ENSEMBLES ET APPLICATIONS

I) LES ENSEMBLES

1) Activité et définition

1.1 Activités :

Activité 1 :

Le diagramme ci-contre s'appelle le diagramme de Venn.

On a : $M = \{x \in E \mid x \in A \text{ et } x \notin B\}$

- 1- Définir de la même façon les ensembles N, P et Qen fonction de A et B.
- 2- Déterminer les ensembles A et B en fonction des ensembles M, N, P et Q
- 3- Que pouvez-vous dire des ensembles P et M.

Activité 2 :

Soient les ensembles : $H=\{y\in\mathbb{R}/\ y=\frac{1}{\sqrt{x^2+1}}\ ; où\ x\in\mathbb{R}\}\ \text{ et } G=\{y\in\mathbb{R}/\ y=\frac{1}{1+\sqrt{x^2+1}}\ ; où\ x\in\mathbb{R}\}$

- 1-On se propose de montrer que : H = [0,1].
 - a- Considérer un élément $y_0 \in H$ et montrer que $y_0 \in]0,1]$
 - b- Considérer un élément $y_0 \in]0,1]$ et montrer que $y_0 \in H$
- 2- Monter que $G \subset H$
- 3- Est-ce que G = H?

Activité 3:

Soient $A = \{\frac{5n+8}{8n-1} / n \in \mathbb{N}\}$ et $B = \{\frac{2n+4}{2n+1} / n \in \mathbb{N}\}$

- 1- Est ce que : $\frac{17}{3} \in A$? ; $\frac{43}{25} \in B$? ; $\frac{38}{47} \in B$?
- 2- Déterminer les éléments communs entre *A* et *B*.
- 3- Déterminer tous les entiers naturels qui appartiennent à B.

1.2 Vocabulaires

- Un ensemble *E* est une **collection** ou un **groupement** d'objets <u>distincts</u>; ces objets s'appellent les **éléments** de cet ensemble.
- Si x est élément d'un ensemble E, on dit que x appartient à E et on écrit : $x \in E$,
- Ø est l'ensemble qui ne contient aucun élément, on peut le définir comme suite : $\{x \in E \ et \ x \notin E\}$.
- Un ensemble peut être défini
 - o **En extension**, c'est-à-dire en donnant la liste de ses éléments entre accolades.

Par exemple : $E = \{a, b, n, p\}$

o **En compréhension** c'est-à-dire par une propriété caractérisant ses éléments.

Par exemple : $E = \{x \in \mathbb{Z}/|3k+1| \le 5\}$

2) Egalité ; inclusion ; ensemble des partie d'un ensemble

Définition:

On dit que deux ensembles E et F sont égaux s'ils ont exactement les mêmes éléments ; on écrit E=F

$$(E = F) \Leftrightarrow (x \in E \Leftrightarrow x \in F)$$

Exemple:

$$A = \{k \in \mathbb{Z}/|2k+1| \le 3\}$$
 $B = \{-2, -1, 0, 1\}; A = B$

Définition:

Soient E et F deux ensembles quelconques. E est dit **inclus** dans F si tout élément de E est un élément de F. On dit aussi que E est un **sous-ensemble** de F ou encore que E est une **partie** de . On note $E \subset F$

$$(E \subset F) \Leftrightarrow (x \in E \Rightarrow x \in F).$$

Activité:

Soit $E = \{1,2,3\}$ déterminer tous les ensembles inclus dans E.

Définition:

Soit E un ensemble, les partie de E, constituent un ensemble qui s'appelle ensemble des partie de E et se note $\mathcal{P}(E)$.

$$\mathcal{P}(E) = \{X/X \subset E\}$$

Remarque:

A est une partie de E ($A \subset E$) si et seulement si A est un élément de $\mathcal{P}(E)$

Exercice: Déterminer $\mathcal{P}(\mathcal{P}(\mathcal{P}(\{1\})))$

3) Complémentaire d'un ensemble

Définition:

Soit A une partie de E, le complémentaire de A est l'ensemble constitué par tous les éléments de E qui n'appartiennent pas à A, on le note \bar{A} ou $C_E A$.

$$\bar{A} = \{x \in E / x \notin A\}$$

Exemples:

- Si E un ensemble quelconque : $\overline{E} = \emptyset$ et $\overline{\emptyset} = E$
- $C_{\mathbb{R}}\mathbb{Q} = \mathbb{I}$ (ensembles des irrationnelles).

