MDFEND: Multi-domain Fake News Detection

Qiong Nan^{1,2,3}, Juan Cao^{1,2,*}, Yongchun Zhu^{1,2}, Yanyan Wang^{1,2}, Jintao Li¹

¹Key Lab of Intelligent Information Processing of Chinese Academy of Sciences (CAS), Institute of Computing Technology, CAS, Beijing, China ²University of Chinese Academy of Sciences, Beijing, China ³State Key Laboratory of Media Convergence Production Technology and Systems, Beijing, China {nanqiong19z,caojuan,zhuyongchun18s,wangyanyan18s,jtli}@ict.ac.cn

CIKM'21
220217 Chia-Chun Ho

Outline

Introduction

Related Works

Methodology

Experiments

Conclusions

Comments

Single domain fake news detection

- Most of approaches focus on single domain fake news detection (SFND).
 - e.g., politics (PoliticFact), health (CoAID)
- However, for a certain domain, the amount of fake news can be extremely limited.
- Therefore, based on such inadequate single-domain data, the performance of these detection models is unsatisfying.

Multi domain fake news detection

- In practical scenarios, the real-world news platforms release various news in different domains everyday.
- Therefore, it's promising to solve the data sparsity problem and improve the performance of all domains.
 - By exploiting data from multiple domains, called multi-domain fake news detection (MFND).

Multi domain fake news detection

- Data distributions vary from domain to domain, called domain shift.
 - Different domain have different word usage, the most commonly used words in
 - Military news: "navy", "army"
 - Educational news: "students", "university", "teacher"
 - Propagation patterns vary a lot in different domains.
- Facing the problem of serious domain shift, MFND can therefore be quite challenging.

Weibo21 MFND dataset

- Some domains only contain very little labels data, and this phenomenon further increases the difficulty in MFND, which remain unsolved yet with existing methods.
- The authors build a comprehensive dataset Weibo21, which contain news from 9 domains (Science, Military, Education, Disasters...).
- Every domain contains news content, released timestamp, corresponding pictures and comments.
- Weibo21 contains 4488 fake news and 4640 real news from 9 different domains.

Introduction MDFEND

- Proposed a simple but effective Multi-domain Fake News Detection Model, namely MDFEND.
 - Utilizes a domain gate to aggregate multiple representations extracted by mixture of experts.
- Experiments demonstrate the significant effectiveness improvement of the proposed MDFEND compared with the baselines.

Contributions

- Construct Weibo21, an MFND dataset.
 - This data repository is the first MFND dataset collected from one platform and contains the richest domains.
- Proposed a simple but effective method named MDFEND for MFND.
- Systematically evaluate MFND performance of different methods on proposed dataset.

Related Works

Fake News Detection

- Earlier studies use hand-craft features.
- Some recent research works use propagation patterns for structural modeling.
- Others jointly used both textual and visual features for multi-modal modeling.
- Some methods incorporated related works to assist fake news detection.
- Silver et al. (AAAI'21) proposed to jointly preserve domain-specific as well as cross-domains, but they didn't make full use of the domain information explicitly.

Methodology MDFEND

- Propose a novel framework, namely MDFEND, for MFND.
- Same as the single-domain methods, treat MFND as a binary classification problem.

Representation Extraction

- For a piece of news, tokenize its content with BertTokenizer.
- After adding special tokens for classification [CLS] as well as separation [SEP], obtain a list of token ['CLS', token_1, ..., token_n, 'SEP'].
- These tokens are then fed into BERT to obtain word embeddings W are processing by a Mask-Attention network to get the sentence-level embedding e^s .

Domain Embedding

- To handle each domain specially, define a learnable vector $e^d \rightarrow \text{domain embedding}$.
- To help individualize representation extraction for each domain.
- Thus, a e^d will be learned for each domain.

Mixture of Expert

- Employ multiple experts (i.e., networks) to extract various representations of news.
- Intuitively, can employ one expert to extract the news' representations for multiple domains.
- However, one expert only specializes in one area.
 - Could only contain partial information.
 - Cannot completely cover the characteristic of news contents.

Mixture of Expert

- Employ multiple experts for the sake of comprehensiveness.
- Output of the "expert" network:
 - $r_i = \Psi_i(W; \theta_i) \ (1 \le i \le T)$
 - W: word embeddings (input)
 - T: # of expert networks (hyper-parameter)
- Each "expert" network is a TextCNN in authors' design.

