# **Summary Measures**

#### **Exercise 6.1 & 6.2**

| Measure            | Diet A   | Diet B   |
|--------------------|----------|----------|
| Sample Size (n)    | 50       | 50       |
| Mean Weight Loss   | 5.341 kg | 3.710 kg |
| Standard Deviation | 2.536 kg | 2.769 kg |
| Median Weight Loss | 5.642 kg | 3.745 kg |
| IQR                | 3.285 kg | 3.812 kg |

# Interpretation:

**Diet A is more effective:** Both the mean and median weight loss are higher for Diet A, suggesting stronger overall performance.

**Less variability in Diet A:** The standard deviation for Diet A is slightly lower, meaning more consistent results.

**IQR is similar:** While Diet B has a slightly wider IQR, the central tendency (median) Favors Diet A.

**Conclusion:** On average, individuals lost more weight and had more consistent results with Diet A compared to Diet B.

# Exercise 6.3

**Brand A** more preferred in Area 2 (21.1%) than in Area 1 (15.7%).

**Brand B** shows higher popularity in Area 2 (33.3%) than Area 1 (24.3%).

Preference for "Other" brands is higher in Area 1 (60%) compared to Area 2 (45.6%).

**Conclusion:** Area 2 exhibits stronger preferences for known brands (A and B), while Area 1 shows a greater inclination toward other alternatives — indicating potential demographic or market strategy differences.

# **Hypothesis Testing Worksheet**

#### Hypothesis Testing Using Excel (see below for LibreOffice)

#### Exercise 7.1

The mean number of items sold was significantly higher for Container Design 1 than Design 2.

The difference (13.2 items) is statistically significant at the 5% level (p = 0.0183).

Conclusion: Design 1 led to more sales and is likely the better option.

#### The INDEPENDENT Samples T Test

#### Exercise 7.2

Diet A leads to significantly more weight loss than Diet B.

The difference (1.631 kg) is statistically significant (p = 0.0028).

Conclusion: There is strong evidence to prefer Diet A for greater average weight loss.

#### **Hypothesis Testing Using LibreOffice**

#### Exercise 7.3

21.1% preferred Brand A

33.3% preferred Brand B

45.6% preferred Other brands

# Interpretation:

Compared to Area 1 (from the worksheet), where 60% chose "Other", Area 2 has: Higher preference for Brand B

Lower reliance on "Other" brands

This suggests demographic differences in brand choices — potentially useful for targeted marketing.

#### The One-Tailed Test

#### Exercise 7.4

Filter Agent 1 (mean = 5.341) is significantly more effective than Filter Agent 2 (mean = 3.710).

The result is statistically significant at the 5% level (p = 0.0014).

Conclusion: We have strong evidence to conclude that Filter Agent 1 is more effective.

#### The INDEPENDENT Samples T Test

#### Exercise 7.5

Male income is significantly higher than female income.

The test is statistically significant (p = 0.0014), with a mean difference of 1.631 units.

Conclusion: There is strong evidence to support the claim that males have a higher mean income than females in this dataset.

# Inference Worksheet

#### Step 1: State the Hypotheses

Null Hypothesis ( $H_0$ ):  $\mu$  = 3 (children watch 3 hours of TV daily)

Alternative Hypothesis ( $H_1$ ):  $\mu \neq 3$  (children watch a different amount)

This is a two-tailed test.

#### Step 2: Set the Criteria for a Decision

Significance Level ( $\alpha$ ) = 0.05

Critical Z-value for two-tailed test at  $0.05 = \pm 1.96$  (Using standard normal distribution)

#### **Step 3: Compute the Test Statistic**

We use the Z-test formula (population standard deviation is known):

$$Z = rac{ar{X} - \mu}{\sigma / \sqrt{n}} = rac{4 - 3}{1.5 / \sqrt{36}} = rac{1}{0.25} = 4.0$$

#### Step 4: Make a Decision

Calculated Z = 4.0

Critical  $Z = \pm 1.96$ 

Since 4.0 > 1.96, we are in the rejection region. p-value is much less than  $0.05 \rightarrow$  significant

#### **Final Conclusion:**

Since the Z-value (4.0) lies beyond the critical region and the p-value < 0.05, we reject the null hypothesis.

Conclusion: There is strong evidence that children watch more or less than 3 hours of TV daily (in this case, more).

# **Charts Worksheet**

Exercise 9.1 Bar Charts in Excel (see below for LibreOffice)



Interpretation: Brand A: 21.1% Brand B: 33.3% Other: 45.6%

Compared to Area 1 (where 60% preferred "Other"), Area 2 shows higher preference for named brands, especially Brand B.

#### Exercise 9.2



### Interpretation:

Location A has more Abundant and Sparse growth compared to Location B. Location B has a much higher percentage of Absent species (45.5% vs 14.3%).

Conclusion: Location A supports richer heather species growth, while Location B shows limited vegetation.

## **Exercise 9.3 Histograms**



#### Interpretation:

The distribution is unimodal and slightly positively skewed (tail to the right).

Most individuals lost between 2 to 8 kg, but fewer achieved very high weight loss.

#### Comparison with Diet A:

Diet A had a more symmetrical and consistent weight loss distribution.

Diet B shows less uniformity and lower frequency of high weight loss, suggesting it may be less effective overall.

#### **Exercise 9.4 Bar Charts in LibreOffice**



Interpretation: Brand A: 21.1% Brand B: 33.3% Other: 45.6%

Compared to Area 1 (where 60% preferred "Other"), Area 2 shows higher preference for named brands, especially Brand B.

#### Exercise 9.5



#### Interpretation:

Location A has more Abundant and Sparse growth compared to Location B. Location B has a much higher percentage of Absent species (45.5% vs 14.3%).

Conclusion: Location A supports richer heather species growth, while Location B shows limited vegetation.

## **Exercise 9.6 Histogram**



#### Interpretation:

The distribution is unimodal and slightly positively skewed (tail to the right).

Most individuals lost between 2 to 8 kg, but fewer achieved very high weight loss.

#### Comparison with Diet A:

Diet A had a more symmetrical and consistent weight loss distribution.

Diet B shows less uniformity and lower frequency of high weight loss, suggesting it may be less effective overall.