Technické vybavení

1 Procesory

- instrukce = pokyn k vykonání nějaké činnosti
- instrukční sada = strojový kód
- překladače: kompilátory, interpretery
- instrukce: aritmetické, logické, řídící
- jádro procesoru: ALU, registry, řadič
- řadič řídí pořadí instrukcí, dostává stavová hlášení
- zjednodušené blokové schéma procesoru:

- SWR registr stavového slova = stavy ALU
- ALU provádí aritmetické a logické operace
- TEMP je v něm vždy obsažen operand, zajišťuje konstantní vstupy během výpočtu
- ACCUMULATOR
 - střádač většinou u menších procesorů
 - slouží jako implicitní operand
 - ukládá se do něj výsledek z ALU
 - při instrukci "přičti adresu" přičítá k ACC
- SBÉRNICE skupina vodičů se stejným protokolem
- DB data bus datová sběrnice umožňuje výměnu dat
- FIFO fronta instrukcí
- DEKODÉR rozkládá instrukce na mikroinstrukce
- ŘADIČ stará se o řídící sběrnice
- GPR general purpose register víceúčelové registry
- CS code segment
- SS stack segment
- CD data segment
- ES extra segment
- FS free segment
- IP instruction pointer ukazatel instrukce, která se provede v následujícím kroku
- SP stack pointer ukazatel zásobníku
- AB address bus adresová sběrnice
- výpočet adresy instrukce:
 - CS + IP => adresa instrukce
 - -SS + SP => adresa stacku
- jednodušší procesory mají "program counter" místo výpočtu adresy instrukce
 - obsahuje absolutní adresu
- provedení instrukce:
 - vezme se obsah těchto registrů (program counter nebo IP), najde se v paměti adresa a vezme se instrukce z buňky v paměti
 - po provedení instrukce se zvedne IP nebo program counter a jednotku instrukce
- do stracku se zapisují adresy ze stack pointeru, které se neprovedly př.: kvůli přerušení
- vždy se zapisuje na vrchol stacku
- při zápisu se změnšuje pointer o jednotku instrukce
- dno stacku se vytváří př.: zavedením programu do operační paměti
- každý program má svůj stack
- dno stacku je nejvyšší adresa
- příklad:

kód	adresa	instruction	stack	obsah
instrukce	prováděné	pointer	pointer	stacku
	instrukce			
		A0	D0	AA
MOV	A0	A1	D0	AA
INC	A1	A2	D0	AA
CALL B0	A2	A3	D0	AA
		A3	CF	AB
		A3	CF	A3
		В0	CF	A3
ADD	В0	B1		
MOV	B1	B2		
RET	B2	В3		
		A3	CF	A3
		A3	D0	AA
MOV	A3			

OPERAČNÍ			
	PAMĚŤ		
В3			
B2	RET		
B1	MOV		
В0	ADD		
A5			
A4			
A3			
A2	CALL B0		
A1	INC		
A0	MOV		

dno stacku

AB = libovolná hodnota

• aby mohl program začít, musí být první instrukce v IP nastavena na adresu z CB

1.1 Přerušení

- je to schopnost procesoru přerušit vykonávaný program a začít obsluhovat jiný
- typy přerušení:
 - vnější asynchronní, neočekávané, neplánované přichází od vstupních zařízení
 - vnitřní asynchronní, neočekávané, neplánované dělení nulou, výpadek zdrojů, procesoru chybí stránka
 - softwarové synchronní, očekávané, plánované
- dělení přerušení:
 - maskovatelné není rozpoznat, že nastalo přerušení př.: ovladač něco potřebuje
 - nemaskovatelné
- postup činnosti při přerušení:
 - signál přijímá řadič přerušení (interrupt controller)
 - IC vyhodnocuje prioritu přerušení
 - procesor dokončí právě prováděnou instrukci a následující instrukci uloží do stacku
 - procesor si od řadiče vezme číslo přerušení
 - procesoru v tabulce vektorů přerušení, hledá vektor přerušení virtuální adresa první adresy přerušení

1.2 DMA

- přímý přístup do paměti blokového zařízení bez použití procesoru
 - procesor naprogramuje DMA (probíhá v μs)
 - DMA vyšle HOLD
 - CPU potvrdí pomocí HOLD A (accepted)
- HP hardware procesor pracuje bez adresy
- DMA řídí hardwarově jsou použity čítače

1.3 RISC

- má jednoduchý hardware
- redukovaná instrukční sada
 - 2 instrukce pro práci s pamětí: LOAD, STORE
- program v assembleru bývá delší
- co takt, to instrukce
- je nutný pipelining
- tento typ procesoru nemá pevný accumulator
- dokáže přeadresovávat registry
- je-li to výhodnější, umí přeorganizovat instrukce

1.4 CISC

- accumulator pevně vázaný na ALU
- překlad instrukcí bývá dvojstupňový
 - rozloží se na mikroinstrukce ty se překládají do strojového kódu
- dnešní procesory se navenek jeví jako CISC, v jádře fungují jako RISCové procesory

