

Common Analysis Problems

Accessing Hydrometric Data

11 clicks!

Stakeholder/Manager: "Hey, this is a really cool analysis but we need to add five stations. Can you run it again?"

Stakeholder/Manager: "Hey, this is a really cool analysis but we need to add five stations. Can you run it again?"

Make it reproducible!

Get off the factory line

How much time do you spend copying and pasting?

Get off the factory line

How much time do you spend copying and pasting?

Automate!

Get off the factory line

How much time do you spend copying and pasting?

Automate!

But how...

...Use R!

(or more generally any programmatic code based analysis approach...)

What is R?

- Free and open source
- Statistical programming language
- Publication quality graphics
- But definitely not intimidating...

What is R?

- Free and open source
- Statistical programming language
- Publication quality graphics
- But definitely not intimidating...

Why use R?

- Efficient
- Reproducible
- Scalable

What is R?

- Free and open source
- Statistical programming language
- Publication quality graphics
- But definitely not intimidating...

Why use R?

- Efficient
- Reproducible
- Scalable

Not guaranteed to help with this...

Questions worth asking...

- Are your methods reproducible?
- What is your analysis recipe?
- Can you share it?

Preheat the oven to Gas Mark 4, Electric 180° C, Fan 160° C.

Stir flow data in a bowl, add tidyhydat and the butter. When the mixture looks like breadcrumbs, mix in the data tidying. Lay
the mixture on a shallow baking tray and bake for 25–30 minutes until golden brown. Leave on the side to cool. Mix together the
correlation and plotted data and present analysis.

Excuse me, do you have a moment to talk about Excel?

MICROSOFT

R Excel

Data and analysis are separate Data and analysis are usually stored in the same place

R	Excel
Data and analysis are separate	Data and analysis are usually stored in the same place
Data structure is strict	Data structure is flexible

R	Excel
Data and analysis are separate	Data and analysis are usually stored in the same place
Data structure is strict	Data structure is flexible
Operations are achieved through scripting	Operations are achieved through pointing and clicking

R	Excel
Data and analysis are separate	Data and analysis are usually stored in the same place
Data structure is strict	Data structure is flexible
Operations are achieved through scripting	Operations are achieved through pointing and clicking
Iteration is automated	Iteration is usually done by hand

R provides a clear pathway for efficiency and reproducibility through automation and code

The objective of tidyhydat is to provide a standard method of accessing ECCC hydrometric data sources (historical and real time) using a consistent and easy to use interface that employs tidy data principles within the R project.

The objective of tidyhydat is to provide a standard method of accessing ECCC hydrometric data sources (historical and real time) using a consistent and easy to use interface that employs tidy data principles within the R project.

hydat::Water Survey of Canada Network

tidy::tidy data

Tidy datasets are all alike but every messy dataset is messy in its own way¹

tidy::tidy data

Tidy datasets are all alike but every messy dataset is messy in its own way¹

Each variable forms a column

Each observation forms a row

tidy::untidy data

```
#> # Source:
               lazy query [?? x 42]
#> # Database: sqlite 3.19.3
#> # [C:\Users\salbers\AppData\Local\tidyhydat\tidyhydat\Hydat.sqlite3]
      STATION_NUMBER YEAR MONTH FULL_MONTH NO_DAYS MONTHLY_MEAN
#>
#>
      <chr>>
                      <int> <int>
                                       <int>
                                               <int>
                                                             <dbl>
    1 08MF005
                      1912
                                           1
                                                  31
                                                              485.
    2 08MF005
                      1912
                                4
                                           1
                                                  30
                                                             1150.
    3 08MF005
                      1912
                                5
                                           1
                                                  31
                                                             4990.
    4 08MF005
                      1912
                                6
                                           1
                                                  30
                                                             6130.
    5 08MF005
                      1912
                                7
                                           1
                                                  31
                                                             4780.
    6 08MF005
                      1912
                                8
                                           1
                                                  31
                                                             3960.
#> 7 08MF005
                      1912
                                           1
                                                  30
                                                             2160.
    8 08MF005
                      1912
                               10
                                           1
                                                  31
                                                             1530.
#> 9 08MF005
                      1912
                               11
                                           1
                                                  30
                                                             1060.
#> 10 08MF005
                      1912
                               12
                                           1
                                                  31
                                                              761.
#> # ... with more rows, and 36 more variables: MONTHLY TOTAL <dbl>,
       FIRST DAY MIN <int>, MIN <dbl>, FIRST DAY MAX <int>, MAX <dbl>,
#> #
       FLOW1 <dbl>, FLOW2 <dbl>, FLOW3 <dbl>, FLOW4 <dbl>, FLOW5 <dbl>,
#> #
       FLOW6 <dbl>, FLOW7 <dbl>, FLOW8 <dbl>, FLOW9 <dbl>, FLOW10 <dbl>,
#> #
       FLOW11 <dbl>, FLOW12 <dbl>, FLOW13 <dbl>, FLOW14 <dbl>, FLOW15 <dbl>,
#> #
       FLOW16 <dbl>, FLOW17 <dbl>, FLOW18 <dbl>, FLOW19 <dbl>, FLOW20 <dbl>,
#> #
       FLOW21 <dbl>, FLOW22 <dbl>, FLOW23 <dbl>, FLOW24 <dbl>, FLOW25 <dbl>,
#> #
       FLOW26 <dbl>, FLOW27 <dbl>, FLOW28 <dbl>, FLOW29 <dbl>, FLOW30 <dbl>,
#> #
       FLOW31 <dbl>
```

