Содержание

19												 							 					1
18												 												2
45												 							 					3

19

Доказать, что семейство лучей $(-\infty, a], a \in \mathbb{R}$ образует базу некоторой топологии на \mathbb{R} . Как будет выглядеть замыкание произвольного множества S?

Докажем, что это база топологии. Нужно проверить свойства:

1.

$$\forall x \in X \; \exists V \in \beta : x \in V$$

2.

$$\forall V_1, V_2 \in \beta \ \forall x \in V_1 \cap V_2 \ \exists W \in \beta : x \in W \subset V_1 \cap V_2$$

Проверим:

1. Введем обозначение:

$$V_a = (-\infty, a]$$
$$\forall x \in \mathbb{R} \ V = V_r$$

2.

$$V_a \cap V_b = V_c, \ c = \min(a, b)$$

$$\forall x \in V_a \cap V_b \to x \le a, \ x \le b \to V_x \in V_a \cap V_b$$

$$W = V_x, x \in W$$

Замыкание множества:

$$[S] = \{x \in X \mid U(x) \cap S \neq \emptyset\}$$
$$U(x) \in \{V_y \mid y \ge x\}$$

Пусть $S \neq \emptyset$, тогда $\exists x_0 \in S$ а для нее верно: $\forall y \geq x_0 \ U(y) \cap S \neq \emptyset$ Легко видеть, что замыканием множества будет

$$[S] = S \cup (\inf(S), +\infty)$$

18

Доказать, что семейство лучей $(-\infty, a], \ a \in \mathbb{R}$ образует базу некоторой топологии на \mathbb{R} . Опишите все замкнутые и открытые множества в этой топологии

См. решение задачи 19 (выше). Т.к.

$$[S] = S \cup (\inf(S), +\infty)$$

замкнутыми будут множества вида:

$$[Z] = Z = [a, +\infty), \ a \in \mathbb{R}$$

Открытыми будут множества, представимые некоторым объединением элементов базы.

$$Y = (-\infty, a), \ a \in \mathbb{R}$$

фигурная скобка обозначает либо], либо)

45

Рассматривается пространство многочленов \mathcal{F} с метрикой $\rho(a,b) = \sum_i |c_i|$, где $a-b = \sum_i c_i x_i$. Докажите, что оно неполно.

Рассмотрим последовательность многочленов:

$$f_n = \sum_{i=0}^n \frac{x^i}{i!}$$

Эта последовательность, очевидно, фундаментальна (всюду сходящийся ряд Тейлора). Докажем, что она не сходится к многочлену.

Если бы последовательность имела предел в \mathcal{F} то в \mathcal{F} нашелся бы многочлен бесконечной степени. Противоречие.

Неверное рассуждение: $\lim_{n\to\infty} f_n = \exp(x)$, $\exp(x) \notin \mathcal{F}$