

Otimização: Distribuição de Energia

Chrystopher Naves Bravos

Resumo

Este artigo consiste na modelação de uma equação linear para o problema de distribuição de energia entre centrais. Através de métodos simplistas a solução encontrada gera um resultado satisfatório e rápido para o problema proposto.

1 Introdução

A modelação de problemas matemáticos afim de encontrar um resultado ótimo é uma tarefa que exige atenção e prática, mas que gera melhorias em processos cotidianos em escala residencial e industrial. O problema de distribuição de energia nos apresenta uma junção de produção de energia e distribuição através de uma malha energética, com o propósito de baratear o custo dos processos e atingir as demandas necessárias.

2 Descrição do modelo

Inicialmente é necessário apresentar uma legenda para todas as variáveis utilizadas, de forma a facilitar o compreendimento do leitor.

<i>h_i</i> : Hidrelétrica <i>i</i>	$i = \{1, 2,, h\}$
<i>P_i</i> : Produção na hidrelétrica <i>i</i>	$i = \{1, 2,, h\}$
<i>F_i</i> : Eficiência energética na hidrelétrica <i>i</i>	$i = \{1, 2,, h\}$
V_i : Vazão da hidrelétrica i	$i = \{1, 2,, h\}$
M_i : Capacidade de produção da hidrelétrica i	$i = \{1, 2,, h\}$
Ch _i : Custo total de produção da hidrelétrica i	$i = \{1, 2,, h\}$
Ch'_i : Custo de produção por vazão na hidrelétrica i	$i = \{1, 2,, h\}$
<i>I_i</i> : Central elétrica <i>i</i>	$i = \{1, 2,, I\}$
n_i : Número de conexões saindo de i	$i = \{1, 2,, h + I\}$
$w_{i,j}$: Capacidade de transmissão do arco i,j	$i = \{1, 2,, h + I\}$ $j = \{1, 2,, n_i\}$
$w'_{i,j}$: Quantidade a ser transmitida pelo arco i, j	$i = \{1, 2,, h + I\}$ $j = \{1, 2,, n_i\}$
$CI_{i,j}^{y}$: Custo total de transmissão do arco i,j	$i = \{1, 2,, h + I\}$ $j = \{1, 2,, n_i\}$
$CI_{i,j}^{y}$: Custo de transmissão do arco por quantidade i,j	$i = \{1, 2,, h + I\}$ $j = \{1, 2,, n_i\}$
E_i : Soma de todos $w'_{i,i}$: que entram na central i	$i = \{1, 2,, I\}$
E_i : Soma de todos $w'_{i,j}$: que saem da central i	$i = \{1, 2,, I\}$
R : Vazão máxima das hidroelétricas	(, , , , ,
A . Vazao maxima das murocietricas	

Tendo isto, podemos iniciar a ideia por trás do modelo criado.

Como temos um problema de minimização de custo, é quase que automática a ideia de que nossa função objetivo deve conter a soma de todos os custos gerados. As variáveis que nos geram esse custo são Ch_i e $Cl_{i,j}$, porém elas apenas nos fornecem os custos totais de produção e transmissão, respectivamente, sendo assim precisamos gerar variáveis "reais", ou seja, valores incógnitos que serão multiplicados pelos seus respectivos custos. Como $Ch_i = Ch'_i \times V_i$ e $Cl_{i,j} = Cl'_{i,j} \times w'_{i,j}$, generalizando para o sistema todo, temos:

$$\sum_{i=1}^{h} Ch'_{i} \times V_{i} + \sum_{i=1}^{h+l} \sum_{j=1}^{n_{i}} Cl'_{i,j} \times w'_{i,j}$$
 (1)

2.1 Equações e inequações

Tendo nossa função objetivo, agora podemos buscar os limitantes de nossas variáveis. Pelo problema proposto algumas inequações são facilmente notadas:

$$P_i <= M_i \tag{2}$$

$$V_i <= R \tag{3}$$

$$w'_{i,j} <= w_{i,j} \tag{4}$$

Como $P_i = F_i \times V_i$ então em (2) temos $F_i \times V_i \ll M_i$.

O problema da modelagem, no entanto, está em garantir que toda a demanda seja atendida e assegurar o controle da energia produzida no sistema. Ao observarmos o problema de fluxo em uma rede visto em Matousek and Gärtner (2007) vemos que o problema é parecido: fazer com que todos os dados enviados de um lado cheguem ao outro lado da melhor forma possível, a diferença para o nosso problema é que de um nodo para outro existe uma perda de conteúdo, ou seja, parte do que foi recebido fica no nodo para atender a demanda. Dessa forma podemos utilizar o mesmo método de Gartner fazendo uma pequena alteração.

Pelo problema do fluxo em rede temos que tudo que entra em um nodo (E_i) tem que ser igual á tudo que sai (S_i), logo $E_i - S_i = 0$. Ao adicionarmos o fator demanda (D_i), tudo o que sai do nodo deve ser igual a tudo que entrou, descontado da demanda atendida, logo temos que $E_i - D_i = S_i \implies E_i - S_i = D_i$.

