$PSI^*-simulations$ 23 mai 2025

Planche 1:

Soit P un polynôme de $\mathbb{R}[X]$. On pose $S(P) = \sum_{k=0}^{+\infty} \frac{P(k)}{k!}$.

- 1) a) Montrer que S(P) est bien défini.
 - b) Montrer que S est une forme linéaire.
 - c) Calculer avec Python $\frac{1}{e}\sum_{k=0}^{50}\frac{P(k)}{k!}$ avec $P=X^d, d\in\{1,\ldots,10\}$, puis avec $P=X^9+36X^6-X^3+X^2-3$. Observations ?
- 2) Soit (H_n) la suite de polynômes définie par $H_0 = 1$ et, pour $n \in \mathbb{N}$, $H_{n+1} = (X n)H_n$.
 - a) Montrer que $(H_n)_{n\in\mathbb{N}}$ est une base de $\mathbb{R}[X]$.
 - b) Calculer $S(H_n)$ pour tout $n \in \mathbb{N}$.
 - c) Comment calculer S(P) pour P quelconque?

On assimile un polynôme $P = \sum_{k=0}^{9} a_k X^k$ à la liste $[a_0, \dots, a_9]$ de ses coefficients dans la base canonique.

- a) Écrire une fonction permettant de calculer les coefficients de H_n pour $1 \le n \le 9$.
- b) Donner la valeur exacte de S(Q) pour $Q = X^4 + 2X^3 X^2 2X + 5$.
- c) Expliquer les observations de la fin de la première question.

Planche 2:

Soit $S = \{(u_n)_{n \in \mathbb{N}}, \forall n \in \mathbb{N}^*, u_{n+1} = \frac{u_n^2}{n+1}\}$. On désigne par $u_n(x)$ le n-ième terme de la suite de S telle que $u_0 = x$.

- 1) Écrire une fonction Suite(n, x) qui renvoie $u_n(x)$. Tester la fonction pour quelques valeurs. Tracer les premiers termes de la suite pour différentes valeurs de x. Commenter.
- 2) Tester pour n = 31 et x = 1,6616, pour n = 17 et x = 1,6617. Commenter.
- 3) Montrer l'équivalence des trois assertions suivantes :
 - (i) $\exists n \in \mathbb{N}, u_{n+1} \leqslant u_n$
 - (ii) $\exists n \in \mathbb{N}^*, u_n < 1$
 - (iii) (u_n) tend vers 0.
- **4)** Montrer que $\exists N \in \mathbb{N}, u_N \geqslant N+2 \Rightarrow \forall n \geqslant N, u_n \geqslant n+2$.
- 5) Étudier les cas x = 1 et x = 2. On pose $E_0 = \{x, u_n(x) \to 0\}$ et $E_\infty = \{x, u_n(x) \to +\infty\}$. Montrer que E_0 et E_∞ sont deux intervalles tels que $\mathbb{R}_+^* = E_0 \cup E_\infty$.

PSI* - simulations 23 mai 2025

Planche 3:

On considère, pour $n \geqslant 3$, la matrice

$$A_n = \begin{pmatrix} 1 & \cdots & \cdots & 1 \\ \vdots & 1 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 1 & 0 & \cdots & 0 & 1 \end{pmatrix}.$$

- 1) Montrer que A_n est diagonalisable et déterminer son rang.
- 2) On considère la suite $(u_p = \operatorname{tr}(A_3^p))_{p \in \mathbb{N}}$.
 - a) Calculer les quinze premiers termes de cette suite.
 - **b)** Calculer $B = A_3^3 3A_3^2 + A_3 + I_3$.
 - c) Trouver une relation de récurrence simple pour (u_p) . Donner un script en Python permettant de trouver u_p .
- 3) a) Montrer qu'une valeur propre différente de 1 de A_n est solution de l'équation $f_n(x) = 0$, où $f_n(x) = a_n x + b_n + \frac{c_n}{x-1}$ est à déterminer. On s'intéressera au système $A_n X = \lambda X$.
 - b) Montrer que les valeurs propres de A_n sont racines du polynôme $P_n(X) = X^3 3X^2 + (4 n)X + (n-2)$.
- 4) a) Montrer que A_n admet trois valeurs propres distinctes α_n , β_n , γ_n .
 - b) Montrer que le système

$$\begin{cases} x + \alpha_n y + \alpha_n^2 z = \alpha_n^4 \\ x + \beta_n y + \beta_n^2 z = \beta_n^4 \\ x + \gamma_n y + \gamma_n^2 z = \gamma_n^4 \end{cases}$$

admet une unique solution (x_n, y_n, z_n) .

- c) Donner un script en python permettant de résoudre ce système (lorsque n est donné).
- d) Quelle vérification matricielle peut-on faire?

Planche 4:

Soient $S_1: x \mapsto \sum_{n=1}^{+\infty} \ln(1+x^{2n}), S_2: x \mapsto \sum_{n=1}^{+\infty} \ln(1+x^{2n-1}) \text{ et } S_3: x \mapsto \sum_{n=1}^{+\infty} \ln(1-x^{2n-1}).$

- 1) Déterminer les domaines de définition de S_1 , S_2 , S_3 .
- 2) Tracer les graphes de sommes partielles pour diverses valeurs de n.
- 3) Tracer les graphes de sommes partielles de $S_1 + S_2 + S_3$. Conjecture ?
- 4) Montrer que S_1, S_2, S_3 sont de classe \mathscr{C}^1 .
- 5) Montrer la conjecture.