(X36PAR: Paralelní systémy a algoritmy, posluchárna K1, Pondělí, 3/5/2010, 14:30-17:00, přednáší Pavel Tvrdík)

Přednáška #11: Kolektivní komunikační algoritmy II

Vysílání všichni-všem (AAB)

AAB = gossip = celková výměna: Každý uzel vyšle svůj paket všem ostatním uzlům.

SF AAB s kombinováním paketů

Spodní meze

Lemma 1. Je-li G d-portová síť o N uzlech, pak

$$\rho_{AAB}(G) = diam(G)$$

$$\tau_{\text{AAB}}(G,\mu) = \rho_{\text{AAB}}(G)t_s + \left\lceil \frac{N-1}{d} \right\rceil \mu t_m.$$

Důkaz. Díky SF přepínání nemůže AAB skončit dříve než po $\operatorname{diam}(G)$ krocích. Každý uzel musí přijmout $(N-1)\mu t_m$ dat a má na to d portů.

SF AAB: Všeportový plně-duplexní model

- Nejsilnější a nejméně realistický model.
- Triviální záplavový (nebo lačný) přístup.

```
Uzlový program algoritmu \operatorname{FLOODINGMINDUPAAB}(G)
pošli svůj paket všem k sousedům;
repeat \operatorname{diam}(G) times
{ přijmi zprávy ze všech k vstupních kanálů;
 zkombinuj je do k nových zpráv tak, že se minimalizuje duplikace;
 (*t.j., udržuj info o tom, které pakety byly vyslány kterým sousedům a neposílej týž paket témuž sousedovi \operatorname{2krát}.
 Tento protokol se nazývá \operatorname{MINDUP} a kombinovaná zpráva \operatorname{MINDUP} agregát. *)
```

pošli nové MINDUP agregáty odpovídajícím sousedům };

SF AAB: Všeportový poloduplexní model

■ Simulace plně-duplexních kanálů na poloduplexních se zpomalením 2:

$$\operatorname{diam}(G) \le r_{\operatorname{AAB}}(G) \le 2 \operatorname{diam}(G).$$

■ Metoda **Soustřeď-Rozešli**:

Algoritmus ACCUMULATEBROADCASTAAB(G, u)

Fáze 1: Uzel u akumuluje všechny pakety do 1 agregátní zprávy (= AOG).

Fáze 2: u vyšle tuto agregátní zprávu všem ostatním (= OAB).

• Typicky, pro komunikační složitost je dominující Fáze 2.

Lepší AAB v bipartitních sítích

Lemma 2. Je-li G bipartitní s diam(G) = D, pak $r_{AAB}(G) \leq D + 1$.

Algorithm FloodingBipartiteAAB(G)

Obarvi uzly 2 barvami $\mathbf{Y}(ellow)$ a $\mathbf{B}(lack)$;

repeat (D+1)/2 times

YB: Y uzly pošlou své MINDUP aggregáty **B** sousedům;

BY: B uzly pošlou své MINDUP aggregáty Y sousedům;}

Lepší AAB v silně orientovaných sítích

Lemma 3. Je-li $\operatorname{diam}(G) = D$ a $\operatorname{diam}(\vec{G}) = D'$, pak

$$D \le r_{AAB}(G) \le \min(2D, D').$$

- Zorientování hran grafu tak, že D' je nejmenší možný, je obecně NP-těžký problém.
- Vyřešeno pro 2-D mřížky a toroidy (tzv. Manhattanský problém).
- Optimální řešení D = D' existuje pouze pro dostatečně rozsáhlé mřížky/toroidy.
- Částečně vyřešeno pro některé vícerozměrné mřížky a toroidy.
- Vyřešeno pro hyperkrychle: $\operatorname{diam}(\overrightarrow{Q}_2) = 3$, $\operatorname{diam}(\overrightarrow{Q}_3) = 5$, and $\operatorname{diam}(\overrightarrow{Q}_n) = n$ for $n \ge 4$.

Lemma 4. Má-li bipartitní graf G silnou orientaci s průměrem nejvýše k, kde $k \geq 3$, takovou, že každý uzel leží na kružnici o délce nejvýše k, pak graf $G \times U_2$ (= kartézský součin G a úplného grafu s 2 uzly) má orientaci s průměrem nejvýše k+1 takovou, že každý uzel leží na orientované kružnici délky nejvýše k.

