SBML Model Report

Model name: "Cloutier2009 - Brain Energy Metabolism"

May 5, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following three authors: Catherine Lloyd¹, Vijayalakshmi Chelliah² and Audald Lloret i Villas³ at June 25th 2010 at 12:46 a.m. and last time modified at April 17th 2015 at 11:01 a.m. Table 1 shows an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	4
species types	0	species	51
events	0	constraints	0
reactions	0	function definitions	0
global parameters	174	unit definitions	0
rules	100	initial assignments	0

Model Notes

Cloutier2009 - Brain Energy Metabolism

This model was taken from the CellMLrepositoryandautomatically converted to SBML. Following

¹University of Auckland, c.lloyd@auckland.ac.nz

²EMBL-EBI, viji@ebi.ac.uk

³EMBL-EBI, lloret@ebi.ac.uk

the submission the parameters are manually encoded and annotated asspices and global quantities by BioModels curators.

Theoriginal model was: Cloutier M, Bolger FB, Lowry JP, Wellstead P. (2009) -version=1.0 Theoriginal CellML model was created by:

CatherineLloyd

c.lloyd@auckland.ac.nz

TheUniversity of Auckland

This model is described in the article: An integrative dynamic model of brain energy metabolism using in vivo neurochemical measurements. Cloutier M, Bolger FB, Lowry JP, Wellstead P.J Comput Neurosci 2009 Dec; 27(3): 391-414

Abstract:

An integrative, systems approach to the modelling of brain energy metabolism is presented. Mechanisms such as glutamate cycling between neurons and astrocytes and glycogen storage in astrocytes have been implemented. A unique feature of the model is its calibration using in vivo data of brain glucose and lactate from freely moving rats under various stimuli. The model has been used to perform simulated perturbation experiments that show that glycogen breakdown in astrocytes is significantly activated during sensory (tail pinch) stimulation. This mechanism provides an additional input of energy substrate during high consumption phases. By way of validation, data from the perfusion of 50 microM propranolol in the rat brain was compared with the model outputs. Propranolol affects the glucose dynamics during stimulation, and this was accurately reproduced in the model by a reduction in the glycogen breakdown in astrocytes. The model's predictive capacity was verified by using data from a sensory stimulation (restraint) that was not used for model calibration. Finally, a sensitivity analysis was conducted on the model parameters, this showed that the control of energy metabolism and transport processes are critical in the metabolic behaviour of cerebral tissue.

This model is hosted on BioModels Database and identified by: BIOMD0000000554.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions which are all predefined by SBML and not mentioned in the model.

2.1 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.2 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains four compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial	Size	Unit	Constant	Outside
			Dimensions				
Astrocytes	Astrocytes		3	1	litre	✓	
Capillaries	Capillaries		3	1	litre		
Extracellular_space	Extracellular space		3	1	litre		
Neurons	Neurons		3	1	litre		

3.1 Compartment Astrocytes

This is a three dimensional compartment with a constant size of one litre.

Name Astrocytes

 $\textbf{Notes} \ \ \ \textbf{Variables indexed } \{ \texttt{\textquotestraightdblbase} \} \\ g\{ \texttt{\textquotestraightdbl$

3.2 Compartment Capillaries

This is a three dimensional compartment with a constant size of one litre.

Name Capillaries

Notes Variables indexed {\textquotestraightdblbase}c{\textquotestraightdblbase}

3.3 Compartment Extracellular_space

This is a three dimensional compartment with a constant size of one litre.

Name Extracellular space

Notes Variables indexed {\textquotestraightdblbase}e{\textquotestraightdblbase}

3.4 Compartment Neurons

This is a three dimensional compartment with a constant size of one litre.

Name Neurons

Notes Variables indexed {\textquotestraightdblbase}n{\textquotestraightdblbase}

4 Species

This model contains 51 species. The boundary condition of 51 of these species is set to true so that these species' amount cannot be changed by any reaction. Section 7 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary
					Condi-
					tion
NAg	NAg	Astrocytes	$\text{mol} \cdot l^{-1}$	\Box	
GLCg	GLCg	Astrocytes	$\text{mol} \cdot l^{-1}$		
G6Pg	G6Pg	Astrocytes	$\operatorname{mol} \cdot \mathbf{l}^{-1}$		
F6Pg	F6Pg	Astrocytes	$\operatorname{mol} \cdot 1^{-1}$		
GAPg	GAPg	Astrocytes	$\operatorname{mol} \cdot 1^{-1}$		
PEPg	PEPg	Astrocytes	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
PYRg	PYRg	Astrocytes	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		$ \overline{\mathbf{Z}} $
LACg	LACg	Astrocytes	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		$ \overline{\mathbf{Z}} $
NADHg	NADHg	Astrocytes	$\operatorname{mol} \cdot 1^{-1}$		
ATPg	ATPg	Astrocytes	$\operatorname{mol} \cdot 1^{-1}$		$ \overline{\mathbf{Z}} $
PCrg	PCrg	Astrocytes	$\operatorname{mol} \cdot 1^{-1}$		$ \overline{\mathbf{Z}} $
02g	O2g	Astrocytes	$\operatorname{mol} \cdot 1^{-1}$		
GLYg	GLYg	Astrocytes	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
GLUg	GLUg	Astrocytes	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
NADg	NADg	Astrocytes	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
ADPg	ADPg	Astrocytes	$\operatorname{mol} \cdot 1^{-1}$		
CRg	CRg	Astrocytes	$\operatorname{mol} \cdot 1^{-1}$		
$NADH_g_tot$	NADH_g_tot	Astrocytes	$\text{mol} \cdot 1^{-1}$		$ \overline{\mathbf{Z}} $
PCrg_tot	PCrg_tot	Astrocytes	$\text{mol} \cdot 1^{-1}$		$ \overline{\mathbf{Z}} $
AMPg	AMPg	Astrocytes	$\text{mol} \cdot 1^{-1}$		$\overline{\mathbf{Z}}$
02c	O2c	Capillaries	$\operatorname{mol} \cdot 1^{-1}$		$\overline{\mathbf{Z}}$

7
7
0
Q
U
0
0
Q
, 2
~
(1)
m
=
\leq
7 <u>U</u>
Γ
_
ΠŪ
\sim

6	Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
	GLCc	GLCc	Capillaries	$\text{mol} \cdot 1^{-1}$	\Box	\overline{Z}
	LACc	LACc	Capillaries	$\text{mol} \cdot 1^{-1}$		$\overline{\mathbf{Z}}$
	CO2c	CO2c	Capillaries	$\text{mol} \cdot l^{-1}$		$\overline{\mathbf{Z}}$
	GLCe	GLCe	${ t Extracellular_space}$	$\text{mol} \cdot 1^{-1}$		$\overline{\mathbf{Z}}$
	LACe	LACe	${ t Extracellular_space}$	$\text{mol} \cdot l^{-1}$	\Box	
	GLUe	GLUe	${ t Extracellular_space}$	$\text{mol} \cdot 1^{-1}$	\Box	
	NAe	NAe	${ t Extracellular_space}$	$\text{mol} \cdot 1^{-1}$		
	02a	O2a	${ t Extracellular_space}$	$\text{mol} \cdot 1^{-1}$		
Produced by SBML2 4TEX	CO2a	CO2a	${ t Extracellular_space}$	$\text{mol} \cdot 1^{-1}$		
duc	GLCa	GLCa	${ t Extracellular_space}$	$\text{mol} \cdot 1^{-1}$		
ed	LACa	LACa	${\tt Extracellular_space}$	$\text{mol} \cdot 1^{-1}$		
by	NAn	NAn	Neurons	$\text{mol} \cdot l^{-1}$		
<u>88</u>	${ t GLCn}$	GLCn	Neurons	$\text{mol} \cdot 1^{-1}$		
<u> </u>	G6Pn	G6Pn	Neurons	$\text{mol} \cdot 1^{-1}$		\square
Ä	F6Pn	F6Pn	Neurons	$\text{mol} \cdot 1^{-1}$		
$\overline{\mathbb{Y}}$	${ t GAPn}$	GAPn	Neurons	$\text{mol} \cdot 1^{-1}$		\square
	PEPn	PEPn	Neurons	$\text{mol} \cdot 1^{-1}$		
	PYRn	PYRn	Neurons	$\text{mol} \cdot l^{-1}$		
	LACn	LACn	Neurons	$\text{mol} \cdot l^{-1}$		
	\mathtt{NADHn}	NADHn	Neurons	$\text{mol} \cdot 1^{-1}$	\Box	
	ATPn	ATPn	Neurons	$\text{mol} \cdot 1^{-1}$	\Box	
	PCrn	PCrn	Neurons	$\text{mol} \cdot l^{-1}$	\Box	
	02n	O2n	Neurons	$\text{mol} \cdot l^{-1}$	\Box	
	GLUn	GLUn	Neurons	$\text{mol} \cdot l^{-1}$	\Box	
	ADPn	ADPn	Neurons	$\text{mol} \cdot l^{-1}$		
	CRn	CRn	Neurons	$\text{mol} \cdot 1^{-1}$		
	NADn	NADn	Neurons	$\text{mol} \cdot l^{-1}$	\Box	

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
NADH_n_tot	NADH_n_tot	Neurons	$\text{mol} \cdot l^{-1}$		\overline{Z}
$PCrn_tot$	PCrn_tot	Neurons	$\text{mol} \cdot 1^{-1}$		
AMPn	AMPn	Neurons	$\mathrm{mol} \cdot \mathrm{l}^{-1}$		\square

5 Parameters

This model contains 174 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
u_n	u_n		1.042		
$u_{-}g$	ug		1.075		
$\mathtt{dAMP_dATPn}$	dAMP_dATPn		-0.101		
$\mathtt{dAMP_dATPg}$	dAMP_dATPg		-0.116		
Vv	Vv		0.024		
dHb	dHb		0.022		
${\tt Vn_leak_Na}$	Vn_leak_Na		0.475		
${ t gnNA}$	gn_NA		0.004		
${\tt Vn_pump}$	Vn_pump		0.158		
${\tt Vn_stim}$	Vn_stim		0.000		
$V_{\tt en_GLC}$	V_en_GLC		0.006		
${\tt Km_en_GLC}$	Km_en_GLC		5.320		
${\tt Vm_en_GLC}$	Vm_en_GLC		0.504		\square
Vn_hk	Vn_hk		0.006		
Vmax_n_hk	Vmax_n_hk		0.051		
${\tt Vn_pgi}$	Vn_pgi		0.006		
${\tt Vmaxf_n_pgi}$	Vmaxf_n_pgi		0.500		
${\tt Vmaxr_n_pgi}$	Vmaxr_n_pgi		0.450		
${\tt Vn_pfk}$	Vn_pfk		0.006		\Box
$\mathtt{kn_pfk}$	kn_pfk		0.558		\square
${\tt Vn_pgk}$	Vn_pgk		0.012		
kn_pgk	kn_pgk		0.429		\square
${\tt Vn_pk}$	Vn_pk		0.012		
kn_pk	kn_pk		28.600		
$Vn_{-}ldh$	Vn_ldh		-0.001		
kfn_ldh	kfn_ldh		5.300		
$\mathtt{krn_ldh}$	krn_ldh		0.105		
${\tt Vn_mito}$	Vn_mito		0.013		
${\tt Vmax_n_mito}$	Vmax_n_mito		0.056		
${\tt Vne_LAC}$	Vne_LAC		-0.001		
${\tt Vmax_ne_LAC}$	Vmax_ne_LAC		0.198		
${\tt Km_ne_LAC}$	Km_ne_LAC		0.093		
${\tt Vn_ATPase}$	Vn_ATPase		0.049		\Box
Vmax_n-	Vmax_n_ATPase		0.049		
_ATPase					_
${\tt Vn_ck}$	Vn_ck	2.9	3701651940294 · 10	-5	
$\mathtt{krn}_{\mathtt{c}}\mathtt{ck}$	krn_ck		0.015		\square

kfn_ck kfn_ck 0.052 Vcn_02 0.039 □ nh_02_Vcn_02 nh_02 2.700 PScapn 0.220 □ Vg_leak_Na 0.190 □ gg_NA 0.003 □ Vg_pump 0.063 □ Veg_GLC Veg_GLC 0.002 Km_eg_GLC Vm_eg_GLC 0.038 Veg_GLC Vcg_GLC 0.003 Veg_GLC 0.003 □	Id	Name	SBO	Value	Unit	Constant
Vcn_02 0.039 nh_02_Vcn_02 10.039 PScapn 2.700 PScapn 0.220 Vg_leak_Na 0.190 gg_NA 0.003 Vg_pump 0.063 Veg_GLC Veg_GLC Km_eg_GLC 0.002 Km_eg_GLC 3.530 Vm_eg_GLC 0.038	kfn_ck	kfn_ck		0.052		Ø
PScapn 0.220 Vg_leak_Na 0.190 gg_NA 0.003 Vg_pump 0.063 Veg_GLC Veg_GLC Km_eg_GLC 0.002 Vm_eg_GLC 0.038	Vcn_02	Vcn_O2		0.039		
PScapn 0.220 Vg_leak_Na 0.190 gg_NA 0.003 Vg_pump 0.063 Veg_GLC Veg_GLC Km_eg_GLC Km_eg_GLC Vm_eg_GLC 3.530 Vm_eg_GLC 0.038	$nh_02_Vcn_02$	$nh_{-}O2$		2.700		
Vg_leak_Na 0.190 gg_NA 0.003 Vg_pump 0.063 Veg_GLC 0.002 Km_eg_GLC 0.002 Vm_eg_GLC 0.038	PScapn	PScapn		0.220		
Vg_pump Vg_pump 0.063 □ Veg_GLC Veg_GLC 0.002 □ Km_eg_GLC Km_eg_GLC 3.530 ✓ Vm_eg_GLC Vm_eg_GLC 0.038 ✓	Vg_leak_Na	Vg_leak_Na		0.190		
Vg_pumpVg_pump 0.063 Veg_GLCVeg_GLC 0.002 Km_eg_GLCKm_eg_GLC 3.530 Vm_eg_GLCVm_eg_GLC 0.038	$\mathtt{gg_NA}$	gg_NA		0.003		
Km_eg_GLC Km_eg_GLC 3.530 Vm_eg_GLC Vm_eg_GLC 0.038	$Vg_{-}pump$	$Vg_{-}pump$		0.063		
Vm_eg_GLC Vm_eg_GLC 0.038 ✓	${\tt Veg_GLC}$	Veg_GLC		0.002		\Box
Vm_{eg_GLC} Vm_{eg_GLC} 0.038	${\tt Km_eg_GLC}$	Km_eg_GLC		3.530		
Vcg_GLC Vcg_GLC 0.003	${\tt Vm_eg_GLC}$	Vm_eg_GLC		0.038		
· · · · · · · · · · · · · · · · · · ·	Vcg_GLC	Vcg_GLC		0.003		
Km_cg_GLC Km_cg_GLC 9.920	Km_cg_GLC	Km_cg_GLC		9.920		\checkmark
Vm_cg_GLC Vm_cg_GLC 0.010	Vm_cg_GLC	Vm_cg_GLC		0.010		
Vg_hk Vg_hk 0.005	Vg_hk	Vg_hk		0.005		
Vmax_g_hk Vmax_g_hk 0.050 ✓	Vmax_g_hk	Vmax_g_hk		0.050		\checkmark
Vg_pgi Vg_pgi 0.005	Vg_pgi	Vg_pgi		0.005		
Vmaxf_g_pgi Vmaxf_g_pgi 0.500 ✓		Vmaxf_g_pgi		0.500		
Vmaxr_g_pgi Vmaxr_g_pgi 0.450 ✓		Vmaxr_g_pgi		0.450		
Vg_pfk Vg_pfk 0.005				0.005		
kg_pfk kg_pfk 0.403	kg_pfk	kg_pfk		0.403		\checkmark
Vg_pgk Vg_pgk 0.009		Vg_pgk		0.009		
kg_pgk kg_pgk 0.251		kg_pgk		0.251		\checkmark
$Vg_{-}pk$ $Vg_{-}pk$ 0.009		Vg_pk		0.009		
kg_{pk} kg_{pk} 2.730	kg_pk	kg_pk		2.730		\checkmark
Vg_ldh Vg_ldh 0.003	$Vg_{-}ldh$	Vg_ldh		0.003		
kfg_ldh kfg_ldh 6.261 ✓	kfg_ldh	kfg_ldh		6.261		\checkmark
krg_ldh krg_ldh 0.547 ☑	krg_ldh	krg_ldh		0.547		
Vg_mito Vg_mito 0.006	Vg_mito	Vg_mito		0.006		
Vmax_g_mito Vmax_g_mito 0.008 ✓	Vmax_g_mito	Vmax_g_mito		0.008		\checkmark
Vge_LAC	Vge_LAC	Vge_LAC		0.003		
Vmax_ge_LAC Vmax_ge_LAC 0.086 ✓	Vmax_ge_LAC	Vmax_ge_LAC		0.086		
Km_ge_LAC Km_ge_LAC 0.222 ✓	Km_ge_LAC	Km_ge_LAC		0.222		
Vgc_LAC Vgc_LAC $1.46095762940601 \cdot 10^{-5}$	-	_	1.4	6095762940601 · 10	$)^{-5}$	
$Vmax_gc_LAC \qquad Vmax_gc_LAC \qquad \qquad 2.1856 \cdot 10^{-4} \qquad \qquad \boxed{2}$	Vmax_gc_LAC	Vmax_gc_LAC		2.1856 · 10	$)^{-4}$	
Km_gc_LAC Km_gc_LAC 0.129 ✓	-	Km_gc_LAC		0.129		
Vg_ATPase Vg_ATPase 0.036	Vg_ATPase	Vg_ATPase		0.036		
Vmax_g- Vmax_g_ATPase 0.036 ✓	Vmax_g-	Vmax_g_ATPase		0.036		
_ATPase	-	-				نيعن
Vg_ck Vg_ck 8.98869880248884 · 10 ⁻⁵	Vg_ck	Vg_ck	8.9	8869880248884 · 10	$)^{-5}$	
krg_ck krg_ck 0.021 ✓	•	•				_
kfg_ck kfg_ck 0.024	_	_				_
Vcg_02 Vcg_02 0.018	_	0				

Id	Name	SBO	Value	Unit	Constant
PScapg	PScapg		0.246		
Vc02	Vc_O2		4.014		
Vc_GLC	Vc_GLC		0.698		
Vce_GLC	Vce_GLC		0.015		
${\tt Km_ce_GLC}$	Km_ce_GLC		8.457		\square
${\tt Vm_ce_GLC}$	Vm_ce_GLC		0.049		
Vc_LAC	Vc_LAC		-0.053		
${\tt Vec_LAC}$	Vec_LAC		0.001		
${\tt Km_ec_LAC}$	Km_ec_LAC		0.765		
${\tt Vm_ec_LAC}$	Vm_ec_LAC		0.033		$ \mathbf{Z} $
${\tt Vnc_CO2}$	Vnc_CO2		0.039		
Vgc_CO2	Vgc_CO2		0.018		
${\tt Vn_stim_GLU}$	Vn_stim_GLU		0.000		
$Vg_{-}gs$	$Vg_{-}gs$		0.000		
$Vmax_ggs$	Vmax_g_gs		0.300		
Veg_GLU	$Veg_{-}GLU$		0.000		
${\tt Vmax_eg_GLU}$	Vmax_eg_GLU		0.021		
Vc_CO2	Vc_CO2		4.015		
Vg_glys	Vg_glys	9.08	8171994158688 · 1	0^{-5}	
Vmax_glys	Vmax_glys		$1.528 \cdot 1$	0^{-4}	
${\tt Km_G6P_glys}$	Km_G6P_glys		0.500		$\overline{\mathbf{Z}}$
Vg_glyp	$Vg_{-}glyp$	3.5	1571428571429 · 1	0^{-5}	
${\tt Vmax_glyp}$	Vmax_glyp		$4.922 \cdot 1$	0^{-5}	
Km_GLY	Km_GLY		1.000		$\overline{\mathbf{Z}}$
$\mathtt{deltaVt_GLY}$	deltaVt_GLY		1.000		
${ t Fin_{-}t}$	Fin_t		0.012		
CBFO_Fin_t	CBF0		0.012		
$Fout_t$	Fout_t		0.012		
BOLD	BOLD		0.042		
$v_{-}stim$	v_stim		0.000		
${\tt unitpulseSB}$	unitpulseSB		0.000		
unitstepSB	unitstepSB		0.000		
Km_PYR	Km_PYR		0.063		
Km_ATP	Km_ATP		0.015		$\overline{\mathbf{Z}}$
${\tt Ki_ATP}$	Ki_ATP		0.760		$\overline{\mathbf{Z}}$
Km_ADP	Km_ADP		0.001		$\overline{\mathbf{Z}}$
$\rm Km 02$	$Km_{-}O2$		0.003		$\overline{\mathbf{Z}}$
KmGLC	KmGLC		0.105		$\overline{\mathbf{Z}}$
Km_GLU	Km_GLU		0.050		\mathbf{Z}
Km_G6P	Km_G6P		0.500		$\overline{\mathbf{Z}}$
Km_F6P_pgi	Km_F6P_pgi		0.060		$\overline{\mathbf{Z}}$
Km_F6P_pfk	Km_F6P_pfk		0.180		$\overline{\mathbb{Z}}$

Id	Name	SBO	Value	Unit	Constant
Km_pump	Km_pump		0.424		\checkmark
nh_02_model-	nh_O2_2		2.700		
$_{ extstyle }$ parameters					
Ko2	Ko2		0.090	_	
kpump	kpump		$3.17 \cdot 10^{-1}$	- 7	
ATPtot	ATPtot		2.379		
nH	nH		4.000		
nOP	nOP		15.000		
NAero	NAero		3.000		\checkmark
Rng	Rng		1.800		
Reg	Reg		0.800		
Ren	Ren		0.444		
Rcn	Ren		0.012		
Rcg	Rcg		0.022		
Rce	Rce		0.028		
$\mathtt{Sm_n}$	Sm_n		40500.000		
Vm	Vm		-70.000		
RT	RT		2577340.000		
F	F		96500.000		
Vn	Vn		0.450		
$G6P_inh_hk$	G6P_inh_hk		0.600		
aG6P_inh_hk	aG6P_inh_hk		20.000		
$\mathtt{rATP_mito}$	rATP_mito		20.000		
$\mathtt{aATP_mito}$	aATP_mito		5.000		
Hb0P	HbOP		8.600		
Sm_g	$Sm_{-}g$		10500.000		
Vg	Vg		0.250		
KO1	KO1		1.000		
Vc	Vc		0.006		
R_GLU_NA	R_GLU_NA		0.075		
K02	KO2		1.000		
K03	KO3		1.000		
${\tt GLY_inh}$	GLY_{inh}		4.200		
$\mathtt{aGLY_inh}$	aGLY_inh		20.000		
CBF0_model-	CBF0_2		0.012		
$_{ extstyle e$					
VvO	Vv0		0.024		
tv	tv		35.000		$\overline{\mathbf{Z}}$
qak	qak		0.920		$\overline{\mathbf{Z}}$
k1	k1		2.220		$\overline{\mathbf{Z}}$
k2	k2		0.460		$\overline{\mathbf{Z}}$
k3	k3		0.430		$\overline{\checkmark}$

Id	Name	SBO	Value	Unit	Constant
dHb0	dHb0		0.064		
stim	stim		1.000		
to	to		200.000		
tend	tend		300.000		
v1_n	v1_n		0.041		
v2_n	v2_n		2.550		
t_n_stim	t_n_stim		2.000		
sr	sr		4.592		
t1	t1		2.000		
$\mathtt{delta_GLY}$	delta_GLY		62.000		
deltaf	deltaf		0.420		
$\mathtt{tend_GLY}$	tend_GLY		440.000		
to_GLY	to_GLY		83.000		
$\mathtt{sr}_\mathtt{GLY}$	sr_GLY		4.000		
${\tt unitstepSB2}$	unitstepSB2		0.000		

6 Rules

This is an overview of 100 rules.

6.1 Rule V_en_GLC

Rule V_en_GLC is an assignment rule for parameter V_en_GLC:

$$V_{en_GLC} = Vm_{en_GLC} \cdot \left(\frac{[GLCe]}{[GLCe] + Km_{en_GLC}} - \frac{[GLCn]}{[GLCn] + Km_{en_GLC}} \right) \quad (1)$$

6.2 Rule Vn_hk

Rule Vn_hk is an assignment rule for parameter Vn_hk:

6.3 Rule Vn_pgi

Rule Vn_pgi is an assignment rule for parameter Vn_pgi:

$$Vn_pgi = Vmaxf_n_pgi \cdot \frac{[G6Pn]}{[G6Pn] + Km_G6P} - Vmaxr_n_pgi \cdot \frac{[F6Pn]}{[F6Pn] + Km_F6P_pgi} \quad (3)$$

6.4 Rule NADg

Rule NADg is an assignment rule for species NADg:

$$NADg = [NADH_g_tot] - [NADHg]$$
 (4)

Derived unit $mol \cdot l^{-1}$

6.5 Rule ADPg

Rule ADPg is an assignment rule for species ADPg:

$$ADPg = \frac{[ATPg]}{2} \cdot \left(qak + \left(qak^2 + 4 \cdot qak \cdot \left(\frac{ATPtot}{[ATPg]} - 1 \right) \right)^{\frac{1}{2}} \right) \tag{5}$$

6.6 Rule CRg

Rule CRg is an assignment rule for species CRg:

$$CRg = [PCrg_tot] - [PCrg]$$
 (6)

Derived unit $mol \cdot l^{-1}$

6.7 Rule AMPg

Rule AMPg is an assignment rule for species AMPg:

$$AMPg = ATPtot - ([ATPg] + [ADPg])$$
(7)

6.8 Rule Vg_ck

Rule Vg_ck is an assignment rule for parameter Vg_ck:

$$Vg_ck = kfg_ck \cdot [PCrg] \cdot [ADPg] - krg_ck \cdot [CRg] \cdot [ATPg]$$
(8)

6.9 Rule ADPn

Rule ADPn is an assignment rule for species ADPn:

$$ADPn = \frac{[ATPn]}{2} \cdot \left(qak + \left(qak^2 + 4 \cdot qak \cdot \left(\frac{ATPtot}{[ATPn]} - 1 \right) \right)^{\frac{1}{2}} \right)$$
(9)

6.10 Rule CRn

Rule CRn is an assignment rule for species CRn:

$$CRn = [PCrn_tot] - [PCrn]$$
 (10)

Derived unit $mol \cdot l^{-1}$

6.11 Rule NADn

Rule NADn is an assignment rule for species NADn:

$$NADn = [NADH_n_tot] - [NADHn]$$
 (11)

Derived unit $mol \cdot l^{-1}$

6.12 Rule AMPn

Rule AMPn is an assignment rule for species AMPn:

$$AMPn = ATPtot - ([ATPn] + [ADPn])$$
(12)

6.13 Rule u_n

Rule u_n is an assignment rule for parameter u_n:

$$\mathbf{u}_{-}\mathbf{n} = \mathbf{qak}^2 + 4 \cdot \mathbf{qak} \cdot \left(\frac{\mathbf{ATPtot}}{|\mathbf{ATPn}|} - 1\right) \tag{13}$$

6.14 Rule u_g

Rule u_g is an assignment rule for parameter u_g:

$$u_{-g} = qak^{2} + 4 \cdot qak \cdot \left(\frac{ATPtot}{[ATPg]} - 1\right)$$
(14)

6.15 Rule dAMP_dATPn

Rule dAMP_dATPn is an assignment rule for parameter dAMP_dATPn:

$$dAMP_dATPn = \frac{qak}{2} + qak \cdot \frac{ATPtot}{[ATPn] \cdot u_n^{\frac{1}{2}}} - \left(1 + 0.5 \cdot u_n^{\frac{1}{2}}\right) \tag{15}$$

6.16 Rule dAMP_dATPg

Rule dAMP_dATPg is an assignment rule for parameter dAMP_dATPg:

$$dAMP_dATPg = \frac{qak}{2} + qak \cdot \frac{ATPtot}{[ATPg] \cdot u_g^{\frac{1}{2}}} - \left(1 + 0.5 \cdot u_g^{\frac{1}{2}}\right) \tag{16}$$

6.17 Rule Vn_leak_Na

Rule Vn_leak_Na is an assignment rule for parameter Vn_leak_Na:

$$Vn_leak_Na = \frac{Sm_n}{Vn} \cdot \frac{gn_NA}{F} \cdot \left(\frac{RT}{F} \cdot \left(\frac{[NAe]}{[NAn]}\right) - Vm\right)$$
(17)

6.18 Rule Vn_pump

Rule Vn_pump is an assignment rule for parameter Vn_pump:

$$Vn_pump = \frac{Sm_n}{Vn} \cdot kpump \cdot [ATPn] \cdot [NAn] \cdot \left(1 + \frac{[ATPn]}{Km_pump}\right)^{1}$$
(18)

6.19 Rule Vn_pfk

Rule Vn_pfk is an assignment rule for parameter Vn_pfk:

$$Vn_{pfk} = kn_{pfk} \cdot [ATPn] \cdot \frac{[F6Pn]}{[F6Pn] + Km_{pfk}} \cdot \left(1 + \left(\frac{[ATPn]}{Ki_{pfk}}\right)^{nH}\right)^{1}$$
(19)

6.20 Rule Vn_pgk

Rule Vn_pgk is an assignment rule for parameter Vn_pgk:

$$Vn_{pgk} = kn_{pgk} \cdot [GAPn] \cdot [ADPn] \cdot \frac{[NADn]}{[NADHn]}$$
(20)

6.21 Rule Vn_pk

Rule Vn_pk is an assignment rule for parameter Vn_pk:

$$Vn_{pk} = kn_{pk} \cdot [PEPn] \cdot [ADPn]$$
(21)

6.22 Rule Vn_ldh

Rule Vn_ldh is an assignment rule for parameter Vn_ldh:

$$Vn_1dh = kfn_1dh \cdot [PYRn] \cdot [NADHn] - krn_1dh \cdot [LACn] \cdot [NADn]$$
 (22)

6.23 Rule Vn_mito

Rule Vn_mito is an assignment rule for parameter Vn_mito:

$$\begin{aligned} \text{Vn_mito} &= \text{Vmax_n_mito} \cdot \frac{[\text{O2n}]}{[\text{O2n}] + \text{Km_O2}} \cdot \frac{[\text{ADPn}]}{[\text{ADPn}] + \text{Km_ADP}} \cdot \frac{[\text{PYRn}]}{[\text{PYRn}] + \text{Km_PYR}} \\ &\cdot \left(1 - \frac{1}{1 + \exp\left(a\text{ATP_mito} \cdot 1 \cdot \left(\frac{[\text{ATPn}]}{[\text{ADPn}]} - 1 \cdot r\text{ATP_mito}\right)\right)}\right) \end{aligned} \tag{23}$$

6.24 Rule Vne_LAC

Rule Vne_LAC is an assignment rule for parameter Vne_LAC:

$$Vne_LAC = Vmax_ne_LAC \cdot \left(\frac{[LACn]}{[LACn] + Km_ne_LAC} - \frac{[LACe]}{[LACe] + Km_ne_LAC} \right) \quad (24)$$

6.25 Rule Vn_ATPase

Rule Vn_ATPase is an assignment rule for parameter Vn_ATPase:

$$Vn_ATPase = Vmax_n_ATPase \cdot \frac{[ATPn]}{[ATPn] + 0.0010}$$
 (25)

6.26 Rule Vge_LAC

Rule Vge_LAC is an assignment rule for parameter Vge_LAC:

$$Vge_LAC = Vmax_ge_LAC \cdot \left(\frac{[LACg]}{[LACg] + Km_ge_LAC} - \frac{[LACe]}{[LACe] + Km_ge_LAC}\right) \quad (26)$$

6.27 Rule Vn_ck

Rule Vn_ck is an assignment rule for parameter Vn_ck:

$$Vn_{ck} = kfn_{ck} \cdot [PCrn] \cdot [ADPn] - krn_{ck} \cdot [CRn] \cdot [ATPn]$$
(27)

6.28 Rule Vcn_02

Rule Vcn_02 is an assignment rule for parameter Vcn_02:

$$Vcn_O2 = \frac{PScapn}{Vn} \cdot \left(Ko2 \cdot \left(\frac{HbOP}{[O2c]} - 1 \right)^{\frac{1}{\overline{hh.O2_Vcn.O2}}} - [O2n] \right)$$
 (28)

6.29 Rule Vg_leak_Na

Rule Vg_leak_Na is an assignment rule for parameter Vg_leak_Na:

$$Vg_leak_Na = \frac{Sm_g}{Vg} \cdot \frac{gg_NA}{F} \cdot \left(\frac{RT}{F} \cdot \left(\frac{[NAe]}{[NAg]}\right) - Vm\right)$$
(29)

6.30 Rule Vg_pump

Rule Vg_pump is an assignment rule for parameter Vg_pump:

$$Vg_pump = \frac{Sm_g}{Vg} \cdot kpump \cdot [ATPg] \cdot [NAg] \cdot \left(1 + \frac{[ATPg]}{Km_pump}\right)^{1}$$
(30)

6.31 Rule Veg_GLC

Rule Veg_GLC is an assignment rule for parameter Veg_GLC:

$$Veg_GLC = KO1 \cdot Vm_eg_GLC \cdot \left(\frac{[GLCe]}{[GLCe] + Km_eg_GLC} - \frac{[GLCg]}{[GLCg] + Km_eg_GLC}\right) \quad (31)$$

6.32 Rule Vcg_GLC

Rule Vcg_GLC is an assignment rule for parameter Vcg_GLC:

$$Vcg_GLC = Vm_cg_GLC \cdot \left(\frac{[GLCc]}{[GLCc] + Km_cg_GLC} - \frac{[GLCg]}{[GLCg] + Km_cg_GLC}\right) \quad (32)$$

6.33 Rule Vg_hk

Rule Vg_hk is an assignment rule for parameter Vg_hk:

$$\begin{split} Vg_hk &= Vmax_g_hk \cdot [ATPg] \cdot \frac{[GLCg]}{[GLCg] + Km_GLC} \\ &\cdot \left(1 - \frac{1}{1 + exp\left(aG6P_inh_hk \cdot 1 \cdot ([G6Pg] - G6P_inh_hk)\right)}\right) \end{split} \tag{33}$$

6.34 Rule Vg_pgi

Rule Vg_pgi is an assignment rule for parameter Vg_pgi:

$$Vg_pgi = Vmaxf_g_pgi \cdot \frac{[G6Pg]}{[G6Pg] + Km_G6P} - Vmaxr_g_pgi \cdot \frac{[F6Pg]}{[F6Pg] + Km_F6P_pgi} \quad (34)$$

6.35 Rule Vg_pfk

Rule Vg_pfk is an assignment rule for parameter Vg_pfk:

$$Vg_pfk = kg_pfk \cdot [ATPg] \cdot \frac{[F6Pg]}{[F6Pg] + Km_F6P_pfk} \cdot \left(1 + \left(\frac{[ATPg]}{Ki_ATP}\right)^{nH}\right)^{1}$$
(35)

6.36 Rule Vg_pgk

Rule Vg_pgk is an assignment rule for parameter Vg_pgk:

$$Vg_{pgk} = kg_{pgk} \cdot [GAPg] \cdot [ADPg] \cdot \frac{[NADg]}{[NADHg]}$$
(36)

6.37 Rule Vg_pk

Rule Vg_pk is an assignment rule for parameter Vg_pk:

$$Vg_{pk} = kg_{pk} \cdot [PEPg] \cdot [ADPg]$$
(37)

6.38 Rule Vg_ldh

Rule Vg_ldh is an assignment rule for parameter Vg_ldh:

$$Vg_ldh = kfg_ldh \cdot [PYRg] \cdot [NADHg] - krg_ldh \cdot [LACg] \cdot [NADg]$$
(38)

6.39 Rule Vg_mito

Rule Vg_mito is an assignment rule for parameter Vg_mito:

$$Vg_mito = Vmax_g_mito \cdot \frac{[O2g]}{[O2g] + Km_O2} \cdot \frac{[ADPg]}{[ADPg] + Km_ADP} \cdot \frac{[PYRg]}{[PYRg] + Km_PYR}$$

$$\cdot \left(1 - \frac{1}{1 + exp\left(1 \cdot (aATP_mito) \cdot \left(\frac{[ATPg]}{[ADPg]} - 1 \cdot rATP_mito\right)\right)}\right)$$

$$(39)$$

6.40 Rule Vgc_LAC

Rule Vgc_LAC is an assignment rule for parameter Vgc_LAC:

$$Vgc_LAC = Vmax_gc_LAC \cdot \left(\frac{[LACg]}{[LACg] + Km_gc_LAC} - \frac{[LACc]}{[LACc] + Km_gc_LAC} \right) \quad (40)$$

6.41 Rule Vg_ATPase

Rule Vg_ATPase is an assignment rule for parameter Vg_ATPase:

$$Vg_ATPase = Vmax_g_ATPase \cdot \frac{[ATPg]}{[ATPg] + 0.0010}$$
(41)

6.42 Rule Vcg_02

Rule Vcg_02 is an assignment rule for parameter Vcg_02:

$$Vcg_O2 = \frac{PScapg}{Vg} \cdot \left(Ko2 \cdot \left(\frac{HbOP}{[O2c]} - 1 \right)^{\frac{1}{Dh_O2_model_parameters}} - [O2g] \right) \tag{42}$$

6.43 Rule Vce_GLC

Rule Vce_GLC is an assignment rule for parameter Vce_GLC:

$$Vce_GLC = Vm_ce_GLC \cdot \left(\frac{[GLCc]}{[GLCc] + Km_ce_GLC} - \frac{[GLCe]}{[GLCe] + Km_ce_GLC}\right) \quad (43)$$

6.44 Rule Vec_LAC

Rule Vec_LAC is an assignment rule for parameter Vec_LAC:

$$Vec_LAC = Vm_ec_LAC \cdot \left(\frac{[LACe]}{[LACe] + Km_ec_LAC} - \frac{[LACc]}{[LACc] + Km_ec_LAC}\right) \quad (44)$$

6.45 Rule Vnc_C02

Rule Vnc_C02 is an assignment rule for parameter Vnc_C02:

$$Vnc_CO2 = 3 \cdot Vn_mito$$
 (45)

6.46 Rule Vgc_C02

Rule Vgc_CO2 is an assignment rule for parameter Vgc_CO2:

$$Vgc_CO2 = 3 \cdot Vg_mito$$
 (46)

6.47 Rule Vg_gs

Rule Vg_gs is an assignment rule for parameter Vg_gs:

$$Vg_gs = Vmax_g_gs \cdot \frac{[GLUg]}{[GLUg] + Km_GLU} \cdot \frac{[ATPg]}{[ATPg] + Km_ATP} \tag{47}$$

6.48 Rule Veg_GLU

Rule Veg_GLU is an assignment rule for parameter Veg_GLU:

$$Veg_GLU = Vmax_eg_GLU \cdot \frac{[GLUe]}{[GLUe] + Km_GLU}$$
(48)

6.49 Rule Vg_glys

Rule Vg_glys is an assignment rule for parameter Vg_glys:

$$\begin{split} Vg_glys &= Vmax_glys \cdot \frac{[G6Pg]}{[G6Pg] + Km_G6P_glys} \\ &\quad \cdot \left(1 - \frac{1}{1 + exp\left(aGLY_inh \cdot 1 \cdot ([GLYg] - GLY_inh)\right)}\right) \end{split} \tag{49}$$

