Project Development Phase Model Performance Test

Date	16 November 2023
Team ID	PNT2022TMIDxxxxxx
Project Name	Project - Anticipating Business Bankruptcy
Maximum Marks	10 Marks

Model Performance Testing:

S.No.	Paramet er	Values	Screenshot			
1.	Metrics	Classification Model: 1) Random Forest classifier • Accuracy score • Classification report • Confusion matrix	[47]: print('Training Accuracy for RandomForest = ", accuracy_score(y_train_resampled,y_predl_train)) Training Accuracy for RandomForest = ", accuracy_score(y_test,y_predl_test)) Testing Accuracy for RandomForest = ", accuracy_score(y_test,y_predl_test)) Testing Accuracy for RandomForest = ", accuracy_score(y_test,y_predl_test)) Testing Accuracy for RandomForest = ", accuracy_score(y_test,y_predl_test)) [49]: print('========RandomForest Classifier========"") print(classification_report(y_test,y_predl_test)) from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt cm=confusion_matrix(y_test,y_predl_test) # Create a heatmap using Seaborn sbn.heatmap(cm, annot=True) plt.xlabel('Tredited') plt.ylabel('Actual') plt.slabel('Tredited') plt.slabel('Tredited') plt.ylabel('Actual') plt.slow() ===================================			

2) SupportVectorMachine (SVM)

- Accuracy score
- Classification report
- Confusion matrix
- [61]: print('Training Accuracy for SVM = ', accuracy_score(y_train_resampled,y_pred4_train))

 Training Accuracy for SVM = 0.8035714285714286
- [62]: print('Testing Accuracy for SVM = ', accuracy_score(y_test,y_pred4_test))

Testing Accuracy for SVM = 0.7099073414112615

```
[63]: print("===========SVM=======")
    print(classification_report(y_test, y_pred4_test))
    from sklearn.metrics import confusion_matrix
    import matplotlib.pyplot as plt

cm = confusion_matrix(y_test, y_pred4_test)

# Create a heatmap using Seaborn
    sbn.heatmap(cm, annot=True, fmt="d", cmap="Blues", cbar=False)
    plt.xlabel('Predicted')
    plt.ylabel('Actual')
    plt.title('Confusion Matrix')
    plt.show()
```

=========SVM=========								
	precision	recall	f1-score	support				
0.0	0.98	0.71	0.83	1352				
1.0	0.07	0.61	0.13	51				
accuracy			0.71	1403				
macro avg	0.53	0.66	0.48	1403				
weighted avg	0.95	0.71	0.80	1403				

Confusion Matrix

3) K-Nearest Neighbors (KNN)

- Accuracy score
- Classification report
- Confusion matrix
- [51]: print('Training Accuracy for KNN = ', accuracy_score(y_train_resampled,y_pred2_train))
 Training Accuracy for KNN = 0.9394892672094745
- [52]: print('Testing Accuracy for KNN = ', accuracy_score(y_test,y_pred2_test))

Testing Accuracy for KNN = 0.812544547398432

