Evaluating the Impact of Cannabis and Alcohol on Secondary Task Performance While Driving

Ryan Miller

Introduction

- ► Alcohol and marijuana are the most common legal/illegal drugs detected in drivers worldwide
- ► The impact of alcohol on driving performance are well-established, but less research has been done on marijuana

Introduction

- ► Alcohol and marijuana are the most common legal/illegal drugs detected in drivers worldwide
- ► The impact of alcohol on driving performance are well-established, but less research has been done on marijuana
- Today we'll walk through an analysis of data from an experiment designed to evaluate the impacts of these substances on various aspects of driving
 - We'll focus on secondary tasks, or tasks commonly performed while driving that are non-essential to controlling the vehicle (ie: tuning the radio, etc.)

Introduction

- An on-road experiment that puts intoxicated drivers behind the wheel is unethical
- ► The National Advanced Driving Simulator (NADS) located in Coralville lowa allows for this type of experiment to be safely conducted in a controlled setting

Background - NADS

Background - NADS

Background - Data Collection

- ► The NADS-1 simulator collects time-series data at 60 frames-per-second
 - ► Vehicle states (lane position, speed, heading, etc.)
 - Driver inputs (accelerator/brake presses, wheel turning, console inputs, etc.)
 - ► Annotations indicating the onset of specific events

Background - Experimental Design

- ▶ 19 subjects completed a 45-minute drive under 6 different experimental conditions
 - ► Placebo Placebo
 - Placebo Alcohol
 - ► Low THC (2.9% THC) Placebo
 - ► Low THC (2.9% THC) Alcohol
 - High THC (6.7% THC) Placebo
 - ► High THC (6.7% THC) Alcohol
- Order of conditions was randomized
- Order of events within the drive was varied (to some extent)

Background - Secondary Tasks

During each drive, drivers performed three different secondary tasks:

- 1. Artist-search (3 instances)
- 2. Side-mirror (14 instances)
- 3. Message-reading (6 instances)

Artist-search Task

Prompted by an audio message, subjects have 10 seconds to select an artist from 3 pages (4 artists each) displayed on the console

Side-mirror Task

- ► At 14 different locations throughout the drive, a red triangular icon appears in one of the side mirrors
- ► The participant has 5 seconds to hit a response button on the console before the triangle disappears

Message-reading

Prompted by an audio message, subjects have 10 seconds to read a message displayed on the console

Value	Text
0	No message displayed
1	According to the census, the town has about three thousand residents. Nearly 40% of these residents own a dog.
2	Portland is the largest city in Maine, but Augusta is the state capital. Portland has around forty-seven thousand more people.
3	The first sundials were made by the Egyptians over three thousand years ago. Today, sundials are not commonly used.
4	Most of the costumes used for the film are historically accurate. I find the hairstyles most fascinating.
5	It is proven that soccer players run approximately six miles per game. The top basketball players only run approximately two and a half miles.
6	Inspiration while breathing causes a normal increase in your heart rate. Expiration does the opposite.

Analysis - Data Processing

Dashed vertical lines indicate an active task (in this case the Artist-Search task):

Analysis - Data Processing

Dotted vertical lines indicate equal-length control segments:

Analysis - Data Processing

Outcome measures considered (control vs. task periods):

- Change in standard deviation of lane deviation (SDLD), change in change in speed (Speed), and change in standard deviation of speed (SDS)
- ► Lane departures (lane deviations larger than +/- 3ft that aren't lane changes)
- Task-specific performance measures (successful task competition, etc.)

Analysis - Modeling Considerations

- ► Repeated measures
 - ► Each subject completed the experiment 6 times under different dosing conditions

Analysis - Modeling Considerations

- Repeated measures
 - Each subject completed the experiment 6 times under different dosing conditions
- ▶ Potential for tasks to occur in different locations
 - Model should adjust for location
- Difficulty factors within a task (page number, message length)
 - Model should adjust for difficulty

Analysis - Practical Challenges

Analysis - Models (Performance Shift)

Each outcome measure modeled separately for each secondary task:

$$Y_{ijk} = \alpha_i + \beta_0 + \beta_1 BAC_{ijk} + \beta_2 THC_{ijk} + \ldots + \epsilon_{ijk}$$

- Y_{ijk} is the outcome of interest (SDLD, Speed, SDS) for kth instance of the task of interest for the ith subject under the jth condition
- $ightharpoonup \alpha_i$ is a subject-specific random effect
- \triangleright β_1 and β_2 are fixed effects quantifying the effect of BAC/THC on the outcome
- ... includes additional factors that the model adjusts for (page number, message length, road segment, etc.)