4) Intersection ; réunion , différence de deux ensembles.

Définition:

Soient A et B deux parties d'un ensemble E; **l'intersection** de A et B est l'ensemble constitué par les éléments qui appartiennent à la fois à A et à B. On le note par $A \cap B$.

$$A \cap B = \{x \in E \mid x \in A \text{ et } x \in B\}$$

Définition:

Soient A et B deux parties d'un ensemble E; la réunion de A et B est l'ensemble constitué par les éléments qui appartiennent à A ou à B. On le note par $A \cup B$.

$$A \cup B = \{x \in E / x \in A \text{ ou } x \in B\}$$

E A B

Définition :

Soient A et B deux parties d'un ensemble E; la différence de A et B est l'ensemble constitué par les éléments qui appartiennent à A et qui n'appartiennent pas à B. On le note par $A \setminus B$ ou A - B

$$A \setminus B = \{ x \in E / x \in A \ \textbf{et} \ x \notin B \}$$

5) Propriétés

5.1 Propriétés d'inclusion.

Soient E, un ensemble, A, B et C des parties de E.

- $(A = B) \Leftrightarrow \begin{cases} A \subset B \\ B \subset A \end{cases}$ $\begin{cases} A \subset B \\ B \subset C \end{cases} \Rightarrow (A \subset C) \qquad la \ transitivit\acute{e}$

5.2 Intersection et réunion

- $A \cap A = A$
- $A \cup A = A$
- Si $A \subset B$ alors $A \cap B = A$ et $A \cup B = B$
- $A \cap B \subset A \subset A \cup B$
- $(A \cap B) \cap C = A \cap (B \cap C)$ L'associativité
- $(A \cup B) \cup C = A \cup (B \cup C)$ L'associativité
- $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ la distributivité
- $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ la distributivité

5.3 Le complémentaire

- $\bar{A} = E/A$
- $\bar{A} = A$
- $\overline{\emptyset} = E \quad \overline{E} = \emptyset$
- $\overline{(A \cap B)} = \overline{A} \cup \overline{B}$ loi de Morgan
- $\overline{(A \cup B)} = \overline{A} \cap \overline{B}$ loi de Morgan
- $(A \subset B) \iff (\bar{B} \subset \bar{A})$

Exercice: Démontrer les deux dernières assertions.

5.4 La différence

- $A/B = A/(A \cap B)$
- $A/B = (A \cap \overline{B})$

6) Notations généralisées.

Soient $A_1, A_2 \dots A_n$ une famille de parties d'un ensemble E, (qu'on peut noté $(A_i)_{1 \le i \le n}$)

L'ensemble : $A_1 \cup A_2 \cup ... \cup A_n$ se note : $\bigcup_{i=1}^n A_i$

L'ensemble : $A_1 \cap A_2 \cap ... \cap A_n$ se note : $\bigcap_{i=1}^n A_i$

Définition:

Une famille $(A_i)_{1 \le i \le n}$ de parties d'un ensemble E s'appelle **une partition** de l'ensemble E si elle vérifie :

- $\bigcup_{i=1}^n A_i = E$
- $(i \neq j) \Rightarrow (A_i \cap A_j = \emptyset)$ on dit que les ensembles sont disjoints deux à deux.

