北京交通大学 2024-2025 学年暑期学期

计算机与信息技术学院 硕士研究生《智能计算数学基础》试题 B 卷 出题教师:《智能计算数学基础》课程组

	班级:		姓名	:	学号:	上课教	上课教师:	
			注意: 1. 试卷共 49	道题,满分 100 分	。2. 题目排序与难度	无关。3. 判断题请回答	"是"或"否"。	
1.	计算:	$\lim_{x \to 0}$	$\frac{x\log(1+x)}{1-\cos x}$ °					
2 °	计算 :	$\lim_{x \to 0}$	$\frac{\log(1+x^2)}{x}$ \circ					
3 °	判断:	$\sum_{n=1}^{\infty}$	$\frac{(-1)^n}{n\log n}$ 是收敛的	j.				
4 °	 计算 :	f(x)	$x,y) = x^3y + 2xy$	$y^2 - 5x^2y + 7$	 ' 关于 <i>y</i> 的偏导	 }数。		
 5 °	判断:	集合	$S = \{(x, y) \in \mathbb{I}\}$	$\mathbb{R}^2 \mid 2x + y >$	····································]紧集。		
6°	判断:	f(x)	$= x \log x \; \mathbb{ER}$	上的Lipschitz	函数。			
7 。	计算:	f(x,	$y) = x^2 - 4xy +$	$-y^2 + 6x + 2$	y 的极小值点。)		
8.	计算:	函数	$f(x,y) = x^2 +$	$2y^2 + xy$ 在	$x^2 + y^2 \leqslant 4 \text{ A}$	$x+y\geqslant 2$ 条件	下的最大值。	
9.	计算:	f(X	$\operatorname{tr}(A^{\top}XA)$	关于 <i>X</i> 的梯	度, 其中 <i>X</i> 和	I A 都是 n 阶方	万阵。	
10 为 ¹		 最小	二乘法与线性模	型 $y = ax +$	b 对点 (0,1),((1,3), (2,2), (3,4)),(4,6) 进行拟合	, 则 <i>a</i> 的值
11	。矩阵		[1234] [2134] [1010] 的列科					
••••			• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

12。判断: 若矩阵 A 的行向量线性无关,则 AA^{T} 可逆,其中A是一个 $n \times m$ 的矩阵。

 $\int 2x_1 + x_2 + 3x_3 = 13$

13。计算:解线性方程组:
$$\begin{cases} 2x_1 + x_2 + 3x_3 = 13\\ x_1 - x_2 + x_3 = 2\\ 3x_1 + 2x_2 - 4x_3 = -5 \end{cases}$$

- **14**。计算: 向量 (1,0) 以向量 (1,2) 为轴对称得到的向量是什么?
- **15**。计算: 方阵 $\begin{bmatrix} 2 & 1 & 1 \\ -2 & 2 & -2 \\ 2 & -1 & 3 \end{bmatrix}$ 的所有特征值。
- **16**。判断:设 $A = \begin{bmatrix} 1 & -2 \\ -2 & 5 \end{bmatrix}$,则对于任意 2维实向量 \boldsymbol{x} ,均有 $\boldsymbol{x}^\mathsf{T} A \boldsymbol{x} > 0$ 。
- **17**。计算: 向量 (3,-1,2) 的 ℓ_1 范数。
- **18**。计算: 方阵 $A = \begin{bmatrix} 1 & 2 \\ -3 & 1 \end{bmatrix}$ 的奇异值是什么?
- **19**。假设 x_1, x_2 都是取值在 [-1, 1] 之间的均匀分布独立随机变量。现有 $y = x_1 + x_2$, 那么 y 服从什么分布?均值是多少?
- 90 仰辺 数目取齿左〔11〕之间的均匀八左独立防扣亦是 现左
- **20**。假设 $x_1, x_2, \ldots, x_{100}$ 都是取值在 [-1, 1] 之间的均匀分布独立随机变量。现有 $z = x_1 + x_2 + \ldots + x_{100}$,那么 z 近似服从什么分布?均值是多少?
- **21**。假设 x_1, x_2 都是相互独立的高斯随机变量, 均值为 0, 方差为 1, 即 $x_1 \sim N(0,1), x_2 \sim N(0,1)$ 。现有 $u = x_1 + x_2$, 那么 u 服从什么分布? 方差是多少?

.....

- **22**。假设独立随机变量 $x_1, x_2, \ldots, x_{100}$ 都是均值为 0 方差为 1 的高斯分布。现有 $w = x_1 + x_2 + \ldots + x_{100}$,请问 w 服从什么分布?方差是多少?
- **23**。假设 y = Sh + w, 其中 y 是 $k \times 1$ 的向量, s 是 $k \times 3$ 的矩阵, h 是 3×1 的向量, w 是 $k \times 1$ 的向量。假设 $w \sim N(0, \mathbf{I}_w)$ 为高斯白噪声,向量 h 为要估计的参数。已知 y 和 s, 如果要估计出向量 h, 则要求 k 的大小应当是多少?

