

Department of CSE

Computer Organization and Architecture (CSE204)

Assignment I

Note: Choose the most appropriate option for following questions and give reason to justify your choice.

The decoded instruction a) PC	n is stored in: b) MDR	c)	Registers	d) IR
2. The interrupt vector a	ddress for TRAP is			
a) 000h	b)0024h	c)0018h	d) 00	2Ch
	g register transfer lang ters and M is a memor itable for above regist b) Indexed	y location in prim	ary memory. Whi	ch
4. In a 16-bit instruction assigned for address n a) 0	code format 3 bit ope node designation. For b) 1			is
5. A 32-bit address bus a a) 64 MB		ory of capacity c) 1GB	d) 4GB	
6. Cache memory enhance a) Memory capacity	ces	b)Memory acces	es time	
c) Effective memory ac	ccess time	d) secondary me	mory access time.	
7. The Read/ Write line a) Belongs to the data bec) Belongs to the Address		b) Belongs to the d) CPU Bus	e control bus	
8. Which of following re 1) Program counter a) 1 and 3	gisters are used by the 2. Instruction Registe b) 1 and 2			
9. If the memory chip size of memory? a) 8	te is 256*1 bits, then h b) 16	ow many chips are	e required to make d) 32	e up 1KB

10. Which of the follow	ing is not involved	l in a memory write oper	ration?
a) MAR	b) PC	c) MDR	d) data bus
11. Which of the followineeds it?	ng holds data and	processing instructions t	emporarily until the CPU
a) ROM	b) Control unit	c) main memory	d) coprocessor chips
12. Which of the following a) data bus capacity			d) all of these
13. The size of the expon			a) a a a a a a a a a a
a) 10 bits	b) 9 bits	c) 8 bits	d) 11 bits
14. The load instruction i register known as:	s mostly used to do	esignate a transfer from	memory to a processor
a) Instruction Registe	r b) Accumulator	c) Program counter d)	Memory address Register
c) Instruction Decodic 16. Which method/s of reothers?	g from memory ng d) Reque epresentation of nu	b) Instruction Execution sting BIU (Bus Interface ambers occupies a large	e Unit) for data read amount of memory than
a) Sign-magnitude b) 1's complement	c) 2's complement	d) 1's & 2's compliment
17. How many condition	-	_	DNI CA
a) 3,6	b) 6,3	c) 6,6	d) None of these
18. The word length of C a) The maximum add c) The width of the C	lressable memory	size b) The width of the d) the number of gen	ne address bus eral purpose CPU register
19. Match List-I with Listlist:	st-II and select the	correct answer using the	e codes given below the
List-I		Lis	st-II
A. MOV X, B. STORE X C. POPX		 Three address Zero address One Address Two Address 	instruction instruction
Codes: A	В	C	
a) 4	3	2	
b) 3	2	1	
c) 2	3	4	
d) None of the	_		

