FFI ID FACU	ORTO ILDADE DE ENGENHARIA ERSIDADE DO PORTO			
Curso	MIEIC	 	 	Data//
Disciplina	CMAT		 Ano	Semestre
Nome	•			

Espaço reservado para o avaliador AULA 8: Exºs Tratzdos - Ficha 3: 3a), 4a), 6, 14, PA_20/04/2016_5 Exºs Proportos - Ficha 3: 1a) b) c) d), 2, 3b) c), 4c), 8, 11, 12, 15

3) a) Region D limitede pulas curvas
$$y=x^3$$
 e $y=x^2$, $0 \le x \le 1$:

$$A(D) = \iint_D dx dy$$

Esboço de repris D:

il Definicas de regias D como reject de tipo I:

Enters:

$$A(D) = \int_{0}^{1} \int_{x^{3}}^{2} dy dx = \int_{0}^{1} [y]_{x^{3}} dx = \int_{0}^{1} (x^{2} - x^{3}) dx =$$

$$= \left[\frac{x^3}{3} - \frac{x^4}{4}\right]_0^1 = \left(\frac{1}{3} - \frac{1}{4}\right) - (0) = \frac{1}{12}$$

ii) O célanto da a'rea pode ainde ser feito considerendo a repiato D como regiato do tipo II:

$$A(D) = \int_{0}^{1} \int_{y^{1/2}}^{y^{1/3}} dx dy = \int_{0}^{1} \left[x \right]_{y^{1/2}}^{y^{1/3}} dy = \int_{0}^{1} \left[y^{1/3} - y^{1/2} \right] dy = \int_{0}^{1} \left[\frac{3}{4} - \frac{2}{3} \right] - (0) = \frac{1}{12}$$

4) a) Neste ceso, a forme como esté definido o integral permite concluir que a repias de integração, D, esté definide como regias do topo II:

Obtin-1e, ents:
$$\int_{1}^{2} \int_{0}^{y^{2}} \frac{x/y^{2}}{e^{2}} dx dy = \int_{1}^{2} \left[y^{2} e^{-\frac{x}{y^{2}}} \right]_{0}^{y^{2}} dy = \int_{1}^{2} \left[y^{2} e^{-\frac{x}{y^{2}}} \right]_{0}^{y} dy = \int_{1}^{2} \left[y^{2} e^{-\frac{x}{y^{2}}} \right$$

$$= \int_{1}^{2} y^{2}(e-1) dy = (e-1) \int_{1}^{2} y^{2} dy = (e-1) \left[\frac{y^{3}}{3}\right]_{1}^{2}$$

$$= \left(\ell - 1\right) \left(\frac{8}{3} - \frac{1}{3}\right) = \frac{7}{3} \left(\ell - 1\right)$$

NOTA: O célanto do mesmo integral, contiderando a região D como regias do tipo I seria mais trabalhoso. Venit premo esta rituais começando por esboças a rejus de integração D.

Mmy

U. PORTO FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO		
Curso		Data/
Disciplina	Ano	Semestre
Nome		

Se se pretende considerer a repiàs D como repat do tipo I, entre a repiàs D devení ser considerede como a renniar das repiès D, e D2

 $D = D_1 \cup D_2$

jà pre, prendo se varia no intervalo [0,4] a variavel y nes tem ume variaces uniforme. Tem-se entes

D1= 1 (x,y): 05x51, 159521

 $D_2 = \{(x,y) : 1 \le x \le 4, x^{1/2} \le y \le 2\}$

e, purtento, $\int_{1}^{2} \int_{0}^{y^{2}} \frac{x/y^{2}}{e^{y^{2}}} dx dy = \iint_{2}^{2} \frac{x/y^{2}}{e^{y^{2}}} dy dx + \iint_{2}^{2} \frac{x/y^{2}}{e^{y^{2}}} dy dx =$

Wir

$$= \int_{0}^{1} \int_{1}^{2} \frac{x/y^{2}}{e^{2}} dy dx + \int_{1}^{4} \int_{1/2}^{2} \frac{x/y^{2}}{e^{2}} dy dx = - - - = \frac{7}{3} (e-1)$$

Como é vitivel este processo de célanto é mais trabalhoso do pre o pre foi anxiderado inicialmente.

