Lógica Borrosa

Introducción

IAA - LCC

bulacio@cifasis-conicet.gov.ar

Ejemplo-Supongamos que:

- Unas personas desean ir a tomar cerveza que sea barata, y
- > en un local tradicional, y
- > que el local quede cerca de su casa

Se dispone de 4 lugares conocidos

Podemos distinguir tres conjuntos difusos

- 1) Cerveza barata
- 2) Local tradicional
- 3) Cercanía de su casa

- > Una cerveza barata es una que cueste alrededor de \$1000 o menos
- Un local tradicional es un local que al menos tenga 5 años funcionando.
- Que quede cerca de su casa es que no quede a más de 10 cuadras

Caractei _	rísticas de los l Precio Cerveza (\$)	OCGIES Años de servicio (años)	Cuadras
Local 1	1400	3	3
Local 2	800	7	12
Local 3	1000	4	9
Local 4	1250	5	10

	Precio Cerveza (\$)	Años de servicio	Cuadras	Solución clásica
Local 1	0	0	1	
Local 2	1	1	0	
Local 3	1	0	1	
Local 4	0	1	1	
		A ~		0 1 1/ 116

	Precio Cerveza (\$)	Años de servicio	Cuadras	Solución difusa
Local 1	0,2	0,5	1	
Local 2	1	1	0,6667	
Local 3	1	0,875	1	
Local 4	0,5	1	1	

Local 1	1400	3	3	
Local 2	800	7	12	
Local 3	1000	4	9	
Local 4	1250	5	10	
				Solución
	Precio Cerveza (\$)	Años de servicio	Cuadras	clásica
Local 1	0	0	1	0
Local 1 Local 2	0	0 1	0	0
	0 1 1	0 1 0	1 0 1	0 0 0
Local 2	0 1 1 0	0 1 0 1	1 0 1 1	0 0 0 0
Local 2 Local 3	0 1 1 0 Precio Cerveza (\$)	0 1 0 1 Años de servicio	1 0 1 1 Cuadras	0 0 0 0 Solución difusa

0,875

Años de servicio (años)

Cuadras

0,6667

0,6667

0,875

0,5

Precio Cerveza (\$)

0,5

Local 2

Local 3

Local 4

Ejemplo

 Mediante la solución clásica los individuos no encuentra un local

 Mediante la solución difusa deducimos que posiblemente irán al Local 3.

Razonamiento borroso

Implicancia

Razonamiento

La lógica borrosa trata con proposiciones borrosas que asignan valores a variables lingüísticas.

P. Ej.:

- Para la **variable lingüística "<u>estatura</u>", el valor "<u>estatura es alta</u>" es un conjunto difuso A definido sobre el universo de discurso de la variable lingüística.**
- 2. Para la **variable lingüística "<u>peso</u>", el valor "peso elevado",** se define en el universo de discurso de dicha variable lingüística.

Variable lingüística

Una variable linguística es caracterizada por una quíntupla

- Donde
 - Variable base (nombre de la variable)
 - T(x): Conjunto de términos lingüísticos de x que refieren a la variable base
 - Conjunto universo
 - Es una regla sintáctica (gramática) para generar términos lingüísticos
 - Es una regla semántica que asigna a cada término un significado

Ej. De variable lingüística

- La velocidad puede ser interpretada como una variable lingüística
- T(velocidad) podría ser

T(velocidad)={lento, moderado, rápido, muy lento, mas o menos rápido, ...}

- Cada término es caracterizado por un número difuso definido sobre un conjunto universal X=[0,100]
- Podemos interpretar las etiquetas

Ej. De variable lingüística

- Definir una implicación es asignar una **función de pertenencia** a una agrupación antecedente-consecuente del tipo $P \rightarrow Q$
- Nos permite **razonar** con afirmaciones tales como:

SI "la velocidad es *normal*" **ENTONCES** "la fuerza de frenado debe ser *moderada*"

Implicaciones

 Modus Ponens Clásico

Premisa	Si P entonces Q
Hecho	Р
Consecuencia	Q

 Modus Ponens Generalizado (GMP)

Premisa	Si P entonces Q
Hecho	P*
Consecuencia	Q*

Implicaciones

Opciones para definir:

Teórica: Darle el mismo significado de lógica clásica.

$$\begin{split} P \rightarrow & Q \equiv \neg P \lor Q \\ P \rightarrow & Q \equiv \neg (P \land (\neg Q)) \end{split} \qquad \mu_{p \rightarrow q}(u, v) = \max(1 - \mu_p(u), \, \mu_q(v)) \\ \mu_{p \rightarrow q}(u, v) = 1 - \min[\mu_p(u), \, 1 - \mu_q(v)] \end{split}$$

Práctica: Darle un significado causa-efecto.

