## 5XCCO Biopotential and Neural Interface Circuits

Assignment 1
System model in Matlab

Pieter Harpe

## Overall Assignment

- In 6 steps (spread out over 6 weeks), we will design a neural recording interface for AP & LFP recording. The system is composed of an amplifier, a filter, and an ADC.
  - This week, we will focus on step 1: Requirements → Specifications



• In a separate design assignment (week 6), we will also design a neural stimulation circuit.

#### Instructions

• First, do the practicing exercises (slide 4 to slide 8)

After that, do the main assignment (slide 9 to slide 12)

- The final answers need to be entered in CANVAS
  - Carefully check the unit that is asked on CANVAS (e.g.: V, mV, V<sub>rms</sub>, dB)
  - This will determine your score for this assignment
  - You can enter results twice
  - The deadline (on CANVAS) is a hard deadline!

# Part 1: Practicing Exercises

# Peak-Peak, RMS, and Regular Amplitude

- Sinewave  $x(t) = A \sin(2\pi ft)$ 
  - Amplitude: A [V]
  - Peak-peak amplitude: 2A [ $V_{pp}$ ]
  - RMS amplitude: A /  $\sqrt{2}$  [V<sub>rms</sub>]



• Note: the biopotential amplitudes given in the lecture are peakpeak amplitudes, e.g.:

| Measurement               | Amplitude Range           |                                 |
|---------------------------|---------------------------|---------------------------------|
| Electrocardiography (ECG) | 0.5 − 4mV <sub>pp</sub> ← | This is the peak-peak amplitude |

• Question 1: What should the input range (in  $mV_{pp}$ ) of our system be if we want to record the above ECG signal and we also expect a disturbance sinusoid with an RMS amplitude of 3mV?

## Dynamic Range

- A biopotential interface has:
  - An input range of  $0.1V_{pp}$
  - An input-referred noise level of  $10\mu V_{rms}$

• Question 2: What is the Dynamic Range of this interface (in dB)?

# $Z_{ETI}$ , $Z_{in}$ , CMRR

- Given the system in the figure where we like to record  $V_a V_b$ .
- Assume that  $Z_{ETI,P}$  and  $Z_{ETI,N}$  are in the range between  $10k\Omega$  and  $100k\Omega$ , but we don't know their actual value, and they might be different from each other.
- Assume that  $Z_{in}$  is  $10M\Omega$ .



- Question 3: What is the CMRR (in dB) of this interface (in the worst case)?
- Question 4: What is the signal attenuation (in dB) due to the finite value of  $Z_{in}$  (in the worst case)?

## **AC Coupled Amplification**

- Given the AC coupled amplifier in the figure below
- Suppose the following requirements are given:
  - We'd like to use this amplifier to record ECG
  - $-Z_{in}$  should be ≥10MΩ in the entire ECG bandwidth
  - R should be no greater than  $500G\Omega$
  - The amplifier is ideal, and A is very high  $(\infty)$
- Question 5: What is the maximum in-band gain (in V/V) that we can achieve with these requirements?
  - Tip: ECG specifications can be found in Lecture 1



## Part 2: Main Assignment

- According to the V-model (slide 10), we will start the design task with translating application requirements (slide 12) to system specifications (slide 11)
  - 1. Calculate the specifications based on the given requirements
    - Note: the noise level cannot be calculated, so decide this based on simulations
  - 2. Use the provided Matlab system model (systemmodel.m) and the example AP recording (1551.mat [1]) to verify your calculations
    - First familiarize yourself with the provided Matlab code
    - Enter your calculated specifications in the Matlab script
    - Use the Matlab script to confirm that your chosen specifications can meet the requirements (for as much as possible)
  - 3. Enter your answers in CANVAS

[1] Benjamin Metcalfe, "Action potentials recorded from the L5 dorsal rootlet of rat using a multiple electrode array," Mendeley Data, Version 1, June 12, 2020, CC BY 4.0 License, doi: 10.17632/ybhwtngzmm.1

#### V-model

 Systematic design methodology to go from an application wish down to a circuit implementation, and up to a tested system



## System View

- In this assignment, you will derive 5 specifications for the system, based on the requirements given on the next slide:
  - Bandwidth (from  $f_{low}$  to  $f_{high}$ )
  - Input-referred noise level, RMS (V<sub>IRN</sub>)
  - Input range, peak-peak (V<sub>inpp</sub>)
    - Note: this relates to the differential input only, not to the common-mode input range
  - Input impedance (Z<sub>in</sub>)
- These specifications are all related to the input (signal) of the system



#### Requirements

- The goal of this interface is to record both APs and LFPs.
  - Bandwidth, signal range, and noise level should be chosen accordingly.
  - Note: you may use the amplitude/frequency values from lecture #1, slide 46.
- $Z_{ETI}$  can be anywhere between  $100k\Omega$  and  $200k\Omega$  and can be different for the 2 electrodes.
- For all possible combinations of  $Z_{ETI}$ ,  $Z_{in}$  should be chosen such that the resulting CMRR is at least 50dB, to deal with common-mode disturbances.
- A common-mode disturbance of max.  $300mV_{pp}$  and a differential disturbance of max.  $12mV_{pp}$  are expected at the input of the system.
- The combination of AP, LFP, common-mode disturbance and differential disturbance should not exceed the differential input range of the system.
  - Note: you only need to check the differential range, not the common-mode range.
- The provided exemplary AP recording should be recorded such that:
  - The spikes remain (somewhat) recognizable within the noise.
  - The spikes, together with the disturbances, should not saturate the system.