

Conjunction Assessment Risk Analysis

M.D. Hejduk

NASA CARA

Overview

Objectives

At the end of this module you should be able to...

- ◆Introduce the RSO Catalog
- **◆**Understand the anatomy of a conjunction
- **♦**Describe the Conjunction Analysis Process
- **→**Describe Two-line Element Sets
- **◆**Understand covariance and uncertainty
- ◆Describe conjunction assessment screenings
- ◆Explain the risk assessment for CA
- **♦**Describe the conjunction situation
- ◆Explain the probability of collision algorithm
- ◆Describe practical problems in determining the probability of collision

Outline

- ◆Introduction to Conjunction Assessment
- **♦** Conjunction Assessment Process
- **♦** Covariance and Uncertainty
- ◆ Probability of Collision
- **→** Practical Issues with CA
- **◆** CA Risk Assessment and Mitigation

Adapted from information in:

Space Mission Analysis and Design (SMAD), Chapters 3 and 7 by Wertz Human Spaceflight: Mission Analysis and Design (HSF), Chapter 9 by Boden and Hoffman Orbital Mechanics by Logsdon

Space Domain Awareness, Chapter 4 by Ziebart, Frueh and Hejduk

Agenda

- *Conjunction Assessment (CA) terminology and very high-level concepts
- *Space catalogue maintenance basics
 - Collecting satellite position data
 - Updating and propagating orbits
- *Orbit Determination (OD) uncertainty modeling through covariance
- *Probability of collision computation
- *Conjunction Assessment screenings
- +Conjunction Data Message (CDM) contents

Conjunction Assessment Terms (1 of 6)

- *Conjunction Assessment (CA)
 - An iterative process for determining the Time of Closest Approach (TCA) of two tracked orbiting objects or between a tracked orbiting object and a launch vehicle (including spent stages) or payload
 - TCA will be defined shortly
 - Further activities to identify high-interest conjunction events
- *Conjunction
 - When the predicted miss distance between two on-orbit objects, or between a launch vehicle and an orbiting object, is less than a specified reporting volume
- *Risk Analysis (RA)
 - For a particular conjunction, the determination of the collision likelihood and consequence
 - This information is used to identify high-interest events (HIEs) that may require warnings and conjunction mitigation actions

Conjunction Assessment Terms (2 of 6)

- *Primary Object
 - The satellite asset, launched object or the ephemeris file that is being screened for potential conjunctions

Conjunction Assessment Terms (3 of 6)

*Secondary Object

All other satellite objects (examples: payloads, debris, R/B, or analyst satellites) against which the primary object is being screened for potential conjunctions

Conjunction Assessment Terms (4 of 6)

- *Time of Closest Approach (TCA)
 - The time at which the distance between the two objects reaches a minimum
 - This occurs when the relative position vector is perpendicular to the relative

Conjunction Assessment Terms (5 of 6)

- **+Overall Miss Distance**
 - The PCA of one object relative to another; i.e., the minimum range, miss distance, or relative position magnitude between two satellites at TCA
 - Can also be expressed by individual three-dimensional component

Conjunction Assessment Terms (6 of 6)

*Probability of Collision (Pc)

- Statistical measure of the likelihood that the miss distance will be smaller than a specified threshold (usually the combined sizes of the two satellites)
- Pc calculation requires covariance data (i.e., uncertainty data) on each object's position estimate; will be discussed later
- ▶ Pc values usually expressed in scientific notation, e.g., 1E-05
 - Large values are 1E-04 and higher
 - Small values are perhaps 1E-06 and lower

*Screening Volume

- A spherical or ellipsoidal volume around the primary and secondary objects used to determine if a satellite pair is a conjunction candidate
- +Collision on Launch Assessments (COLA)
 - Screening performed on powered flight launch trajectory
 - Some entities use "COLA" to mean collision avoidance, or implementation of a risk mitigating action such as a maneuver; this is not standard nomenclature

