数列の極限

数列 $\{a_k\}_{k=0,1,2,\ldots,n,\ldots}$ の極限値 $\lim_{n\to\infty}a_n$ が α に収束することを

$$\lim_{n\to\infty} a_n = \alpha$$

と書く。

•••••

 $\lim_{n \to \infty} a_n = \alpha$ の定義を次のように定める。

$${}^{\forall}\varepsilon > 0, {}^{\exists}N_{\varepsilon} \in \mathbb{N} \ s.t. \ {}^{\forall}k > N_{\varepsilon}, |a_k - \alpha| < \varepsilon \tag{1}$$

.....

$${}^{\forall}\varepsilon \in \{\varepsilon \in \mathbb{R} \mid \varepsilon > 0\}, {}^{\exists}N_{\varepsilon} \in \mathbb{N} \text{ s.t. } {}^{\forall}k \in \{k \in \mathbb{N} \mid k > N_{\varepsilon}\}, |a_{k} - \alpha| < \varepsilon$$

.....

解説

$${}^{\forall}\varepsilon > 0, {}^{\exists}N_{\varepsilon} \in \mathbb{N} \ s.t. \ {}^{\forall}k > N_{\varepsilon}, |a_k - \alpha| < \varepsilon \tag{2}$$

上の式は s.t. (such that) で分けられる。

前半部分は次のような意味になる。

$$\forall \varepsilon > 0, \exists N_{\varepsilon} \in \mathbb{N}$$
 (3)

「正の実数 ε を好きに取ってくると条件を満たすある自然数 N_{ε} が必ず存在する。」 この条件が後半部分で示されている

$$\forall k > N_{\varepsilon}, |a_k - \alpha| < \varepsilon \tag{4}$$

「 N_{ε} よりも大きな自然数 k を任意に取ってきた時、 a_k と α との差が ε より小さくなる。」

つまり、(1) の式は次のようなことを意味します。

どんなに 0 に近い実数 ε を取ってきたとしても数列 $\{a_k\}$ のずっと先のあるところ以降は全て α に近い値になっている