MAT 237, Quiz 2

Part A: (3 marks) Give the statement of completeness axiom for \mathbb{R} together with the ϵ -characterization of the lub of a set S.

any Subset SCR which is non-empty & bdd orbove has a lub. u=lub(8) if YSES SEU and VE>0 38ES t. u-E<SEU.

Part B: (3 marks) first determine the lub of the set $(1,2) \cup \{3\}$, and then use the ϵ -characterization of lub to prove your answer.

lab(S)=3. proof given 6>0 3-6<353 & 3 e S.

Part C: (4 marks) Use part (A) to prove any monotone incresasing sequence that is bounded above has a limit.

Let $\{x_n\} = S$, S ince S in S

Part A: (2 marks) Give the statement of the Monotone sequence theorem.

Any monotone increasing Sequence which is bounded above must have limit (That is, Converging.)

Part B: (4 marks) Apply Monotone sequence theorem to show that the sequence to prove that the limit of the sequence $\{2-\frac{1}{n}:n=1,2,3,\ldots\}$ exists. What is it? Use the completeness and lub ideas to justify your answer.

lem $2-\frac{1}{n}=2$ b,c The Sequence $\{2-\frac{1}{n}\}$ is increasing and bounded above $(by\ 2)$. 2=lab(S) b_{le} $\forall\ E>0$ $2-E<2-\frac{1}{n}<2$ Where $N>\frac{1}{E}$

Part C: (4 marks) Consider the sequence of the intervals $I_n=[a_n,b_n]$ such that $I_{n+1}\subset I_n$ and that $(b_n-a_n)\to 0$. Let l_1 be the limit of the sequence $\{a_n\}_{n=1}^\infty$ and l_2 be the limit of the sequence $\{b_n\}_{n=1}^\infty$. Prove that $l_1=l_2$.

Core know $l_1 \le l_2$ by $l_2 = lub(and)$ and $l_2 = lub(and)$ and all of an are len Than all of bm: i.e. $an \le l_1 \le l_2 \le bm$.

Now if $l_2 - l_1 > 0$ Then tn $b_n - an > l_2 - l_1$ by bot Since $b_n - an - rc$ and $l_2 - l_1$ is fixed Then $l_2 - l_1 = 0$.

Part A: (2 marks) Present the ϵ - δ definition for a function $f:S\longrightarrow \mathbb{R}^k$ to <u>not</u> to be continuous at a point a:(S) is a subset of \mathbb{R}^n .)

Part B: (4 marks) Use your definition as in (A) to show that the greatest integer function or step function f(x) = [x] defined on [0,2] is not continuous at 1.

let
$$E=1$$
 given $8>0$ let $x=1+\frac{8}{2}$. Note $1x-11=\frac{8}{2}<8$ but $f(x)=f(1-\frac{8}{2})=0$ while $f(1)=1$ no $10-11\geq 1=E$.

Part C: (4 marks) Assume $f: S \longrightarrow \mathbb{R}^k$ is <u>not</u> continuous at the point $a \in S$. Use the definition in (A) to construct a sequence $\{x_n\}$ in S which converges to a but $\{f(x_n)\}$ does not converge to f(a).

$$\exists \epsilon > 0 \quad \forall 8 > 0 \quad \exists x \in S \quad \text{ol.} \quad |x-a| < 8 \quad \text{but} \quad |f(x) - f(a)| \ge \epsilon$$
 $f(x) \in S \quad \text{and let } 8 = 1 \quad , \quad \exists x, \epsilon S \quad \text{ol.} \quad |x_1-a| < 1 \quad \text{but} \quad |f(x_1) - f(a)| \ge \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad \exists x_1 \in S \quad \text{ol.} \quad |x_1-a| < 1 \quad \text{but} \quad |f(x_1) - f(a)| \ge \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad \exists x_1 \in S \quad \text{ol.} \quad |x_1-a| < 1 \quad \text{but} \quad |f(x_1) - f(a)| \ge \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) = \frac{1}{2} \quad , \quad |g(x)| = \epsilon$
 $g(x) =$

C. 5

Part A: (3 marks) Present the ϵ definition for convergence of a sequence $\{x_n\}$ to a point a; also present the ϵ characterization of $a \in \overline{S}$.

$$\chi_{n} \rightarrow \alpha$$
 if $\forall \epsilon > 0 \exists N \forall n \quad n > N \Rightarrow \forall \kappa \in B(\epsilon, \alpha)$
 $\alpha \in \overline{S}$ of $\forall \epsilon > 0 \quad B(\epsilon, \alpha) \cap S \neq \emptyset$

Part B: (3 marks) Since 1 and 2 both belong to the closure of the set $S=(0,1)\cup\{2\}$, by theorem 1.14 there must be sequences converging to these two points. Construct two such sequences.

$$2 \in \overline{S}$$
 and The Sequence $x_n = 2 \forall n$ Converges to 2.
 $1 \in \overline{S}$ and The Sequence $x_n = 1 - \frac{1}{n}$ Converges to 1.

