Lycée Toujounine 1

05/2016

Classe 7D

BAC BLANC

Exercice 1:

Un exercice est composé de n = 5 questions à choix multiples, pour chaque question sont proposées 3 réponses dont une seule est correcte. Un élève répond au hasard aux cinq questions de l'exercice (On suppose l'équiprobabilité)

Soit X la variable aléatoire égale au nombre de réponses correctes données par cet élève.

1) a- Pour une question (ayant 3 réponses), déterminer la probabilité p de choisir la réponse correcte.

b-Montrer que X suit la loi binomiale. Déterminer ses paramètres (n, p, q)

2) l'élève choisit au hasard 5 réponses pour les 5 questions, calculer la probabilité de chacun des évènements suivants:

A: Toutes les réponses sont correctes.

B: Exactement deux réponses correctes.
3) a- Donner la loi de probabilité de X
b- Calculer l'espérance de X. b- Calculer l'espérance de X. Exercice 2

1) On considère le polynôme $P(z) = z^3 - 8z^2 + 30z - 36$ où z est un nombre complexe.

a- Calculer P(2).

b- Déterminer a et b tels que pour tout nombre complexe z on a: $P(z) = (z-2)(z^2 + az + b)$

c- Résoudre dans l'ensemble des nombres complexes l'équation P(z)=0.

2) Le plan complexe est muni d'un repère orthonormé (O, u, v)

Soient les points A, B et C d'affixes respectives $z_1 = 2$, $z_2 = 3 + 3i$, $z_3 = 3 - 3i$

a- Calculer le module et un argument de chacun des nombres \mathbf{z}_1 , \mathbf{z}_2 et \mathbf{z}_3 .

b- Placer les points A, B et C dans le repère orthonormé (O, \vec{u}, \vec{v})

c- Ecrire sous forme algébrique $\frac{z_2}{z_3}$ et déduire la nature du triangle OBC.

3) On pose $f(z) = \frac{iz}{z-3-3i}$ Déterminer puis construire les ensembles Γ_k des points

M d'affixe z tels que

a)
$$\Gamma_1$$
 tel que $|\mathbf{f}(\mathbf{z})| = 1$

b)
$$\Gamma_2$$
 tel que $|\mathbf{f}(\mathbf{z}) - \mathbf{i}| = \sqrt{2}$

a)
$$\Gamma_1$$
 tel que $|\mathbf{f}(\mathbf{z})|=1$. b) Γ_2 tel que $|\mathbf{f}(\mathbf{z})-\mathbf{i}|=\sqrt{2}$. c) Γ_3 tel que $\mathbf{f}(\mathbf{z})$ soit réel pur . d) Γ_4 tel que $\arg \mathbf{f}(\mathbf{z})=\frac{\pi}{2}\big[\pi\big]$.

Exercice 3:

I) Soit g la fonction définie sur I=]0; + $\infty[$ par $g(x) = x^3 - 1 + 2\ln x$

1) Calculer les limites de g aux bornes de Dg

2) Calculer g'(x), la dérivée de g(x) et montrer que g réalise une bijection de I sur un intervalle J à préciser.

2) Calculer g(1) puis déduire le signe de g(x) sur l'intervalle 0; + ∞ [

II) On considère la fonction f définie sur]0; $+\infty[$ par $f(x) = x - 1 - \frac{\ln x}{x^2}$ et (C) sa courbe dans rapporté à un repère orthogonal $(0, \vec{i}, \vec{j})$. (Unités 2 cm).

- 1) a- Déterminer $\lim_{x\to 0^+} f(x)$ et interpréter graphiquement
- b-Déterminer $\lim_{x\to +\infty} f(x)$ et $\lim_{x\to +\infty} \left(f(x) x + 1 \right)$ et interpréter graphiquement
- 2)a) Calculer les coordonnées du point d'intersection de l'asymptote oblique (D) et la courbe (C).
- b) Etudier les positions relatives de la courbe (C) par rapport à la droite (D).
- 3) a- Montrer que pour tout x strictement positif $f(x) = \frac{g(x)}{x^{-3}}$
 - b- Déduire le tableau de variation de f.
 - 3) Tracer dans le repère $(0, \vec{i}, \vec{j})$ la courbe (C).
 - 4) a-Montrer que la fonction H définie par $H(x) = -\frac{1}{x}(1 + \ln x)$ est une primitive de la fonction $h(x) = \frac{\ln x}{x^2}$
- b) Soit \mathcal{A} lair du domaine du plan limité par (D), (C) et les droites d'équation x = 1 et $x = \sqrt{e}$. Calculer en cm² la valeur exacte de \mathcal{A} Exercice 4:
- I) Soit g la fonction définie sur \mathbb{R} , par : $g(x) = 1 2x + e^{2x}$ dont le tableau de variation est le suivant

- 1) Calculer g(0)
- 2) En déduire le signe de g
- 3) On considère la suite (u_n) définie par $u_n = g(n)$
- a- Ecrire (u_n) sous la forme d'une somme d'une suite géométrique et d'une suite arithmétique.
- b-Calculer en fonction de n la somme $S_n = u_0 + u_1 + u_2 + ... + u_n$
- II) On considère la fonction f définie sur \mathbb{R} par : $f(x) = x + 2 + xe^{-2x}$.

On appelle C sa représentation graphique dans le plan muni d'un repère orthonormé $(Q; \vec{i}, \vec{j})$

- Calculer lim f(x) et montrer que lim f(x) = +∞
 a- Montrer que pour tout réel x, f'(x) = g(x)/e^{2x}

b- Dresser le tableau des variations de f.

- 3) Montrer que f réalise une bijection de \mathbb{R} sur un intervalle J que l'on précisera. On note C ' la courbe de la fonction réciproque de f
- 4) a) Montrer que D: y = x + 2 est une asymptote à C au voisinage de $+\infty$.
- b) Étudier la position relative de C par rapport à D.
- c)Montrer que C admet une branche parabolique à préciser au voisinage de -\infty

(7D)

5) Tracer D, C et C' dans le repère $(O; \vec{i}, \vec{j})$