AIMer: ZKP-based Digital Signature

김성광³ 하진철¹ 손민철¹ 이병학¹ 문덕재³ 이주희² 이상엽³ 권지훈³ 조지훈³ 윤효진³ 이주영¹

¹KAIST ²성신여대 ³삼성 SDS

2023. 02. 24.

Table of Contents

- Introduction
- 2 Preliminaries
- AIM and AIMer
- 4 Algebraic Analysis

- Introduction
- 2 Preliminaries
- AIM and AIMer
- 4 Algebraic Analysis

ZKP-based Digital Signature

- ZKP-based digital signature is based on a zero-knowledge proof of knowledge of a solution to a certain hard problem
 - For example, finding a preimage of a one-way function
- Efficiency of the ZKP-based signature is determined by choice of one-way function and zero-knowledge proof system

- Characteristics of the ZKP-based digital signature is:
 - Minimal assumption: Security of ZKP-based digital signature only relies on the one-wayness of one-way function
 - ✓ Trade-off between time & size
 - √ Small public key and secret key
 - Relatively large signature size and sign/verify time

AlMer Signature

- In AlMer digital signature, AlM one-way function and BN++ proof system is used
- Compare to the other ZKP-based digital signature, AlMer has two advantages:
 - √ Fully exploit repeated multiplier technique to reduce a signature size
 - √ More secure against algebraic attacks

- 2 Preliminaries
- 4 Algebraic Analysis

MPC-in-the-Head

Variable			Value			
variable	Party 1	Party 2	Party 3	Party 4	Party 5	value
\overline{x}	5	6	1	3	9	2
y	10	0	6	7	5	6
z	9	4	1	2	7	1

AIM and AIMer

Example of MPC-in-the-head setting for N=5 parties over \mathbb{F}_{11}

- MPC-in-the-head is a Zero-Knowledge protocol by running the MPC protocol in prover's head
- In the multiparty computation setting, $x^{(i)}$ denotes the *i*-th party's additive share of x, $\sum_{i} x^{(i)} = x$
- N parties have a shares of x, y, and z which satisfies xy=z. They wants to prove that xy = z without reveal the value
- N parties and verifier run 5 rounds interactive protocol

MPC-in-the-Head - Toy Example

Phase	Variable	Share					
rnase	variable	Party 1	Party 2	Party 3	Party 4	Party 5	Value
	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
	z	9	4	1	2	7	1
Phase 1	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	h(5, 10, 9, 7, 6, 4)	h(6, 0, 4, 2, 4, 6)	h(1,6,1,6,3,3)	h(3,7,2,2,0,7)	h(9,5,7,3,1,7)	-

AIM and AIMer

Gray values are hidden to the verifier

Phase 1

- N parties generate the shares of the another multiplication triples (a, b, c) which satisfies ab = c
- Each party commits¹ to their own shares and open it

¹Commit means that keeping the value hidden to others, with the ability to reveal the committed value later

Phase	Variable	Share					
rilase	variable	Party 1	Party 2	Party 3	Party 4	Party 5	Value
	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
	z	9	4	1	2	7	1
Phase 1	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	h(5, 10, 9, 7, 6, 4)	h(6, 0, 4, 2, 4, 6)	h(1,6,1,6,3,3)	h(3,7,2,2,0,7)	h(9,5,7,3,1,7)	-
Phase 2			Random chal	lenge $r = 5$ from t	he verifier		

Phase 2

 \bullet Verifier sends random challenge r to parties

MPC-in-the-Head - Toy Example

Phase	Variable	Share						
rnase	variable	Party 1	Party 2	Party 3	Party 4	Party 5	Value	
	x	5	6	1	3	9	2	
	y	10	0	6	7	5	6	
	z	9	4	1	2	7	1	
Phase 1	a	7	2	6	2	3	9	
	b	6	4	3	0	1	3	
	c	4	6	3	7	7	5	
	com	h(5, 10, 9, 7, 6, 4)	h(6, 0, 4, 2, 4, 6)	h(1,6,1,6,3,3)	h(3, 7, 2, 2, 0, 7)	h(9, 5, 7, 3, 1, 7)	-	
Phase 2			Random chal	lenge $r = 5$ from t	he verifier			
	α	10	10	0	6	4	8	
Phase 3	β	5	4	9	7	6	9	
	v	3	9	3	10	8	0	

Phase 3

- The parties locally set $\alpha^{(i)}=r\cdot x^{(i)}+a^{(i)}, \beta^{(i)}=y^{(i)}+b^{(i)}$ and broadcast them
- The parties locally set

$$v^{(i)} = \begin{cases} r \cdot z^{(i)} - c^{(i)} + \alpha \cdot b^{(i)} + \beta \cdot a^{(i)} - \alpha \cdot \beta & \text{if } i = 1 \\ r \cdot z^{(i)} - c^{(i)} + \alpha \cdot b^{(i)} + \beta \cdot a^{(i)} & \text{otherwise} \end{cases}$$

Phase	Variable			Share			Value
Filase	variable	Party 1	Party 2	Party 3	Party 4	Party 5	value
	x	5	6	1	3	9	2
	y	10	0	6	7	5	6
	z	9	4	1	2	7	1
Phase 1	a	7	2	6	2	3	9
	b	6	4	3	0	1	3
	c	4	6	3	7	7	5
	com	h(5, 10, 9, 7, 6, 4)	h(6, 0, 4, 2, 4, 6)	h(1, 6, 1, 6, 3, 3)	h(3, 7, 2, 2, 0, 7)	h(9, 5, 7, 3, 1, 7)	-
Phase 2			Random chal	lenge $r=5$ from t	he verifier		
	α	10	10	0	6	4	8
Phase 3	β	5	4	9	7	6	9
	v	3	9	3	10	8	0

Phase 3 (Cont')

Introduction

- Each party opens $v^{(i)}$ to compute v
- If ab = c and xy = z, then v = 0

Phase	Variable			Share			Value	
Pnase	variable	Party 1	Party 2	Party 3	Party 4	Party 5	value	
	x	5	6	1	3	9	2	
	y	10	0	6	7	5	6	
	z	9	4	1	2	7	1	
Phase 1	a	7	2	6	2	3	9	
	b	6	4	3	0	1	3	
	c	4	6	3	7	7	5	
	com	h(5, 10, 9, 7, 6, 4)	h(6, 0, 4, 2, 4, 6)	h(1,6,1,6,3,3)	h(3, 7, 2, 2, 0, 7)	h(9, 5, 7, 3, 1, 7)	-	
Phase 2			Random chal	lenge $r=5$ from t	he verifier			
	α	10	10	0	6	4	8	
Phase 3	β	5	4	9	7	6	9	
	v	3	9	3	10	8	0	
Phase 4	4 Random challenge $\bar{i}=4$ from the verifier							

Phase 4

• Verifier sends a hidden party index \bar{i} to parties

MPC-in-the-Head - Toy Example

Phase	Variable			Share			Value	
riiase	variable	Party 1	Party 2	Party 3	Party 4	Party 5	value	
	x	5	6	1	3	9	2	
	y	10	0	6	7	5	6	
	z	9	4	1	2	7	1	
Phase 1	a	7	2	6	2	3	9	
	b	6	4	3	0	1	3	
	c	4	6	3	7	7	5	
	com	h(5, 10, 9, 7, 6, 4)	h(6, 0, 4, 2, 4, 6)	h(1,6,1,6,3,3)	h(3, 7, 2, 2, 0, 7)	h(9, 5, 7, 3, 1, 7)	-	
Phase 2			Random chal	lenge $r=5$ from t	he verifier			
	α	10	10	0	6	4	8	
Phase 3	β	5	4	9	7	6	9	
	v	3	9	3	10	8	0	
Phase 4			Random chal	lenge $\overline{i}=4$ from t	he verifier			
Phase 5	Open all parties except $ar{i}$ -th party and check consistency							

