MONTE CARLO METHODS

Probability distributions in R, Monte Carlo simulations

Probability distributions in R

Probability distributions in R

- For most probability distributions, R has built-in functions to
 - Calculate the pdf/pmf of a distribution.
 - Calculate the cdf of the distribution.
 - 3. Calculate the quantile function of the distribution.
 - 4. Generate random numbers based on the distribution.
- All the functions related to above have the same "form" for all distributions.

Probability distributions in R

- For example, the functions related to a normal distribution are dnorm(), pnorm(), qnorm() and rnorm().
- Functions related to a binomial distribution are dbinom(), pbinom(), qbinom() and rbinom().

□ Note:

- "d" is for density. Used to calculate pdf/pmf.
- "p" is for probability. Used to calculate cdf.
- "q" is for quantile. Used to calculate quantile function given probability
- "r" is for random. Used to generate random samples from the distribution.

Normal distribution

Calculate pdf:

```
\blacksquare dnorm(x, mean = 0, sd = 1, log = FALSE)
```

Calculate cdf:

```
pnorm(q, mean = 0, sd = 1, lower.tail = TRUE,
log.p = FALSE)
```

Calculate quantile function:

```
q qnorm(p, mean = 0, sd = 1, lower.tail = TRUE,
log.p = FALSE)
```

□ Generate random numbers:

```
\blacksquare rnorm(n, mean = 0, sd = 1)
```


ullet Let X be a random variable distributed following a normal distribution with mean 3 and standard deviation 1.5. Calculate the following probabilities.

$$P(2.54 \le X < 3.5)$$

 \Box Find the value of x such that

$$P(X \le x) = 0.32$$

$$P(X > x) = 0.75$$


```
> pnorm(2.54, mean=3, sd=1.5)
[1] 0.3795486
> pnorm(3.5, mean=3, sd=1.5, lower.tail=FALSE)
[1] 0.3694413
> pnorm(3.5, mean=3, sd=1.5) - pnorm(2.54, mean=3, sd=1.5)
[1] 0.2510101
> qnorm(0.32, mean=3, sd=1.5)
[1] 2.298452
> qnorm(0.75, mean=3, sd=1.5, lower.tail=FALSE)
[1] 1.988265
```


- \Box Let X be a random variable distributed following a normal distribution with mean 3 and standard deviation 1.5.
 - \blacksquare Generate 100 samples of X.
 - Draw a histogram of the generated samples where the height of the histogram represent the probability of each bin.
 - \blacksquare Add a line showing the pdf of X onto the drawn histogram.

Histogram of x

Common probability distributions in R

Distributions	Functions			
Beta	pbeta	qbeta	dbeta	rbeta
Binomial	pbinom	qbinom	dbinom	rbinom
Chi-Square	pchisq	qchisq	dchisq	rchisq
Exponential	pexp	qexp	dexp	rexp
F	pf	qf	df	rf
Gamma	pgamma	qgamma	dgamma	rgamma
Log Normal	plnorm	qlnorm	dlnorm	rlnorm
Normal	pnorm	qnorm	dnorm	rnorm
Poisson	ppois	qpois	dpois	rpois
Student t	pt	qt	dt	rt
Uniform	punif	qunif	dunif	runif

Sampling from a vector

- The sample () function can be used to randomly pick a sample (whether it be character, numbers, etc) from a given vector.
- □ Syntax: sample(x, size, replace = FALSE, prob = NULL)
 - x: a vector from which the elements are to choose from
 - size: how many samples we want
 - replace: should the sampling done with replacement? (can a sample be picked more than once?)
 - prob: a vector of the probability of picking each elements of x.


```
> sample(c(1,2,3), 5, replace=TRUE)
[1] 3 1 2 3 1
> sample(c("A", "B", "C", "D"), 2, prob = c(0.1, 0.2, 0.5, 0.2))
[1] "B" "C"
```

- In the first example above, we want to get 5 values from the vector (1, 2, 3) where each element of the vector has the same probability of being picked. We set replace=TRUE because an element can be picked more than once.
- In the second example above, we want to get two values from the vector (A, B, C, D), where the probability of A being picked is 0.1, B is 0.2, C is 0.5, and D is 0.2. Since we do not specify replace argument, by default, replace is FALSE and a value cannot be picked more than once.

