Augmented-SBERT:

Data Augmentation Method for Improving Bi-Encoders for Pairwise Sentence Scoring Tasks

Keyword

Data Augmentation, Domain Adaptation, Sentence Pair Modeling, SBERT, BI-ENCODER

집현전 민지웅

CONTENTS

- 1. Contribution
- 2. Introduction
- 3. Method
- 4. Dataset
- 5. Setup
- 6. Results

01 Contribution

- 두 문장을 입력으로 받아 하나의 값을 반환하는 문제(STS, NLI task 등)에서 BERT는 Cross-Encoder 방식을 채택
- Cross-Encoder 방식은 연산양이 너무 많아 검색 등의 실시간성 작업에 적용이 어려움
- 이러한 문제를 극복하기 위해 Bi-Encoder를 사용한 Sentence-BERT(SBERT) 도입
- SBERT는 연산 속도는 빠르지만 Cross-Encoder 5~10% 정도 성능이 떨어짐
- **논문에서는 Data-Augmentation 활용하여 AugSBERT 제시 Data-Augmentation**을 적용한 데이터를 이용해 Silver Dataset을 만들고 이를 Gold Dataset 과 함께 이용하면 in-Domain에서는 6%p, domain adaptation에서는 37%p까지 성능 향상

- Pairwise sentence scoring은 information, retrieval, question answering, duplicate question detection, clustering 등에 활용
- BERT는 [SEP] 토큰을 활용한 Cross-encoder 방식을 채택 Cross-encoder 방식의 장점은 두 문장이 Self-attention을 통해 상호 간 attend 될 수 있으므로 두 문장 사이의 관계를 면밀하게 파악할 수 있음
- 하지만 연산양이 많다는 한계 ex) 검색 엔진에 10,000개 문서를 대상으로 한 서치 쿼리를 보낸다고 할 때 서치 쿼리와 유사한 Top-k 문서를 찾기 위해 우리는 "[CLS] 서치 쿼리 [SEP] n-th 문서 [SEP]"의 임베딩을 10,000 번의 Cross-encoder 연산을 통해 구해야함
- 이러한 문제를 극복하기 위해 나온 것이 UKP Lab에서 내놓았던 Sentence BERT (SBERT)

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

BERT

SBERT

SBERT

- SBERT는 Cross-Encoder가 아닌 Bi-Encoder 구조를 채택
- Siamese Network를 이용하여 BERT를 학습
- 각 문장이 개별의 BERT Layer를 타고 나온 결과를 이용하여 문장간 score 계산
- Ex) 앞의 사례와 동일하게 10000개의 문서에 대한 서치를 진행할 때 SBERT 방식에서는 각 문장의 임베딩연산이 독립적으로 수행되고 이렇게 해서 얻어진 임베딩을 기준으로 유사도 계산. 임베딩은 미리 저장해둘 수

있음

SBERT 파인튜닝 을 위한 목적함수

Bi-Encoder vs. Cross-Encoder

- Bi-Encoder가 Cross-Encoder에 비해 월등히
 빠른 속도를 가지고 있지만 Cross-Encoder에
 비해 5~10% 정도의 성능 손실이 발생
- 그래서 이러한 문제를 극복하기 위해 Data-Augmentation 방법을 도입
- BERT Cross-Encoder를 활용해 SBERT Bi-Encoder 성능을 끌어올림

Figure 1: Spearman rank correlation (ρ) test scores for different STS Benchmark (English) training sizes.

3.1 Augmented-SBERT

- Sampling Strategy에 따라 학습에 사용할 sample을 뽑은 후 Cross-Encoder를 활용해 label 진행. 이를 silver dataset이라고 부름
- 실버 데이터셋과 원래의 gold dataset을 이용 해 Bi-Encoder를 학습. 이렇게 나온 모델이 Augmented-SBERT

Figure 2: Augmented SBERT In-domain approach

Pair Sampling Strategies

- Un-labeled 페어 데이터를 성능이 좋은 Cross-encoder 형태의 BERT로 Weakly-labeled 데이터로 변환 후, 이를 Gold 데이터셋에 증강해 훈련에 활용하는 구조
- Un-labeled 데이터셋은 임의의 문장 두 쌍으로 구성된 아무 데이터셋으로 설정할 수도 있지만 이는 엄청나게 많
 은 데이터가 만들어지는 문제점이 발생
- 논문에서는 전체 Un-labeled 데이터를 라벨링 하는 것이 아닌, 여러 샘플링 기법을 활용

Sampling Strategies

- 1) Random Sampling: 랜덤하게 두 문장을 선택. 이 경우 dissimilar pair가 압도적으로 많아짐
- 2) Kernel Density Estimation (KDE)

Classification: 긍정으로 분류된 데이터는 남겨두고 부정으로 분류된 데이터를 임의로 제거

Regression: kernel density estimation을 이용해 실버 데이터셋과 골드 데이터셋의 확률 밀도 함수의 KL Divergence 최소화

Pair Sampling Strategies

3) BM25

Un-labeled 데이터셋에서 문장 하나를 뽑아 다른 문장들을 대상으로 BM 25 알고리즘을 적용해 Top-k 개 문장을 추출하고, 추출된 문장들을 페어로 설정해 Cross-encoder 연산을 통해 Weakly-labeled 데이터로 활용

- 4) Semantic Search Sampling
- BM 25를 활용한 샘플링은 Lexical overlapped 문장들을 대상으로만 라벨링이 수행되기 때문에 Lexciallyoverlapped 되지는 않았지만 의미론적으로 유사한 문장들 간 라벨링은 전혀 수행되지 않는다는 단점
- 문제를 해결하기 위해 기학습된 SBERT를 활용해 시맨틱 유사도가 높은 Top-k 개 문장을 추출해, 추출된 문장들을 페어로 설정해 Weakly-labeled 데이터로 활용

Seed Optimization

- BERT와 같은 트랜스포머 기반의 모델은 랜덤 시드에 크게 의존
- 시드가 달라지면 다른 minima에 수렴
- 특히 학습 데이터의 수가 적을 때 강하게 나타나는 경향
- 이를 극복하기 위해서 Seed optimization 도입
- 5개의 랜덤시드에 대하여 학습을 진행하고 성능이 가장 좋은 모델을 선택
- 20% 학습이 되면 early-stop을 진행해서 속도를 올림. Best model보다 성능이 좋은 경우만 진행

3.2 Domain Adaptation

- 동일한 도메인 뿐만 아니라 다른 도메인에서도 높은 성능이 나오길 기대
- 하지만 SBERT는 학습에 사용되지 않았던 용어들에 대해서는 제대로 매핑을 하기 어려웠지만 Augmented-SBERT에서는 좋은 성능을 내주기를 기대
- 이를 위해서 source domain에 Cross-Encoder를 fine-tuning하고 target domain에 대해서 라벨링. 라벨링된 데이터를 이용하여 SBERT를 학습해서 성능을 확인

04. Datasets

Single-Domain Datasets

Dataset	Spanish-STS	BWS (cross-topic)	BWS (in-topic)	Quora-QP	MRPC
# training-samples	1,400	2125	2471	10,000	4,340
# development-samples	220	425	478	3,000	731
# testing-samples	250	850	451	3,000	730
# total-samples	1,870	3,400	3,400	16,000	5,801

