

AU OPTRONICS CORPORATION

Product Specification

17.0" SXGA Color TFT-LCD Module

Model Name: M170EG01 V.3

Approved by	Prepared by		
CC Chiu	Regina Tsou		

DDBU Marketing Division / AU Optronics corporation

Customer	Checked & Approved by

ver 0.2 1/25

17.0" SXGA Color TFT-LCD Module Model Name: M170EG01 V.3

(♠) Preliminary Specifications() Final Specifications

Note: This Specification is subject to change without notice.

Contents

1.0 Handling Precautions	5
2.0 General Description	
2.1 Display Characteristics	
2.2 Optical Characteristics	
3.0 Functional Block Diagram	
4.0 Absolute Maximum Ratings	
4.1 TFT LCD Module	
4.2 Backlight Unit	11
4.3 Absolute Ratings of Environment	11
5.0 Electrical characteristics	
5.1 TFT LCD Module	12
5.1.1 Power Specification	12
5.1.2 Signal Electrical Characteristics	
5.2 Backlight Unit	14
6.0 Signal Characteristic	15
6.1 Pixel Format Image	15
6.2 The input data format	15
6.3 Signal Description	16
6.4 Interface Timing	17
6.4.1 Timing Characteristics	17
6.4.2 Timing diagram	18
6.5 Power ON/OFF Sequence	19
7.0 Connector & Pin Assignment	20
7.1 TFT LCD Module	20
7.2 Backlight Unit	21
7.3 Signal for Lamp connector	21
8.0 Reliability	22
9.0 Safety	23
9.1 Sharp Edge Requirements	23
9.2 Materials	23
9.2.1 Toxicity	23
9.2.2 Flammability	23
9.3 Capacitors	23
10.0 Other requirement	
10.1 National Test Lab Requirement	
10.2 Label	
11.0 Mechanical Characteristics	24

Record of Revision

Version and Date	Page	Old description	New Description	Remark
0.1 2004/09/06	All	First Edition for Customer		
0.2 2004/11/4	6	No description	Add Note 1	Added
0.2 2004/11/4	7	Min. Lum. = TBD	Min. Lum. = 320	Added

ver 0.2 4/25

1.0 Handling Precautions

- 1) Since front polarizer is easily damaged, pay attention not to scratch it.
- Be sure to turn off power supply when inserting or disconnecting from input connector.
- 3) Wipe off water drop immediately. Long contact with water may cause discoloration or spots.
- 4) When the panel surface is soiled, wipe it with absorbent cotton or other soft cloth.
- Since the panel is made of glass, it may break or crack if dropped or bumped on hard surface.
- 6) Since CMOS LSI is used in this module, take care of static electricity and insure human earth when handling.
- 7) Do not open nor modify the Module Assembly.
- 8) Do not press or pat the panel surface by fingers, hand or tooling.
- 9) Do not press the reflector sheet at the back of the module to any directions.
- 10) In case if a module has to be put back into the packing container slot after once it was taken out from the container, do not press the center of the CCFL reflector edge. Instead, press at the far ends of the CCFL reflector edge softly. Otherwise the TFT module may be damaged.
- 11) At the insertion or removal of the Signal Interface Connector, be sure not to rotate nor tilt the Interface Connector of the TFT module.
- 12) After installation of the TFT module into an enclosure (Desktop monitor Bezel, for example), do not twist nor bend the TFT Module even momentary. At designing the enclosure, it should be taken into consideration that no bending/twisting forces are applied to the TFT module from outside. Otherwise the TFT module may be damaged.

ver 0.2 5/25

2.0 General Description

This specification applies to the 17.0 inch Color TFT/LCD Module M170EG01 V2.

This module is designed for a display unit of personal computer.

The display supports the SXGA (1280(H) x 1024(V)) screen format and 16.2M colors (RGB 6-bits + FRC data).

All input signals are 2 Channel LVDS interface compatible.

This module does not contain an inverter card for backlight.

