Corrigé de la feuille TD 3 : Continuité

Exercice 1.

]0,1[[0,1[[0,1]	$[0,+\infty[$	$\left[0,\sqrt{2}\right]$	$\left[0,\sqrt{2}\right]\cap\mathbb{Q}$
borne inférieure	0	0	0	0	0	0
borne supérieure	1	1	1	$+\infty$	$\sqrt{2}$	$\sqrt{2}$
maximum	/	/	1	/	$\sqrt{2}$	/
minimum	/	0	0	0	0	0

Exercice 2.

- a) f([-1,1]) = [0,1]
- **b)** f([-2,1[)=[0,4]
- c) f(]-2,1[)=[0,4[
- d) f([-2,1]) = [0,4]
- e) f([-3,-1]) = [1,9]
- f) $f([-3,-1] \cup [-2,1]) = f([-3,1]) = [0,9]$
- g) $f([-3,-1] \cap [-2,1]) = f([-2,-1]) = [1,4]$
- **h)** On a donc bien $f([-3,-1] \cup [-2,1]) = f([-3,-1]) \cup f([-2,1])$. On a aussi $f([-3,-1] \cap [-2,1]) = [1,4] = [1,9] \cap [0,4] = f([-3,-1]) \cap f([-2,1])$.

Attention! L'image de l'intersection de deux intervalles n'est forcement pas égale à l'intersection des images de ces intervalles. Par exemple, f([-1,3]) = [0,9], f([-2,1]) = [0,4] d'où $f([-1,3]) \cap f([-2,1]) = [0,9] \cap [0,4] = [0,4]$, mais $f([-1,3] \cap [-2,1]) = f([-1,1]) = [0,1]$.

Exercice 3. Pour tout $x \in I$, on a $f(x)^2 = 1$, donc f(x) = 1 ou f(x) = -1. On veut en déduire que (pour tout $x \in I$, f(x) = 1) ou (pour tout $x \in I$, f(x) = -1). Supposons que ce ne soit pas le cas. Il existe donc au moins une valeur de $x \in I$ (notons la x_-) telle que $f(x_-) \neq 1$ (et donc $f(x_-) = -1$, puisque f(x) ne peut prendre que les valeurs 1 et -1) et de la même façon, il existe une valeurs de $x \in I$ (notons la x_+) telle que $f(x_+) = 1$.

Supposons que $x_- < x_+$. Comme f est continue sur l'intervalle I et que $x_-, x_+ \in I$, alors f est continue sur $[x_-, x_+]$. Maintenant, comme $f(x_-) = -1$ et $f(x_+) = 1$ et -1 < 0 < 1 alors, d'après le Théorème des valeurs intermédiaires il existe $x_0 \in]x_-, x_+[\subset I$ telle que $f(x_0) = 0$, ce qui contredit l'hypothèse de départ.

On aboutit de même à une contradiction dans le cas $x_+ < x_-$, en considérant, dans ce cas, l'intervalle $[x_+, x_-]$.

Exercice 4.

a) Comme, par définition, $a(0) = 0 = 0^2 \cos 0$ alors nous avons, en fait, que $a(x) = x^2 \cos x$ pour tout $x \in \mathbb{R}$ (pas seulement en \mathbb{R}^*). Comme les fonctions

$$\mathbb{R} \to \mathbb{R} \qquad \mathbb{R} \to \mathbb{R}
x \mapsto x^2 \qquad x \mapsto \cos x$$

sont continues sur $\mathbb R$ alors a est continue sur $\mathbb R$ comme produit de fonctions continues.

b) Nous avons que sur tous les intervalles de la forme [n, n+1], où $n \in \mathbb{Z}$, E est une constante et donc continue. On en déduit donc que sur ces intervalles b est continue comme produit de fonctions continues.