Implicación de Mamdani

$$P \rightarrow Q \equiv P \land Q \implies \mu_{p \rightarrow q}(u, v) = \min(\mu_p(u), \mu_q(v))$$

Implicaciones usuales:

Nombre	Fórmula
Zadeh	Max(1-p, Min(p,q))
Min (de Mamdani)	Min(p,q)
Luckasiewicz	Min(1, 1-p+q)
Larsen	pxq

- Luckasiewicz, que se deduce de la regla:
 - $P \rightarrow Q = \neg P \vee Q$
 - $\mu_{(P \to Q)}(x,y) = \mu_{(\neg P \lor Q)}(x,y) = Min(1, \mu_{\neg P}(x) + \mu_{Q}(y)) = Min(1, 1 \mu_{P}(x) + \mu_{Q}(y))$
- Luckasiewicz y Zadeh son compatibles con la lógica clásica. Los de Mamdani y de Larse no son compatibles con la lógica clásica:

р	q	Zadeh	Mamdani	Luckas.	Larsen
1	1	1	1	1	1
1	0	0	0	0	0
0	1	1	0	1	0
0	0	1	0	1	0

Implicaciones

- Mamdani y de Larsen **no** son compatibles con la lógica clásica. ¿Por qué se usan?
 - Para modelos causales donde las *consecuencias* **sólo** se dan por la aparición de las *causas* => es falsa la implicación **antecedente es** falso y el consecuente verdadero.
 - Para hacer un modelo «implicador» como relación de causaefecto:

en ingeniería es falso que "falso→ verdadero", es falso $P \rightarrow Q = \neg P \vee Q$

Razonamiento aproximado

- Con lo visto podemos determinar las distribuciones de posibilidad de la regla según el hecho:
 - Regla: $\mu_{(P \rightarrow Q)}(x,y)$
 - Hecho: $\mu_{p*}(x)$

Pero todavía no podemos definir la conclusión, $\mu_{O^*}(x)$, ya que para ello necesitamos componer Regla y Hecho.

• La inferencia difusa de la implicación está basada en la regla composicional de inferencia

Regla composicional de inferencia

Si u está en P entonces v está en Q Premisa:

Hecho: u' está P*

Consecuencia: v'está Q*

Donde Q* está determinado por la composición

$$Q^* = P^* \circ (P \rightarrow Q)$$
matriz asociativa M

Composición M

- Con $M_{[nxq]}$ obtenida de $P \rightarrow Q$, la inferencia difusa permite a partir de P^* (subconjunto de P), inducir un subconjunto Q^* de Q.
- Siendo $P=(p_1, ..., p_n)$ y $Q=(q_1,...,q_q)$

$$\mathbf{M} = \mu_{PxQ} = \begin{vmatrix} p_1 \rightarrow q_1 & \dots & p_1 \rightarrow q_q \\ \\ p_i \rightarrow q_1 & \\ \\ p_n \rightarrow q_1 & \dots & p_n \rightarrow q_q \end{vmatrix} \quad \text{con } \mathbf{p_i} \rightarrow \mathbf{q_j} = \mathbf{m_{ij}} = \mathbf{min}(\mathbf{p_i}, \mathbf{q_j})$$

Regla composicional

En casos prácticos se utiliza la composición max-T-norma

$$Q^* = P^* \circ (P \rightarrow Q)$$

Sean dos conjuntos P y Q definidos en U y V resp.

$$Q^*(v) = \max_{u \in U} \{T[P^*(u), (P \to Q)(u, v)]\}, v \in V$$

T: si existe un solo camino de conexión entre Pi* y $(P \rightarrow Q)ij$, tomamos "el menor", tramo más débil.

max: si existe más de un camino de conexión, es análogo a "si existe al menos un camino" de relaciones binarias. 22

$$Q^*(v) = \max_{u \in U} \{T[P^*(u), (P \to Q)(u, v)]\}, v \in V$$

• Teniendo a $P^*=(p_{1^*}, ..., p_{n^*})$ y $M = \mu_{P \times Q}$

$$Q^* = q_{1^*;...} q_{q^*}$$

- 1. Entrada: valores crisp; una regla
- 2. Entrada: valores crisp, varias reglas
- 3. Entrada: una lectura borrosa

Inferencia max-min

(valores crisp; una regla; forma gráfica)

- **REGLA: IF A THEN B**
- Cuando A* tiene un solo valor de pertenencia distinto de 0, p. ej., x_k se puede utilizar solo μ_A (x_k) directamente con la representación de B, μ_B (y) para inducir B* como

