

COPY	0F as
HARD COPY	\$. 5.00
MICROFICHE	\$. 1, 25
	185-p

TABLES OF CAPACITOR DISCHARGE IN TRANSIENT GAMMA RADIATION ENVIRONMENTS

DeWitt Landis

Environmental Effects
Aerospace Sciences Laboratory
Lockheed Missiles and Space Company

March 1, 1965

This work was performed under The Lockheed Independent Research Program

AD 617918

CLEARINGHOUSE FOR FEDERAL SCIENTIFIC AND TECHNICAL INFORMATION, CFSTI INPUT SECTION 410.11

LIMITATIONS IN REPRODUCTION QUALITY OF TECHNICAL ABSTRACT BULLETIN DOCUMENTS, DEFENSE DOCUMENTATION CENTER (DDC)

	1.		AVAILABLE ONLY FOR REFERENCE USE AT DDC FIELD SERVICES. COPY IS NOT AVAILABLE FOR PUBLIC SALE.
⋈	2.		AVAILABLE COPY WILL NOT PERMIT FULLY LEGIBLE REPRODUCTION. REPRODUCTION WILL BE MADE IF REQUESTED BY USERS OF DDC.
Ø		A.	COPY IS AVAILABLE FOR PUBLIC SALE.
		8.	COPY IS NOT AVAILABLE FOR PUBLIC SALE.
	3.		LIMITED NUMBER OF COPIES CONTAINING COLOR OTHER THAN BLACK AND WHITE ARE AVAILABLE UNTIL STOCK IS EXHAUSTED. REPRODUCTIONS WILL BE MADE IN BLACK AND WHITE ONLY.

TSL-121-2/65

DATE PROCESSED: 2/28/65
PROCESSOR: Ca Suttan

TABLE OF CONTENTS

		Page
1.0	INTRODUCTION	1
2.0	ORGANIZATION OF TABLES	1
	2.1 Capacitor Tables	1
	2.2 Resistance Simulation Tables	6
3.0	USE OF TABLES	6
	3.1 Capacitor Tables	6 .
	3.2 Resistance Simulation Table	8
4.0	ACCURACY OF TABLES	12
5.0	MATHEMATICAL DERIVATION	13

APPENDIX: THE COMPUTER PROGRAM

Ceramic Capacitor Tables
Tantalum Capacitor Tables
Mica Capacitor Tables
Mylar Capacitor Tables
Paper Capacitor Tables
Oil-Filled Paper Capacitor Tables
Resistance Simulation Tables

1.0 INTRODUCTION

The tables in this report give the response of various types of capacitors to various transient germa radiation environments. The tables were generated on the Burroughs B5500 digital computer at Stanford University. The parameters used to characterise the capacitors were obtained from the TREE Handbook (Battelle Memorial Institute, DASA 1420, Feb., 1964) and "Analytical Methods for Predicting Transient Nuclear Radiation Effects on Electronics Circuits and Devices," (Boeing Corp., RTD TDR-63-3007, July 1963). The capacitor parameters in these reports represent only the average response of many similar capacitors to many different radiation environments. Unit-to-unit and manufacturer-to-manufacturer variations in the capacitors make it impossible to predict the effects of radiation exactly, so these tables should be considered as giving only a "typical" response of the particular capacitor to the given radiation environment. Assuming, however, that the capacitor parameters from the above reports are exact, then it is believed that the numbers given in the tables, with a few exceptions discussed later, are accurate to three significant figures.

Additional tables are given at the end of this report. These tables give the voltage left across a capacitor at various times after t=0 for a fixed resistance shorted across the capacitor at time t=0. The purpose of these tables is to help the design engineer simulate the effects of radiation. The organization and use of these tables are described in later sections of this report.

2.0 ORGANIZATION OF TABLES

2.1 Capacitor Tables

The one hundred forty-four capacitor tables in this report describe the response of six different types of capacitors to twenty-four different radiation environments. The column headings in each table give the particular external circuit time constant for which the column was calculated, and the row labels at the left in each table give the time after the initiation of the radiation event for which the row was calculated. The numbers given in the tables are the voltages left on the capacitor under the conditions described in the row, column, and table headings, assuming the initial voltage to be one volt. Thus the organization of the capacitor tables may be depicted schematically as in Figure 1.

(Type of capacitor)

(Capacitor parameters)

(Radiation pulse)

(Column headings: Recharging circuit time constants)

in (infinity)

The capacitor type in the table heading The numbers here are for:

in the radiation pulse described in the beading using the parameters listed in the heading

in a circuit with the time constant given by the column headings,

at a time after the start of radiation given by the row labels,

for an assumed initial capacitor voltage of 1 volt.

Figure 1: Organization of the capacitor tables.

times after Now labels:

radiation start of Tules)

10 Sec.

The radiation environments used are rather idealized versions of typical flash x-ray, nuclear weapon, pulsed reactor, or (with reservations about the effects of particle charge) pulsed accelerator transient radiation environments. The general form of the assumed environment is a short, high intensity rectangular radiation pulse followed by lower level steady radiation (see Figure 2). It is believed that some sort of approximation to the environments listed above can be found either in the tables or by interpolating between tables. The twenty-four radiation environments are found by taking each of the initial rates of 10¹⁰, 10¹¹, 10¹², and 10¹³ Rads/sec and for each initial rate using each of the final rates of 0, 10³, 10⁴, 10⁵, 10⁶, and 10⁷ Rads/sec. The 4 initial rates together with the 6 final rates give the 24 radiation environments for which the capacitor tables are calculated.

The initial pulse is assumed to last for 25 nanoseconds. This duration was chosen because:

- (1) it is convenient for numerical evaluations of the capacitor discharge equations, and
- (2) it approximately corresponds to the pulse length expected from the Lockheed Missiles and Space Company 2 Mev flash x-ray machine scheduled to be operational in April 1965.

Normalization of the capacitor tables to different initial pulse durations is discussed later.

The six types of capacitors chosen for inclusion in this report are those on which adequate information is available in the TREE Handbook. They are, in the order in which they appear in this report:

Ceremic capacitors (barium titanate)
Tantalum capacitors (solid)
Mica capacitors
Mylar capacitors
Paper capacitors (Vitamin Q)
Oil-Filled Paper capacitors (Gudeman)

It is hoped that this report will be kept updated as information on other types of capacitors becomes available in the literature. In addition, present plans call for characterization of certain types of capacitors, particularly glass and wet tantalum, on the IMSC 2 New flash x-ray facility mentioned above.

In almost all practical applications of capacitors, the capacitor will be receiving charge from an outside circuit while the radiation field is discharging it. For this reason, the voltage left on the capacitor is calculated in these tables for a number of time constants of the external recharging circuit. These time constants are infinity (open recharging circuit), $R_0C = 10$ sec, 1 sec, 100 ms, 10 ms, 1 ms, 100 us, 10 us, and 1 us. These numbers form the column headings in the capacitor tables. In order to keep the tables to a reasonable, or indeed, finite, size, it was necessary to make the following assumptions.

- (1) Figure 3 shows the equivalent circuit of the capacitor. The switch is assumed to close at time t = 0.
- (2) The battery V_o and the resistance R_o represent the Thevenin equivalent circuit of the capacitor driving circuit during the radiation pulse, and do not change during the pulse; this circuit includes any inherent capacitor leakage resistance.
- (3) The battery voltage V_o is the same before and during the radiation pulse, and the capacitor is charged to V_o before the pulse starts.
- (4) The resistance R_o may be different before and during the pulse, but it must be possible to reasonably approximate it by a constant resistance during the pulse. The value of R_o during the pulse must be used to calculate the time constant.
- (5) Permanent radiation damage is neglected.

It is certainly true that most circuits will not exactly satisfy these assumptions during the pulse, but it is also true that for most cases these assumptions are quite reasonable.

Figure 2: Rediction pulse assumed in calculation of capacitor tables.

Figure 3: Capacitor equivalent circuit. The switch closes at the start of the radiation pulse.

The row labels in the capacitor tables are the times after the initiation of the radiation event for which the numbers in the row are calculated. The first row is at time t = 0 for which the capacitor voltage is defined to be 1 volt; the second row is at 25 ns, the end of the first pulse, and the third through twenty-fourth rows are times during the second radiation rate, going from 1 us to 10 sec in approximately logarithmic increments.

2.2 Resistance Simulation Tables

The last nine tables are for the convenience of the designer in simulating the effects of radiation.

3.0 USE OF TABLES

3.1 Capacitor Tables

Consider the following problem: Find the best capacitor for which data is available for use in a radiation environment consisting of an initial pulse of 10¹² Rads/sec for 25 nsec followed by a constant rate of 10⁵ Rads/sec. The time constant of the external charging circuitry is 10 msec and the circuit must operate 100 msec after the start of the radiation transient.

To solve this problem it is necessary to look up one data point for each type of capacitor. First look in that table for ceramic capacitors which is calculated for an initial pulse of 10¹² and a constant rate of 10⁵ Rads/sec. Looking at the intersection of the 10 msec time constant column with the 100 msec time row, we find that 99.2% of the initial capacitor voltage remains at 100 ms. Repeating this process for the other capacitors we get the following table:

Capacitor type	Final voltage/initial voltage
Ceramic	0.992
Tantalum	0.932
Mica	0.997
Mylar	0.852
Paper	0.969
Oil-paper	0.826

Thus we would not want to use oil-filled paper or mylar in this application. Ceramic, mica, or possibly paper would be the indicated dielectric for this application, depending on the capacitance value needed and other circuit and permanent damage considerations.

As a second example consider the problem of interpolation. We might wish to interpolate between any combination of initial rate, final rate, time constant, or time. The two examples here will illustrate one possible technique of interpolation for one variable and for two variables. The technique illustrated may be used for any variable or combination of variables, but the amount of work involved goes up exponentially with the number of variables.

As a first example, suppose we wish to find the voltage on a ceramic capacitor if the initial radiation rate is 10^{12} Rads/sec for 25 nsec., the final rate is 10^5 Rads/sec, the time of interest is 100 msec after the start of the radiation, and the circuit time constant is 30 msec. There is a table for ceramic capacitors in this radiation pulse, and the voltages at 100 msec are tabulated. However the time constant of 30 msec is not included in this table. Thus it is necessary to interpolate to get the voltage for a 30 ms time constant. At 100 ms after the start of radiation the voltages left on the capacitor for various time constants are:

Time constant	voltage
1 msec	0.993
10 msec	0.932
100 msec	0.505
1 sec	0.141

These numbers are plotted (on a semilog scale) in Figure 4. If a smooth curve is drawn through the points, we find that the voltage left at 100 msec for a circuit time constant of 30 msec is about 0.75 of the initial voltage.

To illustrate the graphical interpolation for two variables consider the above problem, except make the final rate 5×10^5 Rads/sec. Now we must interpolate for both the time constant and the final radiation rate. One way of doing this is to repeat the previous interpolation for several final rates and plot the voltage vs final rate for a time constant of 30 ms. The four curves in Figure 5 show the interpolation

for the time constant of 30 msec for final rates of 10^4 , 10^5 , 10^6 , and 10^7 Rads/sec. Figure 6 then plots the four voltages for a 30 msec time constant vs the final rate. From this figure we see that the voltage left is about 0.52 of the original voltage.

Obviously this same technique can be used for any number of variables, and the order in which the interpolations are made is not too critical. The number of points used is strictly a matter of judgement. I used four here simply to illustrate that two might not be enough. Of course, there is no guarantee of accuracy in these interpolations, but in view of the expected capacitor-to-capacitor response variations, the accuracy should be quite sufficient for engineering use.

Another problem which might arise in the use of these tables is how do we calculate the voltage left if the initial pulse has a different length than the 25 nsec used for the initial pulse used in these tables? The answer is, very simply, that if the initial pulse length is short compared to all capacitor and circuit time constants, then the voltage at the end of the pulse is proportional to the duration of the pulse. A good engineering approximation to the voltage after any length of time can be made by plotting the case of interest from the table with the initial pulse length equal to 25 ns and then plotting initial drop for the other initial pulse length and making the voltage left at longer times assymtotic to the first plot. An easy interpolation for the initial pulse magnitude may be found from the fact that the voltage drop from the first pulse is proportional to the delta'th power of the initial radiation rate.

3.2 Resistance Simulation Tables

The purpose of these tables is to help the designer simulate the effects of the radiation pulse in his circuit without actually irradiating the circuit. Consider the switch in Figure 3 to be a relay and R_s to be a fixed resistor. Then we might ask the question: for a particular capacitor type, a particular radiation rate, a particular circuit time constant, and a particular time at which we are interested in the performance of the circuit, what value of resistance should we use in the above simulation to give the same capacitor voltage at the time of interest that the radiation pulse gives? The resistance simulation tables are designed to help answer this question. Each table is calculated for a different time

O WELLBLOOM TO TO THE TOTAL TO

REPRESENTATION OF STATE OF STA

after the start of the radiation pulse. Across the tops of the tables are various circuit time constants, corresponding to various R₀'s in Figure 3. The row headings are the time constants corresponding to R₈ in Figure 3. The use of the tables is: Mirst, look up the capacitor voltage left at the time of interest in the capacitor tables. Then go to the resistance table for the time of interest and find the column corresponding to the circuit series time constant. Follow this column down until the voltage shown is about equal to the voltage found from the capacitor tables. The time constant at the left end of the row in which this number is found gives a value of resistance to use in a circuit simulation.

As an example of this technique consider that we wish to simulate the discharge of a mylar capacitor in a circuit with a series time constant of 10 msec. The radiation environment is an initial rate of 10^{12} Rads/sec and the final rate is 10^5 Rads/sec. The time of interest is 100 msec. From the appropriate mylar capacitor table we find that the voltage left under these conditions is 0.852 of the initial voltage. Going to the resistance table calculated for 100 ms and following the 10 ms time constant column down, we find that an equivalent fixed resistance for use in a simulation circuit corresponding to Figure 3 would be one that gave a time constant of between 1 and 10 ms and closer to 10 ms. If the capacitor were 1 ufd, then the equivalent resistance would be between 1000 and 10,000 ohms, and closer to 10,000 ohms.

4.0 ACCURACY OF TABLES

The resistance simulation tables are exact to the number of significant figures given. It is believed that most of the numbers in the capacitance tables are accurate to three significant figures assuming absolute parameter accuracy. There are some erroneous points in these tables however. These errors arise because the numerical integration used in the computer program may run into inaccuracies under certain conditions. The integration routine used was a 201 point Simpson's rule procedure. There were no iterative or checking loops since experimentation showed that 200 points were enough to make most points accurate and checking would add unconscionably to the computer time. Errors in the table are fairly

obvious. They may arise whenever 1/200 of the time at which the number is calculated is on the same order of magnitude as, or greater than some circuit or capacitor time constant, but the capacitor has not yet reached a steady state. Those numbers satisfying the above conditions which are in error may generally be recognized because the rate of change of voltage in the table is faster than seems physically reasonable. Of course, variations in capacitors will give larger errors than any in the tables. Also, most of the parameters were measured at rates much lower than the initial rates used here. Extrapolation of data to the higher rates may also result in errors.

5.0 MATHEMATICAL DERIVATION

Consider the circuit in Figure 3. Assume that at time t=0 the switch is closed. Then, from Kirchoff's current law:

$$\mathbf{i}_{\mathbf{0}} = \mathbf{i}_{\mathbf{g}} + \mathbf{i}_{\mathbf{g}} . \tag{1}$$

By the definition of a capacitor:

$$i_c = c \frac{d V_e}{dt} , \qquad (2)$$

and, from Ohm's law:

$$\mathbf{1_g} = \frac{\mathbf{V_c}}{\mathbf{R_g}} , \tag{3}$$

$$i_o = \frac{v_o - v_c}{R_o} . \tag{4}$$

Thus:

$$\frac{\mathbf{v_o} - \mathbf{v_c}}{\mathbf{R_o}} = \frac{\mathbf{v_c}}{\mathbf{R_e}} + \mathbf{c} \frac{\mathbf{d} \mathbf{v_c}}{\mathbf{dt}}.$$
 (5)

If we set:

$$CR_0 = \tau_0$$
, (6a)

$$CR_a = \tau_a$$
, (6b)

$$\frac{\mathbf{v}_{\mathbf{c}}}{\mathbf{v}_{\mathbf{c}}} = \mathbf{x} , \qquad (6c)$$

then equation 5 becomes:

$$\frac{dx}{dt} + x \left(\frac{1}{\tau_o} + \frac{1}{\tau_g}\right) = \frac{1}{\tau_o} . \tag{7}$$

Equation 7 is the basic differential equation which must be solved to get the transient response of the capacitor circuit. Assumptions listed in Section 2.1 will be used. This means that any time variation in Equation 7 must be in the $\tau_{\rm a}$ term.

From the TREE Handbook, T is a function of time and is given by:

$$\frac{1}{\tau_{e}} = f(t) = K_{p} \dot{\gamma}^{\Delta}(t) + K_{dl} \int_{-\infty}^{t} \exp\left[\frac{t' - t}{\tau_{dl}}\right] \dot{\gamma}^{\Delta}(t') dt'$$

$$+ \kappa_{d2} \int_{0}^{t} exp \left[\frac{t' - t}{\tau_{d2}} \right] \dot{\gamma} \Delta(t') dt' , \qquad (8)$$

where K_p , Δ , K_{dl} , τ_{dl} , K_{d2} , and τ_{d2} are parameters of the material used in the capacitor dielectric, and $\dot{\gamma}(x)$ is the radiation rate in Rads/sec at time x.

Equation 7 may be written to show its time dependence as:

$$\frac{dx}{dt} + x \left[\frac{1}{\tau_0} + f(t) \right] = \frac{1}{\tau_0}. \tag{9}$$

This is a linear, first-order differential equation whose solution may be written:

$$x(t) = \left[0 + \frac{1}{\tau_0} \int_0^t \exp\left(\int \left[\frac{1}{\tau_0} + f(t)\right] dt\right)\right] x$$

$$\exp\left(-\int \left[\frac{1}{\tau_0} + f(t)\right] dt\right), \qquad (10)$$

where G is an abbitrary constant selected to make $x = x_0$ when t = 0; i.e. if we set:

$$\mathbf{F}(t) = \exp\left(\int \left[\frac{1}{\tau_0} + f(t)\right] dt\right) , \qquad (11)$$

then, at time t:

Equations 8 and 11 may be solved to get F(t) in closed form. Two solutions are necessary, one for times during the initial pulse and the other for times during the final pulse. These solutions are incorporated in the computer program and are used to numerically integrate Equation 12, which has no closed form solution.

Equation 7 may be solved in closed form if τ_s is constant. This solution is, for x = 1 at t = 0:

$$x = \frac{\frac{1}{\tau_o} + \frac{1}{\tau_g} \exp\left[-\left(\frac{1}{\tau_o} + \frac{1}{\tau_g}\right)t\right]}{\frac{1}{\tau_o} + \frac{1}{\tau_g}}$$
(13)

The resistance simulation tables were calculated by substituting various values of τ_0 , τ_s , and t in Equation 13.

APPENDIX: THE COMPUTER PROGRAM

The computer program used to calculate the capacitor tables was written in the version of ALGOL used by the Burroughs B5500 computer. A listing of the program is given in Figure Al, and a general flow chart is given in Figure A2. A description of the programming language may be found in Burroughs Corporation Report \$5000-21012, "Extended ALGOL Reference Manual for the Burroughs B5000."

There are a few points which should be made for the benefit of anyons who wishes to rewrite this program for another machine.

- 1. A lot of computer time can be saved by minimizing the number of exponentiations required in the calculations. One way to help attain this goal is to make use of the fact that $e^{nx} = (e^{x})^{n}$ as is done in several places in this program.
- 2. If integration or differential equation solving techniques are used which adjust their step lengths until the errors are sufficiently small, then each table would probably require hours of computer time. This is because the step length will have to be less than the shortest time constant in the problem. The technique used here is to notice from Equations 12 and 8 that x approaches a constant at long times, to replace divergent values with this constant, and to accept the few errors that occur. Computer time for one table was about 20 sec. On the faster machines, say like the IBM 7094, it is estimated that one table would take about 10 sec., exclusive of I/O time.
- 3. Care should be used in factoring terms like

into

as it is easy to run into situations such as

in these calculations, giving magnitudes which no computer can handle.

```
BEGIN COMMENT
               TRANSIENT RADIATION ON CAPACITORS PROGRAMA
   INTEGER N, II, JJ, KKJ
   COMMENT IN IS NUMBER OF INTERVALS FOR SIMPSONS RULE AND PUST BE EVEN
    II IS THE NUMBER OF CAPACITOR TYPES JJ IS THE NUMBER OF INITIAL RAT
   ES KK IS THE NUMBER OF FINAL RATES;
   READ(No IIo JJo KK);
   BEGIN REAL GGJ
      ARRAY ZA, 20(0 : 23);
      REAL MA, WB, WTJ
      ARRAY 222[0 : 8];
      ARRAY RILM, TIMEO : 23], OUTP, XO, TAURECCO : 8], INGR, EA, E8,
      TT(O : N), DLA, KPA, KAA, TAA, KBA, TBA(O : 11), INRA, TIMRA(O
      I JJ3, FINRACO I KKJJ
      ALPHA ARRAY ALLPEO : 23), ALFYEO : 11, 0 : 4), ALFRAEO : JJ);
      BOOLEAN BOLA, BOLB;
      INTEGER I, J, K, L, LL, LLLI
      REAL KP, DEL, KA, TA, KB, TB, SA, SR, A, B, C, D, AA, BB, CC,
      AAA, 888, CCC, OA, O8, XT, VA, V8)
```

1 /

```
FORMAT
 FOA(X19, "THIS TABLE IS THE CALCULATED TRANSIENT MADIATION RESPONSE"//
 X32, "OF A ",546//
 *28, "THE CAPACITOR PARAMETERS USED ARE: "/
 X21, "KP=", E11.4," KD1=", E11.4," KD2=", E11.4/
 X10,"DELTA=",E11.4," TD1=",E11.4," TD2=",E11.4//
X14,, "THE RADIATION PULSE IS", E11.4, " RADS/SEC FOR", E11.4, " SEC"/
 *20, "FOLLOWED BY A CONSTANT RATE OF", E11.4, " RADS/SEC"//
X15, "TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT." /),
FOR(X14, "THE VALUES GIVEN ARE THE MATIOS OF THE CAPACITOR VOLTAGE AT TH
E#/
 *22, TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE" /),
 FOC(X22, "TAU (TIME CONSTANT)"/
X11, "INF", X5, "10 SEC", X4, "1 SEC", X2, "100 MS", X4, "10 MS", X5,
"1 M8",x3,"100 US",x4,"10 US",x5,"1 US"/"TIME"),
 FOO(A6, x3, 9(F6.4, x3)))
```

```
FILL RIIN(+) WITH 0, 0, 0-6, 20-6, 50-6, 0-5, 20-5, 50-5, 0-4,
20-4, 50-4, 0-3, 20-3, 50-3, 0-2, 20-2, 50-2, 0-1, 20-1, .5, 1,
2, 5, 101
FILL ALLP(+) WITH " O ", "XXXXXX", " 1 US", " 2 US",
   5 US", " 10 US", " 20 US", " 50 US", "100 US", "200 US",
"500 US", " 1 MS", " 2 MS", " 5 MS", " 10 MS", " 20 MS",
 50 MS", "100 MS", "200 MS", "500 MS", "
                                         15 ", "
   5 5 ", " 10 5 ")
FILL TAURECE+) WITH 0, ,1, 1, 10, 100, 1000, P4, P5, P6;
EA(0) + EB(0) + 1.0
11(0) + 0)
ZA[0] + ZB[0] + 1.0]
READ(FOR I + 1 STEP 1 UNTIL II NO FOR J + 0 STEP 1 UNTIL 4 CO
ALFY[], J], DLACI], KPACI], KAACI], TAACI], KBACI], TBACI]))
READ(FOR I + 1 STEP 1 UNTIL JJ DOCINRACIJ, TIMRACIJ, ALFRACIJI)
READ(FOR I + 1 STEP 1 UNTIL KK DO FINRA(1))
FOR L + 1 STEP 1 UNTIL 11 DO
```

DEGIN KP + KPA(L))
DEL + DLA(L))

```
KAALLIJ
   •
    KBALLJJ
KB
TA + TAACLIS
TO + TOALLIJ
BOLA + KA = OJ
BOLB + KB = OI
SA + KA × TAJ
SO + KB × TOJ
FOR LL + 1 STEP 1 UNTIL JJ DO
DEGIN TIM(1) + RTIM(1) + TIMRACLL);
   ALLP(1) + ALFRA(LL))
   ZA[1] + IF BOLA THEN 1.0 ELSE EXP(- TIM(1) / TA);
   20(1) + IF BOLD THEN 1.0 ELSE EXP(- TIM(1) / TO);
   FOR I + 2 STEP 1 UNTIL 23 DO
   DEGIN TIMEIS + RTIMEIS - TIME(1);
      ZACIJ + IF BOLA THEN 1.0 ELSE EXP(- TINCI) / TA);
      20(1) + 1F BOLB THEN 1.0 ELSE EXP(- TIM(1) / TO))
   ENDJ
   DA + INRACLL) + DELJ
   0 + 88 + SA × TA × OAJ
    + CC + SB × TB × OAS
   A + AA + OA \times (KP + SA + SB);
   FOR LLL . 1 STEP 1 UNTIL KK DO
   BEGIN OD + FINRACLLL] + DEL;
      AAA + OB ×(KP + SA + SB);
      888 + IF BOLA THEN O ELSE SA × TA × (08
      - TIM(1) / TA)));
      CCC + IF BOLD THEN O ELSE SO = TO = COD = OA = C1 = EXPC
      - TIM(1) / TB)));
      MRITE(FOA, FOR I + O STEP 1 UNTIL 4 DO ALFY(L, I), KP,
      KA, KB, DEL, TA, TB, INRACLLI, TIMPACLLI, FINRACLLI);
      WRITE(FOB);
      WRITE(FOC)
      WRITE(FOD, ALLP(O), 1, 1, 1, 1, 1, 1, 1, 1, 1)
      A + AAJ
      8 + 881
      C + CCJ
      10 + [0]222
      FOR I + 1 STEP 1 UNTIL 8 DO ZZZ(1) + TAURECCI) /(
      TAUREC(1) + AAA)
      FOR I + 0 STEP 1 UNTIL 8 DO XO(I) + OUTP(I) + 1.0)
      FOR I + 1 STEP 1 UNTIL 23 DO
      DEGIN WT + TIM(1);
         WA + ZACIII
         W8 + 28(1))
         TT[1] + XT + WT / NI
         VA + EA(1) + IF BGLA THEN 1.0 ELSE EXP(- XT / TA);
         VO + EO(1) + IF OCLO THEN 1.0 ELSE EXP(- XT / TO);
         FOR J + 2 STEP 1 UNTIL N DO
         DEGIN EALLS + EALL - 13 x VAI
            EB(J) + EB(J - 1) \times VBJ
            TT(J) + TT(J - 1) + XT)
         END FILLING OF TIPE ARRAYS!
         FOR J + 0 STEP 1 UNTIL N DO INGR[J] +
         - MA) + C ×(EB(J) - MB));
```

```
FOR J + 0 STEP 1 UNTIL 8 DO
                CLIPTUD + PP MID30
                   D + TAURECLJ]
                   EA[N] + 1.0
                   VA + EA(N - 1) + EXP(- XT + (O + A))
                   FOR K + A = 2 STEP = 1 UNTIL 0 DO EA(K) + EA(K +
                   11 × VAJ
                   VA + EA(O) × INGR(O) + EA(N) × INGR(N);
                   FOR K + 1 STEP 2 UNTIL N - 1 00 VB + VB + INGR(K
                   ) × EACKIJ
                   VA + 4.0 × VB + VAJ
                   VB + 0)
                   FOR k + 2 STEP 2 UNTIL N = 2 DO VB + VB + INGR[k
                   1 × EACK11
                   VA + XT \times D \times (2.0 \times VB + VA) / 3
                   1) \times B + (A + O) \times TW -) 9X3 \times (L) 0X + (L) 9TUO
                   ) + C \times (1 - WB)) + VAJ
                   IF 1.0 < OUTP(J) THEN OUTP(J) + ZZZ(J) ELSE IF 2
                   < I AND CUTP(J) > ZZZ(J) AND 00 S ZZZ(J) THEM
                   OUTP(J) + ZZZ(J)
                END FIX TIME VARY TAUS
                WRITE(FOD, ALLP(I), FOR J + 0 STEP 1 UNTIL 8 DO
                ICELJ9TUD
                IF I = 1 THEN
                BEGIN A + AAAJ
                   8 + 8881
                   C + CCCI
                   FOR J + O STEP 1 UNTIL 8 DO XO(J) + OUTP(J))
                END CREFFICIENT CHANGES
             END STEP THROUGH TIME!
             WRITEEPAGE 1)
         END FINAL RATES!
      END INITIAL RATES!
   END CAPACITORS!
END INNER BLOCKS
END.
```

Rigure Al: Program listing (page 3 of 3)

Figure A2: Progrem Flow Chart (page 1 of 3)

Figure A2: Progrem Flow Chart (Page 2 of 3)

1

the state of the state of

Figure A2: Progrem Flow Chart (page 3 of 3)

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A CERAMIC CAPACITOR

K02= 5.00000-06 TD2= 1.10000+00 CAPACITOR PARAMETERS USED ARE: 1-07 KD1= 6.00000-02 KD2= 5.01+00 TD1= 2.40000-05 TD2= 1.1 9.0000e-07 DELTA= 1.0000+00

THE RADIATION PULSE IS 1.00000+10 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 0.00000+00 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

AT THE THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE THE INITIAL CAPACITOR VOLTAGE

				U U	Z					•
716		125	10 SEC	1 580	100 MS	10 PS	T HS	100 US	10 US	1 08
		.000	.000	.000	.000	000	000	000	000	000
		666.	666.	666.	666.	666	999	999	666	000
		.999	666.	666.	656.	666.	999	656	666	666
		566.	666.	566.	656.	666.	.999	666	999	000
•		666.	666.	.999	655.	666.	666.	656.	999	000
2	5 2	2666.0	0.9997	C.9997	66	666.	666.	66	999	8
0		666.	666.	666.	666.	666.	666.	566.	666.	000
20		666.	066.	666.	666.	666.	666.	666.	000	000
U ·		566.	666.	656.	666.	665.	666.	666.	000	000
00		566.	666.	656.	666.	666.	666.	666.	000	000
00		566.	666.	666.	656.	566.	666.	000	000	000
		666.	666.	666.	666.	655	666.	000	000	000
		666.	666.	666.	666.	666.	666.	000	000	000
5		666.	666.	656.	666.	666.	0000	000	000	000
v		566.	56E.	666.	665.	666.	000	.000	000	000
U		666.	666.	666.	666.	666.	000	000	.000	000
		666.	66c.	656.	666.	000.	000.	000	.000	000
ပ O		666.	656.	656.	666.	000	.000	0000	000.	000
O		665.	666.	656.	665.	000	000	000	000	000
00		965.	666.	666.	655.	000.	.000	000	000.	000
	so.	966.	. 299	056.	666.	0000.	000.	000	000	000
	S	966.	666.	656.	000.	000.	000.	000	000	000
	S	.998	966.	656.	000.	000.	.000	000	000.	00
	S	966.	666	000.	1.0000	1.000	1.0000	1.0000	1.2000	1.0000
		•								

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A CERAPIC CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 9.0000=-07 KDI= 6.00000=02 KD2= 5.00000=06

DELTA= 1.00002+00 TDI= 2.40000=05 TD2= 1.10000+00

THE RADIATION PULSE IS 1.00004+10 RADS/SEC FOR 2.50004-08'SEC FOLLOWED BY A CONSTANT RATE OF 1.000004-03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

			U U	STANT		•			•
	121	10 SEC	1 SEC	100 45	10 18	1 48	100 US	10 US	SO I
30	000	000	000	000	000	000	000	000	000
2	0.00	666.	. 999	666	666	000	000	000	
3	0.999	666.	666.	666.	665	999	666	666	999
3	2666.0	1666.0	2666.0	0	.999	1666.0	99	99	000
>	0.999	666.	.999	666.	666.	.999	999	999	000
3	0.000	666.	666.	666.	666.	666.	999	999	000
3	566.0	666.	666.	665.	666.	666.	999	999	000
300	0.00	666.	666.	666.	666.	666.	666.	000	000
300	0.999	666.	656.	666.	.999	666	556	000	000
900	0.000	666.	666.	666.	666.	666.	666.	000	000
) O	0.999	666.	666.	666.	666.	666.	000	000	000
=	966.0	666.	.999	665.	666.	666.	000	000	000
2	0.099	665.	666.	666.	666.	666.	000	000	000
8	0.000	666.	666.	666.	666.	000	000	000.	000
=	965.0	666.	656.	666.	666.	000	000	000	000
I W	0.00	666.	666.	656.	666.	000	000	000	000
E E	966.0	666.	666.	656.	665.	.000	000	000	000
I O O	0.00	. 999	666.	656.	656.	.000	000	000.	000
I	0.996	.996	966.	665.	666.	.000	000	000	000
200	0.997	.997	156.	666.	666.	000	000	000.	000.
	. 994	166.	966.	666.	666.	.000	.000	000	000
2 \$.987	.988	.994	655.	656.	.000	000.	000	000
	.965	.972	.992	655.	656.	000.	000	000	.000
10 S	.926	.953	.992	655.	6666.0	.000	000	000	1.0000

10,0,103

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A CERANIC CAPACITOR

KP= 9.000C9-07 KD1= 6.C00AP-02 KD2= 5.C00GP-06 DELTA= 1.C00CP+00 TD1= 2.400CP-C5 TD2= 1.1000P+00 THE RADIATION PULSE IS 1.COGOM+10 RADS/SEC FOR 2.50000-08.SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+04 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

TAU (TIME CONSTANT)

	INF	10 SEC	1 SEC	10C MS	2	52	100 us	\$n 01	SI •
3411			1)	•
o	.000	.000	0000	.000	000	000	.000	.000	000
	666.	666.	666.	655.	666.	666.	666.	999	666
	666.	666.	666.	666.	666.	.999	666.	.999	666.
	666.	666.	666.	666.	666.	666.	666.	.999	000
87 S	1666.0	1666.0	1666.0	2666.3	1666.0	1666.0	1666.0	8666.0	1.0000
3 0	666.	666.	656.	556.	666.	666.	666.	666.	000
3	666.	666.	666.	665.	666.	666.	666.	.999	000
3	665.	666.	666.	665.	665.	666.	666.	000	.000
3	666.	666.	666.	666.	666.	666.	666.	000.	000
3 00	565.	666.	666.	656.	665.	666.	666.	000	000
ے 00	665.	666.	656.	655.	665.	666.	000.	000	000
X	666.	666.	656.	655.	665.	666.	000	000	000
3	666.	666.	656.	666.	666.	666.	000	000	000
=	666.	666.	666.	655.	666.	666.	000	000	000
I O	565.	666.	666.	555.	665	666.	000	000	000
I U	.998	.998	.998	655.	665	666	000	000.	000
	.998	.998	656.	.998	655.	666.	000	000	000
I O O	965.	966.	.995	.998	655.	666.	0000	000	000
I U	. 663	.993	466.	255.	666.	666.	000.	000	000
00	. 582	.962	.985	.995	666.	666.	.000	000	000
	. 557	.959	174.	\$56	656.	666.	000.	000.	000
	. 897	906.	.950	.993	666.	.992	000	000	000
	.716	.768	. 329	255.	565.	666.	200.	000	000
	484	. 545	. 927	255.	655	666	000	.000	000

1016,101

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A CERAMIC CAPACITOR

KP= 9.COOC=-07 KG1= 4.COOC=-02 KD2= 5.00000-06 DELTA= 1.COOC=+00 TD1= 2.400CF=C5 TD2= 1.10000+00 THE RADIATION PULSE IS 1.00000+10 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+05 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

		•	S W	STANT		•			
7100	186	10 SEC	-	100 MS	10 48	S = 1	sn 001	10 US	1 08
	000	000	000	000	200	000	000	000	000
=	666.	666.	666.	666.	666	666	666	666	666
3	.999	.999	666.	666.	666	666	666	999	666
3	.999	666.	666.	666.	666	999	999	999	000
3	.999	666.	666.	666.	666.	.999	666.	666.	000
J U	666.	666.	666.	665.	666	666.	666.	999	000
D	666.	666.	666.	656.	666.	.999	666.	666	000
3	665.	666.	656.	665.	666.	666.	666	.000	000
3 00	665.	666.	666.	666.	666.	666.	666	000	000
200	666.	666.	656.	666.	666.	666.	666.	.000	000
3	666.	666.	.999	665.	666	666.	656	000	000
=	666.	666.	666.	665.	666.	666.	666.	000	000
2 12	0.9989	0.9989	6856.0	2665.2	0.9991	1066.0	5	1.0000	•
=	.996	966.	956.	.998	966.	666.	656.	000	000
I U	166.	166.	156.	166.	.998	.999	666.	000	000
2		.994	.994	.995	166.	666.	986	000	000
I U	196.	.967	.967	.989	156.	.999	999	000	000
200	.973	.974	.975	. 583	.997	666.	999	000	000
I U	. 544	.945	.949	.974	965.	666.	666.	000	000
I DO	. 641	.845	. 871	196.	. 995	.999		000.	000
	.654	.667	.760	.948	166.	.999	999	000	000
	.345	. 369	.634	.935	865.	.999	656	000.	000
	.036	.136	.564	.527	. c92	666.	656	000	000
	.000	.113	.560	.927	. 592	.99	66	000	0

10,01

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A CERANIC CAPACITOR

KD2= 5.00000-06 102= 1.10000+00 THE CAPACITOR PARAMETERS KC1= 5.0000=62 TO1= 2.46600=65 KP= 9.00008-07 **DELTA= 1.00000+00**

THE RADIATION PULSE IS 1.00000+10 RADS/SEC FOR 2.50000-08.SEC

AT THE TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT. THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

TAU (TIME CONSTANT)

		INE	10 SEC	1 SEC	100 45	10 18	SHI	100 68	10 US	50 1.
711						•		•	•	
0		.000	.000	0000	000.	000.	.000	000	000	000
2		666.	666.	656.	666.	666.	666.	566.	999	666
•	87	0.9998	0.9998	8656.0	0665.0		0	666.	.999	•
~		666.	666.	666.	655.	665.	.999	666.	.999	000
•		666.	666.	666.	666.	666.	666.	666.	666.	000
		666.	666.	656.	665.	665.	666.	666.	666.	000
20		665.	666.	656.	655.	666.	666.	666.	666.	000
5		666.	666.	666.	666.	665.	666.	666.	666.	000
		666.	666.	666.	655.	665.	666.	566.	666.	000
0		666.	666.	656.	655.	665.	666.	656.	666.	000
0		.998	656.	856.	855.	.998	966.	656.	666.	000
		.997	166.	256.	255.	198.	966.	656.	999	000
~		166.	700.	706.	.994	665	166.	656.	666	000
•		.987	.967	196.	.988	066.	166.	666.	666.	000
		.976	.976	.976	115.	.985	1997	656.	666.	000
50		.952	.952	. 353	.957	.979	166.	556.	666.	000
		. 663	.863	999.	.967	.973	.997	.999	666.	000
0		.771	.772	.782	. # 50	.973	166.	666.	666.	000
		. 569	.573	.664	.787	.966	.992	656.	666.	.000
0		.190	.193	.255	.709	.959	.992	656.	666.	.000
-	v	.014	.032	.165	.645	. 347	.992	666.	666.	000.
~	v,	000.	.014	.127	.591	.941	.992	656.	666.	000
•	S	000.	.012	.114	.562	.927	.992	666.	666.	000
2	S	000.	.012	.113	.562	27	.992	2656.0	0.9999	00

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

)

OF A CERAMIC CAPACITOR

KP= 9.00000=07 KD1= 6.00000=02 KD2= 5.00000=06

DELTA= 1.00000+00 TD1= 2.40000=05 TD2= 1.10000+00

THE RADIATION PULSE IS 1.00000+1C RADS/SEC FOR 2.500C0+00.SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+07 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VELTAGE

	000	10 SEC	1 SEC	100 KA	77 (1	-	100 us	10 05	Sn I
**************************************	000			·	۱ د				•
000000 83333		000	.000	000	000	000	000	000	000
00000 00000 00000	866	0.9998	0.9998	C.999&	0.9998	0.9998	9666.0	9666 0	0.9996
0000 0000	666	666.	666.	666.	666.	666.	999	999	999
900 900	1666	666.	666.	666.	666.	666.	999	666.	.999
o sn	666	656.	656.	666.	666.	999	666	666.	.999
•	666	666.	666.	666.	666.	666.	999	999	. 999
0 20	566	656.	656.	.999	999	666	636	666	666
0 50	966	866.	856.	.998	966	966	866	999	
0 50	166	166.	166.	156.	166.	166	966	666	666
o sn	666	.995	556.	.995	.995	.995	256	999	666
0 57	986	. 368	.968	965.	986	066	256	666	999
OSI	916	.976	.976	.976	.977	.995	156.	666.	666.
0	954	.954	.954	155.	.950	960	155.	666.	999
0	999	. 868	.889	. 491	.912	.977	156.	999	666.
OSI	189	.789	054.	.799	.964	.976	956.	999	666
0 52	619	.620	.623	.652	. 622	.976	.992	999	666
0 51	291	.293	.365	.112	797	.974	.992	999	666.
0 51	073	.078	101.	.290	.782	.973	.992	999	666.
0 51	C03	.006	.033	.241	.756	.973	.952	666.	666.
ES O	00	.002	.022	.189	.698	.927	.992	999	666.
0	000	.001	.017	151.	. 541	.927	.992	666.	666.
0	000	.001	.01.	.126	.610	.927	.992	666.	666.
0	00	.001	.013	.123	. 272	.927	.992	666.	666.
0	000	.001	.017	.174	.560	.927	.992	999	666.

100,01

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A CERAMIC CAPACITOR

KP= 9.00000=07 KD1= 6.00000=02 KD2= 5.00000=06 0ELTA= 1.00000=00 TD1= 2.40000=05 TD2= 1.10000+00 THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.50000-00 SEC FOLLOWED BY A CUNSTANT RATE OF 0.00000+00 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

			S W	START		4			
س	186	10 SEC	1 SEC	100 MS	10 48	1 #8	100 US	10 US	1 ns
)	.000	000	000	0000	000	000	900	000	000
	.997	.997	.997	165.	.997	1997	.997	997	1997
	.997	166.	156.	165.	166.	1997	.997	.997	666
100	.997	.997	.997	166.	.997	.997	.997	.997	999
-	265.	.997	.997	.997	165.	166.	156.	.998	.999
	966.	966.	966.	966.	966.	.996	966.	966.	666.
	.995	.995	.995	.995	.995	.995	956.	966.	999
	.994	.994	.994	156.	166.	166.	956.	.999	.000
	166.	.994	.954	166.	.994	.994	199.	000	000
	*66	.994	994	¥55.	166.	.995	656.	000	000
-	.994	.99A	466.	166.	166.	966.	000	.000	000
SI	0.9942	0.9942	S	-	165	166.	000	000	000
	V56 .	.994	¥56.	155.	665	666.	000	000	000
	166.	.994	.994	165.	966.	666.	000	000	000
	166.	· 994	\$56	₹55.	166.	000	0000	000	000
	. 993	.993	456.	\$65.	655.	000	000.	000	000
	.993	.993	. 293	955.	.399	000.	000	.000	000
	.993	.993	656.	255.	665.	000.	0000	000	000
	.991	.992	656.	655.	665.	000	0000	000	000
	.989	986.	.992	656.	665.	000	0000	000	000
S	.986	.967	.993	655.	000.	000.	000	000	000
S	. 582	.985	556.	656.	000.	000	200.	000	000
so -	.980	.987	656.	000.	000.	000	000	000	000
S	005.	.992	0000	•		1.0000	1.0000	1.0000	1.0000

200

100 200 500 500

0 , 21

THIS TABLE IS THE CALCULATEC TRANSIENT RADIATION RESPONSE OF A CERAMIC CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 9.0000=-07 KC1= 6.00000-02 KD2= 5.00000-06

DELTA= 1.00002+00 TC1= 2.40000-05 TD2= 1.10000+00

THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.50060-00 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHANGING CINCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VELTAGE

10 ... 11.31

THIS TABLE IS THE CALCULATED TRANSIENT HADIATION RESPONSE OF A CERAMIC CAPACITOR

MP= 9.00000=07 KD1= 5.00000=02 KD2= 5.00000=06 DELTA= 1.00000000 TD1= 2.40000=05 TD2= 1.10000+00

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.500C+-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+04 RADS/SEC

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

		<	U W	START					
		10 SEC		100 MS	20 20	SE	100 US	10 US	1 08
7 I b E									
	0000	000.	0000	000.	0000	000	.000	000.	000
2	266.0	166.	156.	155.	166.	166.	166.	166.	266
3	0.997	.997	166.	265.	166.	166.	166.	.997	666
3	0.997	166.	.997	165.	.997	1997	166.	166.	666
3 5	0.997	.997	166.	155.	166.	166.	156.	.998	666.
3	965.0	966.	956.	955.	966.	966.	956.	966	666
3	0.995	.995	\$56.	.995	.995	.995	956	866.	666
20 05	0.994	966.	466.	P65.	166.	166.	966.	999	000
200	*66.0	.994	756	¥55.	166.	166.	156.	000	000
3 0	0.994	966.	₹56.	.994	166.	.995	656	000	000
200	*66°0	· 994	P56.	155.	.994	966.	666	000	000
-	0.594	966.	.994	166.	.994	166.	000	000	000
ï ~	\$ 0.9941	0.9941	C.9941		.995	•	000	000	000
N	0.994	966.	99¢.	.994	966.	666.	000	000	000
I U	0.993	.993	656.	755.	166.	666.	000	000	000
X	0.593	.993	: 663	455.	966.	666.	000	000	000
30	0.692	.992	.992	.995	666.	666.	000.	000	000
I U	0.990	066.	156.	\$55.	665.	666.	0000	000	000
100	0.986	.986	9 ¥ 6 .	.995	666.	666.	000	000	000
100	0.972	.973	.979	.995	666.	666.	000	000	000
	. 545	.947	.965	455.	655.	666.	000	000	000
	. 483	.854	.946	656.	666	666.	000	000	000
	.703	.760	.929	.992	665	666	000	000	000
	.475	.642	.927	5	C. 9992	0	1.0000	1.0000	1.0000
							1		

101

, **,** ,

To the state of the second state of the second

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A CERAMIC CAPACITER

KD2= 5.00000-06 THE CAPACITGR PARAMETERS USED ARE: KP= 9.00000-07 Kpl= 6.00000-02 KD2= 5.00 TO1= 2.400CF-05

TD2= 1.100C0+00 DELTA= 1.0000#+00

THE RADIATION PULSE IS 1.0000m+11 HADS/SÉC FOR 2.5000m-08.SEC FOLLOWED BY A CONSTANT HATE OF 1.00000+05 HADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIGS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

	•			U	START					
		1=1	10 550	1 SEC		10 75	2 H 2	100 US	5D 01	Sn I
711)				
v		.000	.000	.000	0000	000	000	000	000	000
23	2	0.9978	0.9978	0.9978	C.9978	0.9978	0.9978	0.9978	0.9978	0.9977
	87	.997	.997	.997	.997	.997	.997	1997	.997	.999
	Sa	.997	.997	.997	166.	.997	.997	166.	.997	.999
	87	.997	166.	166.	.997	166.	.997	1997	.998	999
0	57	966.	966.	966.	956.	966.	966.	966	966	.999
200	S	.995	.995	.995	.995	.995	.995	966	966	
0	22	.994	.994	.994	₹56.	166.	1994	956	999	000
8	27	.994	.994	¥56.	165.	155.	.994	.997	000	000
0	20	.994	.994	199.	166.	1994	.995	666	000	000
8	22	.994	.994	166.	.994	165	966	666	000	000
-	SI	.993	656.	.993	165.	166.	.997	666	000	000
	S I	.993	.993	.993	.993	166.	666	666	000	000
	SI	.992	.992	.993	665.	.995	666.	999	000	000
	81	.991	.991	.991	.992	965	.999	999	000	000
	T)	.969	.989	686.	266.	.997	666.	666.	000	000
	SI	.961	.961	.962	.986	.997	.999	666.	000	000
	57	.967	.967	69	.960	.997	.999	.99	000.	000
	57 2	.937	.930	.943	.973	966.	666.	566.	000.	000
	SI	.633	.037	.866	.960	. 995	666.	•	000	000
	S)	.646	.680	.756	.948	*86.	.999	666.	000	.000
N	w	.340	.364	.632	.935	966.	666.	666.	000	000
•	ø	.035	.136	.564	.927	.992	666.	666	000	000
2	S	.000	.113	.560	.927	.992	666.	666	000	000

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A CERAMIC CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 9.00009-07 KDI= 5.00000-02 KD2= 5.00000-06

DELTA= 1.00000+00 TDI= 2.40000-05 TD2= 1.10000+00

THE RADIATION PULSE IS 1.COCO#+11 HADS/SEC FOR 2.5000#-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.0000#+06 HADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

			S M	STANT				٠	
TIME	F 21	10 SEC	1 SEC		10 48	S = 1	100 US	10 US	1 08
	.000	.000	000	000	000	000	000	000	000
2	.997	.997	166.	166.	166.	.997	.997	.997	997
3	166.	166.	166.	165.	.997	.997	166.	.997	999
5 C 2	0.9975	0.9975	0.9975	6.9975	0.9975	0.9975		0.9979	9666.0
3	.997	.997	156.	.997	.997	.997	166.	966.	666.
2	966.	966.	956.	966.	966.	966.	966.	966	666.
7	.995	.995	\$66.	.995	.995	.995	966.	866.	666
3	166.	.994	.994	166.	166.	.994	956.	666.	000
200	166.	.994	.994	166.	166.	166.	1997	666	000
0	.993	.993	.993	.993	.993	.994	856.	.999	000
3 00	666.	.993	666.	.993	.993	.995	666.	666.	000
I	.991	.991	156.	155.	.992	966.	666.	666.	000
3	686.	.969	686.	.989	.991	.997	666.	666.	000
I	.982	.982	.982	.943	185.	.997	666.	666.	000
ı	.970	.970	.971	.972	.983	.997	656.	999	000
2	.947	.947	.948	.952	.970	.997	666.	666.	000
30 E	.878	.878	196.	.904	.975	.997	666.	666.	000
I O O	.767	.768	.777	. 649	.972	.997	666.	666.	000
Z U	.565	.569	.609	.784	.968	.992	656	666.	000
1 00 00	.178	191.	.295	.708	.950	.992	666.	999	000
	.C14	. C31	.164	.645	.947	.992	656	666	000
	000.	.014	.127	155.	.941	.992	666.	666.	000
	0000	.012	.114	.562	.927	.992	656	666.	000
	000.	.012	.113	. 562	.927	.992	55	666.	.000
					·		•		

901 (,,0

A STATE OF THE STA

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A CERAPIC CAPACITOR

K02= 5.00000-06 T02= 1.10000+00 USED ARE: THE CAPACITOR PARAVETERS KC1= 6.0000-02 T01= 2.40000-05 9.0000e-07 KC1= OELTA= 1.0000#+09

THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+07 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A CERAMIC CAPACITOR

KP= 9.00008-07 KD1= 6.00008-02 KD2= 5.00008-06 0ELTA= 1.00008+00 TC1= 2.40008-05 TD2= 1.10008+00

THE RADIATION PULSE IS 1.00000+12 HADS/SEC FOR 2.50000-08' SEC FOLLOWED BY A CONSTANT RATE OF C.00000+00 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATICS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

LES 0.9474 0.947			4	E C	START					
### 1.0000 1.000	IPE	_	O SE	SE	2	2	=	00	0	>
### 0.9777 0.9777 0.9777 C.9777 0.9777 0.9777 0.9777 0.9777 0.9777 0.9777 0.9777 0.9777 0.9777 0.9777 0.9777 0.9777 0.9777 0.9778 0.9784 0.9784 0.9784 0.9784 0.9784 0.9784 0.9784 0.9784 0.9784 0.9784 0.9784 0.9784 0.9784 0.9784 0.9784 0.9784 0.9784 0.9784 0.9785 0.9984 0.9785 0.9984 0.9785 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984 0.9984 0.9987 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.999	v	.000	000	000	00	000°	000	000	000.	000
1 US 0.9763 0.9763 0.9763 0.9764 0.9764 0.9764 0.9764 0.9764 0.9764 0.9765 0.9795 0.9978 0.9	2	.977	.977	.977	11	.977	.977	.977	.977	.977
### 8 0.9750 0.9750 0.9750 0.9750 0.9750 0.9750 0.9754 0.9754 0.9754 0.9754 0.9754 0.9754 0.9754 0.9755 0.9712 0.9712 0.9713 0.9754 0.9954 0.	3	.976	.976	.976	76	.976	.976	976	.978	066
© US 0.9512 0.9712 C.9712 C.9712 0.9713 0.9541 0.9666 0.9668 0.9	3	.975	.975	.975	75	.975	.975	.975	979	.995
C US 0.9581 0.9579 0.9559 C.9581 0.9581 0.9681 0.9686 0.9688 0.9688 0.9881 0.9874 0.9874 0.9881 0.9874 0.9878 0.9888 0.9874 0.9874 0.9874 0.9876 0.9876 0.9878 0.9	7	.971	.971	.971	71	.971	.971	.972	.981	966
C US 0.9561 0.9541 0.9541 0.9561 0.9561 0.9567 0.9462 0.9644 0.9644 0.9966 0.9974 0.9474 0.9474 0.9474 0.9474 0.9474 0.9474 0.9474 0.9474 0.9474 0.9474 0.9474 0.9475 0.9464 0.9966 1.000 1.000 0.9437 0.9437 0.9437 0.9433 0.9432 0.9433 0.9433 0.9434 0.9436 0.9999 1.0000 1.0000 1.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.000000	3	.565	.965	.955	.965	968	.965	996.	.984	666
C US 0.9474 0.9474 0.9474 0.9476 0.9485 0.9644 0.9968 0.9968 0.9943 0.9437 0.9943 0.9437 0.9943 0.9437 0.9943 0.9437 0.9943 0.9432 0.9433 0.9432 0.9433 0.9432 0.9943 0.9944 0.9	3	.958	.954	.958	.958	.950	.950	.964	686	999
C US 0.9437 0.9437 C.9437 C.9438 0.9442 0.9483 0.9757 0.9996 1.000 1.000 0.9432 0.9432 0.9432 0.9432 0.9432 0.9432 0.9432 0.9432 0.9432 0.9432 0.9432 0.9432 0.9436 0.9438 0.9438 0.9436 0.9438 0.9438 0.9438 0.9436 0.9438) U	.947	.947	.947	.547	.947	.949	196	966.	666
C US 0.9432 0.9432 0.9432 C.9434 0.9456 0.9958 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.	ت ن	.943	.943	.943	.943	.944	946.	.975	666.	000
C US 0.9431 0.9431 C.9432 C.9434 0.9450 0.9450 1.00000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1) U	.943	.943	.943	.943	115.	.952	966.	000.	000
1 NS 0.9431 0.9431 0.9434 0.9434 0.9434 0.9434 0.9434 0.9436 0.9436 0.9436 0.9436 0.9436 0.9429 1.0000 <th>) U</th> <th>.943</th> <th>.943</th> <th>.943</th> <th>.943</th> <th>.945</th> <th>.965</th> <th>656</th> <th>000</th> <th>000</th>) U	.943	.943	.943	.943	.945	.965	656	000	000
2 NS 0.943C 0.9426 0.9429 C.9434 C.9532 0.9921 1.00000 1.00000 1.00000 1.00000 1.00000 1.000	=	.543	.943	. 943	.943	.948	.978	000	000	000
S IS 0.9426 <th>=</th> <th>.943</th> <th>.943</th> <th>.943</th> <th>.944</th> <th>.953</th> <th>.992</th> <th>000.</th> <th>.000</th> <th>000</th>	=	.943	.943	.943	.944	.953	.992	000.	.000	000
C MS 0.9426 0.9421 0.9426 0.9514 0.9913 0.9999 1.0000 1.0000 1.0000 1.0000 0.9469 0.9469 0.9410 0.9413 0.9999 1.0000 1.0000 1.0000 1.0000 0.9377 0.9404 0.9994 0.9999 1.0000 1.0000 1.0000 1.0000 0.9326 0.9377 0.9404 0.9986 1.0000 1.0000 1.0000 1.0000 0.9232 0.9293 0.9989 1.0000 0.9232 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9232 0.9999 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.00000000	=	.942	.942	.942	.945	.985	666.	000	.000	000.
C MS 0.94C9 0.9410 C.9420 C.9514 0.9913 0.9999 1.0000 1.0000 1.0000 1.0000 C MS 0.9374 0.9999 1.0000 1.0000 1.0000 1.0000 1.0000 C MS 0.932C 0.932C 0.9377 0.9404 C.961C 0.9984 0.9999 1.0000 1.0000 1.0000 1.0000 0.9232 C.9341 C.963C 0.9989 1.00000 1.000000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000000 1.00000 1.	I	. 545	.942	.942	1.947	.978	666.	000	000.	000.
C MS 0.9374 0.9377 0.9404 C.961C 0.9984 0.9999 1.0000 1.0000 1.0000 1.0000 C MS 0.932C 0.9326 0.9379 C.9719 0.9986 1.0000 1.0000 1.0000 1.0000 1.0000 0.9232 0.9232 0.9233 0.9982 1.0000 1.0000 1.0000 1.000	I U	.940	.941	.942	.951	.991	666.	000	.000	000
C MS 0.932C 0.9326 0.9379 C.9719 0.9988 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000	ı	.937	.937	.940	196.	966.	666.	000.	000	000.
C MS 0.9219 0.9232 C.9341 C.983C 0.9989 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000000	IJ	.932	.932	.937	.971	.998	000.	0000	.000	000
C MS 0.8970 0.9009 C.9293 C.9911 0.9992 1.0000 1.0600 1.0000 1.0000 1.000	I U	.521	.923	. 934	.983	966.	.000	000.	.000	000
1 S 0.8688 0.8781 0.9342 0.5945 0.9998 1.0000 1.0000 1.0000 1.0000 1.0000 2.000 2.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 2.00000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.0000 2.00000 2.00000 2.00000 2.00000 2.00000 2.000000 2.000000 2.000000 2.000000 2.00000000	I	.897	006.	.929	16	666.	.000	.000	.000	000
2 S 0.84C6 0.8626 0.9575 0.9978 1.0000 1.0000 1.0000 1.0000 5.000 5.000 5.000 1.0000 1.0000 1.0000 5.000 5.000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000		.868	.878	.934	75	666.	.000	0000	000	000
5 S 0.8232 0.8835 C.9545 C.9599 1.0000 1.0000 1.0000 1.000 1.000 1.000 0.6220 0.9255 C.9599 1.0000 1.0000 1.0000 1.000		.040	.862	.957	97	000.	.000	0000	.000	000
C \$ 0.e220 0.9235 0.9999 1.0000 1.0000 1.0000 1.0000 1.000		. 623	. 683	756.	65	000.	000.	000	000.	000
	v	. e22	.923	656.	00	000.	000	000	000	000

0

OF A CERAMIC CAPACITOR

KP= 9.0000e=07 Knl= 5.0000e=02 KD2= 5.0000e=06

DELTA= 1.0000e+00 Trl= 2.4000e=05 TD2= 1.1000e+00

THE RADIATION PULSE IS 1.00000+12 RADS/SEC FGR 2.50000-08'SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

AT THE THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

•		•	ت ت	STANT					
	181	10 SEC	1 SEC	10C MS	IC MS	1 18	100 US	10 US	SO 1
7									
0	000,	0000	000	000.	0000	000	000	000	.000
2	.977	.977	.977	.977	.977	.977	.977	.977	.977
3	.976	.976	.976	.976	976	.973	976	978	066
3	.975	.975	.975	.975	.979	.975	.975	.979	.995
S 08	0.9712	0.9712	0.9712	C.9712	0.9712	A.9713	0.9724	0.9813	9066.0
3	.965	.965	.965	.965	.965	996.	966	196	
7	.959	.958	.954	.950	926	.958	.964	989	666
3	.947	.947	.947	.947	.947	949	96.	966	•
7	.943	.943	.943	.943	944	.948	.975	999	000
7	. 543	.943	.943	.943	100.	.952	990	000	000
7	.943	.943	.943	.943	.945	.965	666	000	000
Z	.943	.943	.943	.943	.948	.978	000	.000	000
	.943	.943	.943	.944	.953	.992	000	000	000
=	.942	.942	.912	.945	.965	666.	000	000.	000
=	.942	.942	.942	.947	.978	666.	000	000.	000
=	940	.940	.942	.951	. 991		000	000	000
*	.937	.937	. 340	.960	960.	666.	0000	000	000
X	.931	.932	.937	.971	866.	.000	000	000	000
I	.921	.922	.933	.982	966.	.000	000.	000	000
*	. 895	668.	.926	066.	. 999	.000	.000	.000	000
	. 865	. 874	.931	. 994	.999	.000	.000	000.	000
	.031	. 654	. 352	.997	666.	.000	.000	000.	000.
	.796	.860	199.	666.	666.	.000	000.	000.	000
	.764	. 887	.992	665.	665.	000	80	000	000

0.1 103

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A CERANIC CAPACITOR

XD2- 5.00000-06 THE CAPACITOR PARAMETERS USED ARE: TO1= 2.40000-05 K01= 4.00000-62 DELTA- 1.00000+00 KP. 9.00009-07

THE RADIATION PULSE IS 1.00000+12 RADS/SEC FOR 2.50000+08, SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+04 RADS/SEC T02- 1.10000+00

TAU IS THE TIME CONSTANT OF THE CAPACITCA CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

		4	E CON	TART					
	186	10 SEC	1 SEC	100 48	10 10	- ES	100 US	10 US	1 08
•	.000	000	.000	0000	000	000	000	000	000
	.977	.977	.977	.977	.977	.977	.977	.977	.977
	.976	.976	.976	. 576	976	.976	976.	976	990
\$3 2	0.9750	0.9750	C.9750	0.5750	0.9750	0.9750	0.9754	979	.995
Ì	.971	.971	.971	.971	.971	.971	.972	.981	.998
9	.965	.965	.965	.965	.965	996.	.968	.984	666
3 0	.956	.958	.959	.958	.958	.950	.964	989	666
	.947	.947	.947	.947	.947	949	.964	966	999
3	.943	.943	.943	.943	. 944	.948	.975	999	000
3 0	. 543	.943	.943	. 543	544	.952	990	000	000
ت ن	.943	.943	.943	.943	.945	.965	666.	000	000
2	.943	.943	.943	.543	946	.978	000	000	000
X	. 545	.942	.943	. 944	.953	.992	000	000	000
2	.942	.945	.942	.945	.965	666.	000	000	000
I U	.941	.941	.942	105.	.978	666.	000	000	000
=	.940	.940	.941	155.	166.	666.	000	000	.000
Z U	.936	.936	.939	395.	966.	666.	000	000.	000
I U	. 929	.930	.935	.970	.996	666.	000	000	000
X U	.916	.916	.929	.98C	865.	666.	000.	000	000
I U	. 881	.886	.916	.967	966.	666.	000	000	000
	. 632	.843	.968	.989	666.	656.	000.	000	000
	. 755	.783	.911	156.	. 399	666.	000	000	000
	.590	.685	.925	.955	665.	666.	000	000	000
-	. 396	.511	.927	.992	665.	666.	2	1.0000	1.0000

OF A CERAPIC CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 9.00000=07 Knl= 4.00000=02 K02= 5.00000=06

DELTA= 1.00000+00 Tnl= 2.40000=05 Tn2= 1.10000+00

THE RADIATION PULSE IS 1.00COB+12 RADS/SEC FOR 2.500C4-08'SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+05 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHANGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

- 3		MINE CUM						
	W	1 SE		200	9	100	10 US	S 1
000	000	.000	0000	000	000	000	000	000
.977	.977	.977	.977	.977	.977	.977	.977	.977
.976	.976	.976	.976	946	.976	.976	976	990
.975	.975	.975	.975	979	.975	.975	979	.995
.971	.971	.971	125.	.971	.971	.972	.901	966
.965	.965	.965	.965	.965	996	968	984	666
.956	.958	.958	.958	986	.950	964	989	
.947	.947	.947	.947	947	949	96	966	•
.943	. 543	.943	.933	344	940	.975	999	000
0.5431	0.9431	C.9431	C.9432	0.3442	0.9527	9056.0	1.0000	1.0000
. 543	.943	.943	.943	.945	.964	656	000	000
.942	.942	.942	.943	946	.978	656	000	000
.942	.942	.942	. 543	.952	.991	556	000	000
.941	.941	.941	.944	196	666.	666.	000	000
.939	.939	.940	.915	976.	666.	656	000	000
.936	.936	.937	145.	686	.999	656.	000	000
.926	.926	.923	.951	. 992	666	356	000	000
.900	.902	.915	.986	.992	666.	666.	000	000
. 471	. 673	.967	.954	.992	666	666	000	000
.750	.752	.012	.953	.992	666.	666	000	000
.569	.580	.714	.943	.992	666	656	000	000
.290	.341	919.	.933	.992	666.	556	000	000
.029	.132	.563	.927	.992	666.	656	000	000
000	113	240		600	000	000	000	000

10,3,105

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A CERAMIC CAPACITOR

K02= 5.00000-06 T02- 1.10000+C0 THE CAPACITUR PARAVETERS USED ARE: 00008-07 KEIR 6.000008-02 KDZ# 5.000008-05 TDZ# 1.10 MF. 9.00000-07 KEIS

SEC THE RADIATION PULSE IS 1.00COP+12 RADS/SEC FOR 2.500CP-08 FOLLOWED BY A CONSTANT RATE OF 1.0000P+06 RADS/SEC TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

			S C	STANT					
1106	181	10 SEC	1 SEC	100 48	10 18	- I	100 US	10 US	5 0 T .
	.000	.000	000	0000	000.	000	000	000	000
2	.977	.977	.977	.977	.977	.977	.977	.977	977
7	.976	.976	.976	.976	926	.976	.976	978	066
	.975	.975	.975	.975	.975	.975	.975	979	.995
3	.971	.971	.971	115.	.971	.971	.972	.991	966
7	.965	.965	.965	.965	.965	996.	996.	196	666
0	.958	.958	.959	955.	.958	.958	196.	686.	999
2005	.947	.947	.947	245.	.947	.949	.964	966	666
) U	.943	.943	.913	. 543	.944	949	.975	666	000
ے 00	.942	.942	.942	.542	.943	.952	066.	666	000
200	.942	.945	.942	.942	.944	.964	666.	666	000
=	.940	.940	.941	.941	946	.977	666.	666	000
=	.938	.938	.938	.939	646	066.	655	666.	000
=	.931	.931	.931	.934	.989	.992	656.	666.	000
I O	. 520	.920	.920	.926	.964	.992	556	666.	000
I U	.897	160.	.858	. 511	.971	.992	656.	666.	000
=	. 826	. 829	.834	. 7.73	.973	.992	656.	666.	000
7 00 x	.719	.721	.734	22	.971	.992	.999	666.	000
I U	. 525	. 529	.566	.777	.967	.992	556.	666.	000
2 20	.162	.175	.262	.704	.957	.992	556.	.999	000
	.012	.030	.162	.643	.946	.992	556.	666.	000.
	. coc	.014	.127	.551	.540	.992	556.	666.	.000
S	0.0000	0.0127	C.1139	C.5626	0.5273	0.9922	656.	0.9999	000
	000.	.012	.113	.562	.527	.992	S	666	1.0000

OF A CERAMIC CAPACITOR

KD2= 5.00000-06 T02= 1.10000+00 THE CAPACITOR PARAMETERS USED ARE: KC1= 6.C0000-C2 T01= 2.40000-C5 9.C0000-07 DELTA= 1.000C#+00

THE RADIATION PULSE IS 1.00Cne+12 BADS/SEC FOR 2.500Ce-08, SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+07 BADS/SEC TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VELTAGE

10					S S	ART		,			
10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	0	181	0	1 SEC	10C MS	2	3	200	o	-
1 1 1 1 1 1 1 1 1 1	3411										
28 NS 0.9777 0.9777 C.9777 C.9777 0.9777 0.9777 0.9777 0.9776 0.9778 0.9	•		000.	0000	000.	000.	000.	000	000	000	000
1 US 0.9743 0.9763 C.9763 C.9763 0.9764 0.9764 0.9764 0.9764 0.9763 0.9763 0.9763 0.9763 0.9763 0.9763 0.9763 0.9764 0.97	n		.977	.977	.977	.977	.977	.977	977	.977	.977
2 US 0.9750 0.9750 0.9750 C.975C 0.9750 0.9750 0.9754 0.9754 0.9958 U.S 0.9751 0.9711 0.9911			.976	.976	976.	.976	.976	.976	.976	.978	990
\$ US 0.9711 0.9711 0.9711 0.9711 0.9711 0.9713 0.9650 0.9683 0.9693 0.9683 0.9693 0.96			.975	.975	.975	.975	.975	.975	.975	979.	.995
10 US 0.9657 0.9657 C.9657 C.9656 0.9660 0.9663 0.9683 0.9683 0.9683 0.9683 0.9683 0.9683 0.9684 0.9686 0.9686 0.9686 0.9686 0.9686 0.9686 0.9686 0.9686 0.9686 0.9688 0.9688 0.9683 0.9683 0.9686 0.9682 0.9992 0.9			.971	.971	.971	.971	.971	.971	.972	.981	966
20 US 0.9576 0.9466 0.9466 0.9466 0.9487 0.9583 0.9636 0.9966 0.9966 0.9468 0.9983 0.9992 0.9992 0.9992 0.9992 0.9993 0.9331 0.9331 0.9331 0.9332 0.9323 0.9322 0.9992 0.9992 0.9993 0.9932 0.9993 0.9	v		.965	.965	.965	.965	.965	996.	.966	.984	
G US 0.9466 0.9466 0.9466 0.9466 0.9487 0.9637 0.9966 0.9966 0.9966 0.9966 0.9966 0.9966 0.9966 0.9968 0.9968 0.9992 0.9992 0.9993 0.9931 0.9331 0.9331 0.9332 0.9322 0.9932 0.9992 0.9992 0.9993 0.9933 0.9323 0.9932 0.9992 0.9992 0.9993 0.99	0		.937	.957	.997	155.	.957	.950	.963	989	.999
00 US 0.9416 0.9416 0.9416 C.9419 0.9423 0.9465 0.9744 0.9992 0.9996 US 0.9391 0.9391 C.9392 0.9490 0.9564 0.9992 0.9992 0.9999 0.9992 0.9993	Ö		946.	.946	.946	.946	946	948	.963	966	
OC US 0.9391 C.9392 0.9490 0.9984 0.9982 </th <th>8</th> <th></th> <th>.941</th> <th>.941</th> <th>.941</th> <th>.941</th> <th>.942</th> <th>946</th> <th>.974</th> <th>666.</th> <th>.000</th>	8		.941	.941	.941	.941	.942	946	.974	666.	.000
N	00		.939	.939	.939	.939	640	.949	996	666	. 999
	30		. 932	.932	.932	.932	.935	.936	.992	666.	
2 NS 0.5001 0.9001 0.9002 C.9016 0.9141 0.9725 0.9922 0.9992 0.9994 16 NS 0.6383 0.4383 C.8385 C.8434 0.8813 0.9766 0.9922 0.9992 0.9992 16 NS 0.7439 0.7440 C.7453 C.7579 0.8476 0.9766 0.9922 0.99992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.99992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.99992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.99992 0.			. 521	.921	.921	.922	.927	.964	.992	666	.999
\$ M\$ 0.6363 0.6363 C.6369 C.6434 0.6813 0.9766 0.9922 0.9992 0.9992 0.9992 0.7439 0.7439 0.7440 C.7453 C.7579 0.647C 0.9766 0.9922 0.9992 0.99	_		. 500	. 900	0000	.901	.914	.972	.992	666.	666.
16 MS 0.7439 0.7440 0.7453 0.7579 0.8470 0.9766 0.9922 0.9992 0.9992 26 MS 0.5836 0.5840 0.5877 0.6227 0.8167 0.9761 0.9522 0.9992 0.9992 26 MS 0.2737 0.2751 0.2692 0.4006 0.7966 0.9746 0.9522 0.9992 0.9992 30 MS 0.0705 0.0732 0.0972 0.7817 0.9739 0.9922 0.9992	•		. 638	. 938	.036	. 843	. 881	916	.992	666.	.999
26 NS 0.5836 0.5840 C.5877 C.6227 0.8167 0.9761 0.9522 0.9992 0.9999 0.2737 0.2737 0.2751 C.2652 C.4606 0.9746 0.9522 0.9992 0.9999	v		.743	144	.745	.757	.647	.976	.992	666.	.000
\$6 M\$ 0.2737 0.2751 C.2692 C.4C06 0.7966 0.9740 0.9922 0.9992 0.9990 0.9	9		. 563	.584	.567	.622	. 616	.976	.952	999	999
OC MS 0.0705 0.0972 0.2877 0.9729 0.9922 0.9992 0.9992 OC MS 0.0064 0.0336 0.2807 0.7557 0.9736 0.9952 0.9992 0.999 OC MS 0.0060 0.0023 0.0226 0.1896 0.6977 0.9273 0.9522 0.9992 0.999 1 S 0.0060 0.0019 0.0176 0.1516 0.6416 0.9273 0.9622 0.9992 0.999 2 S 0.0060 0.0014 0.0142 0.1236 0.9273 0.9522 0.9992 0.999 3 S 0.0060 0.0014 0.0136 0.1236 0.9273 0.9522 0.9992 0.999 4 C 0.0060 0.0014 0.0179 0.1236 0.9273 0.9522 0.9992 0.999	0		.273	.275	.269	. 400	.796	.974	.992	999	.999
OC MS 9.0033 0.0064 C.0336 C.2407 0.9736 0.9622 0.9992 0.999 OC MS 0.0000 0.0023 C.0226 C.1886 C.6416 0.9273 0.9522 0.9992 0.999 1 S 0.0000 0.0019 C.0176 C.1516 C.6416 0.9273 0.9522 0.9992 0.999 2 S 0.0000 0.0014 C.1747 C.8727 0.9273 C.9522 0.9992 C.999 3 S 0.0000 0.0014 C.0134 C.123C C.8727 0.9273 C.9522 0.9992 C.999 3 C 0.0000 0.0014 C.0179 C.1747 C.5605 0.9273 C.9522 0.9992 C.999	8		.070	.073	160.	.267	.701	.972	.992	666.	999
1 \$ 0.6060 0.0023 C.0228 C.1888 C.6977 0.9273 0.9522 0.9992 0.999 1 \$ 0.0060 0.0019 C.0176 C.1516 C.6416 0.9273 0.9522 0.9992 0.999 2 \$ 0.606C 0.0014 0.0142 C.1282 C.6101 0.9273 0.9922 0.9992 C.999 5 \$ 0.6060 0.0614 C.0134 C.123C C.8727 0.9273 C.9522 0.9992 C.999 1C \$ 0.606C 0.0619 C.0179 C.1747 C.5605 0.9273 C.9522 0.9992 0.999	00		.003	.006	.033	.240	.755	.973	.992	666.	666.
1 \$ 0.0000 0.0019 0.0176 0.1516 0.6416 0.9273 0.9522 0.9992 0.999 2 \$ 0.0000 0.0014 0.0142 0.1262 0.6101 0.9273 0.9922 0.999 5 \$ 0.0000 0.0014 0.0134 0.1230 0.8727 0.9273 0.9922 0.999 0 \$ 0.0000 0.0019 0.0179 0.1747 0.5605 0.9273 0.9922 0.999	00		.000	.002	.022	.168	.697	.927	.952	.999	666.
2 S 0.000C 0.0014 0.0142 C.1262 C.6101 0.9273 0.9922 0.9992 0.999 5 S 0.0000 0.0014 C.0134 C.123C C.8727 0.9273 C.9522 0.9992 C.999 C S 0.000C 0.0019 C.0179 C.1747 C.5605 0.9273 C.9522 0.9992 0.999		ø	.000	.001	.017	.151	.641	.927	.952	666.	999
\$ \$ 0.0000 0.0014 0.0134 0.1230 0.8727 0.9273 0.9522 0.9992 0.999 6 \$ 0.0000 0.0019 0.0179 0.1747 0.5605 0.9273 0.9922 0.999		•	000	.001	.014	.126	.610	.927	.992	666.	.999
C S 0.000c 0.0019 C.0179 C.1747 C.5605 0.9273 C.9522 0.9992 0.999		S	000	.001	.013	.123	. 672	.927	.992	666.	999
	v	v 1	.000	.001	.017	.174	.560	.927	.952	666.	666.

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A CERAMIC CAPACITOR

USED ARE:	K02= 5.00000-06 T02= 1.10000+00
THE CAPACITOR PARAMETERS	KO1= 5.C00CF-C2 TC1= 2.40CF-C5
AC I TCR	X01=
THE CAP	• -
	KP. OELTA:

THE RADIATION PULSE IS 1.00000+13 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 0.00000+00 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INCICATED TO THE INITIAL CAPACITOR VOLTAGE

		•	U W	START				,	
		10 SEC	-	10C MS	54 01	51	100 US	10 05	571
341					,			•	
•	000	.000	0000	000	000	000	000	000	000
2	0.798	.798	150	.798	.798	.798	.798	798	900
3	0.787	.787	7.57	.787	.767	.787	.789	908	.917
3	0.776	.776	.776	.776	.776	.77.	.780	.614	.961
5 n	0.746	.746	.746	.746	.746	.7.7	.757	.834	.986
3	0.706	.706	.766	.766	.706	.708	.729	.863	989
) U	0.651	. 651	. 651	.651	.652	.656	.700	.905	.993
3	0.582	. 582	.582	.502	.504	.598	.712	.970	.998
5	0.560	. 560	.560	.560	.563	.595	. BC4	966.	000
;; 00	8 0.5571	0.5571	C.5572	5	.565	.630	.925	666	000
3	0.556	.556	.557	.559	.577	.726	956	000	000
=	0.556	.556	.556	.560	.598	.033	666.	000	000
= ~	0.555	.555	.556	.564	.635	.930	666.	000	000
=	0.553	.554	. 555	.575	.727	.995	999	000	000
2	7.550	. 550	.554	.992	. 631	.998	000	000	000
Z U	1.543	. 544	.552	.624	930	.998	000	000	000
I U	0.524	.526	.545	.760	.945	.994	0000	000	000
ı	0.494	.498	.537	.764	885.	666.	000.	000	000.
Z U	0.443	.452	. 526	. 663	695.	.000	0000	000	000.
Z Z	0,337	. 359	. 526	615.	266.	000.	000.	000	000
	.245	.291	.577	. 547	.955	.000	000.	000	.000
	.176	.272	.718	.976	000.	.000	000.	000	.000
•	.142	409	.955	¥65.	000.	000.	000.	000.	.000
	.140	.637	656.	000.	1.0000	1.00.00	1.0000	1.0000	1.0000

0 . 01

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A CERAPIC CAPACITOR

KP= 9.0000@-07 KDI= 6.0000@-02 KD2= 5.0000@-06 DELTA= 1.0000@+00 TDI= 2.4000@-05 TD2= 1.1000@+00 THE RADIATION PULSE IS 1.00000+13 HADS/SEC FOR 2.50000-08, SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

			-	Ü	STANT	,				
1105			W	-	10C mS	10 48	7 = 2	100 US	10 05	50 T .
-		.000	.000	.000	.000	000	000	000	000	000
23		.73	.790	.798	.798	.790	.798	.798	.798	900
-		.787	.787	.787	.787	787.	787.	.789	908.	.917
~		.776	.776	.776	.776	.776	.776	.780	.014	.961
		.746	.746	.746	.746	.746	.747	757	.834	.00
0		.706	.706	.766	.706	.706	.708	.729	. 963	.999
0		.651	.651	.691	159.	.652	.656	.700	.905	.993
		.582	.582	.582	.562	.584	.590	.712	.970	
00		.560	.560	.560	.560	.563	.595	100	966	.000
v		.557	.557	.557	.557	.565	.630	.925	999	000
00		.556	.556	.557	.555	.577	.726	956	000	000
-		.556	.556	.556	.560	.998	.833	656.	000	000
4		.555	.555	.556	.564	.635	.936	656.	000	000
		.553	.554	.585	.975	.727	.995	666.	000	.000
v	S I	0.5503	0.5507	C.5547	C.5925	0.6312	7866.0	0000	000	000
		.543	.544	.552	. 624	.930		000	000	000
ø		.524	.526	.545	.700	.985	966.	000	000	000
ö			.494	.537	.784	.968	666.	000.	000	000
v			.452	.525	.863	.989	000	000	000	000
80		.336	.359	.525	.910	.992	000.	000	000	000
	S.	.244	. 290	.576	. 9.17	.995	.000	200.	000	000
22.	\$ 7	.174	.270	.715	.977	.999	.000	000.	000.	000
	S	.136	. 40	.949	166.	666.	.000	000	000.	000
	S	.131	.616	156.	666.	665.	.000	20	1.0000	1.0000

013 103

OF A CERAMIC CAPACITOR

KD2* 5.00030-06 TG2* 1.10000+00 THE CAPACITOR PARAVETERS USED ARE: KP= 9.0000=-07 KD1= 6.00000-02 KD2= 5.00 DELTA= 1.00000+00 TD1= 2.40000-05 TD2= 1.10 THE RADIATION PULSE IS 1.00000+13 H.OS.SEC FUL 2.50000-00 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+04 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITCR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

10 SEC	1 SEC	100 FS	10 48	T HS	100 US	Sn 01	Sn 1 .
1.000	000	000	000	000	000	000	000
0.798	150	.798	798	798	798	798	800
0.787	.787	.787	.787	.787	.789	909	.917
0.776	.776	.776	.776	.776	.780	.014	.961
0.746	.746	.746	.746	.747	.757	.634	.986
0.706	.706	.766	.766	.708	.729	.863	.989
0.651	.651	.651	.652	.656	.700	.905	.993
0.562	.582	.582	.564	.598	.712	.970	966.
0.560	.560	.56c	.563	.595	. BC4	966.	000
0.557	.557	.557	.565	.630	.925	666	000
0.556	.557	.559	.577	.726	966.	000	.000
0.556	.556	.560	.590	.833	666.	000	.000
0.555	.556	.564	635	.938	666.	000	000
0.553	.555	.575	.727	.995	666.	000	000
0.550	. 554	.592	. A 31	966.	.000	000	000
0.544	.552	.623	930	.998	000	000	000
0.525	.545	.700	.985	966.	.000	.000	.000
0.497	.536	.783	.588	666.	000.	000	.000
0.449	.523	.661	989.	666.	0000	000	000.
0.354	.520	.915	.991	666.	0000	000.	000
0.280	.545	. 543	465.	666.	000.	000.	000
0.251	.691	115.	555.	666.	000.	000	000
0.341	. 953	255.	666.	666.	000	000	000
0.468	• 956	255.	656.	666.	000	000.	1.0000
			0.000000000000000000000000000000000000	. 7865 . 7865 . 7865 . 7865 . 7865 . 7865 . 5865 . 5865	.0000 .7965 .7871 .7871 .7871 .7861 .7861 .7861 .7861 .7861 .7861 .7861 .7863 .7	.0000	.0000 1.0000 </th

10.3 104

大学 大学 一大学 一大学 一大学 一大学 一大学

The state of the s

The state of the s

OF A CERAMIC CAPACITUR

TD2= 1.100C0+00 KD2= 5.00000-06 THE CAPACITOR PARAMETERS USED ARE: Krim 6.0000-02 Tolm 2.40000-05 KP= 9.00000-07 **DELTA:** 1.00308+00

THE RADIATION PULSE IS 1.00000+13 RADS/SEC FOR 2.50000+04 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+05 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

AT THE THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE TIME INDICATED TO THE INITIAL CAPACITOR VELTAGE

	1 07 7 7 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10 SEC 00.7960 SEC 00.79610 OC.79610 OC.796510	1 SE C C C C C C C C C C C C C C C C C C	00 T	1000	T 000	3	7 00	- C
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				.790	000	000		000	
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6				.796	000	000		000	000
ŭ - k u o o o o			**************************************	.798	707		000		
		**************************************	F			.790	.798	.796	900
*******		6 4 0 N B 6	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	.787	787.	.707.	.789	908	.917
W W W W W		40.000	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	.776	.776	.776	.780	.014	.941
8 8 8 8 2 2 2 3	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	~ • • • • • • • • • • • • • • • • • • •	6000 6000 6000	.7.6	.746	.7.1	.757	.034	.986
8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		. 582	5.52	.706	.706	.708	.729	.863	.989
Sn o	.582	. 582	560	.651	.652	.656	.70C	908	.993
	.560	560	.560	.562	.504	.598	.712	.970	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	1			.560	.563	.595	+00·	966	000
SO O	.557	.557	.557	.557	. 565	.630	.925	999	000
SO O	.556	.556	.557	.550	.577	.726	966.	000	.000
S	.556	.556	.556	.560	.997	.833	666.	000	000
w) =	.555	.555	.556	.564	.635	.938	656	000	000
	.553	. 553	. \$55	.974	.727	.995	666.	000	000
**	.549	. 549	. 553	165.	. 630	966.	666.	000	000
2	.541	.541	.549	.621	.929	.996	666.	000	000
S	.517	. 520	.539	.694	.982	966.	666.	000	000
S	111.	.486	.524	.772	.985	966.	666.	000	000
SI	.419	.428	. 501		.966	.999	656.	000	000.
S I	.204	.306	.469	.986	196.	666.	666.	000.	000
	.160	. 202	.470	.961	.989	666.	655	000	000
	.040	.131	.569	.916	.992	.999	656.	000.	.000
	.005	.111	.556	.926	.992	666.	666.	000	1.0000
0 8 2	.000	.113	. 540	.927	.992	666.	656.	000	000
		131							

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A CERAMIC CAPACITOR

KP= 9.00000-07 K01= 6.00000-02 K02= 5.00000-06

DELTA= 1.00000+00 T01= 2.40000-05 T02= 1.10000+00

THE RADIATION PULSE IS 1.00000+13 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+06 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

TAU CTIME CONSTANT)

### 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00		INF	10 SEC	1 SEC	10C MS	10 48	1 HS	100 US	10 US	SO 1 .
1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.000	7									
US	•	000	000	.000	.000	000.	000	.000	.000	.000
### 8 0.7871 0.7871 0.7871 0.7871 0.7872 0.7873 0.7892 0.8065 0.9068 0.7861 0.7761 0.7761 0.7761 0.7762 0.7763 0.7763 0.7763 0.7764 0.7763 0.7763 0.7763 0.7763 0.7764 0.7763 0.7763 0.7763 0.7764 0.7763 0.7764 0.7763 0.7764 0.7763 0.7764 0.7763 0.7764 0.7		.798	.798	.798	.798	.798	790	.798	.798	900
### 80.7761 0.7761 0.7761 C.7762 0.7466 0.7476 0.7773 0.8141 0.986 0.7465 0.7465 0.7465 0.7466 0.7474 0.7773 0.8147 0.986 0.7465 0.7465 0.7466 0.7474 0.7773 0.8147 0.986 0.7465 0.7465 0.7466 0.7474 0.7773 0.8147 0.986 0.4876 0.7763 0.6814 0.9878 0.6816 0.6816 0.6816 0.7683 0.77614 0.9878 0.9878 0.9878 0.9887		.787	.707	.767	.787	.787	787.	.789	909.	.917
\$ US 0.7465 0.7465 0.7465 C.7665 0.7466 0.7476 0.7573 0.8347 0.986 US 0.7065 0.7665 C.7665 0.7068 0.7069 0.7293 0.8634 0.986 0.8616 C.6516 C.6516 C.6521 0.6569 0.7004 0.7293 0.8634 0.986 0.5621 0.5621 0.5621 0.5621 0.5621 0.5622 0.5625 0.7064 0.9863 0.7024 0.989 0.7024 0.989 0.7024 0.989 0.7024 0.989 0.7024 0.989 0.5621 0.5621 0.5622 0.5622 0.5624 0.5634 0.5633 0.5642 0.5642 0.5644 0.5677 0.5644 0.5771 0.7257 0.989 0.999 0.000 0.5622 0.5652 0.5654 0.5677 0.5649 0.6936 0.999 0.000 0.5622 0.5652 0.5557 0.5544 0.5771 0.7257 0.989 0.999 0.000 0.5572 0.5999 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000		.776	.776	.776	.776	.776	.776	.780	.014	.961
Q US 0.7065 0.7066 0.7069 0.7293 0.0634 0.9089 U S 0.6516 0.6616	3	.746	.746	.746	.796	.746	.747.	.757	.834	.986
C US C -6516 C -6518 C	3	.706	.706	.706	.766	.706	.708	.729	.063	989
C US C SECT C SECT <th>9</th> <th>.651</th> <th>.651</th> <th>.651</th> <th>.651</th> <th>.652</th> <th>.656</th> <th>.700</th> <th>.905</th> <th>.993</th>	9	.651	.651	.651	.651	.652	.656	.700	.905	.993
U.S. 0.56C1 0.5601 0.5602 0.5605 0.5649 0.5649 0.6406 0.9256 0.9999 1.000 U.S. 0.5562 0.5564 0.5564 0.5771 0.7257 0.9956 0.9999 1.000 U.S. 0.5562 0.5564 0.5564 0.5577 0.5771 0.7257 0.9956 0) O	.582	.582	.582	.562	.584	.598	.712	.970	966.
U.S. 0.5569 0.5564 0.5564 0.6306 0.9256 0.9999 1.000 U.S. 0.5562 0.5564 0.5564 0.5564 0.5564 0.9967 0.9966 0.9999 1.000 I.S. 0.5552 0.5564 0.5564 0.5564 0.5567 0.9967 0.9966 0.9969 1.000 I.S. 0.5552 0.5564 0.5564 0.5667 0.9967 0.9966 0.9969 1.000 I.S. 0.5573 0.5665 0.5665 0.7219 0.9922 0.9992 0.9999 1.000 I.S. 0.5473 0.5675 0.5605 0.9136 0.9922 0.9999 1.000 I.S. 0.5473 0.9922 0.9992 0.9999 1.000 I.S. 0.5617 0.5605 0.9922 0.9999 1.000 I.S. 0.5617 0.9922 0.9999 1.000 I.S. 0.0612 0.5605 0.9922 0.9999 1.000 I.S.	5	.560	.560	.560	.560	.563	.595	.804	966	000
G US 0.5562 0.5564 0.5564 0.5564 0.5567 0.5967 0.9960 0.9960 0.9999 1.000 R US 0.5532 0.5534 0.5567 0.5667 0.6336 0.9964 0.9960 1.000 R US 0.5532 0.5534 0.5667 0.5667 0.9364 0.9962 0.9969 1.000 R US 0.5379 0.5475 0.5675 0.5605 0.7219 0.9922 0.9969 1.000 M S 0.5375 0.5605 0.9136 0.9922 0.9969 1.000 M S 0.5377 0.5605 0.9136 0.9922 0.9999 1.000 M S 0.5271 0.5605 0.9273 0.9922 0.9999 1.000 M S 0.5271 0.5605 0.9273 0.9992 0.9999 1.000 M S 0.2617 0.9273 0.9922 0.9999 1.000 M S 0.0610 0.0201 0.1469 0.5605 0.9273 0.9992	3 0	.556	.556	.556	.557	.564	630	.925	666	000
1 NS 0.5552 0.5553 C.5541 C.5505 C.5541 C.5505 C.5541 C.5505 C.5541 C.5605 C.633C C.9562 C.9992 C.9992 C.9999 I.000 M S C.5473 C.5475 C.5605 C.7219 C.9922 C.9992 C.9999 I.000 M S C.5473 C.5475 C.5605 C.9136 C.9922 C.9992 C.9999 I.000 M S C.5181 C.5605 C.9136 C.9922 C.9992 C.9999 I.000 M S C.5182 C.5183 C.5605 C.9136 C.9922 C.9992 C.9999 I.000 M S C.5182 C.5605 C.9273 C.9992 C.9999 I.000 M S C.5612 C.5605 C.9273 C.9992 C.9999 I.000 M S C.5612 C.5605 C.9273 C.9992 C.9999 I.000 M S C.616 C.1464 C.5605 C.9273 C.9992 C.9999 <th>3</th> <th>.556</th> <th>.556</th> <th>.556</th> <th>.558</th> <th>.577</th> <th>.725</th> <th>966.</th> <th>666</th> <th>000</th>	3	.556	.556	.556	.558	.577	.725	966.	666	000
2 NS 0.5532 0.5533 C.5541 C.5605 C.633C 0.9962 0.9962 0.9969 1.000 5 NS C.5473 C.5475 C.5605 C.7219 0.9922 0.9969 1.000 6 NS C.5379 C.5605 C.5605 C.9633 C.9922 C.99692 C.9999 1.000 6 NS C.5191 C.5605 C.9136 C.9922 C.9992 C.9999 1.000 6 NS C.4634 C.4654 C.5605 C.9136 C.9992 C.9999 1.000 6 NS C.4634 C.4654 C.5605 C.9273 C.9952 C.9999 1.000 6 NS C.2612 C.3665 C.9273 C.9992 C.9999 1.000 6 NS C.2612 C.5605 C.9273 C.9992 C.9999 1.000 7 NS C.6006 C.1465 C.5605 C.9273 C.9992 C.9999 1.000 8 NS C.0000 C.1134 C.5605 C.9273 C.9992 </th <th>=</th> <th>.555</th> <th>.555</th> <th>.555</th> <th>.559</th> <th>.596</th> <th>.832</th> <th>656</th> <th>999</th> <th>000</th>	=	.555	.555	.555	.559	.596	.832	656	999	000
### (-547) 0.5475 C.5495 C.5605 O.7219 0.9922 O.9992 O.9999 1.000 O.5182 O.5182 O.5182 O.5182 O.5182 O.5182 O.5182 O.5181 O.5271 C.5605 O.9136 O.9922 O.9992 O.9999 1.000 O.5182 O.5181 O.5271 C.5605 O.9136 O.9922 O.9992 O.9999 1.000 O.5282 O.9999 O.5271 C.5605 O.9273 O.9922 O.9992 O.9999 1.000 O.5587 O.5612 C.5605 O.9273 O.9922 O.9992 O.9999 1.000 O.5587 O.5612 C.5605 O.9273 O.9922 O.9992 O.9999 1.000 O.5612 O.5612 C.5605 O.9273 O.9922 O.9999 1.000 O.5612 O.5612 C.5605 O.9273 O.9922 O.9999 1.000 O.5612 O.09999 C.5605 O.9273 O.9992 O.9999 1.000 O.5612 O.5612 C.5605 O.9973 O.9992 O.9999 1.000 O.5612 O.9999 C.5605 O.9273 O.9992 O.9999 1.000 O.9999 O.5612 O.9999 O.5612 O.9999 O.5612 O.9999 O.5612 O.9999 O.96773 O.9992 O.9999 O.9999 O.5605 O.9999 O.5605 O.9999 O.99773 O.9992 O.9999	=	.553	.553	.554	.560	.633	.936	656	666.	000
C MS 0.5375 0.5271 C.5605 0.9136 0.9922 0.9939 1.000 M S	=	.547	.547	.549	.560	.721	.992	656.	666.	000
G MS 0.5182 0.5191 0.5271 C.5605 0.9136 0.9922 0.9992 0.9999 1.000	Z	.537	.537	.541	.560	.820	.992	656.	666.	000
C MS 0.4634 0.4657 C.4854 C.5605 0.9273 0.9922 0.9992 0.9999 1.000 C MS 0.3619 0.3864 C.4248 C.5605 0.9273 0.9922 0.9992 0.9999 1.000 C MS 0.2527 0.9922 0.9992 0.9999 1.000 C MS 0.0610 0.0767 C.1597 C.5605 0.9273 0.9922 0.9992 0.9999 1.000 I S 0.0610 0.0201 0.1469 C.5605 0.9273 0.9922 0.9999 1.000 Z S 0.0000 0.0140 0.1241 C.5605 0.9273 0.9922 0.9999 1.000 Z S 0.0000 0.0127 0.1138 0.5273 0.9922 0.9999 1.000 S S 0.0000 0.0127 0.1138 0.5605 0.9922 0.9999 0.9999 C S 0.0000 0.0127 0.1136 0.5605 0.9927 0.9999 0.9999	I	.516	.519	.527	.560	.913	.992	556.	666	000
O .3019 O.3064 C.4248 C.56C5 O.9273 O.9922 O.9992 O.9999 1.000 O .2527 O.2527 O.9922 C.9992 O.9999 1.000 C MS O.2527 O.9922 C.9992 O.9999 1.000 C MS O.061C O.0767 C.1537 C.5605 O.9273 O.9922 O.9999 1.000 1 S O.0036 O.0201 C.1469 C.5605 O.9273 O.9922 O.9999 1.000 2 S O.0000 O.0140 C.1241 C.5605 O.9273 O.9922 C.9592 O.9999 1.000 2 S O.0000 O.0127 C.1134 C.5605 O.9273 O.9922 C.9592 O.9999 1.000 2 S O.0000 O.0127 C.1134 C.5605 O.9273 O.9952 C.9599 1.000 3 S O.0000 O.0126 C.1134 C.5605 O.9273 O.9952 O.9999 O.9999 O.9999	7	.463	. 465	. 465	.560	.927	.992	566.	666.	000
C MS 0.2527 0.2612 C.3323 C.5605 0.9273 0.9922 0.9992 0.9999 1.000 C MS 0.061C 0.0767 C.1597 C.5605 0.9273 0.9922 0.9992 0.9999 1.000 1 S 0.0036 0.0201 C.1469 C.5605 0.9273 0.9922 0.9992 0.9999 1.000 2 S 0.0000 0.0140 C.1134 C.5605 0.9273 0.9922 C.9592 0.9999 1.000 5 S 0.0000 0.0127 C.1134 C.5605 0.9273 0.9992 0.9999 1.000 5 S 0.0000 0.0127 C.1134 C.5605 0.9273 0.9952 0.9999 1.000	I O	.361	.386	.424	.560	.927	.992	666.	666.	000
C MS 0.C61C 0.0767 C.1937 C.5605 0.9273 0.9922 0.9992 0.9999 1.000 1	10	. 252	. 261	.332	.560	. 527	.992	666.	666.	000
1 S 0.0036 0.0201 0.1469 0.5605 0.9273 0.9922 0.9992 0.9999 1.000 2 S 0.0000 0.0140 0.1241 0.5605 0.9273 0.9922 0.9992 0.9999 1.000 5 S 0.0000 0.0127 0.1138 0.5605 0.5273 0.9992 0.9999 1.000 6 S 0.0000 0.0126 0.1132 0.5605 0.5273 0.99922 0.99992 0.9999 1.000	X U	. 661	.076	651.	.560	.927	.992	656.	666.	000
2 S 0.0000 0.0140 C.1241 C.5605 0.9273 0.9922 0.9992 0.9999 1.000 5 S 0.0000 0.0127 C.113A C.5605 C.9273 0.9922 C.9992 0.9999 1.000 C S 0.0000 0.0126 C.1132 C.5605 0.9273 0.9922 0.9999 1.000		.003	.020	.146	.560	. 527	.992	556.	666.	000
5 S 0.0000 0.0127 C.113A C.5605 C.9273 0.9922 C.9992 0.9999 1.000 C S 0.6000 0.0126 C.1132 C.5605 0.9273 0.99922 0.9999 1.000		000.	.014	.124	.560	.927	.992	656	666	.000
C \$ 0.6000 0.0126 C.1132 C.5605 0.5273 0.9922 0.9992 0.9999 1.000		000.	.012	.113	560	155.	.992	556.	666.	.000
	v	000.	.012	.113	.560	.927	.992	556.	666	000

101 8101

OF A CERAMIC CAPACITOR

NP= 9.00000-07 Kil= 6.00000-02 KD2= 5.00000-06
DELTA= 1.00000+00 TD1= 2.40000-05 TD2= 1.10000+00

THE RADIATION PULSE IS 1.00000+13 RADS/SEC FOR 2.50000-00 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+07 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME VALUES INDICATED TO THE INITIAL CAPACITOR VOLTAGE

•			C W	STANT		•			
7110		10 SEC	1 SEC	100	10 48	S	SO 001	SD 01	Sn 1 .
•	.000	000.	0000	0000	000	000	000	000	000
2	.790	.790	.799	.798	796	.798	.798	798	900
3	.787	.787	.787	.787	787	787.	.789	908	.917
3	.776	.776	.776	.776	.776	.776	.780	.014	.961
7	.746	.746	.746	.746	.746	.747	757.	.634	. 986
3	.706	.706	.766	.766	.706	.708	.729	.863	
)	.651	.651	.651	.651	.652	.656	.700	.905	.993
9	.582	.562	.542	.5.2	.583	.597	.712	969	.930
3 00	.559	.559	.559	.559	.562	.594	.003	.995	666
200	.554	.554	.551	.555	.562	.629	.924	666	•
)	.550	.550	.550	.552	.571	.720	.992	666.	
=	.543	.543	.544	.548	.565	. 823	.992	666.	. 999
=	.530	.530	.531	.539	.610	.921	.992	666.	666.
=	.492	260.	.494	.514	.670	.927	.992	666.	. 999
	.434	.435	.439	. 477	.730	.927	.952	666.	.999
=	.337	. 330	.346	.419	.778	.927	.992	666.	665.
SI 36	0.1530	0.1550	C.1728	323	.789	.927	.992	666.	666.
=	.037	000.	.056	.268	.775	.927	.992	666	666
II.	.001	•00•	.031	.234	.750	.927	.992	656	666.
2	000.	.002	.022	.166	.694	.927	.992	050.	666.
	.000	.001	.017	.150	.639	.927	.992	666.	666.
	000	.001	.01	.125	609.	.927	.992	666.	666.
	.000	.001	.013	.123	.e72	.927	.992	666.	666.
1C S	.00C	.001	.017	-	C.5605	0.9273	0.9922	0.9992	6666.0

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A TANTALUM DXIDE CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 9.000C0-06 KD1= 9.C00C0-C2 KD2= 9.000C0-C7

DELTA= 1.C00C0+00 TD1= 7.C00C0-C4 TD2= 1.S00C0+00

THE RADIATION PULSE IS 1.00000+10 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 0.00000+00 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

			S S	STANT					
7116	1 N J	10 SEC	1 SEC	10C MS	10 48	T # 2	100 US	10 08	50 1 .
	.000	.000	.000	000.	000	.000	000	000	000
	0.997	.997	.997	166.	166.	.997	997	997	100
	0.997	166.	166.	156.	.997	.997	997	997	000
	0.997	.997	166.	166.	155.	.997	.997	966	999
9	0.997	166.	.997	.997	166.	.997	166.	966	000
3	0.997	166.	156.	156.	165.	.997	166.	999	000
3	0.997	266.	166.	255.	166.	.997	156.	999	.000
200	0.996	966.	¥56.	.996	966.	966.	.997	666.	000
9	0.995	.995	.995	\$55.	.995	966.	166.	999	000
300	0.993	.993	.993	655.	. 233	.994	966.	666.	000
3 80	0.989	.989	696.	.969	066.	.992	966.	666.	000
I	0.985	.965	.985	.986	996.	.992	666.	000	000
I	0.583	.963	.963	.963	.985	.995	656.	000	000
= T	0.982	.962	.9A2	. 5.2	969	666.	000	000	000
Z U	0.982	.982	.962	. 6.9.3	.993	000	000	000	000
I O	0.582	.982	.98.2	.985	166.	000	000	000	000
200	0.982	.962	.963	.989	665.	000	000	000	000
100	\$ 0.9821	0.9823	0.9839	C.9934	1.0000	1.0000	1.0000	000	000
1 00	0.982	.962	.965	.997	000.	.000	000.	000	000
200	0.982	.962	.969	666.	000	000.	000.	000.	000
	.982	.983	.993	.000	000	0000	000	000	000
	.901	.985	156.	0000.	000	.000	000	000	000
•	.961	.969	556.	0000	000.	.000	0000	000.	000
	.901	. 993	.000	000.	000.	000	000.	1.0000	1.0000

) ,,31

DXIDE CAPACITOR OF A TANTAL.

USED ARE: THE CAPACITOR PARAVETERS KP= 9.0000-0-06 DELTA= 1.00000+00

KD2= 9.00000-C7 KC1= 0.00000-02 T01= 7.00000-02 TWE RADIATION PULSE IS 1.00000+10 RADS/SEC FOR 2.50000-06 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

TAU CTIME CONSTANT)

SO 1 .	•	000	.997	1666.0	.999	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000
10 US)	000	.997	0.9979	966	966	.999	666.	999	999	999	999	000	000	000	000	000	.000	000	000	000.	000	000	000	000
10C US		.000	.997	0.9978	.997	.997	166.	.997	186.	1997	966.	966.	666.	656	000	000	000	000	.000	000	000	000	000	000	000
SH I		000.	.997	0.9977	.997	.997	.997	.997	966.	966.	166.	.992	.992	.995	666.	666.	666	666.	666.	666.	666.	666.	666.	.999	666
10 18)	.000	166.	0.9977	.997	.997	.997	766.	966.	. 995	.993	990	986	.985	996.	.992	.996	. 999	666.	666.	660.	666.	666.	665	666
100		000.	.997	C.9977	.997	.997	.997	.997	966.	.995	.993	696.	.985	. 963	.962	.963	.984	986.	.988	.991	.992	.992	.992	.992	.992
1 560		.000	.997	0.9977	.997	.997	.997	.997	966.	.995	.993	.989	.985	.963	.961	196.	196.	.979	.977	. 472	.961	. 949	.938	.932	.931
10 SEC		.000	.997	0.9977	.997	.997	.997	.997	966.	.995	.993	686.	.985	.983	.981	.981	.960	.978	.975	946.	. 949	.918	.004	.748	999
181		000.	.997	0.9977	.997	.997	.997	166.	966.	.995	.993	606.	.985	.982	.981	.901	.980	.97	.175	.966	.947	2	3	-	~
	3411	0	2	1 05	2	3	0	3	2	٦ 00	9	7 00	=	8	=	8	2	3	E O	2					10.5

in in

10.01

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A TANTALUM CXIDE CAPACITOR

102- 1.50000+00 KD2= 9.00000-07 USED ARE: Tel= 7.600ce-C4 PARAVETERS KP= 9.000C=-06 KD1= 9.00CCF-C2 THE CAPACITOR

THE RADIATION PULSE IS 1.00000+1C RADS/SEC FOR 2.50000-CO SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+04 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

		<	U W	START					•
3411	181	10 SEC	1 SEC		S1 0-	S =	100 US	10 US	SO 1 .
)	000	000	000	000.	000	000	0000	000	000
2	.997	.997	166.	165.	1997	.997	186.	.997	997
>	.997	.997	.997	155.	.997	.997	.997	.997	999
3 8	.997	166.	.997	166.	166.	.997	.997	866.	999
5	.997	.997	156.	.997	199.	.997	.997	966.	000
3 0	166.	166.	166.	.997	156.	.997	199.	666.	000
20 C	.997	.997	156.	165.	166.	.997	.997	999	000
J	966.	.994	.955	966.	966.	966.	156.	.999	000
200	.995	.995	.995	. 995	.995	966.	166.	999	000
200	.993	.993	.993	.993	.993	.994	.996	666.	000
200	.989	696	.969	695.	066.	.992	966.	666.	000
=	.985	.985	.985	.985	986	.992	666.	000	000
I	.982	.982	.982	. 582	. 364	.995	666.	000	000
3	.979	.979	.979	.079	966.	666.	656.	000	000
16 115	0.9755	0.9756	0.9757	C.9774	C.9887	0.9993	6666.0	1.0000	1.0000
2C ==	995.	.968	.969	.972	.991	666.	666.	000	000
2 25	.947	.948	.949	.941	.992	666.	556.	000	000
Z U	.914	.914	.919	645.	. 992	999	666.	000	000
200	.650	.852	.865	.938	.992	666.	666.	000	000
1 00	.684	.692	.750	.932	.992	666.	656.	000	000
	.476	.499	.651	.932	.992	666.	555.	000.	000
	.229	.266	.591	.932	.992	666.	666.	000	000
	.025	.133	.577	.531	.992	666.	556.	000.	000
	000.	.120	.576	. 532	. 992	066.	655.	000.	.000

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

)

OF A TANTALUM OXIDE CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 9.C0003-06 KDI= 9.C0008-C2 KD2= 9.C0008-C7

DELTA= 1.C00C8+00 TDI= 7.C0008-C4 TD2= 1.50008+00

THE RADIATION PULSE IS 1.00000+10 RADS/SEC FOR 2.500C0-08' SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

FOLLOWED BY A CONSTANT RATE OF 1.00000+05 MADS/SEC

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

	•		C	ANT			•		
	INC	10 SEC	-	10C MS	24 OI	SH I	100 US	10 US	1 08
3-1									
0	0000	000	0000	0000	000	000	000	000	000
Z	0.997	.997	166.	166.	166	.997	.997	997	997
3	166.0	.997	196.	.997	166.	.997	997	997	999
3	0.997	.997	166.	1997	166.	.997	.997	.998	999
5	0.997	.997	. 397	.997	.997	.997	.997	966	000
9	0.997	.997	.997	.997	1997	.997	.997	999	000
3 0	166.0	166.	166.	166.	1997	.997	.997	999	000
3	966.0	966.	.995	966.	966.	966.	.997	999	000
3 0	0.995	.995	.995	.995	.995	.995	.997	999	000
D	0.993	.993	.993	.993	.993	.994	.997	.999	000
ے ق	0.986	.966	.984	.960	996	166.	866.	.999	000
=	0.982	.962	.982	.9.2	.963	696.	966.	. 999	000
= ~	8 0.9730	0.9730	0.9731	.973	.976	990	656	999	000
T	0.951	.951	.951	.953	.963	.992	5.60	666	000
8	0.916	.910	.919	. 522	.950	.992	999	999	000
X U	0.634	.854	. 955	.868	. 939	.992	.999		000
T T	0.0	. 699	.695	.752	. 933	.992	.959	666.	000
Z O	0.0	.462	. 502	.653	.932	.992	. 9 9 9	999	000
2	0.233	.239	.289	.593	.932	.992	999	666	000
Õ	0.026	.036	.135	.580	.932	.992	. 9 9 9	666.	000
	.000	.01	.121	.579	.932	.992	.999	666.	000
	.000	.013	.120	.578	. 936	.992		666	000
	.000	.013	.120	.577	.931	.992	656	666	000
	.000	.013	.120	C.5785	0.5317	0.9927	0.9993	0.9999	1.0000

5 31 (0.21

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A TANTALUM OXIDE CAPACITOR

KP= 9.00000-06 KD1= 9.00000-02 KD2= 9.00000-07

DELTA= 1.00000+00 TD1= 7.00000-04 TD2= 1.50000+00

THE RADIATION PULSE IS 1.00000+1C RADS/SEC FOR 2.50000-08' SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+06 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

		TAU	W	STANT					
		W	1 58	100	10 18	SIT	100 US	10 US	SO I
3-11)
v	.000	.000	000	0000	000	000	000	000	000
	.997	166.	166.	160.	997	.997	997	997	007
-	.997	.997	.997	166.	166	.997	997	997	
	.997	.997	.997	166.	166.	1997	186	966	000
>	.997	166.	.997	.997	.997	.997	1997	966	666
Э 0	.997	.997	.997	156.	.997	.997	156.	666	000
7	.997	.997	.997	156.	.997	.997	156.	999	666
200	966.	966.	966.	956.	966.	966.	166.	666.	666.
3	.994	.994	.994	.994	.994	.994	.997	666.	666.
200	266.	066.	.990	066.	066.	.991	966	999	666
200	.976	.976	.976	.976	.977	.901	.955	666.	666.
= =	946	.948	.948	.948	.951	996.	166.	666.	666.
8	. 887	. 887	.867	68	964.	.947	.993	566.	666
=	.716	.716	.716	.722	.770	.933	.992	666"	.999
10 11	0.4996	0.4998	C.5C17	0	.661	.932	.993	665.	.999
=	.243	.243	.248	195.	. 595	.932	166.	566.	666.
I O	. 626	.029	.040	.136	.581	.932	.992	666.	666.
I 00	000.	.002	.014	.122	.561	.933	.992	999	999
Z U	.000	.001	.013	.121	.560	.938	256.	.999	666.
1 00 00	.000	.001	.013	121.	.580	.931	.992	999	666
	000.	.001	.013	.121	.580	.931	.992	999	666.
	.000	.001	.213	.120	.599	.931	.992	666.	666.
	.000	.001	.013	.128	.877	.931	256.	666.	666
	000	.001	.319	•	0.5769	0.9317	0.9527	0.9993	0.9999

~ N N

a N m

10 10 16

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

5

OF A TANTALUM CXIDE CAPACITOR

KP= 9.00008-06 KC1= 9.00006-02 KD2= 9.00008-07 DELTA= 1.00003+00 T01= 7.00008-04 T02= 1.50008+00 THE RADIATION PULSE IS 1.00000+10 RADS/SEC FOR 2.50000-08' SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+07 NADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

			ت س	ANT					
1106	INT	10 SEC	1 560	100 HS	10 18	1 #8	100 US	\$n 01	Sn 1
0	000	000	000	000.	000	000	000	000	000
25 88	.997	.997	166.	.997	166	1997	.997	.997	.997
	.997	.997	.997	.997	.997	.997	.997	.997	•
	.997	106.	.997	166.	.997	.997	1997	.997	•
	.997	.997	.997	166.	166.	.997	156.	866.	.999
10 US	966.	966.	966.	966.	966.	966.	966	966.	666
3	.995	.995	.995	.995	.995	.995	.995	966.	.999
3	.991	.991	.991	166.	.991	.991	.993	966.	.00
3	.982	.982	.982	.992	.982	.983	996.	966	
	995.	.960	.960	.960	960	.963	.961	.997	.999
300	.664	.864	.86.	.865	.667	.888	.963	.995	.000
=	.671	.671	.671	.672	.683	767.	.947	166.	666.
2	. 153	. 353	.353	.357	.395	.635	.936	966.	666.
8	.041	.041	.042	.053	.146	.582	.932	.992	666.
1	.001	.001	.002	.014	.122	.501	.933	.992	666.
=	000.	.000	.001	.013	.121	.561	.936	.992	666.
=	.000	.000	.001	.013	.121	.501	.931	.992	666.
	000.	.000	.001	.013	.121	.582	.931	.992	999
=	.000	.000	.001	.013	.122	.601	.931	.992	666.
8	.000	.00C	.001	.014	.129	.070	.931	.992	666.
	.000	000.	100.	.010	.177	.576	.931	.992	666.
%	0.0000	0.0003	0.0033	60	0.3337	0.5769	.931	.99	666.
5	300.	000.	900	.063	. 633	.576	.931	.992	666
300	000	.001	.016	.166	.120	.576	0.9317	0.9927	0.9993

1010,01

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A TANTALUM OXIDE CAPACITOR

T02- 1.50000+00 K02= 9.00000-07 THE CAPACITOR PARAMETERS USED ARE: MF= 9.0000F-06 KD1= 9.0000F-02 THE RADIATION PULSE IS 1.0000#+11 RADS/SEC FOR 2.5000#-08 SEC FOLLOWED BY A CONSTANT RATE OF 0.0000#+00 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHANGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

	sn 1 . sn	000 1,000	776 0.978	796 0 997	614 0.996	987 0.999	905 0.999	952 0.999	978 0.999	960 1.000	983 1.000	989 1.000	998 1,000	000 1.000	000 1.000	000 1.000	000 1.000	000 1.000	000 1.000	000 1.000	000 1.000	000 1.000	000 1.000	000	
	100 US 10	.0000	.9778	.9778	.9778	.0 8776	.0 8776.	.9779 0.	.9763 0.	.9791 0.	.9612 0.	.9674. 0.	.9938 0.	.1 5866.	.0000	.0000	.0000	.0000	.0000	.0000	.0000.	.0000	.0000	1.0000 1.0	. 0000
	SH T	000	.977	.977	.977	.976	.975	.973	969	.960	.947	.920	.928	.950	966.	000	000	000.	000	.000	000	000.	000	1.0000	000
	10 #8	000	.977	977	977	976.	.975	.973	.967	.957	.941	.905	.675	.864	.893	.935	976.	956.	000	000.	000.	000	000	1.0000	000
NSTANT	100	0000	.977	.977	.977	.976	.975	.973	195.	.957	.940	.962	. 868	.645	. 842	. 450	. 864	658.	.939	.977	.998	666.	666.	1.000	000
3411)		.000	.977	.977	.977	.975	.975	.973	.967	.957	.940	.962	.867	.643	.036	939	.030	. 943	.850	.964	65E.	.939	. 376	C.9987	000
•	10 SE	.000	.977	.977	.977	.976	.975	.973	.967	.957	.940	.902	.867	.842	. 935	. 935	. 835	. 836	. 936	. 638	.842	.849	.863	0.8981	920
	F 11	.000	0.977	0.977	0.977	0.976	0.975	0.973	0.967	0.937	0.940	0.902	0.867	0.842	0.635	0.635	0.835	0.635	0.435	0.634	0.634	. 633	.633	0.6326	CLA
	7106	0	2	7	3	3	3	9	200	3 00	3	8	=	*	=	ı	Z	Z	I	100	100 E			S	

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A TANTALUM GXIDE CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 9.000C=-06 KJ1= 9.C00CP-02 KD2= 9.0000P-07

DELTA= 1.C00C=+00 TD1= 7.C00CP-04 TD2= 1.500CP+00

THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHANGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME VALUES BY THE THITIAL CAPACITOR VOLTAGE

	ø	•	U W	ANT		•		•	
717	126	10 SEC	1 860	10C MS	10 18	SH T	100 US	50 01	Sn 1
	.000	000	.000	0000	000	000	000	000	000
2	0.977	.977	.977	.977	.977	.977	.977	.977	.970
3	0.977	.977	.977	.977	.977	.977	.977	.979	.991
3	0.977	.977	.977	.977	.977	.977	.977	.901	•
3	0.976	.976	.976	.976	.976	.976	.977	.985	966.
10 05	0	0.9756	0.9756	C.9756	0.9756	0.9758	0.9778		0.000
3	0.573	.973	.973	.973	.973	.973	.977	.995	.999
9	0.967	.967	196.	.967	.967	996	.978	.997	••••
200	0.957	.957	.957	.957	.997	.960	.979	966.	000
J	0.040	.940	.940	.940	.941	.947	.961	966.	000
3 00	0.902	.902	.962	.902	.905	.926	.987	906.	000
=	0.867	.867	.967	. 960	. 675	.926	.993	666.	.000
	0.842	. 842	.843	.645	.864	.958	966.	000.	000
=	0.635	. 935	. 835	.042	. 693	966.	0000	000	.000
10 11	0.634	.834	.636	.949	. 434	666.	000	000	000
I	0.034	. 834	.037	.663	. 175	.999	000	000	000
36 II	0.632	.633	. 840	. 697	.998	666.	000	000.	000
100	0.629	. 830	. 945	.934	. 499	666.	.000	000	000
2	0.623	. 826	. 653	.971	666.	.990	000	000	000
1 00 100	0.00	. 613	. 975	166.	666.	.999	0000	000	000
	.775	.73	. 898	.992	.999	666.	000.	000.	000
Ξ.	20	.750	.920	.992	. 999	. 999	0000	000	0000
	78	.664	.931	.992	666.	666.	0000	000	000
	00	.622	.931	. 552	655.	666.	000	00	00

10", 103

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A TANTALUM DXIDE CAPACITOR

KD2- 9.00000-07 THE CAPACITOR PARAMETERS USED ARE: KP= 9.00000-06 DELTA= 1.0000#+00

THE RADIATION PULSE IS 1.0000@+11 RADS/SEC FOR 2.5000@-04 SEC Followed by a constant rate of 1.0000@+04 rads/sec TD2= 1.50000+00 KD1= 9.00000=02

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME VALUES GIVEN ARE INDICATED TO THE INITIAL CAPACITOR VOLTAGE

OF A TANTALUM DXIDE CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 9.0000@-06 KD1= 9.0000@-02 KD2= 9.0000@-07

DELTA= 1.0000@+00 TD1= 7.0000@-04 TD2= 1.5000@+00

THE RADIATION PULSE IS 1.00COC+11 RADS/SEC FOR 2.500C+-00 SEC FOLLOWED BY A CONSTANT RATE OF 1.0000C+05 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

,			S S	START					
7116	141	10 SEC		10C MS	10 48	T ES	100 US	sn ol	Sn 1 .
•	.000	.000	000	000.	000	000	000	000	000
	0.9777	0.9777	0.9777	77	.977	.977	.977	.977	978
3	.977	977	.977	.977	.977	.977	.977	979	.991
>	.977	.977	.977	.977	.977	.977	.977	.961	966
3	.976	.976	.976	.976	976.	.976	.977	.985	. 999
3	.975	. 975	.975	.975	.975	.975	.977	990	.999
0	.973	.973	.973	.973	.973	.973	.977	.995	. 999
D	.967	.967	.967	196.	.967	996.	.976	.997	.999
200	.957	.957	.957	156.	.957	.960	.979	966.	000
200	.939	.939	.939	.940	.940	.947	.961	966.	000
D	. 501	.901	.901	.901	₹06	.927	.967	966.	000
-	.864	.864	.864	.865	. 872	.926	.993	999	000
2 I S	. 834	.834	.034	.636	.856	.953	166.	999	000
=	. 809	.809	.810	.016	.871	686.	656.	999	000
=	.780	.780	.782	.797	.896	.992	666.	999	000
E U	.726	.726	.730	.763	920	.992	999		000
=	. 585	.586	155.	.689	.931	.992	666.	666.	000
I U U	100	.411	.437	.627	.931	.992	656.	.999	000
Z	.198	.204	.260	.569	.931	.992	.999	.999	.000
I DO	.022	.034	.133	.580	.931	.992	999	666.	000
	000	.014	.121	.579	.931	.992	666.	.999	000
	000.	.013	.120	. 478	.931	.992	999	999	.000
	0000	.013	.120	.577	.931	.992	999	999	000
	000.	.013	.120	C.5785	0.9317	0.9927	69899	0.9999	1.0000

10", 105

10, 100

Canada and the same and

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A TANTALUM GXIDE CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 9.000C9-06 KD1= 9.000C9-02 KD2= 9.000C9-07

DELTA= 1.000C9+0C TD1= 7.000C9-C4 TD2= 1.500C0+0C

THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.50000-00 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+06 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

			<	C U	STANT					
		INE	10 SEC	1 SEC		10 MS	SH I	100 US	10 US	SO I
1106										
		000.	0000	0000	000	000.	000.	.000	000	000
		.977	.977	.977	.977	.977	.977	.977	.977	978
-		.977	.977	.977	.977	.977	.977	.977	979	991
		.977	.977	.977	.977	.977	.977	.977	981	966
5		916.	.976	.976	.976	976.	.976	.977	.985	666
7 01	S	0.9755	0.9755	0.9755	C.9755	0.9755	0.9757	0.9777	0.9904	96660
0		.973	.973	.973	.973	.973	.973	.977	.995	666
U		996.	.966	.965	996.	996.	.968	.977	166.	.999
00		.956	.956	.956	.956	.986	.959	.978	166.	666
U		.937	.937	.937	.937	.937	.944	979.	966	666
00		.890	.890	.850	.890	.893	.918	.983	966	999
_		.834	. 834	.834	.635		.905	986	666.	999
		.760	.760	.761	.763	787.	.913	156.	666	999
		609.	609.	.610	.619	.761	.931	.992	999	666
O		.424	.425	124.	.452	.632	.931	.992	666	666
		.206	.207	.213	196.	.590	.931	.992	.999	666.
0		.023	.025	.036	.134	.581	.931	.992	999	666.
ဗ္		.000	.002	.014	.122	.581	.931	.992	666.	666.
0		000.	.001	.013	.121	.580	.931	.992	666.	666.
00		.000	.001	.013	.121	.580	.931	.992	666.	666.
	y	· 00C	.001	.013	.121	.580	.931	.952	666.	666.
	S	.000	.001	.013	.120	665.	.931	.992	666.	666.
	S	000.	.001	.014	.128	.677	.931	.992	666.	666.
	S	000.	.001	.018	.177	.576	.931	.992	999	666
)				

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A TANTALUM CXIDE CAPACITOR

KD2= 9.00000-07 THE CAPACITOR PARAMETERS USED ARE: KP# 9.00000-06 Kn1# 9.00000-02

T02= 1.50000+00 TO1= 7.00008-C4 DELTA= 1.00000+00

THE RADIATION PULSE IS 1.00COP+11 RADS/SEC FOR 2.500CP-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.0000P+07 RADS/SEC

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT. TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

	•		-	S W	AN					
		181	10 SEC	1 SEC	10C MS	1C #S	SH I	100 US	10 US	1 05
TIPE								4		
U		000.	000	.000	000.	000	000	000	000	000
		.977	.977	.977	.977	.977	.977	.977	.977	.976
-		.977	.977	.977	.977	.977	.977	.977	.979	.991
		.977	.977	.977	.977	.977	.977	.977	.981	966
_		.976	.976	.976	976.	916.	976.	.977	985	999
0		.974	.974	.974	.974	.974	.974	.976	.989	.999
0		.971	.971	.971	.971	.971	.972	976.	.932	666.
0		.961	.961	.961	.961	.961	.963	.973	.992	.999
00		.944	.944	.944	.944	945	946	.970	.992	666.
200	Sa	0.9084	0.9084		836	606	919	.964	.992	.999
00		.788	.788	.788	.788	.793	.632	.953	.992	999
-		.590	.590	.590	.592	.607	.722	.942	.992	.999
		.302	.302	.363	.367	.351	.619	.935	.992	666.
		.035	.035	.036	.047	.142	.582	.932	.992	.999
.0.		.001	.001	.002	.014	.122	.581	.933	.992	666.
0		.000	000.	.001	.013	.121	.541	.936	.992	666.
		.000	.000	.001	.013	.121	.561	.931	.992	666.
U		.000	.000	100.	.013	.121	.582	.931	.992	999
Ų		000.	.000	.001	.013	.122	.601	.931	.992	666.
o		.000	.000	100.	.014	.129	.878	.931	.992	666.
	S	.000	000.	.001	.018	.177	.576	.931	.992	666.
	n	.000	000.	.003	.033	.333	.576	.931	.992	666
	S	000	.000	.008	.083	. 833	.576	.931	.992	666
1212	S	.000	.001	.016	C-1667	C.120C	'n	0.9317	0.9927	0.9993

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A TANTALUM OXIDE CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:
KP= 9.0000@-06 KDI= 9.0000@-02 KDZ= 9.0000@-07
DELTA= 1.0000@+00 TDI= 7.0000@-04 TDZ= 1.5000@+00

THE RADIATION PULSE IS 1.00000+12 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF C.00000+00 RADS/SEC T02= 1.50000+00

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

1.0000 0.7985 0.7985 0.7985 0.7896 0.7896 0.7896 0.7899 0.7899 0.7899 0.7899 0.7899 0.7899 0.7899 0.7899 0.7899 0.7899 0.7899 0.7899 0.7899 0.1653 0.1658 0.1659 0.1659 0.1659	00000000000000000000000000000000000000		00.140000000000000000000000000000000000	000			
79965 7796 7796	0			000	000		
7965 7967 7967 7696 77696 776999 7769 7769 77	7 7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8	~~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	00000	>>>		000	.000
7967 7986 7696 7696 7699 7169 5399 6475	7 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		9000	.798	.798	.798	.800
7896 7896 7809 7609 7160	7 7 7 7 7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		798	197.	952.	.016	.925
7896 76896 71689 71689 68475 68475 68475 68475 68475 6875 6875 6875 6875 6875 6876 6876 68	7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	000 000 000 000 000 000 000 000 000 00	789	.795	. 799	. 832	.971
7609 7609 6475 6475 0.7639 3374 0.5399 1609 0.1610 1653 0.1660 1651 0.1660	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 789. 647. 748.	.781	.790	.799	.871	966.
. 7639 . 7164 . 5399 . 3574 . 3574 . 3574 . 0 . 0 . 3574 . 1653 . 1653	76 76 40 90 90 90 90 90 90 90 90 90 90 90 90 90	.763	774	.783	.861	.915	.997
. 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7164 6475	.647	1000	.768	.863	986	.997
5399 3574 2411 0.5399 1609 0.1610 1653 0.1660 1651 0.1660 1651 0.1660	6475	.647	.717	.728	.011	976	.997
.3374 .3574 .2411 .1809 .1853 .1653 .1653 .1653 .1653 .1653 .1653	000	CAR	650	.672	.821	980	966
.3574 .2411 .1609 .1653 .1653 .1653 .1660 .1651 .1651	777	ファハー	545	.595	. 840	.983	000
.2411 .1609 .1655 .1653 .1653 .1653 .1650 .1651 .1651	3576	.359	.375	.510	. 888	989	000
1653 1653 0.1656 1653 0.1660 1651 0.1660 1631	2415	.245	.282	.547	.941	166.	000
.1653 .1653 .1652 0.1660 .1651 0.1692 0.1732	1820	.191	.277	.731	.965	000	000
.1653 0.1660 .1651 0.1668 .1651 0.1692	1689	.198	. 442	.977	999	000	.000
.1652 0.1669 .1651 0.1692 .1649 0.1732	1728	.237	.661	666	000	000	000
.1651 0.1692 .1649 0.1732	1810	.310	. 475	000.	000	000	000
1649 0.1732	2051	. 169	.993	000	000	000	000
	437	.699	656.	000	0000	000	000
.1646 0.1811	3153	.665	666.	0000	000.	000.	000
.1637 0.2043	4911	.992	666.	000	000	000	000
.1626 0.2415	6892	965.	000.	000	000	000	000
.1612 0.3116	812	656.	000	1.0000	1.0000	1.0000	1.0000
.16CC 0.4876	9256	655.	0000	000	000	000	000
.1598 0.6889	6656	000.	000.	000	0000	000	000

10.13, 0

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A TANTALUM CXIDE CAPACITOR

RE	KPs 9.00000-06 Kris 9.00000-02 KD2* 9.00000-07	1.50000+00
USED A	K02=	102=
PARAVETERS	9.C00C0-C2	7.000ce-C4
CITOR	Kr.1=	Tota
THE CAPA	90-00000.6	1.00000+00
	X P a	DELTA:

THE RADIATION PULSE IS 1.00COM+12 RADS/SEC FOR 2.500CM-00 SEC FOLLOWED BY A CONSTANT RATE OF 1.0COOM+03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATICS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

		-	S S	ANT					
	J. I	10 SEC	1 SEC	10C MS	20 48	91 1	100 US	10 US	I US
1116									
ပ	.000	000	.000	0000	000.	000	000	000	000
Z	0.798	198	.798	.798	798	798	798	.798	900
3	0.796	.796	.796	.796	.796	797	798	916	.925
3	0.795	.795	.795	.795	.795	.795	.799	. 832	.971
7	0.789	.789	.789	.789	. 789	.790	295	.871	966
9	8 0.7809	0.7809		80		~	.801	.915	.997
7	0.763	.763	.763	.763	.764	.768	.003	986	.997
D	0.716	.716	.716	.716	.717	.728	.011	976	1997
7 20	0.647	.647	.647	.647	.650	.672	. 821	980	966
9	0.539	.539	.539	.540	.545	.595	640	983	000
7 20	0.357	.357	.357	.359	.375	.510	999	989	000
=	0.241	.241	.241	.245	.282	.547	.941	.994	000
3	0.180	. 161	.162	.191	.277	.731	.985	000	000
I	0.165	.165	.169	.198	.442	.977	666	000	000
3	0.165	.165	.172	.237	.661	666.	.000	000	000
E	0.165	.166	.160	.309	. 275	666	.000	000	000
E E	0.164	.168	.204	.468	.992	666	000	000	000
	0.163	.172	.242	.667	665	666.	000	000	000
I D	0.162	.178	.312	. 860	666.	666.	000.	.000	.000
E	0.157	151.	.461	.985	666	666.	000	000	000
	.151	.220	.665	166.	666.	666.	000	200.	000
	.139	.201	.837	.992	666.	666.	200.	000	000
	.111	.399	.926	.992	666.	666.	000	000	000
10 \$.076	. 50	156.		66	66	O	1.0000	1.0000
	•								

1012 103

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A TANTALUM GXIDE CAPACITOR

KD2= 9.00000-07 THE CAPACITOR PARAVETERS USED ARE:

T02= 1.50000+00 KP= 9.0000e=06 KD1= 9.0000e=02 DELTA= 1.000CP+00

THE RADIATION PULSE IS 1.00Cne+12 RADS/SEC FOR 2.500Ce-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+04 RADS/SEC

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

			2	STA					
1 1 1	INF	10 SEC	1 SEC		10 48	SH	100 US	10 US	Sn 1 .
	000	000	000	000	000	000	000	000	000
2	0.798	.798	.798	.798	. 798	.798	.798	798	900
3	0.796	.796	.796	.796	.796	797.	198	.016	.925
2 7	0.795	.795	.795	.795	. 795	.795	.799	. 832	.971
3 5	0.789	.789	.789	.789	.789	.790	.799	.871	966.
) 0	0.780	.780	.780	.780	.781	.783	.601	.915	.997
i o	0.763	.763	.763	.763	.764	.768	.863	.956	.997
) 0	0.716	.716	.716	.716	.717	.728	.011	.978	.997
3 0	0.647	.647	.647	.647	.650	.672	.821	.980	.998
30 DO	\$ 0.5399	0.5399	6.5399	C.5405	0.5458	0.5951	0.8405	0.9831	1.0000
3 0	0.357	.357	. 357	.359	.375	.510	.688	.989	.000
I	0.241	.241	.241	.245	.282	.547	.941	166.	000
Z	0.180	.160	.161	.191	.277	.731	.965	000	000
I	0.165	.165	.168	.198	. 142	.976	653.	000	000
I U	0.164	.164	171.	.236	.659	666.	666.	000	000
X U	0.162	.164	.178	.367	. 671	666.	666.	000	000
I	0.159	.163	.158	.479	985.	666.	666.	000.	000
Z	0.153	.161	.230	.667	. 555	666.	656.	000	000
I O	0.142	.158	.285	104.	.992	666.	656.	000.	000
I U	0.114	.149	.403	.927	.992	666.	666.	000	000
	.078	.139	. 5c3	.931	.992	666.	656.	000.	000
	.037	.128	.563	.931	.992	666.	656.	000	000
	.004	.120	.576	.931	.992	666.	556.	000	000
	000	.120	.576	.931	.992	666.	656.	000.	000

1 1 1.

OF A TANTALUM DXIDE CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP# 9.000C@-06 KDI# 9.COOC@-C2 KD2# 9.000C@-07

DELTA# 1.COOC@+00 TDI# 7.COOC@-04 TD2# 1.500C@+G0

SEC THE RADIATION PULSE IS 1.00000+12 RADS/SEC FOR 2.50000-06
FOLLOWED BY A CONSTANT RATE OF 1.00000+05 RADS/SEC TD2= 1.50000+C0 T01= 7.00000-04 DELTA= 1.00000+00

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHANGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

	•	•		U U	STANT				,	
110	8 e4	1 X X	10 SEC	1 SEC	100	10 18	51 1	100 US	10 US	1 08
)	•	.000	.000	.000	0000	000.	000	000	000	000
23		.798	.798	.798	.798	864	798	.798	.798	. 800
		.796	.796	.796	.796	.796	797	.798	.016	.925
~		. 795	. 795	.795	.795	. 795	.795	.799	.832	.971
•		.789	.789	.789	.789	.789	790	.799	.071	966.
_		.780	.780	.760	.760	.781	.783	.801	.915	.997
20		.763	.763	.763	.763	.764	.760	603	926	.997
-		.716	.716	.716	.716	717.	.727	. 811	.978	.997
Ö		.647	.647	.647	.647	650	.672	.621	980	966.
_		.539	.539	.539	.540	545	.594	.840	.963	000
0		.356	.356	.357	.358	.374	.509	999	986.	000
		.240	.240	.240	.244	.261	.546	.941	.994	000
~		.179	.179	.160	.169	.275	.720	.984	666.	000
5	Z	0.1603	0.1607	C.1637	C.1933	0.4349	0.9708	1666.0	0.9999	1.0000
		.154	.155	.161	.225	.641	.992	666.	666.	000.
20		.143	.145	.150	,281	.633	.992	999		000
		.115	.119	.150	.402	.926	.992	666.	666.	000
0		.080	.086	.140	.505	.931	.992	666.	666.	000
		.039	.048	.130	.566	.931	.992	999	666.	000
0		₹00.	.017	.122	.576	.931	.992	556.	666.	000
-	v)	.000	.013	.120	.576	.931	.992	.999	666.	000
~	S	000	.013	.120	.576	.931	.992	656.	666.	000
5	S	.000	.013	.120	.576	.931	.992	566.	666.	000.
2	S	000	.013	.120	.576	.931	.992	566.	666.	000

1012,106

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A TANTALUM OXIDE CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 9.00008=06 KD1= 9.00008=02 KD2= 9.00008-07

DELTA= 1.00000+00 TD1= 7.00008=04 TD2= 1.50008+00

THE RADIATION PULSE IS 1.00030+12 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+06 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

1 SEC 10C MS 1C MS 1 L WS 1 LO US 100 US 100 CO 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000		•	<	U W	START					•
1.0000 1.	7.1	Z	O SE	1 SE	2	2	2	D	0	1 08
1 US 0.7985 0.7985 0.7985 0.7985 0.7985 0.7985 0.7985 0.7987 0.7987 0.7987 0.7987 0.7987 0.7987 0.7987 0.7988 0.7987 0.7988 0.7987 0.7988 0.7988 0.7987 0.7988 0.7988 0.7987 0.7988 0.7988 0.7988 0.7988 0.7987 0.7988 0.7988 0.7988 0.7988 0.7988 0.7988 0.7988 0.78		.000	000	000	000	000.	.000	000	000	000
1 US 0.7967 0.7967 0.7967 0.7967 0.7968 0.7969 0.7968 0.9161 0.0188 0.7949 0.79	2	.790	.798	.798	798	.798	.798	.798	.798	900
2 US 0.7949 0.7949 0.7949 0.7956 0.7956 0.7954 0.7990 0.0319 0.0 US 0.7066 0.7066 0.7096 0.7096 0.7096 0.7096 0.7096 0.7096 0.7096 0.7096 0.7096 0.7099 0.0716 0.7090 0.70999 0.7099 0.7099 0.7099 0.7099 0.7099 0.7099 0.7099 0.7099 0.70999 0.7099 0.7099 0.7099 0.7099 0.7099 0.7099 0.7099 0.7099 0.70999 0.7099 0	7	.796	.796	.795	796	.796	.796	198	.916	.925
\$\begin{array}{cccccccccccccccccccccccccccccccccccc	>	.794	. 794	.794	252	.795	.795	.799	.031	.971
0 US 0.7808 0.7808 0.7808 0.7808 0.7810 0.7842 0.7861 0.8637 0.9566 0.0 US 0.7837 0.7637 0.7637 0.7637 0.7637 0.7637 0.7637 0.7637 0.7637 0.7637 0.7637 0.7637 0.7637 0.7637 0.7637 0.7637 0.7648 0.7727 0.7276 0.8108 0.9782 0.8728 0.8728 0.8728 0.8728 0.8728 0.9782 0.9782 0.9782 0.95383 0.8526 0.9782 0.9782 0.95383 0.8526 0.9782 0.9993 0.0782 0.9782 0.9782 0.9782 0.9782 0.9782 0.9782 0.9782 0.9993 0.0782 0.9782 0.	3	.789	.789	.789	769	.789	.790	. 799	.871	966
C US 0.7637 0.7637 C.7637 C.7642 0.7642 0.7681 0.8037 0.9566 0.808	5	.780	.780	.780	780	.761	.783	.801	.915	.997
\$6 US 0.7160 0.7160 0.7160 0.7172 0.7276 0.6106 0.9762 0.00 US 0.6466 0.6467 0.6469 0.6492 0.6717 0.6208 0.9604 0.90 US 0.5360 0.3526 0.3526 0.3544 0.3705 0.5051 0.6859 0.9829 0.00 US 0.5326 0.3526 0.3526 0.3705 0.5051 0.6859 0.9826 0.5051 0.6232 0.9826 0.5163 0.5232 0.5232 0.5232 0.5232 0.5953 0.9826 0.5232 0.5232 0.5232 0.5232 0.5953 0.9826 0.5232 0.5232 0.5232 0.5232 0.5232 0.5953 0.9953 0.5232 0.5232 0.5232 0.5232 0.5232 0.5953 0.9953 0.5232 0.5232 0.9953	D	.763	.763	.763	763	.764	.768	.863	.956	.997
00 US 0.5360 0.6466 0.6467 0.5469 0.5440 0.5933 0.68208 0.9804 0.00 US 0.5380 0.3526 0.3528 0.3524 0.3705 0.5051 0.8855 0.9886 0.00 US 0.2320 0.2324 0.3705 0.5051 0.8855 0.9886 0.00 US 0.2320 0.2324 0.2372 0.2572 0.5051 0.8855 0.9886 0.00 US 0.2320 0.2324 0.2572 0.5057 0.9993 0.00 US 0.1633 0.1634 0.1634 0.1534 0.2577 0.9993 0.00 US US 0.1634 0.1634 0.1534 0.2577 0.9993 0.00 US US 0.1634 0.1637 0.1637 0.9993 0.00 US US 0.1634 0.1637 0.1637 0.9993 0.00 US US 0.1637 0.	20 05	.716	.716	.716	716	.717	.727	. 810	.978	1997
00 US 0.53EC 0.3526 0.3528 0.3544 0.3705 0.5051 0.8559 0.9886 0.0 US 0.3526 0.3526 0.3528 0.3524 0.3705 0.5363 0.8551 0.8655 0.9886 0.3526 0.3526 0.3528 0.3708 0.2728 0.5363 0.9367 0.9943 0.2 US 0.232C 0.2322 0.2322 0.2728 0.2572 0.9943 0.9943 0.9943 0.1634 0.1634 0.1634 0.1634 0.1634 0.1634 0.127 0.9993 0.2572 0.9966 0.9917 0.9993 0.2 USC NS 0.0847 0.0897 0.127 0.9993 0.2 USC NS 0.0847 0.0897 0.127 0.9993 0.2 USC NS 0.0847 0.0897 0.1276 0.9993 0.2 USC NS 0.0060 0.0178 0.1276 0.5769 0.9317 0.9993 0.2 USC NS 0.0060 0.0148 0.1217 0.5769 0.9317 0.9993 0.2 USC NS 0.0060 0.0146 0.1217 0.5769 0.9317 0.9993 0.2 USC NS 0.0014 0.0136 0.1217 0.5769 0.9317 0.9993 0.2 USC 0.0014 0.0136 0.1218 0.5769 0.9317 0.9927 0.9993 0.2 USC 0.0014 0.0135 0.1216 0.5769 0.9317 0.9927 0.9993 0.2 USC 0.0014 0.0135 0.1216 0.5769 0.9317 0.9927 0.9993 0.2 USC 0.0014 0.0135 0.1216 0.5769 0.9317 0.9927 0.9993 0.2 USC 0.0014 0.0135 0.1216 0.5769 0.9317 0.9927 0.9993 0.2 USC 0.0014 0.0135 0.1216 0.5769 0.9317 0.9927 0.9993 0.2 USC 0.0014 0.0141 0.1217 0.5769 0.9317 0.9927 0.9993 0.2 USC 0.0014 0.0141 0.1272 0.5769 0.9317 0.9927 0.9993 0.2 USC 0.0014 0.0141 0.1272 0.5769 0.9317 0.9927 0.9993 0.2 USC 0.0014 0.0141 0.1272 0.5769 0.9317 0.9927 0.9993 0.2 USC 0.0014 0.0141 0.1272 0.5769 0.9317 0.9927 0.9993 0.2 USC 0.0014 0.0141 0.1272 0.5769 0.9317 0.9927 0.9993 0.2 USC 0.0014 0.0141 0.1272 0.5769 0.9317 0.9927 0.9993 0.2 USC 0.0014 0.0141 0.1272 0.5769 0.9317 0.99317 0.9993 0.2 USC 0.0014 0.0014 0.0141 0.1272 0.5769 0.9317 0.99317 0.9993 0.2 USC 0.0014 0.0014 0.0141 0.1272 0.5769 0.9317 0.99317 0.9993 0.2 USC 0.0014 0.0014 0.0141 0.1272 0.5769 0.9317 0.99317 0.9993 0.2 USC 0.0014 0.001	200	.646	.646	.646	646	649.	.671	.820	.980	966.
C US 0.3526 0.3526 0.3526 0.3526 0.3526 0.3526 0.3526 0.3526 0.3526 0.3526 0.3526 0.3526 0.3526 0.2363 0.9963 <th>0</th> <th>.536</th> <th>38</th> <th>.538</th> <th>538</th> <th>.544</th> <th>.593</th> <th>.839</th> <th>.982</th> <th>999</th>	0	.536	38	.538	538	.544	.593	.839	.982	999
	0	.352	.352	.352	354	.370	.505	.865	986.	666
Z NS 0.1633 0.1634 C.1243 C.1733 0.257C 0.7045 0.9767 0.9993 C. 18 0.1207 0.1210 C.1237 C.1504 0.3714 0.9160 0.9927 0.9993 C. 18 0.0841 0.0847 0.0899 C.1407 0.4924 0.9317 0.9927 0.9993 C. 18 0.0841 0.08419 C.0504 C.1302 0.5654 0.9317 0.9927 0.9993 C. 18 0.00647 0.0060 C.0178 C.1226 0.5769 0.9317 0.9927 0.9993 C. 18 0.0061 0.0015 C.1216 0.5769 0.9317 0.9927 0.9993 0. 18 0.0000 0.0014 C.0137 C.1214 0.5769 0.9317 0.9927 0.9993 0. 18 0.0000 0.0014 C.0136 C.1217 0.5769 0.9317 0.9927 0.9993 0. 18 0.0000 0.0014 C.0136 C.1216 0.5769 0.9317 0.9927 0.9993 0. 18 0.0000 0.0014 C.0136 C.1216 0.5769 0.9317 0.9927 0.9993 0. 18 0.0000 0.0014 C.0135 C.1216 0.5769 0.9317 0.9927 0.9993 0. 18 0.0000 0.0014 C.0135 C.1216 0.5769 0.9317 0.9527 0.9993 0. 18 0.0000 0.0014 C.0135 C.1216 0.5769 0.9317 0.9527 0.9993 0. 18 0.0000 0.0014 C.0135 C.1217 0.5769 0.9317 0.9527 0.9993 0. 18 0.0000 0.0014 0.0135 C.1217 0.5769 0.9317 0.9527 0.9993 0. 18 0.0000 0.0014 0.0135 C.1217 0.5769 0.9317 0.9527 0.9993 0. 18 0.0000 0.0014 0.	=	.232	.232	.232	236	.272	.536	.936	.994	666.
S MS 0.12C7 0.1210 C.1237 C.1504 0.3714 0.9160 0.9927 0.9993 C. MS 0.0641 0.0647 0.0699 C.1407 0.4924 0.9317 0.9927 0.9993 C. MS 0.0640 0.0419 C.0504 C.1302 0.5654 0.9317 0.9927 0.9993 C. MS 0.0607 0.0049 C.0176 C.1322 0.5654 0.9317 0.9927 0.9993 C. MS 0.0607 0.00136 C.1216 0.5769 0.9317 0.9927 0.9993 0. MS 0.0600 0.0014 C.0136 C.1214 0.5769 0.9317 0.9927 0.9993 0. MS 0.0600 0.0014 C.0136 C.1216 0.5769 0.9317 0.9927 0.9993 0. MS 0.0600 0.0014 C.0136 C.1216 0.5769 0.9317 0.9927 0.9993 0. MS 0.0600 0.0014 C.0136 C.1217 0.5769 0.9317 0.9927 0.9993 0. MS 0.0600 0.0014 C.0136 C.1217 0.5769 0.9317 0.9927 0.9993 0. MS 0.0600 0.0014 C.0135 C.1206 0.5769 0.9317 0.9927 0.9993 0. MS 0.0600 0.0014 C.0135 C.1276 0.5769 0.9317 0.9927 0.9993 0. MS 0.0600 0.0014 C.0135 C.1277 0.5769 0.9317 0.99527 0.9993 0. MS 0.0600 0.0014 C.0137 C.1277 0.5769 0.9317 0.99527 0.9993 0. MS 0.0600 0.0014 C.0137 C.1277 0.5769 0.9317 0.99527 0.9993 0. MS 0.0600 0.0014 0.0135 C.1277 0.5769 0.9317 0.99527 0.9993 0. MS 0.0600 0.0014 0.0014 0.0141 C.1277 0.5769 0.9317 0.99527 0.9993 0. MS 0.0600 0.0014 0.0014 0.0147 0.05769 0.9317 0.99317 0.99527 0.9993 0. MS 0.0600 0.0014	1	.163	.163	.144	173	.257	.704	.978	.999	666.
C MS 0.0841 0.0847 0.0899 C.1407 0.4924 0.9317 0.9927 0.9993 C. MS 0.0409 0.0419 C.0504 C.1302 0.5654 0.9317 0.9927 0.9993 C. MS 0.0047 0.0060 C.0178 C.1226 0.5769 0.9317 0.9927 0.9993 C. MS 0.0061 0.0015 C.0138 C.1218 0.5769 0.9317 0.9927 0.9993 C. MS 0.0000 0.0014 C.0137 C.1214 0.5769 0.9317 0.9927 0.9993 C. MS 0.0000 0.0014 C.0136 C.1214 0.5769 0.9317 0.9927 0.9993 C. MS 0.0000 0.0014 C.0136 C.1216 0.5769 0.9317 0.9927 0.9993 C. MS 0.0000 0.0014 C.0136 C.1216 0.5769 0.9317 0.9993 C. MS 0.0000 0.0014 C.0136 C.1216 0.5769 0.9317 0.9993 C. MS 0.0000 0.0014 C.0135 C.1216 0.5769 0.9317 0.9993 C. MS 0.0000 0.0014 C.0135 C.1277 0.5769 0.9317 0.9993 C. MS 0.0000 0.0014 C. MS 0.0141 C. MS 0.5769 0.9317 0.99527 0.9993 C. MS 0.0000 0.0014 0.0141 C. MS 0.5769 0.9317 0.99527 0.9993 C. MS 0.0000 0.0014 0.0141 C. MS 0.5769 0.9317 0.99527 0.9993 C. MS 0.0000 0.0014 0.0014 0.01771 0.5769 0.9317 0.99527 0.9993 C. MS 0.0000 0.0014 0.0014 0.01771 0.5769 0.9317 0.99527 0.9993 C. MS 0.0000 0.0014 0.0	I	.120	.121	.123	150	.371	.916	.992	666.	666.
C MS 0.C409 0.0419 C.0504 C.1302 0.5654 0.9317 0.9927 0.9993 C MS 0.C047 0.0060 C.0178 C.1226 0.5769 0.9317 0.9927 0.9993 0. MS 0.C061 0.0015 C.0138 C.1218 0.5769 0.9317 0.9927 0.9993 0. MS 0.C060 0.0014 C.0137 C.1217 0.5769 0.9317 0.9927 0.9993 0. MS 0.C060 0.0014 C.0136 C.1217 0.5769 0.9317 0.9927 0.9993 0. MS 0.C060 0.0014 C.0136 C.1216 0.5769 0.9317 0.9927 0.9993 0. MS 0.C060 0.0014 C.0136 C.1216 0.5769 0.9317 0.9927 0.9993 0. MS 0.C060 0.0014 C.0135 C.1208 0.5769 0.9317 0.9993 0. MS 0.C060 0.0014 C.0141 C.1242 0.5769 0.9317 0.9993 0. MS 0.C060 0.0014 C.0141 C.1242 0.5769 0.9317 0.9993 0. MS 0.C060 0.0014 0.0141 C.1277 0.5769 0.9317 0.9931 0. MS 0.C060 0.0014 0.0141 0.1771 0.5769 0.9317 0.99527 0.9993 0. MS 0.C060 0.0014 0.0141 0.1771 0.5769 0.9317 0.9993 0. MS 0.C060 0.0014 0.0141 0.1771 0.5769 0.9317 0.99317 0.9993 0. MS 0.C060 0.0014 0.0141 0.1771 0.5769 0.9317 0.99317 0.9993 0. MS 0.C060 0.0014 0.0014 0.01771 0.5769 0.9317 0.99317 0.9993 0. MS 0.C060 0.0014 0.	I U	.084	.084	.089	140	.492	.931	.992	666.	666.
C MS 0.C047 0.0060 C.0178 C.1226 0.5769 0.9317 0.9927 0.9993 0. MS 0.C061 0.0015 C.0138 C.1216 0.5769 0.9317 C.9927 0.9993 0. MS 0.C00C 0.0014 C.0137 C.1217 0.5769 0.9317 0.9527 0.9993 0. MS 0.C00C 0.0014 C.0136 C.1214 0.5769 0.9317 0.9927 0.9993 0. MS 0.C00C 0.0014 C.0136 C.1216 0.5769 0.9317 0.9927 0.9993 0. MS 0.C00C 0.0014 C.0136 C.1216 0.5769 0.9317 0.9927 0.9993 0. MS 0.C00C 0.0014 C.0135 C.1206 0.5769 0.9317 0.9927 0.9993 0. MS 0.C00C 0.0014 C.0141 C.1277 0.5769 0.9317 0.9993 0. MS 0.C00C 0.0014 C.0141 C.1277 0.5769 0.9317 0.9993 0. MS 0.C00C 0.0014 C.0141 C.1277 0.5769 0.9317 0.99527 0.9993 0. MS 0.C00C 0.0014 C.0141 C.1277 0.5769 0.9317 0.99527 0.9993 0. MS 0.C00C 0.0014 C.0141 C.1277 0.5769 0.9317 0.99527 0.9993 0. MS 0.C00C 0.0014 C.0141 C.1277 0.5769 0.9317 0.99527 0.9993 0. MS 0.C00C 0.0014 C.0141 C.1277 0.5769 0.9317 0.99527 0.9993 0. MS 0.C00C 0.0014 C.0141 C.1277 0.5769 0.9317 0.99527 0.9993 0. MS 0.C00C 0.0014 C.0141 C.1277 0.5769 0.9317 0.99527 0.9993 0. MS 0.C00C 0.0014 C.0141 C.1277 0.5769 0.9317 0.99527 0.9993 0. MS 0.C00C 0.0014 C.0141 C.1277 0.5769 0.9317 0.99527 0.9993 0. MS 0.C00C 0.0014 C.0141 C.1277 0.5769 0.9317 0.99527 0.9993 0. MS 0.C00C 0.0014 C.0141 C.1277 0.5769 0.9317 0.99527 0.9993 0. MS 0.C00C 0.0014 C.0141 C.1277 0.5769 0.9317 0.99527 0.9993 0. MS 0.C00C 0.0014 C.0141 C.1277 0.5769 0.9317 0.99527 0.9993 0. MS 0.C00C 0.0014 C.0141 C.1277 0.5769 0.9317 0.9993 0. MS 0.C00C 0.0014 C.0141 C.1277 0.9993 0. MS 0.C00C 0.0014 C.1277 0.000C 0.0014 C.1277 0.000C 0.	Z	040.	.041	.050	130	.565	.931	.992	.999	666.
C MS 0.0001 0.0138 0.1216 0.5769 0.9317 0.9927 0.9993 0.993 C MS 0.0000 0.0014 0.0136 0.1217 0.5769 0.9317 0.9527 0.9993 0.993 C MS 0.0000 0.0014 0.0136 0.1214 0.5769 0.9317 0.9993 0.9993 2 S 0.0000 0.0014 0.0136 0.1206 0.5769 0.9317 0.9993 0.9993 2 S 0.0000 0.0014 0.0135 0.1206 0.5769 0.9317 0.9993 0.9993 3 S 0.0000 0.0014 0.0141 0.1771 0.5769 0.9317 0.9993 0.9993	I U	. C04	900.	.017	122	.576	.931	.992	666.	666.
C MS 0.0000 0.0014 0.0137 0.5769 0.9317 0.9527 0.9993 0.0000 0.0014 0.0136 0.1214 0.5769 0.9317 0.9993 0.9993 0.0000 0.0014 0.0136 0.1214 0.5769 0.9317 0.9927 0.9993 0.0000 0.0014 0.0135 0.1200 0.5769 0.9317 0.9927 0.9993 0.0000 0.0014 0.0141 0.1242 0.5769 0.9317 0.99927 0.9993 0.0000 0.0014 0.0141 0.1242 0.5769 0.9317 0.9993 0.09993 0.0000 0.0014 0.0141 0.1242 0.5769 0.9317 0.9993 0.0000 0.0014 0.0141 0.1242 0.5769 0.9317 0.9993 0.09993 0.00000 0.0014 0.0141 0.1242 0.5769 0.9317 0.9993 0.00000 0.0014 0.00144 0.1242 0.5769 0.9317 0.9993 0.09993 0.00000 0.0014 0.00144 0.11771 0.5769 0.9317 0.9993 0.00000 0.0014 0.00144 0.11771 0.5769 0.9317 0.9993 0.00000 0.0014 0.00144 0.00000 0.00144 0.00000 0.00144 0.00000 0.00000 0.00144 0.000000	I O	000.	.001	.013	121	.576	.931	.992	666.	666.
C MS 0.0000 0.0014 0.0136 0.1214 0.5769 0.9317 0.9527 0.9993 0.993 0.9993 <th>I O</th> <th>000.</th> <th>.001</th> <th>.013</th> <th>121</th> <th>.576</th> <th>.931</th> <th>.952</th> <th>666.</th> <th>666.</th>	I O	000.	.001	.013	121	.576	.931	.952	666.	666.
1 S 0.0000 0.0014 0.0136 0.1210 0.5769 0.9317 0.9927 0.9993 0.2 S 0.0000 0.0014 0.0135 0.1208 0.5769 0.9317 0.9927 0.9993 0.2 S 0.0000 0.0014 0.0141 0.1242 0.5769 0.9317 0.9927 0.9993 0.2 S 0.0000 0.0014 0.0141 0.1271 0.5769 0.9317 0.9927 0.9993 0.2	Z U	000.	.001	.013	121	.576	.931	.992	666.	666.
2 S 0.000C 0.0014 0.0135 C.120e 0.5769 0.9317 0.9927 0.9993 0. 5 S 0.000C 0.0014 0.0141 C.1242 0.5769 0.9317 0.9927 0.9993 0. C S 0.000C 0.0013 C.0193 C.1771 0.5769 0.9317 0.9993 0.		000.	.001	.013	121	.576	.931	.992	666.	666.
5.5 0.006C 0.0014 0.0141 C.12A2 0.5769 0.9317 0.9527 0.9993 0. C.5 0.000C 0.0013 C.0183 C.1771 0.5769 0.9317 0.9527 0.9993 0.		000.	.001	.013	120	.576	.931	.992	666.	666.
C S 0.0000 0.0019 C.0183 C.1771 0.5769 0.9317 0.9527 0.9993 0.		000.	.001	.014	123	.576	.931	256.	666.	666.
	U	0000	.001	.018	11	.576	.931	.992	666.	•

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

۔

OF A TANTALUM DXIDE CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KD2= 9.00000-07 Kol= 9.00000-02 Tol= 7.00000-04 KP= 9.0000e-06

THE RADIATION PULSE IS 1.00000+12 RADS/SEC FOR 2.50000-08 SEC TD2= 1.50000+00 DELTA= 1.00000+00

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHASGING CIRCUIT.

FOLLOWED BY A CUNSTANT RATE OF 1.00000+07 RADS/SEC

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

C 9 3

0 6.01

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A TANTALUM DXIDE CAPACITOR

KP= 9.00000-06 KD1= 9.00000-02 KD2= 9.00000-07

DELTA= 1.00000+00 TD1= 7.00000-04 TD2= 1.50000+00

THE RADIATION PULSE IS 1.0000P+13 RADS/SEC FOR 2.500CP-08 SEC FOLLOWED BY A CONSTANT RATE OF C.0000P+00 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIGS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

•		T	<u>ت</u>	12410					
	INI	10 SEC	1 SEC	100 48	10 45	S II S	100 US	10 US	SO 1 .
1116									
0	000	0000	0000	.000	000.	000.	000.	000	000
Z	.105	.105	.165	105	.105	.105	.105	.106	.112
=	.103	. 104	.114	.213	000	000	000.	000	000
3	.100	.100	.100	.101	106	.159	.679	000	000
3	.094	.094	.100	.152	.671	.000	.000	000	000
10 US	0.0843	0.0926	0.1669	6606.3	1.0000	0	1.0000	.000	00.
3	.067	.082	.215	000.	.000	.000	.000	000	.978
3	.035	.055	.230	.000	000.	000.	.000	000	.979
500	.013	.027	.154	0000	000	.000	000.	.000	.981
)	.002	.006	.048	.462	.000	000.	0000	.653	996
7 20	,00c	000	.002	.019	.185	000.	.564	. 899	000
=	.000	000.	.000	.002	. C21	.160	.620	946	000
X	000.	000.	0000	.004	.043	.332	.871	.992	000
X	000.	000	.002	.026	.235	.901	156.	000	000
I U	.000	000.	.007	.073	.533	966.	000	000	000
I U	000.	.001	.017	.161	. 627	666.	000.	000	000
=	.000	.004	.046	.377	989	666.	000	000	000
100	000	.009	.092	. 518	166.	.000	000.	000	000
I U	000.	.019	.176	. 650	965.	.000	000.	000	000
100	0000	.046	.377	.977	966.	000	.000	000	000
	000.	.088	.596	.987	666.	.000	000.	.000	000
	000.	.165	.814	.993	000.	000	200.	000	000
	000.	.365	.976	666.	000.	.000	000.	000.	000
	000	.612	666.	000.	000	.000	000.		0

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A TANTALUM DXIDE CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 9.0000#-06 KD1= 9.0000#-02 KD2= 9.0000#-07

DELTA= 1.0000#+00 TD1= 7.0000#-04 TD2= 1.5000#+00

THE RADIATION PULSE IS 1.7009413 FACS/SEC FOR 2.500CF-08 SEC CF 1.00000+03 BADS/SEC 3100 FOLLOWED BY A CON

CHARGING TAU IS THE TIME CONSTANT OF THE

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITY OF TIME INDICATED TO THE INITIAL CAPACITUR

			NUO 3	4		<i>'</i> .	1	<i>,</i>	,
7105	JNI .	10 SEC	1 SEC	100 MS	10 FS	•	85	10	577
	000	000	000	000	000	000	.00.	C C C C	•
Z	.105	. 105	.105	.105	105	105	105		112
3	.103	*01 •	.114	.213	666	666	000	000	000
2	100	.100	.100	101	.106	159	679	000	1.0000
7	.094	.094	.100	.152	.671	666	000	000	000
)	.084	.092	.166	606	666	666	000	000	000
D	.067	.082	.215	.992	666	666	000	000	0 7 8
3	.035	.055	.230	.992	666	666	000	000	
) 0	.013	.027	.154	.992	666	999	000	000	
) U	.002	900.	.049	.462	999	999	000	653	986
3	000.	000	.002	.019	.184	999	584	999	000
X	000	000.	0000	.623	.021	.160	628	944	00
#	000.	000	0000	400·	.043	.332	.671	992	000
T T	.000	.000	.002	.026	. 235	.901	166	900	000
Z U	.000	0000	.007	.073	.533	.996	000	000	000
SE DE	00000	0.0019	C.0175	C.1618	0.8273	1666.0	0	000	000
Z U	000.	•00•	.046	.377	.988	.999	.000	000	000
Z O	.000	.009	.091	.616	.997	.999	000	000	000
Z U	000.	.019	.174	. 445	.997	.999	.000	000	000
2	000.	.043	.371	.970	166.	666.	000	000	000
	000.	.085	.578	.980	966.	.999	000	000	000
	000,	.154	.777	.986	666.	.999	000	000	000
	.000	.313	.913	166.	665.	.999	000	000	000
	.000	.464	.931	.992	666.	666.	000	1.0900	1.0000

613, 103

10.3 164

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A TANTALUM GXIDE CAPACITOR

KP= 9.00008-06 KD1= 9.00008-02 KD2= 9.00008-07 DELTA= 1.00008+00 TD1= 7.00008-04 TD2= 1.50008+00 THE RADIATION PULSE IS 1.00000+13 RADS/SEC FOR 2.50000+04 SEC FOLLOWED BY A CONSTAN: RATE OF 1.00000+04 RADS/SEC

.

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

		⋖	U W	STANT						
1106		10 SEC	-	10C MS	10 #8	~ x	100 US	10 US	Sn 1 ·	
U	000	.000	000	00	000.	000	000	000	000	
2	. 105	.105	.105	.165	.105	.105	.105	.106	.112	
9	.103	.104	.114	.213	.992	999	666.	000	.000	
3	. 100	100	.100	.101	.106	.159	.679	000	000	
9	.094	.094	.100	.152	.671	666.	666.	.000	.000	
>	100.	.092	.166	606.	.992	666.	666.	000.	000	
3	.067	.082	.215	.931	.992	666.	666.	000.	.978	
20 05	.035	.055	.230	.931	.992	666.	666.	000	.979	
3	.013	.027	.154	.931	.992	666.	.999	000.	.981	
00	.002	.006	.048	.461	.992	.999	666.	.853	.988	
ے 00	000	000.	.002	.019	.184	666.	.584	.899	000	
*	000.	000	000		.021	.160	.620	946	000	
	.000	.000	0000	.004	.043	.332	. 871	.992	000	
=	000.	.000	.002	. C26	.234	.900	.997	000	000	
I U	000.	000	.007	. 673	.532	966.	666.	.000	000	
Z U	000.	.001	.017	.160	. 623	666.	666.	000.	000	
I U	000.	.004	.045	.371	.982	666.	656	000	.000	
10C HS	0.0000	0.0093	C.0891	C . 6007	0.9907	0.9933	6656.0	1.0000	1.0000	
1 00 00	.000	.017	.164	. 810	.990	666.	666.	.000	.000	
T O O	.000	.039	. 322	.913	.991	666.	656.	.000	.000	
	.000	.064	.453	21	.992	665.	656.	.000	.000	
	000.	.091	.537	92	. 992	666.	566.	000	000.	
m	000.	.115	.572	31	. 692	666.	655.	.000	000	
	000.	.119	.576	31	.992	666.	566.	000	00	

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A TANTALUM OXIDE CAPACITOR

KP= 9.00000-05 KDI= 9.00000-02 KDZ= 9.00000-07

DELTA= 1.00000+00 TDI= 7.00000-04 TDZ= 1.50000+00

THE RADIATION PULSE IS 1.00009+13 RADS/SEC FOR 2.50000-00 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+05 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE THE TAIL CAPACITOR VOLTAGE

			CTIME CON	ISTARTO					
	LZ1		1 SE	v	10 48	SH T	100 US	10 US	SO 1 .
116									
	.000	000.	.000	.000	000	000	.000	000	000.
	0.1054	0.1054	0.1054	C.1054	0.1054	0.1054	0.1054	0.1061	0.1127
20 T	.163	104	.114	.212	.931	.992	666.	666.	000
3	.100	. 100	.100	.101	.106	.159	.678	666.	000
3	.094	160.	.100	.151	.669	.992	666.	666.	000
ے د	.084	.092	.120	.576	.931	.992	.999	666.	000
9	.067	.082	.120	.576	.931	.992	666.	666.	.978
3	. C35	.055	.120	.576	.931	.992	666.	999	.979
200	.013	.027	.120	.576	.931	.992	666.	.999	.981
) U	.002	900.	.048	.459	. 331	.992	666.	.653	.988
၁ ပ	000.	000	.002	.019	.193	.992	.5e4	669.	000.
3	.000	0000	0000	.002	.221	.160	.628	.948	.000
=	000.	000	.000	. CC.	.043	.331	.671	.992	000
2	000.	.000	.062	.026	.232	.896	1997	666	000
E	.000	000.	.007	.071	. 520	.991	666	.999	000
I	000.	.001	.016	.152	164.	.992	666.	.999	000
E	0000	*00·	.039	. 324	.925	.992	666.	666.	000
I	0000	.006	.066	644.	. 930	.992	666.	.999	000
Z Z	.000	.010	.095	.555	.931	.992	656.	.999	000
=	.000	.013	.117	.574	.931	.992	.999	.999	000
~	.000	.013	1119	.575	.931	.992	.999	.999	000
~ ~	000	.013	.119	.576	.931	.992	999	.999	000
S	.000	.013	.119	76	.931	.992	999	.999	000
10 \$.000	.013	.120	.576	.931	.992	999	999	000

10,3,165

1013, 106

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A TANTALUM OXIDE CAPACITOR

KP= 9.00000-06 KD1= 9.00000-02 KD2= 9.00000-07

DELTA= 1.00000+00 TD1= 7.00000-04 TD2= 1.50000+00

THE RADIATION PULSE IS 1.000C0+13 RAGS/SEC FGR 2.500C0-00 SEC FOLLOWED BY A CONSTANT RATE CF 1.00000+06 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

S · 1 US	0001000	1 0 112	000	0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3 0.999	3 0.999	3 0.978	3 0.979	3 0,981	0.988	3 0.999	1 0.999	S C.999	3 C.999	3 0,999	3 0.999	3 C.999	3 0.999	3 0.999	3 6.999	3 6,999	3 C.999	3 0,999	
7 01	00	10	000	666 0	66	66.	66.	99	66.	.85	99	.94	.99	66.	66.	.99	66.	99	66.	66.	66.	66.	66.	•
100 US	000	.165	992	0.6648	.992	.992	.992	.992	.992	.992	.577	.626	.866	066.	.992	.992	.992	.952	.992	256.	.952	356	256.	•
T HS	000	105	931	0.1582	.931	.93	.931	.931	.931	.931	.931	.157	.326	.052	.931	.931	.931	.931	.931	.931	.931	.931	.931	•
10 68	000	105	576	0.1065	.576	.576	. 576	.576	.576	.576	.175	.020	. C42	.213	. 423	.552	.576	.576	.576	.576	.576	.576	.576	
NSTANT) 100 MS	000.	.105	200	C - 1 C 1 4	.120	.120	.120	.120	.120	.120	.018	.002	. CC4	. 624	.056	. 693	.119	.120	.120	.120	.120	.120	.120	,
CTIME CO	0000	.105	.113	c.1009	650.	.163	.209	.221	.148	.046	.001	.000	000	.002	.005	600.	.013	.013	.013	.013	.013	.013	.013	
TAU 10 SEC	000	.105	.104	0.100	.094	.092	.081	.054	.026	.006	000	000.	.000	0000	.000	.001	.001	.001	.001	.001	.001	.001	.001	
	000	.105	.103	0.1000	.094	.084	.067	.035	.012	.002	000.	.000	000.	000.	.000	000.	000.	.000	200.	000.	000.	000.	.000	
**		*	3	87 R		J) U	3	200	7 20	D	-	=	=	Z U	=	Z	100	Z U	100				

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A TANTALUM GXIDE CAPACITOR

NP= 9.00000-06 Kgl= 9.00000-02 KD2= 9.00000-07
DELTA= 1.00000+00 Tgl= 7.00000-04 Tg2= 1.50000+00 THE CAPACITOR PARAMETERS USED ARE:

THE RADIATION PULSE IS 1.COON#13 RADS/SEC FOR 2.5000#-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.COOO#+07 RADS/SEC

THE VALUES GIVEN ARE THE RATICS OF THE CAPACITGR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

	ı.	TAU	CTIME CON	-					
	INF		S	00	10 18	SH I	Sn 001	10 US	Sn 1 .
71rE									
_	000	0000	0000	000.	000	000	000	000	000
	0.105	. 105	.105	.105	.105	.105	.105	.106	.112
7	0.103	.103	.110	.173	.010	.576	.931	.992	.999
3	0.100	100	.100	.101	.105	.146	.546	.992	666.
3	0.09	· 00 ·	960.	.133	.120	.576	.931	.992	.999
3	0.004	.089	.137	.616	.120	.576	.931	.992	666.
3	0.067	.077	.162	.013	. 120	.576	.931	.992	.978
Ö	0.035	.047	.160	.013	.120	.576	.931	.992	.979
200	0.012	.021	.162	.013	.120	.576	.931	.992	.981
20C US	S 0.002c	0.0049	03	C13		.57	.93	.65	.986
200	00000	000.	.001	.011	.107	.576	. 522	969.	666.
=	000.0	000	.000	.001	.016	.137	.608	.943	666.
=	000.0	000	0000	.003	.035	.279	. 823	.985	666.
2	000.0	000.	.001	.011	.105	.562	.931	.992	666.
=	00000	0000	.001	.013	.120	.576	.931	.992	666.
2	0.000	000.	.001	.013	. 120	.576	.931	.992	666.
Z U	00000	.000	.001	.013	.120	.576	.931	.992	666.
=	0.000	.000	.001	.013	. 120	.576	.931	.992	666.
ı	0.000	000.	.001	.013	.120	.576	.931	.992	666.
I	00000	000	.001	.013	. 120	.576	.931	.992	666.
~	.00c	0000	.001	.013	.120	.576	.931	.992	666.
	.000	000.	.001	.013	. 120	.576	.931	.992	666.
8	200.	.000	.001	.013	.120	.576	.931	.992	666
20 5	000	.000	.001	C.C134	50	16	C.9317	0.9927	0.9993

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A MICA CAPACITOR

KD2- 3.00000-06 T02= 1.30000+00 THE CAPACITOR PARAMETERS USED ARES 0000-05 KDI= 0.COOC0+00 KDZ= 3.0 MP= 2.00000-05 KD1= 0.00000+00 THE RADIATION PULSE IS 1.00000+10 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 0.00000+00 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE THE TABLE CAPACITOR VOLTAGE

1

			•	S W	ANT					
		181	10 SEC	1 SEC	100 MS	10 PS	2 I S	100 US	10 US	Sn 1
116										
U		.000	.000	.000	000	000.	000	000	000	000
_		666.	666.	666.	666.	666	666	666	999	000
-		666.	666.	656.	655.	666.	999	999	666	000
		666.	666.	666.	655.	665.	666.	666.	999	000
		666.	666.	666.	666.	666.	666.	666.	999	000
0	Sn	666.	666.	666.	666.	666.	666.	666.	000	000
0		566.	666.	666.	666.	666.	666.	666.	000	000
8		666.	666.	666.	665.	666.	666.	666.	000	000
00		665.	666.	666.	666.	666.	666.	.000	000	000
00		666.	666.	656.	656.	666.	666.	000.	000	000
0		565.	666.	656.	666.	666.	666.	000	000	000
		666.	666.	666.	656.	666.	000	000	000	000
_		566.	666.	656.	666.	666.	000	000.	000	000
		666.	666.	666.	665.	666.	000	000	000	000
v		666.	666.	666.	656.	000.	000	.000	000	000
U		666.	666.	666.	666.	000.	000.	.000	000	000
U		566.	666.	666.	666.	000.	000	.000	000	000
0		666.	666.	666.	000.	000.	.000	.000	000	000
v		565.	666.	656.	0000.	000.	000	000.	.000	000
00		665.	666.	666.	000.	.000	000	000	000	000
	S	666.	666.	0000	.000	000.	000.	.000	000	000
~	S	5666.0	0.8899	1.0000	1.0000	00	000.	000.	.000	000
	~	666.	666.	.000	.000	000.	.000	.000	.000	.000
	S	666.	000	.030	• 000	000.		1.0000	1.0000	1.0000

S

THIS TAGLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A MICA CAPACITOR

KD2= 3.00000-06 T02= 1.30000+00 THE CAPACITOR PARAMETERS USED ARE: KP= 2.0000@=05 KD1= 0.0000@+00 KD2= 3.000ELTA= 8.3000@=01 TD1= 1.0000@+10 TD2= 1.30 THE RADIATION PULSE IS 1.00000+10 RADS/3EC FOR 2.50000+00 SEC FOLLOWED BY A CONSTANT RATE OF 1.000000+03 HADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

TAU CTIME CONSTANT)

01	INF	10 SEC	1 SEC	10C MS	1C PS	1 18	100 US	10 US	SO I
7110									
v	.000	.000	0000	0000	000	000.	000	000	.000
Z	0.999	666.	666.	666.	666.	666.	666.	566.	666.
7	0.999	666.	656.	.999	666.	.999	666.	666.	000
3	0.999	666.	666.	.999	666.	.999	666.	666.	000
>	666.0	666.	666.	656.	666.	.999	656.	666.	.000
SO 01	6666.0	0.9999	0.9999	5666.3	0.9999	0.9999	6666.0	1.0000	1.0000
D	0.999	666.	656.	656.	666.	666.	666.	000	000
ے 0	666.0	666.	666.	666.	665.	.999	666.	000.	.000
7 00	666.0	.999	666.	666.	999	666.	000.	000.	.000
0	666.0	666.	666.	665.	666.	666.	000.	000	.000
7 00	666.0	666.	666.	656.	666.	666.	000	000	.000
-	0.999	666.	666.	655.	666.	000	000.	000	.000
8	0.999	666.	666.	656.	666.	000.	000.	000.	.000
=	666.0	666.	666.	656.	666.	000.	000.	000.	000
=	666.0	666.	666.	.999	666.	000.	000	.000	.000
I	0.999	666.	666.	.999	666.	000	000	000	000
I	666.0	666.	666.	666.	666.	.000	000.	000.	.000
=	0.999	.999	666.	.999	666.	000	000	000	.000
E	0.998	966.	656.	665.	666.	000	000	900.	.000
I	966.0	966.	156.	665.	666	000	000	000	.000
S	0.993	.993	.995	.999	666	000	000	000	.000
	.986	.987	496.	666.	666.	000	000	.000	.000
5	.965	.972	.992	666.	666.	000	000.	000.	.000
500	.930	.955	.992	666.	666.	000.	000	.000	.000

,) 1 () ,) 1

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A MICA CAPACITOR

Ser apr

THE CAPACITOR PARAMETERS USED ARE:

KP= 2.00309-05 K01= 0.00000+00 K02= 3.00000-06

DELTA= 8.30009-01 T01= 1.00000+10 T02= 1.30000+00

THE RADIATION PULSE IS 1.00000+10 HADS/SEC FOR 2.50000-00 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+04 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VELTAGE

•		TAU	Ü	STANT					
	125		1	100 45	10 45	SH	100 US	57 01	SII .
1146				i.					
0	.000	.000	.000	000.	000.	000	000	000	000
	666.	666.	656.	666.	666.	666.	666	666	6.
-	666.	666.	666.	656.	666.	666.	999	999	000
3	.999	666.	666.	666.	666.	.999	666.	.999	000
n	666.	666.	666.	666.	666.	666.	656.	666.	000
10 US	6666.0	0.9999	6656.0	5665.3	6666.0	6666.0	0.9999	1.0000	1.0000
J U	666.	666.	666.	666.	666.	.990	666.	000	000
200	666.	666.	656.	655.	666.	666.	656.	000	000
၁ ၁	666.	666.	666.	655.	666.	666.	000	000	000
၁ ပ	666.	666.	666.	655.	666.	.999	.000	000	000
200	665	666.	656.	656.	.999	666.	000	000	000
2	665.	666.	656.	665.	666.	.999	000	000.	000
2	666.	666.	656.	666.	666.	000	000.	000	000
I	666.	666.	656.	665.	666.	000.	000.	000	000
I O	566.	666.	656.	666.	666.	000.	000	000	000
Z U	565.	666.	666.	566.	666.	.000	.000	000	000
200	266.	266.	256.	865.	666.	000	.000	000.	000
I	. 995	. 995	.995	256.	666.	000	000.	000	000
T U	. 991	. 991	.992	955.	666.	000	000.	000.	000
X O	.978	626.	.963	\$65.	665.	.000	200.	000.	000
	. 556	.958	.972	.995	666.	.000	000.	000	000
	.912	.920	.960	.995	996.	.000	000	000	000
	.787	.829	.953	\$65.	666.	000	000	000	000
	.613	.744	.952	665.	665.	.000	000.	000	.000

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A MICA CAPACITOR

KP= 2.000Ce-05 Krl= 0.0C0Ce+C0 KD2= 3.C00Ce-06

DELTA= 8.300Ce-01 Tol= 1.C00Ce+10 TD2= 1.300GF+C0

THE RADIATION PULSE IS 1.0000410 RADS/SEC FOR 2.50008-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.000008+05 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGIAG CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE THE THE THE CAPACITOR VOLTAGE

•		•	C	STANT					
7145	121	10 SEC	1 SEC	100 MS	10 PS	T ES	100 LS	10 US	Sn 1
)	000	000	0000	000	000	000	000	000	000
Z	.999	566.	.999	666.	666	666	666	999	666
3	666.	666.	666.	665.	666.	666	666	.999	000
3	666.	666.	666.	665.	999	999	656	.999	000
>	666.	666.	666.	655.	666.	666.	656	666.	000
D	666.	666.	656.	655.	665	666.	999	000	000
7	666.	666.	666.	666.	666.	666	666	000	000
30	666.	666.	666.	666.	999	666.	666.	000	000
200	666.	666.	666.	656.	665	666.	999	000	000
200	666.	666.	666.	666.	666.	656.	000	000	000
D	666.	666.	656.	666.	. 399	666.	000	000	000
=	566.	666.	.993	665.	666.	666.	000	000	000
=	666.	666.	656.	665.	999	666.	000	000	000
=	966.	.998	656.	865.	966.	666.	000	000	000
=	166.	166.	156.	155.	966.	666.	000	000	000
E	.994	.994	.994	166.	.997	666.	000	000	000
SC HS	0.9858	0.9859	0.9862	C.9889	0.9972	1666.0	1.0000	1.0000	1.0000
I	.971	.972	.973	.982	166.	666.	.000	000	000
I U	. 944	. 944	.949	.975	265.	666.	000	000	000
I U	.864	. 867	.892	.971	166.	666.	000	000	000
	.741	.753	.631	695.	265.	666.	.000	000	000
	.538	.576	.775	.968	9.65.	666.	000.	000.	000
	.198	. 324	.749	.567	965.	666.	000.	000	000
	.036	.239	.747.	195.	965.	666.	000	.000	000

201,0101

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A MICA CAPACITOR

KD2= 3.00000-06 TD2= 1.30000+00 THE CAPACITOR PARAMETERS USED ARE: NF= 2.00000-05 KD1= 0.00000+00 DELTA= 8.30000-01 TD1= 1.00000+10

THE RADIATION PULSE IS 1.00COR+10 RADS/SEC FOR 2.500CR-CR SEC FOLLOWED BY A CONSTANT RATE OF 1.00000R+06 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

		_	U U	STANT					•
	121	10 SEC	1 SEC	100	10 75	SH I	100 US	10 US	sn T
1116									
0	1.000	0000	0000	0000	.000	000.	0000	000	000
2	0.999	666.	666.	666.	666.	.999	666.	666.	666.
-	0.999	666.	666.	666.	666.	666.	666.	.999	000
3	666.0	666.	666.	665.	666.	666.	656.	666.	000
3	0.999	666.	666.	666.	666.	666.	666.	999	000
3	666.0	666.	666.	656.	666.	666.	666.	.000	000
D	666.0	666.	666.	655.	666.	666.	666.	000	000
)	566.0	666.	666.	665.	666	666	666	000	000
00	666.0	666.	666.	666.	665.	666.	666.	000	000
300	565.0	666.	666.	656.	666.	666	666	000	000
3	966.0	866.	.994	855.	666.	666.	656.	000	000
-	0.998	866.	656.	956.	966.	.998	666.	000	000
X	966.0	966.	956.	956.	966.	966.	656	000	000
=	0.990	066.	056.	066.	.992	966.	666.	000	000
I U	0.981	.981	.981	. 581	996.	.998	656	000	000
I.	0.962	.962	.962	.965	.983	.998	656	000	000
I U	0.906	.908	.910	.927	.981	966.	656.	000	000
T CO	0.624	. A25	.833	. 667	.981	966.	656.	000	000
20C #S	0.678	681	.706	52	986	166.	556	00	000
X 00	0.372	. 385	.465	. 432	980	166.	656.	000	000
	.132	.160	.359	. 426	979	166.	656.	000	000
	.015	.056	.316	19	. 983	166.	656.	000	000
	000.	.042	.305	. 214	.577	.997	656.	000	000
10 \$	0.0000	0.0420	C.3C47	C. P.148	0.9777	0.9977	9656.0	1.0000	1.0000

10.21

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A MICA CAPACITOR

KP= 2.0000@-05 Knl= 0.0000@+00 KD2= 3.0000@-06 DELTA= 8.3000@-01 T01= 1.0000@+10 T02= 1.3000@+00

THE RADIATION PULSE IS 1.00COM+10 RADS/SEC FOR 2.500CM-00 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+07 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

TAU CTIME CONSTANT)

C 1 SEC 100 MS 10 WS 1 MS	1.0000 1.0000 1.0000 1.000	6666 0 5666 0 5665 0 6656 0	666.0 6666.0 6656.0 6666.0	666.0 6660.0 6666.0 6666.0	0.9998 0.9998 0.9998	0.9998 C.9998 O.9998	C.9996 C.9996 O.9996 O.999	0.9993 C.9593 C.9993 O.999	C.9986 C.9986 C.9986 C.998	0.9973 C.9973 0.9973 0.997	C.9935 C.5535 0.9936 0.994	0.9871 0.9871 0.9877 0.991	0.9744 C.9747 0.9768 0.988	0.9375 0.9389 0.9506 0.987	0.8793 C.8844 C.9225 0.987	C.7742 C.7925 C.8974 0.987	C.5335 C.6145 C.8854 0.987	0.3001 C.4907 0.8843 0.987	0.1250 C.4366 0.8829 0.992	0.0691 C.4227 0.8795 0.984	0.0658 C.4128 0.8757 0.984	0.0430 C.4620 0.8777 0.984	C.0611 C.3944 G.8663 O.984	440 0 6770 0 0000 0 0070 0
INF 10 SEC	.0000 1.000	6666 0 6666	6660 6660	6660 6665	.999e 0.999	666°0 9666°	656.0 9666.	666°0 E566°	.9986 0.998	.9973 0.997	.9935 0.993	.9671 0.967	.9744 0.974	374 0,937	.8787 0.878	.7720 0.772	.5230 0.524	.2723 0.275	.0728 0.078	.0013 0.008	.00°C 0.007	.0000 0.000	.0000 0.000	1000

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A MICA CAPACITOR

THE RADIATION PULSE IS 1.COCOR+11 RADS/SEC FOR 2.5000F-08 SEC FOLLOWED BY A CONSTANT RATE OF 0.0000P+00 RADS/SEC

THE VALUES GIVEN ARE THE RATICS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

Z								
	F 10 SEC	1 SEC	10C MS	10 18	T IIS	100 US	10 05	I US
0	0 1.000	0000	000.	000	.000	000	000	.000
8 0.0	3 0.999	666.	665.	666.	.999	666.	999	666
8 0.9	3 0.999	666.	665.	666.	.999	666.	999	666
8 0 S	3 0.999	666.	666.	666.	666.	566.	666	666
5.0 5	3 0.999	.399	666.	666.	666.	666.	666.	000
8 0.9	3 0.999	666.	666.	666.	666.	656.	666.	000
05.0 SD	93 0.9993	C . 9993	C . 5993	0.5993	0.9993	*656° 0	6666.0	1.0000
8 0 · 6	3 0.999	666.	665.	665.	666.	666.	.000	000
8 0.9	3 0.999	656.	655.	666.	666.	666.	000	000
8 0.9	666.0 €	656.	655.	666.	.999	666.	000	000
8 0.9	3 0.999	656.	656.	665.	666.	000	000.	000
S 0.9	3 0.999	666.	565.	665.	666.	.000	000	000
8 0.0	3 0.999	666.	666.	666.	666.	0000	000	000
5.0 S	3 0.999	666.	665.	666.	000	.000	000	000
6.0 S	3 0°336	656.	565.	666.	000.	.000	000.	000
8 0.9	3 0.399	666.	056.	666.	000.	000	.000	000
s 0.9	3 0.999	666.	656.	0000.	000	000.	000	.000
S 0.9	3 0.999	656.	655.	000.	000.	000.	000.	000.
s 0.9	3 0.999	666.	665.	000.	000	000.	000	000.
\$ 0.0	3 0.999	666.	000.	000.	.000	000.	.000	000
0.9	3 0.999	656.	000.	000.	000.	200.	000	000.
5.0	2 0.999	666.	.000	000.	000	000.	.000	.000
6.0	2 0.953	0000	222.	000.	000°	200.	000	000.
0.0	2 0.999	000	000.	000.	000.	000.	.000	.000

2002

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A MICA CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP. 2.00000-05 KC1 0.00000-00 KD2 3.00000-06

DELTA 0.30000-01 TC1 1.00000+10 TD2 1.30000+00

THE RADIATION PULSE IS 1.COCOM+11 RACS/SEC FOR 2.500CP-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

•			2	STANT					,
_	121	10 SEC		100 MS	10 45	2 I S	100 ES	10 05	1 05
	000	000	000	000	000	000	000	000	000
=	666	666	000	000	000	000	000	000	
3	866.	666	666	666	666	666	999	666	
2 05	0.9993	0.9993	0.9993	C . 9993	0.9993	0.9993	0.9993	0.9994	0666.0
>	666.	666.	656.	665.	666	999	999	666	000
20	666.	666.	666.	666.	666.	666.	666.	666.	000
J	566.	666.	666.	665.	665.	666.	666.	666.	000
D	666.	666.	656.	666.	666.	666.	666.	000	000
200	666.	666.	. 399	665.	666.	666.	666.	000	000
J	666.	666.	666.	665.	665.	666	666	000	000
200	666.	666.	666.	665.	666.	666.	000	000	000
=	.999	666.	666.	666.	666.	666.	000	000	000
2	.999	666.	666.	555.	666.	666.	.000	000	000
=	666.	666.	666.	565.	666.	000.	000	000.	000
E	.999	666.	666.	666.	666.	000	000	000	.000
I	.999	.999	666.	666.	656	000	000	000	000
E	666.	666.	666.	556.	666.	000	000	000	000
200	.998	.998	656.	665.	666.	.000	000	000	.000
T T	966.	.998	.998	665.	666.	000	000	000	000
IOO	.996	966.	199.	656.	556.	000	000	000	000
	.992	.993	.995	666.	666.	000	000	000	000
	.985	.987	.993	666.	666.	0000	.000	000	000
	.964	.972	.992	556.	656.	000	000	000	000
36 8	. 529	.955	.992	666.	656	000	000	000	000

(2) (,01

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A MICA CAPACITOR

 \cdot

KD2= 3.00000-06 TD2= 1.30000+00 THE CAPACITOR PARAMETERS USED ARE: K01= 0.00000+00 T01= 1.00000+10 KP. 2.00000-05 0ELTA. 8.30000-01

THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+04 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

0000 9993 9993 9993 0.9993			•	U W	ANT					
1.0000 1.00000 1.000000 1.000000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.00000 1.0	•	_	O SE	1 SE	200	2	X	ے 00	10 US	\$0 T
1 LKS 0.9993 0.9993 0.9993 C.9993 0.9993 0.9993 0.999993 0.99993 0.99993 0.99993 0.99993 0.99993 0.99993 0.99993 0.99993 0.99993 0.99993 0.999	0	.000	.000	0000	000.	000	000	000	000	000
1 US 0.9993 0.9993 0.9993 C.9993 0.9993 0.9993 0.9999 0.99	2	.999	666.	666.	565.	666	999	666	000	000
2 US 0.9993 0.9993 0.9993 C.9993 0.9999 0.9993 0.99	3	.999	666.	666.	666.	666	999	665	666	000
S US 0.9993 0.9993 0.9993 C.9993 C.9993 0.9993 0.9993 0.9993 0.9993 C.9993 C.9994 C.9993 C.9	3	.999	666.	656.	566.	666	999	566	666	666
0 US 0.9993 0.9993 C.9993 C.9993 C.9993 0.9993 0.9993 0.9993 C.99993 0.99999 1.0000 1.0000 0.99993 0.99993 0.99993 0.99999 1.0000 1.0000 0.99993 0.99993 0.99993 0.99999 1.0000 1.0000 0.99993 0.99993 0.99999 1.0000 1.0000 0.99993 0.99993 0.99999 1.0000 1.0000 0.99993 0.99999 1.0000 1.0000 0.99993 0.99993 0.99999 1.0000 1.0000 0.99993 0.99999 1.0000 1.0000 0.99993 0.99999 1.0000 1.0000 0.99993 0.99999 1.0000 1.0000 0.99993 0.99999 1.0000 1.0000 0.99993 0.99999 1.0000 1.0000 0.99993 0.99999 1.0000 1.0000 0.99999 1.0000 1.0000 0.99999 1.0000 1.0000 0.99999 1.0000 1.0000 0.99999 1.0000 1.0000 0.99999 1.0000 1.0000 0.99999 1.0000 1.0000 0.99999 1.0000 1.0000 0.99999 1.0000 1.0000 0.99999 1.0000 1.0000 0.99999 1.0000 1.0000 0.99999 1.0000 1.0000 1.0000 0.99999 1.0000 1.0000 1.0000 0.99999 1.0000 1.0000 1.0000 0.99999 1.0000 1.0000 1.0000 0.99999 1.0000 1.0000 1.0000 0.99999 1.0000 1.0000 1.0000 0.99999 1.0000 1.0000 1.0000 0.99999 1.0000 1.0000 0.99999 1.0000 1.0000 0.99999 1.0000 1.0000 0.99999 1.0000 1.0000 1.0000 0.99999 1.0000 1.0000 0.99999 1.0000 1.0000 0.99999 1.0000 1.0000 0.99999 1.0000 1.0000 0.99999 1.0000 1.0000 0.99999 1.0000 1.0000 0.99999 1.0000 0.999	7	.999	666.	666.	666.	666.	666.	666	666	000
© US 0.9993 0.9993 0.9993 C.9993 0.9993 0.9993 0.9994 0.9994 0.9993 0.9993 0.9993 0.9994 0.9994 0.9993 0.9993 0.9993 0.9994 0.9994 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9993 0.9993 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9999 0.9993 0.9993 0.99993 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.99993 0.9999 0	3	.999	666.	666.	666.	666	999	666	666	000
C US 0.9993 0.9993 0.9993 C.9993 0.9994 0.9994 0.9994 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9993 0.9999 0.9993 0.9993 0.9999 0.9999 0.9993 0.9993 0.99994 0.9999 0.9993 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.99993 0.9999 0.	3	666.	666.	656.	666.	666	999	666	666	000
C US 0.9993 0.9993 0.9993 C.9993 C.9993 C.99993 0.9994 0.9999 0.9993 0.9993 0.9993 0.9993 0.9993 0.99993 0.99993 0.99993 0.99993 0.99993 0.99993 0.99993 0.99994 0.99994 0.99994 0.99993 0.99993 0.99994 0.99994 0.99994 0.99994 0.99995 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.	ے و	666.	666.	656.	566.	666	.999	999	000	000
© US 0.9993 0.9993 C.9993 C.9993 0.9993 0.9994 0.9996 1.0CC 0.9993 0.9993 0.9999 1.0CC 0.9993 0.9999 0.9999 1.0CC 0.9993 0.9999 1.0CC 0.9993 0.9999 1.0CC 0.9999 0.999	0	666.	666.	656.	566.	566	666	999	000	000
1 NS 0.9993 0.9993 0.9993 C.9993 0.9994 0.9996 1.0000 1.0000 NS 0.9993 0.9993 0.9999 1.0000 1.0000 NS 0.9999 0.9992 C.9993 C.99994 0.9999 1.0000 1.0000 NS 0.9999 0.9999 C.9999 C.9999 0.9999 1.0000 1.0000 1.0000 NS 0.9985 0.9995 0.9995 1.0000 1.0000 1.0000 0.9951 0.9952 C.9997 0.9995 1.0000 1.0000 1.0000 0.9951 0.9951 0.9954 C.9979 0.9995 1.0000 1.0000 1.0000 0.9561 0.9951 C.9956 0.9995 1.0000 1.0000 1.0000 1.0000 0.9561 C.9959 C.9955 0.9995 1.0000 1.0000 1.0000 0.9560 0.9581 C.9958 C.9955 0.9995 1.0000 1.0000 1.0000 0.9560 0.9581 C.9958 0.9955 1.0000 1.0000 1.0000 0.9560 0.9581 C.9958 0.9955 1.0000 1.0000 1.0000 0.9585 0.99595 1.0000 1.0000 1.0000 0.9995 0.9995 1.0000 1.0000 1.0000 0.9586 0.99595 1.0000 1.0000 1.0000 0.9586 0.99595 1.0000 1.0000 1.0000 0.9586 0.99595 1.0000 1.0000 1.0000 0.9995 0.99595 1.0000 1.0000 1.0000 0.9995 0.99595 1.0000 1.0000 1.0000 0.9995 0.99595 1.0000 1.0000 1.0000 0.9995 0.99595 1.0000 1.0000 1.0000 0.9995 0.99595 1.0000 1.0000 1.0000 0.9995 0.99595 1.0000 1.0000 1.0000 0.9995 0.99595 1.0000 1.0000 1.0000 0.9995 0.99595 1.0000 1.0000 1.0000 0.9995 0.99595 1.0000 1.0000 1.0000 0.9995 0.99595 1.0000 1.0000 0.9995 0.99595 1.0000 1.0000 1.0000 0.9995 0.99595 1.0000 1.0000 1.0000 0.9995 0.99595 1.0000 1.0000 1.0000 0.9995 0.99595 1.0000 1.0000 1.0000 0.9995 0.99595 1.0000 1.0000 1.0000 0.9995	9	666.	666.	666.	556.	666.	666.	666	000	000
1 NS 0.9993 0.9993 0.9993 C.9993 C.9994 0.9994 1.0000 1.0000 NS 0.9992 0.9992 C.9993 C.9994 0.9994 1.0000 1.0000 NS 0.9992 C.9992 C.9992 C.9994 1.0000 1.0000 1.0000 NS 0.9985 0.9985 C.9997 C.9995 1.0000 1.0000 1.0000 0.9972 C.9973 C.9977 0.9995 1.0000 1.0000 1.0000 0.9972 C.9978 C.9979 0.9995 1.0000 1.0000 1.0000 1.0000 0.9779 0.9951 C.9978 C.9978 C.9978 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00	3	666.	666.	666.	555.	666.	666.	000	000	000
2 NS 0.9992 0.9992 0.9992 C.9993 C.9994 0.9999 1.000 1	1	.999	666.	656.	555.	666	666.	000	000	000
S NS 0.9991 0.9991 0.9992 0.9994 1.0000 1.0000 1.0000 NS 0.9989 0.9889 0.9989 0	=	.999	666.	656.	566.	666.	666.	000	000	000
NS 0.9989 0.9989 C.9987 C.9985 1.0000 1.0000 NS 0.9985 0.9985 C.9987 0.9995 1.0000 1.0000 NS 0.9985 0.9985 1.0000 1.0000 NS 0.9951 0.9951 0.9995 1.0000 1.000 1.000 NS 0.9951 0.9951 C.9954 C.9962 0.9995 1.0000 1.000 1.000 NS 0.9586 0.9995 1.0000 1.000 1.000 NS 0.9585 0.9995 1.0000 1.000 1.000 NS 0.9585 0.9995 1.0000 1.000 1.000 NS 0.9585 0.9995 1.0000 1.000 NS 0.9585 0.9995 1.0000 1.000 NS 0.9885 0.9995 1.0000 1.000 NS 0.9885 0.9995 1.0000 1.000	I	665.	666.	656.	666.	666.	000	000	000	000
NS 0.9985 0.9985 C.9987 C.9987 1.0000 1.0000 1.0000 NS 0.9972 0.9973 C.9979 0.9995 1.0000 1.000 1.0000 NS 0.9971 0.9995 1.0000 1.000 1.000 NS 0.9961 0.9995 1.0000 1.000 1.000 NS 0.9779 0.9785 C.9827 C.9956 0.9995 1.0000 1.	*	.998	856.	.958	665.	666	000	.000	000	000
C MS 0.9972 0.9973 C.9979 0.9995 1.0000 1.0000 C MS 0.9951 0.9951 C.9971 0.9995 1.0000 1.000 C MS 0.9951 0.9952 C.9962 C.9995 1.0000 1.000 C MS 0.9779 0.9785 C.9627 C.9956 0.9995 1.0000 1.000 1.000 C MS 0.9560 0.9581 C.9720 C.9954 C.9995 1.0000 1.000 C.9608 C.9952 0.9995 1.0000 1.000 C.9581 C.9952 0.9995 1.0000 1.000 C.9581 C.9952 0.9995 1.0000 1.000 C.9581 C.9952 0.9995 1.0000 1.0000 C.9952 C.9531 C.9952 0.9995 1.0000 1.0000 C.9952 C.99531 C.9952 C.99531 C.9955 C.99531 C.9955 C.99531 C.9955 C.99531 C.995	Z U	866.	866.	856.	.998	666.	000.	000	000	000
C MS 0.9951 0.9951 C.9554 C.9971 0.9995 1.0000 1.000 C MS 0.9909 0.9785 C.9962 0.9995 1.0000 1.000 1.000 C MS 0.9779 0.9785 C.9627 C.9956 0.9995 1.0000 1.00	I O	.997	166.	166.	166.	666	000	000	000	000
C MS 0.99C9 0.9910 C.9918 C.9962 0.9995 1.0000 1.000 C MS 0.9779 0.9785 C.9827 C.9956 0.9995 1.0000 1.000 1 S 0.9560 0.9581 C.9720 C.9954 C.9995 1.0000 1.000 2 S 0.9113 0.9199 C.9608 C.9952 0.9995 1.0000 1.000 5 S 0.7865 0.4296 C.9531 C.9951 0.9995 1.0000 1.000	Z U	. 995	.995	.995	166.	666.	000	000	1.0000	1.0000
C MS 0.9779 0.9785 C.9827 C.9956 0.9995 1.0000 1.000 1 \$ 0.956C 0.9581 C.9720 C.9954 C.9995 1.0000 1.000 2 \$ 0.9118 0.9199 C.9608 C.9952 0.9995 1.0000 1.000 5 \$ 0.7865 0.4296 C.9531 C.9951 0.9995 1.0000 1.000	I U	365.	166.	156.	966.	666.	000	000.	000	000
\$ 0.956C 0.9581 C.9720 C.9954 C.9995 1.0000 1.00C \$ 0.9113 0.919A C.760B C.9952 0.9995 1.0000 1.0CO \$ 0.7865 0.3296 C.9531 C.9951 0.9995 1.0000 1.0CO	I U	.977	.978	.982	.995	666.	0000	000.	000.	.000
\$ 0.9113 0.9199 C.3608 C.9952 0.6995 1.0000 1.000 \$ 0.7865 0.3295 C.9531 C.9951 0.9995 1.0000 1.000		.956	.958	.972	.995	666.	.000	000	000	000
S 0.7865 0.3296 C.9531 C.9951 0.9995 1.0000 1.000		.911	.919	. 360	.995	665	000.	000	.000	000
		.786	.959	.953	.995	666.	000	0000	.300	000
\$ 0.6129 0.7439 C.7525 C.9954 0.9995 1.0000 1.00C		.612	.743	. 352	.995	666	000	000	000	00

OF A MICA CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 2.0000@-05 KD1= 0.00000+00 KD2= 3.00000-06

DELTA= 0.30000-01 TG1= 1.00000+10 TD2= 1.30000+00

THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+05 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHANGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

		-	C	STANT					
	111	10 SEC	1 SEC	100 MS	10 45	SH T	10C US	10 US	SO 1 .
>	•	•	•	5		000	000		900
	666.	666.	666.	66	666.	666.	656.	.999	.999
-	.999	666.	656.	66	666.	666	666	666	999
	.999	666.	666.	66	666	.999	999	999	.999
7	666.	666.	.999	66	666.	999	666	666	000
2	666.	666.	666.	66	666.	666.	666	666	000
0	666.	666.	666.	66	999	999	566	999	000
2005	666.	666.	656.	66	666.	.999	666	000	.000
9	666.	666.	656.	66	666	666.	999	000	.000
200	666.	666.	666.	56	666	666	666	000	000
2 00	.999	. 299	666.	665	.999	666.	000	000	000
=	666.	666.	666.	66	666.	666	000	000	000
	.998	866.	. 399	86	966.	999	000	000	000
=	.997	.997	166.	96	966.	999	000	000	000
2	966.	966.	966.	95	966.	666.	000	000	000
_	.993	.993	.993	16	166.	666.	000	000	000
I	.985	.985	.985	99	.997	.999	000	000	000
I	.971	.971	.972	62	.997	666.	.000	000	000
7	.943	. 944	.948	73	.997	666.	000.	000.	000
1	. 963	.866	150.	7	.997	666.	000	000	000
	.740	.752	. 931	40	.997	.999	000.	000	000
S	0.5381	0.5762	0.7767	C.96.5	9956.0		90.	8	8
vi S	.198	. 324	.749	67	.996	666.	000	.000	000
20 3	.036	.239	.747	67	966.	666.	1.0000	000	1.0000
Date:									

c", 108

. 01

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A MICA CAPACITOR

KD2= 3.00000-06 TD2= 1.30000+00 THE CAPACITOR PARAVETERS USED ARE: MP= 2.0000=-05 KD1= 0.00000+00 0ELTA= 8.30000=-01 TD1= 1.00000+10 THE RADIATION PULSE IS 1.00CO@+11 RADS/SEC FOR 2.5000@-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.0000@+06 RADS/SEC

**

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

		4	C U	STANT					
710	F 1	13 SEC	1 SEC		10 18	SH T	Sn 001	10 US	1 US
)	.000	.000	0000	000	0000	000	000	000	000
2	.999	666.	666.	665.	666.	666	556	666	666
–	.999	666.	666.	656.	666.	666.	.999	666	666
S0 8	0.9993	0.9993	0.9993	66	66.	666.	666.	999	666
3 5	666.	666.	666.	666.	666.	666.	656.	999	000
3	666.	666.	656.	656.	666.	666.	666.	999	000
D	666.	666.	666.	666.	666.	666.	566.	999	000
3	666.	666.	656.	666.	665.	666.	666.	000	000
3 00	666.	666.	666.	666.	666.	666.	656	000	000
3	966.	906.	856.	655.	666.	666.	656	000	000
7 00	966.	866.	996.	.999	966	966.	656	000	000
-	.997	266.	256.	255.	166.	966.	656.	000	000
=	.995	.995	556.	.995	966.	966.	656.	000	000
	696.	969	989	066.	.992	.999	666.	000	000
Z O	.980	.980	.980	.961	186.	866.	666	000	000
I 0	.961	.961	.962	.965	.983	.999	656.	0	000
*	.908	.908	.910	.927	.991	966.	666.	000	000
I O	. 624	. 825	. 832	.887	.981	866.	666.	000	000
I O O	.678	.681	.766	.651	980	.997	656.	000	000
E C C	.372	. 365	485	. 432	.980	166.	656	000	000
	.132	.160	.359	.826	.979	.997	556.	000	000
	.015	.056	.316	.619	.983	166.	666.	000.	000
	000	.042	.305	. 814	.977	166.	666.	000.	000
	000.	.042	.364	•	11	1166.0	8666.0	1.0000	1.0000

10., 100

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A MICA CAPACITOR

KP= 2.0000=05 KD1= 0.00000+00 KD2= 3.00000=06 DELTA= 8.30000=01 TD1= 1.00000+10 TD2= 1.30000+00

THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.50000-06 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+07 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE THE THE THE THE INDICATED TO THE INITIAL CAPACITOR VOLTAGE

			•	S S	ANA					
1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000	•	Z			10C H	I O	2	7 00	>	>
N		000	000	000	000	000	000	000	000	000
1 US 0.9993 0.9993 0.9993 C.9993 C.9993 C.9993 0.9993 0.9994 0.9993 C.9993 C.99993 C.9993 C.9993 C.9993 C.9993 C.9993 C.9993 C.9993 C.9993 C.99993 C.9993 C.	Z.	.999	666.	666.	666.	666.	999	656	999	999
2 US 0.9993 0.99	3	.999	.999	666.	666.	666.	999	999	666.	.999
S US 0.9993 0.9993 0.9993 C.9993 0.9993 0.9993 0.9993 0.9993 0.9999 1.0000 C US 0.9999 0.999	3	666.	666.	666.	665.	665	999	666	666	.999
US 0.9992 0.9992 0.9992 0.9992 0.9992 0.9992 0.9991 0.9992 0.9991 0.9992 0.9992 0.9992 0.9992 0.9992 0.9994 0.9992 0.9992 0.9994	3	666.	666.	666.	666.	666.	.999	.999	666.	000
C US 0.9991 0.9991 0.9991 C.9997 C.9987 0.9997 0.9992 0.9998 1.000 C US 0.9987 0.9987 0.9997 0.9998 1.000 C US 0.9987 0.9987 0.9987 0.9998 1.000 C US 0.9987 0.9987 0.9987 0.9998 1.000 C US 0.9987 0.9987 0.9987 0.9998 1.000 C US 0.9987 0.9987 0.9988 0.9998 1.000 C US 0.9987 0.9987 0.9988 0.9998 1.000 C US 0.9988 0.9988 0.9988 0.9998 1.000 C US 0.9988 0.9988 0.9998 1.000 C US 0.9988 0.9988 0.9998 1.000 C US 0.9988 0.9987 0.9988 0.9998 1.000 C US 0.9988 0.9998 0.9998 0.9998 1.000 C US 0.9988 0.9998 0.9998 0.9998 1.000 C US 0.9988 0.9998 0.) 0	666.	666.	666.	666.	666.	666.	666	666.	000.
C US 0.9967 0.9967 C.9967 C.9987 C.9987 0.9967 0.9998 1.000 C US 0.9980 0.9980 C.9980	0	666.	666.	656.	666.	666.	666.	666.	666.	.000
0 US 0.9980 0.9980 C.9980 C.9980 0.9982 0.9982 0.9989 0.9998 1.000 US 0.9987 0.9987 0.9998 1.000 US 0.9988 0.9998 0.9988 0.9998	3	966.	966.	966.	966.	966	966	999	666.	000
0 US 0.9967 0.9967 0.9967 C.9968 0.9988 0.9987 0.9988 1.000	0	966.	966.	856.	866.	866	966	966	666	.000
I	3	966.	966.	.996	956.	966	166.	966	666.	000
NS	-	.992	.992	.992	.992	.993	1994	866.	999	000
MS	=	.986	.986	.986	.986	.987	.991	966.	666.	000
MS	=	.973	.973	.973	.574	.976	.988	966.	666.	000
MS	=	.936	.936	.937	.938	.950	.987	956.	666.	000
MS	=	.078	. 678	.878	.004	.922	.987	666.	666.	000
MS 0.5227 0.5238 C.5143 C.6143 0.9872 0.9985 0.9998 1.000 MS 0.2721 0.2750 C.3000 C.4366 0.8843 0.9974 0.9985 0.9998 1.000 MS 0.0728 0.0764 C.1260 C.4327 0.8220 0.9948 0.9985 0.9998 1.000 MS 0.00013 0.0065 0.0691 C.4227 0.6795 0.9848 0.9985 0.9998 1.000 S 0.0000 0.0067 0.0659 C.4227 0.6795 0.9848 0.9985 0.9998 1.000 S 0.0000 0.0067 0.0459 0.4663 0.9648 0.9985 0.9998 1.000 S 0.0000 0.0065 0.0610 0.2580 0.8663 0.9948 0.9998 1.000 S 0.0000 0.0065 0.0610 0.2580 0.8663 0.9988 0.9998 1.000	=	.771	.771	.773	.792	.897	1985	966	.999	000
MS 0.2721 0.2750 0.3000 0.4967 0.9967 0.9968 0.9996 1.000 MS 0.0728 0.0764 0.1260 0.4366 0.6795 0.9946 0.9968 0.9996 1.000 MS 0.0013 0.0069 0.4227 0.6795 0.9846 0.9985 0.9996 1.000 S 0.0000 0.0070 0.0658 0.4126 0.4757 0.9846 0.9985 0.9996 1.000 S 0.0000 0.0067 0.0530 0.4058 0.9996 1.000 S 0.0000 0.0065 0.0530 0.4663 0.9846 0.9985 0.9996 1.000 S 0.0000 0.0065 0.0611 0.3544 0.8663 0.9846 0.9985 0.9996 1.000 S 0.0000 0.0065 0.0610 0.3544 0.9846 0.9985 0.9996 1.000	=	.522	.523	.533	.614	. 465	186.	866	666	000
MS 0.0728 0.0784 0.1260 0.4227 0.6795 0.9848 0.9985 0.9996 1.000 MS 0.0013 0.0085 0.0691 0.4227 0.6795 0.9848 0.9985 0.9998 1.000 S 0.0000 0.0067 0.0658 0.4128 0.8777 0.9848 0.9985 0.9998 1.000 S 0.0000 0.0065 0.0611 0.8663 0.9848 0.9985 0.9998 1.000 S 0.0000 0.0065 0.0610 0.3580 0.9848 0.9985 0.9998 1.000	=	.272	.275	.300	.490	.884	.987	866	666	.000
MS	2	.072	.078	.126	.436	. ee2	.992	966.	666.	.000
S 0.0000 0.0070 0.0658 C.4128 C.8757 0.9848 0.9985 0.9998 1.000 0.0000 0.0067 C.0630 C.4020 0.8777 0.9848 0.9985 0.9998 1.000 S 0.0000 0.0065 C.0611 C.3944 0.8663 0.9848 0.9985 0.9998 1.000 S 0.0000 0.0065 C.0610 C.398C 0.8663 0.9848 0.9985 0.9998 1.000	I	.001	.008	.069	. 422	.679	.984	856.	666.	000
S 0.0000 0.0067 0.0430 0.4620 0.8777 0.9848 0.9985 0.9998 1.000 S 0.0000 0.0065 0.0411 0.3944 0.8663 0.9848 0.9985 0.9998 1.000 S 0.0000 0.0065 0.0610 0.3580 0.8663 0.9848 0.9985 0.9998 1.000	S	000.	.007	.065	.412	. 175	.984	856.	666.	000
0.0000 0.0065 C.0611 C.3944 O.#663 O.9848 O.9985 0.9996 1.000 0.0000 0.0065 C.0610 C.398C O.#663 O.9848 O.9985 0.9998 1.000	_	.000	900.	.963	.462	.877	.984	866.	666.	000
0.0000 0.0065 C.0610 C.358C 0.8663 0.9848 0.9985 0.9998 1.000	S	.000	.000	190.	. 394	. 266	.984	966.	.999	000
	S	.000	900.	.061	.358	. 266	.984	966.	.999	.000

10", 107

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A MICA CAPACITOR

KD2= 3.00000-06 T02= 1.30000+00 THE CAPACITOR PARAMETERS KO18 0.00008+60 KP= 2.0000=05 DELTA= 8.3000=01

THE RADIATION PULSE IS 1.00000+12 RADS/SEC FOR 2.50000-0d SEC FOLLOWED BY A CONSTANT RATE OF 0.00000+00 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

•		•	U LA	STANT					
	INE	10 SEC	1 SEC	100	10 48	SI I	100 08	10 05	1 05
_ ا	000	000	0000	000	000	000	000	000	000
	.995	.995	\$66.	556.	995	995	995	998	900
	.995	.995	.995	.995	.995	.995	.995	995	966
Sa	.995	.995	.995	.995	.995	.995	.995	966.	666
	.995	.995	.995	\$56.	.995	.995	.995	166.	000
	.995	.995	.995	556.	.995	.995	.995	866.	000
	.995	.995	.995	.995	. 995	.995	956.	666.	000
	.995	.995	.995	556.	.995	.995	156.	000	000
	.995	.995	.995	\$55.	665	.995	966.	000	000
	.995	.995	556.	.995	.995	966.	666	000	000
	.995	.995	.995	665.	995	166.	000	000	000
	.995	.995	556.	.995	.995	866.	000	000	000
	.995	.995	556.	.995	966.	666.	000	000.	000
	.995	.995	556.	.995	265.	0000	000	000	000
	.995	.995	\$56.	.995	966.	000	000	000	000
	.995	.995	566.	965.	666.	.000	000.	000	000
	.995	.995	.995	166.	000	.000	.000	000	000
	.995	. 995	556.	256.	000.	.000	000.	000	000
	.995	.995	.996	666.	000.	000.	0000	000	000
	.995	.995	256.	666.	000.	000.	0000	000	000
S	.995	.995	856.	0000	000	000.	0000	000	000
S)	.994	.995	656.	0000.	000.	.000	0000	000	000
s	0.9946	9966.0	6656.0	000	000		0000	000.	000
S	.994	.998	0000	Š	00	0	1.0000	1.0000	1.0000

100 200 100

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

2

OF A MICA CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 2.00002-05 KD1= 0.00000+00 KD2= 3.00000-06

DELTA= 8.30009-01 TD1= 1.00000+10 TD2= 1.30000+00

THE RADIATION PULSE IS 1.00000+12 RADS/SEC FOR 2.50000-00 SEC FOLLOWED BY A CONSTANT RATE OF 1.000000+03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

TAU CTIME CONSTANT)

		INE	10 SEC	1 560	10C MS	SA OT	SH I	100 US	10 US	SD I
TIPE))	
v		.000	.000	.000	000	000	000	000	000	000
25		.995	.995	.995	.995	995	995	995	995	995
-		.995	.995	.995	.995	.995	995	995	995	966
~	SD	0.9955	0.9955	0.9955	C.9955	0.9955	0.9955	0.9955	0.9963	0.9994
		.995	.995	.995	.995	995	.995	.995	.997	000
0		.995	\$66.	556.	.995	.995	.995	556	966.	000
20		.995	. 995	656.	.995	.995	.995	966	999	000
0		.995	.995	556.	.995	.995	.995	256.	000	000
00		.995	\$56.	556°	.995	.995	.995	966	000	000
00		.995	.995	.995	.995	.995	966.	999	000	000
00		.995	.955	.995	.995	.995	166.	.000	000	000
		.995	\$56.	.995	.995	665.	966.	000.	000	000
		.995	.995	556.	.995	966.	666.	000	000	000
		.995	.995	.995	.995	.997	000	000	000	000
0		.995	. 995	.995	.995	965.	000	000	000	000
0		.995	.995	\$66.	956.	666.	000	.000	000	000
8		.995	.995	.995	.997	665.	000.	0000	000.	000
		166.	.994	.995	.997	666.	000	.000	000.	.000
v		.994	.994	.995	866.	665.	.000	.000	000	000
0		. 992	.992	166.	666.	666.	000	000.	000	000
	5	.988	686.	. 993	666.	666.	000	.000	000.	000
	S	.981	.963	: 663	665.	665.	000	0000	000	000
5	S	.960	.969	.992	666.	566.	000	000	000	000
10	v	. 925	.953	666.	666.	665.	000	000.	000	000

10,2,01

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A MICA CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP. 2.000CP-05 KD1= 0.000CP+C0 KD2= 3.000CP-06

DELTA= 8.300CP-01 TD1= 1.000CF+10 TD2= 1.3000F+00

THE RADIATION PULSE IS 1.00008+12 RADS/SEC FOR 2.50008-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00008+04 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

	•		~	C C	ARI					
TIME		121	10 SEC	1 SEC	10C MS	10 18	1	10C US	10 US	1 08
8		.000	.000	.000	0000	000	000	000	000	000
		.995	.995	.995	565.	. 995	995	556	995	995
		.995	.995	556.	.995	.995	.995	.995	995	966
		.995	• 995	.995	.995	.995	.995	.995	966.	.999
		.995	.995	.995	\$65.	.995	.995	.995	166.	000
0		.995	.995	.995	.995	.995	.995	.995	966.	000
0		. 995	.995	.995	\$65.	.995	.995	956.	999	000
200	S	0.9954	0.9954	0.9954	C.5955	0	5	~	0	000
00		.995	.995	.995	.995	.995	.995	966	000	000
80		. 595	.995	.995	\$66.	.995	966.	666	000	000
O		.995	.995	.995	\$56.	.995	1997	000	000	000
		.995	.995	\$56.	.995	.995	.998	000.	000	000
		.995	.995	.995	.995	966.	666.	000	000	000
•		.995	.995	.995	.995	166.	666.	000	000	000
0		. 995	.995	566	555.	865.	000.	000	000	000
0		165.	766.	\$56	.995	666.	.000	.000	000	000
20		. 993	.993	656.	.995	666.	000.	.000	000.	000
		.991	166.	166.	.995	666.	000.	.000	000	000
00		.986	.987	. 388	.995	666.	000	000	000	.000
ပ္		.973	.974	.980	• 995	666.	000.	000.	000	000
	-	.951	.954	.970	\$66	666.	.000	0000	000	000
	•	205	.916	.963	555.	666.	000.	000	000	000
		.782	.827	.953	.995	665.	000.	000	000.	000
		.610	.742	.952	\$65.	665.	•	•	•	1.0000

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A MICA CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 2.00003-05 KCl= 0.00000+00 KD2= 3.00000-06

DELTA= 8.30000-01 TCl= 1.00000+10 TD2= 1.30000+00

THE RADIATION PULSE IS 1.00COP+12 RADS/SEC FOR 2.500CP-04 SEC FOLLOWED BY A CONSTANT RATE OF 1.0000P+05 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

TAU (TIME CONSTANT)

1.0000 1.	INI	10 SEC	1 SEC	10C MS	10 45	1 45	100 08	10 US	1 08
9955 0.9955 0.9955 C.9955 0.9955 0.9955 0.9955 0.9956 0.9956 0.9957 0.9958 0.9959 0.9959 0.9955 0.9955 0.9955 0.9955 0.9959 0.9959 0.9954 0.9955 0.9955 0.9955 0.9959 0.9959 0.9954 0.9954 0.9954 0.9955 0.9955 0.9959 0.9959 0.9954 0.9954 0.9954 0.9955 0.9955 0.9959 0.9959 0.9954 0.9954 0.9954 0.9955 0.9955 0.9959 0.9959 1.000 1.000 0.9954 0.9954 0.9955 0.9955 0.9957 0.9959 1.000 1.000 0.9954 0.9954 0.9955 0.9957 0.9957 0.9959 1.000 1.000 0.9954 0.9954 0.9955 0.9957 0.9957 0.9959 1.000 1.000 0.9954 0.9954 0.9955 0.9957 0.9957 0.9959 1.000 1.000 0.9954 0.9953 0.9955 0.9957 0.9957 0.9959 1.000 1.000 0.9951 0.9957 0.9957 0.9957 0.9959 1.000 0.9999 1.000 0.9959 0.9951 0.9957 0.99	00	0 1 000	000	000	000	000	000	000	000
9955 0.9955 0.9955 C.9955 C.9955 0.9955 0.9955 0.9956 0.9963 0.9963 0.9956 0.9957 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0	66.	5 0 995	.995	565.	995	995	998	995	995
9955 0.9954 C.9954 C.9955 C.9955 0.9955 C.9955 C.9957 C.99563 C.9956 0.9954 C.9954 C.9954 C.9955 C.9955 C.9957 C.9957 C.9956 C.9956 C.9956 C.9957 C.9	.99	5 0.995	.995	.995	.995	995	.995	995	966
9954 0.9954 C.9954 C.9954 0.9955 0.9955 0.9957 0.9963 1.000 9954 0.9954 0.9954 C.9954 C.9955 0.9955 0.9959 0.9963 1.000 99554 0.9954 0.9954 C.9954 0.9955 0.9957 0.9963 0.9963 1.000 99554 0.9954 0.9954 C.9954 0.9955 0.9957 0.9963 1.0000 1.000 99554 0.9954 0.9954 C.9955 0.9955 0.9957 1.0000 1.0000 99553 0.9952 0.9953 C.9953 0.9955 0.9967 1.0000 1.0000 99554 0.9952 0.9952 C.9953 0.9956 0.9991 1.0000 1.0000 9956 0.9950 0.9950 C.9953 0.9966 0.9997 1.0000 1.0000 9966 0.9950 0.9950 C.9950 0.9966 0.9997 1.0000 1.0000 99675 0.9956 0.9956 0.9966 0.9997 1.0000 1.0000 99675 0.9956 0.9956 0.9966 0.9997 1.0000 1.0000 99675 0.9957 C.9959 C.9956 0.9966 0.9997 1.0000 1.0000 99675 0.9958 C.9959 C.9956 0.9966 0.9997 1.0000 1.0000 99675 0.9958 C.9959 C.9956 0.9966 0.9997 1.0000 1.0000 99675 0.9959 C.9959 C.9956 0.9966 0.9997 1.0000 1.0000 99675 0.9959 C.9959 C.9956 0.9966 0.9997 1.0000 1.0000 99675 0.9959 C.9657 C.9657 0.9966 0.9997 1.0000 1.0000 99675 0.9959 C.9959 C.9959 0.9966 0.9997 1.0000 1.0000 99675 0.9959 C.9657 0.9966 0.9997 1.0000 1.0000 99675 0.9959 C.9657 0.9966 0.9997 1.0000 1.0000 1.0000	.99	5 0.995	.995	.995	.995	.995	.995	966	999
9954 0.9954 0.9954 0.9954 0.9955 0.9955 0.9963 0.9994 1.000 1.9954 0.9954 0.9954 0.9954 0.9954 0.9954 0.9955 0.9954 0.9955 0.9954 0.9955 0.9954 0.9955 0.9954 0.9955 0.9954 0.9955 0.9954 0.9955 0.9955 0.9957 0.9953 1.0000 1.0000 1.9954 0.9955 0.9955 0.9957 0.9957 1.0000 1.0000 1.0000 0.9954 0.9955 0.9955 0.9957 0.9952 1.0000 1.0000 1.0000 0.9952 0.9953 0.9955 0.9957 0.9952 1.0000 1.0000 1.0000 0.9952 0.9953 0.9955 0.9957 1.0000 1.0000 1.0000 0.9952 0.9953 0.9957 1.0000 1.0000 1.0000 0.9956 0.9957 1.0000 1.0000 1.0000 0.9956 0.9957 1.0000 1.0000 1.0000 0.9958 0.9957 1.0000 1.0000 1.0000 0.9958 0.9957 1.0000 1.0000 1.0000 0.9958 0.9957 1.0000 1.0000 1.0000 0.9958 0.9957 1.0000 1.0000 1.0000 0.9957 0.9567 0.9957 1.0000 1.0000 1.0000 0.9957 0.9957 0.9957 1.0000 1.0000 1.0000 0.9957 0.9957 0.9957 1.0000 1.0000 1.0000 0.9957 0.9957 0.9957 1.0000 1.0000 1.0000 0.9957 0.9957 0.9957 0.9957 0.9956 0.9997 1.0000 1.0000 1.0000 0.9957 0.995	66.	4 0.995	.995	.995	.995	.995	.995	166.	.000
9954 0.9954 0.9954 0.9954 0.9955 0.9957 0.9963 0.9994 1.000 1.0954 0.9954 0.9954 0.9954 0.9954 0.9954 1.000 1.0954 0.9954 0.9954 0.9955 0.9957 0.9957 1.000	66.	4 0.995	.995	.995	.995	.995	.995	866.	000
9954 0.9954 0.9954 0.9954 0.9955 0.9957 0.9952 1.0000 1.000 9954 0.9954 0.9954 0.9955 0.9959 0.9953 1.0000 1.000 9953 0.9953 0.9953 0.9955 0.9952 0.9994 1.0000 1.000 9953 0.9952 0.9952 0.9952 0.9956 0.9991 1.0000 1.000 9940 0.9940 0.9940 0.9949 0.9956 0.9991 1.0000 1.0000 1.000 9940 0.9940 0.9940 0.9941 0.9941 0.9954 1.0000 1.0000 1.000 9940 0.9940 0.9952 0.9957 0.9956 0.9997 1.0000 1.0000 1.000 9940 0.9940 0.9957 0.9940 0.9997 1.0000 1.0000 1.000 9940 0.9940 0.9950 0.9966 0.9997 1.0000 1.0000 1.000 9940 0.9940 0.9692 0.9966 0.9997 1.0000 1.0000 1.000 9940 0.9940 0.9692 0.9966 0.9997 1.0000 1.0000 1.000 9940 0.9940 0.9695 0.9966 0.9997 1.0000 1.0000 1.000 9940 0.9940 0.9590 0.9695 0.9966 0.9997 1.0000 1.0000 1.0000 9940 0.9940 0.9590 0.9695 0.9966 0.9997 1.0000 1.0000 1.0000 9940 0.9940 0.9940 0.9960 0.9997 1.0000 1.0000 1.0000 9940 0.9940 0.9940 0.9960 0.9997 1.0000 1.0000 1.0000	66.	4 0.995	.995	.995	.995	.995	966.	666.	000
9954 0.9954 0.9954 C.9954 C.9955 0.9959 C.9994 1.0000 1.00	.99	4 0.995	.995	.995	.995	.995	166.	000	000
9953 0.9954 0.9955 0.9958 0.9955 0.9962 0.9994 1.0000 1.0000 1.0000 1.9953 0.9953 0.9953 0.9953 0.9953 0.9953 0.9953 0.9953 0.9953 0.9954 1.0000 1.00	66.	4 0.995	.995	.995	.995	.995	866.	000	000
.9953 0.9953 0.9953 C.9953 0.9956 0.9981 1.0000 1.0	65.	4 0,995	\$56.	.995	.995	966.	666.	000	000
.9952 0.9952 0.9952 C.9952 C.9956 0.9981 1.0000 1.0	66.	3 0.995	.995	.995	.995	166.	656	000	000
.9949 0.9949 0.9949 C.9950 0.9956 0.9991 1.0000 1.0000 1.0000 1.9000 9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9940 0.9941 0.9945 0.9997 1.0000 1.0000 1.0000 9814 0.9815 0.9862 0.9966 0.9997 1.0000 1.0000 1.0000 9814 0.9875 0.9875 0.9966 0.9997 1.0000 1.0000 1.0000 9814 0.9875 0.9875 0.9966 0.9997 1.0000 1.0000 1.0000 9814 0.9875 0.9875 0.9966 0.9997 1.0000 1.0000 1.0000 9815 0.9897 0.9997 1.0000 1.0000 1.0000 9815 0.9897 0.9966 0.9997 1.0000 1.0000 1.0000 9815 0.9897 0.9966 0.9997 1.0000 1.0000 1.0000 9815 0.9997 0.9997 1.0000 1.0000 1.0000 9815 0.9997 0.9997 0.9997 0.9997 0.0000 1.0000 1.0000 9815 0.9997 0.9997 0.9997 0.0000 1.0000 1.0000 9815 0.9997 0.9997 0.9997 0.0000 1.0000 0.0000 0.0000 0.9997 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.	66.	2 0.995	.995	.995	.995	966.	000	000	000
.9940 0.9940 0.9941 C.9943 0.9961 0.9997 1.0000 1.0000 1.0000 9926 0.9926 0.9997 1.0000 1.000	66.	966.0 6	.994	.995	.995	666.	000	000	000
.9926 0.9926 0.9927 C.9932 0.9965 0.9997 1.0000 1.0	66.	0.994	.994	.994	966	666.	000	000	000
.9898 0.9898 C.9900 C.9912 0.9966 0.9997 1.0C00 1.0000 1.000 .9814 0.9615 C.9620 C.9662 C.9966 0.9997 1.0C00 1.0000 1.000 .9675 0.9676 0.9692 C.9605 C.9966 0.9997 1.0C00 1.0000 1.000 .9399 0.9605 C.975C C.975C 0.9966 0.9997 1.0C00 1.0000 1.000 .7377 0.7697 C.9797 C.9796 0.9966 0.9997 1.0C00 1.0000 1.000 .7377 0.5742 C.7763 C.9695 C.9966 0.9997 1.0C00 1.0000 1.000 .5357 0.5742 C.7763 C.9695 C.9966 0.9997 1.0C00 1.0000 1.0000 .1972 0.3242 C.7763 C.9675 C.9966 0.9997 1.0C00 1.0000 1.0000	66.	6 0.992	.992	.993	966.	666	000	000	000
9814 0.9815 0.7820 C.9862 0.9966 0.9997 1.0000 1.0000 1.000 9387 0.9676 0.9997 1.0000 1.0000 1.000 9389 0.9405 0.9458 C.975C 0.9966 0.9997 1.0000 1.0000 1.000 9389 0.9405 0.95712 0.9966 0.9997 1.0000 1.0000 1.000 9387 0.7497 0.3298 C.9499 0.9966 0.9997 1.0000 1.0000 1.000 9387 0.3242 0.7494 C.9475 0.9966 0.9997 1.0000 1.0000 1.000 9365 0.3242 0.7476 C.5477 0.9966 0.9997 1.0000 1.0000 1.000 9365 0.3857 0.3242 0.7476 C.5477 0.9966 0.9997 1.0000 1.0000 1.000	96	8 0.989	066.	166.	966	666	000	000	000
.9675 0.9676 0.9692 C.9805 0.9966 0.9997 1.0000 1.0000 1.000	.98	196.0	. 362	986.	966.	666.	000	000	000
.9399 0.9405 0.9458 C.975C 0.9966 0.9997 1.0C00 1.0000 1.000 .8600 0.8635 0.8697 C.9712 0.9966 0.9997 1.0C00 1.0000 1.000 .7377 0.7497 0.9298 C.9695 0.9966 0.9997 1.0C00 1.0000 1.000 .5357 0.5742 C.7763 C.9685 0.9966 0.9997 1.0C00 1.0000 1.000 .1972 0.3242 0.7494 C.9675 0.9966 0.9997 1.0CCC 1.0000 1.000	96.	2 0.967	.969	.980	966.	666.	000	000	000
.8600 0.8635 0.9697 C.9712 0.9966 0.9997 1.0000 1.0000 1.000 .7377 0.7497 0.9298 C.9699 0.9966 0.9997 1.0000 1.0000 1.000 .5357 0.5742 C.7763 C.9685 0.9966 0.9997 1.0000 1.0000 1.000 .1972 0.3242 0.7494 C.9675 0.9966 0.9997 1.0000 1.0000 1.000	.93	0.940	.945	.975	966.	666.	000	000	000
.7377 0.7497 0.5296 C.9699 0.9964 0.9997 1.0000 1.0000 1.000 .5357 0.5742 C.7763 C.9685 0.9966 0.9997 1.0000 1.000 .1972 0.3242 0.7494 C.9675 0.9966 0.9997 1.0000 1.000 .0365 0.2393 C.7476 C.5677 0.9966 0.9997 1.0000 1.000	98.	0 0.863	. 969	.971	966	666.	000	000	000
.5357 0.5742 C.7763 C.9685 0.9966 0.9997 1.0000 1.0000 1.000 .1972 0.3242 C.7494 C.9675 0.9966 0.9997 1.CCCC 1.0000 1.000 .0365 0.2393 C.7476 C.9677 0.9966 0.9997 1.0CCC 1.0000 1.000	.73	7 0.749	. 929	696.	966	666	000	000	000
1972 0.3242 0.7494 C.9675 0.9966 0.9997 1.CCCC 1.0000 1.000	53	7 0.574	.776	.968	966.	666.	000	000	000
0365 0.2393 C.7476 C.5677 0.9966 0.9997 1.0CCC 1.0000 1.000	2	2 0.324	.749	196.	966.	666	200	000	000
	.03	5 0.239	.747.	. 567	966.	666	000	000	000

10 % 01

10.3 106

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A MIÇA CAPACITOR

KP= 2.C0009-05 K01= 0.C00CP+0C KD2= 3.0000P-06 DELTA= 8.30009-01 T01= 1.C000P+1C T02= 1.3000P+00

THE RADIATION PULSE IS 1.00000+12 RADS/SEC FOR 2.50002-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+06 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHANGING CIRCUIT.