6.50 Rule Fin_t

Rule Fin_t is an assignment rule for parameter Fin_t:

$$Fin_t = CBF0_Fin_t + \left(stim \cdot CBF0_Fin_t \cdot deltaf \cdot \frac{1}{1 + exp\left(1 \cdot (sr\right) \cdot (time - to + t1 - 3)\right)} - stim \cdot CBF0_Fin_t \cdot deltaf \cdot \frac{1}{1 + exp\left(1 \cdot (sr\right) \cdot (time - (to + tend + t1 + 3))\right)}\right)$$
 (50)

6.51 Rule Vc_02

Rule Vc_02 is an assignment rule for parameter Vc_02:

$$Vc_O2 = 2 \cdot \frac{Fin_t}{Vc} \cdot ([O2a] - [O2c])$$
 (51)

6.52 Rule Vc_GLC

Rule Vc_GLC is an assignment rule for parameter Vc_GLC:

$$Vc_GLC = 2 \cdot \frac{Fin_t}{Vc} \cdot ([GLCa] - [GLCc])$$
 (52)

6.53 Rule Vc_LAC

Rule Vc_LAC is an assignment rule for parameter Vc_LAC:

$$Vc.LAC = 2 \cdot \frac{Fin_{t}}{Vc} \cdot ([LACa] - [LACc])$$
 (53)

6.54 Rule Vc_C02

Rule Vc_CO2 is an assignment rule for parameter Vc_CO2:

$$Vc_CO2 = 2 \cdot \frac{Fin_t}{Vc} \cdot ([CO2c] - [CO2a])$$
 (54)

6.55 Rule Fout_t

Rule Fout_t is an assignment rule for parameter Fout_t:

$$Fout_t = CBF0_model_parameters \cdot \frac{\left(\frac{Vv}{Vv0}\right)^2 + tv \cdot \left(\frac{Vv}{Vv0}\right)^{0.5} \cdot \frac{Fin_t}{Vv0}}{1 + CBF0_model_parameters \cdot tv \cdot \left(\frac{Vv}{Vv0}\right)^{0.5} \cdot \frac{1}{Vv0}}$$
(55)

6.56 Rule BOLD

Rule BOLD is an assignment rule for parameter BOLD:

$$BOLD = Vv0 \cdot \left((k1 + k2) \cdot \left(1 - \frac{dHb}{dHb0} \right) - (k2 + k3) \cdot \left(1 - \frac{Vv}{Vv0} \right) \right)$$
 (56)

6.57 Rule unitpulseSB

Rule unitpulseSB is an assignment rule for parameter unitpulseSB:

$$unitpulseSB = \begin{cases} 1 & \text{if } (time \ge to) \land (time \le to + tend) \\ 0 & \text{otherwise} \end{cases}$$
 (57)

6.58 Rule v_stim

Rule v_stim is an assignment rule for parameter v_stim:

$$v_stim = stim \cdot \left(v1_n + v2_n \cdot \frac{time - to}{t_n_stim} \cdot exp\left(\left((time - to) \cdot \frac{unitpulseSB}{t_n_stim}\right)\right)\right) \cdot unitpulseSB \tag{58}$$

6.59 Rule Vn_stim

Rule Vn_stim is an assignment rule for parameter Vn_stim:

$$Vn_stim = v_stim$$
 (59)

6.60 Rule Vn_stim_GLU

Rule Vn_stim_GLU is an assignment rule for parameter Vn_stim_GLU:

$$Vn_stim_GLU = Vn_stim \cdot R_GLU_NA \cdot KO2 \cdot \frac{[GLUn]}{[GLUn] + Km_GLU}$$
(60)

6.61 Rule unitstepSB

Rule unitstepSB is an assignment rule for parameter unitstepSB:

$$unitstepSB = \begin{cases} 1 & \text{if time} - (tend + to) \ge 0 \\ 0 & \text{otherwise} \end{cases}$$
 (61)

6.62 Rule unitstepSB2

Rule unitstepSB2 is an assignment rule for parameter unitstepSB2:

6.63 Rule deltaVt_GLY

Rule deltaVt_GLY is an assignment rule for parameter deltaVt_GLY:

$$\begin{aligned} \text{deltaVt_GLY} &= 1 + \text{stim} \cdot \text{delta_GLY} \cdot \text{KO3} \\ &\cdot \frac{1}{1 + \exp\left(1 \cdot \left(\text{sr_GLY}\right) \cdot \left(\text{time} - \left(\text{to} + \text{to_GLY}\right)\right)\right)} \cdot \left(1 - \text{unitstepSB2}\right) \end{aligned}$$

6.64 Rule Vg_glyp

Rule Vg_glyp is an assignment rule for parameter Vg_glyp:

$$Vg_glyp = Vmax_glyp \cdot \frac{[GLYg]}{[GLYg] + Km_GLY} \cdot deltaVt_GLY$$
 (64)

6.65 Rule NAg

Rule NAg is a rate rule for species NAg:

$$\frac{d}{dt}NAg = Vg_leak_Na + 3 \cdot Veg_GLU - 3 \cdot Vg_pump$$
 (65)

6.66 Rule GLCg

Rule GLCg is a rate rule for species GLCg:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GLCg} = \mathrm{Vcg}_{-}\mathrm{GLC} + \mathrm{Veg}_{-}\mathrm{GLC} - \mathrm{Vg}_{-}\mathrm{hk}$$
 (66)

6.67 Rule G6Pg

Rule G6Pg is a rate rule for species G6Pg:

$$\frac{\mathrm{d}}{\mathrm{d}t}G6Pg = Vg_hk + Vg_glyp - (Vg_pgi + Vg_glys)$$
(67)

6.68 Rule F6Pg

Rule F6Pg is a rate rule for species F6Pg:

$$\frac{\mathrm{d}}{\mathrm{d}t} F6Pg = Vg_pgi - Vg_pfk \tag{68}$$

6.69 Rule GAPg

Rule GAPg is a rate rule for species GAPg:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GAPg} = 2 \cdot \mathrm{Vg_pfk} - \mathrm{Vg_pgk} \tag{69}$$

6.70 Rule PEPg

Rule PEPg is a rate rule for species PEPg:

$$\frac{d}{dt}PEPg = Vg_{-}pgk - Vg_{-}pk \tag{70}$$

6.71 Rule PYRg

Rule PYRg is a rate rule for species PYRg:

$$\frac{d}{dt}PYRg = Vg_pk - (Vg_ldh + Vg_mito)$$
 (71)

6.72 Rule LACg

Rule LACg is a rate rule for species LACg:

$$\frac{d}{dt}LACg = Vg_{l}dh - (Vge_{l}LAC + Vgc_{l}LAC)$$
 (72)

6.73 Rule NADHg

Rule NADHg is a rate rule for species NADHg:

$$\frac{d}{dt}NADHg = Vg_pgk - (Vg_ldh + Vg_mito)$$
 (73)

6.74 Rule ATPg

Rule ATPg is a rate rule for species ATPg:

$$\frac{d}{dt} ATPg = \left(Vg_pgk + Vg_pk + nOP \cdot Vg_mito + Vg_ck \right. \\ \left. - \left(Vg_hk + Vg_pfk + Vg_ATPase + Vg_pump + Vg_gs \right) \right) \cdot \left(1 - dAMP_dATPg \right)^1$$
 (74)

6.75 Rule PCrg

Rule PCrg is a rate rule for species PCrg:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PCrg} = \mathrm{Vg_ck} \tag{75}$$

6.76 Rule 02g

Rule 02g is a rate rule for species 02g:

$$\frac{d}{dt}O2g = Vcg_O2 - NAero \cdot Vg_mito$$
 (76)

6.77 Rule GLYg

Rule GLYg is a rate rule for species GLYg:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GLYg} = \mathrm{Vg}_{-}\mathrm{glys} - \mathrm{Vg}_{-}\mathrm{glyp} \tag{77}$$

