ALUNO: ARTHUR LOURENÇO MACHADO – PROVA DE 3RSD MATRÍCULA: 1920478300009

1.

Comutação de Circuitos: reserva de recursos antes de caminhar os dados, esse recurso é a largura de banda. Na comutação de circuitos há também a reserva de largura de banda entre as extremidades, fazendo com que a informação de voz percorra o mesmo caminho e chegue na mesma ordem. Isso é necessário para que uma conversa telefônica seja compreendida claramente pelo transmissor e pelo receptor. Mas se houver a reserva para um circuito de um determinado usuário, e ela não for usada, (o usuário permanecer em silêncio durante a ligação, por exemplo), a largura de banda desse circuito será desperdiçada. A reserva exclusiva de largura de banda para o circuito faz o sistema ineficiente, porque dificilmente os dispositivos trocam informações durante 100% do tempo em que ficam conectados. Vantagens: garantia de serviço (qualidade e taxa de transmissão). Desvantagens: mais caro, limitação de clientes simultâneos e desperdício de recursos.

Comutação de Pacotes: é o modelo usado pelo protocolo IP, seus caminhos não são previamente definidos (roteadores tratam de cada pacote individualmente) e a identificação é feita para que cada pacote seja entregue corretamente. A comutação de pacotes é a técnica que envia uma mensagem de dados dividida em pequenas unidades chamadas de pacotes. Ela não exige o prévio estabelecimento de um caminho físico para a transmissão dos pacotes de dados. Os pacotes podem ser transmitidos por diferentes caminhos e chegar fora da ordem em que foram transmitidos. Por esse motivo, a comutação de pacotes é mais tolerante a falhas em relação a comutação de circuitos, pois os pacotes podem percorrer caminhos alternativos até o destino de forma a contornar os equipamentos de comutação inativos. Nesse tipo de comutação, não há a reserva prévia de largura de banda, e assim, também não há o desperdício de recursos. A largura de banda é fornecida sob demanda, como ocorre na tecnologia VoIP. Vantagens: quantidade maior de atendimentos simultâneos, rede resiliente e uso de toda a capacidade do enlace. Desvantagens: problemas com atrasos e perda de pacotes. Este último usado na internet.

2.

a) Ocorre a ligação física entre dois nós. A camada de enlace liga dois nós adjacentes,

não há preocupação com o destino final do pacote apenas com o destino imediato.

Usando os campos de FCS, a camada de enlace pode detectar erros. O Campo FCS é

calculado usando um algoritmo padrão (ex.: CRC, bit de paridade etc). Ao chegar no

próximo nó a camada de enlace verifica o conteúdo com o campo FCS. O método de

paridade é considerado ineficiente, porém é o mais utilizado na detecção de erros. Ele

consiste em ser adicionado, pelo transmissor, um bit de redundância (bit de paridade)

após ou antes da seqüência de bits que pertence à mensagem. Domínio de broadcast

existem dois e domínios de colisão existe apenas um também.

b) Substituir o HUB por um SWITCH. O número de domínios broadcast continuaria o

mesmo, porém o número de domínios de colisão aumentaria dependendo de quantos

computadores estivessem ligados ao SWITCH.

c) Um Acess-Point. Um access point sem fio (WAP) é um dispositivo de rede que

permite aos dispositivos sem fio se conectarem a uma rede cabeada. É mais simples e

fácil instalar WAPs para conectar todos os computadores ou dispositivos na rede do que

usar fios e cabos.

d) Máscara 255.255.255.240 (/28). Porque esta cria 14 hosts em todas as classes.

3.

a) A disponibilidade de um número quase ilimitado de endereços IP é um dos maiores

benefícios da implementação de redes IPv6. Comparado ao IPv4, o IPv6 aumenta o

número de bits do endereço por um fator 4. Desta forma, o endereço que na versão 4

era de 32 bits, passa a ter 128 bits. A implementação de IPSec de forma nativa: Com

o IPSec, a segurança é implementada na camada do IP. Isto faz com que ele seja

transparente para as aplicações, que não precisam ter seu código-fonte alterado para

garantir segurança.

b) Na versão IPV6 existem milhares de bilhões de endereços disponíveis, e todos esses

endereços não poderiam ser representados utilizando 32 bits representado por números

decimais. Por isso, segundo o RFC 2373, o endereço IPV6 seria representado com 128

bits e divididos em 8 grupos de 16 bits (que variam de 0000 até FFFF).

Todos os zeros à esquerda são eliminados, 2 ou mais blocos de "zeros" podem ser representados por "::" e caso exista um bloco de "zeros" separados de outros blocos, este pode ser representado por um único "0".

4.

Letra E.

5.

Fibra óptica. Por ser revestida por um material dielétrico (imune a ondas eletromagnéticas), a fibra óptica não sofre interferência de outras redes de comunicação ao seu redor. Isso faz com que o seu sinal de conexão continue forte e estável. Um outro fator interessante, é que, por proporcionar uma transmissão de dados na velocidade da luz, a fibra óptica amplia a banda larga, potencializando a velocidade da internet e a capacidade de encaminhamento de dados. A fibra óptica não superaquece como o cobre e também não sofre interferência pelo vento, chuva ou outros fatores ambientais.