Apprentissage non supervisé Chapitre 1 : Introduction

Allou Samé allou same@ifsttar.fr

Plan

- 1 Introduction
 - Objectifs
 - Quelques applications
 - Terminologie
- 2 Statistiques descriptives
 - Tableaux de données
 - Types de variables
 - Transformations de variables
 - Statistiques descriptives monodimensionnelles
 - Statistiques descriptives bidimensionnelles
 - Cas multidimensionel
- 3 Mesures de proximité
 - Distances, normes
 - Dissimilarité et similarité
 - Ultramétrique
 - 4 Réduction de la dimensionalité par ACP

Objectifs de la classification non supervisée

Objectifs

- Organiser les données en groupes (ou classes) homogènes
- Obtenir une représentation simplifiée d'un ensemble de données (analyse exploratoire)
- Réduire la taille des données (chaque groupe est remplacé par son représentant)
- Aider les praticiens à analyser leurs données

Point de vue historique

- Classification des genres naturels en trois groupes : animaux, plantes, minéraux
- Classification (nomenclature) des espèces animales et végétales (Von Carl Linné, $17^{\rm e}$ siècle)

Exemples d'applications

- Informatique : webmining, regroupement de pages web, d'usagers, compression de données
- Traitement d'image : quantification vectorielle, segmentation en zones homogènes
- Traitement du signal : reconnaissance de la parole et de sons...
- Neurosciences : classification des potentiels d'action ("spike sorting")
- Médecine & Bio-informatique : classification des maladies, regroupement de gènes
- Astronomie, géographie : regroupement d'étoiles, de planètes, partitionnement de régions et de villes
- Marketing : segmentation de la clientèle en classes homogènes
- Sociologie : typologie des cultures, des langues, analyse des réseaux sociaux
- Sciences sociales : identification de comportements

Exemples

Données de spectrométrie de masse (Brereton, 2003)

Exemples

Puces ADN : données d'expression de 92 gènes pour 62 tissus (Alon et al., 1999)

Exemples
Reconnaissance faciale (Belhumeur et al., 1997)

Exemples

Chiffres manuscrits (extrait de la base MNIST)

Exemple de données

Occurrence de mots dans des documents

Unique words

Documents

Classification automatique Vs. Classement

Classification automatique

- Organisation des données en groupes homogènes (les groupes sont inconnus)
- Apprentissage non supervisé

Classement

- Rangement des données dans des groupes connus à l'avance; on parle aussi de discrimination
- Apprentissage supervisé

Terminologie anglais-français

français	anglais
classification automatique	clustering, cluster analysis
classement, discrimination	classification

Notion de classe

Plusieurs définitions ont été proposées :

- Les classes sont des groupes d'objets homogènes : les données appartenant à une même classe se ressemblent
- Les classes sont des groupes d'objets bien séparés : les données provenant de classes différentes sont dissemblables
- Les classes sont des sous-ensembles de points de l'espace tel que la distance entre deux points d'une même classe est plus petite que la distance entre deux points de classes différentes

Classes bien séparées

Classes bien séparées

Classes allongées

Classes qui se chevauchent

Classes qui se chevauchent

Combien de classes?

Différentes étapes du processus de classification automatique

Format des données : tableau individus-variables

lacksquare Ensemble de n individus décrits par p variables (caractères)

$$E = \{\mathbf{x}_1, \dots, \mathbf{x}_n\}$$
 avec $\mathbf{x}_i = (x_i^1, \dots, x_i^j, \dots, x_i^p)$

lacktriangle L'ensemble E peut aussi être représenté sous la forme d'un tableau ${f X}$ à n lignes et p colonnes

$$\mathbf{X} = \begin{pmatrix} x_1^1 & \dots & x_1^j & \dots & x_1^p \\ \\ x_i^1 & \dots & x_i^j & \dots & x_i^p \\ \\ x_n^1 & \dots & x_n^j & \dots & x_n^p \end{pmatrix}$$

Exemple : données Iris (R. A. Fisher, 1936)

- Exemple classique étudié en statistique
- Souvent utilisé pour illustrer les méthodes de classification
- 150 iris provenant de 3 classes : Virginia, Versicolor et Setosa
- Données : longueur et largeur du sépale et du pétale

long-sp	larg-sp	long-pt	larg-pt	espece
5.1	3.5	1.4	0,2	ris-setosa
				ris-setosa
4,9	3,0	1,4	0,2	
4,7	3,2	1,3	0,2	ris-setosa
4,6	3,1	1,5	0,2	ris-setosa
5,5	2,4	3,7	1,0	lris-versicolor
5,8	2,7	3,9	1,2	ris-versicolor
6,0	2,7	5,1	1,6	ris-versicolor
5,4	3,0	4,5	1,5	lris-versicolor
:		:		:
				•
6,3	3,3	6,0	2,5	lris-virginica
5,8	2,7	5,1	1,9	lris-virginica
7,1	3.0	5.9	2.1	lris-virginica
6.3	2,9	5.6	1,8	ris-virginica
0,5	-,-	5,5	1,0	ii is viigiiiicu

Autre format de données : tableau de proximités

Tableau de proximités

Tableau carré de valeurs mesurant une ressemblance ou une dissemblance entre objets : distances géographiques, distances routières, durées de trajets, corrélations entre variables

Exemple : distances croisées entre des villes européennes

	Lond	Stoc	Lisb	Madr	Par	Amst	Berl	Prag	Rome	Dubl
Londres	0	569	667	530	141	140	357	396	569	190
Stockholm	569	0	1212	1043	617	446	325	423	787	648
Lisbonne	667	1212	0	201	596	768	923	882	714	714
Madrid	530	1043	201	0	431	608	740	690	516	622
Paris	141	617	596	431	0	177	340	337	436	320
Amst	140	446	768	608	177	0	218	272	519	302
Berlin	357	325	923	740	340	218	0	114	472	514
Prague	396	423	882	690	337	272	114	0	364	573
Rome	569	787	714	516	436	519	472	364	0	755
Dublin	190	648	714	622	320	302	514	573	755	0

Types de variables

Quantitative : variable à valeurs dans ${\mathbb R}$

discrète : variable à valeurs dans un sous-ensemble dénombrable de ${\mathbb R}$

ex : age en années, nombre d'enfants dans un foyer

continue : variable est à valeurs dans un intervalle de $\ensuremath{\mathbb{R}}$

ex : taille, poids, consommation, revenu, montant facture d'électricité,

diamètre d'une pièce en sortie d'usine...

Qualitative : variable à valeur dans un ensemble fini

nominale : pas de relation d'ordre entre les modalités

ex : sexe, situation familiale

ordinale : relation d'ordre entre les modalités

ex : réponse à un sondage ayant pour modalités : "très bon", "bon",

"moyen", "mauvais", "très mauvais"

Transformations de variables quantitatives

Centrer-réduire

- Centrer : soustraire de chaque valeur la moyenne de la variable
- Réduire : diviser chaque valeur par l'écart-type de la variable
 Permet d'uniformiser l'échelle de grandeur des variables
- Centrer et réduire : faire les deux opérations

Discrétiser

Transformer une variable quantitative en variable qualitative

- discrétisation définie a priori : ex. remplacer l'âge par une des valeurs 1,
 2, 3, 4 suivant les intervalles : (1) 0-18 ans, (2) 19-40 ans, (3) 41-65 ans, (4) > 65 ans
- Transformer des données numériques en histogramme : discrétisation en intervalles de même longueur

Transformation d'une variable qualitative en variable binaire

■ Cas d'une variable nominale : codage disjonctif complet (on remplace la variable qualitative par les indicatrices de chaque modalité)

■ Cas d'une variable ordinale : codage additif

a		1	0	0
b		1	1	0
a	\iff	1	0	0
c		1	1	1
c		1	1	1

Statistiques élémentaires sur une variable quanti.

