

تجزیه و تحلیل حلقه و کات ست

امير عباس شايگاني اكمل

T یک درخت از گراف متصل به هم g گفته می شود چنانچه:

- T یک زیر گراف متصل به هم باشد.
 - T شامل تمام گره های g باشد.
 - T شامل هیچ حلقه ای نباشد.

شاخه های Tرا شاخه درخت و شاخه هایی از g را که در T نباشند، لینک می نامند.

مثالی از یک گراف و چند درخت آن

مثالی دیگر

قضیه اساسی نظریه گراف

گراف متصل به هم g با n_t گره و d شاخه و یک درخت T از g داده شدهاند

۱- میان هر جفت گره از g مسیر یکتایی در روی درخت وجود دارد.

اینک وجود دارند. $b-n_t+1$ ساخه درخت و n_t-1

T هر لینک T و مسیر یکتای میان گرههای دوسر آن در روی درخت، حلقه یکتایی تشکیل میدهد (این حلقه را حلقه اساسی متناظر با لینک گویند).

۴- هر شاخه درخت T همراه با بعضی از لینکها، کاتست یکتایی از g را تعریف میکند. این کاتست را کاتست اساسی متناظر با آن شاخه درخت گویند. به عبارت دیگر به تعداد شاخههای درخت کاتست اساسی داریم.

مثال قضیه اساسی نظریه گراف

set 1: $i_1 - i_6 = 0$

set 2: $i_2 - i_6 + i_8 + i_9 = 0$

set 3: $i_3 + i_7 + i_8 + i_9 = 0$

set 4: $i_4 - i_7 = 0$

set 5: $i_5 + i_9 = 0$

ادامه مثال

 $\mathbf{Q} = [\mathbf{1}_{n-1}, \mathbf{Q}_{\ell}]$

Cut set 1: $i_1 - i_6 = 0$

Cut set 2: $i_2 - i_6 + i_8 + i_9 = 0$

Cut set 3: $i_3 + i_7 + i_8 + i_9 = 0$

Cut set 4: $i_4 - i_7 = 0$

Cut set 5: $i_5 + i_9 = 0$

$$n-1 \text{ Cut sets} \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & -1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i_1 \\ i_2 \\ i_3 \\ \vdots \\ i_9 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$n-1 \text{ twigs} \qquad \qquad \ell \text{ links}$$

تجزیه و تحلیل کات ست

$$\mathbf{Qi} = \mathbf{0} \tag{3.2}$$

where Q is an $(n-1) \times b$ matrix called the fundamental cut-set matrix associated with a tree \mathcal{T} . Its jkth element is defined as follows:

$$q_{jk} = \begin{cases} 1 & \text{if branch } k \text{ belongs to cut set } j \\ & \text{and has the same direction} \end{cases}$$

$$-1 & \text{if branch } k \text{ belongs to cut set } j \\ & \text{and has the opposite direction} \end{cases}$$

$$0 & \text{if branch } k \text{ does not belong to cut set } j$$

معادلات KVL

 $\mathbf{v} = \mathbf{Q}^T \mathbf{v}$

$$v_1 = v_{t1}$$

$$v_2 = v_{t2}$$

$$v_3 = v_{t3}$$

$$v_4 = v_{t4}$$

$$v_5 = v_{t5}$$

$$v_{6} = -v_{1} - v_{2} = -v_{t1} - v_{t2}$$

$$v_{7} = v_{3} - v_{4} = v_{t3} - v_{t4}$$

$$v_{8} = v_{2} + v_{3} = v_{t2} + v_{t3}$$

$$v_{9} = v_{2} + v_{3} + v_{5} = v_{t2} + v_{t3} + v_{t5}$$

$$\begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_g \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ -1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & -1 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_{t1} \\ v_{t2} \\ v_{t3} \\ v_{t4} \\ v_{t5} \end{bmatrix}$$

جمع بندي نتايج تعريف درخت

(3.6)

