Total No. of Questions : 8]	SEAT No. :
P807	[Total No. of Pages : 2
]	5870] 1127
T.E. (Cor	nputer Engineering)
SYSTEMS PROGRAMN	MING AND OPERATING SYSTEM
(2019 Pattern	(Semester - I) (310243)

		T.E. (Computer Engineering)
SY	STE	EMS PROGRAMMING AND OPERATING SYSTEM
		(2019 Pattern) (Semester - I) (310243)
		e Hours] [Max. Marks : 70 ons to the candidates:
	<i>1</i>)	Answer Q1 or Q2, Q3 or Q4, Q5 or Q6, Q7 or Q8.
	<i>2</i>)	Neat diagrams must be drawn wherever necessary.
	<i>3</i>)	Figures to the right indicate full marks.
	4)	Assume suitable data if necessary.
Q 1)	a)	Explain Differences between static link library and dynamic link library.[8]
	b)	What are the different types of Loaders? Explain compile and Go loader in detail. [9]
Q2)	a)	List and explain different loader schemes in detail. [9]
	b)	Explain Design of Direct linking loaders and explain required data structures. [8]
Q 3)	a)	Compare Compilers and Interpreters. [8]
	b)	What is LEX? Explain working of LEX with suitable diagram. [9]
		OR OR
Q4)	a)	Define token, pattern, lexemes & lexical error. [8]
	b)	What is a compiler? Explain any two phases of compiler with suitable diagram. [9]
Q5)	a)	What is the need of Process synchronization? Explain Semaphore in detail. [9]
	b)	What is Operating System? Explain various operating system services in

detail. [9]

		OR %		
Q6)	a)	Explain preemptive and Non preemptive scheduling in detail. [9]		
	b)	Explain any two scheduling algorithm with suitable example. [9]		
<i>Q7</i>)	a)	What is virtual memory management? Explain address translation in paging system. [9]		
	b)	Write proper examples and explain memory allocation strategies first fit best fit and worst fit. Also explain their advantages and disadvantages.[9]		
		OR		
Q8)	a)	Explain any two page replacement strategies in detail. [9]		
	b)	What is TLB? Explain the paging system with the use of TLB? What are		
		the advantages of TLB? [9]	l	
	(
			3	
			. V	
		19. 16.15 Septimination of the		
		Real Control of the C		

[5870]-1127

Total No. of Questions: 8]	290	SEAT No. :
PA-1443		[Total No. of Pages : 2
	[5926]-59	
T.E. (Con	mputer Enginee	ring)
SYSTEM PROGRAM	IMING & OPER	RATING SYSTEM
(2019 Pattern	(Semester - I)	(310243)
		•

Time: 2½ Hours] [Max. Marks: 70

Instructions to the cardidates:

- 1) Attempt Q1 or Q2, Q3 or Q4, Q5 or Q6 and Q7 Q8.
- 2) Figures to the right indicate full marks.
- 3) Neat sketches must be drawn wherever necessary.
- 4) Assume suitable data if necessary.
- Q1) a) Explain "General loading scheme (using suitable diagram)" with advantages and disadvantages?[9]
 - b) Give complete design of Direct Linking Loader? [9]

OR

- Q2) a) Give complete design of Absolute Loader with suitable example? [9]
 - b) What is the need of DLL? Differentiate between Dynamic and static linking? [9]
- Q3) a) Explain the following types of Schedulers.

[9]

- i) Short Term
- ii) Long Term
- iii) Medium Term
- b) Explain seven state process model with diagram? Also explain difference between Five state process model & Seven state process model? [8]

OR

Q4) a) Draw Gantt chart and calculate Avg. turnaround time, Avg. Waiting time for the following processes using SJF non preemptive and round robin with time quantum 0.5 Unit.[9]

Process	Burst Time	Arrival Time
P1	2	10,6
P2	1	10
P3	1	11
P4	1	12

b) What is meant by Threads, Explain Thread lifecycle with diagram in detail? [8]

P.T.O.

Q 5) a)	Writ	ite a short note on following with example?	[9]
		i)	Semaphore	
		ii)	Monitor	
		iii)	Mutex	
b)	_	plain Deadlock prevention, deadlock avoidance, deadlock odlock recovery with example?	letection, [9]
Q6) a)	_	OR plain producer Consumer problem & Dining Philosopher h solution?	problem [9]
b)		nat is deadlock? State and explain the conditions for deadlock m with example?	t, Explain [9]
Q7) a)		wor!	nsider page sequence 2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2 and rking of following page replacement policies. Also count page no. of frames = 3)	
	•	i)	FIFO	
		ii)	LRU	
b)		nat is meant by Fragmentation, Explain Buddy Systems Fragr letail?	mentation [9]
Q8) a))	Writ	ite a short note on following with diagram	.[8]
		i)	VM with Paging	
		ii)	VM with Segmentation	· · ·
b		how	ven the memory partition of size 100K, 500K, 200K, 300 w would each of the First Fit, Best Fit, Worst Fit algorithm becesses of 212K, 417K, 426K. Which algorithm makes icient use of memory?	place the
			icient use of memory?	
[5926]]-59)	2 8	