tidy::tidy data

```
#> # A tibble: 37,561 x 5
      STATION_NUMBER Date
                                Parameter Value Symbol
                                           <dbl> <chr>>
#>
      <chr>>
                     <date>
                                <chr>>
    1 08MF005
                                            538. <NA>
                     1912-03-01 Flow
    2 08MF005
                     1912-03-02 Flow
                                            538. <NA>
    3 08MF005
                     1912-03-03 Flow
                                            538. <NA>
    4 08MF005
                     1912-03-04 Flow
                                            538. <NA>
   5 08MF005
                     1912-03-05 Flow
                                            538. <NA>
#> 6 08MF005
                     1912-03-06 Flow
                                            538. <NA>
#> 7 08MF005
                     1912-03-07 Flow
                                            479. <NA>
    8 08MF005
                     1912-03-08 Flow
                                           479. <NA>
#> 9 08MF005
                     1912-03-09 Flow
                                           459. <NA>
#> 10 08MF005
                     1912-03-10 Flow
                                            459. <NA>
#> # ... with 37,551 more rows
```


tidy::tidyhydat

tidy::tidyhydat

An Example

tidyhydat & some basic R

=SUM(A1:A23) =AVERAGE(A1:A23)

tidyhydat & some basic R

```
flows_data <- hy_daily_flows(station_number = c("08MF005","09CD001","05KJ001","02KF005"))
```

- <-: assignment operator
- flows_data: object
- hy_daily_flows: function
- station_number: argument

tidyhydat & some basic R

```
flows_data <- hy_daily_flows(station_number = c("08MF005","09CD001","05KJ001","02KF005"))</pre>
```

<-: assignment operatorflows_data: objecthy_daily_flows: functionstation number: argument

```
flows data
#> # A tibble: 116,702 x 5
                               Parameter Value Symbol
      STATION NUMBER Date
      <chr>>
                                         <dbl> <chr>
                    <date>
                               <chr>
#> 1 08MF005
                    1912-03-01 Flow
                                         538. <NA>
#> 2 08MF005
                    1912-03-02 Flow
                                         538. <NA>
                                       538. <NA>
#> 3 08MF005
                    1912-03-03 Flow
#> 4 08MF005
                    1912-03-04 Flow
                                         538. <NA>
                1912-03-05 Flow
#> 5 08MF005
                                       538. <NA>
#> 6 08MF005
                    1912-03-06 FLow
                                         538. <NA>
#> 7 08MF005
                    1912-03-07 FLow
                                         479. <NA>
#> 8 08MF005
                    1912-03-08 Flow
                                         479. <NA>
#> 9 08MF005
                    1912-03-09 Flow
                                         459. <NA>
#> 10 08MF005
                    1912-03-10 FLow
                                         459. <NA>
#> # ... with 116,692 more rows
```

Analyze the correlation between:

02KF005OTTAWA RIVER AT BRITANNIA05KJ001SASKATCHEWAN RIVER AT THE PAS08MF005FRASER RIVER AT HOPE09CD001YUKON RIVER ABOVE WHITE RIVER

± — Leaflet

Build the analysis

```
flows_data
#> # A tibble: 116,702 x 5
                               Parameter Value Symbol
      STATION_NUMBER Date
                                          <dbl> <chr>
      <chr>
                     <date>
                                <chr>
#> 1 08MF005
                     1912-03-01 Flow
                                           538. <NA>
#> 2 08MF005
                     1912-03-02 Flow
                                           538. <NA>
#> 3 08MF005
                     1912-03-03 Flow
                                          538. <NA>
#> 4 08MF005
                     1912-03-04 Flow
                                           538. <NA>
#> 5 08MF005
                                           538. <NA>
                     1912-03-05 FLow
                                           538. <NA>
#> 6 08MF005
                     1912-03-06 FLow
#> 7 08MF005
                     1912-03-07 Flow
                                           479. <NA>
#> 8 08MF005
                     1912-03-08 FLow
                                           479. <NA>
#> 9 08MF005
                     1912-03-09 FLow
                                           459. <NA>
#> 10 08MF005
                     1912-03-10 FLow
                                           459. <NA>
#> # ... with 116,692 more rows
```

flows_data: object

Build the analysis

```
flows_data %>%
  spread(key = STATION_NUMBER, value = Value)
#> # A tibble: 59,711 x 7
                                                                    `09CD001`
      Date
                  Parameter Symbol `02KF005` `05KJ001`
                                                         `08MF005`
      <date>
                  <chr>>
                            <chr>>
                                        <dbL>
                                                  <dbL>
                                                             <dbL>
                                                                       <dbL>
   1 1912-03-01 FLow
                            <NA>
                                                              538.
                                           NA
                                                     NA
                                                                          NA
#> 2 1912-03-02 FLow
                            <NA>
                                           NA
                                                     NA
                                                              538.
                                                                          NA
   3 1912-03-03 Flow
                            <NA>
                                           NA
                                                     NA
                                                              538.
                                                                          NA
#> 4 1912-03-04 FLow
                                                              538.
                            <NA>
                                           NA
                                                     NA
                                                                          NA
#> 5 1912-03-05 FLow
                                                              538.
                            <NA>
                                           NA
                                                     NA
                                                                          NA
                            <NA>
                                                              538.
#> 6 1912-03-06 Flow
                                           NA
                                                     NA
                                                                          NA
#> 7 1912-03-07 Flow
                            <NA>
                                           NA
                                                     NA
                                                              479.
                                                                          NA
    8 1912-03-08 Flow
                                                              479.
                            <NA>
                                           NA
                                                     NA
                                                                          NA
#> 9 1912-03-09 FLow
                                                              459.
                            <NA>
                                           NA
                                                     NA
                                                                          NA
#> 10 1912-03-10 FLow
                            <NA>
                                           NA
                                                     NA
                                                              459.
                                                                          NA
#> # ... with 59,701 more rows
```

%>%: "then"

spread: function

Build the analysis

```
flows_data %>%
  spread(key = STATION_NUMBER, value = Value) %>%
  select(-Date, -Symbol, -Parameter)
#> # A tibble: 59,711 x 4
       02KF005` `05KJ001`
                           `08MF005` `09CD001`
          <dbL>
                    <dbL>
                              <dbL>
                                         <dbL>
             NA
                       NA
                               538.
                                            NA
             NA
                               538.
                       NA
                                            NA
             NA
                               538.
                       NA
                                            NA
                               538.
                                            NA
                       NA
             NA
                               538.
                       NA
                                            NA
             NA
                       NA
                               538.
                                            NA
             NA
                               479.
                       NA
                                            NA
                               479.
                       NA
                                            NA
             NA
                                            NA
                       NA
                               459.
#> 10
             NA
                       NA
                               459.
                                            NA
#> # ... with 59,701 more rows
```

select: function

Build the analysis

```
flows_data %>%
 spread(key = STATION_NUMBER, value = Value) %>%
 select(-Date, -Symbol, -Parameter) %>%
 correlate()
#> # A tibble: 4 x 5
    rowname `02KF005` `05KJ001` `08MF005` `09CD001`
             <dbL>
#> <chr>
                        <dbL>
                                 <dbL>
                                          <dbL>
#> 1 02KF005 NA
                        0.342
                                0.0657
                                          0.222
            0.342
#> 2 05KJ001
                       NA
                                0.466
                                          0.483
#> 3 08MF005
            0.0657 0.466 NA
                                          0.715
            0.222
                        0.483 0.715
#> 4 09CD001
                                       NA
```

