MATH 5591H HOMEWORK 4

BRENDAN WHITAKER

Section 11.2 Exercises

- 11. Let φ be a linear transformation from the finite dimensional vector space V to itself such that $\varphi^2 = \varphi$.
 - (a) Prove that $Image(\varphi) \cap ker \varphi = 0$.

Proof. Note that $\varphi: V \to V$. Let $I = Image(\varphi)$ and let $K = ker\varphi$. Let $a \in K$. Then $\varphi(a) = 0$. Then let $a \in I$. Then there exists $b \in V$ s.t. $\varphi(b) = a$. But then note:

$$\varphi^2(b) = \varphi(\varphi(b)) = \varphi(a) = 0 = \varphi(b) = a.$$

So a = 0, hence $K \cap I = 0$.

(b) Prove that $V = Image(\varphi) \oplus ker\varphi$.

Proof. We prove that $V = Image\varphi + ker\varphi$. Since $Image\varphi \subseteq V$ and $ker\varphi \subseteq V$, we know that if $v \in Image\varphi$ and $w \in ker\varphi$, then $v, w \in V$, so $v + w \in V$. So $Image\varphi + ker\varphi \subseteq V$. We prove the other inclusion. Now let $a \in V$. If $a \in ker\varphi$ then we are done. So let $a \notin ker\varphi$. Then $\varphi(a) = b \neq 0 \in V$. Then we have:

$$\varphi(b-a) = \varphi(b) - \varphi(a) = \varphi(b) - \varphi^{2}(a)$$

$$= \varphi(b) - \varphi(\varphi(a)) = \varphi(b) - \varphi(b) = 0.$$
(1)

So we know that $b-a \in ker\varphi$. So then $a-b \in ker\varphi$ since φ is a linear transformation. Now note:

$$\varphi(a) + (a - b) = b + a - b = a.$$

and since $\varphi(a) \in Image(phi)$ and $a - b \in ker\varphi$, we have shown $V \subseteq Image\varphi + ker\varphi$. Thus $V = Image\varphi + ker\varphi$, and since we showed they have zero intersection in the last part, we have proved $V = Image\varphi \oplus ker\varphi$.

(c) Prove that there is a basis of V s.t. the matrix of φ with respect to this basis is a diagonal matrix whose entries are all 0 or 1.

Proof. Let $A = \{v_1, ..., v_k\}$ be a basis for $\varphi(V)$. Then let $B = \{v_{k+1}, ..., v_n\}$ be a basis for $\ker \varphi$. We know this basis must have n-k elements since $A \cup B$ must be a basis for V since we proved the direct sum in the last part. Now recall that the coefficient matrix of φ with respect to any basis C is given by (a_{ij}) where $\varphi(c_i) = \sum_j a_{ij}c_j$. So we find the matrix of φ with respect to $A \cup B$. Let $v_i \in A \cup B$. Suppose $v_i \in A$. Then $v_i = \varphi(w)$ for some $w \in V$. So we have $\varphi(v_i) = \varphi^2(w) = \varphi(w) = v_i$. So the i-th column of the i-th row must be a 1 and all other entries in that column are zero. And since $v_i \in A$, we know that $i \leq k$. Now let $v_i \in B$. Remember they are disjoint by part (a). Then $\varphi(v_i) = 0$, so the i-th column is all zeroes. Thus we have constructed the matrix of φ with respect to the basis $A \cup B$, and it is a diagonal matrix with only ones and zeroes along the diagonal.

Section 11.3 Exercises

- 3. Let S be any subset of V^* for some finite dimensional space V. Define $Ann(S) = \{ v \in V : f(v) = 0, \forall f \in S \}$. (Ann(S) is called the annihilator of S in V.
 - (a) Prove that Ann(S) is a subspace of V.

