Análise matemática

Pedro Henrique de Almeida Konzen

29 de março de 2018

Licença

Este trabalho está licenciado sob a Licença Atribuição-Compartilha Igual 4.0 Internacional Creative Commons. Para visualizar uma cópia desta licença, visite http://creativecommons.org/licenses/by-sa/4.0/ ou mande uma carta para Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

Prefácio

Sumário

C	Capa Capa	i					
Licença							
Pı	refácio	iii					
Sı	umário	iv					
Ι	Análise de funções de uma variável real	1					
1	Introdução	3					
2	Fundamentos da análise 2.1 Funções	4 4 4 5 7					
3	Limites 3.1 Noções de topologia	9 11 11 12 15 17					
4	Continuidade	19					
R	Referências Bibliográficas						
Ín	ndice Remissivo						

Parte I Análise de funções de uma variável real

Capítulo 1

Introdução

Em construção ...

Capítulo 2

Fundamentos da análise

2.1 Funções

2.1.1 Definição de função

Definição 2.1.1. (Função) Uma **função** $f:D\to Y$ é uma relação que associa cada elemento de um dado conjunto D com um único elemento de um dado conjunto Y. O conjunto D é chamado de **domínio** da função e o conjunto Y é chamado de **contradomínio** da função.

Comumente, uma dada função $f:D\to Y$ é acompanhada de sua **lei de correspondência**, a qual muitas vezes é denotada por y=f(x). Neste caso, temos que a função f associa $x\in D$ ao elemento $y\in Y$. Neste contexto, x é chamada de **variável independente** e y de **variável dependente**. Ainda, muitas vezes uma função é descrita apenas por sua lei de correspondência e, neste caso, os conjuntos domínio e imagem são inferidos no contexto em questão.

Observação 2.1.1. Neste livro, quando não especificado ao contrário, assumiremos que o domínio e o contradomínio das funções consideradas são subconjuntos dos números reais,

Exemplo 2.1.1. Vejamos os seguintes casos:

- a) A relação $f:\{1,2,3\}\to\mathbb{R},\,y=f(x):=x^2+1,$ define uma função.
- b) A relação $g:D=\{0,1,2,3,4\}\to \mathbb{Z},\ x^2+y^2=9\ \mathrm{com}\ x\in D\ \mathrm{e}\ y\in Y,$ não é uma função. Com efeito, $0\in D$ e relaciona-se com $3\in Y$ e $-3\in Y$ no seu contradomímio.
- c) Da equação $y=\sqrt{x}$ pode-se inferir a função $h:x\in D\to y\in\mathbb{R},$ onde o domínio D é conjunto dos reais não negativos.

Definição 2.1.2. (Imagem de uma função) A **imagem** I_f de uma dada função $f: D \to Y$ é o conjunto de todos os elementos de Y que se relacionam com algum elemento de D, i.e.:

$$I_f := \{ y \in Y; \ \exists x \in D \text{ tal que } y = f(x) \}. \tag{2.1}$$

Exemplo 2.1.2. Vejamos os seguintes casos:

- a) A função $f: \{1,2,3\} \to \mathbb{R}, y = f(x) := x^2 + 1$, tem imagem $I_f = \{1,4,9\}$.
- b) A imagem da função $f:\{0\} \cup \mathbb{N} \to \mathbb{R}, y=2x+1$, é conjunto dos números ímpares.
- c) A imagem da função sen : $\mathbb{R} \to \mathbb{R}$, y = sen x, é $I_{\text{sen}} = [-1, 1]$.

Observação 2.1.2. Dada uma função $f: D \to Y$ e um conjunto $A \subset D$, definimos a imagem de A pela função f por

$$f(A) := \{ y \in Y; \exists x \in A \text{ tal que } y = f(x) \}. \tag{2.2}$$

Por exemplo, dada a função $f: \mathbb{R} \to \mathbb{R}, y = \sqrt{x}$, temos

$$f({0,1,4,9}) = {0,1,2,3}. (2.3)$$

Definição 2.1.3. (Gráfico) O **gráfico** de uma função $f: D \to Y$, y = f(x), é o conjunto de todos os pares ordenados (x,y) tal que $x \in D$ e y = f(x), i.e.

$$G_f := \{(x, y) \in D \times Y; \ y = f(x)\}.$$
 (2.4)

Exemplo 2.1.3. O gráfico da função $f:\{1,2,3\} \to \mathbb{R}, \, y=f(x):=x^2+1,$ é

$$G_f = \{(1,2), (2,5), (3,10)\}.$$
 (2.5)

2.1.2 Classificações elementares

Definição 2.1.4. (Função limitada) Seja dada uma função $f:D\to\mathbb{R},\,y=f(x)$. Dizemos que f é uma função limitada inferiormente (ou limitada à esquerda) quando existe $m\in\mathbb{R}$ tal que $m\leq f(x)$ para todo $x\in D$. Analogamente, dizemos que f é uma função limitada superiormente (ou limitada à direta) quando existe $M\in\mathbb{R}$ tal que $f(x)\geq M$ para todo $x\in D$. Ainda, f é dita ser limitada quando é limitada inferiormente e superiormente.

Exemplo 2.1.4. Vejamos os seguintes casos:

a) A função $f: \mathbb{R} \to \mathbb{R}, \ y = x^2 + 1$, é limitada inferiormente. De fato, para cada $x \in \mathbb{R}$ temos $x^2 \ge 0$ e, portanto, $y = x^2 + 1 \ge 1$.

b) A função seno é uma função limitada. Isto segue imediatamente da definição da função seno no círculo unitário (círculo trigonométrico).

Definição 2.1.5. Restrição/extensão de uma função Uma função $g:A\to Y$, y=g(x), é dita ser uma **restrição** da dada função $f:D\to Y$ quando $A\subset D$ e g(x)=f(x) para todo $x\in A$. Analogamente, f é uma **extensão** da função g.

Exemplo 2.1.5. A função $f: \mathbb{R} \to \mathbb{R}, \ y = x+1$, é uma extensão da função $g: \mathbb{R} \setminus \{1\} \to \mathbb{R}, \ y = \frac{x^2-1}{x-1}$.

Definição 2.1.6. (Função injetiva) Uma função $f: D \to Y$, y = f(x), é dita ser **injetiva** (**injetora** ou **inversível**) quando para todo $x_1, x_2 \in D$ com $x_1 \neq x_2$ temos $f(x_1) \neq f(x_2)$.

Observação 2.1.3. Uma função $f: D \to \mathbb{R}$, y = f(x), é injetiva se, e somente se, para todo $x_1, x_2 \in D$ tal que $f(x_1) = f(x_2)$ temos $x_1 = x_2$.

Exemplo 2.1.6. Vejamos os seguintes casos:

- a) A função $f(x) = x^2$ não é injetiva, pois tomando $x_1 = -1$ e $x_2 = 1$ temos $x_1 \neq x_2$, mas $f(x_1) = f(x_2)$.
- b) A função $f(x) = \sqrt{x+1}$ é injetiva. De fato, dados $x_1, x_2 \in \mathbb{D}$ tal que $f(x_1) = f(x_2)$, então $\sqrt{x_1} = \sqrt{x_2}$. Agora, tomando o quadrado dos dois lados, temos $x_1 = x_2$.

Definição 2.1.7. (Função sobrejetiva) Uma função $f: D \to Y$, y = f(x), é sobrejetiva quando f(D) = Y (ou, equivalentemente, $I_f = Y$).

Exemplo 2.1.7. A função $f:(0,\infty)\to\mathbb{R},\ f(x)=\ln(x),$ é sobrejetiva. De fato, dado qualquer $y\in\mathbb{R}$ basta escolhermos $x=e^y$ para termos f(x)=y.

Observação 2.1.4. Uma função injetiva e sobrejetiva é dita ser bijetiva.

Definição 2.1.8. (Função inversa) Dada uma função invertível (i.e. injetora) $f: D \to Y, y = f(x)$, definimos sua **inversa** por $f^{-1}: f(D) \to D$ que associa cada elemento $y \in f(D)$ com $x \in D$ tal que f(x) = y.

Exemplo 2.1.8. Vejamos os seguintes casos:

- a) A inversa da função $f:(0,\infty)\to\mathbb{R},\ y=\ln(x),$ é a função $f^{-1}:\mathbb{R}\to(0,\infty),$ $y=e^x.$
- b) A inversa da função $f: [-1,\infty] \to [0,\infty), \ y = \sqrt{x+1}$, é a função $f^{-1}: [0,\infty) \to [-1,\infty], \ y = x^2 1$. De fato, f é sobrejetiva e dado $x \in [-1,\infty]$ temos $f(x) = y = \sqrt{x+1}$ e, então $y^2 = x+1$, logo $x = y^2 1$.

Definição 2.1.9. (Função monótona) Seja dada uma função $f: D \to Y$. Dizemos que f é **crescente** quando para todo $x_1, x_2 \in D$ com $x_1 < x_2$, temos $f(x_1) < f(x_2)$. Agora, quando para todo $x_1, x_2 \in D$ com $x_1 < x_2$ temos $f(x_1) \le f(x_2)$, dizemos que f é uma **função não-decrescente**. Analogamente, quando para todo $x_1, x_2 \in D$ com $x_1 < x_2$ temos $f(x_1) > f(x_2)$ dizemos que f é uma função **decrescente**. Por fim, quando para todo $x_1, x_2 \in D$ com $x_1 < x_2$ temos $f(x_1) \ge f(x_2)$ dizemos que f é uma função **não-crescente**.

Exemplo 2.1.9. Vejamos os seguintes casos:

- a) $f: \mathbb{R} \to \mathbb{R}, y = x^3$, é uma função crescente.
- b) $f: \mathbb{R} \to \mathbb{R}, y = e^{-x}$ é uma função decrescente.

Definição 2.1.10. (Paridade de uma função) Uma função $f: D \to Y$, y = f(x), é dita ser **par** quando para todo $x \in D$, temos f(x) = f(-x). Agora, quando para todo $x \in D$, temos f(x) = -f(-x), então dizemos se tratar de uma função **impar**.

Exemplo 2.1.10. Vejamos os seguintes casos:

- a) A função $f: \mathbb{R} \to \mathbb{R}, y = |x|$, é uma função par.
- b) A função $f: \mathbb{R} \to \mathbb{R}, y = x^3$, é uma função ímpar.

2.1.3 Operações elementares

Operações elementares envolvendo funções são comumente definidas tomando o cuidado de restringir o domínio das funções operadas para um conjunto apropriado. Por exemplo, dadas as funções $f:A\to\mathbb{R},\ y=f(x),\ e\ g:B\to\mathbb{R},\ y=g(x),$ definimos a função soma de f com g por $(f+g):A\cap B\to\mathbb{R},\ (f+g)(x):=f(x)+g(x)$. Agora, para estas mesmas função, definimos a função quociente de f com g por $(f/g):A\cap B\setminus\{0\}\to\mathbb{R},\ (f/g)(x):=f(x)/g(x)$.

Exemplo 2.1.11. A função $f:[0,\infty]\to\mathbb{R},\ y=\sqrt{x}-|x|,$ é a subtração da função $f_1:[0,\infty]\to\mathbb{R},\ y=\sqrt{x},$ com a função $f_2:\mathbb{R}\to\mathbb{R},\ y=|x|,$ i.e. $f(x)=(f_1-f_2)(x):=f_1(x)-f_2(x).$

Definição 2.1.11. (Composição de funções) Sejam dadas as funções $f: D_f \to Y_f$, y = f(x), e $g: D_g \to Y_g$, y = g(x), com $I_g \subset D_f$. Definição a **função composta** de f com g por $(f \circ g): D_g \to Y_f$ com $(f \circ g)(x) = f(g(x))$.

Exemplo 2.1.12. A função $f:[0,\infty]\to\mathbb{R},\ y=\sqrt{x^2+1},\ \text{\'e}$ a composição da função $f_1:[0,\infty]\to\mathbb{R},\ y=\sqrt{x},\ \text{com a função}\ f_2:\mathbb{R}\to\mathbb{R},\ y=x^2+1.$

Exercícios

- **E 2.1.1.** Sejam $f:D\to Y,\ y=f(x),\ \mathrm{e}\ A,B\subset D.$ Mostre que $f(A\cup B)=f(A)\cup f(B).$
- **E 2.1.2.** Construa uma função crescente, limitada superiormente e com domínio igual ao conjunto dos números reais.
- **E 2.1.3.** Mostre que $f:[1,\infty)\to \mathbb{R},\ y=\sqrt{x^3-1},$ é injetora e construa sua inversa.
- **E 2.1.4.** Mostre que se $f: D \to Y$ é injetora, então f não é par.
- **E 2.1.5.** Mostre que uma dada função $f: \mathbb{R} \to \mathbb{R}, \ y = f(x)$, é limitada quando existe $c \in \mathbb{R}$ tal que $|f(x)| < c, \ \forall x \in \mathbb{R}$.

Capítulo 3

Limites

3.1 Noções de topologia

Definição 3.1.1. (Ponto interior) Diz-se que x é um **ponto interior** de um dado conjunto C quando existe um intervalo (a,b) que contém x e está contido em C, i.e. $x \in (a,b) \subset C$. O conjunto de todos os pontos interiores de C é chamado de seu **interior**.

Exemplo 3.1.1. a) Todo elemento de um intervalo aberto (a, b) é ponto interior deste.

b) O interior de um dado intervalo fechado [a, b] é o intervalo aberto (a, b).

Definição 3.1.2. (Conjunto aberto) Diz se que C é **conjunto aberto** quando todos seus elementos são pontos interiores.

Exemplo 3.1.2. Vejamos os seguintes casos:

- a) O intervalo $(a,b) := \{x \in \mathbb{R}; \ a < x < b\}$ é um conjunto aberto. De fato, dado $x \in (a,b)$ podemos tomar $0 < \varepsilon < \min\{x a,b x\}$ de forma que $x \in (x \varepsilon, x + \varepsilon) \subset (a,b)$.
- b) O intervalo (a, b] não é aberto, pois $b \in (a, b]$ não é ponto interior.
- c) O conjunto vazio \emptyset é um conjunto aberto. Com efeito, se o conjunto \emptyset não é aberto, então existe um elemento $x \in \emptyset$ que não é ponto interior de \emptyset , o que é um absurdo pois \emptyset não contém elementos por definição.
- d) O conjunto dos números racionais Q não é aberto.

Definição 3.1.3. (Vizinhança) Uma **vizinhança** de um dado ponto x é qualquer conjunto V que contenha x como ponto interior. Também, a **vizinhança simétrica** de um ponto $x \in \mathbb{R}$ é todo intervalo $V_{\varepsilon}(x) := (x - \varepsilon, x + \varepsilon)$ com $\varepsilon > 0$. Mais estrito, a **vizinhança perfurada** de $x \in \mathbb{R}$ é uma vizinhança de x que não contém x. Aproveitamos para fixar a notação:

$$V_{\varepsilon}'(x) := V_{\varepsilon}(x) \setminus \{x\} = \{y \in \mathbb{R}; \ 0 < |x - y| < \varepsilon\}.$$

Exemplo 3.1.3. Podemos reescrever o Exemplo 3.1.2 da seguinte forma. Um intervalo (a,b) é um conjunto aberto, pois para cada $x \in (a,b)$ podemos escolher $0 < \varepsilon < \min\{x - a, b - x\}$ tal que $V_{\varepsilon}(x) \subset (a,b)$.

Definição 3.1.4. (Ponto de acumulação) Um ponto x é chamado de **ponto de acumulação** de um dado conjunto C quando toda vizinhança de x contém infinitos pontos de C.

Exemplo 3.1.4. Vejamos os seguintes casos:

- a) O número a é ponto de acumulação do intervalo (a, b] não degenerado. De fato, dado $\varepsilon > 0$, temos $(a, a + \varepsilon) \subset V_{\varepsilon}(a)$ e $(a, a + \varepsilon) \cap (a, b]$ é um conjunto infinito.
- b) Zero é o único ponto de acumulação do conjunto $\{1, 1/2, 1/3, \dots, 1/n, \dots\}$.

Definição 3.1.5. (Ponto isolado) Diz que x é **ponto isolado** de um dado conjunto C quando $x \in C$ não é ponto de acumulação de C. Diz-se que um conjunto é **discreto** quando todos seus elementos são pontos discretos.

Exemplo 3.1.5. Vejamos os seguintes casos:

- a) O conjunto dos números naturais \mathbb{N} é discreto.
- b) O conjunto dos números racionais O não é discreto.
- c) O conjunto $\{1, 1/2, 1/3, ..., 1/n, ...\}$ é discreto.