correlation: function

Build the analysis

```
flows_data %>%
  spread(key = STATION_NUMBER, value = Value) %>%
  select(-Date, -Symbol, -Parameter) %>%
  correlate() %>%
  stretch()
#> # A tibble: 16 x 3
      <chr> <chr>
                       <dbL>
#> 1 02KF005 02KF005 NA
  2 02KF005 05KJ001 0.342
#> 3 02KF005 08MF005 0.0657
#> 4 02KF005 09CD001 0.222
#> 5 05KJ001 02KF005 0.342
#> 6 05KJ001 05KJ001 NA
#> 7 05KJ001 08MF005 0.466
#> 8 05KJ001 09CD001 0.483
#> 9 08MF005 02KF005 0.0657
#> 10 08MF005 05KJ001 0.466
#> 11 08MF005 08MF005 NA
#> 12 08MF005 09CD001 0.715
#> 13 09CD001 02KF005 0.222
#> 14 09CD001 05KJ001 0.483
#> 15 09CD001 08MF005 0.715
#> 16 09CD001 09CD001 NA
```

stretch: function

Scalable

Scalable

```
stns <- hy_stations(prov_terr_state_loc = "NU") %>%
  filter(HYD_STATUS == "ACTIVE")
nu_flows <- hy_daily_flows(station_number = stns$STATION_NUMBER)</pre>
nu flows
#> # A tibble: 241,103 x 5
     STATION NUMBER Date
                                Parameter Value Symbol
      <chr>>
                                <chr>>
                                          <dbl> <chr>
                     <date>
#> 1 06LA001
                                             NA <NA>
                     1962-09-01 Flow
#> 2 06LA001
                     1962-09-02 Flow
                                            NA <NA>
#> 3 06LA001
                    1962-09-03 Flow
                                            NA <NA>
#> 4 06LA001
                                            NA <NA>
                     1962-09-04 Flow
#> 5 06LA001
                     1962-09-05 Flow
                                            NA <NA>
#> 6 06LA001
                     1962-09-06 Flow
                                            NA <NA>
#> 7 06LA001
                                            NA <NA>
                     1962-09-07 Flow
#> 8 06LA001
                     1962-09-08 Flow
                                            NA <NA>
#> 9 06LA001
                     1962-09-09 Flow
                                             NA <NA>
#> 10 06LA001
                     1962-09-10 Flow
                                             NA <NA>
#> # ... with 241,093 more rows
```

Scalable

```
nu_flows %>%
  spread(STATION_NUMBER, Value) %>%
  select(-Date, -Symbol, -Parameter) %>%
 correlate() %>%
  stretch()
#> # A tibble: 484 x 3
     X
          У
      <chr> <chr>
                     <dbL>
#> 1 06HB002 06HB002 NA
#> 2 06HB002 06JC002 0.265
#> 3 06HB002 06KC003 0.656
#> 4 06HB002 06LA001 0.795
#> 5 06HB002 06LC001 0.706
#> 6 06HB002 06MA006 0.477
#> 7 06HB002 06OA007 0.181
#> 8 06HB002 10PC004 0.457
#> 9 06HB002 10PC005 0.228
#> 10 06HB002 10QA001 0.643
#> # ... with 474 more rows
```

Efficient, Reproducible and Scalable

What else is available in tidyhydat?

All tables in HYDAT

- Instantaneous peaks
- Daily, monthly and yearly temporal summaries
- Discharge, level, sediment, particle size
- Data ranges
- Station metadata

What else is available in tidyhydat?

```
search_stn_name("fraser")
#> # A tibble: 32 x 5
     STATION NUMBER STATION NAME
                                        PROV_TERR_STATE_~ LATITUDE LONGITUDE
                                                              <dbL>
      <chr>
                     <chr>>
                                                                        <dbL>
#> 1 08JB003
                     NAUTLEY RIVER NEAR~ BC
                                                               54.1
                                                                        -125.
#> 2 08KA004
                    FRASER RIVER AT HA~ BC
                                                               54.1
                                                                        -122.
#> 3 08KA005
                    FRASER RIVER AT MC~ BC
                                                               53.3
                                                                        -120.
#> 4 08KA007
                    FRASER RIVER AT RE~ BC
                                                               53.0
                                                                        -119.
#> 5 08KB001
                    FRASER RIVER AT SH~ BC
                                                               54.0
                                                                        -123.
                                                                        -123.
#> 6 08KE018
                    FRASER RIVER AT SO~ BC
                                                               53.9
                                                              52.5
                                                                        -122.
#> 7 08MC018
                    FRASER RIVER NEAR ~ BC
#> 8 08MF005
                    FRASER RIVER AT HO~ BC
                                                              49.4
                                                                        -121.
#> 9 08MF035
                    FRASER RIVER NEAR ~ BC
                                                              49.2
                                                                        -122.
#> 10 08MF038
                    FRASER RIVER AT CA~ BC
                                                               49.1
                                                                        -122.
#> # ... with 22 more rows
```

