Tumor origin

- Genetic disease or "environmental" disease?
- What does it mean that a disease is genetic?
- What are the environmental causes that induce tumor development?

What are the causes of cancer?

The majority of cancers is not directly inherited (the genes are wt at the birth)

Cancer is, however, a disease of altered gene expression that originates in DNA mutations and results in proteins with modified functions

Cancer development, or carcinogenesis, requires a series of cellular changes. No single gene (mutation) causes cancer. It is a multistep process caused by accumulated errors in the genes of oncogenes and oncosuppressors

Most cancers develop to the stage of being clinically identifiable only years or decades after the initial DNA damage

What is DNA? What is mRNA?

What is a protein?

Proteins: the structure dictates the function

Pairwise Protein Docking

Multiple Protein Docking

Docking with Disordered Protein

Prediction of Docking Order

Genes and Cancer

Point Mutations

Missense mutation

Point Mutations

Nonsense mutation

Insertion/deletion mutations

Splice-Site Mutations

Regulatory Mutations

Promoter activation

Regulatory Mutations

Regulatory Mutations

The level of expression remains normal, but the receptor is constantly activated

Oncogenes and tumor suppressors

Oncogenes and tumor suppressor genes are present in all cells, and in their normal, non-mutated form contribute to the regulation of cell division and death

In cancer, both types of gene are often mutated, and these alterations contribute to the cancer process

The combined effect of activation of oncogenes and inactivation of tumor suppressor genes is an important driver of cancer progression

Oncogenes

Oncogenes increase the rate of transformation from a normal to a cancerous cell

Oncogene function is changed by mutations so that the protein is produced either in greater quantities or has increased activity

The normal, non-mutated form of an oncogene is called a proto-oncogene. More than 100 oncogenes have been identified

Proto-Oncogenes to Oncogenes

Tumor suppressors

Tumor suppressor genes prevent excessive growth of a cell, either by controlling cell proliferation or by controlling DNA repair and genomic stability

Mutation of a tumor suppressor gene results in the loss of function of the protein product

Tumor Suppressor Genes

Tumor Suppressor Genes

DNA Repair Genes

Artwork by Jeanne Kelly. © 2004.

The Inside Matters: Random Gene Changes

Chance of Cancer? It Depends...

Faulty Gene Repair Activities

Individual variability

Repair Failure

Mutations and Cancer

Genes Implicated in Cancer

The prime suspects	But
Mutations in:	Other mutations also occur in:
Oncogenes	Cell death genes
Tumor suppressor genes	■ Cell signaling genes
DNA repair genes	■ Cell cycle checkpoint genes
	■ Cellular senescence genes
	Cellular differentiation genes
	■ Metastasis/invasion genes
	Carcinogen–activating genes–deactivating genes

Genotypes and Phenotypes

A genotype is the genetic makeup of a person

A phenotype is the physical manifestation of an inherited trait or disease

In cancer, both genotype and phenotype keep changing over time