



# O9/091608

The Patent Office Cardiff Road Newport

NEW IRH 3 1 JAN 1997

WIPO PCT

I, the undersigned, being an officer duly authorised in accordance with Section 74(1) and (4) of the Deregulation and Contracting Out Act 1994, to sign and issue certificates on behalf of the Comptroller-General, hereby certify that annexed hereto is a true copy of the documents as originally filed in connection with the patent application identified therein.

In accordance with the Patents (Companies Re-registration) Rules 1982, if a company named in this certificate and any accompanying documents has re-registered under the Companies Act 1980 with the same name as that with which it was registered immediately before re-registration save for the substitution as, or inclusion as, the last part of the name of the words "public limited company" or their equivalents in Welsh, references to the name of the company in this certificate and any accompanying documents shall be treated as references to the name with which it is so re-registered.

In accordance with the rules, the words "public limited company" may be replaced by p.l.c., plc, P.L.C. or PLC.

Re-registration under the Companies Act does not constitute a new legal entity but merely subjects the company to certain additional company law rules.



PRIORITY DOCUMENT

Signed

Dated

20 JAN 1997



For official use





95 E164111-1 002494\_\_\_\_\_

21 DEC 1995 9526131.9

Your reference

PAZRO

#### Notes

Please type, or write in dark ink using CAPITAL letters. A prescribed fee is payable for a request for grant of a patent. For details, please contact the Patent Office (telephone 071-438 4700).

Rule 16 of the Patents Rules 1990 the main rule governing the completion and filing of this form.

2 Do not give trading styles, for example, 'Trading as XYZ company', nationality or former names, for example, 'formerly (known as) ABC Ltd' as these are not required.

#### Warning

After an application for a Patent has been filed, the Comptroller of the Patent Office will consider whether publication or communication of the invention should be prohibited or restricted under Section 22 of the Patents Act 1977 and will inform the applicant if such prohibition or restriction is necessary. Applicants resident in the United Kingdom are also reminded that under Section 23, applications may not be filed abroad without written permission unless an application has been filed not less than 6 weeks previously in the United Kingdom for a patent for the same invention and either no direction prohibiting publication or communication has been given, or any such direction revoked.

# Request for grant of a **Patent** Form 1/77

Patents Act 1977

#### Title of invention

Please give the title PECCHBINANT CHINERIC of the invention RECEPTORS

#### Applicant's details

- ☐ First or only applicant
- 2a If you are applying as a corporate body please give:

Corporate name

CELLTECH

THERAPEUTICS

LTP

Country (and State of incorporation, if appropriate)

2b If you are applying as an individual or one of a partnership please give in full:

Surname

Forenames

2c In all cases, please give the following details:

Address

216

BATH RCAD

SLOUGH

BERKS

UK postcode (if applicable)

SCI 4 E N

Country

U.K.

ADP number

(if known)



Second applicant (if any) 2d, 2e and 2f: If there are further 2d If you are applying as a corporate body please give: applicants please provide details on a Corporate name separate sheet of paper. Country (and State of incorporation, if appropriate) 2e If you are applying as an individual or one of a partnership please give in full: Surname Forenames In all cases, please give the following details: Address UK postcode (if applicable) Country ADP number (if known) Address for service details 3 An address for service in the United Kingdom must be supplied Have you appointed an agent to deal with your application? No **√ ⇒** go to 3b Please mark correct box Yes please give details below Agent's name Agent's address Postcode Agent's ADP number 3b: If you have appointed an agent, all 3b If you have not appointed an agent please give a name and address in the correspondence concerning your United Kingdom to which all correspondence will be sent: application will be sent to the agent's United Kingdom address. Name A. E. LOVE DE. Address CECCTECH THERAPEUTICS LTD ВАТН ROAD SLOUGH BECKS Daytime telephone 01753 SUL 4 EN Postcode number (if available) ext 2375 ADP number 534655 (if known) 3526001

| •                                                                                                                   | ·                                                                                                                         |                                        |                    |  |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------|--------------------|--|
|                                                                                                                     | Reference number                                                                                                          | r                                      |                    |  |
| <i>(</i>                                                                                                            | 4 Agent's or applicant's reference number (if applicable)                                                                 | PA 387                                 |                    |  |
|                                                                                                                     | Claiming an earlier application date                                                                                      |                                        |                    |  |
|                                                                                                                     | 5 Are you claiming that this application be treated as having been filed on the date of filing of an earlier application? |                                        |                    |  |
| Please mark correct box                                                                                             | Yes No ✓ → go to 6                                                                                                        |                                        |                    |  |
|                                                                                                                     | please give details below                                                                                                 |                                        |                    |  |
|                                                                                                                     | number of earlier application or patent number                                                                            |                                        |                    |  |
|                                                                                                                     | ☐ filing date                                                                                                             | (day month year)                       |                    |  |
| •                                                                                                                   | and the Section of the Patents Act 1977 under which you are claiming:                                                     |                                        |                    |  |
| Please mark correct box                                                                                             | 15(4) (Divisional)                                                                                                        | 1) (Divisional) 8(3) 12(6) 37(4)       |                    |  |
| <b>(3)</b> If you are declaring priority from a                                                                     | Declaration of priority                                                                                                   |                                        |                    |  |
| PCT Application please enter 'PCT' as<br>the country and enter the country<br>code (for example, GB) as part of the | 6 If you are declaring priority from previous application(s), please give:                                                |                                        |                    |  |
| application number.                                                                                                 | Country of filing                                                                                                         | Priority application number (if known) | Filing date        |  |
| Please give the date in all number format, for example, 31/05/90 for 31 May 1990.                                   | Country of ming                                                                                                           | (II KIIOWII)                           | (day, month, year) |  |
|                                                                                                                     |                                                                                                                           |                                        |                    |  |
|                                                                                                                     |                                                                                                                           |                                        |                    |  |
|                                                                                                                     |                                                                                                                           |                                        |                    |  |
|                                                                                                                     |                                                                                                                           |                                        |                    |  |
|                                                                                                                     |                                                                                                                           |                                        |                    |  |
|                                                                                                                     |                                                                                                                           |                                        |                    |  |
|                                                                                                                     |                                                                                                                           |                                        |                    |  |
|                                                                                                                     |                                                                                                                           |                                        |                    |  |

| 7 Are you (the applicant or applicants) the sole inventor or the joint invent  Please mark correct box Yes No A Statement of Inventorship on Patents Form 7/77 will need to be filed (see Rule 15).  3 Checklist  8a Please fill in the number of sheets for each of the following types of document contained in this application.  Continuation sheets for this Patents Form 1/77 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Claim(s) Description 25  Abstract Drawing(s) 32                                                                                                                                                                                                                                                                                                                                     |
| 8b Which of the following documents also accompanies the application?  Priority documents (please state how many)                                                                                                                                                                                                                                                                   |
| Translation(s) of Priority documents (please state how many)  Patents Form 7/77 – Statement of Inventorship and Right to Grant (please state how many)  Patents Form 9/77 – Preliminary Examination/Search  Patents Form 10/77 – Request for Substantive Examination                                                                                                                |
| 9 Request  I/We request the grant of a patent on the basis of this application.  Fol And on Rehalf of Celltein Thekaffuncs Limited                                                                                                                                                                                                                                                  |
| Signed Date 2. 11 55 (day month year)                                                                                                                                                                                                                                                                                                                                               |
| Please return the completed form, attachments and duplicates where requested, together with the prescribed fee to either:  The Comptroller or The Comptroller The Patent Office The Patent Office Cardiff Road 25 Southampton Buildings Newport London WC2A 1AY NP9 1RH                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                     |

#### RECOMBINANT CHIMERIC RECEPTORS

This invention relates to an improved method of activating a cell, a DNA delivery system, a DNA sequence coding for a recombinant chimeric receptor, target cells and target hosts containing said DNA delivery system, to a method of treatment comprising administering said DNA delivery system; to the use of said DNA delivery system in medicine.

5

25

30

35

The natural T-cell receptor is a complex association of polypeptide chains 10 comprising antigen binding, transmembrane and cytoplasmic components. Binding of antigen to the receptor in the correct context triggers a series of intracellular events leading to activation of the T-cell and for example destruction of the antigen presenting target cell. Before recognition of the 15 antigen can take place, the antigen must be presented in association with MHC molecules. It would be highly desirable if this requirement for MHC in presentation of an antigen could be bypassed and T-cells engineered to become active on binding ligands other than a natural MHC-presented antigen. This would provide a means of avoiding the variability between individuals associated with MHC presentation and would also permit the 20 targeting of more highly expressed surface antigens thereby increasing the efficacy of lymphocyte mediated therapy e.g. tumour therapy.

Chimeric receptors have been designed to target T-cells to cells expressing antigen on their cell surface. Such recombinant chimeric receptors include chimeras containing binding domains from antibodies and intracellular signalling domains from the T-cell receptor, termed 'T-bodies', see for example Published International Patent Applications Nos. WO 92/10591, WO 92/15322, WO 93/19163 and WO 95/02686. The recombinant chimeric receptors described in the art are composed of a ligand binding component, a transmembrane component and a cytoplasmic component. It has been found however, that transfection of T-cells with these recombinant chimeric receptors does not result in acceptable levels of T-cell activation upon antigen binding unless the T-cell is also co-stimulated by, for example, treatment with high levels of II-2. Such treatment using T-cells transfected with the recombinant chimeric

receptor makes the method suitable principally for <u>ex-vivo</u> treatment of patients. Treatment of patients <u>ex-vivo</u> is a lengthy and complicated procedure.

The present invention offers an alternative to the present <u>ex-vivo</u> approach and achieves improved <u>ex-vivo</u> activation without the need for addition of costimulating agents such as II-2, and successful <u>in-vivo</u> redirection and activation of T-cells bearing a recombinant chimeric receptor. The invention further provides a means of increasing cell activation in response to a single type of extracellular interaction. As used herein, cell activation may be evidenced by an increase in proliferation; expression of cytokines with, for example pro or anti-inflammatory responses; stimulation of cytolytic activity, differentiation or other effector functions; antibody secretion; phagocytosis; tumour infiltration and/or increased adhesion.

15

20

25

30

35

The invention provides an effector cell with two or more different signalling cytoplasmic components which are not naturally linked and which advantageiously are chosen to act together cooperatively to produce improved activation of the cell. This may be achieved using a DNA delivery system comprising one or more DNA sequences coding for a recombinant chimeric receptor comprising two or more signalling cytoplasmic components which are not naturally linked and where at least one of said cytoplasmic signalling components is derived from a membrane spanning polypeptide. Alternatively the DNA delivery system may comprise two or more recombinant chimeric receptors each comprising one or more different signalling cytoplasmic components which are not naturally linked and where at least one of the cytoplasmic signalling components is derived from a membrane spanning polypeptide. DNA coding for such recombinant chimeric receptors may be introduced into T-cells or other effector cells in-vivo and/or ex-vivo. Subsequent binding of an effector cell expressing one or more chimeric receptors to a target cell elicits signal transduction leading to activation of the effector cell in a process involving clustering or dimerisation of chimeric receptors or allosteric changes in the chimeric receptor or another mechanism for receptor-triggering.

In a first aspect the invention provides a method of activating a cell as a result of one type of extracellular interaction between said first cell and a cell surface target molecule on a second cell characterised in that said first cell is provided with a DNA delivery system comprising one or more DNA molecules coding for two or more different cytoplasmic signalling components which are not naturally linked, and wherein at least one of said cytoplasmic components is derived from a membrane spanning polypeptide.

When the DNA coding for the signalling cytoplasmic components is expressed, and on the extracellular interaction between the cell and a cell surface target molecule on a second cell, a signal is transduced via the cytoplasmic components to two or more different intracellular signalling messengers resulting in activation of the cell.

15

20

25

30

35

5

The signalling cytoplasmic components may form part of a recombinant chimeric receptor and the cell is transfected with a DNA delivery system comprising DNA coding for a recombinant chimeric receptor where the receptor comprises two or more different signalling cytoplasmic components which are not naturally linked and wherein at least one of the signalling cytoplasmic components is derived from a membrane spanning polypeptide. The recombinant chimeric receptor is expressed on the cell surface and on binding of a cell surface target molecule two or more intracellular responses are produced via the signalling cytoplasmic components.

The recombinant chimeric receptor preferably comprises a binding component capable of recognising a cell surface molecule on a target cell, and a transmembrane component in combination with the signalling cytoplasmic domains.

In a second aspect the invention provides a DNA delivery system comprising one or more DNA molecules coding for a recombinant chimeric receptor in association with a carrier said receptor comprising two or more different signalling cytoplasmic components which are not naturally linked,

4 and wherein at least one of said cytoplasmic components is derived from a membrane spanning polypeptide. As used herein the term 'not naturally linked' is used to denote signalling 5 cytoplasmic components which in nature are not connected to each other on a single polypeptide chain. The DNA may comprise two or more DNA molecules which together form one recombinant chimeric receptor. For example, each DNA molecule 10 comprises DNA coding for a signal peptide component, a binding component, a transmembrane component and one or more signalling cytoplasmic components. Each DNA molecule may comprise DNA coding for a different number of signalling cytoplasmic components. Upon expression within the target cell and/or target host the resulting 15 polypeptide chains assemble to form a recombinant chimeric receptor. In a preferred embodiment of the second aspect of the invention, the invention provides a DNA delivery system comprising DNA coding for a recombinant chimeric receptor in association with a carrier wherein said 20 DNA codes for: i) a signal peptide component ii) a binding component capable of recognising a cell surface molecule 25 on a target cell iii) a transmembrane component and iv) two or more different signalling cytoplasmic components and wherein 30 said cytoplasmic components are not naturally linked, and wherein at least one of said cytoplasmic components is derived from a membrane spanning polypeptide. The DNA delivery system may also comprise DNA coding for two 35 recombinant chimeric receptors each with one or more signalling

5 cytoplasmic components where one or more of the components is derived from a membrane spanning polypeptide. In a third aspect the invention provides a DNA delivery system comprising 5 two or more DNA molecules coding for two or more recombinant chimeric receptors wherein each of said receptors comprises one or more different signalling cytoplasmic components and said different signalling cytoplasmic components are not naturally linked, and wherein at least one of said cytoplasmic components is derived from a membrane spanning 10 polypeptide. The recombinant chimeric receptors of the third aspect of the invention preferably also comprise a binding component, a transmembrane component and one or more different signalling cytoplasmic components. 15 said different signalling cytoplasmic components not being naturally linked. and the DNA molecule coding for the receptor preferably also comprises DNA coding for a signal peptide component. The components of the recombinant chimeric receptor are operatively 20 linked such that the signalling cytoplasmic components are functional in transducing a signal resulting in activation of one or more messenger systems as a result of recognition of a cell surface molecule on a target cell by the binding component. Two or more of the components may be linked by one or more spacer 25 regions. The spacer regions may function to facilitate the components adopting the correct conformation for biological activity. The use of a spacer region to link the transmembrane component and the binding component is particularly advantageous. 30 The spacer regions may for example comprise up to 300 amino acids and preferably 20 to 100 amino acids and most preferably 25 to 50 amino acids. Spacers may be derived from all or part of naturally occurring molecules 35 such as from the immunoglobulin like components of CD8, e.g. the CD8

6 hinge region; CD4; CD28; an antibody constant component, or may be a non-naturally occurring sequence. All or part of natural spacing components between functional parts of intracellular signalling molecules for example spacers between ITAMS (immunoreceptor tyrosine based 5 activation motifs) may also be used. In a particularly preferred embodiment of the second aspect of the invention there is therefore provided a DNA delivery system comprising DNA coding for a recombinant chimeric receptor in association with a 10 carrier wherein said sequence comprises DNA coding for: i) a cell signal component ii) a binding component capable of recognising a cell surface molecule 15 on a target cell iii) a transmembrane component iv) two or more different signalling cytoplasmic components, said 20 cytoplasmic components not being naturally linked and wherein at least one of said cytoplasmic components is derived from a membrane spanning polypeptide and wherein two or more of said components may optionally be linked by one or more spacer regions. 25 The binding components may be all or part of a molecule interacting with cell surface molecules and may be chosen to recognise a surface marker expressed on cells associated with a disease state such as for example those associated with virally infected cells, bacterially infected cells, 30 cancer cells, such as the bombesin receptor expressed on lung tumour cells; peptide hormones, adhesion molecules, inflammatory cells present in autoimmune disease, or a T-cell receptor or antigen giving rise to autoimmunity. 35 Suitable binding components for use in the constructs of the invention also include all or part of receptors associated with binding to cell surface

7 associated molecules; the T-cell receptor; CD4; CD8; CD28; cytokine

receptors e.g. an interleukin receptor, TNF receptor, interferon receptor e.g. γ-IFN; receptors for colony stimulating factors e.g. GMCSF; antibodies and antigen binding fragments thereof including for example Fab, Fab', F(ab')<sub>2</sub>, scFv, Fvs, V<sub>H</sub> and V<sub>L</sub> components which may be in association with CH and CL domains; and where the antibodies or fragments may be murine, human, chimeric or engineered human using techniques well known in the art (see for example International Patent Application WO 91/09967).

10

15

30

35

Where the DNA delivery system comprises two or more DNA molecules coding for two or more recombinant chimeric receptors, the binding component of each recombinant chimeric receptor participates in the same type of extracellular binding event for example they both bind to the same ligand expressed on the same tumour cell. It is preferred that the binding components bind to the same or different epitopes of the same antigen and it is particularly preferred that the binding component of each recombinant chimeric receptor is the same.

20 The transmembrane component may or may not be naturally linked to the cytoplasmic component to which it is attached either directly or by means of a spacer. Transmembrane components may be derived from a wide variety of sources such as the zeta chain of the T-cell receptor, CD28, CD8, CD4, cytokine receptors e.g. interleukin receptor. TNF receptors. 25 interferon receptors, colony stimulating factor receptors e.g. GMCSF.

The extracellular spacer and transmembrane components may be chosen such that they have free thiol groups thereby providing the construct with multimerisation capacity, such as for example CD28 components and the zeta chain of the natural T-cell receptor, and antibody hinge sequences.

The signalling cytoplasmic components for example transduce a signal which results in activation of one or more intracellular messenger system. It is preferred that each of the cytoplasmic components activates a different messenger system. Examples of suitable cytoplasmic components include, for example those derived from the T-cell receptor

zeta, eta or epsilon chain; CD28, Fc receptors e.g. the  $\gamma$  chain of FcRI, signalling components from cytokine receptors e.g. interleukin, TNF and interferon receptors, colony stimulating factor receptors e.g. GMCSF; tyrosine kinases e.g. ZAP-70, fyn, lyk, Itk and syk; and signalling components of adhesion molecules e.g. LFA-1 and LFA-2. The signalling cytoplasmic components are preferably ITAM containing cytoplasmic components

The binding component, transmembrane component, and cytoplasmic components are preferably derived from or based on human sequences.

The intracellular messenger systems which may be activated either directly or indirectly include, for example, one or more kinase pathways such as those involving tyrosine kinase, PKC or MAP kinase; G-protein or phospholipase mediated pathways; calcium mediated pathways; and pathways involving synthesis of a cytokine such as an interleukin e.g. IL-2, including NFAT, and cAMP mediated pathways.

The peptide signal component may be that naturally associated with the binding component or may be derived from other sources. Examples of suitable signal peptide components include immunoglobulin signal sequences.

The carrier for use in the DNA delivery systems according to the invention may be a vector or other carrier suitable for introduction of the DNA <u>exvivo</u> or <u>in-vivo</u> into target cells and/or target host cells. Examples of suitable vectors include viral vectors such as retroviruses, adenoviruses, adenoassociated viruses, EBV, and HSV.

The vectors or other carriers may be non-viral vectors which may include promoter/regulatory sequences and/or replication functions from viruses such as retrovirus LTRs, AAV repeats, SV40 and hCMV promoters and/or enhancers, splicing and polyadenylation signals; EBV and BK virus replication functions.

5

15

9 Tissue specific regulatory sequences such as the TCR- $\alpha$  promoter. Eselectin promoter and the CD2 promoter and locus control region may also be used. 5 Non-viral based vectors such as liposomal vectors and vectors based on DNA compacting agents may also be used. For <u>ex-vivo</u> use, the DNA delivery system of the invention may then be introduced into effector cells removed from the target host using methods 10 well known in the art e.g. transfection, transduction, biolistics, protoplast fusion, calcium phosphate precipitated DNA transformation. electroporation, cationic lipofection, or targeted liposomes. Where two or more DNA molecules are used in the DNA delivery system 15 they may be incorporated into the same or different carriers as described above. Examples of suitable effector cells include cells associated with the immune system such as lymphocytes e.g. cytotoxic T-lymphocytes. 20 tumour infiltrating lymphocytes, natural killer cells, neutrophils, basophils or T-helper ceils; dendritic cells, B-cells, haemopoetic stem cells, and macrophages. The use of T-lymphocytes is especially preferred. The effector cells are then reintroduced into the host using standard 25 techniques. A wide variety of target hosts may be employed according to the present invention such as, for example, mamms and, especially, humans. The DNA delivery system according to the invention may be in a form 30 suitable for in vivo administration. It may, for example, be in the form of a targeted delivery system in which the carrier is capable of directing the DNA to a desired effector cell. Particular examples of such targeted delivery systems include targeted-naked DNA, targeted liposomes 35 encapsulating and/or complexed with the DNA, targeted retroviral systems and protamine and poly-lysine condensed DNA.

Targeting systems are well known in the art and include using, for example, antibodies or fragments thereof against cell surface antigens expressed on target cells *in vivo* such as CD8; CD16; CD4; CD3; selectins e.g. E-selectin; CD5; CD7; CD34; activation antigens e.g. CD69 and IL-2R. Alternatively, other receptor - ligand interactions can be used for targeting e.g. CD4 to target HIV<sub>qp</sub>160 - expressing target cells.

The use of targeted liposomes such as antibody targeted liposomes is preferred.

Particular types of liposomes which may be used include for example pH-sensitive liposomes especially antibody-targeted pH-sensitive liposomes where linkers cleaved at low pH may be used to link the antibody to the liposome.

Cationic liposomes which fuse with the cell membrane and deliver the recombinant chimeric receptor DNA according to the invention directly into the cytoplasm may also be used.

Liposomes for use in the invention may also have hydrophilic groups attached to their surface to increase their circulating half-life such as for example polyethylene glycol polymers. There are many examples in the art of suitable groups for attaching to liposomes or other carriers; see for example International Patent Applications Nos. WO 88/04924, WO 90/09782, WO 91, 05545, WO 91/05546, WO 93/19738, WO 94/20073 and WO 94/22429. The antibody or other targeting molecule may be incorporated in the hydrophilic group as described in the art.

Non-targeted delivery systems may also be used and in these targeted expression of the DNA is advantageous. Targeted expression of the DNA may be achieved for example by using T-cell specific promoter systems such as the zeta promoter and CD2 promoter and locus control region, and the perforin promoter.

35

5

15

20

In a further aspect the invention provides effector cells transfected with a DNA delivery system according to the invention.

The effector cells according to this aspect of the invention may be any of those previously described above and are preferably T-cells most preferably cytotoxic T-cells.

10

15

35

The DNA delivery system may be a therapeutic or diagnostic composition and may take any suitable form for administration, and, preferably is in a form suitable for parenteral administration e.g. by injection or infusion, for example by bolus injection or continuous infusion. Where the composition is for injection or infusion, it may take the form of a suspension, solution or emulsion in an oily or aqueous vehicle and it may contain formulatory agents such as suspending, preservative, stabilising and/or dispersing agents.

Alternatively, the composition may be in dry form, for reconstitution before use with an appropriate sterile liquid.

If the composition is suitable for oral administration the formulation may contain, in addition to the active ingredient, additives such as: starch - e.g. potato, maize or wheat starch or cellulose - or starch derivatives such as microcrystalline cellulose; silica; various sugars such as lactose; magnesium carbonate and/or calcium phosphate. It is desirable that, if the formulation is for oral administration it will be well tolerated by the patient's digestive system. To this end, it may be desirable to include in the formulation mucus formers and resins. It may also be desirable to improve tolerance by formulating the compositions in a capsule which is insoluble in the gastric juices. It may also be preferable to include the composition in a controlled release formulation.

In a yet further aspect the invention provides the use in medicine of a DNA delivery system comprising one or more DNA molecules coding for one or more recombinant chimeric receptors in association with a carrier said receptor comprising two or more different signalling cytoplasmic components which are not naturally linked.

12
In a still further aspect of the invention, there is

In a still further aspect of the invention, there is provided a method of treatment of a human or animal subject, the method comprising administering to the subject an effective amount of a DNA delivery system comprising one or more DNA coding for one or more recombinant chimeric receptors in association with a carrier, said receptor comprising two or more different signalling cytoplasmic components which are not naturally linked.

In a further aspect the invention provides DNA molecule coding for a recombinant chimeric receptor wherein said DNA comprises DNA coding for:

i) a signal peptide component

15

5

- ii) a binding component capable of recognising a cell surface protein on a target cell
- iii) a transmembrane component

20

iv) two or more signalling cytoplasmic components wherein said cytoplasmic components are not naturally linked together as a single translation product.

In a preferred embodiment of this aspect of the invention two or more of said components may optionally be linked by one or more spacer molecules.

Homologues of the individual components of the chimeric receptor may be used. The term homologue as used herein with respect to a particular nucleotide or amino acid sequence coding for a component of the chimeric receptor represents a corresponding sequence in which one or more nucleotides or amino acids have been added, deleted, substituted or otherwise chemically modified provided always that the homologue retains substantially the same function as the particular component of the chimeric receptor. Homologues may be obtained by standard molecular

biology and/or chemistry techniques e.g. by cDNA or gene cloning, or by use of oligonucleotide directed mutagenesis or oligonucleotide directed synthesis techniques or enzymatic cleavage or enzymatic filling in of gapped oligonucleotides.

5

Fragments of the individual components may also be used wherein one or more nucleotides has been deleted provided that the fragment retains substantially the same function as the starting component of the chimeric receptor.

10

15

The DNA for use in this and other aspects of the invention may be obtained from readily available DNA sources using standard molecular biology and/or chemistry procedures, for example by use of oligonucleotide directed mutagenesis or oligonucleotide directed synthesis techniques, enzymatic cleavage or enzymatic filling in of gapped oligonucleotides. Such techniques are described by Maniatis <u>et al</u> in Molecular Cloning, Cold Spring Harbor Laboratory, New York 1989, and in particular in the Examples hereinafter.

20

The DNA delivery system according to the invention may be useful in the treatment of a number of diseases or disorders. Such diseases or disorders may include those described under the general headings of infectious diseases, e.g. HIV infection; inflammatory disease/autoimmunity e.g. rheumatoid arthritis, osteoarthritis, inflammatory bowel disease; cancer; allergic/atopic diseases e.g. asthma, eczema; congenital e.g. cystic fibrosis, sickle cell anaemia; dermatologic, e.g. psoriasis; neurologic, e.g. multiple sclerosis; transplants e.g. organ transplant rejection, graft-versus-host disease; metabolic/idiopathic disease e.g. diabetes.

30

25

The invention is further illustrated in the following non-limiting Examples and Figures in which:

35

Figure 1 shows: diagrammatic representation of recombinant chimeric receptor constructs cloned into pBluescript KS+

|    | Figure 2 shows:  | diagrammatic representation of recombinant chimeric receptor constructs cloned into pBluescript KS+                                                                                            |
|----|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | Figure 3 shows:  | oligonucleotide sequences for recombinant chimeric receptor construction                                                                                                                       |
| 5  | Figure 4 shows:  | nucleotide and amino acid sequence of an hCTMO1/CD8/zeta recombinant chimeric receptor                                                                                                         |
|    | Figure 5 shows:  | nucleotide and amino acid sequence of an hCTMO1/<br>CD8/zeta-CD28 recombinant chimeric receptor fusion                                                                                         |
| 10 | Figure 6 shows:  | nucleotide and amino acid sequence of an hCTMO1/<br>CD8/CD28 recombinant chimeric receptor                                                                                                     |
|    | Figure 7 shows:  | nucleotide and amino acid sequence of an CTMO1/G1/<br>zeta recombinant chimeric receptor                                                                                                       |
|    | Figure 8 shows:  | nucleotide and amino acid sequence of an hCTMO1/<br>G1/zeta-CD28 recombinant chimeric receptor fusion                                                                                          |
| 15 | Figure 9 shows:  | nucleotide and amino acid sequence of an hCTMO1/h/CD28 recombinant chimeric receptor                                                                                                           |
| 20 | Figure 10 shows: | histogram representation of IL2 production by cell lines TB3.2, 3.13 and 3.24 when stimulated with an anti-idiotypic antibody alone or in combination with an anti-CD28 antibody               |
| 20 | Figure 11 shows: | histogram representation of the production of IL2 by cell line TB3.13 when stimulated with antigen expressing tumour cells, shown with and without co-stimulation using an anti-CD28 antibody. |
| 25 | Figure 12 shows: | histogram representation of IL-2 production by HGT1.2 and HGT1.4 in response to various stimuli                                                                                                |
|    | Figure 13 shows: | histogram representation of IL-2 production by HGT2.4 incubated with various combinations of antibodies.                                                                                       |
| 30 | Figure 14 shows: | schematic representation of recombinant chimeric receptor constructs.                                                                                                                          |
|    | Figure 15 shows: | schematic representation of recombinant chimeric receptor constructs                                                                                                                           |

# MATERIALS AND METHODS

35 **INTRODUCTION** 

scFv / CD8 / Zeta Chimeric Receptor

The scFv / CD8 / Zeta chimeric receptor consists of a single chain Fv linked to an extracellular spacer in the form of part of human CD8 hinge, linked to the extracellular, transmembrane and intracellular components of the human T-cell receptor Zeta chain (TCR).

5

10

The single chain Fv consists of the leader sequence and variable component of the light chain of the engineered human antibody linked via a (Gly4Ser)5 linker to the variable component of the heavy chain of the engineered human antibody. The extracellular spacer consists of residues 98 to 142 of the hinge region of human CD8 (Zamoyska *et al*: Cell 43,153-163, 1985). This is linked to residues 22 to 162 of human TCR Zeta comprising extracellular, transmembrane and intracellular regions (Weissman *et al*: PNAS 85, 9709-9713, 1988).

#### 15 scFv / CD8 / CD28 Chimeric Receptor

The hCTMO1 CD28 chimeric receptor consists of a single chain Fv linked to an extracellular spacer in the form of part of human CD8 hinge, linked to the transmembrane and intracellular component of human CD28.

The single chain Fv consists of the leader sequence and variable component of the light chain of the engineered human antibody linked via a (Gly4Ser)5 linker to the variable component of the heavy chain of the engineered human antibody. The extra cellular spacer consists of residues 98 to 142 of the hinge region of human CD8 (Zamoyska *et al*: Cell 43 153-163, 1985). This is linked to residues 132 to 202 of human CD28 comprising the transmembrane and intracellular components (Aruffo & Seed: PNAS 84, 8573-8577).

#### scFv /CD8 / Zeta-CD28 Fusion Chimeric Receptor

The scFv /CD8 / Zeta-CD28 Fusion chimeric receptor consists of a single chain Fv linked to an extracellular spacer in the form of part of human CD8 hinge, linked to the extracellular, transmembrane and intracellular component of human TCR Zeta fused to the intracellular component of human CD28.

The single chain Fv consists of the leader sequence and variable component of the light chain of the engineered human antibody linked via a (Gly4Ser)5 linker to the variable component of the heavy chain of the engineered human antibody. The extra cellular spacer consists of residues 98 to 142 of the hinge region of human CD8 (Zamoyska *et al*: Cell, 43,153-163, 1985). This is linked to residues 22 to 162 of human TCR Zeta comprising extracellular, transmembrane and intracellular components (Weissman *et al*: PNAS <u>85,</u>9709-9713, 1988). This is linked to residues 162 to 202 comprising the intracellular component of human CD28.

#### scFv / G1 / Zeta Chimeric Receptor

The scFv / G1 / Zeta chimeric receptor consists of a single chain Fv linked to an extracellular spacer comprising human IgG 1 hinge, CH2 and CH3, linked to the transmembrane and intracellular regions of human TCR Zeta.

The single chain Fv consists of the leader sequence and variable component of the light chain of the engineered human antibody linked via a (Gly4Ser)5 linker to the variable component of the heavy chain of the engineered human antibody. The extracellular spacer consists of residues 234 to 243 of human IgG1 hinge, 244 to 360 of CH2 and 361 to 478 of CH3 (Kabat *et al* Sequences of proteins of immunological interest, 1987). This is linked to residues 22 to 162 of human TCR Zeta comprising extracellular, transmembrane and intracellular regions (Weissman *et al*: PNAS <u>85</u>,9709-9713, 1988).

#### scFv / G1 / Zeta-CD28 fusion Chimeric Receptor

The scFv / G1 / Zeta chimeric receptor consists of a single chain Fv linked to an extra cellular spacer comprising human IgG 1 hinge, CH2 and CH3, linked to the transmembrane and intracellular regions of human Zeta fused to the intracellular region of human CD28.

The single chain Fv consists of the leader sequence and variable component of the light chain of the engineered human antibody linked via a (Gly4Ser)5 linker to the variable component of the heavy chain of the engineered human antibody. The extracellular spacer consists of residues

35

5

10

15

20

25

234 to 243 of human IgG1 hinge, 244 to 360 of CH2 and 361 to 478 of CH3 (Kabat *et al* Sequences of proteins of immunological interest, 1987). This is linked to residues 22 to 162 of human TCR Zeta comprising extracellular, transmembrane and intracellular regions (Weissman *et al*: PNAS <u>85</u>,9709-9713, 1988). This is linked to residues 162 to 202 comprising the intracellular component of human CD28.

#### scFv / h / CD28 Chimeric Receptor

- 10 The scFv / h / CD28 chimeric receptor consists of a single chain Fv linked to an extracellular spacer consisting of human IgG1 hinge and part of the extracellular region of human CD28, linked to the transmembrane and intracellular regions of human CD28.
- The single chain Fv consists of the leader sequence and variable component of the light chain of the engineered human antibody linked via a (Gly4Ser)5 linker to the variable component of the heavy chain of the engineered human antibody. The extracellular spacer consists of residues 234 to 243 of human IgG1 hinge and residues 118 to 134 of human CD28.
- This is linked to residues 135 to 202 of human CD28 comprising the transmembrane and intracellular regions (Aruffo & Seed : PNAS <u>84</u>, 8573-8577).

These chimeric receptors were constructed for the engineered human antibodies CTMO1, directed against human polymorphic epithelial mucin (PEM).and P67.6, directed against human CD33.

#### **CONSTRUCTION OF CHIMERIC RECEPTORS**

Each component of the chimeric receptor constructs was either PCR cloned or PCR assembled by standard techniques (PCR Protocols, Innis et al, 1990, Academic Press inc.) and sub-cloned in a cassette format into pBluescript KS+ (Stratagene), see figure 1 and 2.

#### 1. Single chain Fy cassette

35 hCTMO1

Leader sequence and hCTMO1 VI was PCR cloned from plasmid pAL 47 (WO 93/06231) with oligos R6490 and R6516 (Oligo sequences are shown in Figure 3). R6490 introduces 5' Not I and Hind III sites and R6516 forms part of the (Gly4Ser)5 linker. hCTMO1 Vh was PCR cloned from plasmid pAL 52 with oligos R6515 (forms part of linker) and R6514 (introduces 3' Spe I site. Leader / VI and Vh fragments were then PCR spliced together and the PCR product was restricted with Not I and Spe I and sub-cloned into pBluescript KS+.

#### 10 Anti-CD33 Antibody - hP67.6

5

35

A hP67.6 single chain Fv was similarly prepared and subcloned into pBluescript KS+.

#### 2. CD8 hinge spacer cassette

- The CD8 hinge spacer for hCTMO1 TCR Zeta chimeric receptor and hCTMO1 TCR Zeta-CD28 fusion chimeric receptor (which includes a small part of 5' Zeta) was PCR assembled using overlapping oligos: R6494,R6495,R6496 and R6497. The CD8 hinge spacer for hCTMO1 CD28 chimeric receptor was PCR assembled using overlapping oligos:
- 20 R6494,R6495,R6496 and R6506. Both PCR products were restricted with Spe I and BamH I and sub-cloned into pBluescript KS+.

#### 3. <u>Human TCR Zeta cassette</u>

Human Zeta transmembrane and intracellular components were PCR cloned from human leukocyte cDNA (Clonetech) with oligos R6488 (introducing a 5' BamH I site) and R6489 (introducing a 3' EcoR I site). PCR product was restricted with BamH I and EcoR I and sub-cloned into pBluescript KS+.

#### 30 4. <u>Human CD28 cassette</u>

Human CD28 transmembrane and intracellular components were PCR cloned from human leukocyte cDNA (Clonetech) with oligos P3240 (introducing a 5' BamH I site) and P3241 (introducing a 3' EcoR I site). PCR product was restricted with BamH I and EcoR I and sub-cloned into pBluescript KS+.

#### 5. <u>Hinge-CD28 cassette</u>

Human CD28 extracellular, transmembrane and intracellular components were PCR cloned from human leukocyte cDNA (Clonetech) with oligos S0146 (introducing a 5' Spe I site) and P3241 (introducing a 3' EcoR I site). S0146 also constitutes residues 234 to 243 of human IgG1 hinge.

#### 6. Zeta-CD28 fusion cassette

The 3' end of Zeta, starting at a naturally occurring Sty I site and the intracellular component of human CD28 were PCR assembled such that the Zeta stop codon was removed and an inframe fusion protein would be translated. PCR assembly carried out with overlapping oligos: P3301, P3302, P3303, P3304, P3305 and P3306. PCR product was restricted with Sty I and EcoR I and sub-cloned into pBluescript containing the hCTMO1 TCR Zeta chimeric receptor construct, replacing the 3' end of Zeta.

#### 7. <u>Human IgG1 cassette</u>

Human IgG1 hinge, CH2 and CH3 were PCR cloned from IgG1 cDNA clone (A. Popplewell) with oligos S0060 (introducing a 5' Spe I site) and S0061 (introducing a 3' BamH I site. PCR product was restricted with Spe I and BamH I and sub-cloned into pBluescript.

All chimeric receptor constructs were completely sequenced (Applied Biosystems, Taq DyeDeoxy Terminator Cycle Sequencing, Part Number 901497) in pBluescript prior to cloning into the expression vectors.

#### EXPRESSION OF CHIMERIC RECEPTOR CONSTRUCTS

chimeric receptor constructs were cloned from pBluescript into the expression vectors ee6HCMVNe and ee6HCMVGpt Bebbington (1991), Methods 2, 136-145) on a Hind III to EcoR I restriction fragment. The hCTMO1 and hP67.6/CD8/ Zeta, hP67.6 / G1 / Zeta, hP67.6 / G1 / Zeta-CD28 chimeric receptor constructs were cloned into ee6HCMVNe and the hCTMO1 / CD8 /CD28, hCTMO1 Zeta-CD28 fusion and hP67.6 /h/ CD28 chimeric receptor constructs were cloned into ee6HCMVGpt.

35

5

10

15

20

25

Plasmids were linearised and transfected into Jurkat E6.1 cells (ECACC) by electroporation using a Bio-Rad Gene Pulser using the method of Rigley *et al* (J. Immunol. (1995) 154, 1136-1145). Chimeric receptor expressing colonies were selected in media either containg the drug G418 for Neo vectors or Mycophenolic acid for Gpt vectors. After approximately four weeks colonies were visible. Colonies were screened by analysis of surface expression of single chain Fv.

#### **ANTIBODIES**

5

25

30

Anti-idiotype antibodies are purified antisera from rabbits immunised with hCTMO1 or hP67.6. Anti-Id antibodies were purified initially on Protein A-Sepharose, absorbed out against human IgG-Sepharose and finally affinity purified on hCTMO1 or hP67.6-Sepharose. OKT3 recognises an extracellular component of human CD3 ε (ATCC). Anti-CD28 used in these experiments was a rat IgG2b monoclonal antibody (clone YTH 913.12) directed against the extracellular component of human CD28 (Cymbus Bioscience). FITC labelled donkey anti-rabbit Ig recognises rabbit heavy and light chains (Jackson Research Laboratories).

## 20 ANALYSIS OF SURFACE EXPRESSION OF scFv

Approximately  $5X10^5$  cells were stained with saturating concentrations of anti-idiotype ( $10\mu g/ml$ ), then incubated with fluorescein-conjugated donkey anti-rabbit antibody. Fluorescence was analysed by FACScan (Beckton Dickinson).

#### **ACTIVATION ASSAYS**

#### a) Anti-Id stimulation

1 X 10<sup>6</sup> Jurkat transfectants were incubated in a 96 well plate (Nunc) previously coated with / without a saturating concentration of anti-idiotype antibody at 37°C / 5% CO<sub>2</sub> in non-selective media. Additional stimuli of anti-CD<sub>2</sub>8 and OKT<sub>3</sub> were added in solution to a final concentration of  $5\mu g/mL$ . After 18 to 20 hours cells were centrifuged and supernatant assayed for human IL-2 (Quantikine kit, R & D Systems).

#### 35 <u>b) Antigen expressing cell stimulation</u>

1 X  $10^6$  Jurkat transfectants were incubated with 1 X  $10^5$  MCF-7 cells (P.E.M. antigen expressing) in a 96 well plate (Falcon) overnight at 37°C / 5% CO<sub>2</sub>.

Additional stimulus of anti-CD28 was added in solution to a final concentration of 5μg/mL. After 18 to 20 hours cells were centrifuged and supernatant assayed for human IL-2 (Quantikine kit, R & D Systems).

#### 10 **RESULTS**

15

25

30

35

Cross-linking the T-cell receptor with anti-CD3 antibodies can be used to stimulate T-cell lines such as Jurkat E6.1 to produce cytokines including IL-2. The expression of IL-2 can be further enhanced by co-stimulation by means of antibodies to the CD28 cell surface molecule in this cell line. This therefore provides a convenient model system to evaluate chimeric

receptors for the ability to deliver signals which are co-stimulatory for T-cell activation.

1. Enhancement of IL2 production by a Jurkat E6.1 cell line transfected with an hCTM01 scFv-CD8- TCR ζ chimeric receptor (plasmid pTB3 in response to antigen or anti-idiotype antibody by co-stimulation with an anti-CD28 antibody.

The cell lines TB 3.2, 3.13 and 3.24 were stable cell lines derived from Jurkat E6.1 transfected with TM01hCscFv/CD8/Zeta. Figure 10 shows IL2 production by these cell lines when stimulated with an anti-CTMO1 idiotypic antibody alone or in combination with an anti-CD28 antibody. In each case the co-stimulation with anti-CD-28 results in a greater than 2-fold stimulation of IL2 production compared to stimulation with anti-CTM01 idiotype antibody alone. Incubation of these cell lines with anti-CD28 alone did not result in stimulation of IL2.

Figure 11 shows the production of IL2 by one of the above cell lines (TB 3.13) when stimulated with antigen expressing tumour cells. As in figure 10 this is shown with and without co-stimulation using anti-CD28 antibody and indicates that co-stimulation can enhance IL-2 production when stimulation of the chimeric receptor is mediated by antigen.

2. Construction and testing of a chimeric receptor designed to generate a response analogous to CD28 stimulation on interaction with the extracellular scfv component.

Having established that co-stimulation via the CD28 molecule could result in enhancement of the response of a T cell transfectant to a tumour associated antigen a chimeric receptor incorporating the CD28 transmembrane and cytoplasmic components was constructed. This hCTM01/CD8/CD28 chimeric receptor (pHMF332) (HGT1) was transfected into Jurkat E6.1 cells to generate stable cell lines. Two of these lines HGT 1.2 and 1.4 were incubated in the presence of various combinations of stimulating antibodies as shown in figure 12 (see materials and methods for experimental procedure), and anti-idiotypic antibody was used to stimulate the chimeric receptor.

15

25

30

35

Incubation of the cell lines shown with an anti-CD3 antibody resulted in a low level of IL2 production. This stimulation could be enhanced by costimulating with an anti-CD28 antibody (column 5 figs. 12a and 12b).

20 Incubation with the anti-CD28 alone as expected did not result in IL2 production.

Similarly incubation with the anti-idiotypic antibody alone (stimulating the chimeric CD28 receptor) resulted in no IL2 production. However, by analogy with the combined anti-CD3 and anti-CD28 stimulation, incubation with anti-CD3 and anti-idiotype resulted in IL2 production enhanced over CD3 stimulation alone. This demonstrates that a chimeric receptor could be constructed that responds via stimulation of extracellular scFv to generate an intracellular signal capable of costimulating CD3 mediated activation.

3. Provision of both primary and accessory stimulation in the same effector cell.

In order to provide both primary (for example TCR  $\zeta$  mediated) and costimulatory (for example CD28 mediated) activation of the effector cell via interaction of a chimeric receptor with a defined ligand or antigen a fusion

receptor incorporating two different signalling components was constructed. This chimeric receptor hCTM01/CD8/TCRZeta-CD28 (pHMF334) was transfected into Jurkat E6.1 cells and stable lines selected. One of these lines (HGT 2.4) was incubated with various combinations of antibodies and IL2 production measured (see Fig. 13).

The anti-CD3 and anti-CD28 antibodies individually and in combination resulted in a similar relative stimulation of IL2 production to that seen with the other transfected cell lines. However, with the construct HGT2 the anti-idiotype antibody alone resulted in a level of IL2 production greater than achieved with the combined anti-CD3 and anti-CD28 antibodies. Furthermore, the stimulation achieved with the single anti-idiotypic interaction could not be enhanced by further co-stimulation with anti-CD3, anti-CD28 or combinations of these.

15

10

5

Table 1 shows a number of preferred recombinant chimeric receptors which may be made in an analogous way by following the above teaching and methods.

20 Table 2 gives details of the chimeric receptor constructs and cell line nomenclature used.

| <b>J</b>      |  |
|---------------|--|
| ~             |  |
| _             |  |
| _             |  |
|               |  |
| _             |  |
| _             |  |
| _             |  |
| ٠.            |  |
| ~             |  |
|               |  |
| 7             |  |
| _             |  |
| -             |  |
| ~             |  |
| _             |  |
|               |  |
| -             |  |
| _             |  |
| _             |  |
| _             |  |
| - )           |  |
| $\overline{}$ |  |
|               |  |
| ~             |  |
|               |  |
| $\overline{}$ |  |
| $\overline{}$ |  |
| •             |  |
| _             |  |
| ~             |  |
|               |  |
| 至             |  |
| _             |  |
| • 1           |  |
|               |  |
|               |  |
| ಼             |  |
| 至             |  |
| ≊             |  |
| <u>⊇</u>      |  |
| ≆             |  |
| $\overline{}$ |  |
| Z<br>E<br>E   |  |
| 5             |  |
| $\overline{}$ |  |
| 5             |  |
| 5             |  |
| 5             |  |
| 5             |  |
| 5             |  |
| 5             |  |
| 5             |  |
| 5             |  |
| 5             |  |
| HIMERIC       |  |
| 5             |  |
| HIMERIC       |  |
| HIMERIC       |  |
| CHIMERIC      |  |
| HIMERIC       |  |
| LE CHIMERIC I |  |
| CHIMERIC      |  |

TABLE

|     | LIGAND<br>BINDING | SPACER | TRANS<br>MEMBRANE | SPACER | CYTOSOLIC | SPACER | CYTOSOLIC<br>COMPONENT | SPACER | CYTOSOL<br>SPACERS |
|-----|-------------------|--------|-------------------|--------|-----------|--------|------------------------|--------|--------------------|
| A   | TAA SCFV          | lD     | TCR ZETA          | 0PT**  | TCR ZETA  | OPT    | OPT                    | OPT    | OPT                |
|     | TAA SCFV          | ч      | CD28              | OPT    | CD28      | OPT    | OPT                    | 0PT    | OPT                |
| В   | TAA SCFV          | CD8    | TCR ZETA          | OPT    | TCR ZETA  | OPT    | OPT                    | OPT    | OPT                |
|     | TAA SCFV          | ч      | CD28              | OPT    | CD28      | OPT    | OPT                    | 0PT    | ОРТ                |
| ၁   | TAA SCFV          | 15     | TCR ZETA          | OPT.   | TCR ZETA  | OPT    | OPT                    | OPT    | OlyT               |
|     | TAA SCFV          | 19     | ІІ.2 В β          | OPT    | IL2 R B   | OPT    | IL2 R y                | OPT    | ОРТ                |
| Ω   | TAA SCFV          | l9     | TCR ZETA          | OPT    | TCR ZETA  | OPT    | CD28                   | OPT    | OPT                |
| ធ   | TAA SCFV          | æ      | TCR ZETA          | OPT    | TCR ZETA  | OPT    | CD28                   | OPT    | OIT                |
| ĹŢ. | TAA SCFV          | 15     | TCR ZETA          | OPT    | TCR ZETA  | OPT    | IL2R B                 | 0PT    | IL2 R y            |
|     |                   |        |                   |        |           |        |                        |        |                    |

A,B and C describe pairs of genes coding for pairs of chimeric receptors

D,E and F describe fusion chimeric receptors, as shown in C one of a pair of receptors may be a fusion receptor

TAA SCFV denotes a single chain FV to a Tumour associated antigen
For a pair of chimeric receptors the SCFVs may bind the same or different epitopes of the same antigen or different antigens on the same or different cells.

h denotes thelgG hinge plus part of the CD28 extracelluar component described in the text G1 is the IgG CH3 CH2 HINGE spacer construct described in the text

\*\* OPT = optional

<sup>\*</sup> one or more further cytosolic and or spacer components

# CHIMERIC RECEPTOR CONSTRUCTS AND CELL LINE NOMENCLATURE

| CONSTRUCT                             | EXPRESSION PLASMID | CELL LINES          |
|---------------------------------------|--------------------|---------------------|
|                                       |                    |                     |
| hCTMO1 scFv / CD8 / TCR zeta          | pTB3               | TB3.                |
| hP67.6 scFv / CD8 / TCR zeta          | pTB5               | TB5.                |
| hCTMO1 scFv / CD8 / CD28              | pHMF332            | HGT1.               |
| hCTMO1 scFv / CD8 / TCR zeta CD28 fus | ion pHMF 334       | HGT 2               |
| hP67.6 scFv / G1 / TCRzeta            | pHMF 351           | HGT6                |
| hP67.6 / G1 / TCR zeta CD28           | pHMF 355           | HGT7                |
| hP67.6/h/ CD28                        | pHMF 353           | HGT 8 and<br>HGT 14 |

G1 is the IgG CH3 CH2 hinge spacer

(h) is the IgG hinge component plus part of CD28 extracellular domain

Constructs pTB 3 and 5, pHMF 334 , 351 and 355  $\,$  include the TCR zeta transmembrane domain

Constructs pHMF 332 and 353 include the CD28 transmembrane domain

TABLE 2



Figure 1: Construct cassettes cloned into pBluescript KS +

#### scFv / CD8 /Zeta T-body



# scFv / CD8 / Zeta-CD28 fusion T-body



# scFv / CD8 / CD28 T-body





Figure 2: Construct cassettes cloned into pBluescript KS +

### scFv / G1 /Zeta T-body



## scFv / G1 / Zeta-CD28 fusion T-body







# FIGURE 3: OLIGONUCLEOTIDE SEQUENCES FOR CHIMERIC RECEPTOR CONSTRUCTION

All oligos listed in the 5' to 3' orientation.

| R6490 : | ATA TAG CGG CCG CAA GCT TCC ACC ATG TCT GTC CCC ACC CAA |
|---------|---------------------------------------------------------|
|         | GTC CTC                                                 |
| R6516:  | TGA CCC TCC GCC ACC TGA CCC TCC GCC ACC TGA CCC TCC GCC |
|         | ACC TGA CCC TCC GCC ACC CGT ACG TTT TAC TTC TAC TTT     |
| R6515:  | GGT GGC GGA GGG TCA GGT GGC GGA GGG TCA GGT GGC GGA     |
|         | GGG TCA GGT GGC GGA GGG TCA CAG ATT CAG CTG GTG CAG TCT |
| R6514:  | TAT ATA CTA GTC GGG CCC TTC GTT GAG GCA                 |
| R6494:  | ATA TAA CTA GTA ACT CCA TCA TGT ACT TCA GCC ACT TCG TGC |
|         | CGG TCT TCC TGC CAG CG                                  |
| R6495:  | CGG TGT TGG TGG CGG CGC TGG CGT CGT GGT G               |
|         | TGG CAG GAA GAC CGG CAC                                 |
| R6496:  | GCG CCG CGA CCA CCA ACA CCG GCG CCC ACC A               |
|         | CCC CTG TCC CTG CGC CCA                                 |
| R6497:  | TAT ATG GAT CCA GCA GGC CAA AGC TCT GCG CCT CTG GGC GCA |
|         | GGG ACA GGG GCT G                                       |
| R6506:  | TAT ATG GAT CCC GCC TCT GGG CGC AGG GAC AGG GGC TG      |
| R6488:  | ATA TAG GAT CCC AAA CTC TGC TAC CTG CTG                 |
| R6489:  | TAT ATG AAT TCT TAG CGA GGG GGC AGG GCC TGC AT          |
| P3240:  | TAT GGA TCC AAG CCC TTT TGG GTG CTG GTG GTG             |
| P3241:  | TAT GAA TTC TCA GGA GCG ATA GGC TGC GAA                 |
| P3301:  | GCC ACC AAG GAC ACC TAC GAC GC                          |
| P3302:  | CCC CCT CGC AGG AGT AAG AGG AGC AGG CTC CTG CAC AGT GAC |
|         | TAC ATG AAC ATG ACT CCC C                               |
| P3303:  | CAA GCA TTA CCA GCC CTA TGC CCC ACC ACG CGA CTT CGC AGC |
|         | CTA TCG CTC CTG AGA ATT CAT A                           |
| P3304:  | TAT GAA TTC TCA GGA GCG ATA G                           |
| P3305 : | GCA TAG GGCTGG TAA TGC TTG CGG GTG GGC CCG GGG CGG CGG  |
|         |                                                         |

GGA GTC ATG TTC ATG TAG T



P3306: CTC TTA CTC CTG CGA GGG GGC AGG GCC TGC ATG TGA AGG GCG

2

TCG TAG GTG TCC TTG GTG GC

S0146: CGA CTA GTG ACA AAA CTC ACA CAT GCC CAC CGT GCC CAA AAG

GGA AAC ACC TTT GTC CAA GGT CCC

S0060: CGA CTA GTG ACA AAA CTC ACA CAT GCC CAC CG

S0061: TTG GGA TCC AGT TTA CCC GGA GAC AGG GAG AGG CT



| SEQUENCE OF | hCTN | 101     | / C | D8 /            | _ZE      | TA      | RECO     | MBI      | NAN' | T CH    | HIME | RIC     |     |         | FIGURE | 4 |
|-------------|------|---------|-----|-----------------|----------|---------|----------|----------|------|---------|------|---------|-----|---------|--------|---|
| RECEPTOR    |      |         |     | 10              |          |         | 20       |          |      | 30      |      |         | 4   | 40      |        |   |
|             |      | AGA     | CAG | CCC<br>GGG<br>P | TGG      | GTT     | CAG      | GAG      | CCI  | GAG     | GAC  | GAC     |     | ACC     |        |   |
|             |      |         | 50  |                 |          | 60<br>• |          |          |      | 70      |      |         | 80  |         |        |   |
|             |      |         | CTA | GCC<br>CGG<br>A | TCT      | ACG     | CTA      | TAG      | GTC  | TAC     | TGA  | GTC     | TCA | GGT     |        |   |
|             |      | 90      |     |                 | 10       | 00      |          | :        | 110  |         |      | 120     |     |         |        |   |
|             | TCA  | TGA     | GAG | AGT<br>TCA<br>S | CGG      | TCA     | CAT      | CCA      | CTA  | TCC     | CAG  | TGG     |     | TGA     |        |   |
|             | 1    | 30      |     |                 | 140      |         |          | 150      |      |         | 19   | 50<br>* |     |         |        |   |
|             | ACA  | TCC     | TCA | AGT<br>TCA<br>S | TTT      | TCA     | GAG      | GAG      | GTA  | TCA     | TTG  | CCA     | CTG | TGG     |        |   |
|             | 170  |         |     | 180             |          |         | 15       | 90       |      | :       | 200  |         |     | 210     |        |   |
|             |      | GAG     | ATA | TGG<br>ACC<br>W | AAG      | GTC     | GTC      | Lalal    | GGT  | CCA     | TIT  | CGG     |     | TTC     |        |   |
|             |      |         | 2:  | 20              |          | ;       | 230      |          |      | 240     |      |         | 25  | 50      |        |   |
|             | GAG  |         | TAC | TAT<br>ATA<br>Y | TCC      | TAC     | TCA      | TTG      | GAG  | CGG     | TCA  | CCA     | CAT | GGT     |        |   |
|             |      | :       | 260 |                 |          | 270     |          |          | 21   | so<br>* |      | :       | 290 |         |        |   |
|             | AGA  | TCT     | AAG | AGT<br>TCA<br>S | CCA      | TCA     | CCA      | TCA      | CCA  | TGA     | CTC  | AAG     | TGA |         |        |   |
|             |      | 300     |     |                 | 3        | 10      |          | ;        | 320  |         |      | 330     |     |         |        |   |
|             | TGA  | TAG     | TCA | AGT<br>TCA<br>S | GAG      | GTC     | GGT      | CTA      | CTA  | AAG     | CGG  | TGA     | ATA | ATA     |        |   |
|             | 3.   | 40<br>⋆ |     | ,               | 350<br>* |         |          | 360<br>* |      |         | 3′   | 70<br>• |     |         |        |   |
|             | ACA  | TAC     | GTC | CAT<br>GTA<br>H | GAG      | CTT     | ATA      | GGT      | AAG  | TGA     | AAG  | CCA     | GTC | CCA     |        |   |
|             | 380  |         |     | 390             |          |         | 40       | 00       |      |         | 410  |         |     | 420     |        |   |
|             | TGA  | TTT     | CAT | GAA<br>CTT<br>E | CAT      | Jalal   | GCA      | TGC      | CCA  | CCG     | CCT  | CCC     | AGT | CCA     |        |   |
|             |      |         | 43  | 30              |          |         | 440<br>* |          |      | 450     |      |         |     | 60<br>* |        |   |
|             | CCG  | CCT     | CCC | TCA<br>AGT<br>S | CCA      | CCG     | CCT      | CCC      | AGT  | CCA     | CCG  | CCT     | CCC | AGT     |        |   |



