Deep Reinforcement Learning for Discrete Action Space

Group 6

Wei Li Ming-Xu Huang

Reference

- Mnih, Volodymyr, et al. "Human-level control through deep reinforcement learning." Nature 518.7540 (2015): 529-533.
- Van Hasselt, Hado, Arthur Guez, and David Silver. "Deep Reinforcement Learning with Double Q-Learning." AAAI. 2016.
- Wang, Ziyu, et al. "Dueling network architectures for deep reinforcement learning." arXiv preprint arXiv:1511.06581 (2016).

All the papers are published by Google DeepMind

- Introduction
- Deep Q Network
- Double DQN
- Dueling Network
- Experiment
- Conclusion

- Introduction
- Deep Q Network
- Double DQN
- Dueling Network
- Experiment
- Conclusion

Introduction

- In this slide we will discuss the traditional DQN and various improvements to Deep Q Network
- We will discuss the results of each methods and compare their performance.

- Introduction
- Deep Q Network
 - Target-Q
 - Experience replay
- Double DQN
- Dueling Network
- Experiment
- Conclusion

Deep Q Network

- State value: V(s)
- Action value: Q(s, a)
- Approximate action value by a neural network parameterized by θ
 - $Q(s,a;\theta)$
- Objective function
 - $L(\theta) = \mathbb{E}_{s,a,r,s'} \left[\left(y^{DQN} Q(s,a;\theta) \right)^2 \right]$
 - $y^{DQN} = r + \gamma \max_{a'} Q(s', a'; \theta)$
- Gradient
 - $\nabla L(\theta) = \mathbb{E}_{s,a,r,s'}[(y^{DQN} Q(s,a;\theta))\nabla Q(s,a;\theta)]$

Deep Q Network(cont.)

- Target-Q Network
 - Small updates to Q
 - Significantly change the policy
 - Changing correlations between the action-values and the target values
 - Neural networks is to use a separate network for generating the targets y
 - Every C step, clone weights θ of behavior Q network to target Q network weights θ^-

Initialize action-value function Q with random weights θ Initialize target action-value function \hat{Q} with weights $\theta^- = \theta$

$$\operatorname{Set} y_{j} = \begin{cases} r_{j} \\ r_{j} + \gamma \max_{a'} \hat{Q}(\phi_{j+1}, a'; \theta^{-}) \end{cases}$$

Every *C* steps reset $\hat{Q} = Q$

Deep Q Network(cont.)

- Experience replay
 - Store experiences e_t in a fixed size buffer D
 - $e_t = (s_t, a_t, r_t, s_{t+1})$
 - $D = \{e_1, e_2, ..., e_n\}$
 - Trained by randomly sampling mini-batch of experiences from buffer uniformly
 - Decreasing the correlations present in the sequence of observations
 - Updating at iteration i uses the following loss function

$$L_i(\theta_i) = \mathbb{E}_{(s,a,r,s') \sim \mathrm{U}(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_i^-) - Q(s,a;\theta_i) \right)^2 \right]$$

- Introduction
- Deep Q Network
- Double DQN
 - Double Q-Learning
 - Overestimation of Q-Learning
 - Double DQN
- Dueling Network
- Experiment
- Conclusion

Double DQN

- The max operator in standard Q-learning and DQN, uses the same values both to select and to evaluate an action.
- This makes it more likely to select overestimated values, resulting in overoptimistic value estimates.
- To prevent this, we can decouple the selection from the evaluation.

Q-learning:
$$Y_{t}^{Q} \equiv R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a; \theta_{t}) \xrightarrow{\text{Decouple}}$$

$$Y_{t}^{Q} \equiv R_{t+1} + \gamma Q\left(S_{t+1}, \operatorname{argmax} Q(S_{t+1}, a; \theta_{t}); \theta_{t}\right)$$
Double Q-learning:
$$Y_{t}^{DoubleQ} \equiv R_{t+1} + \gamma Q\left(S_{t+1}, \operatorname{argmax} Q(S_{t+1}, a; \theta_{t}); \theta_{t}\right)$$

Double DQN

- Overestimation of Q-Learning
 - Consider a real-valued continuous state space with 10 discrete actions in each state.
 - For simplicity, the true optimal action values in this example depend only on state so that in each state all actions have the same true value.

True value and an estimate

$$Q_*(s,a)$$

$$Q_*(s,a) = \sin(s)$$

Degree of polynomial: 6

Different True Value Function

$$Q_*(s,a)$$

$$Q_t(s,a)$$

$$Q_*(s,a) = 2 \exp(-s^2)$$

Degree of polynomial: 6

state

$$Q_*(s,a) = 2 \exp(-s^2)$$

Degree of polynomial: 6

 $Q_*(s,a) = 2 \exp(-s^2)$

Degree of polynomial: 9

Different Degree of Polynomial

- The idea of Double Q-learning is to reduce overestimations by decomposing the max operation in the target into action selection and action evaluation.
- Evaluate the greedy policy according to the online network.
- Using the target network to estimate its value.

