

PCTWORLD INTELLECTUAL PROPERTY ORGANIZATION
International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ : A61K 31/19, 33/40	A1	(11) International Publication Number: WO 99/37295 (43) International Publication Date: 29 July 1999 (29.07.99)
(21) International Application Number: PCT/US98/06205		(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, GW, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(22) International Filing Date: 30 March 1998 (30.03.98)		
(30) Priority Data: 09/009,724 21 January 1998 (21.01.98) US		
(71)(72) Applicant and Inventor: DEVILLEZ, Richard, L. [US/US]; DCDT, 2220 CR 467, Hondo, TX 78861 (US).		
(74) Agent: LITMAN, Richard, C.; Litman Law Offices, Ltd., P.O. Box 15035, Crystal City Station, Arlington, VA 22215-0035 (US).		Published <i>With international search report.</i>

(54) Title: METHOD AND COMPOSITION FOR SKIN TREATMENT**(57) Abstract**

Compositions and processes for medicating human skin disorders using hydrogen peroxide as an active antimicrobial agent. The composition includes essentially hydrogen peroxide, a non-volatile carrier-solvent, and water. A predetermined final hydrogen peroxide concentration is achieved through evaporation of water. In this manner, hydrogen peroxide concentration may be controlled to avoid deleterious effects. Other therapeutic agents such as alpha hydroxy acids may also be added to the composition for treating various skin ailments.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		

METHOD AND COMPOSITION FOR SKIN TREATMENT

BACKGROUND OF THE INVENTION

5 1. FIELD OF THE INVENTION

The present invention relates to a method and composition for controlling the delivery of nascent oxygen from a hydrogen peroxide source, and 10 particularly relates to peroxide remedies for treating skin disorders or abnormalities.

2. DESCRIPTION OF THE RELATED ART

Contacting the skin with nascent oxygen is a treatment regime in common use for various skin 15 disorders. For example, nascent oxygen in contact with the skin reduces live bacteria populations, and consequently such contact alleviates skin disorders resulting from the presence of active bacteria populations. A common method for introducing nascent 20 oxygen to the epidermis or skin is by way of benzoyl peroxide as an oxygen source material. However, the use of benzoyl peroxide as an oxygen source has disadvantages. In particular, benzoyl peroxide is 25 unstable in most solvents. This instability limits opportunities for formulating compositions having optimum performance characteristics.

Insofar as the prior art relating to the use of peroxide compositions for skin treatment are concerned, U.S. Pat. No. 1,139,774 to Knox discloses a 30 system wherein concentrated hydrogen peroxide treatment of the skin is accomplished by the use of a hydrogen peroxide dispersion in paraffin. The mixture is incorporated within a surgical dressing.

Additionally, U.S. Pat. No. 825,883 to Heinrici discloses a stable solution of hydrogen peroxide. 35 Amide compounds were therein found to stabilize hydrogen peroxide against decomposition.

Further, U.S. Pat. No 959,605 to Queisser discloses a skin treating composition comprising a carrier and hydrogen peroxide. The carriers are disclosed to be vegetable substances such as tragacanth, agar-agar gum, gum arabic and the like. These materials are said to lower the rate of hydrogen peroxide decomposition.

Moreover, U.S. Pat. 3,954,974 to Herzog et al. discloses a disinfectant for the surface of human skin comprising an oil-in-water emulsion of hydrogen peroxide in the continuous aqueous phase, and a dispersed, oil phase containing suitable hydrophobic organic substances.

U.S. Patent No. 5,380,764, which issued to Herzog on January 10, 1995, discloses a composition of vitamin A, glucose and hydrogen peroxide for cosmetic and pharmaceutical use. The composition consists essentially of Vitamin A or ester, glucose, and a stable aqueous emulsion of hydrogen peroxide. It does not disclose the use of a carrier-solvent for hydrogen peroxide, or the use of alpha hydroxy acids.

