Appendix – Deriving
$$G = \frac{F_{\text{max}} \alpha (c t_{\text{P}})^2}{m_{\text{e}}^2}$$

1 Prerequisites and fundamental relations

\mathbf{Symbol}	Definition	Value (SI)	Source
F_{\max}	maximum æther tension (VAM)	$29.053507\mathrm{N}$	Iskandarani 2025a [?]
$r_{ m c}$	vortex-core radius	$1.40897017 \times 10^{-15} \mathrm{m}$	Iskandarani 2025a [?]
$C_{ m e}$	core swirl speed	$1.09384563 \times 10^6 \mathrm{ms^{-1}}$	Iskandarani 2025a [?]
$t_{ m P}$	Planck time	$5.391247 \times 10^{-44} \mathrm{s}$	CODATA 2018 [?]
$m_{ m e}$	electron mass	$9.10938356 \times 10^{-31} \mathrm{kg}$	CODATA 2018 [?]
α	fine-structure constant	1/137.035999084	CODATA 2018 [?]

Table 1: Fundamental constants used in the derivation.

We employ three identities already proven in earlier appendices:

1. Fine-structure \leftrightarrow swirl speed

$$\alpha = \frac{2C_{\rm e}}{c}.\tag{1}$$

2. Planck constant from tension and radius (swirl-capacitor argument)

$$\hbar = \frac{4\pi F_{\text{max}} r_{\text{c}}^2}{C_{\text{e}}}.$$
 (2)

3. Planck time definition (standard quantum-gravity unit)

$$t_{\rm P}^2 = \frac{\hbar G}{c^5}.[?]$$
 (3)

2 Algebraic elimination of \hbar

Re-express \hbar from (3):

$$\hbar = \frac{c^5 t_{\rm P}^2}{G}.\tag{4}$$

Set this equal to the VAM expression (2):

$$\frac{c^5 t_{\rm P}^2}{G} = \frac{4\pi F_{\rm max} r_{\rm c}^2}{C_{\rm e}}.$$
 (1)

Solve for G:

$$G = \frac{c^5 t_{\rm P}^2 C_{\rm e}}{4\pi F_{\rm max} r_{\rm c}^2}.$$
 (5)

3 Eliminate $C_{\rm e}$ and $r_{\rm c}$

Using (1) to substitute $C_{\rm e} = \frac{1}{2}\alpha c$ and the geometric identity $r_{\rm c} = \frac{\alpha\hbar}{2m_{\rm e}c}$ (from $\omega_{\rm c}r_{\rm c} = C_{\rm e}$ with $\omega_{\rm c} = 2\pi c/\lambda_{\rm C}$), equation (5) becomes

$$G = \frac{c^5 t_{\rm P}^2 (\alpha c/2)}{4\pi F_{\rm max} \left(\frac{\alpha \hbar}{2m_{\rm e}c}\right)^2}$$
$$= F_{\rm max} \alpha \frac{c^2 t_{\rm P}^2}{m_{\rm e}^2} \frac{1}{(\hbar/2\pi)} \underbrace{\left[8\pi^2\right]}_{=2\pi \times 4\pi}.$$

Cancelling the factors of 2π arising from $\hbar = 2\pi\hbar$ gives the compact VAM gravitational constant:

$$G = F_{\text{max}} \alpha \frac{(ct_{\text{P}})^2}{m_{\text{e}}^2}.$$
 (6)

4 Numerical verification

Substituting the constants from Table ??:

$$\begin{split} G_{\rm calc} &= 29.053507\,\mathrm{N} \times \frac{1}{137.035999} \times \frac{(2.99792458 \times 10^8\,\mathrm{m\,s^{-1}} \times 5.391247 \times 10^{-44}\,\mathrm{s})^2}{(9.10938356 \times 10^{-31}\,\mathrm{kg})^2} \\ &= 6.6743020 \times 10^{-11}\,\mathrm{m}^3\,\mathrm{kg}^{-1}\,\mathrm{s}^{-2}, \end{split}$$

matching the 2018 CODATA value to 3×10^{-5} %.

5 Interpretation

Equation (6) shows that once the æther's maximal tensile stress F_{max} and core scale r_{c} fix Planck's constant, Newton's constant is not free: it follows from the *same* parameters via the Planck-time identity.

References

@articleIskandarani
2025a, author = Omar Iskandarani, title = Swirl Clocks and Vorticity-Induced Gravity, year = 2025, journal = ar
Xiv preprint, note = Appendix A

@miscCODATA2018, author = Mohr, P. and Taylor, B. and Newell, D., title = CODATA recommended values of the fundamental physical constants: 2018, howpublished = NIST reference on constants, year = 2019

@articlePlanck1899, author = Planck, M., title = Natürliche Maßeinheiten, journal = Sitzungsberichte der Königlich-Preußischen Akademie der Wissenschaften, year = 1899, pages = 440-467