Day 9: Classification Algorithms

Why Classification?

To date, we have focused on *regression* algorithms. While useful, there are some features of regression tools worth noting:

- Evaluate continuous dependent variables well
- Struggle on discrete dependent variables
- ullet Do not understand different "groups" of data, just one sliding scale in ${\mathbb R}$

When Classification Instead of Regression?

When we have discrete dependent variables

- Binary variables
- Categorical Data
- When there is no clear dependent variable, or when we don't exactly know what we are looking for

Regression vs Classification

Regression asks:

ullet What is the predicted price of commodity x in the next period?

Classification asks

• Does the price of commodity x rise or fall in the next period?

Classification - Logistic Regression

What about Linear Probability Models?

Good:

- Just use OLS to estimate likelihood of outcome
- Has the advantage of simplicity

Bad:

 Assumes continuity of outcomes (which is not true in a classification problem)

What about Linear Probability Models?

Ugly:

- ullet Is not restricted to the [0,1] interval!
- Can have meaningless probabilities (greater than 1, and less than 0)

Logistic Regression

What if we transform our regression model in a way that requires it to remain within the [0,1] interval?

Logistic Regression

- We no longer have a linear function (linear functions are not bounded to our unit interval)
- We no longer assume that treatments have constant effect
- But our output can now be interpreted as

$$p(y = 1)$$

Logistic Transformation

The transformation that is required in order to coerce our output to remain between 0 and 1 is

$$p(y=1|x)=rac{exp(x'eta)}{1+exp(x'eta)}=\Lambda(x'eta)$$

and is called the logistic transformation.

Marginal Effects in a Logit Model

In order to obtain a point estimate of the marginal effect of a given input on y, we must use the function

$$rac{\partial E(y|x)}{\partial x} = \Lambda(x'eta)\cdot (1-\Lambda(x'eta))\cdot eta$$

Thus, our marginal effects will depend on the values of our inputs.

Marginal Effects in Regressions

OLS:

$$rac{\partial E(y|x)}{\partial x} = eta$$

Logit:

$$rac{\partial E(y|x)}{\partial x} = \Lambda(x'eta)\cdot (1-\Lambda(x'eta))\cdot eta$$

```
import numpy as np
import patsy as pt
from bokeh.plotting import figure, show
from statsmodels.discrete.discrete_model import Logit
data = pd.read_csv('passFailTrain.csv')
y, x = pt.dmatrices('G3 \sim G1 + age + goout', data = data)
model = Logit(y, x)
reg = model.fit()
print(reg.summary())
```

```
import numpy as np
import patsy as pt
from bokeh.plotting import figure, show
from statsmodels.discrete.discrete_model import Logit
```

We need to import our libraries, and particularly, import the Logit function from the statsmodels library.

```
data = pd.read_csv('passFailTrain.csv')

y, x = pt.dmatrices('G3 ~ G1 + age + goout', data = data)
```

We need to read some data into memory from a CSV file (this is the typical way to store small data, but is very bad for large data)

Next, we generate our y and x matrices in order to use them in our model. Output goes on the left of the "~", inputs on the right, separated by "+" (this is also the formula that R uses when performing regressions).

```
model = Logit(y, x)

reg = model.fit()

print(reg.summary())
```

First, we create our Logit model, then we store the fitted model as reg. Afterward, we can print out our summary table.

It should look something like this:

Logit Regression Results						
Dep. Variable	:		G3 No.	Observations 0	5:	296
Model:		Lo	ogit Df	Residuals:		292
Method:		MLE Df Model:			3	
Date:	Т	hu, 23 Mar 2	2017 Pse	udo R-squ.:		0.3567
Time:		16:21	1:12 Log	-Likelihood:		-119.01
converged:		7	True LL-	Null:		-185.01
			LLR	p-value:		2.010e-28
	coef	std err	Z	P> z	[95.0% C	onf. Int.]
Intercept	6.9131	2.282	3.030	0.002	2.441	11.386
G1	3.1671	0.344	9.218	0.000	2.494	3.840
age	-0.4124	0.136	-3.043	0.002	-0.678	-0.147
goout	-0.3163	0.147	-2.150	0.032	-0.605	-0.028

Predictions from Logit Model

Now, we may want to use our logit model to make predictions about new observations.

All we need are new values:

New Observation: [Term 1 Grade: Pass, Age: 16,

Frequency of Going Out: 4]

Predictions from Logit Model

```
reg.predict((1,1,16,4))
# OR
xpred = pt.dmatrix('~ G1 + age + goout', data = testdata)
```

Note that we have to include values for all necessary variables, as well as a \$1\$ for the intercept term.

Notes on \mathbb{R}^2

While \mathbb{R}^2 values are not always helpful in a regression setting, they are very valuable when forecasting using regressions.

- Tell us how much of the variance our model is capable of explaining
- If our \mathbb{R}^2 is 0.3567 (like it was for the regression earlier), then the model explains 35.67% of the variation in pass/fail outcomes among students in our sample.

Notes on \mathbb{R}^2

Even **more** useful in a forecasting setting is the out- of-sample ${\cal R}^2$

- Tell us how much of the variance our model is capable of explaining with respect to **new** observations
- Basically, it tells us if we are doing a good job creating accurate forecasts

Generating a Tjur \mathbb{R}^2

Since we cannot use the standard R^2 measure for Logit models, we need to calculate a pseudo- R^2 , and statsmodels does not calculate out-of-sample R^2 automatically.

Generating a Tjur \mathbb{R}^2

Tjur (2009) suggested an \mathbb{R}^2 measure for Logit models calculated as the difference between the mean value of predictions for "failures" and "successes" in a binary model.

$$Tjur~R^2=ar{\hat{y}}_{successes}-ar{\hat{y}}_{failures}$$

The measure is bounded by 1 and 0, and gives us a measure of how well we separate our two outcomes

Lab for Today

- 1. Fit a Logit model predicting whether or not a student will receive a passing grade in term 3, using the data provided in passFailTrain.csv
- 2. Create a function that will take a fitted logit model, and y and x matrices, and return the Tjur R^2 value for that sample
- 3. Do your best to find a model with the **highest** Tjur R^2 value given the data that was provided to you (we will compare notes and models at the end of class)