Ecole Nationale Supérieure de Techniques Avancées Paris Tech
 PRB202 - Martingales et Algorithmes Stochastiques
 PC1 - 15 novembre 2019

Exercice 1 : Etant donné $(\Omega, \mathcal{F}, \mathbb{P})$ un espace de probabilité fixé.

- 1. Soit A et B deux évènements.
 - (a) Déterminer la tribu $\sigma(\mathbf{1}_B)$ engendrée par la variable aléatoire $\mathbf{1}_B$.
 - (b) Caractériser l'ensemble des variables aléatoires $\sigma(\mathbf{1}_B)$ mesurables.
 - (c) En-déduire que, si $\mathbb{P}(B) \in]0,1[$, alors :

$$\mathbb{E}[\mathbf{1}_A|\mathbf{1}_B] = \mathbb{P}(A|B)\mathbf{1}_B + \mathbb{P}(A|B^c)\mathbf{1}_{B^c}.$$

- 2. Soit $(A_n)_{n\in\mathbb{N}}$ une partition de l'ensemble Ω
 - (a) Montrer que $\sigma((A_n)_{n\in\mathbb{N}}) = \{ \bigcup_{j\in J} A_j ; J \subset \mathbb{N} \}.$
 - (b) Démontrer que si Y est une variable aléatoire réelle $\sigma((A_n)_{n\in\mathbb{N}})$ mesurable, alors il existe des réels $(\lambda_n)_{n\in\mathbb{N}}$ tels que :

$$Y = \sum_{n \in \mathbb{N}} \lambda_n \mathbf{1}_{A_n} \,.$$

(c) Soit X une variable aléatoire à valeurs positives ou intégrable. Montrer que :

$$\mathbb{E}[X|\sigma((A_n)_{n\in\mathbb{N}})] = \sum_{i\in I^*} \frac{\mathbb{E}[X\mathbf{1}_{A_i}]}{\mathbb{P}(A_i)} \mathbf{1}_{A_i}, \, \mathbb{P} - \text{p.s.},$$

où $I^* = \{i \in \mathbb{N}; \mathbb{P}(A_i) > 0\}.$

En-déduire que :

$$\mathbb{E}[\mathbf{1}_A|\sigma((A_n)_{n\in\mathbb{N}})] = \sum_{i\in I^*} \mathbb{P}(A|A_i)\,\mathbf{1}_{A_i},\, \mathbb{P}-\text{p.s.}\,.$$

3. (a) Soit $E = \{b_i : i \in I \subset \mathbb{N}\}$ un ensemble fini ou dénombrable et $Y : (\Omega, \mathcal{F}, \mathbb{P}) \to (E, \mathcal{P}(E))$ une variable aléatoire discrète.

Démontrer que, si X est une variable aléatoire à valeurs positives ou intégrable, alors on a :

$$\mathbb{E}[X|Y] = \sum_{i \in I^*} \frac{\mathbb{E}[X \mathbf{1}_{\{Y = b_i\}}]}{\mathbb{P}(Y = b_i)} \mathbf{1}_{\{Y = b_i\}}, \, \mathbb{P} - \text{p.s.} \,,$$

où
$$I^* = \{i \in I; \mathbb{P}(Y = b_i) > 0\}.$$

(b) Supposons que X soit une variable aléatoire suivant une loi de Poisson de paramètre $\lambda \in \mathbb{R}_+^*$. Posons $Y = 2 \lfloor \frac{X}{2} \rfloor$, où $\lfloor x \rfloor$ désigne la partie entière de $x \in \mathbb{R}$. Calculer $\mathbb{E}[Y|X]$ et $\mathbb{E}[X|Y]$.

Exercice 2:

1. Considérons un couple (X,Y) de variables aléatoires réelles définies sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ et admettant une densité $f_{X,Y}: \mathbb{R}^2 \to \mathbb{R}_+$.

Soit, par ailleurs, une fonction borélienne $h : \mathbb{R}^2 \to \mathbb{R}$ telle que $\mathbb{E}[|h(X,Y)|] < +\infty$.

Montrer que:

$$\mathbb{E}[h(X,Y)|X] = g(X), \quad \mathbb{P} - \text{p.s.},$$

avec:

$$\forall x \in \mathbb{R}, \quad g(x) = \begin{cases} \frac{\int_{\mathbb{R}} h(x,y) f_{X,Y}(x,y) dy}{\int_{\mathbb{R}} f_{X,Y}(x,y) dy}, & \text{si } \int_{\mathbb{R}} f_{X,Y}(x,y) dy \neq 0, \\ 0, & \text{dans le cas contraire.} \end{cases}$$

2. Supposons que (X, Y) soit un couple de variables aléatoires réelles admettant la densité sur \mathbb{R}^2 définie, pour tout $(x, y) \in \mathbb{R}^2$, par :

$$f_{X,Y}(x,y) = n(n-1)(y-x)^{n-2} \mathbf{1}_{\Delta}(x,y),$$

où
$$\Delta = \{(x, y) \in \mathbb{R}^2 : 0 \le x \le y \le 1\}$$
 et $n \in \mathbb{N}^*$.