Analysis - Model Explanation

 Ordinary linear regression models assume the errors are independent

Analysis - Model Explanation

► A subject-specific intercept is necessary to achieve independent errors

Analysis - Models (Task Completion)

Task performance is a binary measure, requiring slightly different models:

$$log(\pi_{ijk}/(1-\pi_{ijk})) = \alpha_i + \beta_0 + \beta_1 BAC_{ijk} + \beta_2 THC_{ijk} + \dots$$

- π_{ijk} is the probability of completion of the k^{th} instance of the task of interest for the i^{th} subject under the j^{th} condition
- ► This is a *mixed effects* logistic regression model

Results - Performance Shift

Task	у	Intercept		BAC		THC	
		β	p-value	β	p-value	β	p-value
Side Mirror	Δ SDLD	0.004	0.910	-0.222	0.648	-0.000	0.996
	Δ Speed	-0.016	0.908	1.407	0.178	-0.011	0.023 *
	ΔSDS	0.004	0.806	-0.085	0.743	0.000	0.533
Artist	Δ SDLD	-0.088	0.872	-0.562	0.772	-0.013	0.206
	Δ Speed	-1.432	0.455	4.287	0.529	-0.000	0.999
	ΔSDS	-0.261	0.548	-0.622	0.688	0.007	0.383
Message	Δ SDLD	-0.137	0.168	2.012	0.011 *	-0.000	0.959
	Δ Speed	-2.278	<0.001***	-2.506	0.515	0.042	0.026 *
	ΔSDS	0.011	0.917	-0.718	0.599	0.009	0.186

Results - Performance Shift

- ▶ SDLD worsens as BAC increases during the artist-search task
 - ▶ No other "statistically significant" shifts in lane-keeping

Results - Performance Shift

- ▶ SDLD worsens as BAC increases during the artist-search task
 - ▶ No other "statistically significant" shifts in lane-keeping
- Change in speed is influenced by THC during the side-mirror and message-reading tasks
 - ► Higher THC leads to a *slowdown* during the side-mirror task (expected)
 - Higher THC leads to a smaller slowdown in the message-reading task
 - No completion data for message-reading task, likely capturing subjects who are ignoring the task

Results - Task Completion

Task	Outcome	Model	BAC		THC	
			β, OR	p-value	β, OR	p-value
Artist	Completion	GLMM	-1.209, 0.299	0.802	-0.052, 0.949	0.046 *
	Incorrect	GLM	-0.890, 0.411	0.858	0.04607, 1.047	0.041 *
Side Mirror	Completion	GLMM	1.496, 4.466	0.730	0.020, 1.020	0.385
	Time	LMM	-3.324	0.882	-0.223	0.052

Results - Highlights

- ► Task performance worsens with higher levels of THC
 - Increased odds of failing to complete the artist-menu task
 - Increased odds of providing an incorrect response on the artist-menu task

Results - Highlights

- ► Task performance worsens with higher levels of THC
 - Increased odds of failing to complete the artist-menu task
 - Increased odds of providing an incorrect response on the artist-menu task
- ▶ Detectable shifts in driving performance attributable to BAC/THC were small and often non-significant

- ► Lane departure analysis
 - ► A work in progress

- ► Lane departure analysis
 - ► A work in progress
- Effects on "return to baseline"
 - Disruption is mostly due to the secondary task, but the recovery time might differ when intoxicated

- ► Lane departure analysis
 - ► A work in progress
- Effects on "return to baseline"
 - Disruption is mostly due to the secondary task, but the recovery time might differ when intoxicated
- Differential subject responses to intoxication
 - Clustering or segmentation followed by stratified analyses

- ► Lane departure analysis
 - ► A work in progress
- ► Effects on "return to baseline"
 - Disruption is mostly due to the secondary task, but the recovery time might differ when intoxicated
- Differential subject responses to intoxication
 - Clustering or segmentation followed by stratified analyses
- Eye-tracker data

Acknowledgements

- Grinnell College students Ishaan Tibrewal and Stella Lee
 - ► Grinnell College Mentored Advanced Project (MAP) program
- NADS researchers Dawn Marshall and Tim Brown
 - Shared the data and provided content-area expertise

References

- Augsburger M, Donzé N, Ménétrey A, Brossard C, Sporkert F, Giroud C, Mangin P. (2005). Concentration of drugs in blood of suspected impaired Drivers. Forensic Science International, 11-15
- Hartman, R. L., Brown, T. L., Milavetz, G., Spurgin, A., Pierce, R. S., Gorelick, D. A., & Huestis, M. A. (2015). Cannabis effects on driving lateral control with and without alcohol. Drug and alcohol dependence, 154. 25-37
- Hartman, R. L., Brown, T. L., Milavetz, G., Spurgin, A., Pierce, R. S., Gorelick, D. A., & Huestis, M. A. (2016). Cannabis effects on driving longitudinal control with and without alcohol. Journal of Applied Toxicology, 36, 1418-1429.
- NADS Organization: https://www.nads-sc.uiowa.edu/