Proof. Recall Definition ??. Let $v, w \in Ann(S)$. Then $f(v) = f(w) = 0 \ \forall f \in S \subseteq Hom(V, F)$, where V is a vector space over the field F. Then f(v+w) = f(v) + f(w) = 0 + 0 = 0 since f is a homomorphism. So $v + w \in Ann(S)$. Now let $r \in F$. Then $f(rv) = rf(v) = r \cdot 0 = 0$ since again f is a homomorphism. So $rv \in Ann(S)$. Thus Ann(S) is a subspace by definition. \square

(b) Let W_1 and W_2 be subspaces of V^* . Prove that $Ann(W_1 + W_2) = Ann(W_1) \cap Ann(W_2)$ and $Ann(W_1 \cap W_2) = Ann(W_1) + Ann(W_2)$. Proof. Recall:

$$Ann(W_1 + W_2) = \{ v \in V : (f+g)(v) = 0, \forall f + g \in W_1 + W_2 \}.$$

So let $v \in Ann(W_1+W_2)$. Then with g=0, we have (f+g)(v)=f(v)=0, for all $f \in Ann(W_1)$. Now let f=0, by same argument, g(v)=0 for all $g \in W_2$, so $v \in Ann(W_1)$, so $v \in Ann(W_1) \cap Ann(W_2)$. Now let $v \in Ann(W_1) \cap Ann(W_2)$. Then f(v)=0 and g(v)=0 for all $f \in W_1, g \in W_2$. Then for arbitrary $f+g \in W_1+W_2$. We have (f+g)(v)=f(v)+g(v)=0+0=0. So $v \in Ann(W_1+W_2)$. So we have proved both inclusions: $Ann(W_1+W_2)=Ann(W_1) \cap Ann(W_2)$. Now we prove the second equality: recall:

$$Ann(W_1 \cap W_2) = \{ v \in V : f(v) = 0, \forall f \in W_1 \cap W_2 \}.$$

Let $u \in Ann(W_1)$ and $v \in Ann(W_2)$. Then for any $f \in W_1 \cap W_2$, f(u) = 0 and f(v) = 0, so f(u+v) = f(u) + f(v) = 0 + 0 = 0, since f is a homomorphism. So $u+v \in Ann(W_1 \cap W_2)$, so $Ann(W_1) + Ann(W_2) \subseteq Ann(W_1 \cap W_2)$.

Now we apply the result of part (c). We want to show $Ann(W_1 \cap W_2) \subseteq Ann(W_1) + Ann(W_2)$. By this result we know this is equivalent to showing:

$$Ann(Ann(W_1 \cap W_2)) = W_1 \cap W_2 \subseteq Ann(Ann(W_1) + Ann(W_2)).$$

So let B_V be a basis for V, and let B_{V^*} be a basis for V^* . Then let $\{f_1,...,k\}$ be a basis for W_1 and define $\{f_l,...,f_m\}$ as basis for W_2 , without loss of generality, where $m,k \leq n = \dim V = \dim V^*$. Then by part (f) we know $Ann(W_1) = F(B_V \setminus \{f_1,...,f_k\})$ and $Ann(W_2) = F(B_V \setminus \{f_l,...,f_m\})$. So $Ann(W_1) + Ann(W_2) = A = F(B_V \setminus \{\{f_l,...,f_m\} \cap \{f_1,...,f_k\}))$. And by part (f) again we know $Ann(A) = F(B_{V^*} \setminus \{B_{V^*} \setminus F(\{f_l,...,f_m\} \cap \{f_1,...,f_k\}))) = W_1 \cap W_2$. So we have proved the other inclusion, and we are done.

(c) Let W_1 and W_2 be subspaces of V^* . Prove that $W_1 = W_2$ if and only if $Ann(W_1) = Ann(W_2)$.

Proof. Let $\{g_1,...,g_n\}$ be a basis of V^{**} . And we have the natural isomorphism which sends $g_i\mapsto v_i\in B_V$, the basis of V. So $V\cong V^{**}$. So V^* must have a basis $\{f_1,...,f_n\}$ and let $\{f_1,...,f_k\}$ be a basis for W_1 . By part (f), we know $Ann(Ann(W_1))=Ann(F\{v_{k+1},...,v_n\})$. But again by part F and since $v_i(f_j)=f_j(v_i)=0, \forall i\neq j$, we know $Ann(F\{v_{k+1},...,v_n\})=F\{f_1,...,f_k\}$. But this is exactly W_1 , so Ann(Ann(W))=W, and so since $Ann(W_1)=Ann(W_2)$, we know $Ann(Ann(W_1))=Ann(Ann(W_2))\Rightarrow W_1=W_2$.

