Метод сеток решения задачи Дирихле для уравнения Пуассона

Выполнил: Шведков П. Н.

```
\frac{\partial^2 U\left(x,y\right)}{\partial x^2} + \frac{\partial^2 U\left(x,y\right)}{\partial y^2} = \phi\left(x,y\right), 0 \le x \le 1, 0 \le t \le 1.
          U \mid_{\Gamma} = \psi(x, y)
          \Gamma : x^2 + y^2 = 4
ln[1]:= h = 0.4
          l = 0.4
          \alpha = 0.3 * 16
          mMax = 5
          nMax = 5
          mMin = -5
          nMin = -5
          \phi[x_{-}, y_{-}] := (\alpha^{2} + 1) x + (1 - \alpha^{2}) y
          \psi[x_{-}, y_{-}] := (1 - \alpha^{2}) x + \alpha y^{2} + 2 \alpha
Out[1]= 0.4
Out[2]= 0.4
Out[3]= 4.8
Out[4] = 5
Out[5]= 5
Out[6]= -5
Out[7]= -5
```

```
In[16]:= ClearAll[X]
                              ClearAll[Y]
                              X = (# h) & /@ Range[mMin, mMax]
                              Y = (# h) & /@ Range[nMin, nMax]
                              y[x_{-}, y_{-}] := Sqrt[4 - y^{2}] - Abs[x]
Out[18]=
                              \{-2., -1.6, -1.2, -0.8, -0.4, 0., 0.4, 0.8, 1.2, 1.6, 2.\}
Out[19]=
                              \{-2., -1.6, -1.2, -0.8, -0.4, 0., 0.4, 0.8, 1.2, 1.6, 2.\}
    In[21]:= conditions = \{U_{-5,0} == \psi[X[-5+6]], Y[0+6]]\}
                                              U_{-4.3} = \psi[X[-4+6]], Y[3+6]],
                                              U_{-3,4} == \psi[X[-3+6]], Y[4+6]],
                                              U_{0.5} = \psi[X[0+6]], Y[5+6]],
                                              U_{3.4} == \psi[X[3+6]], Y[4+6]],
                                              U_{4.3} = \psi[X[4+6], Y[3+6]],
                                              U_{5.0} = \psi[X[5+6]], Y[0+6]],
                                              U_{4,-3} == \psi[X[4+6], Y[-3+6]],
                                              U_{3-4} == \psi[X[3+6], Y[-4+6]],
                                               U_{0} = \Psi[X[0+6], Y[-5+6]],
                                              U_{3-4} == \psi[X[-3+6]], Y[-4+6]],
                                               U_{-4,-3} == \psi[X[-4+6]], Y[-3+6]],
                                               U_{-4,1} == \frac{ \text{h } \psi[X[\![-4+6]\!] + \gamma[X[\![-4+6]\!], Y[\![1+6]\!]], Y[\![1+6]\!]] + \gamma[X[\![-4+6]\!], Y[\![1+6]\!]] U_{-3,1}}{ \text{h} + \gamma[X[\![-4+6]\!], Y[\![1+6]\!]]} \, , 
                                               U_{-4,2} == \frac{ \text{h } \psi[X[\![-4+6]\!] + \gamma[X[\![-4+6]\!], Y[\![2+6]\!]] + \gamma[X[\![-4+6]\!], Y[\![2+6]\!]] U_{-3,2} }{ \text{h } + \gamma[X[\![-4+6]\!], Y[\![2+6]\!]] } \, , 
                                               U_{-2,4} == \frac{ \text{h } \psi[X[-2+6]], \ Y[4+6]] + \gamma[Y[4+6]], \ X[-2+6]]] + \gamma[Y[4+6]], \ X[-2+6]]}{ \text{h } + \gamma[Y[4+6]], \ X[-2+6]]} \, , 
                                                                                                                                                                                      h + \gamma [Y[4+6]], X[-2+6]]
                                              \mathsf{U}_{-1,4} = \frac{\mathsf{h} \; \psi[\mathsf{X}[\![-1+6]\!], \; \mathsf{Y}[\![4+6]\!] + \gamma[\mathsf{Y}[\![4+6]\!], \; \mathsf{X}[\![-1+6]\!]] + \gamma[\mathsf{Y}[\![4+6]\!], \; \mathsf{X}[\![-1+6]\!]] \; \mathsf{U}_{-1,3}}{\mathsf{h} \; \mathsf{h} \; \mathsf{x}[\![-1+6]\!] \; \mathsf{y}[\![-1+6]\!] \; \mathsf{y}[\![-1+6]\!]