Náznak důkazu. $G \times U_2$ je zbudován ze 2 kopií G_1 a G_2 tak, že G_1 je zrcadlově symetrická s G_2 a 2-barvení (černá-bílá) v G_1 je inverzí barvení v G_2 . Pak hrany spojující odpovídající páry symetrických uzlů orientujeme od černých k bílým uzlům. Rozborem všech případů lze indukčně ukázat, že z jakéhokoli uzlu $u_1 \in G_1$ lze dosáhnout jakýkoli uzel $u_2 \in G_2$ (či naopak) orientovanou cestou délky nejvýš k+1.

SF AAB: 1-portový plně-duplexní model

Lemma 5. Díky existenci 1-portového algoritmu Soustřeď-Rozešli, pro jakýkoli N-uzlový graf G platí:

$$\max(\operatorname{diam}(G), \lceil \log N \rceil) = \rho_{\text{OAB}}(G) \le r_{\text{OAB}}(G) \le r_{\text{AAB}}(G) \le 2r_{\text{OAB}}(G).$$

1-D mřížky

Algoritmus FLOODINGMINDUPAAB(M(z))

Střídej NODUP výměny mezi licho-sudými a sudo-lichými páry

Lemma 6.

$$r_{\mathrm{AAB}}(M(z)) = \left\{ \begin{matrix} z-1 \\ z \end{matrix} \right. \quad \text{a} \quad t_{\mathrm{AAB}}(M(z),\mu) = \left\{ \begin{matrix} (z-1)t_s + (2z-3)\mu t_m \\ zt_s + (2z-2)\mu t_m \end{matrix} \right. \quad \text{je-li z sud\'e,}$$

1-D toroidy

Lemma 7. Je-li z je sudé, pak $r_{AAB}(K(z)) = z/2$ (což je optimální) a

$$t_{\text{AAB}}(K(z), \mu) = \frac{z}{2}t_s + (z - 1)\mu t_m$$

a je-li z liché, pak $r_{AAB}(K(z)) = (z+3)/2$ (jeden uzel je vždy mimo hru!) a

$$t_{\text{AAB}}(K(z), \mu) = \frac{z+3}{2}t_s + \frac{3z-1}{2}\mu t_m.$$

4-krokový AAB na 1-portové plně-duplexní kružnici délky 5.

1-portové vícerozměrné mřížky: Rozklad po dimenzích

Lemma 8. AAB po dimenzích v 1-portové mřížce (podobně v toroidu)

$$r_{ ext{AAB}}(M(z_1,\ldots,z_n)) = \sum_{i=1}^n r_{ ext{AAB}}(M(z_i))$$
 a

$$t_{\text{AAB}}(M(z_1,\ldots,z_n),\mu) = \sum_{i=1}^n t_{\text{AAB}}(M(z_i),(\prod_{j=1}^{i-1} z_j)\mu).$$

Důsledek 9. (Lemmy 7.) Časová složitost závisí na pořadí dimenzí, vyskytuje-li se lichá velikost.

Příklad: Je-li z_1 liché a z_2 sudé, pak

$$t_{AAB}(K(z_1), \mu) + t_{AAB}(K(z_2), z_1\mu) < t_{AAB}(K(z_2), \mu) + t_{AAB}(K(z_1), z_2\mu).$$

Jsou-li z_1,z_2 sudé, pak $t_{\mathrm{AAB}}(K(z_1,z_2),\mu)=rac{z_1+z_2}{2}t_s+(z_1z_2-1)\mu t_m.$

1-portová hyperkrychle

Důsledek 10. (Lemmy 8 a 1.)

$$\rho_{\mathrm{AAB}}(Q_n) = r_{\mathrm{AAB}}(Q_n) = n \quad \text{ a } \quad t_{\mathrm{AAB}}(Q_n, \mu) = \tau_{\mathrm{AAB}}(Q_n, \mu) = nt_s + \mu t_m (2^n - 1).$$

Důkaz. Velikost zprávy se v každém kroku zdvojnásobí:

$$t_{\text{AAB}}(Q_n, \mu) = \sum_{i=0}^{n-1} (t_s + 2^i \mu t_m) = nt_s + \mu t_m (2^n - 1).$$

