Unterrichtseinheit zu Wellen Einführung in die mechanischen Wellen

Heiko Schröter

15. März 2021

Simulation eines Erdbebens

Ein Beispiel für mechanische Wellen und deren Ausbreitung

- Beispiel für mechanische Wellen
- Erdbeben versetzt umgebende Teilchen in Bewegung
- Bewegung breitet sich über Globus aus
- unterschiedliche Arten von Bewegung
- Seismografen registrieren die Bewegung

http://ds.iris.edu/seismon/swaves/ Tokio 2011 Nepal 2015

Ziele für die heutige Unterrichtseinheit

Wie viel Zeit bleibt um sich vor den gefährlichen Oberflächenwellen eines Erdbebens in Sicherheit zu bringen?

- Gemeinsamkeiten und Unterschiede von Schwingungen und Wellen
- Wellenarten
- Wellenlänge und Ausbreitungsgeschwindigkeit
- Experiment Ausbreitungsgeschwindigkeit
- Ubungsaufgaben

Von der Schwingung zur Welle

Gekoppelte Pendel

- einfachste Form der Ausbreitung
- Pendel sind gekoppelt (Feder oder Masse)
- 1 Pendel gibt seine Energie an 2. Pendel ab
- Und umgekehrt (2. Pendel \rightarrow 1. Pendel)
- mathematisch dargestellt im Auslenkungs-Zeit-Diagramm

https://www.walter-fendt.de/ html5/phde/coupledpendula_de.htm Simulation

Erweiterung auf mehrere Schwinger I

Wellenmaschine mehrere gekoppelte Elemente

- Kopplung mehrerer Schwinger
- Schwingung breitet sich im Raum aus
- Geschwindigkeit und Beschleunigung ändern sich zeitlich periodisch → Schwingung
- lacktriangle Zusätzlich **räumlich** periodische Änderung ightarrow Welle
- Energie wird übertragen, kein Stoff

Animation starten

Erweiterung auf mehrere Schwinger II

Definition

Eine mechanische Welle ist die Ausbreitung einer mechanischen Schwingung im Raum.

Definition

Eine Welle ist eine zeitlich und räumlich periodische Änderung physikalischer Größen.

Definition

Mit einer Welle wird Energie übertragen, jedoch kein Stoff transportiert.

mathematische Beschreibung I

harmonische Schwingung

$$y = y_{max} \cdot \sin\left(\frac{2\pi}{T} \cdot t\right)$$

T Schwingungsdauer; t Zeit

harmonische Welle

$$y = y_{max} \cdot \sin 2\pi \left(\frac{t}{T} - \frac{x}{\lambda}\right)$$

T Schwingungsdauer; t Zeit; x Ort; λ Wellenlänge

Ausbreitung einer Welle

Momentaufnahmen einer Welle zu unterschiedlichen Zeiten

Physikalische Kenngrößen I

Wellenlänge

Die Wellenlänge ist der minimale Abstand zwischen zwei Oszillatoren, die sich im gleichen Schwingungszustand befinden. Das ist auch der Abstand zwischen zwei benachbarten Wellenbergen oder Wellentälern.

Formelzeichen: λ

Einheit: ein Meter (1 m)

Physikalische Kenngrößen II

Ausbreitungsgeschwindigkeit

Die Ausbreitungsgeschwindigkeit einer Welle ist die Geschwindigkeit, mit der sich eine bestimmte Phase im Raum ausbreitet.

Formelzeichen: v

Einheit: ein Meter durch Sekunde $(1 \frac{m}{s})$

Eine harmonische Welle

y-x-Diagramm

y-t-Diagramm

Animation starten

Graphische Darstellung der Wellenmaschine I

Abbildung: graphische Darstellung mittels Gnuplot

Animation starten

Wellenarten I

Längswellen (Longitudinalwellen)

- Schwingungsrichtung und Ausbreitungsrichtung stimmen überein
- z.B.: Schallwellen in Luft oder Wasser, lange Spiralfeder

Abbildung: Demoexperiment Querwelle

Wellenarten II

Querwellen (Transversalwellen)

- Schwingungsrichtung und Ausbreitungsrichtung verlaufen senkrecht zueinander
- z.B.: Seilwellen, ein Teil der Erdbebenwellen

Abbildung: Demoexperiment Querwelle

Wellenarten III

Oberflächenwellen (Kreiswellen)

- Teilchen führen kreisförmige Bewegung aus
- treten an Oberflächen auf
- z.B.: Wasserwellen

Abbildung: Darstellung von Kreiswellen

Animation starten

Zusammenhang zwischen Ausbreitungsgeschwindigkeit und Wellenlänge

Ausbreitungsgeschwindigkeit

Die Ausbreitungsgeschwindigkeit einer Welle ist die Geschwindigkeit, mit der sich eine bestimmte Phase im Raum ausbreitet.

