Algorithms & Complexity: Lecture 4, Hierarchy theorems and a complexity zoo

Sam Barrett

March 4, 2021

1 Low-level conventions

1.1 Representation of Turing machines

- We will associate with every $\alpha \in \{0,1\}^*$ a Turing machine M_{α} s.t. for each Turing machine M, there are **infinitely many** α where $M = M_{\alpha}$. We will also fix a **bijection** between $\{00,11\}^*$ (a fragment of all binary strings) and the set of all TMs (for every word inside this language, there is a corresponding unique TM), we will write M_{β} for the TM M that $\beta \in \{00,11\}^*$ is mapped to. Here β is the canonical description of M or a code of M.
- We will extend our notion of M_{β} to $\alpha \in \{0,1\}^*$ (any binary string), we may write $\alpha = \beta \gamma$ with $\beta \in \{00,11\}^*$ and with $\gamma \in \{0,1\}^*$ being either empty or beginning with 01 or 10. In this case we also set $M_{\alpha} := M_{\beta}$. Here α is a **description** of $M = M_{\beta}$.

Unpacking this:

If we have a bit string α and want to find the machine that it represents, you write α in the form $\beta\gamma$ and extract the initial β section.

A very useful property of the above framework is that given any $\alpha = \beta \gamma$ we can **computably extract** low-level information about $M = M_{\alpha}$ such as its states, transition table, alphabet etc. Extracting this information can be done in time and space **only dependant on** β , its canonical description. We can completely ignore γ in this case, thinking of it as *padding*.

Note: we know when to stop reading β as we treat the *gadgets* "01" or "10" as blanks/ end of input markers.

1.2 Constructable functions

We shall identify \mathbb{N} and $\{0,1\}^*$ by some fixed bijective coding . This will make more sense later in the lecture. Refer back.

1.2.1 Time-constructibility convention

All functions $t: \mathbb{N} \to \mathbb{N}$ we consider are **time-constructible** meaning:

- $t(n) \ge n$
- There is a TM M computing $1^n \mapsto t(n)$ in time t(n)

1.2.2 Space-constructibility convention

All functions $s: \mathbb{N} \to \mathbb{N}$ we consider are **space-constructible** meaning:

- $s(n) \ge \log n$
- There is a TM M computing $1^n \mapsto s(n)$ in space O(s(n))

2 Universality

We have previously seen the following:

2.1 Normal form of Turing machines

Theorem 1 Suppose M computes $f: \{0,1\}^* \to \{0,1\}$ in time t(n) and space s(n). Where M can have an arbitrary alphabet and any number of tapes.

There exists a 3-tape TM \tilde{M} with alphabet $\{ \triangleright, \square, 0, 1 \}$ computing f,

- in time $O(t(n)^2)$
- in space O(s(n))

These constraints depend on M and not its description $\tilde{\beta}$ Moreover, we can compute the canonical description $\tilde{\beta}$ of \tilde{M} from the canonical description β of M or any other description, α , of M for that matter (in the form $\alpha = \beta \gamma$).

2.2 An efficient universal machine, \mathcal{U}

For a TM M and a bitstring $x \in \{0,1\}^*$, we shall write $M(x) \in \{0,1\}^* \cup \{\uparrow\}$ for the output of M on x, if it exists, otherwise \uparrow if it diverges or does not terminate.

Theorem 2 There exists a TM \mathcal{U} s.t. $\forall x \in \{0,1\}^*$ and $\alpha \in \{0,1\}^*$, we have $\mathcal{U}(x,\alpha) = M_{\alpha}(x)$

Moreover, we can also talk about its complexity, if M_{α} halts on x in t steps and uses s space, then \mathcal{U} halts on (x,α) within c_Mt^2 steps and d_Ms space, where c_M and d_M are constants depending only on $M=M_{\alpha}$, not its description α . (It will precisely depend on the canonical description of

Our formulation of $\mathcal U$ will have $\mathbf 5$ tapes: 1 input and 4 work tapes.

We will now examine how \mathcal{U} operates over an input (x, α) :

1. Computing the normal form

Let $\alpha=\beta\gamma$ be as defined in Section 1.1 and recall the definition of $\tilde{\beta}$ and \tilde{M} from Theorem 1

- \mathcal{U} first computes $\tilde{\beta}$ from $\alpha = \beta \gamma$ and prints it onto tape 2, it only reads up to end of β
- \bullet The first step concludes by printing a description of the start state of M on tape 3

This step takes time and space complexity depending on β , ignoring γ . Usage of tapes and space complexity

• From this stage onward, only the initial x section of the input (x, α) will be used on tape 1.

Where we can visualise our input tape as:

\triangleright	x_0	x_1		x_k	,	α_1	α_2		α_l	
------------------	-------	-------	--	-------	---	------------	------------	--	------------	--

Where the comma can be encoded as the first occurrence of our 01 or 10 gadget and our delimiter, if we encode our x in the same way as we do for our canonical descriptions β .

- Tape 2 will become **read-only** and is used as a *lookup* table for simulating the transitions of \tilde{M} . Therefore, this tape uses space $|\tilde{\beta}|$
- Tape 3 will always store a *current state*, using only as much space as the description of a state of \tilde{M} (without loss in generality our space usage is $<|\tilde{\beta}|$)
- Tapes 4 & 5 will be used as the two work tapes of \tilde{M} . Therefore, these tapes use only as much space as M does on its work tapes.

