Feature Extraction

degreedata.xlsx

library(tidyverse)

[1] 2723

```
## -- Attaching packages ------ tidyverse 1.3.0 --
## v ggplot2 3.3.3
                                0.3.4
                    v purrr
## v tibble 3.1.1 v dplyr 1.0.2
## v tidyr 1.1.2 v stringr 1.4.0
## v readr
           1.3.1
                    v forcats 0.5.0
## Warning: package 'ggplot2' was built under R version 3.6.2
## Warning: package 'tibble' was built under R version 3.6.2
## Warning: package 'tidyr' was built under R version 3.6.2
## Warning: package 'purrr' was built under R version 3.6.2
## Warning: package 'dplyr' was built under R version 3.6.2
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                    masks stats::lag()
library(readxl)
p2_degree = read_excel(path = "feature/p2-fro_degreedata.xlsx", col_names = TRUE)
p3_degree = read_excel(path = "feature/p3-fro_degreedata.xlsx", col_names = TRUE)
p4_degree = read_excel(path = "feature/p4-fro_degreedata.xlsx", col_names = TRUE)
p5_degree = read_excel(path = "feature/p5-fro_degreedata.xlsx", col_names = TRUE)
p6_degree = read_excel(path = "feature/p6-fro_degreedata.xlsx", col_names = TRUE)
p7_degree = read_excel(path = "feature/p7-fro_degreedata.xlsx", col_names = TRUE)
Count of branchpoints
# Count of branchpoints
nrow(p2_degree)
## [1] 481
nrow(p3_degree)
## [1] 910
nrow(p4_degree)
## [1] 1444
nrow(p5_degree)
```

```
nrow(p6_degree)
## [1] 3238
nrow(p7_degree)
## [1] 3956
Spatial density of nodes (Branching number per node)
# Branching number per node
# Spatial density of nodes
deg_spatial_density = data.frame(miceage = c(), degree = c(), density = c())
degree = p2_degree$degree
deg_density = table(degree) [max(degree):1] %>%
 prop.table() %>%
  cumsum() %>%
 rev()
deg_spatial_density = rbind(deg_spatial_density,
                            data.frame(miceage = rep("p2",max(degree)), degree = 1:max(degree), density
degree = p3_degree$degree
deg_density = table(degree) [max(degree):1] %>%
 prop.table() %>%
  cumsum() %>%
 rev()
deg_spatial_density = rbind(deg_spatial_density,
                            data.frame(miceage = rep("p3",max(degree)), degree = 1:max(degree), density
degree = p4_degree$degree
deg_density = table(degree)[max(degree):1] %>%
 prop.table() %>%
  cumsum() %>%
deg_spatial_density = rbind(deg_spatial_density,
                            data.frame(miceage = rep("p4",max(degree)), degree = 1:max(degree), density
degree = p5_degree$degree
deg_density = table(degree)[max(degree):1] %>%
 prop.table() %>%
  cumsum() %>%
  rev()
deg_spatial_density = rbind(deg_spatial_density,
                            data.frame(miceage = rep("p5",max(degree)), degree = 1:max(degree), density
degree = p6_degree$degree
```

data.frame(miceage = rep("p6",max(degree)), degree = 1:max(degree), density

deg_density = table(degree) [max(degree):1] %>%

deg_spatial_density = rbind(deg_spatial_density,

prop.table() %>%
cumsum() %>%

```
degree = p7_degree$degree
deg_density = table(degree) [max(degree):1] %>%
  prop.table() %>%
  cumsum() %>%
  rev()
deg_spatial_density = rbind(deg_spatial_density,
                              data.frame(miceage = rep("p7",max(degree)), degree = 1:max(degree), density
deg_spatial_density$miceage = as.factor(deg_spatial_density$miceage)
deg_spatial_density$degree = as.factor(deg_spatial_density$degree)
ggplot(deg_spatial_density, aes(x = degree, y = density, color = miceage, group = miceage)) +
  geom_line() +
  geom_point() +
  labs(x = "Number k of vessels branching out for one node",
       y = "% of branching points with node density >= k") +
  scale_colour_discrete("Mice age")
   1.00 -
% of branching points with node density >= k
   0.75
                                                                                      Mice age
                                                                                        - p2
                                                                                          p3
   0.50 -
                                                                                          p4
                                                                                          p6
                                                                                          р7
   0.25
   0.00
                                                                      9
                   2
                          3
                                         5
                                                6
                                                                             10
                     Number k of vessels branching out for one node
```

