MA303BS: COMPUTER ORIENTED STATISTICAL METHODS

B.TECH II Year I Sem. L T P C

Pre-requisites: Mathematics courses of first year of study.

Course Objectives: To learn

- The theory of Probability, and probability distributions of single and multiple random variables
- The sampling theory and testing of hypothesis and making inferences
- Stochastic process and Markov chains.

Course Outcomes: After learning the contents of this paper the student must be able to

- Apply the concepts of probability and distributions to some case studies
- Correlate the material of one unit to the material in other units
- Resolve the potential misconceptions and hazards in each topic of study.

UNIT - I

Probability: Sample Space, Events, Counting Sample Points, Probability of an Event, Additive Rules, Conditional Probability, Independence, and the Product Rule, Bayes' Rule.

Random Variables and Probability Distributions: Concept of a Random Variable, Discrete Probability Distributions, Continuous Probability Distributions, Statistical Independence.

UNIT - II

Mathematical Expectation: Mean of a Random Variable, Variance and Covariance of Random Variables, Means and Variances of Linear Combinations of Random Variables, Chebyshev's Theorem.

Discrete Probability Distributions: Introduction and Motivation, Binomial, Distribution, Geometric Distributions and Poisson distribution.

UNIT - III

Continuous Probability Distributions: Continuous Uniform Distribution, Normal Distribution, Areas under the Normal Curve, Applications of the Normal Distribution, Normal Approximation to the Binomial, Gamma and Exponential Distributions.

Fundamental Sampling Distributions: Random Sampling, Some Important Statistics, Sampling Distributions, Sampling Distribution of Means and the Central Limit Theorem, Sampling Distribution of S2, t –Distribution, F-Distribution.

UNIT - IV

Estimation & Tests of Hypotheses: Introduction, Statistical Inference, Classical Methods of Estimation.: Estimating the Mean, Standard Error of a Point Estimate, Prediction Intervals, Tolerance Limits, Estimating the Variance, Estimating a Proportion for single mean, Difference between Two Means, between Two Proportions for Two Samples and Maximum Likelihood Estimation.

Statistical Hypotheses: General Concepts, Testing a Statistical Hypothesis, Tests Concerning a Single Mean, Tests on Two Means, Test on a Single Proportion, Two Samples: Tests on Two Proportions.

UNIT - V

Stochastic Processes and Markov Chains: Introduction to Stochastic processes- Markov process. Transition Probability, Transition Probability Matrix, First order and Higher order Markov process, n-step transition probabilities, Markov chain, Steady state condition, Markov analysis.

TEXT BOOKS:

- 1. Ronald E. Walpole, Raymond H. Myers, Sharon L. Myers, Keying Ye, Probability & Statistics for Engineers & Scientists, 9th Ed. Pearson Publishers.
- 2. S C Gupta and V K Kapoor, Fundamentals of Mathematical statistics, Khanna publications.
- 3. S. D. Sharma, Operations Research, Kedarnath and Ramnath Publishers, Meerut, Delhi

REFERENCE BOOKS:

- 1. T.T. Soong, Fundamentals of Probability And Statistics For Engineers, John Wiley & Sons Ltd, 2004.
- 2. Sheldon M Ross, Probability and statistics for Engineers and scientists, Academic Press.