Jacquet, et al., in U.S. Patent No. 4,826,681 issued on May 2, 1989, discloses an anhydrous solution of hydrogen peroxide in an organic solvent and the use of the same in therapeutic and cosmetic formulations. The solution contains less than 1% water, with hydrogen peroxide concentrations remaining constant during use.

Liebknecht, in U.S. Pat. No. 1,002,854, discloses a method of producing a stable solution of hydrogen peroxide by mixing therewith a compound containing a carboxyl group attached to an aromatic moiety. Examples are salicylic acid, phthalic acid and derivatives thereof. Further, in U.S. Pat. No. 1,058,070, Liebknecht teaches that benzene sulfonic acid and other similar organic acids have a stabilizing effect on hydrogen peroxide.

U.S. Patent No. 5,393,526, which issued to Castro on February 28, 1995, discloses cosmetic compositions that include alpha hydroxy acids, but does not include hydrogen peroxide.

5 In published International Patent Application No. W 91/08981 to Aquaclear International, aqueous stabilizing solutions are disclosed for stabilizing hydrogen peroxide comprising citric acid, tartaric acid, a chelating agent and/or a buffer. The chelate
10 inhibits metal ions from catalyzing decomposition of hydrogen peroxide.

15 Clipper et al, in U.S. Pat. No. 4,431,631, disclose a mouth wash composition containing hydrogen peroxide, glycerin and/or sorbitol. A nonionic surfactant is included. Flavorants and colorants present in mouth washes are said to aid in the decomposition of hydrogen peroxide. However, some selected flavorants and colorants are said to be less active than others in contributing to the decomposition of hydrogen
20 peroxide.

25 A skin treating composition is described in U.S. Pat. No. 4,438,102 to Ganci, which is comprised of hydrogen peroxide, ammonium hydroxide, thioglycolic acid and a lower molecular weight alkanol. The claims are drawn to a method of promoting skin growth in mammals. Solvents mentioned in the disclosure are ketones, ethers and amines. Nothing is mentioned regarding stabilizing hydrogen peroxide against decomposition.

30 A hydrogen peroxide composition designed essentially for disinfecting an organic polymer product is disclosed by U.S. Pat. No. 4,812,173 to Tsao et al. Primary and secondary stabilizers for hydrogen peroxide are disclosed. Secondary stabilizers may be those from the group of propylene glycol, polyacrylic acid, diethylene glycol and sodium polyphosphate.
35

Such compounds are not indicated to be solvents for hydrogen peroxide.

5 A composition containing hydrogen peroxide used as a micro- emulsion gel for antiseptic and bleaching purposes is disclosed by Petchul et al. in U.S. Pat. 5,336,432. The disclosure contains nothing regarding stabilizing hydrogen peroxide and controlling release of oxygen therefrom.

10 None of the above inventions and patents, taken either singly or in combination, is regarded to describe, suggest or render obvious the instant invention as claimed.

SUMMARY OF THE INVENTION

15 Accordingly, it is a principal object of the invention to provide hydrogen peroxide compositions and methods of use, principally for treating skin infirmities or disorders such as acne, for example. By the use of the compositions and methods described herein, the concentration of hydrogen peroxide at the 20 interface between the hydrogen peroxide treating composition and the skin is controllable, resulting in release rates of oxygen which are not sufficient to produce injurious effects from excessive nascent oxygen evolution, but which are sufficient to provide 25 antiseptic, antibacterial and/or antiviral activity.

Briefly described, a controlled delivery protocol of 30 nascent oxygen from hydrogen peroxide compositions may be accomplished through the use of an appropriate mixture of hydrogen peroxide and a carrier therefor, which carrier is a nonvolatile solvent, nonvolatile diluent or nonvolatile dispersant for hydrogen peroxide and is miscible with water in all proportions. The term "nonvolatile" is hereinafter specifically defined.

35 It is another object of the invention to provide compositions and methods for the controlled

application of active therapeutic ingredients for topical skin treatment.

It is a further object of the invention to provide a method of delivering active therapeutic agents, such as hydrogen peroxide, to a skin treatment site in a controlled and effective manner.

It is still another object of the invention to provide compositions for treating skin conditions wherein hydrogen peroxide concentration is controlled during the time the composition is in use.

It is thus an object of the invention to provide improved composition, based on hydrogen peroxide and other active ingredients, and methods of use thereof in methods of dermatological treatments which are inexpensive, dependable and fully effective in accomplishing the intended purposes.

These and other objects of the present invention will become readily apparent upon further review of the following specification and description.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is directed to improved hydrogen peroxide skin treating compositions and methods.

As stated previously, a common method in use for delivering nascent oxygen or free-radical oxygen to the surface of the skin is to employ benzoyl peroxide as a source agent for peroxide, which consequently produces nascent oxygen.

Benzoyl peroxide decomposes at the skin interface to yield one mole of nascent oxygen and two moles of benzoic acid. Since benzoyl peroxide has a molecular weight of about 242, the compound thus contains about 6.6% nascent oxygen per mole.

Hydrogen peroxide, on the other hand, having a molecular weight of about 34, provides about 47% nascent oxygen per mole. Thus, about three moles of

hydrogen peroxide contains the same amount of nascent oxygen as 21 moles of benzoyl peroxide. Stated another way, a 3% solution of hydrogen peroxide would contain about the same amount of nascent, or free-radical, oxygen as a 21% solution of benzoyl peroxide.

Moreover, the ratio between the amount of benzoic acid yielded by benzoyl peroxide and nascent oxygen provided upon decomposition is fixed. However, by using hydrogen peroxide as the source agent for nascent oxygen, combined with a carboxylic acid such as, for example, lactic, glycolic, salicylic or benzoic acid, and the nonvolatile carrier materials described herein, the ratio between the carboxylic acid and nascent oxygen produced is variable and controllable. This allows the formulator to design compositions possessing optimum nascent oxygen release rates for a particular clinical need in question. Thus, it would be more efficient to use hydrogen peroxide, rather than benzoyl peroxide, as a nascent oxygen source if the rate of oxygen delivery to the skin site were controllable.

As pointed out previously, benzoyl peroxide is unstable in most solvents. Therefore, the dermatological formulator is limited in his or her ability to prepare compositions capable of optimum therapeutic performance of this nascent oxygen source material.

However, it has been discovered that if aqueous solutions of hydrogen peroxide are combined with certain non-volatile materials which have solvent properties with respect to hydrogen peroxide, and/or certain other materials having penetrating and miscibility enhancing properties, and are fully miscible with water, it is possible to prepare stable pharmaceutical hydrogen peroxide compositions. In the present disclosure, the expression "non-volatile solvent" refers to a material capable of dissolving

hydrogen peroxide and having a vapor pressure at 25° C. of 4mm Hg or below. As examples of materials falling within the scope of those the inventor has found to be effective nonvolatile solvents or dispersants are
5 alcohol compositions, dimethyl isosorbide, lower molecular weight alkyl or alkylene polyols, such as propylene glycol, dipropylene glycol, 1,4-butylene glycol and glycerol. Further, higher molecular weight alkylene glycols may also be used, such as
10 polyethylene glycol. Additionally, ether derivatives of lower m.w. alkylene glycols may be used. For example, ethylene glycol monobutyl ether is suitable. Also included are polyethylene oxide adducts of
15 polyols. The materials used must be miscible with water in all proportions and possess the vapor pressure property described.

