Android 与图像处理板(IPS)通信协议

1 通讯协议

根据公司自研自动售货机的控制需求,制定 Android 与图像处理板(IPS)之间的通讯协议,为了满足通信的实时性需求,尽量缩简协议的帧长度,减少冗余,从而减少传输时间,同时采用位域的定义方式,提高带宽利用率。

Android 板与图像处理板(IPS)通信采用主从通信方式,Android 作为主机,IPS 作为从机。

1.1 生成货道坐标列表(0x02)

设备补货后, Android 发送该指令给 Linux 板,进行货架扫描,生成货架数据表,并把货架分区情况和分层情况反馈给 Android。

命令帧格式

命令	长度	数据域
CMD	LEN	Resvd
0x02	0x01	0x00

【说明】

- 1. CMD: 命令码,取值 0x02。
- 2. Resvd: 保留。
- 3. 超时响应时间: 300S。

响应帧格式

响应	长度		数据域						
RSP	LEN	ErrCode		MchSta	Floor	FloorCnt		Floor1	
KSP	LEN	EHC	ode	Michista	FloorCnt	Area	Floor	Count	
0x02	5+3*N								

数据域				
	Floor N			
•••••	Area	Floor	Count	

【说明】

- 1. RSP: 响应码,取值与命令码相同。
- 2. ErrCode: 错误码,占两个字节。错误码列表参见附录。
- 3. MchSta: 设备状态,占一个字节,状态定义如下表所示。

M - 1- C + -	Bit[7:6]	0表示空闲,1表示忙碌,2表示设备故障。
	Bit[5]	0表示托盘为空,1表示托盘非空
MchSta	Bit[4]	0表示小车非节能状态,1表示节能状态
	Bit[3:0]	保留

- 4. FloorCnt: 货架分层的总数量,取值范围 0 到 65535。
- 5. Floort(x): 货架分层情况,包括 Area 数量,Floor 数量,每层的货道数量 Count。

注意: 当响应帧分多帧上报时,只有第一帧包含 ErrCode、MchSta 和 ErrorCnt。

1.2 出货(0x04)

Linux 接收到该指令后,控制小车运动到指定货道,执行取货、出货、打开取货门等一系列动作。

注: 执行出货指令之前,首先判断托盘是否有商品,如果有商品先运动到出货口让客户取走,然后再进行取货。

命令帧格式

命令	长度		数据域					
CMD	CMD LEN Mode		Count	1 st .Goods				
CIVIE	LEIT	1 louc	Courie	Index	Area	Floor	Num	•••••
0x04	2+4*Count							

【说明】

1. Mode: 出货模式,0表示一次出单件商品,1表示一次出多件商品。

2. Count:购买商品总数,一次最多可指定3件商品。

3. Index:出货商品序号,取值0~2。

4. Area: 商品所在区域。 5. Floor: 商品所在层号。 6. Num: 商品所在货道号。

7. 超时响应时间: 20S。

(取货补充) 通知帧格式

通知	长度	数据域				
ATT	LEN	Elag	Goods			
AII		Flag	Index	Area	Floor	Num
0x04	0x05	0x03				

【说明】

1. ATT: 通知码,取值与命令码相同。

2. Flag: 取货补充编码,取值 0x03。

3. Index: 补充的商品序号,取值 0^2 2.

Area:商品所在区域。
Floor:商品所在层号。
Num:商品所在货道号。

(待取货) 通知帧格式

通知	长度	数据域
ATT	LEN	Flag
0x04	0x01	0x01

【说明】

1. ATT: 通知码,取值与命令码相同。

2. Flag: 待取货码,取值 0x01。

(取货失败) 通知帧格式

通知	长度	数据域		
ATT	LEN	Flag	Index	
0x04	0x02	0x02		

【说明】

1. ATT: 通知码,取值与命令码相同。

2. Flag: 取货失败码,取值 0x02。

3. Index: 失败的商品编号,取值 0^2 。

(出货前托盘非空)通知帧格式

通知	长度	数据域	
ATT	LEN	Flag	
0x04	0x01	0x04	

【说明】

- 1. ATT: 通知码,取值与命令码相同。
- 2. Flag: 待取货码,取值 0x04。

(结束补充) 通知帧格式

通知	长度	数据域
ATT	LEN	Flag
0x04	0x01	0x05

【说明】

- 1. ATT: 通知码,取值与命令码相同。
- 2. Flag: 结束补充标志,取值 0x05。

(取货成功) 通知帧格式

通知	长度	数据域		
ATT	LEN	Flag	Index	
0x04	0x01	0x06		

【说明】

- 1. ATT: 通知码,取值与命令码相同。
- 2. Flag: 取货成功标志,取值 0x06。
- 3. Index: 失败的商品编号,取值 0^2 2.

响应帧格式

. •/ //	10-20B-							
响应	长度		数据域					
RSP	LEN	ErrC	ode	MchSta	FailedCount	Index(1)		Index(N)
0x04	4+FailedCount							

【说明】

- 1. ErrCode: 错误码,占两个字节。错误码列表参见附录。
- 2. MchSta: 设备状态,占一个字节,状态定义如下表所示。

而可以在,发出状态,且一个1个,状态之久对下次/////				
	Bit[7:6]	0表示空闲,1表示忙碌,2表示设备故障。		
MahC+a	Bit[5]	0表示托盘为空,1表示托盘非空		
MchSta	Bit[4]	0表示小车非节能状态,1表示节能状态		
	Bit[3:0]	保留		

- 3. FailedCoun: 出货失败总数。
- **4**. Index(x): 出货失败商品的序号,取值 0~2。

1.3 新电源板继电器控制(0x0E)

Android 发送该指令给图像处理板(IPS),由 IPS 通知 ACCS 电源控制板控制继电器。

命令帧格式

命令	长度	数据域				
CMD	LEN	Index	Relay	Action	ReseTim	Reserve
0x0E	0x05					

【说明】

1. Index: 指定的柜门号, 取值 0~15。

2. Relay: 继电器号 0~7, 默认功能如下表:

0	1	2	3	4	5	6	7	
预留	电子锁	门控	小车	一体机	LED	风机	压缩机	

3. Action: 动作码 1: ON 0: OFF

4. ReseTim: 动作恢复时间 0: 不需要恢复, 1: 1 秒后恢复, 依此类推

5. Reserve: 保留,默认为0

6. 超时响应时间: 10S。

响应帧格式

响应	长度				数技	居域			
RSP	LEN	ErrC	ode	MchSta	Index	Relay	Action	ReseTim	Reserve
0x0E	0x08								

【说明】

1. ErrCode: 错误码,占两个字节。错误码列表参见附录。

2. MchSta:设备状态,占一个字节,状态定义如下表所示。

	Bit[7:6]	0表示空闲,1表示忙碌,2表示设备故障。			
MahC+a	Bit[5]	0表示托盘为空,1表示托盘非空			
MchSta	Bit[4]	0表示小车非节能状态,1表示节能状态			
	Bit[3:0]	保留			

3. Index: 指定打开的柜门号,取值与命令帧一致。

7. Relay: 继电器号 取值与命令帧一致

8. Action: 动作码 取值与命令帧一致

9. ReseTim: 动作恢复时间 取值与命令帧一致

10. Reserve: 保留,取值与命令帧一致

1.4 查询设备参数(0x23)

设备处于空闲状态时, Android 可通过该指令读取设备参数。

命令帧格式

命令	长度	数据域
CMD	LEN	Resvd
0x23	0x01	0x00

【说明】

- 1. Resvd: 保留。
- 2. 超时响应时间: 100ms。

响应帧格式

14/ 1/11	I ~ V							
响应	长度				数据域			
RSP	LEN	DeviceID(10 字符)				IPS_	VER	
0x23	39+2*N	D[0]	•••••	D[9]				

