<algorithm>

Karl Solomon

December 27, 2024

Contents

1	batchOperations	2
2	Search Operations	2
3	Fold Operations	7
4	Copy Operations	7
5	Swap Operations	8
6	Transform Operations	9
7	Generation Operations	10
8	Removing Operations	12
9	Order-Changing Operations	12
10	Sampling Operations	12
11	Random Number Generation	13
12	Partitioning Operations	13
13	Sorting Operations	13
14	Binary Search Operations (on partitioned ranges)	14
15	Set Operation (on sorted ranges)	14
16	Merge Operations (on sorted ranges)	14
17	Heap Operations	15
18	Min/Max Operations	17
19	Lexicographical Operations	19
20	Permutation Operations	19
21	Numeric Operations	20
22	Uninitialized Memory Operations	22

1 batchOperations

```
for_eachranges::for_eachfor_each_nranges::for_each_n
```

2 Search Operations

- all_of
- any_of
- none of

```
std::vector <int > numbers = {1, 2, 3, 4, 5};

// Use std::all_of to check if all elements are positive

bool allPositive = std::all_of(numbers.begin(), numbers.end(), [](
    int n) { return n > 0; });

// Use std::any_of to check if any element is greater than 4

bool anyGreaterThanFour = std::any_of(numbers.begin(), numbers.end
    (), [](int n) { return n > 4; });

// Use std::none_of to check if no elements are negative

bool noneNegative = std::none_of(numbers.begin(), numbers.end(),
    [](int n) { return n < 0; });</pre>
```

- ranges::contains
- ranges::contains_subrange

```
std::vector < int > numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};

// Check if the range contains the value 5
bool containsFive = std::ranges::contains(numbers, 5);

// Check if the range contains the value 11
bool containsEleven = std::ranges::contains(numbers, 11);

// Define a subrange to check
std::vector < int > subrange = {4, 5, 6};
// Check if the range contains the subrange
```

• find

• find if

• find_if_not

• ranges::find

• ranges::find_if

• ranges::find_if_not

```
| #include <algorithm>
  #include <iostream>
  #include <ranges>
#include <vector>
3
6
  int main() {
      std::vector<int> numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
      // Use std::find to find the first occurrence of 5
9
      auto it = std::find(numbers.begin(), numbers.end(), 5);
      // find the first even number
      it = std::find_if(numbers.begin(), numbers.end(), [](int n) {
13
         return n % 2 == 0; });
      // find the first odd number
14
      it = std::find_if_not(numbers.begin(), numbers.end(), [](int n
15
         ) { return n % 2 == 0; });
      // find the first occurrence of 5
17
      auto range_it = std::ranges::find(numbers, 5);
      // find the first even number
18
      range_it = std::ranges::find_if(numbers, [](int n) { return n
19
          % 2 == 0; });
      // find the first odd number
20
      range_it = std::ranges::find_if_not(numbers, [](int n) {
21
          return n % 2 == 0; });
22
```

- find_last
- find_last_if
- find_last_if_not
- \bullet find_end
- ranges::find_end

```
# include <algorithm>
# include <iostream>
# include <ranges>
# include <vector>
```

```
6 std::vector<int> numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 5, 6,
     7 } ;
  // find the last occurrence of 5
8
  auto lastFive = std::ranges::find_last(numbers, 5);
9
     find the last even number
10
  auto lastEven = std::ranges::find_last_if(numbers, [](int n) {
     return n % 2 == 0; });
  // find the last odd number
  auto lastOdd = std::ranges::find_last_if_not(numbers, [](int n) {
13
     return n % 2 == 0; });
14
 // Define a subrange to find
15
16 | std::vector < int > subrange = {5, 6, 7};
17
18
  // find the last occurrence of the subrange
19 auto lastSubrange = std::find_end(numbers.begin(), numbers.end(),
     subrange.begin(), subrange.end());
20
  // find the last occurrence of the subrange
auto lastSubrangeRange = std::ranges::find_end(numbers, subrange);
```

• find_end

• ranges::find_end

• find first of

• ranges::find_first_of

• adjacent_find

• ranges::adjacent_find

```
1 std::vector<int> numbers = {1, 2, 3, 4, 5, 3, 4, 5, 6, 7};
2 | std::vector < int > pattern = {3, 4, 5};
  // Using std::find_end to find the last occurrence of a pattern
  auto it_end = std::find_end(numbers.begin(), numbers.end(),
     pattern.begin(), pattern.end());
  // Result: it_end points to the first element of the last
6
     occurrence of {3, 4, 5}
  // Using std::find_first_of to find the first occurrence of any
     element from another range
  std::vector<int> search_elements = {4, 5, 6};
  auto it_first_of = std::find_first_of(numbers.begin(), numbers.end
     (), search_elements.begin(), search_elements.end());
  // Result: it_first_of points to the first occurrence of any
11
     element from \{4, 5, 6\}, which is 4
  // Using std::adjacent_find to find the first occurrence of two
13
     consecutive equal elements
| std::vector<int> numbers_with_adjacent = {1, 2, 3, 3, 4, 5};
15 auto it_adjacent = std::adjacent_find(numbers_with_adjacent.begin
     (), numbers_with_adjacent.end());
  // Result: it_adjacent points to the first element of the first
     pair of adjacent equal elements, which is 3
```

- count
- count_if
- ranges::count

• ranges::count_if

```
std::vector<int> numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
  // Using std::count to count occurrences of the number 5
3
  int count_5 = std::count(numbers.begin(), numbers.end(), 5);
  // Result: count_5 = 1
5
  // Using std::count_if to count numbers greater than 5
7
  int count_greater_than_5 = std::count_if(numbers.begin(), numbers.
     end(), [](int n) { return n > 5; });
  // Result: count_greater_than_5 = 5
  // Using std::ranges::count to count occurrences of the number 5
11
  int ranges_count_5 = std::ranges::count(numbers, 5);
  // Result: ranges_count_5 = 1
13
  // Using std::ranges::count_if to count numbers greater than 5
15
 int ranges_count_greater_than_5 = std::ranges::count_if(numbers,
     [](int n) { return n > 5; });
  // Result: ranges_count_greater_than_5 = 5
```

• mismatch

• ranges::mismatch

```
std::vector <int > vec1 = {1, 2, 3, 4, 5};
std::vector <int > vec2 = {1, 2, 0, 4, 5};

// Using std::mismatch to find the first position where vec1 and vec2 differ
auto mismatch_pair = std::mismatch(vec1.begin(), vec1.end(), vec2.begin());

// Result: mismatch_pair.first points to 3 in vec1, mismatch_pair.second points to 0 in vec2

// Using std::ranges::mismatch to find the first position where vec1 and vec2 differ
auto ranges_mismatch_pair = std::ranges::mismatch(vec1, vec2);

// Result: ranges_mismatch_pair.in1 points to 3 in vec1, ranges_mismatch_pair.in2 points to 0 in vec2
```

• equal

• ranges::equal

```
std::vector<int> vec1 = {1, 2, 3, 4, 5};
2 std::vector<int> vec2 = {1, 2, 3, 4, 5};
3 std::vector<int> vec3 = {1, 2, 3, 0, 5};
  // Using std::equal to check if vec1 and vec2 are equal
  bool are_equal_1_2 = std::equal(vec1.begin(), vec1.end(), vec2.
     begin());
  // Result: are_equal_1_2 = true
  // Using std::equal to check if vec1 and vec3 are equal
9
  bool are_equal_1_3 = std::equal(vec1.begin(), vec1.end(), vec3.
10
     begin());
  // Result: are_equal_1_3 = false
11
  // Using std::ranges::equal to check if vec1 and vec2 are equal
 |bool ranges_are_equal_1_2 = std::ranges::equal(vec1, vec2);
  // Result: ranges_are_equal_1_2 = true
15
16
```

```
// Using std::ranges::equal to check if vec1 and vec3 are equal
bool ranges_are_equal_1_3 = std::ranges::equal(vec1, vec3);
// Result: ranges_are_equal_1_3 = false
```

- search
- search n
- ranges::search
- ranges::search_n

```
std::vector<int> numbers = {1, 2, 3, 4, 5, 3, 4, 5, 6, 7};
  std::vector < int > pattern = {3, 4, 5};
  // Using std::search to find the first occurrence of a subsequence
  auto it_search = std::search(numbers.begin(), numbers.end(),
     pattern.begin(), pattern.end());
  // Result: it_search points to the first element of the first
     occurrence of {3, 4, 5}
  // Using std::search_n to find the first occurrence of three
     consecutive 4s
  auto it_search_n = std::search_n (numbers.begin(), numbers.end(),
     3, 4);
  // Result: it_search_n points to numbers.end() as there are no
     three consecutive 4s
  // Using std::ranges::search to find the first occurrence of a
12
     subsequence
  auto ranges_it_search = std::ranges::search(numbers, pattern);
13
  // Result: ranges_it_search.begin() points to the first element of
14
      the first occurrence of {3, 4, 5}
  // Using std::ranges::search_n to find the first occurrence of two
16
      consecutive 5s
  auto ranges_it_search_n = std::ranges::search_n (numbers, 2, 5);
  // Result: ranges_it_search_n.begin() points to numbers.end() as
     there are no two consecutive 5s
```

- ranges::starts with
- ranges::ends_with

```
std::vector<int> numbers = {1, 2, 3, 4, 5};
std::vector<int> prefix = {1, 2};
3 \mid std::vector < int > suffix = {4, 5};
  std::vector<int> non_prefix = {2, 3};
  std::vector<int> non_suffix = {3, 4};
  // Using std::ranges::starts_with to check if numbers starts with
     prefix
  bool starts_with_prefix = std::ranges::starts_with(numbers, prefix
     );
  // Result: starts_with_prefix = true
9
10
  // Using std::ranges::starts_with to check if numbers starts with
     non_prefix
  bool starts_with_non_prefix = std::ranges::starts_with(numbers,
     non_prefix);
  // Result: starts_with_non_prefix = false
13
  // Using std::ranges::ends_with to check if numbers ends with
     suffix
```

3 Fold Operations

```
ranges::fold_left
ranges::_fold_left_first
ranges::fold_left_with_iter
ranges::fold_left_first_with_iter
ranges::fold_right
ranges::fold_right_last
```

4 Copy Operations

- \bullet copy: Copies all elements from numbers to result
- copy_if: Copies only even numbers from numbers to result
- ranges::copy
- ranges::copy_if
- copy_n: Copies the first 5 elements from numbers to result
- ranges::copy_n: Copies elements from numbers to result in reverse order.
- copy_backwards
- ranges::copy_backwards

```
std::vector<int> numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
  std::vector<int> result(10);
  // Using std::copy to copy all elements
 std::copy(numbers.begin(), numbers.end(), result.begin());
  // Result: result = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
  // Using std::copy_if to copy only even numbers
  auto it = std::copy_if(numbers.begin(), numbers.end(), result.
     begin(), [](int n) { return n % 2 == 0; });
  // Result: result = {2, 4, 6, 8, 10, ?, ?, ?, ?} (remaining
     elements are unspecified)
11
  // Using std::ranges::copy to copy all elements
12
  std::ranges::copy(numbers, result.begin());
// Result: result = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
14
15
  // Using std::ranges::copy_if to copy only even numbers
16
  it = std::ranges::copy_if(numbers, result.begin(), [](int n) {
      return n % 2 == 0; });
  // Result: result = {2, 4, 6, 8, 10, ?, ?, ?, ?, ?} (remaining
     elements are unspecified)
19
```

```
20 // Using std::copy_n to copy the first 5 elements
  std::copy_n(numbers.begin(), 5, result.begin());
  // Result: result = {1, 2, 3, 4, 5, ?, ?, ?, ?, ?} (remaining
     elements are unspecified)
23
  // Using std::ranges::copy_n to copy the first 5 elements
  std::ranges::copy_n(numbers.begin(), 5, result.begin());
  // Result: result = {1, 2, 3, 4, 5, ?, ?, ?, ?, ?} (remaining
     elements are unspecified)
  // Using std::copy_backward to copy elements in reverse order
 std::copy_backward(numbers.begin(), numbers.end(), result.end());
  // Result: result = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
 // Using std::ranges::copy_backward to copy elements in reverse
32
 std::ranges::copy_backward(numbers, result.end());
  // Result: result = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
```

- move
- ranges::move
- move_backward
- ranges::move_backward

```
std::vector<int> source = {1, 2, 3, 4, 5};
2 std::vector < int > destination (5);
4 // Using std::move to transfer elements from source to destination
5 | std::move(source.begin(), source.end(), destination.begin());
  // Result: destination = \{1, 2, 3, 4, 5\}
  // Result: source = {?, ?, ?, ?} (unspecified, but valid state)
  // Reset source for the next example
9
10
  source = \{6, 7, 8, 9, 10\};
  // Using std::move_backward to transfer elements from source to
     destination in reverse order
  std::move_backward(source.begin(), source.end(), destination.end()
     );
  // Result: destination = {6, 7, 8, 9, 10}
  // Result: source = {?, ?, ?, ?} (unspecified, but valid state)
```

5 Swap Operations

- swap
- swap_ranges
- ranges::swap_ranges
- iter_swap

```
9 | std::vector < int > vec2 = {6, 7, 8, 9, 10};
  // Before swap_ranges: vec1 = 1 2 3 4 5, vec2 = 6 7 8 9 10
11
  std::swap_ranges(vec1.begin(), vec1.end(), vec2.begin());
12
  // After swap_ranges: vec1 = 6 7 8 9 10, vec2 = 1 2 3 4 5
13
14
  // Demonstrate std::ranges::swap_ranges
  std::vector<int> vec3 = {11, 12, 13, 14, 15};
  std::vector<int> vec4 = {16, 17, 18, 19, 20};
  // Before ranges::swap_ranges: vec3 = 11 12 13 14 15, vec4 = 16 17
      18 19 20
19
  std::ranges::swap_ranges(vec3, vec4);
20
  // After ranges::swap_ranges: vec3 = 16 17 18 19 20, vec4 = 11 12
21
     13 14 15
22
  // Demonstrate std::iter_swap
24 std::vector<int> vec5 = {21, 22, 23, 24, 25};
25 // Before iter_swap: vec5 = 21 22 23 24 25
27
  std::iter_swap(vec5.begin(), vec5.begin() + 4);
  // After iter_swap: vec5 = 25 22 23 24 21
```

6 Transform Operations

- transform
- ranges::transform

```
1 #include <algorithm>
 #include <execution>
  #include <iostream>
  #include <vector>
  int main() {
6
      // Original vector
7
      std::vector<int> 11 = {1, 2, 3, 4, 5};
8
      std::vector<int> 12 = std::vector<int>(11.size(), 0);
      std::vector<int> 13 = std::vector<int>(11.size(), 0);
      // simple transform (1 input, 1 output)
      std::transform(l1.begin(), l1.end(), l2.begin(), [](int a) {
13
         return a * 10; });
14
      // transform (2 inputs, 1 output)
      int multiplier = 2;
      std::transform(std::execution::par_unseq, l1.begin(), l1.end()
17
         , 12.begin(), 13.begin(),
                      [multiplier] (int a, int b) { return (multiplier
                          * a) + b; });
19
      return 0;
20
21
```

- replace
- replace_if
- ranges::replace
- ranges::replace_if

```
| std::vector < int > numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
  // Using std::replace to replace all occurrences of 5 with 50
 std::replace(numbers.begin(), numbers.end(), 5, 50);
  // Result: numbers = {1, 2, 3, 4, 50, 6, 7, 8, 9, 10}
  // Using std::replace_if to replace all even numbers with 0
  std::replace_if(numbers.begin(), numbers.end(), [](int n) { return
      n % 2 == 0; }, 0);
  // Result: numbers = {1, 0, 3, 0, 0, 0, 7, 0, 9, 0}
9
10
  // Reset the numbers vector for ranges example
11
  numbers = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\};
12
13
  // Using std::ranges::replace to replace all occurrences of 5 with
      50
  std::ranges::replace(numbers, 5, 50);
15
  // Result: numbers = {1, 2, 3, 4, 50, 6, 7, 8, 9, 10}
16
  // Using std::ranges::replace_if to replace all even numbers with
18
  std::ranges::replace_if(numbers, [](int n) { return n % 2 == 0; },
19
  // Result: numbers = {1, 0, 3, 0, 0, 0, 7, 0, 9, 0}
```

- replace_copy
- ranges::replace_copy
- replace_copy_if
- ranges::replace_copy_if

```
1 std::vector<int> numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10};
2 | std::vector < int > result (numbers.size());
  // Using std::replace_copy to copy elements and replace 5 with 50 \,
  std::replace_copy(numbers.begin(), numbers.end(), result.begin(),
     5, 50);
  // Result: result = {1, 2, 3, 4, 50, 6, 7, 8, 9, 10}
6
  // Using std::replace_copy_if to copy elements and replace even
     numbers with 0
  std::replace_copy_if(numbers.begin(), numbers.end(), result.begin
9
      (), [](int n) { return n % 2 == 0; }, 0);
  // Result: result = {1, 0, 3, 0, 5, 0, 7, 0, 9, 0}
  // Using std::ranges::replace_copy to copy elements and replace 5
12
     with 50
  std::ranges::replace_copy(numbers, result.begin(), 5, 50);
13
  // Result: result = {1, 2, 3, 4, 50, 6, 7, 8, 9, 10}
14
  // Using std::ranges::replace_copy_if to copy elements and replace
16
      even numbers with 0
  std::ranges::replace_copy_if(numbers, result.begin(), [](int n) {
     return n % 2 == 0; }, 0);
  // Result: result = {1, 0, 3, 0, 5, 0, 7, 0, 9, 0}
```