In general, materials useful in formulating stable mixtures of hydrogen peroxide are those having solubilizing properties with respect to hydrogen peroxide, and further those which possess a vapor pressure at 25° C. which is equal to or below 4 mm of mercury, and are miscible with water in all proportions. Additionally, the carrier material must not itself contribute to injurious skin effects.
20

In general, with respect to skin treating compositions, the concentration of the soluble nonvolatile, active ingredients in such compositions, when they contain a volatile solvent such as water as a carrier for the active material, will vary in an uncontrolled manner when applied to the skin. Through experimentation, it has been determined that a variety of conditions may affect the concentration of the active ingredient as the time duration of the disposition of the treating agent upon the skin increases. For example, under conditions of
25 occlusion, wherein the treating composition is contained within a relatively closed environment, such
30
35

as within a non-porous bandage, the original concentration of active therapeutic agent may decrease as a result of transepidermal fluids becoming admixed therewith. Moreover, in the opposite fashion, under unprotected application conditions, the volatile solvent may evaporate, allowing the original concentration of active agent to increase to as much as 100%.

Further, in compositions wherein the carrier for the active ingredient comprises a mixture of volatile solvents, the different respective evaporation rates of such solvent-carriers may result in an alteration of the carrier composition containing the active agent, which can ultimately result in an increase in the concentration of the active ingredient. The aforesaid scenario may occur if the active ingredient is poorly soluble in the carrier component having a lower volatility. As the carrier component having a higher volatility evaporates, the concentration of the active ingredient may increase to its saturation point and remain at that level, and any excess of the active ingredient will precipitate as a highly concentrated active material.

To be sure, by altering the ratio of volatile carrier solvent mixtures, and by altering the composition thereof also, the concentrations of one or more active ingredients carried within such systems may be designed to have widely varying therapeutic properties. Nevertheless, the presence in and on the skin of salts, acidic or basic materials and the occurrence of other conditions will affect the concentration profile of the active ingredient in contact with the skin. It is pointed out that the concentration of an active, therapeutic ingredient, particularly an active ingredient which is highly effective at lower concentrations, but which is deleterious to the skin at higher concentrations, may

have profound effects upon pharmacological activity, absorption properties and skin irritation potential.

It has been discovered that if a carrier material for hydrogen peroxide skin treating compositions is selected from a group of materials which have solvent properties for hydrogen peroxide, have a sufficiently low volatility and are miscible with water in all proportions, the concentration of hydrogen peroxide at the skin surface may be controlled, allowing the formulator to produce skin treating compositions wherein the maximum safe concentration of hydrogen peroxide may be established for almost any required clinical treatment.

Formulating hydrogen peroxide compositions in the manner described herein allows the reactivity of hydrogen peroxide at the delivery site to be reliably determined, and the advantages to having such control of nascent oxygen delivery are the elimination of the deleterious effects of higher concentrations of hydrogen peroxide. Thus, once all of the compounds present at the skin surface which are capable of reacting with hydrogen peroxide at a given level of concentration have reacted therewith, the residual, remaining hydrogen peroxide in the treating composition is stable at the skin interface for an extended time duration. However, without the use of the carrier materials specified herein with hydrogen peroxide, either the compound is available for continuous reaction until it is fully consumed, or the concentration increases to injurious levels.

The concentration of hydrogen peroxide in skin treating compositions can be controlled if a carrier is selected for hydrogen peroxide which is (1) non-volatile, is (2) a solvent for hydrogen peroxide and is (3) fully miscible with water. For example, through experimental observations it has been determined that if a 6% solution of hydrogen peroxide in water were applied to the skin on a bandage, after

several hours of such contact the skin tissue becomes damaged and cellular degradation occurs as the water evaporates and hydrogen peroxide becomes concentrated. However, if a 6% solution of hydrogen peroxide in water were mixed with a carrier such as dimethyl isosorbide, hydrogen peroxide concentration does not increase beyond a predictable upper level.

For example, in a skin treating composition comprising 20% of a 30% aqueous solution of hydrogen peroxide, 20% by wt. of dimethyl isosorbide and 60% water, there is 74 % volatile solvent present in the form of water. Fourteen percent of the water comes from the initial hydrogen peroxide solution used, and 60% comes from additional added water. When this solvent evaporates the remaining composition is comprised of about 6 parts of hydrogen peroxide in 26 parts of total treating composition, resulting in a stable composition having about 23% hydrogen peroxide available for activity.

This scenario allows for the manufacture of skin treating compositions possessing a relatively high concentration of hydrogen peroxide at the treatment site, and wherein the peroxide is maintained in solution. As a result of achieving relative stability in solution, it is thus prevented from injuring dermal tissue.

The aforesaid concept of combining a bio-active ingredient and nonvolatile carrier-solvent is applicable to skin bio-affecting agents or therapeutics other than hydrogen peroxide which, when present at the skin surface in greater concentrations may have deleterious or unwanted effects, but which when present in lesser concentrations have beneficial or desired effects. Some active skin treating agents falling within the above category are phenols, alkanolamines such as triethanolamine, and monoethanolamine, inorganic alkaline agents, acidic

materials, urea, salicylic acid and alpha hydroxy acids.

5 The following examples illustrate how non-volatile carrier materials which are solvents for hydrogen peroxide may be combined with hydrogen peroxide to produce compositions containing controlled amounts of the peroxide component upon evaporation of the aqueous solvent.

Reference is made to the following Examples and
10 Table. The initial concentration in the first column below refers to an aqueous/hydrogen peroxide composition. A standard 35% by weight hydrogen peroxide solution was diluted with water to arrive at aqueous hydrogen peroxide solutions containing, after dilution, various amounts of hydrogen peroxide, from
15 1 to 6 wt. percent. As shown in the table below, various aqueous compositions can be made, varying from initial hydrogen peroxide concentrations of from 1 to 6% by weight, and non-volatile carrier concentrations from 10 to 30% by weight. Once the water portion of
20 the composition evaporates, all that is left is hydrogen peroxide in non-volatile solvent. Through manipulation of initial concentrations, the final concentration of hydrogen peroxide in non-volatile solvent can be controlled, as shown in the table. For
25 example, the first sample was initially a 3% hydrogen peroxide, 10% non-volatile carrier aqueous solution. Upon evaporation of water, the solution becomes a maximum 3/13 or 23% solution of hydrogen peroxide in non-volatile solvent. Although the examples below
30 used propylene glycol as the non-volatile solvent, results are equally valid for other carrier-solvent materials having the properties defined herein.

EXAMPLES

<u>SAMPLE</u>	<u>INITIAL HP CONCENTRATION</u>	<u>NONVOLATILE CARRIER %</u>	<u>FINAL HP CONCENTRATION</u>
5	1.	3	23.0
	2.	3	9.0
	3.	6	16.7
	4.	1	4.8

10

The following are examples of specific skin medication compositions that have been prepared and have been shown to be particularly efficacious:

COMPOSITION I**ACNE SKIN TREATMENT I**

<u>INGREDIENTS</u>	<u>WT. PERCENT</u>	<u>INGREDIENTS</u>	<u>WT. PERCENT</u>
Hydrogen peroxide (35%)	10	Hydrogen peroxide (35%)	10
Salicylic acid	1.0	Salicylic acid	1.0
Propylene glycol	10	Dimethyl isosorbide	10
Cetyl alcohol	1.6	Cetyl alcohol	1.6
Distilled water	74	Distilled water	74
Sodium hydroxide (q.s. pH 4.6)	0.3	Sodium hydroxide (q.s. pH 4.6)	0.3
Promulgen G	1.8	Promulgen G	1.8
Simethicone	0.06	Simethicone	0.06
Sodium lauryl sulfate	0.3	Sodium lauryl sulfate	0.3

COMPOSITION II**ACNE SKIN TREATMENT II**

COMPOSITION III**DRY SKIN TREATMENT I**

<u>INGREDIENTS</u>	<u>WT. PERCENT</u>	<u>INGREDIENTS</u>	<u>WT. PERCENT</u>
Hydrogen peroxide (35%)	10	Hydrogen peroxide (35%)	10
Lactic acid	2.0	Lactic acid	Q.S. pH 3.8-4.0
Propylene glycol	10	Propylene glycol	10
Cetyl alcohol	2.0	Cetyl alcohol	2.0
Distilled water	Q.S.	Distilled water	75
Vitamin E Acetate	0.5	Vitamin E Acetate	0.5
Promulgen G	2.0	Promulgen G	2.0
Simethicone	0.1	Simethicone	0.1
Sodium lauryl sulfate	0.3	Sodium lauryl sulfate	0.3
Sodium hydroxide pH 4.5	Q.S.		

COMPOSITION IV**DRY SKIN TREATMENT II****COMPOSITION V****SKIN TREATMENT**

<u>INGREDIENTS</u>	<u>WT. PERCENT</u>
Hydrogen peroxide (35%)	10
Crodamol PMP-PPG-2	10
Propylene glycol	10
Vitamin E acetate	0.5
Distilled water	66.5
Sepigel	3.0

30 The above compositions may be prepared by mixing water soluble materials into the appropriate amount of water as a preliminary step, and then mixing other materials until a creamy consistency is achieved. However, one having ordinary skill in the chemical or pharmaceutical arts is capable of arriving at the most efficient manner of making the compositions herein disclosed. Further, other alpha hydroxy carboxylic

35

acids, such as glycolic acid, or malic acid, may be substituted for salicylic acid and lactic acid in the two compositions.

Additionally, alkylene glycols, such as diethylene glycol, 1,4-butyleneglycol, and polyethylene glycol, also may be used, in concentrations of 8 to 20 percent by weight, as effective non-volatile carriers of hydrogen peroxide. These glycols are effective carriers of hydrogen peroxide at 3 to 23 percent.

Alpha hydroxy acids, such as salicylic acid and lactic acid in concentrations from 0.5 to 2 percent by weight have also been used. All samples have been stable over time and have not irritated the skin in tested subjects.

The examples given above are preferred compositions. One having ordinary skill in the art is assumed to realize that the relative proportions may be altered from those shown in the above examples in order to arrive at compositions having substantially equivalent functional results.

Simethicone is an official name in the United States Pharmacopeia for dimethylpolysiloxane materials made by various suppliers. Promulgen G is a trade name for a gelling agent comprising stearyl alcohol and Ceteareth-20, made by Amerchol Corp. Germaben II is a trade name for a broad spectrum antimicrobial composition including propylene glycol, diazolidinyl urea, methyl paraben and propyl paraben made by Sutton Labs.

Clinical studies have been performed to ascertain the effectiveness of compositions falling within the scope of the invention as compared to those not within the scope of the invention. The results are as follows:

NAME OF CLINICAL STUDY:
ACNE STUDY-HYDROGEN PEROXIDE I

5 Eight persons were enrolled to take part in an evaluation of the efficacy of a skin medication composition in which hydrogen peroxide is present in the composition in solution in a carrier-solvent. The carrier has a vapor pressure of equal to or below 4 mm of Hg at 25°, and is thus substantially nonvolatile.

10 The composition of the acne treating composition was Composition II listed above as Acne Skin Treatment II including dimethyl isosorbide.

15 The trial subjects applied the above composition to acne papules and pustules twice each day for eight weeks. The subjects were not allowed to use any other topical medication or oral medication during the length of the trial period. The trial subjects were evaluated for the number of acne papules and pustules at three evaluation time periods, a baseline period, at four weeks and at eight weeks. A count of acne 20 papules and pustules was made at each evaluation time period and the mean was reported. Comedones were not counted.

RESULTS: MEAN COUNTS FOR ALL SUBJECTS

	Baseline	Week 4	Week 8
25	16.8	9	4.5
	% improvement	46%	73%

30 ADVERSE EVENTS:

No adverse events.

35 The subjects reported and evinced no indication nor manifestation of burning, stinging or redness during the course of the trial period.

GENERAL OBSERVATIONS:

40 The skin medication composition identified above was provided to a patient having acne rosacea. The patient decided to try the composition because her

5 acne condition showed no improvement as a result of using a commercially available medication called Metrogel. After a short period of applying the above to acne areas on her skin, all acne papules and pustules were absent. However, a red or pink coloration persisted. The patient was thereafter provided with another commercially available product, Minocin. The patient used Minocin in combination with the above identified medication.

