Perpeceus 91 3.

F= (RSSn-RSS.) (n-R-1)

RSSu-9

7 RSSu 9 P RSSu - 223 - 122 -

 $\frac{1}{725}, \frac{1}{725}, \frac{1}{725$

```
In [ ]: # Подключим нужные для базовых операций библиотеки
        import seaborn as sb
        from matplotlib import pyplot as plt
        import numpy as np
        import pandas as pd
        # Подключим пакеты для использования OLS метода и тестов
        import statsmodels.api as sm
        from sklearn.linear model import LinearRegression
        from scipy import stats
        from statsmodels.stats.outliers_influence import variance_inflation_factor
        # Подгрузим полезные функции
        from utils import *
        # Сделаем автоподгрузку всех изменений при перепрогонке ячейки
        %load_ext autoreload
        %autoreload 2
In [ ]: # Определим параметры выборки для задачи мультиколлинеарности
        # Создадим удобный словарь, чтобы передавать его в функцию
        dist_params = dict(
            # Зададим параметры распределения факторов
            x1_{mean} = 100.0,
            x1_std = 10.0,
            x2_{mean} = 20.0,
            x2_std = 5.0,
            x3 mean = 30.0,
            x3_std = 8.0,
            corr_12 = 0,
            corr_23 = 0.8,
            corr_13 = 0,
            # Зададим параметры распределения ошибки
            e_mean = 0.0,
            e_std = 3.0,
            # Укажем размер выборки
            N = 1000,
            # Зададим действительные параметры модели
            beta0 = 500.0,
            beta1 = -6.7,
            beta2 = 2.3,
            beta3 = 17.7
        )
        # Установим стартовую точку для алгоритма генерации случайных чисел
        RANDOM\_SEED = 42
In [ ]: # Сгенерируем датасет с нормальным распределением в регрессоре
        dt_collinearity = gen_data(y_type='multivariate', params=dist_params, seed=RANDOM_SEED)
        display(dt_collinearity)
        # Посмотрим на корреляции глазами
        pd.plotting.scatter_matrix(dt_collinearity[['x1', 'x2', 'x3']], figsize = (14,8), diagonal =
        plt.plot()
```

	x1	x2	х3	е	у
0	104.967142	19.116106	31.932229	-5.723423	400.164234
1	115.230299	21.579319	31.544465	-2.581155	333.345310
2	115.792128	17.682403	23.332455	-1.240817	176.605907
3	105.425600	23.131081	33.053639	5.663063	437.562431
4	102.419623	32.469672	42.864252	1.669659	648.835695
•••	•••		•••		•••
995	90.399537	20.328264	31.089870	0.085373	491.454176
996	88.697963	5.802484	12.930729	-6.233435	141.709836
997	106.021183	20.171058	29.155871	-0.960893	351.149530
998	90.480815	19.060755	29.722963	4.930134	468.644848
999	87.582394	18.877167	27.160474	1.081944	438.437784

1000 rows × 5 columns

In []: # Обучим модель и выведем результаты dt_collinearity, model_collinearity = train_model(dt_collinearity, target='y', feature_names=

OLS Regression Results

=======			======	======		========		
Dep. Varia	able:		,	y R-so	quared:		1.000	
Model:			OL:	S Adj	R-squared:		1.000	
Method:		Least	Square	s F-st	catistic:		9.235e+05	
Date:		Sun, 03	Mar 202	4 Prob	(F-statistic):	0.00	
Time:			16:04:5	4 Log-	-Likelihood:		-2542.6	
No. Observations:			100	aic:			5093.	
Df Residuals:			99	BIC:			5113.	
Df Model:				3				
Covariance Type: nonrobust								
=======	========		======	======	========	=======	=======	
	coef	f std	err	t	P> t	[0.025	0.975]	
const	499.0006	 a 1	072 ·	 465.494	0.000	496.896	501.104	
x1	-6.6949			565.197	0.000	-6.715	-6.675	
x2	2.3419		033	71.051	0.000	2.277	2.407	
x3	17.6866			846.718	0.000	17.646	17.728	
Omnibus:	========	======	2.96	====== 1 Durl	======== oin-Watson:	=======	2.045	
Prob(Omnibus):		0.228			Jarque-Bera (JB):		2.542	
Skew:	, .		-0.01		(JB):		0.281	
Kurtosis:			2.75		d. No.		1.18e+03	
========	========		======			=======:	========	

Notes:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 1.18e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Интерпретация

Из таблицы видно, что наша модель хорошо объясняет дисперсию зависимой переменной, т.к. ее $r^2=1$, что является хорошим показателям для таких данных.

Также модель предсказывает коэффициенты, с ошибкой в 0.2-5% (499 vs 500, -6.7 vs -6, 2.34 vs 2.3, 17.69 vs 17.7)

Значения стандартных ошибок коэффициентов близки к 0 (

 $x_1=0.01, x_2=0.03, x_3=0.02, const=1.072$), что опять же говорит о хорошей способности модели объяснять таргет.

Для каждого коэффициента t-statistics представлены свои p-value, которые равны 0, что говорит о статистической значимости все коэффициентов.

Доверительные интервалы покрывают настоящие значения кожффициентов.

F-statistics = 9.235e+05, a Prob (F-statistic) близко к нулю, что говорит о статистической значимости модели в целом.

AIC и BIC равны 5093 и 5113 соответственно. Эти метрики обратно пропорционально показывают качество модели. В нашем случае они отностиельно небольшие, что говорит об относительно хорошем качестве модели.