

Construção de Compiladores

Autômatos

Professor: Luciano Ferreira Silva, Dr.

Algoritmo de Thompson

 O autômato finito não-determinístico para reconhecer a expressão (0|1)*0 é:

- Autômatos não-determinísticos possuem diversas situações de ambigüidade como:
 - ✓ Ao partir de e1, por que o autômato segue para e2 e não para e8?
 - ✓ Por que a transição seguinte foi de e2 para e3 e não para e4?
- Solução: Conversão para autômatos determinísticos

Procedimento sistemático: Método da construção de subconjuntos;

- ✓ Criação e associação de novos estados do autômato determinístico com conjuntos de estados do autômato não-determinístico;
- ✓ Definição de subconjuntos de estados do autômato nãodeterminístico por meio do operador ε^* (épsilon-clausura);
 - Sua aplicação resulta no conjunto que inclui, além dos próprios estados, cada um dos demais estados do autômato que podem ser alcançados a partir desses com transições pela string vazia.

 Inicia-se pelo estado inicial do autômato não-determinístico;

$$\epsilon * \{e1\} = \{e1, e2, e3, e4, e8, e9\}$$

✓ Esse subconjunto é associando ao estado inicial do autômato finito determinístico, que pode receber o nome de S_0 ;

Analisando S₀;

So	e 1	e 2	e 3	e 4	e 8	e 9
0		_	e 5	_	_	e 10
1	_	_	_	e 6	_	_

✓ 0 levará S_0 a um estado que corresponderá a

$$\varepsilon^* \{e5, e10\} = \{e2, e3, e4, e5, e7, e8, e9, e10\} (S_1)$$

✓ 1 levará S_0 a um estado que corresponderá a

$$\varepsilon^* \{e6\} = \{e2, e3, e4, e6, e7, e8, e9\}$$
 (S₂)

Observações:

$$\checkmark S_0 \neq S_1 \neq S_2$$

- ✓ Caso um destes conjuntos fosse igual a outro não seria viabilizada sua construção;
- \checkmark S_1 contém e10 (estado final do autômato nãodeterminístico), portanto S_1 é um estado final.

Analisando S₁;

S1	e 2	e 3	e 4	e 6	e 7	e 8	e 9	e 10
0	1	e 5	_	_	_	_	e 10	
1		_	e 6	_	_	_	_	

✓ 0 levará S_1 a um estado que corresponderá a

 ε^* {e5, e10}(ou seja, o próprio S_1);

✓ 1 levará S_1 a um estado que corresponderá a

$$\varepsilon^*$$
{e6} (que é S_2)

Analisando S₂;

S ₂	e 2	e 3	e 4	e 6	e 7	e 8	e 9
0	ı	e 5	_	_	_	_	e 10
1	١	_	e 6	_	_	_	_

✓ 0 levará S_1 a um estado que corresponderá a

$$\varepsilon^* \{ e5, e10 \}$$
 (que é S_1);

✓ 1 levará S_1 a um estado que corresponderá a

 ε^* {e6} (ou seja, o próprio S_2);

 Portanto o autômato determinístico para reconhecer (0|1)*0 é dado pela matriz:

	So	S1	S ₂
0	S1	S1	S1
1	S2	S2	S ₂

Estado inicial: S_0

Estados finais: S_1

- Consiste em combinar estados redundantes do autômato em um único estado sem alterar a linguagem que é reconhecida;
- Procedimento: construção iterativa de partições do conjunto K de estados do autômato.

- Primeira partição (P₁)
 - ✓ Separa os estado finais dos não-finais;
 - $P_1 = \{C_1, C_2\}, \text{ onde } C_1 = F \text{ e } C_2 = K F;$
- Para o autômato que reconhece (0|1)*0 tem-se:

$$P_1 = \{C_1, C_2\}$$
 $C_1 = \{S_1\}$
 $C_2 = \{S_0, S_2\}$

- C_1 é unitário, portanto S_1 é não redundante;
- C₂ não é unitário, deve ser analisado;

	So	S2
0	C1	C1
1	C2	C2

- S_0 e S_2 apresentam comportamentos iguais;
- O conjunto C₂ não admite mais partições

- Sendo assim S_0 e S_2 podem ser unidos em um só estado;
- Deste modo tem-se o seguinte autômato:

 Considere o autômato finito que reconhecer a expressão regular a*abb*

✓ construído com a aplicação do algoritmo de Thompson e com o método da construção de subconjuntos.

	So	S1	S ₂	S₃
а	S1	S1	1	1
b		S2	S₃	S₃

Estado inicial: S_0

Estados finais: S_2 , S_3

Tem-se então:

$$\checkmark P_1 = \{C_1, C_2\}, \text{ com } C_1 = \{S_0, S_1\} \text{ e } C_2 = \{S_2, S_3\}$$

Analisando C₁

	So	S ₁
а	C1	C1
b		C2

- As colunas são distintas logo na próxima iteração S_0 e S_1 não estarão na mesma partição.

Analisando C₂

	S ₂	S₃
а	1	1
b	C2	C2

- S_2 e S_3 apresentam colunas iguais, portanto são redundante e serão unidos;
- A próxima partição $P_2 = \{\{S_0\}, \{S_1\}, \{S_2, S_3\}\}$ é a final.

O resultado da minimização seria:

✓ Autômato original

✓ Autômato minimizado

 Considere o autômato abaixo, ele possui um "estado morto" (e2).

 Portanto este autômato poderia apresentar uma forma mais otimizada, e2 poderia ser eliminado.