Some remarks about the positivity of random variables on a Gaussian probability space

D. Feyel and A. S. Üstünel

Abstract: Let (W, H, μ) be an abstract Wiener space and let $L \in \mathbb{L} \log \mathbb{L}(\mu)$ is a positive random variable. Using the measure transportation of Monge-Kantorovitch, we prove that operator corresponding to the kernel of the projection of L on the second Wiener chaos is lower bounded by a semi-positive Hilbert-Schmidt operator.

Quelques remarques sur la positivité des variables aléatoires définies sur un espace gaussien

Resumé: Soit (W, H, μ) un espace de Wiener abstrait et soit $L \in \mathbb{L} \log \mathbb{L}$ une variable aléatoire positive. A l'aide de la théorie de transport de mesure de Monge-Kantorovitch, nous montrons que le noyau de la projection de L dans le second chaos de Wiener est un opérateur de spectre inférieurement borné et l'opérateur correspondant est inférieurement borné par un opérateur Hilbert-Schmidt semi-positif.

1 Version française abrégée

Soit (W, H, μ) un espace de Wiener abstrait: W est un Fréchet séparable localement convexe, μ est une mesure gaussienne dont le support set W et H est l'espace de Cameron-Martin dont le produit scalaire et la norme sont notés respectivement $(\cdot, \cdot)_H$ et $|\cdot|_H$. On notera par ∇ la fermeture par rapport à μ de la dérivée dans la direction de H. En particulier, pour un espace hilbertien M, $\mathbb{D}_{2,k}(M)$ est l'espace de classes d'équivalences de fonctions mesurables, à valeurs dans M, dont les dérivées d'ordre $k \in \mathbb{N}$ sont de carré intégrables par rapport à la norme du produit tensoriel Hilbert-Schmidt $M \otimes H^{\otimes k}$, où $H^{\otimes k}$ est l'espace des k-tenseurs Hilbert-Schmidt; si $M = \mathbb{R}$ alors nous noterons $\mathbb{D}_{2,k}$ au lieu de $\mathbb{D}_{2,k}(\mathbb{R})$ (cf.[4], [11], [15]). On notera par δ l'adjoint de ∇ par rapport à μ , qui est une application continue

de $\mathbb{D}_{2,1}(M \otimes H^{\otimes k+1})$ dans $\mathbb{D}_{2,1}(M \otimes H^{\otimes k})$. Noter que $\delta \circ \nabla$ est l'opérateur d'Ornstein-Uhlenbeck, il sera noté \mathcal{L} . A l'aide de l'inégalité de Meyer, on peut définir les espaces de Sobolev d'ordre négatif $(\mathbb{D}_{p,\alpha}, \alpha \in \mathbb{R}, p > 1)$ et on note $\mathbb{D}' = \bigcup_{p>1,\alpha \in \mathbb{R}} \mathbb{D}_{p,\alpha}$, qui est dual de l'espace $\mathbb{D} = \bigcap_{p>1,\alpha \in \mathbb{R}} \mathbb{D}_{p,\alpha}$ (cf.[11, 15]).

Quand W est l'espace de Wiener classique, i.e., $W = C_0([0,1], \mathbb{R})$, $H = H_1([0,1], dt)$ (i.e., les primitives des éléments de $\mathbb{L}^2([0,1], dt)$) il est bien connu que chaque élément L de $\mathbb{L}^2(\mu)$ admet une décomposition unique comme

$$L = E[L] + \sum_{n=1}^{\infty} I_n(L_n),$$

où $L_n \in \mathbb{L}^2_s([0,1]^n)$ et ce dernier représente les fonctions symétriques et de carré intégrables sur $[0,1]^n$. Soit $H^{\odot n}$ représente le produit tensoriel symétrique d'ordre n de H, qui est isomorphe à $\mathbb{L}^2_s([0,1]^n)$. Si on note par i_n , $n \geq 1$ cet isomorphisme, on peut montrer facilement que $I_n(L_n) = \delta^n(i_n(L_n))$, où $\delta^n = (\nabla^n)^*$ par rapport à μ . Avec ces relations, on peut montrer à partir de la formule de Taylor que

$$L = E[L] + \sum_{n=1}^{\infty} \frac{1}{n!} \delta^n(E[\nabla^n L]),$$

cf. [12], [14] et aussi [15, 16].