Exemple:

- Les $(A_i)_{1 \le i \le 5}$ dans le diagramme ci-contre, forment une partition de E
- Les intervalles [k, k+1] où $k \in \mathbb{Z}$ forment une partition de \mathbb{R}

7) Produit cartésien

Définition:

Soient A et B deux ensembles ; **le produit cartésien de** A et B est l'ensemble des couples (x, y) tels que $x \in A$ et $y \in B$, On le note par $A \times B$.

$$A \times B = \{(x, y)/x \in A \text{ et } y \in B\}$$

Le carrée cartésien d'un ensemble A est l'ensemble $A \times A$ noté A^2

Exemples

 C_f est la courbe représentative de la fonction $f(x)=x^2$

$$C_f = \{M(x,y)/x \in \mathbb{R} \text{ et } y = x^2\}$$

Généralisation:

- ightharpoonup Soit $(A_i)_{1 \leq i \leq n}$ une famille d'ensembles ; $A_1 \times A_2 \times ... \times A_n$ se note $\prod_{i=1}^n A_i = \{(x_1, x_2, ..., x_n)/x_i \in A_i\}$.
- $A\times A\times ...\times A=A^n=\{(x_1,x_2,\ldots,x_n)/x_i\in A\}.$

II) LES APPLICATIONS

1) Activités

Activité 1:

Considérons les ensembles $E = \{a, b, c, d\}$ et $F = \{1, 2, 3, 4, 5\}$, f, g, h et k sont des relations de E dans F.

Que pouvez-vous dire des relations ci-dessus ?

Activité 2 :

Soit la fonction f définie par :

$$f: \mathbb{R} \to \mathbb{R}$$
$$x \mapsto \frac{x}{1+x^2}$$

1-Montrer que chaque élément de ${\mathbb R}$ à une image.

2- l'implication suivante est-elle vraie :(P) $(a \neq b) \Rightarrow (f(a) \neq f(b))$

3-Montrer que $(\forall x \in \mathbb{R}) \left(f(x) \in \left[\frac{-1}{2}, \frac{1}{2} \right] \right)$

4- Montrer que $(\forall y \in \left[\frac{-1}{2}, \frac{1}{2}\right])(\exists x \in \mathbb{R})(f(x) = y)$

2) Définitions et vocabulaires

2.1 Application

Définition:

Soient E et F deux ensembles non vides, on appelle application toute relation f de E dans F tel que : tout élément x de E est relié à un unique élément y de F.

Vocabulaire:

$$f: E \to F$$

 $x \mapsto y = f(x)$

- L'ensemble E s'appelle ensemble de départ de l'application f.
- L'ensemble F s'appelle **ensemble d'arrivée** de l'application f.
- y = f(x) s'appelle **l'image de** x par l'application f.
- x s'appelle l'antécédent de y par l'application f.

2.2 Egalité de deux applications

Activité:

Soient les deux applications suivantes:

$$f: \mathbb{N} \to \mathbb{Z}$$

 $n \mapsto (-1)^n \cdot n$

$$n \mapsto \begin{cases} n & \text{si } n \text{ est pair} \\ -n & \text{si } n \text{ est impair} \end{cases}$$

Vérifier que $(∀n ∈ \mathbb{N})(f(n) = g(n))$

Définition:

On dit que deux applications f et g sont égales si :

- Elles ont le même ensemble de départ E
- Elles ont le même ensemble d'arrivée F
- \triangleright $(\forall x \in E)(f(x) = g(x)).$

Remarque:

Les 3 applications:

$$f \colon \mathbb{R}^+ \to \mathbb{R}$$
$$x \mapsto x^2$$

$$g: \mathbb{R} \to \mathbb{R}^+$$

$$h: \quad \mathbb{R}^+ \to \mathbb{R}^+ \\ x \mapsto x^2$$

Sont différentes.