The Catalog Maintenance Cycle

- * Cycle in use since the late 50's, in many forms
- *Sensors collect observations and send them to 18th Space Defense Squadron (18 SDS)
- * 18 SDS associates submitted observations to objects
- + Orbits are updated using observations
- * Tasking informs sensors of amount of tracking data needed to maintain desired orbital accuracy

Space Surveillance Network

Observation Types

- * Radars typically provide three observables
 - Range to target (the most useful of the measurements)
 - Two angles to target, typically azimuth and elevation
 - Sometimes higher derivatives reported, although useful only if actually observed rather than just calculated
 - Framework used is topocentric horizon coordinates, which rotates with earth
- + Optical sensors report only two observables, both angles
 - If azimuth mount (axis normal to earth), then report azimuth and elevation
 - If ra/dec mount (axis points to north star), then report right ascension and declination
 - Inertial system better suited to fixed background of stars
 - Space-based sensors usually provide sensor position along with observation

Sensor Tasking

- *Sensor capacity is a limited resource
- *Tasking function determines collection requirements per object
 - Object type, mission, and orbit determination (OD) solution age determines tasking priority
 - Called tasking "category" with range of values of 1 to 5
 - Number and collection details of tracks required
 - Called tasking "suffix" with large number of alphanumeric codes
- *Tasking allocates satellites to sensors
- *Establish tracking priority for each satellite
 - Determine sensor/satellite visibility for each satellite/sensor pair
 - Estimate sensor response (detectability) for each pair
 - Specify the number of obs/tracks for each viable satellite/sensor pair
 - "Decentralized execution": sensors told tracking needs/priority for a given day but not precisely when to track
- *Composite Tasking List (CTL) sent to all tasked sensors
- +Operates on a 24-hour cycle; only one tasking request set per day

Site Mission Planning

- *Sites receive the CTL from 18 SDS and plan data collection
- Mission planning allocates limited sensor resources to specific passes
 - Calculate passes using Two-Line Elements (TLEs) from local catalog
 - Estimate sensor response using radar range equation (radars) or visual magnitude (optical)
 - Resource conflicts resolved by tasking category, i.e., when a conflict exists, higher priority satellite pursued
- +Observations are collected according to mission plan
 - Plan may be superseded by special tasking in support of Space Situational Awareness (SSA)

Two-Line Orbital Elements (TLEs)

Two-Line Orbital Element (TLE) Format Intl Designator Ephemeris Type 2nd Derivative Epoch Time: Mean motion Year, Julian Day.dec Sat No. **BSTAR 1st Derivative Elset No Drag term** Class **Mean motion** 00000-0 35946U 09055A 12182.12787517 .00000032 25025-4 0 240 Check Sum 98.4805 261.3681 0002231 93.7109 266.4343 **14.37662472**142992 **Inclination Argument Mean Motion** Right of Sat No. (rev/day) **Ascension Rev No** Perigee

Eccentricity

(decimal assumed)

Mean

Anomaly

Line No

2 35946

This example:

Worldview-2

Will All Tasked Satellites be Tracked? NO!

- + Sensor may experience an outage
- * Sensor may have bad value for satellite "size" in database
 - Presume cannot be tracked, or allocate too little energy for detection
- * Sensor may not have enough energy/capacity to track object
 - Tracking of higher-priority objects took more energy or time than expected
- Position information from 18 SDS may be so poor that satellite not acquired by sensor
- * Observation quality may be so poor (large obs covariance) that the track is discarded
- → Sensor may mis-assign observations to a different satellite, thus "losing" the tracking information
 - Tracking reported to 18 SDS but may not be associated with proper object in time to be useful

What does all of this have to do with Conjunction Assessment?