|             |         | <b>1</b> 70     |         |     | 480      |          |          | 49  | 90  |     | Ş        | 500 |         |
|-------------|---------|-----------------|---------|-----|----------|----------|----------|-----|-----|-----|----------|-----|---------|
| CCA         | CCG     | GGA<br>CCT<br>G | CCC     | AGT | GTC      | TAA      | GTC      | GAC | CAC | GTC | AGA      | CCT | CGT     |
|             | 510     |                 |         | 51  | 20       |          | ;        | E30 |     |     | 540      |     |         |
| CTC         | CAC     | AAG<br>TTC<br>K | TTC     | GGA | CCT      | AGA      | AGA      | CAC | TTC | CAC | AGA      | ACA | TTC     |
| 5           | 50<br>* |                 | !       | 560 |          |          | 570<br>* |     |     | 58  | 30       |     |         |
| CGT         | AGA     | GGA<br>CCT<br>G | ATG     | TGG | AAG      | TGG      | CTG      | ATG | ATG | TAA | TTA      | ACC | TAC     |
| 590         |         |                 | 600     |     |          | 61       | 10       |     | (   | 520 |          |     | 630     |
| TCT         | GTC     | GCA<br>CGT<br>A | GGA     | CCT | GTC      | CCT      | GAG      | CTC | ACC | TAA | CCT      | ACC | TAA     |
|             |         | 64              | 40<br>* |     | ,        | 550<br>* |          |     | 660 |     |          | 67  | 70<br>* |
| CIG         | GGA     | GGA<br>CCT<br>G | AGA     | CCT | TTA      | TGT      | TTC      | ATG | TTA | CIC | TTC      | AAG | TTC     |
|             | •       | 680             |         |     | 690<br>* |          |          | 7(  | 00  |     | 7        | 710 |         |
| CCT         | TCT     | GCA<br>CGT<br>A | TGT     | GAC | TGT      | CAC      | CTG      | TGT | AGG | TGC | TTA      | TGG | CGG     |
|             | 720     |                 |         | 73  | 0.5      |          | -        | 740 |     |     | 750<br>* |     |         |
| ATG         | TAC     | GAG<br>CTC<br>E | GA.C    | AEA | AJA      | GAC      | TCT      | AGA | CIC | CTG | TGT      | CGT | AAG     |
| 76          | 50<br>* |                 | -       | 770 |          |          | 780<br>* |     |     | 79  | 90       |     |         |
| ATG         | AAG     | TGT<br>ACA<br>C | CGT     | TCT | CTC      | TTC      | TGG      | TGG | ATG | ATG | ATG      | CGT | TAC     |
| 80 <b>0</b> |         |                 | 810     |     |          | 82       | 20       |     | 8   | 330 |          |     | 840     |
| CTG         | ATG     | TGG<br>ACC<br>W | CCT     | GTC | CCT      | TGT      | GAC      | CAC | TGT | CAC | AGA      | AGA | CGG     |
|             |         | 85              | 50      |     | 8        | 360<br>* |          |     | 870 |     |          | 88  | 30      |
| AGT         | TGC     | AAG<br>TTC<br>K | CCG     | GGC | TGA      | TCA      | TTG      | AGG | TAG | TAC | ATG      | AAG | TCG     |
|             | ٤       | 90              |         |     | 900      |          |          | 91  | 10  |     | 9        | 920 |         |
| GTG         | AAG     | GTG<br>CAC<br>V | GGC     | CAG | AAG      | GAC      | GGT      | CGC | TIC | GGG | TGG      | TGC | TGC     |



|      | 930             |     |                         | 94    | 40        |     | 1       | 950 |         |                      | 360  |          |           |
|------|-----------------|-----|-------------------------|-------|-----------|-----|---------|-----|---------|----------------------|------|----------|-----------|
| GGT  | GCG<br>CGC<br>A | GGC | GCT                     | GGT   | GGT       | TGT | GGC     | CGC | GGG     | TGG                  | TAG  | CGC      | AGC       |
| 9    | 70<br>*         |     |                         | 980   |           |     | 990     |     |         | 100                  | 00   |          |           |
| GTC  | CCC<br>GGG<br>P | GAC | AGG                     | GAC   | GCG       | GGT | CTC     | CGC | GTC     | TCG                  | AAA  | CCG      | GAC       |
| 1010 |                 | :   | 1020                    |       |           | 10  | 30      |     | 10      | 040                  |      | 1        | L050<br>* |
| GAC  | GAT<br>CTA<br>D | GGG | TTT                     | GAG   | ACG       | ATG | GAC     | GAC | CTA     | CCT                  | TAG  | GAG      | AAG       |
|      |                 | 10  | 50<br>*                 |       | 10        | 070 |         | :   | 080     |                      |      | 109      | 90<br>*   |
| TAG  | TAT<br>ATA<br>Y | CCA | CAG                     | TAA   | GAG       | TGA | CGG     | AAC | AAG     | GAC                  | TCT  | CAC      | TTC       |
|      | 1:              | 100 |                         | :     | 1110      |     |         | 112 | 20      |                      | 1:   | L30<br>* |           |
| AAG  | AGC<br>TCG<br>S | TCC | TCG                     | CGT   | CIC       | GGG | GGG     | CGC | ATG     | $\operatorname{GTC}$ | GTC  | CCG      | GTC       |
|      | 1140            |     |                         | 119   | 50<br>*   |     | 11      | 160 |         | :                    | 170  |          |           |
| LIG  | CAG<br>GTC<br>Q | GAG | ATA                     | TTG   | CTC       | GAG | TTA     | GAT | CCT     | GCT                  | TCT  | CTC      | CTC       |
| 11   | 80              |     | 11                      | 190   |           | :   | 1200    |     |         | 123                  | 10   |          |           |
| ATG  | GAT<br>CTA<br>D | CAA | AAC                     | CTG   | TTC       | TCT | GCA     | CCG | GCC     | CTG                  | GGA  | CTC      | TAC       |
| 1220 |                 | :   | 1230                    |       |           | 124 | 10<br>* |     | 12      | 250                  |      | 1        | L260<br>* |
| CCC  | GGA<br>CCT<br>G | TTC | GGC                     | TCT   | TCC       | TIC | TTG     | GGA | GTC     | CTT                  | CCG  | GAC      | ATG       |
|      |                 | 127 | 70<br>*                 |       | 13        | 080 |         | 1   | 1290    |                      |      | 130      | )O<br>*   |
| TTA  | GAA<br>CTT<br>E | GAC | GTC                     | Talal | CTA       | TTC | TAC     | CGC | CTC     | CGG                  | ATG  | TCA      | CTC       |
|      | 13              | 310 |                         | 1     | L320<br>* |     |         | 133 | 30<br>* |                      | 13   | 340<br>* |           |
| TAA  | GGG<br>CCC<br>G | TAC | $\overline{\text{TIT}}$ | CCG   | CTC       | GCG | GCC     | TCC | CCG     | TTC                  | CCC  | GTG      | CTA       |
|      | 1350            |     |                         | 136   | 50<br>*   |     | 13      | 370 |         | ]                    | .380 |          |           |
| CCG  | CTT<br>GAA<br>L | ATG | GTC                     | CCA   | GAG       | TCA | TGT     | CGG | TGG     | TTC                  | CIG  | TGG      | ATG       |



1390 1400 1410 1420

GAC GCC CTT CAC ATG CAG GCC CTG CCC CCT CGC TAA CTG CGG GAA GTG TAC GTC CGG GAC GGG GGA GCG ATT D A L H M Q A L P P R \*



FIGURE 5

### SEQUENCE OF hCTM01 / CD8 / Zeta-CD28 "FUSION RECOMBINANT CHIMERIC RECEPTOR

|   |     |          | :      | 10     |             |         | 20       |          |     | 30  |     |         |                      | 40              |          |            |
|---|-----|----------|--------|--------|-------------|---------|----------|----------|-----|-----|-----|---------|----------------------|-----------------|----------|------------|
|   |     |          |        |        |             | GTT     |          | GAG      | CCT | GAG | GAC | GAC     | GAC                  | TGG<br>ACC      | GAA      |            |
|   | 50  |          |        | 60     |             | •       |          | 70       | J   |     | 80  |         |                      | 90              |          |            |
|   |     |          |        |        |             |         |          |          |     |     |     |         |                      | ACT<br>TGA      |          |            |
|   | d   | a        | r      |        |             |         | Q        |          |     |     |     |         |                      |                 |          | S>         |
|   | 10  | <b>*</b> |        |        | 110         |         |          | 120      |     |     | 13  | 30<br>* |                      | :               | 140<br>* |            |
|   | CGG |          | CAT    | CCA    |             | TCC     | CAG      | TGG      | TAG | TGA | ACA | TCC     | TCA                  | AGT<br>TCA<br>S | TTT      | TCA        |
|   |     | 150      |        |        | 14          | 60<br>* |          | :        | 170 |     |     | 180     |                      |                 | 19       | 90<br>*    |
|   |     | GAG      |        | TCA    | TTG         | CCA     |          | TGG      | AAG | GAG | ATA |         | AAG                  | CAG<br>GTC<br>Q |          | AAA<br>TTT |
|   |     | :        | 200    |        |             | 210     |          |          | 22  | 20  |     | :       | 230                  |                 |          | 240        |
|   | GGT | CCA      | Laisin | CGG    | GGT         | TTC     | GAG      | GAG      | TAC | ATA | TCC | TAC     | TCA                  | AAC<br>TTG      | GAG      | CGG        |
|   | Ρ   | G        | K      | 50     | ۲           |         | ا د د    | L        | М   |     | ĸ   | М       |                      | N               | L        | A>         |
|   |     |          |        | +      |             |         | 260<br>* |          |     | 270 |     |         |                      | 30<br>*<br>     |          |            |
|   | TCA |          | CAT    |        | AGA         | TCT     | AAG      | TCA      | CCA | TCA | CCA | TCA     | CCA                  | ACT<br>TGA<br>T | CTC      | AAG        |
| 3 | 190 |          |        | 3 0 0  |             |         | 3:       | 10       |     | :   | 920 |         |                      | 330             |          |            |
|   |     |          |        |        |             | TCA     |          | GTC      | GGT | CTA | CTA | AAG     |                      | ACT<br>TGA<br>T |          | ATA        |
|   | 34  | 10<br>*  |        | :      | 350<br>*    |         |          | 360<br>* |     |     | 37  | 70<br>* |                      | 3               | 880      |            |
|   | ACA |          |        | GTA    |             | CIT     |          | GGT      | AAG | TGA | AAG | CCA     | $\operatorname{GTC}$ | GGT<br>CCA<br>G | TGA      |            |
|   |     | 390      |        |        | 40          | 00      |          | 2        | 110 |     |     | 420     |                      |                 | 43       | 30<br>*    |
|   | CAT | CIII     | CAT    | Telefi | GCA         | TGC     | CCA      | CCG      | CCT | CCC | AGT | CCA     | CCG                  | GGA<br>CCT<br>G | CCC      | TCA<br>AGT |
|   |     |          | 140    |        |             | 450     |          |          | 46  | 50  |     | 4       | 170                  |                 |          | 480        |
|   | CCA | CCG      | CCT    | CCC    | AGT         | CCA     | CCG      | CCT      | CCC | AGT | CCA | CCG     | CCT                  | GGG<br>CCC<br>G | AGT      | GTC        |
|   | .,  | ,        |        | 90     | 5           |         | 500      | 9        | 9   | 510 | J   | ,       | 52                   |                 | 5        | ~          |
|   | ATT | CAG      |        | *      | CAG         |         | *        | GCA      | GAG | *   | AAG | AAG     |                      | *<br>GGA        | TCT      | TCT        |
|   | TAA | GTC      | GAC    | CAC    | ${\tt GTC}$ | AGA     | CCI      | CGT      | CIC | CAC | TIC | TTC     | GGA                  | CCT             | AGA      | AGA        |



| 530        |            |            | 540        |            |            | 5          | 50           |            |            | 550        |            |            | 570        |                 |            |
|------------|------------|------------|------------|------------|------------|------------|--------------|------------|------------|------------|------------|------------|------------|-----------------|------------|
|            | TTC        |            |            | ACA        | TTC        |            | AGA          | CCT        | ATG        | TGG        |            |            |            | TAC<br>ATG<br>Y | ATG        |
| 58         | 30         |            |            | 590        |            |            | 600          |            |            | 6:         | 10         |            |            | 620             |            |
| TAA        |            |            | TAC        |            | GTC        | CGT        | GGA          | CCT        | GTC        | CCI        | GAG        | CIC        |            | ATT<br>TAA<br>I |            |
|            | 630        |            |            | 6          | 10         |            | ,            | 650        |            |            | 660        |            |            | 6               | 70<br>*    |
|            | TAA        | CIG        | GGA        | CCT        | AGA        |            | TTA          | TGT        | TTC        | ATG        | TTA        | CTC        | TTC        | TTC<br>AAG<br>F | TTC        |
|            | (          | 680        |            |            | 690        |            |              | 7(         | 00         |            |            | 710        |            |                 | 720        |
|            | TCT        |            |            | GAC        |            | CAC        |              | TGT        |            | TGC        | TTA        |            | CGG        | TAC<br>ATG<br>Y | TAC        |
|            |            | 73         | 30         |            | 7          | 740        |              |            | 750        |            |            | 7          | 60         |                 |            |
|            | GAC        |            |            | GAC        | TCT        | AGA        | CIC          | CTG        | TGT        | CGT        | AAG        |            | AAG        | TGT<br>ACA<br>C | CGT        |
| 770<br>*   |            |            | 780        |            |            | 79         | <del>*</del> |            | ŝ          | 000<br>*   |            |            | 810        |                 |            |
|            | CTC        |            |            | TGG        | ATG        |            | ATG          | CGT        | TAC        | CTG        | ATG        |            | CCI        | CAG<br>GTC<br>Q |            |
| 82         | 20         |            | Ş          | 330        |            |            | 840          |            |            | 89         | 50         |            | 8          | 360             |            |
|            |            |            |            |            |            | AGA        | CGG          |            | TGC        | TTC        | CCG        |            |            | AGT<br>TCA<br>S |            |
|            | 870        |            |            | 88         | 30<br>*    |            | 8            | 390<br>*   |            |            | 900        |            |            | 91              | 10         |
|            |            |            | ATG        |            | TCG        |            | AAG          |            | GGC        |            | AAG        |            |            | GCG<br>CGC<br>A |            |
|            | 9          | 920        |            |            | 930        |            |              | 9.         | 10         |            | 9          | 950        |            |                 | 960        |
| GGG        | TGG        | TGC        | TGC        | GGT        | CGC        | GGC        | GCT          | GGT        | GGT        | TGT        | GGC        | CGC        | GGG        | ACC<br>TGG<br>T | TAG        |
|            |            | 97         | 70<br>*    |            | 9          | 980<br>*   |              |            | 990        |            |            | 100        | 00<br>*    |                 |            |
|            | AGC        | GTC        | GGG        | GAC        | AGG        | GAC        | GCG          | GGT        | CIC        | CGC        | GTC        | TCG        | AAA        | GGC<br>CCG<br>G | GAC        |
| 1010       |            | 3          | 1020       |            |            | 103        | 30<br>*      |            | 10         | 040        |            | :          | 1050       |                 |            |
| CTG<br>GAC | GAT<br>CTA | CCC<br>GGG | AAA<br>TTT | CTC<br>GAG | TGC<br>ACG | TAC<br>ATG | CTG<br>GAC   | CTG<br>GAC | GAT<br>CTA | GGA<br>CCT | ATC<br>TAG | CTC<br>GAG | TTC<br>AAG | ATC<br>TAG      | TAT<br>ATA |



```
1060
              1070
                          1080
                                       1090
                                                   1100
 GGT GTC ATT CTC ACT GCC TTG TTC CTG AGA GTG AAG TTC AGC AGG AGC
 CCA CAG TAA GAG TGA CGG AAC AAG GAC TCT CAC TTC AAG TCG TCC TCG
                 T A L F L R V K F S R
                 1120
                             1130
                                         1140
                                                      1150
 GCA GAG CCC CCC GCG TAC CAG CAG GGC CAG AAC CAG CTC TAT AAC GAG
 CGT CTC GGG GGG CGC ATG GTC GTC CCG GTC TTG GTC GAG ATA TTG CTC
                A Y Q Q G Q N Q L Y
       1160
                   1170
                                1180
                                           1190
                                                        1200
 CTC AAT CTA GGA CGA AGA GAG GAG TAC GAT GTT TTG GAC AAG AGA CGT
 GAG TTA GAT CCT GCT TCT CTC CTC ATG CTA CAA AAC CTG TTC TCT GCA
     N L G R R E E Y D V L D K R R>
                                              1240
                      1220
                                  1230
          1210
 GGC CGG GAC CCT GAG ATG GGG GGA AAG CCG AGA AGG AAG AAC CCT CAG
 CCG GCC CTG GGA CTC TAC CCC CCT TTC GGC TCT TCC TTC TTG GGA GTC
  G R D P E M G G K P R R K N P Q>
1250
            1260
                        1270
                                    1280
                                                1290
 GAA GGC CTG TAC AAT GAA CTG CAG AAA GAT AAG ATG GCG GAG GCC TAC
 CTT CCG GAC ATG TTA CTT GAC GTC TTT CTA TTC TAC CGC CTC CGG ATG
                    ELQKDKMAE
  1300
              1310
                          1320
                                       1330
                                                   1340
 AGT GAG ATT GGG ATG AAA GGC GAG CGC CGG AGG GGC AAG GGG CAC GAT
  TCA CTC TAA CCC TAC TTT CCG CTC GCG GCC TCC CCG TTC CCC GTG CTA
                    K G E R R R G K G
                 1360
                             1370
                                         1380
                                                      1390
  GGC CTT TAC CAG GGT CTC AGT ACA GCC ACC AAG GAC ACC TAC GAC GCC
  CCG GAA ATG GTC CCA GAG TCA TGT CGG TGG TTC CTG TGG ATG CTG CGG
             Q G L S T A T K D
                                1420
                                           1430
                                                        1440
                   1410
  CTT CAC ATG CAG GCC CTG CCC CCT CGC AGG AGT AAG AGG AGC AGG CTC
 GAA GTG TAC GTC CGG GAC GGG GGA GCG TCC TCA TTC TCC TCG TCC GAG
                        PPRRSKRSR
                                  1470
                                              1480
          1450
                      1460
 CTG CAC AGT GAC TAC ATG AAC ATG ACT CCC CGC CGC CCC GGG CCC ACC
 GAC GTG TCA CTG ATG TAC TTG TAC TGA GGG GCG GCG GGG CCC GGG TGG
L H S D Y M N M T P R R P G P T>
            1500
                         1510
                                    1520
1490
  CGC AAG CAT TAC CAG CCC TAT GCC CCA CCA CGC GAC TTC GCA GCC TAT
  GCG TTC GTA ATG GTC GGG ATA CGG GGT GGT GCG CTG AAG CGT CGG ATA
  R K H Y Q P Y A P P R D F A
  1540
  CGC TCC TGA
 GCG AGG ACT
```



