Initiation

1.1 Les espaces de Hilbert

 $\mathbb{K} = \mathbb{C}$ ou $\mathbb{K} = \mathbb{R}$.

Définition 1. Soit E un \mathbb{K} espace vectoriel. Une application $\varphi: E \times E \to \mathbb{K}$ est une FORME HERMITIENNE

- 1. $\forall y \in E : \varphi(\cdot, y) : E \to \mathbb{R}$ est linéaire
- 2. $\forall (x,y) \in E \times E : \varphi(x,y) = \overline{\varphi(y,x)}$

Définition 2. Un PRODUIT SCALAIRE est une forme hermitienne définie positive : $\forall e \in E \ \varphi(x,x) \geq 0 \ ; \ \varphi(x,x) = 0 \Leftrightarrow x = 0_E.$ Notation :

$$\varphi(x,y) := (x|y)$$

Définition 3. Le couple $(E, (\cdot | \cdot))$ s'appelle un ESPACE PRÉHILBERTIEN.

Définition 4. On définit la NORME sur $E: \forall x \in E \|x\|_E = (x|x)^{\frac{1}{2}}$.

Remarque. En particulier on a l'inégalité de Cauchy-Schwartz :

$$\forall (x, y) \in E^2 \ |(x|y)| \le ||x|| ||y||.$$

Donc inégalité triangulaire. Ainsi c'est vraiment une norme.

Définition 5. $x, y \in E$ sont dits Orthogonaux si (x|y) = 0. Nous dénotons cela comme $x \perp y$.

Définition 6. $(E, \|\cdot\|)$ est dit COMPLET si toutes les suites de Cauchy de E convergent dans E.

Définition 7. Une Espace de Hilbert est un espace préhilbertien complet pour la distance $\|\cdot - \cdot\| = (\cdot - \cdot|\cdot - \cdot)^{\frac{1}{2}}$.

Exemple 1.
$$l^2(\mathbb{N}) = \{ n \in \mathbb{N} \mapsto f(n) \in \mathbb{C} \text{ t.q. } \sum_{n \geq 0} |f(n)|^2 < \infty \}$$
 $l^2(\mathbb{N}) \text{ est } \mathbb{C} \text{ espace. } \forall f, g \in l^2(\mathbb{N}) :$

$$(f|g)_{l^2(\mathbb{N})} \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \sum_{n>0} f(n) \overline{g(n)}.$$

Soit $(f_n)_{n\in\mathbb{N}}$ une suite de Cauchy dans $l^2(\mathbb{N})$:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} \ \forall n > p \ge N : \quad ||f_n - f_p||_{l^2(\mathbb{N})} < \varepsilon. \tag{*}$$

Question.
$$\exists f \in l^2(\mathbb{N})$$
 telle que $\lim_{n \to \infty} f_n = f$?

$$(*) \Leftrightarrow \forall \varepsilon > 0 \ \exists N \ t.q. \ \forall n > p \ge N \ ||f_n - f_p||^2 = \sum_{j > 0} |f_n(j) - f_p(j)|^2 \le \varepsilon^2$$

$$\Rightarrow |f_n(j) - f_p(j)| \le \varepsilon \ \forall j \in \mathbb{N}.$$

$$\Rightarrow \forall j \in \mathbb{N} \ (f_n(j)))_{n \in \mathbb{N}}$$
 est de Cauchy dans \mathbb{C} qui est complet, donc $\exists f(j) \in \mathbb{C}$ telle que $\lim_{n \to \infty} |f_n(j) - f(j)| = 0$.

Il faut montrer que
$$f$$
 est la limite dans $l^2(\mathbb{N})$ de la suite f_n . $\forall \varepsilon > 0 \ \exists N \ \text{t.q.} \ \forall n > p \ge N \sum_{j \ge 0} |f_n(j) - f_p(j)|^2 \le \varepsilon^2$

$$\Rightarrow \forall J \in \mathbb{N} \underbrace{\sum_{j=0}^{J} \left| f_n(j) - f_p(j) \right|^2}_{\text{J}} \leq \varepsilon^2, \text{ par passage à la limite sur } p : \sum_{j=0}^{J} \left| f_n(j) - f(j) \right|^2 \leq \varepsilon^2$$

Conclusion: $\forall \varepsilon > 0 \ \exists N \ \text{telle que } \forall n \geq N \ ||f_n - f|| < \varepsilon \Longrightarrow \lim_{n \to \infty} f_n = f.$

Mais $f \in l^2(\mathbb{N})$.

Vérifions que $f \in l^2(\mathbb{N})$:

verificitis que
$$f \in t$$
 (N): $(\sum_{j\geq 0} |f_n(j)|^2)^{1/2} = (\sum_{j\geq 0} |f_n(j) - f(j)|^2)^{\frac{1}{2}} = ||\underbrace{f - f_n}_{\in l^2(\mathbb{N})} + \underbrace{f_n}_{\in l^2(\mathbb{N})}|| \leq ||f - f_n|| + ||f_n|| < +\infty.$

Théorème 1 (Projection orthogonale). Soit H un espace de Hilbert et C une partie convexe fermée et non vide de H. Alors $\forall x \in H \exists ! y_0 \in C \ t.q.$

- 1. $\operatorname{dist}(x,C) := \inf\{d(x,y), y \in C\} = \inf\{||x-y||_H, y \in C\} = ||x-y_0||_H$
- 2. $\forall y \in C \ \operatorname{Re}(x-y_0|y-y_0) \leq 0 \ \dots !$ why in the world would scalar product have values other than real

 y_0 est la projection orthogonale de x sur C.

Remarque.

- 1. C est convexe si $\forall x, y \in C \ [x, y] = \{tx + (1 t)y, t \in [0, 1]\} \in C$
- 2. $H = \mathbb{R}^2 : [x, y] \in C$
- 3. si $x_0 \in C$ dans le cas $y_0 = x_0$ et $dist(x_0, C) = 0 = ||x_0 x_0||_H$

Démonstration. Notons par d=d(x,C)>0 $(x\in H\setminus C)$. Soit $y,z\in C$ on pose $b=x-\frac{1}{2}(y+z),\ c=\frac{1}{2}(y-z):\ ||b||=||x-\frac{1}{2}\underbrace{(y+z)}||\geq d.$ On a aussi b-c=x-y et

$$b+c=x-z \Rightarrow ||x-y||^2+||x-z||^2=||b-c||^2+||b+c||^2=(b-c|b-c)+(b+c|b+c)=||b||^2+||c||^2-(b|c)-(c|b)+||b||^2+||c||^2+(b|c)+(c|b).$$

 $||x-y||^2 + ||x-z||^2 = 2(||b||^2 + ||c||^2) \ge 2d^2 + 2\frac{1}{4}||y-z||^2 \Rightarrow ||y-z||^2 \le 2(||x-y||^2 - d^2) + 2(||x-z||^2 - d^2). \text{ Pour } n \in N \ C_n = \{y \in C ||x-y||^2 \le d^2 + \frac{1}{n}\} \text{ est fermée dans H (boule fermée)}.$

Puisque C est fermé, $C_n = \{y \in H | |x-y||^2 \le d^2 + \frac{1}{n}\} \cap C$ est fermé dans C. De plus : $\delta(n) := \sup\{||y-z||, (y,z) \in C_n \times C_n\} \le \sup\{[2(||x-y||^2 - d^2) + 2(||x-z||^2 - d^2)]^{\frac{1}{2}}, y, z \in C_n \Rightarrow \delta(n) \le \frac{2}{n^{\frac{1}{2}}} \to 0 \text{ quand } n \to +\infty.$

H est complet et $C \subset H_x$ c est fermé. C est un espace métrique complet. Il satisfait le critère de Cantor : $\bigcap C_n = \{y_0\}$.

$$y_0 \in \bigcup_n C_n \ d^2 \le ||x - y_0||^2 \le d^2 + \frac{1}{n} \ \forall n \in \mathbb{N}^* = \mathbb{N}$$
 $\{0\} \Rightarrow ||x - y_0|| = d^2.$

Montrons ii): $\forall t \in [0, 1], \ \forall \in H \ \phi(t) = ||\underbrace{y_0 + t(y - y_0)}_{\in C} - x||^2 = ||y_0 - x||^2 + 2tRe(y_0 - y_0)||y_0 - y_0||^2 + 2tRe(y_0 - y_0)||y_0 - y_0||y_0 - y_0||y_0$

$$\begin{aligned} x|y-y_0) + t^2||y-y_0||^2. \ \phi(0) &= d^2 \le \phi(t) \ \forall t \in (0,1] \Rightarrow \phi'(0) \ge 0. \ \phi'(t) = 2Re(y_0-x|y-y_0) + 2t||y-y_0||^2. \ \phi'(0) \le 0 \Rightarrow 2Re(y_0-x|y-y_0) \le 0 \Rightarrow (i). \end{aligned}$$

Théorème 2 (corollaire). Soit F un sous-espace fermé de H alors : $H = F \oplus F^{\perp}$.

Démonstration. — F est convexe puisque $\forall \alpha, \beta \in \mathbb{C} \forall x, y \in F \ \alpha x + \beta y \in F \Rightarrow \text{Cela}$ est vrai si $\alpha = t, \ \beta = 1 - t \ t \in [0, 1].$

On peut ceci appliquer le Thm 1:

— On a toujours $F + F^{\perp} \subset H$ et $F + F^{\perp} = F \bigoplus F^{\perp}$ car si $x \in F \cap F^{\perp} \Rightarrow (x|x) = 0 = ||x||^2 \Rightarrow x = 0_H$

Soit $x \in H$, et $y_0 \in F$ sa projection orthogonale : $\forall d \in \mathbb{C}, y \in F, y_0 + dy \in F$ et donc $Re(x - y_0|y_0 + dy - y_0) \le 0 \Rightarrow Re(x - y_0|dy) \le 0$

 $d = (x - y_0|y) \Rightarrow (x - y_0) \dots$

Conclusion $Re(x - y_0|dy)$.. donc $H = F \bigoplus F^{\perp}$.

Définition 8. Dans ces conditions, l'application $P: x \in H, x = x_1 + x_2, x_1 \in F, x_2 \in F^{\perp}$

$$x \stackrel{P}{\mapsto} x_1 \in F$$

est le Projecteur Orthogonal sur F.

Exemple 1.1.1. Montrer que P est linéaire continue et satisfait $P^2 = P$.

Définition 9. Une partie A de H est dite TOTALE si le plus petit sous espace fermé contenant A et H.

H est Séparable si H admet une famille totale dénombrable.

Exemple 1.1.2. $H=l^2(\mathbb{N}): \mathcal{F}=\{e_0,e_1,...\}$ avec $e_j(i)=\delta_{ij}\to (0,0,...,0,1,0,...0)$. \mathcal{F} est totale. Elle est dénombrable, $l^2(\mathbb{N})$ est séparable.

Théorème 3. Soit H un espace de Hilbert et $A \subset H$:

- 1. $\overline{\operatorname{vect}(A)} = (A^{\perp})^{\perp}$
- 2. A est un sous-espace alors $(A^{\perp})^{\perp} = \bar{A}$
- 3. A est totale $\Leftrightarrow A^{\perp} = \{0_H\}$

1.2 Séries dans un espace vectoriel normé

Soit $(E, ||\cdot||_E)$ un espace vectoriel normé (e.v.n).

Définition 10. On appelle SÉRIE de terme général $u_n \in E$ la suite $(S_N)_{N \in \mathbb{N}}$ de E t.q. $S_N = \sum\limits_{n=0}^N u_n$. La série est CONVERGENTE dans $(E, ||\cdot||_E)$ si la suite $(S_N)_{N \in \mathbb{N}}$ admet une limite dans E: S— c'est la somme de la série.

Définition 11. Une série $\sum u_n$ est dite Absolument Convergente (AC) si la série $\sum ||u_n||_E$ est convergente dans \mathbb{R}^+ .

Théorème 4. Si E est complet (espace de Banach/Hilbert) Alors toute série AC est convergente et $||\sum_{n=0}^{\infty}|| \le \sum_{n=0}^{\infty}||u_n||$.

 $D\acute{e}monstration. \ J_n = \sum_{n=0}^N ||u_n|| \ \text{et convergente} \Leftrightarrow (J_n)_{N \in \mathbb{N}} \ \text{est de Cauchy} \ \forall \varepsilon > 0 \ \exists K \ t.q. \ \forall N > 0$

$$P \geq K \Rightarrow |J_n - J_p| \leq \varepsilon$$
. $\sum_{j=p+1}^N ||u_j|| \leq \varepsilon$. meus $||S_n - S_p|| = ||\sum_{j=p+1}^N u_j|| \leq \sum_{j=p+1}^N ||u_j||$ inégalité triangulaire.

 $\begin{array}{l} \sum_{j=p+1}^{N} ||u_j|| \text{ inégalité triangulaire.} \\ \Rightarrow N > p \leq K \Rightarrow ||S_N - S_P|| \leq \varepsilon \Leftrightarrow (S_N)_{N \in \mathbb{N}} \text{ est de Cauchy dans } E \text{ et donc convergente.} \end{array}$

D'autre part $||S_n|| = ||\sum_{j=0}^n u_j|| \le \sum_{j=0}^n \le \sum_{j=0} ||u_j|| \Rightarrow ||\sum_{j=0} u_j|| \le \sum_{j=0} ||u_j||$. Cfd.

