ANUBHAV KUMAR

EDUCATION

Lovely Professional University

Aug-2023 - Present

Bachelor's in Computer Science and Engineering - CGPA - 7.37

Jalandhar

<u>Course Work</u>: Artificial Inelligence, Machine Learning, OOPS, Operating Systems, Data Structures and Algorithms, Programming

TECHNICAL SKILLS

- * Programming Languages: C, C++, Python, Java
- Frontend Development: HTML, CSS, JavaScript
- ML/Data Tools: NumPy, Pandas, scikit-learn, XGBoost, Matplotlib, RandomForest
- Core CS: Data Structures & Algorithms, OOP
- *Other: Cloud Computing (basics), NLP, AI concepts

ACHIEVEMENTS

- Leading student tech initiatives and managing hackathons & bootcamps.
- Hackathon Finalist ML Innovation Prototype (2024)
- 2nd Runner Up (Team) 24-hour Hackathon (2024)
- Runner-up Inter-school Badminton & Kho-Kho competitions

PROJECTS:

Renewable Energy Predictor:

• Developed an Random Forest-based forecasting model to predict solar energy output with 85%+ R² accuracy. Integrated feature tuning (temperature, irradiance, weather parameters) and deployed via an interactive Streamlit dashboard for real-time user inputs and visualizations.

Process Scheduler Simulator:

 Built a Python simulator implementing FCFS, SJF (preemptive & non-preemptive), Priority, and Round Robin scheduling. Added Gantt chart visualizations and automated calculation of key metrics like waiting time, turnaround time, and throughput to demonstrate trade-offs in CPU scheduling.

AI Chatbot Moderator:

• Designed an **NLP-powered chatbot** that leverages **regex-based text filtering** to identify and block offensive, abusive, or spam content. Simulated group chat interactions, providing safe conversation flow and showcasing **rule-based moderation in Python**.

News Aggregator:

• Created a **static news reader UI** using **HTML/CSS**, featuring structured layout for headlines, summaries, and links. Focused on **clean design and responsive styling**, serving as a prototype for future API-based dynamic news platforms.

Hall Effect Sensors Simulation:

• Modeled the **Hall Effect principle** in Python to classify semiconductors based on magnetic field interactions. Simulated current flow, voltage response, and material properties, with visual outputs to aid in **understanding sensor behavior**.

CERTIFICATIONS:

- Machine Learning Made Easy
- Cloud Computing NPTEL
- Python:- Basic to Advance Udemy
- Dynamic Communication Skill for Career Success