                                                                                                                                                                                    h + y[Y[4+6]], X[-1+6]]
                                               U_{1,4} == \frac{ \text{h } \psi [X[1+6]], \ Y[4+6]] + \gamma [Y[4+6]], \ X[1+6]]] + \gamma [Y[4+6]], \ X[1+6]] \ U_{-1,3}}{ \text{h} + \gamma [Y[4+6]], \ X[1+6]]} \, , 
                                              \mathsf{U}_{2,4} == \frac{\mathsf{h} \; \psi [\mathsf{X}[\![2+6]\!], \, \mathsf{Y}[\![4+6]\!] + \gamma [\![\mathsf{Y}[\![4+6]\!], \, \mathsf{X}[\![2+6]\!]] + \gamma [\![\mathsf{Y}[\![4+6]\!], \, \mathsf{X}[\![2+6]\!]] }{\mathsf{h} + \gamma [\![\mathsf{Y}[\![4+6]\!], \, \mathsf{X}[\![2+6]\!]]}
```

```
\mathsf{U}_{4,2} = \frac{\mathsf{h} \; \psi [\mathsf{X}[\![4+6]\!] + \gamma [\mathsf{X}[\![4+6]\!], \, \mathsf{Y}[\![2+6]\!]] + \gamma [\mathsf{X}[\![4+6]\!], \, \mathsf{Y}[\![2+6]\!]] \, \mathsf{U}_{-3,2}}{\mathsf{h} + \gamma [\mathsf{X}[\![4+6]\!], \, \mathsf{Y}[\![2+6]\!]]}
                                                               \mathsf{U}_{4,1} \coloneqq \frac{\mathsf{h} \; \psi[\mathsf{X}[\![4+6]\!] + \gamma[\mathsf{X}[\![4+6]\!], \, \mathsf{Y}[\![1+6]\!]] + \gamma[\mathsf{X}[\![4+6]\!], \, \mathsf{Y}[\![1+6]\!]] \, \mathsf{U}_{-3,1}}{\mathsf{h} + \gamma[\mathsf{X}[\![4+6]\!], \, \mathsf{Y}[\![1+6]\!]]} \, ,
                                                                                                                                                                                                                                                                h + y[X[4+6]], Y[1+6]]
                                                                \mathsf{U}_{4,-1} \coloneqq \frac{\mathsf{h} \; \psi[\mathsf{X}[\![4+6]\!] + \gamma[\mathsf{X}[\![4+6]\!], \; \mathsf{Y}[\![-1+6]\!]], \; \mathsf{Y}[\![-1+6]\!]] + \gamma[\mathsf{X}[\![4+6]\!], \; \mathsf{Y}[\![-1+6]\!]] \; \mathsf{U}_{-3,1}}{\ldots} \; , 
                                                                                                                                                                                                                                                                              h + y[X[4+6]], Y[-1+6]]
                                                                \mathsf{U}_{4,-2} := \frac{\mathsf{h} \; \psi[\mathsf{X}[\![4+6]\!] + \gamma[\mathsf{X}[\![4+6]\!],\; \mathsf{Y}[\![-2+6]\!]],\; \mathsf{Y}[\![-2+6]\!]] + \gamma[\mathsf{X}[\![4+6]\!],\; \mathsf{Y}[\![-2+6]\!]] \; \mathsf{U}_{-3,2}}{\mathsf{J}_{-3,2}} \; , 