20. The following are the some of the sequence	es of operations in	instruction cycle, which
one is the correct sequence? a) Data from memory → Data Register	b) Address registe	$or \Delta DC$
PC → Address register	,	Data from memory
Data Register → IR	Data register –	•
PC+1→PC	$PC + 1 \rightarrow PC$	/ IK
c) PC→ Address register	d) None	
Data from memory → Data register	u) None	
Data register → IR		
PC + 1 \rightarrow PC		
21. Secondary memory is also called		
a) Auxiliary b) Backup store	c) Roth a and h d	None of these
a) Auxiliary b) Backup store) Dom a and b	1) INOILE OF these
22. INTR: it implies the signal:		
a) INTRRUPT REQUEST	b)	INTRRUPT RIGHT
c) INTRRUPT RONGH	· · · · · · · · · · · · · · · · · · ·	INTRRUPT RESET
c) intrior i ronoii	u)	INTRROFT RESET
23. The memory which is programmed at the ti	ime it is manufactu	red
a) EPROM b) RAM	c) ROM	d) PROM
u) Li Kowi	c) ROW	d) I ROW
24. The idea of cache memory is based		
a) on the property of locality of reference	b)	on the heuristic 90-10 rule
c) on the fact that references generally tend	· · · · · · · · · · · · · · · · · · ·	all of the above
c) on the fact that references generally tend	. to cluster u)	all of the above
25. An n-bit microprocessor has		
a) n-bit program counter	h)	n-bit address register
c)n-bit ALU		n-bit instruction register
c)ii civiiii c	4)	n en mendenen register
26. How many clock cycles are required for im	iplementing the Fet	tch micro program?
a) <3 b) 4	c) 3	d) >4
	-, -	2, 1
27. If system is supporting F flags/conditions,	then how many bits	s are required for
representing flag/condition in one address of		
a) log ₃ F b) F	c) log _F 2	d) $\log_2 F^2$
<i>u)</i> 10g ₃ 1	c) 10gr2	<i>a)</i> 10g ₂ 1
28. In which of the following control unit desi	gn technique one c	ontrol word always
generate only one control signal?	gn teeninque one e	ontrol word always
a) Horizontal microprogramming	h) Nano program	med control unit design
c) Vertical microprogramming	d) None of the ab	_
c) vertical interoprogramming	a) I tolle of the do	
29. A system supports vertical microprogramm	ning to generate N	control signals. How many
bits are needed to encode N control signal		
a) N Bits b) N2 bits	c) log ₂ N bits	d) None of the above
u) 11 Bits 0) 112 bits	c) 10g21 (bits	d) I tolle of the above
30. Assume a system with limited memory. W	hich one of the fol	lowing control unit design
technique is suitable for generating the N		
	C	

a) Vertical microprogrammingc) Horizontal microprogramming	b) Nano programmed control unit ded) Both b and c	esign
31. Control word sequencing is used for: a) Fetching the instruction from memory b) Generating the 20 Bit physical address c) Generating the control signals in prope d) Storing the control signals in control n	s er	
32. Which of the following is false abouta) Uses Load/Store Architectureb) Instruction takes single clock cyclec) Each instruction occupies exactly ofd) None of the above	e to get executed	
33. Time required to generate the control signal $T_{CS} = T_{CM} + T_{HW}$ c) $T_{CS} = T_{CM} + T_{Decoder} + T_{HW}$	gnal in Vertical microprogramming is b) $T_{CS} = T_{CM} + T_{HW} - T_{Decoder}$ d) None of the above-ed	
34. Which of the following is true about that a) has fewer instructions c) is easier to implement using hard-ward-ward-ward-ward-ward-ward-ward-w	b) has fewer addressing modes	
35. RTN stand fora) Register Transmission Notationc) Register Transfer Notation	b) Regular Transmission Notation d) Regular Transfer Notation	
36. The Instruction Fetch phase ends witha) Placing the data from the address ib) Placing the address of the data intoc) Completing the execution of the datad) Decoding the data in MDR and place	n MAR into MDR o MAR ata and placing its storage address into	MAR
37. When the instruction is read from thea) Memory Read Cyclec) Instruction Cycle	memory, it is called b) Fetch Cycle d) Memory Write Cycle	
38. N bits in operation code imply that the a) 2n b) 2 ⁿ	ere arepossible distinct operators. c) n/2 d) n ²	
39. Which is the order decided by a procea) Decode, Fetch, Executec) Fetch, Execute, Decode	essor to execute an instruction b) Execute, Fetch, Decode d) Fetch, Decode, Execute	
40. In which of the following control unit	design the control signal is represented	as sum