10 It is the opinion of the administrator of this study, who is also the inventor of the present invention, that the above product, containing at least 10% hydrogen peroxide and a nonvolatile carrier-solvent, is a viable and useful product, and that it appears to be as effective as compositions containing benzoyl peroxide as an oxygen provider. Such benzoyl peroxide compositions, with the exception of a product known as Brevoxyl, are known to produce skin coloration and scaling. However, the present composition does not possess such effects.

NAME OF CLINICAL STUDY:

ACNE STUDY-HYDROGEN PEROXIDE II

25 Ten subjects were enrolled in a study to evaluate the efficacy of a skin medication composition in which hydrogen peroxide is present in the composition in solution in a carrier-solvent for the treatment of Acne Vulgaris. The carrier has a vapor pressure of equal to or below 4 mm of Hg at 25°, and is thus substantially nonvolatile. The composition of the Acne treating composition was made in accordance with the present invention, and includes 10% hydrogen peroxide, 1% salicylic acid, and 10% propylene glycol by weight.

30 The trial subjects applied the above composition to acne papules and pustules twice each day for eight weeks. The subjects were not allowed to use any other

topical medication or oral medication during the length of the trial period. The trial subjects were evaluated for the number of acne papules and pustules at three evaluation time periods, a baseline period, 5 at four weeks and at eight weeks. A count of acne papules and pustules was made at each evaluation time period and the mean was reported. Comedones were not counted.

10 RESULTS: MEAN COUNTS FOR ALL SUBJECTS

Baseline	Week 4	Week 8
18.2	8.5	4
% improvement	53%	78%

15

ADVERSE EVENTS: No adverse events. The subjects reported and evinced no indication nor manifestation of burning, stinging or redness during the course of the trial period.

20

GENERAL OBSERVATIONS:

It is the opinion of the administrator of this study, who is also the inventor of the present invention, that the above product, is a viable and useful product, and that it appears to be as effective 25 as compositions containing benzoyl peroxide as an oxygen provider. Such benzoyl peroxide compositions, with the exception of a product known as Brevoxyl, are known to produce skin coloration and scaling. The present composition does not possess such effects.

30

NAME OF CLINICAL STUDY:

DRY SKIN STUDY-HYDROGEN PEROXIDE

Five subjects were enrolled in a study to evaluate the efficacy of a skin medication composition in which 35 hydrogen peroxide is present in the composition in solution in a carrier-solvent for the treatment of dry skin. The carrier has a vapor pressure of equal to or below 4 mm of Hg at 25°, and is thus substantially nonvolatile. Increasing the oxygen tension on the

skin should result in improved healing of dry, scaly, and irritated skin. The composition of the dry skin treating composition was made in accordance with the present invention, and includes 10% hydrogen peroxide, 5 3% Lactic acid, and 10% propylene glycol by weight.

The trial subjects applied the above composition to dry skin twice a day, once after a morning shower and once in the evening before bed. No other topical lubricants were used by the test subjects. Subjects 10 were allowed to use the product if itching occurred during the day. The study lasted two weeks with marked reduction in scaling and itchiness. After the first week of use, itching was reduced by greater than 50% and dryness reduced more tan 70%. After the 15 second week, the subjects found that itching had been reduced more than 85% and dryness reduced by 95%.

ADVERSE EVENTS: No adverse events. The subjects reported and evinced no indication nor manifestation 20 of burning, stinging or redness during the course of the trial period.

GENERAL OBSERVATIONS:

It is the opinion of the administrator of this study, who is also the inventor of the present invention, that the above product, is a viable and 25 useful product, and that it appears to be as effective as other compositions previously used. The was evidence of quick healing of scratch wounds without any indication of infection by the end of the study.

