Esercizio 1. Estendere l'insieme di istruzioni della macchina a registri con l'istruzione **DPD** \mathbf{R}_i , \mathbf{x}_j , \mathbf{x}_i , che restituisce in \mathbf{R}_i la differenza tra la somma dei numeri pari e la somma dei numeri dispari contenuti nel vettore di dimensione pari al valore contenuto in \mathbf{R}_i e memorizzato in RAM a partire dall'indirizzo \mathbf{x}_i .

Esempio

Sia \mathbf{x} =27, $\mathbf{R}_{\mathbf{j}}$ contiene il numero 7, V=[3, 2, 1, 1, 4, 2, 8] è il vettore memorizzato in RAM all'indirizzo 27. Alla fine dell'esecuzione dell'istruzione DPD, in $\mathbf{R}_{\mathbf{i}}$ sarà memorizzato il valore (2+4+2+8) – (3+1+1) = 11.

Ricordiamo che un numero binario è dispari se termina con 1, poiché tutte le altre cifre più significative corrispondono a numeri che sono potenze del due, la cui somma è necessariamente un numero pari e da cui si ottiene quindi un numero dispari aggiungendo uno.

Modifichiamo la Parte Operativa del sistema aggiungendo un segnale **beta** β_n per verificare quando abbiamo finito di scorrere il vettore. Aggiungiamo anche un segnale **beta** β_o al bit meno significativo del registro B, per testare se il valore letto è pari o dispari.

Modelliamo opportunamente la nuova istruzione utilizzando l'RTL:

```
DPD Ri, Rj, x
            10010
            IRx \rightarrow Ra, Rj \rightarrow R'_D;
            0 \rightarrow Ri:
1:
            Ra \rightarrow MAR, Ra + 1 \rightarrow Ra;
            M[MAR] \rightarrow MBR, Ri \rightarrow A;
            MBR \rightarrow B;
            if (OR(R'_D) = 1) then
                       if (B_0 = 0) then
                                   A + B \rightarrow Ri, R'_D - 1 \rightarrow R'_D, goto 1;
                       else
                                   A - B \rightarrow Ri, R'_D - 1 \rightarrow R'_D, goto 1;
                       fi
            else
                        \phi, 0 \rightarrow IR;
            fi
```

ROM:

	I ₁ I ₂ I ₃ I ₄ I ₅	$\beta_n \beta_o$	$Y_1 Y_2 Y_3$	Y' ₁ Y' ₂ Y' ₃	Segnali alfa
$IRx \rightarrow Ra, Rj \rightarrow R_{DEC};$	10010		000	001	A_{RA} =1, K_{RA} =0, A_{RDEC} =1, K_{RDEC} =0, segnali dei due bus tutti abilitati
0 → Ri;			001	010	A _{Ri} =1, segnali bus dati abilitati
$Ra \rightarrow MAR$, $Ra + 1 \rightarrow Ra$;	10010		010	011	$A_{MAR}=1, A_{RA}=1, K_{RA}=1$
$M[MAR] \rightarrow MBR,$ $Ri \rightarrow A;$	10010		011	100	A _{MBR} =1, S=0, L=1, A _A =1, segnali bus dati abilitati
MBR → B;	10010		100	101	A _B =1, segnali bus dati abilitati
$A + B \rightarrow Ri, R_{DEC} - 1 \rightarrow R_{DEC}, goto 1;$	10010	11	101	010	ALU abilitata per la somma, A_{Ri} =1, A_{RDEC} =1, K_{RDEC} =1, segnali bus dati abilitati
$A - B \rightarrow Ri, R_{DEC} - 1 \rightarrow$	10010	10	101	010	ALU abilitata per la differenza,

R _{DEC} , goto 1;					A _{Ri} =1, A _{RDEC} =1, K _{RDEC} =1, segnali bus dati abilitati
ϕ , 0 \rightarrow IR _{COP} ;	10010	0 -	101	001	K _{IR} =1 (per azzerare l'IR)

Esercizio 2. Estendere l'insieme di istruzioni della macchina a registri con l'istruzione **FIND** \mathbf{R}_i , \mathbf{R}_j , \mathbf{R}_k , \mathbf{x} , che restituisce in \mathbf{R}_i il valore del primo elemento contenuto nel vettore \mathbf{V} di dimensione pari al contenuto di \mathbf{R}_k e memorizzato in RAM a partire dall'indirizzo \mathbf{x} , che ha un numero di occorrenze consecutive in \mathbf{V} pari almeno al contenuto di \mathbf{R}_i . Se nessun elemento soddisfa questa condizione, la funzione restituisce zero.

Esempio

Sia x=115, \mathbf{R}_j contiene il numero 3 mentre \mathbf{R}_k contiene 8, V=[12, 12, 1, 1, 1, 1, 1, 8, 1] è il vettore memorizzato in RAM all'indirizzo 115. Alla fine dell'esecuzione dell'istruzione FIND, in \mathbf{R}_i sarà memorizzato il valore 1.