Definição 3.1.6. (Ponto aderente) Dizemos que x é **ponto aderente** de um dado conjunto C quando toda vizinhança de x contém algum ponto de C. O conjunto de todos os pontos aderentes de C é chamado de **fecho** (ou, conjunto de aderência) de C, o qual denotamos por \overline{C} .

Observação 3.1.1. Observe que todo ponto de um conjunto é aderente ao mesmo, bem como, todos os seus pontos de acumulação.

Exemplo 3.1.6. Vejamos os seguintes casos:

a) O fecho de (a, b] é o intervalo fechado [a, b].

b) O conjunto dos números reais \mathbb{R} é o fecho do conjunto dos números racionais \mathbb{Q} , i.e. $\overline{Q} = \mathbb{R}$.

Definição 3.1.7. Conjunto fechado Dizemos que um conjunto C é **fechado** quando é igual ao seu fecho, i.e. $C = \overline{C}$.

Exemplo 3.1.7. Vejamos os seguintes casos:

- a) O intervalo [a, b] é um conjunto fechado.
- b) O conjunto vazio ∅ é fechado. Por quê?
- c) O conjunto dos números reais \mathbb{R} é fechado.
- d) O conjunto dos números racionais $\mathbb Q$ não é fechado.

Definição 3.1.8. (Conjunto denso) Dizemos que um conjunto A é **denso** no conjunto B, quando todo ponto aderente de $\overline{A} \subset B$.

Exemplo 3.1.8. O conjunto dos números racionais \mathbb{Q} é denso no conjunto dos números reais \mathbb{R} .

3.1.1 Exercícios

E 3.1.1. Seja dado um conjunto C. Mostre que x é ponto de acumulação de C se, e somente se, toda vizinhança de x contém pelo menos um elemento de C diferente de x.

Resposta. Basta considerar sucessivas vizinhanças $V_{1/n}(x)$ com $n \in \mathbb{R}$.

E 3.1.2. Seja dado um conjunto C. Mostre que x é ponto isolado de C se, e somente se, existe uma vizinhança de x tal que $(V(x) \setminus \{x\}) \cap C = \emptyset$.

Resposta. A implicação segue imediatamente por negação.

3.2 Limites

Definição 3.2.1. (Limite) Sejam uma função $f: D \to \mathbb{R}$, y = f(x), e a um ponto de acumulação de D. Diz-se que $L \in \mathbb{R}$ é o **limite** de f(x) com x tendendo a a se, para todo $\varepsilon > 0$, existe $\delta > 0$ tal que

$$x \in D, 0 < |x - a| < \delta \Rightarrow |f(x) - L| < \varepsilon.$$
 (3.1)

Quando isso ocorre, escrevemos

$$\lim_{x \to a} f(x) = L,\tag{3.2}$$

11

ou ainda, simplesmente, $f(x) \to L$ quando $x \to a$.

Exemplo 3.2.1. Vejamos os seguintes casos:

a) Temos $\lim_{x\to 1} x - 1 = 0$. Isto segue imediatamente, pois, neste caso, f(x) = x - 1, a = 1, L = 0 e, então, dado $\varepsilon > 0$, tomamos $\delta = \varepsilon$ de forma que

$$x \in \mathbb{R}, 0 < |x - 1| < \delta \Rightarrow |x - 1 - 0| < \varepsilon. \tag{3.3}$$

b) A função não precisa estar definida no ponto em o limite é tomado. Por exemplo, $\lim_{x\to 1} \frac{x^2-1}{x+1} = 0$. Verifique!

Observação 3.2.1. Quando nos referirmos a expressão "x tende a a" (ou similares), estaremos sempre assumindo que a é um ponto de acumulação do domínio da função de interesse.

3.2.1 Propriedades do limite

Teorema 3.2.1. Se $f: \mathbb{D} \to \mathbb{R}$, y = f(x), $com \lim_{x \to a} f(x) = L$, $ent\tilde{a}o \lim_{x \to a} |f(x)| = |L|$.

Demonstração.

Seja $\varepsilon > 0$. Por hipótese, existe $\delta > 0$ tal que $x \in D$, $0 < |x - a| < \delta$ implica $|f(x) - L| < \varepsilon$. Tomando, então, um tal δ e observando que ||f(x)| - |L|| < |f(x) - L|, temos que para todo $x \in D$, $0 < |x - a| < \delta$, ocorre $||f(x)| - |L|| < \varepsilon$.

Teorema 3.2.2. Se $f: \mathbb{D} \to \mathbb{R}$, y = f(x), com $\lim_{x \to a} f(x) = L$ e A < L < B, então existe $\delta > 0$ tal que $x \in D$, $0 < |x - a| < \delta$ implica A < f(x) < B.

Demonstração.

De fato, por hipótese, para cada $\varepsilon > 0$, existe $\delta > 0$ tal que $x \in D$, $0 < |x - a| < \delta$ implica $|f(x) - L| < \varepsilon$. Então, o resultado segue escolhendo um tal δ quando $\varepsilon = \min\{L - A, B - L\}$.

Corolário 3.2.1. (Permanência do sinal) Se $f: \mathbb{D} \to \mathbb{R}$, y = f(x), com $\lim_{x \to a} f(x) = L > 0$ (L < 0), então existe $\delta > 0$ tal que $x \in D$, $0 < |x - a| < \delta$, implica f(x) > 0 (f(x) < 0).

Demonstração.

12

Quando L > 0 (L < 0) basta escolher A = 0 (B = 0) no teorema anterior.