(a) Montrer que:

$$\mathbb{E}[Y|X] = \frac{n-1+X}{n}, \quad \mathbb{P} - \text{p.s.}.$$

(b) En-déduire $\mathbb{E}[Y]$.

Exercice 3:

1. Soient X et Y des variables aléatoires définies sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ et à valeurs réelles. X et Y admettent des densités notées respectivement $f_X : \mathbb{R} \to \mathbb{R}_+$ et $f_Y : \mathbb{R} \to \mathbb{R}_+$.

On suppose, de plus, que X et Y sont indépendantes.

Etant donnée une fonction ϕ borélienne bornée de \mathbb{R}^2 dans \mathbb{R} , démontrer que :

$$\mathbb{E}[\phi(X,Y)|Y] = \psi(Y), \quad \mathbb{P} - \text{p.s.},$$

où, pour tout $y \in \mathbb{R}$:

$$\psi(y) = \mathbb{E}[\phi(X, y)].$$

- 2. Soit X et Y deux variables aléatoires indépendantes; X est une variable aléatoire continue de densité notée f_X et Y suit une loi normale $\mathcal{N}(0,1)$.
 - (a) Montrer que les propriétés suivantes sont équivalentes :
 - (P1) $e^{\frac{X^2}{2}}$ est intégrable (P2) e^{XY} est intégrable (P3) $e^{|XY|}$ est intégrable
 - (b) Démontrer que, si $e^{\frac{X^2}{2}}$ est intégrable, alors : $\mathbb{E}[e^{XY}|X] \geq 1$, $\mathbb{P}-\text{p.s.}$.
 - (c) Calculer $\mathbb{E}[e^{XY}|X]$, lorsque $e^{\frac{X^2}{2}}$ est intégrable.

Exercice 4: Soit (X,Y) un vecteur gaussien centré. Notons σ_1^2 la variance de X et σ_2^2 la variance de Y; on suppose que : $\sigma_1 > 0$ et $\sigma_2 > 0$. ρ désigne le coefficient de corrélation de X et Y, soit :

$$\rho = \frac{\mathrm{Cov}(X,Y)}{\sqrt{\mathrm{Var}(X)\mathrm{Var}(Y)}} = \frac{\mathrm{Cov}(X,Y)}{\sigma_1 \, \sigma_2} \, .$$

- 1. Chercher $\lambda \in \mathbb{R}$ tel que la variable aléatoire $Z = X \lambda Y$ soit indépendante de Y.
- 2. Montrer que:

$$\mathbb{E}[X|Y] = \frac{\operatorname{Cov}(X,Y)}{\operatorname{Var}(Y)} Y = \rho \frac{\sigma_1}{\sigma_2} Y, \quad \mathbb{P} - \text{p.s.}.$$

3. En-déduire que :

$$X = \mathbb{E}[X|Y] + Z$$
, $\mathbb{P} - \text{p.s.}$,

où Z est une variable aléatoire gaussienne centrée indépendante de Y et de variance donnée par :

$$Var(Z) = (1 - \rho^2) \sigma_1^2$$
,

Exercice 5 : Soit X une variable aléatoire réelle de carré intégrable définie sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ et \mathcal{G} une sous-tribu de \mathcal{F} .

On pose:

$$\operatorname{Var}(X|\mathcal{G}) = \mathbb{E}\left[(X - \mathbb{E}[X|\mathcal{G}])^2|\mathcal{G}\right], \quad \mathbb{P} - \text{p.s.}.$$

Montrer les égalités suivantes :

$$Var(X|\mathcal{G}) = \mathbb{E}[X^2|\mathcal{G}] - (\mathbb{E}[X|\mathcal{G}])^2, \quad \mathbb{P} - \text{p.s.},$$
$$Var(X) = \mathbb{E}[Var(X|\mathcal{G})] + Var(\mathbb{E}[X|\mathcal{G}]), \quad \mathbb{P} - \text{p.s.}.$$

Exercice 6: Etant donnée une suite $(X_n)_{n\geq 1}$ de variables aléatoires définies sur un espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$ et à valeurs réelles. On suppose, de plus, que les variables X_n , $n \in \mathbb{N}$, sont indépendantes et identiquement distribuées et de carré intégrable.

Considérons, par ailleurs, une variable aléatoire τ définie sur le même espace de probabilité $(\Omega, \mathcal{F}, \mathbb{P})$, à valeurs dans \mathbb{N}^* et indépendante de $(X_n)_{n\geq 1}$.

- 1. En posant $S_{\tau} = \sum_{i=1}^{\tau} X_i$, calculer $\mathbb{E}[S_{\tau}|\tau]$ et $\operatorname{Var}(S_{\tau}|\tau) = \mathbb{E}\left[(S_{\tau} \mathbb{E}[S_{\tau}|\tau])^2|\tau\right]$.
- 2. En-déduire la valeur de $\mathbb{E}[S_{\tau}]$, de $\mathbb{E}\left[(S_{\tau} \mathbb{E}[S_{\tau}|\tau])^2\right]$ et de $\mathrm{Var}(S_{\tau})$.