- *Close approach events become known only when sensors discover the conjuncting objects in the first place
 - Need for wide-area surveillance systems
 - No proposed systems to track down to the 1cm level, which is the hardening level for most spacecraft
- *As events develop, additional tracking is desired in order to refine the OD and thus the risk assessment
 - Small objects can be tracked only by certain sensors, so much of SSN capability not helpful for these objects
 - Conjuncting objects are often assigned tasking increases to improve tracking, but this is subject to the vicissitudes of the tasking process

Orbit Determination Concept Description

- *Orbit Determination applies a set of force models to a pre-existing orbit estimate and satellite tracking observation to produce an estimate of the orbital state (a "state estimate") at a particular time (called the epoch time)
- *This state estimate can then be propagated forward to estimate the satellite's position and velocity at a future time
- *CA processes involve predicting primary and secondary satellite states forward in time to find the PCA and TCA
 - This process only as good as the underlying dynamical models that produce the epoch and TCA state estimates
 - Thus, some familiarity with OD specifics is necessary to understand CA subtleties

OD Force Modeling: 2-Body Motion

$$\vec{r}_{2B} = -\frac{\mu r}{r^3}$$

where

$$T = \frac{1}{r_{2B}} + \frac{1}{r_G} + \frac{1}{r_D} + \frac{1}{r_{LS}} + \frac{1}{r_{RP}} + \frac{1}{r$$

r = Vector from the center of the earth to the object

 μ = Gravitational parameter (a constant)

r = Magnitude (length) of the vector

General vs Special Perturbations

- *General Perturbations (GP): the theory of TLEs
 - Used for most of the space catalogue for most of SSA history due to computer processing limitations
 - Simplified geopotential (J2-5) and analytic atmospheric drag models
 - Some truncated expressions throughout to simplify calculations
 - No solar radiation pressure modeled
 - Fast but imprecise
- *Special Perturbations (SP): the theory of SP vectors
 - All above perturbations represented and handled numerically
 - All integration numeric
 - Relatively slow but quite precise
- *TLEs should not be used for CA
 - Not precise enough to drive risk assessment and mitigation
- *SP-based products routinely available
 - Provide needed accuracy

Orbit Determination Fit: Sources of Error

- *18 SDS uses minimum variance batch approach to OD fitting
 - Chosen historically because performs well with inaccurate/sparse data
- *Most common sources of OD fit error
 - Poor a priori sensor observation error weighting
 - Inaccurate sensor observations not de-weighted appropriately,
 - Incorrectly-chosen update interval length
 - Length of look-back period to choose observations for the OD batch update
 - If too long, prediction capability suffers; if too short, drag solution is poor
 - Aliasing between drag and mean motion
 - Both heavily affect in-track position
 - Can be addressed by subdividing drag solution into subdivisions (along-arc solutions)
- +OD fit error usually small when tracking is adequate
 - For CA, greater error source is prediction error to TCA

What does all of this have to do with Conjunction Assessment?

- *Accuracy of close-approach prediction dependent on quality of OD for primary and secondary objects
 - Primary usually more orbit-stable object and tracked more thoroughly
 - OD quality issues arise more frequently with secondaries
- *Problems in modeling of atmospheric drag and solar radiation pressure frequent cause of OD difficulties for CA
 - Solar storms, particularly those that arise in the middle of a CA event, cause particular difficulties
 - Solar radiation pressure is relatively new problem for CA but does influence deep-space
 CA state estimates and covariances
- *If solution is poor, remediation approaches pursued
 - Requests for additional tracking
 - Manual execution of questionable ODs

Orbit Determination Solutions

*Purpose of OD

- Generate estimate of the object's state at a given time (called the epoch time)
- Generate additional parameters and constructs to allow object's future states to be predicted (accomplished through orbit propagation)
- Generate a statement of the estimation error, both at epoch and for any predicted state (usually accomplished by means of a covariance matrix)

+Error types

- OD approaches (either batch or filter) presume that they solve for all significant systematic errors
- Remaining solution error is thus presumed to be random (Gaussian) error
- Sometimes this error can be intentionally inflated to try to improve the fidelity of the error modeling
- Nonetheless, presumed to be Gaussian in form and unbiased