PCS_VER		

EXCS_VER			ACCS_VER				

RightLimit	TopLimit	PopPoint.x	PopPoint.y

AearCnt	AreaPos_1		AreaPos_n	
N		<u> </u>		

【说明】

- 1. DeviceID:设备号,由 10 个字符组成。
- 2. IPS VER: 图像处理板的固件版本号,由 4 个字节组成,版本号格式如下表所示。

_	Bit[31]	0表示发布版,1表示测试版
	Bit[30:28]	硬件版本
	Bit[27:23]	主版本号
IPS_VER	Bit[22:16]	次版本号
	Bit[15:9]	发布日期(年),只表示十位和个位
	Bit[8:5]	发布日期(月)
	Bit[4:0]	发布日期(日)

- 3. MCS_VER:运动控制板的固件版本号,版本号格式同IPS_VER。
- 4. PCS_VER: 取货控制板的固件版本号,版本号格式同 IPS_VER。
- 5. EXCS_VER: 外设控制板的固件版本号,版本号格式同 IPS_VER。
- 6. ACCS VER: 电气控制板的固件版本号,版本号格式同 IPS VER。
- 7. RightLimit: 右极限坐标值,单位 mm。
- 8. TopLimit: 顶部极限坐标值,单位 mm。
- 9. PopPoint.x: 出货口位置的 x 坐标,单位 mm。
- 10. PopPoint.y: 出货口位置的 y 坐标,单位 mm。
- 11. AearCnt: 货柜(或区域)的数量。
- 12. AreaPos_x: 货柜(或区域)的起始坐标,单位 mm。

1.5 查询货道坐标列表(0x24)

设备处于空闲状态时, Android 可通过该指令读取设备参数。

命令帧格式

命令	长度	数据域		
CMD	LEN	Resvd		
0x24	0x01	0x00		

【说明】

- 1. CMD: 命令码,取值 0x14。
- 2. Resvd: 保留。
- 3. 超时响应时间: 100ms。

响应帧格式

响应	长度	数据域							
RSP	LEN	Em.Codo	de MchSta Count		Count Unit1				
KSP	LEN	ErrCode	MCIISta	Count	Area	Floor	Num		
0x24	5+7*N								

数据域											
Unit1					Unit N						
Pos	X	Pos	Υ		Area	Floor	Num	PosX		Pos	Υ

【说明】

- 1. RSP: 响应码,取值与命令码相同。
- 2. ErrCode: 错误码,占两个字节。错误码列表参见附录。
- 3. MchSta: 设备状态,占一个字节,状态定义如下表所示。

	Bit[7:6]	0表示空闲,1表示忙碌,2表示设备故障。
MchSta	Bit[5]	0表示托盘为空,1表示托盘非空
Mensta	Bit[4]	0表示小车非节能状态,1表示节能状态
	Bit[3:0]	保留

- 4. Count: 货道总数量,取值范围 0 到 65535。
- 5. Area: 货道所属区号,取值 0~16。
- 6. Floor: 货道所属层号, 取值 0~255。
- 7. Num: 货道号, 取值 0~255。
- 8. PosX: 货道 X 坐标值,单位 mm。
- 9. PosY: 货到 Y 坐标值,单位 mm。

注意: 当响应帧分多帧上报时,只有第一帧包含 ErrCode、MchSta 和 ErrorCnt。

1.6 读写取货高度补偿值(0x29)

Android 通过该指令读取或写入取货高度补偿值

命令帧格式

命令	长度		数据域				
CMD	LEN	R/W	Compensation				
0x29	0x02						

1、R/W:读写模式。0表示读,1表示写。

2、Compensation: 取货高度补偿值

3、超时响应时间: 10S。

响应帧格式

响应	长度		数据域							
RSP	LEN	ErrCode		MchSta	R/W	Compensation				
0x0F	0x05									

【说明】

1. ErrCode: 错误码,占两个字节。错误码列表参见附录。

2. MchSta: 设备状态,占一个字节,状态定义如下表所示。

	Bit[7:6]	0表示空闲,1表示忙碌,2表示设备故障。
MchSta	Bit[5]	0表示托盘为空,1表示托盘非空
Mensta	Bit[4]	0表示小车非节能状态,1表示节能状态
	Bit[3:0]	保留