2.1 Display Characteristics

The following items are characteristics summary on the table under 25 condition:

ITEMS	Unit	SPECIFICATIONS					
Screen Diagonal	[mm]	432(17.0")					
Active Area	[mm]	337.920 (H) x	337.920 (H) x 270.336(V)				
Pixels H x V		1280(x3) x 10	24				
Pixel Pitch	[mm]	0.264 (per one	e triad) x 0.2	264			
Pixel Arrangement		R.G.B. Vertica	al Stripe				
Display Mode		Normally Whit	e				
White Luminance	[cd/m ²]	400 (Typ)					
Contrast Ratio		500 : 1 (Typ)					
Optical Rise Time/Fall Time	[msec]	8 (Typ)			(Note 1)		
Color Saturation		72% NTSC					
Nominal Input Voltage VDD	[Volt]	+5.0 V					
Power Consumption	[Watt]	25.8 W(Typ)	OEL -40 0 M		· A)		
(VDD line + CCFL line)	[Cromol		CFL=19.8 V	V @Lamp=7.5	omA)		
Weight	[Grams]	1900 (Typ)	N 41	T	N4		
Physical Size	[mm]	11	Min.	Typ.	Max.		
		Horizatal(H)	358	358.5	359.0		
		Vertical(V)	296	296.5	297		
		Depth(D)	16.5	17.0	17.5		
Electrical Interface		Dual Channel LVDS					
Support Color		16.2M colors (RGB 6-bit + FRC data)					
Temperature Range							
Operating	[°C]	0 to +50					
Storage (Shipping)	[°C]	-20 to +60					
Surface Treatment		Hard-coating (Hard-coating (2H), Glare treatment				

Note 1 : System should warm up for at least one hour

ver 0.2 6/25

2.2 Optical Characteristics

The optical characteristics are measured under stable conditions at 25 (Room Temperature):

Item	Unit	Condi	tions	Min.	Тур.	Max.	Note
		Horizontal CR = 10	(Right) (Left)	60 60	70 70		-
Viewing Angle	[doggoo]	Vertical CR = 10	(Up) (Down)	60 50	70 60		-
Viewing Angle	[degree]	Horizontal CR = 5	(Right) (Left)	70 70	80 80		
		Vertical CR = 5	(Up) (Down)	70 70	80 80		
Contrast ratio		Normal Dire	ection	300	500		-
		Rising Time	:	-	6	9	
Response Time	[msec]	Falling Time	9	-	2	4	Note 1
		Rising + Falling		ı	8	13	
		Red x Red y		0.61	0.64	0.67	
				0.31	0.34	0.37	
Color / Chromaticity		Green x		0.26	0.29	0.32	
Coordinates (CIE)		Green y		0.58	0.61	0.64	
		Blue x		0.11	0.14	0.17	
		Blue y		0.04	0.07	0.10	
Color Coordinates (CIE)		White x		0.28	0.31	0.34	
White		White y		0.30	0.33	0.36	
White Luminance @ CCFL 7.5mA (center)	[cd/m ²]			320	400		-
Luminance Uniformity	[%]			75	80		Note 2
Crosstalk (in 75Hz)	[%]					1.5	Note 3
Flicker	dB					-20	Note 4

Equipment Pattern Generator, Power Supply, Digital Voltmeter, Luminance meter (PR 880, BM-5A,

BM 7 ,CS-1000, & EZContrast*)

Aperture 1 ° with 100cm VD or 2 ° with 50cm viewing distance

Test Point Center (VESA point 9)

^{*&#}x27; EZ Contrast is different measurement tool with very close viewing distance.

ver 0.2 7/25

Note 1: Definition of Response time

The output signals of photodetector are measured when the input signals are changed from "Black" to "White" (rising time), and from "White" to "Black "(falling time), respectively. The response time is interval between the 10% and 90% of amplitudes.

Note 2: Brightness uniformity of these 9 points is defined as below

Uniformity = $\frac{\text{Minimum Luminance in 9 points (1-9)}}{\text{Maximum Luminance in 9 Points (1-9)}}$

ver 0.2 8/25

Note 3: Crosstalk is defined as below:

I L_A - $L_{A'}$ I / L_A x 100%= 1.5% max., L_A and L_B are brightness at location A and B I L_{B} - $L_{B'}$ I / L_{B} x 100%= 1.5% max., $L_{A'}$ and $L_{B'}$ are brightness at location A' and B'

Note 4: Test Paterm: Subchecker Pattern

Method: Record dBV & DC value with (WESTAR)TRD-100

Flicker (dB) =
$$20 \log \frac{AC \text{ Level(at 30 Hz)}}{DC \text{ Level}}$$

ver 0.2 9/25

3.0 Functional Block Diagram

The following diagram shows the functional block of the 19.0 inches wide Color TFT/LCD Module:

FI-XB30SRL-HF11 / MDF76LBRW-30S-1H

JST-BHSR-02VS-1 (2pin x 2)

Mating Type: JAE FI-X30C2L / HRS MDF76G-30P-1SD

SM02B-BHSS-1-TB

ver 0.2 10/25

4.0 Absolute Maximum Ratings

Absolute maximum ratings of the module is as following:

4.1 TFT LCD Module

Item	Symbol	Min	Max	Unit	Conditions
Logic/LCD Drive Voltage	VIN	-0.3	+6	[Volt]	Note 1,2

4.2 Backlight Unit

Item	Symbol	Min	Max	Unit	Conditions
CCFL Current	ICFL	-	8.5	[mA] rms	Note 1,2

4.3 Absolute Ratings of Environment

Item	Symbol	Min	Max	Unit	Conditions
Operating Temperature	TOP	0	+50	[°C]	Note 3
Operating Humidity	HOP	8	95	[%RH]	Note 3
Storage Temperature	TST	-20	+60	[°C]	Note 3
Storage Humidity	HST	8	95	[%RH]	Note 3

Note 1: With in Ta (25)

Note 2: Permanent damage to the device may occur if exceed maximum values

Note 3: For quality perfermance, please refer to AUO IIS(Incoming Inspection Standard).

Relative Humidity %

ver 0.2 11/25

5.0 Electrical characteristics

5.1 TFT LCD Module

5.1.1 Power Specification

Input power specifications are as follows;

Symbol	Parameter	Min	Тур	Max	Units	Condition
VDD	Logic/LCD Drive Voltage	4.5	5	5.5	[Volt]	± 10%
IDD	VDD current	-	1200	1560	[mA]	Vin=5V , All Black Pattern, at 75Hz
Irush	LCD Inrush Current	-	-	2.5	[A]	Note
PDD	VDD Power		6	7.8	[Watt]	Vin=5V , All Black Pattern, at 75Hz
VDDrp	Allowable Logic/LCD Drive Ripple Voltage			100	[mV] p-p	Vin=5V , All Black Pattern, at 75Hz

Note: Measurement conditions:

Vin rising time

ver 0.2 12/25

5.1.2 Signal Electrical Characteristics

Input signals shall be low or Hi-Z state when Vin is off It is recommended to refer the specifications of SN75LVDS82DGG (Texas Instruments) in detail.

Each signal characteristics are as follows;

Symbol	Parameter	Min	Тур	Max	Units	Condition	
VTH	Differential Input High Threshold	-	-	100	[mV]	VICM = 1.2V	Note
VTL	Differential Input Low Threshold	-100	-	-	[mV]	VICM = 1.2V	Note
VID	Input Differential Voltage	100	400	600	[mV]		Note
VICM	Differential Input Common Mode Voltage	1.1	-	1.45	[V]	VTH/VTL = ± 100mV	Note

Note: LVDS Signal Waveform

ver 0.2 13/25

5.2 Backlight Unit

Parameter guideline for CCFL Inverter

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
ISCFL	CCFL standard current	7.0	7.5	8.0	[mA] rms	(Ta=25°C) Note 1
IRCFL	CCFL operation range	3.0	7.5	8.0	[mA] rms	(Ta=25°C)
FCFL	CCFL Frequency	40	60	80	[KHz]	(Ta=25°C) <i>Note 2</i>
ViCFL (0°C)	CCFL Ignition Voltage (End of the lamp wire connector)	1500	-	-	[Volt]	(Ta=0°C)
ViCF (25°C)	CCFL Ignition Voltage (End of the lamp wire connector)	1150	-	-	[Volt]	(Ta=25°C)
VCFL	CCFL Operation Voltage	-	660 @7.5mA	700 @3.0mA	[Volt] rms	(Ta=25°C) Note 1
PCFL	CCFL Power consumption (for reference)	-	19.8	21.8	[Watt]	(Ta=25°C) Note 3
LTCFL	CCFL life Time	30,000	50,000	-	[Hour]	(Ta=25°C) Note 4

Note 1: CCFL standard current is measured at 25±2 .

Note 2: CCFL Frequency should be carefully determined to avoid interference between inverter and TFT LCD

Note 3: The variance of CCFL power consumption is \pm 10%. Calculator value for reference (ICFL×VCFL×4=PCFL).

Note 4: CCFL life time is determined as the time at which brightness of lamp is 50%. The typical life time of CCFL is on the condition at 7.5 mA lamp current.

ver 0.2 14/25

6.0 Signal Characteristic

6.1 Pixel Format Image

Following figure shows the relationship of the input signals and LCD pixel format.

Product Specification

6.2 The input data format

Note1: Normally, DE, VS, HS on EVEN channel are not used.

Note2: Please follow PSWG.

Note3: 8-bit in

ver 0.2 15/25

6.3 Signal Description

The module using a pair of LVDS receiver SN75LVDS82(Texas Instruments) or compatible. LVDS is a differential signal technology for LCD interface and high speed data transfer device. Transmitter shall be SN75LVDS83(negative edge sampling) or compatible. The first LVDS port(RxOxxx) transmits odd pixels while the second LVDS port(RxExxx) transmits even pixels.

	even pixeis. 	
PIN#	SIGNAL NAME	DESCRIPTION
1	RxOIN0-	Negative LVDS differential data input (Odd data)
2	RxOIN0+	Positive LVDS differential data input (Odd data)
3	RxOIN1-	Negative LVDS differential data input (Odd data)
4	RxOIN1+	Positive LVDS differential data input (Odd data)
5	RxOIN2-	Negative LVDS differential data input (Odd data, H-Sync,V-Sync,DSPTMG)
6	RxOIN2+	Positive LVDS differential data input (Odd data, H-Sync,V-Sync,DSPTMG)
7	VSS	Power Ground
8	RxOCLKIN-	Negative LVDS differential clock input (Odd clock)
9	RxOCLKIN+	Positive LVDS differential clock input (Odd clock)
10	RxOIN3-	Negative LVDS differential data input (Odd data)
11	RxOIN3+	Positive LVDS differential data input (Odd data)
12	RxEIN0-	Negative LVDS differential data input (Even data)
13	RxEIN0+	Positive LVDS differential data input (Even data)
14	VSS	Power Ground
15	RxEIN1-	Positive LVDS differential data input (Even data)
16	RxEIN1+	Negative LVDS differential data input (Even data)
17	VSS	Power Ground
18	RxEIN2-	Negative LVDS differential data input (Even data)
19	RxEIN2+	Positive LVDS differential data input (Even data)
20	RxECLKIN-	Negative LVDS differential clock input (Even clock)
21	RxECLKIN+	Positive LVDS differential clock input (Even clock)
22	RxEIN3-	Negative LVDS differential data input (Even data)
23	RxEIN3+	Positive LVDS differential data input (Even data)
24	VSS	Power Ground
25	VSS	Power Ground
26	NC	No Connection (for AUO test)
27	VSS	Power Ground
28	VCC	+5.0V Power Supply
29	VCC	+5.0V Power Supply
30	VCC	+5.0V Power Supply

ver 0.2 16/25

Note1: Start from left side

Note2: Input signals of odd and even clock shall be the same timing.

Note3: Please follow PSWG.

6.4 Interface Timing

6.4.1 Timing Characteristics

Basically, interface timings described here is not actual input timing of LCD module but output timing of SN75LVDS82DGG (Texas Instruments) or equivalent.

I	tem	Symbol	Min	Тур	Max	Unit
Data CLK		Tclk	40	54	70	MHz
H-section	Period	Th	685	844	1024	Tclk
H-Section	Display Area	Tdisp(h)	640	640	640	Tclk
Vacation	Period	Tv	1036	1066	2048	Th
V-section	Display Area	Tdisp(v)	1024	1024	1024	Th
Fran	ne Rate	F	49	60	76	Hz

Note: DE mode only

ver 0.2 17/25

6.4.2 Timing diagram

ver 0.2 18/25

6.5 Power ON/OFF Sequence

Vin power and lamp on/off sequence is as follows. Interface signals are also shown in the chart. Signals from any system shall be Hi-Z state or low level when Vin is off.

Product Specification

Symbol		Unit		
Symbol	Min.	Тур.	Max.	Offic
T1	0.5	-	10	ms
T2	0	-	10	ms
Т3	200	-	-	ms
T4	100	-	-	ms
T5	0	16	50	ms
T6	-	-	10	ms
T7	1000	-	-	ms

Note: The values of the table are follow PSWG.

ver 0.2 19/25

7.0 Connector & Pin Assignment

Physical interface is described as for the connector on module.

These connectors are capable of accommodating the following signals and will be following components.

7.1 TFT LCD Module

Connector Name / Designation	Interface Connector / Interface card		
Manufacturer	JAE or compatible		
Type Part Number	FI-XB30SRL-HF11 / MDF76LBRW-30S-1H		
Mating Housing Part Number	JAE FI-X30C2L / HRS MDF76G-30P-1SD		

Pin#	Signal Name	Pin#	Signal Name
1	RxOIN0-	2	RxOIN0+
3	RxOIN1-	4	RxOIN1+
5	RxOIN2-	6	RxOIN2+
7	VSS	8	RxOCLKIN-
9	RxOCLKIN+	10	RxOIN3-
11	RxOIN3+	12	RxEIN0-
13	RxEIN0+	14	VSS
15	RxEIN1-	16	RxEIN1+
17	VSS	18	RxEIN2-
19	RxEIN2+	20	RxECLKIN-
21	RxECLKIN+	22	RxEIN3-
23	RxEIN3+	24	VSS
25	VSS	26	NC
27	VSS	28	VCC
29	VCC	30	VCC

ver 0.2 20/25

7.2 Backlight Unit

Connector Name / Designation	Lamp Connector / Backlight lamp		
Manufacturer	JST		
Type Part Number	BHSR-02VS-1		
Mating Type Part Number	SM02B-BHSS-1-TB		

7.3 Signal for Lamp connector

	Connector No.	Pin No.	Input	Color	Function
Upper	CN1	1	Hot1	Pink	High Voltage
		2	Cold1	White	Low Voltage
	CN2	1	Hot2	Blue	High Voltage
		2	Cold2	Black	Low Voltage
Lower	CN3	1	Hot1	Pink	High Voltage
		2	Cold1	White	Low Voltage
	CN4	1	Hot2	Blue	High Voltage
		2	Cold2	Black	Low Voltage

ver 0.2 21/25

8.0 Reliability

Reliability test condition

No	Test Item	Test Condition
1	Temperature Humidity Bias (THB)	50 , 80%, 300hours
2	High Temperature Operation (HTO)	50 , 300hours
3	Low Temperature Operation (LTO)	0 , 300hours
4	High Temperature Storage (HTS)	60 , 300hours
5	Low Temperature Storage (LTS)	-20 , 300hours
6	Thermal Shock Test (TST)	-20 /30min, 60 /30min, 100 cycles
7	On/Off Test	On/10sec, Off/10sec, 30,000 cycles
8	Shock Test (Non-Operating)	50G, 20ms, Half-sine wave (<u>+</u> X, <u>+</u> Y, <u>+</u> Z)
9	Vibration Test (Non-Operating)	1.5G(10~200Hz P- P), 30 Minutes each Axis (X, Y, Z)
10	ESD (ElectroStatic Discharge)	Contact Discharge: ± 8KV, 150pF(330Ω) 1sec, 8 points, 25 times/ point
		Air Discharge: ± 15KV, 150pF(330Ω) 1sec, 8 points, 25 times/ point
11	Altitude Test	Operation:10,000 ft
		Non-Operation:30,000 ft
12	Drop Test	The drop height is 60cm

ver 0.2 22/25

9.0 Safety

9.1 Sharp Edge Requirements

There will be no sharp edges or comers on the display assembly that could cause injury.

9.2 Materials

9.2.1 Toxicity

There will be no carcinogenic materials used anywhere in the display module. If toxic materials are used, they will be reviewed and approved by the responsible AUO Toxicologist.

9.2.2 Flammability

All components including electrical components that do not meet the flammability grade UL94-V1 in the module will complete the flammability rating exception approval process.

The printed circuit board will be made from material rated 94-V1 or better. The actual UL flammability rating will be printed on the printed circuit board.

9.3 Capacitors

If any polarized capacitors are used in the display assembly, provisions will be made to keep them from being inserted backwards.

10.0 Other requirement

EN 60 950

10.1 National Test Lab Requirement

The display module will satisfy all requirements for compliance to

UL 1950, First Edition CSA C22.2 No.950-M89 EEC 950 U.S.A. Information Technology Equipment
Canada, Information Technology Equipment
International, Information Technology Equipment
International, Information Processing Equipment
(European Norm for IEC950)

10.2 Label

The label is on the panel as shown below:

ver 0.2 23/25

11.0 Mechanical Characteristics

Ver0.2 24/25

Ver0.2 25/25