

B9DA101 Statistics for Data Analytics: CA_TWO

January 2025

Submitted by:

Anish Rao: 20066423

Lecturer: Dr. Muhammad Alli

<u>Index</u>

Intr	oduction	.2
	Purpose of the Analysis	.2
	Dataset Overview	.2
Q1.	Consider a relational dataset and specify your input and output variables	.3
	(a) Logistic model trained using 80% of the dataset	.4
	(b) Significant variables and estimated parameters	.4
	(c) Predict outcomes for test data and model equation	.5
	(d) Confusion matrix and accuracy	.6
Q2.	Let $x_1,,x_1$ 0 are identically independently distributed (iid) with Poisson(λ)	.7
	(a) Likelihood function for a given λ	.7
	(b) Gamma prior for λ using chosen hyperparameters	.8
	(c) Posterior distribution of λ	.8
	(d) Bayesian estimator of λ	.9
Q3.	Use a particular stock market dataset to accomplish the time series analysis	10
	(a) Check if mean and variance are stationary	11
	(b) Plot acf() and pacf()	12
	(c) Best ARIMA model	13
	(d) 10 step Forecast	14

Introduction

Purpose of the Analysis

This analysis explores the application of statistical techniques across three different problem domains: regression modeling, Bayesian estimation, and time series forecasting.

The report is divided into three main questions:

- **Question 1:** Applying a Generalized Linear Model (GLM).
- Question 2: Constructing a Bayesian estimation framework with Poissondistributed data.
- Question 3: Analyzing a financial time series and forecasting future trends.

Dataset Overview

Three datasets were used in this analysis:

- mtcars (Q1):
 - A built-in dataset in R with 32 observations on fuel consumption and 10 design aspects of cars.
 - Used to model transmission type (am) based on variables like mpg, hp, wt, and cyl.
- Simulated Poisson Data (Q2):
 - ο A sample of 10 values generated from a Poisson(λ =3) distribution.
 - Used to demonstrate likelihood computation and Bayesian inference using a Gamma prior.
- EuStockMarkets (Q3):
 - Time series dataset of daily closing prices of four major European stock indices.
 - The DAX index was used to perform stationarity checks, ARIMA modeling, and forecasting.

Google Colab Notebook link-

https://colab.research.google.com/drive/18wMC0CFy5MYsx3ItcEJew90EmbEyLf7C?usp=sharing

Q1. Consider a relational dataset and specify your input and output variables

The dataset used is mtcars which is inbuilt in RStudio.

Input variables - mpg, hp, wt, cyl

Output variable - am

```
data("mtcars")
head(mtcars)
                    mpg cyl disp hp drat
                                            wt qsec vs am gear carb
## Mazda RX4
                    21.0
                            160 110 3.90 2.620 16.46
                          6
                                                         1
## Mazda RX4 Wag
                    21.0
                          6
                             160 110 3.90 2.875 17.02
## Datsun 710
                    22.8
                             108 93 3.85 2.320 18.61
                          4
                                                                  1
## Hornet 4 Drive
                    21.4
                          6
                             258 110 3.08 3.215 19.44
## Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 ## Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 ## Valiant 18.1 6 225 105 2.76 3.460 20.22 1
                                                                  2
str(mtcars)
## 'data.frame':
                   32 obs. of 11 variables:
## $ mpg : num 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
## $ cyl : num 6646868446 ...
## $ disp: num 160 160 108 258 360 ...
## $ hp : num 110 110 93 110 175 105 245 62 95 123 ...
## $ drat: num 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
## $ wt : num 2.62 2.88 2.32 3.21 3.44 ...
## $ qsec: num 16.5 17 18.6 19.4 17 ...
## $ vs : num 0011010111...
## $ am : num 1110000000...
## $ gear: num 4 4 4 3 3 3 3 4 4 4 ...
## $ carb: num 4 4 1 1 2 1 4 2 2 4 ...
summary(mtcars)
                       cyl
                                       disp
                                                       hp
                                                       : 52.0
## Min.
         :10.40
                  Min. :4.000
                                 Min. : 71.1
                                                 Min.
## 1st Qu.:15.43
                   1st Qu.:4.000
                                1st Qu.:120.8
                                                 1st Qu.: 96.5
## Median :19.20
                  Median :6.000 Median :196.3
                                                Median :123.0
## Mean :20.09
                  Mean :6.188 Mean :230.7
                                                Mean :146.7
## 3rd Qu.:22.80 3rd Qu.:8.000 3rd Qu.:326.0
                                                 3rd Qu.:180.0
## Max. :33.90 Max. :8.000 Max. :472.0
                                                 Max. :335.0
##
        drat
                        wt
                                       qsec
## Min.
          :2.760 Min. :1.513 Min. :14.50
                                                 Min.
                                                        :0.0000
  1st Qu.:3.080    1st Qu.:2.581    1st Qu.:16.89
                                                 1st Qu.:0.0000
## Median :3.695
                  Median :3.325
                                  Median :17.71
                                                 Median :0.0000
  Mean
          :3.597
                        :3.217
                                  Mean :17.85
                                                       :0.4375
                   Mean
                                                 Mean
   3rd Qu.:3.920
                   3rd Qu.:3.610
                                  3rd Qu.:18.90
                                                 3rd Qu.:1.0000
##
  Max.
          :4.930
                         :5.424
                                  Max. :22.90
                                                 Max. :1.0000
                                        carb
##
                        gear
## Min.
         :0.0000
                  Min. :3.000 Min. :1.000
## 1st Qu.:0.0000
                  1st Qu.:3.000 1st Qu.:2.000
## Median :0.0000 Median :4.000 Median :2.000
## Mean :0.4062 Mean :3.688 Mean :2.812
## 3rd Qu.:1.0000 3rd Qu.:4.000 3rd Qu.:4.000
## Max. :1.0000 Max. :5.000 Max. :8.000
```

