

Arduino-IOT

[wk09]

Mid-exam: CdS+DHT22 Arduino + node + plotly

> Visualization of Signals using Arduino, Node.js & storing signals in MongoDB & mining data using Python

Drone-IoT-Comsi, INJE University

Email: chaos21c@gmail.com

My ID

ID를 확인하고 github에 repo 만들기

김준수	AA13	조재윤
김현서	AA14	고태승
박영훈	AA15	이한글
박윤호	AA16	장세진
성은지	AA17	장태호
손윤우	AA18	정지원
오세윤	AA19	진우태
우승철	AA20	황혁준
윤현석	AA21	장이제
이예주	AA22	박상현
강지환	AA23	정은성
성인제	AA24	김경영
	김현서 박영훈 박윤호 성은지 손윤우 오세윤 우승철 윤현석 이예주 강지환	김현서 박영훈 박윤호 성은지 소유16 AA17 소윤우 오세윤 우승철 윤현석 이예주 강지환

위의 id를 이용해서 github에 repo를 만드시오.

Option: ^{아두이노}응용 실습 과제 – AAnn

Public, README.md check

[Review]

- [wk08]
- RT Data Visualization with node.js
- Usage of gauge.js
- Complete your plotly-node project
- Upload folder: aann-rpt08
- Use repo "aann" in github

wk08: Practice: aann-rpt08

- [Target of this week]
 - Complete your works
 - Save your outcomes and upload outputs in github

제출폴더명: aann-rpt08

- 압축할 파일들

- ① AAnn_DS_30timestamps.png
- ② AAnn_DS_multiple_axis.png
- ③ AAnn_cds_gauge.png
- 4 AAnn_cds_change.png
- ⑤ AAnn_DS_cds_tmp36.png
- 6 All *.ino
- 7 All *.js
- 8 All *.html

Purpose of AA

주요 수업 목표는 다음과 같다.

- 1. Node.js를 이용한 아두이노 센서 신호 처리
- 2. Plotly.js를 이용한 아두이노 센서 신호 시각화
- 3. MongoDB에 아두이노 센서 데이터 저장 및 처리

4. 저장된 IoT 데이터의 마이닝 (파이썬 코딩)

Layout [H S C]

on WEB monitoring Arduino data

IoT Signal from Arduino Weather Station

Real-time Signals

on Time: 2021-10-27 11:54:48.997

Signals (온도,습도,조도) : 23.4,42.6,286

Real-time Weather Station from sensors

on Time: 2021-10-27 12:33:32.600

CdS + DHT22

+ plotly.js
Node project

Multi-sensors

DHT22 + CdS

그림 8-7 DHT22 pin 구조

- 3 ~ 5V power and I/O
- 2.5mA max current
- [0-100%] humidity readings with 2-5% accuracy
- [-40 to 80°C] temperature readings ±0.5°C accuracy
- 0.5 Hz sampling rate

https://learn.adafruit.com/dht/overview

A5.7 DHT22 + CdS streaming project

A5.7.1 DHT22 + CdS circuit

DHT22[D4] + 1 k Ω , CdS[A0] + 10 k Ω

A5.7.2 DHT22 + CdS : DHT library

A5.7.4 DHT22 + CdS : circuit

[1] Arduino code: AAnn_CdS_DHT22.ino

```
AAnn_Cds_DHT22$

1  // DHT22

2  #include "DHT.h"

3  #define DHTPIN 4

4  #define DHTTYPE DHT22

5  DHT dht(DHTPIN, DHTTYPE);

6  // CdS (LDR)

7  #define CDS_INPUT 0

8  
9  void setup() {

10  dht.begin();

11  Serial.begin(9600);

12 }
```

```
42  //Voltage to Lux
43  double luminosity (int RawADCO){
44   double Vout=RawADCO*5.0/1023.0;  // 5/1023
45   double lux=(2500/Vout-500)/10;
46   // lux = 500 / Rldr,
47   // Yout = Ildr*Rldr = (5/(10 + Rldr))*Rldr
48   return lux;
49 }
```

```
14 void loop() {
   int cds_value, lux;
   float temp, humi;
   // Lux from CdS (LDR)
   cds_value = analogRead(CDS_INPUT);
   lux = int(luminosity(cds_value));
   // Reading temperature or humidity takes a given interval!
21 // Sensor readings may also be up to 2 seconds 'old'
22 humi = dht.readHumidity();
    // Read temperature as Celsius (the default)
24 temp = dht.readTemperature();
    // Check if any reads failed and exit early (to try again).
    if (isnan(humi) || isnan(temp) || isnan(lux)) {
      Serial.println("Failed to read from DHT sensor or CdS!");
      return:
    else {
      Serial .print("AAOO,") // 주석 처리
      Serial.print(temp,1); // temperature, float
      Serial.print(",");
      Serial.print(humi,1); // humidity, float
      Serial.print(",");
36
      Serial.println(lux); // luminosity, int
38
    delay(2000); // 2000 msec, 0.5 Hz
40|}
```


