Problem 1 (8.5.7). Provide all the details in the proof of the formula for the solution of the Dirichlet problem in a strip discussed in Section 1.3. Recall that it suffices to compute the solution at the points z = iy with 0 < y < 1.

(a) Show that if $re^{i\theta} = G(iy)$, then

$$re^{i\theta} = i\frac{\cos \pi y}{1 + \sin \pi y}$$

This leads to two separate cases: either $0 < y \le 1/2$ and $\theta = \pi/2$ or $1/2 \le y < 1$ and $\theta = -\pi/2$. In either case, show that

$$r^2 = \frac{1 - \sin \pi y}{1 + \sin \pi y}$$
 and $P_r(\theta - \varphi) = \frac{\sin \pi y}{1 - \cos \pi y \sin \varphi}$

(b) In the integral $\frac{1}{2\pi} \int_0^{\pi} P_r(\theta - \varphi) \widetilde{f_0}(\varphi) d\varphi$ make the change of variables $t = F(e^{i\varphi})$. Observe that

$$e^{i\varphi} = \frac{i - e^{\pi t}}{i + e^{\pi t}}$$

and then take the imaginary part and differentiate both sides to establish the two identities

$$\sin \varphi = \frac{1}{\cosh \pi t}$$
 and $\frac{d\varphi}{dt} = \frac{\pi}{\cosh \pi t}$

Hence deduce that

$$\frac{1}{2\pi} \int_0^{\pi} P_r(\theta - \varphi) \widetilde{f_0}(\varphi) d\varphi = \frac{1}{2\pi} \int_0^{\pi} \frac{\sin \pi y}{1 - \cos \pi y \sin \varphi} \widetilde{f_0}(\varphi) d\varphi$$
$$= \frac{\sin \pi y}{2} \int_{-\infty}^{\infty} \frac{f_0(t)}{\cosh \pi t - \cos \pi y} dt$$

(c) Use a similar argument to prove the formula for the integral $\frac{1}{2\pi} \int_{-\pi}^{0} P_r(\theta - \varphi) \widetilde{f}_1(\varphi) d\varphi$.

Proof. (a) By the definition of G we start with

$$re^{i\theta} = \frac{i - e^{i\pi y}}{i + e^{i\pi y}}$$

Replace the $e^{i\theta}$ with sines and cosines, followed by multiplying the top and bottom by the conjugate of the bottom to get

$$\frac{i-e^{i\pi y}}{i+e^{i\pi y}} = \frac{i-\cos\pi y - i\sin\pi y}{i+\cos\pi y + i\sin\pi y} \cdot \frac{\cos\pi y - i(1+\sin\pi y)}{\cos\pi y - i(1+\sin\pi y)}$$

Which then simplifies to

$$i\frac{\cos\pi y}{1+\sin\pi y}$$

In the first case listed above we lie on the positive imaginary axis, and in the second case listed above we are on the negative imaginary axis. Either way we have

$$(\pm ir) = -r^2 = -\frac{\cos^2 \pi y}{(1 + \sin \pi y)^2}$$
$$r^2 = \frac{1 - \sin^2 \pi y}{(1 + \sin \pi y)^2}$$
$$= \frac{1 - \sin \pi y}{1 + \sin \pi y}$$

By definition of $P_r(\theta - \varphi)$ we have

$$P_r(\theta - \varphi) = \frac{1 - r^2}{1 - 2r\cos(\theta - \varphi) + r^2}$$

Substitute in for r^2 and simplify to get

$$\begin{split} P_r(\theta - \varphi) &= \frac{1 - r^2}{1 - 2r\cos(\theta - \varphi) + r^2} \\ &= \frac{1 - \frac{1 - \sin\pi y}{1 + \sin\pi y}}{1 - 2r\cos(\theta - \varphi) + \frac{1 - \sin\pi y}{1 + \sin\pi y}} \\ &= \frac{1 - \frac{1 - \sin\pi y}{1 + \sin\pi y}}{1 - 2r(\cos\theta\cos\varphi + \sin\theta\sin\varphi) + \frac{1 - \sin\pi y}{1 + \sin\pi y}} \cdot \frac{1 + \sin\pi y}{1 + \sin\pi y} \\ &= \frac{2\sin\pi y}{2 - 2r(1 + \sin\pi y)(\sin\theta\sin\varphi)} \\ &= \frac{\sin\pi y}{1 - (e^{i(\theta + \pi/2)}\cos\pi y)(\sin\theta\sin\varphi)} \end{split}$$

