

Lisa Maile Computer Science 7, FAU Erlangen-Nürnberg

Network Calculus Results for TSN: An Introduction

- 1. Queueing Delay
- 2. Hardware Delays
- 3. Application Delay
- 4. End-to-End Delay

- TSN schedulers, service and shaping curves
- transmission, propagation, processing delays
- arrival curve, interrupt latency
- overview, effect

- 1. Queueing Delay
- 2. Hardware Delays
- 3. Application Delay
- 4. End-to-End Delay

- TSN schedulers, service and shaping curves
- transmission, propagation, processing delays
- arrival curve, interrupt latency
- overview, effect

Time-Sensitive Networking

FIFO FIFO FIFO FIFO Queue Queue Queue Queue Prio. 1 Prio. 2 Prio. 3 Prio. 4 . . . Strict Strict Strict Strict **Priority Priority** Priority **Priority**

per Output Port:

Time-Sensitive Networking

= real-time Ethernet Standards
(IEEE TSN Working Group)

TSN Scheduler

- Credit-Based Shaper (CBS)
- Asynchronous Traffic Shaping (ATS)
- Time-Aware Shaper (TAS, also often TT)
- Combinations

Survey

Source	Mechanism	Author	Year	Pre- emption	Work Basis	Impact of CDT	Arrival α	Min. Service β	Max. Service β^{max}	Shaper σ	Max. Output α^*	Delay	Backlog
[31]	CBS	R. Queck	July 2012	-	[48]	no	leaky-bucket	min. 2 CBS & x SP			CBS & SP	CBS & SP	
[27]	CBS	J. A. Ruiz De Azua et al.	Oct. 2014	-	[31]	no	detailed	min. & strict for 2 CBS & strict for SP	2 CBS	2 CBS			
[49]	CBS	Lin Zhao et al.	Nov. 2018	-	[27]	no	detailed	min. 3 CBS					
[41]	TAS	Luxi Zhao et al.	July 2018	no	[29] [42]	-	leaky-bucket	min. TT			TT	TT	
[50]	TAS-CBS	F. He et al.	May 2017	no	[27]	yes	leaky-bucket			2 CBS	CBS incl. shaper		
[29]	TAS-CBS	Luxi Zhao et al.	April 2018	yes&no	[27]	yes	leaky-bucket	min. 2 CBS			CBS	CBS	
[26]	TAS-CBS	H. Daigmorte et al.	June 2018	yes&no	[29] [27]	yes	detailed	min. & strict for x CBS		x CBS			
[28]	TAS-CBS	Luxi Zhao et al.	Dec. 2018	no	[26] [29] [27]	yes	leaky-bucket	min. x CBS		x CBS & link	CBS incl. shaper	CBS	
[37] & [35]	ATS-CBS	E. Mohammad- pour <i>et al.</i>	Sep. 2018	-	[27]	yes	= α*	min. 2 CBS / min. x CBS [32]			CBS incl. link	CBS	CBS

common notation?

Maile, L. and Hielscher, K. and German, R., 'Network Calculus Results for TSN: An Introduction', 2020 Information Communication Technologies Conference

Queueing

CBS

Hardware

idle time (or traffic from other queues) **Application**

End-to-End

Credit Based Shaper

service curve for class X:

$$\beta_{CBS}^{X}(t) = I^{X} * (t - \frac{V_{wc}^{X}}{I^{X}})$$

time to reach worst-case idle credit of queue

R. Queck [1]

J. A. R. De Azua and M. Boyer [2]

L. Zhao, P. H. M. Pop, Z. Zheng, H. Daigmorte, and M. Boyer [3]

Credit Based Shaper

service curve for class X:

$$\beta_{CBS}^{X}(t) = I^{X} * (t - \frac{V_{wc}^{X}}{I^{X}})$$

time to reach worst-case idle credit of queue

worst-case idle credit of queue 1 (V_{wc}^1):

