Linear Regression Assumptions in Python

```
In []:

import numpy as np
   import pandas as pd
   import matplotlib.pyplot as plt
   from sklearn import datasets

   import statsmodels.api as sm
   from statsmodels.stats.outliers_influence import variance_inflation_factor
   from statsmodels.stats.stattools import durbin_watson
   import scipy.stats as st
In []:
```

- All assumptions of linear regression
 - What are the consequence if each is violated
 - How to test each assumption in python
 - How to fix each violation

Assumptions of Linear regression

- Linearity
- Autocorrelation
- Multicollinearity
- Heteroskedasticity
- Normality

These assumptions will be tested against diabetes dataset from the standard sklearn dataset.

Import data and build linear regression model

```
In [2]: diabetes = datasets.load_diabetes()
X = diabetes.data
y = diabetes.target

X2 = sm.add_constant(X)
est = sm.OLS(y, X2)
est2 = est.fit()
print(est2.summary())
```

OLS Regression Results

=======	======	=====	=======	=====	=====			
Dep. Vari	iable:			У	R-squ	uared:		0.518
Model: Method: Date: Time:				OLS	Adj. R-squared: F-statistic:			0.507
			Least Squ	iares				46.27
			Fri, 04 Dec 2020		<pre>Prob (F-statistic):</pre>			3.83e-62
			07:1	2:15	Log-Likelihood:			-2386.0
No. Observations:				442	AIC:			4794.
Df Residuals:				431	BIC:			4839.
Df Model:				10				
Covariance Type:			nonro	bust				
=======	======	=====		=====			[0.025	0.0751
		coet	std err			P> t	[0.025	0.975]
const	152	.1335	2.576			0.000	147.071	157.196
x1			59.749			0.867		
x2	-239	.8191	61.222	-3	.917	0.000	-360.151	-119.488
x3	519	.8398	66.534	7	.813	0.000	389.069	650.610
x4	324	.3904	65.422	4	.958	0.000	195.805	452.976
x5	-792	.1842	416.684	-1	.901	0.058	-1611.169	
x6	476	.7458	339.035	1	.406	0.160	-189.621	1143.113
x7	101	.0446	212.533	0	.475	0.635	-316.685	518.774
x8	177	.0642	161.476	1	.097	0.273	-140.313	494.442
x9	751	.2793	171.902	4	.370	0.000	413.409	1089.150
x10	67	.6254	65.984	1	.025	0.306	-62.065	197.316
=======	======	=====	=======	=====	=====			
Omnibus:					Durbin-Watson:			2.029
Prob(Omnibus):				0.471 Jarque-Bera (JB):				1.404
Skew:			6	0.017 Prob(JB):				0.496
Kurtosis			2 726 Cond No					227

Kurtosis: 2.726 Cond. No. 227.

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

Linearity:

- Expected value of the dependent variable is straight-line function of each individual independent variable.
- If this is violated, then extrapolating beyond the range of the sample data would give unrelable results
- This can be tested if predicted values and residual have pattern then relationship between dependent and independent variable is non linear.
- This can be fixed by using polynomial transformation of variables one by one manually or polynomial regression.
- If equation is $y=(\beta 1*x1)+(\beta 2*x2)$, after polynomial transformation it will become $y=(\beta 1*x1)+(\beta 2*x2)+(\beta 3*x1*x2)+(\beta 4*x1^2)+(\beta 5*x2^2)$

```
In [3]: #step 1) calculate residual
    residuals = y-est2.fittedvalues
    #step 2) plot standardized residual vs actual
    plt.scatter(st.zscore(residuals),st.zscore(y))
    plt.xlabel('standardized residual')
    plt.ylabel('standardized predicted')
    plt.show()
```


It looks like there is relationship between predicated values and residual.

- Theoritically speaking, model should predict values higher than actual and lower than actual with equal probability.
- We need to plot dependent vs independent variable to identify polynomial relationships and add the terms in the model.

Normality:

- Residuals should be normally distributed.
- If it is violated, it causes problems with calculating confidence intervals and various significance tests for coefficients.
- Q-Q plot and Shapiro-Wilk test can help find if it is met or violated.
- Q-Q plot compares the quantiles of a data distribution with the quantiles of a standardized theoretical distribution. Majority of the middle part of the line should fall on a line.
- It can be fixed by outlier treatment and nonlinear transformation such as log

```
In [4]: #normality through QQ plot
fig4=sm.qqplot(residuals, line='r')

#perform Shapiro-Wilk test
_,p=st.shapiro(residuals)
if p>0.05:
    print('Null hypothesis rejected. Residuals are normally distributed')
```

Null hypothesis rejected. Residuals are normally distributed

Multicollinearity

- All independent variables are independent of each other and have no correlation amongst each other.
- If it is violated, coefficient estimates will be unstable and can cause the coefficients to switch signs.
- It can be fixed by either 1) removing variables with VIF larger than 10 Or 2) by doing PCA

Heterosked a sticity

- Error term should have equal variance across different observations. In the case of heteroskedasticity this is violated.
- Heteroskedasticity leads to wrong standard errors of the coefficients, which results in wrong t-statistic and p-values
- It can be identified if residual vs fitted values has specific pattern, it means has non-constant variance
- in such case, we can use variance stabilizing transformation, such as log and sqrt. We can also solve this through quantile regression

```
In [6]: plt.scatter(residuals,est2.fittedvalues)
    plt.xlabel('residual')
    plt.ylabel('predicted')
    print('It clearly shows that heteroskedasticity assumptions are violated')
```

It clearly shows that heteroskedasticity assumptions are violated

Autocorrelation

- ullet If errors are correlated and not independent, its said to have auto-correlation. In other words, error of t instance bears an impact from t-1
- If residual has autocorrelation, then we might get coefficient for certain variables as significant, whereas these are actually non significant. In addition F test and R square will be unreliable
- It happens mostly with time series data.
- It can be tested by durbin-watson test. If it is between 1.5 to 2.5, its good. less tahn 1.5 is negative autocorrelation, more than 2.5 is positive autocorrelation. Although 2 is considered as ideal value.
- It can be fixed by adding a lag variable. and seasonality related dummy varriables.

In [7]: durbin_watson(residuals)

Out[7]: 2.0285418752535134

In []: