関数解析レポート

百合川

2017年7月23日

(約束及び定義)

- 係数体は複素数体 C.
- 位相空間 X, Y に対し, $C(X, Y) = \{f \mid f \text{ は } X \text{ から } Y \text{ への連続写像 } \}; C(X) = C(X, \mathbb{C}).$ $C_b(X) = \{f \in C(X) \mid f \text{ は有界 } \}$ は $\|u\| = \sup_{x \in X} |u(x)|$ をノルム (sup-norm) として Banach 空間である.
- s を複素数列全体のなす線形空間とする. $l^{\infty} = \{a = (a_n)_{n=1}^{\infty} \in s \mid \|a\|_{l^{\infty}} = \sup_n |a_n| < \infty\}$, $c_0 = \{a = (a_n)_{n=1}^{\infty} \in |\lim_{n\to\infty} a_n = 0\}$. このとき l^{∞} は $\|a\|_{l^{\infty}}$ をノルムとして Banach 空間である.

[4]. $k \in \mathbb{N}_0$, I = [a,b] とする. $C^k(I)$ は $|f|_k = \sum_{j=1}^k \sup_{x \in I} \left| f^{(j)}(x) \right|$ をノルムとして Banach 空間であることを示せ.

証明. 以下の手順で示す.

- (i) $|f|_k$ if $C^k(I)$ におけるノルムをなすこと.
- (ii) $C^k(I)$ の $|\cdot|_k$ による Cauchy 列を取ると,各 j (= 0,1,2,…,k) 階導関数列に対しそれぞれ或る I 上の連続関数 f^j が存在し,それぞれの導関数列はこの関数に I 上で一様収束する.
- (iii) 各 $j = 0, 1, 2, \dots, k-1$, について f^j は I 上連続微分可能で $f^{j+1}(x) = \frac{d}{dx} f^j(x)$ ($\forall x \in I$) が成り立っている.

(i) について、 $\forall f,g \in C^k(I)$ に対し、正値性 $|f|_k \ge 0$ は右辺の各項が ≥ 0 であることから成り立つ。また $|f|_k = 0$ の場合、右辺で $\sup_{x \in I} |f^{(j)}(x)| = 0$ ($j = 0,1,2,\cdots,k$) が成り立ち、特に f は I 上で零写像であるとわかるから f = 0 である。逆に f が I 上で零写像ならば全ての導関数が零写像になるため右辺は 0 になり、従って $|f|_k = 0$ となる。同次性は

$$|\alpha f|_{k} = \sum_{j=1}^{k} \sup_{x \in I} \left| (\alpha f^{(j)})(x) \right| = \sum_{j=1}^{k} \sup_{x \in I} \left| \alpha f^{(j)}(x) \right| = \sum_{j=1}^{k} \sup_{x \in I} \left| \alpha f^{(j)}(x) \right| = |\alpha| \sum_{j=1}^{k} \sup_{x \in I} \left| f^{(j)}(x) \right| = |\alpha| |f|_{k}, \quad (\forall \alpha \in \mathbb{C})$$

により示される. 三角不等式は

$$|f + g|_k = \sum_{j=1}^k \sup_{x \in I} \left| (f^{(j)} + g^{(j)})(x) \right| \le \sum_{j=1}^k \sup_{x \in I} \left| f^{(j)}(x) + g^{(j)}(x) \right| \le \sum_{j=1}^k \left| \sup_{x \in I} \left| f^{(j)}(x) \right| + \sup_{x \in I} \left| g^{(j)}(x) \right| \right| = |f|_k + |g|_k$$

により示される.

(ii) について、 $f_n \in C^k(I)$ $(n=1,2,3,\cdots)$ を $C^k(I)$ の $|\cdot|_k$ による Cauchy 列とする.任意の $\epsilon>0$ に対し或る $N\in\mathbb{N}$ が存在して全ての n,m>N で

$$\epsilon > |f_n - f_m|_k = \sum_{j=1}^k \sup_{x \in I} |f_n^{(j)}(x) - f_m^{(j)}(x)|$$

が成り立っているから、各 $j=0,1,2,\cdots,k$ について $(f_n^{(j)})_{n=1}^{+\infty}$ は sup-norm に関して Cauchy 列をなしている。 $(C(I),\sup -\operatorname{norm})$ が Banach 空間であることが認められているから、各 $j=0,1,2,\cdots,k$ についてそれぞれ或る I 上の連続関数 f^j が存在して $(f_n^{(j)})_{n=1}^{+\infty}$ は f^j に sup-norm で収束,即ち I 上で一様収束する.

(iii) について、上で取った $(f_n)_{n=1}^{+\infty} \subset C^k(I)$ について、全ての $n \in \mathbb{N}$ と $j=0,1,2,\cdots,k-1$ に対して次の関係が成り立っている.

$$f_n^{(j)}(x) - f_n^{(j)}(b) = \int_b^x f_n^{(j+1)}(t) dt, \quad (\forall x \in I).$$

ここで (ii) の結果から、任意の $x \in I$ と $\epsilon > 0$ に対し或る $N \in \mathbb{N}$ が存在して全ての n > N で

$$\left| f^{j}(x) - f_{n}^{(j)}(x) \right| < \frac{\epsilon}{3}, \quad \left| f_{n}^{(j+1)}(x) - f^{j+1}(x) \right| < \frac{\epsilon}{3(b-a)}$$

が成り立つようにできるから、同じ n について

$$\left| (f^{j}(x) - f^{j}(b)) - \int_{b}^{x} f^{j+1}(t) dt \right| = \left| (f^{j}(x) - f^{j}(b)) - (f_{n}^{(j)}(x) - f_{n}^{(j)}(b)) + \int_{b}^{x} f_{n}^{(j+1)}(t) dt - \int_{b}^{x} f^{j+1}(t) dt \right|$$

$$\leq \left| f^{j}(x) - f_{n}^{(j)}(x) \right| + \left| f^{j}(b) - f_{n}^{(j)}(b) \right| + \int_{b}^{x} \left| f_{n}^{(j+1)}(t) - f^{j+1}(t) \right| dt$$

$$< \frac{\epsilon}{3} + \frac{\epsilon}{3} + (b - a) \frac{\epsilon}{3(b - a)} = \epsilon$$

が成り立つ. ϵ は任意だから

$$f^{j}(x) - f^{j}(b) = \int_{b}^{x} f^{j+1}(t) dt, \quad (\forall x \in I, j = 0, 1, 2, \dots, k-1)$$

が示されたことになる。右辺は連続関数 f^{j+1} の積分だから左辺 f^j は x に関して微分可能関数 (端点は片側微分を考える) となり、導関数は f^{j+1} である。ゆえに $f^0 \in C^k(I)$ が示される。表記を改めて $f := f^0$, $f^{(j)} := f^j$ $(j=1,2,\cdots,k)$ とすれば

$$|f_n - f|_k = \sum_{i=1}^k \sup_{x \in I} \left| f_n^{(j)}(x) - f^{(j)}(x) \right| \longrightarrow 0 \quad (n \to +\infty)$$

が成り立つから, $C^k(I)$ が $|\cdot|_k$ をノルムとして Banach 空間をなしていると示された.

[11].

- (1) c_0 は l^{∞} の閉線形部分空間であることを示せ.
- (2) l^{∞} と c_0 が可分であるかどうか判定せよ.

証明.

(1) まず $c_0 \subset l^\infty$ であることを示す. $\forall a = (a_n)_{n=1}^\infty \in c_0$ は収束点列であるから

$$(\forall \epsilon > 0)(\exists N \in \mathbb{N})(\forall n > N) |a_n| < \epsilon$$

となり

$$\sup_{n \in \mathbb{N}} |a_n| \le \max\{|a_1|, |a_2|, \dots, |a_N|, \epsilon\} < +\infty$$

が成り立ち $a\in l^\infty$ であるとわかる. 従って $c_0\subset l^\infty$ である. つぎに c_0 が s の線形部分空間 であることを示す. $\forall a=(a_n)_{n=1}^\infty,\ b=(b_n)_{n=1}^\infty\in c_0,\ \alpha\in\mathbb{C}$ に対し

$$|a_n + b_n| \le |a_n| + |b_n| \longrightarrow 0 \quad (n \longrightarrow +\infty),$$

 $|\alpha a_n| = |\alpha||a_n| \longrightarrow 0 \quad (n \longrightarrow +\infty)$

が成り立つことにより $a+b\in c_0$ と $\alpha a\in c_0$ が示される.従って c_0 は s の線形部分空間であり,さらに l^∞ の線形部分空間でもある.最後に c_0 が l^∞ で閉集合となっていることを示す. l^∞ は $\|\cdot\|_{l^\infty}$ をノルムとして Banach 空間となっているから,その部分空間である c_0 が $\|\cdot\|_{l^\infty}$ をノルムとして Banach 空間をなしていることを示せばよい. $a^{(n)}=(a_m^{(n)})_{m=1}^\infty\in c_0$ $(m=1,2,3,\cdots)$ を $\|\cdot\|_{l^\infty}$ に関する Cauchy 列とする. $(l^\infty,\|\cdot\|_{l^\infty})$ が完備であるから, $(a^n)_{n=1}^\infty$ は或る $a^*=(a_m^*)_{m=1}^\infty\in l^\infty$ に m に関して一様に収束している. つまり任意の $\epsilon>0$ に対して或る $N\in\mathbb{N}$ が存在して,全ての n>N について

$$\|a^{(n)} - a^*\|_{l^{\infty}} = \sup_{m \in \mathbb{N}} |a_m^{(n)} - a_m^*| < \epsilon$$

が成り立っている. $a^*=(a_m^*)_{m=1}^\infty$ が c_0 の元であることは帰謬法で示す. $a^*\notin c_0$ であると仮定すると、或る $\delta>0$ に対しては、いかなる $N\in\mathbb{N}$ を取っても必ず n>N なる自然数で

$$|a_n^*| \geq \delta$$

を満たすものが存在する. $(a_m^*)_{m=1}^\infty$ の部分列 $(a_{m_k}^*)_{k=1}^\infty$ を

$$|a_{m_k}^*| \ge \delta$$
, $(m_k < m_{k+1}, k = 1, 2, 3, \cdots)$

を満たすものとして取ることが出来て、この部分添数列に対して或る $N_\delta \in \mathbb{N}$ を取れば、全 ての $n > N_\delta$ で

$$\sup_{k\in\mathbb{N}}\left|a_{m_k}^{(n)}-a_{m_k}^*\right|<\frac{\delta}{2}$$

が成立することになる. $n>N_\delta$ なる n に対し数列 $a_n=(a_m^{(n)})_{m=1}^\infty$ は c_0 の元であるから,或る $N_\delta^n\in\mathbb{N}$ が存在して全ての $p>N_\delta^n$ に対し

$$\left|a_p^{(n)}\right| < \frac{\delta}{2}$$

となるはずであるが、或る $k \in \mathbb{N}$ について $m_k > N_\delta^n$ となるような添数 m_k が存在することに注意すれば、ここにおいて

$$\frac{\delta}{2} \le \left| a_{m_k}^* \right| - \frac{\delta}{2} < \left| a_{m_k}^{(n)} \right| < \frac{\delta}{2}$$

と矛盾が出る. 従って $a^* \in c_0$ であるべきで、これは c_0 が $\|\cdot\|_{l^\infty}$ をノルムとして完備であることを示したことになる. ゆえに c_0 は l^∞ の閉線形部分空間である.

