CI/UFPB

Disciplina: Estrutura de Dados e Complexidade de Algoritmos

Professor: Gilberto Farias Aluno: Pablo Herivelton Ramos Goes Matricula: 20201006605

Análise do algoritmo Insertion Sort

def insertionSort(lista):	custo	vezes
for i in range(1, len(lista)):	c_1	n
chave = lista[i]	c_2	n-1
k = i	C ₃	n-1
while $k > 0$ and chave $<$ lista[$k - 1$]:	C ₄	$\sum_{i=1}^n$ ti
lista[k] = lista[k - 1]	C 5	$\sum_{i=1}^{n} (ti - 1)$
k -= 1	C 6	$\sum_{i=1}^{n} (ti - 1)$
lista[k] = chave	C 7	n-1
return lista		

$$T(n) = c_1 n + c_2(n-1) + c_3(n-1) + c_4 \sum_{i=1}^{n} ti + c_5 \sum_{i=1}^{n} (ti - 1) + c_6 \sum_{i=1}^{n} (ti - 1) + c_7(n-1)$$

Para o melhor caso, onde o array se encontra ordenado, temos que ti = 1, como o array está ordenado, nunca vai ser executado o código dentro do while, em compensação teremos que a linha do while, executará n-1 vezes, então teremos:

$$T(n) = c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 (n-1) + c_5 (0) + c_6 (0) + c_7 (n-1), logo$$

$$T(n) = (c_1 + c_2 + c_3 + c_4 + c_7) n - (c_2 + c_3 + c_4 + c_7)$$
Chamando $c_1 + c_2 + c_3 + c_4 + c_7$ de a e $c_2 + c_3 + c_4 + c_7$ de b, teremos
$$T(n) = an - b \text{ (MELHOR CASO)}$$

Para o pior caso, onde o array se encontra invertido, temos que ti = i e baseado no T(n) geral do algoritmo Insertion Sort, teremos

$$\begin{split} T(n) &= c_1 n + c_2 (n-1) + c_3 (n-1) + c_4 (n(n+1)/2 - 1) + c_5 (n(n-1)/2) + c_6 (n(n-1)/2) + c_7 (n-1) \\ T(n) &= (c_4/2 + c_5/2 + c_6/2) n^2 + (c_1 + c_2 + c_3 + c_4/2 + c_5/2 + c_6/2 + c_7) n - (c_2 + c_3 + c_4 + c_7) \\ T(n) &= an^2 + bn - c \ (PIOR \ CASO) \end{split}$$

Análise do código do Selection Sort.

def selectionSort(lista):	custo	vezes
for i in range(len(lista)):	C ₁	n
menorIndice = i	C ₂	n
for j in range(i+1, len(lista)):	C ₃	$\sum_{i=0}^{n} \text{ti} \sum_{j=0}^{n} \text{tj} = (n^2 + n)/2$
<pre>if lista[j] < lista[menorIndice]:</pre>	C ₄	$\sum_{i=0}^{n} \text{ti } \sum_{j=0}^{n} \text{tj} - 1 = (n^2-n)/2$
menorIndice = j	C ₅	$\sum_{i=0}^{n} \text{ti } \sum_{j=0}^{n} \text{tj} - 1 = (n^2 - n)/2$
temp = lista[i]	C 6	n
lista[i] = lista[menorIndice]	C ₇	n
lista[menorIndice] = temp	C ₈	n

return lista

O selection sort possui a mesma função T(n) para ambos os casos, melhor e pior caso. Logo a função T(n) será:

$$c_1n + c_2n + c_3(n^2+n)/2 + c_4(n^2-n)/2 + c_5(n^2-n)/2 + c_6n + c_7n + c_8n$$
, isso implica em $T(n) = (c_1 + c_2 + c_3 + c_6 + c_7 + c_8)n + (c_4 + c_5)(n^2-n)/2 + c_3(n^2+n)/2$ $T(n) = a(n) + b((n^2-n)/2) + c((n^2+n)/2)$ (MELHOR E PIOR CASO)