Définition 12. Une suite $(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}$ de H est dite Orthogonal si $(x_i|x_j)=0$ $\forall i\neq j$.

Théorème 5. Soit $(a_n)_{n\in\mathbb{Z}}$ une suite orthogonale dans un espace de Hilbert H. Alors la série $\sum x_n$ est convergente $\iff \sum_{n>0} ||x_n||_H^2$ est convergente et

$$||\sum_{n>0} x_n||_H^2 = \sum_{n>0} ||x_n||_H^2.$$

Démonstration. $\forall l > p$ on a $||\sum_{n=l}^p||^2 = (\sum_n = e^p x_n | \sum_n = e^p x_n) = \sum_n, n' = l(x_n|x_n') = \sum_n = l^p ||x_n||^2$ Alors $(x_n)_{n \in \mathbb{N}} n \in \mathbb{N}$ est de Cauchy $\Leftrightarrow (||x_n||^2)_{n \in \mathbb{N}}$ est de Couchy dans \mathbb{R} .

D'autre part $S_N = \sum_{n\geq 0}^N x_n \Rightarrow ||S_N||^2 = \sum_{n\geq 0}^N ||x_n||^2$. Alors $S = \lim S_N = \sum x_n ||S_N||^2 = ||\lim NS_N||^2 = \lim ||S_N||^2$ par continuité de la $||\cdot||$ et donc $||S_N||^2 = \lim ||S_N||^2 = \sum_{n\geq 0} ||x_n||^2 = \sum_{n\geq 0} ||x_n||^2$

1.3 Bases Hilbertiennes

Définition 13. On appelle BASE HILBERTIENNE, une suite de vecteur $(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}$ telle que

- 1. $\forall n, m(x_n|x_m) = \delta_{nm},$
- 2. $\operatorname{vect}\{(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}\}=H\Leftrightarrow \operatorname{vect}(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}^\perp=\{0_H\}\Leftrightarrow (x_n)_{n\in\mathbb{N}}n\in\mathbb{N}$ est totale.

Théorème 6 (Inégalité de Bessel). Soit (x_n) une suite orthonormale $(\forall n, m(x_n|x_m) = \delta_{nm})$ dans H. Alors $\forall x \in H \sum_{n>0} |(x|x_n)|^2$ est convergente et $\sum_{n>0} |(x|x_n)|^2 \le ||x||^2$.

Exemple: $H = l^2(\mathbb{N})$. $(e_n|e_m) = \sum_{k\geq 0} e_n(k) \overline{e_m(k)} = \sum_{k\geq 0} \delta_{nk} \delta_{mk} = \delta_{nm}$. En fait on montre que $\sum_{n\geq 0} |(e_n|x)|^2 = ||x||^2$ c'est une base Hilbertienne.

Démonstration. Soit $x \in H$ on pose $y_i = (x|e_i)e_i$ et $Y_N = \sum_{1}^{N} y_i, Z_N = X - Y_N$. Alors: $(Z_N|y_i) = (X - Y_N|y_i) = (X|y_i) - (Y_N|y_i). (x|y) = (x|(x|e_i)e_i) = \overline{(x|e_i)}(x|e_i) = |(x|e_j)|^2$. $(Y_N|y_i) = \sum_{j=1}^{N} (y_j|y_j)$ mais $y_j \perp y_i \Rightarrow (Y_N|y_i) = ||y_i||^2$ si $N \geq i$. (autrement =0)

Dans ces conditions puisque $||y_i||^2 = |(x|e_i)|^2$. Alors $(Z_n|y_i) = 0 \Rightarrow (Z_N|Y_N) = 0$ cas $Y_n = \sum_{i=0}^N y_i \Rightarrow ||x||^2 = ||Z_n||^2 + ||Z_N||^2$ $(x = Z_n + Y_n et Z_n \perp Y_n) \Rightarrow ||y_n||^2 = \sum_{i=0}^N ||y_i||^2 \le ||x||^2$

La seuie $\sum_{n\geq 0}^N ||y_n||^2$ est positive, majorée donc convergente et par passage à la limite : $\sum_{n\geq 0} ||y_n||^2 = \sum |(x|e_n)|^2 \leq ||x||^2$. QED

Théorème 7 (Egalité de Parseval). Soit (e_n) une base Hilbertienne de H alors

- 1. La série $\sum_{n>0} |(x|e_n)|^2$ est convergente et $||X||^2 = \sum_{n>0} |(x|e_n)|^2$,
- 2. La série $\sum_{n\geq 0}(x|e_i)e_i$ est convergente dans H et $\sum_{i\geq 0}(x|e_i)e_i=x$.

 $\begin{array}{ll} \textit{D\'{e}monstration}. \text{ En utilisant le th\'{e}or\`{e}me pr\'{e}\'{e}\'{e}dent alors } \sum |(x|e_i)|^2 \text{ est convergent. On utilise l'identit\'{e} de la m\'{e}\'{d}iane : } \sum (x|e_i)e_i \text{ est convergente dans } H \left(||(x|e_i)e_i||^2 = |(x|e_i)|^2\right). \\ \text{On pose } y = \sum_{i \geq 0} (x|e_i)e_i \text{ alors } ||y||^2 = \sum_{i \geq 0} |(x|e_i)|^2) \text{ mais } (y|e_j) = \left(\sum (x|e_i)e_ie_j\right) = \\ \sum (x|e_i)(e_i|e_j) = (x|e_j) \text{ ... Conclusion } \forall j \in \mathbb{N}(x|e_j) = (y|e_j) \Leftrightarrow (x-y|e_j) = 0 \Rightarrow \\ x-y \in \text{vect}((e_n)_{n \in \mathbb{N}})^{\perp} \Rightarrow x-y = 0_H \Leftrightarrow x=y = \sum (x|e_i)e_i||x||^2 = \sum_{i \geq 0} |(x|e_i)|^2 \end{array}$

Remarque. Si $(e_n)_{n\in\mathbb{N}}$ est une suite orthonormale telle que $\forall x\in Hx=\sum_{i\geq 0}(x|e_i)e_i$: $x=\lim_N\sum_{i\geq 0}^N a_ie_i$ où $a_i=(x|e_i)\in\mathbb{C}$

 $\in \text{vect}\{(e_n)_n \in \mathbb{N}\}; a_i = (x|e_i) \Rightarrow \text{vect}\{(e_n)_n \in \mathbb{N}\} = H. \ (e_n)_n \in \mathbb{N} \text{ est une base Hilbertienne. ii}) * (e_n)_n \in \mathbb{N} \text{ est base Hilbertienne de } H \Leftrightarrow \forall x \in H: \sum (x|e_i)e_i = x \sum (x|e_i)e_i = x \Leftrightarrow \sum |(x|e_i)|^2 = ||x||^2 \text{i} >> (e_n) \text{ est une base Hilbertienne de } H \Leftrightarrow \sum |(x|e_i)|^2 = ||x||^2 \forall x \in H$

Exemple (suite) : $H = l^2(\mathbb{N})$. $(e_n)_{n \in \mathbb{N}} t.q.e_n(k) = \delta_{nk}$. $u \in H \Leftrightarrow \sum_{n \geq 0} |u(n)|^2 = ||u||^2$ mais $u(n) = (u|e_n) = \sum u(k)e_n(k) \Leftrightarrow \sum_n \geq 0 |(u|e_n)|^2 = ||u||^2$, \Rightarrow c'est une base Hilbertienne.!?

1.4 Dual d'un espace de Hilbert

On rappelle que si S est un e.v.n. une FORME LINÉAIRE sur X est une application linéaire de X dans \mathbb{C} . Soit $l: X \to \mathbb{C}: \forall d \in \mathbb{C} \ \forall x,y \in Xl(x+dy) = l(x)+dl(y)$. L'ensemble des formes linéaires de X: est un espace vectoriel X^* . On considère X' dual topologique: c'est l'espace vectoriel des formes linéaires continues sur $X: \{l: (X,||\cdot||_X) \to (\mathbb{C},|\cdot|)\}$.

Exercice 1. l est continue \Leftrightarrow

$$\exists C > 0 \ x \forall x \in X, |l(x)| \le C||x|| \tag{*}$$

On définit $l \in X'$, $||l|| = \inf\{C > 0 \text{ t.q. (*) est satisfait}\} = \sup\{|l(x)| \mid ||x|| = 1\}$. $(X', ||\cdot||)$ est un espace de Banach (un e.v.n. complet)

Théorème 8 (Théorème de représentation de Riez). . Soit H un espace de Hilbert H' son dual topologique. On définit $I: H \to H$ par $\forall x \in HI(x) = (\cdot|x)$. Alors I est un isomorphisme isométrique de $H \to H'$.

Remarque. $H=\mathbb{C}^n$, une forme linéaire sur $\mathbb{C}^n: l.$ $l(x_1,\ldots,x_n)=\sum_{i=1}^n a_ix_i,\ a_i\in\mathbb{C}$ $|l(x)|=|\sum_{i=1}^n a_ix_i|\leq \sup\{a_i|\}\cdot||x||_{\mathbb{R}^n}$. Ici $X^*=X'$!?

$$l(x) = (a_1, a_2, \dots, a_n) \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

 $=(\bar{a}|x)\forall x\in\mathbb{C}^n\ \forall l\in X',\ \exists a\in\mathbb{C}:\ l(x)=(x|\bar{a})$ Généralisation à la dimension quelconque c'est le théorème de Riez: $\forall l\in H'\ \exists a\in H\ \forall x\in H:\ l(x)=(x|a)|$

Démonstration. Soit $l \in H'$ $l \neq 0'_h \Leftrightarrow$

lei $l \neq H$ puisque $\exists \in tql(x) \neq 0_h$ On sait que ker l est ferme sait $(x_n)_{n \in \mathbb{N}}$ une suite de kei l convergente dans $H: x_n \to x \in H$ mais : $l(x_n) \to l(l(x))$ mais $l(x_n) = 0 \ \forall n \to \infty$ l(x) = 0 $x \in \ker I$. Alors $H = \ker l \oplus (\ker l)^p erp$

Puisque $(\ker l) \neq H \Rightarrow \ker l^{\perp} = 0_H$. Soit $x \in \ker \phi^{\perp}$, ||x|| = 1 $x \neq 0_H$ $\forall y \in H \text{ soit } z = -l(x)y_l(y)x \in H \text{ et } l(lx) = -l(x_l(y) + l(y)l(x)) = 0 \text{ } x \in \ker I \Rightarrow$

(x|z) = 0

 \Rightarrow $|x|-l(x)y+l(y)x) <math>\Rightarrow l(x) \rightarrow l(x)(y|x) = l(y)(X|X) \Rightarrow \forall y \in H \ l(y) = (y|l(x)X)|)|$ $\forall l \in H' \exists a \in H \text{ t.q. } \forall x \in Hl(x) = (x|a) | I \text{ est surjective. Montrons que } I \text{ est injective.}$

Soit $x \in H$ t.q. $I(x) = O'_H \Leftrightarrow \forall y \in HI(x)(y) = (y|x) = 0 \Rightarrow x \perp H \Rightarrow X = 0_H$ $\ker I = \{O_h\}\ I$ est injective donc bijection.

Enfin: $||I(x)|| = \sup\{|(y|x)|, ||y|| = 1\} - ||x||$ isométrieß)

Parce que $|(y|x)| \le ||y|| \ ||x|| = ||x|| \ y = \frac{x}{||x||} \ ||y|| = 1 \ |(y|x)| = ||x||$

Remarque. Si l est anti-linéaire : $\forall d \in \mathbb{C} \ \forall x,y \in H \ l(x+dy) = l(x) + \bar{d}l(y)$ et $\exists u$ t.q. $\forall x \in H: \ l(x) = (u|x)$

Convergence faible dans les espaces de Hilbert

1.5.1Définition et premières propriétés

Définition 14. Soit H un espace de Hilbert. Une suit $(x_n)_{n\in\mathbb{N}}$ de H est dit Converge Faiblement vers $x \in H$ si $\forall y \in H(x_n|y) \to (x|y)$. On notera $x_n \rightharpoonup x$, x est dite limite faible de $(x_n)_{n \in \mathbb{N}}$.

Exp. $H = l^2(\mathbb{N}), x_n \in l^2(\mathbb{N}^*)$ t.q. $x_n(j) = \delta_{nj}$.

 $(x_n)_{n\in\mathbb{N}}$ est une base hilbertienne de H. On regarde la convergence faible. Soit $y \in l^2(\mathbb{N}^*)$ on doit calculer $\lim_{n \to +\infty} (x_n|y), (x_n|y) = \sum_j x_n(j)\overline{y(j)} = \overline{y(n)}. |(x_n|y)| \le 1$ |y(n)| on sait $\sum_{j} |y(j)|^2 < +\infty \Rightarrow |y(j)| \to 0$ qd $j \to +\infty$ et donc $|(x_n|y)| = |y(n)| \to 0$ qd $n \to +\infty$. On ercit $0 = (0_H|y)$ alors $\lim_n (x_n|y) = (0_H|y)$. 0_H est une limite de la suite $(x_n)_{n\in\mathbb{N}}n\in\mathbb{N}$ (On montrera la limite faible est unique). $||x_n||^2 = \sum_j |x_n(j)|^2 = 1$ $\Rightarrow x_n \not\to 0$ puisque $\lim_n ||x_n - 0_H|| = \lim_n ||x_n|| = 1 \not\to 0$. 0_H n'est pas limite de la suite $(x_n)_{n\in\mathbb{N}}$.

