

Group No 15

Ritik (20IE10051)

Samridhi Sinha (20IE10052)

Arunesh Manna (20IE10053)

Problem Statement

To design an IC cooling system using the Peltier effect to embed it on the CPU

Bill of Material

S.No	Components	Amount (in Rs)
1.	K-type Thermocouple	100
2.	MAX6675 Module	300
3.	Arduino-UNO	600
4.	Peltier Module Kit	1100
5.	Relay Module	75
6.	Other Components (Wires,Breadboard,Veroboard)	200
7.	Power Supply	_
	Total	2375

Block Diagram

MAX6675

- ENOB(Effective Number Of Bits) = (SNR-1.76)/(6.02)
- Resolution of MAX6675 is 0.25°C
- Maximum error is ± 2°C
- Attach a capacitor between gnd and Vcc pin of MAX6675, to reduce noise
- Clock frequency is 4.3 Mhz
- Clock jitter increases noise effect at high frequency but in MAX6675 the frequency used is 4.3Mhz, ideally clock jitter effect is less in the range of few Khz to 10 Mhz.

Peltier Input Voltage Vs Temperature Sense by K-Type Thermocouple

Weekly Milestone

1	®	Name RESEARCH - SIMULATION PHASE	Duration 19 days?	Predecessors
	V			
2	T 5	WEEK - 1 (Research)	7 days	
3	5 5	WEEK - 2 (Ideation of hardware)	7 days	2
4	5	WEEK - 3 (Software Simulation)	7 days?	2;3
5	8	□ PRELIMINARY HARDWARE MODEL	39 days	
6	5	WEEK - 4 (preliminary hardware on breadboard)	23 days	3;4
7	5	WEEK - 5	0 days	3;4;6
8	0 5	WEEK - 6 (Veroboad design)	6 days	7
9	2	WEEK - 7 (Make PCB schematic)	10 days	8
10		☐ FINAL WORKING HARDWARE ON PCB	19 days	
11		WEEK - 8 (PCB final model)	12 days	8
12	D	WEEK - 9 (PCB final design)	7 days	9;11
13	T 5	WEEK - 10 (PRESENTATION)	0 days	4;8;12

Click here to get a projectlibre file

Risks Involved and Mitigation Plans

User Discomfort-

Risk: Noise, vibration, heat transfer to user

Mitigation: Use noise-dampening materials, optimize the cooling system for low noise, use insulation to minimize heat transfer

Overheating of Peltier Module-

Risk: Can cause permanent damage

Mitigation: Use thermal switch and heat sink

Arduino Compatibility-

Risk: Incompatible components, coding errors

Mitigation: Test all components, use updated libraries and programming techniques

Learning Aspects

 Integration of devices with different current and voltage driving capabilities (Peltier module with Arduino)

1) Analysing the startup behaviour, current/voltage and temperature specifications of any device before executing the circuit on hardware

1) Minimizing the cost of overall hardware without changing its output performance

Final Set-up

Shortcomings and its improvement

1) Duty cycle of Peltier module

The percentage of time that it is on versus off, can affect its efficiency and lifespan, as hysteresis range is not wide

One potential improvement is to increase hysteresis range using an advanced peltier module

1) Limited temperature sensing accuracy

Needs to ensure that thermocouple is calibrated regularly and correctly

Use of high quality temperature sensor such as PRT or Thermistor instead of K type thermocouple as accuracy, for PRT and thermistor within 0.1°C to 1°C where for K type thermocouple around ±2°C to ±5°C

Shortcomings and its improvement

3) Not compatible with all types of CPUs (automotive, household, data-centre)

Bring in flexibility in setting the temperature range which the peltier module controls so that the module can be used in different environments on different types of devices as automotive CPUs work under high range of temperature which might be too high for normal CPUs

Take user feedback for dynamic temperature control range

4) Switching loss

Need to reduce the number of switchings in case the environment is such that causes large number of heating up and cooling down cycles

Instead of switching we control the fan speed and peltier cooling such that an equilibrium state is reached and maintained from there on

Challenges

- To drive peltier with a voltage of 12V from 5/0V arduino digital signal
- Initially used motor driver to integrate arduino and peltier but the motor couldn't take up the high load
- Faced difficulty in debugging particular components with improper functioning
- Difficulty in understanding the current driving capability of motor driver with load
- Weren't able to perform the software analysis due to unavailability of peltier module in proteus software
- To ensure the hysteresis of module and fans as per our required temperature range

Thánh You!