$TD N^{\circ}4$

Opérateur de Moreau Algorithme du point proximal

Exercice 1 - Opérateur de MOREAU dans le cas convexe

Module A₅, Propositions 1, 5 et 10

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction convexe, s.c.i. et propre. Soit $x^0 \in \mathcal{X}$.

- (a) Montrer que prox $I(x^0)$ est non vide et possède un unique élément.
- (b) Soit $x^+ \in \mathcal{X}$. Montrer que $x^+ = \operatorname{prox}_J(x^0)$ si et seulement si $x^0 x^+ \in \partial J(x^+)$.
- (c) En déduire que prox $I(x^0) = x^0$ si et seulement si x^0 est un minimiseur de J.

Exercice 2 – Quelques exemples

Module A₅

Pour chacune des fonctions suivantes, calculer $\operatorname{prox}_J(x^0)$ pour tout x^0 .

(a)
$$J: \left\{ \begin{array}{ccc} \mathcal{X} & \rightarrow & \mathbb{R} \\ x & \mapsto & \frac{1}{2} \|x\|^2 \end{array} \right.$$

(c)
$$J: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \\ x & \mapsto & \|x\|_1 \end{array} \right.$$

(b)
$$J: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & |x| \end{array} \right.$$

(d)
$$J: \left\{ \begin{array}{ccc} x & \mapsto & \|x\|_1 \\ \mathcal{X} & \to & \mathbb{R} \cup \{+\infty\} \\ x & \mapsto & \begin{cases} 0 & \text{si } \|x\| \le 1 \\ 1 & \text{sinon} \end{cases} \right.$$

Exercice 3 – Règles de calcul

Module A₅

Soit $f: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction s.c.i. Soit $x^0 \in \mathcal{X}$. Soit $z \in \mathcal{X}$ et $\alpha > 0$. Pour chacune des fonctions suivantes, calculer $\operatorname{prox}_{I}(x^0)$ en fonction de prox_{f} .

(a)
$$J: \left\{ \begin{array}{ccc} \mathcal{X} & \rightarrow & \mathbb{R} \cup \{+\infty\} \\ x & \mapsto & f(x-z) \end{array} \right.$$

(b)
$$J: \left\{ \begin{array}{ccc} \mathcal{X} & \to & \mathbb{R} \cup \{+\infty\} \\ x & \mapsto & f(\alpha x) \end{array} \right.$$

Exercice 4 – Ferme non-expansivité de l'opérateur de MOREAU

Module A₅, Proposition 7 et Corollaire 1

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction convexe, s.c.i. et propre. Soit $(x, x') \in \mathcal{X}^2$.

- (a) Montrer que $\langle \operatorname{prox}_J(x) \operatorname{prox}_J(x'), x x' \rangle \ge \|\operatorname{prox}_J(x) \operatorname{prox}_J(x')\|^2$
- (b) En déduire que $prox_J$ est 1-lipschitzien, puis que $prox_J$ est continu.

Exercice 5 – Inégalité proximale

Module A₅, Proposition 8

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction convexe, s.c.i. et propre. Soit $\tau > 0$ et $x^0 \in \mathcal{X}$. On pose

$$x^+ \in \operatorname{prox}_{\pi,I}(x^0)$$

Montrer que $\forall x \in \mathcal{X}, \quad J(x) \ge J(x^+) - \frac{1}{\tau} \langle x - x^+, x^+ - x^0 \rangle$

Exercice 6 – Convergence de PPA dans le cas convexe

Module B₅, Propositions 2, $\overline{3}$ et $\overline{5}$

Soit $J: \mathcal{X} \to \mathbb{R} \cup \{+\infty\}$ une fonction convexe, propre et s.c.i. On suppose que J admet un minimiseur x^* . Soit $(x_k)_{k \in \mathbb{N}}$ une suite générée par l'algorithme du point proximal de pas $\tau > 0$.

(a) Montrer que $J(x_{k+1}) \le J(x_{k+1}) + \frac{1}{2} ||x_{k+1} - x_k||^2 \le J(x_k)$

En déduire que la suite $(J(x_k))_{k\in\mathbb{N}}$ est une suite décroissante et convergente. On note J^* sa limite.

(b) On pose $p_{k+1} = \frac{1}{\tau} (x_k - x_{k+1})$

Montrer que $p_{k+1} \in \partial J(x_{k+1})$. En déduire que

$$\langle p_{k+1} - p_k, p_{k+1} \rangle \leq 0$$

(c) Montrer que $||p_{k+1}||^2 \le ||p_k|| \cdot ||p_{k+1}||$

En déduire que la suite $(\|p_k\|)_{k\in\mathbb{N}}$ est décroissante convergente.

- (d) Soit $K \in \mathbb{N}$. Montrer que $0 \le \frac{1}{2} \sum_{k=0}^{K} ||p_k|| \le J(x_0) J(x_{K+1})$
- (e) En déduire que la suite $(\|p_k\|)_{k\in\mathbb{N}}$ converge vers 0.
- (f) Soit $k \in \mathbb{N}$. Montrer que

$$J(x^*) - J(x_{k+1}) \ge \frac{1}{\tau} \left\langle x_k - x_{k+1}, x^* - x_{k+1} \right\rangle \ge \frac{1}{2\tau} \left\| x_k - x_{k+1} \right\|^2 - \frac{1}{2\tau} \left(\left\| x_k - x^* \right\|^2 - \left\| x_{k+1} - x^* \right\|^2 \right)$$

(g) Montrer que $k J(x_k) - (k+1) J(x_{k+1}) + J(x_{k+1}) \ge \frac{k}{\tau} ||x_k - x_{k+1}||^2$

En déduire que

$$J(x^*) + k J(x_k) - (k+1) J(x_{k+1}) \ge \frac{1+2k}{2\tau} \|x_k - x_{k+1}\|^2 - \frac{1}{2\tau} (\|x_k - x^*\|^2 - \|x_{k+1} - x^*\|^2)$$

(h) Soit $K \in \mathbb{N}$. Montrer que

$$KJ(x^*) - KJ(x_K) \ge \sum_{k=0}^{K-1} \frac{1+2k}{2\tau} \|x_k - x_{k+1}\|^2 - \frac{1}{2\tau} (\|x_0 - x^*\|^2 - \|x_K - x^*\|^2)$$

En déduire que la suite $(J(x_k))_{k\in\mathbb{N}}$ converge vers le minimum de J.

(i) Montrer que toute valeur d'adhérence de $(x_k)_{k\in\mathbb{N}}$ est minimiseur de J.

Pour montrer la convergence des itérées x_k vers un minimiseur, on peut utiliser l'équivalence entre l'algorithme du point proximal et la méthode du gradient explicite.