

UTILITY PATENT APPLICATION TRANSMITTAL

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Attorney Docket No. 001222 Total Pages

First Named Inventor or Application Identifier

Yasuhiko NOMURA, Nobuhiko HAYASHI, Masayuki HATA and Masayuki SHONO

Check Box, if applicable [] Duplicate

Express Mail Label No.

APPLICATION ELEMENTS FOR:

SEMICONDUCTOR LIGHT EMITTING DEVICE

ADDRESS TO:

Director of Patents and Trademarks

BOX PATENT APPLICATIONS Washington, D.C. 20231

1. [XX] Fee Transmittal Form (Incorporated within this form) (Submit an original and a duplicate for fee processing)

2. [XX] Specification

Harry Harry

Total Pages [45]

[XX] Drawing(s) (35 USC 113)

Total Sheets [5]

[XX] Oath or Declaration

Total Pages [3]

- a. [XX] Newly executed (original)
- b. [] Copy from prior application (37 CFR 1.63(d) (for continuation/divisional with Box 17 completed).
 - i. [] Deletion of Inventor(s)

Signed statement attached deleting inventor(s) named in prior application, see 37 CFR 1.63(d)(2) and 1.33(b).

[] Incorporation by reference (useable if box 4b is checked)

The entire disclosure of the prior application, from which a copy of the oath or declaration is supplied under Box 4b, is considered as being part of the disclosure of the accompanying application and is hereby incorporated by reference therein.

- 6. [] Microfiche Computer Program (Appendix)
- 7. [] Nucleotide and/or Amino Acid Sequence Submission (if applicable, all necessary)
 - a. [] Computer Readable Copy
 - b. [] Paper Copy (identical to computer copy)
 - c. [] Statement Verifying identity of above copies

ACCOMPANYING APPLICATION PARTS

- 8. [XX] Assignment Papers (cover sheet and document(s))
- 9. [] 37 CFR 3.73(b) Statement (when there is an assignee)

[XX] Power of Attorney

UTILITY PATENT APPLICATION TRANSMITTAL

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Attorney Docket No. 001

001222

First Named Inventor or Application Identifier

Yasuhiko NOMURA, Nobuhiko HAYASHI, Masayuki HATA and Masayuki SHONO

PAGE 2 OF 3

10. [] English translation Document (if applicable)								
11. [XX] Information Disclosure Statement	. [XX] Information Disclosure Statement [XX] Copies of IDS Citations (PTO-1449 & 3 Ref.)							
12. [] Preliminary Amendment								
13. [XX] Return Receipt Postcard (MPEP 503)								
14. [] Small Entity Statement(s)	[] Statement filed in Status still pr							
5. [] Claim for Convention Priority	[] Certified copy of Priority Document							
a. Priority of application no filed on is claimed under 35 USC 119. The certified copies/copy have/has been filed in prior application Serial No (For Continuing Applications, if applicable). 16. [] Other 17. If a CONTINUING APPLICATION, check appropriate box and supply the requisite information: 18. [] Continuation [] Division [] Continuation-in-part (CIP) of prior application no/								
FEE TRANSMITTAL	Number Filed	Number Extra	Rate	Basic Fee \$690.00				
The filing fee is calculated below	20 20		x \$18.00	\$090.00				
Total Claims	20 - 20			A 70.00				
Independent Claims	4 - 3	1	x \$78.00	\$ 78.00				
Multiple Dependent Claims \$260.00								
Basic Filing Fee								
Reduction by 1/2 for small entity								
Fee for recording enclosed Assignment \$40.00								
TOTAL								

UTILITY PATENT APPLICATION TRANSMITTAL

(Only for new nonprovisional applications under 37 CFR 1.53(b))

Attorney Docket No.

001222

First Named Inventor or Application Identifier

Yasuhiko NOMURA, Nobuhiko HAYASHI, Masayuki HATA and Masayuki SHONO

PAGE 3 OF 3					
[XX] A check in the amount of \$\\\ 808.00\] is enclosed to cover the filing fee of \$\\\\ 768.00\] and the assignment recordation fee of \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\					
[] Please charge our Deposit Account No. 01-2340 in the total amount of to cover the filing fee and the assignment recordation fee. A duplicate of this sheet is attached.					
[XX] The Commissioner is hereby authorized to charge payment for any additional filing fees required under 37 CFR 1.16 or credit any overpayment to Deposit Account No. 01-2340. A duplicate of this sheet is attached. 18. CORRESPONDENCE ADDRESS ARMSTRONG WESTERMAN HATTORI					
18. CORRESPONDENCE ADDRESS					
ARMSTRONG, WESTERMAN, HATTORI					
McLELAND & NAUGHTON					
1725 K Street, N.W. Suite 1000					
McLELAND & NAUGHTON 1725 K Street, N.W. Suite 1000 Washington, D.C. 20006					
Telephone: (202) 659-2930					
Facsimile: (202) 887-0357					
SUBMITTED BY					
Typed or Printed Name William G. Kratz, Jr. Reg. No. 22,631					
Signature Curlbb Kut Date: September 21, 2000					
VI					

WGK/ll

TITLE OF THE INVENTION

Semiconductor Light Emitting Device

BACKGROUND OF THE INVENTION

5 Field of the Invention

The present invention relates to a semiconductor light emitting device having a compound semiconductor layer of a group III-V nitride-based semiconductor (hereinafter referred to as a nitride-based semiconductor) such as GaN (gallium nitride), AlN (aluminum nitride), InN (indium nitride), BN (boron nitride) or TlN (thallium nitride) or mixed crystals thereof.

Description of the Prior Art

- In recent years, a nitride-based semiconductor laser device emitting blue or violet light is actively subjected to research and development as a recording or reproducing light source employed for an optical disk system having a high density and a high capacity.
- Fig. 8 is a typical sectional view showing the structure of a conventional nitride-based semiconductor laser device. The semiconductor laser device shown in Fig. 8 is formed by successively stacking a buffer layer 2 of undoped AlGaN, an undoped GaN layer 3, a first contact layer 4 of n-GaN, a crack preventing layer 5 of n-InGaN, a first cladding layer 6 of

n-AlGaN, an emission layer 7 of an InGaN multilayer film, a second cladding layer 8 of p-AlGaN and a second contact layer 9 of p-GaN on a C plane of a sapphire substrate 1 by MOCVD (metal-organic chemical vapor deposition).

Partial regions between the upper surface of the second contact layer 9 and a prescribed depth of the second cladding layer 8 are removed for forming a ridge portion 10. A partial region between the second cladding layer 8 and a prescribed depth of the first contact layer 4 is removed for forming an electrode forming surface 11.

A p-side electrode 131 is formed on the upper surface of the second contact layer 9. An n-side electrode 132 is formed on the electrode forming surface 11 of the first contact layer 4.

15 A dielectric film 12 of SiO₂ or SiN is provided for limiting a region fed with a current and obtaining optical density sufficient for lasing. The dielectric film 12 is formed on both side surfaces of the ridge portion 10, flat surface portions of the second cladding layer 8, the side surfaces of the layers from the second cladding layer 8 to the first contact layer 4 and the upper surface of the first contact layer 4.

The dielectric film 12 also has a function of preventing electrical shorting across the p-side electrode 131 and the n-side electrode 132.

When prepared from SiO_2 , the dielectric film 12 is disadvantageously cracked or removed due to insufficient adhesion between the nitride-based semiconductor and the SiO_2 film. Therefore, the yield is reduced.

5 When the dielectric film 12 is prepared from SiN, it is difficult to form an SiN film having а thickness of several 100 nm with uniform quality since the content of (nitrogen) strongly depends on film forming conditions. Therefore, reproducibility of device characteristics 10 reduced because of variation of an etching rate for forming an opening with the N content of the SiN film

While influence by such dispersion of the etching rate can be reduced by reducing the thickness of the SiN film, it is difficult to completely cover a step portion in this case. If the thickness of the SiN film is reduced below 30 nm, presence of pinholes results in a reduction of voltage resistance and/or a leakage current.

SUMMARY OF THE INVENTION

An object of the present invention is to provide a semiconductor light emitting device having high reproducibility of device characteristics and an improved yield.

