

Министерство науки и высшего образования Российской Федерации федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Робототехника и комплексная автоматизация»

КАФЕДРА «Системы автоматизированного проектирования (РК-6)»

ОТЧЕТ О ВЫПОЛНЕНИИ ЛАБОРАТОРНОЙ РАБОТЫ

по дисциплине «Модели и методы анализа проектных решений»

Студент:	Стройков Марк Николаевич
Группа:	PK6-726
Тип задания:	Лабораторная работа
Название:	Метод конечных элементов
Вариант:	38

Студент	подпись, дата	$\frac{\text{Стройков M.H.}}{\Phi_{\text{амилия, И.O.}}}$
Преподаватель	подпись, дата	Трудоношин В. А
Оценка:		

Содержание

Метод	конечных элементов	3
1	Цель выполнения лабораторной работы	3
2	Задание	3
3	Аналитическое решение	4
4	Получение локальных матрицы жесткости и вектора нагрузок	5
	Линейная функция-формы КЭ	5
	Кубическая функция-формы КЭ	6
5	Получение глобальных матрицы жесткости и вектора нагрузок	7
	Ансамблирование	7
	Учет граничных условий	8
6	Анализ результатов	8
	Линейная функция-формы	8
	Кубическая функция-формы	11
	Нахождение количества линейных КЭ, обеспечивающих ту же точность,	
	что и 20 кубических	14
7	Код	14
8	Вывод	20

Метод конечных элементов

1 Цель выполнения лабораторной работы

Цель выполнения лабораторной работы – решение дифференциального уравнения методом конечных элементов (МКЭ), используя линейную и кубическую функции формы, и анализ точности относительной аналитического способа решения

2 Задание

Решить с помощью МКЭ уравнение 1

$$4\frac{d^2u}{dx^2} - 9u + 10 = 0, (1)$$

при следующих граничных условиях (г. у.):

$$u(x=2)=0, (2)$$

$$u'(x=14)=1. (3)$$

Количество конечных элементов

- \bullet для первого расчета 20,
- для второго 40.

Также необходимо:

- 1. Сравнить результаты с аналитическим решением. Оценить максимальную погрешность.
- 2. Определить количество линейных КЭ, обеспечивающих такую же точность как и кубические.

3 Аналитическое решение

На рисунке 1 представлено аналитическое решение поставленной задачи.

Рис. 1. Аналитическое решение

Таким образом, получаем:

$$u(x) = \frac{2\left(-3e^{21-(3x)/2} - 5e^{39-(3x)/2} - 5e^{(3x)/2-3} + 3e^{(3x)/2+15} + 5 + 5e^{36}\right)}{9\left(1 + e^{36}\right)}.$$

4 Получение локальных матрицы жесткости и вектора нагрузок

Составим локальные матрицу жесткости и вектор нагрузок для уравнения 1.

Линейная функция-формы КЭ

$$\mathbf{u} = \begin{bmatrix} (1 - \frac{x}{L}); & \frac{x}{L} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix} = \mathbf{N_e U},$$

где N_e — вектор функции формы конечного элемента (в данном случае линейной), его составляющие элементы - глобальные базисные функции, отличные от нуля в пределах этого элемента, L — длина KЭ.

В соответствии с методом Галеркина для уравнения 1:

$$\int_0^L \mathbf{W_e} \left(4 \frac{d^2 \mathbf{u}}{dx^2} - 9u + 10 \right) dx = 0, \tag{4}$$

где $\mathbf{W}_{\mathbf{e}} = \mathbf{N}_{\mathbf{e}}^T$.

$$\int_{0}^{L} \mathbf{W_{e}} \left(4 \frac{d^{2} \mathbf{u}}{dx^{2}} - 9u + 10 \right) dx = 4 \int_{0}^{L} \mathbf{W_{e}} \frac{d^{2} \mathbf{u}}{dx^{2}} dx - 9 \int_{0}^{L} \mathbf{W_{e}} \mathbf{u} dx + 10 \int_{0}^{L} \mathbf{W_{e}} dx = 0$$

Распишем каждое слагаемое отдельно:

$$4 \int_{0}^{L} \mathbf{W_{e}} \frac{d^{2}\mathbf{u}}{dx^{2}} dx = 4 \int_{0}^{L} \begin{bmatrix} (1 - \frac{x}{L}) \\ \frac{x}{L} \end{bmatrix} \frac{d^{2}\mathbf{u}}{dx^{2}} dx = 4 \begin{bmatrix} (1 - \frac{x}{L}) \\ \frac{x}{L} \end{bmatrix} \frac{d\mathbf{u}}{dx} \Big|_{0}^{L} - 4 \int_{0}^{L} \frac{d}{dx} \begin{bmatrix} (1 - \frac{x}{L}) \\ \frac{x}{L} \end{bmatrix} \frac{d}{dx} \begin{bmatrix} (1 - \frac{x}{L}) \\ \frac{x}{L} \end{bmatrix} \begin{bmatrix} u_{i} \\ u_{j} \end{bmatrix} = \begin{bmatrix} -4 \frac{d\mathbf{u}}{dx} \Big|_{i} \\ 4 \frac{d\mathbf{u}}{dx} \Big|_{j} \end{bmatrix} - 4 \begin{bmatrix} \frac{1}{L}, & -\frac{1}{L} \\ -\frac{1}{L}, & \frac{1}{L} \end{bmatrix} \begin{bmatrix} u_{i} \\ u_{j} \end{bmatrix}$$
$$-9 \int_{0}^{L} \mathbf{W_{e}} \mathbf{u} dx = -9 \int_{0}^{L} \begin{bmatrix} (1 - \frac{x}{L}) \\ \frac{x}{L} \end{bmatrix} \mathbf{u} \begin{bmatrix} u_{i} \\ u_{j} \end{bmatrix} dx = -9 \begin{bmatrix} \frac{L}{3}, & \frac{L}{6} \\ \frac{L}{6}, & \frac{L}{3} \end{bmatrix} \begin{bmatrix} u_{i} \\ u_{j} \end{bmatrix}$$
$$10 \int_{0}^{L} \mathbf{W_{e}} dx = 10 \begin{bmatrix} \frac{L}{2} \\ \frac{L}{2} \end{bmatrix}$$

Таким образом, для уравнения 4, при использовании линейной функции-формы, получаем (матмодель линейного КЭ):

$$\begin{bmatrix} 4\frac{1}{L} - 9\frac{L}{3}, & -4\frac{1}{L} - 9\frac{L}{6} \\ -4\frac{1}{L} - 9\frac{L}{6}, & 4\frac{1}{L} - 9\frac{L}{3} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix} = \begin{bmatrix} -4\frac{du}{dx}|_i + 10\frac{L}{2} \\ 4\frac{du}{dx}|_j + 10\frac{L}{2} \end{bmatrix}$$

Кубическая функция-формы КЭ

$$\mathbf{u} = \left[-\frac{9x^3}{2L^3} + \frac{18x^2}{2L^2} - \frac{11x}{2L} + 1; \frac{27x^3}{2L^3} - \frac{45x^2}{2L^2} + \frac{9x}{L}; -\frac{27x^3}{2L^3} + \frac{36x^2}{2L^2} - \frac{9x}{2L}; \frac{9x^3}{2L^3} - \frac{9x^2}{2L^2} - \frac{x}{L}; \right] \begin{bmatrix} u_i \\ u_j \\ u_k \\ u_l \end{bmatrix} = \mathbf{N_eU},$$

Как и для линейной функции-формы применим метод Галеркина (см. уравнение 4) и рассмотрим каждое слагаемое отдельно.

$$4 \int_{0}^{L} \mathbf{W}_{\mathbf{e}} \frac{d^{2}\mathbf{u}}{dx^{2}} dx = 4 \int_{0}^{L} \begin{bmatrix} -\frac{9x^{3}}{2T_{3}^{3}} + \frac{18x^{2}}{2D_{*}^{2}} - \frac{11x}{2L} + 1 \\ \frac{27x^{3}}{2L^{3}} - \frac{2D_{*}^{2}}{2L^{2}} + \frac{9x}{L} \\ -\frac{9x^{3}}{2L^{3}} - \frac{18x^{2}}{2L} - \frac{11x}{2L} + 1 \\ \frac{27x^{3}}{2L^{3}} - \frac{45x^{2}}{2L^{2}} - \frac{9x}{L} \end{bmatrix} \frac{d^{2}\mathbf{u}}{dx^{2}} dx = 4 \begin{bmatrix} -\frac{9x^{3}}{2L^{3}} + \frac{18x^{2}}{2L^{2}} - \frac{11x}{2L} + 1 \\ \frac{27x^{3}}{2L^{3}} - \frac{45x^{2}}{2L^{2}} + \frac{9x}{L} \\ \frac{27x^{3}}{2L^{3}} - \frac{45x^{2}}{2L^{2}} - \frac{9x}{L} \end{bmatrix} \frac{d\mathbf{u}}{dx} \Big|_{0}^{L} - 4 \int_{0}^{L} \frac{d}{dx} \left[\frac{27x^{3}}{2L^{3}} - \frac{45x^{2}}{2L^{2}} - \frac{9x}{2L} + \frac{1}{L} \\ \frac{27x^{3}}{2L^{3}} - \frac{45x^{2}}{2L^{2}} - \frac{9x}{L} \end{bmatrix} \frac{d\mathbf{u}}{dx} \Big|_{0}^{L} - 4 \int_{0}^{L} \frac{d}{dx} \left[\frac{27x^{3}}{2L^{3}} - \frac{45x^{2}}{2L^{2}} - \frac{9x}{2L} + 1 \\ \frac{27x^{3}}{2L^{3}} - \frac{45x^{2}}{2L^{2}} - \frac{9x}{2L} - \frac{1x}{L} \end{bmatrix} \frac{d\mathbf{u}}{dx} \mathbf{u} = \frac{-4\frac{d\mathbf{u}}{dx}|_{1}}{0} - 4 \left[-\frac{37}{10} - \frac{180}{40} - \frac{54}{20} - \frac{207}{2L^{3}} - \frac{213}{40} - \frac{9x^{2}}{2L^{2}} - \frac{y}{2L} - \frac{x}{L} \right] \frac{d}{dx} \mathbf{u} = \frac{-4\frac{d\mathbf{u}}{dx}|_{1}}{0} - 4 \left[-\frac{189}{40} - \frac{54}{40} - \frac{207}{40} - \frac{189}{40} - \frac{277}{40} - \frac{218}{40} - \frac{189}{40} - \frac{189}{40} - \frac{277}{40} - \frac{189}{40} - \frac{189}{40} - \frac{189}{40} - \frac{189}{40} - \frac{277}{40} - \frac{189}{40} - \frac$$