| SEQUENCE OF hC | TM  | 01 , | / CI             | 8 / | CD  | 28 F | ECO      | MBI | NANT | сн Сн | IME      | RIC     | REC | EPTOR            |
|----------------|-----|------|------------------|-----|-----|------|----------|-----|------|-------|----------|---------|-----|------------------|
|                |     |      | 2                | LO. |     |      | 20       |     |      | 30    |          |         | 4   | 10               |
| T              |     |      | GTC<br>CAG<br>'' |     |     |      | CAG      | GAG |      | GAG   |          |         |     | TGG              |
|                |     |      | 50               |     |     | 60   |          |     | •    | 70    |          |         | 80  |                  |
| G.             |     |      | GAT<br>CTA<br>D  |     |     |      |          | TAG |      | TAC   |          |         |     |                  |
|                |     | 90   |                  |     | 10  | 00   |          | ;   | 110  |       |          | 120     |     |                  |
| T              |     |      | CTC<br>GAG<br>L  | TCA |     | TCA  |          |     | CTA  |       |          | TGG     |     |                  |
|                | 13  | 30   |                  | 3   | 140 |      |          | 150 |      |       | 1        | 50      |     |                  |
| Ac             |     |      | AGT<br>TCA<br>S  |     |     |      | GAG      | GAG | GTA  |       | TTG      |         |     |                  |
| 17(            | 0   |      |                  | 180 |     |      | 19       | 90  |      | 2     | 200      |         |     | 210              |
| T<br>Ai        | rc  |      | TAT<br>ATA<br>Y  |     |     |      | GTC      |     |      | CCA   | AAA      |         |     | TTC              |
|                |     |      | 23               | 20  |     | :    | 330      |     |      | 240   |          |         | 25  | 50<br>*          |
| G              |     |      | ATG<br>TAC<br>M  |     |     |      | TCA      |     | GAG  | CGG   |          |         | CAT |                  |
|                |     | ;    | 260              |     |     | 270  |          |     | 2    | 80    |          | :       | 290 |                  |
| A              | GΑ  |      | TTC<br>AAG<br>F  |     | CCA | TCA  | CCA      | TCA |      | TGA   | CTC      |         | TGA |                  |
|                |     | 300  |                  |     | 3 : | 10   |          |     | 320  |       |          | 330     |     |                  |
| T              |     | TAG  |                  | TCA | GAG | GTC  | GGT      | CTA | CTA  | AAG   | CGG      | TGA     | ATA | TAT<br>ATA<br>Y> |
|                | 3 - | 40   |                  | ;   | 350 |      |          | 360 |      |       | 3        | 70<br>* |     |                  |
| A              | CA  | TAC  |                  | GTA | GAG | CTT  | ATA      | GGT | AAG  | TGA   | AAG      | CCA     | GTC | GGT<br>CCA<br>G> |
| 38             | 0   |      |                  | 390 |     |      | 4        | 00  |      | •     | 410<br>* |         |     | 420              |
| TY             | GΑ  | TTT  | GTA<br>CAT<br>V  | CIT | CAT | TIT  | GCA      | TGC | CCA  | CCG   | CCT      | CCC     | AGT | GGT<br>CCA<br>G> |
|                |     |      | 4                | 30  |     |      | 440<br>* |     |      | 450   |          |         |     | 60<br>*          |
| C              | CG  | CCT  | CCC              | AGT | CCA | CCG  | CCT      | CCC | AGT  | CCA   | CCG      | CCT     | CCC | TCA<br>AGT<br>S> |

OR FIGURE 6



490 480 470 GGT GGC GGA GGG TCA CAG ATT CAG CTG GTG CAG TCT GGA GCA CCA CCG CCT CCC AGT GTC TAA GTC GAC CAC GTC AGA CCT CGT I Q L V Q S G A> GGGSQ 540 510 520 530 GAG GTG AAG AAG CCT GGA TCT TCT GTG AAG GTG TCT TGT AAG CTC CAC TTC TTC GGA CCT AGA AGA CAC TTC CAC AGA ACA TTC PGSSVKVSCK> 570 580 550 560 GCA TCT GGA TAC ACC TTC ACC GAC TAC TAC ATT AAT TGG ATG CGT AGA CCT ATG TGG AAG TGG CTG ATG ATG TAA TTA ACC TAC F TDYYIN 590 600 610 AGA CAG GCA CCT GGA CAG GGA CTC GAG TGG ATT GGA TGG ATT TCT GTC CGT GGA CCT GTC CCT GAG CTC ACC TAA CCT ACC TAA PGQGLEWIGWI> Q A 650 660 670 640 GAC CCT GGA TCT GGA AAT ACA AAG TAC AAT GAG AAG TIC AAG CTG GGA CCT AGA CCT TTA TGT TTC ATG TTA CTC TTC AAG TTC N T K Y N E K F K> P G S G 700 680 690 GGA AGA GCA ACA CTG ACA GTG GAC ACA TCC ACG AAT ACC GCC CCT TCT CGT TGT GAC TGT CAC CTG TGT AGG TGC TTA TGG CGG т 720 730 740 750 TAC ATG GAG CTG TCT TCT CTG AGA TCT GAG GAC ACA GCA TTC ATG TAC CTC GAC AGA AGA GAC TCT AGA CTC CTG TGT CGT AAG R S E D T S S L 790 770 780 760 TAC TTC TGT GCA AGA GAG AAG ACC ACC TAC TAC TAC GCA ATG ATG AAG ACA CGT TCT CTC TTC TGG TGG ATG ATG ATG CGT TAC FCAREKTTYYAM> 840 820 830 800 810 GAC TAC TGG GGA CAG GGA ACA CTG GTG ACA GTG TCT TCT GCC CTG ATG ACC CCT GTC CCT TGT GAC CAC TGT CAC AGA AGA CGG Y W G Q G T L V 850 860 870 TCA ACG AAG GGC CCG ACT AGT AAC TCC ATC ATG TAC TTC AGC AGT TGC TTC CCG GGC TGA TCA TTG AGG TAG TAC ATG AAG TCG T S N S I M Y 900 910 920 890 CAC THE GTG CCG GTC THE CTG CCA GCG AAG CCC ACC ACG ACG GTG AAG CAC GGC CAG AAG GAC GGT CGC TTC GGG TGG TGC TGC H F V P V F L P A K P T T T>



|      | 930<br>* |                 |         | 94  | 40<br>* |     | 9       | 950      |      |     | 960<br>* |     |         |
|------|----------|-----------------|---------|-----|---------|-----|---------|----------|------|-----|----------|-----|---------|
| GGT  | CGC      | CCG<br>GGC<br>P | GCT     | GGT | GGT     | TGT | GGC     | CGC      | GGG  | TGG | TAG      | CGC | AGC     |
| 9.   | 70       |                 | 9       | 980 |         |     | 990     |          |      | 100 | 00       |     |         |
| GTC  | GGG      | CTG<br>GAC<br>L | AGG     | GAC | GCG     | GGT | CIC     | CGC      | CCT  | AGG | TTC      | GGG | AAA     |
| 1010 |          | -               | 1020    |     |         | 103 | 30<br>* |          | 10   | 040 |          | :   | L050    |
| ACC  | CAC      | CTG<br>GAC<br>L | CAC     | CAC | CAA     | CCA | CCT     | CAG      | GAC  | CGA | ACG      | ATA | TCG     |
|      |          | 106             | 50<br>* |     | 10      | 070 |         | ;        | 1080 |     |          | 109 | 90<br>* |
| AAC  | GAT      | GTA<br>CAT<br>V | TGT     | CAC | CGG     | AAA | TAA     | TAA      | AAG  | ACC | CAC      | TCC | TCA     |
|      | 13       | 100             |         | :   | 1110    |     |         | 112      | 20   |     | 1        | 130 |         |
| TTC  | TCC      | AGC<br>TCG<br>S | TCC     | GAG | GAC     | GTG | TCA     | CTG      | ATG  | TAC | TTG      | TAC | TGA     |
| :    | 1140     |                 |         | 113 | 50<br>* |     | 13      | .60<br>* |      | 1   | 170      |     |         |
| GGG  | GCG      | CGC<br>GCG<br>R | GGG     | CCC | GGG     | TGG | GCG     | TIC      | GTA  | ATG | GTC      | GGG | ATA     |
| 118  | 30<br>*  |                 | 11      | 190 |         | :   | 200     |          |      | 121 | LO       |     |         |
| CGG  | CGT      | CCA<br>GGT<br>P | GCG     | CTG | AAG     | CGT | CGG     | ATA      | GCG  | AGG |          |     |         |



#### FIGURE 7

## SEQUENÇE OF hCTMO1 / G1 / ZETA RECOMBINANT CHIMERIC RECEPTOR

|                                       |                                                  |                                          | 10                                             |                                                                |                                                       | 20                                       |                                            |                                           | 30                                               |                                                                  |                                                   |                                                       | 40                                                            |                                      |                                               |
|---------------------------------------|--------------------------------------------------|------------------------------------------|------------------------------------------------|----------------------------------------------------------------|-------------------------------------------------------|------------------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------|--------------------------------------|-----------------------------------------------|
| ATG<br>TAC<br>M                       | TCT<br>AGA<br>S                                  | GTC<br>CAG<br>V                          | CCC<br>GGG<br>P                                | ACC<br>TGG<br>T                                                | CAA<br>GTT<br>Q                                       | GTC<br>CAG<br>V                          | CTC<br>GAG<br>L                            | GGA<br>CCT<br>G                           | CTC                                              | CTG<br>GAC<br>L                                                  | CTG<br>GAC<br>L                                   | CTG<br>GAC<br>L                                       | *<br>TGG<br>ACC<br>W                                          | CTT<br>GAA<br>L                      | ACA<br>TGT<br>T>                              |
| 50<br>*                               |                                                  |                                          | 60<br>*                                        |                                                                |                                                       |                                          | 70<br>*                                    |                                           |                                                  | 80                                                               |                                                   |                                                       | 90                                                            |                                      |                                               |
| GAT                                   | GCC<br>CGG<br>A                                  | AGA<br>TCT<br>R                          | TGC                                            | GAT<br>CTA<br>D                                                | TAG                                                   | GTC                                      | ATG                                        | TGA                                       | GTC                                              | *<br>AGT<br>TCA<br>S                                             | GGT                                               | AGT<br>TCA<br>S                                       | ACT<br>TGA<br>T                                               | CTC<br>GAG<br>L                      | AGT<br>TCA<br>S>                              |
| 1                                     | 00                                               |                                          | ;                                              | 110                                                            |                                                       |                                          | 120                                        |                                           |                                                  | 1:                                                               | 30                                                |                                                       |                                                               | 140                                  |                                               |
| GCC<br>CGG<br>A                       | AGT<br>TCA<br>S                                  | GTA<br>CAT<br>V                          | GGT<br>CCA<br>G                                | GAT                                                            | AGG<br>TCC<br>R                                       | GTC<br>CAG<br>V                          | ACC                                        | TAG                                       | TGA                                              | TGT<br>ACA<br>C                                                  | *<br>AGG<br>TCC<br>R                              | AGT<br>TCA<br>S                                       | AGT<br>TCA<br>S                                               | * AAA TTT K                          | AGT<br>TCA<br>S>                              |
|                                       | 150<br>*                                         |                                          |                                                | 1                                                              | 50<br>*                                               |                                          | 1                                          | L70<br>*                                  |                                                  |                                                                  | 180                                               |                                                       |                                                               | 19                                   | 90<br>*                                       |
| CTC<br>GAG<br>L                       | CTC<br>GAG<br>L                                  | CAT<br>GTA<br>H                          | AGT<br>TCA<br>S                                | AAC<br>TTG<br>N                                                | GGT<br>CCA<br>G                                       | GAC<br>CTG<br>D                          | TGG                                        | TTC<br>AAG<br>F                           | GAG                                              | TAT<br>ATA<br>Y                                                  | TGG                                               | AAG                                                   | CAG<br>GTC<br>Q                                               | CAG<br>GTC<br>Q                      | אאא                                           |
|                                       | :                                                | 200                                      |                                                |                                                                | 210                                                   |                                          |                                            | 22                                        | 20                                               |                                                                  | :                                                 | 230                                                   |                                                               |                                      | 240                                           |
| CCA<br>GGT<br>P                       | GGT<br>CCA<br>G                                  | AAA<br>TTT<br>K                          | GCC<br>CGG<br>A                                | GGT                                                            | TTC                                                   | GAG                                      | CTC<br>GAG<br>L                            | TAC                                       | TAT<br>ATA                                       | TCC                                                              | ATG<br>TAC<br>M                                   | ΔGT                                                   | AAC<br>TTG<br>N                                               | CTC<br>GAG<br>L                      | GCC<br>CGG<br>A>                              |
|                                       |                                                  |                                          |                                                |                                                                |                                                       |                                          |                                            |                                           |                                                  |                                                                  |                                                   |                                                       |                                                               |                                      |                                               |
|                                       |                                                  | 2 5                                      | 50<br>*                                        |                                                                | 2                                                     | 260<br>*                                 |                                            |                                           | 270                                              |                                                                  |                                                   | 28                                                    | 30<br>*                                                       |                                      |                                               |
| AGT<br>TCA<br>S                       | GGT<br>CCA<br>G                                  | GTA                                      | *<br>CCA                                       | AGA                                                            | AGA<br>TCT                                            | *<br>TTC                                 | TCA                                        | GGT<br>CCA<br>G                           | *<br>AGT                                         | GGT<br>CCA<br>G                                                  | AGT<br>TCA<br>S                                   | GGT                                                   | *<br>АСТ                                                      | GAG<br>CTC<br>E                      | TTC<br>AAG<br>F>                              |
| TCA                                   | CCA                                              | GTA<br>CAT                               | *<br>CCA<br>GGT                                | AGA                                                            | AGA<br>TCT                                            | *<br>TTC<br>AAG                          | TCA<br>S<br>LO                             | CCA                                       | AGT<br>TCA<br>S                                  | CCA<br>G                                                         | TCA                                               | GGT<br>CCA                                            | *<br>ACT<br>TGA                                               | CTC                                  | AAG                                           |
| S 290  * ACT TGA                      | CCA<br>G<br>CTC                                  | GTA<br>CAT<br>V                          | CCA<br>GGT<br>P<br>300                         | AGA<br>S<br>AGT<br>TCA                                         | AGA<br>TCT<br>R<br>AGT<br>TCA                         | * TTC AAG F 3:                           | TCA<br>S<br>LO<br>*<br>CAG<br>GTC          | CCA<br>G                                  | AGT<br>TCA<br>S<br>GAT<br>CTA                    | CCA<br>G<br>320<br>*                                             | TCA<br>S<br>TTC<br>AAG                            | GGT<br>CCA<br>G                                       | * ACT TGA T 330 *                                             | CTC                                  | AAG<br>F>                                     |
| S<br>290<br>*<br>ACT<br>TGA<br>T      | CCA<br>G<br>CTC<br>GAG                           | GTA<br>CAT<br>V<br>ACT<br>TGA            | CCA<br>GGT<br>P<br>300<br>*<br>ATC<br>TAG      | AGA<br>S<br>AGT<br>TCA                                         | AGA<br>TCT<br>R<br>AGT<br>TCA                         | TTC AAG F  30 CTC GAG                    | TCA S LO * CAG GTC Q 360                   | CCA<br>G<br>CCA<br>GGT                    | AGT<br>TCA<br>S<br>GAT<br>CTA                    | CCA<br>G<br>320<br>*<br>GAT<br>CTA                               | TCA<br>S<br>TTC<br>AAG<br>F                       | GGT<br>CCA<br>G<br>G<br>GCC<br>CGG                    | ACT<br>TGA<br>T<br>330<br>*<br>ACT<br>TGA                     | CTC<br>E<br>TAT<br>ATA<br>Y          | AAG<br>F><br>TAT<br>ATA                       |
| TCA S 290 ACT TGA T TGA T TGT         | CCA<br>G<br>CTC<br>GAG<br>L                      | GTA<br>CAT<br>V<br>ACT<br>TGA<br>T       | CCA<br>GGT<br>P<br>300<br>*<br>ATC<br>TAG<br>I | AGA S AGT TCA S S 50 * CTC                                     | AGA<br>TCT<br>R<br>AGT<br>TCA<br>S                    | * TTC AAG F 31 CTC GAG L                 | TCA S LO * CAG GTC Q 360 * CCA             | CCA<br>G<br>CCA<br>GGT<br>P               | AGT TCA S GAT CTA D                              | CCA<br>G<br>320<br>*<br>GAT<br>CTA<br>D                          | TCA S TTC AAG F '0 * GGT                          | GGT<br>CCA<br>G<br>GCC<br>CGG<br>A                    | ACT TGA T ACT TGA T                                           | CTC<br>E<br>TAT<br>ATA<br>Y          | AAG F> TAT ATA Y>                             |
| TCA S 290 ACT TGA T TGA T C           | CTC GAG L 40 ATG TAC M 390                       | GTA CAT V  ACT TGA T  CAG GTC Q          | CAT GTA H                                      | AGA<br>S<br>AGT<br>TCA<br>S<br>S<br>50<br>*<br>CTC<br>GAG<br>L | AGA<br>TCT<br>R<br>AGT<br>TCA<br>S<br>GAA<br>CTT<br>E | TTC AAG F 31 CTC GAG L TAT ATA Y         | TCA S LO * CAG GTC Q 360 * CCA GGT P       | CCA<br>GCA<br>GGT<br>P<br>TTC<br>AAG<br>F | AGT<br>TCA<br>S<br>GAT<br>CTA<br>D<br>ACT<br>TGA | GCA<br>G<br>320<br>*<br>GAT<br>CTA<br>D<br>37<br>TTC<br>AAG<br>F | TCA S TTC AAG F 70 * GGT CCA G 420 *              | GGT<br>CCA<br>G<br>GCC<br>CGG<br>A<br>CAG<br>GTC<br>Q | ACT<br>TGA<br>T<br>330<br>*ACT<br>TGA<br>T<br>GGT<br>CCA<br>G | TAT ATA Y 380 ACT TGA T 43           | TAT ATA Y>  AAA TTT K>                        |
| TCA S 290 ACT TGA T TGT ACA C         | CTC GAG L 40 * ATG TAC M 390 * GAA               | GTA CAT V  ACT TGA T  CAG GTC Q          | CAT GTA H                                      | AGA S AGT TCA S S CTC GAG L 40                                 | AGA<br>TCT<br>R<br>AGT<br>TCA<br>S<br>GAA<br>CTT<br>E | TTC AAG F 31 CTC GAG L TAT ATA Y GGT     | TCA S LO CAG GTC Q 360 CCA GGT P 4 GGC CCG | CCA<br>GCT<br>PTTC<br>AAG<br>F            | AGT TCA S GAT CTA D ACT TGA T                    | CCA<br>G<br>320<br>*<br>GAT<br>CTA<br>D<br>37<br>TTC<br>AAG<br>F | TCA S TTC AAG F 70 * GGT CCA G 420 * GGT          | GGT<br>CCA<br>G<br>GCC<br>CGG<br>A<br>CAG<br>GTC<br>Q | ACT TGA T ACT TGA T GGT CCA G                                 | TAT ATA Y 380 * ACT TGA T            | AAG F> TAT ATA Y> AAA TTT K>                  |
| TCA S 290 ACT TGA T TGT ACA C GTA CAT | CCA G G CTC GAG L 40 * ATG TAC M 390 * GAA CTT E | GTA CAT V  ACT TGA T  CAG GTC Q  GTA CAT | CAT GTA H                                      | AGA S AGT TCA S S CTC GAG L CGT GCA                            | AGA TCT R  AGT TCA S  GAA CTT E  00 * ACG TGC         | TTC AAG F 3: CTC GAG L TAT ATA Y GGT CCA | TCA S LO CAG GTC Q 360 CCA GGT P 4 GGC CCG | CCA<br>GCT<br>PTTC<br>AAG<br>F            | AGT TCA S GAT CTA D ACT TGA T GGG CCC G          | CCA<br>G<br>320<br>* GAT<br>CTA<br>D<br>37<br>TTC<br>AAG<br>F    | TCA S  TTC AAG F  70 * GGT CCA G  420 * GGT CCA G | GGT<br>CCA<br>G<br>GCC<br>CGG<br>A<br>CAG<br>GTC<br>Q | ACT TGA T ACT TGA T GGT CCA G GGA CCT                         | TAT ATA Y 380 * ACT TGA T 43 GGG CCC | AAG F>  TAT ATA Y>  AAA TTT K>  CO *  TCA AGT |