6.78 Rule GLUg

Rule GLUg is a rate rule for species GLUg:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GLUg} = \mathrm{Veg}_{-}\mathrm{GLU} - \mathrm{Vg}_{-}\mathrm{gs} \tag{78}$$

6.79 Rule 02c

Rule 02c is a rate rule for species 02c:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{O2c} = \mathrm{Vc}_{-}\mathrm{O2} - \left(\mathrm{Vcn}_{-}\mathrm{O2} \cdot \frac{1}{\mathrm{Rcn}} + \mathrm{Vcg}_{-}\mathrm{O2} \cdot \frac{1}{\mathrm{Rcg}}\right) \tag{79}$$

6.80 Rule GLCc

Rule GLCc is a rate rule for species GLCc:

$$\frac{d}{dt}GLCc = Vc_GLC - \left(Vce_GLC \cdot \frac{1}{Rce} + Vcg_GLC \cdot \frac{1}{Rcg}\right)$$
(80)

6.81 Rule LACc

Rule LACc is a rate rule for species LACc:

$$\frac{d}{dt}LACc = Vc_LAC + Vec_LAC \cdot \frac{1}{Rce} + Vgc_LAC \cdot \frac{1}{Rcg}$$
(81)

6.82 Rule C02c

Rule CO2c is a rate rule for species CO2c:

$$\frac{d}{dt}CO2c = Vnc_CO2 \cdot \frac{1}{Rcn} + Vgc_CO2 \cdot \frac{1}{Rcg} - Vc_CO2$$
 (82)

6.83 Rule GLCe

Rule GLCe is a rate rule for species GLCe:

$$\frac{d}{dt}GLCe = Vce_GLC - \left(Veg_GLC \cdot \frac{1}{Reg} + V_en_GLC \cdot \frac{1}{Ren}\right)$$
(83)

6.84 Rule LACe

Rule LACe is a rate rule for species LACe:

$$\frac{d}{dt}LACe = Vne_LAC \cdot \frac{1}{Ren} + Vge_LAC \cdot \frac{1}{Reg} - Vec_LAC$$
 (84)

6.85 Rule GLUe

Rule GLUe is a rate rule for species GLUe:

$$\frac{d}{dt}GLUe = Vn_stim_GLU \cdot \frac{1}{Ren} - Veg_GLU \cdot \frac{1}{Reg}$$
(85)

6.86 Rule NAn

Rule NAn is a rate rule for species NAn:

$$\frac{d}{dt}NAn = Vn_leak_Na + Vn_stim - 3 \cdot Vn_pump$$
 (86)

6.87 Rule GLCn

Rule GLCn is a rate rule for species GLCn:

$$\frac{d}{dt}GLCn = V_en_GLC - Vn_hk$$
 (87)

6.88 Rule G6Pn

Rule G6Pn is a rate rule for species G6Pn:

$$\frac{\mathrm{d}}{\mathrm{d}t}G6Pn = Vn_hk - Vn_pgi \tag{88}$$

6.89 Rule F6Pn

Rule F6Pn is a rate rule for species F6Pn:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{F6Pn} = \mathrm{Vn_pgi} - \mathrm{Vn_pfk} \tag{89}$$

6.90 Rule GAPn

Rule GAPn is a rate rule for species GAPn:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GAPn} = 2 \cdot \mathrm{Vn_pfk} - \mathrm{Vn_pgk} \tag{90}$$

6.91 Rule PEPn

Rule PEPn is a rate rule for species PEPn:

$$\frac{d}{dt}PEPn = Vn_pgk - Vn_pk$$
(91)

6.92 Rule PYRn

Rule PYRn is a rate rule for species PYRn:

$$\frac{d}{dt}PYRn = Vn_pk - (Vn_ldh + Vn_mito)$$
(92)

6.93 Rule LACn

Rule LACn is a rate rule for species LACn:

$$\frac{d}{dt}LACn = Vn ldh - Vne LAC$$
 (93)

6.94 Rule NADHn

Rule NADHn is a rate rule for species NADHn:

$$\frac{d}{dt}NADHn = Vn_pgk - (Vn_ldh + Vn_mito)$$
(94)

6.95 Rule ATPn

Rule ATPn is a rate rule for species ATPn:

$$\frac{d}{dt}ATPn = (Vn_pgk + Vn_pk + nOP \cdot Vn_mito + Vn_ck - (Vn_hk + Vn_pfk + Vn_ATPase + Vn_pump)) \cdot (1 - dAMP_dATPn)^1$$
(95)

6.96 Rule PCrn

Rule PCrn is a rate rule for species PCrn:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{PCrn} = \mathrm{Vn}_{-}\mathrm{ck} \tag{96}$$

6.97 Rule 02n

Rule 02n is a rate rule for species 02n:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{O2n} = \mathrm{Vcn}_{-}\mathrm{O2} - \mathrm{NAero} \cdot \mathrm{Vn}_{-}\mathrm{mito}$$
 (97)

6.98 Rule GLUn

Rule GLUn is a rate rule for species GLUn:

$$\frac{d}{dt}GLUn = Vg_{gs} \cdot \frac{1}{Rng} - Vn_{stim}GLU$$
(98)

6.99 Rule V√

Rule Vv is a rate rule for parameter Vv:

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{V}\mathrm{v} = \mathrm{Fin}_{-}\mathrm{t} - \mathrm{Fout}_{-}\mathrm{t} \tag{99}$$

6.100 Rule dHb

Rule dHb is a rate rule for parameter dHb:

$$\frac{d}{dt}dHb = Fin_{t} \cdot ([O2a] - [O2c]) - Fout_{t} \cdot \frac{dHb}{Vv}$$
(100)

7 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

7.1 Species NAg

Name NAg

Notes Sodium

Initial concentration $13.36 \text{ mol} \cdot l^{-1}$

Involved in rule NAg

One rule determines the species' quantity.

7.2 Species GLCg

Name GLCg

Notes Glucose

Initial concentration $0.1656 \text{ mol} \cdot l^{-1}$

Involved in rule GLCg

One rule determines the species' quantity.

7.3 Species G6Pg

Name G6Pg

Notes Glucose-6-P

Initial concentration $0.7326 \text{ mol} \cdot 1^{-1}$

Involved in rule G6Pg

One rule determines the species' quantity.

7.4 Species F6Pg

Name F6Pg

Notes Fructose-6-P

Initial concentration $0.1116 \text{ mol} \cdot l^{-1}$

Involved in rule F6Pg

7.5 Species GAPg

Name GAPg

Notes Glyceraldehyde-3-P

Initial concentration $0.0698 \text{ mol} \cdot l^{-1}$

Involved in rule GAPg

One rule determines the species' quantity.

7.6 Species PEPg

Name PEPg

Notes Phosphoenolpyruvate

Initial concentration $0.0254 \text{ mol} \cdot l^{-1}$

Involved in rule PEPg

One rule determines the species' quantity.

7.7 Species PYRg

Name PYRg

Notes Pyruvate

Initial concentration $0.1711 \text{ mol} \cdot l^{-1}$

Involved in rule PYRg

One rule determines the species' quantity.

7.8 Species LACg

Name LACg

Notes Lactate

Initial concentration $0.4651 \text{ mol} \cdot l^{-1}$

Involved in rule LACg

7.9 Species NADHg

Name NADHg

Notes Nicotinamide adenine dinucleotide reduced

Initial concentration $0.0445 \text{ mol} \cdot l^{-1}$

Involved in rule NADHg

One rule determines the species' quantity.

7.10 Species ATPg

Name ATPg

Notes Adenosine triphosphate

Initial concentration $2.24 \text{ mol} \cdot l^{-1}$

Involved in rule ATPg

One rule determines the species' quantity.

7.11 Species PCrg

Name PCrg

Notes Phosphocreatine

Initial concentration $4.6817 \text{ mol} \cdot 1^{-1}$

Involved in rule PCrg

One rule determines the species' quantity.

