Tema 2: Funciones

Ing. Margot Edith Cuarán Jaramillo

Escuela de Ingeniería de Sistemas y Computación Universidad del Valle - Santiago de Cali, Colombia e-mail: mecuaran@eisc.univalle.edu.co
Agosto 2.006

Funciones

Una relación f se llama función siempre que $(a,b) \in f$ y $(a,c) \in f$ impliquen que b=c.

Ejemplo 1 Sean
$$f = \{(1,2), (2,3), (3,1), (4,7)\}$$

y $g = \{(1,2), (2,3), (4,7)\}$

La relación f es una función, pero g no lo es, porque $(1,2),(1,3)\in g$ y $2\neq 3$.

Sea f una función, y se a un objeto. Se define la notación f(a) siempre y cuando exista un objeto b tal que $(a,b) \in f$. En este caso, f(a) es igual a b. En cualquier otro caso, la notación f(a) no está definida.

Dominio y codominio

Sea f una función. El conjunto de los primeros elementos posibles en los pares ordenados en f se llama dominio de f, y se representa por $dom\ f$. El conjunto de los segundos elementos posibles en los pares ordenados en f se llama imagen de f y se representa por $im\ f$.

Ejemplo 2 Sea
$$f = \{(1,2), (2,3), (3,1), (4,7)\}.$$

Entonces, $dom f = \{1, 2, 3, 4\} e im f = \{1, 2, 3, 7\}$

$$(f:A \rightarrow B)$$

Sea f una función, y sean A y B conjuntos. Se dice que f es una función de A a B siempre y cuando $dom\ f = A$ e $im\ f \subseteq B$. En este caso, se escribe $f: A \to B$. También, se dice que f es una aplicación de A a B.

Ejemplo 3. La función seno. Esta función está definida para todo número feal, y produce un valor real. El dominio de la función seno son los reales, y la imagen es el conjunto $[-1,1] = \{x \in \mathbf{R} : -1 \le x \le 1\}$. Se puede escribir $sen : \mathbf{R} \to \mathbf{R}$, porque dom sen $= \mathbf{R}$ e im sen $\subseteq \mathbf{R}$. También es correcto escribir $sen : \mathbf{R} \to [-1,1]$.

Suma y multiplicación de funciones

Sea f_1 y f_2 son funciones desde A hasta **R**. Entonces, $f_1 + f_2$ y $f_1.f_1$ son también funciones desde A hasta **R** definido por:

$$(f_1 + f_2)(x) = f_1(x) + f_2(x)$$

 $(f_1.f_2)(x) = f_1(x).f_2(x)$

Note que la función $f_1 + f_2$ y f_1 . f_2 ha sido definido especificando sus valores de x en términos de los valores de f_1 y f_2 de x.

Ejemplo 4 Sean \mathbf{f}_1 y \mathbf{f}_2 funciones desde \mathbf{R} hasta \mathbf{R} tal que $\mathbf{f}_1(x) = x^2$ y $\mathbf{f}_2(x) = x - x^2$. ¿Cuáles son las funciones $(f_1 + f_2)$ y $(f_1.f_2)$?

$$(f_1 + f_2)(x) = f_1(x) + f_2(x) = x^2 + (x + x^2) = x$$

 $(f_1.f_2)(x) = x^2(x - x^2) = x^3 - x^4$

Donde f es una función desde un conjunto A hasta un conjunto B, la imagen de un subconjunto de A puede definirse.

Composición de funciones

Sean los conjuntos A, B y C, y sean $f: A \rightarrow B$ y $g: B \rightarrow C$.

Entonces la función gof(a) = g[f(a)] donde $a \in A$. La función g o f se llama composición de g y f.

Ejemplo 5 Sean $f: \mathbb{Z} \to \mathbb{Z}$ por $f(x) = x^2 + 1$, y g(x) = 2x - 3. ¿Qué es (g o f)(4)?

$$(gof)(4) = g[f(4)]$$

= $g(4^2 + 1)$
= $g(17)$
= $g(17)$
= $g(17)$

En general,

$$(gof)(x) = g[f(x)]$$

= $g[x^2 + 1]$
= $2(x^2 + 1) - 3$
= $2x^2 - 1$

Tipo de funciones

Funciones inversas (f^{-1}) Sea f una función biyectiva del conjunto A en el conjunto B. La función inversa de f es la función que asigna a un elemento $b \in B$ el único elemento $a \in A$ tal que f(a) = b. Así, $f^{-1}(b) = a$ cuando f(a) = b

