## **Linear Combinations**

An expression

$$\alpha_1 \mathbf{v}_1 + \cdots + \alpha_n \mathbf{v}_n$$

is a *linear combination* of the vectors  $\mathbf{v}_1, \dots, \mathbf{v}_n$ .

The scalars  $\alpha_1, \ldots, \alpha_n$  are the *coefficients* of the linear combination.

**Example:** One linear combination of [2, 3.5] and [4, 10] is

$$-5[2,3.5]+2[4,10]$$

which is equal to  $[-5\cdot 2, -5\cdot 3.5] + [2\cdot 4, 2\cdot 10]$ 

Another linear combination of the same vectors is

$$0\,[2,3.5] + 0\,[4,10]$$

which is equal to the zero vector [0,0].

**Definition:** A linear combination is *trivial* if the coefficients are all zero.

## Linear Combinations: JunkCo

The JunkCo factory makes five products:











using various resources.

|               | metal | concrete | plastic | water | electricity |
|---------------|-------|----------|---------|-------|-------------|
| garden gnome  | 0     | 1.3      | .2      | .8    | .4          |
| hula hoop     | 0     | 0        | 1.5     | .4    | .3          |
| slinky        | .25   | 0        | 0       | .2    | .7          |
| silly putty   | 0     | 0        | .3      | .7    | .5          |
| salad shooter | .15   | 0        | .5      | .4    | .8          |

For each product, there is a vector specifying how much of each resource is used per unit of product.

For making one gnome:

 $\mathbf{v}_1 = \{ \text{metal:0, concrete:1.3, plastic:0.2, water:.8, electricity:.4} \}$ 

## Linear Combinations: JunkCo

For making one gnome:

```
\mathbf{v}_1 = \{ \text{metal:0, concrete:1.3, plastic:0.2, water:.8, electricity:.4} \} For making one hula hoop:
```

 $\mathbf{v}_2 = \{ \text{metal:0, concrete:0, plastic:1.5, water:.4, electricity:.3} \}$  For making one slinky:

 $\mathbf{v}_3 = \{\text{metal}:.25, \text{ concrete}:0, \text{ plastic}:0, \text{ water}:.2, \text{ electricity}:.7\}$  For making one silly putty:

 $\mathbf{v}_4 = \{ \text{metal:0, concrete:0, plastic:.3, water:.7, electricity:.5} \}$  For making one salad shooter:

 $\mathbf{v}_5 = \{ \text{metal:1.5, concrete:0, plastic:.5, water:.4, electricity:.8} \}$ 

Suppose the factory chooses to make  $\alpha_1$  gnomes,  $\alpha_2$  hula hoops,  $\alpha_3$  slinkies,  $\alpha_4$  silly putties, and  $\alpha_5$  salad shooters.

Total resource utilization is  $\mathbf{b} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 + \alpha_5 \mathbf{v}_5$ 

# Linear Combinations: JunkCo: Industrial espionage

Total resource utilization is  $\mathbf{b} = \alpha_1 \mathbf{v}_1 + \alpha_2 \mathbf{v}_2 + \alpha_3 \mathbf{v}_3 + \alpha_4 \mathbf{v}_4 + \alpha_5 \mathbf{v}_5$ 

Suppose I am spying on JunkCo.

I find out how much metal, concrete, plastic, water, and electricity are consumed by the factory.

That is, I know the vector  $\mathbf{b}$ . Can I use this knowledge to figure out how many gnomes they are making?

# **Computational Problem:** Expressing a given vector as a linear combination of other given vectors

- ▶ input: a vector **b** and a list  $[\mathbf{v}_1, \dots, \mathbf{v}_n]$  of vectors
- output: a list  $[\alpha_1, \ldots, \alpha_n]$  of coefficients such that

$$\mathbf{b} = \alpha_1 \, \mathbf{v}_1 + \dots + \alpha_n \, \mathbf{v}_n$$

or a report that none exists.

#### **Question:** Is the solution unique?

## Lights Out

Button vectors for 2 × 2 *Lights Out:* 

For a given initial state vector 
$$\mathbf{s} = \begin{bmatrix} \bullet \\ \bullet \end{bmatrix}$$
,

Which subset of button vectors sum to **s**?

Reformulate in terms of linear combinations.

Write

$$= \alpha_1 + \alpha_2 + \alpha_3 + \alpha_4 + \alpha_4 + \alpha_4$$

What values for  $\alpha_1, \alpha_2, \alpha_3, \alpha_4$  make this equation true?

**Solution:** 
$$\alpha_1 = 0, \alpha_2 = 1, \alpha_3 = 0, \alpha_4 = 0$$

Solve an instance of Lights Out  $\Rightarrow$  Which set of button vectors sum to **s**?

$$\Rightarrow$$
 Find subset of  $GF(2)$  vectors  $\mathbf{v}_1, \dots, \mathbf{v}_n$  whose sum equals  $\mathbf{s}$ 

Express **s** as a linear combination of  $\mathbf{v}_1, \dots, \mathbf{v}_n$ 

## Lights Out

We can solve the puzzle if we have an algorithm for

**Computational Problem:** Expressing a given vector as a linear combination of other given vectors