

Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

(*E*)-*N*-[(*E*)-3-(4-Nitrophenyl)allylidene]-naphthalen-1-amine

Kee Dal Nam,^a Joo Hwan Cha,^b Yong Seo Cho,^c Jae Kyun Lee^{c*} and Ae Nim Pae^c

^aChemical Kinomics Research Center, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea, ^bAdvanced Analysis Center, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea, and ^cCenter for Neuro-Medicine, Brain Science Institute, Korea Institute of Science & Technology, Hwarangro 14-gil, Seongbuk-gu, Seoul 136-791, Republic of Korea

Received 28 February 2013; accepted 6 March 2013

Key indicators: single-crystal X-ray study; T = 296 K; mean $\sigma(C-C) = 0.002$ Å; R factor = 0.044; wR factor = 0.125; data-to-parameter ratio = 15.6.

In the title compound, $C_{19}H_{14}N_2O_2$, the dihedral angle between the mean planes of the 4-nitrophenyl ring and the naphthalene ring system is 12.79 (2)°. The imine group displays a C-C-N=C torsion angle of 41.0 (2)° and the C=N group has an E conformation. In the crystal, weak C-H···O hydrogen bonds link molecules into layers parallel to the b axis.

Related literature

For the synthesis and biological activity of naphthalene compounds, see: Upadhayaya *et al.* (2010); Rokade & Sayyed (2009). For a related structure, see: Yang *et al.* (2012).

Experimental

Crystal data

 $\begin{array}{lll} \text{C}_{19}\text{H}_{14}\text{N}_2\text{O}_2 & V = 1507.8 \text{ (2) Å}^3 \\ M_r = 302.33 & Z = 4 \\ \text{Monoclinic, } P2_1/c & \text{Mo } K\alpha \text{ radiation} \\ a = 7.7021 \text{ (5) Å} & \mu = 0.09 \text{ mm}^{-1} \\ b = 13.8713 \text{ (12) Å} & T = 296 \text{ K} \\ c = 14.2554 \text{ (10) Å} & 0.20 \times 0.20 \times 0.10 \text{ mm} \\ \beta = 98.096 \text{ (2)}^\circ \end{array}$

Data collection

Rigaku R-AXIS RAPID 14376 measured reflections diffractometer 3426 independent reflections 1824 reflections with $F^2 > 2\sigma(F^2)$ Absorption correction: multi-scan $R_{\rm int} = 0.038$ (ABSCOR; Rigaku, 1995) $T_{\min} = 0.714, T_{\max} = 0.991$ Refinement $R[F^2 > 2\sigma(F^2)] = 0.044$ H atoms treated by a mixture of $wR(F^2) = 0.125$ independent and constrained S = 1.00refinement $\Delta \rho_{\text{max}} = 0.16 \text{ e Å}^{-3}$ 3426 reflections $\Delta \rho_{\rm min} = -0.24~{\rm e}~{\rm \mathring{A}}^{-3}$ 220 parameters

Table 1 Hydrogen-bond geometry (Å, °).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-\mathrm{H}\cdots A$
$ \begin{array}{c} C5-H5\cdots O1^{i} \\ C15-H15\cdots O2^{ii} \end{array} $	0.93	2.66	3.422 (3)	139
	0.93	2.46	3.326 (3)	155

Symmetry codes: (i) x - 1, y, z + 1; (ii) x - 1, y, z.

Data collection: *RAPID-AUTO* (Rigaku, 2006); cell refinement: *RAPID-AUTO*; data reduction: *RAPID-AUTO*; program(s) used to solve structure: *Il Milione* (Burla *et al.*, 2007); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku, 2010); software used to prepare material for publication: *CrystalStructure*.

Fiancial support from the Korea Institute of Science and Technology (KIST) is gratefully acknowledged.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FF2100).

References

Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Cryst. 40, 609–613.

Rigaku (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

Rigaku (2006). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.

Rigaku (2010). CrystalStructure. Rigaku Corporation, Tokyo, Japan.

Rokade, Y. B. & Sayyed, R. Z. (2009). *RASAYAN J. Chem.* **2**, 972–980.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Upadhayaya, R. S., Vandavasi, J. K., Kardile, R. A., Lahore, S. V., Dixit, S. S., Deokar, H. S., Shinde, P. D., Sarmah, M. P. & Chattopadhyaya, J. (2010). *Eur. J. Med. Chem.* **2**, 1854–1867.

Yang, P., Ding, B. & Du, G.-X. (2012). Acta Cryst. E68, o2966.

