EE210: HW-7 Extra Problems

Date: 14.02.2019

Q.1 Determine appropriate capacitance values for C_{C1} , C_{C2} , and C_{E} for the common-emitter amplifier to have $f_{L} = 100$ Hz. Given: $R_{B} = 100$ k Ω , $R_{C} = 8$ k Ω , $R_{L} = 5$ k Ω , $R_{sig} = 5$ k Ω , $R_{sig} = 100$, $R_{m} = 40$ mA/V, and $R_{m} = 2.5$ k Ω . [From Sedra & Smith]

Q.2 A common-emitter amplifier shown above has $C_{\rm C1} = C_{\rm E} = C_{\rm C2} = 1 \, \mu \text{F}$, $R_{\rm B} = 100 \, \text{k}\Omega$, $R_{\rm sig} = 5 \, \text{k}\Omega$, $g_{\rm m} = 40 \, \text{mA/V}$, $r_{\pi} = 2.5 \, \text{k}\Omega$, $R_{\rm C} = 8 \, \text{k}\Omega$, and $R_{\rm L} = 5 \, \text{k}\Omega$. Determine cutoff frequency from each capacitor and then estimate $f_{\rm L}$. [From Sedra & Smith]

Q.3 Repeat Q.2 for the situation in which $C_E = 50 \mu F$ and $C_{C1} = C_{C2} = 2\mu F$. Find the three break frequencies and estimate f_L . [From Sedra & Smith]

Q.4 Repeat Q.1 for a related CE amplifier whose supply voltages and bias current are each reduced to half of their original value but $R_{\rm B}$, $R_{\rm C}$, $R_{\rm sig}$, and $R_{\rm L}$ are left unchanged. Find $C_{\rm C1}$, $C_{\rm C2}$, $C_{\rm E}$ and for $f_{\rm L}=100$ Hz. Minimize the total capacitance used, under the following conditions. Arrange that the contributions of $C_{\rm E}$, $C_{\rm C1}$, and $C_{\rm C2}$ are 80%, 10%, and 10%, respectively. Specify capacitors to two significant digits, choosing the next highest value (in general, for a conservative design), but realizing that for $C_{\rm E}$, this may represent a larger capacitance increment. Check the value of $f_{\rm L}$ that results. [From Sedra & Smith]

[Note: An attractive approach can be to select on the small side, allowing it to contribute more than 80% to f_L , while making C_{C1} and C_{C2} larger, since they must contribute less to f_L .)

Q.5 Consider the common-emitter amplifier shown below under the following conditions: $R_{\rm sig} = 5~\rm k\Omega$, $R_1 = 33~\rm k\Omega$, $R_2 = 22~\rm k\Omega$, $R_E = 3.9~\rm k\Omega$, $R_C = 4.7~\rm k\Omega$, $R_L = 5.6~\rm k\Omega$, $V_{\rm CC} = 5~\rm V$. The dc emitter current can be shown to be $I_E \cong 0.3~\rm mA$, at which $\beta = 120$. Find the input resistance $R_{\rm in}$ and the mid-band voltage gain. If $C_{\rm C1} = C_{\rm C2} = 1~\rm \mu F$ and $C_E = 20~\rm \mu F$, find the three cutoff frequencies $f_{\rm P1}$, $f_{\rm P2}$, and $f_{\rm P3}$ and an estimate for $f_{\rm L}$.

Q.6 For the amplifier described in Q.5, design the coupling and bypass capacitors for a lower 3-dB frequency of 100 Hz. Design so that the contribution of each of C_{C1} and C_{C2} to determining f_L is only 5%.