1. Which of the following is a solution for the inequality

$$\frac{9}{5}a+3>\frac{3}{4}a-7$$
?

- **A.** $a > -\frac{5}{3}$
- **B.** $a > -\frac{210}{20}$
- C. $a > -\frac{200}{21}$
- **D.** $a < -\frac{200}{21}$
- **E.** $a < -\frac{210}{20}$
- **2.** Which of the following is equal to the inequality

$$5n-21 < 13 + 2n$$
?

- **A.** $n < \frac{34}{3}$
- **B.** $n < -\frac{8}{3}$
- C. $n > -\frac{8}{3}$
- **D.** $n > \frac{34}{3}$
- **E.** $n < \frac{8}{3}$
- 3. The inequality 8(y-4) > 7(y+2) is equivalent to which of the following?
 - A. y < 46
 - **B.** y > 46
 - C. y > 6
 - **D.** y > 18
 - **E.** y < 34

- 4. Which of the following is equal to $\frac{4}{2-x} 8 > 0$?
 - **A.** x > 2
 - **B.** $\frac{3}{2} < x < 2$
 - C. $x < \frac{3}{2}$
 - **D.** $x > \frac{3}{2}$
 - **E.** $x > \frac{3}{2}$ or x > 2
- 5. Which of the following is equivalent to $(|a|-7)^3 \ge 8$?
 - **A.** $a \ge 7$ or $a \le -7$
 - **B.** $a \ge 8$ or $a \le -8$
 - C. $a \ge 15$ or $a \le -15$
 - **D.** $a \ge 3$ or $a \le -3$
 - **E.** $a \ge 9$ or $a \le -9$
- **6.** For what values of n is $\frac{1}{4}n-9 > \frac{5}{2}n$?
 - **A.** n > -4
 - **B.** n < -4
 - **C.** n < 4
 - **D.** n < 36
 - **E.** n > 46
- 7. What is the smallest integer value x that satisfies the inequality $\frac{x}{20} > \frac{13}{23}$?
 - **A.** 10
 - **B.** 11
 - **C.** 12
 - **D.** 13
 - E. 14
- **8.** Which of the following graphs shows the solution set for the inequality 7x + 2 > 9?

- **B.** -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
- C. -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
- D. -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
- E. -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6

9. Which of the following is the graph of the solution set for the inequality $11 - \frac{x}{2} \le 9$?

10. When 3 times *x* is increased by 13, the result is less than 4. Which of the following is a graph of the real numbers *x* that satisfy this relationship?

11. Which of the following inequalities represents the graph shown below on the real number line?

A.
$$-5 \le x \le 2$$

B.
$$-5 < x < 2$$

C.
$$-5 < x \le 2$$

D.
$$x < -5 \text{ and } x \ge 2$$

E.
$$x \le -5$$
 and $x > 2$

12. The number lined graphed below is the graph of which of the following inequalities?

A.
$$x \ge 0$$
 and $x \le 4$

B.
$$x > 4$$
 and $x < 0$

C.
$$x > 0$$
 or $x < 4$

D.
$$x < 0$$
 or $x > 4$

E.
$$x \le 0$$
 or $x \ge 4$

13. Which of the following graphs illustrates the solution set for the system of inequalities $3x-25 \ge -15$ and -4x+10 < -10?