Phase 5

- Each party $i \in [N] \setminus \{\bar{i}\}$ sends $x^{(i)}, y^{(i)}, z^{(i)}, a^{(i)}, b^{(i)},$ and $c^{(i)}$ to verifier
- Verifier checks the consistency of the received shares

• Some agreed-upon circuit $C: \mathbb{F}^n \to \mathbb{F}^m$ and some output y, prover wants to prove knowledge of input $\mathbf{x} = (x_1, \dots, x_n)$ such that $C(\mathbf{x}) = \mathbf{y}$ without revealing \mathbf{x}

- \bullet The single prover simulates N parties in prover's head. Prover first divides the input x_1, \ldots, x_n into shares $x_1^{(i)}, \ldots, x_n^{(i)}$
- For each addition c = a + b. $c^{(i)} = a^{(i)} + b^{(i)}$
- For each multiplication c = ab, prover divides c into shares $c^{(i)} = c$ then run multiplication check protocol

$$C(x_1, x_2, x_3) = (x_1 + x_2 \cdot x_3) \cdot x_2 = 10$$

Variable	Share						
Variable	Party 1	Party 2	Party 3	Party 4	Party 5	Value	
$\overline{x_1}$	7	2	1	3	0	2	
x_2	3	5	10	5	5	6	
x_3	9	5	9	3	10	3	
$x_2 \cdot x_3$	2	4	3	5	4	7	
$x_1 + x_2 \cdot x_3$	9	6	4	8	4	9	
$(x_1 + x_2 \cdot x_3) \cdot x_2$	8	3	0	4	6	10	

- Addition is almost free, so that efficiency is highly depend on the number of the multiplications
- Soundness error is proportional to 1/N and $1/|\mathbb{F}|$

ullet Prover derives r and $ar{i}$ from hash of the data of previous round without interaction. This technique is called Fiat-Shamir Transform

- Using Fiat-Shamir transform, interactive proof can be transformed into non-interactive proof
- Non-interactive zero-knowledge proof of knowledge of x which satisfies f(x) = y for some one-way function f and output yis a digital signature
 - Public key: output y
 - Private key: input x

- AIM and AIMer
- 4 Algebraic Analysis

AIM - Specification

Scheme	λ	n	ℓ	e_1	e_2	e_3	e_*
AIM-I	128	128	2	3	27	-	5
AIM-III	192	192	2	5	29	-	7
AIM-V	256	256	3	3	53	7	5

- $Mer[e](x) = x^{2^e-1}$: Mersenne power function in \mathbb{F}_{2^n}
 - ullet e is chosen such that $\operatorname{Mer}[e]$ becomes a permutation
 - e_1, e_3, e_* : small values to provide smaller differential probability

- e_2 : large value to obtain full degree over \mathbb{F}_2 $(e_2 \cdot e_* > n)$
- Lin(x) = Ax + b: Multiplication by a random binary matrix A and addition by a random constant b in \mathbb{F}_2

AIM - Design Rationale

Mersenne S-box

- $Mer[e](x) = x^{2^e-1}$
- Only one multiplication is required for its proof $(xy = x^{2^e})$
- ullet More secure than Inv S-box against algebraic attacks on \mathbb{F}_2
- Providing moderate DC/LC resistance

AIM - Design Rationale

AIM and AIMer

Repetitive Structure

- In ZKP-based digital signature, efficiency is highly depend on the number of the multiplications
- In BN++ proof system, when multiplication triples use an identical multiplier in common, the proof can be done in a batched way, reducing the signature size
- AIM allows us to take full advantage of this technique

AIM - Design Rationale

AIM and AIMer

Random Affine Layer

- Random affine layer incereases the algebraic degree of equations over \mathbb{F}_{2^n}
- In order to mitigate multi-target attacks, the affine map is uniquely generated for each user's iv

AlMer - Performance

Туре	Scheme	pk (B)	sig (B)	Sign (ms)	Verify (ms)
Lattice-based	Dilithium2	1312	2420	0.10	0.03
Lattice-based	Falcon-512	897	690	0.27	0.04
Hash-based	SPHINCS+-128s*	32	7856	315.74	0.35
	SPHINCS ⁺ -128f*	32	17088	16.32	0.97
	Picnic3-L1	32	12463	5.83	4.24
	Banquet	32	19776	7.09	5.24
	$Rainier_3$	32	8544	0.97	0.89
ZKP-based	$Rainier_4$	32	9600	1.15	1.05
	$BN++Rain_3$	32	6432	0.83	0.77
	$BN++Rain_4$	32	7488	0.93	0.86
	AlMer-I	32	5904	0.82	0.78
* CHARE					

- Experiments are measured in Intel Xeon E5-1650 v3 @ 3.50GHz with 128 GB memory, AVX2 enabled
- Among the ZKP-based and hash-based digital signatures, AIMer is the most efficient one

^{*: -}SHAKE-simple

- 4 Algebraic Analysis

 Basically, an algebraic attack is to model a symmetric key primitive as a system of (multivariate) polynomial equations and to solve it using algebraic technique.

- In this work, we mainly consider the following two attacks since they are possible using only a single evaluation data.
 - The Gröbner basis attack
 - The eXtended Linearization attack
- The condition giving only one evaluation data considers the ZKP-based digital signature based on symmetric key primitives.

Gröbner Basis Attack²

Definition (informal)

Given a field \mathbb{F} and its polynomial ring $\mathbb{F}[\mathbf{x}]$, a Gröbner basis G for a system $I \subseteq \mathbb{F}[\mathbf{x}]$ is a set of polynomials such that

AIM and AIMer

- for all $f \in \mathbb{F}[\mathbf{x}]$ the remainder of f divided by G is unique, and
- for all $f \in I$ the remainder of f divided by G is 0.

(Counter-example) Consider $\mathbb{R}[x,y,z]$ with lexicographic order. For $G = \{x^2y - 2yz, y^2 - z^2, xz^2\}$ and $f = x^2y^2 + y^2z^2 - 2y^2z$.

•
$$f = y \cdot (x^2y - 2yz) + z^2 \cdot (y^2 - z^2) + 0 \cdot xz^2 + z^4$$

•
$$f = (x^2 + z^2 - 2z) \cdot (y^2 - z^2) + x \cdot xz^2 + 0 \cdot (x^2y - 2yz) + (z^4 - 2z^3)$$

²Examples in this presentation are from J. F. Sauer and A. Szepieniec. SoK: Gröbner Basis Algorithms for Arithmetization Oriented Ciphers.

In $\mathbb{R}[x, y, z]$, a system

Introduction

$${x-y, xyz, x^2 + y^2 + z^2 - 1}$$

AIM and AIMer

has a Gröbner basis in lex order as follows.

$${x-y, y^2 - 0.5z^2 - 0.5, z^3 - z}.$$

$$\left\{\begin{array}{c} y^2 \\ x-y \end{array}\right\} \xrightarrow{y=0} \left\{x\right\} \xrightarrow{x=0} \varnothing$$

$$\left\{\begin{array}{c} z^3-z \\ y^2+\frac{1}{2}z^2-\frac{1}{2} \\ x-y \end{array}\right\} \xrightarrow{z=0} \left\{\begin{array}{c} y^2-\frac{1}{2} \\ x-y \end{array}\right\} \xrightarrow{y=0} \left\{x+\frac{1}{\sqrt{2}}\right\} \xrightarrow{x=-\frac{1}{\sqrt{2}}} \varnothing$$

$$\left\{\begin{array}{c} y^2 \\ x-y \end{array}\right\} \xrightarrow{y=0} \left\{x\right\} \xrightarrow{x=0} \varnothing$$

$$\left\{\begin{array}{c} y^2 \\ x-y \end{array}\right\} \xrightarrow{y=0} \left\{x\right\} \xrightarrow{x=0} \varnothing$$

Gröbner Basis Attack

 The Gröbner basis attack: solve a system by computing its Gröbner basis

- 1 Compute a Gröbner basis in the grevlex³ order
- Change the order of terms to obtain a Gröbner basis in the lex4 order
- Find a univariate polynomial in this basis and solve it
- Substitute the solution into the basis and repeat Step 3
- Existence of a univariate polynomial in Step 3 is guaranteed the system has only finitely many solutions in the algebraic closure of the domain.
 - This is the reason we need to add field equations of the form $x^q = x$ for all variables in the system over \mathbb{F}_q .
- The attack complexity is usually lower bounded by Step 1, computing a Gröbner basis (in the grevlex order).

