Learning Objectives

- Review hypotheses and hypothesis testing
- Practice creating valid sets of hypothesis
- <u>Describe</u> statistical significance (what it is, and what it is <u>not</u>)

 <u>Perform</u> a sign test to assess the likelihood of data from a repeated-measures study

Hypothesis Testing

- A hypothesis is a proposed explanation for an observation or phenomenon
 - "Patients are less fearful of phobic stimuli after attending therapy sessions"

- Hypothesis testing involves constructing two hypotheses
 - $-H_1$: "Patients are less fearful of phobic stimuli after attending therapy sessions"
 - $-H_0$: "Patients are not less fearful after therapy"

Null Hypothesis, H_0

- H₀ says any observed change is due to chance, or unexplained factors
 - Anything other than the IV

- Null hypothesis is the boring hypothesis
 - IV does not effect DV
 - There is no relationship between the variables
 - The groups did not differ from each other

Alternative Hypothesis, H_1

- H₁ says that any observed change is <u>not</u> due to chance, or unexplained factors
 - This is the exciting possibility!

- IV has an effect on DV
- There is a relationship between the variables
- The groups differ from each other

Hypothesis Testing

- Hypotheses must be <u>mutually exclusive</u>, and <u>exhaustive</u>
 - $-H_1$: "Patients are less fearful of phobic stimuli after attending therapy sessions"
 - $-H_0$: "Patients are equally fearful after therapy"

Revised:

 H₀: "Patients are equally fearful, or even more fearful after therapy"

Two Types of Hypothesis Sets

<u>Directional</u> hypotheses:

- $-H_1$: "My therapy will reduce fear levels"
 - Also called a <u>one-tailed</u> hypothesis

Non-directional hypothesis:

- $-H_1$: "My therapy will change fear levels"
 - Also called a <u>two-tailed</u> hypothesis

Recommendation: First construct H_1 , then fill in remaining space with exhaustive & exclusive H_0

Try it!

- Generate a valid set of research hypotheses about the relationship between two variables
 - Example: "I think exercising in the evening improves sleep quality"

- What is your H_1 ?
- What is your H_0 ?

Flip it; make it directional/non-directional!

Hypothesis **Testing**

- When we test our hypotheses, we begin by **assuming** that H_0 is correct \odot
 - "My therapy has no effect on fearfulness..."
- Collect patient data: How fearful were they after therapy?
 - If about the same level, or inconsistently less, fearfulness...could very well be due to chance.
 - If consistently lower fearfulness...probably not due to chance.

Retain H_0 or, fail to reject H_0

Reject H_0 , or, accept H_1^{**}

Statistical Significance

- We claim *statistical significance* when we reject H_0 as an explanation for our observations
- "My therapy produced a statistically significant reduction in fearfulness"
 - This does not mean the therapy is meaningful
 - A statistically significant reduction could be very small
- "Aspirin has a statistically significant effect in preventing heart attack"
 - Reduction is equivalent to r = -.03
 - With aspirin: 427 out of 1000
 - Without: 431 out of 1000

Statistical Significance

• Reliable is a better term!

- Aspirin has a reliable effect...
 - How big is the effect?
 - Is the cost worth it?
 - Are there side effects?

Sign Test

- Sign Test can be our first use of hypothesis testing!
 - Uses binomial distribution, which we already know
- Requires <u>repeated-measures</u> (or within-subjects) research design
 - Usually a pre-post design
- IV: Therapy for phobia
- **DV:** "How fearful are you?"
 - Pre: Start of therapy
 - Post: End of therapy

Patient	Fear rating: Pre	Fear rating: Post	Difference Score	Sign
1	9	6	-3	
2	9	6	-3	
3	8	7	-1	
4	7	2	-5	
5	9	7	-2	
6	8	3	-5	
7	6	7	+1	+
8	7	4	-3	
9	9	3	-6	
10	8	2	-6	

- H_0 : Chance accounts for all change
 - -a priori probability: P(-) = ?
 - a posteriori probability: P(-) = ?

Assess $P(Data | H_0)$

- H_0 : Chance accounts for all change
 - a priori: P(-) = 0.5
 - a posteriori: P(-) = 0.9

- What is probability of observing 0.9 if we assume H_0 ?
 - Use binomial distribution (pp. 596), where:
 - N = 10
 - P = 0.5
 - # P events = 9

How rare are *exactly* 9 out of 10 reductions?

How rare are at least 9 out of 10 reductions?

How rare are at least 9 out of 10 reductions or increases?

$P(\text{data} | H_0)$

- $P(\text{data}|H_0)$ depends on H_0/H_1
 - Exactly 9 out of 10 reductions occur at .0098
 - We would <u>rarely</u> (if ever) report this probability
 - At least 9 out of 10 reductions occur at .0108
 - This probability evaluates <u>one-tail</u> of the distribution
 - At least 9 out of 10 reductions or increases occur at .0216
 - This probability evaluates <u>two-tails</u> of the distribution

p-value

• Our p-value for a two-tailed (or non-directional) hypothesis test is p = .0216

• Do we reject H_0 ? Or fail to reject H_0 ?

It depends...

on how often we are willing to be wrong when rejecting H_0

p-value Traditions

- Almost always use a non-directional hypothesis
- Accept being wrong 5% when rejecting H_0
 - Set $\alpha = .05$
 - Observed $p_{2\text{-tail}}$ = .0216, when α = .05
 - Observed p is less than α , thus we **reject** H_0
 - "At post-test, patients were significantly less likely to report being fearful compared to pre-test, p = .0216."