D 24 4

최백준 choi@startlink.io

501 N 53 M N-1 = 2424 U, V 33 (24

EZ

三己

Tree

- 자료구조의 일종
- 사이클이 없는 그래프
- 정점의 개수: V
- 간선의 개수: V-1

루트있는트리

Rooted Tree

- 루트가 있는 트리
- 1번이 루트이다

루트있는트리

Rooted Tree

• 루트 부터 아래로 방향을 정할 수 있다

부모

Parent

- 1은 2의 부모
- 2는 4의 부모

자식

Children

- 2는 1의 자식
- 4는 2의 자식
- 3의 자식: 6, 7

단말정점

Leaf Node

• 4, 5, 6, 7

형제

Sibling

• 4와 5는 형제

• 2와 3도 형제

깊이

Depth

• 루트에서 부터 거리 (루트의 깊이를 0으로 하는 경우와 1로 하는 경우가 있다)

높이

Height

• 깊이 중 가장 큰 값 2 또는 3

조상, 자손

Ancestor, Descendent

- p가 q보다 루트에 가까우면
- p는 q의 조상
- q는 p의 자손

이진트리

Binary Tree

• 자식을 최대 2개만 가지고 있는 트리

三己의 班현

三리의 표현

Representation of Tree

- 트리는 그래프이기 때문에, 그래프의 표현과 같은 방식으로 저장할 수 있다.
- 또는
- 트리의 모든 노드는 부모를 하나 또는 0개만 가지기 때문에 부모만 저장하는 방식으로 저장할 수 있다
- 부모가 0개인 경우는 트리의 루트인데, 이 경우 부모를 -1이나 0으로 처리하는 방식을 사용한다

三리의 표현

SNI Tond

Representation of Tree

• 트리의 부모만 저장하는 방식

	(1)	$\left(2\right)$	(3)	4	5	6	7
parent[i]		1	1	2	2	3	3

Representation of Tree

• 이진 트리의 경우에는 배열로 표현할 수 있다.

三己의 표현

BST

Representation of Tree

• 이진 트리의 경우에는 구조체나 클래스를 이용할 수도 있다

```
struct Node {
   Node *left;
   Node *right;
}
```


0 252

- 트리의 모든 노드를 방문하는 순서이다.
- 그래프의 경우에는 DFS와 BFS가 있었다
- 트리에서도 위의 두 방법을 사용할 수 있다.
- DFS는 아래와 같이 3가지 출력 순서가 있다
- 프리오더
- 인오더
- 포스트오더
- 세 방법의 차이는 노드 방문 처리를 언제 할 것인가이다.

- 프리오더
 - 노드 방문
 - 왼쪽자식 노드를 루트로 하는 서브 트리 프리오더
 - 오른쪽 자식 노드를 루트로 하는 서브 트리 프리오더
- 인오더
- 포스트오더

- 프리오더
- 인오더
 - 왼쪽 자식 노드를 루트로 하는 서브 트리 인오더
 - 노드 방문
 - 오른쪽 자식 노드를 루트로 하는 서브 트리 인오더
- 포스트오더

- 프리오더
- 인오더
- 포스트오더
 - 왼쪽 자식 노드를 루트로 하는 서브 트리 포스트오더
 - 오른쪽 자식 노드를 루트로 하는 서브 트리 포스트오더
 - 노드 방문

四日오더

- 노드 방문
- 왼쪽자식 프리오더
- 오른쪽자식 프리오더

四日9日

- 노드 방문
 - A
- 왼쪽자식 프리오더
- 오른쪽자식 프리오더

四日9日

- 노드 방문
 - A
- 왼쪽자식 프리오더
- 오른쪽자식 프리오더

- 노드 방문
 - A
- 왼쪽자식 프리오더
 - 노드 방문
 - 왼쪽자식 프리오더
 - 오른쪽 자식 프리오더
- 오른쪽자식 프리오더

- 노드 방문
 - A
- 왼쪽 자식 프리오더
 - 노드 방문
 - B
 - 왼쪽자식 프리오더
 - 오른쪽 자식 프리오더
- 오른쪽 자식 프리오더