Acta Cryst. (2013). E69, o548 [doi:10.1107/S1600536813006417]

(E)-N-[(E)-3-(4-Nitrophenyl)allylidene]naphthalen-1-amine

Kee Dal Nam, Joo Hwan Cha, Yong Seo Cho, Jae Kyun Lee and Ae Nim Pae

Comment

Naphthalene derivatives has been identified as new range of potent antimicrobials effective against wide range of human pathogens. They occupy a central place among medicinally important compounds due to their diverse and interesting antibiotic properties with minimum toxicity. (Rokade & Sayyed, 2009; Upadhayaya *et al.* 2010). In this paper, the title compound was synthesized and characterized by X-ray diffraction. Crystal structure of a similar compound, N-(Naphthalen-1-yl­methyl­idene)-4H-1,2,4-triazol-4-amine, was described previously by Yang *et al.* (2012). In the title compound (Fig. 1), $C_{19}H_{14}N_2O_2$, the dihedral angle between the mean planes of the 4-nitrophenyl ring (C14—C19) and the naphthalene ring (C1—C10) is 12.79 (2)°. The imine group displays a torsion angle [C1—C10—N1—C11 = 41.0 (2)°] and the imine [C11 = N1] group has an (E) configuration. In the crystal, weak intermolecular C—H···O hydrogen bonds link molecules into layers parallel to the E0 axis.

Experimental

To a solution of 1-naphthylamine (2.0 mmol) in anhydrous ethanol (40 ml) was treated with equimolar quantities of substituted 4-nitrocinnamaldehydes. The mixture was refluxed for 3 days, and the progress of reaction was monitored by TLC. After completion of reaction, the solvent was removed under reduced pressure. The residue was purified by flash column chromatography to afford the title compound as a yellow solid in yield 88%. Single crystals suitable for X-ray diffraction were prepared by slow evaporation of a solution of the title compound in ethanol at room temperature.

Refinement

All hydrogen atoms were positioned geometrically and refined using a riding model with C—H = 0.93–0.98 Å and Uiso(H) = 1.2 or 1.5 Ueq(C).

Computing details

Data collection: *RAPID-AUTO* (Rigaku, 2006); cell refinement: *RAPID-AUTO* (Rigaku, 1995); data reduction: *RAPID-AUTO* (Rigaku, 1995); program(s) used to solve structure: *Il Milione* (Burla *et al.*, 2007); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *CrystalStructure* (Rigaku, 2010); software used to prepare material for publication: *CrystalStructure* (Rigaku, 2010).

Acta Cryst. (2013). E69, o548 Sup-1

Figure 1

The molecular structure of the title compound showing the atomic numbering and 50% probability displacement ellipsoid.

(E)-N-[(E)-3-(4-Nitrophenyl)allylidene]naphthalen-1-amine

Crystal data

 $C_{19}H_{14}N_2O_2$ V = 1507.8 (2) Å³ $M_r = 302.33$ Z = 4Monoclinic, $P2_1/c$ F(000) = 632.00Hall symbol: -P 2ybc $D_x = 1.332 \text{ Mg m}^{-3}$ a = 7.7021 (5) Å Mo $K\alpha$ radiation, $\lambda = 0.71075 \text{ Å}$ b = 13.8713 (12) ÅCell parameters from 7945 reflections $\theta = 3.1-27.5^{\circ}$ c = 14.2554 (10) Å $\mu = 0.09 \text{ mm}^{-1}$ $\beta = 98.096 (2)^{\circ}$

Acta Cryst. (2013). E69, o548 Sup-2

T = 296 KChunk, yellow

Data collection

Rigaku R-AXIS RAPID diffractometer

Detector resolution: 10.000 pixels mm⁻¹

 ω scans

Absorption correction: multi-scan (ABSCOR; Rigaku, 1995) $T_{min} = 0.714$, $T_{max} = 0.991$ 14376 measured reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.044$ $wR(F^2) = 0.125$

 $WR(F^2) = 0.123$

S = 1.00

3426 reflections 220 parameters

0 restraints

Primary atom site location: structure-invariant

direct methods

 $0.20 \times 0.20 \times 0.10 \text{ mm}$

3426 independent reflections

1824 reflections with $F^2 > 2\sigma(F^2)$

 $R_{\rm int} = 0.038$

 $\theta_{\rm max} = 27.5^{\circ}$

 $h = -8 \rightarrow 9$

 $k = -18 \rightarrow 17$

 $l = -18 \rightarrow 18$

Secondary atom site location: difference Fourier

map

Hydrogen site location: inferred from

neighbouring sites

H atoms treated by a mixture of independent

and constrained refinement $w = 1/(\sigma^2(F^2) + (0.0632P)^2)$

 $w = 1/[\sigma^2(F_o^2) + (0.0632P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\text{max}} = 0.16 \text{ e Å}^{-3}$

