

Position: Do pretrained transformers learn in-context by Gradient Descent?

Lingfeng Shen*, Aayush Mishra*, Daniel Khashabi

I have a dream that one day ...

this nation will rise up ...

In-Context Learning (ICL)

Good evening \rightarrow Guten Abend Vienna is great \rightarrow Wien ist großartig Where is the next ICML? \rightarrow

Langua

Transformers Learn Nonlinear Features In Context: Nonconvex Mean-field Dynamics on the Attention Landscape

Damai Dai[†]*, Y

Juno Kim¹² Taiji Suzuki¹²

ING? INVESTIGATIONS WITH LINEAR MODELS

Ekin Akyürek^{1,2,a} Dale Schuurmans¹ Jacob Andreas*² Tengyu Ma*^{1,3,b} Denny Zhou*¹

Transformers Learn In-Context by Gradient Descent

Johannes von Oswald ¹² Eyvind Niklasson ² Ettore Randazzo ² João Sacramento ¹ Alexander Mordvintsev ² Andrey Zhmoginov ² Max Vladymyrov ²

^{1.} Dai, Damai, et al. "Why can gpt learn in-context? language models implicitly perform gradient descent as meta-optimizers." arXiv preprint arXiv:2212.10559 (2022).

^{2.} Akyürek, Ekin, et al. "What learning algorithm is in-context learning? investigations with linear models." arXiv preprint arXiv:2211.15661 (2022).

^{3.} Von Oswald, Johannes, et al. "Transformers learn in-context by gradient descent." International Conference on Machine Learning. PMLR, 2023.

Kim, Juno, and Taiji Suzuki. "Transformers learn nonlinear features in context: Nonconvex mean-field dynamics on the attention landscape." arXiv preprint arXiv:2402.01258 (2024).

The argument

LLM (weights Θ)

The argument

But here's the thing ...

These theories make oversimplified and sometimes unrealistic assumptions.

The functional nature of ICL (and its equivalence to GD) remains unclear.

Evolution of this theory

1. In-context Learning can be interpreted as implicit finetuning. [Dai+, 2022]

Show that transformer attention has a dual form of gradient descent:

$$\mathcal{F}(x) = (W_0 + \Delta W)x = W_0x + LinearAttn(E, X', x)$$

2. Hand crafted transformer weights that simulate gradient descent. [Akyurek+, 2022]

These weights can **imitate** GD in the forward pass of the transformer.

Compare actual trained weights with their new construction.

Claim: Gradient-based optimization and attention-based in-context learning are equivalent.

^{1.} Dai, Damai, et al. "Why can gpt learn in-context? language models implicitly perform gradient descent as meta-optimizers." arXiv preprint arXiv:2212.10559 (2022).

^{2.} Akyürek, Ekin, et al. "What learning algorithm is in-context learning? investigations with linear models." arXiv preprint arXiv:2211.15661 (2022).

Von Oswald, Johannes, et al. "Transformers learn in-context by gradient descent." International Conference on Machine Learning. PMLR, 2023.

The "ICL Objective" problem

ICL

Given an unsupervised corpus of tokens $\{t_1, t_2, \dots t_n\}$, causal language modeling (CLM) objective is used to train the model (with a context window of size k):

$$arg \max_{\Theta} \sum_{i} \log P(t_i | t_{i-k}, \dots, t_{i-1}; \Theta)$$

- Models trained on unstructured sequences
- Emergent phenomenon

Transformers, pretrained with CLM objective, yield emergent ICL.

Given an input domain $x \sim X$, and a function class $f \sim F$, ICL objective is used to train the model by giving it structured paired inputs:

$$arg\ max_{\Theta} \sum \log P(f(x_{n+1})|\ x_1, f(x_1), \dots, x_n \circ f(x_n) \circ x_{n+1}; \Theta)$$

- Models trained on structured sequences
- Non-Emergent phenomenon

Transformers trained with ICL objective, yield non-emergent meta learning.

ICL

Non-emergent

What they show

What they imply

$ICL \approx GD$ equivalence

For any Transformer weights resulting from self-supervised pretraining and **for any** well-defined task, ICL is algorithmically equivalent to GD.

$\widehat{ICL} \approx GD$ equivalence

For a **given** well-defined task, **there exist**Transformer weights such that ICL is algorithmically equivalent to GD.

Transformers have the expressive capacity to simulate GD.

This does not imply that LLMs actually do simulate it.

Evidence against ICL ≈ GD: Order sensitivity

- ICL is known to be highly ordersensitive [Lu+].
- GD is order-insensitive. contradicts [Oswald+]
- Variants of GD are still not as sensitive as ICL.

undermines [Akyurek+]

ICL is likely **not** equivalent to GD based on order sensitivity.

Akyürek, Ekin, et al. "What learning algorithm is in-context learning? investigations with linear models." arXiv preprint arXiv:2211.15661 (2022).

Von Oswald, Johannes, et al. "Transformers leam in-context by gradient descent." International Conference on Machine Learning. PMLR, 2023.

Lu, Yao, et al. "Fantastically ordered prompts and where to find them: Overcoming few-shot prompt order sensitivity." arXiv preprint arXiv:2104.08786 (2021).

Evidence against ICL ≈ GD: Weight Sparsity

- Hand constructed weights and inputs in [2] are highly sparse.
- Constructions of [3] are similarly sparse.

3.

$$H^{(0)} = \begin{bmatrix} \cdots & 0 & y_i & 0 & \cdots \\ x_i & 0 & x_n & \cdots \end{bmatrix} \quad W_e = \begin{pmatrix} I^{(d+1)\times(d+1)} & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$W_V = \begin{pmatrix} 0 & \cdots & & & \\ W_0 & -I_y \end{pmatrix}$$

$$W_K = W_Q = \begin{pmatrix} I_x & 0 \\ 0 & 0 \end{pmatrix}$$

$$W_K = W_Q = \begin{pmatrix} I_x & 0 \\ 0 & 0 \end{pmatrix}$$

$$P = \frac{\eta}{N}I$$

^{2.} Akyürek, Ekin, et al. "What leaming algorithm is in-context learning? investigations with linear models." arXiv preprint arXiv:2211.15661 (2022).

Evidence against ICL ≈ GD: Weight Sparsity

Real LLMs are rather dense.

Evidence against ICL \approx GD: Weight Evolution

ICL ability remains stable even when weights keep evolving.

To claim ICL \approx GD, showing it for a single sparse choice of parameters is **not** enough.

Evidence against ICL ≈ GD: Performance

We use three coarse-to-fine metrics to compare ICL and GD:

- **1. Accuracy**: compare top predicted tokens against the ground truth (instead of top predicted label).
- **2. Token Overlap:** compare overlap in top-K tokens of two distributions.

3. Overlap Cosine Similarity: compare the individual agreement between top-K tokens.

Evidence against ICL ≈ GD: Outputs

ICL performs differently and does not align with GD.

Summary

- Recent works studying ICL do not align with emergent ICL in LLMs.
 In-Context Learning → Learning to Learn, Meta Learning, etc.
 Transformers learn in-context by gradient descent → Transformers can perform gradient descent in their forward pass when trained appropriately.
- 2. Expressivity of the Transformer architecture to simulate GD does not imply that LLMs actually do it.
 - We present arguments and evidence against the [current] ICL \approx GD equivalence theory.

3. Maintain parallels to real world settings when developing. It is OK to study ICL in a simpler setting like Linear Regression, but need to find a corresponding pretraining distribution to elicit ICL.

Thank you!

Paper

Contact