TOPFIELD CONSULTANCY LTD					
Calculation Title	TECHNICAL NOTE _TN032 FI	TECHNICAL NOTE _TN032 FMEA & FMECA CALCULATION			
TN Number	TN032				
Project Number	TOPFIELD/P004	Superseded by	N/A		
		Calc.			
Calculation Number	032	Revision	A		
Engineer	M. Harris	Date	6.7.19		
Checker - Date					
Objective					

This technical note (TN) illustrates the equations used for the FMEA & FMECA failure calculations based on the standard approach.

Section 1 describes the FMECA calculation methods and section 2 provides FMECA case examples. A typical FMECA flow diagram is also shown at the end of this section. Section 3 presents the calculation sections required to develop the new FMECA template from the existing FMEA.

The following 2 Cases have been considered in the TN for the FMECA Calculation methods:

- Case 1 Failure Mode Criticality for a Carbon Film Resistor component
- Case 2 Failure Item Criticality for a Carbon Film Resistor component

Assumptions

- 1). Failure data has been presented per hour or a per year basis.
- 2). All failure modes will be derived from FMD-91 data source [1].
- 3). Only the most likely failure modes will be considered for the cases as the least likely may increase costs and impact schedule without having a significant impact on the overall results.

Page 1

Terms / Abbreviations Used

Abbrev	Term (unit)	Note
n	Number of failure modes for a component for a specific severity classification. Note J is the total number of failure modes for a component for a specific severity classification.	-

Abbrev	Term (unit)	Note
β	Failure effect probability	-
α	Failure mode ratio or modal	
	failure mode	
λ	Part failure rate	Failures per million
		hours, failures per
		yr, failures per hr
t	Duration of the operation	Hrs, no of cycles

1). FMECA CALCULATION EXAMPLES

There are two methods of calculation:

- Failure Mode Criticality (C_m) method, and
- Failure Item Criticality (C_r) method

EQUATIONS

3.1). Calc1: Eqn1 – Failure Mode Criticality (C_m) Method1:

$$C_m = \beta \alpha \lambda_p t$$

where:

C_m = Criticality number for each failure mode

 β = Conditional probability of failure effect

 α = Failure mode ratio

 λ_D = Part failure rate

 t = Duration of applicable mission phase usually expressed in hours or number of operating cycles.

Page 3

This method expresses criticality in terms of modal node.

3.1). Calc1: Eqn2 – Failure Item Criticality Method2:

TN032_FMEA AND FMECA Calculation_rev00A.docx

$$C_r = \sum_{n=1}^{j} (\beta \alpha \lambda_p t)_n \qquad \qquad n = 1, 2, 3, \dots j \qquad \qquad \text{or} \qquad \qquad C_r = \sum_{n=1}^{j} (C_m)_n$$

where:

C_r = Criticality number for the item being analyzed

n = The current failure mode of the item being analyzed for a particular severity classification

j = The number of failure modes for the item being analyzed for a particular severity classification

C_m = Criticality number for a particular failure mode

 β = Probability of occurrence of the resulting failure effect

α = Failure mode ratio

 λ_{D} = Part failure rate

t = Duration of applicable mission phase usually expressed in hours or number of operating cycles.

Note:

Care to be taken using this method as single point failures of items can be improperly ranked

TABLE 1: TYPICAL FAILURE EFFECT PROBABILITIES (β)

FAILURE EFFECT	β VALUE	
Actual Loss	1.00	
Probable Loss	> 0.10 to < 1.00	
Possible Loss	> 0 to 0.10	
No Effect	0	

Table1: Test Data for Methods 1, 2.

Term	Value	Description	Unit
n	1 j	Number of failure modes for a	-
		component for a specific severity	
		classification.	
		Note J is the total number of	
		failure modes for a component	
		for a specific severity	
		classification.	

TN032_FMEA AND FMECA Calculation_rev00A.docx

Term	Value	Description	Unit
β	1.00	Failure effect probability	-
α		Failure mode ratio or modal	
		failure mode	
λ		Part failure rate	Failures per million
			hours, failures per yr,
			failures per hr
t		Duration of the operation	Hrs, no of cycles

CRITICALITY MATRIX

The following criticality matrix provides a means for identifying and comparing failure modes for all components within a given system or subsystem in terms of severity. Severity is classified n four categories in the table below with Level 1 being the most severe (catastrophic) and Level 4 being the least severe (minor) as follows:

DESCRIPTION	CATEGORY	MISHAP DEFINITION		
Catastrophic	I	Death or system loss.		
Critical	П	Severe injury, severe occupational illness, or major system damage.		
Marginal	Ш	Minor injury, minor occupational illnes or minor system damage.		
Minor	IV	Less than minor injury, occupational illness, or minor system damage.		

2). FMECA CASE EXAMPLES

2.1). Case Example 1 using Calc1: Eqn1 – Failure Mode Criticality (Method1):

Failure Mode Criticality:

Component type: Carbon Film Resistor

Part Number: R14

Failure Rate (λ_p) : .25673 failures per million hours

Failure Effect Probability (α): Open (.75) Short (.25)

Time (t): 1 hour

Failure Mode Probability (β): 1

Failure Mode Criticality (C_m):

$$C_{\mathbf{m}} = \beta \alpha \lambda_{\mathbf{p}} t$$

$$C_{m}$$
 (open) = $(1 \times .75 \times .25673 \times 1)$

$$C_{\rm m}$$
 (open) = .192548 x 10⁻⁶

$$C_{\mathbf{m}}$$
 (short) = $(1 \times .25 \times .25673 \times 1)$

 C_{m} (short) = .064183

TN032_FMEA AND FMECA Calculation_rev00A.docx Page 6

- · assume a "open" failure mode could cause a catastrophic effect
- assume a "short" failure mode could cause a minor effect

2.2). Case Example 2 using Calc1: Eqn2 – Item Criticality Number (Method2):

Page 7

Item Criticality:

Component type: Carbon Film Resistor

Part Number: R14

Failure Rate (λ_p) : .25673 failures per million hours

Failure Effect Probability (α): Open (.75)

Short (.25)

Time (t): 1 hour

Failure Mode Probability (β): 1

Item Criticality (Cr):

$$C_r = \sum_{n=1}^{j} (\beta \alpha \lambda_p t)_n$$
 $N = 1, 2, 3, ... j$ or $C_r = \sum_{n=1}^{j} (C_m)_n$

$$C_r = (1 \times .75 \times .25673 \times 1) + (1 \times .25 \times .25673 \times 1)$$

$$C_r = .25673$$

FMECA FLOWCHART

The figure below indicates the FMECA process used to estimate component failures:

IN032 FMEA AND FMECA Calculation rev00A.docx

Table1: Test Input Data

Term	User Input/ Calculation Ref	Input Type	Value	Unit
Criticality number (for each failure mode), Cm	Eqn1 [1]	Format Number	Derived from eqn1	-
Failure mode ratio or modal failure mode, α	Input1 [2]	Number	0.75 (Open) 0.25 (Short)	-
Failure effect probability, β	Input2 [2]	Number	1	-
Part failure rate, λp	Input3 [2]	Number	0.25673	Failures per million hours, failures per yr, failures per hr
Duration of the operation, t	Input4 [2]	Number	1	Hrs or no of cycles

Notes:

[1]. In accordance with FMECA document based on the Reliability Analysis Center (RAC).

Table2: Consequence Calculation Outputs

Consequence	Equation	Calculation	Result
	No.		
Cm (open)	Eqn1	(1 x 0.75 x 0.25673 x 1)	1.92548E-07
Cm (short)	Eqn1	(1 x 0.25 x 0.25673 x 1)	0.064183
Cr	Eqn2	(1 x 0.75 x 0.25673 x 1) + (1 x 0.25 x	0.2567 3
		0.25673 x 1)	

3). FMECA CALCULATION SECTION

To create the new FMECA template the following calculation section will need to be inserted into the current FMEA template:

Failure Effect Probability, β	Failure Mode Ratio, α	Failure Rate, λp	Operating Time, t	Failure Mode Criticality, Cm	Failure Item Criticality, Cr

TN032_FMEA AND FMECA Calculation	n_rev00A.docx Page 11	02/10/2023
TNIO22 ENAEA AND ENAECA Calaulatia	n roy004 dos:	