Salsa Picante: a machine learning attack on LWE with binary secrets

Cathy Li ¹ Jana Sotáková ^{2,*} Emily Wenger ³ Mohamed Malhou ¹ Evrard Garcelon ⁴ François Charton ¹ Kristin Lauter ¹

¹Meta Al

²QuSoft and U of Amsterdam *work done while at Meta AI

³U Chicago

⁴ENSAE - CREST

AICRYPT, April 22, 2023

For an integer modulus q, write $\mathbb{Z}_q := \mathbb{Z}/q\mathbb{Z}$.

For an integer modulus q, write $\mathbb{Z}_q := \mathbb{Z}/q\mathbb{Z}$.

Learning with errors

<u>Dimension</u> n, integer <u>modulus</u> q. <u>Secret</u> $\mathbf{s} \in \mathbb{Z}_q^n$.

Error distribution χ (take χ centered Gaussian with $\sigma = 3.2$).

For an integer modulus q, write $\mathbb{Z}_q := \mathbb{Z}/q\mathbb{Z}$.

Learning with errors

<u>Dimension</u> n, integer <u>modulus</u> q. <u>Secret</u> $\mathbf{s} \in \mathbb{Z}_q^n$.

Error distribution χ (take χ centered Gaussian with $\sigma = 3.2$).

Consider noisy inner products $b = \mathbf{a} \cdot \mathbf{s} + e$ for $\mathbf{a} \leftarrow \mathbb{Z}_q^n$ and e sampled from χ .

For an integer modulus q, write $\mathbb{Z}_q := \mathbb{Z}/q\mathbb{Z}$.

Learning with errors

<u>Dimension</u> n, integer <u>modulus</u> q. <u>Secret</u> $\mathbf{s} \in \mathbb{Z}_q^n$.

Error distribution χ (take χ centered Gaussian with $\sigma = 3.2$).

Consider noisy inner products $b = \mathbf{a} \cdot \mathbf{s} + e$ for $\mathbf{a} \leftarrow \mathbb{Z}_q^n$ and e sampled from χ .

The **Learning with Errors** problem is to recover **s** given m pairs (\mathbf{a}_j, b_j) .

For an integer modulus q, write $\mathbb{Z}_q := \mathbb{Z}/q\mathbb{Z}$.

Learning with errors

<u>Dimension</u> n, integer <u>modulus</u> q. <u>Secret</u> $\mathbf{s} \in \mathbb{Z}_q^n$.

Error distribution χ (take χ centered Gaussian with $\sigma = 3.2$).

Consider noisy inner products $b = \mathbf{a} \cdot \mathbf{s} + e$ for $\mathbf{a} \leftarrow \mathbb{Z}_q^n$ and e sampled from χ .

The **Learning with Errors** problem is to recover **s** given m pairs (\mathbf{a}_j, b_j) .

binary secret: $\mathbf{s} \in \{0,1\}^n$

 SALSA [WCCL22] trains transformers $\mathcal M$ on the pairs $(\mathbf a,b)$ to approximate the mapping

 $\mathbf{a}\mapsto bpprox\mathbf{a}\cdot\mathbf{s}$

 SALSA [WCCL22] trains transformers $\mathcal M$ on the pairs $(\mathbf a,b)$ to approximate the mapping

$$\mathbf{a}\mapsto bpprox\mathbf{a}\cdot\mathbf{s}$$

Main idea

If the transformer learns, it must have learned information about the secret.

 SALSA [WCCL22] trains transformers $\mathcal M$ on the pairs $(\mathbf a,b)$ to approximate the mapping

$$\mathbf{a}\mapsto bpprox\mathbf{a}\cdot\mathbf{s}$$

Main idea

If the transformer learns, it must have learned information about the secret.

Recover the secret:

1. Direct recovery: if \mathbf{e}_i is the *i*-th standard vector and $K \leftarrow \mathbb{Z}_q$, then

$$\mathcal{M}(K\mathbf{e}_i) pprox (K\mathbf{e}_i) \cdot s = egin{cases} K & s_i = 1, \ 0 & s_i = 0. \end{cases}$$

 SALSA [WCCL22] trains transformers $\mathcal M$ on the pairs $(\mathbf a,b)$ to approximate the mapping

$$\mathbf{a}\mapsto b\approx \mathbf{a}\cdot\mathbf{s}$$

Main idea

If the transformer learns, it must have learned information about the secret.

