Review COMP4691 / 8691

Outline

- Topics for this week's quiz
 - Multi-Objective Opt
 - Stochastic Opt
- Exam details 4
- Ask me questions

Multi-Objective Optimisation COMP4691 / 8691

Problem Definition

The problem

minimize
$$f(x) = [f_1(x), f_2(x), ..., f_m(x)]$$

VEC

OF 031 FWC

where:

- $-\mathbf{f}(\Omega) \rightarrow \mathbb{R}^m$ is the objective function, composed of $m \ge 2$ objective func.
- $-\Omega \subseteq \mathbf{R}^n$ is the feasible space
 - \blacksquare Ω is defined through constraints
- $-\mathbf{f}(\Omega)$ is the feasible objective space
- Rⁿ is the decision space, R^m as the objective space.

Decision space and objective space

• Plots we have seen in the course are decision space plots

Pareto Dominance

Given two decision vectors x and y,

$$- f_i(x) \le f_i(y)$$
 for all $i = 1, 2, ..., m$, and

Examples: $\mathbf{f}(x) = [0, 1] < \mathbf{f}(y) = [2, 3]$

- x and y are incomparable if
 - x does not weakly dominate y, andy does not weakly dominate x
 - y does not weakly dominate x

$$-f_i(x) < f_i(y)$$

$$-f_j(x) > f_j(y)$$

Dominance, Dominated and Indifferent Zones

Pareto Optimal and Pareto Set

1 //	WEIGHTED -	7,70	2						
271	Criteria/Car	17	A	B	С	D	E	F	\
min	Price 0	X	16200	14900	14000	15200	17200	20000	\
min	Fuel Consumpt	ion	200 2.2	7.0	7.5	8.2	9.2	10	
min	Negative Power	r	-66	-62	-55	-71	-51/	-40	
		U		<u>, </u>					

- $x^* \in \Omega$ is said to be Pareto-optimal if there is no other $x \in \Omega$ s.t. $x < x^*$ A is Pareto-optimal
- Pareto Set: the set of all Pareto-optimal solutions denoted as $X_p X_p = \{A, B, C, D\}$
- Pareto Fyont: image of the Pareto Set by the obj. func. denoted as $Y_p = \{[16200,7.2,-66], [14900,7.0,-62], [14000,7.5,-55], [15200,8.2,-71]\}$

Pareto Front (2)

Pareto Front (3)

Ideal Point

• The ideal point is: $y^{I} = [\min_{x \in \Omega} f_{1}(x), \min_{x \in \Omega} f_{2}(x), ..., \min_{x \in \Omega} f_{m}(x)]$

What is special about the ideal point?

GENERALING METHOD

The Weighted-sum Scalarization Method

• Given non-negative weights $\lambda_1, ..., \lambda_m$ s.t. $\sum_{i=1}^m \lambda_i = 1$ solve the SOP:

$$\min_{\mathbf{x}\in\Omega}\sum_{i=1}^{m}\lambda_{i}\,\mathbf{f}_{i}(\mathbf{x})$$

Solve the SOP for multiple different sets of weights

SINGLE PLOBLEM
CUX

NC.VX 1-NOT COMPLETE

Weighted-sum: Non-Convex Case

- Is there a value for λ_1 , ..., λ_m to obtain point C?
- Thm: weighted-sum method is
 - complete for convex problems
 - incomplete for non-convex problems

The ε-constraint Method

- Idea: optimise a single objective and constraint all others
- Given a vector $\mathbf{\varepsilon} = [\varepsilon_1, ..., \varepsilon_m]$ solve the SOP($\mathbf{\varepsilon}$,i)

```
min f_i(x)

x \in \Omega

s.t. f_j(x) \le \varepsilon_j for all j \ne i
```

• Solve the SOP(ε ,i) for multiple ε and i

ε-constraint: illustration

• Bi-objective example: $\min_{x \in \Omega} f_1(x)$ s.t. $f_2(x) \le \varepsilon_i$

• Thm: for any point found by weighted-sum there exist and i that returns the same point

Bi-Objective LPs: Intuition

• Scalarization can find all Pareto-optimal points for **bi-objective LPs** by solving for different λ :

$$\min_{\mathbf{x} \in \Omega} \lambda f_1(\mathbf{x}) + (1 - \lambda) f_2(\mathbf{x}) = \min_{\mathbf{x} \in \Omega} \lambda e_1^\mathsf{T} \mathbf{x} + (1 - \lambda) e_2^\mathsf{T} \mathbf{x}$$

PARAMCTRIZE LP (7)

