پردازش سیگنال گرافی (۲۵۱۵۰)

تمرین ۱

مدرس: دكتر آرش اميني

سؤال ١

برای دو گراف G_1 و G_7 در شکل زیر آ گراف حاصلضرب کرونکر را رسم کنید. ب- گراف حاصلضرب دکارتی را رسم نمایید.

سؤال ۲

 ${\bf A}^k$ ماتریس مجاورت ${\bf A}$ ثابت کنید درایه (i,j) ماتریس مجاورت ${\bf A}$ ثابت کنید درایه (i,j) ماتریس آ- برابر تعداد گشت های به طول i از گره i به i است.

 $\mathbf{x}(ullet) = [1, ullet, \mathbf{x}, \mathbf{f}, \mathbf{f}]^T$ با شرط اولیه $\dot{\mathbf{x}}(t) = \mathbf{A}\mathbf{x}(t)$ به شکل در یک دستگاه معادلات حالت به شکل زیر باشد. حال رابطه $\mathbf{x}(t)$ را به صورت دستی محاسبه کنید.

سؤال ۳

برای یک گراف ساده S = (V, E) و یک زیر مجموعه از رئوس آن مانند $S \subset V$ مرز S که با $S \subset V$ نمایش داده می شود برابر است با مجموعه یال هایی از گراف S که تنها یکی از دو سر آنها در S باشد. همچنین ضریب ایزومتری برای S به شکل زیر تعریف می شود :

$$\tau(S) = \frac{|\delta(S)|}{\min(|S|, |V \backslash S|)}$$

با این تعریف ثابت ایزومتری گراف به صورت $\tau_G = \min_{S \subset V: \cdot < |S| \leq 1/\Upsilon|V|} \tau(S)$ بدست می آید. آ- نشان دهید اگر گراف همبند باشد کوچکترین مقدار ویژه غیر صفر ماتریس لاپلاسین ($\lambda_{\Upsilon}(\mathbf{L})$) از رابطه زیر بدست می آید

$$\lambda_{\mathsf{Y}}(\mathbf{L}) = \min_{\mathbf{v}: \mathbf{v}^T \mathbf{1}_n = \cdot} \frac{\mathbf{v}^T \mathbf{L} \mathbf{v}}{\mathbf{v}^T \mathbf{v}}$$

که $\mathbf{1}_n = (1, \dots, 1)_{1 imes n}^T$ و n تعداد رئوس گراف است.

ب- نشان دهید برای یک گراف همبند با وزن یال های واحد نامساوی زیر برقرار است

$$\lambda_{\mathsf{Y}}(\mathbf{L}) \leq \mathsf{Y}\tau_{G}$$

(راهنمایی : به ازای هر S برداری تعریف کنید که مؤلفههای آن بر حسب آنکه اندیس متناظر آن عضوی از S باشد یا نه، تغییر می کند.)

سؤال ۴

نشان دهید مقدار ویژه بیشینه ماتریس مجاورت یک گراف ساده مانند G که آن را با λ_{\max} نمایش میدهیم، از میانگین درجه رئوس گراف (d_{avg}) بزرگتر است، به عبارتی

$$\lambda_{\max} \geq d_{avq}$$

سؤال ۵

فرض کنید $\mathbf{B}_{(n-1)\times(n-1)}$ یک زیر ماتریس اساسی از ماتریس متقارن $\mathbf{A}_{n\times n}$ باشد (به عبارت دیگر \mathbf{B} با حذف یک سطر و ستون همشماره از \mathbf{A} بدست می آید). نشان دهید

$$\lambda_1 \geq \gamma_1 \geq \lambda_7 \geq \gamma_7 \geq \ldots \geq \lambda_{n-1} \geq \gamma_{n-1} \geq \lambda_n$$

که λ_i مقدار ویژه $\mathbf A$ و γ_i مقدار ویژه $\mathbf B$ (به ترتیب از بزرگ به کوچک) است. (راهنمایی : از قضیه Tischer یا قضیه Courant-Fischer) استفاده کنید.)

سؤال ۶

در این سؤال میخواهیم طبف لاپلاسین برخی از گراف های مشهور را بدست آوریم

آ- برای گراف کامل K_n ، نشان دهید مقادیر ویژه ماتریس لاپلاسین به صورت $n-n\delta[i-1]$ بدست می آید که $\delta[i]$ تابع ضربه گسسته و $1\leq i\leq n$ است.

ب- فرض کنید G یک گراف ساده بدون جهت باشد که در آن رئوس u,v با درجه ۱ به رأس w وصل هستند. نشان دهید ماتریس لاپلاسین این گراف یک مقدار ویژه ۱ دارد.

پ- با توجه به قسمت قبل نشان دهید مقادیر ویژه گراف ستاره به صورت زیر است

$$\lambda_i = \begin{cases} \cdot & \text{if} \quad i = 1 \\ 1 & \text{if} \quad Y \le i \le n - 1 \\ n & \text{if} \quad i = n \end{cases}$$

امتیازی : بردار ویژه متناظر با λ_n را بیابید.