● 資料介紹

這是一筆關於 2011 全球前 1000 大網站的資料,選取依據是由 UniqueVisitors 去 選出前 1000 多的網站,第一名是 facebook,高達 8.8 億個 UniqueVisitors,第二 名是 youtube,接下來的幾名也大家耳熟能詳的網站,如資料分析中的第一張 圖所示。

● 欄位簡介

我們只關心 5 個欄位,Rank, PageViews, UniqueVisitors, HasAdvertising and IsEnglish.

欄位名稱	說明			
Rank	依據 UniqueVisitors 由大到小的排名			
PageViews	網站總瀏覽次數,若小明一年造訪 A 網站 5 次,則 A 網站			
	PageViews 增加 5			
	此欄位是本次分析的 response			
UniqueVisitors	ors 網站造訪人數,同一人多次造訪不重覆計算,若小明一年造			
	訪A網站5次,則A網站UniqueVisitors增加1			
HasAdvertising	y 某網站是否有廣告			
IsEnglish	某網站主要語言是否是英文,只有前 100 名有資料,後面			
	900 名都是 missing value			

● 分析目標

將 UniqueVisitors, HasAdvertising, IsEnglish 這三個當作變數利用迴歸分析方法預測 PageViews

● 資料分析

首先, 先來看看我們的資料, 因為有多達 1000 筆, 所以我只放前 35 筆資料

	Rank ^a	Site	Category	UniqueVisitors	Reach	PageViews	HasAdvertising	InEnglish	TLD :
1	1	facebook.com	Social Networks	8.8e+08	47.2	9.1e+11	Yes	Yes	com
2	2	youtube.com	Online Video	8.0e+08	42.7	1.0e+11	Yes	Yes	com
3	3	yahoo.com	Web Portals	6.6e+08	35.3	7.7e+10	Yes	Yes	com
4	4	live.com	Search Engines	5.5e+08	29.3	3.6e+10	Yes	Yes	com
5	5	wikipedia.org	Dictionaries & Encyclopedias	4.9e+08	26.2	7.0e+09	No	Yes	org
6	6	msn.com	Web Portals	4.5e+08	24.0	1.5e+10	Yes	Yes	com
7	7	blogspot.com	Blogging Resources & Services	4.1e+08	21.9	5.4e+09	Yes	Yes	com
8	8	baidu.com	Search Engines	3.4e+08	18.0	1.1e+11	Yes	No	com
9	9	bing.com	Search Engines	3.4e+08	18.3	1.1e+10	Yes	Yes	com
10	10	microsoft.com	Software	3.4e+08	18.3	2.7e+09	Yes	Yes	com
11	11	qq.com	Web Portals	2.8e+08	15.0	4.4e+10	Yes	No	com
12	12	ask.com	Search Engines	2.1e+08	11.2	2.0e+09	Yes	Yes	com
13	13	taobao.com	Classifieds	1.9e+08	10.3	3.0e+10	Yes	No	com
14	14	adobe.com	Multimedia Software	1.7e+08	9.2	1.0e+09	No	Yes	com
15	15	wordpress.com	Blogging Resources & Services	1.7e+08	9.2	1.0e+09	Yes	Yes	com
16	16	twitter.com	Email & Messaging	1.6e+08	8.4	6.0e+09	Yes	Yes	com
17	17	youku.com	Online Video	1.6e+08	8.4	3.6e+09	Yes	No	com
18	18	soso.com	Search Engines	1.6e+08	8.4	3.6e+09	No	No	com
19	19	sohu.com	Web Portals	1.4e+08	7.6	5.9e+09	Yes	No	com
20	20	163.com	Web Portals	1.4e+08	7.7	6.5e+09	Yes	No	com
21	21	windows.com	Windows OS	1.3e+08	7.0	5.4e+08	Yes	Yes	com
22	22	hao123.com	Web Portals	1.2e+08	6.3	7.2e+09	Yes	No	com
23	23	tudou.com	Online Video	1.2e+08	6.3	2.7e+09	Yes	No	com
24	24	amazon.com	Shopping	1.2e+08	6.3	4.4e+09	Yes	Yes	com
25	25	apple.com	Mac OS	1.1e+08	5.8	1.1e+09	Yes	Yes	com
26	26	ebay.com	Auctions	1.1e+08	5.8	1.0e+10	Yes	Yes	com
27	27	sogou.com	Search Engines	8.9e+07	4.8	2.3e+09	Yes	No	com
28	28	mozilla.com	Internet Clients & Browsers	8.7e+07	4.7	5.9e+08	No	Yes	com
29	29	yahoo.co.jp	Web Portals	8.7e+07	4.7	3.0e+10	Yes	No	cojp
30	30	paypal.com	Merchant Services & Payment Systems	8.2e+07	4.4	1.7e+09	Yes	Yes	com
31	31	tmall.com	Apparel	8.1e+07	4.3	2.1e+09	Yes	No	com
32	32	go.com	Web Portals	8.1e+07	4.4	3.3e+09	Yes	Yes	com
33	33	about.com	How-To' DIY & Expert Content	8.1e+07	4.3	6.0e+08	Yes	Yes	com
34	34	flickr.com	Photo & Image Sharing	8.1e+07	4.3	1.7e+09	Yes	Yes	com
35	35	56.com	Online Media	8.0e+07	4.3	1.1e+09	Yes	No	com

