Model Documentation of the Triple Pendulum on a Cart

1 Nomenclature

1.1 Nomenclature for Model Equations

- m_0 mass of the cart
- m_i mass of link i, where i = 1, 2, 3
- J_i moment of inertia i, where i = 1, 2, 3
- l_i length (distance between joints) of link i, where i = 1, 2, 3, 4
- a_i distance from the joint to the center of gravity of link i, where i = 1, 2, 3
- g acceleration due to gravity
- p_i angle φ_i , where i = 1, 2, 3
- q_1 distance x_0
- F force on the cart

1.2 Graphic of the Structure

Figure 1: Triple Pendulum

Source: Knoll, Carsten/Triple Pendulum on a Cart: Derivation of Equations of Motion and Simulation

2 Model Equations

State Vector and Input Vector:

$$\underline{x} = (p_1 \ p_2 \ p_3 \ q_1 \ \dot{p}_1 \ \dot{p}_2 \ \dot{p}_3 \ \dot{q}_1)^T = (x_1 \ x_2 \ x_3 \ x_4 \ x_5 \ x_6 \ x_7 \ x_8)^T$$

$$u = F$$

Kinetic Energy:

$$T = \frac{1}{2}J_{1}x_{5}^{2} + \frac{1}{2}J_{2}x_{6}^{2} + \frac{1}{2}J_{3}x_{7}^{2} + \frac{1}{2}m_{0}x_{8}^{2} + \frac{1}{2}m_{1}(a_{1}^{2}x_{5}^{2}\sin x_{1}^{2} + (-a_{1}x_{5}\cos x_{1} + x_{8})^{2})$$

$$+ \frac{1}{2}m_{2}((-a_{2}x_{6}\sin x_{2} - l_{1}x_{5}\sin x_{1})^{2} + (-a_{2}x_{6}\cos x_{2} - l_{1}x_{5}\cos x_{1} + x_{8})^{2})$$

$$+ \frac{1}{2}m_{3}((-a_{2}x_{7}\sin x_{3} - l_{1}x_{5}\sin x_{1} - l_{2}x_{6}\sin x_{2})^{2} + (-a_{2}x_{7}\cos x_{3} - l_{1}x_{5}\cos x_{1} - l_{2}x_{6}\cos x_{2} + x_{8})^{2})$$

Potential Energy:

$$V = g(a_1 m_1 \cos x + m_2(a_2 \cos x_2 + l_1 \cos x_1) + m_3(a_2 \cos x_3 + l_1 \cos x_1 + l_2 \cos x_2))$$

Parameters: m_0 , m_1 , m_2 , m_3 , J_1 , J_2 , J_3 , l_1 , l_2 , l_3 , a_1 , a_2 , a_3 , g_4

Outputs: $\underline{\mathbf{x}}$

2.1 Exemplary parameter values

Parameter Name	Symbol	Value	Unit
mass of the cart	m_0	3.34	kg
mass of link 1	m_1	0.8512	$_{ m kg}$
mass of link 2	m_2	0.8973	$_{ m kg}$
mass of link 3	m_3	0.5519	$_{ m kg}$
moment of inertia of link 1	J_1	0.0198	$kg \cdot m^2$
moment of inertia of link 2	J_2	0.02105	$kg \cdot m^2$
moment of inertia of link 3	J_3	0.01819	$kg \cdot m^2$
length of link 1	l_1	0.32	\mathbf{m}
length of link 2	l_2	0.419	\mathbf{m}
length of link 3	l_3	0.485	\mathbf{m}
distance from the joint to the center of gravity of link 1	a_1	0.2	\mathbf{m}
distance from the joint to the center of gravity of link 2	a_2	0.2689	\mathbf{m}
distance from the joint to the center of gravity of link 3	a_3	0.2167	\mathbf{m}
acceleration due to gravity	g	9.81	$\frac{m}{s^2}$

3 Derivation and Explanation

The Lagrangian mechanics was used for the solution.

4 Simulation

Figure 2: Simulation of the triple pendulum.

References

[1] Knoll, Carsten: Triple Pendulum on a Cart: Derivation of Equations of Motion and Simulation, Jupyter Notebook published 2021.

https://github.com/cknoll/demo-material/blob/main/
underactuated_systems/triple_pendulum_with_modeltools_plus_
simulation-en.ipynb