System of Equations:

Let us solve the following equations.

$$a_1x + b_1y + c_1z = d_1$$

 $a_2x + b_2y + c_2z = d_2$
 $a_3x + b_3y + c_3z = d_3$

is called linear system of equations. In generalized form it can be written as

e.g:

$$6x - 8y - z = 15$$

$$3x + 2y - 6z = 7$$

$$2x_1 + x_2 + 5x_3 + x_4 = 5$$

$$x_1 + x_2 - 3x_3 + 4x_4 = -1$$

$$3x_1 + 6x_2 - 2x_3 + x_4 = 8$$

$$2x_1 + 2x_2 + 2x_3 - 3x_4 = 2$$

5x - 7y + z = 11

Elementary Transformation:

Any one of the following operations on a matrix is called an elementary transformation.

- Interchanging any two rows (or columns). This transformation is indicated by R_{ij} if the ith and jth rows are interchanged.
- Multiplication of the elements of any row R_i (or column) by a non-zero scalar quantity k is denoted by (k,R_i).
- Addition of constant multiplication of the elements of any row R_j to the corresponding elements of any other row R_j is denoted by (R_i + kR_j).

If a matrix B is obtained from a matrix A by one or more E-operations, then B is said to be equivalent to A. The symbol \sim is used for equivalence.

i.e.,
$$A \sim B$$
.

Similar kind of operation we apply with column too.

Example 22. Reduce the following matrix to upper triangular form (Echelon form):

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 1 & 2 \end{bmatrix}$$

Solution. Upper triangular matrix. If in a square matrix, all the elements below the principal diagonal are zero, the matrix is called an upper triangular matrix.

$$\begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & -5 & -7 \end{bmatrix} R_2 \to R_2 - 2 R_1 \sim \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix} R_3 \to R_3 + 5 R_2$$
 Ans.

Example 23. Transform $\begin{bmatrix} 1 & 3 & 3 \\ 2 & 4 & 10 \\ 3 & 8 & 4 \end{bmatrix}$ into a unit matrix.

Solution.
$$\begin{bmatrix} 1 & 3 & 3 \\ 2 & 4 & 10 \\ 3 & 8 & 4 \end{bmatrix} \sim \begin{bmatrix} 1 & 3 & 3 \\ 0 & -2 & 4 \\ 0 & -1 & -5 \end{bmatrix} R_2 \rightarrow R_2 - 2 R_1$$

$$\sim \begin{bmatrix} 1 & 3 & 3 \\ 0 & 1 & -2 \\ 0 & -1 & -5 \end{bmatrix} R_2 \rightarrow -\frac{1}{2} R_2 \sim \begin{bmatrix} 1 & 0 & 9 \\ 0 & 1 & -2 \\ 0 & 0 & -7 \end{bmatrix} R_1 \rightarrow R_1 - 3 R_2$$

$$\sim \begin{bmatrix} 1 & 0 & 9 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} R_2 \rightarrow -\frac{1}{7} R_3 \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} R_1 \rightarrow R_1 - 9 R_3$$

$$\sim \begin{bmatrix} 1 & 0 & 9 \\ 0 & 1 & -2 \\ 0 & 0 & 1 \end{bmatrix} R_3 \rightarrow -\frac{1}{7} R_3 \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} R_1 \rightarrow R_1 - 9 R_3$$

Example 24. Find the inverse of the following matrix employing elementary transformations:

$$\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$

Solution. The given matrix is
$$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \Rightarrow \begin{bmatrix} 1 & -1 & \frac{4}{3} \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} R_1 \rightarrow \frac{R_1}{3}$$

$$\Rightarrow \begin{bmatrix} 1 & -1 & \frac{4}{3} \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ -\frac{2}{3} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \Rightarrow \begin{bmatrix} 1 & -1 & \frac{4}{3} \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \Rightarrow \begin{bmatrix} 1 & -1 & \frac{4}{3} \\ 0 & 1 & -\frac{4}{3} \\ 0 & -1 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ \frac{2}{3} & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \Rightarrow \begin{bmatrix} 1 & -1 & \frac{4}{3} \\ 0 & 1 & -\frac{4}{3} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \Rightarrow \begin{bmatrix} 1 & -1 & \frac{4}{3} \\ 0 & 1 & -\frac{4}{3} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ \frac{2}{3} & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} A \Rightarrow \begin{bmatrix} 1 & -1 & \frac{4}{3} \\ 0 & 1 & -\frac{4}{3} \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & 0 & 0 \\ \frac{2}{3} & -1 & 0 \\ -2 & 3 & -3 \end{bmatrix} A \Rightarrow -3R_3$$

$$\Rightarrow \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & -4 & 4 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix} A \xrightarrow{R_1 \to R_1 - \frac{4}{3}R_3} A \xrightarrow{R_2 \to R_2 + \frac{4}{3}R_3}$$

$$\Rightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix} \xrightarrow{R_1 \to R_1 + R_2} A$$
Hence,
$$A^{-1} = \begin{bmatrix} 1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3 \end{bmatrix}$$

Example 26. Find the inverse of the matrix M by applying elementary transformations

$$\begin{bmatrix} 0 & 2 & 1 & 3 \\ 1 & 1 & -1 & -2 \\ 1 & 2 & 0 & 1 \\ -1 & 1 & 2 & 6 \end{bmatrix}$$