(2) 結論は、 l^{∞} は可分ではなく c_0 は可分である.順番に示す. l^{∞} の部分集合として 0 と 1 のみで成る数列全体

$$M := \left\{ a \in l^{\infty} \mid a = (a_n)_{n=1}^{+\infty}, \ a_n \in \{0, 1\}, \ n = 1, 2, 3, \dots \right\}$$

を考える. また任意の $a=(a_n)_{n=1}^\infty,\,b=(b_n)_{n=1}^\infty\in M$ に対し

$$||a-b||_{l^{\infty}} = \sup_{n \in \mathbb{N}} |a_n - b_n| = \begin{cases} 1 & (a=b) \\ 0 & (a \neq b) \end{cases}$$

が成り立つから,M の異なる 2 元の $\|\cdot\|_{l^\infty}$ による距離は 1 で固定されている.もし l^∞ が可分であるとすれば, $\|\cdot\|_{l^\infty}$ に関して l^∞ で稠密な可算部分集合 C が存在することになる.任

意の $a \in M$ に対してその 1/2 近傍 (sup-norm) の内部に C の元が存在していることになるから,そのうちの一つを c_a と表し対応を付ける. $a \in M$ に対応する $c_a \in C$ は他の M の元の 1/2 近傍に属することはない.もし c_a が或る $a \neq b \in M$ の 1/2 近傍に入ると

$$1 = \|a - b\|_{l^{\infty}} \le \|a - c_a\|_{l^{\infty}} + \|b - c_a\|_{l^{\infty}} < \frac{1}{2} + \frac{1}{2} = 1$$

と矛盾ができるからである. 即ち M から C への対応関係 $M \ni a \mapsto c_a \in C$ は単射である. ここで M の濃度 $2^\mathbb{N}$ が連続体濃度であることに注意すれば、単射の存在により C の濃度が連続体濃度以上であることになり C が可算集合であることに反する. 従って \mathbb{N}^{∞} は可分ではない. 一方で c_0 は $\|\cdot\|_{\mathbb{N}^{\infty}}$ をノルムとして可分なノルム空間をなす. c_0 の可算部分集合を

$$S := \left\{ a \in c_0 \mid a = (\alpha_n + i\beta_n)_{n=1}^{+\infty}, \begin{cases} \alpha_n, \, \beta_n \in \mathbb{Q}, & n = 1, 2, \dots, N, \\ \alpha_n = \beta_n = 0, & n \ge N+1, \end{cases} (N = 1, 2, 3, \dots) \right\}$$

として取る. ただし i は $i^2=-1$ なる虚数単位で $\mathbb Q$ は有理数全体である. 任意の $a=(a_n)_{n=1}^{+\infty}\in c_0$ について、任意の正数 $\epsilon>0$ に対して或る $N\in\mathbb N$ を取れば全ての n>N で

$$|a_n| < \epsilon$$

が成り立つから、後は $(a_n)_{n=1}^N$ の部分で

$$\sup_{n=1,2,\cdots,N} |a_n - b_n| < \epsilon$$

となるように S の元 $b=(b_n)_{n=1}^{+\infty}$ $(b_n=0,\ n>N)$ を取れば

$$||a-b||_{l^{\infty}}<\epsilon$$

が成り立つ. 即ちS が c_0 において $\|\cdot\|_{l^\infty}$ に関して稠密であるとわかり, c_0 が可分であると示された.

[5]. X = C([0,1]) を sup-norm の入った Banach 空間とする. 0 < a < 1, $Y = \{f \in X; [0,a]$ 上で $f(t) = 0\}$ とおく.

- (1) Y が X の閉線形部分空間であることを示せ.
- (2) X/Y と C([0, a])(sup-norm を入れる) は Banach 空間として同型であることを示せ.

証明.

(1) Y が X の線形部分空間であることは、任意の $f,g \in Y$ と任意の複素数 $\alpha \in \mathbb{C}$ に対して

$$(f+g)(t) = f(t) + g(t) = 0, \quad (\forall t \in [0, a])$$

 $(\alpha f)(t) = \alpha f(t) = 0, \quad (\forall t \in [0, a])$

が成り立つことから示される.後は sup-norm に関して Y が閉集合となっていることを示せばよい. $f_n \in Y$ $(n=1,2,3,\cdots)$ を sup-norm に関する Cauchy 列とする. $(C([0,1]), \sup - \operatorname{norm})$ の完備性から $(f_n)_{n=1}^{\infty}$ は或る $f \in C([0,1])$ に [0,1] 上で一様に収束するが,もし或る $x \in [0,a]$ について |f(x)| > 0 であるならば,この x において $f_n(x) = 0$ $(n=1,2,3,\cdots)$ であることから

$$0 < |f(x)| = |f_n(x) - f(x)| \le \sup_{t \in [0, 1]} |f_n(t) - f(t)|, \qquad (n = 1, 2, 3, \dots)$$

となり $(f_n)_{n=1}^{\infty}$ が f に収束することに反する.従って f も [0, a] 上で 0 でなくてはならず,f は Y に属することになる.これは Y が \sup -norm の下で完備ノルム空間となっていることを主張し,以上より Y は X の閉線形部分空間であると示された.

