

Midterm 7 December Autumn 2020, answers

Discrete Mathematics (City University of Hong Kong)

Solution of Midderm

Q1: (1) T

12) Ī

13) F

Q2: Step1: P-99 = 79->7

Contrapositive

step 2: PVY = 7P -> Y

Step 3: 79 → Y

Hypothetical syllogism

Step 4: Y -> S

Step 5: -9 -> S

Hypothetical syllogism

step 6: 79→S = 7(79) VS = 9 VS

 $\frac{Q_3}{P} : \neg P \rightarrow (2 \rightarrow r) = \neg (\neg P) \ V(2 \rightarrow r) = P \ V(2 \rightarrow r)$ $= P \ V(2 \rightarrow r) = \neg 2 V(P \lor r) = 2 \rightarrow P \lor r$

R is reflexive, since (1,1), (2,2), (3,3), $(4,4) \in \mathbb{R}$ R is not symmetric, since $(2,4) \in \mathbb{R}$, but $(4,2) \notin \mathbb{R}$ R is not antisymmetric, since $(1,3) \in \mathbb{R}$ and $(3,1) \in \mathbb{R}$, but $(4,2) \notin \mathbb{R}$ R is not antisymmetric, since $(1,3) \in \mathbb{R}$ and $(3,4) \in \mathbb{R}$, but $(1,4) \notin \mathbb{R}$

Q=: 0 PA = { I, fa}, fif, fa, 13}

② $A \times A \times A = \{(a, a, a), (a, a, b), (a, b, a), (a, b, b), (b, a, a)\}$

3 Since f(B)=B

For any two subsets B + B2, then $\overline{B}_1 + \overline{B}_2$. Hence f is injective. On the other hand, for any subset B of A, that is $B \in P(A)$, there exists $\overline{B} \in P(A)$ such that $f(\overline{B}) = \overline{B} = B$. Thus f is Surjective. Hence f is bijective.

 $\frac{Qb}{}$ we need to check reflexive, symmetric, and fransitive. O reflexive, since $a \equiv a \pmod{7}$ and hence $a = \pm a \pmod{7}$

D symmetric: If $a = \pm b \pmod{7}$, then $a = \pm b + 7k$ for Some integer k. Thus a = b + 7k or a = -b - 7k therefore b = a - 7k or b = -a + 7k.

This implies $b=\pm a \pmod{7}$. Hence it is symmetric

(3) bransitive: If $a = \pm b \pmod{7}$ and $b = \pm c \pmod{7}$

Then $\int a = \pm b + 7k$ $\Rightarrow \int a = b + 7k$ or a = -b + 7k $\int b = \pm c + 7l$ $\Rightarrow \int b = c + 7l$ or b = -c + 7l

This implies

$$a = c + 7(k+l)$$
 or $a = -c + 7(k+l)$

$$or a = -c + 7(K-R)$$
 $or a = c + 7(K-R)$

In both (ases, $a = \pm c \pmod{7}$)

Thus it as fransitive

 Q_7 : O = PP = PP

② $P \wedge 9 = 7(7PV79) = 7P|79 \cong (PP)|(919)$

(3) $P \rightarrow 9 \equiv \neg P \lor 9 \equiv \neg (P \land \neg 9) \stackrel{\triangle}{=} P \land \neg 9 \mid P \land \neg 9$ $\stackrel{\triangle}{=} (P \mid P) \mid (\neg 9) \mid (\neg$

 $\frac{Q8}{DIF}$: DIF ACB, then for any XEA, we know XEB. Thus A = ANB. On the other hand, obviously, ANB = A, thus A = ANB

DIF ANB = A, then for any XEA, we know XEANB Hence XEB. Therefore ACB

Example: Do the following diagrams define functions? • $A = \{1, 2, 3\}, B = \{a, b, c\},$

$$A = \{1, 2, 3\}, B = \{a, b, c\},\$$

No, 1 has two images.

•
$$A = \{1, 2, 3, 4\}, B = \{a, b, c\},$$

Yes, every element in A has assigned a unique element in B.