14. Which of the following number line graphs shows the solution set for x of $x^2 < 16$?

15. Given real numbers a, b, c, d, and e such that b < a, e < d, a < c, and d < b, which of these numbers is the least?

ANSWER KEY

1. C 2. A 3. B 4. B 5. E 6. B 7. C 8. C 9. D 10. D 11. C 12. E 13. D 14. E 15. E

ANSWERS

ANSWER EXPLANATIONS

- 1. C. Adding 7 on both sides, we get $\frac{9}{5}a+10>\frac{3}{4}a$. Subtracting $\frac{9}{5}a$ on both sides, we get $10>\frac{3}{4}a-\frac{9}{5}a\to 10>\frac{3}{4}\left(\frac{5}{5}\right)a-\frac{9}{5}\left(\frac{4}{4}\right)a\to 10>\frac{15}{20}a-\frac{36}{20}a\to 10>-\frac{21}{20}a$. Now, dividing both sides by $-\frac{21}{20}$, and flipping the sign, we get $10\left(-\frac{20}{21}\right)< a\to -\frac{200}{21}< a$ or $a>-\frac{200}{21}$.
- 2. A. Adding 21 on both sides, we get 5n < 34 + 2n. Subtracting 2n on both sides, we get 3n < 34. Dividing by 3 on both sides, we get our answer, $n < \frac{34}{3}$.
- 3. B. Distributing the constants on both sides of the inequality, we get $8y 8(4) > 7y + 7(2) \rightarrow 8y 32 > 7y + 14$. Adding 32 on both sides, we get 8y > 7y + 46. Subtracting both sides by 7y, we get y > 46.
- **4. B.** Adding 8 on both sides, we get $\frac{4}{2-x} > 8$. The denominator is an expression that could be either negative or positive, depending on the value of 2-x. Thus, when we multiply by 2-x on either sides, we get 4 < 8(2-x) if x < 2 (which would make the expression positive) and 4 > 8(2-x) if x > 2 (which would make the expression negative, and this requires the sign to change directions). Distributing the 8 on the right side, we get 4 < 16-8x or 4 > 16-8x. Subtracting 16 on both sides, we get -12 < -8x or -12 > -8x. Lastly, dividing each side by -8 gives us $\frac{3}{2} < x$ when x < 2, or $\frac{3}{2} > x$ when x > 2. The second statement gives us no solution because no number can be simultaneously less than $\frac{3}{2}$ and greater than 2. Thus, our answer is $\frac{3}{2} < x < 2$.
- 5. E. Taking the cube root of both sides of the equation, we get $|a|-7 \ge 2$. Adding 7 on both sides gives us $|a| \ge 9$. This means $a \ge 9$ or $a \le -9$.
- 6. **B.** Subtracting $\frac{1}{4}n$ on both sides, we get $-9 > \frac{5}{2}n \frac{1}{4}n \rightarrow -9 > \frac{9}{4}n$. Dividing both sides by $\frac{9}{4}$, we get $-9\left(\frac{4}{9}\right) > n \rightarrow -4 > n$ or n < -4.
- 7. C. Rewriting the fractions with a common denominator, we get $\frac{x}{20} \left(\frac{23}{23} \right) > \frac{13}{23} \left(\frac{20}{20} \right) \to \frac{23x}{460} > \frac{260}{460}$, which simplies to 23x > 260. Dividing both sides by 23, we get x > 11.3 and the smallest integer value that is greater than 11.3 is 12.
- 8. C. Subtract 2 from both sides and divide by 7 to get x > 1. X is greater than, not greater than or equal to, so the circle in open or unfilled, since $x \ne 1$.
- **9.** D. Subtract 11 from both sides and multiply both sides by -2. Remember to switch the direction of the sign because we are multiplying both side by a negative number. $11 \frac{x}{2} \le 9 \to -\frac{x}{2} \le -2 \to x \ge 4$. Because $x \ge 4$, x can equal 4, so the circle on 4 is filled.

CHAPTER 7 3

- 10. D. Translating our inequality into numbers, we have 3x + 13 < 4. Simplify: $3x + 13 < 4 \rightarrow 3x < -9 \rightarrow x < -3$. x is less than but *not* equal to 3, so our bubble is empty.
- 11. C. Looking at the graph, we see that the thick line starts at -5 and ends at 2, so x can be any value in between the two, and that the bubble is unfilled at -5 but filled at 2, meaning that x *cannot* be -5 but *can* be 2. As an inequality, this looks like $-5 < x \le 2$.
- 12. E. Looking at the graph, we see that the thick line that is our x spans values that are less than 0 and greater than 4 and that the circles at 0 and 4 are filled, which means that x could potentially be 0 or 4. Than means that our x values are less than or equal to 0 or greater than or equal 4: $x \le 0$ or $x \ge 4$. It is logically impossible for a number to be less than or equal to 0 and greater than or equal 4, which is why we say or.
- 13. **D.** First simplify the inequalities given: $3x 25 \ge -15 \rightarrow x \ge \frac{10}{3}$ and $-4x + 10 < -10 \rightarrow -4x < -20 \rightarrow x > 5$. The solution of the system is the intersection of the two inequalities: $x \ge \frac{10}{3} \cap x > 5$, which simplifies to x > 5, because anything that is greater than 5 will always be greater than $\frac{10}{3}$, and the solution set must be greater than 5.
- 14. E. We cannot just take the square root of either side. When we take the square root, it is the same as when we multiple or divide by a negative: $\sqrt{x^2} < \pm \sqrt{16} \rightarrow x < \sqrt{16}$ and/or $x > -\sqrt{16}$. Solving both inequalities we see that x < 4 and x > -4, which can also be written as -4 < x < 4, which is represented by the bottommost graph because that graph shows the set of numbers between but not including -4 and 4. If you're not sure on a question like this pluck points to ensure your answer works.
- 15. E. We cannot relate the first two inequalities given, but the first and the third combined is b < a < c. Because e < d and d < b, we get e < d < b < a < c. Thus, e is the least element.

4 CHAPTER 7