Method of Least Squares

IPCST Seoul National University

Target Systems of Equations

- Overdetermined systems
 - more equations than unknowns
- Inexactly specified systems

```
set of data \{\mathbf{x}_i, \mathbf{y}_i\}
model function \mathbf{y} = f(\mathbf{x}, \mathbf{p})
```

p: parameters (what to be determined)

Linear Regression

•
$$f(x,a,b) = ax + b$$

Figure from Wikipedia

Linear Regression

Error function

$$J(a,b) = \sum_{i=0}^{M} (ax_i + b - y_i)^2$$

Minimizing this sum of the error squares "Least squares"

$$\Rightarrow \frac{\partial J}{\partial a} = \frac{\partial J}{\partial b} = 0$$

Linear Regression

•
$$J(a,b) = \sum_{i=0}^{m} (ax_i + b - y_i)^2$$

$$\frac{\partial J}{\partial a} = 0 \Rightarrow a(\sum_{i=0}^{m} x_i^2) + b(\sum_{i=0}^{m} x_i) = \sum_{i=0}^{m} x_i y_i$$

$$\frac{\partial J}{\partial b} = 0 \Rightarrow a(\sum_{i=0}^{m} x_i) + b(m+1) = \sum_{i=0}^{m} y_i$$
Number of datapoints

System of linear equations

- You can get a & b.

Do It Yourself

Fit this data

T_k	0	1	2	3	4	5	6	7
$\overline{S_k}$	1.15	2.32	3.32	4.53	5.65	6.97	8.02	9.23

to

$$S = aT + b$$

Plot the data and the fitted function

Linear Models for Curve Fitting

Straight line

$$f(t) \approx \beta_1 t + \beta_2$$

Polynomials

$$f(t) \approx \beta_1 t^{n-1} + \cdots + \beta_{n-1} t + \beta_n$$

Linear combination of no parameter functions

Design Matrix

 If a model f(t) can be expressed by a linear combination of *n* basis functions $g_i(t)$'s,

$$f(t) \approx \beta_1 g_1(t) + \cdots + \beta_{n-1} g_{n-1}(t) + \beta_n g_n(t)$$

Design matrix X

$$X_{i,j} = g_j(t_i)$$

data points: (t_i, y_i)

$$y_i \approx f(t_i)$$

Residuals and Squares

• Residuals
$$r_i = y_i - \sum_{j=1}^n \beta_j g_j(t_i)$$
, $i = 0,1,...,m$
$$\mathbf{r} = \mathbf{y} - \mathbf{X}\boldsymbol{\beta}$$

• Least squares: Minimize the sum of the squares of the residuals (the error function)

$$J(\mathbf{\beta}) = \sum_{i=0}^{m} r_i^2 = \sum_{i=0}^{m} \left[y_i - \sum_{j=1}^{n} \beta_j g_j(t_i) \right]^2$$

Normal Equations

• From $\partial J/\partial \beta_j = 0$,

$$\sum_{i=0}^{m} 2 \left[y_i - \sum_{j=1}^{n} \beta_j g_j(t_i) \right] g_k(t_i) = 0$$

$$\sum_{j=1}^{n} \beta_j \left\{ \sum_{i=0}^{m} g_j(t_i) g_k(t_i) \right\} = \sum_{i=0}^{m} y_i g_k(t_i)$$

$$\mathbf{X}^{\mathsf{T}}\mathbf{X}\boldsymbol{\beta} = \mathbf{X}^{\mathsf{T}}\mathbf{y}$$
 $\boldsymbol{\beta} = (\mathbf{X}^{\mathsf{T}}\mathbf{X})^{-1} \mathbf{X}^{\mathsf{T}}\mathbf{y}$

Quasi-linear Models

Log-linear

$$f(t) = \beta \exp(\lambda t)$$

$$\Rightarrow \ln f = \ln \beta + \lambda t$$

$$f(t) = \beta c^{t}$$

$$\Rightarrow \ln f = \ln \beta + t \ln c$$

Log-polynomial

$$(\beta_{1}t^{n-1} + \cdots + \beta_{n-1}t + \beta_{n}) \cdot \log(\alpha t)$$

$$= \gamma_{1}t^{n-1} + \cdots + \gamma_{n-1}t + \gamma_{n}$$

$$+ (\beta_{1}t^{n-1} + \cdots + \beta_{n-1}t + \beta_{n}) \cdot \log(t)$$

Nonlinear Models

$$f(t) \approx \frac{\theta_1 t^{n-1} + \cdots + \theta_{n-1} t + \theta_n}{\alpha_1 t^{n-1} + \cdots + \alpha_{n-1} t + \alpha_n}$$

Exponentials

$$f(t) \approx \beta_1 \exp(-\lambda_1 t) + \cdots + \beta_n \exp(-\lambda_n t)$$

Gaussians

$$f(t) \approx \beta_1 \exp\left[-\left(\frac{t-\mu_1}{\sigma_1}\right)^2\right] + \cdots + \beta_n \exp\left[-\left(\frac{t-\mu_n}{\sigma_n}\right)^2\right]$$