Domain gate

- It's necessary to generate high-quality news representations that can represent news from different domains appropriately.
- Intuitively, can average representations from all experts.
 - Simple average operation will remove the domain-specific information.
 - Synthetic representation may not be good for MFND.

Domain gate

- Different experts specialize in different areas, and they're good at handling different domains.
- For MFND, would like to select experts adaptively.
- Proposed a domain gate with e^d & e^s as input to guide the selection process.

Domain gate

- Vector indicating the weight ratio of each expert.
 - $a = \operatorname{softmax}(G(e^d \oplus e^s; \phi))$
 - Use softmax function to normalize the output of $G(\cdot)$.
 - $a \in \mathbb{R}^n$: weight vector denoting the importance of different experts.
- With the domain gate, the news' final feature vector is obtained: $\mathbf{v} = \sum_{i=1}^{T} a_i \mathbf{r_i}$

Prediction

- Final feature vector **v** is fed into the classifier:
 - MLP network + softmax output layer
 - $\hat{y} = \operatorname{softmax}(MLP(v))$
- Employ binary cross-entropy loss:

$$L = -\sum_{i=1}^{N} (y^{i} \log \hat{y}^{i} + (1 - y^{i}) \log(1 - \hat{y}^{i}))$$

Dataset: Weibo21

domain	Science	Military	Education	Disasters	Politics
real	143	121	243	185	306
fake	93	222	248	591	546
all	236	343	491	776	852
domain	Health	Finance	Entertainment	Society	All
real	485	959	1000	1198	4640
fake	515	362	440	1471	4488
all	1000	1321	1440	2669	9128

- Multi-domain fake news dataset in Chinese.
- News on Weibo ranging from Dec. 2014 ∼ Mar. 2021.
- Collect news content, pictures, timestamp, comments.
 - Further, gather judgement information for fake news, provide evidence to people and increase the credibility of this dataset.
- Perform deduplication in one-pass clustering.
- 4488: 4640 = fake: true news are obtained.

Dataset: Weibo21

- Categorization on crowd-sourcing.
- Authors perform the topic distribution of news among different domains.
- Figure shows significant difference in the frequently used words.

(a) health

(b) military

Baselines

- TextCNN, BiGRU, BERT:
 - Single-domain: train and test on specific single domain.
 - Mixed-domain: train model for all domains.
- EANN: to extract domain-independent features. (Use text branch only.)
- MMOE, MOSE: proposed for multi-task learning, assume that MFND are different tasks.
- EDDFN: a model for cross-domain FND, which models different domains implicitly and jointly preserves domain specific and cross-domain knowledge.

Results (f1-score)

model	Science	Military	Education	Accidents	Politics	Health	Finance	Entertainment	Society	All
TextCNN_single	0.7470	0.778	0.8882	0.8310	0.8694	0.9053	0.7909	0.8591	0.8727	0.8380
BiGRU_single	0.4876	0.7169	0.7067	0.7625	0.8477	0.8378	0.8109	0.8308	0.6067	0.7342
BERT_single	0.8192	0.7795	0.8136	0.7885	0.8188	0.8909	0.8464	0.8638	0.8242	0.8272
TextCNN_all	0.7254	0.8839	0.8362	0.8222	0.8561	0.8768	0.8638	0.8456	0.8540	0.8686
BiGRU_all	0.7269	0.8724	0.8138	0.7935	0.8356	0.8868	0.8291	0.8629	0.8485	0.8595
BERT_all	0.7777	0.9072	0.8331	0.8512	0.8366	0.9090	0.8735	0.8769	0.8577	0.8795
EANN	0.8225	0.9274	0.8624	0.8666	0.8705	0.9150	0.8710	0.8957	0.8877	0.8975
MMOE	0.8755	0.9112	0.8706	0.8770	0.8620	0.9364	0.8567	0.8886	0.8750	0.8947
MOSE	0.8502	0.8858	0.8815	0.8672	0.8808	0.9179	0.8672	0.8913	0.8729	0.8939
EDDFN	0.8186	0.9137	0.8676	0.8786	0.8478	0.9379	0.8636	0.8832	0.8689	0.8919
MDFEND	0.8301	0.9389	0.8917	0.9003	0.8865	0.9400	0.8951	0.9066	0.8980	0.9137

- Mixed & multi-domain > single domain: additional data is great importance.
- Multi > mixed (in general): multi-domain learning is useful and necessary for MFND.

