

Метод нечеткой классификации платежей по полнотекстовому описанию на русском языке

Студент:

Лаврова Анастасия Андреевна

Группа:

ИУ7-85Б

Научный руководитель:

Волкова Лилия Леонидовна

Актуальность

Сфера применения — организация определения кода операции платежных документов в банках

Задача поставлена одним из крупных российских банков

Проблемы:

- Задействовано большое количество персонала
- Значительные временные затраты

Работа посвящена автоматизации классификации платежных документов

Цель и задачи

Цель — разработать метод классификации платежа по полнотекстовому описанию.

Задачи:

- Рассмотреть существующие типы алгоритмов машинного обучения
- Проанализировать существующие алгоритмы классификации
- Разработать метод нечеткой классификации платежей по полнотекстовому описанию на русском языке
- Программно реализовать метод
- Исследовать разработанный метод на применимость

Примеры данных: платежи и их описания

Код операции	Наименование	Назначение платежа
1800	Перевод средств на p/c	Оплата страхового взноса по Договору страхования № 0122130464484 от 05.09.2018, ФИО страхователя Ермошкина Екатерина Ивановна, сумма цифрами 550,00.
14	Перевод средств пенсионных накоплений в 153	Доход от инвестирования (срочная пенсионная выплата) по договору № 22-03У008 от 08.10.2003 г. НДС не облагается.

Постановка задачи

Ограничения, накладываемые на метод:

• На вход подается строка на русском языке

• Длина строки составляет от 10 до 30 слов

Количество классов = 144+1

Вводится дополнительный класс «требуется ручной ввод» для случаев недостаточной уверенности классификатора в метке класса

Полнотекстовое Категория описание платежа Метод нечеткой платежа на русском языке классификации платежей Фильтрация с использованием регулярных выражений Метол отбора терминов Алгоритм классификации

Будет разработан метод нечеткой классификации для оценки уверенности в присвоении класса платежу

Функциональная модель обучения метода классификации

Предобработка данных

Исходное текстовое описание:

"Оплата страхового взноса по Договору страхования № 0122130464484 от 05.09.2018, ФИО страхователя Ермошкина Екатерина Ивановна, сумма цифрами 550,00."

После токенизации и фильтрации шумовых слов и символов:

"оплата страховой взнос договор страхование фио страхователь сумма цифра"

Отбор терминов

Термин — это слово в начальной форме. Его вес рассчитывается как TF-IDF.

t — термин

D — коллекция документов

d – документ из коллекции D

$$TF - IDF(t, D) = TF(t, d) \times IDF(t_i, D)$$

$$TF(t,d) = \frac{n_t}{\sum_k n_k}$$

 n_t — количество вхождений термина t в документ $\sum_k n_k$ — общее количество слов в документе

$$IDF(t_i, D) = \log\left(\frac{|D|}{|D_i|}\right)$$

|D| — количество документов $|D_i \in D|$ — число документов, где t_i встретилось хотя бы один раз

Выбор метода классификации текста

	Наивный Байесовский классификатор	Логистическая регрессия
Вычислительная сложность обучения	$\mathrm{O}(\Omega)$	$O((f+1)\Omega Ec)$
Вычислительная сложность тестирования	O(c)	O((f+1)c)

 Ω – множество документов

с – количество классов

f – число терминов

Е – количество эпох градиентного спуска

Наивный Байесовский классификатор

Наивный Байесовский классификатор - простой вероятностный классификатор, основанный на формуле Байеса.

$$c^* = \arg_{c_j \in \mathcal{C}} \max P(c_i | d_j)$$

$$P(c_i|d_j) = \frac{P(c_i)P(d_i|c_j)}{P(d_i)} \approx P(c_j)P(d_i|c_j)$$

 $P(c_i)$ – априорная вероятность, что документ принадлежит классу c_i

 $P(d_i|c_j)$ – вероятность встретить документ типа d_i среди документов, класса c_j .

Логистическая регрессия

Логистическая регрессия является методом построения линейного классификатора, которая позволяет оценить апостериорные вероятности принадлежности объектов классам.

$$h_{\theta}(X) = \frac{1}{1 + e^{-(\beta_0 + \beta_1 X)}}$$

 $h_{ heta}$ – гипотеза

 β_0 и β_1 — коэффициенты линейного уравнения, определяющие положение прямой в пространстве

Схема ПО

Оценка точности классификации

F-мера — это гармоническое среднее между точностью и полнотой

$$f1 = \frac{2 \times precision \times recall}{precision + recall}$$

$$precision = \frac{TP}{TP + FP}$$

$$recall = \frac{TP}{TP + FN}$$

		Экспертная оценка		
		Положительная	Отрицательная	
Оценка системы	Положительная	True Positive (TP)	False Positive (FP)	
	Отрицательная	False Negative (FN)	True Negative (TN)	

Параметризация методов классификации

- Для анализируемых данных явно выделена чувствительность методов к maxDF
- Влияние внутренних параметров слишком мало (графики для разных внутренних параметров накладываются)

Зависимость точности от порогового значения документной частоты

Рекомендуется пороговое значение maxDF = 0.3 для наивного Байесовского классификатора и maxDF = 0.5 для логистической регрессии

Точность метода логистической регрессии выше

Заключение

Достигнута цель: разработан метод классификации платежей по полнотекстовому описанию.

Решены поставленные задачи:

- Рассмотрены существующие типы алгоритмов машинного обучения
- Проанализированы существующие алгоритмы классификации
- Разработан метод нечеткой классификации платежей по полнотекстовому описанию на русском языке
- Сконструировано и разработано программное обеспечение, демонстрирующее работу метода
- Проведено исследование точности классификации

Предложенный метод рекомендуется к применению

Дальнейшее развитие

- Применение других стандартных методов классификации с модификацией
- Учёт не только отдельных терминов, но и словосочетаний
- Написание правил для использования дополнительных замен при помощи регулярных выражений для покрытия примеров вида <Дата + ФИО + Номер счета>