- 노드 방문
 - A
- 왼쪽 자식 프리오더
 - 노드 방문
 - B
 - 왼쪽자식 프리오더
 - D
 - 오른쪽 자식 프리오더
- 오른쪽자식 프리오더

四日9日

- 노드 방문
 - A
- 왼쪽 자식 프리오더
 - 노드 방문
 - B
 - 왼쪽자식 프리오더
 - D
 - 오른쪽 자식 프리오더
 - E
- 오른쪽자식 프리오더

四日9日

- 노드 방문
 - A
- 왼쪽 자식 프리오더
 - BDE
- 오른쪽자식 프리오더

- 노드 방문
 - A
- 왼쪽자식 프리오더
 - BDE
- 오른쪽 자식 프리오더
 - 노드 방문
 - 왼쪽자식 프리오더
 - 오른쪽 자식 프리오더

四20日

- 노드 방문
 - A
- 왼쪽자식 프리오더
 - BDE
- 오른쪽 자식 프리오더
 - 노드 방문
 - (
 - 왼쪽자식 프리오더
 - 오른쪽 자식 프리오더

- 노드 방문
 - A
- 왼쪽자식 프리오더
 - BDE
- 오른쪽 자식 프리오더
 - 노드 방문
 - (
 - 왼쪽자식 프리오더
 - F
 - 오른쪽 자식 프리오더

四日9日

- 노드 방문
 - A
- 왼쪽자식 프리오더
 - BDE
- 오른쪽 자식 프리오더
 - 노드 방문
 - (
 - 왼쪽자식 프리오더
 - F
 - 오른쪽 자식 프리오더
 - G

四日9日

- 노드 방문
 - A
- 왼쪽자식 프리오더
 - BDE
- 오른쪽 자식 프리오더
 - CFG

- ABDECFG
- 그래프의 DFS이 순서와 같다

- 왼쪽자식인오더
- 노드 방문
- 오른쪽자식인오더

- 왼쪽자식인오더
 - 왼쪽자식인오더
 - 노드 방문
 - 오른쪽 자식 인오더
- 노드 방문
- 오른쪽 자식 인오더

- 왼쪽자식인오더
 - 왼쪽 자식 인오더
 - D
 - 노드 방문
 - 오른쪽 자식 인오더
- 노드 방문
- 오른쪽 자식 인오더

- 왼쪽자식인오더
 - 왼쪽자식인오더
 - D
 - 노드 방문
 - B
 - 오른쪽 자식 인오더
- 노드 방문
- 오른쪽 자식 인오더

인모더

- 왼쪽 자식 인오더
 - 왼쪽자식인오더
 - D
 - 노드 방문
 - B
 - 오른쪽 자식 인오더
 - E
- 노드 방문
- 오른쪽 자식 인오더

- 왼쪽자식인오더
 - DBE
- 노드 방문
- 오른쪽자식인오더

- 왼쪽자식인오더
 - DBE
- 노드 방문
 - A
- 오른쪽 자식 인오더

- 왼쪽자식인오더
 - DBE
- 노드 방문
 - A
- 오른쪽 자식 인오더
 - 왼쪽자식인오더
 - 노드 방문
 - 오른쪽 자식 인오더

- 왼쪽자식인오더
 - DBE
- 노드 방문
 - A
- 오른쪽 자식 인오더
 - 왼쪽 자식 인오더
 - F
 - 노드 방문
 - 오른쪽 자식 인오더

- 왼쪽자식인오더
 - DBE
- 노드 방문
 - A
- 오른쪽 자식 인오더
 - 왼쪽자식인오더
 - F
 - 노드 방문
 - C
 - 오른쪽 자식 인오더

- 왼쪽자식인오더
 - DBE
- 노드 방문
 - A
- 오른쪽 자식 인오더
 - 왼쪽자식인오더
 - F
 - 노드 방문
 - C
 - 오른쪽 자식 인오더
 - G

- 왼쪽자식인오더
 - DBE
- 노드 방문
 - A
- 오른쪽 자식 인오더
 - FCG

In-order

DBEAFCG

- 왼쪽자식 포스트오더
- 오른쪽 자식 포스트오더
- 노드 방문

亚人三오더

- 왼쪽 자식 포스트오더
 - 왼쪽자식 포스트오더
 - 오른쪽 자식 포스트오더
 - 노드 방문
- 오른쪽 자식 포스트오더
- 노드 방문

- 왼쪽 자식 포스트오더
 - 왼쪽자식 포스트오더
 - D
 - 오른쪽 자식 포스트오더
 - 노드 방문
- 오른쪽 자식 포스트오더
- 노드 방문

- 왼쪽 자식 포스트오더
 - 왼쪽자식 포스트오더
 - D
 - 오른쪽 자식 포스트오더
 - E
 - 노드 방문
- 오른쪽 자식 포스트오더
- 노드 방문

- 왼쪽 자식 포스트오더
 - 왼쪽자식 포스트오더
 - D
 - 오른쪽 자식 포스트오더
 - E
 - 노드 방문
 - B
- 오른쪽 자식 포스트오더
- 노드 방문

亚人巨见더

- 왼쪽 자식 포스트오더
 - DEB
- 오른쪽 자식 포스트오더
- 노드 방문

亚人三오더

- 왼쪽자식 포스트오더
 - DEB
- 오른쪽 자식 포스트오더
 - 왼쪽자식 포스트오더
 - 오른쪽 자식 포스트오더
 - 노드 방문
- 노드 방문

亚人三오더

- 왼쪽자식 포스트오더
 - DEB
- 오른쪽 자식 포스트오더
 - 왼쪽 자식 포스트오더
 - F
 - 오른쪽 자식 포스트오더
 - 노드 방문
- 노드 방문

- 왼쪽자식 포스트오더
 - DEB
- 오른쪽 자식 포스트오더
 - 왼쪽자식 포스트오더
 - F
 - 오른쪽 자식 포스트오더
 - G
 - 노드 방문
- 노드 방문

亚 型 型 型 型 型 に は

- 왼쪽자식 포스트오더
 - DEB
- 오른쪽 자식 포스트오더
 - 왼쪽자식 포스트오더
 - F
 - 오른쪽 자식 포스트오더
 - G
 - 노드 방문
 - C
- 노드 방문

亚人巨见더

- 왼쪽자식 포스트오더
 - DEB
- 오른쪽 자식 포스트오더
 - FGC
- 노드 방문

- 왼쪽자식 포스트오더
 - DEB
- 오른쪽 자식 포스트오더
 - FGC
- 노드 방문
 - A

亚丛巨见더

Postorder

DEBFGCA

四日오더

- 노드 방문
- 왼쪽자식 프리오더
- 오른쪽자식 프리오더

四日오더

- 노드 방문
 - A
- 왼쪽자식 프리오더
- 오른쪽자식 프리오더

- 노드 방문
 - A
- 왼쪽 자식 프리오더
 - 노드 방문
 - 왼쪽자식 프리오더
 - 오른쪽 자식 프리오더
- 오른쪽 자식 프리오더

- 노드 방문
 - A
- 왼쪽 자식 프리오더
 - 노드 방문
 - B
 - 왼쪽자식 프리오더
 - 오른쪽 자식 프리오더
- 오른쪽 자식 프리오더

- 노드 방문
 - A
- 왼쪽 자식 프리오더
 - 노드 방문
 - B
 - 왼쪽자식 프리오더
 - D
 - 오른쪽 자식 프리오더
- 오른쪽자식 프리오더

四四见더

- 노드 방문
 - A
- 왼쪽 자식 프리오더
 - 노드 방문
 - B
 - 왼쪽자식 프리오더
 - D
 - 오른쪽 자식 프리오더
 - 노드 방문
 - 왼쪽자식 프리오더
 - 오른쪽 자식 프리오더
- 오른쪽자식 프리오더

- 노드 방문
 - A
- 왼쪽 자식 프리오더
 - 노드 방문
 - B
 - 왼쪽자식 프리오더
 - D
 - 오른쪽 자식 프리오더
 - 노드 방문
 - E
 - 왼쪽자식 프리오더
 - 오른쪽 자식 프리오더

