Equilibrio químico en fase gas

• Con datos do equilibrio

- 1. Nun recipiente de 2,0 dm³ introdúcense 0,043 moles de NOCl(g) e 0,010 moles de $Cl_2(g)$. Péchase, quéntase ata unha temperatura de 30 °C e déixase que alcance o equilibrio, no que hai 0,031 moles de NOCl(g). Para o equilibrio: NOCl(g) $\rightleftharpoons \frac{1}{2}Cl_2(g) + NO(g)$, calcula:
 - a) O grao de disociación.
 - b) A concentración de cada gas.
 - c) O valor da constante K_c .
 - d) A presión parcial de cada gas.
 - e) A presión total.
 - f) O valor da constante K_p .

Dato: R = 0.082 atm·L·K⁻¹·mol⁻¹ = 8,31 J·K⁻¹·mol⁻¹. Problema modelo baseado na P.A.U. xuño 15

Rta.: a) $\alpha = 27.9 \%$; b) ([NOCl]_e = 0.0155; [Cl₂]_e = 0.00800; [NO]_e = 0.00600) mol/dm³;

c) $K_c = 0.035$; d) $(p(NOCl) = 39; p(Cl_2) = 20; p(NO) = 15)$ kPa; e) p = 74 kPa; f) $K_p = 0.173$.

Datos Cifras significativas: 3

Gas: volume $V = 2,00 \text{ dm}^3$

temperatura $T = 30 \,^{\circ}\text{C} = 303 \,^{\circ}\text{K}$

Cantidade inicial de NOCl $n_0(NOCl) = 0,0430 \text{ mol NOCl}$

Cantidade inicial de Cl_2 $n_0(Cl_2) = 0,0100 \text{ mol } Cl_2$

Cantidade de NOCl no equilibrio $n_e(NOCl) = 0,0310 \text{ mol NOCl}$

Constante dos gases ideais $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Constante do equilibrio K_c K_c

Presión total no equilibrio p

Presións parciais de cada gas no equilibrio p(NOCI), $p(Cl_2)$, p(NO)

Outros símbolos

Cantidade de gas que reaccionou $n_{
m r}$

Ecuacións

Ecuación de estado dos gases ideais $p \cdot V = n \cdot R \cdot T \Rightarrow p = \frac{n \cdot R \cdot T}{V}$

Lei de Dalton das presións parciais $p_t = \sum p_i$

Concentración da substancia X [X] = n(X) / V

Constante do equilibrio: $a A + b B \rightleftharpoons c C + d D$ $K_c = \frac{[C]_c^c [D]_c^d}{[A]_a^a [B]_c^b}$

Solución:

a) Calcúlase a cantidade de NOCl que reaccionou:

$$n_{\rm r} = n_{\rm e} - n_{\rm o} = 0.0310 - 0.0430 = -0.0120 \text{ mol NOCl}$$

e constrúese unha táboa para calcular as cantidades de produtos e reactivos no equilibrio a partir da estequiometría da reacción:

$$NOCl(g) \rightleftharpoons \frac{1}{2} Cl_2(g) + NO(g)$$

		NOCl	\rightleftharpoons	½ Cl ₂	NO	
Cantidade inicial	n_0	0,0430		0,0100	0	mol
Cantidade que reacciona ou se forma	$n_{ m r}$	0,0120	\rightarrow	0,0120 / 2 = 0,00600	0,0120	mol
Cantidade no equilibrio	$n_{\rm e}$	0,0310		0,0160	0,0120	mol

Calcúlase a constante de equilibrio:

$$K_{c} = \frac{[\text{NO}]_{e} \cdot [\text{Cl}_{2}]_{e}^{1/2}}{[\text{NOCl}]_{e}} = \frac{\frac{0,012}{2} \cdot \sqrt{\frac{0,016}{2}}}{\frac{0,031}{2} \cdot 0} = 0,034 \text{ (concentracións en mol/dm³)}$$

b) Calcúlanse as presións parciais de cada gas a partir das cantidades no equilibrio. Supoñendo comportamento ideal para os gases:

$$p(\text{NOCl}) = \frac{n(\text{NOCl}) \cdot R \cdot T}{V} = \frac{0.031 \ 0 \text{mol} \cdot 8.31 \ \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 303 \ \text{K}}{2.00 \cdot 10^{-3} \ \text{m}^3} = 3.91 \cdot 10^4 \ \text{Pa} = 39.1 \ \text{kPa} \cdot \frac{1 \ \text{atm}}{101.3 \ \text{kPa}} = 0.386 \ \text{atm}$$

