# Static-30

### **Title**

Solid cantilever beam subjected to shear force and bending moment

## **Description**

A straight cantilever beam is individually subjected to a shear force and a bending moment at the free end.

Determine the displacement at the free end in the Z direction.





Structural geometry and analysis model

## **MODEL**

#### Analysis Type

3-D static analysis

#### Unit System

in, lbf

#### Dimension

Length 10 in

#### Element

Solid element

#### Material

```
Modulus of elasticity E = 3.0 \times 10^6 \text{ psi}
Poisson's ratio v = 0.0
```

#### Sectional Property

Rectangular cross-section: b = 1 in, h = 2 in

#### **Boundary Condition**

Node1~4: Constrain  $D_X$ ,  $D_Y$  and  $D_Z$ 

#### Load Case

Case 1: Shear force, P = 300 lbf at the free end in the - Z direction

Case 2: Bending moment, M = 2000 lbf-in at the free end about the Y axis

## Results



Displacements at the free end in the Z direction (Case 1)



Displacements at the free end in the Z direction (Case 2)

## **Comparison of Results**

Unit: in

| Results                   | Load case | Theoretical | MIDAS/Civil |
|---------------------------|-----------|-------------|-------------|
| Displacement $(\delta_Z)$ | Case1     | -0.05       | -0.05       |
|                           | Case2     | -0.05       | -0.05       |

## Reference

Roark, R. J., and Young, W. C. (1975). "Formulas for Stress and Strain", 5th ed., McGraw-Hill, New York, NY.