•
$$\mathbf{B}^* = \mu_A(\mathbf{x}_k) \wedge \mu_B(\mathbf{y})$$

Max-min

1. Ejemplo: Inferencia max-T

(valores crisp; una regla, forma analítica)

IF Temperature is normal THEN Velocity is medium

IF A THEN B

Normal temperature = (0/100, .5/125, 1/150, .5/175, 0/200)

Medium velocity = (0/10, .6/20, 1/30, .6/40, 0/50)

Obtener el resultado con la regla composicional 26

Normal temperature = (0/100, .5/125, 1/150, .5/175, 0/200)

Medium velocity = (0/10, .6/20, 1/30, .6/40, 0/50)

$$M = m_{ij} = \min(a_i, b_j)$$

$$A' = (0/100, .5/125, 0/150, 0/175, 0/200)$$

$$M = \begin{bmatrix} 0. & 0. & 0. & 0. & 0. \\ 0. & 0.5 & 0.5 & 0.5 & 0. \\ 0. & 0.6 & 1. & 0.6 & 0. \\ 0. & 0.5 & 0.5 & 0.5 & 0. \\ 0. & 0. & 0. & 0. & 0. \end{bmatrix}$$

A' = (0/100, .5/125, 0/150, 0/175, 0/200)

$$b'_j = \max_{1 \le i \le n} \{ \min(a'_i, m_{ij}) \}$$

 $b_1 = \max[\min(0., 0.), \min(0.5, 0.), \min(0., 0.), \min(0., 0.), \min(0., 0.)]$

 $b_2 = \max[\min(0., 0.), \min(.5, .5), \min(0., .6), \min(0., .5), \min(0., 0.)]$

 $b_3 = \max[\min(0., 0.), \min(.5, .5), \min(0., 1.), \min(0., .5), \min(0., 0.)]$

 $b_4 = \max[\min(0., 0.), \min(.5, .5), \min(0., .6), \min(0., .5), \min(0., 0.)]$

 $b_5 = \max[\min(0., 0.), \min(.5, 0.), \min(0., 0.), \min(0., 0.), \min(0., 0.)]$

 $\backslash B' = (0/10, .5/20, .5/30, .5/40, 0/50)$

Orígenes Conjuntos borrosos Operaciones Razonamiento

2. Inferencia max-min: valores crisp, varias reglas

Regla 1: Si caudal 1 es medio y caudal 2 es medio entonces nivel 3 es medio

Regla 2: Si caudal 1 es medio y caudal 2 es alto entonces nivel 3 es alto

2. Inferencia max-min: valores crisp, varias reglas Α1

Regla 1: Si caudal 1 es medid y caudal 2 es medio entonces nivel en 3 es medio

Regla 2: Si caudal 1 es medio y caudal 2 es alto entonces nivel en 3 es alto

Completar tabla

Regla	Antecedente 1	Antecedente 2	(A_1 \cap A_2)
Regla 1			
Regla 2			

Orígenes Conjuntos borrosos Operaciones Razonamiento

2. Inferencia max-min: valores crisp, varias reglas

Regla 1: Si caudal 1 es medio y caudal 2 es medio entonces nivel en 3 es medio

Regla 2: Si caudal 1 es medio y caudal 2 es alto **entonces** nivel en 3 es alto

2. Inferencia max-min: valores crisp, varias reglas

Regla 1: Si caudal 1 es medio y caudal 2 es medio **entonces** nivel en 3 es medio

Regla 2: Si caudal 1 es medio y caudal 2 es alto **entonces** nivel en 3 es alto

Orígenes Conjuntos borrosos Operaciones Razonamiento

Regla 1: Si caudal en 1 es medio y caudal en 2 es medio entonces nivel en 3 es medio

Regla 2: Si caudal en 1 es medio y caudal en 2 es alto entonces nivel en 3 es alto

2. Inferencia max-min: valores crisp, varias reglas

Regla	Grado de veracidad de la regla
Regla 1	0.2
Regla 2	0.49

Defuzificación

Centro de área o Centro promedio

$$C3 = u^* = \frac{\sum_{i=1}^{l} u_i \mu_U(u_i)}{\sum_{i=1}^{l} \mu_U(u_i)}$$

2. Inferencia max-T: valores crisp, varias reglas

Resumiendo...

