

AUGUSTINUS & BARD

Investigation of Phase Relations in Transformer Circuits

Electrical Engineering
BS
1906

Class Book Ru4

Volume

Je 08-10M

281 79 74

INVESTIGATION OF PHASE RELATIONS IN TRANSFORMER CIRCUITS

BY

PAUL AUGUSTINUS
JACOB WILLIAM BARD

THESIS

For the Degree of Bachelor of Science in Electrical Engineering

COLLEGE OF ENGINEERING UNIVERSITY OF ILLINOIS

PRESENTED, JUNE, 1906

DAVESTICATION OF PRASE REMATCHES

81

AUDITATION OF THE SALES

218414

to the Diegram of Sections of Section (4)

THE STATE OF THE S

UNIVERSITY OF ILLINOIS

	June 1, 190 6
	the second second second second
THIS	IS TO CERTIFY THAT THE THESIS PREPARED UNDER MY SUPERVISION BY
	PAUL AUGUSTINUS and JACOB WILLIAM BARD
ENTITLED	INVESTIGATION OF PHASE RELATIONS IN
	TRANSFORMER CIRCUITS
IS APPROVEI	D BY ME AS FULFILLING THIS PART OF THE REQUIREMENTS FOR THE DEGREE
OF	Bachelor of Science in Electrical Engineering
	Morgan Brooks
	HEAD OF DEPARTMENT OF Electrical Engineering

Digitized by the Internet Archive in 2013

Investigation of the Phase Relations in Transformer Circuits. Introduction.

In general practice, the phase angle in the secondary of a transformer is assumed to be equal to that of the primary. This, of course, would also meanthat the power factor of the two circuits are equal. To investigate the phase relations, therefore, it shall be necessary only to compare the power factors of the two circuits for various conditions.

Method of Conducting Experiments.
In order to magnify the effect,
two 7.5 K.W. transformers were connected in
cascade as shown in diagram A. To elinainate errors, it was desired to use only
one set of instruments for both circuits. The
scheme of connections is as follows: (a) is
a single phase alternator connected to the secondary (6) of one of the transformers used.
The primary (c) of this transformer is then
connected to the primary (d) of a similar

transformer, and the secondary (e) of the Lutter connected to the load. By means of switches (flandly), the convenit of either cir-Cuil can be made to pass through the anmeler und nathmeter. To change the instruments over to either side, without disturbing the load, Short-Circuiting Switches (h) and (h) are provided veross the switches (flund(g) respectively. By means of a D.P.D.T. switch, the pressure coil of the wattmeter can be thrown across the Terminals of the alternator or across the load. The voltoneter is connected in a manner similar to that used for the pressure coil of the vallmeter.

for non-inductive, inductive and capacity loads. From these data, the power factors were calculated, and points plotted, using power factors on load side for abecissas, and power factors on yenerating side for ordinates. Now, if the power factors on the other cide of the transformers, all the points plotted would fall on a 45° line. From the average value of these points, for more inductive

found to be true, which conforms with the general assumption. The results obtained from capacity loads, however, showed in behavior a marked deviation from what was expensed. It was found that all the power factors on the generaling side were greater than those on the load side, so that well the foirts fell above the 45° line.

It is seen then that under certain conditions, at least, there may be some difference in the phase angles of the two circuits. do verify the results obtained, the investigation was carried still further by comparing a number of curves of currents and pressures, taken Disnultaneously by means of an oscillograph. Consiections for this part of the expliment are shown in diagram B, which is very similar to H. (4) is the ulternator, (b) the secondary of one transformer, (c) and (d) the two primaries, while (e) is the Recordary connected to the load as shown. If and (g) are the ascillators, one being connected so as to give the pressure curre, while the other gives that of the convent. D.P.D.T. switches are used to throw either side of the trains-

formers on the oscillators.