1.5 Parametry procesorů

- frekvence je udávána v Hz, frekvence = počet instrukcí provedených za sekundu
- efektivita mikrokódu počet kroků potřebných pro dokončení instrukce
- numerický koprocesor FPU výpočty v pohyblivé čárce
- počet instrukčních kanálů pipelining
 - počet instrukcí, které se zpracují v jednom taktu
- šířka slova maximální počet bitů, které je procesor schopen zpracovat během jedné operace
- šířka přenosu dat počet bitů přenášených z procesoru nebo do procesoru
- CACHE vyrovnávací paměť
- velikost adresovatelné paměti
- počet jader
- chlazení aktivní, pasivní, kombinované
 - pasivní žebrovaný chladič vyrobený z materiálu, který velmi dobře odvádí teplo
 - aktivní větráček
 - kombinovaný nejčastější
 - vodní chlazení

1.5.1 Pipelining

- zřetězené zpracování instrukcí
- nejčastěji pětistupňový
- procesor je rozdělen na subprocesory
 - ve stejném okamžiku pracují na jiných instrukcích jiní části procesoru
 - výsledek ukládají do společné paměti
- rozdělení na kroky:
 - 1. čtení
 - 2. dekódování
 - 3. provedení
 - 4. zapsání do paměti
 - 5. zaznamenání do registru

čas	1	2	3	4	5
okamžiku					
/					
subproces					
1	Α				
2	В	Α			
3	С	В	Α		
4	D	С	В	Α	
5	Е	D	С	В	A

1.5.2 Super skalární procesor

- jeden ze způsobů jak zvýšit výkon procesoru, př.: více ALU, FPU
- navenek se jeví jako jeden procesor
- v jednom taktu zpracuje více informací následujících za sebou

1.5.3 Vícejádrové procesory

- jádro obsahuje ALU, řadič, registry
- nepoužitá jádra se vypnou pro šetření energie
- každý proces je tvořen vlákny
 - proces je někdy nazýván odlehčený proces)
- OS musí podporovat vlákna
- procesy mají oddělený adresový prostor
- vlákna mají společný adresový prostor
- jádra mají svoji cache a mají také společnou cache
- jádra a cache jsou prpojené crossbarovými sběrnicemi
- každé jádro má řadič přerušení a řídí si přerušení
- volné jádro může obsloužit přerušení zaneprázdněného jádra

1.5.4 Hyperthreading

jeden fyzický procesor se navenek jeví jako dva logické procesory

- jsou duplikovány regisry a řadič přerušení
- procesor na vstupu přijme dvě vlákna za předpokladu, že každé vlákno potřebuje jinou výkonnou jednotku, v jiném případě jedno vlákno čeká na zpracování
- technologie používaná Intelem

1.5.5 HyperTransport

- obousměrná (full duplex)
- umožňuje vysokou propustnost
- propojuje procesor k severnímu mostu

1.5.6 Multithreading

• současně se bude zpracovávat více vláken

1.5.7 Multiprocesor

- centrálně řízený systém s více procesory se společnou pamětí
- procesory jsou soustředěny kolem jedné sběrnice
- vhodné pro řešení jedné úlohy
- řízení zařizuje jeden operační systém
- používá se tam kde je potřeba vysoké spolehlivosti systému

1.5.8 Procesorová pole

- vytvořeno ze stejných procesorů navzájem propojených
- mají centrální řadič
- každý procesor má vlastní paměť
- data se dají přesouvat mezi sousedními procesory
- vstupní data se dávají do krajních procesorů, které jsou přímo napojeny na sběrnici
- liší se od paralelního zapojení (multiprocesory) tím, že každý procesor má svoji pamět

2 Periferie, klávesnice, myš

2.1 Klávesnice

- kontaktní, bezkontaktní klávesy
- klávesnice rozvržena do matice
- mechanické, membránové (halové a kapacitní)

- fungování klávesnice SCAN kódy
 - po stisku je vygenerován SCAN kód, ten jde přes buffer klávesnice na řadič na základní desce, tam mu je přiřazena stisknutá klávesa podle SCAN kódu

2.2 Kuličková myš

- 2 snímače navzájem posunuty o $\frac{\pi}{2} = 90^{\circ}$
- na hřídelce je clonkové kolečko
- světelný paprsek dopadá na senzor podle toho zda prosvítá

2.3 DSP – Digital Signal Processor

- používá se u optických myší
- snímky z povrchu se ukládají v CMOS myši a podle rozdílů v obrazech se vypočítá směr a vzdálenost pohybu

2.4 Joystick

- pákový ovladač
- digitální nebo analogový
- použití: hry, průmyslová zařízení, letadla
- dříve se připojoval přes gameport, nyní USB
- má dvě osy -x, y (případně i osu z pro naklánění)

