Evolution simulation using a Genetic Algorithm in Unity

[Raus Denis]

January 10, 2025

Introduction & Motivation

Project Theme

 Creating a simplified Unity based simulation of the evolutionary processes found in nature

Motivation

- Visualize evolutionary adaptation in real-time
- Observe emerging survival strategies

Theoretical Background

Genetic Algorithms

- Based on natural selection principles
- Survival of the fittest

Key Mechanisms

- Selection through environmental pressure
- Random mutation of offspring
- Predator-prey relationships*

Individual Representation & Parameters

Genetic Traits:

- Speed (0.1 60.0)
- Size (0.5 6.0)
- Vision Range (1.0 60.0)
- Wander Time

State Variables:

- Energy Level
- Generation Number
- Behavioral State
- Current Target

Visual Representation

- Color-coded states (Red: Low Energy, Green: High Energy, Blue: Looking for mate, Pink: Hunting)
- Size scales with genetic trait
- Generation number displayed

Figure: Cool Graphics

Fitness & Behavior System

Implicit Fitness Function

Energy usage (every physics update):

$$E_{usage} = E_{base} + (V_r imes M_v) + (S imes M_s) + (Sz imes M_{sz}) * Time.deltaTime$$

Behavioral Hierarchy

Priority order:

- Flee from predators
- 4 Hunt prey (if energy is over a threshold)
- Seek mates (if energy is over a threshold)
- Move towards food (if food is detected)
- Wander randomly

Results & Conclusions

Observed Patterns

- Low food environment Decreased size and increased speed and vision range
- Normal food environment Increased diversity, evolution of predators
- Abundant food environment Even higher diversity, increased population density

Conclusions

- Real-time visualization of evolutionary processes
- Demonstrated evolution process over generations