Proposition 1. La limite faible, si elle existe elle est unique.

Démonstration. Supposons que $\forall y \in H(x_n|y) \to (x|y)$ et $(x_n|y) \to (x'|y), x, x' \in H$. Supposons $x \neq x' \Leftrightarrow x - x' \neq 0_H \Rightarrow \exists y \in H \text{ t.q. } (x|y) \neq (x'|y) \text{ (*)}$

Remarque. On suppose (*) faux : $\forall y \in H(x|y) = (x'|y) \Leftrightarrow (x-x'|y) = 0 \Rightarrow x-x' \perp H$ $\Rightarrow x - x' = 0_H$ c'est Absurde.

On pose $u_n = (x_n|y)$ u = (x|y) u' = (x'|y) $u_n \to u$: $\forall \varepsilon > 0 \; \exists N \; \text{t.q.} \; \forall n \geq N |u_n - u| \leq N |u| \leq N |u_n - u| \leq N |u| \leq N |u|$ ε . On choisit $\varepsilon < |u-u'|$ alors on a toujours si $n \ge N |u_n-u'| = |u_n-u+u-u'| = |u_n-u+u-u'|$ $||u-u'|-|u_n-u|| \ge |u-u'|-\varepsilon \ge \frac{|u-u'|}{2} \Rightarrow \forall n \ge N|u_n-u'| \ge \frac{|u-u'|}{2} \Rightarrow |u_n-u'| \ne 0$ $\Leftrightarrow u_n \not\to u'$ QED.

Dans l'exemple précédent 0_H est la limite unique de la suite $(x_n)_{n\in\mathbb{N}}$ Exemple. $H = L^2(\mathbb{R})$. Soit $H_0 \in C_c^{\infty}(\mathbb{R})$ On pose $\forall n \in \mathbb{N}, \varphi_n(x) = \varphi_0(x-n) \ x \in \mathbb{R}$.

```
Rappel. C_c^{\infty}(\mathbb{R}) ensemble des fonctions f: \mathbb{R} \to \mathbb{C}.
```

* support f compact : borne et ferme.

*
$$f \in C_{\ell}^{n}\mathbb{R}$$
 $\Leftrightarrow f \in C_{X}^{\infty}(\mathbb{R})$ support $f = \{x \in \mathbb{R}, f(x) \neq 0\}$

$$L^{2}(\mathbb{R}) = \overline{C_{x}^{\infty}(\mathbb{R})}|_{\|\cdot\|_{L^{2}(\mathbb{R})}}$$

$$\varphi_0 \in C_C^{\infty}(\mathbb{R}), \, \forall n \in \mathbb{N} \varphi_n(x) = \varphi_0(x-n).$$

$$\forall \psi \in L^{2}(\mathbb{R}) : (\varphi_{n}|\psi) \to 0 = (0_{H}|\psi) \ (\varphi_{n}|\psi) = \int_{\mathbb{R}} dx \, \varphi_{n}(x) \overline{\psi(x)} = \int_{n-1}^{n+1} dx \, \varphi_{0}(x - n) \overline{\psi}(x). \ |(.|.)|_{L^{2}((n-1,n+1))} \leq ||.|||.|| \Rightarrow \int_{n-1}^{n+1} |\varphi_{0}(x-n)|^{2} dx = \int_{-1}^{+1} |\varphi_{0}(t)|^{2} dt = 1 \Rightarrow$$

$$|(\varphi_n|\psi)| \le (\int_{n-1}^{n+1} |\psi(x)|^2 dx)^{\frac{1}{2}}$$

 $\psi \in L^2(\mathbb{R}) \Rightarrow \int_{n-1}^{n+1} |\psi(t)|^2 dt \to 0 \text{ quand } n \to +\infty. \ \|\psi\| = \sum_{n} \int_{n-1}^{n+1} |\psi|^2 dt < \infty.$

Proposition 2. 1. soit $(x_n)_{n\in\mathbb{N}}$ t.q. $x_n \rightharpoonup x \in Halors(x_{k(n)})_{n\in\mathbb{N}}$ Converge faiblement et $x_{k(n)} \rightharpoonup x$

- 2. $si(x_n)_n \in \mathbb{N}$ et $(y_n)_{n \in \mathbb{N}}$ sait deux suites t.q. $x_n \rightharpoonup x$ et $y_n \rightharpoonup y$ alors $x_n + y_n \rightharpoonup x + y$
 - 3. $si \ x_n \rightharpoonup x \ et \ soit \ (d_n)_{n \in \mathbb{N}} \ une \ suite \ des \mathbb{C} \ t.q. \ d_n \rightarrow d \in \mathbb{C} \Rightarrow d_n x_n \rightharpoonup dx.$

Démonstration. 1. i est évident
$$\forall y \in H$$
 si $u_n = (y|x_n) \Rightarrow u = (y|x) \Rightarrow u_{k(n)} \rightarrow u \Rightarrow$ i)

- 2. $\forall y \in H(y|x_n + z_n) = (y|x_n) + (y|x_n) \to (y|x) + (y|z) = (y|x + z).$
- 3. On suppose $\forall y \in H(x_n|y) \to (x|y)$ et $d_n \to d$. $(d_n x_n dx|y) = (d_n x_n dx_n + dx_n)$
- $dx_n dx|y) = (d_n d)(x_n|y) + d(x_n x|y) \Rightarrow |(d_n x_n dx|y)| \leq |d_n d||(x_n|y)| + |d||(x_n x|y)|$ (a) $(x_n|y) \to (x|y) \Rightarrow \exists M \text{ t.q. } |(x_n|y)| \leq M \ \forall n \in \mathbb{N} \Rightarrow |d_n d||(x_n|x)| \leq |d_n d||(x_n|x)| \leq$
 - (a) $(x_n|y) \to (x|y) \Rightarrow \exists M$ i.q. $|(x_n|y)| \leq M$ $\forall n \in \mathbb{N} \Rightarrow |a_n a| |(x_n|x)| \leq |a_n a| |a_n a| |(x_n|x)| \leq |a_n a| |a_n a$

Remarque. On a toujours que $|(x_n - x|y)| \le ||x_n - x||_H ||y||_H$. Si $\lim_n ||x_n - x|| = 0 \Leftrightarrow \lim_n x_n = x \Rightarrow x_n \rightharpoonup x!$ l'inverse est faux en général.

Proposition 3. Si $x_n \rightharpoonup x$ dans H alors $\lim_{n \to +\infty} \inf ||x_n|| \ge ||x||$.

Remarque. Si $(x_n)_{n\in\mathbb{N}}$ converge $\exists x\in H$ et $\lim_{n\to+\infty}\|x_n-x\|=0$ alors par $\|x\|-\|x_n\|\| \leq \|x-x_n\| \Rightarrow \lim_{n\to\infty}\|x_n\|=\|x\|$. Mais si on a que $x_n\rightharpoonup x$ on ne sait pas que la suite $\|x_n\|$ converge, c.a.d. que la limite existe par contre $\lim_n\inf\|x_n\|=\lim_{n\to\infty}\inf\{\|x_k\|,k\geq n\}$ et $\lim_n\sup\|x_n\|-\lim_{n\to+\infty}\sup\{\|x_k\|,k\geq n\}$ existe toujours.

Démonstration. Puisque $x_n \to x$, alors $(x_n|x) \to (x|x) = ||x||^2$ en utilisant Cauchy Schwartz $|(x_n|x)| \le ||x_n||x| + ||x|| \le ||x_n|| + ||x_n|| = ||x_n|| + ||x_n|| + ||x_n|| = ||x_n|| + ||x_n|| + ||x_n|| = ||x_n|| + ||x$

Proposition 4. Soit $(x_n)_{n\in\mathbb{N}}$ une suite dans H. Alors $x_n \to x \Leftrightarrow x_n \rightharpoonup x$ et $\lim_n \sup \|x_n\| \le \|x\|$

Démonstration. (\Rightarrow) $x_n \to x \Rightarrow x_n \to x_n$ et $||x_n|| \to ||x||$ (\Leftarrow) $||x - x_n||^2 = ||x||^2 + ||x_n||^2 - 2 \operatorname{Re}(x|x_n) \lim_{n \to \infty} \sup ||x - x_n||^2 \le ||x||^2 + \lim_{n \to \infty} \sup ||x_n||^2 - 2||x||^2$. $\lim_{n \to \infty} \sup ||x - x_n||^2 \le ||x||^2 + \lim_{n \to \infty} \sup ||x_n||^2 - 2||x||^2$.

 $\lim_{n} \sup \|x_{n}\|^{2} - \|x\|^{2} \le 0 \Rightarrow \lim_{n} \sup \|x - x_{n}\|^{2} = 0 \ge \lim_{n} \inf \|x - x_{n}\|^{2} \ge 0 \Rightarrow \lim_{n} \sup \|x - x_{n}\|^{2} = \lim_{n} \inf \|x - x_{n}\|^{2} = \lim_{n} \lim_{n} \lim_{n} \lim_{n} \|x - x_{n}\|^{2} = \lim_{n} \lim_{n$

Exemple 1. Soit $(x_n)_{n\in\mathbb{N}}$ une suite bornée de H. Soit $D\subset H$ dense $(\bar{D}=H)$. Alors $x_n\rightharpoonup x$ sur $H\Leftrightarrow (x_n|y)\to (x|y)\ \forall y\in D$.

Exercice 2. On considère $H=L^2(\mathbb{R},dx)$, soit $\varphi\in H\Leftrightarrow \int_{\mathbb{R}}|\varphi|^2\,\mathrm{d}x=\|\varphi\|_{L^2(\mathbb{R})}^2$. $H=\overline{C_c^\infty(\mathbb{R})}$

Soit $\varphi_0 \in C_0^{\infty}(\mathbb{R})$ tq $\|\varphi_0\|_{L^2(\mathbb{R})} = 1$ (sinon on pose $\varphi = \frac{\varphi_0}{\|\varphi_0\|}, \|\varphi\| = 1$) On pose $\varphi_n(x) = \varphi_0(x-n)$, on veut montrer que $\varphi_n \rightharpoonup \varphi \in L^2(\mathbb{R})$ On remarque que : $\|\varphi_n\|^2 = \int_{\mathbb{R}} |\varphi_0(x-n)|^2 dx$ On pose $u = x-n : \|\varphi_n\|^2 = \int_{\mathbb{R}} du \, |\varphi_0(u)|^2 = 1 \, \varphi_n \not\to 0 \|f_n - 0\| = 1$. Est ce que la suite conv faiblement? $\exists \varphi \in H, (\varphi_n|\psi) \to (\varphi|\psi) \forall \psi \in H$.

Soit $\psi: \psi(x)=1$ ssi $x\in [-1,1]$ $\psi(x)=0$ sinon. $\int_{\mathbb{R}} |\psi(x)|^2 dx=\int_{-1}^1 1 dx=2$ On choisit $n\geq N$ avec N to $a+N\geq \Rightarrow \int_{\mathbb{R}} \varphi_n \psi dx=0$ On a montré $(f_c|\psi)\to 0=(0|\psi)$. Question $\varphi_n\rightharpoonup 0_{L^2(\mathbb{R})}$?

Proposition 5. Soit H un espace de Hilbert $D \subset H$ dense dans $H : \bar{D} = H$. Alors soit $(x_n)_{n \in \mathbb{N}}$ une suite borné dans H, $x_n \rightharpoonup x \in H \Leftrightarrow (x_n|y) \rightarrow (x|y) \ \forall y \in D$.

Exercice(suite) On doit monter que $\forall \psi \in C^2(\mathbb{R}) : (\varphi_n | \psi) \to 0$. On remarque que $\|\varphi_n\| = 1 \ \forall n \in \mathbb{N}$ donc elle est bornée. (Suite bornée : $\exists \prod tq \forall n \|x_n\| \leq \prod$) Il suffit de montrer $(\varphi_n | \varphi) \to 0 \forall \psi \in C_0^{\infty}(\mathbb{R})$. Montrons a dernier point : $\int_{\mathbb{R}} \psi(x) \varphi_n(x) \, \mathrm{d}x$; $\exists a, b \in \mathbb{R}$, $supp\psi \subset [A, B]$. On ch isit tq supp $\varphi_N = [a + N, b + N]$, $a + > \Rightarrow \int_{\mathbb{R}} \psi \varphi_n = 0 \Rightarrow \lim_n (\psi | \varphi_n) = 0 = (\psi | 0)$

Démonstration. Si $\varphi_n \rightharpoonup \varphi$ dans $H \Rightarrow \varphi_n \rightharpoonup \varphi$ dans D. Supposons que $(\varphi_n|\psi) \rightarrow (\varphi|\psi) \forall \psi \in D$. Soit $\eta \in H \exists (\eta_k)_{k \in \mathbb{N}}$ suite de D tq $\lim_n \|\eta_k - \eta\| = 0$. On calcul $(\varphi_n|\eta) = (\varphi_n|\eta_k) + (\varphi_n|\eta - \eta_k)$. Soit $\varepsilon > 0$, $\exists K$ tq si $k > K\|\eta - \eta_k\| \le \frac{\varepsilon}{2}$ alors $|(\varphi_n|\eta - \eta_k)| \le \|\varphi_\nu\| \|\eta - \eta_k\| \le \prod_{\varepsilon} \varepsilon$. On fixe un tel k. On conclut que $\forall \varepsilon > 0$, $\exists N$ tq si $n \ge N$; $|(\varphi_n|\eta)| \le (\prod_{\varepsilon} +1)\varepsilon \Rightarrow (\varphi_n|\eta) \to 0$.

