MATH 213 - Lecture 4: More Laplace Transforms and Properties of Laplace Transforms

Lecture goals: Be able to compute Laplace transforms from the definition, know what the one-sided or unilateral Laplace Transform is and understand some commonly used (and important) properties of the Laplace transform (and be able to prove them if asked).

More Examples:

Example 1

Compute the Laplace transform of tu(t) and find the ROC.

Often we care about functions f(t) that are only defined for $t \geq 0$. There is a special transform for that

Definition 1: Unilateral Laplace Transform

The Unilateral Laplace Transform or One-sided Laplace Transform of a function f(t) defined only for $t \ge 0$ is defined as

$$F(s) = \mathcal{L}\lbrace f(t)\rbrace = \int_{0^+}^{\infty} f(t)e^{-st}dt.$$

Caution: If we use the symbol " \mathcal{L} " we mean the two sided transform unless otherwise stated.

Example 2

Compute the one-sided Laplace transform of u(t-T) for T>0 and find the ROC.

Example 3

Compute the Laplace transform of $\sin(\omega t)u(t)$ for $\omega \in \mathbb{R}$ and find the ROC.

Hint: Write sin as a sum of complex exponentials.

Properties of the Laplace Transform:

Theorem 1

For any function f(t), the one-sided Laplace transform will always converge given that there is some sufficiently large $s \in \mathbb{R}$ such that

$$\int_0^\infty f(t)e^{-st}dt$$

exists

Theorem 2: Laplace Transform is Linear

Suppose that f(t) and g(t) have Laplace transforms F(s) and G(s). Then for all $\alpha, \beta \in \mathbb{C}$

$$\mathcal{L}\{\alpha f(t) + \beta g(t)\} = \alpha F(s) + \beta G(s)$$

the the ROC is the intersection of the ROCs for F(s) and G(s).

Theorem 3: Time-Scaling If $\mathcal{L}{f(t)} = F(s)$ then for c > 0, $\mathcal{L}{f(ct)} = \frac{1}{c}F(\frac{s}{c})$

Example 4

Use the fact that $\mathscr{L}\{\sin(t)u(t)\}=\frac{1}{s^2+1}$ to compute $\mathscr{L}\{\sin(\omega t)u(\omega t)\}$ for positive real ω without directly evaluating the integral.

Theorem 4: Exponential Modulation $\mathscr{L}\{e^{\alpha t}f(t)\}=F(s-\alpha).$

$$\mathscr{L}\lbrace e^{\alpha t} f(t)\rbrace = F(s-\alpha).$$

Example 5 Compute $\mathcal{L}\{e^{\alpha t}u(t)\}\$ for $\alpha\in\mathbb{R}$ without directly evaluating the integral.

Theorem 5: Time-Shifting If
$$F(s) = \mathcal{L}\{f(t)u(t)\}$$
 and $g(t) = f(t-T)u(t-T)$ then

$$G(s) = e^{-sT} F(s).$$

Example 6 Evaluate $\mathcal{L}\{u(t-T)\}$ without directly evaluating the integral.

Theorem 6: Multiplication by tIf $\mathcal{L}{f(t)} = F(s)$ then $\mathcal{L}{tf(t)} = -\frac{d}{ds}F(s)$.

Example 7 Compute $\mathcal{L}\{tu(t)\}$ without directly computing the integral.

Example 8: Foreshadowing

Use integration by parts to evaluate $\mathcal{L}\{f'(t)\}$ where we mean the one-sided transform for a "sufficiently nice" function f(t).

Theorem 7: Laplace Transform of a Derivative/Integral

Let f(t) be such that there is a real value α such that the integral

$$\int_{0^+}^{\infty} |f(t)| e^{-\alpha t} dt$$

converge and such that there exists a function f'(t) such that for $t \geq 0$

$$f(t) = f(0^+) + \int_{0^+}^{\infty} f'(\tau)d\tau$$

and there exists a real value β such that

$$\int_{0^+}^{\infty} |f'(t)| e^{-\beta t} dt$$

converges. In this case

$$F(s) = \frac{1}{s}f(0^{+}) + \frac{1}{s}\mathcal{L}\{f'(t)\}\$$

or in other-words

$$\mathscr{L}{f'(t)} = sF(s) - f(0^+)$$

The proof for this is basically in the previous example. This theorem is how we will solve linear DEs!