BÁO CÁO ĐỒ ÁN DATALINK – NHÓM 13

Danh sách nhóm:

STT	MSSV	Họ và tên
1	19120206	Bùi Thanh Duy
2	19120217	Trần Mỹ Hân
3	19120237	Nguyễn Thành Hưng
4	19120267	Hoàng Dược Lam
5	19120422	Nguyễn Huy Tùng

MỤC LỤC

1)	Pa	ırity 1 chiều:	2
100			
а	1)	Bài toán thuận:	4
b)	Bài toán ngược:	2
2)	Pa	ırity 2 chiều:	9
а	1)	Bài toán thuận:	3
b	o)	Bài toán ngược:	3
3)		neckSum	
а	1)	Bài toán thuận:	5
b		Bài toán ngược:	
4)		AMMING CODE KIỂU 1	
á		Bài toán thuận	
b	•	Bài toán nghịch	
5)	•	AMMING CODE KIỂU 2	
а)	Bài toán thuận:	5
b)	Bài toán ngược:	c

1) Parity 1 chiều:

a) Bài toán thuận:

Dữ liệu cần gửi: 100111000110

- Chiều dài của dữ liệu cần gửi đi là 12 bits.
 - => Dữ liệu gửi đi sẽ có 13 bits.
- Có 6 bit 1 trong dữ liệu trên.
- Thêm 1 bit parity vào dữ liệu cần gửi đi:
- + Mô hình chẵn (Even parity):

Số bit 1 trong 13 bits là một số chẵn.

Vì đã có 6 bit 1 trong dữ liệu cần gửi nên bit được thêm vào phải là bit 0.

- => Dữ liệu gửi đi: 1001110001100
- + Mô hình lẻ (Odd parity):

Số bit 1 trong 13 bits là một số lẻ.

Vì đã có 6 bit 1 trong dữ liệu cần gửi nên bit được thêm vào phải là bit 1.

=> Dữ liệu gửi đi: 1001110001101

b) Bài toán ngược:

Dữ liệu nhận: 01000111001001011

- Dữ liệu nhận được có 17 bits.
- Với mô hình parity chẵn:
- + Nếu số bit 1 trong dữ liệu nhận là số lẻ => Lỗi.
- + Vì trong 17 bits đó, có 8 bit 1 (chẵn) => Không lỗi.
- + Dữ liệu thật (bỏ 1 bit parity ở cuối): 0100011100100101

- Với mô hình parity lẻ:
- + Nếu số bit 1 trong dữ liệu nhận là số chẵn => Lỗi.
- + Vì trong 17 bits đó, có 8 bit 1 (chẵn) => Lỗi.

2) Parity 2 chiều:

- a) Bài toán thuận:
- -Dùng parity chẵn
- -M = 4, N = 5
- -Dữ liệu cần gửi: 10101 01110 11010 01011

Biểu diễn dữ liệu thành ma trận 4x5:

- 10101
- 01110
- 11010
- 01011

Tính bit parity cho từng dòng, từng cột, ta được:

- 10101
- 0 1 1 1 0 1
- 1 1 0 1 0 1
- 0 1 0 1 1 1
- 010100
- ->Dữ liệu gửi là: 101011 011101 110101 010111 010100

b) Bài toán ngược:

- -Dùng parity chẵn
- -M = 4, N = 6

Biểu diễn dữ liệu thành ma trận 5x7:

1111110

 $0\,1\,1\,0\,0\,0\,0$

 $1\; 0\; 0\; 1\; 0\; 1\; 1$

 $0\,1\,0\,1\,0\,0\,0$

 $0\,1\,0\,1\,1\,0\,1$

Check các bit parity, ta thấy:

0 -> Đúng	1	1	1	1	1	1
0 -> Đúng	0	0	0	1	1	0
1 -> Đúng	1	0	1	0	0	1
0 -> Đúng	0	0	1	0	1	0
1 -> Đúng	0	1	1	0	1	0
	+	+	\	+	+	\
	• Đúng	• Đúng	Đúng	• Đúng	· Đúng	Ðúng

→ Dữ liệu thật cần gửi: 111111 011000 100101 010100

Biểu diễn dữ liệu dưới dạng ma trận 5x7:

1010101

0000010

 $0\ 1\ 0\ 1\ 1\ 0\ 1$

 $1\ 0\ 0\ 0\ 1\ 1\ 1$

0101101

Check các bit parity, ta thấy:

_			,			
1	0	1	0	1	0	1 → Đúng
0	0	0	0	0	1	0 → Sai
0	1	0	1	1	0	1 → Đúng
1	0	0	0	1	1	0 → Đúng
0	1	0	1	1	0	1 → Đúng
→ Đúng	→ Đúng	→ Sai	→ Đúng	→ Đúng	→ Đúng	

- → Sửa bit dòng 2 cột 3 thành 1.
- → Dữ liệu thật cần gửi: 101010 001001 010110 100011

3) CheckSum

a) Bài toán thuận:

Dữ liệu cần gửi: 0101 0011 1010 1011, k=4

- 0101, **0011**, 1010, 1011
- 1000, 1010, 1011
- 0011, 1011
- Sum = 1110
- Checksum = 0001

1000 1010 10010 0010 10011

Dữ liệu gửi đi: 0101 0011 1010 1011 0001

- b) Bài toán ngược:
 - Nhận: 0101 0011 1010 1011 0001

$$0101 + 0011 = 1000$$

$$1000 + 1010 = 0011$$

$$0011 + 1011 = 1110$$

$$1110 + 0001 = 1111$$

$$\circ$$
 Sum = 1111 → Đúng

• Nhân: 0101 0011 1010 0110 0001

0101 + 0011 = 1000

1000 + 1010 = 0011

0011 + 0110 = 1001

1001 + 0001 = 1010

○ Sum = $1010 \rightarrow$ Sai

4) HAMMING CODE KIỂU 1

a) Bài toán thuận

M = 10

Sử dụng Parity chẵn.

Dữ liệu cần gửi: 100110

log₂10=4: Vây dùng 4 bit làm parity (1, 2, 4, 8)

Có 6 vị trí có thể đặt dữ liệu là: 3, 5, 6, 7, 9, 10

			1		0	0	1		1	0
	2^0	2^1		2^2				2^3		
Index	1	2	3	4	5	6	7	8	9	10

Tính lấy bits:

3 = 0011

5 = 0101

6 = 0110

7 = 0111

9 = 1001

10 = 1010

- o Tai vi trí 2⁰:
 - Các vị trí có bit 1 là 3, 5, 7, 9 tương ứng với giá trị 1011
 - Lấy parity chẵn ta được bit 1
 - Index 1 sẽ chứa giá trị 1
- o Tại vị trí 2¹:
 - Các vị trí có bit 1 là 3, 6, 7, 10 tương ứng với giá trị 1010

- Lấy parity chẵn ta được bit 0 cho index 2
- o Tai vi trí 2²:
 - Các vị trí có bit 1 là 5, 6, 7 tương ứng với giá trị 001
 - Lấy parity chẵn ta được bit 1 cho index 4
- o Tại vị trí 2^3 :
 - Các vị trí có bit 1 là 9, 10 tương ứng với giá trị 10
 - Lấy parity chẵn ta được bit 1 cho index 8

Dữ liệu gửi đi: 1111001110

b) Bài toán nghịch

Tiếp tục sử dụng M=10 với parity chẵn.

Cho dữ liệu nhận về là: 1111001111

Bit	1	1	1	1	0	0	1	1	1	1
	2^0	21		2^2				2^3		
Index	1	2	3	4	5	6	7	8	9	10

Tính lấy bits:

$$3 = 0011$$

$$5 = 0101$$

$$6 = 0110$$

$$7 = 0111$$

$$9 = 1001$$

$$10 = 1010$$

- o Tai vi trí 2⁰:
 - Các vị trí có bit 1 là 3, 5, 7, 9 tương ứng với giá trị 1011
 - Lấy parity chẵn ta được bit 1
 - Bit 20 không có lỗi
- o Tai vị trí 2¹:
 - Các vị trí có bit 1 là 3, 6, 7, 10 tương ứng với giá trị 1011
 - Lấy parity chẵn ta được bit 1 cho index 2
 - Bit 2¹ không có lỗi
- o Tại vị trí 2²:

- Các vị trí có bit 1 là 5, 6, 7 tương ứng với giá trị 001
- Lấy parity chẵn ta được bit 1 cho index 4
- Bit 2² không có lỗi

o Tại vị trí 2³:

- Các vị trí có bit 1 là 9, 10 tương ứng với giá trị 11
- Lấy parity chẵn ta được bit 0 cho index 8

• Bit 2³ có lỗi

Ta thu được bit giá trị lỗi: 1000. Vậy vị trí bit lỗi trong dữ liệu là 8.

