Ecole Nationale Supérieure d'Arts et Métiers , Meknès — Casablanca

CONCOURS COMMUN D'ACCÈS EN PREMIÈRE ANNÉE

Filières : Sciences Mathématiques A et B

Epreuve de Mathématiques

Lundi 29 Juillet 2013 - Durée : 2h 02mn

- Les questions sont à réponse PRÉCISE
- Les questions sont INDÉPENDANTES
- Chaque question est NOTÉE sur (2Pts)

Chaque question est	NOTEE sur (2Pts)
Questions	Réponses
 Répondre par Vrai ou Faux : si la proposition q est la négation de la proposition p 1. (p) : n ∈ IN est pair. (q) : n ∈ IN est impair. 2. (p) : f est paire. (q) : f est impaire. 3. (p) : Ali est Meknassi. (q) : Ali est Casablancais. 4. (p) : Mohammed ne voyage jamais sans bagages. (q) : Mohammed voyage toujours avec des bagages. 	1.:
Résoudre le système : $\begin{cases} x^2 - y^2 = 12 \\ \ln x - \ln y = \ln 2 \end{cases}$	$S = \cdots$
Déterminer trois réels a , b et c en progression arithmétique tels que $\begin{cases} a+b+c &= 9 \\ a^3+b^3+c^3 &= 153 \end{cases}$	S =
Déterminer l'ensemble des $x \in I\!\!R$ tels que : $\sin{(\sin{x})} = 1$	S =
Mettre sous la forme $a+ib$ $(a,b\in I\!\!R)$ le nombre complexe: $z=\left(\frac{1+i}{2-i}\right)^2+\frac{3+6i}{3-4i}$	$z = (\cdots) + i (\cdots)$
Calculer $n = card(E)$ avec $E = \mathcal{P}(\mathcal{P}(\{1, 2\}))$	$n = \cdots$
Pour $n \in \mathbb{N}$, calculer $A_n = \sum_{i=0}^n \sum_{j=0}^n \max(i, j)$ sachant que $\sum_{k=0}^n k = \frac{n(n+1)}{2}, \sum_{k=0}^n k^2 = \frac{n(n+1)(2n+1)}{6}$	$A_n = \cdots$
Soit $n \in \mathbb{N}$ tel que $n \ge 3$, calculer $B_n = \prod_{k=3}^n \frac{k^2 - 1}{k^2 + k - 6}$.	$B_n = \cdots$
On considère un ségment $[A, B]$ de longueur a . Soit M_1 e milieu de $[A, B]$, M_2 le milieu de $[B, M_1]$, M_3 le milieu de $[M_1, M_2]$, M_4 le milieu de $[M_2, M_3]$, etc. Pour tout $a \in N$, M_{n+2} est le milieu de $[M_n, M_{n+1}]$. Exprimer la ongueur AM_n en fonction de n	$AM_n = \cdots$

