TASK 2

1. Design a flowchart, Pseudocode, Algorithm for processing a customer order at a restaurant, including handling special requests (Like add on). PSEUDOCODE:

```
Step1: Start

Step2: Display "welcome to KFC"

Step3: Display "menu"

Step4: Read "add on request"

Step5: Read "Take order"

Step6: Calculate bill

Step7: Display "amount of bill"

Step8: Read "bill"

Step9: Display "please wait your order is preparing"

Step10: Display "order"

Step11: Display "Thank you for visiting KFC"

Step12: END.
```

Algorithm:

- Say customer to welcome to KFC
- Show menu to customer
- Take order from customer
- Add on request
- Calculate bill of customer
- Get bill from customer
- Say to customer wait few minutes your order is preparing
- Give his or her order
- Say thank you for visiting KFC
- END.

2.Design a flowchart, Pseudocode, Algorithm for handling a customer's deposit transaction at a bank, including checks for account validity and deposit amount conditions.

PSEUDO CODE:

```
Step1: Start
  Step2: Display "Bank account"
  step3: Display "send money"
  step4: Read "send money"
  step5; Display "easy paisa transfer"
   step6: Display "bank transfer"
   step7: Display "jazz cash transfer"
   step8: Read "Bank transfer"
   step9: Display "Bank-alHabib"
   step10: Display "Bank allied"
   step11: Read "Bank allied"
   step12: Display "enter the IBAN number"
   step13: Read "IBAN number"
step14: If
     IBAN number is correct then
```

Step15: Display "enter the amount"

Step16: Read "amount"

Step17: If

Amount <= available account balance in bank account then Display "amount deposited successfully"

Step18: else if

Display "insufficient balance for this transaction"

Step19: ELSE

Display "you entered IBAN is incorrect"

Steo20: End.

3.Design a flowchart, Pseudocode, Algorithm to determine which of three provided numbers is the greatest.

PSEUDO CODE:

```
Step1: START
Step2: Declare n1, n2, n3;
Step3: Display "Enter three numbers"
Step4: Read "n1&,n2,&n3"

Step5: If

• n1>n2 and n1>3, then
• Display "n1 is greatest"

Step6: Else If

• n2>n1 and n2>n3, then
• Display "n2 is greatest"

Step7: Else

8. Display "n3 is greatest"

Step9: End.
```

ALGORITHM:

4.Implement an algorithm where the user enters a number, and an appropriate month is displayed.

Algorithm:

```
Step1: Start
       Step2: print enter the number
       Step3: read n
 Step4: if
           n==1 then
           print January
 Step5: else if
                n==2 then
               print February
step6: else if
                n==3 then
              print March
 step7: else if
              n==4 then
              print April
step8: else if
              n==5 then
```

```
print May
 step9: else if
               n==6 then
              print June
 step10: else if
                 n==7 then
                 print July
 step11: else if
                n==8 then
                print August
 step12: else if
                n==9 then
                print September
step13: else if
                n==10 then
                print October
step14: else if
               n==11 then
               print November
step15: else if
                  n==12 then
                  print December
step16: else
```

step17: End.

5. Create pseudocode a small calculator which only does '+' or '-'Operations. (Hint: Take three variable inputs with one being used for the operator) pr

Pseudo code:

```
Step1: start

Step2: read n1,n2,op,re,

Step3: print "enter the number for n1 and n2"

Step4: read "n1&&n2"

Step5: print "enter the operator, '+'&& '-'"

Step6: read "op"

Step7: if

Op == '+'

re=n1+n2
```

6. Implement an algorithm for making a simple calculator with all the operators (+,-,*,/,%)

```
> Start
        Print "Enter the number for n1&&n2"
        Read "n1,n2";
        > Print "Enter the operator, '+'&& '-' && '*' && '/'&& '%';
        Read "op"
lf
                 • op== '+'
                 • re=n1+n2
       Else if
                 • op== '-'
                 • re=n1-n2
        Else if
                 • op== '*'
                 • re=n1*n2
       Else if
                 • op== '/'
                 • re=n1/n2
       Else if
                  • op== '%'
                  • re=n1%n2
```

Else

Print "invalid"➤ End

7. Why we use gitignore?

Ans: The purpose of gitignore files is to ensure that certain files not tracked by Git remain untracked . We use it to keep out things like:

- Temporary files that change often.
- Large or generated files that don't need to be in version control.
- Sensitive data like passwords.

This helps keep our Git repository clean and focused on the important code and files we want to share with others.

8. Difference between Algorithm and Pseudocode?

Pseudecode: Pseudocode is a simplified version of programming codes, written in plain English language and used to outline a program before its implementation.

Representation: Pseudocode uses a mix of natural language and programming constructs (such as loops and conditionals) to describe the algorithm. It is not executable but provides a clear outline of how the algorithm should be implemented.

Algorithm: An algorithm is a systematic, logical approach that provides a step-by-step procedure for computers to solve a specific problem.

- Purpose: To provide a clear and unambiguous set of instructions for solving a problem or completing a task.
- Representation: Algorithms are often represented in natural language, flowcharts, or mathematical notation. They do not require specific syntax or formatting.
- **Example:** An algorithm to sort a list of numbers might be described as follows:
 - 1. Compare the first two numbers.
 - 2. Swap them if the first is larger than the second.
 - 3. Move to the next pair of numbers and repeat step 2.
 - 4. Continue until the entire list is sorted.