Dữ liệu nhận đúng là: 1111001011

Dữ liệu thật: 100111

5) HAMMING CODE KIẾU 2

a) Bài toán thuận:

Dữ liêu cần gửi: 100111000110

 $2^p >= d+p+1$

 $d = 12 \Rightarrow p = 5 \Rightarrow M = d + p = 17$

Bit parity ở các vị trí lũy thừa của 2: 1, 2, 4, 8, 16.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
		1		0	0	1		1	1	0	0	0	1	1		0
P	P		P				P								P1	
1	2		4				8								6	
		D		D	D	D		D	D1	D1	D1	D1	D1	D1		D1
		3		5	6	7		9	0	1	2	3	4	5		7

Xác định P1 (Lấy 1, bỏ 1):

Vị trí: 1, 3, 5, 7, 9, 11, 13, 15, 17

Giá trị tương ứng: ?, 1, 0, 1, 1, 0, 0, 1, 0

 $C\acute{o} \ 4 \ s\acute{o} \ 1 => Ch\tilde{a}n => P1 = 0.$

Xác định P2 (Lấy 2, bỏ 2):

Vị trí: 2, 3, 6, 7, 10, 11, 14, 15

Giá trị tương ứng: ?, 1, 0, 1, 1, 0, 1, 1

Có 5 số 1 => Le => P2 = 1.

Xác định P4 (Lấy 4, bỏ 4):

Vi trí: 4, 5, 6, 7, 12, 13, 14, 15

Giá trị tương ứng: ?, 0, 0, 1, 0, 0, 1, 1

Có 3 số 1 => Le => P4 = 1.

Xác định P8 (Lấy 8, bỏ 8):

Vị trí: 8, 9, 10, 11, 12, 13, 14, 15

Giá trị tương ứng: ?, 1, 1, 0, 0, 0, 1, 1

Có 4 số $1 => \text{Ch} \tilde{\text{a}} \text{n} => \text{P8} = 0.$

Xác định P16 (Lấy 16, bỏ 16):

Vi trí: 16, 17

Giá trị tương ứng: ?, 0

 $C\acute{o} \ 0 \ s\acute{o} \ 1 => Ch\tilde{a}n => P16 = 0.$

				-			•									
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
0	1	1	1	0	0	1	0	1	1	0	0	0	1	1	0	0
P	P		P				P								P1	
1	2		4				8								6	
		D		D	D	D		D	D1	D1	D1	D1	D1	D1		D1
		3		5	6	7		9	0	1	2	3	4	5		7

Vậy dữ liệu gửi là: 01110010110001100

b) Bài toán ngược:

Trường hợp không lỗi:

Dữ liệu nhận: 01110010110001100

M = 17

 $2^p >= d+p+1 \Leftrightarrow 2^p >= 18 => p = 5 => d = 17 - 5 = 12$

Đánh dấu các bit parity ở các vị trí lũy thừa của 2, các vị trí còn lại là bit dữ liệu:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
0	1	1	1	0	0	1	0	1	1	0	0	0	1	1	0	0
P	P		P				P								P1	
1	2		4				8								6	
		D		D	D	D		D	D1	D1	D1	D1	D1	D1		D1
		3		5	6	7		9	0	1	2	3	4	5		7

Kiểm tra P1, P2, P4, P8, P16 đúng => Dữ liệu thật là: 100111000110.

Trường hợp lỗi:

Dữ liệu nhận: 01110010111001100

M = 17

 $2^p >= d+p+1 \Leftrightarrow 2^p >= 18 => p = 5 => d = 17 - 5 = 12$

Đánh dấu các bit parity ở các vị trí lũy thừa của 2, các vị trí còn lại là bit dữ liệu:

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17
0	1	1	1	0	0	1	0	1	1	1	0	0	1	1	0	0
P	P		P				P								P1	
1	2		4				8								6	
		D		D	D	D		D	D1	D1	D1	D1	D1	D1		D1
		3		5	6	7		9	0	1	2	3	4	5		7

Kiểm tra ta thấy: P1, P2, P8 sai => Vị trí bit dữ liệu sai là 1+2+8 = 11 => D11 sửa 1 thành 0.

=> Dữ liệu gửi là: 0111001011<mark>0</mark>001100.

=> Dữ liệu thật là: 100111000110.