Математические модели обработки сигналов

Тема 8: Частотно-временная локализация, оконное преобразование Фурье.

Лектор: Кривошеин А.В.

Недостатки методов Фурье-анализа

Методы преобразования Фурье предназначены для представления и анализа сигнала в частотной области.

Для стационарных сигналов (у которых частотное содержание не меняется во времени), Фурье-анализ даёт результат приемлемый для приложений.

Пусть $x_c(t) = \sin(2\pi 20 t) + \sin(2\pi 40 t)$, частота дискретизации $F_s = 1000$ Гц на отрезке [0, 2). $x[n] = x_c(\frac{n}{F_s}), \ n = 0, \ ..., 1999. \ ДПФ Фурье содержит информацию о частотах 20 и 40$ Гц.

Недостатки методов Фурье-анализа

Однако, реальные сигналы нестационарны. Рассмотрим пример сигнала с меняющейся во времени частотой.

$$x_c(t) = \left\{ egin{array}{ll} \cos(2\,\pi\,t) & 0 \leq t < 2 \ \cos(2\,\pi\,5\,t) & 2 \leq t < 4 \ \cos(2\,\pi\,10\,t) & 4 \leq t < 6 \ 0 \end{array}
ight. ,$$

Частота дискретизации $F_s = 1000\Gamma$ ц на отрезке $[0, 6), x[n] = x_c(\frac{n}{F_s}), n = 0, ..., 5999.$

ДПФ нестационарного сигнала

Спектр сигнала отражает частоты, входящие в сигнал.

Но из спектра не ясно, в какие моменты времени в сигнале появляются эти частоты.

Недостатки методов Фурье-анализа

Преодолеть эту сложность можно, разбив сигнал на части и подсчитав ДПФ каждой части.

Тогда с некоторой степенью точности можно локализовать входящие в сигнал частоты.

Фактически сигнал умножается на прямоугольное "окно", которое вырезает из сигнала интересующую нас часть, а всё остальное обнуляется.

Оконное преобразование Фурье

В качестве "окна" для оконного преобразования Фурье (англ. windowed Fourier transform, short-time Fourier transform, STFT) могут выступать различные функции.

Частотная информация извлекается с помощью гармонических колебаний.

Локализация частот во времени осуществляется с помощью функции-окна.

В качестве функции-окна можно брать ограниченную функцию из $L_2(\mathbb{R})$.

Локализованные около момента времени au гармонические колебания с частотой ω имеют вид:

$$w_{\tau,\omega}(t) = w(t-\tau) e^{2\pi i \omega t}.$$

Оконное преобразование Фурье:

$$X(\tau,\omega) := \int\limits_{\mathbb{R}} x(t) \ \overline{w(t-\tau)} \, e^{-2\pi i \omega t} \, dt = \int\limits_{\mathbb{R}} x(t) \, \overline{w_{\tau,\omega}(t)} \, dt = \langle x, w_{\tau,\omega} \rangle.$$

Оконное преобразование Фурье

Сравним результат ДПФ и оконного преобразования Фурье для двух типов сигналов:

Оконное преобразование Фурье

Можно ли добиться идеальной локализации и по времени и по частоте?

Оказывается, что нет.

Интуитивные аргументы: чтобы обнаружить частоту, необходим период времени.

Чем ниже частота, тем дольше этот период времени.

Чем выше частота, тем короче этот период времени.

Однако, у функции-окна (а следовательно и у всех частотно-временных атомов) "ширина" по времени и по частоте фиксирована. Значит, чем выше частота, тем хуже будет локализация её во времени. А низкие частоты могут вообще не улавливаться.

Эти соображения математически (то есть количественно) выражаются в принципе неопределённости Гейзенберга.

Частотно-временная плоскость

Наилучшим инструментом частотно-временного анализа сигнала был бы инструмент, способный изменять свои частотно-временные характеристики. Для точного детектирования высокочастотных колебания требуется узкий во времени детектор, и наоборот, для низкочастотных колебаний — широкий во времени детектор. Системы всплесков и являются таким инструментом, за счёт появления сжатий растяжений базисных функций (частотно-временных атомов).