A semiconductor light emitting device according to an 25 aspect of the present invention comprises a nitride-based

20

5

semiconductor layer including an emission layer, and a dielectric film formed on the surface of the nitride-based semiconductor layer, and the dielectric film contains a nitride on the side of the interface between the same and the nitride-based semiconductor layer while containing an oxide on the side opposite to the nitride-based semiconductor layer.

In this semiconductor light emitting device, the nitride is in contact with the surface of the nitride-based semiconductor layer. The surface opposite to the nitride-based semiconductor layer contains the oxide. Therefore, the nitride improves adhesion between the dielectric layer and the nitride-based semiconductor layer, for preventing the dielectric film from cracking and separation. Further, the oxide uniformizes an etching rate for the dielectric film and improves the working accuracy of the dielectric film. Consequently, reproducibility of device characteristics is increased and the yield is improved.

The dielectric film may successively include a nitride film and an oxide film as the nitride and the oxide. In this case, the nitride film improves the adhesion between the dielectric film and the nitride-based semiconductor layer, and the oxide film ensures uniformity of the etching rate for the dielectric film.

The dielectric film may further include a compound film 25 containing nitrogen and oxygen between the nitride film and

10

15

20

25

the oxide film. In this case, the compound film improves the adhesion between the nitride film and the oxide film.

The compound film may have such a graded composition that the content of nitrogen gradually reduces and the content of oxygen gradually increases from the side of the interface between the same and the nitride film toward the side of the interface between the same and the oxide film. Thus, the adhesion between the nitride film and the oxide film is further improved.

The nitride film may be a silicon nitride film or a titanium nitride film, and the oxide film may be a silicon oxide film or a titanium oxide film. In this case, the aforementioned dielectric film can be readily formed.

The dielectric film may include a compound film containing nitrogen and oxygen as the nitride and the oxide, and the compound film may have such a graded composition that the content of nitrogen gradually reduces and the content of oxygen gradually increases from the side of the interface between the same and the nitride-based semiconductor layer toward the opposite side.

In this case, a region of the compound film having a large content of nitrogen improves the adhesion between the nitride-based semiconductor layer and the dielectric film, and a region of the compound film having a large content of oxygen ensures uniformity of the etching rate for the dielectric film.

20

25

The compound film may be a compound film containing silicon or titanium and containing nitrogen and oxygen. In this case, the compound film can be readily formed.

A semiconductor light emitting device according to 5 another aspect of the present invention comprises nitride-based semiconductor layer including an emission layer and a dielectric film formed on the surface of the nitride-based semiconductor layer, and the dielectric film contains a compound containing nitrogen and oxygen on the side of the interface between the same and the nitride-based semiconductor 10 layer while containing an oxide on the side opposite to the nitride-based semiconductor layer.

In this semiconductor light emitting device, the compound containing nitrogen and oxygen is in contact with the surface of the nitride-based semiconductor layer. The surface opposite to the nitride-based semiconductor layer contains the oxide. Therefore, the compound improves the adhesion between the dielectric film and the nitride-based semiconductor layer, for preventing the dielectric film from cracking and separation. Further, the oxide uniformizes an etching rate for the dielectric film, and improves working accuracy of the dielectric film. Consequently, reproducibility of device characteristics is increased and the yield is improved.

The dielectric film may include a compound film as the compound and may include an oxide film as the oxide, while the

10

15

20

compound film may have such a graded composition that the content of nitrogen gradually reduces and the content of oxygen gradually increases from the side of the interface between the same and the nitride-based semiconductor layer toward the opposite side.

In this case, a region of the compound film having a large content of nitrogen improves the adhesion between the nitride-based semiconductor layer and the dielectric film, and the oxide film ensures uniformity of the etching rate for the dielectric film.

The compound film may be a compound film containing silicon or titanium and containing nitrogen and oxygen, and the oxide film may be a silicon oxide film or a titanium oxide film. In this case, the compound film and the oxide film can be readily formed.

A semiconductor light emitting device according to still another aspect of the present invention comprises a nitride-based semiconductor layer including an emission layer and a dielectric film formed on the surface of the nitride-based semiconductor layer, and the dielectric film contains a nitride on the side of the interface between the same and the nitride-based semiconductor layer while containing a compound containing nitrogen and oxygen on the side opposite to the nitride-based semiconductor layer.

In this semiconductor light emitting device, the nitride

25

10

15

20

25

contact with the surface of the nitride-based semiconductor layer. The surface opposite to the nitridebased semiconductor layer contains the compound containing nitrogen and oxygen. Therefore, the nitride improves the adhesion between the dielectric film and the nitride-based semiconductor layer, and prevents the dielectric film from cracking and removing. Further, the compound uniformizes an etching rate for the dielectric film, and improves working accuracy ofthe dielectric film. Consequently, reproducibility of device characteristics is increased and the yield is improved.

The dielectric film may include a nitride film as the nitride and may include a compound film as the compound, while the compound film may have such a graded composition that the content of nitrogen gradually reduces and the content of oxygen gradually increases from the side of the interface between the same and the nitride film toward the opposite side.

In this case, the nitride film improves the adhesion between the dielectric film and the nitride-based semiconductor layer, and a region of the compound film having a large content of oxygen ensures uniformity of the etching rate for the dielectric film.

The nitride film may be a silicon nitride film or a titanium nitride film, and the compound film may be a compound film containing silicon or titanium and containing nitrogen

10

and oxygen. In this case, the nitride film and the compound film can be readily formed.

The nitride-based semiconductor layer may further include a cladding layer formed on the emission layer, the cladding layer may have a flat portion and a ridge portion located on the flat portion, and the dielectric film may be formed on the flat portion of the cladding layer and the side surface of the ridge portion.

In this case, the operating current of a semiconductor laser device serving as the semiconductor light emitting device can be reduced and the yield can be improved.

The side surface of the ridge portion may be irregularized, and the dielectric film may be formed on the flat portion of the cladding layer and the side surface of the ridge portion.

In this case, the irregular side surface of the ridge portion further improves the adhesion between the dielectric film and the nitride-based semiconductor layer. Therefore, the dielectric film is sufficiently prevented from cracking or removing, and an unavailable current is further reduced.

The nitride-based semiconductor layer may further include a first conductivity type semiconductor layer provided under the emission layer and a second conductivity type semiconductor layer provided on the emission layer, a partial region of the nitride-based semiconductor layer may be removed to partially expose the first conductivity type semiconductor

10

15

layer, a first electrode may be formed on the exposed region of the first conductivity type semiconductor layer, a second electrode may be formed on the second conductivity type semiconductor layer, and the dielectric film may be formed on the surface of the nitride-based semiconductor layer between the first electrode and the second electrode.

In this case, the first and second electrodes of the semiconductor light emitting device can be reliably isolated from each other, and the yield can be improved.

A semiconductor light emitting device according to a further aspect of the present invention comprises an emission layer composed of a nitride-based semiconductor, a cladding layer formed on the emission layer and composed of a nitride-based semiconductor having a flat portion and a ridge portion located on the flat portion, the side surface of the ridge portion of the cladding layer being irregularized, and a dielectric film formed on the flat portion of the cladding layer and the side surface of the ridge portion.

In the semiconductor light emitting device, the irregularized side surface of the ridge portion improves the adhesion between the dielectric film and the nitride-based semiconductor. Therefore, the dielectric film is prevented from cracking or removing, and an unavailable current is reduced.

The dielectric film may contain a nitride on the side

25

10

15

of the interface between the same and the nitride-based semiconductor layer, and may contain an oxide on the side opposite to the nitride-based semiconductor layer. In this case, the nitride further improves the adhesion between the dielectric film and the nitride-based semiconductor layer, and the oxide ensures uniformity of an etching rate for the dielectric film. Consequently, reproducibility of device characteristics is increased and the yield is further improved.

The dielectric film may contain a compound containing nitrogen and oxygen on the side of the interface between the same and the nitride-based semiconductor layer, and may contain oxide on an the side opposite to the nitride-based semiconductor layer. In this case, the compound further improves the adhesion between the dielectric film and the nitride-based semiconductor layer, and the oxide ensures uniformity of the etching rate for the dielectric film. Consequently, reproducibility of device characteristics is increased and the yield is further improved.