|                 |                 | 490             | _               |                 | 500             |                 |                 | 51              | 0               |                 |                 | 520             |                      |                 |                  |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------------|-----------------|------------------|
| ATT<br>TAA<br>I | CAG<br>GTC<br>Q | CTG<br>GAC<br>L | GTG<br>CAC<br>V | CAG<br>GTC<br>Q | TCT<br>AGA<br>S | GGA<br>CCT<br>G | GCA<br>CGT<br>A | GAG<br>CTC<br>E | GTG<br>CAC<br>V | AAG<br>TTC<br>K | AAG<br>TTC<br>K | CCT<br>GGA<br>P | *<br>GGA<br>CCT<br>G | TCT<br>AGA<br>S | TCT<br>AGA<br>S> |
| 530             |                 |                 | 540<br>*        |                 |                 | 5 :             | 50              |                 | !               | 560             |                 |                 | 570                  |                 |                  |
| GTG<br>CAC<br>V | AAG<br>TTC<br>K | GTG<br>CAC<br>V | TCT<br>AGA<br>S | TGT<br>ACA<br>C | AAG<br>TTC<br>K | GCA<br>CGT<br>A | TCT<br>AGA<br>S | GGA<br>CCT<br>G | TAC<br>ATG<br>Y | ACC<br>TGG<br>T | TTC<br>AAG<br>F | ACC<br>TGG<br>T | GAC                  | TAC<br>ATG<br>Y | TAC<br>ATG<br>Y> |
| 58              | 30<br>*         |                 | į               | 590<br>*        |                 |                 | 600             |                 |                 | 6               | 10              |                 |                      | 520<br>*        |                  |
| ATT<br>TAA<br>I | AAT<br>TTA<br>N | TGG<br>ACC<br>W | ATG<br>TAC<br>M | AGA<br>TCT<br>R | CAG<br>GTC<br>Q | GCA<br>CGT<br>A | CCT<br>GGA<br>P | CCT             | GTC             | CCT             | Cmc             | CTC             | TGG<br>ACC<br>W      | ידידי ג         | GGA<br>CCT<br>G> |
|                 | 630<br>*        |                 |                 | 6               | 40<br>*         |                 | 4               | 650             |                 |                 | 660             |                 |                      | 6               | 70<br>*          |
| TGG<br>ACC<br>W | ATT<br>TAA<br>I | GAC<br>CTG<br>D | CCT<br>GGA<br>P | GGA<br>CCT<br>G | TCT<br>AGA<br>S | GGA<br>CCT<br>G | AAT<br>TTA<br>N | ACA<br>TGT<br>T | AAG<br>TTC<br>K | TAC<br>ATG<br>Y | ААТ             | GAG<br>CTC<br>E | AAG<br>TTC<br>K      | TTC<br>AAG<br>F | AAG              |
|                 | (               | 680<br>*        |                 |                 | 690<br>*        |                 |                 | 7 (             | 00              |                 |                 | 710             |                      |                 | 720              |
| GGA<br>CCT<br>G | AGA<br>TCT<br>R | GCA<br>CGT<br>A | ACA<br>TGT<br>T | CTG<br>GAC<br>L | ACA<br>TGT<br>T | GTG<br>CAC<br>V | GAC<br>CTG<br>D | ACA<br>TGT<br>T | TCC             | ACG<br>TGC<br>T | AAT<br>TTA<br>N | ACC<br>TGG<br>T | GCC<br>CGG<br>A      | TAC<br>ATG<br>Y | ATG<br>TAC<br>M> |
|                 |                 | 7               | 30              |                 | 7               | 740             |                 |                 | 750<br>*        |                 |                 | 7               | 60<br>*              |                 |                  |
| GAG<br>CTC<br>E | CTG<br>GAC<br>L | TCT<br>AGA<br>S | TCT<br>AGA<br>S | CTG<br>GAC<br>L | AGA<br>TOT<br>R | TCT<br>AGA<br>S | GAG<br>CTC<br>E | GAC<br>CTG<br>D | ACA<br>TGT<br>T | GCA<br>CGT<br>A | TTC<br>AAG<br>F | TAC<br>ATG<br>Y | ىلىك<br>كىلىش        | TGT<br>ACA<br>C | GCA<br>CGT<br>A> |
| 770<br>*        |                 |                 | 780             |                 |                 | 7 9             | 90<br>*         |                 | 8               | 300             |                 |                 | 810                  |                 |                  |
| AGA<br>TCT<br>R | GAG<br>CTC<br>E | AAG<br>TTC<br>K | ACC<br>TGG<br>T | ACC<br>TGG<br>T | TAC<br>ATG<br>Y | TAC<br>ATG<br>Y | TAC<br>ATG<br>Y | GCA<br>CGT<br>A | ATG<br>TAC<br>M | GAC             | TAC<br>ATG<br>Y | TGG<br>ACC<br>W | GGA<br>CCT<br>G      | CAG<br>GTC<br>Q | GGA<br>CCT<br>G> |
| 82              | 20<br>*         |                 | 8               | 330<br>*        |                 |                 | 840             |                 |                 | 8               | 50              |                 | 8                    | 360<br>*        |                  |
| ACA<br>TGT<br>T | CTG<br>GAC<br>L | GTG<br>CAC<br>V | ACA<br>TGT<br>T | GTG<br>CAC<br>V | TCT<br>AGA<br>S | TCT<br>AGA<br>S | GCC<br>CGG<br>A | TCA<br>AGT<br>S | ACG<br>TGC<br>T | AAG<br>TTC<br>K | GGC<br>CCG<br>G | CCG<br>GGC<br>P | ACT<br>TGA<br>T      | AGT             | GAC<br>CTG<br>D> |
|                 | 870<br>*        |                 |                 | 88              | 30<br>*         |                 | 8               | 390             |                 |                 | 900             |                 |                      | 9:              | LO<br>*          |
| AAA<br>TTT<br>K | TGA             | GTG             | ACA<br>TGT<br>T | ACG             | GGT             | GGC             | ACG             | GGT             | CGT             | GGA             | CTT             | GAG             | CTG<br>GAC<br>L      | CCC             | GGA<br>CCT       |
|                 | 9               | 920             |                 |                 | 930             |                 |                 | 9 4             | 10              |                 | 9               | 950             |                      |                 | 960              |
| GGC             | AGT             | CAG             | TTC<br>AAG<br>F | GAG             | AAG             | GGG             | GGT             | TTT             | CCC<br>GGG      | TTC             | CTG             | TGG             | GAG                  | TAC             | ATC              |
|                 |                 | 97              | 70<br>*         |                 |                 | 80              |                 |                 | 990             |                 |                 | 100             | ) O<br>*             |                 |                  |
| TCC             | CGG             | ACC             | CCT             | GAG             | GTC             | ACA             | TGC             | GTG             |                 | GTG             | GAC             | GTG             |                      | CAC             | GAA              |



AGG GCC TGG GGA CTC CAG TGT ACG CAC CAC CAC CTG CAC TCG GTG CTT V 1010 1020 1030 1040 1050 GAC CCT GAG GTC AAG TTC AAC TGG TAC GTG GAC GGC GTG GAG GTG CAT CTG GGA CTC CAG TTC AAG TTG ACC ATG CAC CTG CCG CAC CTC CAC GTA N Y 1060 1070 1080 1090 1100 AAT GCC AAG ACA AAG CCG CGG GAG GAG CAG TAC AAC AGC ACG TAC CGT TTA CGG TTC TGT TTC GGC GCC CTC CTC GTC ATG TTG TCG TGC ATG GCA Α K Т K P R Ε E Q Y N 1120 1110 1130 1140 GTG GTC AGC GTC CTC ACC GTC CTG CAC CAG GAC TGG CTG AAT GGC AAG CAC CAG TCG CAG GAG TGG CAG GAC GTG GTC CTG ACC GAC TTA CCG TTC Т Н 1160 1170 1180 1190 1200 GAG TAC AAG TGC AAG GTC TCC AAC AAA GCC CTC CCA GCC CCC ATC GAG CTC ATG TTC ACG TTC CAG AGG TTG TTT CGG GAG GGT CGG GGG TAG CTC E С K V S N K Α L Р 1210 1220 1230 1240 AAA ACC ATC TCC AAA GCC AAA GGG CAG CCC CGA GAA CCA CAG GTG TAC TTT TGG TAG AGG TTT CGG TTT CCC GTC GGG GCT CTT GGT GTC CAC ATG к а G Q К P R E 1260 1270 1280 ACC CTG CCC CCA TCC CGG GAG GAG ATG ACC AAG AAC CAG GTC AGC CTG TGG GAC GGG GGT AGG GCC CTC CTC TAC TGG TTC TTG GTC CAG TCG GAC S R E E M K N Q 1300 1310 1320 1330 1340 ACC TGC CTG GTC AAA GGC TTC TAT CCC AGC GAC ATC GCC GTG GAG TGG TGG ACG GAC CAG TTT CCG AAG ATA GGG TCG CTG TAG CGG CAC CTC ACC C V K G F Y P S D I A 1350 1360 1370 1380 1390 GAG AGC AAT GGG CAG CCG GAG AAC AAC TAC AAG ACC ACG CCT CCC GTG CTC TCG TTA CCC GTC GGC CTC TTG TTG ATG TTC TGG TGC GGA GGG CAC N G Q Ρ Ε N N 1400 1410 1420 1430 CTG GAC TCC GAC GGC TCC TTC TTC CTC TAC AGC AAG CTC ACC GTG GAC GAC CTG AGG CTG CCG AGG AAG AAG GAG ATG TCG TTC GAG TGG CAC CTG D G S F F Y L S K L 1450 1460 1470 1480 AAG AGC AGG TGG CAG CAG GGG AAC GTC TTC TCA TGC TCC GTG ATG CAT TTC TCG TCC ACC GTC GTC CCC TTG CAG AAG AGT ACG AGG CAC TAC GTA K R W N V G 1490 1500 1510 1520 1530



GAG GCT CTG CAC AAC CAC TAC ACG CAG AAG AGC CTC TCC CTG TCT CCG CTC CGA GAC GTG TTG GTG ATG TGC GTC TTC TCG GAG AGG GAC AGA GGC Н N H Y T Q K 1540 1550 1560 1570 1580 GGT AAA CTG GAT CCC AAA CTC TGC TAC CTG CTG GAT GGA ATC CTC TTC CCA TTT GAC CTA GGG TTT GAG ACG ATG GAC GAC CTA CCT TAG GAG AAG L D PKLC Y L L D 1590 1600 1610 1620 ATC TAT GGT GTC ATT CTC ACT GCC TTG TTC CTG AGA GTG AAG TTC AGC TAG ATA CCA CAG TAA GAG TGA CGG AAC AAG GAC TCT CAC TTC AAG TCG T 1650 1640 1660 1670 1680 AGG AGC GCA GAG CCC CCC GCG TAC CAG CAG GGC CAG AAC CAG CTC TAT TCC TCG CGT CTC GGG GGG CGC ATG GTC GTC CCG GTC TTG GTC GAG ATA S A E Р P A Y Q Q G 1690 1700 1710 1720 AAC GAG CTC AAT CTA GGA CGA AGA GAG GAG TAC GAT GTT TTG GAC AAG TTG CTC GAG TTA GAT COT GOT TOT CTC CTC ATG CTA CAA AAC CTG TTC L N G R R D 1740 1750 1760 1770 AGA CGT GGC CGG GAC CCT GAG ATG GGG GGA AAG CCG AGA AGG AAG AAC TCT GCA CCG GCC CTG GGA CTC TAC CCC CCT TTC GGC TCT TCC TTC R R G R D P E M G G K 1780 1790 1300 1910 1820 CCT CAG GAA GGC CTG TAC AAT GAA CTG CAG AAA GAT AAG ATG GCG GAG GGA GTC CTT CCG GAC ATG TTA CTT GAC GTC TTT CTA TTC TAC CGC CTC L Y И \_\_ 0 K D 1830 1940 1850 1860 1870 GCC TAC AGT GAG ATT GGG ATG AAA GGC GAG CGC CGG AGG GGC AAG GGG CGG ATG TCA CTC TAA CCC TAC TTT CCG CTC GCG GCC TCC CCG TTC CCC I K 1880 1890 1900 CAC GAT GGC CTT TAC CAG GGT CTC AGT ACA GGC ACC AAG GAC ACC TAC GTG CTA CCG GAA ATG GTC CCA GAG TCA TGT CGG TGG TTC CTG TGG ATG Y Ç D L G L Т Α T D 1930 1940 1950 GAC GCC CTT CAC ATG CAG GCC CTG CCC CGC TAA CTG CGG GAA GTG TAC GTC CGG GAC GGG GGA GCG ATT

H M

O A



FIGURE 8

#### SEQUENCE OF hCTM01/G1/ZETA-CD28 FUSION RECOMBINANT CHIMERIC RECEPTOR

| ATG TCT GTC CCC ACC CAA GTC CTC GGA CTC CTG CTG CTG TGG CTT TAC AGA CAG GGG TGG GTT CAG GAG CCT GAG GAC GAC ACC GAA M S V P T Q V L G L L L L W L  50 60 70 80 90  * GAT GCC AGA TGC GAT ATC CAG ATG ACT CAG AGT CCA AGT ACT CTC CTA CGG TCT ACG CTA TAG GTC TAC TGA GTC TCA GGT TCA TGA GAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TGT<br>T>        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| * * * * * * * * * * * * * * * * * * *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AGT              |
| GAT GCC AGA TGC GAT ATC CAG ATG ACT CAG AGT CCA AGT ACT CTC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AGT              |
| D A R C D I Q M T Q S P S T L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | TCA<br>S>        |
| 100 110 120 130 140 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| GCC AGT GTA GGT GAT AGG GTC ACC ATC ACT TGT AGG AGT AGT AAA CGG TCA CAT CCA CTA TCC CAG TGG TAG TGA ACA TCC TCA TCA TTT A S V G D R V T I T C R S S K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AGT<br>TCA<br>S> |
| 150 160 170 180 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 90               |
| CTC CTC CAT AGT AAC GGT GAC ACC TTC CTC TAT TGG TTC CAG CAG GAG GAG GTA TCA TTG CCA CTG TGG AAG GAG ATA ACC AAG GTC GTC L L H S N G D T F L Y W F Q Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AAA<br>TTT<br>K> |
| 200 210 220 230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 240              |
| CCA GGT AAA GCC CCA AAG CTO CTC ATG TAT AGG ATG AGT AAC CTC GGT CCA TTT CGG GGT TTO GAG GAG TAC ATA TOC TAC TCA TTG GAG P G K A P K L L M Y R M S N L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | GCC<br>CGG<br>A> |
| 250 260 270 280<br>*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |
| AGT GGT GTA CCA TOT AGA TTO AGT GGT AGT GGT ACT GAG TCA CCA CAT GGT AGA TOT AAG TCA CCA TCA CCA TGA CTC S G V P S R F S G S G S G T E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | TTC<br>AAG<br>F> |
| 290 300 310 320 330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  |
| ACT CTC ACT ATC AGT AGT CTC CAG CCA GAT GAT TTC GCC ACT TAT TGA GAG TGA TAG TCA TCA GAG GTC GGT CTA CTA AAG CGG TGA ATA T L T I S S L Q P D D F A T Y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| 340 350 360 370 380 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |
| TGT ATG CAG CAT CTC GAA TAT CCA TTC ACT TTC GGT CAG GGT ACT ACA TAC GTC GTA GAG CTT ATA GGT AAG TGA AAG CCA GTC CCA TGA C M Q H L E Y P F T F G Q G T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AAA<br>TTT<br>K> |
| 390 400 410 420 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 30               |
| GTA GAA GTA AAA CGT ABB GGT GBC GGA GGG<br>CAT CTT CAT TTT GCA TBC BCA GBC GCT CCC AGT CCA CCG CCT CCC<br>V E V K R T G G B B G G G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AGT              |
| 440 450 460 470 *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 480              |
| GGT GGC GGA GGG TCA GGT GGC GGA GGG TCA CCA CCG CCT CCC AGT CCA CCG CCT CCC AGT GGC GGA GGG TCA CCG CCT CCC AGT GGC GGA GGG TCA CCG CCT CCC AGT GGC GGA GGG TCA CCG CCT CCC AGT GGC GGA GGG GGA GGG GGA GGG GGA GGG GGA GG | CAG<br>GTC       |

