Необходимо с использованием системы JFLAP, построить МПА, предназначенный для распознавания заданного языка, либо формально доказать невозможность этого. Если не оговорено особо, то алфавитом является набор $\{a, b, c\}$. Запись $n_s(w)$ означает количество символов s в цепочке w.

Варианты заданий.

Вариант 1. Язык $L_1 = \{a^n b^{2n} : n \ge 0\}$.

Вариант 2. Язык $L_2 = \{ww^R : w$ принадлежит $\{a,b\}^*$, $|ww^R|$ - нечетное число $\}$

Вариант 3. Язык $L_3 = \{a^n b^m c^{m+n}: n \ge 0, m \ge 0\}$.

Вариант 4. Язык $L_4 = \{a^n b^{m+n} c^m : n \ge 0, m \ge 1\}$.

Вариант 5. Язык $L_5 = \{a^3b^nc^n : n \ge 0 \}$.

Вариант 6. Язык $L_6 = \{a^n b^m : n \le m \le 3n\}$.

Вариант 7. Язык $L_7 = \{w: n_a(w) = n_b(w) + 1\}.$

Вариант 8. Язык $L_8 = \{w: n_a(w) = 2n_b(w)\}.$

Вариант 9. Язык $L_9 = \{w: n_a(w) + n_b(w) = n_c(w)\}.$

Вариант 10. Язык $L_{10} = \{w: 2n_a(w) \le n_b(w) \le 3n_a(w)\}.$

Вариант 11. Язык $L_{II} = \{w: n_a(w) \le n_b(w)\}.$

Вариант 12. Язык $L_{12} = \{a^n b^m : n \ge 0, n \ne m\}.$

Вариант 13. Язык $L_{I3} = \{w_1 c w_2 : w_1 \neq w_2^R, \text{ и } w_1, w_2 \text{ принадлежат } \{a, b\}^*\}.$

Вариант 14. Язык $L_{14} = \{a^n b^n : n \ge 0\}$ U $\{a\}$. Количество состояний МПА должно быть меньше 4.

Вариант 15. Язык $L_{15} = \{a^n b^m a^n : n \ge 0\}.$

Вариант 16. Язык $L_{16} = \{a^n b^m c^m : m, n \ge 0\}.$