A5.7.5 DHT22 + CdS : Serial monitor

[1] Arduino code: AAnn_CdS_DHT22.ino

A5.7.6 DHT22 + CdS + Node.js

[2.1] NodeJS project: "cds-dht22-node project" → package.json

```
📶 aann > aann-rpt09 > Node > cds_dht22 > 🚥 package.json > ...
        "name": "cds_tmp36",
       "version": "1.0.0".
       "description": "cds-dht22-node project",
       "main": "cds_dht22_node.js",
        D CHI
        "scripts": {
        "test": "echo \"Error: no test specified\" && exit 1"
 8
        },
        "keywords": [
        "cds",
10
11
         "dht22",
12
         "node",
         "arduino"
13
14
        ],
        "author": "aa00".
15
       "license": "MIT",
16
       "dependencies": {
17
       "serialport": "^9.2.4",
18
         "socket.io": "^2.4.1"
19
20
21
```


○○ A5.7.7 DHT22 + CdS + Node.js

[2.2] NodeJS code: cds_dht22_node.js (← cds_tmp36_node.js를 rename)

```
// cds dht22 node.js
var serialport = require("serialport");
var portName = "COM3"; // check your COM port!!
var port = process.env.PORT | 3000;
var io = require("socket.io").listen(port);
const Readline = require("@serialport/parser-readline");
// serial port object
var sp = new serialport(portName, {
  baudRate: 9600, // 9600 38400
 dataBits: 8.
 parity: "none",
 stopBits: 1,
 flowControl: false,
 parser: new Readline("\r\n"),
});
const parser = sp.pipe(new Readline(( delimiter: "\r\n" )));
// Read the port data
sp.on("open", () => {
 console.log("serial port open");
});
```


A5.7.8 DHT22 + CdS + Node.js

[2.3] NodeJS code: cds_dht22_node.js (Complete your parser code)

```
var dStr = "";
var readData = ""; //
var temp = "";
var humi = "";
var lux = "";
var mdata = []; // thi!
var firstcommaidx = 0;
```

```
parser.on("data", (data) => {
             Complete your parser code!!
                                                               > 0) -
   readData = "";
   dStr = getDateString();
  mdata[0] = dStr; // Date
   mdata[1] = temp; // temperature data
  mdata[2] = humi; // humidity data
  [mdata[3] = lux; // luminosity data
  console.log("AAnn," + mdata);
  io.sockets.emit("message", mdata); // send data to all clients
  } else {
   // error
   console.log(readData);
```


A5.7.10 DHT22 + CdS + Node.js

[3] Result: Parsed streaming data from dht22 & CdS (Run in Terminal)

