

DEPARTMENT OF BUSINESS ECONOMICS

UNIVERSITY OF DELHI

TOPIC:

A Multiple Regression Analysis of Fragile States Index Indicators to Understand the Impact on a Nation's Economic Inequality

SUBMITTED TO:

Dr. Sonal Katyal

SUBMITTED BY:

Aditya Chandramauli - 23005

Akshat Goyal - 23010

Devanshu Hembrom - 23027

Harsh Bengani - 23036

Ranjeet Kumar - 23071

Mohd Zeeshan Ali - 23058

Saurya Karn - 23085

INDEX

Sl No.	Topics					
1.	Introduction: A Deep Dive into the Fragile States Index Methodology					
2.	Data Summary and Key Objectives					
3.	Test Model					
4.	Rectified Model					
5.	Hypothesis Formulation					
6.	Identification of Significant Predictors					
7.	Model Evaluation and Validation					
8.	Conclusion					

1. Introduction: A Deep Dive into the Fragile States Index Methodology

The data we have chosen is the The Fragile States Index (FSI) 2023 Report, a crucial tool developed by The Fund for Peace (FFP), sheds light on a critical issue: a state's vulnerability to instability. This index, meticulously constructed, ranks 178 countries based on their risk of succumbing to internal pressures that could lead to state fragility. Understanding the methodology behind the FSI is fundamental, as it reveals the intricate process of identifying and measuring these vulnerabilities.

The cornerstone of the FSI is the Conflict Assessment System Tool (CAST) framework. CAST, developed in the 1990s, aimed to equip policymakers and field practitioners with a framework for comprehending and gauging the drivers and dynamics of conflict in complex environments. This framework's enduring relevance is evident in its continued use by professionals and even local civil society organizations within conflict zones. Interestingly, the FSI itself emerged from CAST, as researchers sought to determine if the framework could be leveraged to assess and rank state fragility on a national level.

The methodology employed by the FSI goes beyond a simple, standardized approach. It embraces a mixed-method strategy, meticulously integrating both qualitative and quantitative data sources. This multifaceted approach ensures a comprehensive picture of a country's vulnerabilities.

At the heart of the FSI's data collection process lies content analysis. Researchers delve into a vast ocean of information – millions of news articles, research reports, and other publicly available documents. For each of the twelve key indicators within the FSI framework, meticulously crafted Boolean search phrases are applied to this global media data. The objective? To determine the salience, or prominence, of issues related to each

indicator within each country. The raw data for this analysis comes from a commercial content aggregator, encompassing information from over 10,000 English-language sources worldwide. Every year, a staggering 45-50 million articles and reports are meticulously analyzed. Based on the assessed salience for each sub-indicator within a country, provisional scores are assigned.

While content analysis delves into the qualitative realm, the FSI also leverages the power of quantitative data. Pre-existing quantitative datasets, meticulously compiled by international and multilateral statistical agencies such as the United Nations, World Bank, and World Health Organization, are meticulously examined. These datasets are chosen for their ability to statistically represent key aspects of the FSI's indicators. The raw data undergoes a process of normalization and scaling to facilitate comparative analysis across countries. The trends identified in this quantitative analysis are then thoughtfully integrated with the results gleaned from the content analysis phase.

However, the FSI goes beyond solely relying on pre-existing data sources. Recognizing the dynamic nature of state fragility, the methodology incorporates qualitative expert analysis. A dedicated team of social science researchers independently reviews each of the 178 countries. This review process involves a meticulous assessment of key events throughout the year, drawing comparisons with the previous year. This approach is crucial, as it helps to capture dynamic year-on-year trends across different indicators that might not be readily apparent in quantitative datasets measuring long-term structural factors. Additionally, it serves as a safeguard against potential biases or inaccuracies that might arise from the content analysis data.

Once these three independent data streams – content analysis, quantitative data analysis, and qualitative expert analysis – are compiled, a critical process of triangulation commences. This triangulation involves applying a set of established rules to ensure that the data sets are integrated in a way that capitalizes on the strengths of

each approach. Furthermore, it helps to mitigate any inherent weaknesses, gaps, or biases that might be present in any single data source. It's important to note that the raw data underpinning the FSI is already freely available electronically; the true strength lies in the meticulous methodological rigor and the systematic integration of this diverse range of data sources.

Through this rigorous process, final indicator scores for each country are meticulously crafted. A panel review, conducted by the FSI research team, ensures that the final scores are proportionate across the entire spectrum of countries analyzed.