7 Generation Operations

• fill

• fill n

• ranges::fill

• ranges::fill_n

```
std::vector<int> numbers(10);
  // Using std::fill to fill the entire vector with 5
4 std::fill(numbers.begin(), numbers.end(), 5);
  // Result: numbers = {5, 5, 5, 5, 5, 5, 5, 5}
6
  // Using std::fill_n to fill the first 5 elements with 3
  std::fill_n(numbers.begin(), 5, 3);
8
  // Result: numbers = {3, 3, 3, 3, 5, 5, 5, 5}
  // Using std::ranges::fill to fill the entire vector with 7
  std::ranges::fill(numbers, 7);
  // Result: numbers = {7, 7, 7, 7, 7, 7, 7, 7, 7}
13
14
15 // Using std::ranges::fill_n to fill the first 5 elements with 9
std::ranges::fill_n(numbers.begin(), 5, 9);
17 // Result: numbers = {9, 9, 9, 9, 7, 7, 7, 7}
```

- generate
- generate_n
- ranges::generate
- ranges::generate_n

```
std::vector < int > numbers (10);
  int value = 0;
  // Using std::generate to fill the vector with incrementing values
      starting from 1
  std::generate(numbers.begin(), numbers.end(), [&value]() { return
5
     ++value; });
  // Result: numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
6
  // Reset value for the next example
  value = 0;
10
  // Using std::generate_n to fill the first 5 elements with
11
     incrementing values starting from 1
 std::generate_n(numbers.begin(), 5, [&value]() { return ++value;
12
  // Result: numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
13
14
 // Reset value for the next example
15
16 | value = 0;
17
  // Using std::ranges::generate to fill the vector with
18
     incrementing values starting from 1
  std::ranges::generate(numbers, [&value]() { return ++value; });
19
  // Result: numbers = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10}
20
21
  // Reset value for the next example
22
  value = 0;
23
24
  // Using std::ranges::generate_n to fill the first 5 elements with
      incrementing values starting from 1
  std::ranges::generate_n(numbers.begin(), 5, [&value]() { return ++
     value; });
```

8 Removing Operations

- remove
- remove_if
- ranges::remove
- ranges::remove_if
- remove_copy
- remove_copy_if
- ranges::remove_copy
- ranges::remove_copy_if
- unique
- unique_copy
- ranges::unique
- ranges::unique_copy

9 Order-Changing Operations

- reverse
- ranges::reverse
- reverse_copy
- ranges::reverse_copy
- rotate
- rotate_copy
- ranges::rotate
- ranges::rotate_copy
- \bullet shift_left
- \bullet shift_right
- ranges::shift_left
- ranges::shift_right
- shuffle
- random_shuffle
- ranges::shuffle

10 Sampling Operations

- sample
- ranges::sample

11 Random Number Generation

• ranges::generate_random

12 Partitioning Operations

- is_partitioned
- ranges::is_partitioned
- partition
- ranges::partition
- partition_copy
- ranges::partition_copy
- stable_partition
- ranges::stable_partition
- partition_point
- ranges::partition_point

13 Sorting Operations

- sort
- ranges::sort
- stable_sort
- ranges::stable_sort
- partial_sort
- ranges::partial_sort
- partial_sort_copy
- ranges::partial_sort_copy
- is_sorted
- ranges::is_sorted
- is_sorted_until
- ranges::is_sorted_until
- ullet nth_element
- ranges::nth_element

14 Binary Search Operations (on partitioned ranges)

```
• lower_bound
```

```
• ranges::lower_bound
```

- upper_bound
- ranges::upper_bound
- equal_range
- ranges::equal_range
- binary_search
- ranges::binary_search

15 Set Operation (on sorted ranges)

- includes
- ranges::includes
- set_union
- ranges::set_union
- set_intersection
- ranges::set_intersection
- set_difference
- ranges::set_difference
- set_symmetric_difference
- ranges::set_symmetric_difference

16 Merge Operations (on sorted ranges)

- merge
- ranges::merge
- inplace_merge
- ranges::inplace_merge

```
std::vector < int > vec1 = {1, 3, 5, 7};
std::vector < int > vec2 = {2, 4, 6, 8};
std::vector < int > merged (vec1.size () + vec2.size ());

// Using std::merge to merge two sorted ranges into a new range
std::merge (vec1.begin (), vec1.end (), vec2.begin (), vec2.end (),
    merged.begin ());
// Result: merged = {1, 2, 3, 4, 5, 6, 7, 8}

// Using std::ranges::merge to merge two sorted ranges into a new
    range
std::vector < int > mergedRanges (vec1.size () + vec2.size ());
std::ranges::merge (vec1, vec2, mergedRanges.begin ());
// Result: mergedRanges = {1, 2, 3, 4, 5, 6, 7, 8}
```

17 Heap Operations

- push_heap
- ranges::push_heap
- pop_heap
- ranges::pop_heap

```
std::vector<int> heap = {3, 1, 4, 1, 5, 9, 2, 6};
3 // Convert the vector into a heap
  std::make_heap(heap.begin(), heap.end());
5 // Result: heap = {9, 6, 4, 1, 5, 3, 2, 1}
  // Using std::push_heap to add a new element and maintain heap
     property
 heap.push_back(7);
  std::push_heap(heap.begin(), heap.end());
  // Result: heap = {9, 7, 4, 6, 5, 3, 2, 1, 1}
11
 // Using std::pop_heap to remove the largest element and maintain
12
     heap property
  std::pop_heap(heap.begin(), heap.end());
13
  heap.pop_back();
  // Result: heap = {7, 6, 4, 1, 5, 3, 2, 1}
15
16
  // Using std::ranges::push_heap to add a new element and maintain
     heap property
18 heap.push_back(8);
  std::ranges::push_heap(heap);
  // Result: heap = {8, 7, 4, 6, 5, 3, 2, 1, 1}
21
 // Using std::ranges::pop_heap to remove the largest element and
22
     maintain heap property
std::ranges::pop_heap(heap);
14 heap.pop_back();
25 // Result: heap = {7, 6, 4, 1, 5, 3, 2, 1}
```

- make_heap
- ranges::make_heap
- sort_heap
- ranges::sort_heap

```
std::vector<int> numbers = {3, 1, 4, 1, 5, 9, 2, 6};
  // Using std::make_heap to create a max-heap from the numbers
     vector
  std::make_heap(numbers.begin(), numbers.end());
  // Result: numbers = {9, 6, 4, 1, 5, 1, 2, 3}
  // Using std::sort_heap to sort the heap
  std::sort_heap(numbers.begin(), numbers.end());
  // Result: numbers = {1, 1, 2, 3, 4, 5, 6, 9}
9
10
  // Reset the numbers vector for ranges example
11
  numbers = \{3, 1, 4, 1, 5, 9, 2, 6\};
12
13
  // Using std::ranges::make_heap to create a max-heap from the
     numbers vector
  std::ranges::make_heap(numbers);
15
  // Result: numbers = {9, 6, 4, 1, 5, 1, 2, 3}
16
 // Using std::ranges::sort_heap to sort the heap
18
19 | std::ranges::sort_heap(numbers);
20 // Result: numbers = {1, 1, 2, 3, 4, 5, 6, 9}
```

- is_heap
- ranges::is_heap
- is_heap_until
- ranges::is_heap_until

```
1 std::vector<int> numbers = {9, 6, 4, 1, 5, 1, 2, 3};
  // Using std::is_heap to check if the numbers vector is a heap
  bool isHeap = std::is_heap(numbers.begin(), numbers.end());
  // Result: isHeap = true
  // Using std::is_heap_until to find the first position where the
     heap property is violated
  auto heapEnd = std::is_heap_until(numbers.begin(), numbers.end());
  // Result: heapEnd points to numbers.end(), indicating the entire
9
     range is a heap
  // Using std::ranges::is_heap to check if the numbers vector is a
11
  bool isHeapRanges = std::ranges::is_heap(numbers);
  // Result: isHeapRanges = true
13
  // Using std::ranges::is_heap_until to find the first position
     where the heap property is violated
  auto heapEndRanges = std::ranges::is_heap_until(numbers);
  // Result: heapEndRanges points to numbers.end(), indicating the
17
     entire range is a heap
19 // Modify the vector to violate the heap property
20 numbers = \{9, 6, 4, 10, 5, 1, 2, 3\};
22 // Re-check using std::is_heap
isHeap = std::is_heap(numbers.begin(), numbers.end());
24 // Result: isHeap = false
25
  // Re-check using std::is_heap_until
27 | heapEnd = std::is_heap_until(numbers.begin(), numbers.end());
```