Teorema 3.2.3. (Operações com limites) Sejam $f_1, f_2 : D \to \mathbb{R}, y = f_1(x), y = f_2(x)$, com $\lim_{x\to a} f_1(x) = L_1$ e $\lim_{x\to a} f_2(x) = L_2$, então (omitindo que $x\to a$)

- a) $\lim [f_1(x) + f_2(x)] = \lim f_1(x) + \lim f_2(x)$.
- b) para todo $k \in \mathbb{R}$, temos $\lim k f_1(x) = k \lim f_1(x)$.
- c) $\lim f_1(x) f_2(x) = \lim f_1(x) \cdot \lim f_2(x)$.
- d) $\lim \frac{f_1(x)}{f_2(x)} = \frac{\lim f_1(x)}{\lim f_2(x)}$, quando $L_2 \neq 0$.

Demonstração.

Seja dado $\varepsilon > 0$.

a) Seja $\delta>0$ tal que $x\in D,\ 0<|x-a|<\delta$ implica $|f_1(x)-L_1|<\varepsilon/2$ e $|f_2(x)-L_2|<\varepsilon/2$. Logo, para tais δ e x temos

$$|(f_1(x) + f_2(x)) - (L_1 + L_2)| \le |f_1(x) - L_1| + |f_2(x) - L_2| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.$$
 (3.4)

- b) O resultado é imediato para k=0. Sejam $k \neq 0$ e $\delta > 0$ tal que $x \in D$, $0 < |x-a| < \delta$ implica $|f_1(x) L_1| < \varepsilon/|k|$. Então, para tais δ e x temos $|kf_1(x) kL_1| = |k||f_1(x) L_1| < |k|\varepsilon/|k| = \varepsilon$.
- c) Sejam M>0 e $\delta>0$ tal que $x\in D,$ $0<|x-a|<\delta$ implica $|f_1(x)-L_1|<\varepsilon/(2|L_2|),$ $|f_1(x)|< M$ (veja Teorema 3.2.2) e $|f_2(x)-L_2|<\varepsilon/(2M)$. Então

$$|f_{1}(x)f_{2}(x) - L_{1}L_{2}| = |f_{1}(x)f_{2}(x) - f_{1}(x)L_{2} + f_{1}(x)L_{2} - L_{1}L_{2}|$$

$$= |f_{1}(x)(f_{2}(x) - L_{2}) + (f_{1}(x) - L_{1})L_{2}|$$

$$\leq |f_{1}(x)||f_{2}(x) - L_{2}| + |f_{1}(x) - L_{1}||L_{2}|$$

$$< M\frac{\varepsilon}{2M} + \frac{\varepsilon}{2|L_{2}|}|L_{2}| = \varepsilon.$$
(3.5)

d) De c), basta mostrar que $1/f_2(x) \to 1/L_2$ quando $x \to a$. Para tando, seja $\delta > 0$ tal que $x \in D$, $0 < |x - a| < \delta$ implica $|f_2(x) - L_2| < \frac{\varepsilon L_2^2}{2}$ e $|f_2(x)| > |L_2|/2$ (veja Teorema 3.2.2). Então, para tais δ e x temos

$$\left| \frac{1}{f_2(x)} - \frac{1}{L_2} \right| = \frac{|f_2(x) - L_2|}{|f_2(x)L_2|}$$

$$< \frac{\frac{\varepsilon L_2^2}{2}}{|L_2| \frac{|L_2|}{2}} = \varepsilon.$$
(3.6)

Licença CC-BY-SA 4.0

Teorema 3.2.4. O limite de uma função $f: D \to \mathbb{R}$ é L quando $x \to a$ se, e somente se, para toda sequência $(x_n)_{n \in \mathbb{R}} \subset D \setminus \{a\}$ com $x_n \to a$, temos $f(x_n) \to L$.

Demonstração.

- a) Primeiramente, mostraremos que se $\lim_{x\to a} f(x) = L$, então dada qualquer sequência $(x_n)_{n\in\mathbb{R}} \subset D\setminus\{a\}$ com $x_n\to a$, temos $f(x_n)\to L$. De fato, sejam $\varepsilon>0$ e $(x_n)_{n\in\mathbb{R}}\subset D\setminus\{a\}$ com $x_n\to a$. Então, por hipótese, existe $\delta>0$ tal que $x\in D$, $0<|x-a|<\delta$ implica $|f(x)-L|<\varepsilon$. Agora, como $x_n\to a$, existe N suficientemente grande tal que n>N implica $|x_n-a|<\delta$ e, portanto, $|f(x_n)-L|<\varepsilon$. Ou seja, $f(x_n)\to L$.
- b) Aqui, provaremos por absurdo que se para toda sequência $(x_n)_{n\in\mathbb{R}}\subset D\setminus\{a\}$ com $x_n\to a$ temos $f(x_n)\to L$, então $\lim_{x\to a}f(x)=L$. Ou seja, vamos assumir que existe um $\varepsilon>0$ tal que para todo $\delta>0$ existe algum $x\in D$, $0<|x_n-a|<\delta$ com $|f(x)-L|>\varepsilon$. Sejam um tal ε e para cada $n\in\mathbb{N}$ um $x_n'\in D$ com $0<|x_n'-a|<1/n$ e $|f(x_n')-L|>\varepsilon$. Com isso, temos formado uma sequência $(x_n')\subset D\setminus\{a\}, x_n'\to a$, mas $f(x_n')\not\to L$.

Corolário 3.2.2. Um função $f: D \to \mathbb{R}$, y = f(x), tem limite L quando $x \to a$ se, e somente se, para toda sequência $(x_n)_{n \in \mathbb{N}} \subset D \setminus \{a\}$ com $x_n \to a$ temos que $(f(x_n))_{n \in \mathbb{N}}$ é convergente.