Modifichiamo la Parte Operativa del sistema aggiungendo un nuovo registro ad incremento per gli indirizzi R_{Anew} , un registro R_{temp} a 32 bit e altri due ulteriore registri a decremento a 32 bit R'_{D} ed R''_{D} .

Segnali beta da aggiungere alla PO:

- $\beta'=1 \text{ se } OR(R''_D)=1$
- $\beta''=1 \text{ se } OR(R'_D)=1$
- $\beta'''=1 \text{ se } OR(R_{temp})=0$

Segnali alfa da aggiungere alla PO:

 A_{RAnew} ;

 K_{RAnew} ;

 $A_{Rtemp.}$

 $A_{RD'}$;

 $K_{RD';}$

 $A_{RD''}$;

 $K_{RD'';}$

Modelliamo opportunamente la nuova istruzione utilizzando l'RTL:

```
FIND R<sub>i</sub>, R<sub>i</sub>, R<sub>k</sub>, x
             10010
             IRx \rightarrow R<sub>Anew</sub>, Rk \rightarrow A;
             Rj \rightarrow B;
             A-B \rightarrow R''_D;
1:
             if (OR(R''_D) = 1) then
                           R_{Anew} \rightarrow MAR, R_i \rightarrow R'_D, R_{Anew} + 1 \rightarrow R_{Anew};
                           M[MAR] \rightarrow MBR, R_{Anew} \rightarrow R_A, R'_D - 1 \rightarrow R'_D;
                           MBR \rightarrow B;
2:
                           if (OR(R'_D) = 1) then
                                         R_A \rightarrow MAR, R_A + 1 \rightarrow R_A;
                                         M[MAR] \rightarrow MBR;
                                         MBR \rightarrow A;
                                         A-B \rightarrow R_{temp};
                                         if (OR(R_{temp}) = 0) then
                                                      R'_D - 1 \rightarrow R'_D, R_{Anew} + 1 \rightarrow R_{Anew}, R''_D - 1 \rightarrow R''_D, goto 2;
                                         else
                                                      R''_D - 1 \rightarrow R''_D, goto 1;
                                        fi
                           else
                                        B \rightarrow R_i, 0 \rightarrow IR_{COP};
```

else
$$0 \rightarrow R_i, 0 \rightarrow IR_{COP};$$
 fi

NB: Poichè la microsequenza ha lunghezza pari a 11 micropassi, dobbiamo aggiungere un bit di stato.

ROM:

	I ₁ I ₂ I ₃ I ₄ I ₅	β' β''β'''	$Y_1 Y_2 Y_3 Y_4$	Y' ₁ Y' ₂ Y' ₃ Y' ₄	Segnali alfa
$IRx \rightarrow R_{Anew}, Rk \rightarrow A;$	10010		0000	0001	A_{RAnew} =1, K_{RAnew} =0, A_{A} =1, segnali dei due bus tutti abilitati
Rj →B;	10010		0001	0010	A _B =1, segnali bus dati abilitati
A-B → R" _D ;	10010		0010	0011	ALU abilitata per la differenza, $A_{\text{R"D}}$ =1, $K_{\text{R"D}}$ =0, segnali bus dati abilitati
$ \begin{aligned} R_{\text{Anew}} &\rightarrow MAR, \\ Rj &\rightarrow R'_{D}, \\ R_{\text{Anew}} &+ 1 &\rightarrow R_{\text{Anew}}; \end{aligned} $	10010	1	0011	0100	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$M[MAR] \rightarrow MBR,$ $R_{Anew} \rightarrow R_{A},$ $R'_{D} - 1 \rightarrow R'_{D};$	10010	1	0100	0101	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
MBR → B;	10010	1	0101	0110	A _B =1, segnali bus dati abilitati
$R_A \rightarrow MAR$, $R_A + 1 \rightarrow R_A$;	10010	11-	0110	0111	A_{MAR} =1, A_{RA} =1, K_{RA} =1, segnali bus indirizzi abilitati
M[MAR] → MBR;	10010	11-	0111	1000	S=0, L=1, A _{MBR} =1
MBR → A;	10010	11-	1000	1001	A _A =1, segnali bus dati abilitati
$\begin{array}{c} R'_D \text{-} \ 1 \ \rightarrow \ R'_D, \\ R_{Anew} \ + \ 1 \ \rightarrow R_{Anew}, \\ R''_D \text{-} \ 1 \ \rightarrow \ R''_D, \ \textbf{goto} \ 2; \end{array}$	10010	111	1001	0110	A _{R'D} =1, K _{R'D} =1, A _{RAnew} =1, K _{R'D} =1, K _{R''D} =1
$R''_D - 1 \rightarrow R''_D$, goto 1;	10010	110	1001	0011	$A_{R"D}=1, K_{R"D}=1$
$B \rightarrow R_i, 0 \rightarrow IR;$	10010	10-	0110	0000	A_{Ri} =1, A_{IR} =1, segnali bus abilitati
$0 \rightarrow R_i, 0 \rightarrow IR;$	10010	0	0011	0000	A _{Ri} =1, A _{IR} =1, segnali bus abilitati