Computer Vision Training

21-02-2020

Millennials.ai

Millennials.ai is a research based Artificial Intelligence (A.I.) company with a focus on middle large companies already using their data to efficiently execute their business proposition. They integrate custom made algorithms and machine learning into existing business processes to optimize the value of your business data.

Wie ben ik?

- MSc Artificial Intelligence aan Universiteit van Amsterdam
- Natural Language Processing Engineer bij Attendi

Inhoudsopgave

- 1. Introductie
- 2. Deel I
 - Image Filtering
 - Network Layers
 - Convolutional Neural Networks
 - Data tekort
 - Assignment 1
- 3. Deel II
 - Introduction to Generative Models
 - Variational Autoencoders
 - Generative Adversarial Networks
 - Assignment 2

Introductie

Wat is Computer Vision?

1. Computer

Elektronische machine die bepaalde processen en operaties kan uitvoeren op basis van een set instructies, gestuurd door hardware of software

2. Vision

Het begrijpen van een lokale omgeving door de belichting van objecten door het lichtspectrum

3. Computer Vision

- Machines die proberen te begrijpen wat ze zien om een bepaald doel te bereiken
- Het proces waarbij een machine of systeem een begrip van visuele informatie krijgt door (een)
 algoritme(s) te runnen op de gegeven informatie

Voorbeelden van applicaties

- Optical character recognition: Afbeeldingen van tekst vertalen naar een vorm die kan worden begrepen door een machine
 Handgeschreven postcodes op brieven herkennen
- Object detection: Objecten identificeren in foto's en video's Tellen van auto's
- Fingerprint recognition: Pattern information van een vingerprint gebruiken om een vergelijking te maken tussen een source en target vingerprint

 Automatische toegangsverlening

Computer Vision Approaches

1. Bottom-up

- Gebruikt het begrip van verzamelde informatie om verder begrip te ontwikkelen over een arbitraire observatie
- Al het verzamelde begrip leidt naar een oplossing of een algemeen begrip van het geheel van de observatie

2. Top-down

- Gebruikt achtergrondkennis om begrip te produceren over een observatie
- Achtergrondkennis wordt gebruikt als referential guide om parameters te selecteren die een model passen

Computer Vision Approaches

Automatisch begrijpen van foto's en video's:

- Bottom-up: Eigenschappen berekenen van de 3D wereld van visuele data Image processing, 3D reconstruction

- Top-down: Algoritmes en representaties die computers objecten, mensen, scènes en activiteiten laten herkennen

Segmentation, image classification, object detection

Wat maakt Computer Vision ingewikkeld?

- Viewpoint variation

- Illumination change

Occlusion

- Background clutter

Appearance change

Orientation and scale

Wat is een zwart-wit afbeelding?

- Afbeelding bestaat uit 3 dimensies Hoogte, breedte, aantal kleurkanalen
- Zwart-wit: 1 kleurkanaal
- Elk getal representeert een bepaalde grijswaarde intensiteit
- [0, 255] / [0, 1]

Wat is een kleurafbeelding?

- 3 kleurkanalen
- Pixels een combinatie van Rood, Groen en Blauw (RGB)
- 100x100 kleurafbeelding = 100x100x3 = 30,000 getallen
- 30,000 getallen tussen 0-255: Is dit een hond of een kat?

Image Filtering

Applicaties

Enhancement
 Noise reduction, sharpening,
 resizing

- Information extraction Textures, edges Pattern detection
 Template matching

Vervangt iedere pixel met het gemiddelde van zijn neighbourhood

1	1	1	1
—	1	1	1
9	1	1	1

1	1	1	1
$\frac{1}{2}$	1	1	1
9	1	1	1

F[x, y]

0	0	0	0	0	0	0	0	0	0
			90	90	90	90	90		
			90	90	90	90	90		
			90	90	90	90	90		
			90		90	90	90		
			90	90	90	90	90		
		90							

1	1	1	1
_	1	1	1
9	1	1	1

F[x, y]

0	0	0	0	0	0	0	0	0	0
									0
			90	90	90	90	90		0
			90	90	90	90	90		0
			90	90	90	90	90		0
			90	0	90	90	90		0
			90	90	90	90	90		0
			0	0	0	0	0		0
		90							0
		.0							0

G[x, y]

1	1	1	1
_	1	1	1
9	1	1	1

F[x,y]

G[x,y]

1	1	1	1
$\frac{1}{2}$	1	1	1
9	1	1	1

F[x, y]

0	0	0	0	0	0	0	0	0	0
			90	90	90	90	90		
			90	90	90	90	90		
			90	90	90	90	90		
			90		90	90	90		
			90	90	90	90	90		
		90							

G[x, y]

1	1	1	1
$\frac{1}{2}$	1	1	1
9	1	1	1

F[x, y]

G[x,y]

1	1	1	1
	1	1	1
9	1	1	1

F[x, y]

G[x,y]