$$p(\text{Cl}_2) = \frac{n(\text{Cl}_2) \cdot R \cdot T}{V} = \frac{0.016 \text{ 0mol} \cdot 8.31 \text{ J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 303 \text{ K}}{2.00 \cdot 10^{-3} \text{ m}^3} = 2.02 \cdot 10^4 \text{ Pa} = 20.2 \text{ kPa} \cdot \frac{1 \text{ atm}}{101.3 \text{ kPa}} = 0.199 \text{ atm}$$

$$p(\text{NO}) = \frac{n(\text{NO}) \cdot R \cdot T}{V} = \frac{0.012 \ 0 \text{mol} \cdot 8.31 \ \text{J} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 303 \ \text{K}}{2.00 \cdot 10^{-3} \ \text{m}^3} = 1.51 \cdot 10^4 \ \text{Pa} = 15.1 \ \text{kPa} \cdot \frac{1 \ \text{atm}}{101.3 \ \text{kPa}} = 0.149 \ \text{atm}$$

Calcúlase a presión total pola lei de Dalton:

$$p = p(NOCl) + p(Cl_2) + p(NO) = 39,1 \text{ [kPa]} + 20,2 \text{ [kPa]} + 15,1 \text{ [kPa]} = 74,4 \text{ kPa} \cdot 1 \text{ atm} / 101,3 \text{ kPa} = 0,734 \text{ atm}$$

A maior parte das respostas pode calcularse coa folla de cálculo <u>Quimica (gal)</u> As instrucións para o manexo desta folla de cálculo poden verse na ligazón <u>instrucións</u>.

Para ir á folla onde resolver un problema de equilibrio en fase gas, pode elixir unha destas opcións:

- Vaia ao índice, buscando a ligazón <u>Indice</u> na zona superior dereita e pulsando a tecla [Ctrl] mentres preme sobre <u>Indice</u>. No índice, pulse a tecla [Ctrl] mentres preme sobre a cela <u>Equilibrio en fase gas</u> de **Equilibrio químico**.

Escriba as fórmulas químicas nas celas de cor branca con bordo verde e os datos nas celas de cor branca con bordo azul. Prema nas celas de cor laranxa para elixir entre as opcións que se presentan. DATOS:

		Reactivo A +		Reactivo B	\rightleftharpoons	Produto C	+	Produto D	
Reacción axustada		NOCl			0,5	Cl_2		NO	
Cantida	de inicial	0,043				0,01			
Cantidade en e	equilibrio	0,031							
Temperatura	T =	30	°C						
Volume	V =	2	dm³						
Presión total	<i>p</i> =								
						Calcu	lar:	Presión	total

RESULTADOS:

Cantidade	NOCl(g))	⇌ 0,5	$Cl_2(g)$ +	NO(g)	
inicial	0,0430			0,0100	0	mol
reacciona	0,0120		\rightarrow	0,00600	0,0120	mol
equilibrio	0,0310			0,0160	0,0120	mol
Constantes	$K_c = 0.0346$	(Conc. en mol/L)				
	$K_p = 0,173$	(p en atm.)				
Presión	(total) = 0.734	4 atm en equilibrio	•	Grao de o	disociación α =	27,9 %

Para calcular as presións parciais, substitúa «Cantidade» por «Presión»

Presión	NOCl(g)	⇒ 0,5	$Cl_2(g)$ +	NO(g)		
inicial	0,535		0,124	0	atm	
reacciona	0,149	\rightarrow	0,0749	0,149	atm	
equilibrio	0,386		0,199	0,149	atm	

2. Nun matraz de 1,5 dm³, no que se fixo o baleiro, introdúcense 0,08 moles de N_2O_4 e quéntase a 35 °C. Parte do N_2O_4 disóciase segundo a reacción: $N_2O_4(g) \rightleftharpoons 2 \ NO_2(g)$ e cando se alcanza o equilibrio a presión total é de 2,27 atm. Calcula a porcentaxe de N_2O_4 disociado.

Datos: $R = 8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$; 1 atm = 101,3 kPa.

(A.B.A.U. extr. 19)

Rta.: $\alpha = 69 \%$.

b)

Datos Cifras significativas: 3

Volume $V = 1,50 \text{ dm}^3 = 1,50 \cdot 10^{-3} \text{ m}^3$

Temperatura $T = 35 \text{ }^{\circ}\text{C} = 308 \text{ K}$

Cantidade inicial de tetraóxido de dinitróxeno $n_0(N_2O_4) = 0,0800 \text{ mol}$

Presión no equilibrio $p = 2,27 \text{ atm} \cdot 1,013 \cdot 10^5 \text{ Pa/atm} = 2,30 \cdot 10^5 \text{ Pa}$

Constante dos gases ideais $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Incógnitas

Porcentaxe de N₂O₄ disociado α

Ecuacións

Concentración da substancia X [X] = n(X) / V

Ecuación de estado dos gases ideais $p \cdot V = n \cdot R \cdot T$

Constante do equilibrio: $a A + b B \rightleftharpoons c C + d D$ $K_c = \frac{\left[C\right]_e^c \cdot \left[D\right]_e^d}{\left[A\right]_a^d \cdot \left[B\right]_e^b}$

Solución:

b) Constrúese unha táboa, baixo a ecuación de disociación, na que se chama x á cantidade de N_2O_4 que se disocia, e complétase atendendo á estequiometría da reacción. Escríbense as cantidades no equilibrio en función de x, restando as cantidades que reaccionaron das cantidades iniciais dos reactivos, e sumándoas ás dos produtos:

		N_2O_4	\rightleftharpoons	2 NO ₂	
Cantidade inicial	n_0	0,0800		0	mol
Cantidade que reacciona ou se forma	$n_{ m r}$	х	\rightarrow	2 x	mol
Cantidade no equilibrio	$n_{\rm e}$	0,0800 - x		2 x	mol

Escríbese a cantidade total de gas no equilibrio en función de x:

$$n_t = 0.0800 - x + 2 x = 0.0800 + x$$

Por outra banda, pódese calcular a cantidade de gas a partir da presión total,supoñendo comportamento ideal:

$$n_{\rm t} = \frac{p \cdot V}{R \cdot T} = \frac{2,30 \cdot 10^5 \text{ Pa} \cdot 1,50 \cdot 10^{-3} \text{ dm}^3}{8,31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} \cdot 308 \text{ K}} = 0,135 \text{ mol gas}$$

Comparando coa ecuación anterior, calcúlase a cantidade de $\mathrm{N}_2\mathrm{O}_4$ que se disociou:

$$x = 0.135 - 0.080 = 0.055 \text{ mol de } N_2O_4$$

Calcúlase a porcentaxe de N₂O₄ disociado:

$$\alpha = \frac{n_{\rm r}}{n_0} = \frac{0.055}{0.080} = 0.69 = 69 \%$$

A maior parte das respostas pode calcularse coa folla de cálculo <u>Quimica (gal)</u> DATOS:

		Reactivo A +		Reactivo B	\rightleftharpoons	Produto C	+	Produto D	
Reacción axustada		N_2O_4			2	NO_2			
Cantida	de inicial	0,08							mol
Cantidade en	equilibrio								
Temperatura	T =	35	$^{\circ}\!$						
Volume	V =	1,5	dm³						
RESULTADOS:									

Cantidade	$N_2O_4(g)$		⇌ 2	$NO_2(g)$			
inicial	0,0800			0	r	nol	
reacciona	0,0547		\rightarrow	0,109	1	nol	
equilibrio	0,0253			0,109	r	nol	
Constantes	$K_c = 0.314$	(Conc. en mol/I	<u>L</u>)				
	$K_p = 7,95$	(p en atm.)					
				Grao de diso	ociación α =	68,3 %	

- 3. Á temperatura de 35 °C dispoñemos, nun recipiente de 310 cm³ de capacidade, dunha mestura gasosa que contén 1,660 g de N_2O_4 en equilibrio con 0,385 g de NO_2 .
 - a) Calcula $a K_c$ da reacción de disociación do tetraóxido de dinitróxeno á temperatura de 35 °C.
 - b) A 150 °C, o valor numérico de K_c é de 3,20. Cal debe ser o volume do recipiente para que estean en equilibrio 1 mol de tetraóxido e dous moles de dióxido de nitróxeno?

Dato: R = 0.082 atm·dm³/(K·mol).

(P.A.U. xuño 07)

Rta.: a) $K_c = 0.0125$; b) $V = 1.25 \text{ dm}^3$.

