Лабораторная работа 3.4.1. Диа- и парамагнетики Солодилов Михаил Б01-306

Введение

Цель работы: измерение магнитной восприимчивости диа- и парамагнитного образцов.

Оборудование: электромагнит, аналитические весы, милливе берметр, регулируемый источник постоянного тока, образцы.

Материал	$\mid m$, M $\Gamma \mid$	d, cm
Al	25255	1.0
Cu	83170	1.0

Экспериментальная установка

Схема установки изображена на рисунке. Магнитное поле с максимальной индукцией ≈ 1 Тл создаётся в зазоре электромагнита, питаемого постоянным током. Диаметр полюсов существенно превосходит ширину зазора, поэтому поле в средней части зазора достаточно однородно. Величина тока, проходящего через обмотки электромагнита, задаётся регулируемым источником постоянного напряжения.

Работа

Для начала проградуируем магнит.

I, A	В, Тл
0.33	0.1263
0.75	0.2404
1.25	0.3761
1.50	0.4440
1.85	0.5390
2.25	0.6476
2.62	0.7480
3.05	0.8648

Таблица 1: Градуировка

Рис. 2: B(I)

Рис. 3: Al

Рис. 4: Си

Как мы можем увидеть, алюминий является парамагнетиком, так как он втягивается в магнит, а медь - диамагнетика, потому что выталкивается.

Al		Cu	
$dP, \mu N$	B, Tl	$dP, \mu N$	B,Tl
9.81	0.12	0	0.12
39.24	0.24	-19.62	0.24
98.10	0.37	-39.24	0.38
137.34	0.44	-58.86	0.44
206.01	0.53	-88.29	0.54
284.49	0.64	-127.53	0.64
372.78	0.74	-166.77	0.75
470.88	0.86	-215.82	0.86
470.88	0.86	-215.82	0.86
392.40	0.74	-176.58	0.75
304.11	0.64	-137.34	0.64
215.82	0.53	-98.10	0.53
147.15	0.44	-68.67	0.44
98.10	0.37	-49.05	0.37
39.24	0.24	-19.62	0.24
9.81	0.12	-9.81	0.13

(a) dP(B) для Al и Cu

Al		Cu	
$dP, \mu N$	B^2, Tl^2	$dP, \mu N$	B^2, Tl^2
9.81	0.0160	0	0.0160
39.24	0.0578	-19.62	0.0578
98.10	0.1415	-39.24	0.1456
137.34	0.1971	-58.86	0.1971
206.01	0.2905	-88.29	0.2934
284.49	0.4194	-127.53	0.4194
372.78	0.5595	-166.77	0.5636
470.88	0.7478	-215.82	0.7525
470.88	0.7478	-215.82	0.7525
392.40	0.5595	-176.58	0.5677
304.11	0.4194	-137.34	0.4194
215.82	0.2905	-98.10	0.2905
147.15	0.1971	-68.67	0.1971
98.10	0.1394	-49.05	0.1415
39.24	0.0578	-19.62	0.0578
9.81	0.0167	-9.81	0.0174

(b) $dP(B^2)$ для Al и Cu

Рис. 5: Al

Рис. 6: Си

Из этих графиков можно найти магнитную восприимчивость наших образцов.

$$F_{M} = \left(\frac{\partial W_{M}}{\partial x}\right)_{B} = \chi \frac{B^{2}}{2\mu_{0}}S = dP$$

$$\alpha = \frac{\partial F_{M}}{\partial B}$$

$$\chi = \frac{2\mu_{0}\alpha}{S}$$

Вывод

Таким образом: $\chi_{\rm Al}=(2.06\pm0.07)\cdot10^{-6},~\chi_{\rm Cu}=(-9.29\pm0.25)\cdot10^{-7}$ Табличные значения: $\chi_{\rm Al}=1.64\cdot10^{-6},~\chi_{\rm Cu}=-7.71\cdot10^{-7}$

Наши измерения отличаются от табличных на $\approx 25\%$. Столь большие отличия могут быть вызваны большим количеством примясей в образцах. Также мы выяснили, что медь, в отличие от аллюминия является диамагнетиком и что магнитная восприимчивость этих материалов крайне мала.