Apellidos y nombre:	Fecha:	Grupo: L
---------------------	--------	----------

CIRCUITOS ELECTRÓNICOS DIGITALES (CED-ISW)

Práctica 1: Familiarización con el instrumental de laboratorio de Electrónica digital

1. OBJETIVOS DE LA PRÁCTICA

Conocer el instrumental habitual del laboratorio de electrónica digital (osciloscopio, fuente de alimentación, generador de funciones)

- Adquirir soltura en su utilización
- Generar señales periódicas con parámetros predefinidos
- Medir parámetros temporales y eléctricos de señales
- Montar y resolver un circuito eléctrico simple.

MATERIAL: Resistencias, condensador, regleta de montaje; cables

INSTRUMENTAL: Osciloscopio digital de 2 canales; Fuente de continua; Generador de funciones.

2. ESTUDIO TEÓRICO (Debe presentarse antes de comenzar la práctica)

2.1 Represente gráficamente (tensión frente al tiempo) las siguientes señales. Indique las escalas de ambos ejes y muestre los valores asociados a cada señal:

a) Señal continua de 5 voltios

b) Señal continua de +10V

- c) Señal continua de -10 voltios
- 2.2 Represente gráficamente (tensión frente al tiempo) las siguientes señales:

a) Señal senoidal, f=1KHz, entre -5Vy+5V

b) Señal triangular, f=10KHz, entre -7Vy+3V

c) Señal cuadrada, f=100KHz, entre 0Vy+5V

Indique, para cada señal, el valor del periodo T=1/f y la amplitud A

2.3 Analice el circuito de la figura y calcule el valor de VB para R1=R2 y V= 12V.

VB =

TRABAJO EXPERIMENTAL

(Debe realizarse en el laboratorio)

3.1 Obtenga de la fuente de alimentación las señales del apartado 2.1 y visualícelas en el osciloscopio (señal continua +5V) (señal continua +10V) (señal continua -10V)

Escala de tiempo: _____ Escala de tensión: _____ Escala de tiempo: _____ Escala de tensión: _____ Escala de tiempo: _____ Escala de tensión: _____

3.2 Obtenga del generador de funciones, y visualice en el osciloscopio las señales del apartado 2.2:

- a) Señal senoidal, f = 1KHz, entre -5Vy + 5V
- b) Señal triangular, f= 10KHz, entre -7V y +3V
 c) Señal cuadrada, f= 100KHz, entre 0V

a)

b)

c)

Escala de tiempo: _____ Escala de tensión: _____ Escala de tiempo: _____ Escala de tensión: _____ Escala de tiempo: _____ Escala de tensión: _____

3.3 Monte el circuito de la figura.

- Excite el circuito con una tensión de continua de valor V = +12V
- Mida con ayuda del osciloscopio la tensión en los puntos A y B del circuito (visualice simultáneamente ambas señales en la pantalla)

Escala de tiempo: _____ Escala de tensión:

- Busque en wikipedia el código de colores de resistencias y determine el valor nominal de las resistencias que ha utilizado y compruebe que el valor de VB corresponde con el obtenido en el estudio teórico R2=

3.4 Circuito con corriente alterna.

- Excite el circuito con una señal senoidal (Vi) de frecuencia f=10KHz, cuya tensión varíe entre -5V y +5V.
- Visualice en el osciloscopio las tensiones en los puntos A y B del circuito (represente simultáneamente ambas señales). *Justifique el resultado. Mida el periodo de la señal Vi y compruebe que T=1/f*

Escala de tiempo: _____ Escala de tensión:

CIRCUITO RC

3.5 Sustituya R2 por un condensador C para montar el circuito de la figura:

Escala de tiempo: _____ Escala de tensión: _____

- Excite el circuito con <u>una señal cuadrada</u> (Vi) de frecuencia f=1KHz, cuya tensión varíe entre 0V y +5V.
- Visualice en el osciloscopio las tensiones en los puntos A y B, y justifique el resultado, y mide el tiempo que tarda en cargarse el condensador.

3.6	Las gráficas de carga y descarga del condensador son funciones exponenciales que dependen del producto RC (constante
	de tiempo del condensador). Aumente la frecuencia de la onda cuadrada del generador de funciones hasta un valor lo
	suficientemente alto como para que al condensador no le dé tiempo de cargarse y descargarse completamente.

Escala	de t	iempo:	
Escala	de t	ensión:	