R. Queck [1]

J. A. R. De Azua and M. Boyer [2]

L. Zhao, P. H. M. Pop, Z. Zheng, H. Daigmorte, and M. Boyer [3]

Credit Based Shaper

service curve for class X:

$$\beta_{CBS}^X(t) = I^X * (t - \frac{V_{wc}^X}{I^X})$$

time to reach worst-case idle credit of queue

worst-case idle credit of queue 2 (V_{WC}^2):

J. A. R. De Azua and M. Boyer [2] L. Zhao, P. H. M. Pop, Z. Zheng, H. Daigmorte, and M. Boyer [3]

E. Mohammadpour, E. Stai, and J. L. Boudec [4, 5]

Control Data Traffic (CDT)

- = higher prioritized queue
- CBS queues cannot send while CDT queue sends
- time that CDT sends until time t: $t_{\Delta}(t)$
- change CBS service curve to:

$$\beta_{CBS\ CDT}^{X}(t) = \beta_{CBS}^{X}(t - t_{\Delta}(t))$$

• with $t_{\Delta}(t)$ determined by the output of the CDT queue $\alpha_{CDT}^*(t)$ and the link rate C

$$t_{\Delta}(t) \leq \frac{\alpha_{CDT}^{*}(t)}{C} = \frac{(\alpha_{CDT} \oslash \beta_{CDT})(t)}{C}$$

with $\alpha_{CDT} = b + rt$ and $\beta_{CDT} = C \cdot \left[t - \frac{L^{>1}}{C} \right]$

E. Mohammadpour, E. Stai, M. Mohiuddin, and J. Le Boudec [6]

TAS-

CBS

CBS

Time Aware Shaper (TAS) and CBS

gate closed and guard band (depending on integration mode)

- CBS queues cannot send while gate is closed or during guard band $t_{GATE}(t)$
 - change CBS service curve to:

$$\beta_{TAS_CBS}^{X}(t) = \beta_{CBS}^{X}(t - t_{GATE}(t))$$

H. Daigmorte, M. Boyer, and L. Zhao [7] L. Zhao, P. Pop, Z. Zheng, and Q. Li [8]

L. Zhao, P. H. M. Pop, Z. Zheng, H. Daigmorte, and M. Boyer [9, 10]

TAS-

CBS

CBS

ATS-

CBS

13

Asynchronous Traffic Shaping (ATS) and CBS

- interleaved regulators come for free (for the overall worst-case delay of all flows in a queue)
- service curve:

$$\beta_{\text{ATS_CBS}}^{X}(t) = \beta_{\text{CBS}}^{X}(t)$$

E. Mohammadpour, E. Stai, M. Mohiuddin, and J. Le Boudec [11]

Further Curves

also consider effect of link shaping

- strict service and shaping curves
 - for CBS and TAS-CBS
 - by assuming credit of queue at t=0 is either the min. or max. value

	Mechanism	Author	Min. Service	Max. Service	Shaper	Max. Output	
			β	β^{max}	σ	α^*	
	CBS	R. Queck	min. 2 CBS			CBS & SP	
	CDS	K. Queck	& x SP			CDS & SF	
		J. A. Ruiz De	min. & strict				
	CBS	Azua et al.	for 2 CBS	2 CBS	2 CBS		
		Azua ei ui.	& strict for SP				
	CBS	Lin Zhao et al.	min. 3 CBS				
	TAS	Luxi Zhao et al.	min. TT			TT	
	TAS-CBS	F. He et al.			2 CBS	CBS incl.	
		1. He et al.			2 CB3	shaper	
	TAS-CBS	Luxi Zhao et al.	min. 2 CBS			CBS	
	TAS-CBS	H. Daigmorte	min. & strict		x CBS		
	по-сво	et al.	for x CBS		x CB3		
	TAS-CBS	Luxi Zhao <i>et al</i> .	min. x CBS		x CBS & link	CBS incl.	
	IAG-CD5	Luxi Ziiao ei ai.	ппп. х СБЗ		A CDS & IIIK	shaper	
	ATS-CBS	E. Mohammad-	min. 2 CBS /			CBS incl.	
		pour et al.	min. x CBS [32]			link	

