Introduction to linear models

Modern statistics are easier than this

A unified framework

Our unified regression framework

$$y_i = a + bx_i + \varepsilon_i$$
$$\varepsilon_i \sim N(0, \sigma^2)$$

Data

y = response variable

x = predictor

Parameters

a = intercept

 $b = \mathsf{slope}$

 $\sigma = {\sf residual} \ {\sf variation}$

 $\varepsilon = \mathsf{residuals}$

Residual variation (error)

Residual variation

$$\varepsilon_i \sim N\left(0, \sigma^2\right)$$

Distribution of residuals

In a Normal distribution

Different ways to write same model

$$y_{i} = a + bx_{i} + \varepsilon_{i}$$

$$\varepsilon_{i} \sim N\left(0, \sigma^{2}\right)$$

٠

$$y_i \sim N(\mu_i, \sigma^2)$$
$$\mu_i = a + bx_i$$
$$\varepsilon_i \sim N(0, \sigma^2)$$