EXERCISE - I

SINGLE CORRECT (OBJECTIVE QUESTIONS)

- **1.** In a $\triangle ABC$, A : B : C = 3 : 5 : 4. Then a + b + $c\sqrt{2}$ is equal to
- (A) 2b
- (B) 2c
- (C) 3b
- (D) 3a
- **2.** If in a $\triangle ABC$, $\frac{\cos A}{a} = \frac{\cos B}{b} = \frac{\cos C}{c}$, then the
- triangle is
- (A) right angled
- (B) isosceles
- (C) equilateral
- (D) obtuse
- **3.** In a $\triangle ABC \frac{bc \sin^2 A}{\cos A + \cos B \cos C}$ is equal to
- (A) $b^2 + c^2$ (B) bc (C) a^2 (D) $a^2 + bc$
- **4.** In a triangle ABC, (a + b + c)(b + c a) = kbc, if (A) k < 0 (B) k > 6 (C) 0 < k < 4 (D) k > 4
- **5.** If in a triangle ABC, right angle at B, s a = 3 and s - c = 2, then
- (A) a = 2, c = 3
- (B) a = 3, c = 4
- (C) a = 4, c = 3
- (D) a = 6, c = 8
- **6.** In a $\triangle ABC$ if b + c = 3a, then $\cot \frac{B}{2}$. $\cot \frac{C}{2}$ has the value equal to
- (A) 4
- (B) 3
- (C) 2
- (D) 1
- **7.** In a $\triangle ABC$, $A = \frac{2\pi}{3}$, $b c = 3\sqrt{3}$ cm and
- $ar(\triangle ABC) = \frac{9\sqrt{3}}{2} cm^2$. Then a is
- (A) $6\sqrt{3}$ cm (B) 9 cm (C) 18 cm (D) None of these
- **8.** If in a $\triangle ABC$, $\triangle = a^2 (b c)^2$, then tan A = (A) 15/16 (B) 8/15 (C) 8/17
- **9.** If R denotes circumradius, then in $\triangle ABC$, $\frac{b^2-c^2}{2aP}$ is
- equal to
- $(A) \cos (B C)$
- (B) sin (B C)
- (C) cos B cos C
- (D) None of these

- **10.** If a $\triangle ABC$, if b=2 cm, $c=\sqrt{3}$ and $\angle A=\frac{\pi}{6}$, then values of R is equal to
- (A) $\frac{1}{2}$

- (B) 1 (C) 2 (D) $\frac{1}{4}$
- **11.** In a $\triangle ABC$, the value of $\frac{a\cos A + b\cos B + c\cos C}{a+b+c}$ is equal to

- (A) $\frac{r}{R}$ (B) $\frac{R}{2r}$ (C) $\frac{R}{r}$ (D) $\frac{2r}{R}$
- **12.** If the sides of a triangle are 3:7:8, then R:r is equal to
- (A) 2:7 (B) 7:2
- (C) 3:7
- (D) 7:3
- 13. In a right angled triangle R is equal to
- (A) $\frac{s+r}{2}$ (B) $\frac{s-r}{2}$ (C) s-r (D) $\frac{s+r}{a}$

- **14.** If the area of triangle is 100 sq. cm, $r_1 = 10$ cm and $r_2 = 50$ cm, then the value of (b - a) is equal to (A) 20 (B) 16 (C) 8 (D) 4
- **15.** In a \triangle ABC, the inradius and three exradii are r, r_1 , r_2 and r₃ respectively. In usual notations the value of r . r_1 . r_2 . r_3 is equal to

- (A) 2Δ (B) Δ^2 (C) $\frac{abc}{4R}$ (D) None of these
- **16.** In a \triangle ABC if $r_1 > r_2 > r_3$, then
- (A) a > b > c (B) a < b < c
- (C) a > b and b < c (D) a < b and b > c
- **17.** The product of the arithmetic mean of the lengths of the sides of a triangle and harmonic mean of the lengths of the altitudes of the triangle is equal to
- (A) Δ
- (B) 2∆
- (C) 3∆
- (D) 4Δ
- **18.** In a \triangle ABC, if AB = 5 cm, BC = 13 cm and CA = 12 cm, then the distance of vertex A from the side BC is (in cm)

