Содержание

1	Задание				
2	Часть А				
	2.1	Тестовый пример	2		
	2.2	Синусы и косинусы вращений	3		
		Промежуточные матрицы			
		Матрица R и вектор b			
	2.5	Полученное решение	3		
3	Часть Б				
	3.1	$K = [N/2] \dots \dots$	4		
	3.2	K = N	4		
4	Прі	иложение	4		

1 Задание

Решить систему линейных уравнений Ax = b с помощью QR-разложения. Матрица A порядка N имеет ленточную структуру с элементами

$$A_{i,i} = \min\{N, 10\}, A_{i,i \pm j = \frac{1}{2}}, i = \overline{0, N - 1}, j = \overline{1, K}$$
 (1)

Метод необходимо реализовать для полуширины ленты K = [N/2], а также для заполненной матрицы (K = N). При этом нулевые элементы матрицы (за пределами ленты) обрабатываться не должны.

Элементы вектора правых частей b следует подобрать (вычислить) так, чтобы решением являлся вектор x, в котором $x_1=1, x_N=1, x_{1+k}=1, x_{N-2k}=1$, все остальные компоненты равны 0. Здесь k - номер по списку группы.

Следует вычислить абсолютную погрешность решения (в норме $\|\cdot\|_2$) построенных тестовых задач.

Для получения матрицы R использовать вращения Гивенса. Матрицу Q формировать в явном виде не требуется.

Для нечетных вариантов следует применять классический порядок обхода элементов (вращения в плоскостях $(n-1,n),(n-2,n-1),\ldots,(1,2)$). Для четных вариантов следует применять гауссовский порядок обхода элементов (вращения в плоскостях $(1,2),(1,3),\ldots,(1,n)$; для следующих столбцов аналогично).

2 Часть А

2.1 Тестовый пример

$$K = [N/2], N = 4$$

$$A_{4\times4} = \begin{pmatrix} 4 & 1 & 0.5 & 0 \\ 1 & 4 & 1 & 0.5 \\ 0.5 & 1 & 4 & 1 \\ 0 & 0.5 & 1 & 4 \end{pmatrix}, x = \begin{pmatrix} 1 \\ 0 \\ 0 \\ 1 \end{pmatrix}, b = \begin{pmatrix} 4 \\ 1.5 \\ 1.5 \\ 4 \end{pmatrix}$$
 (2)

2.2 Синусы и косинусы вращений

№ Шага	$\sin()$	$\cos()$
1	0.	1.
2	0.447214	0.894427
3	0.218218	0.975900
4	0.487950	-0.872872
5	0.261394	0.965232
6	-0.485288	-0.874354

2.3 Промежуточные матрицы

$$T_{2,1}T_{3,2}A = \begin{pmatrix} 3.90360 & 1.60500 & 0.952759 & 0.159125 \\ 0. & 2.88290 & 2.13002 & 0.729205 \\ 0. & -0.894427 & 3.13049 & 0.670820 \\ 0. & 0.5 & 1. & 4. \end{pmatrix} = \tilde{A}$$
 (3)

$$T_{3,2}T_{4,3}\tilde{A} = \begin{pmatrix} 3.90360 & 1.60500 & 0.952759 & 0.159125 \\ 0. & 2.78267 & 0.925476 & 0.0361480 \\ 0. & 0. & -4.32484 & -2.55439 \\ 0. & 0. & -2.40039 & -3.81881 \end{pmatrix} = \tilde{A}'$$
 (4)

$$T_{4,3}\tilde{A}' = \begin{pmatrix} 3.90360 & 1.60500 & 0.952759 & 0.159125 \\ 0. & 2.78267 & 0.925476 & 0.0361480 \\ 0. & 0. & 3.78144 & 1.21464 \\ 0. & 0. & 0. & 2.09937 \end{pmatrix} = R$$
 (5)

2.4 Матрица R и вектор b

$$R = \begin{pmatrix} 3.90360 & 1.60500 & 0.952759 & 0.159125 \\ 0. & 2.78267 & 0.925476 & 0.0361480 \\ 0. & 0. & 3.78144 & 1.21464 \\ 0. & 0. & 0. & 2.09937 \end{pmatrix}, b = \begin{pmatrix} 4.06272 \\ 0.0361480 \\ 1.21464 \\ 2.09937 \end{pmatrix}$$
(6)

