Задача 0.1. Нека Σ е азбука. Да се докаже, че функцията $f: \Sigma^* \to \Sigma^*$ е представима (с 1-управляваща граматика), където:

$$f(w) = \varepsilon$$
.

Задача 0.2. Да се докаже, че ако A е краен детерминиран автомат, то има 1-управляваща граматика, която представя функцията $f: \Sigma^* \to \Sigma^*_{\top, \bot}$, за която:

$$f(w) = \begin{cases} \top w \text{ aro } w \in \mathcal{L}(A) \\ \bot w \text{ aro } w \notin \mathcal{L}(A). \end{cases}$$

Задача 0.3. Нека $\Sigma=\{a,b,c\}$. Да се докаже, че функцията $f:\Sigma^* \to \Sigma^*_{\{\top,\bot\}}$ за която:

$$f(w) = \begin{cases} \top w, \ a \text{ is } w \in a^*b^* \\ \bot w, \ u \text{ is a uhave} \end{cases}$$

е представима с 1-управляваща граматика.

Задача 0.4. Нека $\Sigma=\{a,b,c\}$. Да се докаже, че функцията $f:\Sigma^* \to \Sigma^*_{\{\top,\bot\}}$ за която:

$$f(w) = \begin{cases} \top w, \ a \kappa o \ w \in \{a^n b^n \mid n \in \mathbb{N}\} \\ \bot w, \ u н a ч e \end{cases}$$

е представима с 1-управляваща граматика.

Задача 0.5. Нека $\Sigma=\{a,b,c\}$. Да се докаже, че функцията $f:\Sigma^* \to \Sigma^*_{\{\top,\bot\}}$ за която:

$$f(w) = \Big\{ op a^n b^n c^n, \,\,$$
ако $w = a^n b^n \,\,$ за някое $n \in \mathbb{N}, \perp w, \,\,$ иначе

е представима с 1-управляваща граматика.

Задача 0.6. Нека Σ е азбука. Да се докаже, че функцията $f: \Sigma^* \to \Sigma^* \{\$\} \Sigma^*$, за която:

$$f(w) = w\$w$$

е 1-представима.

Упътване 0.1. Покажете, че е 1-представима функцията g(w) = w[2..n] за всяка дума $w[1..n] \in \Sigma^+$. Програмирайте f чрез g и while-цикъл.

Упътване 0.2. Използвайте граматиката от тип 3 (автоматната граматика) за A и добавете към нея правила за връщане и добавяне на начален маркер.

Упътване 0.3. Може да се приложи предишната задача, но може да се изрази и като $\{w \mid w \text{ не съдържа } c\} \cap \{w \mid w \text{ не съдържа } ba\}$. Тогава $w \in a^*b^*$ точно когато към w не може да се приложат правилата $c \to c$ и $ba \to ba$. Сега може да се довърши с две прилагания на АРРLY, които трябва да върнат \bot .

Упътване 0.4. Първо проверете дали $w \in \{a\}^*\{b\}^*$. Ако да, използвайте АРРLY, за да маркирате първото a и първото b. Докато резултата от тази операция е \top и \top , използвайте АРРLY, за да преместите маркираните a и b с една позиция вдясно: $\underline{a}a \to a\underline{a}$.

Упътване 0.5. Използвайте предишната задача, за да проверите дали входът е a^nb^n . Ако да маркирайте първото a и докато има маркирано a използвайте APPLY, за да поставяте c преди #, тоест # $\to c$ #.

Упътване 0.6. С първото правило може да поставите \$ и да маркирате първата буква на w, тоест да получите $w\# \Rightarrow \$w[1]w[2..n]\#$. Използвайте FETCH за да разберете има ли маркирана буква и коя е. Знаейки тази буква, използвайте APPLY, за да я запишете преди \$ и още веднъж APPLY, за да я преместите вдясно.