Topología I. Convocatoria ordinaria Grado en Matemáticas y Doble Grado en Física y Matemáticas 19 de enero de 2021

- **1.-** Para cada $\alpha \in \mathbb{R}$ denotamos $R_{\alpha} = \{(x,y) \in \mathbb{R}^2 / y = \alpha\}$. Se considera la topología T en \mathbb{R}^2 con base $\mathcal{B} = \{R_{\alpha} / \alpha \in \mathbb{R}\}$.
 - a) (0'25p) Estudiar si $T \leq T_u$ y si $T_u \leq T$, donde T_u es la topología usual en \mathbb{R}^2 .
 - b) (0'25p) ¿Es (\mathbb{R}^2, T) un espacio de Hausdorff?
 - c) (0'50p) Calcular el cierre, el interior y la frontera de los ejes coordenados.
 - d) (0'25p) ¿Es cierto que todo conjunto acotado en \mathbb{R}^2 tiene interior vacío?
 - e) (0'50p) Identificar la topología inducida por T sobre cada R_{α} y sobre $L = \{0\} \times \mathbb{R}$.
 - f) (0'75p) Construir explícitamente un homeomorfismo $f:(\mathbb{R}^2,T)\to(\mathbb{R}^2,T')$, donde T' es la topología en \mathbb{R}^2 con base $\mathcal{B}'=\{R'_\alpha\,/\,\alpha\in\mathbb{R}\}\ (\text{aquí }R'_\alpha=\{(x,y)\in\mathbb{R}^2\,/\,x=\alpha\}).$
 - g) (0'75p) Probar que $A \subseteq \mathbb{R}^2$ es conexo en (\mathbb{R}^2, T) si y sólo si existe $\alpha \in \mathbb{R}$ tal que $A \subseteq R_{\alpha}$. Determinar las componentes conexas de (\mathbb{R}^2, T) .
 - h) (0'75p) Probar que $A \subseteq \mathbb{R}^2$ es compacto en (\mathbb{R}^2, T) si y sólo si existe $J \subseteq \mathbb{R}$ finito tal que $A \subseteq \bigcup_{\alpha \in J} R_{\alpha}$.

2.- Teoría (3p).

- a) Definir la topología final asociada a una aplicación $f:(X,T)\to Y$, y la noción de identificación entre espacios topológicos.
- b) Probar que si $f:(X,T)\to (Y,T')$ es una identificación, entonces existe una relación de equivalencia R en X tal que el espacio cociente (X/R,T/R) es homeomorfo a (Y,T').
- **3.-** (3p). Estudiar de forma razonada las siguientes cuestiones:
 - a) ¿Es cierto que todo subconjunto finito no vacío de un espacio topológico es discreto? ¿Y si el espacio es metrizable?
 - b) Sea (\mathbb{R}, T_S) la recta de Sorgenfrey. Definimos $f: (\mathbb{R} \times \mathbb{R}, T_S \times T_S) \to (\mathbb{R} \times \mathbb{R}, T_S \times T_S)$ como $f(x, y) = (x, -y^3)$. Analizar si f es continua, abierta o cerrada.
 - c) Una aplicación $f:(X,T)\to (Y,T')$ es propia si para cada C' compacto en (Y,T') se verifica que $f^{-1}(C')$ es compacto en (X,T). Probar que si f es propia, (X,T) es de Hausdorff e (Y,T') es compacto, entonces f es continua.

Duración del examen: 3 horas

Soluciones

- 1.- Observamos primero que \mathcal{B} es la familia de las rectas horizontales de \mathbb{R}^2 . Sea $U \subseteq \mathbb{R}^2$ con $U \neq \emptyset$. Como \mathcal{B} es base de T entonces $U \in T$ si y sólo si para cada $(x,y) \in U$ existe $R_{\alpha} \in \mathcal{B}$ tal que $(x,y) \in R_{\alpha} \subseteq U$ (y, por tanto, $\alpha = y$). Así, los abiertos no vacíos de T son uniones de rectas horizontales. En particular $R_{\alpha} \in T$ para cada $\alpha \in \mathbb{R}$.
 - a) Estudiar si $T \leq T_u$ y si $T_u \leq T$, donde T_u es la topología usual en \mathbb{R}^2 .

La comparación $T \leq T_u$ no se cumple: la recta horizontal R_0 (el eje x) es abierto en T pero no en T_u . De serlo, existiría una bola abierta $B((0,0),\varepsilon)$ tal que $B((0,0),\varepsilon) \subseteq R_0$, lo que es imposible ya que $(0,\varepsilon/2) \in B((0,0),\varepsilon)$ y $(0,\varepsilon/2) \notin R_0$.