Дискретное оконное ПФ

На практике применяется ДПФ с окном (англ. *sliding DFT*). Суть заключается в том, что подсчитывается ДПФ не от всего сигнала целиком, а сигнал разбивается на фрагменты (возможно перекрывающиеся) и от каждого фрагмента считается ДПФ.

Рассмотрим сигнал $x \in \mathbb{R}^N$. И подсчитаем ДПФ от его фрагмента длины L.

$$S[k, m] = \sum_{n=0}^{L-1} x[mM + n] e^{-2\pi i \frac{nk}{L}}, \quad k = 0, \dots, L-1, \quad m = 0, \dots, [N/M] - 1,$$

Число $1 \le M \le L$ отвечает за степень перекрытия фрагментов. S[k, m] называют также **спектрограммой**. Это же преобразование в матричной форме имеет вид

$$S = W_N egin{pmatrix} x[0] & x[M] & x[2\,M] & \dots \\ x[1] & x[M+1] & x[2\,M+1] & \dots \\ \dots & \dots & \dots & \dots \\ x[L-1] & x[M+L-1] & x[2\,M+L-1] & \dots \end{pmatrix}, \quad W_N -$$
матрица ДП Φ .

Оконное преобразование Фурье хорошо работает для анализа сигналов, которые "кусочно-стационарны", то есть состоят из частей, где каждая часть — это стационарный сигнал.

Для демонстрации рассмотрим технологию двухтонального многочастотного аналогового сигнала (англ. Dual-Tone Multi-Frequency, DTMF), используемую для набора телефонного номера. Сопоставим каждому символу две частоты в соответствии со следующей таблицей

	1209 Гц	1336 Гц	1477 Гц
697 Гц	1	2	3
770 Гц	4	5	6
852 Гц	7	8	9
941 Гц	*	О	#

Глядя на график, очень трудно определить нажатые цифры. Однако, ДПФ может выявить частоты содержащиеся в сигнале. Пусть например нажаты цифры 1, 5 и 9. Тогда сформируется следующий сигнал.

График его спектра выглядит так

Пусть ширина окна L=256. Посчитаем ДПФ с окном для сигнала с перекрытием 128 точек, то есть M равно 128.

Спектрограмма нашего сигнала S[m, k] имеет вид

Тот же сигнал с наличием шума:

При построении спектрограммы мы вольны определять целый ряд параметров:

ширина окна - вопрос выбора оптимального размера;

величина перекрытия окон;

вид окна; по умолчанию, мы выбрали прямоугольное окно, которое просто вырезало из сигнала нужные фрагменты для ДПФ никак их не меняя. Однако, можно выбирать окна, которые неким образом сглаживают сигнал у краев.

Ширина окна влияет на спектрограмму так:

при широком окне - больше точек в ДПФ и выше разрешение в частотной области (то есть больше частотных отсчётов в ДПФ), то есть лучше локализация частот, но ухудшение временной локализации.

при узком окне - лучше локализация по времени, но меньше точек в ДПФ и значит более низкое частотное разрешение. Такое противоречие свойственно всем инструментам частотно-временного анализа в силу общего принципа неопределённости, который утверждает, что невозможно достичь произвольной хорошего разрешения и по времени и по частоте. Эти эффекты для окон разной ширины проиллюстрированы ниже.

Вид окон

Приведём примеры часто используемых окон:

окно Хэмминга :
$$w[n] = 0.54 - 0.46 \cos\left(2\,\pi\,\frac{n+N}{2\,N}\right), \ |n| \leq N-1$$
 окно Блекмена : $w[n] = 0.42 - 0.5\cos\left(2\,\pi\,\frac{n+N}{2\,N}\right) + 0.08\cos\left(4\,\pi\,\frac{n+N}{2\,N}\right), \ |n| \leq N-1.$

Графики различных окон

Сравнения спектров окон на одном графике в логарифмическом масштабе.

Сравнительный график спектров различных окон

Отметим, например, что у окна Блэкмена ширина центрального лепестка почти в 3 раза шире, чем у прямоугольного окна, зато боковые лепестки значительно ниже по уровню, чем у спектра любого другого окна.