Questions	
	Réponses
Déterminer le domaine de définition de la fonction $f(x) = \sqrt{10 - x - 6\sqrt{x - 1}} - \sqrt{5 - x - 4\sqrt{x - 1}}$	$D_f = \cdots$
Quelles sont les fonctions de $I\!\!R$ dans $I\!\!R$ qui sont à la forcroissantes et périodiques ?	is
Calculer $g \circ f$ telle que $f(x) = \begin{cases} x+3 & \text{si } 0 \le x \\ x^2 & \text{si } 0 > x \end{cases}$ et $g(x) = \begin{cases} 2x+1 & \text{si } x \le 3 \\ x & \text{si } x > 3 \end{cases}$	$g\circ f(x)=$
Déssiner l'allure d'une fonction f vérifiant les conditions suivantes : (a) f est continue sur $[0, 1]$. (b) $f(0) = 0$ et $f(1) = 1$. (c) $\forall x \in [0, 1], f(x) \leq x$. (d) f n'est pas bijective	
Calculer $L = \lim_{x \to 0} \frac{\sin(x) + \tan(x)}{\sqrt{x^2}}$.	$L = \cdots $
Trouver tous les polynômes P vérifiant $P(2t) = P'(t) P''(t) \forall t \in \mathbb{R}$	S =
On considère une fonction h dérivable sur \mathbb{R}^* telle que $h'(x) = \frac{1}{x}$. On pose $F(x) = h\left(x + \sqrt{1 + x^2}\right)$. Calculer $F'(x)$	$F'(x) = \cdots$
Soit f la fonction réelle définie sur IR par $f(x) = \frac{2x+1}{\sqrt{x^2+x+1}}$. On note par g la fonction réciproque de f . Calculer $g'(1)$.	$g'(1) = \cdots$
Déterminer a , b , c et d (4 réels) pour que $\forall x > 0$, $\frac{a}{x+b} \le \ln\left(1+\frac{1}{x}\right) \le \frac{c}{x+d}$	$a = \cdots \qquad \qquad c = \cdots \qquad \qquad b = \cdots \qquad \qquad d = \cdots \qquad \qquad d = \cdots \qquad \qquad \qquad d = \cdots \qquad \qquad$
Calculer $I = \int_0^{11} \left x^2 - 5x + 6 \right dx$	<i>I</i> = · · · · · · · · · · · · · · · · · ·
Déterminer le minimum de l'expression x^2+y^2 dans le as suivant $x+2y=5$	S =
Le prof de Maths est enrhumé. Il utilise des mouchoirs arrés de 25cm de côté. En huit jours, il a utilisé 6 mètres arré de tissu. Combien en moyenne, a t-il utilisé de nouchoires par jour?	Moy/j = · · · · · · · · · · · · · · · · · ·
Ine boite de bonbons pèse 1kg. La boite vide pèse $900g$ e moins que les bonbons. Quelle est le poids P de la oite?	P =
e quelle façon peut-on obtenir 100 en utilisant un seul niffre $(0, 1, \dots, 9)$ 6 fois et 2 opérations $(+, -, \times, \div)$?	100 =

Ecole Nationale Supérieure d'Arts et Métiers , Meknès — Casablanca

CONCOURS COMMUN D'ACCÈS EN PREMIÈRE ANNÉE

Filières: Sciences Mathématiques A et B

Epreuve de Mathématiques

Lundi 29 Juillet 2013 - Durée : 2h 02mn

- Les questions sont à réponse PRÉCISE
- Les questions sont INDÉPENDANTES
- Chaque question est NOTÉE sur (2Pts)

Questions	Réponses
 Répondre par Vrai ou Faux : si la proposition q est la négation de la proposition p 1. (p) : n ∈ IN est pair. (q) : n ∈ IN est impair. 2. (p) : f est paire. (q) : f est impaire. 3. (p) : Ali est Meknassi. (q) : Ali est Casablancais. 4. (p) : Mohammed ne voyage jamais sans bagages. (q) : Mohammed voyage toujours avec des bagages. 	1.: Viale 2.: faux 3.: Vaux 4.: Vaue
Résoudre le système : $\begin{cases} x^2 - y^2 &= 12\\ \ln x - \ln y &= \ln 2 \end{cases}$	$S = \cdots \left\{ \cdot (2, 4) \right\}$
Déterminer trois réels a , b et c en progression arithmétique tels que $\begin{cases} a+b+c &= 9 \\ a^3+b^3+c^3 &= 153 \end{cases}$	$S = -\{.(\Lambda_1, 3, 5)\}_{\alpha}$
Déterminer l'ensemble des $x \in I\!\!R$ tels que : $\sin{(\sin{x})} = 1$	$S = \cdots \left\{ \begin{array}{c} \phi \\ \end{array} \right\} \cdots $
Mettre sous la forme $a+ib$ $(a, b \in \mathbb{R})$ le nombre complexe: $z = \left(\frac{1+i}{2-i}\right)^2 + \frac{3+6i}{3-4i}$	$z = (\cdots - \frac{23}{25} \cdots) + i(\cdots \frac{36}{25} \cdots)$
Calculer $n = card(E)$ avec $E = \mathcal{P}(\mathcal{P}(\{1, 2\}))$	$n = \dots 2 $
Pour $n \in \mathbb{N}$, calculer $A_n = \sum_{i=0}^n \sum_{j=0}^n \max(i,j)$ sachant que $\sum_{k=0}^n k = \frac{n(n+1)}{2}, \sum_{k=0}^n k^2 = \frac{n(n+1)(2n+1)}{6}$	$A_n = \frac{n(n+1)(\ln -1)}{6}$
Soit $n \in \mathbb{N}$ tel que $n \geq 3$, calculer $B_n = \prod_{k=3}^n \frac{k^2 - 1}{k^2 + k - 6}$.	$B_n = \frac{20 (n-1)}{(n+2)(n+3)}$
On considère un ségment $[A, B]$ de longueur a . Soit M_1 le milieu de $[A, B]$, M_2 le milieu de $[B, M_1]$, M_3 le milieu de $[M_1, M_2]$, M_4 le milieu de $[M_2, M_3]$, etc. Pour tout $n \in \mathbb{N}$, M_{n+2} est le milieu de $[M_n, M_{n+1}]$. Exprimer la longueur AM_n en fonction de n	$AM_n = \frac{AB}{2} \cdot AB \cdot \left(\sum_{i=1}^{n} (-1)^i \cdot \frac{A}{2^i} \right)$