La comparación $T_u \leq T$ tampoco se cumple: por ejemplo, la bola abierta B((0,0),1) es abierto en T_u pero no en T. De serlo, como $(0,0) \in B((0,0),1)$ tendríamos la inclusión $R_0 \subseteq B((0,0),1)$, lo que es imposible ya que $(1,0) \in R_0$ y $(1,0) \notin B((0,0),1)$.

b) ¿Es (\mathbb{R}^2, T) un espacio de Hausdorff?

La respuesta es negativa. De serlo, dados los puntos (0,0) y (1,0) (ambos sobre la recta R_0) deberían existir abiertos $U, V \in T$ con $(0,0) \in U$, $(1,0) \in V$ y $U \cap V = \emptyset$. Dado que $U, V \in T$ tendríamos que $R_0 \subseteq U$ y $R_0 \subseteq V$, lo que contradice que $U \cap V = \emptyset$.

c) Calcular el cierre, el interior y la frontera de los ejes coordenados.

Comenzamos con el eje x, es decir la recta R_0 . Como $R_0 \in T$, entonces $R_0^{\circ} = R_0$. Calculemos \overline{R}_0 . Si ocurriera que $R_0 \in C_T$ entonces tendríamos $\overline{R}_0 = R_0$. ¿Se cumple $R_0 \in C_T$, es decir, $R_0^c \in T$? Nótese que:

$$R_0^c = \{(x, y) \in \mathbb{R}^2 / y \neq 0\} = \bigcup_{\alpha \neq 0} R_{\alpha},$$

de donde $R_0^c \in T$ por ser unión de abiertos en T. Por tanto $R_0 \in C_T$ y $\overline{R}_0 = R_0$. En cuanto a la frontera de R_0 , obtenemos:

$$\partial R_0 = \overline{R}_0 \setminus R_0^{\circ} = R_0 \setminus R_0 = \emptyset.$$

Tomemos ahora el eje de ordenadas $L = \{(x,y) \in \mathbb{R}^2 / x = 0\}$. Veamos que L es denso en \mathbb{R}^2 , esto es, $\overline{L} = \mathbb{R}^2$. Como \mathcal{B} es una base de T y sus elementos son no vacíos, basta ver que $R_{\alpha} \cap L \neq \emptyset$ para cada $\alpha \in \mathbb{R}$. Y esto se cumple trivialmente, ya que $R_{\alpha} \cap L = \{(0,\alpha)\}$. Por otro lado se tiene que $L^{\circ} = \emptyset$. En efecto, si $(0,\alpha) \in L^{\circ}$ entonces se tendría que $R_{\alpha} \subseteq L$, lo que contradice que $R_{\alpha} \cap L = \{(0,\alpha)\}$. En cuanto a la frontera, deducimos que:

$$\partial L = \overline{L} \setminus L^{\circ} = \mathbb{R}^2 \setminus \emptyset = \mathbb{R}^2.$$

d) ¿Es cierto que todo conjunto acotado en \mathbb{R}^2 tiene interior vacío?

Sí, es cierto. Supongamos que $A \subset \mathbb{R}^2$ es acotado (para la distancia euclídea), es decir, existe M > 0 tal que $||(x,y)||^2 \leq M$ para cada $(x,y) \in A$. De existir $(x_0,y_0) \in A^\circ$ entonces tendríamos $R_{y_0} \subseteq A$. Pero esto es imposible, ya que $(M+1,y_0) \in R_{y_0}$ y $(M+1,y_0) \notin A$.

e) Identificar la topología inducida por T sobre cada R_{α} y sobre $L = \{0\} \times \mathbb{R}$. Dado $A \subseteq \mathbb{R}^2$ con $A \neq \emptyset$, sabemos que una base de $T_{|A}$ viene dada por:

$$\mathcal{B}_{|A} = \{ R_{\alpha} \cap A / \alpha \in \mathbb{R} \}.$$

Como $R_{\alpha} \cap R_{\beta} = R_{\alpha}$ si $\alpha = \beta$ y $R_{\alpha} \cap R_{\beta} = \emptyset$ si $\alpha \neq \beta$, se sigue que una base de $T_{|R_{\alpha}}$ es $\mathcal{B}_{|R_{\alpha}} = \{R_{\alpha}\}$. En consecuencia, $T_{|R_{\alpha}}$ coincide con la topología trivial T_t en R_{α} .