(a) Logistic model trained using 80% of the dataset

Train the model using 80% of this dataset and suggest an appropriate GLM to model output to input variables. (10)

Code -

```
mtcars$am = as.factor(mtcars$am)
mtcars$cyl = as.factor(mtcars$cyl)

data_split = createDataPartition(mtcars$am, p = 0.8, list = FALSE)
train_data = mtcars[data_split, ]
test_data = mtcars[-data_split, ]

model = glm(am ~ mpg + hp + wt + cyl, data = train_data, family = binomial)
```

The variables **am** and **cy1** are converted to factors. The dataset is split into training (80%) and testing (20%) sets. A Binomial regression model is then trained to predict the transmission type (**am**).

(b) Significant variables and estimated parameters

Specify the significant variables on the output variable at the level of α =0.05 and explore the related hypotheses test. Estimate the parameters of your model. (10)

Code -

```
summary(model)
```

Output -

```
## Call:
## glm(formula = am ~ mpg + hp + wt + cyl, family = binomial, data = train_data)
## Coefficients:
##
               Estimate Std. Error z value Pr(>|z|)
## (Intercept) -1280.950 809723.749 -0.002
                                             0.999
                 40.998 28196.890 0.001
                                             0.999
## mpg
## hp
                  6.413 3310.121 0.002
                                             0.998
              -98.671 58606.465 -0.002
                                             0.999
## cyl6
                 -5.707 30697.754 0.000
                                             1.000
          -480.280 345022.731 -0.001
                                             0.999
## cyl8
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 3.6499e+01 on 26 degrees of freedom
## Residual deviance: 7.3221e-09 on 21 degrees of freedom
## AIC: 12
##
## Number of Fisher Scoring iterations: 25
```

Insights -

At the α = 0.05 level, none of the variables are statistically significant as all p-values are greater than 0.05.

Hypotheses:

- Null hypothesis (H_o): The variable has no effect on the output (am)
- Alternative hypothesis (H₁): The variable does affect the output (am)

As all p-values > 0.05, we fail to reject the null hypothesis for all variables.

Estimated parameters:

Variable	Coefficient
Intercept	-1280.950
mpg	40.998
hp	6.413
wt	-98.671
cyl6	-5.707
cyl8	-480.280

(c) Predict outcomes for test data and model equation

Predict the output of the test dataset using the trained model. Provide the functional form of the optimal predictive model. (10)

Code -

```
predicted_prob = predict(model, newdata = test_data, type = "response")
predicted_class = ifelse(predicted_prob > 0.5, 1, 0)
actual_class = test_data$am
```

The model predicts probabilities on the test set and converts them into class labels using a 0.5 threshold.

Output-

Insights -

The model output returns the predicted transmission class (0 or 1) for each test data point. Functional Form:

$$\log\left(\frac{p}{1-p}\right) = -1280.95 + 40.998 \cdot mpg + 6.413 \cdot hp - 98.671 \cdot wt - 5.707 \cdot cyl_6 - 480.280 \cdot cyl_8$$

Here, p = probability that the car has a manual transmission (am = 1).

