Lecturer	·. Mark Da	ıly	Subject	. Mathem	atics 1		
Course. 1	BSc Software De	sign (Game/Web	Dev) Year 1				
 (1) Please do not write outside the border lines. (2) Use only black pen (for photocopying purposes). (3) Please hand in the original version and not the photocopy. (4) For descriptive questions please indicate clearly the type of answer required. 							
Ques No.	Determine the points (x,y) from the table below:						
1(a)	x	x^2	-x	-2	f(x)		
	-3	9	3	-2	10		
(i)	-2.5	6.25	2.5	-2	6.75		
	-2	4	2	-2	4		
	-1.5	2.25	1.5	-2	1.75		
	-1	1	1	-2	0		
	-0.5	0.25	0.5	-2	-1.25		
	0	0	0	-2	-2		
	0.5	0.25	-0.5	-2	-2.25		
	1	1	-1	-2	-2		
	1.5	2.25	-1.5	-2	-1.25		
	2	4	-2	-2	0		
	2.5	6.25	-2.5	-2	1.75		
	3	9	-3	-2	4		
	3.5	12.25	-3.5	-2	6.75		
	4	16	-4	-2	10		
	4.5	20.25	-4.5	-2	13.75		
	5	25	-5	-2	18		
	Graph shown below						
		20]				
		15 -					
		10					
		5					
	-4	-2	0 2	4	6		
		-5]				

Lecturer. Mark Daly				Subject.	Mathema	tics 1	
Course. BSc Software Design (Game/Web Dev) Year 1 (1) Please do not write outside the border lines. (2) Use only black pen (for photocopying purposes). (3) Please hand in the original version and not the photocopy. (4) For descriptive questions please indicate clearly the type of answer required.							
Ques No.							Marks.
1(a)							
(ii)		ph and the tab x = -1 and 2		nction crosse	es the x-axis (i.e. the function	
(iii)			oh and the table); i.e. when x =		e function ha	s a turning point	10
(h)	Determine th	e points (x,y)	from the table	below:			
(b)	x	x^3	$-3x^2$	+4x	-5	f(x)	
	-4	-64	-48	-16	-5	-133	
	-3.5	-42.88	-36.75	-14	-5	-98.63	
	-3	-27	-27	-12	-5	-71	
	-2.5	-15.63	-18.75	-10	-5	-49.38	
	-2	-8	-12	-8	-5	-33	
	-1.5	-6.75	-6.75	-6	-5	-21.13	
	-1	-1	-3	-4	-5	-13	
	-0.5	-0.13	-0.75	-2	-5	-7.88	
	0	0	0	0	-5	-5	
	0.5	0.13	-0.75	2	-5	-3.63	
	1	1	-3	4	-5	-3	
	1.5	3.38	-6.75	6	-5	-2.38	
	2	8	-12	8	-5	-1	
	2.5	15.63	-18.75	10	-5	1.88	
	3	27	-27	12	-5	7	
	3.5	42.88	-36.75	14	-5	15.13	
	4	64	-48	16	-5	27	
	4.5	91.13	-60.75	18	-5	43.38	
	5	125	-75	20	-5	65	
	5.5	166.38	-90.75	22	-5	92.63	
	6	216	-108	24	-5	127	
	6.5	274.63	-126.75	26	-5	168.88	
	7	343	-147	28	-5	219	
	7.5	421.88	-168.75	30	-5	278.13	
	8	512	-192	32	-5	347	

Lecturer.	. Mark Daly Subject. Mathematics	s 1			
Course. BSc Software Design (Game/Web Dev) Year 1					
 Please do not write outside the border lines. Use only black pen (for photocopying purposes). Please hand in the original version and not the photocopy. For descriptive questions please indicate clearly the type of answer required. 					
Ques No. 2(a)	Determine the value(s) of x for which the determinant is zero. The complent space is the set of values for which the matrix is non-singular.				
(i)	$\begin{vmatrix} 1 & 2 & -2 \\ x & -1 & 5 \\ 3 & 1-x & 4 \end{vmatrix} = (1)(-9+5x)+2(15-4x)-2(x-x^2+3)=0$ $\Rightarrow determinant \neq 0 \ \forall \ x \in \mathbb{R}$ The matrix is non-singular $\forall \ x \in \mathbb{R}$	4			
(ii)	$\begin{vmatrix} 3-x & 4 & 6 \\ 0 & 1-x & 2 \\ 0 & 0 & 2+x \end{vmatrix} \Rightarrow determinant = 0 \Leftrightarrow x = -2, 1, 3$ The matrix is non-singular $\forall x \in \mathbb{R} \setminus \{-2, 1, 3\}$	4			
(b)	Given the matrices $A = \begin{pmatrix} 2 & 1 & -1 \\ 5 & -2 & 1 \\ -1 & -4 & 3 \end{pmatrix} \text{ and } B = \begin{pmatrix} 2 & -7 & 0 \\ 4 & 0 & 1 \\ 5 & 9 & -2 \end{pmatrix}$ we need to determine if the products $C = A \cdot B$ and $D = B \cdot A$ exist an resulting matrices, C and D , are equal. As A and B are both square matrices same dimensions, then both C and D exist and are $3x3$ matrices.				
	First calculate $C = A \cdot B$: $C = A \cdot B = \begin{pmatrix} 2 & 1 & -1 \\ 5 & -2 & 1 \\ -1 & -4 & 3 \end{pmatrix} \cdot \begin{pmatrix} 2 & -7 & 0 \\ 4 & 0 & 1 \\ 5 & 9 & -2 \end{pmatrix} = \begin{pmatrix} c_{11} & c_{12} & c_{13} \\ c_{21} & c_{22} & c_{23} \\ c_{31} & c_{32} & c_{33} \end{pmatrix}$ where				
	$\begin{vmatrix} c_{11} = \sum_{k=1}^{3} a_{1k} b_{k1} = 2 \times 2 + 1 \times 4 + (-1) \times 5 = 4 + 4 - 5 = 3 \\ c_{12} = \sum_{k=1}^{3} a_{1k} b_{k2} = 2 \times (-7) + 1 \times 0 + (-1) \times 9 = -14 + 0 - 9 = -23 \end{vmatrix}$				
	$c_{13} = \sum_{k=1}^{3} a_{1k} b_{k3} = 2 \times 0 + 1 \times 1 + (-1) \times (-2) = 0 + 1 + 2 = 3$				
	$c_{21} = \sum_{k=1}^{3} a_{2k} b_{k1} = 5 \times 2 + (-2) \times 4 + 1 \times 5 = 10 - 8 + 5 = 7$ $c_{22} = \sum_{k=1}^{3} a_{2k} b_{k2} = 5 \times (-7) + (-2) \times 0 + 1 \times 9 = -35 + 0 + 9 = -26$				
	$ c_{23} = \sum_{k=1}^{3} a_{2k} b_{k3} = 5 \times 0 + (-2) \times 1 + 1 \times (-2) = 0 - 2 - 2 = -4 $				

School of Engineering

ecturei	, ,	
) Pleas 2) Use or 5) Pleas	BSc (Computing & Software Engineering) Year e do not write outside the border lines. nly black pen (for photocopying purposes). e hand in the original version and not the photocopy. escriptive questions please indicate clearly the type of answer required.	
ues No.	$c_{31} = \sum_{k=1}^{3} a_{3k} b_{k1} = (-1) \times 2 + (-4) \times 4 + 3 \times 5 = -2 - 16 + 15 = -3$	Marks.
	$c_{32} = \sum_{k=1}^{3} a_{3k} b_{k2} = (-1) \times (-7) + (-4) \times 0 + 3 \times 9 = 7 + 0 + 27 = 34$ $c_{33} = \sum_{k=1}^{3} a_{3k} b_{k3} = (-1) \times 0 + (-4) \times 1 + 3 \times (-2) = 0 - 4 - 6 = -10$	
	Now calculate $D=B \cdot A$: $D=B \cdot A = \begin{pmatrix} 2 & -7 & 0 \\ 4 & 0 & 1 \\ 5 & 9 & -2 \end{pmatrix} \cdot \begin{pmatrix} 2 & 1 & -1 \\ 5 & -2 & 1 \\ -1 & -4 & 3 \end{pmatrix} = \begin{pmatrix} d_{11} & d_{12} & d_{13} \\ d_{21} & d_{22} & d_{23} \\ d_{31} & d_{32} & d_{33} \end{pmatrix}$ where	
	$d_{11} = \sum_{k=1}^{3} b_{1k} a_{k1} = 2 \times 2 + (-7) \times 5 + 0 \times (-1) = 4 - 35 + 0 = -31$ $d_{12} = \sum_{k=1}^{3} b_{1k} a_{k2} = 2 \times 1 + (-7) \times (-2) + 0 \times (-4) = 2 + 14 + 0 = 16$	
	$d_{13} = \sum_{k=1}^{3} b_{1k} a_{k3} = 2 \times (-1) + (-7) \times 1 + 0 \times 3 = -2 - 7 + 0 = -9$	
	$d_{21} = \sum_{k=1}^{3} b_{2k} a_{k1} = 4 \times 2 + 0 \times 5 + 1 \times (-1) = 8 + 0 - 1 = -7$ $d_{22} = \sum_{k=1}^{3} b_{2k} a_{k2} = 4 \times 1 + 0 \times (-2) + 1 \times (-4) = 4 + 0 - 4 = 0$	
	$d_{23} = \sum_{k=1}^{3} b_{2k} a_{k3} = 4 \times (-1) + 0 \times 1 + 1 \times 3 = -4 + 0 + 3 = -1$ $d_{31} = \sum_{k=1}^{3} b_{3k} a_{k1} = 5 \times 2 + 9 \times 5 + (-2) \times (-1) = 10 + 45 + 2 = 57$	
	$d_{32} = \sum_{k=1}^{3} b_{3k} a_{k2} = 5 \times 1 + 9 \times (-2) + (-2) \times (-4) = 5 - 18 + 8 = -5$	
	$d_{33} = \sum_{k=1}^{3} b_{3k} a_{k3} = 5 \times (-1) + 9 \times 1 + (-2) \times 3 = -5 + 9 - 6 = -2$ Clearly $C = A \cdot B \neq D = B \cdot A$	1
(a)	Taylor series: $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$	

 $f(x) = \cos(x) \qquad x_0 = \pi/2$

	Model Answers/Marking Scheme	
Lecturer	r. Mark Daly Subject. Mathematics 1	
Course.	BSc Software Design (Game/Web Dev) Year 1	
(2) Use of (3) Pleas	e do not write outside the border lines. nly black pen (for photocopying purposes). e hand in the original version and not the photocopy. escriptive questions please indicate clearly the type of answer required.	
Ques No.	Then $f(\pi) = \cos(\pi/2) = 0$ $f^{(1)}(x) = -\sin(x) \Rightarrow f^{(1)}(\pi/2) = -1$	Marks.
(i)	$f^{(2)}(x) = -\cos(x) \Rightarrow f^{(2)}(\pi/2) = 0$ $f^{(3)}(x) = \sin(x) \Rightarrow f^{(3)}(\pi/2) = 1$ $f^{(4)}(x) = \cos(x) \Rightarrow f^{(4)}(\pi/2) = 0$ $f^{(5)}(x) = -\sin(x) \Rightarrow f^{(4)}(\pi/2) = -1$	
	The first six terms in the Taylor series are defined: $T_5(x) = \sum_{n=0}^4 \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$ $= f(\pi/2) + f^{(1)}(\pi/2)(x - x_0) + \frac{f^{(2)}(\pi/2)}{2!} (x - x_0)^2 + \dots + \frac{f^{(5)}(\pi/2)}{5!} (x - x_0)^5$ $= 0 + (-1)(x - \pi/2) + 0 + \frac{(x - \pi/2)^3}{3!} + 0 + (-1)\frac{(x - \pi/2)^5}{5!}$	5
(ii)	$\begin{array}{ll} f(x) \! = \! \ln \! x & x_0 \! = \! 1 \\ \text{Then} & f(0) \! = \! \ln \! 1 \! = \! 0 \\ f^{(1)}(x) \! = \! 1/(x) & \Rightarrow f^{(1)}(1) \! = \! 1 \\ f^{(2)}(x) \! = \! -1/(x)^2 & \Rightarrow f^{(2)}(1) \! = \! -1 \\ f^{(3)}(x) \! = \! 2/(x)^3 & \Rightarrow f^{(3)}(1) \! = \! 2 \\ f^{(4)}(x) \! = \! -6/(x)^4 & \Rightarrow f^{(4)}(1) \! = \! -6 \\ f^{(5)}(x) \! = \! 24/(x)^5 & \Rightarrow f^{(5)}(1) \! = \! 24 \end{array}$	J
(b)	The first six terms in the Taylor series are defined: $T_{5}(x) = \sum_{n=0}^{5} \frac{f^{(n)}(x_{0})}{n!} (x - x_{0})^{n}$ $= f(1) + f^{(1)}(1)(x - x_{0}) + \frac{f^{(2)}(1)}{2!} (x - x_{0})^{2} + \dots + \frac{f^{(5)}(1)}{5!} (x - x_{0})^{5}$ $= 0 + (x - 1) - \frac{(x - 1)^{2}}{2} + \frac{(x - 1)^{3}}{3} - \frac{(x - 1)^{4}}{4} + \frac{(x - 1)^{5}}{5}$ $\cos\left(\frac{\pi}{3}\right) = \frac{1}{2} = 0.5$ We've already determined that $T_{5}(x) = -(x - \pi/2) + \frac{(x - \pi/2)^{3}}{3!} - \frac{(x - \pi/2)^{5}}{5!}$ for $\cos(x)$ about $x_{0} = \pi/2$.	5
	Substitute $\pi/3$ for x in $T_5(x)$ to get the approximation for $\cos(x)$ at $\pi/3$.	

Lecturer	. Mark Daly Subject. Mathematics 1	
	BSc Software Design (Game/Web Dev) Year 1	
(2) Use of (3) Pleas	e do not write outside the border lines. aly black pen (for photocopying purposes). be hand in the original version and not the photocopy. cescriptive questions please indicate clearly the type of answer required.	
Ques No. 3(b)	$T_{5}\left(\frac{\pi}{3}\right) = -(-\pi/6) + \frac{(-\pi/6)^{3}}{6} - \frac{(-\pi/6)^{5}}{120} \approx 0.500002132$ So the error is $ f(x) - T_{5}(x) = 0.5 - 0.500002132 = 0.000002132 \approx 0.000003$	Marks.
4(a)	$f(x) = \left(\cos^2(x) + \sin^2(x)\right) \tan(2x)$	10
	As $\cos^2(x) + \sin^2(x) = 1$ then $f(x) = \tan(2x)$. Using the chain rule we get $\frac{d}{dx} f(x) = 2\sec^2(2x)$	5
(b)	$f(x)=e^{\ln 3x^2-1 }$ Here use the identity $e^{\ln u(x) }=u(x)$ with $u(x)=3x^2-1$ $\frac{d}{dx}f(x)=\frac{d}{dx}3x^2-1=6x$	5
(c)	$f(x) = \cos(\tan(\sin(2x)))$ You use the chain rule 3 times to get $\frac{d}{dx} f(x) = \underbrace{-\sin(\tan(\sin(2x)))}_{1^{st} Chain Rule} \times \underbrace{\sec^{2}(\sin(2x))}_{2^{nd} Chain Rule} \times \underbrace{\cos(2x) \times 2}_{3^{rd} Chain Rule}$	5
(d)	$f(x) = \frac{x^7 - 1}{x^6 + x^5 + x^4 + x^3 + x^2 + x + 1}$ From your lectures you know that $x^7 - 1 = (x - 1)(x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)$ Then and $\Rightarrow \frac{d}{dx} f(x) = \frac{d}{dx} \frac{x^7 - 1}{x^6 + x^5 + x^4 + x^3 + x^2 + x + 1} = \frac{d}{dx}(x - 1) = 1$	5