0	10	20	30	30	30	20	10	
	20	40	60	60	60	40	20	
	30	60	90	90	90	60	30	
	30	50	80	80	90	60	30	
	30	50	80	80	90	60	30	
	20	30	50	50	60	40	20	
10	20	30	30	30	30	20	10	
10	10	10	0	0	0		0	

Identity Filter

Original

0	0	0
0	1	0
0	0	0

100

Filtered (no change)

Shifting Filter

0	0	0
0	0	1
0	0	0

Sharpening Filter

Accentueert de verschillen met het lokale gemiddelde

0	0	0	1	1	1	1
0	2	0	<u> </u>	1	1	1
0	0	0	9	1	1	1
0	0	0		1	1	1

Sobel Filter (verticaal)

1	0	1
2	0	-2
1	0	-1

Sobel

Sobel Filter (horizontaal)

1	2	1
0	0	0
-1	-2	-1

Sobel

Network Layers

Fully Connected Layer

32x32x3 input afbeelding -> reshape naar 3072x1

Fully Connected Layer

32x32x3 input afbeelding -> reshape naar 3072x1

Geeft 1 getal: dot product tussen een rij van W en de input (3072-dimensionaal dot product)

- 32x32x3 input afbeelding (behoudt de spatial structure)

- 32x32x3 input afbeelding (behoudt de spatial structure)
- Convolve het filter met de afbeelding (slide het filter over de afbeelding, bereken dot producten)

Wordt gebruikt om features in een afbeelding te matchen

Filter

2	1	0
0	2	2
2	1	0

30	3,	22	1	0
02	02	10	3	1
30	1,	2_2	2	3
2	0	0	2	2
2	0	0	0	1

12.0	12.0	17.0
10.0	17.0	19.0
9.0	6.0	14.0

Padding

Zorgt dat ook de edges van de input worden meegenomen

Stride

Verkleint de output size

Pooling Layer

- Verkleint de representaties
- Behoudt de belangrijkste informatie

Max Pooling

Neem het hoogste getal

Bijvoorbeeld: 2x2 max pooling filter

1	1	2	4	
5	6	7	8	
3	2	1	0	_
1	2	3	4	

6	7	8
6	7	8
3	3	4

Max Pooling

Neem het hoogste getal

Bijvoorbeeld: 2x2 max pooling filter met stride 2

1	1	2	4		
5	6	7	8		6
3	2	1	0		3
1	2	3	4	<u>'</u>	

Average Pooling

Neem het gemiddelde getal

Bijvoorbeeld: 2x2 avg pooling filter met stride 2

1	1	2	4	
5	6	7	8	
3	2	1	0	
1	2	3	4	

3,25	5,25
2	2

Filter v.s. kernel

- 1D: filter = kernel
- nD: filter = verzameling van kernels Eén kernel voor elk input channel
- Elk filter in een convolutional layer produceert één output channel

Activation Layer

ReLU (Rectified Linear Unit)

- Computationeel efficient
- Snelle convergence
- Output is niet zero-centered

Convolutional Neural Network

X'en en O's

- Naïeve aanpak:
 - 1. Bewaar een afbeelding van een X en een O
 - 2. Check welke het meest matcht met de input
- Een afbeelding is een 2D array van pixels
- Als de pixels niet matchen, matchen voor een computer de afbeeldingen niet
- We willen ook X'en en O's kunnen herkennen als ze zijn geshift, gekrompen, gedraaid of vervormd

Features

- CNNs vergelijken afbeelding stukje voor stukje
- CNNs zoeken naar features
- Elke feature is als een mini afbeelding (een kleine 2D array)
- X'en: Features zijn diagonale lijnen en kruisingen

Convolutie

- De gehele afbeelding wordt doorzocht voor elke feature
- Geeft een set gefilterde afbeeldingen, één voor elke feature

Pooling

ReLU (Rectified Linear Units)

ReLU (Rectified Linear Units)

Fully Connected Layers

Model

Model

Higher v.s. lower layers

Backpropagation

- Gelabelde training data
- Initialisatie van pixels van features en weights van FC's
- Input image wordt voorspeld
- Foutheid van voorspelling vertelt hoe goed de features en weights zijn
- Features en weights worden aangepast om de error te verkleinen

Waarom werken CNNs?

- Kernels combineren pixels in een kleine, lokale area om een output te vormen De output feature ziet alleen de input features van een kleine, lokale area
- De kernel wordt over de gehele afbeelding gebruikt om outputs te produceren

- Architectuur: hoogte x breedte kleiner, meer channels
- Steeds complexere features

Evolutie van CNNs

Wat als je niet genoeg training data hebt?

Data Augmentation

Transformaties toepassen op training afbeeldingen

- Resizing
- Cropping
- Flipping
- Rotation

Transfer Learning

1. Train op ImageNet

FC-1000 FC-4096 FC-4096 MaxPool Conv-512 Conv-512 MaxPool Conv-512 Conv-512 MaxPool Conv-256 Conv-256 MaxPool Conv-128 Conv-128 MaxPool Conv-64 Conv-64

Image

Transfer Learning

	Soortgelijke dataset	Andere dataset
Weinig data	?	?
Redelijk veel data	?	?

Transfer Learning

	Soortgelijke dataset	Andere dataset
Weinig data	Gebruik Linear Classifier in top layer	Probleem
Redelijk veel data	Finetune een paar lagen	Finetune een grotere hoeveelheid lagen

Conclusie & Applicaties

Conclusie

- Computer Vision wordt gebruikt om foto's en video's automatisch te begrijpen
- CNNs werken goed omdat ze simpele en complexe features ontdekken
 - De lokale features moeten algemeen genoeg zijn om over de hele afbeelding gebruikt te kunnen worden
- CNNs worden steeds dieper
- Data augmentation en/of transfer learning nodig

Boodschappen doen

Boodschappen doen

- Bestaat al in Seattle
- Camera's op het plafond
- Computer vision bepaalt of een product is gepakt (en door wie)
- Mensen trainen de algoritmes bij door fouten op te sporen

Zelfrijdende Auto's

Zelfrijdende Auto's

- Gebruikt computer vision om objecten te detecteren
- Handsignalen van fietsers detecteren

Gezondheidszorg

- Kanker detecteren in scans
- Deep CNN
 - Pretrained op ImageNet (1,28 miljoen images van 1,000 objecten)
 - Fine-tuned op eigen dataset (129,450 images)
- 21 dermatologen
- CNN detecteert even goed als dermatologen

Dermatologist-level classification of skin cancer with deep neural networks

Andre Esteva^{1*}, Brett Kuprel^{1*}, Roberto A. Novoa^{2,3}, Justin Ko², Susan M. Swetter^{2,4}, Helen M. Blau⁵ & Sebastian Thrun⁶

Skin cancer, the most common human malignancy¹⁻³, is primarily diagnosed visually, beginning with an initial clinical screening and followed potentially by dermoscopic analysis, a biopsy and histopathological examination. Automated classification of skin lesions using images is a challenging task owing to the fine-grained variability in the appearance of skin lesions. Deep convolutional

images (for example, smartphone images) exhibit variability in factors such as zoom, angle and lighting, making classification substantially more challenging 3-3-2. We overcome this challenge by using a data-driven approach—1.41 million pre-training and training images make classification robust to photographic variability. Many previous techniques require extensive preprocessing, lesion segmentation and

AvgPool

MaxPool

Concat

Dropout

- Fully connected

Softmax

Landbouw

- Drones maken afbeeldingen van de bodem, die worden geanalyseerd om te bepalen of de grond vruchtbaar is of dat er moet worden geoogst
- Stenen moeten weggehaald worden van gewassen voordat er gezaaid kan worden
 - Kunnen automatisch verwijderd worden met CV en robots

Assignment 1

https://git.io/JvB50

Introduction to Generative Models

Supervised v.s. Unsupervised Learning

Supervised Learning

- Data: (x, y)
- Doel: Leer een functie die x -> y mapt
- Voorbeelden: classification, regression, object detection, semantic segmentation

Supervised v.s. Unsupervised Learning

Unsupervised Learning

- Data: (x)
- Doel: Leer een onderliggende, verborgen structuur van de data
- Voorbeelden: clustering, dimensionality reduction

- Genereer nieuwe samples van dezelfde distributie als de training data
- Leer $p_{model}(x)$, vergelijkbaar met $p_{data}(x)$

Training data $\sim p_{data}(x)$

Generated samples $\sim p_{\text{model}}(x)$

- Genereer nieuwe samples van dezelfde distributie als de training data
- Leer $p_{model}(x)$, vergelijkbaar met $p_{data}(x)$

Training data $\sim p_{data}(x)$

Generated samples $\sim p_{\text{model}}(x)$

- Density estimation: schatting van een onobserveerbare, onderliggende probability density function (kansdichtheid) maken op basis van geobserveerde data
 - a. Explicit density estimation: Definieer en los expliciet op voor $p_{model}(x)$
 - b. Implicit density estimation: Leer een model dat kan samplen van $p_{model}(x)$ zonder deze expliciet te definiëren

- Produceren realistische nieuwe samples voor:
 - Kunst
 - Gezichten
 - Image super-resolution: Hoge resolutie versies genereren van input afbeeldingen (medical imaging)

2014

2015

2016

2017

Variational Autoencoders

Neural Network Perspectief

Onderdelen:

- Encoder
 Compresst de data in een latent space Z
- 2. Decoder
 Reconstrueert de data met de hidden representation
- 3. Loss function

Encoder

- Neural Network
- Input: datapunt x
- Output: hidden representation z
- Heeft weights and biases θ

Encoder

- Neural Network
- Input: datapunt x
- Output: hidden representation z
- Heeft weights and biases θ

- Input x: 28x28 afbeelding van een handgeschreven getal
- Encoder encodeert data (784-dimensionaal) in een hidden representation space z (kleiner dan 784D)
- Encoder moet een efficiënte compressie van de data leren

Encoder

- Neural Network
- Input: datapunt x
- Output: hidden representation z
- Heeft weights and biases θ

- Input x: 28x28 afbeelding van een handgeschreven getal
- Encoder encodeert data (784-dimensionaal) in een hidden representation space z (kleiner dan 784D)
- Encoder moet een efficiënte compressie van de data leren
- Encoder: $q_{\theta}(z|x)$
- Hidden space z is stochastisch: encoder geeft parameters voor $q_{\theta}(z|x)$ (normaalverdeling)
- Kunnen van deze distributie samplen om noisy values te krijgen van de representaties z

Decoder

- Neural Network
- Input: representatie z
- Output: parameters voor de probability distribution van de data
- Heeft weights en biases φ

Decoder

- Neural Network
- Input: representatie z
- Output: parameters voor de probability distribution van de data
- Heeft weights en biases φ

- Elke pixel op de afbeelding is een 0 of 1
- Bernoulli distributie
- Decoder krijgt de latent representation van een getal z als input
- Geeft 784 Bernoulli parameters als output, één voor elke pixel
- Decoder decodeert de nummers in z naar 784 getallen tussen 0 en 1

Decoder

- Neural Network
- Input: representatie z
- Output: parameters voor de probability distribution van de data
- Heeft weights en biases φ

- Elke pixel op de afbeelding is een 0 of 1
- Bernoulli distributie
- Decoder krijgt de latent representation van een getal z als input
- Geeft 784 Bernoulli parameters als output, één voor elke pixel
- Decoder decodeert de nummers in z naar 784 getallen tussen 0 en 1
- Decoder: $p\phi(x|z)$
- Informatie van de oorspronkelijke 784D vector kan niet perfect overgebracht worden
- Decoder heeft alleen toegang tot een samenvatting van de informatie (kleiner dan 784D)

Encoder: $q_{\theta}(z|x)$ Decoder: $p_{\omega}(x|z)$

Hoeveel informatie gaat verloren?

- Meet met negative log likelihood $p\phi(x|z)$
- Vertelt hoe effectief de decoder heeft geleerd een input image x te reconstrueren gegeven zijn latent representation z

$$\ell_i(\theta, \phi) = -\mathbb{E}_{z \sim q\theta(z|xi)}[\log p_{\phi}(x_i|z)] + \mathsf{KL}(q_{\theta}(z|x_i) \mid\mid p(z))$$

Encoder: $q_{\theta}(z|x)$ Decoder: $p_{\omega}(x|z)$

Hoeveel informatie gaat verloren?

- Meet met negative log likelihood $p\phi(x|z)$
- Vertelt hoe effectief de decoder heeft geleerd een input image x te reconstrueren gegeven zijn latent representation z
- Er zijn geen globale representaties die worden gedeeld door alle datapunten Loss functie kan worden ontbonden in termen die alleen van één datapunt (ℓ_i) afhangen Som over alle datapunten

$$\ell_i(\theta, \phi) = -\mathbb{E}_{z \sim q\theta(z|xi)}[\log p_{\phi}(x_i|z)] + \mathsf{KL}(q_{\theta}(z|x_i) \mid\mid p(z))$$

$$\mathcal{L}(\theta, \phi) = \sum_{i=1}^{N} \ell_i$$

Encoder: $q_{\theta}(z|x)$ Decoder: $p_{\theta}(x|z)$

- 1. Reconstruction loss
 - a. Expectation over encoder's distributie over de representaties
 - b. Leert de decoder de data te reconstrueren
- 2. Regularizer
 - a. Kullback-Leibler divergence tussen encoder's distribution $q\theta(z|x)$ en prior p(z)
 - b. Meet hoeveel informatie verloren gaat wanneer we q gebruiken om p te representeren

$$\ell_i(\theta, \phi) = -\mathbb{E}_{z \sim q\theta(z|xi)}[\log p_{\phi}(x_i|z)] + \mathsf{KL}(q_{\theta}(z|x_i) \mid\mid p(z))$$

$$\mathcal{L}(\theta, \phi) = \sum_{i=1}^{N} \ell_i$$

Encoder: $q_{\theta}(z|x)$ Decoder: $p_{\omega}(x|z)$

p(z): standaardnormale verdeling

 $p(z) = \mathcal{N}(0, 1)$

- Reconstruction loss
 - a. Expectation over encoder's distributie over de representaties
 - b. Leert de decoder de data te reconstrueren
- 2. Regularizer
 - a. Kullback-Leibler divergence tussen encoder's distribution $q\theta(z|x)$ en prior p(z)
 - b. Meet hoeveel informatie verloren gaat wanneer we q gebruiken om p te representeren
 - c. Als de encoder representaties geeft die anders zijn dan de standaardnormale verdeling, krijgt hij een penalty
 - d. Zorgt dat representaties van z van elk getal divers zijn

$$\ell_i(\theta, \phi) = -\mathbb{E}_{z \sim q\theta(z|xi)}[\log p_{\phi}(x_i|z)] + \mathsf{KL}(q_{\theta}(z|x_i) \mid\mid p(z))$$

$$\mathcal{L}(\theta, \phi) = \sum_{i=1}^{N} \ell_i$$

Reparameterization Trick

- Decoder input: sampled representation z
- Samples hebben geen gradients
- Backpropagation

Original

Reparameterization Trick

- Decoder input: sampled representation z
- Samples hebben geen gradients
- Backpropagation
- Verplaats sampling step
- Normaalverdeelde variabel met gemiddelde μ , standaarddeviatie σ

$$z = \mu + \sigma \cdot \varepsilon$$

waar $\varepsilon \sim \mathcal{N}(0, 1)$

mean vector

sampled

Onderdelen:

- Probability model van data x
- Latent variables z

Joint probability van het model:

$$p(x, z) = p(x|z) p(z)$$

Onderdelen:

- Probability model van data x
- Latent variables z

Joint probability van het model:

$$p(x, z) = p(x|z) p(z)$$

Voor elk datapunt i:

- 1. Trek latent variables z uit prior p(z): $z_i \sim p(z)$
- 2. Trek datapunt $x_i \sim p(x|z)$

Onderdelen:

- Probability model van data x
- Latent variables z

Joint probability van het model:

$$p(x, z) = p(x|z) p(z)$$

Voor elk datapunt i:

1. Trek latent variables z uit prior p(z): $z_i \sim p(z)$

2. Trek datapunt $x_i \sim p(x|z)$

Likelihood p(x|z) hangt af van de latent variables z

 $\mathcal{N}(0, 1)$

Onderdelen:

- Probability model van data x
- Latent variables z

Joint probability van het model:

$$p(x, z) = p(x|z) p(z)$$

Nieuwe voorspellingen maken

Doel:

- 1. Goede waardes afleiden van de latent variables gegeven de geobserveerde data
- 2. Posterior distribution p(z|x) berekenen

Bayes Theorem: Likelihood Prior

Posterior
$$\{p(z|x) = \underbrace{p(x|z)p(z)}_{p(x|z)p(z)dz} = \underbrace{p(x|z)p(z)}_{p(x|z)p(z)dz}$$

Integraal kost exponentiële hoeveelheid tijd om te berekenen

Nieuwe voorspellingen maken

Doel:

- 1. Goede waardes afleiden van de latent variables gegeven de geobserveerde data
- 2. Posterior distribution p(z|x) berekenen

Benadering!

Bayes Theorem: Likelihood Prior

Posterior
$$\{p(z|x) = \underbrace{p(x|z)p(z)}_{p(x|z)p(z)dz} = \underbrace{p(x|z)p(z)}_{p(x|z)p(z)dz}$$

Integraal kost exponentiële hoeveelheid tijd om te berekenen

Variational Inference

- Benader de true posterior p(z|x) met een variational posterior $q_{\lambda}(z|x)$
- λ indiceert de gekozen distributie
 - Bijvoorbeeld: Normaalverdeling
 - $\lambda_{xi} = (\mu_{xi}, \sigma^2_{xi})$
- Meet hoe goed de variational posterior de true posterior benadert
 - Kullback-Leibler divergence
 - Meet hoeveel informatie verloren gaat wanneer we q gebruiken om p te benaderen

$$\mathsf{KL}(\mathsf{q}_{\lambda}(\mathsf{z}|\mathsf{x}) \mid\mid \mathsf{p}(\mathsf{z}|\mathsf{x})) = \mathbb{E}_{\mathsf{q}}[\log \mathsf{q}_{\lambda}(\mathsf{z}|\mathsf{x})] - \mathbb{E}_{\mathsf{q}}[\log \mathsf{p}(\mathsf{x},\mathsf{z})] + \log \mathsf{p}(\mathsf{x})$$

Variational Inference

- Benader de true posterior p(z|x) met een variational posterior $q_{\lambda}(z|x)$
- λ indiceert de gekozen distributie
 - Bijvoorbeeld: Normaalverdeling
 - $\lambda_{xi} = (\mu_{xi}, \sigma^2_{xi})$
- Meet hoe goed de variational posterior de true posterior benadert
 - Kullback-Leibler divergence
 - Meet hoeveel informatie verloren gaat wanneer we q gebruiken om p te benaderen

$$\mathsf{KL}(\mathsf{q}_{\lambda}(\mathsf{z}|\mathsf{x}) \mid\mid \mathsf{p}(\mathsf{z}|\mathsf{x})) = \mathbb{E}_{\mathsf{q}}[\log \mathsf{q}_{\lambda}(\mathsf{z}|\mathsf{x})] - \mathbb{E}_{\mathsf{q}}[\log \mathsf{p}(\mathsf{x},\mathsf{z})] + \log \mathsf{p}(\mathsf{x})$$

Doel: vind de variational parameters λ die de KL-divergence minimaliseren

$$q_{\lambda}^* = arg \min_{\lambda} KL(q_{\lambda}(z|x) || p(z|x))$$

Variational Inference

$$\begin{aligned} &q^*_{\ \lambda} = \text{arg min}_{\lambda} \, \mathsf{KL}(\mathsf{q}_{\lambda}(\mathsf{z}|\mathsf{x}) \mid\mid \mathsf{p}(\mathsf{z}|\mathsf{x})) \\ &\mathsf{KL}(\mathsf{q}_{\lambda}(\mathsf{z}|\mathsf{x}) \mid\mid \mathsf{p}(\mathsf{z}|\mathsf{x})) = \mathbb{E}_{\mathsf{q}}[\log \mathsf{q}_{\lambda}(\mathsf{z}|\mathsf{x})] - \mathbb{E}_{\mathsf{q}}[\log \mathsf{p}(\mathsf{x},\mathsf{z})] + \log \mathsf{p}(\mathsf{x}) \end{aligned}$$

- Intractable door p(x)
- Nieuwe functie:

ELBO(
$$\lambda$$
) = $\mathbb{E}_{q}[\log p(x, z)] - \mathbb{E}_{q}[\log q_{\lambda}(z|x)]$

```
\begin{split} & \mathsf{ELBO}(\lambda) = \mathbb{E}_q[\log p(x,z)] - \mathbb{E}_q[\log q_\lambda(z|x)] \\ & \mathsf{KL}(q_\lambda(z|x) \mid\mid p(z|x)) = -\mathbb{E}_q[\log p(x,z)] + \mathbb{E}_q[\log q_\lambda(z|x)] + \log p(x) \\ & \mathsf{log}\,\, p(x) = \mathsf{KL}(q_\lambda(z|x) \mid\mid p(z|x)) + \mathbb{E}_q[\log p(x,z)] - \mathbb{E}_q[\log q_\lambda(z|x)] \\ & \mathsf{log}\,\, p(x) = \mathsf{KL}(q_\lambda(z|x) \mid\mid p(z|x)) + \mathsf{ELBO}(\lambda) \end{split}
```

```
\begin{split} & \mathsf{ELBO}(\lambda) = \mathbb{E}_q[\log p(x,z)] - \mathbb{E}_q[\log q_{\lambda}(z|x)] \\ & \mathsf{KL}(q_{\lambda}(z|x) \mid\mid p(z|x)) = -\mathbb{E}_q[\log p(x,z)] + \mathbb{E}_q[\log q_{\lambda}(z|x)] + \log p(x) \\ & \log p(x) = \mathsf{KL}(q_{\lambda}(z|x) \mid\mid p(z|x)) + \mathbb{E}_q[\log p(x,z)] - \mathbb{E}_q[\log q_{\lambda}(z|x)] \\ & \log p(x) = \mathsf{KL}(q_{\lambda}(z|x) \mid\mid p(z|x)) + \mathsf{ELBO}(\lambda) \end{split}
```

- KL eigenschap: KL ≥ 0
- KL minimaliseren == ELBO maximaliseren tot constante: log p(x)

$$\begin{split} \mathsf{ELBO}_{\mathsf{i}}(\lambda) &= \mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}}, z)] - \mathbb{E}_{\mathsf{q}}[\log q_{\lambda}(z|x_{\mathsf{i}})] \\ &= \mathbb{E}_{\mathsf{q}}[\log(p(x_{\mathsf{i}}|z) \ p(z))] - \mathbb{E}_{\mathsf{q}}[\log q_{\lambda}(z|x_{\mathsf{i}})] \\ &= \mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}}|z)] + \mathbb{E}_{\mathsf{q}}[\log p(z)] - \mathbb{E}_{\mathsf{q}}[\log q_{\lambda}(z|x_{\mathsf{i}})] \end{split}$$

$$KL(q_{\lambda}(z|x_{i}) \mid\mid p(z)) = \mathbb{E}_{q}[\log \underline{a_{\lambda}(z|x_{i})}]$$
 $p(z)$

$$\begin{split} \mathsf{ELBO}_{\mathsf{i}}(\lambda) &= \mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}},z)] - \mathbb{E}_{\mathsf{q}}[\log q_{\lambda}(z|x_{\mathsf{i}})] \\ &= \mathbb{E}_{\mathsf{q}}[\log(p(x_{\mathsf{i}}|z)\,p(z))] - \mathbb{E}_{\mathsf{q}}[\log q_{\lambda}(z|x_{\mathsf{i}})] \\ &= \mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}}|z)] + \mathbb{E}_{\mathsf{q}}[\log p(z)] - \mathbb{E}_{\mathsf{q}}[\log q_{\lambda}(z|x_{\mathsf{i}})] \\ - \mathsf{ELBO}_{\mathsf{i}}(\lambda) &= -\mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}}|z)] - \mathbb{E}_{\mathsf{q}}[\log p(z)] + \mathbb{E}_{\mathsf{q}}[\log q_{\lambda}(z|x_{\mathsf{i}})] \\ &= -\mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}}|z)] + \mathbb{E}_{\mathsf{q}}[\log q_{\lambda}(z|x_{\mathsf{i}})] - \mathbb{E}_{\mathsf{q}}[\log p(z)] \\ &= -\mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}}|z)] + \mathbb{E}_{\mathsf{q}}[\log q_{\lambda}(z|x_{\mathsf{i}})] \\ &= p(z) \end{split}$$

