Predicting Red Wine Quality

Data from http://archive.ics.uci.edu/ml/datasets/Wine+Quality (http://archive.ics.uci.edu/ml/datasets/Wine+Quality)

Citations

```
Dua, D. and Karra Taniskidou, E. (2017).

UCI Machine Learning Repository [http://archive.ics.uci.edu/ml/index.php].

Irvine, CA: University of California, School of Information and Computer Science.

P. Cortez, A. Cerdeira, F. Almeida, T. Matos and J. Reis.

Modeling wine preferences by data mining from physicochemical properties.

In Decision Support Systems, Elsevier, 47(4):547-553. ISSN: 0167-9236.
```

Available at:

- @Elsevier (http://dx.doi.org/10.1016/j.dss.2009.05.016)
- Pre-press (pdf) (http://www3.dsi.uminho.pt/pcortez/winequality09.pdf)
- bib (http://www3.dsi.uminho.pt/pcortez/dss09.bib)

Setup

```
In [2]: %matplotlib inline
    import matplotlib.pyplot as plt
    import numpy as np
    import pandas as pd
    import seaborn as sns
```

EDA

In [3]: red_wine = pd.read_csv('data/winequality-red.csv')
 red_wine.head()

Out[3]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfur dioxide	density	pН	sulphates	alcohol
0	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
1	7.8	0.88	0.00	2.6	0.098	25.0	67.0	0.9968	3.20	0.68	9.8
2	7.8	0.76	0.04	2.3	0.092	15.0	54.0	0.9970	3.26	0.65	9.8
3	11.2	0.28	0.56	1.9	0.075	17.0	60.0	0.9980	3.16	0.58	9.8
4	7.4	0.70	0.00	1.9	0.076	11.0	34.0	0.9978	3.51	0.56	9.4
4											>

```
In [4]:
        def plot quality scores(df, kind):
            ax = df.quality.value counts().sort index().plot.barh(
                title=f'{kind.title()} Wine Quality Scores', figsize=(12, 3)
            ax.axes.invert_yaxis()
            for bar in ax.patches:
                 ax.text(
                     bar.get width(),
                     bar.get_y() + bar.get_height()/2,
                     f'{bar.get_width()/df.shape[0]:.1%}',
                     verticalalignment='center'
            plt.xlabel('count of wines')
            plt.ylabel('quality score')
            for spine in ['top', 'right']:
                 ax.spines[spine].set visible(False)
            return ax
        plot quality scores(red wine, 'red')
        # The information on the dataset says that quality varies from 0 (terrible) to
        10
        # (excellent); however, we only have values in the middle of that range. An in
        teresting task
        # for this dataset could be to see if we can predict high-quality red wines (a
        quality score of
        # 7 or higher):
```

Out[4]: <AxesSubplot:title={'center':'Red Wine Quality Scores'}, xlabel='count of win
 es', ylabel='quality score'>

In [5]: red_wine.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1599 entries, 0 to 1598
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	fixed acidity	1599 non-null	float64
1	volatile acidity	1599 non-null	float64
2	citric acid	1599 non-null	float64
3	residual sugar	1599 non-null	float64
4	chlorides	1599 non-null	float64
5	free sulfur dioxide	1599 non-null	float64
6	total sulfur dioxide	1599 non-null	float64
7	density	1599 non-null	float64
8	рН	1599 non-null	float64
9	sulphates	1599 non-null	float64
10	alcohol	1599 non-null	float64
11	quality	1599 non-null	int64

dtypes: float64(11), int64(1)

memory usage: 150.0 KB

In [6]: red_wine.describe()

