1 Frame Theory

If $\operatorname{rank}(A) = m$ for $A \in \mathbb{C}^{n \times m}$, $n \geq m$, then $A^{\dagger} = (A^*A)^{-1}A^*$ is a left-inverse of A and the solutions to LA = I are

$$L = A^{\dagger} + M(I - AA^{\dagger}), \quad M \in \mathbb{C}^{n \times m}.$$

Definition 1.1 (Frame). Let H be a Hilbert space. A set $(g_k)_k \in H$ is called a frame if there exist $0 < A \le B < \infty$ such that

$$|A||x||^2 \le \sum_k ||\langle x, g_k \rangle||^2 \le B||x||^2$$
, for all $x \in H$.

Definition 1.2 (Analysis & Synthesis). $T: H \to \ell^2$, $T(x) = (\langle x, g_k \rangle)_k$ $T^*: \ell^2 \to H$, $T^*(y) = \sum_k y_k g_k$

Theorem 1: Frame Operator

The frame operator $S = T^*T$ satisfies:

- (i) $S^* = S$.
- (ii) S is positive definite.
- (iii) S has a square root $S^{1/2}$.
- (iv) S is invertible.

Theorem 2: Frame Bounds

The tightest possible frame bounds are given by the smallest and largest eigenvalues of S.

Theorem 3: Dual Frame

For a frame $(g_k)_k$ with frame bounds A and B, the set $(\tilde{g}_k)_k = (S^{-1}g_k)_k$ is frame with frame bounds 1/B and 1/A, and with analysis operator $\tilde{T} = TS^{-1}$. We have $\tilde{T}^*T = T^*\tilde{T} = \mathrm{id}$.

Definition 1.3 (Tight Frame). A frame with frame bounds A = B is called a tight frame.

Theorem 4: Tight Frame

A frame is tight with frame bound A iff its frame operator is of the form $S=A\operatorname{id}$.

Theorem 5

For any frame $(g_k)_k$, the set $(S^{-1/2}g_k)_k$ is a tight frame with frame bound 1.

Theorem 6

A tight frame $(g_k)_k$ with frame bound A=1 and $||g_k||=1$ for all k is an ONB.

Definition 1.4. A set $(g_k)_k$ is called complete, if

$$\langle x, g_k \rangle = 0 \ \forall x \in H \ \Rightarrow \ x = 0.$$

Definition 1.5. A frame $(g_k)_k$ is called exact if for all n, the set $(g_k)_{k\neq n}$ is incomplete.

Theorem 7: Exactness

Let $(g_k)_k$ be a frame and $(\tilde{g}_k)_k$ its canonical dual. Then, $(g_k)_k$ is exact iff $(g_i, \tilde{g}_k) = \delta_{ik}$.

Theorem 8: Sampling theorem

Let $x \in L^2(\mathbb{R})$ be bandlimited to B, i.e. $\hat{x}(f) = 0$ if |f| > B. Then, for $1/T \geq 2B$,

$$x(t) = 2BT \sum_{k=-\infty}^{\infty} x(kT) \operatorname{sinc}(2B(t-kT)).$$

2 Uncertainty Relations

Definition 2.1 (Operator Norm).

$$||A|| = \max_{||x||=1} ||Ax||.$$

Definition 2.2 (Frobenius Norm).

$$||A|| = \sqrt{\operatorname{tr}(AA^H)}.$$

Theorem 9

$$\frac{\|A\|}{\sqrt{\operatorname{rank} A}} \le \|A\| \le \|A\|.$$

Definition 2.3. For unitary U, we set

$$\Delta_{P,Q}(U) = \left\| D_P U D_Q U^H \right\|.$$

Theorem 10

$$\Delta_{P,Q}(U) = \max_{x \in \operatorname{im} U D_Q U^H} \frac{\|D_p x\|}{\|x\|}.$$

Theorem 11

$$\frac{\sqrt{\operatorname{tr}(D_P U D_Q U^H)}}{\min\{|P|,|Q|\}} \le \Delta_{P,Q}(U) \le \sqrt{\operatorname{tr}(D_P U D_Q U^H)}.$$

Definition 2.4 (Coherence). For $A = (a_1 \dots a_n) \in \mathbb{C}^{m \times n}$ with normalized columns, the coherence is defined as $\mu(A) = \max_{i \neq j} |a_i^H a_j|$.

Theorem 12

$$\Delta_{P,Q}(U) \le \sqrt{|P||Q|}\mu([I\ U]).$$

Definition 2.5. Let $P \subseteq \{1, ..., m\}$ and $\varepsilon_P \in [0, 1]$. A vector $x \in \mathbb{C}^m$ is called ε_P -concentrated if $||x - x_P||_2 \le ||\varepsilon_P||x||_2$.

Theorem 13

Let $A, B \in \mathbb{C}^{m \times m}$ be unitary and $P, Q \subseteq \{1, \dots, m\}$. Suppose there exists a nonzero ε_P -concentrated $p \in \mathbb{C}^m$ and a nonzero ε_Q -concentrated $q \in \mathbb{C}^m$ such that Ap = Bq. Then,

$$|P||Q| \ge \frac{[1 - \varepsilon_P - \varepsilon_Q]_+^2}{\mu([A \ B])^2}.$$

Theorem 14

Let $A,B\in\mathbb{C}^{m\times m}$ be unitary. If Ap=Bq for nonzero $p,q\in\mathbb{C}^m,$ then

$$||p||_0||q||_0 \ge \frac{1}{\mu([A\ B])^2}.$$

3 Compressive Sensing

Definition 3.1 (Spark). The spark of a matrix is denfined as the cardinality of the smallest set linearly dependent columns.

Theorem 15

For a matrix $D\in\mathbb{C}^{m\times n}$, uniqueness of recovery of s-sparse vectors x from the observation y=Dx is guaranteed if

$$\operatorname{spark}(D) > 2s$$
.

Definition 3.2 (P0). arg min $||x||_0$ subject to y = Dx.

Theorem 16

$$1 + \frac{1}{\mu(D)} \le \operatorname{spark}(D)$$

Theorem 17

If

$$||x_0||_0 < \frac{1}{2} \left(1 + \frac{1}{\mu(D)} \right),$$

then x_0 is the unique solution of (P0).

Definition 3.3 (P1). arg min $||x'||_1$ subject to y = Dx'.

Theorem 18

Let $y = Dx_0$ and assume x_0 has support set S. If

$$\max_{x\in\ker D\backslash\{0\}}\frac{\sum_{k\in S}|x_k|}{\sum_k|x_k|}<\frac{1}{2},$$

then x_0 is the unique solution of (P1).

Theorem 19

If,

$$||x_0||_0 < \frac{1}{2} \left(1 + \frac{1}{\mu(D)} \right),$$
 (1)

then

$$\max_{x \in \ker D \setminus \{0\}} \frac{\sum_{k \in S} |x_k|}{\sum_k |x_k|} < \frac{1}{2}.$$

Hence, (1) is a sufficient condition such that x_0 is the unique solution of (P1).

Theorem 20

If $D \in \mathbb{C}^{m \times n}$, then

$$\mu(D) \ge \sqrt{\frac{n-m}{m(n-1)}}.$$

Theorem 21

$$||x||_{\infty} \le ||x||_2 \le ||x||_1 \le \sqrt{|\operatorname{supp} x|} ||x||_2$$

4 Sampling Spectally Sparse Signals

Theorem 22

Consider a signal with spectral occupancy contained in I. To reconstruct the signal, we need

$$\lim_{r \to \infty} \inf_{t \in \mathbb{R}} \frac{|P \cap [t, t+r]|}{r} \ge |I|,$$

where $P = \{t_n\}_n$ denotes the sampling set.

5 Restricted Isometry Property

Definition 5.1. For each s = 1, ..., n, the isometry constant δ_s of a matrix $\Phi \in \mathbb{C}^{m \times n}$ is the smallest numer such that

$$(1 - \delta_s) \|x\|_2^2 \le \|\Phi x\|_2^2 \le (1 + \delta_s) \|x\|_2^2$$

for every s-sparse x.

Theorem 23

Let $y = \Phi x$. Assume that $\delta_s < \sqrt{2} - 1$. Then, the solution x^* to

$$\arg \min \|x'\|_1$$
 subject to $\Phi x' = y$

satisfies

$$||x^* - x||_1 \le C_0 ||x - x_s||_1$$

and

$$||x^* - x||_2 \le C_0 s^{-1/2} ||x - x_s||_1$$

for some constant C_0 . In particular, if x is s-sparse, recovery is exact.