From here since we know what θ is, we can simplify to

$$P_r(\theta - \varphi) = \frac{\sin \pi y}{1 - \cos \pi y \sin \varphi}$$

(b) Since F and G are inverses we have that

$$G(t) = G(F(e^{i\varphi})) = e^{i\varphi} = \frac{i - e^{\pi t}}{i + e^{\pi t}}$$

Which by multiplying the top and bottom by the conjugate of the bottom we get

$$e^{i\varphi} = G(t) = \frac{1 - e^{2\pi t} + 2ie^{\pi t}}{1 + e^{2\pi t}}$$

From there take the imaginary part to get

$$\sin \varphi = \frac{2e^{\pi t}}{1 + e^{2\pi t}} = \operatorname{sech} \pi t$$

Taking the derivative of both sides we get

$$\cos\varphi \frac{d\varphi}{dt} = -\pi \tanh \pi t \operatorname{sech} \pi t$$

However $\cos \varphi$ is the real part of G(t) which is equal to

$$\cos \varphi = \frac{1 - e^{2\pi t}}{1 + e^{2\pi t}} = -\tanh \pi t$$

Which cancels the $-\tanh \pi t$ on each side giving us

$$\frac{d\varphi}{dt} = \pi \operatorname{sech} \pi t$$

Now we can use the above pieces to transform the integral

$$\begin{split} \frac{1}{2\pi} \int_0^{\pi} P_r(\theta - \varphi) \widetilde{f}_0(\varphi) d\varphi &= \frac{1}{2\pi} \int_0^{\pi} \frac{\sin \pi y}{1 - \cos \pi y \sin \varphi} \widetilde{f}_0(\varphi) d\varphi \\ &= \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\sin \pi y}{1 - \cos \pi y \cosh \pi t} \cdot \frac{\pi}{\cosh \pi t} dt \\ &= \frac{\sin \pi y}{2} \int_{-\infty}^{\infty} \frac{f_0(t)}{\cosh \pi t - \cos \pi y} dt \end{split}$$

(c) We proceed similarly. However since $\tilde{f}_1(\varphi) = f_1(F(e^{i\varphi}) - i)$ we instead let $t = F(e^{i\varphi} - i)$. This will cause a + i to appear in the exponent which will make the calculations the same as before with a small sign change.

$$G(t+i) = e^{i\varphi} = \frac{i - e^{i\pi + \pi t}}{i + e^{\pi i + \pi t}} = \frac{1 - e^{2\pi t} - 2ie^{\pi t}}{1 + e^{2\pi t}}$$

Taking the imaginary part instead gives us

$$\sin \varphi = - \operatorname{sech} \pi t$$

and the real part

$$\cos \varphi = -\tanh \pi t$$

Which when we take the derivative again will give us

$$\cos\varphi \frac{d\varphi}{dt} = \pi \tanh \pi t \operatorname{sech} \pi t$$

This then turns into

$$\frac{d\varphi}{dt} = -\pi \operatorname{sech} \pi t$$

Now we can once again transform the integral

$$\frac{1}{2\pi} \int_{-\pi}^{0} P_r(\theta - \varphi) \widetilde{f}_1(\varphi) d\varphi = \frac{1}{2\pi} \int_{-\pi}^{0} \frac{\sin \pi y}{1 - \cos \pi y \sin \varphi} \widetilde{f}_1(\varphi) d\varphi
= -\frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{\sin \pi y}{1 + \cos \pi y \operatorname{sech} \pi t} f_1(t) \cdot \frac{-\pi}{\cosh \pi t} dt
= \frac{\sin \pi y}{2} \int_{-\infty}^{\infty} \frac{f_1(t)}{\cosh \pi t + \cos \pi y} dt$$

Problem 2 (8.5.9). Prove that the function u defined by

$$u(x,y) = \Re(\frac{i+z}{i-z}), \quad u(0,1) = 0$$

is harmonic in the unit disc and vanishes on the boundary. Note that u is not bounded in \mathbb{D} .