Demonstração.

Segue, imediatamente, do fato de que se (y_n) é uma sequência com $y_n \to L$, então toda subsequência de (y_n) é convergente e converge para L.

Teorema 3.2.5. (Critério de convergência de Cauchy) Uma condição necessária e suficiente para que uma função $f:D\to\mathbb{R},\ y=f(x)$, tenha limite L quando $x\to a$ é que, para todo $\varepsilon>0$, exista $\delta>0$ tal que

$$x, y \in V_{\delta}'(a) \cap D \Rightarrow |f(x) - f(y)| < \varepsilon.$$
 (3.7)

Demonstração.

- a) A suficiência segue do critério de convergência de Cauchy para sequências e do Corolário 3.2.2.
- b) Exercício 3.2.4.

Exercícios

E 3.2.1. Diga se é verdadeira ou falsa a seguinte afirmação: se $f: \mathbb{D} \to \mathbb{R}$, y = f(x), com $\lim_{x\to a} f(x) = 0$, então f(a) = 0. Justifique sua resposta.

Resposta. Veja a Definição 3.2.1.

E 3.2.2. Mostre que se $f: \mathbb{D} \to \mathbb{R}$, y = f(x), com $\lim_{x\to a} f(x) = L > 0$, então $\lim_{x\to a} \sqrt{f(x)} = \sqrt{L}$.

Resposta. Use o Teorema 3.2.2 observando que

$$|\sqrt{f(x)} - \sqrt{L}| = |(\sqrt{f(x)} - \sqrt{L})\frac{\sqrt{f(x)} + \sqrt{L}}{\sqrt{f(x)} + \sqrt{L}}| = \frac{|f(x) - L|}{|\sqrt{f(x)} + \sqrt{L}|}.$$
 (3.8)

E 3.2.3. Demonstre o Teorema 3.2.3 como um corolário do Teorema 3.2.4.

Resposta. Basta usar as propriedades de limites de sequências.

E 3.2.4. Demonstre que se $f: D \to \mathbb{R}$, y = f(x), tem limite L quando $x \to a$, então para qualquer $\varepsilon > 0$, existe $\delta > 0$ tal que $x,y \in V'_{\delta}(a) \cap D$ implica $|f(x) - f(y)| < \varepsilon$.

Resposta. Observe que $x,y \in V'_{\delta/2}(a)$ implica $|x-a| < \delta/2$ e $|y-a| < \delta/2$.

3.3 Limites laterais

Definição 3.3.1. (Limite lateral) Sejam uma função $f: D \to \mathbb{R}$, y = f(x), e a um ponto de acumulação de D. Dizemos que $L \in \mathbb{R}$ é o **limite** de f(x) com x tendendo a a **pela direita** se, para todo $\varepsilon > 0$, existe $\delta > 0$ tal que

$$x \in D, 0 < x - a < \delta \Rightarrow |f(x) - L| < \varepsilon.$$
 (3.9)

Quando isso ocorre, escrevemos

$$\lim_{x \to a^{+}} f(x) = L, \tag{3.10}$$

ou ainda, simplesmente, $f(x) \to L$ quando $x \to a^+$. Analogamente, escreve-se $f(x) \to L$ quando $x \to a^-$, ou $\lim_{x \to a^-} f(x) = L$ se, para todo $\varepsilon > 0$, existe $\delta > 0$ tal que

$$x \in D, 0 < a - x < \delta \Rightarrow |f(x) - L| < \varepsilon.$$
 (3.11)

Exemplo 3.3.1. Vejamos os seguintes casos:

- a) $\lim_{x\to 0^+}\frac{x}{|x|}=1$. De fato, dado qualquer $\varepsilon>0$ podemos escolher, por exemplo, $\delta=1$ e, com isso, para todo $x\in\mathbb{R},\,0< x-0<1$ implica $|x/|x|-1|=0<\varepsilon$.
- b) $\lim_{x\to 0^-} \frac{x}{|x|} = -1$. De fato, dado qualquer $\varepsilon > 0$ podemos escolher, por exemplo, $\delta = 1$ e, com isso, para todo $x \in \mathbb{R}, \ 0 < 0 x < 1$ implica $|x/|x| (-1)| = |-1 + 1| = 0 < \varepsilon$.

Definição 3.3.2. Ponto de acumulação lateral Seja C um conjunto. Dizemos que $a \in C$ é **ponto de acumulação à esquerda** de C se, para todo $\varepsilon > 0$ o conjunto $(a - \varepsilon, a) \cap C$ contém infinitos pontos de C. Analogamente, dizemos que $a \in C$ é **ponto de acumulação à direita** de C se, para todo $\varepsilon > 0$ o conjunto $(a, a+\varepsilon) \cap C$ contém infinitos pontos de C.

Teorema 3.3.1. Se $f: I \to \mathbb{R}$, y = f(x), é uma função monótona e limitada, definida em um intervalo I no qual a é ponto de acumulação à esquerda (ponto de acumulação à direita), então f tem limite com $x \to a^-$ ($x \to a^+$).

Demonstração.

Consideremos o caso em que f é uma função não crescente e a seja ponto de acumulação à direita. Seja, então L o supremo do conjunto formado por f(x) com $x \in I$ e x > a. Afirmamos que $f(x) \to L$ quando $x \to a^+$. De fato, dado qualquer $\varepsilon > 0$, existe $\delta > 0$ tal que $L - \epsilon < f(a + \delta) \le L$. Agora, como f é não crescente, para todo $x \in I$, $0 < x - a < \delta$, temos $L - \epsilon < f(a + \delta) \le f(x) \le L$ e, portanto, $|f(x) - L| < \varepsilon$. Os outros casos são análogos e deixados para o leitor (veja, também, Exercício 3.3.1).