Pointing and clicking

What else is available in tidyhydat?

realtime_plot("08MF005", Parameter = "Flow")

Realtime Water Survey of Canada Gauges

What else is available in R?

```
raw stns <- hy stations() %>%
  select(STATION_NUMBER:PROV_TERR_STATE_LOC, DRAINAGE_AREA_GROSS)
mad long avg <- hy annual stats(raw stns$STATION NUMBER) %>%
  filter(Sum stat == "MEAN", Parameter == "Flow") %>%
  group by(STATION NUMBER) %>%
  summarise(Value = mean(Value, na.rm = TRUE)) %>%
  right join(raw stns)
mad long avg
#> # A tibble: 7,794 x 5
     STATION_NUMBER Value STATION NAME
                                           PROV TERR STATE~ DRAINAGE AREA G~
                     <dbl> <chr>
      <chr>
                                           <chr>>
                                                                       <dbL>
#> 1 01AA002
                     17.8 DAAQUAM (RIVIE~ QC
                                                                       598.
                     48.9 MADAWASKA (RIV~ QC
                                                                      2690.
#> 2 01AD001
#> 3 01AD002
                    279. SAINT JOHN RIV~ ME
                                                                     14700.
#> 4 01AD003
                     25.4 ST. FRANCIS RI~ NB
                                                                      1350.
#> 5 01AD004
                    328. SAINT JOHN RIV~ NB
                                                                     15500.
#> 6 01AD005
                     NA MADAWASKA (RIV~ QC
                                                                      2590.
#> 7 01AD008
                     NA LONG (LAC) PRE~ QC
                                                                      108.
#> 8 01AD009
                     NA
                         CABANO (RIVIER~ QC
                                                                       172.
#> 9 01AD012
                           SAINT-FRANCOIS~ QC
                                                                       58.6
#> 10 01AD013
                      1.31 SAINT-FRANCOIS~ QC
                                                                        59.8
#> # ... with 7,784 more rows
```

What else is available in R?

```
library(ggplot2)
ggplot(mad_long_avg,aes(x = Value, y = DRAINAGE_AREA_GROSS, colour = PROV_TERR_STATE_LOC)) +
    geom_point() +
    scale_y_continuous(trans = "log10") +
    scale_x_continuous(trans = "log10") +
    scale_colour_viridis_d(name = "Jurisdiction") +
    labs(x = "Mean long term annual discharge (m^3)", y = "Gross drainage area (km^2)") +
    theme_minimal()
```


It can be daunting!

Resources for R

R Studio Community

Contribute to tidyhydat

Openly developed on GitHub 🗘

https://github.com/ropensci/tidyhydat

Any contribution helps. You don't have to be an R programmer!

- Questions
- Ideas / Feature-requests
- Bugs
- Bug-fixes
- Development

Contribute to tidyhydat

Openly developed on GitHub 🖸

https://github.com/ropensci/tidyhydat

Any contribution helps. You don't have to be an R programmer!

- Questions
- Ideas / Feature-requests
- Bugs
- Bug-fixes
- Development

For example...

```
Authors@R: c(person("Sam", "Albers",email = "sam.albers@gov.bc.ca", role = c("aut", "cre")),
    person("David", "Hutchinson", email = "david.hutchinson@canada.ca", role = "ctb"),
    person("Dewey", "Dunnington", email = "dewey@fishandwhistle.net", role = "ctb"),
    person("Province of British Columbia", role = "cph"))
```

Some Helpful Links

Installing R & RStudio with local package libraries

-https://github.com/bcgov/bcgov-data-science-resources/wiki/Installing-R-&-RStudio

Installing tidyhydat

-https://cran.rstudio.com/web/packages/tidyhydat/README.html

Getting started with tidyhydat

-https://cran.rstudio.com/web/packages/tidyhydat/vignettes/tidyhydat_an_introduction.html-https://cran.rstudio.com/web/packages/tidyhydat/vignettes/tidyhydat_example_analysis.html

BC Gov data science resource wiki

-https://github.com/bcgov/bcgov-data-science-resources/wiki