Proof. Since u is the real part of a holomorphic function it is harmonic. If we write z = x + iy we can rewrite u(x, y) as

$$\Re\left(\frac{i+z}{i-z}\right) = \frac{1-x^2-y^2}{x^2+(1-y)^2} = \frac{1-|z|^2}{x^2+(1-y)^2}$$

If |z| = 1 and $z \neq i$, the top vanishes giving us that u(x, y) = 0. Since we decreed that u(0, 1) = 0 we can conclude that u vanishes on $\partial \mathbb{D}$.

Problem 3 (8.5.16). Let

$$f(z) = \frac{i-z}{i+z}$$
 and $f^{-1}(w) = i\frac{1-w}{1+w}$

(a) Given $\theta \in \mathbb{R}$, find real numbers a, b, c, d so that ad - bc = 1, and so that for any $z \in \mathbb{H}$

$$\frac{az+b}{cz+d} = f^{-1}(e^{i\theta}f(z))$$

(b) Given $\theta \in \mathbb{R}$, find real numbers a, b, c, d so that ad - bc = 1, and so that for any $z \in \mathbb{H}$

$$\frac{az+b}{cz+d} = f^{-1}(\psi_{\alpha}(f(z)))$$

with ψ_a defined in Section 2.1.

(c) Prove that if g is an automorphism of the unit disc, then there exist real numbers a, b, c, d such that ad - bc = 1 and so that for any $z \in \mathbb{H}$

$$\frac{az+b}{cz+d} = f^{-1} \circ g \circ f(z)$$

[Hint: Use parts (a) and (b)].

Proof. (a) The equivalent transformation is

$$\frac{\sin(\theta/2) + \cos(\theta/2)z}{\cos(\theta/2) - \sin(\theta/2)z}$$

The expanded form of $f^{-1}(e^{i\theta}f(z))$ is

$$\frac{(e^{i\theta} - 1) + iz(1 + e^{i\theta})}{i(1 + e^{i\theta}) - (e^{i\theta} - 1)z}$$

However I have not been able to figure out how to go from one to the other. I got that they were equivalent using the computer. Also did this for (b) however that one was relatively straightforward once I knew what to look for.

(b) Similarly the equivalent transformation is

$$\frac{\Re(\alpha) - 1 + z\Im(\alpha)}{z(\Re(\alpha) + 1) - \Im(\alpha)} \cdot \frac{(1 - |\alpha|^2)^{-1/2}}{(1 - |\alpha|^2)^{-1/2}}$$

To derive this, begin with $f^{-1} \circ \psi_{\alpha} \circ f(z)$ to get

$$\frac{i - i\frac{\alpha - \frac{i - z}{i + z}}{1 - \overline{\alpha}\frac{i - z}{i + z}}}{1 + \frac{\alpha - \frac{i - z}{i + z}}{1 - \overline{\alpha}\frac{i - z}{i + z}}} = \frac{(\overline{\alpha} - 1) + iz(1 + \overline{\alpha}) + (\alpha - 1) - iz(\alpha + 1)}{i(1 - \overline{\alpha}) + z(1 + \overline{\alpha}) + i(\alpha - 1) + z(\alpha + 1)}$$

$$= \frac{\overline{\alpha} - 2 + \alpha + iz\overline{\alpha} - iz\alpha}{i\alpha - i\overline{\alpha} + i2z + z\alpha + z\overline{\alpha}}$$

$$= \frac{2\Re(\alpha) - 2 + 2\Im(\alpha)z}{-2\Im(\alpha) + 2z(\Re(\alpha) + 1)}$$

which we can then renormalize to get

$$\frac{\Re(\alpha)-1+z\Im(\alpha)}{z(\Re(\alpha)+1)-\Im(\alpha)}\cdot\frac{(|\alpha|^2-1)^{-1/2}}{(|\alpha|^2-1)^{-1/2}}$$

as desired.

