Phys 245 Quantum Computation Homework 2

- 1. [25+5] <u>The Zeeman effect</u>. Suppose we have an electron in an uniform magnetic field described by $\vec{B} = B_x \hat{x} + B_z \hat{z}$. The electron has a magnetic moment $\vec{\mu} = -\frac{g\mu_B}{\hbar}(\hat{S}_x\hat{x} + \hat{S}_y\hat{y} + \hat{S}_z\hat{z})$ and it interacts with this magnetic field according to the Hamiltonian: $\hat{H} = -\vec{\mu} \cdot \vec{B}$. Calculate the following:
 - a.) [10] In the given coordinate system, calculating the eigenvalues and eigenvectors of the electron spin for arbitrary values of B_x and B_z .
 - b.) [5] Find the eigenvectors and eigenvalues in the limit of $B_z \gg B_x$.
 - c.) [5] Find the eigenvectors and eigenvalues in the limit of $B_x \gg B_z$.
 - d.) [5] Show how the Hamiltonian can be written in a form $\widehat{H}=A\widehat{\sigma}_z$, determine A, write down the eigenvectors and eigenvalues, and determine the direction of this new z-axis.
 - e.) [5] Bonus: Suppose your system is in the positive energy eigenstate of the Hamiltonian in part d and you make a measurement of the spin along the original z-direction (i.e. the z-direction in parts (a)-(c). What is the expectation value of that measurement?
- 2. [20] The Zeeman Effect and the Bloch Sphere. Take your answer from 1(a) and plot on the Bloch Sphere, using e.g. QuTIP. The positive eigenvector for the several points ranging from $B_x/B_z=0$ and $B_x/B_z=10$.
- 3. [30] Calculate eigenvalues and eigenvectors of the three Pauli matrices:
 - a. [10] $\hat{\sigma}_{\chi}$
 - b. [10] $\hat{\sigma}_y$
 - c. [10] $\hat{\sigma}_z$.
- 4. [30] Calculate the following (remember those are matrix exponentials):
 - a. [5] $\hat{\sigma}_{x}^{2}$
 - b. [5] $\hat{\sigma}_y^2$
 - c. [5] $\hat{\sigma}_z^2$
 - d. [5] $\exp(i \theta \hat{\sigma}_x)$
 - e. [5] $\exp(i \theta \hat{\sigma}_y)$
 - f. [5] $\exp(i \theta \hat{\sigma}_z)$
- 5. [30] Rabi flopping with detuning. In class, we found the Rabi flopping evolution for a qubit with resonant drive. Now, redo that derivation but with $\delta \neq 0$. You may assume $\phi = 0$. Find:
 - a. [25] Show that if the system initially starts in $|\psi\rangle=|0\rangle$, the probability to find it in $|0\rangle$ at a later time is: $P_0=1-\frac{\Omega^2}{\Omega'^2}\sin^2\left(\frac{\Omega't}{2}\right)$, where the generalized Rabi frequency is $\Omega'=\sqrt{\Omega^2+\delta^2}$.
 - b. [5] Suppose $\Omega t = \pi$. Plot the probability of being in $|1\rangle$ as a function of δ .