Which of these sentences are propositions? What are the truth values of those that are propositions?

- a) Boston is the capital of Massachusetts.
- **b)** Miami is the capital of Florida.
- c) 2+3=5.
- **d**) 5 + 7 = 10.
- e) x + 2 = 11.
- **f**) Answer this question.

Screen clipping taken: 10/10/2023 20:37

propositions @ @ @ @

What is the negation of each of these propositions?

- a) Mei has an MP3 player.
- There is no pollution in New Jersey.
- c) 2+1=3.
- d) The summer in Maine is hot and sunny.

Screen clipping taken: 10/10/2023 20:39

it's not the case that new has an MPS plys aMai does not have MP3 player

b) There is pollution in New Jerrs

Screen clipping taken: 10/10/2023 20:41

2+1+3

is not

Let p and q be the propositions

- p: I bought a lottery ticket this week.
- q: I won the million dollar jackpot.

Express each of these propositions as an English sen-

- **a**) ¬*p*

d) $p \wedge q$

b) $p \lor q$ c) $p \to q$ e) $p \leftrightarrow q$ f) $\neg p \to \neg q$ kf) $\neg p \lor (p \land q)$

a) I did not buy a lattery tiddet this neek b) either I bough - - .. or I won not Julie

c) If I bough a lothing ticket this week

Let p, q, and r be the propositions

- p: You get an A on the final exam.
- q: You do every exercise in this book.
- r: You get an A in this class.

Write these propositions using p, q, and r and logical connectives (including negations).

- a) You get an A in this class, but you do not do every exercise in this book.
- b) You get an A on the final, you do every exercise in this book, and you get an A in this class.
- c) To get an A in this class, it is necessary for you to get an A on the final.
- d) You get an A on the final, but you don't do every exercise in this book; nevertheless, you get an A in this class.
- e) Getting an A on the final and doing every exercise in this book is sufficient for getting an A in this class.
- You will get an A in this class if and only if you either do every exercise in this book or you get an A on the final

Screen clipping taken: 10/10/2023 20:48

a)
$$v \wedge 79$$
 b) $v \wedge P \wedge 9$
c) $v \rightarrow P$ d) $(P \wedge 79) \wedge r$
e) $(P \wedge 9) \rightarrow r$ f) $r \leftrightarrow (P \vee 9)$

Screen clipping taken: 10/10/2023 20:55

Determine whether each of these conditional statements is true or false.

- a) If 1 + 1 = 3, then unicorns exist.
- **b)** If 1 + 1 = 3, then dogs can fly.
- c) If 1 + 1 = 2, then dogs can fly.
- d) If 2 + 2 = 4, then 1 + 2 = 3.

a) $F \rightarrow F$ b) $F \rightarrow F$ c) $T \rightarrow F$

(a)
$$F \rightarrow F$$
 (b) $F \rightarrow F$

True

True

True

Screen clipping taken: 10/10/2023 20:57

Construct a truth table for each of these compound propositions.

a)
$$p \rightarrow \neg p$$

b)
$$p \leftrightarrow \neg t$$

c)
$$p \oplus (p \vee q)$$

$$\mathbf{d}) (p \wedge q) \to (p \vee q)$$

e)
$$(q \to \neg p) \leftrightarrow (p \leftrightarrow q)$$

$$\mathbf{f}) \ (p \leftrightarrow q) \oplus (p \leftrightarrow \neg q)$$

a)
$$\frac{P + TP + P \rightarrow TP}{T + F}$$

b)
$$P \longleftrightarrow 7P$$

$$P \to 7P$$

$$T \vdash F$$

$$F \vdash F$$

e)
$$(9 \rightarrow 7P) \leftrightarrow (P \leftrightarrow 9)$$

$$\frac{P}{T} = \frac{P}{T} =$$

$$\begin{array}{c|c}
F & G & F & F & F \\
\hline
P & G & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F & F \\
\hline
F & F & F \\
\hline$$

Construct a truth table for each of these compound propositions.

a)
$$p \rightarrow (\neg q \lor r)$$

b)
$$\neg p \rightarrow (q \rightarrow r)$$

c)
$$(p \rightarrow q) \lor (\neg p \rightarrow r)$$

d)
$$(p \rightarrow q) \land (\neg p \rightarrow r)$$

e)
$$(p \leftrightarrow q) \lor (\neg q \leftrightarrow r)$$

f)
$$(\neg p \leftrightarrow \neg q) \leftrightarrow (q \leftrightarrow r)$$

b) 7p>	(q ->	r)	
アーーーてキャー	7 FFFFTTT	9->x T FT T T F T T T F T T T T F T T T T F T T T T F T T T T T F T T T T T F T	79-3(9-2r) T T T T T T

Find the output of each of these combinatorial circuits.

a)
$$P \rightarrow TP$$
 $q \rightarrow TQ$
 $p \rightarrow TQ$
 $q \rightarrow Q$
 q

Construct a combinatorial circuit using inverters, OR gates, and AND gates that produces the output $((\neg p \lor \neg r) \land \neg q) \lor (\neg p \land (q \lor r))$ from input bits p, q, and r.