(c) From class we know that any automorphism of \mathbb{D} is the composition of a rotation $\rho(z)$ and a $\psi_{\alpha}(z)$. Let $g(z) = \rho \circ \psi_{\alpha}(z)$. Then

$$f^{-1} \circ g \circ f(z) = f^{-1} \circ \rho \circ \psi_{\alpha} \circ f(z)$$
$$= (f^{-1} \circ \rho \circ f) \circ (f^{-1} \circ \psi_{\alpha} \circ f)(z)$$

At this point we know that both $f^{-1} \circ \rho \circ f$ and $f^{-1} \circ \psi_{\alpha} \circ f$ are of the form $\frac{az+b}{cz+d}$ with ad-bc=1. Moreover since composition of two transformations of the above form gives another of its kind it must be that g(z) is of the form $\frac{az+b}{cz+d}$.

Problem 4 (8.5.20). Other examples of elliptic integrals providing conformal maps form the upper half-plane to rectangles providing conformal maps from the upper half-plane to rectangles are given below.

(a) The function

$$S(z) = \int_0^z \frac{d\zeta}{\sqrt{\zeta(\zeta - 1)(\zeta - \lambda)}}, \quad \lambda \in \mathbb{R} \setminus \{1\}$$

maps the upper half-plane conformally to a rectangle, one of whose vertices is the image of the point at infinity.

(b) In the case $\lambda = -1$, the image of

$$S(z) = \int_0^z \frac{d\zeta}{\sqrt{\zeta(\zeta^2 - 1)}}$$

is a square whose side lengths are $\frac{\Gamma^2(1/4)}{2\sqrt{2\pi}}$.

- *Proof.* (a) By proposition 8.4.1, we fall into the second case, and so the image of the upper half plane is a quadrangle with corners $S(0), S(1), S(\lambda)$, and $S(\infty)$ where the angle corresponding to $S(\infty)$ is $\pi/2$. In addition we also get from the proposition that the rest of the angles are $\pi/2$ since they are each to the 1/2 power. So the polygon must in fact be a rectangle.
 - (b) From above we know that the shape is a rectangle. All that is left to confirm is that the side lengths are $\frac{\Gamma^2(1/4)}{2\sqrt{2\pi}}$. Starting with the side S(0) to S(1) make the substitution $\sqrt{u} = \zeta$ to get

$$\int_0^1 \frac{d\zeta}{\sqrt{\zeta(\zeta^2 - 1)}} = \frac{1}{2} \int_0^1 u^{-3/4} (1 - u)^{-1/2} du = \frac{B(1/4, 1/2)}{2}$$

From the last homework we have that

$$\frac{B(1/4,1/2)}{2} = \frac{\Gamma(1/4)\Gamma(1/2)}{2\Gamma(3/4)} = \frac{\Gamma(1/4)\sqrt{\pi}}{2\frac{\sqrt{2}\pi}{\Gamma(1/4)}} = \frac{\Gamma^2(1/4)}{2\sqrt{2\pi}}$$

To get another side we do |S(-1) - 0| = |S(-1)| instead doing the substitution $-\sqrt{u} = \zeta$ to get

$$\left| \int_0^{-1} \frac{d\zeta}{\sqrt{\zeta(\zeta^2 - 1)}} \right| = \left| \frac{1}{2} \int_0^1 \frac{du}{u^{3/4} (u - 1)^{1/2}} \right| = \frac{B(1/4, 1/2)}{2} = \frac{\Gamma^2(1/4)}{2\sqrt{2\pi}}$$

Since we have a rectangle and two non-opposite sides are equal in length the polygon must be a square.

