Universidade Federal de Alfenas - UNIFAL-MG

Disciplina: Cálculo Numérico Período: 2024/1

Professor: Anderson José de Oliveira

Lista de Exercícios 2 - Métodos numéricos para obtenção de zeros de funções reais

1. Justifique que a função $f(x) = 4x - e^x$ possui uma raiz no intervalo (0,1) e outra no intervalo (2,3).

2. Justifique que a função:

$$f(x) = \cos \frac{\pi(x+1)}{8} + 0{,}148x - 0{,}9062$$

possui uma raiz no intervalo (-1,0) e outra no intervalo (0,1).

3. Para cada uma das funções apresentadas a seguir:

- (a) Isole suas raízes e esboce o gráfico correspondente.
- (b) Determine o valor aproximado das raízes isoladas, sendo uma pelo método da bissecção, com $\epsilon \le 0,02$ e outra pelo método de Newton-Raphson, com $\epsilon \le 0,001$ (quando tiver mais de uma raíz), e por qualquer método quando tiver apenas uma raiz.

1.
$$f(x) = x^2 - 2\cos x - 1$$

2.
$$f(x) = x^2 + e^{3x} - 3$$

3.
$$f(x) = 2x^2 + 3\log x - 5$$

4.
$$f(x) = x^3 - x^2 - 10x + 9$$

4. Em problemas de fluxo de tubulações, é frequente precisar resolver a equação: $c_5D^5 + c_1D + c_0 = 0$. Se $c_5 = 1000$, $c_1 = -3$ e $c_0 = 9,04$, determine uma raiz usando o método de Newton-Raphson e apresente o esboço do gráfico.

5. Seja
$$f(x) = x^3 - 2x + 2$$
.

- (a) O que acontece quando se usa $x_0 = 0$ como aproximação inicial na aplicação do método de Newton-Raphson? Execute pelo menos dois passos do método de Newton-Raphson.
- (b) Utilize o método de Newton-Raphson com aproximação inicial $x_0 = -2$ para encontrar um zero da função f com precisão $\epsilon_1 = \epsilon_2 = 10^{-2}$. Verifique se pelo menos um dos critérios de parada é atingido em somente 2 iterações.

- 6. Seja a equação $x x \ln(x) = 0$. Construa tabelas para a raiz positiva desta equação, usando vários métodos. Use $\epsilon = 10^{-5}$. Compare os diversos métodos considerando a garantia e rapidez de convergência e eficácia computacional em cada caso.
- 7. O polinômio $p(x) = x^5 \frac{10}{9}x^3 + \frac{5}{21}x$ tem seus cinco zeros reais, todos no intervalo (-1,1).
 - (a) Verifique que $x_1 \in (-1; -0, 75)$, $x_2 \in (-0, 75; -0, 25)$, $x_3 \in (-0, 25; 0, 25)$, $x_4 \in (0, 3; 0, 8)$ e $x_5 \in (0, 8; 1)$.
 - (b) Encontre pelo respectivo método, usando $\epsilon = 10^{-5}$:
 - $-x_1$: Newton-Raphson $(x_0 = -0, 8)$;
 - $-x_2$: Bissecção ([a, b] = [-0, 75; -0, 25]);
 - $-x_3$: Posição Falsa ([a, b] = [-0, 25; 0, 25]);
 - $-x_4$ e x_5 por qualquer método e escolhendo as condições que julgar mais interessantes para o momento.
- 8. Calcule as 4 primeiras iterações utilizando o método de Newton-Raphson e o método da secante para encontrar a raiz da equação:

$$x^3 - 2x^2 - 3x + 10 = 0$$
, $x_0 = 1, 9$

Obs.: Faça uma escolha arbitrária do valor de x_1 para utilizar o método da secante.

- 9. Seja $f(x)=e^x-4x^2$ e ξ sua raiz no intervalo (0,1). Tomando $x_0=0,5,$ encontre ξ com $\epsilon=10^{-4},$ usando:
 - (a) o MPF com $\varphi(x) = \frac{1}{2}e^{x/2}$.
 - (b) o método de Newton-Raphson.

Compare a rapidez de convergência.

- 10. Considere a função $f(x) = x^3 x 1$. Resolva-a pelo MPF com função de iteração $\varphi(x) = \frac{1}{x} + \frac{1}{x^2}$ e $x_0 = 1$. Justifique seus resultados.
- 11. Pesquise e faça uma análise gráfica de cada um dos métodos numéricos estudados para obtenção de zeros de funções.

Bons estudos!