THE VALUES GIVEN ARE THE RATICS OF THE CAPACITOR VOLTAGE AT THE THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

•		•	C E	STANT					
4	ING.	10 SEC		100 MS	10 68	1 #8	100 US	10 US	Sn 1
	.000	000	000	0000	000	000	000	000	000
2	.995	.995	.995	556.	566	.995	995	995	200
3	.995	.995	.995	.995	995	.995	.995	995	966
Sn Z	0.9954	0.9954	0.9954	C.9954	0.9954	66	56.	.99	•
7	.995	.995	.995	.995	.995	.995	.995	997	000
3	.995	.995	.995	.995	.995	.995	.995	966	000
>	.995	.995	.995	.995	.995	.995	956	666	000
3	.995	.995	.995	.935	.995	.995	997	000	000
7	.995	.995	.995	.995	556.	.995	966	000	000
7	.995	.995	.995	.995	.995	.995	656	000	000
2	*66.	.994	.994	.994	166	966.	999	000	000
I	.993	.993	.993	.993	166.	166.	666	000	000
I	.991	.991	156.	166.	.992	.997	666	000	000
1	.986	.986	.986	986.	686.	166.	666	000	000
I	926.	.975	.976	.977	986.	166.	666	000	000
I	.558	.958	.958	.962	.983	166.	656	000	000
I	.904	.904	906.	.925	.981	.997	666.	000	000
2	.821	.822	.829	.885	.981	166.	666.	000	000
X	.675	.678	.764	. 451	980	166.	656.	000	000
I	.371	. 363	.484	. 832	.980	166.	666.	000.	000
	.131	.160	.358	964.	.979	166.	556.	.000	000
	.015	.056	.316	. 919	.983	166.	566.	000.	.000
	0000	.042	.365	. E 14	.977	166.	666.	000	000
	• 000	.045	. 364	. 614	.577	166.	8656.0	00	0

200

100

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A MICA CAPACITOR

KD2= 3.00000-06 TD2= 1.30000+00 THE CAPACITOR PARAMETERS USED ARE: T01= 1.00000+10 K31= 0.00000+00 KP= 2.00000-05

THE RADIATION PULSE IS 1.00000+12 RADS/SEC FOR 2.50000-00 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+07 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE THE THE LAPACITOR VOLTAGE

		<	C	STANT					•
	INF	10 SEC		10C MS	10 48	Sw T	100 US	10 US	Sn I
1146									
	000.	.000	.000	000	000	000	.000	000	000
2	0.995	.995	.995	.995	.995	.995	.995	.995	.995
=	0.995	.995	.995	.995	.995	.995	.995	.995	966
S7 C	0.9954	0.9954	0.9954	C.9954	0.995A	0.9954	0.9955	0.9962	0.9994
3 5	0.995	.995	.995	.995	.995	.995	556.	.997	000
3 0	0.995	.995	.995	.995	266.	.995	.995	866	000
3	0.995	.995	.995	.995	.995	.995	966.	666.	000
9	0.994	*66	.99.	.994	.994	.995	966.	666	000
200	0.094	.994	.994	.994	.994	1994	156.	.999	000
3	0.992	.992	.992	.992	.993	.993	966	.999	000
200	0.989	686.	.989	.989	989	.992	966	999	000
=	0.982	.982	.982	.982	.963	990	966	999	000
=	0.810	.970	.970	.970	.973	.986	.998	999	000
=	0.933	.933	.933	.934	.948	.987	866.	666	000
8	0.074	.874	.875	. 660	.921	.987	966	.999	000
=	0.768	.768	.770	.789	969.	.987	966	999	000
E	0.520	.521	.531	.613	.885	.987	966.	999	000
1 00	0.271	.273	.299	.490	.684	.987	966	999	000.
Z	0.072	.078	.125	.436	.682	.992	966.	666.	000
I	0.001	.008	.049	. 422	. 279	.984	856	999	.000
	.000	.007	.065	.412	. 275	.984	966	999	000
	000	.006	.063	.462	. 277	984	966	.999	000
	000.	.006	.061	.354	.866	.984	966	999	000
	.000	900.	.061	.398	.866	1984	968	999	000
)			

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A MICA CAPACITOR

KD2= 3.00000-C6 THE CAPACITOR PARAMETERS USED ARE: KP= 2.00000-05

THE RADIATION PULSE IS 1.50000+13 RADS/SEC FOR 2.50062-08 SEC FOLLOWED BY A CONSTANT RATE OF C.00000+00 RADS/SEC TD2= 1.30000+00 DELTA= 8.30000-01

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

AT THE THE VALUES GIVEN ARE THE RATICS OF THE CAPACITOR VOLTAGE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

•			S W	STANT					
.	INF	10 SEC	1 SEC	100 MS	10 48	SH	100 08	10 08	1 08
•	000	.000	000	000.	000	000	000	000	000
	696.	696.	69.	.969	696.	696.	969	969	970
	696.	696.	.969	.969	596.	.969	969	.972	986
	696.	696.	.969	.969	695.	.969	.970	.975	.995
S	9696.0	0.9696	0.9696	0.9696	0.9697	0.9698	0.9711	0.9816	0.9998
	696.	696.	696.	695.	696.	696.	.972	986	000
	696.	696.	696.	.969	695.	.970	.975	.995	000
	696.	696.	696.	.969	696.	.971	.981	666	000
	696.	696.	696.	696.	696.	.972	986	000	000
	696.	696.	949.	695.	. 970	.975	995	000	000
	596.	696.	696.	.969	.971	.961	999	000	000
	696.	696.	696.	695.	.972	.988	.000	000	000
	696.	696.	696.	.970	.975	.995	000	000	000
	696.	696.	.969	.971	.981	666.	.000	000	000
	696.	696.	596.	.972	.988	.000	000.	000	000
	596.	696.	.973	.975	\$66.	.000	000	000	000
	696.	696.	.970	.961	666.	000.	000.	000	000
	596.	696.	.972	.988	000.	.000	.000	000	.000
	.968	696.	.974	. 395	000.	000	000.	000.	000
	.967	.969	.980	600.	000.	000.	.000	000	000
S	.966	696.	.987	666.	000.	000.	.000	000	000
S	.965	.971	966	666.	000.	000.	000.	000	000
S	.964	.977	656.	0000	000.	0000	000.	000	000
S	. 963	.986	000	000.	000.	000.	000.	000	.000

100

200

0 7 01

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A MIÇA CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP# 2.0000@-05 KD1# 0.0000@+00 KD2# 3.0000@-06

DELTA# 8.3000@-01 TD1# 1.0000@+10 TD2# 1.3000@+60

THE RADIATION PULSE IS 1.00000+13 RADS/SEC FOR 2.50060-00 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

	•		•	20 1011						
	•	INT	10 SEC	SEC 1 SEC	100 MS	10 #5	T IIS	SD 001	50 OF	SO T
171	W					•))
_		.000	.000	000	000	000	000	000	000	000
23		696.	696.	696.	.969	696.	.969	969	969	.970
		696.	696.	.969	696.	696.	969	969	.972	986
~		696.	696.	.969	.969	.969	.969	.970	.975	.995
50	57	9696.0	9696.0	9696.0	0.9696	0.9697	0.9696	0.9711	0.9816	0.999
_		696.	696.	.969	.969	696	969	. 372	.988	000
=.		696.	696.	.969	.969	696	.970	.975	.995	000
_		696.	696.	.969	.969	.969	.971	.961	999	000
ŏ		596	.969	696.	696.	696	.972	986	000	000
0		.969	.969	.969	.969	.970	.975	995	000	000
		.969	.969	.969	696.	.971	.981	999	000	000
-		.969	696.	696.	.969	.972	986	000	000	000
~		.969	696.	.969	.970	.975	.995	000	000	000
~		.969	.969	.969	.971	.981	666.	000	000	000
		.969	.969	.969	.972	.988	000	000	000	000
2		.969	696.	.970	.975	.995	000.	000	000	000
3		.969	.969	.970	.981	666.	000	000	000	000
100		.964	.968	.971	.988	666.	.000	000	000	.000
200		.967	.968	.973	.995	656.	.000	.000	000	000
200		.964	996.	.977	866.	666.	.000	000	000	000
-	S	396€	.963	.982	665.	666.	.000	000	000	000
2	S	.952	.959	.963	666.	666	000	000	000	000
5	w	.930	.950	.992	666.	666.	200.	000	000	000
2	ø	960.	.942	236.	666.	666.	.000	000.	000	000

10 13, 103

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A MIÇA CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:
KP= 2.00000=05 KD1= 0.00000+00 KD2= 3.00000=06
DELTA= 0.30000=01 TD1= 1.00000+10 TD2= 1.30000+00

THE RADIATION PULSE IS 1.00C00+13 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+04 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

AT THE THE VALUES GIVEN ARE THE RATIGS OF THE CAPACITOR VOLTAGE TIME INDICATED TO THE INITIAL CAPACITOR VELTAGE

	•		•	C U	STANT					-2
TIPE		INE	10 SEC	1 SEC		10 18	SH	100 US	10 US	
		000	0000	0000	0000	000	000	000	000	00
		696.	696.	696.	.969	696.	696.	969	969	97
-		.969	696.	.969	.969	696	696.	696.	.972	86
		696.	696.	696.	696.	696.	.969	.970	.975	.995
		696.	.969	696.	.969	696.	696.	.971	.981	666.
0		696.	696.	.969	695.	696.	696.	.972	986	000
		696.	.969	.969	696.	696.	.970	.975	.995	000
0		696.	696.	.969	696.	969	.971	.961	666.	000
8		696.	696.	696.	696.	696	.972	.968	000	000
0		696.	696.	696.	696.	970	.975	.995	000	000
8		696.	696.	696.	696.	.971	.981	666.	.000	000
		696.	696.	696.	696.	.972	.988	000.	000	000
		696.	696.	.969	.970	.975	.995	000.	000	000
		696.	696.	.969	025.	.991	666.	.000	.000	000
0		595.	696.	696.	.572	995	.000	.000	000	000
O		.968	.968	696.	.574	.995	000	000	000	000
0		196.	.967	.968	.979	666.	000.	000	000	000
00	S	0.9651	0.9655	0.9682	.985	666.	000	000	.000	000
0		995.	.961	196.	.991	666	000	000.	000	000
00		245.	646.	.963	.995	666.	000.	.000	000	000
	s	.924	.929	656.	.995	666.	000.	.000	000.	000
	v	.880	. 394	.955	.995	666.	000	.000	000.	000
	S	.758	.812	.952	.995	656.	000	000	000	000
- 73	S	.591	.735	.952	0556.3	6.9995	1.0000	1.0000	1.0000	1.0000

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A MICA CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 2.00000=05 KD1= 0.00000+00 KD2= 3.00000=06

DELTA= 8.30000=01 TD1= 1.00000+10 TD2= 1.30000+00

THE RADIATION PULSE IS 1.00000+13 FADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+05 FADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHANGING CINCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

		-	U	TRY					
	INE	10 SEC	1 SEC	100	10 #5	S# 1	100 08	10 US	50 I
711									
v	.000	000.	.000	000	000	000	000	000	000
2	696.0	696.	.969	969	.969	969	969	969	970
7	696.0	696.	.969	.969	696	696	696	.972	986
2 US	9696.0	9696.0	9696.0	C.9696	0.9696	0.9697	0.9702	0.9751	0.9950
–	696.0	.969	.969	.969	696	696.	.971	.981	.999
0	696.0	.969	.969	696.	696	696.	.972	986	000
0	696.0	696.	696.	695.	696.	.970	.975	.995	000
>	696.0	696.	.969	696.	695	.971	.961	666	000
2 00	0.969	696.	.969	695.	696	.972	986	000	000
0	696.0	696.	.969	695.	.970	.975	995	000	000
200	695.0	696.	.969	.969	.971	.961	656.	000	000
=	696.0	696.	.969	695.	.972	.989	000	000	000
I	0.969	696.	.969	.969	.974	.995	000	000	000
=	0.968	.969	.963	.949	980	666.	000	000	000
*	996.0	996.	.967	.969	186.	666	000	000	000
I O	0.564	.964	.964	.970	.993	666.	000	000	000
I	0.955	.956	.957	.970	966.	666.	000	000	000
200	0.942	.942	.946	.971	966.	666.	0000	000	000
Z O	0.914	.916	.925	.971	966.	666.	000	000	000
1 00	0.836	. 840	. 875	.970	965.	666.	000	000	000
	.716	.730	.021	.969	966.	666.	000	000	000
	.519	.560	.773	.968	965.	666.	000	000	000
	.191	. 320	.749	195.	955.	666	000	000	000
	.035	.230	.747	196	965.	666.	0000	000	000

0,3, 105

1013, 106

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

f. Pri

OF A MICA CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 2.0000P-05 KD1= 0.0000P+00 KD2= 3.0000P-06

DELTA= 8.3000P-01 TD1= 1.0000P+10 TD2= 1.3000P+00

THE RADIATION PULSE IS 1.00000+13 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+06 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATICS OF THE CAPACITOR VOLTAGE AT THE THE THE TABLE CAPACITOR VOLTAGE

	•	<	U	START					
	INE	10 SEC		100 HS	10 48	T ES	100 US	10 US	1 08
10	000	000	000	0000	000	000	000	000	000
Z	696.	696.	.969	.969	695.	696.	966	969	970
	9696.0	9696.0	0.9696	9695.3	9696.0	0.9697	96.	.97	86
7	696.	696.	.969	696.	.969	696.	.970	.975	.995
3 n	696.	.969	.969	695.	695.	.969	.971	.981	666.
3	696.	.969	.959	695.	.969	696.	.972	986.	000
3	696.	696.	.969	695.	696.	.970	.975	.995	000
20	695.	696.	.969	695.	696.	.971	.961	666.	000
3 0	695.	696.	696.	695.	.969	.972	.986	000	000
0	696.	696.	.963	695.	696.	.974	.995	000	000
30	996.	.968	.968	.968	970	086	666	000	000
=	.967	.967	.967	.968	.970	.987	666.	000	000
I N	.965	.965	.966	.966	.971	166.	656.	000	000
N	095.	.960	.950	.962	.974	.997	666.	000	000
I O	.951	.951	.951	.955	.577	.997	666.	000	000
Y	.933	.933	.934	.942	.977	166.	666	000	000
Z	.880	.861	.884	.910	.977	166.	666.	.000	000
I U	. 799	.800	.810	. F.78	. 477	166.	666.	000.	000.
I U	.657	.561	.689	. 648	.977	266.	656.	000	000
z U	.360	.374	.477	.632	.977	.997	555.	000	000
-	.127	.156	.357	.826	.977	166.	666.	000	000.
	.014	.055	.315	.819	.977	166.	655.	000.	000
	000.	.042	.305	. 210	.577	166.	656.	000.	000.
10 8	000.	.042	.364	. 614	.977	166.	8656.0	000.	000

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A MICA CAPACITOR

K02= 3.00000-06 THE CAPACITOR PARAMETERS USED ARE: KD1= 0.CC00#+C0 KP= 2.0000-05

TD2= 1.30000+00 TD1= 1.00000+10 DELTA= 8.300CP-01

THE RADIATION PULSE IS 1.00000+13 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+07 RADSISEC TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME VALTAGE

sn 1 sn	0 1 000	7 0.970	5 0.988	1 0.995	2 6.999	7 1.000	0 1.000	7 1.000	0001	1.0000	0 1.000	0001	1.000	1.000	8 1.000	9 1.000	0001	9 1.000	0 1.000	1.000	9 1.000	8 1.000	9 1.000	
01	00	96	.97	.97	96	96	66.	66.	66.	0.999	66.	66.	66.	66.	66.	66.	66.	66.	66	66.	.99	66.	66.	0
100 US	000	969	969	970	.971	.972	.974	.961	.966	0.9948	966.	966.	856	966	866.	966	966	966	966	966	966	866	966	000
S	000	969	969	696	969	.969	.970	.970	.971	0.9729	.976	086.	₽86.	196	.984	.984	.984	.984	984	196	.984	.984	984	-
10 48	0000	696	696	696	696.	696.	696.	696	969	0.9678	.965	095	.952	.933	.912	168.	.685	.884	.682	. 279	.875	.677	994.	770
NSTANT) 10C MS	000	9696	.969	695.	.969	696.	.969	696.	.968	C.9672	.963	.957	.945	.911	. 660	.773	.604	.487	.436	.422	.412	.402	.394	30
CTINE CO	000	696.	.969	.969	.969	696.	.969	.969	.966	0.9671	.963	.957	.945	636.	.852	.751	.518	.292	.124	.069	.065	.063	.061	. 70
TAU 10 SEC	000	.969	.969	.969	.969	696.	696.	696.	.968	0.9671	.963	.957	.944	606.	.852	.748	.508	.265	.076	.008	.007	.006	.006	400
INE	000	696.	.969	696.	696.	696.	696.	696.	996.	0.9671	.963	.957	.944	606.	.852	.748	.507	.263	.070	.001	.000	.000	.000	000
·	•	2	3	>	>	0	<u>ت</u>	o o	00	200 US	7 00		*	=	Z U	Y	=	I DO	20C E	1 00 E		~		

0,0

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A MYLAR CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:
KP= 6.00000=05 KG1= 2.00000+00 KD2= 9.00000=06
DELTA= 8.60000=01 TG1= 4.00000=04

THE RADIATION PULSE IS 1.00COM+10 RADS/SEC FOR 2.5COCP-00 SEC FOLLOWED BY A CONSTANT RATE OF C.000000+00 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIUS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

		•	U U	124					
	IN I	10 SEC	1 SEC	100 MS	10 15	SH I	100 US	50 OF	Sn t
TIPE))))
0	.000	0000	.000	000.	000.	.000	.000	000	000
2	666.0	666.	666.	555.	666.	666.	666	999	666
3	566.0	666.	656.	656.	666.	666.	566.	999	999
7	0.000	666.	656.	655.	666.	666.	656.	666.	666.
3	666.0	666.	656.	656.	666.	666.	656.	666.	000
3	0.999	666.	066.	655.	666.	666.	666.	666.	000
3	566.0	666.	666.	656.	666.	666.	666.	666.	000
3	0.998	966.	.998	865.	966.	966.	856.	666.	000
00	266.0	166.	256.	155.	166.	.997	966.	666	000
3	966.0	966.	.396	966.	966.	966.	966.	666.	000
D 00	65.0	.993	.993	.993	.993	.995	656.	000	000
#	0.992	.992	.992	255.	.992	966.	566.	000	000
*	0.991	166.	.991	165.	.992	966.	000	000	000
1	0.991	.991	.991	156.	.994	666.	000	000	000
Z U	0.591	.991	156.	.992	965.	.000	000.	000	000
I U	0.991	.991	.991	.993	866.	.000	000.	000.	000
I O	0.991	.991	.991	906.	666.	.000	.000	000	000
T OO	0.991	.991	.952	955.	000.	000.	000.	000	000
*	.991	.991	656.	665.	000.	.000	.000	000.	000
200	0.991	.991	v 56.	666.	000.	000.	0000.	000	.000
1 S	.991	866	96	000	000.	000.	000.	.000	000
	.991	666.	656.	000.	.000	.000	0000.	000.	.000
	.991	756.	656.	000.	000.	.000	000	000.	000
10 \$	0.9914	0.3963	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000

OF A MYLAR CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 6.00000=05 KC1= 2.00000+00 KD2= 9.00000=06

DELTA= 8.60000=01 TD1= 4.00000=04

THE RADIATION PULSE IS 1. COCOR+10 RACS/SEC FOR 2.50CCR-04 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

TAU CTIME CONSTANT)

		INE	10 SEC	1 SEC	100 45	10 15	S# T	100 US	10 US	SO I
7116										
ပ		.000	.000	000.	000.	000	000	000	000	000
23	s	666.	666.	666.	666.	666	666	656	666	. 999
-	s	.999	666.	666.	566.	666.	999	666	666	666
→	s	666.	666.	666.	666.	666.	666.	666	999	.999
_	s	666.	666.	656.	565.	666.	999	666.	666	000
7 0 1	S	0.9992	0.9992	0.9992	C.9992	0.9992	0.9992	69993	66	
	S	666.	666.	666.	666.	666.	666.	656.	666.	000
0	S	966.	866.	866.	866.	966.	966.	966.	999	000
00	s	.997	.997	166.	166.	166.	.997	866.	666.	000
0	5	966.	966.	966.	956.	966.	966.	366	666	000
00	s,	.993	.993	: 953	.993	.993	.995	666.	000	000
	v	.991	156.	.991	.992	.992	.995	666.	.000	000
	'n	.991	. 491	156.	. 991	.992	866.	000	000.	000
	5	066.	066.	056.	055.	.993	666.	000	000	000
8	w)	.968	.989	.988	.969	166.	666.	000	000	000
v	s	.985	.985	.985	.987	966.	666.	000.	000	000
0	S	.975	.975	.976	.982	966.	.999	000	000	000
8	v)	.959	.959	.962	.976	956.	.999	000.	000.	000
U	'n	.920	. 929	.936	.971	966.	666.	000.	.000	000.
00		. 641	. 945	.875	.968	966.	666.	000.	000	000
		.714	.727	.916	.968	966.	666.	.000	.000	000
		.513	.554	.769	.968	965.	.999	.000	.000	000
		. 190	. 321	.752	.968	965.	666.	.000	.000	.000
		•036	.242	.751	.968	965.	666.	.000	0	.000

101 2,21

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A MYLAR CAPACITGR

KD2= 9.00000-06 THE CAPACITOR PARAMETERS USED ARE: KP= 6.00000=05 KD1= 2.0000+00 DELTA= 8.600C8-01

T02= 1.00000+CC TO1= 4.00000-04

THE RADIATION PULSE IS 1.00000+10 HADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+04 HADS/SEC TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

Some of the same

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITCR VOLTAGE AT THE THE TAIL CAPACITOR VOLTAGE

	,		•	n n	STANT					
1 1 1 1		111	10 SEC	1 SEC	100	10 PS	SI I	100 US	10 US	1 68
U		000	.000	000	000.	000	000	000	000	000
	SZ	666.	666.	666.	666.	666.	666	656	.999	999
-	SO	666.	666.	666.	665.	666	666.	556	999	666
_	SO	666.	666.	666.	665.	666.	666.	656.	666.	999
5	Sa	666.	666.	656.	566.	666.	.999	666.	666.	000
	5	0.9992	0.9992	0.9992	2665.3	2566.3	0.9992	0.9993	0.9997	1.0000
c ·	S	666.	666.	656.	665.	666.	666.	666.	666.	000
20	S	966.	966.	956.	866.	866.	866.	866.	666.	000
0	S	.997	.997	256.	.997	256.	166.	966.	999	000
00	CS	966.	966.	956.	966.	956.	966.	966	666	000
8	SO	.993	.993	.993	.993	.993	166.	666	666	000
-	SI	.990	066.	056.	066.	155.	.994	666.	000	000
	SI	186.	.987	.987	.987	969	966.	666.	000	000
•	SI	.980	.980	.980	.981	966	166.	666	000	000
0	SI	696.	696.	.969	.970	.982	166.	656.	000	000
0	FIS	.946	.946	.947	.952	.978	.997	666.	000	000
	SI	. 991	.861	. 884	.907	.976	166.	656.	000	000
00	SI	.783	.784	.793	.691	.976	166.	656	000	000
0	S	.617	.621	.651	.823	.976	186.	665	000	000
00	SI	.302	.316	. 425	. AGE	.976	.997	555	000	000
	S	.092	.120	.319	. AC7	.977	166.	666	000	000
	S	.006	.046	.295	. AC7	.982	166.	666	000	000
	S	000	.040	.254		976.	166.	555	000	000
	S	000	.040	.294	.807	976.	166.	555	000	000

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

, 10

OF A MYLAR CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 6.00000-05 KD1= 2.00000+00 KD2= 9.00000-06

DELTA= 8.60000-01 TD1= 4.00000-04

THE RADIATION PULSE IS 1.COCOM+1C RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+05 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

		•	E CON	ANT					•
	INE	10 SEC	1 SEC	100	10 45	1 RS	100 us	10 US	1 08
714									
	000	000.	0000	000.	000	000	000	000	000
Z	666.0	.999	666.	666.	666.	666.	666.	666.	.999
3	666.0	666.	666.	666.	666.	666.	666.	999	999
2 US	1666.0	0.9994	0.9994	0	66	66.		0.9995	.999
3	0.699	666.	.999	666.	666.	666.	666.	999	000
9	0.999	666.	666.	666.	665	666.	666.	666.	000
3	666.0	666.	666.	.999	666.	.999	666.	.999	000
D	0.998	966.	.999	966.	866.	.998	966.	999	000
200	166.0	.997	156.	.997	186.	.997	866.	666.	000
9	0.995	.995	.995	.995	.995	.995	966.	.999	000
7 00	0.989	.989	696.	.989	066.	.992	99€.	666.	000
=	0.981	.981	.961	.981	.981	.998	966.	.099	000
*	0.564	.964	.964	.964	.967	.984	856.	.999	.000
=	0.915	.915	916.	.917	.933	.983	986.	.999	.000
E O	0.040	.040	.841	. 648	. 699	.983	966.	.999	000
2	0.707	.708	.710	.733	.867	.983	966.	.999	000
Z O	0.423	.424	.435	.530	. 853	.963	966.	.999	000
*	0.179	.192	.208	.409	.653	.983	966.	.999	000
Z O	0.032	.037	.079	. 170	.653	.988	986.	.999	.000
E O	00000	.003	.055	.367	. 853	.983	966.	666.	000
	000	.005	.054	. 366	. 653	.983	966.	666.	000.
	000.	.005	.054	.366	. 860	.963	966.	666.	000
	000	.005	.054	.366	. 452	.983	366.	666.	000
	000.	• 002	.254	.37	.652	983	855	666.	Ō

501 .. 21

10.0,106

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A MYLAR CAPACITGR

KP= 6.00009-05 KD1- 2.C00C0+00 KD2= 9.00000-C6 ELTA= 8.60000-01 T01= 4.C00C0-04 TD2= 1.00000+C0

THE RADIATION PULSE IS 1.00000+10 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+06 RADS/SEC TD2= 1.00000+C0 DELTA= 8.60008-01

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

,			2	TANT					
	INT	10 SEC	1 560	100 HS	10 45	1 45	10C US	10 US	1 05
	000	.000	000	000.	000	000	000	000	000
	666.	666.	666.	666.	666.	666.	656.	999	.999
	666.	666.	666.	666.	666.	.999	666.	999	.999
	.999	666.	666.	666.	666.	666.	666.	666.	666.
	666.	666.	666.	665.	666.	666.	666.	666.	666.
	666.	656.	666.	666.	666.	666.	666.	666.	666.
	.998	966.	856.	.998	866.	966.	866.	999	999
	166.	. 997	166.	165.	166.	166.	856	999	666.
	.995	. 995	.995	.995	.995	.995	156.	666.	666
	.989	.989	.969	685.	989.	066.	999	666.	666
	.965	.965	.965	.965	596	.971	.991	666.	999
	.914	.914	.914	+15.	.917	.941	996	999	666.
	. 809	. 909	.969	.911	.625	.907	.967	866.	666.
	.557	.557	.558	.567	.639	.390	.967	966	666
	.299	.299	.362	.326	.508	.889	.988	966	999
	.086	.067	.092	.140	.452	.889	.992	966.	666.
	.002	.002	600.	.075	. 145	.889	.987	966.	666.
	.000	.000	. OCA	. 674	.445	.889	.967	966.	666.
S	0000.0	0.0009	0800.0	C - C 7 4 3	445		96.	966.	66.
	000.	.000	.007	. 674	. 445	.888	.987	966.	666.
S	.000	000	.007	. 673	.447	.883	.987	966.	666.
S	.000	.000	.008	.075	.482	.888	.987	966.	666.
ø	000.	.001	600.	.094	. 745	.886	.987	866.	666.
v,	000.	.001	916.	.16	4	.888	0.9676	0.9987	0.9999
		1							

200

200

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

小學 一元

၁ –

OF A MYLAR CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP# 6.0000@-05 Krl 2.0000@+00 KD2# 9.0000@-06

DELTA# 8.6000@-01 TOI# 4.0000@-04 T02# 1.0000@+00

THE RADIATION PULSE IS 1.COOOP+10 RADS/SEC FOR 2.500CP-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+07 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

	1 ns	000	999		.999	666.	.999	.999	.999	.999	.999	999	.999	.999	566.	666.	999	666.	666.	666.	666.	666	666.	666.	1660.0
	\$0 01	000	636	666	66.	666.	666.	.998	966.	.997	966.	.993	.992	966.	.991	166.	166.	.991	.991	.991	.991	.991	.991	166.	-
	100 US	000	666	666.	66.	556.	966.	166.	166.	.987	.973	.943	.924	.916	.917	116.	.923	916.	.916	.916	.916	.916	.916	916.	16
	T I	000	666	666.	0.9992	666.	966.	166.	.993	.982	.953	.836	.675	.553	.526	.526	.526	.526	.520	.552	.862	.523	.523	.523	.523
	10 18	000	666	666.	0.9992	666.	.998	166.	.992	.982	949	608	.564	.276	.108	.100	663.	660.	660.	.100	.111	.171	.333	.833	660.
STANT		0000	666.	666.		665.	966.	165.	.992	.901	.949	.804	.550	.233	.025	.011	.011	.011	.011	.011	.011	110.	.033	.083	.166
S W	1 SEC	000.	666.	656.	0.9992	666.	866.	166.	.992	.981	.949	. 90.	.548	.220	.016	.001	.001	.001	.001	100.	.001	.001	.003	.008	.016
4	10 SEC	.000	666.	666.	0.9992	666.	966.	166.	.992	.961	6 6 6 .	. 804	.548	.228	.015	000.	.000	000.	.000	.000	.000	.000	0000	000.	.001
	481	.000	666.	666.	0.9992	666.	966.	166.	.992	.981	.949	.804	.548	.220	.015	.000	.000	000.	.000	000.	.000	.000	.000	0000	•000
٠	116	0	Z	-	2 05	3	0	D	3	ے 00	7	7 00	I	3	I	2	2	2	I	Z	Z O				

10,00

10.,0

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A MYLAR CAPACITOR

0

THE CAPACITOR FARAMETERS USED ARE:

KP= 6.000CP-05 KD1= 2.000CP+00 KD2= 9.0000P-06

DELTA= 8.600CP-01 TD1= 4.000CP-04 TD2= 1.0000P+00

THE RADIATION PULSE IS 1.00070+11 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 0.00000+00 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

		•	U W	•					
	INE	10 SEC	1 SEC	100 MS	1C MS	T MS	100 US	10 US	SO 1
TIPE)
0	.000	.000	.000	000.	000	.000	000	000	000
25 NS	0.995	.995	.995	.995	.995	995	995	995	998
-	0.995	.995	.995	\$66.	.995	995	995	966	966
3	0.995	.995	.995	.995	.995	.995	995	966	666
3	0.995	.995	.995	.995	.995	.995	556	966	666
0	966.0	.994	.994	.994	166.	166.	166	166.	666
D	0.992	.992	256	256.	.992	.993	656	966	666
20 US	0.9890	0.9890	0696.0	0685.0	63	0	92	966	66
3	0.983	.983	.963	.983	.983	.984	990	966	000
7 00	0.973	.973	.973	.973	.973	976.	066	999	000
7 00	0.955	.955	.955	.955	.956	196.	156	666	000
-	0.944	.944	.944	. 544	946	.971	966.	000	000
#	0.940	.940	.940	.941	646.	.987	656	000	000
I I	0.539	,939	.940	.942	.962	666.	000.	000	000
IJ	0.939	.939	.940	.945	176.	000	000	000	000
I	0.939	.940	.941	.950	.991	000.	000	.000	000
20	0.939	.940	.942	.963	666.	. 630	000.	000	000
200	0.939	.940	.945	.977	0000	000.	200.	000.	000.
I O	0.939	.941	.950	166.	000.	.000	000.	.000	.000
1 00	0.939	.945	.963	656.	000	000	000	000	000
	.939	.945	.977	000	000.	000	000.	000	000
	.939	.950	156.	000	000.	000	000.	000.	000
	.939	.963	666.	S	000.	000	000.	000	000
	665.	.977	0000	CO	ů.	•	1.0000	1.0000	

101, 103

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A MYLAR CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 6.0000@-05 KD1= 2.0000@+00 KD2= 9.00000-06

DELTA= 8.6000@-01 TD1= 4.0000@-04 TD2= 1.00000+00

THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.50000-00 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

			-	S S	ANT					
	2	-) SEC		100 MS	10 45	S= -	100 US	10 US	Sn I
TIPE										
O	0	00	000	0000	0000	000	000	000	000	000
	S 0.9	57 0.	995	.995	.995	.995	995	.995	995	.995
-	8 0.9	55 0.	566	.995	.995	. 995	995	.995	966	866
	8 0.9	54 0.	866	.995	.995	995	.995	.995	966	999
	S 0.9	20 0.	566	.995	.995	.995	.995	556	966	966.
0	8 0 8	43 0.	994	.994	₹66.	166.	166.	166.	.997	.999
0	S 0.9	29 0.	992	.992	.992	.992	.993	666.	866.	666.
20	8 0.9	0 06	686	989	.989	686.	.989	.992	966.	999
0	8°0 S	31 0.	983	.983	.963	.983	.984	990	966	000
00	8 0 S	33 0.	973	.973	.973	.973	.976	066	999	000
00	8 0.9	55 0.	955	.955	.955	.936	.967	166.	999	000
-	s 0.9	41 0.	776	.944	.944	.947	.971	856	000	000
	8 0.9	.0 26	939	.939	.940	946	.987	656	000	000
	8.00	65 0.	938	.939	.941	.961	666.	0000	000	000
H 01	S 0.93	0 69	9370	C.9375	C.9426	0.9751		0000	000	000
20	8 0 S	39 0	934	.935	.945	.988	666.	000	000	000
0	8.0.8	47 0.	925	.926	.951	966	666	000	000	000
00	8 0 S	.0 26	910	.916	.959	966.	666.	000	000	000
ပ O	8 0.8	03 0.	965	. 996	.964	966.	666.	000	000	000
00	2.0 5	.0 77	803	.849	.968	966.	666.	000	000	000
	9.0	.0 29	693	.862	.968	966	666.	000	000	000
	4.0	.0 99	532	.765	.968	966.	666.	000	000	000
	0.1	0 20	315	.751	.968	965	666.	000	000	000
	0.0	46 0.	242	.751	.968	966.	66	1.0000	1.0000	1.0000
								•		

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A MYLAR CAPACITOR

KD2= 9.00000-06 TD2= 1.00000+00 THE CAPACITOR PARAMETERS USED ARE: Tel= 4.00000-04 KP= 6.00000-05 **DELTA= 8.600CP-01**

THE RADIATION PULSE IS 1.CODO#+11 RADS/SEC FOR 2.500C#-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000#+04 RADS/SEC

1:

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE THE THE THE INITIAL CAPACITOR VOLTAGE

•		~	ت س	START					jer s s deganer ij e
٩	INF	10 SEC	1 SEC	100	10 48	T MS	100 US	10 US	sn I
J	.000	• 000	000.	000.	000.	000	000	000	000
	.995	.995	556.	.995	.995	.995	.995	.995	.995
	.995	.995	.995	.995	.995	.995	556.	966	966
	.995	.995	.995	.995	.995	.995	.995	966.	999
	.995	.995	\$56.	.995	.995	\$66.	.995	966.	666.
	166.	.994	\$56	\$55	.994	1994	166.	.997	999
	.992	.992	.992	255.	.992	.993	.993	966.	999
3	.986	.989	.988	.988	989	696.	.992	966	999
7	.983	.983	.963	.983	.963	.984	266.	966.	000
7	.973	.973	.973	.973	.973	.976	996	666.	000
7	.955	.955	.953	.955	.956	996.	.994	666	000
=	. 542	.942	.942	.943	.946	.970	966.	000	000
*	.936	.935	.936	165.	.945	.985	666.	000	000
	.929	.929	.929	.932	.953	166.	666.	000	000
=	.916	.918	616.	.925	.963	166.	666.	000	000
SE	0.8972	0.8973	2458.0	C.9116	0.9719	9266.0	66	1.0000	000
=	. 835	.836	.840	. 179	976.	166.	656.	000	000
I	. 142	.743	.756	964.	976.	166.	466.	000	000
I	.585	.589	.624	914.	916.	166.	666.	000	.000
I	.287	.301	.415	.200	926	166.	656.	000	000.
	.087	.115	.317	199.	.376	166.	556.	000.	000
	.000	.046	.255	. 807	.976	166.	555.	000.	.000
	000	.040	.294	936.	925.	166.	656.	000	.000
	000	.040	.254	.867	916.	166.	666.	000	0

200

100

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A MYLAR CAPACITER

AREI	90-00000-6	T02= 1.00000+00
USED ARE:		
THE CAPACITOR PARAMETERS	KD1= 2.6000+00	4.000C#-C4
CITOR	Kn1=	T01=
THE CAPA	A.0	8.600CF-01
	X D M	DEL TAS

THE RADIATION PULSE IS 1.00004+11 HADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT HATE OF 1.00000+05 HADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

0	X 61		E C0	ANT					13 13
	INT	10 SEC	-	10C MS	10 45	2 H 2	100 US	10 US	1 05
341									
v	.000	000	000	000.	000	000	000	000	000
*	.995	.995	.995	.995	.995	.995	995	995	.995
1 05	0.9955	0.9955	0.9955	C.9955	0,9955	0.9955	-	0	966
3	.995	.995	.995	.995	.995	.995	995	966	666
-	.995	.995	.995	.995	.995	.995	999	966	.999
9	.994	.994	.994	.994	165	.994	166.	.997	999
0	.992	.992	.99€	.992	.992	.993	.993	866.	.999
9	996.	.989	.988	.986	996	.989	.992	966.	.999
3	.982	.982	.982	.982	.982	.983	066	966	000
3	.972	.972	.972	.972	.972	.975	066	666	000
3 0	.951	.951	156.	.951	.953	.964	.993	666	.000
=	.933	.933	.933	.934	.937	.964	966	666	000
*	.914	.914	.914	.915	. 525	.974	966	666.	000
=	.868	.868	.869	. 972	.903	.982	966	999	000
2	.796	. 798	757.	.808	. 681	.983	966.	999	000
Z	.671	.671	.674	.703	. 862	.983	966	666.	000
I	.401	.402	.114	.516	. #53	.983	956.	666.	000
3	.169	.173	.199	904.	. 653	.983	956.	666.	000
Z U	.030	.035	.078	.370	.653	.983	966.	999	000
7. U	000.	.005	.055	.367	. 253	.983	966.	666	000
	000	.005	.054	. 166	.853	.983	966.	666.	000.
	.000	.005	.054	.366	. 660	.963	966.	666	000
	000	.005	.054	.366	. 852	.983	966.	666	000
	000.	.005	.054	.371	. 652	.983	.99	666.	00.

TANK THE

10", 106

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE Of a mylar capacitor

THE CAPACITOR PARAMETERS USED ARES

THE CAPACITUR PARAMETERS USED ARE:

KP= 6.00008-05 KD1= 2.00008+00 XD2= 9.00008-06

DELTA= 8.60000-01 TD1= 4.00008-04 TD2= 1.00008+00

THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+06 RADS/SEC TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

			•	S W	START					
		INE	1.0 SEC		100	10 15	S# I	100 US	SO OF	1 05
1116										
0		000	.000	.000	0000	000	000	000	000	000
_		.995	.995	.995	.995	.995	.995	.995	.995	995
-		.995	.995	.995	.995	.995	.995	.995	. 995	966
		.995	.995	.995	.995	.995	.995	.995	966	666.
5	25	0.9949	0.9949	0.9949	C.9949	66	66.	.995	966.	666.
0		.994	.994	.994	₹56.	166.	.994	1994	166.	666.
U		.992	.992	.992	.992	.992	.992	.993	966.	666.
20		.988	.989	.988	986.	.988	.986	156.	966	666.
00		.980	.980	.980	.980	.961	.982	989.	866.	666
		996.	996.	.966	996.	196.	.970	.987	966.	666
00		.928	.929	.928	.928	.930	.944	996.	966.	666.
		.670	.870	.870	. 270	. 876	.919	.987	966	666
		.767	.767	.768	.770	.789	868.	.987	966.	666
		.526	.524	.529	.539	.621	. 889	.987	966.	666
0		.284	.284	.286	.311	.502	.889	196.	966	666.
		.081	.062	.087	.136	.451	.889	.987	966.	666.
0		.002	.002	.009	.073	. 145	. 889	.987	966.	666.
၁၀		000.	.000	.000	.074	. 445	.889	.987	966.	666.
U		0000	000.	.008	.074	.445	.896	.587	966.	666.
00		.000	.000	.007	.074	.445	. 688	.967	966	666
	•	000	.000	.007	.074	.447	. 888	.987	966.	666.
	~	.000	000.	. 003	.075	. 482	.888	.987	866.	666.
	~	.000	.001	.003	.054	.845	.888	196.	866.	666
	.	00.	.001	.016	.157	.443	88	0.9876	0.9987	6666.0
		# T								

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A MYLAR CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KF= 6.00008=05 KD1= 2.C0008+00 KD2= 9.00008-06

DELTA= 8.60008-01 TD1= 4.C0008-04 TD2= 1.00000+00

THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.50000-08 SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

TAU CTIME CONSTANTS

		INE	10 SEC	1 SEC	100 MS	NA 01	T I	100 US	\$D 01	Sn t
TIME										
		.000	.000	.000	000.	000	000	000	000	000
	52	.995	.995	.995	.995	.995	.995	.995	.995	.995
	22	.995	.995	.995	.995	.995	.995	.995	.995	.998
	Sa	.995	.995	.995	.995	.995	.995	.995	966.	.999
	Sa	·86.	.994	¥66.	166.	166.	166.	166.	966.	.999
0	20	.993	.993	666.	.993	.993	.993	166.	966.	.999
0	Sa	.991	156.	.991	166.	.991	.991	.992	166.	
200	SO	0.9834	0.9834	0.9834	C.9634	0.9834	0.9839	0.9874	0.9972	0.9991
8	SO	.967	.967	.947	.967	.967	.969	.979	966.	.999
0	SO	.927	.927	.927	.927	.929	.933	.965	.995	.999
00	SO	.773	.773	.773	.774	.778	.013	939	.993	666.
	SI	.521	.522	.522	.523	.539	.661	.923	.992	.999
	SI	.216	.216	.217	.221	.266	.550	.917	966.	999
•	SI	.014	.014	.015	.024	.108	.526	.917	.991	.999
0	SI	000.	.000	.001	.011	.100	.526	.917	.991	.999
O	SI	.000	.000	.001	.011	660.	.526	.923	.991	666.
Ç	SI	.000	.000	.001	.011	660.	.526	.916	.991	.999
	SI	.000	000.	.001	.011	660.	.528	.916	.991	.999
0	SI	.000	.000	.001	.011	.100	.552	.916	.991	666.
ပ	SI	.000	.000	.001	.011	.111	.862	.916	166.	.999
	s	000.	.000	.001	.017	.171	.523	.916	.991	666
	S)	.000	.000	.003	.033	.333	.523	.916	.991	666.
	S	.00C	.000	.009	.083	. 633	.523	916	.991	.999
200	w	.000	.001	.016	.166	660.	.523	.916	.991	.999

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A HYLAR CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 6.00000=05 KD1= 2.00000+C0 KD2= 9.000000-06

DELTA= 8.60000=01 TD1= 4.000000-04 TD2= 1.000000+00

THE RADIATION PULSE IS 1.00000+12 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 0.00000+00 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

		~	S S	ANA		•			,
	INF	10 SEC	1 SEC	100 HS	10 PS	Sw T	100 US	10 US	1 08
TIPE									
	.000	.000	0000	.000	000	000.	000	000	000
2	696.	.969	969	969	696	696	969	696	696
3	996.	.968	.968	.968	996	996	966	971	986
7	.967	.967	.967	195.	.967	.967	.967	.973	995
3	.964	.964	.964	.964	.964	.964	.965	.977	966
e e	.959	.959	.959	.959	.959	.959	.962	.982	999
Ö	.949	.949	.949	646.	949	.950	.957	186.	666
i i	.922	.922	.922	.922	.923	.925	944	990	666
900	.003	.883	.883	.683	.884	.890	.934	.991	666
J	.822	.822	.822	.822	. 624	.842	.934	.993	000
00	.719	.719	.719	.720	.727	.791	.962	.997	000
×	999.	.660	.660	.662	.682	.822	996.	666.	000
*	.639	.640	.640	.645	.693	.920	666.	000	000
=	.638	.638	659.	.654	.771	.995	0000.	000	000
I O	.638	.638	. 541	. 571	. 661	.000	000	000	.000
Z U	.638	.638	.645	.762	.949	.000	0000	000	000
I O	.638	.639	.655	.779	.997	.000	.000	000	.000
I O O	.637	.641	.672	.466	666.	.000	0000	000	.000
I U	.637	.644	.7C3	.950	000.	.000	0000	000.	000
I DO	.637	.654	.779	266.	000.	000.	0000.	000	000
S	63	~	.86	O	0000	.000	000.	000	000
	.635	.7c1	.950	666.	0000.	.000	0000.	000	.000
	.635	. 778	156.	0000	0000	.000	000	000	000
	.635	.465	000	•	Ü	1.0000	1.0000	1.9000	1.0000

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A MYLAR CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 6.0000#-05 KD1= 2.0000#+00 KD2= 9.00000#-06

DELTA= 8.60008-01 TD1= 4.00000#-04 TD2= 1.00000#+00

THE RADIATION PULSE IS 1.COOD#+12 RADS/SEC FOR 2.5000#-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.0000#+03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

		•	S)	STANT					
747		10 SEC	1 SEC		10 48	1 #5	106 US	10 US	Sn I
_	.000	.000	.000	.000	000	000	000	000	000
2	0.969	696.	.969	.969	695	966	969	969	969
7	0.966	.968	.968	.968	996.	.968	996	.971	.986
3	0.967	.967	.967	.967	.967	196.	.967	.973	.995
>	0.964	.964	.964	.964	196	.964	.965	.977	966.
0	\$ 0.9592	0.9592	0.9592	C.9592	0.9592	0.9596	96.	96.	666.
3	0.949	. 949	.949	645.	.949	.950	.957	186.	.999
20 05	0.922	.922	.922	.922	.923	.925	.944	066	999
J U	0.883	.883	. 963	.603	.684	.890	.934	.991	666.
))	0.822	. 822	.822	.622	.624	.042	.934	.993	000
7 00	0.719	.719	.719	.720	.727	167.	.962	166.	000
=	0.660	.660	.660	.662	.682	.822	996	999	000
*	0.639	.639	.640	.645	.692	.920	999	000	000.
*	0.637	.637	.638	.653	.770	.995	000	000	000
I U	0.636	.636	.639	699.	.859	666.	200.	000	000
2	0.634	.634	.641	869.	946.	666.	000	000	.000
E O	0.627	. 629	.645	.770	166.	666.	000	000	000.
#	0.617	.621	.652	.850	966.	666.	000	000	.000
	0.597	.604	.664	.924	966.	666.	000	000	.000
I U	0.540	. 559	.693	.966	966.	666.	000	000	.000
	.458	.495	.721	996.	966.	666.	0000	000	000
	. 329	.403	.743	.968	966.	666.	000	000	000
	.122	.279	157.	.968	966.	666.	000	000	000
	.023	.237	.751	.968	966.	666.	00	1.0000	1.0000

10,2,103

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A MYLAR CAPACITER

•

KD2= 9.00000-06 T02= 1.00000+00 THE CAPACITOR PARAMETERS USED ARE: TO1= 4.00000-04 KD1= 2,00000+00 KP= 6.0000=05 0ELTA= 8.60000=01

THE RADIATION PULSE IS 1.00000+12 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+04 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

•		•	W	STANT					•
	INE	10 SEC	1 SEC	10C MS	20 01	SHI	100 US	10 05	1 05
Ā									
•	000	000	0000	000	000	000	000	000	000
	.969	696.	696.	695.	695	696	596	696	696
	.966	.968	.968	.968	996	996	996	971	986
	.967	.967	.967	.967	195.	.967	196	973	995
	.964	.964	.944	.964	.964	.964	.965	.977	966
	.959	.959	656.	.959	.959	.959	.962	.982	666
Sn C	9646.0	9646.0	0.9496	0.9496	C.9497	0.9504	0.9571	0.9875	0666.0
>	.922	.922	.922	.922	. 923	.925	.944	066.	666.
7	.883	.883	.863	.683	.884	.890	.934	.991	666
3	. 822	.822	.822	.622	. 824	.041	.934	993	000
3	.718	.718	.719	.719	.727	.790	.962	966	000
*	.689	.659	.659	199.	.691	. 821	996	666	000
I	.637	.637	.638	.643	690	.919	866.	000	000
I	.631	.631	.632	.647	.764	.993	666	000	000
X	.623	.624	.627	.657	674.	166.	656	000	000
x	609.	609.	.616	474.	.931	.997	666.	000	000
X	.567	.569	.585	.716	.974	.997	666	000	000
=	.503	.507	.540	.758	916	166.	656	000	000
I	.397	.405	.470	.793	916	166.	556	000	000
I	. 194	.213	.359	904.	915.	166.	656	000	000
s	.059	060.	.367	904.	916.	166.	556.	000	000
s	.005	.044	.295	.866	925.	166.	655	000	000
S	000.	.040	.294	. P.C6	925.	166.	556.	000	000
S	.000	.040	.254	.806	.976	166.	556.	000	000

100 200

500

200

1 (.

