See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/5396330

Phase Diagram of the B–B 2 O 3 System at 5 GPa: Experimental and Theoretical Studies

ARTICLE in THE	JOURNAL	OF PHYSICAL	. CHEMISTRY I	B · JUNE 2008
-----------------------	---------	-------------	---------------	---------------

Impact Factor: 3.3 · DOI: 10.1021/jp800625s · Source: PubMed

CITATIONS	READS
25	68

4 AUTHORS, INCLUDING:

Oleksandr O. Kurakevych

Pierre and Marie Curie University - Paris 6

81 PUBLICATIONS **1,265** CITATIONS

SEE PROFILE

Vladimir Turkevich

National Academy of Sciences of Ukraine

73 PUBLICATIONS 476 CITATIONS

SEE PROFILE

Phase Diagram of the B-B₂O₃ System at 5 GPa: Experimental and Theoretical Studies

Vladimir L. Solozhenko,*,† Oleksandr O. Kurakevych,† Vladimir Z. Turkevich,‡ and Dmitry V. Turkevich‡

LPMTM-CNRS, Université Paris Nord, 93430 Villetaneuse, France, and Institute for Superhard Materials of the National Academy of Sciences of Ukraine, 04074 Kiev, Ukraine

Received: January 22, 2008

X-ray diffraction with synchrotron radiation has been used to study *in situ* the chemical interaction of β -rhombohedral boron with boron (III) oxide and phase relations in the B-B₂O₃ system at pressures up to 6 GPa in the temperature range from 300 to 2800 K. The B-B₂O₃ system has been thermodynamically analyzed, and its equilibrium phase diagram at 5 GPa has been constructed. Only one thermodynamically stable boron suboxide, B₆O₃ exists in the system. It forms eutectic equilibria with boron and B₂O₃.

Introduction

Much attention is paid to boron suboxides due to the fortunate combination of high hardness, low density, high tensile strength, semiconductivity, high chemical stability, and large values of bulk modulus; B₆O is the most extensively studied. ^{1–12} B₆O can be synthesized by the chemical interaction of boron with boron (III) oxide at high temperatures and pressures from ambient8 to 8 GPa.^{5,10,12,13} However, according to Hubert et al.,¹⁰ the formation of stoichiometric B₆O is possible only at pressures above 4 GPa and temperatures of about 2000 K. Synthesis and studies of B_xO boron suboxides having other stoichiometry (x = 2, 4, 7, 8, 10, 12, 16, 18, 20, 22, and 26) were also reported. 14-19 Among boron suboxides, B₂O holds a special place as an "unsymmetrical" analog of carbon. 14,16,18-22 The synthesis of B₂O in graphite-like^{14,18} and diamond-like^{18,19} forms has been reported but never reproduced. The studies of Hubert et al.^{5,10} and Nieto-Sanz et al. 13 have shown that B₂O phase cannot be synthesized by chemical interaction in the B-O system at pressures up to 43 GPa and temperatures up to 2500 K. Very recently it has been shown that the so-called graphite-like B2O reported by Hall and Compton¹⁴ is a product of hydrolysis.²³ All mentioned raise doubts about the existence of B₂O^{5,10,13,23} and calls for further investigation.

The hypothetical version of the $B-B_2O_3$ phase diagram at pressures up to 10 GPa has been proposed by McMillan et al. ¹² However, the lack of experimental data on phase equilibria and thermodynamic properties of B_6O did not allow them to perform a correct thermodynamic calculation of the diagram. Later, Nieto-Sanz et al. ¹³ proposed another diagram constructed from the limited *in situ* data on the interaction between β -rhombohedral boron (β -rh B) and B_2O_3 . However, this diagram completely contradicts not only the one calculated by McMillan et al. ¹² but also the well-established equilibrium p-T phase diagram of B_2O_3 . ²⁴ Thus, the phase diagram of the $B-B_2O_3$ system is still open to question until reliable experimental data

