

Bruel & Kjaer Norcross, Georgia www.bkhome.com

Brüel & Kjær 🖛

Agenda

- Introduction to Theory and Terminology
- The Decibel
- Frequency of Sound
- Measuring Sound
- Applications of Acoustics

www.bksv.com

Brüel & Kjær 🖛

Converting Pascals to Decibels

$$L_p = 20 \log \left(\frac{p}{p_0} \right) dB \text{ re } 20 \text{ } \mu Pa$$

 $(p_0 = 20 \text{ } \mu Pa = 20 \text{ x } 10^{-6} \text{ Pa})$

Ex. 1:
$$p = 1 Pa$$

 $L_p = 20 log \frac{1}{20 \times 10^{-6}}$

$$= 94 dB$$

Ex. 2: p = 31.7 Pa

$$L_p = 20 log \frac{31.7}{20 \times 10^{-6}}$$

$$= 20 \log 1.58 \times 10^6$$

$$= 124 dB$$

www.bksv.com

Brüel & Kjær 🛶

Human Perception of dBs

Change in Sound Level (dB)	Change in Perceived Loudness
3	Just perceptible
5	Noticeable difference
10	Twice (or 1/2) as loud
15	Large change
20	Four times (or 1/4) as loud

www.bksv.com

Brüel & Kjær 🛶

Band No.	Nominal Centre	Third-octave	Octave
	Frequency Hz	Passband Hz	Passband Hz
1 2 3 4 5	1.25 1.6 2 2.5 3.15 4	1.12 – 1.41 1.41 – 1.78 1.78 – 2.24 2.24 – 2.82 2.82 – 3.55 3.55 – 4.47	1.41 – 2.82 2.82 – 5.62
27 28 29 30 31 32	500 630 800 1000 1250 1600	447 – 562 562 – 708 708 – 891 891 – 1120 1120 – 1410 1410 – 1780	355 – 708 708 – 1410
40	10 K	8910 – 11200	11.2 – 22.4 K
41	1.25 K	11.2 – 14.1	
42	16 K	14.1 – 17.8 K	
43	20 K	17.8 – 22.4 K	

Sound Power

- Three ways to calculate sound power:
 - Free Field

www.bksv.com

- Reverberant Field
- Sound Intensity

- Product noise labeling
- Government regulations
- 'Apples to Apples' comparison of noise
- Can predict SPL with knowledge of sound field

Intensity Mapping Display 1 Visually identify where sounds come 18 from Rank sound power contribution of individual components Make modern art? Brüel & Kjær 🖛 www.bksv.com

Conclusion

- Clear understanding of the three basic acoustic parameters: pressure, intensity, power
- What a decibel is and why we use it in acoustics
- Differences between Anechoic, Reverberant, and Pressure sound fields
- How wavelengths are calculated and the importance of frequency analysis in acoustics
- Introduction to some different acoustic applications

www.bksv.com

Brüel & Kjær 🖛

Literature for Further Reading

References

- Acoustic Noise Measurements Brüel & Kjær (BT 0010-12)
- Noise Control Principles and Practice Brüel & Kjær (188-81)
- Noise and Vibration Control L. L. Beranek, ed. INCE
- Industrial Noise Control Louis Bell, Dekker
- The Science and Application of Acoustics Daniel Raichel, AIP Press
- Industrial Noise and Vibration Control Irwin and Graf, Prentice Hall
- Acoustics
 - L.L. Beranek, Acoustical Society of America
- Acoustical Designing in Architecture V. Knudsen, C. Harris Acoustical Society of America

www.bksv.com

Journals and Magazines

- Journal of the Acoustical Society of America
- Noise Control Engineering
- Sound and Vibration Magazine
- Bruel & Kjaer Magazine

Websites

- www.bkhome.com
- asa.aip.org
- www.inceusa.org
- www.nonoise.org

Brüel & Kjær 🖛

Questions

Jason Kunio **Application Engineer** 678-250-7684 jason.kunio@bksv.com

www.bksv.com

Brüel & Kjær 🖛

