

Topics for Today (20+20+20 minutes)

- 1. Pandas Intro
- 2. Case Study Data Prep for Analysis

Warm up!

Just think. Don't shout out the answer

What type of Plot is this? How to read this Plot?

If we had 20 years of NFL data, Can we create this ourselves?

Looking for ideas...

Percentage of NFL Teams That Make Playoffs By record, using a 17-game schedule and 7 playoff teams in each conference

Playoff chances - back in Week 6

The Sports Analytics "Journey"

- 1. Ask some (what-if) questions
- 2. Frame as a "Story"
- 3. Gather Data
- 4. Descriptive
- 5. Visualization
- 6. Comparative Analysis
- 7. Predictive
- 8. Simulations
- 9. Communicate the Story /Presentation

If you do not know how to ask the right question, you discover nothing.

(W. Edwards Deming)

(Runs Scored)^2

Win % =

(Runs Scored)^2 + (Runs Against)^2

Pythagorean Expectation in Baseball

A really simple way to predict Win Percentages!

What's the big deal with PE - Pythagorean Expectation?

$$Win\% = \frac{Runs \, Scored^{\,2}}{Runs \, Scored^{\,2} + Runs \, Conceded^{\,2}}$$

- Mid-season, future outlook
- "Deserve to win" vs Actual wins
- Reversion to the Mean powerful mathematical concept
- Applies to Baseball, Basketball, NFL
- But not as such to Ice Hockey. Why would that be?!
- Can play around with Exponents

- Go over to Colab
- Idea: For any team, calculate "actual win percentage" and calculate "PE" and plot the two to see if the Expectation is being met

Pandas Basics

Someone dumps a Dataset on us.

What could we possibly look for?

What is the very first thing we could look for?

Size of Dataset

We can try and "Describe" our dataset

Basic Stats (Measures)

Sum Minimum / Maximum Average Median / Mode **Duplicates** Quantiles

What if there a few columns that are **text**? (Not numerical)

What can you do with text columns?

Text columns could be ways to group "stats" into useful categories

Name	Country	Operating System	Sales in Q2	
Andy	USA	Mac OS	35,000	
Beverly	Canada	Windows	21,000	
Charlie	Canada	Windows	17,000	
Donna	Mexico	Windows	28,500	
Eliza	USA	Mac OS	77,400	
Farooq	Mexico	Windows	9,800	
George	USA	Mac OS	39,200	
Harry	Mexico	Mac OS	27,200	

What is Pandas?

pandas is a Python package providing fast and flexible data structures designed to make working with data both easy and intuitive.

It aims to be the fundamental high-level building block for doing practical, real world data analysis in **Python**.

Pandas has 2 fundamental Structures

Series

and

Data Frame

- Series = 1-dimensional
- Data Frame = 2 (or more) Dimensions

Pandas Series

How many columns are in this Pandas Series?

1	'A'	
2	'B'	
3	'C'	
4	'D'	
5	'E'	

Pandas Series is very similar to a List

Pandas Data Structures

Series

A one-dimensional labeled array capable of holding any data type

```
Index
>>> s = pd.Series([3, -5, 7, 4], index=['a', 'b', 'c', 'd'])
```

```
DataFrame
```

Columns

```
Capital Population A two-dimensional labeled
                        Brussels
              Belgium
                                  11190846
                       New Delhi 1303171035
                India
Index
                        Brasília
                                 207847528
                Brazil
```

data structure with columns of potentially different types

```
'Population': [11190846, 1303171035, 207847528]}
>>> df = pd.DataFrame(data,
                      columns=['Country', 'Capital', 'Population'])
```

'Capital': ['Brussels', 'New Delhi', 'Brasília'],

>>> data = {'Country': ['Belgium', 'India', 'Brazil'],

Pandas Data Frame

For simplicity, you can think of INDEX = ROW NAMES (ROW LABELS) COLUMNS = HEADER (COLUMN NAMES)

