ÔN TẬP KIỂM TRA HỌC KÌ 2 NĂM HOC 2024 -2025

Câu 1. Một vận động viên nhảy dù có khối lượng 70 kg thực hiện động tác nhảy dù từ độ cao $500\,\mathrm{m}$ so với mặt đất. Sau một đoạn đường rơi tự do thì vận động viên bật dù và tiếp đất với vận tốc $8\,\mathrm{m/s}$. Lấy $g = 9.8\,\mathrm{m/s}^2$.

- a) Tính thế năng của vân đông viên so với mặt đất trước khi nhảy dù.
- b) Tính động năng của vận động viên khi tiếp đất.
- c) Tính công của lực cản của không khí.

Câu 2. Một tàu lượn siêu tốc có điểm cao nhất cách điểm thấp nhất 94,5 m theo phương thẳng đứng. Tàu lượn được thả không vận tốc ban đầu từ điểm cao nhất. Lấy $g = 9.8 \,\mathrm{m/s^2}$.

- a) Tìm vận tốc cực đại mà tàu lượn có thể đạt được.
- b) Trên thực tế, vận tốc cực đại của tàu lượn đạt được là 41,1 m/s. Tính hiệu suất của quá trình chuyển đổi thế năng thành động năng của tàu lượn.

Câu 3. Một ô tô có khối lượng 4 tấn đang chuyển động với vận tốc $72 \,\mathrm{km/h}$ trên một đoạn đường nằm ngang thì hãm phanh. Sau khi đi được quãng đường $50 \,\mathrm{m}$ thì vận tốc của ô tô giảm xuống còn $36 \,\mathrm{km/h}$.

- a) Tính lực hãm trung bình của ô tô.
- b) Nếu vẫn giữ nguyên lực hãm trung bình đó thì kể từ lúc hãm phanh ô tô đi được quãng đường bao nhiêu rồi dừng lại?

Câu 4. Một vật khối lượng $0.5 \, \mathrm{kg}$ được thả rơi từ độ cao $25 \, \mathrm{m}$. Bỏ qua mọi ma sát và lấy $g = 10 \, \mathrm{m/s^2}$. Chọn gốc thế năng tại mặt đất.

- a) Tính thế năng của vật lúc bắt đầu thả. Suy ra cơ năng của vật.
- b) Tính thế năng của vật ở độ cao 15 m. Suy ra động năng của vật tại vị trí này.
- c) Tìm độ cao của vật khi nó có động năng bằng thế năng.
- d) Tìm tốc độ của vật tại vị trí có thế năng bằng $\frac{1}{3}$ cơ năng.
- e) Tìm tốc độ của vật khi nó có thế năng bằng ba lần động năng.
- f) Tìm tốc độ của vật khi chạm đất.

Câu 5. Một viên đạn có khối lượng $m = 10 \,\mathrm{g}$ đang bay với vận tốc $v_1 = 1000 \,\mathrm{m/s}$ thì gặp bức tường. Sau khi xuyên qua bức tường thì vận tốc của viên đạn còn lại là $v_2 = 400 \,\mathrm{m/s}$. Tính độ biến thiên động lượng và lực cản trung bình của bức tường lên viên đạn? Biết thời gian xuyên thủng tường là $0.01 \,\mathrm{s}$.

Câu 6. Một quả lựu đạn đang bay theo phương ngang với vận tốc $10\,\mathrm{m/s}$ thì bị nổ và tách thành hai mảnh có trọng lượng $10\,\mathrm{N}$ và $15\,\mathrm{N}$. Sau khi nổ, mảnh to vẫn chuyển động theo phương ngang với vận tốc $25\,\mathrm{m/s}$ cùng chiều chuyển động ban đầu. Lấy $g \approx 10\,\mathrm{m/s^2}$. Xác định vận tốc và phương chuyển động của mảnh nhỏ.

Câu 7. Một viên đạn pháo khối lượng $m_1 = 10 \,\mathrm{kg}$ bay ngang với vận tốc $v_1 = 500 \,\mathrm{m/s}$ dọc theo đường sắt và cắm vào toa xe chở cát có khối lượng $m_2 = 1 \,\mathrm{tấn}$, đang chuyển động với tốc độ $v_2 = 36 \,\mathrm{km/h}$. Xác định vận tốc của toa xe ngay sau khi trúng đạn trong hai trường hợp:

- a) Đạn bay đến cùng chiều chuyển động của xe cát.
- b) Đan bay đến ngược chiều chuyển đông của xe cát.

Câu 8. Một mô tơ điện quay quanh trục với tốc độ 3600 rpm (revolutions/min: vòng/phút). Tốc độ góc của mô tơ này bằng bao nhiêu?

Câu 9. Một chiếc xe chuyển động theo hình vòng cung với tốc độ $36\,\mathrm{km/h}$ và gia tốc hướng tâm $4.0\,\mathrm{m/s^2}$. Giả sử xe chuyển động tròn đều. Hãy xác định:

- a) bán kính đường vòng cung.
- b) góc quét bởi bán kính quỹ đạo (theo rad và độ) sau thời gian $3 \, \mathrm{s.}$

Câu 10. So sánh tốc độ góc, tốc độ dài và gia tốc hướng tâm của các đầu kim phút và kim giây trên một đồng hồ. Biết chiều dài kim phút bằng $\frac{3}{4}$ chiều dài kim giây.

Câu 11. Một trái bóng được buộc vào một sợi dây và quay tròn đều trong mặt phẳng nằm ngang như hình bên dưới. Trái bóng quay một vòng trong 1 s với tốc độ $0.5 \,\mathrm{m/s}$. Tính bán kính quỹ đạo và chiều dài L của sợi dây, biết góc hợp bởi dây và phương thẳng đứng bằng 30° .

Câu 12.

Cho thanh thẳng AB chiều dài $L=1,5\,\mathrm{m}$ quay đều xung quanh trục đi qua điểm O trên thanh và vuông góc với thanh. Tốc độ của hai đầu thanh lần lượt là $v_\mathrm{A}=2\,\mathrm{m/s}$ và $v_\mathrm{B}=4\,\mathrm{m/s}$. Tính tốc độ góc ω của thanh và gia tốc hướng tâm tại hai điểm A và B.

— нÉт —