Your grade: 100%

Your latest: 100% • Your highest: 100% • To pass you need at least 80%. We keep your highest score.

Next item →

1/1 point

1/1 point

1/1 point

1/1 point

- 1. What does a neuron compute?
 - O A neuron computes the mean of all features before applying the output to an activation function
 - lacklack A neuron computes a linear function z=Wx+b followed by an activation function
 - A neuron computes a function g that scales the input x linearly (Wx + b)
 - igcirc A neuron computes an activation function followed by a linear function z=Wx+b
 - ⊘ Correct

Correct, we generally say that the output of a neuron is a = g(Wx + b) where g is the activation function (sigmoid, tanh, ReLU, ...).

2. Suppose that $\hat{y}=0.9$ and y=1. What is the value of the "Logistic Loss"? Choose the best option.

 $\bigcirc \ \mathcal{L}(\hat{y},y) = -\left(\hat{y} \, \log y + (1-\hat{y}) \, \log(1-y)\right)$

- O +∞
- 0.005
- 0.105

Yes. Since $\mathcal{L}(\hat{y},y) = -\left(y\,\log\hat{y} + (1-y)\,\log(1-\hat{y})\right)$, for the given values we get $\mathcal{L}(\hat{y},y) = -\left(1\,\log 0.9 + 0\,\log 0.1\right)$

3. Consider the Numpy array x:

x = np.array([[[1],[2]],[[3],[4]]])

What is the shape of x?

- (2, 2)
- O (4,)
- (1, 2, 2)
- (2,2,1)
- ⊘ Correct

Yes. This array has two rows and in each row it has 2 arrays of 1x1.

4. Consider the following random arrays a and b, and c:

 $a = np.random.randn(3,4) \, \# \, a.shape = (3,4)$

b = np.random.randn(1, 4) # b.shape = (1, 4)

c = a + b

What will be the shape of c?

- O c.shape = (1, 4)
- The computation cannot happen because it is not possible to broadcast more than one dimension.
- O c.shape = (3, 1)
- c.shape = (3, 4)
- **⊘** Correct

Yes. Broadcasting is used, so row b is copied 3 times so it can be summed to each row of a.

5.	Consider the two following random arrays a and b :	1/1 point
	a = np.random.randn(4,3) # a.shape = (4,3)	
	$b = np.random.randn(3,2) \sharp b.shape = (3,2)$	
	c = a * b	
	What will be the shape of c?	
	O c.shape = (4, 3)	
	The computation cannot happen because the sizes don't match. It's going to be "Error"!	
	O c.shape = (4,2)	
	O c.shape = (3, 3)	
6.	Suppose you have n_x input features per example. Recall that $X=[x^{(1)}x^{(2)}x^{(m)}]$. What is the dimension of X?	1/1 point
	\bigcirc $(m,1)$	
	\bigcirc $(1,m)$	
	$\bigcirc (m, n_x)$	
	$lacktriangledown(n_x,m)$	
	⊙ Correct	
7.	Consider the following array:	1/1 point
	a=np.array([[2,1],[1,3]])	, ,
	What is the result of $np.dot(a,a)$?	
	$\bigcirc \begin{pmatrix} 4 & 2 \\ 2 & 6 \end{pmatrix}$	
	The computation cannot happen because the sizes don't match. It's going to be an "Error"!	
	$ \begin{pmatrix} 4 & 1 \\ 1 & 9 \end{pmatrix} $	
	\bigcirc Correct $((2)(2) \pm (1)(1) + (2)(1) \pm (1)(2)$	
	Yes, recall that * indicates the element wise multiplication and that np.dot() is the matrix multiplication. Thus $\begin{pmatrix} (2)(2) + (1)(1) & (2)(1) + (1)(3) \\ (1)(2) + (3)(1) & (1)(1) + (3)(3) \end{pmatrix}$.	
		1/1 point
8.	Consider the following code snippet:	, ,
	a.shape=(3,4)	
	$b.shape=\left(4,1 ight)$	
	for i in range(3):	
	for j in range(4):	
	c[i][j] = a[i][j]*b[j]	
	How do you vectorize this?	
	C = np.dot(a,b)	

- c = a*b.T
- c = a.T*b
- O c=a*b

⊘ Correct

Yes. b.T gives a column vector with shape (1, 4). The result of c is equivalent to broadcasting a*b.T.

9. Consider the following code:

1/1 point

- a = np.random.randn(3, 3)
- b = np.random.randn(3,1)
- c = a * b

What will be c? (If you're not sure, feel free to run this in python to find out).

- ⑥ This will invoke broadcasting, so b is copied three times to become (3,3), and * is an element-wise product so c.shape will be (3,3)
- O It will lead to an error since you cannot use "*" to operate on these two matrices. You need to instead use np.dot(a,b)
- This will multiply a 3x3 matrix a with a 3x1 vector, thus resulting in a 3x1 vector. That is, c.shape = (3,1).
- O This will invoke broadcasting, so b is copied three times to become (3, 3), and * invokes a matrix multiplication operation of two 3x3 matrices so c.shape will be (3, 3)
- **⊘** Correct
- 10. Consider the following computation graph.

1/1 point

What is the output J?

$$\bigcup J = (c-1)*(b+a)$$

$$J = (a-1)*(b+c)$$

$$\bigcup J = (b-1)*(c+a)$$

$$\bigcirc \ J = a*b+b*c+a*c$$

$$\mathrm{Yes.}\,J = u + v - w = a*b + a*c - (b+c) = a*(b+c) - (b+c) = (a-1)*(b+c).$$