- Minimum et maximum
- Moyenne empirique : $\overline{x}_j = \frac{1}{n} \sum_{i=1}^n x_i^j$
- Variance empirique : $(s_j)^2 = \frac{1}{n} \sum_{i=1}^n (x_i^j \overline{x}_j)^2$
- lacktriangle Écart-type empirique : $s_j = \sqrt{(s_j)^2}$
- Quartiles:
 - lacktriangle premier quartile q_1 : valeur qui partage l'échantillon en 25% à gauche et 75% à droite
 - lacktriangle deuxième quartile q_2 qui correspond à la médiane : valeur qui partage l'échantillon en 50% à gauche et 50% à droite
 - \blacksquare troisième quartile q_3 : valeur qui partage l'échantillon en 75% à gauche et 25% à droite

Statistiques élémentaires sur données lris

> summary(iris)

${\tt sep_length}$	$\mathtt{sep_width}$	${\tt pet_length}$	$\mathtt{pet_width}$
Min. :4.300	Min. :2.000	Min. :1.000	Min. :0.100
1st Qu.:5.100	1st Qu.:2.800	1st Qu.:1.600	1st Qu.:0.300
Median :5.800	Median :3.000	Median :4.350	Median :1.300
Mean :5.843	Mean :3.054	Mean :3.759	Mean :1.199
3rd Qu.:6.400	3rd Qu.:3.300	3rd Qu.:5.100	3rd Qu.:1.800
Max. :7.900	Max. :4.400	Max. :6.900	Max. :2.500

Histogramme

Boîte à moustache ou boxplot

- Représente les principales caractéristiques d'une variable numérique
- Permet de repérer d'éventuelles valeurs aberrantes
- Facilite la comparaison de plusieurs distributions

Exemple de boîte à moustaches

Boîtes à moustaches (pour les 4 variables quantitatives des données lris)

Description d'une variable qualitative

Variable « espèce » du jeu de données « Iris » pour les longueurs de sépale supérieures à 5

Camembert

Description bidimensionnelle de deux variables quantitatives : nuage de points

Description bidimensionnelle : variable quanti. Vs. variable quali.

boxplots parallèles

Description bidimensionnelle : deux variables qualitatives

données

\mathbf{x}^{j}	$\mathbf{x}^{j'}$	
а	С	
b	е	
a	d	
b	е	
b	С	
b	d	
a	е	
a	d	
b	е	

tableau de contingence

	С	d	е
а	1	2	1
b	1	1	3

diagrammes en barre lignes du tableau de contingence

diagramme en barre colonnes du tableau de contingence

Degré de liaison entre deux variables quantitatives : covariance et corrélation

Covariance empirique

$$s_{jj'} = \frac{\sum_{i=1}^{n} (x_i^j - \overline{x}_j)(x_i^{j'} - \overline{x}_{j'})}{n}$$

Coefficient de corrélation empirique

$$r_{jj'} = \frac{s_{jj'}}{s_j \, s_{j'}}$$

Exemples de coefficients de corrélation

Degré de liaison entre une variable quanti. \mathbf{x}^j et une variable quali. $\mathbf{x}^{j'}$

On suppose que la variable qualitative $\mathbf{x}^{j'}$ prend L modalités

On note n_ℓ le nombre d'occurrences de chaque modalité $(1 \le \ell \le L)$

Pour la variable \mathbf{x}^j , on note $\overline{x}_j(\ell)$ la moyenne des valeurs correspondant à la modalité ℓ et \overline{x}_j la moyenne globale et on définit les quantités suivantes :

Indicateur numérique : rapport variance inter-classe et variance totale

$$\rho = \frac{\sum_{\ell=1}^{L} n_{\ell}(\overline{x}_{j}(\ell) - \overline{x}_{j})^{2}}{\sum_{i=1}^{n} (x_{i}^{j} - \overline{x}_{i})^{2}}$$

Plus le rapport est élevé, plus la dépendance est forte

Indicateur numérique de liaison entre deux variables qualitatives \mathbf{x}^j et $\mathbf{x}^{j'}$

On suppose que la variable qualitative \mathbf{x}^j prend K modalités $(1 \leq k \leq K)$

On suppose que la variable qualitative $\mathbf{x}^{j'}$ prend L modalités $(1 \leq \ell \leq L)$

On note $n_{k\ell}$ le nombre de co-occurrences des modalités k et ℓ

On note
$$n_{k \bullet} = \sum_{\ell} n_{k \ell}$$
 et $n_{\bullet \ell} = \sum_{k} n_{k \ell}$

Indicateur numérique : mesure du Khi-Deux

$$D^2 = \sum_{k,\ell} \frac{\left(n_{k\ell} - \frac{n_{k\bullet}n_{\bullet\ell}}{n}\right)^2}{\frac{n_{k\bullet}n_{\bullet\ell}}{n}}$$

- L'effectif dit théorique $n_{k\ell}^*=\frac{n_{k\bullet}n_{\bullet\ell}}{n}$ traduit la situation d'indépendance entre les deux variables
- lacksquare Plus D^2 est élevé, plus on s'éloigne de la situation d'indépendance

Description multidimensionnelle (plus de deux variables)

Matrice de covariance

```
sep_lengthsep_widthpet_lengthpet_widthsep_length0.68569349-0.039268471.27368230.5169038sep_width-0.039268470.18800403-0.3217128-0.1179812pet_length1.27368231-0.321712763.11317941.2963874pet_width0.51690379-0.117981211.29638740.5824143
```

Matrice de corrélation

```
sep_length sep_width pet_length
                                               pet_width
              1.0000000 -0.1093693
                                    0.8717542
                                               0.8179536
sep_length
sep_width
                         1.0000000 -0.4205161 -0.3565441
             -0.1093693
pet_length
             0.8717542 -0.4205161 1.0000000
                                               0.9627571
pet_width
             0.8179536 -0.3565441
                                    0.9627571
                                               1.0000000
```

Description multidimensionnelle

Tableau des nuages de points

Description multidimensionnelle

Tableau des nuages de points

Distance et Norme

Distance

Une distance d sur un espace métrique E est une application de $E \times E \to \mathbb{R}^+$ vérifiant :

- (i) $\forall \mathbf{x}, \mathbf{y} \in E$, $d(\mathbf{x}, \mathbf{y}) = 0 \Leftrightarrow \mathbf{x} = \mathbf{y}$ (séparation)
- (ii) $\forall \mathbf{x}, \mathbf{y} \in E$, $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ (symétrie)
- (iii) $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in E, \quad d(\mathbf{x}, \mathbf{z}) \leq d(\mathbf{x}, \mathbf{y}) + d(\mathbf{y}, \mathbf{z})$ (inégalité triangulaire)

Norme

Une norme $\|\cdot\|$ sur un $\mathbb{R}-$ espace vectoriel E est une application de $E \to \mathbb{R}^+$ vérifiant :

- (i) $\forall \mathbf{x} \in E$, $\parallel \mathbf{x} \parallel = 0 \Leftrightarrow \mathbf{x} = 0$
- (ii) $\forall \mathbf{x} \in E, \lambda \in \mathbb{R}, \quad ||\lambda \mathbf{x}|| = |\lambda| ||\mathbf{x}||$
- (iii) $\forall \mathbf{x}, \mathbf{y} \in E$, $\parallel \mathbf{x} + \mathbf{y} \parallel \leq \parallel \mathbf{x} \parallel + \parallel \mathbf{y} \parallel$

Equivalence Distance et Norme

lacksquare A une norme $\|\cdot\|$, on peut associer la distance définie par :

$$d(\mathbf{x}, \mathbf{y}) = \parallel \mathbf{x} - \mathbf{y} \parallel$$

lacksquare A une distance d, on peut associer sous certaines conditions la norme $\|\cdot\|$ définie par

$$\parallel \mathbf{x} \parallel = d(0, \mathbf{x})$$

Distances usuelles pour données quantitatives

Distance euclidienne ou distance L_2

$$d^{2}(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^{p} (x^{j} - y^{j})^{2}$$

$$= (\mathbf{x} - \mathbf{y})'\mathbf{I}(\mathbf{x} - \mathbf{y})$$
avec \mathbf{I} = matrice identité

Distance euclidienne pondérée

$$d^{2}(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^{p} w_{j}(x^{j} - y^{j})^{2}$$

$$= (\mathbf{x} - \mathbf{y})' \mathbf{D}(\mathbf{x} - \mathbf{y})$$
avec $\mathbf{D} = \operatorname{diag}(w_{1}, \dots, w_{p})$ et $w_{j} >$