Таким образом, для уравнения 4, при использовании кубической функции-формы, получаем:

$$\begin{bmatrix} 4\frac{37}{10L} - 9\frac{8L}{105} & -4\frac{189}{40L} - 9\frac{33L}{560} & 4\frac{27}{20L} + 9\frac{3L}{140} & -4\frac{13}{40L} - 9\frac{119L}{1680} \\ -4\frac{189}{40L} - 9\frac{33L}{560} & 4\frac{54}{5L} + 0 - 9\frac{27L}{170} & -4\frac{297}{40L} + 9\frac{27L}{560} & 4\frac{27}{20L} + 9\frac{27L}{560} \\ 4\frac{27}{20L} + 9\frac{27L}{560} & -4\frac{297}{40L} + 9\frac{27L}{560} & 4\frac{54}{5L} + 0 - 9\frac{27L}{170} & -4\frac{189}{40L} - 9\frac{33L}{560} \\ -4\frac{13}{40L} - 9\frac{19L}{1680} & 4\frac{27}{20L}\frac{3}{10} - 9\frac{3L}{140} & -4\frac{189}{40L} - 9\frac{33L}{560} & 4\frac{37}{10L} - 9\frac{8L}{105} \end{bmatrix}.$$

$$\cdot \begin{bmatrix} u_i \\ u_j \\ u_k \\ u_l \end{bmatrix} = \begin{bmatrix} 10\frac{L}{8} - 4\frac{du}{dx}|_i \\ 10\frac{3L}{8} \\ 10\frac{3L}{8} \\ 10\frac{L}{8} + 4\frac{du}{dx}|_l \end{bmatrix}$$
(5)

Локальные матрицу жесткости и вектор нагрузок из уравнения 5 с помощью матричных преобразований приведем к следующему виду:

$$\begin{bmatrix} a_{11} & 0 & 0 & a_{14} \\ a_{21} & a_{22} & 0 & a_{24} \\ a_{31} & 0 & a_{33} & a_{34} \\ a_{41} & 0 & 0 & a_{44} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \\ u_k \\ u_l \end{bmatrix} = \begin{bmatrix} b_1 - 4\frac{du}{dx}|_i \\ b_2 \\ b_3 \\ b_4 + 4\frac{du}{dx}|_l \end{bmatrix}$$

Для упрощения расчетов преобразуем систему выше, исключив внутренние узлы. Таким образом СЛАУ (математическая модель кубического КЭ):

$$\begin{bmatrix} a_{11} & a_{14} \\ a_{41} & a_{44} \end{bmatrix} \begin{bmatrix} u_i \\ u_l \end{bmatrix} = \begin{bmatrix} b_1 - 4\frac{du}{dx}|_i \\ b_4 + 4\frac{du}{dx}|_l \end{bmatrix}$$

5 Получение глобальных матрицы жесткости и вектора нагрузок

Проведем процедуры ансамблирования и учет граничных условий для формирования итоговой математической модели.

Ансамблирование

Пусть локальные матрица жесткости и вектор неизвестных заданы следующим образом

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \begin{bmatrix} u_i \\ u_j \end{bmatrix} = \begin{bmatrix} b_1 - 4\frac{du}{dx}|_i \\ b_2 + 4\frac{du}{dx}|_l \end{bmatrix},$$

тогда, при разбитие области на n К \ni , глобальная матрица жесткости будет иметь размерность $(n+1)\cdot (n+1)$:

$$\begin{bmatrix} a_{11}^1 & a_{12}^1 & 0 & \cdots & 0 & 0 & 0 & 0 \\ a_{21}^1 & a_{22}^1 + a_{11}^2 & a_{12}^2 & 0 & \cdots & 0 & 0 & 0 \\ 0 & a_{21}^2 & a_{22}^2 + a_{11}^3 & a_{12}^3 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_{21}^3 & a_{21}^3 & a_{22}^3 + \cdots & & & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots + a_{11}^n & a_{12}^n \\ 0 & 0 & 0 & 0 & 0 & 0 & a_{21}^n & a_{22}^n \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_{n-1} \\ u_n \end{bmatrix} = \begin{bmatrix} b_1^1 - 4\frac{du}{dx}|_0 \\ b_2^1 + b_1^2 \\ b_2^2 + b_1^3 \\ b_2^3 + b_1^4 \\ \vdots \\ b_2^{n-1} + b_1^n \\ b_2^n + 4\frac{du}{dx}|_L \end{bmatrix}$$

Учет граничных условий

Применим граничные условия первого (см. 3) и второго рода (см. 2) к выведенной выше системе.