2. Ejemplo max-min: valores crisp, varias reglas

Regla 1: Si caudal 1 es medio y caudal 2 es medio entonces nivel en 3 es medio

Regla 2: Si caudal 1 es medio y caudal 2 es alto entonces nivel en 3 es alto

$$C1 = 45$$
; $C2 = 75$

3. Inferencia borrosa: max-T (entrada borrosa)

En el caso que la entrada a la regla sea una lectura difusa, nosotros podemos considerar la intersección de A y A*, es decir: min (a_i, a*_i) para inducir el B*

FIGURE 13.5 Max-min inference for fuzzy input.

Orígenes Conjuntos borrosos Operaciones **Razonamiento**

3. Inferencia borrosa: max-T (entrada borrosa)

FIS

REGLA: Si d_{dest} es lejana entonces v debe ser rápida

$$f_{lejana} = [0.25/250 \ 0.5/300 \ 0.75/350 \ 1/400 \ 1/450]$$
 (P)

 $f_{rapida} = [0/40 \ 0.2/50 \ 0.6/70 \ 1/90]$ (Q)

3. Inferencia borrosa: max-T (entrada borrosa)

REGLA: Si d_{dest} es lejana entonces v debe ser rápida

Siendo un hecho que está entre las distancias MEDIAS y LEJANAS; es de esperar que v* esté entre las velocidades MEDIA y RÁPIDA

40 50 70 90 **v***= [**0 0,2 0,6 0,75**]= **v***

Métodos de Defuzificación

 La salida de un proceso de inferencia es un conjunto difuso, en procesos en línea se requieren valores crisp

Métodos de Defuzificación

Por ej.:

Centro de Gravedad

$$y = \frac{\sum_{i} b_{i} \int \mu(i)}{\sum_{i} \int \mu(i)}$$

Centros Promediados

$$y = \frac{\sum_{i} b_{i} \mu_{premisa}(i)}{\sum_{i} \mu_{premisa}(i)}$$

Resumen de tareas: FIS

- Definir las variables de entradas y salidas
- Definir el universo de discurso
- Determinar el número de funciones de pertenencia
- Distribuir las funciones de pertenencia
- Definir el método de borrosificación
- Definir el método de inferencia
- Definir el método de desborrosificación
- Examinar la conducta del modelo y la superficie de salida: Redefinir reglas Ejemplo

En resumen: Cuándo usar lógica borrosa

- En procesos complejos, si no existe un modelo de solución sencillo
- En procesos no lineales
- Cuando haya que introducir la experiencia de un operador "experto" que se base en conceptos imprecisos obtenidos de su experiencia
- Cuando ciertas partes del sistema a controlar son desconocidas y no pueden medirse de forma fiable
- Cuando el ajuste de una variable puede producir el desajuste de otras
- En general cuando se desea representar y operar con conceptos que tengan imprecisión o incertidumbre

En resumen: Desventajas

- Estabilidad: No hay garantía teórica que un sistema difuso no tenga un comportamiento caótico y no siga siendo estable, aunque tal posibilidad parece ser baja debido a los resultados obtenidos hasta ahora
- La determinación de las funciones de pertenencia y las reglas no siempre son sencillas
- La verificación de los modelos y sistemas borrosos expertos requiere de gran cantidad de pruebas

Implicaciones borrosas: I

Caso *crisp*: $x \rightarrow y := \neg x \lor y$

Una función $I: [0,1]^2 \rightarrow [0,1]$ es llamada "fuzzy implication" si satisface las siguientes propiedades (Fundamentals of fuzzy sets, D. Dubois, H. Prade)

I1.
$$I(0,0) = I(0,1) = I(1,1) = 1$$
; $I(1,0) = 0$

I2. If
$$x \le z$$
 then $I(x,y) \ge I(z,y)$ for all $y \in [0,1]$

I3. If
$$y \le t$$
 then $I(x,y) \le I(x,t)$ for all $x \in [0,1]$

I4.
$$I(0, x) = 1$$
;

I5.
$$I(x, 1) = 1$$
;

I6.
$$I(1, x) = x$$
 for all $x \in [0,1]$

I7.
$$I(x, I(y, z)) = I(y, I(x, z))$$

I8.
$$x \le y$$
 if and only if $I(x,y) = 1$

I9.
$$N(x) := I(x,0)$$
 is a strong negation

I10.
$$I(x,y) \ge y$$

I11.
$$I(x,x) = 1$$

I12.
$$I(x,y) = I(N(y), N(x))$$

I13. I is a continuous function

Def: An S-implication associated with a t-conorm S and a strong negation N is defined by

$$I_{S,N}(x,y) := S(N(x),y) \quad (x,y \in [0,1]).$$

FISPRO: Trabajando a partir de datos

- Generación de particiones
 - Regular
 - K-means
 - HFP

- Generación de reglas
 - FPA
 - Wang & Mendel
 - Árbol de decisión