Recover the secret:

1. Direct recovery: if \mathbf{e}_i is the *i*-th standard vector and $K \leftarrow \mathbb{Z}_q$, then

$$\mathcal{M}(K\mathbf{e}_i)pprox (K\mathbf{e}_i)\cdot s = egin{cases} K & s_i=1, \ 0 & s_i=0. \end{cases}$$

2. Distinguisher: for (a, b) and LWE sample,

$$\mathcal{M}(\mathbf{a} + K\mathbf{e}_i) \approx (\mathbf{a} + K\mathbf{e}_i) \cdot s = \mathbf{a} \cdot s + K\mathbf{e}_i \cdot s \approx b \longleftrightarrow s_i = 0$$

Drawbacks of SALSA

1. Only succeeds in recovering small dimensions \leq 128 and Hamming weights (\leq 3 for n=128);

Drawbacks of SALSA

- 1. Only succeeds in recovering small dimensions \leq 128 and Hamming weights (\leq 3 for n=128);
- 2. requires millions of samples (a, b) to train transformers;

Drawbacks of SALSA

- 1. Only succeeds in recovering small dimensions \leq 128 and Hamming weights (\leq 3 for n=128);
- 2. requires millions of samples (a, b) to train transformers;
- 3. only handles (R)LWE with binary secrets.

Salsa Picante [LSW $^+$ 23] is a big improvement on Salsa [WCCL22]:

Salsa Picante [LSW⁺23] is a big improvement on Salsa [WCCL22]:

- highest dimensions and Hammight weights recovered:

Dimension	80	150	200	256	300	350
log <i>q</i> highest <i>h</i>	7	13	17	23	27	32 60*
nignest <i>n</i>	9	13	22	31	33	604

Salsa Picante's highest recovered secret Hamming weights h

Salsa Picante [LSW⁺23] is a big improvement on Salsa [WCCL22]:

- highest dimensions and Hammight weights recovered:

Dimension	80	150	200	256	300	350
log q	7	13	17	23	27	32
highest <i>h</i>	9	13	22	31	33	60*

Salsa Picante's highest recovered secret Hamming weights h

- Novel mechanisms:

Salsa Picante [LSW⁺23] is a big improvement on Salsa [WCCL22]:

- highest dimensions and Hammight weights recovered:

Dimension	80	150	200	256	300	350
log q	7	13	17	23	27	32
highest <i>h</i>	9	13	22	31	33	6U*

Salsa Picante's highest recovered secret Hamming weights h

- Novel mechanisms:
 - * reduced number of samples required (we take m = 4n);

Salsa Picante [LSW⁺23] is a big improvement on Salsa [WCCL22]:

- highest dimensions and Hammight weights recovered:

Dimension	80	150	200	256	300	350
log q	7	13	17	23	27	32
highest <i>h</i>	9	13	22	31	33	6U*

Salsa Picante's highest recovered secret Hamming weights h

- Novel mechanisms:
 - \star reduced number of samples required (we take m = 4n);
 - \star (costly) pre-processing step to change the distribution of (a, b);

Salsa Picante [LSW⁺23] is a big improvement on Salsa [WCCL22]:

- highest dimensions and Hammight weights recovered:

Dimension	80	150	200	256	300	350
log <i>q</i>	7	13	17	23	27	32
highest <i>h</i>	9	13	22	31	33	60*

Salsa Picante's highest recovered secret Hamming weights h

- Novel mechanisms:
 - \star reduced number of samples required (we take m = 4n);
 - \star (costly) pre-processing step to change the distribution of (a, b);
 - * better secret recovery

Preprocessing step in Picante

PICANTE starts from m = 4n original samples (a_j, b_j) .

PICANTE starts from m = 4n original samples (\mathbf{a}_j, b_j) . Natural ideal: take linear combinations to get more samples:

PICANTE starts from m = 4n original samples (a_j, b_j) . Natural ideal: take linear combinations to get more samples:

+ cheaply get as many samples as we want,

PICANTE starts from m = 4n original samples (a_j, b_j) . Natural ideal: take linear combinations to get more samples:

- + cheaply get as many samples as we want,
- the error blows up,

PICANTE starts from m = 4n original samples (a_j, b_j) . Natural ideal: take linear combinations to get more samples:

- + cheaply get as many samples as we want,
- the error blows up,
- + by controling the linear combinations, we can enforce different distribution of a

PICANTE starts from m = 4n original samples (\mathbf{a}_j, b_j) .

Natural ideal: take linear combinations to get more samples:

- + cheaply get as many samples as we want,
- the error blows up,
- $+\,$ by controling the linear combinations, we can enforce different distribution of ${f a}$

Desired distribution?

SALSA observed that if entries of **a** are smaller than q, the transformers learn better.

Goal:

Get samples (a, b) with a with smaller entries.

Goal:

Get samples (a, b) with a with smaller entries.

PICANTE's solution:

Apply lattice-reduction algorithms to reduce the norm of the samples, and hence the coordinates.

Goal:

Get samples (a, b) with a with smaller entries.

PICANTE's solution:

Apply lattice-reduction algorithms to reduce the norm of the samples, and hence the coordinates.