Random number generating process

- □ Note that the numbers generated in computer are not exactly random. They are "pseudorandom".
- But they are good enough for most applications.
- You can set the "seed" of your randomly generated numbers using set.seed() function


```
> set.seed(1)
> rnorm(10)
[1] -0.6264538    0.1836433 -0.8356286    1.5952808
[5]    0.3295078 -0.8204684    0.4874291    0.7383247
[9]    0.5757814 -0.3053884
> set.seed(1)
> rnorm(10)
[1] -0.6264538    0.1836433 -0.8356286    1.5952808
[5]    0.3295078 -0.8204684    0.4874291    0.7383247
[9]    0.5757814 -0.3053884
```

□ Notice the randomly generated numbers are exactly the same.

Monte Carlo methods

What are Monte Carlo methods?

- Basically, solving problems by simulations.
 - Estimating solution to problems cannot be solved analytically.
 - Testing methods or algorithms on simulated data.
 - Mimics experimental lab.
- Why use simulations?
 - For problems that cannot be solved analytically, sometimes simulations give easier solution
 - Able to perform analysis on a "perfect" data.

Example 1: Estimating the value of π

- \square Area of a unit square = 1
- \Box Area of the quadrant $=\frac{\pi}{4}$
- \square Proportion of the area of quadrant over the area of square $=\frac{\pi}{4}$

Example 1: Estimating the value of π

Algorithm:

- Simulate the X and Y values for the coordinates of points in the unit square $(X \sim \text{Unif}(0,1))$ and $Y \sim \text{Unif}(0,1)$.
- Count the proportion of simulated data that is inside the quadrant.
- \blacksquare Estimate the value of π by

 $\pi \approx 4 \times \text{(proportion data inside quadrant)}$

Example 1: Estimating the value of π


```
### Estimating pi

estimate_pi <- function(n) {
    x <- runif(n=n, min=0, max=1)
    y <- runif(n=n, min=0, max=1)
    number_inside <- sum(y <= sqrt(1-x^2))
    proportion <- number_inside/n
    pi_est <- 4*proportion
    return(pi_est)
}</pre>
```

```
> estimate_pi(100)
[1] 3.2
> estimate_pi(1000)
[1] 3.16
> estimate_pi(1e6)
[1] 3.140148
> pi
[1] 3.141593
```


- \square Suppose we have a random variable X with cdf F(x).
- Then it can be shown that the random variable U = F(X) is uniformly distributed between 0 and 1.
- □ Theorem: Let $U \sim \text{Unif}(0,1)$ and F be a cdf. Then $F^{-1}(U)$ has cdf F.
- \square We can use this property to randomly generate the variable X.

Example: Suppose

$$f(x) = 6x^{2}(1 - x^{3}), x \in [0,1]$$
$$F(x) = 1 - (1 - x^{3})^{2}$$

- Algorithm:
 - \blacksquare Randomly generate U from Unif(0,1).
 - \square Calculate $X = F^{-1}(U)$
- \square First, we have to calculate $F^{-1}(U)$.

$$F^{-1}(U) = \left(1 - \sqrt{1 - U}\right)^{\frac{1}{3}}$$


```
### Inverse transform sampling
generate x <- function(n) {</pre>
    u \leftarrow runif(n, min=0, max=1)
    x < (1-sqrt(1-u))^(1/3)
    return(x)
# Compare histogram and pdf
x < - generate x(1000)
hist(x, freq=FALSE)
curve (6*x^2*(1-x^3), from=0, to=1, add=TRUE,
      col="red")
# Compare empirical cdf and cdf
plot(ecdf(x))
curve (1-(1-x^3)^2, from=0, to=1, add=TRUE, col="red",
      lwd=2)
```


Function	Description
dnorm()	Used to calculate pdf of normal distribution.
pnorm()	Used to calculate cdf of normal distribution.
qnorm()	Used to calculate quantile function of normal distribution.
rnorm()	Used to generate random samples from the normal distribution.
sample()	Used to get samples from a given list

Note: Other distributions are also available and follow similar notations for the functions – d, p, q, r