

8-BIT SHIFT/STORAGE REGISTER WITH 3-STATE OUTPUTS

The SN54/74LS323 is an 8-Bit Universal Shift/Storage Register with 3-state outputs. Its function is similar to the SN54/74LS299 with the exception of Synchronous Reset. Parallel load inputs and flip-flop outputs are multiplexed to minimize pin count. Separate inputs and outputs are provided for flip-flops Q_0 and Q_7 to allow easy cascading.

Four operation modes are possible: hold (store), shift left, shift right, and parallel load. All modes are activated on the LOW-to-HIGH transition of the Clock.

- Common I/O for Reduced Pin Count
- Four Operation Modes: Shift Left, Shift Right, Parallel Load and Store
- Separate Continuous Inputs and Outputs from Q₀ and Q₇ Allow Easy Cascading
- Fully Synchronous Reset
- 3-State Outputs for Bus Oriented Applications
- Input Clamp Diodes Limit High-Speed Termination Effects
- ESD > 3500 Volts

CONNECTION DIAGRAM DIP (TOP VIEW)

SN54/74LS323

8-BIT SHIFT/STORAGE REGISTER WITH 3-STATE OUTPUTS

LOW POWER SCHOTTKY

IOW

HIGH

PIN NAMES LOADING (Note a)

Clock Pulse (active positive going edge) Input	0.5 U.L.	0.25 U.L.
Serial Data Input for Right Shift	0.5 U.L.	0.25 U.L.
Serial Data Input for Left Shift	0.5 U.L.	0.25 U.L.
Parallel Data Input or	1.0 U.L.	0.5 U.L.
Parallel Output (3-State) (Note c)	65 (25) U.L.	15 (7.5) U.L.
3-State Output Enable (active LOW) Inputs	0.5 U.L.	0.25 U.L.
Serial Outputs (Note b)	10 U.L.	5 (2.5) U.L.
Mode Select Inputs	1 U.L.	
Synchronous Reset (active LOW) Input	0.5 U.L.	0.25 U.L.
	Serial Data Input for Right Shift Serial Data Input for Left Shift Parallel Data Input or Parallel Output (3-State) (Note c) 3-State Output Enable (active LOW) Inputs Serial Outputs (Note b) Mode Select Inputs	Clock Pulse (active positive going edge) Input Serial Data Input for Right Shift 0.5 U.L. Serial Data Input for Left Shift 0.5 U.L. Parallel Data Input or 1.0 U.L. Parallel Output (3-State) (Note c) 3-State Output Enable (active LOW) Inputs Serial Outputs (Note b) 10 U.L. Mode Select Inputs

NOTES

- a) 1 TTL LOAD = $40 \mu A HIGH/1.6 mA LOW$.
- b) The output LOW drive factor is 2.5 U.L for Military (54) and 5 U.L. for Commercial Temperature Ranges.
- c) The output LOW drive factor is 7.5 U.L for Military (54) and 15 U.L. for Commercial Temperature Ranges. The output HIGH drive factor is 25 U.L. for Military (54) and 65 U.L. for Commercial Temperature Ranges.

FUNCTIONAL DESCRIPTION

The logic diagram and truth table indicate the functional characteristics of the SN54/74LS323 Universal Shift/Storage Register. This device is similar in operation to the SN54/74LS299 except for synchronous reset. A partial list of the common features are described below:

They use eight D-type edge-triggered flip-flops that respond only to the LOW-to-HIGH transition of the Clock (CP). The only timing restriction, therefore, is that the mode control (S₀, S₁) and data inputs (DS₀, DS₇, I/O₀–I/O₇) may be stable at least a setup time prior to the positive transition of the Clock Pulse.

2. When $S_0 = S_1 = 1$, $I/O_0 - I/O_7$ are parallel inputs to flip-flops $Q_0 - Q_7$ respectively, and the outputs of $Q_0 - Q_7$ are in the high impedance state regardless of the state of OE_1 or OE_2 .

An important unique feature of the SN54/74LS323 is a fully Synchronous Reset that requires only to be stable at least one setup time prior to the positive transition of the Clock Pulse.

TRUTH TABLE

INPUTS							RESPONSE		
SR	s ₁	S ₀	OE ₁	OE ₂	СР	DS ₀	DS ₇		
L L	X X H	X X H	H X X	X H X	Կ Կ Կ	X X X	X X X	Synchronous Reset; Q ₀ = Q ₇ = LOW I/O voltage undetermined	
L L	L X	X L	L L	L	ካ ካ	X X	X X	Synchronous Reset; Q ₀ = Q ₇ = LOW I/O voltage LOW	
H H	LL	H	X L	X L	Կ Կ	D D	X X	Shift Right; D Q_0 ; Q_0 Q_1 ; etc. Shift Right; D $Q_0 \& I/O_0$; Q_0 $Q_1 \& I/O_1$; etc.	
H H	ıт	L L	X L	X L	Կ Կ	X X	D D	Shift Left; D Q_7 ; Q_7 Q_6 ; etc. Shift Left; D Q_7 & I/O $_7$; Q_7 Q_6 & I/O $_6$; etc.	
Н	Н	Н	Х	Х	Կ	Х	Х	Parallel Load I/O _n Q _n	
H	L	L	H X	X H	X X	X X	X X	Hold; I/O Voltage Undetermined	
Н	L	L	L	Ĺ	Х	Χ	Х	Hold; $I/O_n = Q_n$	