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 & 0 & 0 \\ a_{21}^1 & a_{22}^1 + a_{11}^2 & a_{12}^2 & 0 & \cdots & 0 & 0 & 0 \\ 0 & a_{21}^2 & a_{22}^2 + a_{11}^3 & a_{12}^3 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_{21}^3 & a_{22}^3 + \cdots & & & & & 0 \\ \vdots & \vdots & \vdots & \vdots & & & & & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & \cdots + a_{11}^n & a_{12}^n \\ 0 & 0 & 0 & 0 & 0 & 0 & a_{21}^n & a_{22}^n \end{bmatrix} \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ u_3 \\ \vdots \\ u_{n-1} \\ u_n \end{bmatrix} = \begin{bmatrix} 0 \\ b_2^1 + b_1^2 \\ b_2^2 + b_1^3 \\ b_2^3 + b_1^4 \\ \vdots \\ b_{n-1}^{n-1} + b_n^n \\ b_n^n + 4 \cdot 1 \end{bmatrix}$$

6 Анализ результатов

Проведем сравнение результатов согласно заданию.

Линейная функция-формы

На рисунках 2, 3 представлены графики полученные с помощью МКЭ (линейная функция-формы).

Рис. 2. Результат работы программы для 20 $\,$ Рис. 3. Результат работы программы для 40 $\,$ КЭ $\,$ КЭ

X	Аналитическое	МКЭ-	Абсолютная
	решение	решение	погрешность
2.000000	0.000000e+00	0.0000000e+00	0.0000000e+00
2.600000	6.593671e-01	6.742184e-01	1.485135e-02
3.200000	9.274457e-01	9.393234e-01	1.187769e-02
3.800000	1.036438e+00	1.043564e+00	7.125203e-03
4.400000	$1.080752e{+00}$	$1.084551e{+00}$	3.799613e-03
5.000000	$1.098769\mathrm{e}{+00}$	1.100668e+00	1.899500e-03
5.600000	$1.106095\mathrm{e}{+00}$	$1.107006\mathrm{e}{+00}$	9.111370e-04
6.200000	$1.109076\mathrm{e}{+00}$	$1.109500\mathrm{e}{+00}$	4.236239e-04
6.800000	$1.110295\mathrm{e}{+00}$	1.110485e+00	1.898670e-04
7.400000	$1.110807\mathrm{e}{+00}$	1.110884e+00	7.659023e-05
8.000000	$1.111056\mathrm{e}{+00}$	$1.111070\mathrm{e}{+00}$	1.369272e-05
8.600000	$1.111258\mathrm{e}{+00}$	1.111217e+00	4.023546e-05
9.200000	$1.111586\mathrm{e}{+00}$	1.111465e+00	1.215424e-04
9.800000	$1.112326\mathrm{e}{+00}$	1.112043e+00	2.832939e-04
10.400000	$1.114118e{+00}$	1.113493e+00	6.249816e-04
11.000000	$1.118516\mathrm{e}{+00}$	1.117175e+00	1.340669e-03
11.600000	$1.129326\mathrm{e}{+00}$	1.126535e+00	2.791664e-03
12.200000	$1.155915\mathrm{e}{+00}$	1.150337e+00	5.577321e-03
12.800000	$1.221310\mathrm{e}{+00}$	$1.210872\mathrm{e}{+00}$	1.043853e-02
13.400000	$1.382158\mathrm{e}{+00}$	$1.364824e{+00}$	1.733377e-02
14.000000	1.777778e + 00	$1.756356\mathrm{e}{+00}$	2.142143e-02

Таблица 1. 20 линейных КЭ

X	Аналитическое	МКЭ-	Абсолютная
I A	решение	решение	погрешность
2.000000	0.0000000e+00	0.000000e+00	0.000000e+00
2.300000	4.026354e-01	4.053828e-01	2.747381e-03
2.600000	6.593671e-01	6.628639e-01	3.496820e-03
2.900000	8.230664e-01	8.264044e-01	3.338024e-03
3.200000	9.274457e-01	9.302781e-01	2.832391e-03
3.500000	9.940010e-01	9.962541e-01	2.253140e-03
3.800000	1.036438e+00	1.038159e+00	1.720655e-03
4.100000	1.063498e+00	$1.064775\mathrm{e}{+00}$	1.277505e-03
4.400000	1.080752e+00	1.081681e+00	9.291186e-04
4.700000	1.091753e+00	1.092419e+00	6.651624e-04
5.000000	1.098769e+00	1.09239e+00	4.702849e-04
5.300000	1.103242e+00	1.103571e+00	3.291294e-04
5.600000	1.106095e+00	1.106323e+00	2.283645e-04
5.900000	1.107915e+00	1.108072e+00	1.572360e-04
6.200000	1.109076e+00	1.109184e+00	1.074484e-04
6.500000	1.109819e+00	1.109892e+00	7.278711e-05
6.800000	1.110295e+00	1.110344e+00	4.868540e-05
7.100000	$1.110604\mathrm{e}{+00}$	1.110635e+00	3.182274e-05
7.400000	$1.110807\mathrm{e}{+00}$	1.110827e+00	1.978525e-05
7.700000	$1.110949e{+00}$	1.110959e+00	1.079052e-05
8.000000	$1.111056\mathrm{e}{+00}$	$1.111060\mathrm{e}{+00}$	3.466549e-06
8.300000	$1.111153e{+00}$	1.111149e+00	3.330181e-06
8.600000	1.111258e + 00	1.111247e+00	1.067372e-05
8.900000	1.111393e+00	1.111373e+00	1.972158e-05
9.200000	$1.111586e{+00}$	1.111554e+00	3.187878e-05
9.500000	$1.111877\mathrm{e}{+00}$	1.111828e+00	4.899116e-05
9.800000	$1.112326\mathrm{e}{+00}$	1.112253e+00	7.358758e-05
10.100000	$1.113025\mathrm{e}{+00}$	$1.112916\mathrm{e}{+00}$	1.091922e-04
10.400000	$1.114118\mathrm{e}{+00}$	$1.113958e{+00}$	1.607273e-04
10.700000	$1.115831\mathrm{e}{+00}$	$1.115596e{+00}$	2.350218e-04
11.000000	$1.118516\mathrm{e}{+00}$	1.118174e+00	3.414242e-04
11.300000	$1.122725\mathrm{e}{+00}$	1.122233e+00	4.924814e-04
11.600000	$1.129326\mathrm{e}{+00}$	1.128622e+00	7.045588e-04
11.900000	$1.139679\mathrm{e}{+00}$	1.138681e+00	9.981215e-04
12.200000	$1.155915\mathrm{e}{+00}$	1.154517e + 00	1.397084e-03
12.500000	1.181377e + 00	$1.179451\mathrm{e}{+00}$	1.926078e-03
12.800000	$1.221310e{+00}$	$1.218707\mathrm{e}{+00}$	2.603467e-03
13.100000	$1.283938\mathrm{e}{+00}$	$1.280512e{+00}$	3.426146e-03
13.400000	$1.382158\mathrm{e}{+00}$	$1.377818e{+00}$	4.339017e-03
13.700000	1.536197e + 00	$1.531020e{+00}$	5.176583e-03
14.000000	1.777778e + 00	1.772223e+00	5.554790e-03

