15-150 Fall 2013 Lecture 7

Stephen Brookes

Announcements

Read the notes!

Homework 3 due...

NO CHEATING

last time

- We implemented insertion sort and mergesort for integer lists
- We proved correctness of insertion sort
- We proved some specs for split and merge
- How about mergesort?
- What about efficiency?

mergesort

msort: int list -> int list

For all L:int list, msort(L) = a < -sorted permutation of L.

lemmas

For all L:int list, if length(L)>1

then split(L) = (A, B)

where A and B have shorter length than L

and A@B is a permutation of L

For all sorted lists A and B,

merge(A, B)= a sorted permutation of A@B

proof outline

Theorem

For all L:int list, msort(L) = a < -sorted permutation of L.

- Method: by strong induction on length of L
- Base cases: L = [], L = [x]
 (i) Show msort [] = a sorted perm of []
 (ii) Show msort [x] = a sorted perm of [x]
- Inductive case: length(L)>1.
 Inductive hypothesis: for all shorter lists R,
 msort R = a sorted perm of R.
 Show msort L = a sorted perm of L.

inductive step

Let length(L) > I. Then

```
msort L = merge(msort A, msort B)
```

```
where (A, B) = \text{split } L
```

- msort A and msort B are sorted lists (why?)
- merge(msort A, msort B) = a sorted list (why?)
- merge(msort A, msort B) = a perm of L (why?)

correct!

msort: int list -> int list

For all L:int list, msort(L) = a < -sorted permutation of L.

a variation

msort: int list -> int list

a variation

msort: int list -> int list

loops forever on non-empty lists

the problem

- split[x] = ([x], [])
- msort [x] =>* (fn ... => ...) (msort [x], msort [])

infinite computation

What happens if we try to **prove** that

For all L:int list,

msort(L) = a < -sorted permutation of L.

principles

- Every function needs a spec
- Every spec needs a proof
- Recursive functions need inductive proofs
 - Learn to pick an appropriate method...
 - Choose helper functions wisely!

proof of msort was easy, because of split and merge

choose wisely

- Use helpful specs
- merge also satisfies other specs, e.g.

For all integer lists L and R, merge(L, R) = a perm of L@R.

Every program has (at least) two purposes: The one for which it was written and another for which it wasn't.

the joy of specs

- The proof for msort relied only on the specification proven for split (and the specification proven for merge)
- In the definition of msort we can replace split by any function that satisfies this specification, and the proof will still be valid, for the new version of msort

example

```
fun split' [ ] = ([ ], [ ])
I split' [x] = ([], [x])
I split' (x::y::L) = let val(A, B) = split' L in(x::A, y::B) end
fun msort' [ ] = [ ]
   msort'[x] = [x]
   msort' L = let
                val(A, B) = split'L
               in
                merge(msort' A, msort' B)
               end;
```

example

- split and split' are not extensionally equivalent, but they both satisfy the specification used in the correctness proof
- ... so msort and msort' are both correct

so far

- We've implemented insertion sort and mergesort in ML, correctly
- What about efficiency?

split work

Let $W_{split}(n) = work of split(L) when length(L)=n$

```
W_{split}(n) = c_0 for n=0, I

W_{split}(n) = c_1 + W_{split}(n-2) for n>1

for some constants c_0, c_1
```

merge work

```
fun merge (A, []) = A
                                     W_{\text{merge}}(n) is O(n)
   merge ([], B) = B
   merge (x::A, y::B) = case compare(x, y) of
                         LESS \Rightarrow x :: merge(A, y::B)
                       EQUAL => x::y::merge(A, B)
                   |GREATER| => y :: merge(x::A, B);
 Let W_{merge}(n) = work of merge(A,B)
                    when length(A)+length(B)=n
```

msort work

Let $W_{msort}(n) = work of msort(L) when length(L)=n$ $W_{msort}(0) = I \qquad W_{msort}(I) = I$ $W_{msort}(n) = W_{split}(n) + 2W_{msort}(n \text{ div } 2) + W_{merge}(n)$ $\leq cn + 2W_{msort}(n \text{ div } 2) \qquad \text{for } n > l$

for some constant c

exercise

- Give a recurrence relation for W_{ins}(n), the work for ins(x,L) when L has length n, making the worst-case assumption that x is greater than every item in L.
- Then give a recurrence relation for W_{isort}(n), the worst-case work for isort(L) when L has length n.
- Solve, and classify using big-O notation.
- Which lists incur worst-case behavior?

assessment

- msort(L) on lists does O(n log n) work,
 where n is length(L)
- Lists are built from [] and :: so are inherently sequential data structures
- Not easy to redesign msort to exploit parallel evaluation

next

- Sorting an integer **tree**
 - Specifications and proofs
 - Asymptotic analysis

Insertion
"Parallel" Mergesort

trees

datatype tree = Empty | Node of tree * int * tree;

- A user-defined type named tree
- With constructors Empty and Node

Empty: tree

Node: tree * int * tree -> tree

tree values

 Every tree value is either Empty or has the form Node(t₁, x, t₂), where t₁ and t₂ are tree values and x is an integer.

Contrast with integer lists:

Every list value is either nil or has the form x::L, where L is a list value and x is an integer.

tree patterns

Empty $Node(p_1, p, p_2)$

- Empty
- Node(_, _, _)
- Node(Empty, __, Empty) tree with one node
- Node(_, 42, _)

empty tree

non-empty tree

tree with 42 at root

tree patterns

Empty matches t iff t is Empty

Node(p₁, p, p₂) matches t iff

t is Node(t₁, v, t₂) such that

p₁ matches t₁, p matches v, p₂ matches t₂

(and combines all the bindings when the match succeeds)

structural induction for trees

- To prove: "For all trees t, P(t) holds"
- Base case: For t = Empty.
 Show P(Empty) holds.
- Inductive case: For t = Node(t₁, x, t₂).
 Induction hypothesis: P(t₁) and P(t₂) hold.
 Show that P(Node(t₁, x, t₂)) holds.

Contrast with structural induction for *lists*

size

```
fun size Empty = 0

l 	ext{ size (Node(t1, \_, t2))} = size t1 + size t2 + 1;
```

Uses tree patterns
Recursion is structural

size(Node(t_1 , v, t_2)) calls size(t_1) and size(t_2)

Can prove by structural induction that for all trees t, size(t) = a non-negative integer

the number of nodes in t

size matters

- For all trees t, size(t) ≥ 0 .
- If t = Node(t₁, x, t₂),
 size(t₁)<size(t) and size(t₂)<size(t).
- Many recursive functions on trees make recursive calls on trees with smaller size.
- Can often use induction on size to prove properties or analyze efficiency.

depth

(or height)

Can prove by structural induction that for all trees t, depth(t) = a non-negative integer

the length of longest path from root of t to a leaf

depth matters

- For all trees t, depth(t) ≥ 0 .
- If t = Node(t₁, x, t₂),
 depth(t₁)<depth(t) and depth(t₂)<depth(t).
- Many recursive functions on trees make recursive calls on trees with smaller depth.
- Can often use induction on depth to prove properties or analyze efficiency.

traversal

trav: tree -> int list

```
fun trav Empty = []

| trav (Node(t1, x, t2)) = trav t1 @ (x :: trav t2);
```

For all trees t, trav(t) returns a list of the integers in t

in-order traversal

sorted trees

- Empty is sorted
- Node(t₁, x, t₂) is sorted iff

every integer in t_1 is $\leq x$ and every integer in t_2 is $\geq x$ and

t₁ and t₂ are sorted

t is sorted

iff

trav(t) is a sorted list

insertion

ins: int * int list -> int list

For all sorted integer lists L, ins(x, L) = a sorted permutation of x::L.

Insertion

Ins: int * tree -> tree

For all sorted integer trees t, lns(x,t) = a sorted tree t' such that trav(t') is a perm of x::trav(t)