

Разработка эволюционных методов декомпозиции задач обращения криптографических функций с использованием статистических тестов и инкрементальных SAT-решателей

Павленко Артём, M42391 Научный руководитель: Ульянцев В.И., к.т.н., доцент ФИТиП

Криптографические алгоритмы и криптоанализ

$$X = R_1 \cup R_2 \cup R_3$$

 $X = \{x_1, x_2, ..., x_{64}\}$ — секретный ключ
 $Y = \{y_1, y_2, ..., y_{128}\}$ — ключевой поток

$$f_{A5/1}$$
: $\{0,1\}^{64} \to \{0,1\}^{128}$
 $f_{A5/1}(x) = y$

Задача **криптоанализа**: зная у, найти х

$$f_{A5/1}^{-1}(x) = y$$

Сведение к SAT с помощью Transalg*

Алгоритм А5/1

Программа для Transalg

```
__in bit XA[19];
    __in bit XB[22];
    __in bit XC[23];
    out bit Y[128];
   bit shift rslosA() {
      bit x0 = XA[18]^XA[17]^XA[16]^XA[13];
      for(int j = 18; j > 0; j=j-1) {
       XA[j] = XA[j-1];
                                               автоматически
10
     XA[0] = x0:
   bit majority(bit A, bit B, bit C) {
        return A&B|A&C|B&C;
17 }
   void main() {
      int b1 = 8;
      int b2 = 10;
      int b3 = 10;
      bit maj;
      for(int i = 0; i < 128; i=i+1) {
       maj = majority(XA[b1], XB[b2], XC[b3]);
       if(!(maj^XA[b1])) shift_rslosA();
       if(!(maj^XB[b2])) shift_rslosB();
       if(!(maj^XC[b3])) shift_rslosC();
        Y[i] = XA[18]^XB[21]^XC[22];
30
```

SAT-формула

```
p cnf 8425 38262
c input variables 64
c literals count 128374
65 9 30 0
65 9 52 0
-65 9 -30 -52 0
65 -9 -52 0
-65 -9 30 52 0
65 -9 -30 0
66 -19 65 0
66 -18 -65 0
-66 19 65 0
-66 18 -65 0
67 -18 65 0
67 -17 -65 0
-67 18 65 0
-67 17 -65 0
68 -17 65 0
68 -16 -65 0
-68 17 65 0
-68 16 -65 0
69 -16 65 0
69 -15 -65 0
-69 16 65 0
 -8425 -8293 8295 -8297 0
-8425 -8293 -8295 8297 0
```

^{*}Transalg: [Otpuschennikov, I., Semenov, A., Gribanova, I., Zaikin, O., Kochemazov, S.: Encoding Cryptographic Functions to SAT Using TRANSALG System. In: ECAI 2016. FAIA, vol. 285, pp. 1594–1595 (2016)]

Декомпозиция. Guess-and-determine атака

$$\mathbf{B} = \{ x_3, x_4, x_5, x_8, x_9, x_{12}, x_{16}, x_{17}, x_{18}, x_{19}, x_{21}, x_{22}, x_{23}, x_{24}, x_{25}, x_{26}, x_{27}, x_{28}, x_{29}, x_{30}, x_{34}, x_{37}, x_{38}, x_{43}, x_{51}, x_{52} \}$$

$$\sum_{i=1}^{2^{s}} t_{i} \ll T_{BruteForce},$$

Оценивание декомпозиции. UNSAT-иммунность

Оценивание декомпозиции. SAT-иммунность

^{*}IBS resistant function: [Semenov A., Zaikin O., Otpuschennikov I., Kochemazov S., Ignatiev A. On cryptographic attacks using backdoors for SAT // The Thirty-Second AAAI Conference on Artificial Intelligence. – IEEE, 2018. – P. 6641-6648]

Автоматизированные методы декомпозиции

- 1. Поиск с запретами (Tabu search)
- 2. Имитация отжига (Simulated annealing)
- GBFS (Greedy best-first search)

- 1 & 2: [Semenov A., Zaikin O. Algorithm for finding partitionings of hard variants of boolean satisfiability problem with application to inversion of some crypto- graphic functions // SpringerPlus. 2016. Vol. 5, no. 1. P. 554.]
- 1 & 2: [Semenov A., Zaikin O., Otpuschennikov I., Kochemazov S., Ignatiev A. On cryptographic attacks using backdoors for SAT // The Thirty-Second AAAI Conference on Artificial Intelligence. IEEE, 2018. P. 6641-6648.]
- 3: [Zaikin O., Kochemazov S. Pseudo-boolean black-box optimization methods in the context of divide-and-conquer approach to solving hard SAT instances // DEStech Transactions on Computer Science and Engineering. 2018. Optim.]