2.5 Полученное решение

$$x = \begin{pmatrix} 1.0\\ 2.242574e - 17\\ -1.34979e - 16\\ 1.0 \end{pmatrix}$$
 (7)

3 Часть Б

3.1 K = [N/2]

N	Time	Δ
4	0.0	5.016210086489311e-17
10	0.0009975433349609375	2.8252825077728156e-16
50	0.019946575164794922	9.9412051493466e-16
100	0.08278274536132812	1.1738583099051612e-15
500	2.4753966331481934	2.6125981653517285e-15
1000	11.272654056549072	4.017226741985066e-15

3.2 K = N

N	Time	Δ
4	0.0008645057678222656	1.3682964720910556e-16
10	0.001013040542602539	2.971520831290671e-16
50	0.02690911293029785	1.3407876016187622e-15
100	0.10423398017883301	2.0839275120389305e-15
500	3.0123841762542725	4.304584621568834e-15
1000	14.235421895980835	5.899689279940525e-15

Вывод: В ходе выполнения лабораторной работы был реализован алгоритм QR-разложения матрицы. Для получения верхнетреугольной матрицы использовались вращения Гивенса. С помощью QR-разложения были решены СЛАУ с ленточной структурой матрицы A. По вычислительным экспериментам можно оценить временную сложность данного алгоритма разложения:

$$N = 10 \Rightarrow Time \approx 0.000997543, N = 100 \Rightarrow Time \approx 0.0827827$$

$$\downarrow \downarrow$$

$$Time = \mathcal{O}(T^3)$$

```
import numpy as np

num_list_group = 3 # номер в списке группы
N = 4 # размерность системы
K = N // 2 # полуширина ленты
A = np.zeros((N, N)) # матрица А системы
```

```
elmin = min(N, 10) # элемент главной диагонали
    # формируем матрицу А
    for i in range(N):
        for j in range(N):
10
            if i == j:
11
                 A[i][j] = elmin
12
            if 0 \le i + j \le N - 1 and 1 \le j \le K:
13
                 A[i][i + j] = 1 / j
14
            if 0 \le i - j \le N - 1 and 1 \le j \le K:
15
                 A[i][i - j] = 1 / j
16
    x = np.zeros(N) # вектор решения
17
    # формируем вектор решения
18
    for i in range(N):
        if i == 0 or i == N - 1 or (i == num_list_group and 1 <=
            num_list_group < N - 1) or (</pre>
                 i == (N - 1) - 2 * num_list_group and 1 <= (N - 1) -
21
                     2 * num_list_group < N - 1):
            x[i] = 1
22
    B = np.zeros(N) # вектор правой части
    # формируем вектор правой части
    B = np.dot(A, x)
    A = np.c_[A, B] # дополняем матрицу системы вектором правой
       части
    # вращения Гивенса
27
    for 1 in range(N - 1):
28
        for i in range(N - 1, 0 + 1, -1):
29
            j = i - 1
30
            if A[i][1] != 0:
31
                 # вычислим коэффициенты C и S
32
                 alem = A[j][1]
33
                 belem = A[i][1]
34
                 C = alem / np.sqrt(alem ** 2 + belem ** 2)
35
                 S = belem / np.sqrt(alem ** 2 + belem ** 2)
36
                 # Произведем вращение =)
                 temp = A[i] * C - A[j] * S
38
                 A[j] = A[j] * C + A[i] * S
39
                 A[i] = temp
40
    В = A[:, N] # извлекаем вектор правой части из матрицы А
41
    A = np.delete(A, N, 1) # удаляем из матрицы А добавленный
       столбец В
43
44
    # обратный ход метода Гаусса
45
```

```
def Gauss_back_step(A, B):
46
        # вектор решения
47
        sol = np.zeros(N)
48
        for i in range(N - 1, -1, -1):
49
             s = 0
50
             if i == N - 1:
51
                 sol[i] = B[i] / A[i][i]
52
             else:
53
                 for j in range(i + 1, N, 1):
54
                      s += A[i][j] * sol[j]
55
                 sol[i] = (B[i] - s) / A[i][i]
56
        return sol
57
```