Theorem 24

Let $y=\Phi x+n$. Assume that $\delta_s<\sqrt{2}-1$ and $\|n\|_2\leq \varepsilon$. Then, the solution x^* to

$$\arg \min \|x'\|_1$$
 subject to $\|y - \Phi x'\| \le \varepsilon$

satisfies

$$||x^* - x||_2 \le C_0 s^{-1/2} ||x - x_s||_1 + C_1 \varepsilon$$

for some constants C_0, C_1 .

Definition 5.2. A matrix Φ is said to satisfy the restricted null-space property w.r.t S if

$$\max_{x \in \ker \Phi \setminus \{0\}} \frac{\sum_{k \in S} |x_k|}{\sum_k |x_k|} < \frac{1}{2}.$$

Theorem 25

If the isometry constant of order 2s of Φ satisfies $\delta_{2s} < 1/3$, then Φ satisfies the restricted null-space property for any S with $|S| \leq s$.

6 Johnson-Lindenstrauss Lemma

Theorem 26

Let $\varepsilon \in (0,1)$ and suppose

$$k \ge \frac{8}{\varepsilon^2 - \varepsilon^3} \log(2m).$$

Then, for every set $X \subset \mathbb{R}^n$ of m points, there exists a (linear) map $f : \mathbb{R}^n \to \mathbb{R}^k$ such that for all $x, x' \in X$ we have

$$(1 - \varepsilon)\|x - x'\|^2 \le \|f(x) - f(x')\|^2 \le (1 + \varepsilon)\|x - x'\|^2.$$

7 Approximation Theory

Consider a set $C \subseteq L^2(\Omega)$.

Definition 7.1. Denote by

$$\mathfrak{E}^l = \{ E \colon C \to \{0, 1\}^l \}$$

the set of binary encoders of length l and by

$$\mathfrak{D}^l = \{D \colon \{0,1\}^l \to C\}$$

the set of binary decoders of length l.

Definition 7.2. The minimax code length $L(\varepsilon, C)$ for ε is

$$L(\varepsilon,C) = \min \big\{ l \in \mathbb{N} : \exists (E,D) \in \mathfrak{E}^l \times \mathfrak{D}^l : \sup_{f \in C} \|D(E(f)) - f\|_2 \leq \varepsilon \big\}.$$

The optimal exponent $\gamma^*(C)$ is defined as

$$\gamma^*(C) = \sup \left\{ \gamma \in \mathbb{R} : L(\varepsilon, C) \in O(\varepsilon^{-1/\gamma}), \ \varepsilon \to 0 \right\}.$$

Definition 7.3. A metric is a function $d: X \times X \to \mathbb{R}$ that satisfies

- 1. $d(x,y) \geq 0$,
- 2. $d(x,y) = 0 \Leftrightarrow x = y$,
- 3. d(x,y) = d(y,x),
- 4. $d(x,z) \le d(x,y) + d(y,z)$.

Definition 7.4 (ε -covering). An ε -covering of a compact set C with respect to the metric d is a set $\{x_1, \ldots, x_n\} \subset C$ such that for any $x \in C$ there exists an x_i such that $d(x, x_i) \leq \varepsilon$.

Definition 7.5 (Covering Number). The ε -covering number $N(\varepsilon, C, d)$ is the cardinality of the smallest ε -covering.

Definition 7.6 (Metric Entropy). The metric entropy of C is defined as

 $\log_2 N(\varepsilon, C, d)$.

Definition 7.7 (ε -packing). An ε -packing of a compact set C with respect to the metric d is a set $\{x_1, \ldots, x_n\} \subset C$ such that $d(x_i, x_j) > \varepsilon$ if $i \neq j$.

Definition 7.8 (Packing Number). The ε -packing number $M(\varepsilon, C, d)$ is the cardinality of the largest ε -packing.

