CELL

Erlang-B

Thi-Mai-Trang Nguyen LIP6-UPMC

Problème de dimensionnement

L'un des problèmes importants de la commutation est de déterminer le nombre des ressources (telles que les jonctions) qu'il faut installer pour que la probabilité qu'il n'y en ait pas suffisamment soit négligeable

Notion de trafic

 Le trafic « a » d'une machine est la moyenne de la proportion du temps pendant laquelle elle est occupée

- Une machine peut être une ligne ou une jonction dans le contexte du réseau téléphonique
- Si une ligne est occupée 10% du temps, son trafic est de 0,1 Erlang

Remarque sur le trafic n°1

- Dans le cas d'une seule machine, son trafic exprimé en Erlang est aussi sa probabilité d'occupation
- Le trafic d'une machine ne peut pas être supérieur à 1 Erlang

Trafic d'un groupe de machines (1)

 Le trafic « A » d'un groupe de machines est la moyenne du temps total d'occupation de machines ramené à la période d'observation

$$A = \frac{\sum_{M_i} t_{M_i}}{T}$$

 Le trafic d'un groupe de L machines ne peut pas être supérieur à L Erlangs

Trafic d'un groupe de machines (2)

 Formule pratique pour calculer le trafic d'un groupe de machines

$$\sum_{M_i} t_{M_i} = n\tau$$

$$A = \frac{n\tau}{T}$$

- ullet est le temps moyenne de prise d'une machine
- n est le nombre total de prise de machines observées en moyenne pendant le temps T
- Supposer que les divers événements conduisant à des prises de machine soient indépendants

Remarque sur le trafic n°2

- Le trafic du groupe est la somme du trafic de chaque machine
- Si toutes les machines du groupe ont individuellement le même trafic a

$$A = L \times a$$

Exemple de calcul de trafic

- 10 000 usagers sont raccordés à un certain commutateur. Chaque usager a un trafic de 0,1 Erlangs. Les appels durent 3 minutes. Quel est le nombre d'appels écoulé par heure par ce commutateur?
- Le trafic total du commutateur

$$A = La = 10000 \times 0.1 = 1000$$
 [Erlangs]

Nous avons

$$A = \frac{n\tau}{T} \Rightarrow n = A\frac{T}{\tau}$$

■ Avec A = 1000 Erlangs, T = 60 minutes, t = 3 minutes

$$n = 1000 \frac{60}{3} = 20000$$
 [appels en une heure]

Loi B d'Erlang

 Quand le nombre de client est grand, très supérieur au nombre de serveurs, la probabilité de perte d'appels est égale à

$$B = E_{1,N}(A) = \frac{\frac{A^{N}}{N!}}{\sum_{i=0}^{N} \frac{A^{i}}{i!}}$$

N: le nombre de serveurs

A: le trafic généré par l'ensemble des clients

Exemple pratique (1)

■ Supposons que nous ayons entre deux centraux téléphoniques un trafic de A = 100 Erlangs. Quel nombre N de circuits devons-nous installer entre ces deux centraux pour que la probabilité de perte d'appels P(A) soit inférieure à ϵ = 10⁻⁴ ?

Exemple pratique (2)

- Nous calculons E1,N(A) pour des valeurs croissantes de N jusqu'à ce que l'on trouve un nombre N tel que E1,N(A) < €</p>
- Résultat: N = 137 circuits

Table d'Erlang-B (1)

Offered traffic flow A in erlang

n	Loss probability (E)										n
	0.00001	0.00005	0.0001	0.0005	0.001	0.002	0.003	0.004	0.005	0.006	
1	.00001	.00005	.00010	.00050	.00100	.00200	.00301	.00402	.00503	.00604	1
2	.00448	.01005	.01425	.03213	.04576	.06534	.08064	.09373	.10540	.11608	2
3	.03980	.06849	.08683	.15170	.19384	.24872	.28851	.32099	.34900	.37395	3
4	.12855	.19554	.23471	.36236	.43927	.53503	.60209	.65568	.70120	.74124	4
5	.27584	.38851	.45195	.64857	.76212	.89986	.99446	1.0692	1.1320	1.1870	5
6	.47596	.63923	.72826	.99567	1.1459	1.3252	1.4468	1.5421	1.6218	1.6912	6
7	.72378	.93919	1.0541	1.3922	1.5786	1.7984	1.9463	2.0614	2.1575	2.2408	7
8	1.0133	1.2816	1.4219	1.8298	2.0513	2.3106	2.4837	2.6181	2.7299	2.8266	8
9	1.3391	1.6595	1.8256	2.3016	2.5575	2.8549	3.0526	3.2057	3.3326	3.4422	9
10	1.6970	2.0689	2.2601	2.8028	3.0920	3.4265	3.6480	3.8190	3.9607	4.0829	10
11	2.0849	2.5059	2.7216	3.3294	3.6511	4.0215	4.2661	4.4545	4.6104	4.7447	11
12	2.4958	2.9671	3.2072	3.8781	4.2314	4.6368	4.9038	5.1092	5.2789	5.4250	12
13	2.9294	3.4500	3.7136	4.4465	4.8306	5.2700	5.5588	5.7807	5.9638	6.1214	13
14	3.3834	3.9523	4.2388	5.0324	5.4464	5.9190	6.2291	6.4670	6.6632	6.8320	14

http://www.itu.int/itudoc/itu-d/dept/psp/ssb/planitu/plandoc/erlangt.pdf

Table d'Erlang-B (2)

n	Loss probability (E)										n
	0.00001	0.00005	0.0001	0.0005	0.001	0.002	0.003	0.004	0.005	0.006	
151	106.84	110.99	112.97	118.22	120.85	123.78	125.69	127.14	128.33	129.36	151
150	105.99	110.12	112.10	117.33	119.94	122.86	124.76	126.21	127.40	128.42	150
149	105.15	109.26	111.23	116.43	119.04	121.95	123.83	125.27	126.46	127.48	149
148	104.31	108.40	110.36	115.54	118.13	121.03	122.91	124.34	125.52		148
147	103.46	107.54	109.49	114.65	117.23	120.11	121.98	123.41	124.58		
146	102.62	106.68	108.62	113.75	116.32	119.19	121.05	122.47	123.64	I	146
145	101.78	105.82	107.75	112.86	115.42	118.28	120.13	121.54	122.71		145
144	100.94	104.96	106.88	111.97	114.51	117.36	119.20	120.61	121.77	122.76	- 1
143	100.10	104.10	106.02	111.08	113.61	116.44	118.28	119.68	120.83	I	143
142	99.260	103.24	105.15	110.19	112.71	115.53	117.35	118.75	119.90	120.88	- 1
141	98.421	102.38	104.28	109.30	111.81	114.61	116.43	117.82	118.96	119.94	
140	97.582	101.52	103.41	108.41	110.90	113.70	115.51	116.89	118.02		140
139	96.744	100.67	102.55	107.52	110.00	112.78	114.58	115.96	117.09	I	139
138	95.907	99.810	101.68	106.63	109.10	111.87	113.66	115.03	116.15	I	
137	95.070	98.954	100.82	105.74	108.20	110.95	112.74	114.10	115.22	116.18	
136	94.234	98.099	99.953	104.85	107.30	110.04	111.82	113.17	114.28		136
135	93.399	97.244	99.090	103.96	106.40	109.13	110.89	112.24	113.35		
134	92.564	96.390	98.226	103.08	105.50	108.22	109.97	111.31	112.42	113.36	
133	91.730	95.537	97.364	102.19	104.60	107.30	109.05	110.39	111.48	I	133
132	90.896	94.684	96.502	100.42	102.81	105.48	107.21	109.46	110.55	I	132
131	90.064	93.831	95.640	100.42	102.81	104.57	100.29	107.00	109.62	I	131
129 130	88.400 89.232	92.129 92.980	93.919 94.779	98.648 99.533	101.01 101.91	103.66 104.57	105.37 106.29	106.68 107.60	107.75 108.68		129 130
128	87.370	91.278	93.039	97.704	100.12	102.75	104.43	105.75	100.82	107.74	
1.1.78	87.370	VI / / X	V3 U3V	97.704	100.17	107.73	104.43	100 70	TUD X /	107 741	1.72