In order to obtain the current Crives, it was recessary to insert in Deries with each circuit a non-inductive resistance, across which the current oscillator was connected as shown at (r) and (s). Cures of currents and pressures were then traced for non inductive, includive and capacity loads. The results obtained were as follows: With non-inductive load, The current on the power side showed a small angle of lag. while one the load side both our with and pressure were apparently in phase. Applying inductive load, the phase ungle proved to be practically the Rame in both circuits, which might be predicted from the prece ding experiments. The curres obtained when applying capacity loads, however, showed an additional and unexpected pleuliarity; for it was found that the current in the power circuit was lagging, while that in the load circuit was leading.

For the preceding experiments, inductive effect was obtained by means of transformers and inductions coils, while the capacity effect was produced by means of condensess.

In transmission lines, using substations, the phase ungle may be altered by means of over and under exciting the converters. It was therefore descrubbe to perform a test of this nature. I that end Danville, Urbana und Champaign Railway transmission line was selected for the experiment. On the day of the test, the power was Rupplied from Champaign only. Or 15000 volt line extends from the plant to a substation at It. Joseph, about cleven miles from Champaign. At this point it is stepped down to 350 volts to suit the converters. The instrument at both plant and Rubstation are placed on the low lension side, being consistant with the conditions under which the previous Experiments were made.

Men were stationed at each end to take readings of instruments. At a certain prearranged time, readings were started simultaneously, and then taken every thirty seconds, a telephone service being provided in order to begin readings at the same time. During the first liverity-five minutes, the change of excitation was made at It. Joseph only. Starting with a lagging current, the ex-

citation or as gradually increased, at regular inlevals, write a leading current reas obtained.
The excitation at It. Joseph was then made mormal, while the experiment was performed at
Champaign for the following twenty for minutes. A comparison of the data, takens at
both ends showed a lagging current at
Champaign for all phases at It. Joseph, during
the first twenty fire minutes, while a leading
current was abtained at It. Joseph for all phases
at Champaign, throughout the last liventy fire
minutes.

These last data laken in the transmission line are of interest, as they corroborate the previous results obtained. However, due to rapid fluctuations of load, ac curate numerical values could not be obtained for the comparison of the phase angles.

Trams the chove experiments, it appears that under certain conditions, there is phase angles of transformer circuits. Under Ruch conditions, this would lead to an error in Durth-board instruments, where a transformer. Rystem is used. The investigation, as favas carned, does

not determine the minermal values of such inthusmental orions, but it may sense us a lasis for further and more comprehensive excements in that line.

Pragram H

Hrrangement of switshes & instruments

Pragram B.

Arrangement of switches & ossillograph

Power Side Non-Inductive Load

W	E	I	P.F.	W	E	I	P.F.
1516	110.4	15.3	89.7	1172	108.1	10.75	
1984	109.9	18.75	96.4	1527	107.1	/6.3	87.5
2398	109.8	22.25	982	1990	106.5	19.3	96.8
2858	109.1	26.5	98.8	2415	104.3	23.5	98.5
3228	109.1	30.8	97.1	2858	104.3	27.3	
3685	/089	34.6	98.0	3/75	103.5	32.0	96,
4050	108.5	38.6	97.	3540	102.4	35.5	97,5
4375	/08.25	41.5	97.5	3775	101.0	36.5	
4800	/08.25	44.8	99.	4/00	100.2	42.0	97.3
5320	107.8	50.2	98.5	4545	101.2	46.8	96,1
5625	107.0	54.4	96.7	4880	98.4	50.0	994
5980	106.7	57.0	97.3	5/20	96.85	53.4	99.1
6190	/05.7	59.5	98.5	5250	94.7	56.0	79.8
6260	/03.7	61.25	98.7	5320	93.0	57.6	99.4
6500	/03.1	64.25	98.	5550	9/.9	61.25	98.8
6740	102.0	67.3	98.	5670	90.7	63.7	98.2
6810	100.0	69.0	98.7	5730	89.2	66.75	96.3