SF AAB bez kombinování paketů

SF AAB: všeportový plně-duplexní nekombinující model

- lacktriangle Každý z N vstupních paketů musí být doručen individuálně všem N-1 uzlům.
- Počet paketů v síti je mnohem větší než v případě kombinujícího modelu.
- Plně-duplexní kanály jsou dvojice antiparalelních simplexních linek = orientovaných hran.
- Komunikační model a předpoklady:
 - Každý uzel u v G = kořen OAB stromu B(u).
 - Všechny uzly začnou svůj OAB ve stejném okamžiku.
 - Všechny OAB postupují v OAB stromech synchronně toutéž rychlostí.
 - **Definice:** Orient. hrana v B(u) je úrovně $i \iff paket přes ni projde v kroku <math>i$.
 - ullet Definice: Výška B(u), h(B(u)), je číslo nejvyší úrovně hrany v B(u).
 - Důsledek: V kroku i jsou ve všech stromech aktivní pouze hrany na úrovni i.
- **Definice:** B(u) a $B(v) = vzájemně časově-hranově-disjunktní stromy (TADT), jestliže <math>\forall i$, množiny jejich hran na úrovni i jsou disjunktní.
- Důsledek: OAB stromy jsou TADT ⇒ přenos paketů je na plně-duplexních kanálech sítě bezkolizní.

Spodní meze

Lemma 11. Nechť G je síť s N uzly a s minimálním stupněm d. Pak

$$\rho_{AAB}(G) = \lceil (N-1)/d \rceil$$
 a $\tau_{AAB}(G,\mu) = \rho_{AAB}(G)(t_s + \mu t_m)$.

*

Mřížky

- Nejsou uzlově symetrické.
- 2-D mřížka $M(z_1, z_2)$: \exists optimální algoritmy s $r_{AAB}(M(z_1, z_2)) = \lceil (z_1 z_2 1)/2 \rceil$.
 - všechny pakety se posunují podél 1 hamiltonovské kružnice,
 - nebo soustava TADTů B(u), kde struktura B(u) závisí na u a navíc $\beta \approx z_1 + z_2$ (složité).
- Vícerozměrné mřížky: ???

Uzlově symetrické topologie

- Všechny TADTy jsou izomorfní: odvozeny z generického TADT B(*)!!!!
- Automorfizmus = přeložení (zachovává časové úrovně hran stromu).
- Vyřešeno pro 2-D a 3-D toroidy.
- Vyřešeno pro hyperkrychle.

2-D a 3-D toroidy

Lemma 12. Libovolná 2 přeložení generického B(*) jsou $TADTy \iff$ všechny hrany na každé úrovni i v B(*) jsou různých směrů (např. N,E,W,S ve 2-D).

■ K(z,z), z je liché: triviální optimální řešení, $\beta=0$: B(*)= 4 rotace 2-D hada velikosti $(z_1z_2-1)/4$ a pokrývajícího 1 čtvrtinu toroidu.

(a) 2 různá řešení pro K(7,7)

(b) řešení pro K(4,3)

- Obecné $K(z_1, z_2)$: časově-optimální a $\beta \leq 3$, viz příklad (b).
- K(z,z,z), z je liché: triviální řešení, kde B(*)=6 rotací 3-D hada vyplňujícího pyramidu. (K(z,z,z) je sjednocení 6 pyramid.)
- Obecné 3-D $K(z_1, z_2, z_3)$: časově-optimální a $\beta \leq 60$.

2-D a 3-D toroidy (pokr.)

■ Alternativní řešení pro 2-D: 2 hranově disjunktní hamiltonovské kružnice H_1 a H_2 .

Algoritmus ParallelHamilCycleAAB(G)

Každý uzel rozpůlí svůj paket p na 2 dvojčata = 2 stejné části p_1 a p_2 Pak pošle p_1 podél H_1 a p_2 podél H_2 , resp., v obou směrech. Každý uzel v každém dalším kroku přijme a uloží 4 subpakety přepošle je podél jejich Hamiltonských kružnic. pokud pro nějaký paket už obdržel obě dvojčata, pak je složí zpět do původního paketu.

Lemma 13. $r_{AAB}(K(z_1,z_2)) \doteq \frac{z_1z_2}{2}$ (každý subpaket cestuje pouze do půlky své kružnice) a

$$t_{\text{AAB}}(K(z_1, z_2), \mu) = r_{\text{AAB}}(K(z_1, z_2))(t_s + \frac{\mu}{2}t_m) \doteq \frac{z_1 z_2}{2}t_s + \frac{z_1 z_2}{4}\mu t_m.$$

Poznámka: Srovnej s řešením pomocí TADTs.