Table d'Erlang-B (3)

Erlang B tables generator

http://personal.telefonica.terra.es/web/vr/erlang/eng/mtaula.htm

Approximation pour inverser la loi d'Erlang

• Si E1,N(A) = ε = 10-k, alors

$$N \cong A + k\sqrt{A}$$

- Exemple
 - = A = 100
 - k = 4

$$N = 100 + 4\sqrt{100} = 140$$
 (circuits)

Exemple sur GSM (1)

Soit une zone couvrant une population de 10 000 abonnés ayant chacun un trafic de 25 mE. 24 fréquences sont disponibles et alloués aux cellules selon un motif de réutilisation avec K=12. Dans chaque cellule, 2 canaux physiques sont utilisés pour la signalisation et le contrôle commun. Le taux de blocage admissible a été fixé à 2%. Déterminer le nombre de cellules pour couvrir cette zone

Exemple sur GSM (2)

■ Motif K = 12

Le nombre de fréquences par cellule

$$24/12 = 2$$

Exemple sur GSM (3)

Le nombre de canaux de trafic par cellule

$$(2*8) - 2 = 14$$

- Une cellule peut supporter au maximum 14 communications simultanées
- Avec le taux de blocage de 2%, le trafic qui peut être écoulé par une cellule est de 8,2 Erlang
- Chaque cellule peut desservir

 Le nombre de cellules nécessaires pour la zone considérée sera donc

$$10\ 000/328 = 30\ cellules$$

Exemple sur GSM (4)

n = 1 - 51

Offered traffic flow A in erlang

n	Loss probability (E)										n
	0.007	0.008	0.009	0.01	0.02	0.03	0.05	0.1	0.2	0.4	
1	.00705	.00806	.00908	.01010	.02041	.03093	.05263	.11111	.25000	.66667	1
2	.12600	.13532	.14416	.15259	.22347	.28155	.38132	.59543	1.0000	2.0000	2
3	.39664	.41757	.43711	.45549	.60221	.71513	.89940	1.2708	1.9299	3.4798	3
4	.77729	.81029	.84085	.86942	1.0923	1.2589	1.5246	2.0454	2.9452	5.0210	4
5	1.2362	1.2810	1.3223	1.3608	1.6571	1.8752	2.2185	2.8811	4.0104	6.5955	5
6	1.7531	1.8093	1.8610	1.9090	2.2759	2.5431	2.9603	3.7584	5.1086	8.1907	6
7	2.3149	2.3820	2.4437	2.5009	2.9354	3.2497	3.7378	4.6662	6.2302	9.7998	7
8	2.9125	2.9902	3.0615	3.1276	3.6271	3.9865	4.5430	5.5971	7.3692	11.419	8
9	3.5395	3.6274	3.7080	3.7825	4.3447	4.7479	5.3702	6.5464	8.5217	13.045	9
10	4.1911	4.2889	4.3784	4.4612	5.0840	5.5294	6.2157	7.5106	9.6850	14.677	10
11	4.8637	4.9709	5.0691	5.1599	5.8415	6.3280	7.0764	8.4871	10.857	16.314	11
12	5.5543	5.6708	5.7774	5.8760	6.6147	7.1410	7.9501	9.4740	12.036	17.954	12
13	6.2607	6.3863	6.5011	6.6072	7.4015	7.9667	8.8349	10.470	13.222	19.598	13
14	6.9811	7.1155	7.2382	7.3517	8.2003	8.8035	9.7295	11.473	14.413	21.243	14
15	7.7139	7.8568	7.9874	8.1080	9.0096	9.6500	10.633	12.484	15.608	22.891	15
16	8.4579	8.6092	8.7474	8.8750	9.8284	10.505	11.544	13.500	16.807	24.541	16
17	9.2119	9.3714	9.5171	9.6516	10.656	11.368	12.461	14.522	18.010	26.192	17
18	9.9751	10.143	10.296	10.437	11.491	12.238	13.385	15.548	19.216	27.844	18