The FSI, however, transcends a simple ranking system. It aspires to be a springboard for deeper, interpretive analysis for users. While the index inherently ranks countries, highlighting some as more fragile than others, the ultimate goal is to illuminate trends in the internal pressures faced by each individual state. By pinpointing the most salient pressures within a country, the FSI empowers policymakers and practitioners to conduct in-depth analysis and craft targeted plans to bolster each state's resilience and safeguard against instability. In essence, the FSI serves as a crucial tool for conflict prevention, enabling proactive measures to be taken before internal pressures escalate into state fragility.

Here's a breakdown of these variables and what they tell us about a country's stability:

1. Cohesion Indicators

C1: Security Apparatus: This indicator evaluates the effectiveness of a state's security forces (police, military) in maintaining order and preventing violence. A weak security apparatus can create a power vacuum, allowing armed groups to flourish.

C2: Factionalized Elites: This indicator measures the level of competition and fragmentation among a country's elite groups. When elites prioritize personal gain over

national interests, it can lead to instability and undermine public trust.

C3: Group Grievance: This indicator assesses the presence and intensity of historical or ongoing grievances held by specific groups within a society. Unresolved grievances can fuel resentment and potentially lead to violence.

2. Economic Indicators

E1: Economy: This indicator measures the severity of a country's economic decline, including factors like GDP growth rate, unemployment, and inflation. Economic hardship can breed social unrest and weaken government legitimacy.

E2: Economic Inequality: This indicator examines the distribution of wealth and economic opportunities within a country. Significant disparities between different regions or groups can create tensions and fuel social unrest.

E3: Human Flight and Brain Drain: This indicator measures the rate at which skilled or educated people emigrate from a country. This loss of human capital weakens the economy and reduces the country's capacity to address its challenges.

3. Political Indicators

P1: State Legitimacy: This indicator assesses the degree to which the public views the government as a legitimate authority. A lack of legitimacy can lead to disobedience and undermine the government's ability to function effectively.

P2: Public Services: This indicator evaluates the quality and reach of essential government services like healthcare, education, and sanitation. Poor quality or limited access to public services can erode public trust and fuel discontent.

P3: Human Rights and Rule of Law: This indicator measures the government's respect for human rights and its adherence to the rule of law. Violations of human rights and a lack of rule of law can create an environment of fear and impunity, hindering development and stability.

4. Social and Cross-Cutting Indicators:

S1: Demographic Pressures: This indicator examines population growth rates, age structure, and resource scarcity. Rapid population growth or imbalances in the age structure can strain resources and lead to competition for scarce resources.

S2: Refugees and Internally Displaced Persons: This indicator measures the number of people displaced from their homes due to conflict or natural disasters. Large refugee or IDP populations can put a strain on resources and social services, potentially leading to instability.

X1: External Intervention: This indicator assesses the impact of foreign intervention (military, political, economic) on a state's stability. Depending on the nature of the intervention, it can exacerbate or mitigate existing tensions.

By analyzing these twelve variables, the Fragile States Index provides a comprehensive picture of a country's strengths and weaknesses.

2. Data Summary and Key Objectives:

. summ S1DemographicPressures, detail

S1: Demographic Pressures

	Percentiles	Smallest		
1%	1.2	1.1		
5%	2.4	1.2		
10%	3	1.4	Obs	179
25%	4.1	1.5	Sum of Wgt.	179
50%	5.9		Mean	5.955866
		Largest	Std. Dev.	2.278726
75%	8.1	9.7		
90%	8.9	9.7	Variance	5.192592
95%	9.6	9.8	Skewness	0500372
99%	9.8	10	Kurtosis	1.904241

. summ S2RefugeesandIDPs,detail

S2: Refugees and IDPs

		Smallest	Percentiles	
		.5	1.1	1%
		1.1	1.5	5%
179	Obs	1.1	1.8	10%
179	Sum of Wgt.	1.2	2.8	25%
4.764246	Mean		4.5	50%
2.373935	Std. Dev.	Largest		
		9.6	6.5	75%
5.635568	Variance	9.8	8.3	90%
.3777024	Skewness	10	9.1	95%
2.153523	Kurtosis	10	10	99%

