Klasifikacija znamenki pomoću konvolucijske neuronske mreže (CNN)

DANIEL JELUŠIĆ

Uvod

- > Problem: klasifikacija rukom pisanih znamenki
 - Za danu sliku želimo odrediti koju ona znamenku predstavlja
 - Želimo da takva klasifikacija bude što brža i što točnija
- >Jedno rješenje: Konvolucijska neuronska mreža
 - Učenje s nadzorom
 - 3 sloja (Ulazni, Konvolucijski i Softmax sloj)
 - Slika se predprocesira (Konvolucija i Pooling) prije klasifikacije

Konvolucija

- ➤ Osnovni korak u konvolucijskom sloju
 - Ulazna slika se konvoluira sa k filtera (kernela) dobivenih učenjem
 - Dobivamo k novih slika
- Zašto konvolucija?
 - Slike koje predstavljaju istu znamenku imaju neka zajednička obilježja
 - Konvolucija izolira te sličnosti i time olakšava softmax sloju klasifikaciju

Pooling

- > Redukcija dimenzije konvoluiranih slika
 - nxn sliku podijelimo na disjunktne pxp kvadrate
 - Definiramo novu sliku tako da uzmemo srednje vrijednosti svih pxp kvadrata
 - Dobivena slika je dimenzije $\binom{n}{p} * \binom{n}{p}$
- Dva su razloga za pooling
 - Ubrzava račun u softmax sloju
 - Sprječava "overfitting" zbog prevelike količine podataka

Softmax sloj

- ➤ Na ulazu prima konvoluirane i poolane slike
 - Njih ima točno k i svaka je dimenzije $\binom{n}{p}^2$
 - Zato stvorimo vektor x dimenzije $k * (n/p)^2$
- \triangleright Parametri softmax regresije su $\theta = (\theta_1, ..., \theta_{10})$
 - Svaki od njih je dimenzije $k * (n/p)^2$
- \succ Konačno, izlaz softmax sloja je $h_{\theta_i}(x) = \frac{1}{1 + \exp(-\theta_i^T x)}$, za i = 1, ..., 10.
 - Ako ovo normaliziramo dobijemo zapravo predviđanja našeg modela

Učenje

- Faza učenja svodi se na optimizaciju filtera i parametara softmax regresije
 - Optimizacija se provodi pomoću trening skupa
- ➤ Koristi se Shohastički gradijentni spust (SGD)
 - SGD se realizira kroz nekoliko "epoha"
 - \circ Nakon svake epohe smanjujemo veličinu koraka, odnosno lpha
- ➤ Za dobivanje gradijenata koristimo Backpropagation algoritam

Primjer klasifikacije

- >Jednom kada smo izračunali optimalne parametre, klasifikacija slike se svodi na to da jednom prođemo kroz mrežu i izračunamo pripadne vjerojatnosti
- >Znamenku pridružimo klasi koja ima najveću vjerojatnost

- ➤ Slijedi vizualni primjer klasifikacije
- ➤ Uzmimo prvu znamenku iz testnog skupa:
- ➤ Polazna slika je dimenzije 28x28

Primjer klasifikacije (2)

- ➤Odlučili smo se da je filtera za konvoluciju ukupno 20
- ➤ Nakon optimizacije, dobiveni su sljedeći filteri (dimenzije 9x9):

Primjer klasifikacije (3)

➤ Konvolucijom (i aktivacijom) početne slike sa filterima dobivamo sljedećih 20 20x20 slika:

Primjer klasifikacije (4)

➤ Poolingom smanjimo dimenziju slika na 10x10:

Primjer klasifikacije (5)

- ➤ Konačno, ovako poolane slike su ulaz softmax sloju
- ➤ Nakon prolaza kroz softmax sloj, dobivene vjerojatnosti su:
- Dakle, znamenku klasificiramo kao 7, što odgovara stvarnoj klasi

0.0000

0.0000

0.0002

0.0000

0.0000

0.0000

0.9997

0.0000

0.0000

0.0000

Rezultati

- ➤ Klasifikacija cijelog testnog skupa trajala je otprilike 45s
- ➤ Najbolja postignuta točnost je 97.9%
- ➤Za kraj, na idućem slajdu prikazane su sve znamenke koje je algoritam krivo klasificirao
 - Uočimo da je dobar dio tih slika neprepoznatljiv čovjeku, pa je teško kriviti algoritam za te greške
 - Međutim, neke slike su vrlo jasne i nije jasno zašto ih algoritam nije uspio pravilno klasificirati

Krivo klasificirane slike

Literatura

- □UFLDL Tutorial http://ufldl.stanford.edu/wiki/index.php/UFLDL Tutorial
- UFLDL Exercise: Convolutional Neural Network

http://ufldl.stanford.edu/tutorial/index.php/Exercise: Convolutional Neural Ne

twork