OD Parameters Generated by ASW Solutions

- *Orbit Determination performed by 18 SDS using Astrodynamics Support Workstation (ASW)
- +Solved for: State parameters
 - Six parameters needed to determine 3-d state fully
 - Cartesian: three position and three velocity parameters in orthogonal system
 - Element: six orbital elements that describe the geometry of the orbit
- *Solved for: Non-conservative force parameters
 - ► Ballistic coefficient (C_DA/m); describes vulnerability of spacecraft state to atmospheric drag
 - ► Solar radiation pressure (SRP) coefficient (C_RA/m); describes vulnerability of spacecraft state to radiation momentum from sun
- +Considered: ballistic coefficient (and SRP) consider parameter
 - Not solved for but "considered" as part of the solution
 - Derived from information outside of the OD itself
 - Discussed later

OD Uncertainty Modeling

- *Characterizes the overall uncertainty of the OD epoch and/or propagated state
 - Uncertainty of each estimated parameter and their interactions
- *This is a characterization of a multivariate statistical distribution
- *In general, need the four cumulants to characterize the distribution
 - Mean, variance, skewness, and kurtosis; and their mutual interactions
 - Requires higher-order tensors to do this for a multivariate distribution
- *Assumptions about error distribution can simplify situation substantially
 - Presuming the solution is unbiased places the mean error values at zero
 - Presuming the error distribution is Gaussian eliminates the need for the third and fourth cumulants
 - Error distribution can thus be expressed by means of variances of each solved-for component and their cross-correlations
 - Thus, error can be fully represented by means of a covariance matrix

Covariance Matrix Construction: Symbolic Example

- *Three estimated parameters (a, b, and c)
- +Variances of each along diagonal
- *Off-diagonal terms the product of two standard deviations and the correlation coefficient (ρ); matrix is symmetric

	a	b	C	• • •
a	σ_a^2	$ ho_{ab}\sigma_{a}\sigma_{b}$	$ ho_{ac}\sigma_{a}\sigma_{c}$	• • •
b	$ ho_{ab}\sigma_{a}\sigma_{b}$	σ_{b}^{2}	$ ho_{ m bc}\sigma_{ m a}\sigma_{ m c}$	• • •
C	$ ho_{ac}\sigma_{a}\sigma_{c}$	$ ho_{ m bc}\sigma_{ m a}\sigma_{ m c}$	$\sigma_{\!c}^{2}$	• • •
• • •	• • •	• • •	• • •	• • •

Covariance often Expressed in Satellite Centered (UVW) Coordinate Frame

- ◆Origin: at satellite
- ◆Fundamental plane: established by the instantaneous position and velocity vectors of the satellite
- ◆Principal direction: along the radius vector to the satellite
- ♦ When valid/applicable:
 - Valid at time tag for the point
 - Used to represent miss distances relative to the Primary in an Conjunction Data Message (CDM)
- lacktriangle Unit vectors: U, V, W
 - w is perpendicular to the position and velocity vectors
 - v established by the right-hand rule $w \times u = v$

Coordinate frame diagram courtesy Omitron Inc.

Covariance Propagation Methods

- +OD produces covariance at epoch time
- *To obtain covariance at TCA, need to employ one of following propagation methods
 - Full Monte Carlo
 - Perturb state at epoch (using covariance), propagate each point forward to t_n with full non-linear dynamics, and summarize distribution at t_n
 - Sigma point propagation
 - Define small number of states to represent covariance statistically, propagate set forward by time-steps, reformulate sigma point set at each time-step, and use sigma point set at t_n to formulate covariance at t_n
 - Linear mapping
 - Create a state-transition matrix by linearization of the dynamics and use it to propagate the covariance to t_n by pre- and post-multiplication
- *All three of above methods legitimate
 - List moves from highest to lowest fidelity and computational intensity
 - ▶ 18 SDS uses linear mapping approach

