Direct Photon Production in Heavy Ion Reactions

Thomas Peitzmann

Utrecht University

Outline

- direct photons motivation
- theory overview
 - hard thermal loops
- experimental results
 - spectra
 - comparison to model calculations
 - elliptic flow?

What are Direct Photons?

- photons directly produced in scattering processes
 - not from decays (e.g. neutral pions)!
- two different major domains:
 - prompt photons
 - hard scattering processes
 - ◆ high p_T
 - information on PDFs, QCD, etc.
 - thermal photons
 - thermal production
 - ◆ low/medium p_T
 - information on early thermal state (QGP?)

Kinetic Freeze-out Temperature

• RHIC:

$$T_{kin} = 100 - 120 \,\text{MeV}$$

 $\beta_T = 0.4 - 0.5$

latest stage of the expansion

Chemical Freeze-out Temperature

• RHIC:

$$T = 160 \,\text{MeV}, \quad \mu_B = 20 \,\text{MeV}$$

close to critical temperature

Thermal Photons as Thermometer

- momentum distributions for thermal system should reflect temperature
 - hadron momentum distributions determined at freeze-out (latest stage of the evolution = low temperature)
- photons do not interact strongly, photon emission from all phases (also early phase)
 - direct photons from thermal source contain information from initial temperature
 - theoretical calculation needs to fold photon rates with evolution of collision system

Prompt Photons

- produced in hard scatterings of quarks and gluons
- lowest order
 - quark-gluon-Compton
 - quark-antiquark-annihilation
- next order
 - Bremsstrahlung
- calculable in pQCD
- soft corrections
 - intrinsic k_T ?
 - K-factor ?

Thermal Photon Rates (Lowest Order)

- matrix elements from Feynman diagrams
- convolute with parton momentum distributions

$$\frac{dN}{d^4xd^3p} = \frac{1}{(2\pi)^3 2E} \int \frac{d^3p_1}{(2\pi)^3 2E_1} \frac{d^3p_2}{(2\pi)^3 2E_2} \frac{d^3p_3}{(2\pi)^3 2E_3}
\times n_1(E_1)n_2(E_2) \left[1 \pm n_3(E_3)\right]
\times \sum_i \langle |M|^2 \rangle (2\pi)^4 \delta(p_1 + p_2 - p_3 - p)$$

thermal distributions (BE or FD):

$$n_i(E_i) = \frac{1}{\exp(E_i/T) \pm 1}$$

Thermal Photon Rates (example)

rate for quark-gluon Compton

$$\frac{dN}{d^4xd^3p}(qg \to q\gamma) = \frac{5}{9} \frac{\alpha\alpha_S}{6(\pi)^2} T^2 \exp(-E/T)$$

$$\times \left[\ln \frac{4ET}{k_c^2} + 0.046 \right]$$

- similar expression for other diagrams
 - higher orders (e.g. Bremsstrahlung): $\alpha \cdot \alpha_S^2$

Alternative Approach (Finite T Field Theory)

relate photon rate to polarization tensor (photon self-

energy)
$$\frac{dN}{d^4xd^3p} = -\frac{1}{(2\pi)^3E} \frac{1}{\exp(E/T) - 1} \Im\left[\Pi^{\mu}_{\mu}(E)\right]$$

- expression valid for all orders in α_s
- self-energy contains loop-diagrams:

Hard Thermal Loops

- IR-divergent diagrams at finite T
- possible solution: include medium effects in propagators and vertices:
- Hard Thermal Loops (HTL)
 - define Dyson-Schwinger equation

```
→ → + →
```

- separation of scales for weak coupling (g << 1)</p>
 - hard scale ≈ T use bare propagator
 - soft scale ≈ gT use HTL-resummed propagator

Hard Thermal Loops

- appropriate in high temperature limit
 - 1-loop diagrams with hard momentum in the loop, but only soft external momenta
- HTL propagator corresponds to effective propagator in medium
 - effective quark mass, in-medium dispersion relation
- for calculations, use HTL-resummed propagators as in ordinary perturbation theory

Higher Orders

- e.g. Bremsstrahlung
 - naive expectation for weak coupling limit (high T)

$$\alpha \cdot \alpha_S^2 \ll \alpha \cdot \alpha_S$$

- HTL diagram contains contributions from different orders
- medium effects enhance higher order diagrams
 - multiply rates by factor

$$\frac{T^2}{m_{
m eff}^2} \propto \frac{1}{\alpha_S}$$

Higher Order Diagrams

- at finite temperature next order of similar magnitude!
 - Bremsstrahlung
 - annihilation with scattering
 - photon radiated from off-shell quark
 - increases photon yield from QGP
- still higher orders may also contribute at similar order of magnitude

