Al LAB 3 – 9557-Gaurav Mishra – Batch B

Water Jug problem using DFS:

```
Code:
class State:
  def __init__(self, jugs):
    self.jugs = jugs
  def __eq__(self, other):
    return self.jugs == other.jugs
  def hash (self):
    return hash(tuple(self.jugs))
def successors(state, jug_sizes):
  successors = []
  for i in range(len(state.jugs)):
    for j in range(len(state.jugs)):
      if i != j:
         pour_amount = min(state.jugs[i], jug_sizes[j] - state.jugs[j])
         if pour_amount > 0:
           new_jugs = list(state.jugs)
           new_jugs[i] -= pour_amount
           new jugs[j] += pour amount
           successors.append(State(tuple(new_jugs)))
```

return successors

```
def dfs(state, goal, jug_sizes, visited):
  if state == goal:
     return []
  visited.add(state)
  for succ_state in successors(state, jug_sizes):
     if succ_state not in visited:
       result = dfs(succ state, goal, jug sizes, visited)
       if result is not None:
         pour_amount = [state.jugs[i] - succ_state.jugs[i] for i in
range(len(state.jugs))]
         return [f"Pour {pour amount[i]} from jug {i+1} to jug {j+1}" for i, j in
enumerate(range(len(state.jugs)))]
  return None
def main():
  jug_sizes = (5, 3) # Jug sizes (e.g., (5, 3) represents jugs of size 5 and 3)
  initial_state = State((0, 0)) # Initial state of the jugs
  goal_state = State((4, 0)) # Goal state to reach
  visited = set()
  solution = dfs(initial state, goal state, jug sizes, visited)
  if solution:
    print("Solution:", solution)
  else:
```

```
print("No solution found.")

if __name__ == "__main__":
    main()
```

OUTPUT:

Missionaries and Cannibals:

```
Code:
```

Missionaries & Cannibals Problem using Depth-First Search

```
class State:
```

```
def __init__(self, missionaries, cannibals, boat):
    self.missionaries = missionaries
    self.cannibals = cannibals
    self.boat = boat
    self.parent = None
    self.action = None

def __eq__(self, other):
```

```
return self.missionaries == other.missionaries and self.cannibals == other.cannibals and self.boat == other.boat
```

```
def hash (self):
    return hash((self.missionaries, self.cannibals, self.boat))
def successors(state):
  successors = []
  if state.boat == 'left':
    for m in range(3):
      for c in range(3):
         if 1 \le m + c \le 2:
           new_state = State(state.missionaries - m, state.cannibals - c, 'right')
           if 0 <= new state.missionaries <= 3 and 0 <= new state.cannibals <=
3 and (new state.missionaries >= new state.cannibals or
new state.missionaries == 0) and ((3 - new state.missionaries) >= (3 -
new_state.cannibals) or new_state.missionaries == 3):
             successors.append((new state, f"Move {m} missionaries and {c}
cannibals to the right"))
  else:
    for m in range(3):
      for c in range(3):
         if 1 \le m + c \le 2:
           new_state = State(state.missionaries + m, state.cannibals + c, 'left')
           if 0 <= new state.missionaries <= 3 and 0 <= new state.cannibals <=
3 and (new state.missionaries >= new state.cannibals or
new_state.missionaries == 0) and ((3 - new_state.missionaries) >= (3 -
new state.cannibals) or new state.missionaries == 3):
```

```
successors.append((new_state, f"Move {m} missionaries and {c}
cannibals to the left"))
  return successors
def dfs(initial_state, goal):
  stack = [(initial_state, "Initial state")]
  visited = set()
  while stack:
    state, action = stack.pop()
    if state == goal:
       return action
    if state not in visited:
       visited.add(state)
       stack.extend((s, a) for s, a in successors(state))
  return "No solution found."
def main():
  initial_state = State(3, 3, 'left') # Initial state of the missionaries and
cannibals
  goal_state = State(0, 0, 'right') # Goal state to reach
  solution = dfs(initial_state, goal_state)
  print("Solution:", solution)
if __name__ == "__main__":
```

POSTLAB:

POSILAB:	
	ER, CONCEICAO RODRIGUES COLLEGE OF ENGINEERING
	AS Gawov Mislora 9557 Rath B Lab 4
-1	
1)	The time complexity of weater Tuo hollows along to
	and to mue it lymography by the algorithm
	The time complexity of water Jug Problem depends on the algorithm Uned to nive it lymerally to when solving the water Jug Problem Ching a bruk force approach the time complexity com he appropriate put in water take a livery to the solving the complexity com
	he arrangulal and in wount was The nine complemy com
	Apare gorous exponentially with the number of 1400 required to
	The William In I we somewhat have been
	of the property failed and of the
, 11	dyn of ee search tree.
	DEC 10 MOT HE COUNTY OF A 12 1 100 TO 11
-3	I do not by usually and for solving the Water-Jug Problem became
I	not guarante many the mount hath to me grat
-	State. DTS sylveres he search space depth hust meaning it
1	englores one branch of the search tree as far an possible
1	before backtacky. While DFS may find a solution for the
	Wake Try hobem it may not And the optimal solution Addition
	DFS may get stuck in infinite logs if the search prace
	unitain cycles. Therefore BS or At are und how Water Typ hoblan
-	