

FULLY PROTECTED HIGH SIDE POWER MOSFET SWITCH

Features

- Over temperature protection (with auto-restart)
- · Over current shutdown
- Active clamp
- E.S.D protection
- Status feedback
- Open load detection
- · Logic ground isolated from power ground

Description

The IPS5751/IPS5751S are fully protected five terminal high side switch with built in short circuit, over-temperature, ESD protection, inductive load capability and diagnostic feedback. The over-current protection latches off the device if the output current exceeds Ishutdown. It can be reset by turning the input pin low. The over-temperature protection turns off the high side switches if the junction temperature exceeds Tshutdown. It will automatically restart after the junction has cooled 7°C below Tshutdown. A diagnostic pin is provided for status feedback of over-current, over-temperature and open load detection. The double level shifter circuitry allows large offsets between the logic ground and the load ground.

Product Summary

R _{ds(on)}	25mΩ (max)
V _{clamp}	50V
I _{shutdown}	35A
I _{open load}	1A

Truth Table

Op. Conditions	In	Out	Dg
Normal	Н	Н	Ι
Normal	L	L	Η
Open load	Н	Н	L
Open load	L	Х	Н
Over current	Н	L (latched)	L
Over current	L	L	Н
Over-temperature	Н	L (cycling)	L (cycling)
Over-temperature	L	L	Н

Typical Connection

Packages

www.irf.com

International

TOR Rectifier

Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are referenced to GROUND lead. (TAmbient = 25°C unless otherwise specified).

Symbol	Parameter	Min.	Max.	Units	Test Conditions
V _{out}	Maximum output voltage	V _{CC} -45	V _{CC} +0.3		
Voffset	Maximum logic ground to load ground offset	V _{CC} -45	V _{CC} +0.3	V	
V _{in}	Maximum Input voltage	-0.3	5.5		
lin, max	Maximum IN current	-5	10	mA	
V _{dg}	Maximum diagnostic output voltage	-0.3	5.5	V	
I _{dg, max}	Maximum diagnostic output current	-1	10	mA	
Isd cont.	Diode max. continuous current (1)				
	(Rth=60°C/W) IPS5751	_	2.8	Α	
	(Rth=80°C/W) IPS5751S	_	2.2	,,	
Isd pulsed	Diode max. pulsed current (1)	_	45		
ESD1	Electrostatic discharge voltage (Human Body)	_	4	1.77	C=100pF, R=1500Ω,
ESD2	Electrostatic discharge voltage (Machine Model)	_	0.5	kV	C=200pF, R=0Ω, L=10μH
Pd	Maximum power dissipation ⁽¹⁾				
	(Rth=60°C/W) IPS5751	_	2	W	
	(Rth=80°C/W) IPS5751S	_	1.56	**	
Tj max.	Max. storage & operating junction temp.	-40	+150	90	
T _{lead}	Lead temperature (soldering 10 seconds)		300	°C	
Vcc max.	Maximum Vcc voltage	_	45	V	

Thermal Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Rth 1	Thermal resistance junction to case	_	2			TO-220
Rth 2	Thermal resistance junction to ambient	I	55	l	°C/W	10-220
Rth 1	Thermal resistance with standard footprint		60			D ² PAK (SMD220)
Rth 2	Thermal resistance with 1" square footprint	-	35			
Rth 3	Thermal resistance junction to case	_	5	_		

⁽¹⁾ Limited by junction temperature (pulsed current limited also by internal wiring)

Recommended Operating Conditions

These values are given for a quick design. For operation outside these conditions, please consult the application notes.

Symbol	Parameter	Min.	Мах.	Units
V _{CC}	Continuous V _{CC} voltage	5.5	28	
VIH	High level input voltage	4	5.5	V
VIL 1	Low level input voltage	-0.3	0.9	
lout	Continuous output current			
	(Tambient = 85° C, Tj = 125° C, R _{th} = 60° C/W) IPS5751	_	4	
	(Tambient = 85° C, Tj = 125° C, R _{th} = 80° C/W) IPS5751S	_	3.5	Α
lout	Continuous output current			
Tc=85°C	$(TCase = 85^{\circ}C, IN = 5V, Tj = 125^{\circ}C, R_{th} = 5^{\circ}C/W)$	_	14	
Rin	Recommended resistor in series with IN pin	4	6	kΩ
R _{dg}	Recommended resistor in series with DG pin	10	20	V7.7

