APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY

STUDY MATERIALS

a complete app for ktu students

Get it on Google Play

www.ktuassist.in

Definition: Strongly connected component (SCC) of a directed graph G=(V,E) is a maximal set of vertices $C \subseteq V$ such that

- For every pair of vertices u and v in C (u ~-> v and v~->u)
- \rightarrow i.e., u and v are mutually reachable from each other (u = v)
- Let $G^T = (V, E^T)$ be the transpose of G = (V, E) where $E^T = \{(U, V): (U, V) \in E\}$
 - i.e., E^T consists of edges of G with their directions reversed

Any graph can be partitioned into a unique set of strong components.

Algorithm

- (1) Run DFS(G) to compute finishing times for all $u \in V$
- (2) Compute G^T
- 3) Call $DFS(G^T)$ processing vertices in main loop in decreasing f[u] computed in Step (1)
- (4) Output vertices of each DFT in DFF of Step (3) as a separate SCC

(1) Run **DFS**(G) to compute finishing times for all $u \in V$

(1) Run **DFS**(G) to compute finishing times for all $u \in V$

(1) Run **DFS**(G) to compute finishing times for all $u \in V$

Vertices sorted according to the finishing times:

$$\langle b, e, a, c, d, g, h, f \rangle$$

(2) Compute G^T

(4) Output vertices of each DFT in DFF as a separate SCC

22 EXAMPLE

END