TABLE 1: Compositions of the Initial Mixtures

run	β -B content, wt %	B ₂ O ₃ content, wt %	B ₆ O content, wt %	B content, a at %
1801	4.46	95.54	0	43.40
1802	55.56	44.44	0	77.01
1803	0	17.05	82.95	79.06
1805	0	17.00	83.00	79.08
1806	0	51.61	48.39	64.26
1807	0	51.61	48.39	64.26
1808	0	76.27	23.73	52.47
1809	55.75	44.25	0	77.12
1810	0	67.46	32.54	56.81
1812	6.67	0	93.33	86.73
1813	7.14	0	92.86	86.80
1815	54.17	45.83	0	76.21
1907	0	90.91	9.09	44.92
2401	38.32	61.68	0	66.67
2405	38.32	61.68	0	66.67
2602	54.94	45.06	0	76.65
2603	54.94	45.06	0	76.65
2703	66.33	0	33.67	95.40
2705	49.50	0	50.50	93.20

^a Atomic percentage of boron according to the B-O scale.

on the liquidus lines for the $B-B_6O$ and $B_6O-B_2O_3$ subsystems are available.

In the present work, the chemical interaction and phase relations in the $B-B_2O_3$ system at pressures up to 6 GPa and high (up to 2800 K) temperatures have been studied *in situ* by X-ray diffraction with synchrotron radiation. The data obtained have been used in thermodynamic calculations, and the phase diagram of the system at 5 GPa was constructed.

Experimental Section

As the initial materials we have used boron (III) oxide (99.999%, produced by Aldrich Chemical Co.); β -rh B (R-3m, a=10.932 Å, c=23.819 Å) prepared by arc remelting of amorphous boron in an argon atmosphere; and B₆O synthesized from the stoichiometric mixture of β -rh B and B₂O₃ at 6 GPa and 2000 K (R-3m, a=5.385 Å, c=12.32 Å). The compositions of the starting mixtures are given in Table 1. All the samples containing B₂O₃ have been prepared inside a glovebox under a dry air atmosphere.

The high-pressure experiments up to 6 GPa were carried out using a multianvil X-ray system MAX80 at beamline F2.1,

^{*} Corresponding author. Postal address: LPMTM-CNRS, Institut Galilée, Université Paris Nord, 99, av. J.B. Clément, 93430 Villetaneuse, France. Phone: +33 1 49 40 34 89. Fax: +33 1 49 40 39 38. E-mail: vls@lpmtm.univ-paris13.fr. e-mails: vls@lpmtm.univ-paris13.fr; kura@lpmtm.univ-paris13.fr; vturk@ism.kiev.ua; vturk@lycos.com.

[†] Université Paris Nord.

 $[\]ensuremath{^{\ddagger}}$ Institute for Superhard Materials of the National Academy of Sciences of Ukraine.

HASYLAB-DESY. The experimental setup has been described elsewhere. $^{25-27}$ Energy-dispersive X-ray diffraction data were collected on a Canberra solid-state Ge-detector with fixed Bragg angle $2\theta=9.188(3)^\circ$ using a white beam collimated to $60\times100~\mu\text{m}^2$ (vertical by horizontal) and the detector optics with a 2θ acceptance angle of 0.005°, which ensures a high resolution of the observed diffraction patterns. The detector was calibrated using the K_α and K_β fluorescence lines of Cu, Rb, Mo, Ag, Ba, and Tb.

The sample temperature up to 2200 K was measured by a W3%Re-W25%Re thermocouple. The correction for the pressure effect on the thermocouple electromotive force (emf) was made using the data of Li et al. Above 2200 K, the power—temperature calibration curve was linearly extrapolated to the high-temperature region (up to 2800 K). Pressures at different temperatures were found from the p-V-T equation of state of highly ordered ($P_3 = 0.98 \pm 0.02$) graphite-like hexagonal boron nitride. Lacording to mass-spectrometry, spectral analysis, and X-ray microanalysis, the impurity content of a boron sample did not exceed 0.2 wt %.]

Samples were gradually compressed to the required pressure at ambient temperature, and then diffraction patterns were collected at the stepwise (~ 50 K) temperature increase. With the storage ring operating at 4.44 GeV and 150 \pm 50 mA, diffraction patterns were collected for 1–2 min in real time.

The quenched samples were studied by X-ray powder diffraction using D5000 (Siemens) and G3000 TEXT (Inel) diffractometers (CuK_{α} radiation).

Results and Discussion

In Situ Studies of Phase Equilibria. Up to now, only one measurement of the boron melting temperature under pressure has been reported. Phase The value of 2480(50) K at 7.7 GPa has been estimated; however, the error may be significantly higher than the stated 50-K value because the conclusion about melting has been made from the quenching experiments. Our *in situ* studies of β -rh B at 5 GPa have shown that all boron lines disappear between 2420 and 2460 K, which has allowed us to estimate the boron melting temperature at this pressure as 2440(20) K.

The melting temperature of B_2O_3 boron oxide at pressures up to 8 GPa may be evaluated from the equilibrium phase diagram of B_2O_3 .²⁴ Our *in situ* studies of α - B_2O_3 at high pressures and temperatures have shown that the boron oxide lines completely disappeared at 1230 K (2.5 GPa) and 1310 K (5 GPa), which is in good agreement with the data reported in ref 24 and corresponds to the melting curve slope of \sim 70 K/GPa in the pressure range under study.

At present time there is no data available on the B₆O boron suboxide melting. At ambient pressure, B₆O decomposes into boron and oxygen already at 2000 K, therefore, the congruent melting of this phase may be observed at high pressures only. Figure 1 shows a sequence of energy-dispersive diffraction patterns taken in situ at 5.8 GPa in the course of the stepwise heating of B₆O. The disappearance of B₆O lines has been observed between 2670 and 2750 K, which was accompanied by the appearance of a diffuse band typical for a liquid phase. This has allowed us to estimate the melting temperature of boron suboxide as 2710(40) K at 5.8 GPa, which is higher by \sim 250 K than the melting temperature of β -rh B at this pressure. The cooling of the melt down to 2100 K at a rate of \sim 10 K/s was accompanied by B₆O crystallization. At the same time, the rapid quenching by the power switch off (the cooling rate of \sim 1000–2000 K/s at the initial stage) resulted in formation of

Figure 1. Energy-dispersive diffraction patterns taken at 5.8 GPa in the course of heating of B_6O to 2750 K.

 β -rh B and α -B₂O₃, while B₆O was absent in the quenched samples. This fact may be attributed to the high free energy of formation of B₆O critical nuclei.

As a result of the contact interaction between B₆O and B₂O₃, which is accompanied by the formation of a liquid phase, at 5 GPa the B₂O₃ lines disappear already at 1200 K (run 1907, 44.9 at % B, see Figure 2a). At higher temperatures, solid B₆O coexists with the liquid. The heating up to 1740 K results in the complete disappearance of B₆O lines, and the system is a uniform liquid phase (see Figure 2b). This temperature of B₆O liquidus, 1740 K, is noticeably lower than the 2170 K value that was estimated in the quenching experiments 30 for the same limiting solubility (44.9 at % B) of B₆O in the melt of the B₆O-B₂O₃ subsystem. Our attempts to establish the B₆O liquidus temperatures at higher boron content (52–80 at % B; runs 1803 and 1805-1808) have failed because the strong overheat of the B₆O-B₂O₃ eutectic liquid has resulted in blowouts from high-pressure cells. In all these runs, the sequences of patterns qualitatively repeat run 1907, except that the lines of B₆O are distinctly observed up to the highest temperatures (2130–2170 K) attained in these experiments.

In the case of the $B-B_6O$ mixtures, at 5 GPa the appearance of the liquid phase was observed above 2460 K only (runs 2703 and 2705, 95.4 and 93.2 at % B, respectively), which corresponds to the $B-B_6O$ eutectic melting (Figure 3).

Our *in situ* experiments on the interaction between boron and relatively small amounts of boron oxide at 2.5 GPa (runs 1815, 2602, and 2603) has shown that, after the B_2O_3 melting at about 1250 K, boron was in metastable equilibrium with the liquid phase over a wide temperature range, while the formation of B_6O was observed only above 1730 K. This fact indicates that the construction of an equilibrium phase diagram from the data on the chemical interaction of boron with B_2O_3 , which had been done in ref 13, is hardly possible.

Figure 2. Energy-dispersive diffraction patterns taken at 5 GPa in the course of heating of the B₆O-B₂O₃ mixture to 1740 K (run 1907, 44.9 at % B). The B_2O_3 lines disappear starting from 1180 K (a); while the B_6O reflections disappear at \sim 1740 K (b).

Besides the experimental data on the B₆O liquidus lines, the stoichiometry of B₆O in the equilibrium state at various p-Tconditions is also of importance for the calculations of phase equilibria in the system. The oxygen deficiency of the B₆O lattice has been previously reported for samples synthesized at pressures below 4 GPa^{8,10} and temperatures up to 1970 K. However, very recently we have shown that, at temperatures above 2100 K, the crystallization of stoichiometric B₆O takes place already at 1 GPa.31 Thus, for construction of the equilibrium phase diagram, B₆O should be considered as a stoichiometric phase.

The lines that could be interpreted as those of B₂O (or any boron suboxide other than B₆O) have been never revealed in X-ray diffraction patterns for all employed compositions over the whole p-T range under study, and, therefore, the equilibrium phase diagram should not contain all these suboxides.

Thermodynamic Calculation of the Phase Diagram. For calculations of the phase equilibria in the B-B₂O₃ system at high pressure, we used both the thermodynamic data available in the literature and experimental results obtained in the present study.

Because of the low mutual solubility in the solid state, β -rh B, B₂O₃, and B₆O were considered as the phases of constant composition. Temperature dependences of the Gibbs free energy of β -rh B and B₂O₃ were taken from ref 32. The literature data on heat capacity³³ were used for the calculation of temperature dependences of the Gibbs free energy of B₆O boron suboxide. The B₆O formation enthalpy of $\Delta H_{\rm f} = -1244.5$ kJ/mol was taken from ref 12.

The pressure increase of the Gibbs free energy was described as $\int_0^p V_{\rm m}^\Phi dp$, where $V_{\rm m}^\Phi$ is the molar volume of the Φ phase. The pressure contributions to the free energies of crystalline (α-phase) and liquid B₂O₃ have been used in the forms

Figure 3. Energy-dispersive diffraction patterns taken at 5 GPa in the course of heating of the mixture of B_6O and β -rh B to 2670 K (run 2705, 93.2 at % B). All lines of initial β -rh B have disappeared above 2460 K, while at 2570 K three intensive reflections have suddenly arisen in the pattern because of the formation of single-crystal boron by the temperature-fluctuation-induced recrystallization in the vicinity of the melting point.

$$\int_{0}^{p} V_{\rm m}^{\alpha_{\rm B_2O_3}} dp = (27.26 \times 10^{-6})(18.4 \times 10^{9}) \times \left[1 - \exp\left(-\frac{p - 1 \times 10^{4}}{18.4 \times 10^{9}}\right) \right], \quad \text{J/mol}$$

$$\int_{0}^{p} V_{\rm m}^{\rm L_{\rm B_2O_3}} dp = (33.7 \times 10^{-6})(15 \times 10^{9}) \times \left[1 - \exp\left(-\frac{p - 1 \times 10^{4}}{15 \times 10^{9}}\right) \right], \quad \text{J/mol}$$

where the bulk modulus of the α -B₂O₃, 18.4 GPa, has been obtained by fitting the pressure dependence of the B₂O₃ melting temperature²⁴ under the assumption that the bulk modulus of the liquid phase is equal to 15 GPa (the same as for the amorphous phase).³⁴

As no data on the values of the thermal expansion coefficient and bulk modulus of liquid boron can be found in the literature, we assumed that these values are equal for the solid and liquid phases. A volume change during melting of β -rh B at 5 GPa, 0.37 cm³ mole⁻¹, has been established by fitting the experimental melting points of β -rh B at various pressures (data obtained in the present work and reported in ref 29).

