Бабушкин А.

1.

l) $\log(n^{\log n}) = \log n * \log\log n < \log^2 n < n = \log(1.1^n) \to \text{True}.$ m) $\frac{n^3}{n^2 + n\log n} = \frac{n^3}{n^2 + o(n^2)} = \frac{n^3}{\Theta(n^2)} = \Theta(\frac{n^3}{n^2}) = \Theta(n) < O(n\log n) \to \text{True}.$ n) Пусть $f(n) = 2^n$. Тогда $f(n) = (f(\frac{n}{2}))^2, x \neq O(x^2) \to \text{False}.$

o) $f(n) - o(f(n)) \le f(n) \to f(n) - o(\tilde{f}(n)) = O(f(n))$

 $f(n) - o(f(n)) \ge f(n) - \frac{f(n)}{C} = \frac{1-C}{C} f(n) \to \frac{C}{1-C} (f(n) - o(f(n))) \ge f(n) \to f(n) - o(f(n)) = \Omega(f(n)) \to \text{True}$. Для f(n) + o(f(n)) аналогично.

p) $2^{\log n!} = n! < n^n = 2^{n \log n} \to \log n! < n \log n \to \log n! = O(n \log n).$

Теперь докажем Ω . $\log n! = \sum \log i : i \le n$. Возьмём первые $\frac{n}{2}$ из них. Каждое из слагаемых не меньше $\log \frac{n}{2} = \log(n-1)$, то есть их сумма $\geq \frac{n}{2}(\log n - 1) =$ $\Theta(n \log n) \to \text{True}.$

2.

- g) Докажем, что $T(n) = \Theta(n)$ по индукции. База очевидна, теперь переход. Пусть это верно $\forall i < n$. Сначала докажем O. $T(n) = T(\frac{n}{2}) + T(\frac{n}{3}) + n \le n$ $C^{\frac{n}{2}} + C^{\frac{n}{3}} + n = \frac{(5C+6)}{6}n$. Если $\exists C: \frac{5C+6}{6} \leq C$, то мы победили. Это равенство верно для $C \geq 6 \rightarrow$ True. Ω доказывается точно так же, только там нужно верно для $C \ge 0$ / глас. $C \le 0$ будет $\exists C : \frac{5C+6}{6} \ge C \to C \le 6$. h) $T(n) = \Theta(n^2)$ по мастер-теореме (a = 4, b = 2, c = 1, d = 2).
- i) $T(n) = \Theta(n^{\log_3 2})$ по мастер-теореме (a = 2, b = 3, c = 0, d = 0).
- j) $T(n) = \Theta(n^{\frac{\sqrt{5}+1}{2}})$, т.к. это числа Фибоначчи.
- k) $T(n) = T(n-1) + n \to T(n) = \frac{n(n+1)}{2} = \Theta(n^2)$.

3.

A	В	O	0	Θ	ω	Ω
n	n^2	+	+	_	_	_
$\log^k n$	n^{ϵ}	+	+	_	_	
n^k	c^n	+	+	_	_	_
\sqrt{n}	$n^{\sin n}$	_	_	_	_	_
2^n	$2^{n/2}$	_	_	_	+	+
$n^{\log m}$	$m^{\log n}$	+	_	+	_	+
$\log(n!)$	$\log(n^n)$	+	_	_	_	+

- 4. Разобьём на классы эквивалентности (если функции вместе, то они Θ друг от друга) и упорядочим по возрастанию.
 - (a) $1, n^{1/\log n}$
 - (b) $\log(\log^* n)$
 - (c) $\log^* n, \log^* \log n$
 - (d) $2^{\log^* n}$
 - (e) $\ln \ln n$
 - (f) $\sqrt{\log n}$

- (g) $\ln n$
- (h) $\log^2 n$
- (i) $2^{\sqrt{2\log n}}$
- (j) $n, 2^{\ln n}$
- (k) $n \log n, \log n!$
- (l) $n^2, 4^{\log n}$
- (m) n^{3}
- (n) $(\log n)!$
- (o) $n^{\log \log n}$, $\log n^{\log n}$
- (p) $(\sqrt{n})^{\log n}$
- $(q) (\frac{3}{2})^n$
- (r) 2^n
- (s) $n * 2^n$
- (t) e^n
- (u) n!
- (v) (n+1)!
- (w) 2^{2^n}
- $(x) 2^{2^{n+1}}$
- 5. Сумма бесконечной геометрической прогрессии = $\frac{b}{1-q}.$

 - а) $b=1, q=\frac{1}{2} \to$ ответ =2. b) Это сумма двух прогрессий. У одной $b=1, q=\frac{1}{4},$ у другой $b=-\frac{1}{2}, q=\frac{1}{4} \to$ ответ $=\frac{2}{3}.$