Exercícios

E 3.3.1. Demonstre o Teorema 3.3.1 para o caso de uma função crescente e a ponto de acumulação à esquerda.

Resposta. Análogo ao caso da considerado na demonstração do Teorema 3.3.1.

Licença CC-BY-SA 4.0

3.4 Limites no infinito e limites infinitos

Definição 3.4.1. (Limites infinitos) Sejam $f: D \to \mathbb{R}$, y = f(x), e a um ponto de acumulação de D. Dizemos que o limite de f(x) é $+\infty$ quando $x \to a$ se, para todo k > 0 existe $\delta > 0$ tal que para todo $x \in D$, $0 < |x - a| < \delta$ temos f(x) > k. Analogamente, dizemos que o limite de f(x) é $-\infty$ quando $x \to a$ se, para todo k > 0 existe $\delta > 0$ tal que para todo $x \in D$, $0 < |x - a| < \delta$ temos f(x) < -k. Nestes casos escrevemos

$$\lim_{x \to a} f(x) = +\infty \qquad \text{ou} \qquad \lim_{x \to a} f(x) = -\infty, \tag{3.12}$$

respectivamente.

Exemplo 3.4.1. Vejamos os seguintes casos:

- a) $\lim_{x\to 0} 1/|x| = +\infty$. De fato, dado k > 0 basta tomarmos $\delta = 1/k$. Com isso, $0 < |x-0| < \delta$ implies |x| < 1/k e, portanto, 1/|x| > k, i.e. |1/|x| 0| > k.
- b) Seja $f:(-\infty,0)\to\mathbb{R},\ y=f(x):=1/x.$ Neste caso, $\lim_{x\to 0}f(x)=-\infty.$ Deixamos a verificação para o leitor.

Definição 3.4.2. (Limite no infinito) Seja $f: D \to \mathbb{R}$, y = f(x). Quando D é ilimitado superiormente dizemos que f(x) tende a L quando $x \to +\infty$ se, para todo $\varepsilon > 0$ existe k > 0 tal que x > k implica $|f(x) - L| < \varepsilon$. Analogamente, quando D é ilimitado inferiormente dizemos que f(x) tende a L quando $x \to -\infty$ se, para todo $\varepsilon > 0$ existe k > 0 tal que x < -k implica $|f(x) - L| < \varepsilon$. Nestes casos escrevemos

$$\lim_{x \to +\infty} f(x) = L \quad \text{ou} \quad \lim_{x \to -\infty} f(x) = L, \tag{3.13}$$

respectivamente.

Exemplo 3.4.2. Vejamos os seguintes casos:

- a) $\lim_{x\to\infty} 1/x = 0$. De fato, dado $\varepsilon > 0$ escolhemos $\delta = 1/\varepsilon$. Com isso, $x > \delta$ implica $0 < 1/x < 1/\delta = \varepsilon$ e, portanto, $|1/x 0| < \varepsilon$.
- b) $\lim_{x\to\infty} 1/x = 0$. Caso análogo ao anterior, verifique!

Observação 3.4.1. Observe que definições análogas às 3.3.1, 3.4.1 e 3.4.2 se aplicam para os casos:

$$\lim_{x \to a^{+/-}} f(x) = \pm/\mp \infty \qquad \text{ou} \qquad \lim_{x \to \pm \infty} f(x) = L. \tag{3.14}$$

Também, consideramos definições análogas para os casos:

$$\lim_{x \to a^{+/-}} f(x) = L^{\pm/\mp} \quad \text{ou} \quad \lim_{x \to +/-\infty} f(x) = L^{\pm/\mp}. \tag{3.15}$$

17

Teorema 3.4.1. Toda função monótona e limitada superiormente (inferiormente), cujo domínio contenha $[c, +\infty)$ $((\infty, c])$, possui limite quando $x \to +\infty$ $(x \to -\infty)$.

Demonstração.

Consideremos o caso de $f:[c,+\infty)\to\mathbb{R},\ y=f(x)$, função não decrescente e limitada superiormente. Seja, então L o supremo do conjunto imagem de f. Mostraremos que $f(x)\to L$ quando $x\to+\infty$. De fato, dado $\varepsilon>0$ existe k>0 tal que $L-\varepsilon< f(k)\le L$. Agora, como f é não decrescente, para todo x>k temos $L-\varepsilon< f(k)< f(x)\le k$ e, portanto, $|f(x)-L|<\varepsilon$. Isto demostra o caso considerado e deixamos para o leitor a verificação dos demais (veja, também, Exercício 3.4.1).

Exercícios

E 3.4.1.) Demonstre o Teorema 3.4.1 para o caso de uma função decrescente e limitada inferiormente.

Resposta. Análogo ao caso demonstrado no Teorema 3.4.1.

Licença CC-BY-SA 4.0

Capítulo 4

Continuidade

Definição 4.0.1. (Continuidade) Sejam $f: D \to \mathbb{R}$, y = f(x), e a um ponto de acumulação de D. Dizemos que f é **contínua** no ponto a se as seguintes condições são satisfeitas:

- a) $a \in D$.
- b) existe o limite de f(x) com $x \to a$.
- c) $f(x) \to f(a)$ quando $x \to a$.

Ainda, dizemos que f é uma **função contínua** (ou, simplesmente, contínua) quando f é contínua em todos os pontos de seu domínio.