(d) Prove that the annihilator of S is the same as the annihilator of the subspace of V^* spanned by S.

Proof. Note $Ann(S) = \{ v \in V : f(v) = 0, \forall f \in S \}$. And note that

$$Ann(FS) = \{ v \in F : f(v) = 0, \forall f \in FS \}.$$

Now V^* is finite dimensional since we know how to generate the dual basis, and the dimension of V^* is the same as the dimension of V. So S has a finite maximal linearly independent set $B_S = \{f_1, ..., f_k\}$. Let $v \in Ann(FS)$. Then since $1 \in F$, we know $S \subseteq FS$, so $f(v) = 0, \forall f \in S$, so $Ann(FS) \subseteq Ann(S)$.

Now let $v \in Ann(S)$. Then since $B_S \subseteq S$, we know $v \in Ann(B_S)$. Then

$$FS \subseteq FB_S = F \{ f_1, ..., f_k \} = \{ r_1 f_1 + \cdots + r_k f_k : r_i \in F, f_i \in B_S \}.$$

Then $f_i(v) = 0$ for all i since they are in B_S , and $r_i \cdot 0 = 0$, so $v \in Ann(FB_S) \subseteq Ann(FS)$ since $FS \subseteq FB_S$. Hence $Ann(S) \subseteq Ann(FS)$, and so they are equal.

(e) Assume V is finite dimensional with basis $v_1, ..., v_n$. Prove that if $S = \{v_1^*, ..., v_k^*\}$ for some $k \neq n$, then Ann(S) is the subspace spanned by $\{v_{k+1}, ..., v_n\}$.

Proof. Note that S is some subset of the dual basis, so let's change notation to be consistent with lecture. Let $S = \{v_1^*, ..., v_k^*\} = \{f_1, ..., f_k\}$. Note since $k \neq n$, $\{v_{k+1}, ..., v_n\}$ is nonempty. Let $v = r_1v_1 + \cdots + r_nv_n \in Ann(S)$. Then $f_i(v) = 0$, $1 \leq i \leq k$. We want to show $v \in F\{v_{k+1}, ..., v_n\}$. Suppose $v \notin F\{v_{k+1}, ..., v_n\}$, then since $v \in V$, we know there exists $i \leq k$ s.t. the coefficient of v_i in $r_1v_1 + \cdots + r_nv_n$ is nonzero. But if this is true, we would have $f_i(r_1v_1 + \cdots + r_nv_n) \neq 0$ since each of the basis vectors is linearly independent. This is a contradiction, since $f_i(v) = 0$ for all $v \in Ann(S)$. So we must have that $v \in F\{v_{k+1}, ..., v_n\}$. And hence $Ann(S) \subseteq F\{v_{k+1}, ..., v_n\}$.

Now let $v \in F \{v_{k+1}, ..., v_n\}$. Then $v = r_{k+1}v_{k+1} + \cdots + r_nv_n$. Chose arbitrary $f_i \in S$. Then $i \le k$, so $f(r_jv_j) = r_jf(v_j) = f_j \cdot 0 = 0$ for all j > k, by definition of f_i , since $i \ne j$. Thus $f_j(v) = 0$ since j > k for all $v_j \in \{v_{k+1}, ..., v_n\}$. So since this holds for all $f_j \in S$, $v \in Ann(S)$, so $F\{v_{k+1}, ..., v_n\} \subseteq Ann(S)$.

(f) Assume V is finite dimensional. Prove that if W^* is any subspace of V^* , then $\dim Ann(W^*) = \dim V - \dim W^*$.

Proof. We have a basis of $\{v_1,...,v_n\}$ of V. Let $\{f_1,...,f_n\}$ be the corresponding basis of the finite dimensional V^* (since V is finite dimensional), and without loss of generality, let $\{f_1,...,f_k\}$ be a basis for W^* , which we know has a basis since it is a subspace. By the previous exercise, $Ann(W^*) = F\{v_{k+1},...,v_n\}$. So it has dimension n-k, and since $\dim V = n$ and $\dim W^* = k$, we are done.