Datos Cifras significativas: 3 Volume $V = 310 \text{ cm}^3 = 0.310 \text{ dm}^3$ $T = 35 \, ^{\circ}\text{C} = 308 \, \text{K}$ Temperatura do apartado a) Masa no equilibrio N₂O₄ a 35 ℃ $m_e(N_2O_4) = 1,660 \text{ g } N_2O_4$ $m_{\rm e}({\rm NO_2}) = 0.385~{\rm g~NO_2}$ Masa no equilibrio NO₂ a 35 °C Constante do equilibrio K_c a 150 °C $K_{c}' = 3,20$ Cantidade no equilibrio N₂O₄ a 150 °C $n_e(N_2O_4) = 1,00 \text{ mol } N_2O_4$ Cantidade no equilibrio NO₂ a 150 °C $n_{\rm e}({\rm NO_2}) = 2{,}00 \; {\rm mol} \; {\rm NO_2}$ Masa molar: dióxido de nitróxeno $M(NO_2) = 46.0 \text{ g/mol}$

Datos	Cifras significativas: 3
tetraóxido de dinitróxeno	$M(N_2O_4) = 92.0 \text{ g/mol}$
Incógnitas	
Constante do equilibrio K_c a 35 °C	K_c
Volume do recipiente	V
Ecuacións	
Cantidade (número de moles)	n = m / M
Concentración da substancia X	[X] = n(X) / V

Solución:

A ecuación química é:

$$N_2O_4(g) \rightleftharpoons 2 NO_2(g)$$

 $K_c = \frac{\left[\mathbf{C} \right]_{e}^{c} \cdot \left[\mathbf{D} \right]_{e}^{a}}{\left[\mathbf{A} \right]^{a} \cdot \left[\mathbf{B} \right]^{b}}$

A expresión da constante de equilibrio:

$$K_c = \frac{[NO_2]_e^2}{[N_2O_4]_e}$$

As concentracións das especies no equilibrio son:

Constante do equilibrio: $a A + b B \rightleftharpoons c C + d D$

$$[NO_2]_e = \frac{0.385 \text{ g NO}_2}{0.310 \text{ dm}^3} \frac{1 \text{ mol NO}_2}{46.0 \text{ g NO}_2} = 0.027 \text{ 0mol/dm}^3$$

$$[N_2O_4]_e = \frac{1,660 \text{ g } N_2O_4}{0,310 \text{ dm}^3} \frac{1 \text{ mol } N_2O_4}{92,0 \text{ g } N_2O_4} = 0,058 \text{ 2mol/dm}^3$$

e o valor da constante de equilibrio a 35 °C é

$$K_c = \frac{[NO_2]_e^2}{[N_2O_4]_e} = \frac{(0,027)^2}{0,058 \ 2} = 0,012 \ 5$$

b) Ao variar a temperatura, varía a constante de equilibrio. Volvendo escribir a expresión da constante á temperatura de 150 °C

$$K_c = 3,20 = \frac{[\text{NO}_2]_e^2}{[\text{N}_2\text{O}_4]_e} = \frac{\left(\frac{2,00}{V}\right)^2}{\left(\frac{1,00}{V}\right)} = \frac{4,00}{V}$$

de onde:

$$V = 4,00 / 3,20 = 1,25 \text{ dm}^3$$

A maior parte das respostas pode calcularse coa folla de cálculo <u>Quimica (gal)</u> DATOS;

Reacción axustada N_2O_4 2 NO_2 2 Cantidade inicial Masa en equilibrio 1,66 0,39 g		Reactivo A	+	Reactivo B	\rightleftharpoons	→ Produto C		Produto D	
	Reacción axustada	N_2O_4			2	NO_2			
Masa en equilibrio 1,66 0,39 g	Cantidade inicia								
	Masa en equilibrio	1,66				0,39			g

Temperatura
$$T = 35$$
 °C Volume $V = 310$ cm³

RESULTADOS:

Constantes
$$K_c = 0.0125$$
 (Conc. en mol/L)
 $K_p = 0.317$ (p en atm.)