Porém esta expressão aplica-se somente as centrais elétricas, que recebem e enviam energia, portanto também precisamos de uma equação que atenda as hidrelétricas, que somente enviam energia. Neste caso temos a mesma situação do fluxo de rede, ou seja, tudo que foi produzido deve sair, sendo assim fica fácil de ver que a expressão $F_j \times V_j - S_j = 0$, com $j = \{1, 2, ..., h\}$, atende ao sistema.

Dessa maneira temos o LP:

$$\min_{s.t.} \sum_{i=1}^{h} Ch'_{i} \times V_{i} + \sum_{i=1}^{h+l} \sum_{j=1}^{n_{i}} CI'_{i,j} \times w'_{i,j}$$

$$F_{i} \times V_{i} <= M_{i}$$

$$V_{i} <= R$$

$$w'_{i,j} <= w_{i,j}$$

$$E_{i} - S_{i} = D_{i}$$

$$V_{i} - S_{i} = 0$$

3 Implementação

Com o programa linear já modelado agora basta realizar a implementação do modelo. Para tal tarefa foi-se utilizado a linguagem Python, que possui uma sintaxe fácil e apresenta um bom desempenho, além de contar com a biblioteca *SciPy*, para a resolução das matrizes e vetores equacionais através do método simplex.

3.1 A biblioteca SciPy

A biblioteca *SciPy* é, de acordo com os Developers (2020), "um ecossistema baseado em Python de software de código aberto para matemática, ciências e engenharia". A biblioteca conta com várias plataformas tais como NumPy e Pandas.

Neste trabalho especificamente foi-se utilizado a função *linprog()*, pertencente a biblioteca *scipy.optmize*, para a resolução do problema. A função possuí este escopo:

onde c é a função objetivo; A_ub é a matriz de inequações limitadas superiormente; b_ub é o vetor dos limitantes de A_ub ; A_eq é a matriz de equações; b_eq é o vetor dos limitantes de A_eq ; bounds é a lista de tuplas dos limitantes superior e inferior de cada variável; method é o método a ser utilizado, seguido por flags adicionais.

3.2 O programa

O código implementado segue a ordem de entrada dos valores. Nos primeiros loops são atribuídos as hidrelétricas, com seus respectivos atributos, a uma lista de hidrelétricas e as centrais elétricas, também com seus respectivos atributos, a uma lista de centrais. A "mágica"ocorre na atribuição dos arcos, onde é criada uma matriz $Dist_h$ de h+I linhas por I colunas, onde $Dist_h h_{0,0}$ contém os dados de uma ligação entre o primeiro elemento e a primeira central, $Dist_h h_{2,5}$ contém os dados de uma ligação entre o terceiro elemento e a sexta central, e assim por diante, caso não exista ligação é atribuído o valor zero. Dessa forma basta acessar a linha do elemento para saber todas as ligações que saem e basta acessar a coluna para saber todos as ligações que entram. Os loops seguintes já contém as atribuições das matrizes e vetores que irão ser utilizados por linprog(), são loops simples, porém alguns detalhes são importantes para uma melhor compreensão. O vetor obj, que corresponde a função objetivo, tem tamanho $h+numero\ de\ arcos$, o que resulta no número de variáveis do sistema.

A matriz de equações é dividida em duas partes: coeficientes da diferença $E_i - S_i$ e coeficientes da diferença $V_i - S_i$.

O vetor bds, que corresponde ao vetor de tuplas limitantes, é preenchido da seguinte maneira: variáveis V_i são limitadas superiormente por R, variáveis $w'_{i,j}$ são limitadas superiormente por $w_{i,j}$, e todas são limitadas inferiormente por zero.

Após isto, as matrizes e vetores gerados são adicionados a função *linprog()*, onde um resultado ótimo é calculado pelo método simplex. O vetor resultado é tratado, ou seja, vazões são multiplicadas pela eficiências, e o resultado final é gerado na ordem em que foi recebido.

4 Exemplo

Para melhor entendimento vamos gerar as matrizes e vetores Dist_h, obj, A_eq, b_eq, A_ineq, b_ineq e bds para uma entrada

```
2 2 10
100 20 2
50 10 1
50
80
1
1 200 1
1
2 100 2
1
2 100 1
```

Temos então:

$$Dist_h = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

$$obj = \begin{bmatrix} 2 & 1 & 1 & 2 & 1 \end{bmatrix}$$

$$A_eq = \begin{bmatrix} 0 & 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \\ 20 & 0 & -1 & 0 & 0 \\ 0 & 10 & 0 & -1 & 0 \end{bmatrix}$$

$$b_eq = \begin{bmatrix} 50 & 80 & 0 & 0 \end{bmatrix}$$

$$A_ineq = \begin{bmatrix} 20 & 0 & 0 & 0 & 0 \\ 0 & 10 & 0 & 0 & 0 \end{bmatrix}$$

$$b_ineq = \begin{bmatrix} 100 & 50 \end{bmatrix}$$

$$bds = \begin{bmatrix} 0,10 & (0,10) & (0,200) & (0,200) & (0,100) \end{bmatrix}$$

Que nos gera uma saída:

80

50

80

50

30

Referências

- S. Developers. Scipy.org, 2020. https://www.scipy.org/, acesso em 07/09/2020.
- J. Matousek and B. Gärtner. *Understanding and Using Linear Programming*. Springer, Berlin, Heidelberg, 2007. doi: https://doi.org/10.1007/978-3-540-30717-4.