• non-greedy shaping curve σ , output is upper bounded:

$$\alpha^* = \min\{\alpha \oslash \beta, \sigma\}$$

Class- vs. Flow-Based

- all results are class-based
 - service curves are defined for FIFO systems, so no strictness required
 - so the residual (flow-based) service curve for flow j is:

$$\beta_j^{\theta}(t) = \left[\beta(t) - \sum_{\forall k \mid k \neq j} \alpha_k(t - \theta)\right]^+$$

• θ can be optimized:

$$\alpha_j^* = \inf_{0 \le \theta \le t} \{ \alpha_j \oslash \beta_j^{\theta} \}$$

- care: ATS can change the per-flow delay
- interesting future work

Le Boudec, J.Y., Thiran, P. [12]

- 1. Queueing Delay
- 2. Hardware Delays
- 3. Application Delay
- 4. End-to-End Delay

- TSN schedulers, service and shaping curves
- transmission, propagation, processing delays
- arrival curve, interrupt latency
- overview, effect

- delay bases on cable length s and propagation speed of medium v
 - Ethernet propagation speed $v = 2 \cdot 10^8 \frac{m}{s}$
 - max. Ethernet cable length s = 100m
 - worst-case propagation delay:

$$d_{pp} \le 0.5 \mu s$$

Lee, K.C., Lee, S. [13]

Transmission Delay

- after d_{pp} only one bit arrives
- also called: serialization, sending or reading delay
- transmission delay: whole serialized packet arrives
- in NC, this can be modeled with packetizer
- changes service curves to:

$$\beta'(t) = \beta(t) - l_{max}$$

for "store-and-forward"

for "cut-through" this is l_{header}

18

Processing Delay

- few works deal with processing delays in forwarding devices
- for an estimation, [14] proposes to use:
 - number of instructions i
 - number of memory lookups m
 - average memory access time t
 - processor clock frequency *f*

estimation from [14]

TSN switch (TQ STKLS1028A)

Ramaswamy, R., Ning Weng, Wolf, T. [14]

End-to-End

Processing Delay

- few works deal with processing delays in forwarding devices
- for an estimation, [14] proposes to use:
 - number of instructions i = 4693
 - number of memory lookups m = 947
 - average memory access time t = 4ns
 - processor clock frequency f = 1.3 GHz

$$d_{pc} = \frac{4693}{1.3GHz} + 947 \cdot 4ns = 7.4\mu s$$

Ramaswamy, R., Ning Weng, Wolf, T. [14]

- Queueing Delay
- 2. Hardware Delays
- 3. Application Delay
- 4. End-to-End Delay

- TSN schedulers, service and shaping curves
- transmission, propagation, processing delays
- arrival curve, interrupt latency
- overview, effect

Application Delay

- open research question: How to create TSN applications?
- we highlight possible scenarios and discuss their worst-case delays
- for guarantees, we need an upper bound on traffic that an application creates
 - arrival curve, e.g. b and r are required
 - can be derived e.g. by code analysis or observation/measurement of the application

Unshaped

Liu, M., Liu, D., Wang, Y., Wang, M., Shao, Z. [15]

Time-Triggered Operating System (TTOS) [15]

Kopetz, H. [16]

24

TSN scheduler & Class Measurement Interval (CMI)

handle application to link delay as first hop

$$d_{send} = d_{interrupt} + d_{NC}$$

- future work:
 - service curve for ATS
 - service curve for CMI (how to implement this?)

Delay at Receiver

receive packet (packetizer)

$$\frac{l_{max}}{C}$$

trigger interrupt

$$d_{interrupt}$$

process information

$$d_{pc}$$

complete delay at receiver:

$$d_r = \frac{l_{max}}{C} + d_{interrupt} + d_{pc}$$

- 1. Queueing Delay
- 2. Hardware Delays
- 3. Application Delay
- 4. End-to-End Delay

- TSN schedulers, service and shaping curves
- transmission, propagation, processing delays
- arrival curve, interrupt latency
- overview, effect

Application End-to-End Queueing Hardware

- measured:
 - sending to receiving without queueing delay $\leq 3\mu s$
 - application to application without queueing delay $\leq 300 \mu s$