To describe the pressure contribution to the Gibbs energy of B_6O , we used the data from ref 35:

$$\int_{0}^{p} V_{m}^{B_{6}O} dp = (30.9 \times 10^{-6}) \cdot \frac{\exp[(32 \times 10^{-7})T]}{(4.6 \times 10^{-12})6.2} \cdot [(1 + 10^{-12})] \cdot [(1 + 10^{-1$$

$$7.2(4.6 \times 10^{-12})p)^{1-\frac{1}{7.2}} - 1$$
, J/mol

In the zero mixing volume approximation, the liquid phase volume was calculated by the formula

$$V_{\rm m}^{\rm L} = x_{\rm B} V_{\rm B}^{\rm L} + x_{\rm B_2O_3} V_{\rm B_2O_3}^{\rm L}.$$

Fitting the experimental value of the B_6O limiting solubility (44.9 at % B) in the $B_6O-B_2O_3$ melt at 1740 K and 5 GPa to the model of regular solutions (when describing the concentration dependence of the Gibbs free energy of the liquid phase) gives an unjustified high temperature of the B_6O congruent melting, above 3000 K, while, in our experiments, the B_6O was completely molten at temperatures above 2750 K. This fact points to the asymmetrical concentration dependence of the Gibbs free energy of the $B-B_2O_3$ melt. Thus, the Gibbs free energy of the liquid phase should be better described in the approximation of subregular solutions, i.e.,

$$\begin{split} G_{\mathrm{m}}^{\mathrm{L}} = x'_{\mathrm{B}}{}^{\mathrm{o}}G_{\mathrm{B}}^{\mathrm{L}} + x'_{\mathrm{B}_{2}\mathrm{O}_{3}}{}^{\mathrm{o}}G_{\mathrm{B}_{2}\mathrm{O}_{3}}^{\mathrm{L}} + RT(x'_{\mathrm{B}}\mathrm{ln}x'_{\mathrm{B}} + \\ x'_{\mathrm{B}_{2}\mathrm{O}_{3}}\,\mathrm{ln}x'_{\mathrm{B}_{2}\mathrm{O}_{3}}) + W_{1}(1 + W_{2}x'_{\mathrm{B}})x'_{\mathrm{B}}x'_{\mathrm{B}_{2}\mathrm{O}_{3}}, \end{split}$$

where G_B^L and $G_{B_2O_3}^L$ are the molar Gibbs energies of boron and α -B₂O₃ in the liquid state; $x'_B = (5/3)$ ($x_B - 0.4$) and $x'_{B_2O_3} = 1 - x'_B$, while x_B is the atomic fraction of boron; W_1 and W_2 are the parameters describing the interatomic interactions in the subregular solution. The values of $W_1 = -8.53$ kJ mol⁻¹ and $W_2 = 2.58$ have been found by the fitting of two experimental liquidus temperatures at 5 GPa (2750 K for B₆O and 1740 K for the B₆O-B₂O₃ mixture containing 44.9 at % B).

The calculated equilibrium phase diagram of the $B-B_2O_3$ system at 5 GPa (Figure 4) is well consistent with all our experimental data. The diagram is characterized by the congruent melting of B_6O boron suboxide and two eutectic equilibria, i.e., $L \leftrightarrows B_6O + B$ (2400 K) and $L \leftrightarrows B_2O_3 + B$ (1290 K).

Figure 4. Phase diagram of the $B-B_2O_3$ system at 5 GPa. The black circles correspond to the solid state of the system, the crossed circles correspond to the coexistence of a liquid phase with a solid, and the open circles correspond to the completely molten samples. Solid lines show the equilibrium phase diagram, while dashed lines represent the metastable diagram.

