

Solving Partial Differential Equations:

-> A differential equation with one independent variable is called an ordinary differential equation.

E.g. $3\frac{dy}{dx} + 5y^2 = 3e^{-x}$, y(0) = 5.

where y +8 dependent variable and x 12 independent variable.

If there is more than one independent variable, then the differential equation is called a partial differential equation.

 $\frac{F.g.}{3} = \frac{3^2 u}{3 x^2} + \frac{3^2 u}{3 y^2} = \frac{3^2 + y^2}{3^2}$

where u +18 the dependent variable, and x by are independent variables.

A linear second oder PDE's with two independent variables and one dependent variable has the general form:

 $A\frac{\partial^2 u}{\partial x^2} + B\frac{\partial^2 u}{\partial x \partial y} + C\frac{\partial^2 u}{\partial y^2} + D = 0.$

where A, B. and C are functions of x and y, and D48 a function of x, y, u and $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$.

Depending on the value of B2-4AC, a second order linear PDE can be classified into three categories:

1) If B2-4AC<0, It is called elliptic

99 of B=4AC=0, 9t 18 called elleptic.
99 of B=4AC=0, 9t 18 called parabolic.
99 of 02 4AC=0, 91 00 1111 | July 1

19th of B2-4AC>0, 9th 18 called hyperbolic.

These equations represent a set of four simultaneous linear equations, which is given below:

$$-4u_1+u_2+u_3=-125$$

$$-4u_1+u_2+u_4=-150$$

$$-4u_1+u_4-4u_3=-375$$

$$-375$$

$$-400$$

$$\frac{1}{4} = \frac{U_2 + U_3 + 125}{4}$$

$$\frac{U_2 = U_4 + U_4 + 150}{4}$$

$$\frac{U_3 = U_4 + U_4 + 375}{4}$$

$$\frac{4}{4} = \frac{U_2 + U_3 + 400}{4}$$

Solving above system of equations by using Grauss-Serdal method with anitial guess u2=0, u3=0, and u4=0, we get.

Iteration .	U2	U2	· Uz	U4
1	31.250	45,313	101.563	136.719
2.	67.969	88.672	144.922	158.398
3.	89.648	99.512	155,762	163.818
4.	95.068	102.222	158.472	165.173
5.	96.423	102.899	159.149	165.512
6.	96.762	103.069	159.319	165.597
7.	96.847	103.111	159.361	165.618
8.	96.868	103.121	159.371	165.623 9
9.	96.873	103.124	159.374	165.625

Thus, $u_1 = 96.873$, $u_2 = 103.124$, $u_3 = 159.374$ and $u_4 = 165.625$

2 décimal places 80, we canstop nou

Example 2:- Solve the Laplace's Equation for square region shown below. Boundry values are also given in figure. => -4ug+ug+ug=-6 For u₂ u_{4+u₄+5+5-4u₂=0} ÷ 4-44=-10 For ug u2+u3+2+4-44=0 => U2+U3-4U4=-6. Now representing a set of 4 simultaneous equations and using Grauss-Seidal method with initial guess 420, 43=0 and 4=0 we can get solution eaisly a same as we did in example 1.

Solving the system of equations by using Gauss-Serdal method, we got.

Theration 1	f ₁	f2	f_3	1
1	-0.500	-2.125	-2.125	9.007
2.	-1.563	-4.656	-4.656	-9.063
3.	-2.828	-5.289	-5.289	-10.328 -10.645
4.	-3.145	-5.447	-5.447	-10.724
5.	-3.224	-5.487	-5.487	-10.743
6.	-3.243	-5.497	-5.497	-10,748
7.	-3.248	-5.499	-5,499	-10.750
8.	-3.250	-5.500	-5.500	-10.750
9.	-3.250	-5.500	-5.500	-10.750
4 . 1	4			

Thus, $f_1 = -3.25$, $f_2 = -5.5$, $f_3 = -5.5$ and $f_4 = -10.75$.

Example 2: - Find the Popsson's equation $\nabla^2 f = f(x,y)$ with f(x,y) = xy and f = 2 on boundry by assuming square domain $0 \le x \le 3$ and $0 \le y \le 3$ and -h = 1.

hets divide the domain into goods of 3x3 as below;-

 $\frac{\text{for } f_1}{\text{for } f_2} = f_2 + f_3 + 2 + 2 - 4f_1 = f_2 + f_3 - 4f_1 + 4 = 1$

$$\frac{\text{for } f_2}{\text{for } f_3} = f_1 + f_4 - 4f_2 + 4 = 2$$

$$\frac{\text{for } f_3}{\text{for } f_4} = f_1 + f_4 - 4f_3 + 4 = 2$$

$$\frac{\text{for } f_4}{\text{for } f_4} = f_5 + f_2 - 4f_4 + 4 = 4$$

Now we can solved/did on way as we solved/did on example 1.