Take n out of the m samples, put the \mathbf{a} 's in a matrix \mathbf{A} and apply BKZ to:

$$\begin{bmatrix} \omega \cdot \mathbf{1}_n & \mathbf{A}_{n \times n} \\ 0 & q \cdot \mathbf{1}_n \end{bmatrix},$$

where $\omega = 15$ is controlling the error/coefficients of the linear combinations.

Goal:

Get samples (a, b) with a with smaller entries.

PICANTE's solution:

Apply lattice-reduction algorithms to reduce the norm of the samples, and hence the coordinates.

Take n out of the m samples, put the \mathbf{a} 's in a matrix \mathbf{A} and apply BKZ to:

$$\begin{bmatrix} \omega \cdot \mathbf{1}_n & \mathbf{A}_{n \times n} \\ 0 & q \cdot \mathbf{1}_n \end{bmatrix},$$

where $\omega = 15$ is controlling the error/coefficients of the linear combinations.

Repeat this until have enough samples (\approx 4 million) for training the transformers.

Effect of the pre-processing

Dimension n = 150 with q = 6421 (log q = 13).

Effect of the pre-processing

Dimension n = 150 with q = 6421 (log q = 13).

BKZ reduction using *fplll* with blocksize β and LLL-DELTA δ :

$\delta \atop eta$	-	0.96 16	0.96 20	0.99 20
norm(a)/norm(a _{random}) cost per matrix (min)	1 0	0.669 30	0.581 54	0.528 188
highest h	-	5	8	12

Cost of preprocessing

n	$\log_2(q)$	Cost per matrix CPU hours	Matrices needed	Total cost CPU years
80	7	0.01	34,800	0.05
150	13	3.1	14,600	5.3
200	17	15.9	10,800	19.4
256	23	51.9	8,300	48.1
300	27	105.8	7,100	85.6
350	32	152.0	6,000	105

Table. Resources needed for preprocessing. Total resources needed to produce 2^{22} reduced samples, by reducing $2^{21}/n$ matrices. This operation can be run in parallel for each matrix.

Salsa Picante is a major extension of the Salsa attack.

+ much higher dimensions and Hamming weights,

Salsa Picante is a major extension of the Salsa attack.

- + much higher dimensions and Hamming weights,
- + linear number of samples (m = 4n),

Salsa Picante is a major extension of the Salsa attack.

- + much higher dimensions and Hamming weights,
- + linear number of samples (m = 4n),
- costly preprocessing to generate enough data,

Salsa Picante is a major extension of the Salsa attack.

- + much higher dimensions and Hamming weights,
- + linear number of samples (m = 4n),
- costly preprocessing to generate enough data,
- + trade-off between the cost of preprocessing and highest h recovered.

Salsa Picante is a major extension of the Salsa attack.

- + much higher dimensions and Hamming weights,
- + linear number of samples (m = 4n),
- costly preprocessing to generate enough data,
- + trade-off between the cost of preprocessing and highest h recovered.

Other aspects:

+ Improved secret recovery: improved distinguisher and a novel cross-attention mechanism

Salsa Picante is a major extension of the Salsa attack.

- + much higher dimensions and Hamming weights,
- + linear number of samples (m = 4n),
- costly preprocessing to generate enough data,
- + trade-off between the cost of preprocessing and highest h recovered.

Other aspects:

- + Improved secret recovery: improved distinguisher and a novel cross-attention mechanism
- ? PICANTE compared to other (classical) lattice attacks:

Salsa Picante is a major extension of the Salsa attack.

- + much higher dimensions and Hamming weights,
- + linear number of samples (m = 4n),
- costly preprocessing to generate enough data,
- + trade-off between the cost of preprocessing and highest h recovered.

Other aspects:

- + Improved secret recovery: improved distinguisher and a novel cross-attention mechanism
- ? PICANTE compared to other (classical) lattice attacks:
 - 1. preprocessing very costly, but parallelizable,

Salsa Picante is a major extension of the Salsa attack.

- + much higher dimensions and Hamming weights,
- + linear number of samples (m = 4n),
- costly preprocessing to generate enough data,
- + trade-off between the cost of preprocessing and highest h recovered.

Other aspects:

- + Improved secret recovery: improved distinguisher and a novel cross-attention mechanism
- ? PICANTE compared to other (classical) lattice attacks:
 - 1. preprocessing very costly, but parallelizable,
 - 2. use lattice-reduction algorithm with much weaker parameters than pue lattice attacks.

References I

Cathy Li, Jana Sotáková, Emily Wenger, Mohamed Malhou, Evrard Garcelon, Francois Charton, and Kristin Lauter.

SALSA PICANTE: a machine learning attack on LWE with binary secrets.

Cryptology ePrint Archive, Paper 2023/340, 2023.

https://eprint.iacr.org/2023/340.

Emily Wenger, Mingjie Chen, Francois Charton, and Kristin Lauter.

Salsa: Attacking lattice cryptography with transformers, 2022.

https://arxiv.org/abs/2207.04785.