Distances usuelles pour données quantitatives

Distance de Mahalanobis

$$d^2({f x},{f y}) ~=~ ({f x}-{f y})'{f M}({f x}-{f y})$$
avec ${f M}$ matrice symétrique définie positive

Distance de Manhattan ou distance L_1

$$d(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^{p} |x^j - y^j|$$

Distances usuelles pour données quantitatives

Distance de Tchebychev ou distance L_{∞}

$$d(\mathbf{x}, \mathbf{y}) = \max_{1 \le j \le p} |x^j - y^j|$$

Distance de Minkowski ou distance L_p (généralisant L_1, L_2)

$$d(\mathbf{x}, \mathbf{y}) = \left(\sum_{j=1}^{p} |x^j - y^j|^p\right)^{1/p}$$

Distances pour données qualitatives

Distance de Hamming

$$d_H(\mathbf{x}, \mathbf{y}) = \sum_{j=1}^p \delta(x^j, y^j)$$

avec

$$\delta(x^j, y^j) = \begin{cases} 1 & \text{si } x^j \neq y^j \\ 0 & \text{sinon} \end{cases}$$

Exemple

$$x = aabbabbbacb$$

 $y = caccbbaaabc$

$$d(\mathbf{x}, \mathbf{y}) = ?$$

Dissimilarité et similarité

Dissimilarité

Une mesure de dissimilarité est une application de $E \times E \to \mathbb{R}^+$ vérifiant :

(i)
$$\forall \mathbf{x}, \mathbf{y} \in E$$
, $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ (symétrie)

(ii)
$$\mathbf{x} = \mathbf{y} \implies d(\mathbf{x}, \mathbf{y}) = 0$$

Similarité

Une mesure de similarité est une application de $E \times E \to \mathbb{R}^+$ vérifiant :

- (i) $\forall \mathbf{x}, \mathbf{y} \in E$, $d(\mathbf{x}, \mathbf{y}) = d(\mathbf{y}, \mathbf{x})$ (symétrie)
- (ii) $s(\mathbf{x}, \mathbf{y}) = s_{max} \iff \mathbf{x} = \mathbf{y}$
- (iii) $\forall \mathbf{x}, \mathbf{y} \in E, \quad s(\mathbf{x}, \mathbf{y}) \leq s_{max}$

Equivalence entre dissimilarité et similarité

lacksquare Si s est une mesure de similarité, alors l'application d définie par

$$d(\mathbf{x}, \mathbf{y}) = s_{max} - s(\mathbf{x}, \mathbf{y})$$

est une mesure de dissimilarité

lacksquare Si d est une mesure de dissimilarité, alors l'application s définie par

$$s(\mathbf{x}, \mathbf{y}) = d_{max} - d(\mathbf{x}, \mathbf{y})$$

est une mesure de similarité

Ultramétrique

Une ultramétrique δ sur un ensemble E est une fonction de $E\times E\to \mathbb{R}^+$ vérifiant :

- (i) $\forall \mathbf{x}, \mathbf{y} \in E$, $\delta(\mathbf{x}, \mathbf{y}) = 0 \Leftrightarrow \mathbf{x} = \mathbf{y}$
- (ii) $\forall \mathbf{x}, \mathbf{y} \in E$, $\delta(\mathbf{x}, \mathbf{y}) = \delta(\mathbf{y}, \mathbf{x})$
- (iii) $\forall \mathbf{x}, \mathbf{y}, \mathbf{z} \in E, \quad \delta(\mathbf{x}, \mathbf{z}) \leq \max(\delta(\mathbf{x}, \mathbf{y}), \delta(\mathbf{y}, \mathbf{z}))$ (inégalité ultramétrique)

Propriétés de l'ultramétrique

- L'inégalité (iii) entraine l'inégalité triangulaire
- On peut donc vérifier qu'une ultramétrique est une distance

L'ultramétrique joue un rôle fondamental en classification (on verra dans la suite qu'il y a un lien direct entre ultramétrique et hiérarchie)

Exemples

$$\mathbf{X} = \left(\begin{array}{ccc} 1 & 4 \\ 1 & 2 \\ 4 & 3 \\ 5 & 4 \\ 5 & 1 \end{array}\right)$$