Pc Calculation: Methodologies

- *Two-dimensional approximation ("2-D Pc")
 - Most common calculation methodology—fast and straightforward
 - Applicable to most conjunctions
 - Tests and calculations enhancements developed to improve 2-D Pc accuracy and use
- +"3-D Pc"
 - Expanded analytical technique proposed by V. Coppola (2012); improved by Hall (2021)
 - Used in situations in which 2-D Pc suspected to miscarry potentially
- *Monte Carlo
 - Most accurate methodology to calculate Pc—requires fewest assumptions
 - Also most computationally demanding

2-D Propability of Collision Calculation

Step I: Primary and Secondary uncertainties combined and placed at position of secondary

<u>Step II</u>: Primary and Secondary object sizes combined with circumscribing sphere and placed at position of primary

<u>Step III</u>: If collision hyperkinetic, motion approximated as rectilinear. Primary's motion can be considered a straight cylinder, which marginalizes out that component's contribution to probability--can then project situation into plane

$$P_{C} = \frac{1}{\sqrt{(2\pi)^{2}|C^{*}|}} \int_{A} \mathbf{f} \mathbf{x} \mathbf{p} - \frac{1}{2} \vec{r}^{T} C^{*-1} \vec{r} dX dZ$$

Step IV: Probability of collision is portion of covariance probability density that falls within hard-body radius (HBR) circle; as given by above integral

Monte Carlo Pc Calculation: Comparison with 2-D Pc Calculation

- •Analysis compares 28,652 conjunctions from CARA's archive
 - -May 2017 to March 2018 with 2D-Pc $\geq 10^{-7}$
- •All subjected to a statistical test to find significant Pc differences
 - -Null hypothesis: CDM-Pc = 2D-Pc
 - -52 conjunctions have p-value ≤ 10^{-6}
 - -99 more have 10^{-6} < p-value $\leq 10^{-3}$
- •Many more major deviations occur than expected from random variations

For a small fraction of temporally-isolated conjunctions, Monte Carlo yields significantly different results than the 2D P_c approximation0

CA Screenings: "Fly By" Ephemeris Comparison

- *Generate ephemerides for primary and secondaries that are possible threats
- *Construct screening volume box (or ellipsoid) about primary
- *"Fly" the box along the primary's ephemeris
- *Any penetrations of box constitute possible conjunctions
- *For these conjunctions, generate CDM
 - State estimates and covariances at TCA
 - Relative encounter information
 - OD information

CDM Contents: Conjunction (rather than object) Information

- *Creation time not necessarily the time of either OD
 - *Time of closest approach (will change slightly with updates)
 - +Overall miss distance and relative speed
 - *Relative position/velocity in RTN coordinates (another name for RIC or UVW, previously defined)

```
CCSDS_CDM_VERS
CREATION_DATE
ORIGINATOR
MESSAGE_FOR
MESSAGE_ID
TCA
MISS_DISTANCE
RELATIVE_SPEED
RELATIVE_POSITION_R
RELATIVE_POSITION_T
RELATIVE_VELOCITY_R
RELATIVE_VELOCITY_T
RELATIVE_VELOCITY_N
```

=1.0 =2015-106T18:19:13.000 =JSP0C	
	A/GSFC
=12345_conj_45678_20151	
$=2015 - \overline{107}\overline{123} : 59 : 48.867$	
=8083	[m]
=12067	[m/s]
=-184.5	[m]
=4764.9	[m]
=6526.6	[m]
=-21.6	[m/s]
=-9745.0	[m/s]
=7118.0	[m/s]

Sample Event: Information on Primary

- *Basic information on primary object helpful for orientation
 - Usually this information known well, so mostly refresher
 - If O/O ephemeris is used, estimation information not available or useful

