4.
$$\lim_{x \to 0} \frac{\sin(x^3)}{(\sin x)^2}$$

b.
$$\lim_{x \to 2^+} \frac{[x]^2 - 4}{x^2 - 4}$$

C.
$$\lim_{x \to 1} \frac{x + x^2 + \dots + x^m - m}{x - 1}$$
 $(m \in \mathbb{N}^{\frac{1}{2}})$ $d. \lim_{x \to \frac{1}{2}} \frac{x^3 - 2x^2 + x - 12}{x^4 - 3x^3 - 8x^2 + 2|x + 9|}$

d.
$$\lim_{x \to 3} \frac{x^3 - 2x^2 + x - 12}{x^4 - 3x^3 - 8x^2 + 2|x + 9|}$$

2. Find asymptotes of the following function:
a.
$$f(x) = \frac{3x^3 + 4x^2 - x + 2}{2x^2 + x + 7}$$

4. Let
$$D(x)$$
 be a function on IR , $D(x) = \begin{cases} 0 & x \text{ is irrational} \\ 1 & x \text{ is rational} \end{cases}$
Prove that: for all $x_0 \in IR$, $D(x)$ is not continuous at x_0 . ($D(x)$ is called D irichlet function)

5. Let
$$f$$
 be a continuous function on $[a,b]$, $x_i \in [a,b]$, $i=1,2,\cdots,n$.
 Show that there exists $\eta \in [a,b]$ such that $f(\eta) = \frac{1}{n} [f(x_1) + f(x_2) + \cdots + f(x_n)]$.