Введение в теорию вероятностей

Лектор: проф. Булинский Александр Вадимович 27 сентября 2025 г.

Содержание

1 Лекция 1

1 Лекция 1

Определение. Множество Ω называется множеством элементарных исходов. Множество $A \in 2^{\Omega}$ назывется событием.

Определение. Множество $\mathcal{A} \in 2^{\Omega}$ такое, что $\mathcal{A} \neq \varnothing$ называется алгеброй, если

1.
$$A \in \mathcal{A} \Rightarrow \bar{A} = \Omega \setminus A \in \mathcal{A}$$

2.
$$A, B \in \mathcal{A} \Rightarrow A \cup B \in \mathcal{A}$$

Утверждение. (Следствия из определения алгебры)

1.
$$\Omega \in \mathcal{A}$$
, так как для непустого $A \in \mathcal{A} : \bar{A} \in \mathcal{A} \Rightarrow A \cup \bar{A} = \Omega \in \mathcal{A}$

2.
$$\varnothing \in \mathcal{A}$$
, так как $\Omega \in \mathcal{A} \Rightarrow \bar{\Omega} = \varnothing \in \mathcal{A}$

3.
$$A_1, \ldots, A_n \in \mathcal{A} \Rightarrow \bigcup_{i=1}^n A_i \in \mathcal{A}$$

4.
$$A \cap B \in \mathcal{A}$$
, если $A, B \in \mathcal{A}$, так как $A \cap B = \overline{\overline{A} \cup \overline{B}}$

5.
$$A_1, \ldots, A_n \in \mathcal{A} \Rightarrow \bigcap_{i=1}^n A_i \in \mathcal{A}$$

6.
$$A \setminus B \in \mathcal{A}$$
, так как $A \setminus B = A \cap \bar{B}$

Определение. Множество $\mathcal{F} \in 2^{\Omega}$ такое, что $\mathcal{F} \neq \varnothing$ называется σ -алгеброй, если

1.
$$A \in \mathcal{F} \Rightarrow \bar{A} \in \mathcal{F}$$

2.
$$\forall i \in \mathbb{N} : A_i \in \mathcal{F} \Rightarrow \bigcup_{n=1}^{\infty} A_i \in \mathcal{F}$$

Замечание. \mathcal{F} - σ -алгебра $\Rightarrow \mathcal{F}$ - алгебра.

Замечание. Наименьшая по включению σ -алгебра, содержащая M, обозначается $\sigma\{M\} = \bigcap_{\alpha} g_{\alpha}$, где g_{α} - σ -алгебра, содержащая все элементы M.

Определение. Мерой на системе множеств U называется функция $\mu:U\to [0,+\infty]$ такая, что

1.
$$\forall n : A_n \in U$$

2.

$$\bigcup_{n=1}^{\infty} A_n \in U$$

- 3. $\forall i \neq j : A_i \cap A_j = \emptyset$
- 4. Выполнено свойство счетной аддитивности (такая мера называется счетноаддитивной):

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n=1}^{\infty} \mu(A_n)$$

Замечание. Если U - σ -алгебра, то условие

$$\bigcup_{n=1}^{\infty} A_n \in U$$

можно упустить.

Пример. (Мера Дирака)

Пусть $B \subset S$

$$\delta_x(B) = \begin{cases} 1, & x \in B, \\ 0, & x \notin B \end{cases}$$

Упражнение: доказать, что $\delta_x(.)$ является мерой на 2^S

Определение. Мера P на пространтсве (Ω, \mathcal{F}) такая, что $P(\Omega)=1$ называется вероятностью.

Определение. Вероятность называется дисктерной, если Ω не более чем счетно. В этом случае $\mathcal{F}=2^{\Omega}.$