. summ C3GroupGrievance,detail

E1:	Economy

C3: Group Grievance									
						Percentiles	Smallest		
	Percentiles	Smallest			1%	1	1		
1%	.5	.3			5%	1.5	1		
5%	2	.5			10%	2.6	1	Obs	179
10%	2.3	. 5	Obs	179	25%	4.1	1.1	Sum of Wgt.	179
25%	3.6	.7	Sum of Wgt.	179	200	4.1	1.1	Sum OI wgt.	1/9
50%	5.5		Mean	5.57486	50%	6		Mean	5.687151
000	5.5	Largest	Std. Dev.	2.367757			Largest	Std. Dev.	2.200741
75%	7.6	9.5	bea. bev.	2.507757	75%	7.2	9.5		
90%	8.8	9.6	Variance	5.606275	90%	8.5	9.6	Variance	4.843261
95%	9.3	9.7	Skewness	0895089	95%	9.2	9.6	Skewness	2947943
99%	9.7	9.7	Kurtosis	2.014634	99%	9.6	9.9	Kurtosis	2.414107

. summ P1StateLegitimacy,detail

Pl: State Legitimacy

		Smallest	Percentiles	
		.3	.3	1%
		.3	. 4	5%
179	0bs	.3	.8	10%
179	Sum of Wgt.	.3	3.6	25%
5.741341	Mean		6.4	50%
2.901853	Std. Dev.	Largest	0.4	30%
		9.8	8.1	75%
8.420753	Variance	9.9	9.3	90%
4189213	Skewness	9.9	9.7	95%
2.048629	Kurtosis	10	9.9	99%

. summ ClSecurityApparatus,detail

. summ C2FactionalizedElites,detail

C1: Security Apparatus				C2	: Factionalize	d Elites			
Perce	entiles	Smallest				Percentiles	Smallest		
	.3	.3			1%	1.1	1		
	1.2	.3			5%	1.8	1.1		
	1.8	. 4	Obs	179	10%	2.7	1.4	Obs	179
	3.3	. 4	Sum of Wgt.	179	25%	4.9	1.4	Sum of Wgt.	179
	5.1		Mean	5.014525	50%	7.2		Mean	6.618436
		Largest	Std. Dev.	2.37981			Largest	Std. Dev.	2.427869
	6.7	9.6			75%	8.6	9.9		
	8.3	9.7	Variance	5.663496	90%	9.5	10	Variance	5.894546
	9.1	9.9	Skewness	.0364979	95%	9.7	10	Skewness	637628
	9.9	10	Kurtosis	2.268114	99%	10	10	Kurtosis	2.366222

. summ X1ExternalIntervention, detail

X1: External Intervention

		Smallest	Percentiles	
		.3	. 4	1%
		. 4	.5	5%
179	0bs	. 4	1.1	10%
179	Sum of Wgt.	. 4	3.1	25%
5.072067	Mean		5.3	50%
2.577801	Std. Dev.	Largest		
		10	7	75%
6.645058	Variance	10	8.3	90%
0911419	Skewness	10	9.4	95%
2.187248	Kurtosis	10	10	99%

. pwcorr

(Country ignored because string variable) (Rank ignored because string variable)

	Year	Total	S1Demo~s	S2Refu~s	C3Grou~e	E3Huma~n	E2Econ~y
Year Total S1Demograp~s S2Refugees~s C3GroupGri~e E3HumanFli~n E2Economic~y E1Economy P1StateLeg~y P2PublicSe~s P3HumanRig~s C1Security~s C2Factiona~s X1External~n		1.0000 0.8657 0.8077 0.7049 0.7291 0.8348 0.8411 0.8606 0.8970 0.8394 0.8822 0.8759 0.8107	1.0000 0.6797 0.4999 0.6154 0.8537 0.7391 0.6571 0.9161 0.6730 0.7409 0.6793	1.0000 0.6179 0.5736 0.5934 0.6680 0.5871 0.7205 0.5751 0.6944 0.6581 0.6864	0.4537 0.6446 0.4945 0.6337	1.0000 0.5558 0.7220 0.4845 0.6903 0.4350 0.6094 0.5473 0.7321	0.7304 0.6662 0.8916 0.6523 0.6993
	E1Econ~y	P1Stat~y	P2Publ~s	P3Huma~s	C1Secu~s	C2Fact~s	X1Exte~n
ElEconomy PlStateLeg~y P2PublicSe~s P3HumanRig~s C1Security~s C2Factiona~s X1External~n	1.0000 0.6229 0.8055 0.5854 0.7047 0.6429	1.0000 0.6683 0.9104 0.7378 0.8632 0.6220	1.0000 0.6614 0.7749 0.6764 0.6780	1.0000 0.7584 0.7921 0.5803	1.0000 0.7506 0.6722	1.0000 0.6911	1.0000

