Poniżej są opisane dwie tabelki:

- 1. ogólny opis ramki Ethernet IEEE 802.3
- 2. szczegółowy zapis ramki

OBIE TABELKI WYKONAJ W EXCELU

Tabela 1. Ramka Ethernet IEEE 802.3 (bez LLC) składa się z kilku części:

Nazwa części ramki	ŧ	ŧ	:	ŧ	ŧ	:	ŧ	
Ile oktetów	•••	•••	•••	•••	•••	•••		

Tabela 2. Jesteś nadawcą w sieci. Przygotuj ramkę (frame) do wysłania do kolegi obok.

W tym celu musisz wymienić się adresami MAC z kolegą.

Wymagane minimum grupy pól z danymi to 64 oktety. Dla uproszczenia zrobimy tylko 4 oktety.

W polach z danymi zapisz liczbę **10xx** (xx to twój numer w dzienniku wg numeracji INF-R).

Liczba 10xx zajmuje dwa bajty (oktety). Musisz zamienić ją na zapis binarny, a następnie odwrócić kolejność bajtów, bo taki jest standard zapisu liczb w konwencji **little-endian**.

Ramkę wypełnij wg poniższego wzoru. Wszystkie przeliczenia wykonuj za pomocą formuł. Wartości wpisane do tabeli muszą być zgodne ze standardem.

Uwaga: Pola, do których wpisujesz wartości początkowe, zaznacz na żółto, np.

- jeśli wpisujesz wartości Bin, to oblicz Dec i Hex (żółte jest pole Bin)
- jeśli wpisujesz wartość Dec, to oblicz Bin i Hex (żółte jest pole Dec)

Nazwa części ramki	Nr oktetu ciągły	Nr oktetu w części	Wartość DEC	Wartość BIN na 8 bitach	Wartość HEX
	1.	1.			
	2.	2.			
	3.	3.			
	4.	4.			
	5.	5.			
	6.	6.			
	7.	7.			
	8.	1.			
	9.	1.			
	10.	2.			
	11.	3.			
	12.	4.			
	13.	5.			
	14.	6.			
	••••				

Sumę kontrolną zrób jako sumę wszystkich kolejnych bitów.

Tu przepisz sumę kontrolną jako liczbę.

Czy się zgadza (Tak / Nie)? (zmień jakiś bit)

SPRAWDZENIE SUMY KONTROLNEJ

Uwaga: Zmiana bitu $0 \rightarrow 1$ albo $1 \rightarrow 0$ skutkuje zmianą wartości kontrolnej, która nie będzie zgadzała się z wpisaną "ręcznie" liczbą.

Jeśli zrobimy parzystą ilość takich zmian, to suma kontrolna pozostanie ta sama i nie można stwierdzić jej niezgodności za pomocą porównania z liczbą wzorcową.

Potrzebna jest wtedy skuteczniejsza metoda sprawdzania, np. CRC.

Jeśli masz ochotę, to zmień ww. sprawdzenie na inny, lepszy algorytm CRC.