Universidade Federal Fluminense

Lista 01

- 1. Seja uma população H, para a qual se conhecem os valores de uma variável de interesse y e o parâmetro populacional é $D = \{1,5,2,0\}$. Construa a distribuição amostral, selecionando todas as possíveis amostras de tamanho n = 3, da estatística "mediana amostral" e verifique se essa estatística é um estimador não viciado para o parâmetro "mediana populacional". Para a seleção da amostra, utilize um plano amostral AASs.
- 2. Repita o exercício anterior para a média, isto é, verifique se a estatística "média amostral" é um estimador não tendencioso para a "média populacional".
- 3. Seja $\mathcal{U} = \{1, 2, 3\}$. Para os dois planos amostrais A e B especificados abaixo, faça o que se pede:

5	$p_A(s)$
(1,1)	1/9
(1,2)	1/9
(1,3)	1/9
(2,1)	1/9
(2,2)	1/9
(2,3)	1/9
(3,1)	1/9
(3,2)	1/9
(3,3)	1/9

S	$p_B(s)$
(1,2)	1/10
(1,3)	1/15
(2,1)	1/6
(2,3)	1/3
(3,1)	1/12
(3,2)	1/4

- (a) Construa as distribuições das variáveis f_i e δ_i .
- (b) Calcule $E(\delta_1)$ e $Var(\delta_1)$.
- (c) Encontre π_i e π_{ij} , para todo i e j.
- (d) Um plano amostral é chamado de simétrico se $E(f_i)$, $Var(F_i)$ são as mesmas $\forall i$ e $Cov(f_i, f_j)$ são as mesmas $\forall i$ e j. Os planos A e B são simétricos?
- 4. Seja $n(s) = n = \sum_{i=1}^{N} f_i(s)$. Apresente E(n) e Var(n) considerando um plano AASc.
- 5. Usando um pacote computacional conveniente, simule uma população de tamanho N = 100, onde a característica de interesse y é gerada a partir da distribuição normal com média 50 e variância 16.
 - (a) Encontre o total populacional, a média populacional e a variância populacional da população que foi simulada.

- (b) Selecione uma amostra aleatória simples sem reposição de n=30 elementos. Calcule as estimativas pontuais do total e da média populacionais. Calcule também as estimativas das variâncias dos estimadores do total e da média populacionais.
- 6. Considere uma população com N=6 elementos, isto é, $\mathcal{U}=\{1,\ldots,6\}$ com o parâmtero populacional $\mathbf{D}=(2,6,10,8,10,12)$. Dessa população, uma amostra de n=2 elementos é selecionada sem reposição. Considere um plano amostral A que associa a cada possível amostra de S à mesma probabilidade.
 - (a) Calcule $Var_A(f_i)$ e $Cov_A(f_i, f_j)$ para algum i e j que você escolher.
 - (b) Seja t(s) o total amostral da amostra s. Encontre a distribuição de t(s). Calcule $E_A(t)$ e $Var_A(t)$.
 - (c) Usando (b), verifique se a média amostral \bar{y} é um estimador não viciado de μ . Calcule $EQM(\bar{y})$.
- 7. No caso da AASc, determine o tamanho aproximado da amostra n tal que

$$P(|\hat{\tau} - \tau| \leq B) \approx 1 - \alpha$$
,

em que B está fixado. Como fica n, quando B=0,03, $\alpha=0,01$ e $s^2=3,6$?

8. Um plano de AASs com n=30 foi adotado em uma área da cidade contendo 14.848 residências. O número de pessoas por residência na amostra observada foi

$$d = (5, 6, 3, 3, 2, 3, 3, 3, 4, 4, 3, 2, 7, 4, 3, 5, 4, 4, 3, 3, 4, 3, 3, 1, 2, 4, 3, 4, 2, 4).$$

- (a) Encontre uma estimativa do número médio de pessoas por residência na população e uma estimativa para a variância da estimativa obtida.
- (b) Encontre um intervalo de confiança de 90% de confiança para μ .
- (c) Suponha que seja de interesse uma estimativa duas vezes mais precisa que a amostra obtida com a amostra acima. Qual o tamanho da amostra necessário para tal precisão?
- 9. Considere uma população com N=6, em que $\mathbf{D}=(0,0,1,1,1,1)$. Deseja-se estimar p, a proporção de "uns" na população, utilizando uma AASs de n=4.
 - (a) Encontre a distribuição da média amostral de \hat{p} e mostre que \hat{p} é um estimador não viciado de p.
 - (b) Sugira um estimador para $Var(\hat{p})$. Verifique se seu estimador é não viciado.
- 10. Mostre que um intervalo de confiança para o total populacional τ com coeficiente de confiança aproximadamente igual a $1-\alpha$ é dado por

$$IC(\tau, (1-\alpha)\%) = \left(\hat{\tau} - z_{\alpha/2}\sqrt{N^2(1-f)\frac{s^2}{n}}; \hat{\tau} + z_{\alpha/2}\sqrt{N^2(1-f)\frac{s^2}{n}}\right).$$

11. Uma AASc de tamanho n=3 é selecionada de uma população com N elementos. Mostre que a probabilidade de que a amostra contenha 1, 2 ou 3 elementos diferentes é

$$p_1 = \frac{1}{N^2}, p_2 = \frac{3(N-1)}{N^2}, p_3 = \frac{(N-1)(N-2)}{N^2}.$$

12. Considere numa população com N=6, em que ${\bf D}=(1,4,5,5,6,6)$. Adote um plano AASs com n=2. Como estimador de μ considere

$$\overline{y}_c = \begin{cases} \overline{y} + 1, & \text{se } d_s \text{ cont\'em } Y_1 \text{ e n\~ao cont\'em } Y_6 \\ \overline{y} - 1, & \text{se } d_s \text{ cont\'em } Y_6 \text{ e n\~ao cont\'em } Y_1 \\ \overline{y}, & \text{caso contr\'ario}, \end{cases}$$

onde \overline{y} é a média amostral.

- (a) Encontre as distribuições de \overline{y} e \overline{y}_c . Verifique se estes estimadores são não viciados para μ .
- (b) Encontre $Var(\overline{y})$ e $Var(\overline{y}_c)$. Qual o melhor estimador?