

THE PERSON NAMED IN

CS7.505: Computer Vision

Spring 2024: Segmentation & Dense Prediction

Makarand Tapaswi Katha Al Lab, CVIT, IIIT Hyderabad Anoop Namboodiri
Biometrics and Secure ID Lab, CVIT,
IIIT Hyderabad

Computer Vision Tasks

CAT, DOG, DUCK

Multiple objects

Object Detection

Instance Segmentation

Semantic Segmentation

Vision person's first idea: sliding window!

Don't do this please ...

Semantic Segmentation: Challenges

- Number of pixels is very large
 - Still less than number of windows!!
- A pixel by itself does not contain enough information for the task
 - We need to use content information of pixels around
- The label of a pixel is highly correlated to labels of neighboring pixels
 - We need to use label predictions of neighboring pixels
- Objects tend to have highly irregular boundaries
- Porous objects and boundary pixels pose additional challenges

VGG16: Number of Parameters by Layers

- Max-Pool layers are not shown in the table as they do not contain any learnable parameters
- Almost 90% of parameters are in the 3 FC layers !!

Layer	Туре	Size	Chanls	Params (M)
1	Conv	3x3	64	0.002
2	Conv	3x3	64	0.037
3	Conv	3x3	128	0.074
4	Conv	3x3	128	0.148
5	Conv	3x3	256	0.295
6	Conv	3x3	256	0.590
7	Conv	3x3	256	0.590
8	Conv	3x3	512	1.180
9	Conv	3x3	512	2.360
10	Conv	3x3	512	2.360
11	Conv	3x3	512	2.360
12	Conv	3x3	512	2.360
13	Conv	3x3	512	2.360
14	FC	250888	4096	102.765
15	FC	4096	4096	16.781
16	FC	4096	1000	4.097
				138.423

DL Solution: Fully Convolutional Network

- A series of Conv layers (+ MP, Norm, ReLU); avoid FC Layers
- Inputs, intermediate outputs and final outputs are 2D (or 3D)
- Often has a bottleneck in middle (Encoder-Decoder)

Auto Encoders

- How to train a network with only unlabeled data?
- Idea: Use the input itself as output.
- Network learns to reconstruct
- "Bottleneck" layer learns a compact representation.

Deep Auto-encoder

Of course, the auto-encoder can be deep

Symmetry is not necessary

Reference: Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data with neural networks." *Science* 313.5786 (2006): 504-507

Deep Auto-encoder

Fully Convolutional Autoencoders

- All layers of the autoencoder are convolutional
- Output size reduces till bottleneck; channels increase.
- The encoder is often taken from a pre-trained network
- The network is independent of input image size!
- The layers after bottleneck does transposed convolution

Fully Convolutional Network for Segmentation

- Encoder captures semantic information; Decoder projects it into the pixel space
- Bottleneck layer results in low resolution; fuzzy boundary
- Can handle arbitrary image size

Diving into details

- "Upsampling" or "transposed convolutions"
- https://web.eecs.umich.edu/~justincj/slides/eecs498/WI202
 2/598 WI2022 lecture15.pdf
- Slides 43 70

It is NOT deconvolution

Very nice read:

https://medium.com/@marsxiang/convolutions-transposed-and-deconvolution-6430c358a5b6

- Deconvolution is the process of reversing convolution effects
- Transposed convolution is learnable upsampling!

The Dilemma: Local or Global

- Focusing on Global information (context) is essential for robust classification (local invariance)
- Focusing on Local information is essential for localization or fine semantic boundaries (location sensitivity)
- Autoencoder output tends to focus on overall information due to bottleneck layer

Improving Output Resolution

- The bottleneck layer is of low resolution
- Recovering detailed information is difficulty during deconvolution

Solution: Skip Connections

UNet: Skip Connections

Atrous Convolutions

a trous french

All Images Videos

Shopping

News

: More

[tru] masculine noun. 1. (= orifice, cavité) hole.

