Prova di Comunicazioni Numeriche

07 Febbraio 2019

Es. 1 - Con riferimento alla Fig. 1, siano $x(t) = B\cos(2\pi f_0 t)\sin(Bt)$, $h(t) = B\sin^2(Bt)$ e $p(t) = B\sin(Bt)$. Calcolare: 1) la espressione analitica dell'uscita z(t), 2) l'energia di z(t) e 3) il valore di φ tale che sia massima la energia di z(t).

Fig. 1

Es. 2 - In un sistema di comunicazione numerico PAM in banda passante il segnale trasmesso è $s(t) = \sum_k x[k] p(t - kT) \cdot cos\left(2\pi f_0 t - \frac{\pi}{3}\right)$, dove i simboli $x[k] \in A_s = \{-1,2\}$ sono indipendenti ed equiprobabili. L'impulso sagomatore è $p(t) = 2Bsinc\left(2Bt\right) + Bsinc^2\left(Bt\right)$, $f_0 \gg B$, $T = \frac{1}{B}$. Il canale di propagazione è ideale, quindi $c(t) = \delta(t)$ e la DSP del rumore in ingresso al ricevitore è $S_n(f) = \frac{N_0}{2} \left[rect\left(\frac{f-f_0}{B}\right) + rect\left(\frac{f+f_0}{B}\right)\right]$. Il filtro in ricezione $h_R(t)$ è un filtro passa basso ideale di banda B. La soglia di decisione è $\lambda = 0$. Calcolare quindi:

- 1) L'energia media per simbolo trasmesso, E_s
- 2) Calcolare la potenza di rumore in uscita al filtro in ricezione, P_{n_u}
- 3) Calcolare la probabilità di errore sul bit, $P_E(b)$

Fig. 2