2. The simulation & time complexity

Each step of \tilde{M} is simulated as follows:

- \mathcal{U} inspects tape 3 to find the current state q and reads the symbols b_1, b_4, b_5 at the head-positions of tapes 1,4 and 5. This process takes no (0) time.
- \mathcal{U} scans the transition table of \tilde{M} (by inspecting tape 2) to find the transition corresponding to (q, b_1, b_4, b_5) . The time of this depends only on $\tilde{\beta}$
- \mathcal{U} overwrites tape 3 with the description of the new state. The time this takes depends only on $\tilde{\beta}$.

• \mathcal{U} writes the appropriate symbols at the head-positions of tapes 4 and 5 before moving the heads of tapes 1,4 and 5 in the appropriate directions. This takes a single (1) time step.

 \mathcal{U} will halt whenever \tilde{M} does, outputting the content of tape 5.

3 Diagonalisation

Theorem 3 (Time hierarchy theorem) There is a language $L \in \mathbf{DTIME}(t(n)^4)$ s.t. $L \notin \mathbf{DTIME}$

i.e. $\mathbf{DTIME}(t(n)) \subseteq \mathbf{DTIME}(t(n)^4)$ (one is strictly contained within the other)

Where t is arbitrary but time constructable as defined in Section 1.

3.1 Time-sensitive diagonalisation

To perform diagonalisation in such a way as to concern ourselves with time complexity, we define a Turing machine D that does the following:

Definition 1 (Turing machine D)

- on input x (x is a binary string $x \in \{0,1\}^*$), run \mathcal{U} on (x,x) for $t(|x|)^3$ steps, we use $t(|x|)^3$ as it is somewhere between the time overhead for \mathcal{U} ($t(n)^2$) and our states time hierarchy constraint of $t(n)^4$.
- if it halts in this time and rejects (where rejecting means it outputs 0) then accept (output 1)
- otherwise, reject (output 0).

We can now define a language $L \subseteq \{0,1\}^*$ as the language that is decided by D. L is just the set of descriptions of Turing machines for which when \mathcal{U} runs it on itself it rejects the appropriate amount of time.

By our construction of L we can observe that $L \in \mathbf{DTIME}(t(n)^4)$ as our machine D can only run for $t(|x|)^3$ steps.

We claim therefore, that L is the **explicit** language that separates $\mathbf{DTIME}(t(n^4))$ from $\mathbf{DTIME}(t(n))$, meaning that $L \notin \mathbf{DTIME}(t(n))$. We will prove this by contradiction.

3.1.1 Proof

Assume that $L \in \mathbf{DTIME}(t(n))$, and suppose M decides L taking ct(n) steps on inputs of length n.

We now use \mathcal{U} to simulate M and say it does this within $c_M ct(n)^2$ steps on inputs of length n. Where c_M depends only on M and not its description.

Let us fix $n_0 \in \mathbb{N}$ s.t. if $n \ge n_0$ then $t(n)^3 > c_M c t(n)^2$.

This is a key point, it means that there is a point in \mathbb{N} , n_0 where whenever n is greater than n_0 we can say that $t(n)^3$ (the number of steps \mathcal{U} runs for) is greater than the number of steps our machine M is purported to take.

This is where "foo is dependant only on bar not its description" becomes important, the trick to breaking this inequality and deriving a contradiction is to let α be a description of M (which has infinitely many descriptions) with $|\alpha| \geq n_0$

We will now examine what happens when we run D with the input α that I described above.

- D runs \mathcal{U} on (α, α) for $t(|\alpha|)^3$ steps as per our definition of D in Definition 1
- From our fixing above, along with our definition of α , we can say that $t(|\alpha|)^3 \geq c_M ct(|\alpha|)^2$, giving us in turn:

$$\mathcal{U}(\alpha, \alpha) = M_{\alpha}(\alpha) = M(\alpha)$$

As M must halt on α within $ct(|\alpha|)$ steps, by our assumption of M.

• As per our definition of D, as $M(\alpha)$ halts, D must return $1 - M(\alpha)$ as it always returns the inverse.

However, by doing so, as M was meant to decide the language described by D we have derived a contradiction by constructing a situation in which M and D disagree on an input α . Therefore, M could **not** have decided the language described by D.

By a similar proof, tracking space instead of time we can show that:

Theorem 4 (Space hierarchy theorem) There is a language $L \in \mathbf{SPACE}(t(n)^2)$ s.t. $L \notin \mathbf{SPACE}(t(n))$

We will not go on to prove this.

4 Consequences and the complexity zoo

4.1 Separations of complexity classes

Theorem 5 We have the following: $P \subseteq EXP$

 $\mathbf{L} \subsetneq \mathbf{PSPACE}$

4.1.1 Proof

For both of the above statements, the \subseteq case is *obvious*. However, for non-equality we have,

$$\overrightarrow{\mathbf{P}\subseteq \mathbf{DTIME}(2^n)\subsetneq \mathbf{DTIME}(2^{4n})}\subseteq \mathbf{EXP}$$

This can be seen by the time-hierarchy theorem explored earlier. We also have for space:

$$L \subseteq SPACE(n) \subseteq SPACE(n^2) \subseteq PSPACE$$

which can equally be seen via the space-hierarchy theorem. We now have a zoo of complexity classes:

$$\mathbf{L} \underbrace{\subseteq}_{\mathbf{Lecture}} \mathbf{P} \underbrace{\subseteq}_{\mathbf{obv}} \mathbf{NP} \subseteq \underbrace{\mathbf{PSPACE}}_{\mathbf{obv}} \underbrace{\subseteq}_{\mathbf{obv}} \mathbf{NPSPACE} \subseteq \mathbf{EXP}$$

This is all we know! Every other such problem remains open.