Theorem 27

The packing and covering number are related according to

$$M(2\varepsilon, C, d) \le N(\varepsilon, C, d) \le M(\varepsilon, C, d).$$

8 Uniform Laws of Large Numbers

Theorem 28: Markov's Inequality

Let X be a random variable and assume $g: \mathbb{R} \to [0, \infty)$ is increasing. Then, for any c with q(c) > 0,

$$\mathbb{P}(X \ge c) \le \frac{\mathbb{E}g(x)}{g(c)}.$$

Theorem 29: Glivenko-Cantelli

For any distribution, the empirical CDF \hat{F}_n satisfies

$$\|\hat{F}_n - F\|_{\infty} \to 0$$
 a.s.

Definition 8.1. Let \mathcal{F} be a set of integrable real-valued functions and let $\{X_i\}_{i=1}^n$ be a collection of i.i.d. samples from some distribution \mathbb{P} . Then we write

$$\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} = \sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n f(X_i) - \mathbb{E}f(X) \right|.$$

Definition 8.2 (Glivenko-Cantelli Class). We say that \mathcal{F} is a Glivenko-Cantelli class for \mathbb{P} if $\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}}$ converges to zero in probability as $n \to \infty$.

Definition 8.3 (Rademacher Complexity). For any fixed collection $x_1^n = (x_1, \ldots, x_n)$, consider the set

$$\mathcal{F}(x_1^n) = \left\{ (f(x_1), \dots, f(x_n) \mid f \in \mathcal{F}) \right\}.$$

The empirical Rademacher complexity is defined as

$$\mathcal{R}(\mathcal{F}(x_1^n)/n) = \mathbb{E}_{\varepsilon} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^n \varepsilon_i f(x_i) \right| \right],$$

where $(\varepsilon_i)_{i=1}^n$ is a sequence of Rademacher random variables (uniform on $\{-1,+1\}$.)

The Rademacher complexity is defined as

$$\mathcal{R}_n(\mathcal{F}) = \mathbb{E}_X \mathcal{R}(\mathcal{F}(x_1^n)/n) \tag{2}$$

$$= \mathbb{E}_{\varepsilon,X} \left[\sup_{f \in \mathcal{F}} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i f(x_i) \right| \right]. \tag{3}$$

Theorem 30

For any b-uniformly bounded function class, i.e. $\|f\|_{\infty} \leq b$ for all $f \in \mathcal{F}$ any n and $\delta \geq 0$ we have

$$\|\mathbb{P}_n - P\|_{\mathcal{F}} \le 2\mathcal{R}_n(\mathcal{F}) + \delta$$

with probability at least $1 - e^{-\frac{n\delta^2}{2b^2}}$. Consequently, if $\mathcal{R}_n(\mathcal{F}) = o(1)$, we have $\|\mathbb{P}_n - \mathbb{P}\|_{\mathcal{F}} \to 0$ a.s.

Definition 8.4 (Polynomial Discrimination). A class \mathcal{F} of functions has polynomial discrimination of order $\nu \geq 1$ if for each n and $x_1^n = (x_1, \ldots, x_n)$ the set $\mathcal{F}(x_1^n)$ has cardinality upper bounded according to

$$|\mathcal{F}(x_1^n)| \le (n+1)^{\nu}.$$

Theorem 31

Suppose that \mathcal{F} has polynomial discrimination of order ν . Then, for all n and $x_1^n=(x_1,\ldots,x_n)$ we have

$$\mathcal{R}(\mathcal{F}(x_1^n)/n) \le 4D(x_1^n)\sqrt{\frac{\nu\log(n+1)}{n}},$$

where
$$D(x_1^n) = \sup_{f \in \mathcal{F}} \sqrt{\frac{\sum_{i=1}^n f(x_i)^2}{n}}$$
.

Definition 8.5 (VC Dimension). Given a class \mathcal{F} of binary-valued functions, we say that the set $x_1^n = (x_1, \ldots, x_n)$ is shattered by \mathcal{F} if $|\mathcal{F}(x_1^n)| = 2n$. The VC dimension $\nu(\mathcal{F})$ is the largest integer n for which there is some collection $x_1^n = (x_1, \ldots, x_n)$ of n points that is shattered by \mathcal{F} .

Theorem 32: Sauer-Shelah

Consider a set class S with $\nu(S) < \infty$. Then, for any collection of points $x_1^n = (x_1, \dots, x_n)$ with $n \ge \nu(S)$ we have

$$|S(x_1^n)| \le \sum_{i=0}^{\nu(S)} {n \choose i} \le (n+1)^{\nu(S)}.$$