Homework # 6: Resampling Methods (Chap. 5 and notes)

Due March 6 by 12 noon on Blackboard. Or March 20, your choice. The Midterm is on March 7.

1. (Jackknife and Bootstrap, continuing from the previous h/w) One needs to estimate θ , the frequency of days with 0 traffic accidents on a certain highway. The data are collected. During 40 days, there are 26 days with 0 accidents, 10 days with 1 accident, and 4 days with 2 accidents.

Statistician A estimates θ with a sample proportion $\hat{p} = 26/40 = 0.65$.

Statistician B argues that this method does not distinguish between the days with 1 accident and the days with 2 accidents, losing some valuable information. She suggests to model the number of accidents X by a Poisson distribution with parameter λ . Then we have $\theta = \mathbf{P}\{X=0\} = \exp(-\lambda)$. She estimates λ with $\hat{\lambda} = \bar{X}$. Then $\hat{\theta} = \exp(-\hat{\lambda})$. However, this estimator is biased, and last week, we reduced its bias by computing the jackknife estimator $\hat{\theta}_{JK}$.

- (a) Now we have three competing estimators \hat{p} , $\hat{\theta}$, and $\hat{\theta}_{JK}$. Use bootstrap to estimate their standard deviations.
- (b) Compare our three estimators of θ according to their bias and standard error.
- 2. (Bootstrap. Page 201, chap. $5, \approx \#9$)

We will now consider the Boston housing data set from the MASS library.

- (a) Based on this data set, provide an estimate for the population mean μ of medv, which is the median value of owner-occupied homes in \$1000s. Call this estimate $\hat{\mu}$.
- (b) Provide an estimate of the standard error of $\hat{\mu}$ (as we know, $\operatorname{Std} \bar{X} = \sigma/\sqrt{n}$).
- (c) Now estimate the standard error of $\hat{\mu}$ using the **bootstrap**. How does this compare to your answer from (b)?
- (d) Based on your bootstrap estimate from (c), provide a 95% confidence interval for μ . A popular approximation is $\hat{\mu} \pm 2 \, \widehat{\text{Std}}(\hat{\mu})$. Compare it to the results obtained using an R command t.test(Boston\$medv).
- (e) Now, estimate M, the population median of med with the sample median \hat{M} .
- (f) We now would like to estimate the standard error of M, but unfortunately, there is no simple formula for computing the standard error of a sample median. Instead, estimate this standard error using the bootstrap.

The Midterm exam covers

- Regression (slopes, partial F-tests, lack of fit tests, categorical predictors, and interactions)
- Classification (logistic regression, LDA, QDA, and KNN)
- Cross-validation (validation set method, LOOCV, K-fold CV)
- Performance evaluation, prediction accuracy, and tuning (mean squared error and classification rate)