2 3(0) c° = aa~

0° 63(0) 6° = L ~ 00 p3(1) (1 = ppb C)

Question 1:

1. Consider the Language $L = \{a^m b^{3n} c^n \}$, where $n, m \ge 0$. Which of the following strings are not in the language.

b) bbbc

c) aa

(2 points)

 $L_1 = \{\lambda_1, \alpha, \alpha_1, b, b, \alpha, \alpha, \alpha, b\}$ $L_1 = \{\lambda_1, \alpha_1, b, \alpha, \alpha, \alpha, \alpha, b, b, \alpha, b, b\}$

2. Let $\Sigma = \{a, b\}$. Let $L_1 = \{x \in \Sigma^* : |x| \le 2\}$. Let $L_2 = \{\lambda, a, b, ab\}$. List the elements of the following language $L = L_1 \cap (L_2)^2$.

L= { L) aa, bb} ab 0.

Question 2:

1. Draw a DFA to accept string of 0's and 1's ending with the string 011. (2 points)

			1	0	1
1.0 =0	1.1=1	v.	K	9,	00
0.0=00	0.1=01	01	0	1	92
	01.1=01				V 3
011.0 = 9 440	93	0	11	2,	20
011.1=	4 Y Y Y =				

3. Given the following automata, answer the following questions.

(6 points)

1

B. Is the automata a DFA or NFA? NFA

- D. Does the machine accept the string abbab? Yes
- E. The language recognized by the FA?

a)
$$L = \{ w \mid w \in \Sigma^* \}$$
 no not accepting

- (b) $L = \{w | w \text{ contains } b\}$ yes accepting λ a and be what is
- (c) $L = \{w | w \text{ contains } b \text{ as } 3rd \text{ char from the end}\}$

d)
$$L = \{w | w \text{ contains } b\} \cup \lambda$$
 no not accepting

F. For the previous FA, to accept L={w| w starts with b} we need to change the following transitions:

a) Add
$$\delta(q_4, a) = \delta(q_4, b) = \{q_4\}$$

(b) Delete
$$\delta(q_1, a) = \delta(q_1, b) = \{q_1\}$$

- c) a and b
- d) None