- 노드 방문
- 왼쪽 자식 프리오더
 - 노드 방문
 - B
 - 왼쪽자식 프리오더
 - D
 - 오른쪽 자식 프리오더
 - 노드 방문
 - 왼쪽 자식 프리오더

- 노드 방문
 - A
- 왼쪽 자식 프리오더
 - 노드 방문
 - B
 - 왼쪽자식 프리오더
 - D
 - 오른쪽 자식 프리오더
 - EG
- 오른쪽자식 프리오더

四日오더

- 노드 방문
 - A
- 왼쪽 자식 프리오더
 - BDEG
- 오른쪽자식 프리오더

四日9日

- 노드 방문
 - A
- 왼쪽자식 프리오더
 - BDEG
- 오른쪽 자식 프리오더
 - 노드 방문
 - 왼쪽자식 프리오더
 - 오른쪽 자식 프리오더

- 노드 방문
 - A
- 왼쪽자식 프리오더
 - BDEG
- 오른쪽 자식 프리오더
 - 노드 방문
 - (
 - 왼쪽자식 프리오더
 - 오른쪽 자식 프리오더

- 노드 방문
 - A
- 왼쪽자식 프리오더
 - BDEG
- 오른쪽 자식 프리오더
 - 노드 방문
 - (
 - 왼쪽자식 프리오더
 - 오른쪽 자식 프리오더
 - F

四日오더

- 노드 방문
 - A
- 왼쪽자식 프리오더
 - BDEG
- 오른쪽 자식 프리오더
 - CF

四四见더

Pre-order

ABDEGCF

인모더

- 왼쪽자식인오더
- 노드 방문
- 오른쪽자식인오더

- 왼쪽자식인오더
 - 왼쪽자식인오더
 - 노드 방문
 - 오른쪽 자식 인오더
- 노드 방문
- 오른쪽 자식 인오더

- 왼쪽자식인오더
 - 왼쪽 자식 인오더
 - D
 - 노드 방문
 - 오른쪽 자식 인오더
- 노드 방문
- 오른쪽 자식 인오더

- 왼쪽자식인오더
 - 왼쪽자식인오더
 - D
 - 노드 방문
 - B
 - 오른쪽 자식 인오더
- 노드 방문
- 오른쪽 자식 인오더

- 왼쪽자식인오더
 - 왼쪽자식인오더
 - D
 - 노드 방문
 - B
 - 오른쪽 자식 인오더
 - 왼쪽 자식 인오더
 - 노드 방문
 - 오른쪽 자식 인오더
- 노드 방문
- 오른쪽 자식 인오더

- 왼쪽 자식 인오더
 - 왼쪽자식인오더
 - D
 - 노드 방문
 - B
 - 오른쪽 자식 인오더
 - 왼쪽 자식 인오더
 - G
 - 노드 방문
 - 오른쪽 자식 인오더
- 노드 방문
- 오른쪽 자식 인오더

- 왼쪽자식인오더
 - 왼쪽자식인오더
 - D
 - 노드 방문
 - B
 - 오른쪽 자식 인오더
 - 왼쪽자식인오더
 - G
 - 노드 방문
 - E
 - 오른쪽 자식 인오더
- 노드 방문

인모더

- 왼쪽자식인오더
 - 왼쪽자식인오더
 - D
 - 노드 방문
 - B
 - 오른쪽 자식 인오더
 - GE
- 노드 방문
- 오른쪽 자식 인오더

- 왼쪽자식인오더
 - DBGE
- 노드 방문
- 오른쪽자식인오더

- 왼쪽자식인오더
 - DBGE
- 노드 방문
 - A
- 오른쪽자식인오더

- 왼쪽자식인오더
 - DBGE
- 노드 방문
 - A
- 오른쪽 자식 인오더
 - 왼쪽자식인오더
 - 노드 방문
 - 오른쪽 자식 인오더

- 왼쪽자식인오더
 - DBGE
- 노드 방문
 - A
- 오른쪽 자식 인오더
 - 왼쪽자식인오더
 - 노드 방문
 - (
 - 오른쪽 자식 인오더