3 Virtualizace RAM v PC, stránkování, swapování, výpočet adres v protected módu

- každý počítač startuje v real módu
- real mód má velikost paměti do 1MB
- adresová sběrnice má 20 bitů
- registry jsou 16 bitové
- segment + offset = fyzická adresa
- \bullet CS + IP = fyzická adresa
- CS * 16 + IP = fyzická adresa instrukce v real módu
- př.: segment 020A; offset 1BCD

 $020A \\ 1BCD \\ 1DD7$

3.1 Výpočet adresy v protected módu

- protected mód = chráněný režem chrání pamět programů proti zápisu z jiných programů
- zapisuje do paměti nad 1 MB

SELEKTOR

- logická adresa = selector + offset
- index ukazuje na řádek tabulky, ten má 8 B, skládá se z:

	32 bit	16 bit
báze	4 B	3 B
limit	3 B	2 B
práva + atributy	1 B	1 B
rezerva		2 B

- báze počáteční adresa segmentu
- limit velikost segmentu, musí být menší než offset
- práva archivní, systémové, obyčejný uživatel
- rezerva pro *bázi* a *limit*

$3.2 \quad GDT/LDT$

- global descriptor table
 - jediná pro operační systém, její adresa se přepne do real módu
- local descriptor table
 - adresy jsou v GDT
- tabulky deskriptorů (popisovačů)
 - popisují systém uložení
- segment = tabulka
- každý segment má 8 řádků (celkem 64 kB)
- práva archivní, systémové, obyčejný uživatel

3.3 Stránkování

- rozdělení paměti na úseky konstantní velikosti
- základní velikost: 4 kB
- velikost záleží na operačním systému stanoví se při zavedení systému

LINEÁRNÍ ADRESA 32b

- výhody stránkování
 - nejsou potřeba kontroly (díky konstantní velikosti)
 - rychlé zpracování

3.4 Virtuální paměť (swapování)

- operační paměť je někdy příliš malá pro programy, proto se rozšiřuje o virtuální paměť
- ukládají se zde momentálně nepotřebné stránky
- uplatňuje se při swapování
- swapovací prostor rozšiřuje operační paměť
- různé OS řeší různými způsoby
- swapuje se po stránkách
 - stránku ve swapovacím prostoru nazýváme frame
- MMU memory management unit
 - najde v operační paměti stránky, které nebudou potřeba, najde volný frame a zapíše je na disk
 - číslo framu se přepíše číslem stránky a přidá se flag o tom kde se nachází (swap nebo RAM)
- swapování je odkládání momentálně nepotřebných dat do virtuální paměti a vracení dat do
 operační paměti v momentě kdy jsou data potřeba
- swapovací prostor by měl být dvojnásobně větší jak operační paměť
- při swapování nastává zpoždění, proces swapování je velmi pomalý

4 24. Zásobníkové procesory, módy procesorů

4.1 Zásobníkové procesory

- používají se tam, kde se používají řídící systémy
- jsou založeny na základě 2 zásobníků
 - zásobník operandů
 - zásobník návratových adres
- zásobník je na principu LIFO
- jsou jednodušší než procesory CISC a RISC
- mají kratší instrukční sadu
- mají dvou stupňový pipelining
- chybí fáze dekódování
- operandy jsou v prvních 2 položkách zásobníku
- ALU má v každý okamžik operandy ke zpracování
- zásobníkové procesory nezahazují instrukce
- na přerušení reagují se zpožděním pouze 1 strojového cyklu
- ALU má šířku operandů 20 bitů
- jedno instrukční slovo: max 4 instrukce
- šířka jedné instrukce je 5 bitů
- nemá cache
- počet instrukcí: 2³²

4.2 Módy 64 bitových procesorů

- long, legacy
- existuje přepínání mezi módy
- počítač startuje v reálném režimu
- virtuální mód se dnes nepoužívá

- umožňuje spouštět programy určeny pro reálný režim s výhodami chráněného režimu
- system management mód
 - extra povolení
 - je určen pro řízení systémových aktivit (systémový mód)
 - někdy se nazývá nastavovací mód
- long mód umožňuje používat 64 bitový mód nebo compatibility mód
 - 64 bit mód
 - * je určený pro 64 bitové procesory
 - * má 64 bitové registry a instruction pointer
 - * flat segmentustránkování
 - režim kompatibility
 - * je kompatibilní s 16 bit a 32 bit procesory je možné spouštěť programy navržené pro tyto procesory
 - * neobsazené bity jsou vyplněny 1 případně 0
- legacy mód
 - nemají všechny procesory (AMD ano, Intel ne)
 - pracuje jako opravdový 32 bitový procesor (s kompatibilitou pro 16 bit procesory)
 - registry nepřetěžuje zbytečnými bity doplňující do 64 b

4.3 Adresování

- long mód inplementuje "flat model"
- flat model představuje jeden segment (původně přes celou paměť)
- u 32 bit do 1 MB
- rozeznáváme 4 druhy adres
 - logická báze, vstupní adresa pro výpočet
 - efektivní adresa offset
 - lineární adresa = báze + offset
 - u flat modelu je počáteční adresa segmentu rovna 0 tzn. že lineární adresa je shodná s
 efektivní adresou proto se udává v kanonickém tvaru
 - kanonická forma adresy
 - * vyžaduje, aby všechny bity 48–46 opakovaly 47-mý bit
 - fyzická adresa určuje polohu ve fyzickém prostoru

