§5. Правила дифференцирования

Правилами дифференцирования называют формулы, по которым вычисляются производная функции, являющейся постоянной на некотором множестве, производная от произведения постоянного множителя на функцию, производные от суммы, произведения и частного двух функций.

Теорема 5.1. Если функция u(x) дифференцируема в точке x, а C – некоторое постоянное число, то справедливы следующие формулы:

$$(C)' = 0, (Cu(x))' = Cu'(x).$$
 (5.1)

►Пусть
$$y = C$$
, тогда $\Delta y = 0$ и $(C)' = y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = 0$. Если $y = Cu(x)$, то $\Delta y = Cu(x + \Delta x) - Cu(x) = C(u(x + \Delta x) - u(x)) = C\Delta u$,

a
$$(Cu(x))' = y' = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{C\Delta u}{\Delta x} = C \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = Cu'(x)$$
.

Замечание 5.1. Вторая из формул (5.1) эквивалентна следующему утверждению: постоянный множитель можно выносить за знак производной.

Теорема 5.2. Если функции u(x) и v(x) дифференцируемы в точке x, то

1. функции u(x) + v(x), $u(x) \cdot v(x)$ дифференцируемы в этой точке и справедливы формулы:

$$(u(x) + v(x))' = u(x)' + v(x)'; (5.2)$$

$$(u(x) \cdot v(x))' = u(x)' \cdot v(x) + u(x) \cdot v(x)'; \tag{5.3}$$

2. функция u(x)/v(x) дифференцируема в этой точке при условии $v(x) \neq 0$ и справедлива формула:

$$\left(\frac{u(x)}{v(x)}\right)' = \frac{u'(x) \cdot v(x) - u(x) \cdot v'(x)}{v^2(x)}.$$
 (5.4)

▶Докажем, например, формулу (5.3). Имеем $(uv)' = \lim_{\Delta x \to 0} \frac{\Delta(uv)}{\Delta x}$ (формула (1.1)), где $\Delta(uv) = u(x + \Delta x)v(x + \Delta x) - u(x)v(x)$. Заменим в этом равенстве $u(x + \Delta x)$ на $u(x) + \Delta u$, а $v(x + \Delta x)$ на $v(x) + \Delta v$, получим:

$$\Delta(uv) = (u(x) + \Delta u) \cdot (v(x) + \Delta v) - u(x)v(x)$$
или
$$\Delta(uv) = u(x) \cdot \Delta v + v(x) \cdot \Delta u + \Delta u \Delta v .$$

Тогда
$$(uv)' = \lim_{\Delta x \to 0} \frac{u(x)\Delta v + v(x)\Delta u + \Delta u\Delta v}{\Delta x} = \lim_{\Delta x \to 0} (u(x)\frac{\Delta v}{\Delta x} + v(x)\frac{\Delta u}{\Delta x} + \Delta v\frac{\Delta u}{\Delta x})$$
. В

силу теоремы об арифметических операциях над функциями, имеющими предел (теорема 2.2 главы 3 раздела 4), последнее равенство принимает вид:

$$(uv)' = u(x) \lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} + v(x) \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} + \Delta v \lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x}.$$
 (5.5)

Поскольку $\lim_{\Delta x \to 0} \frac{\Delta v}{\Delta x} = v'(x)$, $\lim_{\Delta x \to 0} \frac{\Delta u}{\Delta x} = u'(x)$, а $\Delta v \to 0$ при $\Delta x \to 0$ как приращение дифференцируемой и, следовательно, непрерывной функции, то при $\Delta x \to 0$ из (5.5) получаем формулу (5.3).

Пусть u = u(x) и v = v(x) – дифференцируемые функции x. Из равенств (5.1) - (5.4), (3.4) следуют правила вычисления дифференциалов:

$$dC = 0$$
, где $C - \text{const.}$ (5.6)

$$dCu = Cdu$$
, где $C - \text{const.}$ (5.7)

$$d(u+v) = du + dv. (5.8)$$

$$d(u \cdot v) = v \cdot du + u \cdot dv, \tag{5.9}$$

$$d\frac{u}{v} = \frac{v \cdot du - u \cdot dv}{v^2}.$$
 (5.10)

Получим, например, формулу (5.8). Имеем d(u+v) = (u+v)'dx = (u'+v')dx = u'dx + v'dx = du + dv.