tp3.R

October 19, 2022

```
[1]: | #Importation de données
     evans <- read.table("http://web1.sph.emory.edu/dkleinb/allDatasets/datasets/</pre>
       \rightarrowevans.dat")
     head(evans)
```

```
V2
                                          V3
                                                   V4
                                                           V5
                                                                   V6
                                                                           V7
                                                                                    V8
                                                                                            V9
                                                                                                    V10
                                                                                                            V11
                          V1
                                                                                                            <int>
                          <int>
                                  <int>
                                          <int>
                                                   <int>
                                                           <int>
                                                                   <int>
                                                                           <int>
                                                                                    <int>
                                                                                            <int>
                                                                                                    <int>
                          21
                                                   56
                                                           270
                                                                                   80
                                                                                            138
                                  0
                                          0
                                                                   0
                                                                           0
                                                                                                    0
                                                                                                            0
                          31
                                  0
                                          0
                                                   43
                                                           159
                                                                   1
                                                                           0
                                                                                   74
                                                                                            128
                                                                                                    0
                                                                                                            0
A data.frame: 6 \times 12
                          51
                                  1
                                          1
                                                           201
                                                                           1
                                                                                            164
                                                                                                    1
                                                                                                            1
                                                  56
                                                                   1
                                                                                   112
                          71
                                  0
                                          1
                                                           179
                                                  64
                                                                   1
                                                                           0
                                                                                   100
                                                                                            200
                                                                                                    1
                                                                                                            1
                          74
                                          0
                                  0
                                                  49
                                                           243
                                                                   1
                                                                           0
                                                                                   82
                                                                                            145
                                                                                                    0
                                                                                                            0
                         91
                                  0
                                          0
                                                           252
                                                                   1
                                                                                            142
                                                                                                    0
                                                                                                            0
                                                   46
                                                                           0
                                                                                   88
```

```
[2]: names(evans) <-
      →c("id","chd","cat","age","chl","smk","ecg","dbp","sbp","hpt","ch","cc")
     head(evans)
```

		id	chd	cat	age	chl	smk	ecg	dbp	sbp	hpt	ch
A data.frame: 6×12		<int></int>										
	1	21	0	0	56	270	0	0	80	138	0	0
	2	31	0	0	43	159	1	0	74	128	0	0
	3	51	1	1	56	201	1	1	112	164	1	1
	4	71	0	1	64	179	1	0	100	200	1	1
	5	74	0	0	49	243	1	0	82	145	0	0
	6	91	0	0	46	252	1	0	88	142	0	0

Régression logistique

chd = variable à expliquer binaire age = variable explicative

```
[7]: #Présenter les données
     #library(ggplot2)
     #ggplot(data = evans) +
          aes(x = age,
              y = chd) +
          geom_point()
```

plot(evans\$age,evans\$chd)


```
Call:
glm(formula = chd ~ age, family = binomial(link = logit), data = evans)
Deviance Residuals:
```

Min 1Q Median 3Q Max -0.7579 -0.5170 -0.4464 -0.3929 2.3518

```
Coefficients:
```

Number of Fisher Scoring iterations: 5

```
[16]: #logit(E(chd)) = 0,044 age -4,48

logit_ypredit=0.044* evans$age -4.48

ypredit=exp(logit_ypredit)/(1+ exp(logit_ypredit)) # transfo inverse de logit

plot(evans$age,evans$chd)
points(evans$age,ypredit, col="red")
```



```
[17]: plot(evans$age,evans$chd)
    o=order(evans$age)
    points(evans$age[o],ypredit[o], col="red", type="l", lwd=2)
```



```
plot(evans$age,evans$chd)
myreg=glm(evans$chd~evans$age, family=binomial(link=logit))
ypredit=myreg$fitted
o=order(evans$age)
points(evans$age[o],ypredit[o], col="red", type="l", lwd=2)
```


L'augmentation d'age augment la probabilité de la maladie.Pour le cas de: cat = variable à expliquer binaire age = variable explicative

```
[25]: plot(evans$age,evans$cat)
  myreg=glm(cat~age, data = evans, family=binomial(link=logit))
  ypredit=myreg$fitted
  o=order(evans$age)
  points(evans$age[o],ypredit[o], col="green", type="l", lwd=2)
```


data = evans)

Deviance Residuals:

Min 1Q Median 3Q Max -0.9746 -0.5451 -0.4168 -0.3296 2.6239

Coefficients:

Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 438.56 on 608 degrees of freedom Residual deviance: 411.13 on 605 degrees of freedom

AIC: 419.13

Number of Fisher Scoring iterations: 5

2 D'ou notre fonction: Y = 0.72 * hpt + 0.83 * smk + 0.04 * age - 5.37