

INSIGHT Trial Exam Paper

2007 SPECIALIST MATHEMATICS Written examination 1

Worked solutions

This book presents:

- worked solutions, giving you a series of points to show you how to work through the questions.
- mark allocations
- tips on how to approach the questions.

This trial examination produced by Insight Publications is NOT an official VCAA paper for 2007 Specialist Mathematics written examination 1.

This examination paper is licensed to be printed, photocopied or placed on the school intranet and used only within the confines of the purchasing school for examining their students. No trial examination or part thereof may be issued or passed on to any other party including other schools, practising or non-practising teachers, tutors, parents, websites or publishing agencies without the written consent of Insight Publications.

Copyright © Insight Publications 2007

Let $x = \sqrt{t+4}$ and y = 1-t for $-4 \le t \le 4$.

1a. Find the Cartesian equation of the curve.

Worked solution

$$x = \sqrt{t+4}$$
 (1) for $-4 \le t \le 4$
 $y = 1-t$ (2)
From (1) $x^2 = t+4$
 $t = x^2 - 4$ 1A
Substitute into (2)
 $y = 1 - (x^2 - 4)$
 $y = 5 - x^2$ 1A

2 marks

Mark allocation

- 1 mark for correctly expressing t in terms of x^2
- 1 mark for the correct answer

Tip

- *Use substitution to eliminate* t *from the parametric equations.*
- **1b.** Sketch a graph of the curve showing all features clearly.

Worked solution

2 marks

Mark allocation

- 1 mark for correct shape
- 1 mark for both endpoints correct

Tip

• *Use the restrictions on t to find the endpoints*

When
$$t = -4$$
 $x = \sqrt{-4 + 4} = 0$
 $y = 1 - (-4) = 5$

When
$$t = 4$$
 $x = \sqrt{4+4} = \sqrt{8} = 2\sqrt{2}$
 $y = 1-4=-3$

Ouestion 2

Express $(\sqrt{3} - i)^7$ in the form x + iy where $x, y \in R$

Worked solution

Let
$$r \operatorname{cis} \theta = \left(\sqrt{3} - i\right)$$
 Express $\sqrt{3} - i$ in polar form $r = \sqrt{\left(\sqrt{3}\right)^2 + 1^2} = \sqrt{4} = 2$ $\tan \theta = \frac{-1}{\sqrt{3}}$ Fourth quadrant angle $\theta = \frac{11\pi}{6}$ Calculate equivalent angle $\theta \in (-\pi, \pi]$ $\left(\sqrt{3} - i\right)^3 = 2\operatorname{cis}\left(-\frac{\pi}{6}\right)$ 1A $\left(\sqrt{3} - i\right)^3 = 2^7\operatorname{cis}\left(7 \times -\frac{\pi}{6}\right)$ Applying De Moivre's theorem 1A $= 128\operatorname{cis}\left(-\frac{7\pi}{6}\right)$ $= 128\left(\cos\left(-\frac{7\pi}{6}\right) + i\sin\left(-\frac{7\pi}{6}\right)\right)$ $= 128\left(\cos\left(\frac{\pi}{6}\right) - i\sin\left(\frac{7\pi}{6}\right)\right)$ $= 128\left(-\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right)$ 1M $= 128\left(-\cos\left(\frac{\pi}{6}\right) + i\sin\left(\frac{\pi}{6}\right)\right)$ $= 128\left(-\frac{\sqrt{3}}{2} + i \times \frac{1}{2}\right)$ $= -64\sqrt{3} + 64i$

4 marks

Mark allocation

- 1 mark for expressing $\sqrt{3} i$ in correct polar form
- 1 mark for correctly applying de Moivre's theorem
- 1 mark for correct method of simplification
- 1 mark for correct answer

Tip

• Express complex number in polar form and then apply De Moivre's theorem

A 10 kg mass is pulled up a rough plane inclined at an angle of θ to the horizontal by a force of 120 newtons acting parallel to the plane.

The coefficient of friction between the mass and the plane is $\frac{1}{3}$, $\cos(\theta) = \frac{3}{5}$ and the acceleration due to gravity is $g \text{ m/s}^2$.

3a. Show all forces acting on the mass on the diagram above.

Worked solution

1 mark

Mark allocation

• 1 mark for all forces correctly shown

3b. Find the acceleration of the mass up the plane in terms of g.

