Quiz 1A

Exercise 1 1

- For $n \ge 1$ define $f_n : \mathbb{R} \to \mathbb{R}$, $x \to (-1)^n \frac{x^2 + n}{n^2}$. 1. Show that the series $\sum_{1}^{\infty} f_n$ is pointwise convergent. We note $f(x) = \sum_{1}^{\infty} f_n(x)$. 2. Show that the series $\sum_{1}^{\infty} f_n$ converges uniformly in every bounded interval. Deduce that f is continuous on \mathbb{R} .

2 Exercise 2

- For $n \ge 1$ define $f_n : [0, \infty) \to \mathbb{R}$, $x \to \frac{1}{x+n^2}$. 1. Show that the series $\sum_{1}^{\infty} f_n$ converges uniformly to a function f. 2. Show that f is continuous on $[0, \infty)$. 3. Show that the series $\sum_{1}^{\infty} f'_n$ is uniformly convergent on $[0, \infty)$. 4. Conclude that f is C^1 on $[0, \infty)$ and calculate f'.