K1 ~

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A MYLAR CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 6.C000@-05 KD1= 2.CC0C@+00 KD2= 9.0000@-06

DELTA= 8.6000@-01 TD1= 4.CC0C@-C4 TD2= 1.C000@+6C

THE RADIATION PULSE IS 1.00000+12 RADS/SEC FOR 2.5COC0-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.000000+05 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

		•	ں سا	ANA					•
3411	INF	10 SEC	1 SEC	100	10 48	T ES	100 US	10 US	1 us
0	000	.000	0000	000.	000	000	000	000	000
Z	696.	.969	.969	695.	696.	969	969	696	969
7	996.	.969	.968	.968	968	996	.968	.971	.988
7	.967	.967	.967	.967	.967	.967	.967	.973	.995
3	.964	.964	.964	.964	.964	.964	.965	.977	.998
3	.939	.959	.959	.959	.959	.959	.962	.982	.999
3	646.	.949	.949	646.	949	.950	.957	.987	666
2000	.922	. 322	.922	.922	.922	.925	944	066.	.999
3 8 8	.683	.863	.663	. 663	. 684	.890	.934	.991	
3	. 021	.821	.821	. 621	. 623	.841	.934	.993	000
200	.716	.716	.716	.717	.724	.786	196.	.996	000
SI .	0.6530	0.6530	0.6532	C.6553	0.6755	0.8165	.987	.999	0
*	.622	.622	.622	.629	.676	606.	166.	.999	000
3	. 589	.589	.591	.606	.727	.979	966.	.999	000
I O	.540	.541	.544	.575	.783	.983	966.	666.	000
3	.455	.456	.463	.526	.631	.983	966	.999	000
20 E	.272	.274	.291	.438	. 652	.983	966.	666.	000
I OO	.115	.110	.150	.386	. 652	.983	966.	666.	000
I U	. 620	.025	.070	.369	. 052	.983	966.	666.	000
I O O	.000	.003	.054	.367	. 452	.983	966.	666.	000.
	.000	.005	.054	.366	.852	.963	966.	666.	000
	.000	.005	.054	.366	. 652	.983	.996	666.	.000
	000.	.005	.054	.366	. 452	.983	866.	666.	000
	000.	• 002	.054	.371	. 652	.983		9666.0	

Best in with the

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A MYLAR CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 6.00000=05 KD1= 2.00000+00 KD2= 9.00000=06

OELTA= 0.60000=01 TD1= 4.00000=04

THE RADIATION PULSE IS 1.00COR+12 RADS/SEC FOR 2.5000R-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.0000R+06 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

						1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
000000000000000000000000000000000000000		000000000000000000000000000000000000000			000000000000000000000000000000000000000	
00000000000000000000000000000000000000	00000000000000000000000000000000000000				00000000	
9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	000000000	00000000	00000	000000	
00000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0000000 000000 000000		9999	9999	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	400000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9	982	00000
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9299	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9	965	982	0000
9 9 9 9 9	0000	989	0000	.956	980	0000
925	622	. 922 . 882 . 818	900		990	666
.016	.817	. 982	.088	944	,	666.
.016	.817	. 410	728	933	.991	
			•	.931	.993	666
040.	やかい・	.707.	.773	.955	966	666
.609	.610	.632	.780	976	966	666
.523	.528	.580	.843	996	966	666
.366	.377	.513	.887	1961	966	666
156	.229	.467	.886	.987	966	666
.061	.114	. 448	.866	.987	966	666
600.	.075	. 445	. 868	.967	966.	666
.008	. 674	. 145	. 888	.987	966.	666
.008	.074	. 445	.888	.987	.998	666.
.007	.074	. 445	. 888	.987	966	666
.007	. 674	. 447	.888	196.	966.	666
.008	.075	.4.2	.888	.967	966	666
600.	.094	. 445	.888	196.	966	666
•010	.167	.443	.666	.987	966.	.999
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	00000000000000000000000000000000000000		C. C	C.617C C.6189 C.65995 C.6189 C.65995 C.6189 C.65297 C.5887 C.6888 C.6772 C.5887 C.6888 C.67731 C.6679 C.6688 C.67742 C.6487 C.6688 C.67742 C.6487 C.6688 C.67742 C.6487 C.6688 C.67742 C.6487 C.6688 C.67742 C.6487 C.6688 C.67742 C.6487 C.6688	C. 517C 0.7189 0.6369 0.931 0.955 0.6599 0.7731 0.955 0.7731 0.955 0.7731 0.955 0.6599 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.955 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.957 0.958 0.957 0.957 0.958 0.957 0.957 0.958 0.957 0.958 0.957 0.958 0.957 0.958 0.957 0.958 0.957 0.958 0.957 0.958 0.957 0.958 0.957 0.958 0.957 0.958 0.957 0.958 0.957 0.958 0.957 0.958 0.957 0.958 0.9

200

100

200

10,2,01

OF A MYLAR CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 6.00000=05 Krl= 2.00000+00 KD2= 9.00000=06

DELTA= 8.60000=01 T01= 4.00000=04 T02= 1.00000+00

THE RADIATION PULSE IS 1.00Cnm+12 RADS/SEC FGR 2.5000#-00 SEC FOLLOWED BY A CONSTANT RATE OF 1.0000#+07 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHANGING CINCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

TAU CTIME CONSTANTS

		INE	10 SEC	1 560	100 MS	SH OT	T IIS	100 US	10 US	50 1
TIPE										
O		.000	000	0000	000.	.000	000	000	000	.000
25	SZ	.969	696.	.969	.969	.969	.969	696.	.969	.969
	Sa	996.	.968	996.	.968	996.	.966	.966	.971	.987
~	SO	.967	.967	.967	.967	195.	.967	.967	.972	***
*	Sa	.963	.963	.963	.963	.963	196	.965	.977	966
	Sn	.958	.958	.959	.950	.950	.956	.962	.981	966.
	50	.948	.948	946.	.948	.948	.940	.955	986.	966.
	SD	.917	.917	.917	.917	.917	.920	940	989	966.
0	SO	.869	.969	.969	.869	.e70	.877	.924	989	
0	S	.783	.783	.783	.783	.785	.805	.912	989	***
200	SO	.582	.582	.582	.563	.592	.669	.911	990	
	SI	.365	. 365	.365	.367	. 392	.575	.915	.991	
~	SI	.147	.147	.148	.153	.206	.532	916	.991	999
•	SI	.009	.010	010.	.020	.105	.526	.916	.991	666
	SI	000.	.000	.001	.011	. 100	. 526	.916	.991	666.
20	SI	000.	000	.001	.011	660.	.526	.916	.991	666
	SI	.000	0000	.001	.011	660.	.526	.916	.991	666
	SI	000.	000	.001	.011	660.	.520	915.	.991	666.
0	SI	000.	000.	.001	.011	.100	.552	.916	.991	666.
0	SI	.000	000	.001	.011	.111	.862	.916	.991	666.
-	S	.000	000.	.001	.017	171.	.523	.916	.991	666.
~	S	.000	.000	.003	.033	.333	.523	.916	.991	666.
5	S	0.0000	0.0008	0.0083	C.0833	0.8333	52	.916	.991	666
21	S	.000	.001	•016	.166	660.	.523	0.9166	0.9910	0.9991

OF A MYLAR CAPACITOR

THE CAPACITOR PARAMETERS USED 4721 NP= 6.00008-05 K01= 2.00008-00 KD2= 9.00008-06 DELTA= 8.60008-01 T01= 4.00008-04 T02= 1.00008+00 THE RADIATION PULSE IS 1.00000+13 RADS/SEC FOR 2.500C0-08 SEC FOLLOWED BY A CONSTANT RATE OF 0.000000+00 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

		~		STANT					
	INE	10 SEC	1 SEC	10C MS	1C PS	N I	100 US	10 US	1 05
110									
U	000.	.000	000	.000	000	000	000	000	000
2	0.796	. 796	.796	.796	.796	.796	951.	797	199
3	0.791	. 791	162.	164.	.791	.791	.793	.012	930
7	0.785	.785	.785	.785	.785	.785	.789	.824	996
7	0.767	.767	.767	.767	.767	.768	.778	.858	992
J	0.739	.739	.739	.739	.739	.742	.763	.895	992
3	0.687	.687	.667	199.	.688	.692	.736	.923	992
200	0.558	.558	.554	.558	.560	.573	.682	936	993
200	0.40	.409	.468	.468	.411	144.	.648	.943	166
200 US	5 0.2422	0.2422	C.2423	C.2429	0.2497	0.3132	0.6621	0.9551	10000
200	0.091	160.	.092	.094	.112	.268	.789	.978	000
3	0.049	.049	.050	.054	960.	.407	.925	166.	000
2	0.039	.039	.040	.052	.158	.719	.993	.000	000
1	0.036	.039	.042	.079	.373	.984	000.	000	000
T	0.036	.039	.047	.124	.620	666.	000.	.000	000
X U	0.038	.040	.057	.267	. A 60	000	0000	.000	000
I U	0.038	.043	.084	.412	.992	000.	000	000	000
1 0 0	0.036	.048	.129	.643	666.	000	.000	000	000
2	0.038	.057	.211	.867	666.	000.	200.	000.	000
200	0.038	.084	.414	.991	666.	000	000.	000	000
	.037	.128	.641	.998	000.	000	0000	.000	000
	.037	.210	.864	666.	000.	.000	.000	.000	000
	.037	.413	.992	000.	000.	000.	0000	000	000
	.037	.644	666.	•000	000.	000	000.	•000	000

10 13

OF A HYLAR CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 6.00008-05 KD1= 2.00008+00 KD2= 9.00008-06

DELTA= 8.60009-01 TD1= 4.00008-04 TD2= 1.00008+00

THE RADIATION PULSE IS 1.0000@+13 RADS/SEC FOR 2.500C@-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.0000@+03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

10,3 103

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A MYLAR CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 6.0000=-05 KD1= 2.00000+C0 KD2= 9.00000=-06

DELTA= 8.60000=-01 TD1= 4.00000=-C4 TD2= 1.00000+00

THE RADIATION PULSE IS 1.00070+13 RADS/SEC FUR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+04 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

	•		~	U W	STANT					•
716		181	10 SEC	1 SEC		10 48	I MS	100 US	10 US	1 US
)		000	000	.000	0000	000	000	000	000	000
	S	.796	.796	.796	.796	.796	.796	.796	797	799
-	5 2	.791	.791	.791	164.	.791	.791	.793	.012	930
	52	.785	.785	.785	.785	.785	.785	.789	.824	.968
5	Si	0.7676	0.7676	0.7676	0.7676	0.7677	0.7687	0.7789		0.9920
	2	.739	. 739	.739	.739	.739	.742	.763	. 895	.992
U	S	.687	.687	.667	.667	.688	.692	.736	.923	.992
20	2	.558	.558	.558	.558	.560	.573	.662	.936	.993
00	25	408	409	.468	.408	.411	144.	648	.943	.994
00	S	.245	.242	.242	.242	.249	.313	.662	.955	000
0	25	.091	.091	.052	.093	.112	.260	.789	.978	000
-	Ş	640.	.049	.049	.054	960.	.407	.925	166	000
	S	.039	.039	.040	.051	.150	.710	.993	000	000
5	S	.038	.038	.042	673.	.372	.982	666	000	000
0	S =	.037	.038	.046	.122	.614	.997	666.	000	000
	S	.036	.038	.054	.202	. 246	.997	666	000	000
ပ	S	.034	.038	.078	.390	.970	166.	656.	000	000
v	S	.030	.038	.111	.582	.976	166.	656.	000	000
00	S	. C23	.039	.164	.741	.976	166.	656.	000	000
ဗ	S	.011	.039	.247	. AC4	976.	166.	666.	.000	000
	S	.003	.039	.285	. PO6	916.	166.	656.	000	000
	~	000	.040	.254	. AC6	976.	166.	666.	.000	000
	•	.000	.040	.254	. BC6	916.	166.	555.	000	000
ŵ	•	000.	.040	.254	. 406	925	266.	656.	000	.000

1013,104

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A MYLAR CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 6.00008-05 KD1= 2.00008+00 KD2= 9.00008-06

DELTA= 8.60008-01 TD1= 4.00008-04 TD2= 1.00008+00

THE RADIATION PULSE IS 1.00000+13 RADS/SEC FOR 2.50000-08' SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+05 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

TWE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

7966 0 7966 0 7966 0 7966 0 7979 0 7951 0 7952 0 7953 0 7966 0 7952 0 7968 0 7968 0 7952 0 7968 0 79
7966 0.7966 0.7966 0.7966 0.7967 0.7952 0.7953 0.7953 0.7953 0.7953 0.7953 0.7953 0.9551 0.7953 0.99
791C
7651 7677 7677 7896 7896 7896 7896 7896 7896 7896 7896 7897
7477 0.7687 0.7686 0.8 6681 0.9 6881 0.9 6882 0.7684 0.9 6882 0.7684 0.9 6882 0.7684 0.9 6882 0.7686 0.9 6882 0.7686 0.9 6882 0.7686 0.9 6882 0.9 6883 0.9 6882 0.9 6883 0.9 6
7396 0.7421 0.7636 0.96413 0.9
6881 0.6929 0.7365 0.6626 0.9 4113 0.4412 0.6626 0.9 4113 0.4612 0.6626 0.9 4114 0.7129 0.6619 0.9 4602 0.9630 0.9963 0.9 4502 0.9630 0.9963 0.9 4502 0.9630 0.9963
5599 0.5735 0.6626 0.9 2493 0.4412 0.6487 0.9 2493 0.3129 0.6619 0.9 11118 0.2682 0.7690 0.9 1561 0.7126 0.9963 0.9 1562 0.9830 0.9963 0.9 1552 0.9830 0.9963 0.9 1552 0.9830 0.9963 0.9 1552 0.9830 0.9963 0.99 1552 0.9830 0.9963 0.99 1552 0.9830 0.9963 0.99 1552 0.9830 0.9963 0.99 1552 0.9830 0.9963 0.99
4113 0.4412 0.6487 0.9245 0.9555 0.9555 0.9551 0.9552 0.9553 0.95
2495 1116 0.2662 0.7690 0.956 0.4061 0.9245 0.9650 0.9690 0.9
1116 0.2662 0.7690 0.9561 0.9561 0.9561 0.7126 0.9916 0.99
0956 0.4061 0.9245 0.9946 0.9946 0.9946 0.9946 0.9963 0.99
1561 0.7126 0.9916 0.9 3602 0.9690 0.9963 0.9 7665 0.9630 0.9963 0.9 6507 0.9630 0.9963 0.9 6522 0.9630 0.9963 0.9 6522 0.9630 0.9963 0.9 6522 0.9630 0.9963 0.9
3602 0.9690 0.9663 7663 0.9630 0.9663 0.96 8507 0.9630 0.9963 0.99 8522 0.9630 0.9963 0.99 8522 0.9630 0.9963 0.99 8522 0.9630 0.9963 0.99
75791 0.9830 0.9963 0.9
7685 0.9830 0.9830 0.9830 0.9833 0.9833 0.9833 0.9833 0.9833 0.9863 0.9863 0.9963
8522 0.9830 0.9983 0.99
8522 0.9830 0.9983 0.99
6522 0.9830 0.9983 0.99
6522 0.9830 0.9983 0.9983 0.99832 0.9830 0.9983 0.9983 0.9983 0.9983 0.9983 0.9983 0.9983
8522 0.9830 0.9983 0.99
8522 0.9830 0.9983 0.9983 0.9983
8522 0.9830 0.9983 0.9
e522 0.9830 0.9983 0.9

901,50

- Capacity

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE.

THE CAPACITOR PARAMETERS USED ARE:

KP= 6.00000-05 KDI= 2.00000+00 KDZ= 9.00000-06

ELTA= 8.60000-01 TDI= 4.00000-04

THE RADIATION PULSE IS 1.00000+13 RADS/SEC FOR 2.50000+08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+06 RADS/SEC. TD2= 1.00000+00 TO1= 4.0000F-04 DELTA= 8.600C=-01

THE VALUES GIVEN ARE THE RATICS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

			TAU	13	STA					•
		121	W	7	ပ	10 PS	SH I	100 US	10 US	1 05
114										
_		.000	.000	000	0000	0000	000	200.	000	000
		.796	.796	.756	.796	.796	.796	.796	797	799
-	50	0.7910	0.7910	C.7910	0	0.7910	0.7912	52	.012	930
		. 785	.785	.785	.785	.785	.785	.789	. 823	.968
		.767	.767	.767	.767	.767	.768	.778	. 658	.991
0		.739	.739	.739	.739	.739	.742	.763	.895	.992
U		.687	.687	.687	.687	.668	.692	.736	.923	.992
0		.550	. 558	.558	.550	.559	.573	.662	.935	.993
00		.407	.407	.407	. 407	.410	440	.647	.942	166.
O		.240	.240	.240	.241	.248	.311	.660	954	666
8		680.	.089	.089	160.	.109	.264	.784	.977	666
_		. 045	.045	.046	.050	.091	. 394	.916	.992	.999
		.032	.032	.033	. 243	.142	.673	.981	966.	999
		. 021	.022	.024	.053	.289	.861	.987	966.	666.
U		.011	.012	.017	.063	.394	.889	.987	866.	666.
		.003	.004	.010	. 671	044.	.888	.967	966.	666.
v		.000	0000	.009	.073	.443	. 888	.987	966.	666.
00		000.	.000	.009	.073	.443	. 988	.987	966.	666.
ပ		000.	000.	.008	.073	.443	.888	.987	966.	666.
ပ္		.000	000.	.007	.073	.443	.888	.987	866"	666.
	S	.000	000	100.	.073	.443	. 668	.987	966.	666.
	S	.000	000.	.009	.073	.443	.888	.967	966.	666.
	S	000.	.001	600.	.073	.443	.888	.987	966.	666.
	•	000	.001	910.	.073	. 443	.888	.987	1966.0	0.9999

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A MYLAR CAPACITOR

ARE:	KD2= 9.00000-06	1.00000+00
USED	K02	102=
THE CAPACITOR PARAMETERS USED ARE:	Kr1= 2.00000+00	4.00006-04
CITOR	Kn1=	T01=
THE CAPA	KP= 6.00000-05	DELTA= 8.600Ca-01
	X P	OELTA=

THE RADIATION PULSE IS 1.00000+13 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+07 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

.000C 1. .7968 0. .7969 0.	350	1 SEC	100 MS	10 12	S	100 US	10 02	20 T
0000								
	900	0000	.000	000	000	000	000	000
000000000000000000000000000000000000000	961	.796	.795	.796	.796	.796	797.	. 799
849 0	190	052.	.790	.790	.791	.793	.012	.927
473	184	. 784	.784	.785	.785	.789	.823	969
7 .0	167	.787.	.767	767	.760	.778	.856	.991
390 0	739	.739	.739	.739	.741	.762	. 892	.992
964 0	999	.666	.686	.687	169.	.734	.920	.992
553 0	555	.555	.555	.556	.570	.677	.934	.993
015 0	401	.401	104.	404	.434	.641	.941	166.
308 0	230	.230	.231	.230	300	649	.951	666
744 0	074	.074	.076	.093	.240	.754	.972	999
274 0	027	.027	.031	.065	.326	.862	.985	666
0 150	600	600.	.016	.079	.471	.912	.991	666
0 900	000	.001	.011	600	.523	916.	.991	999
0 000	000	.001	.011	660.	.523	916.	166.	666
0 000	000	.001	.011	660.	.523	916	.991	666
0 000	000	.001	.011	660.	.523	.916	166	666.
0 000	000	.001	.011	660.	.523	.916	.991	666
0 000	000	.001	.011	663.	.523	916.	.991	666.
0000	000	.001	.011	660.	.523	.916	.991	666.
0000	000	.001	.017	660.	.523	.916	.991	666.
0 000	0003	C • 0C 3 3	C.0333	0660.0	0.5236	0.9166	0.9910	0.9991
0 000	000	.0Ce	.083	660.	.523	.916	.991	666.
0 000	001	910.	.166	660.	.523	916.	.991	666

10,3 107

OF A PAPER CAPACITOR

KP 1.00000-03 KD1= 7.00000-02 KD2= 1.00000-06
DELTA= 7.00000-01 TD1= 2.00000-04 TD2= 5.00000-01

THE RADIATION PULSE IS 1.00008+10 RADS/SEC FOR 2.50008-08 SEC FOLLOWED BY A CONSTANT RATE OF 0.00008+00 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VELTAGE

		•	U U	START				•	
_	INF	10 SEC	1 SEC		1C PS	1 #5	100 08	10 US	I US
•	000	000	000	ט ט	0				
4	000	000							
2 :				AAA.	アグラ・	~~~	***	666.	666.
>	AAA.0	666.	666.	666.	666.	666.	666.	666.	666.
7	0.099	666.	656.	665.	665.	666.	656.	666.	000
3	0.999	666.	656.	656.	665	566.	655	999	000
D	0.999	666.	666.	665.	666	666.	666.	999	000
J U	0.999	666.	656.	665.	665	666	666	000	000
3	0.999	666.	656.	665.	656	666.	656	000	000
200	665.0	666.	656.	665.	665	666.	666	000	000
))	666.0	656.	656.	655.	665	666.	000	000	000
)	666.0	666.	656.	655.	665	666.	000	000	000
	0.0	1666.0	2656.0			666.	2	00	000
*	0.999	666.	656.	655.	665.	.000	200.	000	000
N	0.999	666.	656.	655.	666.	0000	000	000	000
Z U	665.0	666.	056.	655.	666.	.000	000	000	000
I U	566.0	666.	656.	665.	.000	.000	000.	000	000
U	0.999	666.	656.	655.	000.	000.	000.	000.	000
Z 00	0.399	666.	c 56.	655.	000.	.000	000.	.000	000
×	0.999	666.	666.	0000.	000.	.000	000.	000	000
100	666.0	666.	666.	0000	000.	000.	000.	000	000
	666.	566.	656.	000.	000.	.000	222.	000	000
	666.	666.	.000	000.	0000	.000	.000	00	000
	566.	666.	.000	0000	000.	000	000	000	000
	666.	666.	000	<u>ن</u>	. C00	1.0000	1.0000	1.0000	1.0000

0 (3,31

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A PAPER CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 1.00004-03 KG1= 7.00000-02 KD2= 1.00000-06

DELTA= 7.3000A-01 TG1= 2.00000-04

THE RADIATION PULSE IS 1.00000+10 RADS/SEC FOR 2.50000-00 SEC FOLLOWED BY A CONSTANT RATE OF 1.000000+03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VELTAGE

10,0,103

10,0° 104

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE Of a paper capacitor

THE CAPACITOR PARAMETERS USED ARE:

KP= 1.00000=03 KD1= 7.00000=02 KD2= 1.00000=06

DELTA= 7.00000=01 TD1= 2.00000=04 TD2= 5.00000=01

THE RADIATION PULSE IS 1.00078+10 RADS/SEC FOR 2.50008-08 SEC FOLLOWED BY A CUNSTANT RATE OF 1.00008+04 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

		<	S B	STA				•••	
Ā	J. N.	10 SEC	1 SEC	10C MS	1C FS	1 18	100 US	10 US	1 08
	000.	.000	000	000.	000	000	000	000	000
	666.	666.	656.	666.	666	666	556	666	666
	666.	666.	666.	655.	666.	\$66.	666	999	666
	666.	666.	656.	665.	656.	666.	666.	666.	000
	666.	666.	666.	655.	665.	666.	656	666.	000
	666.	666.	666.	666.	666.	666.	666.	999	000
	666.	666.	666	666.	666.	666	656.	000	000
Sn C	0.9997	1666.0	1666.0	2666.3	1666.0	1666.0	8656.0	1.0000	1.0000
	566.	666.	666.	655.	665.	666.	656.	000	000
	566.	666.	656.	666.	666	666	666	000	.000
	666.	666.	656.	666.	666.	666	656	000	000
	565.	666.	666.	666.	666.	666.	666.	000	000
	865.	666	856.	856.	866.	666.	666.	000	000
	966.	966.	956.	965.	165.	666.	656.	000	000
	665.	.993	656.	.993	995	666.	656	000	000
	.987	.987	.987	. 5 A B	166.	666.	666.	000	000
	.968	.968	696.	.975	.993	666.	666.	000.	000
	.937	.938	.940	.960	665.	666.	666.	000.	000
	.879	.880	054.	.947	663	666.	656	000	000
	.726	.732	197.	. 940	656.	666.	666.	000	000
S	.527	.547	.685	666.	966.	666.	666.	000	000
s	.278	.331	.624	665.	865.	666.	656.	.000	000
S	. C4C	.156	609.	685.	:653	666.	656.	000	000
S	.001	.135	609.	.940	663	666.	666.	000	.000

100

2002

100

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A PARER CAPACITCR

THE CAPACITOR PARAMETERS USED ARE:

KP= 1.0000@=03 KD1= 7.0000@=02 KD2= 1.00000=06

DELTA= 7.0000@=01 TD1= 2.00000=04

THE RADIATION PULSE IS 1.0000#+10 RADS/SEC FOR 2.5000#-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+05 RADS/SEC TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATICS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

0,0 165

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A PARER CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 1.000Ca-03 KJ1= 7.000CP-02 KD2= 1.0000P-06

DELTA= 7.000Ga-01 TJ1= 2.000CP-04 TD2= 5.0000P-01

THE RADIATION PULSE IS 1.00000+10 RADS/SEC FOR 2.500C0-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+06 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE THE THE CAPACITOR VOLTAGE

		~	E	STANT				•	•
TIPE	INE	10 SEC	1 SEC	100 MS	10 PS	SH T	100 US	10 US	1 08
	000	.000	.000	0000	000	000	000	000	000
2	666.0	666.	666.	666.	666.	666.	656	666	666
>	0.999	666.	666.	666.	666.	666.	656	666	666
7	0.999	666.	666.	665.	665.	666.	556	666	000
5	666.0	666.	666.	665.	666.	666.	656	666	000
3	0.999	666.	656.	666.	666.	666.	556	666	000
D	0.999	666.	666.	665.	666.	666	666	666	000
2000	566.0	666.	666.	666.	666.	666.	666.	666	000
200	0.996	666.	.998	866.	866.	.998	966.	999	000
၁ ပ	965.0	966.	966.	965.	966.	966.	966.	666	000
ے 00	0.591	.991	156.	.991	.992	.993	856.	666.	000
.	0.983	.983	.983	.983	.964	686.	966.	666	000
X	0.968	.968	.963	.968	.971	986.	956.	666	000
*	0.922	.922	.922	.924	.938	.984	966.	666.	000
ı	0.651	.851	. 852	. 254	106.	.984	866.	666.	000
Z U	0.725	. 725	121.	.749	.875	.984	966.	666	000.
U	0.447	. 448	.459	.550	. 662	.984	966.	666.	000
10C HS	0.2004	0.2034	C.2293	C.429C	0.8615	0	966.	66.	000
1 00 00	0.040	.045	.0 a 9	.366	.661	.989	956.	666.	000
1 00	00000	900.	.058	.363	. 661	.984	856.	666.	000
	000.	• 000	.058	.363	.662	.984·	856.	666	000
	000.	900.	.058	.363	.869	.984	856.	666.	000.
m	000	.006	.058	.383	. 661	.984	956.	666.	000.
	.000	• 000	.059	.368	.861	.984	66	0.9998	1.0000

21 (.. 21

いないという

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A PAPER CAPACITCR

THE CAPACITOR PARAMETERS USED ARE:

KP= 1.00009-03 Krl= 7.00008-02 KD2= 1.00008-06

DELTA= 7.00009-01 TD1= 2.00008-04

THE RADIATION PULSE IS 1.COCOE+10 RADS/SEC FOR 2.5COCE-08'SEC FOLLOWED BY A CONSTANT RATE OF 1.COOOE+07 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATICS OF THE CAPACITOR VOLTAGE AT THE THE TABLE CAPACITOR VOLTAGE

TAU CTIME CONSTANT)

	INF	10 SEC	1 SEC	1001	N. 2. C.	52	100 118	10 115	50 .
TIPE				•	•			•	
	000.	000	000.	222.	000.	000	000	000	000
Z	666.	666.	666.	666.	666.	666	666.	666.	666
50 1	0.9997	1666.0	1666.0	666.	666	666.	666.	999	999
)	666.	666.	666.	656.	666.	666.	666.	999	999
3	665.	666.	666.	656.	666	666.	656	666.	999
ວ ບ	665.	666.	666.	656.	665.	666.	666.	666.	666.
3	.998	.998	956.	855.	865	.998	856	666.	666.
) 0	. 995	.995	.995	.995	.995	.995	956	666.	999
00	.991	.991	.991	166.	.991	.992	156.	666.	666.
200	.983	.983	.963	. ce 3	.984	.985	656.	666.	999
0	095.	.960	960	395.	.961	.965	.992	666.	999
I	. 922	.922	. 922	. 523	.926	.950	.992	666.	.999
I	.651	.851	.851	. 452	.864	.934	.992	666	999
=	.668	.668	.559	.676	.734	.925	256	666.	666.
*	.446	. 447	.449	.470	.627	.925	.992	999	666
	199	.200	.265	.255	.565	.925	156	666	666.
	.017	.019	.029	.120	.553	.925	.952	666.	666.
	.000	.001	.012	.110	.553	.925	.952	666.	666.
	000.	.001	.012	.110	.553	.931	.952	666.	666.
	.000	.001	.012	.110	.553	.925	.992	666.	666.
5 7	.000	.001	.012	.110	.555	.925	256.	666.	666.
S	000.	.001	.012	.110	.577	.925	.992	666.	666.
50 50	.000	.001	.013	.120	. 670	.925	256.	666.	666.
10 S	.000	.001	.017	C.1739	r.	0.9254	0.9920	0.9992	6666.3

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A PAPER CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 1.C0000=-03 KD1= 7.C0000=-02 KD2= 1.00000=-06

DELTA= 7.C0000=-01 T01= 2.00000=-04 TD2= 5.00000=-01

THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 0.00000+00 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VELTAGE

	į		CTIME CON	STANTS				•	•
		W	1 SEC	100	20 L	S I	100 US	10 US	SO I
ñ									
••	000	000	.000	0000	000.	000	.000	000	000
	966.	966.	856.	866.	966	966	866	966	.998
	966.	966.	.938	866.	966.	966.	.998	966	666
	966.	966.	956.	866.	966.	966.	866.	666.	999
	.996	866.	.99A	.998	866.	866.	856.	666.	000
	265.	966.	.998	665.	966.	866.	866	666.	000
	966.	856.	.998	.998	966.	.998	656.	666.	000
	866.	666.	856.	866.	966.	856.	556.	000	000
	966.	966.	866.	856.	966.	966.	666.	000	000
SD C	1866.0	1856.0	C.9587	C.9987	0.9988	0666.0	9666.0	1.0000	1.0000
	866.	.998	856.	866.	865.	666.	000	000	000
	.998	.998	.958	866.	865.	666.	000	000	000
	966.	.998	856.	866.	666.	666.	000	000	000
	.998	966.	200.	855.	666.	000	0000	000	000
	966.	666.	.998	.998	666.	000	000	000	000
	966.	.998	666.	666.	666.	000	0000	000	000
	966.	966.	.993	665.	000.	000	000	000	000
	.998	856.	.998	655.	000	000	0000	000	000
	.998	.998	666.	656.	000.	000	0000	000	000
	.998	£66.	656.	.000	000.	.000	0000	000.	000
S	.998	866.	666.	000.	000.	000	000.	000	000
S	.998	666.	666.	0000	000.	.000	000	000	000
S	.998	656.	.000	000.	000	000.	0000	000	000
S	.998	666.	.000	000.	.000	000	0000	000	.000

200

10", 01

OF A PAPER CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 1.0000@-03 Kn1= 7.0000@-02 KD2= 1.0000@-06

DELTA= 7.0000@-01 TD1= 2.0000@-04 TD2= 5.0000@-01

THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.500C0-08'SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

	1 08	000	966.	.999	.999	000	.000	.000	000	000	000	000	.000	.000	000	.000	.000	.000	.000	.000	000	000	000	1.0000	.000
	10 US	000	966.	966.	666.	666.	666.	666.	000	000.	000	000.	000	000	000	000.	.000	000	000	000	000	000	000	1.0000	.000
	100 US	000	866.	866.	866.	866.	856.	666.	666.	656.	666.	000.	.000	.000	000.	0000	0000	.000	000	.000	000	.000	0000	1.0000	.000
	T I	000	966.	966.	966.	966.	966.	966.	966.	966.	966.	666.	666.	666.	666.	666.	666.	666.	666.	666.	666.	666.	666.	6666.0	666.
	10 FS	000	866.	966.	866.	866.	966.	966.	966.	966.	866.	966.	.998	966.	966.	966.	966.	966.	966.	.998	966.	666.	866.	0.9987	966.
STA	0	000.	656.	.998	866.	.998	966.	.998	.998	866.	.998	655.	866.	956.	. CO.	156.	966.	.994	.991	.966	.987	.967	. 567	C.9874	.987
CTIME CON	1 SE	0000	.999	.999	.998	966.	866.	.998	966.	.998	.998	966.	.994	956.	.993	166.	966.	.992	966.	.976	.950	.923	.358	C.8871	.086
	10 SEC	.000	966.	966.	966.	966.	.998	198	.998	966.	.998	P66.	966.	.998	.999	.997	966.	.992	.986	.973	.936	. 884	.794	0.6184	.496
	INE	000.	966.	966.	966.	966.	966.	966.	966.	966.	866.	.998	.998	966.	.998	.997	966.	.992	.986	.973	.937	.679	.773	0.5274	.276
	117	0	Z	3	3	7	0	>	D	200	0	200	=	I	8	# 01	1 20 20	30	X	1 00	I OO			9	

10", 163

10. 104

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A PAPER CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:	1.00000-06	5.00000-01
USED	K02	102=
PARAMETERS	7.00000-02	2.00000-04
CITOR	K01=	Tota
THE CAPA	KPs 1.60000-03 KD1s 7.60000-62	7.000C+-01
	X	OELTA=

THE RADIATION PULSE IS 1.00009+11 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+04 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITCR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE THE THE CAPACITOR VOLTAGE

•		<	S W	STANT					•
	111	10 SEC		100 MS	10 48	1 MS	100 US	10 US	1 US
	000	000	.000	0000	000	000	0000	000	000
	.994	966.	.998	.998	866	966.	856	966	966
3	1966.0	0.9987	0.9987	C.9987	0.9987	0.9987	56.	0.9989	0.9995
	966.	966.	.998	856.	966.	866.	856.	666	999
	.998	966.	.998	.998	866.	866.	966.	666.	000
	966.	966.	856.	¥65.	.998	866.	966.	666.	000
	966.	966.	856.	.998	.998	966.	666.	666	000
	866.	.998	856.	856.	866.	.998	666.	000	000
	866.	.998	.998	866.	866.	966.	656.	000	000
	.998	.998	856°	856.	966	866.	666	000	000
	866.	.998	866.	865.	866.	666.	666.	000	000
	.998	.998	¥56.	.998	966.	666.	666.	000	000
	.997	.997	.997	156.	166.	666.	556.	000	000
	.995	. 995	.995	.995	966.	666.	666.	000	000
	.992	.992	256.	.992	. 995	666.	666.	000	000
	.986	.986	.986	198.	166.	666.	666.	000	000
	.967	.967	.968	.974	.993	666.	656.	000	.000
	.936	.937	.939	.960	.993	666.	666.	000	000
	.878	.880	058.	.946	.993	666.	656.	000	.000
	. 725	.731	.781	.940	.993	666.	666.	000	000
S	.526	.547	.685	.939	. 394	666.	666.	000	000
S	.277	.331	.624	.939	865.	666.	656.	000	000
S	0 0 0	.156	609.	.939	655.	666.	666.	000	000
vn	.001	.135	639.	.940	.993	666.	65	.000	.000

200

OF A PAPER CAPACITCR

KD2= 1.00000-06 THE CAPACITOR PARAMETERS USED ARE: NP= 1.00002-03 KE1= 7.00006-02 DELTA= 7.00002-01 Trl= 2.00006-04

THE RADIATION PULSE IS 1.COCOP+11 HADS/SEC FOR 2.5000P-08 SEC FOLLOWED BY A CUNSTANT MATE OF 1.00000P+05 HADS/SEC

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

			CTIPE CON	STANTS					•
9987 0.9967 0.9967 0.9987 0.9987 0.9987 0.9987 0.9988 0.99	121	0 SE	S	N O	1	1	J 00	0	>
9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9987 0.9988 0.99	.000	.000	000	000	000	000	000	000	000
9987 0.9987 C.9987 C.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9987 0.9987 0.9987 0.9987 0.9988 0.9988 0.9999 0.9988 0.99887 0.99887 0.99887 0.9988 0.9988 0.9998 1.0000 0.99887 0.99887 0.99887 0.9988 0.9998 1.0000 0.99887 0.99888 0.99887 0.0000 0.00	866.	966.	.999	.998	966	.993	966	966	866
9987 0.9987 0.9987 C.9987 0.9987 0.9987 0.9986 0.9992 1.000 9987 0.9987 0.9987 C.9987 0.9987 0.9987 0.9988 0.9992 1.000 9987 0.9987 0.9987 C.9987 0.9987 0.9987 0.9988 0.9998 1.000 9984 0.9984 0.9984 C.9984 C.9984 0.9984 0.9989 1.0000 1.000 9984 0.9984 0.9984 C.9984 C.9984 0.9984 0.9987 1.0000 1.000 9985 0.9971 0.9971 C.9972 0.9984 0.9984 0.9997 1.0000 1.000 9987 0.9971 0.9971 C.9986 0.9972 0.9984 0.9997 1.0000 1.000 9988 0.9972 0.9972 0.9972 0.9986 0.9997 1.0000 1.000 9989 0.9972 0.9972 0.9972 0.9972 0.9994 0.9997 1.0000 1.000 9980 0.9972 0.9973 C.9889 0.9998 0.9998 1.0000 1.000 9980 0.9972 0.9973 C.9889 0.9998 0.9998 1.0000 1.000 9980 0.9972 0.9972 0.9988 0.9998 1.0000 1.000 9980 0.9972 0.9972 0.9988 0.9998 1.0000 1.000 9980 0.9972 0.9972 0.9988 0.9998 1.0000 1.000 9980 0.9972 0.9772 0.9988 0.9998 1.0000 1.000 9980 0.9972 0.9772 0.9988 0.9998 1.0000 1.000 9980 0.9972 0.9972 0.9988 0.9998 1.0000 1.000 9980 0.9972 0.9972 0.9988 0.9998 1.0000 1.0000 9980 0.9972 0.9972 0.9988 0.9998 1.0000 1.0000 9980 0.9972 0.9972 0.9988 0.9998 1.0000 1.0000 9980 0.9972 0.9972 0.9988 0.9998 1.0000 1.0000 9980 0.9972 0.9972 0.9988 0.9998 1.0000 1.0000 9980 0.9972 0.9972 0.9988 0.9998 1.0000 1.0000 9980 0.9972 0.9972 0.9988 0.9998 1.0000 1.0000 9980 0.9972 0.9972 0.9988 0.9998 1.0000 1.0000 9980 0.9972 0.9972 0.9988 0.9998 1.0000 1.0000	.998	866.	.956	.998	866.	966.	866.	866.	999
9987 0.9987 0.9987 C.9987 0.9987 0.9987 0.9988 0.9992 1.000 9987 0.9987 0.9987 C.9987 0.9987 0.9987 0.9988 1.000 9986 0.9986 C.9988 C.9988 0.9987 0.9987 0.9988 1.000 9986 0.9986 C.9988 C.9988 0.9984 0.9989 1.0000 1.000 9981 0.9971 C.9981 C.9984 0.9984 0.9984 1.0000 1.000 9982 0.9971 C.9972 0.9972 0.9984 0.9984 1.0000 1.000 9982 0.9972 0.9973 C.9972 0.9972 1.9980 1.0000 1.000 9982 0.9973 C.9972 0.9972 0.9974 1.9980 1.0000 1.000 9982 0.9971 0.9971 C.9972 0.9972 1.9980 1.0000 1.000 9982 0.9971 0.9971 C.9972 0.9972 1.9980 1.9000 1.000 9982 0.9972 0.9973 C.9978 0.9977 1.0000 1.000 9982 0.9971 0.9974 0.9974 1.9980 1.9000 1.000 9982 0.9972 0.9974 0.9979 1.0000 1.000 9982 0.9972 0.9974 0.9979 1.0000 1.000 9982 0.9971 C.7774 0.9689 0.9978 1.0000 1.000 9982 0.9977 C.7774 0.9689 0.9978 1.0000 1.000 9982 0.9977 C.7774 0.9689 0.9978 1.0000 1.000 9982 0.9977 C.7777 C.7777 0.9988 0.9977 1.0000 1.0000 9982 0.9977 C.7777 C.7777 0.9988 0.9977 1.0000 1.0000 9982 0.9977 C.7777 C.7777 C.9988 0.9978 1.0000 1.0000 9982 0.9977 C.7777 C.7777 C.9988 0.9978 1.0000 1.0000	.998	.995	.999	866.	866.	966	966	666.	999
9987 0.9987 0.9987 C.9987 0.9987 0.9987 0.9987 1.000 1.000 1.9988 0.9988 0.9988 1.000 1.9988 0.9988 0.9988 1.000 1.9988 0.9988 0.9988 0.9988 1.000 1.000 1.9988 0.9988 0.9988 1.000 1.000 1.000 1.9988 0.9988 0.9988 1.000 1.0	966.	966.	P 56.	866.	966.	966.	966.	666.	000
9986 0.9987 0.9987 C.9984 0.9987 0.9987 0.9989 1.000 1.000 1.9984 0.9986 0.9986 0.9989 1.000 1.0	966.	966.	956.	966.	866	966.	855	999	000
9966 0.9986 C.9986 C.9986 0.9987 0.9987 1.0000 1.0000 1.9000 9981 0.9984 0.9984 0.9984 1.0000	.998	966.	966.	966.	965	966.	.996	999	000
9964 0.9964 0.9964 C.9984 0.9984 0.9986 0.9993 1.0000 1.0000 1.0000 1.9981 0.9984 0.9993 1.0000 1.0000 1.0000 1.0000 0.9971 0.9971 0.9972 0.99975 0.9997 1.0000 1.0000 1.0000 1.0000 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9927 1.0000 1.0000 1.0000 1.0000 0.9829 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9927 1.0000 1.0000 1.0000 1.0000 0.9829 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9927 1.0000 1.0000 1.0000 1.0000 0.9829 0.9924 0.9927 1.0000 1.0000 1.0000 0.9829 0.9924 0.9927 0.9929 1.0000 1.0000 1.0000 0.9928 0.9929 1.0000 1.0000 0.9929 0.9929 1.0000 1.0000 0.9929 0.9929 1.0000 1.0000 0.9929 0.9929 1.0000 1.0000 0.9929 0.9929 1.0000 1.0000 0.9929 0.9929 1.0000 1.0000 0.9929 0.9929 1.0000 1.0000 0.9929 0.9929 1.0000 1.0000 0.9929 1.0000 0.9	.996	866.	956.	.998	966	966	566	000	000
9924 0.9971 0.9971 C.9981 0.9981 0.9984 0.9994 1.0000 1.0000 1.9001 9971 0.9971 0.9971 1.0000	966.	956.	956.	966.	.998	966	656	000	000
.9971 0.9971 0.9571 C.9972 0.9972 0.9980 0.9997 1.0000 1.0000 1.9955 0.9955 0.9955 0.9957 1.0000 1.0000 1.0000 1.9924 0.9924 0.9924 0.9932 0.9975 0.9997 1.0000 1.0000 1.0000 1.9824 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9924 0.9927 1.0000 1.0000 1.0000 1.0000 0.9924 0.9924 0.9924 0.9924 0.99297 1.0000 1.0000 1.0000 1.0000 0.9924 0.9924 0.9924 0.9924 0.99297 1.0000 1.0000 1.0000 0.9929 0.9929 0.9929 0.9929 0.9929 0.9929 0.9927 0.0000 1.0000 1.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.0000	.998	956.	856.	966.	966	.998	656	000	000
9925 0.9955 0.9956 C.9956 0.9936 0.9975 0.9997 1.0000 0.0000 1.0000 1.0000 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000 1.0000 0.0000 0.0000 0.0000 1.0000 0.00	.997	166.	156.	166.	166.	966	666	000	000
9824 0.9924 0.9924 C.9924 0.9932 0.9971 0.9997 1.0000 1.000 9829 0.9829 0.9629 C.9833 0.9867 C.9968 0.9997 1.0000 1.000 9872 0.9672 0.9674 C.9689 0.9968 0.9997 1.0000 1.000 9367 0.9368 0.9997 1.0000 1.000 9367 0.9368 0.9997 1.0000 1.000 9259 0.8301 C.7374 C.8217 0.9689 0.9968 0.9997 1.0000 1.000 9259 0.8301 C.7374 C.8217 0.9689 0.9968 0.9997 1.0000 1.000 9209 0.2156 0.3305 C.7744 0.9689 0.9968 0.9997 1.0000 1.000 9000 0.0315 0.2378 C.7571 0.9689 0.9968 0.9997 1.0000 1.000 9000 0.0302 C.2376 C.7577 0.9689 0.9968 0.9997 1.0000 1.0000	. 995	.995	.995	.995	.995	.997	666.	000	000
.9829 0.9829 0.9829 C.9833 0.9867 C.9958 0.9997 1.0000 1.0000 .9672 0.9672 0.9674 C.9685 0.9795 0.9958 0.9997 1.0000 1.0000 .9367 0.9368 0.9373 C.9427 C.9727 0.9968 0.9997 1.0000 1.0000 .8508 0.8512 0.8544 C.882C 0.9691 0.9968 0.9997 1.0000 1.0000 .7247 0.7261 C.7374 C.8217 0.9685 0.9958 0.9997 1.0000 1.0000 .2009 0.2156 0.3305 C.7744 0.9689 0.9968 0.9997 1.0000 1.0000 .2009 0.2156 0.3305 C.7571 0.9689 0.9968 0.9997 1.0000 1.0000 .0016 0.0315 0.2378 C.7571 0.9689 0.9968 0.9997 1.0000 1.0000 .0000 0.0302 C.2376 C.7572 0.9689 0.9968 0.9997 1.0000 1.0000 .0000 0.0302 C.2376 C.7579 C.9689 0.9968 0.9997 1.0000 1.0000	.992	266.	.992	.992	.993	.997	656.	000	000
.9672 0.9672 0.9674 C.9685 0.9795 0.9968 0.9997 1.0000 0.0302 C.2378 C.7571 0.9689 0.9968 0.9968 1.0000 1.0000 1.0000 0.0302 C.2376 C.7572 0.9689 0.9968 0.9968 1.0000 1.0000 1.0000 0.0302 C.2376 C.7572 0.9689 0.9968 0.9968 1.0000 1.0000 1.0000	.982	.982	.982	.983	.986	.996	666	000	000
.9367 0.9368 0.9373 C.9427 C.9727 0.9968 0.9997 1.0000 1.000 .8508 0.8512 0.8544 C.822 C.9691 0.9968 0.9977 1.0000 1.000 .7247 0.7261 C.7374 C.8217 0.9689 0.9968 0.9977 1.0000 1.000 .5259 0.5301 C.5658 C.7744 0.9689 0.9968 0.9997 1.0000 1.000 .2009 0.2156 0.3305 C.7744 0.9689 0.9968 0.9997 1.0000 1.000 .0404 0.0657 C.2490 C.7571 0.9693 0.9968 0.9997 1.0000 1.000 .0000 0.0302 C.2378 C.7571 0.9689 0.9968 0.9997 1.0000 1.000 .0000 0.0302 C.2376 C.7572 0.9689 0.9968 0.9997 1.0000 1.000	.967	.967	.967	.968	.979	966.	999	000	000
.8508 0.8512 0.8544 C.882C 0.9691 0.9968 0.9977 1.0000 1.000 1.7247 0.7261 C.7374 C.8217 0.9685 0.9968 0.9971 0.5 y7 1.0000 1.000 1.5259 0.5301 C.5658 C.7744 0.9689 0.9968 0.9968 0.9997 1.0000 1.0000 1.0000 1.0000 0.0657 0.2490 C.7575 0.9689 0.9968 0.9997 1.0000 1.0000 1.0000 0.0016 0.0315 0.2378 C.7571 0.9689 0.9968 0.9968 0.9997 1.0000 1.0000 0.0000 0.0302 C.2376 C.7572 0.9689 0.9968 0.9997 1.0000 1.0000 0.0000 0.0302 C.2376 C.7572 0.9689 0.9968 0.9997 1.0000 1.0000 0.0000 0.0302 0.2376 C.7579 C.9689 0.99988 0.9997 1.0000 0.0000 0.0302 0.2376 C.7579 C.9689 0.99988 0.99988 0.9997 0.99987 0.99988 0.99988 0.99988 0.99988 0.99988 0.99988 0.99988 0.99988 0.99888 0.	.936	.936	.937	.942	.972	966	999	000	000
.7247 0.7261 C.7374 C.6217 0.9685 0.9971 0.5 y7 1.0000 1.000 1.0000 1.2009 0.5301 C.5658 C.7744 0.9689 0.9968 0.9968 1.0000 1.0000 1.0000 1.0000 0.2156 0.3305 C.7575 0.9689 0.9968 0.9968 1.0000 1.0000 1.0000 1.0000 0.0657 C.2490 C.7571 0.9689 0.9968 0.9967 1.0000 1.0000 1.0000 0.0315 C.2378 C.7571 0.9743 0.9968 0.9967 1.0000 1.0000 0.0000 0.0302 C.2376 C.7572 C.9689 0.9968 0.9968 1.0000 1.0000 0.0000 1.0000 0.0000 0.0302 C.7579 C.9689 0.9968 0.9968 0.99697 1.0000 1.0000	. 850	.051	.854		.969	966.	606	000	000
.5259 0.5301 C.5658 C.7744 0.9689 0.9968 0.9997 1.0000 1.0000 1.0000 0.2009 0.2156 0.3305 C.7575 0.9689 0.9968 0.9997 1.0000 1.0000 0.0404 0.0657 0.2490 C.7571 0.9693 0.9968 0.9997 1.0000 1.0000 0.0016 0.0315 0.2378 C.7571 0.9743 0.9968 0.9957 1.0000 1.0000 0.0000 0.0302 C.2376 C.7572 0.9689 0.9968 0.9957 1.0000 1.0000 0.0000 0.0302 0.2376 C.7579 C.9689 0.9958 0.9957 1.0000 1.0000	.724	.726	.737	.621	966	.997	7 5.	000	000
.2009 0.2156 0.3305 C.7575 0.9689 0.9968 0.9997 1.0000 1.000 .0404 0.0657 C.2490 C.7571 0.9693 0.9968 0.9997 1.0000 1.000 .0016 0.0315 C.2378 C.7571 0.9743 0.9968 0.9997 1.0000 1.000 .000C 0.0302 C.2376 C.7572 0.9689 0.9968 0.9997 1.0000 1.000	.525	.530	.565	.774	.968	966.	999	000	000
.0404 0.0657 0.2490 C.7571 0.9693 0.9968 0.9997 1.0000 1.000 .0016 0.0315 0.2378 C.7571 0.9743 0.9968 0.9997 1.0000 1.000 .0000 0.0302 C.2376 C.7572 0.9689 0.9968 0.9997 1.0000 1.000	.200	.215	.330	.757	996	966.	.999	000	000
.00016 0.0315 0.2378 C.7571 0.9743 0.9968 0.9597 1.0000 1.000 .0000 0.0302 C.2376 C.7572 0.9689 0.9968 0.9597 1.0000 1.000 .0000 0.0302 0.2376 C.7579 C.9689 0.9958 0.99597 1.0000 1.000	.040	.065	.249	.757	695	966.	999	000	000
.0000 0.0302 0.2376 0.7572 0.9689 0.9968 0.9997 1.0000 1.000 .0000 0.0302 0.2376 0.7579 0.9689 0.9958 0.9997 1.0000 1.000	.001	.031	.237	.757	.974	966.	556	000	000
.0000 0.0302 0.2376 C.7579 C.9689 0.9958 0.9997 1.0000 1.000	000.	.030	.237	.757	969	966	656	000	000
	0000	.030	.237	.757	966	.995	666	000	000

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A PAPER CAPACITOR

KD2= 1.00000-06 THE CAPACITOR PARAMETERS USED ANE:

THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+06 RADS/SEC TD2= 5.00000-01 MP= 1.00000-03 K01= 7.00000-02 DELTA= 7.00000-01 T01= 2.00000-04 TD1= 2.00000-C4

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

		•	U U	STANT					
	INF	10 SEC	-	10C MS	10 PS	SH I	100 US	10 US	.1 08
ñ									
	.000	0000	.000	000.	0000	.000	.000	000	.000
2 2 2	966.	966.	956.	855.	966.	966.	966	966	966
	.996	.998	.998	866.	866.	966.	956	966	666
	.998	866.	966.	.998	966	966.	856	966	666
	.998	866.	856.	866.	866.	.998	956	999	000
	.998	866.	956.	665.	966.	966.	956.	999	000
SO C	0.9984	0.9984	0.9984	C.9984	866.	.998	56.	999	000
	866.	.998	.998	665.	966.	.998	866.	999	000
	.997	266.	166.	265.	265.	166.	856	999	000
	.995	556.	.995	.995	.995	966.	966.	999	000
	265.	066.	056.	056.	165	.993	856	666	000
	.982	.982	.942	5.5	.963	686.	956	999	000
	195.	.967	.967	195.	970	986	866	666	000
	.921	.921	.921	.923	.930	.984	866	666	000
	. 650	. 450	.851	15 i.	904	.964	966	666	000
	.724	. 724	.725	.748	.675	.984	966	999	000
	.447	.448	.459	.550	. 862	196	966.	999	000
	.200	.203	.229	.428	.861	.984	966.	666.	000
	.040	.045	690.	.366	. 261	989	856.	666.	000
	000.	900.	.058	. 363	. P61	.984	856.	666	000
s	000.	.006	.058	. 363	. 862	984	966.	666.	000
S	000	.006	.058	. 3.9.3	694.	984	966.	666.	000
S	.000	.006	.058	.363	. #61	984	966	666.	000
S	.000	.006	.058	.388	0.8615	0.9842	86	0.9998	1.0000
						į			•

200

20C

500

OF A PAPER CAPACITCR

THE CAPACITOR PARAWETERS USED ARE:

KP= 1.0000@-03 Knl= 7.0000@-02 KD2= 1.0000@-06

DELTA= 7.0000@-01 TD1= 2.0000@-04 TD2= 5.0000@-01

THE RADIATION PULSE IS 1.00COR+11 RADS/SEC FOR 2.500CP-08'SEC FOLLOMED BY A CONSTANT RATE OF 1.0000P+07 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITCA CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATICS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

	1 08	000	966	999	666	999	.999	666.	.999	666.	.999	.999	666	0.0999	666.	666	666.	666.	666.	666.	666	666.	666.	666	666.
	10 05	000	966	966	998	966	.999	666.	999	999	666.	666.	999	0.9992	666.	999	999	999	.999	666.	666.	666.	999	666.	.999
	100 08	000	966	966	966	996	966.	156.	966	166.	.993	.992	992	0	.992	955	156.	.992	.992	.992	.992	.992	.992	.992	25
	1 #5	000	966	966	966	.996	966.	166.	166.	166.	.984	.968	.950	0.9339	.925	.925	.925	.925	.925	.931	.925	.925	.925	.925	.925
	10 48	000	966	966	966	966.	866.	196.	166.	066.	963	096	.925	99	.734	.627	.565	.553	.553	.553	.553	. 555	.572	.870	.553
AZA	100	000	865.	.998	.998	856.	966.	166.	156.	066.	.962	.959	.922	C.8518	.675	.469	.255	.120	.110	.110	.110	.110	.110	.120	.173
ت س		.000	.998	856.	966.	.998	656.	256.	\$56	056.	.982	. 959	.921	0.8505	.668	.448	.205	.029	.012	.012	.012	.012	.012	.013	.017
•	10 SEC	000	966.	.998	.998	966.	866.	.997	966.	066.	.982	.959	.921	0.8503	.667	.446	.200	.010	.001	.001	.001	.001	.001	.001	.001
	INI	000	966.	966.	966.	966.	.998	166.	.994	066.	.982	.959	.921	0.6503	.667	.446	.199	.017	.000	.000	000	000.	.000	.000	• 000
,	L		2	3	3	3	D	J U	3	D	ے ن	D	=	2 HS	=	2	Y	I O	Z O	20	I				
	-		~				-	~	•	-	20	_					7	5	2	2	20	(0)	1,1	1 16	

10", 107

1

OF A PAPER CAPACITOR

KP= 1.00000=03 KD1= 7.00000=02 KD2= 1.00000=06 DELTA= 7.00000=01 T01= 2.00000=04 T02= 5.00000=01 THE RADIATION PULSE IS 1.00000+12 RADS/SEC FOR 2.50000-00.SEC FOLLOWED BY A CONSTANT RATE OF 0.00000+00 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VELTAGE

			S W	STANT				,	
	125	10 SEC	1 SEC		10 PS	SH	100 US	10 US	SO 1.
114									
0	000	.000	000.	ပ္	000	000	000	000	000
Z	0.993	.993	.993	£ 55	.993	.993	656	993	993
3	0.993	.993	.993	663	.993	.993	.993	994	997
8 2 8	1 0.9937	0.9937	0.9537	C.9937	0.9937	0.9938	0.9939	0.9949	999
7	0.993	.993	.993	93	.993	.993	756	966	000
3	0.993	.993	£ 56°	E & 5	.993	.993	156.	166.	000
0	0.993	.993	.953	93	.993	.993	1994	666	000
2000	0.993	.993	.993	6	.993	166.	966.	000	000
)	0.993	.993	£ 56°	5	.993	.994	256.	000	000
200	0.993	.993	.993	6	.993	166.	656.	000	000
200	0.993	.993	.993	93	.994	966.	000	000	000
X	0.993	.993	.993	93	166.	166.	0000	000	000
8	0.993	.993	. 393	93	166.	666.	000	000	000
N	0.993	.993	666	75	966.	000	0000	000	000
	0.993	.993	656	76	255.	.000	000	000	000
Z	0.993	.993	666.	96	656.	000.	000	000	000
3C I	0.993	. 293	.994	96	000.	.000	000	000.	000
X U	0.593	.993	.954	97	.000	.000	000.	000	000
1 00 00	0.993	666.	400.	65	000.	.000	000.	000	000
Z O O	0.993	\$66.	966.	00	0000	.00c	000.	.000	000
	.993	· 994	256.	00	000.	000	000	000	000
	. 993	466.	666.	00	.000	000.	000	.000	000
	. 663	966.	000	00	0000	.000	000.	000	000
	.993	.997	000	00	000.	.000	000	000	00

10,40

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A PAPER CAPACITER

KD2= 1.00000-06 TD2= 5.00000-01 THE CAPACITOR PARAMETERS USED ARE 7.00000-02 TD1= 2.0000#-04 Kola KP= 1.0000e-03 DELTA= 7.00004-01

THE RADIATION PULSE IS 1.00008+12 RADS/SEC FOR 2.500C4-C8.SEC FOLLOWED BY A CONSTANT RATE OF 1.00008+03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

TAU CTIME CONSTANT)

	INE	10 SEC	1 SEC	10C MS	10 48	SI -	100 US	10 US	. 1 US
1106									1
	.000	.000	0000	000	000	.000	000	000	000
Z	0.993	.993	.993	.993	.993	.993	.993	.993	.993
>	0.993	.993	.993	.993	.993	.993	.993	.994	.997
3	0.993	.993	.993	.993	.993	.993	.993	.994	666
2	0.993	.993	.993	.993	.993	.993	1994	966	000
3 0	0.993	.993	.993	.993	.993	.993	166.	1997	000
	.993	.993	.993	.993	.993	.993	166.	999	000
3 3	0.993	.993	£ 56 ·	.993	.993	166.	956	000	000
200	0.993	.993	£56.	.993	.993	.994	156.	000	000
) O	0.993	.993	£ 56 ·	.993	.993	.994	555.	000	000
7 20	0.993	.993	.993	.993	.993	966.	666.	000	000
X	0.993	.993	656.	665.	756.	.997	000	000	000
*	0.993	.993	£ 56 ·	.993	166.	666.	000	000	000
I	0.993	.993	.993	.993	.995	.999	000	000	000
2	0.992	. 992	.992	.993	966.	666.	000	000	000
E O	166.0	.991	.991	.992	966.	666.	000	000	000
=	0.987	.967	.967	.991	966.	666.	000.	000	000
Z O	0.501	.961	.962	666.	866.	666.	0000	.000	000.
=	0.968	.969	.972	.986	966.	666.	0000	000.	.000
I	0.932	.934	.947	.967	866.	.999	000.	000	.000
	.874	. 880	.921	.967	856.	666.	000.	000.	000.
S	0.7697	0.7908	0.8980	C.9874	66	66.	000	000.	.000
5	. 524	.616	. 86.7	188.	966.	666.	000.	000	000
5 05	.277	.496	. 986	.987	966.	666	1.0000	1.0000	1.0000

1012 164

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A PAPER CAPACITOR

KP= 1.000CP-03 KD1= 7.CCOCP-02 KD2= 1.0000P-06
DELTA= 7.C00CP-01 TD1= 2.CCOCP-C4 TD2= 5.0000P-01

THE RADIATION PULSE IS 1.0009#+12 RADS/SEC FOR 2.5000#=08' SEC FOLLOWED BY A CONSTANT RATE OF 1.0000#+04 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITCR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VELTAGE

