Real Analysis Qualifying Exam Notes

D. Zack Garza

Sunday 5th July, 2020

Contents

1 Practice Exam 2 (November 2014)		
	1.1	1: Fubini-Tonelli
		1.1.1 a
		1.1.2 b
	1.2	2: Convolutions and the Fourier Transform
		1.2.1 a
		1.2.2 b
		1.2.3 c
	1.3	3: Hilbert Spaces
		1.3.1 a
		1.3.2 b
		1.3.3 c
	1.4	4: Lp Spaces
		1.4.1 a
		1.4.2 c
	1.5	5: Dual Spaces
		1.5.1 a
		152 b

1 Practice Exam 2 (November 2014)

1.1 1: Fubini-Tonelli

1.1.1 a

Carefully state Tonelli's theorem for a nonnegative function F(x,t) on $\mathbb{R}^n \times \mathbb{R}$.

1.1.2 b

Let $f: \mathbb{R}^n \longrightarrow [0, \infty]$ and define

$$\mathcal{A} := \left\{ (x, t) \in \mathbb{R}^n \times \mathbb{R} \mid 0 \le t \le f(x) \right\}.$$

Prove the validity of the following two statements:

- 1. f is Lebesgue measurable on $\mathbb{R}^n \iff \mathcal{A}$ is a Lebesgue measurable subset of \mathbb{R}^{n+1} .
- 2. If f is Lebesgue measurable on \mathbb{R}^n then

$$m(\mathcal{A}) = \int_{\mathbb{R}^n} f(x) dx = \int_0^\infty m\left(\left\{x \in \mathbb{R}^n \mid f(x) \ge t\right\}\right) dt.$$

1.2 2: Convolutions and the Fourier Transform

1.2.1 a

Let $f, g \in L^1(\mathbb{R}^n)$ and give a definition of f * g.

1.2.2 b

Prove that if f, g are integrable and bounded, then

$$(f*g)(x) \stackrel{|x| \longrightarrow \infty}{\longrightarrow} 0.$$

1.2.3 c

- 1. Define the Fourier transform of an integrable function f on \mathbb{R}^n .
- 2. Give an outline of the proof of the Fourier inversion formula.
- 3. Give an example of a function $f \in L^1(\mathbb{R}^n)$ such that \widehat{f} is not in $L^1(\mathbb{R}^n)$.

1.3 3: Hilbert Spaces

Let $\{u_n\}_{n=1}^{\infty}$ be an orthonormal sequence in a Hilbert space H.

1.3.1 a

Let $x \in H$ and verify that

$$\left\| x - \sum_{n=1}^{N} \langle x, u_n \rangle u_n \right\|_{H}^{2} = \|x\|_{H}^{2} - \sum_{n=1}^{N} |\langle x, u_n \rangle|^{2}.$$

for any $N \in \mathbb{N}$ and deduce that

$$\sum_{n=1}^{\infty} |\langle x, u_n \rangle|^2 \le ||x||_H^2.$$

1.3.2 b

Let $\{a_n\}_{n\in\mathbb{N}}\in\ell^2(\mathbb{N})$ and prove that there exists an $x\in H$ such that $a_n=\langle x, u_n\rangle$ for all $n\in\mathbb{N}$, and moreover x may be chosen such that

$$||x||_H = \left(\sum_{n \in \mathbb{N}} |a_n|^2\right)^{\frac{1}{2}}.$$

Proof.

• Take $\{a_n\} \in \ell^2$, then note that $\sum |a_n|^2 < \infty \implies$ the tails vanish.

• Define
$$x := \lim_{N \to \infty} S_N$$
 where $S_N = \sum_{k=1}^N a_k u_k$

- $\{S_N\}$ is Cauchy and H is complete, so $x \in H$.
- By construction,

$$\langle x, u_n \rangle = \left\langle \sum_k a_k u_k, u_n \right\rangle = \sum_k a_k \langle u_k, u_n \rangle = a_n$$

since the u_k are all orthogonal.