(2) X の sup-norm を $\|\cdot\|$ で表現する. X を Y で割った商空間 X/Y の元を [f] (代表元 $f \in X$) で表現して,Y が閉線形部分空間であるから X/Y は

$$\|[f]\|_{X/Y} := \inf_{g \in Y} \|f - g\|, \qquad ([f] \in X/Y)$$

をノルムとしてノルム空間となり、さらに $(X, \|\cdot\|)$ が Banach 空間であるから $(X/Y, \|\cdot\|_{X/Y})$ も Banach 空間となる. 任意の $[f] \in X/Y$ について $f_1, f_2 \in [f]$ は $f_1 - f_2 \in Y$ を満たすから 即ち

$$f_1(t) = f_2(t) \quad (\forall t \in [0, a])$$

が成り立っている.

$$\| [f] \|_{X/Y} = \inf_{g \in Y} \| f - g \| = \inf_{g \in Y} \sup_{t \in [0, 1]} |f(t) - g(t)| = \sup_{t \in [0, a]} |f(t)|$$

が成り立つことに注意する.

$$\sup_{t \in [0, a]} |f(t)| = \sup_{t \in [0, a]} |f(t) - g(t)| \le \sup_{t \in [0, 1]} |f(t) - g(t)| \quad (\forall g \in Y)$$

$$\sup_{t \in [0, a]} |f(t)| \le \inf_{g \in Y} \sup_{t \in [0, 1]} |f(t) - g(t)|$$

[f] の元の定義域を [0,a] に制限した関数は C([0,a]) の或る元に一致する. C([0,a]) の任意の元は定義域を [0,1] に拡張 (例えば [a,1] 上では適当な一次関数でおく) すれば X=C([0,1]) の或る元に一致するから或る X/Y の或る元 (同値類) に属するしていることになる. 写像 $X/Y\ni [f]\mapsto f|_{[0,a]}\in C([0,a])$ は X/Y から C([0,a]) への全単射である. この写像を T と表すとする. T は次の意味で等長である. $\|[f]\|_{X/Y}=\|f|_{[0,a]}\|=\|T[f]\|$. T の線型性は

$$T([f] + [h]) = T[f + h] = (f + h)|_{[0, a]} = f|_{[0, a]} + h|_{[0, a]} = T[f] + T[h],$$

$$T(\alpha[f]) = T[\alpha f] = (\alpha f)|_{[0, a]} = \alpha f|_{[0, a]} = \alpha T[f]$$

により示される. ゆえに T は $X/Y \mapsto C([0, a])$ の同型写像であり, $X/Y \triangleright C([0, a])$ が Banach 空間として同型であることが示された.

[6]. $I=[0,\ 1]$ とし、X=C(I) を sup-norm の入った Banach 空間とする. $K\in C(I\times I)$ とし、 $A=\sup_{(t,s)\in I\times I}|K(t,s)|$ とおく. $u\in X$ に対して $Tu:I\mapsto \mathbb{C}$ を次で定める:

$$Tu(t) = \int_0^t K(t, s)u(s) ds, \ (t \in I).$$

- (1) $u \in X$ ならば $Tu \in X$ を示せ.
- (2) 写像 $X \ni u \mapsto Tu \in X$ を同じ記号 T であらわすとき, $T \in B(X)$ 及び $||T^n|| \le A^n/n!$ $(n \in \mathbb{N}_0)$ を示せ.

(3) I-T は逆作用素を持ち、 $(I-T)^{-1} \in B(X)$ であることを示せ、ただし I は X の高等写像である.

証明. X における sup-norm を $\|\cdot\|_X$ と表す. また $T^0 = I$ (恒等写像) として考える.

(1) $u \in X$ に対して Tu が I 上で連続であることを示せばよい. 任意の正数 $\epsilon > 0$ に対して $\delta = \epsilon/A \|u\|_X$ と取れば, $t \in [0, 1]$ と $t + h \in [0, 1] \cap (t, t + \delta)$ に対して

$$|Tu(t+h) - Tu(t)| = \left| \int_0^{t+h} K(t,s)u(s) \, ds - \int_0^t K(t,s)u(s) \, ds \right|$$

$$\leq \left| \int_t^{t+h} K(t,s)u(s) \, ds \right|$$

$$\leq \int_t^{t+h} |K(t,s)||u(s)| \, ds$$

$$\leq \int_t^{t+h} \sup_{s \in I} |K(t,s)||u(s)| \, ds$$

$$\leq A ||u||_X h < \epsilon$$

が成り立つことにより Tu が [0, 1) 上右連続であることが示される. 同様にして Tu が (0, 1] 上で左連続であることも示されるから, $Tu \in X$ が示される.

(2) (1) の結果より $X \ni u \mapsto Tu \in X$ が判っているから、後は写像 $T: X \mapsto X$ の線型性を示せば、T が X を定義域とする線型作用素であること、即ち $T \in B(X)$ が示される。T の線型性は、任意の $u,v \in X$, $\alpha \in \mathbb{C}$, $t \in I$ に対して

$$T(u+v)(t) = \int_0^t K(t,s)(u+v)(s) \, ds = \int_0^t K(t,s)(u(s)+v(s)) \, ds = \int_0^t K(t,s)u(s) \, ds + \int_0^t K(t,s)v(s) \, ds = Tu(t) \int_0^t K(t,s)u(s) \, ds = \int_0^t K(t,s)u(s) \, ds =$$

$$T(\alpha u)(t) = \int_0^t K(t,s)(\alpha u)(s) \, ds = \int_0^t K(t,s)(\alpha u(s)) \, ds = \alpha \int_0^t K(t,s)u(s) \, ds = \alpha T u(t)$$

が成り立つことにより示される. 次に $\|T^n\| \leq A^n/n! \ (n \in \mathbb{N}_0)$ を示すが、その準備に次のことを示す.

$$|T^n u(t)| \le \frac{A^n}{n!} ||u||_X t^n, \quad (t \in I, \ n = 1, 2, 3, \cdots).$$
 (1)

証明は数学的帰納法による. n=1 のとき

$$|Tu(t)| = \left| \int_0^t K(t,s)u(s) \, ds \right| \leq \int_0^t |K(t,s)||T^ku(s)| \, ds \leq \int_0^t \sup_{s \in I} |K(t,s)||T^ku(s)| \, ds \leq A \, ||u||_X \int_0^t \, ds = A \, ||u||_X \, t$$

が成り立つ. n = k のとき (1) を仮定すると,

$$|T^{k+1}u(t)| = |T(T^ku)(t)| = \left| \int_0^t K(t,s)T^ku(s) \, ds \right| \le \int_0^t |K(t,s)||T^ku(s)| \, ds \le \int_0^t \sup_{s \in I} |K(t,s)| \frac{A^k}{k!} \, ||u||_X \, s^k \, ds \le \frac{A^{k+1}u(t)}{(k+1)!} \, ds \le \int_0^t \sup_{s \in I} |K(t,s)| \frac{A^k}{k!} \, ||u||_X \, s^k \, ds \le \frac{A^{k+1}u(t)}{(k+1)!} \, ds \le \int_0^t \sup_{s \in I} |K(t,s)| \, ds \le \int_0^t |$$

となることにより (1) が任意の $n \in \mathbb{N}$ で成立すると示された。従って $t \in I$ についての上限を取れば

$$||T^n u||_X = \sup_{t \in I} |T^n u(t)| \le \sup_{t \in I} \frac{A^n}{n!} ||u||_X t^n = \frac{A^n}{n!} ||u||_X, \quad (\forall u \in X, \ n = 1, 2, 3, \dots)$$

となる. n=0 の場合は、 $\|Iu\|_X=\|u\|_X$ ($\forall u\in X$) により $\|T^0\|=\|I\|=1$ である. 以上より $\|T^n\|\leq A^n/n!$ $(n\in\mathbb{N}_0)$ となることが示された.

(3) $(X, \|\cdot\|_X)$ が Banach 空間であるから B(X) も作用素ノルムの下で Banach 空間となっている. 従って級数

$$\sum_{n=0}^{+\infty} T^n \tag{2}$$

が収束することの十分条件は

$$\sum_{n=0}^{+\infty} ||T^n|| < +\infty$$

が成り立つことである. 今, (2) の結果より

$$\sum_{n=0}^{+\infty} ||T^n|| \le \sum_{n=0}^{+\infty} \frac{A^n}{n!} = e^A < +\infty$$

が成り立っているから(2)は収束する. つまり

$$T^* \coloneqq \sum_{n=0}^{+\infty} T^n$$

と表せば T^* は B(X) の元であり、部分和を $T_N\coloneqq \sum_{n=0}^N T^n\;(N=0,1,2,\cdots)$ と表現して $T_N\to T^*\;(N\to +\infty)$ が成り立っていることになる.これと

 $\|(TT^* - TT_N)u\|_X = \|TT^*u - TT_Nu\|_X = \|T(T^*u) - T(T_Nu)\|_X = \|T(T^*u - T_Nu)\|_X = \|T(T^* - T_N)u\|_X$

لح

 $\| (T^*T - T_NT)u \|_X = \| T^*Tu - T_NTu \|_X = \| T^*(Tu) - T_N(Tu) \|_X = \| (T^* - T_N)Tu \|_X$

$$||TT^* - TT_N|| \le ||T|| ||T^* - T_N|| \longrightarrow 0 \ (N \longrightarrow +\infty)$$
 (3)

لح

$$||T^*T - T_NT|| \le ||T^* - T_N|| ||T|| \longrightarrow 0 \ (N \longrightarrow +\infty) \tag{4}$$

が成り立つ. (3) により

$$TT^* = \lim_{N \to \infty} TT_N = \lim_{N \to \infty} \sum_{n=1}^{N+1} T^n = \sum_{n=1}^{+\infty} T^n = T^* - I$$

が成り立つから $I = T^* - TT^* = (I - T)T^*$ と表現でき、また (4) により

$$T^*T = \lim_{N \to \infty} T_N T = \lim_{N \to \infty} \sum_{n=1}^{N+1} T^n = \sum_{n=1}^{+\infty} T^n = T^* - I$$

も成り立つから $I=T^*-T^*T=T^*(I-T)$ と表現できる。 ゆえに $I=(I-T)T^*=T^*(I-T)$ が成り立ち,この等式は I-T が $X \mapsto X$ の全単射であり $T^* \in B(X)$ を逆写像にもつことを示している。

[9]. (S,\mathfrak{M},μ) は σ - 有限な測度空間, $X=\mathrm{L}^2(S,\mathfrak{M},\mu)=\mathrm{L}^2(\mu)$ とする.可測関数 $a:S\to\mathbb{C}$ に対して,X 上の掛け算作用素 M_a を次で定める:

$$D(M_a) = \{ u \in X \mid au \in X \}, \quad (M_a u)(x) = a(x)u(x) \ (x \in S).$$

(1)

- (2) $a \in L^{\infty}(S, \mathfrak{M}, \mu)$ ならば $M_a \in B(X)$ であり、 $\|M_a\| = \|a\|_{L^{\infty}(\mu)}$ が成り立つことを示せ.
- (3) 逆に $M_a \in B(X)$ ならば $a \in L^{\infty}(S, \mathfrak{M}, \mu)$ であることを示せ.

証明.

(1)

(2) $a \in L^{\infty}(S, \mathfrak{M}, \mu)$ ならば、 $\|\cdot\|_{L^{\infty}(\mu)}$ の定義より

$$||a||_{L^{\infty}(u)} = \inf\{b \in [0, +\infty) \mid \mu(x \in S \mid |a(x)| > b) = 0\} < +\infty$$

である. 特に

$$N_m := \left\{ x \in S \mid |a(x)| \ge ||a||_{L^{\infty}(\mu)} + \frac{1}{m} \right\}, \quad (m = 1, 2, 3, \dots)$$