Problem 5 (8.5.21). We consider the conformal mappings to triangles.

(a) Show that

$$S(w) = \int_0^w z^{-\beta_1} (1-z)^{-\beta_2} dz$$

with $0 < \beta_1 < 1$, $0 < \beta_2 <$, and $1 < \beta_1 + \beta_2 < 2$, maps \mathbb{H} to a triangle whose vertices are the images of 0,1, and ∞ , and with angles $\alpha_1\pi$, $\alpha_2\pi$, and $\alpha_3\pi$, where $\alpha_j + \beta_j = 1$ and $\beta_1 + \beta_2 + \beta_3 = 2$.

- (b) What happens when $\beta_1 + \beta_2 = 1$?
- (c) What happens when $0 < \beta_1 + \beta_2 < 1$?
- (d) In (a), the length of the side of the triangle opposite angle $\alpha_j \pi$ is $\frac{\sin(\alpha_j \pi)}{\pi} \Gamma(\alpha_1) \Gamma(\alpha_2) \Gamma(\alpha_3)$.

Proof. (a) Using proposition 8.4.1, we have that the image $S(\mathbb{H})$ is a is a triangle with points at S(0), S(1), and $S(\infty)$. The angles corresponding to each side are then $\alpha_0 \pi, \alpha_1 \pi, \alpha_\infty \pi$ where $\alpha_z = 1 - \beta_z$ and $\beta_0 + \beta_1 + \beta_\infty = 2$ from the proposition.

- (b) Following in a similar fashion to the last problem we get a "degenerate" triangle that is a straight line (angle at infinity is π).
- (c) We get a triangle with a vertex at infinity and a vertex at S(0), S(1) with non-intersecting rays emerging from each.
- (d) If we have one side the others follow from using law of sines. The length of the side corresponding to S(0) and S(1) has length $|S(1)-S(0)|=|S(1)|=|\int_0^1 z^{-\beta_1}(1-z)^{-\beta_2}dz|$. However this is exactly $B(1-\beta_1,1-\beta_2)$. Using that the relation between the beta function and the gamma from the prior homework along with the property that $\Gamma(s)\Gamma(1-s)=\frac{\pi}{\sin\pi s}$ we get

$$B(1-\beta_1,1-\beta_2) = \frac{\Gamma(1-\beta_1)\Gamma(1-\beta_2)}{\Gamma(\beta_\infty)} = \frac{\Gamma(\alpha_1)\Gamma(\alpha_2)}{\Gamma(1-\alpha_\infty)} = \frac{\sin(\alpha_\infty\pi)}{\pi}\Gamma(\alpha_1)\Gamma(\alpha_2)\Gamma(\alpha_\infty)$$

The length of the other sides then follows immediately from the application of law of sines.

Problem 6 (8.6.2). The angle between two non-zero complex numbers z and w (taken in that order) is simply the oriented angle, in $(-\pi, \pi]$, that is formed between the two vectors in \mathbb{R}^2 corresponding to the points z and w. This oriented angle, say α , is uniquely determined by the two quantities

$$\frac{(z,w)}{|z||w|}$$
 and $\frac{(z,-iw)}{|z||w|}$

which are simply the cosine and sine of α , respectively. Here, the notation (\cdot, \cdot) corresponds to the usual Euclidean inner product in \mathbb{R}^2 , which in terms of complex numbers takes the form $(z, w) = \Re(z\overline{w})$.

In particular, we may now consider two smooth curves $\gamma:[a,b]\to\mathbb{C}$ and $\eta:[a,b]\to\mathbb{C}$, that intersect at z_0 , say $\gamma(t_0)=\eta(t_0)=z_0$ for some $t_0\in(a,b)$. If the quantities $\gamma'(t_0)$ and $\eta'(t_0)$ are non-zero, then they represent the tangents to the curves γ and η at the point z_0 , and we say that the two curves intersect at z_0 at the angle formed by the two vectors $\gamma'(t_0)$ and $\eta'(t_0)$.

