TD

Chapter 4: Lagrangian Duality
Author: Muth Boravy Date: December 31, 2022

Exercise 1. Consider the optimization problem

minimize
$$x^2 + 1$$

subject to $(x-2)(x-4) \le 0$,

with variable $x \in \mathbb{R}$.

- (a) Analysis of primal problem. Given the feasible set, the optimal value, and the optimal solution.
- (b) Lagrangian and dual function. Plot the objective $x^2 + 1$ versus x. On the same plot, show the feasible set, optimal point and value, and plot the Lagrangian $L(x, \lambda)$ versus x for a few positive values of λ . Verify the lower bound property $(p^* \geq \inf_x L(x, \lambda))$ for $\lambda \geq 0$. Derive and sketch the Lagrange dual function g.
- (c) Lagrange dual problem. State the duel problem, and verify that it is a concave maximization problem. Find the dual optimal value and dual optimal solution λ^* . Does strong duality hold?
- (d) Sensitivity analysis. Let $p^*(u)$ denote the optimal value of the problem

minimize
$$x^2 + 1$$

subject to $(x-2)(x-4) \le u$,

as a function of the parameter u. Plot $p^*(u)$. Verify that $dp^*(0)/du = -\lambda^*$.

Exercise 2. Express the dual problem of

minimize
$$c^T x$$

subject to $f(x) < 0$,

with $c \neq 0$, in term of the conjugate f^* . Explain why the problem you give is convex. We do not assume f is convex.

Exercise 3. Consider the inequality form LP

minimize
$$c^T x$$

subject to $Ax \leq b$,

with $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$. In this exercise we develop a simple geometric interpretation of the dual LP.

Let $w \in \mathbb{R}^m$. If x is feasible for the LP, i.e., satisfies $Ax \leq b$, then it also satisfies the inequality

$$w^T A x \le w^T y$$

Geometrically, for any $w \succeq 0$, the halfspace $H_w = \{x \mid w^T A x \leq w^T y\}$ contain the feasible set for the LP. Therefore if we minimize the objective $c^T x$ over the halfspace H_w we get a lower bound on p^* .

- (a) Derive an expression for the minimum value of $c^T x$ over the halfspace H_w (which will depend on the choice of $w \succeq 0$).
- (b) Formulate the problem of finding the best such bound, by maximizing the lower bound over $w \succeq 0$.
- (c) Relate the result of (a) and (b) to the Lagrange dual of the LP,

Exercise 4. Find the dual function of the LP

minimize
$$c^T x$$

subject to $Gx \leq h$
 $Ax = b$.

Given the dual problem, and make the implicit equality constraint explicit.

Exercise 5. We consider the convex piecewise-linear minimization problem

minimize
$$\max_{i=1,\dots,m} (a_i^T x + b_i)$$

with variable $x \in \mathbb{R}^n$.

(a) Derive a dual problem, based on the Lagrange dual of the equivalent problem

minimize
$$\max_{i=1,...,m} y_i$$

subject to $a_i^T x + b_i = y_i, i = 1,...,m$

with variables $x \in \mathbb{R}^n$, $y \in \mathbb{R}^m$.

- (b) Formulate the piecewise-linear minimization problem as an LP, and form the dual of the LP. Relate the LP dual to the dual obtained in part (a).
- (c) Suppose we approximate the objective function by the smooth function

$$f_0(x) = \log \left(\sum_{i=1}^m \exp(a_i^T x + b_i) \right)$$

and solve the unconstrained geometric program

minimize
$$\log \left(\sum_{i=1}^{m} \exp(a_i^T x + b_i) \right)$$

Let p_{pwl}^* and p_{gp}^* be the optimal values, then show that

$$0 \le p_{\rm gp}^* - p_{\rm pwl}^* \le \log m$$

(d) Derive similar bounds for the difference between p_{pwl}^* and the optimal value of

minimize
$$(1/\gamma) \log \left(\sum_{i=1}^{m} \exp(\gamma(a_i^T x + b_i)) \right)$$
,

where $\gamma > 0$ is a parameter. What happens as we increase γ ?

Exercise 6. Relate the two dual problems derived in example 5.9 on page 257 on main reference.

Exercise 7. Derive a dual problem for

minimize
$$\sum_{i=1}^{N} ||A_i x + b_i||_2 + (1/2)||x - x_0||_2^2$$

The problem data are $A_i \in \mathbb{R}^{m_i \times m}$, $b_i \in \mathbb{R}^{m_i}$, $x_0 \in \mathbb{R}^n$. First introduce new variables $y_i \in \mathbb{R}^{m_i}$ and equality constraints $y_i = A_i x + b_i$.

Exercise 8. Derive a dual problem for

minimize
$$-\sum_{i=1}^{m} \log(b_i - a_i^T x)$$

with domain $\{x \mid a_i^T x < b_i, i = 1, ..., m\}$. First introduce new variables y_i and equality constraints $y_i = b_i - a_i^T x$.

Exercise 9. Prove that the optimal solution of the LP

minimize
$$47x_1 + 93x_2 + 17x_3 - 93x_4$$

subject to
$$\begin{bmatrix} -1 & -6 & 1 & 3 \\ -1 & -2 & 7 & 1 \\ 0 & 3 & -10 & -1 \\ -6 & -11 & -2 & 12 \\ 1 & 6 & -1 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_3 \end{bmatrix} \preceq \begin{bmatrix} -3 \\ 5 \\ -8 \\ -7 \\ 4 \end{bmatrix} cv4$$

Exercise 10. Consider the equality constrained least-squares problem

minimize
$$||Ax - b||_2^2$$

subject to $Gx = h$

where $A \in \mathbb{R}^{m \times n}$ with $\mathbf{rank}A = n$, and $G \in \mathbb{R}^{p \times n}$ with $\mathbf{rank}G = p$. Give he KKT conditions, and derive expressions for the optimal solution x^* and the dual solution ν^* .

Exercise 11. Consider the l_1 -norm minimization problem

minimize
$$||Ax + b + \epsilon d||_1$$

with variable $x \in \mathbb{R}^3$, and

$$A = \begin{bmatrix} -2 & 7 & 1 \\ -5 & -1 & 3 \\ -7 & 3 & -5 \\ -1 & 4 & -4 \\ 1 & 5 & 5 \\ 2 & -5 & -1 \end{bmatrix}, \quad b = \begin{bmatrix} -4 \\ 3 \\ 9 \\ 0 \\ -11 \\ 5 \end{bmatrix}, \quad d = \begin{bmatrix} -10 \\ -13 \\ -27 \\ -10 \\ -7 \\ 14 \end{bmatrix}$$

We denote by $p^*(\epsilon)$ the optimal value as a function of ϵ .

(a) Suppose $\epsilon = 0$. Prove that $x^* = 1$ is optimal. Are there any other optimal points?

(b) Show that $p^*(\epsilon)$ is affine on an interval that includes $\epsilon = 0$.

Exercise 12. Consider the pair of primal and dual LPs

minimize
$$(c + \epsilon d)^T x$$

subject to $Ax \leq b + \epsilon f$

and

minimize
$$-(b+\epsilon f)^T z$$

subject to $A^T z + c + \epsilon d = 0$
 $z \succ 0$

where

$$A = \begin{bmatrix} -4 & 12 & -2 & 1 \\ -17 & 12 & 7 & 11 \\ 1 & 0 & -6 & 1 \\ 3 & 3 & 22 & -1 \\ -11 & 2 & -1 & -8 \end{bmatrix}, \quad b = \begin{bmatrix} 8 \\ 13 \\ -4 \\ 27 \\ -18 \end{bmatrix}, \quad f = \begin{bmatrix} 6 \\ 15 \\ -13 \\ 48 \\ 8 \end{bmatrix}$$

 $(c =)49, -34, -50, -5), d = (3, 8, 21, 25), and \epsilon$ is a parameter.

- (a) Prove that $x^* = (1, 1, 1, 1)$ is optimal when $\epsilon = 0$, by constructing a dual optimal point z^* that has the same objective value as x^* . Are there any other primal or dual optimal solutions?
- (b) Give an explicit expression for the optimal value $p^*(\epsilon)$ as a function of ϵ on an interval that contains $\epsilon = 0$. Specify the interval on which your expression is valid. Also give explicit expressions for the primal solution $x^*(\epsilon)$ and the dual solution $z^*(\epsilon)$ as a function ϵ , on the same interval.

Exercise 13. Derive the Lagrange dual of the optimization problem

minimize
$$\sum_{i=1}^{n} \phi(x_i)$$

subject to $Ax = b$

with variable $x \in \mathbb{R}^n$, where

$$\phi(u) = \frac{|u|}{c - |u|} = -1 + \frac{c}{c - |u|}, \quad \mathbf{dom}\phi = (-c, c)$$

c is positive parameter.

Exercise 14. Show that the dual of the SOCP

minimize
$$f^T x$$

subject to $||A_i x + b_i||_2 \le c_i^T x + d_i$, $i = 1, ..., m$

with variables $x \in \mathbb{R}^n$, can be expressed as

minimize
$$\sum_{i=1}^{m} (b_i^T u_i + d_i v_i)$$
subject to
$$\sum_{i=1}^{m} (A_i^T u_i + c_i v_i) + f = 0$$
$$||u_i||_2 < v_i, \quad i = 1, \dots, m$$

with variables $u_i \in \mathbb{R}^{n_i}, v_i \in \mathbb{R}, i = 1, ..., m$. The problem data are $f \in \mathbb{R}^n, A_i \in \mathbb{R}^{n_i \times n}, b_i \in \mathbb{R}^{n_i}, c_i \in \mathbb{R}$ and $d_i \in \mathbb{R}, i = 1, ..., m$. Derive the dual in the following two ways.

- (a) Introduce new variables $y_i \in \mathbb{R}^{n_i}$ and $t_i \in \mathbb{R}$ and equalities $y_i = A_i x + b_i$, $t_i = c_i^T x + d_i$, and derive the Lagrange dual.
- (b) Start from the conic formulation of the SOCP and use the conic dual. Use that fact that the second-order cone is self-dual.