$$Y_{t}^{DQN} \equiv R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a; \boldsymbol{\theta_{t}^{-}})$$

$$Y_{t}^{DQN} \equiv R_{t+1} + \gamma Q\left(S_{t+1}, \operatorname{argmax} Q(S_{t+1}, a; \boldsymbol{\theta_{t}^{-}}); \boldsymbol{\theta_{t}^{-}}\right)$$

$$Y_{t}^{DoubleDQN} \equiv R_{t+1} + \gamma Q\left(S_{t+1}, \operatorname{argmax} Q(S_{t+1}, a; \boldsymbol{\theta_{t}^{-}}); \boldsymbol{\theta_{t}^{-}}\right)$$

Algorithm 1: Double DQN Algorithm.

```
input: \mathcal{D} – empty replay buffer; \theta – initial network parameters, \theta^- – copy of \theta
input: N_r – replay buffer maximum size; N_b – training batch size; N^- – target network replacement freq.
for episode e \in \{1, 2, \dots, M\} do
     Initialize frame sequence \mathbf{x} \leftarrow ()
     for t \in \{0, 1, \ldots\} do
          Set state s \leftarrow \mathbf{x}, sample action a \sim \pi_{\mathcal{B}}
          Sample next frame x^t from environment \mathcal{E} given (s, a) and receive reward r, and append x^t to \mathbf{x}
          if |\mathbf{x}| > N_f then delete oldest frame x_{t_{min}} from \mathbf{x} end
          Set s' \leftarrow \mathbf{x}, and add transition tuple (s, a, r, s') to \mathcal{D},
                 replacing the oldest tuple if |\mathcal{D}| > N_r
          Sample a minibatch of N_b tuples (s, a, r, s') \sim \text{Unif}(\mathcal{D})
          Construct target values, one for each of the N_b tuples:
          Define a^{\max}(s';\theta) = \arg\max_{a'} Q(s',a';\theta)
                                                              if s' is terminal
          Do a gradient descent step with loss ||y_i - Q(s, a; \theta)||^2
          Replace target parameters \theta^- \leftarrow \theta every N^- steps
     end
end
```

- Introduction
- Deep Q Network
- Double DQN
- Dueling Network
 - Advantage Function
 - Dueling network architecture
 - Combine methods
- Experiment
- Conclusion

Dueling Network

- Advantage Function
 - $A^{\pi}(s, a) = Q^{\pi}(s, a) V^{\pi}(s)$
- The value stream learns to pay attention to the road.
- The advantage stream learns to pay attention only when there are cars immediately in front, so as to avoid collisions

Dueling Network(cont.)

- Produce a state value and advantage functions via a single network
 - state value is a scalar
 - advantage functions is a vector of size |A|
- Combine state value and advantage functions to generate action values
 - $Q(s, a; \theta, \alpha, \beta) = V(s; \theta, \alpha) + A(s, a; \theta, \beta)$

Dueling Network(cont.)

- Unidentifiable
 - Q(s, a) = V(s) + A(s,a)
 - However, V(s) + A(s,a) = (V(s) C) + (A(s,a) + C) (Poor performance)
 - Improvement
 - $Q(s,a) = V(s) + \left(A(s,a) \max_{a'} A(s,a')\right)$
 - $a^* = \max_{a'} Q(s, a')$, $Q(s, a^*) = V(s)$
 - $Q(s,a) = V(s) + \left(A(s,a) \frac{1}{|A|} \sum_{a'} A(s,a')\right)$
 - $a^* = \max_{a'} Q(s, a'), \ Q(s, a^*) \neq V(s)$
 - Increase stability of the optimization

Dueling Network(cont.)

- Strengths
 - Compatibility
 - Easily combined with existing and future algorithms for RL
 - Better approximation of the state values
 - More frequent updating of the value stream
 - Only the value for one of the actions is updated in traditional deep Q network

- Introduction
- Deep Q Network
- Double DQN
- Dueling Network
- Experiment
- Conclusion

- Compare with Marc et al. (2012)
- Achieving more than 75% of the human score on 29 games.

$$score_{normalized} = \frac{score_{agent} - score_{random}}{score_{human} - score_{random}}$$

• Replay memory and Target Q help to increase score.

Game	With replay, with target Q	With replay, without target Q	Without replay, with target Q	Without replay, without target Q
Breakout	316.8	240.7	10.2	3.2
Enduro	1006.3	831.4	141.9	29.1
River Raid	7446.6	4102.8	2867.7	1453.0
Seaquest	2894.4	822.6	1003.0	275.8
Space Invaders	1088.9	826.3	373.2	302.0

• Double DQN vs DQN

• Dueling Network vs Hasselt et al. (2015)

• Dueling Network vs DDQN

- Introduction
- Deep Q Network
- Double DQN
- Dueling Network
- Experiment
- Conclusion

Conclusion

- DQN is the first successful Deep Reinforcement Learning Algorithm
 - Comparable level with human on 49 games of Atari2600
 - Publish on Nature 2015
- Double DQN solve the overestimation problem of DQN
 - Publish AAAI 2016
- Dueling Network is a new network architecture for RL
 - Compatibility for existed RL algorithm
 - Better performance
 - ICML 2016 Best Paper