Hyperkrychle

Úkol: zkonstruovat generickou TADT B(0) v Q_n takovou, že

- \blacksquare množina hran na úrovni i se skládá z n hran hyperkrychle o n různých směrech,
- lacktriangle kromě poslední úrovně $\lceil (2^n-1)/n \rceil$, která se skládá z $((2^n-1) \bmod n) < n$ hran.

Konstrukce:

- \blacksquare Rozděl uzly Q_n do náhrdelníků.
- Setřiď náhrdelníky podle rostoucího počtu bitů 1, začni vždy s L_{k1} = rotace 1^k0^{n-k} .
- Uspořádej řetězce v náhrdelnících do *n*-sloupcové tabulky tak, že
 - řádek i tabulky definuje uzly B(0) na úrovni i,
 - ullet začíná-li náhrdelník v sloupci j, začni v něm řetězcem $u=u_{n-1}\dots u_0$ s $u_j=1$,
 - náhrdelník pokračuje rotováním.
- OAB strom: $u = u_{n-1} \dots u_{j+1} 1 u_{j-1} \dots u_0 \longrightarrow \operatorname{neg}_j(u) = u_{n-1} \dots u_{j+1} 0 u_{j-1} \dots u_0$, kde u je v sloupci j a $\operatorname{neg}_j(u)$ se musí objevit na předchozí úrovni (= řádku) než u \Longrightarrow každý náhrdelník L_{k1} začínající ve sloupci j musí začínat uzlem u takovým, že

na pozici j-1 (cyklicky) má bit 0.

Konstrukce pro Q_6

	0	1	2	3	4	5
1	L_{11} : {00000 1	0000 1 0	000 1 00	00 1 000	010000	1 00000}
2	L_{21} : $\{00001oldsymbol{1}$	0001 1 0	001 1 00	01 1 000	1 1 0000	1 00001}
3	L_{22} : $\{$ 01000 $oldsymbol{1}$	1000 1 0	000 1 01	00 1 010	0 1 0100	1 01000}
4	L_{23} : $\{00100oldsymbol{1}$	0100 1 0	100 1 00}	L_{31} : $\{11f{1}000$	1 1 0001	1 00011
5	00011 1	0011 1 0	011 1 00}	L_{32} : $\{10f 1100$	0 1 1001	1 10010
6	10010 1	0010 1 1	010 1 10}	L_{33} : {00 1 101	0 1 1010	1 10100
7	10100 1	0100 1 1	100 1 10}	L_{34} : {10 1 010	0 1 0101}	L_{41} : { 1 00111
8	00111 1	0111 1 0	111 1 00	11 1 001	1 1 0011}	L_{42} : { 1 11010
9	11010 1	1010 1 1	010 1 11	10 1 110	0 1 1101}	L_{43} : { 1 10110
10	10110 1	0110 1 1}	L_{51} : $\{1111$ 01	11 1 011	1 1 0111	1 01111
11	01111 1	1111 1 0}	L_{61} : {111 1 11}			

Konstrukce pro Q_6 (pokr.)

AAB ve WH sítích

Algoritmus WHACCUMBROADCASTAAB(G)

Fáze 1: Rozděl G do 2^k souvislých regionů a zvol jejich reprezentanty.

Fáze 2: Každý reprezentant shromáždí pakety uvnitř svého regionu použitím AOG.

Fáze 3: Reprezentanti provedou AAB mezi sebou simulací AAB v kombinující Q_k (* viz Slide 9 *).

Fáze 4: Každý reprezentant distribuuje globální info uvnitř svého regionu.

Rozesílání všichni-všem (AAS)

- AAS = úplná výměna = osobní komunikace všichni-všem.
- lacktriangle Každý uzel vlastní N-1 paketů velikosti μ , pro každý uzel jeden.
- Celkový počet paketů je N(N-1).
- Příklad: transpozice matice $A_{N,N}$, mapované po řádcích na N-procesorový počítač tak, že prvek $a_{i,j}$ je uložen v lokální paměti procesoru P_i na adrese j.