 $\Delta \rho_{\min} = -0.24 \text{ e Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement was performed using all reflections. The weighted *R*-factor (*wR*) and goodness of fit (*S*) are based on F^2 . *R*-factor (gt) are based on *F*. The threshold expression of $F^2 > 2.0 \sigma(F^2)$ is used only for calculating *R*-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.83231 (18)	0.69908 (11)	0.01889 (9)	0.0893 (5)	
O2	1.04049 (17)	0.66549 (11)	0.13076 (10)	0.0912 (5)	
N1	0.28674 (17)	0.58150 (9)	0.58185 (9)	0.0559 (4)	
N2	0.8861 (2)	0.68108 (10)	0.10197 (11)	0.0639 (4)	
C1	-0.0251(2)	0.57846 (11)	0.60108 (11)	0.0571 (4)	
C2	-0.1560(2)	0.57496 (12)	0.65987 (13)	0.0646 (5)	
C3	-0.1124(3)	0.57509 (12)	0.75554 (13)	0.0650 (5)	
C4	0.0649(2)	0.57721 (10)	0.79753 (11)	0.0531 (4)	
C 5	0.1143 (3)	0.57601 (12)	0.89707 (12)	0.0656 (5)	
C6	0.2852(3)	0.57557 (13)	0.93612 (12)	0.0708 (5)	
C 7	0.4176 (3)	0.57612 (12)	0.87819 (12)	0.0667 (5)	
C8	0.3764 (2)	0.57776 (11)	0.78197 (11)	0.0566 (4)	
C9	0.19908 (19)	0.57918 (10)	0.73900 (10)	0.0478 (4)	
C10	0.1495 (2)	0.58192 (10)	0.63815 (10)	0.0493 (4)	
C11	0.2713 (3)	0.63110 (12)	0.50566 (11)	0.0548 (4)	