A holomorphic function f defined near z_0 is said to **preserve angles** at z_0 if for any two smooth curves γ and η intersecting at z_0 , the angle formed between the curves γ and η at z_0 equals the angle formed between the curves $f \circ \gamma$ and $f \circ \eta$ at $f(z_0)$. In particular we assume that the tangents to the curves γ , γ , γ , and γ and γ at the point γ and γ are all non-zero.

(a) Prove that if $f: \Omega \to \mathbb{C}$ is holomorphic, and $f'(z_0) \neq 0$, then f preserves angles at z_0 . [Hint: Observe that

$$(f'(z_0)\gamma'(t_0), f'(z_0)\eta'(t_0)) = |f'(z_0)|^2(\gamma'(t_0), \eta'(t_0)))$$

]

- (b) Conversely, prove the following: suppose $f:\Omega\to\mathbb{C}$ is complex-valued function, that is real differentiable at $z_0\in\Omega$, and $J_f(z_0)\neq0$. If f preserves angles at z_0 , then f is holomorphic at z_0 with $f'(z_0)\neq0$.
- *Proof.* (a) From the problem description if the two listed quantities are preserved then so is the angle. Using the suggested inequality along with the chain rule we get

$$\begin{split} \frac{(f'(z_0)\gamma'(t_0), f'(z_0)\eta'(t_0))}{|f'(z_0)\gamma'(t_0)||f'(z_0)\eta'(t_0)|} &= \frac{|f'(z_0)|^2(\gamma'(t_0), \eta'(t_0)))}{|f'(z_0)\gamma'(t_0)||f'(z_0)\eta'(t_0)|} \\ &= \frac{(\gamma'(t_0), \eta'(t_0)))}{|\gamma'(t_0)||\eta'(t_0)|} \end{split}$$

And similarly

$$\begin{split} \frac{(f'(z_0)\gamma'(t_0),if'(z_0)\eta'(t_0))}{|f'(z_0)\gamma'(t_0)||f'(z_0)\eta'(t_0)|} &= \frac{|f'(z_0)|^2(\gamma'(t_0),i\eta'(t_0)))}{|f'(z_0)\gamma'(t_0)||f'(z_0)\eta'(t_0)|} \\ &= \frac{(\gamma'(t_0),i\eta'(t_0)))}{|\gamma'(t_0)||\eta'(t_0)|} \end{split}$$

(b) Let z(t) = x(t) + iy(t) be a smooth curve in the complex plane and f(x,y) = u(x,y) + iv(x,y) a complex valued function fulfilling the conditions above. Define $w(t) = f \circ z(t)$. Then take the derivative of w to get

$$w'(t) = u_x x' + u_y y' + i v_x x' + i v_y y'$$

$$= f_x x' + f_y y'$$

$$= \frac{1}{2} (2f_x x' + 2f_y y' + i f_y x' - i f_y x' + i f_x y' - i f_x y')$$

$$= \frac{1}{2} (f_x - i f_y)(x' + i y') + \frac{1}{2} (f_x + i f_y)(x' - i y')$$

$$= \frac{1}{2} (f_x - i f_y) z' + \frac{1}{2} (f_x + i f_y) \overline{z'}$$

With the right side containing one form of the Cauchy-Riemann equations.

Next consider

$$\frac{w'}{z'} = \frac{1}{2}(f_x - if_y) + \frac{1}{2}(f_x + if_y)\frac{\overline{z'}}{z'}$$

Since f preserves angles it stands to reason that as we vary t that the argument of the expression will not change. If we write $z(t) = re^{i\theta}$ then we have $\frac{\overline{z'}}{z} = re^{-2\theta}$. As such we can only actually get a constant argument in the above expression if $(f_x + if_y) = 0$. However this is equivalent to f being holomorphic.