LOGICKÁ ADRESA

4.4 Stránkování

LINEÁRNÍ ADRESA

5 Paměti

5.1 Paměti podle fyzikálního rozdělení

5.1.1 Polovodičové

- statické
- dynamické
- PROM, EPROM, EEPROM

5.1.2 S pohyblivou magnetickou vrstvou

- magnetické disky
- diskety
- kazety

5.1.3 Optické

• DVD, CD, Blu-Ray

5.1.4 Magnetooptické

5.2 Podle závislosti na napájení

5.2.1 Závislé (volatilní)

- uchování a přístup k datům je závislý na napájení
- př.: polovodičové paměti

5.2.2 Nezávislé (nevolatilní)

• nepotřebují k uchování dat napájení, pouze k přístupu

5.3 Podle přístupu do paměti

5.3.1 RAM

- paměti s náhodným přístupem
- přístup není závislý na adrese umístění
- polovodičová paměť

5.4 Podle schopnosti zápisu

- pro čtení a zápis
- ROM pouze pro čtení
 - zápis se provede při výrobním procesu a je neměnný
- write-only memory př.: černá skříňka

5.5 Vnitřní paměti

- k práci potřebují procesor
- cache, registry, CMOS

5.6 Vnější paměti

- slouží k trvalému uchování dat
- HDD, CD, DVD, diskety, kazety, paměťové karty

5.7 Destruktivnost při čtení

- u destruktivních pamětí se informace po přečtení zmizí a je potřeba ji znovu zapsat
- u nedestruktivních pamětí zůstávají data po přečtení bez změny
- polovodičová paměť se skládá z buněk
- paměťová banka je zastávána integrovaným obvodem
- každá buňka může mít hodnotu 1 nebo 0
- paměťové buňky jsou uspořádány do matice (tvoří mřížku)
- poloha buňky je určena řádkovým a sloupcovým vodičem
- paměťový řadič řídí čtení a zápis
 - bipolární tranzistory

– unipolární tranzistory

5.8 Volatilní

5.8.1 Statické paměti

- uchovávají informace po celou dobu kdy jsou připojeny k napájení
- přístupová doba 1 ns 20 ns
- složitější, vyšší výrobní náklady než dynamické paměti
- je rychlejší
- je tvořena bistabilním klopným obvodem
- používá se na výrobu CMOS, cache (L1, L2, L3)

5.8.2 Dynamické paměti

- informace je uložena jako elektrický náboj na kondenzátoru
- náboj se vybíjí i při připojeném napájení je nutný refresh
- v době refreshe není možné číst ani zapisovat
- buňka má jednoduchou výrobu, nízké náklady na výrobu
- přístupová doba 10 ns 70 ns
- čtení je destruktivní informace musí být znovu zapsána po přečtení

5.9 Nevolatilní

• často se používají pro firmware

5.9.1 ROM

- informace je zapsána při výrobě a nelze změnit
- př.: firmware

5.9.2 PROM

- programmable read only memory
- vyrobí se bez informace uživatel může zapsat informaci, poté ji nelze měnit

5.9.3 EPROM

• je možné ji vymazat UV zářením

5.9.4 EEPROM

• mazání se provádí pomocí elektrického impulzu

5.10 Flash ROM

- elektricky programovatelná paměť
- paměť je organizována po blocích
- př.: firmware, vnější medium
- data bez napětí vydrží uchována ~10 let

5.11 Dynamická paměť

5.11.1 Blokové schéma dynamické paměti

- řadič je propojen se vším
- když je adresa v bufferu, je možné načíst další adresu
- paměťových matic je několik
 - jsou společně ovládány
 - mají každá svůj vstup a výstup
 - šířka datové sběrnice = počet matic
- RW zesilovač dělá z elektrického signálu logický signál
- paměť je destruktivní, proto je zde statická RAM do té se informace při čtení uloží a následně se znovu zapíše

5.11.2 Časový diagram paměti

- časování v nanosekundách 5 - 2 - 2 - 2

5.11.3 Synchronní paměť EDO

- datová sběrnice je obsazená pouze kdy se čtou nebo zapisují data
 u asynchronní je datová sběrnice obsazena vždy
- CS chip select výběr obvodu, který bude reagovat
 - negovaný z bezpečnosti, aby při přerušení vše zůstalo nefunkční
- AB adresový sběrnice
- RAS row address or strobe říká, že signál na sběrnici je platný
- CAS column address or strobe
- RW log. 1 říká, že data jsou platná + signál pro čtení, zápis
- paměť může být typu burst
 - může pracovat s více adresami ukládají se do mini cache
 - při opětovném čtení je již uloženo v mini cache tím se paměť zrychluje