CARA - Orbital Information @ TCA

Orbital Parameter	Value	
Period (min)	97.6	
Perigee Height (km)	681.3	
Apogee Height (km)	721.7	
Inclination (degrees)	98.2	
EDR (W/kg)	2.77e-04	
RCS	Large (> 1m^2)	

CARA - Estimation Specifics

Parameter	Value	
Avg. Tracks Per Day	5.7	
Num. Obs. in Span	237	
Time of Last Observation	< 24 hours	
WRMS	1.55	
Ballistic Coefficient (m^2/kg)	0.027	
SRP Coefficient (m^2/kg)	0.005	

Sample Event: Information on Secondary

- *Basic information on primary object needed for evaluation
 - Orbit/size information useful for establishing expected update quality
 - Actual tracking and update information indicates actual quality level achieved

OBJECT - Orbital Information @ TCA

Orbital Parameter	Value
Period (min)	98.7
Perigee Height (km)	674.9
Apogee Height (km)	718.5
Inclination (degrees)	81.2
EDR (W/kg)	5.19e-03
RCS	Small (< 0.1m^2)

OBJECT - Safety Volume Violations*

Event Type	Count
# of Predicted Tasking Volume Violations	2
Total # of non-zero Pc events	1

OBJECT - Estimation Specifics

Parameter	Value	
Avg. Tracks Per Day	0.5	
Num. Obs. in Span	15	
Time of Last Observation	< 48 hours	
WRMS	3.41	
Ballistic Coefficient (m^2/kg)	0.682	
SRP Coefficient (m^2/kg)	0.285	

OBJECT - Event Flags

Event Flag	Status
Single Station Tracking	Y
Increased Tasking Requested	Y
Increased Tasking Received	Y
State Update Consistency Check	Y

Sample Event: Ground Trace

*Not essential for informing mitigation decision, but helpful for

Sample Event: Conjunction Plane Plot

- +Orients miss distance in context of miss vector uncertainty
- *Low-risk situation at left; current event (high risk) at right

Sample Event: Pc Time History

*Shows behavior of Pc over time, along with tracking information

Indicates stak point

rability of latest

Sample Event: Miss Distance History

+Shows event stability, but little else

Componentized miss distance, especially with uncertainty values, more

insightful

Sample Event: Position Uncertainties I

*Shows event stability in relation to uncertainty

Indicates which components unstable and therefore potential source of

error

Sample Event: Position Uncertainties II

- *Shows event stability in relation to uncertainty, here in relative sense
 - Sigma-level rep meaningful

e updates more

Sample Event: Space Weather Situation

*Can explain past perturbed data and can predict future

perturbat

Sample Event: Space Weather Trade-Space

*Determines potential effect on Pc by space weather perturbation

 Can identify situations in which event not sensitive to space weather perturbation or for which risk is presently at a maximum level and is

likely only to decreas

Sample Event: Maneuver Trade-Space

*Identifies which maneuver intensities, at which times, would be required to reduce the Pc to an acceptable level

Sample Event: Summary Slide

Event Summary CARA vs. OBJECT

TCA: 09-Nov 2022 18:38 UTC

Time to TCA: 1.0 days

ASW OCMs Received: 17 O/O OCMs Received: 17

Last OCM Received: 08-Nov 2022 15:15 UTC Next Delivery: 09-Nov 2022 00:00 UTC

Current Risk Summary			
	ASW	0/0	
Probability of Collision	3.29e-04	3.49e-04	
Miss Distance (m)	501.5	210.7	
Radial (m)	-34.7	-51.2	
In-Track (m)	203.0	81.1	
Cross-Track (m)	-457.3	-187.6	
HBR (m)	10.70	10.70	

The CARA team is confident in our risk assessment analysis because:

- We have confidence in the secondary object's epoch state solution.
- We have confidence in the secondary object's state and state uncertainty predictions.

Recommended Course of Action:

 Execute screened maneuver if Pc remains elevated by commit point