Higher Order Diagrams and Interference

- need to study all orders
 - also destructive interference possible
- Landau-Pomeranchuk-Migdal effect

interference depends on formation time and mean free path

$$\tau \geq \lambda$$

 calculations including LPM effect yield finite results for all orders

Photons from Hadron Gas

- calculations need effective theory
 - similar diagrams using hadrons
- most important
 - annihilation and Compton-like diagrams involving rho mesons
 - modifications due to intermediate resonances
 - large uncertainties: e.g. medium modifications of hadrons

parameterized numerical results,

e.g.:
$$\frac{dN}{d^4xd^3p}(\pi\rho\to\pi\gamma)\approx T^{2.4}\exp\left[-\frac{1}{(2TE)^{3/4}}-\frac{E}{T}\right]$$

Thermal Photons from Heavy-Ion Reactions

- photon rates have to be folded with temperature history T(t)
- hydrodynamic evolution uses
 - equation of state
 - initial temperature
 - critical temperature
- comparison to experimental data needs subtraction of prompt photons first

Direct Photon Measurement

- undisturbed signal
 - little interaction with surrounding matter
 - different from hadronic signals
 - direct information on early state
 - PDFs
 - initial thermal state

- experimentally very challenging
 - background of photons from hadron decays (neutral mesons)
 - small signal expected
 - EM vs strong interaction
 - especially difficult in heavy ion reactions
 - high multiplicity
 - neutral meson extraction difficult
 - tagging of individual direct photons not possible

Direct Photon Measurement

- photon detection
 - lead glass calorimeter (LEDA)
 - segmented (10000 modules)
 - ⇒ suited for high particle density
 - good resolution at reasonable costs

$$\frac{\sigma_E}{E} = \frac{5.5\%}{\sqrt{E}} + 0.8\%$$

- statistical identification of direct photons
 - measurement of inclusive photons
 - measurement of neutral mesons (π^0, η) in the same data set
 - simulation of hadronic decay photons
 - direct photons from subtraction

- charged particle veto detector
 - ◆ 16m² streamer tubes
 - pad readout

$$\begin{split} N_{\gamma}^{direct} &= \left(N_{\gamma-candidate}^{inclusive} - N_{\gamma-candidate}^{target-out}\right) \times \\ &\times \left(1 - r_{charged}\right) \cdot \varepsilon \cdot \left(1 - r_{n,\overline{n}}\right) \cdot k_{acc} - N_{\gamma}^{decay} \end{split}$$

Reconstruction of Neutral Pions

- combination of all pairs of photon candidates
 - invariant mass distributions
- background by event mixing
- similar correction as for photons
 - no direct influence of charged hadrons and (anti)neutrons
- good agreement with simulations

Direct Photons – Experiment

- difficulties in comparing to p+A
 - uncertainty of scaling
- alternative: γ/π⁰
 - more robust with respect to scaling for energy and system size
 - other uncertainties: nuclear effects in meson production?

 significant excess relative to expectation from p+A for p_T<2.5 GeV/c

Direct Photons – Experiment

- first measurement of direct photons in ultrarelativistic heavy ion reactions
- comparison with extrapolations of p+A reactions
 - hard scattering important
 - small excess even at high p_T
 - not only hard scattering?
- naive extrapolation from pp not sufficient
 - thermal contribution?
 - other modifications?

Hydrodynamic Model

- recent calculation
 - R. Chatterjee et al. (arXiv: 0902.1036)
- entropy tuned to describe hadron multiplicities and spectra
- phase transition

$$T_c = 164 \text{MeV}$$

vary equilibration time

$$\tau_i = 0.2...1.0 \text{ fm} / c$$

- strongest impact on thermal photons
- add NLO prompt photon yields

Direct Photons Model Comparison

standard equilibration time

$$\tau_i = 1.0 \text{ fm} / c$$

$$\Rightarrow T_i = 210 \text{MeV}$$

- requires large K-factor for prompt photons
 - pQCD uncertainties at low beam energy (nuclear k_T?)
- how to treat pre-equilibrium non-prompt photon emission?

Direct Photons Model Comparison

early equilibration time

$$\tau_i = 0.2 \text{ fm} / c$$

$$\Rightarrow T_i = 380 \text{MeV}$$

 more reasonable K-factor for prompt photons

other observables to distinguish scenarios?

Direct Photon Elliptic Flow

- elliptic flow probes (relatively)early equilibration
- thermal photons are dominated by very early times
 - early equilibration reduces elliptic
 flow of direct photons at high p_T
- prompt photons dilute elliptic flow
- elliptic flow can discriminate scenarios
 - flow values very small!

RHIC and LHC

- low energy data suffer from overlap of prompt and thermal photon yields
- easier to disentangle at higher energies?
 - experimentally not easier!
- Calculations (Gale&Rapp)
 - thermal + prompt
 (including nuclear k_T)
- RHIC
 - pQCD dominates above 3 GeV/c
 - preliminary data with new method
- LHC
 - larger window for thermal radiation?

Summary

- thermal photons contain information about initial temperature
- status of theory: HTL resummed diagrams to all orders in α_s including LPM effect
- experimental results
 - SPS: possibly seen
 - difficult from overlap of prompt photons
 - RHIC: under investigation
 - ◆ small QGP window (1 3 GeV/c)
 - LHC: QGP visible!?

- direct photon elliptic flow an interesting observable!
- future of thermal photon measurements
 - (internal) conversion measurements?
 - direct photon interferometry?