Problem 1

a) According to the note

$$\begin{split} \mathbf{q}(\boldsymbol{\omega}) &\propto exp\{E_{q(\alpha_1,\ldots,\alpha_d,\lambda)}[lnp(y|x,\omega,\lambda) + lnp(\alpha_1,\ldots,\alpha_d) + lnp(\omega|\alpha_1,\ldots,\alpha_d) + lnp(\lambda)]\}\\ &\propto \exp\{\sum_{i=1}^N E_{q(\lambda)}[\ lnp(y_i|x_i,\omega,\lambda)] + E_{q(\alpha_1,\ldots,\alpha_d)}[lnp(\omega|\alpha_1,\ldots,\alpha_d)]\}\\ &\propto [\prod_{i=1}^N e^{\frac{1}{2}E[\lambda]} e^{-\left(\frac{E_{q(\lambda)}[\lambda]}{2}\right)\left(y_i - x_i^T\omega\right)^2}] e^{-\frac{1}{2}\sum_{k=1}^d E_{q(\alpha_k)}[\alpha_k]\omega_k^2} \end{split}$$

Therefore $q(\omega) = Normal(\omega | \mu', \Sigma')$

$$\begin{split} \mu' &= \Sigma'(E_{q(\lambda)}[\lambda] \sum_{i=1}^N y_i x_i) \\ \Sigma' &= (diag\big(E_{q(\alpha_1)}[\alpha_1], \dots, E_{q(\alpha_d)}[\alpha_d]\big) + E_{q(\lambda)}[\lambda] \sum_{i=1}^N x_i x_i^T)^{-1} \end{split}$$

$$\begin{split} \mathbf{q}(\lambda) &\propto exp\{E_{q(\alpha_1,\ldots,\alpha_d,\omega)}[lnp(y|x,\omega,\lambda) + lnp(\alpha_1,\ldots,\alpha_d) + lnp(\omega|\alpha_1,\ldots,\alpha_d) + lnp(\lambda)]\}\\ &\propto \exp\{\sum_{i=1}^N E_{q(\omega)}[\ lnp(y_i|x_i,\omega,\lambda)]\}p(\lambda)\\ &\propto [\prod_{i=1}^N \lambda^{\frac{1}{2}} e^{-\frac{\lambda}{2} E_{q(\omega)}[\left(y_i - x_i^T\omega\right)^2]}]\lambda^{e_0 - 1} e^{-f_0\lambda} \end{split}$$

Therefore $q(\lambda) = Gamma(\lambda|e', f')$

$$e' = e_0 + \frac{N}{2}$$
, $f' = f_0 + \frac{1}{2} \sum_{i=1}^{N} E_{q(\omega)} [(y_i - x_i^T \omega)^2]$

For k=1,...,d

$$\begin{split} \mathbf{q}(\alpha_k) &\propto exp\{E_{q(\omega,\lambda)\prod_{j\neq k}^d \mathbf{q}(\alpha_j)}[lnp(y|x,\omega,\lambda) + lnp(\alpha_1,\dots,\alpha_d) + lnp(\omega|\alpha_1,\dots,\alpha_d) + lnp(\lambda)]\} \\ &\propto \exp\{lnp(\alpha_k) - \frac{1}{2}(-ln\alpha_k + E_{q(\omega)\prod_{j\neq k}^d \mathbf{q}(\alpha_j)}[\omega^T diag(\alpha_1,\dots,\alpha_d)\omega])\} \\ &\propto e^{-\frac{1}{2}(-ln\alpha_k + E_{q(\omega)\prod_{j\neq k}^d \mathbf{q}(\alpha_j)}[\omega^T diag(\alpha_1,\dots,\alpha_d)\omega])} \alpha_k^{a_0-1} e^{-b_0\alpha_k} \end{split}$$

Therefore $q(\alpha_k) = Gamma(\alpha_k | a', b'_k)$

$$b'_{k} = b_{0} + \frac{1}{2} (\Sigma'(k, k) + \mu'(k)^{2})$$

$$a' = a_{0} + \frac{1}{2}$$

b)

Inputs: Data and definitions $q(\omega) = Normal(\omega|\mu', \Sigma')$, $q(\lambda) = Gamma(\lambda|e'_0, f'_0)$ and $q(\alpha_k) = Gamma(\alpha_k|a_0, b')$

Outputs: Values for μ' , Σ' , e', f', a' and b'_k

- 1. initialize μ'_0 , Σ'_0 , e'_0 , f'_0 , a'_0 , b'_{k0} in some way
- 2. For iteration t = 1,...,TUpdate $q(\lambda)$ by setting

$$e'_{t} = e_{0} + \frac{N}{2}$$
, $f'_{t} = f_{0} + \frac{1}{2} \left(\sum_{i=1}^{N} (y_{i} - x_{i}^{T} \mu'_{t-1})^{2} + x_{i}^{T} \Sigma'_{t-1} x_{i} \right)$

Update $q(\omega)$ by setting

$$\begin{split} \mu_t' &= \Sigma_t' (\frac{e_t'}{f_t'} \Sigma_{i=1}^N y_i x_i) \\ \Sigma_t' &= (diag\left(\frac{a_{t-1}'}{b_{1(t-1)}'}, \dots, \frac{a_{t-1}'}{b_{d(t-1)}'}\right) + \frac{e_t'}{f_t'} \Sigma_{i=1}^N x_i x_i^T)^{-1} \end{split}$$

Updating $q(\alpha)$ by setting

$$b'_{tk} = b_0 + \frac{1}{2} (\Sigma'_t(k, k) + \mu'_t(k)^2)$$
$$a'_t = a_0 + \frac{1}{2}$$

Evaluate $\mathcal{L}(e_t', f_t', \mu_t', \Sigma_t', a_t', b_t')$ to access convergence

c)

$$\begin{split} &\mathcal{L}(e'_t, f'_t, \mu'_t, \Sigma'_t, a'_t, b'_t) = E_q[lnp(y, \omega, \lambda, \alpha | x)] - E_q[lnq(\omega)] - E_q[lnq(\lambda)] - E_q[lnq(\alpha)] \\ &= \frac{N}{2}(\psi(e'_t) - ln2\pi f'_t) - \frac{e'_t}{f'_t}(f'_t - f_0) + \\ &= e_0 lnf_0 - ln\tau(e_0) - \frac{f_0 e'_t}{f'_t} + (e_0 - 1)(\psi(e'_t) - lnf'_t) + \\ &= \frac{d}{2}(\psi(a'_t) - ln2\pi) - \sum_{k=1}^{d} \left(\frac{a'_t}{b'_{kt}}(b'_{kt} - b_0) + \frac{1}{2}lnb'_{kt}\right) + \\ &= \frac{d}{2}(\psi(a'_t) - ln2\pi) - \sum_{k=1}^{d} \left(\frac{b'_t}{b'_{kt}}(b'_{kt} - b_0) + \frac{1}{2}lnb'_{kt}\right) + \\ &= \frac{1}{2}ln|2\pi e\Sigma'_t| - lnf'_t + ln\tau(e'_t) + e'_t - (e'_t - 1)\psi(e'_t) - \\ &= \frac{d}{2}(a'_t - 1)\psi(a'_t) - ln\tau(a'_t) - a'_t\right) - \sum_{k=1}^{d} lnb'_{kt} \end{split}$$

Problem 2

a) For the first dataset

For the second dataset

For the third dataset

b) For the first dataset

For the second dataset

For the third dataset

c) For the first dataset

For the second dataset

For the third dataset

d) For the first dataset

for the second dataset

for the third dataset