Para o apartado b) borre os datos numéricos e as súas unidades (seleccione co rato desde a cela baixo «Ecuación axustada» ata a cela onde se cruzan «Calcular» e «g» e faga clic no botón Borrar datos), e escriba os novos datos:

Agora verá:

Volume(total) =

1,25 dm³ en equilibrio

- 4. Nun recipiente pechado introdúcense 2,0 moles de CH_4 e 1,0 mol de H_2S á temperatura de 727 °C, establecéndose o seguinte equilibrio: $CH_4(g) + 2 H_2S(g) \rightleftharpoons CS_2(g) + 4 H_2(g)$. Una vez alcanzado o equilibrio, a presión parcial do H_2 é 0,20 atm e a presión total é de 0,85 atm. Calcule:
 - a) Os moles de cada substancia no equilibrio e o volume do recipiente.
 - b) O valor de K_c e K_p .

(A.B.A.U. ord. 20)

Rta.: a) $n_e(CH_4) = 1.80 \text{ mol}$; $n_e(H_2S) = 0.60 \text{ mol}$; $n_e(CS_2) = 0.200 \text{ mol}$; $n_e(H_2) = 0.800 \text{ mol}$; $V = 328 \text{ dm}^3$; b) $K_p = 0.0079$; $K_c = 1.2 \cdot 10^{-6}$.

Datos Cifras significativas: 3

Temperatura $T = 727 \,^{\circ}\text{C} = 1000 \,^{\circ}\text{K}$ Cantidade inicial de metano $n_0(\text{CH}_4) = 2,00 \,^{\circ}\text{mol CH}_4$ Cantidade inicial de sulfuro de hidróxeno $n_0(\text{H}_2\text{S}) = 1,00 \,^{\circ}\text{mol H}_2\text{S}$ Presión parcial do hidróxeno no equilibrio $p_e(\text{H}_2) = 0,200 \,^{\circ}\text{atm}$ Presión total no equilibrio $p_e = 0,850 \,^{\circ}\text{atm}$

Constante dos gases ideais $R = 0.082 \text{ atm} \cdot \text{dm}^3 \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 8.31 \text{ J} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

 K_p

Incógnitas

Cantidade no equilibrio de cada substancia $n_e(CH_4)$, $n_e(H_2S)$, $n_e(CS_2)$, $n_e(H_2)$

Volume do recipiente VConstante do equilibrio K_c K_c

Ecuacións

Constante do equilibrio K_p

Ecuación de estado dos gases ideais $p \cdot V = n \cdot R \cdot T$

Concentración da substancia X [X] = n(X) / V

Constantes do equilibrio: $a A + b B \rightleftharpoons c C + d D$ $K_{c} = \frac{[C]_{e}^{c} \cdot [D]_{e}^{d}}{[A]_{e}^{a} \cdot [B]_{e}^{b}} \quad K_{p} = \frac{p_{e}^{c}(C) \cdot p_{e}^{d}(D)}{p_{e}^{d}(A) \cdot p_{e}^{b}(B)}$

Solución:

a) Constrúese unha táboa baixo a ecuación de reacción, na que se chama x á cantidade de CH_4 que reacciona, e complétase atendendo á estequiometría da reacción. Escríbense as cantidades no equilibrio en función de x, restando as cantidades que reaccionaron das cantidades iniciais no caso dos reactivos, e sumándoas no caso dos produtos:

		CH ₄	2 H ₂ S	\Rightarrow	CS ₂	4 H ₂	
Cantidade inicial	n_0	2,00	1,00		0,0	0,0	mol
Cantidade que reacciona ou se forma	n_{r}	x	2 x		х	4 x	mol
Cantidade no equilibrio	$n_{\rm e}$	2,00 - x	1,00 - 2 x		х	4 x	mol

Escríbese a cantidade total de gas no equilibrio en función de x:

$$n_e = (2,00 - x) + (1,00 - 2 x) + x + 4 x = 3,00 + 2 x$$

A presión parcial dun gas nunha mestura é a que exercería o gas se se atopase só no recipiente. Escríbese unha ecuación da cantidade no equilibrio de gas H₂ en función do volume, a partir da presión parcial do hidróxeno, supoñendo comportamento ideal:

$$p \cdot V = n \cdot R \cdot T \implies n_{e}(H_{2}) = \frac{p_{e}(H_{2}) \cdot V}{R \cdot T} = \frac{0,200 \text{ atm} \cdot V}{0,082 \text{ atm} \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 1000 \text{ K}} = 0,00244 \cdot V \text{ mol } H_{2}$$

$$4 x = 0.0244 \cdot V$$

Analogamente coa presión total:

$$n_{\rm e} = \frac{p_{\rm e} \cdot V}{R \cdot T} = \frac{0.850 \text{ atm} \cdot V}{0.082 \text{ atm} \cdot \text{dm}^2 \cdot \text{mol}^{-1} \cdot \text{K}^{-1} \cdot 1000 \text{ K}} = 0.010 \text{ 4V mol}$$

$$3,00 + 2 x = 0,104 \cdot V$$

Resólvese o sistema de dúas ecuacións con dúas incógnitas:

$$4x = 0.00244 \cdot V$$

 $3.00 + 2x = 0.010 \ 4V$

Divídese a segunda ecuación entre a primeira e calcúlase o volume V do recipiente e a cantidade x de CH_4 que reaccionou ata acadar o equilibrio.

$$\frac{3,00+2x}{4x} = \frac{0,010 \text{ } 4V}{0,00244 \cdot V} = 4,25 \implies 3,00+2x = 17,0x \implies x = 0,200$$
$$V = \frac{4x}{0.00244} = \frac{4 \cdot 0,200}{0.00244} = 328$$

As cantidades das substancias no equilibrio son:

$$n_{\rm e}({\rm CH_4}) = 2,00 - x = 2,00 - 0,200 = 1,80 \; {\rm mol} \; {\rm CH_4}$$
 $n_{\rm e}({\rm H_2S}) = 1,00 - 2 \; x = 1,00 - 2 \cdot 0,200 = 0,60 \; {\rm mol} \; {\rm H_2S}$
 $n_{\rm e}({\rm CS_2}) = x = 0,200 \; {\rm mol} \; {\rm CS_2}$
 $n_{\rm e}({\rm H_2}) = 4 \cdot x = 0,800 \; {\rm mol} \; {\rm H_2}$

Calcúlase a constante de equilibrio en función das concentracións:

$$K_{c} = \frac{\left[\text{CS}_{2}\right]_{e} \cdot \left[\text{H}_{2}\right]_{e}^{4}}{\left[\text{CH}_{4}\right]_{e} \cdot \left[\text{H}_{2}\text{S}\right]_{e}^{2}} = \frac{\frac{n_{e}(\text{CS}_{2})}{V} \cdot \left(\frac{n_{e}(\text{H}_{2})}{V}\right)^{4}}{\frac{n_{e}(\text{CH}_{4})}{V} \cdot \left(\frac{n_{e}(\text{H}_{2}\text{S})}{V}\right)^{2}} = \frac{n_{e}(\text{CS}_{2}) \cdot n_{e}^{4}(\text{H}_{2})}{n_{e}(\text{CH}_{4}) \cdot n_{e}^{2}(\text{H}_{2}\text{S})} \cdot \frac{1}{V^{2}} = \frac{0,200 \cdot 0,800^{4}}{1,80 \cdot 0,60^{2}} \cdot \frac{1}{328^{2}} = 1,2 \cdot 10^{-6}$$
(concentracións en mol/dm³)

Dedúcese a relación entre K_p e K_c , supoñendo comportamento ideal para os gases:

$$p \cdot V = n \cdot R \cdot T \implies p = \frac{n}{V} \cdot R \cdot T$$

$$K_{p} = \frac{p_{e}(CS_{2}) \cdot p_{e}^{4}(H_{2})}{p_{e}(CH_{4}) \cdot p_{e}^{2}(H_{2}S)} = \frac{[CS_{2}]_{e} \cdot R \cdot T \cdot ([H_{2}]_{e} \cdot R \cdot T)^{4}}{[CH_{4}]_{e} \cdot R \cdot T \cdot ([H_{2}S]_{e} \cdot R \cdot T)^{2}} = \frac{[CS_{2}]_{e} \cdot ([H_{2}]_{e})^{4}}{[CH_{4}]_{e} \cdot ([H_{2}S]_{e})^{2}} \cdot (R \cdot T)^{2} = K_{c} \cdot (R \cdot T)^{2}$$

Calcúlase a constante de equilibrio en función das presións:

$$K_p = 1,2 \cdot 10^{-6} \cdot (0,082 \cdot 1000)^2 = 0,0079$$
 (presións en atm)

A maior parte das respostas pode calcularse coa folla de cálculo <u>Quimica (gal)</u> DATOS;

Coa constante como dato

- 1. Considera o seguinte proceso en equilibrio a 686 °C: $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$. As concentracións en equilibrio das especies son:
 - $[CO_2] = 0.086 \text{ mol/dm}^3$; $[H_2] = 0.045 \text{ mol/dm}^3$; $[CO] = 0.050 \text{ mol/dm}^3$ e $[H_2O] = 0.040 \text{ mol/dm}^3$.
 - a) Calcula K_c para a reacción a 686 °C.
 - b) Se se engadise CO₂ para aumentar a súa concentración a 0,50 mol/dm³, cales serían as concentracións de todos os gases unha vez restablecido o equilibrio?