Théorème 9 (1). Toute suite faiblement convergente dans un espace de Hilbert est bornée.

Théorème 10 (2, Banach-Alaoglu-Bourbaki). Une espace de Hilbert vérifie la propriété de Bolzano-Weierstrass faible. De toute suite bornée de H, en peut extraire une sous suite.

Remarque. Dans \mathbb{R} , de toute suite borné on peut extraire une sous-suite c.v. (B.W.) c'est vrai si $p < +\infty$. Mais c'est faux en dimension quelconque. Le Thm 2 > c'est vrai au sous faible.

Démonstration. Soit $(x_n)n \in N$ une suite borné dans $H: \exists L > 0$ tq $\forall n \in ||x_n|| \le L$. Soit $M = \overline{\text{vect}(x_n)}$. Si M est de dimension fini, alors $(x_n)_{n \in \mathbb{N}} \subset B_f(0_M, L) \subset M$. qui est compact \Leftrightarrow elle satisfait la propriété de B.W. $\exists (X_{k(n)})_{n \in \mathbb{N}}$ sous suite et $x \in B_f(0, L)$ tq $\lim_n ||x_{k(n)} - x|| \to 0 \Rightarrow x_{k(n)} \rightharpoonup x$ dans H. Alors le Theoreme 2 est démontré. Supponons que M n'est pas de dimension finie. M est un espace Hilbert (sous espace ferme de H) Soit $(\varphi_k)_{k \in \mathbb{N}}$ une base hilbertiere de M. La suite $((x_n|e-1))_{n \in \mathbb{N}}$ est bornee car $|(x_n|e_1)| \le ||x_n|| ||e_1|| \le L \cdot 1 = L$ On appleque la propriété de B.W. dans $\mathbb{C}: \exists (a_{k(n)})_{n \in \mathbb{N}}$ et $c_1 \in \mathbb{C}$ tq $a_{k(n)} \to c_1$ qd $n \to +\infty$ on réécrit : $a_{k(n)}$ on pose $x_{k(n)} = x'_n$. $\forall n \in \mathbb{N}$ alors $(x_n^1|e_1) \to c_1$ qd $n \to +\infty$. 2 la suite $(x'_n|e_2)$ est borné, \exists une sous suite $(x_n^2|e_2)$ et $c_2 \in \mathbb{C}$ tq $(x_n^2|e_2) \to c_2$ qd $n \to +\infty$ etc...

Canclusion : On a construit des sous suité $(x_n)_{n\in\mathbb{N}}\subset (x_n^1)_{n\in\mathbb{N}}\subset ...(x_n^k)_{n\in\mathbb{N}}...$ et des complexes C_k , k=1,2,3... tq $(x_n^k|e_k)\to c_k$ qd $n\to+\infty$. (présidé deogonal de Cantor) :

on pose $z_n = x_n^n$. Montrer que $z_n \rightharpoonup \sum_k c_k e_k$ si $\sum_k c_k e_k$ est conv dans H. Le thm 2 est démontré. Montrons que $\sum_k c_k e_k = z \in M$ i.e (*). Puisque M est complet alors il faut montrer $S_n = \sum_{k=1}^n c_k e_k$ est de Cauchy : $||s_n - s_m||^2 = ||\sum_{k=n+1}^m c_k e_k||^2 = \sum_{k=n+1}^m |c_k|^2$ (Parseval). S_n est de Cauchy $\Leftrightarrow \tilde{S}_n = \sum_{k=1}^n |c_k|^2$ est de Cauchy $\Leftrightarrow \tilde{S}_n$ est convergent dans C. Montrons ce dernier point. On utilise l'inégalité de Bessel. $\sum_{k=1}^{N} |(x_n|e_k)|^2 \le$ $||z_n||^2 \leq L^2$ mais : $(z_n|e_k) + (x_n^n|e_k) \to c_k$ qd $n \to +\infty$. puisque $(x_n^n)_{n \in \mathbb{N}}$ est une sous suite de $(x_n^k)_{n\in\mathbb{N}}$ pour $n\geq k$. $(x_n)_{n \in \mathbb{N}} \subset (x_n^2)_{n \in \mathbb{N}} \subset \dots (x_n^k)_{n \in \mathbb{N}} \subset (x_n^{k+1})_{n \in \mathbb{N}} \dots x_1^1 x_2^2 \dots x_k^k \text{ alors } \lim_{n \to +\infty} (x_n^n | e_k) = c_k. \text{ Alors } \sum_{k=1}^N |c_k|^2 = \sum_{k=1}^N \lim_n |(x_n^n | e_k)|^2 = \lim_n \sum_{k=1}^N |(x_n^n | e_k)|^2 = \lim_n \sum_{k=1}^N |(z_n | e_k)|^2 \text{ on utilisant (*) alors } \sum_{k=1}^N |c_k|^2 \le L^2 \text{ (par passage à la limite) Par conséquent } \sum_{k=1}^N |c_k|^2$ est convergente donc $\sum_{k\geq 1} c_k \varphi_k$ est convergente dans M. Soit $z=\sum_{k=1} c_k \varphi_k$ alors $(z|e_c)=c_e$. Alors on a montre que $\forall C\in\mathbb{N}^*$ $(z_n|e_c)\to c_e=(z|e_c)$ En utilisant que $vect(e_k, k \in \mathbb{N}^* = M \text{ et } (x_n)_{n \in \mathbb{N}}$ est bornée alors cela entraine la convergence faible sur $M. \ \forall y \in M: (x_n^n|y) \to (z|y)$ On a converture une sous suite de $(x_n)_{n \in \mathbb{N}}$ qui conv faiblement sur M vers $z \in H$. On étend la propriété sur H:M est un sous espace fermé on lui applique le théorème des ces projection. $\forall \eta \in HM \exists ! y_0 \in M$ projection de y sur M.

 $z_n \in M$ et $y - y_0 \in \prod^{\perp} \Rightarrow limit_n(z_n|y) = (z|y_0)$ (ce que l'on a démontré précédent) mais $z \in M$, donc $(z|y-y_0) = 0$: $\lim_n (x_n|y) = (z|y_0) + (z|y-y_0) = (z|y)$ ce qui montre la conv faible sur H.

Alors $y = y_0 + (y - y_0)$ et $(x^n | y) = (x_n | y) = (x_n | y_0) + (z_n | y - y_0)$ mais $(z_n | y - y_0) = 0$.

Théorème 11 (Completion). $Si(\mathcal{V}, (\cdot|\cdot)_{\mathcal{V}})$ est un espace préhilbertien, alors, il existe un espace de Hilbert $(\mathcal{H}, (\cdot|\cdot)_{\mathcal{H}})$ et une application $U: \mathcal{V} \to \mathcal{H}$ que :

- 1. U est bijective
- 2. U est linéaire 3. $(Ux|Uy)_H = (x|y)_V \ \forall x \in V, \ \forall y \in V$
- 4. $U(\mathcal{V}) = \{Ux \mid x \in \mathcal{V}\}\ est\ dense\ dans\ \mathcal{H}.$

Théorème 12. Soit $(E, (\cdot | \cdot))$ une espace préhilbertien. Soit $(v_n)_{n \in \mathbb{N}}$ une famille libre de

- E. Alors il existe une famille orthonormale de E, telle que :
 - $\operatorname{vect}((e_n)) = \operatorname{vect}((v_n))$ $-(e_n|v_n)>0, \forall n\in\mathbb{N}^*$

Procédé de Gram-Schmidt. Soit $u_1=v_1$, et $e_1=\frac{u_1}{\|u_1\|}$; $u_2=v_2-\frac{(v_2|u_1)}{\|u_1\|^2}u_1$, et $e_2=\frac{u_2}{\|u_2\|}$; $u_3=v_3-\frac{(v_3|u_1)}{\|u_1\|^2}u_1-\frac{(u_3|u_2)}{\|u_2\|^2}u_2$ et $e_3 = \frac{u_3}{\|u_3\|}$ etc...

Opérateurs sur un espace de Hilbert

2.1 Généralités

Soit X, Y deux espaces de Banach, on note par L(X, Y) l'ensemble des applications linéaires de $X \to Y$, si X = Y on note par L(X). Dans le cas d'espace de Hilbert l'ensemble des applications linéaires $L(\mathcal{H}, \mathcal{H}')$ respectivement $L(\mathcal{H})$ si $\mathcal{H} = \mathcal{H}'$.

```
T \in L(X,Y)N(T) = \{x \in X, Tx = 0_y\} noll of T.
```

$$R(T) = \{ y \in Y, \exists x \in XetTx = y \} \text{ range of } T.$$

$$G(T) = \{(x, Tx) | x \in X\}$$
 graphe de T .

Proposition 6. Soit $(X, \|\cdot\|_X)$ $(Y, \|\cdot\|_y)$ deux espaces du Banach soit $f \in L(X, Y)$, alors les assertions suivantes ont équivalentes.

- 1. f est continue sur X
- 2. f est continue en un point $x_0 \in X$
- 3. $\exists C > 0 \ t.q. \ \forall x \in X \ on \ a \ \|Tx\|_Y \le C \|x\|_X$.

 $\begin{array}{lll} D\acute{e}monstration. \ (\Rightarrow) \ \ \mathrm{i}) \Rightarrow \ \ \mathrm{ii}), \ \ \mathrm{montrons} \ \ \mathrm{iii}) \ \Rightarrow \ \mathrm{i}) \ \ \mathrm{on} \ \ \mathrm{a} \ \forall x,y \in X \ \|f(x)-f(y)\|_Y = \|f(x-y)\|_Y \le C\|x-y\|_X \Rightarrow f \ \ \mathrm{est} \ \ \mathrm{Lipschitz} \ \ \mathrm{sur} \ X \ \ \mathrm{donc} \ \ \mathrm{continue}. \ \ \mathrm{Montrons} \ \ \mathrm{ii}) \ \Rightarrow \\ \mathrm{iii)} \ \ \mathrm{On} \ \ \mathrm{choisit} \ \ x_0 = 0_X \ \ \mathrm{alors} \ f \ \ \mathrm{est} \ \ \mathrm{continue} \ \ \mathrm{en} \ \ 0_X. \ \ \forall \varepsilon > 0 \exists \eta(\varepsilon) \ \ \mathrm{t.q.} \ \ \forall x \in X \ \ \mathrm{et} \ \|x\|_X \le \eta \\ \Rightarrow \|f(x)-f(0)\|_Y = \|f(x)\|_Y \le \varepsilon. \ \ \mathrm{Soit} \ \varepsilon = 1, \ \mathrm{soit} \ \eta = \eta(1), \ \forall x \in X \ \ \mathrm{on} \ \ \mathrm{pose} \ \tilde{x} = \frac{\eta}{2} \frac{1}{\|x\|_X}; \\ \mathrm{On} \ \ \mathrm{a} \ \ \|\tilde{x}\| = \frac{\eta}{2} \frac{1}{\|x\|_X} \|x\|_X = \frac{\eta}{2} \le \eta \ \Rightarrow \ \|f(\tilde{x})\| \le 1. \ \ \mathrm{Mais} \ \ f(\tilde{x}) = f(\eta \frac{x}{\|x\|} = \eta \frac{1}{\|x\|} f(x) \ \ \mathrm{et} \\ \frac{\eta}{2\|x\|_Y} \|f(x)\|_Y \le 1 \Rightarrow \|f(x)\|_Y \le \frac{2}{\eta} \|x\|_X \ \ \mathrm{QED}. \end{array}$

Remarque. iii) $\exists C > 0 \text{ tq } \forall x \in X : \|f(x)\|_Y \leq C\|x\|_X \Leftrightarrow \left\|f(\frac{x}{\|x\|_X})\right\| \leq C \text{ si } \|x\|_X \neq 0$ $\Leftrightarrow x \neq 0_X \Leftrightarrow \forall x \in X\|x\|_X = 1; \|f(x)\|_Y \leq C. \ f(B_f(0_X, 1)) \subset B_f(0_Y, C).$

- * Un opérateur de $X \to Y$ et une application linéaire de $X \to Y$.
- * Une application linéaire $X \to Y$ continue est un opérateur borné de $X \to Y$.
- * On notera par $\mathcal{B}(X,Y)$ l'ensemble des opérateurs bornés de $X\mapsto Y$.

Exp. $\mathcal{H} = \mathcal{H}' = l^2(\mathbb{Z})$ on considère l'application $T : \mathcal{H} \to \mathcal{H}' \forall u \in \mathcal{H} (Tu)(n) = u(n-1)$ shift a droite. T est linéaire : $T(\lambda u + \mu v)(n) = (\lambda u + \mu v)(n-1) = \lambda u(n-1) + \mu v(n-1)$ $1 = \lambda Tu(n) + \mu Tv(n)$ T est borné (donc continue) $\forall u \in \mathcal{H} \|Tu\|_{\mathcal{H}}^2 = (Tu|Tu)_{\mathcal{H}} = (Tu|Tu)_{\mathcal{H}}$ $\sum_{n\in\mathbb{Z}} Tu(n)\overline{Tu(n)} = \sum_{n\in\mathbb{Z}} u(n-1)\overline{u(n-1)} = \sum_{l\in\mathbb{Z}} u(e)\overline{u(e)} = \|u\|_{\mathcal{H}}^2 \Rightarrow \|Tu\|_{\mathcal{H}} = \|u\|_{\mathcal{H}}$ T est une isométrie. B(X,Y) est un espace normé, muni de la norme naturelle. $T \in B(X,Y)$ ||T|| =

 $\inf\{C > 0tql'ingalitsuivantestsatisfait, ||Tx|| \le C||X||_X \forall x \in X\} \to ||T|| \ge 0.$

Exercice 3. Montrer que (*) définie une norme sur B(X,Y).