Our objectives involving the Fragile States Index (FSI) dataset aims to delve deeper into the complex dynamics of state fragility. By utilizing multiple regression analysis within the Stata environment, we have several key objectives:

- a. Identifying Drivers of Fragility: Our core objective is to isolate the most influential variables among the FSI's twelve indicators that contribute to a state's overall fragility. Through multiple regression, we seek to quantify the relationship between each independent variable and the dependent variable E2: Economic Inequality, while controlling for other factors. This will reveal which aspects of a nation's social, economic, and political landscape are most strongly associated with elevated levels of fragility.
- b. **Assessing Predictive Power:** Beyond identifying key drivers, we'll examine the overall predictive power of our regression model. Using the **R-squared value**, we can determine what proportion of the variation in FSI scores is explained by our chosen independent variables. A high R-squared suggests a strong model, allowing us to draw clearer inferences about the complex factors behind fragility.
- c. Testing Model Validity: Rigor is essential in any econometric analysis. We will perform a suite of diagnostic tests on our model to ensure its robustness. A key focus is the test of homoscedasticity, which examines the assumption of constant error variance. Unequal variance could undermine our model's accuracy. Using tools like the Breusch-Pagan test within Stata, we'll check for heteroskedasticity and, if detected, take corrective measures such as using robust standard errors.

- d. Exploring the Impact of Specific Factors: Our analysis may involve focusing on specific variables of particular interest. For example, we could investigate whether external intervention has a **disproportionate influence** on state fragility, or we might concentrate on the effects of economic inequality and brain drain. By creating models focused on these specific scenarios, we can develop detailed insights into their unique roles within the broader context of fragility.
- e. Understanding Vulnerability and Resilience: Ultimately, our project aims to illuminate not only the pathways towards fragility but also the characteristics associated with greater resilience. Highlighting variables that have a mitigating effect on the FSI score will inform policies and interventions designed to strengthen fragile states and foster their ability to withstand shocks and challenges.

3. Test Model

E2: Economic Inequality = β 0 + β 1(S1: Demographic Pressures) + β 2(S2: Refugees and IDPs) + β 3(C3: Group Grievance) + β 4(E3: Human Flight and Brain Drain) + β 5(E1: Economy) + β 6(P1: State Legitimacy) + β 7(P2: Public Services) + β 8(P3: Human Rights) + β 9(C1: Security Apparatus) + β 10(C2: Factionalized Elites) + β 11(X1: External Intervention) + ϵ

Where β 0 is the intercept, β 1 to β 11 are the coefficients representing the impact of each independent variable on E2:Economic Inequality.

The regression equation aims to model the complex factors contributing to a state's Economic Inequality (E2). It posits that economic inequality is influenced by a wide range of variables encompassing social, political, economic, and cross-cutting indicators as defined by the Fragile States Index.

We also incorporate Demographic Pressures (S1), Refugees and IDPs (S2), and Group Grievance (C3), suggesting that societal factors like population dynamics, displacement, and social tensions can exacerbate economic inequality.

The presence of Human Flight and Brain Drain (E3), Economy (E1), State Legitimacy (P1), Public Services (P2), and Human Rights (P3) highlights that both economic conditions and governance-related factors potentially shape income disparities. A poorly performing economy, lack of government legitimacy, insufficient public services, or human rights abuses could fuel economic inequality.

Interestingly, our model considers Security Apparatus (C1), Factionalized Elites (C2), and External Intervention (X1). The inclusion of these variables suggests that you're exploring whether security dynamics, internal power struggles, and foreign involvement play a role in amplifying or mitigating economic inequality.

