Final Project

Matt Hartnett ECEN 5813

Agenda

- Project Overview
- Scope Changes
- Implementation Details
- Learning
- Demo
- Questions

Project Overview

- Project Objective: Design a motion-based alarm clock.
- · Hardware:
 - STM32 Nucleo-64 development board
 - Digital Passive Infrared (PIR) motion detector
 - Piezoelectric buzzer
- Functionality:
 - User set time and alarm
 - Alarm activates every 14 hours
 - Emits a repetitive alarm tone upon activation
 - · Alarm deactivates when motion is detected by the PIR sensor

Scope Changes

Added:

- Processor sleep mode
 - Most of the time, the processor is just keeping track of the time
- POST and debug mode

Removed:

- Volume changing as alarm goes on
 - Decided against it due to computational concerns
 - Feature was not critical

Implementation Details

Project is fully operational, every feature is implemented except one Hardware configuration:

Software Details

- All based around a FSM that controls operation
- Zeroth step is peripheral initialization and tone computation
- First step is asking the user for info
- Once configured, the processor sleeps and checks the time
- If the time is right, the alarm starts
- After 5 tones, motion turns off the alarm
- FSM resets back to armed state
- DMA handles transfer to DAC

Learning

- System integration: even if you have all the pieces, it's hard to get them all together...
- Sleep modes
 - Debugging can be particularly difficult
- Incremental testing is very valuable
- Hardware can be uncooperative
 - Piezoelectric buzzer introduced some nasty distortion to the alarm tone
 - Motion sensor is most likely too sensitive for this application

Demo

Questions

Thank you!