- (A) $\frac{25}{13}$ (B) $\frac{60}{13}$ (C) $\frac{65}{12}$ (D) $\frac{144}{13}$

- **19.** If AD, BE and CF are the medians of \triangle ABC, then $(AD^2 + BE^2 + CF^2)$: $(BC^2 + CA^2 + AB^2)$ is equal to (A) 4:3 (B) 3:2
- (C) 3:4
- 20. In a triangle ABC, right angled at B, the inradius is
- (A) $\frac{AB+BC-AC}{2}$ (B) $\frac{AB+AC-BC}{2}$
- (C) $\frac{AB+BC+AC}{2}$
- (D) None of these
- **21.** If H is the orthocentre of a triangle ABC, then the radii of the circle circumscribing the triangles BHC, CHA and AHB are respectively equal to
- (A) R, R, R
- (B) $\sqrt{2}R$, $\sqrt{2}R$, $\sqrt{2}R$
- (C) 2R, 2R, 2R
- (D) $\frac{2}{P}, \frac{2}{P}, \frac{2}{P}$
- 22. The distance between the middle point of BC and the foot of the perpendicular form A is
- (A) $\frac{-a^2+b^2+c^2}{2a}$ (B) $\frac{b^2-c^2}{2a}$
- (C) $\frac{b^2 + c^2}{\sqrt{bc}}$
- (D) None of these
- **23.** Let f, g, h be the lengths of the perpendiculars from the circumcentre of the $\triangle ABC$ on the sides a, b

and c respectively. If $\frac{a}{f} + \frac{b}{g} + \frac{c}{h} = \lambda \frac{abc}{fah}$ then the

value of λ is

- (A) 1/4 (B) 1/2
- (C) 1
- (D) 2
- **24.** In a triangle ABC, if $\frac{a-b}{b-c} = \frac{s-a}{s-c}$, then r_1 , r_2 , r_3
- are in (A) A.P.
- (B) G.P.
- (C) H.P.
- (D) None of these
- **25.** A triangle is inscribed in a circle. The vertices of the triangle divide the circle into three arcs of length 3, 4 and 5 units. Then area of the triangle is equal to
- (A) $\frac{9\sqrt{3}(1+\sqrt{3})}{2}$ (B) $\frac{9\sqrt{3}(\sqrt{3}-1)}{2}$
- (C) $\frac{9\sqrt{3}(1+\sqrt{3})}{2\pi^2}$
- (D) $\frac{9\sqrt{3}(\sqrt{3}-1)}{2\pi^2}$

- 26. If in a triangle ABC, the line joining the circumcentre and incentre is parallel to BC, then cos B + cos C is equal to
- (A) 0
- (B) 1
- (C) 2
- (D) None of these
- **27.** If the incircle of the \triangle ABC touches its sides respectively at L, M and N and if x, y, z be the

circumradii of the triangles MIN, NIL and LIM where I is the incentre then the product xyz is equal to

- (A) $R r^2$ (B) $r R^2$
- (C) $\frac{1}{2} R r^2$ (D) $\frac{1}{2} r R^2$

28. If in a $\triangle ABC$, $\frac{r}{r_1} = \frac{1}{2}$, then the value of

 $\tan \frac{A}{2} \left(\tan \frac{B}{2} + \tan \frac{C}{2} \right)$ is equal to

- (A) 2 (B) $\frac{1}{2}$ (C) 1 (D) None of these
- **29.** If in a $\triangle ABC$, $\angle A = \frac{\pi}{2}$, then $\tan \frac{C}{2}$ is equal to
- (A) $\frac{a-c}{2b}$ (B) $\frac{a-b}{2c}$ (C) $\frac{a-c}{b}$ (D) $\frac{a-b}{c}$

- **30.** In a acute angled triangle ABC, AP is the altitude. Circle drawn with AP as its diameter cuts the sides AB and AC at D and E respectively, then length DE is equal to
- (A) $\frac{\Delta}{2R}$ (B) $\frac{\Delta}{3R}$ (C) $\frac{\Delta}{4R}$ (D) $\frac{\Delta}{R}$