³graded reverse lexicographic

⁴lexicographic

The eXtended Linearization (XL)

- Trivial Linearization:
 - Replace every monomial of degrees greater than 1 with a new variable to make the system linear

- Solve the linearized system using linear algebra techniques
- Check whether the solution satisfies the substitution in Step 1
 - The number of equations should be greater than or equal to the number of monomials appearing in the system.
 - It is hard to satisfy the above condition when only a single evaluation data is given.
- The XL attack (for Boolean quadratic system):
 - Multiplying all monomials of degrees at most D-2 for some D > 2
 - For large enough D, the extended system has more equations than the number of appearing monomials.
 - Apply trivial linearization to the extended system.

Consider the following system of equations over \mathbb{F}_2 :

$$\begin{cases} f_1(x, y, z) = xy + x + yz + z = 0 \\ f_2(x, y, z) = xz + x + y + 1 = 0 \\ f_3(x, y, z) = xz + yz + y + z = 0 \end{cases}$$

- Trivial linearization does not work since there are 6 monomials and 3 equations.
- Choose D=3 and apply the XL attack.

XL Attack (Example)

```
xf_1: xyz + xy + xz + x = 0
z f_1 : x y z + x z + y z + z = 0
 f_1: xy + x + yz + z = 0
xf_2: xz + xy = 0
uf_2: xuz + xu = 0
x f_3 : xyz + xy = 0
```

```
11110000
00000000
10101010
            xyz
0\ 1\ 0\ 1\ 1\ 0\ 1\ 0
             xy
01100000
             xz
11000000
              x
                 = 0
00001010
             yz
00110101
              u
11000000
10000100
00100010
00101110
```

- Extended system of equations
- Macaulay matrix for the extended system
- Performing Gaussian elimination

To apply algebraic attacks, one has to represent a symmetric primitive as a system of equations.

- Each Mersenne S-box in AIM can be represented as a system of Boolean quadratic equations (w.r.t. its input/output).
 - \bullet For example, there are n quadratic equations directly obtained from $xy = x^{2^e}$ for $x, y \in \mathbb{F}_{2^n}$.

- In fact, we choose the parameter e for the Mersenne S-boxes in AIM such that Mer[e] has 3n quadratic equations.
- Compared to the inverse S-box having 5n quadratic equations, our Mersenne S-boxes have smaller numbers of quadratic equations.
- The exact number of quadratic equations induced from S-box is a critical factor to algebraic attacks.

Consider an Even-Mansour cipher defined as

$$E_k(m) = P(m+k) + k = c$$

AIM and AIMer

where the permutation P is defined as $P = R \circ S \circ L$ for random affine mappings L and R, and an S-box S given as $S(x) = x^a$.

- Goal: given a pair of (m,c), find corresponding key k
- Suppose S has νn Boolean quadratic equations. How the value of ν affects the cost of algebraic attacks to recover k?

S-box	$\begin{array}{c} \text{Condition} \\ \text{on the size } n \end{array}$	Exponent	Implicit Boolean Quadratic Relation	ν
Inverse	n > 4	$2^{n} - 2$	$xy = 1^{\dagger}$	5†
Mersenne	$\gcd(n,e)=1$	$2^{e} - 1$	$xy = x^{2^e} xy = x^{2^{s+1} + 2^{s-1}}$	$3^{\dagger\dagger}$
NGG	$n=2s\geq 8$	$2^{s+1} + 2^{s-1} - 1$	$xy = x^{2^{s+1} + 2^{s-1}}$	2

AIM and AIMer

We perform an experiment computing a Gröbner basis for two kinds of systems representing the Even-Mansour ciphers with the above S-boxes.