Kirchhoff's equations based on the fundamental cut-set matrix Q of (n-1) rows and b columns:

KCL:

$$Qi = 0$$

KVL:

$$\mathbf{v} = \mathbf{Q}^T \mathbf{v}$$

If twigs are labeled first from 1 to n-1, then

$$\mathbf{Q} = [\mathbf{1}_{n-1}, \mathbf{Q}_{\ell}]$$

REMARKS

1. The two equations in (3.6) are generalizations of the following familiar Kirchhoff's equations based on nodes and the reduced incidence matrix A:

KCL:
$$\mathbf{Ai} = \mathbf{0} \tag{3.7}$$

 $\mathbf{KVL:} \qquad \qquad \mathbf{v} = \mathbf{A}^T \mathbf{e}$

2. Obviously, the fundamental cut-set matrix \mathbf{Q} associated with a tree represents a special case of the reduced cut-set matrix \mathbf{Q}_R introduced in Sec. 2. While for many digraphs, the reduced incidence matrix \mathbf{A} is a special case of the fundamental cut-set matrix, i.e., a tree can be chosen such that the \mathbf{Q} obtained is identical with the reduced incidence matrix for a particular datum node. This is not always possible as in the graph in Fig. 3.3.

۱- متغیرهای معادلات کات ست، ولتاژ شاخه های درخت هستند.

۲- عناصر قطر اصلی برابر با مجموع ادمیتانسهای حاضر در کات ست مربوطه

۳- عناصر قطر فرعی i و j لینکهای مشترک بین کات ست i و کات ست j هستند. اگر جهت کات ست ها برای لینک مشترک مخالف باشد، علامت ان منفی و در غیر این صورت علامت آن مثبت خواهد بود.

۴- جهت منبع جریان با جهت مخالف کات ست، مثبت و در غیر اینصورت منفی خواهد بود.

مثال کات ست حالت دائم سینوسی

مثال کات ست، گراف و درخت

حل مثال کات ست

$$\begin{bmatrix} G_1 + G_4 & G_4 & 0 \\ G_4 & G_4 + \frac{1}{j\omega} \Gamma_5 + j\omega C_2 & -\frac{\Gamma_5}{j\omega} \\ 0 & -\frac{\Gamma_5}{j\omega} & \frac{1}{j\omega} (\Gamma_3 + \Gamma_5) \end{bmatrix}$$

حل مثال کات ست

$$\begin{bmatrix} I_{s4} \\ I_{s4+g_mV_1} - \frac{\Gamma_m}{j\omega} V_{t3} \\ \frac{\Gamma_m}{j\omega} V_{t3} - \frac{\Gamma_m}{j\omega} (V_{t2}-V_{t3}) \end{bmatrix}$$

$$\begin{bmatrix} G_1 + G_4 & G_4 & 0 \\ G_4 & G_4 + \frac{1}{j\omega} \Gamma_5 + j\omega C_2 & -\frac{\Gamma_5}{j\omega} \\ 0 & -\frac{\Gamma_5}{j\omega} & \frac{1}{j\omega} (\Gamma_3 + \Gamma_5) \end{bmatrix} \begin{bmatrix} I_{s4} \\ I_{s4} + g_m V_1 - \frac{\Gamma_m}{j\omega} V_{t3} \\ \frac{\Gamma_m}{j\omega} V_{t3} - \frac{\Gamma_m}{j\omega} (V_{t2} - V_{t3}) \end{bmatrix}$$

$$\begin{bmatrix} I_{s4} \\ I_{s4+g_mV_1} - \frac{\Gamma_m}{j\omega} V_{t3} \\ \frac{\Gamma_m}{j\omega} V_{t3} - \frac{\Gamma_m}{j\omega} (V_{t2}-V_{t3}) \end{bmatrix}$$

$$\begin{bmatrix} G_1 + G_4 & G_4 & 0 \\ G_4 - g_m & G_4 + \frac{1}{j\omega} \Gamma_5 + j\omega C_2 & -\frac{\Gamma_5}{j\omega} + \frac{\Gamma_m}{j\omega} \\ 0 & -\frac{\Gamma_5}{j\omega} + \frac{\Gamma_m}{j\omega} & \frac{1}{j\omega} (\Gamma_3 + \Gamma_5 + 2\Gamma_m) \end{bmatrix}$$