Static Electrical Characteristics

 $(T_j = 25^{\circ}C, V_{CC} = 14V \text{ unless otherwise specified.})$

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
R _{ds(on)} @Tj=25°C	ON state resistance T _j = 25°C	_	19	25		Vin = 5V, I _{out} = 14A
R _{ds(on)} (V _{cc} =6V)	ON state resistance @ V _{CC} = 6V	_	22	30	mΩ	Vin = 5V, I _{out} = 7A
Rds(on) @Tj=150°C	ON state resistance Tj = 150°C	_	32	_		V _{in} = 5V, I _{out} = 14A
V _{cc} oper.	Functional operating range	5.5	_	35		
V clamp 1	V _{CC} to OUT clamp voltage 1	45	49		V	I _d = 10mA (see Fig.1 & 2)
V clamp 2	V _{CC} to OUT clamp voltage 2	_	50	60	V [Id = Ishutdown (see Fig.1 & 2)
Vf	Body diode forward voltage	_	0.9	1.2		I _d = 14A, V _{in} = 0V
lout	Output leakage current	_	10	50		$V_{out} = 0V, Tj = 25^{\circ}C$
leakage					μΑ	
I _{cc} off	Supply current when OFF	_	10	50		$V_{in} = 0V, V_{out} = 0V$
I _{cc} on	Supply current when ON	_	4.5	10	mA	Vin = 5V
I _{cc} ac	Ripple current when ON (AC RMS)	_	20	_	μΑ	Vin = 5V
Vdgl	Low level diagnostic output voltage	_	0.3	0.45	V	$I_{dg} = 0.3 \text{ mA}$
ldg	Diagnostic output leakage current	_	1.5	10	μΑ	$V_{dg} = 4.5V$
leakage						
Vih	IN high threshold voltage	_	2.7	3.4		
Vil	IN low threshold voltage	1	2.0	_	V	
lin, on	On state IN positive current	_	30	80	μΑ	V _{in} = 4V
V _{ccuv+}	Vcc UVLO positive going threshold		4.7	5.5		
V _{ccuv} -	Vcc UVLO negative going threshold	3.0	4.4		V	
In _{hyst} .	Input hysteresis	0.2	0.6	1.5		

Switching Electrical Characteristics $V_{CC}=14V$, Resistive Load = 1Ω , $T_j=25^{o}C$, (unless otherwise specified).

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
Tdon	Turn-on delay time	_	5	20		
T _{r1}	Rise time to $V_{Out} = V_{CC} - 5V$	_	4	20	μs	See figure 3
T _{r2}	Rise time from the end of Tr1					
	to $V_{out} = 90\%$ of V_{CC}	—	65	150		
dV/dt (on)	Turn ON dV/dt	_	3	6	V/µs	
Eon	Turn ON energy	_	2	_	mJ	
Tdoff	Turn-off delay time	_	65	150	us	See figure 4
Tf	Fall time to V _{out} = 10% of V _{CC}	_	8	20	μο	
dV/dt (off)	Turn OFF dV/dt	_	5	10	V/µs	
Eoff	Turn OFF energy	_	0.75	_	mJ	

Protection Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Test Conditions
T _{sd+}	Over-temp. positive going threshold	_	165	_	°C	See fig. 2
T _{sd} -	Over-temp. negative going threshold		158	_	°C	See fig. 2
I _{sd}	Over-current threshold	22	35	50	Α	See fig. 2
lopen load	Open load detection threshold	0.3	1	2	Α	
Treset	Minimum time to reset protections	_	50	_	μs	$V_{in} = 0V$
T _{dg}	Blanking time before considering Dg	_	7	100	μs	Part turned on with Vin =5V

Functional Block Diagram (All values are typical)

Lead Assignments

Figure 1 - Active clamp waveforms

Figure 2 - Protection timing diagram

International

TOR Rectifier

Figure 3 - Switching times definition (turn-on)
Turn on energy with a resistive or an
inductive load

Figure 4 - Switching times definition (turn-off)

Figure 5 - Active clamp test circuit

Figure 6 - Icc (mA) Vs Vcc (V)

International TOR Rectifier

IPS5751/IPS5751S

Figure 7 - Iin, Iout & Icc off (μA) Vs Tj (°C)

Figure 8 - Vih, Vil & In hyst. (V) Vs Tj (°C)

Figure 9 - Rdson (m Ω) vs Vcc (V)

Figure 10 - Rdson (m Ω) vs Tj (°C)

Figure 11 - I shutdown (A) vs Tj (°C)

Figure 12 - Protection characteristic - (A) vs (S) *

Figure 13 - I open load (A) vs Tj (°C)

Figure 14 - Max. Cont. Ids (A) Vs Amb. Temperature (°C)

NOTE: * Over-current protection for less than 1ms and thermal protection for durations higher than 1s.

International IOR Rectifier

IPS5751/IPS5751S

Figure 15 -Max. I clamp (A) Vs Inductive Load (m H)

Figure 16 - Transient Rth (°C/W) Vs Time (s)

Figure 17 - Eon, Eoff @ Vcc=14V (mJ) vs Iout (A)

Figure 18 - Eon @ Vcc=14V (mJ) vs Inductance (mH)

Tape & Reel - D²PAK (SMD220) - 5 Lead

Case Outline - TO220 (5 lead)

Case Outline - D²PAK (SMD220) - 5 Lead

International TOR Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105

Data and specifications subject to change without notice. 10/9/2002

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/