Learning Deep Learning with PyTorch

(6) RNNs and LSTM

Qiyang Hu IDRE May 7th, 2020

RNNs = Recurrent Neural Networks

Feed Forward

Recurrent

Unrolling RNN to Feed-Forward Networks

Fixed Input Fixed Output Independent Samples

Dynamic Input
Dynamic Output
Dependent Samples

Strength of RNNs: sequence data predictions

Audio content in speech

Text content in articles

Text can also be sequence data

Stock price prediction

Sequential processing in absence of sequences

Workflow for a deep learning project

Qiyang Hu

Sequence Batching

In our demo

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 \\ 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \end{bmatrix}$$
Batch size = 5
Seq length = 8

RNN Inside

$$M_t = \tanh(W_{iM}E_t + b_{iM} + W_{MM}M_{t-1} + b_{MM})$$

Different Applications of RNNs

Backpropagation Through Time (BPTT)

RNN Computation in PyTorch

- Defining an RNN
 - Create an RNN layer
 - Add a fully-connected layer

torch.nn.RNN

- o input_dim
- hidden_dim
- output_dim
- num layers
- Batch_first

In forward function

- Initialize hidden state
- BPTT
- Shape output

```
class RNN(nn.Module):
   def init (self, input dim, hidden dim, num layers, output dim):
        super(RNN, self). init ()
        self.hidden_dim = hidden_dim
        # Number of hidden layers
        self.num layers = num layers
       # Building your RNN
        # batch first=True causes input/output tensors to be of shape
        # (batch size, seq length, feature dim)
        self.rnn = nn.RNN(input dim, hidden dim, num layers, batch first=True)
       # Readout layer
        self.fc = nn.Linear(hidden dim, output dim)
   def forward(self, x, hidden):
       # get RNN outputs
        out, hidden = self.rnn(x, hidden)
       # Index hidden state of last time step
       out = self.fc(out[:, -1, :])
        return out
```

Colab Hands-on

bit.ly/LDL 04

Problem in Vanilla RNN: short term of memory

What time is it?

From RNN to Long Short-Term Memory (LSTM)

Basic Ideas of LSTM

Architectures of LSTM

Other architectures: Gated Recurrent Unit (GRU)

Other architectures: Peephole LSTM

Truncated Backpropagation Through Time (TBPTT)

LSTMs reduce vanishing gradient problem

Graves et al 2013

- The darker the shade, the greater the sensitivity
- The sensitivity decays exponentially over time as new inputs overwrite the activation of hidden unit and the network 'forgets' the first input

Colab Hands-on

bit.ly/LDL 04

More words on time-series predictions

- Inspect the uncertainty in the series
 - Stochastic (truly random)
 - Epistemic (process too complex, looks like random)

ARIMA-type model:

- Implicit Gaussian assumptions
- Parametric: to predict an individual time series (e.g. p, d & q)
- Better for small dataset
- Better results in forecasting short term
- Python module statsmodels: from statsmodels.tsa.arima_model import ARIMA

RNN-based model:

- "Non"-parametric: possibly for unknown series
- Better for large dataset
- LSTM: better results in forecasting long term

Attention is all you need!

Seq2Seq

Introduce weights for encoding outputs

$$r = \sum_{i=1}^n lpha(k_i,q) \cdot v_i$$

We want to hear from you!

bit.ly/2X2phyS

- Contact me for questions or discussions
 - o <u>huqy@idre.ucla.edu</u>

Office: Math Sci #3330

o Phone: 310-825-2011