

⁺²Notas de Álgebra Linear II

September 12, 2025

No princípio Deus criou os céus, a terra e	Nestor Heli Aponte Avila ¹	
Álgebra Linear" - Gênesis 1:1	n267452@dac.unicamp.br	

** Conteúdo basado na disciplina MM719 (Álgebra Linear) ministrada pelo profesor Adriano Moura e [1], de sua autoría também, no período 2025-II. **

Notação	♦ Definição	(−) [♦] Aberto	(−) ⁺ Fechado
□ Lema	☐ Proposição	Teorema	

§ Preliminares

É preciso lembrar algumos resultados do curso de Álgebra Linear I, podem ser aprofundados se queser nos capítulos 5 e 6 de [1]. Também, algumas propiedades e detalhes do anel de polinômios.

Espaços Vetoriais

❖ Sejam \mathbb{F} um corpo, e $V \neq \emptyset$. Um \mathbb{F} -espaço vetorial é uma tripla $(V, +, \cdot)$ onde, $+: V \times V \to V$ e $\cdot: \mathbb{F} \times V \to V$ são operações tais que, $\forall \lambda, \mu \in \mathbb{F}$, $\forall v, w \in V$, temos,

- (V1) (V, +) é grupo abeliano.
- (V2) (V, \cdot) asocia, $\lambda \cdot (\mu \cdot v) = (\lambda \cdot \mu) \cdot v$.
- (V3) Distributividade I, $(\lambda + \mu) \cdot v = \lambda \cdot v + \mu \cdot v$.
- (V4) Distributividade II, $\lambda \cdot (v + w) = \lambda \cdot v + \lambda \cdot w$.
- (V5) Neutro da multiplicação (por escalar), $1 \cdot v = v$.

- \bigcirc Um subconjunto $W\subseteq V$ não vacío é dito de *subespaço*, denotamos $W\leq V$, se $\forall w_1,w_2\in W,\,\forall\lambda\in\mathbb{F}$, temos $w_1+\lambda w_2\in W$.
- \bigcirc Sejam $\alpha = (v_i)$ uma familia de vetores em V e $m \in \mathbb{N}$. Uma combinação linear de α , é um vetor em V da forma $v = \sum_{j < m} x_{i_j} v_{i_j}$, onde $x_{i_j} \in \mathbb{F}$.

Nota. Denotamos por $[\alpha]$, ao conjunto de todas as combinações lineares de α , repare que $[\alpha] \leq V$. Também, se $\alpha = \{v\}$ então $[\alpha] = [v] = \mathbb{F}v$.

- \bigcirc Uma familia $\alpha = (v_i)$ é l.i. sse $\forall j \in I, v_j \notin [\alpha \setminus \{v_j\}]$. Alem disso, se $[\alpha] = V$ então α é chamada de *base* de V.
- 5.5.1. Todo espaço vetorial tém base e quaisquer duas bases tém mesma cardinalidade. \rightarrow [1, Pág. 185]
- \diamondsuit Seja α uma base de V. Então, $\dim V := \#\alpha$ é a dimensão de V.
- \bigcirc Seja (V_i) familia de subespaços em V, definimos a soma deles somo sendo $\sum V_i := [\bigcup V_i]$. A soma é direta se $\forall j \in I, V_j \cap \sum_{i \neq j} V_i = \{0\}$.

Nota. Se a soma é direta escrevemos $\bigoplus V_i$.

- \square 5.3.7. A soma $\sum V_i$ é direta sse $\forall v \in \sum V_i$, $\exists m \in \mathbb{N}$ e $\exists! v_{i_j} \in V_{i_j}$ tais que $v = \sum_{j \le m} v_{i_j}$. $\to [1, Pág. 174]$
- \square **5.4.6.** Sejam $\alpha=(v_i)$ e $V_i=\mathbb{F}v_i$ então α é l.i. sse $\sum \mathbb{F}v_i$ é direta.