Source	SS	df	MS	Number of o	bs	= 179	
				F(11, 167)		= 73.36	
Model	631.051331	11	57.3683028	Prob > F		= 0.0000	
Residual	130.590122	167	.781976776	R-squared		= 0.8285	
				Adj R-squar	red	= 0.8172	
Total	761.641453	178	4.27888456	Root MSE		= .88429	
S1Demograp	hicPressures	.1954	21 .076424	2.56	0.011	.0445393	.3463027
	nicrressures EugeesandIDPs	14167			0.011		045959
	coupGrievance	.02673			0.546		.1140829
3HumanFlighta		15096			0.005		0459954
.onumanr righte	ElEconomy	.06880			0.251		.1866896
P1Sta	ateLegitimacy	.09975			0.145		.2342158
	blicServices	.59553			0.000		.749549
I	23HumanRights	02577	18 .0675617		0.703		.1076132
	rityApparatus	02253	74 .0558162	-0.40	0.687	1327336	.0876588
	nalizedElites	00960	93 .0657769	-0.15	0.884	1394708	.1202522
	Intermention	.06473	26 .0500499	1.29	0.198	0340795	.1635446
X1External	THICET AGULTOU	.064/3	26 .0300499	1.23	0.130	0340733	

. vif		
Variable	VIF	1/VIF
P2PublicSe~s P1StateLeg~y P3HumanRig~s S1Demograp~s C2Factiona~s C1Security~s E1Economy X1External~n S2Refugees~s	9.23 8.89 7.04 6.90 5.81 4.02 3.93 3.79 3.02	0.108347 0.112468 0.142090 0.144854 0.172257 0.248983 0.254391 0.263918 0.331637
E3HumanFli~n C3GroupGri~e	2.78 2.50	0.359314 0.400318
Mean VIF	5.26	

The statistical analysis reveals whether these independent variables indeed have a significant influence on economic inequality, as well as the direction and magnitude of their potential effects. We remove Public Services, State Legitimacy and Human Rights as they have higher VIF.

4. Rectified Model:

E2: Economic Inequality = β 0 + β 1(S1: Demographic Pressures) + β 2(S2: Refugees and IDPs) + β 3(C3: Group Grievance) + β 4(E3: Human Flight and Brain Drain) + β 5(E1: Economy) + β 6(C1: Security Apparatus) + β 7(C2: Factionalized Elites) + β 8(X1: External Intervention) + ϵ

. regress E2EconomicInequality S1DemographicPressures S2RefugeesandIDPs C3GroupGrievance E3HumanFl > ightandBrainDrain E1Economy C1SecurityApparatus C2FactionalizedElites X1ExternalIntervention

Source	SS	df	MS	Number of F(8, 170)	obs =	179 67.92
Model Residual	580.138733 181.502719	8 170	72.5173 4 17 1.06766305	Prob > F R-squared	= =	0.0000 0.7617
Total	761.641453	178	4.27888456	Adj R-squa Root MSE	red = =	0.7505 1.0333
E2Econor	nicInequality	Coe	ef. Std. E	rr. t	P> t	[95% Co
	11.5	61744	11.5 0.60.65			407704

EZECONOMICINEQUALITY	Coei.	Sta. Err.	τ	P> t	[95% Coni.	Intervalj
S1DemographicPressures	.6174415	.0606564	10.18	0.000	.4977048	.7371782
S2RefugeesandIDPs	0898355	.0553652	-1.62	0.107	1991274	.0194564
C3GroupGrievance	.0019164	.0510622	0.04	0.970	0988813	.1027141
E3HumanFlightandBrainDrain	0933396	.0599902	-1.56	0.122	2117613	.025082
ElEconomy	.2009873	.0669873	3.00	0.003	.0687533	.3332213
C1SecurityApparatus	.0704493	.0605739	1.16	0.246	0491246	.1900233
C2FactionalizedElites	.0426819	.061502	0.69	0.489	0787241	.164088
X1ExternalIntervention	.0637361	.0582877	1.09	0.276	0513247	.1787969
_cons	.4452094	.2688514	1.66	0.100	0855077	.9759264

Name	Variable	Variable type	Variable represents
у	E2EconomicInequality	Numerical	Dependent Variable
β1	S1DemographicPressures	Numerical	Independent Variable
β2	S2RefugeesandIDPs	Numerical	Independent Variable
β3	C3GroupGrievance	Numerical	Independent Variable
β4	E1Economy	Numerical	Independent Variable
β5	E3HumanFlightandBrain Drain	Numerical	Independent Variable
β6	C1SecurityApparatus	Numerical	Independent Variable
β7	C2FactionalizedElites	Numerical	Independent Variable
β8	X1ExternalIntervention	Numerical	Independent Variable

5. Hypothesis formulation

With our collected data we are trying to answer the following basic question:

"Is that Economic Inequality affected by Demographic Pressures, Refugees and IDPs, Group Grievance, Human Flight and Brain Drain, Economy, Security Apparatus, Factionalized Elites and External Intervention"

Following hypothesis shall be tested using multiple regression analysis:

(1) Demographic Pressures

Ho: Economic Inequality is not affected by Demographic Pressures.