Acta Cryst. (2013). E69, o548 Sup-3

C12	0.4042 (3)	0.62977 (12)	0.44420 (11)	0.0560 (4)	
C13	0.3893 (3)	0.67568 (12)	0.36151 (11)	0.0548 (4)	
C14	0.5200(2)	0.67695 (10)	0.29619 (10)	0.0486 (4)	
C15	0.4674 (2)	0.69629 (11)	0.20060 (10)	0.0562 (4)	
C16	0.5861(2)	0.69706 (11)	0.13708 (11)	0.0546 (4)	
C17	0.75962 (19)	0.67906 (10)	0.16958 (10)	0.0494 (4)	
C18	0.8178 (2)	0.66060 (11)	0.26364 (11)	0.0571 (5)	
C19	0.6975 (2)	0.65988 (11)	0.32628 (11)	0.0562 (4)	
H1	-0.0568	0.5784	0.5357	0.0685*	
H2	-0.2733	0.5725	0.6333	0.0775*	
H3	-0.2005	0.5738	0.7939	0.0780*	
H5	0.0277	0.5755	0.9364	0.0787*	
H6	0.3146	0.5749	1.0017	0.0850*	
H7	0.5346	0.5754	0.9055	0.0801*	
H8	0.4655	0.5779	0.7442	0.0679*	
H15	0.3498	0.7089	0.1793	0.0674*	
H16	0.5497	0.7095	0.0732	0.0655*	
H18	0.9359	0.6489	0.2843	0.0686*	
H19	0.7353	0.6478	0.3901	0.0674*	
H13	0.284(3)	0.7118 (12)	0.3417 (11)	0.064 (5)*	
H12	0.507(3)	0.5928 (12)	0.4638 (12)	0.072 (6)*	
H11	0.169 (3)	0.6735 (11)	0.4877 (11)	0.062 (5)*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.0896 (10)	0.1221 (13)	0.0611 (8)	0.0165 (8)	0.0280(8)	0.0112 (8)
O2	0.0506(8)	0.1242 (12)	0.1018 (11)	0.0034 (8)	0.0215 (8)	0.0112 (9)
N1	0.0591 (8)	0.0612 (9)	0.0492 (8)	0.0021 (7)	0.0141 (7)	-0.0007(7)
N2	0.0625 (10)	0.0652 (10)	0.0666 (10)	-0.0003(8)	0.0182(8)	0.0005 (8)
C1	0.0591 (10)	0.0585 (10)	0.0523 (9)	0.0027 (8)	0.0032(8)	-0.0049(8)
C2	0.0506 (10)	0.0699 (12)	0.0729 (12)	0.0021 (9)	0.0070(9)	-0.0074(9)
C3	0.0546 (10)	0.0716 (12)	0.0732 (12)	-0.0002(9)	0.0235 (9)	-0.0052(9)
C4	0.0587 (10)	0.0492 (9)	0.0541 (10)	0.0008 (7)	0.0171 (8)	-0.0025(7)
C5	0.0788 (13)	0.0671 (11)	0.0552 (10)	-0.0008 (10)	0.0247 (10)	-0.0015(9)
C6	0.0938 (15)	0.0728 (12)	0.0456 (9)	-0.0023(11)	0.0087 (10)	0.0031 (8)
C7	0.0653 (11)	0.0727 (12)	0.0591 (10)	-0.0018(9)	-0.0020(9)	0.0068 (9)
C8	0.0553 (10)	0.0576 (10)	0.0572 (10)	0.0014 (8)	0.0094(8)	0.0050(8)
C9	0.0510 (9)	0.0427 (8)	0.0506 (9)	0.0012 (7)	0.0099(8)	0.0001 (7)
C10	0.0545 (9)	0.0465 (9)	0.0483 (9)	0.0029 (7)	0.0116 (8)	-0.0019(7)
C11	0.0607 (10)	0.0556 (10)	0.0487 (9)	0.0012 (9)	0.0103(8)	-0.0024(8)
C12	0.0608 (11)	0.0573 (10)	0.0510 (10)	0.0006 (9)	0.0116 (9)	-0.0004(8)
C13	0.0578 (10)	0.0553 (10)	0.0518 (10)	0.0021 (8)	0.0096 (8)	0.0003 (8)
C14	0.0532 (9)	0.0456 (9)	0.0469 (9)	0.0002 (7)	0.0064(7)	0.0010(7)
C15	0.0486 (9)	0.0686 (11)	0.0504 (9)	0.0068 (8)	0.0040(8)	0.0046 (8)
C16	0.0551 (10)	0.0633 (10)	0.0444 (9)	0.0030(8)	0.0039 (8)	0.0037 (8)
C17	0.0494 (9)	0.0478 (9)	0.0525 (9)	-0.0008(7)	0.0121 (8)	0.0011 (7)
C18	0.0479 (9)	0.0620 (11)	0.0594 (10)	0.0011 (8)	0.0003 (8)	0.0054 (8)
C19	0.0580 (10)	0.0645 (11)	0.0437 (9)	0.0002 (8)	-0.0014(8)	0.0050(8)