 $\boxtimes \alpha$ é base sse $\forall i \in I, \ v_i \neq 0$ e $V = \bigoplus \mathbb{F}v_i$. Logo, da \square 5.3.7. temos que $\forall v \in V, \exists m \in \mathbb{N} \ \text{e} \ \exists ! x_{i_j} \in \mathbb{F} \ \text{tais que } v = \sum_{j \leq m} x_{i_j} v_{i_j} \rightarrow [1, \text{Pág. } 178]$

Nota. Os x_{i_j} são as *coordenadas* de v na base α , identificamos comumente,

$$(x_{i_j}) =: [v]_{\alpha} \sim [x_{i_1}, \cdots, x_{i_m}]^T \in M_{m \times 1}(\mathbb{F}).$$

Transformações Lineares

 \bigcirc Sejam V e W \mathbb{F} -espaços vetoriais. Uma função $T:V\to W$ é dita linear se $\forall v_1,v_2\in V$ e $\forall \lambda\in\mathbb{F}$ tém-se que $T(v_1+\lambda v_2)=T(v_1)+\lambda T(v_2)$.

Sejam $T: V \to W$ linear, $\alpha = (v_j)$ e $\beta = (w_i)$ bases de V e W respetivamente. Então, se $[T(v_j)]_{\beta} = (a_{ij})$, a matriz asociada $[T]_{\beta}^{\alpha} := (a_{ij})$ determina T no sentido que, $\forall v \in V$, $[T(v)]_{\beta} = [T]_{\beta}^{\alpha}[v]_{\alpha}$.

Nota. Se W=V e $T=\mathbb{1}_V$, então $[\mathbb{1}_V]^{\alpha}_{\beta}$ é a matriz cambio de base.

■ 6.1.6. Sejam $\alpha = (v_i)$ base de V e $\beta = (w_i)$ familia de vetores em W, então $\exists ! T : V \to W$ linear tal que $\forall i \in I, \ T(v_i) = w_i$.

Nota. O espaço vetorial das funções $f:V\to W$, com a soma e o produto usuais é denotado no texto como $\mathcal{F}(V,W)$.

 \bigcirc $\operatorname{Hom}_{\mathbb{F}}(V,W):=\{T\in\mathcal{F}(V,W): T \text{ \'e linear}\}.$ Se V=W então denotamos $\operatorname{End}_{\mathbb{F}}(V)=\operatorname{Hom}_{\mathbb{F}}(V,V).$

- \square **0.1.** Algumas propiedades coletadas de [1, Seç. 6.1].
 - (a) $\operatorname{Hom}_{\mathbb{F}}(V, W) \leq \mathcal{F}(V, W)$.
 - (b) Sejam $\alpha = (v_j)$ e $\beta = (w_i)$ bases de V e W fixas. A função ζ : $\operatorname{Hom}_{\mathbb{F}}(V,W) \ni T \mapsto [T]^{\alpha}_{\beta} \in M_{\#I \times \#J}(\mathbb{F})$ é linear e injetora.
 - (c) Sejam γ , α e β bases de U, V e W, $S \in \operatorname{Hom}_{\mathbb{F}}(U,V)$ e $T \in \operatorname{Hom}_{\mathbb{F}}(V,W)$ então $T \circ S \in \operatorname{Hom}_{\mathbb{F}}(U,W)$ e $[T \circ S]^{\gamma}_{\beta} = [T]^{\alpha}_{\beta}[S]^{\gamma}_{\alpha}$.
 - (d) Se α e β são bases de V e W, e $T \in \operatorname{Hom}_{\mathbb{F}}(V, W)$ é invertivél então $T^{-1} \in \operatorname{Hom}_{\mathbb{F}}(W, V)$ e $[T^{-1}]^{\beta}_{\alpha} = ([T]^{\alpha}_{\beta})^{-1}$.

 $\bigcirc T \in \operatorname{Hom}_{\mathbb{F}}(V,W)$ é um *isomorfismo* se fora sobrejetivo. Dois espaços são *isomorfos*, $V \cong W$, se $\exists T \in \operatorname{Hom}_{\mathbb{F}}(V,W)$ isomorfismo.

Nota. A transformação ζ do ítem (b) é sobrejetiva se $\#J < \infty$.