490 500 510 520



| ATT<br>TAA<br>I | GTC             | CTG<br>GAC<br>L | CAC             | GTC             | TCT<br>AGA<br>S | CCT             | CGT             | CTC             | CAC             | AAG<br>TTC<br>K | TTC             | CCT<br>GGA<br>P | *<br>GGA<br>CCT<br>G | AGA             | AGA              |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|----------------------|-----------------|------------------|
| 530<br>*        |                 |                 | 540             |                 |                 | 55              | 50<br>*         |                 |                 | 560<br>*        |                 |                 | 570                  |                 |                  |
| CAC             | AAG<br>TTC<br>K | GTG<br>CAC<br>V | AGA             | TGT<br>ACA<br>C | AAG<br>TTC<br>K | CGT             | TCT<br>AGA<br>S | CCT             | ATG             | TGG             | TTC<br>AAG<br>F | ACC<br>TGG<br>T | CTG                  | ATG             | TAC<br>ATG<br>Y> |
| 58              | 30<br>*         |                 | į               | 590<br>*        |                 |                 | 600             |                 |                 | 6:              | 10              |                 | (                    | 520             |                  |
| ATT<br>TAA<br>I | AAT<br>TTA<br>N | TGG<br>ACC<br>W | ATG<br>TAC<br>M | TCT             | CAG<br>GTC<br>Q | CGT             | CCT<br>GGA      | CCT             | GTC             | GGA<br>CCT<br>G | CTC<br>GAG      | GAG<br>CTC<br>E | TGG<br>ACC<br>W      | ATT<br>TAA      | GGA<br>CCT<br>G> |
|                 | 630             |                 |                 | 6               | 40              |                 |                 | 650             |                 |                 | 660             |                 |                      | 6               | 70               |
| TGG<br>ACC<br>W | TAA             | GAC<br>CTG<br>D | GGA             | GGA<br>CCT<br>G | AGA             | GGA<br>CCT<br>G | AAT<br>TTA<br>N | ACA<br>TGT      | TTC             | TAC<br>ATG<br>Y | TTA             | GAG<br>CTC<br>E | TTC                  | TTC<br>AAG<br>F | AAG<br>TTC       |
|                 | •               | 680             |                 |                 | 690             |                 |                 | 7               | 00              |                 |                 | 710             |                      |                 | 720              |
| GGA<br>CCT<br>G | TCT             | GCA<br>CGT<br>A | ACA<br>TGT<br>T | CTG<br>GAC<br>L | TGT             | CAC             | CTG             | TGT             | AGG             | ACG<br>TGC<br>T | TTA             | ACC<br>TGG      | GCC<br>CGG<br>A      | ATG             | ATG<br>TAC<br>M> |
|                 |                 | 7               | 30              |                 |                 | 740             |                 |                 | 750<br>*        |                 |                 | 7               | 60                   |                 |                  |
| GAG<br>CTC<br>E | CTG<br>GAC<br>L | TCT<br>AGA<br>S | TCT<br>AGA<br>S | CTG<br>GAC<br>L | TCT             | AGA             | GAG<br>CTC<br>E | GAC<br>CTG<br>D | ACA             | GCA<br>CGT<br>A | TTC<br>AAG<br>F | TAC<br>ATG<br>Y | TTC<br>AAG<br>F      | TGT<br>ACA<br>C | CGT              |
| 770             |                 |                 | 780             |                 |                 | 75              | 90              |                 | į               | 800             |                 |                 | 810                  |                 |                  |
| TCT             | GAG<br>CTC<br>E | AAG<br>TTC<br>K | TGG             | TGG             | TAC<br>ATG<br>Y | ATG             | TAC<br>ATG      | CGT             | TAC             | CTG             | ATG             | TGG<br>ACC<br>W | CCT                  | GTC             | GGA<br>CCT<br>G> |
| 82              | 20              |                 |                 | 830             |                 |                 | 840             |                 |                 | 8               | 50              |                 | ł                    | 860             |                  |
| ACA<br>TGT<br>T | CTG<br>GAC<br>L | GTG<br>CAC<br>V | ACA<br>TGT<br>T | GTG<br>CAC<br>V | TCT<br>AGA<br>S | TOT<br>AGA<br>S | G 00            | AGT             | ACG<br>TGC<br>T | AAG<br>TTI<br>K | GGC             | CCG<br>GGC<br>P | ACT<br>TGA<br>T      | AGT<br>TCA<br>S | GAC<br>CTG<br>D> |
|                 | 870             |                 |                 | 8               | 80              |                 | ;               | 890             |                 |                 | 900             |                 |                      | 9:              | 10               |
| AAA<br>TTT<br>K | ACT<br>TGA<br>T | GTG             | TGT             | TGC<br>ACG<br>C | GGT             | GGC             | ACG             | GGT             | CGT             | CCT<br>GGA<br>P | GAA<br>CTT      | CTC<br>GAG<br>L | GAC                  | GGG<br>CCC<br>G | GGA<br>CCT       |
|                 | Ġ               | 920             |                 |                 | 930             |                 |                 | 9               | 40              |                 | 9               | 950             |                      |                 | 960              |
| CCG<br>GGC<br>P | AGT             | CAG             | AAG             | GAG             | TTC<br>AAG<br>F | G 3-3           | GGT             | TTT             | GGG             | TTC             | CTG             | ACC<br>TGG      | CTC<br>GAG<br>L      | TAC             | TAG              |
|                 |                 | 91              | 70<br>*         |                 | 1               | 08e<br>*        |                 |                 | 990             |                 |                 | 100             | 00                   |                 |                  |
| TCC<br>AGG<br>S | GCC             | TGG             | CCT<br>GGA      | CTC             | CAG             | ACA<br>TGT      | ACG             | CAC             | CAC             | CAC             | CTG             | GTG<br>CAC<br>V | TCG                  | GTG             | CTT              |



| 1010            |                 | 1               | 1020            |     |                 | 103        | 30<br>*    |            | 10              | 040             |            | 1               | .050            |                 |                  |  |
|-----------------|-----------------|-----------------|-----------------|-----|-----------------|------------|------------|------------|-----------------|-----------------|------------|-----------------|-----------------|-----------------|------------------|--|
| CTG             | CCT<br>GGA<br>P | CTC             | GTC<br>CAG<br>V | TTC | AAG             | TTG        | TGG<br>ACC | ATG        | CAC             | CTG             | CCG        | GTG<br>CAC<br>V | CTC             | CAC             | CAT<br>GTA<br>H> |  |
| 106             | 50<br>*         |                 | 10              | 70  |                 | 1          | 080        |            |                 | 109             | 90<br>*    | 1100            |                 |                 |                  |  |
| AAT<br>TTA<br>N | CGG             | TTC             | TGT             | TTC | GGC             | GCC        | GAG<br>CTC | CTC        | CAG<br>GTC<br>Q | ATG             | AAC<br>TTG | AGC<br>TCG<br>S | ACG<br>TGC<br>T | TAC<br>ATG      | CGT<br>GCA<br>R> |  |
| =               | 1110            |                 |                 | 112 | 20              |            | 1          | L30<br>*   |                 | 5               | L140       |                 |                 | 115             | 50               |  |
| GTG<br>CAC<br>V | CAG             | TCG             | CAG             | GAG | TGG             | CAG        | GAC        | CAC<br>GTG | CAG<br>GTC<br>Q | CTG             | ACC        | CTG<br>GAC<br>L | TTA             | GGC<br>CCG<br>G | TTC              |  |
|                 | 13              | 160             |                 | :   | 1170            |            |            | 118        | 30<br>*         |                 | 1:         | 190             |                 | 1               | L200             |  |
| GAG<br>CTC<br>E | ATG             | TTC             | ACG             | TTC | CAG             | AGG        | TTG        | AAA<br>TTT | GCC             | CTC<br>GAG      | CCA<br>GGT | GCC<br>CGG      | CCC<br>GGG<br>P | TAG             | GAG<br>CTC<br>E> |  |
|                 |                 | 121             | 10              |     | 12              | 220        |            | 1230       |                 |                 |            | 12              | 40              |                 |                  |  |
| AAA<br>TTT<br>K | TGG             | ATC<br>TAG<br>I | AGG             | TTT | CGG             | TTT        | CCC        | GTC        | GGG             | GCT             | CTT        | CCA<br>GGT<br>P | GTC             | CAC             | TAC<br>ATG<br>Y> |  |
| 1250 1260       |                 |                 |                 |     |                 | 127        | 70<br>*    |            | 1280            |                 |            |                 | 1290            |                 |                  |  |
| TGG             | CTG<br>GAC<br>L | GGG             | GGT             | AGG | GCC             | CTC        | CTC        | TAC        | TGG             | AAG<br>TTC      | TTG        | CAG<br>GTC<br>Q | CAG             | TCG             | CTG<br>GAC<br>L> |  |
| 130             | 00              |                 | 1               | 310 |                 | -          | 1320       |            |                 |                 | 30 1       |                 |                 | 340             |                  |  |
| TGG             | TGC<br>ACG<br>C | GAC             | CAG             | TTT | GGC<br>CCG<br>G | AAG        | ATA        | GGG        | TCG             | GAC<br>CTG<br>D | TAG        | GCC<br>CGG<br>A | GTG<br>CAC<br>V | GAG<br>CTC<br>E | TGG<br>ACC<br>W> |  |
| :               | 1350            |                 |                 | 13  | 60<br>*         |            | 1          | 370        |                 |                 | 1380       |                 |                 | 1390            |                  |  |
| CTC             | TCG             | AAT<br>TTA<br>N | CCC             | GTC | GGC             | CTC        | TTG        | TTG        | ATG             | TTC             | TGG        | ACG<br>TGC<br>T | CCT<br>GGA<br>P | CCC<br>GGG<br>P | CAC              |  |
|                 | 1               | 400<br>*        |                 | :   | 1410            |            |            | 1420       |                 |                 | 1430       |                 |                 | 1440            |                  |  |
| GAC             | CTG             | AGG             | CTG             | CCG | AGG             | AAG        | AAG        | GAG        | ATG             | TCG             | TTC        | CTC<br>GAG<br>L | TGG             | CAC             | CTG              |  |
|                 |                 | 14              | 50<br>*         |     | 1460            |            |            | 1470       |                 |                 |            | 14              | 80              |                 |                  |  |
| TTC             | TCG             | TCC             | ACC             | GTC | GTC             | GGG<br>CCC | TTG        | CAG        | TTC<br>AAG      | AGT             | ACG        | TCC<br>AGG<br>S | GTG<br>CAC      | TAC             | GTA              |  |
| 1490            |                 | :               | 1500            |     |                 | 15:        | 10         |            | 1               | 520             |            | :               | 1530            |                 |                  |  |
|                 |                 |                 |                 |     |                 |            | ACG        |            |                 | AGC             |            | TCC<br>AGG      |                 |                 |                  |  |



Α Y  $\mathbf{T}$ 1540 1550 1560 1570 1580 GGT AAA CTG GAT CCC AAA CTC TGC TAC CTG CTG GAT GGA ATC CTC TTC CCA TTT GAC CTA GGG TTT GAG ACG ATG GAC GAC CTA CCT TAG GAG AAG K К D P Y 1600 1590 1610 1620 ATC TAT GGT GTC ATT CTC ACT GCC TTG TTC CTG AGA GTG AAG TTC AGC TAG ATA CCA CAG TAA GAG TGA CGG AAC AAG GAC TCT CAC TTC AAG TCG A T 1650 1640 1660 AGG AGC GCA GAG CCC CCC GCG TAC CAG CAG GGC CAG AAC CAG CTC TAT TCC TCG CGT CTC GGG GGG CGC ATG GTC GTC CCG GTC TTG GTC GAG ATA E P P A Y Q Q G Q 1690 1700 1710 1720 AAC GAG CTC AAT CTA GGA CGA AGA GAG GAG TAC GAT GTT TTG GAC AAG TTG CTC GAG TTA GAT CCT GCT TCT CTC CTC ATG CTA CAA AAC CTG TTC G R R 1730 1740 1750 1760 AGA CGT GGC CGG GAC CCT GAG ATG GGG GGA AAG CCG AGA AGG AAG AAC TCT GCA CCG GCC CTG GGA CTC TAC CCC CCT TTC GGC TCT TCC TTC TTG E M G Ε. Р 1780 1790 1800 1810 1820 CCT CAG GAA GGC CTG TAC AAT GAA CTG CAG AAA GAT AAG ATG GCG GAG GGA GTC CTT CCG GAC ATG TTA CTT GAC GTC TTT CTA TTC TAC CGC CTC Q Ε 1830 1840 1850 GCC TAC AGT GAG ATT GGG ATG AAA GGC GAG CGC CGG AGG GGC AAG GGG CGG ATG TCA CTC TAA CCC TAC TTT CCG CTC GCG GCC TCC CCG TTC CCC S T G M K 1880 1890 1900 1910 1920 CAC GAT GGC CTT TAC CAG GGT CTC AGT ACA GGC ACC AAG GAC ACC TAC GTG CTA CCG GAA ATG GTO COA GAG TCA TGT CGG TGG TTC CTG TGG ATG Y Q G L L S T A Т D 1930 1940 1950 1960 GAC GCC CTT CAC ATG CAG GOC CTG CCC CCT CGC AGG AGT AAG AGG AGC CTG CGG GAA GTG TAC GTO CGG GAC GGG GGA GGG TCO TCA TTC TCC TCG H M O A1980 1990 2000 2010 AGG CTC CTG CAC AGT GAC TAC ATG AAC ATG ACT CCC CGC CGC CCC GGG TCC GAG GAC GTG TCA CTG ATG TAC TTG TAC TGA GGG GCG GCG GGG CCC 2020 2030 2040 2050 2060 CCC ACC CGC AAG CAT TAC CAG CCC TAT GCC CCA CCA CGC GAC TTC GCA



2070

GCC TAT CGC TCC TGA
CGG ATA GCG AGG ACT
A Y R S \*



## FIGURE 9

## SEQUENCE OF hCTM01 / h / CD28 RECOMBINANT CHIMERIC RECEPTOR

|                                     | 10                                                                           |                               |                                       |                                                   |                                  |                                                      |                               | 30<br>*                                                      |                               |                                        |                                          | 4                                  |                                     |                                           |                                      |  |
|-------------------------------------|------------------------------------------------------------------------------|-------------------------------|---------------------------------------|---------------------------------------------------|----------------------------------|------------------------------------------------------|-------------------------------|--------------------------------------------------------------|-------------------------------|----------------------------------------|------------------------------------------|------------------------------------|-------------------------------------|-------------------------------------------|--------------------------------------|--|
| ATG<br>TAC<br>M                     | TCT<br>AGA<br>S                                                              | GTC<br>CAG<br>V               | CCC<br>GGG<br>P                       | ACC<br>TGG<br>T                                   | CAA<br>GTT<br>Q                  | GTC<br>CAG<br>V                                      | CTC<br>GAG<br>L               | GGA<br>CCT<br>G                                              | CTC<br>GAG<br>L               | CTG<br>GAC<br>L                        | CTG<br>GAC<br>L                          | CTG<br>GAC<br>L                    | TGG<br>ACC<br>W                     | CTT<br>GAA<br>L                           | ACA<br>TGT<br>T>                     |  |
| 50<br>*                             |                                                                              |                               | 60<br>*                               |                                                   |                                  | 7                                                    | '0<br>*                       | 80                                                           |                               |                                        | 90                                       |                                    |                                     |                                           |                                      |  |
| GAT<br>CTA<br>D                     | GCC<br>CGG<br>A                                                              | AGA<br>TCT<br>R               | TGC<br>ACG<br>C                       | GAT<br>CTA<br>D                                   | ATC<br>TAG<br>I                  | CAG<br>GTC<br>Q                                      | ATG<br>TAC<br>M               | ACT<br>TGA<br>T                                              | CAG<br>GTC<br>Q               | AGT<br>TCA<br>S                        | CCA<br>GGT<br>P                          | AGT<br>TCA<br>S                    | ACT<br>TGA<br>T                     | CTC<br>GAG<br>L                           | AGT<br>TCA<br>S>                     |  |
| 100 1                               |                                                                              |                               |                                       | 110                                               |                                  |                                                      | 120                           |                                                              |                               | 130                                    |                                          |                                    | 140                                 |                                           |                                      |  |
| GCC<br>CGG<br>A                     | AGT<br>TCA<br>S                                                              | GTA<br>CAT<br>V               | GGT<br>CCA<br>G                       | GAT<br>CTA<br>D                                   | AGG<br>TCC<br>R                  | GTC<br>CAG<br>V                                      |                               |                                                              |                               |                                        |                                          |                                    |                                     | AAA<br>TTT<br>K                           |                                      |  |
|                                     | 150                                                                          |                               |                                       |                                                   | 160                              |                                                      |                               | 170                                                          |                               |                                        | 180                                      | 19                                 |                                     |                                           | 90<br>*                              |  |
| CTC<br>GAG<br>L                     | CTC<br>GAG<br>L                                                              | CAT<br>GTA<br>H               | AGT<br>TCA<br>S                       | AAC<br>TTG<br>N                                   | GGT<br>CCA<br>G                  | GAC<br>CTG<br>D                                      | ACC<br>TGG<br>T               | TTC<br>AAG<br>F                                              | CTC<br>GAG<br>L               | TAT<br>ATA<br>Y                        | TGG<br>ACC<br>W                          | TTC<br>AAG<br>F                    | CAG<br>GTC<br>Q                     | CAG<br>GTC<br>Q                           | AAA<br>TTT<br>K>                     |  |
|                                     | 200                                                                          |                               |                                       |                                                   | 210                              |                                                      |                               | 22                                                           | 20                            |                                        | 230                                      |                                    |                                     | 2                                         |                                      |  |
| CCA<br>GGT<br>P                     | GGT<br>CCA<br>G                                                              | AAA<br>TTT<br>K               | GCC<br>CGG<br>A                       | CCA<br>GGT<br>P                                   | AAG<br>TTC<br>K                  | CTC<br>GAG<br>L                                      | CTC<br>GAG<br>L               | ATG<br>TAC<br>M                                              | TAT<br>ATA<br>Y               | AGG<br>TCC<br>R                        | ATG<br>TAC<br>M                          | AGT<br>TCA<br>S                    | AAC<br>TTG<br>N                     | CTC<br>GAG<br>L                           | GCC<br>CGG<br>A>                     |  |
|                                     |                                                                              | 2 5                           | 50                                    |                                                   |                                  | 250                                                  |                               | 270                                                          |                               |                                        |                                          | 2.8                                |                                     |                                           |                                      |  |
|                                     | GGT<br>CCA                                                                   |                               |                                       |                                                   |                                  |                                                      |                               |                                                              |                               |                                        |                                          | GGT<br>CCA                         |                                     | GAG                                       |                                      |  |
|                                     | G                                                                            | V                             | P                                     | 3                                                 | F.                               | F                                                    | 3                             | G                                                            | 3                             | G                                      | 3                                        | G                                  | T                                   | E                                         | F>                                   |  |
| 290                                 | G                                                                            |                               |                                       |                                                   |                                  | F                                                    |                               | Ğ                                                            | 3                             | 320                                    | 3                                        | G                                  |                                     |                                           | F>                                   |  |
| *<br>ACT                            | G<br>CTC<br>GAG<br>L                                                         | V<br>ACT                      | P<br>300<br>*<br>ATC                  | s<br>Agt                                          | F.<br>AGT                        | F<br>31                                              | S<br>10<br>*<br>CAG           | CCA                                                          | S<br>GAT                      | 320<br>*<br>GAT                        | TTC                                      | G<br>GCC<br>CGG<br>A               | T<br>330<br>*<br>ACT                | E                                         | TAT                                  |  |
| *<br>ACT<br>TGA<br>T                | CTC<br>GAG                                                                   | V<br>ACT<br>TGA               | P<br>300<br>*<br>ATC<br>TAG<br>I      | S<br>AGT<br>TCA                                   | E.<br>AGT<br>TCA                 | F<br>31<br>3TC<br>GAG                                | S<br>10<br>*<br>CAG<br>GTC    | CCA<br>GGT                                                   | S<br>GAT<br>CTA               | 320<br>*<br>GAT<br>CTA                 | TTC<br>AAG<br>F                          | GCC<br>CG3                         | T 330  * ACT TGA T                  | E<br>TAT<br>ATA                           | TAT<br>ATA                           |  |
| * ACT TGA T                         | CTC<br>GAG<br>L<br>40                                                        | V<br>ACT<br>TGA<br>T          | P 300 * ATC TAG I CAT                 | AGT<br>TCA<br>S<br>350                            | AGT<br>TCA<br>S                  | F<br>31<br>GAG<br>L<br>TAT                           | S 10 CAG GTC 2 360            | CCA<br>GGT<br>P                                              | GAT<br>CTA<br>D               | 320<br>*<br>GAT<br>CTA<br>D            | TTC AAG F                                | GCC<br>CGG<br>A                    | T 330 * ACT TGA T                   | E<br>TAT<br>ATA<br>Y                      | TAT<br>ATA<br>Y>                     |  |
| ACT<br>TGA<br>T<br>3-<br>TGT<br>ACA | CTC<br>GAG<br>L<br>40<br>*<br>ATG<br>TAC                                     | V ACT TGA T CAG GTC           | P 300 * ATC TAG I CAT GTA             | AGT<br>TCA<br>S<br>350<br>CTC<br>GAG<br>L         | AGT<br>TCA<br>S<br>GAA<br>CTT    | F<br>31<br>GAG<br>L<br>TAT<br>ATA                    | S CAG GTC 2 360 CCA GGT P     | CCA<br>GGT<br>P<br>TTC<br>AAG                                | GAT<br>OTA<br>D<br>ACT<br>TGA | GAT<br>CTA<br>D<br>37<br>TTC<br>AAG    | TTC AAG F 70 * GGT CCA                   | GCC<br>CGG<br>A                    | T 330 * ACT TGA T GGT CGA           | TAT<br>ATA<br>Y<br>380<br>*<br>ACT<br>TGA | TAT<br>ATA<br>Y><br>AAA<br>TTT<br>K> |  |
| * ACT TGA T 3. TGT ACA C GTA CAT    | CTC<br>GAG<br>L<br>40<br>*<br>ATG<br>TAC<br>M<br>390<br>*                    | V ACT TGA T CAG GTC Q GTA CAT | P 300 * ATC TAG I CAT GTA H AAA TTT   | AGT<br>TCA<br>S<br>GTC<br>GAG<br>L<br>GGT<br>GGTA | E AGT TIA S GAA GTT E C AGG TIGC | F<br>31<br>GAG<br>L<br>TAT<br>ATA<br>Y               | S CAG GTC 2 360 CCA GGT P GGC | CCA<br>GGT<br>P<br>TTC<br>AAG<br>F<br>410<br>GGA<br>CCT      | GAT OTA D ACT TGA T           | GAT<br>CTA<br>CTA<br>CTA<br>CTA<br>AGT | TTC AAG F 70 * GGT CCA G G GGT CCA CCA   | GCC<br>CGG<br>A<br>CAG<br>GTC<br>Q | T 330 * ACT TGA T GGT CCA G GGA CCT | TAT<br>ATA<br>Y<br>380<br>*<br>ACT<br>TGA | TAT ATA Y>  AAA TTT K> 30 * TCA AGT  |  |
| * ACT TGA T 3. TGT ACA C GTA CAT    | CTC<br>GAG<br>L<br>40<br>*<br>ATG<br>TAC<br>M<br>390<br>*<br>GAA<br>CTT<br>E | V ACT TGA T CAG GTC Q GTA CAT | P 300 * ATC TAG I CAT GTA H AAA TTT K | AGT<br>TCA<br>S<br>GTC<br>GAG<br>L<br>GGT<br>GGTA | E AGT TIA S GAA GTT E C AGG TIGC | F<br>31<br>GAG<br>L<br>TAT<br>ATA<br>Y<br>GGT<br>GCA | S CAG GTC 2 360 CCA GGT P GGC | CCA<br>GGT<br>P<br>TTC<br>AAG<br>F<br>410<br>GGA<br>CCT<br>G | GAT OTA D ACT TGA T           | GAT<br>CTA<br>CTA<br>CTA<br>CTA<br>AGT | TTC AAG F 70 * GGT CCA G 420 * GGT CCA G | GCC<br>CGG<br>A<br>CAG<br>GTC<br>Q | T 330 * ACT TGA T GGT CCA G GGA CCT | TAT ATA Y 380 ACT TGA T GGG CCC           | TAT ATA Y>  AAA TTT K> 30 * TCA AGT  |  |