Geometric parameters (Å, °)			
O1—N2	1.224 (2)	C14—C19	1.395 (3)
O2—N2	1.222 (2)	C15—C16	1.375 (3)
N1—C10	1.414 (3)	C16—C17	1.374 (2)
N1—C11	1.277 (2)	C17—C18	1.377 (2)
N2—C17	1.464 (3)	C18—C19	1.374 (3)
C1—C2	1.400 (3)	C1—H1	0.930
C1—C10	1.375 (2)	C2—H2	0.930
C2—C3	1.358 (3)	C3—H3	0.930
C3—C4	1.412 (3)	C5—H5	0.930
C4—C5	1.416 (3)	C6—H6	0.930
C4—C9	1.417 (3)	C7—H7	0.930
C5—C6	1.355 (3)	C8—H8	0.930
C6—C7	1.400 (3)	C11—H11	0.989 (16)
C7—C8	1.364 (3)	C12—H12	0.953 (17)
C8—C9	1.416 (2)	C13—H13	0.959 (17)
C9—C10	1.435 (2)	C15—H15	0.930
C11—C12	1.438 (3)	C16—H16	0.930
C12—C13	1.330 (3)	C18—H18	0.930
C13—C14	1.464 (3)	C19—H19	0.930
C14—C15	1.392 (2)		
O1···C16	2.708 (3)	C7···H13 ^{viii}	3.134 (17)
O1···C18	3.547 (2)	C8···H3 ^v	3.2394
O2···C16	3.540 (2)	C8···H15 ^{viii}	3.2947
O2···C18	2.729 (3)	C8···H13 ^{viii}	3.148 (17)
N1···C8	2.840 (2)	C9···H15 ^{viii}	3.3151
N1···C13	3.591 (3)	C9···H18 ^{iv}	3.3321
C1···C4	2.789 (3)	C9···H13 ^{viii}	3.272 (16)
C1···C11	2.910 (3)	C10···H1 ^{xi}	3.3316
C2···C9	2.808 (2)	C10···H15 ^{viii}	3.2996
C3···C10	2.798 (3)	C10···H18 ^{iv}	3.4799
C4···C7	2.797 (3)	C10···H19 ^{iv}	3.3466
C5···C8	2.775 (3)	C11···H1 ^{xi}	3.3541
C6···C9	2.795 (3)	C11···H2 ^{xi}	3.4512
C9···C11	3.523 (3)	C11···H15 ^{viii}	3.3164
C12···C19	3.029 (3)	C11···H16 ^{viii}	3.1354
C14···C17	2.758 (3)	C11···H12 ^{iv}	3.540 (17)
C15···C18	2.767 (3)	C12···H2 ^v	3.4901
C16···C19	2.761 (3)	C12···H2 ^{xi}	3.1301
01···C1 ⁱ	3.426 (3)	C12···H16 ^{viii}	3.0046
01···C5 ⁱⁱ	3.422 (3)	C12H12 ^{iv}	3.386 (17)
O1···C19 ⁱⁱⁱ	3.412 (2)	C13···H2 ^{xi}	3.5604
O2···C5 ^{iv}	3.559 (3)	C13···H16 ^{viii}	3.4816
O2···C15 ^v	3.326 (2)	C14 Heiv	3.5298
N1···C19 ^{iv}	3.591 (2)	C14 H8iv	3.5866
N2···C1 ⁱ	3.405 (2)	C15 HCx	3.4924
N2···C2 ⁱ	3.509 (3)	C15H6 ^x	3.3647
N2···C5 ^{iv}	3.566 (3)	C15···H8 ⁱⁱⁱ	3.1933

C1···O1 ^{vi}	3.426 (3)	C16···H2 ⁱ	3.3773
C1···N2 ^{vi}	3.405 (2)	C16···H6 ^x	3.1359
C2···N2 ^{vi}	3.509 (3)	C17···H2 ⁱ	3.4883
C2···C17 ^{vi}	3.480 (3)	C19···H1 ^v	3.4892
C4···C18 ^{iv}	3.561 (3)	$H1\cdots O1^{vi}$	3.2020
C5···O1 ^{vii}	3.422 (3)	$H1\cdots N1^{xi}$	3.1668
C5···O2 ^{iv}	3.559 (3)	$H1\cdots N2^{vi}$	3.5116
C5···N2 ^{iv}	3.566 (3)	$H1\cdots C1^{xi}$	3.0465
C7···C13 ^{viii}	3.456 (3)	H1···C10 ^{xi}	3.3316
C8···C14viii	3.575 (2)	H1···C11 ^{xi}	3.3541
C8···C15 ^{viii}	3.448 (3)	H1···C19 ^{ix}	3.4892
C9···C18 ^{iv}	3.329 (2)	$H1\cdots H1^{xi}$	2.6052
C9···C19 ^{iv}	3.564 (3)	H1···H19 ^{ix}	2.6192
C10···C19 ^{iv}	3.567 (2)	H1···H12 ^{ix}	3.3760
C13···C7 ⁱⁱⁱ	3.456 (3)	H2…N1 ^{ix}	3.3669
C14···C8 ⁱⁱⁱ	3.575 (2)	H2···C11 ^{xi}	3.4512
C15···O2 ^{ix}	3.326 (2)	H2···C12 ^{ix}	3.4901
C15···C8 ⁱⁱⁱ	3.448 (3)	H2···C12 ^{xi}	3.1301
C17···C2 ⁱ	3.480 (3)	H2···C13 ^{xi}	3.5604
C18···C4 ^{iv}	3.561 (3)	H2···C16 ^{vi}	3.3773
C18···C9iv	3.329 (2)	H2···C17 ^{vi}	3.4883
C19···O1viii	3.412 (2)	H2···H8 ^{ix}	2.7294
C19···N1 ^{iv}	3.591 (2)	H2···H16 ^{vi}	3.3765
C19···C9 ^{iv}	3.564 (3)	H2···H12 ^{ix}	2.7617
C19···C10 ^{iv}	3.567 (2)	H2···H12 ^{xi}	3.1167
O1···H16	2.4154	H3…C7 ^{ix}	3.3298
O2···H18	2.4477	H3···C8 ^{ix}	3.2394
N1···H1	2.6358	H3···H7 ^{ix}	2.7580
N1···H8	2.5219	H3···H8 ^{ix}	2.5703
N1···H12	2.558 (19)	H5···O1 ^{vii}	2.6614
N2···H16	2.5955	H5···O2 ^{vii}	3.0276
N2···H18	2.6122	H5O2iv	3.4966
С1…Н3	3.2302	H5···N2 ^{vii}	3.1031
C1···H11	2.695 (17)	H5…С5 ^{хіі}	3.4610
C3···H1	3.2230	H5…H5 ^{хіі}	2.8416
C3···H5	2.6512	H5···H6 ^{xii}	3.5690
C4···H2	3.2486	H6···O2 ^{vii}	3.2431
C4···H6	3.2546	H6···C7 ^{xiii}	3.2526
C4···H8	3.2801	H6···C15 ^{xiv}	3.3647
C5···H3	2.6530	H6···C16 ^{xiv}	3.1359
C5···H7	3.2228	H6···H5 ^{xii}	3.5690
C6···H8	3.2377	H6···H6 ^{xiii}	3.5374
C7···H5	3.2269	H6···H7×iii	2.6476
C8···H6	3.2337	H6···H15 ^{xiv}	3.1225
C9···H1	3.2677	H6···H16 ^{xiv}	2.6995
C9···H3	3.2819	H7···O1 ^{xiv}	3.1257
C9···H5	3.2729	H7···C6 ^{xiii}	3.2438
C9···H7	3.2542	H7···H3 ^v	2.7580
C10···H2	3.2503	H7···H6 ^{xiii}	2.6476
C10 112	J.4JUJ	11/ 110	2.07/0

C10···H8	2.6791	H7···H7 ^{xiii}	3.5092
C10···H11	2.515 (16)	H7···H16 ^{xiv}	3.0192
C11···H1	2.7219	H7···H13 ^{viii}	3.5723
C11···H8	3.5939	H8···C2 ^v	3.3067
C11···H13	2.607 (16)	H8···C3 ^v	3.2321
C12···H19	2.7779	H8···C14 ^{iv}	3.5866
C13···H15	2.6129	H8···C14 ^{viii}	3.4924
C13···H19	2.6670	H8···C15 ^{viii}	3.1933
C13···H11	2.642 (17)	H8···H2 ^v	2.7294
C14···H16	3.2501	Н8⋯Н3 ^v	2.5703
C14···H18	3.2552	H8···H15 ^{viii}	3.1875
C14···H12	2.673 (17)	H8···H13 ^{viii}	3.5949
C15···H19	3.2306	H15···O2 ^{ix}	2.4604
C15···H13	2.622 (17)	H15···N1 ⁱⁱⁱ	3.2294
C16···H18	3.2430	H15···C8 ⁱⁱⁱ	3.2947
C17···H15	3.2058	H15···C9 ⁱⁱⁱ	3.3151
C17···H19	3.2044	H15···C10 ⁱⁱⁱ	3.2996
C18···H16	3.2425	H15···C11 ⁱⁱⁱ	3.3164
C19···H15	3.2315	H15···H6 ^x	3.1225
C19···H13	3.300 (18)	H15···H8 ⁱⁱⁱ	3.1875
C19···H12	2.769 (18)	H15···H11 ⁱⁱⁱ	3.3154
H1···H2	2.3187	H16···N1 ⁱⁱⁱ	3.5481
H1···H11	2.3587	H16···C6 ^x	3.2099
H2···H3	2.2795	H16···C7 ^x	3.3756
Н3…Н5	2.4921	H16···C11 ⁱⁱⁱ	3.1354
Н5…Н6	2.2740	H16···C12 ⁱⁱⁱ	3.0046
H6···H7	2.3246	H16···C13 ⁱⁱⁱ	3.4816
H7···H8	2.2861	H16···H2 ⁱ	3.3765
H15···H16	2.3051	H16···H6 ^x	2.6995
H15···H13	2.4371	H16···H7 ^x	3.0192
H18···H19	2.3055	H16···H12 ⁱⁱⁱ	3.1495
H19···H13	3.5569	H16···H11 ⁱⁱⁱ	3.4229
H19···H12	2.3008	H18···C1 ^{iv}	3.5734
H13···H12	2.80(3)	H18···C2 ^{iv}	3.5731
H13···H11	2.44 (3)	H18···C3 ^{iv}	3.4701
H12···H11	2.90 (3)	H18···C4 ^{iv}	3.3461
O1··· $H1$ ⁱ	3.2020	H18···C9 ^{iv}	3.3321
O1···H5 ⁱⁱ	2.6614	H18···C10 ^{iv}	3.4799
O1···H7 ^x	3.1257	H18···C13 ^v	3.5298
O1···H19 ⁱⁱⁱ	2.8387	H18···H13 ^v	2.8315
O1···H11 ⁱ	3.219 (17)	H18···H11 ^v	3.2054
O2···H5 ⁱⁱ	3.0276	H19···O1 ^{viii}	2.8387
O2···H5 ^{iv}	3.4966	H19···N1 ^{iv}	3.2127
O2···H6 ⁱⁱ	3.2431	H19···C1 ^v	3.4374
O2···H15 ^v	2.4604	H19···C10 ^{iv}	3.3466
O2···H13 ^v	3.375 (15)	H19···H1 ^v	2.6192
O2···H11 ⁱ	3.269 (16)	H19···H11 ^v	3.4503
N1···H1 ^{xi}	3.1668	H13···O2 ^{ix}	3.375 (15)
N1···H2 ^v	3.3669	H13···C4 ⁱⁱⁱ	3.394 (17)
· 			

N1···H15 ^{viii}	3.2294	H13···C5 ⁱⁱⁱ	3.360 (17)
N1···H16 ^{viii}	3.5481	H13···C6 ⁱⁱⁱ	3.241 (16)
N1···H19 ^{iv}	3.2127	H13···C7 ⁱⁱⁱ	3.134 (17)
N1···H12 ^{iv}	3.013 (17)	H13···C8 ⁱⁱⁱ	3.148 (17)
N2···H1 ⁱ	3.5116	H13····C9 ⁱⁱⁱ	3.272 (16)
N2···H5 ⁱⁱ	3.1031	H13···H7 ⁱⁱⁱ	3.5723
N2···H11 ⁱ	3.530 (17)	H13···H8 ⁱⁱⁱ	3.5949
$C1\cdots H1^{xi}$	3.0465	H13···H18 ^{ix}	2.8315
C1···H18 ^{iv}	3.5734	H12···N1 ^{iv}	3.013 (17)
C1···H19 ^{ix}	3.4374	H12···C2 ^v	3.545 (16)
C2···H8 ^{ix}	3.3067	H12···C11 ^{iv}	3.540 (17)
C2···H18 ^{iv}	3.5731	H12···C12 ^{iv}	3.386 (17)
C2···H12 ^{ix}	3.545 (16)	H12···H1 ^v	3.3760
C3···H8 ^{ix}	3.2321	H12···H2 ^v	2.7617
C3···H18 ^{iv}	3.4701	H12···H2 ^{xi}	3.1167
C4···H18 ^{iv}	3.3461	H12···H16viii	3.1495
C4···H13 ^{viii}	3.394 (17)	H12···H12 ^{iv}	2.78 (3)
C5···H5 ^{xii}	3.4610	H11···O1 ^{vi}	
C5···H13 ^{viii}		H11···O2 ^{vi}	3.219 (17)
	3.360 (17)	H11···N2 ^{vi}	3.269 (16)
C6···H7 ^{xiii}	3.2438		3.530 (17)
C6···H16xiv	3.2099	H11···H15 ^{viii}	3.3154
C6···H13viii	3.241 (16)	H11···H16 ^{viii}	3.4229
C7···H3 ^v	3.3298	H11···H18 ^{ix}	3.2054
C7···H6 ^{xiii}	3.2526	H11···H19 ^{ix}	3.4503
C7···H16 ^{xiv}	3.3756		
C10—N1—C11	110 52 (14)	C17—C18—C19	110 51 (15)
	119.53 (14)	C14—C19—C18	118.51 (15)
01—N2—02	122.81 (17)	C14—C19—C18 C2—C1—H1	121.37 (14)
O1—N2—C17	118.37 (14)		119.358
O2—N2—C17	118.82 (15)	C10—C1—H1	119.366
C2—C1—C10	121.28 (15)	C1—C2—H2	119.856
C1—C2—C3	120.30 (15)	C3—C2—H2	119.847
C2—C3—C4	120.87 (17)	C2—C3—H3	119.562
C3—C4—C5	122.11 (17)	C4—C3—H3	119.566
C3—C4—C9	119.53 (15)	C4—C5—H5	119.342
C5—C4—C9	118.36 (15)	C6—C5—H5	119.342
C4—C5—C6	121.32 (18)	C5—C6—H6	119.866
C5—C6—C7	120.27 (16)	C7—C6—H6	119.866
C6—C7—C8	120.49 (16)	C6—C7—H7	119.748
C7—C8—C9	120.61 (16)	C8—C7—H7	119.758
C4—C9—C8	118.94 (14)	C7—C8—H8	119.691
C4—C9—C10	118.51 (13)	C9—C8—H8	119.700
C8—C9—C10	122.54 (15)	N1—C11—H11	121.1 (10)
N1—C10—C1	123.40 (13)	C12—C11—H11	117.4 (10)
N1—C10—C9	116.99 (13)	C11—C12—H12	117.6 (11)
C1—C10—C9	119.47 (15)	C13—C12—H12	118.8 (11)
N1—C11—C12	121.48 (16)	C12—C13—H13	118.4 (10)
C11—C12—C13	123.62 (16)	C14—C13—H13	115.6 (10)
C12—C13—C14	126.01 (16)	C14—C15—H15	119.424