of products (SOP) expression? a) Horizontal microprogramming b) Nano program d) Verock Hardwired control unit design	rammed control unit design rtical microprogramming
41. The control unit controls other units by generat a)Control Signals b) Timing Signals c) Tra	ing nsfer Signals d) Command Signals
40 1 1:1 64 611 : 4 1 : 4	
42. In which of the following control unit design, the 1?	ne maximum degree of parallelism is
a) Nano programmed control unit designc) Vertical microprogramming	b) Horizontal microprogramming d) Both a) and c)
43. Which of the following is true about Horizontal	l microprogramming?
a) Uses 1 bit per control signal	b) Lengthy control word
c) Control signal is stored in encoded form	d) Both a) and b)
44. Which of the following control unit design uses generation?	s decoder for control signal
a) Nanoprogrammed control unit designc) Vertical microprogramming	b) Horizontal microprogramming d) Both b) and c)
45. Which of the following control unit design is n of environment?	not suitable in design and testing kind
a) Nano programmed control unit designc) Vertical microprogramming	b) Horizontal microprogramming.d) Hardwired control unit design
46. Which of the following control unit design is m	nost flexible among all?
a) Nano programmed control unit designc) Vertical microprogramming	b) Horizontal microprogramming d) Hardwired control unit design
 47. Consider a nano programmed control unit with memory and 64 words in ηprogrammed control control signals. What is the total control memora a) 2332 Byte b) 2532 Byte 	ol memory. The system is using 48
48 Which of the following control unit design utiliz a) Hardwired control unit design c) Vertical microprogramming d) Nar	ze two levels of control memory? b) Horizontal microprogramming no programmed control unit design
49. If the criteria for choosing the control unit desione of the following pair is ideal?a) Horizontal microprogramming, Vertical microprogramming, Nanoprogramm	croprogramming

, 1	med control unit de ned control unit des	•	1 0	
50. What are the po	ssible input to the c b) Flags	ontrol unit?	code d) All o	f the above
a) Clock	0) Mags	с) Ор	code d) All o	i the above
51 A Hazard stages during the	may occur if suffice same clock cycle	cient resources are	not available for	different
_	b) Control hazaro	d c) Structural	hazard d) None	of the above
52 Comparing the tin Taken on a non- pone instruction fe	pipelined but identi	•	* *	
a) $T1 \leq T2$	b) T1 ≥ T2	c) $T1 < T2$	d) T1 is	T2 plus time
constant clock cy pipeline will be_	e used between the vale rate, the total ti	stages have a dela me taken to proce conds,	y of 5 ns each As ss 1000 data item	suming as on this
a) 120	b) 160.5	c)165.5	d)590.0)
EX: Execute The IF, ID, and V EX of EX of EX of IF operand forwa of instructions a ADD MUL	on Fetch ID WWB stages takes one of ADD instruction of SUB instruction of MUL instruction arding is used then	D: Instruction Decors B: Write Back c clock cycle each trequires 1 cycle, requires 3 cycles the no. of cycles re R2 ← R1 + R0 4 ← R3*R2 // R6 ← R5-R4	ode and Operand to complete the op	peration.
2. The execu 3. The J th and Which of the a) Only	struction uses the r tion of a conditional (J+1) th instruction above can cause a b) 2 and 3 Only	esult of the J th instraction If Jump instruction requires ALU at the hazard? c) 3 C	ruction as an oper the same time Only d)All of	the above
executing on this	ge instruction pipeline is no cycle-time of 6-stage pipeline, the in the infection if 25% of the infection if 25% of the infection if 25% of the infection in t	overhead of pipeling he speedup achiev	ning, When an ap red with respect to	plication is o non-