Total No. of Questions: 8]	90	SEAT No. :
P270	[6003]-348	[Total No. of Pages : 2

T.E. (Computer Engineering)

	SYSTEM PROGRAMMING & OPERATING	SYSTEM
	(2019 Pattern) (Semester-I) (310243	3)
	/2 Hours] ons to the candidates:	[Max. Marks: 70
1)	Attempt Q.1 or Q.2, Q.3 Q.4, or Q.5 or Q.6, Q.7 or Q.8.	
<i>2</i>)	Figures to the right indicate full marks.	
<i>3</i>)	Neat diagram must be drawn wherever necessary.	
4)	Assume suitable data if necessary.	30
Q1) a)	Explain General loading scheme (using suitab	de diagram)" with
	advantages and disadvantages?	[9]
b)	Give complete design of Direct Linking Loader?	[9]
	De Cor	
Q2) a)	Give complete design of Absolute Loader with suita	ble example? [9]
b)	What is the need of DLL? Differentiate between Dyn	amic and static link-
	ing?	[9]
Q3) a)	Explain the following types of Schedulers.	[9]
	i) Short Term	9, 3, 9,
	ii) Long Term	2, 6
	iii) Medium Term	
b)	Explain seven state process model with diagram? Als	explain difference
	between Five state process model & Seven state pro-	
	OR	

Q4) a) Draw Gantt chart and calculate Avg turnaround time, Avg. waiting time for the following process using SJF non preemptive and round robin with time quantum 0.5 Unit [9]

Process	Burst Time	Arrival Time
P1	2	10
P2	1,00	10
Р3	0, 6.	11
P4	7 71	12

- b) What is mean by Threads, Explain Thread lifecycle with diagram in detail? [8]
- Q5) a) Write a short note on following with example?
 - i) Semaphore ii) Monitor iii) Mutex
 b) Explain Deadlock prevention, deadlock avoidance, deadlock detection,

deadlock recovery with example? [9]

- **Q6**) a) Explain producer Consumer problem & Dining Philosopher problem with solution?
 - b) What is deadlock? State and explain the conditions for deadlock, Explain them with example? [9]
- Q7) a) Consider page sequence 2, 3, 2, 1, 5, 2, 4, 5, 3, 2, 5, 2 and discuss working of following page replacement policies Also count page faults. (use no. of Frames = 3) [8]
 - i) FIFO
 - ii) LRU
 - b) Discuss fixed Partitioning and Dynamic Partitioning in detail. [9]

OR

Q8) a) Write a short note on following with diagram

[8]

[9]

- i) VM with Paging
- ii) VM with Segmentation
- b) Explain Page Table structure and Inverted page Table? [9]

Total No.	of Questions : 8]	SEAT No. :
P-7539		[Total No. of Pages : 2
	[6180]-47	
	T.E.(Computer Enginee	ring)
SYST	TEM PROGRAMMING AND OPI	
	(2019 Pattern) (Semester - I)	
Time . 21		,
	/2 Hours] ons to the candidates:	[Max. Marks: 70
	 Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. Q. No 7 or Q.No 8. Neat diagrams must be drawn wherever needs 	290
	3) Figures to the right indicate full marks.	
	4) Assume suitable data, if necessary.	
Q1) a)	Explain in brief Compile and Go loading so and disadvantages of it.	cheme. What are advantages [10]
b)	Describe the concept of DLL? How dynami	c linking can be done with or
	without import.	[8]
Q2) a)	Write short notes on:	[10]
	i) Subroutine Linkage	
	ii) Overlays	
b)	With the help of diagram explain General Lo	oading Scheme. [8]
	S. V	
Q3) a)	List different types of Operating Systems? I	Describe any two of them.[9]

Differentiate Preemptive and non preemptive scheduling.

What is time quantum and its significance in Round robin scheduling.[9]

Explain multithreaded mode and Process Control block in detail.

b)

b)

Q4) a)

[8]

[8]

What is semaphore? Justify how semaphore is used to solve critical section **Q5**) a) [10] problem. Explain necessary conditions for occurrence of deadlock. b) [8] OR Explain hardware approach for Mutual Exclusion with its advantages and **Q6**) a) disadvantages [10] Write a solution to Reader Writer problem using Semaphore with Readers b) have priority. [8] Given a memory partitions of 100K, 500K, 200K, 300K and 600K (in **Q7**) a) order), how would each of the first fit, best fit and worst fit algo. Place processes of size 212K, 417K, 112K, 426K (in order)? Which also makes the most efficient use of memory [9] What is internal fragmentation? Explain same with suitable diagram/ b) [8] example. Write and explain Deadlock Avoidance Bankers Algorithm. **Q8**) a) Ale 16.23 and 17.12 and 18.23 and 18 Compare Paging and Segmentation with the help of example b) [6180]-47