Моделирование голограммы

Лузгина A.A.* Ноутбук фирмы "Maxwell equations" (Дата: 23 мая 2025 г.)

Цель данной работы - изучить Для достижения этой цели решалась задача определения ... методом В работе представлены теоретические соотношения, на которых базируется методика эксперимента. В результате измерений было получено, что ... (Кратко, по существу, без воды не более 150 слов - объяснить читателю что было сделано, отчасти с конкретикой).

I. Введение

Голография — это метод записи и воспроизведения трёхмерных изображений объектов. В отличие от традиционных методов получения изображений, которые фиксируют только интенсивность света, голография позволяет записывать как амплитуду, так и фазу световой волны, что делает возможным восстановление полного трёхмерного изображения объекта.

Проект "Симуляция голограммы"направлен на создание программной модели, которая позволяет:

- 1. Рассчитывать запись голограммы в зависимости от заданной геометрии объекта.
- 2. Визуализировать восстановленное изображение с учётом положения наблюдателя.

II. Теоретическая справка

II.1. Принципы голографии

Голография основывается на интерференции и дифракции света.

1. Запись голограммы:

Для записи голограммы используют два когерентных световых пучка:

- (a) **Опорный пучок**: когерентный свет, освещающий фотопластинку.
- (b) **Объектный пучок**: свет, отражённый от объекта.

На фотопластинке создаётся интерференционная картина, где записывается амплитуднофазовая информация об объекте.

2. **Восстановление изображения**: При освещении голограммы опорным пучком происходит дифракция света, в результате чего наблюдатель видит трёхмерное изображение объекта.

II.2. Интерференция и запись голограммы

Формула интерференции двух когерентных пучков света:

$$I(x,y) = |E_r(x,y) + E_o(x,y)|^2,$$

где $E_r(x,y)$ — вектор опорной волны, $E_o(x,y)$ — вектор волны, отражённой от объекта.

Разложив эту формулу, получим:

$$I(x,y) = |E_r|^2 + |E_o|^2 + 2\operatorname{Re}(E_r E_o^*),$$

где E_o^* — комплексное сопряжение амплитуды объектной волны.

Таким образом, интенсивность света в точке зависит не только от амплитуд, но и от фазовых сдвигов между волнами.

II.3. Восстановление изображения

При восстановлении изображения дифракция света на голограмме формирует три пучка:

- 1. **Нулевой-дифракционный пучок** (нулевой порядок): содержит лишь интенсивностную информацию.
- 2. Пучок +1 порядка: создаёт изображение объекта.
- 3. **Пучок -1 порядка**: формирует виртуальное изображение.

II.4. Голограмма Денисюка

В проекте моделируется голограмма Денисюка — один из первых методов записи объемных изображений (придуман в 1962г. Юрием Николаевичем Денисюком). При этом голограмма записывается и восстанавливается с использованием одного и того же источника света.

^{*} luzgina.a@phystech.edu; https://old.mipt.ru/education/chair/physics/laboratornyy-praktikum/

III. Описание реализации проекта

III.1. Архитектура проекта

Проект состоит из нескольких модулей, каждый из которых отвечает за определённую часть симуляции:

- Генерация геометрии объекта: Модуль 'geometry' отвечает за задание формы объекта, разбиение его поверхности на сетку точек и проверку корректности геометрии.
- Запись голограммы: Модуль 'hologram prep' рассчитывает интерференционную картину, создаваемую объектным и опорным пучками, и сохраняет её в виде матрицы интенсивностей.
- Восстановление изображения: 'calculate visible field' позволяет восстанавливать видимое изображение объекта с учётом положения наблюдателя.
- Визуализация: Используется библиотека OpenGL для отображения восстановленного изображения.

III.2. Этапы работы

1. Генерация геометрии объекта

Объект задаётся в виде набора поверхностей, каждая из которых представлена четырьмя вершинами:

vertexes =
$$\{\{P_1, P_2, P_3, P_4\}, \dots\},\$$

где $P_i = (x, y, z)$.

Пример генерации объекта — плоского квадрата:

срр

```
std::vector<std::vector<Point>> vertexes = { Один из вариантов, для исправления этой ситуации,
obj_geometry geometry(1e-6, {100, 100},
vertexes);
geometry.calculate_points();
```

2. Запись голограммы Запись голограммы моделируется путём расчёта интерференционной картины.

```
std::string name_to =
"file_where_to_save_intensity.txt";
double width = 10.0;
double height = 10.0;
```

```
double scale = 1e-6;
std::vector<unsigned int> np = {1024, 1024};
obj_plate plate(scale, np, width, height);
plate.readDataFromFile(name_from);
plate.calculate_intensity_matrix();
plate.saveIntensityToFile(name_to);
```

3. Восстановление изображения

Восстановление голограммы выполняется методом быстрого преобразования Фурье (FFT). Использовалась библиотека 'fftw3'.

- ${\bf FFT}$ позволяет выделить пучок +1 порядка, содержащий информацию об объекте.
- Результат восстанавливается в виде матрицы интенсивностей, которая затем отображается.

Пример восстановленного изображения:

```
std::string name_from = "file_with_intensity";
v_plate = obj_visible_plate(1e-6);
v_plate.read_intensity_matrix(name_from);
while(...){ //main loop
v_plate.update_visible_matrix(cameraPos.x,
cameraPos.y, cameraPos.z);
}
```

III.3. Результаты

(Получилось мало чего, но мы честно пытались, а еще мысли что делать дальше)

IV. Обсуждение результатов

Скорее всего, моделирование не получилось для объемного источника из-за того, что где-то появилась ошибка в задании фазы.

 $\{ \{0, 0, 0\}, \{1, 0, 0\}, \{0, 1, 0\}, \{1, 1, 0\} \}$ это решать задачу путем фурье преобразований. Для точечного источника результат известен, а так как объемное изображение можно собрать из множества точек, то таким образом можно так же моделировать голограмму.

\mathbf{V} . Итоги и выводы

1. Реализована программная модель записи и восstd::string name_from = "file_with_geometry"; становления голограммы. 2. Использованы методы численного моделирования, такие как FFT, для восстановления изображения. З. Полученные результаты демонстрируют возможность симуляции голограммы Денисьюка с учётом положения наблюдателя.

(а)интерференционная картина для точеченого источника

(c)

(d)

Рис. 1. Интерференционная картина, которая бы была на транспаранте и изображение точеной голограммы с разных ракурсов (можно заметить, что немного картины интенсивностей, который бы видел человеческий глаз меняются)

VI. Ссылки на литературу

1. Hecht, E. **Optics**, Fifth Edition. Pearson Education, 2017. 2. Бутиков Е. И. **Оптика: Учебное пособие**. 3-е изд. Санкт-Петербург: Лань, 2016.

VII. Приложения

Код проекта расположен по ссылке.

(а)геометрия, расчитанная в этом варианте

(b)интерференционная картина для точеченого источника

Рис. 2. Геометрия, интерференционная картина, которая бы была на транспаранте и изображение объемной голограммы с разных ракурсов (можно заметить, что немного картины интенсивностей, который бы видел человеческий глаз меняются)