MATHEMATICAL TOOLS - PROBLEM SET 5

Due Sunday, December 18th, 23:55, either in the course mailbox or through the Moodle.

Linear Homogenous Recurrence Relations.

Problem 1. Let $\alpha_0, \alpha_1, \ldots, \alpha_k \in \mathbb{C}$ and let $a_{n+k+1} = \sum_{i=0}^k \alpha_i a_{n+i}$ be a recurrence

relation. Let
$$A = \begin{pmatrix} \alpha_k & \alpha_{k-1} & \dots & \alpha_1 & \alpha_0 \\ 1 & 0 & \dots & & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & 0 & 1 & 0 \end{pmatrix}$$
 and let $p(x) = x^{k+1} - \sum_{i=0}^k \alpha_i x^i$.

In recitation we showed that $\lambda \in \mathbb{C}$ is an eigenvalue of A iff $p(\lambda) = 0$. We also showed that if λ is an eigenvalue of A, then $a_n = \lambda^n$ is a solution to the recurrence relation.

- (1) Show that if A has k+1 distinct eigenvalues $\lambda_0, \lambda_1, \ldots, \lambda_k \in \mathbb{C}$, then every solution $\{a_n\}_{=0}^{\infty}$ can be written in a unique way as $a_n = \sum_{i=0}^k A_i \lambda_i^n$, for $A_0, \ldots, A_k \in \mathbb{C}$.
- (2) Show that $p_A(x) = p(x)$.
- (3) Find the solution space of the recurrence relation $a_{n+4} = 10a_{n+3} 35a_{n+2} + 50a_{n+1} 24a_n$.
- (4) Let $a_0 = 2$, $a_1 = 3$, $a_2 = 5$, $a_3 = 9$. Find an explicit (non-inductive) formula for a_n satisfying the recurrence relation from the previous part.

Remark. We can actually give a complete description of the solution space of any recurrence relation. Assume $\alpha_0 \neq 0$ (if this isn't the case the problem is degenerate, and can be reformulated as a lower-order recurrence relation). By the fundamental theorem of algebra, there exist $\lambda_1, \ldots, \lambda_\ell \in \mathbb{C}$ and $p_1, \ldots, p_\ell \in \mathbb{N}$ s.t. $p(x) = \prod_{i=1}^\ell (x-\lambda_i)^{p_i}$ and $\sum_{i=1}^\ell p_i = k+1$. In this case, for every $0 \leq j < p_i$, $a_n = n^j \lambda_i^n$ is also a solution. From here we can conclude that every solution can be written uniquely as

$$a_n = (A_{1,1} + A_{1,2}n + \dots + A_{1,p_1}n^{p_1-1})\lambda_1^n + \dots + (A_{\ell,1} + A_{\ell,2}n + \dots + A_{\ell,p_{\ell}})\lambda_{\ell}^n$$

Proving this is not difficult, but is a little technical and too far from the course's subject matter.

Vandermonde matrix.

Problem 2. Let \mathbb{F} be a field and let $\alpha_1, \ldots, \alpha_k \in \mathbb{F}$.

(1) Assume the α_i -s are distinct. Show that for all $1 \leq i \leq k$ there exists a polynomial $p_i(x)$ of degree k-1 with coefficients in \mathbb{F} s.t. for all $1 \leq j \leq k$, $p_i(\alpha_j) = \begin{cases} 1 & j=i \\ 0 & j \neq i \end{cases}.$

(2) Let:

$$A = \begin{pmatrix} 1 & \alpha_1 & \alpha_1^2 & \dots & \alpha_k^{k-1} \\ 1 & \alpha_2 & \alpha_2^2 & \dots & \alpha_2^{k-1} \\ \dots & & & \dots \\ 1 & \alpha_k & \alpha_k^2 & \dots & \alpha_k^{k-1} \end{pmatrix}$$

Show that det $A \neq 0$ iff the α_i -s are distinct.

Linear Homogenous Ordinary Differential Equations. Let $\alpha_0, \alpha_1, \ldots, \alpha_{k-1} \in \mathbb{R}$. A solution to the linear homogenous ordinary differential equation (ODE) $F^{(k)}(x) = \sum_{i=0}^{k-1} \alpha_i F^{(i)}(x)$ is a function $f: \mathbb{R} \to \mathbb{R}$ that is smooth (i.e. differentiable infinitely many times), and that satisfies: $\forall x \in \mathbb{R}, f^{(k)}(x) = \sum_{i=0}^{k-1} \alpha_i f^{(i)}(x)$. Let $C^{\infty}(\mathbb{R}) = \{f: \mathbb{R} \to \mathbb{R} | f \text{ is smooth} \}$. We define operations of addition and scalar multiplication in the obvious ways: For $f, g \in C^{\infty}$ and $a \in \mathbb{R}$, (f+g)(x) = (f+g)(x) = (f+g)(x)

f(x) + g(x) and (af)(x) = af(x).

Problem 3.

- (1) Show that C^{∞} , together with the operations above, is a vector space over \mathbb{R} .
- (2) Let $D: C^{\infty} \to C^{\infty}$ be: D(f) = f'. Show that D is a linear operator. Find D's eigenvalues and matching eigenvectors.
- (3) Let $V \subseteq C^{\infty}$ be the set of solutions to the ODE above. Show that V is a vector subspace of C^{∞} .
- (4) Let $p(x) = x^k \sum_{i=0}^{k-1} \alpha_i x^i$. Show that if $p(\lambda) = 0$, then $f(x) = e^{\lambda x}$ is a solution to the ODE.
- (5) Conclude that if p has k distinct roots $\lambda_1, \ldots, \lambda_k$, then for every $a_0, \ldots, a_{k-1} \in \mathbb{R}$ there exists $f \in V$ s.t. for all $0 \le i \le k-1$, $f^{(i)}(0) = a_i$.

Hint: Define $T: V \to \mathbb{R}^k$ by $T(f) = \begin{pmatrix} f(0) \\ f'(0) \\ \vdots \\ f^{(k-1)}(0) \end{pmatrix}$. Show that T is

surjective by showing that $T\left(e^{\lambda_1 x}\right)$, $T\left(e^{\lambda_2 x}\right)$, ..., $T\left(e^{\lambda_k x}\right)$ are linearly independent.

The Fourier Basis.

Problem 4.

(1) Let $T: \mathbb{C}^n \to \mathbb{C}^n$ be defined by:

$$T \begin{pmatrix} z_1 \\ z_2 \\ \dots \\ z_n \end{pmatrix} = \begin{pmatrix} z_n \\ z_1 \\ \dots \\ z_{n-1} \end{pmatrix}$$

Find T's eigenvalues, with appropriate eigenvectors. Show that these eigenvectors form an orthogonal basis for \mathbb{C}^n .

(2) Find a unitary matrix U and a diagonal matrix D s.t:

$$\left(\begin{array}{cccc}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right) = UDU^*$$