Student: Phong Vo	
Date: 04/23/20	

Instructor: Erica Yankowskas

Course: Linear Algebra I (Spring 2020)

Assignment: Section 4.6 Homework

1. Assume that the matrix A is row equivalent to B. Without calculations, list rank A and dim Nul A. Then find bases for Col A, Row A, and Nul A.

$$A = \begin{bmatrix} 1 & 3 & -4 & 2 & 5 \\ 3 & 9 & -9 & 3 & -2 \\ -3 & -9 & 6 & 0 & 15 \\ -3 & -9 & 6 & 0 & 0 \end{bmatrix}, B = \begin{bmatrix} 1 & 3 & -4 & 2 & 5 \\ 0 & 0 & 1 & -1 & -5 \\ 0 & 0 & 0 & 0 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

A basis for Col A is
$$\left\{ \begin{bmatrix} 1\\3\\-3\\-3 \end{bmatrix}, \begin{bmatrix} -4\\-9\\6\\6\end{bmatrix}, \begin{bmatrix} 5\\-2\\15\\0 \end{bmatrix} \right\}.$$

(Use a comma to separate vectors as needed.)

A basis for Row A is
$$\left\{ \begin{bmatrix} 1\\3\\-4\\2\\5 \end{bmatrix}, \begin{bmatrix} 0\\0\\1\\-1\\-5 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\-2 \end{bmatrix} \right\}$$
.

(Use a comma to separate vectors as needed.)

A basis for Nul A is
$$\left\{ \begin{bmatrix} -3 \\ 1 \\ 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 2 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} \right\}.$$

(Use a comma to separate vectors as needed.)

2. Assume that the matrix A is row equivalent to B. Without calculations, list rank A and dim Nul A. Then find bases for Col A, Row A, and Nul A.

$$A = \begin{bmatrix} 1 & 1 & -2 & 0 & -3 & -1 \\ 1 & 2 & -3 & 0 & -4 & 1 \\ 1 & -1 & 0 & 0 & 3 & 7 \\ 1 & 3 & -3 & 1 & -2 & 2 \\ 1 & -2 & 1 & 0 & -3 & -11 \end{bmatrix}, B = \begin{bmatrix} 1 & 1 & -2 & 0 & -3 & -1 \\ 0 & 1 & -1 & 0 & -1 & 2 \\ 0 & 0 & 1 & 1 & 3 & -1 \\ 0 & 0 & 0 & 0 & 1 & 3 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

rank A = 5

dim Nul A = 1

$$\text{A basis for Col A is } \left\{ \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ -1 \\ 3 \\ -2 \end{bmatrix}, \begin{bmatrix} -2 \\ -3 \\ 0 \\ -3 \\ 1 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 7 \\ 2 \\ -11 \end{bmatrix} \right\}.$$

(Use a comma to separate vectors as needed.)

A basis for Row A is
$$\left\{ \begin{bmatrix} 1\\1\\-2\\0\\-3\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1\\-1\\0\\-1\\2 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\3\\-1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0\\0\\1\\3 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0\\0\\1\\3 \end{bmatrix} \right\}.$$

(Use a comma to separate vectors as needed.)

A basis for Nul A is
$$\left\{ \begin{array}{c} -1 \\ -1 \\ -1 \\ 1 \\ 0 \\ 0 \end{array} \right\}.$$

(Use a comma to separate vectors as needed.)

