大学物理实验报告

第一部分 (实验目的与原理)

	部 (院) _	邪(院	电子信息等院	姓名乔洪煜寒	学号_2028410073	专业,电科	
☆	7人 口 廿口	人 口 廿 口			L1: 4 =		

【实验名称】

用牛顿环干涉测透镜的曲率丰径

【实验目的】

- 1. 掌握用牛顿环测定透镜购率半径的方法
- 2. 通过实验加深对等厚于涉原理的理解

【实验原理】

牛顿环仪,是将一曲率半径很大的平凸透镜放在一圈光的平玻璃板上面,以周用金属框架固定。因此在透镜的凸面与平玻璃之间形成一个厚度随直。它变在10空气薄膜,薄膜中心的厚度为零,愈向边缘愈厚,离中心点等距离的地方膜的,跨相同。

牛顿环仪剖面图

若用我长为入的单色无投射到该装置上,则 空气膜上下表面反射的无波将在空气膜附近相互干涉,形成干涉条纹。因无程差随空气膜厚度的变化而变化,所以是一种等厚干涉.

由于空气膜的厚度厚度自中心向外逐渐 熔大且旋转对称,因此干涉杀发是一组明暗 相间的同心圈环。该干涉现象是牛顿最早发 现的,因此称为牛顿环.

上表面图别者的老浪损失 由上式图识干涉环的真然加与何或正比, 因此加越大条纹的半径差就越小,即 系纹越来越密,是非线性等厚干涉。 因此,加级干涉环暗条纹的半径为: 1m²= MRA

$$\Rightarrow \Gamma m^2 - \Gamma n^2 = (m-n)R\lambda$$

$$\Rightarrow R = \frac{\Gamma m^2 - \Gamma n^2}{(m-n)\lambda} = \frac{dm^2 - dn^2}{4(m-n)\lambda}$$

$$m-n = 5. \quad \lambda = 589.3 \text{ nm}$$

实验中连续测量10分暗环的直径,然后用逐走法计算透镜的曲率丰径

【实验仪器】

牛顿环仪、读数显微镜、低压物灯、垫台

大学物理实验报告

第二部分 (实验记录)

学部 (院)_	电子信息学院	姓名不洪煜寒	学号_2028410073	专业电科	
实验日期			成绩		

【原始实验数据及实验现象记录】

	dı (mm)	d2(mm)	d (mm)	$dm^2 - dn^2 (mm^2)$	R(m)
l	26.050	20.838	5.2(2	10.339	
2	25.948	20.946	5.002	10.338	
3	25.832	21.048	4.784	10.170	
4	25.725	21.160	4.565	10.342	
5	25.610	21.274	4. 336	10.402	
6	25.488	21.386	4.102		
7	25.358	21.526	3.832		
8	25.228	21.662	3.566	$R = \frac{dn^2 - dn^2}{4(m-m)\lambda}$ $m-n = 5$ $\lambda = 589.3 \text{ nm}$	
9	25.075	21.835	3.240		
10	24.908	22.010	2.898		

大学物理实验报告

第三部分(实验方法与结果讨论)

学部 (院) 电子信息学院	姓名术洪煜寒	学号_2028410073	专业电科	
实验日期				

【实验方法及步骤】

- 1.打开钠光灯电源开关,调整件顿环。
 - 0移开仪器罩,打开钠光灯电源开关,预热几分钟使之正常发光。
 - ②借助室内灯光,用于拿着牛顿环仪的边框,并均匀调节牛顿环仪的3个螺丝,用眼睛直接观察,直至于涉条纹为圆环形且位于透镜的中心。
- 2 在读效显微镜中调节出清晰的牛顿环干涉条纹。
 - ①调节显微镜的读数手轮,使镜筒大致位于读数极尺中央,并调节目镜,在目镜中看到清晰的1字又丝像,无视差。
 - ②将牛河环仪放在显微镜镜筒下方工作台的毛玻璃上,使干涉图环位于镜筒下端物镜的正中心。
 - ③适当移动钠光灯的位置,在目镜中观察视场的亮度,使整个视场均匀且较亮,颜色呈黄色。(初镜上印反射玻璃、解定已调好,不可随意调节)
 - 母转动显微镜的调焦手轮,对牛顿环仪的干涉圆环聚焦。先将镜筒下降,玻璃片接近牛顿环装置但不能碰上,然后缓缓上升,直至在目镜中看到清晰的十字又丝和朋暗相间的干涉圆环。
- 3.测量干涉园环晒直径。(从测量十个暗条纹为例)
 - ①超当微微移动牛顿环仪,如右图所示,使牛顿环的圆心位于十字又丝的支点上。
 - ②松开目镜紧固螺丝,转动目镜使又丝的横丝与杯尺平行,即与镜筒移动,颜平行并消除碗套。
 - ③转动读款手轮,使镜筒向左移动,同时款环即级数,一直移动到第13暗环处。
 - ④倒转读叙手轮,使十字又丝依次与第/2,11,...,3级暗环相外机,例记录下对应的镜角所在位置的读数。
 - ⑤继续转动读款手轮,使t字型丝越过圆心,再依次与3,4,...,12级暗环相内切,研记录下对定的镜筒所在位置的读款。
 - ⑥计算竹环的直径/别表透镜的曲率半径,并计算其书均值。

【实验数据处理及实验结果】

	di(mm)	d2(mm)	d (mm)	$dm-dn^2$ (mm²)	R (m)
1	26.050	20.838	5. 212	10.339	0.877
2	15.948	20.946	5.002	10.338	0.877
3	25.832	21.048	4.784	10,170	0.863
4	25.725	21.160	4, 565	10.342	0.877
5	25.610	21.274	4.336	10.402	0.883
6	25.488	21.386	4.102	R=0.875m	
7	25.358	21.526	3.832		
8	25.228	21.662	3.566	$R = \frac{dn^2 - dn^2}{4(m-n)\lambda}$	
9	25.075	21.835	3.240	m-n=5	
10	24.908	22.010	2.898	$\lambda = 589.3 \text{nm}$	

A美:
$$S_R = \sqrt{\frac{\Sigma(Ri-\bar{R})^2}{n(n+1)}} = 3.317 \times 10^{-3} \text{ m}$$

B美: $G_R = \frac{\Delta R.4 \times}{\sqrt{3}} = \frac{0.004 \text{ m/m}}{\sqrt{3}} = 2.309 \times 10^{-6} \text{ m}$
 $M_{C,R} = \sqrt{S_R^2 + 6R^2} = 3.317 \times 10^{-3} \text{ m}$
 $\frac{U(R)}{R} = \sqrt{\frac{U_{C.R}^2}{R}^2} = 3.790 \times 10^{-3}$
 $U(R) = 4 \times 10^{-3} \text{ m}$
 $R = R \pm u(R) = (0.875 \pm 0.004) \text{ m}$

【问题讨论】

(1) 在测量牛顿环各干涉环的直径时, 若又丝之底、不是准确地通过圆环的中心, 则测量的建筑长而非真正 的直径。这对实验结果是否有影响?为什么? 答: 无影响。设弦长为人,弦心路为如,则(台)=尼-do, lin-lin=4Rin-4的=din-di, 敌 din-di的直不 受影响,又R=dni-dni
所以R值不受影响

以为什么相邻两暗环(威克环) 的间距, 基近中心的安比边缘的大?

楚: 「Kj= KAR. 「(KH) =(KH) AR. 两式相底唇了(km)-1水;= 入尺 条纹间距: \DT= \(\km) - \kk)= \\ \r(\km) \) 极小随机物概念