به نام خدا

گزارش پروژه ی دوم درس ژئودزی ماهواره ای حسن رضوان - ۱۰۳۹۶۰۷۹

این پروژه شامل ۵ فایل m. است:

- ۱. فایل HW_2.m که فایل اصلی پروژه است.
- فایل extract.m که برای استخراج پارمترهای فایل راینکس نوشته شده است.
 - ۳. فایل read_header.m که برای خواندن header فایل راینکس است.
- 4. فایل line_length.m برای محاسبه ی طول خطوط فایل راینکس مورد استفاده قرار می گیرد و در تابع extract به کار رفته است.
 - ۵. فایل time_calc.m برای محاسبه تاریخ ژولین و هفته ی gps و ثانیه از هفته به کار می رود.

ابتدا با استفاده از وبسایت sopac داده ی موردنظر را دانلود می کنیم. این داده مربوط به ایستگاه North Liberty می باشد. سپس باید آنرا از حالت فشرده خارج کرده و پسوند d. را به پسوند o. تبدیل کنیم. این کار به کمک برنامه ی crx2rnx و محیط cmd انجام گرفت.

شكل ١. دانلود داده

```
Administrator: Command Prompt

Microsoft Windows [Version 10.0.19041.928]
(c) Microsoft Corporation. All rights reserved.

C:\Users\Hassan.R>d:

D:\>cd D:\Documents\GPS\Projects\2\RNXCMP_4.0.7_Windows_bcc\bin

D:\Documents\GPS\Projects\2\RNXCMP_4.0.7_Windows_bcc\bin>crx2rnx nlib2500.17d
```

شکل ۲. تبدیل پسوند d. به o.

(1)

1-1 € در این قسمت می خواهیم اطلاعات فایل راینکس observation را در متلب استخراج کرده و داخل ماتریس بریزیم تا بتوانیم در محاسبات از آنها استفاده کنیم. فایل راینکس از دو قسمت header و content که در شکل زیر نشان داده شده اند، تشکیل می شود.

2.11						VERSION / TYPE		
teqc 2017Jul18	gpsops	5%				RUN BY / DATE		
Linux 2.6.32-573						1876		
State of the state of the second seco	GS DATA COLLEC	DATA COLLECTED UNDER		A/S CONDITION		COMMENT		
NLIB						ER NAME		
40465M001						ER NUMBER		
GGN	JPL				OBSER	RVER / AGENCY		
IR2200716008	ASHTECH UZ	-12	CQ00		REC #	/ TYPE / VERS		
383-0154	TPSCR.G3	SCI	S		ANT #	ANT # / TYPE		
-130934.4493 -4	1762291.7386	4226854.6	638		APPRO	X POSITION XYZ		
0.6127	0.0000	0.0	000		ANTEN	NA: DELTA H/E/N		
1 1					WAVEL	ENGTH FACT L1/2		
7 L1 I	2 P1 P2	C1	S1 S	2		TYPES OF OBSERV		
30,0000					INTER			
					COMME			
This data is prov	/ided as a pub	lic servi	ce by NA	SA/JPL.	COMME	NT		
No warranty is ex	AND DESCRIPTION OF THE PROPERTY OF THE PROPERT				300000000000000000000000000000000000000	30 Page 1		
for use. For fur	CONTRACT OF STREET			urcubility	COMME			
Dave Stowers, NAS			acc.		COMME	7352		
4800 Oak Grove Dr			HSA		COMME	1870		
4000 Oak di ove Di	ive, i asauella	CA JIIOJ	DJA		COMME	95 kBass		
Forced Modulo Dec	imation to 30	coconde			COMME	\$3860		
SNR is mapped to			[0 0]		COMME	M(2)		
					COMME	1000		
L1 & L2: min(ma	A CONTRACTOR OF THE PARTY OF TH		7.7			36 (E.C.)		
pseudorange smoot	STARY (TEXT SHATT)			CDC	COMME			
2017 9	7 0 0	0.000	0000	GPS		OF FIRST OBS		
47 0 7 0 0					END (OF HEADER		
17 9 7 0 0					<u> </u>	20000000000000000000000000000000000000		
-7047859.53548			593.8/14	21734599.	//84	21734593.243		
52.0004	47.000							
-15005765.69648			145.0274	20823148.	7044	20823146.131		
52.0004	48.000					SPRESSER VALUE SELECTION SPRESS		
-2546955.45247	-1934187.551	46 23080	947.0354	23080953.	3914	23080948.733		
43.0004	38.000							
-13065091.91948	-10168286.843	48 21153	285.1454	21153289.	8894	21153286.201		
53.0004	48.000	4						

برای محاسبات قسمت های بعدی سوال نیاز داریم اطلاعات موجود در قسمت content را جدا کنیم. اما پیش از آن باید قسمت header را بخوانیم. این کار را به کمک تابع read_header که خودمان نوشته ایم انجام می گیرد. در این تابع هر خط از فایل راینکس را به کمک fgetl خوانده و رد می کنیم. از قسمت header فایل تنها ممکن است به مختصات تقریبی ایستگاه نیاز داشته باشیم. با دستور srtfind می توانیم بگوییم که زمانی که به عبارت APPROX مختصات را در یک ماتریس بریزد. در نهایت هنگامی که به POSITION XYZ رسیدیم، از حلقه و قسمت header خارج می شویم.

در گام بعدی وارد قسمت content میشویم. استخراج اطلاعات این قسمت در تابع extract نوشته شده است. ابتدا ماتریس epoch را میسازیم که شامل داده های زمانی مربوط به هر اپک زمانی است که برای آن داده داریم. در داده ای که در اختیار داریم، فاصله ی زمانی اپک ها ۳۰ ثانیه است. نحوه ی چینش المان های ماتریس epoch به صورت زیر است:

ه سال	روز ما	ساعت	دقيقه	ثانیه
-------	--------	------	-------	-------

پس از زمان هر اپک مشاهده، تعداد ماهواره ها و شماره ماهواره هایی را داریم که در این اپک از آنها مشاهده انجام شده است. به کمک حلقه ی for شماره ی ماهواره ها، تعداد آنها و مشاهداتشان را استخراج می کنیم. سپس باید شماره ی ماهواره هایی که برای آنها در هر اپک داده داریم، جدا کنیم. در نهایت باید ستون های ماتریس مشاهدات را که تمام داده هایمان در آن قرار دارند، مشخص کنیم. چینش ستون های ماتریس data به صورت زیر است:

 GPS Week
 GPS SEC
 Satellite number
 L1
 L2
 P1
 P2
 C1
 S1
 S2

 در پایان ماتریس مشاهدات با ابعاد ۱۰*۱۹۲۹۹ ساخته می شود که شامل داده برای تمامی ماهواره ها و در تمام اپک ها

 می باشد.

انواع مشاهدات در فایل راینکس به صورت زیر هستند:

- ۱. مشاهدات کد C در واحد متر.
- ۲. مشاهدات فاز P در واحد سیکل.
- ۳. مشاهدات فرکانس داپلر در واحد هرتز.
 - ۴. مشاهدات قدرت سیگنال.

Y-Y در این قسمت باید تغییرات مشاهدات را برحسب زمان ترسیم کنیم. ابتدا به کمک دستور find داده های مربوط به یک ماهواره را پیدا کرده و با توجه به شماره ی ستونشان که در جدول Y آمده است، جدا می کنیم. گام بعدی آن است که مقادیر موجود در ستون های Y و Y و Y و Y و Y و Y و Y و Y و ماهواره ی شماره ی Y آمده است:

شكل ٣. آرك مربوط به مشاهدات L

شكل ۴. آرك مربوط به مشاهدات P

همانطور که مشاهده می شود نمودار های مربوط به P_1 و P_2 روی هم افتاده اند.

۳ − 1: در این قسمت قصد داریم تا مشاهدات کد را برای تمام ماهواره ها در طول ۲۴ ساعت رسم کنیم. ابتدا باید به کمک ستون شماره ی ماهواره ها، داده های لازم را به ازای هر ماهواره جدا کرده و هر کدام را در ماتریسی با شماره ی ماهواره ی موردنظر بریزیم. علاوه بر این تمام این ماتریس به عنوان سلول در یک ماتریس بزرگتر ذخیره شده اند. اکنون باید از ستون های مربوط به ازای هر عضو این سلول یعنی به ازای هر ماهواره پلات بگیریم.

شکل ۵. مشاهده ی کد P_1 در طول Υ^* ساعت

شکل ۶. مشاهده ی کد P2 در طول ۲۴ ساعت

تغییرات مشاهده ی کد ناشی از حرکات ماهواره ها در مدارهای خود و تغییرات شبه فاصله ی اندازه گیری شده نسبت به ایستگاه های کنترل است. همانطور که از شکل مشخص است بعضی از ماهواره ها در زمان های خاصی داده دارند. این نشان دهنده ی حرکت ماهواره در مدارهای خود است که نسبت به ایستگاه موردنظر دید ندارند.

(Y)

در این سوال می خواهیم ترکیبات عاری از یونوسفر، مستقل از هندسه، wide lan و Narrow lan را محاسبه کنیم. ابتدا لازم است مقادیر فرکانس را در باندهای L1 و L2 داشته باشیم. در سوال T تمرین اول درس ژئودزی ماهواره ای، در مورد GPS گفتیم که در T باند فرکانسی انداره گیری دارد و فرکانس هر باند هم ذکر شد:

$$\begin{cases} L_1: & f_1 = 1575.42 \\ L_2: & f_2 = 1227.60 \\ L_5: & f_5 = 1176.45 \end{cases}$$

به دلیل اینکه در فایل راینکس دانلود شده، مشاهدات L_1 و L_2 را داریم، به L_1 و L_2 برای محاسباتی که در ادامه می آید، نیاز خواهیم داشت.

سپس باید ستون های مربوط به L_1 و L_2 و L_1 و L_2 را از ماتریس حاوی تمام داده ها که در ابتدای برنامه ساختیم، جدا کنیم. هر کدام از چهار ماتریس نامبرده دارای ابعاد ۱۹۲۹۹ هستند. در نهایت به کمک روابط زیر موارد خواسته شده را به ازای هر درایه محاسبه کنیم.

• ترکیب عاری از یونوسفر:

$$\Phi_c = \frac{f_1^2 \Phi_1 - f_2^2 \Phi_2}{f_1^2 - f_2^2}$$

$$R_c = \frac{f_1^2 R_1 - f_2^2 R_2}{f_1^2 - f_2^2}$$

این روابط برای یک گیرنده ولی با دو فرکانس مختلف انجام می شود.

• ترکیب مستقل از هندسه:

$$\Phi_I = \Phi_1 - \Phi_2$$
$$R_I = R_1 - R_2$$

اگر مشاهده ی فاز و شبه فاصله ی کد را در دو فرکانس مختلف انجام داده و از هم کم کنیم، نتیجه ی حاصل ترکیب مستقل از هندسه است.

• ترکیب wide lan:

$$\Phi_w = \frac{f_1 \Phi_1 - f_2 \Phi_2}{f_1 - f_2}$$

$$R_w = \frac{f_1 R_1 - f_2 R_2}{f_1 - f_2}$$

• ترکیب Narrow lan:

$$\Phi_N = \frac{f_1 \Phi_1 + f_2 \Phi_2}{f_1 + f_2}$$

$$R_N = \frac{f_1 R_1 + f_2 R_2}{f_1 + f_2}$$

در تمام روابط بالا، منظور از R همان مشاهدات P است. تمامی محاسبات در متلب انجام و نتایج در ماتریس های R_L I و R_L 0 و

سوال 4)

در این قسمت می خواهیم به کمک انتشار خطا، دقت را برای هر کدام از ترکیب های محاسبه شده در سوال ۲ بدست آوریم. با توجه به قانون انتشار خطا داریم:

$$f = f(x, y) \rightarrow \sigma_f = \sqrt{\left(\frac{\partial f}{\partial x}\sigma_x\right)^2 + \left(\frac{\partial f}{\partial y}\sigma_y\right)^2}$$

قانون انتشار خطا را روی روابط سوال ۲ اعمال می کنیم. با توجه به اینکه دقت پارامترهای مشاهداتی کد و فاز را در اختیار داریم، باید از روابط ترکیبات نسبت به این پارامترها مشتق بگیریم.

• ترکیب عاری از یونسفر:

$$\Phi_{c} = \frac{f_{1}^{2}\Phi_{1} - f_{2}^{2}\Phi_{2}}{f_{1}^{2} - f_{2}^{2}} \rightarrow \begin{cases} \frac{\partial\Phi_{c}}{\partial\Phi_{1}} = \frac{f_{1}^{2}}{f_{1}^{2} - f_{2}^{2}} \\ \frac{\partial\Phi_{c}}{\partial\Phi_{2}} = \frac{-f_{2}^{2}}{f_{1}^{2} - f_{2}^{2}} \end{cases}$$

$$R_{c} = \frac{f_{1}^{2}R_{1} - f_{2}^{2}R_{2}}{f_{1}^{2} - f_{2}^{2}} \rightarrow \begin{cases} \frac{\partial R_{c}}{\partial R_{1}} = \frac{f_{1}^{2}}{f_{1}^{2} - f_{2}^{2}} \\ \frac{\partial R_{c}}{\partial R_{1}} = \frac{-f_{2}^{2}}{f_{2}^{2} - f_{2}^{2}} \end{cases}$$

• ترکیب مستقل از هندسه:

$$\Phi_{I} = \Phi_{1} - \Phi_{2} \rightarrow \begin{cases} \frac{\partial \Phi_{I}}{\partial \Phi_{1}} = 1\\ \frac{\partial \Phi_{I}}{\partial \Phi_{2}} = -1 \end{cases}$$

$$R_{I} = R_{1} - R_{2} \rightarrow \begin{cases} \frac{\partial R_{I}}{\partial R_{1}} = 1\\ \frac{\partial R_{I}}{\partial R_{2}} = -1 \end{cases}$$

• ترکیب wide lan:

$$\Phi_{w} = \frac{f_{1}\Phi_{1} - f_{2}\Phi_{2}}{f_{1} - f_{2}} \to \begin{cases} \frac{\partial \Phi_{w}}{\partial \Phi_{1}} = \frac{f_{1}}{f_{1} - f_{2}} \\ \frac{\partial \Phi_{w}}{\partial \Phi_{2}} = \frac{-f_{2}}{f_{1} - f_{2}} \end{cases}$$

$$R_{w} = \frac{f_{1}R_{1} - f_{2}R_{2}}{f_{1} - f_{2}} \to \begin{cases} \frac{\partial R_{w}}{\partial R_{1}} = \frac{f_{1}}{f_{1} - f_{2}} \\ \frac{\partial R_{w}}{\partial R_{2}} = \frac{-f_{2}}{f_{2}} \end{cases}$$

• ترکیب Narrow lan:

$$\Phi_N = \frac{f_1 \Phi_1 + f_2 \Phi_2}{f_1 + f_2} \rightarrow \begin{cases} \frac{\partial \Phi_N}{\partial \Phi_1} = \frac{f_1}{f_1 + f_2} \\ \frac{\partial \Phi_N}{\partial \Phi_2} = \frac{f_2}{f_1 + f_2} \end{cases}$$

$$R_N = \frac{f_1 R_1 - f_2 R_2}{f_1 - f_2} \rightarrow \begin{cases} \frac{\partial R_N}{\partial R_1} = \frac{f_1}{f_1 + f_2} \\ \frac{\partial R_N}{\partial R_2} = \frac{f_2}{f_1 + f_2} \end{cases}$$

در نهایت با جایگذاری مشتق ها در رابطه ای که در ابتدای حل سوال آمده، میتوان دقت هر ترکیب را با توجه به رابطه ی زیر محاسبه کرد:

$$\sigma_{\Phi_{x}}^{2} = \sigma_{\Phi}^{2} \left(\left(\frac{\partial \Phi_{x}}{\partial \Phi_{1}} \right)^{2} + \left(\frac{\partial \Phi_{x}}{\partial \Phi_{2}} \right)^{2} \right)$$

$$\sigma_{R_{x}}^{2} = \sigma_{R}^{2} \left(\left(\frac{\partial R_{x}}{\partial R_{1}} \right)^{2} + \left(\frac{\partial R_{x}}{\partial R_{2}} \right)^{2} \right)$$

در پایان، دقت های بدست آمده در جدول زیر گنجانده شده است:

دقت کد (متر)	دقت فاز (سیکل)	
۶۵۹۵.	۰.۰۵۹۶	ترکیب عاری از یونسفر
۸۲۸۲.٠	٠.٠٢٨٣	تركيب مستقل از هندسه
1.1414	٠.١١۴٨	wide lan ترکیب
۰.۱۴۲۵	٠.٠١۴٣	narrow lan ترکیب

جدول ۶. دقت تركيب ها

با توجه به اینکه امکان رسم مشاهدات و errorbar ها برای همه ی ماهواره ها در یک پلات امکان پذیر نیست، یک ماهواره را انتخاب کرده و ترسیمات را برای آن انجام می دهیم. یعنی با جدا کردن سلول مورد نظر از ماتریس satellites و استفاده از ستون های مربوط به مربوط به پارامترهای L_1 و L_2 و L_3 و L_4 و محاسبه شده در سوال L_4 را مجددا برای این ماهواره محاسبه کرده و با توجه به ستونِ شامل زمان هایی که مشاهده انجام شده و با توجه به دقت های محاسبه شده، پلات errorbar را رسم می کنیم.

در شکل های زیر دقت مشاهدات برای ماهواره ی شماره ی ۳۰ به کمک errorbar نشان داده شده است:

شكل ٧. نمودار دقت مربوط به مشاهدات فاز

شكل ٨ نمودار دقت مشاهدات كد

اگر بخواهیم روند محاسبه برای ترکیب عاری از یونسفر بنویسیم، داریم:

$$\sigma_{\Phi_c} = \sqrt{\sigma_{\Phi}^2 \left(\left(\frac{\partial \Phi_x}{\partial \Phi_1} \right)^2 + \left(\frac{\partial \Phi_x}{\partial \Phi_2} \right)^2 \right)} = \sqrt{(0.02)^2 * (2.5457^2 + 1.5457^2)} = 0.0596$$

$$\sigma_{R_c} = \sqrt{\sigma_{R}^2 \left(\left(\frac{\partial R_x}{\partial R_1} \right)^2 + \left(\frac{\partial R_x}{\partial R_2} \right)^2 \right)} = \sqrt{(0.2)^2 * (2.5457^2 + 1.5457^2)} = 0.5956$$

سوال ۳)

برای حل این قسمت داده ی دیگری برای ایستگاه goldstone را که در نزدیکی ایستگاه بررسی شده در سوال های قبل قرار دارد را دانلود و همچنین پسوند آنرا به O. تبدیل کردیم.

یکی از روشهای از بین بردن خطاهای موجود در معادله ی شبه فاصله که در پایین آمده، استفاده از تکنیک های تفاضلی است.

$$p = \rho + d\rho + c(dt - dT) + d_{ion} + d_{trop} + \epsilon_{mp} + \epsilon_{p}$$

$$\Phi = \rho + d\rho + c(dt - dT) + N\lambda - d_{ion} + d_{trop} + \epsilon_{m\Phi} + \epsilon_{\Phi}$$

یکی از انواع تکنیک های تفاضلی، تفاضلی یگانه است. این تکنیک، خود از سه تکنیک مجزا تشکیل شده است:

- ۱. تکنیک تفاضلی بین مشاهدات: این تکنیک شامل اندازه گیری از دو گیرنده به یک ماهواره در یک زمان مشخص و یکسان است.
 - ۲. تکنیک تفاضلی بین ماهواره ها: یعنی از دو ماهواره به یک گیرنده در یک زمان اندازه گیری داشته باشیم.
- ۳. تکنیک تفاضلی بین اپک ها: یعنی از یک گیرنده به یک ماهواره در دو زمان t1 و t2 اندازه گیری داشته باشیم.

تفاضل یگانه:

روشی که برای حل مسئله ی تفاضلی یگانه استفاده خواهیم کرد، تکنیک تفاضلی بین مشاهدات است.

شکل ۹. تفاضل یگانه

برای این کار نیاز به یک فایل داده ی ثانویه که در نزدیکی ایستگاه مربوط به سوالات قبل قرار دارد استفاده می کنیم. به کمک توابعی که در بالا توضیح داده شده، پارامترهای این فایل را هم استخراج می کنیم. ستون های مربوط به زمان را که ثانیه از هفته هستند، برای هر دو داده به جهت سهولت در محاسبات به ثانیه از همان روز تبدیل می کنیم.

روش کار به این صورت است که به کمک حلقه ی while یک شرط تعیین می کنیم تا به تعداد اپک هایی که در اختیار داریم، این حلقه پیموده شود. تعداد اپک هایی که در فایل راینکس دراختیار داریم، ۲۸۷۹ اپک است. پس در هر اپک از فایل راینکس آنچه در حلقه ی while آمده را انجام می دهیم. اکنون یک اپک مشترک از دو گیرنده که باهم اختلاف فاصله دارند، در اختیار داریم. آنچه اکنون نیاز داریم، یک ماهواره ی مشترک است.

$$f = \Delta \blacksquare = reciever_2 - reciever_1$$

اطلاعات مربوط به هر اپک از هر فایل راینکس در ماتریس های epoch_for_first_data و پارامترهایی که برای epoch_for_second_data ریخته شده است که شامل ثانیه از روز، شماره ی ماهواره و پارامترهایی که برای محاسبات تفاضلات به آنها نیاز خواهیم داشت، یعنی L_1 و L_2 و L_1 و L_2 و L_3 اکنون نیاز داریم تا ماهواره ی مشترک را از این دو ماتریس پیدا کنیم. این کار به کمک دستور intersect انجام می شود. سپس سطر مربوط به ماهواره ی مشترک را بیرون کشیده و از ستون های مربوط به L_2 و L_3 به محاسبه ی تفاضل یگانه می پردازیم. به این صورت که یک مقدار L_3 برای داده ی اول و یک مقدار L_3 برای داده ی دوم که هر دو مربوط به یک ماهواره ی مشترک هستند، در اختیار داریم. اگر این دو مقدار را از هم کم کنیم به تفاضلی یگانه خواهیم رسید. همین اتفاق هم برای فاز های L_3 و L_4 رخ می دهد. اگر

مقادیر مشاهده ی L را که از یک ماهواره هستند، از هم کم کنیم به تفاضل یگانه می رسیم. نتایج حاصل از تفاضل یگانه در ماتریس های single_differecne_phi و single_difference_p

برای محاسبه ی دقت تفاضلی یگانه، مانند سوال ۴ از قانون انتشار خطا استفاده می کنیم. معادلات را به صورت زیر داریم: تفاضلی یگانه برای مشاهده ی کد:

$$f=\Delta \blacksquare = p_2-p_1$$
 معادله: $rac{\partial f}{\partial p_2}=1$; $rac{\partial f}{\partial p_1}=-1$: مشتقات جزیی:

 $\sigma_f^2 = \left(\frac{\partial f}{\partial p_2} * \sigma_p\right)^2 + \left(\frac{\partial f}{\partial p_1} * \sigma_p\right)^2$ محاسبه ی دقت با قانون انتشار خطا:

با توجه به اینکه دقت مشاهدات p با توجه به سوال ۴، ۰.۲ متر ذکر شده، داریم:

$$\sigma_{f} = \sqrt{\left(\frac{\partial f}{\partial p_{2}} * \sigma_{p}\right)^{2} + \left(\frac{\partial f}{\partial p_{1}} * \sigma_{p}\right)^{2}} = \sqrt{(1 * 0.2)^{2} + (-1 * 0.2)^{2}} = \sqrt{0.08}$$

$$= 0.2828 \text{ meters}$$

تفاضلی یگانه برای مشاهده ی فاز:

$$f=\Delta \blacksquare = \Phi_2 - \Phi_1$$
 عمادله:
$$\frac{\partial f}{\partial \Phi_2} = 1 \; ; \; \frac{\partial f}{\partial \Phi_1} = -1 \qquad :$$
 شمتقات جزیی:
$$\sigma_f^2 = \left(\frac{\partial f}{\partial \Phi_1} * \sigma_\Phi\right)^2 + \left(\frac{\partial f}{\partial \Phi_1} * \sigma_\Phi\right)^2 \qquad :$$
 محاسبه ی دقت با قانون انتشار خطا: \bullet

با توجه به اینکه دقت مشاهدات p با توجه به سوال ۴، ۲.۲ متر ذکر شده، داریم:

$$\sigma_f = \sqrt{\left(\frac{\partial f}{\partial \Phi_2} * \sigma_{\Phi}\right)^2 + \left(\frac{\partial f}{\partial \Phi_1} * \sigma_{\Phi}\right)^2} = \sqrt{(1 * 0.02)^2 + (-1 * 0.02)^2} = \sqrt{0.0008}$$

$$= 0.02828 \ cycle$$

تفاضل دوگانه

همان تکرار تکنیک های تفاضلی یگانه است و سه حالت می تواند داشته باشد:

- ۱. تکنیک تفاضلی گیرنده و زمان: مشاهده براساس دو گیرنده به یک ماهواره در دو اپک زمانی است که حاصل اختلاف گیری نوع اول و سوم از ترکیب های تفاضلی یگانه که در بالا توضیح داده شده است، می باشد.
- ۲. تکنیک تفاضلی ماهواره و زمان: مشاهده از یک گیرنده به دو ماهواره در دو ایک زمانی. در واقع حاصل اختلاف تکنیک های تفاضلی یگانه ی ماهواره ها و ایک هاست.
 - ۳. تکنیک تفاضلی بین ماهواره و گیرنده: انجام دو مشاهده ی تفاضلی یگانه بین گیرنده و ماهواره. درواقع یکبار تکنیک تفاضلی یگانه بین گیرنده ها انجام می شود.

شكل ۱۰. تفاضل دو گانه

برای حل مسئله ی تفاضل دوگانه از تکنیک سوم یعنی تفاضلی بین ماهواره و گیرنده استفاده می کنیم. پس باید از ماتریس های حاصل شده از تفاضل یگانه، شامل سه ستون بودند؛ مقادیر تفاضل، زمان و شماره ی ماهواره. روند کار به این صورت است که باید ابتدا ایک های زمانی را جدا کرده و محاسبات را در هر ایک زمانی انجام می دهیم. تفاضلات یگانه را در هر ایک زمانی برای یک ماهواره محاسبه کردیم و داریم.

1	2	3
7.1389e+05	0	10
-1.9907e+06	0	15
-5.2667e+05	0	18
-5.2415e+05	0	21
-1.8932e+06	0	24
7.0532e+05	30	10
-1.9939e+06	30	15
-5.3477e+05	30	18
-5.2425e+05	30	21
-1.8952e+06	30	24
6.9673e+05	60	10

ماهواره ای که در سطر اول هر اپک قرار دارد را به عنوان مرجع درنظر گرفته و سایر ماهواره ها را نسبت به آن می سنجیم. مثلا در شکل بالا در زمان های ۰ و ۳۰ ثانیه، ماهواره ی شماره ی ۱۰ را به عنوان ماهواره ی مرجع درنظر می گیریم. یعنی تفاضلات یگانه ی سایر ماهواره ها را از تفاضل یگانه ی حاصل از ماهواره ی مرجع کم می کنیم تا تفاضل دوگانه حاصل شود. نتایج نهایی در ماتریس های double_difference_phi و double_difference_phi به ترتیب برای شبه فاصله و فاز ذخیره شده است.

برای محاسبه ی دقت، باید توجه داشته باشیم که برای رسیدن به تفاضل دوگانه، دو تفاضل یگانه را از هم کم کردیم. پس معادله ی آن به صورت زیر می شود:

 $double\ difference = first\ single\ difference - ssecond\ single\ difference$

$$\nabla \Delta p = \Delta p_1 - \Delta p_2$$

بنابراین باید از معادله ی فوق نسبت به دو پارامتر حاصل از تفاضل یگانه مشتق بگیریم.

$$\frac{\partial \nabla \Delta p}{\partial \Delta p_1} = 1 \; ; \; \frac{\partial \nabla \Delta p}{\partial \Delta p_2} = -1$$

با توجه به انتشار خطا و دقت های بدست آمده از تفاضل یگانه ($\sigma_{\Delta p}=0.2828$) داریم:

$$\sigma_{\nabla \Delta p} = \sqrt{\left(\frac{\partial \nabla \Delta p}{\partial \Delta p_1} * \sigma_{\Delta p_1}\right)^2 + \left(\frac{\partial \nabla \Delta p}{\partial \Delta p_2} * \sigma_{\Delta p_2}\right)^2} = \sqrt{0.1570} = 0.4 \ meters$$

به همین ترتیب برای فاز هم داریم:

$$\nabla \Delta \Phi = \Delta \Phi_1 - \Delta \Phi_2$$

$$\frac{\partial \nabla \Delta \Phi}{\partial \Delta \Phi_1} = 1 \ ; \ \frac{\partial \nabla \Delta \Phi}{\partial \Delta \Phi_2} = -1$$

با توجه به انتشار خطا و دقت های بدست آمده از تفاضل یگانه ($\sigma_{\Delta p}=0.0283$) داریم:

$$\sigma_{\nabla \Delta \Phi} = \sqrt{\left(\frac{\partial \nabla \Delta \Phi}{\partial \Delta \Phi_1} * \sigma_{\Delta \Phi_1}\right)^2 + \left(\frac{\partial \nabla \Delta \Phi}{\partial \Delta \Phi_2} * \sigma_{\Delta \Phi_2}\right)^2} = \sqrt{0.0016} = 0.04 \ cycle$$

تفاضل سه گانه:

ترکیب نفاضلی یگانه ی ماهواره، گیرنده و اپک زمانی است و یا تکنیک تفاضلی گیرنده و ماهواره را در دو اپک زمانی انجام می دهیم.

شكل ١١. تفاضل سه گانه

روش کار به این صورت است که از ماتریس های حاصل از تفاضل دوگانه، هر اپک با اپک بعد از خود را جدا می کنیم. یعنی دو اپک متوالی را انتخاب کرده و در ماتریس های دیگری میریزیم. پس لازم است همانند کاری که در تفاضل یگانه انجام دادیم، یک حلقه ی while با شرط پیمایش حلقه با پارامتر i-i به تعداد اپک هایی که در اختیار داریم بنویسیم؛ چراکه داریم هر دو اپک را با هم مقایسه میکنیم لازم است شرط حلقه iitersect باشد. اکنون دو ماتریس با دو اپک متفاوت داریم. لازم است که ماهواره ی مشترک بین این دو ماتریس را به کمک دستور intersect بیابیم و در نهایت مشاهدات کد و فاز را از هم کم کنیم. نتایج حاصل از تفاضل سه گانه در ماتریس های triple_difference_p ریخته شده است.

با توجه به آنکه برای محاسبه ی تفاضل سه گانه، از نتایج حاصل از تفاضل دوگانه استفاده کردیم، برای محاسبه ی دقت لازم است که از نتایج حاصل از دقت تفاضل دوگانه استفاده کنیم. برای محاسبه ی دقت از روش انتشار خطا بهره میبریم:

$$\begin{split} \delta \nabla \Delta p &= \nabla \Delta p_1 - \nabla \Delta p_2 \\ \frac{\partial \delta \nabla \Delta p}{\partial p_1} &= 1 \ ; \ \frac{\partial \delta \nabla \Delta p}{\partial p_2} &= -1 \end{split}$$

طبق قانون انتشار خطا داريم:

$$\sigma_{\delta \nabla \Delta p} = \sqrt{\left(\frac{\partial \delta \nabla \Delta p}{\partial p_1} * \sigma_{\nabla \Delta p_1}\right)^2 + \left(\frac{\partial \delta \nabla \Delta p}{\partial p_2} * \sigma_{\nabla \Delta p_2}\right)^2}$$

با توجه به آنکه در بالا دقت تفاضل دوگانه را برای شبه فاصله ی کد ۴.۰ متر محاسبه کردیم داریم:

$$\sigma_{\delta \nabla \Delta p} = \sqrt{(1*0.4)^2 + (-1*0.4)^2} = 0.5657$$
 meters

همینطور برای حالت موج حامل داریم:

$$\begin{split} \delta \nabla \Delta \Phi &= \nabla \Delta \Phi_1 - \nabla \Delta \Phi_2 \\ \frac{\partial \delta \nabla \Delta \Phi}{\partial \Phi_1} &= 1 \; ; \; \frac{\partial \delta \nabla \Delta \Phi}{\partial \Phi_2} &= -1 \end{split}$$

دقت تفاضل دوگانه برای حالت موج حامل در بالا ۲۰۰۴ سیکل بدست آمده بود. بنابراین خواهیم داشت:

$$\sigma_{\delta\nabla\Delta\Phi} = \sqrt{\left(\frac{\partial\delta\nabla\Delta\Phi}{\partial\Phi_1} * \sigma_{\nabla\Delta\Phi_1}\right)^2 + \left(\frac{\partial\delta\nabla\Delta\Phi}{\partial\Phi_2} * \sigma_{\nabla\Delta\Phi_2}\right)^2}$$

$$\sigma_{\delta\nabla\Delta\Phi} = \sqrt{(1*0.4)^2 + (-1*0.4)^2} = 0.0566$$
 cycle

به نام خدا

گزارش پروژه ی سوم درس ژئودزی ماهواره ای حسن رضوان - 81039700

این پروژه شامل ۱۲ فایل m. است:

- ۱. فایل HW_3.m که فایل اصلی یروژه است.
- ۰. فایل extract.m که برای استخراج پارامترهای فایل راینکس observation است.
 - ٣. فایل read_header.m برای خواندن header فایل ها.
 - ۴. فایل time_calc.m برای محاسبه ی زمان ها و تاریخ های مربوط به gps.
 - ۵. فایل line_length.m برای محاسبه ی طول خطوط فایل های راینکس.
 - ۶. فایل extract_nav برای استخراج پارامترهای فایل ناوبری.
- ۷. فایل validation.m برای اعتبارسنجی پارامترهای فایل ناوبری از نظر کاراکتری.
 - أ. فایل ECEF_finder.m برای محاسبه ی مختصات های ECEF ماهواره ها.
 - ۹. فایل Rotation.m برای محاسبه ی ماتریس دوران برای تابع ECEF_finder.
 - ۱۰. فایل convert2geodetic.m برای محاسبه ی مختصات های ژئودتیک.

- ۱۱. فایل collins.m که تابع مربوط به الگوریتم کالینز در آن نوشته شده است.
 - ۱۲. فایل Klobuchar.m برای تابع مربط به مدل کلوبوچار.

سوال 1:

ابتدا فایل های راینکس navigation و observation را برای ایستگاه یوکلولت در کانادا دانلود می کنیم.

