Struktury Danych i Złożoność Obliczeniowa

Autor: Alicja Wróbel

1. Wstęp

Celem projektowym było zapoznanie się z problemem wyznaczania minimalnego drzewa rozpinającego, oraz wyszukiwania najkrótszej ścieżki w grafie. Program zawiera implementacje następujących algorytmów:

- Algorytm Kruskala O (E * logV)
- Algorytm Prima O (E * logV)
- Algorytm Dijkstry O (E * logV)
- Algorytm Bellmana-Forda O (|V| * |E|)

Minimalne drzewo rozpinające – drzewo zawierające wszystkie wierzchołki grafu oraz krawędzie, których suma jest o najniższej wadze z wszystkich pozostałych drzew rozpinających danego grafu. W projekcie wykorzystujemy do tego algorytm Kruskala oraz Prima.

Najkrótsza ścieżka w grafie – jest to ścieżka, w której dojście z danego punktu do innego jest o najniższym koszcie przejścia. W projekcie wykorzystujemy do tego algorytm Bellmana-Forda oraz Dijkstry.

Do obliczeń została wykorzystana funkcja QueryPerformanceCounter(), w klasie "Timer.h". Każdy pomiar został wykonany dla innego zestawu danych losowych dla danego grafu. W przedstawionych poniżej pomiarach jest wartość średnia 100 pomiarów dla różnej ilości gęstości oraz liczby wierzchołków.

2. Pomiary:

2.1 Macierz

PRIM				
wierzchołki	25%	50%	75%	99%
10	456.076	1623.26	1849.35	3196.68
25	14240.3	43045.7	73348.7	95631.9
50	204812	599771	1071690	1518780
75	434089	2365610	4053080	5724670
100	2859630	8595020	15377600	24369300

KRUSKAL					
wierzchołki	25%	50%	75%	99%	
10	356.149	801.839	1107.7	1691.74	
25	8391.17	22143.1	37648.5	50426.8	
50	106278	315800	528331	791955	
75	229002	1203640	2070350	295510	
100	1638620	4921480	8666680	12484400	

BELLMAN FORD						
wierzchołki	25%	50%	75%	99%		
10	13.5891	33.2953	43.1074	62.0336		
25	804.795	1639.19	2419.72	3514.86		
50	12472.6	24755.3	38861.8	51702		
75	26022.2	103326	158463	209792		
100	217460	444237	706864	1152990		

DIJKSTRY						
wierzchołki	25% 50% 75% 99%					
10	313.411	314.971	319.077	333.857		
25	3686.92	3685.03	3770.71	3777.11		
50	27833.6	28272.4	28353.9	29529.4		
75	48759	77782.7	78195.3	80793.2		
100	223880	226281	237137	243682		

2.2 Lista

PRIM					
wierzchołki	25%	50%	75%	99%	
10	1680.41	2703.08	4638.19	5420.98	
25	29014.6	73120.8	125071	182225	
50	369520	1015840	1851100	2351230	
75	783059	3707280	6713890	9188480	
100	5054620	14166100	24506100	37780100	

KRUSKAL					
wierzchołki	25%	50%	75%	99%	
10	698	1136	158855	210672	
25	20971	50526	806724	106694	
50	36012.2	147485	218783	288845	
75	808450	308912	464506	604534	
100	2911690	548075	1013003	1082290	

BELLMAN FORD					
wierzchołki	25%	50%	75%	99%	
10	780.408	1303.86	1973.95	2590.59	
25	11363.1	34031.8	44986.5	44986.5	
50	94689.9	189260	284675	376901	
75	167191	541820	806096	1088450	
100	77397	1609740	2394020	3223330	

DIJKSTRY					
wierzchołki	25%	50%	75%	99%	
10	1031.13	1641.94	2392.09	3141.83	
25	4978.21	9974.4	14295.7	18390.3	
50	19289.1	38353.7	56697.9	73700.9	
75	32413	79053.5	110248	146835	
100	100313	169632	230958	339308	

2.3 Wykresy dla poszczególnych gęstości

3. Wnioski

Większośc danych zgadzała się założeniami teoretycznymi. Jedynie rozbieżność można zauważyć przy algorytmie Kruskala dla listy. Najgorszą wydajność miał algorytm Bellmana-Forda dla najkrótszej ścieżki przy wykorzystaniu listy oraz algorytm Prima dla MST również przy liście. Jest to związane prawdopodobnie z koniecznością iteracji po każdym elemencie.