Chaque colle comporte une question de cours ainsi qu'un ou plusieurs exercices. Les questions de cours portent sur les éléments précédés d'un astérisque (\star) . Les opérations sur les limites sont effectuées sans démonstation à ce stade de l'année. Ce chapitre est un bon prétexte pour poser des études de fonctions composées et/ou réciproques en exercice. Les questions de cours porteront sur le chapitre 5 et/ou le chapitre 6. Les exercices se concentreront sur le chapitre 5.

Chapitre 5 : fonctions usuelles, équations fonctionnelles

- Fonction valeur absolue. Parité, variations, continuité, non dérivabilité en 0. Inégalités triangulaires. Pour tous réels x, y, min(x, y) = (x + y |x y|)/2, max(x, y) = (x + y + |x y|)/2.
- Fonctions polynomiales et rationnelles. Degré, coefficient dominant, limites en $\pm \infty$. Dérivée d+1-ième d'une fonction polynomiale de degré d. Racines. Fonction rationnelle, limites en $\pm \infty$.
- Fonctions circulaires. Démonstrations géométriques de leur (*) continuité et de la (*) dérivabilité du sinus en 0, (*) $\cos' = -\sin$, $\sin' = \cos$. Variations, dérivées n-ièmes. Tangente, dérivabilité, $\tan' = 1 + \tan^2$, variations, limites. Inégalités $\forall x \in \mathbb{R}, |\sin(x)| \le |x|, \forall x \in [0, \pi/2], \sin(x) \ge 2x/\pi$.
- Logarithmes. (*) Toute fonction f dérivable de \mathbb{R}^{+*} dans \mathbb{R} vérifie $\forall (x,y) \in (\mathbb{R}^{+*})^2$, f(xy) = f(x) + f(y) ssi $\exists a \in \mathbb{R}$, $\forall x \in \mathbb{R}^{+*}$, $f(x) = a \int_1^x dt/t$. Logarithme népérien. $\forall x > 0$, $\forall q \in \mathbb{Q}$, $\ln(x^q) = q \ln(x)$. Limites du logarithme admises. Croissances comparées avec les fonctions polynomiales en 0 et $+\infty$ via l'étude de la fonction $x \mapsto x \ln(x)$. Variations, bijectivité du logarithme dans \mathbb{R} . Inégalité $\forall x > -1$, $\ln(1+x) \le x$ avec égalité ssi x = 0. Logarithme en base a avec a réel strictement positif différent de a.
- Exponentielle. L'exponentielle est défine par : Il existe une unique fonction f dérivable de $\mathbb R$ dans $\mathbb R$ telle que f'(0) = 1 et $\forall (x,y) \in \mathbb R^2$, f(x+y) = f(x)f(y), elle est notée exp. Valeurs strictement positives et $\forall x \in \mathbb R$, $\forall q \in \mathbb Q$, $\exp(qx) = \exp(x)^q$. (*) L'exponentielle est l'unique solution du problème de Cauchy y' = y, y(0) = 1. (*) exp $^{\mathbb R^{+*}}$ est la réciproque du logarithme népérien (preuve par dérivation). Inégalité $\forall x \in \mathbb R$, $\exp(x) \ge 1 + x$ avec égalité ssi x = 0. Limites et croissances comparées entre exponentielle et fonctions polynomiales en $\pm \infty$.
- Fonctions puissances. Pour tout réel α , pour tout réel x strictement positif, $x^{\alpha} = \exp(\alpha \ln(x))$. Prolongement en 0 via lorsque $\alpha \ge 0$. (\star) Propriétés $\ln(x^{\alpha}) = \alpha \ln(x)$, $(xy)^{\alpha} = x^{\alpha}y^{\alpha}$, $x^{\alpha+\beta} = x^{\alpha}x^{\beta}$, $(x^{\alpha})^{\beta} = x^{\alpha\beta}$. Dérivabilité sur \mathbb{R}^{+*} et $\forall x > 0$, $(x^{\alpha})' = \alpha x^{\alpha-1}$. Variations, limites, représentations graphiques. (\star) Croissances comparées du logarithme et des fonctions puissances en 0 et $+\infty$, de l'exponentielle et des fonctions puissances en $\pm\infty$.
- Fonctions hyperboliques. (\star) Toute fonction de I dans $\mathbb R$ définie sur un intervalle centré en 0 admet un unique décomposition en partie paire et impaire. Cosinus hyperbolique, sinus hyperbolique. Signes, dérivées, variations, limites, représentations graphiques. Bijections induites. $\mathrm{ch}^2 \mathrm{sh}^2 = 1$, formules d'addition. Tangente hyperbolique, imparité, dérivabilité, $\mathrm{th}' = 1 \mathrm{th}^2$, limites, représentation graphique. Formule d'addition.
- Fonctions circulaires réciproques. Dérivabilité sur]-1,1[, $(\star) \forall x \in]-1,1[$, $\arctan'(x)=1/\sqrt{1-x^2}$, $\arctan'(x)=1/\sqrt{1-x^2}$. Représentations graphiques. Arctangente, (\star) dérivabilité et $\forall x \in \mathbb{R}$, $\arctan'(x)=1/(1+x^2)$, limites, représentation graphique.
- Fonctions hyperboliques réciproques. Définition par les réciproques. Propriétés : $\forall x \in \mathbb{R}$, $\operatorname{argsh}(x) = \ln(x + \sqrt{x^2 + 1})$. Dérivabilité et $\forall x \in \mathbb{R}$, $\operatorname{argsh}'(x) = 1/\sqrt{x^2 + 1}$. Limites, variations, représentation graphique. $\forall x \ge 1$, $\operatorname{argch}(x) = \ln(x + \sqrt{x^2 1})$. Dérivabilité sur $]1, +\infty[$ et $\forall x > 1$, $\operatorname{argch}'(x) = 1/\sqrt{x^2 1}$. Limite en $+\infty$, représentation graphique. $\forall x \in]-1, 1[$, $\operatorname{argth}(x) = \ln((1+x)/(1-x))/2$. Dérivabilité et $\forall x \in]-1, 1[$, $\operatorname{argth}'(x) = 1/(1-x^2)$.

