Lecture 17: Parametric ML (logistic regression) & Non-parametric (trees)

COSC 480 Data Science, Spring 2017 Michael Hay

Today

- Wrap up parametric methods: logistic regression
- Start on non-parametric: decision trees

- Quick note:
 - We're not spending a lot of class time on logistic regression (b/c overlap with perceptron)
 - But it's probably the most useful tool in your ML toolkit!

Noisy targets

- Assumption so far, Y is deterministic function of X
 - Y = f(X)
- But sometimes the "target function" is not always a function

 Example: two identical credit applications receive different outcomes (approve/deny)

Target distribution

- Instead of Y = f(X), treat unknown target function f(X) as a probability
- f(X) outputs a number in [0,1] rather than {-1, +1}.
 - $P(Y=+1 \mid X) = f(x)$
 - $P(Y=-1 \mid X) = 1-f(x)$
- Machine learning problem: find h(x) ≈ f(x)
 - Thus, h(X) also outputs a number in [0,1]

Logistic function

The logistic function maps real numbers to [0,1]

$$g(s) = \frac{e^s}{e^s + 1} = \frac{1}{1 + e^{-s}}$$

Logistic regression

Take our favorite approach (linear model)

$$s = \sum_{i=0}^{d} w_i x_i \qquad h(x)^{0.5}$$

$$\sum_{i=0}^{d} w_i x_i$$

but map onto [0, 1] using logistic function

$$h(x) = g\left(\sum_{i=0}^{d} w_i x_i\right) = \frac{1}{1 + e^{-\sum_{i=0}^{d} w_i x_i}}$$

How to set the weights?

- Training data, pairs of (x, y) where y is -1 or +1
 - Note: we never see f(x) only the "noisy" output y
 - Think of each y as outcome of coin flip: +1 with probability f(x), -1 with probability 1 - f(x)
- Given data, how set weights w₀, ..., w_d?

Maximum likelihood principle: Choose w to maximize probability of producing the training data (assuming f = h)

Equation for likelihood

$$P(Y = y | X = x) = \begin{cases} h(x) & \text{if } y = +1\\ 1 - h(x) & \text{if } y = -1 \end{cases}$$

Substitute $h(x) = g\left(\sum_{j=0}^{d} w_j x_j\right)$ and fact that g(-z) = 1 - g(z)

$$P(Y = y|X = x) = g\left(y\sum_{j=0}^{d} w_j x_j\right)$$

• Likelihood of the data $(x_1,y_1), \ldots, (x_n,y_n)$ is

$$\prod_{i=1}^{n} P(Y_i = y_i | X_i = x_i) = \prod_{i=1}^{n} g\left(y_i \sum_{j=0}^{d} w_j x_{ij}\right)$$

Note: notation differs from book because book uses y=0 or y=1

Maximize likelihood

 The likelihood is a function of the weights w. Want to choose w to *maximize* likelihood.

$$L(w) = \prod_{i=1}^{n} P(Y_i = y_i | X_i = x_i) = \prod_{i=1}^{n} g\left(y_i \sum_{j=0}^{d} w_j x_{ij}\right)$$

This is equivalent to maximizing the log likelihood.

$$\ell(w) = \log L(w) = \sum_{i=1}^{n} \log \left(g \left(y_i \sum_{j=0}^{d} w_j x_{ij} \right) \right)$$

To turn into minimization problem, take negative.

$$J(w) = -\ell(w)$$

We can find minimizing w $J(w) = -\ell(w) \qquad \text{using gradient descent}$ (details not shown).

Interpretation

- How can we interpret the weights?
- "Log odds"

$$\log\left(\frac{h(x)}{1-h(x)}\right) = \sum_{j=0}^{a} w_j x_j$$

- A unit increase in x_i increases the odds by e^{wi}
- Credit example:
 - Suppose x_i is salary in thousands of dollars and w_i is 0.67
 - Increasing salary by \$1000 increases odds of getting credit by $e^{0.69} \approx 2.0$
 - In other words, \$1000 increase in salary doubles chances of getting credit

Summary of logistic regression

- Widely used
- Compared to perceptron
 - Similarity: linear model
 - Difference: outputs a "probability" rather than decision
- Learning algorithm uses cost function that is...
 - mathematically nice
 - motivated by maximum likelihood principle

break after quick preview

http://en.akinator.com/personnages/jeu

Decision Trees

Decision tree for "Send patient home post-op?"

Learning a decision tree

Input: a collection of *labeled* examples

Output: a decision tree

Key problem: which attribute should be chosen?

If all examples have same value for target attribute*

The tree is a leaf that stores value of the target attribute

Else

Pick an attribute for the decision node

Construct one branch for each possible value of that attribute Split examples: each branch gets subset of examples that agree with attribute value associated with that branch

For each branch, recursively build tree on subset of examples assigned to that branch

* and/or other stopping criteria

Attribute selection

- Intuition: pick an attribute that splits the training data into groups that are homogenous in terms of the target attribute
- Example:
 - Suppose we segment on "surgery complexity"
 - Creates three groups (low, med, hi)
 - Check: is low group homogenous in terms of "Send home?" What about the med group? High group?

