

planetmath.org

Math for the people, by the people.

equivalent conditions for uniform integrability

 ${\bf Canonical\ name} \quad {\bf Equivalent Conditions For Uniform Integrability}$

Date of creation 2013-03-22 18:40:17 Last modified on 2013-03-22 18:40:17

Owner gel (22282) Last modified by gel (22282)

Numerical id 7

Author gel (22282) Entry type Theorem Classification msc 28A20 Let $(\Omega, \mathcal{F}, \mu)$ be a measure space and S be a bounded subset of $L^1(\Omega, \mathcal{F}, \mu)$. That is, $\int |f| d\mu$ is bounded over $f \in S$. Then, the following are equivalent.

1. For every $\epsilon > 0$ there is a $\delta > 0$ so that

$$\int_{A} |f| \, d\mu < \epsilon$$

for all $f \in S$ and $\mu(A) < \delta$.

2. For every $\epsilon > 0$ there is a K > 0 satisfying

$$\int_{|f|>K} |f| \, d\mu < \epsilon$$

for all $f \in S$.

3. There is a measurable function $\Phi \colon \mathbb{R} \to [0, \infty)$ such that $\Phi(x)/|x| \to \infty$ as $|x| \to \infty$ and

$$\int \Phi(f) \, d\mu$$

is bounded over all $f \in S$. Moreover, the function Φ can always be chosen to be symmetric and convex.

So, for bounded subsets of L^1 , either of the above properties can be used to define uniform integrability. Conversely, when the measure space is finite, then conditions (??) and (??) are easily shown to imply that S is bounded in L^1 .

To show the equivalence of these statements, let us suppose that $\int |f| d\mu < L$ for $f \in S$.

(??) implies (??)

For $\epsilon > 0$, property (??) gives a $\delta > 0$ so that $\int_A |f| d\mu < \epsilon$ whenever $f \in S$ and $\mu(A) < \delta$. Choosing $K > L/\delta$, Markov's inequality gives

$$\mu(|f| > K) \le K^{-1} \int |f| \, d\mu \le L/K < \delta$$

and, therefore, $\int_{|f|>K} |f| d\mu < \epsilon$.

(??) implies (??)

For each n = 1, 2, ..., property (??) gives a K_n satisfying

$$\int (|f| - K_n)_+ d\mu \le \int_{|f| > K_n} |f| d\mu \le 2^{-n}.$$

Without loss of generality, the K_n can be chosen to be increasing to infinity, so we can define $\Phi(x) = \sum_n (|x| - K_n)_+$. Then,

$$\int \Phi(f) d\mu = \sum_{n} \int (|f| - K_n)_+ d\mu \le \sum_{n} 2^{-n} = 1.$$

(??) implies (??)

First, suppose that $\int \Phi(f) d\mu < M$ for $f \in S$. For $\epsilon > 0$, the condition that $\Phi(x)/|x| \to \infty$ as $|x| \to \infty$ gives a K > 0 such that $\Phi(x)/|x| \ge 2M/\epsilon$ whenever |x| > K. Setting $\delta = \epsilon/2K$,

$$\int_{A} |f| d\mu \le \int_{|f|>K} |f| d\mu + K\mu(A)$$

$$< (\epsilon/2M) \int_{|f|>K} \Phi(f) d\mu + K\delta$$

$$< \epsilon/2 + \epsilon/2 = \epsilon.$$

whenever $\mu(A) < \delta$ and $f \in S$.