No célah de um integral duplo a definição de regias de integração (tipo I on tipo I) é, em minter tituações, extremamente importante para a eficiência do processo envolvido.

6) Neste uno, comecennos por esbeçar a repras de integraços x, regras de pleno limitede pelas linhes y=0, $y=x^{1/2}$.

i) Se definiruir a region 12 como regions do tipo I, isto é,

o integral é escrito sob a forme

$$\iint_{\frac{y}{1+x^2}} \frac{y}{dx dy} = \int_{0}^{4} \int_{0}^{\frac{x^{2}}{1+x^2}} \frac{y}{dy} dx$$

Neste ceso, inicia-ce por integran a funças em relació à variénel y (o que é muito simples), já pue

$$\frac{1}{1+x^{2}} \int_{0}^{x^{1/2}} y \, dy = \frac{1}{1+x^{2}} \left[\frac{y^{2}}{2} \right]_{0}^{2} = \frac{x}{2(1+x^{2})}$$
 (1)

U. PORTO FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO	*			
Curso	-		,	Data///
Disciplina			Ano	Semestre
Nome				
		-		

ii) le optamos por definir a repias or como repias do tipo II, isto é,

D={(x,y): 0 = y = 2, y2 = x = 4}

o integral duplo é escrito sob a forme

$$\iint_{2} \frac{y}{1+x^{2}} dx dy = \int_{0}^{2} \int_{y^{2}}^{4} \frac{y}{1+x^{2}} dx dy$$

Neste ceso, inicia-se por integran a funces em relaças à vaniével x

$$y \int_{y^2}^{4} \frac{1}{1+x^2} dx = y \left[arctg(x) \right]_{y^2}^{4} =$$

= y arctg (4) - y arctg (y2)

pelo pue o integral seprinte, en relaces à variavel y,

J y arctg (4) dy - J y arctg (y²) dy

seri muito mais trabalhoso do que aquele resultante em i).

Assir, optindo por emiderar a repiso de integració o como refisió do tipo I, obtém-se:

MM

$$\iint \frac{y}{1+x^2} dx dy = \int_0^4 \int_{1+x^2}^{x/2} \frac{y}{1+x^2} dx = \frac{1}{2} \int_0^4 \frac{x}{1+x^2} dx = \frac{1}{4} \left[\ln (1+x^2) \right]_0^4 = \frac{$$

14) A region de integração, D, é a region triangular com véatices nos pontos O=(0,0), P=(2,0) e Q=(1,1), isto é:

i) Se definirmo a regias D como aegias do tipo I, entas a repias D deverá ser considerade como a reunias das regiosos D1 e D2

já pre, quendo x varia no intervalo (0,2) a variável y not tem um variació uniforme.

Tem-12 entas

follo fre $\iint (2x) dy dx = \iint (2x) dy dx + \iint (2x) dy dx =$

mingo

U. PORTO FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO			·	
Curso		······································		Data///
Disciplina	,		Ano	Semestre
Nome				

$$= 2 \int_{0}^{1} \int_{0}^{\infty} (x) dy dx + 2 \int_{1}^{2} \int_{0}^{-x+2} (x) dy dx = \dots = 2$$

ii) Se a regias D for definida como regias do tipo II, isto e',

0 célants pode ser realizeds através de un unico integral duples:

$$\iint_{D} (2x) \, dy \, dx = 2 \int_{0}^{1} \int_{y}^{2-y} (x) \, dx \, dy = 2 \int_{0}^{1} \left[\frac{x^{2}}{2} \right]_{y}^{2} \, dy =$$

$$= \int_{0}^{1} \left[(2-y)^{2} - y^{2} \right] \, dy = \int_{0}^{1} (4-4y) \, dy =$$

$$= 4 \left[y - \frac{y^2}{2} \right]_0^1 = 4 \left[\left(1 - \frac{1}{2} \right) - \left(0 \right) \right] = 2$$

iii) Un processo afternativo pare o célcul consiste en recorrer à propriedede

$$\iint_{\mathbb{D}} x \, dx \, dy = \overline{x} \, A(\mathbb{D})$$

onde A(D) é a avec de regiat D (triângulo) e x é a abaissa do centroide, on centro geométrico) de regiat D.

Neste ceso, a área de regia D é:

$$A(D) = \frac{bh}{2} = \frac{2(1)}{2} = 1 \text{ u.a.}$$

Dado que o triàngulo D é um triangulo itosecles, tendo como eixo de simetria a rectz x=1, entat o centroide estera situado sobre a rectz x=1 e, portento, $\overline{x}=1$.

Assim, conclui-se que:

$$\iint_{D} (2x) \, dy \, dx = 2 \, \overline{x} \, A(D) = 2 \, (1) \, (1) = 2$$

Exercício 5) de 1º Prove de Arrhação, realizade em 20/04/2016

a) Esboce o domínio de integração.

Noste ce so a report de integração está definide como repias do tipo I sendo dede pula remiat de duas regiões, on reje,

D = D1 U D2

en me, por exemplo,

O esboço de repiet de integração envolve en linher y=0, y=2x+2, se $x\in[-1,0]$, e en linher y=x, $y=2-x^2$, le $x\in[0,1]$.

MM

U.	PORTO
FEUP	FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO

Curso	Data//

$$\int_{-1}^{0} \int_{0}^{2x+2} (y) dy dx = \frac{1}{2} \int_{0}^{0} \left[y^{2} \right]_{0}^{2x+2} dx = \frac{1}{2} \int_{-1}^{2} 4 (x+1)^{2} dx =$$

$$= 2 \int_{-1}^{0} (x^{2} + 2x + 1) dx = 2 \left[\frac{x^{3}}{3} + x^{2} + x \right]_{-1}^{0} =$$

$$= 2 \left[(0) - \left(-\frac{1}{3} + 1 - 1 \right) \right] = \frac{2}{3}$$

$$\int_{0}^{1} (y) dy dx = \frac{1}{2} \int_{0}^{1} [y^{2}]_{x} dx = \frac{1}{2} \int_{0}^{1} [(2-x^{2})^{2} - x^{2}] dx = \frac{1}{2} \int_{0}$$

$$= \frac{1}{2} \int_{0}^{1} \left(4 - 5x^{2} + x^{4}\right) dx = \frac{1}{2} \left[4x - \frac{5x^{3}}{3} + \frac{x^{5}}{5}\right]_{0}^{1} =$$

$$=\frac{1}{2}\left[\left(4-\frac{5}{3}+\frac{1}{5}\right)-(0)\right]=\frac{1}{2}\left(\frac{38}{15}\right)=\frac{19}{5}$$

Conclui-re pre:

$$\iint_{D_1} (y) dy dx + \iint_{D_2} (y) dy dx = \frac{2}{3} + \frac{19}{15} = \frac{29}{15}$$

c) Reescreva o integral duplo trocendo a ordem de integração.

Considere-se moremente a regiat de integração D:

Neste caso, a regiat de integraçat ritur-re no intervalo $y \in [0,2]$. Estudendo a variaçat de x ao longo deste intervalo, verifica-k que ela nati é uniforme, repistando-re uma alteraçat ne sue variaçat ne linhe y = 1.

Assim, a repéat de integracet D, como regiat de tipo II, devenir ser de finide como a renniat des regiões D3 e D4

lu fue

Obtém-re, entas:

$$\iint_{D} (y) dy dx = \iint_{D_{3}} (y) dx dy + \iint_{D_{4}} (y) dx dy =$$

Hmy

Papel 100% Reciclado

	,
U. PORTO	
FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO	
	//
Disciplina Ano	Semestre
Nome	
	
Espaço reservado para o avaliador	
1 9 ,2 ,\2-9	·
$= \left(\begin{array}{c} (y) dx dy + \\ \end{array} \right) (y) dx dy$	
$\int_{\mathbf{W}_{-2}}^{\mathbf{W}_{-2}}$	
0 2 1 2	
	, -
	•
•	
	1.
	1 m