Formelzeichen: v

Einheit: ein Meter durch Sekunde $(1 \frac{m}{s})$

Ausbreitungsgeschwindigkeit

Für alle mechanischen Wellen gilt:

$$v = \lambda \cdot f$$
 oder $v = \frac{\lambda}{T}$ mit $f = \frac{1}{T}$

Formelzeichen: v

Einheit: ein Meter pro Sekunde $(1 \frac{m}{s})$

Ausbreitungsgeschwindigkeit von Schallwellen

Mit zwei Smartphones kann die Schallgeschwindigkeit gemessen werden. Die App $phyphox\ ^1$ auf den beiden Smartphones bestimmt dabei die Zeitspanne, die der Schall benötigt, um eine vorgegebene Strecke zu durchlaufen.

https://www.youtube.com/watch?v=-XSTRqhJ6MQ

 \rightarrow Durchführung des Versuches

Beispielaufgabe 1 Wellenlänge Schallwelle I

Aufgabe: Die vom menschlichen Ohr wahrnehmbaren Schallwellen haben eine Frequenz zwischen ca. 20 Hz und 20 000 Hz und die Schallgeschwindigkeit beträgt ca. 340 $\frac{m}{s}$.

- a) Berechnen Sie die Wellenlänge λ einer Schallwelle bei $f=1000\,\mathrm{Hz}.$
- b) Wie groß ist die Periodendauer in diesem Fall?

Beispielaufgabe 1 Wellenlänge Schallwelle II

Lösung:

a)

$$v = \lambda \cdot f \Rightarrow \lambda = \frac{v}{f} = \frac{340 \frac{\text{m}}{\text{s}}}{1000 \frac{1}{\text{s}}} = 0,34 \text{ m}$$

b)

$$T = \frac{1}{f} = \frac{1}{1000 \frac{1}{s}} = 0,001 \,\text{s}$$
 bzw. $v = \frac{\lambda}{T} \Rightarrow T = \frac{\lambda}{v} = \frac{0,34 \,\text{m}}{340 \,\frac{\text{m}}{s}} = 0,001 \,\text{s}$

Beispielaufgabe 2 Wellenlänge Schallwelle I

Aufgabe: Welche Frequenz hat ein Erreger, der in Luft $(v = 340 \, \frac{\text{m}}{\text{s}})$ eine Schallwelle mit der Wellenlänge 20 cm erzeugt?

Beispielaufgabe 2 Wellenlänge Schallwelle II

Lösung:

$$v = \lambda \cdot f \Rightarrow f = \frac{v}{\lambda} = \frac{340 \frac{m}{s}}{20 \text{ cm}} = \frac{340 \frac{m}{s}}{0,20 \text{ m}} = 1700 \frac{1}{s}$$

Beispielaufgabe 3 Wellenlänge Schallwelle I

Aufgabe: Bei einer Echolotmessung sendet eine Schallquelle $(f = 40\,000\,\text{Hz})$ unter Wasser Schallwellen mit der Wellenlänge $\lambda = 3.7\,\text{cm}$ aus. Wie groß ist die Ausbreitungsgeschwindigkeit des Schalls in Wasser?

Beispielaufgabe 3 Wellenlänge Schallwelle II

Lösung:

$$v = \lambda \cdot f = 3.7 \text{ cm} \cdot 40\,000 \text{ Hz} = 0.037 \text{ m} \cdot 40\,000 \frac{1}{\text{s}} = 1480 \frac{\text{m}}{\text{s}}$$

Beispielaufgabe 4 Erdbeben I

Aufgabe: Im Jahr 1985 ereignete sich in Mexiko ein schweres Erdbeben. Das Epizentrum lag 340 km von Mexiko City entfernt. Zunächst trafen in der Hauptstadt die P-Wellen ein, die sich mit einer Geschwindigkeit von 6 $\frac{\text{km}}{\text{s}}$ ausbreiten. Berechnen Sie die Zeit, die den Bewohnern blieb, um sich vor den gefährlichen Oberflächenwellen ($v=3\frac{\text{km}}{\text{s}}$) in Sicherheit zu bringen.

Beispielaufgabe 4 Erdbeben II

Lösung:

$$t = \frac{s}{v} \quad \Rightarrow \quad \Delta t = t_O - t_P = \frac{s}{v_O} - \frac{s}{v_P} = \frac{340 \text{ km}}{3 \frac{\text{km}}{\text{s}}} - \frac{340 \text{ km}}{6 \frac{\text{km}}{\text{s}}}$$
$$= \frac{170}{3} \text{s} \approx 56.7 \text{ s}$$

Interferenz I

Ausblick

Animation starten

Abbildung: Interferenz mittels Gnuplot