		◀	ت س	STANT					
	INF	10 SEC	1 SEC	100	10 PS	N H	100 US	10 US	SO T.
w									
	000.	.000	.000	000	000	.000	000	000	000
S Z	.993	.993	.993	.993	.993	.993	.993	.993	.993
S	.993	.993	.993	.993	.993	.993	.993	166	.997
5	.993	.993	.993	£66.	.993	.993	.993	1994	999
S	.993	.993	656.	.993	.993	.993	456	966.	000
S	.993	.993	.993	665.	.993	.993	166.	166.	000
S	.993	.993	.993	.993	655.	.993	166	999	000
50	.993	.993	.993	665.	665.	994	966	666	000
S	.993	.993	.993	.993	.993	166.	166.	000	000
S	.993	.993	.993	.993	.993	.994	666.	000	000
SO	.993	.993	.993	.993	.993	.995	666	000	000
S	0.6930	0.9930	0.9930	C.9931	C.9937	0.9973	6666.0	1.0000	1.0000
SI	.992	.992	. 392	.992	.993	.998	656.	000	000
9 7	966.	066.	056.	055.	663	666.	999	000	000
S	.987	186.	196.	.588	.993	666.	666	000	000
S	.981	.961	.961	.983	665	666.	656	000	000
Z	.962	.965	.963	.971	.993	666.	655.	000	000
S	.932	.932	.935	.958	665.	666.	655.	000	000
E S	.874	.875	. 986	.946	.993	666.	656.	000	000
SI	.721	. 728	.778	.940	.993	666.	656	000	000
S	.524	.544	. 584	.939	665.	666.	656	000	000
S	.276	.330	.624	565.	856.	666.	656	000	000
S	.040	.156	. 609	.939	665	666.	656	000	000
S	.001	. 135	. 609	. 540	655.	666	655	000	000

200

OF A PAPER CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 1.COOCE=03 KG1= 7.CCOCE=C2 KD2= 1.000CF=C6

DELTA= 7.COUCE=01 TD1= 2.COOCE=C4 TD2= 5.COOE=C1

THE RADIATION PULSE IS 1.00000+12 RADS/SEC FOR 2.50000-08, SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+05 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VELTAGE

(ا د ر	7 - 2 - 7					
L Z	10 SEC	1 SEC	100 48	10 75	T I	100 US	SD 01	50 T
Ö	000	000	0000	000	000	000	000	000
m	.993	.993	.993	.993	.993	.993	.993	.993
	666.	.993	.993	.993	.993	.993	.994	.997
m	. 993	.993	.993	.993	.993	.993	1994	.999
m	.993	.993	.993	.993	.993	156	966.	000
m	.993	.993	.993	.993	.993	1994	.997	000
7	.993	.993	.993	.993	.993	.994	.999	000
m	.993	.993	.993	.993	.993	966	666	000
m	.993	.993	.993	.993	.994	166.	000	000
m	.993	.993	.993	.993	166.	856.	000	000
~	.992	.992	.992	.992	.994	666.	000	000
0	066.	056.	366.	.991	.995	666.	000	000
~	.987	.967	.967	.989	.996	.999	.000	000
~	. 477	.977	.978	.963	966.	666.	000.	000
~	.962	.962	.964	.977	966.	666	000	000
319	0.9320	C.9327	C.9388	0.9721	0.9968	2566.0	1.0000	1.0000
V	.946	.350	.679	696	966.	656	000	000
•	.722	.734	. 620	.968	966.	656.	000	000
M	.527	. 563	.774	996.	.996	556.	000	000
0	.214	. 329	.757	996	.995	666.	000	000
O	.065	.243	.757	696.	966.	666.	000	000
-	.031	.237	.757	.974	966.	666.	000	000
0	.030	.237	.757	.968	966.	666	000	000
0	0 30	217	757	A 4 D	700	200	000	000

5 / 41

901 2,01

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A PAPER CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 1.00000-03 KD1= 7.00000-02 KD2= 1.00000-06

DELTA= 7.00000-01 TD1= 2.00000-04

THE RADIATION PULSE IS 1.00000+12 RADS/SEC FOR 2.50000+08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+06 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

•		•	U W	STANT				.•	•
	INF	10 SEC	-	10C	10 48	1 HS	100 05	10 US	1 05
	.000	000	000	000.	000	000	000	000	000
	.993	.993	.993	.993	.993	.993	.993	.993	.993
	.993	.993	.993	.993	.993	.993	.993	.994	.997
	.993	.993	.993	:663	656.	.993	.993	.994	999
	.993	.993	.993	665	.993	.993	156.	966	666
	.993	.993	.993	655.	.993	.993	¥56.	.997	000
	. 593	.993	656.	655.	.993	.993	156	666	000
	.992	.992	. 392	.952	.993	.993	995	666	000
	.992	.992	.992	.992	.992	.992	966	999	000
	066.	066.	056.	065.	066.	.992	156.	666	000
	.985	.985	.985	.985	986.	696	966.	999	000
SI	0.9779			5.	626.	.987	666	999	000
	.962	.962	.962	.962	996.	.985	955.	666.	000
	.917	.917	.917	515.	.935	.984	956.	666.	000
	.846	.846	.846	.853	.962	.984	956.	666.	000
	.720	.720	.723	.745	.674	.984	856	666.	000
	. 444	.446	.455	.549	.661	.984	996	.999	000
	.199	.202	.228	.428	.861	984	956.	666	000
	.039	.045	.089	.386	.861	.989	966.	666.	000
	.000	900.	.058	.363	. 461	.984	866.	666	000
S	.000	.006	.058	.363	.862	.984	966.	666.	.000
S	000.	.006	.059	.363	. 269	.984	₹55.	666.	000.
S	0000	900.	.05A	. 383	.861	984	955.	666.	000.
S	.000	900.	.058		0.8615	0.9842	4456.0	0.9998	1.0000

200

100

OF A PAPER CAPACITOR

THE CAPACITOR PARAWETERS USED ARE:

KP= 1.00008-03 Knl= 7.00008-02 KD2= 1.00008-06

DELTA= 7.00009-01 TD1= 2.00008-04

THE RADIATION PULSE IS 1.COCO#+12 RADS/SEC FOR 2.5GOC#-08.SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+07 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VELTAGE

	. 1 US	000	.993	1997	.999	999	999	999	.00	***			999	666		666	666	666	666	666	666	666	666	666	0.0000
	10 05	000	.993	994	166.	.995	166.	966	666.	666	666.	666.	666	999	999	.999	.999	.999	.999	666.	666	999	999	999	0.9992
	100 US	000	£56°	.993	.993	.993	.993	.993	.993	.992	.992	.952	.992	.992	.992	992	1997	.992	.992	.992	.952	.952	.992	.992	0.9520
	1 HS	000	.993	.993	.993	.993	.993	.992	990	986	980	.965	940	.933	.925	.925	.925	.925	.925	.931	.925	.925	.925	.925	0.9254
	10 48	000	.993	.993	.993	.993	.93	.992	686.	.985	.978	.955	.921	. 660	.732	.624	.565	.553	.553	.553	.953	.555	.577	. 270	0.5538
ANT	100	000	.993	.993	.993	.993	.992	.992	9	.985	.978	.954	.917	. 647	.672	.467	.254	.120	.110	.110	.110	.110	.110	.120	•
00 3	1 SEC	000	.993	.993	.993	.993	.992	.992	0.9899	.985	.977	.954	.917	.846	.665	.446	.264	.020	.012	.012	.012	.012	.012	.013	.017
•	10 SEC	.000	.993	.993	.993	.993	.992	.992	0.9698	.985	.977	.954	.917	.846	.664	. 494	. 199	.018	.001	.001	.001	.001	.001	.001	.001
	JNI	.000	.993	.993	€66.	.993	.992	.992	0.9898	.985	.977	.954	.917	.846	.664	***	. 190	.017	.000	.000	000.	000.	.000	000.	•000
	7106		Z	7	7	2	3	3	SO 05	2 00	3	7 20	#	2	=	2	SI SK	Se 15	100 HS	800 HS	21 906	•	50	9	36 8

10,2, 107

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A PAPER CAPACITOR

KD2= 1.00060-66 USED ARE: KPs 1.COOCS-03 K01s 7.COOCS-02

THE RADIATION PULSE IS 1.00000+13 RADS/SEC FOR 2.500CP-08 SEC FOLLOWED BY A CONSTANT RATE OF 0.0000000 RADS/SEC T02= 5.00000-01 TO1= 2.0000-04 DELTA= 7.00000-01

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

		•	ت س	STA					
	INF	10 SEC	-	1001	10 45	SHI	100 US	10 US	SO I.
341									1
0	.000	.000	0000	000	000	000	.000	000	000
25 N	596.0	.969	.969	696.	695	696.	.969	969	966
3	0.969	.969	.969	.969	.969	696.	966	.971	.986
2	0.969	696.	.969	696.	.969	696.	966	.974	.995
3	0.969	.969	696.	.969	696.	696.	.970	.991	666.
3 0	696.0	.969	.969	.969	.969	.969	.971	996.	000
0	696.0	.969	696.	676.	696.	696.	.974	.995	000
7	0.968	.968	.969	.966	695.	.970	.961	666.	000
) U	0.568	.968	.968	.966	696.	.971	.96	000	000
)	0.966	.968	.968	.960	696.	.974	556.	000	000
3	0.968	.968	.968	.968	.970	086	666.	000	000
=	\$ 0.9686	0.9686	C.9696	5896.3	0.9716	0.9884	•	000	1.0000
*	0.968	996.	.968	696.	.974	.995	000	000	000
=	0.968	.968	956.	.970	.980	.999	.000	000	000
I D	0.568	.968	.969	.971	996.	000	000.	000	000
I U	0.966	.968	.969	.974	.995	000.	000	000	.000
I U	0.968	.968	.970	045.	666.	000	000	000	000.
Z Z	0.968	.968	.971	.984	000.	000.	.000	000	.000
I	0.966	.969	.974	.995	006.	000	0000	000	000
I U	0.966	.970	.980	666.	000.	000	.000	000	.000
	.966	.971	8 i 6 .	.000	000.	.000	000.	000.	.000
	995.	.974	.995	000.	000.	000	0000	000	000
	.966	.940	656.	0000	000.	000	000.	000	.000
	.966	.988	000	0000	000.	000	0	00.	.000
•			•			•			0000

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A PAPER CAPACITER

THE CAPACITOR PARAWETERS USED ARE:

KP= 1.00000-03 K01= 7.00000-02 K02= 1.00000-06

DELTA= 7.00000-01 T01= 2.00000-04

THE RADIATION PULSE IS 1.0000#+13 RADS/SEC FOR 2.5000#-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000#+03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHANGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VELTAGE

TAU CTINE CONSTANT)

1 08		000	.969	:	.995		000	000.	000	000	000	000	000	000	000	000	1.0000	000	000	000	000	000	000	000	000	
10 US		000	969	.971	.974	.961	.986	.995	.999	000	000.	000	000.	000	.000	.000	1.0000	000	.000	000	000.	000	000	000	.000	
100 US		000	969	969	966	.976	.971	.974	196.	.960	.995	666.	000	000	000	000	1.0000	.000	.000	0000	000	.000	0000	000	000	
SI I		000	696	.969	.969	696.	.969	.969	. 970	.971	.974	980	996	.995	.999	666.	6666.0	666.	666.	999	.999	.999	666.	666.	666.	
10 PS		000	969	696.	695	695.	695.	696.	696.	696.	696.	.970	.971	.974	980	.987	0.9947	.998	966.	966.	966.	866	966.	966.	966.	
10C MS		000.	949	.969	.969	695.	695.	695.	.966	.968	.968	.968	.968	696.	.969	.970	C.5720	.976	.930	.984	199.	.987	199.	188	. 667	
1 560		.000	.969	.969	.969	.969	.949	.969	.969	.969	.964	.96.	.969	.968	.968	.967	0.9668	.964	.950	.952	.933	.913	.895	.867	948.	
10 SEC		000.	.969	.969	.969	.969	696.	.969	.968	.969	.963	.968	.968	.968	.968	.967	0.9662	.962	.956	.945	.911	.860	.77.	.668	.493	
INE		.000	.969	696.	696.	696.	696.	696.	996.	996.	.968	.968	.966	995.	.966	.967	0.9661	.962	.954	.944	.908	. 152	.750	.511	.270	,
	7116	6	Z	3		-	3	7	3	200	9	7 20	*	=	=	*	SC HS	*	Y	I	2				10 \$	

10,3 103

10,3,104

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A PAPER CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 1.0000F-03 Knl= 7.0000F-02 KD2= 1.0000F-06

DELTA= 7.00000F-01 TD1= 2.00000F-04 TD2= 5.00000F-01

THE RADIATION PULSE IS 1.00000+13 HADS/SEC FOR 2.50000-08 'SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+04 HADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE HATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

			C C	START					
	INE	10 SEC	-	10C MS	10 75	1 48	100 US	10 US	SN 1.
341				li li 31					
>	3000	000.	000	0000	000.	000.	000	000	000
n Z	696.	696.	969	696.	696.	696.	969	696.	.969
-	696.	.969	.969	635.	696.	696.	696	.971	986
3	696.	696.	.969	.969	.969	696.	596	.974	.995
2	696.	.969	949	695.	696	696.	.976	.981	666
၁ ပ	696.	969	.969	675.	696.	.969	.971	986	000
ے ن	696.	696.	.969	9690.	969	696	974	995	000
Sc ns	0.9689	0.9689	0.9489	•	0.9690	.97	.961	99	000
9	.968	.968	.968	.968	595	.971	966	000	000
0	.968	.968	.968	.969	696	.974	556	000	000
၁ ပ	996.	.968	.963	695.	696	980	656	000	000
Z.	.968	.968	.963	.968	.971	.986	556	000	000
Z (7)	196.	.967	196.	.968	.973	.995	656.	000	000
E S	.965	.965	.965	.967	.978	666.	656.	000	000
Z U	.962	.962	.942	.965	.984	.999	666	000	000
Z U	.956	.956	.957	.963	066.	666.	656.	000	000
E U	.936	.938	.940	.986	.993	666.	666.	000	000
Z U	005	606.	.914	646.	.993	666.	666.	000	000
Z U	.852	.854	.86.9	.943	.993	666.	656.	000	000
Z U	.703	.710	191.	.940	.993	666.	656.	000	000.
	.510	.532	.679	626.	.993	666.	656.	000	000
	.269	. 324	.623	.939	.993	656.	656.	000	000
	.035	.155	. 609	.939	.993	666.	556.	000	000
	.001	135	639.	•	.993	C.9994	6656.0	1.0000	1.0000

OF A PAPER CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 1.00009-03 Krl= 7.00008-02 KD2= 1.00008-06

DELTA= 7.00008-01 T01= 2.00008-04 T02= 5.00008-01

THE RADIATION PULSE IS 1.00000+13 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+05 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

			~	U U	STANT					ı,	
-	341	121	10 SEC	1 SEC	100	10 48	S T	100 US	10 CS	1 08	
		.000	000	.000	0000	000	000	000	000	000	
	2	0.969	.969	696.	969	969	696	969	969	696	
	-	0.9690	0.9690	0.96.0	2696.3	0.9690	0696.0	0.9693	0,9719	0.9884	
	3	0.969	696.	.969	696.	696.	.969	.969	.974	.995	
)	0.969	696.	.969	695.	696.	.969	.970	.981	.99	
	9	0.969	696.	696.	.969	695.	.969	.971	986	000	
	9	0.968	.966	.965	846.	696.	696.	.974	.995	000	
	D	0.968	.968	.968	.968	996.	.970	.961	999	000	
-	200	0.966	.968	.968	.968	969	.971	966	000	000	
~	200	0.968	.968	.969	.968	.968	.973	.995	000	000	
en Sit	7 200	0.967	.967	.967	.967	996.	.979	656.	000	000	
	=	0.965	.965	.965	.965	996	986	666	000	000	
97.5	=	0.962	.962	.962	.963	996.	.993	666.	000	000	
Section .	=	0.953	.953	.953	.955	.968	966.	666.	000	000	
1	=	0.936	.936	.938	.942	996.	966.	556.	000	000	
	2	0.906	.908	606.	.919	996	966.	666	000	000	
		0.625	. 825	. 830	. 466	896.	966.	656.	000	000	
	I	0.702	.704	.717	.613	.960	966.	666.	000	000	
•••	I	0.510	.514	. 552	.772	.966	966.	666.	000.	000	
	X	0.194	. 209	.326	.757	.960	966.	.999	000	000	
	9	.039	.064	.248	.757	996.	966.		000	000	
	8	.001	.031	.237	.757	996.	966.	.999	000.	000	
3.	5	000.	.030	.237	.757	996.	966.	666.	000.	000	
	10 5	.000	.030	.237	.757	996.	966.	656.	000	000	

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A PAPER CAPACITOR

KD2= 1.00000-06 TD2= 5.00000-01 THE CAPACITOR PARAMETERS USED ARE: MP= 1.000Ce-03 K01= 7.000Ce-02 DELTA= 7.000Ca-01 T01= 2.000Ce-04 THE RADIATION PULSE IS 1.00000+13 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+06 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

				E CON	ANT					
	Z	<u>.</u>	10 SEC	1 SEC	10C MS	10 75	SH H	100 US	10 US	SO I.
3471		5								
_	0.1	00	0000	0000	0000	000.	000	000	000.	000
_	S 0.9	06	696.	.969	695.	.969	696.	596.	.969	.969
	8 0.9	06	696.	.969	.969	696.	696.	.969	.971	.988
2	8 0 8	06	696.	.969	.969	.969	696.	696.	.974	.995
n	96.0 8	0 69	.9689	0.9689	6.96.9	5896.0	1696.0	0.9704	0.9811	6666.0
0	8 0 8	99	.968	.968	.968	996.	696.	.971	986.	000
	S 0.9	67	.968	.968	995.	995.	696.	.974	.995	000
20	S 0.9	95	.968	.968	.968	969	696.	960	666.	000
00	8 0 S	73	.967	.967	.967	.967	.970	.987	666.	000
0	S 0.9	25	.965	.965	.965	996.	.971	456.	666.	000
00	S 0.9	60	.960	.940	.961	.962	.974	.998	666.	000
	S 0.5	32	.953	.953	.953	.956	.978	966.	666.	000
	s 0.9	0	.938	.938	. 538	.946	.982	.998	666.	000
5	S 0.8	36	.893	.894	.897	.921	.984	956.	666.	000
	S 0.8	4 3	.824	.825	.834	. e95	.984	.996	999	000
U	2.0 5	24	.702	.705	.730	. 672	.984	856.	666.	000
ပ	S 0.4	37	. 435	.446	.545	.661	.984	.996	666.	000
ပ	5 0.1	42	.197	.223	.426	.861	.984	966.	666.	000
00	S 0.0	69	.044	.089	.366	.861	.984	966.	666	000
00	0.0	C3	.006	.058	.363	. 461	.984	856.	666.	000
	0.0	၁၀	900.	.058	.383	62	.984	856.	666.	000
	0.0	ပ္	•000	TWO.	. 383	. 869	.984	956.	666.	000
	0.0	ပ္ပ	.006	.059	.383	. 461	.984	856.	666.	.000
10 5	0	0	90u•	.058	.368	. 861	.984	956.	666.	.000

OF A PAPER CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 1.0000@-03 KD1= 7.0000@-02 KD2= 1.0000@-06

DELTA= 7.0000@-01 TD1= 2.0000@-04 TD2= 5.0000@-01

THE RADIATION PULSE IS 1.00008+13 RADS/SEC FOR 2.50008-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+07 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VELTAGE

1 SEC 100 MS 1C MS 1 L MS 100 US 100 US 0.00000 0.0000 0.0		CTIME CON	STANT					
0000 0.9690 0.9690 0.9690 0.9690 0.9691 0.9690 0.96	_	- SE	00	10 42	51 -	100 US	10 US	1 08
9689 C.9689 O.9689 O.9680 O.9690 O.9691 C.9689 C.9689 O.9689 O.9681 O.96	000 1 000	000	.000	000	000	000	000	000
9649	696.0 06	.969	.969	696	969	.969	969	696
9669 C.9689 O.9689 O.9689 O.9685 O.9745 O.9686 O.9686 C.9686 C.9686 O.9681 O.9881 O.98	896.0 68	.968	.968	.968	.969	969	.971	.988
9646 C.9686 C.9686 C.9688 C.9712 C.9681 C.9674 C.9674 C.9682 C.9712 C.9681 C.9674 C.9674 C.9683 C.9712 C.9712 C.9881 C.9674 C.9674 C.9675 C.9661 C.9712 C.9981 C.9674 C.9674 C.9675 C.9667 C.9721 C.9721 C.9671 C.9671 C.9671 C.9671 C.9671 C.9671 C.9671 C.9671 C.9721 C.9721 C.9721 C.9721 C.9721 C.9721 C.9721 C.9721 C.9722 C.9721 C.9722 C.9722 C.9721 C.9721 C.9722 C.9722 C.9722 C.9721 C.9721 C.9722 C.9722 C.9722 C.9721 C.9721 C.9722 C.97	89 0.968	.963	.968	.968	.968	.969	.974	.995
9672 C.9682 0.9683 0.9665 0.9712 0.9981 0.9674 C.9674 0.9675 0.9661 0.9732 0.9981 0.9674 0.9674 0.9675 0.9661 0.9732 0.9981 0.9651 0.9651 0.9651 0.9651 0.9651 0.9651 0.9651 0.9651 0.9651 0.9651 0.9651 0.9651 0.9652 0.9667 0.9667 0.9667 0.9692 0.9651 0.9653 0.9652 0.9667 0.9667 0.9692 0.9693 0.9614 0.9652 0.9692 0.9693 0.96	66 0.968	.968	.968	.966	.968	.970	.980	.999
9674 C.9674 O.9675 O.9661 O.9732 O.9951 O.9651 C.9651 C.9651 O.9652 O.9667 O.9761 O.9990 O.9512 O.9651 C.9612 O.9652 O.9667 O.9636 O.9990 O.9990 O.9534 C.9535 O.9667 O.99918 O.9990 O.9990 O.9306 C.9306 O.9990 O.9	82 0.968	.968	.968	996.	996	.971	.986	.00
.9651 C.9651 O.9652 O.9667 O.9781 O.9990 O.9534 C.9535 O.9645 O.9645 O.96846 O.9992 O.9534 C.9535 O.9542 O.9604 O.9889 O.9992 O.9930 C.9306 C.9308 O.9907 O.9604 O.9889 O.9992 O.9939 C.9939 C.9939 C.9992 O.9939 C.9995 C.9992 O.9939 C.9995 C.9992 O.9992 C.9995 C.9995 C.9992 O.9992 C.9995 C.9995 C.9992 O.9992 C.9995 C.9995 C.9992 O.9992 O.9992 C.9995 C.9992 O.9992 O.9992 C.9992 C.	74 0.967	.967	.967	196.	996	.973	.995	.999
9514 C.9512 0.9542 0.9604 0.9689 0.9992 0.9 9314 C.9535 0.9542 0.9604 0.9689 0.9992 0.9 9306 C.9308 0.933C 0.9507 0.9918 0.9992 0.9 9310 C.8266 0.943C 0.9304 0.9950 0.9992 0.9 9435 C.8563 0.7221 0.9257 0.9920 0.9992 0.9 1995 C.2508 0.9621 0.9255 0.9920 0.9992 0.9 1995 C.1104 0.9539 0.9259 0.9920 0.9992 0.9 0123 C.1104 0.9536 0.9254 0.9920 0.9992 0.9 0123 C.1108 0.9536 0.9254 0.9952 0.9992 0.9 0123 C.1108 0.9536 0.9254 0.9952 0.9992 0.9	51 0,965	.965	.965	.965	996.	978	999	. 999
.9534 C.9535 O.9542 O.9604 O.9989 O.9992 O.9936 C.9306 C.9306 O.9937 O.9907 O.9918 O.9992 O.9939 C.9306 C.9306 O.9337 O.9507 O.9918 O.9992 O.9939 C.9548 C.9563 O.7221 O.9257 O.9920 O.9992 C.9985 C.9563 O.7221 O.9257 O.9920 O.9992 O.9927 C.2508 O.9531 O.9255 O.9920 O.9992 O.9927 C.1197 O.5539 O.9259 O.9920 O.9992 O.9927 C.1104 C.5539 O.9259 O.9920 O.9992 O.9927 C.1104 C.5538 O.9254 O.9920 O.9992 O.9927 C.1108 O.5538 O.9254 O.9952 O.9992 O.9907 O.9758 O.9952 O.9992 O.9907 O.9758 O.9952 O.9992 O.9907 O.9952 O.9907 O.9	12 0.961	. 961	.961	.961	.964	.963	999	.999
.9306 C.9308 0.933C 0.9507 0.9918 0.9992 0.9 .8239 C.8266 0.9403 0.9402 0.9920 0.9992 0.9 .8239 C.8563 0.7221 0.9257 0.9520 0.9992 0.9 .8355 C.8575 0.6221 0.9255 0.9920 0.9992 0.9 .8355 C.1197 0.9231 0.9255 0.9920 0.9992 0.9 .0123 C.1104 0.9539 0.9254 0.9520 0.9992 0.9 .0123 C.1104 0.9536 0.9254 0.9920 0.9992 0.9 .0123 C.1108 0.9536 0.9254 0.9920 0.9992 0.9 .0123 C.1108 0.9536 0.9254 0.9920 0.9992 0.9 .0123 C.1109 0.9536 0.9254 0.9952 0.9992 0.9 .0123 C.1109 0.9536 0.9254 0.9952 0.9992 0.9	34 0.953	.953	.953	.954	960	986	666.	.999
.8939 C.8945 O.9003 O.9402 O.9520 O.9992 O.9 .6485 C.8266 O.7221 O.9257 O.9520 O.9992 O.9 .4355 C.4575 O.6221 O.9255 O.9920 O.9992 O.9 .1995 C.2508 O.5621 O.9255 O.9920 O.9992 O.9 .0123 C.1104 O.5539 O.9259 O.9520 O.9992 O.9 .0123 C.11104 O.5536 O.9254 O.9920 O.9992 O.9	306 0.9306	.930	.930	.933	.950	.991	666.	•
.6219 C.6566 O.643C O.9304 O.952O O.9992 C.9 .6485 C.6563 O.7221 O.9257 O.952O O.9992 O.9 .1935 C.4575 O.6221 O.9255 O.952O O.9992 O.9 .0265 C.1197 O.5539 O.9255 O.952O O.9992 O.9 .0123 C.1104 O.5536 O.9254 O.952O O.9992 O.9 .0123 C.1106 O.5536 O.9254 O.952O O.9992 O.9 .0123 C.1106 O.5536 O.9254 O.952O O.9992 O.9 .0123 C.1107 O.5536 O.9254 O.952O O.9992 O.9 .0124 C.1108 O.577C O.9254 O.952O O.9992 O.9 .0178 C.1739 O.5538 O.9254 O.952O O.9992 O.9	36 0.893	.893	169.	.900	.940	.952	666.	666.
.6485 C.6563 O.7221 O.9257 O.9920 O.9992 O.9 .4355 C.4575 O.6221 O.9255 O.9920 O.9992 O.9 .1995 C.2508 O.9651 O.9255 O.9920 O.9992 O.9 .0285 C.1197 O.5539 O.9255 O.9920 O.9992 O.9 .0125 C.1104 O.5539 O.9259 O.9920 O.9992 O.9 .0123 C.1104 C.5535 O.9254 O.9920 O.9992 O.9 .0123 C.1108 O.5536 O.9254 O.9920 O.9992 O.9 .0123 C.1108 O.5536 O.9254 O.9920 O.9992 O.9 .0123 C.1108 O.5536 O.9254 O.9920 O.9992 O.9	47 0.824	. 824	.826	.843	.930	.992	666.	666.
.4355 C.4575 O.6221 O.9255 O.9920 O.9992 O.9 .1995 C.2508 O.5651 O.9255 O.9920 O.9992 O.9 .0265 C.1197 O.5539 O.9255 O.9920 O.9992 O.9 .0125 C.1104 O.5538 O.9259 O.9920 O.9992 O.9 .0123 C.1104 O.5536 O.9254 O.9920 O.9992 O.9 .0123 C.1108 O.5556 O.9254 O.9920 O.9992 O.9 .0123 C.1108 O.5770 O.9254 O.9920 O.9992 O.9 .0178 C.1739 O.5538 O.9254 O.9920 O.9992 O.9	76 0.647	.648	.656	.722	.925	.992	.999	666.
.1995 C.2508 O.5651 O.9255 O.9920 O.9992 O.9905 O.9255 C.1197 O.5539 O.9255 O.9920 O.9992 O.9901 O.125 C.1104 O.5539 O.9259 O.9920 O.9992 O.9901 O.123 C.1104 O.5536 O.9254 O.9920 O.9992 O.9901 O.123 C.1104 O.5556 O.9254 O.9920 O.9992 O.9901 O.123 C.1108 O.5556 O.9254 O.9920 O.9992 O.9901 O.123 C.1130 C.11202 O.9720 O.9254 O.9920 O.9992 O.9901 O.1730 O.5538 O.9254 O.9520 O.9992 O.9901	29 0.433	.435	.457	.622	.925	.992	999	666.
.0285	35 0.194	.199	.250	.565	.925	.992	.999	666.
.0125 C.1105 C.5539 C.9259 C.9920 C.9992 C.9 .0123 C.1104 C.5536 C.9254 C.9920 C.9992 C.9 .0123 C.1104 C.5536 C.9254 C.9920 C.9992 C.9 .0123 C.1106 C.5556 C.9254 C.9920 C.9992 C.9 .0123 C.1108 C.577C C.9254 C.9920 C.9992 C.9 .0178 C.1739 C.5538 C.9254 C.9920 C.9992 C.9	73 0.018	.020	.119	.553	.925	.992	666.	666.
.0123 C.1104 0.5536 0.9316 0.9920 0.9992 0.9 .0123 C.1104 C.5556 0.9254 0.9920 0.9992 0.9 .0123 C.1104 0.5770 0.9254 0.9920 0.9992 0.9 .0123 C.1108 0.5770 0.9254 0.9520 0.9992 0.9 .0130 C.11202 0.8700 0.9254 0.9520 0.9992 0.9	C3 0.001	.012	.110	.553	.925	.992	666.	666.
.0123 C.1104 C.5535 0.9254 0.9920 0.9992 0.9 .0123 C.1104 0.5770 0.9254 0.9920 0.9992 0.9 .0123 C.1108 0.5770 0.9254 0.9520 0.9992 0.9 .0130 C.1202 0.6700 0.9254 0.9920 0.9992 0.9	00 0000	.012	.110	.553	.931	.992	666.	666.
.0123 C.1104 C.5556 C.9254 C.9920 C.9992 C.9 .0123 C.1108 C.5770 C.9254 C.9520 C.9992 C.9 .0130 C.1202 C.8700 C.9254 C.9520 C.9992 C.9	00 0000	.012	.110	.553	.925	.992	666.	666.
.0123 C.1108 0.5770 0.9254 0.9520 0.9992 0.9 .0130 C.1202 0.8700 0.9254 0.9520 0.9992 0.9 .0178 C.1739 0.5538 0.9254 0.9520 0.9992 0.9	00 0.001	.012	.110	. 555	.925	.992	666.	666.
.0130	0c 0 001	.012	.110	.577	.925	256.	666	666
.0178 C.1739 0.5538 0.9254 0.9520 0.9992 0.9	00 0 001	.013	.120	.870	.925	.992	999	666.
	00 0.001	.017	.173	.553	.925	.952	. 999	666.

Sand the first said.

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A OIL FILLED PAPER CAPACITOR

12-

KP= 5.00002-05 KD1= 4.00008-01 KD2= 1.00008-06 0ELTA= 1.00002+00 TC1= 4.00008-04 TD2= 1.00008+00 THE RADIATION PULSE IS 1.00000+10 HADS/SEC FOR 2.50000-00 SEC FOLLOWED BY A CONSTANT RATE OF C.00000+00 RADS/SEC TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

		TAU	S W	STANT					•
	F	لها	2	10C MS	10 48	I NS	100 US	10 US	1 05
)	000	.000	000	0000	000	000	000	000	000
	.947	.987	.987	198.	.987	.987	967	.987	.987
82	0.9875	0.9275	0.9875	C.5875	0.9875	0.9875	0.9676		
	.987	.987	.987	.987	.987	196.	.987	989	866
	.987	.987	.987	.987	.987	.987	.967	.992	666.
	.9866	.986	.986	.986	986.	.986	.987	166.	. 40.
	.985	.985	.985	.985	.985	.985	.988	166.	666.
	.982	.982	.982	.983	.963	.983	996.	999	666.
	.978	.978	.978	825.	.979	086.	056.	666	000
	.972	.972	.972	.972	.972	916"	.952	666.	000
	.959	.959	.959	.939	.961	.971	956	666.	000
	. 952	.952	.952	.952	955	976.	956.	000	000
	645.	.949	.949	.950	.957	066.	655.	000.	000
	.546	.948	696.	.951	995.	666.	000	000	000
	.94€	.948	. 249	.953	.980	000	0000	000	000
	.94€	.949	646.	.959	.992	000.	0000	000	000
	.946	636.	.951	.968	666.	000.	000.	000	.000
	.948	.949	.953	.961	000	000.	000.	000.	.000
	. 948	.949	.958	.99.3	000.	0000	000.	000	000
	.946	.951	.968	666.	000.	000	000	000	000
S	.946	.953	.981	0000.	000.	000.	000.	000	000
S	. 548	. 454	.993	000.	000.	000	000	000.	000
S	.948	.968	656.	000.	0000.	000	000.	000	000.
S	946	.981	000.	000.	000	000.	00	00	00
				,					

200

200

OF A OIL FILLED PAPER CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 5.0000@-05 Knl= 4.0000@-01 Kn2= 1.0000@-06

DELTA= 1.0000@+00 TD1= 4.0000@-04 TD2= 1.0000@+00

THE RADIATION PULSE IS 1.00000+10 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

TAU (TIME CONSTANT)

1 08		000.	.987	.995	966	999	.999	6666	.99	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000	000
. Sn		999	918	999	968	921	916	975 6	066	992	100	266	000	000	000	000	000	000	000	000	000	000	000	000	000
10		-	•	0	•	•	0	6.0	•	0	•	0	-				-	-	-	-	-	-	-		•
100 US		000	.987	.967	.967	1967	.987	0.9861	.966	066	256.	956	996	666	000	.000	000	000	000	000.	000	000	000	000	000
T IIS		200.	.987	.987	196.	1967	986	0.9859	.963	980	.975	.971	.976	989	.999	666.	666.	666.	666.	666.	666	666.	666.	666.	000
10 45		200.	.967	1987	.987	.987	986.	0.9857	.983	979.	.972	.961	.955	.956	.967	979.	166.	.997	166.	166.	166.	166.	166.	166.	200
100 MS	. 6	000.	.987	.967	.987	.987	986.	C.9857	.963	.978	.972	.959	.952	646.	.950	.951	.954	.961	.966	.975	.979	.979	.979	.979	010
1 SEC	9	000	.967	.987	.987	.967	986.	C.9857	.982	.978	.972	.959	.951	.946	.949	.947	.946	.941	.934	.922	. 893	.862	.836	.826	450
10 SEC		000	.987	.987	.987	.987	.986	0.9857	.962	.978	.972	.959	.951	.948	.947	.947	.945	.939	.929	.911	. 050	.781	.658	.454	240
111		90	.987	.987	.987	.987	986.	0.9857	.982	.976	.972	.959	.951	.948	.947	.946	.944	.939	.929	.909	.654	.768	.622	.330	***
1			Z	2	7	>	>	Sa	3	7	3	3	*	-	*	X	2	-	-	=	*	S			
			23		~	~		20		0	0			~	5		20	_	0		0		~		

11016, 104

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A OJL FILLED PAPER CAPACITGR

THE CAPACITOR PARAMETERS USED ARE:

KP= 5.00009-05 KD1= 4.00008-01 KD2= 1.00008-06

DELTA= 1.00000+00 TD1= 4.00000-04 TD2= 1.00000+00

THE RADIATION PULSE IS 1.00000+10 RADS/SEC FOR 2.50000-00 SEC FOLLOWED BY A CONSTANT RATE OF 1.000000+04 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITGR VCLTAGE

		•	ت س	START					
	111	10 SEC	1 5	10C MS	10 PS	SH T	100 US	10 US	1 05
1116								•	
	.000	0000	.900	0000	000.	000	000	000	000
Z .	0.987	.987	796.	.987	.987	.987	.987	.987	.987
-	0.987	.987	166.	.987	.987	.987	.967	986.	.995
7	0.987	196.	.987	.9A7	196.	196.	.987	989.	966.
2	0.987	.967	.967	.987	.987	.987	.987	.992	666.
0	985.0	.986	.986	.986	.986	996.	.987	166.	666.
D	0.985	.985	.965	.985	.985	.985	986.	166.	666.
D	0.982	.982	.982	.982	.983	.983	996	666.	999
ے 00	0.978	.978	.978	.978	615.	.980	066	666.	000
20C US	S 0.5720	0.9720			.972	.975	256.	666.	000
ے 00	0.959	.959	.959	656.	095.	.971	956.	999	000
T.	0.950	.950	.950	.950	.954	.975	956	000	000
=	0.945	.945	.945	.946	.953	.988	656.	000	000
X	0.939	.939	.939	.942	095.	166.	666.	000	000
E	0.929	.929	.930	.935	996.	166.	656.	000	000
2	0.910	.910	.911	.922	.975	166.	666.	000.	000
Z	0.854	.855	.859	. A S 3	615.	166.	656.	000	.000
I	0.769	.770	.782	. 863	.979	166.	656.	000.	.000
100	0.623	.627	.659	.837	.979	166.	655.	000	000
100	0.331	.346	.455	. 276	615.	166.	666.	000.	000.
	.115	.145	.350	. R26	.979	166.	656.	000.	000
	.014	.056	. 323	.825	979.	166.	666.	000.	000
	000.	.045	. 321	. 825	615.	166.	656.	000.	000
	000.	.045	• 3	92ª.	C.5793	0.9979	8656.0	1.0000	1.0000

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A DIL FILLED PAPER CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 5.000C=-05 KD1= 4.000CP=C1 KD2= 1.000CP=C6

DELTA= 1.000C=+00 TD1= 4.000CP=C4 TD2= 1.0000CP=C6

THE RADIATION PULSE IS 1.00000+10 RACS/SEC FOR 2.500C0-C0 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+05 AADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITCR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

00000	INF	TAU 10 SEC	CTIME CON	STANT)	54 01	S = 1	100 US	10 US	1 US.
9875 G.9876 G.9876 G.9877 G.9878 G.9877 G.9877 G.9878 G.9878 G.9877 G.9877 G.9878 G.9878 G.9878 G.9877 G.9877 G.9878 G.9878 G.9878 G.9878 G.9877 G.9777 G.97		000	000	ט ט	0		0		
9875 G. 4877 G. 9874 G. 9875 G. 9877 G		1987	987	987	C 8 7	780	987	987	7
9874 0.9874 C.9874 0.9871 0.9871 0.9876 0.9876 0.9877 0.9871 0.9871 0.9877 0.9877 0.9878 0.9887 0.9878 0.9887 0.9887 0.9887 0.9887 0.9887 0.9887 0.9887 0.9887 0.9887 0.9887 0.9887 0.9887 0.9887 0.9887 0.9887 0.9878 0.98		.987	100	987	987	987	987	0	0.9953
98671 C.9871 C.9866 C.9866 C.9867 C.9877 C.9855 C.9855 C.9856 C.9856 C.9856 C.9877 C.9857 C.9855 C.9856 C.9856 C.9856 C.9877 C.9877 C.9877 C.9877 C.9877 C.9707 C.9		196.	198.	.967	198	196	987	989	966
9866 0.9866 C.9866 0.9866 0.9867 0.9878 0.9852 0.9852 0.9858 0.9858 0.9878 0.9852 0.9852 0.9858 0.9858 0.9867 0.9852 0.9852 0.9858 0.9858 0.9866 0.9952 0.9752 0.9852 0.97		.967	.987	.987	987	.987	967	.992	. 999
9855 C.9855 C.9856 O.9856 O.9858 O.9866 O.99782 O.9827 O.9834 O.9866 O.99782 O.9782 O.9834 O.9866 O.99782 O.9782 O.9782 O.9834 O.9866 O.99782 O.9782		986.	996.	.986	986.	986	196.	.994	.999
9827 0.9827 C.9782 0.9784 0.9934 0.9686 0.9 9705 C.9782 C.9782 0.9784 0.9799 C.9696 0.9 9705 C.9182 C.9786 0.9785 0.9970 0.9 9377 C.9377 C.9381 0.9487 0.9670 0.9970 0.9 9159 C.9160 C.917C 0.9265 0.9791 0.9979 0.9 7742 C.9672 C.964C 0.9265 0.9791 0.9979 0.9 7742 C.9672 C.9810 0.8267 0.9793 0.9979 0.9 1199 C.1862 C.3510 0.8267 0.9793 0.9979 0.9 0187 C.0653 C.3222 0.8266 0.9793 0.9979 0.9 0047 C.0454 C.3222 0.8266 0.9793 0.9979 0.9 0047 C.0453 C.3222 0.8266 0.9793 0.9979 0.9		.985	.965	.985	585	.985	.966	166.	.999
9782 C.9782 C.9782 O.9784 O.9799 C.9896 O.9705 O.9705 C.9706 C.9706 O.9705 C.9705 O.9913 O.9541 C.9377 C.9579 O.9705 C.96072 C.9646 O.9793 C.9679 O.9707 C.9579 O.9707 C.9579 C.9657 O.9793 C.9679 O.9707 C.9579 C.9657 O.9793 C.9979 O.9707 C.9566 C.9793 C.9793 C.9979 O.9707 C.9566 C.9793 C.9793 C.9979 O.9797 C.9677 C.9567 C.9793 C.9793 C.9979 O.9707 C.9677 C.9793 C.9793 C.9797 O.9797 C.9797 C.9797 C.9793 C.9793 C.9797 O.9797 C.9797 C.9797 C.9793 C.9793 C.9797 C.9		.982	.962	.982	.962	.983	986.	666.	. 999
0.9705 0.9705 C.6706 0.9709 0.9745 0.9913 0.9 0.9377 C.9377 C.9381 0.9418 0.9670 0.9977 0.9977 0.9159 C.9160 C.917C 0.9265 0.9670 0.9978 0.9 0.9159 C.9160 C.917C 0.9265 0.9737 0.9978 0.9 0.9278 C.9672 C.9627 0.9265 0.9793 0.9979 0.9 0.9278 C.9278 C.9277 0.9793 0.9979 0.9 0.01199 C.1462 C.9517 0.8267 0.9793 0.9979 0.9 0.0189 C.1462 C.9517 0.8267 0.9793 0.9979 0.9 0.0167 C.0454 C.9222 0.8266 0.9793 0.9979 0.9 0.0047 C.0453 C.9222 0.8266 0.9793 0.9979 0.9 0.0047 C.0453 C.9222 0.9291 0.9793 0.9979 0.9		.978	.978	.978	.978	979	989	999	000
0.9541 C.9541 C.9543 0.9556 0.9670 0.9547 0.9577 C.9377 C.9578 O.9978 O.9978 O.9978 C.96782 C.96787 C.96787 C.96787 C.96787 C.96787 C.96783 C.967	-	.970	.970	.970	970	.974	.991	999	000
0.9377 C.9377 C.9381 O.9418 O.9670 C.9970 O.9 0.9159 C.9160 C.917C O.9265 C.9737 O.9978 O.9 0.0598 C.8672 C.864 O.9793 O.9979 O.9 0.7742 O.7753 C.7863 O.864 O.9793 O.9979 O.9 0.0573 C.3481 C.8567 O.8267 O.9793 O.9979 O.9 0.1199 C.1862 C.3510 O.8264 O.9793 O.9979 O.9 0.0187 C.0854 C.3222 O.8264 O.9793 O.9979 O.9 0.0047 C.0853 C.3219 O.8266 O.9793 O.9979 O.9 0.0047 C.0853 C.3217 O.8266 O.9793 O.9979 O.9 0.0047 C.0853 C.3222 O.8266 O.9793 O.9979 O.9		.954	.954	450.	.955	.967	156.	666	000
0.9159 C.9160 C.617C O.9265 O.9737 O.9978 O.9 0.8598 C.8672 C.864 O.9791 O.9579 O.9 0.7742 O.7753 C.7864 O.9793 O.9979 O.99 0.6278 C.8312 C.8567 O.8267 O.9793 O.9979 O.99 0.3355 C.3481 C.4567 O.8267 O.9793 O.9979 O.99 0.01199 C.1462 C.3510 O.8264 O.9793 O.9979 O.99 0.0187 C.0454 C.3222 O.8263 O.9793 O.9979 O.99 0.0047 C.0453 C.3219 O.8266 O.9793 O.9979 O.99 0.0047 C.0453 C.3222 O.8266 O.9793 O.9979 O.99 0.0047 C.0453 C.3222 O.8266 O.9793 O.9979 O.99		.937	.937	.930	.941	196.	166.	666	000
0.0598 C.06672 C.0646 O.0644 O.9791 O.9979 O.9 0.7742 O.7753 C.7863 O.0644 O.9793 O.9979 O.9 0.0578 C.0312 C.0627 O.0377 O.9793 O.9979 O.9 0.3355 C.3481 C.4567 O.0267 O.9793 O.9979 O.9 0.0187 C.0454 C.3510 O.0264 O.9793 O.9979 O.9 0.0187 C.0454 C.3222 O.0265 O.9793 O.9979 O.9 0.0047 C.0453 C.3217 O.0346 O.9793 O.9979 O.9 0.0047 C.0453 C.3212 O.0346 O.9793 O.9979 O.9	_	.915	.916	.917	.926	.973	166.	666.	000
0.62742 G.7753 G.7863 O.8644 G.9793 G.9979 G.9979 O.9579 G.9579 G	_	.829	.860	.644	. 495	979	186.	999	000
0.6278 C.6312 C.6627 O.8377 O.9793 O.9979 O.9 0.3355 C.3481 C.4567 O.8267 O.9793 O.9979 O.9 0.1199 C.1462 C.3510 O.8264 O.9793 O.9979 O.9 0.0187 C.0566 C.3237 O.8263 O.9793 O.9979 O.9 0.0047 C.0454 C.3222 O.8266 O.9793 O.9979 O.9 0.0047 C.0453 C.3219 O.8266 O.9793 O.9979 O.9 0.0047 C.0453 C.3217 O.8342 O.9793 O.9979 O.9		.774	.775	.786	.664	.979	166.	666	000
0.3355 C.3461 C.4567 O.6267 O.9793 O.9979 O.9079	_	.627	.631	.662	.837	.979	186.	666.	.000
0.1199 C.1462 C.351G O.8264 O.9793 O.9979 O.9 0.0187 C.0566 C.3237 O.8263 O.9793 O.9979 O.9 0.0047 C.0454 C.3219 O.8266 O.9793 O.9979 O.9 0.0047 C.0453 C.3219 O.8266 O.9793 O.9979 O.9 0.0047 C.0453 C.3217 O.8342 O.9793 O.9979 O.9 0.0047 C.0453 C.3217 O.8342 O.9793 O.9979 O.9	_	.335	.348	.456	.826	979.	166.	666	000
0.0107 C.0566 C.3237 O.6263 O.9793 O.9979 O.9 0.0048 C.0454 C.3222 O.6262 O.9793 O.9979 O.9 0.0047 C.0453 C.3219 O.6266 O.9793 O.9979 O.9 0.0047 C.0453 C.3217 O.6342 O.9793 O.9979 O.9 0.0047 C.0453 C.3217 O.6342 O.9793 O.9979 O.9		.119	.146	.351	. 826	.979	.997	999	000
0.0048 C.0454 C.3222 O.8262 O.9793 O.9979 O.9 0.0047 C.0453 C.3219 O.8342 O.9793 O.9979 O.9 0.0047 C.0453 C.3217 O.8342 O.9793 O.9979 O.9 0.0047 C.0453 C.3222 O.9991 O.9793 O.9979 O.9	_	.010	.056	. 323	.826	979.	166.	666	000
0.0047 C.0453 C.3219 O.8266 O.9793 O.9979 O.9 0.0047 C.0453 C.3217 O.8342 O.9793 O.9979 O.9 0.0047 C.0453 C.3222 O.9991 O.9793 O.9979 O.9	0	.00.	.045	. 322	. 126	979	997	999	000
0.0047 C.0453 C.3217 O.8342 O.9793 O.9979 O.9 0.0047 C.0453 C.3222 O.9991 O.9793 O.9979 O.9 0.0047 O.0456 C.3296 C.8258 O.9793 O.9979 O.9	_	.004	.045	. 321	. 826	979	188	666	000
0.0047 C.0453 C.3222 0.9991 0.9793 0.9579 0.9	•	.004	.045	.321	. 6'34	.979	166.	.999	000
0.0047 6.0456 C.3296 C.8258 6.9793 6.9979 6.9		. OC4	.045	.322	666.	.979	156.	666	000
		.004	.045	.329	. 825	.979	166.	666	000

THE STATE OF

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A OIL FILLEN PAPER CAPACITOR

KD2= 1.00000-06 TD2= 1.00000+c0 THE CAPACITOR PARAMETERS USED ARE: TO1= 4.00000-04 Kol= 4.00000-C1 KP= 5.0000=05 DELTA= 1.0000=+00

THE RADIATION PULSE IS 1.00009+10 HADS/SEC FOR 2.50000-00 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+06 HADS/SEC

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT. TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

			S W	STANT					
1	181	10 SEC		10c	10 PS	1 48	100 US	10 US	1 ns
0	200	000	000	000	000	000	000		
	5 0.987	.967	987	C # 7	987	740	087		000
-	786.0 S	987	987	987	CAN	780	700		900
) 	8	186		.987	987	987	967	0	000
	\$ 0.986	.986	.986	996.	986	986	987	991	060
0	996.0 \$.986	. VR6	.986	986	.986	.967	966	666
U	\$ 0.984	.984	- 0 B 4	996.	984	196	987	997	000
0	0 0 0 8	.980	046.	046.	980	980	996	997	666
20	\$ 0.972	.972	.972	.972	.972	.974	965	997	666
O	\$ 0.955	.955	.956	.956	926	.961	964	997	000
ပ္ပ	\$ 0.50 S	. 9C4	.964	.904	.907	.926	961	997	666
-	S 0.018	.818	.818	919.	. 827	. 983	980	997	666
	\$ 0.664	.664	.664	194.	693	.044	979	166	666
	\$ 0.354	.354	.355	.367	469	.826	979	166	000
ပ	\$ 0.123	.124	.126	.152	.353	.026	979	1997	666
v	\$ 0.015	.015	.019	.057	.324	.826	.964	166	666
ပ	S 0.00C	000.	.004	.045	. 322	.826	979.	.997	666.
20	S 0.coc	.000	.054	.045	. 322	.827	979	.997	666.
	S 0.000	000	.004	.045	. 322	.834	979	.997	999
00	S 0.00C	.000	.964	. 045	. 322	666.	516.	166	666
	0.000	.000	.004	500.	.330	. 825	979.	1997	666
	0.000	.000	.005	.049	.394	. 825	979	.997	666
	0.000	.000	.008	. C. B. 4	. P 34	.825	979.	166	666
	0.000	•	.015	C.1667	C. 3215	0.8258	0.9793	0.9979	C.999R

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A QIL FILLED PAPER CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 5.00002-05 Krl= 4.00008-01 KD2= 1.00008-06

DELTA= 1.00009+00 TD1= 4.00008-04 TD2= 1.00008+00

THE RADIATION PULSE IS 1.COCOM+10 RADS/SEC FOR 2.50CCP-CO SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+07 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE MATINS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

101, 107

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A DIL-FILLED PAPER CAPACITOR

THE R

KD2= 1.00000-06 TD2= 1.00000+00 THE CAPACITOR PARAMETERS USED ARE #01= 4.00000-01 KPs 5.00000-05 BELTAs 1.00000+00

THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 0.00000+00 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE Time indicated to the initial capacitor veltage

			S W	STANT					
1105	111	10 SEC		100 HS	10 PS	SH T	100 US	10 05	1 68
U	000	000	000	000	000	000	000	000	000
2	.882	. 882	. 882	. 882	382	. 882	.882	982	883
50 1	0.8816	0.0016	10	991	100	961	.082	. 892	955
7	. 880	.880	.880	.880	. 680	.661	.063	.902	.983
3	.070	.878	.870	.878	.878	.079	. 884	.925	966
3	. 873	.873	.873	.873	.874	.875	.885	951	999
3	. 965	.865	.865	.865	.865	.867	. 988	976	666
3	.842	. 842	.042	.642	.842	949	968	990	999
200	. 807	.807	. 807	.807	609	. 822	907	.992	999
-	.754	.754	.754	.754	757	.786	.927	993	000
200	.663	.663	.663	.664	67.	.750	696	957	000
=	.611	.611	.611	.614	630	.806	989	666	000
=	.593	.593	.593	.599	.655	.915	999	000	000
=	.591	.591	.593	.610	.743	.995	000	000	000
I O	.591	.591	.595	.629	. 644	000	000	000	000
Z	.591	.592	.599	.664	.942	000	000	000	000
30	.591	. 593	.611	.751	.997	.000	000	000	000
Z O O	.591	. 595	.630	.849	000.	.000	0000	000	000
Z U	.591	. 599	.665	.944	000	000.	000	000	000
100	.591	.610	.751	.997	000	000	000	000	000
	. 590	.659	.849	666.	000	000.	000.	000	000
	.590	.664	.944	.000	000	000.	000	000	.00C
	. 590	.751	156.	.000	000	000.	000	000	.000
	.590	.849	0	1.0000	•	1.0000	1.0000	1.0000	1.0000

0 .. 01

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A QIL-FILLED PAPER CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 5.00000=05 KD1= 4.00000=01 KD2= 1.00000=06

DELTA= 1.00000+00 TD1= 4.00000=04 TD2= 1.00000+00

THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+03 RADS/SEC TD2= 1.00000+00

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VELTAGE

10", 104

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A OIL-FILLED PAPER CAPACITOR

KP* 5.00000-05 KD1* 4.00000-01 KD2* 1.00000-06 DELTA* 1.00000+00 TD1* 4.00000-04 TD2* 1.00000+00 THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.50000-08 SEC FOLLUWED BY A CONSTANT RATE OF 1.00000+04 RADS/SEC

131669-0

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE Time indicated to the initial capacitor veltage

. sn o	0000 1.000	6826 0.883	8927 0.955	9021 0.983	9253 0.998	9512 0.999	9763 0.999		000°D +000	9921 0.999	9921 0.999 9921 0.999 9936 1.000	9921 0.999 9921 0.999 9938 1.000	9921 0.999 9938 1.000 9971 1.000	9921 0.999 9938 1.000 9971 1.000 9995 1.000							
_	0 1.000	5 0.882	8 0.892	1 0,902	0 0.925	4 0.951	3 0.976	2 0.990		8 0.992	9 0 993	992									
901 S	0 1.00	5 0.86	7 0.86	0 0.86	7 0.88	96.0	90.0	60.0 9		2 0.90	0.00	000									
	1.00	0.88	0.88	0.88	0.87	0.87	0.86	0.0		0.82	00.0	000									
01	.000	. 682	. 691	.880	. 678	. 674	.865	. 642		609	. 409	. 757	604 604 604	00 V V V V V V V V V V V V V V V V V V	00000 00000 00000						
NSTANT) 100 MS	.000	.882	. 881	. 880	.878	.873	.865	. 442		.807	706.										
CTIME CO	.000	. 882	. 661	.880	.078	.873	.865	.842		.807	793		. 663 663 610	650 660 600 600 600	6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4						00000000000000000000000000000000000000
TAU 10 SEC	.000	.882	. 861	. 880	.878	. 673	.865	CAR		. 807	783	753	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	00 - 00 00 00 00 00 00 00 00 00 00 00 00							
INF	• 000	.682	. 661	.880	.878	. 673	. 965	CAA	4100	.807	. 753	. 663	00 A A A A A A A A A A A A A A A A A A	00 / 00 / 00 / 00 / 00 / 00 / 00 / 00							
<u>u</u>		S .	S	S	5	S	S	SI))))	999	2221	2222		22222	*****	REFERENCE		NI E E E E E E E E C C C	

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A DIL-FILLED PAPER CAPACITOR

1)

KP= 5.00000=05 KD1= 4.00000=01 KD2= 1.00000=06
DELTA= 1.00000+00 TD1= 4.00000=04 TD2= 1.00000+00

THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+05 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHANGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

TAU (TIME CONSTANT)

1 08	•	000	. 863	.955	. 983	0.9982	666	.000	•	•	000	000	000	000	000	000	.000	000	000	000	000	000	000	000	.000
10 US		000	. 982	.892	.902	0.9253	.951	.976	066.	.992	.993	966.	666	666	.999	**	666.	. 999		. 999	666	999	666	999	• • • • • • • • • • • • • • • • • • • •
100 US		000	.862	.882	. ee 3	0.8840	.045	.888	969.	.907	.926	.962	.987	.997	.997	1997	.997	. 997	7	. 997	.997	1997	.997	.997	.997
2 I		000	. 002	. 661	. 881	0.8787	. 875	.867	. 848	.821	.785	.755	.799	.901	.975	.979	.979	.979	.979	.979	.979	.979	.979	.979	.979
1C MS)	000	. 882	.661	680	0.6782	. 873	. 865	. 942	.000	.756	.670	629	.635	695	.753	.604	. 825	. 825	. 625	. 925	. 825	.825	.625	. 625
100 HS		.000	. 992	. 691	.860	0.6781	.873	.865	.041	.807	.753	.660	.605	.579	.555	.521	.460	.380	.334	. 322	. 322	. 321	. 321	. 322	.329
1 560		0000	.002	. 861	.880	0.8781	.873	.865	100.	. 807	.752	.639	.602	.573	.537	.486	.399	.228	.104	.052	.045	.045	.045	.045	.045
10 SEC		.000	. 882	. 001	. 880	0.8781	.873	.065	.841	.807	.752	.659	.602	.572	.536	.483	.392	.210	.076	.013	.004	.004	*00	.004	•00•
INE		000.	.002	. 661	.880	0.6781	.073	. 965	. 841	. 807	.752	.659	.602	.572	.536	.482	.391	.208	.072	.000	.000	000.	.00c	000	• 000
	341.		Z	-	3	S US) U	J	9	D	7	3	=	I N	=	I U	X	X O	Y	I U	I U				

10, 10,

10", 106

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A DIL-FILLED PAPER CAPACITOR

KP= 5.00000-05 KD1= 4.00000-01 KD2= 1.00000-06 DELTA= 1.00000+00 TD1= 4.00000-04 TD2= 1.00000+00 THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+06 RADS/SEC

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

		140	CTIME CON						
	TRI	W	1 SE	100	10 75	S1 T	100 US	10 US	SO I
TIPE									
	.000	.000	000	.000	000	000	000	000	000
Z	0.662	. 662	.882	.882	.882	.882	. 882	982	. 663
=	0.681	.881	. 881	.881	. 881	.881	. 862	. 892	.955
2 05	0.8807	0.8807	. 88	.88	. 680	.880	.863	.902	.983
5	0.877	.877	.877	.877	.878	.878	. 883	.925	966
3	0.873	.873	.873	.673	.873	.874	. 885	.950	666.
3	0.864	.864	.864	.864	.964	.867	.887	.975	666.
20 05	0.639	. 839	.839	.939	.840	.846	.894	989	666
3 00	0.802	. 802	.802	.802	.003	.817	.903	.991	999
00	0.741	.741	.741	.741	.745	.774	916	.992	999
9	0.625	.625	.625	.626	.637	.725	950	995	999
I	0.525	. 525	.525	.528	.554	.736	.970	.997	666.
I	0.415	.415	.416	.422	.481	.790	978	.997	666
T T	0.220	. 220	.222	.239	.385	.025	.979	166.	999
I U	0.077	.077	080	.110	.335	.825	979	166.	999
=	600.0	.009	.013	.052	. 323	.825	979.	.997	666.
I O	00000	000.	400	.045	. 322	.825	.979	.997	666.
200	0.000	000.	.004	.045	. 322	. 825	979	1997	999
2	00000	000.	.004	.045	. 322	.825	.979	166.	666.
I 00	00000	000.	*00·	.045	.322	.825	979.	166.	666.
	.000	000.	*00°	.045	.330	.825	916.	166.	666.
	.000	000.	.005	.049	.394	.825	516.	166.	999
	000.	000.	900	.084	.634	.825	926.	.997	666.
	000	.001	016	0.1667	0.3215	0.8258	0.9793	0.9979	0.9998

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A DIL-FILLED PAPER CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 5.00008-05 KD1= 4.00008-01 KD2= 1.00008-06

DELTA= 1.00008+00 TD1= 4.00008-04 TD2= 1.00008+00

THE RADIATION PULSE IS 1.00000+11 RADS/SEC FOR 2.50000-00 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+07 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHANGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

201 ...