3. If a 6×4 matrix A has rank 3, find dim Nul A, dim Row A, and rank A^{T} .

dim Nul A = 1

dim Row A = 3

rank A^T = 3

4.	Suppose a 5×7 matrix A has five pivot columns. Is Col A = \mathbb{R}^5 ? Is Nul A = \mathbb{R}^2 ? Explain your answers.				
	Is Col A = \mathbb{R}^5 ?				
	O A.	No. Since A has five pivot columns, dim Col A is 5. Thus, Col A is a five-dimensional subspace of \mathbb{R}^5 , so Col A is not equal to \mathbb{R}^5 .			
	○ B.	B. No, the column space of A is not \mathbb{R}^5 . Since A has five pivot columns, dim Col A is 0. Thus, Col A is equal to 0 .			
	○ C.	No, Col A is not \mathbb{R}^5 . Since A has five pivot columns, dim Col A is 2. Thus, Col A is equal to			
	ℰ D.	2. Res. Since A has five pivot columns, dim Col A is 5. Thus, Col A is a five-dimensional subspace of \mathbb{R}^5 , so Col A is equal to \mathbb{R}^5 .			
	Is Nul A = \mathbb{R}^2 ?				
	ℰ A.	No, Nul A is not equal to \mathbb{R}^2 . It is true that dim Nul A is equal to 2, but Nul A is a subspace of \mathbb{R}^7 .			
	○ B.	No, Nul A is not equal to \mathbb{R}^2 . Since A has five pivot columns, dim Nul A is equal to 5. Thus, Nul A is equal to \mathbb{R}^5 .			
	O C.	No, Nul A is equal to \mathbb{R}^2 . Since A has five pivot columns, dim Nul A is equal to 0. Thus, Nul A is equal to 0 .			
	O D.	D. Yes, Nul A is equal to \mathbb{R}^2 . Since A has five pivot columns, dim Nul A is equal to 2. Thus, Nul A is equal to \mathbb{R}^2 .			
5.	If the r	null space of a 6 × 9 matrix A is 8-dimensional, what is the dimension of the row space of A?			
	dim Ro	ow A =1			
6.	If A is a 9×7 matrix, what is the largest possible rank of A? If A is a 7×9 matrix, what is the largest possible rank of A? Explain your answers.				
	Select	the correct choice below and fill in the answer box(es) to complete your choice.			
	O A.	The rank of A is equal to the number of columns of A. Since there are 7 columns in a 9×7 matrix, the largest possible rank of a 9×7 matrix is . Since there are 9 columns			
		in a 7×9 matrix, the largest possible rank of a 7×9 matrix is			
	∛ B.	The rank of A is equal to the number of pivot positions in A. Since there are only 7 columns in a 9×7 matrix, and there are only 7 rows in a 7×9 matrix, there can be at most 7 pivot positions for either matrix. Therefore, the largest possible rank of either			
		matrix is 7 .			
	○ C.	The rank of A is equal to the number of non-pivot columns in A. Since there are more rows			
		than columns in a 9×7 matrix, the rank of a 9×7 matrix must be equal to Since there are 7 rows in a 7×9 matrix, there are a maximum of 7 pivot positions in A. Thus,			
		there are 2 non-pivot columns. Therefore, the largest possible rank of a 7×9 matrix is			
		·			

7.		an 8×6 matrix, what is the largest possible dimension of the row space of A? If A is a 6×8 matrix, what is the largest possible sion of the row space of A? Explain.			
	Select the correct choice below and fill in the answer box(es) to complete your choice.				
	ℰ A.	The dimension of the row space of A is equal to the number of pivot positions in A. Since there are only 6 columns in an 8×6 matrix, and there are only 6 rows in a 6×8 matrix, there can be at most 6 pivot positions for either matrix. Therefore, the largest possible			
		dimension of the row space of either matrix is 6 .			
	() В.	The dimension of the row space of A is equal to the number of rows of A, which is equal to the number of pivot positions in A. Since there are 8 rows in an 8×6 matrix, the largest possible dimension of the row space of an 8×6 matrix is Since there are 6 rows in a			
		6×8 matrix, the largest possible dimension of the row space of a 6×8 matrix is .			
	O C.	The dimension of the row space of A is equal to the number of non-pivot columns in A. Since there are more rows than columns in an 8×6 matrix, the dimension of the row space of an			
		8×6 matrix must equal . Since there are 6 rows in a 6×8 matrix, there are a			
		maximum of 6 pivot positions in A and 2 non-pivot columns. Therefore, the largest possible dimension of the row space of a 6×8 matrix is			

