Routing Games Game Theory

Vincent Knight

(G, r, c)

- ▶ G = (V, E), with a defined set of sources s_i and sinks t_i ;
- ► A commodity *r_i*;
- ▶ A set of latencies: c_e.

$$c(x) = 1$$

$$\frac{1 - \alpha}{c(x) = x}$$

$$C(f) = \sum_{P \in \mathcal{P}} c_P(f_P) f_P = \sum_{e \in E} c_e(f_e) f_e$$

$$c(x) = 1$$

$$\frac{1 - \alpha}{c(x) = x}$$

$$C(f) = \sum_{P \in \mathcal{P}} c_P(f_P) f_P = \sum_{e \in E} c_e(f_e) f_e$$
$$\alpha = .75 \Rightarrow f = (.75, .25)$$

$$c(x) = 1$$

$$\alpha$$

$$1 \quad \text{(s)}$$

$$c(x) = x$$

$$C(f) = \sum_{P \in \mathcal{P}} c_P(f_P) f_P = \sum_{e \in E} c_e(f_e) f_e$$
$$\alpha = .75 \Rightarrow f = (.75, .25)$$

$$C(f) = 1 \times .75 + c(.25) \times .25 = 1 \times .75 + .25 \times .25 = .8125$$

An optimal flow f^* minimizes C(f).

An optimal flow f^* minimizes C(f).

$$C(\alpha) = \alpha + (1 - \alpha)^2 = 1 - \alpha + \alpha^2$$

An optimal flow f^* minimizes C(f).

$$C(\alpha) = \alpha + (1 - \alpha)^2 = 1 - \alpha + \alpha^2$$

$$f^* = (.5, .5)$$

A Nash flow: \tilde{f} iff for every commodity i and any two paths $P_1, P_2 \in \mathcal{P}_i$ such that $f_{P_1} > 0$ then:

$$c_{P_1}(f) \leq c_{P_2}(f)$$

A Nash flow: \tilde{f} iff for every commodity i and any two paths $P_1, P_2 \in \mathcal{P}_i$ such that $f_{P_1} > 0$ then:

$$c_{P_1}(f) \leq c_{P_2}(f)$$

$$\tilde{f}=(0,1)$$