P(ORTO	,						
EI ID FACI	ULDADE DE ENGENHARIA VERSIDADE DO PORTO	. ••						
Curso	MIEIC			· · · · · · · · · · · · · · · · · · ·			/_Data//	
Disciplina	CMAT			·		Ano	Semestre	
Nome			·					
Espaço rese	rvado para o avaliador AULA 9 :		•		• .	4 b) c) d) 0 a) b),22,	the state of the s	

21) a) $\iint_{C} f(x,y) dx dy$
Repias de integração: 5 = { (x,y): x2+y2 < a2, a>0}
A region 5 é um círculo de rais a e com centro me origeme 0 = (0,0). É limitede pete linhe C, que a circunferência de especas carteriana
0 = (0,0). E limitede pete linhe C, que a circunferència
de especas carteriana
$C: x^2 + y^2 = a^2, x \in [-a, a]$
on de epaças polar (en coordeneds polars)
C: r=a, θ∈[0,2π]
<u> </u>
Coord. Polans S a r C: r=a X = r cos(0)
$\mathcal{X} = r \cos(\theta)$
$y = r \operatorname{sen}(\theta)$ $x^{2} + y^{2} = r^{2}$ $-a = 0$
2+9 = 1 C > 2 ² y ² z ²
$y = r \operatorname{sen}(\theta)$ $x^{2} + y^{2} = r^{2}$ $dx dy = r dr d\theta$ $-a$ $C : x^{2} + y^{2} = a^{2}$
Comecemos por definir a funços f(x, y) em coordenades polars:
$f(x,y) \longrightarrow f(r\cos(\theta), r\sin(\theta))$
Neste caso, é indiferente a définiças de regias S (em coordencelos polares) como regias do tipo I on tipo II.
polans) cono regias do tipo I on tipo II.

U. PORTO FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO
Curso Data/
Disciplina Ano Semestre
Nome
Espaço reservado para o avaliador
b) $\iint_{S} f(x,y) dx dy$
Regions de integrações: $S = \{(x,y) : x^2 + y^2 \le 2x\}$
Notando que
$x^{2}+y^{2} \le 2x \implies x^{2}-2x+y^{2} \le 0 \implies (x-1)^{2}+y^{2} \le 1$
a region 5 é um circulo de rais 1 e on contro no ponto
P= (1,0). É limitade pele linhe C, que é a circunferêncie
de ejnecas carteriana
$C : (x-1)^2 + y^2 = 1 = x^2 + y^2 = 2x $ (1)
Recorrendo às coordanedes polans x = rcos(0), y = rsen(0) é
provied obter a epiacos polar de curro C a partir da
expresses (1), on leje:
$\chi^2 + y^2 = 2\chi$ (=) $r^2 \cos^2(\theta) + r^2 \sec^2(\theta) = 2r \cos(\theta)$ (=)
$\Rightarrow r^2 = 2r\cos(\theta) \Rightarrow r = 2\cos(\theta)$
r $C: r = 2 (0) (8)$
5 1//
P
0 1 2 \times
$C: (x-1)^2 + y^2 = 1$
\sim

Assim, a epnecés polar de curro C é: $C: r = 2 \cos(\theta), \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ Dado que r'é funças de vaniavel 8, a regias S devené ser definide como regias do tipo I isto é: Notzudo fue dx dy = r dr do e que $f(x,y) \longrightarrow f(rcos(0), rseu(0))$ o integral passa a escrever-se: $\iint f(x,y) dx dy = \iint f(r\cos(0), r\sin(0)) r dr d0 =$ T/2 2 cos(0) = \ \ f(rcos(0), rseu(0)) r dr do Neste ceso, inicia-re por integran a funças em retaças à Variable r e, en seguide, en relação à variable D. NOTA: Se prefendessemos resolver o problème en coordenades carterianas, começariamos por definir a repas S, por exemplo, como rejet do tipo II. Tendo en atences pu $(x-1)^2 + y^2 = 1 \Rightarrow (x-1)^2 = 1-y^2 \Rightarrow x-1 = \pm \sqrt{1-y^2} \Rightarrow$ (=) $X = 1 \pm \sqrt{1-y^2}$ Jean-Le $S = \{ (x,y) : -1 \le y \le 1, 1 - \sqrt{1-y^2} \le x \le 1 + \sqrt{1-y^2} \}$