(d) Confusion matrix and accuracy

Provide the confusion matrix and obtain the probability of correctness of predictions. (5)

Code -

```
predicted_class = as.factor(predicted_class)
actual_class = as.factor(actual_class)

confusion_matrix = confusionMatrix(predicted_class, actual_class)
```

A confusion matrix is created to compare predicted and actual classes for the test data.

Output-

```
print(confusion_matrix)
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction 0 1
           0 2 1
##
           1 1 1
##
##
                 Accuracy: 0.6
                   95% CI: (0.1466, 0.9473)
##
##
      No Information Rate : 0.6
      P-Value [Acc > NIR] : 0.6826
##
##
##
                     Kappa: 0.1667
##
## Mcnemar's Test P-Value : 1.0000
##
##
              Sensitivity: 0.6667
##
              Specificity: 0.5000
           Pos Pred Value : 0.6667
##
           Neg Pred Value : 0.5000
##
               Prevalence : 0.6000
##
##
           Detection Rate : 0.4000
##
     Detection Prevalence : 0.6000
##
        Balanced Accuracy: 0.5833
##
          'Positive' Class : 0
```

Insights -

The model got 3 correct out of 5 and has 60% accuracy.

Q2. Let $x_1,...,x_1$ 0 are identically independently distributed (iid) with Poisson(λ)

Generated 10 independent values from a Poisson distribution with $\lambda = 3$.

```
x = rpois(10, lambda = 3)
print(x)
## [1] 4 4 2 1 4 5 1 3 3 3
```

(a) Likelihood function for a given λ

Compute the likelihood function (LF).

(10)

Code -

```
likelihood = function(lambda, data) {
    n = length(data)
    sum_x = sum(data)
    return((lambda ^ sum_x) * exp(-n * lambda))
}

lambda_values = seq(1, 6, by = 0.1)
likelihood_values = sapply(lambda_values, likelihood, data = x)

plot(lambda_values, likelihood_values,
    type = "l",
    col = "red",
    main = "Likelihood Function",
    xlab = "Lambda", ylab = "Likelihood")
```

The function calculates the likelihood of observing the data for different λ values.

Output -

Insights -

The likelihood function shows how likely different values of λ are, given the observed data. In this case, the likelihood peaks around $\lambda = 3$.

(b) Gamma prior for λ using chosen hyperparameters

Adopt the appropriate conjugate prior to the parameter λ (Hint: Choose hyperparameters optionally within the support of distribution). (10)

Code -

A Gamma distribution with shape $\alpha = 2$ and rate $\beta = 1$ is used to represent prior for λ .

Output-

Insights -

The Gamma distribution is a natural conjugate prior for Poisson(λ).

(c) Posterior distribution of λ

Using (a) and (b), find the posterior distribution of λ .

Code -

```
sum_x = sum(x)
n = length(x)

posterior_alpha = alpha + sum_x
posterior_beta = beta + n
```

The posterior parameters are calculated by updating the prior with the observed data: $\alpha = \alpha + sum(x)$, and $\beta = \beta + n$.

(10)

Output -

```
cat("Posterior: \nGamma (",posterior_alpha,",",posterior_beta,")\n")
## Posterior:
## Gamma ( 32 , 11 )
```

Insights -

Based on the observed data and the prior (Gamma(2, 1)), the posterior distribution for λ is Gamma(32, 11)

(d) Bayesian estimator of λ

Compute the minimum Bayesian risk estimator of λ .

(5)

Code -

```
lambda_bayes = posterior_alpha / posterior_beta
```

The posterior mean (α / β) is used as the Bayesian estimator of λ .

Output-

```
cat("Bayesian Estimator:", lambda_bayes)
## Bayesian Estimator: 2.909091
```

Insights -

The Bayesian estimator represents the expected value of λ based on the posterior distribution.

For Gamma(32, 11), this gives an estimate ~ 2.91.

