Activity Mathematics:

Pattern Classification in Dense Sensor Fields A brief summary of work to date

James Howard Colorado School of Mines

Major Ideas

- Dimensionality Reduction
- Clustering
- Pattern Matching
- Minimum Description Length
- Anomaly Detection

Major Ideas

- Dimensionality Reduction
- Clustering
- Pattern Matching
- Minimum Description Length
- Anomaly Detection

Locally Linear Embedding

LLE - Results


```
Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 3.700743e-17.

In eigs>AminusSigmaBsolve at 1204

In eigs at 257

In lleMod at 119

In run at 69
```

Warning: Matrix is close to singular or badly scaled.

Results may be inaccurate. RCOND = 3.700743e-17.

In eigs>AminusSigmaBsolve at 1204

In eigs at 257

In lleMod at 119

In run at 69

Done.

LLE - What's left?

- Assumption of locally linear data valid?
- AMPLE
- Distance metric definition
 - Walk and Loiter distance

Principal Component Analysis

Dataset: (Dense)

1000 Points

100 Loitering Events

100 Walk Left Events

100 Walk Right Events

Dataset: (Sparse)

1000 Points

10 Loitering Events

10 Walk Left Events

10 Walk Right Events

Major Ideas

- Dimensionality Reduction
- Clustering
- Pattern Matching
- Minimum Description Length
- Anomaly Detection

Closest Pattern Matching (CPM)

```
0 0 0 0 0
            1 0 0 0 0 0
            0 1 1 0 1 1
            1 0 0 1 0 0
            0 1 1 0 0 1
Predicted Row 0 1 1 0 0 0
```

CPM - Continued

```
0 0 0 0 0
            0 0 0 0
Predicted Row 0 1 1 0 0 0
```

CPM - Continued

Growing Pattern CPM

```
0 0 0 0 0
                000000
                                 000000
                                                 0 0 0 0 0
100000
                100000
                                 100000
                                                 100000
0 1 1 0 1 1
                0 1 1 0 1 1
                                 0 1 1 0 1 1
1 0 0 1 0 0
                100100
                                 100100
                                                 1 0 0 1 0 0
                                 100111
1 0 0 1 1 1
                1 0 0 1
                0 1 1 0 0 1
                                 0 1 1 0 0 1
                                                 0 1 1 0 0 1
0 1 1 0 0 1
                                                 0 1 1 0 0 0
0 1 1 0 0 0
                0 1 1 0 0 0
                                 0 1 1 0 0 0
```

Growing Pattern CPM

```
0 0 0 0 0 0 0
1 0 0 0 0 0
0 1 1 0 1 1
1 0 0 1 1 1
1 0 0 1 1 1
0 1 1 0 0 1
0 1 1 0 0 0
```

Growing Pattern CPM

CPM Problem

CPM - Problem

CPM - Current

Dynamically create patterns based on correlation score.

CPM - Current

- Construct a model per sensor
- Preprocess the data
 - Compress over time

Major Ideas

- Dimensionality Reduction
- Clustering
- Pattern Matching
- Minimum Description Length
- Anomaly Detection

Minimum Description Length

Minimum Description Length

Minimum Description Length

Demo by Bill

Major Ideas

- Dimensionality Reduction
- Clustering
- Pattern Matching
- Minimum Description Length
- Anomaly Detection

What is an Anomaly

Context Discovery and Model Linking

- How can we define contexts using only state information?
 - Prior definition
 - Use a technique to dynamically create them.
 - Simulated Annealing with Latent Semantic Analysis as a move approximation metric

Non Pursued Paths

- Match previously defined activities to events in dataset
- Attempt to classify nodes dynamically if they exhibit behavior outside the defined realm.
- Utilizing some of the more standard Machine Learning algorithms