

Term End Examination - November 2012

Course : MAT101 - Multivariable Calculus and Differential Slot: F2+TF2

Equations

Class NBR : 5040

Time : Three Hours Max.Marks:100

PART – A (10 X 3 = 30 Marks) Answer <u>ALL</u> the Questions

1. Investigate the continuity of the function $f(x, y) = \begin{cases} \frac{xy}{x^2 + y^2}, (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$ at the origin.

- 2. Find first and second order partial derivatives of $f(x, y) = ax^2 + 2hxy + by^2$ and verify $\frac{\partial^2 f}{\partial x \partial y} = \frac{\partial^2 f}{\partial y \partial x}$
- 3. If $u = x \sin y, v = y \sin x$, evaluate $\frac{\partial(u, v)}{\partial(x, y)}$.
- 4. Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2 + x^2}} yx dx dy.$
- 5. Show that $\Gamma(n+1) = n\Gamma(n)$.
- Find the directional derivative of the function $f(x, y, z) = x^2yz + 4xz^2$ at the point (1,-2, 1) in the direction of $2\vec{i} \vec{j} 2\vec{k}$.
- 7. Using divergence theorem, prove that $\int_{S} \vec{R} \cdot d\vec{s} = 3V$, where S is any closed surface enclosing the volume V and $\vec{R} = x\vec{i} + y\vec{j} + z\vec{k}$.
- 8. Find the particular integral of $\frac{d^3y}{dx^3} + 4\frac{dy}{dx} = \sin 2x$
- 9. Find the Laplace transform of $\sin 2t \sin 3t$.
- 10. Find the Inverse Laplace Transform of $\frac{s^2 3s + 4}{s^3}$.

PART – B (5 X 14 = 70 Marks) Answer any <u>FIVE</u> Questions

- 11. (a) Expand $e^x \log(1+y)$ in Taylor series at the point (0,0) up to terms of degree three. [7]
 - (b) Find the maximum and minimum distances of the point (3,4,12) from the sphere $x^2 + y^2 + z^2 = 1$.
- 12. (a) Change the order of Integration in $\int_{0}^{a} \int_{\sqrt{ax}}^{a} \frac{y^2}{\sqrt{y^4 a^2 x^2}} dx dy$ and hence evaluate it. [7]
 - (b) Find by triple integration, the volume of the sphere $x^2 + y^2 + z^2 = a^2$. [7]
- 13. (a) Express $\int_{0}^{1} \frac{dx}{\sqrt{1-x^4}}$ in terms of Gamma function [7]
 - (b) Evaluate $\iint r \sin \theta dr d\theta$ over the cardioid $r = a(1 \cos \theta)$ above the initial line [7]
- 14. Verify divergence theorem for $\vec{F} = (x^2 yz)\vec{i} + (y^2 xz)\vec{j} + (z^2 xy)\vec{k}$ taken over the rectangular parallelepiped $0 \le x \le a$, $0 \le y \le b$ $0 \le z \le c$
- 15. (a) Using Stoke's theorem evaluate, $\int_{c} [(x+y)dx + (2x-z)dy + (y+z)dz]$ where C is the [7] boundary of the triangle with vertices (2,0,0), (0,3,0) and (0,0,6)
 - (b) Show that the vector field given by $\vec{F} = (x^2 y^2 + x)\vec{i} (2xy + y)\vec{j}$ is irrotational and find its scalar potential. [7]
- 16. (a) Solve: $x^2 \frac{d^2 y}{dx^2} x \frac{dy}{dx} + y = \log x$. [7]
 - (b) Solve by using method of variation of parameters [7]

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} + y = e^x \log x$$

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$