30 Compositions identified using trade names in the examples herein have formulations as follows:

SEPIGEL 305 - Composed of polyacrylamide, a 13 to 14 carbon chain isoparaffin and polyethylene glycol 7-lauryl ether

35 SIMETHICONE - A mixture of dimethicone having dimethyl siloxane units averaging 200 to 350 and hydrated silica.

CRODAMOL PMP-PPG-2 - Myristyl ether propionate or
polyoxypropylene (2) myristyl ether propionate

PROMULGEN G - Stearyl alcohol and polyethylene
glycol 1000 cetyl/stearyl ether.

5 It is to be understood that the present invention is
not limited to the embodiments described above, but
encompasses any and all embodiments defined within the
scope of the following claims.

CLAIMS

1. A skin medicating composition for treatment of acne consisting essentially of
8 to 23 percent by weight of hydrogen peroxide,
0.5 to 1.5 percent by weight of salicylic acid,
8 to 12 percent by weight dimethyl isosorbide, and
the balance water.
2. A composition for treatment of acne consisting essentially of:
about 10% by weight of hydrogen peroxide,
about 1 percent by weight of salicylic acid,
about 10 percent by weight dimethyl isosorbide, and
a major amount of distilled water.
3. A method for the treatment of acne comprising applying to the skin an effective amount of the composition set forth in claim 2.
4. A composition for treating skin disorders, whereby a predetermined maximum terminal concentration of hydrogen peroxide in a non-volatile carrier-solvent may be achieved through evaporation of water, said composition consisting essentially of:
3 to 23% by weight of hydrogen peroxide;
8 to 20% by weight of a non-volatile carrier-solvent selected from the group of alkylene glycols consisting of diethylene glycol, 1,4-butylene glycol, propylene glycol, and polyethylene glycol;
0.5 to 2% by weight of a hydroxy acid selected from the group consisting of salicylic acid, lactic acid, glycolic acid, and malic acid; and
the balance water.
5. The composition for treating skin disorders as defined in claim 4 wherein said compound consists essentially of:

about 10% by weight of hydrogen peroxide;
about 10% by weight of propylene glycol, as a non-volatile carrier-solvent;
about 1.0% by weight of the alpha hydroxy acid, salicylic acid; and
the balance water.

6. The composition for treating skin disorders as defined in claim 4 wherein said compound consists essentially of:

about 10% by weight of hydrogen peroxide;
about 10% by weight of propylene glycol, as a non-volatile carrier-solvent;
about 2.0% by weight of the alpha hydroxy acid, lactic acid; and
the balance water.

7. A method for the treatment of skin disorders comprising the step of applying to the skin an effective amount of the composition set forth in claim 4.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/US98/06205**A. CLASSIFICATION OF SUBJECT MATTER**

IPC(6) : A61K 31/19, 33/40
 US CL : 424/616 ; 514/568

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

U.S. : 424/616 ; 514/568

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched
 NONE

Electronic data base consulted during the international search (name of data base and, where practicable, search terms used)
 CAS ONLINE, MEDLINE

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	Database WPIDS: Derwent Publications, Ltd. AN 95-26300, (KLIGMAN) WO 95/16454 A1, 22 June 1995, see the entire abstract.	1-7

Further documents are listed in the continuation of Box C. See patent family annex.

* Special categories of cited documents:	"T"	later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
A document defining the general state of the art which is not considered to be of particular relevance	"X"	document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
E earlier document published on or after the international filing date	"Y"	document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art
L document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)	"&"	document member of the same patent family
O document referring to an oral disclosure, use, exhibition or other means		
P document published prior to the international filing date but later than the priority date claimed		

Date of the actual completion of the international search

29 MAY 1998

Date of mailing of the international search report

04 AUG 1998

Name and mailing address of the ISA/US
 Commissioner of Patents and Trademarks
 Box PCT
 Washington, D.C. 20231

Facsimile No. (703) 305-3230

Authorized officer

ZOHREH FAY

Telephone No. (703) 308-1235