|                                                             |                                                      | 9                                                        | 500                                       |                                                |                                                       | 510                                   |                                                                 |                                                           | 520                                                          |                                            |                                                              |                                                     |                                                     |                                                       |                                               |  |
|-------------------------------------------------------------|------------------------------------------------------|----------------------------------------------------------|-------------------------------------------|------------------------------------------------|-------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|-------------------------------------------------------|-----------------------------------------------|--|
| ATT<br>TAA<br>I                                             | CAG<br>GTC<br>Q                                      | CTG<br>GAC<br>L                                          | CAC                                       | CAG<br>GTC<br>Q                                | AGA                                                   | CCT                                   | CGT                                                             | GAG<br>CTC<br>E                                           | CAC                                                          | TTC                                        | AAG<br>TTC<br>K                                              | GGA                                                 | *<br>GGA<br>CCT<br>G                                | TCT<br>AGA<br>S                                       | TCT<br>AGA<br>S>                              |  |
| 530                                                         |                                                      |                                                          | 540                                       |                                                |                                                       | 5.5                                   | 50                                                              |                                                           |                                                              | 560                                        |                                                              |                                                     | 570                                                 |                                                       |                                               |  |
| CAC                                                         | AAG<br>TTC<br>K                                      | GTG<br>CAC<br>V                                          | AGA                                       | ACA                                            | TTC                                                   | CGT                                   | AGA                                                             | GGA<br>CCT<br>G                                           | ATG                                                          | TGG                                        | AAG                                                          | ACC<br>TGG<br>T                                     | GAC<br>CTG<br>D                                     | TAC<br>ATG<br>Y                                       | TAC<br>ATG<br>Y>                              |  |
| 580 5<br>*                                                  |                                                      |                                                          |                                           | 590<br>*                                       |                                                       |                                       | 600                                                             |                                                           |                                                              | 6:                                         | 610                                                          |                                                     |                                                     | 620                                                   |                                               |  |
| ATT<br>TAA<br>I                                             | AAT<br>TTA<br>N                                      | TGG<br>ACC<br>W                                          | ATG<br>TAC<br>M                           | AGA<br>TCT<br>R                                | GTC                                                   | CGT                                   | GGA                                                             | GGA<br>CCT<br>G                                           | GTC                                                          | CCT                                        | CTC                                                          | GAG<br>CTC<br>E                                     | TGG<br>ACC<br>W                                     | ATT<br>TAA<br>I                                       | CCT                                           |  |
|                                                             | 630 6                                                |                                                          |                                           |                                                | 40 65                                                 |                                       |                                                                 | 550<br>*                                                  |                                                              |                                            | 660                                                          |                                                     |                                                     | 670<br>*                                              |                                               |  |
| TGG<br>ACC<br>W                                             | ATT<br>TAA<br>I                                      | GAC<br>CTG<br>D                                          | GGA                                       | GGA<br>CCT<br>G                                | AGA                                                   | CCT                                   | TTA                                                             | TGT                                                       | AAG<br>TTC<br>K                                              | TAC<br>ATG<br>Y                            | AAT<br>TTA<br>N                                              | GAG<br>CTC<br>E                                     | AAG<br>TTC<br>K                                     | TTC<br>AAG<br>F                                       | TTC                                           |  |
|                                                             | 680<br>*                                             |                                                          |                                           |                                                | 690<br>*                                              |                                       |                                                                 | 70                                                        | 700                                                          |                                            |                                                              | 710                                                 |                                                     |                                                       | 720                                           |  |
| GGA<br>CCT<br>G                                             | AGA<br>TCT<br>R                                      | GCA<br>CGT<br>A                                          | ACA<br>TGT<br>T                           | CTG<br>GAC<br>L                                | ACA<br>TGT<br>T                                       | CAC                                   | CTG                                                             | ACA<br>TGT<br>T                                           | AGG                                                          | ACG<br>TGC<br>T                            | AAT<br>TTA<br>N                                              | ACC<br>TGG<br>T                                     | GCC<br>CGG<br>A                                     | TAC<br>ATG<br>Y                                       | TAC                                           |  |
| 730                                                         |                                                      |                                                          |                                           | 740                                            |                                                       |                                       |                                                                 |                                                           |                                                              |                                            |                                                              |                                                     |                                                     |                                                       |                                               |  |
|                                                             |                                                      | 7                                                        | 30<br>*                                   |                                                | •                                                     |                                       |                                                                 |                                                           | 750<br>*                                                     |                                            |                                                              | 7                                                   | 60<br>*                                             |                                                       |                                               |  |
| GAG<br>CTC<br>E                                             | CTG<br>GAC<br>L                                      | TCT                                                      | *<br>TCT                                  | CT3<br>GAC<br>L                                | AGA                                                   | *<br>TCT                              | CTC                                                             | CTG                                                       | *<br>ACA                                                     | GCA<br>CGT<br>A                            | TTC<br>AAG<br>F                                              | TAC                                                 | *<br>TTC                                            | TGT<br>ACA<br>C                                       | GCA<br>CGT<br>A>                              |  |
| CTC                                                         | GAC                                                  | TCT<br>AGA                                               | *<br>TCT<br>AGA                           | GA∙C                                           | AGA<br>TOT                                            | TOT<br>AGA<br>S                       | CTC                                                             | CTG                                                       | * ACA TGT T                                                  | CGT                                        | AAG                                                          | TAC<br>ATG                                          | *<br>TTC<br>AAG                                     | ACA                                                   | CGT                                           |  |
| CTC<br>E<br>770<br>*<br>AGA<br>TCT                          | GAC<br>L<br>GAG                                      | TCT<br>AGA<br>S                                          | TCT AGA S 780 * ACC TGG                   | GAC<br>L<br>ACC                                | AGA<br>TOT<br>R<br>TAC<br>ATG                         | TCT<br>AGA<br>S<br>7:<br>TAC<br>ATG   | CTC<br>E<br>90<br>*<br>TAC<br>ATG                               | CTG<br>D<br>GCA<br>CGT                                    | ACA<br>TGT<br>T                                              | CGT<br>A<br>800<br>*<br>GAC                | AAG<br>F<br>TAC<br>ATG                                       | TAC<br>ATG<br>Y<br>TGG<br>ACC                       | * TTC AAG F 810 * GGA                               | ACA<br>C<br>CAG<br>GTC                                | CGT<br>A>                                     |  |
| CTC<br>E<br>770<br>*<br>AGA<br>TCT<br>R                     | GAC<br>L<br>GAG<br>CTC                               | TCT<br>AGA<br>S<br>AAG<br>TTC                            | TCT AGA S 780 * ACC TGG T                 | GAC<br>L<br>ACC<br>TGG                         | AGA<br>TOT<br>R<br>TAC<br>ATG                         | TCT<br>AGA<br>S<br>7:<br>TAC<br>ATG   | CTC<br>E<br>90<br>*<br>TAC<br>ATG                               | CTG<br>D<br>GCA<br>CGT                                    | ACA<br>TGT<br>T                                              | CGT<br>A<br>800<br>*<br>GAC<br>CTG<br>D    | AAG<br>F<br>TAC<br>ATG<br>Y                                  | TAC<br>ATG<br>Y<br>TGG<br>ACC                       | TTC AAG F 810 * GGA CCT G                           | ACA<br>C<br>CAG<br>GTC<br>Q                           | CGT<br>A><br>GGA<br>CCT                       |  |
| CTC<br>E<br>770<br>*<br>AGA<br>TCT<br>R<br>82<br>ACA<br>TGT | GAC<br>L<br>GAG<br>CTC<br>E<br>20<br>*<br>CTG<br>GAC | TCT AGA S AAG TTC K                                      | TCT AGA S 780 ACC TGG T ACA TGT           | ACC<br>TGG<br>T                                | AGA<br>TOT<br>R<br>TAC<br>ATG<br>Y<br>TOT<br>AGA      | TOT AGA S 79 TAC ATG Y TOT AGA        | CTC<br>E<br>90<br>* TAC<br>ATG<br>Y<br>840<br>* GCC<br>CGG      | CTG<br>D<br>GCA<br>CGT<br>A<br>TCA<br>AGT                 | ACA TGT T  ATG TAC M  ACG TGC                                | CGT A 800 * GAC CTG D 81 AAG TTC           | AAG<br>F<br>TAC<br>ATG<br>Y<br>50<br>*<br>GGC<br>CCG         | TAC<br>ATG<br>Y<br>TGG<br>ACC<br>W                  | * TTC AAG F 810 * GGA CCT G ACT TGA                 | ACA<br>C<br>CAG<br>GTC<br>Q<br>860<br>*<br>AGT<br>TCA | CGT<br>A><br>GGA<br>CCT<br>G>                 |  |
| CTC<br>E<br>770<br>*<br>AGA<br>TCT<br>R<br>82<br>ACA<br>TGT | GAC<br>L<br>GAG<br>CTC<br>E<br>20<br>*<br>CTG<br>GAC | TCT<br>AGA<br>S<br>AAG<br>TTC<br>K<br>GTG<br>CAC<br>V    | TCT AGA S 780 ACC TGG T ACA TGT           | ACC<br>TGG<br>T                                | AGA<br>TOT<br>R<br>TAC<br>ATG<br>Y<br>TOT<br>AGA<br>S | TOT AGA S 79 TAC ATG Y TOT AGA        | CTC<br>E<br>90<br>* TAC<br>ATG<br>Y<br>840<br>* GCC<br>CGG<br>A | GCA<br>CGT<br>A<br>TCA<br>AGT<br>S                        | ACA TGT T  ATG TAC M  ACG TGC                                | CGT A 800 * GAC CTG D 81 AAG TTC           | AAG<br>F<br>TAC<br>ATG<br>Y<br>50<br>*<br>GGC<br>CCG         | TAC<br>ATG<br>Y<br>TGG<br>ACC<br>W                  | * TTC AAG F 810 * GGA CCT G ACT TGA                 | CAG GTC Q 860 * AGT TCA S                             | GGT A>  GGA CCT G>  GAC CTG D>                |  |
| CTC E 770 * AGA TCT R 82 ACA TGT T AAAA TTT                 | GAC L GAG CTC E CTG GAC L 870 * ACT TGA              | TCT<br>AGA<br>S<br>AAG<br>TTC<br>K<br>GTG<br>CAC<br>V    | TCT AGA S 780 * ACC TGG T ACA TGT T       | GAC L  ACC TGG T  830 * GTG CAC V  TGC ACG ACG | AGA TOT R TAC ATG Y TOTA AGA S BO * COA GGT           | TOT AGA S TAC ATG Y TOT AGA S CCG GGC | CTC<br>E<br>90<br>* TAC<br>ATG<br>Y<br>840<br>* CGC<br>CGG<br>A | GCA<br>CGT<br>A<br>TCA<br>AGT<br>S<br>890<br>* CCA<br>GGT | ACA TGT T ATG TAC M ACG TGC T                                | GGT A 800 * GAC CTG D 8: AAG TTC K GGG CCC | AAG F TAC ATG Y 50 * GGC CCG G 900 * AAA                     | TAC ATG Y TGG ACC W CCG GGC P CAC GTG               | TTC AAG F 810 * GGA CCT G ACT TGA T CTT GAA         | CAG GTC Q 860 * AGT TCA S                             | GGT A>  GGA CCT G>  GAC CTG D>  10  * CCA GGT |  |
| CTC E 770 * AGA TCT R 82 ACA TGT T AAAA TTT                 | GAC L GAG CTC E 20 * CTG GAC L 870 * ACT TGA T       | TCT<br>AGA<br>S<br>AAG<br>TTC<br>K<br>GTG<br>CAC<br>V    | TCT AGA S 780 * ACC TGG T ACA TGT T       | GAC L  ACC TGG T  830 * GTG CAC V  TGC ACG ACG | AGA TOT R TAC ATG Y TOTA AGA S BO * COA GGT           | TOT AGA S TAC ATG Y TOT AGA S CCG GGC | CTC<br>E<br>90<br>* TAC<br>ATG<br>Y<br>840<br>* CGC<br>CGG<br>A | GCA<br>CGT<br>A<br>TCA<br>AGT<br>S<br>890<br>CCA<br>GGT   | ACA TGT T ATG TAC M ACG TGC T AAAA TTTT K                    | GGT A 800 * GAC CTG D 8: AAG TTC K GGG CCC | AAG F  TAC ATG Y  50 * GGC CCG G  9000 * AAA TTT K           | TAC ATG Y TGG ACC W CCG GGC P CAC GTG               | TTC AAG F 810 * GGA CCT G ACT TGA T CTT GAA         | CAG GTC Q 860 * AGT TCA S 1TGT ACA                    | GGT A>  GGA CCT G>  GAC CTG D>  10  * CCA GGT |  |
| CTC E 770 * AGA TCT R 8: ACA TGT T AAAA TTT K AGT TCA       | GAC L GAG CTC E CTG GAC L 870 * ACT TGA T CCC GGG    | TCT AGA S  AAG TTC K  GTG CAC V  CAC GTG H  920  CTA GAT | TCT AGA S 780 ACC TGG T ACA TGT T TTT AAA | ACC TGG T T S30 * GTG CAC V 85 ACG C CCC GGG   | AGA TOT R TAC ATG Y TOT AGA S CODA GGT P 930 GGA GCT  | TOT AGA S TOT AGA S COG GGC P COT GGA | TAC ACC ACC ACA ACA ACA                                         | GCA GGT A TCA AGT S 890 CCA GGT P 9 AAG TTC               | ACA TGT T  ATG TAC M  ACG TGC T  AAAA TTTT K  40 * CCCC GGGG | GGT A 800 GAC CTG D 88 AAG TTC K GGG CCC G | AAG F  TAC ATG Y  50 * GGC CCG G  9000 * AAA TTTT K  TGG ACC | TAC ATG Y TGG ACC W CCG GGC P CAC GTG H 950 CAC CAC | TTC AAG F 810 CGA CCT G ACT TGA T CTT GAA L CTG GAC | CAG GTC Q 860 * AGT TCA S 1TGT ACA                    | GGA CCTG D>  CCA GGT P>  960  GTG CAC         |  |



CAA CCA CCT CAG GAC CGA ACG ATA TCG AAC GAT CAT TGT CAC CGG AAA V G G V L A C Y S L L V T V A F> 1010 1030 1020 1040 ATT ATT TTC TGG GTG AGG AGT AAG AGG AGC AGG CTC CTG CAC AGT GAC TAA TAA AAG ACC CAC TCC TCA TTC TCC TCG TCC GAG GAC GTG TCA CTG I I F W V R S K R S R L L H S D> 1060 1070 1080

GTT GGT GGA GTC CTG GCT TGC TAT AGC TTG CTA GTA ACA GTG GCC TTT

TAC ATG AAC ATG ACT CCC CGC CGC CCC GGG CCC ACC CGC AAG CAT TAC ATG TAC TTG TAC TGA GGG GCG GCG GGG CCC GGG TGG GCG TTC GTA ATG Y M N M T P R R P G P T R K H Y>

1090

1130 1140 1110 1120 CAG CCC TAT GCC CCA CCA CGC GAC TTC GCA GCC TAT CGC TCC TGA GTC GGG ATA CGG GGT GGT GCG CTG AAG CGT CGG ATA GCG AGG ACT

Q P Y A P P R D F A A Y R S



FIGURE 10

## CO-STIMULATION OF CELL LINES EXPRESSING A TCR ZETA CHIMERIC RECEPTOR WITH ANTI CD28 ANTIBODY



**STIMULATION** 



FIGURE 11

STIMULATION WITH ANTIGEN POSITIVE CELLS,MCF-7



.



FIGURE 12

IL2 PRODUCTION IN RESPONSE TO VARIOUS STIMULI







.

FIGURE 13



.



FIGURE 14

scFv / CD8 / Zeta chimeric receptor

scFV / CD8 / Zeta-CD28 chimeric receptor



scFv / CD8 / CD28 chimeric receptor







## scFv/ h / CD28 chimeric receptor



PCT/GR 96 07:09 2312 96 - CARPMARL RATE 1.0