Matrice de dissimilarités (distance euclidienne)

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5
\mathbf{x}_1	0	2	3.16	4	5
\mathbf{x}_2	2	0	3.16	4.47	4.12
\mathbf{x}_3	3.16	3.16	0	1.41	2.24
\mathbf{x}_4	4	4.47	1.41	0	3
\mathbf{x}_5	$0 \\ 2 \\ 3.16 \\ 4 \\ 5$	4.12	2.24	3	0

Matrice de similarités

$$d_{max} = 5$$
 et $s(\mathbf{x}_i, \mathbf{x}_{i'}) = d_{max} - d(\mathbf{x}, \mathbf{x}_{i'})$

	\mathbf{x}_1	\mathbf{x}_2	\mathbf{x}_3	\mathbf{x}_4	\mathbf{x}_5
\mathbf{x}_1	5	3	1.84	1	0
\mathbf{x}_2	3	5	1.84	0.53	0.88
\mathbf{x}_3	3 1.84 1 0	1.84	5	3.59	2.76
\mathbf{x}_4	1	0.53	3.59	5	2
x ₁ x ₂ x ₃ x ₄ x ₅	0	0.88	2.76	2	5

Réduction de la dimensionalité

$$\mathbf{x}_i \in \mathbb{R}^p$$

$$(4.0, -1.6, 3.5, -2.8, 4.7, -1.5, 3.5, 2.5, 6.3, -2.6, -3.3)$$

$$\mathbf{y}_i \in \mathbb{R}^q$$

$$(0.6, -1.4, 2.2)$$

Objectifs

- Compression de données
- Visualisation en 2D ou 3D (au dela de 3 variables il devient compliqué de représenter le nuage de points)
- Extraction de caractéristiques pertinentes

Quelques méthodes de réduction de la dimensionnalité

Méthodes linéaires

- Analyse en composantes principales (ACP ou PCA)
- Analyse en facteurs communs ou factor analysis
- Analyse en composantes indépendantes (ICA)
- Méthodes non linéaires
 - Cartes auto organisatrices (réseaux de neurones autoassociateurs)
 - Multidimensional scaling (MDS)
 - Locally linear embedding (LLE)
 - Auto-encodeurs : réseau de neurones à architecture potentiellement profonde

Analyse en Composantes Principales

- $lue{}$ L'ACP trouve un sous-espace de dimension q < p qui passe au plus proche des données (quantitatives)
- lacktriangle Les nouvelles données \mathbf{y}_i sont les coordonnées de la projection de \mathbf{x}_i dans le sous-espace
- \blacksquare l'ACP permet de passer du tableau de n individus décrits par p variables à un tableau de n individus décrits par q variables avec q < p
- Ces nouvelles variables sont appelées composantes principales
- Différentes formulations :
 - minimisation de l'erreur de reconstruction (Pearson, 1901)
 - maximisation de la variance (Hotelling, 1933)
 - modèle probabiliste à variables latentes (Tipping, Bishop, 1999)

Problème posé par l'ACP

Trouver un sous espace F de \mathbb{R}^p tel que l'écart entre les individus et leur projection soit minimal

Cela se traduit par la minimisation par rapport aux p_i du critère

$$\sum_{i=1}^n \|\mathbf{x}_i - \mathbf{p}_i\|^2$$

Procédure

- On commence par trouver un premier axe par minimisation de l'écart entre les individus et leur projection sur cet axe
- On cherche un second axe qui, parmi tous les axes ⊥ au premier, minimise l'inertie relativement à cet axe
- Ainsi de suite...