U. PORTO FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO			
Curso	··		Data//
Disciplina		Ano	Semestre
Nome			<u> </u>
Espaço reservado para o avaliador			

 <u> </u>										
	e, b	wtento			•					
	, 1		•	1 1	$1+\sqrt{1-y^2}$,
	. [[LIX.4)	lxdy -		4	-(x,y)	dx	du		
	\iint_{S}	1			$1 - \sqrt{4 - y^2}$			7		,
	n	0	1	The second						
 	V	0	1		Α .		-	c .	g :	

Porsirelmente o processo de integração seria mais trabalhoso do me o me decorre do recurso às coordenades polares.

24)b) Sólido limitado pelas superfícies:

S1: Z=x²+y² (parzboloide)

Sz: x2+y2=1 (cilindro)

S3: Z=0 (plano x0y)

A linhe Cy (ver figure) é a intersecção des superfícies cilíndrice e parabélice:
e parbilice:
$\frac{1}{2} = x^2 + y^2 \qquad \frac{1}{2} = 1$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Tratz-re de une circumferència de rais 1 e com centro no ponto
A projectair de C1 mo pleno 20 0y é a circumferêncie, C, de raio 1 e com centro me origem 0 = (0,0,0):
de rais 1 e com centre me origen 0 = (0,0,0):
$2 \times 2 + 4^2 = 4$
$C: \begin{cases} x^2 + y^2 = 1 \\ \frac{\pi}{2} = 0 \end{cases}$
Assim, o solido T é limitedo superiormente pele superfrie
2 2
S4: = f(x,y) = x2+y2, (x,y) = J2
e inferiormente pele superfície
$S_5: Z=g(x,y)=0$, $(x,y)\in J$
en que o e' a regian circular de pleno x 0 y:
$JZ = \{(x,y) : x^2 + y^2 \le 1\}$
((),)
Entas, o volume do sólido T; V(T), é dado, em coordenades
carterianes, puls integral duplo
V(=) (([2 c a d]]) (2 c])
$V(T) = \iint_{SZ} \left[f(x,y) - g(x,y) \right] dx dy = \iint_{SZ} f(x,y) dx dy$
isto é
$V(T) = \iint_{\Omega} (x^2 + y^2) dx dy \qquad (1)$
Uma vez pre se e um region circular vennos recorrer
Uma vez pre se é um region circuler vous recorrer de coordenedes polares pare o célando de (1).
Y

PORTO FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO		
Curso		Data/
Disciplina	Ano	Semestre
Nome		

Sabendo fre
$$x = r\cos(\theta)$$
, $y = r\sin(\theta)$ entas:

$$f(x,y) = x^2 + y^2 \implies f(r\cos(\theta), r\sin(\theta)) = r^2$$

A equação polar de linha C é:

A region de integração IZ pode ser definide, em coordenades polans, como regias, por exemplo, do tipo I (IZ1):

Notzud pu dædy = r drdo, o integral duplo (1) pode ser reescrito, em coordenades polones, sob a forme

$$V(T) = \iint (x^{2}+y^{2}) dxdy = \iint r^{2}(r) drd\theta =$$
2T 1 2T 1 2T 1

$$= \int_{0}^{2\pi} \int_{0}^{4} r^{3} dr d\theta = \int_{0}^{2\pi} \left[\frac{r^{4}}{4}\right]_{0}^{4} d\theta =$$

$$\frac{2\pi}{2} \frac{1}{4} \int_{0}^{2\pi} d\theta = \frac{1}{4} (2\pi) = \frac{\pi}{2}$$

NOTA: Se préfendessemmes resolver o integral duple (1) Nort

em coordenades centerians, começariamos por definir a repeat JZ, por exemplo, como repeat de tipo I

JZ={(X,y); -1 = x = 1, -\(\sqrt{1-x^2}\) \(\sqrt{y}\) \(\sqrt{1-x^2}\)

e, portento, $V(T) = \iint (x^2 + y^2) dx dy = \iint (x^2 + y^2) dy dx$

O processo de integração é, neste ceso, mais trabalhoso de que o resultante de utilização de coordenades polares.

c) So'hida limited pelas superficies:

S1: 2=4-x2-y2 (parboloide)

52: 7=0 (plano x0y)

A linhe C é a intersucção do paraboloide, com vértice no ponto P= (0,0,4) com o plano x0y:

C:
$$\begin{cases} 2 = 4 - x^2 - y^2 \\ 2 = 0 \end{cases}$$
 (=) $\begin{cases} x^2 + y^2 = 4 \\ 2 = 0 \end{cases}$

Winy

U. POR	L I U E DE ENGENHARIA	Δ.		*						
FEUP FACULDADE	ADE DO PORTO	•				•	•			i
Curso								 Data	// .	
Disciplina							Ano	Semestre		
Nome					9	1	 71110			

Tratz-se de uma circunferência de raio Z e com centro ne origen 0 = (0,0,0).

Assim, o sólido T a' limitedo superiormente pele superfíce

e inferiormente pele superfice

en que i é a regia circular de plens x0y:

Entas, o volume de tolide T, V(T), é dedo, em coordenades certerianes, pelo integral duplo

$$V(T) = \iint_{\mathcal{R}} \left[f(x,y) - g(x,y) \right] dx dy = \iint_{\mathcal{R}} f(x,y) dx dy$$
isto é,

$$V(T) = \iint_{\Sigma} \left[4 - (x^2 + y^2) \right] dxdy = \iint_{\Sigma} 4 dxdy - \iint_{\Sigma} (x^2 + y^2) dxdy = \int_{\Sigma} 4 dxdy - \int_{\Sigma} 4 dxdy$$

$$=4\iint_{\Sigma}dxdy-\iint_{\Sigma}(x^{2}+y^{2})dxdy \qquad (1)$$

A primeir parcela ne expresses (1) tem o valor

```
4 | dx dy = 4 A(JZ) = 4 [4T] = 16T (2)
  onde A(I) = 4T é a area de reprat circular IZ.
  Por mtro ledo, o célanto de segunde parcela me expressas
  (1) e' feits de firme idêntice à utilizede no célans
  de volume de sólide de exercício 24) b) (ver expressos (1)
  me parpine 6).
  Noste cero, a repias de integraças se le definide, en
   coordendes polares, pele repas, por exemple, de tipo
   I (521)
            J21=4 (10): 0: 0: 0:2T, 0: 1:2}
   heb pre
         \iint (x^2 + y^2) dx dy = \iint (r^2) r dr do = \int r^3 dr do =
                  = \int_{-\frac{\pi}{4}}^{2\pi} d\theta = 4 \int_{-\frac{\pi}{4}}^{2\pi} d\theta = 8\pi
  Substituindo (2) e (3) ne expressas (1), obtém-se:
           V(T) = 16T - 8T = 8T
NOTA: Se prefeudessemos resolver o integral duplo (3) em
        coordenades centerianes, começariames por definir a
        repai oz, por exemplo, como repias do tipo I
                  12={(x,y):-25x52,-V4-x25y5V4-x2}
       e, protento,
            \iint_{2} (x^{2}+y^{2}) dx dy = \int_{-2}^{2} \int_{-\sqrt{4-x^{2}}} (x^{2}+y^{2}) dy dx
        O processo de integração é, neste ceso, rueis trabalhoro
       de que o resultante da utilização de coordenades
        polars.
```