Worked solution

Equation of motion up the plane

R = ma

R = resultant force $Fr = \mu N$

$$120 - Fr - mg\sin(\theta) = ma$$

$$\mu = \frac{1}{3} = \text{coefficient of friction}$$

$$120 - \mu N - 10g \sin(\theta) = 10a \dots (1)$$

Resolving forces perpendicular to the plane

$$N = 10g\cos(\theta) \qquad \dots (2)$$

Substitute (2) into (1)

$$120 - \frac{1}{3} \times 10g \cos(\theta) - 10g \sin(\theta) = 10a$$

1M

1A

$$a = 12 - \frac{1}{3} \times g \cos(\theta) - g \sin(\theta)$$

Given
$$\cos(\theta) = \frac{3}{5}$$

$$\sin(\theta) = \sqrt{1 - \cos^2(\theta)} = \sqrt{1 - \frac{9}{25}} = \frac{4}{5}$$

lA

$$a = 12 - \frac{1}{3} \times g \times \frac{3}{5} - g \times \frac{4}{5}$$

$$a = 12 - \frac{1}{5}g - \frac{4}{5}g$$

$$a = 12 - \frac{5}{5}g$$

$$a = 12 - g \text{ m/s}^2$$

1A

4 marks

Mark allocation

- 1 mark for correctly resolving forces parallel to the plane
- 1 mark for using a correct method to give the acceleration in terms of θ and g.
- 1 mark for correctly finding $\sin \theta = \frac{4}{5}$
- 1 mark for correct answer

Tips

- Resolve forces parallel and perpendicular to the plane
- $\sin \theta$ is not given and should be found from value of $\cos \theta$

4a. Show that
$$\frac{\sin(x)}{1-\cos(x)} = \cot(\frac{x}{2})$$

Worked solution

LHS =
$$\frac{\sin(x)}{1 - \cos(x)}$$

$$= \frac{2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)}{1 - \cos\left(2\left(\frac{x}{2}\right)\right)}$$

$$= \frac{2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)}{1 - \left(1 - 2\sin^2\left(\frac{x}{2}\right)\right)}$$

$$= \frac{2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)}{2\sin^2\left(\frac{x}{2}\right)}$$

$$= \frac{\cos\left(\frac{x}{2}\right)}{\sin\left(\frac{x}{2}\right)}$$

$$= \cot\left(\frac{x}{2}\right)$$
= RHS

2 marks

Mark allocation

- 1 mark for correct application of the double angle formulae
- 1 mark for correct simplification leading to the correct answer

Tips

• Express $\sin(x)$ and $\cos(x)$ in terms of $\frac{\theta}{2}$ using double angle formulas.

4b. Hence or otherwise solve the equation $\sin(x) = \cos(x) - 1$ over $0 \le x \le 2\pi$

Worked solution

$$\frac{\sin(x)}{\cos(x)-1} = 1$$

$$\frac{\sin(x)}{1-\cos(x)} = -1$$

$$\cot\left(\frac{x}{2}\right) = -1$$

$$\tan\left(\frac{x}{2}\right) = -1$$

$$\frac{x}{2} = \pi - \frac{\pi}{4} = \frac{3\pi}{4}$$

$$x = \frac{3\pi}{2}$$
1A

2 marks

Mark Allocation

- 1 mark for rearranging the equation to use information given in part a of the question
- 1 mark for the correct answer

Tip

• The word 'hence' gives the hint that something from the previous part of the question is used to find the answer.

The position of a particle at time t seconds, $t \ge 0$, is given by the vector $\underline{r} = t\,\underline{i} + (1-2t)\,\underline{j} + (t-6)\,\underline{k}$. Find the time when the particle's velocity vector is perpendicular to its position vector.

Worked solution

Position vector:
$$r = t i + (1 - 2t)j + (t - 6)k$$

Differentiate to find velocity vector:
$$\dot{\underline{r}} = \underline{i} - 2\underline{j} + \underline{k}$$

Vectors are perpendicular when $r.\dot{r} = 0$

$$\vec{r} \cdot \dot{\vec{r}} = \left(t \, \dot{i} + (1 - 2t) \, \dot{j} + (t - 6) \, \dot{k}\right) \left(\dot{i} - 2 \, \dot{j} + \dot{k}\right) = 0$$

$$\vec{r} \cdot \dot{\vec{r}} = t - 2(1 - 2t) + (t - 6) = 0$$

$$t - 2 + 4t + t - 6 = 0$$

$$6t - 8 = 0$$

$$t = \frac{4}{3} \text{ seconds}$$
1A

3 marks

Mark allocation

- 1 mark for finding the correct velocity vector
- 1 mark for taking the dot product of the position and velocity vectors and setting this to zero.
- 1 mark for the correct answer

Tip

• The dot product is zero when two vectors are perpendicular.

Consider the relation $xy + \frac{y^2}{x} = 2$.

6a. Find an expression for $\frac{dy}{dx}$ in terms of x and y.

Worked solution

$$xy + \frac{y^2}{x} = 2$$

$$x^2y + y^2 = 2x$$

$$2xy + x^2 \frac{dy}{dx} + 2y \frac{dy}{dx} = 2$$

$$\frac{dy}{dx} (x^2 + 2y) = 2 - 2xy$$

$$\frac{dy}{dx} = \frac{2(1 - xy)}{(x^2 + 2y)}$$
1A

3 marks

Mark allocation

- 1 mark for correctly applying implicit differentiation techniques
- 1 mark for factorising correctly to collect the terms containing $\frac{dy}{dx}$
- 1 mark for correct answer

Tip

• The quotient rule can be used to find the answer, however, it is much easier to first simplify as shown and use the product rule.

6b. Hence find the equations of the tangents to the curve when x = 1

Worked solution

Finding y when x = 1

$$xy + \frac{y^2}{x} = 2$$

$$1y + \frac{y^2}{1} = 2$$

$$y^2 + y - 2 = 0$$

$$(y+2)(y-1)=0$$

$$y = -2$$
, $y = 1$

1**A**

Gradient of tangent at x = 1, y = -2

$$\frac{dy}{dx} = \frac{2(1-xy)}{(x^2+2y)} = \frac{2(1-1\times-2)}{1^2+2\times-2} = \frac{6}{-3} = -2$$

Equation of tangent at x = 1, y = -2

$$y - (-2) = -2(x - 1)$$
$$y = -2x$$

Gradient of tangent at x = 1, y = 1

$$\frac{dy}{dx} = \frac{2(1-xy)}{(x^2+2y)} = \frac{2(1-1\times1)}{1^2+2\times-1} = \frac{0}{-1} = 0$$

Equation of tangent at x = 1, y = 1

$$y = 1$$

1**A**

3 marks

Mark Allocation

- 1 mark for finding the y-coordinates of the points where x = 1
- 1 mark for finding the correct equation of one tangent
- 1 mark for finding the other tangent equation

Tips

- Recognise there will be two tangents from the wording of the question.
- A line with zero gradient will be parallel to the x-axis

$$f: D \to R$$
, $f(x) = \arccos\left(\frac{1}{\sqrt{x}}\right)$

7a. Determine the domain D of function f

Worked solution

$$-1 \le \frac{1}{\sqrt{x}} \le 1$$

$$\Rightarrow -1 \le \frac{1}{\sqrt{x}} \quad \text{and} \quad \frac{1}{\sqrt{x}} \le 1$$

$$-\sqrt{x} \le 1 \quad \text{and} \quad 1 \le \sqrt{x}$$

$$\sqrt{x} \ge -1 \quad \text{and} \quad x \ge 1$$

$$x \ge (-1)^2$$

$$\therefore x \ge 1$$

Domain of f, $D = [1, \infty)$

1 mark

1A

Mark allocation

• 1 mark for correct domain.

7b. Find f'(x)

Worked solution

Let
$$y = \arccos\left(\frac{1}{\sqrt{x}}\right)$$
 $u = \frac{1}{\sqrt{x}} = x^{-\frac{1}{2}}$
 $y = \arccos(u)$ $\frac{du}{dx} = -\frac{1}{2}x^{-\frac{3}{2}}$
 $\frac{dy}{du} = \frac{-1}{\sqrt{1-u^2}}$
 $\frac{dy}{dx} = \frac{dy}{du} \times \frac{du}{dx}$
 $\frac{dy}{dx} = \frac{-1}{\sqrt{1-u^2}} \times \left(-\frac{1}{2}x^{-\frac{3}{2}}\right)$ 1A
 $\frac{dy}{dx} = \frac{-1}{\sqrt{1-\left(\frac{1}{\sqrt{x}}\right)^2}} \times \frac{-1}{2\sqrt{x^3}}$ 1M
 $\therefore f'(x) = \frac{dy}{dx} = \frac{1}{2x\sqrt{x-1}}$ 1A

3 marks

Mark allocation

- 1 mark for correctly applying the chain rule
- 1 mark for some correct simplification
- 1 mark for answer fully simplified

Tip

• The chain rule needs to be used.

