BIRLA INSTITUTE OF TECHNOLOGY AND SCIENCE, PILANI Hyderabad Campus

SECOND SEMESTER 2023-2024 Course Handout Part II

Date: 09-01-2024

In addition to Part-I (General Handout for all courses appended to the timetable) this portion gives further specific details regarding the course.

Course No. : ECE F344

Course Title : Information Theory and Coding

Instructor-in-charge : Prof. Runa Kumari

1. Course description: 3 0 3

Information sources and source coding theorem, Kraft inequality, Shannon-Fano codes, Huffman codes, Arithmetic Codes, Lempel-Ziv-Welch algorithm, universal source codes; channel capacity: channel capacity; noisy channel coding theorem for discrete memoryless channels; error control coding: linear block codes and their properties, low density-parity-check codes, BCH codes, Reed-Solomon codes, cryptography: basic concepts on cryptography and crypto analysis, security issues; private-key encryption algorithms-stream ciphers, block ciphers, introduction to number theory - modular arithmetic, public-key encryption algorithms- Diffie-Hellman public-key distribution scheme, RSA public-key cryptosystem; Message authentication, digital signatures.

2. Scope & Objective:

The course covers source coding, channel coding & encryption. The former deals with error correction in noisy channel, and the latter deals with secrecy of communication. Channel coding, which constitutes the major portion of the course, will introduce a number of important classes of error-detecting and error-correcting codes and their decoding. Finally, the course will give an introduction to encryption & decryption of data for secret communications.

3. Text Books

1. Information Theory, Coding and Cryptography, 3rd Ed., Dr. Ranjan Bose, Tata Mc Graw Hill, 3rd Edition, 2017

4. Reference Books

- 1. Elements of information theory, Thomas M.Cover and Joy A.Thomas, Wiley-India , 2004.
- 2. Foundations of Coding, Jiri Adamek, John Wiley, 1991
- 3. The Mathematics of Coding Theory, Paul Garrett, Pearson Education, 2005
- 4. Information Theory, Inference and Learning Algorithms, David Mackay, Cambridge University Press, 2003
- 5. Coding Theory A First course, Ling and Xing, Cambridge University press, 2004

5. Course Plan

Lect. No.	Topics to be covered	Learning Objectives	Chapter in the Text Book
1-2	Introduction to Information Theory	Measure of Information	TB: Ch. 1.1 to 1.2
3-5	Average Mutual Information and Entropy	Concept of Binary Symmetric channel, conditional entropy	TB: Ch. 1.3-1.5
6-7	Source coding theorem	Fundamentals of source coding	TB: Ch. 1.6

8-9	Huffman Coding, Shannon-Fano-Elias Coding	To introduce Universal Source coding	TB: Ch. 1.7, 1.8
10-11	Arithmetic Coding, The Lempel-Ziv algorithm, run length encoding	To introduce optimal codes	TB: Ch. 1.9-1.12
12-13	Channel Capacity and Models, Shannon limit	To understand Channel capacity & noisy coding theorem	TB: Ch. 2.1 to 2.7
14-16	Block codes for error correction	Introduction to error correcting codes	TB: Ch. 3.1 to 3.2
17-19	Matrix description of linear block codes	Parity check matrix, decoding of a linear code	TB: Ch. 3.3 to 3.6
20	Syndrome decoding	Syndrome decoding	TB: Ch. 3.7 to 3.9
21-22	Hamming codes, LDPC		TB: Ch.3.10, 3.11
23-25	Cyclic codes	Division algorithm for cyclic codes	TB: Ch.4.1 to 4.4
26-27	Matrix description of cyclic codes, CRC		TB: Ch.4.5 to 4.10
28-29	BCH codes, Reed Solomon	Generator polynomials, Minimal polynomials	TB: Ch.5
30-35	Convolutional codes, Viterbi decoding, turbo codes	To introduce the important class of Convolutional coder & decoder	TB: Ch.7
36-38	Cryptography: Models, goals and early cipher systems	Overview of encryption techniques, symmetric key cryptography, TB: Ch.9	
39-40	Public Key Crypto systems and some examples Asymmetric key cryptography	The RSA algorithm	TB: Ch.9

6. Evaluation Scheme:

Component	Duration	Weightage	Marks	Date & Time	Nature of Component
Mid Sem	90 mins	30%	90	13/03 - 2.00 - 3.30PM	Closed Book
Quizzes	30 mins each	10%	30	TBA	Closed Book
Assignments		10%	30	TBA	Open Book
Weekly Assessment		10%	30	TBA	Open Book
Compre. Exam.	3 hours	40%	120	11/05 AN	Closed Book
Total			300		

7. Chamber Consultation Hour: To be announced in the class

email: runakumari@hyderabad.bits-pilani.ac.in

- **8. Make-up Policy**: No make-up will be given for Quizzes. However for mid sem and Comprehensive Examination make-up examination will be given only in extremely genuine cases for which prior permission of the instructor-in-charge is required.
- **9. Notices**: Notices, if any, concerning the course will be put up on CMS only.
- 10. **Academic Honesty and Integrity Policy**: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable.

Instructor-in-charge

ECE F344