Soit ν une autre probabilité, notons par $\Sigma(\mu,\nu)$ l'ensemble des probabilités sur $W\times W$ de marginales μ et ν . On note J la fonctionnelle définie sur $\Sigma(\mu,\nu)$ par $J(\beta)=\int_{W\times W}|x-y|_H^2d\beta(x,y)$. Dans le cas où W est de dimension finie, le problème de Monge-Kantorovitch consiste à trouver une mesure $\gamma\in\Sigma(\mu,\nu)$ telle que la distance de Wasserstein

$$d_H^2(\mu,\nu) = \inf\{J(\beta) : \beta \in \Sigma(\mu,\nu)\}\$$

soit atteinte en γ . Ce problème a été résolu dans [1] en dimension finie (cf. aussi [3] pour un survol rapide). Nous l'avons résolu dans [6, 7] (c.f. aussi [8]) quand la dimension de H est infinie. Expliquons plus précisément le cas particulier qui sera utilisé dans cette note: si ν est de la forme $d\nu = Ld\mu$, alors il existe une fonction φ , appelée le potentiel de transport, appartenant à $\mathbb{D}_{2,1}$, telle que $T:W\to W$ définie par $T=I_W+\nabla\varphi$ satisfasse $T\mu=\nu$ et telle que $\gamma=(I_W\times T)\mu$ soit l'unique mesure dans $\Sigma(\mu,\nu)$ satisfaisant $J(\gamma)=d_H^2(\mu,\nu)$. De plus φ est 1-convexe: une variable aléatoire $f:W\to\mathbb{R}\cup\{\infty\}$ est dite r-convexe, $r\in\mathbb{R}$, si $h\to \frac{r}{2}|h|_H^2+f(w+h)$ est convexe sur H à valeurs dans $\mathbb{L}^0(\mu)$ ([5]); si r=0, on l'appelle H-convexe. De même f s'appelle H-concave ou H-log-concave si, respectivement -f est H-convexe ou -logf est H-convexe. Avec les hypothèses ci-dessus T admet un inverse p.s., noté S, de la forme $S=I_W+\eta$. De plus si ∇ est fermable par rapport à ν alors $\eta:W\to H$ est de la forme $\eta=\nabla\psi$ où $\psi\in L^2(\nu)$ est ν -differentiable dans la direction de H. Notons que nous avons déjà démontré dans [9] que φ est un élément de $\mathbb{D}_{2,2}$ au lieu de $\mathbb{D}_{2,1}$ si la

densité $L \in \mathbb{L} \log \mathbb{L}$ est H-log-concave. Ce qui rend possible le calcul du jacobien

$$\Lambda = \det_2(I_H + \nabla^2 \varphi) \exp\left\{-\mathcal{L}\varphi - \frac{1}{2}|\nabla \varphi|_H^2\right\} ,$$

où $\det_2(I_H + \nabla^2 \varphi)$ est le déterminant modifié de Carleman-Fredholm (cf.[2, 16]).

2 Main results

Here is the first notable result of this note:

Theorem 1 Assume that $L \in \mathbb{L}^2(\mu)$ is a positive random variable and let φ be the forward potential function associated to the Monge-Kantorovitch problem in $\Sigma(\mu, \nu)$, where $d\nu = \frac{1}{E[L]}Ld\mu$. Then the following operator inequality holds true:

$$\frac{1}{2E[L]} \left\{ E[\nabla^2 L] - \frac{E[\nabla L] \otimes E[\nabla L]}{E[L]} \right\} \ge E[\nabla^2 \varphi]. \tag{2.1}$$

Proof: Let us note first that, even if φ is not in $\mathbb{D}_{2,2}$, the term $E[\nabla^2 \varphi]$ is a well-defined Hilbert-Schmidt operator since the constants are the elements of the space of the test functions $\mathbb{D} = \bigcap_{p,k} \mathbb{D}_{p,k}$. Without loss of generality, we may assume that E[L] = 1. Let then ν be the measure $d\nu = Ld\mu$. Since $E[L \log L] < \infty$, the Wasserstein distance $d_H(\mu, \nu) < \infty$, consequently, there exists a 1-convex map $\varphi \in \mathbb{D}_{2,1}$ such that the transformation $T = I_W + \nabla \varphi$ solves the problem of Monge and the measure $(I \times T)\mu$ is the unique solution of Monge-Kantorovitch problem on $\Sigma(\mu, \nu)$. For an $h \in H$, let $\rho(\delta h)$ denote the Wick exponential $\rho(\delta h) = \exp(\delta h - \frac{1}{2}|h|_H^2)$. For any $t \in \mathbb{R}$, we have

$$E[L \rho(\delta(th))] = E[\rho(\delta(th)) \circ T]$$

$$= E\left[\left(\exp\left(t\delta h - \frac{t^2}{2}|h|_H^2\right) \circ T\right]\right]$$

$$= E\left[\exp\left(t\delta h + t(\nabla\varphi, h)_H - \frac{t^2}{2}|h|_H^2\right)\right].$$

A first order differentiation of this equality at t=0 gives that

$$E[(\nabla L, h)_H] = E[(\nabla \varphi, h)_H],$$

for any $h \in H$, hence

$$E[\nabla L] = E[\nabla \varphi]. \tag{2.2}$$

The second order differentiation at t = 0 and the integration by parts formula, which follows from the fact that $\delta = \nabla^*$, gives

$$E\left[(\nabla^{2}L, h \otimes h)_{2}\right] = E\left[(\delta h + (\nabla \varphi, h)_{H})^{2} - |h|_{H}^{2}\right]$$

$$= E\left[2 \delta h (\nabla \varphi, h)_{H} + (\nabla \varphi, h)_{H}^{2}\right]$$

$$= E\left[2(\nabla^{2}\varphi, h \otimes h)_{2} + (\nabla \varphi, h)_{H}^{2}\right],$$

for any $h \in H$, where $(\cdot, \cdot)_2$ denotes the Hilbert-Schmidt scalar product. Hence combining this with the relation (2.2) gives

$$E[\nabla^{2}L] = E[\nabla\varphi \otimes \nabla\varphi] + 2E[\nabla^{2}\varphi]$$

$$\geq E[\nabla\varphi] \otimes E[\nabla\varphi] + 2E[\nabla^{2}\varphi]$$

$$= E[\nabla L] \otimes E[\nabla L] + 2E[\nabla^{2}\varphi]$$

and the inequality (2.1) follows.

Remark: Note that the inequality of Theorem 1 is different in spirit than the results of [13].

We can extend the inequality (2.1) as follows:

Corollary 1 Assume that $m \in \mathbb{D}'$ is a positive distribution and denote again by m the Radon measure on W which corresponds to it (cf. [15]). Let m_2 be the projection of the distribution m to the second Wiener chaos, which is equal to $\frac{1}{2}\delta^2 M_2$, where M_2 is the element of $H \otimes H$ defined by $M_2(h \otimes k) = \langle m, \delta^2(h \otimes k) \rangle$. If the Wasserstein distance $d_H(\mu, m)$ is finite, we have again

$$\frac{1}{2m(W)} \left\{ M_2 - \frac{M_1 \otimes M_1}{m(W)} \right\} \ge E[\nabla^2 \varphi], \qquad (2.3)$$

where $M_1 \in H$ is defined by $(M_1, h)_H = \langle m, \delta h \rangle$, $h \in H$.

Proof: It suffices to apply Theorem 1 to the case $P_t m$, where P_t is the Ornstein-Uhlenbeck semigroup. Then, from [8], the corresponding transport map φ_t converges to the transport map φ corresponding to the Monge-Kantorovitch problem for $\Sigma(\mu, m)$ in $\mathbb{D}_{2,1}$, as $t \to 0$. \square

We have also a weaker inequality whose difference with respect to (2.1) is that the Hilbert-Schmidt operator $2E[\nabla^2\varphi]$ is replaced by the identity operator of H:

Proposition 1 For any positive random variable $L \in \mathbb{L}^2(\mu)$, the following inequality is valid:

$$I_H + \frac{1}{E[L]} E[\nabla^2 L] \ge \frac{1}{E[L]^2} E[\nabla L] \otimes E[\nabla L],$$

where I_H denotes the identity operator of H. In particular the projection of L in the second order Wiener chaos divided by the expectation of L is 1-convex.

