

ADATTAMENTO IN POTENZA

Assegnati É e Žį, Determinare Žį=R+jX tale che la poteuza ATIVA assorbita da Žįsia MAX

Sappiermo che
$$\overline{E} = E$$
; $\dot{Z}_i = R_i + JX_i$

$$=0 \quad P_{A} = \mathcal{R}e \left\{ \frac{1}{2} \overline{V}_{L} \cdot \overline{I}_{L}^{*} \right\} = \frac{1}{2} \mathcal{R}e \left\{ (R+JX) \right\} \overline{I}_{L} \cdot \overline{I}_{L}^{*} \right\}$$

$$= \frac{1}{2} |\overline{I}|^{2} \cdot \mathcal{R}e \left\{ (R+JX) \right\} = \frac{1}{2} |II|^{2} R$$

$$= D P_{A} = \frac{1}{2} R | \overline{I}|^{2} = \frac{1}{2} R \cdot \left| \frac{\overline{E}}{\dot{z}_{i} + \dot{z}_{L}} \right|^{2} = \frac{1}{2} R \frac{E^{2}}{(R + R_{i})^{2} + (X + X_{L})^{2}} = P_{A}(R, X)$$

(1)
$$\rho_{\text{ongo}}$$
 $X = -X_1 = 0$ $\rho_{\text{A}}(R) = \frac{1}{2}R \frac{E^2}{(R+R;)^2}$

(2) TROVO IL MASSINO

Siccome
$$\lim_{R\to0} P_A(R) = 0$$
; $\lim_{R\to0} \frac{1}{2} \frac{RE^2}{(R+R_i)^2} \sim \frac{E^2}{R} \rightarrow 0$

$$= D \quad M_{\Theta(X)} \cdot \frac{d}{dR} \cdot \frac{1}{2} \cdot \frac{RE^2}{(R+R_i)^2} = \frac{d}{dR} \cdot \frac{R}{(R+R_i)^2}$$

$$\frac{1}{P_{A}} = \frac{(R + R_{i})^{2} - 2R(R + R_{i})}{(R + R_{i})^{4}} = 0$$

$$N: (R+R_i)^2 - 2R(R+R_i) = 0$$
 $-D (R+R_i) [(R+R_i) - 2R] = 0$

 T_{c}

