Zadanie 2. Udowodnij, że poniższe równania uzupełnione warunkiem początkowym x(0) =

1 mają rozwiązanie dla wszystkich
$$t \ge 0$$
:
a) $x' = t^3 - x^3$, b) $x' = tx + e^{-x}$.

18:45

a)
$$t_0=0$$
 $y_0=1$ $f(t_1y)=t^3-y^3$

$$\frac{\partial f}{\partial y}=-3y^2+\text{ciaggia}$$

widać zatem, że dla ustalonego przedziału [O,T) rozw so ograniczone, nie uciekną w +00

spetnione jest zatem oszacowanie a priori \Rightarrow rozw. istnieje dla wszystkich $t > t_0 = 0$

b)
$$y' = ty + e^{-y}$$

znowu wszystko ciągte, z (P-L) bierzemy rozw istniejące na [O,T]

szukamy ograniczenia na y z oby

początku rozw. musi rosnąć u prawa strona już zawsze będzie dodatnia

U>0 AF>F0=0

2) $y' = ty + e^{-y} \le ty + 1$

rozwiązujemy y = ty+1 $y' - ty = 1 / e^{-S_0^t s ds} = e^{-\frac{t^2}{2}}$ (ye = = = = / Sn ds $ye^{-\frac{t^2}{2}} - 1 = \int_0^t e^{-\frac{s^2}{2}} ds$ $\ddot{y} = e^{\frac{t^2}{2}} [1 + \int_0^t e^{-\frac{5^2}{2}} ds]$

to jest ograniczone dla

zatem y≤ ÿ

teza z tw. o przed Tużaniu