Time Series

A stochastic process representing a sequence of observations indexed by time (typically at equal intervals).

$$\{X_t\}_{t\in\mathcal{T}},\quad T\subseteq\{\mathbb{Z},\mathbb{R}\}$$

- X_t: Random variable at time t that is realized into an observation
- ▶ t: Time index (discrete or continuous)
- ▶ T: Time domain (\mathbb{Z} for discrete, \mathbb{R} for continuous)

Weak Stationarity

A time series whose mean and variance remain constant over time, and whose autocovariance depends only on the lag. Often referred to simply as "Stationarity" in literature.

```
E[X_t] = \mu, (constant and finite)

Var(X_t) = \sigma^2, (constant and finite)

Cov(X_t, X_{t+h}) = \gamma(h), (depends only on h, not t)
```

- $ightharpoonup E[X_t]$: Expected value (mean) of the series at time t.
- $ightharpoonup Var(X_t)$: Variance of the series at time t.
- $\triangleright \mu$: Constant mean value.
- $ightharpoonup \sigma^2$: Constant variance value.
- $ightharpoonup \gamma(h)$: Autocovariance function at lag h.

Moving Average Process of Order MA(q)

A time series model where the current value is expressed as a linear combination of a finite number of past white noise error terms, including the present one.

$$X_t = \varepsilon_t + \sum_{i=1}^q \theta_i \varepsilon_{t-i}$$

- \triangleright X_t : Value of the time series at time t.
- ▶ ε_t : White noise error term at time t, where $\varepsilon_t \sim \text{i.i.d.}$ $(0, \sigma^2)$, typically normal.
- $\theta_1, \theta_2, \dots, \theta_q$: MA coefficients (parameters).
- q: Order of the moving average process.

Auto-regressive Process of Order AR(p)

A time series model where the current value depends on its past values up to lag p along with a white noise term.

$$X_t = \sum_{i=1}^p \phi_i X_{t-i} + \varepsilon_t$$

- \triangleright X_t : Value of the time series at time t.
- $\phi_1, \phi_2, \dots, \phi_p$: AR coefficients (parameters).
- **p**: Order of the autoregressive process.
- \triangleright ε_t : White noise error term at time t, where $\varepsilon_t \sim \text{i.i.d.} (0, \sigma^2)$.

Autocorrelation Function (ACF)

Measures linear dependence between observations at different lags; used to identify the order of an MA(q) process

$$\rho_k = \frac{\gamma_k}{\gamma_0} = \frac{Cov(X_t, X_{t+k})}{Var(X_t)}$$

- $ightharpoonup
 ho_k$: Autocorrelation at lag k, ranges between -1 and 1
- $ightharpoonup \gamma_k = Cov(X_t, X_{t+k})$: Autocovariance at lag k
- $\gamma_0 = Var(X_t)$: Variance of the time series (autocovariance at lag 0)
- ► $Cov(X_t, X_{t+k})$: Covariance between observations at times t and t + k
- $ightharpoonup Var(X_t)$: Variance of the time series at time t

Partial Correlation Coefficient

Measures the direct linear relationship between two variables, removing the effect of a third variable

$$\rho_{XY\cdot Z} = \frac{\rho_{XY} - \rho_{XZ}\rho_{YZ}}{\sqrt{(1 - \rho_{XZ}^2)(1 - \rho_{YZ}^2)}}$$

Terms:

- $ightharpoonup
 ho_{XY \cdot Z}$: Partial correlation between X and Y given Z
- $ightharpoonup
 ho_{XY}$: Correlation between X and Y
- $\triangleright \rho_{XZ}$: Correlation between X and Z
- $\triangleright \rho_{YZ}$: Correlation between Y and Z

@AlinMinutes

Partial Autocorrelation Function (PACF)

Measures direct correlation between observations k periods apart, used to identify the order of an AR(p) process

$$\phi_{kk} = Corr(X_t, X_{t-k} \mid X_{t-1}, X_{t-2}, \dots, X_{t-k+1})$$

- $ightharpoonup \phi_{kk}$: Partial autocorrelation at lag k
- ► $Corr(X_t, X_{t-k} | ...)$: Correlation between X_t and X_{t-k} after removing intermediate lags
- \triangleright X_t : Value of the time series at time t
- X_{t-1}, X_{t-2}, \dots : Values at intermediate lags

Autoregressive Moving Average

ARMA(p, q)

A time series model combining AR(p) and MA(q) components for stationary data

$$X_{t} = \sum_{i=1}^{p} \phi_{i} X_{t-i} + \varepsilon_{t} + \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j}$$

- \triangleright X_t : Value of the time series at time t
- ϕ_i : Autoregressive (AR) coefficients
- \triangleright θ_i : Moving Average (MA) coefficients
- **p**: Order of the autoregressive component $(p \ge 0)$
- ightharpoonup q: Order of the moving average component $(q \ge 0)$
- \triangleright ε_t : White noise error term at time t

Differencing for Stationarity

A transformation that removes trends and seasonality to achieve stationarity

First difference: $\nabla X_t = X_t - X_{t-1}$

Second difference: $\nabla^2 X_t = \nabla(\nabla X_t) = X_t - 2X_{t-1} + X_{t-2}$

Terms:

- $\triangleright \nabla X_t$: First difference (removes linear trend)
- $ightharpoonup
 abla^2 X_t$: Second difference (removes quadratic trend)
- X_t: Value of the original time series at time t
- \triangleright X_{t-1}, X_{t-2} : Previous values in the series
- ▶ d: Order of differencing in ARIMA ($\nabla^d X_t$ for stationarity)

@AlinMinutes

Autoregressive Integrated Moving Average ARIMA(p, d, q)

Extension of ARMA (p, q) with differencing for non-stationary time series

Step 1: Apply Differencing of order *d* to achieve stationarity

$$Y_t = \nabla^d X_t$$
 (Example for $d = 1$: $Y_t = X_t - X_{t-1}$)

Step 2: Fit ARMA Model to differenced series

$$Y_{t} = \sum_{i=1}^{p} \phi_{i} Y_{t-i} + \varepsilon_{t} + \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j}$$

- $Y_t = \nabla^d X_t$: Differenced series (stationary)
- p, d, q: Orders of AR, differencing, and MA components
- $\triangleright \phi_i$: AR coefficients
- $\triangleright \theta_i$: MA coefficients
- \triangleright ε_t : White noise error term