U. PORTO FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO		
Cursó		/
Disciplina	Ano	Semestre
Nome		

d) Solido definido por

$$x^2 + y^2 + z^2 \le 4$$

A linhe eq é a intersecção de superfice estérice com a Superficie cilíndrica

$$C_{1}: \begin{cases} x^{2}+y^{2}+\xi^{2}=4 \\ x^{2}+y^{2}=1 \end{cases} \xrightarrow{2} \begin{cases} \xi^{2}=3 \\ x^{2}+y^{2}=1 \end{cases} \xrightarrow{\chi^{2}+y^{2}=1} \begin{cases} \chi^{2}+y^{2}=1 \end{cases}$$

$$(=) \begin{cases} x^2 + y^2 = 1 \\ 2 = \sqrt{3} \end{cases}$$

Wilp

Trate-11 de une circunterincia de rais 1 e com centro no ponto P= (0,0, 13). A projección de Cy Mo plano 20 y é a circunterência, C, de raio 1 è con centro ne origen 0 = (0,0,0): $C : \begin{cases} x^2 + y^2 = 1 \\ 2 = 0 \end{cases}$ Assum, o solido T é limitedo superiormente pela imperficie $S_1: Z = f(x,y) = \sqrt{4-x^2-y^2}, (x,y) \in S_2$ c inferiormente pela superficie S2: == g(x,y) =0 , (x,y) & se en que se a regian circular de plane x0y: J2 = { (x,y) : x2+y2 = 1} Entas, o volume de volido T, V(T), é dede, em cordenadas carterianas, pelo integral duplo $V(T) = \iint_{\mathcal{R}} [f(x,y) - g(x,y)] dxdy = \iint_{\mathcal{R}} f(x,y) dxdy$ isto e, $V(T) = \iint \sqrt{4 - x^2 - y^2} \, dx \, dy$ (1) Ume vez que se e nue rejent circular vous recorrer Coordenades polares para o célado de (1).

Sabendo fre x=rcos(0), y=rsen(0) entas:

$$f(x,y) = \sqrt{4-x^2-y^2} \implies f(ran(0), rseu(0)) = \sqrt{4-r^2}$$

A epieces polar de linhe c é:

U. PORTO FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO			
Disciplina Nome	•	Ano	Semestre

A repai de integração 52 pode ser definide, em coordenades polares, como refias, por exemplo, do tipo I (521):

Notzudo que dx dy = r dr do, o integral duplo (1) pode ser reescrito, en coordenades polares, sob a forme

$$V(T) = \iint \sqrt{4-x^2-y^2} \, dx \, dy = \iint \sqrt{4-r^2} (r) \, dr \, d\theta = \int \frac{2T}{r} \int \frac{1}{r} \left[4-r^2 \right] \, dr \, d\theta = \int \frac{2T}{r} \int \frac{1}{r} \left[4-r^2 \right] \, dr \, d\theta = \int \frac{1}{r} \left[4-r^2 \right] \,$$

$$= -\frac{1}{2} \int_{0}^{2\pi} \int_{0}^{4} (-2r) \left[4 - r^{2} \right]^{\frac{1}{2}} dr d\theta =$$

$$z - \frac{1}{2} \left(\frac{z}{3}\right) \int_{0}^{2\pi} \left[\left(4 - r^{2}\right)^{3/2} \right]_{0}^{1} d\theta =$$

$$= -\frac{1}{3} \int_{0}^{2\pi} \left(3\sqrt{3} - 4\sqrt{4} \right) d\theta = \frac{8 - 3\sqrt{3}}{3} (2\pi) =$$

$$= 2\pi \left(\frac{8-3\sqrt{3}}{3}\right)$$

Wir

NOTA: Se presendesseurs resolver o integral duplo (1) en coordenedes certerianes, começariams por definir a reject se, por exemplo, como reject do tipo I $J = \{(x,y) : -1 \le x \le 1, -\sqrt{1-x^2} \le y \le \sqrt{1-x^2}\}$ e, protento, $V(T) = \iint \sqrt{4-x^2-y^2} \, dx \, dy = \iint \sqrt{4-x^2-y^2} \, dy \, dx$ O processo de integracar é, neste ceso, mais trabalhoso de que o remltente de utilização de coordenades polars. O solida limitado pelas superfícies: S1: 2 = 2x+1 (plane) Sz: x2+y2=2x (=) (x-1)2+y2=1 (cilindro) 53: 2 = 0 (plano) A superfrie S, é um plano paralelo ao eixo dos yy. A superfície Sz e une superfície citéndrice de rais 1 e que tem como eixo a recte X=1 e y=0. A linhe Cy (ver figure un péque requirte) é a intersecção de superficie cilindrice S2 com a superficie S1: x2+y2=2x Tratz-se de une elipse que parse nos pontos la = (0,0,1) e $\ell_2 = (2,0,5)$. A projecção de Cy ma pleus 200 e a circumferência, C, de rais 1 e com centro em P3 = (1,0,0): MM

