

SRM Institute of Science and Technology Ramapuram Campus

Department of Mathematics

Year / Sem: I / II

Branch: Common to ALL Branches of B.Tech. except B.Tech. (Business Systems)

UNIT V - COMPLEX INTEGRATION

Part – A

1.	The point z_0 at which a function (A) zeros (C) singular point	nction $f(z)$ is not analytic is known as (B) isolated singular point (D) removable singular point	ANS C	(CLO-5, Remember)
2.	The singular points of $f(z)$ (A) $z = 1, 3$ (C) $z = 1, 2$	$ (B) z = \frac{z+3}{(z-3)(z-2)} $ are $ (B) z = 1, 0 $ $ (D) z = 2, 3 $	ANS D	(CLO-5, Apply)
3.	(A) 0 (C) $-2\pi i$	e C is the circle $ z = 2$ is (B) $2\pi i$ (D) 1	ANS B	(CLO-5, Apply)
4.	The residue of $f(z) = \frac{z}{z-1}$ (A) 0 (C) -1	$\frac{1}{1}$ at its pole is (B) 1 (D) $2\pi i$	ANS B	(CLO-5, Apply)
5.	The residue of $f(z) = \frac{z}{z+1}$ (A) 0 (C) -1	(B) 2 (D) 2πi	ANS C	(CLO-5, Apply)
6.	The singular points of $f(z)$ (A) $z = 1, 3$ (C) $z = -1, -2$	$ (B) z = \frac{z+3}{(z+1)(z+2)} $ are $ (B) z = 1, 0 $ $ (D) z = 2, 3 $	ANS C	(CLO-5, Apply)

	The value of $\int_C \frac{z}{z-2} dz$ where C is the circle $ z = 3$ is			
7.	(A) 0 (C) -2π <i>i</i>	(B) 4 π <i>i</i> (D) 1	B ANS	(CLO-5, Apply)
	The residue of $f(z) = \frac{z}{(z-1)^2}$ at its pole is			(CI O 7
8.	(A) 0 (C) -1	(B) 1 (D) 2π <i>i</i>	ANS B	(CLO-5, Apply)
	The value of $\int_C \frac{e^{-z}}{z+1} dz$ is			
9.	(A) 0 (C) −2π <i>i</i>	(B) 2 π i e (D) 1	ANS B	(CLO-5, Apply)
	The singularity of $f(z) = \frac{z}{(z-2)^3}$ in	is		
10.	(A) pole of order 2 (C) simple pole	(B) pole of order 3 (D) pole of order <i>n</i>	ANS B	(CLO-5, Apply)
	If $f(z) = \frac{\sin z}{z}$, then $z = 0$ is			(CLO-5, Apply)
11.	(A) pole (C) essential singularity	(B) removable singularity(D) isolated singularity	ANS B	
	If $f(z) = \int_C e^z dz$, where C is $ z = 1$, then $f(z) =$			
12.	(A) 0 (C) -1	(B) π i(D) 2πi	ANS A	(CLO-5, Apply)
13.	The value of $\int_C \frac{3z^2 + 5z + 1}{z + 1} dz$, where $C : z = \frac{1}{2}$ is			
	(A) 0 (C) $-2\pi i$	(B) 2 π i (D) 1	ANS A	(CLO-5, Apply)
14.	The value of $\int_C \frac{dz}{z-1}$ where C is the circle $ z-1 = 1$ is			(GL 2, 5
	(A) 0 (C) $-2\pi i$	(B) 2πi(D) πi	ANS B	(CLO-5, Apply)
15.	The value of $\int_C \frac{z^2}{(z-1)^2(z+1)} dz$, where $C: z = \frac{1}{2}$ is			
	(4) 0	(D) 1	ANS	(CLO-5, Apply)
	(A) 0 (C) $\frac{1}{2}$	(B) $\frac{1}{4}$ (D) $\frac{1}{3}$	A	, thhii