再來看看我們要拿來做迴歸的欄位間的 correlation plot,在此我特別也把 Reach 加進來看,Reach 和 UniqueVisitors 呈現完全正相關,因此待會只會將 UniqueVisitors 加入迴歸模型,防止發生共線性問題;我們可以看到 PageViews 只和 UniqueVisitors 及 Reach 這兩個變數有較高相關,HasAdvertising 及 IsEnglish 這兩個變數和 PageViews 沒什麼關係,UniqueVisitors,HasAdvertising, IsEnglish 三 者間相關性也不大。

就直覺來說 PageViews 和 UniqueVisitors 的相關性應該會很高,所以我們先將這兩欄的資料用散布圖畫出來,如(左圖)所示,這個圖非常難看,大部分的點都集中在左下角,原因是數值太大了且資料不服從常態,導致軸上的刻度間距很大,只有少數幾個值不會擠成一團;因此我同時對 PageViews 和 UniqueVisitors 取 log,再去畫散布圖,如(右圖)所示,藍線為迴歸線,果然可以看出兩者有高度的正相關,因此待會 PageViews 和 UniqueVisitors 都會取 log 再丟下去建模。

接下來就是建立迴歸模型

先建立 full model: log(PageViews)~log(UniqueVisitors)+HasAdvertising+InEnglish

```
Call:
lm(formula = log(PageViews) ~ log(UniqueVisitors) + HasAdvertising
    InEnglish, data = rawdata)
Residuals:
Min 1Q Median 3Q
-2.4283 -0.7685 -0.0632 0.6298
                                    Max
                                 5.4133
Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
(Intercept)
                    -1.94502
                               1.14777 -1.695 0.09046
log(UniqueVisitors) 1.26507
                               0.07053 17.936 < 2e-16 ***
HasAdvertisingYes
                    0.30595
                               0.09170 3.336 0.00088 ***
InEnglishNo
                    0.83468
                               0.20860 4.001 6.77e-05 ***
InEnglishYes
                    -0.16913
                               0.20424 -0.828 0.40780
Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' 1
Residual standard error: 1.067 on 995 degrees of freedom
Multiple R-squared: 0.4798,
                             Adjusted R-squared: 0.4777
F-statistic: 229.4 on 4 and 995 DF, p-value: < 2.2e-16
```

這邊會出現 InEnglishYes 和 InEnglishNo 是因為我將遺失值"NA"也當成此變數的一個 level 且是 baseline,若不這麼做的話,R 只會拿前 100 筆資料去做迴歸。我們可以看到 log(UniqueVisitors),HasAdvertising,InEnglish 三個變數對 log(PageViews)都是有影響的

接下來分別對 log(UniqueVisitors),HasAdvertising,InEnglish 三個變數做簡單迴歸

模型	判定係數 R ²	RMSE	
log(PageViews)~log(UniqueVisitors)	0.4616	1.0826	
log(PageViews)~ HasAdvertising	0.0107	1.4674	
log(PageViews)~ InEnglish	0.3043	1.2306	
full model	0.4798	1.0641	

由上表可知,log(UniqueVisitors)的 R²高達 0.4616,和 full model 的 R²已經差不多了,代表其他兩個變數對 log(PageViews)的解釋力不高;雖然看起來 InEnglish 的 R²也不小有 0.3043,但此變數 9 成的資料都是 missing value,可信度不高,我便再拿前 100 筆 InEnglish 欄位有值的資料和 log(PageViews)做簡單迴歸,發現 R²僅有 0.0312,代表 InEnglish 只能解釋前 100 筆 log(PageViews)總變異的 3%左右,因此推斷 InEnglish 對 log(PageViews)的解釋力不大。

最好的模型是 full model,因此我要來看它是否符合模型假設,首先是殘差圖,變異沒有隨預測值增加而波動,大致都在正負 2 倍標準差內,符合同質變異數假設。

接下來看殘差是否符合常態分配,從 qqplot 看來殘差並沒有很符合常態

做 Shapiro-Wilk 看看殘差是不是真的不符合常態,虛無假設 H0:殘差服從常態分配,因為 p-value < 0.05,拒絕 H0,果然不服從常態分配

```
Shapiro-Wilk normality test
data: fullmodel$residuals
W = 0.97627, p-value = 1.037e-11
```

最後看看殘差有無符合獨立性假設,虛無假設 H0:殘差間相互獨立,因為 p-value > 0.05,代表不會拒絕 H0,符合獨立性假設

```
lag Autocorrelation D-W Statistic p-value
1 -0.03899812 2.068281 0.3
Alternative hypothesis: rho != 0
```

- 結論:雖然常態假設不符合,但不影響預測力。UniqueVisitors 也可用 Reach 代替去建模。另外 InEnglish 該欄的 missing value 比例太高,可能影響預測 準確率。
- Reference: https://rpubs.com/skydome20/R-Note5-First Practice
 Drew Conway and John Myles White (2012) Machine Learning for Hackers
 https://molecular-service-science.com/2013/11/27/r-ggplot-tutorial-1/
 https://www.sthda.com/english/wiki/ggally-r-package-extension-to-ggplot2-for-correlation-matrix-and-survival-plots-r-software-and-data-visualization