Experiments

Results (f1-score)

model	Science	Military	Education	Accidents	Politics	Health	Finance	Entertainment	Society	All
TextCNN_single	0.7470	0.778	0.8882	0.8310	0.8694	0.9053	0.7909	0.8591	0.8727	0.8380
BiGRU_single	0.4876	0.7169	0.7067	0.7625	0.8477	0.8378	0.8109	0.8308	0.6067	0.7342
BERT_single	0.8192	0.7795	0.8136	0.7885	0.8188	0.8909	0.8464	0.8638	0.8242	0.8272
TextCNN_all	0.7254	0.8839	0.8362	0.8222	0.8561	0.8768	0.8638	0.8456	0.8540	0.8686
BiGRU_all	0.7269	0.8724	0.8138	0.7935	0.8356	0.8868	0.8291	0.8629	0.8485	0.8595
BERT_all	0.7777	0.9072	0.8331	0.8512	0.8366	0.9090	0.8735	0.8769	0.8577	0.8795
EANN	0.8225	0.9274	0.8624	0.8666	0.8705	0.9150	0.8710	0.8957	0.8877	0.8975
MMOE	0.8755	0.9112	0.8706	0.8770	0.8620	0.9364	0.8567	0.8886	0.8750	0.8947
MOSE	0.8502	0.8858	0.8815	0.8672	0.8808	0.9179	0.8672	0.8913	0.8729	0.8939
EDDFN	0.8186	0.9137	0.8676	0.8786	0.8478	0.9379	0.8636	0.8832	0.8689	0.8919
MDFEND	0.8301	0.9389	0.8917	0.9003	0.8865	0.9400	0.8951	0.9066	0.8980	0.9137

• Some single-domain > mixed domain model: simply combining data different domains may result in negative effect from additional data.

Results (f1-score)

model	Science	Military	Education	Accidents	Politics	Health	Finance	Entertainment	Society	All
TextCNN_single	0.7470	0.778	0.8882	0.8310	0.8694	0.9053	0.7909	0.8591	0.8727	0.8380
BiGRU_single	0.4876	0.7169	0.7067	0.7625	0.8477	0.8378	0.8109	0.8308	0.6067	0.7342
BERT_single	0.8192	0.7795	0.8136	0.7885	0.8188	0.8909	0.8464	0.8638	0.8242	0.8272
TextCNN_all	0.7254	0.8839	0.8362	0.8222	0.8561	0.8768	0.8638	0.8456	0.8540	0.8686
BiGRU_all	0.7269	0.8724	0.8138	0.7935	0.8356	0.8868	0.8291	0.8629	0.8485	0.8595
BERT_all	0.7777	0.9072	0.8331	0.8512	0.8366	0.9090	0.8735	0.8769	0.8577	0.8795
EANN	0.8225	0.9274	0.8624	0.8666	0.8705	0.9150	0.8710	0.8957	0.8877	0.8975
MMOE	0.8755	0.9112	0.8706	0.8770	0.8620	0.9364	0.8567	0.8886	0.8750	0.8947
MOSE	0.8502	0.8858	0.8815	0.8672	0.8808	0.9179	0.8672	0.8913	0.8729	0.8939
EDDFN	0.8186	0.9137	0.8676	0.8786	0.8478	0.9379	0.8636	0.8832	0.8689	0.8919
MDFEND	0.8301	0.9389	0.8917	0.9003	0.8865	0.9400	0.8951	0.9066	0.8980	0.9137

- MDFEND model performs better than other multi-domain models.
- By feeding both domain embedding and content to the gate, combining multiple domain softly
 is better the decouple domain-shared and domain-specific features roughly.

Conclusions

- Study the problem of multi-domain fake news detection (MFND).
- Construct Weibo21, a MFND dataset. (First dataset collected richest domains.)
- Proposed a simple but effective method MDFEND for MFND.
 - Utilizes domain gate to aggregate multiple representations extracted by mixture of expert.
- Evaluated MFND performance with different methods on Weibo21, experiments shows the effectiveness of MDFEND model.

Comments of MDFEND

- Focus on multi-domain fake news detection.
- Use concept of mixture of expert.
- Proposed method is text-only.
- No detail information about domain embedding design.