Arduino based Pulse Oximeter

Contents

1	Proj	ject description	L	
	1.1	The Challenges of COVID-19	1	
		A Bit of a Disclaimer		
2	Ste	os to build the device	2	
	2.1	Print Out and Clean Parts	2	
	2.2	Solder the Electronics	4	
	2.3	Assemble the Device	S	
	2.4	Uploading the Sketch	7	
	2.5	Using It	7	
3	Items			
	3.1	Necessary tools and machines	J	
		Apps and Online Services		

1 Project description

To DOWNLOAD all files CLICK HERE

To visit our repo CLICK HERE

1.1 The Challenges of COVID-19

COVID-19 is a disease caused by the SARS-CoV-2 virus that primarily attacks a person's respiratory system. Some milder symptoms can include fever, aches, and chills, but it can also lead to more serious conditions such as pneumonia. A person who has pneumonia or even slight shortness of breath might not know when to go to a hospital, especially as they start to get even more overwhelmed. This is why I created this open source pulse oximeter, which can assist in getting people the help they need and get accurate information about their current condition.

1.2 A Bit of a Disclaimer

This device/project is not to be used as an accurate medical diagnostic tool!

2 Steps to build the device

2.1 Print Out and Clean Parts

- Begin by downloading each piece from the attachment section on this project and loading it into your slicer of choice.
- I used an infill of around 70-80% and medium supports, all with PLA.
- After they were done printing, I removed the supports and did some light sanding to ensure they all fit together nicely.

2.2 Solder the Electronics

 $\bullet\,$ The entire device is designed around an Arduino Nano that is mounted on a piece of 44mm by 30mm perfboard.

• First, wires get soldered to the VIN, GND, SDA, and SCL pins of the sensor and then run underneath the bed piece to the Arduino Nano.

• Next, the connector for the OLED is attached to the Nano and then run up to the display itself.

• And finally, the entire electronics assembly is slid into the housing and secured with a couple of 3mm screws.

2.3 Assemble the Device

- After the electronics have been inserted, simply attach the OLED screen to the top piece and secure it to the rest of the chassis with a couple of 3mm screws.
- You can test its motion by gently articulating the lid up and down.

2.4 Uploading the Sketch

- The included sketch performs a couple of actions to display the user's current heartrate and oxygen saturation.
- To upload it, simply install the required libraries and select Arduino Nano from the board list in the Tools menu and click Upload.

- As for the sketch itself, it first initializes the OLED and MAX30102, whilst reporting any errors that might arise. See the code here
- Next, it reads in 100 values to calibrate the sensor and begins displaying them. The device then enters a loop where it reads in 25 new values and computes a moving average with them.
- Finally, it checks if the values are valid and prints them to the screen if they are.

2.5 Using It

- To use the pulse oximeter, place your fingertip over the sensor and gently close the top lid.
- Then plug in a power source and simply wait until you see data being displayed.

3 Items

- Development Board, Arduino Nano, ATmega328 MCU, 14 3.3V I/O, 6 PWM Outputs, USB Mini B
 - Image:

- Amount: 1
- Reference to buy it : https://www.newark.com/arduino/a000005/dev-board-atmega328-arduino-nano/dp/13T9275?COM=ref_hackster
- Reference Design Board, Pulse Oximeter & Heart Rate Monitor, MAX30102, MAX14595, MAX1921

- Image:

- Amount: 1
- Reference to buy it : https://www.newark.com/maxim-integrated-products/m axrefdes117/ref-des-brd-heart-rate-pulse-oximeter/dp/96Y9339
- Gravity I2C OLED-128x64 Display
 - Image:

- Amount: 1
- Reference to buy it : https://www.dfrobot.com/product-1576.html

3.1 Necessary tools and machines

- A generic 3D printer
- A generic soldering iron

3.2 Apps and Online Services

- Arduino Software
- Autodesk Fusion 360