Úloha 1. a 2.

Názov súboru	Dĺžka vety vo vzorkách	Dĺžka vety v sekundách	
sa1.wav	73061	00:00:04.57	
sa2.wav	55031	00:00:03.44	
si595.wav	64281	00:00:04.02	
sil1225.wav	96207	00:00:06.01	
sil1855.wav	37382	00:00:02.34	
sx55.wav	79804	00:00:04.99	
sx145.wav	48456	00:00:03.03	
sx235.wav	61315	00:00:03.83	
sx325.wav	49219	00:00:03.08	
sx415.wav	55429	00:00:03.46	
q1.wav	20749	00:00:01.30	
q2.wav	19884	00:00:01.24	

Úloha 3.

Úloha 4.

Výpočet parametrov funkcie prebieha výpočtom logaritmického výkonového spektra čím je výsledná matica P. Zvolený druh výpočtu parametrov je lineárna banka filtrov k čomu je nutná matica A. Daná matica A o velkosti 16x256 je 'naplnená' nulami a jednotkami pričom jednotky sú v matici A obsiahnute následnovným spôsobom => v každom riadku sa nachádza 16 jednotiek, kde v riadku na

Matej Otčenáš xotcen01

indexe 0 sú jednotky od indexu stĺpcov 0 až 15, v riadku na indexe 1 sú jednotky od indexu stĺpcov 16 až 31 ... až po riadok na indexe 15.

Takto výslednú maticu A maticovo prenásobíme s maticou P, kde výsledná matica F je našou maticou parametrov (features).

Úloha 5.

if Qlen - 1 + pp >= Flen:

break

coefficient = pearsonr(Q[k], F[k + pp])[0] # výpočet Pearsonovho korelačného koef. score = np.sum(coefficients) # suma koeficientov tvorí hodnotu jedného skóre scorePercent = score/len(Q) # danú hodnotu je nutné vydeliť počtom stĺpcov matice Q aby # sme získali výslednú hodnotu z intervalu < 0,1>

pp += 5 # navyšovanie rámca

Úloha 6.

scores.append(scorePercent) # výsledné skóre sa uloži do pola

Úloha 7.

Z empirických dôvodov a odpozorovaním z grafov budeme uvažovať o rozhodovacom prahu ako o najvyššej hodnote, ktorá bola dosiahnutá prudkým vzrastom hodnôt. Z obrázkov vypozorujeme, že vhodne zvolená hodnota prahu bude maximum nad 0,8 (80%) vrátane.

Úloha 8.

Veta	Query_1	Query_2	Výskyt	Vzorek
sa1.wav	q1.wav	q2.wav	nie/nie	
sa2.wav	q1.wav	q2.wav	nie/nie	
sil1225.wav	q1.wav	q2.wav	nie/nie	
sil1855.wav	q1.wav	q2.wav	nie/nie	
si595.wav	q1.wav	q2.wav	nie/nie	
sx145.wav	q1.wav	q2.wav	ano/nie	nezistené
sx235.wav	q1.wav	q2.wav	nie/ano	nezistené
sx325.wav	q1.wav	q2.wav	nie/nie	
sx415.wav	q1.wav	q2.wav	nie/nie	
sx55.wav	q1.wav	q2.wav	nie/nie	

Úloha 9.

Záver:

Na základe grafických výstupov hodnôt skóre usudzujem, že nastala chyba s najvačšou pravdepodobnosťou pri samotných zvukových nahrávkach. Boli otestované aj samotné útržky z vety, pri ktorých bol výstup korelácie 100%. To že slová maju veľmi podobnú hladinu priebehu je akceptovateľné pre ich blízku zhodu výslovnosti no vo svojej podstate detektor nefunguje podľa predstáv. Tzv. hits, pre ktoré bol nastavený prah 0,8 nokorešpondoval s očakávaným výsledkom, pri zníženi prahu na 0,79 bol výstup pozitívny v jednom prípade z dvoch.

Pre zlepšenie projektu by som sa určite zameral na lepšie prvotné spracovanie zvukových nahrávok ale aj zlepšil samotnú implementáciu jednotlivých úloh ako aj grafickú vizualizáciu.