MATH 335 S2019 Practice Midterm Exam I

Read the problems carefully and be sure to show your work. No cell phones or calculators are allowed. Please turn off your phone to avoid any disturbances.

- 1. Compute the area between the curves $y = x^3$ and $y = \sqrt{x}$ for $0 \le x \le 1$.
- 2. What is the work done by the force $\vec{F}(\vec{r}) = (0, 0, r_3^2)$ in moving from (1, 0, 0) to (0, 2, 0)?
- 3. Complete the following
 - (a) Find an implicit equation for the plane containing both of the lines $\vec{l}_1(t) = (1,0,1) + t(-1,-1,1)$ and $\vec{l}_2(t) = (0,2,0) + t(-1,-1,1)$.
 - (b) Let the curve C be the unit circle in the (x,y) plane. If $\vec{r}(t)$ is a parameterization of the circle which traces it counter-clockwise, does $\vec{r} \times d\vec{r}/dt$ point in the positive or negative z direction?
 - (c) Compute the length l below

- (d) Compute the integral $\int_0^{2\pi} x \sin x \, dx$.
- 4. (a) Consider the surface S where $x^2+y^2=1$ and $0\leq z\leq 1$ (a tube). Compute the flux

$$\iint_{S} \vec{F} \cdot \hat{n} \, dS \,, \tag{1}$$

- where $\vec{F}(x, y, z) = (y, z^{3}y, x)$.
- (b) Compute the volume of the tube above z=0 and below the plane through the points (1,0,1), (-1,1,0), (-1,-1,0).