5.12 Magnetické paměti

- v závislosti na změně proudu se mění magnetická indukce
- \bullet když se zmenšuje H intenzita magnetického pole, zmenšuje se i magnetická indukce

- ne však do nuly, zastaví se na Br magnetická remanence zbytek magnetismu, který si materiál uchovává po konci působení magnetického pole
- v Br se změní směr proudu $\to H$ se nebude zvětšovat \to max Hc
- Hc koercitivita (koercivita) udává magnetickou tvrdost
 - * hodnota nutná k odmagnetování materiálu
 - * když budu dál zvětšovat \rightarrow dojde k nasycení v opačném směru

5.12.1 Hard disk

- vnější paměť
- slouží k trvalému uchování dat
- velkokapacitní
- pohyblivá magnetická vrstva
- energeticky nezávislý (nevolatilní)
- HDD se skládá z ploten a hlav
- plotna může být kovová nebo skleněná, pevná a neohebná
- je pokryta tenkou vrstvou magneticky citlivého materiálu
- na magnetické vrstvě je vrstva maziva chrání proti mechanickému poškození
- průměr plotny 3.5" nebo 2.5"
- ploten může být více nad sebou
- hlava zajišťuje čtení a zápis
- hlava pluje na vzduchovém polštáři nad plotnou
- na každou plotnu jsou dvě hlavy z obou stran jedna
- vystavovací mechanismus vystaví hlavu na správnou pozici
 - 3 fáze: seek time, settle time, latence
 - seek time nalezení pozice na disku, vystřelení hlavy
 - settle time čekání na utlumení kmitání hlavy (v ms)
 - latence vyčká se na pootočení disku
- čím rychleji se disk točí, tím je latence nižší
- při čtení a zápisu prochází hlavou proud, který zmagnetizuje vrstvu
- každý disk obsahuje řadič řídí čtení a zápis
 - obsahuje pamět typu ROM obsahuje firmware
 - řídí pohon, dekódování, kódování
- konfigurační přepínače jumpery
- kontroluje rychlost otáčení
- CACHE k uložení dat před zápisem; když jsou data v CACHE, tak disk hlásí, že data zapsal
- motor zajišťuje otáčení ploten; pouzdro motoru je z nemagnetického materiálu
- rychlost otáčení ploten:
 - u notebookových HDD: 4200 ot./min. menší spotřeba energie
 - u standardních disků: 7200 ot./min.
 - u lepších disků: 10000 ot./min.
- disk musí být hermeticky uzavřený
- disky jsou náchylné na mechanické rázy
- hlavy jsou zaparkovány mimo datovou plochu, když je disk vypnutý
- rozhraní:

- ATA = IDE = PATA = ATAPI
 - * 40 pinový konektor
 - * paralelní rozhraní
 - * master a slave
- SATA úzký kabel, sériový, podporuje Hot swap
- SCSI
 - * výkonné pracovní stanice, servery
 - * 68 pinový konektor
 - * lze připojit různé periferie
- USB, Firewire
 - * externí disky
- bity jsou uloženy horizontálně na ploše disku menší hustota zápisu
- kolmý záznam umožňuje zvýšení hustoty záznamu
 - asymetrický magnet, stabilizační vrstva
 - tenký pól se stará o to aby magnetické pole směřovalo co nejvíce do hloubky
 - široký nástavec má malou hustotu siločar
 - tenký pól soustředí siločáry do úzkého prostoru umožňující magnetizaci
 - každý bit vytváří miniaturní dipól
 - siločáry musí procházet přes stabilizační vrstvu

5.12.1.1 Geometrie pevného disku

- popisuje počet stop, sektorů, cylindrů, clusterů, počet hlaviček
- Low Level Format nízkoúrovňový; je prováděn výrobcem disku
- sektor nejmenší možná adresovatelná jednotka disku původně 512 B, dnes 4 kB
- cylindr sada stop se stejným číslem na různých stranách ploten
- cluster alokační jednotka tvořena operačním systémem je nejmenší použitelná šířka data pohromadě

- velikost clusteru je dána použitým souborovým systémem
- cluster je obsazen i když není zcela plný

5.12.1.2 Prokládání

- je jednou z metod, která zkracuje dobu čekání
- bez prokládání se při čtení se provedou data z 1. sektoru, pošlou se přes řadič aplikaci a je dotaz na další data, pro čtení se musí počkat celou otáčku disku

5.12.1.2.1 ZBR

- Zone bit recording
- zvyšuje kapacitu disku
- stopy u středu jsou kratší a mají tím méně sektorů, proto se na vnější stopy dá více sektorů

5.12.1.3 Kapacita disku

• vypočte se jako cylindr * hlava * sektor

5.12.1.4 Metody adresace

- $CHS = cylindr \times hlavičky \times sektory$
 - nepoužívá se, je zastaralá
- $LBA = (C \times HPC + H) \times SPT + (S 1)$
 - logical block addressing
 - C cylindr
 - HPC max počet hlav na cylindr
 - SPT max počet sektorů na pevném disku
 - S stopa
 - tato metoda očísluje všechny sektory na pevném disku
 - z daného čísla je pak každému přidělena nová 8 bitová adresa
 - jelikož se podle tohoto vztahu vypočte vlastní číslo, není nutné znát geometrii disku

