Simplex Solver

November 11, 2022

Problem

Given the following linear system and objective function, find the optimal solution.

$$\max 32x_1 + 30x_2 + 35x_3 + 30x_4 + 20x_5$$

$$\begin{cases}
2x_1 + x_2 + 5x_3 + 3x_5 \le 100 \\
2x_2 \le 80 \\
2x_3 + x_4 \le 85 \\
7x_1 + 2x_4 + x_5 \le 200 \\
2x_2 + 10x_3 + x_5 \le 100
\end{cases}$$

Solution

Add slack variables to turn all inequalities to equalities.

$$\begin{cases} 2x_1 + x_2 + 5x_3 + 3x_5 + s_1 = 100 \\ 2x_2 + s_2 = 80 \\ 2x_3 + x_4 + s_3 = 85 \\ 7x_1 + 2x_4 + x_5 + s_4 = 200 \\ 2x_2 + 10x_3 + x_5 + s_5 = 100 \end{cases}$$

Create the initial tableau of the new linear system.

ſ	x_1	x_2	x_3	x_4	x_5	s_1	s_2	s_3	s_4	s_5	b	
	2	1	5	0	3	1	0	0	0	0	100	s_1
١	0	2	0	0	0	0	1	0	0	0	80	s_2
١	0	0	2	1	0	0	0	1	0	0	85	s_3
١	7	0	0	2	1	0	0	0	1	0	200	s_4
١	0	2	10		1		0	0	0	1	100	s_5
١	-32	-30	-35	-30	-20	0	0	0	0	0	0	

There are negative elements in the bottom row, so the current solution is not optimal. Thus, pivot to improve the current solution. The entering variable is x_3 and the departing variable is s_5 .

Perform elementary row operations until the pivot element is 1 and all other elements in the entering column are 0.

	x_1	x_2	x_3	x_4	x_5	s_1	s_2	s_3	s_4	s_5	b]
	2	0	0	0	5/2	1	0	0	0	-1/2	50	s_1
	0	2	0	0	0	0	1	0	0	0	80	s_2
	0	-2/5	0	1	-1/5	0	0	1	0	-1/5	65	s_3
İ	7	0	0	2	1	0	0	0	1	0	200	s_4
	0	1/5	1	0	1/10	0	0	0	0	1/10	10	x_3
	-32	-23	0	-30	-33/2	0	0	0	0	7/2	350	

There are negative elements in the bottom row, so the current solution is not optimal. Thus, pivot to improve the current solution. The entering variable is x_1 and the departing variable is s_1 .

Perform elementary row operations until the pivot element is 1 and all other elements in the entering column are 0.

x_1	x_2	x_3	x_4	x_5	s_1	s_2	s_3	s_4	s_5	b]
1	0	0	0	5/4	1/2	0	0	0	-1/4	25	x_1
0	2	0	0	0	0	1	0	0	0	80	s_2
0	-2/5	0	1	-1/5	0	0	1	0	-1/5	65	s_3
0	0	0	2	-31/4	-7/2	0	0	1	7/4	25	s_4
0	1/5	1	0	1/10	0	0	0	0	1/10	10	x_3
0	-23	0	-30	47/2	16	0	0	0	-9/2	1150	

There are negative elements in the bottom row, so the current solution is not optimal. Thus, pivot to improve the current solution. The entering variable is x_4 and the departing variable is s_4 .

Perform elementary row operations until the pivot element is 1 and all other elements in the entering column are 0.

x_1	x_2	x_3	x_4	x_5	s_1	s_2	s_3	s_4	s_5	b -	
1	0	0	0	5/4	1/2	0	0	0	-1/4	25	x_1
0	2	0	0	0	0	1	0	0	0	80	s_2
0	-2/5	0	0	147/40	7/4	0	1	-1/2	-43/40	105/2	s_3
0	0	0	1	-31/8	-7/4	0	0	1/2	7/8	25/2	x_4
0	1/5	1	0	1/10	0	0	0	0	1/10	10	x_3
0	-23	0	0	-371/4	-73/2	0	0	15	87/4	1525	

There are negative elements in the bottom row, so the current solution is not optimal. Thus, pivot to improve the current solution. The entering variable is x_5 and the departing variable is s_3 .

Perform elementary row operations until the pivot element is 1 and all other elements in the entering column are 0.

x_1	x_2	x_3	x_4	x_5	s_1	s_2	s_3	s_4	s_5	b -]
1	20/147	0	0	0	-2/21	0	-50/147	25/147	17/147	50/7	x_1
0	2	0	0	0	0	1	0	0	0	80	s_2
0	-16/147	0	0	1	10/21	0	40/147	-20/147	-43/147	100/7	x_5
0	-62/147	0	1	0	2/21	0	155/147	-4/147	-38/147	475/7	x_4
0	31/147	1	0	0	-1/21	0	-4/147	2/147	19/147	60/7	x_3
0	-695/21	0	0	0	23/3	0	530/21	50/21	-113/21	2850	

There are negative elements in the bottom row, so the current solution is not optimal. Thus, pivot to improve the current solution. The entering variable is x_2 and the departing variable is s_2 .

Perform elementary row operations until the pivot element is 1 and all other elements in the entering column are 0.

x_1	x_2	x_3	x_4	x_5	s_1	s_2	s_3	s_4	s_5	b
1	0	0	0	0	-2/21	-10/147	-50/147	25/147	17/147	250/147
0	1	0	0	0	0	1/2	0	0	0	40
0	0	0	0	1	10/21	8/147	40/147	-20/147	-43/147	2740/147
0	0	0	1	0	2/21	31/147	155/147	-4/147	-38/147	12455/147
0	0	1	0	0	-1/21	-31/294	-4/147	2/147	19/147	20/147
0	0	0	0	0	23/3	695/42	530/21	50/21	-113/21	87650/21

 x_1 x_2 x_5

 x_3

There are negative elements in the bottom row, so the current solution is not optimal. Thus, pivot to improve the current solution. The entering variable is s_5 and the departing variable is x_3 .

Perform elementary row operations until the pivot element is 1 and all other elements in the entering column are 0.

x_1	x_2	x_3	x_4	x_5	s_1	s_2	s_3	s_4	s_5	b	1
1	0	-17/19	0	0	-1/19	1/38	-6/19	3/19	0	30/19	x_1
0	1	0	0	0	0	1/2	0	0	0	40	x_2
0	0	43/19	0	1	7/19	-7/38	4/19	-2/19	0	360/19	x_5
0	0	2	1	0	0	0	1	0	0	85	x_4
0	0	147/19	0	0	-7/19	-31/38	-4/19	2/19	1	20/19	s_5
0	0	791/19	0	0	108/19	231/19	458/19	56/19	0	79410/19	

There are no negative elements in the bottom row, so we know the solution is optimal. Thus, the solution is:

$$s_1 = 0, s_2 = 0, s_3 = 0, s_4 = 0, s_5 = \frac{20}{19}, x_1 = \frac{30}{19}, x_2 = 40, x_3 = 0, x_4 = 85, x_5 = \frac{360}{19}, z = \frac{79410}{19}$$