との境界である縁部分に沿って樹脂によりコーティングし、前記耐湿保護膜の縁を前記受光素子アレイに密着させる工程と、 を有する放射線検出素子の製造方法。

4. 複数の受光素子を基板上に1次元あるいは2次元に配列して受光部を形成し、前記受光部の各行又は各列の前記受光素子と電気的に接続された複数のボンディングバッドを前記基板の外周辺部に配列させた受光素子アレイの前記受光素子上に放射線を可視光に変換するシンチレータ層を堆積させる工程と、

前記受光素子アレイ全体を包み込むように放射線透過性の第1の有機膜を形成する工程と、

前記第1の有機膜上に少なくとも無機膜を含む1層以上の膜を積層して、2層以上の 多層膜からなる放射線透過性の耐湿保護膜を形成する工程と、

前記シンチレータ層の外周と前記ボンディングパッド部分の間の位置で前記耐湿保護膜を前記シンチレータ層の外周に沿って切断し、この切断面より外側及び入射面裏面部分に形成された前記耐湿保護膜を除去して前記ボンディングパッドを露出させる工程と、切断された前記耐湿保護膜の外周部を樹脂によりコーティングして前記耐湿保護膜外周部を前記受光素子アレイに密着させる工程と、

を有する放射線検出素子の製造方法。

図2

A-A線断面図

図3

図 4

図5

図6

図 7

図8

図9

図10 11 8 7 6

図11

図12

B-B 線断面図

INTERNATIONAL SEARCH REPORT

International application No. PCT/JP98/00550

A. CLASSIFICATION OF SUBJECT MATTER Int.Cl G01T1/20 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) Int.Cl⁶ G01T1/20 Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched 1940-1996 Toroku Jitsuyo Shinan Koho Jitsuyo Shinan Koho 1994-1998 1971-1998 Jitsuyo Shinan Toroku Koho Kokai Jitsuyo Shinan Koho 1976-1998 Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category* Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. JP, 5-60871, A (Hamamatsu Photonics K.K.), Ÿ 1 - 4March 12, 1993 (12. 03. 93), Full text; Figs. 1 to 10 (Family: none) US, 5227635, A (Xsirious, INC.), 1-4 Y July 13, 1993 (13. 07. 93), Column 1, line 58 to column 2, line 2, column 3, lines 18 to 32 (Family: none) JP, 5-333353, A (Sony Corp.), 1 - 4A December 17, 1993 (17. 12. 93), Full text; Figs. 1, 2 (Family: none) JP, 5-312961, A (N.V. Philips' 1-4 Α Gloeilampenfabrieken), November 26, 1993 (26. 11. 93), Full text; Figs. 1 to 4 (Family: none) Further documents are listed in the continuation of Box C. See patent family annex. Special categories of cited documents: later document published after the international filing date or priority document defining the general state of the art which is not date and not in conflict with the application but cited to understand considered to be of particular relevance the principle or theory underlying the invention earlier document but published on or after the international filing date document of particular relevance; the claimed invention cannot be document which may throw doubts on priority claim(s) or which is considered novel or cannot be considered to involve an inventive step cited to establish the publication date of another citation or other when the document is taken alone special reason (as specified) document of particular relevance; the claimed invention cannot be document referring to an oral disclosure, use, exhibition or other considered to involve an inventive step when the document is combined with one or more other such documents, such combination document published prior to the international filing date but later than being obvious to a person skilled in the art "&" document member of the same patent family the priority date claimed Date of mailing of the international search report Date of the actual completion of the international search May 14, 1998 (14. 05. 98) May 26, 1998 (26. 05. 98) Authorized officer Name and mailing address of the ISA/ Japanese Patent Office Telephone No. Facsimile No.

国際調査報告

国際出願番号 PCT/JP98/00550

A. 発明の原	属する分野の分類(国際特許分類(IPC))		a.		
Int.	C1' G01T1/20				
<u>B. 調査を行った分野</u> 調査を行った最小限資料(国際特許分類(IPC))					
嗣宜を打つた月	区分收货件 (国际时间分别 ()		,		
lnt.	Int. Cl' G01T1/20				
最小限資料以外の資料で調査を行った分野に含まれるもの					
日本国実用	用新案公報 1940-1996年				
日本国公開実用新案公報 1971-1998年					
日本国登録	录実用新案公報 1994-1998年 用新案登録公報 1976-1998年				
国際調査で使用した電子データベース (データベースの名称、調査に使用した用語)					
0 88°× -	7 1.20 L.C. N. Z. *****				
<u>C.</u> 関連する 引用文献の	3と認められる文献		関連する		
カテゴリー*	引用文献名 及び一部の箇所が関連すると	ときは、その関連する箇所の表示	請求の範囲の番号		
Y	JP, 5-60871, A (浜松木	トニクス株式会社)	1 - 4		
-	12.3月.1993(12.0	3. 93)			
	全文、第1-10図(ファミリー	-7£ L)			
Y	US, 5227635, A (Xsi	rious, INC.)	1 - 4		
	13 7月 1993 (13.0	7. 93)			
	第1欄第58行目一第2欄第2行	目,第3欄第18-32行目			
	(ファミリーなし)				
Α	JP, 5-333353, A (ソニ	一株式会社)	1 – 4		
	17 12月 1993 (17.	12.93)			
	全文, 第1-2図 (ファミリーな	(L)			
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	□ パテントファミリーに闘する81	紙を参照。		
x C欄の続きにも文献が列挙されている。					
* 引用文献のカテゴリー の日の後に公表された文献					
「A」特に関連のある文献ではなく、一般的技術水準を示す 「T」国際出願日又は優先日後に公表された文献であって て出願と矛盾するものではなく、発明の原理又は理					
もの			元列以於在人間在		
「ヒ」元行又# の	いてはのなが、国际山城市の区に立めていた。	「X」特に関連のある文献であって、当	当該文献のみで発明		
「L」優先権国	主張に疑義を提起する文献又は他の文献の発行	の新規性又は進歩性がないと考え			
	くは他の特別な理由を確立するために引用する	「Y」特に関連のある文献であって、当 上の文献との、当業者にとって自	3000001以1901以191		
文献(理由を付す) 上の文献との、当業者にとって自明である組合で 「〇」口頭による開示、使用、展示等に含及する文献 よって進歩性がないと考えられるもの					
「P」国際出版	夏日前で、かつ優先権の主張の基礎となる出願	「&」同一パテントファミリー文献			
国際調査を完了した日 14.05.98		国際調査報告の発送日 26.0)5 .98		
					
国际関重成员の石が入りのくた		特許庁審査官(権限のある職員)	2G 9409		
日本国	国特許庁(ISA/JP)	田邊一英治	<u> </u>		
郵便番号100-8915 東京都千代田区霞が関三丁目4番3号			内線 3225		
東京 東京	那十八田込段が閔二」日4倍3万				

国際調査報告

国際出願番号 PCT/JP98/00550

C (続き) 関連すると認められる文献			
引用文献の		関連する 請求の範囲の番号	
カテゴリー*_	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示 IP 5-319961 A (エヌ・ベー・フィリップス・フル	1-4	
A	JP, 5-312961, A (エヌ・ベー・フィリップス・フルーイランベンファブリケン)		
	26.11月.1993 (26.11.93) 全文,第1-4図 (ファミリーなし)		
	主人,对于"拉西(2)(2)		
	·		
	·		
•			
		<u> </u>	