5.12.1.5 Parametry HDD

• formát: 3.5", 2.5"

• rozhraní: ATA, SATA

• kapacita: v GB, TB

otáčky: 5400 RPM, 7200 RPM, 10000 RPM

- -více otáček \rightarrow více tepla \rightarrow je potřeba lepší chlazení
- vyrovnávací pamět 2 MB, 16 MB
- přístupová doba: průměrná doba za kterou je disk připraven číst nebo zapsat (v ms)
- celkový výkon: podle rychlosti
- hlučnost
- spotřeba energie
- přenosová rychlost
- odolnost vůči otřesům
- hmotnost

5.12.1.6 S.M.A.R.T.

- Self-Monitoring, Analysis and Reporting Technology
- provádí monitorování, analyzování a hlášení chyb
- zprávy se posílají operačnímu systému
- chyby: předvídatelné a nepředvídatelné
- S.M.A.R.T. analyzuje pouze předvídatelné chyby:
 - poškození povrchu
 - poškození hlavy: měkké chyby opakované čtení
 - poškození motoru: narůstá čas k roztočení disku
 - hlava se vychyluje, není schopno sledovat stopu
 - poškození vystavovacího mechanismu
- nepředvídatelné chyby:
 - poškození disku náhlým přepětím
 - poškození špatným zacházením
 - poškození nadměrným teplem, magnetickým polem

5.12.1.7 Cachované disky

- všechny dnešní disky jsou cachované
- dochází k vyrovnání rychlosti dat
- cache je statická paměť
- zaručuje konstantní rychlost mezi operační pamětí nebo DMA
- v disku je řadič, který řídí cache

5.12.1.8 Disková pole

- soustavy pevných disků
- informace se paralelně zapisuje do několika disků zároveň, tím je dosažena vyšší spolehlivost
- RAID redundant array of independent disks vícenásobné pole nezávislých disků
- RAID 0
 - systém postupného čtení a zápisu na více disků
 - v jednom okamžiku systém pracuje s jedním diskem a při zaplnění stopy se přepne na druhý disk; první si bude mezitím nastavovat stopu
 - je bez zálohování
 - při poruše jednoho z disků se systém zhroutí

• RAID 1

- mirroring zrcadlení
- zapisuje se na disky zároveň
- čte se z disku který je blíž datům

• RAID 5

- paritní informace se ukládají na všechny disky
- minimum disků jsou 3 disky

RAID 6

- obsahuje 2 paritní disky
- mohou vypadnout 2 disky
- pomalejší zápis

• RAID 7

- má navíc centrální cache
- RAID 10
 - spojení RAID 0 a RAID 1
 - data se nejdříve zrcadlí a potom se uloží do pole RAID 0
 - použití pro databázové systémy

5.13 Optické disky

- průměr 12 cm
- zaznamená se na něj 84 minut 750 MB
- malé disky o průměru 8 cm až 24 minut 210 MB
- stejně velké sektory
- princip čtecí a optické hlavy:

- fotodioda převádí světelný impuls na elektrický
- data jsou poslána na DAC digitálně analogový převodník; převádí digitální signál na analogový
- LAND plocha disku
- PIT díra; v pitu se světlo rozptýlí \rightarrow žádný odraz \rightarrow žádné napětí
- přechod mezi pitem a landem je logická 1
- žádná změna je logická 0
- informaci nese každá změna z 1 na 0 a z 0 na 1

5.13.1 CD-RW

vrstvy:

- 7. ochranný lak
- 6. reflexní fólie
- 5. dielektrická vrstva

- 4. záznamový film
- 3. dielektrická vrstva
- 2. předdefinovaná drážka
- 1. polykarbonát
- datová vrstva je tvořena ze slitiny, která má při původní teplotě krystalickou strukturu v této formě má o 10% vyšší odrazivost
- při zahřátí se z krystalické struktury stane amorfní struktura
- zápis
 - výkon desítky mW, teplota až 600°C
 - amorfní struktura představuje pit

mazání

- výkon 8–10 mW, zahřátím amorfní struktury se z ní stane krystalická struktura
- krystalická struktura představuje land
- rozhraní: ATA, SATA, SCSI
- přístupová doba: doba potřebná k nalezení dat na disku; 200 ms, lepší i 100 ms
- **přenosová rychlost**: původní formát CD-DA měl 150 kB/s, rychlosti CD-RW jsou násobky této hodnoty: 2x, 4x, ... 52x

5.13.1.1 Mechaniky

- čtecí, vypalovací
- dělení podle rychlosti:
 - CLV
 - * constant linear velocity
 - * konstantní datový tok stejná přenosová rychlost
 - * rychlost otáček se mění
 - * u středu 530 RPM, na okraji 230 RPM
 - CAV
 - * constant angular velocity
 - * konstantní rychlost otáčení
 - * přenosová rychlost kolísá
 - * výrobce udává pouze jednu rychlost (většinou maximální)