(P.A.U. set. 14)

Rta.: a) $K_c = 0.517$; b) $[CO_2] = 0.47$; $[H_2] = 0.020$; [CO] = 0.075 e $[H_2O] = 0.065$ mol/dm³.

DatosCifras significativas: 2Temperatura $T = 686 \,^{\circ}\text{C} = 959 \,^{\circ}\text{K}$ Concentración no equilibrio de H_2 $[H_2]_e = 0,045 \,^{\circ}\text{mol/dm}^3 \,^{\circ}\text{H}_2$ Concentración no equilibrio de CO_2 $[CO_2]_e = 0,086 \,^{\circ}\text{mol/dm}^3 \,^{\circ}\text{CO}_2$ Concentración no equilibrio de H_2O $[H_2O]_e = 0,040 \,^{\circ}\text{mol/dm}^3 \,^{\circ}\text{H}_2O$

Datos Cifras significativas: 2

Concentración no equilibrio de $CO [CO]_e = 0,050 \text{ mol/dm}^3 CO$

Concentración inicial de CO_2 no apartado b) $[CO_2]_0 = 0,50 \text{ mol/dm}^3 CO_2$

Incógnitas

Constante de equilibrio K_c

Concentracións no novo equilibrio [H₂]_{eb}, [CO₂]_{eb}, [H₂O]_{eb}, [CO]_{eb}

Ecuacións

Concentración da substancia X [X] = n(X) / V

Constantes do equilibrio: $a \, A + b \, B \rightleftharpoons c \, C + d \, D$ $K_c = \frac{\left[C\right]_e^c \cdot \left[D\right]_e^d}{\left[A\right]_e^d \cdot \left[B\right]_e^b}$

Solución:

a) A constante de equilibrio K_c vale

$$K_c = \frac{[\text{H}_2\text{O}]_e \cdot [\text{CO}]_e}{[\text{H}_2]_e \cdot [\text{CO}_2]_e} = \frac{0,040 \text{ mol/dm}^3 \cdot 0,050 \text{ mol/dm}^3}{0,045 \text{ mol/dm}^3 \cdot 0,086 \text{ mol/dm}^3} = 0,52 \text{ (concentracións en mol/dm}^3)$$

b) Chamando x ás concentracións en mol/dm³ de CO_2 que reaccionan desde que a concentración de CO_2 é 0,50 mol/dm³ ata alcanzar o equilibrio, pódese escribir:

		CO_2	H_2	\rightleftharpoons	СО	H ₂ O	
Concentración inicial	[X] ₀	0,50	0,045		0,050	0,040	mol/dm³
Concentración que reacciona ou se forma	[X] _r	x	х	\rightarrow	х	x	mol/dm³
Concentración no equilibrio	[X] _{eb}	0,50 - x	0,045 - x		0,050 + x	0,040 + x	mol/dm³

A expresión da constante de equilibrio en función das concentracións é:

$$K_{c} = \frac{[H_{2}O]_{eb} \cdot [CO]_{eb}}{[CO_{2}]_{eb} \cdot [H_{2}]_{eb}} = \frac{(0.040 + x) \cdot (0.050 + x)}{(0.50 - x) \cdot (0.045 - x)} = 0.52$$

Resolvendo a ecuación de segundo grao dá dúas solucións. Unha delas (-0,79) non é válida, xa que supoñería a existencia de concentracións negativas no equilibrio. A outra solución é $x = 0,025 \text{ mol/dm}^3$. As concentracións no equilibrio son:

$$[CO_2]_{eb} = 0.475 \text{ mol/dm}^3$$

$$[H_2]_{eb} = 0.020 \text{ mol/dm}^3$$

$$[CO]_{eb} = 0.075 \text{ mol/dm}^3$$

$$[H_2O]_{eb} = 0.065 \text{ mol/dm}^3$$

A maior parte das respostas pode calcularse coa folla de cálculo <u>Quimica (gal)</u> DATOS:

Reacción axustada		CO_2		H_2	CO	H_2O	
Cantio	lade inicial						
Concentración er	equilibrio	0,086		0,05	0,05	0,04	mol/dm³
Temperatura	T =	686	°С				
Volume	V =						•
Presión total	<i>p</i> =	0,85	atm				

Cuestións e problemas das <u>Probas de avaliación de Bacharelato para o acceso á Universidade</u> (A.B.A.U. e P.A.U.) en Galiza.

