0.1 伴随矩阵

定义 0.1 (伴随矩阵定义)

设 $A = (a_{ij})_{n \times n}$, 若

$$A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n-1,1} & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n-1,2} & A_{n2} \\ \vdots & \vdots & & \vdots & \vdots \\ A_{1,n-1} & A_{2,n-1} & \cdots & A_{n-1,n-1} & A_{n-1,n} \\ A_{1n} & A_{2n} & \cdots & A_{n,n-1} & A_{nn} \end{pmatrix}$$

其中 A_{ij} 是 a_{ij} 的代数余子式. 则称 A^* 为 A 的伴随矩阵.

定理 0.1

设A为n阶矩阵, $n \ge 2$,则

- (i) $AA^* = A^*A = |A|I_n$.
- (ii) 当 A 可逆时, 有 $A^{-1} = \frac{1}{|A|}A^*$.

证明 由伴随矩阵的定义不难证明.

命题 0.1

设 A 为 n 阶矩阵, 满足 $A^m = I_n$, 则 $(A^*)^m = I_n$.

证明 由 $A^m = I_n$ 得 $|A|^m = 1 \neq 0$, 于是矩阵 A 可逆. 又 $A^* = |A|A^{-1}$, 故 $(A^*)^m = |A|^m (A^{-1})^m = (A^m)^{-1} = I_n$.

定理 0.2 (矩阵乘积的伴随)

设 A, B 为 n 阶矩阵, $n \ge 2$, 则 $(AB)^* = B^*A^*$.

证明 证法一 (Cauchy-Binet 公式推论):设 C = AB. 记 M_{ij} , N_{ij} , P_{ij} 分别是 A, B, C 中第 (i,j) 元素的余子式, A_{ij} , B_{ij} , C_{ij} 分别是 A, B, C 中第 (i,j) 元素的代数余子式. 注意到

$$A^* = \begin{pmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{pmatrix}, \quad B^* = \begin{pmatrix} B_{11} & B_{21} & \cdots & B_{n1} \\ B_{12} & B_{22} & \cdots & B_{n2} \\ \vdots & \vdots & & \vdots \\ B_{1n} & B_{2n} & \cdots & B_{nn} \end{pmatrix},$$

 B^*A^* 的第 (i,j) 元素为 $\sum_{k=1}^n B_{ki}A_{jk}$. 而 C^* 的第 (i,j) 元素就是 $C_{ji}=(-1)^{j+i}P_{ji}$.

由 Cauchy-Binet 公式推论可得

$$C_{ji} = (-1)^{j+i} P_{ji} = (-1)^{j+i} \sum_{k=1}^{n} M_{jk} N_{ki}$$
$$= \sum_{k=1}^{n} (-1)^{j+k} M_{jk} (-1)^{i+k} N_{ki} = \sum_{k=1}^{n} A_{jk} B_{ki}$$

故结论成立.

证法二 (摄动法):若 A, B 均为非异阵,则 $A^* = |A|A^{-1}, B^* = |B|B^{-1}$,从而

$$(AB)^* = |AB|(AB)^{-1} = |A||B|(B^{-1}A^{-1}) = (|B|B^{-1})(|A|A^{-1}) = B^*A^*.$$

由命题??, 可知对于一般的方阵 A, B, 可取到一列有理数 $t_k \to 0$, 使得 $t_k I_n + A$ 与 $t_k I_n + B$ 均为非异阵. 由非

异阵情形的证明可得

$$((t_k I_n + A)(t_k I_n + B))^* = (t_k I_n + B)^* (t_k I_n + A)^*.$$

注意到上式两边均为n阶方阵,其元素都是 t_k 的多项式,从而关于 t_k 连续.上式两边同时取极限,令 $t_k \to 0$,即有 $(AB)^* = B^*A^*$ 成立.