The dielectric film may contain a nitride on the side

20 of the interface between the same and the nitride-based semiconductor layer, and may contain a compound containing nitrogen and oxygen on the side opposite to the nitride-based semiconductor layer. In this case, the nitride further improves the adhesion between the dielectric film and the

25 nitride-based semiconductor layer, and the compound ensures

uniformity of the etching rate for the dielectric film. Consequently, reproducibility of device characteristics is increased and the yield is further improved.

The foregoing and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of the present invention when taken in conjunction with the accompanying drawings.

10 BRIEF DESCRIPTION OF THE DRAWINGS

Fig. 1 is a typical sectional view showing the structure of a semiconductor laser device according to a first embodiment of the present invention;

Fig. 2 is a typical sectional view showing the structure of an active layer of the semiconductor laser device shown in Fig. 1;

Fig. 3 is a typical sectional view showing the structure of a semiconductor laser device according to a second embodiment of the present invention;

Fig. 4 is a diagram for illustrating the structure of a dielectric film of a semiconductor laser device according to a third embodiment of the present invention;

Fig. 5 is a typical sectional view showing the structure of a semiconductor laser device according to a fourth embodiment of the present invention;

Fig. 6 is a typical sectional view showing the structure of a semiconductor laser device according to a sixth embodiment of the present invention;

Fig. 7 is a typical sectional view showing the structure of a light emitting diode according to a seventh embodiment of the present invention; and

Fig. 8 is a typical sectional view showing the structure of a conventional semiconductor laser device.

10 DESCRIPTION OF THE PREFERRED EMBODIMENTS

(First Embodiment)

Fig. 1 is a typical sectional view showing the structure of a nitride-based semiconductor laser device according to a first embodiment of the present invention.

The semiconductor laser device shown in Fig. 1 is a ridge guided semiconductor laser device. The semiconductor laser device shown in Fig. 1 is formed by successively stacking a buffer layer 2 of undoped Al_{0.5}Ga_{0.5}N, a GaN layer 3 of undoped GaN, a first contact layer 4 of n-GaN, a crack preventing layer 5 of n-In_{0.1}Ga_{0.9}N, a first cladding layer 6 of n-Al_{0.07}Ga_{0.93}N, an emission layer 7 having a multiple quantum well structure described later, a second cladding layer 8 of p-Al_{0.07}Ga_{0.93}N and a second contact layer 9 of p-GaN on a C plane of a sapphire substrate 1 by MOCVD.

25 The semiconductor laser device is doped with Si for

BIBLIO DE COMPANIO DE LA COMPANIO DE COMPA

10

15

20

25

attaining n-type conductivity, and doped with Mg for attaining p-type conductivity.

Partial regions between the upper surface of the second contact layer 9 and a prescribed depth of the second cladding layer 8 are removed by reactive ion etching or reactive ion beam etching, for forming a striped ridge portion 10. A partial region between the upper surface of the second cladding layer 8 and a prescribed depth of the first contact layer 4 is removed by reactive ion etching or reactive ion beam etching, for forming an electrode forming surface 11 of the first contact layer 4.

An SiN_x film 12a (x is approximately 1) is formed on both side surfaces of the ridge portion 10, flat surface portions and the side surfaces of the second cladding layer 8, the side surfaces of the emission layer 7, the side surfaces of the first cladding layer 6, the side surfaces of the crack preventing layer 5, partial side surfaces of the first contact layer 4 and the electrode forming surface 11 excluding a region formed with an n-side electrode 132. An SiO_y film 12b (y is approximately 2) is formed on the SiN_x film 12a. The SiN_x film 12a and the SiO_y film 12b form a dielectric film 12A.

A p-side electrode 131 is formed on the upper surface of the second contact layer 9, and the n-side electrode 132 is formed on the electrode forming surface 11 of the first contact layer 4.

10

15

Fig. 2 is a typical sectional view showing the multiple quantum well structure of the emission layer 7. The emission layer 7 includes a first light guide layer 71 of n-GaN formed on the first cladding layer 6, an active layer 72 formed on the first light guide layer 71 and a second light guide layer 73 of p-GaN formed on the active layer 72. The active layer 72 is formed by alternately stacking barrier layers 721, 723, 725 and 727 of $n-In_{0.02}Ga_{0.98}N$ and well layers 722, 724 and 726 of $n-In_{0.10}Ga_{0.99}N$.

In the semiconductor laser device shown in Fig. 1, the ${\rm SiO_y}$ film 12b ensures reproducibility of an etching rate, thereby increasing working accuracy of the dielectric film 12A. Further, the ${\rm SiN_x}$ film 12a improves adhesion between the dielectric film 12A and the layers 4 to 9. Thus, the dielectric film 12A is hardly cracked and a leakage current is reduced. Consequently, the semiconductor light emitting device shown in Fig. 1 is reduced in operating current and improved in manufacturing yield.

(Second Embodiment)

Fig. 3 is a typical sectional view showing the structure of a nitride-based semiconductor laser device according to a second embodiment of the present invention. The structure of the nitride-based semiconductor laser device according to the second embodiment shown in Fig. 3 is similar to the structure of the nitride-based semiconductor laser device according to

10

15

20

25

the first embodiment shown in Fig. 1 except a dielectric film.

The nitride-based semiconductor laser device shown in Fig. 3 comprises a dielectric film 12B in place of the dielectric film 12A of the nitride-based semiconductor laser device shown in Fig. 1.

The dielectric film 12B is formed by an SiN_x film 112a (xis approximately 1), an $SiN_{x1}O_{y1}$ film 112b (x1 is approximately 0.5 and y1 is approximately 1) and an SiO_y film 112c (y is approximately 2).

The SiN_{x} film 112a is formed on both side surfaces of a ridge portion 10, flat surface portions and the side surfaces of a second cladding layer 8, the side surfaces of an emission layer 7, the side surfaces of a first cladding layer 6, the side surfaces of a crack preventing layer 4, partial side surfaces of a first contact layer 4 and an electrode forming surface 11 excluding a region formed with an n-side electrode 132. The $\mathrm{SiN}_{x1}\mathrm{O}_{y1}$ film 112b (x1 is approximately 0.5 and y1 is approximately 1) is formed on the SiN_{x} film 112a, and the SiO_{y} film 112c (y is approximately 2) is formed on the $\mathrm{SiN}_{x1}\mathrm{O}_{y1}$ film 112b.

Thus, the $\mathrm{SiN_{x1}O_{y1}}$ film 112b containing nitrogen and oxygen is formed between the $\mathrm{SiN_{x}}$ film 112a and the $\mathrm{SiO_{y}}$ film 112c, thereby further improving adhesion between the $\mathrm{SiN_{x}}$ film 112a and the $\mathrm{SiO_{y}}$ film 112c, further suppressing the dielectric film 12B from removing and improving the yield. Further, the

10

dielectric film 12B is so hardly cracked that a leakage current as well as an operating current are reduced. In addition, reproducibility of an etching rate for the dielectric film 12B is improved, for enabling manufacturing of a nitride-based semiconductor laser device with small dispersion between lots.

(Third Embodiment)

Fig. 4 is a diagram for illustrating the structure of a dielectric film of a nitride-based semiconductor laser device according to a third embodiment of the present invention.

The structure of the nitride-based semiconductor laser device according to the third embodiment is similar to the structure of the nitride-based semiconductor laser device shown in Fig. 1 except a dielectric film.

The nitride-based semiconductor laser device according to the third embodiment comprises a dielectric film 12C shown in Fig. 4 in place of the dielectric film 12A of the nitride-based semiconductor laser device shown in Fig. 1.

The dielectric film 12C successively includes an ${\rm SiN_x}$ film 112a, an ${\rm SiN_{x2}O_{y2}}$ film 112d and an ${\rm SiO_y}$ film 112c.

The SiN_x film 112a is formed on both side surfaces of the ridge portion 10, the flat surface portions and the side surfaces of the second cladding layer 8, the side surfaces of the emission layer 7, the side surfaces of the first cladding layer 6, the side surfaces of the crack preventing layer 5, partial side surfaces of the first contact layer 4 and the

10

15

25

electrode forming surface 11 excluding the region formed with the n-side electrode 132 shown in Fig. 1.

In the $SiN_{x2}O_{y2}$ film 112d, the content x2 of N (nitrogen) gradually reduces from 1 to zero and the content y2 of O (oxygen) gradually increases from zero to 2 from the interface between the $SiN_{x2}O_{y2}$ film 112d and the SiN_x film 112a, as shown in Fig. 4.

Thus, the $\mathrm{SiN}_{\mathrm{x2}}\mathrm{O}_{\mathrm{y2}}$ film 112d having gradually changing contents of N and O is formed between the $\mathrm{SiN}_{\mathrm{x}}$ film 112a and the $\mathrm{SiO}_{\mathrm{y}}$ film 112c formed on a nitride-based semiconductor, thereby further increasing adhesion between the $\mathrm{SiN}_{\mathrm{x}}$ film 112a and the $\mathrm{SiO}_{\mathrm{y}}$ film 112c, further suppressing removing of the dielectric film 12C and improving the yield. Further, the dielectric film 12C is so hardly cracked that a leakage current as well as an operating current are reduced. In addition, reproducibility of an etching rate for the dielectric film 12C is improved, to enable manufacturing of a nitride-based semiconductor laser device with small dispersion between lots.

(Fourth Embodiment)

Fig. 5 is a typical sectional view showing the structure of a nitride-based semiconductor laser device according to a fourth embodiment of the present invention.

The structure of the nitride-based semiconductor laser device shown in Fig. 5 is similar to the structure of the nitride-based semiconductor laser device shown in Fig. 1 except

25

5

a dielectric film.

The nitride-based semiconductor laser device shown in Fig. 5 comprises a dielectric film 12D in place of the dielectric film 12A of the nitride-based semiconductor laser device shown in Fig. 1.

The dielectric film 12D is formed by an $SiN_{x2}O_{y2}$ film 112d and an SiO_{y} film 112c.

Thus, the $SiN_{x2}O_{y2}$ film 112d having gradually changing contents of N and O is formed between a nitride-based semiconductor and the SiO_y film 112c, thereby further increasing adhesion between the nitride-based semiconductor and the dielectric film 12D, further suppressing removing of the dielectric film 12D and improving the yield. Further, the dielectric film 12D is so hardly cracked that a leakage current as well as an operating current are reduced. In addition, reproducibility of an etching rate for the dielectric film 12D is improved, to enable manufacturing of a nitride-based semiconductor laser device with small dispersion between lots.

(Fifth Embodiment)

A nitride-based semiconductor laser device according to a fifth embodiment of the present invention is now described.

In the structure of the nitride-based semiconductor laser device according to the fifth embodiment, the SiN_{x} film 12a is replaced with a TiN_{x} film (x is approximately 1) and the SiO_{y} film 12b is replaced with a TiO_{y} film (y is approximately

10

15

2) in the structure of the nitride-based semiconductor laser device shown in Fig. 1.

Also when employing TiN_{x} and TiO_{y} for the nitride film and the oxide film respectively, adhesion between a nitride-based semiconductor and a dielectric film is improved, removing of the dielectric film is suppressed, and the yield is improved. Further, the dielectric film is so hardly cracked that a leakage current as well as an operating current are reduced. In addition, reproducibility of an etching rate for the dielectric film is improved, to enable manufacturing of a nitride-based semiconductor laser device with small dispersion between lots.

While the dielectric film 12A of the silicon compound in the semiconductor laser device shown in Fig. 1 is replaced with the dielectric film of the titanium compound in the fifth embodiment, the dielectric films 12B to 12D of silicon compounds may be replaced with dielectric films of titanium compounds in the semiconductor laser devices according to the second to fourth embodiments shown in Figs. 3 to 5.

In a dielectric film formed by replacing Si with Ti in the dielectric film 12B to include a TiN_{x} film, a $\mathrm{TiN}_{x1}\mathrm{O}_{y1}$ film and a TiO_{y} film, adhesion between the TiN_{x} film and the TiO_{y} film is further improved. In a dielectric film formed by replacing Si with Ti in the dielectric film 12C to include a TiN_{x} film, a $\mathrm{TiN}_{x2}\mathrm{O}_{y2}$ film and a TiO_{y} film, adhesion between the

10

15

20

25

 ${\rm TiN_x}$ film and the ${\rm TiO_y}$ film is further improved. In a dielectric film formed by replacing Si with Ti in the dielectric film 12D to include a ${\rm TiN_{x2}O_{y2}}$ film and a ${\rm TiO_y}$ film, further, adhesion between a nitride-based semiconductor formed under the ${\rm TiN_{x2}O_{y2}}$ film and the ${\rm TiO_y}$ film is further improved.

(Sixth Embodiment)

Fig. 6 is a typical sectional view showing the structure of a nitride-based semiconductor laser device according to a sixth embodiment of the present invention.

The nitride-based semiconductor laser device shown in Fig. 6 has irregularities of 2 to 10 nm on the side surfaces of a ridge portion 110. The structure of the nitride-based semiconductor laser device shown in Fig. 6 is similar to the structure of the nitride-based semiconductor laser device according to the second embodiment shown in Fig. 3 except the irregularities on the side surfaces of the ridge portion 110.

In order to form the ridge portion 110, regions between the upper surface of a second contact layer 9 and an intermediate portion of a second cladding layer 8 are etched through a mask of Ni by dry etching such as reactive ion etching (RIE) or reactive ion beam etching (RIBE) thereby forming convex portions. Thereafter a chemical etching property is improved by reducing a high-frequency output of RIE, for example, so that damage layers can be removed from the side walls of the convex portions. Thus, the transverse etching rate is varied

10

15

20

on the side walls due to different crystallinity of GaN (second contact layer 9) and AlGaN (second cladding layer 8), to form steps. Thus, the ridge portion 110 having irregular side surfaces is formed. The damage layers may alternatively be removed from the side walls of the ridge portion 110 by alkaline wet etching in place of reducing the high-frequency output power of RIE, to attain the same result.

The side surfaces of the ridge portion 110 are so irregularized as to further improve adhesion between a dielectric film 12B, the second cladding layer 8 and the second contact layer 9. Thus, the dielectric film 12B is prevented from cracking or removing, and a leakage current is reduced.

While the nitride-based semiconductor laser device shown in Fig. 6 has the dielectric film 12B identical to that of the semiconductor laser device shown in Fig. 3, this dielectric film 12B may be replaced with the dielectric film 12A shown in Fig. 1, the dielectric film 12C shown in Fig. 4 or the dielectric film 12D shown in Fig. 5. The adhesion, improved by the irregular side surfaces of the ridge portion 110 regardless of the structure of the dielectric film, is further improved due to the effect by the dielectric film 12A, 12B, 12C or 12D.

(Seventh Embodiment)

Fig. 7 is a typical sectional view showing the structure of a light emitting diode according to a seventh embodiment

10

15

of the present invention.

In the light emitting diode shown in Fig. 7, an AlGaN low-temperature buffer layer 203 of undoped AlGaN having a thickness of 20 nm, an undoped GaN high-temperature buffer layer 204 having a thickness of 400 nm, an n-GaN contact layer 205 having a thickness of 1.5 µm, an MQW (multiple quantum well) active layer (emission layer) 206, an undoped GaN protective layer 207 having a thickness of 10 nm, a p-Al_{0.05}Ga_{0.95}N cladding layer 208 having a thickness of 150 nm and a p-GaN contact layer 209 having a thickness of 300 nm are successively formed on a sapphire substrate 202. In this case, Si is employed as an n-type dopant, and Mg is employed as a p-type dopant.

The MQW active layer 206 has a multiple quantum well structure formed by stacking six barrier layers 206a of undoped GaN each having a thickness of 5 nm and five well layers 206b of undoped $In_{0.35}Ga_{0.65}N$ each having a thickness of 5 nm. The undoped GaN protective layer 207 is formed on the MQW active layer 206 for preventing the MQW active layer 206 from crystal deterioration.

A partial region between the p-GaN contact layer 209 and the n-GaN contact layer 205 is removed by etching, so that an n-side electrode 212 of Al having a thickness of 500 nm is formed on the upper surface of a prescribed region of the exposed n-GaN contact layer 205. A p-side translucent electrode 210 is formed on the upper surface of a prescribed region of the p-GaN

10

15

contact layer 209 by stacking an Ni film 210a having a thickness of 2 nm and an Au film 210b having a thickness of 4 nm, and a p-side pad electrode 211 is formed thereon by stacking a Ti film 211a having a thickness of 30 nm and an Au film 211b having a thickness of 500 nm.

The light emitting diode shown in Fig. 7 is manufactured as follows:

In order to manufacture the light emitting diode, a sapphire substrate 202 having a surface formed by a C plane is arranged in an MOCVD apparatus, for successively growing the AlGaN low-temperature buffer layer 203, the undoped GaN high-temperature buffer layer 204, the n-GaN contact layer 205, the MQW active layer 206, the undoped GaN protective layer 207, the p-Al $_{0.05}$ Ga $_{0.95}$ N cladding layer 208 and the p-GaN contact layer 209 on the C plane of the sapphire substrate 202 by MOCVD. Table 1 shows the thicknesses and growth conditions of the layers 203 to 209.

Table 1

	Substrate		
	Temperature	Material	Carrier
(nm)	as Growth	Gas	Gas
20	600	NH,,TMAl	H_2 , N_2
		TMGa	
400	1150	NH.,TMGa	H_2 , N_2
			2. 2
		NH, TMGa	
1500	1150	1 -	H_2 , N_2
		-	2. 2
		NH ₃ , TEGa	
5			
(each)			
	850		H_2 , N_2
5		NH. TEGA	2. 2
(each)			
10	850	NH, TEGa	H_2, N_2
			2,2
150	1150		H_2, N_2
		1	2 * 2
300	1150	_	H_2, N_2
	20 400 1500 5 (each) 5 (each)	(nm) as Growth 20 600 400 1150 1500 1150 5 (each) 850 5 (each) 150 10 850	Thickness (nm) as Growth Gas 20 600 NH ₃ ,TMAl TMGa 400 1150 NH ₃ ,TMGa 1500 1150 NH ₃ ,TMGa 5 (each) 850 NH ₃ ,TEGa TMIn 10 850 NH ₃ ,TEGa NH ₃ ,TEGa TMIn 150 1150 TMAl Cp ₂ Mg NH ₃ ,TMGa

Referring to Table 1, TMAl stands for trimethyl aluminum, TMGa stands for trimethyl gallium, TMIn stands for trimethyl 5 indium, and TEGa stands for triethyl gallium. Referring to reactive gas, $\mathrm{NH_3}$ is a nitrogen source, TMAl is an aluminum source, TMGa and TEGa are gallium sources, and TMIn is an indium source. SiH_4 (silane gas) is an n-type doping material, and Cp_2Mg (bis(cyclopentadienyl)magnesium) is a p-type doping material.

The substrate temperatures as growth of the layers 203

10

to 209 are not restricted to those described in Table 1. The substrate temperature may be set to a non-single-crystalline growth temperature when growing the AlGaN low-temperature buffer layer 203, and may be set to a single-crystalline growth temperature when growing each of the layers 204 to 209. In particular, the substrate temperature is preferably set to 1000 to 1200°C when growing each of the layers 204, 205, 208 and 209. Further, the substrate temperature is preferably set to 700 to 1000°C when growing each of the layers 206 and 207.

In the carrier gas containing $\rm H_2$ and $\rm N_2$ supplied for growing each of the layers 203 to 209, the content of $\rm H_2$ is 50 % when growing the layers 203 to 205, 1 to 5 % when growing the layers 206 and 207, and 1 to 3 % when growing the layers 207 to 209.

15 [Inventive Examples]

[Inventive Example 1]

In Inventive Example 1, the semiconductor laser device shown in Fig. 1 was employed.

The semiconductor laser device shown in Fig. 1 was 20 prepared as follows: A buffer layer 2 of Al_{0.5}Ga_{0.5}N having a thickness of 250 Å, a GaN layer 3 of undoped GaN having a thickness of 2 μm, a first contact layer 4 of n-GaN having a thickness of 3 μm, a crack preventing layer 5 of n-In_{0.1}Ga_{0.9}N having a thickness of 0.1 μm, a first cladding layer 6 of n-Al_{0.07}Ga_{0.93}N having a thickness of 1 μm, an emission layer 7,

25

a second cladding layer 8 of p-Al $_{0.07}$ Ga $_{0.93}$ N having a thickness of 0.3 μ m and a second contact layer 9 of p-GaN having a thickness of 0.05 μ m were successively grown on a C plane of a sapphire substrate 1 by MOCVD (metal-organic chemical vapor deposition).

As to the emission layer 7 having a multiple quantum well structure, a first light guide layer 71 of n-GaN having a thickness of 0.1 μ m formed on the first cladding layer 6, an active layer 72 described later and a second light guide layer 73 of p-GaN having a thickness of 0.1 μ m were successively stacked. Four barrier layers 721, 723, 725 and 727 of n-In_{0.02}Ga_{0.98}N each having a thickness of 6 nm and three well layers 722, 724 and 726 of n-In_{0.10}Ga_{0.90}N each having a thickness of 3 nm were alternately stacked as the active layer 72.

and electric film 12A was formed by plasma CVD with source materials of SiH₄ (100 %), NH₃ (100 %) and N₂O (100%). An SiN_x film 12a having a thickness of 50 nm was formed under conditions of an SiH₄ flow rate of 15 SCCM (standard cubic centimeter per minute), an NH₃ flow rate of 200 SCCM, a high-frequency output of 200 W and a substrate temperature of 300°C. An SiO_y film 12b having a thickness of 500 nm was formed under conditions of an SiH₄ flow rate of 10 SCCM, an N₂O flow rate of 100 SCCM, a high-frequency output of 200 W and a substrate temperature of 300°C. The SiN_x film 12a and the SiO_y film 12b were formed in the same apparatus.

In the semiconductor laser device according to Inventive

15

25

Example 1, the mean operating current of 10 lots with an output power of 5 mW was 72 mA, and the yield was 85 %.

[Inventive Example 2]

The semiconductor laser device shown in Fig. 3 was prepared similarly to the semiconductor laser device according to Inventive Example 1, except the dielectric film 12B.

The thickness of the SiN_x film 112a was 50 nm, the thickness of the $SiN_{x1}O_{y1}$ film 112b was 50 nm, and the thickness of the SiO_y film 112c was 500 nm.

The SiN_{x} film 112a was formed under the same conditions as the SiN_{x} film 12a, and the SiO_{y} film 112c was formed under the same conditions as the SiO_{y} film 12b. The film forming conditions for the $\mathrm{SiN}_{x1}\mathrm{O}_{y1}$ film 112b were set to an SiH_{4} flow rate of 30 SCCM, an NH₃ flow rate of 200 SCCM, an N₂O flow rate of 150 SCCM, a high-frequency output of 200 W and a substrate temperature of 300°C. The SiN_{x} film 112a, the $\mathrm{SiN}_{x1}\mathrm{O}_{y1}$ film 112b and the SiO_{y} film 112c were formed in the same apparatus.

In the semiconductor laser device according to Inventive Example 2, the mean operating current of 10 lots with an output power of 5 mW was 72 mA, and the yield was 87 %.

[Inventive Example 3]

In Inventive Example 3, the semiconductor laser device including the dielectric film 12C having the structure shown

25

5

in Fig. 4 was employed.

The semiconductor laser device shown in Fig. 4 was formed similarly to the semiconductor laser device according to Inventive Example 2, except the $SiN_{x2}O_{y2}$ film 112d of the dielectric film 12C.

The thickness of the $SiN_{x2}O_{y2}$ film 112d shown in Fig. 4 was 50 nm. The $SiN_{x2}O_{y2}$ film 112d was formed by plasma CVD with a high-frequency output of 200 W, a substrate temperature of 300° C and a constant SiH_4 flow rate of 30 SCCM while gradually reducing an NH_3 flow rate from 200 SCCM to 0 SCCM and gradually increasing an N_2 O flow rate from 0 SCCM to 150 SCCM.

In the semiconductor laser device according to Inventive Example 3, the mean operating current of 10 lots with an output power of 5 mW was 69 mA, and the yield was 90 %.

15 [Inventive Example 4]

In Inventive Example 4, the semiconductor laser device shown in Fig. 5 was employed.

The semiconductor laser device shown in Fig. 5 was formed similarly to the semiconductor laser device shown in Fig. 4, except that no ${\rm SiN}_{\rm x}$ film 112a was formed.

The $\mathrm{SiN_{x2}O_{y2}}$ film 112d was formed by plasma CVD with a high-frequency output of 200 W, a substrate temperature of 300°C and a constant $\mathrm{SiH_4}$ flow rate of 30 SCCM while gradually reducing an $\mathrm{NH_3}$ flow rate from 200 SCCM to 0 SCCM and gradually increasing an $\mathrm{N_2O}$ flow rate from 0 SCCM to 150 SCCM.

20

25

In the semiconductor laser device according to Inventive Example 4, the mean operating current of 10 lots with an output power of 5 mW was 70 mA, and the yield was 88 %.

[Inventive Example 5]

In Inventive Example 5, the semiconductor laser device shown in Fig. 5 was employed.

An $\mathrm{SiO_y}$ film 112c (y is approximately 2) having a thickness of 500 nm was formed on a nitride-based semiconductor layer under the conditions of Inventive Example 2. Thereafter the sample was kept at $1000^{\circ}\mathrm{C}$ in an $\mathrm{N_2}$ atmosphere and heat-treated for 30 minutes, thereby forming an $\mathrm{SiN_{x2}O_{y2}}$ film 112d having a thickness of 10 nm on the interface between the nitride-based semiconductor and $\mathrm{SiO_y}$.

In the semiconductor laser device according to Inventive

Example 5, the mean operating current of 10 lots with an output

power of 5 mW was 70 mA, and the yield was 87 %.

[Inventive Example 6]

In Inventive Example 6, a striped ridge portion 10 removed up to a prescribed depth of a second cladding layer 8 was formed by reactive ion etching or reactive ion beam etching. At this time, irregularities of 2 to 10 nm were formed on the side surfaces of the ridge portion 10. Thereafter a semiconductor laser device was prepared similarly to Inventive Examples 1 to 5.

In this case, the mean operating current was reduced by

10

15

20

25

about 5 %, and the yield was improved by 2 to 3 %.

[Inventive Example 7]

In Inventive Example 7, a structure similar to that of the semiconductor laser device according to Inventive Example 1 was employed except that the SiN_x film 12a of the semiconductor laser device according to Inventive Example 1 was replaced with a TiN_x film (x is approximately 1) and the SiO_y film 12b was replaced with a TiO_y film (y is approximately 2).

The TiN_x film and the TiO_y film were formed by plasma CVD with source materials of $TiCl_4$, NH_3 and N_2O . The TiN_x film was formed with a substrate temperature of $450^{\circ}C$, a high-frequency output of 100 W, a $TiCl_4$ flow rate of 30 SCCM and an NH_3 flow rate of 300 SCCM. The TiO_y film was formed with an $TiCl_4$ flow rate of 30 SCCM, an N_2O flow rate of 400 SCCM, high-frequency output of 100 W and a substrate temperature of $450^{\circ}C$. The TiN_x film and the TiO_y film were continuously formed in the same apparatus.

In the semiconductor laser device according to Inventive Example 7, the mean operating current of 10 lots with an output power of 5 mW was 75 mA, and the yield was 83 %.

[Inventive Example 8]

In Inventive Example 8, a three-layer dielectric film formed by a TiN_x film (x is approximately 1), a $TiN_{x1}O_{y1}$ film (x1 is approximately 0.5 and y1 is approximately 1) and a TiO_y film (y is approximately 2) in place of the SiN_x film 112a, the

20

25

 $SiN_{x1}O_{y1}$ film 112b and the SiO_y film 112c of the dielectric film 12B was employed in the semiconductor laser device shown in Fig. 3.

In the semiconductor laser device according to Inventive Example 8, the mean operating current of 10 lots with an output power of 5 mW was 73 mA, and the yield was 88 %.

[Inventive Example 9]

In Inventive Example 9, three layers of a TiN_x film (x is approximately 1), a $TiN_{x2}O_{y2}$ film, i.e., an oxynitride film having a graded composition, and a TiO_y film (y is approximately 2) were employed in place of the SiN_x film 112a, the $SiN_{x2}O_{y2}$ film 112d and the SiO_y film 112c of the dielectric film 12C in the semiconductor laser device shown in Fig. 4.

The $\mathrm{TiN_{x2}O_{y2}}$ film was formed by gradually reducing the content x2 of N (nitrogen) from 1 to zero and gradually increasing the content y2 of O (oxygen) from zero to 2 from the interface between the same and the $\mathrm{TiN_{x}}$ film.

In the semiconductor laser device according to Inventive Example 9, the mean operating current of 10 lots with an output power of 5 mW was 70 mA, and the yield was 89 %.

[Inventive Example 10]

In Inventive Example 10, a semiconductor laser device was prepared by removing the ${\rm TiN}_{\rm x}$ film from the semiconductor laser device according to Inventive Example 9.

In the semiconductor laser device according to Inventive

15

Example 10, the mean operating current of 10 lots with an output power of 5 mW was 71 mA, and the yield was 88 %.

[Comparative Example 1]

In comparative example 1, a dielectric film of SiO_y (y is approximately 2) having a thickness of 500 nm was employed in place of the dielectric film 12A in the structure of the semiconductor laser device shown in Fig. 1.

In the semiconductor laser device according to comparative example 1, the mean operating current of 10 lots with an output power of 5 mW was 82 mA, and the yield was 57 %.

[Comparative Example 2]

In comparative example 2, a dielectric film of SiN_{x} (x is approximately 1) was employed in place of the dielectric film 12A in the structure of the semiconductor laser device shown in Fig. 1. The thickness of this dielectric film was 500 nm.

In the semiconductor laser device according to comparative example 2, the mean operating current of 10 lots with an output power of 5 mW was 80 mA, and the yield was 60 %.

Table 2 shows the aforementioned results.

Table 2

		Operating	
	Dielectric Film	Current	Yield
	DICICCCITC TIIM	(Mean Value)	rieid
Inventive	Cin Bilm 12c/Cio	(Mean value)	
	SiN _x Film 12a/SiO _y	5 0 3	
Example 1	Film 12b	72mA	85%
Inventive	SiN_x Film 112a/		
Example 2	$SiN_{x1}O_{y1}$ Film 112b/	72mA	87%
	SiO _y Film 112c		
Inventive	SiN_x Film 112a/		
Example 3	$SiN_{x2}O_{y2}$ Film 112d/	69mA	90%
	SiO _v Film 112c		
Inventive	SiN _{x2} O _{y2} Film 112d/		
Example 4	SiO _v Film 112c	70mA	888
Inventive	SiN _{x2} O _{y2} Film 112d/		
Example 5	SiO _v Film 112c	70mA	87%
	Inventive Examples		
Inventive	1-5	Reduced by	Improved
Example 6	(Irregularities on	about 5%	by 2-3%
	Ridge Portion)		_
Inventive	TiN _x Film/TiO _y Film		
Example 7	,	75mA	83%
Inventive	TiN _x Film/TiN _{x1} O _{v1}		
Example 8	Film/TiO, Film	73mA	88%
Inventive	TiN _x Film/TiN _{x2} O _{y2}		
Example 9	Film/TiO, Film	70mA	89%
Inventive	TiN _{x2} O _{y2} Film/TiO _y		
Example 10	Film	71mA	88%
Comparative			
Example 1	SiO _v	82mA	57%
Comparative			
Example 2	SiN _x	80mA	60%

As shown in Table 2, the mean operating currents, 82 mA and 80 mA in comparative examples 1 and 2 respectively, were reduced to 69 to 75 mA in Inventive Examples 1 to 5 and 7 to 10. In comparative examples 1 and 2, the dielectric films were considerably separated and cracked, to increase the number of defectives. Such defectives were particularly remarkable in

10

15

comparative example 1. Further, good items of comparative examples 1 and 2 included a number of devices exhibiting small cracks on the dielectric films. In comparative examples 1 and 2, the operating currents were conceivably increased due to unavailable currents flowing through such cracks. The yields, 57 % and 60 % in comparative examples 1 and 2 respectively, were improved to 83 to 90 % in Inventive Examples 1 to 5 and 7 to 10.