The above-mentioned unexpected fact that the rapid quenching of molten B_6O does not lead to crystallization of this phase may be comprehensively explained in the framework of the metastable $B-B_2O_3$ diagram that is represented by the calculated liquidus lines of β -rh B and $\alpha\text{-}B_2O_3$ and contains the corresponding metastable eutectic equilibrium (see Figure 4). When the temperature drops down to $\sim\!2000$ K, the metastable liquidus of boron intersects the B_6O isopleth, and boron crystallization occurs. Upon further cooling, the melt composition changes according to the metastable liquidus line, and at 1130 K (46.8 at % B) the metastable eutectic crystallizes. Thus, the rapid quenching of molten B_6O results in the formation of primary crystals of β -rh B and metastable $B-B_2O_3$ eutectic, while the slow cooling results in the crystallization of B_6O .

Conclusions

The chemical interaction and phase relations in the $B-B_2O_3$ system have been *in situ* studied at pressures up to 6 GPa and temperatures up to 2800 K using powder X-ray diffraction with synchrotron radiation. On the basis of the experimental data obtained, thermodynamic calculations of the equilibrium and metastable $B-B_2O_3$ phase diagrams at 5 GPa have been performed. It has been found that B_6O is the only thermodynamically stable boron suboxide. At 5 GPa B_6O is a congruently melting compound that enters into eutectic reactions with boron and B_2O_3 .

Acknowledgment. The authors thank Dr. C. Lathe for assistance in the high-pressures studies. Experiments at HASYLAB-DESY were supported by the GFZ-Potsdam under the MAX80 program. This work was financially supported by the Agence Nationale de la Recherche (Grant No. NT05-3_42601) and by the North Atlantic Treaty Organization (CLG # 981851).

References and Notes

(1) Lee, S.; Kim, S. W.; Bylander, D. M.; Kleinman, L. *Phys. Rev. B* **1991**, *44*, 3550.

- (2) Bolmgren, H.; Lundstrom, T.; Okada, S. Structure refinement of the boron suboxide (B₆O) by the Rietveld method. *AIP Conference Proceedings* 231; AIP Press: New York, 1991; pp 197–200.
- (3) Higashi, I.; Kobayashi, M.; Bernhard, J.; Brodhag, C.; Thevenot, F. Crystal structure of boron suboxide (B₆O); *AIP Conference Proceedings* 231; AIP Press: New York, 1991; pp 224–231.
- (4) Kobayashi, M.; Higashi, I.; Brodhag, C.; Thevenot, F. J. Mater. Sci. 1993, 28, 2129.
- (5) Hubert, H.; Garvie, L. A.; Leinenweber, K.; Buseck, P.; Petuskey, W. T.; McMillan, P. F. High-pressure, high-temperature synthesis of superhard boron suboxide. *Materials Research Society Symposium Proceedings* 410; MRS: Warrendale, PA, 1996; pp 191–196.
- (6) Kudou, K.; Okada, S.; Hamano, K. Kanagawa Daigaku Kogaku Kenkyusho Shoho 1996, 19, 60.
- (7) Caldwell, M. J.; Inal, O. T. Boron suboxide production through explosive consolidation and subsequent metal infiltration. ASM-TMS Materials Week '96, Cincinnati, OH, October 7–10, 1996; *Proceedings of the 5th Symposium on Processing and Fabrication of Advanced Materials*, Srivatsan, T. S., Moore, J. J., Eds., TMS: Warrendale, PA, 1996, pp 279–292.
 - (8) Olofsson, M.; Lundstrom, T. J. Alloys Compd. 1997, 257, 91.
 - (9) Lundstrom, T. J. Solid State Chem. 1997, 133, 88
- (10) Hubert, H.; Garvie, L. A. J.; Devouard, B.; Buseck, P. R.; Petuskey, W. T.; McMillan, P. F. *Chem. Mater.* **1998**, *10*, 1530.
 - (11) Itoh, H. Koatsuryoku no Kagaku to Gijutsu 1998, 8, 185.
- (12) McMillan, P. F.; Hubert, H.; Chizmeshya, A.; Petuskey, W. T.; Garvie, L. A. J.; Devouard, B. J. Solid State Chem. 1999, 147, 281.
- (13) Nieto-Sanz, D.; Loubeyre, P.; Crichton, W.; Mezouar, M. Phys. Rev. B 2004, 70, 214108.
 - (14) Hall, H. T.; Compton, L. A. Inorg. Chem. 1965, 4, 1213.
- (15) Srikanth, V.; Roy, R.; Graham, E. K.; Voigt, D. E. J. Am. Ceram. Soc. 1991, 74, 3145.
- (16) Liu, X. Y.; Zhao, X. D.; Su, W. H. High pressure synthesis of serial higher boron suboxides with cage structures. *AIP Conference Proceedings* 309; AIP Press: New York, 1994; pp 1279–1282.
- (17) Liu, X. Y.; Zhao, X. D.; Su, W. H. J. Alloys Compd. 1995, 223, L7.
 - (18) Endo, T.; Sato, T.; Shimada, M. J. Mater. Sci. Lett. 1987, 6, 683.

