

Machine Learning and Decision-Making

ADI @ LEI/3º, MiEI/4º - 2º Semestre Filipe Gonçalves, Inês Alves, Cesar Analide

Contents

2

- Linear Regression
- Hands On

Linear Regression (LR) is used when we want to predict the value of a variable (independent variable) based on the value of another variable (dependent variable).

It helps to determine if an independent variable does a good job in predicting the dependent variable or which independent variable plays a significant role in predicting the dependent variable.

- □ **Dependent Variable:** target variable that will be estimated and predicted (y);
- □ **Independent Variable:** predictor variable that is used to estimate and predict (x);
- \square **Slope:** angle of the line, denoted as *m* or θ 1;
- Intercept: where the function crosses the y-axis, denoted as b or θ 0.

$$y = \beta 0 + \beta 1X + \epsilon$$

Linear regression finds the best fit line through your data by searching for the regression coefficient (θ 1) that minimizes the total error (ε) of the model.

Exercise:

- **Problem:** Development of a Machine Learning Model able to predict the price of a given LEGO set
- Regression Approach: Linear Regression approach to solve this problem
- Dataset: Table with information regarding LEGO sets, containing:
 - 'age': Which age category it belongs to
 - 'list_price': Price of the set (in \$)
 - 'num_reviews': Number of reviews per set
 - 'piece_count': Number of pieces in that LEGO set
 - 'play star ratings': Ratings
 - 'review_difficulty': difficulty level of the set
 - 'star_rating': Ratings
 - 'theme name': Which theme it belongs
 - 'val_star_rating': Ratings
 - 'country': Country name

CHECK OUT THE DATA

e Edit	Hilite Navi	gation V	iew				298 8		5.000 150000		
		- 0	Teble cefelit - Rows: 12251			Spec - Columns: 11 Properties Flow Variables					
Row ID	S ages	D list_pr.	1 num_r	I piece	D play_s	I prod_id	S review	D star_r	S theme	D val_st	S country
Row0	6-12	29.99	2	277	4	75823	Average	4.5	Angry Birds™	4	US
Row1	6-12	19.99	2	168	4	75822	Easy	5	Angry Birds™	4	US
Row2	6-12	12.99	11	74	4.3	75821	Easy	4.3	Angry Birds™	4.1	US
Row3	12+	99.99	23	1032	3.6	21030	Average	4.6	Architecture	4.3	US
Row4	12+	79.99	14	744	3.2	21035	Challenging	4.6	Architecture	4.1	US
Row5	12+	59.99	7	597	3.7	21039	Average	4.9	Architecture	4.4	US
Row6	12+	59.99	37	598	3.7	21028	Average	4.2	Architecture	4.1	US
Row7	12+	49.99	24	780	4.4	21029	Average	4.7	Architecture	4.3	US
Row8	12+	39.99	23	468	3.6	21034	Average	4.7	Architecture	4.1	US
Row9	12+	39.99	11	444	3.6	21033	Average	4.8	Architecture	4.5	US
Row10	12+	39.99	14	386	4.1	21036	Average	4.4	Architecture	3.6	US
Row11	12+	34.99	53	321	3.2	21019	Average	4.6	Architecture	4.4	US
Row12	12+	29.99	7	361	4.2	21032	Easy	4.6	Architecture	4.2	US
Row13	7-12	159.99	63	847	3.8	17101	Average	3.4	BOOST	3.5	US
Row14	10+	29.99	13	708	4.7	41597	Average	4.8	BrickHeadz	4.8	US
Row15	10+	19.99	1	234	3	41614	Easy	5	BrickHeadz	5	US
Row16	10+	19.99	1	160	5	41613	Very Easy	5	BrickHeadz	5	US
Row17	10+	9.99	1	149	2	41609	Very Easy	3	BrickHeadz	4	US
Row18	10+	9.99	1	141	2	41608	Very Easy	4	BrickHeadz	4	US
Row19	10+	9.99	3	101	4	41604	Average	4.7	BrickHeadz	4.5	US
Row20	10+	9.99	2	105	3	41605	Easy	5	BrickHeadz	5	US
Row21	10+	9.99	1	113	5	41606	Easy	5	BrickHeadz	5	US
Row22	10+	9.99	1	136	?	41607	?	5	BrickHeadz	7	US
Row23	10+	9.99	2	91	3	41485	Easy	4.5	BrickHeadz	4	US
Row24	10+	9.99	7	140	3.2	40270	Easy	4.9	BrickHeadz	4.7	US
Row25	10+	9.99	5	143	4.6	41599	Easy	5	BrickHeadz	5	US
Row26	10+	9.99	3	122	2.7	41598	Very Easy	4	BrickHeadz	3	US
Row27	10+	9.99	5	130	4.3	41603	Easy	5	BrickHeadz	4.8	US
Row28	10+	9.99	3	119	4.5	41602	Easy	5	BrickHeadz	4.5	US
Row29	10+	9.99	1	135	1	41600	Very Easy	4	BrickHeadz	3	US

