

### IT20237554 | RATHNAWEERA R.P.W.G

B.Sc. (Hons) Degree in Information Technology Specialized in Data Science

### **Specific and Sub Objectives**

#### **Main Objective**

Development of an Automatic Speech Recognition system for feeding quires to Chatbot



IT20237554 |

### Specific and Sub Objectives

### Sub Objective

- Dataset creation
  - Developed custom data scrappers to gather data for the recommendation system
- Google Maps Scraping
  - Developed a Google Maps Scrapper to scrape the computer repair centers for recommendation
- > Reviews automation
  - Suggest the video link and a summary of a YouTube review regarding a recommended device to the user

# ASR - CTC Approach(Based on Deep Speech 2)

➤ Connectionist temporal classification used where It's a model with RNN and CNN and trained on LJ speech dataset

```
1 def build model(input dim, output dim, rnn lavers=5, rnn units=128):
      input_spectrogram = layers.Input((None, input_dim), name="input")
      # Expand the dimension to use 2D CNN.
     x = layers.Reshape((-1, input dim, 1), name="expand dim")(input spectrogram)
     x = layers.Conv2D(
         filters=32.
         kernel size=[11, 41],
          strides=[2, 2],
         name="conv_1",
     x = layers.BatchNormalization(name="conv_1_bn")(x)
      x = layers.ReLU(name="conv_1_relu")(x)
18 # Convolution layer 2
19 x = layers.Conv2D(
         filters=32.
          kernel_size=[11, 21],
          strides=[1, 2],
          padding="same"
27 x = layers.BatchNormalization(name="conv 2 bn")(x)
     x = layers.ReLU(name="conv_2_relu")(x)
      # Reshape the resulted volume to feed the RNNs layer:
     x = layers.Reshape((-1, x.shape[-2] * x.shape[-1]))(x)
31 # RNN layers
     for i in range(1, rnn layers + 1):
             units=rnn_units,
             activation="tanh"
              recurrent_activation="sigmoid",
             reset after=True.
             name=f"gru {i}".
             recurrent, name=f"bidirectional {i}", merge mode="concat"
             x = layers.Dropout(rate=0.5)(x)
     x = layers.Dense(units=rnn units * 2, name="dense 1")(x)
49 x = layers.ReLU(name="dense_1_relu")(x)
51 # Classification layer
52 output = layers.Dense(units=output_dim + 1, activation="softmax")(x)
     model = keras.Model(input_spectrogram, output, name="DeepSpeech_2")
56 opt = keras.optimizers.Adam(learning_rate=1e-4
57 # Compile the model and return
     model.compile(optimizer=opt, loss=CTCLoss)
64 input dim=fft length // 2 + 1.
65 output_dim=char_to_num.vocabulary_size(),
      rnn_units=512,
```

Downsides of this model was it requires high computational power and less accurate even after running 20 epochs

```
- 1s 614ms/ste
                                             - 1s 750ms/ste
                                             - 1s 739ms/ste
Target : and you have to establish adequate circulation 
Prediction: and you havfet establish adequate cartulation
Target : and most of the records which have come from his time speak chiefly of his deeds of piety
Prediction: and most of the records which ove come from his time sp chiefly of his deds of peity
                              ======== 1 - 1322s 4s/step - loss: 30.1977 - val loss: 44.8476
                                       ===] - 1s 719ms/step loss: 28.91
                                ======= ] - 1s 739ms/step
                                     ----1 - 1s 618ms/stp
                                             - 1s 731ms/ste
                                             - 1s 672ms/ste
                                             - 1s 685ms/ste
                                             - 1s 764ms/ste
                                               1s 669ms/ste
                                              - 1s 686ms/ste
                                              - 1s 624ms/ste
                                              - 1s 670ms/ste
                                             - 1s 606ms/ste
                                             - 1s 706ms/step
- 1s 732ms/step
- 1s 677ms/step
                                             - 1s 632ms/ste
                                             - 1s 678ms/ste
                                             - 1s 679ms/ste
                                       ===1 - 1s 628ms/ste
          : all the misdemeanants whatever their offense were lodged in this chanel ward
Target : to inquire into and report upon the several jails and houses of correction in the counties cities and corporate towns within england and wales
Prediction: to equire into an report upon the several jails and houses of cerection in the counties cities and corporate tounds withan england and wail
```

## ASR – Seq2Seq Approach

Used Whisper model which was released in end of September 2022 where it has been trained for 680,000 hours of audio data and fined tuned this whisper model for my requirements with "Commen Accent" dataset.