Définition:(injection)

Soit f une application de E dans F, on dit que f est **injective** de E dans F si :

 $(\forall (x_1, x_2) \in E^2)(x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2))$ (P)

Par contraposition on peut dire que :

(
$$f$$
 est injective) \Leftrightarrow $(\forall (x_1, x_2) \in E^2)(f(x_1) = f(x_2) \Rightarrow x_1 = x_2)$

Exemples:

$$f: \ \mathbb{R}/\{2\} \to \mathbb{R}$$

$$x \mapsto \frac{3x+1}{x-2} \quad \text{Montrer que } f \text{ est injective}$$

 $g \colon \mathbb{R} \to \mathbb{R}$

 $x \mapsto \mathbb{K}$ $x \mapsto x^2 + 4$ g est-elle injective ?

€

$$h \colon \mathbb{N}^* \to \mathbb{Q}$$

$$n \mapsto 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$

- 1- déterminer les images des entiers 1, 2, 3
- 2- Montrer que $n > m \Rightarrow h(n) > h(m)$
- 3- En déduire que h est injective.

Définition:(surjection)

Soit f une application de E dans F, on dit que f est **surjective** de E dans F si tout élément g de F admet un antécédent dans E.

$$(\forall y \in F)(\exists x \in E)(f(x) = y)$$

Autrement dit : Pour tout y dans F l'équation f(x) = y admet au moins une solution dans E.

Exercices:

$$f: \mathbb{R}/\{2\} \to \mathbb{R}$$

$$x \mapsto \frac{3x+1}{x-2}$$

- 1- f est-elle surjective de $\mathbb{R}/\{2\}$ vers \mathbb{R} .
- 2- Modifier l'ensemble d'arrivée pour définir une application surjective.

$$g: \mathbb{R} \to [2, +\infty[$$

$$x \mapsto x^2 - 2x + 3$$

- 1- Montrer que la fonction g est surjective.
- 2- g est-elle injective ?

$$h: \mathbb{N}^* \to \mathbb{Q} \cap [1, +\infty[$$

$$n \mapsto 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$$
 $h \text{ est-elle surjective ?}$

Définition :(bijection)

Soit f une application de E dans F, on dit que f est une **bijection** de E dans F si elle **injective** et surjective

Propriété:

Une application est une bijection de E dans F si et seulement si :

$$(\forall y \in F)(\exists! \, x \in E)(f(x) = y)$$

Autrement dit : Pour tout y dans F l'équation f(x) = y admet une unique solution dans E.

Exercice:

$$f: [1, +\infty[\rightarrow [2, +\infty[$$

 $x \mapsto x^2 - 2x + 3]$

- 1- Montrer que f est une bijection de $[1, +\infty[$ vers $[2, +\infty[$.
- 2- Soit y un élément de $[2, +\infty[$, déterminer (en fonction de y) l'élément x dans $[1, +\infty[$ tel que f(x) = y

L'application qui lie l'élément y de $[2, +\infty[$, à l'élément unique x de $[1, +\infty[$ et solution de l'équation f(x) = ys'appelle : la bijection réciproque de la bijection f et se note : f^{-1}

Définition:

Si f est une bijection de E dans F; L'application de F dans E qui lie chaque élément y par l'élément x de E qui est solution unique de l'équation f(x) = y s'appelle la bijection réciproque de la bijection f et se note f^{-1} .

f bijection de E dans F; f^{-1} sa bijection réciproque on a : $\begin{cases} f^{-1}(y) = x \\ y \in F \end{cases} \iff \begin{cases} f(x) = y \\ x \in E \end{cases}$

$$\begin{cases} f^{-1}(y) = x \\ y \in F \end{cases} \iff \begin{cases} f(x) = y \\ x \in E \end{cases}$$

Exercice 1:

Déterminer la fonction réciproque de la fonction

$$f: [1, +\infty[\rightarrow [2, +\infty[$$

 $x \mapsto x^2 - 2x + 3]$

Exercice 2:

Soit la fonction :

$$g: [1, +\infty[\to]0, \frac{1}{2}]$$
$$x \mapsto \frac{x}{1+x^2}$$

Montrer que g est une application

Montrer que l'application g est une bijection de $[1, +\infty[$ vers $]0, \frac{1}{2}]$ puis déterminer sa bijection réciproque.