定理 0.3 (伴随矩阵的秩)

设A为n阶矩阵.n > 2.则

$$\operatorname{rank} A^* = \begin{cases} n, & \operatorname{rank} A = n, \\ 1, & \operatorname{rank} A = n - 1, \\ 0, & \operatorname{rank} A < n - 1. \end{cases}$$

证明 当 rankA = n 时,则 $|A| \neq 0$,A 可逆,又 $AA^* = A^*A = |A|I_n$,两边同时取行列式,可得 $|A^*| \cdot |A| = |A^*A| = ||A|I_n|| = |A|^n$,于是 $|A^*| = |A|^{n-1} \neq 0$. 所以 rank $|A^*| = n$.

当 $\operatorname{rank} A = n-1$ 时,A 至少存在一个 n-1 阶子式不等于 0, 故 $A^* \neq 0$, 即 $\operatorname{rank} A^* \geq 1$; 由 $\operatorname{rank} A < n$ 知 |A| = 0, 从而 $AA^* = |A|E = 0$, 故由定理??可知 $\operatorname{rank} A^* \leq n - \operatorname{rank} A = 1$, 于是 $\operatorname{rank} A^* = 1$. (另证: 若 A 的秩等于 n-1,则由命题??可知 A^* 的 n 个列向量都成比例且至少有一列不为零, 故 A^* 的秩等于 1.)

当 rankA < n-1 时, A 的所有 n-1 阶子式均等于 0, 即 $A^* = 0$, 故 $rankA^* = 0$.

命题 0.2 (伴随矩阵的性质)

设A为n阶矩阵, $n \ge 2$,则

- 1. $(A^{\mathrm{T}})^* = (A^*)^{\mathrm{T}}$.
- 2. $(kA)^* = k^{n-1}A^*, k$ 为常数.
- 3. 若 A 为可逆阵,则 A^* 也可逆,并且 $(A^{-1})^* = (A^*)^{-1}$.
- 4. $(A^m)^* = (A^*)^m, m$ 为正整数.
- 5. $|A^*| = |A|^{n-1}$.
- 6. $(A^*)^* = |A|^{n-2}A$.

证明

- 1. 由伴随矩阵的定义及行列式的性质即得.
- 2. 由伴随矩阵的定义及行列式的性质即得.
- 3. 由定理**??**可知 $A^*(A^{-1})^* = (A^{-1}A)^* = I_n^* = I_n$. 从而 $(A^{-1})^* = (A^*)^{-1}$.
- 4. 多次利用定理??即得.
- 5. 证法一:当 A 可逆时,有 $A^* = |A|A^{-1}$,从而 $|A^*| = |A|^{n-1}$;当 A 不可逆时,有 rankA < n,由定理??知 rank $A^* < n$.于是 $|A^*| = |A| = 0$,故 $|A^*| = |A|^{n-1}$.

若 A 是非异阵, 有 $A^* = |A|A^{-1}$, 从而 $|A^*| = |A|^{n-1}$. 对于一般的方阵 A, 由命题??可知, 可取到一列有理数 $t_k \to 0$, 使得 $t_k I_n + A$ 为非异阵. 由非异阵情形的证明可得

$$|(t_k I_n + A)^*| = |t_k I_n + A|^{n-1}.$$

注意到上式两边均为行列式的幂次, 其值都是 t_k 的多项式, 从而关于 t_k 连续. 上式两边同时取极限 (上式两边都是关于 t_k 的多项式函数), 令 $t_k \to 0$, 即有 $|A^*| = |A|^{n-1}$ 成立. 证法二:见白皮书.

6. 证法一:当 A 可逆时, A^* 也可逆,且 $(A^*)^{-1} = \frac{1}{|A|}A$,从而由 伴随矩阵的性质??得

$$(A^*)^* = |A^*|(A^*)^{-1} = |A|^{n-1} \frac{1}{|A|} A = |A|^{n-2} A.$$

当 A 不可逆时, 则 |A| = 0, 且由定理**??**及 $n \ge 2$ 知 $\operatorname{rank} A^* \le 1 < n-1$, 从而 $\operatorname{rank} (A^*)^* = 0$, 即 $(A^*)^* = 0$, 因此 $(A^*)^* = |A|^{n-2}A$.