a) 2	b) 5	c) 4	d) 3
	ollowing processors (ns states the states of	ands for nanoseconds).	Assume that the
	age pipeline with stage lat	tencies 1ns, 2ns, 2ns, 1	ns.
	age pipeline with stage lat		
	age pipeline with stage lat		
P4: Five sta	age pipeline with stage lat	encies 0.5ns, 0.5ns, 1ns	s, 1ns, 1.1ns.
Which of the	ne processor has the highe	• •	•
a) P1	b)P2	c) P3	d)P4
	ollowing code, it has to be	executed using a pipel	ined processor with
one delay slot.	2 / DZ D0		
	2 ← R7 + R8		
	$+$ \leftarrow R5 $-$ R6		
	.1 ← R2 +R3 Iemory [R4] ← R1		
	Label if $R1 == 0$		
	nstructions I1, I2, I3, I4 ca	n legitimately occupy t	he delay slot without
	ogram modification?	in regitimatery occupy	ine delay slot without
a) I1	b) I2	c) I3	d) I4
59. Which of the fo	ollowing techniques can h	elp achieve throughput	of less than 1 clock
	nstruction word	b) Superscalar	
c) Both (a) and	l (b)	d)None	of the Above
instructions has performed on control of the second	ne above statements is/are rue.	OP R _i , R _j , R _k Where on the Rk, and the result is eveen I2 and I5. Ween I2 and I4 anti-dependence always	peration OP is stored in register Ri.
61. As a computer	architect you have been to	asked with designing a	CPU with static
-	on then which of the follo	_	
· · · · · · · · · · · · · · · · · · ·	lty of (a) is minimum	•	alty of (b) is minimum
c) Branch pena	lty of (c) is minimum	d)None	of the above.

A=A+4; A=A+4;			
A=A+4; i++;			
<pre>} while (i<10) B= B+4;</pre>			
a) Branch penalty of (a) is min c)Branch penalty of (c) is mini		anch penalty of (b) is one of the above.	minimum
67. Consider a machine wit 5 clock cycles per bran exists 40% ALU instruwhat is the speedup fac	ch instruction, 6 clock actions, 20% branch inst	cycles per memory in	struction. If there
a) 10	b) 5	c) 7	d) 8
68. Consider a 5-stage pipel system has 30% branch satisfy the condition. If otherwise then what is t	n instructions with 60% there is no penalty if	conditional instruction	ons, 40% of those
a) Approx. 10	b) Approx. 15	c) Approx. 17	d) Approx. 18
69. A 4-stage pipeline has s with 800 ps is replaced v to modification is	-	-	_
a) 25%	b)30%	c)33.33%	d) 40%
a) 25%70. Write after read hazarda) Output dependency	is	,	,
70. Write after read hazard	is b) Anti dependency ons have	c) True Dependenc	y d) All of these
70. Write after read hazard a) Output dependency 71. The following instruction I1: SUB R3, R1, R4 I2: OR R2, R4, R5 a) True dependency b) 72. Branching is an example	is b) Anti dependency ons have Anti dependency c) Ou	c) True Dependence	y d) All of these None of the above
70. Write after read hazard a) Output dependency 71. The following instruction I1: SUB R3, R1, R4 I2: OR R2, R4, R5 a) True dependency b) 72. Branching is an example	b) Anti dependency ons have Anti dependency c) Ou e of O Control Hazard c) Str one in the pipelined pro- register allocation at the to function parameters ands of hazards.	c) True Dependence that dependency d) uctural Hazard d) Notessors to compile time.	y d) All of these None of the above
70. Write after read hazard a) Output dependency 71. The following instruction I1: SUB R3, R1, R4 I2: OR R2, R4, R5 a) True dependency b) 72. Branching is an example a) Data Hazard b 73. Register renaming is do a) As an alternative to a b) For efficient access to c) To handle certain kin	b) Anti dependency ons have Anti dependency c) Ou e of O Control Hazard c) Str one in the pipelined pro- register allocation at the to function parameters nds of hazards. anslation. s also called as n	c) True Dependence that dependency d) uctural Hazard d) Notessors to compile time.	y d) All of these None of the above

