INDIAN INSTITUTE OF TECHNOLOGY ROORKEE

CSN-101 (Introduction to Computer Science and Engineering)

Lecture 16: Problem Solving using Computers

Dr. Sudip Roy

Assistant Professor

Department of Computer Science and Engineering

Piazza Class Room: https://piazza.com/iitr.ac.in/fall2019/csn101

[Access Code: csn101@2019]

Moodle Submission Site: https://moodle.iitr.ac.in/course/view.php?id=45

[Enrollment Key: csn101@2019]

Plan for Lecture Classes in CSN-101 (Autumn, 2019-2020)

Week	Lecture 1 (Monday 4-5 PM)	Lecture 2 (Friday 5-6 PM)
1	Evolution of Computer Hardware and Moore's Law,	
	Software and Hardware in a Computer	Computer Structure and Components, Operating Systems
2	Computer Hardware: Block Diagrams, List of	Computer Hardware: List of Components, Working
	Components	Principles in Brief, Organization of a Computer System
3	Linux OS	Linux OS
4	Writing Pseudo-codes for Algorithms to Solve	Writing Pseudo-codes for Algorithms to Solve
	Computational Problems	Computational Problems
5	Sorting Algorithms – Bubble sort, selection sort, and	Sorting Algorithms – Bubble sort, selection sort, and Search
	Search Algorithms	Algorithms
6	C Programming	C Programming
7	Number Systems: Binary, Octal, Hexadecimal,	Number Systems: Binary, Octal, Hexadecimal, Conversions
	Conversions among them	among them
8		Boolean Logic: Boolean Logic Basics, De Morgan's
	Number Systems: Negative number representation,	Theorem, Logic Gates: AND, OR, NOT, NOR, NAND, XOR,
	Fractional (Real) number representation	XNOR, Truth-tables
9	Computer Networking and Web Technologies: Basic	Computer Networking and Web Technologies: Basic
	concepts of networking, bandwidth, throughput	concepts of networking, bandwidth, throughput
10	Different layers of networking, Network components,	
	Type of networks	Network topologies, MAC, IP Addresses, DNS, URL
11	Different fields of CSE: Computer Architecture and Chip	Different fields of CSE: Data Structures, Algorithms and
	Design	Programming Languages
12		Different fields of CSE: Operating systems and System
	Different fields of CSE: Database management	softwares
13	Different fields of CSE: Computer Networking, HPCs,	Different Applications of CSE: Image Processing, CV, ML,
	Web technologies	DL
	Different Applications of CSE: Data mining,	
14	Computaional Geometry, Cryptography, Information	Different Applications of CSE: Cyber-physical systems and
	Security	loTs

Problem Solving Concepts:

PURPOSE

To provide basic knowledge for solving problems using computers and to impart the necessary skills for the development of applications.

INSTRUCTIONAL OBJECTIVES

- To understand the basic concepts of problem solving using computers and to learn different problem solving strategies
- To discuss the importance of algorithms in the problem solving process
- To identify the necessary properties of good algorithms
- To use pseudo-code to implement, test, and debug algorithms for solving simple problems

What is a Problem?

- A state of difficulty that needs to be resolved
- PROBLEMS EXIST WHERE GOALS NEED TO BE ATTAINED AND THERE IS UNCERTAINTY ABOUT SOLUTION

Problem Faced in Everyday in Life:

- People make decisions everyday
- Examples:
- Should I wear casual or formal today?
- Should I watch TV or go out to cinema?
- Which career?
- Which course?
- Everything needs a DECISION AS A SOLUTION TO THE PROBLEM
- What happens when bad decisions are made?
 WASTAGE OF TIME AND RESOURCES

Problem Solving:

Approaches to solve a problem:

- Algorithmic
- Heuristic
- Solutions that can be solved with a series of known actions are called Algorithmic Solutions
- Employing a self-learning approach to the solution of a problems is known as Heuristic Solutions

Examples:

Algorithmic solution:

- To make a cup of coffee
- To find largest of three numbers

Heuristic solutions:

- how to buy the best stock?
- How to play chess?

Problem solving with computers:

Computers use algorithmic solutions

- Program set of instructions that make up solution to a problem
- Results outcome of running the program
- <u>Testing</u> Are the outcomes what you expected and correct
- <u>Documentation</u> manual documentation instructions telling users how to use the program

Problem solving with computers involves several steps:

- Clearly define the problem.
- Analyse the problem and formulate a method to solve it.
- Describe the solution in the form of an algorithm.
- Draw a flowchart of the algorithm.
- Write the computer program.
- Compile and run the program (debugging).
- Test the program (debugging).
- Interpretation of results.

"Algorithm" word:

https://www.youtube.com/watch?v=oRkNaF0QvnI

Algorithms

What is it?

- Is a finite sequence of logical steps used to solve a problem
- Example: prepare and serve a scrambled egg on a whole wheat bread
 - 1. Take out a frying pan from the cabinet
 - 2. Heat up the frying pan
 - 3. Pour some oil into frying pan
 - 4. Take out an egg from the fridge
 - 5. Scramble it in a bowl
 - 6. Pour it into the frying pan
 - 7. Take out a spatula
 - 8. Flip the egg to the other side in a minute
 - 9. Take out a piece of a howl wheat bread and place it on a plate
 - 10. Check if the egg is ready
 - 11. If yes, put it on a slice of a whole wheat bread; If not, keep checking every minute.
 - 12. Serve the meal

Algorithms

- Other examples
 - Driving to school/work/mall/beach, etc.
- Algorithms are critical and essential component of a problem solving process.
- Problem:
 - Algorithms are sequential
 - Poor handling of multiple flows based on different conditions
 - Example: step # 10 and 11 in our scramble egg preparation algorithm

Flowcharts

- Flowchart is a graphical representation of an algorithm or a process
- Four basic elements:
 - Start
 - Action
 - Condition
 - End

Flowchart: Start Element

Indicates the beginning of a flowchart

- Is the first one on the flowchart.
- Other elements are connected to it by using an arrow originating from this element and pointing to the connecting element.

Flowchart: Action Element

Denotes any action to be performed

- Is connected to other elements in a flowchart by using arrows.
- Arrows that point to this element are originated from preceding elements, while an arrow that originates from this element points to the subsequent element on the flowchart

Flowchart: Condition Element

Indicates conditions

- Connected to other elements in a flowchart by using arrows.
- Arrows that point to this element are originated from preceding elements, while arrows that originate from this element points to the subsequent element on the flowchart.
- Conditions have two outcomes: it's either true or false.
- Each diamond sign must have two arrows originating from it; each one is labeled as either "T" or "F".

Flowchart: End Element

Indicates the end of a flowchart

- Is the last one on the flowchart.
- Other elements are connected to it by using arrows originating from the connecting elements and pointing to this element.

More on Flowcharts

- all elements on a flowchart must be connected to a preceding element except for the "start" element.
- all elements on a flowchart must connect to subsequent elements except for the "end" element.
 - For example, if you have any rectangles or diamond signs without arrows pointing to them and arrows originating from them, then your flowchart is incorrect: re-examine it and make appropriate changes.
- Flowcharting software
 - Microsoft Visio
 - A word-processing software such as Microsoft Word
 - Dia
 - Kivio
 - OpenOffice Draw,
 - You can also draw flowcharts on paper, but, it is a hassle to make changes to it
 =>you will need to re-draw it every time.

Problem Statement:

Problem Statement help diagnose the situation so that your focus is on the problem, helpful tools at this stage include Algorithms and flowcharts for identifying the expected steps of a process. Therefore to solve any problem,

- Collect and analyze information and data
- Talk with people familiar with the problem
- If at all possible, view the problem first hand
- Confirm all findings

Algorithm:

The algorithm is part of the blueprint or plan for the computer program, an algorithm is:

"An effective procedure for solving a class of problems in a finite number of steps."

Every algorithm should have the following 5 characteristic feature:

- 1. Input
- 2. Output
- 3. Definiteness
- 4. Effectiveness
- 5. Termination

Algorithm (Contd...):

- To find largest of three numbers
- 1) Start
- 2) Read 3 numbers: num1, num2, num3
- 3) if num1 > num2 then go to step 5
- 4) if num2 > num3 then

print num2 is largest

else

print num3 is largest

goto step 6

5) if num1 > num3 then

print num1 is largest

else

print num3 is largest

6) end.