Save as AAnn_cds_dht22_data.png

Arduino data on network socket

IoT Signal from Arduino Weather Station

Real-time Signals

on Time: 2021-10-27 11:54:48.997

Signals (온도,습도,조도) : 23.4,42.6,286

Save as AAnn_signals_cds_dht22.html

Real-time monitoring of signals from Arduino CdS + DHT22 circuit

WEB client: client_cds_dht22.html

Real-time Weather Station from sensors

on Time: 2021-10-27 12:33:32.600

A5.8.1 DHT22 + CdS + Node.js

[4.1] WEB client: client_cds_dht22.html

```
client_CdS_DHT22.html •
 1 <!DOCTYPE html>
 2 <head>
 3
   <meta charset="utf-8">
 4
     <title>plotly.js Project: Real time signals from multiple sensors</title>
 5
     <script src="https://cdn.plot.ly/plotly-latest.min.js"></script>
 6
     <script type="text/javascript" src="https://cdnjs.cloudflare.com/ajax/libs</pre>
     socket.io.js"></script>
 7
 8
     <script src="gauge.min.js"></script>
 9
10
     <style>body{padding:0;margin:30;background:#fff}</style>
11
   </head>
12
13
   <body> <!-- style="width:100%;height:100%"> -->
       <!-- Plotly chart will be drawn inside this DTV -->
14
       <h1 align="center"> Real-time Weather Station from sensors </h1>
15
16
       <!-- 1st gauge -->
       <div align="center">
17
            <canvas id="gauge1"> </canvas>
18
19
           <!-- 2nd gauge -->
            <canvas id="gauge2"> </canvas>
20
          <!-- 3rd gauge -->
21
22
           <canvas id="gauge3"> </canvas>
23
       </div>
       <!-- <div id="console"> </div> -->
24
       <h3 align="center"> on Time: <span id="time"> </span> </h3>
25
       <div id="mvDiv"></div>
26
27
       <hr>>
```


A5.8.2 DHT22 + CdS + Node.js

[4.2] WEB client: client_cds_dht22.html

```
<script>
29
         /* JAVASCRIPT CODE GOES HERE */
30
31
         var streamPlot = document.getElementById('myDiv');
         var ctime = document.getElementById('time');
32
        var tArray = [], // time of data arrival
33
          y1Track = [], // value of sensor 1 : temperature
34
         y2Track = [], // value of sensor 2 : humidity
35
         y3Track = [], i// value of sensor 3 : Luminosity
36
37
           numPts = 50, // number of data points in x-axis
           dtda = [], // 1 x 4 array : [date, data1, data2, data3] from sensors
38
39
40
41
           preZ = -1.
42
           initFlag = true;
```

```
Check points: tArray

xTrack → y1Track, yTrack → y2Track

& add y3Track & preZ
```


A5.8.3 DHT22 + CdS + Node.js

[4.3] WEB client: client_cds_dht22.html

```
var socket = io.connect('http://localhost:3000'); // port = 3000
socket.on('connect', function () {
    socket.on('message', function (msg) {
       // initial plot
        if(msg[0]!='' && initFlag){
           dtda[0]=msg[0];
           dtda[1]=parseFloat(msg[1]); // temperature
           dtda[2]=parseFloat(msg[2]); // Humidity
          dtda[3]=parseInt(msg[3]); // Luminosity
           init();
           initFlag=false;
        dtda[0]=msg[0];
       dtda[1] = parseFloat(msg[1]);
       dtda[2] = parseFloat(msg[2]);
       dtda[3] = parseInt(msg[3]);
```

Update

to include three signals:

A5.8.4 DHT22 + CdS + Node.js

[4.4] WEB client: client_cds_dht22.html

Plotly.update(streamPlot, update);

```
// Only when any of data is different from the previous one,
  the screen is redrawed.
if (dtda[1] != preX | dtda[2] != preY | dtda[3] != preZ) { // any change?
   | preX = dtda[1];
   preY = dtda[2];
   preZ = dtda[3];
   // when new data is coming, keep on streaming
   ctime.innerHTML = dtda[0];
   gauge temp.setValue(dtda[1]) // temp gauge
   gauge humi.setValue(dtda[2]); // humi gauge
   gauge_lux.setValue(dtda[3]); // lux gauge
   tArray = tArray.concat(dtda[0]);
   tArray.splice(0, 1); // remove the oldest data
   y1Track = y1Track.concat(dtda[1]);
   y1Track.splice(0, 1); // remove the oldest data
   ly2Track = y2Track.concat(dtda[2]);
   y2Track.splice(0, 1);
   y3Track = y3Track.concat(dtda[3]);
   y3Track.splice(0, 1);
   var update = {
       x: [tArray, tArray, tArray],
                                                             Update
           [y1Track, y2Track, y3Track]
                                                    to include three signals:
```