- (19) Endo, T.; Sato, T.; Shimada, M. High Tech Ceram. 1987, 38C, 2113.
 - (20) Nemukhin, A. V.; Weinhold, F. J. Chem. Phys. 1993, 98, 1329.
- (21) Endo, T.; Takizawa, H.; Shimada, M. High-pressure synthesis of "periodic compound" and its optical and electrical properties. In *New Functionality Materials*; Elsevier Science Publishing: Tokyo, 1993; Vol *C*; p 107.
- (22) Grumbach, M. P.; Sankey, O. F.; McMillan, P. F. *Phys. Rev. B* **1995**, *52*, 15807.
- (23) Solozhenko, V. L.; Kurakevych, O. O. J. Superhard Mater. 2006, 28, 80.
- (24) Binary Alloy Phase Diagrams; Massalski, T. B., Ed.; Materials Park ASM: Russell Township, OH, 1990; Vols. 1–3.
 - (25) Solozhenko, V. L.; Turkevich, V. Z. Mater. Lett. 1997, 32, 179.
 - (26) Solozhenko, V. L.; Peun, T. J. Phys. Chem. Solids 1997, 58, 1321.
 - (27) Solozhenko, V. L. Phys. Chem. Chem. Phys. 2002, 4, 1033.
- (28) Li, J.; Hadidiacos, C.; Mao, H.-K.; Fei, Y.; Hemley, R. J. *High Pressure Res.* **2003**, *23*, 389.
- (29) Brazhkin, V. V.; Taniguchi, T.; Akaishi, M.; Popova, S. V. J. Mater. Res. 2004, 19, 1643.
- (30) He, D.; Akaishi, M.; Scott, B. L.; Zhao, Y. J. Mater. Res. 2002, 17, 284.
- (31) Solozhenko, V. L.; Kurakevych, O. O.; Turkevich, V. Z.; Turkevich, D. V. J. Superhard Mater. 2005, 27, 14.
- (32) Thermodynamic Properties of Inorganic Materials; Glushko, V. P., Gurvich, L. V., Bergman, G. A., et al., Eds.; Nauka: Moscow, 1981; Vol. 3, book 1.
- (33) Tsagareishvili, G. V.; Tsagareishvili, D. Sh.; Tushishvili, M. Ch.; Opmiadze, I. S.; Naumov, V. N.; Tagaev, A. B. Thermodynamic properties of boron suboxide in the temperature range 11.44—781.8 K. *AIP Conference Proceedings 231*; AIP Press: New York, 1991; pp 384—391.
- (34) Krause, J. T.; Kurkjian, C. R. *Borate Glasses*; Pye, L. D., Frtchette, V. D., Kreidl N. J., Eds.; Plenum: New York, 1978; Vol. 12, p 577.
- (35) Tsagareishvili, G. V.; Tavadze, F. N. Semiconductive Boron; Nauka: Moscow, 1978.

JP800625S