Historic, archived document

Do not assume content reflects current scientific knowledge, policies, or practices.

Research Joseph

UNITED STATES DEPARTMENT OF AGRICULTURE FOREST SERVICE

INTERMOUNTAIN FOREST & RANGE EXPERIMENT STATION

No. 49

December 1957

NORTHERN ROCKY MOUNTAIN POLE PRODUCTION CONTINUES CLIMB IN 1956

Alvin K. Wilson Division of Forest Economics

Of the four species currently used for commercial poles, lodgepole pine and western redcedar make up about three-quarters of the annual production (table 1). Lodgepole pine led all four species with its total of nearly 237,000 poles produced, all of which came from Montana.

Table 1.--Poles produced in northern Rocky Mountain area, 1956

Species	: Montana	: North : Idaho	: Northeast : : Washington:	Total	: Percent of : total
			mber		· cocar
Western redcedar	1,998	90,018	101,377	193,393	33.48
Lodgepole pine	236,655	0	0	236,655	40.97
Western larch	36,903	36,056	38,309	111,268	19.26
Douglas-fir	28,079	6,285	1,970	36,334	6.29
Total	303,635	132,359	141,656	577,650	
Percent	52.57	22.91	24.52		100.00

¹/ Includes Montana; Idaho, north of the Salmon River; and Ferry, Lincoln, Pend Oreille, Spokane, Stevens, and Whitman Counties in northeastern Washington.

^{2/} Sponsored by the Rocky Mountain Pole and Treating Association, Spokane, Washington. The Association contacted all known pole-producing companies with operations in the area. The excellent cooperation of these companies is greatly appreciated. Pole production which is not accounted for in this report is estimated to be less than 1 percent of the total.

Production from all species showed strong increases in numbers over those for 1955, but the most marked increases were in lodgepole pine and Douglas-fir (table 2). However, the latter species is the only one showing a higher rate of production than that of 1947.

Table 2.--Percent change in 1956 pole production from previous year and peak production year

:	Cha	nge f	ge from		
:	1955	:	1947		
	+47		-1ó		
	+149		-33		
	+80		- 50		
	+512		+461		
	0		-100		
	+96		-29		
	:	: 1955 +47 +149 +80 +512 0	: 1955 : +47 +149 +80 +512 0		

Total pole production in the northern Rocky Mountain area in 1956 was the third highest for any year since 1947 (table 3). Lodgepole pine displaced western redcedar as the leading species for the first time since 1947, and Douglas-fir pole production was the highest on record.

Table 3.--Total number of poles produced in the northern Rocky Mountain area 1947-1956

	:Species :							
Year	: Western : redceda	: Lodgepole : pine	: Western : larch	: Douglas- : : fir :	Other <u>1</u> /:	Total		
10/7	222 074	0	221 000	6 170	6 557	017 000		
1947	230,872	,	221,990	6,473	6,557	817,202		
1948	212,78	135,099	90,879	5,419	804	447,980		
1949	286,110	5 186,262	121,214	5,720		599,312		
1950	217,049	92,338	71,651	9,070		390,108		
1951	192,27	136,628	126,332	10,116		465,347		
1952	217,72	104,621	152,761	19,049		494,152		
1953	191,55	128,523	90,245	3,516		413,835		
1954	138,624	101,842	36,938	768		278,172		
1955	131,860	95,027	61,688	5,941	~ ~	294,516		
1956	193,393	3 236,655	111,268	36,334		577,650		
Total	2,012,242	2 1,571,305	1,084,966	102,406	7,361	4,778,280		
Percent	42	, ,	23	2	(<u>2</u> /)	100		

^{1/} Mostly ponderosa pine.

^{2/} Less than 0.5 percent.

The preceding discussion has concerned only poles which were grown and cut in the northern Rocky Mountain area. Additional poles are imported from Canada and the West Coast section of the United States and processed at yards in this area (table 4). Total imports in 1956 were 63 percent greater than those of 1955. Western redcedar made up 80 percent of the total imports.

Table 4.--Total production of processed poles by source and species, 1956

	: Northern	:	:		:		:	Percent
Species	: Rocky	: Canada	:	West	:	Total	:	of
	: Mountain	:	:_	Coast	_:_		:	total
Western redcedar	193,393	100,338		199		293,930		41.80
Lodgepole pine	236,655	0		0		236,655		33.65
Western larch	111,268	24,463		0		135,731		19.30
Douglas-fir	36,334	115		454		36,903		5.25
m - + - 1	E77 (E0	12/ 01/		(52		700 010		
Total	577,650	124,916		653		703,219		
Percent	82.15	17.76		.09				100.00

While most of the poles grown in the northern Rocky Mountain area are processed within the area along with imported poles, a small number are shipped to processing yards elsewhere. These outside yards, mainly in Minnesota, received 16,216 poles (or 2.8 percent of the total 1956 production) directly from the northern Rocky Mountain area.