Acta Cryst. (2013). E69, o548 sup-8

C13—C14—C15	119.57 (14)	C16—C15—H15	119.428
C13—C14—C19	122.30 (14)	C15—C16—H16	120.586
C15—C14—C19	118.13 (15)	C17—C16—H16	120.584
C14—C15—C16	121.15 (14)	C17—C18—H18	120.741
C15—C16—C17	118.83 (14)	C19—C18—H18	120.752
N2—C17—C16	118.69 (13)	C14—C19—H19	119.312
N2—C17—C18	119.29 (14)	C18—C19—H19	119.319
C16—C17—C18	122.01 (15)		
C10—N1—C11—C12	-177.42 (12)	C6—C7—C8—C9	0.2(3)
C11—N1—C10—C1	41.0 (2)	C7—C8—C9—C4	-1.1(2)
C11—N1—C10—C9	-143.39 (13)	C7—C8—C9—C10	179.35 (13)
O1—N2—C17—C16	0.2(2)	C4—C9—C10—N1	-178.53 (11)
O1—N2—C17—C18	-178.89 (13)	C4—C9—C10—C1	-2.72 (19)
O2—N2—C17—C16	179.70 (13)	C8—C9—C10—N1	1.1 (2)
O2—N2—C17—C18	0.6(2)	C8—C9—C10—C1	176.87 (12)
C2—C1—C10—N1	177.29 (13)	N1—C11—C12—C13	175.92 (14)
C2—C1—C10—C9	1.8 (3)	C11—C12—C13—C14	179.95 (14)
C10—C1—C2—C3	0.1 (3)	C12—C13—C14—C15	156.74 (15)
C1—C2—C3—C4	-1.0(3)	C12—C13—C14—C19	-23.6 (3)
C2—C3—C4—C5	-179.08 (14)	C13—C14—C15—C16	-179.30(13)
C2—C3—C4—C9	-0.0(3)	C13—C14—C19—C18	179.44 (13)
C3—C4—C5—C6	178.28 (14)	C15—C14—C19—C18	-0.9(2)
C3—C4—C9—C8	-177.73 (12)	C19—C14—C15—C16	1.1 (2)
C3—C4—C9—C10	1.9 (2)	C14—C15—C16—C17	-0.5(3)
C5—C4—C9—C8	1.4(2)	C15—C16—C17—N2	-179.27 (12)
C5—C4—C9—C10	-179.04 (12)	C15—C16—C17—C18	-0.2 (3)
C9—C4—C5—C6	-0.8(3)	N2—C17—C18—C19	179.39 (12)
C4—C5—C6—C7	-0.1 (3)	C16—C17—C18—C19	0.3 (3)
C5—C6—C7—C8	0.4 (3)	C17—C18—C19—C14	0.3 (3)

Symmetry codes: (i) x+1, -y+3/2, z-1/2; (ii) x+1, y, z-1; (iii) x, -y+3/2, z-1/2; (iv) -x+1, -y+1, -z+1; (v) x+1, y, z; (vi) x-1, -y+3/2, z+1/2; (vii) x-1, y, z; (vii) x-1, y, z; (viii) x, -y+1, -z+1; (xiii) -x, -y+1, -z+2; (xiii) -x+1, -y+1, -z+2; (xiv) x, y, z+1.

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D··· A	<i>D</i> —H··· <i>A</i>
C5—H5···O1 ^{vii}	0.93	2.66	3.422 (3)	139
C15—H15···O2 ^{ix}	0.93	2.46	3.326(3)	155

Symmetry codes: (vii) x-1, y, z+1; (ix) x-1, y, z.