

Data Science Salaries

Data Science Salaries Project Overview

Project Goal: Create a tool for students to input job type and experience level to find corresponding salaries

Data Source: <u>Data Science Salaries 2024</u> from Kaggle, which includes salaries from 75 countries.

Average Salaries:

- Entry Level \$85,000 annually
- Mid-level \$120,000 annually
- Senior level \$162,000 annually
- Executive level \$190,000 annually

Machine Learning Techniques:

- Multi-class classification
- Ada Boost
- Linear regression
- Unsupervised learning

2020-2024 Employee Salary Distribution with Normal Curve

Classification Models

Models to predict salary classes based on certain features:

Features

- 1. job title
- 2. experience level
- 3. employment type
- 4. work model
- 5. employee residence
- 6. company location
- 7. company size

Classifiers

- 1. K Nearest Neighbors
- 2. Support Vector
- 3. Decision Tree
- 4. Random Forest
- 5. AdaBoost

Bins:

Class	Bins	Salary Range	Count
0	very low	1,500 - 50,000	383
1	low	50,001 - 156,000	3651
2	average	156,001 - 176,000	652
3	high	176,001 - 750,000	1913

AdaBoost (63%) Classification Report:

Class	Precision	Recall	F1-Score	Support
0	0.50	0.01	0.01	165
1	0.53	0.49	0.51	448
2	0.67	0.83	0.74	945
3	0.64	0.41	0.50	92
Accuracy			0.63	1650
Macro Avg	0.59	0.43	0.44	1650
Weighted Avg	0.61	0.63	0.59	1650

Linear Regression Model to Predict a Salary

- Data Preprocessing: Removed outliers, applied log transformation, one-hot encoded categorical features, and standardized numerical data.
- Model: Used Ridge Regression to reduce overfitting and handle multicollinearity.
- Performance: Test R² = 0.5211, Test MSE = 0.1434.
- Key Takeaway: Interactive tool for realtime salary prediction.

Gradio Presentation

Unsupervised Learning Analysis

Why?

- Relatively low metrics from supervised learning models.
- What are the important features?
- How would the data cluster?

Preprocessing

Unsupervised Learning Analysis

Clustering PCA Optimized Data (K=3)

• 3-component Variance Ratio : [0.48, 0.21, 0.14] sum = 0.83

PCA1 salary_in_usd wt: 0.936

PCA2 work_models_On-site wt: 0.697

PCA3 experience_level_Senior wt: 0.699

• Surprising light weights: job_title, employee_residency and company_location

Conclusion:

Classification

 Predicted and classified salaries into buckets ranging from very low to high

Linear Regression

 Ridge Regression allowed us to predict the actual salary for a set of job specific features

Unsupervised Learning

 Gave insights into the key features such as work model and experience level were found to be the most impactful features

Low accuracy and R scores

- High variability in salaries within job title lower model accuracy.
- The R2 scores were likely affected by missing factors such as education level

Questions

Link: https://github.com/tlockhart/project-2