

Translational Research Approach:

Primary Congenital Glaucoma: Prevalence, genetics, and collaboration between scientists and clinicians

for successful treatment

Subho Chakrabarti*, Anil Mandal*,

H. Nagarajaram** and D. Balasubramanian*

*LV Prasad Eye Institute, and ** School of Life Sciences,

University of Hyderabad, Hyderabad, India

PRIMARY CONGENITAL GLAUCOMA

A severe form of childhood blindness

Developmental defect(s) of the trabecular meshwork and anterior chamber angle

Western countries - 1: 10,000-30,000

Middle East - 1: 2,500

Slovak gypsies - 1: 1,250

India (Andhra Pradesh) ~ 1: 3,300

GLC3A(2p21) - CYPIBI GLC3B(1p36) GLC3C (14q23) GLC3D(14q22) - LTBP2 GLC3E (9p21.2) - TEK

PCG results in 4.2% blindness in India

- ~43.0% patients showed CYPIBI mutations with variable penetrance
- ➤ 35 mutations were observed ←
- ~42.0% were homozygous ←
- R368Hwas the most common mutant allele

MolVis2004; 10: 696-702

Biophys J 2006; 91: 4329-39

What are the structural properties of disease mutant forms (molecular phenotypes) of proteins as compared to their wild-type counterpart?

Human CYP1b1:

- -A cell membrane anchored protein
- Involved in the development of trabacular mesh work in the eyes
- -Certain mutants have been found in patients suffering from a genetic disorder called primary congenital glaucoma (PCG)
- The mutants which we studied are:

A155P; M132R; Q144P; P193L; E229K; S239R; R368H; G466D

Achary et al (2006) *Biophysical J.*Achary and Nagarajaram (2008) *J.Biosci*Achary and Nagarajaram (2009) *J. Biomol. Struct. Dyn.*

Properties of Functionally Important Regions

Substrate Binding Region (SBR)

Note that the substrate binding region s in the mutants are too narrow or too wide

Properties of Functionally Important Regions

Substrate Access Channel (SAC)

Here again, the substrate access varies widely: no tight fit in the mutants

A polymorphism in the CYP1B1 promoter is functionally associated with primary congenital glaucoma

Subhabrata Chakrabarti 1,*, Yashoda Ghanekar 1,†, Kiranpreet Kaur 1, Inderjeet Kaur 1, Anil K. Mandal², Kollu N. Rao¹, Rajul S. Parikh², Ravi Thomas^{2,3} and Partha P. Majumder⁴

FREQUENCIES OF CYPIBI MUTATIONS

Population	PCG Cases (n)	Cases with CYP1B1 mutation	Homo	Hetero	Compound hetero- zygous	Cases without CYP1B1 mutation
Australia	37	8 (21.6%)	1 (2.7%)	2 (5.4%)	5 (13.5%)	29 (78.4%)
Brazil	52	26 (50%)	15 (29.0%)	4 (7.7%)	7 (13.5%)	26 (50.0%)
Ecuador	15	2 (13.3%)	1 (6.7%)	0	1 (6.7%)	13 (86.7%)
Egypt	11	5 (45.5%)	4 (36.4%)	1 (9.0%)	0	6 (54.5%)
France	31	15 (48.4%)	6 (19.4%)	2 (3.2%)	7 (22.6%)	16 (51.6%)
India	301	132 (43.8%)	73 (24.3%)	41 (13.6%)	18 (6.0%)	169 (56.1%)
Indonesian	21	6 (28.6%)	3 (14.3%)	2 (14.3%)	1 (4.8%)	15 (71.4%)
Japan	65	13 (20%)	1 (1.5%)	3 (4.6%)	8 (12.3%)	52 (80%)
Kuwait	17	12 (70.6%)	9 (52.9%)	1 (5.9%)	2 (11.8%)	5 (29.4%)
Mexico	12	4 (33.3%)	2 (16.7%)	0	2 (16.7%)	8 (66.7%)
Morocco	32	11 (34.4%)	9 (28.1%)	0	2 (6.3%)	21 (65.6%)
Romania	20	20 (100%)	20 (100%)	0	0	0
S. Arabia	62	57 (91.2%)	53 (85.5%)	0	4 (6.5%)	5 (8.0%)
Turkey	35	15 (42.9%)	8 (22.9%)	6 (17.1%)	1 (2.9%)	20 (57.1%)
US/Brazil	21	3 (4.8%)	1 (4.8%)	0	2 (9.5%)	18 (85.7%)

PCG is widely prevalent across the globe

HAPLOTYPE ANALYSIS

Haplotype (group of sequence variations and repeat sequences that occur in tandem) analysis was done on Indian patients first, vis-à-vis normal individuals; then these were compared with those found elsewhere in the world (from available data), in order to gain evolutionary insights. Note the occurrence of the haplotype s CGGTA and CGCCG across parts of the world, suggesting common ancestry. Indeed, compare this with chimpanzee, and see how variations could have occurred!! (Monkeys have glaucoma; Burgoyne 2015) Notice too the mutations G61E, R368H, R\$69W occur across continents

Chakrabarti et al. Invest Ophthalmol Vis Sci 2006; 47: 43 - 47

Globally, CYP1B1 Mutations in Primary Congenital Glaucoma Are Strongly Structured by Geographic and Haplotype Backgrounds