Question 8

Solve the differential equation $\frac{dt}{dx} = \frac{t^2 + 3}{t^2}$ given x = 1 when t = 1

Worked solution

$$\frac{dx}{dt} = \frac{t^2}{t^2 + 3}$$

$$\frac{dx}{dt} = 1 - \frac{3}{t^2 + 3}$$

$$1A$$

$$x = \int 1 - \frac{3}{t^2 + 3} dt$$

$$x = t - \int \frac{3}{t^2 + 3} dt$$

$$x = t - \sqrt{3} \int \frac{\sqrt{3}}{t^2 + 3} dt$$

$$x = t - \sqrt{3} \tan^{-1} \left(\frac{t}{\sqrt{3}}\right) + c$$

$$\Rightarrow t = 1 - \sqrt{3} \tan^{-1} \left(\frac{1}{\sqrt{3}}\right) + c$$

$$\Rightarrow c = \sqrt{3} \times \frac{\pi}{6}$$

$$\therefore x = t - \sqrt{3} \tan^{-1} \left(\frac{t}{\sqrt{3}}\right) + \frac{\sqrt{3}\pi}{6}$$

$$1A$$

3 marks

Mark allocation

- 1 mark for converting the differential equation to $\frac{dx}{dt}$ and dividing t^2 by $t^2 + 3$.
- 1 mark for correct integration
- 1 mark for finding the correct answer

Tips

- Recognise to take the reciprocal of the differential equation
- The numerator needs to be of lower degree than the denominator

The graph of $f(x) = 3x^2 - x^3$ is shown on the axes below.

9a. Draw the graph of $g(x) = \frac{1}{3x^2 - x^3}$ on the axes above showing all features clearly.

Worked solution

2 marks

Mark allocation

- 1 mark for correct shape
- 1 mark for correct asymptotes and turning point

9b. Given
$$\frac{1}{3x^2 - x^3} = \frac{Ax + B}{x^2} + \frac{C}{3 - x}$$
. Find the exact values of A, B, and C.

Worked solution

$$\frac{1}{3x^2 - x^3} = \frac{1}{x^2(3 - x)} = \frac{Ax + B}{x^2} + \frac{C}{3 - x}$$

$$\frac{1}{x^2(3 - x)} = \frac{Ax + B}{x^2} + \frac{C}{3 - x}$$

$$\frac{1}{x^2(3 - x)} = \frac{(Ax + B)(3 - x)}{x^2(3 - x)} + \frac{Cx^2}{x^2(3 - x)}$$

$$1 = 3Ax - Ax^2 + 3B - Bx + Cx^2$$

$$1 = (C - A)x^2 + (3A - B)x + 3B$$
Equating coefficients of powers of x

$$0 = C - A$$

$$0 = 3A - B$$

$$1 = 3B$$

$$\therefore B = \frac{1}{3}, A = \frac{1}{9}, C = \frac{1}{9}$$
1A

2 marks

Mark allocation

- 1 mark for correct simplifications leading to simultaneous equations in A, B, C
- 1 mark for correct values of A, B, C

9c. Find the exact area between the graph of $g(x) = \frac{1}{3x^2 - x^3}$, the x-axis and the lines x = 1 and x = 2

Worked solution

Area =
$$\int_{1}^{2} \frac{1}{3x^{2} - x^{3}} dx$$

= $\int_{1}^{2} \frac{x+3}{9x^{2}} + \frac{1}{9(3-x)} dx$ 1A
= $\frac{1}{9} \int_{1}^{2} \frac{x}{x^{2}} + \frac{3}{x^{2}} + \frac{1}{(3-x)} dx$ 1M
= $\frac{1}{9} \left[\log_{e} |x| - 3x^{-1} - \log_{e} |3-x| \right]_{1}^{2}$ 1M
= $\frac{1}{9} \left[\log_{e} \left(\frac{x}{3-x} \right) - \frac{3}{x} \right]_{1}^{2}$ 1D
= $\frac{1}{9} \left[\log_{e} (2) - \frac{3}{2} \right] - \left(\log_{e} \left(\frac{1}{2} \right) - 3 \right) \right]$ 1D
= $\frac{1}{9} \left[\log_{e} (2) - \frac{3}{2} - \log_{e} \left(\frac{1}{2} \right) + 3 \right]$ 1D
= $\frac{1}{9} \left[\log_{e} (2) + \log_{e} (2) + \frac{3}{2} \right]$ 1D
= $\frac{1}{9} \left[2 \log_{e} (2) + \frac{3}{2} \right]$ 1D
= $\frac{2}{9} \log_{e} (2) + \frac{1}{6}$ 1A

3 marks

Mark allocation

- 1 mark for writing the correct integral and recognising the need to express as partial fractions
- 1 mark for using correct methods to integrate
- 1 mark for the correct exact answer

Tip

• The quotient can be simplified in the following way to make the integration easier

$$\frac{1}{3x^2 - x^3} = \frac{\frac{1}{9}x + \frac{1}{3}}{x^2} + \frac{\frac{1}{9}}{3 - x}$$

$$\Rightarrow \frac{1}{3x^2 - x^3} = \frac{x + 3}{9x^2} + \frac{1}{9(3 - x)}$$

END OF WORKED SOLUTIONS BOOK