Out[6]:

	fixed acidity	volatile acidity	citric acid	residual sugar	chlorides	free sulfur dioxide	total sulfu dioxid
count	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.000000	1599.00000
mean	8.319637	0.527821	0.270976	2.538806	0.087467	15.874922	46.46779
std	1.741096	0.179060	0.194801	1.409928	0.047065	10.460157	32.89532
min	4.600000	0.120000	0.000000	0.900000	0.012000	1.000000	6.00000
25%	7.100000	0.390000	0.090000	1.900000	0.070000	7.000000	22.00000
50%	7.900000	0.520000	0.260000	2.200000	0.079000	14.000000	38.00000
75%	9.200000	0.640000	0.420000	2.600000	0.090000	21.000000	62.00000
max	15.900000	1.580000	1.000000	15.500000	0.611000	72.000000	289.00000

In [7]: red_wine['high_quality'] = pd.cut(red_wine.quality, bins=[0, 6, 10], labels=
 [0, 1])
 red_wine.high_quality.value_counts(normalize=True)
use pd.cut() to bin our high-quality red wines (roughly 14% of the data)

Out[7]: 0 0.86429 1 0.13571

Name: high_quality, dtype: float64

It's important to perform an in-depth exploration of the data before modeling. This includes consulting domain experts, looking for correlations between variables, examining distributions, etc. The visualizations covered in chapters 5 and 6 will prove indispensible for this process. One such visualization is the pairplot. In order to predict high quality red wines, we would try to see if there is a difference in the distribution of our variables for low versus high quality red wines. We would also look for correlations. Some other helpful plot types include box plots, heatmaps, and the scatter matrix.

Logistic Regression

The logistic sigmoid function gives values in the range [0, 1], which can be used as probabilities for classification problems:

```
In [10]: from visual_aids import ml_viz
ml_viz.logistic_sigmoid()
```

Out[10]: [<AxesSubplot:title={'center':'Logistic Sigmoid Function'}, xlabel='x', ylabe
l='y'>]

Building a model

- 1. separate x and y data
- 2. get the training and testing sets
- 3. build a pipeline with preprocessing (standardizing here) ending in the model (logistic regression here)
- 4. fit the model
- 5. make predictions
- 6. evaluate predictions

Steps 1 and 2:

Since we stratified on the high quality versus not from the entire dataset (from red_y), we preserve the ratio of high quality to not in both our test and training sets:

Percentage of high- and low-quality red wines in the training set:

Percentage of high- and low-quality red wines in the test set:

Step 3:

Step 4:

Step 5:

```
In [17]: quality_preds = red_quality_lr.predict(r_X_test)
```

Evaluation

Step 6

We can use a confusion matrix to see how the model's predictions align with the actual class labels. This model gets 36 wrong. It seems to predict high quality too often:

Accuracy tells us how many the model got right. However, it is often misleading in cases of class imbalance (like here):

```
In [19]: # mean accuracy
    red_quality_lr.score(r_X_test, r_y_test)
Out[19]: 0.775
```

Zero-one loss is our error rate:

```
In [20]: from sklearn.metrics import zero_one_loss
   zero_one_loss(r_y_test, quality_preds)
Out[20]: 0.2249999999999998
```

Another way to look at performance is with the classification report. Performance is better on the low-quality wines (0 in output below) that are the majority:

In [21]:	<pre>from sklearn. print(classif</pre>	-		_	•
		precision	recall	f1-score	support
	0	0.95	0.78	0.86	138
	1	0.35	0.73	0.47	22
	accuracy			0.78	160
	macro avg	0.65	0.75	0.66	160
	weighted avg	0.86	0.78	0.80	160

Precision, recall, and F_1 score are more informative when dealing with class imbalance. They ignore true negatives which are likely to be very high (when predicting the minority class):

The ROC curve indicates this is better than the random guessing baseline; however, the performance isn't great:

Remember, the ROC curve includes true negatives so it is optimistic in cases of class imbalance. When faced with class imbalance, we use precision-recall curves since ROC curves will be optimistic of model performance. AP is the weighted average precision, and AUC is the area under the curve once again in the range [0, 1]. The baseline is now the percentage of observations belonging to the positive class. Values below this line are worse than random:

In []: