KBBQ: A reference-free method for base quality score recalibration

Adam J Orr ^{1,2} **1**@AdamJOrr, Reed A Cartwright ^{1,2} **1**@MinionLab

¹School of Life Sciences, Arizona State University ²Biodesign Institute, Arizona State University

Introduction

- ► Illumina sequencing reads contain errors
- ► Errors make mutation detection difficult
- ightharpoonup Quality scores represent P(error) on a phred scale.

$$P(error) = 10^{\frac{-Q}{10}}$$

 $Q = -10\log_{10}P(error)$

Quality scores are sometimes binned to reduce file size

Score Bin $P(error)$	
N	1.0000
15	0.1000
27	0.0100
33	0.0010
40	0.0001
	N 15 27 33

Methods: Base Quality Score Recalibration - BQSR

Base Quality Score Recalibration is a technique to improve calibration of the original quality scores. However, BQSR normally requires a reference genome and a database of variable sites. Our reference-free method uses a method similar to the lighter (Song, Florea, and Langmead 2014) error corrector to find erroneous bases rather than comparing the sequence to a reference. You can use your favorite error corrector and use those corrections as input to kbbq.

Methods: Hierarchical Linear Model

The recalibration uses a hierarchical linear model to predict the true probability of error given a set of covariates. Each covariate causes the predicted quality score to shift up or down from the predicted score one level above it in the hierarchy. The relevant covariates are:

- Read Group
- Original Assigned Quality Score
- ► Position in read and whether read is forward or reverse (Cycle)
- ► Base called and the prior base call (Context)

Read Group Assigned Quality Score Cycle Context

Methods: Evaluation

- ▶ DNA from CHM1 and CHM13 human hydatidiform mole cell lines was mixed to generate a synthetic diploid dataset for benchmarking (Li et al. 2018).
- ▶ We analyzed Illumina reads aligned on Chromosome 1 and compared recalibrated quality scores generated using our method and the standard GATK method.

Next Steps

- ► Test performance of GATK BQSR with varying levels of false positives.
- ► Linear model improvements
- Programming optimizations.

Software

Thttps://github.com/adamjorr/kbbq

Acknowledgements

Results: GATK BQSR is vulnerable to false negatives in the known sites input.

KBBQ doesn't require *a priori* knowledge of variable sites, so is unaffected by misspecification of known sites.

Results: Similar performance, no reference or variants required

Both methods improve calibration and resolution, while KBBQ has relaxed input requirements.