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A OIL-FILLED PAPER CAPACITOR

KD2= 1.00000-C6 KP= 5.00000-05 KD1= 4.00000-01 KD2= 1.00000-06 THE CAPACITOR PARAMETERS USED ARE:

THE RADIATION PULSE IS 1.00000+12 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 0.00000+00 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAF'CITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

		~	S E	STANT					
TIME	181	10 SEC	1 SEC	100	10 48	S I	100 US	10 US	1 08
0	.000	.000	.000	.000	000	000	000	000	000
2	.286	.286	.286	.286	.286	.286	.266	287	293
-	.283	.203	.263	.203	.283	.204	.291	358	.761
3	.280	. 280	.280	.260	.261	.282	.295	411	900
3	.272	.272	.272	.272	.273	.276	.309	.564	.987
3	.259	. 259	.259	.259	.260	.267	.332	.731	990
3	. 235	. 235	.235	.235	.237	.250	.37C	.862	066.
200	.179	.179	.179	.179	.182	.212	.447	.916	.991
00	.110	.118	.118	.119	.124	.175	.514	.926	.992
000	.059	.059	.059	.060	.069	.151	.586	.941	999
3	.016	.016	.016	.019	.036	.194	.742	.971	000
X	.007	.007	.007	.011	.051	.353	.9C4	.992	000
I	.005	.005	.006	.017	.122	.686	156.	000	000
1 0	.003	.005	.009	.046	.346	.982	0000	000	.000
10 11	0.0052	0.0062	0.0144	C.0929	0.6039	6666.0	0	000	00
Z O	.005	.007	.024	.179	.854	000	000	000	000
30 E	.005	.010	.053	.392	.992	000.	000	000	000
T 00	.005	.015	660.	.631	666.	000.	0000.	000	.000
I O	.005	.024	. 104	.863	666.	000	.000	000	000.
I O O	.005	.053	.395	.991	666.	000	0000	000	000
	.005	.099	.630	866.	000.	000	0000	000	000
	.005	.184	. 961	666.	000.	000	000	000	000.
5	.005	.395	.992	.000	.000	.000	.000	000	000.
	.005	•633	666.	0000	000.	.000	000	1.0000	1.0000

1.01

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A OIL-FILLED PAPER CAPACITOR

ARE:	1.00000-06	T02= 1.00000+00
USED	K02=	T02=
PARAMETERS USED ARE:	KD1= 4.0000#-01	4.00000-04
ICITOR	K01=	T01=
THE CAPACITOR	KP# 5.0000#-05	1.00000+00
	X O	OELTA=

THE RADIATION PULSE IS 1.00000+12 RADS/SEC FOR 2.500C0-08'SEC FOLLOWED BY A CONSTANT RATE CF 1.00000+03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

TAU CTIME CONSTANTS

US 1 US		00 1.000	72 0.293	61 0.761	16 0.900	40 0.987	10 0.990	320 0.9906	64 0.991	62 0.992	15 0,999	15 1.000	20 1.000	000 1 000	000 1 000	000 1 000	000 1 000	000 1 000	000 1 000	000 1 000	000 1 000	000 1 000	000 1 000	000 1.000	
0 08 0		000 1.0	665 0.2	915 0.3	952 0.4	691 0.5	326 0.7	3703 0.86	471 0.9	149 0.9	6.0 698	423 0.9	0.0 640	911 1.0	000	000 1.0	000	000	000 1.0	000 1.0	000	000	000	000 1.0	000
1 45		0000	.2865 0	2845 0	2023 0	.2764 0	.2673 0	0.2505 0.	.2122 0	.1751 0	.1512 0	.1946 0	.3533 0	.6861 0	.9824	. 9996	1 9666	1 8666	1 9666.	1 9666.	1 9656	1 9666	1 9666	1 8666.	
SA OT		000	286	.283	.281	.273	.260	0.2372	.182	.124	690.	.036	.051	.122	.346	.603	. 653	066.	1997	.997	.997	1997	166.	166.	-
100 MS		.000	.286	.203	.280	.272	.259	0.2359	.179	.110	.060	.010	.011	.017	900.	.092	.179	.390	.625	. 151	.972	.978	.979	.979	0.0
1 SEC		.000	.286	.283	.280	.272	.259	0.2358	.179	.118	.059	.016	.007	.006	.009	.014	.024	.052	.098	.181	.376	.578	.750	.623	4
10 560		.000	.286	.203	.280	.272	.259	0.2358	.179	.118	.059	.016	.007	.005	.005	.006	.007	.010	.014	.024	.050	.069	.150	.254	707
INF		1.000	0.286	0.283	0.280	0.272	0.259	0.2358	0.179	0.118	0.059	0.016	0.007	0.005	0.003	0.005	0.03	0.068	0.005	0.005	00.00	.004	.003	.001	000
	1116	v	Z	-	3	3	3	20 05	200	200) U	7 20	=	2	=	I	I	I	=	IOO	100	-			

101 103

1012 104

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A DIL-FILLED PAPER CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 5.00000-05 KD1= 4.00000-01 KD2= 1.00000-06

DELTA= 1.00000+00 TD1= 4.00000-04 TD2= 1.00000+00

THE RADIATION PULSE IS 1.00000+12 HADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+04 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VELTAGE

		4	U U	ANT					
	141	10 SEC	1 SEC	100	10 PS.	1 MS	100 US	10 US	1 08
TIME									
	.000	.000	.000	.000	000	000	000	000	000
Z	0.286	.286	.286	.286	286	.286	286	287	293
→	0.203	.203	.203	.283	. 283	.284	291	350	761
2	0.280	.280	.280	.280	.281	.282	295	411	900
3	0.272	.272	.272	.272	.273	.276	309	.564	.987
3	0.259	.259	.259	.259	.260	.267	.332	731	066
	0.235	235	.235	35	.237	.250	.370	.962	066
0	0.179	.179	.179	.179	.102	.212	447	916	.991
200	0.118	.118	.110	.118	.124	.175	.514	926	.992
7 00	0.059	.059	.059	.060	069	151	586	941	666
>	0.016	.016	.016	.018	.036	194	.742	971	000
-	0.007	.007	.007	.011	.051	.353	106.	992	000
	0.005	.005	900.	.017	.121	.665	990	000	000
I	0.005	.005	.009	.046	.345	.980	999	000	000
I O	0.005	.006	.014	.092	.599	.997	666.	000	000
	0.005	.006	.023	.175	.842	.997	666.	000	000
E	00.00	.009	.050	.373	.972	.997	666.	000	000
E 00	00.00	.013	.089	.579	.979	166.	666.	000	000
Z O	0.003	.019	.151	.752	.979	166.	666.	000	000
E CO	0.001	.031	.254	.823	.979	.997	666.	000	000
	000.	.040	.306	. 825	.979	166.	666.	000	000
	000.	.044	.320	. 625	979.	166.	666.	000	000
	000.	.045	.321	. 825	979	166.	656	000	000
20 5	000000	•	0,3215	C.8258	0.9793	0.9979	8656.0	1,0000	1.0000

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A DIL-FILLED PAPER CAPACITOR

THE CAPACITOR PARAMETERS USED ARE: KPs 5.0000#-05 KD1s 4.0000#-C1 DELTA: 1.0000#+00 TD1s 4.0000#-04

THE RADIATION PULSE IS 1.00000+12 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+05 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHANGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

	Sn 1 .	000	293	.761	900	. 987		066.	.991	.992		000	000	000	000	.000	000	000	000	000	000	000	000	1.0000	.000
	10 US	000	.287	358	411	.563	.730	.961	.916	.926	.941	.971	.991	666.	. 999	666.	666.	999		999	999	666	666.		2
	100 US	000	.286	291	.295	.369	.332	.370	9**	.514	. 5e6	.741	.903	989	156.	.997	.997	.997	.997	198	.997	1997	1997		97
	2 I	000	.286	284	.282	.276	.267	.250	.212	.175	.151	.194	.351	.678	.963	.979	.979	.979	.979	.979	.979	.979	.979	0.9793	.97
	10 48	000	286	.283	.201	.273	.260	.237	.182	.124	.069	.036	.051	.120	. 332	.554	.746	.824	. 825	. 825	.625	. 625	. 825	0.8258	.625
STANT	100 MS	.000	.286	.283	.280	.272	.259	.235	.179	.110	.060	.010	.011	.017	.044	.084	.147	.253	.307	.321	.321	.321	.321	C.3215	. 321
EC	1 SEC	.000	.286	.283	.280	.272	.259	.235	.179	.118	.059	.015	.007	.006	.009	.012	.019	.031	000	.044	.045	.045	.045	0.0452	.045
•	10 SEC	000	.286	.203	.280	.272.	.259	.235	.179	.118	.059	.016	.007	.005	.005	.005	.005	.00.	,00	.004	.004	.004	*00	0.0047	•00•
	F 21	000.	.286	.283	.280	.272	.259	.235	.179	.110	.059	.016	.007	.005	.004	.004	.003	.001	000	.000	.000	.000	000.	000000	000
	116	U	Z	-	7	3		3	9	000	3	200	3	*	T T	Z U	Z	Z O	E CO	E O	X 00			8 8	

101 41

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A DIL-FILLED PAPER CAPACITOR

THE CAPACITOR PARAMETERS USED ARE:

KP= 5.00000-05 KD1= 4.000000-01 KD2= 1.000000-06

DELTA= 1.00000+00 TD1= 4.000000-04 TD2= 1.00000+00

THE RADIATION PULSE IS 1.00000+12 RADS/SEC FOR 2.50000+08' SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+06 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPALITOR VCLTAGE

TAU CTIME CONSTANTS

000 000 000 000 000 000 000 000		INE	10 SEC	1 SEC	100 MS	10 48	1 HS	100 US	10 US	1 08
0.276										
865 0.2565 0.2665 C.2665 0.2665 0.2665 0.2665 0.2672 0.298837 0.22837 0.2845 0.2845 0.2872 0.2893 0.2837 0.2845 0.2845 0.2873 0.		00	000.	.000	.000	.000	.000	000.	000	000
837 0.2837 0.2837 0.2838 0.2845 0.2845 0.2914 0.3576 0.2859 0.280		90	.256	.286	.286	.286	.286	.286	.287	.293
0.2809 0.2809 0.2809 0.2809 0.2809 0.2809 0.2809 0.2809 0.2801<		69	.263	.283	.203	.283	.284	.291	.357	.759
726 0.2726 0.2726 0.2726 0.2730 0.2671 0.3320 0.7290 0.9990 355 0.2595 0.2595 0.2602 0.2671 0.3320 0.7290 0.9990 355 0.2355 0.2355 0.2602 0.2671 0.3320 0.7290 0.9990 786 0.1786 0.1786 0.1789 0.1619 0.1740 0.5124 0.99530 175 0.1175 0.1175 0.1181 0.1234 0.1740 0.5124 0.99530 186 0.0158 0.01786 0.0189 0.0189 0.99530 186 0.0063 0.00647 0.0189 0.01897 0.9990 187 0.0063 0.00647 0.0189 0.0187 0.6186 0.9791 0.9990 188 0.0005 0.00647 0.02359 0.8258 0.9793 0.9979 0.9990 189 0.0005 0.00647 0.0452 0.3215 0.8258 0.9793 0.9979 0.9990 189 0.0005 0.00647 0.0452 0.3215 0.8258 0.9793 0.9979 0.9990 189 0.0005 0.00647 0.0452 0.3215 0.8258 0.9793 0.9979 0.9990 189 0.0005 0.00647 0.0452 0.3215 0.8258 0.9793 0.9979 0.9990 189 0.0005 0.00647 0.0452 0.3215 0.8258 0.9793 0.9979 0.99990 189 0.0005 0.00647 0.0452 0.3215 0.8258 0.9793 0.9979 0.9990 189 0.0005 0.00647 0.0452 0.3215 0.8258 0.9793 0.9979 0.9990 189 0.0005 0.00647 0.0452 0.3215 0.8258 0.9793 0.9979 0.9990		0	.280	.280	.280	.261	.282	.295	.411	.900
595 0.2595 0.2602 0.2671 0.3320 0.7290 0.9900 385 0.2355 0.2376 0.2372 0.3653 0.9604 0.9900 175 0.1175 0.1176 0.1181 0.1234 0.1149 0.9534 0.9900 186 0.0184 0.0565 0.0575 0.0576 0.9900 0.9900 183 0.0056 0.0176 0.0681 0.1149 0.5124 0.9255 0.9900 184 0.0054 0.0176 0.0681 0.1149 0.7124 0.9255 0.9900 185 0.0063 0.0167 0.0168 0.0188 0.9267 0.9900 184 0.0022 0.0167 0.0188 0.9186 0.9791 0.9979 0.9990 185 0.0011 0.0147 0.0188 0.3218 0.9791 0.9979 0.9990 186 0.0011 0.0147 0.0292 0.3218 0.9258 0.9791 0.9979 0.9990 186		75	.272.	.272	.272	.273	.276	.308	.563	.987
355 0.2355 C.2355 C.2356 0.2370 0.2502 0.3693 0.6604 0.9990 0.1786 0.1786 C.1789 0.1619 0.2114 0.4452 0.9158 0.9990 0.1785 0.1786 C.1181 0.1234 0.1740 0.5124 0.9255 0.9990 0.9990 0.0584 0.0584 0.0585 C.01786 C.01786 0.0355 0.1895 0.9990 0.9990 0.9990 0.0999 0.0999 0.0999 0.0063 C.0186 C.01786 0.0355 0.3385 0.3385 0.9979 0.9990 0.9990 0.9990 0.0063 C.0188 C.0188 0.9979 0.9990 0.9090 0.9090 0.9990 0.		20	.259	.259	.259	.260	.267	.332	.729	.990
786 0.1786 0.1789 0.1819 0.2114 0.4852 0.9255 0.992 175 0.1175 0.1181 0.1234 0.1740 0.5124 0.9255 0.992 186 0.0584 0.0581 0.1495 0.5834 0.9405 0.996 186 0.0156 0.0176 0.0355 0.1861 0.7342 0.9405 0.996 186 0.0156 0.0167 0.0168 0.0187 0.9879 0.9979 0.999 0.001 0.0022 0.0047 0.0293 0.2356 0.9793 0.9979 0.999 0.001 0.0047 0.0235 0.9256 0.9793 0.9979 0.999 0.001 0.005 0.0047 0.0452 0.3215 0.9256 0.9793 0.9979 0.999 0.005 0.0047 0.0452 0.3215 0.9793 0.9979 0.999 0.005 0.0047 0.0452 0.3215 0.9793 0.9979 0.999 0.005		35	.235	.235	.235	.237	.250	.369	.860	990
175 0.1175 0.1181 0.1234 0.1740 0.5124 0.9455 0.9963 584 0.0564 0.0565 0.0176 0.0359 0.0681 0.1495 0.7342 0.9405 0.9963 156 0.0156 0.0156 0.0176 0.0156 0.0167 0.0169 0.9969 0.9969 0.0053 0.0067 0.0166 0.0167 0.0167 0.0167 0.9969 0.9969 0.0022 0.0067 0.0293 0.2359 0.9260 0.9793 0.9979 0.999 0.01 0.0022 0.0047 0.0249 0.3215 0.9250 0.9793 0.9979 0.999 0.01 0.005 0.0047 0.0452 0.3215 0.9250 0.9793 0.9979 0.999 0.00 0.005 0.0047 0.0452 0.3215 0.9250 0.9793 0.9979 0.999 0.00 0.005 0.0047 0.0452 0.3215 0.9250 0.9793 0.9979 0.999 0.00 0.005 0.0047 0.0452 0.3215 0.9793 0.		2	.178	.178	.178	.161	.211	.445	.915	.991
156		11	.117	.117	.110	. :23	.174	.512	.925	.992
156 0.0156 0.0158 C.0176 0.0355 0.1901 0.7342 0.9700 0.999 063 0.0063 C.0067 C.0106 0.0485 0.3365 0.8697 0.9901 0.999 038 0.0032 0.0067 C.0146 0.1057 0.6186 0.9711 0.9979 0.999 000 0.0022 0.0067 C.0293 0.2355 0.8256 0.9793 0.9979 0.999 001 0.0005 0.00647 C.0452 0.3215 0.8256 0.9793 0.9979 0.999 000 0.0005 0.00647 C.0452 0.3215 0.8256 0.9793 0.9979 0.999 000 0.0005 0.00647 C.0452 0.3215 0.8256 0.9793 0.9979 0.999 000 0.0005 0.00647 C.0452 0.3215 0.8256 0.9793 0.9979 0.999 000 0.0005 C.0067 C.0452 0.3215 0.8256 0.9793 0.9979 0.999 000 0.0005 C.0067 C.0452 0.3215 0.8256 0.9793 0.9979 0.999 000 0.0005 C.0065 C.0452 0.3215 0.8256 0.9793 0.9979 0.999		29	.058	.056	.059	.068	.149	.583	940	966
0.0063 0.0067 0.0106 0.0485 0.3365 0.9997 0.9999 0.0039 0.0047 0.0146 0.1057 0.6186 0.9793 0.9979 0.9999 0.0022 0.0047 0.0293 0.2355 0.6256 0.9793 0.9979 0.999 0.07 0.0011 0.0047 0.0452 0.3215 0.9256 0.9793 0.9979 0.999 0.0 0.0005 0.0047 0.0452 0.3215 0.9256 0.9793 0.9979 0.999 0.0 0.0005 0.0047 0.0452 0.3215 0.9256 0.9793 0.9979 0.999 0.0 0.0005 0.0047 0.0452 0.3215 0.9256 0.9793 0.9979 0.9997 0.0 0.0005 0.0047 0.0452 0.3215 0.9259 0.9793 0.9979 0.9997 0.0 0.0005 0.0047 0.0452 0.3215 0.9259 0.9793 0.9979 0.9997 0.0 0.0005 0.0048 0.0452 0.3215 0.9259 0.9793 0.9979 <t< td=""><th></th><td>13</td><td>.015</td><td>.015</td><td>.017</td><td>.035</td><td>.190</td><td>.734</td><td>.970</td><td>999</td></t<>		13	.015	.015	.017	.035	.190	.734	.970	999
038 0.0039 0.0049 C.0146 0.1057 0.6186 0.9711 0.9979 0.999 020 0.0022 0.0047 C.0293 0.2355 0.8256 0.9793 0.9979 0.999 007 0.0011 0.0047 C.0449 0.3215 0.8256 0.9793 0.9979 0.999 000 0.0005 0.0047 C.0452 0.3215 0.8256 0.9793 0.9979 0.999 000 0.0005 0.0047 C.0452 0.3215 0.8256 0.9793 0.9979 0.999 000 0.0005 C.0047 C.0452 0.3215 0.8256 0.9793 0.9979 0.999 000 0.0005 C.0048 C.0452 0.3215 0.8256 0.9793 0.9979 0.999 000 0.0005 C.0048 C.0452 0.3215 0.8256 0.9793 0.9979 0.999		90	900.	.006	.010	940.	.336	688	990	999
020 0.0022 0.0047 C.0293 0.2355 0.8250 0.9793 0.9979 0.9999 0.007 0.0011 0.0047 C.0449 0.3215 0.8258 0.9793 0.9979 0.9999 0.001 0.0005 0.0047 C.0449 0.3215 0.8258 0.9793 0.9979 0.999 0.000 0.0005 0.0047 C.0452 0.3215 0.8258 0.9793 0.9979 0.999 0.000 0.0005 0.0047 C.0452 0.3215 0.8258 0.9793 0.9979 0.999 0.000 0.0005 0.0047 C.0452 0.3215 0.8258 0.9793 0.9979 0.999 0.000 0.0005 C.0047 C.0452 0.3215 0.8258 0.9793 0.9979 0.999 0.000 0.0005 C.0048 C.0452 0.3215 0.8258 0.9793 0.9979 0.999 0.000 0.0005 C.0051 C.0452 0.3215 0.8258 0.9793 0.9979 0.999 0.000 0.0005 C.0051 C.0452 0.3215 0.8258 0.9793 0.9979 0.999 0.000 0.0005 C.0055 C.0452 0.3215 0.8258 0.9793 0.9979 0.999 0.000		03	.003	.00€	.014	.105	.619	.971	1997	999
007 0.0011 0.0047 C.0449 0.3215 0.8258 0.9793 0.9979 0.999 001 0.0006 0.0047 C.0449 0.3215 0.8258 0.9793 0.9979 0.999 000 0.0005 0.0047 C.0452 0.3215 0.8258 0.9793 0.9979 0.999 000 0.0005 0.0047 C.0452 0.3215 0.8258 0.9793 0.9979 0.999 000 0.0005 0.0047 C.0452 0.3215 0.8258 0.9793 0.9979 0.999 000 0.0005 C.0048 C.0452 0.3215 0.8258 0.9793 0.9979 0.999 000 0.0005 C.0045 C.0452 0.3215 0.8258 0.9793 0.9979 0.999		02	.002	.00€	.029	.235	.820	979	1997	999
001 0.0006 0.0047 C.C449 0.3215 0.8258 0.9793 0.9979 0.999 000 0.0005 0.0047 C.C452 0.3215 0.8258 0.9793 0.9979 0.999 000 0.0005 0.0047 C.C452 0.3215 0.8258 0.9793 0.9979 0.999 000 0.0005 0.0047 C.C452 0.3215 0.8258 0.9793 0.9979 0.999 000 0.0005 C.O048 C.C452 0.3215 0.8258 0.9793 0.9979 0.999 000 0.0005 C.O045 C.C452 0.3215 0.8258 0.9793 0.9979 0.999 000 0.0009 0.0085 C.C452 0.3215 0.8258 0.9793 0.9979 0.999		00	.001	.004	.040	.304	. 625	.979	.997	.999
000 0.0005 0.0047 0.0452 0.3215 0.8258 0.9793 0.9979 0.999 000 0.0005 0.0047 0.0452 0.3215 0.8258 0.9793 0.9979 0.999 000 0.0005 0.0047 0.0452 0.3215 0.8258 0.9793 0.9979 0.999 001 0.0005 0.0048 0.0452 0.3215 0.8258 0.9793 0.9979 0.999 000 0.0005 0.0048 0.0452 0.3215 0.8258 0.9793 0.9979 0.999 000 0.0005 0.0051 0.0452 0.3215 0.8258 0.9793 0.9979 0.999 000 0.0009 0.0065 0.0452 0.3215 0.8258 0.9793 0.9979 0.999		00	000	.00.	.044	.321	. 825	.979	.997	999
000 0.0005 0.0047 0.0452 0.3215 0.0256 0.9793 0.9979 0.999 000 0.0005 0.0047 0.0452 0.3215 0.0256 0.9793 0.9979 0.999 000 0.0005 0.0047 0.0452 0.3215 0.0254 0.9793 0.9979 0.999 000 0.0005 0.0048 0.0452 0.3215 0.0554 0.9793 0.9979 0.999 000 0.0005 0.0065 0.0452 0.3215 0.0556 0.9793 0.9979 0.999 000 0.0017 0.0167 0.0452 0.3215 0.6256 0.9793 0.9979 0.999		00	000.	*00	.045	. 321	.825	.979	1997	999
000 0.0005 0.0047 C.C452 0.3215 0.6256 0.9793 0.9979 0.999 0000 0.0005 0.0047 C.C452 0.3215 0.6258 C.9793 0.9979 0.999 0.099 0.0005 C.0048 C.0452 0.3215 0.6258 0.9793 0.9979 0.999 0.000 0.0005 C.0051 C.C452 0.3215 0.6258 0.9793 0.9979 0.999 0.000 0.0009 0.0055 C.C452 0.3215 0.6258 0.9793 0.9979 0.999 0.999 0.000 0.0017 0.0167 C.C452 0.3215 0.6256 0.9793 0.9979 0.999		8	000	•00•	.045	.321	. 825	.979	.997	.999
00° 0.0005 0.0047 C.C452 0.3215 0.8258 C.9793 0.9979 0.999 000 0.0005 C.0048 C.0452 0.3215 0.8258 0.9793 0.9979 0.999 000 0.0005 C.0051 C.C452 0.3215 0.8258 0.9793 0.9979 0.999 000 0.0009 0.0085 C.C452 0.3215 0.8258 0.9793 0.9979 0.999		00	000	*00	.045	.321	. 825	.979	1997	.999
000 0.0005 C.0048 C.0452 C.3215 O.6258 O.9793 O.9979 O.999 000 0.0005 C.0051 C.0452 O.3215 O.6258 O.9793 O.9979 O.999 000 0.0009 O.0085 C.0452 O.3215 O.6258 O.9793 O.9979 O.999		00	.000	.004	.045	. 321	. 825	979.	166.	666.
000 0.0005 C.0051 C.0452 0.3215 0.6258 0.9793 0.9979 0.999 000 0.0009 0.0085 C.0452 0.3215 0.8258 0.9793 0.9979 0.999 000 0.0017 0.0167 C.0452 0.3215 0.8256 0.9793 0.9979 0.999		8	000	.004	.045	.321	. 825	.979	.997	666.
000 0.0009 0.0085 C.0452 0.3215 0.8258 0.9793 0.9979 0.999 000 0.0017 0.0167 C.0452 0.3215 0.8256 0.9793 0.9979 0.999		00	000	.005	.045	.321	.825	979	.997	666.
000 0.0017 0.0167 0.0452 0.3215 0.8256 0.9793 0.9979 0.999	•	00	000	.008	.045	. 321	.825	.979	.997	999
		00	.001	.016	.045	.321	.825	.979	.997	666.

S. H.

(S)

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A DIL-FILLED PAPER CAPACITOR

USED ARE: KP= 5.00000=05 KD1= 4.00000=01 THE CAPACITOR PARAMETERS

THE RADIATION PULSE IS 1.0000#+12 RADS/SEC FOR 2.5000#-09 SEC FOLLOWED BY A CONSTANT RATE OF 1.0000#+07 RADS/SEC KD2= 1.00000-06 TD2= 1.00000+00

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

			2	ANT					
1146	3 11 2	10 SEC	1 SEC	100	10	SH T	100 08	10 US	1 08
0	000	000	000	000	000	000	000	000	000
Z	0.2865	29	29	C.2865	286	286	266	207	293
7	0.283	,263	.283	.203	.203	284	291	354	746
7	0.200	.280	.280	.280	.280	.202	.294	410	.898
3	0.272	.272	.272	.272	.272	.275	.307	.556	.986
) U	0.258	.250	.250	.250	. 259	.265	.327	.715	.989
3	0.233	.233	.233	.233	.234	.247	.361	949	
2000	0.173	.173	.173	.174	.177	.205	.431	.910	.990
SN 001	0.110	.110	.110	.111	.116	.164	463	919	.991
7 00	0.050	.050	.050	.051	.059	.135	.554	.931	. 997
2 20	0.009	.009	.009	.010	.025	.156	999.	926	100.
-	0.001	.001	.001	.00.	.029	.229	.772	.973	166.
I	000.0	• 000	.000	.00.	.041	.306	. 021	.979	.007
X	00000	000.	.000	.004	.045	.321	.625	979	.997
2	00000	.000	.000	.004	.045	.321	. 825	979	1997
Z	000.0	.000	.000	.00.	.045	.321	. 825	.979	166.
I	0000	.000	.000	.004	.049	.321	.025	. 17	.997
I	000.0	.000	.000	.00.	. 645	.321	. 025	.979	.997
X W	000.0	000.	.000	.004	.045	.321	.625	.979	.997
I	000.0	.000	.000	.004	.045	.321	. 025	.979	.997
_	.000	000	.001	.004	.045	.321	.625	.979	.997
	000.	000	.003	.004	.045	.321	.625	979	1997
'n	000.	.000	.008	.004	645	.321	. 825	979	1997
10 8	.000	.001	.016	.004	0.0452	0.3215	~	0.9793	0.9979
								,	•

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A OIL-FILLED PAPER CAPACITOR

KP= 5.00000-05 KD1= 4.00000-01 KD2= 1.00000-06 0ELTA= 1.00000+00 TD1= 4.00000-04 TD2= 1.00000+00 THE RADIATION PULSE IS 1.00000+13 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 0.00000+00 RADS/SEC

State Walkers

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

			~	U U	STANT					
7 7 2 2 5		181	10 SEC	1 SEC		10 48	1 HS	100 US	10 05	1 08
0		.000	.000	000	000	000	000	000	000	000
		.000	.000	.000	0000	000	000	000	000	.002
-		000.	.000	.000	.000	000	000	000	000	000
_		000.	000	.000	.000	000.	000	000	000	000
n		.000	000.	000	.000	000.	000	000	000	000
v		.000	• 000	000	.000	000.	000	000	000	000
U		000.	000	0000	000.	.000	000	000	000	000
	SO	000000	1.0000	1.0000	1.0000	00.	00.	•	0	.91
U		000.	.000	0000	.000	000	000	000	000	.928
20		000.	.000	000	.000	000	000	000	000	946
20		000.	.007	.079	.787	000	000	000	.774	000
-		.000	.000	000	.001	.013	106	.517	.922	000
		.000	.000	.000	.005	.050	.379	.920	966	000
5		000.	000.	.003	.032	.280	.956	666.	000	000
v		000.	000.	.008	.079	.563	666.	0000	000	000
ပ		000.	.001	.018	.167	.838	666.	000.	000	000
0		000.	.004	.047	.361	.989	666.	.000	000	000
00		000.	600.	.092	.620	166.	0000	0000	000	000
		000.	.019	.176	.650	.997	000.	000	000	000
80		000.	.046	.377	.977	866.	000	200.	000	000
	S	.000	.089	.599	.989	666.	000.	000.	000	000
	S	000.	.169	. 828	966.	000.	000	000.	000	000
5	S	000.	.378	.986	666.	000.	000.	000.	000	000
	S	• 000	. 622	666.	• 000	00	00	0		0

0 13 0

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A OIL-FILLED PAPER CAPACITOR

)

7

KP= 5.00000=05 KD1= 4.00000=01 KD2= 1.00000=06 DELTA= 1.00000+00 TD1= 4.00000=04 TD2= 1.00000+00

THE RADIATION PULSE IS 1.00000+13 RACS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+03 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VCLTAGE

	1 08	000	.002	000	000	1.0000	000	000	.910	.926	.940	000	000	000	.000	000	000	.000	000	000	000.	000	000.	000	.000
	10 US	000	.000	000	000	1.0000	000	000	000	000	000	.774	.922	966.	.000	000	000	000	000	000	000	000	000	000	000
	100 08	000	000	000	000	1.0000	.000	000	000	000	.000	000	.517	.920	666.	.000	000	000	000	.000	000	000	.000	000	000
	1 18	000	000	666	666.	9666.0	666.	666.	666.	.999	666.	666.	.106	.379	.956	666.	666.	666.	666.	666.	666.	666	666.	666.	666.
	10 48	000	000	.997	.997	0.9979	.997	166.	.997	166.	166.	.997	.013	.050	. 280	.562	.637	.987	.995	.995	966.	.997	166.	166.	.997
ANT	100 MS	.000	.000	.979	.979	C.9793	.979	.979	.979	.979	.979	.787	.001	.005	.032	.079	.166	.379	.615	.938	.958	696.	.975	.979	.979
U W	1 SEC	.000	000	.825	. 925	0.8258	.825	. 825	.825	. 825	.825	.079	.000	000.	.003	.008	.019	.046	.091	.172	.360	.551	.724	.820	. 825
~	10 SEC	.000	.000	.321	. 321	0.3215	. 321	, 321	. 321	. 321	. 321	.007	.000	000.	.000	.000	.001	.004	.009	.018	.0.	.080	.139	.247	. 305
	186	.000	.000	000.	000.	000000	000.	000	000.	000	000	000.	.000	.000	.000	.000	000.	.000	.000	.000	000.	0000	.000	000.	000
	TIPE	U	2	-	3	S US	3	3	3	3 8	9	200	=	=	#	Z	I O	I	E S	Z	I OO				

10.3, 103

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE OF A OIL-FILLED PAPER CAPACITOR

KD2= 1,00000-06 T02= 1.00000+0C THE CAPACITOR PARAMETERS USED ARE: MP= 5.00000-05 KD1= 4.00000-01 DELTA= 1.00000+00 TD1= 4.00000-04 THE RADIATION PULSE IS 1.00000+13 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+04 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

P. 196 11-7

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

			•	U	STANT					
TINE		1 2 1	10 SEC	1 SEC	100	10 HS	SI	100 US	10 US	1 08
0		000	000	.000	.000	000	000	000	000	000
		.000	000.	.000	.000	000	000	000	000	000
-		.000	.045	. 321	.825	979.	.997	666	000	000
		.000	.045	. 321	.825	979.	166.	666	000	000
5		.000	.045	. 321	.825	979.	.997	666	000	000
201	S	000000	0.0452	0.3215		.979	.997	666	000	000
0		000	.045	. 321	.825	.979	.997	666	000	000
20		000.	.045	. 321	.825	.979	.997	666	000	918
8		000.	.045	. 321	.825	979	166.	999	000	.928
0		000.	.045	.321	. #25	979	.997	666	000	976
00		000	.007	.079	.786	.979	.997	666	773	000
		000.	000.	.000	.001	.013	.106	.517	.922	000
_		.000	000.	.000	.005	.050	.379	.919	866	000
5		000	000.	.003	.032	.279	.954	656	000	000
0		000.	000	.008	.079	.559	.997	666	000	000
		000.	.001	.017	.164	.827	.997	656	000	000
20		000.	.004	.044	.364	.970	.997	666	000	000
U		000.	.008	.083	.570	.977	166.	666	000	000
00		000.	.015	.145	.741	.977	166.	666	000	000
ပ္		000.	.029	.245	.813	979.	.997	666	000	000
	-	.000	.038	.297	.819	.978	766.	666.	000	000
	•	000.	.043	.316	. 823	979.	166.	666	000	000
n		000.	.045	.321	.825	.979	.997	656.	000	000
		000.	.045	.321	.825	0.9793	0.9979	8665.0	1.0000	1.0000

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A DIL-FILLED PAPER CAPACITOR

	9	0
ARE :	1.0000-0	TD2= 1.00000+00
USED	K02	T02=
PARAMETERS	4.00000-01	4.00000-04
ICI TOR	K01=	T01=
THE CAPA	5.00000-05	OELTA: 1.00000+00 TD1: 4.00000-04 TD2: 1.0000
	X G	DELTAS

THE RADIATION PULSE IS 1.00000+13 RADS/SEC FOR 2.50000-08 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+05 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

		i		CTIME CON	STANTS		:	(:	
7105			لم	2	0			100 08	10 05	1 05
S		.000	000	000.	000	000	000	000	000	000
23		000.	000	000.	000	000	000	000	000	.002
-	S	000000	0.0047	0.0452	C.3215	0.8258	979	156	666	000
~		000.	.004	.045	.321	.625	979.	166.	999	000
57		.000	.004	.045	. 321	.625	.979	166.	999	000
_		000.	.004	.045	.321	. 825	.979	166.	666	000
-		000.	*00.	.045	. 321	. 825	.979	166.	666	000
Ň		.000	.004	.045	. 321	. 825	979	1997	666	.918
Ŏ		000.	•00•	.045	.321	.625	.979	166.	666	.920
200		.000	*00.	.045	. 321	. 825	.979	166.	999	.948
0		000	*00.	.045	. 321	.825	979.	156.	.773	000
		000	.000	.000	.001	.013	.105	.516	.922	000
~		.000	.000	.000	.005	.050	.377	.918	966	000
5		.000	000.	.003	.031	.270	.939	1997	999	000
		.000	000.	.007	.073	.522	.970	.997	666	000
		.000	.001	.015	.139	.735	979.	.997	999	000
5		.000	.003	.029	.249	.822	.979	.997	666	000
100		000.	.004	.039	.305	.624	.979	156.	666	000
0		.000	*00	.044	.319	.824	.979	.997	666	000
0		000.	*00	.045	. 320	.625	.979	.997	666	000
-	S	.000	*00·	.045	. 321	.625	.979	186.	666.	000
~	S	.000	* 00.	.045	. 321	. 825	.979	.997	666.	000
4	S	000.	₹00.	.045	.321	. 825	979.	.997	666	000
2	S	.000	.004	.045	.321	. 825		0	0.9998	1.0000

013 105

901 6,01

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A DIL-FILLED PAPER CAPACITOR

KP= 5.000Ce-05 KD1= 4.000Ce-01 KD2= 1.000Ce-06 DELTA= 1.000Ce+00 TD1= 4.000Ce-04 TD2= 1.000Ce+00

THE RADIATION PULSE IS 1.00000+13 RADS/SEC FOR 2.50000-00 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+06 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

AT THE THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE TIME INDICATED TO THE INITIAL CAPACITOR VOLTAGE

		TAU	CTINE CON	-					
	MM		1 SE	_	10 PS	SHI	100 US	10 US	1 08
TIME									
v	1.000	000	0000	000	000	000	000	000	000
2	00000	.000	.000	000	000	000	000	000	005
3	0000	000	•00•	.045	. 321	. 825	979	997	666
3	000.0	000.	•00	.045	.321	. 825	979	997	666
3	00000	000.	.00€	.045	.321	. 825	979	997	666
30 01	S 0.0000	0.0005	0	-	. 321	.825	979.	997	666
၁ ပ	0.000	.000	₹00.	.045	.321	.825	979	266	666
3	00000	.000	.004	.045	. 321	. 825	979	997	918
ے 00	00000	000	.004	.045	.321	.825	979	997	.927
200	00000	.000	.004	.045	.321	. 825	979	997	946
3	00000	000.	.004	.045	.321	. 825	979	.773	666
=	0.000	.000	.000	.001	.012	101.	512	. 921	666
I	00000	000	0000	.00	040.	.358	.903	966	666.
I	00000	.000	.062	.023	202	908.	979	997	666
I U	00000	000	.003	.038	.297	.825	979	1997	666
X	0000	000	.004	.044	.321	.825	979	.997	666
200	00000	000	.004	.045	.321	.825	.979	166.	666
I U O	00000	000	* 00.	.045	.321	.825	979	.997	666
I U	00000	000.	•00•	.045	. 321	.825	979	.997	666.
Z 00	0000	000	•00	.045	.321	.825	979.	166.	666
	000.	000.	*00.	.045	.321	.825	979	166	666
	000	0000	.004	.045	.321	.825	979	166.	666
۲,	000.	0000	•00.	.045	. 321	.825	979	166.	666.
	•000	000	•00	•	0,3215	0.8258	0.9793	0.9979	0.9998

THIS TABLE IS THE CALCULATED TRANSIENT RADIATION RESPONSE

OF A OIL-FILLED PAPER CAPACITOR

ARE:	KPs 5.0000e-05 KD1s 4.00000-01 KD2s 1.00000-06	1.00000+00
USED	K02*	T02=
PARAMETERS	4.00000-01	4.00000-04
CITOR	K01=	101
THE CAPA	5.00000-05	1.00000+00
	X P	DELTA =

THE RADIATION PULSE IS 1.00000+13 RADS/SEC FOR 2.50000-09 SEC FOLLOWED BY A CONSTANT RATE OF 1.00000+07 RADS/SEC

TAU IS THE TIME CONSTANT OF THE CAPACITOR CHARGING CIRCUIT.

THE VALUES GIVEN ARE THE RATIOS OF THE CAPACITOR VOLTAGE AT THE THE TABLE CAPACITOR VOLTAGE

TAU CTIME CONSTANT)

SO I)	000	.002	.997	166.	166.	166.	.997	.910	.927	.947	.997	.997	.997	.997	.997	.997	.997	.997	.997	.997	166.	0.9979	.997	166.	
10 US)	.000	000	979	979	979	979	979	979	979	979	.764	906	976	979.	979	.979	979	979	979	.979	979	979	979	.97	
100 US)	000	.000	.025	. 625	.825	.825	.025	. 825	. 825	. 825	. 825	.471	.774	. 825	. 625	.828	. 825	. 825	. 825	.825	. 825	0.8258	. 825	.025	
SH T		.000	000	.321	.321	.321	.321	.321	.321	.321	.321	.321	.079	.230	.321	.321	.321	.321	.321	.321	.321	.321	0,3215	.321	, 321	
20	,	000.	000	.045	.045	.045	.045	.045	.045	.045	.045	.045	000.	.028	.045	.045	.045	.045	.045	.045	.045	.045	0.0452	.045	.045	
100 MS	•	.000	000	.00.	.004	₹00	.00	.004	.004	.004	.004	.004	000.	.002	.004	.004	.00	.00	.004	.004	.004	.000	C.0C47	.004	•00•	
1 SEC		.000	0000	000	000	000	0000	000	000	000	000	000	0000	0000	000	.000	0000	000	.000	000	0000	.000	0.0005	000.	000	
10 SEC	ì	.000	000	000.	000	000	000	000.	000.	000	000.	.000	000	.000	.000	.000	000.	000.	.000	000.	000	000	000000	000.	000	
INE		.000	000	000	000.	000	000.	000	000	000.	000	.000	.000	.000	000.	.000	000.	000.	.000	000.	000	000	000000	000	.000	
	3411		Z	-	7)) U	D	D	200		200	=		=	Y	I	I	1 00 00	I	I O O	-	8			

RESISTANCE TAUD (COLUMNS) AND AT TIME THO A SHUNT RESISTANCE. CHARGING RESISTANCE AND THE SMLNT RESISTANCE REVAINING IN THE TALS (ROWS) IS PLACED ACROSS THE CAPACITOR, BOTH THE SERIES THIS TABLE IS THE VOLTAGE ACROSS A CAPACITOR AT TIME TE IF THE CAPACITOR IS INSTIALLY CHARGED TO 1 VOLT THROUGH CAPACITOR CIRCUIT

コマトのとことの	, -		TAUD (SE	(SERIES TIME	CONSTANT	2				•
TIME	—	Inf	10 \$	8	10C MS	10 48	S I · I	100 US	10 US	1 08
INF		1.0060	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1,0000
10	S	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
~	S	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100	5	1.000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
10	S	6566.0	6656.0	6666.3	5656.3	5666.0	0.9999	6566.0	0.9999	0666.3
-	S	0565.0	0.8890	0656.0	2655.3	2655.0	0666.0	0656*0	0666.0	0.9994
100	9	0365.0	0066.0	0056.0	2065.2	0.9901	0.9901	1056.0	0.9905	0.9937
2	Sa	0.9048	0.9018	6.96.3	6.9048	0.9048	6*06*3	6.9053	\$606.0	0.9394
-	SO	0.3679	0.3679	6.3679	5.3675	9795.0	0.3681	0.3765	0.3935	0.5677

THIS TABLE IS THE VOLTAGE ACROSS A CAPACITOR AT TIME T= 10 LS RESISTANCE TAUD (COLUMNS) AND AT TIME THE A SHUNT RESISTANCE, CHARGING RESISTANCE AND THE SHLNT RESISTANCE REMAINING IN THE TALS (ROWS) IS PLACED ACROSS THE CAPACITOR, BOTH THE SERIES IF THE CAPACITOR IS INITIALLY CHARGEC TO 1 VOLT THROUGH A CAPACITOR CIRCUIT

TACS	-		TAUD (SERIES	ERIES TIME	CONSTANT	2				
T14E C045T	-	INF	10 S	8	10C HS	0		100 08	10 US	sn 1
INF		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
10	S	1.0000	1.0000	1.0000	1.000	1.0000	1.0000	1.0000	1.0000	1.0000
•	S	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
100	S)	6666.0	0.9999	6656.0	5666.3	5666.0	6666.0	6656.0	6666.0	1.0000
10	Z S	0666.0	0.9990	0.9930	0665.3	0.3996	0.9990	0656.0	0.9994	6666.0
-	S	0065.0	0066.0	0056.0	C.9901	0.9901	1066.0	5056.0	0.9937	0.666.0
100	\$	0.9048	0.9643	8¢36*3	C.9048	5406.0	0.9053	4636.0	0.9394	0.9901
10	S	0.3679	0.3679	6.3679	5.3675	0.3681	0.3705	0.3935	0.5677	0.9091
	S	0.0000	0.00000	000000	C.9C01	0.0001	0.0010	6600.0	6060.0	0.5000

THIS TABLE IS THE VOLTAGE ACROSS A CAPACITOR AT TIME T= 100 US RESISTANCE TAUD (COLUMNS) AND AT TIME THO A SHUNT RESISTANCE. CHARGING RESISTANCE AND THE SHUNT RESISTANCE REVAINING IN THE TAUS (ROWS) IS PLACED ACROSS THE CAPACITOR, BOTH THE SERIES IF THE CAPACITOR IS INITIALLY CHARGED TO 1 VOLT THROUGH A CAPACITOR CIRCUIT

TACS	—		TAUD (SERIES	ERIES TIVE	CONSTANT	2				
TIPE	.	141	10 \$	\$	10C MS	10 48	2 4	100 us	10 US	1 US
145		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.000€	1.0000
10	S	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
	S	6666.0	6666.0	6656.0	5666.3	5665.0	6666.0	6656.0	1.0000	1.0000
100	W.	0665.0	0666.0	0656.0	2666.3	2666.0	0.8890	¥656.0	0.9999	1.0000
10	S	2065.0	0066.0	6.9901	1065.3	1055.0	0.9905	1656.0	0.9990	0.9999
-	S)	0.9046	8406.0	C.9C48	5 8 2 5 . 3	0.9053	₹606.0	0.5394	0.9901	0.9990
100	S	0.3679	0.3679	C.3679	C.3681	6.3705	0.3935	0.5677	0.9091	1066.0
2	Sa	000000	000000	0.0001	0.0001	0.0010	0.0099	6060.0	0.5000	0.9091
-	c s	0.0000	0.00000	000000	2022-3	0.0001	0.0010	6500.0	6060.0	0.5000

THIS TABLE IS THE VOLTAGE ACROSS A CAPACITOR AT TIME TH

IF THE CAPACITOR IS INITIALLY CHARGEC TO 1 VCLT THROUGH A

RESISTANCE TAUD (CULUMNS) AND AT TIME TRO A SHUNT RESISTANCE,

CHARGING RESISTANCE AND THE SHUNT RESISTANCE REMAINING IN THE TAUS (ROMS) IS PLACED ACROSS THE CAPACITOR, BOTH THE SERIES CAPACITOR CIRCUIT

インスト	<u> </u>		TAUD CSE	(SERIES TIME	CONSTANT	2				•
TIVE	–	INF	10 S	1 S	100 48	10 48	SH T	100 US	10 US	1 05
INE	•	1.0000	1.0000	1.0000	1.0000	1.000	1.0000	1.0000	1.0000	1.0000
01	S	6566.0	6666.0	6666.0	6665.3	5665.0	6666.0	1.0000	1.0000	1.0000
-	S	0.9990	0.8880	0656.0	3655°3	2665-0	₹666.0	6656.0	1.0000	1.0000
100	S	0.9900	0.9901	0.9901	056.3	5065.0	0.9937	0656.0	0.9999	1.0000
10	Z S	0.9048	0.9648	6.96.0	C.9053	\$606°D	0.9394	0.9901	0.9990	0.9999
-	S I	0.3679	0.3679	C.3691	C.3705	0.3935	1195.0	1636.0	1066.0	0.9990
100	Sa	000000	0.0001	00000	2100.3	6600.0	6060.0	0.5000	0.9091	0.9901
10	SO	0.000.0	0.0000	000000	C.C001	0.0010	6600.0	6050*0	0.5000	0.9091
-	Sa	000000	000000	0006.0	2022-3	0.0001	0.0010	6600.0	0.0909	0.5000

1 C 1115

THIS TABLE IS THE VOLTAGE ACROSS A CAPACITOR AT TIME T= 10 MS CHARGING RESISTANCE AND THE SHLNT RESISTANCE REVAINING IN THE RESISTANCE TAUD (COLUMNS) AND AT TIME THO A SHUNT RESISTANCE, TAUS (ROWS) IS PLACED ACROSS THE CAPACITOR, BOTH THE SERIES IF THE CAPACITOR IS INITIALLY CHARGEC TO 1 VOLT THROUGH CAPACITOR CIRCUIT

4768	—		TAUD (SERIES	RIES TIME	CONSTANT	2					
TIME	—	4	10 S	\$	100 HS	10 48	I I S	100 US	10 US	1 08	
INE	•	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	5-11
10	s,	0.9990	0.9990	0666.0	3665.3	0.5994	6666.0	1.0000	1.0000	1,0000	
•	•	0066.0	0.9901	0.9901	5056.3	0.9937	0666.0	6556.0	1.0000	1.0000	
100	N X	0.9048	0.9049	6.9653	6.96.9	0.9394	0.9901	0666.0	6666.0	1.0000	
10	S	0.3679	0.3681	6.3705	6.3935	0.5677	1606.0	0.9901	0666.0	6666.0	
-	S	0.0000	0.0001	0.0010	6600.0	6063.0	0005.0	1606.0	0.9901	0666.3	
100	Sa	0.0000	0.0000	00000	0.00.0	5600.0	6060.0	0.5000	0.9091	6.9901	
10	Sa	0.0000	0.000.0	0000.0	0.0001	0.0010	0.0099	6060.0	0.5000	0.9091	
-	S	000000	0.0000	0000.0	0000.0	0.0001	0.0010	6600.0	6060.0	0.5000	

THIS TABLE IS THE VOLTAGE ACROSS A CAPACITOR AT TIME T= 100 MS CHANGING RESISTANCE AND THE SHUNT RESISTANCE REMAINING IN THE RESISTANCE TAUD (COLUMNS) AND AT TIME THO A SHUNT RESISTANCE, TAUS CROWS) IS PLACED ACROSS THE CAPACITOR, BOTH THE SERIES IF THE CAPACITOR IS INITIALLY CHARGEC TO 1 VOLT THROUGH A CAPACITOR CIRCUIT

ACS SHCR) —		75UO (SE	(SERIES TIME	CONSTANT	2				
TERE	-	INF	10 \$	S 1	100 MS	10 48	SH	100 US	SO 01	1 08
111		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
9	s	0.9900	0.9901	0.9905	0.9937	0666.0	6666.0	1.0000	1.0000	1,0000
-	so.	0.9048	0.9053	0.9094	C.9394	0.9901	0.9990	6666.0	1.0000	1.0000
001	SI	0.3679	0.3705	0.3935	C.5677	0,9091	0.9901	0556.0	0.9999	1.0000
10	S	0.0000	0.0010	6600.0	6060.0	0.5000	0.9091	0.9501	0.9990	0.9999
-	E S	000000	0.0001	0.0010	6600.0	5060.0	0.5000	0.9091	0.9901	0.9990
001	0.5	000000	000000	0.0001	0.00.0	6600.0	6060.0	0.5000	1606.0	0.9901
27	20	0.0000	000000	000000	0.0001	0.0010	6600.0	6050.0	0.5000	0.9091
	S	000000	0.0000	0.000	0600-0	1000.0	0.0010	6600.0	0.0909	0.5000

5 CC

CHARGING RESISTANCE AND THE SHLNT RESISTANCE REVAINING IN THE RESISTANCE TAUD (COLUMNS) AND AT TIME THO A SHUNT RESISTANCE, TAUS (ROMS) IS PLACED ACROSS THE CAPACITOR, BOTH THE SERIES IF THE CAPACITOR IS INITIALLY CHARGEC TO 1 VOLT THROUGH A THIS TABLE IS THE VOLTAGE ACHOSS A CAPACITOR AT TIME TE CAPACITOR CIRCUIT

1 08	1.0000	1.0000	1.0000	1.0000	0.9999	0666.3	0.9901	0.9091	6.5000
10 US	1.0000	1.0000	1.0000	6666.0	0666.0	0.9901	0.9091	0.5000	0.0909
100 US	1.0000	1.0000	6666.0	0656.0	0.9501	1606.0	0.5000	6050.0	6600.0
S T	1.0000	6666.0	0666.0	1066.0	0.9091	0.005.0	6060.0	6600.0	0.0010
0 1	1.0000	0.9990	0.5901	0.5091	0.5000	5060.0	6600.0	0.0010	00000
100 MS	1.0000	C.9901	C.9091	0005.0	5050.0	5600.0	0.0010	000000	000000
8	1.9000	0.9334	C.5677	6050.0	6600.0	0.0010	0.0001	000000	000000
10 \$	1.0000	0.9094	0.3935	6800.0	0.0610	0.0001	000000	0.000.0	000000
la 21	1.0000	0.9048	0.3679	0.0000	0.0000	000000	000000	0.0000	0.000
31CN1 11TE CONS1	INF	30 3	2 2	10C #S	1C MS	N H	10C US	10 08	1 08

THIS TABLE IS THE VOLTAGE ACROSS A CAPACITOR AT TIME T= 10 S RESISTANCE TAUD (COLUMNS) AND AT TIME THO A SHUNT RESISTANCE, CHARGING RESISTANCE AND THE SHLNT RESISTANCE REVAINING IN THE TAUS (ROWS) IS PLACED ACROSS THE CAPACITOR, BOTH THE SERIES IF THE CAPACITOR IS INITIALLY CHARGED TO 1 VOLT THROUGH CAPACITOR CIRCUIT

TALS	-		TAUG (SERIES	ERIES TIME	CONSTANT	•				
TIPE		ı, v	10 S	S	10C MS	10 48	T N	100 US	10 US	1 68
INF		1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
10	ø	0.3679	0.5677	0.9091	0.9901	0666.0	6666.0	1.0000	1.0000	1.0000
-	v	0.000.0	6060.0	0.5000	1606.0	0.9901	0.666.0	6656.0	1.0000	1.0000
100	S)	00000	0.0099	6060.0	0005.0	0.9091	0.9901	0686.0	0.9999	1.0000
10	N	000000	0.0010	6600.0	6060-3	0.5000	0.9091	0.9501	0.9990	0.999
-	S	000000	0.0001	0.00.0	6600-3	6060.0	0.5000	1606.0	0.9901	0.9990
100	Sa	0000000	0.000.0	1000.0	C.001C	6600.0	6060.0	0.5000	0.9091	0.9901
10	Sa	0.0000	0.0000	000000	C.0001	0.0010	0.0099	6050.0	0.5000	C. 9091
	Sa	0.000	0000.0	000000	0000.0	0.0001	0.0010	0.0099	0.000	0.5000

CHARGING RESISTANCE AND THE SHLNT RESISTANCE REVAINING IN THE RESISTANCE TAUD (COLUMNS) AND AT TIME THO A SHUNT RESISTANCE, THIS TABLE IS THE VOLTAGE ACROSS A CAPACITOR AT TIME THE INF TALS (ROWS) IS PLACED ACROSS THE CAPACITOR, BOTH THE SERIES IF THE CAPACITOR IS INITIALLY CHARGED TO 1 VOLT THROUGH A CAPACITOR CIRCUIT

SHEN	-		TAUD (SERIES	RIES TIME	CONSTANTS	c				··
TIPE	—	18	10 S	1 8	100 MS	0 -	T ES	100 US	10 US	I US
INF	A -	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000
10	S	000000	0.5000	0.9091	0.9901	0.4990	6666.0	1.0000	1.0000	1.0000
•	S	000000	0.0909	0035.0	0.9091	0.3901	0666,0	6556*0	1.0000	1.0000
100	S)	0.0000	6600.0	6050.0	0005.0	0.9091	0.9901	0556.0	6666.0	1.0000
20	S	000000	0.0010	6630.0	5050-0	0.5000	0.9091	1056.0	0666.0	6666.3
***	S	0000000	0.0001	0.0010	5600.0	5060.0	0.5000	1506.0	0.9901	0.666.0
100	0.5	000000	0.000.0	0.0001	0.00.0	5600.0	6060.0	0.5000	0.9091	0.9901
10	ns	0.0000	000000	000000	0.0001	0.0010	6600.0	6050.0	0.5000	C.9091
-	sn 1	0.0000	0.000.0	000000	2022-3	0.0001	0.0010	6600.0	0.0909	0.5000