

By Phimonkae, Heng and Siddhant (Project Group 5)

ALY6080 Experiential Learning Project – Goldspring Consulting

Date: December 1st, 2022

Executive Summary

In the final phase of the XN project, we have focused our investigation on the development of optimization strategies to increase the savings incurred by ABInbev in their travel flight bookings.

Our strategy is based on our understandings of how TMCs both internal and external operate to minimize the risks involved in travel operations. To develop this strategy, we have based our empirical analysis on the estimations of savings that the client procurements should received based on their current savings margins. We use these predictions as a base line to identify pockets of sub-optimal purchasing which can be target for optimization.

Business Objectives

- Optimize worldwide procurement
 Track 1: Spend Analysis
- Discover opportunities and re-orient travel management
 Track 2: Savings Analysis
- Data-driven identification of risk
 Track 3: Savings estimation and predictions

Track 1: Expense Anomalies

Spend per segment vs Spend - International

Most countries have spend_per_segment less than \$1000.

USA, Canada, India, and Switzerland have spend_per_segment over 1000.

One of the causes for this variation is the volume of premium cabin bookings made in these markets.

Track 2: Savings Analysis – Domestic Opportunities

Similar sub-optimal markets exist in domestic subsets as well. Visible upon distribution splitting.

Track 3 - Procurement Data History

Market	Airline	Spend	Segments	Discount	Savings	Airport_1	Airport_2	Market_type	Market_Competition	predicted_savings	net_savings	market_status
BRU- JFK	Delta Air Lines	252241	38	0.15	37836	Belgium	United States	International	Highly Competitive	0	37836	general
GRU- JFK	American Air	193268	43	0.00	0	Brazil	United States	International	Competitive	3426	3426	sub_optimal
GRU- JFK	Delta Air Lines	167728	25	0.15	25159	Brazil	United States	International	Competitive	0	25159	general
GRU- JFK	Delta Air Lines	166527	28	0.10	16653	Brazil	United States	International	Competitive	0	16653	general
GRU- JFK	Delta Air Lines	143130	25	0.39	55821	Brazil	United States	International	Competitive	0	55821	general

Developed a new data asset – master_file_markets_data_v2.0 Bookings purchase data at market-airline-spend level.

Synthetic Variables –

Airports, Market Type, Market Competition, Predicted Savings

Variable of Interest (Dependent variable) – predicted_savings

Track 3 – Savings Estimations

Track 3 – Model Testing

	Savings	20	ypred
count	4427.000	count	4427.000
mean	149.910	mean	155.838
std	396.965	std	402.266
min	1.000	min	3.429
25%	13.000	25%	17.503
50%	33.000	50%	36.896
75%	96.000	75%	110.181
max	4944.000	max	4764.000

- Both the test distribution and predicted distributions are almost identical.
- Models exhibits the capability to have be in close range of actual observations.
- · Model has excellent error reductio for the current variance fit.

Track 3 – Analysis of Predicted Savings

Track 3 – Analysis of predicted savings (Macro)

Total Transactions: 20031 Total Sum: \$2,299,665

Average per purchase: \$114.8

Quick Facts on predicted_savings

Track 3 – Markets with zero current savings.

Many markets have not received any savings for purchases. But have significant spend. Table of markets with measures

Market =	Predicted Savings \Xi	Savings	Spend
BLR-GRU	43,524	0	390,520
GRU-JFK	38,316	0	569,434
BOG-MEX	34,467	0	316,597
BRU-GRU	34,395	0	264,726
EZE-GRU	34,217	0	294,327
BLR-BRU	31,891	0	253,276
GRU-MEX	21,864	0	202,558
BLR-JFK	18,637	0	142,752
JFK-JNB	17,434	0	264,951
GRU-SCL	17,281	0	146,824
BRU-JFK	16,772	0	240,057
EZE-JFK	16,357	0	137,794
MEX-SDQ	16,112	0	128,747
BRU-MEX	15,670	0	138,765
CGH-SDII	15.497	0	128.101

Top 5 markets with zero current savings account for 1.8 M USD in spend and approx. 180,000 in savings.

