

The Denoised Web Treebank

Evaluating Dependency Parsing under Noisy Input Conditions

Joachim Daiber and Rob van der Goot University of Amsterdam, University of Groningen

OVERVIEW

- Novel benchmark for dependency parsing of noisy Web data.
- Our contributions:
 - Treebank
 - Evaluation metric
 - Experiments

MAIN FINDINGS

- Text normalization improves parse quality on noisy content.
- Normalize beyond word level!
- Treebank and evaluation metric: http://jodaiber.de/DenoisedWebTreebank

DATA

- English Tweets randomly selected from 24h time window (07/01/2012).
- Manual language identification to avoid bias towards well-formed sentences.

TREEBANKS FOR NOISY CONTENT

Name	# Trees	OOV	Style	Norm.
EWT [1]	16.6k	28%	C+D	No
Foster [2]	1k	25%	C	No
Foreebank [3]	1k	29%	C	Yes
Tweebank [4] This work	929	48%	D	No
	500	31 %	D	Yes

REFERENCES

- [1] Slav Petrov and Ryan McDonald. Overview of the 2012 shared task on parsing the web. In *SANCL 2012*.
- Jennifer Foster et al. From news to comment: Resources and benchmarks for parsing the language of web 2.0. In IJCNLP 2011.
- Rasoul Kaljahi et al. Foreebank: Syntactic analysis of customer support forums. In EMNLP 2015.
- Lingpeng Kong et al. A dependency parser for Tweets. In EMNLP 2014.
- Bo Han and Timothy Baldwin. Lexical normalisation of short text messages: Makn sens a #twitter. In ACL 2011.

FORMAT OF THE DATASET

Normalization

- Spelling
- Abbreviations are split (e.g. *cu*)
- Twitter-specific elements
- Zero copulas: Align to empty surface token
- Keeping alignment information

Syntactic annotation

- Syntactic annotation on normalized layer
- Manually annotated POS tags and dependencies (annotated in 2 passes)
- Careful treatment of Twitter-specific items

EVALUATING NOISE-AWARE PARSING

We evaluate:

 $D_P = \langle V_P, E_P \rangle \leftarrow \text{predicted dependency tree}$ $D_G = \langle V_G, E_G \rangle \leftarrow \text{gold dependency tree}$ $a_P, a_G \leftarrow$ alignment functions to original text

Aligned precision and recall

 Collect gold and predicted dependencies and the original tokens they align to:

$$M_{G} = \{\langle a_{G}(w_{i}), a_{G}(w_{j}) \rangle \mid \langle w_{i}, r, w_{j} \rangle \in E_{G}\} \qquad P = \frac{TP}{TP + FP} \quad R = \frac{TP}{TP + FN}$$

$$M_{P} = \{\langle a_{P}(w_{i}), a_{P}(w_{j}) \rangle \mid \langle w_{i}, r, w_{j} \rangle \in E_{P}\}$$

- Calculate gold/predicted overlap:
 - $|M_G \cap M_P|$ true positives
 - $-|M_P \setminus M_G|$ false positives
 - $|M_G \setminus M_P|$ false negatives
- Labeled/unlabeled aligned F₁ score:

$$F_{1} = 2 \cdot \frac{P \cdot R}{P + R}$$

$$P = \frac{TP}{TP + FP} \quad R = \frac{TP}{TP + FN}$$

APPLICATION: EVALUATING THE EFFECT OF TEXT NORMALIZATION ON PARSING

Normalization method	Unlabeled F ₁	Labeled F ₁
No normalization	72.41	60.16
+ Twitter syntax rules	$76.17^{^*}$	$64.38^{^*}$
Unsupervised lexical normalization [5]	76.36 [*]	64.80*
Machine translation	76.85 [*]	$65.38^{^*}$
Unsupervised lexical normalization + MT	77.08*	65.57*
Gold normalization, predicted tags	78.20*	68.02*
Gold normalization, gold tags	79.28*	69.85*

^{*} statistically significant against non-normalized baseline at p-value < 0.05.

ACKNOWLEDGEMENTS