と置けば $\mu(N_m) = 0$ ($m = 1, 2, 3, \cdots$) であって、 μ 零集合 N を

$$N := \bigcup_{m=1}^{\infty} N_m$$

で定めれば

$$|a(x)| \le ||a||_{L^{\infty}(\mu)}, \quad (\forall x \in S \cap N^c)$$

が成り立つ. また $0 < c < \|a\|_{L^{\infty}(\mu)}$ となるような任意のcについては

$$\mu(\{x \in S \mid |a(x)| > c\}) > 0 \tag{5}$$

が成り立つことにも注意しておく. 全ての $u \in X$ に対して

$$\begin{split} \|\,M_a u\,\|_{\mathrm{L}^2(\mu)}^2 &= \int_S |a(x) u(x)|^2 \, \mu(dx) \\ &= \int_{S/N} |a(x) u(x)|^2 \, \mu(dx) \\ &\leq \int_{S/N} \|\,a\,\|_{\mathrm{L}^\infty(\mu)}^2 \, |u(x)|^2 \, \mu(dx) \\ &= \int_S \|\,a\,\|_{\mathrm{L}^\infty(\mu)}^2 \, |u(x)|^2 \, \mu(dx) = \|\,a\,\|_{\mathrm{L}^\infty(\mu)}^2 \, \|\,u\,\|_{\mathrm{L}^2(\mu)} \end{split}$$

が成り立っていることから, $\|M_a\| \leq \|a\|_{L^\infty(\mu)}$ であり $M_a \in B(X)$ が示される.さらに, (S,\mathfrak{M},μ) が σ - 有限な測度空間であるという条件の下では, $\|M_a\| = \|a\|_{L^\infty(\mu)}$ であることが次のように示される. $\|a\|_{L^\infty(\mu)} = 0$ ならば明らかに M_a は零作用素で $0 = \|M_a\| = \|a\|_{L^\infty(\mu)}$ である. $\|a\|_{L^\infty(\mu)} > 0$ である場合, $\|a\|_{L^\infty(\mu)} > 1/n_0$ を満たすような $n_0 \in \mathbb{N}$ を一つ取り, $n > n_0$ なる全ての $n \in \mathbb{N}$ に対して

$$G_n := \left\{ x \in S \cap N^c \ \left| \ \| a \|_{L^{\infty}(\mu)} - \frac{1}{n} < |a(x)| \le \| a \|_{L^{\infty}(\mu)} \right. \right\}$$

として μ 可測集合の族 $(G_n)_{n>n_0}$ を作る. (5) により全ての $n>n_0$ に対して $\mu(G_n)>0$ である. これは次で示される.

$$\mu(G_{n}) = \mu\left(\left\{x \in S \mid \|a\|_{L^{\infty}(\mu)} - \frac{1}{n} < |a(x)| \le \|a\|_{L^{\infty}(\mu)}\right\} \cap N^{c}\right)$$

$$= \mu\left(\left\{x \in S \mid \|a\|_{L^{\infty}(\mu)} - \frac{1}{n} < |a(x)| \le \|a\|_{L^{\infty}(\mu)}\right\}\right) \qquad (\because \mu(N) = 0$$

$$= \mu\left(\left\{x \in S \mid \|a\|_{L^{\infty}(\mu)} - \frac{1}{n} < |a(x)|\right\} \cap \left\{x \in S \mid |a(x)| \le \|a\|_{L^{\infty}(\mu)}\right\}\right)$$

$$= \mu\left(\left\{x \in S \mid \|a\|_{L^{\infty}(\mu)} - \frac{1}{n} < |a(x)|\right\}\right) \qquad (\because \mu\left(\left\{x \in S \mid |a(x)| > \|a\|_{L^{\infty}(\mu)}\right\}\right) = 0$$

$$> 0. \qquad (\because (5))$$

単調増大な μ 可測集合列 $S_1 \subset S_2 \subset S_3 \subset \cdots$, $\mu(S_k) < +\infty$ で $\cup_{k=1}^\infty S_k = S$ なるものに対して $(\sigma$ - 有限の仮定よりこのような集合列が存在する). 全ての $n > n_0$ に対して

$$0 < \mu(G_n) = \lim_{k \to \infty} \mu(S_k \cap G_n)$$

となるから、必ず或る S_{k_n} に対して

$$r_n := \mu(S_{k_n} \cap G_n) > 0$$

となっている.

$$u_n(x) := \begin{cases} \frac{1}{\sqrt{r_n}} & x \in S_{k_n} \cap G_n \\ 0 & x \notin S_{k_n} \cap G_n \end{cases} \quad (n > n_0)$$

と定義すれば、 $\mu(S_{k_n}\cap G_n)<+\infty$ であるから $u_n\in X\,(n>n_0)$ であって

$$||u_n||_{L^2(\mu)} = 1 \quad (n > n_0)$$

が満たされている. この u_n に対して

$$||a||_{L^{\infty}(\mu)} - \frac{1}{n} < ||M_a u_n||_{L^2(\mu)} \le ||a||_{L^{\infty}(\mu)}$$

が成り立っているから

$$||a||_{L^{\infty}(\mu)} - \frac{1}{n} < \sup_{0 \neq u \in X} \frac{||M_a u||_{L^2(\mu)}}{||u||_{L^2(\mu)}} = ||M_a|| \le ||a||_{L^{\infty}(\mu)} \quad (n > n_0)$$

である. n は $n > n_0$ で任意に大きくできるから

$$||a||_{L^{\infty}(u)} = ||M_a||$$

が示されたことになる.