Ha: Economic Inequality is affected by Demographic Pressures.

(2) Refugees and IDPs

Ho: Economic Inequality is not affected by Refugees and IDPs

Ha: Economic Inequality is affected by Refugees and IDPs.

(3) Group Grievance

Ho: Economic Inequality is not affected by Group Grievance.

Ha: Economic Inequality is affected by Group Grievance.

(4) Human Flight and Brain Drain

Ho: Economic Inequality is not affected by Human Flight and Brain Drain.

Ha: Economic Inequality is affected by Human Flight and Brain Drain.

(5) Economy

Ho: Economic Inequality is not affected by the Economy.

Ha: Economic Inequality is affected by Economy.

(6) Security Apparatus

Ho: Economic Inequality is not affected by Security Apparatus.

Ha: Economic Inequality is affected by Security Apparatus.

(7) Factionalized Elites

Ho: Economic Inequality is not affected by Factionalized Elites.

Ha: Economic Inequality is affected by Factionalized Elites.

(8) External Intervention

Ho: Economic Inequality is not affected by External Intervention.

 $\boldsymbol{\mathsf{Ha:}}$ Economic Inequality is affected by External Intervention.

Notes:

- (i) Ho Null hypothesis; Ha Alternative hypothesis
- (ii) Significance level for all the tests conducted shall be 0.05.

. regress E2EconomicInequality S1DemographicPressures S2RefugeesandIDPs C3GroupGrievance E3HumanFl > ightandBrainDrain E1Economy C1SecurityApparatus C2FactionalizedElites X1ExternalIntervention

Source	SS	df	MS	Number of obs	=	179
				F(8, 170)	=	67.92
Model	580.138733	8	72.5173417	Prob > F	=	0.0000
Residual	181.502719	170	1.06766305	R-squared	=	0.7617
				Adj R-squared	=	0.7505
Total	761.641453	178	4.27888456	Root MSE	=	1.0333

E2EconomicInequality	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
S1DemographicPressures	. 6174415	.0606564	10.18	0.000	.4977048	.7371782
S2RefugeesandIDPs	0898355	.0553652	-1.62	0.107	1991274	.0194564
C3GroupGrievance	.0019164	.0510622	0.04	0.970	0988813	.1027141
E3HumanFlightandBrainDrain	0933396	.0599902	-1.56	0.122	2117613	.025082
E1Economy	.2009873	.0669873	3.00	0.003	.0687533	.3332213
C1SecurityApparatus	.0704493	.0605739	1.16	0.246	0491246	.1900233
C2FactionalizedElites	.0426819	.061502	0.69	0.489	0787241	.164088
X1ExternalIntervention	.0637361	.0582877	1.09	0.276	0513247	.1787969
_cons	.4452094	.2688514	1.66	0.100	0855077	.9759264

6. Identification of significant predictors

With the results of the regression analysis, we can check our formulated hypotheses, before doing so we shall take a look at the values of coefficients determined by the model. The rejection rule using p-values for rejecting or not rejecting a null hypothesis is as follows

Reject a null hypothesis if: p-value < Significance level

Do not reject a null hypothesis if: p-value > Significance level

Interpreting the results

The Stata outputs depict the results of a multiple linear regression analysis and various diagnostic tests conducted on the provided dataset. The primary variable of interest is "E2EconomicInequality," which is being modeled as a function of several predictor variables, including demographic pressures, refugee and IDP situations, group grievances, human flight and brain drain, economic factors, security apparatus, factionalized elites, and external intervention.

To conduct our hypotheses test we shall use the concept of "p-values" which are provided in the regression output itself.

Regression Model:

The regression model summary (Image 1) indicates that the model includes 8 predictor variables and has an R-squared value of 0.7617, suggesting that approximately 76% of the variation in economic inequality can be explained by the included predictors. The adjusted R-squared value of 0.7505 further confirms the model's reasonable fit, accounting for the number of predictors.

The coefficients table reveals that several predictor variables have statistically significant relationships with economic inequality.

Specifically, "S1DemographicPressures" (coefficient = 0.6174415, p < 0.001) and "E1Economy" (coefficient = 0.2009873, p = 0.003) exhibit positive and significant associations with economic inequality. This suggests that higher demographic pressures and stronger economic conditions are associated with increased economic inequality.

