

Password: UnifiedAnalytics

organized by

databricks

SparkWeaver: Accelerating Real-time DNN Applications with Spark and DNNWEAVER

Behnam Robatmili, Jongse Park, and Blake Skinner
Bigstream Solutions

#UnifiedAnalytics #SparkAlSummit

A little about Bigstream

Ingest Bottleneck in Big Data

Applications with Ingest Bottleneck

Many big data applications

- Lots of raw data
- Video surveillance
 - Industrial camera market is projected to increase 2.3x by 2024
 - For a 4k camera in 60fps, the amount of data per hour is 5.2
 TB (1TB for 10fps)
- Voice recognition
- Fraud detection
- 1. https://www.gminsights.com/industry-analysis/ip-camera-market

Traditional Architecture does not Scale

Use Cases

- How many people went from the shoe department to the jewelry department?
- How many people were observed walking around the entire building on a given day?

Requires cross-camera online and offline analytics

Traditional Architecture does not Scale

Semantic Compression with DNNs

- DNNs can be used for compression
 - Converting raw data into condensed, semantic data
 - For video analytics, we observed a ~5x
 compression rate

1. https://www.gminsights.com/industry-analysis/ip-camera-market

Large Scale Image Processing

- Deep learning on traditional big data clusters presents many challenges
 - Computationally intensive
 - Adds pressure to the entire ETL toolchain
 - Traditional CPUs are not ideal for evaluating DNN models
 - Doing many levels of DL processing on every input frame requires
 - Storing a lot of raw data
 - Storing and managing all interim data

DNN Optimized Ingest

Challenges with DNNs

- Computationally expensive
- Require a lot of data and energy

DNNs with FPGA

- FPGAs are a good candidate
 - Faster than CPUs
 - More power efficient than GPUs
 - More programmable than ASICs
- Programmability
 - Need HDL

Solution: DNN+FPGA for Ingest

Ingest only the data you need

- Run DNNs on the edge
- Condensed, meaningful features instead of raw, largely meaningless data

Accelerate with FPGAs

- Power efficient
- Can be deployed with minimal infrastructure
- Using DNNWEAVER technology for programmability
 - Compiler and full stack for automatic DNN acceleration

DNNWEAVER

DNNWEAVER

- Ease DNN Deployment to FPGAs
 - Tensorflow and ONNX
 - No code changes
 - No hardware expertise needed
- Open source implementation based on original paper^[1]
- Enterprise version under development by Bigstream

1: https://github.com/hsharma35/dnnweaver2

End-to-end DNN acceleration

DNNWEAVER Compute Stack

SparkWeaver

SparkWeaver Architecture

Detection and Tracking with YOLO^[1] and Deep SORT^[3]

Image sources: [1] Redmon et al. "You Only Look Once, Unified, Real-Time Object Detection"

[2] https://github.com/thtrieu/darkflow

[3] Wojke et. al. "Simple Online and Real Time Tracking with a Deep Association Metric"

SparkWeaver Architecture

Detection: YOLOv2

SparkWeaver Architecture

- Multiple cameras stream video to an FPGA cluster
- FPGA clusters implement
 YOLOv2 with DNNWFAVER
- YOLO's image features are streamed to a Kafka server
- Features are aggregated by Spark and written to HDFS
- Detection performed on the fog layer, tracking on the cluster

Detection: YOLOv2

Single Node Max FPS

Benchmark	FPS
Traditional Architecture	7.3
Detection only	10
Tracking only	12.8
YOLO on DNNWEAVER	13.2
SparkWeaver	12.8

^{*}Dependent on the number of people in a frame

Next Release Max FPS (projected)

Benchmark	FPS
SparkWeaver	46.1

^{*}Dependent on the number of people in a frame

Single Node Compression Rate

- 5.5x (82%)
 - Deep_SORT tracking only needs the pixels within the bounding boxes, and their locations

Demo

Streaming and Batch Analytic Operations

Streaming Analysis

Person Re-Identification^[1]

- Multiple solution (hot area of research)
- Some solutions use pre-trained DNNs^[2]
 - Generate a feature vector and apply similarity check on vectors

Anomaly Detection^[3]

Suspicious events/threats

- 1. Zheng et al "Person Re-identification: Past, Present, and Future"
- 2. Hermans et al "In Defense of the Triplet Loss for Person Re-Identification"
- 3. https://databricks.com/blog/2018/09/13/identify-suspicious-behavior-in-video-with-databricks-runtime-for-machine-learning.html

Use Case 1

How many people went from department X to department Y?

```
people_present
   person_id: INT,
   camera_id: INT,
   enter: TIMESTAMP,
   exit: TIMESTAMP
```

Use Case 2

How many people were observed walking around the entire building on a given day?

```
unique_people id: INT
```

```
select id from unique_people where
    count(select * from people_present where camera_id == CAMERA1) > 1 and
    count(select * from people_present where camera_id == CAMERA2) > 1 and
    count(select * from people_present where camera_id == CAMERA3) > 1 and
    ...
```


Conclusion

DNN-optimized ingest

- Smart compression
- Use network resources on dense, highly meaningful data rather than sparse, raw data

Conclusion

FPGAs are well suited to DNN acceleration edge computing

- Highly parallel
- Power efficient
- Can be deployed with minimal resources
- DNNWEAVER can compile Tensorflow/ONNX to FPGA

Not just DNNs, also infrastructure

- Online and offline analytics
- Moving data

About the Authors

behnam@bigstream.co

jongse@bigstream.co

blake@bigstream.co

DON'T FORGET TO RATE AND REVIEW THE SESSIONS

SEARCH SPARK + AI SUMMIT