- **31.** AA₁, BB₁ and CC₁ are the medians of triangle ABC whose centroid is G. If points A, C₁, G and B₁ are concyclic, then
- (A) $2b^2 = a^2 + c^2$ (B) $2c^2 = a^2 + b^2$ (C) $2a^2 = b^2 + c^2$ (D) None of these
- (D) None of these
- **32.** If ℓ is the median from the vertex A to the side BC of a \triangle ABC, then
- (A) $4\ell^2 = b^2 \text{ 4ac cos B}$ (B) $4\ell^2 = a^2 + 4bc \cos A$ (C) $4\ell^2 = c^2 + 4ab \cos C$ (D) $4\ell^2 = b^2 + 2c^2 2a^2$

- **33.** In a $\triangle ABC$, a = 1 and the perimeter is six times the A.M. of the sines of the angles. Then measure of ∠A is

- (A) $\frac{\pi}{3}$ (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{6}$
- 34. If the median AD of a triangle ABC divides the

angle $\angle BAC$ in the ratio 1 : 2, then $\frac{sinB}{sinC}$ is equal to

- (A) $2 \cos (A/3)$
- (B) (1/2) sec (A/3)
- (C) $(1/2) \sin (A/3)$
- (D) 2 cosec (A/3)s
- **35.** In a triangle ABC, let $\angle C = \pi/2$, if r is the inradius and R is the circumradius of the triangle ABC, then 2(r + R) equals
- (A) c + a (B) a + b + c (C) a + b
- (D)b+c
- **36.** If in a $\triangle ABC$, the altitudes from the vertices A, B, C on opposite sides are in HP, then sinA, sinB, sinC are in
- (A) HP (B) Arithemetic-Geometric Progression
- (C) AP (D) GP
- **37.** The sides of a triangle are $\sin \alpha$, $\cos \alpha$,

and $\sqrt{1+\sin\alpha\cos\alpha}$ for some $0 < \alpha < \frac{\pi}{2}$. Then the

greatest angle of the triangle is

- (A) 60°
- (B) 90°
- (C) 120°
- (D) 150°
- 38. The sum of the radii of inscribed and circumscribed circle for an n sided regular polygon of side a, is
- (A) a cot $\left(\frac{\pi}{n}\right)$ (B) $\frac{a}{2} \cot \left(\frac{\pi}{2n}\right)$
- (C) a cot $\left(\frac{\pi}{2n}\right)$ (D) $\frac{a}{4} \cot \left(\frac{\pi}{2n}\right)$
- **39.** If in a triangle ABC a $\cos^2\left(\frac{C}{2}\right) + c \cos^2\left(\frac{A}{2}\right) = \frac{3b}{2}$,

then the sides a, b and c

- (A) are in AP
- (B) are in GP
- (C) are in HP
- (D) satisfy a + b = c
- **40.** In a triangle ABC, medians AD and BE are drawn.

If AD = 4, \angle DAB = $\frac{\pi}{6}$ and \angle ABE = $\frac{\pi}{3}$, then the area of the AABC is

- (A) $\frac{8}{3}$ (B) $\frac{16}{3}$ (C) $\frac{32}{3\sqrt{3}}$ (D) $\frac{64}{3}$

- **41.** If the radius of the circumcircle of an isosceles triangle PQR is equal to PQ = PR then the angle P is
- (A) $\frac{2\pi}{3}$ (B) $\frac{\pi}{2}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{6}$

- 42. Given an isosceles triangle, whose one angle is 120° and radius of its incircle is $\sqrt{3}$, then the area of the triangle in sq. units is
- (A) $7 + 12\sqrt{3}$
- (B) $12 + 7\sqrt{3}$
- (C) $12 7\sqrt{3}$
- (D) $4 + 2\sqrt{3}$
- **43.** The sides a, b, c of a triangle ABC are the roots of $x^3 - 11x^2 + 38x - 40 = 0$, then $\sum \frac{\cos A}{2} =$