1) SemEval Spanish STS

- Table 1: Summary of all datasets being used for diverse in-domain sentence pair tasks in this paper.
- Semantic Textual Similarity task는 두 문장의 유사도를 0~5점으로 나타내는 task
- training and development dataset 뉴스 기사와 위키피디아에서 수집된 SemEval STS 2014, SemEval STS 2015
- Testset SNLI에서 나온 이미지 캡션 문장 쌍 SemEval STS 2017
- 0~1로 표준화
- 2) BWS Argument Similarity Dataset
- 8개의 주제에 대한 찬반 주장이 있는 데이터셋을 이용해 0~1 사이의 주장 유사도
- Cross-topic sampling: T1~T5를 train, T6를 Develop, T7~8을 testset으로 사용
- In-topic sampling: T1~T8을 각각의 주제의 데이터 수에 비례하여 train, dev, test로 분할

04. Datasets

Single-Domain Datasets

- 3) Quora Question Pairs
- 두 질문 동일 질문 여부
- 404290 pairs -> 10000 pairs로 down sampling
- 4) Microsoft Research Paraphrase Corpus (MRPC)
- 온라인 뉴스에서 추출한 두 문장 동일 여부

Dataset	Sentence 1	Sentence 2	Score
BWS	Cloning treats children as objects.	It encourages parents to regard their children as property.	0.89
Quora-QP	How does one cook broccoli?	What are the best ways to cook broccoli?	1
Spanish-STS	Dos hombres en trajes rojos practicando artes marciales.	Dos hombre en uniformes de artes marciales entrenando.	0.80
MRPC	The DVD-CCA then appealed to the state Supreme Court.	DVD CCA appealed that decision to the U.S. Supreme Court.	1

Table 2: Dataset examples for our in-domain tasks. We report the normalized similarity score [0, 1] for regression tasks and the binary label $\{0, 1\}$ for classification tasks.

04. Datasets

Multi-Domain Datasets

Quora dataset from Quora website

- Multiple domains 데이터셋을 이용한 **duplicate question detection**(동일 질문 탐지) tasks 데이터셋 활용 AskUbuntu, SuperUser from Stack Exchange(technical community support forums) Sprint FAQ from Sprint technical forum website

Dataset k	Train / Dev / Test	Train	Dev / Test	
	(Total Pairs)	(Ratio)	(Ratio)	
AskUbuntu	919706 / 101k / 101k	1:100	1:100	
Quora	254142 / 10k / 10k	3.71:100	1:1	
Sprint	919100 / 101k / 101k	1:100	1:100	
SuperUser	919706 / 101k / 101k	1:100	1:100	

Table 3: Summary of multi-domain datasets originally proposed by Shah et al. (2018) and used for our domain adaptation experiments. Ratio denotes the duplicate pairs (positives) vs. not duplicate pairs (negatives).

05. Experimental Setup

- Huggingface's Transformers, sentence-transformers framework
- English datasets: bert-base-uncased
- Spanish dataset: bert-base-multilingual-cased

Cross-encoders (fine-tune)

- LR=1e-5, hidden-layer sizes=200 or 400, batch-size = 16.

Bi-encoders(fine-tune)

- batch-size = 16, a fixed learning rate = 2e-6,

BM25: top k = 3 or 5

Evaluation: 10 different random Seeds

in-domain regression tasks(STS and BWS): Spearman's rank

in-domain classification: F1 score of the positive label

Baselines

Universal Sentence Encoder (USE)

NLPAug: replaces words in sentences with synonyms

BERT model	bert-base (uncased/multicased)
hidden layer sizes	{100, 200, 400, 800, 1600, 3200}
Learning rates	{1e-4, 1e-5, 1e-6}
Batch sizes	{8, 16}

Table 7: Experimental setup for hyperparameter tuning of cross-encoder (BERT).

BERT model		bert-base (uncased/ multicased)
Learning rates		{2e-5, 1e-6, 1e-7}
Learning rate scheduler		constant
Batch sizes	Ī	{8, 16}

Table 8: Experimental setup for hyperparameter tuning of bi-encoder (SBERT).

