Movement Prediction

Amirabbas Jalali, Mina Mousavifar

Motivation

- Investigating the possibility of predicting user locations based on his/her location history
- Fill the users' data gaps to preserve more users in the dataset for analyzing.
- Applying imputation methods to obtain location prediction speedily and specifically

Data

- Saskatchewan Human Ethology Datasets (SHED10)
- 108 participants
- February 6th to March 7th, 2017 (28 days)
- 5-minute duty cycle
- 8,592,409 GPS records

Filtering, Aggregation, Stratification

Filtering

- Filter users with more than 50% battery records
 42 users
- Filter records with less than 100m accuracy -97.46% GPS records
- Limit latitude and longitude to Saskatoon

Stratify and Aggregate

- Extract 5 minutes duty cycle for records
- Aggeragate latitude and longitude over duty cycles
- Convert coordinates to Universal Transverse Mercator (UTM)
- Use 100m grid size

User Placement Matrix

- Users' placement matrix expresses the user location (grid cell) every 5 minutes
- Each row represents a day in the experiment
- Each column represents five minutes time spans in a day
- Create interaction matrix for each user and X and Y coordinate separately

Statistics: Daily records

 Randomly mask 20% of cells for evaluation

	Summary of Grid			
	Min	Max	Mean	STD
Horizontal Grid	0	165	90.7	23.9
Vertical Grid	0	173	75.5	14.3
1				

Models: Simple Fill

Imputation is the process of replacing missing data with an estimated value based on other available information

- Replacing each missing cell with the mean of each column based on the existing data
- Baseline

Models: Matrix Factorization

- Projects days and duty cycles into a shared latent space, using a vector of latent features to represent a day or a 5 minute span
- User placement in a day on a specific time span is modelled as the inner product of their latent vectors.
- Factorize user placement matrix using gradient descent

Models: Iterative Imputer

- Imputing missing values by modelling each feature with missing values as a function of other features in a round-robin fashion
- At each step, a feature column is designated as output y and the other feature columns are treated as inputs X
- A regressor is fit on (X, y) for known y
- Then, the regressor is used to predict the missing values of y
- This is done for each feature in an iterative fashion.

ResultsMasking data for one day

Horizontal Axis

Vertical Axis

ResultsMasking randomly vs Masking one day

Masking cells randomly

Model	Horizontal MAE	Vertical MAE
Simple Fill	306.2235 m	49.2045 m
Matrix Factorization	220.7322 m	41.1324 m
Iterative Imputer	147.20205 m	31.0712 m

Masking for one day

Simple Fill	271.5531 m	208.6263 m
Matrix Factorization	296.2389 m	220.7996 m
Iterative Imputer	270.1739 m	205.3427 m

Results: Dwells vs Trips

Model	Dwell Horizontal MAE	Trip Horizontal MAE	Dwell Vertical MAE	Trip Vertical MAE
Simple Fill	173.1982 m	346.5374 m	163.0607 m	258.3705 m
Matrix Factorization	127.1270 m	358.3617 m	109.1262 m	271.0766 m
Iterative Imputer	215.5642 m	331.3778 m	173.6039 m	251.7646 m

Results: Dwells vs Trips

Case Study #1 Success

Case Study #2 Failure

Summary

We investigated the application of imputation methods for movement prediction

- The methods can predict missing records with average 225 meters error
- The methods can predict daily trajectories with average 345 meters error
- The performance of the models depends on the diversity of movement behaviour

Thank you! Questions?

amj301@usask.ca, sem311@usask.ca

