Resistivity. (P) P= rho.

Resistivity. (P) P= rho.

Resistivity. (P) R= rho. Length Area

Temperature.

SI unit of resistance = Ohm (-12)
SI unit of resistivity = Ohm - metre (-12-10)

Electric Circuit.

- 1) Ammeter -Used to measure corrent
- Connected in Series.
- 2 Voltmeter
- -Used to measure potential difference.
- Connected in parallel.

	SUB:-Hine	li(Entive)			
Components of Components of	Symbol - + -	Component (5) Connecting wires	Symbol.	4 Variable resistance.	
2 Battery.	-+ 1 1 1 1	6 Grossing Wires.		(1) Voltmeker	+(A)
3 Open tap key (3) Clused tap key.	(,)	D light bulb (8) Resighance	- M		+0.
			- V -		

$$R_{s} = \text{effective Series}$$

$$resistance$$

$$R_{1} = 10 \text{ L}, R_{2} = 10 \text{ L}$$

$$R_{3} = 10 \text{ L}$$

$$R_{5} = R_{1} + R_{2} + R_{3}$$

$$= 10 + 10 + 10$$

$$R_{5} = 30 \text{ L}$$

$$I = I_1 + I_2 + I_3 - 0$$

By Ohm's law.

$$I = \frac{V}{R}$$

$$I = \frac{V}{R_{P}}$$

$$I = \frac{V}{R_{P}}$$

$$I_{1} = \frac{V}{R_{1}}$$

$$I_{2} = \frac{V}{R_{2}}$$

$$I_{3} = \frac{V}{R_{3}}$$

$$I_{3} = \frac{V}{R_{3}}$$

$$I_{4} = \frac{1}{R_{1}} + \frac{1}{R_{2}} + \dots + \frac{1}{R_{n}}$$

$$I_{6} = \frac{V}{R_{1}} + \frac{V}{R_{2}} + \frac{V}{R_{3}}$$

$$I_{7} = \frac{V}{R_{1}} + \frac{V}{R_{2}} + \frac{V}{R_{3}}$$

$$I_{8} = \frac{V}{R_{1}} + \frac{V}{R_{2}} + \frac{V}{R_{3}}$$

$$I = \frac{V}{R_{p}}.$$

$$I_{1} = \frac{V}{R_{1}}$$

$$I_{2} = \frac{V}{R_{2}}$$

$$I_{3} = \frac{V}{R_{3}}$$

$$V$$

$$R_{p} = \frac{V}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}$$

$$R_{p} = \frac{10}{R_{1}} + \frac{1}{R_{2}} + \frac{1}{R_{3}}$$

```
98202H
```

Q
a) (niver:
$$l_1 = l_m = loo cm$$

$$R_1 = 6 - \Omega$$

$$l_2 = 7 cm$$
D

$$R_{1} = k \times l_{1} - 0$$
 $R_{2} = k \times l_{2} - 0$

Divide eq by
$$\mathbb{O}$$

$$\frac{R_2}{R_1} = \frac{K \times 2}{K \times 2}$$

$$\frac{R_2}{R_1} = \frac{\cancel{K} \times - 2}{\cancel{K} \times 2},$$

$$\frac{R_2}{R_1} = \frac{l_2}{l_1}$$

$$R_{2} = \frac{70 \times 6}{100}$$

$$R_2 = \frac{420}{100} = 4.2 \Omega$$

Criven =
$$80 \ \text{R}_{p} = 20 \ \text{R}_{1} = ?$$

$$R_{2} = ?$$

$$\frac{1}{R_p} = \frac{1}{R_1 \times R_2}$$

$$\frac{1}{20} = \frac{R_2 + R_1}{R_1 \times R_2}$$

$$\begin{array}{l} R_{1} \times R_{2} = |600 \\ \hline R_{2} & |600 \\ \hline R_{1} + R_{2} = |80 \\ \hline R_{1} + R_{2} = |80 \\ \hline R_{1} + |600 \\ \hline R_{1} + |600 \\ \hline R_{2} + |600 \\ \hline R_{1} + |600 \\ \hline R_{2} + |600 \\ \hline R_{2} + |600 \\ \hline R_{3} + |600 \\ \hline R_{4} + |600 \\ \hline R_{5} + |600 \\ \hline R_{1} + |600 \\ \hline R_{1} + |600 \\ \hline R_{2} + |600 \\ \hline R_{3} + |600 \\ \hline R_{4} + |600 \\ \hline R_{5} + |600 \\ \hline R_{1} + |600 \\ \hline R_{1} + |600 \\ \hline R_{2} + |600 \\ \hline R_{3} + |600 \\ \hline R_{4} + |600 \\ \hline R_{5} + |60$$

0)

(n)
$$Q = 420C$$

 $t - 5 min = (5 \times 60)s$
To find: $I = 7$

Solution:
$$I = Q$$

$$= \frac{47}{5 \times 60} = \frac{7}{5}$$

$$I = 14A$$

$$\frac{-5}{20}$$
 $\frac{-20}{0}$