Maintenant, soit $n \in \mathbb{Z}$, on calcule

$$\lim_{x \to n^+} b(x) = \lim_{x \to n^+} xE(x) = \lim_{x \to n^+} xn = n^2.$$

$$\lim_{x \to n^-} b(x) = \lim_{x \to n^-} xE(x) = \lim_{x \to n^-} x(n+1) = n(n-1) = n^2 - n.$$

 $\lim_{x\to n^+} b(x) = \lim_{x\to n^+} xE(x) = \lim_{x\to n^+} xn = n^2.$ $\lim_{x\to n^-} b(x) = \lim_{x\to n^-} xE(x) = \lim_{x\to n^-} x(n+1) = n(n-1) = n^2 - n.$ Nous avons que b(n) est continue en n si et seulement si $\lim_{x\to n^+} b(x) = \lim_{x\to n^-} b(x)$, c'est-à-dire si et seulement si $n^2 = n^2 - n$, ou encore si et seulement si n = 0. b n'est donc pas continue en n si $n \in \mathbb{Z}^*$, tandis qu'elle est continue sur $\mathbb{R} \setminus \mathbb{Z}^*$.

c) Comme $\sin x$ et 1/x sont continues sur \mathbb{R}^* alors $\sin(\frac{1}{x})$ est continue comme composée de fonctions continues. Par ailleurs, c est continue sur \mathbb{R}^* comme produit de fonctions continues.

De plus, pour tout $x \in \mathbb{R}^*$, $-1 \leqslant \sin(\frac{1}{x}) \leqslant 1$ et donc $-|\sin x| \leqslant \sin x \sin \frac{1}{x} \leqslant |\sin x|$ et comme $\lim_{x\to 0} |\sin x| = 0$, d'après le théorème de gendarmes, on a

$$\lim_{x \to 0} c(x) = \lim_{x \to 0} \sin x \sin \frac{1}{x} = 0 = c(0)$$

donc c est aussi continue en x=0. On conclut que c est continue sur \mathbb{R} .

d) La fonction d_{α} est continue sur \mathbb{R}^* comme produit de fonctions continues.

Maintenant, si $x \in \mathbb{R}^*$, $-1 \leqslant \cos \frac{1}{x} \leqslant 1$ et donc $-x^2 \leqslant x^2 \cos \frac{1}{x} \leqslant x^2$. Comme $\lim_{x \to 0} x^2 = 0$ et $\lim_{x\to 0} -x^2 = 0$ alors, d'après le théorème de gendarmes, nous obtenons que $\lim_{x\to 0} x^2 \cos \frac{1}{x} = 0$. Donc, d_{α} est continue en x=0 si et seulement si $\lim_{x\to 0} x^2 \cos \frac{1}{x} = d_{\alpha}(0) = \alpha$. On conclut que si $\alpha=0$, d_0 est continue sur \mathbb{R} et que si $\alpha\neq 0$, d_{α} est continue sur \mathbb{R}^* , mais pas en 0.

- f) La fonction f est continue en \mathbb{R}^* comme composée de fonctions continue. D'autre part, $\lim_{x \to 0} -\frac{1}{x^2} = -\infty$ et $\lim_{y \to -\infty} e^y = 0$ impliquent que $\lim_{x \to 0} e^{-\frac{1}{x^2}} = 0 = f(0)$. Donc, f est aussi continue en 0. On conclut que f est continue sur \mathbb{R} .
- g) La fonction g est continue sur \mathbb{R}^* comme composée de fonctions continue. D'autre part, $\lim_{x\to 0^+} g(x) = \lim_{x\to 0^+} \exp(\frac{1}{x}) = +\infty \neq 0 = g(0), \text{ donc } g \text{ n'est pas continue en } x = 0. \text{ On conclut}$ que g est continue sur \mathbb{R}^* , mais pas en x=0.
- h) Supposons que $x \neq 1$. Nous avons

$$h(x) = \frac{x\sqrt{x^2 - 2x + 1}}{x - 1} = \frac{x\sqrt{(x - 1)^2}}{x - 1} = \frac{x|x - 1|}{(x - 1)} = \begin{cases} x & \text{si } x - 1 > 0 \text{ c-à-d } x > 1 \\ -x & \text{si } x - 1 < 0 \text{ c-à-d } x > 1 \end{cases}$$

La fonction h est donc continue sur $]-\infty,1[$ d'une part, et sur $]1,+\infty[$ d'autre part. De plus,

$$\lim_{x \to 1^+} h(x) = \lim_{x \to 1^+} x = 1 \text{ et } \lim_{x \to 1^-} h(x) = \lim_{x \to 1^-} -x = -1$$

Nous avons que la limite à gauche en x=1 de h(x) est différente de la limite à droite, donc h n'est pas continue en x=1.