On peut montrer que l'ensemble des axes principaux est obtenu par diagonalisation de la matrice de covariance ${\bf S}$ ou la matrice de corrélation ${\bf R}$ si les variables ont été centrées et réduites.

$$\mathbf{S} = \begin{bmatrix} s_1^2 & \dots & s_{1j} & \dots & s_{1p} \\ \vdots & \ddots & & & \vdots \\ s_{j1} & & s_j^2 & & s_{jp} \\ \vdots & & & \ddots & \vdots \\ s_{p1} & \dots & s_{pj} & \dots & s_p^2 \end{bmatrix} \quad \mathbf{R} = \begin{bmatrix} 1 & \dots & r_{1j} & \dots & r_{1p} \\ \vdots & \ddots & & & \vdots \\ r_{j1} & & 1 & & r_{jp} \\ \vdots & & & \ddots & \vdots \\ r_{p1} & \dots & r_{pj} & \dots & 1 \end{bmatrix}$$

Détermination des axes et des composantes principaux

Axes factoriels ou axes principaux

Obtenus par diagonalisation de la matrice ${f S}$ ou ${f R}$

- Soient $\lambda_1, \ldots, \lambda_p$ les valeurs propres ordonnées par ordre décroissant et $\mathbf{u}_1, \ldots, \mathbf{u}_p$ les vecteurs propres correspondants
- lacktriangle Le premier axe factoriel est celui dont la direction est ${f u}_1$, le second axe factoriel est celui de direction ${f u}_2$ et ainsi de suite

Composantes principales

Les composantes principales sont les coordonnées des points \mathbf{x}_i sur les différents axes factoriels :

- I La $1^{\rm re}$ composante principale ${f c}^1=(c_i^1,\dots,c_n^1)$ contient les coordonnées des projections sur l'axe factoriel ${f u}_1$
- 2 La 2e composante principale $\mathbf{c}^2=(c_i^2,\ldots,c_n^2)$ contient les coordonnées des projections sur l'axe \mathbf{u}_2

Détermination des composantes principales (2/2)

Remarque

- les composantes principales (les nouvelles variables) sont des combinaisons linéaires des variables initiales
- elles sont non corrélées deux à deux puisque les axes associés à ces variables sont orthogonaux
- \blacksquare on peut vérifier que la variance d'une composante principale \mathbf{c}^{α} est égale à la valeur propre λ_{α}

Choix du nombre d'axes principaux à retenir

On calcule un critère de qualité de représentation pour les différents sous espaces :

lacksquare pour le sous-espace engendré par l'axe principal ${f u}_1$:

$$\mathsf{qualit\acute{e}}(\mathbf{u}_1) = \frac{\lambda_1}{\sum_{i=1}^p \lambda_\alpha}$$

lacksquare pour le sous espace engendré par les axes ${f u}_1$ et ${f u}_2$:

qualité
$$(\mathbf{u}_1, \mathbf{u}_2) = \frac{\lambda_1 + \lambda_2}{\sum_{i=1}^p \lambda_{\alpha}}$$

et ainsi de suite...

On choisit le nombre d'axes k à partir duquel le critère est supérieur à un certain seuil : ex. 90% de la variance

Représentation des individus

La projection du nuage de points initial dans le premier plan factoriel est obtenue grâce aux composantes principales

Représentation des variables : cercle des corrélations

- Permet de voir les liens entre les variables initiales et aussi les liens entre composantes principales et variables initiales
- Facilite l'interprétation des axes principaux

Exemple de représentation des variables

Quels liens existent entre les variables représentées ci-dessous? Existe t-il des liens entre les variables initiales et les composantes principales?

Exemple

Données : 40 étudiants décrits par 7 variables (tests QI, taille, poids, taille du cerveau déterminée par IRM)

Corrélations

	FSIQ	VIQ	$_{\mathrm{PIQ}}$	WEIG	$_{ m HEIG}$	MRI
FSIQ	1.00	0.95	0.93	-0.13	-0.10	0.36
VIQ	0.95	1.00	0.78	-0.16	-0.08	0.34
PIQ	0.93	0.78	1.00	-0.05	-0.09	0.39
WEIG	-0.13	-0.16	-0.05	1.00	0.63	0.43
HEIG	-0.10	-0.08	-0.09	0.63	1.00	0.60
MRI	0.36	0.34	0.39	0.43	0.60	1.00

ACP: valeurs propres

	1	2	3	4	5	6
Variance	2.97	2.09	0.453	0.287	0.189	0.0026
				4.790		0.0432
Pourcentage cumulé	49.57	84.47	92.021	96.810	99.957	100.0000

Exemple

Exemple

PC 1