75	. Each stage in pip	elining should be com	pleted within	cycle.	
	a) 1	b) 2	c) 3	d) 4	
76.	The standard SRA	AM chips are costly as			
		y advanced micro-elec			
	b) They house 6 to				
	•	pecially designed PCB	's		
	d) None of the me	•	. 5		
	u) I tolle of the file	antioned			
77.	The drawback of	building a large memo	ory with DRAM is _		
	a) The large cost f	factor	b) The inefficient	memory organization	
	c) The Slow speed	d of operation			
	, 1	1	,		
78.	The fastest data a	ccess is provided usin	ισ		
	a) Caches	b) DRAM's		d) Registers	
	u) cuciics	0) 214 211 2	o) 214 11.1 5	<i>a)</i> 1108181818	
79	5 The memory w	hich is used to store th	ne conv of data or in	nstructions stored in larger r	nemories
1).	inside the CPU is		ic copy of data of it	istructions stored in larger i	nemories,
		b) Level 2 cache	a) Pagistars	4) TI D	
	a) Level 1 cache	b) Level 2 Cache	c) Registers	u) ILD	
00	7771 1	1 11 4 4	. 1 1	.1 1 1	
80.	_	* -		the memory is called	_
	a) Level 1 cache	b) Level 2 cache	c) EEPROM	d) TLB	
81.		memory hierarchy aft			
	a) Secondary stora	age b) TLB	c) Main m	emory d) Register	
82.	The last on the hi	erarchy scale of mem	ory devices is		
	a) Main memory	b) Secondary memor	yc) TLB	d) Flash drives	
83.	In the memory hi	erarchy, as the speed	of operation increas	es the memory size also inc	reases.
	a) True	b) False	-	·	
	,	,			
84.	If we use the flas	h drives instead of the	hard disks, then the	e secondary storage can go	above
0	primary memory i		1141 0 010110, 011011 011	o secondary storage can go	
	a) True	b) False			
	a) IIuc	U) Talse			
Q <i>5</i>	In the memory see	ntral the feetest mame	MAY 1 0		
03.	in the memory co.	ntrol the fastest memo	n y 18		
	a) SDAM	h) Cacha	a) Dagista	rs d)DRAM	
	a) SRAM	b) Cache	c) Registe	is ujukani	

86. Cache memory i	s implemented using			
a) Dynamic RA	aM b) Sta	atic RAM	c) PROM	d)EPROM
87. The Minimum d	elay between two succ	essive read ope	erations is	
a) Cycle time	b) Latency	c) De	elay d) N	lone of the above
88. Because of virtu	al memory, the memor	y can be share	d among	
	b) threads	•	_	one of the above
secondary men	ncept in which a proce	equirement.		•
a) Paging	b) Demand paging	c) Segmenta	tion d) S	wapping
90. The type of devi	ce which is 3 ½ inch fl	loppy drive is r	nothing but	
a) Storage	b). Input	c) Output	d) S	oftware
91. The storage devi	ce that uses rigid, pern	nanently instal	led magnetic d	lisks to store data
a) Floppy	b) Permanent disk	c) Optical di	isk d) H	lard disk
92. How will know	surely that the hard dri	ve has failed?		
a) Scrapping	b) Clicking		sound d) A	All of the above
93. What is the mair	n directory of a disk ca	lled?		
a) Folder	b) Root	c) Sub	d) N	letwork
94. In FIFO page re	placement algorithm,	when a page m	ust be replaced	1
	chosen		ige is chosen	
	is chosen		ne mentioned	
95. Effective access	time is directly propo	rtional to		
	b) hit ratio c) me			the mentioned
96. Working set mod	del for page replaceme	nt is based on	the assumption	n of
a) modularity	b) locality	c) globalizat	tion d) r	random access
97. When a program in physical men	n tries to access a page	that is mapped	d in address sp	ace but not loaded
a) segmentation	=	 b) fa	tal error occur	S
c) page fault occ		,	error occurs	
98. Swap space exi		,		

99	_has smallest storage ca	pacity	
a) Floppy disk	b) Zip disk	c) Hard disk	d) CD
100. What is a zip dr a) An output dev c) A medium cap		rage system	b) An input device d) Software