X ₁ : Family at home?	X ₂ : Complexity of surgery	X ₃ : Age	Y: Send home?
У	low	55	+
У	low	25	+
n	med	72	_
У	med	53	+
n	hi	79	-
n	hi	81	_
n	hi	56	+

Notation

- D is dataset
- $D_{X=x}$ means the subset of data in D where X=x
- $X = attribute with k values x_1, x_2, ..., x_k$
- Y = target attribute
- P(X = x, D) is the fraction of records in D where X=x
- p(x) is short for P(X = x, D) when X and D are clear from context

Entropy-related measures

- entropy(X, D) the entropy of attribute X in dataset D
- segmentEntropy(X, Y, D) the remaining entropy of Y after we segment the data in D on attribute X
- InfoGain(X, Y, D) =
 entropy(Y,D) segmentEntropy(X, Y, D)
- InfoGain measures how much information about Y is gained when we segment data based on X

Question

Instructions: ~1 minute to think/ answer on your own; then discuss with neighbors; then I will call on one of you

What is entropy(Y, D) where Y is the attribute "send home?"

It is sufficient to write a math expression.

X ₁ : Family at home?	X ₂ : Complexity of surgery	X ₃ : Age	Y: Send home?
У	low	55	+
У	low	25	+
n	med	72	_
У	med	53	+
n	hi	79	-
n	hi	81	_
n	hi	56	+

Question

Instructions: ~1 minute to think/ answer on your own; then discuss with neighbors; then I will call on one of you

What is segmentEntropy(X₁, Y, D) where X₁ is the attribute "family at home?" and Y is "send home?"

It is sufficient to write a math expression.

X ₁ : Family at home?	X ₂ : Complexity of surgery	X₃: Age	Y: Send home?
У	low	55	+
У	low	25	+
n	med	72	_
У	med	53	+
n	hi	79	_
n	hi	81	<u>-</u>
n	hi	56	+

Entropy-related measures

- InfoGain(X, Y, D) =
 entropy(Y,D) segmentEntropy(X, Y, D)
- InfoGain measures how much information about Y is gained when we segment data based on X
- We should pick the attribute X that maximizes InfoGain
 - Note: entropy(Y,D) is the same for all X, so equivalent to minimizing segmentEntropy

Question

Instructions: ~1 minute to think/ answer on your own; then discuss with neighbors; then I will call on one of you

What is InfoGain(X_3 , Y, D) where X_3 is the attribute "age" and Y is "send home?"

Hint: you should be able to answer this without laborious calculation.

Age is a numerical attribute. What does your answer suggest about using InfoGain on numerical attributes?

X ₁ : Family at home?	X ₂ : Complexity of surgery	X₃: Age	Y: Send home?
У	low	55	+
У	low	25	+
n	med	72	_
У	med	53	+
n	hi	79	-
n	hi	81	_
n	hi	56	+

"Is it a good day to play golf?"

Attributes with Numeric Values: the Golf Tree

	Outlook	Temp	Humidity	Wind	Class
Example1	Sunny	85	85	False	Don't Play
Example2	Sunny	80	90	True	Don't Play
Example3	Overcast	83	88	False	Play
Example4	Rainy	70	96	False	Play
Example5	Rainy	68	80	False	Play
Example6	Rainy	65	70	True	Don't Play
Example7	Overcast	64	65	True	Play
Example8	Sunny	72	95	False	Don't Play
Example9	Sunny	69	70	False	Play
Example10	Rainy	75	80	False	Play
Example11	Sunny	75	70	True	Play
Example12	Overcast	72	90	True	Play
Example13	Overcast	81	75	False	Play
Example14	Rainy	71	96	True	Don't Play

Attributes with Numeric Values

Split the numeric range into two groups:

```
values <= threshold
values > threshold
```

- How to select the threshold:
 - Sort the examples by the values of the attribute.
 - Search the examples, noting transition points: places where adjacent examples belong to different classes.
 - The average value at transition points represent potential splits.
 - Evaluate each split by applying the information gain formula.
 - Choose the best split.
- Compare the gain for the best split against information gain for the remaining attributes.

May split on same numeric attribute more than once.

Attributes with Numeric Values: the Golf Tree

Considering only the examples with Outlook=Sunny

	Humidity	Class
Example9	70	Play
Example11	70	Play
Example1	85	Don't Play
Example2	90	Don't Play
Example8	95	Don't Play

Only one transition point here: 70 to 85, potential split: 77.5, info gain?

Question

	Temp	Class
Example7	64	Play
Example6	65	Don't Play
Example5	68	Play
Example9	69	Play
Example4	70	Play
Example14	71	Don't Play
Example8	72	Don't Play
Example12	75	Play
Example10	75	Play
Example11	75	Play
Example2	80	Don't Play
Example13	81	Play
Example3	83	Play
Example1	85	Play

Instructions: ~1 minute to think/ answer on your own; then discuss with neighbors; then I will call on one of you

What are the potential splits for Temp?

- Search the examples, noting transition points: places where adjacent examples belong to different classes.
- The average value at transition points represent potential splits.

Question

Instructions: ~1 minute to think/ answer on your own; then discuss with neighbors; then I will call on one of you

The first attribute selected for a decision node is the attribute with the highest information gain.

Claim: The second attribute selected for a decision node will be the attribute with the second highest information gain.

- A. True
- B. False
- C. Not enough information given in problem

Linear vs. trees

True boundary is linear; tree can only approximate with axis-parallel splits

Linear vs. trees

True boundary is non-linear: linear model (perceptron) gives poor approximation

Comparison

Perceptron	Decision Tree
Parameteric	Non-parametric
Numerical features	All feature types
Finds separating line	Partitions space into regions (finer with more data)
"Robust": similar line on two different samples of data	Non-robust: shape of tree can change a lot on different samples

• See ISL p. 315 for nice summary of pros/cons of trees.

Summary of trees

- Key idea behind decision trees is segmentation: we are splitting training dataset into subset based on value of a selected attribute
- We can use information gain to select the "best" attribute to split on
- For numeric attributes, we can consider "transition points"
- Note: for numeric attributes, it may make sense to split on the same attribute multiple times within the same tree.