Proposition 7. Propriété Soit $T \in B(X,Y)$ alors

$$\begin{split} \|T\| &= \sup\{\|Tx\|_Y, \|x\|_X = 1\} \\ &= \sup\{\|Tx\|_Y, \|x\|_X \le 1\} \\ &= \sup\{\|Tx\|_Y, \|x\|_X < 1\} \end{split}$$

$$\|T\| &= \inf\{C > 0tq\|Tx\|_Y \le C\|x\|_X\} \\ &= \inf\{C > 0tq \left\|T\frac{x}{\|x\|_X}\right\|_Y \le C\forall x \in X\} \\ &= \inf\{C > 0tq\|Tx\|_Y \le C\forall x \colon \|x\| = 1\} \\ &= \sup\{\|Tx\|_y\forall x \colon \|x\| = 1\} \end{split}$$

Soit X un espace de Banach.

Proposition 8. Si Y est un espace de Banach, alors $(B(X,Y),\|\cdot\|)$ est lui même un espace de Banach.

Application : X' le dual topologique de $X:\varphi\in X'$ si $\varphi\in L(X,\mathbb{C})$ qui satisfait $\exists C > 0 \ \forall x \in X : |\varphi(x)| \leq C ||x||_X$. \mathbb{C} est complet alors par la prop. $3 \ X'$ est complet.

Exercise 4. Montrer la proposition 3. Soit $(T_n)_{n\in\mathbb{N}}$ une suite du Cauchy des B(X,Y) il faut montrer $\exists T \in B(X,Y) \text{ tq } \lim_{n \to \infty} ||T_n - T|| = 0.$

Adjoint d'un opérateur

Soit \mathcal{H} , \mathcal{H}' deux espaces de Hilbert (séparables).

Proposition 9. Soit $T \in B(\mathcal{H}, \mathcal{H}')$, li existe $T^* \in B(\mathcal{H}', \mathcal{H})$ dit opérateur adjoint qui $satisfait: \forall x \in \mathcal{H}, \forall y \in \mathcal{H}'$

$$(Tx|y) = (x|T^*y)$$

Exemple 1. $\mathcal{H} = \mathcal{H}' = l^2(\mathbb{Z}) T$ shift adjointe, calculons $T^* \cdot \forall u, v \in \mathcal{H}, (Tu|v) = \sum_{n \in \mathbb{Z}} Tu(n) \cdot Tu(n)$ $\overline{v(n)} = \sum_{n \in \mathbb{Z}} u(n-1)\overline{v(n)} = \sum_{e \in \mathbb{Z}} u(e)\overline{v(e+1)} = (u|w) \text{ avec } w(e) = v(e+1). \text{ On pose } T^*v = w.$

Démonstration. Dans ces conditions $x \in \mathcal{H} \mapsto (Tx|y)$ est une forme linéaire sur \mathcal{H} comme la composition de T et $(\cdot|y)$. De plus on a que $|(Tx|y)| \leq ||Tx||_{\mathcal{H}'} ||y||_{\mathcal{H}} \leq ||T|| ||x||_{\mathcal{H}} ||y||_{\mathcal{H}'}$ $|\varphi(x)| \leq \text{const} ||x||_{\mathcal{H}'}, \text{const} = ||T|| ||y||_{\mathcal{H}'} \text{ alors } \varphi \text{ est continue (bornée)}.$ D'après le Théorème de Riez $\exists ! \in \mathcal{H}tq\varphi(x) = (x|z)\forall x \in \mathcal{H}$. On pose $z = T^*y$, montrons que $T^* \in \mathcal{H}$ $L(\mathcal{H}',\mathcal{H})$. Soit $y_1,y_2\in\mathcal{H}d_1,d_2\in\mathbb{C}$ on calcule $T^*(d_1y_1+d_2y_2)$:

* $\forall x \in \mathcal{H}(x|T^*(d_1y_1 + d_2y_2)) = (Tx|d_1y_1 + d_2y_2)$ (def)

$$\bar{d}_{1}(Tx|y_{1}) + \bar{d}_{2}(Tx|y_{2}) = \bar{d}_{1}(x|T^{*}y_{1}) + \bar{d}_{2}(x|T^{*}y_{2}) = (x|d_{1}T^{*}y_{1} + d_{2}T^{*}y_{2}) \Rightarrow \forall x \in \mathcal{H}(x|T^{*}(d_{1}y_{1} + d_{2}y_{2}) - d_{1}T^{*}y_{1} - d_{2}T^{*}y_{2}) = 0 \Rightarrow T^{*}(d_{1}y_{1} + d_{2}y_{2}) - d_{1}T^{*}y_{1} - d_{2}T^{*}y_{2} = 0_{\mathcal{H}}.$$
Montrons que $T^{*} \in B(\mathcal{H}, \mathcal{H}') \forall y \in \mathcal{H}'. \|T^{*}y\|_{\mathcal{H}}^{2} = (T^{*}y|T^{*}y)_{\mathcal{H}} = (T(T^{*}y)|y)_{\mathcal{H}'} \Rightarrow \|T^{*}y\|_{\mathcal{H}}^{2} \leq \|T(T^{*}y)\|_{\mathcal{H}'} \|y\|_{\mathcal{H}'} \leq \|T\|\|T^{*}y\|_{\mathcal{H}}\|y\|_{\mathcal{H}} \Rightarrow \|T^{*}y\|_{\mathcal{H}} \leq \|T\|\|y\|_{\mathcal{H}'} \forall y \in \mathcal{H}' \text{ tq}$

$$\begin{split} & \|T^*y\|_{\mathcal{H}}^2 \leq \|T(T^*y)\|_{\mathcal{H}'}\|y\|_{\mathcal{H}'} \leq \|T\|\|T^*y\|_{\mathcal{H}}\|y\|_{\mathcal{H}} \Rightarrow \|T^*y\|_{\mathcal{H}} \leq \|T\|\|y\|_{\mathcal{H}'}\forall y \in \mathcal{H}' \text{ tq } \\ & T^*y \neq 0_{\mathcal{H}}. \text{ Si } y \in N(T^*) \text{ on a que } 0 \leq \|T\|\|y\|_{\mathcal{H}'} \text{ donc } T^* \in B(\mathcal{H}',\mathcal{H}), \ \|T^*\| \leq \|T\|. \\ & \underline{\text{Unicit\'e.}} \ \exists S \in B(\mathcal{H}',\mathcal{H}) \text{ tq } \forall (x,y) \in \mathcal{H} \times \mathcal{H}'(Tx|y) = (x|Sy) = (x|T^*y) \Rightarrow \forall x \in \mathcal{H} \ (x|Sy - T^*y) = 0 \Rightarrow Sy = T^*y. \end{split}$$

Exemple 2. $\mathcal{H}=\mathcal{H}'=L^2(\mathbb{R}).$ Soit $f\in C^0(\mathbb{R})\cap L^\infty(\mathbb{R}).$ On définit l'action de T sur $C_0^\infty(\mathbb{R})\ni \varphi: T\varphi(x)=f(x)\varphi(x)\ f\cdot \varphi\in C_0^\infty(\mathbb{R}): T: C_0^\infty(\mathbb{R})\mapsto C_0^\infty(\mathbb{R}).$ T est linéaire $\Rightarrow f\varphi\in L^2(\mathbb{R}).$ $T:C_0^\infty(\mathbb{R})\to L^2(\mathbb{R})$ est continue. $\|T\varphi\|^2=(T\varphi|\varphi)=\int_{\mathbb{R}}f^2(x)\varphi(x)\bar{\varphi}(x)\,\mathrm{d}x=\int_{\mathbb{R}}f^2(x)|\varphi(x)|^2\,\mathrm{d}x\leq \|f\|_\infty^2\int_{\mathbb{R}}|\varphi(x)|^2\,\mathrm{d}x\Rightarrow \|T\varphi\|^2\leq \|f\|_\infty^2\|\varphi\|^2.$ T est continue sur $C_0^\infty(\mathbb{R})\mapsto L^2(\mathbb{R}).$ T est uniformément continue car $\|T\varphi-T\psi\|=\|T(\varphi-\psi)\|\leq \|f\|\|\varphi-\psi\|.$ $\|f\|_\infty$ Lips-

titz. On utilise que toute applications T uniformément continue sur D et $\bar{D}=\mathcal{H}$, admet un prolongement par continuité sur \mathcal{H} défini comme : $\forall \varphi \in \mathcal{H}, \exists (\varphi_n)_{n \in \mathbb{N}}$ Suite de D et $\lim_n \varphi_n = \varphi$. On pose $T\varphi = \lim_n T\varphi_n$. T est borne et $\|T\| \leq \|f\|_{\infty}$. $\|T_{\varphi}\| = \lim_n \lim_n T\varphi_n T\varphi_n$ mais $\|T\varphi_n\| \leq \|f\|_{\infty} \|\varphi_n\|$. $\|Tf\| \leq \|f\|_{\infty} \|\varphi\|$. Calculons. $T^* \forall \varphi, \psi \in \mathcal{H}(T\varphi|\psi) = \int_{\mathbb{R}} f(x)\varphi(x)\bar{\psi}(x) dx = \int_{\mathbb{R}} f(x)\varphi(x)\bar{\psi}(x) dx$

Remarque. Dans le preuve de la proposition III21 On peut inverser la rôle de T et T^* , alors on montre aussi que $||T^*|| \ge ||T||$ alors $||T^*|| = ||T||$ (ex)

Définition 15. Un opérateur $T \in B(\mathcal{H})$ est dit auto adjoint si $T = T^*$. $T \in B(\mathcal{H})$ est dit unitaire si $T \circ T^* = T^* \circ T = \mathbb{1}_{\mathcal{H}}$.

Remarque. Si $T = T^* \forall x \in \mathcal{H}(Tx|x) = (x|Tx) \Rightarrow (Tx|x) = \overline{(Tx|x)} \Rightarrow (Tx|x) \in \mathbb{R}$.

Définition 16. $T = T^*$ est positif si $\forall x \in \mathcal{H}(Tx|x) \geq 0$ $T = T^*$ est définit positif si $\forall x \in \mathcal{H}, x \neq 0_X(Tx|x) > 0$. T est défini positif si T est positif et (Tx|x) = 0 $\Leftrightarrow x = 0_X$.

Exemple 3. $H = l^2(\mathbb{Z}) \ \varphi \in H \ (T_+\rho)(n) = \varphi(n-1), \ (T^*\rho)(n) = \varphi(n+1) := (T_-\varphi)(n).$ On considère : $S = T_+ + T_-. \ \forall \varphi \in H : (S\varphi)(n) = \varphi(n-1) + \varphi(n+1).$ Calculons : $S^* = (T_+ + T_-)^* : T_+ + T_-$

1. Si $A, B \in B(H)$ alors $(\mu A + \lambda B)^* = \bar{\mu}A^* + \bar{\lambda}B^*$, $\forall \mu, \lambda \in \mathbb{C}$. $\forall u, v \in H$ $((\lambda A + \mu B)u|v) = \lambda(Au|v) + \mu \ (u|v) = \lambda(u|A^*v) + \mu(u|B^*v) = (u|\bar{\lambda}A^*v) + (u|\bar{\mu}B^*v) = (u|\bar{\mu}\lambda A^* + \bar{\mu}B^*|v)$

par unicité de l'adjoint on en déduit le résultat. $(\mu A + \lambda B)^* = \bar{\mu} A^* + \bar{\lambda} B^*$

 $\int \varphi(x)\overline{f(x)}\psi(x) \, \mathrm{d}x = (\varphi|T\psi) \Rightarrow T^* = T.$

Dans notre cas : $S^* = T_+^* + T_-^* = T_- + T_+ = S$ donc S est auto-adjoint.

Remarque. $T_{-} = {*}_{+} \implies {*}_{-} = {}_{+} \text{ et } T_{-}^{*} = T_{+}^{**} \implies T_{+} = T_{+}^{**}$

C'est vrai en général : $A^{**}=A \ \forall (\cdot,v) \in H \times H, \ (A^*u,v)=(u,A^{**}v)=(u,Av). \implies A^{**}=A$

Proposition 10. Soit H, H' 2 espaces se Hilbert. $T \in B(H, H')$ alors :

1.
$$N(T) = R(T^*)^{\perp}$$

2. $\overline{R(T)} = N(T^*)$

Démonstration. -* $u \in N(T) \iff Tu = 0_{H'} \iff \forall v \in H' (Tu|v) = 0 \iff$ $(u|T^*v)=0\iff u\in R(T^*)^{\perp}$ -* R(T) n'est pas nécessairement fermé, mais $N(T^*)$ est fermé puisque le noyau d'un opérateur borné est toujours fermé alors l'égalité doit s'écrire avec $R(T) \implies$ a finir en exercice.

Proposition 11. Dons le même conditions que la proposition 2, si $T \in B(H)$ est inversible: T^{-1} existe et $T^{-1} \in B(H)$ on $a: (T^*)^{-1}$ existe et $(T^*)^{-1} = (T^{-1})^*$.

