ADVANCED DATA ANALYSIS

HW₁

Fan Yang UNI: fy2232 01/31/2018

Problem 1

(a)

The reject region given is $S \ge 16$, which contradicts with the two-sided alternative hypothesis. So I do in 2 ways as follow.

1)

Assume $H_a: \eta > 0$

Because any one observation is equally likely to be above or below the population median η , the number of $X_i \ge \eta = 0$ will have a binomial distribution with mean = 0.5.

$$1 - \alpha = Pr(S \ge 16|H_0)$$

$$= \sum_{i=16}^{25} {25 \choose i} \times (\frac{1}{2})^{25}$$

$$= 0.11476$$

$$\alpha = 0.88524$$

Therefore, the level of the test is 0.88524.

2)

Assume reject region is $S \ge 16$ and $S \le 9$

Because any one observation is equally likely to be above or below the population median η , the number of $X_i \ge \eta = 0$ will have a binomial distribution with mean = 0.5.

$$1 - \alpha = Pr(S \ge 16 \text{ and } S \le 9|H_0)$$

$$= 2 \times \sum_{i=16}^{25} {25 \choose i} \times (\frac{1}{2})^{25}$$

$$= 0.22952$$

$$\alpha = 0.770477$$

Therefore, the level of the test is 0.770477.

(b)

$$Pr(X_i > \eta_0) = Pr(X_i > 0)$$

$$= 1 - Pr(\frac{X_i - 0.5}{1} \le -0.5)$$

$$= 1 - Pr(Z \le -0.5)$$

where Z follows N(0, 1).

$$= 0.6915$$

So *S* follows *Bin*(25, 0.6915).

power =
$$Pr(\text{reject } H_0 | H_1)$$

= $Pr(S \ge 16 | H_1)$
= $\sum_{i=16}^{25} {25 \choose i} \times (0.6915)^i \times (1 - 0.6915)^{25-i}$
= 0.78355

Therefore, the power of the test is 0.78355.

Problem 2

(a)

pretest	posttest	diff
:	:	:
30	20	10
28	30	-2
31	32	-1
26	30	-4
20	16	4
30	25	5
34	31	3
15	18	-3
28	33	-5
20	25	-5
30	32	-2
29	22	7
31	34	-3
29	32	-3
34	32	2
20	27	-7
26	28	-2
25	29	-4
31	32	-1
29	32	-3

[1] "mean of pretest-posttest is"

-0.7

[1] "standard deviation of pretest-posttest is"

4.43787526211646

test statistis is defined as

$$t^* = \frac{\bar{X} - \mu_0}{s/\sqrt{n}}$$

$$= \frac{-0.7 - 0}{4.4379/\sqrt{20}}$$

$$= -0.7054$$
while $t_{n-1}(\alpha/2) = 2.093 > |t^*| = 0.7054$

$$\text{p-value} = Pr(t > |t^*|)$$

$$= 0.48912$$

Therefore, we fail to reject H_0 .

We need to assume that pretest-posttest follows normal distribution.

```
In [2]: qqnorm(diff)
   qqline(diff)
```

Normal Q-Q Plot

We can conclude that the difference is approximately follows normal distribution.

(b)

The $100(1-\alpha)\%$ confidence interval is

$$\bar{X} \pm t_{n-1}(\alpha/2)s/\sqrt{n}$$

which is

$$-0.7 \pm 2.093 \times 4.4379 / \sqrt{20}$$

[-2.77699, 1.37698]

In [44]: -0.7+ 2.093*4.4379 / sqrt(20) -0.7- 2.093*4.4379 / sqrt(20)

1.37697726398858

-2.77697726398858

(c)

In [46]: signdiff = diff / abs(diff)
sum(signdiff>0)

The test statistic $T^* = \sum I(X_i > 0) = 6$ and $T \sim Bin(n, 0.5)$ |T - n/2| = |6 - 10| = 4

$$1 - \alpha = Pr(T > T')$$

$$= \sum_{i=T'}^{20} {20 \choose i} 0.5^{20}$$

when T'=7, Pr(T>7)=0.94234 and when T'=6, Pr(T>6)=0.979305 when T'=13, Pr(T<13)=0.94234 and when T'=14, Pr(T<14)=0.979305 Let's calculate the p-value p-value= $2min(P(T\leq 6), P(T\geq 6))=0.115318$, which is less than α Therefore, we fail to reject H_0 .

(d)

```
In [65]: library(BSDA)
         SIGN.test(diff, md=0,,alternative="two.sided",conf.level=0.95)
                One-sample Sign-Test
        data: diff
        s = 6, p-value = 0.1153
        alternative hypothesis: true median is not equal to 0
        95 percent confidence interval:
         -3.000000 1.650588
        sample estimates:
        median of x
                 -2
        Achieved and Interpolated Confidence Intervals:
                          Conf.Level L.E.pt U.E.pt
        Lower Achieved CI
                           0.8847 -3 -1.0000
        Interpolated CI
                            0.9500
                                      -3 1.6506
        Upper Achieved CI 0.9586
                                      -3 2.0000
```

So the 95% confidence interval for η is [-3.000000, 1.650588]

Problem 3

```
In [5]: Active = c(9.00,9.50,9.75,10.00,13.00,9.50)
   Noexe = c(11.50,12.00,9.00,11.50,13.25,13.00)
   knitr::kable(cbind(Active,Noexe))
   print("mean of Active is")
   mean(Active)
   print("standard deviation of Active is")
   sd(Active)
   print("mean of Noexe is")
   mean(Noexe)
   print("standard deviation of Noexe is")
   sd(Noexe)
```

```
| Active| Noexe|
 ----:|----:|
    9.00 | 11.50 |
   9.50 | 12.00 |
   9.75 | 9.00 |
   10.00 | 11.50 |
   13.00 | 13.25 |
    9.50 | 13.00 |
[1] "mean of Active is"
10.125
[1] "standard deviation of Active is"
1.44697961284878
[1] "mean of Noexe is"
11.7083333333333
[1] "standard deviation of Noexe is"
1.52000548244625
```

two sample t-test

Denote μ_1 as the mean of the Active group and μ_2 as the mean of none-execise groups.

 $H_0: \mu_1 = \mu_2; \quad H_1: \mu_1 \neq \mu_2$

test statistis is defined as

$$t^* = \frac{\bar{Y}_1 - \bar{Y}_2}{SE(\bar{Y}_1 - \bar{Y}_2)}$$
 where $SE(\bar{Y}_1 - \bar{Y}_2) = s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$, with $s_p = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}} = 1.4839$
$$t^* = \frac{10.125 - 11.708}{1.4839 \times \sqrt{\frac{1}{6} + \frac{1}{6}}}$$

$$= -1.84806$$
 while $t_{n_1 + n_2 - 2}(\alpha/2) = 2.228 > |t^*| = 1.84806$ p-value = $Pr(t > |t^*|)$
$$= 0.09434$$

Therefore, we fail to reject H_0 .

Assumption. In order to use this test we need to assume that X follows normal distribution. And the two group should have the same variance σ^2 . Now we use applot to check.

Normal Q-Q Plot

In [7]: qqnorm(Noexe)
 qqline(Noexe)

Normal Q-Q Plot

According to the above qqplot, we can assume the sample follows normal distribution.

```
data: Active and Noexe t = -1.8481, df = 10, p-value = 0.09434 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -3.492301 0.325634 sample estimates: mean of x mean of y 10.12500 11.70833
```

(Wilcoxon) Mann-Whitney two sample procedure

The Sign test do not need to assume normal sample or sysmtric distribution, we only need the sample to be independent.