PORTO FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO		
Curso		Data//
Disciplina	. Ano	Semestre

C:
$$\begin{cases} (x-1)^2 + y^2 = 1 \\ \frac{2}{3} = 0 \end{cases}$$

Assim, o solido T e' limitedo superiormente pela superfície Sy: 2 = f(x,y) = 2x+1, $(x,y) \in JZ$

e inferiormente pele inperficie

en que se é a regias circular de plano x0y

This

Entas, o volume de rélide T, V(T), é dade, em coordenades carterianas, puls integral du plo

 $V(T) = \iint_{\mathcal{T}} [f(x,y) - g(x,y)] dx dy = \iint_{\mathcal{T}} f(x,y) dx dy$

isto é,

 $V(t) = \iint_{\mathcal{L}} (2x+1) dx dy = \iint_{\mathcal{L}} dx dy + 2 \iint_{\mathcal{L}} x dx dy \quad (1)$

A primeir parcela me expressas (1) tem o valor

$$\iint_{\mathcal{R}} dx dy = A(\mathcal{R}) = \pi \qquad (2)$$

onde A(I) = IT l'a årea de rejañ circular IZ.

Por ontes lado, a segunde percela me exprenañ (1) tem o
Nzlor

$$2\iint_{\Sigma} \times dx \, dy = 2\left[\overline{\chi} A(\Sigma)\right] = 2(1)(\Pi) = 2\pi \quad (3)$$

onde A(x) = T é a área de repres circular $x \in x = 1$ é a abaissa do centroide (on centro geométrico) de regias x, que corresponde ao centro do circulo, o ponto $f_3 = (1,0,0)$.

Substituindo (2) e (3) me expressão (1), obtém-se

NOTA 1: O célalo do integral duplo

$$\iint_{\mathcal{R}} \times dx \, dy \qquad (4)$$

me expussos (1) poderia ser feito adoptendo um procedimento anellogo ao que fri considerado me resoluça do exercício 21) b) (pagines 3 e 4).

Neste ceso, tendo em atenção que

U. PORTO				
FEUP FACULDADE DE ENGENHARIA UNIVERSIDADE DO PORTO	· .			
Curso			Data/	/
Disciplina		 Ano	Semestre	
Nome				

NOTA 2: Se pretendesseurs celcular o integral duplo (4) em coordenades centerianes, comecerianes por definir a regian 52, por exemplo,

Como rejet de tipo II (ver exercício 21) b), págine
wino rigins do to ho II (vie exerciso 21/6), paque
4)
52 = { (x,y) = -1 ≤ y ≤ 1 , -1 - √1-y² ≤ x ≤ 1 + √1-y² }
$\mathcal{D}_{2} = \frac{1}{3} (X, Y) = -1 \le Y \le 1 = -1 - \sqrt{1 - Y^{2}} < X \le 1 + \sqrt{1 - Y^{2}}$
e, protento, $1 \frac{1+\sqrt{1-y^2}}{2}$ $\int x dx dy = \int x dx dy$ $32 \frac{1}{1+\sqrt{1-y^2}}$
e, przuto,
1 1+11-42
x dx dy = x dx dy
52 =1-1-V1-y2
7.1.0.1.0.101
Tratz-se de un processo de calculo muito trabalhoso
quendo comparado com o que foi considerado me NOTA!
The Total Control of the Total
(coordenedes polares) e, en especial, queud comparado
com o que foi adoptedo na obtenços de voluços
referide en (3).
· · · /
· · · · · · · · · · · · · · · · · · ·
la companya da managan