Part C: (4 marks) Prove, using the two definitions in part A, that if $a \in \overline{S}$ then there is a sequence $\{x_n\}$ in S that converges to a.

in S that converges to a.

If
$$a \in S$$
 then let $x_n = a \quad \forall n$.

If $a \in S$ then let $a \in S$ then $a \in S$ th

Page 1 of 1

Part A: (3 marks) Present the ϵ - δ definition of continuity of a function $f: S \longrightarrow \mathbb{R}^k$ at a point a. (S is a subset of \mathbb{R}^n .) Also give the definition of $\{x_n\}$ converges to a point a.

$$\forall \epsilon > 0 \exists \delta > 0 \ \forall x \ |x-\alpha| < \delta => |f(x)-f(\alpha)| < \epsilon$$

$$\forall \epsilon > 0 \ \exists K \ \forall k \ k > K => |x-\alpha| < \delta$$

Part B: (3 marks) Use part A to show the limit of the sequence $\{\frac{3k+4}{k-5}\}$ is 3.

given
$$\epsilon > 0$$
 let $k > 5 + \frac{9}{\epsilon}$. Then $\forall k \mid k > K \Rightarrow k-5 > K-5 \Rightarrow k$

So that $k-5 > \frac{9}{\epsilon}$

and $\frac{9}{k-5} < \epsilon$

Part C: (4 marks) Assume $fS \longrightarrow \mathbb{R}^k$ is continuous at the point $a \in S$. Assume that a sequence $\{x_n\}$ in S converges to \boldsymbol{a} . Prove that the sequence $\{f(\boldsymbol{x}_n)\}$ also converge to $f(\boldsymbol{a})$.

in S converges to a. Prove that the sequence
$$\{f(x_n)\}$$
 also converge to $f(a)$.

Solven $f(a)$ and $f(a)$ an

Part A: (3 marks) Present the sequential equivalent of $a \in \overline{S}$ (Theorem 1.14)

Part B: (4 marks) Determine the closure of the set $S = \{(-1)^n\}_{n=1}^{\infty}$ and then find sequences in S that converge to the points in \overline{S} .

$$S = \{1, -1\}$$
 no $S = \{1, -1\}$ and The Sequence $\times n = 1$ or $\times n = 1$

Part C: (3 marks) Use part A to show that if the point a is in the closure of the set $S = \{x_n\}_{n=1}^{\infty}$, then there is a subsequence of $\{x_n\}$ that converges to a.

If
$$a \in \{x_n\}$$
 Then there is a Sequence on $S = \{x_n\}$ That converges to a (by 1.14). But a Sequence on S will be a Subsequence of $\{x_k\}$ say $\{x_k\}_{i=1}^{\infty}$.

Part A: (3 marks) Present the ϵ - δ definition for 'f is continuous at a'. Then give this definition in terms of the open balls and the inverse image of the function f.

$$f$$
 is contact a of $\forall \epsilon > 0 \exists \delta > 0 \quad \forall x \mid |x-a| \leq \delta = > |f(x)-f(a)| \leq \epsilon$
or $\forall \epsilon > 0 \exists \delta > 0 \quad B(s,a) \subset f(B(\epsilon,f(a)))$

Part B: (3 marks) For the function $f(x) = x^2$, determine the inverse image $f^{-1}(U)$ for U = (1, 2). Repeat with the open interval U = (-1, 2) and U = [0, 2).

Repeat with the open interval
$$U = (-1,2)$$
 and $U = [0,2)$.

$$\int_{-1}^{1} (U) = \left\{ x \in \mathbb{R} : f(x) \in U \right\} \cdot U_{\Xi}(1,2) \quad f((1,2)) = (-\sqrt{2},-1)U(1,\sqrt{2}) \right\}$$

$$\int_{-1}^{1} ((-1,2)) = (-\sqrt{2},\sqrt{2}) \quad f((0,2)) = (-\sqrt{2},\sqrt{2})$$

Part C: (4 marks) Suppose $f: \mathbb{R}^n \longrightarrow \mathbb{R}^k$ is continuous and U is an open subset of \mathbb{R}^k . Prove that the set $S = \{x \in \mathbb{R}^n : f(x) \in U\}$ is also open.

Show SCS^{int} . Pick DeS, $\exists b \in U$ at. f(a)=b. finCont. at a , so de>0 $\exists s>0$ $B(s,a) \subset f(B(e,b))$. (4+)Now Since U is open $\exists e>0$ at. $B(e,b) \subset U$ and $f(B(e,b)) \subset S$. by (8) $\exists s>0$ at $B(s,a) \subset f(B(e,b)) \subset S$