Reference: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6076630

alldata.xlsx

```
p2_all = read_excel(path = "feature/p2-fro_alldata.xlsx", col_names = TRUE)
p3_all = read_excel(path = "feature/p3-fro_alldata.xlsx", col_names = TRUE)
p4_all = read_excel(path = "feature/p4-fro_alldata.xlsx", col_names = TRUE)
p5_all = read_excel(path = "feature/p5-fro_alldata.xlsx", col_names = TRUE)
p6_all = read_excel(path = "feature/p6-fro_alldata.xlsx", col_names = TRUE)
```

```
p7_all = read_excel(path = "feature/p7-fro_alldata.xlsx", col_names = TRUE)
Vessel segment - the number of vessel edges
nrow(p2_all)
## [1] 598
nrow(p3_all)
## [1] 1178
nrow(p4_all)
## [1] 1601
nrow(p5_all)
## [1] 3627
nrow(p6_all)
## [1] 4411
nrow(p7_all)
## [1] 5561
It certainly increases as it gets older.
Vessel length & Tortuosity & Width
mean(p2_all$length)
## [1] 11.86584
mean(p3_all$length)
## [1] 11.79226
mean(p4_all$length)
## [1] 12.09268
mean(p5_all$length)
## [1] 11.68207
mean(p6_all$length)
## [1] 11.56996
mean(p7_all$length)
## [1] 11.62666
sum(p2_all$length)
## [1] 7095.773
sum(p3_all$length)
## [1] 13891.28
```

```
sum(p4_all$length)
## [1] 19360.39
sum(p5_all$length)
## [1] 42370.87
sum(p6_all$length)
## [1] 51035.11
sum(p7_all$length)
## [1] 64655.84
mean(p2_all$tortuosity)
## [1] 1.101782
mean(p3_all$tortuosity)
## [1] 1.099792
mean(p4_all$tortuosity)
## [1] 1.142496
mean(p5_all$tortuosity)
## [1] 1.096093
mean(p6_all$tortuosity)
## [1] 1.092839
mean(p7_all$tortuosity)
## [1] 1.085495
mean(p2_all$width)
## [1] 2.862876
mean(p3_all$width)
## [1] 2.736418
mean(p4_all$width)
## [1] 2.404747
mean(p5_all$width)
## [1] 2.60863
mean(p6_all$width)
## [1] 2.665949
mean(p7_all$width)
## [1] 2.4893
```

Sum of vessel length increases as it gets older Couldn't find any other interesting facts (differences) for length and tortuosity. Maybe Vessel width (diameter) gets smaller as it gets older? (perform t-test?)

Summary

	p2	р3	p4	p5	p6	p7
Number of Branchpoints	481.000	910.000	1444.000	2723.000	3238.000	3956.000
Number of Vessel Edges	598.000	1178.000	1601.000	3627.000	4411.000	5561.000
Mean of Vessel Length	11.866	11.792	12.093	11.682	11.570	11.627
Mean of Vessel Tortuosity	1.102	1.100	1.143	1.096	1.093	1.085
Mean of Vessel Width	2.863	2.736	2.405	2.609	2.666	2.489

Density and Boxplot

ggplot(p1to7_all_long, aes(x=stage, y=value, fill=stage)) + facet_wrap(.~feature, nrow = 2, scales = "facet_wrap(.~feature, nrow = 2, scales = 1, scale

Area

```
## Install EBImage package
### http://bioconductor.org/packages/release/bioc/html/EBImage.html
library(EBImage)
## Warning: package 'EBImage' was built under R version 3.6.1
##
## Attaching package: 'EBImage'
## The following object is masked from 'package:purrr':
##
##
       transpose
my_image2 <- readImage("../data/test_data/predictions/p2-from 5-5-2 M_prediction.tif")
my_image3 <- readImage("../data/test_data/predictions/p3-from 5-5-2 M_prediction.tif")</pre>
my_image4 <- readImage("../data/test_data/predictions/p4-from 5-5-2 M_prediction.tif")</pre>
my_image5 <- readImage("../data/test_data/predictions/p5-from 5-5-1 M_prediction.tif")</pre>
my_image6 <- readImage("../data/test_data/predictions/p6-from 5-5-2 M_prediction.tif")</pre>
my_image7 <- readImage("../data/test_data/predictions/p7-from 5-5-2 M_prediction.tif")</pre>
options(digits=4)
knitr::kable(data.frame(p2 = mean(my_image2), p3 = mean(my_image3), p4 = mean(my_image4),
                         p5 = mean(my_image5), p6 = mean(my_image6), p7 = mean(my_image7)), align = "c")
```

VAD: ratio of the total image area occupied by blood vessel area https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4901200/pdf/JBO-021-066008.pdf (page 4)