

## FLR in 10 slides or less



**Ernesto Jardim Finlay Scott**European Commission
Joint Research Centre
(JRC)







### What is FLR?

- FLR = Fisheries Libraries in R
- FLR is a set of R packages
- FLR is developed and maintained by a group of fisheries scientists



## **Packages**

### FLR packages development model



FLa4a



FLash



FLBRP



## **FLQ**uant

Stands for "FL quantity" and it s the smallest component of FLR classes.

Six dimensional array used to store data of a particular type (e.g. catch numbers), with the following dimensions:

```
[1] "quant" "year" "unit" "season" "area" "iter"
```



### **FLStock**

Represents a fish stock and comprises a number of slots.

Class "FLStock" [package "FLCore"]

#### Slots:

| Name:  | catch        | catch.n  | catch.wt   | discards    | discards.n |
|--------|--------------|----------|------------|-------------|------------|
| Class: | FLQuant      | FLQuant  | FLQuant    | FLQuant     | FLQuant    |
| Name:  | discards.wt  | landings | landings.n | landings.wt | stock      |
| Class: | FLQuant      | FLQuant  | FLQuant    | FLQuant     | FLQuant    |
| Name:  | stock.n      | stock.wt | m          | mat         | harvest    |
| Class: | FLQuant      | FLQuant  | FLQuant    | FLQuant     | FLQuant    |
| Name:  | harvest.spwn | m.spwn   | name       | desc        | range      |
| Class: | FLQuant      | FLQuant  | character  | character   | numeric    |

#### Extends:

Class "FLS", directly

Class "FLComp", by class "FLS", dis



### **FLIndex**

Represents a index (e.g. index of abundance from a survey)

```
Class "FLIndex" [package "FLCore"]
```

Slots:

Name: type distribution index index.var catch.n Class: character character **FLQuant FLQuant FLQuant** Name: catch.wt effort sel.pattern index.q name Class: **FLQuant** FLQuant **FLQuant** FLQuant character

Name: desc range Class: character numeric

Extends: "FLComp"





### **FLSR**

Represents a stock-recruitment relationship and allows the estimation of its parameters.

```
Class "FLSR" [package "FLCore"]
```

#### Slots:

| model     | logerror | covar        | ssb       | rec      | Name:  |
|-----------|----------|--------------|-----------|----------|--------|
| formula   | logical  | FLQuants     | FLQuant   | FLQuant  | Class: |
| params    | initial  | distribution | gr        | logl     | Name:  |
| FLPar     | function | factor       | function  | function | Class: |
| residuals | details  | hessian      | vcov      | logLik   | Name:  |
| FLArray   | list     | array        | array     | logLik   | Class: |
|           | range    | desc         | name      | fitted   | Name:  |
|           | numeric  | character    | character | FLArray  | Class: |

#### Extends:

Class "FLModel", directly Class "FLComp", by class "FLModel".





ance 2

### **FLlist**

```
A list of other classes
Class "FL1st" [package "FLCore"]
Slots:
Name:
           .Data
                                          lock
                     names
                                desc
Class:
      list character character
                                       logical
Extends:
Class "list", from data part
Class "vector", by class "list", distance 2
Known Subclasses:
Class "FLQuants", directly
Class "FLCohorts", directly
Class "FLComps", directly
Class "FLPars", directly
Class "FLModelSims", directly
Class "FLStocks", by class "FLComps", distance 2
Class "FLIndices", by class "FLComploint
                                         stance 2
```

Class "FLBiols", by class "FLComps"



## **Example I**

```
> # load
> library(FLCore)
> data(ple4.index)
> data(ple4)
> # FLStock
> plot(ple4)
> summary(ple4)
> # FLQuant ---
> cth <- catch(ple4)
> plot(cth)
> summary(cth)
```



## **Example II**

```
> # FI.Index
> plot(ple4.index)
> summary(ple4.index)
> # FLSR ------
> ple4.sr <- as.FLSR(ple4, model="bevholt")</pre>
> ple4.sr <- fmle(ple4.sr)</pre>
> plot(ple4.sr)
> flqs <- FLQuants(c=catch(ple4), b=stock(ple4))</pre>
> xyplot(data~year, groups=qname, data=flqs,
          type="1")
```



### OOP

- OOP = Object Oriented Programming
- A programming language model organized around "objects" rather than "actions"
- R implementation is called "S4"



# **S4** (OOP in R)





## **FLR & S4**





## FLR & S4 tips

- Constructors have the same name as the class.
  - FLStock() creates an object of the class "FLStock"
  - FLIndex() creates an object of the class "FLIndex"
- Accessors have the same name as the slot.
  - catch.n() extracts the slot "catch.n" from an object "FLStock"
  - index() extracts the slot "index" from an object "FLIndex"
- · Most classes have a set of basic methods
  - plot(), summary(), [, [<-