. гогра	ns a. through e., A is an m×n matrix. Mark each statement true of Faise. Justily each answer.	
a. If B is any echelon form of A, then the pivot columns of B form a basis for the column space of A.		
Is this statement true or false?		
○ A.	The statement is false. The columns of an echelon form B of A span the column space of A.	
○ B.	The statement is true. The columns of an echelon form B of A are always in the column space of A.	
ℰ C.	The statement is false. The columns of an echelon form B of A are often not in the column space of A.	
O D.	The statement is true. The columns of an echelon form B of A span the column space of A.	
b. Row	operations preserve the linear dependence relations among the rows of A.	
Is this statement true or false?		
O A.	The statement is false because the rows of a matrix B that is an echelon form of A are linearly dependent.	
ℰ В.	The statement is false. Row operations may change the linear dependence relations among the rows of A.	
O C.	The statement is true because the nonzero rows of a matrix B that is an echelon form of A are linearly independent.	
O D.	The statement is true. Row operations may change the linear dependence relations among the columns of A, but not the rows.	
c. The	dimension of the null space of A is the number of columns of A that are not pivot columns.	
Is this statement true or false?		
○ A.	The statement is false. The dimension of Nul A equals the number of pivot columns.	
○ B.	The statement is true. The dimension of Nul A equals the number of columns of A minus the number of free variables in the equation $A\mathbf{x} = 0$.	
O C.	The statement is false. The dimension of the column space of A is the number of columns of A that are not pivot columns.	
ℰ D.	The statement is true. The dimension of Nul A equals the number of free variables in the equation $A\mathbf{x} = 0$.	
d. The	row space of A ^T is the same as the column space of A.	
Is this	statement true or false?	
○ A .	The statement is true because the number of pivot columns of A^T is the same as the number of pivot columns of $(A^T)^T = A$.	
ℰ В.	The statement is true because the rows of A^{T} are the columns of $(A^{T})^{T} = A$.	
○ c .	The statement is false because the rows of A^{T} are also the rows of $(A^{T})^{T} = A$.	
O D.	The statement is false because the number of free variables in the equation $A^T \mathbf{x} = 0$ is the	
	same as the number of pivot columns of $(A^T)^T = A$.	
e. If A	and B are row equivalent, then their row spaces are the same.	
Is this statement true or false?		
& A.	The statement is true. If B is obtained from A by row operations, the rows of B are linear combinations of the rows of A and vice-versa.	
○ В.	The statement is false. If B is obtained from A by row operations, the columns of B are linear combinations of the columns of A and vice-versa.	

	O C.	The statement is true. If B is obtained from A by row operations, the columns of B are linear combinations of the rows of A and vice-versa.	
	O D.	The statement is false. If B is obtained from A by row operations, the rows of B are linear	
		combinations of the rows of A and vice-versa.	
9.	Consid	er an m×n matrix A. Which of the subspaces Row A, Col A, Nul A, Row A^T , Col A^T , and Nul A^T are in \mathbb{R}^m and which are in	
		ow many distinct subspaces are in this list?	
	Select	each subspace that is in \mathbb{R}^m .	
		Nul A Col A ^T	
		Row A ^T	
		Col A	
		Row A	
		Nul A ^T	
	Select	each subspace that is in \mathbb{R}^n .	
	- J	· T	
		Col A ^T Row A	
		Col A	
		Nul A ^T	
	₩ E.		
		Row A ^T	
	There a	are 4 distinct subspaces in the given list.	
10.	Let A be an m×n matrix. Explain why the equation $A\mathbf{x} = \mathbf{b}$ has a solution for all \mathbf{b} in \mathbb{R}^m if and only if the equation $A^T\mathbf{x} = 0$ has only the		
		solution.	
	Choos	se the correct answer below.	
	(A.	The system $A\mathbf{x} = \mathbf{b}$ has a solution for all \mathbf{b} in \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m , or	
		dim Col A = m. The equation $A^T \mathbf{x} = 0$ has only the trivial solution if and only if dim Nul A = 0.	
		By the Rank Theorem, dim Col A = rank A = \dot{m} – dim Nul A. Thus, dim Col A = \dot{m} if and only if dim Nul A = 0.	
	ℰ В.	The system $A\mathbf{x} = \mathbf{b}$ has a solution for all \mathbf{b} in \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m , or	
		dim Col A = m. The equation $A^T \mathbf{x} = 0$ has only the trivial solution if and only if dim Nul $A^T = 0$.	
		Since Col A = Row A^T , dim Col A = dim Row A^T = rank A^T = m – dim Nul A^T by the Rank	
		Theorem. Thus, dim Col A = m if and only if dim Nul $A^T = 0$.	
	○ C.	The system $A\mathbf{x} = \mathbf{b}$ has a solution for all \mathbf{b} in \mathbb{R}^m if and only if the columns of A span \mathbb{R}^m , or	
		dim Row A = m. The equation $A^T \mathbf{x} = 0$ has only the trivial solution if and only if dim Nul	
		$A^{T} = 0$. Since Row A = Col A^{T} , dim Row A = dim Col $A^{T} = m - dim$ Nul A^{T} by the Rank	
		Theorem. Thus, dim Row A = m if and only if dim Nul $A^{T} = 0$.	