IT20237554

## Best Approach

| CTC Approach                                      | Seq2Seq Approach                                                          |
|---------------------------------------------------|---------------------------------------------------------------------------|
| High usage of computational power                 | Comparatively low usage of computational power                            |
| High rate of spelling errors                      | Low rate of Spelling errors                                               |
| Only use Encoder                                  | Use both decoder and encoder (Can enhance the ASR for multiple languages) |
| Word Accuracy is Low                              | Word Accuracy is High                                                     |
| Difficult to handle High robustness, Noise inputs | High robustness, Noise inputs can be handled                              |

Due to the above comparison, I had selected the seq2seq architecture model to fit for the chatbot

### **Model Results**

### **CTC - Model based on Deep Speech2 Seq2Seq Whisper finetuned model**

WER = 0.26 (26%)

WAcc = 1 - 0.26 = 0.74 (74 %)

WER = 0.13 (13%)

Wacc = 1 - 0.13 = 0.87 (87 %)



| 4/1 | [                                       | - | 12 | 0//II3/3 LEP |
|-----|-----------------------------------------|---|----|--------------|
| 1/1 | [====================================== |   | 15 | 632ms/step   |
| 1/1 | [====================================== |   | 15 | 683ms/step   |
| 1/1 | [====================================== |   | 15 | 617ms/step   |
| 1/1 |                                         | - | 15 | 744ms/step   |
| 1/1 |                                         |   | 15 | 678ms/step   |
| 1/1 | [====================================== | - | 15 | 679ms/step   |
| 1/1 | [====================================== |   | 15 | 670ms/step   |
| 1/1 | [====================================== |   | 15 | 735ms/step   |
| 1/1 | [====================================== |   | 15 | 606ms/step   |
| 1/1 | []                                      |   | 10 | 628me/etan   |

: all the misdemeanants whatever their offense were lodged in this chapel ward



| 500  | 0.101200 | 0.321511 | 16.378369 | 11.594108 |
|------|----------|----------|-----------|-----------|
| 1000 | 0.034500 | 0.348289 | 16.649578 | 11.845021 |
| 1500 | 0.018000 | 0.382895 | 17.162229 | 12.470673 |
| 2000 | 0.007500 | 0.406941 | 17.866711 | 13.011601 |
| 2500 | 0.005900 | 0.423361 | 17.922937 | 13.060480 |
|      |          |          |           |           |

TrainOutput(global step=2500, training loss=0.13277297571897507, metrics=('train runtime': 12935.8975, 'train samples per second': 3.092, 'train steps per second': 0.193, 'total flos': 1.15318725967872e+19, 'train\_loss': 0.13272297571897507, 'epoch': 5.71})

# Seq2Seq - Model Testing

2 models were built for the Seq2Seq approach.

| Model 1                             | Model 2                              |
|-------------------------------------|--------------------------------------|
| Model with 500 steps up to 8 epochs | Model with 2500 steps up to 6 epochs |
| Training loss - 0.0019              | Training loss - 0.0059               |

## Seq2Seq - Model Testing

Created custom Audio clips to test the model.

| Audio | Transcript                                                                                                                   |
|-------|------------------------------------------------------------------------------------------------------------------------------|
|       | I need a laptop to do my personal things and it should have a RTX 3060 VGA and 12GB RAM so I can do my stuff without any lag |

 Since both models were deployed in the Hugging Face API, tested those models by uploading the transcript for the API interface.



# Seq2Seq Approach Model Results

#### When uploading an audio clip

Model 1 Results



Model 2 Results



# Seq2Seq Approach Model Results

#### For Real-time Voice recognition

Loading model 1



Model 1 Results



Loading model 2



Model 2 Results



# **Evaluation Metrices**

There are different word error categories as Substitution, Insertion Deletion in both word level and character level Here we used the Word level, which calculates the substitutions insertions, and deletions on a word level These errors are annotated on a word-by-word basis,

S=substitute

D=Delete

**I=Insertion** 

N= Total number of words

$$WER = \frac{S + I + D}{N}$$

Word Error Rate is an error matrix that can be convert into accuracy matrix

$$W_{Acc} = 1 - WER$$

# Seq2Seq Approach Model Results

Expected Text – "I need a laptop to do my personal things, and it should have a RTX 3060 VGA and a 12GB RAM so that I can do my stuff without any lag "

| Predicted Text (Model 1)                                                                                                            | Predicted Text (Model 2)                                                                                                                       |
|-------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| "I need a laptop to do my personal things and it should have an RTX 3060 VGA and a 12GB RAM so I can do my stuff without any lack." | "I need a laptop to do my personal things, and it should<br>have an RTX 3060 VGA and a 12GB RAM so that I can do<br>my stuff without any lag." |
|                                                                                                                                     |                                                                                                                                                |

- Can clearly see in the model 1 word "That" has been deleted and the word "lag" has been substituted with word "lack"
- Due to the model evaluation results and the Realtime testing results, Selected the model 2 to implement In the chatbot interface.