

CICLO DE INSTRUÇÕES OU DE EXECUÇÃO

CICLO DE EXECUÇÃO

No inicio de cada ciclo de instrução, o processador busca uma instrução da memoria.

Em um processador típico, um registrador chamado contador de programa (PC) mantem o endereço da instrução a ser buscada em seguida.

A menos que seja solicitado de outra maneira, o processador sempre incrementa o PC após cada busca de instrução, de modo que buscar a próxima instrução em sequência (ou seja, a instrução localizada no próximo endereço de memória mais alto).

CICLO DE EXECUÇÃO

ESTADOS DO CICLO DE INSTRUÇÕES

Cálculo de endereço de instrução (iac, do inglês instruction address calculation): determina o endereço da próxima instrução a ser executada. Normalmente, isso envolve acrescentar um número fixo ao endereço da instrução anterior.

Busca da instrução (if, do inglês instruction fetch): lê a instrução do seu local da memória para o processador.

Decodificação da operação da instrução (iod, do inglês instruction operation decoding): analisa a instrução para determinar o tipo de operação a ser realizado e o operando ou operandos a serem utilizados.

ESTADOS DO CICLO DE INSTRUÇÕES

Cálculo do endereço do operando (oac, do inglês operation address calculation): se a operação envolve referência a um operando na memória ou disponível via E/S, então determina o endereço do operando.

Busca do operando (of, do inglês operation fetch): busca o operando da memória ou o lê da E/S.

Operação dos dados (do, do inglês data operation): realiza a operação indicada na instrução.

Armazenamento do operando (os, do inglês operand store): escreve o resultado na memória ou envia para a E/S.

EXEMPLO DE CICLO DE EXECUÇÃO

Por exemplo, o processador PDP-11 inclui uma instrução, expressa simbolicamente como ADD B,A, que armazena a soma do conteúdo dos locais de memória B e A ao local de memória A. Ocorre um único ciclo de instrução com as seguintes etapas:

- 1. Buscar a instrução ADD.
- Ler o conteúdo do local de memória A no processador.
- 3. Ler o conteúdo do local de memória B para o processador. Para que o conteúdo de A não seja perdido, o processador precisa ter pelo menos dois registradores para armazenar valores de memória, ao invés de um único acumulador.
- 4. Somar os dois valores.
- 5. Escrever o resultado do processador no local de memória A.

E se o sistema operacional precisar dar interromper uma tarefa do processador. Como isso acontece ?

Arquitetura de computadores INTERRUPÇÕES

Programa: Gerada por alguma que ocorre como resultado da execução de uma instrução, como o overflow aritmético, divisão por zero, tentativa de executar uma instrução de máquina ilegal ou referência fora do espaço de memória permitido para o usuário.

Timer: Gerada por timer dentro do processo. Isso permite que o sistema operacional realize certas funções regularmente.

E/S: Gerada por um controlador de E/S para sinalizar o término normal de uma operação ou para sinalizar uma série de condições de erro.

Falha de hardware: Gerada por uma falha como falta de energia ou erro de paridade de memória.

Programa em execução

FLUXOGRAMA DO PROCESSAMENTO COM INTERRUPÇÕES

Arquitetura de computadores 13

INTERRUPÇÕES MÚLTIPLAS

Um programa pode estar recebendo dados de uma linha de comunicações e imprimindo resultados.

A impressora gerará uma interrupção toda vez que completar uma operação de impressão.

O controlador da linha de comunicação gerará uma interrupção toda vez que uma unidade de dados chegar. A unidade poderia ser um único caractere ou um bloco, dependendo da natureza do controle das comunicações.

É possível que uma interrupção de comunicações ocorra enquanto uma interrupção de impressora esteja sendo processada.

INTERRUPÇÕES MÚLTIPLAS

Duas técnicas podem ser utilizadas para lidar com múltiplas interrupções.

A primeira é desativar as interrupções enquanto uma interrupção estiver sendo processada.

Uma segunda técnica é definir prioridades para interrupções e permitir que uma interrupção de maior prioridade faça com que um tratamento de interrupção com menor prioridade seja interrompido

SINCRONIZACAO DO PROGRAMA: ESPERA CURTA PELA E/S

Arquitetura de computadores 16

PROCESSADORES MULTICORE

PROCESSADORES MULTICORE

- Um computador multicore, ou chip multiprocessador, combina dois ou mais processadores em um único chip de computador.
- O uso de chips com processador único cada vez mais complexo atingiu o limite por conta do desempenho do hardware, incluindo limites no paralelismo em nível de instruções e limitações de energia.
- Cada núcleo consiste de todos os componentes de um processador independente, como registradores, ALU, hardware de pipeline e unidade de controle, mais caches L1 de dados e de instruções.