Spodní meze

Spodní mez daná síťovou propustností

Lemma 14. Nechť G je N-uzlová SF plně-duplexní síť sm=|E(G)| hranami. Pak pro nekombinující AAS platí

$$\rho_{\mathrm{AAS}}^{\mathrm{N}}(G) = \frac{1}{2m} \left(\sum_{u \neq v} \mathrm{dist}_G(u,v) \right) \quad \text{a} \quad \tau_{\mathrm{AAS}}^{\mathrm{N}}(G,\mu) = \rho_{\mathrm{AAS}}^{\mathrm{N}}(G)(t_s + \mu t_m)$$

a pro kombinující AAS platí

$$ho_{\mathrm{AAS}}^{\mathrm{C}}(G) = \mathrm{diam}(G)$$
 a $au_{\mathrm{AAS}}^{\mathrm{C}}(G,\mu) =
ho_{\mathrm{AAS}}^{\mathrm{C}}(G)t_s +
ho_{\mathrm{AAS}}^{\mathrm{N}}(G)\mu t_m.$

Spodní mez daná bisekční propustností

Lemma 15. Nechť G je N-uzlová plně-duplexní síť s hranovou bisekční šířkou $\mathrm{bw}_e(G)$, s WH nebo SF přepínáním. Pro kombinující i nekombinující AAS platí

$$\tau_{\text{AAS}}(G, \mu) = \rho_{\text{AAS}}(G)t_s + \frac{\lceil N/2 \rceil \lfloor N/2 \rfloor \mu t_m}{\text{bw}_e(G)},$$

kde $\rho_{AAS}(G)$ závisí na modelu.

Poznámka: V polo-duplexní síti jsou spodní meze τ dvounásobné.

SF AAS v 1-portové hyperkrychli: alg. stand. výměna (STANDEXCHAAS)

$$t_{\text{AAS}}(Q_n, \mu) = n(t_s + 2^{n-1}\mu t_m) > \tau_{\text{AAS}}(Q_n, \mu) = nt_s + \frac{2^{n-1}2^{n-1}\mu t_m}{2^{n-1}} = nt_s + 2^{n-1}\mu t_m.$$

STANDEXCHAAS je pouze krokově optimální!

První 2 kroky 3-krokového AAS v kombinující 1-portové hyperkrychli Q_3

SF AAS: 1-port. polo-duplex. 1-D torus

$$\tau_{\text{AAS}}(K(z), \mu) = (z - 1)t_s + \lceil z/2 \rceil \lfloor z/2 \rfloor \mu t_m.$$

Triviální cyklický pipeline is asymptoticky optimální!!!

První 2 kroky AAS v kombinující 1-portové polo-dupl. kružnici.

$$t_{\text{AAS}}(K(z), \mu) = \sum_{i=1}^{z-1} (t_s + \mu t_m(z-i)) = (t_s + \mu t_m z/2)(z-1),$$

■ WH přepínání neposkytne lepší algoritmus.

SF AAS: všeportový plně-duplexní 1-D toroid

$$\tau_{\text{AAS}}(K(z), \mu) \doteq t_s z/2 + z^2 \mu t_m/8$$

Zprávy jsou posílány v obou směrech a jsou menší.

Je-li z sudé, pak

$$t_{\text{AAS}}(K(z), \mu) = \sum_{i=1}^{z/2} (t_s + \mu t_m i) = t_s z/2 + \mu t_m z(z+2)/8.$$

Je-li z liché, pak

$$t_{\text{AAS}}(K(z), \mu) = \sum_{i=1}^{(z-1)/2} (t_s + \mu t_m((z+1)/2 - i)) = t_s(z-1)/2 + \mu t_m(z^2 - 1)/8.$$

SF AAS: Spodní mez na komun. čas. složitost ve vícerozm. toroidech

Důsledek 16. (Lemmy 15.) Pro $R = K(z_1, \ldots, z_n)$ s $z_i \geq z_{i+1}$ platí

$$\tau_{\text{AAS}}(R,\mu) = \left(\frac{1}{2} \left\lfloor \frac{z_1}{2} \right\rfloor \left\lceil \frac{z_1}{2} \right\rceil \prod_{i=2}^n z_i \right) \mu t_m.$$

Důkaz.