3) L'image directe et l'image réciproque d'un ensemble par une application

3.1 Activité

Activité 1 :

Soit f l'application dont le diagramme sagittal est représenté ci-contre

- 1- Déterminer les images directe des ensemble $\{a, b, c\}$ $\{b, c\}$ et E
- 2- Déterminer les antécédents des éléments qui appartiennent aux ensembles :

Activité 2 :

Soit

$$f \colon \mathbb{R} \to \mathbb{R}$$
$$x \mapsto 2x^2 - x$$

- 1- Montrer que : $(\forall x \in [-1,1])(f(x) \in [\frac{-3}{16},3])$
- 2- Montrer que : $(\forall y \in [\frac{-3}{16}, 3])(\exists x \in [-1,1])(f(x) = y)$

on dit que l'image de l'intervalle [-1,1] par l'application f est l'intervalle $[\frac{-3}{16},3]$ et on écrit : $f([-1,1])=[\frac{-3}{16},3]$

Activité 3 :

$$h: \mathbb{R}^2 \to \mathbb{R}$$

 $(x,y) \mapsto \frac{1}{x^2 + y^2}$

- 1- Déterminer les couples (x, y) qui vérifient h((x, y)) = 1
- 2- Représenter dans le plan muni d'un repère orthonormé les points M(x,y) qui vérifient h(x,y) = 1.

Définition:

Soit f une application de E dans F, A une partie de E et B une partie de F.

- L'image directe de l'ensemble A est l'ensemble $f(A) = \{f(x) \in F/x \in A\}$
- L'image réciproque de l'ensemble B est l'ensemble $f^{-1}(B) = \{x \in E \mid f(x) \in B\}$

Remarque:

lacksquare Soit f une application de E dans F, A une partie de E et B une partie de F.

$$f(A) = B \iff \begin{cases} f(A) \subset B \\ B \subset f(A) \end{cases}$$
$$\iff \begin{cases} (\forall x \in A)(f(x) \in B) \\ (\forall y \in B)(\exists x \in A)(f(x) = y) \end{cases}$$

 $\mathbf{Q} f(A) = \emptyset \Leftrightarrow A = \emptyset$ mais si $f^{-1}(B) = \emptyset$, on ne peut pas dire que $B = \emptyset$

$$f: \mathbb{R} \to \mathbb{R}$$

 $x \mapsto 2x^2 + 1$ on a: $f^{-1}(\mathbb{R}^-) = \emptyset$

3 Pour parler de l'image réciproque **d'un élément** par une application, il faut que f soit **bijective** mais on peut considérer l'image réciproque d'un ensemble quel que soit la nature de l'application f.

Propriété:

Soit f une application de E dans F.

f est surjective de E dans F ,si et seulement si f(E) = F.

Preuve:

On a : f une application de E dans F donc : $f(E) \subset F$;si de plus f est surjective alors :

$$(\forall y \in F)(\exists x \in E)(f(x) = y)$$
 et donc $F \subset f(E)$. D'où $f(E) = F$

Réciproquement si f(E) = F alors $F \subset f(E)$ et par suite : $(\forall y \in F)(\exists x \in E)(f(x) = y)$ donc f est surjective.

Exercice

Soit

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \frac{3}{1+x^2} \quad \text{déterminer } f^{-1}([1,2])$$

4) Restriction; Prolongement d'une application

Activité 1:

Soit l'application

$$f \colon \mathbb{R} \to \mathbb{R}$$
$$x \mapsto 3|1 - x^2| + x$$

Ecrire l'expression de f sur [-1,1]

Activité 2:

Soit l'application

$$g: \mathbb{R}/\{1\} \to \mathbb{R}$$

$$x \mapsto \frac{3x+1}{x-1}$$

1- g est-elle bijective?

