Решение Систем Линейных Алгебраических Уравнений прямыми методами

- 1. Создать случайную СЛАУ заданной размерности и с заданным числом обусловленности (MatLab/Fortan/C/C++)
 - а. Задать число обусловленности, создать диагональную матрицу D с этим числом обусловленности
 - б. Получить случайную ортогональную матрицу одним из способов
 - і. $Q=E-2(ww^{T})(w^{T}w)^{-1}$ преобразование Хаусхолдера, w вектор-столбец
 - ii. [Q, r]=qr(rand(n)) только в MatLab
 - в. Построить матрицу СЛАУ как $A = Q^{T}DQ$
 - Γ . Задать точное решение x
 - д. Вычислить правую часть СЛАУ b=Ax
- 2. Решить СЛАУ заданным методом
 - а. Метод Гаусса с выбором главного элемента
 - б. LU разложение с выбором главного элемента
 - в. SS^{T} разложение Холецкого (метод квадратных корней)
 - г. QR разложение с помощью матриц вращений
- 3. Пользуясь запрограммированным методом и операцией MatLab «\»
 - а. Проверить выполнение неравенства $\frac{\|\delta x\|}{\|x\|} \le cond(A) \frac{\|\delta b\|}{\|b\|}$, задав возмущение правой части СЛАУ Ax = b
 - б. Проверить работу метода на тестовой матрице A (с нулевым определителем) и на матрице $B=10^8A$. В каком месте алгоритм дает сбой?
- 4. В MatLab Решить СЛАУ с матрицами Гильберта размерности 5,10 и 15, вычислить число обусловленности, норму фактической ошибки, норму невязки
- 5. Построить график временных затрат решения СЛАУ (с небольшим числом обусловленности) в зависимости от размера матрицы
 - а. для запрограммированного метода (минимум для трех матриц)
 - б. для операции «\»
 - в. для решения СЛАУ с помощью функции chol
 - г. для решения СЛАУ с помощью функции lu
 - д. для решения СЛАУ с помощью функции qr
 - е. для решения СЛАУ с помощью функции linsolve без опций и с опциями