Table of markets with measures

Market =	Predicted Savings =	Savings	Spend
BLR-GRU	43,524	0	390,520
GRU-JFK	38,316	0	569,434
BOG-MEX	34,467	0	316,597
BRU-GRU	34,395	0	264,726
EZE-GRU	34,217	0	294,327

Track 3 – Markets with zero current savings.

Zero Savings Market Potential

Zero Savings Markets vs Others Purchase Level Metrics

In / Out of Market - Zero Savings	Predicted Savings	Savings	Spend
In	2,299,665	2,682,984	41,706,922
Out	0	363,145	3,609,517

Track 3 – Top markets by volume

Markets by volume - Predicted Savings

Markets by Volume Bi-variate Spend vs Predicted Savings

Track 3 – Optimization by Markets

Predicted saving by Market

Track 3: Airline by business volume

Airlines by Volume Bi-variate Spend vs Predicted Savings

Track 3: Optimization by Airline

1/4th sub-optimal purchases with top airlines are estimated to get at least \$300 in savings

Distribution of sub-optimal purchases acorss airlines and their predictived savings.

Track 3: Zero Savings Airlines

Certain Airlines have a significant volume of spend which is not covered.

Airline	Market Status	
Aegean Airli	sub_optimal	100.00%
Aer Lingus	sub_optimal	100.00%
Aero Calif	sub_optimal	100.00%
Aeroflot	sub_optimal	100.00%
Aeroleasing	sub_optimal	100.00%
Aerolineas A	sub_optimal	100.00%
Aeromexico	general	78.06%
	sub_optimal	21.94%
Aerorepublic	sub_optimal	100.00%
Air Alm	sub_optimal	100.00%
Air Alps Avi	sub_optimal	100.00%
Air Baltic C	sub_optimal	100.00%
Air Canada	general	58.63%
	sub_optimal	41.37%
Air China	general	14.94%
	sub_optimal	85.06%
Air Dolomiti	sub_optimal	100.00%
Air Enterpri	sub_optimal	100.00%
Air Europa	sub_optimal	100.00%
Air Fiji	sub_optimal	100.00%
Air France	general	36.14%
	sub_optimal	63.86%
Air Georgia	sub_optimal	100.00%

Certain Airlines have a significant volume of spend which is not covered.

Airline	Market Status	% of Total Spend along Market Status	Predicted Savings
Aeromexico	general	78.06%	0
	sub_optimal	21.94%	74,275
Air China	general	14.94%	0
	sub_optimal		22,40
Air France	general	36.14%	
	sub_optimal	63.86%	54,02

Future Research & Recommendations

Data

- Explore more variables that are better explainers of sub-optimal purchasing.
- Roll-up high cardinality data point into lesser categories.
- Join data points that record metrics on markets, airlines, value add. services, etc.

Analysis

- Explore additional market and purchase prioritization strategies.
- Build a simulation model that optimizes prioritization for max savings vs min deltas.
- Validate optimization model with real re-contracting observations to test.
- Deploy as a BI solution and conduct User Acceptance tests.

References

- 1. API Reference scikit learn. Retrieved on November 29th 2022 (https://scikit-learn.org/stable/modules/classes.html)
- 2. Hyper-parameter tuning the Random Forest by Towards Data Science. Retrieved on November 29th 2022 (https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74)
- 3. Regression Metrics for Machine Learning by Machine Learning Mastery. Retrieved on November 29th 2022 (https://machinelearningmastery.com/regression-metrics-for-machine-learning/)
- 4. Metrics scikit learn. Retrieved on November 29th 2022 (https://scikit-learn.org/stable/modules/classes.html#sklearn-metrics-metrics)
- 5. Linear Models scikit learn. Retrieved on November 29th 2022 (https://scikit-learn.org/stable/modules/classes.html#module-sklearn.linear model)
- 6. Model selection and evaluation scikit learn. Retrieved on November 29th 2022 (https://scikit-learn.org/stable/model selection.html)

Thank you!