06. Results

Task		Regression ($\rho \times 100$)			Classification (F_1)	
Model / Dataset	(Seed Opt.)	Spanish-STS	BWS (cross-topic)	BWS (in-topic)	Quora-QP	MRPC
Baseline		30.27	5.53	6.98	66.67	80.80
USE (Yang et al., 2019)		86.86	53.43	57.23	74.16	81.51
BERT	X	77.50 ± 1.49	65.06 ± 1.06	65.91 ± 1.20	80.40 ± 1.05	88.95 ± 0.67
SBERT	X	68.36 ± 5.28	58.04 ± 1.46	61.20 ± 1.66	73.44 ± 0.65	84.44 ± 0.68
BERT (Upper-bound)	1//	77.74 ± 1.24	65.78 ± 0.78	66.54 ± 0.94	81.23 ± 0.93	89.00 ± 0.56
SBERT (Lower-bound)		72.07 ± 2.05	60.54 ± 0.99	63.77 ± 2.29	74.66 ± 0.31	84.39 ± 0.51
SBERT-NLPAug		74.11 ± 2.58	58.15 ± 1.66	61.15 ± 0.86	73.08 ± 0.42	84.47 ± 0.79
AugSBERT-R.S. AugSBERT-KDE AugSBERT-BM25 AugSBERT-S.S.	///	62.05 ± 2.53 74.67 ± 1.01 75.08 ± 1.94 74.99 ± 2.30	59.95 ± 0.70 61.49 ± 0.71 61.48 ± 0.73 61.05 ± 1.02	64.54 ± 1.90 69.76 ± 0.50 68.63 ± 0.79 68.06 ± 0.93	73.42 ± 0.74 79.31 ± 0.46 79.01 ± 0.45 77.20 ± 0.41	82.28 ± 0.38 84.33 ± 0.27 85.46 ± 0.52 82.42 ± 0.32

Table 4: Summary of all the datasets being used for the in-domain tasks in this paper. STS and BWS are regression tasks, where we report Spearman's rank correlation $\rho \times 100$. Quora-QP and MRPC are classification tasks, where we report F_1 score of the positive class. Scores with the best AugSBERT strategy are highlighted. Corresponding development set performances can be found in Appendix G, Table 12.

- 일반적인 bi-encoder는 4.5~9.1p 낮은 성능 (seed-optim하면 차이 조금 감소)
- 가장 작은 데이터셋(sts)에서 random seed 영향 크게 나타남, 데이터셋 사이즈가 커질수록 영향력 감소
- AugSBERT 모든 task에서 1~6p 성능 향상
- Cross-topic에서는 AugSBERT 성능 향상 없지만, In-topic에서는 Cross-Encoder보다 좋은 성능을 보이기도 함

06. Results

Task		Regression ($\rho \times 100$)			Classification (F_1)	
Model / Dataset	(Seed Opt.)	Spanish-STS	BWS (cross-topic)	BWS (in-topic)	Quora-QP	MRPC
Baseline		30.27	5.53	6.98	66.67	80.80
USE (Yang et al., 2019)		86.86	53.43	57.23	74.16	81.51
BERT	X	77.50 ± 1.49	65.06 ± 1.06	65.91 ± 1.20	80.40 ± 1.05	88.95 ± 0.67
SBERT	X	68.36 ± 5.28	58.04 ± 1.46	61.20 ± 1.66	73.44 ± 0.65	84.44 ± 0.68
BERT (Upper-bound)	\ \ \ \	77.74 ± 1.24	65.78 ± 0.78	66.54 ± 0.94	81.23 ± 0.93	89.00 ± 0.56
SBERT (Lower-bound)		72.07 ± 2.05	60.54 ± 0.99	63.77 ± 2.29	74.66 ± 0.31	84.39 ± 0.51
SBERT-NLPAug		74.11 ± 2.58	58.15 ± 1.66	61.15 ± 0.86	73.08 ± 0.42	84.47 ± 0.79
AugSBERT-R.S. AugSBERT-KDE AugSBERT-BM25 AugSBERT-S.S.	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	62.05 ± 2.53 74.67 ± 1.01 75.08 ± 1.94 74.99 ± 2.30	59.95 ± 0.70 61.49 ± 0.71 61.48 ± 0.73 61.05 ± 1.02	64.54 ± 1.90 69.76 ± 0.50 68.63 ± 0.79 68.06 ± 0.93	73.42 ± 0.74 79.31 ± 0.46 79.01 ± 0.45 77.20 ± 0.41	82.28 ± 0.38 84.33 ± 0.27 85.46 ± 0.52 82.42 ± 0.32

