Bayes und der Primzahltest von Rabin und Miller

Ist n keine Primzahl, so kann man (relativ leicht) zeigen, dass n für höchstens 25 % der Basen a den Rabin-Miller-Test besteht. Daher ist die Wahrscheinlichkeit dafür, dass eine Zahl, die nicht prim ist, dennoch als prim getestet wird kleiner $\frac{1}{4^k}$ (falls der Test mit k Zufallszahlen als Basen durchgeführt wird). Da der Test andererseits nie "false" antwortet, wenn n prim ist (Satz von Fermat!), gilt insgesamt:

Rabin-Miller sagt \rightarrow n ist \downarrow	true	false
prim	richtig positiv p(true prim) = 1	$falsch \ negativ$ $p(false \mid prim) = 0$
nicht prim	$falsch \ positiv$ $p_k(\text{true} \mid \text{nicht prim}) \leq \frac{1}{4^k}$	richtig negativ $p_k \text{ (false nicht prim)} \ge 1 - \frac{1}{4^k}$

Interessanter ist es aber die Wahrscheinlichkeit dafür zu kennen, dass eine Zahl, die als prim getestet wurde, tatsächlich nicht prim ist. Zur Ermittlung dieser Wahrscheinlichkeit berechnen wir zunächst die Wahrscheinlichkeit p_n für eine n-bit-Zahl prim zu sein.

Es gibt etwa $\pi(2^n) - \pi(2^{n-1})$ *n*-bit-Primzahlen, also ist

$$p_n \approx \frac{\frac{2^n}{n \ln(2)} - \frac{2^{n-1}}{(n-1)\ln(2)}}{2^{n-1}} = \frac{2}{n \ln(2)} - \frac{1}{(n-1)\ln(2)} = \frac{n-2}{(n-1)n \ln(2)}.$$

Für
$$n = 512$$
 gilt $p_n \approx \frac{510}{511 \cdot 512 \cdot \ln(2)} \approx \frac{1}{355,6}$.

Die bedingte Wahrscheinlichkeit für eine *n*-bit-Zahl nicht prim zu sein, unter der Vorausset zung, dass der Rabin-Miller-Test bestanden wird, ist daher bei *k* Tests

$$\begin{split} p_{n,k}(\textit{nicht prim} \,|\, \textit{true}) & \stackrel{(*)}{=} \frac{p_n(\textit{nicht prim}) \, p_k(\textit{true} \,|\, \textit{nicht prim}) \, p_k(\textit{true} \,|\, \textit{nicht prim}) + p_n(\textit{prim}) \, p(\textit{true} \,|\, \textit{prim})}{p_n(\textit{nicht prim}) \, p_k(\textit{true} \,|\, \textit{nicht prim}) + p_n(\textit{prim}) \, p(\textit{true} \,|\, \textit{prim})} \\ & \leq \frac{(1-p_n) \frac{1}{4^k}}{(1-p_n) \frac{1}{4^k} + p_n \cdot 1} \\ & = \frac{1}{4^k} \cdot \frac{(1-p_n) 4^k}{1-p_n + p_n 4^k} \\ & = p_k(\textit{true} \,|\, \textit{nicht prim}) \cdot \frac{(1-p_n) 4^k}{1-p_n + p_n 4^k}. \\ & \leq p_k(\textit{true} \,|\, \textit{nicht prim}) \cdot \frac{1-p_n}{p_n}, \end{split}$$

also:

$$p_{512,k}(nicht \ prim \ | \ true) \le p_k(true \ | \ nicht \ prim) \cdot 354,6$$

(Für $k = 10$ ist $p_{51210}(nicht \ prim \ | \ true) \le p_{10}(true \ | \ nicht \ prim) \cdot 354,5$ nur geringfügig kleiner)

Die Gleichung (*) folgt aus dem Satz von Bayes, der im Folgenden für endliche Mengen bewiesen wird.

Hat die Menge Ω genau n Elemente und die Teilmenge $E \subseteq \Omega$ genau m Elemente, so sagt man: Die *relative Häufigkeit* der Elemente von E in Ω ist $\frac{m}{n}$ bzw. die *Wahrscheinlichkeit* dafür, dass ein Element aus Ω auch in E ist, beträgt $p(E) = \frac{m}{n}$.

Bedingte Wahrscheinlichkeiten:

Enthält Ω eine weitere Teilmenge E_1 mit genau n_1 Elementen und enthält $E_1 \cap E$ genau m_1 Elemente, so ist die relative Häufigkeit der Elemente von E in E_1 gleich $\frac{m_1}{n_1}$. In diesem Fall sagt man auch: Die Wahrscheinlichkeit dafür, dass ein Element in E ist, unter der Voraussetzung, dass es in E_1 ist, beträgt $p(E \mid E_1) = \frac{m_1}{n_1}$. $p(E \mid E_1)$ heißt auch bedingte Wahrscheinlichkeit (für E unter der Voraussetzung E_1). Dabei gilt:

(1)
$$p(E \mid E_1) = \frac{p(E_1 \cap E)}{p(E_1)}$$
.

(Beweis:
$$p(E \mid E_1) = \frac{m_1}{n_1} = \frac{\frac{m_1}{n}}{\frac{n_1}{n}} = \frac{p(E_1 \cap E)}{p(E_1)}$$
.) Daraus folgt nun auch der

Satz von der totalen Wahrscheinlichkeit:

Sind E, E_1 und E_2 Teilmengen der endlichen Menge Ω mit $E_1 \cap E_2 = \emptyset$ und $E_1 \cup E_2 = \Omega$ (d. h. Ω ist die disjunkte Vereinigung von E_1 und E_2), so gilt

(2)
$$p(E) = p(E_1) \cdot p(E \mid E_1) + p(E_2) \cdot p(E \mid E_2).$$

Beweis: Mit den Bezeichnungen von oben, | E_2 | = n_2 und | $E_2 \cap E$ | = m_2 gilt

$$p(E_1) \cdot p(E \mid E_1) + p(E_2) \cdot p(E \mid E_2) = \frac{n_1}{n} \cdot \frac{m_1}{n_1} + \frac{n_2}{n} \cdot \frac{m_2}{n_2} = \frac{m_1}{n} + \frac{m_2}{n} = \frac{m}{n} = p(E).$$

Bemerkung. Diese Aussage sowie der Satz von Bayes gelten auch für unendliche Wahrscheinlichkeitsräume.

Aus (1) und (2) folgt der

Satz von Bayes: Sind E, E_1 und E_2 Teilmengen der endlichen Menge Ω mit $E_1 \cap E_2 = \emptyset$ und $E_1 \cup E_2 = \Omega$ (d. h. Ω ist die disjunkte Vereinigung von E_1 und E_2), so gilt

$$p(E_1 \mid E) = \frac{p(E_1) \cdot p(E \mid E_1)}{p(E_1) \cdot p(E \mid E_1) + p(E_2) \cdot p(E \mid E_2)}.$$

Beweis: Aus (1) folgt $p(E_1) \cdot p(E \mid E_1) = p(E \cap E_1) = p(E) \cdot p(E_1 \mid E)$, also auch $p(E_1 \mid E) = \frac{p(E_1) \cdot p(E \mid E_1)}{p(E)}$ und mit (2) die Behauptung.