                                                                                                                                                                                                                                                                             h + y[X[4 + 6]], Y[-2 + 6]]
                                                               \mathsf{U}_{2,-4} == \frac{\mathsf{h} \; \psi[\mathsf{X}[\![2+6]\!], \; \mathsf{Y}[\![-4+6]\!] + \gamma[\mathsf{Y}[\![-4+6]\!], \; \mathsf{X}[\![2+6]\!]]] + \gamma[\mathsf{Y}[\![-4+6]\!], \; \mathsf{X}[\![2+6]\!]] \mathsf{U}_{-2,3}}{\mathsf{h} + \gamma[\mathsf{Y}[\![-4+6]\!], \; \mathsf{X}[\![2+6]\!]]}
                                                                U_{1,-4} == \frac{ \mathsf{h} \; \psi [\mathsf{X}[\![1+6]\!], \; \mathsf{Y}[\![-4+6]\!] + \gamma [\mathsf{Y}[\![-4+6]\!], \; \mathsf{X}[\![1+6]\!]] + \gamma [\mathsf{Y}[\![-4+6]\!], \; \mathsf{X}[\![1+6]\!]] }{ \mathsf{h} + \gamma [\![\mathsf{Y}[\![-4+6]\!], \; \mathsf{X}[\![1+6]\!]] } 
                                                               U_{-1,-4} == \left( h \psi[X[-1+6]], Y[-4+6]] + \gamma[Y[-4+6]], X[-1+6]] \right) + \gamma[Y[-4+6]], X[-1+6]] U_{-1,3} 
                                                                                 (h + y[Y[-4 + 6]], X[-1 + 6]]),
                                                               U_{-2,-4} == \left( h \psi[X[-2+6]], Y[-4+6] + \gamma[Y[-4+6]], X[-2+6]] \right) + \gamma[Y[-4+6]], X[-2+6]] U_{-2,3} 
                                                                                 (h + \gamma[Y[-4 + 6]], X[-2 + 6]]),
                                                               U_{-4,-2} == \left(h \psi[X[-4+6]] + \gamma[X[-4+6]], Y[-2+6]], Y[-2+6]] + \gamma[X[-4+6]], Y[-2+6]] U_{-3,2}\right) / (-2+6) + \gamma[X[-4+6]] + \gamma[X[-4+6]], Y[-2+6]] = 0
                                                                                 (h + \gamma[X[-4 + 6]], Y[-2 + 6]]),
                                                                \mathsf{U}_{-4,-1} \coloneqq \left(\mathsf{h} \; \psi[\mathsf{X}[\![-4+6]\!] + \gamma[\mathsf{X}[\![-4+6]\!], \, \mathsf{Y}[\![-1+6]\!]] + \gamma[\mathsf{X}[\![-4+6]\!], \, \mathsf{Y}[\![-1+6]\!]] \, \mathsf{U}_{-3,1}\right) \Big/ 
                                                                                (h + \gamma[X[-4+6]], Y[-1+6]]);
In[22]:= Ui = U_{Round[\#[1]/0.4],Round[\#[2]/0.4]} \& /@