On the other hand, "S2RefugeesandIDPs" (coefficient = -0.0898355, p = 0.107) and "E3HumanFlightandBrainDrain" (coefficient = -0.0933396, p = 0.122) have negative coefficients, although their relationships are not statistically significant at the conventional 5% level. The remaining predictors, including group grievances, security apparatus, factionalized elites, and external intervention, do not exhibit significant associations with economic inequality in this model.

Variance Inflation Factors (VIFs):

VIFs are used to assess the presence of multicollinearity, which occurs when predictors are highly correlated with each other, potentially leading to unstable and unreliable coefficient estimates.

The mean **VIF of 3.21** suggests a moderate level of multicollinearity among the predictors. However, individual VIF values above 5 or 10 are generally considered problematic. In this case, none of the predictors exceed a VIF of 4, indicating that multicollinearity is not a major concern in the model.

. vif

Variable	VIF	1/VIF
X1External~n C2Factiona~s E1Economy C1Security~s S1Demograp~s S2Refugees~s E3HumanFli~n C3GroupGri~e	3.76 3.72 3.62 3.46 3.19 2.88 2.59 2.44	0.265682 0.269020 0.275989 0.288641 0.313962 0.347218 0.385388 0.410337
Mean VIF	3.21	

Heteroskedasticity Tests:

The Breusch-Pagan / Cook-Weisberg test: Tests the null hypothesis of constant variance against the alternative of heteroskedasticity. The chi-square statistic of **0.14** and the corresponding p-value of **0.7127 suggest** that there is no evidence to reject the null hypothesis of homoscedasticity (constant variance) at the 5% significance level.

. estat hettest

```
3reusch-Pagan / Cook-Weisberg test for heteroskedasticity
Ho: Constant variance
    Variables: fitted values of E2EconomicInequality

chi2(1) = 0.14
    Prob > chi2 = 0.7127
```

. imtest, white

White's test for Ho: homoskedasticity

against Ha: unrestricted heteroskedasticity

chi2(44) = 40.86Prob > chi2 = 0.6069

Cameron & Trivedi's decomposition of IM-test

Source	chi2	df	р
Heteroskedasticity Skewness Kurtosis	40.86 9.27 0.26	44 8 1	0.6069 0.3202 0.6116
Total	50.39	53	0.5765

However, the **White's test** provides a more comprehensive assessment of heteroskedasticity by testing against unrestricted heteroskedasticity. The chi-square statistic of 40.86 and the associated p-value of 0.6069 indicate that the null hypothesis of homoscedasticity cannot be rejected at the 5% significance level.

It is worth noting that the White's test decomposes the overall test statistic into components attributable to heteroskedasticity, skewness, and kurtosis. In this case, the heteroskedasticity component contributes the largest portion (40.86) of the overall test statistic (50.39), while the skewness and kurtosis components are relatively small (9.27 and 0.26, respectively).

Correlation Matrix:

. corr E2EconomicInequality S1DemographicPressures S2RefugeesandIDPs C3GroupGrievance E3HumanFligh
> tandBrainDrain E1Economy C1SecurityApparatus C2FactionalizedElites X1ExternalIntervention
(obs=179)

	E2Econ~y	S1Demo~s	S2Refu~s	C3Grou~e	E3Huma~n	E1Econ~y	C1Secu~s	C2Fact~s	X1Exte~n
E2Economic~y	1.0000								
S1Demograp~s	0.8537	1.0000							
S2Refugees~s	0.5934	0.6797	1.0000						
C3GroupGri~e	0.4618	0.4999	0.6179	1.0000					
E3HumanFli~n	0.5558	0.6154	0.5736	0.3825	1.0000				
E1Economy	0.7304	0.7391	0.6680	0.4537	0.7220	1.0000			
ClSecurity~s	0.6993	0.7409	0.6944	0.6301	0.6094	0.7047	1.0000		
C2Factiona~s	0.6477	0.6793	0.6581	0.7096	0.5473	0.6429	0.7506	1.0000	
X1External~n	0.6044	0.6064	0.6864	0.4472	0.7321	0.7573	0.6722	0.6911	1.0000

Image presents the correlation matrix, which displays the pairwise correlations among the predictor variables and the dependent variable (E2EconomicInequality). Correlation coefficients range from -1 to 1, with values closer to 1 or -1 indicating stronger positive or negative linear relationships, respectively.

