Coding Theory Homework

Week 4 (Section 1.11 - 1.12)

Exercise 1.11.2b

Let C = {001, 101, 110}. Determine wether C will detect the error pattern 001

```
001 + 001 = 000
101 + 001 = 100
110 + 001 = 111
```

None of the three words 000, 100 or 111 is in C so detects the error pattern 001.

Exercise 1.11.4

Which error patterns will the code $C = K^n$ detect?

None, since *C* contains all words there will always be atleast one sum that will be in *C*.

Exercise 1.11.5

1. Let *C* be a code which contains the zero word as a codeword. Prove that if the error pattern u is a codeword, then *C* will not detect u.

```
C = {000, 010, 110}

u = 010

000 + 010 = 010

010 + 010 = 000

110 + 010 = 100
```

When adding the codeword u to the zero word the resulting word will always be the same as the codeword u itself. Since this codeword is in *C* the error pattern is not detected.

2. Prove that no code will detect the zero pattern u = 0

As with the previous exercise. When adding the zero word to a codeword the result will always be the codeword itself. Since atleast one of sums is in *C*, *C* does not detect the error pattern 0.

Exercise 1.11.7b

Determine the error patterns detected by each code in Exercise 1.9.7 by using the IMLD tables constructed there.

$$C = \{000, 001, 010, 011\}$$

w	000 + w	001 + w	010 + w	011 + w	V
000	000*	001	010	011	000
001	001	000*	011	010	001
010	010	011	000*	001	010
011	011	010	001	000*	011
100	100*	101	110	111	000
101	101	100*	111	110	001
110	110	111	100*	101	010
111	111	110	101	100*	011

The error patterns for the above IMLD are {100,101,110,111}.

Exercise 1.11.10b

Find the error patterns detected by each of the following codes and compare your answer with those in exercise 1.11.7

$$C = \{000, 001, 010, 011\}$$

$$000 + 000 = 000$$

$$000 + 001 = 001$$

$$000 + 010 = 010$$

$$000 + 011 = 011$$

$$001 + 001 = 000$$

$$001 + 010 = 011$$

```
001 + 011 = 010
010 + 010 = 000
010 + 011 = 001
011 + 011 = 000
```

The set of error patterns that cannot be detected in C is {000, 001, 010, 011}. Therefore All error patterns in K^n {000, 001, 010, 011} or {100, 101, 110, 111}.

Exercise 1.11.12b,c,g,h

Find the distance of each of the following codes

```
b. C = \{000, 001, 010, 011\}
```

d(000, 001) = 1

d(000, 010) = 1

d(000, 011) = 2

d(001, 010) = 2

d(001, 011) = 1

d(010, 011) = 1

The distance for C is d = 1.

c.
$$C = \{0000, 0001, 1110\}$$

d(0000, 0001) = 1

d(0000, 1110) = 3

d(0001, 1110) = 4

The distance for C is d = 1.

g.
$$C = \{00000, 11110, 01111, 10001\}$$

d(00000, 11110) = 4

d(00000, 01111) = 4

d(00000, 10001) = 2

d(11110, 01111) = 2

d(11110, 10001) = 4

d(01111, 10001) = 4

The distance for C is d = 2.

h. C = {000000, 101010, 010101, 111111}

```
d(000000, 101010) = 3
d(000000, 010101) = 3
d(000000, 111111) = 6
d(101010, 010101) = 6
d(101010, 111111) = 3
d(010101, 111111) = 3
```

The distance for C is d = 3.

Exercise 1.11.13

Find the distance of the code formed by adding a parity check diget to K^n

Exercise 1.11.19b,c,g,h

For each code *C* in exercise 1.11.12 find the error patterns which Theorem 1.11.14 guarantees *C* will detect.

```
b. C = \{000, 001, 010, 011\}
```

The distance for C is d = 1.

Since d - 1 = 0 the theorem does not help in determining which error patterns C will detect.

```
c. C = \{0000, 0001, 1110\}
```

The distance for C is d = 1.

Same as above

```
g. C = {00000, 11110, 01111, 10001}
```

The distance for C is d = 2.

We can guarantee that C detects all the patterns with a weight of 1 (d - 2 = 1).