                                                        {\sf Select[Flatten[Outer[\{\sharp 1,\, \sharp 2\}\,\&,\, X,\, Y],\, 1],\, \sharp \llbracket 1\rrbracket^2 + \sharp \llbracket 2\rrbracket^2 \leq 2^2\,\&]}
                                       \{U_{-5,0},\ U_{-4,-3},\ U_{-4,-2},\ U_{-4,-1},\ U_{-4,0},\ U_{-4,1},\ U_{-4,2},\ U_{-4,3},\ U_{-3,-4},\ U_{-3,-3},\ U_{-3,-2},\ U_{-3,-1},\ U_{-3,0},\ U_{-3,0},\ U_{-3,-2},\ U_{-3,-1},\ U_{-3,0},\ U_{-3,-2},\ U_{-3,-2},\
                                                \mathsf{U}_{-3.1},\,\mathsf{U}_{-3.2},\,\mathsf{U}_{-3.3},\,\mathsf{U}_{-3.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.-3},\,\mathsf{U}_{-2.-2},\,\mathsf{U}_{-2.-1},\,\mathsf{U}_{-2.0},\,\mathsf{U}_{-2.1},\,\mathsf{U}_{-2.2},\,\mathsf{U}_{-2.3},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.1},\,\mathsf{U}_{-2.0},\,\mathsf{U}_{-2.1},\,\mathsf{U}_{-2.1},\,\mathsf{U}_{-2.2},\,\mathsf{U}_{-2.3},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,\mathsf{U}_{-2.4},\,
                                                U_{-1,-4}, U_{-1,-3}, U_{-1,-2}, U_{-1,-1}, U_{-1,0}, U_{-1,1}, U_{-1,2}, U_{-1,3}, U_{-1,4}, U_{0,-5}, U_{0,-4}, U_{0,-3}, U_{0,-2},
                                                U_{0,-1}, U_{0,0}, U_{0,1}, U_{0,2}, U_{0,3}, U_{0,4}, U_{0,5}, U_{1,-4}, U_{1,-3}, U_{1,-2}, U_{1,-1}, U_{1,0}, U_{1,1}, U_{1,2}, U_{1,0}, U_{1,1}, U_{1,2}, U_{1,1}, U_{1,1}, U_{1,2}, U_{1,1}, U_{1,
                                                U_{1,3}, U_{1,4}, U_{2,-4}, U_{2,-3}, U_{2,-2}, U_{2,-1}, U_{2,0}, U_{2,1}, U_{2,2}, U_{2,3}, U_{2,4}, U_{3,-4}, U_{3,-3}, U_{3,-2},
                                                U_{3,-1}, U_{3,0}, U_{3,1}, U_{3,2}, U_{3,3}, U_{3,4}, U_{4,-3}, U_{4,-2}, U_{4,-1}, U_{4,0}, U_{4,1}, U_{4,2}, U_{4,3}, U_{5,0}
```

Out[22]=

In[23]:= equations =

$$\begin{split} \text{DeleteCases} \big[&\text{Flatten} \big[\text{Table} \big[\text{If} \big[\text{Intersection} \big[\text{Ui} \,, \, \{ \text{U}_{\text{m+1}, \text{n}} \,, \, \text{U}_{\text{m}, \text{n}} \,, \, \text{U}_{\text{m}, \text{n+1}} \,, \, \text{U}_{\text{m-1}, \text{n}} \,, \, \text{U}_{\text{m}, \text{n-1}} \} \big] = & \\ &\text{Sort} \big[\{ \text{U}_{\text{m+1}, \text{n}} \,, \, \text{U}_{\text{m}, \text{n}} \,, \, \text{U}_{\text{m}, \text{n+1}} \,, \, \text{U}_{\text{m-1}, \text{n}} \,, \, \text{U}_{\text{m}, \text{n-1}} \} \big] \,, \, \\ & \frac{\text{U}_{\text{m+1}, \text{n}} - \text{U}_{\text{m}, \text{n}} - \text{U}_{\text{m-1}, \text{n}}}{\text{h}^2} \, + \, \\ \end{split}$$

