Lecture 2 Citric Acid Cycle Tricarboxylic acid cycle (TCA cycle or Krebs cycle)

张梦杰

98061 @tongji.edu.cn

13816619408

办公室: 医学楼辅楼405

Stage 1 Acetyl-CoA Amino Fatty Glucose production acids acids Glycolysis Pyruvate pyruvate dehydrogenase complex CO₂ Acetvl-CoA Stage 2 Acetyl-CoA oxidation Citrate Oxaloacetate Citric acid cycle CO_2 CO_2 NADH, FADH₉ (reduced e - carriers) Stage 3 Electron transfer and oxidative phosphorylation $2H^{+} + \frac{1}{2}O_{2}$ Respiratory (electron-transfer) chain H_2O

outline

- 1 Introduction
- 2 Production of Acetyl-CoA
- 3 Reactions of the Citric Acid Cycle
- **4 Regulation of the Citric Acid Cycle**
- **5 The Glyoxylate Cycle(**乙醛酸循环)

1. Introduction

The tricarboxylic acid (TCA) cycle is also known as the Krebs cycle or the citric acid cycle.

Hans Krebs, 1900-1981

- ➤ 1953 Nobel Laureate in Medicine

 for his discovery of the citric acid cycle
- >Background

1900-1981

Place of Birth: Hildesheim, Germany

Residence: Great Britain

Affiliation: Sheffield University

The manuscrip acid cycle was publication to It was subsequent Enzymologia. Enzymologia. Enzymologia the rethroughout his encouragement.

Telegraphic Address : PHUSIS, LESQUARE, LONDON.

> Telephone Number: WHITEHALL 8831.

Editorial and Publishing Offices:

MACMILLAN & CO., LTD., ST., MARTIN'S STREET, LONDON, W.C.2.

RAG.AH/N.

14th June 1937.

The Editor of NATURE presents his compliments to

Mr. H. A. Krebs and regrets that as he has

already sufficient letters to fill the correspondence

columns of NATURE for seven or eight weeks, it is

undesirable to accept further letters at the present

time on account of the delay which must occur in their

publication.

If Mr. Krebs does not mind such delay, the Editor is prepared to keep the letter until the congestion is relieved in the hope of making use of it. He returns it now, however, in case Mr. Krebs prefers to submit it for early publication to another periodical.

TCA Take place——

Eukaryotes: mitochondria ibosome Cristae

Prokaryotes: cytosol

TCA is the **second of three steps** in cellular respiration,

between glycolysis & oxidative phosphorylation

2. Production of Acetyl-CoA

-----Pyruvate Oxidation

A Major Entry Route for Carbon into the TCA

Pyruvate Dehydrogenase Complex 丙酮酸脱氢酶系

$$\Delta G^{\circ} = -33.4 \text{ kJ/mol}$$

Pyruvate Dehydrogenase Complex (PDC)

three enzymes (E1, E2 and E3):

- 1. Pyruvate Dehydrogenase (E1) 丙酮酸脱氢酶
- 2. Dihydrolipoyl transacetylase (E2) 二氢硫辛酰转乙酰基酶
- 3. Dihydrolipoyl dehydrogenase (E3) 二氢硫辛酰脱氢酶

five coenzymes:

- 1. Thiamine Pyrophosphate 焦磷酸硫胺素, 辅羧酶(TPP) ... VB1
- 2. Lipoic Acid硫辛酸- lipoamide硫辛酰胺
- 3. CoASH ... 泛酸
- 4. NAD+... VPP
- 5. FAD... VB2

- > The core (green): 8 trimers 24 E2
- ➤ The lipoyl 硫辛酰基 (blue) of E2 reaches to touch the active sites of E1
- ➤ The swinging arm on E2 can reach the active sites of E3 (**red**).

Pyruvate Dehydrogenase (E1) 丙酮酸脱氢酶

Thiamine pyrophosphate (TPP) is the coenzyme form of VB1

$$CH_3$$
 CH_2 CH_2 CH_2 CH_2 CH_3 CH_2 CH_2 CH_2 CH_3 CH_2 CH_3 CH_3 CH_3 CH_3 CH_3 CH_4 CH_5 CH_6 CH_8 CH_8

Hydroxyethyl thiamine pyrophosphate

The TPP carbanion (负碳离子) acts as a nucleophile(亲核), attacking the carbonyl group of pyruvate.

(1)

- 2 Decarboxylation produces a carbanion that is stabilized by the thiazolium (噻唑) ring.
- Protonation to form hydroxyethyl TPP (3) release of acetaldehyde. 4
- (5) A proton dissociates to regenerate the carbanion.

Dihydrolipoyl transacetylase (E2)二氢硫辛酰转乙酰基酶

- >Pyruvate dehydrogenase and α-ketoglutarate dehydrogenase
- > Covalently bound with Lys- ε-NH₂
- > Acyl-group transfer and electron transfer

Coenzymes A

Reduced form

Lipoic acid (硫辛酸)

Lipoic acid, oxidized form

Lipoyllysine (lipoamide)

Dihydrolipoyl dehydrogenase (E3)二氢硫辛酰脱氢酶

Pyruvate dehydrogenase, E_1 Dihydrolipoyl transacetylase, E₂

二氢硫辛酰转乙酰基酶

Dihydrolipoyl dehydrogenase, E₃

二氢硫辛酰脱氢酶

 $\Delta G^{\prime \circ} = -33.4 \text{ kJ/mol}$

3. Reactions of TCA

central metabolic pathway中心代谢途径

- a) generates NADH and FADH₂
- b) produces GTP via substrate-level phosphorylation
- c) Many metabolic processes use intermediates of the TCA in their pathways.

Eight Steps

Steps1,3,and 4 are essentially irreversible

Four oxidation steps --- NADH and FADH₂.

The Citric Acid Cycle Has Eight Steps

Phase 1: Introduction and Loss of Two Carbon Atoms

Step 1: Introduction of Two Carbon Atoms as **Acetyl-CoA**

Step 2: Isomerization (异构化) of **Citrate** (柠檬酸)

Step 3: Generation of CO₂ by an NAD⁺ Linked Dehydrogenase

Step 4: Generation of a Second CO₂ by a Multienzyme Complex

Phase 2: Regeneration of Oxaloacetate (草酰乙酸)

Step 5: A Substrate-Level Phosphorylation

Step 6: A Flavin-Dependent Dehydrogenase

Step 7: Hydration 水合作用of a Carbon-Carbon Double Bond

Step 8: A Dehydrogenation that Regenerates Oxaloacetate

Phase 1: Introduction and Loss of Two Carbon Atoms

Step 1: Introduction of Two Carbon Atoms as Acetyl-CoA

$$CH_3-C-S-CoA + C-COO^- + H_2O \longrightarrow HO-C-COO + CoA-SH + H^+$$

$$CH_2-COO^- + COO^- + COO^- + COO^-$$

$$CH_2-COO^- + COO^-$$

$$CH_2-COO^-$$

$$CH_2-COO^- + COO^-$$

$$CH_2-COO^-$$

$$CH_2-COO^-$$

$$CH_2-COO^-$$

$$CH_2-COO^-$$

$$CH_2-COO^-$$

$$CH_2-COO^-$$

柠檬酸合酶 citrate synthase

TCA 限速酶

The large, negative standard free-energy change of the citrate synthase reaction is essential to the operation of the cycle

Structure of citrate synthase(二聚体)

Each subunit undergoes a conformational change on binding oxaloacetate creating a binding site for acetyl-CoA.

Step 2: Isomerization of Citrate

Aconitase 乌头酸酶

Aconitase 乌头酸酶 (iron-sulfur center)

- Three Cys residues bind three iron atoms
- The **fourth iron** is bound to one of the carboxyl groups of citrate and -OH group of citrate.
- A basic residue (:B) helps to position the citrate in the active site.

Step 3: Generation of CO₂ by an NAD⁺ Linked Dehydrogenase

ATP, NADH inhibit the activity of isocitrate dehydrogenase

Isocitrate dehydrogenase (IDH) 异柠檬酸脱氢酶

酮酸的形成可促进临近C-C键的断裂,有利于脱羧作用的进行

Step 4 Generation of a Second CO₂ by a Multienzyme Complex

α-Ketoglutarate α-酮戊二酸 Succinyl-CoA 琥珀酰CoA

- 1. a –KG dehydrogenase (E1)
- 2. Dihydrolipoamide transacetylase (E2)二氢硫辛酰转琥珀酰酶
- 3. Dihydrolipoamide dehydrogenase (E3)二氢硫辛酰脱氢酶

five coenzymes

- 1. Thiamine Pyrophosphate 焦磷酸硫胺素, 辅羧酶(TPP)
- 2. Lipoic Acid- lipoamide 硫辛酰胺
- **3. FAD**
- 4. NAD+
- 5. CoASH

Phase 2: Regeneration of Oxaloacetate (草酰乙酸)

Step 5: Conversion of Succinyl-CoA to Succinate

- •琥珀酰CoA合成酶—GTP (animal) or ATP (plant & microorganism)
- •底物水平磷酸化

Different from synthase $\Delta G^{\circ} = -2.9 \text{ kJ/mol}$

高能酰基磷酸

Step 6: Oxidation of Succinate to Fumarate

$$COO^ CH_2$$
 $+$ E-FAD \longrightarrow CH $+$ E-FADH $_2$ $\Delta G^{\circ\prime}$ $=$ 0 kJ/mol OCH_2 $OCO^ OCO^ OC$

-- A Flavin-Dependent Dehydrogenase

Only enzyme of TCA is membrane-bound

Malonate (丙二酸) competitive inhibitor

Step 7: Hydration of Fumarate to Malate

$$COO^-$$
 highly stereospecific COO^- highly stereospecific $AG^{\circ\prime} = -3.8 \text{ kJ/mol}$ $AG^{\circ\prime} = -3.8 \text{ kJ/mo$

Step 8: Oxidation of Malate to Oxaloacetate

Reaction		Enzyme	ΔG ^o (kJ/mol)
1.	Acetyl-CoA + oxaloacetate + H ₂ O → citrate + CoA-SH + H ⁺	Citrate synthase	-32.2
2a.	Citrate == cis-aconitate + H ₂ O	Aconitase	
2Ь.	cis-Aconitate + H ₂ O ⇒ isocitrate	Aconitase	+6.3
3.	Isocitrate + NAD ⁺ \Longrightarrow α -ketoglutarate + CO ₂ + NADH	Isocitrate dehydrogenase	-20.9
4.	α-Ketoglutarate + NAD ⁺ + CoA-SH ⇒ succinyl-CoA + CO ₂ + NADH	α-Ketoglutarate dehydrogenase complex	-33.5
5.	Succinyl-CoA + P_i + GDP \Longrightarrow succinate + GTP + CoA-SH	Succinyl-CoA synthetase	-2.9
6.	Succinate + FAD (enzyme-bound) ====================================	Succinate dehydrogenase	0
7.	Furnarate + H ₂ O === L-malate	Fumarase	-3.8
8.	L-Malate + NAD ⁺ === oxaloacetate + NADH + H ⁺	Malate dehydrogenase	+29.7
		Net	-57.3

Note:

- A two-carbon acetyl entered the cycle by combining with oxaloacetate.
- 2C atoms emerged from the cycle as CO_2 from the oxidation of isocitrate and α -ketoglutarate.
- 2C atoms appearing as CO₂ are not the same 2C that
 entered in the form of the acetyl group

The Energy of Oxidations in the Cycle

For each acetyl-CoA oxidized by the citric acid cycle

3 NADH

1 FADH2

1 ATP or GTP

Acetyl-CoA + 3 NAD⁺ + [FAD] + ADP + P_i + 2 H₂O
$$\Longrightarrow$$
 2 CO₂ + 3 NADH + 3 H⁺ + [FADH₂] + ATP + CoASH

10 ATP

Glucose + 2
$$H_2O$$
 + 10 NAD^+ + 2 $[FAD]$ + 4 ADP + 4 $P_i \Longrightarrow$ 6 CO_2 + 10 $NADH$ + 10 H^+ + 2 $[FADH_2]$ + 4 ATP

Anaplerotic reactions to fill up TCA

回补反应

4. Regulation of Pyruvate Dehydrogenase and the Citric Acid Cycle

Pvruvate

4.1 Controlling the **entry** of fuel into the cycle

- ➤ Pyruvate dehydrogenase -- major regulatory point for entry of materials into TCA
 - □ Allosteric Regulation (E2 & E3)
- E2 inhibited by acetyl-CoA, activated by CoA-SH
- E3 inhibited by NADH, activated by NAD+.

4.2 Key reactions within the cycle:

allosteric regulation & Covalent Regulation

- isocitrate dehydrogenase
- Activated by ADP, inhibited by NADH
- **Phosphorylation** of one **serine** residue in the enzyme prevents binding of **isocitrate**

• α-ketoglutarate dehydrogenase

Inhibited by succinyl-CoA and NADH

5. Glyoxylate Cycle 乙醛酸循环

- Plants
- some bacteria (including E. coli and yeast)
- converting acetate (乙酸) to carbohydrate.

Lipid body

● No decarboxylations (脱羧) steps

- isocitrate lyase 异柠檬酸裂合酶
- malate synthase 苹果酸合酶

Mitochondria

> five steps

> Lack CO₂ liberating reactions

Consumes two acetyl-CoAs

and one oxaloacetate

Produces two oxaloacetates

- In <u>plants</u>, <u>bacteria</u> and <u>yeast</u>
 (not animals)
- Glyoxylate cycle: 2C→G

➤In <u>animals</u>, acetyl CoA is <u>not</u> a carbon source for the <u>net</u> formation of glucose!!

Summary

- Pyruvate produced in glycolysis (cytosol) is transported into mitochondria
- Pyruvate is converted to acetyl-coenzyme A by the pyruvate dehydrogenase complex
- Acetyl-CoA enters the TCA cycle and is oxidized to CO₂
- ➤ The electrons liberated from TCA are passed via NADH and FADH₂ through an membrane-associated electron-transport pathway to O₂, the final electron receptor and produce ATP

思考题

- 1. Although oxygen does not participate directly in the citric acid cycle, the cycle operates only when O_2 is present. Why?
- 2. What is Glyoxylate Cycle? What are the main enzymes?
- 3. Thiamine deficiency (硫胺素缺乏) individuals with a thiamine-deficient diet have relatively high levels of pyruvate in their blood. Explain this in biochemical terms.
- 4.什么是三羧酸循环?详述其具体过程。三羧酸循环的生理意义是什么?