Ejemplo 6 . Sean $A = \{0, 1, 2, 3, 4\}$ y $B = \{5, 6, 7, 8, 9\}$. Sea $f: A \to B$ definida por $f = \{(0, 5), (1, 7), (2, 8), (3, 9), (4, 7)\}$, así, $f^{-1} = \{(5, 0), (7, 1), (8, 2), (9, 3), (7, 4)\}$

¿Es f^{-1} una función de B a A? La respuesta es **no**, por dos razones. La primera es que f^{-1} no es una función. Observe que tanto (7,1) como (7,4) están en f^{-1} . La segunda es que $dom \ f^{-1} = \{5,7,8,9\} \neq B$.

Función identidad Sea el conjunto A. La función identidad en A es la función id_A cuyo dominio es A y para toda $a \in A, id_A(a) = a$. En otras palabras,

$$id_A = \{(a, a) : a \in A\}$$

Funciones biunívoca (inyectiva) Una función se llama biunívoca siempre que, cuando (x,b) y $(y,b) \in f$, se debe cumplir que x=y.

Ejemplo 7 Determine si la función f(x) = x + 1 es inyectiva.

Ejemplo 8 Sea $f: Z \to Z$ mediante $f(x) = x^2$. Determine si la función es inyectiva. Funciones sobre Sea $f: A \to B$. Se dice que f es sobre B siempre y cuenado para toda $b \in B$ haya una $a \in A$ tal que f(a) = b. Es decir, que $im \ f = B$

Ejemplo 8 Determine si la función f(x) = x + 1 es sobre.

Ejemplo 9 Sea $f: Z \to Z$ mediante $f(x) = x^2$. Determine si la función es sobre.

Funciones biyectiva Sea $f: A \rightarrow B$. Se llama f una biyección siempre y cuando sea biunívoca y sobre.

Ejemplo 10 Sea A el conjunto de los enteros pares, y seaB el conjunto de los enteros impares. La función $f:A\to B$ definida por f(x)=x+1 es una biyección.

Notación diversa

Piso y techo Sea x un número real.

- El piso de x, representado por $\lfloor x \rfloor$, el el máximo entero n tal que n < x
- El techo de x, representado por $\lceil x \rceil$, es el mínimo entero n tal que n > x

Ejemplo 11

$$\boxed{3,2} = 3$$
 $\boxed{3,2} = 4$ $\boxed{-3,2} = -4$ $\boxed{-3,2} = -3$ $\boxed{5} = 5$

Ejemplo 12

Demuestre que $\lfloor 2x \rfloor = \lfloor x \rfloor + \left | x + \frac{1}{2} \right |$

Ejemplo 13

Demuestre que $\lceil x + y \rceil = \lceil x \rceil + \lceil y \rceil$

O mayúscula Sean f y g dos funciones del conjunto de los enteros en el conjunto de los número reales. Se dice que f(x)=O(g(x)) si existen dos constantes C y k tales que $|f(x)| \le C |g(x)|$ siempre que x > k.

Ejemplo 14

Demuestre que $f(x) = x^2 + 2x + 1$ es $O(x^2)$.

Ejemplo 15

Demuestre que x^3 es $O(7x^2)$.

Función Ω Sean f y g dos funciones del conjunto de los enteros o reales al conjunto de los número reales. Se dice que $f(x) = \Omega(g(x))$ si existen dos constantes C y k tales que $|f(x)| \ge C |g(x)|$ siempre que x > k.

Ejemplo 16

Demuestre que $f(x) = 8x^3 + 5x^2 + 7$ es $\Omega(x^3)$.

Función Θ Sean f y g dos funciones del conjunto de los enteros o de los reales en el conjunto de los número reales. Se dice que

$$f(x) = \Theta(g(x))$$
 si $f(x) = O(g(x))$ y $f(x) = \Omega(g(x))$.

Ejemplo 17

Demuestre que $f(x) = 3x^2 + 8x \cdot log(x)$ es $\Theta(x^2)$.

Clase práctica ... Hagamos ejercicios.

Taller Funciones

Bibliografía

- 1. David Gries and Fred Schneir. A logical aproach to discrete math. Springer, 1.994.
- 2. Rosen Kenneth. Matemática Discreta y sus aplicaciones. 5ta. Edición. McGrawHill, 2.004.
- 3. Edward Scheinerman. Matemáticas Discretas. Math, 2.001.