Introduction to normalizing flows

We will first talk about Density estimation (not: conditional

density estimation)

e.g.

But first: change of variables in probability

Transforming samples

Transforming distributions

How can we evaluate $p_x(x)$?

$$u = T^{-1}(x)$$

How can we evaluate $p_x(x)$?

Step 1: pick a base distribution

Step 2: decide on a transformation

Learnable parameters:

Offset a Slope b

Let's look at data

Let's look at data

-> Move to jupyter

If we use a linear transformation, it stays Gaussian
How do we extend this to multiple dimensions and model correlations?

There are two problems right now:

MAF indeed uses a linear transform NSF uses splines (neural **spline** flow) $\widehat{\mathcal{S}}$

u1

u2

u1

$$u2 \longrightarrow \boxed{NN} \longrightarrow a, b$$

What about conditional density estimation p(x | y)?

2