- lacksquare Rozřízni R na $R_1=K(\lfloor z_1/2\rfloor,\ldots,z_n)$ a $R_2=K(\lceil z_1/2\rceil,\ldots,z_n)$.
- Počet plně-duplexních kanálů spojujících R_1 s R_2 : $2\Pi_{i=2}^n z_i$.
- Počet paketů, které musí být vyměněny mezi R_1 a R_2 každým směrem:

$$|V(R_1)| \cdot |V(R_2)| = \lfloor z_1/2 \rfloor \lceil z_1/2 \rceil \prod_{i=2}^n z_i^2.$$

SF AAS algoritmus založený na kartézském rozkladu

$$r_{ ext{AAS}}(K(z_1,\ldots,z_n)) = \sum_{i=1}^n r_{ ext{AAS}}(K(z_i))$$
 a

$$t_{\text{AAB}}(K(z_1, \dots, z_n), \mu) = \sum_{i=1}^n t_{\text{AAB}}(K(z_i), (\prod_{\substack{j=1 \ j \neq i}}^n z_i)\mu)$$

WH AAS s kombinováním paketů

WH AAS: 1-portové mřížky/toroidy

Z Lemmy 15 plyne

$$\tau_{\text{AAS}}(M(\sqrt{N}, \sqrt{N}), \mu) = \rho_{\text{AAS}}(M(\sqrt{N}, \sqrt{N}))t_s + \frac{N\sqrt{N\mu t_m}}{4}.$$

Algoritmus Binární výměna BINEXCHAAS (= simulace STANDEXCHAAS)

- $\blacksquare M(2^k,2^l)$ je rekurzivně půlena, např. střídavě ve směrech X a Y.
- Počet fází je $k+l = \log N$.
- 1 fáze vyžaduje několik kroků, kvůli zahlcení WH kanálů.
- V každém kroku je mezi komunikujícími partnery vyměněn blok N/2 paketů.

Pro $N = 4^k$:

$$t_{\text{AAS}}(M(\sqrt{N}, \sqrt{N}), \mu) = 2 \left[\frac{\sqrt{N}}{2} \left(t_s + \frac{\sqrt{N}}{2} t_d + \frac{N}{2} \mu t_m \right) + \frac{\sqrt{N}}{4} \left(t_s + \frac{\sqrt{N}}{4} t_d + \frac{N}{2} \mu t_m \right) + \dots + \left(t_s + t_d + \frac{N}{2} \mu t_m \right) \right]$$

$$= 2 \left(\frac{\sqrt{N}}{2} + \frac{\sqrt{N}}{4} + \dots + 1 \right) \left(t_s + \frac{N}{2} \mu t_m \right) + 2t_d \left(\frac{N}{4} + \frac{N}{4^2} + \dots + 1 \right)$$

$$= 2(\sqrt{N} - 1) \left(t_s + \frac{N}{2} \mu t_m \right) + 2t_d \frac{N - 1}{3}$$

$$\doteq 2\sqrt{N} t_s + N\sqrt{N} \mu t_m + \frac{2}{3} N t_d.$$

(a) Fáze 1X a 1Y: 4 kroky (b) Fáze 2X a 2Y: 2 kroky (c) Fáze 3X a 3Y: 1 krok

Výměna mezi kvadranty (QUADEXCHAAS)

- Navrženo speciálně pro WH mřížky.
- $M(2^k, 2^k)$ je rekurzivně dělena do kvadrantů \implies fáze.
- 1 fáze odpovídající kvadrantům velikosti $2^l \times 2^l$ má 2^l podfází.
- V podfázi *i*, všechny čtveřice zrcadlově symetrických prvků na *i*-tých diagonálách všech 4 kvadrantů provádějí paralelně mikro-AAS.
- 1 mikro-AAS = 3-kroková osobní výměna paketů mezi 4 rohy obdélníku.

QUADEXCHAAS WH mřížkách $M(2^k, 2^k)$:

- (a) 3-krokový mikro-AAS mezi 4 rohy obdélníku.
- (b) QEX AAS na M(4,4): Fáze 1 (2 podfáze) a fáze 2 (1 mikro-AAS).
- (c) QEX AAS na M(8,8): Fáze 1 (4 podfáze).

$$t_{\text{AAS}}\left(M\left(\sqrt{N},\sqrt{N}\right),\mu=\right) = t_{\text{AAS}}^{\text{Faze1}}\left(M\left(\sqrt{N},\sqrt{N}\right),\mu\right) + t_{\text{AAS}}\left(M\left(\frac{\sqrt{N}}{2},\frac{\sqrt{N}}{2}\right),4\mu\right)$$
(2)

