Devoir de Synthèse - Electronique de commutation

Durée : 2 heures,

Sans documents

Le 09/01/2023

Exercice 1 (9 points):

- 1 : pour les questions suivantes, appuyer votre réponse par un schéma.
 - 1-1 : Définir les temps suivants : de réponse, de stockage d'une diode, de recouvrement.
- 1-2: Citer les deux approches permettant d'améliorer la commutation d'un transistor bipolaire. Dessiner un montage pour chaque approche.
- 2 : On considère le circuit représenté par la figure 1 où la diode est en silicium, $R=100~\Omega$. Les valeurs absolues de V_1 et de V_2 sont très supérieures à 0.6V.

2-2: Si V1=5 V, V2=6 V, calculer les valeurs limites de iD et de VD.

- 2-3: Etablir les expressions des constantes de temps avec les quelles évoluent les grandeurs électriques. On donne r_D =25 Ω , $R_{inverse}$ =100 $k\Omega$, C_D =80 pF, C_T =5 pF.
- 2-4: Dessiner sur le même graphique, l'évolution en fonction du temps de : V_c(t), i_D(t) et V_D(t).

 Expliquer la diminution de V_D à des valeurs inférieures à 0,6 V?
- 3 : Soit le montage de la figure 2, tracer sur le même graphique les tensions Ve et Vs. Quel son rôle ?

Exercice 2 (6 points):

- 1- Que signifie monostable redéclenchable. Quelle condition doit vérifier la durée de l'état bas du signal de commande par rapport à la durée du monostable.
- 2- Proposer un circuit à base de transistors bipolaires assurant la fonction d'un monostable.
- 3- Proposer un circuit à base du circuit LM 555 assurant la fonction d'astable. Peut-on avoir un rapport cyclique égal à 50%? Si oui proposer alors votre solution.
- 4- On considère le circuit de la figure 3 où les amplificateurs opérationnels sont supposés idéaux,

Remplir le tableau suivant selon les conditions indiquées et proposer une application de ce montage.

Conditions	Etats des sorties des comparateurs			Etats des LEDS (ON ou OFF)		
	V ₅₁ (V)	V ₅₃ (V)	V ₅₃ (V)	LEDI	LED2	LED3
V, <vg< td=""><td></td><td>Arg. II.</td><td></td><td></td><td>1</td><td>-</td></vg<>		Arg. II.			1	-
Vo <ve<vc< td=""><td>201</td><td>-</td><td></td><td></td><td></td><td>-</td></ve<vc<>	201	-				-
V _{C2} <v<sub>e<v<sub>C1</v<sub></v<sub>						
V ₂ >V _{C1}	-					

Exercice 3: (5 points)

On considère le circuit de la figure 4, où la tension d'entrée V₀ est une constante négative et les amplificateurs opérationnels sont idéaux et alimentés par ±15V, R=1 KΩ et C= 22 μF, V₀= -5 V, K est un interrupteur.

- Préciser le régime de fonctionnement de chaque amplificateur opérationnel. Justifier.
- 2- K étant ouvert, trouver l'expression de la tension V_{S1} en fonction de V_O, R et C.
- 3- Tracer l'évolution en fonction du temps des

tensions V_{S1}, et V_S si le condensateur se décharge à la fin du cycle à V_{s1}=+V_{sat}, dans les deux cas suivants :

*a: Vref=2 Volt,

*b : Vref=10 Volt

Fin des questions Bonne chance ...