Power Side Inductive Load

W	E	I	9/0 P.F.	W	E	I	°/0 P.F.
2845	108.0	3/.3	833	2360	104.1	27.5	82,5-
3300	109.75	37.0	81.4	2860	163.0	33.5	83.1
3655	109.25	40.7	82.2	3/70	101.9	38.25	87.5
4/20	107.8	46.7	82.	3495	97.9	44.0	81.7
4120	105.3	48.0	81.7	4145	95.3	45.5	95.5
4450	108.3	505	81.5	3760	97.9	47.8	80.6
5/30	165.0	UF.3	81.5	4370	96.2	56.0	82,
3420	110.25	35.0	87.7	2970	163.0	325	87.5
3725	109.75	38.3	88.7	3300	102.0	35.5	91.2
5930	107.5	61.5	89.7	5020	94.3	59.5	89.5
5670	108.5	59.5	88,-	4830	95.6	57.0	88.7
4780	109.75	48.5	89.7	4020	98.3	46,0	89.1
3836	109.75	40.0	87.5	3330	102.25	36.5	89.3
3000	1/1,0	39.2	69.	2400	/63.25	36.2	65,5-
3370	110.25	43.5	69.2	2880	102.6	38.75	72.6
3720	109.25	43.5	78.4	3/60	100.25	40.75	67,
4360	108.7	48.0	83.8	3730	97.8	45.5	F3,
5210	109.25	53.75	88.8	4400	96.3	51.4	89.7
5780	108.7	59.0	90.2	4910	95.3	56.6	91.1
6320	108.0	63.75	91.8	5500	94.3	61.7	94.5
6970	168.0	68.25	945	5910	92.7	67.0	95.7

Power Side Capacity Load

1 01161 0146			0 4/0			- G G	
W	E	I	P.F.	W	E	I	%. P.F.
6000	108.1	63.7	87.2	5090	101.6	63.7	79.2
4760	110.3	54.5	78.3	3970	104.6	54.8	693
4750	106.9	49.7	89,5	4100	104.0	49.0	815
3790	197.6	39.3	89.6	3270	104.6	44.8	69.2
3870	107.4	44.8	80.5	3240	104.75	38.7	800
4900	105.8	57.0	814	4060	103.75	56.5	69.5
4720	107.2	57.6	80,5	3920	105.3	55.0	67.7
4210	107.2	49.5	79.5	3520	105.3	50.0	67.0
3920	107.8	45.5	80.	3270	105.3	45.5	68.2
3475	108.3	40.2	78,6	2930	106.25	40.2	68.7
3300	108.9	37.5	80.	2830	107.2	37.5	70.5
3000	108.5	34.5	80.	25/0	106.25	3 3 .8	70.
2500	109	27.7	829	2120	107.2	27.5	72.
2190	109.75	24.3	82.2	1800	108.2	23.7	76.2
1760	110.6	19.8	80.	1450	108.7	19.5	68.5
2085	109.75	33.0	57,5	1600	109.6	33.7	43.3
2935	108.1	36.7	74.	2445	106.7	36.8	59.
3835	107.6	42.6	837	3290	105.4	42.2	73.9
4600	106.8	47.5	90.8	3960	103.7	46.8	81.6
1940	106.2	30.1	93.	426	02.7	49.7	83,5
5335	105.7	53.0	953	4582	161.8	52.5	858
6235	104.5	60.7	98.5	5420	98.0	60.0	925

CURVES
as
TRHCED BY OSCIllograph

CURVES 1-9 FOR 60~ CURVES 9-17 FOR 120~

KEY
- Power Current
- Power E.M.F.
Load Current
Load E.M.F.

Inductive Load with Air Core

Non-Inductive Load

Non-Inductive Load

Currents For Capacity Load

Inductive Load with Iron Core

Inductive Load with Iron Core

Non-Inductive Load

Non-Inductive Load

