

Organic Chemistry: Some Basic Principles and Techniques

• Isomerism:

Structural isomerism

1. Chain isomerism: Two or more compounds having the same molecular formula, but different carbon skeletons

2. Position isomerism: Two or more compounds differing in the position of functional group on the carbon skeleton

$$\begin{array}{ccc} & & \text{OH} \\ & | \\ \text{CH}_3 - \text{CH}_2 - \text{CH}_2 - \text{CH}_2 - \text{OH} & \text{CH}_3 - \text{CH}_2 - \text{CH} - \text{CH}_3 \\ \\ & \text{Butan-1-ol} & \text{Butan-2-ol} \end{array}$$

3. Functional group isomerism: Two or more compounds having the same molecular formula, but different functional groups

$$CH_3 - CH_2 - C - CH_3$$
 $CH_3 - CH_2 - CH_2 - C - E$

Butanone Butanal

4. Metamerism: Two or more compounds arising due to different alkyl chains on either side of the functional group in a molecule

CH₃OC₃H₇ C₂H₅OC₂H₅ Methoxypropane Ethoxyethane

Stereoisomerism:

Compounds having the same constitution and sequence of covalent bonds, but different relative positions of their atoms or groups in space

Fundamental concepts in organic reaction mechanism:

Fission of a covalent bond

Heterolytic cleavage: Formation of cations and anions takes place.

The increasing order of stability of carbocations is

Homolytic cleavage: Formation of free radicals takes place.

The increasing order of stability of alkyl radicals is

$$\overset{0}{\text{C}}\text{H}_{3} < \overset{0}{\text{C}}\text{H}_{2}\text{CH}_{3} < \overset{0}{\text{C}}\text{H}\left(\text{CH}_{3}\right)_{2} < \overset{0}{\text{C}}\left(\text{CH}_{3}\right)_{3}$$

Nucleophiles and electrophiles

Nucleophile (Nu:): Nucleus seeking. For example: hydroxide (HO⁻), cyanide (CN⁻),

Electrophile (E⁺): Electron seeking. For example: carbonyl group (>C=O) or alkyl halides