

Indian Association for the Cultivation of Science

(Deemed to be University under the de novo category)
BS-MS Program

End-Semester Examination-2025 (Spring Semester-II)

Subject: Mathematics II

Subject Code(s): MAT 1201

Full marks: 50

Time allotted: 3 hrs

Answer Question No. 10 and any six of the remaining questions.

/ 1. Let $I \subseteq \mathbb{R}$ be an open interval, let $f: I \to \mathbb{R}$ be differentiable on I. Suppose that f''(a) exists at $a \in I$. Show that

$$f''(a) = \lim_{h \to 0} \frac{f(a+h) - 2f(a) + f(a-h)}{h^2}.$$

Give an example where the limit exists, but the function does not have a second derivative at a. [7]

- f'2. If $f:[0,1] \to \mathbb{R}$ is continuous and $\int_0^x f(t)dt = \int_x^1 f(t)dt$ for all $x \in [0,1]$, show that f(x) = 0 for all $x \in [0,1]$.
 - 3. Suppose that f is continuous on [a,b] and that g is nonnegative and integrable on [a,b]. Prove that

$$\int_{a}^{b} f(x)g(x)dx = f(\xi) \int_{a}^{b} g(x)dx$$

for some $\xi \in [a, b]$.

[7]

- •4. Find the Taylor polynomial for the function $f(x) = \arctan x$. [7]
 - 5. Let $T: V \to W$ be a linear transformation, where V and W are vector spaces. If V is infinite dimensional, prove that at least one of T(V) or N(T) is infinite dimensional. [7]
 - 6. Let $T: \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation such that

$$T(\mathbf{k}) = 2\mathbf{i} + 3\mathbf{j} + 5\mathbf{k}, \ T(\mathbf{j} + \mathbf{k}) = \mathbf{i}, \ T(\mathbf{i} + \mathbf{j} + \mathbf{k}) = \mathbf{j} - \mathbf{k}.$$

(a) Compute $T(\mathbf{i} + 2\mathbf{j} + 3\mathbf{k})$ and determine the nullity and rank of T.

(b) Determine the matrix of T.

[7]

7. In the real vector space C(1,e), define an inner product by the equation

$$(f,g) = \int_{1}^{e} (\log x) f(x) g(x) dx.$$

- (a) If $f(x) = \sqrt{x}$, compute ||f||.
- (b) Find a linear polynomial g(x) = a + bx that is orthogonal to the constant function 1.

[7]

8. Let A and B be two matrices such that

$$AB - BA = I$$

where I is the identity matrix. What can you say about A and B.

[7]

- /9. Assume $T: V \to V$ is a hermitian operator,
 - (a) Prove that T^n is hermitian for every positive integer n, and that T^{-1} is hermitian if T is invertible.
 - (b) What can you conclude about T^n and T^{-1} if T is skew-hermitian?

[7]

- /10. Given an $n \times n$ matrix A with real entries such that $A^2 = -I$. Prove the following statements about A.
 - ✓(a) A is nonsingular.
 - \checkmark b) n is even.
 - (c) A has no real eigenvalues.
 - (d) $\det A = 1$.

[8]