- 1. Fáze 1 v $M(\sqrt{N},\sqrt{N})$ se skládá z $\frac{\sqrt{N}}{2}$ podfází.
 - Složitost 1 podfáze je dána složitostí největšího mikro-AAS.
 - Složitost 1. podfáze: $3t_s + 3\frac{N}{4}\mu t_m + 4t_d(\sqrt{N} 1)$
 - Složitosti ostatních podfází: $3t_s + 3\frac{N}{4}\mu t_m + kt_d\sqrt{N}$, kde přibližně $k \in \{3,4\}$.
 - Horní odhad časové složitosti Fáze 1:

$$t_{\text{AAS}}^{\text{Faze1}}\left(M\left(\sqrt{N},\sqrt{N}\right),\mu\right) \doteq \frac{\sqrt{N}}{2}\left(3t_s + \frac{3N}{4}\mu t_m + 4t_d\sqrt{N}\right)$$
$$= \frac{3\sqrt{N}}{2}t_s + \frac{3N\sqrt{N}}{8}\mu t_m + 2Nt_d.$$

2. Z (2) plyne

$$t_{\text{AAS}}(M(\sqrt{N}, \sqrt{N}), \mu) = \frac{3\sqrt{N}}{2}t_s + \frac{3N\sqrt{N}}{8}\mu t_m + 2Nt_d + \frac{3\sqrt{N}}{4}t_s + \frac{3N\sqrt{N}}{16}\mu t_m + 2\frac{N}{4}t_d + \dots + \frac{3N}{4}\mu t_m + 4t_d + \frac{3N\sqrt{N}}{4}\mu t_m + 4t_d$$

$$\dot{=} 3\sqrt{N}t_s + \frac{3}{4}N\sqrt{N}\mu t_m + \frac{8N}{3}t_d.$$

3. Srovnáním s (1) na slajdu 26 plyne, že QUADEXCHAAS má ve srovnání s BINEXCHAAS menší přenosovou latenci na úkor většího počtu kroků a celkově větší délky použitých cest.

Jednodušší Quadrant Exchange

Místo zrcadlové symetrie stejnolehlost.

(c) Faze 1 v M(8,8)

$$t_{\text{AAS}}^{\text{Faze1}}\left(M\left(\sqrt{N},\sqrt{N}\right),\mu\right) = \frac{3\sqrt{N}}{2}t_s + \frac{3N\sqrt{N}}{8}\mu t_m + Nt_d$$

WH AAS: Přímá výměna (DIREXCHAAS) v hyperkrychli

- Je-li $t_s \ll 2^{n-1}\mu t_m$, StandExchAAS v kombinující SF Q_n není optimální.
- DIREXCHAAS = série $2^n 1$ permutací přeložení $\pi_j : x \mapsto x \operatorname{XOR} j$ ⇒ každá dvojice uzlů $(i, \pi_j(i))$ si vyměňuje přímo své 2 pakety.
- lacktriangle Každá permutace π_i je při použití e-cube WH přepínání bezkolizní a 1-kroková

$$\Rightarrow \begin{array}{c} t_{\text{AAS}}(Q_n,\mu) \doteq (2^n-1)(t_s+nt_d/2+\mu t_m) \\ \\ \text{(průměrná vzdálenost je přibližně } n/2) \end{array}$$

■ Je-li $t_s \ll \mu t_m$, pak je DIREXCHAAS na WH Q_n asymptoticky optimální neboť $t_{\text{AAS}}(Q_n, \mu) \doteq 2\tau_{\text{AAS}}(Q_n, \mu)$ (viz Slajd 19).

- \blacksquare Přiřadíme uzlům mřížky binární adresy lexikograficky: 1 řádek = 1 podkrychle.
- \blacksquare XY směrování produkuje zahlcení linek pro některé permutace π_j .
- Jednotlivé permutace vyžadují různý počet kroků.

Realizace vybraných permutací π_j na M(2,4).

lacksquare Maximální zahlcení linek v $M(z_1,z_2)$ pro permutace je $\max(z_1,z_2)/2.$

WH AAS: MESHDIREXCHAAS

- AAS se rozloží na posloupnost permutací kartézský posun.
- Stejný problém se zahlcením, hodnoty zahlcení jsou taktéž $\max(z_1, z_2)/2$.