	เลขที่นั่งสอบ	
L		

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี

การสอบปลายภาคเรียนที่ 2 ปีการศึกษา 2556 เกเลา (การใช้ โมรโยกา บควบคุมเชิงเส้น ภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม ปีที่ 3 (ปกติ)

วิชา ENE 341 ระบบควบคุมเชิงเส้น

สอบ วันพฤหัสบดีที่ 8 พฤษภาคม พ.ศ. 2557 เวลา 9:00 -12:00น.

คำเตือน

- 1. ข้อสอบวิชานี้มี 4 ข้อ 10 หน้า (รวมใบปะหน้า) คะแนนรวม 100 คะแนน **ให้ทำทุกข้อ**
- 2. แสดงวิธีทำลงในข้อสอบเท่านั้น และแสดงวิธีทำทุกข้อโดยใช้เลขนัยสำคัญ 2 ตำแหน่ง
- 3. อนญาตให้นำเอกสาร หรือหนังสือประกอบการเรียนเข้าห้องสอบ
- 4. สามารถนำเครื่องคำนวณเข้าห้องสอบได้ตามระเบียบของมหาวิทยาลัย
- 5. ขอให้นักศึกษาทุกคนโชคดีในการสอบ

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา

ข้อสอบข้อที่	1	2	3	4	คะแนนรวม
คะแนนเต็ม	25	25	25	25	100
คะแนนที่ได้					

ชื่อ-สกุลรหัสประจำตัว	เลขที่นั่งสอบ
าร.วุฒิชัย อัศวินชัยโชติ	

ผู้ออกข้อสอบ (โทร 9061)

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

PD ON

(รศ.ดร.วุฒิชัย อัศวินชัยโชติ) พัวหน้าภาควิชาวิศวกรรมถิเล็กพรถนิกส์และโพรคมนาคม

ชื่อ-สกุล	***************************************
1	
รหัสประจำตัว	เลขที่นั่งสอบ

ข้อ 1. (25 คะแนน) เครื่องบรรจุน้ำลงขวดได้แสดงตามรูปด้านล่าง โดยระบบควบคุมย้อนกลับได้ถูกใช้เพื่อรักษาความ แม่นยำของระบบ จงหาช่วงของค่า *K* และ *p* ซึ่งทำให้ระบบมีเสถียรภาพ

ชื่อ-สกุล	
รหัสประจำตัว	เลขที่นั่งสอบ

ซ้อ 2. (25 คะแนน) จงเขียนเส้นทางการเดินของราก (Root Locus) ของระบบต่อไปนี้ดังแสดงในรูปที่ 2 (พร้อมแสดง วิธีทำโดยละเอียด) พร้อมทั้งหาช่วงของค่า K ที่ทำให้ระบบมีเสถียรภาพ

รูปที่ 2 แสดงระบบควบคุมแบบวงปิด

ชื่อ-สกุล	
รหัสประจำตัว	เลขที่นั่งสอบ

ข้อ 3. (25 คะแนน) พิจารณารูปภาพด้านล่าง

จงออกแบบตัวควบคุม $D(s)=K_p+rac{K_I}{s}$ เพื่อให้ได้ระบบควบคุมแบบปิดที่มีคุณสมบัติดังต่อไปนี้ Damping ratio = 0.6 และ Time constant = 1/0.75 วินาที และปราศจากค่าความผิดพลาดการตอบสนองจากสัญญาณ step input

ชื่อ-สกุล	٠
รหัสประจำตัว	เลขที่นั่งสอบ

ข้อ 4. (25 คะแนน)

A) จงอธิบายความแตกต่างของระบบควบคุมแบบเปิดและระบบควบคุมแบบปิด พร้อมทั้งยกตัวอย่าง 5 ตัวอย่างของ อุปกรณ์ไฟฟ้าหรืออิเล็กทรอนิกส์ที่ใช้ภายในบ้านทั้งแบบระบบควบคุมแบบเปิดและระบบควบคุมแบบเปิดอย่างละ 5 ตัวอย่าง (10 คะแนน)

ชื่อ-สกุล	
รหัสประจำตัว	เลขที่นั่งสอบ

B) จงเขียนรูป Bode Diagram ของสมการต่อไปนี้ พร้อมทั้งหา Gain Margin และ Phase Margin (15 คะแนน)

$$G(s)H(s) = \frac{1}{s^3 + 2.5s^2 + s}$$

ชื่อ-สกุล	ـــــــــــــــــــــــــــــــــــــ
รหัสประจำตัว	เลขที่นั่งสอบ

but in math it's a positive?"

Good Luck and Have A Happy Summer Holiday!!!