Таблица 2. 40 линейных КЭ 10

Максимальная абсолютная погрешность 2.142143e-02 и 5.554790e-03 соответственно.

Кубическая функция-формы

На рисунках 4, 5 представлены графики полученные с помощью МКЭ (кубическая функция-формы).

Рис. 4. Результат работы программы для 20 $\,$ Рис. 5. Результат работы программы для 40 $\,$ KЭ $\,$ KЭ

X	Аналитическое	МКЭ-	Абсолютная
	решение	решение	погрешность
2.000000	0.0000000e+00	0.000000e+00	0.000000e+00
2.600000	6.593671e-01	6.593682 e-01	1.102376e-06
3.200000	9.274457e-01	9.274466e-01	8.963823e-07
3.800000	$1.036438e{+00}$	1.036439e+00	5.466572e-07
4.400000	$1.080752\mathrm{e}{+00}$	$1.080752\mathrm{e}{+00}$	2.963268e-07
5.000000	$1.098769\mathrm{e}{+00}$	$1.098769\mathrm{e}{+00}$	1.505689e-07
5.600000	$1.106095\mathrm{e}{+00}$	$1.106095\mathrm{e}{+00}$	7.339519e-08
6.200000	$1.109076\mathrm{e}{+00}$	$1.109076\mathrm{e}{+00}$	3.466394e-08
6.800000	1.110295e+00	1.110295e+00	1.576349e-08
7.400000	$1.110807\mathrm{e}{+00}$	$1.110807\mathrm{e}{+00}$	6.429195e-09
8.000000	$1.111056\mathrm{e}{+00}$	$1.111056e{+00}$	1.141615e-09
8.600000	1.111258e+00	1.111258e+00	3.431914e-09
9.200000	$1.111586e{+00}$	$1.111586e{+00}$	1.024358e-08
9.800000	$1.112326\mathrm{e}{+00}$	$1.112326\mathrm{e}{+00}$	2.354799e-08
10.400000	$1.114118e{+00}$	1.114118e+00	5.116208e-08
11.000000	$1.118516\mathrm{e}{+00}$	$1.118515e{+00}$	1.080251e-07
11.600000	$1.129326\mathrm{e}{+00}$	$1.129326\mathrm{e}{+00}$	2.213609e-07
12.200000	1.155915e+00	$1.155914\mathrm{e}{+00}$	4.351771e-07
12.800000	1.221310e+00	$1.221309e{+00}$	8.014704 e - 07
13.400000	1.382158e+00	$1.382156\mathrm{e}{+00}$	1.309885e-06
14.000000	1.777778e+00	1.777776e+00	1.594959e-06

