編譯器設計

Languages and Their Representations

Alphabets and Languages

- Webster defines a language as
 - "the body of words and methods of combining words used and understood by a considerable community"
- The definition is not precise
 - A formal language will be defined
- An alphabet.
 - any finite set of symbols, e.g.
 - Latin alphabet {A, B, C, ..., Z}
 - Greek alphabet $\{\alpha, \beta, \gamma, ..., \omega\}$
 - binary alphabet {0, 1}

Grammars

Alphabets and Languages

- A sentence over an alphabet
 - any string of finite length composed of symbols from the alphabet
 - Synonyms for sentence are string and word
- ◆ The empty sentence ∈
 - the sentence consisting of no symbols
- ◆ If V is an alphabet, then
 - V* denotes the set of all sentences composed of symbols of V, including the empty sentence
 - V+=V*−{∈}
 - If $V = \{0,1\}$, then

$$V^* = \{ \epsilon, 0, 1, 00, 01, 10, 11, 000, ... \}$$

Grammars

編譯器設計

3

Alphabets and Languages

- A language
 - any set of sentences over an alphabet
 - e.g. {0, 1} is a language
- Three questions are raised
 - How do we represent a language?
 - It's simple if the language is finite
 - How to represent an infinite language with a finite representation
 - Does there exist a finite representation for every language?
 - What can be said about the structures of those languages for which there exist finite representation?

Grammars

編譯器設計

Representations of Languages

- Two ways to represent a language
 - To give an algorithm which determines if a sentence is in the language or not
 - To give a procedure which halts with the answer "yes" for sentences in the language and either does not terminate or else halts with the answer "no" for sentences not in the language
 - To give a grammar that generates sentences in the language

Grammars 編譯器設計 5

Grammars

Example: "The little boy ran quickly"

<sentence> → <noun phrase> < verb phrase>

<noun phrase> → <adjective> < noun phrase>

<noun phrase> → <adjective> < noun>

<verb phrase> → <verb> <adverb>

<adjective> → The

<adjective> → little

<noun> → boy

<verb> → ran

<adverb> → quickly

Grammars

編譯器設計

Formal Notation of a Grammar

- Four concepts
 - Nonterminals (or Variables)
 - e.g. <sentence>, <adjective>, <verb phrase>, etc.
 - Terminals
 - e.g. words such as The, little, boy, etc.
 - Productions
 relationships between strings of variables and terminals
 - e.g. <sentence>→<noun phrase><verb phrase>
 - Start Symbol
 distinguished symbol that generates exactly those
 strings of terminals that are deemed in the language
 - e.g. <sentence>

Grammars 編譯器設計 7

Formal Notation of a Grammar

- \clubsuit A grammar G can be denoted by (V_N, V_T, P, S)
 - V_N: nonterminals
 - V_T : terminals $(V_N \cap V_T = \phi, V_N \cup V_T = V)$
 - P : productions
 - $\alpha \rightarrow \beta \in P$
 - *S* : start symbol

Grammars

編譯器設計

Derivation

- Derivation by a production
 - If $\alpha \to \beta \in P$ and γ , $\delta \in V$, then $\gamma \alpha \delta \Rightarrow \gamma \beta \delta$
 - i.e. $\gamma\alpha\delta$ directly derives $\gamma\beta\delta$
- Derivation by productions
 - If α_1 , α_2 ,..., α_m are strings in V^* , and $\alpha_1 \Rightarrow \alpha_2 \Rightarrow ... \Rightarrow \alpha_m$

 $\alpha_1 \stackrel{*}{\Rightarrow} \alpha_m$

then we say

Grammars

編譯器設計

9

Derivation

- ♦ The language generated by G is defined $L(G) = \{w \mid w \in V_T^* \land S \stackrel{*}{\Rightarrow} w\}$
 - That is, a string is in *L*(*G*) if
 - The string consists solely of terminals
 - The string can be derived from S
 - Grammars G₁ and G₂ are equivalent if
 L(G₁) = L(G₂)
 - Example $G = (V_N, V_T, P, S)$ $V_N = \{S\}, V_T = \{0, 1\}, P = \{S \to 0S1, S \to 01\}$ $S \Rightarrow 0S1 \Rightarrow 00S11 \Rightarrow 0^3S1^3 \Rightarrow ... \Rightarrow 0^{n-1}S1^{n-1} \Rightarrow 0^n1^n$
 - $\therefore L(G) = \{0^n1^n\}$
 - A string of terminals and nonterminals α is called a *sentential form* if $S \stackrel{*}{\Rightarrow} \alpha$

Grammars

編譯器設計

Types of Grammars \bullet Let $G = (V_N, V_T, P, S)$ be a grammar Type 0 grammar Type 1 grammar (context-sensitive grammar) • For every production $\alpha \rightarrow \beta$ in P_{i} $|\alpha| \leq |\beta|$ • e.g. $P = \{S \rightarrow aSBC, S \rightarrow aBC, CB \rightarrow BC, aB \rightarrow ab, bB \rightarrow bb,$ $bC \rightarrow bc, cC \rightarrow cc$ Type 2 grammar (context-free grammar) • For every production $\alpha \rightarrow \beta$ in P_r , $|\alpha| = 1$ and $\beta \neq \epsilon$ • e.g. $P = \{S \rightarrow 0S1, S \rightarrow 01\}$ Type 3 grammar (regular grammar) Every production in P is of the form $A \rightarrow aB$, or $A \rightarrow a$ 編譯器設計 11 Grammars