Subbabrata Chakrabarti, ¹ Kiranpreet Kaur, ¹ Inderjeet Kaur, ¹ Anil K. Mandal, ^{2,3} Rajul S. Parikh, ³ Ravi Thomas, ^{2,3} and Partha P. Majumder ⁴

COUNTRY	Н	A	P	L	0					CYP	B1 MUTA	TIONS				
ECUADOR	С	G	G	Т	Α	G61E				4340 del0	}					
ALGERIA	С	G	G	Т	Α					4340 del0	3					
MOROCCO	С	G	G	Т	Α	G61E				4340 del0	3					
S. ARABIA	С	G	G	Т	Α	G61E	R368H	R469W	268de							
INDIA	С	G	G	Т	Α	G61E	R368H	R469W								
USA	С	G	G	Т	Α				268del		10bpdup					
BRAZIL	С	G	G	Т	Α		R368H			4340 del0	10bpdup					
ECUADOR	С	G	С	С	Α							R390C				
INDIA	С	G	С	С	Α							R390C	C280X			
JAPAN	С	G	С	С	ND								C280X			
S. ARABIA	С	G	C	C	G									L77P		
INDIA	С	G	C	C	G									L77P		
PORTUGAL	С	G	C	C	G									8182 de	I G	
BRAZIL	С	G	C	C	G									8182 de	I G	
ROME	G	T	С	C	Α										E3	387K
USA	G	Т	C	C	Α										E3	387K
BRAZIL	G	T	С	С	Α							V. 17.	40 AT		E3	387K

nvest Ophthalmol Vis Sci 2006; 47: 43 - 47

Conceptual Framework

- Isolated founder populations drawn from large ancestral population
 - Bulgarian gypsies // Indians
- Recent founding in evolutionary time scale
 - Ancestral disease causing allele on a same haplotype
- Haplotype sharing due to less founders
- Further validation in outbred populations
 - Indian
 - Australian
 - African
 - Brazilian

www.nature.com/ejhg

ARTICLE

LTBP2 and CYP1B1 mutations and associated ocular phenotypes in the Roma/Gypsy founder population

Dimitar N Azmanov¹, Stanislava Dimitrova^{2,16}, Laura Florez^{1,16}, Sylvia Cherninkova³, Dragomir Draganov⁴, Bharti Morar¹, Rosmawati Saat¹, Manel Juan⁵, Juan I Arostegui⁵, Sriparna Ganguly⁶, Himla Soodyall⁷, Subhabrata Chakrabarti⁸, Harish Padh⁹, Miguel A López-Nevot¹⁰, Violeta Chernodrinska¹¹, Botio Anguelov¹¹, Partha Majumder^{6,12}, Lyudmila Angelova¹³, Radka Kaneva², David A Mackey¹⁴, Ivailo Tournev^{3,15} and Luba Kalaydjieva^{*,1}

CYP1B1	Haplotype		Gypsy PCG patients			
mutation		South/ Dravidian	Dravidian Ind		East West ndo- Indo-European ropean	
Bacall	C-G-G-T-A	13%	-	3%	15%	2.7%
R368H	C-G-C-C-A	0.5%	-	-	-	-
Facely	G-T-C-C-A	0.7%	-	3%	1%	1.3%
E229K	C-G-G-T-A	0.5%	-	-	-	-
	G-T-G-T-A	0.2%				
B200C	C-G-C-C-A	3%	-	3%		
R390C	C-G-G-T-A	-	-	-		9.4%
E387K	G-T-C-C-A	-				17.6%

Population	Mutation	%		
	Q329X	0.80%		
South INDIA	P1219T	0.40%		
(n=250)	V1543I	0.40%		
	G1660W	0.80%		
North INDIA (n=54)	-	-		
Turkey (n=1)	-	-		
British (n=90)	R538W	1.11%		
US (n=57)	-	-		
	S472fsX3	33.30%		
Iran (n=3)	P989R	33.30%		
	C1438Y	33.30%		
	Q111X	25%		
Pakistan (n=4)	R299X	25%		
	E415RfsX596	25%		
Gypsy (n=15)	R299X	53.30%		

CONCLUSIONS, Thus far.....

- The ROH harboring KLHL26 and TSHZ2 could be potential PCG-associated regions that needs further replications and functional validations
- Balkan gypsies and Indians may not share extended ROH, as thought hitherto
- Founder LTBP2 mutations in gypsies and absence in Jats and PCG patients in Southern India, indicate rapid admixture and population stratification among them

Homozygous mutations or heterozygous mutations in additional alleles detected (digenic inheritance)

No Mutations detected

Mutation validation in additional PCG cases (n=300) and proceed to Aim 2 Whole exome sequencing to detect new mutations in a select set of trios (n=25)

CONCLUSIONS

- Exome sequencing indicated some novel genes that may be involved in PCG
- Functionally, these genes may interact with *CYP1B1* and other glaucoma-associated genes through a common biochemical pathway as they affect similar transcription factors involved in development
- The synergistic effects of these genes may hold key to PCG pathogenesis

INTEGRATED MANAGEMENT

6 months

25 years