若 A 是非异阵, A^* 也可逆,且 $(A^*)^{-1} = \frac{1}{|A|}A$,从而由伴随矩阵的性质??得

$$(A^*)^* = |A^*|(A^*)^{-1} = |A|^{n-1} \frac{1}{|A|} A = |A|^{n-2} A.$$

对于一般的方阵 A, 由命题??可知, 可取到一列有理数 $t_k \to 0$, 使得 $t_k I_n + A$ 为非异阵. 由非异阵情形的证明可得

$$((t_k I_n + A)^*)^* = |t_k I_n + A|^{n-2} (t_k I_n + A).$$

注意到上式两边均为 n 阶方阵, 其元素都是 t_k 的多项式 (上式两边的矩阵每个元素都是关于 t_k 的多项式函数), 从而关于 t_k 连续. 上式两边同时取极限, 令 $t_k \to 0$, 即有 $(A^*)^* = |A|^{n-2}A$ 成立. 证法二:见白皮书.

命题 0.3 (伴随矩阵的继承性)

- 1. 对角矩阵的伴随矩阵是对角矩阵;
- 2. 对称矩阵的伴随矩阵是对称矩阵;
- 3. 上(下)三角矩阵的伴随矩阵是上(下)三角矩阵;
- 4. 可逆矩阵的伴随矩阵是可逆;
- 5. 正交矩阵的伴随矩阵是正交矩阵;
- 6. 半正定 (正定) 矩阵的伴随矩阵是半正定 (正定) 矩阵;
- 7. 可对角化矩阵的伴随矩阵是可对角化矩阵.

证明

- 1. 设 n 阶矩阵 $A = (a_{ij}), n \ge 2$.
- 2. 若 A 为对角矩阵,则 $a_{ij} = 0 (i \neq j)$,从而 $i \neq j$ 时, M_{ij} 是对角行列式,且主对角元必有零,即 $M_{ij} = 0$,故 $A_{ii} = 0$,于是 A^* 为对角矩阵.
- 3. 若 A 为对称矩阵,则 $a_{ij} = a_{ji}(i, j = 1, 2, \dots, n)$,因此 $i, j = 1, 2, \dots, n$ 时, M_{ij} 是对称行列式,从而 $A_{ij} = A_{ji}$,即 A^* 为对称矩阵.
- 4. 若 A 为上三角矩阵, 则 $1 \le j < i \le n$ 时, $a_{ij} = 0$, 所以 $1 \le i < j \le n$ 时, M_{ij} 是上三角行列式, 且主对角元必有零, 即 $M_{ij} = 0$, 从而 $A_{ij} = 0$, 所以 A^* 为上三角矩阵. 同理可证: 下三角矩阵的伴随矩阵是下三角矩阵.
- 5. 由 $|A| \neq 0$ 和 $A^* = |A|A^{-1}$ 即知.
- 6. 因为 A 为正交矩阵等价于 $A^{-1} = A^{T}$, 所以 $|A|^{-1} = |A|$. 从而由定理????, 有

$$(A^*)^{-1} = |A|^{-1}A = (|A|A^T)^T = (A^*)^T$$
,

故 A* 为正交矩阵.

7. 由于 A 为半正定矩阵等价于存在实矩阵 C, 使得 $A = C^T C$, 因此由定理??和伴随矩阵的性质??, 有

$$A^* = (C^T C)^* = C^* (C^T)^* = C^* (C^*)^T,$$

于是 A* 为半正定矩阵. 当 A 为正定矩阵时, 同理可证 A* 为正定矩阵.

8. 若 A 可对角化,则存在可逆矩阵 P,使得 $A = P\Lambda P^{\mathrm{T}}$,其中 Λ 为对角矩阵,从而由定理??和伴随矩阵的性质??,有

$$A^* = (P^{\mathrm{T}})^* \Lambda^* P^* = (P^*)^{\mathrm{T}} \Lambda^* P^*,$$

再根据伴随矩阵的继承性??和伴随矩阵的性质??, 知 Λ^* 为对角矩阵, P^* 为可逆矩阵, 故 Λ^* 可对角化.

命题 0.4 (分块矩阵的伴随矩阵)

设A为m阶矩阵,B为n阶矩阵,分块对角阵C为

$$C = \begin{pmatrix} A & O \\ O & B \end{pmatrix}.$$

则分块对角阵 C 的伴随矩阵为:

$$C^* = \begin{pmatrix} |B|A^* & O \\ O & |A|B^* \end{pmatrix}.$$

证明 证法一: 设 $A = (a_{ij})_{m \times m}$, 元素 a_{ij} 的余子式和代数余子式分别记为 M_{ij} 和 A_{ij} ; $B = (b_{ij})_{n \times n}$, 元素 b_{ij} 的余子式和代数余子式分别记为 N_{ij} 和 B_{ij} . 利用 Laplace 定理可以容易地计算出: 当 $1 \le i, j \le m$ 时, C 的第 (i, j) 元素的代数余子式为 $(-1)^{i+j}M_{ij}|B| = |B|A_{ij}$; 当 $m+1 \le i, j \le m+n$ 时, 由 Laplace 定理,可知 C 的第 (i, j) 元素的代数余子式为 $(-1)^{i+j}N_{i-m,j-m}|A| = |A|B_{i-m,j-m}$; 当 i, j 属于其他范围时,由 Laplace 定理,当 $1 \le i \le m, m \le j \le m+n$ 时,将其按前 m 列展开,当 $m \le i \le m+n$,1 $\le j \le m$ 时,将其按前 m 行展开,可得 C 的第 (i, j) 元素的代数余子式等于零. 因此我们有

$$C^* = \begin{pmatrix} |B|A^* & O \\ O & |A|B^* \end{pmatrix}.$$

证法二:若 A, B 均为非异阵, 则

$$C\begin{pmatrix} |B|A^* & O \\ O & |A|B^* \end{pmatrix} = \begin{pmatrix} A & O \\ O & B \end{pmatrix}\begin{pmatrix} |B|A^* & O \\ O & |A|B^* \end{pmatrix} = \begin{pmatrix} |B|AA^* & O \\ O & |A|BB^* \end{pmatrix} = \begin{pmatrix} |A||B|I_m & O \\ O & |A||B|I_n \end{pmatrix} = |C|I_{m+n} = CC^*,$$

注意到C非异,故由上式可得

$$C^* = \begin{pmatrix} A & O \\ O & B \end{pmatrix}^* = \begin{pmatrix} |B|A^* & O \\ O & |A|B^* \end{pmatrix}.$$

对于一般的方阵 A, B, 由命题??可知, 可取到一列有理数 $t_k \to 0$, 使得 $t_k I_m + A$ 与 $t_k I_n + B$ 均为非异阵. 由非异阵情形的证明可得

$$\begin{pmatrix} t_k I_m + A & O \\ O & t_k I_n + B \end{pmatrix}^* = \begin{pmatrix} |t_k I_n + B|(t_k I_m + A)^* & O \\ O & |t_k I_m + A|(t_k I_n + B)^* \end{pmatrix}.$$

注意到上式两边均为 m+n 阶方阵, 其元素都是 t_k 的多项式, 从而关于 t_k 连续. 上式两边同时取极限, 令 $t_k \to 0$, 即有 $\begin{pmatrix} A & O \\ O & B \end{pmatrix}^* = \begin{pmatrix} |B|A^* & O \\ O & |A|B^* \end{pmatrix}$ 成立.