The correlation matrix reveals several notable observations:

- 1. The dependent variable "E2EconomicInequality" has the strongest positive correlation with "S1DemographicPressures" (0.8537) and "E1Economy" (0.7304), which aligns with the significant positive coefficients observed in the regression model.
- 2. There are moderately strong positive correlations among some predictor variables, such as between "C1SecurityApparatus" and "C2FractionalizedElites" (0.7506), and between "E1Economy" and "X1ExternalIntervention" (0.7573). These correlations could contribute to the moderate levels of multicollinearity observed in the VIF analysis.
- 3. Negative correlations are observed between "E2EconomicInequality" and "S2RefugeesandIDPs" (-0.5934) and "E3HumanFlightandBrainDrain" (-0.5558), which is consistent with the negative coefficient signs in the regression model, although the relationships were not statistically significant.

7. Model evaluation and validation

In conducting a regression analysis, it is also crucial to check the assumptions underlying the Ordinary Least Squares (OLS) regression model to ensure that the

estimated coefficients are unbiased, efficient, and have the smallest variance among all unbiased estimators, known as the Best Linear Unbiased Estimator (BLUE) property. Violations of these assumptions can lead to biased estimates and inefficient estimators, destroying the BLUE property of the OLS Estimators.

We will now proceed to validate these assumptions.

The regression model is linear in the parameters.

By creating scatterplots between the dependent variable and each independent variable, we can determine whether the model is linear or not.

From the above graphs, it is clear that the assumption of linearity holds true for our model.

Figure: Examining the residuals plot(s) to assess whether the relationship between the residuals and the predicted values or independent variables appears to be random and evenly spread out around zero.

So, a random **scatter of points around zero** suggests that the assumptions of linearity and constant variance are met.

There should be enough variation in Xi to be qualified as an explanatory variable.

It is evident from the above discussion that there is enough variation in the values of minimum, maximum, mean, and standard deviation, indicating sufficient variability in the distribution. This suggests that the independent variable is strong.

The covariance between Xi and Ui is zero.

Based on the correlation matrix, it appears that there are no significant correlations between the independent variables and the residuals. This suggests that the assumption of zero covariance between the independent variables and the residuals holds in our regression model.

. corr E2EconomicInequality S1DemographicPressures S2RefugeesandIDPs C3GroupGrievance E3HumanFligh
> tandBrainDrain E1Economy C1SecurityApparatus C2FactionalizedElites X1ExternalIntervention
(obs=179)

	E2Econ~y	S1Demo~s	S2Refu~s	C3Grou~e	E3Huma~n	E1Econ~y	C1Secu~s	C2Fact~s	X1Exte~n
E2Economic~v	1.0000								
S1Demograp~s	0.8537	1.0000							
S2Refugees~s	0.5934	0.6797	1.0000						
C3GroupGri~e	0.4618	0.4999	0.6179	1.0000					
E3HumanFli~n	0.5558	0.6154	0.5736	0.3825	1.0000				
E1Economy	0.7304	0.7391	0.6680	0.4537	0.7220	1.0000			
C1Security~s	0.6993	0.7409	0.6944	0.6301	0.6094	0.7047	1.0000		
C2Factiona~s	0.6477	0.6793	0.6581	0.7096	0.5473	0.6429	0.7506	1.0000	
X1External~n	0.6044	0.6064	0.6864	0.4472	0.7321	0.7573	0.6722	0.6911	1.0000

The correlations between the independent variables are significant. Generally, correlations below 0.3 or 0.4 are considered weak.

8. Conclusion

The Stata outputs provide insights into the relationships between economic inequality and various socio-economic, political, and demographic factors. The multiple linear regression model identifies demographic pressures and economic conditions as significant positive predictors of economic inequality, while the effects of refugee/IDP situations and human flight/brain drain are negative but not statistically significant.

The diagnostic tests indicate that the model assumptions of homoscedasticity and absence of severe multicollinearity are reasonably met, lending credibility to the regression results. However, it is essential to interpret these findings within the context of the specific research question and to consider potential limitations or confounding factors not accounted for in the model.

Overall, this analysis offers a quantitative exploration of the determinants of economic inequality, highlighting the complex interplay between demographic, economic, and socio-political factors. Further research and validation may be warranted to gain deeper insights and inform policy decisions aimed at addressing economic disparities.