H = HIGH Voltage Level

L = LOW Voltage Level

X = Immaterial

GUARANTEED OPERATING RANGES

Symbol	Par	ameter		Min	Тур	Max	Unit
VCC	Supply Voltage		54 74	4.5 4.75	5.0 5.0	5.5 5.25	V
T _A	Operating Ambient Temper	ature Range	54 74	-55 0	25 25	125 70	°C
ЮН	Output Current — High	Q ₀ , Q ₇	54, 74			-0.4	mA
lOL	Output Current — Low	Q ₀ , Q ₇ Q ₀ , Q ₇	54 74			4.0 8.0	mA
IOH	Output Current — High	I/O ₀ -I/O ₇ I/O ₀ -I/O ₇	54 74			-1.0 -2.6	mA
lOL	Output Current — Low	I/O ₀ -I/O ₇ I/O ₀ -I/O ₇	54 74			12 24	mA

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE (unless otherwise specified)

				Limits					
Symbol	Parameter			Min	Тур	Max	Unit	Tes	t Conditions
V _{IH}	Input HIGH Voltage			2.0			V	Guaranteed Input All Inputs	HIGH Voltage for
VIL	Input LOW Voltage		54			0.7	V	Guaranteed Input LOW Voltage for All Inputs	
* IL	input 2017 Voltage		74			0.8	ľ		
VIK	Input Clamp Diode Vo	Itage			-0.65	-1.5	V	$V_{CC} = MIN$, $I_{IN} = -18 \text{ mA}$	
Vон	Output HIGH Voltage		54	2.4	3.2		V	V _{CC} = MIN, I _{OH}	- MAY
VОН	I/O ₀ -I/O ₇		74	2.4	3.1		V	VCC = WIIIV, IOH	- IVIAX
Vон	Output HIGH Voltage		54	2.5	3.4		V	V _{CC} = MIN, I _{OH}	- MAY
VОН	Q ₀ , Q ₇		74	2.7	3.4		V	ACC = MILA' IOH	= IVIAX
M	Output LOW Voltage		54, 74		0.25	0.4	٧	I _{OL} = 12 mA	V _{CC} = V _{CC} MIN,
VOL	I/O ₀ -I/O ₇		74		0.35	0.5	V	I _{OL} = 24 mA	VIN = VIL or VIH per Truth Table
.,	Output LOW Voltage		54, 74			0.4	V	I _{OL} = 4.0 mA	$V_{CC} = V_{CC} MIN,$
V _{OL}	Q ₀ -Q ₇		74			0.5	V	I _{OL} = 8.0 mA	VIN = VIL or VIH per Truth Table
lozh	Output Off Current HIGH I/O ₀ -I/O ₇					40	μΑ	V _{CC} = MAX, V _{Ol}	J⊤ = 2.7 V
lozL	Output Off Current LO	Output Off Current LOW /O ₀ -I/O ₇				-400	μΑ	V _{CC} = MAX, V _{Ol}	JT = 0.4 V
		Othe	rs			20	μΑ	V _{CC} = MAX, V _{IN} = 2.7 V	
		S ₀ , S I/O ₀ -				40	μΑ		
lН	Input HIGH Current	Othe	rs			0.1	mA	\\\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	701/
		S ₀ , S	31			0.2	mA	$V_{CC} = MAX, V_{IN}$	= 1.0 V
		1/00-	-I/O ₇			0.1	mA	V _{CC} = MAX, V _{IN} = 5.5 V	
l	Input LOW Current	Othe	rs			-0.4	mA	V 144 V 14 0 4 V	
lir		S ₀ , S	5 ₁			-0.8	mA	V _{CC} = MAX, V _{IN}	= U.4 V
los	Short Circuit Current	Q ₀ , C	Q ₇	-20		-100	mA	V _{CC} = MAX	
	(Note 1)		-I/O ₇	-30		-130	mA	V _{CC} = MAX	
lcc	Power Supply Current	t				53	mA	V _{CC} = MAX	

Note 1: Not more than one output should be shorted at a time, nor for more than 1 second.

AC CHARACTERISTICS ($T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$)

	, , , , , , , , , , , , , , , , , , ,	Limits					
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions	
fMAX	Maximum Clock Frequency	25	35		MHz		
^t PHL ^t PLH	Propagation Delay, Clock to Q ₀ or Q ₇		26 22	39 33	ns	C _L = 15 pF	
^t PHL ^t PLH	Propagation Delay, Clock to I/O ₀ -I/O ₇		25 17	39 25	ns	C _L = 45 pF,	
^t PZH ^t PZL	Output Enable Time		14 20	21 30	ns	$C_L = 45 \text{ pF},$ $R_L = 667 \Omega$	
^t PHZ ^t PLZ	Output Disable Time		10 10	15 15	ns	C _L = 5.0 pF	

AC SETUP REQUIREMENTS ($T_A = 25$ °C, $V_{CC} = 5.0 \text{ V}$)

			Limits			
Symbol	Parameter	Min	Тур	Max	Unit	Test Conditions
tW	Clock Pulse Width HIGH	25			ns	
tw	Clock Pulse Width LOW	15			ns	
tw	Clear Pulse Width LOW	20			ns	
t _S	Data Setup Time	20			ns	V-2 F0V
t _S	Select Setup Time	35			ns	V _{CC} = 5.0 V
th	Data Hold Time	0			ns	
th	Select Hold Time	10			ns	
t _{rec}	Recovery Time	20			ns	

3-STATE WAVEFORMS

Figure 1

Figure 2

Figure 3

Figure 4

AC LOAD CIRCUIT

 * Includes Jig and Probe Capacitance.

SWITCH POSITIONS

SYMBOL	SW1	SW2
^t PZH	Open	Closed
^t PZL	Closed	Open
tPLZ	Closed	Closed
^t PHZ	Closed	Closed

Figure 5