Sam's house has an apple tree and an orange tree that yield an abundance of fruit. In the diagram below, the red region denotes his house, where \boldsymbol{s} is the start point, and \boldsymbol{t} is the endpoint. The apple tree is to the left of his house, and the orange tree is to its right. You can assume the trees are located on a single point, where the apple tree is at point a, and the orange tree is at point b.

When a fruit falls from its tree, it lands d units of distance from its tree of origin along the x-axis. A negative value of d means the fruit fell d units to the tree's left, and a positive value of d means it falls **d** units to the tree's right.

Given the value of $m{d}$ for $m{m}$ apples and $m{n}$ oranges, determine how many apples and oranges will fall on Sam's house (i.e., in the inclusive range [s, t])?

For example, Sam's house is between s=7 and t=10. The apple tree is located at a=4 and the orange at b=12. There are m=3 apples and n=3 oranges. Apples are thrown apples=[2,3,-4]units distance from a, and oranges = [3, -2, -4] units distance. Adding each apple distance to the position of the tree, they land at [4+2,4+3,4+-4] = [6,7,0]. Oranges land at [12+3,12+-2,12+-4]=[15,10,8]. One apple and two oranges land in the inclusive range 7-10 so we print

Function Description

Complete the countApplesAndOranges function in the editor below. It should print the number of apples and oranges that land on Sam's house, each on a separate line.

countApplesAndOranges has the following parameter(s):

- *s*: integer, starting point of Sam's house location.
- *t*: integer, ending location of Sam's house location.
- *a*: integer, location of the Apple tree.
- *b*: integer, location of the Orange tree.
- apples: integer array, distances at which each apple falls from the tree.
- oranges: integer array, distances at which each orange falls from the tree.

Input Format

The first line contains two space-separated integers denoting the respective values of \boldsymbol{s} and \boldsymbol{t} . The second line contains two space-separated integers denoting the respective values of a and b. The third line contains two space-separated integers denoting the respective values of m and n. The fourth line contains m space-separated integers denoting the respective distances that each apple falls from point \boldsymbol{a} .

The fifth line contains n space-separated integers denoting the respective distances that each orange falls from point \boldsymbol{b} .

Constraints

- $\begin{array}{l} \bullet \ 1 \leq s,t,a,b,m,n \leq 10^5 \\ \bullet \ -10^5 \leq d \leq 10^5 \\ \bullet \ a < s < t < b \end{array}$

Output Format

Print two integers on two different lines:

- 1. The first integer: the number of apples that fall on Sam's house.
- 2. The second integer: the number of oranges that fall on Sam's house.

Sample Input 0

Sample Output 0

1

Explanation 0

The first apple falls at position 5 - 2 = 3.

The second apple falls at position 5 + 2 = 7.

The third apple falls at position 5 + 1 = 6.

The first orange falls at position 15 + 5 = 20.

The second orange falls at position 15 - 6 = 9.

Only one fruit (the second apple) falls within the region between 7 and 11, so we print 1 as our first line of output.

Only the second orange falls within the region between 7 and 11, so we print 1 as our second line of output.