تجزیه و تحلیل حلقه

Loop 1:

Loop 2:

Loop 3:

Loop 4:

$$v_5 + v_1 + v_2 = 0$$

$$v_7 - v_3 + v_4 = 0$$

$$v_8 - v_2 - v_3 = 0$$

$$v_9 - v_2 - v_3 - v_5 = 0$$

نوشتن معادلات حلقه

Loop 1:
$$v_5 + v_1 + v_2 = 0$$

Loop 2:
$$v_7 - v_3 + v_4 = 0$$

Loop 3:
$$v_8 - v_2 - v_3 = 0$$

Loop 4:
$$v_9 - v_2 - v_3 - v_5 = 0$$

$$\ell \text{ loops} \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & -1 & -1 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & -1 & -1 & 0 & -1 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \\ \vdots \\ v_9 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathbf{B}\mathbf{v} = \mathbf{0}$$

نوشتن B

$$\mathbf{B}\mathbf{v} = \mathbf{0}$$

$$\mathbf{B} = [\mathbf{B}_{t}, \mathbf{1}_{t}]$$

where **B** is an $\ell \times b$ matrix called the *fundamental loop matrix* associated with the tree \mathcal{T} . Its *jk*th element is defined as follows:

$$b_{jk} = \begin{cases} 1 & \text{if branch } k \text{ is in loop } j \text{ and their reference directions are the same} \\ -1 & \text{if branch } k \text{ is in loop } j \text{ and their reference directions are opposite} \\ 0 & \text{if branch } k \text{ is not in loop } j \end{cases}$$

معادلات KCL

$$i_6 = i_{\ell 1}$$

$$i_7 = i_{\ell 2}$$

$$i_8 = i_{\ell 3}$$

$$i_9 = i_{\ell 4}$$

$$\begin{split} i_1 &= i_{\ell 1} \\ i_2 &= i_{\ell 1} - i_{\ell 3} - i_{\ell 4} \\ i_3 &= -i_{\ell 2} - i_{\ell 3} - i_{\ell 4} \\ i_4 &= i_{\ell 2} \\ i_5 &= -i_{\ell 4} \end{split}$$

نوشتن KCL

$$\begin{split} i_1 &= i_{\ell 1} \\ i_2 &= i_{\ell 1} - i_{\ell 3} - i_{\ell 4} \\ i_3 &= -i_{\ell 2} - i_{\ell 3} - i_{\ell 4} \\ i_4 &= i_{\ell 2} \\ i_5 &= -i_{\ell 4} \\ i_6 &= i_{\ell 1} \\ i_7 &= i_{\ell 2} \\ i_8 &= i_{\ell 3} \\ i_9 &= i_{\ell 4} \end{split}$$

$$\begin{bmatrix} i_1 \\ i_2 \\ \vdots \\ \vdots \\ i_9 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 0 & -1 & -1 \\ 0 & -1 & -1 & -1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} i_{\ell 1} \\ i_{\ell 2} \\ i_{\ell 3} \\ i_{\ell 4} \end{bmatrix}$$

$$\mathbf{i} = \mathbf{B}^T \mathbf{i}_{\ell}$$

جمع بندی

Kirchhoff's equations based on the fundamental loop matrix **B** of ℓ rows and b columns

KVL:

$$\mathbf{B}\mathbf{v} = \mathbf{0}$$

(3.13)