CHECK OUT THE DATA

CHECK OUT THE DATA

COLUMN FILTER

We can drop the product ID from our data

CORRELATION STUDY

ENCODING

Label Encoding

- Can we do one-hot encoding to all our left columns? Does it make sense?
- Remember: encoding a huge number of categories has a very high cost...

ENCODING

Label Encoding

Category To Number

Map Categorical values to Numerical

OUTLIERS

Now, our dataset is in a numerical format $\overset{\circ}{\otimes}$ Next step: treat any **numeric** outliers that may exist Outliers are extreme values in a feature that deviate from other observations on data. They need to be treated as they may have an effect on the statistics involved in the data.

Numeric Outliers Remove outliers

It mainly depends on the quantity of outliers.

MISSING VALUES

We still have a lot of missing values in our data. What are we going to do about it?

- 1) Mean
- 2) Median
- 3) Most used Value
- 4) Business knowledge and Knowledge extraction

TRAINING A LINEAR REGRESSION MODEL

Label: LEGO set price

TRAINING A LINEAR REGRESSION MODEL Label: LEGO set price **Linear Regression** Learner **Partitioning** Ш Node 18 Regression **Predictor** 80% train 20% test Node 19

EVALUATING THE MODEL

- 1. R-Square value
- 2. Mean Absolute Error (MAE)
- 3. Mean Square Error (MSE)
- 4. Root Mean Square Error (RMSE)

R-Squared: proportion of variation in the outcome that is explained by the predictor variables.

total variance explained by model total variance

Here, the higher the value, the better the model. 1 means that the model explains 100% of the variance of the labels. 0 means that the model doesn't understand how the labels vary.

MAE: mean of the absolute value of the errors $\frac{1}{n} \sum_{i=1}^{n} |y_i - \hat{y}_i|$

$$\frac{1}{n}\sum_{i=1}^{n}|y_i-\hat{y}_i|$$

MSE: mean of the squared errors

$$\frac{1}{n} \sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

EVALUATING THE MODEL

- 1. R-Square value
- 2. Mean Absolute Error (MAE)
- **3.** Mean Square Error (MSE)
- 4. Root Mean Square Error (RMSE)——

RMSE: calculates the average of the square roots of the error between values (actual) and predictions (hypotheses). It has a range from 0 to infinity and returns the magnitude of errors. The scores are negatively-oriented, so **lower values are better.** A score of 0 means that, on average, the predictions are great, that is, 100% effective.

$$\sqrt{\frac{1}{n}\sum_{i=1}^{n}(y_i-\hat{y}_i)^2}$$

Comparing the MAE, MSE and RMSE metrics:

- MAE it's the easiest to understand because it's the average error;
- MSE it's most popular than MAE because MSE "punishes" larger errors, which tends to be useful in real world problems;
- **RMSE** is even more popular than MSE because RMSE is interpretable in the "y" units.

All of these are **loss functions**, so we want to minimize them.

EVALUATING THE MODEL

- 1. R-Square value
- 2. Mean Absolute Error
- **3.** Mean Square Error
- 4. Root Mean Square Error (RMSE)

Knime's **Numeric Scorer** takes the predicted feature values and actual feature values as input and produces the metrics.

Our model has an R-square value of 74.4 % which means that 74.4% of our lego dataset falls around the regression line created by our model.

• • •	Statistics - 3:21 - Numeric Scorer					
File						
	R ² :	0.744				
	Mean absolute error:	9.33				
	Mean squared error:	230.695				
	Root mean squared error:	15.189				
	Mean signed difference:	0.079				
	Mean absolute percentage error:	0.283				
	Adjusted R ² :	0.744				

EVALUATING THE MODEL

EVALUATING THE MODEL

