Home Credit Default Risk

Natus Vincere

Sumer Singh Hemanth Dandu Sushanth Kathirvelu

The Challenge

- Predict if an applicant is capable of repaying a loan
- Evaluation Criteria: Area under the ROC curve between the predicted probability and the observed target
- https://www.kaggle.com/c/home-credit-default-risk

The Data

- Application_train data (307,511 * 122)
- Application_test data (48,744 * 121)
- Bureau data (1,716,428 * 17)
 - Bureau_balance data (27,299,925 * 3)
- Previous_application data (1,670,214 * 37)
 - Installments_payments data (13,605,401 * 8)
 - Credit_card_balance data (3,840,312 * 23)
 - POS_CASH_balance data (10,001,358 * 8)

Data Model

- Target Attribute Distribution
- Number of Missing Values in each column for all the data tables and its Percentage.
- Single Attribute distributions
- Distribution of Features Vs the Target

NO

YES

Education of Applicant's in terms of loan is repayed or not in %

Education of Applicant's

Income sources of Applicant's in terms of loan is repayed or not in %

Occupation of Applicant's in terms of loan is repayed or not in %

Distribution of peoples age in terms of loan is repayed or not in %

Data Load - Process Flow

ML Approaches

- Feature Engineering:
 - Manual
 - Automated

- Training models:
 - RandomForest
 - Gradient Boosting Machines(GBM)

Manual Feature Engineering

- Convert all categorical features to dummies
- Take min,max,mean and var for all numerical features that need aggregation
- Drop any constant columns
- Add domain specific features based on literature, domain expertise etc..

Automated Feature Engineering

Featuretools is a framework to perform automated feature engineering

- It works best with relational datasets.
- Automatically aggregates and transforms features to create new features.

```
In [4]: customers_df
Out[4]:
  customer_id zip_code join_date date_of_birth
              60091 2011-04-17 10:48:33
          1
                                      1994-07-18
0
          2 13244 2012-04-15 23:31:04 1986-08-18
1
2
          3 13244 2011-08-13 15:42:34 2003-11-21
3
          4 60091 2011-04-08 20:08:14 2006-08-15
4
       5 60091 2010-07-17 05:27:50 1984-07-28
In [5]: sessions_df = data["sessions"]
In [6]: sessions_df.sample(5)
Out[6]:
   session id customer id device session start
                     1 tablet 2014-01-01 03:28:00
13
         14
6
         7
            3 tablet 2014-01-01 01:39:40
                     5 mobile 2014-01-01 00:17:20
1
         2
                     1 mobile 2014-01-01 07:10:05
28
         29
24
         25
                     3 desktop 2014-01-01 05:59:40
In [7]: transactions_df = data["transactions"]
In [8]: transactions_df.sample(5)
Out[8]:
    transaction_id session_id transaction_time product_id amount
74
             232 5 2014-01-01 01:20:10 1 139.20
231
              27
                       17 2014-01-01 04:10:15 2 90.79
434
             36
                       31 2014-01-01 07:50:10 3 62.35
420
             56
                       30 2014-01-01 07:35:00 3 72.70
```

4 2014-01-01 00:58:30 4 43.59

In [3]: customers_df = data["customers"]

444

54

Feature Tools

Out[12]					A.W. 1.1	/·		D1/201/1
	zip_code	COUNT(sessions)	<pre>NUM_UNIQUE(sessions.device)</pre>	MODE(sessions.device)	SUM(transactions.amount)	STD(transactions.amount)	MAX(transactions.amount)	SKEW(transac
customer	r_id							
1	60091	8	3	mobile	9025.62	40.442059	139.43	
2	13244	7	3	desktop	7200.28	37.705178	146.81	
3	13244	6	3	desktop	6236.62	43.683296	149.15	
4	60091	8	3	mobile	8727.68	45.068765	149.95	
5	60091	6	3	mobile	6349.66	44.095630	149.02	

Feature Tools

1.4	MEAN(sessions.SUM(transactions.amount))
customer_id	, , , , , , , , , , , , , , , , , , , ,
1	1128.202500
2	1028.611429
3	1039.436667
4	1090.960000
5	1058.276667

HOUR(session_sta	DE(sessions.HO	MODE(sessions.HOUR(session_start
		r_id

For each customer this feature

- calculates the sum of all transaction amounts per session to get total amount per session,
- 2. then applies the mean to the total amounts across multiple sessions to identify the average amount spent per session

For each customer this feature calculates

- The hour of the day each of his or her sessions started, then
- uses the statistical function mode to identify the most common hour he or she started a session

Primitives

Aggregations:

Default: ["sum", "std", "max", "skew", "min", "mean", "count", "percent_true", "n_unique", "mode"

Transformations:

Default: ["day", "year", "month", "weekday", "haversine", "num_words", "num_characters"]

It is also possible to create your own custom primitives.

Features Created

We created two sets of features.

- 1. First set created using default primitives.
- 2. Second set created using a subset of primitives.
 - a. Subset primitives : ['sum', 'count', 'min', 'max', 'mean', 'mode']

Features Selection

Number of features:

Manual	Default Primitives	Subset Primitives	
727	1984	1171	

Features Selection

- Use random forest and gradient boosting to get feature importance.
- Features below a threshold are removed. Default threshold is 0.

Number of features

	Manual	Default Primitives	Subset Primitives
Before	727	1984	1171
After	513	1218	879

Best Features - Manual

Best Features - Automatic (subset)

Best Features - Automatic (all)

Visualizing Best Features

Model

- LightGBM with Bayesian Optimized Parameters.
 - @https://www.kaggle.com/sz8416/simple-bayesian-optimization-for-lightgbm

Random Forest Default Parameters

```
# LightGBM parameters found by Bayesian optimization
clf = LGBMClassifier(
   nthread=4,
   n_estimators=10000,
   learning_rate=0.02,
   num_leaves=34,
   colsample_bytree=0.9497036,
   subsample=0.8715623,
   max_depth=8,
   reg_alpha=0.041545473,
   reg_lambda=0.0735294,
   min_split_gain=0.0222415,
   min_child_weight=39.3259775,
   silent=-1,
   verbose=-1, )
```

Results

Submission and Description	Private Score	Public Score
p4sub_lgbm.csv a day ago by Hemanth	0.74545	0.74480
add submission details		

Submission and Description

Private Score

Submission2.csv
2 days ago by sumer

Private Score

0.77362

0.76951

2 days ago by sumer
add submission details

submission.csv
3 days ago by sumer
add submission details

add submission details

subb.csv
4 days ago by sumer
add submission details

Results

Method and features	Score
LightGBM Manual Features	0.74545
LightGBM Full automated features	0.77048
Random Forest Subset automated features	0.77182
LightGBM Subset automated features	0.77362

Kaggle best score - 0.80570

Pending Work

- Add some more domain specific features to the manual feature engineering process like:
 Days employed percentage, Income credit percentage, Payment rate, Payment Difference etc.
- Create Custom primitives for FeatureTools
- SMOTE to deal with class imbalance
- Code Clean up
- Wiki, README, ETHICS

References

- https://www.kaggle.com/willkoehrsen/start-here-a-gentle-introduction
- https://www.kaggle.com/codename007/home-credit-complete-eda-feature-importance
- https://docs.featuretools.com/index.html

Thank You

Questions???