	The value of $\int_C \frac{z}{z-2} dz$ where C is the circle $ z = 1$ is			(CI O 5
16.		(B) 4 π <i>i</i> (D) 1	ANS A	(CLO-5, Apply)
17.	The residue of $f(z) = \frac{z}{(z-1)^2}$ at its pole is			(CLO-5,
		(B) 1 (D) 2	D ANS	Apply)
	A zero of an analytic function $f(z)$ is a value of z for which			
18.		(B) $f(z) \neq 1$ (D) $f(z) = 0$	ANS D	(CLO-5, Apply)
	The annular region for the function $f(z) = \frac{1}{z}$	$\frac{1}{(z-1)}$ is		(CLO 5
19.		(B) $1 < z < 2$ (D) $ z > 1$	ANS A	(CLO-5, Apply)
	If $f(z)$ is analytic and $f'(z)$ is continuous at all points in the region bounded by the simple closed curves C_1 and C_2 , then			
20.	(A) $\int_{C_1} f(z) dz = \int_{C_2} f(z) dz$ (B) $\int_{C_1} f(z) dz$		ANS A	(CLO-5, Remember)
	(C) $\int_{C_1} f'(z) dz = \int_{C_2} f'(z) dz$ (D) $\int_{C_1} f'(z) dz \neq \int_{C_2} f'(z) dz$			
21.	If $f(z)$ is analytic and $f'(z)$ is continuous at all points inside and on a simple closed curve C , then $\int_C f(z) dz =$		ANS	(CLO-5, Remember)
		(B) 2π <i>i</i> (D) 1	A	Remember)
	If $f(z)$ is analytic inside and on C , then the value of		ANS	(CLO-5,
22.	$\oint_C \frac{f(z)}{z-a} dz$, where C is a simple closed curve and 'a' is any point within C is,			
	` '	(B) $2\pi i f(a)$ (D) 1	В	Remember)
23.	The annular region for the function $f(z) = \frac{1}{z^2 - z - 6}$ is			(CL O. 5
		(B) $1 < z < 2$ (D) $ z < 3$	ANS C	(CLO-5, Apply)

24.	The annular region for the function $f(z)$: (A) $0 < z < 1$ (C) $1 < z < 0$	(B) 1 < z < 2 (D) z < 1	ANS B	(CLO-5, Apply)
25.	The value of $\int_C \frac{e^z}{(z-1)^3} dz$, where $C: z $ (A) 0 (C) $\frac{1}{2}$	$= \frac{1}{2} is$ $(B) \frac{1}{4}$ $(D) \frac{1}{3}$	ANS A	(CLO-5, Apply)
26.	The value of $\int_C \frac{1}{(z-1)^2(z-2)(z-3)} dz$, wh (A) 0 (C) $\frac{1}{2}$	ere $C: z = \frac{1}{2}$ is $(B) \frac{1}{4}$ $(D) \frac{1}{3}$	ANS A	(CLO-5, Apply)
27.	If C is a simple closed curve containing a and $\int_C \frac{1}{(z-a)(z-b)} dz \text{ is}$ (A) 0 (C) $2\pi i b$	b, then(B) 2πi α(D) 1	ANS A	(CLO-5, Apply)
28.	$f(z) = \frac{z-2}{(z-1)(z+3)(z+2)} \text{ has a zero at}$ (A) $z = 1$ (C) $z = -2$	(B) $z = 2$ (D) $z = -3$	ANS B	(CLO-5, Apply)
29.		a simple pole at $z = 1$ no poles	ANS A	(CLO-5, Apply)
30.	The value of $\int_C \frac{z^2 + 1}{z^2 - 1} dz$ where C is the C (A) 0 (C) $2\pi i$	Fircle $ z - 1 = 1$ is (B) $4 \pi i$ (D) 1	ANS C	(CLO-5, Apply)
31.	The residue of $f(z) = \frac{z-2}{z(z-1)}$ at $z = 0$ is (A) 0 (C) 2	(B) -2 (D) 1	ANS C	(CLO-5, Apply)

32.	If $f(z) = \frac{1}{(z^2 + 1)^2}$, then (A) $z = \pm i$ each simple pole (B) $z = \pm i$ each pole of order 2 (C) $z = \pm 1$ each simple pole (D) $z = i$ is not a pole	ANS B	(CLO-5, Apply)
33.	The value of $\int_C \frac{dz}{z-a} dz$, where $C: z-a = r$ is (A) 0 (B) $4\pi i$ (C) $2\pi i$ (D) 1	ANS C	(CLO-5, Apply)
34.	If $z = a$ is inside a simple closed curve C , then $\int_C \frac{dz}{(z-a)^2} =$ (A) 0 (B) $2\pi i$ (C) $-2\pi i$ (D) 1	ANS A	(CLO-5, Apply)
35.	Let C_1 : $ z - a = R_1$ and C_2 : $ z - a = R_2$ be two concentric circles with $R_2 < R_1$, the annular region is defined as (A) within C_1 (B) within C_2 (C) within C_2 and outside C_1 (D) within C_1 and outside C_2	ANS D	(CLO-5, Remember)
36.	The value of of $\int_C \frac{dz}{3z+1} dz$ where C is the circle $ z = 1$ is (A) 0 (B) πi (C) $\frac{2\pi i}{3}$ (D) 1	ANS C	(CLO-5, Apply)

* * * * *