Chapitre 6 : calcul intégral

Notion d'intégrale, primitives

« Définition » en termes d'aires sous la courbe. Linéarité, relation de Chasles, croissance, inégalité triangulaire. Primitive, théorème fondamental de l'analyse (*) preuve dans le cas d'une fonction à valeurs réelles monotone. Intégration par parties, changement de variables. Notation $\int_{-\infty}^{x} f(t)dt$ pour désigner une primitive de f continue. Catalogue de primitives classiques via le chapitre précédent et les dérivées de fonctions usuelles. (*) Primitive de f continue. f continue de f contin

et a non nul. Les étudiants doivent savoir retrouver les changements de variables affines nécessaires pour se ramener à des primitives de $u\mapsto 1/u^2$, $u\mapsto 1/(u-\lambda)$, $u\mapsto 1/(1+u^2)$. De même pour primitiver $x\mapsto 1/\sqrt{ax^2+bx+c}$. La validité des intervalles d'intégration peut être menée a posteriori. Exemples de changement de variables dans les fonctions trigonométriques $t=\tan(u/2)$, exponentielles $u=e^{ax}$ pour se ramener à des fractions rationnelles. Les règles de Bioche et le traitement des éléments de seconde espèce de la forme $1/(ax^2+bx+c)^k$ avec $k\ge 2$ n'ont pas été abordés en cours.

Équations différentielles linéaires du premier ordre

Equation différentielle (E)y' + ay = b avec a et b continues de l dans $\mathbb C$. Equation homogène (E_h) associée. Structure des solutions. (\star) Ensemble des solutions de (E_h) . Ensemble des solutions de (E). Existence et unicité de la solution du problème de Cauchy. Recherche de solutions particulières : en notant A une primitive de $a, x \mapsto e^{-A(x)} \int_{x_0}^x b(t) \exp(A(t)) dt$ est une solution particulière, Variation de la constante, Superposition. Formes particulières : b polynomiale, exponentielle, circulaire. Exemples de raccordement de solutions d'une équation différerentielle non résolue. Le théorème de la limite de la dérivée n'a pas été vu en cours.

Équations différentielles linéaires du second ordre à coefficients constants

Equation différentielle (E)y'' + ay' + by = f avec a et b dans \mathbb{C} et $f: I \to \mathbb{C}$ continue. Equation homogène (E_h) associée. Structure des solutions. Polynôme caractéristique de (E). (\star) Ensemble des solutions de (E_h) . Description des solutions réelles de (E_h) dans le cas a, b réels. Existence et unicité de la solution du problème de Cauchy (admis dans le cas non homogène). Recherche de solutions particulières lorsque f est polynomiale ou exponentielle. Variation de la constante dans le cas complexe en se ramenant à une équation différentielle linéaire du premier ordre (on ne fait varier qu'une constante). Superposition.

* * * * *