REDES NEURONALES

Práctico 3, Septiembre de 2010

Prof. F.A. Tamarit

Ejercicio 1. Implementá un programa de aprendizaje usando el algoritmo de backpropagation (batch) en una red neuronal con una capa oculta de M neuronas que computa una función booleana de N entradas. Implementá también la posibilidad de incluir momentos en el algoritmo.

Con este programa analice el aprendizaje de la función de paridad. Para ello:

• Calcule la curva de aprendizaje, esto es, el error de generalización promedio (dividido el número total de ejemplos 2^N) en función de la fracción de ejemplos utilizados en el entrenamiento $p/2^N$ donde el promedio se calcula sobre una muestra de L conjuntos diferentes de entrenamiento de p ejemplos tomados aleatoriamente con igual probabilidad. Tenga en cuenta en el cálculo del promedio solamente aquellos casos en que el error de aprendizaje es inferior a una tolerancia que garantice la salida correcta para todos los patrones del conjunto de entrenamiento. Considere M=N y repita este cálculo par N=4,6 y 8, tomando L=5000. Compare las curvas de aprendizaje. Repita el cálculo para N=8 utilizando momentos

Ejercicio 2. Implementá un programa de aprendizaje usando el algoritmo de backpropagation (on-line) en una red neuronal con una capa oculta de M neuronas para aproximar funciones continuas de una variable f(x), entrenando sobre p puntos de la funcion tomados aleatoriamente en un intervalo finito de la variable independiente x. Imponé un límite de tolerancia de error de aprendizaje por patron ϵ .

Con este programa encuentre aproximaciones para las siguientes funciones en el intervalo $x \in [1, 5]$:

- $f(x) = \frac{1}{x}$ con M = 4, $\epsilon = 0.01$ para p = 5, 10 y 20.
- f(x) = ln(x) con M = 6, $\epsilon = 0.02$ para p = 5, 10 y 20.

En cada caso graficá simultáneamente la función a aproximar, la función de ajuste aprendida por la red y los puntos utilizados para obtener dicha aproximación.

Ejercicio 3. Implementá un programa de aprendizaje usando el algoritmo de backpropagation (on-line) en una red neuronal con N entradas, N salidas y una capa oculta de M neuronas para el problema de codificación, en el cual se requiere que la red aprenda a mapear en si mismos patrones de entrada ortogonales del tipo $\vec{\xi} = (0, 0, \dots, 1, \dots, 0)$, esto es, con una única neurona activada. Analice las codificaciones obtenidas por las redes 8-3-8 y 8-5-8.