- P-CAV

- * partial constant angular velocity
- * vyšší datový tok
- * vyšší výkon u středu
- multi-beam čtení
 - * umí přečíst až 7 stop zárověň
 - * velké přenosové rychlosti: bez zvyšování otáček

5.13.1.2 Logická struktura disku

- kalibrační oblast: nastaví se výkon disku
- PMA: počet stop a jejich umístění
- session: může obsahovat jednu nebo více stop jednoho typu

- lead-in: začátek každé session
 lead-out: konec každé session
- multi-session disk: pokud není uzavřený, lze na něj příště připisovat

5.13.1.3 EFM

- eight to fourteen modulation
- překódování dat z 8 b na 14 b CD; z 8 b ba 16 b u DVD
- provádí se podle kódovací tabulky
- provádí se pro snížení chyb
- přeodovaný bit se nazývá channel bit
- kanálový bit je přechod mezi 1 a 0
- délka landu nebo pitu je počet kanálových bitů
- nikdy se neopakují dvě logické 1 za sebou
- nejmenší vzdálenost jsou 3 b
- max délka je 11 b
- pokud jsou za sebou 14 bitové kódy začínající a končící 1, molo by dojít k chybě \to mezi kódová slova se vkládají slučovací bity

5.13.2 DVD

- mechanika je zpětně kompatibilní s CD
- průměr 12 cm
- tloušťka 1.2 mm
- jedna vrstva má kapacitu 4.7 GB
- dvě vrstvy mají kapacitu 8.5 GB
- vlnová délka laserového paprsku: 640 nm

jednovrstvé a jednostranné	dvouvrstvé	oboustranné
Jednostranne	8. potisk	5. polykarbonát
5. potisk	7. polykarbonát	4. stopa
4. polykarbonát	6. reflexní vrstva	3. reflexní vrstva
3. reflexní vrstva	5. záznamová vrstva – stopa L1	2. stopa
2. stopa	4. distanční vrstva	1. polykarbonát
1. polykarbonát	3. polopropustná reflexní vrstva	
	2. záznamová vrstva – stopa L0	
	1. polykarbonát	

5.13.2.1 Formáty

- fyzické: DVD-ROM, DVD-R, DVD+R, DVD±RDL, DVD-RAM
 - DVD-RAM má kruhové stopy jako hard disk, pracuje se s ním jako s hard diskem
 - slouží k zálohování dat
 - lze 100 000x přepsat
- aplikační formáty: DVD video, DVD audio, DVD data

	CD	DVD	
průměr	12 cm		
tloušťka	1.2 mm		
vzdálenost pitů	1600 nm	740 nm	
délka pitu	834 nm	400 nm	
vlnová délka	700 nm	640 nm	
kapacita	700 MB	4.7 GB – 17 GB	

regionální zámek – aby bylo možné disk přehrát, musí mít mechanika stejný kód jako disk

5.13.3 Blu-ray

• průměr: 12 cm; tlouštka: 1.2 mm

• data jsou zapsána 0.1 mm pod povrchem

• vlnovná délka: 405 nm

stopa je užšímenší pity

• jedna vrstva: 25 GB \rightarrow dvě vrstvy: 50 GB

• formáty: BD-ROM, BD-R, BD-RE

5.13.4 HD DVD

• stejná struktura jako DVD

• vrstvy jsou do 0.6 mm

• méně náchylné na poškrábání

• vlnová délka paprsku stejná jako u Blu-ray: 405 nm

• kapacita jedné vrstvy: 15 GB

• max 3 vrstvy

5.13.5 ISRC

- international standard recording code
- mezinárodní kód pro nahrávky a videoklipy
- složení: kód státu, nahrávky, výrobce
- mohou přidělovat pouze registrované firmy
- je protřeba pokud chceme nahrávky prodávat

5.14 Flash

- polovodičová paměť
- non-volatilní
- programově elektricky mazatelná
- použití:
 - SSD disky, karty, flash disky USB
 - uložení BIOSu
 - součást různých karet

• ČTE SE PO SLOVECH; ZAPISUJE A MAŽE SE PO BLOCÍCH

- všechny buňky v rámci bloku musí být mazány současně
- hradlo NAND
- lze zapisovat na celou plochu
- maximální počet zápisů: 100 000 pro akždou buňku
- výhoda SSD: rychlost, jsou spolehlivější bez mechanických částic
- nevýhoda: cena

5.15 CACHE paměti

- rychlá vyrovnávací paměť
- mezi CPU a RAM
- cache je i v hard disku
- paměť pro čtení, CPU nevytváří nové položky
- druhy
 - asociativní: vyhledává se podle klíče

