

Ma/CS 6a

Class 6: Introduction to Graphs

By Adam Sheffer

Six Degrees of Kevin Bacon

- Claim. Any actor can be linked through his/her film roles to Kevin Bacon within six steps.
- Example. Keanu Reeves:

Graphs

- We write G = (V, E). That is, the graph G
 has vertex set V and edge set E.
- Example. In the figure:
 - $V = \{a, b, c, d, e\}.$
 - $\circ E = \{(a,b), (a,d), (a,e), \}$

(b,c),(b,e)}. a

Graph Representation (cont.)

- $V = \{a, b, c, d, e\}.$
- $E = \{(a, b), (a, d), (a, e), (b, c), (b, e)\}.$

What is this Good For?

Cold war analysis

Social networks

Communication networks

Robot Motion Planning

Paths and Cycles

Path between a and b.

 $\begin{array}{c} \text{Cycle} \\ \text{through } a \end{array}$

A *cycle* is a path that starts and ends in the same vertex.

More on Paths and Cycles

- A path/cycle is said to be simple if it does not visit any vertex more than once.
- The length of a path/cycle is the number of edges that it consists of.
- **Example.** A simple cycle of length 5.

Connectedness and Degrees

- A graph is connected if there is a path between any two vertices.
- The degree of a vertex is the number of edges that are adjacent to it.

- An edge is a *loop* if both of its endpoints are the same vertex.
- Two edges are parallel if they are between the same pair of vertices.
- A graph is simple if it contains no loops and no parallel edges.
- For now, we only consider simple graphs.

Warm-up Exercise

- Prove. In any graph, the sum of the degrees of the vertices is even.
- Proof. Every edge contributes 1 to the degree of exactly two vertices. Thus,

$$\sum_{v \in V} \deg(v) = \sum_{e \in E} 2 = 2|E|.$$

• **Problem.** Let G = (V, E) be a graph such that the degree of every $v \in V$ is at least d (for some $d \geq 2$). Prove that G contains a path of length d.

Proof

- Assume, for contradiction, that a longest path P is of length c < d.
- Consider a vertex v which is an endpoint of P.
- Since $\deg v \ge d \ge c+1$, it must be connected to at least one vertex $u \notin P$.
- By adding the edge (v, u) to P, we obtain a longer path, contradicting the maximality of P.

- **Problem.** Let G = (V, E) be a graph such that the degree of every $v \in V$ is at least d (for some $d \ge 2$).
 - What is the minimum length of a cycle in *G*?

$$d+1$$

Connectivity Problem

• **Prove.** The vertices of a connected graph G can always be ordered as $\{v_1, v_2, ..., v_n\}$ such that for every $1 < i \le n$, if we remove $\{v_i, v_{i+1}, ..., v_n\}$ and the edges adjacent to these vertices, G remains connected.

- Pick any vertex as v_1 .
- Pick a vertex that is connected to v_1 in G and set it as v_2 .
- Pick a vertex that is connected either to v_1 or to v_2 in G and set it as v_3 .
- ...

Back to Bacon

- We wish to build a graph for the problem.
- What are the vertices of the graph?
 - A vertex for each actor.
- When is there an edge between two vertices?
 - When the corresponding actors played in a common movie.
- Is the graph directed?
 - No.

- We want to check if every actor has a finite Bacon Number. What should we check?
 - Whether the graph is connected.

Bacon Numbers

- The Bacon number of an actor is the minimum number of steps required to connect him to Kevin Bacon.
- Example. By the picture below:
 - Christopher Walken's Bacon number is 2.
 - Keanu Reeves' Bacon number is 4.

But Keanu Reeves' Bacon number is 2!

- What should we do in the graph to find the correct Bacon number of an actor?
 - The length of the shortest path from the actor's vertex to Bacon's vertex.

The BFS Algorithm

- We wish to find out:
 - Whether the graph is connected.
 - The shortest paths from Bacon's vertex to every other vertex.
- The BFS algorithm:
 - **Input.** An undirected graph G = (V, E) and a vertex $s \in V$.
 - Output. A shortest path from s to any other vertex of G (if such a path exists).
 - G is connected if and only if there is a path to every vertex.

- In an undirected graph, a tree is a connected subgraph containing no circles.
- A forest is a set of non-connected trees.

Rooted Trees

- A rooted tree is a tree with a special vertex – the root – that is singled out.
- We draw the tree with the root on top, and the edges "grow downwards".
- A vertex v is the *parent* of a vertex u if there is an edge (u, v) and v is above u.
 - Each vertex, except for the root, has a unique parent.

t

s is the root and t's parent

- The output is a BFS tree, containing only shortest paths from s.
 - A rooted tree with root s.

Test Your Intuition

- **Problem.** Is there always a unique tree containing the shortest paths from s?
- Answer. No!

Erdős Numbers: the Math Version

- Paul Erdős (1913-1996). A Hungarian mathematician. Possibly the most prolific mathematician ever.
 - People that wrote a paper with Erdős have an Erdős number of 1.
 - People that wrote a paper with someone that has an Erdős number of 1, have an Erdős number of 2.
 - Etc.
- Most leading scientists have a small Erdős number.

BFS: Colors

- We call the vertex s that we start from the root of the tree.
- BFS scans the graph starting from the root.
- During the scan, every vertex has a color:
 - Vertices that the algorithm did not visit yet are colored white.
 - Vertices that the algorithm did visit, but is not yet done with are colored *gray*.
 - Vertices that the algorithm is done with are colored *black*.

- A queue stores "objects" (in our case vertices).
- Supports the operations:
 - Enqueue insert an object to the back of the queue.
 - Dequeue remove an object from the front of the queue.

BFS: The Main Idea

- A queue Q holds the vertices that are currently gray. At first $Q = \{s\}$.
- At each step, take out a vertex u ∈ Q and for every edge e adjacent to u:
 - If the other vertex of e is gray or black, do nothing.
 - If the other vertex of *e* is white, color it gray and insert it into *Q*.
- After going over all of u's edges, color u
 black, and move to the next vertex in Q.

Example: Another BFS Run

