

Automated and Connected Driving Challenges

Section 2 – Sensor Data Processing

Point Cloud Occupancy Grid Mapping Training & Evaluation

Bastian Lampe

Institute for Automotive Engineering

RWTHAACHEN UNIVERSITY

Data Pipeline

Point Cloud

.PCD v0.7 - Point Cloud Data file format

input_01.pcd

- How to **store** the training data?
 - Common file types (e.g. PCD and PNG) vs. dedicated data structure (e.g. TFRecord)
- How to load the training data into the deep learning framework?

Simulated Input Point Cloud and Label Grid Map

label_01.png

Grid Map

Data Pipeline

- How to **store** the training data?
 - Common file types (e.g. PCD and PNG) vs. dedicated data structure (e.g. TFRecord)
- How to **load** the training data into the deep learning framework?
 - Loading native files from disk vs. using TensorFlow Datasets API

.PCD v0.7 - Point Cloud Data file format N#UAĈ FF ��J@�"=A�9QA�<mark>dle FF</mark> ��� input 01.pcd

https://www.tensorflow.org/datasets

RWTH AACHEN UNIVERSITY

Evaluation Metrics

- How to measure the performance of the trained model?
 - Binary evaluation for states "Free" and "Occupied"
 - Precision = $\frac{TP}{TP+FP}$ (Positive Predictive Value)
 - Recall = $\frac{TP}{TP+FN}$ (True Positive Rate)
 - Thresholds Θ_O/Θ_F for belief masses

		actual	
		free	not free
predicted	free	True Positives (TP)	False Positives (FP)
	not free	False Negatives (FN)	True Negatives (TN)

State "Free"

b_O	belief mass for the cell being occupied
b_F°	belief mass for the cell being free
и	uncertainty mass
i	b + b + y = 1

$$b_O + b_F + u = 1$$

 $b_O > \Theta_O \rightarrow Occupied$
 $b_F > \Theta_F \rightarrow Free$

		actual	
		occupied	not occupied
predicted	occupied	True Positives (TP)	False Positives (FP)
	not occupied	False Negatives (FN)	True Negatives (TN)

State "Occupied"

RWTHAACHEN UNIVERSITY

Evaluation Metrics

- How to measure the performance of the trained model?
 - Binary evaluation for states "Free" and "Occupied"
 - Precision = $\frac{TP}{TP+FP}$ (Positive Predictive Value)
 - Recall = $\frac{TP}{TP+FN}$ (True Positive Rate)
 - Thresholds Θ_O/Θ_F for belief masses

belief mass for the cell being **occupied** belief mass for the cell being **free uncertainty** mass

$$b_O + b_F + u = 1$$

$$b_O > \Theta_O \rightarrow Occupied$$

 $b_F > \Theta_F \rightarrow Free$

State "Free"

State "Occupied"

RWTHAACHEN UNIVERSITY

Evaluation Metrics

- How to measure the performance of the trained model?
 - Binary evaluation for states "Free" and "Occupied"
 - Precision = $\frac{TP}{TP+FP}$ (Positive Predictive Value)
 - Recall = $\frac{TP}{TP+FN}$ (True Positive Rate)
 - Thresholds Θ_O/Θ_F for belief masses

State "Free"

State "Occupied"

An efficient data pipeline can speed up the training substantially

label_01.png

• **Different metrics** evaluate different performance aspects

Prediction