(3) $M_a \in B(X)$ ならば M_a の作用素ノルム $\|M_a\|$ は有限な実数値で

$$\int_{S} |a(x)u(x)|^{2} \, \mu(dx) = \|\, M_{a}u\,\|_{\mathrm{L}^{2}(\mu)}^{2} \leq \|\, M_{a}\,\|^{2} \, \|\, u\,\|_{\mathrm{L}^{2}(\mu)}^{2} = \|\, M_{a}\,\|^{2} \, \int_{S} |u(x)|^{2} \, \mu(dx)$$

が成立している. (S, \mathfrak{M}, μ) が σ - 有限な測度空間であるという条件の下では

$$\mu(\{x \in S \mid |a(x)| > ||M_a||\}) = 0$$

が成り立つことを示す.これが示されれば $a\in L^\infty(S,\mathfrak{M},\mu)$ が従う.問題の仮定により,ある μ 測度有限で単調増大な μ 可測集合列 $S_1\subset S_2\subset S_3\subset \cdots$ が存在して $\cup_{k=1}^\infty S_k=S$ が満たされている.

$$G := \{x \in S \mid |a(x)| > ||M_a||\}$$

と置けばこれは μ 可測集合であり、 $\mu(G) > 0$ とすると

$$0 < \mu(G) = \lim_{k \to \infty} \mu(S_k \cap G)$$

により或る $K \in \mathbb{N}$ が存在して $\mu(S_k \cap G) > 0$ $(\forall k > K)$ が成立する. k > K を満たす k を選んで

$$u(x) = \begin{cases} 1 & x \in S_k \cap G \\ 0 & x \notin S_k \cap G \end{cases}$$

と置けば、 $\mu(S_k \cap G) < +\infty$ であることから $u \in X$ であって、

$$||u||_{L^{2}(\mu)}^{2} = \int_{S} |u(x)|^{2} \mu(dx) = \mu(S_{k} \cap G)$$

が成り立っている. $G \perp v |a(x)| > ||M_a||$ であるから

$$|| M_{a} ||^{2} || u ||_{L^{2}(\mu)}^{2} = || M_{a} ||^{2} \int_{S} |u(x)|^{2} \mu(dx) = || M_{a} ||^{2} \int_{S_{k} \cap G} |u(x)|^{2} \mu(dx)$$

$$< \int_{S_{k} \cap G} |a(x)u(x)|^{2} \mu(dx)$$

$$\leq \int_{S} |a(x)u(x)|^{2} \mu(dx)$$

$$\leq || M_{a} ||^{2} || u ||_{L^{2}(\mu)}^{2}$$

となるが,最右辺と最左辺を $\|u\|_{\mathrm{L}^2(\mu)}^2$ で割ると

$$||M_a|| < ||M_a||$$

と矛盾が出る. 従って $\mu(G) = 0$ でなくてはならない.

[12]. $a = (a_n)_{n=1}^{\infty} \in l^1$ に対して $T_a : c_0 \mapsto \mathbb{C}$ を次で定める:

$$T_a(x) = \sum_{n=1}^{\infty} a_n x_n \ (x = (x_n) \in c_0).$$

- (1) $\forall a = (a_n) \in l^1$, $T_a \in c_o^*$ かつ $\|T_a\| = \|a\|_{l^1}$ であることを示せ.
- (2) $T: l^1 \ni a \mapsto T_a \in c_0^*$ は Banach 空間としての同系写像であることを示せ.

証明.

(1) 設問 [11] の結果により、 T_a の定義域である c_0 は $\|\cdot\|_{l^\infty}$ をノルムとして l^∞ の閉線型部分空間であり、よって Banach 空間である.このことに留意して以下進む. $a=(a_n)_{n=1}^\infty\in l^1$ を任意に取って固定する.任意の $x=(x_n)\in c_0$ に対して

$$\sum_{n=1}^{\infty} |a_n| |x_n| \le \sum_{n=1}^{\infty} |a_n| \|x\|_{l^{\infty}} = \|a\|_{l^1} \|x\|_{l^{\infty}} < +\infty$$

となり級数 $T_a(x)$ ($\forall x \in c_0$) は有限確定するから、級数の被積分項の和は級数の和に一致し、スカラ倍は級数全体のスカラ倍に一致する.よって任意に $x=(x_n),y=(y_n)\in c_0$ と $\alpha\in\mathbb{C}$ を取れば.

$$T_{a}(x+y) = \sum_{n=1}^{\infty} a_{n}(x_{n} + y_{n}) = \sum_{n=1}^{\infty} (a_{n}x_{n} + a_{n}y_{n}) = \sum_{n=1}^{\infty} a_{n}x_{n} + \sum_{n=1}^{\infty} a_{n}y_{n} = T_{a}x + T_{a}y,$$

$$T_{a}(\alpha x) = \sum_{n=1}^{\infty} a_{n}(\alpha x_{n}) = \sum_{n=1}^{\infty} (a_{n}\alpha)x_{n} = \sum_{n=1}^{\infty} (\alpha a_{n})x_{n} = \sum_{n=1}^{\infty} \alpha(a_{n}x_{n}) = \alpha \sum_{n=1}^{\infty} a_{n}x_{n} = \alpha T_{a}(x)$$

により T_a の線型性が示されるから、 T_a は $c_0 \to \mathbb{C}$ の線型汎関数である。有界性は式により

$$|T_a(x)| \le ||a||_{l^1} ||x||_{l^\infty}$$

から $\|T_a\| \le \|a\|_{l^1}$ となるとわかる.ゆえに $T_a \in c_0^*$ ($\forall a \in l^1$) である.また $\|T_a\| = \|a\|_{l^1}$ について,a=0 の場合は T_a が零作用素になるから明らかに成り立つ. $a \ne 0$ の場合,任意の $\|a\|_{l^1} >> \epsilon > 0$ に対して或る $N \in \mathbb{N}$ が存在して

$$||a||_{l^1} - \epsilon < \sum_{n=1}^N |a_n|$$

とできる. $x \in c_0$ を

$$x_n = \begin{cases} \overline{a_n}/|a_n| & a_n \neq 0, \text{ and } n \leq N \\ 0 & a_n = 0, \text{ or } n > N \end{cases}$$

となっているもので取れば、

$$||a||_{l^1} - \epsilon < \sum_{n=1}^N |a_n| = \sum_{n=1}^\infty a_n x_n = T_a(x) = |T_a(x)|$$

が成立することになる. $||x||_{l^{\infty}}=1$ であることに注意すれば

$$||a||_{l^{1}} - \epsilon < T_{a}(x) = \frac{|T_{a}(x)|}{||x||_{l^{\infty}}} \le \sup_{0 \ne y \in c_{0}} \frac{|T_{a}(y)|}{||y||_{l^{\infty}}} = ||T_{a}|| \le ||a||_{l^{1}}$$

が成り立ち、 ϵ が任意であるから、a=0 の場合と合わせて $\|T_a\|=\|a\|_{l^1}$ $(\forall a\in l^1)$ が示された.