PROCESSADORES MULTICORE

Métricas de desempenho entre computadores

@ MARK ANDERSON

WWW.ANDERTOONS.COM

Métricas de desempenho entre computadores

TEMPO DE RESPOSTA OU EXECUÇÃO

Quanto tempo o computador leva para executar uma tarefa.

VAZÃO (THROUGHPUT)

Trabalho total feito por unidade de tempo.

Ex.: tarefas / transações/ ... Por hora

Comparações de desempenho

A máquina A é mais rápida que a máquina B:

$$T_e(P_i, A) < T_e(P_i, B)$$

A máquina A é n% mais rápida que a máquina B:

$$\frac{T_e(P_i, B)}{T_e(P_i, A)} = 1 + \frac{n}{100}$$

Comparações de desempenho

O desempenho é recíproco (inverso) ao tempo de execução

$$D(P_i, S_j) = \frac{1}{T_e(P_i, S_j)}$$

 P_i : Programa i

 S_i : Sistema ou máquina j

Comparações de desempenho entre sistemas

Para comparar a melhoria de desempenho de A em relação a B:

$$n = 100 * \frac{D(P_i, A) - D(P_i, B)}{D(P_i, B)}$$

Onde

 $D(P_i, A)$ é o desempenho da máquina mais rápida e $D(P_i, B)$ o da máquina mais lenta

Para comparar a melhoria de desempenho de A em relação a B:

$$T_e = CPU \ Clock \ Cycles \ x \ Clock \ cycles$$

$$= \frac{CPU \ Clock \ Cycles}{Clock \ Rate}$$

Tudo mais sendo igual, é possível:

- 1) Reduzir o número de ciclos necessários para um programa.
- 2) Aumentar o clock rate (taxa ou frequência), ou diminuir o tempo (período) do clock.

Exemplo de comparação de desempenho

- Máquina A executa um programa em 10 segundos
- Máquina B executa o mesmo programa em 15 segundos

Compare o desempenho de A e B:

$$n = \frac{desempenho_{A}}{desempenho_{B}} = \frac{tempo \ de \ execução_{B}}{tempo \ de \ execução_{A}}$$

$$n = \frac{15}{10}$$

$$n = 1,5$$

Exemplo de desempenho

- Computador A executa um programa em 10 segundos e tem um clock de 4 GHz
- Computador B execute esse programa em 6 segundos e B exija 1,2 vez mais ciclos de clock do que o computador A

Qual a velocidade de clock de B?

Exemplo de desempenho

$$tempo \ de \ execução_{\scriptscriptstyle A} = \frac{ciclos \ de \ clock_{\scriptscriptstyle A}}{velocidade \ de \ clock_{\scriptscriptstyle A}}$$

$$10 \text{ s} = \frac{\text{ciclos de clock}_A}{4x10^9}$$

 $ciclos\ de\ clock_A = 40x10^9\ ciclos$

tempo de execução_B =
$$\frac{1,2xciclos de clockA}{velocidade de clockB}$$

6 s x velocidade de
$$clock_B = 1,2x40x10^9$$

velocidade de $clock_B = 8GHz$

Exemplo de CPI

Considerar que temos duas implementações da mesma arquitetura do conjunto de instruções (ISA). Para certo programa:

- Máquina A tem um tempo de ciclo de clock de 250 ps e um CPI de 2.0
- Machine B tem um tempo de ciclo de clock de 500 ps e um CPI de 1.2

Qual máquina é mais rápida para esse programa, e por quanto?

Exemplo de CPI

$$ciclos\ de\ clock_A = Ix2,0$$

$$ciclos\ de\ clock_B = Ix1,2$$

 $Tempo_A = ciclos \ de \ clock_A x \ tempo \ do \ ciclo \ de \ clock_A$

$$= Ix2,0x250ps = 500xIps$$

 $Tempo_B = ciclos \ de \ clock_B x \ tempo \ do \ ciclo \ de \ clock_B$

$$= Ix1,2x500 ps = 600xIps$$

$$n = \frac{tempo \ de \ execução_{\rm B}}{tempo \ de \ execução_{\rm A}} = \frac{600xIps}{500xIps} = 1,2$$

O futuro é uma caixa de surpresas...

REFERÊNCIAS

STALLINGS, William. **Arquitetura e organização de computadores: projeto para o desempenho**. 8 ed. São Paulo: Prentice Hall: Person Education, 2010. 624 p. ISBN 9788576055648.

TANENBAUM, Andrew S. **Organização estruturada de computadores**. 5. ed São Paulo: Pearson Prentice Hall, 2007. 449 p. ISBN 9788576050674.

[Disponível em https://youtu.be/5LPFB4Nv4FA]

O QUE É MAIS IMPORTANTE: PROCESSADOR, NÚCLEOS OU CLOCK?

[Disponível em https://youtu.be/VXY4U3rzrSQ]