Questions	Réponses
Déterminer le domaine de définition de la fonction $f\left(x\right) = \sqrt{10-x-6\sqrt{x-1}} - \sqrt{5-x-4\sqrt{x-1}}$	$D_f = \cdots$
Quelles sont les fonctions de $I\!\!R$ dans $I\!\!R$ qui sont à la fois croissantes et périodiques ?	
Calculer $g \circ f$ telle que $f(x) = \begin{cases} x+3 & \text{si } 0 \le x \\ x^2 & \text{si } 0 > x \end{cases}$ $\text{et } g(x) = \begin{cases} 2x+1 & \text{si } x \le 3 \\ x & \text{si } x > 3 \end{cases}$	$g \circ f(x) = \begin{cases} 2m^2 + 1 & \text{olasso} \\ 2m^2 + 1 & \text{olasso} \end{cases}$
Déssiner l'allure d'une fonction f vérifiant les conditions suivantes : (a) f est continue sur $[0, 1]$. (b) $f(0) = 0$ et $f(1) = 1$. (c) $\forall x \in [0, 1], f(x) \le x$. (d) f n'est pas bijective	(Voir concours 2013 SC. exp)
Calculer $L = \lim_{x \to 0} \frac{\sin(x) + \tan(x)}{\sqrt{x^2}}$.	L =
Trouver tous les polynômes P vérifiant $P(2t) = P'(t) P''(t) \forall t \in \mathbb{R}$	$S = \cdots $
On considère une fonction h dérivable sur \mathbb{R}^* telle que $h'(x) = \frac{1}{x}$. On pose $F(x) = h\left(x + \sqrt{1 + x^2}\right)$. Calculer $F'(x)$	$F'(x) = \cdots$
Soit f la fonction réelle définie sur IR par $f(x) = \frac{2x+1}{\sqrt{x^2+x+1}}$. On note par g la fonction réciproque de f . Calculer $g'(1)$.	$g'(1) = \cdots$
Déterminer a , b , c et d (4 réels) pour que $\forall x > 0$, $\frac{a}{x+b} \le \ln\left(1+\frac{1}{x}\right) \le \frac{c}{x+d}$	$a = \cdots \qquad \qquad c = \cdots \qquad \qquad c = \cdots \qquad \qquad d = \cdots \qquad \qquad d = \cdots \qquad \qquad d = \cdots \qquad \qquad \qquad d = \cdots \qquad \qquad \qquad d = \cdots \qquad \qquad \qquad \qquad d = \cdots \qquad \qquad$
Calculer $I = \int_0^{11} \left x^2 - 5x + 6 \right dx$	1 = Lg 15 / 2 (. Voir. 2013. Sc αρ)
Déterminer le minimum de l'expression x^2+y^2 dans le cas suivant $x+2y=5$	s =5
Le prof de Maths est enrhumé. Il utilise des mouchoirs carrés de $25cm$ de côté. En huit jours, il a utilisé 6 mètres carré de tissu. Combien en moyenne, a t-il utilisé de mouchoires par jour ?	Moy/j = C. mou Chois/ your
Une boite de bonbons pèse 1kg. La boite vide pèse $900g$ de moins que les bonbons. Quelle est le poids P de la boite ?	P =5.0.g
De quelle façon peut-on obtenir 100 en utilisant un seul chiffre $(0,1,\cdots,9)$ 6 fois et 2 opérations $(+,-,\times,\div)$?	100 =99