A5.8.5 DHT22 + CdS + Node.js

[4.5] WEB client: client_dht22_ldr.html → init()

```
function init() { // initial screen ()
    // starting point : first data (temp, lux)
    for ( i = 0; i < numPts; i++) {
        tArray.push(dtda[0]); // date
        y1Track.push(dtda[1]); // sensor 1 (temp)
        y2Track.push(dtda[2]); // sensor 2 (humi)
        y3Track.push(dtda[3]); // sensor 3 (lux)
    }

    Plotly.plot(streamPlot, data, layout);
}</pre>
```

Update to include three signals:

A5.8.6 DHT22 + CdS + Node.js

[4.6] WEB client: client_cds_dht22.html - data

```
// data
var data = [{
   x : tArray,
   y: y1Track,
    name : 'temperature',
   mode: "markers+lines",
    line: {
        color: "#1f77b4",
       width: 1
    marker: {
       color: "rgb(255, 0, 0)"
        size: 6,
        line: {
          color: "black",
          width: 0.5
```

```
x : tArray,
y: y2Track,
name : 'humidity',
xaxis: 'x2',
yaxis: 'y2',
    line: {
       color: "#1f77b4",
       width: 1
    marker: {
       color: "rgb(0, 0, 255)",
        size: o,
       line: {
          color: "black",
          width: 0.5
```

```
x : tArray,
y : y3Track,
name : 'luminosity',
xaxis: 'x3',
yaxis: 'y3
    mode: "markers+lines",
    line: {
        color: "#1f77b4",
        width: 1
    marker: {
        color: "rgb(0, 255, 0
        line: {
          color: "black",
         width: 0.5
```

Update data

to include three signals:

A5.8.7 DHT22 + CdS + Node.js

[4.7] WEB client: client_cds_dht22.html - layout

```
var layout = {
  xaxis : {
      title : 'time',
      domain : [0, 1]
  },
  vaxis : {
      title : 'temp (°C)',
      domain : [0, 0.3],
      range : [-30, 50]
  },
  xaxis2 : {
      title : '',
      domain : [0, 1],
      position: 0.35
  },
  yaxis2 : {
      title : 'humi (%)',
      domain : [0.35, 0.65],
      range : [0, 100]
  xaxis3 : {
      title : '',
      domain : [0, 1],
      position: 0.7
  yaxis3 : {
      title : 'lumi (lux)',
      domain : [0.7, 1],
      range : [0, 500]
```

- 1. Update layout to include three signals: temp, humi, lux.
- 2. Check the domain & position.

Save the complete code as

AAnn cds dht22.html

A5.8.8 DHT22 + CdS + Node.js

[4.8] WEB client: client_dht22_ldr.html - Design your gauges

Save the complete code as

AAnn_cds_dht22.html

A5.8.9 DHT22 + CdS + Node.js

[4.9] WEB client: Design layout (show date at lower axis)

WEB client: client_cds_dht22.html

Real-time Weather Station from sensors

on Time: 2021-10-27 12:04:53.016

Save as AAnn_cds_dht22.png

[Practice]

- [wk09: mid-exam.]
- RT Data Visualization with node.js
- Multiple data and Usage of gauge.js
- Complete your real-time WEB charts
- Upload folder: aann-rpt09
- Use repo "aann" in github

wk09: Practice: aann-rpt09

- [Target of this week]
 - Complete your works: mid-exam.
 - Save your outcomes and upload outputs in github

```
제출폴더명: aann-rpt09
```

- 제출할 파일들

- ① AAnn_cds_dht22_data.png
- ② AAnn_signals_cds_dht22.html
- 3 AAnn_cds_dht22.html
- 4 AAnn_cds_dht22.png
- 5 All *.ino
- 6 All *.js
- 7 All *.html

Lecture materials

References & good sites

- ✓ http://www.arduino.cc Arduino Homepage
- http://www.nodejs.org/ko Node.js
- https://plot.ly/ plotly
- https://www.mongodb.com/ MongoDB
- ✓ http://www.w3schools.com

 By w3schools.com
- http://www.github.com GitHub

Target of this class

Real-time Weather Station from nano 33 BLE sensors

on Time: 2020-09-09 10:27:17.321