- 왼쪽자식인오더
 - DBGE
- 노드 방문
 - A
- 오른쪽 자식 인오더
 - 왼쪽자식인오더
 - 노드 방문
 - (
 - 오른쪽 자식 인오더
 - F

- 왼쪽자식인오더
 - DBGE
- 노드 방문
 - A
- 오른쪽 자식 인오더
 - CF

인모더

In-order

DBGEACF

- 왼쪽자식 포스트오더
- 오른쪽자식 포스트오더
- 노드 방문

亚 型 型 型 型 型 目

- 왼쪽 자식 포스트오더
 - 왼쪽자식 포스트오더
 - 오른쪽 자식 포스트오더
 - 노드 방문
- 오른쪽 자식 포스트오더
- 노드 방문

亚 型 型 型 型 型 型 型

- 왼쪽 자식 포스트오더
 - 왼쪽 자식 포스트오더
 - D
 - 오른쪽 자식 포스트오더
 - 노드 방문
- 오른쪽 자식 포스트오더
- 노드 방문

- 왼쪽 자식 포스트오더
 - 왼쪽자식 포스트오더
 - D
 - 오른쪽 자식 포스트오더
 - 왼쪽자식 포스트오더
 - 오른쪽 자식 포스트오더
 - 노등 방문
 - 노드 방문
- 오른쪽 자식 포스트오더
- 노드 방문

- 왼쪽 자식 포스트오더
 - 왼쪽자식 포스트오더
 - D
 - 오른쪽 자식 포스트오더
 - 왼쪽 자식 포스트오더
 - G
 - 오른쪽 자식 포스트오더
 - 노등 방문
 - 노드 방문
- 오른쪽자식 포스트오더
- 노드 방문

亚人三오더

- 왼쪽 자식 포스트오더
 - 왼쪽자식 포스트오더
 - D
 - 오른쪽 자식 포스트오더
 - 왼쪽자식 포스트오더
 - G
 - 오른쪽 자식 포스트오더
 - 노등 방문
 - E
 - 노드 방문
- 오른쪽자식 포스트오더
- 노드 방문

- 왼쪽 자식 포스트오더
 - 왼쪽자식 포스트오더
 - D
 - 오른쪽 자식 포스트오더
 - GE
 - 노드 방문
- 오른쪽 자식 포스트오더
- 노드 방문

- 왼쪽 자식 포스트오더
 - 왼쪽자식 포스트오더
 - D
 - 오른쪽 자식 포스트오더
 - GE
 - 노드 방문
 - B
- 오른쪽 자식 포스트오더
- 노드 방문

- 왼쪽자식 포스트오더
 - DGEB
- 오른쪽자식 포스트오더
- 노드 방문

亚人三오더

- 왼쪽자식 포스트오더
 - DGEB
- 오른쪽 자식 포스트오더
 - 왼쪽자식 포스트오더
 - 오른쪽 자식 포스트오더
 - 노드 방문
- 노드 방문

亚人三오더

- 왼쪽자식 포스트오더
 - DGEB
- 오른쪽 자식 포스트오더
 - 왼쪽자식 포스트오더
 - 오른쪽 자식 포스트오더
 - F
 - 노드 방문
- 노드 방문

- 왼쪽자식 포스트오더
 - DGEB
- 오른쪽 자식 포스트오더
 - 왼쪽자식 포스트오더
 - 오른쪽 자식 포스트오더
 - F
 - 노드 방문
 - C
- 노드 방문

- 왼쪽자식 포스트오더
 - DGEB
- 오른쪽 자식 포스트오더
 - FC
- 노드 방문

- 왼쪽자식 포스트오더
 - DGEB
- 오른쪽자식 포스트오더
 - FC
- 노드 방문
 - A

亚丛巨见더

Post-order

DGEBFCA

트리순회

https://www.acmicpc.net/problem/1991

• 이진 트리의 프리오더, 인오더, 포스트오더 순서를 출력하는 문제

트리순회

https://www.acmicpc.net/problem/1991

• 소스: http://boj.kr/df63db6a94c3482b93a098af39e7affa

$$(1+2)+3$$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2+3)$
 $(2$

트리의높이와너비

- 이진 트리를 다음과 같은 규칙에 따라 격자에 그리려고 한다
- 1. 이진트리에서 같은 레벨(level)에 있는 노드는 같은 행에 위치한다.
- 2. 한 열에는 한 노드만 존재한다.
- 3. 임의의 노드의 왼쪽 부트리(left subtree)에 있는 노드들은 해당 노드보다 왼쪽의 열에 위치하고, 오른쪽 부트리(right subtree)에 있는 노드들은 해당 노드보다 오른쪽의 열에 위치한다.
- 4. 노드가 배치된 가장 왼쪽 열과 오른쪽 열 사이엔 아무 노드도 없이 비어있는 열은 없다.

트리의높이와너비

https://www.acmicpc.net/problem/2250

• 이진 트리를 다음과 같은 규칙에 따라 격자에 그리려고 한다

트리의높이와너비

- 각 노드가 배치되는 순서는 인오더와 같다
- 인오더를 수행하면서, 몇 번인지, 몇 번째 레벨인지 기록한다

트리의높이와너비

https://www.acmicpc.net/problem/2250

• 소스: http://boj.kr/dae0019b770d4b20a25cdf67a8e74163

54mm 文(てとみ2) DFS BFS 트리의 탐색 0/0/0/ = 2/2/2 U/V

트리의탐색

BFS

- 트리의 탐색은 DFS/BFS 알고리즘을 이용해서 할 수 있다.
- 트리는 사이클이 없는 그래프이기 때문에
- 임의의 두 정점 사이의 경로는 1개이다.
- 따라서, BFS 알고리즘을 이용해서 최단 거리를 구할 수 있다.
- 이유: 경로가 1개라 찾은 그 경로가 최단 경로

트리의부모찾기

https://www.acmicpc.net/problem/11725

- 그래프로 트리를 입력받고
- 루트를 1이라고 정했을 때
- 각 노드의 부모를 찾는 문제

• BFS 탐색으로 해결할 수 있다.

트리의부모찾기

```
queue<int> q;
\forall depth[1] = 0; \ check[1] = true; parent[1] = 0; q.push(1);
while (!q.empty()) {
    int x = q.front(); q.pop();
    for (int y : a[x]) {
        if (!check[y]) {
            depth[y] = depth[x] + 1;
            check[y] = true;
            parent[y] = x;
            q.push(y);
```


트리의부모찾기

https://www.acmicpc.net/problem/11725

• 소스: http://boj.kr/02fac9bbb2754e2e926e607247cf1018

Diamater

- 트리의 지름은 탐색 2번으로 구할 수 있다.
- 1. 한 정점에서 모든 정점까지의 거리를 구한다. 이 때, 가장 먼 거리인 정점을 u라고 한다.
- 2. u에서 모든 정점까지의 거리를 구한다. 이 때, 가장 먼 거리인 정점 v를 구한다.
- d(u, v)를 u와 v사이의 거리라고 했을 때, d(u, v)가 트리의 지름이다

Diamater

• 포스트 오더를 이용해서도 구할 수 있다

• 루트가 v일 때, 트리의 지름은 v를 통과하거나

• v를 통과하지 않는 경우에는 각각의 자식 $c_1, c_2, ...$ 지름을 구한다

• v를 통과하는 경우에는 트리의 지름은 <u>가</u>라의 자식 $c_1, c_2, ..., c_k$ 에서 리프노드까지의 거리 중에 가장 큰 값 2개를 이용해서 만들 수 있따

트리의지름

https://www.acmicpc.net/problem/1167

• 트리의 지름을 구하는 문제

- 탐색 2번 이용한 소스: http://boj.kr/ae22c0131578408b99c08c1064643e9d
- 포스트 오더 이용한 소스: http://boj.kr/2c1ff6d873f647b496b6baba6e2ad74b

트리의지름

https://www.acmicpc.net/problem/1967

• 트리의 지름을 구하는 문제

- 탐색 2번 이용한 소스: http://boj.kr/8c473026f8b74265bb65d68aa62c6d40
- 포스트 오더 이용한 소스: http://boj.kr/2697de4b9b1c439897d464a33421be98