Общее условие задачи:

Дана квадратная матрица, число ее строк (и столбцов) обозначим п. Кроме того, может быть задан одномерный массивы из п элементов. Алгоритм любой задачи может быть составлен с использованием единственного двукратного цикла.

Вариант 1

Для каждой строки матрицы найти сумму положительных элементов и произведение элементов, больших первого элемента строки.

Вариант 2

Назовем инверсией в строке ситуацию $A_{ij} > A_{ij+1}$ (в отличие от ситуации $A_{ij} \le A_{ij+1}$). Получить массив $C_1, C_2, ..., C_n$ по правилу: $C_i = 1$, если в i-й строке есть хотя бы одна инверсия, иначе $C_i = 0$. Подсчитать число строк, в которых инверсии отсутствуют.

Вариант 3

Изменить матрицу, прибавляя к каждому отрицательному элементу значение первого элемента той же строки. Первый элемент строки не изменять. Вычислить также сумму элементов матрицы.

Вариант 4

Найти среднее арифметическое тех элементов матрицы, каждый из которых больше первого элемента своего столбца. Вычислить также произведение элементов главной диагонали.

Вариант 5

Получить массив $X_1, X_2, ..., X_n$ и найти произведение элементов матрицы; элемент X_i равен 1, если в i-й строке матрицы есть хотя бы один положительный элемент, или равен 0, если положительных элементов не обнаружено.

Вариант 6

Найти сумму элементов матрицы и подсчитать число ее строк, в пределах каждой из которых все элементы положительны.

Вариант 7

Получить массив $X_1, X_2, ..., X_n$ по правилу: X_i =1, если каждый элемент i-го столбца не меньше первого элемента этого столбца, иначе X_i =0. Вычислить также произведение элементов матрицы.

Вариант 8

Изменить матрицу, увеличив каждый элемент, который меньше элемента главной диагонали, находящегося с ним в одной строке, на заданное значение К. Подсчитать общее число измененных элементов и сумму их начальных значений..

Вариант 9

Найти среднее арифметическое положительных элементов матрицы и число строк матрицы, в которых отрицателен элемент главной диагонали.

Вариант 10

Найти среднее арифметическое положительных элементов каждой строки матрицы и произведение элементов тех строк матрицы, в которых отрицателен элемент главной диагонали.

Вариант 11

Изменить матрицу, умножив каждый отрицательный элемент на абсолютную величину первого элемента строки, в которой стоит этот элемент. Подсчитать число произведенных замен и сумму элементов исходной матрицы.

Вариант 12

Найти среднее арифметическое отрицательных элементов каждой строки матрицы, и среднее арифметическое всех элементов матрицы, лежащих ниже главной диагонали.

Вариант 13

Получить массив $C_1, C_2, ..., C_n$ по правилу: C_i =0, если сумма элементов i-го столбца больше их произведения, иначе C_i =1. Найти также сумму всех элементов матрицы.

Вариант 14

Изменить все строки матрицы, в которых отрицателен первый элемент, умножая элементы этой строки на значение первого элемента. Подсчитать число измененных строк матрицы и общую сумму исходных элементов матрицы..

Вариант 15

Найти среднее арифметическое элементов матрицы, лежащих ниже главной диагонали и превышающих заданное значение С. Найти также сумму элементов каждого столбца.

Вариант 16

Получить массив $X_1, X_2, ..., X_n$ по правилу: X_i =1, если сумма положительных элементов i-го столбца матрицы больше их произведения, иначе X_i =0. Найти также среднее арифметическое положительных элементов матрицы.

Вариант 17

Заменить в матрице на 1 каждый положительный элемент, на 0 - каждый отрицательный. Для каждого столбца найти максимум среди исходных значений элементов.

Вариант 18

Найти среднее арифметическое общей совокупности элементов тех строк, последний элемент которых отрицателен. Найти также произведение положительных элементов матрицы.

Вариант 19

Получить массив $X_1, X_2, ..., X_n$ по правилу: X_i =1, если в i-м столбце матрицы более двух элементов, превышающий заданное значение C, иначе X_i =0. Найти также общее число элементов, которые больше C.

Вариант 20

Вывести номера строк матрицы, сумма элементов которых положительна. Найти также сумму элементов матрицы.

Вариант 21

Изменить часть матрицы, находящуюся под главной диагональю, заменив каждое отрицательный элемент на заданное значение С. Найти также сумму элементов главной диагонали исходной матрицы.

Вариант 22

Получить массив $X_1, X_2, ..., X_n$ по правилу: X_i =1, если элемент каждый элемент i-ой строки больше ее последнего элемента, иначе X_i =0. Найти также сумму элементов матрицы.

Вариант 23

Задан массив $C_1, C_2, ..., C_n$. Нужно изменить все столбцы матрицы, в которых равен 0 элемент главной диагонали: i-й элемент такого столбца (i=1,2,...,n) увеличивается на C_i . Найти также сумму элементов главной диагонали.

Вариант 24

Найти общую сумму элементов тех столбцов матрицы, сумма элементов в каждом из которых положительна, и сумму элементов главной диагонали.

Вариант 25

Задан массив $X_1, X_2,...X_n$. Получить массив $C_1, C_2, ..., C_n$ по правилу C_i = X_i , если любой элемент i-го столбца матрицы меньше X_i , иначе C_i =0. Найти также произведение всех элементов матрицы.

Вариант 26

Получить массив X_1 , X_2 , ..., X_n по правилу: $X_i=0$, если все элементы i-го столбца матрицы меньше 1, иначе $X_i=1$. Найти также произведение всех элементов матрицы.

Вариант 27

Получить массив $X_1, X_2, ..., X_n$ по правилу: X_i =1, если сумма положительных элементов i-ой строки матрицы больше абсолютной величины суммы ее отрицательных элементов, иначе X_i =0. Найти сумму элементов матрицы