Devoir à la maison n° 1

À rendre le 16 septembre avant le DS

Ce sujet a pour objet l'étude de la convergence d'une série dont le terme général est le reste de la série alternée $\sum \frac{(-1)^k}{\sqrt{k}}$, ce qui nous amène à poser pour tout $n \in \mathbb{N}$:

$$b_n = \sum_{k=n+1}^{+\infty} \frac{(-1)^k}{\sqrt{k}}$$

- 1) On note, pour $n \in \mathbb{N}^*$, $u_n = \sum_{k=1}^n \frac{1}{\sqrt{k}}$. Montrer que la suite $v_n = u_n \int_1^n \frac{\mathrm{d}x}{\sqrt{x}}$ est décroissante et minorée, et en déduire l'existence d'un réel ℓ tel que $\lim_{n \to +\infty} \left(u_n \int_1^n \frac{\mathrm{d}x}{\sqrt{x}} \right) = \ell + 2$.
- 2) Dans cette question on établit deux résultats intermédiaires utiles pour la suite du problème.
 - a) Soit θ un réel strictement supérieur à 1. Donner un équivalent simple de $\sum_{k=n+1}^{+\infty} \frac{1}{k^{\theta}}$ lorsque n tend vers $+\infty$.
 - b) On considère deux séries convergentes $\sum x_n$ et $\sum y_n$ à termes généraux positifs, vérifiant : $x_n \sim y_n$. Montrer que lorsque n tend vers $+\infty$ on a : $\sum_{k=n+1}^{+\infty} x_k \sim \sum_{k=n+1}^{+\infty} y_k$.
- 3) On pose, pour $n \in \mathbb{N}^*, v_n = u_n 2\sqrt{n} \ell$.
 - a) Déterminer la nature de la série de terme général $v_{n+1} v_n$, et en déduire que $v_n \sim \frac{1}{2\sqrt{n}}$ lorsque n tend vers $+\infty$.
 - b) Déterminer un équivalent de $v_n \frac{1}{2\sqrt{n}}$ lorsque n tend vers $+\infty$, et en déduire que u_n vérifie une relation de la forme

$$u_n = A\sqrt{n} + B + \frac{C}{\sqrt{n}} + O\left(\frac{1}{n\sqrt{n}}\right)$$

où $A,\,B$ et C désignent des constantes réelles à déterminer.

- 4) On pose $S = \sum_{k=1}^{+\infty} \frac{(-1)^k}{\sqrt{k}}$.
 - a) Exprimer b_{2n} en fonction de S et des sommes partielles u_n et u_{2n} .
 - b) En déduire qu'il existe deux réels α et β , que l'on déterminera, tels que : $b_{2n} = \alpha + \frac{\beta}{\sqrt{n}} + O\left(\frac{1}{n\sqrt{n}}\right)$.
 - c) Exprimer S en fonction de ℓ et déterminer la nature de la série de terme général b_n .