Таблица 3. 20 кубических КЭ

X	Аналитическое	МКЭ-	Абсолютная
	решение	решение	погрешность
2.000000	0.000000e+00	0.0000000e+00	0.000000e+00
2.300000	4.026354e-01	4.026354e-01	1.322480e-08
2.600000	6.593671e-01	6.593671e-01	1.686501e-08
2.900000	8.230664e-01	8.230664e-01	1.613039e-08
3.200000	9.274457e-01	9.274458e-01	1.371356e-08
3.500000	9.940010e-01	9.940010e-01	1.093015e-08
3.800000	1.036438e+00	1.036438e+00	8.363189e-09
4.100000	1.063498e+00	1.063498e+00	6.221286e-09
4.400000	1.080752e+00	1.080752e+00	4.533431e-09
4.700000	1.091753e+00	1.091754e+00	3.251776e-09
5.000000	1.098769e+00	1.098769e+00	2.303503e-09
5.300000	1.103242e+00	1.103242e+00	1.615200e-09
5.600000	1.106095e+00	1.106095e+00	1.122830e-09
5.900000	$1.107915\mathrm{e}{+00}$	1.107915e+00	7.745582e-10
6.200000	$1.109076\mathrm{e}{+00}$	1.109076e+00	5.302745e-10
6.500000	1.109819e+00	1.109819e+00	3.598510e-10
6.800000	1.110295e+00	1.110295e+00	2.410896e-10
7.100000	$1.110604\mathrm{e}{+00}$	1.110604e+00	1.578089e-10
7.400000	1.110807e+00	1.110807e+00	9.821410e-11
7.700000	1.110949e+00	1.110949e+00	5.357270e-11
8.000000	$1.111056\mathrm{e}{+00}$	1.111056e+00	1.714517e-11
8.300000	1.111153e+00	1.111153e+00	1.669931e-11
8.600000	$1.111258e{+00}$	1.111258e+00	5.325451e-11
8.900000	1.111393e+00	1.111393e+00	9.822476e-11
9.200000	$1.111586\mathrm{e}{+00}$	1.111586e+00	1.585221e-10
9.500000	1.111877e+00	1.111877e+00	2.432075e-10
9.800000	1.112326e+00	1.112326e+00	3.646636e-10
10.100000	1.113025e+00	1.113025e+00	5.401055e-10
10.400000	1.114118e+00	1.114118e+00	7.935190e-10
10.700000	$1.115831e{+00}$	1.115831e+00	1.158100e-09
11.000000	$1.118516e{+00}$	1.118516e+00	1.679178e-09
11.300000	1.122725e+00	1.122725e+00	2.417426e-09
11.600000	1.129326e+00	1.129326e+00	3.451748e-09
11.900000	1.139679e+00	1.139679e+00	4.880472e-09
12.200000	1.155915e+00	$1.155915e{+00}$	6.817980e-09
12.500000	1.181377e+00	1.181377e+00	9.381222e-09
12.800000	1.221310e+00	1.221310e+00	1.265572e-08
13.100000	1.283938e+00	1.283938e+00	1.662209e-08
13.400000	1.382158e+00	1.382157e+00	2.100914e-08
13.700000	1.536197e+00	1.536196e+00	2.501401e-08
14.000000	1.777778e+00	1.777778e+00	2.678539e-08

Максимальная абсолютная погрешность 1.594959e-06 и 2.678539e-08 соответственно.

Нахождение количества линейных КЭ, обеспечивающих ту же точность, что и 20 кубических

Так как очевидно, что при увлечении числа КЭ точность растет, найдем искомое следуя алгоритму, представленному на рисунке 6.

Рис. 6. Алгоритм нахождения количества КЭ, заданную точность

Реализовав данный алгоритм с начальным количеством KЭ=20 и увеличивая счетчик всегда на 1 получаем необходимое количество KЭ, равное 2421 KЭ.

