- 1 Localize graficamente os zeros das funções a seguir:
 - a) $f(x) = 4\cos(x) \exp(2x)$ b) $f(x) = x/2 \tan(x)$ c) $f(x) = 1 x\ln(x)$
 - d) $f(x) = 2^x 3x$ e) $f(x) = x^3 + x 1000$
- 2 Use o método Newton-Raphson para obter a menor raiz positiva das equações a seguir com precisão 10⁻².
 - a) $x/2 \tan(x) = 0$; b) $2\cos(x) \exp(x)/2 = 0$; c) $x^5 6 = 0$.
- 3 Qual o número mínimo de iterações k que será realizado pelo algoritmo do método da bissecção para satisfazer o critério de parada: b - a < tol supondo que tol = 10⁻⁴ e o intervalo inicial tem amplitude 1? Generalize seu resultado, em função de tol e da amplitude do intervalo inicial.
- 4 Considere a função $f(x) = exp(x) 4x^2$.
 - a) Localize graficamente os zeros de f.
 - b) Considere o intervalo I = [-1 5]. Realize duas iterações do método da bissecção e escolha o ponto médio do último intervalo obtido como aproximação inicial para o método de Newton. Aplique o método de Newton até atingir precisão 10⁻². Comparando com localização dos zeros realizada no item (a), identifique qual o zero obtido neste processo e justifique por que a convergência foi para esta raiz.
- 5 Aplique o método de Newton–Raphson à equação: $x^3-2x^2-3x+10=0$, com $x_0=1.9$. Justifique os resultados obtidos.
- 6 Considere a função: f(x) = x²/2 + x(ln(x) − 1). Obtenha seus pontos críticos com o auxílio do método das secantes.

7 - Considere os pontos da tabela abaixo:

х	1	1.5	3		
у	330	710	2720		

- a) Encontre a função que interpola os dois primeiros pontos $(x_0 e x_1)$, ou seja, obtenha $P_1(x)$.
 - b) Encontre a função que interpola os três pontos $(x_0, x_1 e x_2)$, ou seja, obtenha $P_2(x)$.
- c) Calcule $P_1(1.2)$ e $P_2(1.2)$ e compare com o valor da função $f(x)=5+35x+290x^2$ original no ponto 1.2
 - d) Qual dos dois polinômios da um valor mais próximo de f(1.2).

8 - Considere os pontos da tabela abaixo:

X	1	2	3	
у	5	5.24	6.288	

- a) Encontre a função que interpola os dois últimos pontos $(x_1 e x_2)$, ou seja, obtenha $P_1(x)$.
 - b) Encontre a função que interpola os três pontos $(x_0, x_1 e x_2)$, ou seja, obtenha $P_2(x)$.
- c) Calcule $P_1(2.5)$ e $P_2(2.5)$ e compare com o valor da função $f(x)=5+\log(x)/10x^3$ original no ponto 2.5
 - d) Qual dos dois polinômios da um valor mais próximo de f(2.5).

- 9 Considerando um função do tipo $f(x) = 5x + \ln(x+1)$,
- a) Escreva o polinômio **interpolador de Lagrange** de ordem 2 passando que passa pelos pontos x=1, 2 e 3. Calcule P₂(1.3)
- b) Escreva o polinômio interpolador de Lagrange de ordem 3 passando que passa pelos pontos x=1, 2, 3 e 4. Calcule P₃(1.3)

Dica:
$$f(1)=5.69$$
; $f(2)$;= 11.09; $f(3)=16.38$; $f(4)=21.60$
 $P_2(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + f(x_2)L_2(x)$
 $P_3(x) = f(x_0)L_0(x) + f(x_1)L_1(x) + f(x_2)L_2(x) + f(x_3)L_3(x)$;

onde
$$L_k(\mathbf{x}) = \prod_{\substack{J=0 \ J \neq k}}^n (\mathbf{x} - \mathbf{x}_j) / \prod_{\substack{J=0 \ J \neq k}}^n (\mathbf{x}_k - \mathbf{x}_j)$$

10 - A seguinte tabela relaciona calor específico da água e temperatura:

temperatura (°)		25	30	35	40	45	50	
calor espec.	0.99907	0.99852	0.99826	0.99818	0.99828	0.99849	0.99878	

Resolver os itens abaixo através de um processo de interpolação quadrática:

- a) o calor específico da água a 32.5°;
- b) a temperatura para a qual o calor específico é 0.99837.

Sabendo-se que a equação $x - \exp(-x) = 0$ admite uma raiz no intervalo (0, 1), determine o valor desta raiz usando interpolação quadrática.

11 -

A integral elíptica completa é definida por:

$$K(k) = \int_0^{\pi/2} \frac{dx}{(1 - k^2 \sin^2 x)^{1/2}}.$$

Por uma tabela de valores desta integral, encontramos:

K(1) = 1.5708, K(2) = 1.5719, K(3) = 1.5739.

Determinar K(2.5), usando um polinômio de interpolação, na forma de Lagrange, sobre todos os pontos.

Calcule a derivada numérica f'(x₀) para cada uma das funções abaixo.

- (a) $f(x) = \ln x$, com h = 0, 4 e $x_0 = 1, 00$;
- (b) $f(x) = x + e^x$, com h = 0, 4 e $x_0 = 0, 00$;
- (c) $f(x) = e^x \sin x$, com h = 0, 4 e $x_0 = 1, 05$;
- (d) $f(x) = x^3 \cos x$, com h = 0, 4 e $x_0 = 2, 50$.