- neasociativní: vyhledává se podle adresy
- využívající virtuální adresaci: podle logické adresy
- fyzická adresace: adresa se vypočítá a vyhledá se
- počet položek na jeden řád: více-cestnost: 1, 2, 4, 8, ... položek
- **synchronní**: sběrnici je možno použít i pro jiné účely
- asynchronní: málo se používají pro cache
- vnitřní: integrována na čipu procesoru
 - * on-die: na čipu v rámci pouzdra
 - * off-die: na více čipech v rámci pouzdra
- vnější
 - * L1, L2, L3
 - * L1 bývá vnitřní, ale může být vnější

• podle přístupu

- write back
 - * data se zapisují do cache a do operační paměti se zapíší až budou potřeba, nebo se zapisují v intervalu
 - * data se nazapisují při změně
- write through: data se zapisují zárověň do operační paměti
- transparentní: sleduje změny v okolí
- netransparentní: nesleduje změny v okolí
- víceportová: napojena na více sběrnic; 1 port pro CPU, 1 port pro RAM
- · podle obsahu
 - společná data, instrukce
 - instrukce
 - data
- podle vzdálenosti od CPU: L1, L2, L3

5.15.1 CACHE 486

• čtení

- 4 cestně asociativní obsahuje 4x 128 klíčů = 486
- adresa je stejná i pro operační paměť
- adresa je přivedena na dekodér, ten vybere jeden z řádků neasociativní vyhledávání
- nejvyšších 24 b = klíč klíč je komparátorem porovnán proti klíčům na vybraném řádku
- nastane shoda: pomocí nejnižších 4 b z adresy (slabika) se vyberou data

• zápis

- ke každému klíči je přiřazen 1 bit pro validitu
- otestuje se platnost
- je-li klíč neplatný (validita 0) je možno ho použít pro zápis
- jsou-li všechny klíče platné, použije se algoritmus LRU last recently used
- vyhodí nejstarší klíč a zapíše nový

6 USB

- univerzální sériová sběrnice (mezi procesorem a sběrnicí je řadič)
- nehrazuje paralerní, sériový port, PS/2
- klávesnice, myš
- řízení sběrnice master, slave
- až 127 zařízení v síti USB
- podporuje synchronní (isochronní) přenosy
- přenosová rychlost od 1 Mb/s Gb/s
- podporuje plug n play (autoconfig), hotswap
- podporuje napájení z USB rozhraní
- vrstvená hvězdicová topologie
- každá USB sběrnice má kořenový HUB vše ostatní je připojeno k němu
- host controller je implementován hardwarově i softwarově
- navrženo na max 7 úrovní, protože na hubech dochází ke zrácení signálu
- mezi kořenem a posledním zařízením může být maximálně 5 hubů
- host je v systému jediný (počítač) na roli master = řídí procesy
- rozbočovač HUB: obsahuje řadič, opakovač, převaděč
- distribuuje nebo shromažďuje přenosy
- dokáže překládat rychlosti
- napájen ze sběrnice nebo vlastní napájení
- zařízení vysílá a příjmá informace
- složené zařízení obsahuje vestavěný HUB
- downstream od kořenem
- upstream ke kořenu
- konektor typu A na počítači, na HUBu
- konektor typu B na tiskárně, mini B, micro B
- konektor typu C oboustranný, symetrický, USB 3.1

6.1 Rychlosti

$$\begin{array}{c} \text{USB 1.1 low speed 1,5 Mb/s} \\ \text{full speed 12 Mb/s} \\ \text{USB 2.0 - high speed - 480 Mb/s} \end{array} \right\} \ \, \text{half duplex}$$

- USB 3.0, 3.1 superspeed 5 Gb/s, 10 Gb/s } full duplex
 - verze jsou kompatibilní mezi sebou
 - při zapojení pomalejší do rychlejší se komunikuje s nižší rychlostí pouze mezi prvky s nízkou rychlostí = nespomalí celek

7 Základní deska

- základní HW počítače
- obsahuje elektrické součástky a konektory
- hlavní úkol propojit součástky v PC a poskytuje napájení
- sběrnice = skupina vodičů které komunikují pod stejným protokolem
- deska obsahuje konektory a sloty (konektory pro karty)

7.1 Chipset

- nejdůležitější integrované obvody základní desky
- 2 chipy:
 - South bridge
 - North bridge
- sada vzájemně spolupracujících čipů
- řídí činnost základní desky
- výrazně ovlivňuje výkon počítače
- podporuje konkrétní socket pro CPU a typ RAM
- může obsahovat integrované karty

7.2 Severní můstek

• komunikuje mezi CPU, grafickou kartou a pamětí

7.3 Jižní můstek

• komunikuje s perifériemi, pomalejšími zařízeními

7.4 Clock generator

vytváří časový (hodinový) signál pro synchronizované operace

7.5 Timer-counter

- odměřuje časové zpoždění
- vytváří zpoždění
- dočítá když se něco opakuje

7.6 PCI

- PCI express rychlejší než PCI
- super IO čip myš, klávesnice

- dříve řadič v severním můstku a když chtěl CPU komunikovat s pamětí musel jít přes severní můstek = pomalejší
- paměť modulů může být až 6