

Self-Organizing Data Containers

Thomas Glas

Technische Universität München

TUM School of Computation, Information and Technology

Lehrstuhl für Datenbanksystem

München, 14. März 2023

Motivation

How can we minimize data transfer?

only retrieve data needed for query

How can we create a storage layer with rich metadata to support this?

Self-Organizing Data Containers

Partitioning Strategies

Column Range Partitioning

Qd-Tree

Self-Organizing Data Containers

Demo of my SDC prototype

SDC Library API:Projections and filters on tables

Indexes: Primary, column range partitioning,

Qd-Tree

Dataset: NYC TLC Trip Record Data

Workloads: Single-table range queries

Storage layer: Local disk vs cloud storage (simulated)

Data blocks: Apache Parquet files

Metadata blocks: JSON files

Clients: Single client

Benchmarks

Benchmarks

Conclusion & further research

- Simple yet effective self-learned storage optimization
- Easy to add indexes
- Easy to integrate into any type of applications (not just DBMS)
- Use of data replication: trading off storage cost for query performance

Further research

- Distributing optimization work among clients
- Find query clusters in workload for effective indexes

Code on Github:

https://github.com/thomasglas/SDCs

Benchmarking Qd-Tree min block sizes

Benchmarking Qd-Tree min block sizes

