Построение «нет-зоны» отрезка

Дан отрезок s, а также множество непересекающихся между собой и с s отрезков S. Концы всех отрезков – МТОП (никакие 3 точки не лежат на одной прямой). Обозначим множество концов отрезков из S-P.

Определение: нет-зоной отрезка s относительно отрезка t называется такое подмножество N декартовой плоскости, что $\forall p \in N, \exists q \in t : pq \cap s \neq \emptyset$.

Определение: нет-зоной отрезка s относительно множества отрезков T называется такое подмножество N декартовой плоскости, что $\forall p \in N, \exists t \in T: \exists q \in t: pq \cap s \neq \emptyset$.

Утверждение: нет-зона отрезка s относительно множества T равна пересечению нет-зон отрезка s относительно каждого отрезка $t \in T$.

Рассмотрим только множества непересекающихся отрезков, точки концов которых – $MTO\Pi$ (никакие 3 точки не лежат на одной прямой).

Рассмотрим построение нет-зоны отрезка s. Не умаляя общности, считаем s горизонтальным. Обозначим его левый конец за p_1 , правый за p_2 .

Множество S разобьем на подмножества:

1. Обе точки отрезка лежат слева от прямой, проведенной через p_1p_2 . Обозначим S_1 , концы – P_1 .

2. Обе точки отрезка лежат справа от прямой, проведенной через p_1p_2 . Обозначим S_2 , концы – P_2 .

3. Точки отрезка лежат по разные стороны от прямой, проведенной через p_1p_2 . Отрезок пересекает данную прямую со стороны точки p_1 . Обозначим S_3 , концы $-P_3$.

4. Точки отрезка лежат по разные стороны от прямой, проведенной через p_1p_2 . Отрезок пересекает данную прямую со стороны точки p_2 . Обозначим S_4 , концы – P_4 .

Любые другие прямые пересекали бы p_1p_2 .

Рассмотрим отрезок $s_1 \in S_1$:

Определение: назовем точку $q_1 \in s_1$ левой относительно s, если угол $q_1p_1p_2$ максимален по всем $q \in s_1$.

Определение: назовем точку $q_2 \in s_1$ правой относительно s, если угол $q_1p_2p_1$ максимален по всем $q \in s_1$.

Замечание: точка отрезка может быть одновременно левой и правой.

Утверждение: левая и правая точки всегда являются концами отрезка.

Утверждение: нет-зона отрезка s относительно $s_1 \in S_1$ лежит ниже прямой, проходящей через отрезок s, содержит часть пространства, отсекаемого лучами, начинающимися из точек p_1 и p_2 , лежащими на прямых, заданных q_1p_2 , q_2p_1 .

Утверждение: нет-зона отрезка s относительно S_1 имеет сложность O(n), где n – количество отрезков в S_1 .

Построим множество ${S_1}'$ такое, что все содержащиеся в нем отрезки имеют следующие свойства:

- 1. $s_1 \in S_1$
- 2. сущетвует подмножество декартовой плоскости, отсеченное параллельными прямыми $l_1,\ l_2,$ проходящими через точки p_1 и p_2 соответсвенно, содержащее минимум одну из правой и левой точек каждого отрезка.

Утверждение: нет-зона отрезка s относительно S_1' имеет сложность O(1).

Существование хотя бы одного отрезка в S_1 порождает одну область «нет-зоны». В зависимости от взаимного расположения отрезков ее сложность - O(n).

Для нахождения данной области можно построить arrangment на n участвующих в ее построение прямых и перебрать грани. Сложность такого алгоритма $O(n^2)$. Однако сложность вырезаемых клиньев константна, а значит и сложность зоны лишь линейна, что дает надежду на существование более быстрого алгоритма.

Аналогично для S_2 .

Существование хотя бы одного отрезка в S_3 порождает одну область «нет-зоны», ограниченную двумя лучами. Для ее построения достаточно найти такие $q_1, q_2 \in P_3$, которые бы минимизировали углы $q_1p_1p_2$, $q_2p_1p_2$ при условии того, что q_1 лежит левее p_1p_2 , а q_1 правее. Далее строятся прямые на q_1p_1 и q_2p_1 . Искомые лучи лежат на полученных прямых, начинаются с p_1 , не включают q_1 и q_2 .

Для S_4 минимизируются углы $q_1p_2p_1$, $q_2p_2p_1$, лучи начинаются с p_2 .

Перед следующим шагом необходимо пересечь все получившиеся нет-зоны одного отрезка. Очевидно, что у нет-зон S_1, S_2 пересечение пусто. Так что данная операция сводится к пересечению нет-зон S_3, S_4 с S_1, S_2 и друг-другом, делается за O(n).

Для построения пересечения (поиска области являющейся пересечением да-зон) на этапе построения нет-зон можно запомнить для каждой прямой, какие лучи/отрезки каких нет-зон он порождает. (обозначим кол-во объектов для каждой прямой за $k.\ k \le 2.$) После построения всех нет-зон, на всех прямых с $k \ge 1$ строится arrangment. В РСДС ищем грань, в которой все отрезки никого не закрывают (пересечение да-зон). С учетом имеющихся данных обход делается за $O(n^4)$.