Solution. Here, we have
$$A = \begin{bmatrix} 0 & 2 & 1 & 3 \\ 1 & 1 & -1 & -2 \\ 1 & 2 & 0 & 1 \\ -1 & 1 & 2 & 6 \end{bmatrix}$$

Let
$$\begin{bmatrix} 0 & 2 & 1 & 3 \\ 1 & 1 & -1 & -2 \\ 1 & 2 & 0 & 1 \\ -1 & 1 & 2 & 6 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} A$$

$$\begin{bmatrix} 1 & 1 & -1 & -2 \\ 0 & 2 & 1 & 3 \\ 1 & 2 & 0 & 1 \\ -1 & 1 & 2 & 6 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} A \longleftrightarrow B$$

$$\begin{bmatrix} 1 & 1 & -1 & -2 \\ 0 & 2 & 1 & 3 \\ 0 & 1 & 1 & 3 \\ 0 & 2 & 1 & 4 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{matrix} A \\ R_3 \to R_3 - R_1 \\ R_4 \to R_4 + R_1 \end{matrix}$$

$$\begin{bmatrix} 1 & 1 & -1 & -2 \\ 0 & 1 & 1 & 3 \\ 0 & 2 & 1 & 3 \\ 0 & 2 & 1 & 4 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix} \begin{matrix} A \\ R_3 \leftrightarrow R_2 \end{matrix}$$

$$\begin{bmatrix} 1 & 1 & -1 & -2 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & -1 & -3 \\ 0 & 0 & -1 & -2 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & 2 & -2 & 0 \\ 0 & 3 & -2 & 1 \end{bmatrix} A$$

$$\begin{bmatrix} R_3 \to R_3 - 2R_2 \\ R_4 \to R_4 - 2R_2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 1 & -1 & -2 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & -1 & -3 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & 2 & -2 & 0 \\ -1 & 1 & 0 & 1 \end{bmatrix} A$$

$$\begin{bmatrix} 1 & 1 & -1 & -2 \\ 0 & 1 & 1 & 3 \\ 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ -1 & -2 & 2 & 0 \\ -1 & 1 & 0 & 1 \end{bmatrix} A$$

$$\begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} = \begin{bmatrix} -2 & 3 & 0 & 2 \\ 2 & 4 & 1 & 2 \end{bmatrix} R_1 \rightarrow R_1 + 2R_4$$

$$\begin{bmatrix} 1 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -2 & 3 & 0 & 2 \\ 3 & -4 & 1 & -3 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1 \end{bmatrix} R_1 \rightarrow R_1 + 2R_4$$

$$R_2 \rightarrow R_2 - 3R_4$$

$$R_3 \rightarrow R_3 - 3R_4$$

$$R_3 \rightarrow R_3 - 3R_4$$

$$R_1 \rightarrow R_1 + R_3$$

$$R_1 \rightarrow R_1 + R_3$$

$$R_2 \rightarrow R_2 - R_3$$

$$R_1 \rightarrow R_1 + R_3$$

$$R_2 \rightarrow R_2 - R_3$$

$$R_1 \rightarrow R_1 + R_3$$

$$R_2 \rightarrow R_2 - R_3$$

$$R_1 \rightarrow R_1 + R_3$$

$$R_2 \rightarrow R_2 - R_3$$

$$R_1 \rightarrow R_1 + R_3$$

$$R_2 \rightarrow R_2 - R_3$$

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1 \end{bmatrix} A$$

$$I = A^{-1} A$$

$$A^{-1} = \begin{bmatrix} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & 5 & 2 & 2 \end{bmatrix}$$

Hence,

$$A^{-1} = \begin{bmatrix} -1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1 \end{bmatrix}$$

Ans.

Example for Practice Purpose

Reduce the matrices to triangular form:

1.
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 7 \\ 3 & 1 & 2 \end{bmatrix}$$
 Ans. $\begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 1 \\ 0 & 0 & -2 \end{bmatrix}$ 2. $\begin{bmatrix} 3 & 1 & 4 \\ 1 & 2 & -5 \\ 0 & 1 & 5 \end{bmatrix}$ Ans. $\begin{bmatrix} 0 & 1 & 4 \\ 0 & 5 & -19 \\ 0 & 0 & 22 \end{bmatrix}$

Find the inverse of the following matrices:

3.
$$\begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$

3.
$$\begin{bmatrix} 1 & 3 & 3 \\ 1 & 4 & 3 \\ 1 & 3 & 4 \end{bmatrix}$$
 Ans.
$$\begin{bmatrix} 7 & -3 & -3 \\ -1 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$$
 4.
$$\begin{bmatrix} 1 & -1 & 1 \\ 4 & 1 & 0 \\ 8 & 1 & 1 \end{bmatrix}$$
 Ans.
$$\begin{bmatrix} 1 & 2 & -1 \\ -4 & -7 & 4 \\ -4 & -9 & 5 \end{bmatrix}$$

$$\mathbf{4.} \begin{bmatrix} 1 & -1 & 1 \\ 4 & 1 & 0 \\ 8 & 1 & 1 \end{bmatrix}$$

Ans.
$$\begin{bmatrix} 1 & 2 & -1 \\ -4 & -7 & 4 \\ -4 & -9 & 5 \end{bmatrix}$$