While the $\mathrm{SiN}_{x2}\mathrm{O}_{y2}$ film 112d was formed by plasma CVD at the substrate temperature of 300°C in Inventive Example 3, an $\mathrm{SiN}_{x2}\mathrm{O}_{y2}$ film 112d having a graded composition of nitrogen and oxygen may alternatively be formed around the interface between the SiN_x film 112a and the SiO_y film 112c by directly forming the SiO_y film 112c on the SiN_x film 112a and thereafter performing heat treatment at 500 to 1000°C, for example, thereby mutually diffusing nitrogen (N) contained in the SiN_x film 112a and oxygen (O) contained in the SiO_y film 112c.

Alternatively, the film forming temperature (substrate temperature) for the SiO_y film 112c may be set to 500 to 1000°C by thermal CVD, for example, when directly forming the SiO_y film 112c on the SiN_x film 112a, thereby mutually diffusing nitrogen (N) contained in the SiN_x film 112a and oxygen (O) contained in the SiO_y film 112c during formation of the SiO_y film 112c and forming the SiN_{x2}O_{y2} film 112d having a graded composition of nitrogen and oxygen around the interface between the SiN_x

10

15

20

25

film 112a and the SiO_v film 112c.

Thus, when forming the $\mathrm{SiN}_{\mathrm{x2}}\mathrm{O}_{\mathrm{y2}}$ film 112d by diffusion, the thickness thereof can be controlled to 5 nm to 50 nm through the conditions of the annealing temperature and the time.

While the $SiN_{x2}O_{y2}$ film 112d was formed by plasma CVD at the substrate temperature of 300°C in Inventive Example 4, an $SiN_{x2}O_{y2}$ film 112d having a graded composition of nitrogen and oxygen may alternatively be formed around the interface between the nitride-based semiconductor layers 4 to 9 and the SiO_y film 112c by directly forming the SiO_y film 112c on the nitride-based semiconductor layers 4 to 9 and thereafter performing heat treatment at 500 to 1000° C, for example, thereby mutually diffusing nitrogen (N) contained in the nitride-based semiconductor layers 4 to 9 and oxygen (O) contained in the SiO_y film 112c similarly to the above. Performing heat treatment at 1000° C for 30 minutes corresponds to the Inventive Example 5.

Alternatively, the film forming temperature (substrate temperature) for the SiO_y film 112c may be set to 500 to 1000° C by thermal CVD, for example, when directly forming the SiO_y film 112c on the nitride-based semiconductor layers 4 to 9, thereby mutually diffusing nitrogen (N) contained in the nitride-based semiconductor layers 4 to 9 and oxygen (O) contained in the SiO_y film 112c during formation of the SiO_y film 112c thereby forming the $SiN_{x2}O_{y2}$ film 112d having a graded composition of

10

15

nitrogen and oxygen around the interface between the nitride-based semiconductor layers 4 to 9 and the SiO_y film 112c.

Thus, when forming the $SiN_{x2}O_{y2}$ film 112d by diffusion, the thickness thereof can be controlled to 5 nm to 50 nm through the conditions of the annealing temperature and the time.

While the substrate is prepared from the sapphire substrate having a C plane in each of the aforementioned embodiments, another plane orientation of the sapphire substrate such as an r plane or an m plane may alternatively be employed. Further alternatively, the substrate may be prepared from SiC or GaN.

Although the present invention has been described and illustrated in detail, it is clearly understood that the same is by way of illustration and example only and is not to be taken by way of limitation, the spirit and scope of the present invention being limited only by the terms of the appended claims.

WHAT IS CLAIMED IS:

- 1. A semiconductor light emitting device comprising:
- a nitride-based semiconductor layer including an 5 emission layer; and
 - a dielectric film formed on the surface of said nitride-based semiconductor layer, wherein

said dielectric film contains a nitride on the side of the interface between said dielectric film and said nitride-based semiconductor layer while containing an oxide on the side opposite to said nitride-based semiconductor layer.

- 2. The semiconductor light emitting device according to claim 1, wherein
- said dielectric film successively includes a nitride film and an oxide film as said nitride and said oxide.
 - 3. The semiconductor light emitting device according to claim 2, wherein
- said dielectric film further includes a compound film containing nitrogen and oxygen between said nitride film and said oxide film.
- 4. The semiconductor light emitting device according to claim 3, wherein

5

said compound film has such a graded composition that the content of nitrogen gradually reduces and the content of oxygen gradually increases from the side of the interface between said compound film and said nitride film toward the side of the interface between said compound film and said oxide film.

- 5. The semiconductor light emitting device according to claim 2, wherein
- said nitride film is a silicon nitride film or a titanium nitride film, and said oxide film is a silicon oxide film or a titanium oxide film.
- 6. The semiconductor light emitting device according to claim 1, wherein

said dielectric film includes a compound film containing nitrogen and oxygen as said nitride and said oxide, and said compound film has such a graded composition that the content of nitrogen gradually reduces and the content of oxygen gradually increases from the side of the interface between said compound film and said nitride-based semiconductor layer toward the opposite side.

7. The semiconductor light emitting device according to 25 claim 6, wherein

25

said compound film is a compound film containing silicon or titanium and containing nitrogen and oxygen.

- 8. A semiconductor light emitting device comprising:
- 5 a nitride-based semiconductor layer including an emission layer; and
 - a dielectric film formed on the surface of said nitride-based semiconductor layer, wherein

said dielectric film contains a compound containing

10 nitrogen and oxygen on the side of the interface between said

dielectric film and said nitride-based semiconductor layer

while containing an oxide on the side opposite to said

nitride-based semiconductor layer.

9. The semiconductor light emitting device according to claim 8, wherein

said dielectric film includes a compound film as said compound and includes an oxide film as said oxide, while said compound film has such a graded composition that the content of nitrogen gradually reduces and the content of oxygen gradually increases from the side of the interface between said compound film and said nitride-based semiconductor layer toward the opposite side.

10. The semiconductor light emitting device according

to claim 9, wherein

said compound film is a compound film containing silicon or titanium and containing nitrogen and oxygen, and said oxide film is a silicon oxide film or a titanium oxide film.

5

10

15

20

- 11. A semiconductor light emitting device comprising:
- a nitride-based semiconductor layer including an emission layer; and
- a dielectric film formed on the surface of said nitride-based semiconductor layer, wherein

said dielectric film contains a nitride on the side of the interface between said dielectric film and said nitride-based semiconductor layer while containing a compound containing nitrogen and oxygen on the side opposite to said nitride-based semiconductor layer.

12. The semiconductor light emitting device according to claim 11, wherein

said dielectric film includes a nitride film as said nitride and includes a compound film as said compound, and said compound film has such a graded composition that the content of nitrogen gradually reduces and the content of oxygen gradually increases from the side of the interface between said compound film and said nitride film toward the opposite side.

10

15

20

13. The semiconductor light emitting device according to claim 12, wherein

said nitride film is a silicon nitride film or a titanium nitride film, and said compound film is a compound film containing silicon or titanium and containing nitrogen and oxygen.

14. The semiconductor light emitting device according to claim 1, wherein

said nitride-based semiconductor layer further includes a cladding layer formed on said emission layer, said cladding layer has a flat portion and a ridge portion located on said flat portion, and said dielectric film is formed on said flat portion of said cladding layer and the side surface of said ridge portion.

15. The semiconductor light emitting device according to claim 14, wherein

the side surface of said ridge portion is irregularized, and said dielectric film is formed on said flat portion of said cladding layer and the side surface of said ridge portion.