$$\frac{U_{m,n+1}-2 U_{m,n}+U_{m,n-1}}{l^2}-\phi[X[m+6]], Y[n+6]] == 0], \{m,-4,4\}, \{n,-4,4\}], 1], Null];$$

In[24]:= solution = First@Solve[Join[equations, conditions], $U_{Round[\#[1]/0.4],Round[\#[2]/0.4]}$ &/@ Select[Flatten[Outer[{#1, #2} &, X, Y], 1], $\#[1]^2 + \#[2]^2 \le 2^2$ &|]

Out[24]=

 $\{U_{-5,0} \rightarrow 53.68, U_{-4,-3} \rightarrow 51.776, U_{-4,-2} \rightarrow 26.3522, U_{-4,-1} \rightarrow 18.5176, U_{-4,0} \rightarrow -3.37149,$ $U_{-4,1} \rightarrow 18.5176$, $U_{-4,2} \rightarrow 26.3522$, $U_{-4,3} \rightarrow 51.776$, $U_{-3,-4} \rightarrow 48.336$, $U_{-3,-3} \rightarrow -0.327889$, $U_{-3,-2} \rightarrow -8.58567, U_{-3,-1} \rightarrow -6.62053, U_{-3,0} \rightarrow 0.376003, U_{-3,1} \rightarrow -2.82763,$ $U_{-3,2} \rightarrow -1.8808$, $U_{-3,3} \rightarrow 6.55694$, $U_{-3,4} \rightarrow 48.336$, $U_{-2,-4} \rightarrow 28.8179$, $U_{-2,-3} \rightarrow 10.658$, $\mathsf{U}_{-2,-2} \to 5.74903, \ \mathsf{U}_{-2,-1} \to 3.6606, \ \mathsf{U}_{-2,0} \to 2.589, \ \mathsf{U}_{-2,1} \to 5.51329, \ \mathsf{U}_{-2,2} \to 9.54365, \ \mathsf{U}_{-2,-2} \to 9.54365$ $U_{-2,3} \rightarrow 16.1443$, $U_{-2,4} \rightarrow 33.3414$, $U_{-1,-4} \rightarrow 15.8573$, $U_{-1,-3} \rightarrow -1.76629$, $U_{-1,-2} \rightarrow -5.91319$, $U_{-1,-1} \rightarrow -5.64331$, $U_{-1,0} \rightarrow -4.10802$, $U_{-1,1} \rightarrow -2.90808$, $U_{-1,2} \rightarrow -0.80564$, $U_{-1,3} \rightarrow 4.7959$, $U_{-1,4} \rightarrow 21.6745$, $U_{0,-5} \rightarrow 28.8$, $U_{0,-4} \rightarrow 3.99362$, $U_{0,-3} \rightarrow -1.8919$, $U_{0,-2} \rightarrow -3.29837$, $U_{0,-1} \rightarrow -3.37613$, $U_{0,0} \rightarrow -2.72223$, $U_{0,1} \rightarrow -1.24641$, $U_{0.2} \rightarrow 0.879241$, $U_{0.3} \rightarrow 3.89286$, $U_{0.4} \rightarrow 9.68337$, $U_{0.5} \rightarrow 28.8$, $U_{1.-4} \rightarrow 6.57235$, $U_{1,-3} \rightarrow -3.90557$, $U_{1,-2} \rightarrow -7.71916$, $U_{1,-1} \rightarrow -8.34054$, $U_{1,0} \rightarrow -7.65217$, $U_{1,1} \rightarrow -6.21488$, $U_{1,2} \rightarrow -3.63549$, $U_{1,3} \rightarrow 1.68018$, $U_{1,4} \rightarrow 12.3895$, $U_{2,-4} \rightarrow 6.53527$, $U_{2,-3} \rightarrow -6.69156, U_{2,-2} \rightarrow -9.85005, U_{2,-1} \rightarrow -10.0773, U_{2,0} \rightarrow -9.58475, U_{2,1} \rightarrow -8.4754,$ $U_{2,2} \rightarrow -6.77507$, $U_{2,3} \rightarrow -2.51375$, $U_{2,4} \rightarrow 11.0587$, $U_{3,-4} \rightarrow -4.56$, $U_{3,-3} \rightarrow -13.3567$, $U_{3,-2} \rightarrow -14.6022, U_{3,-1} \rightarrow -14.65, U_{3,0} \rightarrow -14.7766, U_{3,1} \rightarrow -13.6147, U_{3,2} \rightarrow -12.7155,$ $U_{3,3} \rightarrow -11.2993$, $U_{3,4} \rightarrow -4.56$, $U_{4,-3} \rightarrow -18.752$, $U_{4,-2} \rightarrow -18.2132$, $U_{4,-1} \rightarrow -18.6223$, $U_{4,0} \rightarrow -21.0341$, $U_{4,1} \rightarrow -18.6223$, $U_{4,2} \rightarrow -18.2132$, $U_{4,3} \rightarrow -18.752$, $U_{5,0} \rightarrow -34.48$