Q3. Use a particular stock market dataset to accomplish the time series analysis

The dataset used is **EuStockMarkets** which is inbuilt in RStudio.

```
data("EuStockMarkets")
head(EuStockMarkets)
## Time Series:
## Start = c(1991, 130)
## End = c(1991, 135)
## Frequency = 260
##
               DAX
                       SMI
                              CAC
## 1991.496 1628.75 1678.1 1772.8 2443.6
## 1991.500 1613.63 1688.5 1750.5 2460.2
## 1991.504 1606.51 1678.6 1718.0 2448.2
## 1991.508 1621.04 1684.1 1708.1 2470.4
## 1991.512 1618.16 1686.6 1723.1 2484.7
## 1991.515 1610.61 1671.6 1714.3 2466.8
str(EuStockMarkets)
   Time-Series [1:1860, 1:4] from 1991 to 1999: 1629 1614 1607 1621 1618 ...
    - attr(*, "dimnames")=List of 2
     ..$ : NULL
     ..$ : chr [1:4] "DAX" "SMI" "CAC" "FTSE"
summary(EuStockMarkets)
                       SMI
                                       CAC
                                                     FTSE
##
         DAX
                                 Min. :1611
##
   Min. :1402
                  Min. :1587
                                                Min.
                                                       :2281
   1st Qu.:1744
                  1st Qu.:2166
                                 1st Qu.:1875
                                                1st Qu.:2843
  Median :2141
                  Median :2796
                                 Median :1992
                                                Median :3247
## Mean :2531
                  Mean :3376
                                 Mean :2228
                                                Mean :3566
  3rd Qu.:2722
                  3rd Qu.:3812
                                 3rd Qu.:2274
                                                3rd Qu.:3994
##
## Max.
           :6186
                         :8412
                                 Max. :4388
                                                      :6179
                  Max.
                                                Max.
dax = EuStockMarkets[, "DAX"]
plot(dax,
     type = "1",
     col = "red"
     main = "DAX Index Time Series",
    xlab = "Time", ylab = "Price")
```

DAX Index Time Series

(a) Check if mean and variance are stationary

Check whether the time series is stationary in mean and variance.

Code -

```
adf_test = adf.test(dax)
print(adf_test)

sd_full = sd(dax)
sd_first_half = sd(dax[1:(length(dax)/2)])
sd_second_half = sd(dax[((length(dax)/2) + 1):length(dax)])

cat("Full SD:", sd_full, "\n")

cat("First Half SD:", sd_first_half, "\n")

cat("Second Half SD:", sd_second_half, "\n")
```

The adf.test() checks for stationarity in mean, while standard deviations for the full series and each half are calculated to check difference in variance.

Output -

```
## Augmented Dickey-Fuller Test
##
## data: dax
## Dickey-Fuller = -0.82073, Lag order = 12, p-value = 0.9598
## alternative hypothesis: stationary
## Full SD: 1084.793
## First Half SD: 241.1517
## Second Half SD: 1137.395
```

Insights -

Hypotheses:

- Null hypothesis (H_o): Series mean is non-stationary.
- Alternative hypothesis (H₁): Series mean is stationary.

As p-value (0.96) > 0.05, we fail to reject the null hypothesis, therefore the series is not stationary in mean.

Standard Deviation also changes a lot between the first and second half, therefore the series is not stationary in variance.

(5)

(b) Plot acf() and pacf()

Use acf() and pacf() functions to identify the order of AR and MA.

(10)

Code -

The series is first differenced using diff() to stabilize the mean. The acf() and pacf() plots are then used to examine autocorrelation and partial autocorrelation patterns.

Output -

Differenced DAX Series

ACF

Insights -

The ACF drops sharply after lag 1 and PACF shows a few significant spikes.

(c) Best ARIMA model

Use auto.arima() to learn the best ARIMA model.

Code -

```
best_model = auto.arima(dax)
print(best_model)
```

The auto.arima() function automatically selects the best-fitting ARIMA model for the DAX time series based on information criteria like AIC and BIC.

Output -

```
## Series: dax
## ARIMA(5,2,0)
##
## Coefficients:
##
                             ar3
                                               ar5
            ar1
                                      ar4
                     ar2
##
        -0.8187 -0.6631 -0.5053 -0.3444
                                           -0.2231
## s.e. 0.0228
                  0.0287
                          0.0306
                                   0.0289
                                            0.0231
##
## sigma^2 = 1235: log likelihood = -9248
## AIC=18507.99 AICc=18508.04 BIC=18541.15
```

Insights -

The chosen model is ARIMA(5,2,0), which means the series was differenced twice to achieve stationarity and includes five autoregressive terms.

(5)

(d) 10 step Forecast

Forecast h=10 step ahead prediction of the time series variable and plot it with the original time series. (10)

Code -

```
forecast_result = forecast(best_model, h = 10)

plot(forecast_result,
    main = "10 step Forecast",
    xlab = "Time", ylab = "DAX Value")
```

The forecast () function generates a 10-step ahead prediction using the selected ARIMA model. The results are plotted to visualize future values alongside the original time series.

Output -

Insights -

The forecast shows a continued upward trend in DAX values. The confidence intervals widen over time, indicating increasing uncertainty in long-term predictions.