Por otro lado, nótese que $R_{\alpha} \cap L = \{(0, \alpha)\}$ para cada $\alpha \in \mathbb{R}$. Así, una base de $T_{|L}$ es $\mathcal{B}_{|L} = \{(0, \alpha) / \alpha \in \mathbb{R}\}$, de donde $T_{|L}$ es la topología discreta T_D en L.

f) Construir explícitamente un homeomorfismo $f:(\mathbb{R}^2,T)\to(\mathbb{R}^2,T')$, donde T' es la topología en \mathbb{R}^2 con base $\mathcal{B}'=\{R'_\alpha\,/\,\alpha\in\mathbb{R}\}\ (\text{aquí }R'_\alpha=\{(x,y)\in\mathbb{R}^2\,/\,x=\alpha\}).$

La idea es fabricar $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que $f(\mathcal{B}) = \mathcal{B}'$, es decir, f lleva rectas horizontales en rectas verticales. Esto nos lleva a considerar la aplicación $f: (\mathbb{R}^2, T) \to (\mathbb{R}^2, T')$ dada por f(x,y) = (y,x). Veamos que f es un homeomorfismo. Comprobaremos que f es continua, biyectiva y con inversa continua.

En primer lugar es claro que f es biyectiva y que $f^{-1} = f$ (pues $f \circ f = I_{\mathbb{R}^2}$). Para probar que $f: (\mathbb{R}^2, T) \to (\mathbb{R}^2, T')$ es continua, como \mathcal{B}' es base de T', basta verificar que $f^{-1}(R'_{\alpha}) \in T$ para cada $\alpha \in \mathbb{R}$. Dado $\alpha \in \mathbb{R}$, nótese que:

$$f^{-1}(R'_{\alpha}) = \{(x,y) \in \mathbb{R}^2 / f(x,y) \in R'_{\alpha}\} = \{(x,y) \in \mathbb{R}^2 / y = \alpha\} = R_{\alpha} \in T.$$

Con un cálculo análogo se prueba que $f^{-1}(R_{\alpha}) = R'_{\alpha}$, lo que justifica la continuidad de $f^{-1} = f: (\mathbb{R}^2, T') \to (\mathbb{R}^2, T)$.

g) Probar que $A \subseteq \mathbb{R}^2$ es conexo en (\mathbb{R}^2, T) si y sólo si existe $\alpha \in \mathbb{R}$ tal que $A \subseteq R_{\alpha}$. Determinar las componentes conexas de (\mathbb{R}^2, T) .

Sea $A \subseteq \mathbb{R}^2$ con $A \neq \emptyset$. Veamos que A es conexo en (\mathbb{R}^2, T) si y sólo si $A \subseteq R_\alpha$ para cierto $\alpha \in \mathbb{R}$.

 \Longrightarrow) Supongamos que A es conexo en (\mathbb{R}^2, T) , es decir, $(A, T_{|A})$ es conexo. Como $\mathbb{R}^2 = \bigcup_{\alpha \in \mathbb{R}} R_{\alpha}$ y $A \neq \emptyset$, debe existir $\alpha \in \mathbb{R}$ tal que $A \cap R_{\alpha} \neq \emptyset$. Veamos que $A \subseteq R_{\alpha}$. De lo contrario, tendríamos que $A \cap R_{\alpha}^c \neq \emptyset$. Ahora, el conjunto R_{α} es cerrado en T (la prueba es similar a la del caso $\alpha = 0$, véase la resolución del apartado c)), por lo que $R_{\alpha}^c \in T$. Así, la familia $\{R_{\alpha} \cap A, R_{\alpha}^c \cap A\}$ sería una separación no trivial de $(A, T_{|A})$, lo que contradice que A es conexo en (\mathbb{R}^2, T) .

 \iff Supongamos que existe $\alpha \in \mathbb{R}$ tal que $A \subseteq R_{\alpha}$. Queremos ver que $(A, T_{|A})$ es conexo. Como $A \subseteq R_{\alpha}$ y $T_{|A} = (T_{|R_{\alpha}})_{|A}$, entonces A es conexo en (\mathbb{R}^2, T) si y sólo si A es conexo en $(R_{\alpha}, T_{|R_{\alpha}})$. Por el apartado e) sabemos que $T_{|R_{\alpha}}$ coincide con la topología trivial T_t en R_{α} . Y como todo subconjunto de un espacio topológico trivial es conexo, concluimos que A es conexo en $(R_{\alpha}, T_{|R_{\alpha}})$ y, por tanto, en (\mathbb{R}^2, T) .

Finalmente, nótese que la familia \mathcal{B} es una partición de \mathbb{R}^2 formada por conjuntos abiertos y conexos para T. Por un resultado probado en clase $comp(\mathbb{R}^2, T) = \mathcal{B} = \{R_\alpha \mid \alpha \in \mathbb{R}\}.$

- h) Probar que $A\subseteq\mathbb{R}^2$ es compacto en (\mathbb{R}^2,T) si y sólo si existe $J\subseteq\mathbb{R}$ finito tal que $A\subseteq\bigcup_{\alpha\in J}R_\alpha.$
 - \Longrightarrow) Si A es compacto en (\mathbb{R}^2, T) entonces cumple la PHB. Como $\mathcal{B} = \{R_\alpha \mid \alpha \in \mathbb{R}\}$ es un recubrimiento de A por abiertos de T entonces existe $J \subseteq \mathbb{R}$ finito tal que $A \subseteq \bigcup_{\alpha \in J} R_\alpha$.
 - \iff Supongamos que existe $J \subseteq \mathbb{R}$ finito tal que $A \subseteq \bigcup_{\alpha \in J} R_{\alpha}$. Entonces, tenemos:

$$A = A \cap \Big(\bigcup_{\alpha \in J} R_{\alpha}\Big) = \bigcup_{\alpha \in J} (R_{\alpha} \cap A).$$

Cada $R_{\alpha} \cap A$ es compacto en $(R_{\alpha}, T_{|R_{\alpha}})$ (porque $T_{|R_{\alpha}}$ es la topología trivial en R_{α}) y, por tanto, en (\mathbb{R}^2, T) . Así, A es compacto en (\mathbb{R}^2, T) por ser unión finita de compactos.

- 2.- Las definiciones y la prueba del resultado que se piden se encuentran en los apuntes de teoría de la asignatura.
- **3.-** Estudiar de forma razonada las siguientes cuestiones:
 - a) ¿Es cierto que todo subconjunto finito no vacío de un espacio topológico es discreto? ¿Y si el espacio es metrizable?

Recordemos que A es discreto en (X,T) si $T_{|A}$ coincide con la topología discreta en A.

La primera pregunta tiene respuesta negativa. Tomemos por ejemplo el espacio topológico trivial (\mathbb{R}, T_t) y el conjunto finito $A = \{0, 1\}$. Sabemos que $T_{t|A}$ es la topología trivial en A, cuyos abiertos son $\{\emptyset, A\}$. En particular A no es un subconjunto discreto de (\mathbb{R}, T_t) .

La segunda pregunta tiene respuesta afirmativa. Tomemos un espacio metrizable (X, T_d) y un subconjunto $F = \{x_1, \ldots, x_m\} \subset X$. Para ver que F es discreto en (X, T_d) basta comprobar que $\{x_i\} \in T_{d|F}$ para cada $i = 1, \ldots, m$. Fijado $i \in \{1, \ldots, m\}$, si llamamos $\varepsilon = \min\{d(x_i, x_j) / j = 1, \ldots, m\}$, entonces es fácil verificar que $B(x_i, \varepsilon) \cap F = \{x_i\}$. Y, dado que $B(x_i, \varepsilon) \in T_d$, se concluye que $\{x_i\} \in T_{d|F}$ como se quería.

b) Sea (\mathbb{R}, T_S) la recta de Sorgenfrey. Definimos $f: (\mathbb{R} \times \mathbb{R}, T_S \times T_S) \to (\mathbb{R} \times \mathbb{R}, T_S \times T_S)$ como $f(x, y) = (x, -y^3)$. Analizar si f es continua, abierta o cerrada.

Es claro que $f = f_1 \times f_2$, donde $f_1 : (\mathbb{R}, T_S) \to (\mathbb{R}, T_S)$ está dada por $f_1(x) = x$, y $f_2 : (\mathbb{R}, T_S) \to (\mathbb{R}, T_S)$ es la función $f_2(y) = -y^3$. Sabemos que f es continua (resp. abierta) si y sólo si f_1 y f_2 son continuas (resp. abiertas). Es claro que f_1 es continua y abierta (es la identidad asociada a (\mathbb{R}, T_S) . Por otro lado, con ejemplos similares a los empleados con la función g(x) = -x en el ejercicio 4 de la relación 2.1 (hecho en clase), se comprueba que f_2 no es continua ni abierta. Así, f no es continua ni abierta.

Veamos que f tampoco es cerrada. Tomamos $F = \mathbb{R} \times [0, 1)$, que es cerrado en $T_S \times T_S$ (es una caja cerrada). Se tiene que:

$$f(F) = f_1(\mathbb{R}) \times f_2([0,1)) = \mathbb{R} \times (-1,0],$$

que no es cerrado en $T_S \times T_S$ porque $(-1,0] \notin C_S$.

- c) Una aplicación $f:(X,T)\to (Y,T')$ es propia si para cada C' compacto en (Y,T') se verifica que $f^{-1}(C')$ es compacto en (X,T). Probar que si f es propia, (X,T) es de Hausdorff e (Y,T') es compacto, entonces f es continua.
 - Probemos que $f^{-1}(F') \in C_T$ para cada $F' \in C_{T'}$. Sea $F' \in C_{T'}$. Como (Y, T') es compacto, entonces F es compacto en (Y, T'). Como f es propia deducimos que $f^{-1}(F')$ es compacto en (X, T). Por último, como (X, T) es de Hausdorff, concluimos que $f^{-1}(F') \in C_T$.