2- A partir de g, définir une bijection de $\mathbb R$ dans $\mathbb R$

Définition:

Soit f une application de E dans F

- Soit A une partie de E, l'application définie de A vers F, qui associe à tout élément x de A l'élément f(x), s'appelle la restriction de f sur l'ensemble A.
- Soit Γ un ensemble tel que $E \subset \Gamma$, l'application définie de Γ vers F, qui associe à tout élément x de E l'élément f(x), s'appelle un prolongement de f sur l'ensemble Γ .

7) La partie entière d'un réel.

Théorème:

On admet la proposition suivante : $(\forall x \in \mathbb{R})(\exists! k \in \mathbb{Z})(k \le x < k + 1)$.

Définition:

L'entier relatif k qui vérifie le théorème précédent s'appelle **la partie entière du réel** x; on le note [x] ou E(x). L'application qui lie chaque élément x de \mathbb{R} à E(x) dans \mathbb{Z} s'appelle l'application partie entière.

Exemple:

$$E\left(\sqrt{2}\right)=1\;;\;\;E(\pi)=3\;;\;\;E(-\pi)=-4\;;\;\;\left(\forall n\in\mathbb{N}^*\right)\left(E\left(\frac{1}{n}\right)=0\right)\;;\;\left(\forall k\in\mathbb{Z}\right)\left(E(k)=k\right)$$

Exercices:

- **①** Montrer que : $(\forall x \in \mathbb{R})(\forall m \in \mathbb{Z})(E(m+x) = m + E(x))$.
- **2** Vérifier par un contre-exemple que : $E(x + y) \neq E(x) + E(y)$
- Soit l'application $h: \quad \mathbb{R} \to \mathbb{R}$ $x \mapsto E\left(3x + \frac{1}{2}\right) + 1$
 - 1- Vérifier que *h* n'est pas injective.
 - 2- Donner la restriction de h sur l'intervalle $[0, \frac{1}{3}[$.
 - 3- Déterminer : $h^{-1}\{4\}$ et $h^{-1}\{2\}$; h est-elle surjective ?.

8) Composition de deux applications.

Activité:

Soient les deux applications :

$$f \colon \mathbb{R}^* \to \mathbb{R}$$
 $g \colon \mathbb{R}/\{1\} \to \mathbb{R}$ $x \mapsto \frac{1}{x^2}$ et $x \mapsto \frac{x}{x-1}$

- 1- Déterminer f(g(3)); f(g(-1)) g(f(3))
- 2- Donner la condition sur x pour que le réel g(f(x)) existe.
- 3- Donner la condition sur x pour que le réel f(g(x)) existe.
- 4- Déterminer les application $f \circ g$ et $g \circ f$.

Définition:

Soient f une application de E dans F et g une application de G dans H tel que : $f(E) \subset G$, l'application h définie de E vers H par : pour tout x dans E, h(x) = g(f(x)) s'appelle la composition des deux applications f et g et se note $g \circ f$.

$$(\forall x \in E)((gof)(x) = g(f(x))$$

On peut représenter la composition par :

$$f(E) \subset G$$

$$E \xrightarrow{f} F G \xrightarrow{g} H$$

$$f(x) \xrightarrow{X} \longmapsto g(X)$$

$$f(x) \xrightarrow{g} g(f(x))$$

Propriété:

- La composition de deux applications injectives est une application injective
- Si F = G alors La composition de deux applications surjectives est une application surjective
- La composition de deux bijections f et g est une bijection et $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$

Preuves: En exercice.

Propriété:

- La composition des applications est associative : $(f \circ g) \circ h = f \circ (g \circ h)$
- La composition des applications n'est pas commutative : $fog \neq gof$

Propriété:

Si f est une bijection de E dans F et f^{-1} sa bijection réciproque :

- $(\forall x \in E)((f^{-1}of)(x) = x)$, $f^{-1}of$ s'appelle **l'identité de** E et s note $\mathcal{I}d_E$
- $(\forall x \in F)((fof^{-1})(x) = x)$, fof^{-1} s'appelle **l'identité de** F et s note $\mathcal{I}d_F$
- Si E = F alors : $f^{-1}of = fof^{-1} = \mathcal{I}d_E$

