

Exercise 12.1

Question 1:

Maximise Z = 3x + 4y

Subject to the constraints: $x + y \le 4, x \ge 0, y \ge 0$.

Answer

The feasible region determined by the constraints, $x + y \le 4$, $x \ge 0$, $y \ge 0$, is as follows.

The corner points of the feasible region are O(0, 0), A(4, 0), and B(0, 4). The values of Z at these points are as follows.

Corner point	Z = 3x + 4y	
O(0, 0)	0	
A(4, 0)	12	
B(0, 4)	16	→ Maximum

Therefore, the maximum value of Z is 16 at the point B (0, 4).

Question 2:

Minimise Z = -3x + 4y

subject to $x + 2y \le 8$, $3x + 2y \le 12$, $x \ge 0$, $y \ge 0$

Δnewer

The feasible region determined by the system of constraints, $x+2y \le 8$, $3x+2y \le 12$, $x \ge 0$, and $y \ge 0$, is as follows.

The corner points of the feasible region are O (0, 0), A (4, 0), B (2, 3), and C (0, 4). The values of Z at these corner points are as follows.

Corner point	Z = -3x + 4y	
0(0, 0)	0	
A(4, 0)	-12	→ Minimum
B(2, 3)	6	
C(0, 4)	16	

Therefore, the minimum value of Z is -12 at the point (4, 0).

Question 3:

Maximise Z = 5x + 3y

subject to $3x + 5y \le 15$, $5x + 2y \le 10$, $x \ge 0$, $y \ge 0$.

Answer

The feasible region determined by the system of constraints, $3x + 5y \le 15$,

 $5x + 2y \le 10$, $x \ge 0$, and $y \ge 0$, are as follows.

The corner points of the feasible region are O (0, 0), A (2, 0), B (0, 3), and $C\left(\frac{20}{19},\frac{45}{19}\right)$. The values of Z at these corner points are as follows.

Corner point	Z = 5x + 3y	
0(0, 0)	0	
A(2, 0)	10	
B(0, 3)	9	
$C\left(\frac{20}{19}, \frac{45}{19}\right)$	$\frac{235}{19}$	→ Maximum

Therefore, the maximum value of Z is $\frac{235}{19}$ at the point $\left(\frac{20}{19}, \frac{45}{19}\right)$

Question 4:

Minimise Z = 3x + 5y

such that $x+3y \ge 3$, $x+y \ge 2$, $x,y \ge 0$

Answer

The feasible region determined by the system of constraints, $x+3y \ge 3, x+y \ge 2$, and x, $y \ge 0$, is as follows.

It can be seen that the feasible region is unbounded.

The corner points of the feasible region are A (3, 0), $B\left(\frac{3}{2},\frac{1}{2}\right)$, and C (0, 2) The values of Z at these corner points are as follows.

Corner point	Z = 3x + 5y	
A(3, 0)	9	
$B\left(\frac{3}{2},\frac{1}{2}\right)$	7	→ Smallest
C(0, 2)	10	

As the feasible region is unbounded, therefore, 7 may or may not be the minimum value of Z.

For this, we draw the graph of the inequality, 3x + 5y < 7, and check whether the resulting half plane has points in common with the feasible region or not.

It can be seen that the feasible region has no common point with 3x + 5y < 7 Therefore,

the minimum value of Z is 7 at $\left(\frac{3}{2}, \frac{1}{2}\right)$

Question 5:

Maximise Z = 3x + 2y

subject to $x + 2y \le 10, 3x + y \le 15, x, y \ge 0$

Answer

The feasible region determined by the constraints, $x+2y \le 10$, $3x+y \le 15$, $x \ge 0$, and $y \ge 0$, is as follows.

The corner points of the feasible region are A (5, 0), B (4, 3), and C (0, 5). The values of Z at these corner points are as follows.

Corner point	Z = 3x + 2y	
A(5, 0)	15	
B(4, 3)	18	→ Maximum
C(0, 5)	10	

Therefore, the maximum value of Z is 18 at the point (4, 3).

Question 6:

Minimise Z = x + 2y

subject to $2x + y \ge 3$, $x + 2y \ge 6$, $x, y \ge 0$.

Answer

******* END *******