Exercice 5.

a) f est continue sur $\mathbb{R} \setminus \{1,4\}$ car f coïncide avec des fonctions polynomiales sur $]-\infty,1[$ et sur]1, 4[, et avec la fonction $x \mapsto 8\sqrt{x}$ sur]4, $+\infty$ [, dont on sait qu'elle est continue sur $[0, +\infty[$. Maintenant,

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x = 1 \text{ et } \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} x^{2} = 1^{2} = 1$$

Comme $\lim_{x\to 1^-} f(x) = \lim_{x\to 1^+} f(x) = f(1) = 1^2 = 1$ alors f est continue en x=1. Aussi,

$$\lim_{x \to 4^{-}} f(x) = \lim_{x \to 4^{-}} x^{2} = 4^{2} = 16 \text{ et } \lim_{x \to 4^{+}} f(x) = \lim_{x \to 4^{+}} 8\sqrt{4} = 16$$

Comme $\lim_{\substack{x \to 4^- \\ \text{constant}}} f(x) = \lim_{\substack{x \to 4^+ \\ \text{constant}}} f(x) = f(4) = 4^2 = 16 \text{ alors } f \text{ est continue en } x = 4.$

On conclut donc que f est continue sur \mathbb{R} .

Nous avons que f est strictement croissante sur $]-\infty,1[$, sur]1,4[et sur $]4,+\infty[$. Comme f est continue sur \mathbb{R} , f est aussi strictement croissante sur \mathbb{R} .

Comme f est continue et strictement croissante sur \mathbb{R} , d'après le théorème de la bijection réciproque, f est bijective de \mathbb{R} sur $f(\mathbb{R})$. De plus,

$$f(\mathbb{R}) = \lim_{x \to -\infty} f(x), \lim_{x \to +\infty} f(x)[=] \lim_{x \to -\infty} x, \lim_{x \to +\infty} 8\sqrt{x}[=] - \infty, +\infty[=\mathbb{R}.$$

b)

c) Cherchons les antécédents de chaque $y \in \mathbb{R}$.

- Si y < 1, on a f(y) = y donc y est un antécédent de y par f (et c'est le seul car f est bijective de \mathbb{R} sur \mathbb{R}).
- Si $1 \le y \le 16$, on a $f(\sqrt{y}) = (\sqrt{y})^2 = y$ car $1 \le \sqrt{y} \le 4$, et donc \sqrt{y} est l'unique antécédent de y par f. (On a deviné avant de faire ce dernier calcul que \sqrt{y} allait être l'antécédent de y en résolvant l'équation $y=x^2$.)
- Si y>16, on a $\frac{y^2}{64}>\frac{16^2}{64}=4$. Donc $f(\frac{y^2}{64})=8\sqrt{\frac{y^2}{64}}=8\frac{y}{\sqrt{64}}=y$. On a deviné avant de faire ce dernier calcul que $\frac{y^2}{64}$ allait être l'antécédent de y en résolvant l'équation $y=8\sqrt{x}$. On a donc

$$f^{-1}(y) = \begin{cases} y & \text{si } y < 1\\ \sqrt{y} & \text{si } 1 \le y \le 16\\ \frac{y^2}{64} & \text{si } y > 16. \end{cases}$$

Exercice 6.

a) f est continue sur \mathbb{R} donc en particulier sur l'intervalle [-3, -2]. De plus, f(-3) = -9et f(-2) = 5, comme -9 < 0 < 5, d'après le théorème des valeurs intermédiaires il existe $x_1 \in]-3, -2[$ tel que $f(x_1) = 0.$

On procède de la même manière pour les autres deux intervalles. Nous trouvons donc qu'il existe $x_2 \in]0,1[$ tel que $f(x_2) = 0$ (car 3 = f(0) > 0 > f(1) = -1) et qu'il existe $x_3 \in]1, 2[$ tel que $f(x_3) = 0$ (car -1 = f(1) < 0 < f(2) = 1).

