- 15. Soit la fonction $f: x \to (1+x)^x$; f'(x) =1. $\left[\ln(1+x) + \frac{x}{1+x} \right] (1+x)^x$ 3. $\exp \left[\ln(1+x) + \frac{x}{1+x} \right]$ 5. $\ln(1+x) + \frac{1}{1+x}$
 - 2. (1+x). $\ln(1+x)$
- 4. $x(x+1)^{x-1}$
- 16. Le coefficient du terme en x² dans le développement de Mac Laurin www.ecoles-rdc.net

(B. 80)

 $5, x \rightarrow \ln(1+x)$

(M.80)

(M.81)

- $de = \frac{1}{\sqrt{1 + v}}$ vaut : 1. $\frac{3}{8}$ 2. $\frac{1}{6}$ 3. $\frac{3}{4}$ 4. $-\frac{3}{4}$ 5. $-\frac{3}{8}$ (MB.-80)
- 17. $1 x + x^2 x^3 + x^4 + ... + (-1)^n x^2 + r_n(x)$ représente le développement
 - de la fonction : 1. $x \rightarrow \sqrt{1+x}$ $4. x \rightarrow \ln(1-x)$
- $2. x \rightarrow 1/1 x$ ★ 18. Le coefficient du terme en x³ dans le développement en série de Mac

 - Laurin de la fonction ____ vaut : 1. 1/6 2. -6 3. 1 4. -1/3 5. 1/3
 - 19. On donne la fonction $x \to a^{3x}$ avec a > 0 et $a \ne 1$. Calculer f(x):

 1. $3 e^{3x} \ln a$ 2. $3 a^{3x}$ 3. $a^3 a^x \ln a$ 4. $3 \times a^{3x-1}$ 5. $a^{3x} \ln a$ (M. 81)
- → 20. Le coefficient du terme en x⁴ dans le développement de Mac Laurin
 - de la fonction $x \rightarrow ln(1 + 2x)$ vaut : (B.81 - M.98)
 - 21. Le quatrième terme non nul dans le développement de Mac Laurin de la fonction $x \rightarrow \ln(1 + 2x)$ est:
 - $1.-2x^4$ $2.-x^4$ $3.-4x^4$ $4.4x^4$ $5.2x^4$ (M. 82)
 - 22. Les quatre premiers termes du développement en série de Mac Laurin de la fonction $x \to x e^{x+1}$ sont :
 - 4. $e + ex + ex^2 + \frac{e}{2}x^3 e/2x^3$ 1. $ex + \frac{e}{2}x^2 + \frac{e}{63}x^3 + \frac{e}{24}x^4$ 2. $ex + ex^2 + \frac{e}{2}x^3 + \frac{e}{4}x^4$ 5. $x + \frac{x^2}{2} + \frac{x^3}{6} + \frac{x^4}{4}$
 - 3. $ex + ex^2 + ex^3 + ex^4$

(B.)