Démonstration. Soit $A, B \in B(H)$; $(A \cdot B)^* = B^* \cdot A^* \ \forall \varphi \in H \ (A \cdot B)\varphi = A(B\varphi)$. Si T est inversible $\implies \mathbb{1}_H T^{-1}T = TT^{-1}$. $\mathbb{1}_H^* = \mathbb{1}_H$ donc $(T^{-1}T)^* = T^*(T^{-1})^* = T^*(T^{-1})^*$ $1_H^* = 1_H$ Idem pour l'autre sens.

Proposition 12. Soit $T \in B(H)$, T autre adjoint : $T = T^*$ alors $||T|| = \sup\{|(Tu|u)| : T \in T^*\}$ $u \in H, ||u|| = 1$

Remarque. $\sup\{|(Tu|u)|, u \in H, ||u|| = 1\} = \sup\{||Tu||, u \in H, ||u|| = 1\}$

Démonstration. Soit $\gamma = \sup\{|(Tu|u)|: u \in H, ||u|| = 1\}$ alors on a $\forall u \in H, ||u|| = 1$ $|(Tu|u)| \le ||T|| \implies \gamma \le ||T||$

l'autre sens : On utilise que $\forall \lambda \in \mathbb{R}, \forall u, v, w \in H (T(v \pm \lambda w)|v \pm \lambda w) = (Tv|v) \pm Tv$ $2\lambda \operatorname{Re}(Tv|w) + \lambda^2 ||w||^2$.

$$|(T(v \pm \lambda w)|v \pm \lambda w)| = \underbrace{|(\frac{T(v \pm \lambda w)}{|\|v \pm \lambda w\|\|^2}|\frac{v \pm \lambda w)}{|\|v \pm \lambda w\|\|^2}}_{|||v \pm \lambda w\||^2} |||v \pm \lambda w||^2$$

On calcule

$$(T(v + \lambda w)|v + \lambda w) - ((v - \lambda w)|(v - \lambda w)) = 4\lambda \operatorname{Re}(Tv|u)$$

$$\implies 4|d| \cdot |\operatorname{Re}(Tv|u)| \le |(T(v + \lambda w)|w + \lambda w)| + |(Tw - \lambda w|v - \lambda w)| \le \varphi(\|w + \lambda w\|^2 + \|v\|^2) + \|v\|^2 + \|v$$

$$||v - \lambda w||^{2})(c.f.*) \le 2\gamma(||v||^{2} + \lambda^{2}||w||^{2})$$

$$\implies 2\gamma\lambda^{2}||w||^{2} - 4|\lambda| \cdot |\operatorname{Re}(Tv|w)| + 2\gamma||v||^{2} \ge 0, \forall \lambda \in \mathbb{R} \implies \Delta = 12(|\operatorname{Re}(Tv|w)|^{2} - 2\gamma(||v||^{2} + 2\gamma(|w||^{2})))$$

$$\gamma^2 \|v\|^2 \|w\|^2) \le 0$$

Supposons la dernière inégalité fausse : P a deux racines λ_1 , λ_2 to $\lambda_1 + \lambda_2 =$ $4\frac{|\operatorname{Re}(\hat{T}u|v)|}{2\gamma||w||^2} \geq 0$ et donc une des deux racines est positive : alors $P(d) = 2\gamma\lambda^2||w||^2$

 $4\lambda |\operatorname{Re}(Tv|w)| + 2\gamma ||w||^2$ doit changer de signe pour $\lambda \in \mathbb{R}^+$ ce qui est absurde, \implies (**).

et donc $|\operatorname{Re}(Tv|w)|^2 \leq \gamma^2 ||v||^2 ||w||^2$, on choisit $w = Tv : ||Tv||^2 \leq \gamma^2 ||v||^2 \implies$ $||T|| \leq \gamma$.

Exemple 4. Soit $f \in C^{0}(\mathbb{R}) \cap L^{\infty}(\mathbb{R})$. Soit $H = L^{2}(\mathbb{R})$ et l'opérateur défini sur H par : $\forall \varphi \in H$: $(T\varphi)(x) = f(x)\varphi(x)$

(on définit T sur $C_c^{\infty}(\mathbb{R})$ et on étend)

On peut montrer que $||T|| = ||f||_{\infty}$ On sait que : $||T\varphi||^2 = \int |f(x)|^2 |\varphi(x)|^2 dx \le ||f||_{\infty}^2 ||\varphi||^2 \implies ||T|| \le ||f||_{\infty}$

Exemple 5. En utilisant une suite bien choisie dans H, montrer que $||T|| = ||f||_{\infty}$, ici $\exists x_0$ tq $|f(x_0)| = ||f||_{\infty}$. On peut choisir.

Proposition 13. Soit H, H' deux espaces de Hilbert et $T \in L(H, H')$. Alors les 4 assertions suivantes sont équivalentes :

```
(i) \forall (u_n)_{n\in\mathbb{N}} \ de \ H, \ tq \ u_n \to u \in H \implies Tu_n \to Tu \ dans \ H' \ (T \in B(H,H'))
```

(ii) $\forall (u_n)_{n\in\mathbb{N}} de H$, $tq u_n \rightharpoonup u \in H \implies Tu_n \rightharpoonup Tu dans H'$

(iii)
$$\forall (u_n)_{n\in\mathbb{N}} \ de \ H, \ tq \ u_n \to u \in H \implies Tu_n \rightharpoonup Tu \ dans \ H'$$

 $D\'{e}monstration.$ i) \implies ii) si i) est vérifié, $T\in B(H,H')$ et donc $T^*\in B(H',H)$ tq $\forall u\in H,\,v\in H'$ $(Tu|v)_H=(u|T^*v)_H$

soit $(u_n)_{n\in\mathbb{N}}$ une suite dans H $u_n \to \in H$ alors par (*) $\forall v \in H' : (Tu_n - Tu|v) = (T(u_n - u)|v) = (u_n - u|T^*v) \to 0$ qd $n \to_{\infty}$ puisque $u_n \to u \Longrightarrow Tu_n \to Tu$. ii) \Longrightarrow iii) Supposons ii). Alors soit $(u_n)_{n\in\mathbb{N}}$ une suite de Htq $u_n \to u \in H \Longrightarrow u_n \to u \Longrightarrow Tu_n \to Tu$.

Montrons en fin que iii) \Longrightarrow i). On suppose iii) et i) faux. $\forall C > 0, \exists u \in H \text{ tq} \|Tu\| > C\|u\|$, on peut construire $(u_n)_{n \in \mathbb{N}}$ suite de H tq $\forall n\|Tu_n\| > n^2\|u_n\| \iff \|T\frac{u_n}{n\|u_n\|}\| > n$.

Conclusion: $v_n = \frac{u_n}{n||u_n||}$ on a donc $||v_n|| = \frac{1}{n} \to 0$ qd $n \to +\infty$, $||Tv_n|| > n$ cette suite non borné $\implies Tu_n \not\to 0_h$ iii) es faux ce qui est absurde.

rappels sur la compacité

Soit H un espace de Hilbert, $A \subset H$ est compact si il satisfait la propriété de Belzane.-Weirstrass : De toute suite de $A: (u_n)_{n \in \mathbb{N}}$ il existe une sous-suite $(u_{k(n)})_{n \in \mathbb{N}}$ et $u \in A$ to $u_{k(n)} \to u : \lim_n \|u_{k(n)} - u\|_H = 0$.

Exemple 1. En dimension finie les sous-ensembles compact sont les sous ensembles bornés et fermés.

Définition 17. $A \subset H$ es précompact si \bar{A} est compact A est compact si de toute suite de A $(v_n)_{n \in \mathbb{N}}$ il existe une sous-suite $(u_{k(n)})_{n \in \mathbb{N}}$ et $u \in H$ tq $u_{k(n)} \to u \in H \setminus A$

Exemple 2. En dimension finie, les sous ensembles précompact sont les sous ensembles bornes.

- **Lemme 1.** 1. $A \subset H$ est précompact $si \ \forall \varepsilon > 0$, $soit \ F \subset A \ tq \ \forall (x,y) \in F^2$, $\|x-y\| > \varepsilon \implies F$ est fini
 - 2. $A \subset H$ est précompact si $\forall \varepsilon > 0 \exists$ une famille finie de partie $\{E_i\}_{i \in I}$ de H, $diam(E_i) < \varepsilon$ tq $A \subset \bigcup_{i \in I} E_i$.

Element de preuve. Supposons i) satisfaite, $\forall \varepsilon > 0$, soit $F_{\varepsilon} \subset A$. Satisfaisant i) alors F est finie, supposons faux. Tout suite $(u_n)_{n \in \mathbb{N}}$ de F ne contient aucune sous suite convergent.

A n'est pas précompact, absurde. i) \Longrightarrow ii) Soit $\varepsilon > 0$ et F le sous ensemble de H tq $\forall (x,y) \in l$ $d(x,y) > \varepsilon$. d'après i) F est fini $F = \{x_1x_2...x_N\} \ \forall x \in H \setminus F$ des $\exists x_i \in F$ tq $d(x_i,x) < \varepsilon$. (autrement $x \in F$ par hypothèse faux) $x \in B(x_i,\varepsilon) \implies A \subset \bigcup B(x_i,\varepsilon)$

ii) \Longrightarrow i) supposons ii) $A \subset \bigcup_{i \in I} E_i$ avec diamètre $E_i < \varepsilon$ alors si $(x,y) \in A \times A$ et $||x-y|| > \varepsilon \implies x \in E_i$ et $y \in E_j$ avec $i \neq j \implies F = \{x_1, x_2...x_n\}$ avec $x_i \in E_i$. Il reste à montrer que si i) ou ii) est vérifier A est précompact.

Opérateurs compacts

Définition 18. Soit H, H' deux espaces de Hilbert et $T \in L(H, H')$. T est dit compact si l'image de la boule unité dans $H : B_f(0_H, 1)$ est précompact dans H'. $T(B_f(0_H, 1))$ est précompact dans H'.

Remarque. En particulier $T(B_f(0_H, 1))$ est borné dans H', $\exists r > 0$ t.q. $T(B_f(0_H, 1)) \subset B_f(0_{H'}, r) \iff \forall x, \|x\|_H \le 1 \implies \|Tx\|_{H'} \le r \implies \forall x \in H, \left\|\frac{x}{\|x\|_H}\right\| = 1 \implies \|T\frac{x}{\|x\|_H}\right\|_{H'} \le r \implies \|Tx\|_{H'} \le r\|x\|$. Alors T est borné (continu).

Exemple 1. Soit $T \in L(H, H')$ continu de rang fini : $\dim R(T) < +\infty$. $\exists C > 0$ tq $\forall x \in H$, $\|Tx\|_{H'} \leq C\|x\|_{H} \implies T(B_f(0_H, 1)) \subset B_f(0_{H'}, C)$ mais $TB_f(0_H, 1) \subset R(T)$ c'est borné dans une espace de dimension finie : c'est précompact. Soit p un projecteur sur H sur sous-espace de dimension 1. $D_n = \{\lambda u, \lambda \in \mathbb{C}\} \forall x \in H : Px = (x|u)u$. Alors $\dim \mathbb{R}(P) = 1$ de plus on a que $\|Px\| = |(x|u)|\|u\| = ((x|u)u\|(x|u)u)$ alors $\|Px\| \leq \|x\|\|u\|^2$ (Cauchy-Schwartz) P est continue de rang 1. Il est compact.

Proposition 14. Dans les mêmes conditions, T est compact si de tout suite $(X_n)_{n\in\mathbb{N}}$ de H, bornée, il existe une sous-suite de $(Tx_n)_{n\in\mathbb{N}}$ fortement convergente dans H.

Cette proposition découle de la définition de loi precompacité.

Proposition 15. Dans le mêmes conditions, T est compact \iff pour toute suite $(x_n)_{n\in\mathbb{N}}$ de H tq $x_n \rightharpoonup x \in H$ alors $tx_n \to Tx$ dans H'.

Remarque. — si $x_n \to x \implies Tx_n \to Tx$, T est borné

- si $x_n \rightharpoonup x \implies Tx_n \rightharpoonup Tx$, T est borné
- si $x_n \rightharpoonup x \implies Tx_n \rightharpoonup Tx$, T est borné
- si $x_n \rightarrow x \implies Tx_n \rightarrow Tx$, T est compact.

Pour démontrer la proposition 2 on utilise le lemme de Cantor.

Lemme 2. Dans u espace topologique : $x_n \to x \iff$ toute sous-suite $(x_{k(n)})_{n \in \mathbb{N}}$ contient à son tour une sous suite convergent vers x.

Démonstration. Exercice.

Démonstration. Supposons T compact. Soit $(x_n)_{n\in\mathbb{N}}$ une suite de H tq $x_n \to x$ montrons que $Tx_n \to Tx$. Soit $(x_{k(n)})_{n\in\mathbb{N}}$ une sous suite on pose $y_n = x_{k(n)}$, $n \in \mathbb{N}$ alors $y_n \to x$ et puisque T est borné $Ty_n \to Tx$. D'après la proposition 1, la suite $(y_n)_{n\in\mathbb{N}}$ est bornée, alors il existe une sous suite $(y_{k(n)})_{n\in\mathbb{N}}$ tq $Ty_{k(n)} \to y$ $\not\in$. $\Longrightarrow Ty_{k(n)} \to y$, par unicité de la limite faible alors Tx = y. D'après le lemme de Canter $Tx_n \to Tx$.

