2.2. Post-assembly analyses

- 1. Long range scaffolding of sequence contigs
 - Hi-C
 - Optical mapping

- 2. Anchoring and ordering your scaffolds along chromosomes
 - Creating and using linkage maps
 - Hands on. . .

2.2. Post-assembly analyses

2.2. Post-assembly analyses

Genome Reads Contigs Scaffolds

· Hi-C

https://bionanogenomics.com/products/saphyr/

Assemble Maps

In-silico digest of existing sequence assembly

ATCGCTGACCAGTGACTAGCTCCATCTTAGGCCAGTATCTCCAGATCGCTGCCAGTAGACTAGCTCCATA

Combine with optical maps to make hybrid assembly

Some examples

Single-molecule sequencing and chromatin conformation capture enable *de novo* reference assembly of the domestic goat genome

Derek M Bickhart^{1,18}, Benjamin D Rosen^{2,18}, Sergey Koren^{3,18}, Brian L Sayre⁴, Alex R Hastie⁵, Saki Chan⁵, Joyce Lee⁵, Ernest T Lam⁵, Ivan Liachko⁶, Shawn T Sullivan⁷, Joshua N Burton⁶, Heather J Huson⁸, John C Nystrom⁶, Christy M Kelley⁹, Jana L Hutchison², Yang Zhou^{2,10}, Jiajie Sun¹¹, Alessandra Crisà¹², F Abel Ponce de León¹³, John C Schwartz¹⁴, John A Hammond¹⁴, Geoffrey C Waldbieser¹⁵, Steven G Schroeder², George E Liu², Maitreya J Dunham⁶, Jay Shendure^{6,16}, Tad S Sonstegard¹⁷, Adam M Phillippy³, Curtis P Van Tassell² & Timothy P L Smith⁹

PacBio = 3.7 Mb ----> N50 = 20.6 Mb

Improving the ostrich genome assembly using optical mapping data

Zhang et al. 2015

(https://gigascience.biomedcentral.com/articles/10.1186/s13742-015-0062-9)

Illumina N50 = 3.59 Mb --> OM --> N50 = 17.71 Mb

Hummingbird

PacBio contig N50 = 6.09 Mb

One enzyme scaffold N50 = 14.78

Two enzyme scaffold N50 = 25.08

Rana temproraria

PB N50 = 0.64Mb

OM staff N50 = 2 Mb

Fragile sites

A few more examples

Sea Bass: http://journals.plos.org/plosgenetics/article?id=10.1371/journal.pgen.1005954

Wheat: http://onlinelibrary.wiley.com/doi/10.1111/pbi.12513/full (With chromosome sorting)

Human (Korean): http://www.nature.com/nature/journal/v538/n7624/full/nature20098.html#supplementary-information

Using linkage maps

HANDS ON

Go to "TUTORIAL: Anchoring contigs and scaffolds using linkage maps"

Estimate gap sizes

Split chimeric contigs

Split chimeric contains

http://catchenlab.life.illinois.edu/chromonomer/

