信息学联赛

中文题目名称	电力发电	神秘的拉达玛特克仪式	简单的数据结构题	小明的魔法考试
英文题目名称	power	ladamatek	ds	exam
输入文件名	power.in	ladamatek.in	ds.in	exam.in
输出文件名	power.out	ladamatek.out	ds.out	exam.out
每个测试点时限	1s	4s	1s	2s
内存限制	512MB	512MB	512MB	1536MB
测试点数目	20	20	20	20
每个测试点分值	5	5	5	5
题目类型	传统型	传统型	传统型	传统型
是否有附加文件	无	无	无	无

注意事项

- 1. 严格按照题目所要求的格式进行输入、输出,否则严重影响得分。
- 2. 题目测试数据有严格的时间限制, 超时不得分。
- 3. 输入文件格式不用判错;输入输出文件名均已给定,不使用键盘输入。
- 4. 评测环境为 NOI 系列活动标准竞赛环境,编译器版本为 g++ 9.3.0。
- 5. 对于 C++ 选手, 64 位整数输入输出格式为 %lld。

电力发电

时间限制: 1 秒 空间限制: 512MB

源程序名: power.cpp/c/pas

【题目描述】

在电力系统中,断路器是用来保护和控制电网设备的重要设备。今天,你需要模拟一个复杂的电力网络场景。

在这个问题中, 电力设备分为两大类: 主站 (Master-Station) 和从站 (Sub-Station)。主站负责发电, 而从站负责连接主站。

每个设备都具有一个识别码,保证所有设备之间的识别码互不相同。

设备之间存在以下互联关系:

1. 从站之间的互连关系:两个从站识别码异或值小于等于k的被认为是相互连接的,注意互联的多个从站中最多只能有一个从站连接主站。

互联的多个从站中若有一个从站连接主站,则意味着所有的从站都相同的主站获得电力。

2. 主站与从站的互连关系: 若主站的识别码是从站识别码的正整数倍,则从站可以连接主站,若存在多个可连接的主站,则连接识别码最小的主站。

现在有 n 台电力设备,设备编号为 $1 \sim n$,**从站设备将按编号递增的顺序依次发起连接电源的操作**,你的任务是确定最后每个电力设备的连接情况。

【输入格式】

输入第一行包含两个整数 $n, k \ (0 \le k \le 200, 2 \le n \le 10^5)$, 表示电力设备的数量。

输入第二行为一个字符串 s (|s|=n),每个字符 s_i 描述第 i 个设备的类型,字母"M" 和"S",分别表示主站和从站。

接下来一行输入 n 个整数,表示不同设备的识别码 x_i $(1 \le x_i \le n)$ 。

【输出格式】

对于每个设备,输出一行表示其连接情况。

如果设备是主站,输出"Master Station"。

如果设备是从站且获得了电力,输出"Connected to X",其中 X 是该从站所在的互联从站群连接的主站的设备编号。

如果设备是从站但无法成功连接到任何主站,输出"Not connected to any Master Station"。

【样例数据】

样例输入	样例输出
3 2	Connected to 2
SMS	Master Station
1 2 3	Connected to 2

【样例解释】

根据输入,有3台电力设备。它们的类型和识别码如下:

- 1. 设备 1: 从站,识别码为 1;
- 2. 设备 2: 主站, 识别码为 2;
- 3. 设备 3: 从站,识别码为 3。

根据互联关系的规则,我们可以得到以下连接情况:

- 1. 设备 1 是从站,根据规则,它可以连接识别码为 2 的主站。因此,设备 1 连接到主站 2;
- 2. 设备 2 是主站,不需要连接其他设备;
- 3. 设备 3 是从站,根据规则,它与设备 1 互联,从而直接连接到主站 2。

- 1. 对于 20% 的测试点, $2 \le n \le 100$;
- 2. 对于 50% 的测试点, $2 \le n \le 2 \times 10^3$;
- 3. 对于 100% 的测试点, $2 \le n \le 10^5, 0 \le k \le 200$ 。

神秘的拉达玛特克仪式

时间限制: 4 秒 空间限制: 512MB

源程序名: ladamatek.cpp/c/pas

【题目描述】

在一个古老的玛雅文明中,存在着一种神秘的仪式称为"拉达玛特克"。

在这个仪式中,祭司们会通过特殊符号序列(字符串 t)祈祷来向神灵传达他们的祈愿,然后神灵会告知他们字符串 t 在某个特定字符串 s 中的出现次数。

其中字符串 t 是根据特定的宗教活动、天象、季节等因素 **随机生成** 的,具体地,设 a,b,c,d 为祭司们最后确定的参数,则他们首先计算 $x_{i+1}=(a\times x_i+b)\mod c$ (特别地 $x_1=b\mod c$)。然后长度为 d 的符号序列 t 的第 i ($1\leq i\leq d$) 个字符会被确定为第 $x_i\mod 26+1$ 个小写字母。

据记载,玛雅文明共进行了m次神秘的仪式,特定字符串s以及每次仪式的参数都被完好地保存了下来,但神灵的回答却无从得知。作为一个考古学家,你能够使用你的编程技巧帮助恢复神灵的回复吗?

【输入格式】

输入的第一行包含一个字符串 s, 保证 s 只包含小写字母。

第二行包含一个整数 m,表示查询的次数。

接下来的 m 行,每行包含四个 **随机生成** 的整数 a,b,c,d,表示含义如题面所述。

【输出格式】

输出 m 行, 第 i 行表示第 i 个符号序列 t_i 在给定符号序列 s 中出现的次数。

【样例数据】

样例输入	样例输出
cacbdcbcabcdcaaddabba	1
1	
1 1 3 5	
cababbbdadadcbbbcadddac	0
1	
2 1 3 4	

- 1. 对于 10% 的测试点, $1 \le |s| \le 1000, 1 \le m \le 2000$;
- 2. 对于 20% 的测试点, $1 \le |s| \le 10^4$, $1 \le m \le 10^5$;
- 3. 对于另外 20% 的测试点, m 个询问的 d 之和小于 5×10^5 ;
- 4. 对于另外 20% 的测试点, 保证所有询问的 a=1, 且 d 是 c 的倍数;
- 5. 对于另外 20% 的测试点, m 个询问的 d 最大值小于 500;
- 6. 对于所有测试点, $1 \le |s| \le 5 \times 10^4, 1 \le m \le 10^5, 0 \le a, b \le 500, 1 \le c \le 500, 1 \le d \le |s|$ 。

简单的数据结构题

时间限制: 1 秒 空间限制: 512MB 源程序名: ds.cpp/c/pas

【题目描述】

现在有一个长度为 n 的整数序列 $a_1, a_2, ..., a_n$,你需要支持两种操作:

- 1. 给定 l,r,将 $a_l,a_{l+1},...,a_r$ 内的所有数字都加上一个整数 d;
- 2. 询问在序列中选一个长度为偶数的子序列,子序列的偶数项的和减去奇数项的和最大是多少,同时在保证最大的前提下,子序列的长度最短是多少。

形式化地,即你需要选择一个子序列 $i_1,i_2,...,i_m$,在保证 m 是偶数的前提下使得 $\sum_{j=1}^m (-1)^j a_{i_j}$ 最大且 m 最小。

【输入格式】

输入第一行为一个整数 T,表示数据组数。

对于每一组数据:

第一行为两个整数 n,q,表示序列长度与操作次数。

第二行为 n 个整数,表示初始序列 $a_1 \sim a_n$ 。

接下来 q 行,每行表示一个询问:

- 1. 如果第一个整数为 0,则后面接着三个整数 l,r,d,表示在区间 [l,r] 内的数都加上 d;
- 2. 如果第一个整数为 1,则表示一次询问。

【输出格式】

对于每个询问,输出一行两个整数,表示子序列的偶数项减去奇数项的最大值,以及在保证最大的前提下 子序列的最小长度。

【样例数据】

样例输入	样例输出
2	3 4
5 9	5 2
9 10 7 6 8	0 0
1	4 4
0 4 5 2	4 2
0 3 5 4	
1	
0 2 5 -2	
0 3 5 -3	
0 4 5 -2	
0 5 5 -4	
1	
4 3	
2 4 3 5	
1	
0 3 3 3	
1	

【样例解释】

样例有两组数组,对于第一组数据:

- 1. 第一个询问时序列为 [9,10,8,6,8], 最优的子序列是 [9,10,6,8], 结果为-9+10-6+8=3, 长度为 4;
- 2. 第二个询问时序列为 [9,10,11,12,14], 最优的子序列是 [-9,14], 结果为-9+14=5, 长度为 2;
- 3. 第三个询问时序列为 [9,8,6,5,3], 最优的子序列为 [], 结果为 0, 长度为 0;

- 1. 对于 10% 的测试点, $1 \le n, q \le 20$;
- 2. 对于 30% 的测试点, $1 \le n, q \le 1000$;
- 3. 对于另外 20% 的测试点, $T = 1, 1 \le n \le 4 \times 10^4, 1 \le q \le 10^5$;
- 4. 对于 100% 的测试点, $T \le 5, 1 \le n, q \le 10^5, |d| \le 10^5$,且任意时刻 $0 < a_i < 2^{31}$ 。

小明的魔法考试

时间限制: 2 秒 空间限制: 1536MB 源程序名: exam.cpp/c/pas

【题目描述】

小明正在参加魔法学校的考试,这次考试涉及两个长度相同的颜色数组 A 和 B。

小明的魔法棒具有独特的功能,能够选择一种颜色,将数组 B 中任意多个相同颜色的元素变成另外一种颜色,这个过程将消耗一次魔法。

然而,这个过程中存在一些特殊颜色对:设一个特殊颜色对是 (u,v,w),则将颜色 u 变为颜色 v 的操作需要消耗 w 次魔法,保证这些特殊颜色对满足以下条件:

- 1. 对于任何一个颜色 v,若存在一个特殊颜色对是 (u,v,w),那么保证数组 B 中所有的颜色为 v 的位置,其 在数组 A 中对应的位置颜色也是 v。
- 2. 给定的所有特殊颜色对 (u,v,w), 则至少存在一个位置 i, 使得数组 B 中位置 i 的颜色是 u, 而数组 A 中位置 i 的颜色是 v。

小明考试的任务是用最少的魔法次数,将数组 B 的颜色变为与数组 A 完全相同。你需要帮助小明设计一个算法,计算实现这个目标所需的最少魔法次数。

【输入格式】

输入第一行是两个整数 n, m,表示数组大小与颜色数量。

输入第二行是 n 个整数,第 i 个整数 $color A_i$ $(1 \le color A_i \le m)$ 表示数组 A 第 i 个元素的颜色。输入第三行是 n 个整数,第 i 个整数 $color B_i$ $(1 \le color B_i \le m)$ 表示数组 B 第 i 个元素的颜色。输入第四行是一个整数 k,表示特殊颜色对的数量。

接下来 k 行,每行三个整数 u,v,w $(1 \le u,v \le m, u \ne v, \mathbf{w} = \mathbf{2})$,意义如题面所述。

【输出格式】

输出一个整数,表示最少使用魔法的次数。

【样例数据】

样例输入	样例输出
5 5	4
2 4 3 3 2	
5 5 4 3 4	
2	
4 2 2	
4 3 2	

【样例解释】

其中一种可行的染色方案为:

一共消耗1+2+1=4次魔法

- 1. 首先将位置 1 和位置 2 的颜色 5 都染色成颜色 4, 消耗 1 次魔法。此时 B = [4,4,4,3,4]
- 2. 然后将位置 1 和位置 3 以及位置 5 的颜色 4 都染色成 2, 因为是特殊颜色对,消耗 2 次魔法。此时 B = [2,4,2,3,2]
- 3. 最后将位置 3 的颜色 2 染色成颜色 3,消耗一次魔法。此时 B = [2,4,3,3,2],与数组 A 颜色完全一致。故一共消耗了 1+2+1=4 次魔法。

- 1. 对于 5% 测试点, $1 \le m \le 6$ 。
- 2. 对于 15% 测试点, $1 \le m \le 12$ 。
- 3. 对于 25% 测试点, $1 \le m \le 15$ 。
- 4. 对于 35% 测试点, $1 \le m \le 17$ 。
- 5. 对于 50% 测试点, $1 \le m \le 20$ 。
- 6. 对于 65% 测试点, $1 \le m \le 23$ 。
- 7. 对于另外 15% 的测试点, k = 0。
- 8. 对于所有的测试点, $1 \le n \le 2 \times 10^5$, $m \le 27$, $0 \le k \le 10$.