- Basic system
 - n quadratic equations that directly comes from the implicit Boolean quadratic relation
 - n field equations of degrees 2 for computing Gröbner basis
- Full system
 - all possible νn linearly independent quadratic equations induced from the S-box
 - n field equations of degrees 2 for computing Gröbner basis

 $^{^{\}dagger}$ Assuming x, y are nonzero.

^{††} This is not for all e. but we can choose such e.

Experiment Result: Gröbner Basis Attack

The cost of computing Gröbner basis is usually represented by the highest degree reached during the computation.

- sd: result from the experiment
- d_{req} : theoretic estimation

Experiment Result: Gröbner Basis Attack

• Environment: AMD Ryzen 7 2700X 3.70GHz with 128 GB memory

Experiment Result: XL Attack

The cost of XL attack is determined by the target degree D.

- D_{exp} : result from the experiment
- D_{est} : theoretic estimation

- $y_i = \operatorname{Mer}[e_i](x) \iff x = \operatorname{Mer}[e_i]^{-1}(y_i) \iff xy = x^{2^e}$
- $x \oplus \mathsf{ct} = \mathsf{Mer}[e_*](z) \iff z = \mathsf{Mer}[e_*]^{-1}(x \oplus \mathsf{ct}) \iff z(x \oplus \mathsf{ct}) = z^{2^e}$
- $y_i = \operatorname{Mer}[e_i] \circ \operatorname{Mer}[e_j]^{-1}(y_j) = \operatorname{Mer}[e_i] (\operatorname{Mer}[e_*](z) \oplus \operatorname{ct})$

Algebraic Analysis on AIM

Scheme	#Var	Variables	Gröbner Basis		XL	
			$\overline{d_{reg}}$	Time	\overline{D}	Time
AIM-I	n	z	51	300.8	52	244.8
	2n	x, y_2	22	214.9	14	150.4
	3n	x , y_1 , y_2	20	222.8	12	148.0
AIM-III	n	z	82	474.0	84	375.3
	2n	x, y_2	31	310.6	18	203.0
	3n	x , y_1 , y_2	27	310.8	15	194.1
AIM-V	n	z	100	601.1	101	489.7
	2n	x, y_2	40	406.2	26	289.5
	3n	x, y_2, y_3	47	510.4	20	260.6
	4n	x , y_1 , y_2 , y_3	45	530.3	19	266.1

- 8 XL Attack
- Optimal Systems on AIM

Algebraic Degree

Suppose $f: \mathbb{F}_{2^n} \to \mathbb{F}_{2^n}$ is defined as $f(x) = x^a$ for some $1 \le a < 2^n$. Then the algebraic degree of f is hw(a).

Suppose \mathbb{F}_{2^n} is constructed as $\mathbb{F}_2(\alpha)$ where α is a root of an irreducible polynomial of degree n.

• $x \in \mathbb{F}_{2^n}$ can be represented as

$$x = x_0 + x_1 \alpha + x_2 \alpha^2 + \dots + x_{n-1} \alpha^{n-1}$$

for some $x_0, x_1, \ldots, x_{n-1} \in \mathbb{F}_2$.

- $x^2 = x_0 + x_1 \alpha^2 + x_2 \alpha^4 + \dots + x_{n-1} \alpha^{2(n-1)}$
- Each coefficient of x^a is a monomial of degree hw(a) with respect to $x_0, x_1, \ldots, x_{n-1}$.