Réciproquement : Soit $(x_n)_{n\in\mathbb{N}}$ une suite bornée dans H. D'après B.W. faible elle contient une suite convergente faiblement $x_{k(n)} \rightharpoonup x \in H$, Test continue : $Tx_{k(n)} \to Tx$. D'après la proposition 1, la suite $(y_n)_{n\in\mathbb{N}}$ est bornée, alors : de toute suite bornée $(x_n)_{n\in\mathbb{N}}$,

 $(Tx_n)_{n\in\mathbb{N}}$ contient une sous suite cv. On notera par $B_0(H,H')$; l'ensemble de opérateurs compacts de $H\to H'$ $(B_0(H)$ si H=H').

Exercice 5. Montrer que $B_0(H)$ est un sous-espace vectorielle normé de B(H').

Attention. Il faut montrer en particulier que si $T_1, T_2 \in B_0(H), T_1 + T_2 \in B_0(H)$.

Exercice 6. Montrer que si $T_1 \in B(H)$, $T_2 \in B(H)$; T_1,T_2 et $T_2T_1 \in B_0(H)$.

Proposition 16. Soit $(T_n)_{n\in\mathbb{N}}$ une suite de $B_0(H,H')$ convergente dans B(H,H'): $\exists t \in B(H,H')$ $tq \lim_{n\to\infty} ||T_n-T|| = 0$ alors $T \in B_0(H,H')$.

Remarque. $B_0(H, H')$ est une sous espace fermé de B(H, H').

Corollaire 1. Soit $(T_n)_{n\in\mathbb{N}}$ une suite de B(H,H') convergente vers T. Supposons que $\forall n \dim R(T_n) < +\infty$. (opérateurs de rang fini) alors T est compact.

 $R, R^2, R^3, ..., R^n, ..., R^\infty = \{x_0, x_1, x_3, ..., x_n, ..., ... - \text{suite}\} ||x|| = \sqrt{x_1^2 + x_2^2 + x_3^2 + ...} = \sum_{i=1}^{\infty} x_i^2 < +\infty \iff l^2(\mathbb{N}).$

Corollaire 2. Soit $(T_n)_{n\in\mathbb{N}}$ une suite de B(H,H') convergente vers T. Supposons que $\forall n, \dim R(T_n) < +\infty$ (opérateurs de rang fini) alors T est compact.

Démonstration. Soit $B = B(0_H, 1)$ la boule unité dans H montrons que TB est précompact dans H'. soit $\varepsilon > 0$ et n tq $||T - T_n|| < \varepsilon/2$. T_nB est précompact : $\exists \{E_i\}_{i \in I}$, I inie, diamètre $E_i = \{\sup ||x - y||_{H'}, x, y \in E_i\} \le \frac{\varepsilon}{2}$ tq $T_nB \subset \bigcup_{i \in I} E_i$ (il rappels).

On pose $\tilde{E}_i = \{x \in H', \operatorname{dist}(x, E_i) = \inf_{y \in E_i} \|x - y\|_{H'} \leq \frac{\varepsilon}{2}\}$ $E_i \subset \tilde{E}_i$ et diamètre $\tilde{E}_i < \varepsilon$ diamètre $\tilde{E}_i = \sup\{\|x - y\|_{H'}, x, y \in \tilde{E}_i\}$

 $z,z'\in E_i\ \|x-y\|_H\le \|x-z+x-z'+z'-y\|\le \|x-z\|+\|z-z'\|+\|z'-y\|<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}+\frac{\varepsilon}{2}.$

Alors soit y - Tx, $x \in B$, existe $i \in I$ tq $T_n x \in E_i$ mais $||T_n x - Tx|| \leq \frac{\varepsilon}{2} \implies$ distance $(tx, E + i) < \frac{\varepsilon}{2} \implies Tx \in \tilde{E}_i \implies TB \subset \bigcup_{i \in I} \tilde{E}_i$ il est précompact.

Proposition 17. Dans les mêmes conditions que la proposition précédente. $T \in B_0(H, H')$ $\iff \exists (T_n)_{n \in \mathbb{N}} \ des \ B(H, H'), \ \dim R(T_n) < +\infty \ et \ T = \lim_n Tn \iff \lim_n \|T - T_n\| = 0$

On suppose T compact soit $B = B_H(0,1)$ pour tout $\varepsilon > 0$ il existe une partie finie de $TB: I_{\varepsilon}$ tq $TB_H \subset \bigcup_{x_i \in I_{\varepsilon}} B_{H'}(x_i, \varepsilon)$ (precompacité) Soit $G = \text{vect}\{x_1, x_2, ..., x_n\} = \bar{G}$. (dim $G \leq N$). Soit P_G la projection orthogonale sur G. On pose $T_{\varepsilon} = P_G \circ T$, Alors dim $\mathbb{R}(T_{\varepsilon}) < +\infty$, car $R(T_{\varepsilon}) \subset R(P_G)$.

Montrons que $||T - T_{\varepsilon}|| < 2\varepsilon$. Soit $x \in B \exists x_i \in I_{\varepsilon} \text{ tq } ||Tx - x_i|| < \varepsilon$ (2), $Tx \in TB$

 $\implies \|P_G \circ Txf - P_GX_i\| \le \|P_G\| \|Tx - x_i\| \le \|Tx - x_i\| < \varepsilon.$ Mais $P_G x_i = x_i, x_i \in G \Longrightarrow \|P_G \circ T - x_i\| < \varepsilon \ (2) \ (1) \Longrightarrow \|P_G \circ T x - T x\| < 2\varepsilon :$

 $||T_{\varepsilon}x - Tx|| < 2\varepsilon \implies ||T_{\varepsilon} - T|| < 2\varepsilon.$

Conclurez: On choisit $\varepsilon = \frac{1}{n}$, $n \in \mathbb{N}^*$, $T_{\varepsilon} = T_n$ et donc on a construit $(T_n)_{n \in \mathbb{N}}$ dans $B(H,H') \dim R(T_n) < +\infty \text{ et } ||T-T_n|| \leq \frac{2}{n} \to 0 \text{ } n \to +\infty.$

Exemple 2. $H = H' = l^2(\mathbb{N})$ soit $n \in \mathbb{N} \mapsto f(n) = \frac{1}{n+1}$. Alors $\forall u \in H$ $(Tu)(n) = \frac{1}{n+1}u(n)$ $||Tu||^2 = \sum_{n\geq 0}^{\infty} \frac{1}{(n+1)^2} \leq \sum_{n\geq 0}^{\infty} |u(n)|^2 = ||u||^2$ T est donc une application linéaire bornée sur H. Montrons que T est compact ; en utilisant

la critère de la proposition 4: Soit $N\in\mathbb{N}^*$ soit l'opérateur $T_N:$ $\begin{cases} (T_Nu)(n)=(Tu)(n) & n\leq N\\ (T_Nu)(n)=0 & sinon \end{cases}$ Dans ces conditions N>0 $T_Nu\leadsto (u(0),\frac{u(1)}{2},\frac{u(2)}{3},...,\frac{u(N)}{N+1},0,...)$ $\sum_{i=0}^N\frac{u(i)}{i+1}e_i:(e_i(j)=\delta_{ij}).$ Alors $\dim R(T_N)=N+1$ de rang fini. Montrent que $\lim_n\|T_N-T\|=0$ au quel cas T est

compact.

On calcule $||T_N - T|| : \forall u \in H ||(T_N - T)u||^2 = \sum_{n \geq 0}^{\infty} |((T_N - T)u)(n)|^2 = \sum_{n \geq 0}^{N} |(T_N - T)u(n)|^2 = \sum_{n \geq N+1}^{\infty} \frac{1}{(n+1)^2} |u(n)|^2 \leq \frac{1}{(N+1)^2} \sum_{n \geq N+1}^{\infty} |u(n)|^2 \leq \frac{1}{(N+1)^2} ||u||^2$. Alors $||(T_N - T)u|| \leq \frac{1}{N+1} ||u|| \implies ||T_N - T|| \leq \frac{1}{N+1} \to 0 \text{ qd } N \to +\infty$.

Remarque. On définit l'opérateur X_N sur H: $\begin{cases} (X_n u)(n) = u(n) \text{ si } n \leq N \\ (X_n u)(n) = 0 \text{ sinon} \end{cases}$ Alors $X_N^2 = (X_n u)(n) = 0$ sinon X_N c'est un projecteur dim $R(X_N) = N + 1$. Alors $T_N = X_N \circ T = X_N T$

 $\operatorname{tq} \sum_{k=1}^{\infty} \|Te_k\|^2 < +\infty$ au $(e_k)_{k\in\mathbb{N}}$ est une base helbertiene de H. On note par $B_2(H,H')$ l'ensemble des opérateurs Hilbert-Schmidt. $B_2(H, H')$ c'est un sous espace de B(H, H') (ex) $\forall T \in B_2(H, H')$, on note $||T||_2 = (\sum_{k=1}^{+\infty} ||Te_k||^2)^{\frac{1}{2}}$. $||\cdot||_2$ est une norme (ex): c'est la norme Hilbert-Schmidt et $(B_2(H,H'),\|\cdot\|_2)$ est un espace de Banach. De plus $\forall j \in \mathbb{N} \|Te_j\|^2 \le$

Exemple 3. Les opérateurs Hilbert Schmidt. Soit H, H' deux espace se Hilbert, $T \in (H, H')$

 $\sum_{k=1}^{\infty} \|Te_k\|^2 \implies \|Te_j\| \le \|T\|_2. \text{ Plus généralement sot } u \in H, \|u\| = 1, u = \sum_{k \ge 0} \alpha_k e_k,$ $1 = ||u||^2 = \sum_{k>0} |\alpha_k|^2$. $||Tu||^2 = (Tu|Tu) = \sum_k (Te_k|Tu) \le \sum_k |\alpha_k| ||Te_k|| ||Tu||^- \Longrightarrow$

 $||Tu|| \le \sum_{k} |\alpha_{k}| ||Te_{k}|| \le |(\sum_{k} |\alpha_{k}|^{2})^{\frac{1}{2}} (\sum_{k} ||Te_{k}||^{2})^{\frac{1}{2}} | = 1 \cdot ||T||_{2}$ en utilisant Cauchy-Schwartz : $||Tu|| \le ||T||_2 \implies ||T|| \le ||T||_2.$

Montrons que $B_2(H, H') \subset B_0(H, H')$. On suppose que $\sum_{n\geq 0}^{+\infty} \|Te_k\|^2 < +\infty \iff \lim_{N\to +\infty} \sum_{N=0}^{\infty} \|Te_k\|^2$

 $\forall \varepsilon \; \exists Mt. \; \forall N \geq M \; \sum_{N \geq M} \|Te_k\|^2 \leq \varepsilon.$ Soit $T_M \in B(H, H')$ tq $(T_M u)(n) = (Tu)(n)$ si $n \leq M$, $(T_M u)(n) = 0$ sinon.

 $\dim(R(T_M)) < +\infty$ (il est de rang finie) On a que $\|T - T_M\|^2 \le \|T - T_M\|_2^2 = \sum_{k \ge M}^{+\infty} \|Te_k\|^2 \to 0$ $0qdM \to +\infty$. L'opérateur de l'exemple $1: \|T\|_2^2 = \sum_{k \ge 0} \|Te_k\|^2 = \sum_{k \ge 0} \frac{1}{(k+1)^2} < +\infty$.

Exemple 4. $H=L^2(\mathbb{R})$ soit $f:\mathbb{R}\times\mathbb{R}\mapsto\mathbb{R}$ continue tq $\int_{\mathbb{R}\times\mathbb{R}}|f(x,y)|^2\,\mathrm{d}x\,\mathrm{d}y<+\infty$, soit Tl'opérateur définie par $\forall \varphi \in H \ (T\varphi)(x) = \int_{\mathbb{R}} \mathrm{d}y \ \underbrace{f(x,y)}_{\varphi(y)} \ \varphi(y) T$ est compact. (cas important

dans l'étude des EDO)

Le Théorème de Lax Milgram

```
Théorème 13. Soit H un espace de Hilbert et T \in B(H). Supposons que \exists \alpha > 0 tq \forall u \in H |(Tu|u)| \geq \alpha ||u||^2 (T est coercif) alors T^{-1} existe, T^{-1} \in B(H) et ||T^{-1}|| \leq \frac{1}{\alpha}.
```

```
Exemple 1. H=L^2(\mathbb{R}), \ f\in C^0\cap L^\infty f\geq C>0. \ (T\varphi)(x)=f(x)\varphi(x): \ (T\varphi|\varphi)=\int_{\mathbb{R}}\mathrm{d}x \, f(x)|\varphi(x)|^2\geq C\|\varphi\|^2 T^{-1} existe, il est borné.
```

Démonstration. Soit $u \in H$, on a : $||Tu||||u|| \ge |(Tu|u)| \ge \alpha ||u||^2$ et donc $||Tu|| \ge \alpha ||u||$ (*) T est injectif, soit $u \in N(T)$, $Tu = 0_H$, alors $0 = ||Tu|| \ge \alpha ||u|| \implies ||u|| = 0 \iff u = 0_H N(T) = \{0_H\}$. Montrons que T est surjectif : R(T) est fermé et $R(T)^{\perp} = \{e_H\}$ $\implies R(t) = H$.