- [1] R. Queck, "Analysis of ethernet AVB for automotive networks using network calculus," in IEEE International Conference on Vehicular Electronics and Safety (ICVES 2012). IEEE, Jul. 2012, pp. 61–67.
- [2] J. A. R. De Azua and M. Boyer, "Complete modelling of AVB in network calculus framework," in Proceedings of the 22nd International Conference on Real-Time Networks and Systems. Versaille, France: ACM Press, Oct. 2014, pp. 55–64.
- [3] L. Zhao, P. H. M. Pop, Z. Zheng, H. Daigmorte, and M. Boyer, "Improving worst-case end-to-end delay analysis of multiple classes of avb traffic in tsn networks using network calculus," 2019, [Preprint].
- [4] E. Mohammadpour, E. Stai, and J. L. Boudec, "Improved credit bounds for the credit-based shaper in time-sensitive networking," IEEE Networking Letters, vol. 1, no. 3, pp. 136–139, Sep. 2019.
- [5] E. Mohammadpour, E. Stai, and J.-Y. Le Boudec, "Improved delay bound for a service curve element with known transmission rate," IEEE Networking Letters, vol. 1, no. 4, pp. 156–159, 12 2019, conference Name: IEEE Networking Letters.
- [6] E. Mohammadpour, E. Stai, M. Mohiuddin, and J. Le Boudec, "Latency and backlog bounds in time-sensitive networking with credit based shapers and asynchronous traffic shaping," in 2018 30th International Teletraffic Congress (ITC 30), vol. 02, Sep. 2018.

- [7] H. Daigmorte, M. Boyer, and L. Zhao, "Modelling in network calculus a TSN architecture mixing time-triggered, credit based shaper and best-effort queues," Jun. 2018, [Preprint].
- [8] L. Zhao, P. Pop, Z. Zheng, and Q. Li, "Timing analysis of AVB traffic in TSN networks using network calculus," in Real-Time and Embedded Technology and Applications Symposium, Apr. 2018, pp. 25–36.
- [9] L. Zhao, P. H. M. Pop, Z. Zheng, H. Daigmorte, and M. Boyer, "Improving worst-case end-to-end delay analysis of multiple classes of avb traffic in tsn networks using network calculus," 2019, [Preprint].
- [10] L. Zhao, P. Pop, Z. Zheng, H. Daigmorte and M. Boyer, "Latency Analysis of Multiple Classes of AVB Traffic in TSN with Standard Credit Behavior using Network Calculus," in IEEE Transactions on Industrial Electronics, doi: 10.1109/TIE.2020.3021638.
- [11] E. Mohammadpour, E. Stai, M. Mohiuddin, and J. Le Boudec, "Latency and backlog bounds in time-sensitive networking with credit based shapers and asynchronous traffic shaping," in 2018 30th International Teletraffic Congress (ITC 30), vol. 02, Sep. 2018.
- [12] Le Boudec, J.Y., Thiran, P.: Network Calculus: A Theory of Deterministic Queuing Systems for the Internet. Springer-Verlag, Berlin, Heidelberg (2001)

09.10.2020 30

[13] Lee, K.C., Lee, S.: Performance evaluation of switched ethernet for real-time industrial communications. Computer Standards & Interfaces 24(5), 411-423 (2002).

[14] Ramaswamy, R., Ning Weng, Wolf, T.: Characterizing network processing delay. In: IEEE Global Telecommunications Conference, 2004. GLOBECOM '04. vol. 3, pp. 1629-1634 Vol.3 (Nov 2004).

[15] Liu, M., Liu, D., Wang, Y., Wang, M., Shao, Z.: On improving realtime interrupt latencies of hybrid operating systems with two-level hardware interrupts. IEEE Transactions on Computers 60(7), 978-991 (July 2011).

[16] Kopetz, H.: Event-triggered versus time-triggered real-time systems. Springer Berlin Heidelberg (Operating Systems of the 90s and Beyond), pp. 86-101 (1991)

09.10.2020 31