Pandas Dataframe

Shape = (# rows, # columns)

In [37]: df1 Out[37]: 2009 **GEOID** State 2005 2006 2007 2008 2010 2011 2012 2013 37952 43464 41381 0 04000US01 Alabama 37150 42212 44476 39980 40933 42590 56418 62993 63989 61604 57848 57431 63648 61137 1 04000US02 Alaska 55891 47215 46914 45739 2 04000US04 Arizona 45245 46657 46896 48621 47044 50602 3 04000US05 Arkansas 36658 37057 40795 39586 36538 38587 41302 39018 39919 4 04000US06 California 51755 55319 55734 57014 56134 54283 53367 57020 57528

> How many columns are there? How Many Rows?

In this data frame, what are we doing in each column?

FinancialYear	2014/2015	2015/2016	2016/2017	2017/2018
Month				
April	8.7%	6.3%	6.3%	23.6%
May	7.3%	6.8%	6.0%	29.1%
June	4.7%	10.4%	6.3%	24.0%
July	5.9%	10.2%	5.3%	23.3%
August	9.1%	7.9%	9.9%	0.0%
September	8.9%	6.1%	12.1%	0.0%
October	9.2%	9.9%	7.8%	0.0%
November	9.7%	8.3%	8.9%	0.0%
December	9.2%	10.9%	6.6%	0.0%
January	8.7%	8.0%	10.4%	0.0%
February	9.3%	7.0%	10.8%	0.0%
March	9.2%	8.1%	9.7%	0.0%

What can you do with Columns?

- Number of Unique values
- Counts (Frequency of each unique value)
- Sort By Column (Ascending, Descending)
- Count Number of Missing Values
- Calculate Means for each column
- Add two columns

Some Advanced Things we can do...

- SELECT only rows that follow a particular condition
 - Very powerful!
- Remove Duplicate Values
- Apply <u>any function</u> to any column

You don't have to remember all these commands.

I use them a lot, but I don't remember all the commands!

I just look them up!

What can you do with A DATA FRAME?

df = data frame

- 1. # Rows and columns
- 2. Examine (Head and Tail) of the df
- 3. Describe() each of the columns
 - 1. Statistics about the column
- 4. Statistics [mean, count, max, min, median]
- 5. Combine (concatenate) two data frames
- 6. Merge two data frames
- **7.** Filter, Sort and GroupBy

Row index (df.index)

eries of data

An Important Idea: Boolean Masks

- In Python & Pandas, True has the value of 1
- False has a value of 0

[True, True, False, True].sum() is 3

temps = [10, 7, 3, 9]

We can apply a "condition" to any column.

The result will be a True/False column.

temps > 7 will give [True, False, False, True]

Understanding Pandas conditional filtering

12

10

Boolean Mask

Temp > 9 12 8 0 0 0 7 6 10 1 10 10

- True means keep the row
- False means "I don't want the row"

```
temps = [10, 7, 3, 9]
condition = temps > 7
temps > 7 will give [True, False, False, True]
temps[condition]
temps[temps > 7]
```

True means Keep it, False means leave it out

Data Frame + Boolean Mask

Get the result. Store it with A new name

Keep only the rows that match condition. Mask (black out) all other rows End up with fewer rows

Data Frame + Boolean Mask

df

Boolean Column

= Smaller_df

Grouping Operations

Sub-group Insights

Getting insights at each subgroup level is a core part of exploratory sports data analysis

To understand how various sub-categories are performing

- 1. Win Percentages by Region | Conference | League
- 2. "Production" by Player
- 3. High performing Venues or Stadiums for a League
- 4. Chronic reasons for failures. (Group by type of unforced errors)

Sort into groups based on "Grouping Column(s)"
For each group, take some OTHER Column (numeric)
Apply some statistic function. (SUM, Count, Average etc.)
Combine and present the results

