The FLP Theorem

Jacopo Notarstefano
jacopo.notarstefano [at] gmail.com

The Distributed Consensus Problem

Definition

Consensus Protocol

Message System

Partial correctness

A configuration C has **decision value** v if some process p is in a decision state with $y_p = v$.

Definition (Partial correctness)

A consensus protocol is **partially correct** if:

- No accessible configuration has more than one decision value.
- ② For each $v \in \{0,1\}$, some accessible configuration has decision value v.

Total correctness in spite of one fault

A process p is **nonfaulty** in run if it takes infinitely many steps, otherwise it is **faulty**.

A run is **admissible** if at most one process is faulty and all messages sent to nonfaulty processes are eventually received.

A run is **deciding** if some process reaches a decision state.

Definition (Total correctness in spite of one fault)

A consensus protocol P is **totaly correct in spite of one fault** if it is partially correct and every admissibile run is deciding.

Main result

Theorem (Fischer, Lynch, Paterson 1985)

No consensus protocol is totally correct in spite of one fault.

A configuration is **bivalent** if the set of decision values of configurations reachable from it has 2 elements. It is instead 0-valent or 1-valent according to the corresponding value.

Proof (sketch).

Given an initial bivalent configuration, we construct an admissible run that at each stage results in another bivalent configuration.

Lemma 1

Lemma

Suppose that from some configuration C, the schedules σ_1 , σ_2 lead to configurations C_1 , C_2 respectively. If the sets of processes taking steps in σ_1 and σ_2 , respectively, are disjoint, then σ_2 can be applied to C_1 and σ_1 can be applied to C_2 , and both lead to the same configuration C_3 .

Lemma 2

Lemma

P has a bivalent initial configuration.

Proof.

Lemma 3

Lemma

Let C be a bivalent configuration of P, and let e = (p, m) be an event that is applicable to C. Let C be the set of configurations reachable from C without applying e, and let $\mathcal{D} = e(C) = \{e(E) | E \in C \text{ and } e \text{ is applicable to } E\}$. Then, \mathcal{D} contains a bivalent configuration.

Proof.

Proof of main result

Proof.