Problems Related to Angle Modulation

1. A sinusoidal wave of amplitude 10V and frequency 10 kHz is applied to an FM generator that has a sensitivity constant of 40Hz/Volt. Determine the frequency deviation and modulation index (deviation ratio).

Solution:

Given, $A_m=10V$ $f_m=10 \text{ kHz}$ $k_f=40\text{Hz/Volt.}$

We know
$$\Delta f = k_f A_m = 400 \text{Hz}$$
$$\beta = \Delta f / f_m$$
$$= 400 / 10 \text{k}$$
$$= 0.04$$

2. Find the transmission bandwidth of single tone modulated FM signal described by $s(t)=10\cos[2\pi 10^8 t + 6\sin(2\pi 10^3 t)]$

Solution:

We know FM modulated wave $s(t)=A_c cos[2\pi f_c t + \beta sin(2\pi f_m t)]$

$$f_m = 1kHz$$

$$f_{c=}10^{8}Hz$$

$$\beta=6$$

From Carson's rule

$$BW=2(1+\beta)f_{m}$$

$$=2(1+6)1000$$

$$=14kHz$$

3. Consider an FM signal with $\Delta f=10kHz$, $f_m=10kHz$, A=10V, $f_c=500kHz$. Draw the spectrum of this FM signal.

Solution

Here $\beta = \Delta f/f_m = 1$

We know $\Phi(t) = A \sum_{-\infty}^{\infty} Jn(\beta) \cos 2\pi (fc + nfm)t$

Also it is given that, $f_m=10kHz$, A=10V, $f_c=500kHz$

The frequencies and corresponding amplitude will be the taken from Bessel Table. (Take the value for modulation index $\beta=1$)

BESSEL TABLE

Modulation inclex	Carrier Jo	Sidebands									
		4	12	<i>J</i> ₃	J_4	J_5	Je	J ₇	J ₈	J ₉	J ₁₀
0.0	1.00	_	_	_	_	_	_	_		_	_
0.25	0.98	0.12	_	-	-	_	_	_	_	-	_
0.5	0.94	0.24	0.03	_	_	_	_	_	-	-	_
1.0	0.77	0.44	0.11	0.02	_	_	_	-	_	_	_
1.5	0.51	0.56	0.23	0.06	0.01	-	_	_	_	-	_
2.0	0.22	0.58	0.35	0.13	0.03	_	_		_	_	_
2.5	-0.05	0.50	0.45	0.22	0.07	0.02	_	_		_	_
3.0	-0.26	0.34	0.49	0.31	0.13	0.04	0.01	-	_	_	-
4.0	-0.40	-0.07	0.36	0.43	0.28	0.13	0.05	0.02		_	_
5.0	-0.18	-0.33	0.05	0.36	0.39	0.26	0.13	0.06	0.02	-	_
6.0	0.15	-0.28	-0.24	0.11	0.36	0.36	0.25	0.13	0.06	0.02	_
7.0	0.30	0.00	-0.30	-0.17	0.16	0.35	0.34	0.23	0.13	0.06	0.02
8.0	0.17	0.23	-0.11	-0.29	0.10	0.19	0.34	0.32	0.22	0.13	0.06

Tabulated value for Bessel Function for the first kind of the nth order

From Bessel Table we get

$$J_0 = 0.77$$

$$J_2 = 0.11$$
 $J_3 = 0.02$

$$J_3 = 0.02$$

BESSEL TABLE

Modulation index	Carrier Jo	Sidebands									
		1,	12	J ₃	J_4	J ₅	J ₆	J ₇	J ₈	J ₉	J ₁₀
0.0	1.00	-	_	-	-	-	_	_	_	_	_
0.25	0.98	0.12	-	-	-	_	$(1-\epsilon)^{-1}$	-	_	-	-
0.5	0.94	0.24	0.03	_	_	_	_	-	-	-	_
1.0	0.77	0.44	0.11	0.02	_	-	_	_	-	-	-
1.5	0.51	0.56	0.23	0.06	0.01	-	-	-	-	-	-
2.0	0.22	0.58	0.35	0.13	0.03	_	_	_	_	_	-
2.5	-0.05	0.50	0.45	0.22	0.07	0.02	_	-	-	_	-
3.0	-0.26	0.34	0.49	0.31	0.13	0.04	0.01	-	_	_	_
4.0	-0.40	-0.07	0.36	0.43	0.28	0.13	0.05	0.02	_	_	-
5.0	-0.18	-0.33	0.05	0.36	0.39	0.26	0.13	0.06	0.02	_	-
6.0	0.15	-0.28	-0.24	0.11	0.36	0.36	0.25	0.13	0.06	0.02	_
7.0	0.30	0.00	-0.30	-0.17	0.16	0.35	0.34	0.23	0.13	0.06	0.02
8.0	0.17	0.23	-0.11	-0.29	0.10	0.19	0.34	0.32	0.22	0.13	0.0

Tabulated value for Bessel Function for the first kind of the nth order

Taking Values from Bessel table

n	$Aj_n(\beta)$ Volts $\beta=1$	fc±nfm kHz
0	10*0.77=7.7	500
1	10*0.44=4.4	490,510
2	10*0.11=1.1	480,520
3	10*0.02=0.2	470,530

Final the spectrum for $\beta=1$

Try yourself

An angle modulated signal with carrier frequency $w_c = 2\pi 10^5$ is described by the equation $\Phi(t) = 10\cos(w_c t + 5\sin 3000t + 10\sin 2000\pi t)$.

- 1. Find the power of the modulated signal
- 2. Find the frequency deviation Δf
- 3. Find deviation ratio β
- 4. Find the phase deviation $\Delta\Phi$
- 5. Estimate the Bandwidth

Ref. B.P. Lathi