Screen clipping taken: 10/10/2023 21:59

Screen clipping taken: 10/10/2023 21:52

PADOI

Show that each of these conditional statements is a tautology by using truth tables.

a)
$$(p \wedge q) \rightarrow p$$

b)
$$p \to (p \lor q)$$

a)
$$(p \land q) \rightarrow p$$

c) $\neg p \rightarrow (p \rightarrow q)$
e) $\neg (p \rightarrow q) \rightarrow p$

b)
$$p \rightarrow (p \lor q)$$

d) $(p \land q) \rightarrow (p \rightarrow q)$
f) $\neg (p \rightarrow q) \rightarrow \neg q$

e)
$$\neg (p \rightarrow q) \rightarrow p$$

f)
$$\neg (p \rightarrow q) \rightarrow \neg q$$

c)
$$TP \longrightarrow (P \longrightarrow Y)$$

$$P \stackrel{Q}{} TP \stackrel{P}{} P \longrightarrow (P \longrightarrow Y)$$

$$T \stackrel{F}{} F \stackrel{F}{} T \stackrel{$$

$$TP \longrightarrow (P \rightarrow 9) = P V(P \rightarrow 9)$$

$$= P V(TP V9)$$

$$= T V9 = T$$

$$J)(P \wedge Q) \longrightarrow CP \rightarrow Q'$$

$$= 7(P \wedge Q') \vee (P \rightarrow Q')$$

$$= 7P \vee TQ \vee (TP \vee Q')$$

$$= (TP \vee TP) \vee (TQ \vee Q') = T$$

e)
$$7(P \rightarrow 9) \rightarrow P$$

 $\equiv (P \rightarrow 9) \vee P \equiv 7P \vee 9 \vee P \equiv T$

$f) \quad 7(p \rightarrow q) \rightarrow 79$ $\equiv (p \rightarrow q) \quad \forall 79 \equiv 7p \quad \forall 9 \quad \forall 79 \equiv T$

Determine whether each of these compound propositions is satisfiable.

- **a)** $(p \lor \neg q) \land (\neg p \lor q) \land (\neg p \lor \neg q)$
- **b)** $(p \to q) \land (p \to \neg q) \land (\neg p \to q) \land (\neg p \to \neg q)$
- c) $(p \leftrightarrow q) \land (\neg p \leftrightarrow q)$

Screen clipping taken: 10/10/2023 22:09

a) P 9 7P 79 T F F F T T T T T T T T T T T T T T T	P V 79 7	TPV97	7 P V7 9 F
---	----------	-------	------------

$$\begin{array}{c} C \end{array} \qquad \begin{array}{c} (P \rightleftharpoons 9) \land (TP \rightleftharpoons 9) \\ \hline \\ F \end{array} \qquad \begin{array}{c} TP \rightleftharpoons 9 \\ \hline \\ F \end{array} \qquad \begin{array}{c} TP \rightleftharpoons 9 \\ \hline \\ Screen clipping taken: 10/10/2023 22:55 \\ \hline \\ F \end{array}$$

Show that the negation of an unsatisfiable compound proposition is a tautology and the negation of a compound proposition that is a tautology is unsatisfiable.

6) negation of an unsatifule compound purplin is a tauthogy.

if a compound proposition is unswedthe => it's false for all values of proportion e) it's a controlerian

regation of a contraduction is a tamby.

1) negation of a compound presition that is a tarytry is under

I value of properior it's true

- -) for every assynt the value is tre
 -) regition of this tre vibre is always faste for every assigned.
 - => Tsys In is unwand

7 (P-> 9) ~ (TP)

7 [(7PV9) N 7P] =7 [(7PN7P) V (9N7P)]

= 7 [7p v (9, 17p)] [salble]

= 7[(7pv9)) \ (7pv7p)]

 $\frac{1}{2} \left[(p \wedge q) \wedge (p \wedge 7q) \right] \\
= \frac{1}{2} \left[p \wedge F \right] = \frac{1}{2} \left[F \right] = \frac{1}{2}$