Montrons 1) Soit $(Tu_n)_{n\in\mathbb{N}}$ une suite convergent dans $H: \exists utqTu_n \to u$, montrons que $u \in R(T)$, elle est de Caucy et par (*) $\alpha ||u_n - u_p|| \le ||Tu_n - Tu_p||$ alors $(u_n)_{n\in\mathbb{N}}$ et de Cauchy: $\exists n \in Htqu_n \to u \implies Tu_n \to Tu$ Par continuité: alors v = Tu et $v \in R(T)$.

Montrons 2) $R(T)^{\perp} = \{v \in H \text{ tq } (Tu|v) = 0 \forall u \in H\}$ En particulier (Tv|v) = 0 mais $0 = \left| (Tv|v) \right| \ge \alpha \|v\|^2 \implies \|v\| = 0 \iff v = 0_H : R(T)^{\perp} = \{0_H\}.$

Eléments spectraux

H désigné un espace de Hilbert, $T \in B(H)$.

```
Définition 19. 1. On appelle en ensemble résolvant de T que l'on note \rho(T) = \{z \in \mathbb{C}, (T-z\mathbb{1}_H)^{-1} \in B(H)\}
```

- 2. Le spectre de T, $\sigma(T) = \mathbb{C}\rho(T)$
- 3. $\lambda \in \mathbb{C}$ est valeur propre de T si $\exists u \in H$, $u \neq 0_H$ et $Tu = \lambda u$ dans ces conditions $N(T \lambda \mathbb{1}_H)$ est le sous espace propre associée $u \in N(T \lambda \mathbb{1}_H)$ est le vecteur propre associée à λ .
- Remarque. si λ est valeur propre de $T: N(T \lambda \mathbb{1}_H) \neq \{0_H\} \iff T \lambda \mathbb{1}_H$ est non injectif donc non inversible $\implies \lambda \in \sigma(T)$.
 - le cas de la dimension finie : $\dim H = n$ alors $T \in L(H) = B(H)$ est représenté par matrice : $\operatorname{Mat}(T) \in M_{n,n}(\mathbb{C})$. dans ce cas T n'a que des valeurs propres que sont solution ; $\operatorname{de} P(\lambda) = \operatorname{det}(\cdot T \lambda B_H) = 0 \iff T \lambda \mathbb{1}_H$ est non inversible.
- **Exemple 1.** Soit $T \in B(H)T = T^*$, soit $z \in \mathbb{C}$ $((T z \mathbb{1}_H)u|u) = ((T \operatorname{Re} z \mathbb{1}_H)u|u) i \operatorname{Im} z ||u||^2$. On sait que $(Tu|u) \in \mathbb{R} \implies \operatorname{Im}((T_z \mathbb{1}_H)u|u) = -\operatorname{Im} z ||u||^2 |(T z \mathbb{1}_H)u|u)|^2 = |(T \operatorname{Re} z \mathbb{1}_H)u|u)|^2 + (\operatorname{Im} z)^2 ||u||^4 \ge (\operatorname{Im} z)^2 ||u||^2$.

Conclusion $\|(T-z\mathbb{1}_H)u|u\| \ge |\operatorname{Im} z|\|u\|^2$ il est coersif : $(T-z\mathbb{1}_H)^{-1} \in B(H)$ d'après Lac Milgram. Si $\operatorname{Im} z \ne 0 \implies \mathbb{C} \setminus \mathbb{R} \subset \rho(T) \iff \sigma(T) \subset \mathbb{R}$.

En particulier les valeurs propres d'un opérateur autoadjent sont réelles.

Exemple 2. Soit $T \in B_0(H)$, alors $0 \in \sigma(T)$. Supposons faux $0 \in \rho(T) \iff (T - 0 \mathbb{1}_H)^{-1} = T^{-1}$ existe et $T^{-1} \in B(H)$. Alors $\mathbb{1} = TT^{-1} \in B_0(H)$. Produit d'un Borel et d'un compact $\implies \mathbb{1}_H B(0_H, 1) = B(0_H, 1)$ est précompact dans H ce qui n'est vrai que si dim $H < +\infty$ (Théorème de Riez) dans le cas contravariant absurde.

Exemple 3. Suite : $H = l^2(\mathbb{N})$ $(Tu)(n) = \frac{1}{n+1}u(n), T \in B_0(H)0 \in \sigma(T)$. Est ce que 0 est valeur propre de T. $\exists u$? ||1|| = 1 : Tu = 0 $u \neq 0_H$.

$$\forall n \in \mathbb{N} T u(n) = \frac{1}{n+1} u(n) = 0 \implies u(n) = 0 \iff u = 0_H.$$

0 n'est pas valeur propre de T.

La pratique

7.1 exercice 26

```
— F fermé
F^{\perp} \subset G := \{ f \in E | f |_{[0,1]} = 0 \}
-F^{\perp} \supset G
```

2) $sig \in E$, tel que $g(0) \neq 0$, par ex. g(x) = 1 - |x|. Comme f(0) = 0 si $f \in F$ et h(0) = 0si $h \in f^{\perp}$, li est 'vident que g ne peut pas s'écrire comme somme d'une fonction de F et d'une fonction de F^{\perp} . Donc $g \notin F + F^{\perp}$, et donc $E \neq F + F^{\perp}$. Ceci bien possible, car E muni la norme L^2 , n'est par un Hilbert.

Remarque. Si on remplace E par l'espace complété $L^2([-1,1])$, alors, si F un espace vectoriel fermé, alors on a : $F + F^{\perp} = L^2([-1,1])$.

7.2Exercice 2.11

Famille maximale (espace préhilbert) Famille totale (espace hilbert) Bases Hilbertienne (espace hilbert)

Base Hilbertienne $\{e_n\}_{n\in\mathbb{N}}, \{e_n\}$ est une famille orthonormée $(e_i|e_j) = \delta_{ij} := \begin{cases} 0 \text{ si } i \neq j \\ 1 \text{ si } i = j \end{cases}$

et vect $\{e_n\} = E$ (famille totale).

$$L^{2}([-\pi,\pi]) = \{\cos(nx), \sin(nx) : n \in \mathbb{N}\} \text{—une base.}$$

$$f(x) = \sum_{n=0}^{+\infty} \lambda_{n} \cos(nx) + \mu_{n} \sin(nx)$$
On a bien $\|u\|_{l^{2}} = \sum_{n} (\frac{1}{n})^{2} \leq +\infty$.

$$f(x) = \sum_{n=0}^{+\infty} \lambda_n \cos(nx) + \mu_n \sin(nx)$$

(1) soit $v \in F$, donc il existe une famille finie. $(\lambda_k)_{k \in J}$ $(J \subset \mathbb{N} \setminus \{0,1\})$ et μ tel que $v = \mu u + \sum_{k \in J} \lambda_k e_k. \text{ Si } \forall i \geq 2, \ (v|e_i) = 0, \text{ alors : Soit } e_0 \in (\mathbb{N} \setminus \{0,1\}) \setminus J. \text{ Alors } (v|e_{i_0}) = 0 \implies 0 = \mu(u|e_{i_0}) + \sum_{k \in J} \lambda_k \underbrace{(e_k|e_{i_0})}_{\delta = 0, \text{ car } i_0 \notin J} = \mu \frac{1}{i_0} + 0 \implies \mu = 0.$

Soit
$$k_0 \in J$$
. $0 = (v|e_{k_0}) = \underbrace{\mu(u|e_{k_0})}_{0, \text{ car } \mu = 0} + \underbrace{\sum_{k \in J} \lambda_k(e_k|e_{k_0})}_{\lambda_k(e_k|e_{k_0})}$. Donc $\forall k_0 \in J, \ \lambda_{k_0} = 0$.

Donc v = 0. d'où, $\{e_n\}_{n \geq 2}$ et une famille maximale (elle est bien orthonormale)

(2) $\{e_n\}_{n\geq 2}$ n'est pas totale pour F, car $u\in F$, mais, u n'est pas limite d'une suite de vecteurs combinaisons linéaire des e_n $(n \ge 2)$. En effet, si on avait $u = \sum_{n=2}^{+\infty} \lambda_n e_n =$ $\lim_{N\to\infty} \left(\sum_{n=2}^n \lambda_n e_n\right).$

Remarque. $(v_n)_{n\in\mathbb{N}}$ base Hilbertienne de E Hilbert, Alors, la propriété $E=\mathrm{vect}(\{v_n\}_{n\in\mathbb{N}})$

un vecteur est dans $\text{vect}(\{v_n\})$ si il est combinaison linéaire finie de vecteur de $\{v_n\}$. $\overline{\text{vect }v_n} = E$, signifie que, $\forall v \in E$, v est limite de vecteurs de $\text{vect}(\{v_n\})$. On écrit $v = \lim_{N \to +\infty} \left(\sum_{j=0}^{N} \lambda_j v_j \right) = \stackrel{\text{notation}}{=} \sum_{j=0}^{+\infty} \lambda_j v_j.$

Exemple 1. de base algébrique, soit F=ensemble des polynômes F est un espace vectoriel. Base algébrique = $\{1, x, x^2, x^3, ..., x^n, ...\}$.

Si $(e_n)_{n\geq 2}$ était une base Hilbertienne de F, on aurait, $F\ni u=\sum_{j=2}^{+\infty}\lambda_j e_j=$ 0, $\lambda_1, \lambda_2, ..., \lambda_n, ...$, $caru = (1, \frac{1}{2}, \frac{1}{3}, ...).$

On a conduit une famille maximale que n'était pas totale (possible car F n'est pas complet)

exercice 2.12 7.3

H -un espace $\dim(H) < \infty \implies \exists \{\tilde{e}_n\}_{n=0}^N$ base de $H, \varphi : H \to l^2(\mathbb{N}), \tilde{e}_n \mapsto e_n = 0$ $(0,0,...,1,0,..) \in l^2(\mathbb{N})$

 $\forall u \in H: \|u\| = \sqrt{\sum_{i=0}^{N} u_i^2} = \|\varphi(u)\|$ $\dim(H) = \infty \implies \exists \{\tilde{e}_n\}_{n=0}^{\infty} \text{ base de } H \ \varphi : H \to l^2(\mathbb{N}) \ \tilde{e}_n \mapsto e_n = (0,...,0,1,0,0,...)$ $u \in H : \|u\|^2 = \sum_{n=0}^{\infty} u_n^2 < \infty \implies \varphi(u) \in l^2(\mathbb{N}) \text{ d'inégalité de Parceval. } \|u\|_u = l^2(\mathbb{N})$ $\|\varphi(u)\|_{l^2(\mathbb{N})}.$

7.42.16

Soit $(g_n)_{n\in\mathbb{N}}$ une base orthonormale. D'après l'inégalité de Bessel, on a $\sum_{n=0}^{\infty} |(g_n|x)|^2 <$ $+\infty \implies \lim_{n\to\infty} |(g_n|x)|^2 = 0 \implies (g_n|x) \to 0 = (0,x) \text{ mais } ||g_n-0|| = ||g_n|| = 1 \not\to 0$

 $\forall n \in \mathbb{N}.$ Si (g_n) est orthonormale, mais n'est pas une base, alors, pour $F := \overline{\text{vect}\{g_n\}_{n \in \mathbb{N}}}$, on

a : F fermé dans l'Hilbert E, donc F est un Hilbert. (g_n) base de F. $(\underbrace{g_n}_{\to 0 \text{ d'après partie } 1} |P_F x) + (g_n | \underbrace{x - P_F x}_{\in F^{\perp}})$ On a alors, $\forall x \in E$, $(g_n|x) = ($

7.5 2.17

 $D \subset E, \bar{D} = E, E \text{ Hilbert}, u \in E (u \in D \text{ ou non}). \implies \text{évident car } D \subset E \Leftarrow \text{On}$ suppose que $\forall y \in D, (u_n|g) \to (u|g) \ \forall \varepsilon > 0 \exists_1 = (\varepsilon,g) : \forall n \geq N(\varepsilon,g) \ (u_n - n|g) < \frac{\varepsilon}{2}.$

 $\forall f \in E. \ \bar{D} = E \implies \exists \{g_n\} \subset D, \ g_n \to f, \ n \to \infty \implies \exists N_{\varepsilon} = N(\varepsilon, f) \ \forall m \ge 1$ $N_{\varepsilon}: ||f-f_m|| \leq \frac{\varepsilon}{2C}. \ \forall f \in E \ |(u_n-u|f)| = |(u_n-u|g_n)| + |(u_n-u|f-g_m)| \leq \varepsilon$ $\varepsilon/2 + c\|f - g_m\| = \varepsilon.$

Remarque. 1. $|(u_n-u|f-g_m)| \stackrel{Cauchy-Schwartz}{\leq} ||u_n-u|||f-g_m|| \stackrel{(||u_n|+||u||)}{\leq} \cdot ||f-g_m||$

2. $u_n - u \rightharpoonup 0$, implique $(u_n - u)_{n \in \mathbb{N}}$ est une suite bornée.

Exercices 3

Opérateurs bornés. (adjoint, inverse, spectre) Apres Opérateurs compacts.

8.1 3.3

Soit H un espace de Hilbert séparable. Soit $(e_n)_{n\in\mathbb{N}}$ base de H on considère l'opérateur T défini par : $forallu=\sum_{n\in\mathbb{N}}\lambda_ne_n,\, Tu:=\sum_{n\in\mathbb{N}}\lambda_ne_{n+1}$. En particulier, $Te_n=e_{n+1}$. Montrer que T est un opérateur borné, de norme.