- 6 Monomial Orders
- 8 XL Attack
- Optimal Systems on AIM

Monomial Orders

Algebraic Degree

A monomial order \prec is a total order on the set of monomials \mathcal{M} ;

- 2 The monomial $1 = \mathbf{x}^{(0,0,\dots,0)}$ is the smallest one
 - lex (lexicographical) order
 - \bullet $x^a \prec_{\mathsf{lex}} x^b$ iff the first nonzero entry of a-b is negative
 - In $\mathbb{F}[x,y,z]$ with lex order,

$$xy^2 \prec xy^2z \prec x^2z^2 \prec x^2yz \prec x^3$$

- grevlex (graded reverse lexicographical) order
 - $\mathbf{x}^{\mathbf{a}} \prec_{\mathsf{grevlex}} \mathbf{x}^{\mathbf{b}}$ iff either $\sum_{i} a_{i} < \sum_{i} b_{i}$ or $\sum_{i} a_{i} = \sum_{i} b_{i}$ and $\mathbf{x}^{\mathbf{a}} \succ_{\mathsf{invlex}} \mathbf{x}^{\mathbf{b}}$, where invlex is a lex order with inversely labeled variables.
 - In $\mathbb{F}[x,y,z]$ with grevlex order,

$$xy^2 \prec x^3 \prec xy^2z \prec x^2z^2 \prec x^2yz$$

- Gröbner Basis Attack
- 8 XL Attack
- Optimal Systems on AIM

XL Attack

Gröbner Basis Attack

Algebraic Degree

- The complexity of computing Gröbner basis is estimated using the degree of regularity of the system.
- It basically estimates the highest degree reached during the Gröbner basis computation.
- ullet For the degree d_{req} of regularity, the complexity computing a Gröbner basis is given by

$$O\left(\binom{n_{var} + d_{reg}}{d_{reg}}\right)^{\omega}\right)$$

where n_{var} is the number of variables in the system and $2 \le \omega \le 3$ is the linear algebra constant.

Gröbner Basis Attack

- ullet d_{reg} for an over-defined system is computed as follows.
 - Consider a system $\{f_i\}_{i=1}^m$ of m equations in n variables where m>n and $d_i=\deg f_i$.
 - Then d_{reg} is the smallest of the degrees of the terms with non-positive coefficients for the following Hilbert series under the semi-regularity assumption.

$$HS(z) = \frac{1}{(1-z)^n} \prod_{i=1}^m (1-z^{d_i}).$$

- For an application to a symmetric key primitive,
 - The system modeling the primitive is always over-defined due to the field equation of the form $x^{p^e} x = 0$ over \mathbb{F}_{p^e} .
 - In most cases, compute d_{reg} assuming the semi-regularity.

Consider an Even-Mansour cipher defined as

$$E_k(m) = P(m+k) + k = c$$

where the permutation P is defined as $P = R \circ S \circ L$ for random affine mappings L and R, and an S-box S given as $S(x) = x^a$.

- Goal: given a pair of (m,c), find corresponding key k
 - **1** Build a system over \mathbb{F}_{2^n} in one variable k:
 - This kind of system is mainly considered in recent papers.
 - ② Build a system over \mathbb{F}_2 in n variables representing bits of k:
 - νn implicit quadratic equations for some $\nu > 0$, and n field equations of degree 2
 - $HS(z) = \frac{1}{(1-z)^n} (1-z^2)^{\nu n} (1-z^2)^n = (1+z)^n (1-z^2)^{\nu n}$

Example

$$HS(z) = (1+z)^n (1-z^2)^{\nu n}$$

n	ν	d_{reg}	Time [bits]
8	1	3	14.73
	2	3	14.73
	3	3	14.73
	4	2	10.98
	5	2	10.98
9	1	4	18.96
	2	3	15.56
	3	3	15.56
	4	2	11.56
	5	2	11.56
10	1	4	19.93
	2	3	16.32
	3	3	16.32
	4	3	16.32
	5	2	12.09

n	ν	d_{reg}	Time [bits]	
128	1	17	144.63	
	2	11	104.94	
	3	9	90.05	
	4	8	82.20	
	5	7	74.02	
192	1	23	203.99	
	2	15	148.81	
	3	12	125.52	
	4	10	108.93	
	5	9	100.26	
256	1	29	263.12	
	2	19	192.58	
	3	14	152.48	
	4	12	135.19	
	5	10	117.03	

- 6 Monomial Orders
- **7** Gröbner Basis Attack
- **8** XL Attack
- Optimal Systems on AIM