Nonlinear Models

- β sin(αt), β cos(αt)
- $\beta t \cdot \sin(\alpha t)$, $\beta t \cdot \cos(\alpha t)$
- Polynomial \times [sin(αt) or cos(αt)]
- Parts of circle, ellipse, parabola or hyperbola

$$\beta \sqrt{\text{polynomial }(\alpha)}$$

Nonlinear Least Squares

$$y(t) = at \cdot \sin(bt)$$

Error function

$$J(a,b) = \sum_{i=0}^{m} [y_i - at_i \cdot \sin(bt_i)]^2$$

– At minimum, $\partial J/\partial a = \partial J/\partial b = 0$:

$$2\sum_{i=0}^{m} [y_i - at_i \cdot \sin(bt_i)] \cdot [t_i \cdot \sin(bt_i)] = 0$$

$$2\sum_{i=0}^{\infty} [y_i - at_i \cdot \sin(bt_i)] \cdot [at_i^2 \cdot \cos(bt_i)] = 0$$

Nonlinear Least Squares

- Wen Shen Example 8.4
 - Newton method

• Find
$$a$$
, b such that $\mathbf{f}(\mathbf{x}) = \begin{pmatrix} \partial J/\partial a \\ \partial J/\partial b \end{pmatrix} = 0$

$$\mathbf{x}_{n+1} = \mathbf{x}_n - \mathbf{\delta} \quad \text{where } \mathbf{x}_n = \begin{pmatrix} a_n \\ b_n \end{pmatrix}$$

$$\mathbf{H}_J(\mathbf{x}_n)\mathbf{\delta} = \mathbf{f}(\mathbf{x}_n)$$

• H_I : Hessian (matrix) of J (= Jacobian of f)

$$\mathbf{H}_{J} = \begin{pmatrix} \frac{\partial^{2} J}{\partial a^{2}} & \frac{\partial^{2} J}{\partial a \partial b} \\ \frac{\partial^{2} J}{\partial a \partial b} & \frac{\partial^{2} J}{\partial b^{2}} \end{pmatrix}$$

參考: Nonlinear Least Squares

- Nonlinear least squares methods are usually iterative and need initial values.
- Nonlinear least squares methods occasionally fail to find the true minimum.
 - Not convergent
 - A local minimum or a non-stationary point

參考: Separable Least Squares

- In case that linear parameters are explicitly distinguished from nonlinear parameters
 - Nonlinear parameters α's: nonlinear methods
 - Linear parameters β 's: linear least squares
- Process
 - 1.Initial α 's
 - 2.Linear least squares β 's and J
 - 3. Nonlinear least squares varying α 's to find the minimum J by repeating the procedure 2.

- − Wen Shen pp. 164~168
- Instead of a data set $\{x_i, y_i\}$, a function f(x) on [a, b] is given.
- Find a combination of simple functions to approximate to f(x)
 - Consider a combination of orthogonal basis functions $g_i(x)$ on [a,b]

$$g(x) = \sum_{i=1}^{n} c_i g_i(x)$$

– Error function: $E(f,g) = \int_a^b [f(x) - g(x)]^2 dx$

- Find a combination of simple functions to approximate to f(x)
 - Error function: $E(f,g) = \int_a^b [f(x) g(x)]^2 dx$

$$\rightarrow E(c_1, c_2, ..., c_n) = \int_a^b [f(x) - \sum_{i=1}^n c_i g_i(x)]^2 dx$$

– Minimum condition: $\partial E/\partial c_i = 0$ for every c_i

$$\frac{\partial E}{\partial c_i} = -2 \int_a^b g_i(x) \left[f(x) - \sum_{j=1}^n c_j g_j(x) \right] dx = 0$$

$$\int_a^b g_i(x) f(x) dx - \int_a^b g_i(x) \sum_{j=1}^n c_j g_j(x) dx = 0$$

• Find a combination of simple functions to approximate to f(x)

$$\sum_{j=1}^{n} c_j \int_a^b g_i(x)g_j(x)dx = \int_a^b g_i(x)f(x)dx$$

This is a matrix-vector equation

$$\mathbf{Ac} = \mathbf{b}$$

$$A_{ij} = \int_{a}^{b} g_i(x)g_j(x)dx$$

$$b_i = \int_{a}^{b} g_i(x)f(x)dx$$

- Orthogonal basis functions
 - Definition: basis functions $g_i(x)$ with the condition

$$\int_{a}^{b} g_{i}(x)g_{j}(x)dx = 0 \text{ if } i \neq j$$

- Ex.) Legendre polynomials
- Orthogonal basis functions make the matrix on the previous page diagonal.

$$\mathbf{Ac} = \mathbf{b} \longrightarrow c_i = b_i/A_{ii}$$

References

- Wen Shen,
 An Introduction to Numerical Computation
- C. Moler,
 Numerical Computing with MATLAB
- Wikipedia
- C. T. Kelly,
 Iterative Methods for Optimization

Further Study

Gauss-Newton method