Application No.: 10/603,375 Docket No.: 30205/39379

AMENDMENTS TO THE CLAIMS

Please <u>amend</u> claims 2-3 as follows and <u>cancel</u> claim 9 without prejudice or disclaimer.

1. (original) A method for manufacturing a metal line contact plug of a semiconductor device, the method comprising:

depositing a conductive material for a wordline on a semiconductor substrate; forming a wordline pattern by depositing a hard mask nitride film on an overlapping portion of the conductive material for the wordline;

forming a nitride spacer on a sidewall of the wordline pattern;

forming a planarized interlayer insulating film on the upper portion of the wordline pattern;

forming a contact hole by etching the interlayer insulating film when the substrate is exposed;

forming a silicon layer on the surface of the interlayer insulating film where the contact hole is formed on;

performing a primary CMP process on the silicon layer using a first slurry for an oxide film until the interlayer insulating film is exposed; and

performing a secondary CMP process on the silicon layer and the interlayer insulating film using a second CMP slurry for an oxide film including a solvent, an abrasive dispersed in the solvent and an alkyl ammonium salt ($R_{(4-n)}H_nN^+X^-$ wherein, n is an integer ranging from 0 to 3) having a high affinity to the oxide film until the hard mask nitride film is exposed.

- 2. (currently amended) The method according to claim 1, wherein R of the alkyl ammonium salt is selected from the group consisting of linear C_{10} - C_{50} C_{1} - C_{50} alkyl and branched C_{10} - C_{50} C_{1} - C_{50} alkyl.
- 3. (currently amended) The method according to claim 2, wherein R is selected from the group consisting of linear C_{10} – C_{20} C_{1} – C_{20} alkyl and branched C_{10} – C_{20} C_{1} – C_{20} alkyl.

Application No.: 10/603,375 Docket No.: 30205/39379

4. (original) The method according to claim 1, wherein the R includes an unsaturated alkyl group having at least one or more of double bond or triple bond.

- 5. (original) The method according to claim 1, wherein X- of the alkyl ammonium salt is selected from the group consisting of F⁻, Cl⁻, Br⁻, I⁻, CO₃²⁻, PO₄³⁻ and SO₄²⁻.
- 6. (original) The method according to claim 1, wherein the alkyl ammonium salt is selected from the group consisting of cetyltrimethylammonium chloride, dodecylethyldimethylammonium bromide, oleyltriethylammonium bromide and didecyldimethylammonium phosphate.
- 7. (original) The method according to claim 1, wherein the alkyl ammonium salt is present in an amount ranging from 0.01 to 10 wt% based on the CMP slurry.
- 8. (original) The method according to claim 7, wherein the alkyl ammonium salt is present in an amount ranging from 0.01 to 1 wt% based on the CMP slurry.
 - 9. (canceled)
 - 10. (original) The method according to claim 1, wherein the abrasive is Al₂O₃.
- 11. (original) The method according to claim 1, wherein the second slurry for an oxide film has a pH ranging from 2 to 7.
- 12. (Original) The method according to claim 1, wherein the second slurry for an oxide film has an pH ranging from 8 to 12.
- 13. (original) The method according to claim 1, wherein the conductive material is selected from the group consisting of doped silicon, poly-silicon, tungsten (W), tungsten nitride (WN), tungsten silicide (WSi_X) and titanium silicide (TiSi_X).

Application No.: 10/603,375 Docket No.: 30205/39379

14. (original) The method according to claim 1, wherein the wordline pattern is formed by an etching process using CCl₄ or Cl₂ gas.

- 15. (original) The method according to claim 1, wherein the spacer is formed of TEOS (Tetraethoxysilicate glass) or silane (SiH₄)-based oxide film.
- 16. (original) The method according to claim 1, wherein the interlayer insulating film is selected from the group consisting of BPSG (borophosphosilicate glass), PSG (phosphosilicate glass), FSG (fluorosilicate glass), PE-TEOS (plasma enhanced tetraethoxysilicate glass), PE-SiH₄ (plasma enhanced-silane), HDP USG (high density plasma undoped silicate glass), HDP PSG (high density plasma phosphosilicate glass) and APL (atomic planarization layer) oxide.
- 17. (original) The method according to claim 1, wherein the contact hole is formed by an etching process using a C_4F_8 , C_2F_6 or C_3F_8 source.
- 18. (original) The method according to claim 1, wherein the silicon layer is formed of doped silicon or poly-silicon using a SiH₄ or Si₂H₆ source.
- 19. (original) The method according to claim 1, wherein the CMP process is performed using a hard pad.