Respostas e composición de Alfonso J. Barbadillo Marán.

Algúns cálculos fixéronse cunha folla de cálculo de LibreOffice do mesmo autor.

Algunhas ecuacións e as fórmulas orgánicas construíronse coa extensión <u>CLC09</u> de Charles Lalanne-Cassou.

A tradución ao/desde o galego realizouse coa axuda de traducindote, e de o tradutor da CIXUG.

Procurouse seguir as recomendacións do Centro Español de Metrología (CEM).

Consultouse ao Copilot de Microsoft Edge e tivéronse en conta algunhas das súas respostas nas cuestións.

Actualizado: 30/09/24

Sumario

EOUILIBRIO	QUÍMICO EN FASE GAS	
LOCILIDIGO	QUINTED EN TIBE ONE	

Con	datos do equilibrio1
1.	Nun recipiente de 2,0 dm³ introdúcense 0,043 moles de NOCl(g) e 0,010 moles de Cl₂(g). Péchase,
	quéntase ata unha temperatura de 30 °C e déixase que alcance o equilibrio, no que hai 0,031 moles
	de NOCl(g). Para o equilibrio: NOCl(g) $\rightleftharpoons \frac{1}{2}$ Cl ₂ (g) + NO(g), calcula:1
	a) O grao de disociación
	b) A concentración de cada gas
	c) O valor da constante K _c
	d) A presión parcial de cada gas
	e) A presión total
	f) O valor da constante K _p
2.	Nun matraz de 1,5 dm³, no que se fixo o baleiro, introdúcense 0,08 moles de N_2O_4 e quéntase a 35
	$^{\circ}$ C. Parte do N_2O_4 disóciase segundo a reacción: $N_2O_4(g)$ \rightleftharpoons 2 $NO_2(g)$ e cando se alcanza o equilibrio
	a presión total é de 2,27 atm. Calcula a porcentaxe de N_2O_4 disociado3
3.	Á temperatura de 35 °C dispoñemos, nun recipiente de 310 cm³ de capacidade, dunha mestura gaso-
	sa que contén 1,660 g de N_2O_4 en equilibrio con 0,385 g de NO_2 4
	a) Calcula a K_c da reacción de disociación do tetraóxido de dinitróxeno á temperatura de 35 °C
	b) A 150 °C, o valor numérico de K_c é de 3,20. Cal debe ser o volume do recipiente para que estean
	en equilibrio 1 mol de tetraóxido e dous moles de dióxido de nitróxeno?
4.	Nun recipiente pechado introdúcense 2,0 moles de CH₄ e 1,0 mol de H₂S á temperatura de 727 °C,
	establecéndose o seguinte equilibrio: $CH_4(g) + 2 H_2S(g) \rightleftharpoons CS_2(g) + 4 H_2(g)$. Una vez alcanzado o
	equilibrio, a presión parcial do H ₂ é 0,20 atm e a presión total é de 0,85 atm. Calcule:6
	a) Os moles de cada substancia no equilibrio e o volume do recipiente
0	b) O valor de K _c e K _p
	constante como dato
1.	Considera o seguinte proceso en equilibrio a 686 °C: $CO_2(g) + H_2(g) \rightleftharpoons CO(g) + H_2O(g)$. As concen-
	tracións en equilibrio das especies son: $[CO_2] = 0,086 \text{ mol/dm}^3$; $[H_2] = 0,045 \text{ mol/dm}^3$; $[CO] = 0,050 \text{ mol/dm}^3$; $[H_2] = 0.045 \text{ mol/dm}^3$; $[CO] = 0.050 \text{ mol/dm}^3$
	mol/dm^3 e $[H_2O] = 0.040 \ mol/dm^3$
	a) Calcula K _c para a reacción a 686 °C
	b) Se se engadise CO ₂ para aumentar a súa concentración a 0,50 mol/dm³, cales serían as concen-
	tracións de todos os gases unha vez restablecido o equilibrio?