Matrizes de Incidência e Adjacências

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

10 de maio de 2017

Plano de Aula

- Revisão
 - Outras terminologias
 - Vizinhança

Matriz de adjacências e incidências

Pensamento

Frase

A gente não se liberta de um hábito atirando-o pela janela: é preciso fazê-lo descer a escada, degrau por degrau.

Quem?

Mark Twain (1835 - 1910) Escritor e humorista estadunidense

Sumário

- Revisão
 - Outras terminologias
 - Vizinhança

Matriz de adjacências e incidências

Outras terminologias

$V(G) \in A(G)$

Se o nome de um grafo for G, então o conjunto de seus vértices será denotado por V(G) e o conjunto de suas arestas por A(G).

$n(G) \in m(G)$

O número de vértices de G é denotado por n(G) e o número de arestas por m(G).

Corolário

$$n(G) = |V(G)| \in m(G) = |A(G)|.$$

Outras terminologias

G

O complemento de um grafo (V, A) é o grafo $(V, V^{(2)} \setminus A)$.

K_n

O grafo G é **completo** se $A(G) = V(G)^{(2)}$. A expressão "G é um K_n " é uma abreviatura de "G é um grafo completo com n vértices".

$\overline{K_n}$

O grafo G é vazio se $A(G) = \emptyset$. A expressão "G é um $\overline{K_n}$ " é uma abreviatura de "G é um grafo vazio com n vértices".

Vizinhança

Vizinhança

- A vizinhança de um vértice v em um grafo G é o conjunto de todos os vizinhos de v;
- Este conjunto será denotado por $N_G(v)$ (ou simplesmente N(v)).

Lembrando...

Seja G um grafo e $v, u \in V(G)$.

Dizemos que v é vizinho de u se existe uma aresta que os liga.

Grau

Grau

- O grau de um vértice v em um grafo G é o número de arestas que incidem em v;
- Este valor será denotado por $d_G(v)$ (ou simplesmente d(v);
- Um vértice v é **isolado** se d(v) = 0.

Corolário

 $\bullet \ d_G(v) = |N(v)|.$

Grau mínimo e Grau máximo

Grau mínimo

$$\delta(G) := \min_{v \in V(G)} d_G(v)$$

Grau máximo

$$\Delta(G) := \max_{v \in V(G)} d_G(v)$$

Média dos graus

$$\mu(G) = \frac{1}{|V(G)|} \sum_{v \in V(G)} d_G(v)$$

Corolário

$$\mu(G) = \frac{2m(G)}{n(G)}$$

Grafo regular

Grafo regular

Um grafo é **regular** se todos os seus vértices têm o mesmo grau, ou seja, se $\delta = \Delta$.

r-regular

Um grafo é r-regular se d(v) = r para todo vértice v.

Grafo cúbico

Um grafo cúbico é o mesmo que um grafo 3-regular.

Sumário

- Revisão
 - Outras terminologias
 - Vizinhança

2 Matriz de adjacências e incidências

Matriz de adjacências e incidências

Definição

Uma matriz de adjacências de um grafo G é a matriz A definida da seguinte maneira: para todo vértice u e v

$$A[u,v] = egin{array}{ccc} 1 & \mbox{se } uv \in E_G \mbox{ ,} \\ 0 & \mbox{em caso contrário.} \end{array}$$

Matriz de adjacências e incidências

Definição

Uma matriz de adjacências de um grafo G é a matriz A definida da seguinte maneira: para todo vértice u e v

$$A[u,v] = egin{array}{ccc} 1 & \mbox{se } uv \in E_G \ , \\ 0 & \mbox{em caso contrário.} \end{array}$$

Definição

Uma matriz de incidências de um grafo G é a matriz M definida da seguinte maneira: para todo vértice u e uma aresta e

$$M[u,e] = egin{array}{ll} 1 & ext{se } u \ ext{\'e} \ ext{uma das pontas de } e \ , \\ 0 & ext{em caso contrário}. \end{array}$$

Matrizes de Incidência e Adjacências

Esdras Lins Bispo Jr. bispojr@ufg.br

Teoria de Grafos Bacharelado em Ciência da Computação

10 de maio de 2017