$$\mathsf{KL}(\mathsf{q}_{\lambda}(\mathsf{z}|\mathsf{x}_{\mathsf{i}}) \mid\mid \mathsf{p}(\mathsf{z})) = \mathbb{E}_{\mathsf{q}}[\log \underline{\mathsf{q}_{\lambda}(\mathsf{z}|\mathsf{x}_{\mathsf{i}})}] \\ \mathsf{p}(\mathsf{z})$$

$$\begin{split} \mathsf{ELBO}_{\mathsf{i}}(\lambda) &= \mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}},z)] - \mathbb{E}_{\mathsf{q}}[\log q_{\lambda}(z|x_{\mathsf{i}})] \\ &= \mathbb{E}_{\mathsf{q}}[\log(p(x_{\mathsf{i}}|z)\,p(z))] - \mathbb{E}_{\mathsf{q}}[\log q_{\lambda}(z|x_{\mathsf{i}})] \\ &= \mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}}|z)] + \mathbb{E}_{\mathsf{q}}[\log p(z)] - \mathbb{E}_{\mathsf{q}}[\log q_{\lambda}(z|x_{\mathsf{i}})] \\ - \mathsf{ELBO}_{\mathsf{i}}(\lambda) &= -\mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}}|z)] - \mathbb{E}_{\mathsf{q}}[\log p(z)] + \mathbb{E}_{\mathsf{q}}[\log q_{\lambda}(z|x_{\mathsf{i}})] \\ &= -\mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}}|z)] + \mathbb{E}_{\mathsf{q}}[\log q_{\lambda}(z|x_{\mathsf{i}})] - \mathbb{E}_{\mathsf{q}}[\log p(z)] \\ &= -\mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}}|z)] + \mathbb{E}_{\mathsf{q}}[\log q_{\lambda}(z|x_{\mathsf{i}})] \\ &= -\mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}}|z)] + \mathsf{KL}(q_{\lambda}(z|x_{\mathsf{i}}) \mid\mid p(z)) \end{split}$$

$$\mathsf{ELBO}_{\mathsf{i}}(\lambda) = \mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}}|z)] - \mathsf{KL}(q_{\lambda}(z|x_{\mathsf{i}}) \mid\mid p(z))$$

$$KL(q_{\lambda}(z|x_{i}) \mid\mid p(z)) = \mathbb{E}_{q}[\log \underline{a_{\lambda}(z|x_{i})}]$$

$$p(z)$$

$$\begin{split} \mathsf{ELBO}_{\mathsf{i}}(\lambda) &= \mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}},z)] - \mathbb{E}_{\mathsf{q}}[\log \mathsf{q}_{\lambda}(z|x_{\mathsf{i}})] \\ &= \mathbb{E}_{\mathsf{q}}[\log(p(x_{\mathsf{i}}|z)\,p(z))] - \mathbb{E}_{\mathsf{q}}[\log \mathsf{q}_{\lambda}(z|x_{\mathsf{i}})] \\ &= \mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}}|z)] + \mathbb{E}_{\mathsf{q}}[\log p(z)] - \mathbb{E}_{\mathsf{q}}[\log \mathsf{q}_{\lambda}(z|x_{\mathsf{i}})] \\ - &\mathsf{ELBO}_{\mathsf{i}}(\lambda) = -\mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}}|z)] - \mathbb{E}_{\mathsf{q}}[\log p(z)] + \mathbb{E}_{\mathsf{q}}[\log \mathsf{q}_{\lambda}(z|x_{\mathsf{i}})] \\ &= -\mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}}|z)] + \mathbb{E}_{\mathsf{q}}[\log \mathsf{q}_{\lambda}(z|x_{\mathsf{i}})] - \mathbb{E}_{\mathsf{q}}[\log p(z)] \\ &= -\mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}}|z)] + \mathbb{E}_{\mathsf{q}}[\log \mathsf{q}_{\lambda}(z|x_{\mathsf{i}})] \\ &= -\mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}}|z)] + \mathsf{KL}(\mathsf{q}_{\lambda}(z|x_{\mathsf{i}}) \mid\mid p(z)) \\ \\ \mathsf{ELBO}_{\mathsf{i}}(\lambda) &= \mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}}|z)] - \mathsf{KL}(\mathsf{q}_{\lambda}(z|x_{\mathsf{i}}) \mid\mid p(z)) \\ \\ \mathsf{ELBO}(\lambda) &= \sum_{i=1}^{N} \mathbb{E}_{\mathsf{q}}[\log p(x_{\mathsf{i}}|z)] - \mathsf{KL}(\mathsf{q}_{\lambda}(z|x_{\mathsf{i}}) \mid\mid p(z)) \end{split}$$

$$KL(q_{\lambda}(z|x_{i}) \mid\mid p(z)) = \mathbb{E}_{q}[\log \underline{q_{\lambda}(z|x_{i})}]$$

$$p(z)$$

Geen enkel datapunt deelt zijn latent z met de latent variable van een ander datapunt

Perspectieven verbinden

- Approximate posterior $q_{\theta}(z|x, \lambda)$ wordt geparameteriseerd met een inference network (encoder)
 - Input: data x
 - Output: parameters λ
- Likelihood p(x|z) wordt geparameteriseerd met een generative network (decoder)
 - Input: latent variables
 - Output: parameters voor datadistributie $p_{\omega}(x|z)$
- Parameters θ en ϕ zijn weights en biases van de neural networks
 - Optimialiseer weights + biases om de ELBO te maximaliseren

Perspectieven verbinden

- Approximate posterior $q_{\theta}(z|x, \lambda)$ wordt geparameteriseerd met een inference network (encoder)
 - Input: data x
 - Output: parameters λ
- Likelihood p(x|z) wordt geparameteriseerd met een generative network (decoder)
 - Input: latent variables
 - Output: parameters voor datadistributie $p_{\omega}(x|z)$
- Parameters θ en ϕ zijn weights en biases van de neural networks
 - Optimialiseer weights + biases om de ELBO te maximaliseren

ELBO(
$$\theta$$
, ϕ) = $\sum_{i=1}^{N} \mathbb{E}_{q}[\log p(x_{i}|z)] - KL(q_{\lambda}(z|x_{i}) || p(z))$
ELBO(θ , ϕ) = $-\mathcal{L}(\theta, \phi)$

Model

Reconstructies

Generative Adversarial Networks

Generative Adversarial Network

- Leert de distributie van een dataset door twee neural networks tegen elkaar te laten strijden
 - 1. Generator: Genereert afbeeldingen die lijken op de dataset
 - 2. Discriminator: Probeert te ontdekken of de gegenereerde afbeeldingen echt of nep zijn
- Ze blijven elkaar proberen te verslaan
- Beide netwerken worden steeds beter
- Na een tijd maakt de generator afbeeldingen die niet te onderscheiden zijn van de echte dataset

Model

1. Discriminator D(x): Voorspelt de kans dat de input x van de echte dataset is gekomen

2. Generator G(z): Verandert noise z naar een afbeelding

- 1. Discriminator D(x): Voorspelt de kans dat de input x van de echte dataset is gekomen
 - Maximaliseert de kans dat het juiste label wordt voorspeld voor zowel training examples als afbeeldingen die door de generator zijn gegenereerd
- 2. Generator G(z): Verandert noise z naar een afbeelding
 - Minimaliseert de kans dat de discriminator kan voorspellen dat wat hij genereert nep is

- 1. Discriminator D(x): Voorspelt de kans dat de input x van de echte dataset is gekomen
 - Maximaliseert de kans dat het juiste label wordt voorspeld voor zowel training examples als afbeeldingen die door de generator zijn gegenereerd
- 2. Generator G(z): Verandert noise z naar een afbeelding
 - Minimaliseert de kans dat de discriminator kan voorspellen dat wat hij genereert nep is

$$\mathsf{min}_\mathsf{G} \; \mathsf{max}_\mathsf{D} \, \mathsf{V}(\mathsf{D},\mathsf{G}) = \mathop{\mathbb{E}}_{\mathsf{x} \sim \mathsf{p} \, \mathsf{data}(\mathsf{x})} [\mathsf{log} \, \mathsf{D}(\mathsf{x})] + \mathop{\mathbb{E}}_{\mathsf{z} \sim \mathsf{p} \, \mathsf{z}(\mathsf{z})} [\mathsf{log}(\mathsf{1} - \mathsf{D}(\mathsf{G}(\mathsf{z})))]$$

- 1. Discriminator D(x): Voorspelt de kans dat de input x van de echte dataset is gekomen
 - Maximaliseert de kans dat het juiste label wordt voorspeld voor zowel training examples als afbeeldingen die door de generator zijn gegenereerd
- 2. Generator G(z): Verandert noise z naar een afbeelding
 - Minimaliseert de kans dat de discriminator kan voorspellen dat wat hij genereert nep is

Outputs

Conclusie & Applicaties

Conclusie

- Generative models worden gebruikt om nieuwe samples te maken die van dezelfde distributie als de training data komen
 - Image super resolution
 - Kunst
- VAEs gebruiken een encoder-decoder structuur om samples te genereren
 - Encoder:
 - NN perspectief: Neural network dat representatie z van data x geeft
 - PM perspectief: Inference network dat de parameters van de variational posterior van latent variables z geeft -> q(z|x)
 - Decoder:
 - NN perspectief: Neural network dat de data x leert te reconstrueren gegeven een representatie z
 - PM perspectief: Generative network dat de parameters van de likelihood distribution geeft -> p(x|z)
 - Samples hebben vaak een lage kwaliteit
- GANs
 - Twee netwerken leren elkaar te verslaan totdat er samples van hoge kwaliteit gegenereerd kunnen worden

Applicaties

- Voorbeelden voor image datasets genereren (slaapkamers)
- Image-to-image translation

Deepfakes

- Bestaande afbeeldingen en video's worden gecombineerd
- Fake news
- Deep fake detection

Assignment 2

https://git.io/JvB5u