- **6.1.9.** $V \cong W$ sse dim $V = \dim W$. $\to [1, Pág. 191]$
- \square 0.1. Seja $T\in \operatorname{Hom}_{\mathbb F}(V,W)$. Se $U\leq V$ e $U'\leq W$ então também $T(U)\leq W$ e $T^{-1}(U')\leq V.\to [1,$ Pág. 199]

$$\diamondsuit V_T := T^{-1}(\{0\}) = \mathcal{N}(T) \ \ \mathbf{e} \ \ \mathrm{Im}(T) := T(V).$$

¹"Hom" vém de homomorfismo e "End" de endomorfismo.

Nota. Chamamos estos espaços especiais de núcleo e imagem de T e suas dimensões de nulidade e posto.

6.3.6. dim
$$V = \dim V_T + \dim V(T)$$
. $\to [1, Pág. 201]$

 \square **6.3.9.** T é injetora sse $V_T = \{0\}. \rightarrow [1, Pág. 202]$

Nota. Se $T \in \operatorname{End}_{\mathbb{F}}(V)$ então $T^m := \overbrace{T \circ T \circ \cdots \circ T} \in \operatorname{End}_{\mathbb{F}}(V)$, por convenção $T^0 = \mathbb{1}_V$. Seguindo o ítem (a) da \square 0.1., $\forall p \in \mathcal{P}(\mathbb{F})$ temos,

$$p(t) = \sum_{k=0}^{m} a_k t^k \sim P(T) = \sum_{k=0}^{m} a_k T^k \in \operatorname{End}_{\mathbb{F}}(V).$$

$$** \ V_p = V_{p(T)} = \{v \in V : p(T)(v) = 0\} \ **$$

 \bigcirc Sejam $\lambda \in \mathbb{F}$ e $p = t - \lambda$. Se $\exists v \in V_p \setminus \{0\}$ então V_p é autoespaço, v um autovetor, ambos associados ao autovalor λ .

Nota. No [1, Pág. 208] tém a primeira e equivalente definição de autoespaço como sendo $V_{\lambda} = \{v \in V : T(v) = \lambda v\} \neq \{0\}.$

 \diamondsuit T é diagonalizavél se $\exists \beta$ base de V formada por autovetores.

Nota. No caso diagonalizavél e tudo perfeito de mais, pois se λ_j são os autovalores dos $v_j \in \beta$ então, $[T]_{\beta}^{\beta} = \operatorname{diag}(\lambda_j)$. Em versão matricial temos,

$$[T]^\beta_\beta = [\mathbb{1}_V]^\alpha_\beta [T]^\alpha_\alpha [\mathbb{1}_V]^\beta_\alpha \quad \sim \quad B = P^{-1}AP.$$

É sabido que não todos os operadores são diagonalizavéis. O objetivo do [1, Cap. 8] é ver que, ainda assim, sempre e possivél levar T a uma matriz quasi-diagonal B (Formas Canônicas).

O Anel de Polinômios $\mathcal{P}(\mathbb{F})$

Sejam $I = \{t^k : k \in \mathbb{Z}_{\geq 0}\}$ conjunto respeitando as leis usuais de potências² e $(\mathbb{F}, +, \cdot)$ um corpo. Defina, $\forall i \in I$, o espaço vetorial $V_i = \{a_i t^i : a_i \in \mathbb{F}, t^i \in I\}$, com as operações,

²Quer dizer que $t^0 = 1$ e $t^m \cdot t^n = t^{m+n}$.

- $+: V_i \times V_i \ni (a_i t^i, b_i t^i) \mapsto (a_i + b_i) t^i \in V_i$.
- $\cdot : \mathbb{F} \times V_i \ni (\lambda, a_i t^i) \mapsto (\lambda \cdot a_i) t^i \in V_i$.

Assim, o anel de polinômios com coeficientes em \mathbb{F} é $\mathcal{P}(\mathbb{F}) := \sum V_i$.

Nota. Em particular, $\mathcal{P}(\mathbb{F})$ é um espaço vetorial, $\dim \mathcal{P}(\mathbb{F}) = \infty$, $\alpha = \{1, t, t^2, \ldots\}$ é uma base e temos um producto bém definido.³

References

[1] Moura, Adriano (2025). Álgebra Linear com Geometría Analítica. UNI-CAMP, Campinas, SP.

³Ou todo junto, um álgebra comutativa.