شکل ۱. دانلود فایل های داده

برای خواندن این فایل ها، از توابعی که در تمرینات ۱ و ۲ نوشتیم استفاده می کنیم. در مورد این توابع در زیر به طور خلاصه توضیح داده شده است:

- extract_nav: این تابع برای جداسازی پارامترهای فایل ناوبری استفاده می کنیم. در یک حلقه ی while و extract_nav پارامترهای موجود در هر خط را هر خط فایل ناوبری را به کمک fgetl خوانده و به کمک تابع extract_nav پارامترهای موجود در هر خط را جدا می کنیم. در نهایت تمام پارامترهای کپلری را در ماتریس kepler_elements میریزیم.
- validation: در این تابع پارامترهای استخراج شده را جهت استفاده در محاسبات اعتبارسنجی می کنیم. به این صورت string باشند و اگر به صورت double بستند، به طورت double تبدیل شوند.
 - ECEF_finder: یکی از سوالات تمرین اول، محاسبه ی مختصات ماهواره در سیستم پریفوکال و در نهایت سیستم ECEF بود که به کمک یک الگوریتم ۱۱ مرحله ای انجام می شد. اکنون الگوریتم نوشته شده در آن تمرین را به صورت یک تابع درآورده ایم.
 - rotation: برای محاسبه ی دوران که در تابع ECEF_finder استفاده شده است.

- extract: از این تابع برای استخراج پارامترهای فایل راینکس observation استفاده می کنیم. در این تابع ابتدا زمان را در ماتریس اپک میریزیم. سپس به کمک حلقه ی for هر خط فایل را خوانده و در نهایت پارامترهای جداشده را در ماتریس data میریزیم.
 - read_header: برای خواندن قسمت header فایل راینکس از آن استفاده می شود. پارامتری که از این قسمت استخراج می شود، مختصات تقریبی ایستگاه است.
 - line_length: جهت محاسبه ی طول هر خط استفاده می شود.
- time_calc: برای محاسبه ی تاریخ ژولین و زمان gps نوشته شده که در تابع extract از آن استفاده می شود.

قسمت اول)

برای پاسخ به این قسمت از سوال، ابتدا لازم است که مختصات ۳۱ ماهواره ای را که دراختیار داریم، بدست آوریم. این کار به کمک الگوریتم ۱۱ مرحله ای که در تمرین اول به طور کامل شرح داده شده است، صورت می گیرد. این الگوریتم در تابع تابع ECEF انجام می شود. خروجی این تابع مختصات های $x ext{ } e$

ا. محاسبه ی اختلاف زمان با زمان مرجع: این پارامتر با اختلاف زمان گذشته از ابتدای روز از toe محاسبه می شود. ماتریس t همان ماتریس ثانیه های گذشته در یک روز با گام های ۳۰ ثانیه است. t هم از فایل ناوبری برای هر ماهواره بدست می آید. مقدار t و این الگوریتم از کم کردن مقدار t ماهواره ی اول از مقدار t مقدار مقدار ها که در زمان بعد از اولین مشاهده اندازه گیری شده اند، کم می کنیم.

$$t_k = t - t_{oe}$$

محاسبه را محاسبه این ماتریس باید آنومالی متوسط را محاسبه t_k . t_k . t_k . کنیم.

$$M = M_0 + \left(\sqrt{\frac{GM}{a^3}} + \Delta n\right) * t$$

- $E=M+e \ sin \ E$ سپس باید آنومالی خروج از مرکزیت (E_k) را محاسبه کنیم. معادله ی کپلر به صورت E محاسبات عددی استفاده است. به دلیل آنکه E را در این معادله در اختیار نداریم، باید از روش های تکراری در محاسبات عددی استفاده کنیم. یکی از این روش های عددی، روش نیوتن رافسون است. شرط رسیدن به جواب نهایی برای E_k آن است که اختلاف E_k ی نهایی با جواب قبل آن از E_k کوچکتر شود.
 - ۴. محاسبه ی آنومالی حقیقی:

$$v = \tan^{-1} \left(\frac{E\sqrt{1 - e^2}}{\cos E - e} \right)$$

۵. محاسبه ی آرگومان پریجی:

$$\omega = \omega_0 + v + C_{wc}\cos 2(v + \omega_0) + C_{ws}\sin 2(v + \omega_0)$$

۶. محاسبه ی فاصله ی شعاعی:

$$r = a(1 - e\cos E) + C_{rc}\cos 2(v + \omega_0) + C_{rs}\sin 2(v + \omega_0)$$

۷. محاسبه ی زاویه ی میل مداری:

$$i = i_0 + it + C_{ic}\cos 2(v + \omega_0) + C_{is}\sin 2(v + \omega_0)$$

٨. محاسبه ي طول نقطه ي گرهي صعودي:

$$\Omega = \Omega_0 + (\dot{\Omega} - \omega_e)t - \omega_e t_{oe}$$

. 7.292115147*10⁻⁵ برابر است با ω_e مقدار ω_e

۹. محاسبه ی مختصات در سیستم ECEF:

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{ECEE} = R_3(-\Omega) R_1(-i) R_3(-\omega) \begin{pmatrix} r_k \\ 0 \\ 0 \end{pmatrix}$$

۱۰. محاسبه ی مختصات در سیستم پریفوکال:

$$\begin{cases} x_{PF} = r \cos \theta \\ y_{PF} = r \sin \theta \end{cases}$$

۱۱. تبدیل به سیستم اینرشیال:

$$\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}_{ECI} = R_3(-\Omega) R_1(-i) R_3(-\omega) \begin{pmatrix} x \\ y \\ 0 \end{pmatrix}_{PF}$$

سپس باید اختلاف زمان بین ارسال و دریافت سیگنال را بدست آوریم. این کار به کمک رابطه ی زیر انجام می شود:

$$\Delta t = \frac{t_{sat} - t_{reciver}}{c}$$
 ; which $c = 3 * 10^8$

برای رسم اختلاف بین زمان ارسال و دریافت برای ماهواره ی شماره ی ۳ از آخرین ماتریس بدست آمده ی Δt از حلقه استفاده می کنیم. این ماتریس را برحسب ۲۴ ساعت شبانه روز با طول گام ۳۰ ثانیه ترسیم می کنیم.

شکل ۲. اختلاف بین زمان ارسال و زمان دریافت برای ماهواره ی شماره ۳

در نهایت برای محاسبه ی مختصات های نهایی به پارامتر θ برای دوران حول محور z نیاز داریم؛ چراکه در حین سیر سیگنال، زمین در حال دوران است. برای بدست آوردن θ از رابطه ی زیر استفاده می کنیم.

$$\theta = \omega_e * \Delta t$$

با بدست آوردن و دوران مختصات های بدست آمده از حلقه ی while، مختصات های نهایی جدید ماهواره ها حاصل می شود.

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix}_{new} = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}_{satellite}$$

در نهایت مختصات های اولیه را از مختصات های جدیدی که بدست آوردیم، کم کرده و این اختلاف مختصات را برحسب ۲۴ ساعت شبانه روز رسم می کنیم.

شکل ۳. اختلاف بین مختصات های ماهواره در زمان ارسال و زمان دریافت برای ماهواره ی شماره ۳

قسمت دوم)

یکی از خطاهای موجود در معادله ی مربوط به فاصله، خطای ساعت ماهواره است که ناشی از اختلاف ساعت ماهواره با زمان gps است. به دلیل ثبات ساعت ماهواره، رفتار این زمان قابلیت مدلسازی دارد. ارتباط بین زمان ساعت ماهواره و زمان gps توسط کنترل زمینی سامانه ی gps از طریق ارسال ضرایب یک مدل چندجمله ای در اطلاعات ناوبری معین می گردد. این مدل به صورت زیر است:

$$\Delta t_{SV} = a_0 + a_1(t - t_0) + a_2(t - t_0)^2$$

که در آن Δt_{sv} اختلاف بین زمان ماهواره و gps زمان gps در لحظه ی اندازه گیری، to زمان مرجع پیام های ناوبری و a0 و a1 و a2 ضرایب موجود در پیام های ناوبری است. مقادیر t را از فایل راینکس observation با توجه به ستون مربوط به شماره ی ماهواره ها استخراج می کنیم و مقادیر مربوط به t0 را از ستون ۱۷ فایل ناوبری برداشته و برای هر لحظه که ماهواره اندازه گیری دارد، خطای ساعت ماهواره را محاسبه می کنیم. با توجه به ضرایب موجود که در ماتریس لحظه و جود داشته، مدل فوق را برای هر لحظه و به ازای هر ماهواره اجرا می کنیم. در نهایت ماتریس حاصل برای هر ماهواره را در یک از درایه های سلول delta_t_sv میریزیم. همچنین نمایش این خطا برای ماهواره ی شماره ی ۲ به صورت زیر می شود:

شکل ۴. خطای ساعت ماهواره برای ماهواره ی شماره ۲

قسمت سوم)

برای محاسبه ی میزان خطای لایه ی تروپوسفر از مدل کالینز استفاده می کنیم. این مدل را در تابعی با نام collins نوشته ایم که ورودی های آن زاویه ی ارتفاعی و ارتفاع گیرنده و مقادیر ۵ پارامتر هواشناسی است.

پیش از پرداختن به این مدل، لازم است در مورد نحوه ی بدست آوردن زاویه ی ارتفاعی و آزیموت صحبت کنیم. ابتدا به کمک مختصات تقریبی ایستگاه، و تابع convert2geodetic (تابعی که در تمرین اول توضیح داده شد) مختصات ژئودتیک ایستگاه را بدست می آوریم و پس از آن به مختصات enu تبدیل می کنیم.

روش محاسبه ی مختصات های ژئودتیک. این روند در فایل convert2geodetic و برای درس ژئودزی هندسی نوشته شده بود.

$$\lambda = \tan^{-1}\left(\frac{y}{x}\right)$$

$$\varphi_0 = \tan^{-1}\left(\frac{z}{\sqrt{x^2 + y^2}}\left(1 + \frac{e^2}{1 - e^2}\right)\right)$$

$$\varphi_i^{i=1:n} = \tan^{-1}\left(\frac{z}{\sqrt{x^2 + y^2}}\left(1 + \frac{e^2N\sin\varphi}{z}\right)\right)$$

$$h = \frac{z}{\sin\varphi} - N(1 - e^2)$$

نحوه ی بدست آوردن مختصات enu:

$$\hat{e} = (-\sin\lambda, \cos\lambda, 0)$$

$$\hat{n} = (-\cos\lambda\sin\varphi, -\sin\lambda\sin\varphi, \cos\varphi)$$

$$\hat{u} = (\cos\lambda\cos\varphi, \sin\lambda\cos\varphi, \sin\varphi)$$

گام بعدی آن است که تفاوت فاصله بین مختصات ایستگاه و مختصات ماهواره را که در قسمت اول حساب کردیم، بدست آوریم. در نهایت بردار را به صورت زیر بدست می آوریم:

$$\rho = \frac{r^{sat} - r_{rcv}}{\|r^{sat} - r_{rcv}\|}$$

در نهایت به کمک مختصات های enu و بردار فوق و با ضرب داخلی، مختصات های هر لحظه ی ماهواره را خواهیم داشت:

$$E = \sin^{-1}(\rho \, . \, u)$$

$$A = \tan^{-1} \left(\frac{\rho \cdot e}{\rho \cdot n} \right)$$

اكنون با داشتن E و A وارد الكوريتم مي شويم.

الگوريتم اين مدل به صورت زير است:

ا. محاسبه ی پارامترهای هواشناسی: ابتدا با توجه به عرض جغرافیایی گیرنده، پارامتر D_{\min} را بدست می آوریم. برای نیمکره ی شمالی، مقدار D_{\min} برابر D_{\min} برابر D_{\min} برای نیمکره ی شمالی، مقدار D_{\min} برابر D_{\min} برابر D_{\min} با توجه به اینکه ایستگاه موردنظر ما در نیمکره ی شمالی قرار دارد، مقدار D_{\min} را برابر D_{\min} در نظر می گیریم. گام بعدی آن است که با توجه به جدول زیر و رابطه ی $E(\Phi,D)=\varepsilon_0(\Phi)-\Delta\varepsilon(\Phi)\cos\left(\frac{2\pi(D-D_{\min})}{365.25}\right)$ مقادیر هر یک از D_{\min} با توجه به مقدار عرض جغرافیایی گیرنده، میتوان مقادیر پارامترها را درونیابی کرد.