7 Код

Листинг 1. Реализация МКЭ

```
#include <iostream>
#include <vector>
#include <vector>
duble EPS = 1e-16;
double X_BEGIN = 2.0;
double X_END = 14.0;
size t ELEMS NUM = 20;
```

```
10 double L = (X END - X BEGIN) / ELEMS NUM;
11
12 double a = 4.0, B = 0.0, C = -9.0, D = 10.0, usl left = 0.0, usl right = 1.0; //
                   au''+Bu'+Cu+D=0
13
14 std::vector<double> solve with gauss(std::vector<std::vector<double>>& A,
                  std::vector<double>& b){
                  size t row size = A.size();
15
                 size_t col_size = A.back().size();
16
17
                  // Прямой ход Гаусса
18
19
                  double pivot = 0.;
20
                  for (size t i = 0; i < row_size; i++) {
21
                             for (size t j = i + 1; j < col size; j++) {
                                       if (std::abs(A.at(j).at(i)) < EPS) {
22
                                                 continue;
23
24
25
                                       pivot = A.at(j).at(i) / A.at(i).at(i);
26
                                       b.at(j) = pivot * b.at(i);
                                       for (size t k = 0; k < row size; k++) {
27
                                                 A.at(i).at(k) = pivot * A.at(i).at(k);
28
29
                                       }
30
                            }
                  }
31
32
33
                  // Обратный ход Гаусса
                  std::vector<double> x(row_size);
34
                  for (int i = row size -1.; i >= 0; i—) {
35
36
                            x.at(i) = b.at(i);
                            for (size t j = i + 1; j < row size; j++) {
37
                                      x.at(i) = x.at(j) * A.at(i).at(j);
38
39
                            x.at(i) /= A.at(i).at(i);
40
                  }
41
42
43
                  return x;
44 }
45
46 double analytical solution(double x) {
                  return (2. * (-3. * exp(21. - (3. * x)/2.) - 5. * exp(39. - (3. * x)/2.) - 5. * exp((3. * (-3. * x)/2.) - (3. * x)/2.)))
47
                             (3. *x)/2. -3.) +3. *exp((3. *x)/2. +15.) +5. +5. *exp(36)))/(9. *(1. +15.) +5. +5. *exp(36)))/(9. *exp(36))/(9. *
                             exp(36));
48 }
49
50 std::vector<double> build analytical solution(std::vector<double>& x vec) {
                  size_t x_vec_size = x_vec.size();
```

```
52
      std::vector<double> y vec = std::vector<double>(x vec size);
      for (size t i = 0; i < x vec size; i++) {
53
54
           y vec.at(i) = analytical solution(x vec.at(i));
55
56
      return y_vec;
57 }
58
59 std::vector<double> build linear solution(size t elems num) {
      double L = (X END - X BEGIN) / elems num;
60
      size t \text{ size} = elems \text{ num} + 1;
61
      std::vector< std::vector<double> > A(size, std::vector<double>(size));
62
      std::vector<double> b(size);
63
64
      // Локальная матрица жесткости для линейного КЭ
65
      std::vector< std::vector< double> > local matrix = {
66
67
           \{(a/L) + (B/2.) - C*L/3., -(a/L) - (B/2.) - C*L/6.\},
           \{-(a/L) + (B/2.) - C*L/6., (a/L) - (B/2.) - C*L/3.\},
68
      };
69
70
      // Ансамблирование и получение глобальной матрицы жесткости для линейного КЭ
71
72
      for (size t i = 0; i < elems num; i++) {
73
           for (size t j = 0; j < 2; j++) {
               for (size t k = 0; k < 2; k++) {
74
75
                   A.at(i + j).at(i + k) += local matrix.at(j).at(k);
76
           }
77
      }
78
79
      for (size_t i = 0; i < size; i++) {
80
           b.at(i) = D * L;
81
82
      }
83
      // Учет ГУ
84
85
           b.at(0) = usl left;
86
           A.at(0).at(0) = 1;
87
           A.at(0).at(1) = 0;
88
89
90
91
           b.at(size -1) = D * L /2. + a*usl right;
92
93
94
95
      // Решение полученной СЛАУ методом Гаусса
      std::vector<double> res = solve with gauss(A, b);
96
      return res;
97
```

```
98 }
   99
 100 std::vector<double> build cube solution(size t elems num) {
                                double L = (X END - X BEGIN) / elems num;
 101
                                size t \text{ size} = elems \text{ num} + 1;
102
                                std::vector< std::vector<double> > A(size,std::vector<double>(size));
103
                                std::vector<double> b(size);
104
105
106
                                // Локальная матрица жесткости для кубического КЭ
107
                                std::vector< std::vector< double> > local matrix = {
                                                 \{a * 37./(10.*L) + B / 2. - C * 8. / 105. * L, -a * 189./(40.*L) - B * 57./80. - C * 8. / 105. * L, -a * 189./(40.*L) - B * 57./80. - C * 8. / 105. * L, -a * 189./(40.*L) - B * 57./80. - C * 8. / 105. * L, -a * 189./(40.*L) - B * 57./80. - C * 8. / 105. * L, -a * 189./(40.*L) - B * 57./80. - C * 8. / 105. * L, -a * 189./(40.*L) - B * 57./80. - C * 8. / 105. * L, -a * 189./(40.*L) - B * 57./80. - C * 8. / 105. * L, -a * 189./(40.*L) - B * 57./80. - C * 8. / 105. * L, -a * 189./(40.*L) - B * 57./80. - C * 8. / 105. * L, -a * 189./(40.*L) - B * 57./80. - C * 8. / 105. * L, -a * 189./(40.*L) - B * 57./80. - C * 8. / 105. * L, -a * 189./(40.*L) - B * 57./80. - C * 8. / 105. * L, -a * 189./(40.*L) - B * 57./80. - C * 8. / 105. * L, -a * 189./(40.*L) - B * 57./80. - C * 8. / 105. * L, -a * 189./(40.*L) - B * 189./(40.*L) - 
108
                                                                 C * 33. / 560. * L, a * 27./(20.*L) + B * 3./10. + C * 3. / 140. * L, -a *
                                                                 13./(40.*L) - B * 7./80. - C * 19. / 1680. * L
                                                 \{-a * 189./(40.*L) + B * 57./80. - C * 33./560. * L, a * 54./(5.*L) + 0. - C * (5.*L) + 0. - C * (5.
109
                                                                 27. / 70. * L, -a * 297./(40.*L) - B * 81./80. + C * 27. / 560. * L, a *
                                                                 27./(20.*L) + B * 3./10. + C * 3. / 140. * L
                                                 \{a * 27./(20.*L) - B * 3./10. + C * 3. / 140. * L, -a * 297./(40.*L) + B * (40.*L) - B * (40.*L) -
110
                                                                 81./80. + C * 27. / 560. * L, a * 54./(5.*L) - 0. - C * 27. / 70. * L, -a *
                                                                 189./(40.*L) - B * 57./80. - C * 33. / 560. * L
                                                 \{-a * 13./(40.*L) + B * 7./80. - C * 19./ 1680.* L, a * 27./(20.*L) - B * 3./10.
111
                                                                 + C * 3. / 140. * L, -a * 189./(40.*L) + B * 57./80. - C * 33. / 560. * L, a *
                                                                 37./(10.*L) - B * 1./2. - C * 8. / 105. * L
112
                                };
113
                                // Локальный вектор нагрузок (дополнительные слагаемые для первого и последнего
114
                                                 элементов учитываются далее)
                                std::vector<double> local b = { D * L / 8.0,
115
                                                                                                                                                                   D * 3.0 * L / 8.0
116
                                                                                                                                                                   D * 3.0 * L / 8.0,
117
                                                                                                                                                                    D * L / 8.0 };
118
119
120
                                 // Производим матричные преобразования для обнуления элементов локальной
121
                                                  матрицы жесткости, относящихся к внутренним узлам
                                for (size t i = 1; i < 3; i++) {
122
                                                 for (size t = 0; i < 4; i++) {
123
                                                                 if (std::fabs(local matrix.at(j).at(i)) > EPS && i!=j) {
124
                                                                                 double val = local matrix.at(j).at(i) /local matrix.at(i).at(i);
125
                                                                                 local b.at(i) = val * local b.at(i);
126
                                                                                 for (size t k = 0; k < 4; k++) {
127
128
                                                                                                  local matrix.at(j).at(k) = val *local matrix.at(i).at(k);
                                                                                 }
129
                                                                 }
130
                                                                 continue;
131
132
                                                 }
                                }
133
```

```
134
135
136
        // Исключаем внутренние узлы из рассмотрения
        std::vector < std::vector < double > > local matrix mod = { { local matrix.at(0).at(0), }}
137
            local matrix.at(0).at(3) },
                                                                    { local matrix.at(3).at(0),
138
                                                                        local matrix.at(3).at(3)
                                                                        } };
        std::vector<double> local_b_mod = { local_b.at(0),
139
                                             local b.at(3)
140
141
142
        // Ансамблирование и получение глобальной матрицы жесткости для кубического КЭ
143
        for (size t i = 0; i < elems num; i++) {
144
            for (size t j = 0; j < 2; j++) {
145
146
                for (size t k = 0; k < 2; k++) {
                    A.at(i + j).at(i + k) += local matrix mod.at(j).at(k);
147
148
            }
149
        }
150
151
        for (size t i = 0; i < elems num; i++) {
152
            b.at(i) += local b mod.at(0);
153
            b.at(i+1) += local b mod.at(1);
154
        }
155
156
        // Учет ГУ
157
        if (0 == 1) {
158
159
            b.at(0) = local_b_mod.at(0) - a * usl_left;
        } else {
160
            b.at(0) = usl left;
161
            A.at(0).at(0) = 1.;
162
            A.at(0).at(1) = 0.;
163
        }
164
165
        if (1 == 1) {
166
            b.at(size - 1) = local b mod.at(1) + a * usl right;
167
        } else {
168
            b.at(size - 1) = usl right;
169
            A.at(size -1).at(size -1) = 1.;
170
            A.at(size -1).at(size -2) = 0.;
171
172
        }
173
174
        // Решение полученной СЛАУ методом Гаусса
        std::vector<double> res = solve with gauss(A, b);
175
176
        return res;
```

```
177 }
178
179 double calc abs error(const std::vector<double>& y real, const std::vector<double>&
        y) {
        double max err = 0.0;
180
        for (size t i = 0; i < y real.size(); i++) {
181
            double err = std::fabs(y real.at(i) - y.at(i));
182
183
            if (err > max err) {
                max err = err;
184
            }
185
186
        }
        return max_err;
187
188 }
189
190 int main() {
191
192
         std::vector < double > x(ELEMS NUM + 1);
         for (size t i = 0; i < x.size(); i++) {
193
             x.at(i) = X BEGIN + i * L;
194
195
196
         size t \times size = x.size();
197
        std::vector<double> y;
198
199
        if (true) {
            y = build linear solution(ELEMS NUM);
200
        } else {
201
            y = build_cube_solution(ELEMS_NUM);
202
203
         std::vector<double> y real = build analytical solution(x);
204
205
206
         FILE* gp;
         FILE* ab;
207
         FILE* pgr;
208
         FILE* tab:
209
210
211
        gp = fopen("res/labs/text/graph/lin 20.txt", "w");
212
213
        ab = fopen("res/labs/text/graph/abs.txt", "w");
214
        for (size t i = 0; i < x size; i++) {
            fprintf(ab, "%lf %lf\n", x.at(i), y real.at(i));
215
            printf("%lf %lf\n", x.at(i), y real.at(i));
216
217
        pgr = fopen("res/labs/text/pgr/lin 20.txt", "w");
218
219
        tab = fopen("res/labs/text/tab/lin 20.txt", "w");
220
221
```

```
222
          for (size t i = 0; i < x.size()-1; i++) {
223
            fprintf(tab, "%f & %le & %le & %le \\\\\n", x.at(i), y_real.at(i), y.at(i),
224
                 std::fabs(y real.at(i) - y.at(i)));
225
         fprintf(tab, "%f & %le & %le & %le", x.at(x.size()-1), y_real.at(x.size()-1),
226
              y.at(x.size()-1), std::fabs(y real.at(x.size()-1) - y.at(x.size()-1));
227
         for (size t i = 0; i < x size; i++) {
228
              fprintf(gp, "%lf %lf\n", x.at(i), y.at(i));
229
         }
230
231
         fprintf(pgr, "%e", calc abs error(y real, y));
232
233
         fclose(gp);
234
235
         fclose(ab);
         fclose(pgr);
236
         fclose(tab);
237
238
239
          return 0;
240 }
```

8 Вывод

В ходе выполнения лабораторной работы был реализован МКЭ для различных функций форм, а также найдено количество линейных КЭ обеспечивающих точность 20ти кубических КЭ.

Постановка: \bigcirc доцент кафедры PK-6, кандидат технических наук, до-

цент, Трудоношин В.А.

Решение и вёрстка: С студент группы РК6-726, Стройков М.Н.

2022, осенний семестр