In[61]:= ClearAll[U]

```
ln[75]:= u = Outer[{#1, #2} &, X, Y];
                    answer = u /. \{p_{-}, q_{-}\} \Rightarrow If[p^2 + q^2 \le 2^2, U_{Round[p/0.4], Round[q/0.4]}, ""] /. solution
Out[76]=
                   {{, , , , , , 53.68, , , , , },
                      {,,51.776,26.3522,18.5176,-3.37149,18.5176,26.3522,51.776,,},,,,,,48.336,
                          -0.327889, -8.58567, -6.62053, 0.376003, -2.82763, -1.8808, 6.55694, 48.336, \},
                      {, 28.8179, 10.658, 5.74903, 3.6606, 2.589, 5.51329, 9.54365, 16.1443, 33.3414, },
                       \{, 15.8573, -1.76629, -5.91319, -5.64331, -4.10802, -2.90808, \}
                          -0.80564, 4.7959, 21.6745, \}, \{28.8, 3.99362, -1.8919, -3.29837, \}
                          -3.37613, -2.72223, -1.24641, 0.879241, 3.89286, 9.68337, 28.8},
                       \{, 6.57235, -3.90557, -7.71916, -8.34054, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -3.63549, -7.65217, -6.21488, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7.65217, -7
                          1.68018, 12.3895, \}, \{, 6.53527, -6.69156, -9.85005, -10.0773, \}
                          -9.58475, -8.4754, -6.77507, -2.51375, 11.0587, \}, \{, -4.56, -13.3567, \}
                          -14.6022, -14.65, -14.7766, -13.6147, -12.7155, -11.2993, -4.56, \},
                      \{,,-18.752,-18.2132,-18.6223,-21.0341,-18.6223,-18.2132,-18.752,,\},
                      {, , , , , -34.48, , , , , }}
   ln[91]:= Grid[Join[{Join[{"y_i/x_i"}}, Range[-2., 2., 0.4]]},
                          \label{eq:mapThread} $$\operatorname{MapThread}[\operatorname{Prepend}[\sharp 2, \, \sharp 1] \&, \, \{\operatorname{Range}[-2., \, 2., \, 0.4], \, \operatorname{answer}\}]], $$
                       Spacings \rightarrow {2, 1}, Frame \rightarrow True
```

Out[91]=

y _Å /x _Å	-2.	-1.6	-1.2	-0.8	-0.4	0.	0.4	0.8	1.2	1.6	2.
-2.						53.∵.					
						68					
-1.6			51.∵.	26.:.	18.∵.	-3.∵.	18	26.:	51.·.		
			7∵.	3∵.	5 [·] .	3∵.	5 ⁻ .	3∵.	7∵.		
			76	5 [:] .	1.	7 [:] .	1.	5 ⁻ .	76		
				22	76	1	76	22			
						4 [·] ·.					
						9					
-1.2		48.`.	-0.∵.	-8.∵.	-6. ∵.	0.3:	-2. ∵.	-1.:.	6.5 ⁻ .	48.`.	
		3∵.	3∵.	5∵.	6 [:] .	7∵.	8	8	5 ⁻ .	3∵.	