XL Attack

- How large D should be to solve the given system?
 - There is no method to find such D without experimentally running the XL algorithm.
 - We can give a loose bound for D, assuming the extended equations during the XL algorithm are linearly independent.
- Given a system of m Boolean quadratic equations in n variables:
 - The XL algorithm with the target degree D multiplies $\sum_{i=1}^{D-2} \binom{n}{i}$ monomials, obtaining $m \cdot \sum_{i=1}^{D-2} \binom{n}{i}$ equations.
 - Let T_D be the number of monomials appearing in the extended system. When the extended system is dense, i.e., all monomials appear, we have $T_D = \sum_{i=1}^{D} \binom{n}{i}$.
 - The XL attack works when the number of linearly independent equations in the extended system is greater than or equal to T_D , and its complexity is given by $O(T_D^{\omega})$.

- 8 XL Attack
- Optimal Systems on AIM

Gröbner Basis Attack

$$\begin{split} & (\mathsf{Mer}[e_*](z) \oplus \mathsf{ct})^{2^{e_2}} = (\mathsf{Mer}[e_*](z) \oplus \mathsf{ct}) \\ & \times \mathsf{Lin'}\left(\mathsf{Mer}[e_1](\mathsf{Mer}[e_*](z) \oplus \mathsf{ct}), \mathsf{Mer}[e_3](\mathsf{Mer}[e_*](z) \oplus \mathsf{ct}), z \right) \end{split}$$

where Lin' denotes a linear function such that $y_2 = Lin'(y_1, y_3, z)$.

ullet 3n equations of degree

$$e_* + \max(\deg(\mathsf{Mer}[e_1] \circ \mathsf{Mer}[e_*]), \deg(\mathsf{Mer}[e_3] \circ \mathsf{Mer}[e_*]))$$

Systems for AIM-V: 2n variables

$$x \cdot y_2 = x^{2^{e_2}},$$

 $\mathsf{Lin}(\mathsf{Mer}[e_1](x), y_2, \mathsf{Mer}[e_3](x)) \cdot (x \oplus \mathsf{ct}) = \mathsf{Lin}(\mathsf{Mer}[e_1](x), y_2, \mathsf{Mer}[e_3](x))^{2^{e_*}}$

- 3n quadratic equations
- 3n equations of degree $\max(e_1, e_3) + 1$

Systems for AIM-V: 3n variables

$$x \cdot y_2 = x^{2^{e_2}},$$
$$x \cdot y_3 = x^{2^{e_3}},$$

$$\mathsf{Lin}(\mathsf{Mer}[e_1](x),y_2,y_3)\cdot(x\oplus\mathsf{ct})=\mathsf{Lin}(\mathsf{Mer}[e_1](x),y_2,y_3)^{2^{e_*}}$$

- 6n quadratic equations
- 3n equations of degree $e_1 + 1$

Systems for AIM-V: 4n variables

$$\begin{split} x \cdot y_1 &= x^{2^{e_1}}, \qquad x \cdot y_2 = x^{2^{e_2}}, \qquad x \cdot y_3 = x^{2^{e_3}}, \\ \operatorname{Lin}(y_1, y_2, y_3) \cdot (x \oplus \operatorname{ct}) &= \operatorname{Lin}(y_1, y_2, y_3)^{2^{e_*}} \end{split}$$

ullet 12n quadratic equations

Optimal Systems on AIM

Scheme	#Var	Variables	Gröbner Basis		XL	
			$\overline{d_{reg}}$	Time	\overline{D}	Time
AIM-I	n	z	51	300.8	52	244.8
	2n	x, y_2	22	214.9	14	150.4
	3n	x , y_1 , y_2	20	222.8	12	148.0
AIM-III	n	z	82	474.0	84	375.3
	2n	x, y_2	31	310.6	18	203.0
	3n	x , y_1 , y_2	27	310.8	15	194.1
AIM-V	n	z	100	601.1	101	489.7
	2n	x, y_2	40	406.2	26	289.5
	3n	x, y_2, y_3	47	510.4	20	260.6
	4n	x , y_1 , y_2 , y_3	45	530.3	19	266.1