INFORMATIKOS FAKULTETAS

Algoritmų sudarymas ir analizė (P170B400)

Namų darbų ataskaita

(13 variantas)

Atliko:

IFF-9/5 Rokas Sičiovas

Priėmė:

doc. Čalnerytė Dalia

Turinys

1.	Palyginkite funkcijas (a ir b formulių poros), kai $n \to \infty$ (1 lentelė)	3
2.	Suprastinkite funkcionalą (2 lentelė)	4
3.	Įvertinkite eilutės sumą (3 lentelė).	6
	Raskite lygties sprendinį medžio metodu, kai $T(1)=1$ ir galioja 4 lentelėje duotas rekurentinis šis, kai $n\geq 2$	8
	Raskite lygties sprendinį medžio metodu, kai $T(1)=1$ ir galioja 5 lentelėje duotas rekurentinis šis, kai $n\geq 2$.	9
	4 uždavinyje (4 lentelė) gautą rekurentinės lygties atsakymą patikrinkite taikydami pagrindinę emą	. 10
7.	Patikrinkite, ar 5 uždavinyje (5 lentelė) spręstą rekurentinę lygtį tenkina sprendinys $T(n) = O(n^2)$.	. 11
	Pagal duotą uždavinio sąlygą (6 lentelė) užrašykite sprendimą rekurentiniu sąryšiu bendrajam ejui ir pateikite uždavinio sprendimo pavyzdį taikydami dinaminį programavimą	. 12

1. Palyginkite funkcijas (a ir b formulių poros), kai $n \to \infty$ (1 lentelė).

2. Suprastinkite funkcionalą (2 lentelė).

(4)
$$O((\ln (n^2))^2 + \sqrt{n^3})$$
 $f(n) = (\ln (n^2))^2$ olarybars

 $g(n) = \sqrt{n^3}$
 $g(n) = \sqrt{$

4)
$$31 + 8\ln(n) = \frac{8}{n}$$

 $3\sqrt[3]{n^3} = 3 \cdot n^3 = 3 \cdot \frac{3}{4}n^{-\frac{1}{4}} = \frac{9}{4n}$
5) $9n = 9$
 $32\sqrt[3]{n} = 30 \cdot \frac{1}{4}n^{-\frac{3}{4}} = \frac{9}{4n^3}$

3. Įvertinkite eilutės sumą (3 lentelė).

4. Raskite lygties sprendinį medžio metodu, kai T(1) = 1 ir galioja 4 lentelėje duotas rekurentinis sąryšis, kai $n \ge 2$

5. Raskite lygties sprendinį medžio metodu, kai T(1) = 1 ir galioja 5 lentelėje duotas rekurentinis sąryšis, kai $n \ge 2$.

6. 4 uždavinyje (4 lentelė) gautą rekurentinės lygties atsakymą patikrinkite taikydami pagrindinę teoremą.

(a)
$$T(n) = 4 \cdot T(\frac{\pi}{4}) + In$$

$$c_{\alpha} = 4, b = 7, f(n) = In
\int_{1}^{1} \frac{1}{n^{2}} \frac{$$

7. Patikrinkite, ar 5 uždavinyje (5 lentelė) spręstą rekurentinę lygtį tenkina sprendinys $T(n) = O(n^2)$

T(n) =
$$O(n^2)$$
 $T(n) = 7(\frac{n}{6}) + T(\frac{n}{4}) + n$
 $T(\frac{n}{6}) \ge C(\frac{n}{6})^2$; $T(\frac{n}{4}) \ge C(\frac{n}{4})^2$
 $\frac{Cn^2}{36} + \frac{cn^2}{43} + n \ge cn^2$
 $\frac{85cn^2}{1464} + n \ge cn^2 |_{13}^{2}$
 $\frac{95c}{1464} + \frac{1}{n} \ge C$
 $\frac{85cn + 1464}{164n} \ge C$
 $\frac{85cn + 1464}{164n} \ge C$
 $\frac{1464}{1649}$, Visiens $n > 1$
 $C > \frac{1464}{1649}$, Visiens $n > 1$

8. Pagal duotą uždavinio sąlygą (6 lentelė) užrašykite sprendimą rekurentiniu sąryšiu bendrajam atvejui ir pateikite uždavinio sprendimo pavyzdį taikydami dinaminį programavimą.