Table 4: Summary of all the datasets being used for the in-domain tasks in this paper. STS and BWS are regression tasks, where we report Spearman's rank correlation $\rho \times 100$. Quora-QP and MRPC are classification tasks, where we report F_1 score of the positive class. Scores with the best AugSBERT strategy are highlighted. Corresponding development set performances can be found in Appendix G, Table 12.

- R.S.는 오히려 성능 감소
- BM25, KDE가 가장 좋은 성능 보여줌
- BM25가 골드 데이터셋과 가장 유사한 분포를 보여줌

Figure 4: Comparison of the density distributions of gold standard with silver standard for various sampling techniques on Spanish-STS (in-domain) dataset.

06. Results

		In-Domain	Cross-Domain			
Source	Target	SBERT	AugSBERT	SBERT	Bi-LSTM	Bi-LSTM
(Train)	(Evaluate)	(Upper-bound)		(Lower-bound)	(Direct)	(Adversarial)
AskUbuntu	Quora	0.504	0.496	0.496	0.059	0.066
	Sprint	0.869	0.852	0.747	0.93	0.923
	SuperUser	0.802	0.779	0.738	0.806	0.798
Quora	AskUbuntu	0.715	0.602	0.501	0.351	0.328
	Sprint	0.869	0.875	0.505	0.875	0.867
	SuperUser	0.802	0.645	0.504	0.523	0.485
SuperUser	AskUbuntu	0.715	0.709	0.637	0.629	0.627
	Quora	0.504	0.495	0.495	0.058	0.067
	Sprint	0.869	0.876	0.785	0.936	0.937
Sprint	AskUbuntu	0.715	0.663	0.613	0.519	0.543
	Quora	0.504	0.495	0.496	0.048	0.063
	SuperUser	0.802	0.769	0.660	0.658	0.636

Table 5: AUC(0.05) scores for domain adaptation experiments. All except SBERT (in-domain) are evaluated in cross-domain setup with the best transfer strategy highlighted. We adapt (Shah et al., 2018) Bi-LSTM models. Corresponding development set performances can be found in Appendix G, Table 13.

Figure 2: Augmented SBERT In-domain approach

Figure 3: Domain adaptation with AugSBERT.

- 거의 모든 조합에서 AugSBERT가 SBERT보다 좋은 성능
- Source domain이 조금 더 일반적이거나 target domain이 조금 더 specific한 경우 AugSBERT의 장점이 두드러짐
- Sprint dataset (target)에서는 무려 37p 성능 향상

07. Conclusion

- 논문에서 bi-encoder의 성능 향상을 위해서 Data Augmentation 활용
- 적절한 Data Augmentation을 위해서는 sampling 방법이 매우 중요
- BM25 sampling이 성능과 연산양을 고려했을 때 가장 좋은 샘플링 기법
- Domain-adaptation에 활용할 때도 상당한 수준의 성능 향상을 보임
- ⇒ BERT와 같은 pre-trained 언어모델들은 여전히 inferencing time의 문제로 상용화에 어려움을 겪고 있음 경량화 혹은 Transformer의 구조를 바꾸는 해당 논문과 같은 시도들을 통해 서비스에 발전된 언어 모델의 탑재를 가능하게 한다는 시사점
- ⇒ 앞으로도 이러한 방향으로 서비스에 적용될 수 있는 시도들이 계속되지 않을까?

Q&A