$$A = \begin{bmatrix} 1 & 2 & -3 \\ 2 & (1+x) & -3 \\ -3 & 2 & (2-x) \end{bmatrix}$$
 ii. Under what conditions on x is there an inverse for the matrix A ? iii. Find the adjoint, $\operatorname{adj}(A)$.

i. Calculate (as a function of the variable x) the determinant of matrix

main diagonal are 0. That is, any matrix
$$B$$
 for which $B_{ij} = 0$ if $i > j$. Prove that $|B| = B_{11}B_{22} \dots B_{nn}$.
(c) Calculate the eigenvalues of the matrix

[6]

[3]

(b) An upper diagonal matrix is a square matrix of order n such that all entries below the

(c) Calculate the eigenvalues of the matrix
$$C = \begin{bmatrix} 2 & 1 & \pi & \sqrt{2} \\ 0 & 0 & 3 & e \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 4 \end{bmatrix}$$