KCL:

$$\mathbf{i} = \mathbf{B}^T \mathbf{i}_{\ell}$$

If twigs are numbered first from 1 to n-1,

$$\mathbf{B} = [\mathbf{B}_{\iota}, \mathbf{1}_{\ell}]$$

REMARKS

- 1. The fundamental loop matrix **B** associated with a tree \mathcal{T} is obviously a special case of the reduced loop matrix \mathbf{B}_R . In deriving the KVL equations $\mathbf{B}\mathbf{v} = \mathbf{0}$ based on a tree, we have demonstrated that **B** is of rank $\ell = b (n-1)$. Thus the number of a maximal and linearly independent set of KVL equations based on loops is equal to ℓ , i.e., \mathbf{B}_R is of rank ℓ .
- 2. We have mentioned duality in deriving the fundamental loop matrix B from the fundamental cut-set matrix Q. It should be clear to the reader by now that there indeed exist many dual terms. We summarize some of these in Table 3.1.

نوشتن معادلات حلقه بصورت ميانبر

۱- متغیرهای معادلات حلقه، جریان لینک های مربوط به درخت مورد نظر هستند.

۲- عناصر قطر اصلی برابر با مجموع امپدانسهای حاضر در حلقه j
 ۳- عناصر قطر فرعی j و j شاخه های مشترک بین حلقه j و حلقه j
 هستند. اگر جهت حلقه ها برای شاخه مشترک یکسان باشد، علامت امپدانس آن مثبت و در غیر این صورت علامت آن منفی خواهد بود.
 ۲- برای علامت منبع ولتاژ اگر حلقه با قطب منفی منبع برخورد می
 کند، مثبت در نظر گرفته می شود و در غیر اینصورت منفی خواهد بود.

Table 3.1 Dual terms in loop and cut-set analysis

Loop analysis	Cut-set analysis
Link	Twig
Fundamental loop	Fundamental cut set
Link current, i,	Twig voltage, v,
Fundamental loop matrix, B	Fundamental cut-set matrix, Q

رابطه بین Q و B

Theorem Let Q and B be the fundamental cut-set matrix and the fundamental loop matrix, respectively, of a connected digraph \mathcal{G} for a specified tree \mathcal{T} ; then

$$\mathbf{BQ}^T = \mathbf{0} \tag{3.14}$$

PROOF We have, for an arbitrary twig voltage vector $\mathbf{v}_t = [v_{t1}, v_{t2}, \dots, v_{t(n-1)}]^T$,

$$\mathbf{v} = \mathbf{Q}^T \mathbf{v}_t \tag{3.15}$$

This says that the b-vector \mathbf{v} is expressed by KVL in terms of linear combinations of v_{tk} 's by the matrix \mathbf{Q}^T . Next, we have, by KVL, a set of linear constraints on the b-vector \mathbf{v} , given by

$$\mathbf{B}\mathbf{v} = \mathbf{0} \tag{3.16}$$

Thus, premultiplying Eq. (3.15) by B and using Eq. (3.16), we obtain

$$\mathbf{BQ}^T \mathbf{v}_i = \mathbf{0} \qquad \text{for all } \mathbf{v}_i \tag{3.17}$$

Thus,

$$\mathbf{BQ}^T = \mathbf{0}$$

و Q و ابطه بین زیر ماتریسهای Q و

 $\mathbf{Q} = [\mathbf{1}_{n-1}, \mathbf{Q}_{\ell}]$

and

$$B = [B_{i}, 1_{i}]$$

$$\mathbf{B}\mathbf{Q}^T = [\mathbf{B}_t, \mathbf{1}_t] \begin{bmatrix} \mathbf{1}_{n-1} \\ \mathbf{Q}_t^T \end{bmatrix}$$

$$=\mathbf{B}_t+\mathbf{Q}_t^T=\mathbf{0}$$

We obtain the identities

$$\mathbf{B}_{t} = -\mathbf{Q}_{t}^{T} \quad \text{and} \quad \mathbf{B}_{t}^{T} = -\mathbf{Q}_{t}$$