24 。判断: 假设已知模型 $y=x+w$, 其中 w 是均值为 2 方差也为 4 的高斯噪声; x 是个随机变量, 只有两种取值, 取值要么为 +2 要么为 -2 。根据最大似然准则从 $y=3.16$ 推断 x 取值为2。
25 。判断: 假设已知模型 $y=x+w$, 其中 w 是均值为 2 方差也为 2 的高斯噪声; x 是个随机变量, 另有两种取值,取值 60% 可能为 $+2,40\%$ 可能为 -2 。根据最大后验准则从 $y=3.16$ 推断 x 取值为 2 。
26 。判断: 假设 u 和 v 都是相互独立的高斯随机变量, 均值为 0 , 方差为 1 , 即 $u\sim N(0,1), v\sim N(0,1)$ 。现有 $z=3u+4v$,那么 z 服从高斯分布 , z 的方差为 $7\times 7=49$ 。
27。信息传输系统模型包括信源、编码器、译码器、信宿和哪部分?
28 。判断: 信源发出消息 x_i ,信宿收到消息 y_j ,自互信息 $I(x_i;y_j)$ 的定义式可表示为: $I(x_i;y_j) = \log_2 \frac{p(y_j/x_i)}{p(x_i)}$ 。
29 。已知两个信源分别为 $\begin{bmatrix} X \\ P \end{bmatrix} = \begin{Bmatrix} a_1, & a_2 \\ 0.8, & 0.2 \end{Bmatrix}$; $\begin{bmatrix} Y \\ Q \end{bmatrix} = \begin{Bmatrix} b_1, & b_2 \\ 0.5, & 0.5 \end{Bmatrix}$, 则在信源熵 $H(X)$ 和 $H(Y)$ 中,较大的是哪个?相应的值是多少?(单位:bit/符号)
30。公式 $H(XY) = H(X) + H(Y/X)$ 反映了信息熵的什么性质?
31 。 $I(X;Y) \ge 0$,这反映了互信息的什么性质?
32 。对于固定的信源,平均互信息 $I(X;Y)$ 具有凸状性。 $I(X;Y)$ 是信道传递概率分布 $P(Y/X)$ 的上凸函数还是下凸函数? 是信源概率分布 $P(X)$ 的上凸函数还是下凸函数?
33 。如果 $p(x)$ 和 $q(x)$ 为定义在同一概率空间上的两种离散分布,则 p 相对于 q 的信息散度定义为 $D(p//q)=\sum p(x)\log \frac{p(x)}{q(x)}$,按照该散度的定义方式,请给出交叉熵 $H(p,q)$ 的定义式。
34 。遍历性马尔柯夫序列的极限熵为 $H_{\infty}(X)=-\sum_i\sum_j p_ip_{ji}\log p_{ji}$, 其中 p_i 是什么?它与序列的起始状态是否有关?

- 35。判断: 帕雷托最优是各种理想态标准中的最高标准。
- 36。判断:一个零和博弈往往不存在纯策略纳什均衡解。

37。如下图的博弈矩阵中,行为决策者1的纯策略而列为决策者2的纯策略,双方均追求更大收益。可判断策略组合(E,E)为一个纯策略纳什均衡解。

$$\begin{array}{c|cccc}
E & S \\
E & 2,2 & -1,3 \\
S & 3,-1 & 0,0
\end{array}$$

图 1:

- 38。判断:在一个不完美信息博弈中,至少存在一个包含多个节点的信息集。
- 39。判断:在一个完美回忆的不完美信息博弈中,行为策略与混合策略等价。
- 40。判断:无限重复博弈中计算平均收益的折扣因子越趋近于1代表决策者越不看重长远利益。
- **41**。判断:如下图2的博弈树中,上三角代表MAX节点而下三角代表MIN节点。应用minimax算法后,判断MAX节点将采取中策略。
- **42**。如下图2的博弈树中,上三角代表MAX节点而下三角代表MIN节点。应用 α β 剪枝方法后,可忽略多少个终端节点?
- 43。判断:同一个问题,使用不同的数据结构不会改变求解问题的时间复杂度。
- 44。判断: 原问题Q是NP问题,则它的补问题也是NP问题。

图 2:

45。判断: 如果 L_1 可以多项式时间复杂度规约到 L_2 ,如果 L_2 是多项式时间复杂度可解的,则 L_1 也是多项式时间复杂度可解的。

46。判断: NP-hard问题是NP-complete问题的子集。

47。选择: 已知 $L \in NP$,且 L' 是 NP-complete,下面哪儿个条件满足可以证明 L 是 NP-complete问题。

A: $L \leq_p L'$ 。 B: $L' \leq_p L$ 。 C: $\forall L'' \in NP \Rightarrow L'' \leq_p L$ 。 D: B和C均正确。

48。请将背包问题"已知N个商品,每个商品的大小为 w_i , i = 1, 2, ..., N,和背包的大小为 B,求 这些商品的子集 C 使得 C 中商品的大小之和最接近 B",转化为判定问题:

并进一步转化为语言描述:

49。选择:下面哪儿类问题目前没有近似率为1的多项式算法。

A: P问题。 B: NP-hard问题。 C: NP-complete问题。 D: B和C均没有。

50。判断:对于同一个问题的不同实例,近似率为2的多项式算法均不能给出最优解。

.....