00001, 00010, 00100, 01000, 10000

```
h. C = {000000, 101010, 010101, 1111111}
```

The distance for C is d = 3.

We can guarantee that *C* detects all the patterns with a weight of 1 or 2.

Exercise 1.11.20

Let *C* be the code consisting of all words of length 4 which have even weight. Find the error pattern *C* detects.

```
C = \{0011, 0101, 0110, 1001, 1010, 1100, 1111\}
d(0011, 0101) = 2
d(0011, 0110) = 2
d(0011, 1001) = 2
d(0011, 1010) = 2
d(0011, 1100) = 4
d(0011, 1111) = 2
d(0101, 0110) = 2
d(0101, 1001) = 2
d(0101, 1010) = 4
d(0101, 1100) = 2
d(0101, 1111) = 2
d(0110, 1001) = 4
d(0110, 1010) = 2
d(0110, 1100) = 2
d(0110, 1111) = 2
d(1001, 1010) = 2
d(1001, 1100) = 2
d(1001, 1111) = 2
d(1010, 1100) = 2
d(1010, 1111) = 2
d(1100, 1111) = 2
```

The distance for C is d = 2

We can guarantee that C detects all the patterns with a weight of 1 (d - 2 = 1).

0001, 0010, 0100, 1000

Exercise 1.12.5 (use u = 010 in place of u = 100)

Let $C = \{001, 101, 110\}$, Does C correct the error pattern u = 010? What about u = 000

W	001 + w	101 + w	110 + w	V

000	001*	101	110	001
001	000*	001	111	001
010	011	111	100*	110
011	010*	110	101	011
100	101	001	010	
101	100	000*	011	101
110	111	011	000*	110
111	110	010	001	

The rows of the IMLD where 010 appear are

w	001 + w	101 + w	110 + w	V
011	010*	110	101	011
100	101	001	010	
111	110	010	001	

010 does not receive an asterisk on every row and thus does not correct C.

The rows of the IMLD where 000 appear are

w	001 + w	101 + w	110 + w	V
001	000*	001	111	001
101	100	000*	011	101
110	111	011	000*	110

Because 000 received an asterisk on every row we can conclude that 000 does correct *C*.

Exercise 1.12.7

Prove that the zero pattern is always corrected.

The zero pattern only appears when w is equal to v. This means that no errors have

occured and thus it will always correct C.

Exercise 1.12.8

Which error pattern will the code $C = K^n$ corrent?

Only the zero pattern. Any other pattern will collide with another word in C.

Exercise 1.12.12 (i:b) & (ii:b,c,g,h)

For each of the following codes C

- i. determine the error patterns that *C* will correct (the IMLD tables for these codes were constructed in Exercise 1.9.7)
- ii. find the error patterns that Theorem 1.12.9 guarantees that C corrects
- b. $C = \{000, 001, 010, 011\}$

i.

w	000 + w	001 + w	010 + w	011 + w	V
000	000*	001	010	011	000
001	001	000*	011	010	001
010	010	011	000*	001	010
011	011	010	001	000*	011
100	100*	101	110	111	000
101	101	100*	111	110	001
110	110	111	100*	101	010
111	111	110	101	100*	011

Only 000 and 100 receive an asterisk every time and thus the error patterns that *C* will correct are {000, 100}.

ii

The distance of C is d = 1.

$$[(d-1)/2]=0$$

Theorem. 1.12.9 cannot guarantee any error patterns.

ii.

The distance for C is d = 1.

$$[(d-1)/2]=0$$

Theorem. 1.12.9 cannot guarantee any error patterns.

ii.

The distance for C is d = 2.

$$[(d-1)/2]=0$$

Theorem. 1.12.9 cannot guarantee any error patterns.

ii

The distance for C is d = 3.

$$[(d-1)/2]=1$$

Theorem. 1.12.9 can guarantee all words with a weight of 1. These are {000001, 000010, 000100, 001000, 010000, 100000}.

Exercise 1.12.14b

For each code in Exercise 1.12.12, find an error pattern of weight [(d - 1) / 2] + 1 that C does not correct.

b.
$$C = \{000, 001, 010, 011\}$$

010