GTI Übungsblatt 10

Tutor: Marko Schmellenkamp

ID: MS1

Übung: Mi16-18

Max Springenberg, 177792

10.1

10.1.1

Siehe ausgedrucktes Blatt vom Aufgabenzettel.

10.1.2

10.2

10.2.1

 $L_a = L_1 \cup L_2$

Wir wissen, dass L_n von einer TM $M_n, n \in \{1, 2\}$ entschieden wird.

Ferner muss unsere TM nach Aufgabenstellung nicht für alle Eingaben terminieren, wenn diese nicht in der Sprache sind.

Damit ergäbe sich ${\cal M}_a$ aus den Turingmaschinen ${\cal M}_1, {\cal M}_2$ wie folgt:

- 1. Zustände aus M_1, M_2 werden so umgennant, dass sie nicht konkurierent sind
- 2. Der Starzustand aus M_a sei der Startzustand aus M_1
- 3. M_a simuliert zunächst M_1 , bis entweder akzeptiert wird, oder nicht. wenn nicht wird der String wieder auf die initiale eingabe gesetzt und in den Startzustand von M_2 gewechselt.

10.2.2

$$L_b = L_1 \odot L_2$$

Wir wissen, dass L_n von einer TM $M_n, n \in \{1, 2\}$ entschieden wird. Wir können die TM M_b wie folgt konstruieren.

- 1. Zustände aus M_1, M_2 werden so umgennant, dass sie nicht konkurierent sind
- 2. Es wird mit der TM M_1 begeonnen. Zunächst wird getestet, ob die ganze Eingabe in L_1 ist. Wenn nicht wird das letzte Symbol $\sigma \in \Sigma$ der Eingabe markiert (durch z.B. $\underline{\sigma}$) und erneut getest ob der Teilstring aller nicht markierten Zeichen in L_1 ist, solange bis der erste Teilstring aus L_1 gefunden wurde.
- 3. Nun wird das letzte Zeichen des Teilstring aus L_1 markiert und alle zovor markierten zeichen demarkiert. M_2 wird ab dem markiertem Zeichen simuliert.
- 4. Wenn der Verbliebene String nicht in L_2 ist werden alle Zeichen rechts vom markierten letzten Symbol, dass noch zu dem Teilstring aus L_1 markiert und auf allen unmarkierten Zeichen wieder, wie zuvor durch sequentielles suchen und markieren des letzten Zeichens vestgestellt, welches der nächst längste Teilstring aus L_1 ist.
- 5. weiter bei 3

10.3

Problem: A

Gegeben: TM $M, k \in \mathbb{N}_0$

Frage: Erzeugt M bei Eingabe 0^k die Ausgabe 1?

Nach der Vorlesung existiert keine TM M_{hw} , die entscheidet, ob eine TM bei einer Eingabe I 'helloworld' ausgibt.

Der Beweis, dass es keine solche Turingmaschine M_1 für das Problem A gibt kann analog gezeigt werden.

Da es keine Möglichkeit gibt mit einer Turingmaschine zu testen ob eine andere TM M bei Eingabe 0^k 1 ausgibt, kann es auch keine Turingmaschine M' mit $L(M') = \{k | M \text{ gibt bei Eingabe } 0^k$ 1 aus $\}$ geben.

Ferner ist A damit auch nicht semientscheidbar.

10.3.1

Problem: B Gegeben: TM M

Frage: Erzeugt M bei keiner Eingabe die Ausgabe 1?

Für das komplementärproblem, ob eine eingabe existiert, für die M 1 ausgibt ist semientscheidbar.

Ferner ist damit B unentscheidbar.

10.4

Konstante funktionen sind primitiv rekursiv.

q(x) = 1, h(x) = 0 sind solche konstanten Funktionen.

even(x) lässt sich nun auch als:

$$even(x) = \begin{cases} g(x) & \text{, x ist gerade} \\ h(x) & \text{, x ist ungerade} \end{cases}$$

primitive Rekursionen von primitiv rekursiven Funktionen sind auch primitiv rekursiv.

Wir stellen fest even kann auch wie folgt definiert werden:

even(0) = g(x)

even(1) = h(x)

even(x+2) = even(x)

da g,h primitiv rekursiv ist even nach der Definition von primit
v rekursiven Funktionen aus der Vorlesung auch primitiv rekursiv.