• By Pythagoras since the u_k are normal,

$$||x||^2 = \left\| \sum_k a_k u_k \right\|^2 = \sum_k ||a_k u_k||^2 = \sum_k |a_k|^2.$$

1.3.3 c

Prove that if $\{u_n\}$ is *complete*, Bessel's inequality becomes an equality.

Proof.

Let x and u_n be arbitrary.

$$\left\langle x - \sum_{k=1}^{\infty} \langle x, u_k \rangle u_k, u_n \right\rangle = \left\langle x, u_n \right\rangle - \left\langle \sum_{k=1}^{\infty} \langle x, u_k \rangle u_k, u_n \right\rangle$$

$$= \left\langle x, u_n \right\rangle - \sum_{k=1}^{\infty} \left\langle \langle x, u_k \rangle u_k, u_n \right\rangle$$

$$= \left\langle x, u_n \right\rangle - \sum_{k=1}^{\infty} \left\langle x, u_k \rangle \langle u_k, u_n \right\rangle$$

$$= \left\langle x, u_n \right\rangle - \left\langle x, u_n \right\rangle = 0$$

$$\implies x - \sum_{k=1}^{\infty} \left\langle x, u_k \rangle u_k = 0 \quad \text{by completeness.}$$

So

$$x = \sum_{k=1}^{\infty} \langle x, u_k \rangle u_k \implies ||x||^2 = \sum_{k=1}^{\infty} |\langle x, u_k \rangle|^2. \blacksquare.$$

1.4 4: Lp Spaces

1.4.1 a

?

1.4.2 c

Definition (Infinity Norm):

$$L^{\infty}(X) = \left\{ f : X \longrightarrow \mathbb{C} \; \middle| \; \|f\|_{\infty} < \infty \right\}$$
 where
$$\|f\|_{\infty} = \inf_{\alpha \geq 0} \left\{ \alpha \; \middle| \; m \left\{ |f| \geq \alpha \right\} = 0 \right\}.$$

Theorem:

$$m(X) < \infty \implies \lim_{p \to \infty} ||f||_p = ||f||_{\infty}.$$

Proof: Let $M = ||f||_{\infty}$. For any L < M, let $S = \{|f| \ge L\}$. Then m(S) > 0 and

$$||f||_{p} = \left(\int_{X} |f|^{p}\right)^{\frac{1}{p}}$$

$$\geq \left(\int_{S} |f|^{p}\right)^{\frac{1}{p}}$$

$$\geq L \ m(S)^{\frac{1}{p}} \xrightarrow{p \longrightarrow \infty} L$$

$$\implies \liminf_{p} ||f||_{p} \geq M.$$

We also have

$$||f||_p = \left(\int_X |f|^p\right)^{\frac{1}{p}}$$

$$\leq \left(\int_X M^p\right)^{\frac{1}{p}}$$

$$= M \ m(X)^{\frac{1}{p}} \xrightarrow{p \to \infty} M$$

$$\implies \limsup_p ||f||_p \leq M \blacksquare.$$

Note: this doesn't help with this problem at all.

Solution:

$$\begin{split} \int f^p &= \int_{x \le 1} f^p + \int_{x=1} f^p + \int_{x \ge 1} f^p \\ &= \int_{x \le 1} f^p + \int_{x=1} 1 + \int_{x \ge 1} f^p \\ &= \int_{x \le 1} f^p + m(\{f=1\}) + \int_{x \ge 1} f^p \\ &\xrightarrow{p \longrightarrow \infty} 0 + m(\{f=1\}) + \begin{cases} 0 & m(\{x \ge 1\}) = 0 \\ \infty & m(\{x \ge 1\}) > 0. \end{cases} \end{split}$$

1.5 5: Dual Spaces

Let X be a normed vector space.

1.5.1 a

Give the definition of what it means for a map $L: X \longrightarrow \mathbb{C}$ to be a linear functional.

1.5.2 b

Prove Minkowski's Inequality:

$$1 \le p < \infty \implies \|f + g\|_p \le \|f\|_p + \|g\|_p.$$

Conclude that if $f, g \in L^p(\mathbb{R}^n)$ then so is f + g.