- (A) $\frac{3}{4}$ (B) 1 (C) $\frac{9}{16}$ (D) None of these
- **44.** In a triangle ABC $\frac{a \sin B + b \sin A}{\sqrt{\sin A \sin B}} = 4$, $\angle C = \frac{\pi}{3}$,
- then $a^2 + b^2 c^2 =$
- (B) 6
- (C) 8
- (D) 10
- **45.** In a triangle cot A : cot B : cot C = 30 : 19 : 6, then a:b:c
- (A) 5:6:7
- (B) 6:7:5
- (C) 7:6:5
- (D) None of these
- **46.** If twice the square of the diameter of a circle is equal to sum of the squares of the sides of the inscribed triangle ABC, then $\sin^2 A + \sin^2 B + \sin^2 C$ is equal to
- (A) 2
- (B)3
- (C)4
- (D) 1
- **47.** In a triangle ABC if $\frac{a}{1} = \frac{b}{\sqrt{3}} = \frac{c}{2}$, then
- (A) $A + B C = 90^{\circ}$
- (B) the triangle is acute angled
- (C) A, B, C are in A.P.
- (D) the triangle is obtuse angled
- **48.** In a triangle ABC, if s a, s b, s c are in GP,

then $\frac{\sin^2 A + \sin^2 C}{\sin A + \sin C} =$

- (A) sin B
- (B) cos B
- (C) $\sin [(A + C)/2]$
- (D) $\sin [(A C)/2]$

- **49.** If $\cos A = \frac{\sin B}{2\sin C}$, then $\triangle ABC$ is
- (A) equilateral
- (B) isosceles
- (C) right angled
- (D) None of these
- **50.** In a triangle ABC if $\frac{\cos A}{a} = \frac{\tan C}{c}$, then sin (B+C)

is equal to

- (A) cos B cos C
- (B) cos A cos C
- (C) cos A cos B
- (D) sin B sin C
- **51.** In a triangle ABC, $1 \tan(A/2) \tan(B/2)$ is equal to
- (B) $\frac{2b}{c+a-b}$
- (C) $\frac{2c}{a+b-c}$
- (D) $\frac{2c}{a+b+c}$
- **52.** The angles of a triangle ABC are in A.P. The largest angle is twice the smallest angle and the median to the largest side divides the angle at the vertex in the
- ratio 2 : 3. If length of the median in $2\sqrt{3}$ cm, length of the largest side is
- (A) 2 sin 32°
- (B) 2 sin 48°
- (C) 8 sin 48°
- (D) $\sqrt{3} \sin 40^{\circ}$
- **53.** The vertices angle of a triangle is divided into two parts, such that the tangent of one part is 3 times the tangent of the other and the difference of these parts is 30°, then the triangle is
- (A) isosceles
- (B) right angled
- (C) obtuse angled
- (D) None of these
- **54.** In a triangle ABC, if tan(A/2) = p, tan(B/2) = q,
- then $\frac{2(p+q)(1-pq)}{(1+p^2)(1+q^2)}$ is equal to
- (A) sin A (B) sin B
- (C) $\sin C$ (D) $\sin A + \sin B$
- **55.** If I is the incentre of a triangle whose in raidus and circumradius are r and R respectively; I, I, I, I, I, is its ex-centre triangle, then I $\rm I_1$. I $\rm I_2$. I $\rm I_3$ is equal to
- (A) R²r
- (B) 16R²r
- (C) Rr²
- (D) 16Rr²

- **56.** If R is the circumradius of a triangle ABC then the area of its pedal triangle is
- (A) (1/2) R² sin A sin B sin C
- (B) (1/2) R² sin 2A sin 2B sin 2C
- (C) (1/2) R² cos A cos B cos C
- (D) (1/2) R² cos 2A cos 2B cos 2C
- **57.** In an isosceles triangle with base angle α and lateral side 4, Rr =
- (A) 8 cos α
- (B) $\frac{8\cos\alpha}{1-\cos\alpha}$
- (D) 8 cos α (1 cos α)