Latitude (°)	Average						
	P ₀ (mbar)	T ₀ (K)	e ₀ (mbar)	β ₀ (K/m)	λ_0		
15 or less	1013.25	299.65	26.31	6.30·10 ⁻³	2.77		
30	1017.25	294.15	21.79	6.05·10 ⁻³	3.15		
45	1015.75	283.15	11.66	5.58·10 ⁻³	2.57		
60	1011.75	272.15	6.78	$5.39 \cdot 10^{-3}$	1.81		
75 or more	1013.00	263.65	4.11	4.53·10 ⁻³	1.55		
Latitude	Seasonal variation						
	ΔP	ΔT	Δe	$\Delta \beta$	$\Delta \lambda$		
(°)	(mbar)	(K)	(mbar)	(K/m)	$\Delta \lambda$		
15 or less	0.00	0.00	0.00	0.00-10-3	0.00		
30	-3.75	7.00	8.85	$0.25 \cdot 10^{-3}$	0.33		
45	-2.25	11.00	7.24	$0.32 \cdot 10^{-3}$	0.46		
60	-1.75	15.00	5.36	$0.81 \cdot 10^{-3}$	0.74		
75 or more	-0.50	14.50	3.39	$0.62 \cdot 10^{-3}$	0.30		

محاسبات و درونیابی های مربوط به هر کدام از ۵ پارامتر به صورت زیر انجام شده است:

$$\varepsilon = \varepsilon_0 - 0.9292 \,\Delta\varepsilon$$

$$P = P_0 - 0.9292 \,\Delta P \to P = 1017 - 0.9292(-2.08) = 1018.93$$

$$T = T_0 - 0.9292 \,\Delta T \to T = 279.48 - 0.9292(12.33) = 268.02$$

$$e = e_0 - 0.9292 \,\Delta e \to e = 10.03 - 0.9292(6.61) = 3.88$$

$$\beta = \beta_0 - 0.9292 \,\Delta\beta \to \beta = 5.51 * 10^{-3} - 0.9292(0.48 * 10^{-3}) = 5.06 * 10^{-3}$$

$$\lambda = \lambda_0 - 0.9292 \,\Delta\lambda \rightarrow \lambda = 2.31 - 0.9292(0.55) = 1.79$$

Tr_{z0,w} و Tr_{z0,d} و ۲

$$Tr_{z_0,d} = \frac{10^{-6}k_1R_dP}{g_m} \quad ; \quad Tr_{z_0,w} = \frac{10^{-6}k_2R_d}{(\lambda+1)g_m} \frac{e}{T}$$

$$k_1 = 77.604 \; ; k_2 = 382000 \; ; \; R_d = 287.054 \; ; g_m = 9.784 \; ; g = 9.80665$$

 $\mathsf{Tr}_{\mathsf{z0},\mathsf{w}}$ و $\mathsf{Tr}_{\mathsf{z0},\mathsf{d}}$ و تر در راستای زنیت $\mathsf{Tr}_{\mathsf{z0},\mathsf{d}}$ و $\mathsf{Tr}_{\mathsf{z0},\mathsf{w}}$

$$Tr_{z,d} = \left[1 - \frac{\beta H}{T}\right]^{\frac{g}{R_d \beta}} * Tr_{z_0,d} \quad ; \quad Tr_{z,w} = \left[1 - \frac{\beta H}{T}\right]^{\frac{(1+\lambda)g}{R_d \beta}-1} * Tr_{z_0,w}$$

۴. محاسبه ی تابع تصویر

$$M(E) = \frac{1.001}{\sqrt{0.002001 + \sin^2 E}}$$

٥. محاسبه ي مقدار خطاي تروپوسفري

$$Tr(E) = d^{trop}(E) = (Tr_{z,d} + Tr_{z,w}) * M(E)$$

در نهایت مقادیر این خطا را برای تمام ۳۱ ماهواره به صورت زیر نمایش می دهیم:

از آنجایی که شکل فوق واضح نیست و اطلاعات خوبی در اختیار ما قرار نمی دهد، یک پلات دیگر از نتایج مربوط به ماهواره های ۱ و ۲ و ۳ و ۵ تهیه می کنیم که در پایین آمده است.

قسمت چهارم)

یکی از مدل های تصحیح یونسفری، مدل کلوبوچار است که برای گیرنده های تک فرکانسه به کار می رود و یک منحنی کسینوسی را به تغییرات روزانه ی تاخیر یونسفری برازش می دهد. برای این قسمت، الگوریتم کلوبوچار را در داخل یک تابع نوشته و تابع را Klobuchar نام گذاری می کنیم. ورودی های این تابع عبارتند از A، A مختصات ایستگاه و ضرایب و β که در فایل راینکس قرار دارد. روند مدل کلوبوچار به صورت زیر است:

۱. محاسبه ی زاویه ی مرکزی

$$\psi = \frac{\pi}{2} - E - \sin^{-1}\left(\frac{R_E}{R_E + h}\cos E\right)$$

که R_E=6378 و n=350

۲. محاسبه ی عرض جغرافیایی IPP

 $\Phi_I = \sin^{-1}(\sin\varphi_u\cos\psi + \cos\varphi_u\sin\psi\cos A)$

۳. محاسبه ی طول جغرافیایی IPP

$$\lambda_I = \lambda_u + \frac{\psi \sin A}{\cos \Phi_I}$$

۴. محاسبه ی عرض مغناطیسی نقطه ی IPP

 $\Phi_m = \sin^{-1}(\sin \Phi_I \sin \Phi_P + \cos \Phi_I \cos \Phi_P \cos(\lambda_I - \lambda_P))$

$$\lambda_P = 291.10^{\circ}; \ \Phi_P = 78.3^{\circ}$$

۵. محاسبه ی زمان لوکال IPP

$$t = \frac{43200 \,\lambda_I}{\pi} + t_{GPS} \rightarrow \begin{cases} t > 86400 & t = \frac{t}{86400} \\ t < 86400 & t = t + 86400 \end{cases}$$

⁹. محاسبه ی دامنه ی یونسفری

$$A_I = \sum_{n=0}^{3} a_n \left(\frac{\Phi_m}{\pi}\right)^n \stackrel{A_I < 0}{\Longrightarrow} A_I = 0$$

۷. محاسبه ی پریود تاخیری

$$P_I = \sum_{n=0}^{3} \beta_n \left(\frac{\Phi_m}{\pi}\right)^n \xrightarrow{P_I < 72000} P_I = 72000$$

۸. محاسبه ی فاز تاخیری یونسفری

$$X_I = \frac{2\pi(t - 50400)}{P_I}$$

۹. محاسبه ی تابع تصویر یونسفری

$$F = \left[1 - \left(\frac{R_E}{R_E + h} \cos E\right)^2\right]^{-\frac{1}{2}}$$

۱۰. محاسبه ی تاخیر زمانی یونسفری برای L₁

$$I_1 = \begin{cases} [5 * 10^{-9} + A_I \cos X_I] * F & |X_I| < \frac{\pi}{2} \\ 5 * 10^{-9} * F & |X_I| \ge \frac{\pi}{2} \end{cases}$$

در نهایت با ضرب ۱ در سرعت نور، مقدار خطای یونسفری در واحد متر بدست می آید.

$$d_{ion} = I_1 * c$$

این الگوریتم را برای هر ایک اجرا کرده و برای ۳۱ ماهواره به صورت زیر نمایش می دهیم:

از آنجایی که شکل فوق واضح نیست و اطلاعات خوبی در اختیار ما قرار نمی دهد، یک پلات دیگر از نتایج مربوط به ماهواره های ۱ و ۲ و ۳ و ۵ تهیه می کنیم که در پایین آمده است.

به نام خدا

گزارش پروژه ی چهارم درس ژئودزی ماهواره ای حسن رضوان - ۱۰۳۹۶۰۷۹

برای انجام این پروژه از داده های پروژه های قبل که آنها را به صورت یک ماتریس واحد درآورده بودیم، خروجی گرفته و استفاده می کنیم.

سوال ۱)

1-1: ابتدا لازم است نویز را از مشاهدات p₁ حذف کنیم. برای حل این سوال از خطاهای مربوط به اتمسفر نظیر یونسفر و تروپوسفر صرف نظر می کنیم. معادلاتی که دراختیار داریم به صورت زیر است:

$$\rho_j - c\delta T^j = \sqrt{(x^j - x)^2 + (y^j - y)^2 + (z^j - z)^2} + c\delta t$$

در نهایت معادله مشاهده ای تشکیل می دهیم به صورت زیر است:

$$l = \rho + c\delta T - r_0$$

که ho مشاهدات موجود در فایل راینکس است. همچنین رابطه ی ho به صورت زیر است:

$$r_0 = \sqrt{(x^j - x)^2 + (y^j - y)^2 + (z^j - z)^2}$$

از آنجایی که در رابطه ی فوق رادیکال وجود دارد، مدل مسئله پارامتریک خطی است. پس باید رابطه ای را که به عنوان معادله مشاهده دراختیار داریم را خطی کنیم. با خطی سازی به معادله ی زیر می رسیم.

$$P^{j} = \rho_{0}^{j} - D^{j} = \frac{x_{0} - x^{j}}{\rho_{0}^{j}} dx + \frac{y_{0} - y^{j}}{\rho_{0}^{j}} dy + \frac{z_{0} - z^{j}}{\rho_{0}^{j}} dz + c\delta t$$

در نهایت می توانیم ماتریس ها را به صورت زیر تشکیل دهیم:

$$A = \begin{bmatrix} \frac{x_0 - x^1}{\rho_0^j} & \frac{y_0 - y^1}{\rho_0^j} & \frac{z_0 - z^1}{\rho_0^j} & 1\\ \vdots & \vdots & \vdots & \vdots\\ \frac{x_0 - x^n}{\rho_0^j} & \frac{y_0 - y^n}{\rho_0^j} & \frac{z_0 - z^n}{\rho_0^j} & 1 \end{bmatrix} ; \quad X = \begin{bmatrix} dx \\ dy \\ dz \\ c\delta t \end{bmatrix}$$

ماتریس مشاهدات که در بالا توضیح داده شد، هم به صورت زیر تشکیل می شود:

$$\delta \hat{l} = \begin{bmatrix} P^1 - \rho_0^1 - D^1 \\ \vdots \\ P^n - \rho_0^n - D^n \end{bmatrix}$$

ماتریس های مربوط به تمام معادلات و مشاهداتی را که دراختیار داریم را تشکیل می دهیم و در نهایت به کمک رابطه ی کمترین مربعات یعنی $X = (A^T A)^{-1} A^T l$ مجهولات را برآورد می کنیم. روند حل کمترین مربعات و تشکیل ماتریس ها در تابع leastSquare_Part_1 نوشته شده است.

برای روش ترتیبی نیز یک حلقه ی for به تعداد مشاهدات که ۲۸۸۱ عدد است تشکیل داده و در هر تکرار یک مشاهده را اضافه می کنیم و به مجهولات برآورد شده در مرحله ی قبل اضافه می کنیم.

۲ → ا: در این قسمت می خواهیم همان روندی را که در قسمت ۱ –۱ طی کردیم، انجام می دهیم با این تفاوت که می خواهیم خطاهای یونسفر و تروپوسفر را تاثیر دهیم. در نتیجه معادلات ما به شکل زیر خواهد بود:

$$\rho_{j} - c\delta T^{j} + d_{trop} - d_{ion} = \sqrt{(x^{j} - x)^{2} + (y^{j} - y)^{2} + (z^{j} - z)^{2}} + c\delta t$$

معادله مشاهده به شکل زیر می شود:

$$l = \rho + c\delta T - r_0 - d_{trop} - d_{ion}$$

ادامه ی کار برای روش های یکجا و ترتیبی همانند قسمت ۱-۱ است.

۳ − 1: برای پاسخ به این سوال باید از یک معیار برای سنجش استفاده کنیم. این معیار را می توانیم فاصله ی سه بعدی تا مختصات اولیه ی ایستگاه قرار دهیم. با مقایسه ی فاصله های سه بعدی در حالتی که اتمسفر را اعمال کرده ایم و در حالتی که اعمال نکرده ایم می توان در مورد اثر آن بحث کرد.

با اجرای برنامه در حالت یکجا با اعمال اثرات اتمسفر و بدون اعمال آن به نتایج زیر میرسیم:

 $dist_{oneplace-nonatmosphere} = 20.3612 m$ $dist_{oneplace-atmosphere} = 17.8392 m$

و در حالت ترتیبی:

 $dist_{sequential-nonatmosphere} = 18.9126 m$ $dist_{sequential-atmosphere} = 16.3280 m$ در هر دو حالت یکجا و ترتیبی شاهد هستیم که فاصله ی اقلیدسی با مختصات اولیه ی ایستگاه در حالتی که اثرات اتمسفر را در معادلات اعمال کرده ایم کمتر از حالتی است که این اثرات حذف شده اند. در نتیجه می توان گفت اعمال اثرات اتمسفر در معادلات سبب می شود به برآورد بهتری از موقعیت ایستگاه مورد نظر برسیم.

سوال ۲)

- در این قسمت می خواهیم مختصات گیرنده را به کمک مشاهدات کد در دو فرکانس برآورد کنیم. ابتدا لازم است که مشاهدات نویز یعنی مشاهداتی را که مقادیر p_1 و p_2 برای آنها صفر است، حذف می کنیم. سپس از روش های یکجا و ترتیبی در حالت های بدون اعمال اثرات اتمسفر و اعمال اثرات اتمسفر همانند سوال قبل با این تفاوت که از مشاهدات p_1 و p_2 برای تعیین موقعیت استفاده می کنیم.

در حالت تعیین موقعیت تابعی با نام oneplace_matrix_arrange جهت چینش ماتریس ها نوشته شده است. ادامه ی روند حل سوال مانند سوال ۱ است و از توابع leastSquare_nonatmosphere و leastSquare_atmosphere برای انجام حل کمترین مربعات به ترتیب برای حالت اعمال اثر اتمسفر و اعمال ندادن اثر آن استفاده می شود. این مختصات ها در پایین آمده اند:

	دو فرکانس			تک فرکانس		
-\$.7\TT*\·\$	٣.١٠ ٨ ٢ ※ ١٠ ^Δ	-1.7117*1.5	-8.Y\YY*\+°	7.1. ∧1. %1. °	-1.7117*1.5	روش یکجا و
-8.7177*1·°	7.1. ∧1. %1. ^Δ	-1.711V*1· ⁵	-\$. ٢ \٣ ٢ *\•\$	7.1. ∧1. %1. °	-1.7118*1.5	روش یکجا و
						با اتمسفر
-8.7177*1·°	7.1. ∧ 7. % 1. ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	-1.711V*1+ ⁵	-8.7177*1·°	۳.۱٠ ۸ ۱ %۱٠ ^۵	-1.7°117*1+5	روش ترتیبی
						و بدون
						اتمسفر
-8.71\TX	7.1. λ1*1. ^Δ	-1.771V*1+°	-\$.Y\TY*\· ^{\$}	٣.١٠λ ¹ *1· ^Δ	-1.771 1V*1+°	روش ترتیبی
						و با اتمسفر

همچنین فواصل تا مختصات اولیه ی ایستگاه نیز در پایین آمده است:

دو فرکانس	تک فرکانس	
71.7161	4.50	روش یکجا و بدون اتمسفر
18.1198	۱۷.۸۳۶۸	روش یکجا و با اتمسفر

۱۹.۷۲۴۵	۱۸.۹۱۱۸	روش ترتیبی و بدون اتمسفر
10.7411	18.1474	روش ترتیبی و با اتمسفر

۲-۲: پس از آن مختصات ها را به مختصات ژئودتیک تبدیل کرده و نقشه ی آن به صورت زیر می شود:

نقاط آبی مربوط به مختصات های بدست آمده از سوال ۱ و نقاط قرمز مربوط به مختصات های بدست آمده از سوال ۲ است.

با توجه به جدول های قسمت ۱-۲ می توان گفت که مختصات ها در دو حالت تک فرکانس و دوفرکانس بسیار به هم نزدیک هستند و در بیشترین حالت ۱۰۰ متر فاصله دارند.

۲ - ۲: برای مقایسه ی حالت تک فرکانس و دو فرکانس می توان از ماتریس وریانس کووریانس استفاده کرد. ماتریس وریانس کووریانس در حالت تک فرکانس – ترتیبی و با اعمال اثرات اتمسفر:

0.0106	-3.1909e-04	0.0062	-0.0036
-3.1909e-04	0.0087	-0.0038	0.0020
0.0062	-0.0038	0.0707	-0.0336
-0.0036	0.0020	-0.0336	0.0193
III SOUD COLLEGE			VW-170-0

ماتریس وریانس کووریانس در حالت دو فرکانس- ترتیبی و با اعمال اثرات اتمسفر:

-0.0018	0.0031	-1.5954e-04	0.0053
9.7632e-04	-0.0019	0.0044	-1.5954e-04
-0.0168	0.0354	-0.0019	0.0031
0.0097	-0.0168	9.7632e-04	-0.0018

یا در حالت دیگر مقایسه کنیم. ماتریس وریانس کووریانس در حالت تک فرکانس-یکجا و بدون اعمال اثرات اتمسفر:

3.8510e-06	-2.0929e-07	2.9623e-06	-1.7566e-06
-2.0929e-07	3.4280e-06	-1.1245e-06	6.3870e-07
2.9623e-06	-1.1245e-06	3.0519e-05	-1.4998e-05
-1.7566e-06	6.3870e-07	-1.4998e-05	8.6383e-06

ماتریس وریانس کووریانس در حالت دو فرکانس-یکجا و بدون اعمال اثرات اتمسفر:

	4.8217e-05	-2.6271e-06	3.6968e-05	-2.1944e-05	
Ì	-2.6271e-06	4.2907e-05	-1.4215e-05	8.0862e-06	
İ	3.6968e-05	-1.4215e-05	3.8292e-04	-1.8831e-04	
Ì	-2.1944e-05	8.0862e-06	-1.8831e-04	1.0848e-04	
ŀ					

همانطور که از مقادیر ماتریس های وریانس و کووریانس مشخص است، در حالت دو فرکانس نتایج برآورد دارای دقت بیشتری نسبت به حالت تک فرکانس هستند. پس می توان گفت دقت کار اهمیت بسیار زیادی دارد لازم است از دو فرکانس استفاده کرد. اما در مسئله ی ما با توجه به شکل و از آنجا که اختلاف نتایج حاصل از تک فرکانس و دو فرکانس کمتر از مرتبه ی ۱۰-۵ است، می توان از مشاهدات در دو فرکانس صرف نظر کرد.

سوال ۳)

ا — ♥ در این قسمت می خواهیم علاوه بر مشاهدات کد از مشاهدات فاز هم استفاده کنیم. روند حل در این قسمت مشابه دو سوال قبل است. حل کمترین مربعات برای حالت اعمال اثر اتمسفر و بدون اعمال اثر آن، در توابع leastSquare_nonatmosphere_Part3 و leastSquare_part3 نوشته شده است. در این توابع نحوه ی تشکیل ماتریس های مشاهدات و طرح نوشته شده است. همانطور که می دانیم در حالت مشاهده ی

فاز علاوه بر مشاهده ی کد مجهول دیگری داریم که همان ابهام فاز (N) است. معادلات ما در این حالت به صورت زیر می شوند:

$$\Phi(t) = \rho(t) + \lambda N + c\delta t(t)$$

به دلیل وجود رادیکال در ho معادله غیرخطی است؛ پس از خطی کردن رابطه ی فوق داریم:

$$\Phi(t) - \rho(t) = -\frac{X(t) - X_0}{\rho_0(t)} \Delta X_i - \frac{Y(t) - Y_0}{\rho_0(t)} \Delta Y_i - \frac{Z(t) - Z_0}{\rho_0(t)} \Delta Z_i + \lambda N_i + c \delta t_i$$

در نتیجه ماتریس طرح به صورت زیر می شود:

ماتریس مربوط به مختصات ها:

$$A_1 = \begin{bmatrix} -\frac{X^1(t) - X_0}{\rho_0^n(t)} & -\frac{Y(t) - Y_0}{\rho_0(t)} & -\frac{Z(t) - Z_0}{\rho_0(t)} \\ \vdots & \vdots & \vdots \\ -\frac{X^n(t) - X_0}{\rho_0^n(t)} & -\frac{Y(t) - Y_0}{\rho_0(t)} & -\frac{Z(t) - Z_0}{\rho_0(t)} \end{bmatrix}$$

ماتریس مربوط به زمان ماهواره:

$$A_2 = \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

ماتریس مربوط به مشاهدات کد که همگی ضرایب صفر دارند:

$$A_3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

ماتریس مربوط به مشاهدات فاز(ضرایب ابهام فاز):

$$A_4 = \begin{bmatrix} \lambda & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & \lambda \end{bmatrix}$$

در نهایت ماتریس طرح کلی عبارت است از:

$$A = \begin{bmatrix} A_1 & A_2 & A_3 & A_4 \end{bmatrix}$$

در نهایت مختصات هایی که از حل مسئله به کمک مشاهدات کد و فاز بدست می آوریم، به همراه ماتریس دقتشان در پایین آمده است:

	Z				У	'			>	(
-	-8.717	۳*۱۰۶			۲.۱۰۸۱	۲*۱۰ ^۵			-1.711	۷*۱۰۶		سفر	بدون اتم	ترتیبی ب	روش
0.0106	-3.1909e-04	0.0062	-0.0036	-3.4679e-08	1.4190e-08	-4.4272e-08	-2.4953e-08	4.0227e-08	-2.3192e-08	-3.6794e-08	3.6221e-08	2.0477e-08	-1.0230e-08	1.8310e-08	4.4695e-08
-3.1909e-04	0.0087	-0.0038	0.0020	1.7944e-08	-2.6788e-08	6.6822e-10	3.1516e-08	1.5008e-08	-3.5308e-08	-1.5794e-08	-2.4565e-08	-5.1091e-08	3.0578e-08	3.3112e-08	2.4720e-08
0.0062	-0.0038	0.0707	-0.0336	6.8647e-08	-5.8515e-08	-8.1581e-08	-1.2309e-07	-2.6342e-08	3.1533e-08	-7.1796e-08	-2.6738e-09	1.2701e-07	1.3770e-07	-5.6229e-08	5.5336e-08
-0.0036	0.0020	-0.0336	0.0193	-4.6939e-08	8.4315e-09	2.3714e-08	4.2313e-08	-7.7191e-09	-3.1257e-08	1.8346e-08	-1.9175e-08	-7.9199e-08	-8.0718e-08	8.0769e-09	-4.6076e-08
-3.4679e-08	1.7944e-08	6.8647e-08	-4.6939e-08	1.4843e-12	-1.1997e-13	1.5429e-13	9.3679e-14	-7.1895e-14	1.4240e-13	9.6121e-14	-1.2205e-13	6.4351e-14	4.1375e-13	1.9746e-14	5.4515e-14
1.4190e-08	-2.6788e-08	-5.8515e-08	8.4315e-09	-1.1997e-13	1.3882e-12	1.0091e-13	7.8756e-14	1.4826e-13	1.3429e-13	1.6186e-13	2.5204e-13	1.6110e-13	-1.9926e-13	7.7449e-14	2.5596e-14
-4.4272e-08	6.6822e-10	-8.1581e-08	2.3714e-08	1.5429e-13	1.0091e-13	1.4299e-12	2.7568e-13	-4.1020e-14	1.6638e-13	2.9632e-13	-2.9218e-14	-6.9867e-14	-5.5262e-16	5.7789e-14	-1.3133e-13
-2.4953e-08	3.1516e-08	-1.2309e-07	4.2313e-08	9.3679e-14	7.8756e-14	2.7568e-13	1.5039e-12	1.1746e-13	-2.4549e-14	2.0257e-13	-2.7359e-14	-2.7188e-13	-4.6093e-15	2.4514e-13	2.0497e-14
4.0227e-08	1.5008e-08	-2.6342e-08	-7.7191e-09	-7.1895e-14	1.4826e-13	-4.1020e-14	1.1746e-13	1.4087e-12	-8.3386e-14	-4.1923e-14	2.0849e-13	1.3909e-14	6.4541e-15	2.5956e-13	2.8463e-13
-2.3192e-08	-3.5308e-08	3.1533e-08	-3.1257e-08	1.4240e-13	1.3429e-13	1.6638e-13	-2.4549e-14	-8.3386e-14	1.4106e-12	2.1659e-13	9.4217e-14	2.9937e-13	6.1006e-14	-1.1198e-13	-9.5753e-14
-3.6794e-08	-1.5794e-08	-7.1796e-08	1.8346e-08	9.6121e-14	1.6186e-13	2.9632e-13	2.0257e-13	-4.1923e-14	2.1659e-13	1.4077e-12	4.0996e-14	3.6927e-14	-6.7668e-14	8.9889e-15	-1.4924e-13
3.6221e-08	-2.4565e-08	-2.6738e-09	-1.9175e-08	-1.2205e-13	2.5204e-13	-2.9218e-14	-2.7359e-14	2.0849e-13	9.4217e-14	4.0996e-14	1.4017e-12	2.5020e-13	-1.0537e-13	9.1224e-14	1.5436e-13
2.0477e-08	-5.1091e-08	1.2701e-07	-7.9199e-08	6.4351e-14	1.6110e-13	-6.9867e-14	-2.7188e-13	1.3909e-14	2.9937e-13	3.6927e-14	2.5020e-13	1.6640e-12	1.2041e-13	-1.4379e-13	8.4519e-14
-1.0230e-08	3.0578e-08	1.3770e-07	-8.0718e-08	4.1375e-13	-1.9926e-13	-5.5262e-16	-4.6093e-15	6.4541e-15	6.1006e-14	-6.7668e-14	-1.0537e-13	1.2041e-13	1.6850e-12	6.5263e-14	2.3481e-13
1.8310e-08	3.3112e-08	-5.6229e-08	8.0769e-09	1.9746e-14	7.7449e-14	5.7789e-14	2.4514e-13	2.5956e-13	-1.1198e-13	8.9889e-15	9.1224e-14	-1.4379e-13	6.5263e-14	1.4016e-12	2.3827e-13
4.4695e-08	2.4720e-08	5.5336e-08	-4.6076e-08	5.4515e-14	2.5596e-14	-1.3133e-13	2.0497e-14	2.8463e-13	-9.5753e-14	-1.4924e-13	1.5436e-13	8.4519e-14	2.3481e-13	2.3827e-13	1.4884e-12

Z	У	x	
-8.7177*1· ⁵	7.1. ∧1. *1. [△]	-1.7117*1.5	روش ترتیبی با اتمسفر

0.0106	-3.1909e-04	0.0062	-0.0036	-3.4679e-08	1.4190e-08	-4.4272e-08	-2.4953e-08	4.0227e-08	-2.3192e-08	-3.6794e-08	3.6221e-08	2.0477e-08	-1.0230e-08	1.8310e-08	4.4695e-08
-3.1909e-04	0.0087	-0.0038	0.0020	1.7944e-08	-2.6788e-08	6.6823e-10	3.1516e-08	1.5008e-08	-3.5308e-08	-1.5794e-08	-2.4565e-08	-5.1091e-08	3.0578e-08	3.3112e-08	2.4720e-08
0.0062	-0.0038	0.0707	-0.0336	6.8647e-08	-5.8515e-08	-8.1581e-08	-1.2309e-07	-2.6342e-08	3.1533e-08	-7.1796e-08	-2.6738e-09	1.2701e-07	1.3770e-07	-5.6229e-08	5.5336e-08
-0.0036	0.0020	-0.0336	0.0193	-4.6939e-08	8.4316e-09	2.3714e-08	4.2313e-08	-7.7190e-09	-3.1257e-08	1.8346e-08	-1.9175e-08	-7.9199e-08	-8.0718e-08	8.0770e-09	-4.6076e-08
-3.4679e-08	1.7944e-08	6.8647e-08	-4.6939e-08	4.0000e-04	-1.1997e-13	1.5429e-13	9.3680e-14	-7.1895e-14	1.4240e-13	9.6121e-14	-1.2205e-13	6.4351e-14	4.1375e-13	1.9746e-14	5.4514e-14
1.4190e-08	-2.6788e-08	-5.8515e-08	8.4316e-09	-1.1997e-13	4.0000e-04	1.0091e-13	7.8756e-14	1.4826e-13	1.3429e-13	1.6186e-13	2.5204e-13	1.6110e-13	-1.9926e-13	7.7449e-14	2.5596e-14
-4.4272e-08	6.6823e-10	-8.1581e-08	2.3714e-08	1.5429e-13	1.0091e-13	4.0000e-04	2.7568e-13	-4.1020e-14	1.6638e-13	2.9632e-13	-2.9218e-14	-6.9867e-14	-5.5265e-16	5.7789e-14	-1.3133e-13
-2.4953e-08	3.1516e-08	-1.2309e-07	4.2313e-08	9.3680e-14	7.8756e-14	2.7568e-13	4.0000e-04	1.1746e-13	-2.4549e-14	2.0257e-13	-2.7359e-14	-2.7188e-13	-4.6093e-15	2.4514e-13	2.0497e-14
4.0227e-08	1.5008e-08	-2.6342e-08	-7.7190e-09	-7.1895e-14	1.4826e-13	-4.1020e-14	1.1746e-13	4.0000e-04	-8.3386e-14	-4.1923e-14	2.0849e-13	1.3909e-14	6.4541e-15	2.5956e-13	2.8463e-13
-2.3192e-08	-3.5308e-08	3.1533e-08	-3.1257e-08	1.4240e-13	1.3429e-13	1.6638e-13	-2.4549e-14	-8.3386e-14	4.0000e-04	2.1659e-13	9.4217e-14	2.9937e-13	6.1006e-14	-1.1198e-13	-9.5754e-14
-3.6794e-08	-1.5794e-08	-7.1796e-08	1.8346e-08	9.6121e-14	1.6186e-13	2.9632e-13	2.0257e-13	-4.1923e-14	2.1659e-13	4.0000e-04	4.0996e-14	3.6927e-14	-6.7668e-14	8.9890e-15	-1.4924e-13
3.6221e-08	-2.4565e-08	-2.6738e-09	-1.9175e-08	-1.2205e-13	2.5204e-13	-2.9218e-14	-2.7359e-14	2.0849e-13	9.4217e-14	4.0996e-14	4.0000e-04	2.5020e-13	-1.0537e-13	9.1224e-14	1.5436e-13
2.0477e-08	-5.1091e-08	1.2701e-07	-7.9199e-08	6.4351e-14	1.6110e-13	-6.9867e-14	-2.7188e-13	1.3909e-14	2.9937e-13	3.6927e-14	2.5020e-13	4.0000e-04	1.2041e-13	-1.4379e-13	8.4519e-14
-1.0230e-08	3.0578e-08	1.3770e-07	-8.0718e-08	4.1375e-13	-1.9926e-13	-5.5265e-16	-4.6093e-15	6.4541e-15	6.1006e-14	-6.7668e-14	-1.0537e-13	1.2041e-13	4.0000e-04	6.5263e-14	2.3481e-13
1.8310e-08	3.3112e-08	-5.6229e-08	8.0770e-09	1.9746e-14	7.7449e-14	5.7789e-14	2.4514e-13	2.5956e-13	-1.1198e-13	8.9890e-15	9.1224e-14	-1.4379e-13	6.5263e-14	4.0000e-04	2.3827e-13
4.4695e-08	2.4720e-08	5.5336e-08	-4.6076e-08	5.4514e-14	2.5596e-14	-1.3133e-13	2.0497e-14	2.8463e-13	-9.5754e-14	-1.4924e-13	1.5436e-13	8,4519e-14	2.3481e-13	2.3827e-13	4.0000e-04

۲ ─ ۴ پس از آنکه مختصات های نهایی بدست آمد، آنها را به مختصات های ژئودتیک تبدیل کرده و روی نقشه نمایش می دهیم.

در شکل بالا، نقاط زرد رنگ به دلیل نزدیکی به نقاط آبی رنگ قابل تمایز نیستند. تمایز این دو نقطه با بزرگنمایی نقشه قابل مشاهده است.

پس همانطور که مشاهده می شود نتایج حاصل از استفاده از کد و فاز بیشترین دقت را دارا هستند.	
	پس همانطور که مشاهده می شود نتایج حاصل از استفاده از کد و فاز بیشترین دقت را دارا هستند.

به نام خدا

پروژه ی پنجم درس ژئودزی ماهواره ای (نرم افزار LGO) حسن رضوان - 81039707

برای انجام این ابتدا یک پروژه در برنامه ی Leica geo Office ایجاد می کنیم. اطلاعات پروژه را به صورت زیر تعریف می کنیم.

	Dictionary	Background Image	CAD Files	Codelist Te	mplate
Name:	HassanRezv	an_Project			
1:	D:\Documer	nts\GPS\Projects\5\F	Hassan Rezv	an_Project	
tic Coor <mark>d</mark> inate	Averaging:			IN COLUMN TO THE PARTY OF THE P	
stance betwe	en different so	olutions (Position):		0.075	m
stance betwe	en different so	olutions (Height):		0.075	m
ng Method:			Weighted		
	n: ic Coordinate stance betwe stance betwe	D:\Documer ic Coordinate Averaging: stance between different so	D:\Documents\GPS\Projects\5\i ic Coordinate Averaging: stance between different solutions (Position): stance between different solutions (Height):	D:\Documents\GPS\Projects\5\HassanRezvo	D:\Documents\GPS\Projects\5\HassanRezvan_Project ic Coordinate Averaging: stance between different solutions (Position): 0.075 stance between different solutions (Height):

شکل ۱

سسیستم مختصات را هم روی WGS 1984 قرار می دهیم. OK می کنیم و پروژه ساخته می شود. سپس باید داده ها را اضافه کنیم. برای این پروژه از داده های خود برنامه ی LGO استفاده می کنیم. برای اضافه کردن داده ها، از قسمت import گزینه ی raw data را انتخاب می کنیم.

شکل ۲

یکی از نقاط را باید به عنوان نقطه ی کنترل درنظر بگیریم. نقطه ی ۴۰۲ را به عنوان نقطه ی کنترل انتخاب کرده و انحراف معیار مختصات های این نقطه را صفر می کنیم.

شکل ۳

می بینیم که علامت نقطه ی ۴۰۲ عوض می شود.

□309

[□]401

⊡₃₁₁

[□]315

▲402

گام بعدی تعیین پارامترهای پردازش است.

شکل ۵

می خواهیم پردازش های بیس لاین ها را به صورت دستی انجام دهیم. سپس نقاط مرجع و rover را تعیین می کنیم.

شکل ۷

سپس راست کلیک کرده و گزینه ی process را انتخاب می کنیم. وارد سربرگ results شده و در آنجا روی گزینه ی store کلیک می کنیم.

شکل ۸

همانطور که مشاهده می شود ابهامات مربوط به هر سه پردازش حل شده است.

Poi	Epoch /	Stored St	Ambiguity	GNSS Type	Туре	Solut	Freq	X	Υ	Z	Posn
315	01/30/2004 12:19:17	Yes	yes	GPS	Static	Phase:	L1+L2	4265595.8508	724452.5527	4671116.4171	0.0005
401	01/30/2004 12:38:32	Yes	yes	GPS	Static	Phase:	L1+L2	4264537.2968	726484.7802	4671756.4526	0.0005
309	01/30/2004 12:56:02	Yes	yes	GPS	Static	Phase:	L1+L2	4264539.9411	725265.1156	4671939.6740	0.0006

شکل ۹

اگر به سربرگ view مراجعه کنیم می بینیم که نقاط ۳۱۵ و ۳۰۹ و ۴۰۱ با نقطه ی کنترل baseline تشکیل داده اند.

اکنون در سربرگ پردازش گزینه ی deselect all را انتخاب کرده و نقاط را به صورت زیر انتخاب می کنیم(قرمز: نقاط مرجع ، سبز: نقاط rover).

دوباره مانند حالت قبل راست کلیک کرده و گزینه ی process را انتخاب کرده و در نهایت حالت stored را روی yes و وباره مانند حالت قبل راست کلیک کرده و گزینه ی view برگردیم می بینیم که تعداد بیس لاین ها بیشتر شده است.

حالت دیگر:

در نهایت آخرین رفرنسی که می توانیم انتخاب کنیم:

شکل ۱۵

در پایان می بینیم که تمام بیس لاین های ممکن تشکیل شده است:

در صفحه ی results می توانیم نتایج حاصل از هر بیس لاین را ببینیم. اگر روی بیس لاین راست کلیک کرده و آنالیز را انتخاب کنیم، می توانیم اطلاعات مربوط به DOP ها را ببینیم.

وارد سربرگ سرشکنی می شویم. در این قسمت باید پیش پردازش، سرشکنی شبکه و حلقه را انجام دهیم. پیش از اینها لازم است پارامترهای سرشکنی را مشخص کنیم. برای اینکار روی صفحه راست کلیک کرده و از قسمت در configuration، گزینه ی پارامترهای کلی را انتخاب می کنیم. تمام قسمت ها را روی حالت پیش فرض نرم افزار قرار می data creation و terrestrial parameters را روی حالت های پیش فرض قرار می network adjustment ،pre-analysis و مفحه و انتخاب به ترتیب گزینه های loop adjustment ،pre-analysis و مفحه و انتخاب می کنیم.

در نهایت نتایج هر قسمت در پایین آمده است:

Adjustment Pre-Analysis

www.MOVE3.com (c) 1993-2012 Grontmij

Created: 13-07-2021 02:00:13

Project Information

Project name: HassanRezvan_Project

Processing kernel: MOVE3 4.1

General Information

Type: 3D free network -- Projection : None -- Ellipsoid : WGS 84

Stations

Number of (partly) known stations: 1
Number of unknown stations: 8
Total: 9

Observations

GPS coordinate differences: 24 (8 baselines)

Known coordinates: 3
Total: 27

Unknowns

 Coordinates:
 27

 Total:
 27

 Degrees of freedom:
 0

Check of Input Data

Possibly Coinciding Stations

Minimum station distance is 2.0 m

Station	Station	Distance
309	3090	0.01 m
311	3110	0.01 m
315	3150	0.01 m
401	4010	0.02 m (a

.....

Network Adjustment

www.MOVE3.com

(c) 1993-2012 Grontmij Licensed to Leica Geosystems AG

Created: 07/13/2021 02:09:47

Project Information

Project name: HassanRezvan_Project
Date created: 07/12/2021 21:09:39

Time zone: 3h 30'
Coordinate system name: WGS 1984

Application software: LEICA Geo Office 8.4

Processing kernel: MOVE3 4.1

General Information

Adjustment

Type: Minimally constrained

Dimension: 3D
Coordinate system: WGS 1984
Height mode: Ellipsoidal

Number of iterations:

Stations

Number of (partly) known stations: 1
Number of unknown stations: 8
Total: 9

Observations

GPS coordinate differences: 24 (8 baselines) (including 8 baselines as free observations)

Known coordinates:

Total: 27 (including 24 free observations)

Unknowns

 Coordinates:
 27

 Total:
 27

Degrees of freedom: 0

Testing

 Alfa (multi dimensional):
 1.0000

 Alfa 0 (one dimensional):
 5.0 %

 Beta:
 80.0 %

 Sigma a-priori (GPS):
 10.0

 Critical value W-test:
 1.96

 Critical value T-test (2-dimensional):
 2.42

 Critical value T-test (3-dimensional):
 1.89

 Critical value F-test:
 0.00

F-test: 0.00 <u>▲</u> (rejected)

Results based on a-posteriori variance factor

Adjustment Results

Coordinates

Station		Coordinate	Corr	Sd	
309	Latitude	47° 23' 42.11387" N	0.0001 m	0.0054 m	
	Longitude	9° 39' 06.75188" E	-0.0001 m	0.0027 m	
	Height	454.0135 m	0.0002 m	0.0081 m	
3090	Latitude	47° 23' 42.11400" N	-0.0015 m	0.0091 m	
	Longitude	9° 39' 06.75172" E	-0.0019 m	0.0053 m	
	Height	454.0173 m	0.0001 m	0.0160 m	
311	Latitude	47° 23' 12.43180" N	0.0001 m	0.0102 m	
	Longitude	9° 38′ 14.81593" E	-0.0001 m	0.0046 m	
	Height	454.2734 m	0.0002 m	0.0141 m	
3110	Latitude	47° 23' 12.43195" N	-0.0011 m	0.0084 m	
	Longitude	9° 38' 14.81572" E	-0.0009 m	0.0045 m	
	Height	454.2651 m	0.0005 m	0.0123 m	
315	Latitude	47° 23' 02.50611" N	0.0000 m	0.0042 m	
	Longitude	9° 38' 20.12332" E	0.0000 m	0.0023 m	
	Height	460.7030 m	0.0000 m	0.0069 m	
3150	Latitude	47° 23' 02.50614" N	-0.0011 m	0.0076 m	
	Longitude	9° 38' 20.12338" E	-0.0009 m	0.0038 m	
	Height	460.7104 m	0.0005 m	0.0107 m	
401	Latitude	47° 23' 33.28285" N	0.0000 m	0.0040 m	
	Longitude	9° 40' 04.10409" E	0.0000 m	0.0021 m	
	Height	455.9376 m	0.0000 m	0.0064 m	
4010	Latitude	47° 23' 33.28296" N	-0.0015 m	0.0088 m	
	Longitude	9° 40' 04.10442" E	-0.0019 m	0.0049 m	
	Height	455.9509 m	0.0001 m	0.0144 m	
402	Latitude	47° 22' 45.11804" N	0.0000 m	e -	fixed
	Longitude	9° 40' 13.25823" E	0.0000 m	2	fixed
	Height	459.6286 m	0.0000 m	_	bêxif v

Observations and Residuals

	Station	Target	Adj obs	Resid	Resid (ENH)	Sd
DX	309	402	1046.7689 m	0.0000 m	0.0000 m	0.0056 m
DY			1593.2416 m	0.0000 m	0.0000 m	0.0029 m
DZ			-1187.6786 m	0.0000 m	0.0000 m	0.0079 m
DX	4010	3150	1058.5527 m	0.0000 m	0.0000 m	0.0078 m
DY			-2032.2331 m	0.0000 m	0.0000 m	0.0033 m
DZ			-640.0415 m	0.0000 m	0.0000 m	0.0070 m
DX	4010	3090	2.6394 m	0.0000 m	0.0000 m	0.0050 m
DY			-1219.6757 m	0.0000 m	0.0000 m	0.0021 m
DZ			183.2148 m	0.0000 m	0.0000 m	0.0055 m
DX	3150	3110	-208.0826 m	0.0000 m	0.0000 m	0.0052 m
DY			-148.2635 m	0.0000 m	0.0000 m	0.0026 m
DZ			202.8170 m	0.0000 m	0.0000 m	0.0044 m
DX	3150	309	-1055.9136 m	0.0000 m	0.0000 m	0.0053 m
DY			812.5608 m	0.0000 m	0.0000 m	0.0030 m
DZ			823.2509 m	0.0000 m	0.0000 m	0.0070 m
DX	309	311	847.8392 m	0.0000 m	0.0000 m	0.0061 m
DY			-960.8184 m	0.0000 m	0.0000 m	0.0041 m
DZ			-620.4310 m	0.0000 m	0.0000 m	0.0130 m
DX	402	401	-1049.4132 m	0.0000 m	0.0000 m	0.0047 m
DY			-373.5769 m	0.0000 m	0.0000 m	0.0023 m
DZ			1004.4569 m	0.0000 m	0.0000 m	0.0059 m
DX	402	315	9.1408 m	0.0000 m	0.0000 m	0.0053 m
DY			-2405.8044 m	0.0000 m	0.0000 m	0.0026 m
DZ			364.4215 m	0.0000 m	0.0000 m	0.0060 m

GPS Baseline Vector Residuals

	Station	Target	Adj vector [m]	Resid [m]	Resid [ppm
DV	309	402	2246.0463	0.0000	0.0
DV	4010	3150	2379.1088	0.0000	0.0
DV	4010	3090	1233.3627	0.0000	0.0
DV	3150	3110	326.2134	0.0000	0.0
DV	3150	309	1566.1898	0.0000	0.0
DV	309	311	1423.7058	0.0000	0.0
DV	402	401	1499.9205	0.0000	0.0
DV	402	315	2433.2655	0.0000	0.0
Absolute E	Error Ellipses (2D - 39	.4% 1D - 68.3%)			
Station	A [m]	B [m]	A/B	Phi	Sd Hgt [m]
309	0.0055	0.0026	2.1	5°	0.0081
3090	0.0092	0.0053	1.7	5°	0.0160
311	0.0104	0.0041	2.5	13°	0.0141
3110	0.0085	0.0044	1.9	6°	0.0123
315	0.0042	0.0023	1.8	-5°	0.0069

2.1

1.9

1.8

1.0

0°

6°

0.0037

0.0021

0.0049

0.0000

Testing and Estimated Errors

0.0077

0.0040

0.0088

0.0000

Observation Tests

3150

401

4010

402

	Station	Target	MDB	Red	BNR	W-Test	T-Test
DX	309	402					
DY							
DZ							
DX	4010	3150					
DY							
DZ							
DX	4010	3090					
DY							
DZ							
DX	3150	3110					
DY							
DZ							
DX	3150	309					
DY							
DZ							
DX	309	311					
DY							
DZ	Vigitalami	Name of the last o					
DX	402	401					
DY							
DZ							
DX	402	315					
DY							
DZ							

همانطور که در بالا مشاهده شد، اَزمون فیشر رد شد. علت این موضوع می تواند دو مورد باشد:

۱. نزدیک بودن نقاط به یکدیگر.

0.0107

0.0064

0.0144

0.0000

۲. نبود حلقه ی بسته بین نقاط.

به دلیل آنکه هیچ حلقه ی بسته ای بین نقاط نداشتیم، سرشکنی ای روی حلقه ها نداریم.

Geosystems

Loops and Misclosures

www.MOVE3.com (c) 1993-2012 Grontmij Licensed to Leica Geosystems AG

Created: 07/13/2021 02:12:32

Project Information

Project name: HassanRezvan_Project
Date created: 07/12/2021 21:09:39

Time zone: 3h 30'
Coordinate system name: WGS 1984

Application software: LEICA Geo Office 8.4

Processing kernel: MOVE3 4.1

Dimension: 3E

No loops found

با زوم کردن روی نقشه می توانیم ببینیم که لوپ بسته نداریم.