• What point x is the optimal for

$$-\lambda = 1?$$

$$-\lambda = 0?$$

$$-\lambda = 0.5 ? min (c_1^T x + c_2^T x)/2$$

$$-\lambda = 0.75 ?$$

- What is the Pareto Set?
 - segments DE and EC

Bi-Objective Simplex: Overview

- As with scalarization, solve multiple LPs using simplex
- Take advantage of the LP geometry to update λ
- Phase 1: find a feasible solution (basis)

 Do we need to care about λ here?
- Phase 2: solve the LP for $\lambda=1$ using simplex and Phase 1's basis
- Phase 3:
 - while λ can be decreased:
 - decrease λ
 - \blacksquare save λ , and the updated solution (basis)
- Return the saved λs and solutions

Bi-Objective Simplex: Algorithm

Algorithm 1 Parametric Simplex for bi-objective LPs

 $\min_{x \in \Omega} \lambda c_1^T x + (1 - \lambda) c_2^T x$

- 1: **Input:** Data A, b, C for a bi-objective LP
- 2: **Phase 2:** Solve the LP for $\lambda = 1$ starting from Phase 1's basis \mathcal{B} .
- 3: Compute \tilde{A} and \tilde{b} .

 4: Phase 3: Index of non-basic variables with:

 negative reduced cost wrt c_2 $\tilde{c} = \lambda \tilde{c}_1 + (1 \lambda) \tilde{c} = 0$ $\lambda (\tilde{c}_1^1 \tilde{c}_1^2) + \tilde{c}_2^2 = 0$

Stochastic Programming COMP4691 / 8691

Farmer's Example – Data

	Wheat	Corn	Beets
Yield (T/acre)	2.5	3	20
Plating cost (\$/acre)	150	230	260
Selling price (\$/T)	170	150	36 under 6000 T
			10 above 6000 T
Purchase price (\$/T)	238	210	_
Min. requirement (T)	200	240	_

 All this values comes from historical data the farmer collected over the years

Farmer's Example – Variables

		Wheat	Corn	Beets
A	Acres allocated	$(\widehat{X_1})$	(x_2)	X_3
	Amount sold	W ₁	W_2	w ₃ for under 6000T w ₄ for over 6000T
4	Amount purchased	, У ₁	y ₂	_
		2407	7007	FOR CATTCE

Goal: minimize loss (negative loss == profit)

Famer's Problem LP

$$\min_{\substack{150x_1 + 230x_2 + 238x_3 \\ + 238y_1 + 210y_2 = why \\ - 170w_1 - 150w_2 - 36w_3 - 10w_4}} \\ \text{s.t.} \quad \underbrace{x_1 + x_2 + x_3 \leq 500}_{\text{Size}} \text{ Sp. The Files}_{\text{Size}}}_{\substack{2.5x_1 + y_1 - w_1 \geq 200 \\ 3x_2 + y_2 - w_2 \geq 240}}_{\substack{3x_2 + y_2 - w_2 \geq 240 \\ w_3 + w_4 \leq 20x_3 \\ w_3 \leq 6000}$$

x_i: land allocated
w_i: amount sold
y_i: amount purchased
wheat → 1
corn → 2
beets → 3 (up to quota)
4 (above)

Recall: minimize loss == maximize profit (negative loss)

The Effect of the Weather

Consider 2 scenarios: -20% and +20% change in yield due weather

• Opt. solution for each one of the cases and the previous average case:

	- <u>20% yiel</u> d			$ \frac{\min g(x, E(\theta))}{\text{average yield}} $			+20% yield		
	Wheat	Corn	Beets	Wheat	Corn	Reets	Whe	Corn	Beets
Acres allocated	100	25	375	120	80	<u>300</u>	183	66	300 250
Amount sold	0	0	6000	300	240	6000	Soo 350	0	106000
Amount purchased	0	180	_	0	0	_	0	0	_
Total Profit		•	\$59,950		(5118,600		<u>.</u>	\$167,667

- In each solution, we allocate enough to sell 6000 T of beets, then handle wheat and buy corn if needed
- Can we use these 3 solutions?

Two-stage Stochastic Program with Recourse

- The farmer's problem has:
 - -two-stages: decide the land allocation (x) then we observe the weather/yield, and
 - recourse: we can buy the missing (y) wheat or corn if our production is below the requirements
- This is the class of problems we will focus in this lecture
- Expected profit if scenario has probability 1/3
 - Using the oracle: \$115,406 4 (*,6)
 - Using the average case solution: \$107,240
 - Under produces beets in the -20% case: \$86,600
 - Over produces beets in the +20% case: \$107,683
- Can we do better than using the average case in all weathers?