Real Life Case Stude: Soccer Players Dataset - Physical attributes, Financial, Clubs

	Name	Age	Nationality	Club	Loaned From	Value	Wage	Height	Weight
0	L. Messi	31	Argentina	FC Barcelona	NaN	€110.5M	€565K	5'7	159lbs
1	Cristiano Ronaldo	33	Portugal	Juventus	NaN	€77M	€405K	6'2	183lbs
2	Neymar Jr	26	Brazil	Paris Saint-Germain	NaN	€118.5M	€290K	5'9	150lbs
3	De Gea	27	Spain	Manchester United	NaN	€72M	€260K	6'4	168lbs
4	K. De Bruyne	27	Belgium	Manchester City	NaN	€102M	€355K	5'11	154lbs
17316	R. Akbari	18	Australia	Melbourne Victory	NaN	€140K	€1K	5'11	150lbs
17317	A. Reyes Ambuila	18	Colombia	Atlético Nacional	NaN	€130K	€1K	5'10	165lbs
17318	I. Sadiq	18	Ghana	FC Nordsjælland	NaN	€140K	€1K	5'9	154lbs
17319	C. Merrie	19	England	Wigan Athletic	NaN	€140K	€3K	5'11	150lbs
17320	L. Morrison	19	Scotland	Sligo Rovers	NaN	€130K	€1K	NaN	NaN

	Loa	ıed From	Club			
12269		NaN	Independiente Medellír			
10834		NaN	Envigado FC			
12811		NaN	NaN			
5746		NaN	SK Slavia Praha			
10514	SV Da	nstadt 98	TSV 1860 München			
5747		NaN	∃imnasia y Esgrima La Plata			
2345		NaN	Stoke City			
11282		NaN	Independiente Medellín			
6856		NaN	Portimonense SC			
14757 N		NaN	GIF Sundsvall			

	Name	Value	Wage	Release cl-					
4287	D. Andrade	€2M	€2K			Name	Height	Weight	
4201	D. Allulaue	€ZIVI	EZN	2361		S. Deli	6'4	185lbs	L
12182	Yang Xiaotian	€290K	€4K	11472	2	P. Taylor	5'7	157lbs	
4233	J. Quiñones	€3.9M	€25K	11370	D	S. Salinas	5'10	150lbs	
5781	Roldão Riso	€925K	€12K	13780	0	J. Kotzke	6'0	165lbs	
16321	B. Vera	€200K	€1K	9962		M. Bakker	6'0	159lbs	
3770	M. Abeid	€3.2M	€10K	6720		R. Gall	5'9	154lbs	
5912	K. Mączyński	€700K	€5K	957	Wi	lson Eduardo	5'10	161lbs	
40207	NI Manasida	CCEOK	COV	10490	0	Álvaro Traver	6'2	168lbs	
10387	N. Mezquida	€oouk	€2K	653		C. Wilson	5'11	146lbs	
6098	M. Petković	€1.1M	€1K	4366		Bruno Alves	6'2	179lbs	
2066	S. Sinclair	€6.5M	€48K	€11.					l

Γ

Data Clean up activities Needed

- 1. **Drop** Loaned From **Column**: Not relevant to the analysis.
- 2. If a player has no Club affiliation, we want to **Drop that row**
- 3. Remove (strip) the '€' symbol, and
- 4. There are 3 financial columns -- Wages Value and Release Clause. These are in M, or K formats -we want to **Convert them to proper integers**.
- 5. Convert Dollar values strings to Integers
- 6. If a Player's "value" is missing, we want to drop that player (Drop Row)
- 7. The Heights are given as a string 5'11" to be **Converted to Integer** 71 inches.
- 8. **Drop the rows** where Player Height is missing
- 9. Each player's weight has 1bs attached to it. Strip "lbs", Convert into an integer.

Let's <u>Go to Colab</u> And do it step by step

Case Study: Interactive