Table 5 classifies the 1956 pole production of the northern Rocky Mountain area by species, lengths, and American Standards Association class.

Table 5.--Classification of 1956 pole production in the northern Rocky Mountain area by species, lengths, and A.S.A. class

Pole :					Δ	S. A. C	lass				
length:		: 2	: 3	: 4	: 5	: 6	: 7	: 8	: 9	: 10	: A11
Feet					rce	nt o	f t	o t a l			
2.5	0.26	0.24	0 22		<u>Western</u> 1.59	redced 2.18	<u>ar</u> 1.69	0.71	1.65	0.19	0.60
25 30	0.34	0.24	0.33	0.68	3.15	4.23	3.13	.49	26	$\frac{1}{0}$.19	9.60 13.65
35	.31	.50	1.68	4.39	9.77	6.75	2.22	.11	0	0	25.73
40	.45	.85	2.69	6.99	7.27	1.19	.02	0	0	0	19.46
45	.50	1.14	2.86	5.33	1.54	.04	0	0	0	0	11.41
50	.58	1.37	2.47	3.07	.31	0	0	0	0	0	7.80
55	1.97	3.89	4.53	1.90	.06	0	0	0	0	0	12.35
A11	4.37	8.30	15.09	23.69	23.69	14.39	7.06	1.31	1.91	.19	100.00
0.5	0.1	0.0	0.0	0.1		ole pin	_	0 50	15.07	22.62	F/ (3
25	.01	.03	.09	. 31	1.00	3.23	8.45	2.59	15.27	23.69	54.67
30	.01	.04	.11	.31	1.20	2.80	6.49	.86	3.91	4.33	20.06
35 40	.01	.05	.16 .56	.76 1.90	4.02 3.00	6.27 1.51	4.06	.46 0	(<u>2</u> /)	0	15.79 7.05
45	.01	.10	.60	.75	.25	.03	(<u>2</u> /)	0	0	0	1.74
50	.01	.08	.19	.14	.02	(2/)	0	0	0	0	.44
55	.01	.07	.11	.06	(2/)	0	0	0	0	0	.25
A11	.07	.44	1.82	4.23	9.49	13.84	19.00	3.91	19.18	28.02	100.00
						rn larc					
25	.11	.08	.13	. 58	.86	2.09	3.49	. 29	1.55	. 98	10.16
30	. 39	.18	. 38	1.24	4.24	5.49	4.48	. 14	. 68	0	17.22
35	.52	.47	1.59	5.03	11.80	6.61	2.50	.04	0	0	28.56
40	. 67	.84	3.17	8.39	5.02	.94	.11	0	0	0	19.14
45	.20	.78	2.72	4.45	.82	.12	0	0	0	0	9.09
50 55	.30 2.77	1.15	2.44 3.25	1.35 .77	.17 (2/)	0 0	0 0	0	0	0	5.41 10.42
A11	4.96	7.13	13.68	21.81	22.91	15.25	10.58	.47	2.23	.98	100.00
****	1.50	7.13	13.00	21.01	22.71	17.25	10.50	. , ,	2.23	. , 0	100.00
					Doug	las-fir					
25	.07	.03	.09	. 28	. 44	. 69	.76	$(\underline{2}/)$.03	.03	2.42
30	.79	.84	1.33	2.08	2.55	2.48	1.77	$(\underline{2}/)$.02	0	11.86
35	.80	1.14	2.57	10.05	10.18	6.53	1.45	(2/)	0	0	32.72
40	1.32	2.74	4.61	10.26	7.05	1.55	$(\underline{2}/)$	0	0	0	27.53
45	.31			4.83		.21	0	0	0	0	12.68
50 55	.44 1.27			.99		0		0 0	0	0	4.96 7.83
A11	5 00	9 77	17 75	29.17	22 79		3.98	(2/)			100.00
VII	5.00	7.11	17.75	27.11	22.17	11.40	3.90	(2/)	.03	.03	100.00
					A11	species					
25	.14	.11	.17	.49		2.50		1.35	7.12	9.99	27.76
30	.20	.20	.38	.94	2.53	3.77	4.69	.54		1.77	16.85
35	.26	.35	1.09					.24	(2/)	0	22.63
40	. 37	.65	2.03	5.37	5.07		.02	0	0	0	14.81
45	.23	.64	1.97	3.25	.92		0	0	0	0	7.07
50	.28	.78	1.52	1.40	.16	.01	0	0	0	0	4.15
55	1.28	2.21		.85		1/, 15	12 / 5	2.13	8.95	11 76	6.73
A11	2.76	4.94	9.53	15.68	17.00	14.15	12.45	2.13	0.93	11.70	100.00

Zero (0) indicates no production.

 $[\]underline{1}/$ Zero (0) indicates no production. $\underline{2}/$ Production less than 0.005 percent.