## Food Recommender Based on GCN and MLP

Jingshuai Qian

April 27, 2025

#### Load the model 1

Code to load and apply the recommender model: GAT MLP/food recommender apply.py

#### Algorithm demonstration $\mathbf{2}$

#### Architecture 2.1



Figure 1: The two stage architecture of food recommender

#### 2.2Algorithms

#### 2.2.1 **KNN**

## **Algorithm 1** Compute adjacency matrix through KNN

**Input:**  $X \in \mathbb{R}^{n \times d}$  (Node feature matrix), k (Number of neighbors)

Output:  $A^{\text{norm}}$  (Normalized adjacency matrix)

- 1: For each pair of nodes, calculate their Euclidean distance  $S_{ij} = \sqrt{\sum_{k=1}^{d} (x_{ik} x_{jk})^2}$ , where  $i, j \in \{1, \dots, n\}$  and  $i \neq j$ .
- 2: For each node  $i \in \{1, \dots, n\}$ , choose (k+1) nearest neighbors as  $\mathcal{N}_i = \{j_1, j_2, \dots, j_{k+1}\}$ where  $S_{ij_1} \geq S_{ij_2} \geq \cdots \geq S_{ij_{k+1}}$ .
- 3: Initialize the adjacency matrix as  $A^{\text{raw}} \in \{0,1\}^{n \times n}$  where  $A_{ij}^{\text{raw}} = 1$  if  $j \in \mathcal{N}_i$  and  $i \neq j$ , otherwise  $A_{ij}^{\text{raw}} = 0$ .
- 4: Symmetrize the adjacency matrix by taking the element-wise maximum, i.e.  $A_{ij}^{\text{sym}} =$  $\max(A_{ij}^{\text{raw}}, A_{ji}^{\text{raw}}).$   $\triangleright$  To ensure the undirected graph property. 5: Compute the degree matrix D where  $D_{ii} = \sum_{j=1}^{n} A_{ij}^{\text{sym}}$  and  $D_{ij} = 0$  where  $i, j \in$
- $\{1,\ldots,n\}$  and  $i\neq j$ .

```
6: Normalize the adjacency matrix: A^{\text{norm}} = D^{-1/2}(A^{\text{sym}} + I)D^{-1/2}.
```

7: **return**  $A^{\text{norm}}$ 

## 2.2.2 GAT

## Algorithm 2 Graph Attention Network (GAT) Forward Propagation

```
Input: X \in \mathbb{R}^{N \times d} (Node feature matrix); A \in \{0,1\}^{N \times N} (Adjacency matrix) K (Number
    of attention heads); d' (Output dimension per head); \alpha (LeakyReLU negative slope)
Output: Z \in \mathbb{R}^{N \times Kd'} (Node embeddings)
 1: Initialize Z \leftarrow \text{EmptyMatrix}(N, Kd')
 2: for k = 1 to K do
       W^k \leftarrow \text{LearnableMatrix}(d \times d')
       h^k \leftarrow XW^k
                                                                                       a^k \leftarrow \text{LearnableVector}(2d')
                                                                      E^k \leftarrow \operatorname{ZeroMatrix}(N \times N)
       for i = 1 to N do
 7:
          for j = 1 to N do
 8:
             if A_{ij} = 1 or i = j then
 9:
                e_{ij}^k \leftarrow \text{LeakyReLU}(a^k[h_i^k||h_i^k]) \qquad \triangleright \text{Calculate the neighbor pair's attention}
10:
                coefficient, where "||" means concatenation
                E_{ij}^k \leftarrow e_{ij}^k
11:
12:
                E_{ii}^k \leftarrow -\infty \triangleright This pair of nodes are not neighbors so they do not have an
13:
                attention coefficient
             end if
14:
          end for
15:
       end for
       \alpha^k \leftarrow \operatorname{softmax}(E^k, \dim = 1) \triangleright \operatorname{Normalize}  attention weights using row-wise softmax
17:
       z^k \leftarrow \alpha^k h^k
                                                                                  ▶ Aggregate neighbors
18:
        Z[:, (k-1)d':kd'] \leftarrow z^k
                                                       ▷ Concatenate heads as the final embedding
19:
20: end for
21: return Z
```

### 2.2.3 MLP

## Algorithm 3 Forward propagation through MLP

**Input:**  $Z \in \mathbb{R}^{n \times d_{\text{emb}}}$  (Node embedding matrix), h (Number of hidden layers)  $L \in \mathbb{R}^h$  (Hidden layers' dimensions)

```
(Hidden layers' dimensions)
Output: r̂<sub>valid</sub> ∈ ℝ<sup>n</sup> (Predicted scores)
1: H<sup>(0)</sup> = Z.
2: for l∈ {1,...,h} do
3: Propagation on the current hidden layer: H<sup>(l)</sup> = ReLU(W<sup>(l)</sup>H<sup>(l-1)</sup> + b<sup>(l)</sup>), where W<sup>(l)</sup> ∈ ℝ<sup>L<sub>l</sub>×L<sub>(l-1)</sub></sup> and b<sup>(l)</sup> ∈ ℝ<sup>L<sub>l</sub></sup>.
4: end for
5: Convolution on the output layer: r̂ = W<sup>(h+1)</sup>H<sup>(h)</sup> + b<sup>(h+1)</sup>, where W<sup>(h+1)</sup> ∈ ℝ<sup>L<sub>h</sub>×n</sup> and b<sup>(h+1)</sup> ∈ ℝ<sup>n</sup>.
6: Transform all predicted scores to integers in [1, 5]: r̂<sub>valid</sub> = round(clamp(r̂, 1, 5)).
7: return r̂<sub>valid</sub>
```

# 3 Test results of the best model

 $MSE\ Loss{=}1.1760,\ RMSE{=}1.1323,\ MAE{=}0.8619$