		36	2∵.	8∵.	2∵.	6 ⁻ .	2⁺.	8	6 ⁻ .	36	
			7∵.	5∵.	0∵.	0∵.	7∵.	0∵.	94		
			8∵.	6∵.	5∵.	03	6 ⁻ .	8			
			8∵.	7	3		3				
			9								
-0.8		28.:.	10.:.	5.7 ⁻ .	3.6 ⁻ .	2.5 ⁻ .	5.5 ⁻ .	9.5 ⁻ .	16.:.	33.∵.	
		8	6∵.	4 [:] .	6∵.	89	1	4	1	3∵.	
		1	58	9∵.	06		3∵.	3∵.	4 [·] ·.	4 [·] ·.	
		79		03			29	65	43	14	

-0.4	15.:.	−1. ∵.	-5. ∵.	−5. ∵.	-4. ∵.	-2. ∵.	-0. ∵.	4.7 ⁻ .	21.:.	
	8	7∵.	9	6 ⁻ .	1	9	8	9	6 ⁻ .	
	5 ⁻ .	6 [:] .	1	4 [:] .	0	0	0	59	7∵.	
	73	6 [:] .	3⁺.	3∵.	8	8.	5 ⁻ .		45	
		2∵.	1.	3∵.	0 ·.	0 ·.	6 ⁻ .			
		9	9	1	2	8	4			
0. 28.8	3.9 ⁻ .	-1.∵ .	-3.∵.	-3.∵.	-2. ∵.	-1.:.	0.8.	3.8.	9.6 ⁻ .	28.8
	9	8∵.	2	3∵.	7 [·] ·.	2∵.	7∵.	9	8.	
	3∵.	9⁺.	9∵.	7∵.	2⁺.	4 [:] .	9∵.	2∵.	3∵.	
	62	1	8.	6 ⁻ .	2	6 ⁻ .	2	86	37	
		9	3∵.	1	2	4	41			
			7	3	3	1				
0.4	6.5 ⁻ .	-3.∵.	-7.∵.	-8.∵.	-7.∵.	-6. ∵.	-3.∵.	1.6 [·] .	12.:.	
	7 [·] ·.	9∵.	7∵.	3∵.	6 [·] ·.	2∵.	6 [·] ·.	8	3∵.	
	2∵.	0	1.	4	5 ⁻ .	1.	3∵.	0∵.	8	
	35	5 ⁻ .	9	0	2⁺.	4.	5 ⁻ .	18	95	
		5 ⁻ .	1.	5 ⁻ .	1.	8	4.			
		7	6	4	7	8	9			
0.8	6.5 ⁻ .	-6. ∵.	-9. ∵.	-1 ∵.	-9.∵.	-8.∵.	-6. ∵.	−2. ∵.	11	
	3∵.	6∵.	8	0∵.	5 ⁻ .	4	7∵.	5 ⁻ .	0∵.	
	5 [:] .	9∵.	5 ⁻ .	··.	8.	7∵.	7∵.	1	5 ⁻ .	
	27	1∵.	0∵.	0∵.	4	5 ⁻ .	5 ⁻ .	3∵.	87	
		5∵.	0∵.	7∵.	7∵.	4	0∵.	7∵.		
		6	5	7∵.	5		7	5		
				3						
1.2	-4. ∵.	−1 ∵.	-1 ⁻ .	−1 ∵.	-1 ∵.	-1:.	-1 ∵.	−1 ∵.	-4. ∵.	
	5 ⁻ .	3∵.	4 [·] ·.	4 [·] ·.	4 [·] ·.	3	2	1.	5 ⁻ .	
	6	$\ddot{\cdot}$.≒.	<i>:</i> -	.≒.	.%	<i>:</i> -	∴.	6	
		3∵.	6 [·] ·.	6 [·] ·.	7∵.	6 ⁻ .	7∵.	2∵.		
		5 ⁻ .	0	5	7∵.	1	1	9		
		6 ⁻ .	2:.			4 [·] ·.		9		
		7	2		6	7	5	3		
1.6			−1 ∵.							
			8							
			.∹.							
					0					
							1			
		2						2		
			2	3	1	3	2			