L2 - Techniques mathématiques EEA - HAX304X

Feuille de TD ${\rm n}^{\rm o}$ 4

Calcul matriciel

Exercice 1

- 1) Soient les matrices $A = \begin{pmatrix} 5 & 1 \\ 3 & -2 \end{pmatrix}$ et $B = \begin{pmatrix} 2 & 0 \\ 4 & 3 \end{pmatrix}$. Calculer AB et BA. Que peut-on en déduire ?
- 2) Soient les matrices $A = \begin{pmatrix} 0 & -1 \\ 0 & 5 \end{pmatrix}$ et $B = \begin{pmatrix} 2 & -3 \\ 0 & 0 \end{pmatrix}$. Calculer AB. Que peut-on en déduire ?
- 3) Soient les matrices $A = \begin{pmatrix} 0 & -1 \\ 0 & 3 \end{pmatrix}$, $B = \begin{pmatrix} 4 & -1 \\ 4 & 4 \end{pmatrix}$ et $C = \begin{pmatrix} 2 & 5 \\ 5 & 4 \end{pmatrix}$. Calculer AB et AC. Conclusion?
- 4) Soient $A = \begin{pmatrix} 3 & -1 \\ -2 & 0 \end{pmatrix}$ et $B = \begin{pmatrix} 0 & 1 \\ 3 & 2 \end{pmatrix}$. Calculer $(A+B)^2$ et $A^2 + 2AB + B^2$. Conclusion?

Exercice 2. Soit la matrice $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$.

Déterminer toutes les matrices $B = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ qui commutent avec A, c'est-à-dire telles que AB = BA.

Exercice 3. Déterminer l'inverse de la matrice $A = \begin{pmatrix} 2 & 3 \\ 4 & 1 \end{pmatrix}$ en utilisant les deux méthodes vues en cours (système linéaire et déterminant).

Exercice 4. On considère le système linéaire suivant :

(S):
$$\begin{cases} 2x +2y +3z = a \\ x -y = b \\ -x +2y +z = c \end{cases}$$

1) Le résoudre, i.e. trouver x,y,z en fonction de a,b,c.

Montrer que cela correspond à l'inversion d'une matrice $A \in M_3$. Expliciter A ainsi que son inverse A^{-1} .

2) En déduire directement la solution du système
$$Au = v$$
, pour $v = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$, puis pour $v = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$.

Exercice 5. Déterminer l'inverse de la matrice $A = \begin{pmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ 0 & -3 & 4 \end{pmatrix}$ par la méthode de votre choix.

Exercice 6. Soit $A = \begin{pmatrix} 1 & 1 & m \\ 1 & m & 1 \\ m & 1 & 1 \end{pmatrix}$.

- 1) Calculer det(A).
- 2) En déduire à quelles conditions sur m la matrice A est inversible.

Exercice 7

Soit $A = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.

- 1) Diagonaliser A (donner ses valeurs propres et vecteurs propres, et expliciter la relation $A = PDP^{-1}$).
- 2) Vérifier que det(A) est le produit des valeurs propres.

Exercice 8

Soient les matrices:

a)
$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 3 & 0 \\ 2 & -4 & 2 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 0 & 3 & -1 \\ 2 & -1 & 1 \\ 0 & 0 & 2 \end{pmatrix}$

- 1) Diagonaliser ces matrices (donner leurs valeurs propres, vecteurs propres, et expliciter $A = PDP^{-1}$).
- 2) Vérifier que leur déterminant est bien le produit de leurs valeurs propres.