- 16. The semiconductor light emitting device according to claim 1, wherein
- 25 said nitride-based semiconductor layer further includes

10

15

20

a first conductivity type semiconductor layer provided under second conductivity type and a emission layer said semiconductor layer provided on said emission layer, a partial region of said nitride-based semiconductor layer is removed to partially expose said first conductivity type semiconductor layer, a first electrode is formed on said exposed region of said first conductivity type semiconductor layer, a second formed on said second conductivity type is semiconductor layer, and said dielectric film is formed on the surface of said nitride-based semiconductor layer between said first electrode and said second electrode.

17. A semiconductor light emitting device comprising: an emission layer composed of a nitride-based semiconductor;

a cladding layer formed on said emission layer and composed of a nitride-based semiconductor having a flat portion and a ridge portion located on said flat portion; the side surface of said ridge portion of said cladding layer being irregularized, and

a dielectric film formed on said flat portion of said cladding layer and the side surface of said ridge portion.

18. The semiconductor light emitting device according 25 to claim 17, wherein

said dielectric film contains a nitride on the side of the interface between said dielectric film and said nitride-based semiconductor layer while containing an oxide on the side opposite to said nitride-based semiconductor layer.

5

10

20

19. The semiconductor light emitting device according to claim 17, wherein

said dielectric film contains a compound containing nitrogen and oxygen on the side of the interface between said dielectric film and said nitride-based semiconductor layer while containing an oxide on the side opposite to said nitride-based semiconductor layer.

20. The semiconductor light emitting device according to claim 17, wherein

said dielectric film contains a nitride on the side of the interface between said dielectric film and said nitride-based semiconductor layer while containing a compound containing nitrogen and oxygen on the side opposite to said nitride-based semiconductor layer.

ABSTRACT OF THE DISCLOSURE

An $\mathrm{SiN}_{\mathrm{x}}$ film is formed on partial side surfaces and an electrode forming surface excluding an n-side electrode of a first contact layer, the side surfaces of each layer, the upper surface of a second cladding layer and the side surfaces of a ridge portion. An $\mathrm{SiO}_{\mathrm{y}}$ film is formed on the $\mathrm{SiN}_{\mathrm{x}}$ film. The $\mathrm{SiN}_{\mathrm{x}}$ film and the $\mathrm{SiO}_{\mathrm{y}}$ film form a dielectric film.

F I G. 1

F I G. 2

F I G. 5

FIG. 6

F I G. 7

FIG. 8 PRIOR ART

DECLARATION FOR U.S. PATENT APPLICATION

As a below named inventor, I hereby declare that:

My residence, post office address and citizenship are as stated below next to my name.

I believe I am the original, first and sole inventor (if only one name is listed below) or an original, first a	nd
joint inventor (if plural names are listed below) of the subject matter which is claimed and for which a pate	ent
is sought on the invention entitled	

U	in invention charact
(Insert Title)	SEMICONDUCTOR LIGHT EMITTING DEVICE
,	ion of which is attached hereto unless the following is checked:
	was filed onas United States Application Number or PCT International Application Number and was amended on (if applicable).

I hereby state that I have reviewed and understand the contents of the above-identified specification, including the claim(s), as amended by any amendment referred to above.

I acknowledge the duty to disclose information which is material to the patentability as defined in Title 37, Code of Federal Regulations, § 1.56.

I hereby claim foreign priority benefits under Title 35, United States Code, § 119(a) - (d) of any foreign application(s) for patent or inventor's certificate listed below and have also identified below any foreign application for patent or inventor's certificate having a filing date before that of the application on which priority is claimed:

				Priority Claimed
(List prior	11-271128	Japan	24/9/1999	_X Yes No
foreign	(Number)	(Country)	(Day/Month/Year Filed)	
applications.	2000-276205	Japan	12/9/2000	_X_ Yes No
See note A	(Number)	(Country)	(Day/Month/Year Filed)	
on back of				Yes No
this page)	(Number)	(Country)	(Day/Month/Year Filed)	
		l list for additional prior foreiges Code, § 119(e) of any Ur		

(Application Number)	(Filing Date)	
(Application Number)	(Filing Date)	

I hereby claim the benefit under Title 35, United States Code, § 120 of any United States application(s) listed below and, insofar as the subject matter of each of the claims of this application is not disclosed in the prior United States application in the manner provided by the first paragraph of Title 35, United States Code, § 112, I acknowledge the duty to disclose information which is material to patentability as defined in Title 37, Code of Federal Regulations, § 1.56 which became available between the filing date of the prior application and the national or PCT international filing date of the application:

(List Prior U.S. Applications)	(Appln. Serial No.)	(Filing Date)	(Status) (patented, pending, abandoned)
	(Appln. Serial No.)	(Filing Date)	(Status) (patented, pending, abandoned)

I hereby appoint the following attorney(s) and/or agent(s) to prosecute this application and to transact all business in the Patent and Trademark Office connected therewith:

James E. Armstrong, III, Reg. No. 18,366; William F. Westerman, Reg. No. 29,988; Ken-Ichi Hattori, Reg. No. 32,861; Le-Nhung McLeland, Reg. No. 31,541; Ronald F. Naughton, Reg. No. 24,616; John R. Pegan, Reg. No. 18,069; William G. Kratz, Jr., Reg. No. 22,631; Albert Tockman, Reg. No. 19,722; Mel R. Quintos, Reg. No. 31,898; Donald W. Hanson, Reg. No. 27,133; Stephen G. Adrian, Reg. No. 32,878; William L. Brooks, Reg. No. 34,129; John F. Carney, Reg. No. 20,276; Edward F. Welsh, Reg. No. 22,455; Patrick D. Muir, Reg. No. 37,403; Gay A. Spahn, Reg. No. 34,978; and John P. Kong, Reg. No. 40,054.

Please direct all communications to the following address:

ARMSTRONG, WESTERMAN, HATTORI, McLELAND & NAUGHTON 1725 K Street, N.W., Suite 1000 Washington, D.C. 20006

Telephone: (202) 659-2930 Fax: (202) 887-0357

I hereby declare that all statements made herein of my own knowledge are true and that all statements made on information and belief are believed to be true; and further that these statements were made with the knowledge that willful false statements and the like so made are punishable by fine or imprisonment, or both, under Title 18 of the United States Code, \$1001 and that such willful false statements may jeopardize the validity of the application or any patent issued thereon.

	Full name of sole or fir	st inventor (given name, family name) <u>Yasuhiko Nomura</u>
(See note	Inventor's Signature	Yasuhiko Nomura Date Sept. 14, 2000
C above)	Residence	Moriguchi-shi, Osaka-fu, Japan
	Citizenship	Japanese
	Post Office Address	c/o SANYO ELECTRIC CO., LTD., 5-5 Keihanhondori 2-chome,
		Moriguchi-shi, Osaka-fu 570-8677, Japan

Full name of second in	ventor (giyen name, family name) Nobuhiko Hayashi
Inventor's Signature	nobuhika Ningashi Date Sept. 14, 2000
Residence	Osaka-shi, Osaka-fu, Japan
Citizenship	Japanese
Post Office Address	c/o SANYO ELECTRIC CO., LTD., 5-5 Keihanhondori 2-chome, Moriguchi-shi,
	Osaka-fu 570-8677, Japan
	entor (given name, family name) Masayuki Hata
Inventor's Signature	Masayaki Hata Date Sept. 14, 2000
Residence	Hirakata-shi, Osaka-fu, Japan
Citizenship	
Post Office Address	c/o SANYO ELECTRIC CO., LTD., 5-5 Keihanhondori 2-chome, Moriguchi-shi
	Osaka-fu 570-8677, Japan
Full name of fourth in	ventor (given name, family name) <u>Masayuki Shono</u>
Inventor's Signature	Masyli Strom Date Sept. 14, 2000
Residence	Hirakata-shi, Osaka-fu, Japan
Citizenship	<u>Japanese</u>
Post Office Address	c/o SANYO ELECTRIC CO., LTD., 5-5 Keihanhondori 2-chome, Moriguchi-shi
	Osaka-fu 570-8677, Japan