UC Berkeley Department of Electrical Engineering and Computer Sciences

EECS 126: PROBABILITY AND RANDOM PROCESSES

Discussion 3 Fall 2023

1. Uncorrelatedness and Independence

a. Show that if X_1, \ldots, X_n are pairwise uncorrelated, then

$$\operatorname{var}\left(\sum_{i=1}^{n} X_i\right) = \sum_{i=1}^{n} \operatorname{var}(X_i).$$

b. Find an example where a pair of random variables are uncorrelated but not independent.

2. Galton-Watson Branching Process

Consider a population of N individuals for some positive integer N. Let ξ be a random variable taking values in \mathbb{N} with $\mathbb{E}(\xi) = \mu$ and $\text{var}(\xi) = \sigma^2$. At the end of each year, each individual, independently of all other individuals and generations, leaves behind a number of offspring which has the same distribution as ξ . For each $n \in \mathbb{N}$, let X_n denote the size of the population at the end of the nth year.

- a. Compute $\mathbb{E}(X_n)$.
- b. Compute $var(X_n|X_{n-1})$. Then, write $var(X_n)$ in terms of $var(X_{n-1})$.

3. Minimum and Maximum of Exponentials

Let $\lambda_1, \lambda_2 > 0$, and $X_1 \sim \text{Exponential}(\lambda_1)$, $X_2 \sim \text{Exponential}(\lambda_2)$ are independent. Also, define $U := \min(X_1, X_2)$ and $V := \max(X_1, X_2)$. Show that U and V - U are independent.