(2) まず、 l^1 は $\|\cdot\|_{l^1}$ をノルムとして Banach 空間となり、 c_0^* は T_a の値域 $\mathbb C$ が Banach 空間であるから作用素ノルムにより Banach 空間となっている.写像 T が

$$||Ta|| = ||T_a|| = ||a||_{l^1} \quad (\forall a \in l^1)$$

の意味で等長であることは (1) で示してあるから、後は T が線型全単射であることを証明すればよい。任意の $a=(a_n),b=(b_n)\in l^1,$ $\alpha\in\mathbb{C}$ に対して

$$\sum_{n=1}^{\infty} (a_n + b_n) x_n = \sum_{n=1}^{\infty} (a_n x_n + b_n x_n) = \sum_{n=1}^{\infty} a_n x_n + \sum_{n=1}^{\infty} b_n x_n,$$

$$\sum_{n=1}^{\infty} (\alpha a_n) x_n = \sum_{n=1}^{\infty} \alpha (a_n x_n) = \alpha \sum_{n=1}^{\infty} a_n x_n$$

が成り立つから

$$T(a+b) = T_{a+b} = T_a + T_b = Ta + Tb$$

 $T(\alpha a) = T_{\alpha a} = \alpha T_a = \alpha Ta$

も成り立つことにより T の線型性が示される. また $a=(a_n),b=(b_n)\in l^1$ に対して, $a\neq b$ であるなら或る $N\in\mathbb{N}$ 番目で $a_N\neq b_N$ となっているはずであるから,

$$x_N = \begin{cases} 1 & n = N \\ 0 & n \neq N \end{cases}$$

となる $x = (x_n) \in c_0$ に対して

$$T_a(x) = a_N \neq b_N = T_b(x)$$

となり、T が単射であることが示される.最後にT が全射であることを示す.任意に $L \in c_0^*$ を取る.或る $a \in l^1$ に対してL が T_a に一致することを見ればよい.Kronecker のデルタを用いて

$$e_n := (\delta_{jn})_{j=1}^{\infty}$$

で表現される e_n ($n=1,2,3,\cdots$) は c_0 の元であり、各 $n=1,2,3,\cdots$ に対して

$$a_n \coloneqq L(e_n) \tag{6}$$

とおく. 任意の $x = (x_n) \in c_0$ に対して

$$x^{(N)} = \sum_{n=1}^{N} x_n e_n, \quad (N = 1, 2, 3, \dots)$$

として作られる数列の族 $\left(x^{(N)}\right)_{N=1}^{\infty}$ は l^{∞} において収束し、 $x^{(N)} \to x$ $(N \to +\infty)$ が成り立つ. これは $x = (x_n)$ が収束数列であることによる.任意の $\epsilon > 0$ に対して或る $N \in \mathbb{N}$ を選べば

$$|x_n| < \epsilon$$
, $(\forall n > N)$

が成り立つから、n > N なる任意の自然数 n に対して

$$\left\| x - x^{(n)} \right\|_{l^{\infty}} = \sup_{m > n} |x_m| < \epsilon$$

となり, $x^{(N)} \to x \ (N \to +\infty)$ が示されるのである. L が有界線型汎関数であることも併せれば

$$\left|L(x)-L(x^{(N)})\right|\leq \|L\|\left\|x-x^{(N)}\right\|_{l^\infty}\longrightarrow 0\quad (N\longrightarrow +\infty)$$

により

$$L(x) = \lim_{N \to +\infty} L(x^{(N)}) = \lim_{N \to +\infty} \sum_{n=1}^{N} L(x_n e_n) = \lim_{N \to +\infty} \sum_{n=1}^{N} a_n x_n = \sum_{n=1}^{+\infty} a_n x_n \quad (\forall x \in c_0)$$

が成り立つ.後は (6) で定義した複素数列 $(a_n)_{n=1}^\infty$ が l^1 に属していることを示せば、写像 $L:c_0 \mapsto \mathbb{C}$ が $T_a:c_0 \mapsto \mathbb{C}$ に一致していると証明される.これは次のように示される. $a_n \neq 0$ ($\exists n \leq M$) となるような $M \in \mathbb{N}$ を取って、この M に対して $x = (x_n) \in c_0$ として

$$x_n = \begin{cases} \overline{a_n}/|a_n| & a_n \neq 0, \text{ and } n \leq M \\ 0 & a_n = 0, \text{ or } n > M \end{cases}$$

となるものを取れば、

$$L(x) = \lim_{N \to +\infty} \sum_{n=1}^{N} a_n x_n = \sum_{n=1}^{M} |a_n|$$

が成り立つ. $\|x\|_{l^\infty} = 1$ であることに注意すれば

$$\sum_{n=1}^{M} |a_n| = L(x) = |L(x)| \le ||L|| \, ||x||_{l^{\infty}} = ||L||$$

となる. M は任意に大きく取って問題ないから,

$$\sum_{n=1}^{M'} |a_n| \le ||L||, \quad (\forall M' \ge M)$$

が成り立ち、従って

$$\sum_{n=1}^{\infty} |a_n| \le ||L||$$

となることにより $a \in l^1$ であることが示された.