7.12 Species 02g

Name O2g

Notes Oxygen

Initial concentration $0.1589 \text{ mol} \cdot l^{-1}$

Involved in rule 02g

7.13 Species GLYg

Name GLYg

Notes Glycogen

Initial concentration $2.5 \text{ mol} \cdot l^{-1}$

Involved in rule GLYg

One rule determines the species' quantity.

7.14 Species GLUg

Name GLUg

Notes Glutamate

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in rule GLUg

One rule determines the species' quantity.

7.15 Species NADg

Name NADg

Notes Nicotinamide adenine dinucleotide oxidized

Initial concentration $0.1755 \text{ mol} \cdot l^{-1}$

Involved in rule NADg

One rule determines the species' quantity.

7.16 Species ADPg

Name ADPg

Notes Adenosine diphosphate

Initial concentration $0.13070953832961 \text{ mol} \cdot l^{-1}$

Involved in rule ADPg

7.17 Species CRg

Name CRg

Notes Creatine

Initial concentration $0.31830000000001 \text{ mol} \cdot l^{-1}$

Involved in rule CRg

One rule determines the species' quantity.

7.18 Species NADH_g_tot

Name $NADH_g_tot$

Notes Nicotinamide adenine dinucleotide reduced

Initial concentration $0.22 \text{ mol} \cdot l^{-1}$

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{NADH}_{-\mathrm{g_tot}} = 0 \tag{101}$$

7.19 Species PCrg_tot

Name PCrg_tot

Notes Phosphocreatine

Initial concentration $5 \text{ mol} \cdot l^{-1}$

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{PCrg_tot} = 0 \tag{102}$$

7.20 Species AMPg

Name AMPg

Notes Adenosine monophosphate

Initial concentration $0.00829046167039005~\text{mol}\cdot l^{-1}$

Involved in rule AMPg

7.21 Species 02c

Name O2c

Notes Oxygen

Initial concentration $7.4201 \text{ mol} \cdot l^{-1}$

Involved in rule 02c

One rule determines the species' quantity.

7.22 Species GLCc

Name GLCc

Notes Glucose

Initial concentration $4.6401 \text{ mol} \cdot l^{-1}$

Involved in rule GLCc

One rule determines the species' quantity.

7.23 Species LACc

Name LACc

Notes Lactate

Initial concentration $0.3251 \text{ mol} \cdot 1^{-1}$

Involved in rule LACc

One rule determines the species' quantity.

7.24 Species CO2c

Name CO2c

Notes Carbon dioxide

Initial concentration $2.12 \text{ mol} \cdot l^{-1}$

Involved in rule CO2c

7.25 Species GLCe

Name GLCe

Notes Glucose

Initial concentration $0.3339 \text{ mol} \cdot l^{-1}$

Involved in rule GLCe

One rule determines the species' quantity.

7.26 Species LACe

Name LACe

Notes Lactate

Initial concentration $0.3986 \, \mathrm{mol} \cdot l^{-1}$

Involved in rule LACe

One rule determines the species' quantity.

7.27 Species GLUe

Name GLUe

Notes Glutamate

Initial concentration $0 \text{ mol} \cdot l^{-1}$

Involved in rule GLUe

One rule determines the species' quantity.

7.28 Species NAe

Name NAe

Notes Sodium

Initial concentration $150 \text{ mol} \cdot l^{-1}$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{NAe} = 0\tag{103}$$

7.29 Species 02a

Name O2a

Notes Oxygen

Initial concentration $8.34 \text{ mol} \cdot l^{-1}$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{O}2\mathrm{a} = 0\tag{104}$$

7.30 Species CO2a

Name CO2a

Notes Carbon dioxide

Initial concentration $1.2 \text{ mol} \cdot l^{-1}$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{CO2a} = 0\tag{105}$$

7.31 Species GLCa

Name GLCa

Notes Glucose

Initial concentration $4.8 \text{ mol} \cdot l^{-1}$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{GLCa} = 0\tag{106}$$

7.32 Species LACa

Name LACa

Notes Lactate

Initial concentration $0.313 \text{ mol} \cdot l^{-1}$

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{LACa} = 0\tag{107}$$

7.33 Species NAn

Name NAn

Notes Sodium

Initial concentration $15.533 \text{ mol} \cdot l^{-1}$

Involved in rule NAn

One rule determines the species' quantity.

7.34 Species GLCn

Name GLCn

Notes Glucose

Initial concentration $0.2633 \text{ mol} \cdot l^{-1}$

Involved in rule GLCn

One rule determines the species' quantity.

7.35 Species G6Pn

Name G6Pn

Notes Glucose-6-P

Initial concentration $0.7275 \text{ mol} \cdot 1^{-1}$

Involved in rule G6Pn

One rule determines the species' quantity.

7.36 Species F6Pn

Name F6Pn

Notes Fructose-6-P

Initial concentration $0.1091 \text{ mol} \cdot l^{-1}$

Involved in rule F6Pn

7.37 Species GAPn

Name GAPn

Notes Glyceraldehyde-3-P

Initial concentration $0.0418 \text{ mol} \cdot l^{-1}$

Involved in rule GAPn

One rule determines the species' quantity.

7.38 Species PEPn

Name PEPn

Notes Phosphoenolpyruvate

Initial concentration $0.0037 \text{ mol} \cdot l^{-1}$

Involved in rule PEPn

One rule determines the species' quantity.

7.39 Species PYRn

Name PYRn

Notes Pyruvate

Initial concentration $0.0388 \text{ mol} \cdot 1^{-1}$

Involved in rule PYRn

One rule determines the species' quantity.

7.40 Species LACn

Name LACn

Notes Lactate

Initial concentration $0.3856 \text{ mol} \cdot 1^{-1}$

Involved in rule LACn

7.41 Species NADHn

Name NADHn

Notes Nicotinamide adenine dinucleotide reduced

Initial concentration $0.0319 \text{ mol} \cdot l^{-1}$

Involved in rule NADHn

One rule determines the species' quantity.

7.42 Species ATPn

Name ATPn

Notes Adenosine triphosphate

Initial concentration $2.2592 \text{ mol} \cdot l^{-1}$

Involved in rule ATPn

One rule determines the species' quantity.

7.43 Species PCrn

Name PCrn

Notes Posphocreatine

Initial concentration $4.2529 \text{ mol} \cdot 1^{-1}$

Involved in rule PCrn

One rule determines the species' quantity.

7.44 Species 02n

Name O2n

Notes Oxygen

Initial concentration $0.0975 \text{ mol} \cdot l^{-1}$

Involved in rule 02n

7.45 Species GLUn

Name GLUn

Notes Glutamate

Initial concentration $3 \text{ mol} \cdot l^{-1}$

Involved in rule GLUn

One rule determines the species' quantity.

7.46 Species ADPn

Name ADPn

Notes Adenosine diphosphate

Initial concentration $0.113591983539553 \text{ mol} \cdot l^{-1}$

Involved in rule ADPn

One rule determines the species' quantity.

7.47 Species CRn

Name CRn

Notes Creatine

Initial concentration $0.7471 \text{ mol} \cdot 1^{-1}$

Involved in rule CRn

One rule determines the species' quantity.

7.48 Species NADn

Name NADn

Notes Nicotinamide adenine dinucleotide oxidized

Initial concentration $0.1881 \text{ mol} \cdot l^{-1}$

Involved in rule NADn

7.49 Species NADH_n_tot

Name NADH_n_tot

Notes Nicotinamide adenine dinucleotide reduced

Initial concentration $0.22 \text{ mol} \cdot l^{-1}$

$$\frac{\mathrm{d}}{\mathrm{d}t} \mathrm{NADH_n_tot} = 0 \tag{108}$$

7.50 Species PCrn_tot

Name PCrn_tot

Notes Phosphocreatine

Initial concentration $5 \text{ mol} \cdot l^{-1}$

$$\frac{\mathrm{d}}{\mathrm{d}t} P \mathrm{Crn_tot} = 0 \tag{109}$$

7.51 Species AMPn

Name AMPn

Notes Adenosine monophosphate

Initial concentration $0.006208016460449 \text{ mol} \cdot l^{-1}$

Involved in rule AMPn

One rule determines the species' quantity.

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany