Warming up Week 3

November 16, 2018

Recall the story of slides 23-24 of Week 3, Hoorcollege 2:

Agent A sends a message to agent B. This message is either p or $\neg p$ and A knows that message. Agent C intercepts the message, but he can't read it (so it doesn't know whether the message is p or $\neg p$). What he does however is to modify the content of the message (so if the message is p, it becomes $\neg p$, and if the message was $\neg p$, it is now p). B receives the message and announces to A that he got the message. Neither A nor B suspects that C could have intercepted the message. They think that C thinks that either both A and B know the content of the message, or that they both don't know.

The initial model is the following model.

The event model is the following graph.

Exercise slide p.23-24.

(a) Show that $[\alpha] \square_A \square_B p$.

Hint. Use the Knowledge-Action axiom to push $[\alpha]$ inside the modalities. Use also that $(\phi \Rightarrow \phi) \iff True$ and $(\phi \Rightarrow True) \iff True$ and $\Box_B True \iff True$.

- (b) Derive that $[\alpha](\Box_a\Box_B p \vee \Box_A\Box_B \neg p)$. Hint. You can use the validity $[\alpha]\phi \Rightarrow [\alpha](\phi \vee \psi)$.
- (c) Similarly to (a), show that $[\beta] \square_A \square_B \neg p$.
- (d) Derive that $[\beta](\Box_a\Box_B p \vee \Box_A\Box_B \neg p)$.
- (e) Using (b) and (d), show that $[\alpha]\Box_C(\Box_A\Box_B p \vee \Box_A\Box_B \neg p)$. Hint. Use that $True \wedge True \iff True$.

Proof of (a). We have

$$[\alpha]\Box_A\Box_B p = (p \Rightarrow \Box_A [\alpha']\Box_B p) \tag{1}$$

$$= (p \Rightarrow \Box_A(p \Rightarrow \Box_B[\alpha'|p)) \tag{2}$$

$$= (p \Rightarrow \Box_A(p \Rightarrow \Box_B(p \Rightarrow p))) \tag{3}$$

$$= (p \Rightarrow \Box_A(p \Rightarrow \Box_B True)) \tag{4}$$

$$= (p \Rightarrow \Box_A(p \Rightarrow True)) \tag{5}$$

$$= (p \Rightarrow \Box_A True) \tag{6}$$

$$= (p \Rightarrow True) \tag{7}$$

$$= True$$
 (8)

Here, (1) follows from the Knowledge-Action axiom and the fact that the only a-successor of α in the event model is α' (and the precondition of α' is p). Equivalence (2) follows from Knowledge-Action axiom and the fact that the only b-successor of α' in the event model is α' (and the precondition of α' is p). For (3), it follows from the Atomic Permanence axiom that

$$[\alpha']p = p \Rightarrow p.$$

For (4), we use the fact that $(p \Rightarrow p) \iff True$. (5) follows from the hint $\Box_B True \iff True$. Equivalence (6) is obtained using the hint $(\phi \Rightarrow True) \iff True$. Then, for (7), we use the hint $\Box_A True \iff True$. Finally, equivalence (8) is obtained using the hint $(\phi \Rightarrow True) \iff True$.

Proof of (b). By (a), we have $[\alpha]\Box_A\Box_B p$ is valid. So it follows from the hint that $[\alpha](\Box_a\Box_B p \vee \Box_A\Box_B \neg p)$ is also valid.

Proof of (c). This is very similar to (a). We have

$$[\beta] \Box_A \Box_B \neg p = (\neg p \Rightarrow \Box_A [\beta'] \Box_B \neg p) \tag{9}$$

$$= (\neg p \Rightarrow \Box_A(\neg p \Rightarrow \Box_B[\beta'] \neg p)) \tag{10}$$

$$= (\neg p \Rightarrow \Box_A(\neg p \Rightarrow \Box_B(\neg p \Rightarrow \neg p))) \tag{11}$$

$$= (\neg p \Rightarrow \Box_A(\neg p \Rightarrow \Box_B True)) \tag{12}$$

$$= (\neg p \Rightarrow \Box_A(\neg p \Rightarrow True)) \tag{13}$$

$$= (\neg p \Rightarrow \Box_A True) \tag{14}$$

$$= (\neg p \Rightarrow True) \tag{15}$$

$$= True$$
 (16)

Here, (9) follows from the Knowledge-Action axiom and the fact that the only a-successor of β in the event model is β' (and the precondition of β' is $\neg p$). Equivalence (10) follows from Knowledge-Action axiom and the fact that the only b-successor of β' in the event model is β' (and the precondition of β' is $\neg p$). For (11), it follows from the Atomic Permanence axiom that

$$[\beta']\neg p = \neg p \Rightarrow \neg p.$$

For (12), we use the fact that $(p \Rightarrow p) \iff True$. (13) follows from the hint $\Box_B True \iff True$. Equivalence (14) is obtained using the hint $(\phi \Rightarrow True) \iff True$. Then, for (15), we use the hint $\Box_A True \iff True$. Finally, equivalence (16) is obtained using the hint $(\phi \Rightarrow True) \iff True$.

Proof of (d). By (c), we have $[\beta]\Box_A\Box_B\neg p$ is valid. So it follows from the hint that $[\beta](\Box_a\Box_B p \vee \Box_A\Box_B\neg p)$ is also valid.

Proof of (e). We have

$$[\alpha] \square_C (\square_A \square_B p \vee \square_A \square_B \neg p) = (p \Rightarrow [\alpha] (\square_a \square_B p \vee \square_A \square_B \neg p)) \wedge (17)$$

$$(p \Rightarrow \Box_C[\beta](\Box_a \Box_B p \vee \Box_A \Box_B \neg p)) (18)$$

$$= (p \Rightarrow \Box_C True) \land (p \Rightarrow \Box_C True) \quad (19)$$

$$= (p \Rightarrow True) \land (p \Rightarrow True) \tag{20}$$

$$= True \wedge True \tag{21}$$

$$= True$$
 (22)

Here, (18) follows from the Knowledge-Action axiom and the fact that the only c-successors of α in the event model are α and β . For (19), we use the facts that $[\alpha](\Box_a\Box_B p \vee \Box_A\Box_B\neg p)$ is equivalent to True (from (a)) and that $[\beta](\Box_a\Box_B p \vee \Box_A\Box_B\neg p)$ is equivalent to True (from (b)).

For (20), we use the fact that $\Box_C True \iff True$. For (21), we use the hint that $\phi \Rightarrow True$ is equivalent to True. For (21), we use the hint that $True \wedge True$ is equivalent to True.