Deep Learning Audio

Lecture 3

Pavel Severilov

Moscow Institute of Physics and Technology

2022

Outline

1. Automatic Speech Recognition (ASR)

2. Connectionist Temporal Classification (CTC)

3. Listen, Attend and Spell (LAS)

Outline

- 1. Automatic Speech Recognition (ASR)
- Connectionist Temporal Classification (CTC)
- Listen, Attend and Spell (LAS)

ASR: Task definition

Mapping: signal $x(t) \rightarrow \text{text sequence } s$

Figure: ASR progress for WER metric

ASR: Metrics

Word Error Rate

$$WER = \frac{S+D+I}{N} = \frac{S+D+I}{S+D+C}$$

- ► *S* number of substitutions,
- D number of deletions,
- ► *I* number of insertions,
- C number of correct words,
- ▶ N number of words in the reference (N = S + D + C).

```
True: quick brown fox jumped over a lazy dog Pred: quick brow an fox jumped over lazy dog
```

Character Error Rate: same as WER, but for characters (WER is more important)

ASR: Datasets: LibriSpeech

- ▶ 1,000 hours of audiobooks
- ▶ 10-20s audio, long sentences, complex language
- 'clean' (low-WER speakers) and 'other' (high-WER speakers) categories
- ► Human WER: test-clean: 5.83, test-other: 12.69
- ► Kaldi (2015) WER: test-clean: 8.01, test-other: 22.49
- ▶ Deep Speech 2 (2015) WER: test-clean: 5.15, test-other: 12.73

subset	hours	per-spk minutes	female spkrs	male spkrs	total spkrs
dev-clean	5.4	8	20	20	40
test-clean	5.4	8	20	20	40
dev-other	5.3	10	16	17	33
test-other	5.1	10	17	16	33
train-clean-100	100.6	25	125	126	251
train-clean-360	363.6	25	439	482	921
train-other-500	496.7	30	564	602	1166

ASR: Datasets: Mozilla Common Voice

- Multiple languages
- Crowdsourced
- Simple language
- ► Short phrases
- Frequently updated and validated

Outline

- 1. Automatic Speech Recognition (ASR)
- 2. Connectionist Temporal Classification (CTC)
- 3. Listen, Attend and Spell (LAS)

CTC: motivation

- Variable length input
- Variable length output
- No alignment
- Want a differentiable loss function to compute P(Y|X) and arg max P(Y|X)

CTC: idea

- Split input into frames
- Classify each frame into letters classes
- Merge consecutive letters

Figure: Example for [c, a ,t]

DeepSpeech 2

Figure: Deep Speech 2 architecture

CTC: problems

Multiple consecutive letters (e.g.: hello), silence between words and letters.

Solution: add empty token ϵ

Figure: Example for [h, e, l, l, o]

CTC: Loss function

Figure: The CTC alignments give us a natural way to go from probabilities at each time-step to the probability of an output sequence.

CTC: Loss function

$$p(Y\mid X) = \sum_{A\in\mathcal{A}_{X,Y}}\prod_{t=1}^{T}p_t(a_t\mid X)$$
 The CTC conditional marginalizes over the probability set of valid alignments single alignment step-by-step.

Figure: The CTC conditional probability

Figure: Summing over all alignments can be very expensive. Dynamic programming merges alignments, so it's much faster.

CTC: Computation

Case 2

 $\alpha_{s,t} =$

a character

subsequences after t-1 input steps.

The CTC probability of the three valid

subsequences after t-1 input steps.

 $(\alpha_{s-2,t-1} + \alpha_{s-1,t-1} + \alpha_{s,t-1})$ $p_t(z_s \mid X)$

character at input step t.

The probability of the current

character at input step t.

Figure: CTC computation with Dynamic programming

3

CTC: Properties

- Problem: Conditional Independence
- Example: "AAA". If predict 'A' as the first letter suffix 'AA' should get much more probability than 'riple A'. If predict 't' first the opposite.

Figure: Valid transcription could be "AAA" and "triple A".

► Advantage: Online – can be performed while the speaker is talking

CTC: Beam search

Figure: A standard beam search algorithm with an alphabet of $\{\epsilon, a, b\}$ and a beam size of 3.

Outline

- 1. Automatic Speech Recognition (ASR)
- Connectionist Temporal Classification (CTC)
- 3. Listen, Attend and Spell (LAS)

LAS: Architecture

Figure: LAS model: **listener** – pyramidal BiLSTM encoding input sequence (spectrogram) into high level features h, **speller** – attention-based decoder generating the y characters from h. Train with

LAS: Beam search

- CTC computational cost T * beam size * expand beam()
- LAS computational cost T * beam size * run decoder()
- ► CTC usually uses 500 beam size, LAS 3 beam size

WER: comparison

Method	WER (test-clean)	WER	
Method	vvek (test-clean)	(test-other)	
Human	5.83	12.69	
Kaldi	8.01	22.49	
Deep Speech 2	5.15	12.73	
LAS	3.2	9.8	