- **b) c)** Nous avons

 - f(1/2) = 5/8. Comme f(1) = -1, le TVI sur $[\frac{1}{2}, 1]$ donne $x_2 \in]\frac{1}{2}, 1[$. f(3/4) = -21/64 < 0 < f(1/2), donc le TVI sur $[\frac{1}{2}, \frac{3}{4}]$ donne $x_2 \in]\frac{1}{2}, \frac{3}{4}[$. f(5/8) = 61/512 > 0 > f(3/4), donc le TVI sur $[\frac{5}{8}, \frac{3}{4}]$ donne $x_2 \in]\frac{5}{8}, \frac{3}{4}[$. f(11/16) = -461/4090 < 0 < f(5/8), donc le TVI sur $[\frac{5}{8}, \frac{11}{16}]$ donne $x_2 \in]\frac{5}{8}, \frac{11}{16}[$.

Ce dernier intervalle est de longueur inférieur à 0,1 donc $x_2 \approx \frac{5}{8}$ à 0,1 près (ou encore $x_2 \approx \frac{11}{16}$, ou n'importe quel nombre dans $\frac{5}{8}, \frac{11}{16}$.

Exercice 7.

- a) f est bien définie et continue sur \mathbb{R} comme quotient de fonctions continues dont le dénominateur ne s'annule pas.

b) Si $x \in \mathbb{R}$, $f(-x) = \frac{-x}{1+|-x|} = -\frac{x}{1+|x|} = -f(x)$ et donc f est impaire. Si $x \ge 0$, $f(x) = \frac{x}{1+x} = \frac{1+x-1}{1+x} = 1 - \frac{1}{1+x}$ qui est strictement croissante sur $[0, +\infty[$. En effet, $x \to 1 + x$ est croissante donc $x \to \frac{1}{1+x}$ est décroissante et donc $x \to -\frac{1}{1+x}$ est croissante. Comme f est impaire et strictement croissante sur $[0, +\infty[$ alors f est strictement croissante sur \mathbb{R} .

c) Comme f est continue et strictement croissante sur \mathbb{R} alors, d'après le théorème de la bijection réciproque, f est bijective de \mathbb{R} sur $f(\mathbb{R}) = \lim_{x \to -\infty} f(x)$, $\lim_{x \to +\infty} f(x)$. Or $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} \frac{x}{1+x} = \lim_{x \to +\infty} 1 - \frac{1}{1+x} = 1$. Par imparité, $\lim_{x \to -\infty} f(x) = -1$. Donc $f(\mathbb{R}) = -1$, 1[. Si $y \in [0,1[$, résolvons l'équation $y = \frac{x}{1+x}$. Si x est solution de cette équation, alors

y(x+1) = x donc y = x - xy = x(1-y), et donc $x = \frac{y}{1-y}$. Vérifions que $\frac{y}{1-y}$ est l'unique antécédent de y par f.

Si $y \in [0, 1[$ alors $\frac{y}{1-y} > 0$ et donc $f(\frac{y}{1-y}) = \frac{\frac{y}{1-y}}{1+\frac{y}{1-y}} = \frac{y}{1-y+y} = y$. Donc, pour $y \in [0, 1[$, $f^{-1}(y) = \frac{y}{1-y}$. Si $y \in]-1, 0[$ alors $-y \in [0, 1[$ et

$$y = f(x) \underset{\text{par imparité de } f}{\Longleftrightarrow} -y = f(-x) \underset{\text{d'après le cas précédent}}{\Longleftrightarrow} -x = \frac{-y}{1 - (-y)} \iff x = \frac{y}{1 + y}$$

donc si $y \in]-1,0[,f^{-1}(y)=\frac{y}{1+y}.$ On conclut que

$$f^{-1}(y) = \begin{cases} \frac{y}{1-y} & \text{si } y \in [0,1[\\ \frac{y}{1+y} & \text{si } y \in]-1,0] \end{cases}$$

Autrement dit,

$$f^{-1}(y) = \frac{y}{1 - |y|}.$$