0.1.1 练习

△ 练习 0.1 设 A, B 为 n 阶方阵, 满足 AB = BA, 证明: $AB^* = B^*A$.

证明 若 B 为非异阵,则由 AB = BA 可得 $AB^{-1} = B^{-1}A$. 又 $B^* = |B|B^{-1}$, 于是 $AB^* = B^*A$ 成立. 对于一般的方阵 B, 可取到一列有理数 $t_k \to 0$, 使得 $t_k I_n + B$ 为非异阵, 此时 $A(t_k I_n + B) = (t_k I_n + B)A$ 仍然成立. 由非异阵情形的证明可得

$$A(t_k I_n + B)^* = (t_k I_n + B)^* A.$$

注意到上式两边均为n阶方阵,其元素都是 t_k 的多项式,从而关于 t_k 连续.上式两边同时取极限,令 $t_k \to 0$,即有 $AB^* = B^*A$ 成立.

▲ 练习 0.2 设 n 阶矩阵

$$A = \begin{pmatrix} 2 & 2 & 2 & \cdots & 2 \\ 0 & 1 & 1 & \cdots & 1 \\ 0 & 0 & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix},$$

求 $\sum_{i,j=1}^n A_{ij}$.

解 解法一:显然 |A| = 2, 用初等变换不难求出

$$A^{-1} = \begin{pmatrix} \frac{1}{2} & -1 & 0 & \cdots & 0 & 0\\ 0 & 1 & -1 & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & 1 & -1\\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix},$$

故

$$A^* = 2A^{-1} = \begin{pmatrix} 1 & -2 & 0 & \cdots & 0 & 0 \\ 0 & 2 & -2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & -2 \\ 0 & 0 & 0 & \cdots & 0 & 2 \end{pmatrix}.$$

将 A^* 的所有元素加起来, 可得 $\sum_{i,j=1}^{n} A_{ij} = 1$.

解法二:由命题??可得

$$-\sum_{i,j=1}^{n} A_{ij} = \begin{vmatrix} 2 & 2 & 2 & \cdots & 2 & 1 \\ 0 & 1 & 1 & \cdots & 1 & 1 \\ 0 & 0 & 1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 \\ 1 & 1 & 1 & \cdots & 1 & 0 \end{vmatrix} = \begin{vmatrix} 2 & 2 & 2 & \cdots & 2 & 1 \\ 0 & 1 & 1 & \cdots & 1 & 1 \\ 0 & 0 & 1 & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 \\ 0 & 0 & 0 & \cdots & 0 & -\frac{1}{2} \end{vmatrix} = -1.$$

于是 $\sum_{i,j=1}^{n} A_{ij} = 1$.

解法三:由大拆分法可得 $|A(-1)| = |A| - \sum_{i,j=1}^{n} A_{ij}$, 且

$$|A(-1)| = \begin{vmatrix} 1 & 1 & \cdots & 1 & 1 \\ -1 & 0 & \cdots & 0 & 0 \\ -1 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ -1 & -1 & \cdots & -1 & 0 \end{vmatrix} = (-1)^{n+1} \begin{vmatrix} -1 & 0 & \cdots & 0 \\ -1 & -1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ -1 & -1 & \cdots & -1 \end{vmatrix} = 1.$$

故 $\sum_{i,j=1}^{n} A_{ij} = |A(-1)| - |A|$.

解法四:由例题??可得

$$\sum_{i,j=1}^{n} A_{ij} = \begin{vmatrix} 0 & 0 & \cdots & 0 & 1 \\ -1 & 0 & \cdots & 0 & 1 \\ 0 & -1 & \cdots & 0 & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & -1 & 1 \end{vmatrix} = (-1)^{n+1} \begin{vmatrix} -1 & 0 & \cdots & 0 \\ 0 & -1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & -1 \end{vmatrix} = 1.$$