E min g(x, E(6))

Recourse-Problem LP

min
$$150x_1 + 230x_2 + 238x_3$$

+ $1/3 * (238y_{11} + 210y_{21} - 170w_{11} + 150w_{21} - 36w_{31} - 10w_{41})$
+ $1/3 * (238y_{12} + 210y_{22} - 170w_{12} - 150w_{22} - 36w_{32} - 10w_{42})$
+ $1/3 * (238y_{13} + 210y_{23} - 170w_{13} - 150w_{23} - 36w_{33} - 10w_{43})$

x: land allocated w_{ik}: amount sold yik. amount purchased wheat \rightarrow 1 $corn \rightarrow 2$ beets → 3 (up to quota) 4 (above) $k \rightarrow scenario index$

<u>Scenario 1 (+20%)</u>

s.t. $x_1 + x_2 + x_3 \le 500$

$$3x_1 + y_{11} - w_{11} \ge 200$$

 $3.6x_2 + y_{21} - w_{21} \ge 240$
 $w_{31} + w_{41} \le 24x_3$
 $w_{31} \le 6000$

Scenario 2 (avg)

Scenario 1 (+20%) Scenario 2 (avg)

$$3x_1 + y_{11} - w_{11} \ge 200$$
 $2.5x_1 + y_{12} - w_{12} \ge 200$
 $3.6x_2 + y_{21} - w_{21} \ge 240$ $3x_2 + y_{22} - w_{22} \ge 240$
 $w_{31} + w_{41} \le 24x_3$ $w_{32} + w_{42} \le 20x_3$
 $w_{31} \le 6000$ $w_{32} \le 6000$

Scenario 1 (-20%)

$$2x_1 + y_{13} - w_{13} \ge 200$$

 $2.4x_2 + y_{23} - w_{23} \ge 240$
 $w_{33} + w_{43} \le 16x_3$
 $w_{33} \le 6000$

Recourse-Problem Solution

			Wheat	Corn	Beets
	First Stage (x)	Acres allocated	170	80	250
→	scenario 1 (+20% yield)	Yield (T)	510	288	6000
		Sold/Purchased (T)	310	48	6000
	scenario 2 (avg yield)	Yield (T)	425	240	5000
		Sold/Purchased (T)	225	0	5000
	scenario 3	Yield (T)	340	192	4000
	(-20% yield)	Sold/Purchased (T)	140	-48	4000

Total Profit: \$108,390

• Key differences:

- Allocate land for beets to reach quota at best case
- Allocate land for corn to meet constraint in the average case
- Left over land for wheat

Comparing Solutions

Wait-and-See (WS)Recourse-Problem (RP)Expected-Value Prob. $E_{\epsilon}[\min_{x} g(x,\epsilon)]$ $\leq \min_{x} E_{\epsilon}[g(x,\epsilon)]$ $\leq \min_{x} g(x) E_{\epsilon}[\epsilon]$ -\$115,406-\$108,390-\$107,240

- How much should we pay for a perfect prediction of the future?
 - -WS RP = -115,406 (-108,390) = -\$7,016
 - Known as the Expected Value of Perfect Information (EVPI)
- How much is Stochastic Programming helping us?
 - -RP E[EV] = -108,390 (-107,240) = -\$1,150
 - Known as the Value of the Stochastic Solution (VSS)
- Stochastic Programming leverages information about the distribution of the uncertain outcomes to improve the quality of the solution

Sampling

- What if
 - 1) we have a complicated or black-box model, e.g., weather forecast?
 - 2) we have a continuous distribution?
- Sampling can solve both
 - In some cases, (2) can be solved analytically
- The samples is treated as scenarios of equal probability
 - Referred as the sample average approximation (SAA)
- Better results with more samples
- Different sampling methods can also improve the solution:
 - Importance sampling
 - Quasi-Monte Carlo
 - Conditional Sampling

Handling Large Problem

 If you have several scenarios or samples in the farmer's example, the LHS of our constraints will look like this:

x_i: land allocated for i
w_{ik}: amount sold
y_{ik}: amount purchased
k → scenario index
i → wheat, corn, beets

- Each scenario is only connected through the first-stage variables (x)
- Where have we seen this before?

L-Shaped Method (aka Benders Decomp)

- Use Benders Decomposition
 - Instead of one big sub-problem, we have K independent small subproblems
- From Benders Lecture adapted notation:

General Recourse Problem

x,z

s.t.

Benders Reduced Master Problem

$$\min_{x,\eta} f^{\mathsf{T}}x + \eta$$
s.t. $Ax = b$

$$\eta \ge \pi_e^{\mathsf{T}}(d_k - B_k x) \quad \forall k, \pi_e \in \bar{E}_k$$

$$0 \ge r_q^{\mathsf{T}}(d_k - B_k x) \quad \forall k, r_q \in \bar{Q}_k$$

$$x \ge 0$$

$$\min_{z_k \ge 0} \{ c_k^{\mathsf{T}} z_k : D z_k = d_k - B_k \hat{x} \}$$

L-Shaped Method applied to Farmer's Example

- The matrix A contains a single constraint: $x_1+x_2+x_3 \le 500$
- $f^{t}x$ in the objective function is: $150x_{1} + 230x_{2} + 238x_{3}$
- Now, let's look into the sub-problem k

COST OF GACH CKOP

Sub-Problem for Farmer's Example

 $\gamma_1 X_1$

• From the recourse-problem LP:

Scenario (1) (+20%)

$$3x_{1} + y_{11} - w_{11} \ge 200$$

$$3.6x_{2} + y_{21} - w_{21} \ge 240$$

$$w_{31} + w_{41} \le 24x_{3}$$

$$w_{31} \le 6000$$

Making yield a parameter,

COMPCICATING VACS

(Primal) Sub-Problem k

$$\min_{z_k \ge 0} \{ c_k^{\mathsf{T}} z_k : \underline{D} z_k = \widehat{d}_k \} B_k \hat{x} \}$$

 $\geq 200 - \gamma_1 \hat{x}_1$ $\geq 240 - \gamma_2 \hat{x}_2$

Sub-Problem k (y)

≥ -6000

x_i: land allocated for i

w_{ik}: amount sold

yik: amount purchased

 $k \rightarrow$ scenario index

 $i \rightarrow$ wheat, corn, beets

CORRESPONDING OPT DUAL VALUES TOP

Chance Constraints

- So far in the course, we have seen:
 - (hard) constraints: must be satisfied
 - soft constraints: penalize if not satisfied
- Chance constraints: a probabilistic constraint

$$P(a^Tx \le b) \ge \alpha$$

where either a or b depends on a random variable

- Famer's problem example:
 - P(producing less than 6000 T of beets) ≤ 0.25
 - P(buy 20 T or less of corn and wheat) ≥ 0.8

Modeling Chance Constraints

- For discrete distributions and sampling:
 - 1. use binary variables to count the constraint violations
 - 2. constraint the sum of scenario probability where violation occurred
- Famer's problem example: P(buy 20 T or less of corn and wheat) ≥ 0.8
 - 1. for each scenario k:
 - $z_k \in \{0,1\}$: constraint violated implies $z_k = 1$
 - What is the maximum amount of corn and wheat needed?
 440 from the specification (200 wheat, 240 corn)
 - Use this tight upper bound for a Big-M constraint $y_{1k} + y_{2k} \le 20 + 420z_k$
 - 2. in the main problem: $\Sigma_k(p_k) \leq 0.2 \leftarrow$
 - Note that we modeled the complement, i.e., 1 P(buy 20T or less) ≤ 1 0.8

Multi-Stage Stochastic Programming

• Multi-stage is a series of two-stage problems:

- Superscript denotes discrete time step

- In the farmer's example:
 - crop rotation: rotate field every year t
 - beets production quota over multiple seasons
- Issue: curse of dimensionality
 - exponential growth of scenarios wrt horizon
- Key techniques:
 - Nested Benders Decomposition
 - Better Sampling

Outline

- Topics for this week's quiz
- Exam details
- Ask me questions

Exam Details

- Type: wattle exam
 - Very little to no multiple-choice questions
 - No negative marks
 - No internet nor calculators

- Material allowed: one A4 page with notes on both sides
- Hurdle: 40% of the total exam points
- Assessable material: all contents of the lectures with exception of:
 - i-dual algorithm (Felipe's guest lecture)
 - Charles' guest lecture
- No coding questions

Outline

- Topics for this week's quiz
- Exam details
- Ask me question

Dual LPs - Rules

The dual of a **min**imisation problem:

$$Ax \leq b \iff y \leq 0$$
 same

$$Ax \geq b \iff y \geq 0$$
 ineq.

$$Ax = b \longleftrightarrow y \in \mathbb{R}^m$$

The dual of a **max**imisation problem:

$$Ax \leq b \longrightarrow y \geq 0$$
 swap $Ax \geq b \longrightarrow y \leq 0$ ineq.

$$Ax = b \longleftrightarrow y \in \mathbb{R}^m$$

- Keep in mind:
- Strong duality: primal and dual has the same optimal objective value
- → Dual of the dual of an LP is the primal

Dual LPs – Example

Primal problem:

R D

Dual problem:

