

Tidy Data II

- Two Ways
 - Explicitly: Defined to Be Missing Using NA
 - Implicitly: Absent From Data
- There is not a Uniform Way to Handle Either of These Problems
- Rule: Either Convert All Explicitly Missing to Implicitly Missing or Convert All Implicitly Missing to Explicitly Missing

Missing Example

##	# A	tibble	: 14	X	3
##		year o	[uarte	er	wage
##	<	<db1></db1>	<db]< th=""><th>></th><th><dbl></dbl></th></db]<>	>	<dbl></dbl>
##	1	1		1	10.5
##	2	1		2	10.5
##	3	1		3	10.5
##	4	1		4	11
##	5	2		2	11
##	6	2		3	11.2
##	7	3		1	11.2
##	8	3		2	11.2
##	9	3		3	12
##	10	3		4	NA
##	11	4		1	12
##	12	4		2	NA
##	13	4		3	13.0
##	14	4		4	13.0

Notice:

4

missing %>%

```
## # A tibble: 4 x 5
## quarter `1` `2` `3` `4`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> ## 1
## 1 10.5 NA 11.2 12
```

NA

11.2

12

NA

NA

13.0

13.0

```
missing %>%
  spread(key=quarter, value=wage)
```

4 11

2 10.5 11

3 10.5 11.2

```
## # A tibble: 4 x 5
## year `1` `2` `3` `4`
## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> >dbl> 10.5 10.5 11
## 2 2 NA 11 11.2 NA
## 3 3 11.2 11.2 12 NA
## 4 4 12 NA 13.0 13.0
```


Explicit to Implicit

```
missing %>%
 spread(quarter, wage) %>%
 gather(quarter, wage, `1`: `4`, na.rm=T)
## # A tibble: 12 x 3
     year quarter wage
##
   * <dbl> <chr>
                <dbl>
               10.5
        1 1
                11.2
## 2 3 1
## 3 4 1
                 12
## 4 1 2
                 10.5
## 5 2 2
                 11
## 6 3 2
                11.2
## 7 1 3
                 10.5
## 8 2 3
                 11.2
       3 3
                 12
        4 3
                 13.0
       1 4
## 11
                 11
## 12
                 13.0
```


Implicit to Explicit

```
missing %>%
  spread(quarter, wage) %>%
  gather(quarter, wage, `1`: `4`)
```

```
## # A tibble: 16 x 3
##
       year quarter wage
      <dbl> <chr>
                    <dbl>
          1 1
                     10.5
                     NA
                     11.2
                     12
                     10.5
                     11
                     11.2
                     NA
                     10.5
## 10
                     11.2
                     12
## 11
## 12
                     13.0
## 13
                     11
## 14
                     NA
## 15
                     NA
## 16
                     13.0
```


Complete Function

```
missing %>%
  complete(year, quarter)
```

```
# A tibble: 16 x 3
      year quarter wage
   <dbl> <dbl> <dbl>
                 1 10.5
         1
                2 10.5
                3 10.5
                 4 11
                1 NA
                2 11
                3 11.2
                4 NA
                1 11.2
                 2 11.2
                   12
                   NA
                   12
## 14
                   NA
## 15
                3 13.0
## 16
                 4 13.0
```


- Contingency Tables
 - Frequencies for Combination of 2 Categorical Variables
 - Relative Frequencies
 - Summarize() + Spread()
- AIDS Data from MASS Package
 - Data from 2,843 Patients

```
library(MASS)
library(tidyverse)
Aids=Aids2
names(Aids)
dplyr::select(Aids, sex, status)
```

sex <fctr></fctr>	status <fctr></fctr>
М	D
М	D
М	D
М	D
М	D

Create Table of Frequencies

Used message=FALSE

Check:

$$36 + 53 + 1046 + 1708 = 2843$$

Create Table of Proportions

```
Aids %>%

dplyr::select(sex,status) %>%

group_by(sex,status) %>%

summarize(count=n()) %>%

ungroup() %>%

mutate(prop=round(count/sum(count),2)) %>%

dplyr::select(-count) %>%

spread(key=status,value=prop)
```

```
## # A tibble: 2 × 3

## sex A D

## <fct> <dbl> <dbl>

## 1 F 0.01 0.02

## 2 M 0.37 0.6
```


Create Table of Average Age

```
Aids %>%
 dplyr::select(sex, status, age) %>%
 group by(sex, status) %>%
 summarize(avg.age=mean(age)) %>%
 ungroup()
## # A tibble: 4 × 3
   sex status avg.age
   <fct> <fct>
                   <dbl>
         A
                    32.4
                   42.2
                    36.9
## 3 M
        A
## 4 M
          D
                    37.7
```



```
Aids %>%

dplyr::select(sex,status, age) %>%

group_by(sex,status) %>%

summarize(avg.age=mean(age)) %>%

ungroup() %>%

spread(key=sex,value=avg.age)
```

```
## # A tibble: 2 × 3
## status F M
## <fct> <dbl> <dbl>
## 1 A 32.4 36.9
## 2 D 42.2 37.7
```

Closing

Disperse and Make Reasonable Decisions