Exemplo 4.0.1. Vejamos os seguintes casos:

- a) A função f(x) = x 1 é contínua em todo o seu domínio.
- b) A função $g(x) = \frac{x^2 1}{x + 1}$ é **descontínua** (i.e., não contínua) no ponto x = -1, pois este não é um ponto no domínio da função.
- c) A função

$$h(x) = \begin{cases} \frac{x^2 - 1}{x + 1} & , x \neq -1, \\ 1, x = -1 \end{cases}$$
 (4.1)

é descontínua no ponto x = -1, pois

$$\lim_{x \to -1} h(x) = -2 \neq 1 = h(-1). \tag{4.2}$$

Teorema 4.0.1. Se f e g são funções contínuas no ponto x=a, então são contínuas nestes pontos as funções: (a) f+g, (b) kf, $\forall k \in \mathbb{R}$, (c) f/g, dado que $g(a) \neq 0$.

Demonstração.

Decorre imediatamente da definição de função contínua (Definição 4.0.1) e do Teorema 3.2.3.

Teorema 4.0.2. (Continuidade da função composta) Sejam dadas funções $f: D_f \to \mathbb{R}$ e $g: D_g \to \mathbb{R}$ com $g(D_g) \subset D_f$. Se g é contínua no ponto a e f é contínua no ponto g(a), então a função composta $f \circ g$ é contínua no ponto a.

Demonstração.

É claro do enunciado que a pertence ao domínio de $f \circ g$. Como $(f \circ g)(a) = f(g(a))$, nos resta mostrar que $(f \circ g)(x)$ tende para f(g(a)) quando $x \to a$. Seja, então, $\varepsilon > 0$. Pela continuidade da f no ponto g(a), tomemos $\delta' > 0$ tal que $g \in V'_{\delta'}(g(a)) \cap D_f$ implica $|f(g) - f(g(a))| < \varepsilon$. Agora, pela continuidade da g no ponto g(a), tomemos g(a) tomemos g(a) tomemos g(a) de continuidade da g(a) no ponto g(a) tomemos g(a) tal que g(a) de continuidade da g(a) de continu

Definição 4.0.2. (Continuidade lateral) Dizemos que f é contínua à direta (contínua à esquerda) no ponto a, se está definida neste ponto, onde seu limite à direta (à esquerda) é f(a).

Exemplo 4.0.2. Vejamos os seguintes casos:

a) A função

$$f_1(x) = \begin{cases} x/|x| & , x \neq 0, \\ -1 & , x = 0 \end{cases}$$
 (4.3)

é contínua à esquerda no ponto x = 0. De fato, $f_1(0) = -1$ e dado qualquer $\epsilon > 0$ podemos escolher, por exemplo, $\delta = \epsilon$ tal que $0 < 0 - x < \delta$ implica $|f_1(x) - (-1)| = |-1 - (-1)| = 0 < \epsilon$.

b) A função

$$f_2(x) = \begin{cases} x/|x| & , x \neq 0, \\ 1 & , x = 0 \end{cases}$$
 (4.4)

é contínua à direta no ponto x = 0. Verifique!

Exercícios

E 4.0.1. Mostre que se $f: D \to \mathbb{R}$ é uma função contínua no ponto a e f(a) > 0, então existe $\delta > 0$ tal que $x \in V_{\delta}(a) \cap D$ implica f(x) > 0. Além disso, se removermos a hipótese de que f seja contínua no ponto a essa afirmação continua verdadeira? Justifique sua resposta.

Resposta. Segue imediatamente do Corolário 3.2.1.

E 4.0.2. Mostre que qualquer $f: D \to \mathbb{R}$ é contínua em no ponto a se, e somente se, f é contínua à esquerda e à direita neste ponto.

Resposta. Observe que f tem limite no ponto a se, e somente se, são iguais os limites à esquerda e à direita de f neste ponto.

Referências Bibliográficas

- [1] R.G. Bartle and D.R. Sherbert. *Introduction to real analysis*. John Wiley & Sons, 3. ed. edition, 2000.
- [2] C.I. Doering. *Introdução à análise matemática na reta*. SBM, 1. ed. edition, 2015.
- [3] E.L. Lima. Análise real. IMPA, 12. ed. edition, 2017.
- [4] G. Ávila. Análise matemática para licenciatura. Blucher, 3. ed. edition, 2006.

Índice Remissivo

Cauchy, 14 conjunto discreto, 10 fechado, 11 interior, 9 conjunto aberto, 9 conjunto de aderência, 10 continuidade, 19 lateral, 20 contradomínio, 4	à direita, 5 à esquerda, 5 inferiormente, 5 superiormente, 5 função par, 7 função sobrejetiva, 6 fundamentos da análise, 4 gráfico, 5 imagem de		
definição de	uma função, 5		
função, 4	lei de correspondência, 4 limite, 11		
denso, 11	infinito, 17		
domínio, 4	no infinito, 17		
~ .	limite de		
extensão	função, 11		
de uma função, 6	limite lateral, 15		
fecho, 10	limites		
função, 4	de funções, 9		
ímpar, 7			
bijetiva, 6	ponto		
composta, 7	isolado, 10 ponto aderente, 10		
crescente, 7	ponto de acumulação, 10		
decrescente, 7	à direita, 16		
injetiva, 6	à esquerda, 16		
inversa, 6 não-decrescente, 7	ponto interior, 9		
função contínua, 19	. ~		
à direta, 20	restrição		
função descontínua, 19	de uma função, 6		
função limitada, 5	variável		
· · · · · · · · · · · · · · · · · · ·			

dependente, 4 independente, 4 vizinhança, 10 perfurada, 10 simétrica, 10