18 Min/Max Operations

- max
- min
- ranges::max
- ranges::min

```
int a = 10;
int b = 20;

// Using std::max to find the maximum of two values
int maxVal = std::max(a, b);
// Result: maxVal = 20

// Using std::min to find the minimum of two values
int minVal = std::min(a, b);
// Result: minVal = 10

std::vector<int> numbers = {3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5};

// Using std::ranges::max to find the maximum value in a range
int maxInRange = std::ranges::max(numbers);
// Result: maxInRange = 9

// Using std::ranges::min to find the minimum value in a range
int minInRange = std::ranges::min (numbers);
// Result: minInRange = 1
```

- max element
- \bullet min_element
- ranges::max_element
- ranges::min_element

```
std::vector<int> numbers = {3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5};

// Using std::max_element to find the maximum element in a range
auto maxElement = std::max_element(numbers.begin(), numbers.end())
;

// Result: *maxElement = 9

// Using std::min_element to find the minimum element in a range
auto minElement = std::min_element(numbers.begin(), numbers.end())
;
// Result: *minElement = 1
```

```
// Using std::ranges::max_element to find the maximum element in a
    range
auto maxElementRanges = std::ranges::max_element(numbers);
// Result: *maxElementRanges = 9

// Using std::ranges::min_element to find the minimum element in a
    range
auto minElementRanges = std::ranges::min_element(numbers);
// Result: *minElementRanges = 1
```

- minmax
- ranges::minmax
- minmax_element
- ranges::minmax_element

```
int a = 10;
  int b = 20;
  // Using std::minmax to find the minimum and maximum of two values
  auto minmaxPair = std::minmax(a, b);
  // Result: minmaxPair.first = 10, minmaxPair.second = 20
  std::vector<int> numbers = {3, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5};
  // Using std::minmax_element to find the minimum and maximum
10
     elements in a range
  auto minmaxElements = std::minmax_element(numbers.begin(), numbers
11
     .end());
  // Result: *minmaxElements.first = 1, *minmaxElements.second = 9
12
13
  // Using std::ranges::minmax to find the minimum and maximum in a
14
     range
15
  auto minmaxRange = std::ranges::minmax(numbers);
  // Result: minmaxRange.min = 1, minmaxRange.max = 9
17
  // Using std::ranges::minmax_element to find the minimum and
     maximum elements in a range
  auto minmaxRangeElements = std::ranges::minmax_element(numbers);
19
  // Result: *minmaxRangeElements.min = 1, *minmaxRangeElements.max
20
21
  // TODO (ksolomon): make sure usage is correct. why does minmax
22
     return a pair, whereas ranges::minmax return a tuple?
```

- clamp
- ranges::clamp

```
12 // Result: clampedBelow = 10
  // Using std::clamp to constrain a value above the upper bound
14
  int aboveUpper = 25;
15
  int clampedAbove = std::clamp(aboveUpper, lowerBound, upperBound);
  // Result: clampedAbove = 20
17
  // Using std::ranges::clamp to constrain the value within the
     range [lowerBound, upperBound]
  int clampedValueRanges = std::ranges::clamp(value, lowerBound,
20
     upperBound);
  // Result: clampedValueRanges = 15
21
22
  // Using std::ranges::clamp to constrain a value below the lower
23
  int clampedBelowRanges = std::ranges::clamp(belowLower, lowerBound
     , upperBound);
  // Result: clampedBelowRanges = 10
  // Using std::ranges::clamp to constrain a value above the upper
27
     bound
28
  int clampedAboveRanges = std::ranges::clamp(aboveUpper, lowerBound
     , upperBound);
  // Result: clampedAboveRanges = 20
```

19 Lexicographical Operations

- lexicographical_compare
- ranges::lexicographical_compare
- lexicographical_compare_three_way