3. R/W:读写模式。与命令帧取值一致。

4. Compensation: 取货高度补偿值。

1.7 读写出货口高度(0x2A)

Android 通过该指令读取或写入出货口高度

命令帧格式

命令	长度		数据域				
CMD	LEN	R/W	PopVal				
0x2A	0x02						

1、R/W:读写模式。0表示读,1表示写。

PopVal: 出货口高度
超时响应时间: 10S。

响应帧格式

响应	长度		数据域							
RSP	LEN	ErrC	ode	MchSta	R/W	Рор	Val			
0x0F	0x05									

【说明】

5. ErrCode: 错误码,占两个字节。错误码列表参见附录。

6. MchSta: 设备状态,占一个字节,状态定义如下表所示。

	Bit[7:6]	0表示空闲,1表示忙碌,2表示设备故障。
MchSta	Bit[5]	0表示托盘为空,1表示托盘非空
Mensia	Bit[4]	0表示小车非节能状态,1表示节能状态
	Bit[3:0]	保留

7. R/W:读写模式。与命令帧取值一致。

8. PopVal: 出货口高度。

1.8 重新找原点(0x51)

Android 通过该指令控制设备重新找原点,设备将完成计算 X 轴方向和 Y 轴方向的偏差值。

命令帧格式

命令	长度	数据域
CMD	LEN	Resvd
0x51	0x01	0x00

【说明】

- 1. CMD: 命令码,取值 0x51。
- 2. Resvd: 保留。
- 3. 超时响应时间: 30S。

响应帧格式

响应	长度	数据域						
RSP	LEN	ErrCode		MchSta	ErrDis	tanceX	ErrDis	tanceY
0x51	0x07							

【说明】

- 1. RSP: 响应码,取值与命令码相同。
- 2. ErrCode: 错误码,占两个字节。错误码列表参见附录。
- 3. MchSta: 设备状态,占一个字节,状态定义如下表所示。

MchSta	Bit[7:6]	0表示空闲,1表示忙碌,2表示设备故障。	
	Bit[5]	0表示托盘为空,1表示托盘非空	
	Bit[4]	0表示小车非节能状态,1表示节能状态	
	Bit[3:0]	保留	

- 4. ErrDistanceX: 回到原点时在 X 轴方向的偏差 (mm)。
- 5. ErrDistanceY: 回到原点时在Y轴方向的偏差(mm)。

2 附录

Table4-1 错误码列表

序号	错误码	错误描述	错误可能原因
1	0x0001	图像处理板与运动控制板通信超时	
2	0x0002	图像处理板与取货控制板通信超时	
3	0x0003	图像处理板与电池管理板通信超时	
4			
5	0x0101	小车电机不转	
6	0x0102	升降电机不转	
7	0x0103	小车电机堵转	
8	0x0104	升降电机堵转	
9	0x0105	小车电机编码器信号异常	
10	0x0106	升降电机编码器信号异常	
11	0x0107	X轴零点传感器异常	
12	0x0108	Y轴零点传感器异常	
13	0x0109	X轴左限位传感器异常	
14	0x010A	X轴右限位传感器异常	
15	0x010B	Y轴上限位传感器异常	
16	0x010C	Y轴下限位传感器异常	
17	0x010D	小车电机过流保护	
18	0x010E	升降电机过流保护	
19	0x0201	电磁铁伸出不到位	
20	0x0202	电磁铁缩回不到位	
21	0x0203	电极没有电压输出	
22	0x0204	电极过流保护	
23	0x0205	光感检测 H 传感器信号异常	
24	0x0206	光感检测 V 传感器信号异常	
25	0x0207	称重传感器信号异常	
26	0x0301	电池电量不足	
27	0x0302	电池充电电极接反	
28	0x0303	电池充电 MOS 无法接通	
29	0x0304	电池放电过流保护	
30	0x0305	电池电流检测信号异常	
31	0x0306	电池电压检测信号异常	