Лабораторная 7

Nikolay Shuvalov¹

2021, 27 February

¹RUDN University, Moscow, Russian Federation

Цель работы

Познакомиться с моделью эффективности рекламы.

Задание

Постройте график распространения рекламы, математическая модель которой описывается следующим уравнением:

1.
$$\frac{dn}{dt} = (0.66 + 0.000061n(t))(N - n(t))$$

2.
$$\frac{dn}{dt} = (0.000056 + 0.66n(t))(N - n(t))$$

3.
$$\frac{dn}{dt} = (0.66\sin(t) + 0.66\sin(6t)n(t))(N - n(t))$$

При этом объем аудитории N=860, в начальный момент о товаре знает 2 человек. Для случая 2 определите в какой момент времени скорость распространения рекламы будет иметь максимальное значение.

Figure 1: Условие

Организуется рекламная кампания нового товара или услуги. Необходимо, чтобы прибыль будущих продаж с избытком покрывала издержки на рекламу. Вначале расходы могут превышать прибыль, поскольку лишь малая часть потенциальных покупателей будет информирована о новинке. Затем, при увеличении числа продаж, возрастает и прибыль, и, наконец, наступит момент, когда рынок насытиться, и рекламировать товар станет бесполезным.

Предположим, что торговыми учреждениями реализуется некоторая продукция, о которой в момент времени t из числа потенциальных покупателей N знает лишь n покупателей. Для ускорения сбыта продукции запускается реклама по радио, телевидению и других средств массовой информации. После запуска рекламной кампании информация о продукции начнет распространяться среди потенциальных покупателей путем общения друг с другом. Таким образом, после запуска рекламных объявлений скорость изменения числа знающих о продукции людей пропорциональна как числу знающих о товаре покупателей, так и числу покупателей о нем не знающих.

Модель рекламной кампании описывается следующими величинами. Считаем, что $\frac{dn}{dt}$ - скорость изменения со временем числа потребителей, узнавших о товаре и готовых его купить, t время, прошедшее с начала рекламной кампании. n(t) - число уже информированных клиентов. Эта величина пропорциональна числу покупателей, еще не знающих о нем, это описывается следующим образом: $\alpha_1(t)(N-n(t))$, где N - общее число потенциальных платежеспособных покупателей, $\alpha_1 > 0$ характеризует интенсивность рекламной кампании . Помимо этого, узнавшие о товаре потребители также распространяют полученную информацию среди потенциальных покупателей, не знающих о нем.

Этот вклад в рекламу описывается величиной $\alpha_2(t)n(t)(N-n(t))$, эта величина увеличивается с увеличением потребителей узнавших о товаре. Математическая модель распространения рекламы описывается уравнением:

$$\frac{dn}{dt} = (\alpha_1(t) + \alpha_2(t)n(t))(N - n(t))$$

При $\alpha_1(t) >> \alpha_2(t)$ получается модель типа модели Мальтуса.

В обратном случае $\alpha_1(t) << \alpha_2(t)$ получаем уравнение логистической кривой

Выполнение лабораторной работы

Figure 2: Решение для случая 1

Выполнение лабораторной работы

Figure 3: Решение для случая 2

Выполнение лабораторной работы

Figure 4: Решение для случая 3

Результат

Познакомились с моделью эффективности рекламы.