Актуальность

Информационная безопасность

- Криптографические методы для её обеспечения
- Обоснование **криптостойкости** используемых алгоритмов шифрования, посредством построения **криптографических атак**

Построение криптографических атак — **трудоемкая** задача Большинство известных криптографических атак — **аналитические** Автоматизированные методы позволяют **относительно быстро** получить первоначальную оценку криптостойкости алгоритма

Цель и задачи работы

Цель: Разработать новые методы автоматизированного построения декомпозиционных множеств для криптографических алгоритмов

Задачи:

- Применить эволюционные алгоритмы для построения декомпозиционных множеств
- Применить статистические тесты к вычислению функции приспособленности
- Использовать инкрементальное решение задач в процессе вычисления функции приспособленности.

Эволюционные алгоритмы

- Эволюционная Стратегия (1+1)
- Генетический алгоритм: Элитизм

Особь: декомпозиционное множество В Функция приспособленности: для исследования SAT-иммунности

Сравнение особей

Выборка из N задач обращения криптографических функций, ослабленных оцениваемой декомпозицией *B*, которые делятся на 2 типа:

- Задача i была решена за время $t_i < T$
- Задача *i* не была решена за время *T*

Пусть было решено N_{+} задач, тогда время на проведение атаки для B можно оценить следующей формулой: (функция приспособленности)

$$\Phi(\chi_B) = \frac{\sum_{i=1}^{N_+} t_i}{N_+} + \left(\frac{N}{N_+} - \frac{1}{2}\right) \cdot (2^{|B|} \cdot T)$$

Сравнение особей: Статистические тесты

Идея: Будем адаптивно подбирать размер выборки *N* в процессе сравнения Нулевая гипотеза: Выборки не различаются

Пусть N_{max} – максимальный размер выборки, Q – шаг выборки

Процесс сравнения:

- 1. Решаем Q задач из выборки
- 2. Проводим статистическое тестирование двух особей
- 3. Пока статистический тест не различает особи наращиваем выборку с шагом Q не превышая N_{max}
- 4. Вычисляем значения приспособленности и выбираем лучшую особь

Выбор параметров

Самый лучший выбор значения для Q: Q = 1

Однако тогда эффективная реализация возможна только в однопоточном режиме

Для выбранных алгоритмов зададим следующие параметры:

- Эволюционная стратегия (1+1). $N_{max} = 500$. Q = 50
- Генетический алгоритм: Элитизм. $N_{max} = 500$. Q = 100

Выбор статистического теста

Накладываемые ограничения:

- Измерения ограничены сверху величиной T
- Измерения не подчиняются нормальному распределению

Был выбран: **U-критерий Манна-Уитни**

Также для сравнения тестов был выбран: тест Барнарда

Сравнение статистических тестов

Алгоритм	Разрешающая способность U-критерия Манна-Уитни		Разрешающая способность теста Барнарда	
	Число исходов	Доля исходов, %	Число исходов	Доля исходов, %
A5/1	1397	18.99	1328	18.06
Bivium	13167	72.80	10327	57.10
Trivium 64	7894	46.63	6511	38.46
Trivium 96	4060	32.56	3640	29.19

Для каждого криптографического алгоритма было сделано 5 независимых запусков генетического алгоритма

Число просмотренных точек

	Число		
Алгоритм	Со статистическим тестом	Без статистического теста	Во сколько раз больше
A5/1	1471	341	x4.31
Bivium	3616	2439	x1.48
Trivium 64	3398	1323	x2.57
Trivium 96	2494	1299	x1.92

На основе одного запуска для каждой комбинации криптографического алгоритма и метода

Инкрементальная функция приспособленности

В процессе вычисления:

- Инициализируется SAT-решатель на общей для всех подзадач формуле
- Каждая задача решается с соответствующей подстановкой значений в виде допущений

Таким образом SAT-решатель запоминает информацию о решенных подзадачах и использует её при решении последующих

В результате:

- + Снижение временных затрат на вычисление функции приспособленности
- Снижение эффективности построенных декомпозиционных множеств

Сравнение декомпозиционных множеств

Алгоритм	Статистические тесты		Адаптивная стратегия*	
	B	Оценка, сек	B	Оценка, сек
ASG 72	10	4794.55	9	5604.8
ASG 96	19	1.56e+06	16	3.72e+06
Bivium	27	7.49e+11	39	1.49e+12
Trivium 64	17	2.03e+07	21	3.17e+07
Trivium 96	35	1.24e+12	40	2.09e+12

^{*}Adaptive strategy: [Pavlenko A.L., Semenov A., Ulyantsev V. Evolutionary Computation Techniques for Constructing SAT-Based Attacks in Algebraic Cryptanalysis//Lecture Notes in Computer Science, 2019, Vol. 11454, pp. 237-253]

Сравнение с другими автоматизированными методами

Работа*	Работа**	Работа***
A5/1	ASG 72	Trivium
Bivium	ASG 96	Mickey
Grain v0	ASG 192	Grain v1

В приведенных работах проводилось исследование UNSAT-иммунности

^{*: [}Semenov A., Zaikin O. Algorithm for finding partitionings of hard variants of boolean satisfiability problem with application to inversion of some crypto- graphic functions // SpringerPlus. — 2016. — Vol. 5, no. 1. — P. 554.]

^{**: [}Zaikin O., Kochemazov S. An improved SAT-based guess-and-determine attack on the alternating step generator // International Conference on Information Security. — Springer. 2017. — P. 21–38.]

^{***: [}Zaikin O., Kochemazov S. Pseudo-boolean black-box optimization methods in the context of divide-and-conquer approach to solving hard SAT instances // DEStech Transactions on Computer Science and Engineering. — 2018. — Optim.]

Атака на Alternating Step Generator (ASG 72)

Полученная оценка: 4794.55 сек.

Конкуренты: 1116 сек.

Число атак	Ограничение времени, сек.	Успешные атаки, %	Усредненное время, сек.	Отклонение времени, сек.
1000	1.0	64.8	1039.24	17.43
1000	2.0	100	1081.32	492.72
1000	3.0	100	1592.62	281.56
10000	2.0	100	1084.26	486.00

Из расчета на одно ядро процессора Intel®Xeon®E5-2695 v4

Заключение

- Разработаны эволюционные методы построения декомпозиционных множеств для криптографических алгоритмов с применением статистических тестов
- Разработанная функция приспособленности на основе статистических тестов может быть использована с любым другим алгоритмом оптимизации, а также для любой другой задачи использующей метод Монте-Карло для оценивания особей
- Были построены новые декомпозиционные множества для ряда криптографических алгоритмов
- Благодарность Александру Семенову и Максиму Буздалову за коллаборацию

Публикации и выступления

- Pavlenko A., Buzdalov M., Ulyantsev V. Fitness Comparison by Statistical Testing in Construction of SAT-Based Guess-and-Determine Cryptographic Attacks//GECCO 2019 - Proceedings of the 2019 Genetic and Evolutionary Computation Conference Companion. — 2019. — P. 312-320
- Pavlenko A., Semenov A., Ulyantsev V.I., Zaikin O. Parallel Framework for Evolutionary Black-box Optimization with Application to Algebraic Cryptanalysis//42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO). — 2019.
 — P. 1144-1149
- Павленко А., Ульянцев В. Применимость статистических тестов к эволюционным методам декомпозиции экземпляров задачи о булевой выполнимости для криптоанализа генераторов ключевого потока. 2019. VIII Конгресс молодых ученых.
- *Павленко А., Ульянцев В.* Эволюционные алгоритмы построения декомпозиционных множеств для трудных вариантов задач о булевой выполнимости, позволяющих достичь сверхлинейного ускорения при решении. 2020. IX Конгресс молодых ученых.

Спасибо за внимание!

alpavlenko@itmo.ru

ITSMOre than a UNIVERSITY