Proof: Again, we may suppose that E[L] = 1. Let $l(t) = E[L \rho(\delta(th)), h \in H]$, then we have

$$l'(0)^2 \le |h|_H^2 + l''(0) \tag{2.4}$$

To see this inequality it suffices to remark that $\lambda^2 - 2\lambda\delta h + (\delta h)^2 \ge 0$ for any $\lambda \ge 0$, hence taking the expectation with respect to $Ld\mu$ is again positive. Hence the discriminant of the second order polynomial in λ should be negative and this proves (2.4). To complete the proof of the proposition, it suffices to remark that $l'(0) = E[\nabla_h L]$ and that $l''(0) = \text{trace } (E[\nabla^2 L](h \otimes h))$. The 1-convexity of $\delta^2\left(\frac{E[\nabla^2 L]}{2}\right)$ is immediate.

Proposition 1 extends also to the positive elements of \mathbb{D}' and it is to be noted that in this case we do not need the hypothesis about the finiteness of the Wasserstein distance:

Corollary 2 Assume that $m \in \mathbb{D}'$ is a positive distribution and denote again by m the Radon measure on W which corresponds to it (cf. [15]). Using the notations of Corollary 1, we have again

$$I_H + \frac{1}{m(W)} M_2 \ge \frac{1}{m(W)^2} M_1 \otimes M_1$$
. (2.5)

In particular, the projection of m in the second Wiener chaos is 1-convex.

Proof: It suffices to regularize again m with P_t and then pass to the limit as $t \to 0$.

References

- [1] Y. Brenier: "Polar factorization and monotone rearrangement of vector valued functions". Comm. pure Appl. Math, 44, 375-417, 1991.
- [2] N. Dunford and J. T. Schwartz: Linear Operators 2, Interscience 1963.
- [3] D. Feyel: "A survey on the Monge transport problem". Preprint, 2004.
- [4] D. Feyel and A. de La Pradelle: "Capacités gaussiennes". Annales de l'Institut Fourier, Vol.41, f.1, 49-76, 1991.
- [5] D. Feyel and A. S. Ustünel: "The notion of convexity and concavity on Wiener space". Journal of Functional Analysis, **176**, 400-428, 2000.
- [6] D. Feyel and A. S. Üstünel: "Transport of measures on Wiener space and the Girsanov theorem". Comptes Rendus Mathématiques, Vol. **334**, Issue 1, 1025-1028, 2002.
- [7] D. Feyel and A. S. Üstünel: "Monge-Kantorovitch measure transportation and Monge-Ampère equation on Wiener space". Prob. Th. Related Fields, 128, 347-385, 2004.

- [8] D. Feyel and A. S. Üstünel: "Monge-Kantorovitch measure transportation, Monge-Ampère equation and the Itô calculus". Advanced Studies in Pure Mathematics, Vol. 41, 49-74. Mathematical Society of Japan.
- [9] D. Feyel and A. S. Üstünel: "The strong solution of the Monge-Ampère equation on the Wiener space for log-concave densities". Comptes Rendus Mathématiques, Ser.I, Vol. **339**, Issue 1, 49-53, 2004.
- [10] K. Itô: "Multiple Wiener integral". Journ. Math. Soc. Japan, Vol. 3, p. 157-164, 1951.
- [11] P. Malliavin: Stochastic Analysis. Springer Verlag, 1997.
- [12] H.P. McKean: "Geometry of differential space". Annals of Probability, Vol. 1, p. 197-206, 1973.
- [13] J. Ruiz de Chavez and P.A. Meyer: "Positivité sur l'espace de Fock". Séminaire de Probabilités XXIV, p. 461-465. Lecture Notes in Math., Vol. **1426**. Springer, 1990.
- [14] D.W. Stroock: "Homogeneous chaos revisited". Séminaire de Probabiltés XXI, p. 1-8. Lecture Notes in Math., Vol. **1247**. Springer, 1987.
- [15] A. S. Üstünel: Introduction to Analysis on Wiener Space. Lecture Notes in Math. Vol. **1610**. Springer, 1995.
- [16] A. S. Üstünel and M. Zakai: Transformation of Measure on Wiener Space. Springer Verlag, 1999.
- [17] N. Wiener: "The homogeneous chaos". American Journ. Math. Vol. **60**, p. 897-936, 1930.

D. Feyel Université d'Evry-Val-d'Essone Dépt. de Mathématiques 91025 Evry Cedex France

feyel@maths.univ-evry.fr

A.S. Üstünel, ENST, Dépt. Infres 46 Rue Barrault,, 75013 Paris, France ustunel@enst.fr