20 Permutation Operations

- next_permutation
- ranges::next_permutation
- previous_permutation
- ranges::previous_permutation
- is_permutation
- ranges::is_permutation

```
std::vector < int > numbers = {1, 2, 3};
std::vector < int > otherNumbers = {3, 2, 1};

// Using std::next_permutation to get the next lexicographical permutation
std::next_permutation(numbers.begin(), numbers.end());

// Result: {1, 3, 2}

// Using std::ranges::next_permutation to get the next lexicographical permutation
std::ranges::next_permutation(numbers);

// Result: {2, 1, 3}

// Using std::previous_permutation to get the previous lexicographical permutation
std::previous_permutation(numbers.begin(), numbers.end());
```

```
14 // Result: {1, 3, 2}
  // Using std::ranges::previous_permutation to get the previous
16
     lexicographical permutation
  std::ranges::previous_permutation(numbers);
17
  // Result: {1, 2, 3}
18
  // Using std::is_permutation to check if two sequences are
     permutations of each other
  bool isPermutation = std::is_permutation(numbers.begin(), numbers.
21
     end(), otherNumbers.begin());
  // Result: true
22
23
  // Using std::ranges::is_permutation to check if two sequences are
24
      permutations of each other
  |bool isPermutationRanges = std::ranges::is_permutation(numbers,
     otherNumbers);
  // Result: true
```

21 Numeric Operations

- iota
- ranges::iota

```
// Using std::iota to fill a vector with sequential values
std::vector<int> numbers(10);
std::iota(numbers.begin(), numbers.end(), 1); // Fills with
    values starting from 1

// Using std::ranges::iota to fill another vector with sequential
    values
std::vector<int> moreNumbers(10);
std::ranges::iota(moreNumbers, 11); // Fills with values starting
    from 11
```

- accumulate
- reduce
- transform reduce

```
std::vector < int > numbers = {1, 2, 3, 4, 5};

// Using std::accumulate to sum the elements
int sum = std::accumulate(numbers.begin(), numbers.end(), 0);

// Using std::reduce to sum the elements (C++17)
int sumReduce = std::reduce(std::execution::seq, numbers.begin(), numbers.end(), 0);

// Using std::transform_reduce to compute the sum of squares
int sumOfSquares = std::transform_reduce(numbers.begin(), numbers.end(), 0, std::plus<>(), [](int n) { return n * n; });
```

• inner_product

```
std::vector<int> vector1 = {1, 2, 3};
std::vector<int> vector2 = {4, 5, 6};

// Using std::inner_product to compute the inner product of vector1 and vector2
```

```
int result = std::inner_product(vector1.begin(), vector1.end(),
    vector2.begin(), 0);
// result = 32
```

• adjacent_difference

```
std::vector <int > numbers = {1, 2, 3, 4, 5};
std::vector <int > partialSums(numbers.size());

// Using std::partial_sum to compute the partial sums of the numbers vector
std::partial_sum(numbers.begin(), numbers.end(), partialSums.begin());
// partialSums: [1, 3, 6, 10, 15]
```

• partial_sum

```
std::vector<int> numbers = {1, 2, 3, 4, 5};
std::vector<int> partialSums(numbers.size());

// Using std::partial_sum to compute the partial sums of the numbers vector
std::partial_sum(numbers.begin(), numbers.end(), partialSums.begin());
// partialSums = [1,3,6,10,15]
```

- exclusive_scan
- inclusive_scan
- transform_exclusive_scan
- transform_inclusive_scan

```
std::vector<int> numbers = {1, 2, 3, 4, 5};
2 | std::vector < int > exclusiveScanResult (numbers.size());
 std::vector<int> inclusiveScanResult(numbers.size());
  std::vector<int> transformExclusiveScanResult(numbers.size());
  std::vector<int> transformInclusiveScanResult(numbers.size());
  // Using std::exclusive_scan to compute exclusive prefix sums
  std::exclusive_scan(numbers.begin(), numbers.end(),
     exclusiveScanResult.begin(), 0);
  // Result: {0, 1, 3, 6, 10}
9
10
  // Using std::inclusive_scan to compute inclusive prefix sums
  std::inclusive_scan(numbers.begin(), numbers.end(),
     inclusiveScanResult.begin());
  // Result: {1, 3, 6, 10, 15}
13
14
  // Using std::transform_exclusive_scan to compute exclusive prefix
15
      sums of squares
  std::transform_exclusive_scan(numbers.begin(), numbers.end(),
16
     transformExclusiveScanResult.begin(), 0, std::plus<>(),
                                 [](int n) { return n * n; });
17
  // Result: {0, 1, 5, 14, 30}
18
19
  // Using std::transform_inclusive_scan to compute inclusive prefix
      sums of squares
  std::transform_inclusive_scan(numbers.begin(), numbers.end(),
     \verb|transformInclusiveScanResult.begin()|, & std::plus <>()|,
                                 [](int n) { return n * n; });
22
  // Result: {1, 5, 14, 30, 55}
```

22 Uninitialized Memory Operations