

Emotion Detection: A Comparative Analysis

Benchmarking Machine Learning and Transformer Models on the GoEmotions Dataset

Presented by

Tanjila Hussen 222-115-176 **CSE 57 E**

Mahmud 222-115-191 **CSE 57 E**

Presented to

Introduction

What is Emotion Detection?

- An NLP task to identify and classify specific human emotions from text.
- It's more detailed than Sentiment Analysis, moving beyond 'positive/negative' to emotions like joy, anger, and sadness.

Motivation

Why is it Important?

- Customer Insights: To understand nuanced feedback on products and services.
- Content Moderation: To detect harmful or distressing content online.
- Mental Health Research: To analyze expressions of well-being in digital text.

Contribution

 Built and trained machine learning models and fine-tuned pre-trained deep learning transformer models to detect multi-label emotions classifications.

Worked on class imbalance for robust emotion detection.

 The study outperforms machine learning models in detecting emotion with RoBERTa having the highest recall.

Dataset

- Sourced from real-world Reddit comments, collected by Google.
- Contains ~58,000 comments labeled across 27 emotions + neutral.
- Key Challenge: Multi-label & Imbalanced. A single comment can have multiple emotions, and some emotions are much rarer than others.

Table No.1: Dataset Features

Column Name(s)	~	Data Type 🗸	Description	~
admiration, amusement, anger, annoyance, approval, caring, confusion, curiosity, desire, disappointment, disapproval, disgust, embarrassment, excitement, fear, gratitude, grief, joy, love, nervousness, optimism, pride, realization, relief, remorse, sadness, surprise, neutral		int64	A binary flag (0 or 1) indicating if the text expresses this emotion.	

Table No.2: Emotion Features

Methodology

Our workflow is divided into two parts, one being classical ML models, the other being state-of-the-art DL models.

Figure 1: Overall Workflow

EDA

Total number of labels across the dataset.

EDA Cont.

Correlation Heatmap showcasing every emotions relation with each emotion.

8

Approach 1: The Machine Learning Baseline

- Objective: "To establish a baseline performance using traditional ML."
- Method:
 - Feature Extraction: Converted text to vectors using TF-IDF.
 - Modeling: Trained three models:
 - Logistic Regression
 - Random Forest
 - ANN
 - "Handling Multi-Label: Used MultiOutputClassifier to enable the models to predict multiple emotions for each text."

Results: ML Models

Approach 2: The Transformer Models

 Objective: "To leverage state-of-the-art architectures for improved performance."

• What are Transformers?

 Models pre-trained on vast internet text, giving them a deep understanding of language context and nuance.

Our Models:

- Distilbert: A smaller, faster, and lighter version of BERT.
- RoBERTa: A more robustly trained version of BERT, often leading to better performance.
- Process: Fine-Tuning We specialized these pre-trained models for our specific emotion detection task.

DistilBERT vs. RoBERTa: Model Performance Comparison

Results: A Deeper Look at RoBERTa's Performance

Predicted Emotions

Analyzing your text: 'The computer is located on the desk.'

Predicted Emotions: ['approval 6', 'neutral (2']

Enter a sentence to analyze: Khulud Ma'am was nice and kind throughout the whole semester. Analyzing your text: 'Khulud Ma'am was nice and kind throughout the whole semester.' Predicted Emotions: ['admiration ()', 'gratitude ()' Enter a sentence to analyze: Tanjila has been working since morning. I think she will excel today's presentation. Analyzing your text: 'Tanjila has been working since morning. I think she will excel today's presentation.' 🕨 Predicted Emotions: ['admiration 🤩', 'approval 👍', 'neutral 😐'] Enter a sentence to analyze: I think Sufian was being sarcastic that day. Analyzing your text: 'I think Sufian was being sarcastic that day.' Predicted Emotions: ['amusement @ ', 'approval 6', 'realization ?', 'neutral " '] Enter a sentence to analyze: The computer is located on the desk.

Conclusion and Future Work

Summary of Work:

- We successfully benchmarked four models on the challenging GoEmotions dataset.
- Our results prove the effectiveness of fine-tuning transformer models like RoBERTa for nuanced emotion detection.

Key Challenges Identified:

 Class Imbalance is the single biggest factor limiting performance on rare emotions.

Future Directions:

- Applying these techniques to Bengali or code-switched text.
- Exploring methods like data augmentation to improve results for rare classes.

Thank You

Questions?

Scan this for surpeise

