PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

WO 99/31236

24 June 1999 (24.06.99)

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶:

C12N 15/12, C07K 14/47, 16/18, C12Q
1/68

(11) International Publication Number:

(43) International Publication Date:

(21) International Application Number: PCT/IB98/02122

(22) International Filing Date: 17 December 1998 (17.12.98)

(30) Priority Data:

60/069,957 17 December 1997 (17.12.97) US 60/074,121 9 February 1998 (09.02.98) US 60/081,563 13 April 1998 (13.04.98) US 60/096,116 10 August 1998 (10.08.98) US

(71) Applicant (for all designated States except US): GENSET [FR/FR]; 24, rue Royale, F-75008 Paris (FR).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): BOUGUELERET, Lydie [FR/FR]; 108, avenue Victor Hugo, F-92170 Vanves (FR). DUCLERT, Aymeric [FR/FR]; 6 ter, rue Victorine, F-94100 Saint-Maur (FR). DUMAS MILNE EDWARDS, Jean-Baptiste [FR/FR]; 8, rue Grégoire de Tours, F-75006 Paris (FR).
- (74) Agents: MARTIN, Jean-Jacques et al.; Cabinet Regimbeau, 26, avenue Kléber, F-75116 Paris (FR).

(81) Designated States: AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CF, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: EXTENDED cDNAs FOR SECRETED PROTEINS

(57) Abstract

The sequences of extended cDNAs encoding secreted proteins are disclosed. The extended cDNAs can be used to express secreted proteins or portions thereof or to obtain antibodies capable of specifically binding to the secreted proteins. The extended cDNAs may also be used in diagnostic, forensic, gene therapy, and chromosome mapping procedures. The extended cDNAs may also be used to design expression vectors and secretion vectors.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		2
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/31236 PCT/IB98/02122

EXTENDED cDNAS for secreted proteins

The present application relates to extended cDNAs which were disclosed in several United States Provisional

Patent Applications. Table I lists the SEQ ID Nos. of the extended cDNAs in the present application, the SEQ ID Nos. of
the identical or nearly identical extended cDNAs in the provisional applications, and the identities of the provisional
applications in which the extended cDNAs were disclosed.

Background of the Invention

The estimated 50,000-100,000 genes scattered along the human chromosomes offer tremendous promise for the understanding, diagnosis, and treatment of human diseases. In addition, probes capable of specifically hybridizing to loci distributed throughout the human genome find applications in the construction of high resolution chromosome maps and in the identification of individuals.

In the past, the characterization of even a single human gene was a painstaking process, requiring years of effort. Recent developments in the areas of cloning vectors, DNA sequencing, and computer technology have merged to greatly accelerate the rate at which human genes can be isolated, sequenced, mapped, and characterized. Cloning vectors such as yeast artificial chromosomes (YACs) and bacterial artificial chromosomes (BACs) are able to accept DNA inserts ranging from 300 to 1000 kilobases (kb) or 100-400 kb in length respectively, thereby facilitating the manipulation and ordering of DNA sequences distributed over great distances on the human chromosomes. Automated DNA sequencing machines permit the rapid sequencing of human genes. Bioinformatics software enables the comparison of nucleic acid and protein sequences, thereby assisting in the characterization of human gene products.

Currently, two different approaches are being pursued for identifying and characterizing the genes distributed
along the human genome. In one approach, large fragments of genomic DNA are isolated, cloned, and sequenced.

Potential open reading frames in these genomic sequences are identified using bio-informatics software. However, this approach entails sequencing large stretches of human DNA which do not encode proteins in order to find the protein encoding sequences scattered throughout the genome. In addition to requiring extensive sequencing, the bio-informatics software may mischaracterize the genomic sequences obtained. Thus, the software may produce false positives in which non-coding DNA is mischaracterized as coding DNA or false negatives in which coding DNA is mischaracterized as non-coding DNA.

An alternative approach takes a more direct route to identifying and characterizing human genes. In this approach, complementary DNAs (cDNAs) are synthesized from isolated messenger RNAs (mRNAs) which encode human proteins. Using this approach, sequencing is only performed on DNA which is derived from protein coding portions of the genome. Often, only short stretches of the cDNAs are sequenced to obtain sequences called expressed sequence tags (ESTs). The ESTs may then be used to isolate or purify extended cDNAs which include sequences adjacent to the EST sequences. The extended cDNAs may contain all of the sequence of the EST which was used to obtain them or only a portion of the sequence of the EST which was used to obtain them. In addition, the extended cDNAs may contain the full coding sequence of the gene from which the EST was derived or, alternatively, the extended cDNAs may include

portions of the coding sequence of the gene from which the EST was derived. It will be appreciated that there may be several extended cDNAs which include the EST sequence as a result of alternate splicing or the activity of alternative promoters.

In the past, the short EST sequences which could be used to isolate or purify extended cDNAs were often 5 obtained from oligo-dT primed cDNA libraries. Accordingly, they mainly corresponded to the 3' untranslated region of the mRNA. In part, the prevalence of EST sequences derived from the 3' end of the mRNA is a result of the fact that typical techniques for obtaining cDNAs, are not well suited for isolating cDNA sequences derived from the 5' ends of mRNAs. (Adams et al., Nature 377:174, 1996, Hillier et al., Genome Res. 6:807-828, 1996).

In addition, in those reported instances where longer cDNA sequences have been obtained, the reported sequences typically correspond to coding sequences and do not include the full 5' untranslated region of the mRNA from which the cDNA is derived. Such incomplete sequences may not include the first exon of the mRNA, particularly in situations where the first exon is short. Furthermore, they may not include some exons, often short ones, which are located upstream of splicing sites. Thus, there is a need to obtain sequences derived from the 5' ends of mRNAs which can be used to obtain extended cDNAs which may include the 5' sequences contained in the 5' ESTs.

While many sequences derived from human chromosomes have practical applications, approaches based on the identification and characterization of those chromosomal sequences which encode a protein product are particularly relevant to diagnostic and therapeutic uses. Of the 50,000-100,000 protein coding genes, those genes encoding proteins which are secreted from the cell in which they are synthesized, as well as the secreted proteins themselves, are particularly valuable as potential therapeutic agents. Such proteins are often involved in cell to cell communication and 20 may be responsible for producing a clinically relevant response in their target cells.

In fact, several secretory proteins, including tissue plasminogen activator, G-CSF, GM-CSF, erythropoietin, human growth hormone, insulin, interferon- α , interferon- β , interferon- γ , and interleukin-2, are currently in clinical use. These proteins are used to treat a wide range of conditions, including acute myocardial infarction, acute ischemic stroke, anemia, diabetes, growth hormone deficiency, hepatitis, kidney carcinoma, chemotherapy induced neutropenia and 25 multiple sclerosis. For these reasons, extended cDNAs encoding secreted proteins or portions thereof represent a particularly valuable source of therapeutic agents. Thus, there is a need for the identification and characterization of secreted proteins and the nucleic acids encoding them.

In addition to being therapeutically useful themselves, secretory proteins include short peptides, called signal peptides, at their amino termini which direct their secretion. These signal peptides are encoded by the signal sequences 30 located at the 5' ends of the coding sequences of genes encoding secreted proteins. Because these signal peptides will direct the extracellular secretion of any protein to which they are operably linked, the signal sequences may be exploited to direct the efficient secretion of any protein by operably linking the signal sequences to a gene encoding the protein for which secretion is desired. This may prove beneficial in gene therapy strategies in which it is desired to deliver a particular gene product to cells other than the cell in which it is produced. Signal sequences encoding signal peptides

also find application in simplifying protein purification techniques. In such applications, the extracellular secretion of the desired protein greatly facilitates purification by reducing the number of undesired proteins from which the desired protein must be selected. Thus, there exists a need to identify and characterize the 5' portions of the genes for secretory proteins which encode signal pentides.

Public information on the number of human genes for which the promoters and upstream regulatory regions have been identified and characterized is quite limited. In part, this may be due to the difficulty of isolating such regulatory sequences. Upstream regulatory sequences such as transcription factor binding sites are typically too short to be utilized as probes for isolating promoters from human genomic libraries. Recently, some approaches have been developed to isolate human promoters. One of them consists of making a CpG island library (Cross, S.H. et al., 10 Purification of CpG Islands using a Methylated DNA Binding Column, Nature Genetics 6: 236-244 (1994)). The second consists of isolating human genomic DNA sequences containing Spel binding sites by the use of Spel binding protein. (Mortlock et al., Genome Res. 6:327-335, 1996). Both of these approaches have their limits due to a lack of specificity or of comprehensiveness.

5' ESTs and extended cDNAs obtainable therefrom may be used to efficiently identify and isolate upstream 15 regulatory regions which control the location, developmental stage, rate, and quantity of protein synthesis, as well as the stability of the mRNA. (Theil et al., BioFactors 4:87-93, (1993). Once identified and characterized, these regulatory regions may be utilized in gene therapy or protein purification schemes to obtain the desired amount and locations of protein synthesis or to inhibit, reduce, or prevent the synthesis of undesirable gene products.

In addition, ESTs containing the 5' ends of secretory protein genes or extended cDNAs which include sequences adjacent to the sequences of the ESTs may include sequences useful as probes for chromosome mapping and 20 the identification of individuals. Thus, there is a need to identify and characterize the sequences upstream of the 5' coding sequences of genes encoding secretory proteins.

Summary of the Invention

The present invention relates to purified, isolated, or recombinant extended cDNAs which encode secreted 25 proteins or fragments thereof. Preferably, the purified, isolated or recombinant cDNAs contain the entire open reading frame of their corresponding mRNAs, including a start codon and a stop codon. For example, the extended cDNAs may include nucleic acids encoding the signal peptide as well as the mature protein. Alternatively, the extended cDNAs may contain a fragment of the open reading frame. In some embodiments, the fragment may encode only the sequence of the mature protein. Alternatively, the fragment may encode only a portion of the mature protein. A further aspect of the present invention is a nucleic acid which encodes the signal peptide of a secreted protein.

The present extended cDNAs were obtained using ESTs which include sequences derived from the authentic 5' ends of their corresponding mRNAs. As used herein the terms "EST" or "5' EST" refer to the short cDNAs which were used to obtain the extended cDNAs of the present invention. As used herein, the term "extended cDNA" refers to the cDNAs which include sequences adjacent to the 5' EST used to obtain them. The extended cDNAs may contain all or a

WO 99/31236 PCT/IB98/02122

.4.

portion of the sequence of the EST which was used to obtain them. The term "corresponding mRNA" refers to the mRNA which was the template for the cDNA synthesis which produced the 5' EST. As used herein, the term "purified" does not require absolute purity; rather, it is intended as a relative definition. Individual extended cDNA clones isolated from a cDNA library have been conventionally purified to electrophoretic homogeneity. The sequences obtained from these clones could not be obtained directly either from the library or from total human DNA. The extended cDNA clones are not naturally occurring as such, but rather are obtained via manipulation of a partially purified naturally occurring substance (messenger RNA). The conversion of mRNA into a cDNA library involves the creation of a synthetic substance (cDNA) and pure individual cDNA clones can be isolated from the synthetic library by clonal selection. Thus, creating a cDNA library from messenger RNA and subsequently isolating individual clones from that library results in an approximately 10⁴·10⁶ fold purification of the native message. Purification of starting material or natural material to at least one order of magnitude, preferably two or three orders, and more preferably four or five orders of magnitude is expressly contemplated.

As used herein, the term "isolated" requires that the material be removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide present in a living animal is not isolated, but the same polynucleotide, separated from some or all of the coexisting materials in the natural system, is isolated.

As used herein, the term "recombinant" means that the extended cDNA is adjacent to "backbone" nucleic acid to which it is not adjacent in its natural environment. Additionally, to be "enriched" the extended cDNAs will represent 5% or more of the number of nucleic acid inserts in a population of nucleic acid backbone molecules. Backbone molecules according to the present invention include nucleic acids such as expression vectors, self-replicating nucleic acids, viruses, integrating nucleic acids, and other vectors or nucleic acids used to maintain or manipulate a nucleic acid insert of interest. Preferably, the enriched extended cDNAs represent 15% or more of the number of nucleic acid inserts in the population of recombinant backbone molecules. More preferably, the enriched extended cDNAs represent 50% or more of the number of nucleic acid inserts in the population of recombinant backbone molecules. In a highly preferred embodiment, the enriched extended cDNAs represent 90% or more of the number of nucleic acid inserts in the population of recombinant backbone molecules. "Stringent", "moderate," and "low" hybridization conditions are as defined in Example 29.

Unless otherwise indicated, a "complementary" sequence is fully complementary. Thus, extended cDNAs encoding secreted polypeptides or fragments thereof which are present in cDNA libraries in which one or more extended cDNAs encoding secreted polypeptides or fragments thereof make up 5% or more of the number of nucleic acid inserts in the backbone molecules are "enriched recombinant extended cDNAs" as defined herein. Likewise, extended cDNAs encoding secreted polypeptides or fragments thereof which are in a population of plasmids in which one or more extended cDNAs of the present invention have been inserted such that they represent 5% or more of the number of inserts in the plasmid backbone are "enriched recombinant extended cDNAs" as defined herein. However, extended

cDNAs encoding secreted polypeptides or fragments thereof which are in cDNA libraries in which the extended cDNAs encoding secreted polypeptides or fragments thereof constitute less than 5% of the number of nucleic acid inserts in the population of backbone molecules, such as libraries in which backbone molecules having a cDNA insert encoding a secreted polypeptide are extremely rare, are not "enriched recombinant extended cDNAs."

In particular, the present invention relates to extended cDNAs which were derived from genes encoding secreted proteins. As used herein, a "secreted" protein is one which, when expressed in a suitable host cell, is transported across or through a membrane, including transport as a result of signal peptides in its amino acid sequence. "Secreted" proteins include without limitation proteins secreted wholly (e.g. soluble proteins), or partially (e.g. receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins which are 10 transported across the membrane of the endoplasmic reticulum.

Extended cDNAs encoding secreted proteins may include nucleic acid sequences, called signal sequences, which encode signal puptides which direct the extracellular secretion of the proteins encoded by the extended cDNAs. Generally, the signal peptides are located at the amino termini of secreted proteins.

Secreted proteins are translated by ribosomes associated with the "rough" endoplasmic reticulum. Generally, 15 secreted proteins are co-translationally transferred to the membrane of the endoplasmic reticulum. Association of the ribosome with the endoplasmic reticulum during translation of secreted proteins is mediated by the signal peptide. The signal peptide is typically cleaved following its co-translational entry into the endoplasmic reticulum. After delivery to the endoplasmic reticulum, secreted proteins may proceed through the Golgi apparatus. In the Golgi apparatus, the proteins may undergo post-translational modification before entering secretory vesicles which transport them across the 20 cell membrane.

The extended cDNAs of the present invention have several important applications. For example, they may be used to express the entire secreted protein which they encode. Alternatively, they may be used to express portions of the secreted protein. The portions may comprise the signal peptides encoded by the extended cDNAs or the mature proteins encoded by the extended cDNAs (i.e. the proteins generated when the signal peptide is cleaved off). The 25 portions may also comprise polypeptides having at least 10 consecutive amino acids encoded by the extended cDNAs. Alternatively, the portions may comprise at least 15 consecutive amino acids encoded by the extended cDNAs. In some embodiments, the portions may comprise at least 25 consecutive amino acids encoded by the extended cDNAs. In other embodiments, the portions may comprise at least 40 amino acids encoded by the extended cDNAs.

Antibodies which specifically recognize the entire secreted proteins encoded by the extended cDNAs or 30 fragments thereof having at least 10 consecutive amino acids, at least 15 consecutive amino acids, at least 25 consecutive amino acids, or at least 40 consecutive amino acids may also be obtained as described below. Antibodies which specifically recognize the mature protein generated when the signal peptide is cleaved may also be obtained as described below. Similarly, antibodies which specifically recognize the signal peptides encoded by the extended cDNAs may also be obtained.

In some embodiments, the extended cDNAs include the signal sequence. In other embodiments, the extended cDNAs may include the full coding sequence for the mature protein (i.e. the protein generated when the signal polypeptide is cleaved off). In addition, the extended cDNAs may include regulatory regions upstream of the translation start site or downstream of the stop codon which control the amount, location, or developmental stage of gene expression. As discussed above, secreted proteins are therapeutically important. Thus, the proteins expressed from the cDNAs may be useful in treating or controlling a variety of human conditions. The extended cDNAs may also be used to obtain the corresponding genomic DNA. The term "corresponding genomic DNA" refers to the genomic DNA which encodes mRNA which includes the sequence of one of the strands of the extended cDNA in which thymidine residues in the sequence of the extended cDNA are replaced by uracil residues in the mRNA.

The extended cDNAs or genomic DNAs obtained therefrom may be used in forensic procedures to identify individuals or in diagnostic procedures to identify individuals having genetic diseases resulting from abnormal expression of the genes corresponding to the extended cDNAs. In addition, the present invention is useful for constructing a high resolution map of the human chromosomes.

The present invention also relates to secretion vectors capable of directing the secretion of a protein of
interest. Such vectors may be used in gene therapy strategies in which it is desired to produce a gene product in one cell
which is to be delivered to another location in the body. Secretion vectors may also facilitate the purification of desired
proteins.

The present invention also relates to expression vectors capable of directing the expression of an inserted gene in a desired spatial or temporal manner or at a desired level. Such vectors may include sequences upstream of the extended cDNAs such as promoters or upstream regulatory sequences.

In addition, the present invention may also be used for gene therapy to control or treat genetic diseases. Signal peptides may also be fused to heterologous proteins to direct their extracellular secretion.

One embodiment of the present invention is a purified or isolated nucleic acid comprising the sequence of one of SEQ ID NOs: 40-140 and 242-377 or a sequence complementary thereto. In one aspect of this embodiment, the nucleic acid is recombinant.

Another embodiment of the present invention is a purified or isolated nucleic acid comprising at least 10 consecutive bases of the sequence of one of SEQ ID NOs: 40-140 and 242-377 or one of the sequences complementary thereto. In one aspect of this embodiment, the nucleic acid comprises at least 15, 25, 30, 40, 50, 75, or 100 consecutive bases of one of the sequences of SEQ ID NOs: 40-140 and 242-377 or one of the sequences complementary thereto. The nucleic acid may be a recombinant nucleic acid.

Another embodiment of the present invention is a purified or isolated nucleic acid of at least 15 bases capable of hybridizing under stringent conditions to the sequence of one of SEQ ID NOs: 40-140 and 242-377 or a sequence complementary to one of the sequences of SEQ ID NOs: 40-140 and 242-377. In one aspect of this embodiment, the nucleic acid is recombinant.

25

30

Another embodiment of the present invention is a purified or isolated nucleic acid comprising the full coding sequences of one of SEQ ID NOs: 40-140 and 242-377, wherein the full coding sequence optionally comprises the sequence encoding signal peptide as well as the sequence encoding mature protein. In a preferred embodiment, the isolated or purified nucleic acid comprises the full coding sequence of one of SEQ ID Nos. 40, 42-44, 46, 48, 49, 51, 53, 60, 62-72, 76-78, 80-83, 85-88, 90, 93, 94, 97, 99-102, 104, 107-125, 127, 132, 135-138, 140 and 242-377 wherein the full coding sequence comprises the sequence encoding signal peptide and the sequence encoding mature protein. In one aspect of this embodiment, the nucleic acid is recombinant.

A further embodiment of the present invention is a purified or isolated nucleic acid comprising the nucleotides of one of SEQ ID NOs: 40-140 and 242-377 which encode a mature protein. In a preferred embodiment, the purified or isolated nucleic acid comprises the nucleotides of one of SEQ ID NOs: 40-44, 46, 48, 49, 51-53, 55, 56, 58-72, 75-78, 80-88, 90, 93, 94, 97, 99-125, 127, 132, 133, 135-138, 140, and 242-377 which encode a mature protein. In one aspect of this embodiment, the nucleic acid is recombinant.

Yet another embodiment of the present invention is a purified or isolated nucleic acid comprising the nucleotides of one of SEQ ID NOs: 40-140 and 242-377 which encode the signal peptide. In a preferred embodiment, the purified or isolated nucleic acid comprises the nucleotides of SEQ ID NOs: 40, 42-46, 48, 49, 51, 53, 57, 60, 62-73, 76-78, 80-83, 85-88, 90, 93-95, 97, 99-102, 104, 107-125, 127, 128, 130, 132, 134-140 and 242-377 which encode the signal peptide. In one aspect of this embodiment, the nucleic acid is recombinant.

Another embodiment of the present invention is a purified or isolated nucleic acid encoding a polypeptide having the sequence of one of the sequences of SEQ ID NOs: 141-241 and 378-513.

Another embodiment of the present invention is a purified or isolated nucleic acid encoding a polypeptide having the sequence of a mature protein included in one of the sequences of SEQ ID NOs: 141-241 and 378-513. In a preferred embodiment, the purified or isolated nucleic acid encodes a polypeptide having the sequence of a mature protein included in one of the sequences of SEQ ID NOs: 141-145, 147, 149, 150, 152-154, 156, 157, 159-172, 176-179, 181-189, 191, 194, 195, 198, 200-226, 228, 233, 234, 236-239, 241 and 378-513.

Another embodiment of the present invention is a purified or isolated nucleic acid encoding a polypeptide having the sequence of a signal peptide included in one of the sequences of SEQ ID NOs: 141-241 and 378-513. In a preferred embodiment, the purified or isolated nucleic acid encodes a polypeptide having the sequence of a signal peptide included in one of the sequences of SEQ ID NOs: 141, 143-147, 149, 150, 152, 154, 158, 161, 163-174, 177-179, 181-184, 186-189, 191, 194-196, 198, 200-203, 205, 208-226, 228, 229, 231, 233, 235-241, and 378-513.

Yet another embodiment of the present invention is a purified or isolated protein comprising the sequence of one of SEQ ID NOs: 141-241 and 378-513.

Another embodiment of the present invention is a purified or isolated polypeptide comprising at least 10 consecutive amino acids of one of the sequences of SEO ID NOs: 141-241 and 378-513. In one aspect of this embodiment, the purified or isolated polypeptide comprises at least 15, 20, 25, 35, 50, 75, 100, 150 or 200 consecutive

amino acids of one of the sequences of SEQ ID NOs: 141-241 and 378-513. In still another aspect, the purified or isolated polypeptide comprises at least 25 consecutive amino acids of one of the sequences of SEQ ID NOs: 141-241 and 378-513.

Another embodiment of the present invention is an isolated or purified polypeptide comprising a signal peptide of one of the polypeptides of SEQ ID NOs: 141-241 and 378-513. In a preferred embodiment, the isolated or purified polypeptide comprises a signal peptide of one of the polypeptides of SEQ ID NOs: 141, 143-147, 149, 150, 152, 154, 158, 161, 163-174, 177-179, 181-184, 186-189, 191, 194-196, 198, 200-203, 205, 208-226, 228, 229, 231, 233, 235-241, and 378-513.

Yet another embodiment of the present invention is an isolated or purified polypeptide comprising a mature protein of one of the polypeptides of SEQ ID NOs: 141-241 and 378-513. In a preferred embodiment, the isolated or purified polypeptide comprises a mature protein of one of the polypeptides of SEQ ID NOs: 141-145, 147, 149, 150, 152-154, 156, 157, 159-172, 176-179, 181-189, 191, 194, 195, 198, 200-226, 228, 233, 234, 236-239, 241 and 378-513.

A further embodiment of the present invention is a method of making a protein comprising one of the sequences of SEQ ID NO: 141-241 and 378-513, comprising the steps of obtaining a cDNA comprising one of the sequences of sequence of SEQ ID NO: 40-140 and 242-377, inserting the cDNA in an expression vector such that the cDNA is operably linked to a promoter, and introducing the expression vector into a host cell whereby the host cell produces the protein encoded by said cDNA. In one aspect of this embodiment, the method further comprises the step of isolating the protein.

Another embodiment of the present invention is a protein obtainable by the method described in the preceding paragraph.

Another embodiment of the present invention is a method of making a protein comprising the amino acid sequence of the mature protein contained in one of the sequences of SEQ ID NO: 141-241 and 378-513, comprising the steps of obtaining a cDNA comprising one of the nucleotides sequence of sequence of SEQ ID NO: 40-140 and 242-377 which encode for the mature protein, inserting the cDNA in an expression vector such that the cDNA is operably linked to a promoter, and introducing the expression vector into a host cell whereby the host cell produces the mature protein encoded by the cDNA. In one aspect of this embodiment, the method further comprises the step of isolating the protein.

Another embodiment of the present invention is a mature protein obtainable by the method described in the preceding paragraph.

In a preferred embodiment, the above method comprises a method of making a protein comprising the amino acid sequence of the mature protein contained in one of the sequences of SEQ ID NO: 141-145, 147, 149, 150, 152-154, 156, 157, 159-172, 176-179, 181-189, 191, 194, 195, 198, 200-226, 228, 233, 234, 236-239, 241 and 378-513, comprising the steps of obtaining a cDNA comprising one of the nucleotides sequence of sequence of SEQ ID NO:

40-44, 46, 48, 49, 51-53, 55, 56, 58-72, 75-78, 80-88, 90, 93, 94, 97, 99-125, 127, 132, 133, 135-138, 140, and 242-377 which encode for the mature protein, inserting the cDNA in an expression vector such that the cDNA is operably linked to a promoter, and introducing the expression vector into a host cell whereby the host cell produces the mature protein encoded by the cDNA. In one aspect of this embodiment, the method further comprises the step of isolating the protein.

Another embodiment of the present invention is a host cell containing the purified or isolated nucleic acids comprising the sequence of one of SEQ ID NOs: 40-140 and 242-377 or a sequence complementary thereto described herein.

Another embodiment of the present invention is a host cell containing the purified or isolated nucleic acids

comprising the full coding sequences of one of SEQ ID NOs: 40-140 and 242-377, wherein the full coding sequence

comprises the sequence encoding signal peptide and the sequence encoding mature protein described herein.

Another embodiment of the present invention is a host cell containing the purified or isolated nucleic acids comprising the nucleotides of one of SEQ ID NOs: 40-140 and 242-377 which encode a mature protein which are described herein. Preferably, the host cell contains the purified or isolated nucleic acids comprising the nucleotides of one of SEQ ID NOs: 40-44, 46, 48, 49, 51-53, 55, 56, 58-72, 75-78, 80-88, 90, 93, 94, 97, 99-125, 127, 132, 133, 135-138, 140, and 242-377 which encode a mature protein.

Another embodiment of the present invention is a host cell containing the purified or isolated nucleic acids comprising the nucleotides of one of SEQ ID NOs: 40-140 and 242-377 which encode the signal peptide which are described herein. Preferably, the host cell contains the purified or isolated nucleic acids comprising the nucleotides of one of SEQ ID Nos.: 40, 42-46, 48, 49, 51, 53, 57, 60, 62-73, 76-78, 80-83, 85-88, 90, 93-95, 97, 99-102, 104, 107-125, 127, 128, 130, 132, 134-140 and 242-377 which encode the signal peptide.

Another embodiment of the present invention is a purified or isolated antibody capable of specifically binding to a protein having the sequence of one of SEQ ID NOs: 141-241 and 378-513. In one aspect of this embodiment, the antibody is capable of binding to a polypeptide comprising at least 10 consecutive amino acids of the sequence of one of SEQ ID NOs: 141-241 and 378-513.

Another embodiment of the present invention is an array of cDNAs or fragments thereof of at least 15 nucleotides in length which includes at least one of the sequences of SEQ ID NOs: 40-140 and 242-377, or one of the sequences complementary to the sequences of SEQ ID NOs: 40-140 and 242-377, or a fragment thereof of at least 15 consecutive nucleotides. In one aspect of this embodiment, the array includes at least two of the sequences of SEQ ID NOs: 40-140 and 242-377, or fragments thereof of at least 15 consecutive nucleotides. In another aspect of this embodiment, the array includes at least five of the sequences of SEQ ID NOs: 40-140 and 242-377, the sequences complementary to the sequences of SEQ ID NOs: 40-140 and 242-377, or fragments thereof of at least 15 consecutive nucleotides.

A further embodiment of the invention encompasses purified polynucleotides comprising an insert from a clone deposited in a deposit having an accession number selected from the group consisting of the accession numbers listed in Table VI or a fragment thereof comprising a contiguous span of at least 8, 10, 12, 15, 20, 25, 40, 60, 100, or 200 nucleotides of said insert. An additional embodiment of the invention encompasses purified polypeptides which comprise, consist of, or consist essentially of an amino acid sequence encoded by the insert from a clone deposited in a deposit having an accession number selected from the group consisting of the accession numbers listed in Table VI, as well as polypeptides which comprise a fragment of said amino acid sequence consisting of a signal peptide, a mature protein, or a contiguous span of at least 5, 8, 10, 12, 15, 20, 25, 40, 60, 100, or 200 amino acids encoded by said insert.

An additional embodiment of the invention encompasses purified polypeptides which comprise a contiguous span of at least 5, 8, 10, 12, 15, 20, 25, 40, 60, 100, or 200 amino acids of SEQ ID NOs: 158, 174, 175, 196, 226, 231, 232, wherein said contiguous span comprises at least one of the amino acid positions which was not shown to be identical to a public sequence in any of Figures 11 to 15. Also encompassed by the invention are purified polynuculeotides encoding said polypeptides.

15

Brief Description of the Drawings

Figure 1 is a summary of a procedure for obtaining cDNAs which have been selected to include the 5' ends of the mRNAs from which they are derived.

Figure 2 is an analysis of the 43 amino terminal amino acids of all human SwissProt proteins to determine the frequency of false positives and false negatives using the techniques for signal peptide identification described herein.

Figure 3 shows the distribution of von Heijne scores for 5' ESTs in each of the categories described herein and the probability that these 5' ESTs encode a signal peptide.

Figure 4 shows the distribution of 5' ESTs in each category and the number of 5' ESTs in each category having a given minimum von Heijne's score.

Figure 5 shows the tissues from which the mRNAs corresponding to the 5' ESTs in each of the categories described herein were obtained.

Figure 6 illustrates a method for obtaining extended cDNAs.

Figure 7 is a map of pED6dpc2. pED6dpc2 is derived from pED6dpc1 by insertion of a new polylinker to facilitate cDNA cloning. SSt cDNAs are cloned between EcoRI and Notl. PED vectors are described in Kaufman et al. 30 (1991), NAR 19: 4485-4490.

Figure 8 provides a schematic description of the promoters isolated and the way they are assembled with the corresponding 5' tags.

Figure 9 describes the transcription factor binding sites present in each of these promoters.

PCT/IB98/02122 WO 99/31236

-11-

Figure 10 is an alignment of the protein of SEO ID NO: 217 with the human protein TFAR19 that may play a role in apoptosis (Genbank accession number AF014955, SE0 ID NO: 516).

Figure 11 is an alignment of the proteins of SEQ ID NOs: 174, 175 and 232 with a human secreted protein (Genseg accession number W36955, SEQ ID NO: 517).

5 Figure 12 is an alignment of the protein of SEO ID NO: 231 with the human E25 protein (Genbank accession number AF038953, SEQ ID NO: 515).

Figure 13 is an alignment of the protein of SEQ ID NO: 196 with the human seventransmembrane protein (Genbank accession number Y11395, SEQ ID NO: 518).

Figure 14 is an alignment of the protein of SEQ ID NOs: 158 with the murine subunit 7a of the COP9 complex (Genbank accession number AF071316, SEQ ID NO: 519).

Figure 15 is an alignment of the protein of SEQ ID NO: 226 with the bovine subunit B14.5B of the NADHubiquinone oxidureductase complex (Arizmendi et al, FEBS Lett., 313: 80-84 (1992) and Swissprot accession -number Q02827, SEQ ID NO: 514).

Detailed Description of the Preferred Embodiment

15 I. Obtaining 5' ESTs

The present extended cDNAs were obtained using 5' ESTs which were isolated as described below.

A. Chemical Methods for Obtaining mRNAs having Intact 5' Ends

In order to obtain the 5' ESTs used to obtain the extended cDNAs of the present invention, mRNAs having intact 5' ends must be obtained. Currently, there are two approaches for obtaining such mRNAs. One of these 20 approaches is a chemical modification method involving derivatization of the 5' ends of the mRNAs and selection of the derivatized mRNAs. The 5' ends of eucaryotic mRNAs possess a structure referred to as a "cap" which comprises a guanosine methylated at the 7 position. The cap is joined to the first transcribed base of the mRNA by a 5', 5'triphosphate bond. In some instances, the 5' guanosine is methylated in both the 2 and 7 positions. Rarely, the 5' guanosine is trimethylated at the 2, 7 and 7 positions. In the chemical method for obtaining mRNAs having intact 5' 25 ends, the 5' cap is specifically derivatized and coupled to a reactive group on an immobilizing substrate. This specific derivatization is based on the fact that only the ribose linked to the methylated guanosine at the 5' end of the mRNA and the ribose linked to the base at the 3' terminus of the mRNA, possess 2', 3'-cis diols. Optionally, where the 3' terminal ribose has a 2', 3'-cis diol, the 2', 3'-cis diol at the 3' end may be chemically modified, substituted, converted, or eliminated, leaving only the ribose linked to the methylated guanosine at the 5' end of the mRNA with a 2', 3'-cis diol. A 30 variety of techniques are available for eliminating the 2', 3'-cis diol on the 3' terminal ribose. For example, controlled alkaline hydrolysis may be used to generate mRNA fragments in which the 3' terminal ribose is a 3'-phosphate, 2'phosphate or (2', 3')-cyclophosphate. Thereafter, the fragment which includes the original 3' ribose may be eliminated from the mixture through chromatography on an oligo-dT column. Alternatively, a base which lacks the 2', 3'-cis diol

may be added to the 3' end of the mRNA using an RNA ligase such as T4 RNA ligase. Example 1 below describes a method for ligation of pCp to the 3' end of messenger RNA.

EXAMPLE 1

Ligation of the Nucleoside Diphosphate pCp to the 3' End of Messenger RNA

1 μ g of RNA was incubated in a final reaction medium of 10 μ l in the presence of 5 U of T₄ phage RNA ligase in the buffer provided by the manufacturer (Gibco - BRL), 40 U of the RNase inhibitor RNasin (Promega) and, 2 μ l of ³²pCp (Amersham #PB 10208).

The incubation was performed at 37°C for 2 hours or overnight at 7-8°C.

Following modification or elimination of the 2', 3'-cis diol at the 3' ribose, the 2', 3'-cis diol present at the 5' end of the mRNA may be oxidized using reagents such as NaBH₄, NaBH₃CN, or sodium periodate, thereby converting the 2', 3'-cis diol to a dialdehyde. Example 2 describes the oxidation of the 2', 3'-cis diol at the 5' end of the mRNA with sodium periodate.

EXAMPLE 2

Oxidation of 2', 3'-cis diol at the 5' End of the mRNA

- 0.1 OD unit of either a capped oligoribonucleotide of 47 nucleotides (including the cap) or an uncapped oligoribonucleotide of 46 nucleotides were treated as follows. The oligoribonucleotides were produced by in vitro transcription using the transcription kit "AmpliScribe T7" (Epicentre Technologies). As indicated below, the DNA template for the RNA transcript contained a single cytosine. To synthesize the uncapped RNA, all four NTPs were included in the in vitro transcription reaction. To obtain the capped RNA, GTP was replaced by an analogue of the cap, m7G(5')ppp(5')G. This compound, recognized by polymerase, was incorporated into the 5' end of the nascent transcript during the step of initiation of transcription but was not capable of incorporation during the extension step. Consequently, the resulting RNA contained a cap at its 5' end. The sequences of the oligoribonucleotides produced by the in vitro transcription reaction were:
 - +Cap:
- 25 5'm7GpppGCAUCCUACUCCCAUCCAAUUCCACCCUAACUCCUCCCAUCUCCAC-3' (SEQ ID NO:1)
 - -Cap:

5'-pppGCAUCCUACUCCCAUCCAAUUCCACCCUAACUCCUCCCAUCUCCAC-3' (SEQ ID NO:2)

The oligoribonucleotides were dissolved in 9 µl of acetate buffer (0.1 M sodium acetate, pH 5.2) and 3 µl of freshly prepared 0.1 M sodium periodate solution. The mixture was incubated for 1 hour in the dark at 4°C or room temperature. Thereafter, the reaction was stopped by adding 4 µl of 10% ethylene glycol. The product was ethanol precipitated, resuspended in 10µl or more of water or appropriate buffer and dialyzed against water.

The resulting aldehyde groups may then be coupled to molecules having a reactive amine group, such as hydrazine, carbazide, thiocarbazide or semicarbazide groups, in order to facilitate enrichment of the 5' ends of the mRNAs. Molecules having reactive amine groups which are suitable for use in selecting mRNAs having intact 5' ends

include avidin, proteins, antibodies, vitamins, ligands capable of specifically binding to receptor molecules, or oligonucleotides. Example 3 below describes the coupling of the resulting dialdehyde to biotin.

EXAMPLE 3

Coupling of the Dialdehyde with Biotin

The oxidation product obtained in Example 2 was dissolved in 50 μl of sodium acetate at a pH of between 5 and 5.2 and 50 μl of freshly prepared 0.02 M solution of biotin hydrazide in a methoxyethanol/water mixture (1:1) of formula:

In the compound used in these experiments, n=5. However, it will be appreciated that other commercially available hydrazides may also be used, such as molecules of the formula above in which n varies from 0 to 5.

The mixture was then incubated for 2 hours at 37°C. Following the incubation, the mixture was precipitated with ethanol and dialyzed against distilled water.

Example 4 demonstrates the specificity of the biotinylation reaction.

15

EXAMPLE 4

Specificity of Biotinylation

The specificity of the biotinylation for capped mRNAs was evaluated by gel electrophoresis of the following samples:

- Sample 1. The 46 nucleotide uncapped in vitro transcript prepared as in Example 2 and labeled with ³²pCp as described in Example 1.
 - Sample 2. The 46 nucleotide uncapped in vitro transcript prepared as in Example 2, labeled with ³²pCp as described in Example 1, treated with the oxidation reaction of Example 2, and subjected to the biotinylation conditions of Example 3.
- Sample 3. The 47 nucleotide capped in vitro transcript prepared as in Example 2 and labeled with ³²pCp as described in Example 1.
 - Sample 4. The 47 nucleotide capped in vitro transcript prepared as in Example 2, labeled with ³²pCp as described in Example 1, treated with the oxidation reaction of Example 2, and subjected to the biotinylation conditions of Example 3.

Samples 1 and 2 had indentical migration rates, demonstrating that the uncapped RNAs were not oxidized and biotinylated. Sample 3 migrated more slowly than Samples 1 and 2, while Sample 4 exhibited the slowest migration.

The difference in migration of the RNAs in Samples 3 and 4 demonstrates that the capped RNAs were specifically biotinylated.

In some cases, mRNAs having intact 5' ends may be enriched by binding the molecule containing a reactive amine group to a suitable solid phase substrate such as the inside of the vessel containing the mRNAs, magnetic beads, chromatography matrices, or nylon or nitrocellulose membranes. For example, where the molecule having a reactive amine group is biotin, the solid phase substrate may be coupled to avidin or streptavidin. Alternatively, where the molecule having the reactive amine group is an antibody or receptor ligand, the solid phase substrate may be coupled to the cognate antigen or receptor. Finally, where the molecule having a reactive amine group comprises an oligonucleotide, the solid phase substrate may comprise a complementary oligonucleotide.

The mRNAs having intact 5' ends may be released from the solid phase following the enrichment procedure.

For example, where the dialdehyde is coupled to biotin hydrazide and the solid phase comprises streptavidin, the mRNAs may be released from the solid phase by simply heating to 95 degrees Celsius in 2% SDS. In some methods, the molecule having a reactive amine group may also be cleaved from the mRNAs having intact 5' ends following enrichment.

Example 5 describes the capture of biotinylated mRNAs with streptavidin coated beads and the release of the biotinylated mRNAs from the beads following enrichment.

EXAMPLE 5

Capture and Release of Biotinylated mRNAs Using Strepatividin Coated Beads

The streptavidin-coated magnetic beads were prepared according to the manufacturer's instructions (CPG Inc., USA). The biotinylated mRNAs were added to a hybridization buffer (1.5 M NaCl, pH 5 · 6). After incubating for 30 minutes, the unbound and nonbiotinylated material was removed. The beads were washed several times in water with 1% SDS. The beads obtained were incubated for 15 minutes at 95°C in water containing 2% SDS.

Example 6 demonstrates the efficiency with which biotinylated mRNAs were recovered from the streptavidin coated beads.

EXAMPLE 6

25

Efficiency of Recovery of Biotinylated mRNAs

The efficiency of the recovery procedure was evaluated as follows. RNAs were labeled with 32 pCp, oxidized, biotinylated and bound to streptavidin coated beads as described above. Subsequently, the bound RNAs were incubated for 5, 15 or 30 minutes at 95°C in the presence of 2% SDS.

The products of the reaction were analyzed by electrophoresis on 12% polyacrylamide gels under denaturing conditions (7 M urea). The gels were subjected to autoradiography. During this manipulation, the hydrazone bonds were not reduced.

Increasing amounts of nucleic acids were recovered as incubation times in 2% SDS increased, demonstrating that biotinylated mRNAs were efficiently recovered.

In an alternative method for obtaining mRNAs having intact 5' ends, an oligonucleotide which has been derivatized to contain a reactive amine group is specifically coupled to mRNAs having an intact cap. Preferably, the 3' end of the mRNA is blocked prior to the step in which the aldehyde groups are joined to the derivatized oligonucleotide, as described above, so as to prevent the derivatized oligonucleotide from being joined to the 3' end of the mRNA. For example, pCp may be attached to the 3' end of the mRNA using T4 RNA ligase. However, as discussed above, blocking the 3' end of the mRNA is an optional step. Derivatized oligonucleotides may be prepared as described below in Example 7.

EXAMPLE 7

Derivatization of the Oligonucleotide

An oligonucleotide phosphorylated at its 3' end was converted to a 3' hydrazide in 3' by treatment with an aqueous solution of hydrazine or of dihydrazide of the formula H₂N(R1)NH₂ at about 1 to 3 M, and at pH 4.5, in the presence of a carbodiimide type agent soluble in water such as 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a final concentration of 0.3 M at a temperature of 8°C overnight.

The derivatized oligonucleotide was then separated from the other agents and products using a standard technique for isolating oligonucleotides.

As discussed above, the mRNAs to be enriched may be treated to eliminate the 3' OH groups which may be present thereon. This may be accomplished by enzymatic ligation of sequences lacking a 3' OH, such as pCp, as described above in Example 1. Alternatively, the 3' OH groups may be eliminated by alkaline hydrolysis as described in Example 8 below.

20

EXAMPLE 8

Alkaline Hydrolysis of mRNA

The mRNAs may be treated with alkaline hydrolysis as follows. In a total volume of 100μ l of 0.1N sodium hydroxide, 1.5 μ g mRNA is incubated for 40 to 60 minutes at 4°C. The solution is neutralized with acetic acid and precipitated with ethanol.

Following the optional elimination of the 3' OH groups, the diol groups at the 5' ends of the mRNAs are oxidized as described below in Example 9.

EXAMPLE 9

Oxidation of Diols

Up to 1 OD unit of RNA was dissolved in 9 µl of buffer (0.1 M sodium acetate, pH 6-7 or water) and 3 µl of freshly prepared 0.1 M sodium periodate solution. The reaction was incubated for 1 h in the dark at 4°C or room temperature. Following the incubation, the reaction was stopped by adding 4 µl of 10% ethylene glycol. Thereafter the mixture was incubated at room temperature for 15 minutes. After ethanol precipitation, the product was resuspended in 10µl or more of water or appropriate buffer and dialyzed against water.

Following oxidation of the diol groups at the 5' ends of the mRNAs, the derivatized oligonucleotide was joined to the resulting aldehydes as described in Example 10.

EXAMPLE 10

Reaction of Aldehydes with Derivatized Oligonucleotides

The oxidized mRNA was dissolved in an acidic medium such as 50 µl of sodium acetate pH 4-6. 50 µl of a solution of the derivatized oligonucleotide was added such that an mRNA:derivatized oligonucleotide ratio of 1:20 was obtained and mixture was reduced with a borohydride. The mixture was allowed to incubate for 2 h at 37°C or overnight (14 h) at 10°C. The mixture was ethanol precipitated, resuspended in 10µl or more of water or appropriate buffer and dialyzed against distilled water. If desired, the resulting product may be analyzed using acrylamide gel electrophoresis, HPLC analysis, or other conventional techniques.

Following the attachment of the derivatized oligonucleotide to the mRNAs, a reverse transcription reaction may be performed as described in Example 11 below.

EXAMPLE 11

Reverse Transcription of mRNAs

An oligodeoxyribonucleotide was derivatized as follows. 3 OD units of an oligodeoxyribonucleotide of sequence ATCAAGAATTCGCACGAGACCATTA (SEQ ID NO:3) having 5'-OH and 3'-P ends were dissolved in 70 µl of a 1.5 M hydroxybenzotriazole solution, pH 5.3, prepared in dimethylformamide/water (75:25) containing 2 µg of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The mixture was incubated for 2 h 30 min at 22°C. The mixture was then precipitated twice in LiClO₄/acetone. The pellet was resuspended in 200 µl of 0.25 M hydrazine and incubated at 8°C from 3 to 14 h. Following the hydrazine reaction, the mixture was precipitated twice in LiClO₄/acetone.

The messenger RNAs to be reverse transcribed were extracted from blocks of placenta having sides of 2 cm which had been stored at -80°C. The mRNA was extracted using conventional acidic phenol techniques. Oligo-dT chromatography was used to purify the mRNAs. The integrity of the mRNAs was checked by Northern-blotting.

The diol groups on 7 µg of the placental mRNAs were oxidized as described above in Example 9. The

derivatized oligonucleotide was joined to the mRNAs as described in Example 10 above except that the precipitation step
was replaced by an exclusion chromatography step to remove derivatized oligodeoxyribonucleotides which were not
joined to mRNAs. Exclusion chromatography was performed as follows:

10 ml of AcA34 (BioSepra#230151) gel were equilibrated in 50 ml of a solution of 10 mM Tris pH 8.0, 300 mM NaCl, 1 mM EDTA, and 0.05% SDS. The mixture was allowed to sediment. The supernatant was eliminated and the gel was resuspended in 50 ml of buffer. This procedure was repeated 2 or 3 times.

A glass bead (diameter 3 mm) was introduced into a 2 ml disposable pipette (length 25 cm). The pipette was filled with the gel suspension until the height of the gel stabilized at 1 cm from the top of the pipette. The column was then equilibrated with 20 ml of equilibration buffer (10 mM Tris HCl pH 7.4, 20 mM NaCl).

10 μ l of the mRNA which had been reacted with the derivatized oligonucleotide were mixed in 39 μ l of 10 mM urea and 2 μ l of blue-glycerol buffer, which had been prepared by dissolving 5 mg of bromophenol blue in 60% glycerol (v/v), and passing the mixture through a filter with a filter of diameter 0.45 μ m.

The column was loaded. As soon as the sample had penetrated, equilibration buffer was added. 100 µl fractions were collected. Derivatized oligonucleotide which had not been attached to mRNA appeared in fraction 16 and later fractions. Fractions 3 to 15 were combined and precipitated with ethanol.

The mRNAs which had been reacted with the derivatized oligonucleotide were spotted on a nylon membrane and hybridized to a radioactive probe using conventional techniques. The radioactive probe used in these hybridizations was an oligodeoxyribonucleotide of sequence TAATGGTCTCGTGCGAATTCTTGAT (SEQ ID NO:4) which was anticomplementary to the derivatized oligonucleotide and was labeled at its 5' end with ³²P. 1/10th of the mRNAs which had been reacted with the derivatized oligonucleotide was spotted in two spots on the membrane and the membrane was visualized by autoradiography after hybridization of the probe. A signal was observed, indicating that the derivatized oligonucleotide had been joined to the mRNA.

The remaining 9/10 of the mRNAs which had been reacted with the derivatized oligonucleotide was reverse transcribed as follows. A reverse transcription reaction was carried out with reverse transcriptase following the manufacturer's instructions. To prime the reaction, 50 pmol of nonamers with random sequence were used.

A portion of the resulting cDNA was spotted on a positively charged nylon membrane using conventional methods. The cDNAs were spotted on the membrane after the cDNA:RNA heteroduplexes had been subjected to an alkaline hydrolysis in order to eliminate the RNAs. An oligonucleotide having a sequence identical to that of the derivatized oligonucleotide was labeled at its 5' end with ³²P and hybridized to the cDNA blots using conventional techniques. Single-stranded cDNAs resulting from the reverse transcription reaction were spotted on the membrane. As controls, the blot contained 1 pmol, 100 fmol, 50 fmol, 10 fmol and 1 fmol respectively of a control oligodeoxyribonucleotide of sequence identical to that of the derivatized oligonucleotide. The signal observed in the spots containing the cDNA indicated that approximately 15 fmol of the derivatized oligonucleotide had been reverse transcribed.

These results demonstrate that the reverse transcription can be performed through the cap and, in particular, that reverse transcriptase crosses the 5'-P-P-5' bond of the cap of eukaryotic messenger RNAs.

The single stranded cDNAs obtained after the above first strand synthesis were used as template for PCR reactions. Two types of reactions were carried out. First, specific amplification of the mRNAs for the alpha globin, dehydrogenase, pp15 and elongation factor E4 were carried out using the following pairs of oligodeoxyribonucleotide primers.

alpha-globin

25

GLO-S: CCG ACA AGA CCA ACG TCA AGG CCG C (SEQ ID NO:5)

GLO-As: TCA CCA GCA GGC AGT GGC TTA GGA G 3' (SEQ ID NO:6)

dehydrogenase

3 DH-S: AGT GAT TCC TGC TAC TTT GGA TGG C (SEQ ID NO:7)

3 DH-As: GCT TGG TCT TGT TCT GGA GTT TAG A (SEQ ID NO:8)

pp15

PP15-S: TCC AGA ATG GGA GAC AAG CCA ATT T (SEQ ID NO:9)

5 PP15-As: AGG GAG GAG GAA ACA GCG TGA GTC C (SEQ ID NO:10)

Elongation factor E4

EFA1-S: ATG GGA AAG GAA AAG ACT CAT ATC A (SEQ ID NO:11)

EF1A-As: AGC AGC AAC AAT CAG GAC AGC ACA G (SEO ID NO:12)

Non specific amplifications were also carried out with the antisense (_As) oligodeoxyribonucleotides of the pairs described above and a primer chosen from the sequence of the derivatized oligodeoxyribonucleotide (ATCAAGAATTCGCACGAGACCATTA) (SEQ ID NO:13).

A 1.5% agarose gel containing the following samples corresponding to the PCR products of reverse transcription was stained with ethidium bromide. (1/20th of the products of reverse transcription were used for each PCR reaction).

- Sample 1: The products of a PCR reaction using the globin primers of SEQ ID NOs 5 and 6 in the presence of cDNA.
 - Sample 2: The products of a PCR reaction using the globin primers of SEQ ID NOs 5 and 6 in the absence of added cDNA.
- Sample 3: The products of a PCR reaction using the dehydrogenase primers of SEQ ID NOs 7 and 8 in the presence of cDNA.
 - Sample 4: The products of a PCR reaction using the dehydrogenase primers of SEQ ID NOs 7 and 8 in the absence of added cDNA.
 - Sample 5: The products of a PCR reaction using the pp15 primers of SEQ ID NOs 9 and 10 in the presence of cDNA.
- Sample 6: The products of a PCR reaction using the pp15 primers of SEQ ID NOs 9 and 10 in the absence of added cDNA.
 - Sample 7: The products of a PCR reaction using the EIE4 primers of SEQ ID NOs 11 and 12 in the presence of added cDNA.
- Sample 8: The products of a PCR reaction using the EIE4 primers of SEQ ID NOs 11 and 12 in the absence of added cDNA.
 - In Samples 1, 3, 5 and 7, a band of the size expected for the PCR product was observed, indicating the presence of the corresponding sequence in the cDNA population.

PCR reactions were also carried out with the antisense oligonucleotides of the globin and dehydrogenase primers (SEQ ID NOs 6 and 8) and an oligonucleotide whose sequence corresponds to that of the derivatized

oligonucleotide. The presence of PCR products of the expected size in the samples corresponding to samples 1 and 3 above indicated that the derivatized oligonucleotide had been incorporated.

The above examples summarize the chemical procedure for enriching mRNAs for those having intact 5' ends.

Further detail regarding the chemical approaches for obtaining mRNAs having intact 5' ends are disclosed in

International Application No. W096/34981, published November 7, 1996.

Strategies based on the above chemical modifications to the 5' cap structure may be utilized to generate cDNAs which have been selected to include the 5' ends of the mRNAs from which they are derived. In one version of such procedures, the 5' ends of the mRNAs are modified as described above. Thereafter, a reverse transcription reaction is conducted to extend a primer complementary to the mRNA to the 5' end of the mRNA. Single stranded RNAs are eliminated to obtain a population of cDNA/mRNA heteroduplexes in which the mRNA includes an intact 5' end. The resulting heteroduplexes may be captured on a solid phase coated with a molecule capable of interacting with the molecule used to derivatize the 5' end of the mRNA. Thereafter, the strands of the heteroduplexes are separated to recover single stranded first cDNA strands which include the 5' end of the mRNA. Second strand cDNA synthesis may then proceed using conventional techniques. For example, the procedures disclosed in WO 96/34981 or in Carninci, P. et al. High-Efficiency Full-Length cDNA Cloning by Biotinylated CAP Trapper. Genomics 37:327-336 (1996) may be employed to select cDNAs which include the sequence derived from the 5' end of the coding sequence of the mRNA.

Following ligation of the oligonucleotide tag to the 5' cap of the mRNA, a reverse transcription reaction is conducted to extend a primer complementary to the mRNA to the 5' end of the mRNA. Following elimination of the RNA component of the resulting heteroduplex using standard techniques, second strand cDNA synthesis is conducted with a 20 primer complementary to the oligonucleotide tag.

Figure 1 summarizes the above procedures for obtaining cDNAs which have been selected to include the 5' ends of the mRNAs from which they are derived.

B. Enzymatic Methods for Obtaining mRNAs having Intact 5' Ends

Other techniques for selecting cDNAs extending to the 5' end of the mRNA from which they are derived are fully enzymatic. Some versions of these techniques are disclosed in Dumas Milne Edwards J.B. (Doctoral Thesis of Paris VI University, Le clonage des ADNc complets: difficultes et perspectives nouvelles. Apports pour l'etude de la regulation de l'expression de la tryptophane hydroxylase de rat, 20 Dec. 1993), EPO 625572 and Kato et al. Construction of a Human Full-Length cDNA Bank. Gene 150:243-250 (1994).

Briefly, in such approaches, isolated mRNA is treated with alkaline phosphatase to remove the phosphate

30 groups present on the 5' ends of uncapped incomplete mRNAs. Following this procedure, the cap present on full length mRNAs is enzymatically removed with a decapping enzyme such as T4 polynucleotide kinase or tobacco acid pyrophosphatase. An oligonucleotide, which may be either a DNA oligonucleotide or a DNA-RNA hybrid oligonucleotide having RNA at its 3' end, is then ligated to the phosphate present at the 5' end of the decapped mRNA using T4 RNA

ligase. The oligonucleotide may include a restriction site to facilitate cloning of the cDNAs following their synthesis. Example 12 below describes one enzymatic method based on the doctoral thesis of Dumas.

EXAMPLE 12

Enzymatic Approach for Obtaining 5' ESTs

Twenty micrograms of PolyA + RNA were dephosphorylated using Calf Intestinal Phosphatase (Biolabs). After a phenol chloroform extraction, the cap structure of mRNA was hydrolysed using the Tobacco Acid Pyrophosphatase (purified as described by Shinshi et al., Biochemistry 15: 2185-2190, 1976) and a hemi 5'DNA/RNA-3' oligonucleotide having an unphosphorylated 5' end, a stretch of adenosine ribophosphate at the 3' end, and an EcoRI site near the 5' end was ligated to the 5'P ends of mRNA using the T4 RNA ligase (Biolabs). Oligonucleotides suitable for use in this 10 procedure are preferably 30-50 bases in length. Oligonucleotides having an unphosphorylated 5' end may be synthesized by adding a fluorochrome at the 5' end. The inclusion of a stretch of adenosine ribophosphates at the 3' end of the oligonucleotide increases ligation efficiency. It will be appreciated that the oligonucleotide may contain cloning sites other than EcoRi.

Following ligation of the oligonucleotide to the phosphate present at the 5' end of the decapped mRNA, first 15 and second strand cDNA synthesis may be carried out using conventional methods or those specified in EPO 625.572 and Kato et al. Construction of a Human Full-Length cDNA Bank. Gene 150:243-250 (1994), and Dumas Milne Edwards, supra. The resulting cDNA may then be ligated into vectors such as those disclosed in Kato et al. Construction of a Human Full-Length cDNA Bank. Gene 150:243-250 (1994) or other nucleic acid vectors known to those skilled in the art using techniques such as those described in Sambrook et al., Molecular Cloning: A Laboratory Manual 2d Ed., Cold 20 Spring Harbor Laboratory Press, 1989.

II. Characterization of 5' ESTs

The above chemical and enzymatic approaches for enriching mRNAs having intact 5' ends were employed to obtain 5' ESTs. First, mRNAs were prepared as described in Example 13 below.

EXAMPLE 13

25

Preparation of mRNA

Total human RNAs or PolyA + RNAs derived from 29 different tissues were respectively purchased from LABIMO and CLONTECH and used to generate 44 cDNA libraries as described below. The purchased RNA had been isolated from cells or tissues using acid guanidium thiocyanate-phenol-chloroform extraction (Chomczyniski, P and Sacchi, N., Analytical Biochemistry 162:156-159, 1987). PolyA+ RNA was isolated from total RNA (LABIMO) by 30 two passes of oligodT chromatography, as described by Aviv and Leder (Aviv, H. and Leder, P., Proc. Natl. Acad. Sci. **USA** 69:1408-1412, 1972) in order to eliminate ribosomal RNA.

The quality and the integrity of the poly A+ were checked. Northern blots hybridized with a globin probe were used to confirm that the mRNAs were not degraded. Contamination of the PolyA + mRNAs by ribosomal sequences was checked using RNAs blots and a probe derived from the sequence of the 28S RNA. Preparations of mRNAs with less

PCT/IB98/02122 WO 99/31236

-21-

than 5% of ribosomal RNAs were used in library construction. To avoid constructing libraries with RNAs contaminated by exogenous sequences (prokaryotic or fungal), the presence of bacterial 16S ribosomal sequences or of two highly expressed mRNAs was examined using PCR.

Following preparation of the mRNAs, the above described chemical and/or the enzymatic procedures for 5 enriching mRNAs having intact 5' ends discussed above were employed to obtain 5' ESTs from various tissues. In both approaches an oligonucleotide tag was attached to the cap at the 5' ends of the mRNAs. The oligonucleotide tag had an EcoRI site therein to facilitate later cloning procedures.

Following attachment of the oligonucleotide tag to the mRNA by either the chemical or enzymatic methods, the integrity of the mRNA was examined by performing a Northern blot with 200-500ng of mRNA using a probe 10 complementary to the oliponucleotide tag.

EXAMPLE 14

cDNA Synthesis Using mRNA Templates Having Intact 5' Ends

For the mRNAs joined to aligonucleotide tags using both the chemical and enzymatic methods, first strand cDNA synthesis was performed using reverse transcriptase with random nonamers as primers. In order to protect 15 internal EcoRI sites in the cDNA from digestion at later steps in the procedure, methylated dCTP was used for first strand synthesis. After removal of RNA by an alkaline hydrolysis, the first strand of cDNA was precipitated using isopropanol in order to eliminate residual primers.

For both the chemical and the enzymatic methods, the second strand of the cDNA was synthesized with a Klenow fragment using a primer corresponding to the 5'end of the ligated oligonucleotide described in Example 12. 20 Preferably, the primer is 20-25 bases in length. Methylated dCTP was also used for second strand synthesis in order to protect internal EcoRI sites in the cDNA from digestion during the cloning process.

Following cDNA synthesis, the cDNAs were cloned into pBlueScript as described in Example 15 below.

EXAMPLE 15

Insertion of cDNAs into BlueScript

25 Following second strand synthesis, the ends of the cDNA were blunted with T4 DNA polymerase (Biolabs) and the cDNA was digested with EcoRI. Since methylated dCTP was used during cDNA synthesis, the EcoRI site present in the tag was the only site which was hemi-methylated. Consequently, only the EcoRI site in the oligonucleotide tag was susceptible to EcoRI digestion. The cDNA was then size fractionated using exclusion chromatography (AcA, Biosepra). Fractions corresponding to cDNAs of more than 150 bp were pooled and ethanol precipitated. The cDNA was 30 directionally cloned into the Smal and EcoRI ends of the phagemid pBlueScript vector (Stratagene). The ligation mixture was electroporated into bacteria and propagated under appropriate antibiotic selection.

Clones containing the oligonucleotide tag attached were selected as described in Example 16 below.

EXAMPLE 16

Selection of Clones Having the Oligonucleotide Tag Attached Thereto

The plasmid DNAs containing 5' EST libraries made as described above were purified (Qiagen). A positive selection of the tagged clones was performed as follows. Briefly, in this selection procedure, the plasmid DNA was converted to single stranded DNA using gene II endonuclease of the phage F1 in combination with an exonuclease (Chang et al., Gene 127:95-8, 1993) such as exonuclease III or T7 gene 6 exonuclease. The resulting single stranded DNA was then purified using paramagnetic beads as described by Fry et al., Biotechniques, 13: 124-131, 1992. In this procedure, the single stranded DNA was hybridized with a biotinylated oligonucleotide having a sequence corresponding to the 3' end of the oligonucleotide described in Example 13. Preferably, the primer has a length of 20-25 bases. Clones including a sequence complementary to the biotinylated oligonucleotide were captured by incubation with streptavidin coated magnetic beads followed by magnetic selection. After capture of the positive clones, the plasmid DNA was released from the magnetic beads and converted into double stranded DNA using a DNA polymerase such as the ThermoSequenase obtained from Amersham Pharmacia Biotech. Alternatively, protocols such as the Gene Trapper kit (Gibco BRL) may be used. The double stranded DNA was then electroporated into bacteria. The percentage of positive clones having the 5' tag oligonucleotide was estimated to typically rank between 90 and 98% using dot blot analysis.

Following electroporation, the libraries were ordered in 384-microtiter plates (MTP). A copy of the MTP was stored for future needs. Then the libraries were transferred into 96 MTP and sequenced as described below.

EXAMPLE 17

Sequencing of Inserts in Selected Clones

Plasmid inserts were first amplified by PCR on PE 9600 thermocyclers (Perkin-Elmer), using standard SETA-A and SETA-B primers (Genset SA), AmpliTaqGold (Perkin-Elmer), dNTPs (Boehringer), buffer and cycling conditions as recommended by the Perkin-Elmer Corporation.

PCR products were then sequenced using automatic ABI Prism 377 sequencers (Perkin Elmer, Applied Biosystems Division, Foster City, CA). Sequencing reactions were performed using PE 9600 thermocyclers (Perkin Elmer) with standard dye-primer chemistry and ThermoSequenase (Amersham Life Science). The primers used were either T7 or 21M13 (available from Genset SA) as appropriate. The primers were labeled with the JOE, FAM, ROX and TAMRA dyes. The dNTPs and ddNTPs used in the sequencing reactions were purchased from Boehringer. Sequencing buffer, reagent concentrations and cycling conditions were as recommended by Amersham.

Following the sequencing reaction, the samples were precipitated with EtOH, resuspended in formamide loading buffer, and loaded on a standard 4% acrylamide gel. Electrophoresis was performed for 2.5 hours at 3000V on an ABI 377 sequencer, and the sequence data were collected and analyzed using the ABI Prism DNA Sequencing 30 Analysis Software, version 2.1.2.

The sequence data from the 44 cDNA libraries made as described above were transferred to a proprietary database, where quality control and validation steps were performed. A proprietary base-caller ("Trace"), working using a Unix system automatically flagged suspect peaks, taking into account the shape of the peaks, the inter-peak resolution, and the noise level. The proprietary base-caller also performed an automatic trimming. Any stretch of 25 or

20

fewer bases having more than 4 suspect peaks was considered unreliable and was discarded. Sequences corresponding to cloning vector or ligation oligonucleotides were automatically removed from the EST sequences. However, the resulting EST sequences may contain 1 to 5 bases belonging to the above mentioned sequences at their 5' end. If needed, these can easily be removed on a case by case basis.

Thereafter, the sequences were transferred to the proprietary NETGENE™ Database for further analysis as described below.

Following sequencing as described above, the sequences of the 5' ESTs were entered in a proprietary database called NETGENETM for storage and manipulation. It will be appreciated by those skilled in the art that the data could be stored and manipulated on any medium which can be read and accessed by a computer. Computer readable media include magnetically readable media, optically readable media, or electronically readable media. For example, the computer readable media may be a hard disc, a floppy disc, a magnetic tape, CD-ROM, RAM, or ROM as well as other types of other media known to those skilled in the art.

In addition, the sequence data may be stored and manipulated in a variety of data processor programs in a variety of formats. For example, the sequence data may be stored as text in a word processing file, such as

MicrosoftWORD or WORDPERFECT or as an ASCII file in a variety of database programs familiar to those of skill in the art, such as DB2, SYBASE, or ORACLE.

The computer readable media on which the sequence information is stored may be in a personal computer, a network, a server or other computer systems known to those skilled in the art. The computer or other system preferably includes the storage media described above, and a processor for accessing and manipulating the sequence data.

Once the sequence data has been stored it may be manipulated and searched to locate those stored sequences which contain a desired nucleic acid sequence or which encode a protein having a particular functional domain. For example, the stored sequence information may be compared to other known sequences to identify homologies, motifs implicated in biological function, or structural motifs.

Programs which may be used to search or compare the stored sequences include the MacPattern (EMBL),

25 BLAST, and BLAST2 program series (NCBI), basic local alignment search tool programs for nucleotide (BLASTN) and
peptide (BLASTX) comparisons (Altschul et al, J. Mol. Biol. 215: 403 (1990)) and FASTA (Pearson and Lipman, Proc.

Natl. Acad. Sci. USA, 85: 2444 (1988)). The BLAST programs then extend the alignments on the basis of defined
match and mismatch criteria.

Motifs which may be detected using the above programs include sequences encoding leucine zippers, helix-turn
helix motifs, glycosylation sites, ubiquitination sites, alpha helices, and beta sheets, signal sequences encoding signal peptides which direct the secretion of the encoded proteins, sequences implicated in transcription regulation such as homeoboxes, acidic stretches, enzymatic active sites, substrate binding sites, and enzymatic cleavage sites.

Before searching the cDNAs in the NETGENE™ database for sequence motifs of interest, cDNAs derived from mRNAs which were not of interest were identified and eliminated from further consideration as described in Example 18 below.

EXAMPLE 18

5

25

Elimination of Undesired Sequences from Further Consideration

5' ESTs in the NETGENE™ database which were derived from undesired sequences such as transfer RNAs, ribosomal RNAs, mitochondrial RNAs, procaryotic RNAs, fungal RNAs, Alu sequences, L1 sequences, or repeat sequences were identified using the FASTA and BLASTN programs with the parameters listed in Table II.

To eliminate 5' ESTs encoding tRNAs from further consideration, the 5' EST sequences were compared to the sequences of 1190 known tRNAs obtained from EMBL release 38, of which 100 were human. The comparison was performed using FASTA on both strands of the 5' ESTs. Sequences having more than 80% homology over more than 60 nucleotides were identified as tRNA. Of the 144,341 sequences screened, 26 were identified as tRNAs and eliminated from further consideration.

To eliminate 5' ESTs encoding rRNAs from further consideration, the 5' EST sequences were compared to the 15 sequences of 2497 known rRNAs obtained from EMBL release 38, of which 73 were human. The comparison was performed using BLASTN on both strands of the 5' ESTs with the parameter S = 108. Sequences having more than 80% homology over stretches longer than 40 nucleotides were identified as rRNAs. Of the 144,341 sequences screened, 3,312 were identified as rRNAs and eliminated from further consideration.

To eliminate 5' ESTs encoding mtRNAs from further consideration, the 5' EST sequences were compared to 20 the sequences of the two known mitochondrial genomes for which the entire genomic sequences are available and all sequences transcribed from these mitochondrial genomes including tRNAs, rRNAs, and mRNAs for a total of 38 sequences. The comparison was performed using BLASTN on both strands of the 5' ESTs with the parameter S=108. Sequences having more than 80% homology over stretches longer than 40 nucleotides were identified as mtRNAs. Of the 144,341 sequences screened, 6,110 were identified as mtRNAs and eliminated from further consideration.

Sequences which might have resulted from exogenous contaminants were eliminated from further consideration by comparing the 5' EST sequences to release 46 of the EMBL bacterial and fungal divisions using BLASTN with the parameter S = 144. All sequences having more than 90% homology over at least 40 nucleotides were identified as exogenous contaminants. Of the 42 cDNA libraries examined, the average percentages of procaryotic and fungal sequences contained therein were 0.2% and 0.5% respectively. Among these sequences, only one could be 30 identified as a sequence specific to fungi. The others were either fungal or procaryotic sequences having homologies with vertebrate sequences or including repeat sequences which had not been masked during the electronic comparison.

In addition, the 5' ESTs were compared to 6093 Alu sequences and 1115 L1 sequences to mask 5' ESTs containing such repeat sequences from further consideration. 5' ESTs including THE and MER repeats, SSTR sequences or satellite, micro-satellite, or telomeric repeats were also eliminated from further consideration. On average, 11.5% of

the sequences in the libraries contained repeat sequences. Of this 11.5%, 7% contained Alu repeats, 3.3% contained L1 repeats and the remaining 1.2% were derived from the other types of repetitive sequences which were screened. These percentages are consistent with those found in cDNA libraries prepared by other groups. For example, the cDNA libraries of Adams et al. contained between 0% and 7.4% Alu repeats depending on the source of the RNA which was used to prepare the cDNA library (Adams et al., *Nature* 377:174, 1996).

The sequences of those 5' ESTs remaining after the elimination of undesirable sequences were compared with the sequences of known human mRNAs to determine the accuracy of the sequencing procedures described above.

EXAMPLE 19

Measurement of Sequencing Accuracy by Comparison to Known Sequences

To further determine the accuracy of the sequencing procedure described above, the sequences of 5' ESTs derived from known sequences were identified and compared to the known sequences. First, a FASTA analysis with overhangs shorter than 5 bp on both ends was conducted on the 5' ESTs to identify those matching an entry in the public human mRNA database. The 6655 5' ESTs which matched a known human mRNA were then realigned with their cognate mRNA and dynamic programming was used to include substitutions, insertions, and deletions in the list of "errors" which would be recognized. Errors occurring in the last 10 bases of the 5' EST sequences were ignored to avoid the inclusion of spurious cloning sites in the analysis of sequencing accuracy.

This analysis revealed that the sequences incorporated in the NETGENE™ database had an accuracy of more than 99.5%.

To determine the efficiency with which the above selection procedures select cDNAs which include the 5' ends of their corresponding mRNAs, the following analysis was performed.

EXAMPLE 20

Determination of Efficiency of 5' EST Selection

To determine the efficiency at which the above selection procedures isolated 5' ESTs which included sequences close to the 5' end of the mRNAs from which they were derived, the sequences of the ends of the 5' ESTs which were derived from the elongation factor 1 subunit α and ferritin heavy chain genes were compared to the known cDNA sequences for these genes. Since the transcription start sites for the elongation factor 1 subunit α and ferritin heavy chain are well characterized, they may be used to determine the percentage of 5' ESTs derived from these genes which included the authentic transcription start sites.

For both genes, more than 95% of the cDNAs included sequences close to or upstream of the 5' end of the 30 corresponding mRNAs.

To extend the analysis of the reliability of the procedures for isolating 5' ESTs from ESTs in the NETGENETM database, a similar analysis was conducted using a database composed of human mRNA sequences extracted from GenBank database release 97 for comparison. For those 5' ESTs derived from mRNAs included in the GeneBank database, more than 85% had their 5' ends close to the 5' ends of the known sequence. As some of the mRNA

PCT/IB98/02122 WO 99/31236

-26-

sequences available in the GenBank database are deduced from genomic sequences, a 5' end matching with these sequences will be counted as an internal match. Thus, the method used here underestimates the yield of ESTs including the authentic 5' ends of their corresponding mRNAs.

The EST libraries made above included multiple 5' ESTs derived from the same mRNA. The sequences of such 5 5' ESTs were compared to one another and the longest 5' ESTs for each mRNA were identified. Overlapping cDNAs were assembled into continuous sequences (contigs). The resulting continuous sequences were then compared to public databases to gauge their similarity to known sequences, as described in Example 21 below.

EXAMPLE 21

Clustering of the 5' ESTs and Calculation of Novelty Indices for cDNA Libraries

10 For each sequenced EST library, the sequences were clustered by the 5' end. Each sequence in the library was compared to the others with BLASTN2 (direct strand, parameters S - 107). ESTs with High Scoring Segment Pairs (HSPs) at least 25 bp long, having 95% identical bases and beginning closer than 10 bp from each EST 5' end were grouped. The longest sequence found in the cluster was used as representative of the cluster. A global clustering between libraries was then performed leading to the definition of super-contigs.

To assess the yield of new sequences within the EST libraries, a novelty rate (NR) was defined as: NR = 100 X (Number of new unique sequences found in the library/Total number of sequences from the library). Typically, novelty rating range between 10% and 41% depending on the tissue from which the EST library was obtained. For most of the libraries, the random sequencing of 5' EST libraries was pursued until the novelty rate reached 20%.

Following characterization as described above, the collection of 5' ESTs in NETGENETM was screened to 20 identify those 5' ESTs bearing potential signal sequences as described in Example 22 below.

15

EXAMPLE 22

Identification of Potential Signal Sequences in 5' ESTs

The 5' ESTs in the NETGENETM database were screened to identify those having an uninterrupted open reading frame (ORF) longer than 45 nucleotides beginning with an ATG codon and extending to the end of the EST. 25 Approximately half of the cDNA sequences in NETGENE™ contained such an ORF. The ORFs of these 5' ESTs were searched to identify potential signal motifs using slight modifications of the procedures disclosed in Von Heijne, G. A New Method for Predicting Signal Sequence Cleavage Sites. Nucleic Acids Res. 14:4683-4690 (1986). Those 5' EST sequences encoding a 15 amino acid long stretch with a score of at least 3.5 in the Von Heijne signal peptide identification matrix were considered to possess a signal sequence. Those 5' ESTs which matched a known human 30 mRNA or EST sequence and had a 5' end more than 20 nucleotides downstream of the known 5' end were excluded from further analysis. The remaining cDNAs having signal sequences therein were included in a database called SIGNALTAGTM.

To confirm the accuracy of the above method for identifying signal sequences, the analysis of Example 23 was performed.

-27-

EXAMPLE 23

Confirmation of Accuracy of Identification of Potential Signal Sequences in 5' ESTs

The accuracy of the above procedure for identifying signal sequences encoding signal peptides was evaluated by applying the method to the 43 amino terminal amino acids of all human SwissProt proteins. The computed Von Heijne score for each protein was compared with the known characterization of the protein as being a secreted protein or a non-secreted protein. In this manner, the number of non-secreted proteins having a score higher than 3.5 (false positives) and the number of secreted proteins having a score lower than 3.5 (false negatives) could be calculated.

Using the results of the above analysis, the probability that a peptide encoded by the 5' region of the mRNA is in fact a genuine signal peptide based on its Von Heijne's score was calculated based on either the assumption that 10% of human proteins are secreted or the assumption that 20% of human proteins are secreted. The results of this analysis are shown in Figures 2 and 3.

Using the above method of identifying secretory proteins, 5' ESTs for human glucagon, gamma interferon induced monokine precursor, secreted cyclophilin-like protein, human pleiotropin, and human biotinidase precursor all of which are polypeptides which are known to be secreted, were obtained. Thus, the above method successfully identified those 5' ESTs which encode a signal peptide.

To confirm that the signal peptide encoded by the 5' ESTs actually functions as a signal peptide, the signal sequences from the 5' ESTs may be cloned into a vector designed for the identification of signal peptides. Some signal peptide identification vectors are designed to confer the ability to grow in selective medium on host cells which have a signal sequence operably inserted into the vector. For example, to confirm that a 5' EST encodes a genuine signal peptide, the signal sequence of the 5' EST may be inserted upstream and in frame with a non-secreted form of the yeast invertase gene in signal peptide selection vectors such as those described in U.S. Patent No. 5,536,637. Growth of host cells containing signal sequence selection vectors having the signal sequence from the 5' EST inserted therein confirms that the 5' EST encodes a genuine signal peptide.

Alternatively, the presence of a signal peptide may be confirmed by cloning the extended cDNAs obtained using
the ESTs into expression vectors such as pXT1 (as described below), or by constructing promoter-signal sequencereporter gene vectors which encode fusion proteins between the signal peptide and an assayable reporter protein. After
introduction of these vectors into a suitable host cell, such as COS cells or NIH 3T3 cells, the growth medium may be
harvested and analyzed for the presence of the secreted protein. The medium from these cells is compared to the
medium from cells containing vectors lacking the signal sequence or extended cDNA insert to identify vectors which
encode a functional signal peptide or an authentic secreted protein.

Those 5' ESTs which encoded a signal peptide, as determined by the method of Example 22 above, were further grouped into four categories based on their homology to known sequences. The categorization of the 5' ESTs is described in Example 24 below.

WO 99/31236 PCT/IB98/02122

-28Categorization of 5' ESTs Encoding a Signal Peptide

Those 5' ESTs having a sequence not matching any known vertebrate sequence nor any publicly available EST sequence were designated "new." Of the sequences in the SIGNALTAGTM database, 947 of the 5' ESTs having a Von Heijne's score of at least 3.5 fell into this category.

Those 5' ESTs having a sequence not matching any vertebrate sequence but matching a publicly known EST were designated "EST-ext", provided that the known EST sequence was extended by at least 40 nucleotides in the 5' direction. Of the sequences in the SIGNALTAGTM database, 150 of the 5' ESTs having a Von Heijne's score of at least 3.5 fell into this category.

5

Those ESTs not matching any vertebrate sequence but matching a publicly known EST without extending the 10 known EST by at least 40 nucleotides in the 5' direction were designated "EST." Of the sequences in the SIGNALTAGTM database, 599 of the 5' ESTs having a Von Heijne's score of at least 3.5 fell into this category.

Those 5' ESTs matching a human mRNA sequence but extending the known sequence by at least 40 nucleotides in the 5' direction were designated "VERT-ext." Of the sequences in the SIGNALTAG™ database, 23 of the 5' ESTs having a Von Heijne's score of at least 3.5 fell into this category. Included in this category was a 5' EST which extended the known sequence of the human translocase mRNA by more than 200 bases in the 5' direction. A 5' EST which extended the sequence of a human tumor suppressor gene in the 5' direction was also identified.

Figure 4 shows the distribution of 5' ESTs in each category and the number of 5' ESTs in each category having a given minimum von Heijne's score.

Each of the 5' ESTs was categorized based on the tissue from which its corresponding mRNA was obtained, 20 as described below in Example 25.

EXAMPLE 25

Categorization of Expression Patterns

Figure 5 shows the tissues from which the mRNAs corresponding to the 5' ESTs in each of the above described categories were obtained.

In addition to categorizing the 5' ESTs by the tissue from which the cDNA library in which they were first identified was obtained, the spatial and temporal expression patterns of the mRNAs corresponding to the 5' ESTs, as well as their expression levels, may be determined as described in Example 26 below. Characterization of the spatial and temporal expression patterns and expression levels of these mRNAs is useful for constructing expression vectors capable of producing a desired level of gene product in a desired spatial or temporal manner, as will be discussed in more detail below.

In addition, 5' ESTs whose corresponding mRNAs are associated with disease states may also be identified. For example, a particular disease may result from lack of expression, over expression, or under expression of an mRNA corresponding to a 5' EST. By comparing mRNA expression patterns and quantities in samples taken from healthy

individuals with those from individuals suffering from a particular disease, 5' ESTs responsible for the disease may be identified.

It will be appreciated that the results of the above characterization procedures for 5' ESTs also apply to extended cDNAs (obtainable as described below) which contain sequences adjacent to the 5' ESTs. It will also be appreciated that if it is desired to defer characterization until extended cDNAs have been obtained rather than characterizing the ESTs themselves, the above characterization procedures can be applied to characterize the extended cDNAs after their isolation.

EXAMPLE 26

Evaluation of Expression Levels and Patterns of mRNAs

10 Corresponding to 5' ESTs or Extended cDNAs

Expression levels and patterns of mRNAs corresponding to 5' ESTs or extended cDNAs (obtainable as described below) may be analyzed by solution hybridization with long probes as described in International Patent Application No. WO 97/05277. Briefly, a 5' EST, extended cDNA, or fragment thereof corresponding to the gene encoding the mRNA to be characterized is inserted at a cloning site immediately downstream of a bacteriophage (T3, T7 or SP6) RNA polymerase promoter to produce antisense RNA. Preferably, the 5' EST or extended cDNA has 100 or more nucleotides. The plasmid is linearized and transcribed in the presence of ribonucleotides comprising modified ribonucleotides (i.e. biotin-UTP and DIG-UTP). An excess of this doubly labeled RNA is hybridized in solution with mRNA isolated from cells or tissues of interest. The hybridizations are performed under standard stringent conditions (40-50°C for 16 hours in an 80% formamide, 0.4 M NaCl buffer, pH 7-8). The unhybridized probe is removed by digestion with ribonucleases specific for single-stranded RNA (i.e. RNases CL3, T1, Phy M, U2 or A). The presence of the biotin-UTP modification enables capture of the hybrid on a microtitration plate coated with streptavidin. The presence of the DIG modification enables the hybrid to be detected and quantified by ELISA using an anti-DIG antibody coupled to alkaline phosphatase.

The 5' ESTs, extended cDNAs, or fragments thereof may also be tagged with nucleotide sequences for the serial analysis of gene expression (SAGE) as disclosed in UK Patent Application No. 2 305 241 A. In this method, cDNAs are prepared from a cell, tissue, organism or other source of nucleic acid for which it is desired to determine gene expression patterns. The resulting cDNAs are separated into two pools. The cDNAs in each pool are cleaved with a first restriction endonuclease, called an "anchoring enzyme," having a recognition site which is likely to be present at least once in most cDNAs. The fragments which contain the 5' or 3' most region of the cleaved cDNA are isolated by binding to a capture medium such as streptavidin coated beads. A first oligonucleotide linker having a first sequence for hybridization of an amplification primer and an internal restriction site for a "tagging endonuclease" is ligated to the digested cDNAs in the first pool. Digestion with the second endonuclease produces short "tag" fragments from the cDNAs.

25

A second oligonucleotide having a second sequence for hybridization of an amplification primer and an internal restriction site is ligated to the digested cDNAs in the second pool. The cDNA fragments in the second pool are also digested with the "tagging endonuclease" to generate short "tag" fragments derived from the cDNAs in the second pool. The "tags" resulting from digestion of the first and second pools with the anchoring enzyme and the tagging 5 endonuclease are ligated to one another to produce "ditags." In some embodiments, the ditags are concatamerized to produce ligation products containing from 2 to 200 ditags. The tag sequences are then determined and compared to the sequences of the 5' ESTs or extended cDNAs to determine which 5' ESTs or extended cDNAs are expressed in the cell, tissue, organism, or other source of nucleic acids from which the tags were derived. In this way, the expression pattern of the 5' ESTs or extended cDNAs in the cell, tissue, organism, or other source of nucleic acids is obtained.

Quantitative analysis of gene expression may also be performed using arrays. As used herein, the term array means a one dimensional, two dimensional, or multidimensional arrangement of full length cDNAs (i.e. extended cDNAs which include the coding sequence for the signal peptide, the coding sequence for the mature protein, and a stop codon), extended cDNAs, 5' ESTs or fragments of the full length cDNAs, extended cDNAs, or 5' ESTs of sufficient length to permit specific detection of gene expression. Preferably, the fragments are at least 15 nucleotides in length. More 15 preferably, the fragments are at least 100 nucleotides in length. More preferably, the fragments are more than 100 nucleotides in length. In some embodiments the fragments may be more than 500 nucleotides in length.

For example, quantitative analysis of gene expression may be performed with full length cDNAs, extended cDNAs, 5' ESTs, or fragments thereof in a complementary DNA microarray as described by Schena et al. (Science 270:467-470, 1995; Proc. Natl. Acad. Sci. U.S.A. 93:10614-10619, 1996). Full length cDNAs, extended cDNAs, 5' 20 ESTs or fragments thereof are amplified by PCR and arrayed from 96-well microtiter plates onto silvlated microscope slides using high-speed robotics. Printed arrays are incubated in a humid chamber to allow rehydration of the array elements and rinsed, once in 0.2% SDS for 1 min, twice in water for 1 min and once for 5 min in sodium borohydride solution. The arrays are submerged in water for 2 min at 95°C, transferred into 0.2% SDS for 1 min, rinsed twice with water, air dried and stored in the dark at 25°C.

Cell or tissue mRNA is isolated or commercially obtained and probes are prepared by a single round of reverse transcription. Probes are hybridized to 1 cm² microarrays under a 14 x 14 mm glass coverslip for 6-12 hours at 60°C. Arrays are washed for 5 min at 25°C in low stringency wash buffer (1 x SSC/0.2% SDS), then for 10 min at room temperature in high stringency wash buffer (0.1 x SSC/0.2% SDS). Arrays are scanned in 0.1 x SSC using a fluorescence laser scanning device fitted with a custom filter set. Accurate differential expression measurements are 30 obtained by taking the average of the ratios of two independent hybridizations.

Quantitative analysis of the expression of genes may also be performed with full length cDNAs, extended cDNAs, 5' ESTs, or fragments thereof in complementary DNA arrays as described by Pietu et al. (Genome Research 6:492-503, 1996). The full length cDNAs, extended cDNAs, 5' ESTs or fragments thereof are PCR amplified and spotted on membranes. Then, mRNAs originating from various tissues or cells are labeled with radioactive nucleotides. After hybridization and washing in controlled conditions, the hybridized mRNAs are detected by phospho-imaging or autoradiography. Duplicate experiments are performed and a quantitative analysis of differentially expressed mRNAs is then performed.

Alternatively, expression analysis of the 5' ESTs or extended cDNAs can be done through high density

nucleotide arrays as described by Lockhart et al. (Nature Biotechnology 14: 1675-1680, 1996) and Sosnowsky et al.

(Proc. Natl. Acad. Sci. 94:1119-1123, 1997). Oligonucleotides of 15-50 nucleotides corresponding to sequences of the 5' ESTs or extended cDNAs are synthesized directly on the chip (Lockhart et al., supra) or synthesized and then addressed to the chip (Sosnowski et al., supra). Preferably, the oligonucleotides are about 20 nucleotides in length.

cDNA probes labeled with an appropriate compound, such as biotin, digoxigenin or fluorescent dye, are

synthesized from the appropriate mRNA population and then randomly fragmented to an average size of 50 to 100 nucleotides. The said probes are then hybridized to the chip. After washing as described in Lockhart et al., supra and application of different electric fields (Sosnowsky et al., Proc. Natl. Acad. Sci. 94:1119-1123)., the dyes or labeling compounds are detected and quantified. Duplicate hybridizations are performed. Comparative analysis of the intensity of the signal originating from cDNA probes on the same target oligonucleotide in different cDNA samples indicates a differential expression of the mRNA corresponding to the 5' EST or extended cDNA from which the oligonucleotide sequence has been designed.

III. Use of 5' ESTs to Clone Extended cDNAs and to Clone the Corresponding Genomic DNAs

Once 5' ESTs which include the 5' end of the corresponding mRNAs have been selected using the procedures described above, they can be utilized to isolate extended cDNAs which contain sequences adjacent to the 5' ESTs. The extended cDNAs may include the entire coding sequence of the protein encoded by the corresponding mRNA, including the authentic translation start site, the signal sequence, and the sequence encoding the mature protein remaining after cleavage of the signal peptide. Such extended cDNAs are referred to herein as "full length cDNAs." Alternatively, the extended cDNAs may include only the sequence encoding the mature protein remaining after cleavage of the signal peptide, or only the sequence encoding the signal peptide.

Example 27 below describes a general method for obtaining extended cDNAs. Example 28 below describes the cloning and sequencing of several extended cDNAs, including extended cDNAs which include the entire coding sequence and authentic 5' end of the corresponding mRNA for several secreted proteins.

25

The methods of Examples 27, 28, and 29 can also be used to obtain extended cDNAs which encode less than the entire coding sequence of the secreted proteins encoded by the genes corresponding to the 5' ESTs. In some embodiments, the extended cDNAs isolated using these methods encode at least 10 amino acids of one of the proteins encoded by the sequences of SEQ ID NOs: 40-140 and 242-377. In further embodiments, the extended cDNAs encode at least 20 amino acids of the proteins encoded by the sequences of SEQ ID NOs: 40-140 and 242-377. In further embodiments, the extended cDNAs encode at least 30 amino amino acids of the sequences of SEQ ID NOs: 40-140 and

242-377. In a preferred embodiment, the extended cDNAs encode a full length protein sequence, which includes the protein coding sequences of SEQ ID NOs: 40-140 and 242-377.

EXAMPLE 27

General Method for Using 5' ESTs to Clone and Sequence Extended cDNAs

The following general method has been used to quickly and efficiently isolate extended cDNAs including sequence adjacent to the sequences of the 5' ESTs used to obtain them. This method may be applied to obtain extended cDNAs for any 5' EST in the NETGENETM database, including those 5' ESTs encoding secreted proteins. The method is summarized in Figure 6.

1. Obtaining Extended cDNAs

10 a) First strand synthesis

5

The method takes advantage of the known 5' sequence of the mRNA. A reverse transcription reaction is conducted on purified mRNA with a poly 14dT primer containing a 49 nucleotide sequence at its 5' end allowing the addition of a known sequence at the end of the cDNA which corresponds to the 3' end of the mRNA. For example, the primer may have the following sequence: 5'-ATC GTT GAG ACT CGT ACC AGC AGA GTC ACG AGA GAG ACT ACA CGG TAC TGG TTT TTT TTT TTT TTVN -3' (SEQ ID NO:14). Those skilled in the art will appreciate that other sequences may also be added to the poly dT sequence and used to prime the first strand synthesis. Using this primer and a reverse transcriptase such as the Superscript II (Gibco BRL) or Rnase H Minus M-MLV (Promega) enzyme, a reverse transcript anchored at the 3' polyA site of the RNAs is generated.

After removal of the mRNA hybridized to the first cDNA strand by alkaline hydrolysis, the products of the alkaline hydrolysis and the residual poly dT primer are eliminated with an exclusion column such as an AcA34 (Biosepra) matrix as explained in Example 11.

b) Second strand synthesis

A pair of nested primers on each end is designed based on the known 5' sequence from the 5' EST and the known 3' end added by the poly dT primer used in the first strand synthesis. Software used to design primers are either based on GC content and melting temperatures of oligonucleotides, such as OSP (Illier and Green, *PCR Meth. Appl.* 1:124-128, 1991), or based on the octamer frequency disparity method (Griffais et al., *Nucleic Acids Res.* 19: 3887-3891, 1991 such as PC-Rare (http://bioinformatics.weizmann.ac.il/software/PC-Rare/doc/manuel.html).

Preferably, the nested primers at the 5' end are separated from one another by four to nine bases. The 5' primer sequences may be selected to have melting temperatures and specificities suitable for use in PCR.

Preferably, the nested primers at the 3' end are separated from one another by four to nine bases. For example, the nested 3' primers may have the following sequences: (5'- CCA GCA GAG TCA CGA GAG AGA CTA CAC GG -3' (SEQ ID NO:15), and 5'- CAC GAG AGA GAC TAC ACG GTA CTG G -3' (SEQ ID NO:16). These primers were selected because they have melting temperatures and specificities compatible with their use in PCR. However, those skilled in the art will appreciate that other sequences may also be used as primers.

The first PCR run of 25 cycles is performed using the Advantage Tth Polymerase Mix (Clontech) and the outer primer from each of the nested pairs. A second 20 cycle PCR using the same enzyme and the inner primer from each of the nested pairs is then performed on 1/2500 of the first PCR product. Thereafter, the primers and nucleotides are removed.

5 2. Sequencing of Full Length Extended cDNAs or Fragments Thereof

Due to the lack of position constraints on the design of 5' nested primers compatible for PCR use using the OSP software, amplicons of two types are obtained. Preferably, the second 5' primer is located upstream of the translation initiation codon thus yielding a nested PCR product containing the whole coding sequence. Such a full length extended cDNA undergoes a direct cloning procedure as described in section a below. However, in some cases, the second 5' primer is located downstream of the translation initiation codon, thereby yielding a PCR product containing only part of the ORF. Such incomplete PCR products are submitted to a modified procedure described in section b below.

a) Nested PCR products containing complete ORFs

When the resulting nested PCR product contains the complete coding sequence, as predicted from the 5'EST sequence, it is closed in an appropriate vector such as pED6dpc2, as described in section 3.

b) Nested PCR products containing incomplete ORFs

When the amplicon does not contain the complete coding sequence, intermediate steps are necessary to obtain both the complete coding sequence and a PCR product containing the full coding sequence. The complete coding sequence can be assembled from several partial sequences determined directly from different PCR products as described in the following section.

Once the full coding sequence has been completely determined, new primers compatible for PCR use are designed to obtain amplicons containing the whole coding region. However, in such cases, 3' primers compatible for PCR use are located inside the 3' UTR of the corresponding mRNA, thus yielding amplicons which lack part of this region, i.e. the polyA tract and sometimes the polyadenylation signal, as illustrated in figure 6. Such full length extended cDNAs are then cloned into an appropriate vector as described in section 3.

c) Sequencing extended cDNAs

Sequencing of extended cDNAs is performed using a Die Terminator approach with the AmpliTaq DNA polymerase FS kit available from Perkin Elmer.

In order to sequence PCR fragments, primer walking is performed using software such as OSP to choose

30 primers and automated computer software such as ASMG (Sutton et al., *Genome Science Technol.* 1: 9-19, 1995) to
construct contigs of walking sequences including the initial 5' tag using minimum overlaps of 32 nucleotides. Preferably,
primer walking is performed until the sequences of full length cDNAs are obtained.

Completion of the sequencing of a given extended cDNA fragment is assessed as follows. Since sequences located after a polyA tract are difficult to determine precisely in the case of uncloned products, sequencing and primer

walking processes for PCR products are interrupted when a polyA tract is identified in extended cDNAs obtained as described in case b. The sequence length is compared to the size of the nested PCR product obtained as described above. Due to the limited accuracy of the determination of the PCR product size by gel electrophoresis, a sequence is considered complete if the size of the obtained sequence is at least 70 % the size of the first nested PCR product. If the 5 length of the sequence determined from the computer analysis is not at least 70% of the length of the nested PCR product, these PCR products are cloned and the sequence of the insertion is determined. When Northern blot data are available, the size of the mRNA detected for a given PCR product is used to finally assess that the sequence is complete. Sequences which do not fulfill the above criteria are discarded and will undergo a new isolation procedure.

Sequence data of all extended cDNAs are then transferred to a proprietary database, where quality controls 10 and validation steps are carried out as described in example 15.

3. Cloning of Full Length Extended cDNAs

20

The PCR product containing the full coding sequence is then cloned in an appropriate vector. For example, the extended cDNAs can be cloned into the expression vector pED6dpc2 (DiscoverEase, Genetics Institute, Cambridge, MA) as follows. The structure of pED6dpc2 is shown in Figure 7. pED6dpc2 vector DNA is prepared with blunt ends by 15 performing an EcoRI digestion followed by a fill in reaction. The blunt ended vector is dephosphorylated. After removal of PCR primers and ethanol precipitation, the PCR product containing the full coding sequence or the extended cDNA obtained as described above is phosphorylated with a kinase subsequently removed by phenol-Sevag extraction and precipitation. The double stranded extended cDNA is then ligated to the vector and the resulting expression plasmid introduced into appropriate host cells.

Since the PCR products obtained as described above are blunt ended molecules that can be cloned in either direction, the orientation of several clones for each PCR product is determined. Then, 4 to 10 clones are ordered in microtiter plates and subjected to a PCR reaction using a first primer located in the vector close to the cloning site and a second primer located in the portion of the extended cDNA corresponding to the 3' end of the mRNA. This second primer may be the antisense primer used in anchored PCR in the case of direct cloning (case a) or the antisense primer located 25 inside the 3'UTR in the case of indirect cloning (case b). Clones in which the start codon of the extended cDNA is operably linked to the promoter in the vector so as to permit expression of the protein encoded by the extended cDNA are conserved and sequenced. In addition to the ends of cDNA inserts, approximately 50 bp of vector DNA on each side of the cDNA insert are also sequenced.

The cloned PCR products are then entirely sequenced according to the aforementioned procedure. In this case, 30 contig assembly of long fragments is then performed on walking sequences that have already contigated for uncloned PCR products during primer walking. Sequencing of cloned amplicons is complete when the resulting contigs include the whole coding region as well as overlapping sequences with vector DNA on both ends.

4. Computer Analysis of Full Length Extended cDNA

Sequences of all full length extended cDNAs are then submitted to further analysis as described below and using the parameters found in Table II with the following modifications. For screening of miscellaneous subdivisions of Genbank, FASTA was used instead of BLASTN and 15 nucleotide of homology was the limit instead of 17. For Alu detection, BLASTN was used with the following parameters: S = 72; identity = 70%; and length = 40 nucleotides.

- Polyadenylation signal and polyA tail which were not search for the 5' ESTs were searched. For polyadenylation signal detection the signal (AATAAA) was searched with one permissible mismatch in the last ten nucleotides preceding the 5' end of the polyA. For the polyA, a stretch of 8 amino acids in the last 20 nucleotides of the sequence was searched with BLAST2N in the sense strand with the following parameters (W = 6, S = 10, E = 1000, and identity = 90%). Finally, patented sequences and ORF homologies were searched using, respectively, BLASTN and BLASTP on GenSEO (Derwent's database of patented nucleotide sequences) and SWISSPROT for ORFs with the following parameters (W = 8).
 - (Derwent's database of patented nucleotide sequences) and SWISSPROT for ORFs with the following parameters (W = 8 and B = 10). Before examining the extended full length cDNAs for sequences of interest, extended cDNAs which are not of interest are searched as follows.

a) Elimination of undesired sequences

Although 5'ESTs were checked to remove contaminant sequences as described in Example 18, a last verification was

15 carried out to identify extended cDNAs sequences derived from undesired sequences such as vector RNAs, transfer

RNAs, ribosomal rRNAs, mitochondrial RNAs, prokaryotic RNAs and fungal RNAs using the FASTA and BLASTN

programs on both strands of extended cDNAs as described below.

To identify the extended cDNAs encoding vector RNAs, extended cDNAs are compared to the known sequences of vector RNA using the FASTA program. Sequences of extended cDNAs with more than 90% homology over 20 stretches of 15 nucleotides are identified as vector RNA.

To identify the extended cDNAs encoding tRNAs, extended cDNA sequences were compared to the sequences of 1190 known tRNAs obtained from EMBL release 38, of which 100 were human. Sequences of extended cDNAs having more than 80% homology over 60 nucleotides using FASTA were identified as tRNA.

To identify the extended cDNAs encoding rRNAs, extended cDNA sequences were compared to the sequences
of 2497 known rRNAs obtained from EMBL release 38, of which 73 were human. Sequences of extended cDNAs having
more than 80% homology over stretches longer than 40 nucleotides using BLASTN were identified as rRNAs.

To identify the extended cDNAs encoding mtRNAs, extended cDNA sequences were compared to the sequences of the two known mitochondrial genomes for which the entire genomic sequences are available and all sequences transcribed from these mitochondrial genomes including tRNAs, rRNAs, and mRNAs for a total of 38 sequences. Sequences of extended cDNAs having more than 80% homology over stretches longer than 40 nucleotides using BLASTN were identified as mtRNAs.

Sequences which might have resulted from other exogenous contaminants were identified by comparing extended cDNA sequences to release 105 of Genbank bacterial and fungal divisions. Sequences of extended cDNAs

having more than 90% homology over 40 nucleotides using BLASTN were identified as exogenous prokaryotic or fungal contaminants.

In addition, extended cDNAs were searched for different repeat sequences, including Alu sequences, L1 sequences, THE and MER repeats, SSTR sequences or satellite, micro-satellite, or telomeric repeats. Sequences of extended cDNAs with more than 70% homology over 40 nucleotide stretches using BLASTN were identified as repeat sequences and masked in further identification procedures. In addition, clones showing extensive homology to repeats, i.e., matches of either more than 50 nucleotides if the homology was at least 75% or more than 40 nucleotides if the homology was at least 90%, were flagged.

b) Identification of structural features

10

25

Structural features, e.g. polyA tail and polyadenylation signal, of the sequences of full length extended cDNAs are subsequently determined as follows.

A polyA tail is defined as a homopolymeric stretch of at least 11 A with at most one alternative base within it.

The polyA tail search is restricted to the last 20 nt of the sequence and limited to stretches of 11 consecutive A's because sequencing reactions are often not readable after such a polyA stretch. Stretches with 100% homology over 6 nucleotides are identified as polyA tails.

To search for a polyadenylation signal, the polyA tail is clipped from the full-length sequence. The 50 bp preceding the polyA tail are searched for the canonic polyadenylation AAUAAA signal allowing one mismatch to account for possible sequencing errors and known variation in the canonical sequence of the polyadenylation signal.

c) Identification of functional features

Functional features, e.g. ORFs and signal sequences, of the sequences of full length extended cDNAs were subsequently determined as follows.

The 3 upper strand frames of extended cDNAs are searched for ORFs defined as the maximum length fragments beginning with a translation initiation codon and ending with a stop codon. ORFs encoding at least 20 amino acids are preferred.

Each found ORF is then scanned for the presence of a signal peptide in the first 50 amino-acids or, where appropriate, within shorter regions down to 20 amino acids or less in the ORF, using the matrix method of von Heijne (Nuc. Acids Res. 14: 4683-4690 (1986)) and the modification described in Example 22.

d) Homology to either nucleotidic or proteic sequences

Sequences of full length extended cDNAs are then compared to known sequences on a nucleotidic or proteic 30 basis.

Sequences of full length extended cDNAs are compared to the following known nucleic acid sequences: vertebrate sequences (Genbank), EST sequences (Genbank), patented sequences (Geneseqn) and recently identified sequences (Genbank daily releases) available at the time of filing for the priority documents. Full length cDNA sequences are also compared to the sequences of a private database (Genset internal sequences) in order to find sequences that

have already been identified by applicants. Sequences of full length extended cDNAs with more than 90% homology over 30 nucleotides using either BLASTN or BLAST2N as indicated in Table III are identified as sequences that have already been described. Matching vertebrate sequences are subsequently examined using FASTA; full length extended cDNAs with more than 70% homology over 30 nucleotides are identified as sequences that have already been described.

ORFs encoded by full length extended cDNAs as defined in section c) are subsequently compared to known amino acid sequences found in Swissprot release CHP, PIR release PIR# and Genpept release GPEPT public databases using BLASTP with the parameter W = 8 and allowing a maximum of 10 matches. Sequences of full length extended cDNAs showing extensive homology to known protein sequences are recognized as already identified proteins.

In addition, the three-frame conceptual translation products of the top strand of full length extended cDNAs are compared to publicly known amino acid sequences of Swissprot using BLASTX with the parameter E = 0.001. Sequences of full length extended cDNAs with more than 70% homology over 30 amino acid stretches are detected as already identified proteins.

5. Selection of Cloned Full Length Sequences of the Present Invention

Cloned full length extended cDNA sequences that have already been characterized by the aforementioned computer analysis are then submitted to an automatic procedure in order to preselect full length extended cDNAs containing sequences of interest.

a) Automatic sequence preselection

All complete cloned full length extended cDNAs clipped for vector on both ends are considered. First, a negative selection is operated in order to eliminate unwanted cloned sequences resulting from either contaminants or PCR artifacts as follows. Sequences matching contaminant sequences such as vector RNA, tRNA, mtRNA, rRNA sequences are discarded as well as those encoding ORF sequences exhibiting extensive homology to repeats as defined in section 4 a). Sequences obtained by direct cloning using nested primers on 5' and 3' tags (section 1. case a) but lacking polyA tail are discarded. Only ORFs containing a signal peptide and ending either before the polyA tail (case a) or before the end of the cloned 3'UTR (case b) are kept. Then, ORFs containing unlikely mature proteins such as mature proteins which size is less than 20 amino acids or less than 25% of the immature protein size are eliminated.

In the selection of the OFR, priority was given to the ORF and the frame corresponding to the polypeptides described in SignalTag Patents (United States Patent Application Serial Nos: 08/905,223; 08/905,135; 08/905,051; 08/905,144; 08/905,279; 08/904,468; 08/905,134; and 08/905,133). If the ORF was not found among the OFRs described in the SignalTag Patents, the ORF encoding the signal peptide with the highest score according to Von Heijne method as defined in Example 22 was chosen. If the scores were identical, then the longest ORF was chosen.

Sequences of full length extended cDNA clones are then compared pairwise with BLAST after masking of the repeat sequences. Sequences containing at least 90% homology over 30 nucleotides are clustered in the same class. Each cluster is then subjected to a cluster analysis that detects sequences resulting from internal priming or from

alternative splicing, identical sequences or sequences with several frameshifts. This automatic analysis serves as a basis for manual selection of the sequences.

b) Manual sequence selection

Manual selection is carried out using automatically generated reports for each sequenced full length extended 5 cDNA clone. During this manual procedures, a selection is operated between clones belonging to the same class as follows. ORF sequences encoded by clones belonging to the same class are aligned and compared. If the homology between nucleotidic sequences of clones belonging to the same class is more than 90% over 30 nucleotide stretches or if the homology between amino acid sequences of clones belonging to the same class is more than 80% over 20 amino acid stretches, than the clones are considered as being identical. The chosen ORF is the best one according to the criteria mentioned below. If the nucleotide and amino acid homologies are less than 90% and 80% respectively, the clones are said to encode distinct proteins which can be both selected if they contain sequences of interest.

Selection of full length extended cDNA clones encoding sequences of interest is performed using the following criteria. Structural parameters (initial tag, polyadenylation site and signal) are first checked. Then, homologies with known nucleic acids and proteins are examined in order to determine whether the clone sequence match a known nucleic/proteic sequence and, in the latter case, its covering rate and the date at which the sequence became public. If there is no extensive match with sequences other than ESTs or genomic DNA, or if the clone sequence brings substantial new information, such as encoding a protein resulting from alternative slicing of an mRNA coding for an already known protein, the sequence is kept. Examples of such cloned full length extended cDNAs containing sequences of interest are described in Example 28. Sequences resulting from chimera or double inserts as assessed by homology to other

EXAMPLE 28

Cloning and Sequencing of Extended cDNAs

The procedure described in Example 27 above was used to obtain the extended cDNAs of the present invention. Using this approach, the full length cDNA of SEQ ID NO:17 was obtained. This cDNA falls into the "EST-ext" category described above and encodes the signal peptide MKKVLLLITAILAVAVG (SEQ ID NO: 18) having a von Heijne score of 8.2.

The full length cDNA of SEQ ID NO:19 was also obtained using this procedure. This cDNA falls into the "EST-ext" category described above and encodes the signal peptide MWWFQQGLSFLPSALVIWTSA (SEQ ID NO:20) having a von Heijne score of 5.5.

Another full length cDNA obtained using the procedure described above has the sequence of SEQ ID NO:21.

This cDNA, falls into the "EST-ext" category described above and encodes the signal peptide

MVLTTLPSANSANSPVNMPTTGPNSLSYASSALSPCLT (SEQ ID NO:22) having a von Heijne score of 5.9.

30

The above procedure was also used to obtain a full length cDNA having the sequence of SEQ ID NO:23. This cDNA falls into the "EST-ext" category described above and encodes the signal peptide ILSTVTALTFAXA (SEQ ID NO:24) having a von Heijne score of 5.5.

The full length cDNA of SEQ ID NO:25 was also obtained using this procedure. This cDNA falls into the "new" category described above and encodes a signal peptide LVLTLCTLPLAVA (SEQ ID NO:26) having a von Heijne score of 10.1.

The full length cDNA of SEQ ID NO:27 was also obtained using this procedure. This cDNA falls into the "new" category described above and encodes a signal peptide LWLLFFLVTAIHA (SEQ ID NO:28) having a von Heijne score of 10.7.

The above procedures were also used to obtain the extended cDNAs of the present invention. 5' ESTs expressed in a variety of tissues were obtained as described above. The appended sequence listing provides the tissues from which the extended cDNAs were obtained. It will be appreciated that the extended cDNAs may also be expressed in tissues other than the tissue listed in the sequence listing.

5' ESTs obtained as described above were used to obtain extended cDNAs having the sequences of SEQ ID NOs: 40-140 and 242-377. Table IV provides the sequence identification numbers of the extended cDNAs of the present invention, the locations of the full coding sequences in SEQ ID NOs: 40-140 and 242-377 (i.e. the nucleotides encoding both the signal peptide and the mature protein, listed under the heading FCS location in Table IV), the locations of the nucleotides in SEQ ID NOs: 40-140 and 242-377 which encode the signal peptides (listed under the heading SigPep Location in Table IV), the locations of the nucleotides in SEQ ID NOs: 40-140 and 242-377 which encode the mature proteins generated by cleavage of the signal peptides (listed under the heading Mature Polypeptide Location in Table IV), the locations in SEQ ID NOs: 40-140 and 242-377 of stop codons (listed under the heading Stop Codon Location in Table IV), the locations in SEQ ID NOs: 40-140 and 242-377 of polyA signals (listed under the heading Poly A Signal Location in Table IV) and the locations of polyA sites (listed under the heading Poly A Site Location in Table IV).

The polypeptides encoded by the extended cDNAs were screened for the presence of known structural or functional motifs or for the presence of signatures, small amino acid sequences which are well conserved amongst the members of a protein family. The conserved regions have been used to derive consensus patterns or matrices included in the PROSITE data bank, in particular in the file prosite.dat (Release 13.0 of November 1995, located at http://expasy.hcuge.ch/sprot/prosite.html. Prosite_convert and prosite_scan programs (http://ulrec3.unil.ch/ftpserveur/prosite_scan) were used to find signatures on the extended cDNAs.

For each pattern obtained with the prosite_convert program from the prosite.dat file, the accuracy of the detection on a new protein sequence has been tested by evaluating the frequency of irrelevant hits on the population of human secreted proteins included in the data bank SWISSPROT. The ratio between the number of hits on shuffled proteins (with a window size of 20 amino acids) and the number of hits on native (unshuffled) proteins was used as an index. Every pattern for which the ration was greater than 20% (one hit on shuffled proteins for 5 hits on native

proteins) was skipped during the search with prosite_scan. The program used to shuffle protein sequences (db_shuffled) and the program used to determine the statistics for each pattern in the protein data banks (prosite statistics) are available on the ftp site http://ulrec3.unil.ch/ftpserveur/prosite scan.

Table V lists the sequence identification numbers of the polypeptides of SEQ ID NOs: 141-241 and 378-513, the locations of the amino acid residues of SEQ ID NOs: 141-241 and 378-513 in the full length polypeptide (second column), the locations of the amino acid residues of SEQ ID NOs: 141-241 and 378-513 in the signal peptides (third column), and the locations of the amino acid residues of SEQ ID NOs: 141-241 and 378-513 in the mature polypeptide created by cleaving the signal peptide from the full length polypeptide (fourth column).

The nucleotide sequences of the sequences of SEQ ID NOs: 40-140 and 242-377 and the amino acid sequences of SEQ ID NOs: 141-241 and 378-513) are provided in the appended sequence listing. In some instances, the sequences are preliminary and may include some incorrect or ambiguous sequences or amino acids. The sequences of SEQ ID NOs: 40-140 and 242-377 can readily be screened for any errors therein and any sequence ambiguities can be resolved by resequencing a fragment containing such errors or ambiguities on both strands. Nucleic acid fragments for resolving sequencing errors or ambiguities may be obtained from the deposited clones or can be isolated using the techniques described herein. Resolution of any such ambiguities or errors may be facilitated by using primers which hybridize to sequences located close to the ambiguous or erroneous sequences. For example, the primers may hybridize to sequences within 50-75 bases of the ambiguity or error. Upon resolution of an error or ambiguity, the corresponding corrections can be made in the protein sequences encoded by the DNA containing the error or ambiguity. For example, in the sequences of the present invention, ambiguities in the sequence of SEQ ID NO: 131 were resolved. The amino acid sequence of the protein encoded by a particular clone can also be determined by expression of the clone in a suitable host cell, collecting the protein, and determining its sequence.

For each amino acid sequence, Applicants have identified what they have determined to be the reading frame best identifiable with sequence information available at the time of filing. Some of the amino acid sequences may contain "Xaa" designators. These "Xaa" designators indicate either (1) a residue which cannot be identified because of nucleotide sequence ambiguity or (2) a stop codon in the determined sequence where Applicants believe one should not exist (if the sequence were determined more accurately).

Cells containing the extended cDNAs (SEQ ID NOs: 40-140 and 242-377) of the present invention in the vector pED6dpc2, are maintained in permanent deposit by the inventors at Genset, S.A., 24 Rue Royale, 75008 Paris, France.

Pools of cells containing the extended cDNAs (SEQ ID NOs: 40-140 and 242-377), from which cells containing a particular polynucleotide are obtainable, were deposited with the American Type Culture Collection, 10801 University Blvd., Manassas, VA 20110-2209 or the European Collection of Cell Cultures, Vaccine Research and Production Laboratory, Public Health Laboratory Service, Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire SP4 OJG, United Kingdom. Each extended cDNA clone has been transfected into separate bacterial cells (E-

20

coli) for this composite deposit. Table VI lists the deposit numbers of the clones containing the extended cDNAs of the present invention. Table VII provides the internal designation number assigned to each SEQ ID NO and indicates whether the sequence is a nucleic acid sequence or a protein sequence.

Each extended cDNA can be removed from the pED6dpc2 vector in which it was deposited by performing a 5 Notl, Pstl double digestion to produce the appropriate fragment for each clone. The proteins encoded by the extended cDNAs may also be expressed from the promoter in pED6dpc2.

Bacterial cells containing a particular clone can be obtained from the composite deposit as follows:

An oligonucleotide probe or probes should be designed to the sequence that is known for that particular clone. This sequence can be derived from the sequences provided herein, or from a combination of those sequences. The design 10 of the oligonucleotide probe should preferably follow these parameters:

- (a) It should be designed to an area of the sequence which has the fewest ambiguous bases ("N's"), if any;
- (b) Preferably, the probe is designed to have a T_m of approx. 80°C (assuming 2 degrees for each A or T and 4 degrees for each G or C). However, probes having melting temperatures between 40 °C and 80 °C may also be used provided that specificity is not lost.

The oligonucleotide should preferably be labeled with (-[32P]ATP (specific activity 6000 Ci/mmole) and T4 polynucleotide kinase using commonly employed techniques for labeling oligonucleotides. Other labeling techniques can also be used. Unincorporated label should preferably be removed by gel filtration chromatography or other established methods. The amount of radioactivity incorporated into the probe should be quantified by measurement in a scintillation counter. Preferably, specific activity of the resulting probe should be approximately 4X10⁸ dpm/pmole.

The bacterial culture containing the pool of full-length clones should preferably be thawed and 100 μ l of the stock used to inoculate a sterile culture flask containing 25 ml of sterile L-broth containing ampicillin at 100 ug/ml. The culture should preferably be grown to saturation at 37°C, and the saturated culture should preferably be diluted in fresh L-broth. Alignots of these dilutions should preferably be plated to determine the dilution and volume which will yield approximately 5000 distinct and well-separated colonies on solid bacteriological media containing L-broth containing 25 ampicillin at 100 μg/ml and agar at 1.5% in a 150 mm petri dish when grown overnight at 37°C. Other known methods of obtaining distinct, well-separated colonies can also be employed.

Standard colony hybridization procedures should then be used to transfer the colonies to nitrocellulose filters and lyse, denature and bake them.

The filter is then preferably incubated at 65°C for 1 hour with gentle agitation in 6X SSC (20X stock is 30 175.3 g NaC1/liter, 88.2 g Na citrate/liter, adjusted to pH 7.0 with NaOH) containing 0.5% SDS, 100 pg/ml of yeast RNA, and 10 mM EDTA (approximately 10 mL per 150 mm filter). Preferably, the probe is then added to the hybridization mix at a concentration greater than or equal to 1X106 dpm/mL. The filter is then preferably incubated at 65°C with gentle agitation overnight. The filter is then preferably washed in 500 mL of 2X SSC/0.1% SDS at room temperature with gentle shaking for 15 minutes. A third wash with 0.1X SSC/0.5% SDS at 65°C for 30 minutes to

1 hour is optional. The filter is then preferably dried and subjected to autoradiography for sufficient time to visualize the positives on the X-ray film. Other known hybridization methods can also be employed.

The positive colonies are picked, grown in culture, and plasmid DNA isolated using standard procedures. The clones can then be verified by restriction analysis, hybridization analysis, or DNA sequencing.

The plasmid DNA obtained using these procedures may then be manipulated using standard cloning techniques familiar to those skilled in the art. Alternatively, a PCR can be done with primers designed at both ends of the extended cDNA insertion. For example, a PCR reaction may be conducted using a primer having the sequence GGCCATACACTTGAGTGAC (SEQ ID NO:38) and a primer having the sequence ATATAGACAAACGCACACC (SEQ. ID. NO:39). The PCR product which corresponds to the extended cDNA can then be manipulated using standard cloning 10 techniques familiar to those skilled in the art.

In addition to PCR based methods for obtaining extended cDNAs, traditional hybridization based methods may also be employed. These methods may also be used to obtain the genomic DNAs which encode the mRNAs from which the 5' ESTs were derived, mRNAs corresponding to the extended cDNAs, or nucleic acids which are homologous to extended cDNAs or 5' ESTs. Example 29 below provides an example of such methods.

15

30

5

EXAMPLE 29

Methods for Obtaining Extended cDNAs or Nucleic Acids Homologous to Extended cDNAs or 5' ESTs

A full length cDNA library can be made using the strategies described in Examples 13, 14, 15, and 16 above by replacing the random nonamer used in Example 14 with an oligo-dT primer. For instance, the oligonucleotide of SEQ ID 20 N0:14 may be used.

Alternatively, a cDNA library or genomic DNA library may be obtained from a commercial source or made using techniques familiar to those skilled in the art. The library includes cDNAs which are derived from the mRNA corresponding to a 5' EST or which have homology to an extended cDNA or 5' EST. The cDNA library or genomic DNA library is hybridized to a detectable probe comprising at least 10 consecutive nucleotides from the 5' EST or extended 25 cDNA using conventional techniques. Preferably, the probe comprises at least 12, 15, or 17 consecutive nucleotides from the 5' EST or extended cDNA. More preferably, the probe comprises at least 20-30 consecutive nucleotides from the 5' EST or extended cDNA. In some embodiments, the probe comprises at least 30 nucleotides from the 5' EST or extended cDNA. In other embodiments, the probe comprises at least 40, at least 50, at least 75, at least 100, at least 150, or at least 200 consecutive nucleotides from the 5' EST or extended cDNA.

Techniques for identifying cDNA clones in a cDNA library which hybridize to a given probe sequence are disclosed in Sambrook et al., Molecular Cloning: A Laboratory Manual 2d Ed., Cold Spring Harbor Laboratory Press, 1989. The same techniques may be used to isolate genomic DNAs.

Briefly, cDNA or genomic DNA clones which hybridize to the detectable probe are identified and isolated for further manipulation as follows. A probe comprising at least 10 consecutive nucleotides from the 5' EST or extended cDNA is labeled with a detectable label such as a radioisotope or a fluorescent molecule. Preferably, the probe comprises at least 12, 15, or 17 consecutive nucleotides from the 5' EST or extended cDNA. More preferably, the probe comprises 20-30 consecutive nucleotides from the 5' EST or extended cDNA. In some embodiments, the probe comprises more than 30 nucleotides from the 5' EST or extended cDNA. In some embodiments, the probe comprises at least 40, at least 50, at least 75, at least 100, at least 150, or at least 200 consecutive nucleotides from the 5' EST or extended cDNA.

Techniques for labeling the probe are well known and include phosphorylation with polynucleotide kinase, nick translation, in vitro transcription, and non-radioactive techniques. The cDNAs or genomic DNAs in the library are transferred to a nitrocellulose or nylon filter and denatured. After incubation of the filter with a blocking solution, the filter is contacted with the labeled probe and incubated for a sufficient amount of time for the probe to hybridize to cDNAs or genomic DNAs containing a sequence capable of hybridizing to the probe.

By varying the stringency of the hybridization conditions used to identify extended cDNAs or genomic DNAs which hybridize to the detectable probe, extended cDNAS having different levels of homology to the probe can be identified and isolated. To identify extended cDNAs or genomic DNAs having a high degree of homology to the probe sequence, the melting temperature of the probe may be calculated using the following formulas:

For probes between 14 and 70 nucleotides in length the melting temperature (Tm) is calculated using the formula: Tm=81.5+16.6(log [Na+])+0.41(fraction G+C)-(600/N) where N is the length of the probe.

If the hybridization is carried out in a solution containing formamide, the melting temperature may be calculated using the equation Tm = 81.5 + 16.6(log [Na+]) + 0.41(fraction G+C)-(0.63% formamide)-(600/N) where N is the length of the probe.

Prehybridization may be carried out in 6X SSC, 5X Denhardt's reagent, 0.5% SDS, 100µg denatured fragmented salmon sperm DNA or 6X SSC, 5X Denhardt's reagent, 0.5% SDS, 100µg denatured fragmented salmon sperm DNA, 50% formamide. The formulas for SSC and Denhardt's solutions are listed in Sambrook et al., supra.

Hybridization is conducted by adding the detectable probe to the prehybridization solutions listed above. Where
the probe comprises double stranded DNA, it is denatured before addition to the hybridization solution. The filter is
contacted with the hybridization solution for a sufficient period of time to allow the probe to hybridize to extended
cDNAs or genomic DNAs containing sequences complementary thereto or homologous thereto. For probes over 200
nucleotides in length, the hybridization may be carried out at 15-25°C below the Tm. For shorter probes, such as
oligonucleotide probes, the hybridization may be conducted at 15-25°C below the Tm. Preferably, for hybridizations in
6X SSC, the hybridization is conducted at approximately 68°C. Preferably, for hybridizations in 50% formamide
containing solutions, the hybridization is conducted at approximately 42°C.

All of the foregoing hybridizations would be considered to be under "stringent" conditions. Following hybridization, the filter is washed in 2X SSC, 0.1% SDS at room temperature for 15 minutes. The filter is then washed

with 0.1X SSC, 0.5% SDS at room temperature for 30 minutes to 1 hour. Thereafter, the solution is washed at the hybridization temperature in 0.1X SSC, 0.5% SDS. A final wash is conducted in 0.1X SSC at room temperature.

Extended cDNAs, nucleic acids homologous to extended cDNAs or 5' ESTs, or genomic DNAs which have hybridized to the probe are identified by autoradiography or other conventional techniques.

The above procedure may be modified to identify extended cDNAs, nucleic acids homologous to extended cDNAs, or genomic DNAs having decreasing levels of homology to the probe sequence. For example, to obtain extended cDNAs, nucleic acids homologous to extended cDNAs, or genomic DNAs of decreasing homology to the detectable probe, less stringent conditions may be used. For example, the hybridization temperature may be decreased in increments of 5°C from 68°C to 42°C in a hybridization buffer having a Na+ concentration of approximately 1M. Following 10 hybridization, the filter may be washed with 2X SSC, 0.5% SDS at the temperature of hybridization. These conditions are considered to be "moderate" conditions above 50°C and "low" conditions below 50°C.

Alternatively, the hybridization may be carried out in buffers, such as 6X SSC, containing formamide at a temperature of 42°C. In this case, the concentration of formamide in the hybridization buffer may be reduced in 5% increments from 50% to 0% to identify clones having decreasing levels of homology to the probe. Following 15 hybridization, the filter may be washed with 6X SSC, 0.5% SDS at 50°C. These conditions are considered to be "moderate" conditions above 25% formamide and "low" conditions below 25% formamide.

Extended cDNAs, nucleic acids homologous to extended cDNAs, or genomic DNAs which have hybridized to the probe are identified by autoradiography.

If it is desired to obtain nucleic acids homologous to extended cDNAs, such as allelic variants thereof or nucleic 20 acids encoding proteins related to the proteins encoded by the extended cDNAs, the level of homology between the hybridized nucleic acid and the extended cDNA or 5' EST used as the probe may readily be determined. To determine the level of homology between the hybridized nucleic acid and the extended cDNA or 5'EST from which the probe was derived, the nucleotide sequences of the hybridized nucleic acid and the extended cDNA or 5'EST from which the probe was derived are compared. For example, using the above methods, nucleic acids having at least 95% nucleic acid 25 homology to the extended cDNA or 5'EST from which the probe was derived may be obtained and identified. Similarly, by using progressively less stringent hybridization conditions one can obtain and identify nucleic acids having at least 90%, at least 85%, at least 80% or at least 75% homology to the extended cDNA or 5'EST from which the probe was derived. The level of homology between the hybridized nucleic acid and the extended cDNA or 5' EST used as the probe may be further determined using BLAST2N; parameters may be adapted depending on the sequence length and degree of 30 homology studied. In such comparisons, the default parameters or the parameters listed in Tables II and III may be used.

To determine whether a clone encodes a protein having a given amount of homology to the protein encoded by the extended cDNA or 5' EST, the amino acid sequence encoded by the extended cDNA or 5' EST is compared to the amino acid sequence encoded by the hybridizing nucleic acid. Homology is determined to exist when an amino acid sequence in the extended cDNA or 5' EST is closely related to an amino acid sequence in the hybridizing nucleic acid. A

sequence is closely related when it is identical to that of the extended cDNA or 5' EST or when it contains one or more amino acid substitutions therein in which amino acids having similar characteristics have been substituted for one another. Using the above methods, one can obtain nucleic acids encoding proteins having at least 95%, at least 90%, at least 85%, at least 80% or at least 75% homology to the proteins encoded by the extended cDNA or 5'EST from which the probe was derived. Using the above methods and algorithms such as FASTA with parameters depending on the sequence length and degree of homology studied the level of homology may be determined. In determining the level of homology using FASTA, the default parameters or the parameters listed in Tables II or III may be used.

Alternatively, extended cDNAs may be prepared by obtaining mRNA from the tissue, cell, or organism of interest using mRNA preparation procedures utilizing poly A selection procedures or other techniques known to those skilled in the art. A first primer capable of hybridizing to the poly A tail of the mRNA is hybridized to the mRNA and a reverse transcription reaction is performed to generate a first cDNA strand.

The first cDNA strand is hybridized to a second primer containing at least 10 consecutive nucleotides of the sequences of the 5' EST for which an extended cDNA is desired. Preferably, the primer comprises at least 12, 15, or 17 consecutive nucleotides from the sequences of the 5' EST. More preferably, the primer comprises 20-30 consecutive nucleotides from the sequences of the 5' EST. In some embodiments, the primer comprises more than 30 nucleotides from the sequences of the 5' EST. If it is desired to obtain extended cDNAs containing the full protein coding sequence, including the authentic translation initiation site, the second primer used contains sequences located upstream of the translation initiation site. The second primer is extended to generate a second cDNA strand complementary to the first cDNA strand. Alternatively, RTPCR may be performed as described above using primers from both ends of the cDNA to be obtained.

Extended cDNAs containing 5' fragments of the mRNA may be prepared by contacting an mRNA comprising the sequence of the 5' EST for which an extended cDNA is desired with a primer comprising at least 10 consecutive nucleotides of the sequences complementary to the 5' EST, hybridizing the primer to the mRNAs, and reverse transcribing the hybridized primer to make a first cDNA strand from the mRNAs. Preferably, the primer comprises at least 12, 15, or 17 consecutive nucleotides from the 5' EST. More preferably, the primer comprises 20-30 consecutive nucleotides from the 5' EST.

Thereafter, a second cDNA strand complementary to the first cDNA strand is synthesized. The second cDNA strand may be made by hybridizing a primer complementary to sequences in the first cDNA strand to the first cDNA strand and extending the primer to generate the second cDNA strand.

The double stranded extended cDNAs made using the methods described above are isolated and cloned. The extended cDNAs may be cloned into vectors such as plasmids or viral vectors capable of replicating in an appropriate host cell. For example, the host cell may be a bacterial, mammalian, avian, or insect cell.

Techniques for isolating mRNA, reverse transcribing a primer hybridized to mRNA to generate a first cDNA strand, extending a primer to make a second cDNA strand complementary to the first cDNA strand, isolating the double

30

stranded cDNA and cloning the double stranded cDNA are well known to those skilled in the art and are described in Current Protocols in Molecular Biology, John Wiley 503 Sons, Inc. 1997 and Sambrook et al. Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, 1989.

Alternatively, kits for obtaining full length cDNAs, such as the GeneTrapper (Cat. No. 10356-020, Gibco, BRL),

may be used for obtaining full length cDNAs or extended cDNAs. In this approach, full length or extended cDNAs are
prepared from mRNA and cloned into double stranded phagemids. The cDNA library in the double stranded phagemids is
then rendered single stranded by treatment with an endonuclease, such as the Gene II product of the phage F1, and
Exonuclease III as described in the manual accompanying the GeneTrapper kit. A biotinylated oligonucleotide comprising
the sequence of a 5' EST, or a fragment containing at least 10 nucleotides thereof, is hybridized to the single stranded
phagemids. Preferably, the fragment comprises at least 12, 15, or 17 consecutive nucleotides from the 5' EST. More
preferably, the fragment comprises 20-30 consecutive nucleotides from the 5' EST. In some procedures, the fragment
may comprise more than 30 consecutive nucleotides from the 5' EST. For example, the fragment may comprises at least
40, at least 50, at least 75, at least 100, at least 150, or at least 200 consecutive nucleotides from the 5' EST.

Hybrids between the biotinylated oligonucleotide and phagemids having inserts containing the 5' EST sequence are isolated by incubating the hybrids with streptavidin coated paramagnetic beads and retrieving the beads with a magnet. Thereafter, the resulting phagemids containing the 5' EST sequence are released from the beads and converted into double stranded DNA using a primer specific for the 5' EST sequence. The resulting double stranded DNA is transformed into bacteria. Extended cDNAs containing the 5' EST sequence are identified by colony PCR or colony hybridization.

A plurality of extended cDNAs containing full length protein coding sequences or sequences encoding only the mature protein remaining after the signal peptide is cleaved may be provided as cDNA libraries for subsequent evaluation of the encoded proteins or use in diagnostic assays as described below.

IV. Expression of Proteins Encoded by Extended cDNAs Isolated Using 5' ESTs

Extended cDNAs containing the full protein coding sequences of their corresponding mRNAs or portions

thereof, such as cDNAs encoding the mature protein, may be used to express the secreted proteins or portions thereof which they encode as described in Example 30 below. If desired, the extended cDNAs may contain the sequences encoding the signal peptide to facilitate secretion of the expressed protein. It will be appreciated that a plurality of extended cDNAs containing the full protein coding sequences or portions thereof may be simultaneously cloned into expression vectors to create an expression library for analysis of the encoded proteins as described below.

EXAMPLE 30

Expression of the Proteins Encoded by Extended cDNAs or Portions Thereof

To express the proteins encoded by the extended cDNAs or portions thereof, nucleic acids containing the coding sequence for the proteins or portions thereof to be expressed are obtained as described in Examples 27-29 and cloned into a suitable expression vector. If desired, the nucleic acids may contain the sequences encoding the signal

20

peptide to facilitate secretion of the expressed protein. For example, the nucleic acid may comprise the sequence of one of SEO ID NOs: 40-140 and 242-377 listed in Table IV and in the accompanying sequence listing. Alternatively, the nucleic acid may comprise those nucleotides which make up the full coding sequence of one of the sequences of SEQ ID NOs: 40-140 and 242-377 as defined in Table IV above.

It will be appreciated that should the extent of the full coding sequence (i.e. the sequence encoding the signal peptide and the mature protein resulting from cleavage of the signal peptide) differ from that listed in Table IV as a result of a sequencing error, reverse transcription or amplification error, mRNA splicing, post-translational modification of the encoded protein, enzymatic cleavage of the encoded protein, or other biological factors, one skilled in the art would be readily able to identify the extent of the full coding sequences in the sequences of SEQ ID NOs. 40-140 and 242-377. 10 For example, the sequence of SEO ID NO: 115 represents an alternatively spliced transcript of a previously identified mRNA.. Accordingly, the scope of any claims herein relating to nucleic acids containing the full coding sequence of one of SEQ ID NOs. 40-140 and 242-377 is not to be construed as excluding any readily identifiable variations from or equivalents to the full coding sequences listed in Table IV Similarly, should the extent of the full length polypeptides differ from those indicated in Table V as a result of any of the preceding factors, the scope of claims relating to polypeptides 15 comprising the amino acid sequence of the full length polypeptides is not to be construed as excluding any readily identifiable variations from or equivalents to the sequences listed in Table V.

Alternatively, the nucleic acid used to express the protein or portion thereof may comprise those nucleotides which encode the mature protein (i.e. the protein created by cleaving the signal peptide off) encoded by one of the sequences of SEQ ID NOs: 40-140 and 242-377 as defined in Table IV above.

It will be appreciated that should the extent of the sequence encoding the mature protein differ from that listed in Table IV as a result of a sequencing error, reverse transcription or amplification error, mRNA splicing, posttranslational modification of the encoded protein, enzymatic cleavage of the encoded protein, or other biological factors, one skilled in the art would be readily able to identify the extent of the sequence encoding the mature protein in the sequences of SEQ ID NOs. 40-140 and 242-377. Accordingly, the scope of any claims herein relating to nucleic acids 25 containing the sequence encoding the mature protein encoded by one of SEQ ID Nos. 40-140 and 242-377 is not to be construed as excluding any readily identifiable variations from or equivalents to the sequences listed in Table IV. Thus, claims relating to nucleic acids containing the sequence encoding the mature protein encompass equivalents to the sequences listed in Table IV, such as sequences encoding biologically active proteins resulting from post-translational modification, enzymatic cleavage, or other readily identifiable variations from or equivalents to the secreted proteins in 30 addition to cleavage of the signal peptide. Similarly, should the extent of the mature polypeptides differ from those indicated in Table V as a result of any of the preceding factors, the scope of claims relating to polypeptides comprising the sequence of a mature protein included in the sequence of one of SEQ ID NOs. 141-241 and 378-513 is not to be construed as excluding any readily identifiable variations from or equivalents to the sequences listed in Table V. Thus, claims relating to polypeptides comprising the sequence of the mature protein encompass equivalents to the sequences

listed in Table IV, such as biologically active proteins resulting from post-translational modification, enzymatic cleavage, or other readily identifiable variations from or equivalents to the secreted proteins in addition to cleavage of the signal peptide. It will also be appreciated that should the biologically active form of the polypeptides included in the sequence of one of SEQ ID NOs. 141-241 and 378-513 or the nucleic acids encoding the biologically active form of the polypeptides differ from those identified as the mature polypeptide in Table V or the nucleotides encoding the mature polypeptide in Table IV as a result of a sequencing error, reverse transcription or amplification error, mRNA splicing, post-translational modification of the encoded protein, enzymatic cleavage of the encoded protein, or other biological factors, one skilled in the art would be readily able to identify the amino acids in the biologically active form of the polypeptides and the nucleic acids encoding the biologically active form of the polypeptides. In such instances, the claims relating to polypetides comprising the mature protein included in one of SEQ ID NOs. 141-241 and 378-513 or nucleic acids comprising the nucleotides of one of SEQ ID NOs. 40-140 and 242-377 encoding the mature protein shall not be construed to exclude any readily identifiable variations from the sequences listed in Table IV and Table V.

In some embodiments, the nucleic acid used to express the protein or portion thereof may comprise those nucleotides which encode the signal peptide encoded by one of the sequences of SEQ ID NOs: 40-140 and 242-377 as defined in Table IV above.

It will be appreciated that should the extent of the sequence encoding the signal peptide differ from that listed in Table IV as a result of a sequencing error, reverse transcription or amplification error, mRNA splicing, post-translational modification of the encoded protein, enzymatic cleavage of the encoded protein, or other biological factors, one skilled in the art would be readily able to identify the extent of the sequence encoding the signal peptide in the sequences of SEQ ID Nos. 40-140 and 242-377. Accordingly, the scope of any claims herein relating to nucleic acids containing the sequence encoding the signal peptide encoded by one of SEQ ID Nos. 40-140 and 242-377 is not to be construed as excluding any readily identifiable variations from the sequences listed in Table IV. Similarly, should the extent of the signal peptides differ from those indicated in Table V as a result of any of the preceding factors, the scope of claims relating to polypeptides comprising the sequence of a signal peptide included in the sequence of one of SEQ ID Nos. 141-241 and 378-513 is not to be construed as excluding any readily identifiable variations from the sequences listed in Table V.

Alternatively, the nucleic acid may encode a polypeptide comprising at least 10 consecutive amino acids of one of the sequences of SEQ ID NOs: 141-241 and 378-513. In some embodiments, the nucleic acid may encode a polypeptide comprising at least 15 consecutive amino acids of one of the sequences of SEQ ID NOs: 141-241 and 378-313. In other embodiments, the nucleic acid may encode a polypeptide comprising at least 25 consecutive amino acids of one of the sequences of SEQ ID NOs: 141-241 and 378-513. In other embodiments, the nucleic acid may encode a polypeptide comprising at least 60, at least 75, at least 100 or more than 100 consecutive amino acids of one of the sequences of SEQ ID Nos: 141-241 and 378-513.

WO 99/31236

The nucleic acids inserted into the expression vectors may also contain sequences upstream of the sequences encoding the signal peptide, such as sequences which regulate expression levels or sequences which confer tissue specific expression.

The nucleic acid encoding the protein or polypeptide to be expressed is operably linked to a promoter in an expression vector using conventional cloning technology. The expression vector may be any of the mammalian, yeast, insect or bacterial expression systems known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Genetics Institute (Cambridge, MA), Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism in which the expression vector is introduced, as explained by Hatfield, et al., U.S. Patent No. 5,082,767.

The following is provided as one exemplary method to express the proteins encoded by the extended cDNAs corresponding to the 5' ESTs or the nucleic acids described above. First, the methionine initiation codon for the gene and the poly A signal of the gene are identified. If the nucleic acid encoding the polypeptide to be expressed lacks a methionine to serve as the initiation site, an initiating methionine can be introduced next to the first codon of the nucleic acid using conventional techniques. Similarly, if the extended cDNA lacks a poly A signal, this sequence can be added to the construct by, for example, splicing out the Poly A signal from pSG5 (Stratagene) using Bgll and Sall restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene). pXT1 contains the LTRs and a portion of the gag gene from Moloney Murine Leukemia Virus. The position of the LTRs in the construct allow efficient stable transfection. The vector includes the Herpes Simplex Thymidine Kinase promoter and the selectable neomycin gene. The extended cDNA or portion thereof encoding the polypeptide to be expressed is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the extended cDNA or portion thereof and containing restriction endonuclease sequences for Pst I incorporated into the 5'primer and Bglll at the 5' end of the corresponding cDNA 3' primer, taking care to ensure that the extended cDNA is positioned in frame with the poly A signal. The purified fragment obtained from the resulting PCR reaction is digested with Pstl, blunt ended with an exonuclease, digested with Bglll, purified and ligated to pXT1, now containing a poly A signal and digested with Bglll.

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600ug/ml G418 (Sigma, St. Louis, Missouri). Preferably the expressed protein is released into the culture medium, thereby facilitating purification.

Alternatively, the extended cDNAs may be cloned into pED6dpc2 as described above. The resulting pED6dpc2 constructs may be transfected into a suitable host cell, such as COS 1 cells. Methotrexate resistant cells are selected and expanded. Preferably, the protein expressed from the extended cDNA is released into the culture medium thereby facilitating purification.

Proteins in the culture medium are separated by gel electrophoresis. If desired, the proteins may be ammonium sulfate precipitated or separated based on size or charge prior to electrophoresis.

As a control, the expression vector lacking a cDNA insert is introduced into host cells or organisms and the proteins in the medium are harvested. The secreted proteins present in the medium are detected using techniques such as Coomassie or silver staining or using antibodies against the protein encoded by the extended cDNA. Coomassie and silver staining techniques are familiar to those skilled in the art.

Antibodies capable of specifically recognizing the protein of interest may be generated using synthetic 15-mer peptides having a sequence encoded by the appropriate 5' EST, extended cDNA, or portion thereof. The synthetic peptides are injected into mice to generate antibody to the polypeptide encoded by the 5' EST, extended cDNA, or portion thereof.

Secreted proteins from the host cells or organisms containing an expression vector which contains the extended cDNA derived from a 5' EST or a portion thereof are compared to those from the control cells or organism. The presence of a band in the medium from the cells containing the expression vector which is absent in the medium from the control cells indicates that the extended cDNA encodes a secreted protein. Generally, the band corresponding to the protein encoded by the extended cDNA will have a mobility near that expected based on the number of amino acids in the open reading frame of the extended cDNA. However, the band may have a mobility different than that expected as a result of modifications such as glycosylation, ubiquitination, or enzymatic cleavage.

Alternatively, if the protein expressed from the above expression vectors does not contain sequences directing its secretion, the proteins expressed from host cells containing an expression vector containing an insert encoding a secreted protein or portion thereof can be compared to the proteins expressed in host cells containing the expression vector without an insert. The presence of a band in samples from cells containing the expression vector with an insert which is absent in samples from cells containing the expression vector without an insert indicates that the desired protein or portion thereof is being expressed. Generally, the band will have the mobility expected for the secreted protein or portion thereof. However, the band may have a mobility different than that expected as a result of modifications such as glycosylation, ubiquitination, or enzymatic cleavage.

The protein encoded by the extended cDNA may be purified using standard immunochromatography techniques. In such procedures, a solution containing the secreted protein, such as the culture medium or a cell extract, is applied to a column having antibodies against the secreted protein attached to the chromatography matrix. The secreted protein is allowed to bind the immunochromatography column. Thereafter, the column is washed to remove non-specifically bound proteins. The specifically bound secreted protein is then released from the column and recovered using standard techniques.

If antibody production is not possible, the extended cDNA sequence or portion thereof may be incorporated into expression vectors designed for use in purification schemes employing chimeric polypeptides. In such strategies the coding sequence of the extended cDNA or portion thereof is inserted in frame with the gene encoding the other half of

the chimera. The other half of the chimera may be β-globin or a nickel binding polypeptide encoding sequence. A chromatography matrix having antibody to β-globin or nickel attached thereto is then used to purify the chimeric protein. Protease cleavage sites may be engineered between the β-globin gene or the nickel binding polypeptide and the extended cDNA or portion thereof. Thus, the two polypeptides of the chimera may be separated from one another by protease digestion.

One useful expression vector for generating β -globin chimerics is pSG5 (Stratagene), which encodes rabbit β -globin. Intron II of the rabbit β -globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques as described are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis et al.,

(Basic Methods in Molecular Biology, L.G. Davis, M.D. Dibner, and J.F. Battey, ed., Elsevier Press, NY, 1986) and many of the methods are available from Stratagene, Life Technologies, Inc., or Promega. Polypeptide may additionally be produced from the construct using in vitro translation systems such as the In vitro ExpressTM Translation Kit (Stratagene).

Following expression and purification of the secreted proteins encoded by the 5' ESTs, extended cDNAs, or fragments thereof, the purified proteins may be tested for the ability to bind to the surface of various cell types as described in Example 31 below. It will be appreciated that a plurality of proteins expressed from these cDNAs may be included in a panel of proteins to be simultaneously evaluated for the activities specifically described below, as well as other biological roles for which assays for determining activity are available.

EXAMPLE 31

20

Analysis of Secreted Proteins to Determine Whether they Bind to the Cell Surface

The proteins encoded by the 5' ESTs, extended cDNAs, or fragments thereof are cloned into expression vectors such as those described in Example 30. The proteins are purified by size, charge, immunochromatography or other techniques familiar to those skilled in the art. Following purification, the proteins are labeled using techniques known to those skilled in the art. The labeled proteins are incubated with cells or cell lines derived from a variety of organs or tissues to allow the proteins to bind to any receptor present on the cell surface. Following the incubation, the cells are washed to remove non-specifically bound protein. The labeled proteins are detected by autoradiography. Alternatively, unlabeled proteins may be incubated with the cells and detected with antibodies having a detectable label, such as a fluorescent molecule, attached thereto.

Specificity of cell surface binding may be analyzed by conducting a competition analysis in which various

amounts of unlabeled protein are incubated along with the labeled protein. The amount of labeled protein bound to the
cell surface decreases as the amount of competitive unlabeled protein increases. As a control, various amounts of an
unlabeled protein unrelated to the labeled protein is included in some binding reactions. The amount of labeled protein
bound to the cell surface does not decrease in binding reactions containing increasing amounts of unrelated unlabeled
protein, indicating that the protein encoded by the cDNA binds specifically to the cell surface.

As discussed above, secreted proteins have been shown to have a number of important physiological effects and, consequently, represent a valuable therapeutic resource. The secreted proteins encoded by the extended cDNAs or portions thereof made according to Examples 27-29 may be evaluated to determine their physiological activities as described below.

5 EXAMPLE 32

Assaying the Proteins Expressed from Extended cDNAs or Portions Thereof for Cytokine, Cell Proliferation or Cell Differentiation Activity

As discussed above, secreted proteins may act as cytokines or may affect cellular proliferation or differentiation. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B5, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7c and CMK. The proteins encoded by the above extended cDNAs or portions thereof may be evaluated for their ability to regulate T cell or thymocyte proliferation in assays such as those described above or in the following references: Current Protocols in Immunology, Ed. by J.E. Coligan et al., Greene Publishing Associates and Wiley-Interscience; Takai et al. J. Immunol. 137:3494-3500, 1986. Bertagnolli et al. J. Immunol. 145:1706-1712, 1990. Bertagnolli et al., Cellular Immunology 133:327-341, 1991. Bertagnolli, et al. J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152:1756-1761, 1994.

In addition, numerous assays for cytokine production and/or the proliferation of spleen cells, lymph node cells
and thymocytes are known. These include the techniques disclosed in Current Protocols in Immunology. J.E. Coligan
et al. Eds., Vol 1 pp. 3.12.1-3.12.14 John Wiley and Sons, Toronto. 1994; and Schreiber, R.D. Current Protocols in
Immunology., supra Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

The proteins encoded by the cDNAs may also be assayed for the ability to regulate the proliferation and differentiation of hematopoietic or lymphopoietic cells. Many assays for such activity are familiar to those skilled in the art, including the assays in the following references: Bottomly, K., Davis, L.S. and Lipsky, P.E., Measurement of Human and Murine Interleukin 2 and Interleukin 4, Current Protocols in Immunology., J.E. Coligan et al. Eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 36:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Nordan, R., Measurement of Mouse and Human Interleukin 6 Current Protocols in Immunology. J.E. Coligan et al. Eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Bennett, F., Giannotti, J., Clark, S.C. and Turner, K.J., Measurement of Human Interleukin 11 Current Protocols in Immunology. J.E. Coligan et al. Eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J., Measurement of Mouse and Human Interleukin 9 Current Protocols in Immunology. J.E. Coligan et al., Eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

The proteins encoded by the cDNAs may also be assayed for their ability to regulate T-cell responses to antigens. Many assays for such activity are familiar to those skilled in the art, including the assays described in the following references: Chapter 3 (In Vitro Assays for Mouse Lymphocyte Function), Chapter 6 (Cytokines and Their Cellular Receptors) and Chapter 7, (Immunologic Studies in Humans) in Current Protocols in Immunology, J.E. Coligan et al. Eds. Greene Publishing Associates and Wiley-Interscience; Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

Those proteins which exhibit cytokine, cell proliferation, or cell differentiation activity may then be formulated as pharmaceuticals and used to treat clinical conditions in which induction of cell proliferation or differentiation is beneficial. Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

EXAMPLE 33

Assaying the Proteins Expressed from Extended cDNAs or Portions

Thereof for Activity as Immune System Regulators

The proteins encoded by the cDNAs may also be evaluated for their effects as immune regulators. For example, the proteins may be evaluated for their activity to influence thymocyte or splenocyte cytotoxicity. Numerous assays for such activity are familiar to those skilled in the art including the assays described in the following references: Chapter 3 (In Vitro Assays for Mouse Lymphocyte Function 3.1-3.19) and Chapter 7 (Immunologic studies in Humans) in Current Protocols in Immunology, J.E. Coligan et al. Eds, Greene Publishing Associates and Wiley-Interscience; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

The proteins encoded by the cDNAs may also be evaluated for their effects on T-cell dependent immunoglobulin responses and isotype switching. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Maliszewski, J. Immunol. 144:3028-3033, 1990; Mond, J.J. and Brunswick, M Assays for B Cell Function: *In vitro* Antibody Production, Vol 1 pp. 3.8.1-3.8.16 in Current Protocols in Immunology. J.E. Coligan et al Eds., John Wiley and Sons, Toronto. 1994.

The proteins encoded by the cDNAs may also be evaluated for their effect on immune effector cells, including their effect on Th1 cells and cytotoxic lymphocytes. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Chapter 3 (In Vitro Assays for Mouse Lymphocyte

Function 3.1-3.19) and Chapter 7 (Immunologic Studies in Humans) in Current Protocols in Immunology, J.E. Coligan et al. Eds., Greene Publishing Associates and Wiley-Interscience; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

The proteins encoded by the cDNAs may also be evaluated for their effect on dendritic cell mediated activation of naive T-cells. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

The proteins encoded by the cDNAs may also be evaluated for their influence on the lifetime of lymphocytes.

Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Those proteins which exhibit activity as immune system regulators activity may then be formulated as pharmaceuticals and used to treat clinical conditions in which regulation of immune activity is beneficial. For example, the protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases caused by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis,

myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

Using the proteins of the invention it may also be possible to regulate immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T-cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. 10 Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the tolerizing agent.

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte 15 antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 20 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an 25 immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed 30 using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4lg fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models

of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which 5 promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead 10 to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/pr/pr mice or NZB hybrid mice, murine autoimmuno collagen arthritis, diabetes mellitus in OD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory 20 form of B lymphocyte antigens systemically.

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to T cells 25 in vivo, thereby activating the T cells.

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be 30 transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acids encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I α chain protein and β₂ macroglobulin protein or an MHC class II α chain protein and an MHC class II β chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class II or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject. Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

EXAMPLE 34

Assaying the Proteins Expressed from Extended cDNAs or Portions Thereof for Hematopoiesis Regulating Activity

The proteins encoded by the extended cDNAs or portions thereof may also be evaluated for their hematopoiesis regulating activity. For example, the effect of the proteins on embryonic stem cell differentiation may be evaluated.

Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

The proteins encoded by the extended cDNAs or portions thereof may also be evaluated for their influence on the lifetime of stem cells and stem cell differentiation. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Freshney, M.G. Methylcellulose Colony Forming Assays, in Culture of Hematopoietic Cells. R.I. Freshney, et al. Eds. pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; McNiece, I.K. and Briddell, R.A. Primitive Hematopoietic Colony Forming Cells with High Proliferative Potential, in Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Ploemacher, R.E. Cobblestone Area Forming Cell Assay, In Culture of Hematopoietic Cells. R.I. Freshney, et al. Eds. pp. 1-21, Wiley-Liss, Inc., New York, NY. 1994; Spooncer, E., Dexter, M. and Allen, T. Long Term Bone Marrow Cultures in the Presence of Stromal Cells, in Culture of Hematopoietic Cells. R.I. Freshney, et al. Eds.

pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; and Sutherland, H.J. Long Term Culture Initiating Cell Assay, in Culture of Hematopoietic Cells. R.I. Freshney, et al. Eds. pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Those proteins which exhibit hematopoiesis regulatory activity may then be formulated as pharmaceuticals and used to treat clinical conditions in which regulation of hematopoeisis is beneficial. For example, a protein of the present 5 invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid 10 cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelosuppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem 15 cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantion, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or genetically manipulated for gene therapy. Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

EXAMPLE 35

Assaying the Proteins Expressed from Extended cDNAs or Portions Thereof for Regulation of Tissue Growth

The proteins encoded by the extended cDNAs or portions thereof may also be evaluated for their effect on tissue growth. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in International Patent Publication No. W095/16035, International Patent Publication No. W095/05846 and International Patent Publication No. W091/07491.

Assays for wound healing activity include, without limitation, those described in: Winter, Epidermal Wound

Healing, pps. 71-112 (Maibach, H1 and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Those proteins which are involved in the regulation of tissue growth may then be formulated as pharmaceuticals and used to treat clinical conditions in which regulation of tissue growth is beneficial. For example, a protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or

nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and 5 other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

15

30

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to 20 tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon- or ligament-forming cells, stimulate growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e., for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium) muscle

(smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to generate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokinc damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

20

5

EXAMPLE 36

Assaying the Proteins Expressed from Extended cDNAs or Portions Thereof for Regulation of Reproductive Hormones or Cell Movement

The proteins encoded by the extended cDNAs or portions thereof may also be evaluated for their ability to regulate reproductive hormones, such as follicle stimulating hormone. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986. Chapter 6.12 (Measurement of Alpha and Beta Chemokines) Current Protocols in Immunology, J.E. Coligan et al. Eds. Greene Publishing Associates and Wiley-Intersciece; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al. Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

Those proteins which exhibit activity as reproductive hormones or regulators of cell movement may then be formulated as pharmaceuticals and used to treat clinical conditions in which regulation of reproductive hormones or cell movement are beneficial. For example, a protein of the present invention may also exhibit activin- or inhibin-related

activities. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins are characterized by their ability to stimulate the release of folic stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals.

Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin-B group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

EXAMPLE 36A

15

25

30

Assaying the Proteins Expressed from Extended cDNAs or

Portions Thereof for Chemotactic/Chemokinetic Activity

The proteins encoded by the extended cDNAs or portions thereof may also be evaluated for chemotactic/chemokinetic activity. For example, a protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, cosinophils, epithelial and/or endothelial cells. Chemotactic and chmokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhension of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12,

Measurement of alpha and beta Chemokincs 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Mueller et al Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol, 153:1762-1768, 1994.

EXAMPLE 37

Assaying the Proteins Expressed from Extended cDNAs or

Portions Thereof for Regulation of Blood Clotting

The proteins encoded by the extended cDNAs or portions thereof may also be evaluated for their effects on blood clotting. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res.

45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Those proteins which are involved in the regulation of blood clotting may then be formulated as pharmaceuticals and used to treat clinical conditions in which regulation of blood clotting is beneficial. For example, a protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulations disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as,for example, infarction of cardiac and central nervous system vessels (e.g., stroke). Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

EXAMPLE 38

Assaying the Proteins Expressed from Extended cDNAs or Portions Thereof for Involvement in Receptor/Ligand Interactions

The proteins encoded by the extended cDNAs or a portion thereof may also be evaluated for their involvement in receptor/ligand interactions. Numerous assays for such involvement are familiar to those skilled in the art, including the assays disclosed in the following references: Chapter 7.28 (Measurement of Cellular Adhesion under Static Conditions 7.28.1-7.28.22) in Current Protocols in Immunology, J.E. Coligan et al. Eds. Greene Publishing Associates and Wiley-Interscience; Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160, 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995; Gyuris et al., Cell 75:791-803, 1993.

For example, the proteins of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion

molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune respones). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

EXAMPLE 38A

Assaying the Proteins Expressed from Extended cDNAs or Portions

Thereof for Anti-Inflammatory Activity

The proteins encoded by the extended cDNAs or a portion thereof may also be evaluated for anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)),ischemia-reperfusioninury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

20

EXAMPLE 38B

Assaying the Proteins Expressed from Extended cDNAs or

Portions Thereof for Tumor Inhibition Activity

The proteins encoded by the extended cDNAs or a portion thereof may also be evaluated for tumor inhibition activity. In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth.

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or

circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or climination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

EXAMPLE 39

Identification of Proteins which Interact with

Polypeptides Encoded by Extended cDNAs

Proteins which interact with the polypeptides encoded by extended cDNAs or portions thereof, such as

receptor proteins, may be identified using two hybrid systems such as the Matchmaker Two Hybrid System 2 (Catalog No. K1604-1, Clontech). As described in the manual accompanying the Matchmaker Two Hybrid System 2 (Catalog No. K1604-1, Clontech), the extended cDNAs or portions thereof, are inserted into an expression vector such that they are in frame with DNA encoding the DNA binding domain of the yeast transcriptional activator GAL4. cDNAs in a cDNA library which encode proteins which might interact with the polypeptides encoded by the extended cDNAs or portions thereof

are inserted into a second expression vector such that they are in frame with DNA encoding the activation domain of GAL4. The two expression plasmids are transformed into yeast and the yeast are plated on selection medium which selects for expression of selectable markers on each of the expression vectors as well as GAL4 dependent expression of the HIS3 gene. Transformants capable of growing on medium lacking histidine are screened for GAL4 dependent lac2 expression. Those cells which are positive in both the histidine selection and the lac2 assay contain plasmids encoding proteins which interact with the polypeptide encoded by the extended cDNAs or portions thereof.

Alternatively, the system described in Lustig et al., Methods in Enzymology 283: 83-99 (1997) may be used for identifying molecules which interact with the polypeptides encoded by extended cDNAs. In such systems, *in vitro* transcription reactions are performed on a pool of vectors containing extended cDNA inserts cloned downstream of a promoter which drives *in vitro* transcription. The resulting pools of mRNAs are introduced into *Xenopus laevis* oocytes.

30 The oocytes are then assayed for a desired activity.

Alternatively, the pooled *in vitro* transcription products produced as described above may be translated *in vitro*. The pooled *in vitro* translation products can be assayed for a desired activity or for interaction with a known polypeptide.

WO 99/31236

10

Proteins or other molecules interacting with polypeptides encoded by extended cDNAs can be found by a variety of additional techniques. In one method, affinity columns containing the polypeptide encoded by the extended cDNA or a portion thereof can be constructed. In some versions, of this method the affinity column contains chimeric proteins in which the protein encoded by the extended cDNA or a portion thereof is fused to glutathione S-transferase.

A mixture of cellular proteins or pool of expressed proteins as described above and is applied to the affinity column. Proteins interacting with the polypeptide attached to the column can then be isolated and analyzed on 2-D electrophoresis gel as described in Ramunsen et al. Electrophoresis, 18, 588-598 (1997). Alternatively, the proteins retained on the affinity column can be purified by electrophoresis based methods and sequenced. The same method can be used to isolate antibodies, to screen phage display products, or to screen phage display human antibodies.

Proteins interacting with polypeptides encoded by extended cDNAs or portions thereof can also be screened by using an Optical Biosensor as described in Edwards & Leatherbarrow, Analytical Biochemistry, 246, 1-6 (1997). The main advantage of the method is that it allows the determination of the association rate between the protein and other interacting molecules. Thus, it is possible to specifically select interacting molecules with a high or low association rate. Typically a target molecule is linked to the sensor surface (through a carboxymethl dextran matrix) and a sample of test 15 molecules is placed in contact with the target molecules. The binding of a test molecule to the target molecule causes a change in the refractive index and/ or thickness. This change is detected by the Biosensor provided it occurs in the evanescent field (which extend a few hundred manometers from the sensor surface). In these screening assays, the target molecule can be one of the polypeptides encoded by extended cDNAs or a portion thereof and the test sample can be a collection of proteins extracted from tissues or cells, a pool of expressed proteins, combinatorial peptide and/ or 20 chemical libraries, or phage displayed peptides. The tissues or cells from which the test proteins are extracted can originate from any species.

In other methods, a target protein is immobilized and the test population is a collection of unique polypentides encoded by the extended cDNAs or portions thereof.

To study the interaction of the proteins encoded by the extended cDNAs or portions thereof with drugs, the 25 microdialysis coupled to HPLC method described by Wang et al., Chromatographia, 44, 205-208(1997) or the affinity capillary electrophoresis method described by Busch et al., J. Chromatogr. 777:311-328 (1997), the disclosures of which are incorporated herein by referenc can be used.

The system described in U.S. Patent No. 5,654,150 may also be used to identify molecules which interact with the polypeptides encoded by the extended cDNAs. In this system, pools of extended cDNAs are transcribed and 30 translated in vitro and the reaction products are assayed for interaction with a known polypeptide or antibody.

It will be appreciated by those skilled in the art that the proteins expressed from the extended cDNAs or portions may be assayed for numerous activities in addition to those specifically enumerated above. For example, the expressed proteins may be evaluated for applications involving control and regulation of inflammation, tumor

proliferation or metastasis, infection, or other clinical conditions. In addition, the proteins expressed from the extended cDNAs or portions thereof may be useful as nutritional agents or cosmetic agents.

The proteins expressed from the extended cDNAs or portions thereof may be used to generate antibodies capable of specifically binding to the expressed protein or fragments thereof as described in Example 40 below. The antibodies may capable of binding a full length protein encoded by one of the sequences of SEQ ID NOs. 40-140 and 242-377, a mature protein encoded by one of the sequences of SEQ ID NOs. 40-140 and 242-377, or a signal peptide encoded by one of the sequences of SEQ ID Nos. 40-140 and 242-377. Alternatively, the antibodies may be capable of binding fragments of the proteins expressed from the extended cDNAs which comprise at least 10 amino acids of the sequences of SEQ ID NOs: 141-241 and 378-513. In other embodiments, the antibodies may be capable of binding fragments of the proteins expressed from the extended cDNAs which comprise at least 15 amino acids of the sequences of SEQ ID NOs: 141-241 and 378-513. In other embodiments, the antibodies may be capable of binding fragments of the proteins expressed from the extended cDNAs which comprise at least 25 amino acids of the sequences of SEQ ID NOs: 141-241 and 378-513. In further embodiments, the antibodies may be capable of binding fragments of the proteins expressed from the extended cDNAs which comprise at least 40 amino acids of the sequences of SEQ ID NOs: 141-241 and 378-513.

EXAMPLE 40

Production of an Antibody to a Human Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells as described in Example 30. The concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows:

A. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., Nature 256:495 (1975) or derivative methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein or peptides derived therefrom over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody-producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as Elisa, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and derivative methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al. Basic Methods in Molecular Biology Elsevier, New York. Section 21-2.

B. Polyclonal Antibody Production by Immunization

10

30

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein or peptides derived therefrom described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than others and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al. J. Clin. Endocrinol. Metab. 33:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in: Handbook of Experimental Immunology D. Wier (ed) Blackwell (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12 µM). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as 15 described, for example, by Fisher, D., Chap. 42 in: Manual of Clinical Immunology, 2d Ed. (Rose and Friedman, Eds.) Amer. Soc. For Microbiol., Washington, D.C. (1980).

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample. The antibodies may also be used in therapeutic 20 compositions for killing cells expressing the protein or reducing the levels of the protein in the body.

V. Use of Extended cDNAs or Portions Thereof as Reagents

The extended cDNAs of the present invention may be used as reagents in isolation procedures, diagnostic assays, and forensic procedures. For example, sequences from the extended cDNAs (or genomic DNAs obtainable 25 therefrom) may be detectably labeled and used as probes to isolate other sequences capable of hybridizing to them. In addition, sequences from the extended cDNAs (or genomic DNAs obtainable therefrom) may be used to design PCR primers to be used in isolation, diagnostic, or forensic procedures.

EXAMPLE 41

Preparation of PCR Primers and Amplification of DNA

The extended cDNAs (or genomic DNAs obtainable therefrom) may be used to prepare PCR primers for a variety of applications, including isolation procedures for cloning nucleic acids capable of hybridizing to such sequences, diagnostic techniques and forensic techniques. The PCR primers are at least 10 bases, and preferably at least 12, 15, or 17 bases in length. More preferably, the PCR primers are at least 20-30 bases in length. In some embodiments, the PCR primers may be more than 30 bases in length. It is preferred that the primer pairs have approximately the same G/C

ratio, so that melting temperatures are approximately the same. A variety of PCR techniques are familiar to those skilled in the art. For a review of PCR technology, see Molecular Cloning to Genetic Engineering White, B.A. Ed. in Methods in Molecular Biology 67: Humana Press, Totowa 1997. In each of these PCR procedures, PCR primers on either side of the nucleic acid sequences to be amplified are added to a suitably prepared nucleic acid sample along with dNTPs and a thermostable polymerase such as Taq polymerase, Pfu polymerase, or Vent polymerase. The nucleic acid in the sample is denatured and the PCR primers are specifically hybridized to complementary nucleic acid sequences in the sample. The hybridized primers are extended. Thereafter, another cycle of denaturation, hybridization, and extension is initiated. The cycles are repeated multiple times to produce an amplified fragment containing the nucleic acid sequence between the primer sites.

10

EXAMPLE 42

Use of Extended cDNAs as Probes

Probes derived from extended cDNAs or portions thereof (or genomic DNAs obtainable therefrom) may be labeled with detectable labels familiar to those skilled in the art, including radioisotopes and non-radioactive labels, to provide a detectable probe. The detectable probe may be single stranded or double stranded and may be made using techniques known in the art, including in vitro transcription, nick translation, or kinase reactions. A nucleic acid sample containing a sequence capable of hybridizing to the labeled probe is contacted with the labeled probe. If the nucleic acid in the sample is double stranded, it may be denatured prior to contacting the probe. In some applications, the nucleic acid sample may be immobilized on a surface such as a nitrocellulose or nylon membrane. The nucleic acid sample may comprise nucleic acids obtained from a variety of sources, including genomic DNA, cDNA libraries, RNA, or tissue samples.

Procedures used to detect the presence of nucleic acids capable of hybridizing to the detectable probe include well known techniques such as Southern blotting, Northern blotting, dot blotting, colony hybridization, and plaque hybridization. In some applications, the nucleic acid capable of hybridizing to the labeled probe may be cloned into vectors such as expression vectors, sequencing vectors, or in vitro transcription vectors to facilitate the characterization and expression of the hybridizing nucleic acids in the sample. For example, such techniques may be used to isolate and clone sequences in a genomic library or cDNA library which are capable of hybridizing to the detectable probe as described in Example 30 above.

PCR primers made as described in Example 41 above may be used in forensic analyses, such as the DNA fingerprinting techniques described in Examples 43-47 below. Such analyses may utilize detectable probes or primers 30 based on the sequences of the extended cDNAs isolated using the 5' ESTs (or genomic DNAs obtainable therefrom).

EXAMPLE 43

Forensic Matching by DNA Sequencing

In one exemplary method, DNA samples are isolated from forensic specimens of, for example, hair, semen, blood or skin cells by conventional methods. A panel of PCR primers based on a number of the extended cDNAs (or

genomic DNAs obtainable therefrom), is then utilized in accordance with Example 41 to amplify DNA of approximately 100-200 bases in length from the forensic specimen. Corresponding sequences are obtained from a test subject. Each of these identification DNAs is then sequenced using standard techniques, and a simple database comparison determines the differences, if any, between the sequences from the subject and those from the sample. Statistically significant differences between the suspect's DNA sequences and those from the sample conclusively prove a lack of identity. This lack of identity can be proven, for example, with only one sequence. Identity, on the other hand, should be demonstrated with a large number of sequences, all matching. Preferably, a minimum of 50 statistically identical sequences of 100 bases in length are used to prove identity between the suspect and the sample.

EXAMPLE 44

10

Positive Identification by DNA Sequencing

The technique outlined in the previous example may also be used on a larger scale to provide a unique fingerprint-type identification of any individual. In this technique, primers are prepared from a large number of sequences from Table IV and the appended sequence listing. Preferably, 20 to 50 different primers are used. These primers are used to obtain a corresponding number of PCR-generated DNA segments from the individual in question in accordance with Example 41. Each of these DNA segments is sequenced, using the methods set forth in Example 43. The database of sequences generated through this procedure uniquely identifies the individual from whom the sequences were obtained. The same panel of primers may then be used at any later time to absolutely correlate tissue or other biological specimen with that individual.

EXAMPLE 45

20

Southern Blot Forensic Identification

The procedure of Example 44 is repeated to obtain a panel of at least 10 amplified sequences from an individual and a specimen. Preferably, the panel contains at least 50 amplified sequences. More preferably, the panel contains 100 amplified sequences. In some embodiments, the panel contains 200 amplified sequences. This PCR-generated DNA is then digested with one or a combination of, preferably, four base specific restriction enzymes. Such enzymes are commercially available and known to those of skill in the art. After digestion, the resultant gene fragments are size separated in multiple duplicate wells on an agarose gel and transferred to nitrocellulose using Southern blotting techniques well known to those with skill in the art. For a review of Southern blotting see Davis et al. (Basic Methods in Molecular Biology, 1986, Elsevier Press. pp 62-65).

A panel of probes based on the sequences of the extended cDNAs (or genomic DNAs obtainable therefrom), or fragments thereof of at least 10 bases, are radioactively or colorimetrically labeled using methods known in the art, such as nick translation or end labeling, and hybridized to the Southern blot using techniques known in the art (Davis et al., supra). Preferably, the probe comprises at least 12, 15, or 17 consecutive nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom). More preferably, the probe comprises at least 20-30 consecutive nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom). In some embodiments, the probe comprises more than 30

PCT/IB98/02122

nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom). In other embodiments, the probe comprises at least 40, at least 50, at least 75, at least 100, at least 150, or at least 200 consecutive nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom).

Preferably, at least 5 to 10 of these labeled probes are used, and more preferably at least about 20 or 30 are used to provide a unique pattern. The resultant bands appearing from the hybridization of a large sample of extended cDNAs (or genomic DNAs obtainable therefrom) will be a unique identifier. Since the restriction enzyme cleavage will be different for every individual, the band pattern on the Southern blot will also be unique. Increasing the number of extended cDNA probes will provide a statistically higher level of confidence in the identification since there will be an increased number of sets of bands used for identification.

10 EXAMPLE 46

25

Dot Blot Identification Procedure

Another technique for identifying individuals using the extended cDNA sequences disclosed herein utilizes a dot blot hybridization technique.

Genomic DNA is isolated from nuclei of subject to be identified. Oligonucleotide probes of approximately 30 bp in length are synthesized that correspond to at least 10, preferably 50 sequences from the extended cDNAs or genomic DNAs obtainable therefrom. The probes are used to hybridize to the genomic DNA through conditions known to those in the art. The oligonucleotides are end labeled with P32 using polynucleotide kinase (Pharmacia). Dot Blots are created by spotting the genomic DNA onto nitrocellulose or the like using a vacuum dot blot manifold (BioRad, Richmond California). The nitrocellulose filter containing the genomic sequences is baked or UV linked to the filter, prehybridized and hybridized with labeled probe using techniques known in the art (Davis et al. supra). The 32P labeled DNA fragments are sequentially hybridized with successively stringent conditions to detect minimal differences between the 30 bp sequence and the DNA. Tetramethylammonium chloride is useful for identifying clones containing small numbers of nucleotide mismatches (Wood et al., Proc. Natl. Acad. Sci. USA 82(6):1585-1588 (1985)). A unique pattern of dots distinguishes one individual from another individual.

Extended cDNAs or oligonucleotides containing at least 10 consecutive bases from these sequences can be used as probes in the following alternative fingerprinting technique. Preferably, the probe comprises at least 12, 15, or 17 consecutive nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom). More preferably, the probe comprises at least 20-30 consecutive nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom). In some embodiments, the probe comprises more than 30 nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom). In other embodiments, the probe comprises at least 40, at least 50, at least 75, at least 100, at least 150, or at least 200 consecutive nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom).

Preferably, a plurality of probes having sequences from different genes are used in the alternative fingerprinting technique. Example 47 below provides a representative alternative fingerprinting procedure in which the probes are derived from extended cDNAs.

EXAMPLE 47

5

Alternative "Fingerprint" Identification Technique

20-mer oligonucleotides are prepared from a large number, e.g. 50, 100, or 200, of extended cDNA sequences (or genomic DNAs obtainable therefrom) using commercially available oligonucleotide services such as Genset, Paris, France. Cell samples from the test subject are processed for DNA using techniques well known to those with skill in the art. The nucleic acid is digested with restriction enzymes such as EcoRI and Xbal. Following digestion, samples are applied to wells for electrophoresis. The procedure, as known in the art, may be modified to accommodate polyacrylamide electrophoresis, however in this example, samples containing 5 ug of DNA are loaded into wells and separated on 0.8% agarose gels. The gels are transferred onto nitrocellulose using standard Southern blotting techniques.

10 ng of each of the oligonucleotides are pooled and end-labeled with P³². The nitrocellulose is prehybridized with blocking solution and hybridized with the labeled probes. Following hybridization and washing, the nitrocellulose filter is exposed to X-Omat AR X-ray film. The resulting hybridization pattern will be unique for each individual.

It is additionally contemplated within this example that the number of probe sequences used can be varied for additional accuracy or clarity.

The antibodies generated in Examples 30 and 40 above may be used to identify the tissue type or cell species from which a sample is derived as described above.

EXAMPLE 48

Identification of Tissue Types or Cell Species by Means of

Labeled Tissue Specific Antibodies

Identification of specific tissues is accomplished by the visualization of tissue specific antigens by means of antibody preparations according to Examples 30 and 40 which are conjugated, directly or indirectly to a detectable marker. Selected labeled antibody species bind to their specific antigen binding partner in tissue sections, cell suspensions, or in extracts of soluble proteins from a tissue sample to provide a pattern for qualitative or semi-qualitative interpretation.

Antisera for these procedures must have a potency exceeding that of the native preparation, and for that

reason, antibodies are concentrated to a mg/ml level by isolation of the gamma globulin fraction, for example, by ionexchange chromatography or by ammonium sulfate fractionation. Also, to provide the most specific antisera, unwanted
antibodies, for example to common proteins, must be removed from the gamma globulin fraction, for example by means
of insoluble immunoabsorbents, before the antibodies are labeled with the marker. Either monoclonal or heterologous
antisera is suitable for either procedure.

A. Immunohistochemical Techniques

Purified, high-titer antibodies, prepared as described above, are conjugated to a detectable marker, as described, for example, by Fudenberg, H., Chap. 26 in: Basic 503 Clinical Immunology, 3rd Ed. Lange, Los Altos, California (1980) or Rose, N. et al., Chap. 12 in: Methods in Immunodiagnosis, 2d Ed. John Wiley 503 Sons, New York (1980).

A fluorescent marker, either fluorescein or rhodamine, is preferred, but antibodies can also be labeled with an enzyme that supports a color producing reaction with a substrate, such as horseradish peroxidase. Markers can be added to tissue-bound antibody in a second step, as described below. Alternatively, the specific antitissue antibodies can be labeled with ferritin or other electron dense particles, and localization of the ferritin coupled antigen-antibody complexes achieved by means of an electron microscope. In yet another approach, the antibodies are radiolabeled, with, for example 1251, and detected by overlaying the antibody treated preparation with photographic emulsion.

Preparations to carry out the procedures can comprise monoclonal or polyclonal antibodies to a single protein or peptide identified as specific to a tissue type, for example, brain tissue, or antibody preparations to several antigenically distinct tissue specific antigens can be used in panels, independently or in mixtures, as required.

Tissue sections and cell suspensions are prepared for immunohistochemical examination according to common histological techniques. Multiple cryostat sections (about 4 µm, unfixed) of the unknown tissue and known control, are mounted and each slide covered with different dilutions of the antibody preparation. Sections of known and unknown tissues should also be treated with preparations to provide a positive control, a negative control, for example, pre-immune sera, and a control for non-specific staining, for example, buffer.

Treated sections are incubated in a humid chamber for 30 min at room temperature, rinsed, then washed in buffer for 30-45 min. Excess fluid is blotted away, and the marker developed.

If the tissue specific antibody was not labeled in the first incubation, it can be labeled at this time in a second antibody-antibody reaction, for example, by adding fluorescein- or enzyme-conjugated antibody against the immunoglobulin class of the antiserum-producing species, for example, fluorescein labeled antibody to mouse IgG. Such labeled sera are commercially available.

The antigen found in the tissues by the above procedure can be quantified by measuring the intensity of color or fluorescence on the tissue section, and calibrating that signal using appropriate standards.

B. Identification of Tissue Specific Soluble Proteins

The visualization of tissue specific proteins and identification of unknown tissues from that procedure is

carried out using the labeled antibody reagents and detection strategy as described for immunohistochemistry; however
the sample is prepared according to an electrophoretic technique to distribute the proteins extracted from the tissue in
an orderly array on the basis of molecular weight for detection.

A tissue sample is homogenized using a Virtis apparatus; cell suspensions are disrupted by Dounce homogenization or osmotic lysis, using detergents in either case as required to disrupt cell membranes, as is the practice

in the art. Insoluble cell components such as nuclei, microsomes, and membrane fragments are removed by ultracentrifugation, and the soluble protein-containing fraction concentrated if necessary and reserved for analysis.

A sample of the soluble protein solution is resolved into individual protein species by conventional SDS polyacrylamide electrophoresis as described, for example, by Davis, L. et al., Section 19-2 in: Basic Methods in 5 Molecular Biology (P. Leder, ed), Elsevier, New York (1986), using a range of amounts of polyacrylamide in a set of gels to resolve the entire molecular weight range of proteins to be detected in the sample. A size marker is run in parallel for purposes of estimating molecular weights of the constituent proteins. Sample size for analysis is a convenient volume of from 5 to 55 µl, and containing from about 1 to 100 µg protein. An aliquot of each of the resolved proteins is transferred by blotting to a nitrocellulose filter paper, a process that maintains the pattern of resolution. Multiple copies 10 are prepared. The procedure, known as Western Blot Analysis, is well described in Davis, L. et al., (above) Section 19-3. One set of nitrocellulose blots is stained with Coomassie Blue dye to visualize the entire set of proteins for comparison with the antibody bound proteins. The remaining nitrocellulose filters are then incubated with a solution of one or more specific antisera to tissue specific proteins prepared as described in Examples 30 and 40. In this procedure, as in procedure A above, appropriate positive and negative sample and reagent controls are run.

In either procedure A or B, a detectable label can be attached to the primary tissue antigen-primary antibody complex according to various strategies and permutations thereof. In a straightforward approach, the primary specific antibody can be labeled; alternatively, the unlabeled complex can be bound by a labeled secondary anti-IgG antibody. In other approaches, either the primary or secondary antibody is conjugated to a biotin molecule, which can, in a subsequent step, bind an avidin conjugated marker. According to yet another strategy, enzyme labeled or radioactive 20 protein A, which has the property of binding to any IgG, is bound in a final step to either the primary or secondary antibody.

The visualization of tissue specific antigen binding at levels above those seen in control tissues to one or more tissue specific antibodies, prepared from the gene sequences identified from extended cDNA sequences, can identify tissues of unknown origin, for example, forensic samples, or differentiated tumor tissue that has metastasized to foreign 25 bodily sites.

In addition to their applications in forensics and identification, extended cDNAs (or genomic DNAs obtainable therefrom) may be mapped to their chromosomal locations. Example 49 below describes radiation hybrid (RH) mapping of human chromosomal regions using extended cDNAs. Example 50 below describes a representative procedure for mapping an extended cDNA (or a genomic DNA obtainable therefrom) to its location on a human chromosome. Example 30 51 below describes mapping of extended cDNAs (or genomic DNAs obtainable therefrom) on metaphase chromosomes by Fluorescence In Situ Hybridization (FISH).

EXAMPLE 49

Radiation hybrid mapping of Extended cDNAs to the human genome

Radiation hybrid (RH) mapping is a somatic cell genetic approach that can be used for high resolution mapping of the human genome. In this approach, cell lines containing one or more human chromosomes are lethally irradiated, breaking each chromosome into fragments whose size depends on the radiation dose. These fragments are rescued by fusion with cultured rodent cells, yielding subclones containing different portions of the human genome. This technique is described by Benham et al. (*Genomics* 4:509-517, 1989) and Cox et al., (*Science* 250:245-250, 1990). The random and independent nature of the subclones permits efficient mapping of any human genome marker. Human DNA isolated from a panel of 80-100 cell lines provides a mapping reagent for ordering extended cDNAs (or genomic DNAs obtainable therefrom). In this approach, the frequency of breakage between markers is used to measure distance, allowing construction of fine resolution maps as has been done using conventional ESTs (Schuler et al., *Science* 274:540-546, 1996).

RH mapping has been used to generate a high-resolution whole genome radiation hybrid map of human chromosome 17q22-q25.3 across the genes for growth hormone (GH) and thyr.idine kinase (TK) (Foster et al., *Genomics* 33:185-192, 1996), the region surrounding the Gorlin syndrome gene (Obermayr et al., *Eur. J. Hum. Genet.* 4:242-245, 1996), 60 loci covering the entire short arm of chromosome 12 (Raeymaekers et al., *Genomics* 29:170-178, 1995), the region of human chromosome 22 containing the neurofibromatosis type 2 locus (Frazer et al., *Genomics* 14:574-584, 1992) and 13 loci on the long arm of chromosome 5 (Warrington et al., *Genomics* 11:701-708, 1991).

EXAMPLE 50

Mapping of Extended cDNAs to Human

Chromosomes using PCR techniques

Extended cDNAs (or genomic DNAs obtainable therefrom) may be assigned to human chromosomes using PCR based methodologies. In such approaches, oligonucleotide primer pairs are designed from the extended cDNA sequence (or the sequence of a genomic DNA obtainable therefrom) to minimize the chance of amplifying through an intron. Preferably, the oligonucleotide primers are 18-23 bp in length and are designed for PCR amplification. The creation of PCR primers from known sequences is well known to those with skill in the art. For a review of PCR technology see Erlich, H.A., PCR Technology; Principles and Applications for DNA Amplification. 1992. W.H. Freeman and Co., New York.

The primers are used in polymerase chain reactions (PCR) to amplify templates from total human genomic DNA. PCR conditions are as follows: 60 ng of genomic DNA is used as a template for PCR with 80 ng of each oligonucleotide primer, 0.6 unit of Taq polymerase, and 1 µCu of a ³²P-labeled deoxycytidine triphosphate. The PCR is performed in a microplate thermocycler (Techne) under the following conditions: 30 cycles of 94°C, 1.4 min; 55°C, 2 min; and 72°C, 2 min; with a final extension at 72°C for 10 min. The amplified products are analyzed on a 6% polyacrylamide sequencing gel and visualized by autoradiography. If the length of the resulting PCR product is identical to the distance between the ends of the primer sequences in the extended cDNA from which the primers are derived, then the PCR reaction is repeated with DNA templates from two panels of human-rodent somatic cell hybrids, BIOS

PCRable DNA (BIOS Corporation) and NIGMS Human-Rodent Somatic Cell Hybrid Mapping Panel Number 1 (NIGMS, Camden, NJ).

PCR is used to screen a series of somatic cell hybrid cell lines containing defined sets of human chromosomes for the presence of a given extended cDNA (or genomic DNA obtainable therefrom). DNA is isolated from the somatic hybrids and used as starting templates for PCR reactions using the primer pairs from the extended cDNAs (or genomic DNAs obtainable therefrom). Only those somatic cell hybrids with chromosomes containing the human gene corresponding to the extended cDNA (or genomic DNA obtainable therefrom) will yield an amplified fragment. The extended cDNAs (or genomic DNAs obtainable therefrom) are assigned to a chromosome by analysis of the segregation pattern of PCR products from the somatic hybrid DNA templates. The single human chromosome present in all cell hybrids that give rise to an amplified fragment is the chromosome containing that extended cDNA (or genomic DNA obtainable therefrom). For a review of techniques and analysis of results from somatic cell gene mapping experiments. (See Ledbetter et al., Genomics 6:475-481 (1990).)

Alternatively, the extended cDNAs (or genomic DNAs obtainable therefrom) may be mapped to individual chromosomes using FISH as described in Example 51 below.

15

EXAMPLE 51

Mapping of Extended 5' ESTs to Chromosomes

Using Fluorescence in situ Hybridization

Fluorescence in situ hybridization allows the extended cDNA (or genomic DNA obtainable therefrom) to be mapped to a particular location on a given chromosome. The chromosomes to be used for fluorescence in situ hybridization techniques may be obtained from a variety of sources including cell cultures, tissues, or whole blood.

In a preferred embodiment, chromosomal localization of an extended cDNA (or genomic DNA obtainable therefrom) is obtained by FISH as described by Cherif et al. (*Proc. Natl. Acad. Sci. U.S.A.*, 87:6639-6643, 1990).

Metaphase chromosomes are prepared from phytohemagglutinin (PHA)-stimulated blood cell donors. PHA-stimulated lymphocytes from healthy males are cultured for 72 h in RPMI-1640 medium. For synchronization, methotrexate (10 µM) is added for 17 h, followed by addition of 5-bromodeoxyuridine (5-BudR, 0.1 mM) for 6 h. Colcemid (1 µg/ml) is added for the last 15 min before harvesting the cells. Cells are collected, washed in RPMI, incubated with a hypotonic solution of KCI (75 mM) at 37°C for 15 min and fixed in three changes of methanol:acetic acid (3:1). The cell suspension is dropped onto a glass slide and air dried. The extended cDNA (or genomic DNA obtainable therefrom) is labeled with biotin-16 dUTP by nick translation according to the manufacturer's instructions (Bethesda Research

Laboratories, Bethesda, MD), purified using a Sephadex G-50 column (Pharmacia, Upssala, Sweden) and precipitated.

Just prior to hybridization, the DNA pellet is dissolved in hybridization buffer (50% formamide, 2 x SSC, 10% dextran sulfate, 1 mg/ml sonicated salmon sperm DNA, pH 7) and the probe is denatured at 70°C for 5-10 min.

Slides kept at $\cdot 20^{\circ}$ C are treated for 1 h at 37°C with RNase A (100 μ g/ml), rinsed three times in 2 X SSC and dehydrated in an ethanol series. Chromosome preparations are denatured in 70% formamide, 2 X SSC for 2 min at

70°C, then dehydrated at 4°C. The slides are treated with proteinase K (10 μg/100 ml in 20 mM Tris-HCl, 2 mM CaCl₂) at 37°C for 8 min and dehydrated. The hybridization mixture containing the probe is placed on the slide, covered with a coverslip, sealed with rubber cement and incubated overnight in a humid chamber at 37°C. After hybridization and post-hybridization washes, the biotinylated probe is detected by avidin-FITC and amplified with additional layers of biotinylated goat anti-avidin and avidin-FITC. For chromosomal localization, fluorescent R-bands are obtained as previously described (Cherif et al., *supra.*). The slides are observed under a LEICA fluorescence microscope (DMRXA). Chromosomes are counterstained with propidium iodide and the fluorescent signal of the probe appears as two symmetrical yellow-green spots on both chromatids of the fluorescent R-band chromosome (red). Thus, a particular extended cDNA (or genomic DNA obtainable therefrom) may be localized to a particular cytogenetic R-band on a given chromosome.

Once the extended cDNAs (or genomic DNAs obtainable therefrom) have been assigned to particular chromosomes using the techniques described in Examples 49-51 above, they may be utilized to construct a high resolution map of the chromosomes on which they are located or to identify the chromosomes in a sample.

EXAMPLE 52

15 Use of Extended cDNAs to Construct or Expand Chromosome Maps

Chromosome mapping involves assigning a given unique sequence to a particular chromosome as described above. Once the unique sequence has been mapped to a given chromosome, it is ordered relative to other unique sequences located on the same chromosome. One approach to chromosome mapping utilizes a series of yeast artificial chromosomes (YACs) bearing several thousand long inserts derived from the chromosomes of the organism from which the extended cDNAs (or genomic DNAs obtainable therefrom) are obtained. This approach is described in Ramaiah Nagaraja et al. Genome Research 7:210-222, March 1997. Briefly, in this approach each chromosome is broken into overlapping pieces which are inserted into the YAC vector. The YAC inserts are screened using PCR or other methods to determine whether they include the extended cDNA (or genomic DNA obtainable therefrom) whose position is to be determined. Once an insert has been found which includes the extended cDNA (or genomic DNA obtainable therefrom), the insert can be analyzed by PCR or other methods to determine whether the insert also contains other sequences known to be on the chromosome or in the region from which the extended cDNA (or genomic DNA obtainable therefrom) was derived. This process can be repeated for each insert in the YAC library to determine the location of each of the extended cDNAs (or genomic DNAs obtainable therefrom) relative to one another and to other known chromosomal markers. In this way, a high resolution map of the distribution of numerous unique markers along each of the organisms 30 chromosomes may be obtained.

As described in Example 53 below extended cDNAs (or genomic DNAs obtainable therefrom) may also be used to identify genes associated with a particular phenotype, such as hereditary disease or drug response.

EXAMPLE 53

Identification of genes associated with hereditary diseases or drug response

This example illustrates an approach useful for the association of extended cDNAs (or genomic DNAs obtainable therefrom) with particular phenotypic characteristics. In this example, a particular extended cDNA (or genomic DNA obtainable therefrom) is used as a test probe to associate that extended cDNA (or genomic DNA obtainable therefrom) with a particular phenotypic characteristic.

Extended cDNAs (or genomic DNAs obtainable therefrom) are mapped to a particular location on a human chromosome using techniques such as those described in Examples 49 and 50 or other techniques known in the art. A search of Mendelian Inheritance in Man (V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library) reveals the region of the human chromosome which contains the extended cDNA (or genomic DNA obtainable therefrom) to be a very gene rich region containing several known genes and several 10 diseases or phenotypes for which genes have not been identified. The gene corresponding to this extended cDNA (or genomic DNA obtainable therefrom) thus becomes an immediate candidate for each of these genetic diseases.

Cells from patients with these diseases or phenotypes are isolated and expanded in culture. PCR primers from the extended cDNA (or genomic DNA obtainable therefrom) are used to screen genomic DNA, mRNA or cDNA obtained from the patients. Extended cDNAs (or genomic DNAs obtainable therefrom) that are not amplified in the patients can 15 be positively associated with a particular disease by further analysis. Alternatively, the PCR analysis may yield fragments of different lengths when the samples are derived from an individual having the phenotype associated with the disease than when the sample is derived from a healthy individual, indicating that the gene containing the extended cDNA may be responsible for the genetic disease.

VI. Use of Extended cDNAs (or genomic DNAs obtainable therefrom) to Construct Vectors

The present extended cDNAs (or genomic DNAs obtainable therefrom) may also be used to construct secretion vectors capable of directing the secretion of the proteins encoded by genes inserted in the vectors. Such secretion vectors may facilitate the purification or enrichment of the proteins encoded by genes inserted therein by reducing the number of background proteins from which the desired protein must be purified or enriched. Exemplary secretion vectors are described in Example 54 below.

25

30

20

5

EXAMPLE 54

Construction of Secretion Vectors

The secretion vectors of the present invention include a promoter capable of directing gene expression in the host cell, tissue, or organism of interest. Such promoters include the Rous Sarcoma Virus promoter, the SV40 promoter, the human cytomegalovirus promoter, and other promoters familiar to those skilled in the art.

A signal sequence from an extended cDNA (or genomic DNA obtainable therefrom), such as one of the signal sequences in SEQ ID NOs: 40-140 and 242-377 as defined in Table IV above, is operably linked to the promoter such that the mRNA transcribed from the promoter will direct the translation of the signal peptide. The host cell, tissue, or organism may be any cell, tissue, or organism which recognizes the signal peptide encoded by the signal sequence in the

extended cDNA (or genomic DNA obtainable therefrom). Suitable hosts include mammalian cells, tissues or organisms, avian cells, tissues, or organisms, insect cells, tissues or organisms, or yeast.

In addition, the secretion vector contains cloning sites for inserting genes encoding the proteins which are to be secreted. The cloning sites facilitate the cloning of the insert gene in frame with the signal sequence such that a fusion 5 protein in which the signal peptide is fused to the protein encoded by the inserted gene is expressed from the mRNA transcribed from the promoter. The signal peptide directs the extracellular secretion of the fusion protein.

The secretion vector may be DNA or RNA and may integrate into the chromosome of the host, be stably maintained as an extrachromosomal replicon in the host, be an artificial chromosome, or be transiently present in the host. Many nucleic acid backbones suitable for use as secretion vectors are known to those skilled in the art, including 10 retroviral vectors, SV40 vectors, Bovine Papilloma Virus vectors, yeast integrating plasmids, yeast episomal plasmids, yeast artificial chromosomes, human artificial chromosomes, P element vectors, baculovirus vectors, or bacterial plasmids capable of being transiently introduced into the host.

The secretion vector may also contain a polyA signal such that the polyA signal is located downstream of the gene inserted into the secretion vector.

After the gene encoding the protein for which secretion is desired is inserted into the secretion vector, the secretion vector is introduced into the host cell, tissue, or organism using calcium phosphate precipitation, DEAE-Dextran, electroporation, liposome-mediated transfection, viral particles or as naked DNA. The protein encoded by the inserted gene is then purified or enriched from the supernatant using conventional techniques such as ammonium sulfate precipitation, immunoprecipitation, immunochromatography, size exclusion chromatography, ion exchange 20 chromatography, and hplc. Alternatively, the secreted protein may be in a sufficiently enriched or pure state in the supernatant or growth media of the host to permit it to be used for its intended purpose without further enrichment.

The signal sequences may also be inserted into vectors designed for gene therapy. In such vectors, the signal sequence is operably linked to a promoter such that mRNA transcribed from the promoter encodes the signal peptide. A cloning site is located downstream of the signal sequence such that a gene encoding a protein whose secretion is 25 desired may readily be inserted into the vector and fused to the signal sequence. The vector is introduced into an appropriate host cell. The protein expressed from the promoter is secreted extracellularly, thereby producing a therapeutic effect.

The extended cDNAs or 5' ESTs may also be used to clone sequences located upstream of the extended cDNAs or 5' ESTs which are capable of regulating gene expression, including promoter sequences, enhancer sequences, and 30 other upstream sequences which influence transcription or translation levels. Once identified and cloned, these upstream regulatory sequences may be used in expression vectors designed to direct the expression of an inserted gene in a desired spatial, temporal, developmental, or quantitative fashion. Example 55 describes a method for cloning sequences upstream of the extended cDNAs or 5' ESTs.

Use of Extended cDNAs or 5' ESTs to Clone Upstream

Sequences from Genomic DNA

Sequences derived from extended cDNAs or 5' ESTs may be used to isolate the promoters of the corresponding genes using chromosome walking techniques. In one chromosome walking technique, which utilizes the GenomeWalkerTM kit available from Clontech, five complete genomic DNA samples are each digested with a different restriction enzyme which has a 6 base recognition site and leaves a blunt end. Following digestion, oligonucleotide adapters are ligated to each end of the resulting genomic DNA fragments.

For each of the five genomic DNA libraries, a first PCR reaction is performed according to the manufacturer's instructions using an outer adaptor primer provided in the kit and an outer gene specific primer. The gene specific primer should be selected to be specific for the extended cDNA or 5' EST of interest and should have a melting temperature, length, and location in the extended cDNA or 'EST which is consistent with its use in PCR reactions. Each first PCR reaction contains 5ng of genomic DNA, 5 \(\mu \)I of 10X Tth reaction buffer, 0.2 mM of each dNTP, 0.2 \(\mu \)M each of outer adaptor primer and outer gene specific primer, 1.1 mM of Mg(0Ac)₂, and 1 \(\mu \)I of the Tth polymerase 50X mix in a total volume of 50 \(\mu \)I. The reaction cycle for the first PCR reaction is as follows: 1 min @ 94°C / 2 sec @ 94°C, 3 min @ 72°C (7 cycles) / 2 sec @ 94°C, 3 min @ 67°C (32 cycles) / 5 min @ 67°C.

The product of the first PCR reaction is diluted and used as a template for a second PCR reaction according to the manufacturer's instructions using a pair of nested primers which are located internally on the amplicon resulting from the first PCR reaction. For example, 5 µl of the reaction product of the first PCR reaction mixture may be diluted 180 times. Reactions are made in a 50 µl volume having a composition identical to that of the first PCR reaction except the nested primers are used. The first nested primer is specific for the adaptor, and is provided with the GenomeWalkerTM kit. The second nested primer is specific for the particular extended cDNA or 5' EST for which the promoter is to be cloned and should have a melting temperature, length, and location in the extended cDNA or 5' EST which is consistent with its use in PCR reactions. The reaction parameters of the second PCR reaction are as follows: 1 min @ 94°C / 2 sec @ 94°C, 3 min @ 67°C (25 cycles) / 5 min @ 67°C

The product of the second PCR reaction is purified, cloned, and sequenced using standard techniques.

Alternatively, two or more human genomic DNA libraries can be constructed by using two or more restriction enzymes.

The digested genomic DNA is cloned into vectors which can be converted into single stranded, circular, or linear DNA. A biotinylated oligonucleotide comprising at least 15 nucleotides from the extended cDNA or 5' EST sequence is hybridized to the single stranded DNA. Hybrids between the biotinylated oligonucleotide and the single stranded DNA containing the extended cDNA or EST sequence are isolated as described in Example 29 above. Thereafter, the single stranded DNA using a primer specific for the extended cDNA or 5' EST sequence or a primer corresponding to a sequence included in the cloning vector. The resulting double stranded DNA is transformed into bacteria. DNAs containing the 5' EST or extended cDNA sequences are identified by colony PCR or colony hybridization.

25

Once the upstream genomic sequences have been cloned and sequenced as described above, prospective promoters and transcription start sites within the upstream sequences may be identified by comparing the sequences upstream of the extended cDNAs or 5' ESTs with databases containing known transcription start sites, transcription factor binding sites, or promoter sequences.

In addition, promoters in the upstream sequences may be identified using promoter reporter vectors as described in Example 56.

EXAMPLE 56

Identification of Promoters in Cloned Upstream Sequences

The genomic sequences upstream of the extended cDNAs or 5' ESTs are cloned into a suitable promoter 10 reporter vector, such as the pSEAP-Basic, pSEAP-Enhancer, pβgal-Basic, pβgal-Enhancer, or pEGFP-1 Promoter Reporter vectors available from Clontech. Briefly, each of these promoter reporter vectors include multiple cloning sites positioned upstream of a reporter gene encoding a readily assayable protein such as secreted alkaline phosphatase, etagalactosidase, or green fluorescent protein. The sequences upstream of the extended cDNAs or 5' ESTs are inserted into the cloning sites upstream of the reporter gene in both orientations and introduced into an appropriate host cell. The 15 level of reporter protein is assayed and compared to the level obtained from a vector which lacks an insert in the cloning site. The presence of an elevated expression level in the vector containing the insert with respect to the control vector indicates the presence of a promoter in the insert. If necessary, the upstream sequences can be cloned into vectors which contain an enhancer for augmenting transcription levels from weak promoter sequences. A significant level of expression above that observed with the vector lacking an insert indicates that a promoter sequence is present in the 20 inserted upstream sequence.

Appropriate host cells for the promoter reporter vectors may be chosen based on the results of the above described determination of expression patterns of the extended cDNAs and ESTs. For example, if the expression pattern analysis indicates that the mRNA corresponding to a particular extended cDNA or 5' EST is expressed in fibroblasts, the promoter reporter vector may be introduced into a human fibroblast cell line.

Promoter sequences within the upstream genomic DNA may be further defined by constructing nested deletions in the upstream DNA using conventional techniques such as Exonuclease III digestion. The resulting deletion fragments can be inserted into the promoter reporter vector to determine whether the deletion has reduced or obliterated promoter activity. In this way, the boundaries of the promoters may be defined. If desired, potential individual regulatory sites within the promoter may be identified using site directed mutagenesis or linker scanning to obliterate 30 potential transcription factor binding sites within the promoter individually or in combination. The effects of these mutations on transcription levels may be determined by inserting the mutations into the cloning sites in the promoter reporter vectors.

EXAMPLE 57

Using the method described in Example 55 above with 5' ESTs, sequences upstream of several genes were obtained. Using the primer pairs GGG AAG ATG GAG ATA GTA TTG CCT G (SEQ ID NO:29) and CTG CCA TGT ACA TGA TAG AGA GAT TC (SEQ ID NO:30), the promoter having the internal designation P13H2 (SEQ ID NO:31) was obtained.

Using the primer pairs GTA CCA GGGG ACT GTG ACC ATT GC (SEQ ID NO:32) and CTG TGA CCA TTG CTC CCA AGA GAG (SEQ ID NO:33), the promoter having the internal designation P15B4 (SEQ ID NO:34) was obtained.

Using the primer pairs CTG GGA TGG AAG GCA CGG TA (SEQ ID NO:35) and GAG ACC ACA CAG CTA GAC AA (SEQ ID NO:36), the promoter having the internal designation P29B6 (SEQ ID NO:37) was obtained.

Figure 8 provides a schematic description of the promoters isolated and the way they are assembled with the corresponding 5' tags. The upstream sequences were screened for the presence of motifs resembling transcription factor binding sites or known transcription start sites using the computer program MatInspector release 2.0, August 1996.

Figure 9 describes the transcription factor binding sites present in each of these promoters. The columns labeled matrice provides the name of the MatInspector matrix used. The column labeled position provides the 5' postion of the promoter site. Numeration of the sequence starts from the transcription site as determined by matching the genomic sequence with the 5' EST sequence. The column labeled "orientation" indicates the DNA strand on which the site is found, with the + strand being the coding strand as determined by matching the genomic sequence with the sequence of the 5' EST. The column labeled "score" provides the MatInspector score found for this site. The column labeled "length" provides the length of the site in nucleotides. The column labeled "sequence" provides the sequence of the site found.

The promoters and other regulatory sequences located upstream of the extended cDNAs or 5' ESTs may be used to design expression vectors capable of directing the expression of an inserted gene in a desired spatial, temporal, developmental, or quantitative manner. A promoter capable of directing the desired spatial, temporal, developmental, and quantitative patterns may be selected using the results of the expression analysis described in Example 26 above. For example, if a promoter which confers a high level of expression in muscle is desired, the promoter sequence upstream of an extended cDNA or 5' EST derived from an mRNA which is expressed at a high level in muscle, as determined by the method of Example 26, may be used in the expression vector.

Preferably, the desired promoter is placed near multiple restriction sites to facilitate the cloning of the desired insert downstream of the promoter, such that the promoter is able to drive expression of the inserted gene. The promoter may be inserted in conventional nucleic acid backbones designed for extrachromosomal replication, integration into the host chromosomes or transient expression. Suitable backbones for the present expression vectors include retroviral backbones, backbones from eukaryotic episomes such as SV40 or Bovine Papilloma Virus, backbones from bacterial episomes, or artificial chromosomes.

30

Preferably, the expression vectors also include a polyA signal downstream of the multiple restriction sites for directing the polyadenylation of mRNA transcribed from the gene inserted into the expression vector.

Following the identification of promoter sequences using the procedures of Examples 55-57, proteins which interact with the promoter may be identified as described in Example 58 below.

EXAMPLE 58

Identification of Proteins Which Interact with Promoter Sequences, Upstream Regulatory Sequences, or mRNA

Sequences within the promoter region which are likely to bind transcription factors may be identified by homology to known transcription factor binding sites or through conventional mutagenesis or deletion analyses of reporter plasmids containing the promoter sequence. For example, deletions may be made in a reporter plasmid containing the promoter sequence of interest operably linked to an assayable reporter gene. The reporter plasmids carrying various deletions within the promoter region are transfected into an appropriate host cell and the effects of the deletions on expression levels is assessed. Transcription factor binding sites within the regions in which deletions reduce expression levels may be further localized using site directed mutagenesis, linker scanning analysis, or other techniques familiar to those skilled in the art. Nucleic acids encoding proteins which interact with sequences in the promoter may be identified using one-hybrid systems such as those described in the manual accompanying the Matchmaker One-Hybrid System kit available from Clontech (Catalog No. K1603-1). Briefly, the Matchmaker One-hybrid system is used as follows. The target sequence for which it is desired to identify binding proteins is cloned upstream of a selectable reporter gene and integrated into the yeast genome. Preferably, multiple copies of the target sequences are inserted into the reporter plasmid in tandem.

A library comprised of fusions between cDNAs to be evaluated for the ability to bind to the promoter and the activation domain of a yeast transcription factor, such as GAL4, is transformed into the yeast strain containing the integrated reporter sequence. The yeast are plated on selective media to select cells expressing the selectable marker linked to the promoter sequence. The colonies which grow on the selective media contain genes encoding proteins which bind the target sequence. The inserts in the genes encoding the fusion proteins are further characterized by sequencing. In addition, the inserts may be inserted into expression vectors or in vitro transcription vectors. Binding of the polypeptides encoded by the inserts to the promoter DNA may be confirmed by techniques familiar to those skilled in the art, such as gel shift analysis or DNAse protection analysis.

VII. Use of Extended cDNAs (or Genomic DNAs Obtainable Therefrom) in Gene Therapy

The present invention also comprises the use of extended cDNAs (or genomic DNAs obtainable therefrom) in gene therapy strategies, including antisense and triple helix strategies as described in Examples 57 and 58 below. In antisense approaches, nucleic acid sequences complementary to an mRNA are hybridized to the mRNA intracellularly, thereby blocking the expression of the protein encoded by the mRNA. The antisense sequences may prevent gene expression through a variety of mechanisms. For example, the antisense sequences may inhibit the ability of ribosomes

25

to translate the mRNA. Alternatively, the antisense sequences may block transport of the mRNA from the nucleus to the cytoplasm, thereby limiting the amount of mRNA available for translation. Another mechanism through which antisense sequences may inhibit gene expression is by interfering with mRNA splicing. In yet another strategy, the antisense nucleic acid may be incorporated in a ribozyme capable of specifically cleaving the target mRNA.

EXAMPLE 59

Preparation and Use of Antisense Oligonucleotides

The antisense nucleic acid molecules to be used in gene therapy may be either DNA or RNA sequences. They may comprise a sequence complementary to the sequence of the extended cDNA (or genomic DNA obtainable therefrom). The antisense nucleic acids should have a length and melting temperature sufficient to permit formation of an 10 intracellular duplex having sufficient stability to inhibit the expression of the mRNA in the duplex. Strategies for designing antisense nucleic acids suitable for use in gene therapy are disclosed in Green et al., Ann. Rev. Biochem. 55:569-597 (1986) and Izant and Weintraub, Cell 36:1007-1015 (1984).

In some strategies, antisense molecules are obtained from a nucleotide sequence encoding a protein by reversing the orientation of the coding region with respect to a promoter so as to transcribe the opposite strand from 15 that which is normally transcribed in the cell. The antisense molecules may be transcribed using in vitro transcription systems such as those which employ T7 or SP6 polymerase to generate the transcript. Another approach involves transcription of the antisense nucleic acids in vivo by operably linking DNA containing the antisense sequence to a promoter in an expression vector.

Alternatively, oligonucleotides which are complementary to the strand normally transcribed in the cell may be synthesized in vitro. Thus, the antisense nucleic acids are complementary to the corresponding mRNA and are capable of hybridizing to the mRNA to create a duplex. In some embodiments, the antisense sequences may contain modified sugar phosphate backbones to increase stability and make them less sensitive to RNase activity. Examples of modifications suitable for use in antisense strategies are described by Rossi et al., Pharmacol. Ther. 50(2):245-254, (1991).

Various types of antisense oligonucleotides complementary to the sequence of the extended cDNA (or genomic DNA obtainable therefrom) may be used. In one preferred embodiment, stable and semi-stable antisense oligonucleotides described in International Application No. PCT W094/23026 are used. In these moleucles, the 3' end or both the 3' and 5' ends are engaged in intramolecular hydrogen bonding between complementary base pairs. These molecules are better able to withstand exonuclease attacks and exhibit increased stability compared to conventional antisense 30 oligonucleotides.

In another preferred embodiment, the antisense oligodeoxynucleotides against herpes simplex virus types 1 and 2 described in International Application No. WO 95/04141.

In yet another preferred embodiment, the covalently cross-linked antisense oligonucleotides described in International Application No. WO 96/31523 are used. These double- or single-stranded oligonucleotides comprise one or more, respectively, inter- or intra-oligonucleotide covalent cross-linkages, wherein the linkage consists of an amide bond between a primary amine group of one strand and a carboxyl group of the other strand or of the same strand, respectively, the primary amine group being directly substituted in the 2' position of the strand nucleotide monosaccharide ring, and the carboxyl group being carried by an aliphatic spacer group substituted on a nucleotide or nucleotide analog of the other strand or the same strand, respectively.

The antisense oligodeoxynucleotides and oligonucleotides disclosed in International Application No. WO 92/18522 may also be used. These molecules are stable to degradation and contain at least one transcription control recognition sequence which binds to control proteins and are effective as decoys therefor. These molecules may contain "hairpin" structures, "dumbbell" structures, "modified dumbbell" structures, "cross-linked" decoy structures and "loop" structures.

In another preferred embodiment, the cyclic double-stranded oligonucleotides described in European Patent Application No. 0 572 287 A2 are used. These ligated oligonucleotide "dumbbells" contain the binding site for a transcription factor and inhibit expression of the gene under control of the transcription factor by sequestering the factor.

15

Use of the closed antisense oligonucleotides disclosed in International Application No. WO 92/19732 is also contemplated. Because these molecules have no free ends, they are more resistant to degradation by exonucleases than are conventional oligonucleotides. These oligonucleotides may be multifunctional, interacting with several regions which are not adjacent to the target mRNA.

The appropriate level of antisense nucleic acids required to inhibit gene expression may be determined using in vitro expression analysis. The antisense molecule may be introduced into the cells by diffusion, injection, infection or transfection using procedures known in the art. For example, the antisense nucleic acids can be introduced into the body as a bare or naked oligonucleotide, oligonucleotide encapsulated in lipid, oligonucleotide sequence encapsidated by viral protein, or as an oligonucleotide operably linked to a promoter contained in an expression vector. The expression vector may be any of a variety of expression vectors known in the art, including retroviral or viral vectors, vectors capable of extrachromosomal replication, or integrating vectors. The vectors may be DNA or RNA.

The antisense molecules are introduced onto cell samples at a number of different concentrations preferably between 1x10⁻¹⁰M to 1x10⁻⁴M. Once the minimum concentration that can adequately control gene expression is identified, the optimized dose is translated into a dosage suitable for use in vivo. For example, an inhibiting concentration in culture of 1x10⁻⁷ translates into a dose of approximately 0.6 mg/kg bodyweight. Levels of oligonucleotide approaching 100 mg/kg bodyweight or higher may be possible after testing the toxicity of the oligonucleotide in laboratory animals. It is additionally contemplated that cells from the vertebrate are removed, treated with the antisense oligonucleotide, and reintroduced into the vertebrate.

It is further contemplated that the antisense oligonucleotide sequence is incorporated into a ribozyme sequence to enable the antisense to specifically bind and cleave its target mRNA. For technical applications of ribozyme and antisense oligonucleotides see Rossi et al., *supra*.

In a preferred application of this invention, the polypeptide encoded by the gene is first identified, so that the

effectiveness of antisense inhibition on translation can be monitored using techniques that include but are not limited to
antibody-mediated tests such as RIAs and ELISA, functional assays, or radiolabeling.

The extended cDNAs of the present invention (or genomic DNAs obtainable therefrom) may also be used in gene therapy approaches based on intracellular triple helix formation. Triple helix oligonucleotides are used to inhibit transcription from a genome. They are particularly useful for studying alterations in cell activity as it is associated with a particular gene. The extended cDNAs (or genomic DNAs obtainable therefrom) of the present invention or, more preferably, a portion of those sequences, can be used to inhibit gene expression in individuals having diseases associated with expression of a particular gene. Similarly, a portion of the extended cDNA (or genomic DNA obtainable therefrom) can be used to study the effect of inhibiting transcription of a particular gene within a cell. Traditionally, homopurine sequences were considered the most useful for triple helix strategies. However, homopyrimidine sequences can also inhibit gene expression. Such homopyrimidine oligonucleotides bind to the major groove at homopurine:homopyrimidine sequences. Thus, both types of sequences from the extended cDNA or from the gene corresponding to the extended cDNA are contemplated within the scope of this invention.

EXAMPLE 60

Preparation and use of Triple Helix Probes

The sequences of the extended cDNAs (or genomic DNAs obtainable therefrom) are scanned to identify 10-mer to 20-mer homopyrimidine or homopurine stretches which could be used in triple-helix based strategies for inhibiting gene expression. Following identification of candidate homopyrimidine or homopurine stretches, their efficiency in inhibiting gene expression is assessed by introducing varying amounts of oligonucleotides containing the candidate sequences into tissue culture cells which normally express the target gene. The oligonucleotides may be prepared on an oligonucleotide synthesizer or they may be purchased commercially from a company specializing in custom oligonucleotide synthesis, such as GENSET, Paris, France.

The oligonucleotides may be introduced into the cells using a variety of methods known to those skilled in the art, including but not limited to calcium phosphate precipitation, DEAE-Dextran, electroporation, liposome-mediated transfection or native uptake.

Treated cells are monitored for altered cell function or reduced gene expression using techniques such as Northern blotting, RNase protection assays, or PCR based strategies to monitor the transcription levels of the target gene in cells which have been treated with the oligonucleotide. The cell functions to be monitored are predicted based upon the homologies of the target gene corresponding to the extended cDNA from which the oligonucleotide was derived with known gene sequences that have been associated with a particular function. The cell functions can also be

predicted based on the presence of abnormal physiologies within cells derived from individuals with a particular inherited disease, particularly when the extended cDNA is associated with the disease using techniques described in Example 53.

The oligonucleotides which are effective in inhibiting gene expression in tissue culture cells may then be introduced in vivo using the techniques described above and in Example 59 at a dosage calculated based on the in vitro results, as described in Example 59.

In some embodiments, the natural (beta) anomers of the oligonucleotide units can be replaced with alpha anomers to render the oligonucleotide more resistant to nucleases. Further, an intercalating agent such as ethidium bromide, or the like, can be attached to the 3' end of the alpha oligonucleotide to stabilize the triple helix. For information on the generation of oligonucleotides suitable for triple helix formation see Griffin et al. (Science 245:967-10 971 (1989).

EXAMPLE 61

Use of Extended cDNAs to Express an Encoded Protein in a Host Organism

The extended cDNAs of the present invention may also be used to express an encoded protein in a host organism to produce a beneficial effect. In such procedures, the encoded protein may be transiently expressed in the host organism or stably expressed in the host organism. The encoded protein may have any of the activities described above. The encoded protein may be a protein which the host organism lacks or, alternatively, the encoded protein may augment the existing levels of the protein in the host organism.

A full length extended cDNA encoding the signal peptide and the mature protein, or an extended cDNA encoding only the mature protein is introduced into the host organism. The extended cDNA may be introduced into the host organism using a variety of techniques known to those of skill in the art. For example, the extended cDNA may be injected into the host organism as naked DNA such that the encoded protein is expressed in the host organism, thereby producing a beneficial effect.

Alternatively, the extended cDNA may be cloned into an expression vector downstream of a promoter which is active in the host organism. The expression vector may be any of the expression vectors designed for use in gene therapy, including viral or retroviral vectors.

The expression vector may be directly introduced into the host organism such that the encoded protein is expressed in the host organism to produce a beneficial effect. In another approach, the expression vector may be introduced into cells in vitro. Cells containing the expression vector are thereafter selected and introduced into the host organism, where they express the encoded protein to produce a beneficial effect.

30

EXAMPLE 62

Use Of Signal Peptides Encoded By 5' Ests Or Sequences

Obtained Therefrom To Import Proteins Into Cells

The short core hydrophobic region (h) of signal peptides encoded by the 5'ESTS or extended cDNAs derived from the 5'ESTs of the present invention may also be used as a carrier to import a peptide or a protein of interest, so-

called cargo, into tissue culture cells (Lin *et al., J. Biol. Chem.,* 270: 14225-14258 (1995); Du *et al., J. Peptide Res.,* 51: 235-243 (1998); Rojas *et al., Nature Biotech.,* 16: 370-375 (1998)).

When cell permeable peptides of limited size (approximately up to 25 amino acids) are to be translocated across cell membrane, chemical synthesis may be used in order to add the h region to either the C-terminus or the N-terminus to the cargo peptide of interest. Alternatively, when longer peptides or proteins are to be imported into cells, nucleic acids can be genetically engineered, using techniques familiar to those skilled in the art, in order to link the extended cDNA sequence encoding the h region to the 5' or the 3' end of a DNA sequence coding for a cargo polypeptide. Such genetically engineered nucleic acids are then translated either *in vitro* or *in vivo* after transfection into appropriate cells, using conventional techniques to produce the resulting cell permeable polypeptide. Suitable hosts cells are then simply incubated with the cell permeable polypeptide which is then translocated across the membrane.

This method may be applied to study diverse intracellular functions and cellular processes. For instance, it has been used to probe functionally relevant domains of intracellular proteins and to examine protein-protein interactions involved in signal transduction pathways (Lin et al., supra; Lin et al., J. Biol. Chem., 271: 5305-5308 (1996); Rojas et al., J. Biol. Chem., 271: 27456-27461 (1996); Liu et al., Proc. Natl. Acad. Sci. USA, 93: 11819-11824 (1996); Rojas et al., Bioch. Biophys. Res. Commun., 234: 675-680 (1997)).

Such techniques may be used in cellular therapy to import proteins producing therapeutic effects. For instance, cells isolated from a patient may be treated with imported therapeutic proteins and then re-introduced into the host organism.

Alternatively, the h region of signal peptides of the present invention could be used in combination with a nuclear localization signal to deliver nucleic acids into cell nucleus. Such oligonucleotides may be antisense oligonucleotides or oligonucleotides designed to form triple helixes, as described in examples 59 and 60 respectively, in order to inhibit processing and maturation of a target cellular RNA.

EXAMPLE 63

Reassembling & Resequencing of Clones

Full length cDNA clones obtained by the procedure described in Example 27 were double-sequenced. These sequences were assembled and the resulting consensus sequences were then reanalyzed. Open reading frames were reassigned following essentially the same process as the one described in Example 27.

After this reanalysis process a few abnormalities were revealed. The sequences presented in SEQ ID NOs: 47, 73, 79, 89, 91, 96, 126, 128, 134, and 139 are apparently unlikely to be genuine full length cDNAs. These clones are missing a stop codon and are thus more probably 3' truncated cDNA sequences. Similarly, the sequences presented in SEQ ID NOs: 45, 50, 54, 57, 73, 74, 89, 92, 95, 98, 126, 129, 130, 131 and 139 may also not be genuine full length cDNAs based on homology studies with existing protein sequences. Although both of these sequences encode a potential start methionine each could represent a 5' truncated cDNA.

In addition, SEQ ID NO: 115 was found to be an alternatively spliced transcript and the identities of some of the bases in SEQ ID NO: 131 were corrected.

Finally, after the reassignment of open reading frames for the clones, new open reading frames were chosen in some instances. For example, in the case of SEQ ID NOs: 41, 47, 50, 52, 54-56, 58, 59, 61, 74, 75, 79, 84, 89, 91, 92, 96, 98, 103, 105, 106, 126, 129, 131, and 133 the new open reading frames were no longer predicted to contain a signal peptide.

As discussed above, Table IV provides the sequence identification numbers of the extended cDNAs of the present invention, the locations of the full coding sequences in SEQ ID NOs: 40-140 and 242-377 (i.e. the nucleotides encoding both the signal peptide and the mature protein, listed under the heading FCS location in Table IV), the locations of the nucleotides in SEQ ID NOs: 40-140 and 242-377 which encode the signal peptides (listed under the heading SigPep Location in Table IV), the locations of the nucleotides in SEQ ID NOs: 40-140 and 242-377 which encode the mature proteins generated by cleavage of the signal peptides (listed under the heading Mature Polypeptide Location in Table IV), the locations in SEQ ID NOs: 40-140 and 242-377 of stop codons (listed under the heading Stop Codon Location in Table IV) the locations in SEQ ID NOs: 40-140 and 242-377 of polyA signals (listed under the heading g PolyA Signal Location in Table IV) and the locations of polyA sites (listed under the heading PolyA Site Location in Table IV).

As discussed above, Table V lists the sequence identification numbers of the polypeptides of SEQ ID NOs: 141-241 and 378-513, the locations of the amino acid residues of SEQ ID NOs: 141-241 and 378-513 in the full length polypeptide (second column), the locations of the amino acid residues of SEQ ID NOs: 141-241 and 378-513 in the signal peptides (third column), and the locations of the amino acid residues of SEQ ID NOs: 141-241 and 379-513 in the mature polypeptide created by cleaving the signal peptide from the fall length polypeptide (fourth column). In Table V, and in the appended sequence listing, the first amino acid of the mature protein resulting from cleavage of the signal peptide is designated as amino acid number 1 and the first amino acid of the signal peptide is designated with the appropriate negative number, in accordance with the regulations governing sequence listings.

25

EXAMPLE 64

Functional Analysis of Predicted Protein Sequences

Following double-sequencing, new contigs were assembled for each of the extended cDNAs of the present invention and each was compared to known sequences available at the time of filing. These sequences originate from the following databases: Genbank (release 108 and daily releases up to October, 15, 1998), Genseq (release 32) PIR (release 33) and SwissProt (release 35). The predicted proteins of the present invention matching known proteins were further classified into 3 categories depending on the level of homology.

The first category contains proteins of the present invention exhibiting more than 70% identical amino acid residues on the whole length of the matched protein. They are clearly close homologues which most probably have the same function or a very similar function as the matched protein.

The second category contains proteins of the present invention exhibiting more remote homologies (40 to 70% over the whole protein) indicating that the protein of the present inventionmay have functions similar to those of the homologous protein.

The third category contains proteins exhibiting homology (90 to 100%) to a domain of a known protein indicating that the matched protein and the protein of the invention may share similar features.

It should be noted that the numbering of amino acids in the protein sequences discussed in Figures 10 to 15, and Table VIII, the first methionine encountered is designated as amino acid number 1. In the appended sequence listing, the first amino acid of the mature protein resulting from cleavage of the signal peptide is designated as amino acid · number 1, and the first amino acid of the signal peptide is designated with the appropriate negative number, in accordance with the regulations governing sequence listings.

In addition all of the corrected amino acid sequences (SEQ ED NOs: 141-241 and 378-513) were scanned for the presence of known protein signatures and motifs. This search was performed against the Prosite 15.0 database, using the Proscan software from the GCG package- Functional signatures and their locations are indicated in Table VIII.

15 A) Proteins which are closely related to known proteins

Protein of SEQ ID NO: 217

20

The protein of SEQ ID NO: 217 encoded by the extended cDNA SEQ ID NO: 116 isolated from lymphocyte shows complete identity to a human protein TFAR19 that may play a role in apoptosis (Genbank accession number AF014955, SEQ ID NO: 516) as shown by the alignment in figure 10.

Taken together, these data suggest that the protein of SEQ ID NO: 217 may be involved in the control of development and homeostasis. Thus, this protein may be useful in diagnosis and/or treating several types of disorders including, but not limited to, cancer, autoimmune disorders, viral infections such as AIDS, neurodegenerative disorders, osteoporosis.

25 Proteins of SEQ ID NOs: 174, 175 and 232

The proteins of SEQ ID NOs: 174, 175 and 232 encoded by the extended cDNAs SEQ ID NOs:. 73, 74 and 131 respectively and isolated from lymphocytes shows complete extensive homologies to a human secreted protein (Genseq accession number W36955, SEQ ID NO: 517). As shown by the alignments of figure 11, the amino acid residues are identical to those of the 110 amino acid long matched protein except for positions 51 and 108-110 of the matched protein for the protein of SEQ ID NOs: 174, for positions 48, 94 and 108-110 of the matched protein of SEQ ID NOs:175 and for positions 94, and 108-110 of the matched protein for the protein of SEQ ID NOs: 232. Proteins of SEQ ID NOs: 174 and 232 may represent alternative forms issued from alternative use of polyadenylation signals.

Taken together, these data suggest that the proteins of SEO ID NOs: 174, 175 and 232 may play a role in cell proliferation and/or differentiation, in immune responses and/or in haematopoeisis. Thus, this protein or part therein,

may be useful in diagnosing and treating several disorders including, but not limited to, cancer, immunological, haematological and/or inflammatory disorders. It may also be useful in modulating the immune and inflammatory responses to infectious agents and/or to suppress graft rejection.

5 Proteins of SEQ ID NO: 231

The protein of SEQ ID NO: 231 encoded by the extended cDNA SEQ ID NO: 130 shows extensive homology with the human E25 protein (Genbank accession number AFO38953, SEQ ID NO: 515). As shown by the alignments in figure 12, the amino acid residues are identical except for position 159 in the 263 amino acid long matched sequence. The matched protein might be involved in the development and differentiation of haematopoietic stem/progenitor cells.

10 In addition, it is the human homologue of a murine protein thought to be involved in chondro-osteogenic differentiation and belonging to a novel multigene family of integral membrane proteins (Deleersnijder et al, J. Biol. Chem., 271: 19475-19482 (1996)).

The protein of invention contains two short segments from positions 1 to 21 and from 100 to 120 as predicted by the software TopPred II (Claros and von Heijne, *CABIOS applic. Notes*, 10 : 685-686 (1994)). The first transmembrane domains matches exactly those predicted for the murine E25 protein.

Taken together, these data suggest that the protein of SEQ ID NO: 231 may be involved in cellular proliferation and differentiation. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer and embryogenesis disorders.

20 Protein of SEQ ID NO: 196

The protein of SEQ ID NO: 196 encoded by the extended cDNA SEQ ID NO: 95 shows extensive homology with the human seventransmembrane protein (Genbank accession number Y11395, SEQ ID NO: 518) and its murine homologue (Genbank accession number Y11550). As shown by the alignments in figure 13, the amino acid residues are identical except for position 174 in the 399 amino acid long human matched sequence. The matched protein potentially associated to stomatin may act as a G-protein coupled receptor and is likely to be important for the signal transduction in neurons and haematopoietic cells (Mayer et al, Biochem. Biophys. Acta., 1395 : 301-308 (1998)).

Taken together, these data suggest that the protein of SEQ ID NOs: 196 may be involved in signal transduction. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, neurodegenerative diseases cardiovascular disorders, hypertension, renal injury and repair and septic shock.

Protein of SEQ ID NO: 158

The protein of SEQ ID NOs: 158 encoded by the extended cDNA SEQ ID NO: 57 shows homology with the murine subunit 7a of the COP9 complex (Genbank accession number AF071316, SEQ ID NO: 520). As shown by the

alignments in figure 14, the amino acid residues are identical except for positions 90, 172 and 247 in the 275 amino acid long matched sequence. This complex is highly conserved between mammals and higher plants where it has been shown to act as a repressor of photomorphogenesis All the components of the mammalian COP9 complex contain structural features also present in components of the proteasome regulatory complex and the translation initiation complex eIF3 complex, suggesting that the mammalian COP9 complex is an important cellular regulator modulating multiple signaling pathways (Wei et al, Curr. Biol., 8: 919-922 (1998)).

Taken together, these data suggest that the protein of SEQ ID NO: 158 may be involved in cellular signaling, probably as a subunit of the human COP9 complex. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, neurodegenerative diseases, cardiovascular disorders, hypertension, renal injury and repair and septic shock.

Protein of SEQ ID NO: 226

The protein of SEQ ID NO: 226 encoded by the extended cDNA SEQ ID NO: 125 shows homology with the bovine subunit B14.5B of the NADH-ubiquinone oxidureductase complex (Arizmendi *et al., FEBS Lett.*, 313: 80-84 (1992) and Swissprot accession -number Q02827, SEQ ID NO: 514). As shown by the alignments in figure 15, the amino acid residues are identical except for positions 3-4, 6-12, 32-34, 47, 53-55, 67 and 69-74 in the 120 amino acid long matched sequence. This complex is the first of four complexes located in the inner mitochondrial membrane and composing the mitochondrial electron transport chain. Complex I is involved in the dehydrogenation of NADH and the transportation of electrons to coenzyme Q. It is composed of 7 subunits encoded by the mitochondrial genome and 34 subunits encoded by the nuclear genome. It is also thought to play a role in the regulation of apoptosis and necrosis. Mitochondriocytopathies due to complex I deficiency are frequently encountered and affect tissues with a high energy demand such as brain (mental retardation, convulsions, movement disorders), heart (cardiomyopathy, conduction disorders), kidney (Fanconi syndrome), skeletal muscle (exercise intolerance, muscle weakness, hypotonia) and/or eye (opthmaloplegia, ptosis, cataract and retinopathy). For a review on complex I see Smeitink *et al., Hum. Mol. Gent.*, 7: 1573-1579 (1998).

Taken together, these data suggest that the protein of SEQ ID NO: 226 may be part of the mitochondrial energy-generating system, probably as a subunit of the NADH-ubiquinone oxidoreductase complex. Thus, this protein or part therein, may be useful in diagnosing and/or treating several disorders including, but not limited to, brain disorders (mental retardation, convulsions, movement disorders), 'heart disorders (cardiomyopathy, conduction disorders), kidney disorders (Fanconi syndrome), skeletal muscle disorders (exercise intolerance, muscle weakness, hypotonia) and/or eye disorders opthmalmoplegia, ptosis, cataract and retinopathy).

B) Proteins which are remotely related to proteins with known functions Proteins of SEQ ID NOs: 149, 150 and 211

The proteins of SEQ ID NOs: 1.49,150 and 211 encoded by the extended cDNAs SEQ ID NOs: 48, 49 and 110 respectively and found in, skeletal muscle shows homologies with T1/ST2 ligand polypeptide of either human (Genbank accession number U41804 and Genseq accession number W09639) or rodent species (Genbank accession number U41805 and Genseq accession number W09640). These polypeptides are thought to be cytokines that bind to the ST2 receptor, a member of the immunoglobulin family homologous to the interleukin-1 receptor and present on some lymphoma cells. They are predicted to be cell-surface proteins containing a short transmembrane domain. (Gayle et al, J. Biol. Chem., 271: 5784-5789 (1996)). Proteins of SEQ ID NOs: 149, 150 and 211 may represent alternative forms issued from alternative use of polyadenylation signals.

The protein of invention contains two short transmembrane segments from positions 5 to 25 and from 195 to 215 as predicted by the software TopPred II (Claros and von Heijne, *CABIOS applic. Notes*, **10**:685-686 (1994)). The second transmembrane domain matches exactly those of the matched cell-surface protein.

Taken together, these data suggest that the protein of SEQ ID NOs: 149, 150 and 211 may act as a cytokine, thus may play a role in the regulation of cell growth and differentiation and/or in the regulation of the immune response.

Thus, this protein or part therein, may be useful in diagnosing and treating several disorders including, but not limited to, cancer, immunological, haematological and/or inflammatory disorders. It may also be useful in modulating the immune and inflammatory responses to infectious agents such as HIV and/or to suppress graft rejection.

Protein of SEQ ID NO: 177

The protein SEQ ID NO: 177 found in testis encoded by the extended cDNA SEQ ID NO: 76 shows homologies to serine protease inhibitor proteins belonging to the pancreatic trypsin inhibitor family (Kunitz) such as the extracellular proteinase inhibitor named chelonianin (Swissprot accession number P00993). The characteristic PROSITE signature of this family is conserved in the protein of the invention (positions 69 to 87) except for a drastic change of the last cysteine residue into an arginine residue.

Taken together, these data suggest that the protein of SEQ ID NO: 177 may be a protease inhibitor, probably of the Kunitz family. Thus, this protein or part therein, may be useful in diagnosing and treating several disorders including but not limited to, cancer and neurodegenerative disorders such as Alzheimer's disease.

Protein of SEQ ID NO: 146

The protein SEQ ID NO: 146 encoded by the extended cDNA SEQ ID NO: 45 shows homology to human apolipoprotein L (Genbank accession number AFO19225). The matched protein is a secreted high density lipoprotein associated with apoA-I-containing lipoproteins which play a key role in reverse cholesterol transport.

Taken together, these data suggest that the protein of SEQ ID NO. 146 may play a role in lipid metabolism. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to,

hyperlipidemia, hypercholesterolemia, atherosclerosis, cardiovascular disorders such as, coronary heart disease, and neurodegenerative disorders such as Alzheimer's disease or dementia.

Protein of SEQ ID NO: 163

5

The protein SEQ ED NO: 163 encoded by the extended cDNA SEQ ID NO: 62 shows homology to the yeast autophagocytosis protein AUT1 (SwissProt accession number P40344). The matched protein is required for starvation-induced non-specific bulk transport of cytoplasmic proteins to the vacuole.

Taken together, these data suggest that the protein of SEQ ID NO: 163 may play a role in protein transport.

Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to,
autoimmune disorders and immune disorders due to dysfunction of antigen presentation.

C) Proteins homologous to a domain of a protein with known function

Protein of SEQ ID NO: 214

The protein of SEQ ID NO: 214 encoded by the extended cDNA SEQ ID NO: 113 and expressed in adult brain shows extensive homology to part of the murine SHYC protein (Genbank accession number AF072697) which is expressed in the developing and embryonic nervous system as well as along the olfactory pathway in adult brains (Köster et al., Neuroscience Letters., 252: 69-71 (1998)).

Taken together, these data suggest that the protein of SEQ ID NO: 214 may play a role in nervous system development and function. Thus, this protein may be useful in diagnosing and/or treating cancer and/or brain disorders, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases.

Protein of SEQ ID NO: 225

The protein of SEQ ID NO: 225 encoded by the extended cDNA SEQ ID NO: 124 and expressed in adult prostate belong to the phosphatidylethanolainin-binding protein from which it exhibits the characteristic PROSITE signature from positions 90 to 112 (see table VIII). Proteins from this widespread family, from nematodes to fly, yeast, rodent and primate species, bind hydrophobic ligands such as phospholipids and nucleotides. They are mostly expressed in brain and in testis and are thought to play a role in cell growth and/or maturation, in regulation of the sperm maturation, motility and 'in membrane remodeling. They may act either through signal transduction or through oxidoreduction reactions (for a review see Schoentgen and Jollès, FEBS Letters, 369 : 22-26 (1995)).

Taken together, these data suggest that the protein of SEQ ID NO: 225 may play a role in cell. Thus, these growth, maturation and in membrane remodeling and/or may be related to male fertility. Thus, this protein may be useful in diagnosing and/or treating cancer, neurodegenerative diseases, and/of, disorders related to male fertility and sterility.

Protein of SEQ ID NO: 153

30

The protein of SEQ ID NO: 153 encoded by the extended cDNA SEQ ID NO. 52 and expressed in brain exhibits homology to different integral membrane proteins. These membrane proteins include the nematode protein SRE-2 (Swissprot accession number Q09273) that belongs to the multigene SRE family of *C. elegans* receptor-like proteins and a family of tricarboxylate carriers conserved between flies and mammals. One member of this matched family is the rat tricarboxylate carrier (Genbank accession number S70011), an anion transporter localized in the inner membrane of mitochondria and involved in the biosynthesis of fatty acids and cholesterol. The protein of the invention contains a short transmembrane segments from positions 5 to 25 as predicted by the software TopPred II (Claros and von Heijne, *CABIOS applic. Notes*, 10:685-686 (1994)).

Taken together, these data suggest that the protein of SEQ ID NO: 153 may play a role in signal transduction
and/or in molecule transport. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, neurodegenerative diseases, immune disorders, cardiovascular disorders, hypertension, renal injury and repair and septic shock

Protein of SEQ ID NO: 213

The protein of SEQ ID NO: 213 encoded by the extended cDNA SEQ ID NO: 112 and expressed in brain exhibits homology with part of the tRNA pseudouridine 55 synthase found in *Escherichia Coli* (Swissprot accession number P09171). This bacterial protein belongs to the NAP57/CBF5/TRUB family of nucleolar proteins found in bacteria, yeasts and mammals involved in rRNA or tRNA biosynthesis, ribosomal subunit assembly and/or centromere/mircotubule binding.

Taken together, these data suggest that the protein of SEQ ID NO: 213 may play a role in rRNA or tRNA biogensis and function. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, hearing loss or disorders linked to chromosomal instability such as dyskeratosis.

Protein of SEQ ED NO: 240

20

The protein of SEQ ID NO: 240 encoded by the extended cDNA SEQ ID NO: 139 and expressed in brain exhibits homology with a family of eukaryotic cell surface antigens containing 4 transmembrane domains. The PROSITE signature for this family is conserved in the protein of the invention except for a substitution of an alanine residue in place of any of the following hydrophic residues: leucine, valine, isoleucine or methionine (positions 21 to 36).

The protein of the invention contains three short transmembrane segments from positions 6 to 26, 32 to 52

30 and from 56 to 76 as predicted by the software TopPred II (Claros and von Heijne, *CABIOS applic. Notes*, 10: 685-686 (1994)). These transmembrane domains match the last three transmembrane domains of the matched protein family.

Taken together, these data suggest that the protein of SEO ID NO: 240 may play a role in immunological and/or inflammatory responses, probably as a cell surface antigen. Thus, this protein or part therein, may be useful in diagnosing and treating several disorders including, but not limited to, cancer, immunological, haematological and/or

inflammatory disorders. It may also be useful in modulating the immune and inflammatory responses to infectious agents and/or to suppress graft rejection.

Protein of SEQ ID NO: 239

5

10

The protein of SEQ ID NO: 239 encoded by the extended cDNA SEQ ID NO: 138 exhibits homology with a conserved region in a family of NA+/H+ exchanger conserved in yeast, nematode and mammals. These cation/proton exchangers are integral membrane proteins with 5 transmembrane segments involved in intracellular pH regulation, maintenance of cell volume, reabsorption of sodium across specialized epithelia, vectorial transport and are also thought to play a role in signal transduction and especially in the induction of cell proliferation and in the induction of apoptosis.

The protein of invention contains four short transmembrane segments from positions 21 to 41, 48 to 68 and from 131 to 151 as predicted by the software TopPred II (Claros and von Heijne, *CABIOS applic. Notes*, 10: 685-686 (1994)). The third and fourth transmembrane domains match the fourth and fifth transmembrane segments of the matched family of proteins.

Taken together, these data suggest that the protein of SEQ ID NO: 239 may play a role in membrane

15 permeability and/or in signal transduction. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, neurodegenerative diseases, cardiovascular disorders, hypertension, renal injury and repair, septic shock as well as disorders of membrane permeability such as diarrhea.

Protein of SEQ ID NO: 200

The protein of SEQ ID NO: 200 encoded by the extended cDNA SEQ ED NO: 99 and expressed in brain exhibits extensive homology to the N-terminus of cell division cycle protein 23 (Genbank accession number AF053977) and also to a lesser extent to its homologue in *Saccharomyces cerevisiae*. The matched protein is required for chromosome segregation and is part of the anaphae-promoting complex necessary for cell cycle progression to mitosis.

Taken together, these data suggest that the protein of SEQ ID NO: 200 may play a role in cellular mitosis.

Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer and leukemia.

Protein of SEQ ID NO: 230

The protein of SEQ ID NO: 230 encoded by the extended cDNA SEQ ID NO: 129 exhibits extensive homology to the C-terminus of the eta subunit of T-complex polypeptide 1 conserved from yeasts to mammals, and even complete identity with the last 54 amino acid residues of the human protein (Genbank accession number AF026292). The matched protein is a chaperonin which assists the folding of actins and tubulins in eukaryotic cells upon ATP hydrolysis.

Taken together, these data suggest that the protein of SEQ ID NO: 230 may play a role in the folding, transport, assembly and degradation of proteins. Thus, this protein may be useful in diagnosing and/or treating several

types of disorders including, but not limited to, cancer, cardiovascular disorders, immune disorders, neurodegenerative disorders, osteoporosis and arthritis.

Protein of SEQ ED NO: 167

The protein of SEQ ID NO: 167 encoded by the extended cDNA SEQ ID NO: 66 exhibits homology to a monkey pepsinogen A-4 precursor (Swissprot accession number P27678) and to related members of the aspartyl protease family. The matched protein belongs to a family of widely distributed proteolytic enzymes known to exist in vertebrate, fungi, plants, retroviruses and some plant viruses.

Taken together, these data suggest that the protein of SEQ ID NO: 167 may play a role in the degradation of proteins. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, autoimmune disorders and immune disorders due to dysfunction of antigen presentation.

Protein of SEQ ID NO: 179

The protein of SEQ ID NO: 179 encoded by the extended cDNA SEQ ID NO: 78 found in testis exhibits

homology to part of mammalian colipase precursors. Colipases are secreted cofactors for pancreatic lipases that allow the lipase to anchor at the water-lipid interface. Colipase plays a crucial role in the intestinal digestion and absorption of dietary fats. The 5 cysteines characteristic for this protein family are conserved in the protein of the invention although the colipase PROSITE signature is not.

Taken together, these data suggest that the protein of SEQ ED NO: 179 may play a role in the lipid metabolism and/or in male fertility. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, hyperlipidemia, hypercholesterolemia, atherosclerosis, cardiovascular disorders such as coronary heart disease, and neurodegenerative disorders such as Alzheimer's disease or dementia, and disorders linked to male fertility.

25 Protein of SEQ ID NO: 227

The protein of SEQ ID NO: 227 encoded by the extended cDNA SEQ ID NO: 126 exhibits extensive homology to the ATP binding region of a whole family of serine/threonine protein kinases belonging to the CDC2/CDC28 subfamily. The PROSITE signature characteristic for this domain is present in the protein of the invention from positions 10 to 34.

Taken together, these data suggest that the protein of SEQ ED NO: 158 may bind ATP, and even be a protein kinase. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, neurodegenerative diseases, cardiovascular disorders, hypertension, renal injury and repair and septic shock.

Although this invention has been described in terms of certain preferred embodiments, other embodiments which will be apparent to those of ordinary skill in the art in view of the disclosure herein are also within the scope of this invention. Accordingly, the scope of the invention is intended to be defined only by reference to the appended claims.

As discussed above, the extended cDNAs of the present invention or portions thereof can be used for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to 10 compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination for expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or 15 potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins or polypeptides provided by the present invention can similarly be used in assays to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit 20 another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other 25 protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing 30 such methods include without limitation "Molecular Cloning; A Laboratory Manual", 2d ed., Cole Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology; Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a

nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

SEQUENCE LISTING FREE TEXT

The following free text appears in the accompanying Sequence Listing: In vitro transcription product oligonucleotide

5 promoter

transcription start site

Von Heijne matrix

Score

matinspector prediction

10 name

TABLE I

	,	
SEQ ID NO. in Present application	Provisional Application Disclosing Sequence	SEQ ID NO. in provisional application
40	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	51
41	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	72
42	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	52
43	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	78
44	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	73
45	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	41
46	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	67
47	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	82
48	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	80
49	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	81
50	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	53
51	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	54
52	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	195
53	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	44
54	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	46
55	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	68
56	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	48
57	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	55
58	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	49
59	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	50
60	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	97
61	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	51
62	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	69
63	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	49
64	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	199
65	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	53
66	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	57
67	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	54
68	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	55
69	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	58
70	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	59

CONT. TABLE I		·.
71	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	60
72	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	112
73	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	52
74	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	59
75	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	60
76	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	136
77	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	75
78	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	61
79	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	61
80	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	130
81	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	65
82	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	54
83	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	78
84	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	63
85	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	65
86	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	152
87	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	66
88	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	67
89	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	60
90	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	68
91	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	61
92	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	62
93	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	166
94	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	70
95	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	73
96	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	63
97	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	52
98	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	62
99	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	176
100	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998,	63
101	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	187
102	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	190
103	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	83
104	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	180
105	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	64
106	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	69

ΠN			

CONT. TABLE I		·.
107	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	40
108	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	77
109	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	43
110	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	82
111	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	76
112	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	43
113	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	46
114	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	47
115	U.S. Provisional Patent Application Serial No. 60/066,677, filed Nov. 13, 1997	53
116	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	58
117	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	74
118	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	71
119	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	145
120	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	67
121	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	58
122	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	72
123	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	73
124	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	70
125	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	40
126	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	44
127	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	45
128	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	47
129	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	48
130	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	51
131	U.S. Provisional Patent Application Serial No. 60/066,677, filed Nov. 13, 1997	50
132	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	56
133	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	57
134	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	71
135	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	72
136	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	64
137	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	65
138	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	66
139	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	74
140	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	67
242	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	75
243	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	76

CONT. TABLE I		٠.
244	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	77
245	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	78
246	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	79
247	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	80
248	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	81
249	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	82
250	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	83
251	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	84
252	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	85
253	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	86
254	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	87
255	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	88
256	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	89
257	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	90
258	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	91
259	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	92
260	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	93
261	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	94
262	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	95
263	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	96
264	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	97
265	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	98
266	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	99
267	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	100
268	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	101
269	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	102
270	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	103
271	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	104
272	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	105
273	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	106
274	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	107
275	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	108
276	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	109
277	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	110
278	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	111
279	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	112

CONT.	TABLE	Į
		•

CONT. TABLE I		٠.
280	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	113
281	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	114
282	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	115
283	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	116
284	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	117
285	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	118
286	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	119
287	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	120
288	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	121
289	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	122
290	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	123
291	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	124
292	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	125
293	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	126
294	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	127
295	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	128
296	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	129
297	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	130
298	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	131
299	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	132
300	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	133
301	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	134
302	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	135
303	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	136
304	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	137
305	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	138
306	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	139
307	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	140
308	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	141
309	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	142
310	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	143
311	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	144
312	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	145
313	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	146
314	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	147
315	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	148

CONT. TABLE I

	*•
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	149
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	150
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	151
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	152
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	153
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	154
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	155
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	156
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	157
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	158
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	159
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	160
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	161
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	162
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	163
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	164
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	165
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	166
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	167
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	168
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	169
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	170
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	171
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	172
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	173
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	174
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	175
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	176
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	177
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	178
U.S. Provisional Patent Application Serial No. 60/D69,957, filed Dec. 17, 1997	179
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	180
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	181
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	182
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	183
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	184
	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 1

CONT. TABLE I

GOIVI. TABLE !		
352	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	185
353	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	186
354	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	187
355	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	188
356	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	189
357	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	190
358	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	191
359	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	192
360	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	193
361	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	194
362	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	195
363	L.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	196
364	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	197
365	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	1998
366	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	199
367	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	200
368	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	201
369	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	202
370	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	203
371	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	204
372	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	205
373	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	206
374	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	207
375	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	208
376	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	209
377	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	210

TABLE II: Parameters used for each step of EST analysis

		Search Charac	teristics	Selection Charac	Selection Characteristics	
Step	Program	Strand	Parameters	Identity (%))	Length (bp)	
Miscellaneous	Blastn	both	S-61 X-16	90	17	
tRNA	Fasta	both	•	80	60	
rRNA	Blastn	both	S=108	80	40	
mtRNA	Blastn	both	S-108	80	40	
Procaryotic	Blastn	both	S=144	90	40	
Fungal	Blastn	both	S=144	90	40	
Alu	fasta*	both	-	70	40	
L1	Blastn	both	S-72	70	40	
Repeats	Blastn	both	S-72	70	40	
Promoters	Biastn	top	S-54 X-16	90	15⊥	
Vertebrate	fasta*	both	S=108	90	30	
ESTs	Blatsn	both	S-108 X-16	90	30	
Proteins	blastxŋ	top	E=0.001	-		

^{*} use "Quick Fast" Database Scanner

 $[\]boldsymbol{\bot}$ alignment further constrained to begin closer than 10bp to EST\5' end

 $^{5 \}quad \eta \quad \text{using BLOSUM62 substitution matrix}$

TABLE III: Parameters used for each step of extended cDNA analysis

	Search characte	ristics		Selection characteristics		
Step	Program	Strand	Parameters	Identity (%)	Length (bp)	Comments
miscellaneous •	FASTA	both	-	90	15	
tRNA'	FASTA	both		80	90	
rRNA'	BLASTN	both	S-108	80	40	
mtRNA*	BLASTN	both	S-108	80	40	
Procaryotic*	BLASTN	both	S-144	90	40	
Fungal*	BLASTN	both	S-144	90	40	
Alu*	BLASTN	both	S-72	70	40	max 5 matches, masking
L1'	BLASTN	both	S-72	70	40	max 5 matches, masking
Repeats*	BLASTN	both	S-72	70	40	masking
PolyA	BLAST2N	top	W-6,S-10,E-1000	90	8	in the last 20 nucleotides
Polyadenylati on signal	-	top	AATAAA allowing 1 mis	match	<u> </u>	in the 50 nucleotides preceding the 5' end of the polA
Vertebrate*	BLASTN then FASTA	both		90 then 70	30	first BLASTN and then FASTA on matching sequences
ESTs*	BLAST2N	both		90	30	
Geneseq	BLASTN	both	W-8, B-10	90	30	
ORF	BLASTP	top	W-8, B-10			on ORF proteins, max 10 matches
Proteins*	BLASTX	top	E=0.001	70	30	

^{*} steps common to EST analysis and using the same algorithms and parameters
5 * steps also used in EST analysis but with different algorithms and/or parameters

TABLE IV

ld	FCS Location	SigPep Location	Mature Polypeptide Location	Stop Codon Location	PolyA Signal Location	PolyA Site Location
40	7 through 471	7 through 99	100 through 471	472	537 through 542	554 through 568
41	168 through 332		168 through 332	333	557 through 562	•
42	51 through 251	51 through 110	111 through 251	252	849 through 854	882 through 895
43	20 through 613	20 through 82	83 through 613	614		•
44	12 through 416	12 through 86	87 through 416	417	425 through 430	445 through 458
45	276 through 1040	276 through 485	486 through 1040	1041	·	2024 through 2036
46	443 through 619	443 through 589	590 through 619	620		1267 through 1276
47	206 through 747	-	206 through 747	-		•
48	36 through 521	36 through 104	105 through 521	522	528 through 533	548 through 561
49	36 through 395	36 through 104	105 through 395	396	599 through 604	619 through 632
50	21 through 41	•	21 through 41	42	328 through 333	357 through 370
51	35 through 631	35 through 160	161 through 631	632	901 through 906	979 through 994
52	271 through 399	•	271 through 399	400		
53	103 through 252	103 through 213	214 through 252	253		588 through 597
54	2 through 460	-	2 through 460	461	713 through 718	735 through 748
55	31 through 231		31 through 231	232	769 through 774	690 through 703
56	305 through 565	•	305 through 565	566	694 through 699	713 through 725
57	124 through 873	124 through 378	379 through 873	874	1673 through 1678	1694 through 1705
58	135 through 206		135 through 206	207	850 through 855	1056 through 1069
59	135 through 818	•	135 through 818	819	909 through 914	1071 through 1084
60	33 through 290	33 through 92	93 through 290	291		
61	485 through 616	·	485 through 616	617	-	669 through 682
62	54 through 995	54 through 227	228 through 995	996	1130 through 1135	1181 through 1191
63	657 through 923	657 through 896	897 through 923	924	957 through 962	974 through 1008
64	18 through 311	18 through 62	63 through 311	312	-	
65	151 through 426	151 through 258	259 through 426	427	505 through 510	527 through 538
66	10 through 1062	10 through 57	58 through 1062	1063	1710 through 1715	1735 through 1747
67	78 through 491	78 through 218	219 through 491	492	1652 through 1657	1673 through 1686
68	69 through 371	69 through 287	288 through 371	372	510 through 515	530 through 542
69	2 through 757	2 through 205	206 through 757	758	-	1160 through 1174
70	2 through 1051	2 through 205	206 through 1051	1052	1248 through 1253	1272 through 1285
71	2 through 1171	2 through 205	206 through 1171	1172	1368 through 1373	1386 through 1398
72	42 through 611	42 through 287	288 through 611	612	787 through 792	808 through 821
73	62 through 916	62 through 757	758 through 916			904 through 916
74	62 through 520		62 through 520	521	1124 through 1129	1141 through 1153
75	21 through 167		21 through 167	168		
76	22 through 318	22 through 93	94 through 318	319	497 through 502	516 through 526
77	8 through 292	8 through 118	119 through 292	293	317 through 322	339 through 352
78	16 through 378	16 through 84	85 through 378	379	502 through 507	522 through 542

CONT. TABLE IV

	. TABLE IV			,	, · · · · · · · · · · · · · · · · · · ·	
79	57 through 233		57 through 233	•	•	·
80	83 through 340	83 through 124	125 through 340	341	573 through 578	607 through 660
81	47 through 541	47 through 220	221 through 541	542		597 through 605
82	46 through 285	46 through 150	151 through 285	286	364 through 369	385 through 396
83	22 through 240	22 through 84	85 through 240	241	397 through 402	421 through 432
84	89 through 382	•	89 through 382	383		408 through 420
85	80 through 415	80 through 142	143 through 415	416	471 through 476	488 through 501
86	152 through 361	152 through 283	284 through 361	362		•
87	32 through 307	32 through 70	71 through 307	308	1240 through 1245	1261 through 1272
88	114 through 734	114 through 239	240 through 734	735	768 through 773	793 through 804
89	199 through 802		199 through 802		780 through 785	791 through 802
90	38 through 1174	38 through 148	149 through 1174	1175	1452 through 1457	1478 through 1490
91	26 through 361		26 through 361	:		350 through 361
92	3 through 131		3 through 131	132		591 through 605
93 -	33 through 185	33 through 80	81 through 185	186	570 through 575	586 through 591
94	184 through 915	184 through 237	238 through 915	916	1119 through 1124	1139 through 1150
95	58 through 1116	58 through 159	160 through 1116	1117	1486 through 1491	1504 through 1513
96	327 through 417		327 through 417	-		404 through 417
97	63 through 398	63 through 206	207 through 398	399	-	
98	2 through 163	·	2 through 163	164	488 through 493	511 through 522
99	13 through 465	13 through 75	76 through 465	466		-
100	20 through 703	20 through 94	95 through 703	704	1000 through 1005	1023 through 1041
101	103 through 294	103 through 243	244 through 294	295		1.
102	81 through 518	81 through 173	174 through 518	519		1:
103	66 through 326		66 through 326	327	1066 through 1071	1087 through 1098
104	170 through 289	170 through 250	251 through 289	290		
105	36 through 497		36 through 497	498	650 through 655	663 through 685
106	18 through 320		18 through 320	321	539 through 544	542 through 554
107	71 through 1438	71 through 136	137 through 1438	1439	1644 through 1649	1665 through 1678
108	25 through 318	25 through 75	76 through 318	319	452 through 457	482 through 494
109	84 through 332	84 through 170	171 through 332	333	•	702 through 714
110	32 through 718	32 through 100	101 through 718	719	770 through 775	793 through 805
111	26 through 481	26 through 88	89 through 481	482	755 through 760	775 through 787
112	26 through 562	26 through 187	188 through 562	563	·	1.
113	4 through 810	4 through 279	280 through 810	811	858 through 863	881 through 893
114	55 through 459	55 through 120	121 through 459	460	1444 through 1449	1462 through 1475
115	48 through 248	48 through 161	162 through 248	249	283 through 288	308 through 321
116	25 through 399	25 through 186	187 through 399	400		·
117	10 through 1137	10 through 72	73 through 1137	1138	1144 through 1149	1162 through 1173
118	72 through 704	72 through 161	162 through 704	705	772 through 777	
119	44 through 505	44 through 223	224 through 505	506		
120	25 through 393	25 through 150	151 through 393	394	734 through 739	757 through 770

CONT. TABLE IV

CON	T. TABLE IV			•		·
121	58 through 1095	58 through 114	115 through 1095	1096	•	1202 through 1213
122	31 through 660	31 through 90	91 through 660	661	1288 through 1293	1307 through 1318
123	31 through 582	31 through 90	91 through 582	583	816 through 821	840 through 853
124	15 through 695	15 through 80	81 through 695	696	795 through 800	814 through 826
125	74 through 295	74 through 196	197 through 295	296	545 through 550	561 through 571
126	440 through 659		440 through 659	·	601 through 606	1.
127	38 through 283	38 through 85	86 through 283	284	257 through 262	•
128	121 through 477	121 through 288	289 through 477	-	·	1.
129	2 through 163	•	2 through 163	164	292 through 297	310 through 323
130	46 through 675	46 through 87	88 through 675	676	1364 through 1369	1383 through 1392
131	62.through 385	•	62 through 385	386	974 through 979	987 through 999
132	422 through 550	422 through 475	476 through 550	551		714 through 725
133	124 through 231	-	124 through 231	232	•	387 through 400
134	131 through 1053	131 through 169	170 through 1053		1019 through 1024	
135	86 through 403	86 through 181	182 through 403	404	1097 through 1102	1117 through 1128
136	37 through 162	37 through 93	94 through 162	163	224 through 229 .	243 through 254
137	31 through 381	31 through 90	91 through 381	382	•	875 through 886
138	46 through 579	46 through 156	157 through 579	580	•	·
139	92 through 471	92 through 172	173 through 471		454 through 459	458 through 471
140	154 through 675	154 through 498	499 through 675	676	819 through 824	838 through 849
242	18 through 173	18 through 77	78 through 173	174	864 through 869	882 through 893
243	17 through 595	17 through 85	86 through 595	596	820 through 825	840 through 851
244	89 through 334	89 through 130	131 through 334	335	462 through 467	484 through 495
245	21 through 614	21 through 83	84 through 614	615	849 through 854	873 through 884
246	94 through 573	94 through 258	259 through 573	574	862 through 867	886 through 897
247	74 through 397	74 through 127	128 through 397	398	472 through 477	507 through 518
248	51 through 242	51 through 116	117 through 242	243	319 through 324	339 through 350
249	111 through 191	111 through 155	156 through 191	192	965 through 970	986 through 996
250	45 through 602	45 through 107	108 through 602	603	828 through 833	850 through 860
251	24 through 560	24 through 101	102 through 560	561	563 through 568	583 through 593
252	109 through 558	109 through 273	274 through 558	559	·	1104 through 1114
253	128 through 835	128 through 220	221 through 835	836	1145 through 1150	1170 through 1181
254	59 through 505	59 through 358	359 through 505	506	1042 through 1047	1062 through 1073
255	1 through 207	1 through 147	148 through 207	208	784 through 789	807 through 818
256	12 through 734	12 through 101	102 through 734	.735	914 through 919	961 through 971
257	378 through 518	378 through 467	468 through 518	519	607 through 612	628 through 640
258	110 through 304	110 through 193	194 through 304	305	708 through 713	732 through 743
259	201 through 419	201 through 272	273 through 419	420	601 through 606	627 through 637
260	123 through 302	123 through 176	177 through 302	303	1279 through 1284	1301 through 1312
261	98 through 673	98 through 376	377 through 673	674	-	1025 through 1035
262	17 through 463	17 through 232	233 through 463	464	657 through 662	684 through 696
263	263 through 481	263 through 322	323 through 481	482		858 through 868
		<u></u>			L	

CONT TARIEIV

265 198 through 431 198 through 260 261 through 431 432 - 1064 266 279 through 473 279 through 362 363 through 473 474 944 through 949 970 th 267 12 through 644 12 through 92 93 through 644 645 1002 through 1007 1020 268 91 through 459 91 through 330 331 through 459 460 - 1271 269 70 through 327 70 through 147 148 through 327 328 1741 through 1746 1763 270 12 through 497 12 through 104 105 through 497 498 935 through 940 955 th 271 90 through 383 90 through 200 201 through 383 384 609 through 614 632 th 272 332 through 541 332 through 376 377 through 541 542 739 through 744 761 th 273 43 through 222 43 through 177 178 through 221 223 530 through 535 555 th 274 115 through 231 115 through 180 181 through 231 232 419 through 424 445 th 275 232 through	hrough 775 through 1074 hrough 981 through 1031 through 1281 through 1774 hrough 643 hrough 643 hrough 566 hrough 673 hrough 673 hrough 639 hrough 772
266 279 through 473 279 through 362 363 through 473 474 944 through 949 970 th 267 12 through 644 12 through 92 93 through 644 645 1002 through 1007 1020 268 91 through 459 91 through 330 331 through 459 460 - 1271 269 70 through 327 70 through 147 148 through 327 328 1741 through 1746 1763 270 12 through 497 12 through 104 105 through 497 498 935 through 940 955 th 271 90 through 383 90 through 200 201 through 383 384 609 through 614 632 th 272 332 through 541 332 through 376 377 through 541 542 739 through 744 761 th 273 43 through 222 43 through 177 178 through 222 223 530 through 535 555 th 274 115 through 231 115 through 180 181 through 231 232 419 through 424 445 th 275 232 through 384 232 through 300 301 through 384 385 650 through 655 662 th 276	hrough 981 through 1031 through 1281 through 1774 hrough 967 hrough 643 hrough 773 hrough 566 hrough 455 hrough 673 hrough 639
267 12 through 644 12 through 92 93 through 644 645 1002 through 1007 1020 268 91 through 459 91 through 330 331 through 459 460 - 1271 269 70 through 327 70 through 147 148 through 327 328 1741 through 1746 1763 270 12 through 497 12 through 104 105 through 497 498 935 through 940 955 th 271 90 through 383 90 through 200 201 through 383 384 609 through 614 632 th 272 332 through 541 332 through 376 377 through 541 542 739 through 744 761 th 273 43 through 222 43 through 177 178 through 222 223 530 through 535 555 th 274 115 through 231 115 through 180 181 through 231 232 419 through 424 445 th 275 232 through 384 232 through 300 301 through 384 385 650 through 655 662 th 276 143 through 427 143 through 286 287 through 427 428 606 through 611 628 th 277	through 1031 through 1281 through 1774 hrough 967 hrough 643 hrough 773 hrough 566 hrough 455 hrough 673 hrough 639
268 91 through 459 91 through 330 331 through 459 460 - 1271 269 70 through 327 70 through 147 148 through 327 328 1741 through 1746 1763 270 12 through 497 12 through 104 105 through 497 498 935 through 940 955 th 271 90 through 383 90 through 200 201 through 383 384 609 through 614 632 th 272 332 through 541 332 through 376 377 through 541 542 739 through 744 761 th 273 43 through 222 43 through 177 178 through 222 223 530 through 535 555 th 274 115 through 231 115 through 180 181 through 231 232 419 through 424 445 th 275 232 through 384 232 through 300 301 through 384 385 650 through 655 662 th 276 143 through 427 143 through 286 287 through 427 428 606 through 611 628 th 277 284 through 463 294 through 379 380 through 463 464 - 762 th	through 1281 through 1774 hrough 967 hrough 643 hrough 773 hrough 566 hrough 455 hrough 673 hrough 639
269 70 through 327 70 through 147 148 through 327 328 1741 through 1746 1763 270 12 through 497 12 through 104 105 through 497 498 935 through 940 955 th 271 90 through 383 90 through 200 201 through 383 384 609 through 614 632 th 272 332 through 541 332 through 376 377 through 541 542 739 through 744 761 th 273 43 through 222 43 through 177 178 through 222 223 530 through 535 555 th 274 115 through 231 115 through 180 181 through 231 232 419 through 424 445 th 275 232 through 384 232 through 300 301 through 384 385 650 through 655 662 th 276 143 through 427 143 through 286 287 through 427 428 606 through 611 628 th 277 284 through 463 294 through 379 380 through 463 464 - 762 th	through 1774 hrough 967 hrough 643 hrough 773 hrough 566 hrough 455 hrough 673 hrough 639
270 12 through 497 12 through 104 105 through 497 498 935 through 940 955 through 955 through 940 271 90 through 383 90 through 200 201 through 383 384 609 through 614 632 through 521 272 332 through 541 332 through 376 377 through 541 542 739 through 744 761 through 273 273 43 through 222 43 through 177 178 through 222 223 530 through 535 555 through 274 274 115 through 231 115 through 180 181 through 231 232 419 through 424 445 through 275 232 through 384 232 through 300 301 through 384 385 650 through 655 662 through 276 276 143 through 427 143 through 286 287 through 427 428 606 through 611 628 through 463 277 284 through 463 294 through 379 380 through 463 464 . 762 through 384	hrough 967 hrough 643 hrough 773 hrough 566 hrough 455 hrough 673
271 90 through 383 90 through 200 201 through 383 384 609 through 614 632 th 272 332 through 541 332 through 376 377 through 541 542 739 through 744 761 th 273 43 through 222 43 through 177 178 through 222 223 530 through 535 555 th 274 115 through 231 115 through 180 181 through 231 232 419 through 424 445 th 275 232 through 384 232 through 300 301 through 384 385 650 through 655 662 th 276 143 through 427 143 through 286 287 through 427 428 606 through 611 628 th 277 284 through 463 294 through 379 380 through 463 464 - 762 th	hrough 643 hrough 773 hrough 566 hrough 455 hrough 673 hrough 639
272 332 through 541 332 through 376 377 through 541 542 739 through 744 761 th 273 43 through 222 43 through 177 178 through 222 223 530 through 535 555 th 274 115 through 231 115 through 180 181 through 231 232 419 through 424 445 th 275 232 through 384 232 through 300 301 through 384 385 650 through 655 662 th 276 143 through 427 143 through 286 287 through 427 428 606 through 611 628 th 277 284 through 463 294 through 379 380 through 463 464 - 762 th	hrough 773 hrough 566 hrough 455 hrough 673 hrough 639
273 43 through 222 43 through 177 178 through 222 223 530 through 535 555 th 274 115 through 231 115 through 180 181 through 231 232 419 through 424 445 th 275 232 through 384 232 through 300 301 through 384 385 650 through 655 662 th 276 143 through 427 143 through 286 287 through 427 428 606 through 611 628 th 277 284 through 463 294 through 379 380 through 463 464 - 762 th	hrough 566 hrough 455 hrough 673 hrough 639
274 115 through 231 115 through 180 181 through 231 232 419 through 424 445 th 275 232 through 384 232 through 300 301 through 384 385 650 through 655 662 th 276 143 through 427 143 through 286 287 through 427 428 606 through 611 628 th 277 284 through 463 294 through 379 380 through 463 464 - 762 th	hrough 455 hrough 673 hrough 639
275 232 through 384 232 through 300 301 through 384 385 650 through 655 662 th 276 143 through 427 143 through 286 287 through 427 428 606 through 611 628 th 277 284 through 463 294 through 379 380 through 463 464 - 762 th	hrough 673 hrough 639
276 143 through 427 143 through 286 287 through 427 428 606 through 611 628 th 277 284 through 463 294 through 379 380 through 463 464 - 762 th	hrough 639
277 284 through 463 294 through 379 380 through 463 464 · 762 th	
	hrough 772
278 162 through 671 162 through 398 399 through 671 672 805 through 810 830 th	
	hrough 840
279 63 through 632 63 through 308 309 through 632 633 808 through 813 829 th	hrough 840
280 21 through 362 21 through 200 201 through 362 363 821 through 826 838 th	hrough 849
281 21 through 503 21 through 344 345 through 503 504 1305 through 1310 1330	through 1341
282 1 through 201 1 through 63 64 through 201 202 637 through 642 660 th	hrough 671
283 39 through 1034 39 through 134 135 through 1034 1035 1566 through 1571 1587	through 1597
284 69 through 263 69 through 125 126 through 263 264 1173 through 1178 1196	through 1205
285 115 through 285 115 through 204 205 through 285 286 505 through 510 525 th	hrough 536
286 90 through 344 90 through 140 141 through 344 345 500 through 505 515 th	hrough 527
287 57 through 311 57 through 107 108 through 311 312 467 through 472 482 th	hrough 493
288 96 through 302 96 through 182 183 through 302 303 - 501 th	hrough 514
289 161 through 526 161 through 328 329 through 526 527 - 799 th	hrough 811
290 210 through 332 210 through 299 300 through 332 333 594 through 599 613 th	hrough 625
291 212 through 361 212 through 319 320 through 361 362 650 through 655 673 th	hrough 684
292 75 through 482 75 through 128 129 through 482 483 595 through 600 618 th	hrough 627
293 50 through 631 50 through 244 245 through 631 632 777 through 782 801 th	hrough 812
294 154 through 576 154 through 360 361 through 576 577 737 through 742 763 th	hrough 775
295 154 through 897 154 through 36D 361 through 897 898 1017 through 1022 1044	through 1054
296 146 through 292 146 through 253 254 through 292 293 395 through 400 433 th	hrough 444
297 126 through 383 126 through 167 168 through 383 . 384 726 through 731 743 th	hrough 754
298 66 through 497 66 through 239 240 through 497 498 594 through 599 618 th	hrough 629
299 49 through 411 49 through 96 97 through 411 412 732 through 737 750 th	hrough 763
300 49 through 534 49 through 96 97 through 534 535 593 through 598 612 th	hrough 623
301 86 through 415 86 through 145 146 through 415 416 540 through 545 560 th	hrough 571
302 56 through 268 56 through 100 101 through 268 269 584 through 589 601 th	hrough 612
303 32 through 328 32 through 103 104 through 328 329 508 through 513 528 th	hrough 539
304 21 through 527 21 through 95 96 through 527 528 921 through 926 953 th	hrough 963
305 147 through 647 147 through 374 375 through 647 648 - 668 th	hrough 681

CONT. TABLE IV

306	262 through 471	262 through 306	207 through 471	470		
207		202 through 500	307 through 471	472	663 through 668	682 through 693
307	74 through 1216	74 through 172	173 through 1216	1217	1627 through 1632	1640 through 1652
308	48 through 164	48 through 89	90 through 164	165	482 through 487	505 through 517
309	185 through 334	185 through 295	296 through 334	335	355 through 360	392 through 405
310	195 through 347	195 through 272	273 through 347	348	1037 through 1042	1071 through 1082
311	90 through 815	90 through 179	180 through 815	816	883 through 888	905 through 916
312	52 through 513	52 through 231	232 through 513	514	553 through 558	572 through 583
313	172 through 438	172 through 354	355 through 438	439	682 through 687	685 through 697
314	148 through 366	148 through 225	226 through 366	367	770 through 775	792 through 803
315	175 through 336	175 through 276	277 through 336	337	• '	812 through 823
316	191 through 553	191 through 304	305 through 553	554	766 through 771	804 through 817
317	106 through 603	106 through 216	217 through 603	604	•	1102 through 1112
318	47 through 586	47 through 124	125 through 586	587	1583 through 1588	1614 through 1623
319	99 through 371	99 through 290	291 through 371	372	491 through 496	513 through 524
320	44 through 814	44 through 112	113 through 814	815		978 through 989
321	3 through 581	3 through 182	183 through 581	582	1.	1006 through 1016
322	107 through 427	107 through 190	191 through 427	428	499 through 504	516 through 529
323	45 through 407	45 through 83	84 through 407	408	1008 through 1013	1032 through 1042
324	201 through 332	201 through 251	252 through 332	333	•	869 through 880
325	217 through 543	217 through 255	256 through 543	544		1206 through 1217
326	18 through 446	18 through 140	141 through 446	447	930 through 935	948 through 959
327	29 through 724	29 through 118	119 through 724	725	886 through 891	910 through 920
328	404 through 586	404 through 466	467 through 586	587	1304 through 1309	1334 through 1344
329	331 through 432	331 through 387	388 through 432	433	548 through 553	573 through 585
330	59 through 703	59 through 220	221 through 703	704	886 through 891	903 through 914
331	672 through 752	672 through 722	723 through 752	753		1150 through 1161
332	57 through 311	57 through 128	129 through 311	312	332 through 337	351 through 363
333	80 through 232	80 through 127	128 through 232	233	617 through 622	634 through 645
334	91 through 291	91 through 219	220 through 291	292	367 through 372	389 through 400
335	196 through 384	196 through 240	241 through 384	385	461 through 466	485 through 496
336	54 through 590	54 through 227	228 through 590	591		955 through 965
337	133 through 846	133 through 345	346 through 846	847		890 through 901
338	138 through 671	138 through 248	249 through 671	672	1319 through 1324	1338 through 1347
339	124 through 411	124 through 186	187 through 411	412	948 through 953	971 through 983
340	372 through 494	372 through 443	444 through 494	495	708 through 713	732 through 745
341	112 through 450	112 through 192	193 through 450	451	1053 through 1058	1095 through 1106
342	117 through 866	117 through 170	171 through 866	867	1159 through 1164	1178 through 1190
343	13 through 465	13 through 75	76 through 465	466	1035 through 1040	1060 through 1070
344	2 through 718	2 through 76	77 through 718	719	1170 through 1175	1203 through 1213
345	86 through 709	86 through 361	362 through 709	710	943 through 948	963 through 973
346	63 through 320	63 through 179	180 through 320	321	771 through 776	799 through 810
347	299 through 418	299 through 379	380 through 418	419	739 through 744	762 through 771

CONT. TABLE IV

CUN	I . I ABLE IV					
348	186 through 380	186 through 233	234 through 380	381	383 through 388	396 through 409
349	69 through 458	69 through 233	234 through 458	459	564 through 569	602 through 613
350	12 through 638	12 through 263	264 through 638	639	951 through 956	975 through 985
351	282 through 389	282 through 332	333 through 389	390	1413 through 1418	1437 through 1447
352	208 through 339	208 through 294	295 through 339	340	·	1631 through 1641
353	69 through 557	69 through 224	225 through 557	558	849 through 854	870 through 883
354	134 through 325	134 through 274	275 through 325	326	•	718 through 729
355	78 through 731	78 through 227	228 through 731	732		1002 through 1013
356	46 through 693	46 through 90	91 through 693	694	937 through 942	962 through 973
357	126 through 527	126 through 182	183 through 527	528	834 through 839	856 through 867
358	66 through 320	66 through 113	114 through 320	321	490 through 495	508 through 519
359	73 through 948	73 through 159	160 through 948	949		1016 through 1028
360	69 through 434	69 through 236	237 through 434	435	419 through 424	441 through 452
361	628 through 804	628 through 711	712 through 804	805	-	864 through 875
362	70 through 366	70 through 108	109 through 366	367	496 through 501	521 through 531
363	70 through 366	70 through 108	109 through 366	367	-	1233 through 1244
364	111 through 434	111 through 185	186 through 434	435	-	618 through 631
365	19 through 567	19 through 63	64 through 567	568	749 through 754	771 through 781
366	19 through 312	19 through 63	64 through 312	313	896 through 901	921 through 931
367	64 through 612	64 through 234	235 through 612	613		839 through 849
368	39 through 458	39 through 80	81 through 458	459	613 through 618	633 through 644
369	9 through 185	9 through 50	51 through 185	186	•	906 through 918
370	14 through 316	14 through 121	122 through 316	317	442 through 447	458 through 471
371	70 through 1092	70 through 234	235 through 1092	1093	1475 through 1480	1493 through 1504
372	274 through 597	274 through 399	400 through 597	598	731 through 736	754 through 765
373	230 through 469	230 through 307	308 through 469	470	1004 through 1009	1027 through 1040
374	72 through 545	72 through 203	204 through 545	546		1151 through 1162
375	36 through 425	36 through 119	120 through 425	426	1215 through 1220	1240 through 1250
376	155 through 751	155 through 340	341 through 751	752	912 through 917	937 through 947
377	46 through 585	46 through 120	121 through 585	586	584 through 589	606 through 619

TABLE V

ld	Full Length Polypeptide Location	Signal Peptide Location	Mature Polypeptide Location
141	-31 through 124	-31 through -1	1 through 124
142	1 through 55		1 through 55
143	-20 through 47	-20 through -1	1 through 47
144	-21 through 177	·21 through ·1	1 through 177
145	-25 through 110	·25 through ·1	1 through 110
146	-70 through 185	-70 through -1	1 through 185
147	-49 through 10	-49 through -1	1 through 10
148	1 through 180		1 through 180
149	-23 through 139	-23 through -1	1 through 139
150	-23 through 97	-23 through -1	1 through 97
		*20 through *1	1 through 7
151	1 through 7	A2 through 1	1 through 157
152	-42 through 157	-42 through -1	
153	1 through 43	27 Abranch 1	1 through 43
154	-37 through 13	-37 through -1	1 through 13
155	1 through 153	<u> </u>	1 through 153
156	1 through 67		1 through 67
157	1 through 87		1 through 87
158	-85 through 165	-85 through -1	1 through 165
159	1 through 24	<u> </u>	1 through 24
160	1 through 228		1 through 228
161	-20 through 66	-20 through -1	1 through 66
162	1 through 44		1 through 44
163	-58 through 256	-58 through -1	1 through 256
164	-80 through 9	-80 through -1	1 through 9
165	-15 through 83	-15 through -1	1 through 83
166	-36 through 56	-36 through -1	1 through 56
167	16 through 335	-16 through -1	1 through 335
168	-47 through 91	-47 through -1	1 through 91
169	-73 through 28	-73 through -1	1 through 28
170	-68 through 184	-68 through -1	1 through 184
171	-68 through 282	-68 through -1	1 through 282
172	-68 through 322	-68 through -1	1 through 322
173	82 through 108	-82 through -1	1 through 108
174	-232 through 53	-232 through -1	1 through 53
175	1 through 153		1 through 153
176	1 through 49	·	1 through 49
177	-24 through 75	-24 through -1	1 through 75
178	37 through 58	-37 through -1	1 through 58
179	-23 through 98	-23 through -1	1 through 98
180	1 through 59		1 through 59
181	·14 through 72	-14 through -1	1 through 72
182	-58 through 107	-58 through -1	1 through 107
183	-35 through 45	-35 through -1	1 through 45
184	-21 through 52	-21 through -1	1 through 52
185	1 through 98		1 through 98
186	-21 through 91	-21 through -1	1 through 91
	-21 through 91	-44 through -1	1 through 26
187		-13 through -1	1 through 79
188	-13 through 79	-13 through -1	1 through 165
189 190	-42 through 165 1 through 201	-42 through -1	1 through 105

CONT. TABLE V			
191	-37 through 342	-37 through -1	1 through 342
192	1 through 112		1 through 112
193	1 through 43		1 through 43
194	-16 through 35	-16 through -1	1 through 35
195	-18 through 226	-18 through -1	1 through 226
196	-34 through 319	-34 through -1	1 through 319
197	1 through 30		1 through 30
198	-48 through 64	-48 through -1	1 through 64
199	1 through 54		1 through 54
200	-21 through 130	-21 through -1	1 through 130
201	-25 through 203	-25 through -1	1 through 203
202	-47 through 17	-47 through -1	1 through 17
203	-31 through 115	-31 through -1	1 through 115
204	1 through 87		1 through 87
205	-27 through 13	-27 through -1	1 through 13
206	1 through 154	•	1 through 154
207	1 through 101	·	1 through 101
208	-22 through 434	-22 through -1	1 through 434
209	-17 through 81	-17 through -1	1 through 81
210	-29 through 54	-29 through -1	1 through 54
211	-23 through 206	-23 through -1	1 through 206
212	-21 through 131	-21 through -1	1 through 131
213	-54 through 125	-54 through -1	1 through 125
214	·92 through 177	-92 through -1	1 through 177
215	-22 through 113	-22 through -1	1 through 113
216	-38 through 29	-38 through -1	1 through 29
217	-54 through 71	-54 through -1	1 through 71
218	-21 through 355	-21 through -1	1 through 355
219	-30 through 181	-30 through -1	1 through 181
220	-60 through 94	-60 through -1	1 through 94
221	-42 through 81	-42 through -1	1 through 81
222	-19 through 327	-19 through -1	1 through 327
223	-20 through 190	-20 through -1	1 through 190
225	-20 through 164 -22 through 205	-20 through -1	1 through 164
226	-41 through 33	-22 through -1 -41 through -1	1 through 205
227	1 through 73	-41 through -1	1 through 33
228	-16 through 66	-16 through -1	1 through 73 1 through 66
229	-56 through 63	-56 through -1	1 through 63
230	1 through 54	-30 thiogh-1	1 through 54
231	-14 through 196	-14 through -1	1 through 196
232	1 through 108	·	1 through 108
233	-18 through 25	-18 through -1	1 through 25
234	1 through 36		1 through 36
235	-13 through 294	-13 through -1	1 through 294
236	-32 through 74	-32 through -1	1 through 74
237	-19 through 23	-19 through -1	1 through 23
238	-20 through 97	-20 through -1	1 through 97
239	-37 through 141	-37 through -1	1 through 141
240	-27 through 99	-27 through -1	1 through 99
241	-115 through 59	-115 through -1	1 through 59
378	-20 through 32	-20 through -1	1 through 32
379	-23 through 170	-23 through -1	1 through 170
380	-14 through 68	-14 through -1	1 through 68

CONT TARIEV

CONT. TABLE V			
381	-21 through 177	-21 through -1	1 through 177
382	-55 through 105	-55 through -1	1 through 105
383	-18 through 90	-18 through -1	1 through 90
384	22 through 42	-22 through -1	1 through 42
385	-15 through 12	-15 through -1	1 through 12
386	-21 through 165	-21 through -1	1 through 165
387	·26 through 153	-26 through -1	1 through 153
388	-55 through 95	-55 through -1	1 through 95
389	-31 through 205	-31 through -1	1 through 205
390	-100 through 49	-100 through -1	1 through 49
391	-49 through 20	-49 through -1	1 through 20
392	-30 through 211	-30 through -1	1 through 211
393	-30 through 17	-30 through -1	1 through 17
394	-28 through 37	-28 through -1	1 through 37
395	-24 through 49	-24 through -1	1 through 49
396	·18 through 42	-18 through -1	1 through 42
397	-93 through 99	-93 through -1	
398	-72 through 77	-72 through -1	1 through 99 1 through 77
399	-20 through 53	-20 through -1	1 through 53
400	-20 through 66	-20 through -1	
401	-20 through 57	-20 through -1	1 through 66
402	-28 through 37	-28 through -1	1 through 57
403	-27 through 184	-27 through -1	1 through 37
404	-80 through 43	-80 through -1	1 through 184
405	-26 through 60	-26 through -1	1 through 43
406	-31 through 131	-31 through -1	1 through 60
407	-37 through 61	-37 through -1	1 through 131
408	15 through 55	-15 through -1	1 through 61 1 through 55
409	-45 through 15	-45 through -1	1 through 15
410	-22 through 17	-22 through -1	1 through 17
411	-23 through 28	-23 through -1	1 through 28
412	-48 through 47	-48 through -1	1 through 47
413	-32 through 28	-32 through -1	1 through 28
414	-79 through 91	-79 through -1	1 through 91
415	-82 through 108	-82 through -1	1 through 108
416	-60 through 54	-60 through -1	1 through 54
417	-108 through 53	-108 through -1	1 through 53
418	-21 through 46	-21 through -1	1 through 46
419	-32 through 300	-32 through -1	1 through 300
420	-19 through 46	-19 through -1	1 through 46
422	·30 through 27	-30 through -1	1 through 27
423	-17 through 68	-17 through -1	1 through 68
424	-17 through 68	-17 through -1	1 through 68
425	-29 through 40	-29 through -1	
426	-56 through 66	-29 through -1	1 through 40
427	-30 through 11	-30 through -1	1 through 66
428	-36 through 14		1 through 11
429	-18 through 118	-36 through -1 -18 through -1	1 through 14
430	-65 through 129		1 through 118
431	-69 through 72	-65 through -1	1 through 129
432		-69 through -1	1 through 72
432	-69 through 179	-69 through -1	1 through 179
433	-36 through 13	-36 through -1	1 through 13
	-14 through 72	-14 through -1	1 through 72
435	-58 through 86	-58 through -1	1 through 86

CONT. TABLE V

ONT. TABLE V			
436	-16 through 105	-16 through -1	1 through 105
437	-16 through 146	-16 through -1	1 through 146
438	-20 through 90	-20 through -1	1 through 90
439	-15 through 56	-15 through -1	1 through 56
440	-24 through 75	-24 through -1	1 through 75
441	-25 through 144	⋅25 through ⋅1	1 through 144
442	-76 through 91	-76 through -1	1 through 91
443	-15 through 55	-15 through -1	1 through 55
444	-33 through 348	-33 through -1	1 through 348
445	-14 through 25	-14 through -1	1 through 25
446	-37 through 13	-37 through -1	1 through 13
447	-26 through 25	-26 through -1	1 through 25
448	-30 through 212	-30 through -1	1 through 212
449	-60 through 94	-60 through -1	1 through 94
450	-61 through 28	-61 through -1	1 through 28
451	-26 through 47	-26 through -1	
452	·34 through 20	-34 through -1	1 through 47
453	-38 through 83	<u> </u>	1 through 20
454		-38 through -1	1 through 83
455	-37 through 129 -26 through 154	-37 through -1	1 through 129
456		-26 through -1	1 through 154
457	-64 through 27	-64 through -1	1 through 27
	-23 through 234	-23 through -1	1 through 234
458	-60 through 133	-60 through -1	1 through 133
459	28 through 79	-28 through -1	1 through 79
460	-13 through 108	-13 through -1	1 through 108
461	-17 through 27	-17 through -1	1 through 27
462	-13 through 96	-13 through -1	1 through 96
463	-41 through 102	-41 through -1	1 through 102
464	-30 through 202	-30 through -1	1 through 202
465	-21 through 40	-21 through -1	1 through 40
466	-19 through 15	-19 through -1	1 through 15
467	-54 through 161	-54 through -1	1 through 161
468	-17 through 10	-17 through -1	1 through 10
469	-24 through 61	-24 through -1	1 through 61
470	-16 through 35	-16 through -1	1 through 35
471	-43 through 24	-43 through -1	1 through 24
472	-15 through 48	-15 through -1	1 through 48
473	-58 through 121	-58 through -1	1 through 121
474	-71 through 167	-71 through -1	1 through 167
475	-37 through 141	-37 through -1	1 through 141
476	-21 through 75	-21 through -1	1 through 75
477	-24 through 17	-24 through -1	1 through 17
478	-27 through 86	-27 through -1	1 through 86
479	-18 through 232	-18 through -1	1 through 232
480	-21 through 130	-21 through -1	1 through 130
481	-25 through 214	-25 through -1	1 through 214
482	-92 through 116	-92 through -1	1 through 116
483	-39 through 47	-39 through -1	1 through 47
484	-27 through 13	-27 through -1	
485	-16 through 49	-16 through -1	1 through 13
486	-55 through 75		1 through 49
487	-84 through 125	-55 through -1	1 through 75
488		-84 through -1	1 through 125
	-17 through 19	-17 through -1	1 through 19
489	-29 through 15	-29 through -1	. 1 through 15

490	-52 through 111	-52 through -1	1 through 111
491	-47 through 17	-47 through -1	1 through 17
492	-50 through 168	-50 through -1	1 through 168
493	-15 through 201	-15 through -1	1 through 201
494	-19 through 115	-19 through -1	1 through 115
495	-16 through 69	-16 through -1	1 through 69
496	-29 through 263	-29 through -1	1 through 263
497	-56 through 66	-56 through -1	1 through 66
498	-28 through 31	-28 through -1	1 through 31
499	-13 through 86	-13 through -1	1 through 86
500	-13 through 86	-13 through -1	1 through 86
501	-25 through 83	-25 through -1	1 through 83
502	-15 through 168	-15 through -1	1 through 168
503	-15 through 83	-15 through -1	1 through 83
504	-57 through 126	-57 through -1	1 through 126
505	-14 through 126	-14 through -1	1 through 126
506	-14 through 45	-14 through -1	1 through 45
507	-36 through 65	-36 through -1	1 through 65
508	-55 through 286	-55 through -1	1 through 286
509	-42 through 66	-42 through -1	1 through 66
510	-26 through 54	-26 through -1	1 through 54
511	-44 through 114	-44 through -1	1 through 114
512	-28 through 102	-28 through -1	1 through 102
513	-62 through 137	-62 through -1	1 through 137
514	-25 through 155	-25 through -1	1 through 155

-120-

TABLE VI

		I ADLE VI	
ld	Collection refs	Deposit Name	
40	ATCC # 98921	SignalTag 121-144	
41	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120	
42	ATCC # 98921	SignalTag 121-144	
43	ATCC # 98920	SignalTag 67-90	
44	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120	
45	ATCC # 98920	SignalTag 67-90	
46	ATCC # 98923	SignalTag 44-66	\neg
47	ATCC # 98920	SignalTag 67-90	
48	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120	
49	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120	
50	ATCC # 98921	SignalTag 121-144	\neg
51	ATCC # 98921	SignalTag 121-144	\exists
52	ATCC # 98920	SignalTag 67-90	
53	ATCC # 98923	SignalTag 44-66	
54	ATCC # 98920	SignalTag 67-90	
55	ATCC # 98920	SignalTag 67-90	
56	ATCC # 98920	SignalTag 67-90	
57	ATCC # 98921	SignalTag 121-144	
58	ATCC # 98920	SignalTag 67-90	\neg
59	ATCC # 98920	SignalTag 67-90	
60	ATCC # 98920	SignalTag 67-90	
61	ATCC # 98923	SignalTag 44-66	
62	ATCC # 98923	SignalTag 44-66	
63	ATCC # 98923	SignalTag 44-66	\neg
64	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120	
65	ATCC # 98923	SignalTag 44-66	
66	ATCC # 98921	SignalTag 121-144	7
67	ATCC # 98920	SignalTag 67-90	
68	ATCC # 98920	SignalTag 67-90	
69	ATCC # 98921	SignalTag 121-144	
70	ATCC # 98921	SignalTag 121-144	\neg
71	ATCC # 98921	SignalTag 121-144	_
72	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120	
73	ATCC # 98923	SignalTag 44-66	\neg

		161
74	ATCC # 98923	SignalTag 44-66
75	ATCC # 98920	SignalTag 67-90
76	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
77	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
78	ATCC # 98921	SignalTag 121-144
79	ATCC # 98923	SignalTag 44-66
80	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
81	ATCC # 98921	SignalTag 121-144
82	ATCC # 98920	SignalTag 67-90
83	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
84	ATCC # 98923	SignalTag 44-66
85	ATCC # 98923	SignalTag 44-66
86	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
87	ATCC # 98923	SignalTag 44-66
88	ATCC # 98923	SignalTag 44-66
89	ATCC # 98923	SignalTag 44-66
90	ATCC # 98923	SignalTag 44-66
91	ATCC # 98923	SignalTag 44-66
92	ATCC # 98920	SignalTag 67-90
93	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
94	ATCC # 98923	SignalTag 44-66
95	ATCC # 98923	SignalTap 44-66
96	ATCC # 98920	SignalTag 67-90
97	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
98	ATCC # 98921	SignalTag 121-144
99	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
100	ATCC # 98921	SignalTag 121-144
101	ATCC # 98920	SignalTag 67-90
102	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
103	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
104	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
105	ATCC # 98921	SignalTag 121-144
106	ATCC # 98920	SignalTag 67-90
107	ATCC # 98920	SignalTag 67-90
108	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
109	ATCC # 98923	SignalTag 44-66
110	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120

Ta a a	1,700 11 00000	
111	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
112	ATCC # 98920	SignalTag 67-90
113	ATCC # 98920	SignalTag 67-90
114	ATCC # 98923	SignalTag 44-66
115	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
116	ATCC # 98920	SignalTag 67-90
117	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
118	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
119	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
120	- ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
121	ATCC # 98923	SignalTag 44-66
122	ATCC # 98920	SignalTag 67-90
123	ATCC # 98920	SignalTag 67-90
124	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
125	ECACC # 98121506	SignalTag 11121998
126	ECACC # 98121506	SignalTag 11121998
127	ECACC # 98121506	SignalTag 11121998
128	ECACC # 98121506	SignalTag 11121998
129	ECACC # 98121506	SignalTag 11121998
130	ECACC # 98121506	SignalTag 11121998
131	ECACC # 98121506	SignalTag 11121998
132	ECACC # 98121506	SignalTag 11121998
133	ECACC # 98121506	SignalTag 11121998
134	ECACC # 98121506	SignalTag 11121998
135	ECACC # 98121506	SignalTag 11121998
136	ECACC # 98121506	SignalTag 11121998
137	ECACC # 98121506	SignalTag 11121998
138	ECACC # 98121506	SignalTag 11121998
139	ECACC # 98121506	SignalTag 11121998
140	ECACC # 98121506	SignalTag 11121998
		

-123-

TABLE VII

	TADLE VII		
Internal designation number	SEQ ID NO	Type of sequence	
20-5-2-C3-CL0_4	40	DNA	
20-8-4-A11-CL2_6	41	DNA	
21-1-4-F2-CL11_1	42	DNA	
22-11-2-H9-CL1_1	43	DNA	
25-7-3-D4-CLO_2	44	DNA	
26-27-3-D7-CLO_1	45	DNA	
26-35-4-H9-CL1_1	46	DNA	
26-45-2-C4-CL2_6	47	DNA	
27-1-2-B3-CLO_1	48	DNA	
27-1-2-B3-CLO_2	49	DNA	
27-19-3-G7-CL11_2	50	DNA	
33-10-4-E2-CL13_4	51	DNA	
33-10-4-H2-CL2_2	52	DNA	
33-110-4-A5-CL1_1	53	DNA	
33-13-1-C1-CL1_1	54	DNA	
33-30-2-A6-CL0_1	55	DNA	
33-35-4-F4-CL1_2	56	DNA	
33-35-4-G1-CL1_2	57	DNA	
33-36-3-E2-CL1_1	58	DNA	
33-36-3-E2-CL1_2	59	DNA	
33-36-3-F2-CL2_2	60	DNA	
33-4-2-G5-CL2_1	61	DNA	
33-49-1-H4-CL1_1	62	DNA	
33-66-2-B10-CL4_1	63	DNA	
33-97-4-G8-CL2_2	64	DNA	
33-98-4-C1-CL1_3	65	DNA	
47-14-1-C3-CLO_5	66	DNA	
47-15-1-E11-CLO_1	67	DNA	
47-15-1-H8-CLO_2	68	DNA	
48-1-1-H7-CLO_1	69	DNA	
48-1-1-H7-CLO_4	70	DNA	
48-1-1-H7-CLO_5	71	DNA	
48-3-1-H9-CLO_6	72	DNA	
48-54-1-G9-CL2 1	73	DNA	

48-54-1-G9-CL3_1	74	DNA
48-7-4-H2-CL2_2	75	DNA
51-11-3-D5-CL1_3	76	DNA
51-11-3-G9-CL0_1	77	DNA
51-15-4-A12-CL11_3	78	DNA
51-17-4-A4-CL3_1	79	DNA
51-2-3-F10-CL1_5	80	DNA
51-2-4-F5-CL11_2	81	DNA
51-27-4-F2-CL0_2	82	DNA
51-34-3-F8-CLO_2	83	DNA
57-1-4-E2-CL1_2	84	DNA
57-19-2-G8-CL2_1	85	DNA
57-27-3-G10-CL2_2	86	DNA
58-33-3-B4-CL1_2	87	DNA
58-34-3-C9-CL1_2	88	DNA
58-4-4-G2-CL2_1	89	DNA
58-48-1-G3-CL2_4	90	DNA
58-6-1-H4-CL1_1	91	DNA
60-12-1-E11-CL1_2	92	DNA
65-4-4-H3-CL1_1	93	DNA
74-5-1-E4-CL1_2	94	DNA
76-13-3-A9-CL1_2	95	DNA
76-16-1-D6-CL1_1	96	DNA
76-28-3-A12-CL1_5	97	DNA
76-42-2-F3-CL0_1	98	DNA
77-16-4-G3-CL1_3	99	DNA
77-39-4-H4-CL11_4	100	DNA
78-24-3-H4-CL2_1	101	DNA
78-27-3-D1-CL1_6	102	DNA
78-28-3-D2-CLO_2	103	DNA
78-7-1-G5-CL2_6	104	DNA
84-3-1-G10-CL11_6	105	DNA
58-48-4-E2-CLO_1	106	DNA
23-12-2-G6-CL1_2	107	DNA
25-8-4-B12-CLO_5	108	DNA
26-44-3-C5-CL2_1	109	DNA
27-1-2-B3-CL0_3	110	DNA

30-12-3-G5-CLO_1	111	DNA
33-106-2-F10-CL1_3	112	DNA
33-28-4-D1-CLO_1	113	DNA
33-31-3-C8-CL2_1	114	DNA
48-24-1-D2-CL3_2	115	DNA
48-45-4-A11-CL1_4	116	DNA
51-1-4-C1-CL0_2	117	DNA
51-39-3-H2-CL1_2	118	DNA
51-42-3-F9-CL1_1	119	DNA
51-5-3-G2-CL0_4	120	DNA
57-18-4-H5-CL2_1	121	DNA
76-23-3-G8-CL1_1	122	DNA
76-23-3-G8-CL1_3	123	DNA
78-8-3-E6-CLO_1	124	DNA
19-10-1-C2-CL1_3	125	DNA
33-11-1-B11-CL1_2	126	DNA
33-113-2-B8-CL1_2	127	DNA
33-19-1-C11-CL1_1	128	DNA
33-61-2-F6-CLO_2	129	DNA
47-4-4-C6-CL2_2	130	DNA
48-54-1-G9-CL1_1	131	DNA
51-43-3-G3-CL0_1	132	DNA
55-1-3-D11-CLO_1	133	DNA
58-14-2-D3-CL1_2	134	DNA
58-35-2-B6-CL2_3	135	DNA
76-18-1-F6-CL1_1	136	DNA
76-23-3- G8-CL2_2	137	DNA
76-30-3-B7-CL1_1	138	DNA
78-21-3-G7-CL2_1	139	DNA
58-45-4-B11-CL13_2	140	DNA
20-5-2-C3-CL0_4	141	PRT
20-8-4-A11-CL2_6	142	PRT
21-1-4-F2-CL11_1	143	PRT
22-11-2-H9-CL1_1	144	PRT
25-7-3-D4-CLO_2	145	PRT
26-27-3-D7-CLO_1	146	PRT
26-35-4-H9-CL1_1	147	PRT

26-45-2-C4-CL2_6	148	PRT
27-1-2-B3-CLO_1	149	PRT
27-1-2-B3-CL0_2	150	PRT
27-19-3-G7-CL11_2	_ 151	PRT
33-10-4-E2-CL13_4	152	PRT
33-10-4-H2-CL2_2	153	PRT
33-110-4-A5-CL1_1	154	PRT
33-13-1-C1-CL1_1	155	PRT
33-30-2-A6-CLO_1	156	PRT
33-35-4-F4-CL1_2	157	PRT
33-35-4-G1-CL1_2	158	PRT
33-36-3-E2-CL1_1	159	PRT
33-36-3-E2-CL1_2	160	PRT
33-36-3-F2-CL2_2	161	PRT
33-4-2-G5-CL2_1	162	PRT
33-49-1-H4-CL1_1	163	PRT
33-66-2-B10-CL4_1	164	PRT
33-97-4-G8-CL2_2	165	PRT
33-98-4-C1-CL1_3	166	PRT
47-14-1-C3-CLO_5	167	PRT
47-15-1-E11-CLO_1	168	PRT
47-15-1-H8-CLO_2	169	PRT
48-1-1-H7-CLO_1	170	PRT
48-1-1-H7-CLO_4	171	PRT
48-1-1-H7-CLO_5	172	PRT
48-3-1-H9-CLO_6	173	PRT
48-54-1-G9-CL2_1	174	PRT
48-54-1-G9-CL3_1	175	PRT
48-7-4-H2-CL2_2	176	PRT
51-11-3-D5-CL1_3	177	PRT
51-11-3-G9-CLO_1	178	PRT
51-15-4-A12-CL11_3	179	PRT
51-17-4-A4-CL3_1	180	PRT
51-2-3-F10-CL1_5	181	PRT
51-2-4-F5-CL11_2	182	PRT
51-27-4-F2-CL0_2	183	PRT
51-34-3-F8-CLO_2	184	PRT

57-1-4-E2-CL1_2 185 PRT 57-19-2-68-CL2_1 186 PRT 57-27-3-G10-CL2_2 187 PRT 58-33-3-84-CL1_2 188 PRT 58-34-3-C9-CL1_2 189 PRT 58-44-G2-CL2_1 190 PRT 58-48-1-G3-CL2_4 191 PRT 58-6-1-H4-CL1_1 192 PRT 60-12-1-E11-CL1_2 193 PRT 65-4-4-H3-CL1_1 194 PRT 76-13-3-A9-CL1_2 195 PRT 76-16-1-D6-CL1_1 197 PRT 76-28-3-A12-CL1_5 198 PRT 76-42-2-F3-CL0_1 199 PRT 77-16-4-G3-CL1_3 200 PRT 77-39-4-H4-CL11_4 201 PRT 78-24-3-H4-CL2_1 202 PRT 78-27-3-D1-CL1_6 203 PRT 78-28-3-D2-CL0_2 204 PRT 78-78-7-1-G5-CL2_6 205 PRT	
57-27-3-G10-CL2_2 187 PRT 58-33-3-B4-CL1_2 188 PRT 58-34-3-C9-CL1_2 189 PRT 58-44-G2-CL2_1 190 PRT 58-48-1-G3-CL2_4 191 PRT 58-6-1-H4-CL1_1 192 PRT 60-12-1-E11-CL1_2 193 PRT 65-4-4-H3-CL1_1 194 PRT 74-5-1-E4-CL1_2 195 PRT 76-13-3-A9-CL1_2 196 PRT 76-28-3-A12-CL1_5 198 PRT 76-28-3-A12-CL1_5 198 PRT 76-42-2-F3-CL0_1 199 PRT 77-16-4-G3-CL1_3 200 PRT 77-39-4-H4-CL1_4 201 PRT 78-24-3-H4-CL2_1 202 PRT 78-24-3-H4-CL2_1 203 PRT 78-28-3-02-CL0_2 204 PRT	
58-33-3-B4-CL1_2 188 PRT 58-34-3-C9-CL1_2 189 PRT 58-44-G2-CL2_1 190 PRT 58-48-1-G3-CL2_4 191 PRT 58-61-H4-CL1_1 192 PRT 60-12-1-E11-CL1_2 193 PRT 65-4-4-H3-CL1_1 194 PRT 74-51-E4-CL1_2 195 PRT 76-13-3-A9-CL1_2 196 PRT 76-16-1-06-CL1_1 197 PRT 76-28-3-A12-CL1_5 198 PRT 76-42-2-F3-CL0_1 199 PRT 77-16-4-G3-CL1_3 200 PRT 77-39-4-H4-CL11_4 201 PRT 78-24-3-H4-CL2_1 202 PRT 78-24-3-D1-CL1_6 203 PRT 78-28-3-D2-CL0_2 204 PRT	
58-34-3-C9-CL1_2 189 PRT 58-44-G2-CL2_1 190 PRT 58-48-1-G3-CL2_4 191 PRT 58-6-1-H4-CL1_1 192 PRT 60-12-1-E11-CL1_2 193 PRT 65-4-4-H3-CL1_1 194 PRT 76-13-3-A9-CL1_2 195 PRT 76-16-1-06-CL1_1 197 PRT 76-28-3-A12-CL1_5 198 PRT 76-42-2-F3-CL0_1 199 PRT 77-16-4-G3-CL1_3 200 PRT 77-39-4-H4-CL1_4 201 PRT 78-24-3-H4-CL2_1 202 PRT 78-27-3-D1-CL1_6 203 PRT 78-28-3-02-CL0_2 204 PRT	
58-4-4-G2-CL2_1 190 PRT 58-48-1-G3-CL2_4 191 PRT 58-6-1-H4-CL1_1 192 PRT 60-12-1-E11-CL1_2 193 PRT 65-4-4-H3-CL1_1 194 PRT 74-5-1-E4-CL1_2 195 PRT 76-13-3-A9-CL1_2 196 PRT 76-16-1-D6-CL1_1 197 PRT 76-28-3-A12-CL1_5 198 PRT 76-42-2-F3-CL0_1 199 PRT 77-16-4-G3-CL1_3 200 PRT 77-39-4-H4-CL11_4 201 PRT 78-24-3-H4-CL2_1 202 PRT 78-27-3-D1-CL1_6 203 PRT 78-28-3-D2-CL0_2 204 PRT	
58-48-1-G3-CL2_4 191 PRT 58-6-1-H4-CL1_1 192 PRT 60-12-1-E11-CL1_2 193 PRT 65-4-4-H3-CL1_1 194 PRT 74-5-1-E4-CL1_2 195 PRT 76-13-3-A9-CL1_2 196 PRT 76-16-1-D6-CL1_1 197 PRT 76-28-3-A12-CL1_5 198 PRT 76-42-2-F3-CL0_1 199 PRT 77-16-4-G3-CL1_3 200 PRT 77-39-4-H4-CL11_4 201 PRT 78-24-3-H4-CL2_1 202 PRT 78-27-3-D1-CL1_6 203 PRT 78-28-3-D2-CL0_2 204 PRT	
58-6-1-H4-CL1_1 192 PRT 60-12-1-E11-CL1_2 193 PRT 65-4-4-H3-CL1_1 194 PRT 74-5-1-E4-CL1_2 195 PRT 76-13-3-A9-CL1_2 196 PRT 76-16-1-D6-CL1_1 197 PRT 76-28-3-A12-CL1_5 198 PRT 76-42-2-F3-CL0_1 199 PRT 77-16-4-G3-CL1_3 200 PRT 77-39-4-H4-CL1_4 201 PRT 78-24-3-H4-CL2_1 202 PRT 78-24-3-H4-CL2_1 203 PRT 78-28-3-D2-CL0_2 204 PRT	
60-12-1-E11-CL1_2 193 PRT 65-4-4-H3-CL1_1 194 PRT 74-5-1-E4-CL1_2 195 PRT 76-13-3-A9-CL1_2 196 PRT	
65-4-4-H3-CL1_1 194 PRT 74-5-1-E4-CL1_2 195 PRT 76-13-3-A9-CL1_2 196 PRT	
74-5-1-E4-CL1_2 195 PRT 76-13-3-A9-CL1_2 196 PRT 76-16-1-06-CL1_1 197 PRT 76-28-3-A12-CL1_5 198 PRT 76-42-2-F3-CL0_1 199 PRT 77-16-4-G3-CL1_3 200 PRT 77-39-4-H4-CL11_4 201 PRT 78-24-3-H4-CL2_1 202 PRT 78-27-3-D1-CL1_6 203 PRT 78-28-3-D2-CL0_2 204 PRT	
76-13-3-A9-CL1_2 196 PRT 76-16-1-D6-CL1_1 197 PRT 76-28-3-A12-CL1_5 198 PRT 76-42-2-F3-CL0_1 199 PRT 77-16-4-G3-CL1_3 200 PRT 77-39-4-H4-CL11_4 201 PRT 78-24-3-H4-CL2_1 202 PRT 78-27-3-D1-CL1_6 203 PRT 78-28-3-D2-CL0_2 204 PRT	
76-16-1-06-CL1_1 197 PRT 76-28-3-A12-CL1_5 198 PRT 76-42-2-F3-CL0_1 199 PRT 77-16-4-G3-CL1_3 200 PRT 77-39-4-H4-CL11_4 201 PRT 78-24-3-H4-CL2_1 202 PRT 78-27-3-D1-CL1_6 203 PRT 78-28-3-D2-CL0_2 204 PRT	
76-28-3-A12-CL1_5 198 PRT 76-42-2-F3-CL0_1 199 PRT 77-16-4-G3-CL1_3 200 PRT 77-39-4-H4-CL11_4 201 PRT 78-24-3-H4-CL2_1 202 PRT 78-27-3-D1-CL1_6 203 PRT 78-28-3-D2-CL0_2 204 PRT	
76-42-2-F3-CLO_1 199 PRT 77-16-4-G3-CL1_3 200 PRT 77-39-4-H4-CL11_4 201 PRT 78-24-3-H4-CL2_1 202 PRT 78-27-3-D1-CL1_6 203 PRT 78-28-3-D2-CLO_2 204 PRT	
77-16-4-G3-CL1_3 200 PRT 77-39-4-H4-CL11_4 201 PRT 78-24-3-H4-CL2_1 202 PRT 78-27-3-D1-CL1_6 203 PRT 78-28-3-D2-CL0_2 204 PRT	
77-39-4-H4-CL11_4 201 PRT 78-24-3-H4-CL2_1 202 PRT 78-27-3-D1-CL1_6 203 PRT 78-28-3-D2-CL0_2 204 PRT	
78-24-3-H4-CL2_1 202 PRT 78-27-3-D1-CL1_6 203 PRT 78-28-3-D2-CL0_2 204 PRT	
78-27-3-D1-CL1_6 203 PRT 78-28-3-D2-CL0_2 204 PRT	
78-28-3-D2-CLO_2 204 PRT	
79.7.1 CE CL2 C 2005 2005	
78-7-1-G5-CL2_6 205 PRT	
84-3-1-G10-CL11_6 206 PRT	
58-48-4-E2-CLO_1 207 PRT	
23-12-2-G6-CL1_2 208 PRT	\neg
25-8-4-B12-CL0_5 209 PRT	
26-44-3-C5-CL2_1 210 PRT	
27-1-2-B3-CL0_3 211 PRT	
30-12-3-G5-CLO_1 212 PRT	\neg
33-106-2-F10-CL1_3 213 PRT	
33-28-4-D1-CL0_1 214 PRT	一
33-31-3-C8-CL2_1 215 PRT	\dashv
48-24-1-D2-CL3_2 216 PRT	\dashv
48-46-4-A11-CL1_4 217 PRT	\neg
51-1-4-C1-CLO_2 218 PRT	\dashv
51-39-3-H2-CL1_2 219 PRT	
51-42-3-F9-CL1_1 220 PRT	\dashv
51-5-3-G2-CL0_4 221 PRT	\dashv

57-18-4-H5-CL2_1	222	PRT
76-23-3-G8-CL1_1	223	PRT
76-23-3-G8-CL1_3	224	PRT
78-8-3-E6-CLO_1	225	PRT
19-10-1-C2-CL1_3	226	PRT
33-11-1-B11-CL1_2	227	PRT
33-113-2-B8-CL1_2	228	PRT
33-19-1-C11-CL1_1	229	PRT
33-61-2-F6-CLO_2	230	PRT
47-4-4-C6-CL2_2	231	PRT
48-54-1-G9-CL1_1	232	PRT
51-43-3-G3-CL0_1	233	PRT
55-1-3-D11-CLO_1	234	PRT
58-14-2-D3-CL1_2	235	PRT
58-35-2-B6-CL2_3	236	PRT
76-18-1-F6-CL1_1	237	PRT
76-23-3-G8-CL2_2	238	PRT
76-30-3-B7-CL1_1	239	PRT
78-21-3-G7-CL2_1	240	PRT
58-45-4-B11-CL13_2	241	PRT
20-6-1-D11-FL2	242	DNA
20-8-4-A11-FL2	243	DNA
22-6-2-C1-FL2	244	DNA
22-11-2-H9-FL1	245	DNA
23-8-3-B1-FL1	246	DNA
24-3-3-C6-FL1	247	DNA
24-4-1-H3-FL1	248	DNA
26-45-2-C4-FL2	249	DNA
26-48-1-H10-FL1	250	DNA
26-49-1-A5-FL2	251	DNA
30-6-4-E3-FL3	252	DNA
33-6-1-G11-FL1	253	DNA
33-8-1-A3-FL2	254	DNA
33-11-3-C6-FL1	255	DNA
33-14-4-E1-FL1	256	DNA
33-21-2-D5-FL1	257	DNA
33-26-4-E10-FL1	258	DNA

33-27-1-E11-FL1 33-28-4-D1-FL1 33-28-4-E2-FL2 33-30-4-C4-FL1 33-35-4-F4-FL1 33-36-3-F2-FL2	259 260 261 262	DNA DNA DNA
33-28-4-E2-FL2 33-30-4-C4-FL1 33-35-4-F4-FL1	261 262	
33-30-4-C4-FL1 33-35-4-F4-FL1	262	DNA
33-35-4-F4-FL1	· · · · · · · · · · · · · · · · · · ·	
		DNA
33-36-3-F2-FL2	263	DNA
•	264	DNA
33-52-4-F9-FL2	265	DNA
33-52-4-H3-FL1	266	DNA
33-59-1-B7-FL1	267	DNA
33-71-1-A8-FL1	268	DNA
33-72-2-B2-FL1	269	DNA
33-105-2-C3-FL1	270	DNA
33-107-4-C3-FL1	271	DNA
33-110-2-G4-FL1	272	DNA
47-7-4-D2-FL2	273	DNA
47-10-2-G12-FL1	274	DNA
47-14-3-D8-FL1	275	DNA
47-18-3-C2-FL1	276	DNA
47-18-3-G5-FL2	277	DNA
47-18-4-E3-FL2	278	DNA
48-3-1-H9-FL3	279	DNA
48-4-2-H3-FL1	280	DNA
48-6-1-C9-FL1	281	DNA
48-7-4-H2-FL2	282	DNA
48-8-1-D8-FL3	283	DNA
48-13-3-H8-FL1	284	DNA
48-19-3-A7-FL1	285	DNA
48-19-3-G1-FL1	286	DNA
48-25-4-D8-FL1	287	DNA
48-21-4-H4-FL1	288	DNA
48-26-3-B8-FL2	289	DNA
48-29-1-E2-FL1	290	DNA
48-31-3-F7-FL1	291	DNA
48-47-3-A5-FL1	292	DNA
51-1-1-G12-FL1	293	DNA
51-1-4-E9-FL3	294	DNA
51-1-4-E9-FL2	295	DNA

- ,

74-3-1-89-FL1 334 DNA 76-4-1-65-FL1 335 DNA 76-7-3-A12-FL1 336 DNA 76-16-4-C9-FL3 337 DNA 76-16-4-C9-FL3 337 DNA 76-30-3-87-FL1 338 DNA 77-5-1-C2-FL1 339 DNA 77-5-1-C2-FL1 340 DNA 77-1-1-A3-FL1 341 DNA 77-16-3-D7-FL1 342 DNA 77-16-4-G3-FL1 343 DNA 77-25-1-A6-FL1 344 DNA 77-26-2-F2-FL3 345 DNA 78-6-2-E3-FL2 346 DNA 78-71-65-FL2 347 DNA 78-16-2-C2-FL1 348 DNA 78-16-2-C2-FL1 348 DNA 78-16-2-C2-FL1 349 DNA 78-20-1-G11-FL1 350 DNA 78-20-1-G11-FL1 350 DNA 78-20-1-G11-FL1 350 DNA 78-24-2-B8-FL1 352 DNA 78-24-3-B8-FL1 353 DNA 78-24-3-B8-FL1 355 DNA 78-24-3-B-FL1 355 DNA 78-24-3-B-FL1 355 DNA 78-24-3-B-FL1 356 DNA 78-25-1-F11-FL1 356 DNA 78-29-1-B5-FL1 356 DNA 33-10-4-H2-FL2 361 DNA 33-10-4-H2-FL2 361 DNA 33-10-4-H2-FL2 362 DNA 33-10-4-H2-FL2 365 DNA 33-10-4-H2-FL2 366 DNA 33-10-4-H2-FL1 3663 DNA 33-97-4-G8-FL2 366 DNA 33-10-4-H2-FL1 366 DNA	65-4-4-H3-FL1	333	DNA
76-4-1-65-FL1 335 DNA 76-7-3-A12-FL1 336 DNA 76-16-4-C9-FL3 337 DNA 76-30-3-B7-FL1 338 DNA 77-5-1-C2-FL1 339 DNA 77-5-1-C2-FL1 340 DNA 77-5-1-C2-FL1 340 DNA 77-11-1-A3-FL1 341 DNA 77-16-3-D7-FL1 342 DNA 77-16-4-G3-FL1 343 DNA 77-26-2-F2-FL3 345 DNA 77-26-2-F2-FL3 345 DNA 78-6-2-E3-FL2 346 DNA 78-16-2-C2-FL1 348 DNA 78-16-2-C2-FL1 348 DNA 78-16-2-C2-FL1 348 DNA 78-16-2-C2-FL1 348 DNA 78-16-2-C2-FL1 350 DNA 78-2-3-E10-FL1 351 DNA 78-2-3-E10-FL1 351 DNA 78-2-3-B-FL1 352 DNA 78-2-3-B-FL1 355 DNA 78-2-3-B-FL1 355 DNA 78-2-3-B-FL1 355 DNA 78-2-3-B-FL1 356 DNA 78-2-3-B-FL1 360 DNA 78-2-3-B-FL1 360 DNA 30-9-G-B-FL2 361 DNA 33-10-4-H2-FL2 362 DNA 33-10-4-H2-FL1 363 DNA 74-10-3-C9-FL2 364 DNA 33-97-4-G-B-FL2 366 DNA 33-97-4-G-B-FL2 366 DNA 33-97-4-G-B-FL2 366 DNA 33-97-4-G-B-FL2 366 DNA 33-10-4-H2-FL1 367 DNA	<u> </u>	334	DNA
76-7-3-A12-FL1 336 DNA 76-16-4-C9-FL3 337 DNA 76-30-3-B7-FL1 338 DNA 77-51-C2-FL1 339 DNA 77-54-E7-FL1 340 DNA 77-11-1-A3-FL1 341 DNA 77-16-3-07-FL1 342 DNA 77-16-4-G3-FL1 343 DNA 77-26-1-AG-FL1 344 DNA 77-26-2-F2-FL3 345 DNA 78-6-2-E3-FL2 346 DNA 78-6-2-E3-FL2 346 DNA 78-16-5-FL2 347 DNA 78-16-2-C2-FL1 348 DNA 78-16-2-C2-FL1 348 DNA 78-16-3-G1-FL1 350 DNA 78-2-3-FL0-FL1 351 DNA 78-2-3-FL0-FL1 351 DNA 78-2-3-B4-FL1 352 DNA 78-2-3-B4-FL1 353 DNA 78-2-3-B4-FL1 353 DNA 78-2-3-B4-FL1 356 DNA			DNA
76-16-4-C9-FL3 337 DNA 76-30-3-B7-FL1 338 DNA 77-5-1-C2-FL1 339 DNA 77-5-4-E7-FL1 340 DNA 77-11-1-A3-FL1 341 DNA 77-16-3-D7-FL1 342 DNA 77-16-4-G3-FL1 343 DNA 77-16-4-G3-FL1 344 DNA 77-26-1-E7-L3 345 DNA 78-6-2-E3-FL2 346 DNA 78-6-2-E3-FL2 346 DNA 78-16-2-C2-FL1 348 DNA 78-16-2-C2-FL1 348 DNA 78-16-2-C2-FL1 348 DNA 78-18-3-B4-FL3 349 DNA 78-20-1-G11-FL1 350 DNA 78-22-1-G11-FL1 351 DNA 78-24-3-B8-FL1 352 DNA 78-24-3-B8-FL1 353 DNA 78-24-3-B4-FL2 354 DNA 78-25-1-F11-FL1 355 DNA 78-29-1-B2-FL1 356 DNA		336	
76-30-3-87-FL1 338 DNA 77-5-1-C2-FL1 339 DNA 77-5-4-E7-FL1 340 DNA 77-11-1-A3-FL1 341 DNA 77-16-3-D7-FL1 342 DNA 77-16-4-G3-FL1 343 DNA 77-25-1-A6-FL1 344 DNA 77-26-2-E2-FL3 345 DNA 78-6-2-E3-FL2 346 DNA 78-7-1-G5-FL2 347 DNA 78-16-2-C2-FL1 348 DNA 78-18-3-8-FL3 349 DNA 78-18-3-8-FL3 349 DNA 78-20-1-G11-FL1 350 DNA 78-22-3-E10-FL1 351 DNA 78-24-3-88-FL1 352 DNA 78-24-3-88-FL1 353 DNA 78-24-3-8-FL1 353 DNA 78-25-1-F11-FL1 355 DNA 78-25-1-B2-FL1 356 DNA 78-29-1-B2-FL1 358 DNA 78-29-1-B2-FL1 358 DNA	<u> </u>		
77-5-1-C2-FL1 339 DNA 77-5-4-E7-FL1 340 DNA 77-11-1-A3-FL1 341 DNA 77-16-3-D7-FL1 342 DNA 77-16-4-G3-FL1 343 DNA 77-25-1-A6-FL1 344 DNA 77-26-2-F2-FL3 345 DNA 78-6-2-E3-FL2 346 DNA 78-7-1-G5-FL2 347 DNA 78-16-2-C2-FL1 348 DNA 78-16-2-C2-FL1 348 DNA 78-16-2-C2-FL1 348 DNA 78-16-16-1-FL1 350 DNA 78-20-1-G11-FL1 351 DNA 78-22-3-E10-FL1 351 DNA 78-24-3-R8-FL1 352 DNA 78-24-3-R8-FL1 353 DNA 78-24-3-R8-FL1 353 DNA 78-25-1-F11-FL1 355 DNA 78-26-1-B5-FL1 356 DNA 78-29-1-B2-FL1 356 DNA 78-29-1-B2-FL1 358 DNA			
77:54:E7:FL1 340 DNA 77:11-1.A3:FL1 341 DNA 77:16:3:D7:FL1 342 DNA 77:16:4:G3:FL1 343 DNA 77:26:4:G3:FL1 344 DNA 77:26:2:F2:FL3 345 DNA 78:6:2:E3:FL2 346 DNA 78:6:2:E3:FL2 347 DNA 78:16:2:C2:FL1 348 DNA 78:18:3:B4:FL3 349 DNA 78:18:3:B4:FL3 349 DNA 78:20:1:G11:FL1 350 DNA 78:22:3:E10:FL1 351 DNA 78:24:3:B4:FL1 352 DNA 78:24:3:B4:FL1 353 DNA 78:24:3:B4:FL1 353 DNA 78:24:3:B4:FL1 353 DNA 78:24:3:B4:FL1 355 DNA 78:25:1:F11:FL1 355 DNA 78:29:1:B2:FL1 356 DNA 78:29:1:B2:FL1 358 DNA 78:29:1:B2:FL1 360 DNA			
77-11-1-A3-FL1 341 DNA 77-16-3-D7-FL1 342 DNA 77-16-4-G3-FL1 343 DNA 77-26-1-A6-FL1 344 DNA 77-26-2-F2-FL3 345 DNA 78-6-2-E3-FL2 346 DNA 78-71-G5-FL2 347 DNA 78-16-2-C2-FL1 348 DNA 78-18-3-B4-FL3 349 DNA 78-18-3-B4-FL3 349 DNA 78-18-3-B4-FL3 350 DNA 78-20-1-G11-FL1 350 DNA 78-22-3-E10-FL1 351 DNA 78-24-3-B8-FL1 352 DNA 78-24-3-B8-FL1 353 DNA 78-24-3-B8-FL1 353 DNA 78-24-3-B8-FL1 355 DNA 78-26-1-B5-FL1 356 DNA 78-26-1-B5-FL1 356 DNA 78-29-1-B2-FL1 358 DNA 78-29-1-B2-FL1 358 DNA 78-29-1-B8-FL1 360 DNA			
77-16-3-07-FL1 342 DNA 77-16-4-G3-FL1 343 DNA 77-25-1-A6-FL1 344 DNA 77-26-2-F2-FL3 345 DNA 78-6-2-E3-FL2 346 DNA 78-71-G5-FL2 347 DNA 78-16-2-C2-FL1 348 DNA 78-18-3-B4-FL3 349 DNA 78-18-3-B4-FL3 349 DNA 78-20-1-G11-FL1 350 DNA 78-22-3-E10-FL1 351 DNA 78-22-3-E10-FL1 352 DNA 78-24-3-B8-FL1 352 DNA 78-24-3-B8-FL1 353 DNA 78-24-3-B8-FL1 353 DNA 78-24-3-B8-FL1 355 DNA 78-25-1-F11-FL1 355 DNA 78-26-1-B5-FL1 356 DNA 78-29-1-B2-FL1 358 DNA 78-29-1-B2-FL1 358 DNA 78-29-1-B2-FL1 360 DNA 33-10-4-H2-FL1 360 DNA <td></td> <td></td> <td></td>			
77-16-4-G3-FL1 343 DNA 77-25-1-A6-FL1 344 DNA 77-26-2-F2-FL3 345 DNA 78-6-2-F3-FL2 346 DNA 78-6-2-FL2 347 DNA 78-16-2-C2-FL1 348 DNA 78-16-2-C2-FL1 348 DNA 78-18-3-B4-FL3 349 DNA 78-18-3-B4-FL3 350 DNA 78-22-3-F10-FL1 351 DNA 78-24-2-B8-FL1 352 DNA 78-24-3-B8-FL1 353 DNA 78-24-3-B4-FL2 354 DNA 78-25-1-F11-FL1 355 DNA 78-26-1-B5-FL1 355 DNA 78-29-1-B2-FL1 356 DNA 78-29-1-B2-FL1 357 DNA 78-29-1-B2-FL1 358 DNA 78-29-1-B2-FL1 359 DNA 30-9-1-G8-FL2 361 DNA 33-10-4-H2-FL2 362 DNA 33-10-4-H2-FL1 363 DNA 33-97-4-G8-FL2 361 DNA 33-97-4-G8-FL2 366 DNA			
77-25-1-A6-FL1 344 DNA 77-26-2-F2-FL3 345 DNA 78-62-E3-FL2 346 DNA 78-71-G5-FL2 347 DNA 78-16-2-C2-FL1 348 DNA 78-16-2-C2-FL1 348 DNA 78-18-3-B4-FL3 349 DNA 78-20-1-G11-FL1 350 DNA 78-22-3-E10-FL1 351 DNA 78-24-3-A8-FL1 352 DNA 78-24-3-A8-FL1 353 DNA 78-24-3-H4-FL2 354 DNA 78-25-1-F11-FL1 355 DNA 78-26-1-B5-FL1 356 DNA 78-27-3-D1-FL1 357 DNA 78-29-1-B2-FL1 358 DNA 78-29-1-B2-FL1 359 DNA 30-9-1-G8-FL2 361 DNA 33-10-4-H2-FL2 362 DNA 33-10-4-H2-FL1 363 DNA 33-97-4-G8-FL2 364 DNA 33-97-4-G8-FL2 366 DNA			
77-26-2-F2-FL3 345 DNA 78-6-2-E3-FL2 346 DNA 78-71-G5-FL2 347 DNA 78-16-2-C2-FL1 348 DNA 78-18-3-B4-FL3 349 DNA 78-20-1-G11-FL1 350 DNA 78-22-3-E10-FL1 351 DNA 78-24-3-B8-FL1 352 DNA 78-24-3-B8-FL1 353 DNA 78-24-3-A8-FL1 353 DNA 78-26-1-F11-FL1 355 DNA 78-26-1-F11-FL1 355 DNA 78-26-1-B5-FL1 356 DNA 78-29-1-B2-FL1 358 DNA 78-29-1-B2-FL1 359 DNA 30-9-1-G8-FL2 361 DNA 33-10-4-H2-FL2 362 DNA 33-10-4-H2-FL2 362 DNA 33-97-4-G8-FL3 363 DNA 33-97-4-G8-FL3 365 DNA 33-97-4-G8-FL2 366 DNA 33-10-4-H4-FL1 367 DNA 33-10-4-H4-FL1 367 DNA 33-10-4-H4-FL1 367 DNA			
78-6-2-E3-FL2 346 DNA 78-7-1-G5-FL2 347 DNA 78-16-2-C2-FL1 348 DNA 78-18-3-B4-FL3 349 DNA 78-20-1-G11-FL1 350 DNA 78-22-3-E10-FL1 351 DNA 78-24-2-B8-FL1 352 DNA 78-24-3-A8-FL1 353 DNA 78-24-3-H4-FL2 354 DNA 78-25-1-F11-FL1 355 DNA 78-26-1-B5-FL1 356 DNA 78-29-1-B2-FL1 356 DNA 78-29-1-B2-FL1 358 DNA 78-29-1-B2-FL1 358 DNA 30-9-1-G8-FL2 361 DNA 33-10-4-H2-FL2 362 DNA 33-10-4-H2-FL1 363 DNA 74-10-3-C9-FL2 364 DNA 33-97-4-G8-FL2 366 DNA 33-104-4-H4-FL1 367 DNA 33-104-4-H4-FL1 367 DNA 33-104-4-H4-FL1 367 DNA			
78-7-1-G5-FL2 347 DNA 78-16-2-C2-FL1 348 DNA 78-18-3-B4-FL3 349 DNA 78-20-1-G11-FL1 350 DNA 78-22-3-E10-FL1 351 DNA 78-24-2-B8-FL1 352 DNA 78-24-3-A8-FL1 353 DNA 78-24-3-H4-FL2 354 DNA 78-25-1-F11-FL1 355 DNA 78-26-1-B5-FL1 356 DNA 78-29-1-B2-FL1 358 DNA 78-29-1-B2-FL1 358 DNA 78-29-1-B2-FL1 359 DNA 30-9-1-G8-FL2 361 DNA 33-10-4-H2-FL1 362 DNA 33-10-4-H2-FL1 363 DNA 74-10-3-C9-FL2 364 DNA 33-97-4-G8-FL3 365 DNA 33-97-4-G8-FL2 366 DNA 33-104-4-H4-FL1 367 DNA 33-104-4-H4-FL1 367 DNA 33-104-4-H4-FL1 366 DNA			
78-16-2-C2-FL1 348 DNA 78-18-3-B4-FL3 349 DNA 78-20-1-G11-FL1 350 DNA 78-22-3-E10-FL1 351 DNA 78-24-2-B8-FL1 352 DNA 78-24-3-A8-FL1 353 DNA 78-24-3-H4-FL2 354 DNA 78-25-1-F11-FL1 355 DNA 78-26-1-B5-FL1 356 DNA 78-29-1-B2-FL1 357 DNA 78-29-1-B2-FL1 358 DNA 78-29-1-B2-FL1 359 DNA 14-1-3-E6-FL1 360 DNA 30-9-1-G8-FL2 361 DNA 33-10-4-H2-FL1 363 DNA 33-10-4-H2-FL1 363 DNA 33-97-4-G8-FL2 364 DNA 33-97-4-G8-FL2 366 DNA 33-104-4-H4-FL1 367 DNA 47-2-3-B3-FL1 368 DNA			
78-18-3-B4-FL3 349 DNA 78-20-1-G11-FL1 350 DNA 78-22-3-E10-FL1 351 DNA 78-24-2-B8-FL1 352 DNA 78-24-3-A8-FL1 353 DNA 78-24-3-H4-FL2 354 DNA 78-25-1-F11-FL1 355 DNA 78-26-1-B5-FL1 356 DNA 78-29-1-B2-FL1 358 DNA 78-29-1-B2-FL1 358 DNA 78-29-1-B2-FL1 369 DNA 30-9-1-G8-FL2 361 DNA 33-10-4-H2-FL2 362 DNA 33-10-4-H2-FL1 363 DNA 74-10-3-C9-FL2 364 DNA 33-97-4-G8-FL2 365 DNA 33-10-4-H2-FL1 365 DNA 33-97-4-G8-FL2 366 DNA 33-10-4-H2-FL1 367 DNA 33-10-4-H2-FL1 367 DNA 33-97-4-G8-FL2 366 DNA 33-10-4-H2-FL1 367 DNA			
78-20-1-G11-FL1 350 DNA 78-22-3-E10-FL1 351 DNA 78-24-2-B8-FL1 352 DNA 78-24-3-A8-FL1 353 DNA 78-24-3-H4-FL2 354 DNA 78-25-1-F11-FL1 355 DNA 78-26-1-B5-FL1 356 DNA 78-29-1-B2-FL1 358 DNA 78-29-1-B2-FL1 359 DNA 14-1-3-E6-FL1 360 DNA 30-9-1-G8-FL2 361 DNA 33-10-4-H2-FL2 362 DNA 33-10-4-H2-FL1 363 DNA 74-10-3-C9-FL2 364 DNA 33-97-4-G8-FL3 365 DNA 33-10-4-H4-FL1 367 DNA 33-10-4-H4-FL1 367 DNA 33-97-4-G8-FL2 366 DNA 33-10-4-H2-FL1 367 DNA 33-97-4-G8-FL2 366 DNA 33-10-4-H2-FL1 367 DNA			
78-22-3-E10-FL1 351 DNA 78-24-2-B8-FL1 352 DNA 78-24-3-A8-FL1 353 DNA 78-24-3-H4-FL2 354 DNA 78-25-1-F11-FL1 355 DNA 78-26-1-B5-FL1 356 DNA 78-27-3-D1-FL1 357 DNA 78-29-1-B2-FL1 358 DNA 78-29-4-B6-FL1 359 DNA 14-1-3-E6-FL1 360 DNA 30-9-1-G8-FL2 361 DNA 33-10-4-H2-FL2 362 DNA 33-97-4-G8-FL2 364 DNA 33-97-4-G8-FL2 366 DNA 33-10-4-H4-FL1 367 DNA 47-2-3-B3-FL1 368 DNA			
78-24-2-88-FL1 352 DNA 78-24-3-A8-FL1 353 DNA 78-24-3-H4-FL2 354 DNA 78-25-1-F11-FL1 355 DNA 78-26-1-85-FL1 356 DNA 78-27-3-D1-FL1 357 DNA 78-29-1-B2-FL1 358 DNA 78-29-4-B6-FL1 359 DNA 14-1-3-E6-FL1 360 DNA 30-9-1-G8-FL2 361 DNA 33-10-4-H2-FL2 362 DNA 33-10-4-H2-FL1 363 DNA 74-10-3-C9-FL2 364 DNA 33-97-4-G8-FL3 365 DNA 33-10-4-H4-FL1 367 DNA 33-10-4-H4-FL1 367 DNA 33-10-4-H4-FL1 367 DNA 33-10-4-H4-FL1 367 DNA 33-10-4-H3-FL1 368 DNA			
78-24-3-A8-FL1 353 DNA 78-24-3-H4-FL2 354 DNA 78-25-1-F11-FL1 355 DNA 78-26-1-B5-FL1 356 DNA 78-27-3-D1-FL1 357 DNA 78-29-1-B2-FL1 358 DNA 78-29-4-B6-FL1 359 DNA 14-1-3-E6-FL1 360 DNA 30-9-1-G8-FL2 361 DNA 33-10-4-H2-FL2 362 DNA 33-10-4-H2-FL1 363 DNA 74-10-3-C9-FL2 364 DNA 33-97-4-G8-FL3 365 DNA 33-97-4-G8-FL2 366 DNA 33-10-4-H4-FL1 367 DNA 47-2-3-B3-FL1 368 DNA			
78-24-3-H4-FL2 354 DNA 78-25-1-F11-FL1 355 DNA 78-26-1-B5-FL1 356 DNA 78-27-3-D1-FL1 357 DNA 78-29-1-B2-FL1 358 DNA 78-29-4-B6-FL1 359 DNA 14-1-3-E6-FL1 360 DNA 30-9-1-G8-FL2 361 DNA 33-10-4-H2-FL2 362 DNA 33-10-4-H2-FL1 363 DNA 74-10-3-C9-FL2 364 DNA 33-97-4-G8-FL3 365 DNA 33-97-4-G8-FL2 366 DNA 33-104-4-H4-FL1 367 DNA 47-2-3-B3-FL1 368 DNA			
78-25-1-F11-FL1 355 DNA 78-26-1-85-FL1 356 DNA 78-27-3-D1-FL1 357 DNA 78-29-1-82-FL1 358 DNA 78-29-4-86-FL1 369 DNA 14-1-3-E6-FL1 360 DNA 30-9-1-G8-FL2 361 DNA 33-10-4-H2-FL2 362 DNA 33-10-4-H2-FL1 363 DNA 74-10-3-C9-FL2 364 DNA 33-97-4-G8-FL3 365 DNA 33-97-4-G8-FL2 366 DNA 33-104-4-H4-FL1 367 DNA 47-2-3-B3-FL1 368 DNA	78-24-3-A8-FL1		
78-26-1-85-FL1 356 DNA 78-27-3-D1-FL1 357 DNA 78-29-1-82-FL1 358 DNA 78-29-4-86-FL1 369 DNA 14-1-3-E6-FL1 360 DNA 30-9-1-G8-FL2 361 DNA 33-10-4-H2-FL2 362 DNA 33-10-4-H2-FL1 363 DNA 74-10-3-C9-FL2 364 DNA 33-97-4-G8-FL3 365 DNA 33-97-4-G8-FL2 366 DNA 33-104-4-H4-FL1 367 DNA 47-2-3-B3-FL1 368 DNA	78-24-3-H4-FL2	354	DNA
78-27-3-D1-FL1 357 DNA 78-29-1-B2-FL1 358 DNA 78-29-4-B6-FL1 359 DNA 14-1-3-E6-FL1 360 DNA 30-9-1-G8-FL2 361 DNA 33-10-4-H2-FL2 362 DNA 33-10-4-H2-FL1 363 DNA 74-10-3-C9-FL2 364 DNA 33-97-4-G8-FL3 365 DNA 33-97-4-G8-FL2 366 DNA 33-104-4-H4-FL1 367 DNA 47-2-3-B3-FL1 368 DNA	78-25-1-F11-FL1	355	DNA
78-29-1-B2-FL1 358 DNA 78-29-4-B6-FL1 369 DNA 14-1-3-E6-FL1 360 DNA 30-9-1-G8-FL2 361 DNA 33-10-4-H2-FL2 362 DNA 33-10-4-H2-FL1 363 DNA 74-10-3-C9-FL2 364 DNA 33-97-4-G8-FL3 365 DNA 33-97-4-G8-FL2 366 DNA 33-104-4-H4-FL1 367 DNA 47-2-3-B3-FL1 368 DNA	78-26-1-B5-FL1	356	DNA
78-29-4-B6-FL1 359 DNA 14-1-3-E6-FL1 360 DNA 30-9-1-G8-FL2 361 DNA 33-10-4-H2-FL2 362 DNA 33-10-4-H2-FL1 363 DNA 74-10-3-C9-FL2 364 DNA 33-97-4-G8-FL3 365 DNA 33-97-4-G8-FL2 366 DNA 33-104-4-H4-FL1 367 DNA 47-2-3-B3-FL1 368 DNA	78-27-3-D1-FL1	357	DNA
14-1-3-E6-FL1 360 DNA 30-9-1-G8-FL2 361 DNA 33-10-4-H2-FL2 362 DNA 33-10-4-H2-FL1 363 DNA 74-10-3-C9-FL2 364 DNA 33-97-4-G8-FL3 365 DNA 33-97-4-G8-FL2 366 DNA 33-104-4-H4-FL1 367 DNA 47-2-3-B3-FL1 368 DNA	78-29-1-B2-FL1	358	DNA
30-9-1-G8-FL2 361 DNA 33-10-4-H2-FL2 362 DNA 33-10-4-H2-FL1 363 DNA 74-10-3-C9-FL2 364 DNA 33-97-4-G8-FL3 365 DNA 33-97-4-G8-FL2 366 DNA 33-104-4-H4-FL1 367 DNA 47-2-3-B3-FL1 368 DNA	78-29-4-B6-FL1	359	DNA
33-10-4-H2-FL2 362 DNA 33-10-4-H2-FL1 363 DNA 74-10-3-C9-FL2 364 DNA 33-97-4-G8-FL3 365 DNA 33-97-4-G8-FL2 366 DNA 33-104-4-H4-FL1 367 DNA 47-2-3-B3-FL1 368 DNA	14-1-3-E6-FL1	360	DNA
33-10-4-H2-FL1 363 DNA 74-10-3-C9-FL2 364 DNA 33-97-4-G8-FL3 365 DNA 33-97-4-G8-FL2 366 DNA 33-104-4-H4-FL1 367 DNA 47-2-3-B3-FL1 368 DNA	30-9-1-G8-FL2	361	DNA
74-10-3-C9-FL2 364 DNA 33-97-4-G8-FL3 365 DNA 33-97-4-G8-FL2 366 DNA 33-104-4-H4-FL1 367 DNA 47-2-3-B3-FL1 368 DNA	33-10-4-H2-FL2	362	DNA
33-97-4-G8-FL3 365 DNA 33-97-4-G8-FL2 366 DNA 33-104-4-H4-FL1 367 DNA 47-2-3-B3-FL1 368 DNA	33-10-4-H2-FL1	363	DNA
33-97-4-G8-FL2 366 DNA 33-104-4-H4-FL1 367 DNA 47-2-3-B3-FL1 368 DNA	74-10-3-C9-FL2	364	DNA
33-104-4-H4-FL1 367 DNA 47-2-3-B3-FL1 368 DNA	33-97-4-G8-FL3	365	DNA
47-2-3-B3-FL1 368 DNA	33-97-4-G8-FL2	366	DNA
	33-104-4-H4-FL1	367	DNA
47-37-4-G11-FL1 369 DNA	47-2-3-B3-FL1	368	DNA
1 4,0,0,0,0	47-37-4-G11-FL1	369	DNA

370	DNA
371	DNA
372	ONA
373	DNA
374	DNA
375	DNA
376	DNA
377	DNA
378	PRT
379	PRT
380	PRT
381	PRT
382	PRT
383	PRT
384	PRT
385	PRT
386	PRT
387	PRT
388	PRT ,
389	PRT
390	PRT
391	PRT
392	PRT
393	PRT
394	PRT
395	PRT
396	PRT
397	PRT
398.	PRT
399	PRT
400	PRT
401	PRT
402	PRT
403	PRT
404	PRT
405	PRT
406	PRT
	374 375 376 377 378 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405

33-107-4-C3-FL1	407	PRT
33-110-2-G4-FL1	408	PRT
47-7-4-D2-FL2	409	PRT
47-10-2-G12-FL1	410	PRT
	411	PRT
47-14-3-D8-FL1		
47-18-3-C2-FL1	412	PRT
47-18-3-G5-FL2	413	PRT
47-18-4-E3-FL2	414	PRT
48-3-1-H9-FL3	415	PRT
48-4-2-H3-FL1	416	PRT
48-6-1-C9-FL1	417	PRT
48-7-4-H2-FL2	418	PRT
48-8-1-D8-FL3	419	PRT
48-13-3-H8-FL1	420	PRT
48-19-3-A7-FL1	421	PRT
48-19-3-G1-FL1	422	PRT
48-25-4-D8-FL1	423	PRT
48-21-4-H4-FL1	424	PRT
48-26-3-B8-FL2	425	PRT
48-29-1-E2-FL1	426	PRT
48-31-3-F7-FL1	427	PRT
48-47-3-A5-FL1	428	PRT
51-1-1-G12-FL1	429	PRT
51-1-4-E9-FL3	430	PRT
51-1-4-E9-FL2	431	PRT
51-2-1-E10-FL1	432	PRT
51-2-3-F10-FL1	433	PRT
51-2-4-F5-FL1	434	PRT
51-3-3-B10-FL2	435	PRT
51-3-3-B10-FL3	436	PRT
51-7-3-G3-FL1	437	PRT
51-10-3-D11-FL1	438	PRT
51-11-3-D5-FL1	439	PRT
51-13-1-F7-FL3	440	PRT
51-15-4-H10-FL1	441	PRT
51-17-4-A4-FL1	442	PRT
51-18-1-C3-FL1	443	PRT
0.7010011		

51-25-3-F3-FL1	444	PRT
51-27-1-E8-FL1	445	PRT
51-28-2-G1-FL2	446	PRT
51-39-3-H2-FL1	447	PRT
51-42-3-F9-FL1	448	PRT
51-44-4-H4-FL1	449	PRT
55-1-3-H10-FL1	450	PRT
55-5-4-A6-FL1	451	PRT
58-26-3-D1-FL1	452	PRT
57-18-1-D5-FL1	453	PRT
57-27-3-A11-FL1	454	PRT
57-27-3-G10-FL2	455	PRT
58-10-3-D12-FL1	456	PRT
58-11-1-G10-FL1	457	PRT
58-11-2-G8-FL2	458	PRT
58-36-3-A9-FL2	459	PRT
58-38-1-A2-FL2	460	PRT
58-38-1-E5-FL1	461	PRT
58-44-2-B3-FL3	462	PRT
58-45-3-H11-FL1	463	PRT
58-53-2-B12-FL2	464	PRT
59-9-4-A10-FL1	465	PRT
60-16-3-A6-FL1	466	PRT
60-17-3-G8-FL2	467	PRT
62-5-4-B10-FL1	468	PRT
65-4-4-H3-FL1	469	PRT
74-3-1-B9-FL1	470	PRT
76-4-1-G5-FL1	471	PRT
76-7-3-A12-FL1	472	PRT
76-16-4-C9-FL3	473	PRT
76-30-3-B7-FL1	474	PRT
77-5-1-C2-FL1	475	PRT
77-5-4-E7-FL1	476	PRT
77-11-1-A3-FL1	477	PRT
77-16-3-D7-FL1	478	PRT
77-16-4-G3-FL1	479	PRT
77-25-1-A6-FL1	480	PRT
		

		
77-26-2-FL3	481	PRT
78-6-2-E3-FL2	482	PRT
78-7-1-G5-FL2	483	PRT
78-16-2-C2-FL1	484	PRT
78-18-3-B4-FL3	485	PRT
78-20-1-G11-FL1	486	PRT
78-22-3-E10-FL1	487	PRT
78-24-2-B8-FL1	488	PRT
78-24-3-A8-FL1	489	PRT
78-24-3-H4-FL2	490	PRT
78-25-1-F11-FL1	491	PRT
78-26-1-B5-FL1	492	PRT
78-27-3-D1-FL1	493	PRT
78-29-1-B2-FL1	494	PRT
78-29-4-86-FL1	495	PRT
14-1-3-E6-FL1	496	PRT
30-9-1-G8-FL2	497	PRT
33-10-4-H2-FL2	498	PRT
33-10-4-H2-FL1	499	PRT
74-10-3-C9-FL2	500	PRT
33-97-4-G8-FL3	501	PRT
33-97-4-G8-FL2	502	PRT
33-104-4-H4-FL1	503	PRT
47-2-3-B3-FL1	504	PRT
47-37-4-G11-FL1	505	PRT
57-25-1-F10-FL2	506	PRT
58-19-3-D3-FL1	507	PRT
58-34-3-C9-FL2	508	PRT
58-48-4-E2-FL2	509	PRT
76-21-1-C4-FL1	510	PRT
78-26-2-H7-FL1	511	PRT
77-20-2-E11-FL1	512	PRT
47-1-3-F7-FL2	513	PRT
<u> </u>		

-136-

TABLE VIII

ID	Locations	PROSITE Signature Name
195	110-121	Aldehyde dehydrogenases csyteine active site
221	28-37	ATP synthase alpha and beta subunits signature
223	171-181	Regulator of chromosome condensation (RCC1) signature 2
225	90-112	Phosphatidylethanolamine-binding protein family signature
226	10-34	Protein kinases ATP-binding region signature

WHAT IS CLAIMED IS:

- A purified or isolated nucleic acid comprising the sequence of one of SEQ ID NOs: 40-140 and 242-377 or a sequence complementary thereto.
- 2. A purified or isolated nucleic acid comprising at least 10 consecutive bases of the sequence of one of 5 SEQ ID NOs: 40-140 and 242-377 or one of the sequences complementary thereto.
 - 3. A purified or isolated nucleic acid comprising the full coding sequences of one of SEQ ID NOs: 40, 42-44, 46, 48, 49, 51, 53, 60, 62-72, 76-78, 80-83, 85-88, 90, 93, 94, 97, 99-102, 104, 107-125, 127, 132, 135-138, 140 and 242-377wherein the full coding sequence comprises the sequence encoding signal peptide and the sequence encoding mature protein.
- A purified or isolated nucleic acid comprising the nucleotides of one of SEQ ID NOs: 40-44, 46, 48,
 49, 51-53, 55, 56, 58-72, 75-78, 80-88, 90, 93, 94, 97, 99-125, 127, 132, 133, 135-138, 140, and 242-377 which encode a mature protein.
- A purified or isolated nucleic acid comprising the nucleotides of one of SEQ ID NOs: 40, 42-46, 48,
 49, 51, 53, 57, 60, 62-73, 76-78, 80-83, 85-88, 90, 93-95, 97, 99-102, 104, 107-125, 127, 128, 130, 132, 134-140
 and 242-377 which encode the signal peptide.
 - A purified or isolated nucleic acid encoding a polypeptide having the sequence of one of the sequences of SEQ ID NOs: 141-241 and 378-513.
- 7. A purified or isolated nucleic acid encoding a polypeptide having the sequence of a mature protein included in one of the sequences of SEO ID NOs: 141-145, 147, 149, 150, 152-154, 156, 157, 159-172, 176-179, 181-20 189, 191, 194, 195, 198, 200-226, 228, 233, 234, 236-239, 241 and 378-513.
 - 8. A purified or isolated nucleic acid encoding a polypeptide having the sequence of a signal peptide included in one of the sequences of SEQ ID NOs: 141, 143-147, 149, 150, 152, 154, 158, 161, 163-174, 177-179, 181-184, 186-189, 191, 194-196, 198, 200-203, 205, 208-226, 228, 229, 231, 233, 235-241, and 378-513.
 - 9. A purified or isolated protein comprising the sequence of one of SEQ ID NOs: 141-241 and 378-513.
- 25 10. A purified or isolated polypeptide comprising at least 10 consecutive amino acids of one of the sequences of SEQ ID NOs: 141-241 and 378-513.
 - 11. An isolated or purified polypeptide comprising a signal peptide of one of the polypeptides of SEQ ID NOs: 141, 143-147, 149, 150, 152, 154, 158, 161, 163-174, 177-179, 181-184, 186-189, 191, 194-196, 198, 200-203, 205, 208-226, 228, 229, 231, 233, 235-241, and 378-513.
- 30 12. An isolated or purified polypeptide comprising a mature protein of one of the polypeptides of SEQ ID NOs: 141-145, 147, 149, 150, 152-154, 156, 157, 159-172, 176-179, 181-189, 191, 194, 195, 198, 200-226, 228, 233, 234, 236-239, 241 and 378-513.
 - 13. A method of making a protein comprising one of the sequences of SEQ ID NO: 141-241 and 378-513, comprising the steps of:

cDNA.

5

obtaining a cDNA comprising one of the sequences of sequence of SEQ ID NO: 40-140 and 242-377; inserting said cDNA in an expression vector such that said cDNA is operably linked to a promoter; and introducing said expression vector into a host cell whereby said host cell produces the protein encoded by said

- 14. The method of Claim 13, further comprising the step of isolating said protein.
 - 15. A protein obtainable by the method of Claim 14.
 - 16. A host cell containing a recombinant nucleic acid of Claim 1.
- 17. A purified or isolated antibody capable of specifically binding to a protein having the sequence of one of SEQ ID NOs: 141-241 and 378-513.
- 10 18. In an array of polynucleotides of at least 15 nucleotides in length, the improvement comprising inclusion in said array of at least one of the sequences of SEQ ID NOs: 40-140 and 242-377, or one of the sequences complementary to the sequences of SEQ ID NOs: 40-140 and 242-377, or a fragment thereof of at least 15 consecutive nucleotides.
- 19. A purified or isolated nucleic acid of at least 15 bases capable of hybridizing under stringent
 15 conditions to the sequence of one of SEQ ID NOs: 40-140 and 242-377 or a sequence complementary to one of the sequences of SEQ ID NOs: 40-140 and 242-377.
 - 20. A purified or isolated antibody capable of binding to a polypeptide comprising at least 10 consecutive amino acids of the sequence of one of SEQ ID NOs: 141-241 and 378-513.

Figure 1

Minimum signal peptide score		false negative rate	proba(0.1)	proba(0.2)
3,5	0,121	0,036	0,467	0,664
4	0,096	0,06	0,519	0,708
4,5	0,078	0,079	0,565	0,745
5	0,062	0,098	0,615	0,782
5,5	0,05	0,127	0,659	0,813
6	0,04	0,163	0,694	0,836
6,5	0,033	0,202	0,725	0,855
] 7	0,025	0,248	0,763	0,878
7,5	0,021	0,304	0,78	0,889
8	0,015	0,368	0,816	0,909
8,5	0,012	0,418	0,836	0,92
9	0,009	0,512	0,856	0,93
9,5	0,007	0,581	0,863	0,934
10	0,006	0,679	0,835	0,919

influence of minimum score on signal peptide recognition

Minimum signal peptide score		New ESTs	ESTs matching public EST closer than 40 bp from beginning	ESTs extending known mRNA more than 40 bp	40 bp
3,5	2674	947	599	I .	150
4	2278	784	499	23	126
4,5	1943	647	425	22	112
5	1657	523	353	21	96
5,5	1417	419	307	19	80
6	1190	340	238	18	
6,5	1035	280	186	18	60
7	893	219	161	15	
7,5	753	173	132	12	36
8	636	133	101	11	29
8,5	543	104	83	8	26
9	456	81	. 63	6	24
9,5	364	57	48	6	18
10	303	47	35	6	15

Tissue	All ESTs	New ESTs	ESTs matching public EST closer than 40 bp from beginning	ESTs extending known mRNA more than 40 bp	bp
Brain	329	131	75	3	24
Cancerous prostate	134	40	37	1	6
Cerebellum	17	9	1	0	6
Colon	21	11	4	0	0
Dystrophic muscle	41	18	8	0	1
Fetal brain	70	37	16	0	1
Fetal kidney	227	116	46	. 1	19
Fetal liver	13	7	2	0	0
Heart	30	15	7	0	1
Hypertrophic prostate	86	23	22	2	2
Kidney	10	7	3	0	0
Large intestine	21	8	4	0	1
Liver	23	9	6	0	. 0
Lung	24	12	4	0	1
Lung (cells)	57	38	6	0	4
Lymph ganglia	163	60	23	2	12
Lymphocytes	23	6	4	0	2
Muscle	33	16	6	0	4
Normal prostate	181	61	45	7	11
Ovary	90	57	12	1	2
Pancreas	48	11	6	0	1
Placenta	24	5	1	0	0
Prostate	34	16	4	0	2
Spleen	56	28	10	0	1
Substantia nigra	108	47	27	1	6
Surrenals	15	3	3	1	0
Testis	131	68	25	1	8
Thyroid	17	8	2	0	2 3 2
Umbilical cord	5 5	17	12	1	3
Uterus	28	15	3	0	
Non tissue-specific	568	48	177	2	28
Total	2677	947	601	23	150

Plasmid name: pED6dpc2 Plasmid size: 5374 bp

FIGURE 8

9/15

Description of Transcription Factor Binding Sites present on promoters isolated from SignalTag sequences

Promoter sequence P13H2 (546 bp):

Matrix	Position	Orientation	Score	Length	Sequence
CMYB_01	-502	+	0.983	9	TGTCAGTTG
MYOD_Q6	-501		0.961	10	CCCAACTGAC
S8_01	-444	-	0.960	11	AATAGAATTAG
\$8_01	-425	+	0.966	11	AACTAAATTAG
DELTAEF1_01	-390	-	0.960	11	GCACACCTCAG
GATA_C	-364	•	0.964	11	AGATAAATCCA
CMYB_01	-349	+	0.958	9	CTTCAGTTG
GATA1_02	-343	+	0.959	14	TTGTAGATAGGACA
GATA_C	-339	+	0.953	11	AGATAGGACAT
TAL1ALPHAE47_01	-235	+	0.973	16	CATAACAGATGGTAAG
TAL1BETAE47_01	-235	+	0.983	16	CATAACAGATGGTAAG
TAL1BETAITF2_01	-235	+	0.978	16	CATAACAGATGGTAAG
MYOD_Q6	-232	-	0.954	10	ACCATCTGTT
GATA1_04	-217	•	0.953	13	TCAAGATAAAGTA
IK1_01	-126	+	0.963	13	AGTTGGGAATTCC
IK2_01	-126	+	0.985	12	AGTTGGGAATTC
CREL_01	-123	+	0.962	10	TGGGAATTCC
GATA1_02	-96	+	0.950	14	TCAGTGATATGGCA
SRY_02	-41	-	0.951	12	TAAAACAAAACA
E2F_02	-33	+	0.957	8	TTTAGCGC
MZF1_01	-5	-	0.975	8	TGAGGGGA

Promoter sequence P15B4 (861bp):

Position	Orientation	Score	Length	Sequence
-748	-	0.956	11	GGACCAATCAT
-738	+	0.962	8	CCTGGGGA
-684	+	0.994	9	TGACCGTTG
-682	-	0.985	9	TCCAACGGT
-673	+	0.968	9	TTCCTGGAA
-673	-	0.951	9	TTCCAGGAA
-556	-	0.956	8	TTGGGGGA
-451	+	0.965	12	GAATGGGATTTC
-424	+	0.986	8	AGAGGGGA
-398	-	0.955	12	GAAAACAAAACA
-216	+	0.960	8	GAAGGGGA
-190	+	0.981	10	AGCATCTGCC
-176	+	0.958	11	TCCCACCTTCC
5	-	0.992	11	GAGGCAATTAT
16	-	0.986	8	AGAGGGGA
	-748 -738 -684 -682 -673 -556 -451 -424 -398 -216 -190 -176	-748738 + -684 + -682673 + -673556451 + -424 + -398216 + -190 + -176 +	-748 - 0.956 -738 + 0.962 -684 + 0.994 -682 - 0.985 -673 + 0.968 -673 - 0.951 -556 - 0.956 -451 + 0.965 -424 + 0.986 -398 - 0.955 -216 + 0.960 -190 + 0.981 -176 + 0.958 -5 - 0.992	-748 - 0.956 11 -738 + 0.962 8 -684 + 0.994 9 -682 - 0.985 9 -673 + 0.968 9 -673 - 0.951 9 -556 - 0.956 8 -451 + 0.965 12 -424 + 0.986 8 -398 - 0.955 12 -216 + 0.960 8 -190 + 0.981 10 -176 + 0.958 11 -5 - 0.992 11

Promoter sequence P29B6 (555 bp):

Matrix	Position	Orientation	Score	Length	Sequence
ARNT_01	-311	+	0.964	16	GGACTCACGTGCTGCT
NMYC_01	-309	+	0.965	12	ACTCACGTGCTG
USF_01	-309	+	0.985	12	ACTCACGTGCTG
USF_01	-309	-	0.985	12	CAGCACGTGAGT
NMYC_01	-309	_	0.956	12	CAGCACGTGAGT
MYCMAX_02	-309	•	0.972	12	CAGCACGTGAGT
USF_C	-307	+	0.997	8	TCACGTGC
USF_C	-307	-	0.991	8	GCACGTGA
MZF1_01	-292	-	0.968	8	CATGGGGA
ELK1_02	-105	+	0.963	14	CTCTCCGGAAGCCT
CETS1P54_01	-102	+	0.974	10	TCCGGAAGCC
AP1_Q4	-42	-	0.963	11	AGTGACTGAAC
AP1FJ_Q2	-4 2	•	0.961	11	AGTGACTGAAC
PADS_C	45	+	1.000	9	TGTGGTCTC

Figure 9

WO 99/31236 PCT/IB98/02122

10/15

100.0% identity in 125 aa overlap 10 20 30 40 SEQ ID NO: 217 MADEELEALRRQRLAELQAKHGDPGDAAQQEAKHREAEMRNSILAQVLDQSARARLSNLA $X_{1}, \dots, X_{n}, \dots, X_{n}$ SEQ ID NO: 516 MADEELEALRRQRLAELQAKHGDPGDAAQQEAKHREAEMRNSILAQVLDQSARARLSNLA 10 20 80 90 100 110 120 SEQ ID NO: 217 LVKPEKTKAVENYLIQMARYGQLSEKVSEQGLIEILKKVSQQTEKTTTVKFNRRKVMDSD SEQ ID NO: 516 LVKPEKTKAVENYLIQMARYGQLSEKVSEQGLIEILKKVSQQTEKTTTVKFNRRKVMDSD 80 90 100 110 SEQ ID NO: 217 EDDDY SEQ ID NO: 516 EDDDY

FIGURE 10

CLUSTAL W(1.5) multiple sequence alignment

SEQ ID NO: 517 SEQ ID NO: 232 SEQ ID NO: 174 SEQ ID NO: 175	MFCPLKLILLPVLLDYSLGLNDLNVSPPELTVHVGDSALMGCVFQSTEDKCIFKIDWTLSMGCVFQSTEDKCIFKIDWTLSMGCVFQSTEDKRIFKIDWTLSMGCVFQSTVDKCIFKIDWTLS ******* ** **************************
SEQ ID NO: 517	PGEHAKDEYVLYYYSNLSVPIGRFQNRVHLMGDNLCNDGSLLLQDVQDVE
SEQ ID NO: 232	PGEHAKDEYVLYYYSNLSVPIGRFQNRVHLMGDILCNDGSLLLQDVQEADQGTYICEIRL
SEQ ID NO: 174	PGEHAKDEYVLYYYSNLSVPIGRFQNRVHLMGDNLCNDGSLLLQDVQEADQGTYICEIRL
SEQ ID NO: 175	PGEHAKDEYVLYYYSNLSVPIGRFQNRVHLMGDILCNDGSLLLQDVQEADQGTYICEIRL

SEO ID NO: 517	
SEQ ID NO: 317	KGESOVFKKAVVLHVLPEEPKGTOMLT
SEQ ID NO: 174	KGESQVFKKAVVLHVLPEEPKELMVHVGGLIQMGCVFQSTEVKHVTKVEWIFSGRRAKEE
SEQ ID NO: 174 SEQ ID NO: 175	KGESOVFKKAVVLHVLPEEPKELMVHVGGLIOMGCVFQSTEVKHVTKVEWIFSGRRAK
SEQ ID NO: 517	
SEQ ID NO: 232	
SEQ ID NO: 174	IVFRYYHKLRMSAEYSQSWGHFQNRVNLVGDIFRNDGSIMLQGVRESDGGNYTCSIHLGN
SEQ ID NO: 175	VTRRKHHCVREGSG
SEQ ID NO: 517	
SEQ ID NO: 232	
SEQ ID NO: 174	LVFKKTIVLHVSPEEPRTLVTPAALRPLVLGGNQLVIIVGIVCATILLLPVLILIVKKTC
SEQ ID NO: 175	
SEQ ID NO: 517	
SEQ ID NO: 232	
SEQ ID NO: 174	GNKSSVNSTVLVKNTKKTNP
SEQ ID NO: 175	

99.6% identity in 225 aa overlap SEQ ID NO: 515 PTAVQKEEARQDVEALLSRTVRTQILTGKELRVATQEKEGSSGRCMLTLLGLSFILAGLI ********************** SEQ ID NO: 231 LRVATQEKEGSSGRCMLTLLGLSFILAGLI SEQ ID NO: 515 VGGACIYKYFMPKSTIYRGEMCFFDSEDPANSLRGGEPNFLPVTEEADIREDDNIAIIDV SEQ ID NO: 231 VGGACIYKYFMPKSTIYRGEMCFFDSEDPANSLRGGEPNFLPVTEEADIREDDNIAIIDV SEQ ID NO: 515 PVPSFSDSDPAAIIHDFEKGMTAYLDLLLGNCYLMPLNTSIVMPPKNLVELFGKLASGRY SEQ ID NO: 231 PVPSFSDSDPAAIIHDFEKGMTAYLDLLLGICYLMPLNTSIVMPPKNLVELFGKLASGRY SEQ ID NO: 515 LPQTYVVREDLVAVEEIRDVSNLGIFIYQLCNNRKSFRLRRRDLLLGFNKRAIDKCWKIR SEQ ID NO: 231 LPQTYVVREDLVAVEEIRDVSNLGIFIYQLCNNRKSFRLRRRDLLLGFNKRAIDKCWKIR SEQ ID NO: 515 HFPNEFIVETKICQE SEQ ID NO: 231 HFPNEFIVETKICQE

99.7% identity in 353 aa overlap MERGLKSADPRDGTGYTGWAGIAVLYLHLY SEQ ID NO:196 SEQ ID NO:518 LAEGYFDAAGRLTPEFSQRLTNKIRELLQQMERGLKSADPRDGTGYTGWAGIAVLYLHLY SEO ID NO:196 DVFGDPAYLQLAHGYVKQSLNCLTKRSITFLCGDAGPLAVAAVLYHKMNNEKQAEDCITR SEQ ID NO:518 DVFGDPAYLQLAHGYVKQSLNCLTKRSITFLCGDAGPLAVAAVLYHKMNNEKQAEDCITR SEQ ID NO:196 LIHLNKIDPHAPNEMLYGRIGYIYALLFVNKNFGVEKTPQSHIQQICETILTSGENLARK SEQ ID NO:518 LIHLNKIDPHAPNEMLYGRIGYIYALLFVNKNFGVEKIPQSHIQQICETILTSGENLARK SEQ ID NO:196 RNFTAKSPLMYEWYQEYYVGAAHGLAGIYYYLMQPSLQVSQGKLHSLVKPSVDYVCQLKF SEQ ID NO:518 RNFTAKSPLMYEWYQEYYVGAAHGLAGIYYYLMQPSLQVSQGKLHSLVKPSVDYVCQLKF SEQ ID NO:196 PSGNYPPCIGDNRDLLVHWCHGAPGVIYMLIQAYKVFREEKYLCDAYQCADVIWQYGLLK SEQ ID NO:518 PSGNYPPCIGDNRDLLVHWCHGAPGVIYMLIQAYKVFREEKYLCDAYQCADVIWQYGLLK SEO ID NO:196 KGYGLCHGSAGNAYAFLTLYNLTQDMKYLYRACKFAEWCLEYGEHGCRTPDTPFSLFEGM SEQ ID NO:518 KGYGLCHGSAGNAYAFLTLYNLTQDMKYLYRACKFAEWCLEYGEHGCRTPDTPFSLFEGM SEQ ID NO:196 AGTIYFLADLLVPTKARFPAFEL SEO ID NO:518 AGTIYFLADLLVPTKARFPAFEL

98.5% identity in 194 aa overlap SEO ID NO:519 ARNLPPLTDAQKNKLRHLSVVTLAAKVKCIPYAVLLEALALRNVROLEDLVIEAVYADVL SEQ ID NO:158 ARNLPPLTEAQKNKLRHLSVVTLAAKVKCIPYAVLLEALALRNVRQLEDLVIEAVYADVL SEQ ID NO:519 RGSLDQRNQRLEVDYSIGRDIQRQDLSAIAQTLQEWCVGCEVVLSGIEEQVSRANQHKEQ SEQ ID NO:158 RGSLDQRNQRLEVDYSIGRDIQRQDLSAIARTLQEWCVGCEVVLSGIEEQVSRANOHKEQ SEQ ID NO:519 QLGLKQQIESEVANLKKTIKVTTAAAAAATSQDPEQHLTELREPASGTNQRQPSKKASKG SEQ ID NO:158 QLGLKQQIESEVANLKKTIKVTTAAAAAATSQDPEQHLTELREPAPGTNQRQPSKKASKG SEQ ID NO:519 KGLRGSAKIWSKSN SEQ ID NO:158 KGLRGSAKIWSKSN 88.7% identity in 62 aa overlap SEQ ID NO:519 MSAEVKVTGQNQEQFLLLAKSAKGAALATLIHQVLEAPGVYVFGELLDMPNVRELAESDF SEQ ID NO:158 MSAEVKVTGQNQEQFLLLAKSAKGAALATLIHQVLEAPGVYVFGELLDMPNVRELXARNL

SEQ ID NO:519 AS

. X

SEQ ID NO:158 PP

68.9% identity in 74 aa overlap

SEQ ID NO:514 QLLYITSFVFVGYYLLKRQDYMYAVRDHDMFSYIKSHPEDFPEKDKKTYGEVFEEFHPVR 70 80 90 100 110 120

. WO 99/31236 PCT/IB98/02122

<110> Dumas Milne Edwards, Jean-Baptiste
 Duclert, Aymeric
 Bougueleret, Lydie

<120> Extended cDNAS for Secreted Proteins

<130> GENSET.019A

<160> 519

<170> Patent.pm

<210> 1

<211> 47

<212> RNA

<213> Artificial Sequence

<220>

<221> In vitro transcription product

<221> modified_base

<222> (1)...(1)

<223> m7g

<400> 1

ngcauccuac ucccauccaa uuccacccua acuccuccca ucuccac

47

<210> 2

<211> 46

<212> RNA

<213> Artificial Sequence

<220>

<223> In vitro transcription product

<400> 2

gcauccuacu cccauccaau uccacccuaa cuccucccau cuccac

46

<210> 3

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> In vitro transcription product

<400> 3

atcaagaatt cgcacgagac catta

25

<210> 4

<211> 25

<212> DNA

<213> Artificial Sequence

<220>			
<223> Oligonucleotide			
<400> 4			
taatggtctc gtgcgaattc t	tgat		25
<210> 5			
<211> 25			
<212> DNA			
<213> Artificial Sequer	ıce		
<220>			
<223> Oligonucleotide			
<400> 5			25
ccgacaagac caacgtcaag	accac		25
<210>_6			
<211> 25			
<212> DNA			
<213> Artificial Seque	ace		
<220>			
<223> Oligonucleotide			
<400> 6			0.5
tcaccagcag gcagtggctt	aggag		. 25
<210> 7			
<211> 25			
<212> DNA			
<213> Artificial Seque	nce		
<220>			
<223> Oligonucleotide			
<400> 7			25
agtgattcct gctactttgg	atggc		25
<210> 8			
<211> 25			
<212> DNA			
<213> Artificial Seque	nce		
<220>		-	
<223> Oligonucleotide			
<400> 8			
gcttggtctt gttctggagt	ttaga		25

WO 99/31236 -3- PCT/IB98/02122

<211> 25 <212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 9

tccagaatgg gagacaagcc aattt

25

<210> 10

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 10

agggaggagg aaacagcgtg agtcc

25

<210> 11

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 11

atgggaaagg aaaagactca tatca

25

<210> 12

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 12

agcagcaaca atcaggacag cacag

25

<210> 13

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 13

atcaagaatt cgcacgagac catta

25

	n	
210>		
211>	67	
212>	DNA	
	Artificial Sequence	
000		
:220>		
:223>	Oligonucleotide	
400>	14	
teatt	gaga ctcgtaccag cagagtcacg agagagacta cacggtactg gttttttttt	60
ttttv		67
LLLLLV		
<210>	15	
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide	
<400>	15	
		29
ccagca	gagt cacgagagag actacacgg	
<210>	16	
<211>		
<212>		
	Artificial Sequence	
<220>		
<223>	Oligonucleotide	
<400>	16	
		25
cacgag	gagag actacacggt actgg	
<210>	17	
<211>		
<212>		
<213>	Homo sapiens	
<220>		
<221>	misc feature	
	complement (261376)	
<223>	blastn	
	misc_feature	
<222>	complement (380486)	
	blastn	
000	wise fashing	
	misc_feature	
	complement(110145)	
	blastn	
-		
<221>	misc_feature	
-222-	complement (196229)	
<423>	blastn	

-5-

60 113

161

209

257

305

354

414

474

526

<221> sig peptide <222> 90..140 <223> Von Heijne matrix <400> 17 aatatrarac agctacaata ttccagggcc artcacttgc catttctcat aacagcgtca gagagaaaga actgactgar acgtttgag atg aag aaa gtt ctc ctc ctg atc Met Lys Lys Val Leu Leu Leu Ile -15 aca gcc atc ttg gca gtg gct gtw ggt ttc cca gtc tct caa gac cag Thr Ala Ile Leu Ala Val Ala Val Gly Phe Pro Val Ser Gln Asp Gln -5 gaa cga gaa aaa aga agt atc agt gac agc gat gaa tta gct tca ggr Glu Arg Glu Lys Arg Ser Ile Ser Asp Ser Asp Glu Leu Ala Ser Gly 10 15 with tit gig tic cot tac coa tat coa tit cgc coa cit coa coa att Xaa Phe Val Phe Pro Tyr Pro Tyr Pro Phe Arg Pro Leu Pro Pro Ile cca ttt cca aga ttt cca tgg ttt aga cgt aan ttt cct att cca ata Pro Phe Pro Arg Phe Pro Trp Phe Arg Arg Xaa Phe Pro Ile Pro Ile 50 40 45 cct gaa tct gcc cct aca act ccc ctt cct agc gaa aag taaacaaraa Pro Glu Ser Ala Pro Thr Thr Pro Leu Pro Ser Glu Lys 65 ggaaaagtca crataaacct ggtcacctga aattgaaatt gagccacttc cttgaaraat caaaattcct qttaataaaa raaaaacaaa tgtaattgaa atagcacaca gcattctcta <210> 18 <211> 17 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> 1..17 <223> Von Heijne matrix score 8.2 seq LLLITAILAVAVG/FP Met Lys Lys Val Leu Leu Leu Ile Thr Ala Ile Leu Ala Val Ala Val 10 1 5 Gly <210> 19 <211> 822 <212> DNA <213> Homo sapiens <220>

<221> misc_feature <222> 118..184

<221> misc_feature <222> 260..464 <223> blastn WO 99/31236 -6- PCT/IB98/02122

<223> blastn	
<221> misc_feature	
<222> 56113	
<223> blastn	
<221> misc_feature	
<222> 454485	
<223> blastn	
<221> misc_feature	
<222> 118545 <223> blastn	
<223> DIASCII	
<221> misc_feature	
<222> 65369	
<223> blastn	
<221> misc_feature	
<222> 61399	
<223> blastn	
<221> misc_feature	
<222> 408458	
<223> blastn	
<221> misc_feature	
<222> 60399	
<223> blastn	
<221> misc_feature	
<222> 393432	
<223> blastn	
<221> sig_peptide	
<222> 346408	
<223> Von Heijne matrix	
<400> 19	
actectttta gcataggggc ttcggcgcca gcggccagcg	ctagteggte tggtaagtge 60
ctgatgccga gttccgtctc tcgcgtcttt tcctggtccc ctcaaacggc ctagtgcttc gcgcttccgg agaaaatcag	contrast satteetets 180
gtttgttgaa gcagttacca agaatcttca accetttece	acaaaagcta attgagtaca 240
cgttcctgtt gagtacacgt tcctgttgat ttacaaaagg	tgcaggtatg agcaggtctg 300
aagactaaca ttttgtgaag ttgtaaaaca gaaaacctgt	tagaa atg tgg tgg ttt 357
	Met Trp Trp Phe -20
cag caa ggc ctc agt ttc ctt cct tca gcc ctt	gta att tgg aca tct 405
Gln Gln Gly Leu Ser Phe Leu Pro Ser Ala Leu	Val Ile Trp Thr Ser
-15 -10	-5
get get tte ata ttt tea tac att act gea gta	aca ctc cac cat ata 453
Ala Ala Phe Ile Phe Ser Tyr Ile Thr Ala Val	Thr Leu His His He
gac ccg gct tta cct tat atc agt gac act ggt	- -
Asp Pro Ala Leu Pro Tyr Ile Ser Asp Thr Gly	Thr Val Ala Pro Xaa
20 25	30
aaa tgc tta ttt ggg gca atg cta aat att gcg	gca gtt tta tgt caa 549
Lys Cys Leu Phe Gly Ala Met Leu Asn Ile Ala	Ala Vai Leu Cys Gin 45
35 40 aaa tagaaatcag gaarataatt caacttaaag aakttc	
Lys	
ctcttcaraa acatgtcttt acaagcatat ctcttgtatt	gctttctaca ctgttgaatt 662

722

gtctggcaat atttctgcag tggaaaattt gatttarmta gttcttgact gataaatatg

gtaaggtggg cttttccccc tgtgtaattg gctactatgt c tttgaaataa aatgatatga gagtgacaca aaaaaaaaa	ttactgagc caagttgtaw 782 822
<210> 20 <211> 21 <212> PRT <213> Homo sapiens	
<220> <221> SIGNAL <222> 121 <223> Von Heijne matrix score 5.5 seq SFLPSALVIWTSA/AF	
<400> 20 Met Trp Trp Phe Gln Gln Gly Leu Ser Phe Leu P 1 5 10 Ile Trp Thr Ser Ala 20	ro Ser Ala Leu Val 15
<210> 21 <211> 405 <212> DNA <213> Homo sapiens	
<220> <221> misc_feature <222> complement(103398) <223> blastn	
<221> sig_peptide <222> 185295 <223> Von Heijne matrix	
<400> 21 atcaccttct tctccatcct tstctgggcc agtccccarc c cccagcccaa gtcagccttc agcacgcgct tttctgcaca c ggcattccag gacctccgma atgatgctcc agtcccttac a tggc atg gtg ctg acc acc ctc ccc ttg ccc tct Met Val Leu Thr Thr Leu Pro Leu Pro Ser -35 -30	agatattcc aggcctacct 120 agcgcttcc tggatgaggg 180 gcc aac agc cct gtg 229
aac atg ccc acc act ggc ccc aac agc ctg agt t Asn Met Pro Thr Thr Gly Pro Asn Ser Leu Ser T -20 -15	
ctg tcc ccc tgt ctg acc gct cca aak tcc ccc c Leu Ser Pro Cys Leu Thr Ala Pro Xaa Ser Pro A -5 5	
cct gac aac taaatatcct tatccaaatc aataaarwra Pro Asp Asn tccaraaggg tttctaaaaa caaaaaaaaa a	raatcctccc 374

<210> 22

<211> 37

<212> PRT

<213> Homo sapiens <220> <221> SIGNAL <222> 1..37 <223> Von Heijne matrix score 5.9 seq LSYASSALSPCLT/AP Met Val Leu Thr Thr Leu Pro Leu Pro Ser Ala Asn Ser Pro Val Asn 10 Met Pro Thr Thr Gly Pro Asn Ser Leu Ser Tyr Ala Ser Ser Ala Leu 25 20 Ser Pro Cys Leu Thr 35 <210> 23 <211> 496 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> 149..331 <223> blastn <221> misc_feature <222> 328..485 <223> blastn <221> misc_feature <222> complement (182..496) <223> blastn <221> sig_peptide <222> 196..240 <223> Von Heijne matrix <400> 23 aaaaaattgg tcccaqtttt caccctgccg cagggctggc tggggagggc agcggtttag 60 attagccgtg gcctaggccg tttaacgggg tgacacgagc ntgcagggcc gagtccaagg 120 cccggagata ggaccaaccg tcaggaatgc gaggaatgtt tttcttcgga ctctatcgag 180 231 gcacacagac agacc atg ggg att ctg tct aca gtg aca gcc tta aca ttt Met Gly Ile Leu Ser Thr Val Thr Ala Leu Thr Phe -15 -10 279 gcc ara gcc ctg gac ggc tgc aga aat ggc att gcc cac cct gca agt Ala Xaa Ala Leu Asp Gly Cys Arg Asn Gly Ile Ala His Pro Ala Ser gag aag cac aga ctc gag aaa tgt agg gaa ctc gag asc asc cac tcg 327 Glu Lys His Arg Leu Glu Lys Cys Arg Glu Leu Glu Xaa Xaa His Ser 25 20 375 gec eca gga tea ace cas eac ega aga aaa aca ace aga aga aat tat Ala Pro Gly Ser Thr Xaa His Arg Arg Lys Thr Thr Arg Arg Asn Tyr 45 40 424 tot toa goo tqaaatgaak oogggatcaa atggttgotg atcaragece atatttaaat tggaaaagtc aaattgasca ttattaaata aagcttgttt aatatgtctc 484

aaacaaaaaa aa

496

```
<210> 24
<211> 15
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> 1..15
<223> Von Heijne matrix
      score 5.5
      seq ILSTVTALTFAXA/LD
Met Gly Ile Leu Ser Thr Val Thr Ala Leu Thr Phe Ala Xaa Ala
                                    10
<210> 25
<211> 623
<212> DNA
<213> Homo sapiens
<220>
<221> sig_peptide
<222> 49..96
<223> Von Heijne matrix
<400> 25
                                                                        57
aaagatccct gcagcccggc aggagagaag gctgagcctt ctggcgtc atg gag agg
                                                      Met Glu Arg
                                                          -15
ctc gtc cta acc ctg tgc acc ctc ccg ctg gct gtg gcg tct gct ggc
                                                                      105
Leu Val Leu Thr Leu Cys Thr Leu Pro Leu Ala Val Ala Ser Ala Gly
            -10
                                 -5
tgc gcc acg acg cca gct cgc aac ctg agc tgc tac cag tgc ttc aag
                                                                       153
Cys Ala Thr Thr Pro Ala Arg Asn Leu Ser Cys Tyr Gln Cys Phe Lys
                         10
                                                                       201
gtc agc agc tgg acg gag tgc ccg ccc acc tgg tgc agc ccg ctg gac
Val Ser Ser Trp Thr Glu Cys Pro Pro Thr Trp Cys Ser Pro Leu Asp
                     25
                                         30
20
caa gtc tgc atc tcc aac gag gtg gtc gtc tct ttt aaa tgg agt gta
                                                                       249
Gln Val Cys Ile Ser Asn Glu Val Val Val Ser Phe Lys Trp Ser Val
                40
                                     45
                                                                       297
cgc gtc ctg ctc agc aaa cgc tgt gct ccc aga tgt ccc aac gac aac
Arg Val Leu Leu Ser Lys Arg Cys Ala Pro Arg Cys Pro Asn Asp Asn
                                 60
atg aak ttc gaa tgg tcg ccg gcc ccc atg gtg caa ggc gtg atc acc
                                                                       345
Met Xaa Phe Glu Trp Ser Pro Ala Pro Met Val Gln Gly Val Ile Thr
                             75
agg cgc tgc tgt tcc tgg gct ctc tgc aac agg gca ctg acc cca cag
                                                                       393
Arg Arg Cys Cys Ser Trp Ala Leu Cys Asn Arg Ala Leu Thr Pro Gln
                         90
                                                                       441
gag ggg cgc tgg gcc ctg cra ggg ggg ctc ctg ctc cag gac cct tcg
Glu Gly Arg Trp Ala Leu Xaa Gly Gly Leu Leu Cln Asp Pro Ser
100
                     105
                                         110
 agg ggc ara aaa acc tgg gtg cgg cca cag ctg ggg ctc cca ctc tgc
                                                                       489
Arg Gly Xaa Lys Thr Trp Val Arg Pro Gln Leu Gly Leu Pro Leu Cys
                 120
                                  , 125
                                                                       534
```

ctt ccc awt tcc aac ccc ctc tgc cca rgg gaa acc cag gaa gga

	•
Leu Pro Xaa Ser Asn Pro Leu Cys Pro Xaa Glu Thr Gln Glu Gly 135 140 145	
taacactgtg ggtgcccca cctgtgcatt gggaccacra cttcaccctc ttggaracaa	594
taaactetea tgeecceaaa aaaaaaaaa	623
<210> 26	
<211> 16	
<212> PRT	
<213> Homo sapiens	
<220>	
<221> SIGNAL <222> 116	
<pre><222> 110 <223> Von Heijne matrix</pre>	
score 10.1	
seq LVLTLCTLPLAVA/SA	
<400> 26	
Met Glu Arg Leu Val Leu Thr Leu Cys Thr Leu Pro Leu Ala Val Ala	
<210> 27	
<211> 848	
<212> DNA	
<213> Homo sapiens	
<220>	
<pre><221> sig_peptide <222> 3273</pre>	
<223> Von Heijne matrix	
.400. 27	
<400> 27 aactttgcct tgtgttttcc accetgaaag a atg ttg tgg ctg ctc ttt ttt	52
Met Leu Trp Leu Leu Phe Phe	
ctg gtg act gcc att cat gct gaa ctc tgt caa cca ggt gca gaa aat	100
Leu Val Thr Ala Ile His Ala Glu Leu Cys Gln Pro Gly Ala Glu Asn -5 5 5	
gct ttt aaa gtg aga ctt agt atc aga aca gct ctg gga gat aaa gca	148
Ala Phe Lys Val Arg Leu Ser Ile Arg Thr Ala Leu Gly Asp Lys Ala 10 20 25	
tat gcc tgg gat acc aat gaa gaa tac ctc ttc aaa gcg atg gta gct	196
Tyr Ala Trp Asp Thr Asn Glu Glu Tyr Leu Phe Lys Ala Met Val Ala	
30 35 40 ttc tcc atg aga aaa gtt ccc aac aga gaa gca aca gaa att tcc cat	244
Phe Ser Met Arg Lys Val Pro Asn Arg Glu Ala Thr Glu Ile Ser His	•
45 50 55	200
gtc cta ctt tgc aat gta acc cag agg gta tca ttc tgg ttt gtg gtt Val Leu Leu Cys Asn Val Thr Gln Arg Val Ser Phe Trp Phe Val Val	292
60 65 70	
aca gac cct tca aaa aat cac acc ctt cct gct gtt gag gtg caa tca	340
Thr Asp Pro Ser Lys Asn His Thr Leu Pro Ala Val Glu Val Gln Ser	
gcc ata aga atg aac aag aac cgg atc aac aat gcc ttc ttt cta aat	388
Ala Ile Arg Met Asn Lys Asn Arg Ile Asn Asn Ala Phe Phe Leu Asn 90 95 100 105	
90 95 100 105 gac caa act ctg gaa ttt tta aaa atc cct tcc aca ctt gca cca ccc	436
Asp Gln Thr Leu Glu Phe Leu Lys Ile Pro Ser Thr Leu Ala Pro Pro	-

Asp Gln Thr Leu Glu Phe Leu Lys Ile Pro Ser Thr Leu Ala Pro Pro

		,		110					115					120		
atg	gac	cca	tct	gtg	ccc	atc	tgg	att	att	ata	ttt	ggt	gtg	ata	ttt	484
Met	Asp	Pro	Ser	Val	Pro	Ile	Trp	Ile	Ile	Ile	Phe	Gly	Val	Ile	Phe	
			125					130	•			_	135			
tgc	atc	atc	ata	gtt	gca	att	gca	cta	ctg	att	tta	tca	999	atc	tgg	532
Cys	Ile	Ile	Ile	Val	Ala	Ile	Ala	Leu	Leu	Ile	Leu	Ser	Gly	Ile	Trp	
		140					145					150	_		_	
caa	cgt	ada	ara	aag	aac	aaa	gaa	cca	tct	gaa	gtg	gat	gac	gct	gaa	580
Gln	Arg	Xaa	Xaa	Lys	Asn	Lys	Glu	Pro	Ser	Glu	Val	Asp	Asp	Ala	Glu	
	155					160					165	-	•			
rat	aak	tgt	gaa	aac	atg	atc	aca	att	gaa	aat	ggc	atc	ccc	tct	gat	628
Xaa	Xaa	Cys	Glu	Asn	Met	Ile	Thr	Ile	Glu	Asn	Gly	Ile	Pro	Ser	Asp	
170					175					180	-				185	
ccc	ctg	gac	atg	aag	gga	999	cat	att	aat	gat	gcc	ttc	atq	aca	qaq	676
Pro	Leu	Asp	Met	Lys	Gly	Gly	His	Ile	Asn	Asp	Ala	Phe	Met	Thr	Glu	
				190		-			195	•				200		
gat	gag	agg	ctc	acc	cct	ctc	tgaa	igggo	tq t	tgtt	ctq	tt	ctca	araa	ı	727
Asp	Glu	Arg	Leu	Thr	Pro	Leu			_	٠.	_					
			205													
atta	aaca	itt t	gttt	ctgt	g to	jacto	gctga	gca	tcct	gaa	atac	caac	aq c	agat	catat	787
wttt	tgtt	tc a	ccat	tctt	c tt	ttgt	aata	aat	ttto	raat	atac	ttaa	iaa a	laaaa	aaaaa	847
C						_			_	•		٠.				848

<210> 28
<211> 14
<212> PRT
<213> Homo sapiens

<220>
<221> SIGNAL
<222> 1..14
<223> Von Heijne matrix score 10.7

seq LWLLFFLVTAIHA/EL

<400> 28 Met Leu Trp Leu Leu Phe Phe Leu Val Thr Ala Ile His Ala

<210> 29
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 29
gggaagatgg agatagtatt gcct

gggaagatgg agatagtatt gcctg 25

10

<210> 30 <211> 26 <212> DNA <213> Artificial Sequence

<220>

<223> Olignucleotide

<400> 30 ctgccatgta catgatagag agattc

26

<210> 31

<211> 546

<212> DNA

<213> Homo sapiens

<220>

<221> promoter

<222> 1..517

<221> transcription start site

<222> 518

<221> protein_bind

<222> 17..25

<223> matinspector prediction name CMYB_01 score 0.983 sequence tgtcagttg

<221> protein bind

<222> complement (18..27)

<223> matinspector prediction name MYOD_Q6 score 0.961 sequence cccaactgac

<221> protein bind

<222> complement (75..85)

<223> matinspector prediction name S8_01 score 0.960 sequence aatagaattag

<221> protein_bind

<222> 94..104

<223> matinspector prediction name S8_01 score 0.966 sequence aactaaattag

<221> protein_bind

<222> complement (129..139)

<223> matinspector prediction name DELTAEF1_01 score 0.960 sequence gcacacctcag

<221> protein_bind

<222> complement(155..165)

<223> matinspector prediction name GATA_C score 0.964 sequence agataaatcca

<221> protein_bind

- <222> 170..178
- <223> matinspector prediction name CMYB_01 score 0.958 sequence cttcagttg
- <221> protein_bind
- <222> 176..189
- <223> matinspector prediction name GATA1_02 score 0.959 sequence ttgtagataggaca
- <221> protein bind
- <222> 180..190
- <223> matinspector prediction name GATA_C score 0.953 sequence agataggacat
- <221> protein_bind
- <222> 284..299
- <223> matinspector prediction name TAL1ALPHAE47_01 score 0.973 sequence cataacagatggtaag
- <221> protein bind
- <222> 284..299
- <223> matinspector prediction
 name TAL1BETAE47_01
 score 0.983
 sequence cataacagatggtaag
- <221> protein_bind
- <222> 284..299
- <223> matinspector prediction name TAL1BETAITF2_01 score 0.978 sequence cataacagatggtaag
- <221> protein_bind
- <222> complement (287..296)
- <223> matinspector prediction name MYOD_Q6 score 0.954 sequence accatctgtt
- <221> protein_bind
- <222> complement (302..314)
- <223> matinspector prediction name GATA1_04 score 0.953 sequence tcaagataaagta
- <221> protein bind
- <222> 393..405
- <223> matinspector prediction
 name IK1_01
 score 0.963
 sequence agttgggaattcc

```
<221> protein bind
<222> 393..404
<223> matinspector prediction
      name IK2 01
      score 0.985
      sequence agttgggaattc
<221> protein_bind
<222> 396..405
<223> matinspector prediction
      name CREL 01
      score 0.962
      sequence tgggaattcc
<221> protein bind
<222> 423..436
<223> matinspector prediction
      name GATA1_02
      score 0.950
      sequence tcaqtqatatqqca
<221> protein bind
<222> complement (478..489)
<223> matinspector prediction
      name SRY 02
      score 0.951
      sequence taaaacaaaca
<221> protein_bind
<222> 486..493
<223> matinspector prediction
      name E2F_02
      score 0.957
      sequence tttagcgc
<221> protein_bind
<222> complement (514..521)
<223> matinspector prediction
      name MZF1 01
      score 0.975
      sequence tgagggga
tgagtgcagt gttacatgtc agttgggtta agtttgttaa tgtcattcaa atcttctatg
                                                                       60
tottgatttg cotgotaatt ctattattto tggaactaaa ttagtttgat ggttotatta
                                                                      120
gttattgact gaggtgtgct aatctcccat tatgtggatt tatctatttc ttcagttgta
                                                                      180
                                                                      240
gataggacat tgatagatac ataagtacca ggacaaaagc agggagatct tttttccaaa
                                                                      300
atcaggagaa aaaaatgaca tctggaaaac ctatagggaa aggcataaca gatggtaagg
                                                                      360
atactttatc ttgagtagga gagccttcct gtggcaacgt ggagaaggga agaggtcgta
                                                                      420
gaattgagga gtcagctcag ttagaagcag ggagttggga attccgttca tgtgatttag
catcagtgat atggcaaatg tgggactaag ggtagtgatc agagggttaa aattgtgtgt
                                                                      480
tttgttttag cgctgctggg gcatcgcctt gggtcccctc aaacagattc ccatgaatct
                                                                      540
cttcat
                                                                      546
```

<210> 32 <211> 23

<211> 23

<212> DNA

<213> Artificial Sequence

-15-

<223> Oligonucleotide

<400> 32

gtaccaggga ctgtgaccat tgc

23

<210> 33

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 33

ctgtgaccat tgctcccaag agag

24

<210> 34

<211> 861

<212> DNA

<213> Homo sapiens

<220>

<221> promoter

<222> 1..806

<221> transcription start site

<222> 807

<221> protein_bind

<222> complement(60..70)

<223> matinspector prediction name NFY_Q6 score 0.956 sequence ggaccaatcat

<221> protein_bind

<222> 70..77

<223> matinspector prediction name MZF1_01 score 0.962 sequence cctgggga

<221> protein bind

<222> 124..132

<223> matinspector prediction name CMYB_01 score 0.994 sequence tgaccgttg

<221> protein bind

<222> complement (126..134)

<223> matinspector prediction name VMYB_02 score 0.985 sequence tccaacggt

<221> protein bind

<222> 135..143

- <223> matinspector prediction
 name STAT_01
 score 0.968
 sequence ttcctggaa
- <221> protein bind
- <222> complement(135..143)
- <223> matinspector prediction name STAT_01 score 0.951 sequence ttccaggaa
- <221> protein bind
- <222> complement(252..259)
- <223> matinspector prediction name MZF1_01 score 0.956 sequence ttggggga
- <221> protein_bind
- <222> 357..368
- <223> matinspector prediction
 name IK2_01
 score 0.965
 sequence gaatgggatttc
- <221> protein bind
- <222> 384..391
- <223> matinspector prediction
 name MZF1_01
 score 0.986
 sequence agagggga
- <221> protein_bind
- <222> complement (410..421)
- <223> matinspector prediction name SRY_02 score 0.955 sequence gaaaacaaaaca
- <221> protein_bind
- <222> 592..599
- <223> matinspector prediction
 name MZF1_01
 score 0.960
 sequence gaagggga
- <221> protein_bind
- <222> 618..627
- <223> matinspector prediction name MYOD_Q6 score 0.981 sequence agcatctgcc
- <221> protein_bind
- <222> 632..642
- <223> matinspector prediction name DELTAEF1_01 score 0.958 sequence tcccaccttcc
- <221> protein_bind

```
<222> complement(813..823)
<223> matinspector prediction
     name S8 01
     score 0.992
     sequence gaggcaattat
<221> protein bind
<222> complement (824..831)
<223> matinspector prediction
     name MZF1 01
     score 0.986
     sequence agaggga
<400> 34
tactataggg cacgcgtggt cgacggccgg gctgttctgg agcagagggc atgtcagtaa
                                                                 60
tgattggtcc ctggggaagg tctggctggc tccagcacag tgaggcattt aggtatctct
                                                                120
180
ctcagagggc taggcacgag ggaaggtcag aggagaaggs aggsarggcc cagtgagarg
                                                                240
ggagcatgcc ttcccccaac cctggcttsc ycttggymam agggcgktty tgggmacttr
                                                                300
aaytcagggc ccaascagaa scacaggccc aktcntggct smaagcacaa tagcctgaat
                                                                360
420
ccaaatcaag gtaacttgct cccttctgct acgggccttg gtcttggctt gtcctcaccc
                                                                480
agteggaact ecetaecact tteaggagag tggttttagg ecegtgggge tgttetgtte
                                                                540
caagcagtgt gagaacatgg ctggtagagg ctctagctgt gtgcggggcc tgaaggggag
                                                                600
tgggttctcg cccaaagagc atctgcccat ttcccacctt cccttctccc accagaagct
                                                                660
tgcctgagct gtttggacaa aaatccaaac cccacttggc tactctggcc tggcttcagc
                                                                720
ttggaaccca atacctaggc ttacaggcca tcctgagcca ggggcctctg gaaattctct
                                                                780
teetgatggt cetttaggtt tgggcacaaa atataattge eteteceete teecatttte
                                                                840
tctcttggga gcaatggtca c
                                                                861
<210> 35
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 35
ctgggatgga aggcacggta
                                                                20
<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 36
gagaccacac agctagacaa
                                                                20
<210> 37
```

<211> 555

<212> DNA

<213> Homo sapiens

- <220> <221> promoter <222> 1..500 <221> transcription start site <222> 501 <221> protein_bind <222> 191..206 <223> matinspector prediction name ARNT 01 score 0.964 sequence ggactcacgtgctgct <221> protein_bind <222> 193..204 <223> matinspector prediction name NMYC 01 score 0.965 sequence actcacgtgctg <221> protein_bind <222> 193..204 <223> matinspector prediction name USF_01 score 0.985 sequence actcacgtgctg <221> protein_bind <222> complement(193..204) <223> matinspector prediction name USF_01 score 0.985 sequence cagcacgtgagt <221> protein_bind <222> complement(193..204) <223> matinspector prediction name NMYC 01 score 0.956 sequence cagcacgtgagt <221> protein_bind <222> complement(193..204) <223> matinspector prediction name MYCMAX_02 score 0.972 sequence cagcacgtgagt <221> protein_bind <222> 195..202 <223> matinspector prediction name USF_C
- <221> protein_bind <222> complement(195..202) <223> matinspector prediction name USF_C score 0.991

sequence tcacgtgc

score 0.997

sequence gcacgtga

<221> protein_bind

<222> complement(210..217)

<223> matinspector prediction name MZF1_01 score 0.968 sequence catgggga

<221> protein bind

<222> 397..410

<223> matinspector prediction name ELK1_02 score 0.963 sequence ctctccggaagcct

<221> protein_bind

<222> 400..409

<223> matinspector prediction name CETS1P54_01 score 0.974 sequence tccggaagcc

<221> protein_bind

<222> complement (460..470)

<223> matinspector prediction name AP1_Q4 score 0.963 sequence agtgactgaac

<221> protein_bind

<222> complement (460..470)

<223> matinspector prediction name AP1FJ_Q2 score 0.961 sequence agtgactgaac

<221> protein bind

<222> 547..555

<223> matinspector prediction
 name PADS_C
 score 1.000
 sequence tgtggtctc

<400> 37

ctatagggca cgcktggtcg acggcccggg ctggtctggt ctgtkgtgga gtcgggttga 60 aggacagcat ttgtkacatc tggtctactg caccttccct ctgccgtgca cttggccttt 120 kawaagctca gcaccggtgc ccatcacagg gccggcagca cacacatccc attactcaga 180 aggaactgac ggactcacgt gctgctccgt ccccatgagc tcagtggacc tgtctatgta 240 gagcagtcag acagtgcctg ggatagagtg agagttcagc cagtaaatcc aagtgattgt 300 catteetgte tgcattagta acteecaace tagatgtgaa aacttagtte ttteteatag 360 gttgctctgc ccatggtccc actgcagacc caggcactct ccggaagcct ggaaatcacc 420 cgtgtcttct gcctgctccc gctcacatcc cacacttgtg ttcagtcact gagttacaga 480 ttttgcctcc tcaatttctc ttgtcttagt cccatcctct gttcccctgg ccagtttgtc 540 tagctgtgtg gtctc 555

<210> 38

<211> 19

<212> DNA

<213> Artificial Sequence

-20-

\$\frac{210}{39}	<220> <223>	Oli	gon	ucle	otid	e											
19	-400 <u>></u>	3.8															
<pre><211> 19 <212> DNA <213> Artificial Sequence </pre> <pre><220> <223> Oligonucleotide </pre> <pre><400> 39 atatagacaa acgcacacc</pre>		_	ic t	tgag	tgac												19
<pre><211> 19 <212> DNA <213> Artificial Sequence </pre> <pre><220> <223> Oligonucleotide </pre> <pre><400> 39 atatagacaa acgcacacc</pre>																	
<pre><211> 19 <212> DNA <213> Artificial Sequence </pre> <pre><220> <223> Oligonucleotide </pre> <pre><400> 39 atatagacaa acgcacacc</pre>														•			
<pre><212> DNA <213> Artificial Sequence </pre> <pre><220> <223> Oligonucleotide </pre> <pre><4000 39 atatagacaa acgcacacc</pre>																	
<pre><213> Artificial Sequence <220> <223> Oligonucleotide <400> 39 atatagacaa acgcacacc</pre>																	
<pre><220> <223> Oligonucleotide <400> 39 atatagacaa acgcacacc</pre>				cial	Sea	uenc	e										
<pre><223> Oligonucleotide <400> 39 atatagacaa acgcacacc 19 <210> 40 <221> 568 <212> DNA <221> DNA <221> CDS <222> 7471 <221> sig_peptide <222> 799 <223> Von Heijne matrix score 6.9 seq_LLLVPSALSLLLA/LL <221> polyA_signal <222> 537542 <221> polyA_side <222> 554568 <400> 40 gggacc atg ttc acc agc acc ggc tcc agt ggg ctc tac aag gcg ctc Met Phe Thr Ser Thr Gly Ser Ser Gly Leu Tyr Lys Ala Pro -30 -25 -20 ctg tcg aag agc ctt ctg ctg gtc ccc agt gcc ctc tcc ctc ctg ctc Leu Ser Lys Ser Leu Leu Val Pro Ser Ala Leu Ser Leu Leu Leu -15 gcc ctc ctc ctg ctc cac tgc cag aag ccc ttt gtg tat gac ctt cac Ala Leu Leu Pro His Cys Gln Lys Pro Phe Val Tyr Asp Leu His 1 1 5 1 1 7 1 7 1 7 1 7 1 7 7 1 7 7 7 7</pre>						•											
<pre><400> 39 atatagacaa acgcacacc</pre>																	
atatagacaa acgcacacc 2210	<223>	Oli	igon	ucle	otid	e											
atatagacaa acgcacacc 2210	<400>	39															
<pre><211> 568 <212> DNA <213> Homo sapiens </pre> <pre><220> <221> CDS <222> 7471 </pre> <pre><221> sig_peptide <222> 799 </pre> <pre><223> Von Heijne matrix</pre>	-		aa a	cgca	cacc	:											19
<pre><211> 568 <212> DNA <213> Homo sapiens </pre> <pre><220> <221> CDS <222> 7471 </pre> <pre><221> sig_peptide <222> 799 </pre> <pre><223> Von Heijne matrix</pre>		_		_													
<pre><211> 568 <212> DNA <213> Homo sapiens </pre> <pre><220> <221> CDS <222> 7471 </pre> <pre><221> sig_peptide <222> 799 </pre> <pre><223> Von Heijne matrix</pre>																	
<pre><211> 568 <212> DNA <213> Homo sapiens </pre> <pre><220> <221> CDS <222> 7471 </pre> <pre><221> sig_peptide <222> 799 </pre> <pre><223> Von Heijne matrix</pre>	∠210×	. 40															
<pre><221> Homo sapiens <222> <221> CDS <222> 7471 <221> sig_peptide <222> 799 <223> Von Heijne matrix</pre>			3														
<pre><220> <221> CDS <222> 7471 </pre> <pre><221> sig_peptide <222> 799 </pre> <pre><223> Von Heijne matrix</pre>	<212>	DNA	Ą														
<pre><221> CDS <222> 7471 <221> sig_peptide <222> 799 <223> Von Heijne matrix</pre>	<213>	Hon	no s	apie	ns												
<pre><221> CDS <222> 7471 <221> sig_peptide <222> 799 <223> Von Heijne matrix</pre>	-2205																
<pre><222> 7471 <221> sig_peptide <222> 799 <223> Von Heijne matrix</pre>			5														
<pre><222> 7.99 <223> Von Heijne matrix</pre>											•						
<pre><222> 7.99 <223> Von Heijne matrix</pre>																	
<pre><223> Von Heijne matrix</pre>				ptid	le												
score 6.9 seq LLLVPSALSLILA/LL <221> polyA_signal <222> 537542 <221> polyA_site <222> 554568 <400> 40 gggacc atg ttc acc agc acc ggc tcc agt ggg ctc tac aag gcg cct Met Phe Thr Ser Thr Gly Ser Ser Gly Leu Tyr Lys Ala Pro -30 -25 -20 ctg tcg aag agc ctt ctg ctg gtc ccc agt gcc ctc tcc ctc ctg ctc Leu Ser Lys Ser Leu Leu Leu Val Pro Ser Ala Leu Ser Leu Leu Leu -15 -10 -5 gcc ctc ctc ctg cct cac tgc cag aag ccc ttt gtg tat gac ctt cac Ala Leu Leu Leu Pro His Cys Gln Lys Pro Phe Val Tyr Asp Leu His 1 5 10 15 gca gtc aag aac gac ttc cag att tgg agg ttg ata tgt gga aga ata Ala Val Lys Asn Asp Phe Gln Ile Trp Arg Leu Ile Cys Gly Arg Ile 20 25 30 att tgc ctt gat ttg aaa gat act ttc tgc agt agt ctg ctt att tat Ile Cys Leu Asp Leu Lys Asp Thr Phe Cys Ser Ser Leu Leu Ile Tyr 35 40 45 aat ttt agg ata ttt gaa aga aga tat gga agc aga aaa ttt gca tcc Asn Phe Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser				iine	mat	riv											
<pre><221> polyA_signal <222> 537542 <221> polyA_site <222> 554568 <400> 40 gggacc atg ttc acc agc acc ggc tcc agt ggg ctc tac aag gcg cct</pre>	\2237			_	· mac												
<pre><222> 537542 <221> polyA_site <222> 554568 <400> 40 gggacc atg ttc acc agc acc ggc tcc agt ggg ctc tac aag gcg cct Met Phe Thr Ser Thr Gly Ser Ser Gly Leu Tyr Lys Ala Pro</pre>					ALSI	LLA/	LL										
<pre><222> 537542 <221> polyA_site <222> 554568 <400> 40 gggacc atg ttc acc agc acc ggc tcc agt ggg ctc tac aag gcg cct Met Phe Thr Ser Thr Gly Ser Ser Gly Leu Tyr Lys Ala Pro</pre>					_												
<pre><221> polyA_site <222> 554568 <400> 40 gggacc atg ttc acc agc acc ggc tcc agt ggg ctc tac aag gcg cct</pre>		_			ıaı												
<pre><222> 554568 <400> 40 gggacc atg ttc acc agc acc ggc tcc agt ggg ctc tac aag gcg cct Met Phe Thr Ser Thr Gly Ser Ser Gly Leu Tyr Lys Ala Pro</pre>	(222)	, 55	د	72													
<pre><400> 40 gggacc atg ttc acc agc acc ggc tcc agt ggg ctc tac aag gcg cct Met Phe Thr Ser Thr Gly Ser Ser Gly Leu Tyr Lys Ala Pro</pre>	<221>	po.	lyA_	site	:												
gggacc atg ttc acc agc acc ggc tcc agt ggg ctc tac aag gcg cct Met Phe Thr Ser Thr Gly Ser Ser Gly Leu Tyr Lys Ala Pro -30 -25 -20 ctg tcg aag agc ctt ctg ctg gtc ccc agt gcc ctc tcc ctc ctg ctc Leu Ser Lys Ser Leu Leu Leu Val Pro Ser Ala Leu Ser Leu Leu Leu -15 -10 gcc ctc ctc ctg cct cac tgc cag aag ccc ttt gtg tat gac ctt cac Ala Leu Leu Leu Pro His Cys Gln Lys Pro Phe Val Tyr Asp Leu His 1 5 10 15 gca gtc aag aac gac ttc cag att tgg agg ttg ata tgt gga aga ata Ala Val Lys Asn Asp Phe Gln Ile Trp Arg Leu Ile Cys Gly Arg Ile 20 25 30 att tgc ctt gat ttg aaa gat act ttc tgc agt agt ctg ctt att tat Ile Cys Leu Asp Leu Lys Asp Thr Phe Cys Ser Ser Leu Leu Ile Tyr 35 40 aat ttt agg ata ttt gaa aga aga tat gga agc aga aaa ttt gca tcc Asn Phe Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser	<222>	> 554	45	68													
gggacc atg ttc acc agc acc ggc tcc agt ggg ctc tac aag gcg cct Met Phe Thr Ser Thr Gly Ser Ser Gly Leu Tyr Lys Ala Pro -30 -25 -20 ctg tcg aag agc ctt ctg ctg gtc ccc agt gcc ctc tcc ctc ctg ctc Leu Ser Lys Ser Leu Leu Leu Val Pro Ser Ala Leu Ser Leu Leu Leu -15 -10 gcc ctc ctc ctg cct cac tgc cag aag ccc ttt gtg tat gac ctt cac Ala Leu Leu Leu Pro His Cys Gln Lys Pro Phe Val Tyr Asp Leu His 1 5 10 15 gca gtc aag aac gac ttc cag att tgg agg ttg ata tgt gga aga ata Ala Val Lys Asn Asp Phe Gln Ile Trp Arg Leu Ile Cys Gly Arg Ile 20 25 30 att tgc ctt gat ttg aaa gat act ttc tgc agt agt ctg ctt att tat Ile Cys Leu Asp Leu Lys Asp Thr Phe Cys Ser Ser Leu Leu Ile Tyr 35 40 aat ttt agg ata ttt gaa aga aga tat gga agc aga aaa ttt gca tcc Asn Phe Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser	.400.	40															
Met Phe Thr Ser Thr Gly Ser Ser Gly Leu Tyr Lys Ala Pro -30 -25 -20 ctg tcg aag agc ctt ctg ctg gtc ccc agt gcc ctc tcc ctc ctg ctc Leu Ser Lys Ser Leu Leu Leu Val Pro Ser Ala Leu Ser Leu Leu Leu -15 -5 gcc ctc ctc ctg cct cac tgc cag aag ccc ttt gtg tat gac ctt cac Ala Leu Leu Leu Pro His Cys Gln Lys Pro Phe Val Tyr Asp Leu His 1 5 10 15 gca gtc aag aac gac ttc cag att tgg agg ttg ata tgt gga aga ata Ala Val Lys Asn Asp Phe Gln Ile Trp Arg Leu Ile Cys Gly Arg Ile 20 25 30 att tgc ctt gat ttg aaa gat act ttc tgc agt agt ctg ctt att tat Ile Cys Leu Asp Leu Lys Asp Thr Phe Cys Ser Ser Leu Leu Ile Tyr 35 40 45 aat ttt agg ata ttt gaa aga aga tat gga agc aga aaa ttt gca tcc Asn Phe Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser			ta t	tc a	icc a	age a	icc c	ac t	cc a	agt c	iaa c	etc t	ac a	ag o	ica (cct	48
ctg tcg aag agc ctt ctg ctg gtc ccc agt gcc ctc tcc ctc ctg ctc Leu Ser Lys Ser Leu Leu Leu Leu Val Pro Ser Ala Leu Ser Leu Leu Leu Leu -15 gcc ctc ctc ctc ctg cct cac tgc cag aag ccc ttt gtg tat gac ctt cac Ala Leu	225																
Leu Ser Lys Ser Leu Leu Leu Val Pro Ser Ala Leu Ser Leu Leu Leu Leu -15				-													
Color Colo																	96
gcc ctc ctc ctc ctc ctc ctc ctc cac cac tgc cag aag ccc ttt gtg tat gac ctt cac 144 Ala Leu Leu Leu Pro His Cys Gln Lys Pro Phe Val Tyr Asp Leu His 1 15 gca gtc aag aac gac ttc cag att tgg agg ttg ata tgt gga aga ata Ala Val Lys Asn Asp Phe Gln Ile Trp Arg Leu Ile Cys Gly Arg Ile 20 15 att tgc ctt gat ttg aaa gat act ttc tgc agt agt ctg ctt att tat Ile Cys Leu Asp Leu Lys Asp Thr Phe Cys Ser Ser Leu Leu Ile Tyr 35 240 aat ttt agg ata ttt gaa aga aga tat gga agc aga aaa ttt gca tcc Asn Phe Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser 288	Leu S		-	ser	ьeu	ьeп	теп		PIO	ser	Ald	ьец		ьeu	Dea	пеи	
Ala Leu Leu Leu Pro His Cys Gln Lys Pro Phe Val Tyr Asp Leu His 1	qcc c		-	ctq	cct	cac	tgc		aag	ccc	ttt	gtg	_	gac	ctt	cac	144
gca gtc aag aac gac ttc cag att tgg agg ttg ata tgt gga aga ata Ala Val Lys Asn Asp Phe Gln Ile Trp Arg Leu Ile Cys Gly Arg Ile 20 25 30 att tgc ctt gat ttg aaa gat act ttc tgc agt agt ctg ctt att tat Ile Cys Leu Asp Leu Lys Asp Thr Phe Cys Ser Ser Leu Leu Ile Tyr 35 40 45 aat ttt agg ata ttt gaa aga aga tat gga agc aga aaa ttt gca tcc Asn Phe Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser																His	
Ala Val Lys Asn Asp Phe Gln Ile Trp Arg Leu Ile Cys Gly Arg Ile 20 25 30 att tgc ctt gat ttg aaa gat act ttc tgc agt agt ctg ctt att tat Ile Cys Leu Asp Leu Lys Asp Thr Phe Cys Ser Ser Leu Leu Ile Tyr 35 40 45 aat ttt agg ata ttt gaa aga aga tat gga agc aga aaa ttt gca tcc Asn Phe Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser	-					_											
att tgc ctt gat ttg aaa gat act ttc tgc agt agt ctg ctt att tat 240 lle Cys Leu Asp Leu Lys Asp Thr Phe Cys Ser Ser Leu Leu Ile Tyr 35 40 45 aat ttt agg ata ttt gaa aga aga tat gga agc aga aaa ttt gca tcc Asn Phe Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser	gca g	gtc a	aag	aac	gac	ttc	cag	att	tgg	agg	ttg	ata	tgt	gga	aga	ata	192
att tgc ctt gat ttg aaa gat act ttc tgc agt agt ctg ctt att tat Ile Cys Leu Asp Leu Lys Asp Thr Phe Cys Ser Ser Leu Leu Ile Tyr 35 40 45 aat ttt agg ata ttt gaa aga aga tat gga agc aga aaa ttt gca tcc Asn Phe Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser	Ala V	val .	ոչբ	ASII	-	Phe	GIII	116	пр		пеп	116	Cys	GIY		110	
Ile Cys Leu Asp Leu Lys Asp Thr Phe Cys Ser Ser Leu Leu Ile Tyr 35 40 45 aat ttt agg ata ttt gaa aga aga tat gga agc aga aaa ttt gca tcc Asn Phe Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser	att t	ege (ctt	gat		aaa	gat	act	ttc		agt	agt	ctg	ctt		tat	240
aat ttt agg ata ttt gaa aga aga tat gga agc aga aaa ttt gca tcc Asn Phe Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser				Āsp					Phe					Leu			
Asn Phe Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser																.	200
																	288
	weil i		_	-11 <i>E</i>	- 11C	Gru	n. 9		- y -	O1 y	JCI	9					

ttt ttg ctg ggt acc tgg gtt ttg tca gcc tta ttt gac ttt ctc ctc Phe Leu Leu Gly Thr Trp Val Leu Ser Ala Leu Phe Asp Phe Leu Leu 65 70 75	336										
att gaa gct atg cag tat ttc ttt ggc atc act gca gct agt aat ttg Ile Glu Ala Met Gln Tyr Phe Phe Gly Ile Thr Ala Ala Ser Asn Leu 80 85 90 95	384										
CCT tCT gga tta atc ttt tgt tgt gct ttt tgc tCT gag act aaa ctc Pro Ser Gly Leu Ile Phe Cys Cys Ala Phe Cys Ser Glu Thr Lys Leu 100 105 110	432										
ttc tta tca aga caa gct atg gca gag aac ttt tcc atc taataaattt Phe Leu Ser Arg Gln Ala Met Ala Glu Asn Phe Ser Ile 115 120	481										
aagagtagat tcatctgtat ggttgagagt aggctctgac tatgtatatg tgtataataa acctacatat ccaaaaaaaa aaaaaaa											
<210> 41											
<211> 569 <212> DNA <213> Homo sapiens											
<220> <221> CDS <222> 168332											
<221> polyA_signal											
<400> 41											
agggggcgtg gggccatggt ggtcttgcgg gcggggaaga agacetttct cccccctctc	60										
tgccgcgcct tcgcctgccg cggctgtcaa ctcgctccgg agcgcggcgc cgagcgcagg gatacggcgc ccagcggggt cagaaagcaa cattgaatgc agaagaa atg gcg gac Met Ala Asp	120 176										
ttc tac aag gaa ttt tta agt aaa aat ttt cag aag cgc atg tat tat Phe Tyr Lys Glu Phe Leu Ser Lys Asn Phe Gln Lys Arg Met Tyr Tyr 5 10 15	224										
aac aga gat tgg tac aag cgc aat ttt gcc atc acc ttc ttc atg gga Asn Arg Asp Trp Tyr Lys Arg Asn Phe Ala Ile Thr Phe Phe Met Gly 20 25 30 35	272										
aaa gtg gcc ctg gaa agg att tgg aac aag ctt aaa cag aaa caa aag Lys Val Ala Leu Glu Arg Ile Trp Asn Lys Leu Lys Gln Lys 40 45 50	320										
aag agg agc aac taggagtcca ctctgaccca gccagagtcc aggtttccac Lys Arg Ser Asn	372										
55											
55 aggaagcaga tggagctcct ttcacagggg ctctgagaaa aactggagcc gatctcaaga	432										
55	432 492 552										

<210> 42 <211> 895 <212> DNA <213> Homo sapiens

<221> CDS <222> 51..251 WO 99/31236 -22- PCT/IB98/02122

<221> sig peptide <222> 51..110 <223> Von Heijne matrix score 5.3 seq ALIFGGFISLIGA/AF <221> polyA signal <222> 849..854 <221> polyA site <222> 882..895 <400> 42 56 ccgagagtgc cgggcggtcg gcgggtcagg gcagcccggg gcctgacgcc atg tcc Met Ser -20 cgg aac ctg cgc acc gcg ctc att ttc ggc ggc ttc atc tcc ctg atc 104 Arg Asn Leu Arg Thr Ala Leu Ile Phe Gly Gly Phe Ile Ser Leu Ile -15 -10 ggc gcc gcc ttc tat ccc atc tac ttc cgg ccc cta atg aga ttg gag 152 Gly Ala Ala Phe Tyr Pro Ile Tyr Phe Arg Pro Leu Met Arg Leu Glu 5 10 200 gag tac aag aag gaa caa gct ata aat cgg gct gga att gtt caa gag Glu Tyr Lys Lys Glu Gln Ala Ile Asn Arg Ala Gly Ile Val Gln Glu 20 248 gat gtg cag cca cca ggg tta aaa gtg tgg tct gat cca ttt ggc agg Asp Val Gln Pro Pro Gly Leu Lys Val Trp Ser Asp Pro Phe Gly Arg 40 45 301 aaa tgagagggct gtcatcagct ctgattaaga aaggagattt cttcatgctt Lys togattotgo atggggtaca gocagtoaco toaccagaga atgacggotg gagaagaaaa 361 ctctgtaata ccataaataa gagtgcttgt aataaaagac tgtgcacaag gattaatatt 421 481 tcccttctta agtatcaaaa gaactctgga acaaattata ccattaggaa ggttttcatg attcagttga ttttccaaaa atgaagctat ctcacccagc tgggtttgga ggagcaatct 541 gcttattatt ctgtcgttac cacttactca agcgagctgt gatatgaata caagcaacca 601 gtgggctcgg gaaggtccgg gtctcttctg ccatcttcca gataagagat ttcagtaaaa 661 721 aactgccatg ctgagctgcc ttatagagct cttcgaaaat gttcgagttg ataaagctct 781 ttgaggacaa ggtacttcgt gcacctcatg ctgaagattg caccatgttg gaagataaat 841 atgaagcaag tcaaactaga tgcatacact tgtgtagaaa tcaataatca attaatagaa 895 <210> 43 <211> 691 <212> DNA

<400> 43

ataccttaga ccctcagtc atg cca gtg cct gct ctg tgc ctg ctc tgg gcc 52

Met Pro Val Pro Ala Leu Cys Leu Leu Trp Ala

					-20						-15	5				
-	_	_	gtg Val				_		-	_		_				100
			cag Gln 10													148
			cag Gln													196
			gcc Ala													244
			cag Gln													292
			ctg Leu													340
			gcc Ala 90													388
			cgg Arg													436
		Leu	ggc Gly													484
	Asp		cag Gln													532
cgg	cag		cgg Arg		atg											580
_		_	ctc Leu 170	cac					cca	_	_	atct	gcc		tggaac	633
tgaggaccaa tcatgctgca aggaacactt ccacgccccg								tga	ggcc	cct	gtgc	aggg	691			

<210> 44

<211> 458

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 12..416

<221> sig_peptide

<222> 12..86

<223> Von Heijne matrix score 4 seq LVVMVPLVGLIHL/GW

<221> polyA_signal

<222> 425..430

<221> polyA_site

<222> 445..458

gctgaagtac t atg agc ctt cgg aac ttg tgg aga gac tac aaa gtt ttg												
Met Ser Leu Arg Asn Leu Trp Arg Asp Tyr Lys Val Leu		50										
gtt atg gtc cct tta gtt ggg ctc ata cat ttg ggg tgg tac aga	Met Ser Leu Arg Asn Leu Trp Arg Asp Tyr Lys Val Leu											
Val Val Met Val Pro Leu Val Gly Leu The His Leu Gly Trp Tyr Arg -10 -5 1 atc aaa agc agc cct gtt ttc caa ata cct aaa aac gac gac att cct The Lys Ser Ser Pro Val Phe Gln The Pro Lys Asn Amp Amp The Pro 5 10 15 20 gag caa gat agt ctg gga ctt tca aat ctt cag aag agc caa atc cag Glu Gln Amp Ser Leu Gly Leu Ser Am Leu Gln Lys Ser Gln The Gln 25 ggg aag nta gca ggc ttg caa tct tca ggt aaa gaa gca gct ttg aat Gly Lys Xaa Ala Gly Leu Gln Ser Ser Gly Lys Glu Ala Ala Leu Amn 40 55 ctg agc ttc ata tcg aaa gaa gat gaaa aat acc agt ttg att aga Leu Ser Phe The Ser Lys Glu Glu Met Lys Amn Thr Ser Trp The Arg 55 60 65 aag aac tgg ctt ctt gta gct ggg ata tct ttc ata ggt aga gt tgg att aga Lys Amn Trp Leu Leu Val Ala Gly The Ser Phe The Gly Amp His Leu 70 75 gga aca tac ttt ttg cag agg tct gca aga cag ctt gta aaat ttc cag Gly Thr Tyr Phe Leu Gln Arg Ser Ala Lys Gln Ser Val Lys Phe Gln 85 90 gs to 100 tct caa agc aaa caa aag agt att gaa gag tgaagtaaaa taaatatttg 436 Ser Gln Ser Lys Gln Lys Ser The Glu Glu 307 gaattactaa aaaaaaaaaaa aa 458 <210> 421> 220> 4221> CDS 4221> DNA 4213> Homo sapiens 4220> 4221> polyA_site 4222> 2761040 4221> sig_peptide 4222> 20242036 4200- 45 4211> polyA_site 4222> 20242036 4200- 45 4211> polyA_site 4222> 20242036 4200- 45 430- 45		9.8										
atc aaa agc agc cct gtt ttc caa ata cct aaa aac gac gac att cct Ile Lys Ser Ser Pro Val Phe Gln Ile Pro Lys Asn Asp Asp Ile Pro 5	Val Val Met Val Pro Leu Val Gly Leu Ile His Leu Gly Trp Tyr Arg	96										
The Lys Ser Ser Pro Val Phe Gln Ile Pro Lys Asn Asp Asp Ile Pro Ser Ser Ser Pro Val Phe Gln Ile Pro Is and Ser		146										
5												
gag caa gat agt ctg gga ctt tca aat ctt cag aag agc caa atc cag Glu Gln Asp Ser Leu Gly Leu Ser Asn Leu Gln Lys Ser Gln Tle Gln 25												
Glu Gln Asp Ser Leu Gly Leu Ser Asn Leu Gln Lys Ser Gln Tle Gln 25 30 35 35 35 35 35 36 35 35 35 36 35 35 35 36 35 35 36 35 36 35 36 35 36 35 36 36 36 36 36 36 36 36 36 36 36 36 36		194										
ggg aag nta gca ggc ttg caa tct tca ggt aaa gaa gca gct ttg aat	Glu Gln Asp Ser Leu Gly Leu Ser Asn Leu Gln Lys Ser Gln Ile Gln	174										
Silv Lys Xaa Ala Silv Leu Sin Ser Ser Silv Lys Silv Ala Ala Leu Asn 40		242										
Leu Ser Phe Ile Ser Lys Glu Glu Met Lys Asn Thr Ser Trp Ile Arg 50 aag aac tgg ctt ctt gta gct ggg ata tct ttc ata ggt gac cat ctt 1/8 Asn Trp Leu Leu Val Ala Gly Ile Ser Phe Ile Gly Asp His Leu 70 75 80 gga aca tac ttt ttg cag agg tct gca aag cag tct gta aaa ttt cag Gly Thr Tyr Phe Leu Gln Arg Ser Ala Lys Gln Ser Val Lys Phe Gln 85 90 95 100 tct caa agc aaa caa aag agt att gaa gag tgaagtaaaa taaatatttg Ser Gln Ser Lys Gln Lys Ser Ile Glu Glu 105 110 gaattactaa aaaaaaaaaa aa 458 <2210 45 <2211 2036 <2212 DNA <2213 Homo sapiens <2220 <2212 CDS <2222 2761040 <2213 sig_peptide <2222 276485 <2233 Von Heijne matrix score 3.9 seq SVIGVMLAPFTAG/LS <2210 von Heijne matrix score 3.9 seq SVIGVMLAPFTAG/LS <2400 45 sqacctgggt gcagctcatc acaagcgtcg gggtgcagca aaaccatcca ggctggacag tcggctggaca gttccaagaa aagaaacgct tcaccgaaga agtcattgaa tacttccaga agaaagttag cccagtgcat ctgaaaaatcc tgctgactag cgatgaagcat tgcgaaagatt tcgtgcgtgt gcgggttg cccaggaaa aagacagtcg cgatgaagcat tgcgaaagatt tgcgacagatag cccagtgatg ccagtgaat cccagtgaag acaagaagtcg tctctatagaag 240 atcttcaccc atatgtggct attgaagaca aagac atg cag caa aaa gaa cag Met Gln Gln Lys Glu Gln -70 -65 cag ttt agg gag tgg ttt ttg aaa gag ttt cct caa atc aga tgg aag Gln Phe Arg Glu Trp Phe Leu Lys Glu Phe Pro Gln Ile Arg Trp Lys -60 -55 -50	Gly Lys Xaa Ala Gly Leu Gln Ser Ser Gly Lys Glu Ala Ala Leu Asn											
Leu Ser Phe Ile Ser Lys Glu Glu Met Lys Asn Thr Ser Trp Ile Arg 50 aag aac tgg ctt ctt gta gct ggg ata tct ttc ata ggt gac cat ctt 1/8 Asn Trp Leu Leu Val Ala Gly Ile Ser Phe Ile Gly Asp His Leu 70 75 80 gga aca tac ttt ttg cag agg tct gca aag cag tct gta aaa ttt cag Gly Thr Tyr Phe Leu Gln Arg Ser Ala Lys Gln Ser Val Lys Phe Gln 85 90 95 100 tct caa agc aaa caa aag agt att gaa gag tgaagtaaaa taaatatttg Ser Gln Ser Lys Gln Lys Ser Ile Glu Glu 105 110 gaattactaa aaaaaaaaaa aa 458 <2210 45 <2211 2036 <2212 DNA <2213 Homo sapiens <2220 <2212 CDS <2222 2761040 <2213 sig_peptide <2222 276485 <2233 Von Heijne matrix score 3.9 seq SVIGVMLAPFTAG/LS <2210 von Heijne matrix score 3.9 seq SVIGVMLAPFTAG/LS <2400 45 sqacctgggt gcagctcatc acaagcgtcg gggtgcagca aaaccatcca ggctggacag tcggctggaca gttccaagaa aagaaacgct tcaccgaaga agtcattgaa tacttccaga agaaagttag cccagtgcat ctgaaaaatcc tgctgactag cgatgaagcat tgcgaaagatt tcgtgcgtgt gcgggttg cccaggaaa aagacagtcg cgatgaagcat tgcgaaagatt tgcgacagatag cccagtgatg ccagtgaat cccagtgaag acaagaagtcg tctctatagaag 240 atcttcaccc atatgtggct attgaagaca aagac atg cag caa aaa gaa cag Met Gln Gln Lys Glu Gln -70 -65 cag ttt agg gag tgg ttt ttg aaa gag ttt cct caa atc aga tgg aag Gln Phe Arg Glu Trp Phe Leu Lys Glu Phe Pro Gln Ile Arg Trp Lys -60 -55 -50	ctg agc ttc ata tcg aga gag atg aga agt acc agt tgg att aga	290										
55 60 65 aag aac tgg ctt ctt gta gct ggg daa tct ttc ata ggt gac cat ctt Lys Asn Trp Leu Leu Val Ala Gly Ile Ser Phe Ile Gly Asp His Leu 70 75 80 gga aca tac ttt ttg cag agg tct gca aag cag tct gta aaa ttt cag Gly Thr Tyr Phe Leu Gln Arg Ser Ala Lys Gln Ser Val Lys Phe Gln 85 90 95 100 tct caa agc aaa caa aag agt att gaa gag tgaagtaaaa taaatatttg Ser Gln Ser Lys Gln Lys Ser Ile Glu Glu 105 110 gaattactaa aaaaaaaaaa aa 458 <2210> 45 <2211> 2036 <2212> DNA <2213> Homo sapiens <220> <2212	Leu Ser Phe Ile Ser Lys Glu Glu Met Lys Asn Thr Ser Tro Ile Arg											
aag aac tgg ctt ctt gta gct ggg ata tct ttc ata ggt gac cat ctt Lys Asn Trp Leu Leu Val Ala Gly Ile Ser Phe Ile Gly Asp His Leu 70 75 80 gga aca tac ttt ttg cag agg tct gca aag cag tct gta aaa ttt cag Gly Thr Tyr Phe Leu Gln Arg Ser Ala Lys Gln Ser Val Lys Phe Gln 85 90 95 100 tct caa agc aaa caa aag agt att gaa gag tgaagtaaaa taaatatttg Ser Gln Ser Lys Gln Lys Ser Ile Glu Glu 105 110 gaattactaa aaaaaaaaaa aa 458 <2210 45 <2211 2036 <2212 DNA <2213 Homo sapiens <220 221 Sig_peptide <2222 2761040 <2212 sig_peptide <2222 276485 <2213 Von Heijne matrix score 3.9 seq SVIGWMLAPFTAG/LS <2210 polyA_site <2222 20242036 <4400 45 gaatctgggt gcagctcatc acaagcgtcg gggtgcagca aaaccatcca ggctggacag tggctggacag tggctggacag ttggtggacag ttcgagcag agaaagatag cccagtgcat ctgaaaaatc ttgacgaaga agaaagttag cccagtgat ctgaaaaatc ttgacgaaga attg cag caa aaa gaa cag agaaagttag cccagtgat ctgaaaaatc tgcagcaagaagat tcgtagaagca ttggtggtggt gggttg gggttg agca attg cag caa aaa gaa cag Met Gln Gln Lys Glu Gln -70 -65 cag ttt agg gag tgg ttt ttg aaa gag ttt cct caa atc aga tgg aag Gln Tp Phe Leu Lys Glu Phe Pro Gln Ile Arg Trp Lys -60 -55 -50												
Lys Asn Trp Leu Leu Val Ala Gly Ile Ser Phe Ile Gly Asp His Leu 70 75 80 gga aca tac ttt ttg cag agg tct gca aag cag tct gta aaa ttt cag 386 Gly Thr Tyr Phe Leu Gln Arg Ser Ala Lys Gln Ser Val Lys Phe Gln 85 90 100 tct caa agc aaa caa aag agt att gaa gag tgaagtaaaa taaatatttg 436 Ser Gln Ser Lys Gln Lys Ser Ile Glu Glu 105 110 gaattactaa aaaaaaaaaa aa 458 458 458 458 458 458 458 458 458 458		338										
gga aca tac ttt ttg cag agg tct gca aag cag tct gta aaa ttt cag Gly Thr Tyr Phe Leu Gln Arg Ser Ala Lys Gln Ser Val Lys Phe Gln 85 90 95 100 tct caa agc aaa caa aag agt att gaa gag tgaagtaaaa taaatatttg Ser Gln Ser Lys Gln Lys Ser Ile Glu Glu 105 110 gaattactaa aaaaaaaaaa aa 458 <2210> 45 <2211> 2036 <2212> DNA <2213> Homo sapiens <2220> <221> CDS <2222> 2761040 <2213	and and tog the tell and all all the tell and age age the tell	330										
gga aca tac ttt ttg cag agg tct gca aag cag tct gta aaa ttt cag Gly Thr Tyr Phe Leu Gln Arg Ser Ala Lys Gln Ser Val Lys Phe Gln 85 90 95 100 tct caa agc aaa caa aag agt att gaa gag tgaagtaaaa taaatatttg Ser Gln Ser Lys Gln Lys Ser Ile Glu 105 110 gaattactaa aaaaaaaaaa aa 458 <210> 45 <211> 2036 <221> DNA <213> Homo sapiens <220> <221> CDS <222> 2761040 <221> sig_peptide <222> 276485 <223> Von Heijne matrix score 3.9 seq SVIGVMLAPFTAG/LS <221> polyA_site <222> 20242036 <400> 45 gatcctgggt gcagctcatc acaagcgtcg gggtgcagca aaaccatcca ggctggacag tgggtggacag agaaaggttag cccagtgaa agaaaagcat tcaccagaag agtcattgaa tacttccaga agaaagattag cccagtgaat cccaggaagaagatt tcgcagctgt ggctggatt cccaggaagaagatt tcgcagctgt ggctggatt cccaggaagaagatt gactgactgt ggctggatt cccaggaagaagatt gactgactgt ggctggatt cccagggaag agcagtatt cccaggaagaagatt tcgcagctgt ggctggatt cccagggaagaagatt gacttcaacac atatgtggct attgaggaca aagac atg cag caa aaa gaa cag Met Gln Gln Lys Glu Gln -70 -65 cag ttt agg gag ttg ttt ttg aaa gag tttc ct caa atc aga tgg aag Gln Phe Arg Glu Trp Phe Leu Lys Glu Phe Pro Gln Ile Arg Trp Lys -60 -55 -50												
Gly Thr Tyr Phe Leu Gln Arg Ser Ala Lys Gln Ser Val Lys Phe Gln 85 90 90 95 100 tct caa agc aaa caa aag agt att gaa gag tgaagtaaaa taaatatttg 436 Ser Gln Ser Lys Gln Lys Ser Ile Glu Glu 105 110 gaattactaa aaaaaaaaaa aa 458 <210> 45 <211> 2036 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 2761040 <221> sig_peptide <222> 276485 <223> Von Heijne matrix score 3.9 seq SVIGVMLAPFTAG/LS <221> polyA_site <222> 20242036 <400> 45 gatcctgggt gcagctcatc acaagcgtcg gggtgcagca aaaccatcca ggctggacag tggctggacag agaaagattag cccagtgact ctgaaaaacct tcaccagaag agtcattgaa tactccagaag agaaagattag cccagtgatt cccagggaag agacagatcg tctctatgaa gctctgaaga 240 atcttacacc atatgtggct attgaggaca aagac atg cag caa aaa gaa cag Met Gln Gln Lys Glu Gln -70 -65 cag ttt agg gag tgg ttt ttg aaa gag tttc ctc caa atc aga tgg aag Gln Phe Arg Glu Trp Phe Leu Lys Glu Phe Pro Gln Ile Arg Trp Lys -60 -55 -50	· · · · · · · · · · · · · · · · · · ·	206										
95 90 95 100 tct caa agc aaa caa aag agt att gaa gag tgaagtaaaa taaatatttg Ser Gln Ser Lys Gln Lys Ser Ile Glu Glu 105 110 gaattactaa aaaaaaaaaa aa 458 <210> 45 <211> 2036 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 2761040 <221> sig_peptide <222> 276485 <223> Von Heijne matrix score 3.9 seq SVIGVMLAPFTAG/LS <221> polyA_site <222> 20242036 <400> 45 gatcetgggt gcagctcatc acaagcgtcg gggtgcagca aaaccatcca ggctggacag tggctggacag ttccaagaa aagaaacgct tcaccgaaga agtcattgaa tacttccaga agaaagttag cccagtgact ctgaaaatce tgctgactag cgatgacte tggaaggat tcggctggt ggctggattg cccagggaag aagcagtgc tctctatgaa gctctgaaga atcttcacc atctgcggtg tggctggt attgaagaca ttgaasacc tccac aagaagaaga atcttaacac atatgtggct attgaagaca aagaa agcagt tcccaagaa agcacttgaa gatcttgaaga 240 atcttacacc atatgtggct attgaagaca aagac atg cag caa aaa gaa cag 293 Met Gln Gln Lys Glu Gln -70 -65 cag ttt agg gag tgg ttt ttg aaa gag ttt cct caa atc aga tgg aag Gln Phe Arg Glu Trp Phe Leu Lys Glu Phe Pro Gln Ile Arg Trp Lys -60 -55 -50		300										
tct caa agc aaa caa aag agt att gaa gag tgaagtaaaa taaatatttg Ser Gln Ser Lys Gln Lys Ser Ile Glu Glu 105 110 gaattactaa aaaaaaaaaa aa 458 <210> 45 <211> 2036 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 2761040 <222> 276485 <223> Von Heijne matrix score 3.9 seq SVIGVMLAPFTAG/LS <221> polyA site <222> 20242036 <400> 45 gatcctgggt gcagctcatc acaagcgtcg gggtgcagca aaaccatcca ggctggacag tggctggacag ttggctggaca gttccaagaa aagaaacgct tcaccgaaga agtcattgaa tacttccaga agaaagtag ccagtggacag ttcgtagaagtct tctctatgaa gctctgaaga atcttacacc atctgtggct gtggctggatt gccaggaagaagaagaagaagaagaagaagaagaagaaga												
Ser Gln Ser Lys Gln Lys Ser Ile Glu Glu 105 110 gaattactaa aaaaaaaaaaa aa 458 <210> 45 <211> 2036 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 2761040 <221> sig peptide <222> 2761040 <221> soror 3.9 seq SVIGVMLAPFTAG/LS <221> polyA site <222> 20242036 <400> 45 gatcctgggt gcagctcatc acaagcgtcg gggtgcagca aaaccatcca ggctggacag tggctggacag ttgcctaggat agtcattgaa tacttccaga agaaagttag cccagtgacat ctgaaaatcc tgctgactag cgatgagact tggctggacag ttcctacaga agaaagttag cccagtgat ctgaaaatcc tgctgactag cgatgaagc ttggctggatg gctggtggatg accag atcttacacc atatgtggct attgaagaca aagaa aga aga cat g cag cag aaccatcaa ggctggacag atcttacacca atatgtggct attgaagaca agac att caccagaaga agtcattgaa tacttccaga agaaagtag tccttatagaa gctctgaaga tccgatgaagat tcggatgagt tcgctgacag tatgaagac tggaagagat ttcgatagaagac ttgaagaca agaa cag cag cag cag cag cag cag		400										
qaattactaa aaaaaaaaaa aa 458 <pre> <210> 45 <211> 2036 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 2761040 <221> sig_peptide <222> 276485 <223> Von Heijne matrix</pre>		436										
<pre>gaattactaa aaaaaaaaaa aa 458 <210> 45 <211> 2036 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 2761040 <221> sig_peptide <222> 276485 <223> Von Heijne matrix</pre>												
<pre><210> 45 <211> 2036 <212> DNA <213> Homo sapiens </pre> <pre><220> <221> CDS <222> 2761040 </pre> <pre><221> sig_peptide <222> 276485 </pre> <pre><222> Von Heijne matrix</pre>												
<pre><211> 2036 <212> DNA <213> Homo sapiens </pre> <pre><220> <221> CDS <222> 2761040 </pre> <pre><221> sig_peptide <222> 276485 </pre> <pre><222> 276485 </pre> <pre><223> Von Heijne matrix</pre>	gaattactaa aaaaaaaaaa aa	.458										
<pre><211> 2036 <212> DNA <213> Homo sapiens </pre> <pre><220> <221> CDS <222> 2761040 </pre> <pre><221> sig_peptide <222> 276485 </pre> <pre><222> 276485 </pre> <pre><223> Von Heijne matrix</pre>												
<pre><211> 2036 <212> DNA <213> Homo sapiens </pre> <pre><220> <221> CDS <222> 2761040 </pre> <pre><221> sig_peptide <222> 276485 </pre> <pre><222> 276485 </pre> <pre><223> Von Heijne matrix</pre>												
<pre><211> 2036 <212> DNA <213> Homo sapiens </pre> <pre><220> <221> CDS <222> 2761040 </pre> <pre><221> sig_peptide <222> 276485 </pre> <pre><222> 276485 </pre> <pre><223> Von Heijne matrix</pre>												
<pre><212> DNA <213> Homo sapiens <220> <221> CDS <222> 2761040 <221> sig_peptide <222> 276485 <223> Von Heijne matrix</pre>	<210> 45											
<pre><220> <220> <221> CDS <222> 2761040 <221> sig_peptide <222> 276485 <223> Von Heijne matrix</pre>	<211> 2036											
<pre><220> <221> CDS <222> 2761040 <221> sig_peptide <222> 276485 <223> Von Heijne matrix</pre>	<212> DNA											
<pre><220> <221> CDS <222> 2761040 <221> sig_peptide <222> 276485 <223> Von Heijne matrix</pre>												
<pre><221> CDS <222> 2761040 <221> sig_peptide <222> 276485 <223> Von Heijne matrix</pre>												
<pre><222> 2761040 <221> sig_peptide <222> 276485 <223> Von Heijne matrix</pre>	<220>											
<pre><222> 2761040 <221> sig_peptide <222> 276485 <223> Von Heijne matrix</pre>	<221> CDS											
<pre><221> sig_peptide <222> 276485 <223> Von Heijne matrix</pre>	<222> 2761040											
<pre><222> 276485 <223> Von Heijne matrix</pre>												
<pre><222> 276485 <223> Von Heijne matrix</pre>	<221> sig peptide											
score 3.9 seq SVIGVMLAPFTAG/LS <221> polyA_site <222> 20242036 <400> 45 gatcctgggt gcagctcatc acaagcgtcg gggtgcagca aaaccatcca ggctggacag foo tggctggaca gttccaagaa aagaaacgct tcaccgaaga agtcattgaa tacttccaga l20 agaaagttag cccagtgcat ctgaaaatcc tgctgactag cgatgaagcc tggaagagat l80 tcgtgcgtgt ggctggattg cccagggaag aagcagatgc tctctatgaa gctctgaaga 240 atcttacacc atatgtggct attgaggaca aagac atg cag caa aaa gaa cag 293 Met Gln Gln Lys Glu Gln -70 -65 cag ttt agg gag tgg ttt ttg aaa gag ttt cct caa atc aga tgg aag 341 Gln Phe Arg Glu Trp Phe Leu Lys Glu Phe Pro Gln Ile Arg Trp Lys -60 -55 -50												
score 3.9 seq SVIGVMLAPFTAG/LS <221> polyA_site <222> 20242036 <400> 45 gatcctgggt gcagctcatc acaagcgtcg gggtgcagca aaaccatcca ggctggacag foo tggctggaca gttccaagaa aagaaacgct tcaccgaaga agtcattgaa tacttccaga l20 agaaagttag cccagtgcat ctgaaaatcc tgctgactag cgatgaagcc tggaagagat l80 tcgtgcgtgt ggctggattg cccagggaag aagcagatgc tctctatgaa gctctgaaga 240 atcttacacc atatgtggct attgaggaca aagac atg cag caa aaa gaa cag 293 Met Gln Gln Lys Glu Gln -70 -65 cag ttt agg gag tgg ttt ttg aaa gag ttt cct caa atc aga tgg aag 341 Gln Phe Arg Glu Trp Phe Leu Lys Glu Phe Pro Gln Ile Arg Trp Lys -60 -55 -50	<223> Von Heijne matrix											
<pre><221> polyA_site <222> 20242036 <400> 45 gatcctgggt gcagctcatc acaagcgtcg gggtgcagca aaaccatcca ggctggacag tggctggacag agaaagttag cccagtgat ctgaaaatcc tgctgactag cgatgaagcat tggaaggat tcgtgggtg ggctggatt cccagggaag aagcagatgc tctctatgaa gctctgaaga tacttccaga atcttcacac atcgtgggtt ggctggattg cccagggaag aagcagatgc tctctatgaa gctctgaaga 240 atcttacacc atatgtggct attgaggaca aagac atg cag caa aaa gaa cag 293 Met Gln Gln Lys Glu Gln</pre>	-											
<pre><221> polyA_site <222> 20242036 <400> 45 gatcctgggt gcagctcatc acaagcgtcg gggtgcagca aaaccatcca ggctggacag tggctggacag agaaagttag cccagtgat ctgaaaatcc tgctgactag cgatgaagcat tggaaggat tcgtgggtg ggctggatt cccagggaag aagcagatgc tctctatgaa gctctgaaga tacttccaga atcttcacac atcgtgggtt ggctggattg cccagggaag aagcagatgc tctctatgaa gctctgaaga 240 atcttacacc atatgtggct attgaggaca aagac atg cag caa aaa gaa cag 293 Met Gln Gln Lys Glu Gln</pre>	sea SVIGVMLAPFTAG/LS											
<pre><222> 20242036 <400> 45 gatcctgggt gcagctcatc acaagcgtcg gggtgcagca aaaccatcca ggctggacag 60 tggctggaca gttccaagaa aagaaacgct tcaccgaaga agtcattgaa tacttccaga 120 agaaagttag cccagtgcat ctgaaaatcc tgctgactag cgatgaagcc tggaagagat 180 tcgtgcgtgt ggctggattg cccagggaag aagcagatgc tctctatgaa gctctgaaga 240 atcttacacc atatgtggct attgaggaca aagac atg cag caa aaa gaa cag 293</pre>												
<pre><222> 20242036 <400> 45 gatcctgggt gcagctcatc acaagcgtcg gggtgcagca aaaccatcca ggctggacag 60 tggctggaca gttccaagaa aagaaacgct tcaccgaaga agtcattgaa tacttccaga 120 agaaagttag cccagtgcat ctgaaaatcc tgctgactag cgatgaagcc tggaagagat 180 tcgtgcgtgt ggctggattg cccagggaag aagcagatgc tctctatgaa gctctgaaga 240 atcttacacc atatgtggct attgaggaca aagac atg cag caa aaa gaa cag 293</pre>	<221> polvA site											
<pre><400> 45 gatcctgggt gcagctcatc acaagcgtcg gggtgcagca aaaccatcca ggctggacag</pre>												
gatcctgggt gcagctcatc acaagcgtcg gggtgcagca aaaccatcca ggctggacag tggctggaca gttccaagaa aagaaacgct tcaccgaaga agtcattgaa tacttccaga agaaagttag cccagtgcat ctgaaaatcc tgctgactag cgatgaagcc tggaagagat tcgtgcgtgt ggctggattg cccagggaag aagcagatgc tctctatgaa gctctgaaga atcttacacc atatgtggct attgaggaca aagac atg cag caa aaa gaa cag Met Gln Gln Lys Glu Gln -70 -65 cag ttt agg gag tgg ttt ttg aaa gag ttt cct caa atc aga tgg aag Gln Phe Arg Glu Trp Phe Leu Lys Glu Phe Pro Gln Ile Arg Trp Lys -60 -55 -50												
gatcctgggt gcagctcatc acaagcgtcg gggtgcagca aaaccatcca ggctggacag tggctggaca gttccaagaa aagaaacgct tcaccgaaga agtcattgaa tacttccaga agaaagttag cccagtgcat ctgaaaatcc tgctgactag cgatgaagcc tggaagagat tcgtgcgtgt ggctggattg cccagggaag aagcagatgc tctctatgaa gctctgaaga atcttacacc atatgtggct attgaggaca aagac atg cag caa aaa gaa cag Met Gln Gln Lys Glu Gln -70 -65 cag ttt agg gag tgg ttt ttg aaa gag ttt cct caa atc aga tgg aag Gln Phe Arg Glu Trp Phe Leu Lys Glu Phe Pro Gln Ile Arg Trp Lys -60 -55 -50	<400> 45											
tggctggaca gttccaagaa aagaaacgct tcaccgaaga agtcattgaa tacttccaga agaaagttag cccagtgcat ctgaaaatcc tgctgactag cgatgaagcc tggaagagat tcgtggctgg tggctggattg cccagggaag aagcagatgc tctctatgaa gctctgaaga atcttacacc atatgtggct attgaggaca aagac atg cag caa aaa gaa cag Met Gln Gln Lys Glu Gln -70 -65 cag ttt agg gag tgg ttt ttg aaa gag ttt cct caa atc aga tgg aag Gln Phe Arg Glu Trp Phe Leu Lys Glu Phe Pro Gln Ile Arg Trp Lys -60 -55 -50		60										
agaaagttag cccagtgcat ctgaaaatcc tgctgactag cgatgaagcc tggaagagat 180 tcgtgcgtgt ggctggattg cccagggaag aagcagatgc tctctatgaa gctctgaaga 240 atcttacacc atatgtggct attgaggaca aagac atg cag caa aaa gaa cag 293 Met Gln Gln Lys Glu Gln -70 -65 cag ttt agg gag tgg ttt ttg aaa gag ttt cct caa atc aga tgg aag 341 Gln Phe Arg Glu Trp Phe Leu Lys Glu Phe Pro Gln Ile Arg Trp Lys -60 -55 -50												
tegtgegtgt ggetggattg cecagggaag aagcagatge tetetatgaa getetgaaga 240 atettacace atatgtgget attgaggaca aagac atg cag caa aaa gaa cag 293 Met Gln Gln Lys Glu Gln -70 -65 cag ttt agg gag tgg ttt ttg aaa gag ttt cet caa ate aga tgg aag 341 Gln Phe Arg Glu Trp Phe Leu Lys Glu Phe Pro Gln Ile Arg Trp Lys -60 -55 -50												
atcttacacc atatgtggct attgaggaca aagac atg cag caa aaa gaa cag Met Gln Gln Lys Glu Gln -70 -65 cag ttt agg gag tgg ttt ttg aaa gag ttt cct caa atc aga tgg aag Gln Phe Arg Glu Trp Phe Leu Lys Glu Phe Pro Gln Ile Arg Trp Lys -60 -55 -50												
Met Gln Gln Lys Glu Gln -70 -65 cag ttt agg gag tgg ttt ttg aaa gag ttt cct caa atc aga tgg aag Gln Phe Arg Glu Trp Phe Leu Lys Glu Phe Pro Gln Ile Arg Trp Lys -60 -55 -50												
-70 -65 cag ttt agg gag tgg ttt ttg aaa gag ttt cct caa atc aga tgg aag 341 Gln Phe Arg Glu Trp Phe Leu Lys Glu Phe Pro Gln Ile Arg Trp Lys -60 -55 -50		دوع										
cag ttt agg gag tgg ttt ttg aaa gag ttt cct caa atc aga tgg aag Gln Phe Arg Glu Trp Phe Leu Lys Glu Phe Pro Gln Ile Arg Trp Lys -60 -55 -50	-											
Gln Phe Arg Glu Trp Phe Leu Lys Glu Phe Pro Gln Ile Arg Trp Lys -60 -55 -50	•••	2/1										
-60 -55 -50		34 I										
att cag gag too ata gaa agg ott ogt gto att goa aat gag att gaa 389		200										
	att cag gag tee ata gaa agg ett egt gte att gea aat gag att gaa	207										

Ile	Gln	Glu	Ser	Ile	Glu	Arg	Leu	Arg	Val	Ile	Ala	Asn	Glu -35	Ile	Glu	
224	ata	C2C		~~	tac	ata	a+c		aat	~+~	~+~					455
Larc	Val.	uic	Ara	224	Cyc	1751	TIO	77-	Asn	3723	919	Con	gge	0	mb	437
БУЗ	VAI	-30	Arg	GIY	Cys	VAI		AId	ABII	val	val		GIA	ser	Thr	
							-25	- - -				-20				
ggc	atc	ctg	CCC	gtc	att	ggc	gtt	atg	ttg	gca	cca	ttt	aca	gça	999	485
GlÀ		Leu	Ser	Val	Ile		Val	Met	Leu	Ala	Pro	Phe	Thr	Ala	Gly	
	-15					-10					-5					
ctg	agc	ctg	agc	att	act	gca	gct	ggg	gta	ggg	ctg	gga	ata	gca	tct	533
Leu	Ser	Leu	Ser	Ile	Thr	Ala	Ala	Gly	Val	Gly	Leu	Gly	Ile	Ala	Ser	
1				5					10	-		•		15		
qcc	acq	gct	qqq	atc	qcc	tcc	agc	atc	gtg	gag	aac	aca	tac		agg	581
Āla	Thr	Ala	Glv	Ile	Ala	Ser	Ser	Tle	Val	Glu	Δen	Thr	Tur	Thr	720 ~22	501
•			20				~~_	25	•	OI.	PIOII	*1111	30	1111	AL 9	
tra	aca	gaa		aca	acc	200	200		act	~~~	200	200		~~~		620
Cou	Mla	Glu	Leu	Thr	31-	Com	299	Tan	Thr	yca NI-	mb	age	act	gac	caa	629
Der	AIG		пси	1111	Ala	Ser		ьeu	TIII	AId	Int		Inr	Asp	GIN	
		35	`				40					45				
									gac							677
Leu		Ala	Leu	Arg	Asp	Ile	Leu	His	Asp	Ile	Thr	Pro	Asn	Val	Leu	
	50					55					60					
tcc	ttt	gca	ctt	gat	ttt	gac	gaa	gcc	aca	aaa	atg	att	gcg	aat	gat	725
Ser	Phe	Ala	Leu	Asp	Phe	Asp	Glu	Ala	Thr	Lys	Met	Ile	Ala	Asn	Asp	
65				_	70	_				75					80	
gtc	cat	aca	ctc	agg	aga	tct	aaa	acc	act	att	gga	cac	cct	tta		773
									Thr							,,,,
				85	9		2,2	7124	90	•41	Gry	My	FIO	95	116	
act	taa	cas	tat		ant	2+2	-									003
77-	779	N	T	yea	70	Tla	200	911	gtt	gag	aca	ctg	aga	aca	cgt	821
MIG	TLD	Arg		Val	PIO	тте	ASII		Val	GIU	Inr	Leu	_	Thr	Arg	
			100					105					110			
a aa	gcc	CCC	acc	cgg	ata	gtg	aga	aaa	gta	gcc	cgg	aac	ctg	ggc	aag	869
GIA	Ala		Thr	Arg	Ile	Val	Arg	Lys	Val	Ala	Arg	Asn	Leu	Gly	Lys	
		115					120					125				
gcc	act	tca	ggt	gtc	ctc	gtt	gtg	ctg	gat	gta	gtc	aac	ctt	gtg	caa	917
Ala	Thr	Ser	Gly	Val	Leu	Val	Val	Leu	Asp	Val	Val	Asn	Leu	Val	Gln	
	130					135					140					
gac	tca	ctg	gac	ttg	cac	aag	ggg	gaa	aaa	tec	qaq	tct	act	gag	tta	965
Asp	Ser	Leu	qaA	Leu	His	Lvs	Glv	Glu	Lys	Ser	Glu	Ser	Ala	ติโม	Leu	
145			•		150	•	•		•	155					160	
cta	aaa	caq	taa	act	cad	gag	cta	gag	gag		ctc	aat	asa.	ctc		1013
									Glu							1013
	9	0	***	165	0111	O_Lu	LC G	Olu		Non	neu	WPII	GIU		IIII	
cat	>+a								170					175		
uac	TIL	Cal	cag	agt	cta	aaa	gca	ggc	tago	gccca	aat t	gttg	geggg	ga		1060
HIR	Ile	HIS		ser	ren	гàг	Ala									
			180					185								
agto	caggg	gac c	ccaa	aacg	ga gg	ggact	egget	gaa	ageca	atgg	caga	aagaa	icg t	ggat	tgtga	1120
agat	ttca	atg g	gacat	ttat	t ag	gttc	ccca	a att	caata	actt	ttat	aatt	tc d	ctato	gcctgt	1180
ctti	cacco	gca a	atcto	ctaaa	ac ac	caaat	tgt	aag	gattt	cat	ggad	cactt	at d	cactt	cccca	1240
atca	aatao	ccc t	tgtg	gatti	c tt	atgo	ctgt	ctt	tact	tta	atct	ccta	at d	ctat	caget	1300
gag	gaggg	gtg t	atgt	cac	ct ca	aggad	cato	t tq	ataat	tac	atta	acto	ica d	caaat	tgtag	1360
agca	atgto	ata t	tta	acaa	at at	gaaa	atcto	a aa	cacct	tga	aaaa	aagaa	ica c	gata	acagc	1420
aato	gtt	caa d	gaat	aao	ac ac	rataa	accti	. 23	actet	 	Caar		:	, <u>, , , , , , , , , , , , , , , , , , </u>	gtggag	1480
Cag	agtica	ata t	,~\ :E+~+			,	agge	, ,,,		-Juc	2+1+	.~~.	ay c	335	ttttc	1540
tra	7022	102 1					.ayc		-225	-yaa	acat	.cgct	.ya a	1 L L C C		
+	-+	39ª °	-a-		,a ya	aay	yaal	. gca	10000	ga	9991	.gggt	.ct a	ıcaaa	tggcc	1600
0001	995	jey (-9900	acci	- L CT	aug	juuga	a gad	rgta	1999	atga	aata	iaa (CCCC	gtctc	1660
ccar	agto	JCT C	ccaç	gcti	a tt	.agga	agag	gaa	atto	ccg	ccta	ataa	at t	ttgg	gtcaga	1720
ccd	gttg	ctc t	caaa	acco	et gt	ctc	etgat	aaç	gatgt	tat	caat	gaca	at g	ggtgo	ctgaa	1780
acct	catt	ag c	caatt	ttaa	at tt	ctc	ccgg	g ted	tgtg	gtc	ctgt	gato	tc a	accct	geete	1840
cact	tgc	ett g	gtgat	atto	ct at	taco	ettgt	gaa	agtag	ggtg	atct	ttgt	ga d	ccac	caccct	1900
atto	catac	cac t	ccct	ccc	ct tt	tgga	aagto	cct	aata	aaaa	actt	gete	igt t	ttg	agett	1960
gtga	aggca	atc a	acgqa	acct	a ct	gato	gtgto	ato	itcto	ccc	taaa	caco	ta c	actt	aaaat	2020
ttc	aaaa	aaa a	aaaaa	aa		-			,		- 3.50		2	, -		2036
	-			-												

<210> 46

```
<211> 1276
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 443..619
<221> sig_peptide
<222> 443..589
<223> Von Heijne matrix
      score 7
      seq LICVVCLYIVCRC/GS
<221> polyA_site
<222> 1267..1276
<400> 46
gaggcactca cggcatttca ttgctacttt aattttcatt attatgggat tgattgctgt
                                                                       60
cacagctact gctgcagtag ctggagttgc tttgcattcc acagtacaaa cagcagacta
                                                                      120
tgtaaataat tggtagaaaa attctactct gctgtggaat taccaagata atatagacca
                                                                      180
gaaactagct gatcaaatta atgatctcca acaaactgta atgtggctag gggatcatat
                                                                      240
agttagttta gaatatagaa tgcggttaca atgtgattga aatacctctg atttttgcat
                                                                      300
tactcctcat ctgtgtaatg aaacagagca tgagtgggaa aaagttaaga gatatttaaa
                                                                      360
aggtcatact agaaatttat ctttggatat tgcaaagcta aaggaacaag tatttcaagc
                                                                      420
                                                                      472
ccctcagata catctgacac ta atg cca gga act gaa gtg ctt gaa gga gct
                         Met Pro Gly Thr Glu Val Leu Glu Gly Ala
                                          -45
aca gac gga tta gca gct att aac ctg cta aaa tgg atc aag aca ctt
                                                                      520
Thr Asp Gly Leu Ala Ala Ile Asn Leu Leu Lys Trp Ile Lys Thr Leu
                -35
                                     -30
gga ggc tct gtg att tca atg att gtg ctt tta atc tgt gtt gtt tgt
                                                                       568
Gly Gly Ser Val Ile Ser Met Ile Val Leu Leu Ile Cys Val Val Cys
            -20
                                 -15
                                                                       616
ctt tat ata gtc tgt aga tgc gga agc cac ctc tgg aga gaa agc cac
Leu Tyr Ile Val Cys Arg Cys Gly Ser His Leu Trp Arg Glu Ser His
                             1
                                                                       669
cac tgagagcaag caatgatagc tgtggcggtt ttgcaaaaag aaaagggaga
His
                                                                       729
caagcgccca gctatagtta ccaataaagc atggtactgg tattaaaata ggcatgtgtt
ctgttccaat ggaacagaat agagaaccca gaaacaaagc caaatattta cagccaactg
                                                                       789
                                                                       849
atctctgaca aagcaaacaa aaacataaag tggggaaagg acaccctatt ccacaaatag
tgcagggata attggcaagc cacatgtaga aaaatgaagc tggatcctcg tctctcactt
                                                                       909
tatacaaaaa tcaactcaaa atgggtcaaa gtcttaactc taagacctga aaccataaca
                                                                       969
attctagaaa ataacattgg aaaaactctt ctagacattg gtttaggcaa aaagttcatg
                                                                      1029
accaagaacc caaaagcaaa tgcaataaaa aggaagataa atagatggga cctaattaag
                                                                      1089
ctgaaaagct tctgcatagc aaaaggaata atcagcagag caaacagaca acccacaggg
                                                                      1149
tgggagaaaa tatttgcaag ctatgtatct gacaatggac taatatccag aatctacaag
                                                                      1209
gaattcaaac aattagcaag aaaaaacact tgtattgtgt ttgctctgta aatcagcaaa
                                                                      1269
                                                                      1276
aaaaaaa
```

<210> 47 <211> 747 <212> DNA

<213> Homo sapiens

<220> <221> CDS <222> 206..745 <400> 47 accagaagca ggtgatttcc gagctcagca atgctcagct cataatgatg tcaagcacca 60 tggccagttt tatgaatggc ttcctgtgtc taatgaccct gacaacccat gttcactcaa 120 gtgccaagcc aaaggaacaa ccctggttgt tgaactagca cctaaggtct tagatggtac 180 232 gegttgetat acagaatett tggat atg tge ate agt ggt tta tge caa att Met Cys Ile Ser Gly Leu Cys Gln Ile 280 gtt ggc tgc gat cac cag ctg gga agc acc gtc aag gaa gat aac tgt Val Gly Cys Asp His Gln Leu Gly Ser Thr Val Lys Glu Asp Asn Cys 15 ggg gtc tgc aac gga gat ggg tcc acc tgc cgg ctg gtc cga ggg cag 328 Gly Val Cys Asn Gly Asp Gly Ser Thr Cys Arg Leu Val Arg Gly Gln 30 35 tat aaa tee cag ete tee gea ace aaa teg gat gat act gtg gtt gea 376 Tyr Lys Ser Gln Leu Ser Ala Thr Lys Ser Asp Asp Thr Val Val Ala 50 att ccc tat gga agt aga cat att cgc ctt gtc tta aaa ggt cct gat 424 Ile Pro Tyr Gly Ser Arg His Ile Arg Leu Val Leu Lys Gly Pro Asp 65 cac tta tat ctg gaa acc aaa acc ctc cag ggg act aaa ggt gaa aac 472 His Leu Tyr Leu Glu Thr Lys Thr Leu Gln Gly Thr Lys Gly Glu Asn agt etc age tec aca gga act tte ett gtg gac aat tet agt gtg gac 520 Ser Leu Ser Ser Thr Gly Thr Phe Leu Val Asp Asn Ser Ser Val Asp 95 100 tte cag aaa ttt cca gac aaa gag ata ctg aga atg get gga cca ctc 568 Phe Gln Lys Phe Pro Asp Lys Glu Ile Leu Arg Met Ala Gly Pro Leu 115 aca qca qat ttc att qtc aag att cqt aac tcg ggc tcc gct gac agt 616 Thr Ala Asp Phe Ile Val Lys Ile Arg Asn Ser Gly Ser Ala Asp Ser 130 aca gtc cag ttc atc ttc tat caa ccc atc atc cac cga tgg agg gag 664 Thr Val Gln Phe Ile Phe Tyr Gln Pro Ile Ile His Arg Trp Arg Glu 150 140 712 acg gat tto ttt cot tgo toa goa acc tgt gga gga ggt tat cag ctg Thr Asp Phe Phe Pro Cys Ser Ala Thr Cys Gly Gly Tyr Gln Leu 160 165 747 aca tcg gct gag tgc tac gat ctg agg agc aac cg Thr Ser Ala Glu Cys Tyr Asp Leu Arg Ser Asn 170

<210> 48
<211> 561
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 36..521
<221> sig_peptide

<222> 36..104 <223> Von Heijne matrix score 7.4 seq VLLLAALPPVLLP/GA <221> polyA_signal <222> 528..533

<221> polyA_site <222> 548..561

<400> 48 gacgectett teageeeggg ategeeecag eaggg atg gge gae aag ate tgg 53 Met Gly Asp Lys Ile Trp -20 101 Leu Pro Phe Pro Val Leu Leu Leu Ala Ala Leu Pro Pro Val Leu Leu -10 cct ggg gcg gcc ggc ttc aca cct tcc ctc gat agc gac ttc acc ttt 149 Pro Gly Ala Ala Gly Phe Thr Pro Ser Leu Asp Ser Asp Phe Thr Phe 10 5 acc ctt ccc gcc ggc cag aag gag tgc ttc tac cag ccc atg ccc ctg 197 Thr Leu Pro Ala Gly Gln Lys Glu Cys Phe Tyr Gln Pro Met Pro Leu 25 aaq qcc tcq ctq qaq atc gag tac caa gtt tta gat gga gca gga tta 245 Lys Ala Ser Leu Glu Ile Glu Tyr Gln Val Leu Asp Gly Ala Gly Leu gat att gat ttc cat ctt gcc tct cca gaa ggc aaa acc tta gtt ttt 293 Asp Ile Asp Phe His Leu Ala Ser Pro Glu Gly Lys Thr Leu Val Phe 50 55 gaa caa aga aaa tca gat gga gtt cac act gta gag act gaa gtt ggt 341 Glu Gln Arg Lys Ser Asp Gly Val His Thr Val Glu Thr Glu Val Gly 70 gat tac atg ttc tgc ttt gac aat aca ttc agc acc att tct gag aag 389 Asp Tyr Met Phe Cys Phe Asp Asn Thr Phe Ser Thr Ile Ser Glu Lys 85 90 gtg att ttc ttt gaa tta atc ccg gat aat atg gga gaa cag gca caa 437 Val Ile Phe Phe Glu Leu Ile Pro Asp Asn Met Gly Glu Gln Ala Gln 105 100 485 gaa caa gaa gat tgg aag aaa tat att act ggc aca gat ata ttg gat Glu Gln Glu Asp Trp Lys Lys Tyr Ile Thr Gly Thr Asp Ile Leu Asp 120 atg aaa ctg gaa gac atc ctg gtc agt atg gtc ttc taataaaata 531 Met Lys Leu Glu Asp Ile Leu Val Ser Met Val Phe 130 135 561 aaaattatta acagccaaaa aaaaaaaaaa

<210> 49

<211> 632

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 36..395

<221> sig_peptide

<222> 36..104

<223> Von Heijne matrix
 score 7.4
 seq VLLLAALPPVLLP/GA

<221> polyA_signal

<222> 599..604

<221> polyA_site <222> 619632	
<pre><400> 49 gacgcctctt tcagcccggg atcgccccag caggg atg ggc gac aag atc tgg</pre>	53
ctg ccc ttc ccc gtg ctc ctt ctg gcc gct ctg cct ccg gtg ctg c	101
cct ggg gcg gcc ggc ttc aca cct tcc ctc gat agc gac ttc acc ttt Pro Gly Ala Ala Gly Phe Thr Pro Ser Leu Asp Ser Asp Phe Thr Phe 1 5 10 15	149
acc ctt ccc gcc ggc cag aag gag tgc ttc tac cag ccc atg ccc ctg Thr Leu Pro Ala Gly Gln Lys Glu Cys Phe Tyr Gln Pro Met Pro Leu 20 25 30	197
aag gcc tcg ctg gag atc gag tac caa gtt tta gat gga gca gga tta Lys Ala Ser Leu Glu Ile Glu Tyr Gln Val Leu Asp Gly Ala Gly Leu 35 40 45	245
gat att gat ttc cat ctt gcc tct cca gaa ggc aaa acc tta gtt ttt Asp Ile Asp Phe His Leu Ala Ser Pro Glu Gly Lys Thr Leu Val Phe 50 55 60	293
gaa caa aga aaa tca gat gga gtt cac acg tgt ata aga agt aaa aat Glu Gln Arg Lys Ser Asp Gly Val His Thr Cys Ile Arg Ser Lys Asn 65 70 75	341
ggg cca ggc act gcg gtt cac gcc tat aat ccc agc act ttc cga ggc Gly Pro Gly Thr Ala Val His Ala Tyr Asn Pro Ser Thr Phe Arg Gly 80 85 90 95	389
caa gtg tagagactga agttggtgat tacatgttct gctttgacaa tacattcagc Gln Val	445
accatttctg agaaggtgat tttctttgaa ttaatcctgg ataatatggg agaacaggca	505
caaggacaag aagattggaa gaaatatatt actggcacag atatattgga tatgaaactg	565
gaagacatcc tggtcagtat ggtcttctaa taaaataaaa	625
<pre><210> 50 <211> 370</pre>	632
<211> 370 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 2141	
<221> polyA_signal	
<221> polyA_site <222> 357370	
<400> 50 ctgggacttc tggcctcaca atg gtt gag atg act ggg gtg tagcagtgcc Met Val Glu Met Thr Gly Val 1 5	51
aagtcgaggc tgtgaaaggc cttccacctt tactctcgtg ctcgtgccct cccccattgt	111
taggagaagg gcatgetcag gccagcccat tagcccagga ggaggacaag aaacacacgg	171
agcagacaca agccacctca ccaacccagc caaggctgtc ctgaattagc aaccctgaca	231
Cgtgtgagca agtccaacgg acaccggaag atccacctag tcaagcccaa ccaagactgg Cagagctgcc aagctgacca cttaaggcgc atgaggaata aacactcgtt gctgcatgcc	291 351

attgcaaaaa aaaaaaaaa

```
<210> 51
<211> 994
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 35..631
<221> sig_peptide
<222> 35..160
<223> Von Heijne matrix
      score 8.6
      seq ASLFLLLSLTVFS/IV
<221> polyA signal
<222> 901..906
<221> polyA_site
<222> 979..994
<400> 51
                                                                       55
ataattggag ctgcaaagca gatcgtgaca agag atg gac ggt cag aag aaa aat
                                      Met Asp Gly Gln Lys Lys Asn
                                                                      103
tgg aag gac aag gtt gtt gac ctc ctg tac tgg aga gac att aag aag
Trp Lys Asp Lys Val Val Asp Leu Leu Tyr Trp Arg Asp Ile Lys Lys
                    -30
                                        -25
act gga gtg gtg ttt ggt gcc agc cta ttc ctg ctg ctt tca ttg aca
                                                                      151
Thr Gly Val Val Phe Gly Ala Ser Leu Phe Leu Leu Ser Leu Thr
                                    -10
                -15
gta ttc agc att gtg agc gta aca gcc tac att gcc ttg gcc ctg ctc
                                                                      199
Val Phe Ser Ile Val Ser Val Thr Ala Tyr Ile Ala Leu Ala Leu Leu
                                                                      247
tet gtg ace ate age ttt agg ata tac aag ggt gtg ate caa get ate
Ser Val Thr Ile Ser Phe Arg Ile Tyr Lys Gly Val Ile Gln Ala Ile
                        20
cag aaa tca gat gaa ggc cac cca ttc agg gca tat ctg gaa tct gaa
                                                                      295
Gln Lys Ser Asp Glu Gly His Pro Phe Arg Ala Tyr Leu Glu Ser Glu
                                         40
gtt gct ata tct gag gag ttg gtt cag aag tac agt aat tct gct ctt
                                                                      343
Val Ala Ile Ser Glu Glu Leu Val Gln Lys Tyr Ser Asn Ser Ala Leu
                50
ggt cat gtg aac tgc acg ata aag gaa ctc agg cgc ctc ttc tta gtt
                                                                      391
Gly His Val Asn Cys Thr Ile Lys Glu Leu Arg Arg Leu Phe Leu Val
                                 70
                                                                      439
gat gat tta gtt gat tct ctg aag ttt gca gtg ttg atg tgg gta ttt
Asp Asp Leu Val Asp Ser Leu Lys Phe Ala Val Leu Met Trp Val Phe
                             85
                                                                      487
acc tat gtt ggt gcc ttg ttt aat ggt ctg aca cta ctg att ttg gct
Thr Tyr Val Gly Ala Leu Phe Asn Gly Leu Thr Leu Leu Ile Leu Ala
                                             105
                        100
                                                                      535
ctc att tca ctc ttc agt gtt cct gtt att tat gaa cgg cat cag gca
Leu Ile Ser Leu Phe Ser Val Pro Val Ile Tyr Glu Arg His Gln Ala
                                         120
                    115
cag ata gat cat tat cta gta ctt gca aat aag aat gtt aaa gat gct
                                                                      583
Gln Ile Asp His Tyr Leu Val Leu Ala Asn Lys Asn Val Lys Asp Ala
                                     135
                130
                                                                       631
atg gct aaa atc caa gca aaa atc cct gga ttg aag cgc aaa gct gaa
```

Met Ala Lys Ile Gln Ala Lys Ile Pro Gly Leu Lys Arg Lys Ala Glu	
145 150 155 tgaaaacgcc caaaataatt agtaggagtt catctttaaa ggggatattc atttgattat	691
acgggggagg gtcagggaag aacgaacctt gacgttgcag tgcagtttca cagatcgttg	751
ttagatettt atttttagee atgeaetgtt gtgaggaaaa attacetgte ttgaetgeea	811
tgtgttcatc atcttaagta ttgtaagctg ctatgtatgg atttaaaccg taatcatatc	871
tttttcctat ctatctgagg cactggtgga ataaaaaacc tgtatatttt actttgttgc	931
agatagtett geegeatett ggeaagttge agagatggtg gagetagaaa aaaaaaaaa	991
aaa	994
<210> 52	
<211> 412	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 271399	
<400> 52	
geogetageg cetegagega tgeacetect ttecaactgg geaaaceceg ettecageag	60
acgtecttet atggeegett caggeactte ttggatatea tegaceeteg cacactettt	120
gtcactgaga gacgtctcag agaggctgtg cagctgctgg aggactataa gcatgggacc	180
ctgcgcccgg gggtcaccaa tgaacagctc tggagtgcac agaaaatcaa gcaggctatt	240
ctacateegg acaceaatga gaagatette atg eea ttt aga atg tea ggt tat	294
Met Pro Phe Arg Met Ser Gly Tyr	
1 5	242
att cct ttt ggg acg cca att gta agt gtt acc ttc aaa gga ttt cct	342
Ile Pro Phe Gly Thr Pro Ile Val Ser Val Thr Phe Lys Gly Phe Pro 10 15 20	
ttt cta aaa aat tat ttt aaa tgt cta act tta tgt tat tgc tca cgg	390
Phe Leu Lys Asn Tyr Phe Lys Cys Leu Thr Leu Cys Tyr Cys Ser Arg	330
25 30 35 40	
gta ttt gac tgaattgttg att	412
Val Phe Asp	
<210> 53	
<211> 597	
<212> DNA	
<213> Homo sapiens	
•	
<220>	
<221> CDS	
<222> 103252	
<221> sig_peptide	
<222> 103213	
<223> Von Heijne matrix	
score 3.9	
seq PGPSLRLFSGSQA/SV	
-221	
<221> polyA_site	
<222> 588597	
<400> 53	
gaaaggtcag aggaaggage tgtgggaage tegeageagg tateggaget taagecagtg	60
gatttggggg ccctgggctc cctagccggc tgcggtgtga ga atg gag tgg gca	114
Met Glu Trp Ala	

													_	-35		
gga Gly													tgg	gat		162
			-30					-25					-20			
ttg Leu																210
gcg Ala		gtc					tcg					cag				252
tgat	_	tq c	tcca	acac	_	gatt	ctat	tac	ctta		agga	ggga	aaa d	cagco	caattt	312
															acttca	
															caggaa	
															tcttac	
													etg t	ctgt	tttgt	552 597
CECE	tggt	ge t	.gcta	itgtt	et ga	iccr	JLaai	999	gagad	laaa	aaya	ıd				331
<211 <212	> 54 > 74 > DN > Ho	8 (A)	sapie	ens												
<220)>															
	> CD	s												1		
<222	> 2.	.460)													
	> pc		_sigr	nal												
~222			, 10													
	.> pc !> 73		_site 748	2												
c ac		t c		eu Le						sp H					gt gcc rg Ala	
cat	atc	cac	cta	5 CCt	даа	aat	att	cgc			tct	cct	aac			97
	Val	His		Pro	Glu	Asn	Val	Arg 25	Ser	Gln	Ser	Pro	Gly			
								gta								145
Arg	Arg	_	Arg	Ser	Gly	Ala		Val	Leu	Pro	Thr		Pro	Asp	Glu	
222	~~~	35	~~~		201	~ 22	40	gat	++~	tca	220	45	cet	age	tta	193
Lys	Gln 50	Val	Glu	Lys	Ser	Glu 55	Val	Asp	Phe	Ser	Lys 60	Ser	His	Ser	Leu	2.22
gtg		cga	ttt	gag	gat	ctg	aag	ccc	aag	ctt	tct	gtt	tgc	aaa	act	241
								Pro								
65					70					75					80	
								aac								289
Gly	Ser	Gln	Val		Arg	Ser	Glu	Asn		Lys	Val	Trp	Ala		Ser	
				85					90					95	A	227
								cta								337
		eтĀ	_	Hls	Asp	Asp	cys	Leu 105	Asp	ьeu	Cys	ser	110	neu	cys	
Ser	Arg		700					*07								
		gaa	100	cta	רמת	aca	ata	cat	gaa	att	cca	cca	aad	cat	gga	385
tgg	gga		ctg					cct Pro								385
tgg	gga		ctg					cct Pro								385
tgg Trp	gga Gly	Glu 115	ctg Leu	Leu	Arg	Thr	Ile 120		Glu	Ile	Pro	Pro 125	Lys	Arg	Gly	385 433
tgg Trp gaa	gga Gly ctc	Glu 115 aaa	ctg Leu acg	Leu gag	Arg	Thr	Ile 120 gga	Pro	Glu aaa	Ile gaa	Pro aga	Pro 125 aaa	Lys	Arg	Gly cct	

caa gtt tct caa cag gag gaa ctt aaa taactatgcc aagaattctg

Gln Val Ser Gln Gln Glu Glu Leu Lys 150	400
charge and control and and an	540
aageaceag cocaacgoon accgounging gaggegeen gragaragers age-same s	600
ccamment and an analysis and a	660 720
adotation the same of the same	748
atttgtaagt ctaccaaaaa aaaaaaaa	740
<210> 55	
<211> 703	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 31231	
<221> polyA_signal	
<222> 769774	
<221> polyA_site <222> 690703	
(222) 636763	
<400> 55	
ctctggtggc tctgctacgg cggcgcagaa atg agg cag aag cgg aaa gga gat	54
Met Arg Gln Lys Arg Lys Gly Asp	
1 5	100
ctc agc cct gct aag ctg atg atg ctg act ata gga gat gtt att aaa	102
Leu Ser Pro Ala Lys Leu Met Met Leu Thr Ile Gly Asp Val Ile Lys 10 15 20	
caa ctg att gaa gcc cac gag cag ggg aaa gac atc gat cta aat aag	150
Gln Leu Ile Glu Ala His Glu Gln Gly Lys Asp Ile Asp Leu Asn Lys	
25 30 35 40	
gtg aga acc aag aca gct gcc aaa tat ggc ctt tct gcc cag ccc cgc	198
Val Arg Thr Lys Thr Ala Ala Lys Tyr Gly Leu Ser Ala Gln Pro Arg	
45 50 55	
ctg gtg gat atc att gct gcc gtc cct cct gag tagctgggat tacaggcacc	251
ctg gtg gat atc att gct gcc gtc cct cct gag tagctgggat tacaggcacc Leu Val Asp Ile Ile Ala Ala Val Pro Pro Glu	251
ctg gtg gat atc att gct gcc gtc cct cct gag tagctgggat tacaggcacc Leu Val Asp Ile Ile Ala Ala Val Pro Pro Glu 60 65	
ctg gtg gat atc att gct gcc gtc cct cct gag tagctgggat tacaggcacc Leu Val Asp Ile Ile Ala Ala Val Pro Pro Glu 60 65 cgccgctgcc aatttttgta tttttagtag ggatgggggt ttcaccatat tggtcaggct	311
ctg gtg gat atc att gct gcc gtc cct cct gag tagctgggat tacaggcacc Leu Val Asp Ile Ile Ala Ala Val Pro Pro Glu 60 65 cgccgctgcc aatttttgta tttttagtag ggatgggggt ttcaccatat tggtcaggct ggtctcgaac tcctgacctc aggtgatcaa cccaccttgg cctccctaaa tgccgggatt	
ctg gtg gat atc att gct gcc gtc cct cct gag tagctgggat tacaggcacc Leu Val Asp Ile Ile Ala Ala Val Pro Pro Glu 60 65 cgccgctgcc aatttttgta tttttagtag ggatggggt ttcaccatat tggtcaggct ggtctcgaac tcctgacctc aggtgatcaa cccaccttgg cctccctaaa tgccgggatt acaggcatga gccaccgctc cgggcctttg atttttaag gtggattttg gttgttataa	311 371
ctg gtg gat atc att gct gcc gtc cct cct gag tagctgggat tacaggcacc Leu Val Asp Ile Ile Ala Ala Val Pro Pro Glu 60 65 cgccgctgcc aatttttgta tttttagtag ggatggggt ttcaccatat tggtcaggct ggtctcgaac tcctgacctc aggtgatcaa cccaccttgg cctccctaaa tgccgggatt acaggcatga gccaccgctc cgggcctttg atttttaag gtggattttg gttgttataa atggagaaag gtaagagttc aagttcaacc cgtgtgtgaa agcaaaacaa tggaaaacag	311 371 431
ctg gtg gat atc att gct gcc gtc cct cct gag tagctgggat tacaggcacc Leu Val Asp Ile Ile Ala Ala Val Pro Pro Glu 60 65 cgccgctgcc aatttttgta tttttagtag ggatggggt ttcaccatat tggtcaggct ggtctcgaac tcctgacctc aggtgatcaa cccaccttgg cctccctaaa tgccgggatt acaggcatga gccaccgctc cgggcctttg atttttaag gtggattttg gttgttataa	311 371 431 491 551 611
ctg gtg gat atc att gct gcc gtc cct cct gag tagctgggat tacaggcacc Leu Val Asp Ile Ile Ala Ala Val Pro Pro Glu 60 65 cgccgctgcc aatttttgta tttttagtag ggatggggt ttcaccatat tggtcaggct ggtctcgaac tcctgacctc aggtgatcaa cccaccttgg cctccctaaa tgccgggatt acaggcatga gccaccgctc cgggcctttg atttttaag gtggatttg gttgttataa atggagaaag gtaagagttc aagttcaacc cgtgtgtgaa agcaaaacaa tggaaaacag gattggcttc ttcaaaggct cctcttgtag aactgcctct ttgaaatttc gaggtaatct	311 371 431 491 551 611 671
ctg gtg gat atc att gct gcc gtc cct cct gag tagctgggat tacaggcacc Leu Val Asp Ile Ile Ala Ala Val Pro Pro Glu 60 65 cgccgctgcc aatttttgta tttttagtag ggatggggt ttcaccatat tggtcaggct ggtctcgaac tcctgacctc aggtgatcaa cccaccttgg cctccctaaa tgccgggatt acaggcatga gccaccgctc cgggcctttg atttttaag gtggatttg gttgttataa atggagaaag gtaagagttc aagttcaacc cgtgtgtgaa agcaaaacaa tggaaaacag gattggcttc ttcaaaggct cctcttgtag aactgcctct ttgaaatttc gaggtaatct actttggaga ctctgcctgg agagggtcag ttcctaagtt aaaagcatcg cttaaccttg	311 371 431 491 551 611
ctg gtg gat atc att gct gcc gtc cct cct gag tagctgggat tacaggcacc Leu Val Asp Ile Ile Ala Ala Val Pro Pro Glu 60 65 cgccgctgcc aattittgta tttttagtag ggatgggggt ttcaccatat tggtcaggct ggtctcgaac tcctgacctc aggtgatcaa cccaccttgg cctcctaaa tgccgggatt acaggcatga gccaccgctc cgggcctttg atttttaag gtggattttg gttgttataa atggagaaag gtaagagttc aagttcaacc cgtgtgtgaa agcaaaacaa tggaaaacag gattggcttc ttcaaaggct cctcttgtag aactgcctct ttgaaatttc gaggtaatct actttggaga ctctgcctgg agagggtcag ttcctaagtt aaaagcatcg cttaaccttg gctcctgtgg cattttacaa aggtttaaag gaattgattc ctctgaaaag gcctgaaaat	311 371 431 491 551 611 671

<210> 56
<211> 725
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 305..565

<221> polyA_signal <222> 694699	
<221> polyA_site <222> 713725	
<400> 56 ctcacggtgg tgaaggtcac agggttgcag cactcccagt agaccaggag ctccgggagg cagggccggc cccacgtct ctgcgcacca ccctgagttg gatcctctgt gcgccaccc tgagttggat ccagggctag ctgctgttga cctcccact cccacgctgc cctcctgcct gcagccatga cgccctgct caccctgatc ctggtggtcc tcatgggctt acctctggcc caggccttgg actgccacgt gtgaggacta caaatccctc caggatatca ttgccatcct gggt atg gat gaa ctt tct gag gaa gac aag ttg acc gtg tcc cgt gca Met Asp Glu Leu Ser Glu Glu Asp Lys Leu Thr Val Ser Arg Ala 1 5 10 15	60 120 180 240 300 349
cgg aaa ata cag cgt ttc ttg tct cag cca ttc cag gtt gct gag gtc Arg Lys Ile Gln Arg Phe Leu Ser Gln Pro Phe Gln Val Ala Glu Val 20 25 30	397
ttc aca ggt cat atg ggg aag ctg gta ccc ctg aag gag acc atc aaa Phe Thr Gly His Met Gly Lys Leu Val Pro Leu Lys Glu Thr Ile Lys 35 40 45	445
gga ttc cag cag att ttg gca ggt gaa tat gac cat ctc cca gaa cag Gly Phe Gln Gln Ile Leu Ala Gly Glu Tyr Asp His Leu Pro Glu Gln 50 55 60	493
gcc ttc tat atg gtg gga ccc att gaa gaa gct gtg gca aaa gct gat Ala Phe Tyr Met Val Gly Pro Ile Glu Glu Ala Val Ala Lys Ala Asp 65 70 75	541
aag ctg gct gaa gag cat tca tcg tgaggggtct ttgtcctctg tactgtctct Lys Leu Ala Glu Glu His Ser Ser 80 85	595
ctccttgccc ctaacccaaa aagcttcatt tttctgtgta ggctgcacaa gagccttgat tgaagatata ttctttctga acagtattta aggtttccaa taaagtgtac acccctcaaa aaaaaaaaaa	655 715 725
<210> 57 <211> 1705 <212> DNA <213> Homo sapiens <220> <221> CDS	
<222> 124873 <221> sig_peptide <222> 124378 <223> Von Heijne matrix	
<221> polyA_signal <222> 16731678	
<221> polyA_site <222> 16941705	
<400> 57 cggaggtgag gagcggcggc cccgcccggt gcgctggagg tcgaagcttc caggtagcgg cccgcagagc ctgacccagg ctctggacat cctgagccca agtcccccac actcagtgca gtg atg agt gcg gaa gtg aag gtg aca ggg cag aac cag gag caa ttt Met Ser Ala Glu Val Lys Val Thr Gly Gln Asn Gln Glu Gln Phe	60 120 168

Ctg ctc cta gcc aag tcg gcc aag ggg gca gcg ctg gcc aca ctc atc 216	-85 -80 -75	
Leu Leu Leu Ala Lys Ser Ala Lys Gly Ala Ala Leu Ala Thr Leu Ile -65 -66 -65 -65 Cat cag grg ctg gag gcc cct ggt gtc tac grg ttt gga gaa ctg ctg 264 His Gln Val Leu Glu Ala Pro Gly Val Tyr Val Phe Gly Glu Leu Leu -50 -50 At 245 Glu Leu Leu -50 -50 -70 -75 -75 -75 -75 -75 -75 -75 -75 -75 -75	•	216
-70	Leu Leu Leu Ala Lys Ser Ala Lys Gly Ala Ala Leu Ala Thr Leu Ile	
### Bis Gln Val Leu Glu Ala Pro Gly Val Tyr Val Phe Gly Glu Leu Leu -50 gac atg ccc aat gtt aga gag ctg naa gcc cgg aat ctt cct cca cta Asp Met Pro Asn Val Arg Glu Leu Xaa Ala Arg Asn Leu Pro Pro Leu -35 aca gag gct cag aat aat aag ctt cgg cac ctc tca gtt gtc acc ctg 360 Thr Glu Ala Gln Lys Asn Lys Leu Arg His Leu Ser Val Val Thr Leu -20 -15 gct gct aaa gta aag tgt atc cca tat gca gtg ttg ctg gag gct ctt Ala Ala Lys Val Lys Cys Ile Pro Tyr Ala Val Leu Leu Glu Ala Leu -5 1	-70 -65 -60 -55	
Sec Sec		264
gac atg ccc aat gtt aga gag ctg naa gcc cgg aat ctt ct ca cta	· · · · · · · · · · · · · · · · · · ·	
Asp Met Pro Asn Val Arg Glu Leu Xaa Ala Arg Asn Leu Pro Pro Leu -15 -30 -20 -20 -15 -15 -10 -10 gct gct aaa gta aag tgt atc cca tat gca gtg ttg ctg gag gct ctt Ala Ala Lys Val Lys Cys Ile Pro Tyr Ala Val Leu Leu Glu Ala Leu -5 gcc ctg gat aat gtg cg gc gcg gag ag cct gtg gag gct ctt Ala Ala Lys Val Lys Cys Ile Pro Tyr Ala Val Leu Leu Glu Ala Leu -5 gcc ctg gat at gtg cg gcg gcg gcg gcg ctg gag gct gtg gag gct gtg gcc gcg gag gct gcg gag gcg gcg gag gcg gcg gag gcg gcg	••	770
-35		312
Sea Sea		
Thr Glu Ala Gln Lys Asn Lys Leu Arg His Leu Ser Val Val Thr Leu		360
-20		
Ala Ala Lys Val Lys Cys Ile Pro Tyr Ala Val Leu Leu Glu Ala Leu -5 gcc ctg cgt aat gtg cgg cag ctg gaa gac ctt gtg att gag gct gtg Ala Leu Arg Nar Val Arg Gln Leu Glu Aap Leu Val Ile Glu Ala Val -15 20 25 tat gct gac gtg ctt cgt ggc tcc ctg gac cag cgc aac cag cgg ctc Tyr Ala Aap Val Leu Arg Gly Ser Leu Aap Gln Arg Aan Gln Arg Leu 30 gag gtt gac tac agc atc ggg cgg gac atc cag cgc cag gac ctc agt Glu Val Aap Tyr Ser Ile Gly Arg Aap Ile Gln Arg Gln Arg Leu 50 gcc att gcc cga acc ctg cag gac atgg tgt gtg ggc tgt gag gtc gtg Ala Ile Ala Arg Thr Leu Gln Glu Trp Cys Val Gly Cys Glu Val Val 60 60 65 70 ctg tca ggc att gag gat gag gg gg gg gg gg ggc gg gc acc cag cac cac		
-5		408
Sec ctg cgt aat gtg cgg cag ctg gaa gac ctt gtg att gag gct gtg sha Nah Nah Nar Ghn Leu Ghu Nap Leu Val 11e Ghu Nala Val 15		
Ala Leu Arg Asn Val Arg Gln Leu Glu Asp Leu Val Ile Glu Ala Val 15 20 20 25 tat gct gac gtg ctt cgt ggc tcc ctg gac cag cgc aac cag cgg ctc Tyr Ala Asp Val Leu Arg Gly Ser Leu Asp Gln Arg Asn Gln Arg Leu 30 35 40 gag gtt gac tac agc atc ggg cgg gac atc cag cgc ag gac ctc agt Glu Val Asp Tyr Ser Ile Gly Arg Asp Ile Gln Arg Gln Asp Leu Ser 55 gcc att gcc cga acc ctg cag gaa tgg tgt gtg ggc tgt gag gtc gtg Ala Ile Ala Arg Thr Leu Gln Glu Trp Cys Val Gly Cys Glu Val Val 60 65 65 70 ctg tca ggc att gag gag cag gtg agc cgt gcc aac caa caa gag gag Leu Ser Gly Ile Glu Glu Gln Val Ser Arg Ala Asn Gln His Lys Glu 75 80 cag cag ctg ggc ctg aag cag gtg agc ggt ggc aac caa cac aag gag 648 Leu Ser Gly Ile Glu Glu Gln Val Ser Arg Ala Asn Gln His Lys Glu 75 80 cag cag ctg ggc ctg aag cag gat gag agt gga ggt ggc gg acc ctc Gln Gln Leu Gly Leu Lys Gln Gln Ile Glu Ser Glu Val Ala Asn Leu 95 aaa aaa acc att aaa gtt acg acg gca gca gca gcc gcc gcc aca ctc Lys Lys Thr Ile Lys Val Thr Thr Ala Ala Ala Ala Ala Ala Thr Ser 110 115 120 cag gac ctg gag caa cac ctg act gag ctg agg gaa cac gct cct ggc Gln Asp Pro Glu Gln His Leu Thr Glu Leu Arg Glu Pro Ala Pro Gly 125 126 acc acc cag cgc cag ccc agc aga aaa gcc tca aag gag ggc ctc Cag ggg agc gc cag act cag cag aca gag gag gg ctc Car gag gg		456
15		456
tat gct gac gtg ctt cgt ggc tcc ctg gac cag cgc aac cag cgg ctc Tyr Ala Asp Val Leu Arg Gly Ser Leu Asp Gln Arg Asn Gln Arg Leu 30 35 40 gag gtt gac tac agc atc ggg cgg gac atc cag cgc cag gac ctc agt Glu Val Asp Tyr Ser Ile Gly Arg Asp Ile Gln Arg Gln Asp Leu Ser 45 50 gcc att gcc cga acc ctg cag gaa tgg tgt ggg ggc tgt gag gtc gtg 60 Ala Ile Ala Arg Thr Leu Gln Glu Trp Cys Val Gly Cys Glu Val Val 60 65 65 65 65 65 65 65 65 65		
Tyr Ala Asp Val Leu Arg Gly Ser Leu Asp Gln Arg Asn Gln Arg Leu 30 35 40 552 gag gtt gac tac agc atc ggg cgg gac atc cag cgc cag gac ctc agt 552 Glu Val Asp Tyr Ser Ile Gly Arg Asp Ile Gln Arg Gln Asp Leu Ser 45 50 550 555 gcc att gcc cga acc ctg cag gaa tgg tgt gtg ggc tgt gag gtc gtg gag cag ctc agt 600 Ala Ile Ala Arg Thr Leu Gln Glu Trp Cys Val Gly Cys Glu Val Val 600 65 70 Gtg tca ggc att gag gag cag gtg agc cgt gcc aac caa caa gag gag 648 Leu Ser Gly Ile Glu Glu Gln Val Ser Arg Ala Asn Gln His Lys Glu 75 80 85 90 Cag cag ctg ggc ctg aag cag att gag agt gag gtg gc aac ctt 696 Gln Gln Leu Gly Leu Lys Gln Gln Ile Glu Ser Glu Val Ala Asn Leu 95 100 105 aaa aaa acc att aaa gtt acg ag gcg gca gcc gcc gcc aca tct 195 Lys Thr Ile Lys Val Thr Thr Ala Ala Ala Ala Ala Ala Ala Thr Ser 110 115 Cag gac ct gag cac cac ctg act gag ctg agg gag ccg gcc aca tct 196 Cag Gac cag ccg gag cac cac ctg act gag gag ccg gcc aca ctg 115 Cag gac cct gag cac cac ctg act gag gag cag gag ccc gcc aca tct 196 Thr Asn Gln Arg Gln Pro Ser Lys Lys Ala Ser Lys Gly Lys Gly Leu 140 140 145 Cag ggg agc gcc aag att tgg tcc aag tcg aat tgaaagaact gtcgtttct 893 Arg Gly Ser Ala Lys Ile Trp Ser Lys Ser Asn 155 160 165 Ccctggggat gtggggtcc aactctagt ctcatgact tcatgacct tcacccccaa act 1073 ctgttttttt tgacttcatg tgttccattg ctcccgctg catgctctt tggtgccttg gagagtct catgagagtc aaatgtagt catagatca accttctcta gggagagtc aaatgtagt catagagtc ttcctagaact tcatagatca tcatagatca tcacctctcta tcacacccc acaaggcgtt tttttetgcca ccccatccct 1163 ccatagagcc ccacctta ctcacaccc cacagagcgtt ttttttetgcca cccatcccat 1173 ccatagagcc taggactct ctatacccta ccctgacct attgagtagg ggdagagg ggdagagggtagagtgagaggagag		504
30 35 40 gag gtt gac tac agc agc ggg gac atc cag cgc cag gac ctc agt 552 Glu Val Asp Tyr Ser Ile Gly Arg Asp Ile Gln Arg Gln Asp Leu Ser 45 gcc att gcc cga acc ctg cag gac tgg tgt ggg ggt gt gag gtc gtg 60 Ala Ile Ala Arg Thr Leu Gln Glu Trp Cys Val Gly Cys Glu Val Val 60 60 65 70 Ctg tca ggc att gag gag cag gtg agc cgt gcc aac caa caa caa gag 648 Leu Ser Gly Ile Glu Glu Glu Gln Val Ser Arg Ala Asn Gln His Lys Glu 75 75 80 85 90 cag cag ctg ggc ctg aag cag cag att gag agt gag gtt gcc aac ctt 696 Gln Gln Leu Gly Leu Lys Gln Gln Ile Glu Ser Glu Val Ala Asn Leu 95 100 105 aaa aaa acc att aaa gtt acg aac gacg gca gca gca gcc gcc gcc aca ctt 744 Lys Lys Thr Ile Lys Val Thr Thr Ala Ala Ala Ala Ala Ala Ala Thr Ser 110 115 120 cag gac cct gag caa cac ctg act gac tga gct gag gaac aca gcg cac gcc act ct 792 792 Gln Asp Pro Glu Gln His Leu Thr Glu Leu Arg Glu Pro Ala Pro Gly 125 130 135 acc ac cag cag cc cag cag cag aag aaa gcc tca aag ggc acg gcc gag gcc acg gcc gcg gcc acg att tgc gca gcc gcc gcc gcc gcc gcc gcc gcc g		
Glu Val Asp Tyr Ser Ile Gly Arg Asp Ile Gln Arg Gln Asp Leu Ser	30 35 40	
Soc att gcc cga acc ctg cag gaa tgg tgg tgg ggc tgt gag gtc gtg 600		552
Sec		
Ala Ile Ala Arg Thr Leu Gln Glu Trp Cys Val Gly Cys Glu Val Val Val 60 60 65 70 70 648 648 65 66 65 70 70 648 648 65 66 65 70 70 648 648 65 66 65 70 70 65 65 70 70 65 65 70 70 65 65 70 70 70 70 70 70 70 70 70 70 70 70 70		
Ctg tca ggc att gag gag cag gtg agc cgt gcc aac caa caa caa gag gag Leu Ser Gly Ile Glu Glu Gln Val Ser Arg Ala Asn Gln His Lys Glu 75		600
Ctg tca ggc att gag gag cag gtg agc cgt gcc aac caa cac aag gag		
Leu Ser Gly Ile Glu Glu Glu Val Ser Arg Ala Asn Gln His Lys Glu 75		648
75		
Gln Gln Leu Gly Leu Lys Gln Gln Ile Glu Ser Glu Val Ala Asn Leu 95 100 105 aaa aaa acc att aaa gtt acg acg gca gca gcc gca gcc aca tct Lys Lys Thr Ile Lys Val Thr Thr Ala Ala Ala Ala Ala Ala Thr Ser 110 115 120 cag gac cct gag caa cac ctg act gag ctg agg gaa cca gct cct ggc Gln Asp Pro Glu Gln His Leu Thr Glu Leu Arg Glu Pro Ala Pro Gly 125 130 135 acc aac cag cgc cag ccc agc aag aaa gcc tca aag ggc aag ggg ctc Thr Asn Gln Arg Gln Pro Ser Lys Lys Ala Ser Lys Gly Lys Gly Leu 140 145 150 cag ggg agc gcc aag att tgg tcc aag tcg aat tgaaagaact gtcgtttct Arg Gly Ser Ala Lys Ile Trp Ser Lys Ser Asn 155 ccctggggat gtggggtccc agctgcctgc ctgcctctta ggagtcctca gagagccttc gtgtccttty tgtgccctg gccagctgat aatcctaggt tcatgacct tcacctccc taaccccaaa 1013 catagatcac accttctcta gggaggagtc aaatgtaggt catgttttg ttggtacttt 1073 ctgtttttg tgacttcatg tgttccattg ctccccgctg ccatgctct tcccttgttt 1133 ccttaagagc tcagcatctg tcctgtcat ttacatgtca ttgagtagg gggtagccct 1253 gcatgcctga tccccagttc ctatacccta ccccqcacct attgagcagc ctccatccct 1253 gcatgcctga tccccagttc ctatacccta cccctgacct attgagcagc ctctgaagag ggagtccct tgggccctt tggacatcta cccctgacct accagccct accatccct 1253 gcatgcctga tccccagttc ctatacccta cccctgacct attgagcagc ctctgaagag ggagtccct tgggccctt ggacatctta ctccacacct gagaattctg ggagaccatt ctttctctct 1433 ccatagggcc cccaccttta ctcacaccct gagaattctg ggagccatct ctcttctct 1433 ccttaggccct tgggtcctgg gaatgttca tcctagaatc ctgtcacacc acaggccta gaaggccac 1493 cgtttcttaa catgttgaa gatgattctt tcttggactttg ggccatctcg ggaagcttga 1553 tggcaatcct tggaagggtt aatctcttt ttgtgagtttg ggcgaaggaggaggaagg gaagggtata 1613 tagattatat taaaaaaaaa aaggtatata tgcatatat tataataat atgacgcaga 1673	· · · · · · · · · · · · · · · · · · ·	
aaa aaa acc att aaa gtt acg acg gca gca gca gca gcc aca tct Lys Lys Thr Ile Lys Val Thr Thr Ala Ala Ala Ala Ala Ala Thr Ser 110 Cag gac cct gag caa cac ctg act gag gag gaa cca gct cct ggc Gln Asp Pro Glu Gln His Leu Thr Glu Leu Arg Glu Pro Ala Pro Gly 125 acc aac cag cgc cag ccc agc aag aaa gcc tca aag ggc aag ggg ctc Thr Asn Gln Arg Gln Pro Ser Lys Lys Ala Ser Lys Gly Lys Gly Leu 140 145 Cag ggg agc gcc aag att tgg tcc aag tcg aat tgaaagaact gtcgttcct Arg Gly Ser Ala Lys Ile Trp Ser Lys Ser Asn 155 160 165 Ccctggggat gtggggtccc agctgctgc ctgcctcta ggagtcctca gagagcctc gtcgtcctt ggaggagtcact ggcagctgat aatcctaggt tcatgaccct tcacctccc taaccccaaa lol3 catagatcac accttctcta ggaggagatc aaatgtaggt catgttttt ttggtacttt lor3 ccttaagagc tcacgattc tcactgttca ttacatgtca ttggtaggt gggtagccct lip3 gatgggggtc gcctctct gagcataacc cacagcgtt ttttctgca cccatccct lacc gcatgcctga tccccagttc ctatacccta cccctgacct attgagcagc ttttcttctct lacctaggccct tcacatggcct ttttctgca cccatccct lacctaggccct ccatagccct tcactgtt ttttctgca cccatccct lacctaggcatgacct lip3 gatgggggtc gctctgtcg gagcataacc cacagcgtt ttttctgca cccatccct lacctagaga lip3 ccatagggcc cccaccttta ctcacacct gagaattctg ggagccatc tcttctct lacctagaga lip3 gatgggggtc gccctgtcg gaatgctct ctacaccc caagcgctt ttttctgca cccatccct lacctagaga lip3 ccatagggcc cccaccttta ctcacacct gagaattctg ggagccatc tcttctct lacctagaaga lip3 ccatagggcc ttggtcctgg gaatgctct tcttacacc caagcagct ttttctctct lacctagaaga lip3 ccatagggcc tggggtcctagaagaggattctt tcttggccc ggaagcttagagagaggtttaa lacctagacct tggaagggttaa lacctggcaatcct tggaagggttt aatctcttt tggagagggaaggga		696
aaa aaa acc att aaa gtt acg acg gca gca gca gcc gca gcc aca tct Lys Lys Thr Ile Lys Val Thr Thr Ala Ala Ala Ala Ala Ala Thr Ser 110 115 120 Cag gac cct gag caa cac ctg act gag ctg agg gaa cca gct cct ggc Gln Asp Pro Glu Gln His Leu Thr Glu Leu Arg Glu Pro Ala Pro Gly 125 130 135 acc aac cag cgc cag ccc agc aag aaa gcc tca aag ggc aag ggg ctc Thr Asn Gln Arg Gln Pro Ser Lys Lys Ala Ser Lys Gly Lys Gly Leu 140 145 150 Cga ggg agc gcc aag att tgg tcc aag tcg aat tgaaagaact gtcgtttcct Arg Gly Ser Ala Lys Ile Trp Ser Lys Ser Asn 155 160 165 Ccctggggat gtggggtccc agctgctc ctgcctctta ggagtcctca gagagcctc tgtgccctg gccagctgat aatcctaggt tcatgacct tcacctccc taaccccaaa tgtgccctg gccagctgat aatcctaggt ctatgacct tcacctccc taaccccaaa 1013 ccatagatca accttctcta ggagagatc aaatgtaggt catgttttt ttgtgtactt tgacttatt tgacttcatg ttccattg ctccccgctg ccatgctct tcccttytt gatgtttttt gacttcatg tccctgtca ttacatgca ttgagtaggt gggtagccct 1193 gatgggggtc gctctgctg gagcataacc cacaggcgtt ttttctgcca ccccatccct gcatgcctga tcccagttc ctatacccta cccctgacct attgagcag ctctgaagag gatgggggc cccaccttta ctcaacacct gagaattctg ggagcagct tgccatgcc 1253 ggatgcctga tcccagttc ctatacccta cccctgacct attgagcag ctctgaagag 1313 ccatagggcc cccaccttta ctcaacacct gagaattctg ggagccatct ggaagcttga 1373 ggagtcactg gacatgttca tcctagaatc ctgtcaacc acagcctaa gaatgcagc 1493 cgtttcttaa catgttgaga gatgattctt tcttggccct ggcaatctcg ggaagcttaa 1613 tagattatat taaaaaaaaaa aaggtatata tgcatatat tataataat atgacgcaga 1673		
Lys Lys Thr Ile Lys Val Thr Thr Ala Ala Ala Ala Ala Ala Thr Ser 110 115 120 cag gac cct gag caa cac ctg act gag ctg agg gaa cca gct cct ggc 792 Gln Asp Pro Glu Gln His Leu Thr Glu Leu Arg Glu Pro Ala Pro Gly 125 130 135 acc aac cag cgc cag ccc agc aag aaa gcc tca aag ggc aag ggg ctc Thr Asn Gln Arg Gln Pro Ser Lys Lys Ala Ser Lys Gly Lys Gly Leu 140 145 150 cga ggg agc gcc aag att tgg tcc aag tcg aat tgaaagaact gtcgttcct 893 Arg Gly Ser Ala Lys Ile Trp Ser Lys Ser Asn 155 160 165 ccctggggat gtggggtccc agctgcctgc ctgcctcta ggagtcctca gagagcctc gcagcggat gtggggtdca aatcctaggt tcatgaccct tcacctcccc taaccccaaa 1013 catagatcac accttctcta gggaggagtc aaatgtaggt catgttttg ttggtacttt 1073 ctgttttttg tgacttcatg ttccttgtca ttacatgtca ttgagtaggt gggtagccct 1193 gatggggtc gctcgtctg gagcataacc cacaggcgt ttttctgcca ccccatcct 1253 gcatgcctga tccccagttc ctatacccta ccctgacct attgagcagc ctctgaagag 1313 ccatagggcc cccaccttta ctcacaccct gagaattctg ggagccagtc tgccatgcca		
cag gac cct gag caa cac ctg act gag ctg agg gaa cca gct cct ggc 792 Gln Asp Pro Glu Gln His Leu Thr Glu Leu Arg Glu Pro Ala Pro Gly 125 130 135 acc aac cag cgc cag ccc agc aag aaa gcc tca aag ggc aag ggg ctc Thr Asn Gln Arg Gln Pro Ser Lys Lys Ala Ser Lys Gly Lys Gly Leu 140 145 150 160 165 165 160 165 165 16		744
Cag gac cct gag caa cac ctg act gag ctg agg gaa cca gct cct ggc Gln Asp Pro Glu Gln His Leu Thr Glu Leu Arg Glu Pro Ala Pro Gly 125 130 135 acc aac cag cgc cag ccc agc aag aaa gcc tca aag ggc aag ggg ctc Thr Asn Gln Arg Gln Pro Ser Lys Lys Ala Ser Lys Gly Lys Gly Leu 140 145 150 Cga ggg agc gcc aag att tgg tcc aag tcg aat tgaaagaact gtcgtttcct Arg Gly Ser Ala Lys Ile Trp Ser Lys Ser Asn 155 160 165 ccctggggat gtggggtccc agctgcctgc ctgcctctta ggagtcctca gagagccttc tgatgccctg gccagctgat aatcctaggt tcatgaccct tcacctcccc taaccccaaa 1013 catagatcac accttctcta gggaggagtc aaatgtaggt catgtttttg ttggtacttt 1073 ctgttttttg tgacttcatg tgttccattg ctccccgctg ccatgctctc tcccttgttt 1133 ccttaagagc tcagcatctg tccctgttca ttacatgca ttgagtaggt gggtagccct 1193 gatgggggtc gctctgtcg gagcataacc cacaggcgtt ttttctgcca ccccatccct 1253 gcatgcctga tccccagttc ctatacccta cccctgacct attgagcagc ctctgaagag 1313 ccatagggcc cccacctta ctcacacccc gagaattctg ggagccattc ttttctctct 1433 ccttagccct tgggtcctgg gaatgctct tcttagaccc caaggccatt cttttcctct 1433 ccttagccct tgggtcctgg gaatgctgct gcttcaaccc cagagcctaa gaatgcagc 1493 cgtttcttaa catgttgag gatgattctt tcttggccct ggcactctag gaaggttaa 1613 tagattatat taaaaaaaaa aaggtatata tgcatatat taatataat atgacgcaga 1673		
Gln Asp Pro Glu Gln His Leu Thr Glu Leu Arg Glu Pro Ala Pro Gly 125 130 135 acc aac cag cgc cag ccc agc aag aaa gcc tca aag ggc aag ggg ctc Thr Asn Gln Arg Gln Pro Ser Lys Lys Ala Ser Lys Gly Lys Gly Leu 140 145 150 Cga ggg agc gcc aag att tgg tcc aag tcg aat tgaaagaact gtcgtttcct Arg Gly Ser Ala Lys Ile Trp Ser Lys Ser Asn 155 160 165 Ccctggggat gtggggtccc agctgctgc ctgctctta ggagtcctca gagagccttc gtgtgtcctt ggacactg gccagctgat aatcctaggt tcatgacct tcacctccc taaccccaaa 1013 catagatcac accttctcta ggaggggtc caagtgtagt catgttttg ttggtactt 1133 ccttaagagc tcagcatcgt tccctgtca ttacatgtca ttggagagg gggtagccc 1193 gatggggtc gctctgtcg gagcataacc cacaggcgt ttttctgca cccatccct 1253 gcatgcctga tccccagttc ctatacccta cccctgacct attgagcagc ctctgaagag 1313 ccatagggcc cccaccttta ctcacacct gagaattctg ggagccagtc tgccatgcca	227	792
acc aac cag cgc cag ccc agc aag aaa gcc tca aag ggc aag ggg ctc Thr Asn Gln Arg Gln Pro Ser Lys Lys Ala Ser Lys Gly Lys Gly Leu 140 145 150 Cga ggg agc gcc aag att tgg tcc aag tcg aat tgaaaagaact gtcgtttcct Arg Gly Ser Ala Lys Ile Trp Ser Lys Ser Asn 155 160 165 Cccttggggat gtggggtccc agctgcctgc ctgcctctta ggagtcctca gagagccttc 953 tgtgcccctg gccagctgat aatcctaggt tcatgaccct tcacctcccc taaccccaaa 1013 catagatcac accttctcta gggaggagtc aaatgtaggt catgttttg ttggtacttt 1073 ctgttttttg tgacttcatg tgttccattg ctcccgctg ccatgctctc tcccttgttt 1133 ccttaagagc tcagcatctg tccctgttca ttacatgtca ttgagtaggt gggtagccct 1193 gatgggggtc gctctgtctg gagcataacc cacaggcgtt ttttctgcca ccccatccct 1253 gcatgcctga tccccagttc ctatacccta cccctgacct attgagcagc ctctgaagag 1313 ccatagggcc cccaccttta ctcacaccct gagaattctg ggagccagtc tgccatgcca		
Thr Asn Gln Arg Gln Pro Ser Lys Lys Ala Ser Lys Gly Lys Gly Leu 140 145 150 cga ggg agc gcc aag att tgg tcc aag tcg aat tgaaagaact gtcgtttcct Arg Gly Ser Ala Lys Ile Trp Ser Lys Ser Asn 155 160 165 ccctggggat gtggggtccc agctgcctgc ctgcctctta ggagtcctca gagagccttc tgtgcccctg gccagctgat aatcctaggt tcatgaccct tcacctcccc taaccccaaa catagatcac accttctcta gggaggagtc aaatgtaggt catgttttg ttggtactt tttttg tgacttcatg tgttccattg ctccccgctg ccatgctct tcecttgtt ttgttttttg tgacttcatg tccctgttca ttacatgtca ttgagtaggt gggtagccct gatgggggtc gctctgtctg gagcataacc cacaggcgtt ttttctgcca ccccatcct gcatggggtc gctctgtcg gagcataacc cacaggcgtt ttttctgcca ccccatcct gcatggggcc cccaccttta ctcacacct gagaattctg ggagccagtc tgccatgcca		
cga ggg agc gcc aag att tgg tcc aag tcg aat tgaaagaact gtcgtttcct 893 Arg Gly Ser Ala Lys Ile Trp Ser Lys Ser Asn 155 160 165 ccctggggat gtggggtccc agctgcctgc ctgcctctta ggagtcctca gagagccttc 953 tgtgcccctg gccagctgat aatcctaggt tcatgaccct tcacctcccc taaccccaaa 1013 catagatcac accttctcta gggaggagtc aaatgtaggt catgttttg ttggtactt 1073 ctgtttttg tgacttcatg tgttccattg ctccccgctg ccatgctctc tcccttgtt 1133 ccttaagagc tcagcatctg tccctgttca ttacatgtca ttgagtaggt gggtagccct 1193 gatgggggtc gctctgtctg gagcataacc cacaggcgtt ttttctgcca ccccatcct 1253 gcatgcctga tccccagttc ctatacccta cccctgacct attgagcagc ctctgaagag 1313 ccatagggcc cccaccttta ctcacacct gagaattctg ggagccagtc tgccatgcca	acc aac cag cgc cag ccc agc aag aaa gcc tca aag ggc aag ggg ctc	840
Arg Gly Ser Ala Lys Ile Trp Ser Lys Ser Asn 155 160 165 ccctggggat gtggggtccc agctgcctgc ctgcctctta ggagtcctca gagagccttc gtggccctg gccagctgat aatcctaggt tcatgaccct tcacctcccc taaccccaaa 1013 catagatcac accttctcta gggaggagtc aaatgtaggt catgttttg ttggtacttt 1073 ctgtttttg tgacttcatg tgttccattg ctccccgctg ccatgctctc tcccttgttt 1133 ccttaagagc tcagcatctg tccctgttca ttacatgtca ttgagtaggt gggtagccct 1193 gatgggggtc gctctgtcg gagcataacc cacaggcgtt ttttctgcca ccccatccct 1253 gcatgcctga tccccagttc ctatacccta cccctgacct attgagcagc ctctgaagag 1313 ccatagggcc cccaccttta ctcacacct gagaattctg ggagccagtc tgccatgcca		
Arg Gly Ser Ala Lys Ile Trp Ser Lys Ser Asn 155 160 165 ccctggggat gtggggtccc agctgcctgc ctgcctctta ggagtcctca gagagccttc 953 tgtgcccctg gccagctgat aatcctaggt tcatgaccct tcacctcccc taaccccaaa 1013 catagatcac accttctcta gggaggagtc aaatgtaggt catgtttttg ttggtacttt 1073 ctgttttttg tgacttcatg tgttccattg ctccccgctg ccatgctctc tcccttgttt 1133 ccttaagagc tcagcatctg tccctgttca ttacatgtca ttgagtaggt gggtagccct 1193 gatgggggtc gctctgtctg gagcataacc cacaggcgtt ttttctgcca ccccatccct 1253 gcatgcctga tccccagttc ctatacccta cccctgacct attgagcagc ctctgaagag 1313 ccatagggcc cccaccttta ctcacacct gagaattctg ggagccagtc tgccatgcca		003
155 160 165 ccctgggat gtggggtcc agctgcctgc ctgcctctta ggagtcctca gagagccttc 953 tgtgcccctg gccagctgat aatcctaggt tcatgaccct tcacctcccc taaccccaaa 1013 catagatcac accttctcta gggaggagtc aaatgtaggt catgtttttg ttggtacttt 1073 ctgtttttg tgactcatg tgttccattg ctccccgctg ccatgctct tcccttgttt 1133 ccttaagagc tcagcatctg tccctgttca ttacatgtca ttgagtaggt gggtagccct 1193 gatggggtc gctctgtctg gagcataacc cacaggcgtt ttttctgcca ccccatccct 1253 gcatgcctga tccccagttc ctatacccta cccctgacct attgagcagc ctctgaagag 1313 ccatagggcc cccaccttta ctcacacct gagaattctg ggagccagtc tgccatgcca		833
ccctggggat gtggggtccc agctgcctgc ctgcctctta ggagtcctca gagagccttc ggagtccctg gccagctgat aatcctaggt tcatgaccct tcacctcccc taaccccaaa 1013 catagatcac accttctcta gggaggagtc aaatgtaggt catgtttttg ttggtacttt 1073 ctgtttttg tgacttcatg tgttccattg ctccccgctg ccatgctctc tcccttgttt 1133 ccttaagagc tcagcatctg tccctgttca ttacatgtca ttgagtaggt gggtagccct 1193 gatgggggtc gctctgtctg gagcataacc cacaggcgtt ttttctgcca ccccatccct 1253 gcatgcctga tccccagttc ctatacccta cccctgacct attgagcagc ctctgaagag 1313 ccatagggcc cccaccttta ctcacaccct gagaattctg ggagccagtc tgccatgcca		
tgtgccctg gccagctgat aatcctaggt tcatgacct tcacctccc taaccccaaa 1013 catagatcac accttctcta gggaggagte aaatgtaggt catgtttttg ttggtacttt 1073 ctgttttttg tgacttcatg tgttccattg ctccccgctg ccatgctct tcccttgttt 1133 ccttaagage tcagcatctg tccctgttca ttacatgtca ttgagtaggt gggtagccct 1193 gatgggggtc gctctgtctg gagcataacc cacaggcgtt ttttctgcca ccccatccct 1253 gcatgcctga tccccagttc ctatacccta cccctgacct attgagcagc ctctgaagag 1313 ccatagggcc cccaccttta ctcacaccct gagaattctg ggagccagtc tgccatgcca	· ·	953
ctgtttttg tgactcatg tgttccattg ctccccgctg ccatgctctc tcccttgttt 1133 ccttaagagc tcagcatctg tccctgttca ttacatgtca ttgagtaggt gggtagccct 1193 gatgggggtc gctctgtctg gagcataacc cacaggcgtt ttttctgcca ccccatccct 1253 gcatgcctga tccccagttc ctatacccta cccctgacct attgagcagc ctctgaagag 1313 ccatagggcc cccaccttta ctcacacct gagaattctg ggagccagtc tgccatgcca		1013
cettaagage teageatetg teeetgttea ttacatgtea ttgagtaggt gggtageeet 1193 gatgggggte getetgtetg gageataace cacaggegtt ttttetgeea ceceatecet 1253 gcatgeetga teeecagtte etataceeta eeetgaeet attgageage etetgaagag 1313 ccatagggee cecacettta eteacaceet gagaattetg ggageeagte tgeeatgeea 1373 ggagteactg gacatgttea teetagaate etgteacact acagteattt ettteetet 1433 etetggeeet tgggteetgg gaatgetget getteaacee cagageetaa gaatggeage 1493 egtttettaa catgttgaga gatgattett tettggeeet ggeggaagg gaagggtata 1613 tagattatat taaaaaaaaa aaggtatata tgeatatae tatatataat atgaegeaga 1673		
gatggggtc gctctgtctg gagcataacc cacaggcgtt ttttctgcca ccccatccct 1253 gcatgcctga tccccagttc ctatacccta cccctgacct attgagcagc ctctgaagag 1313 ccatagggcc cccacctta ctcacacct gagaattctg ggagccagtc tgccatgcca		
gcatgcctga tccccagttc ctatacccta cccctgacct attgagcagc ctctgaagag 1313 ccatagggcc cccaccttta ctcacaccct gagaattctg ggagccagtc tgccatgcca		
ccatagggcc cccaccttta ctcacacct gagaattctg ggagccagtc tgccatgcca		
ggagtcactg gacatgttca tcctagaatc ctgtcacact acagtcattt cttttcctct 1433 ctctggccct tgggtcctgg gaatgctgct gcttcaaccc cagagcctaa gaatggcagc 1493 cgtttcttaa catgttgaga gatgattctt tcttggccct ggccatctcg ggaagcttga 1553 tggcaatcct ggaagggttt aatctccttt tgtgagtttg gtggggaagg gaagggtata 1613 tagattatat taaaaaaaaa aaggtatata tgcatatatc tatatataat atgacgcaga 1673	• • • • • • • • • • • • • • • • • • • •	
ctctggccct tgggtcctgg gaatgctgct gcttcaaccc cagagcctaa gaatggcagc 1493 cgtttcttaa catgttgaga gatgattctt tcttggccct ggccatctcg ggaagcttga 1553 tggcaatcct ggaagggttt aatctccttt tgtgagtttg gtggggaagg gaagggtata 1613 tagattatat taaaaaaaaa aaggtatata tgcatatatc tatatataat atgacgcaga 1673		
cgtttcttaa catgttgaga gatgattctt tcttggccct ggccatctcg ggaagcttga 1553 tggcaatcct ggaagggttt aatctccttt tgtgagtttg gtggggaagg gaagggtata 1613 tagattatat taaaaaaaaa aaggtatata tgcatatatc tatatataat atgacgcaga 1673		
tggcaatcct ggaagggttt aatctccttt tgtgagtttg gtggggaagg gaagggtata 1613 tagattatat taaaaaaaa aaggtatata tgcatatatc tatatataat atgacgcaga 1673	cgtttcttaa catgttgaga gatgattctt tcttggccct ggccatctcg ggaagcttga	
	tggcaatcct ggaagggttt aatctccttt tgtgagtttg gtggggaagg gaagggtata	
aataaatcta tgagaaatcc aaaaaaaaaa aa 1705		
	aataaatcta tgagaaatcc aaaaaaaaaa aa	1705

PCT/IB98/02122

```
<210> 58
<211> 1069
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 135..206
<221> polyA_signal
<222> 850..855
<221> polyA_site
<222> 1056..1069
<400> 58
cccactccgc tctcacgact aagctctcac gattaaggca cgcctgcctc gattgtccag
                                                                       60
cctctgccag aagaaagctt agcagccagc gcctcagtag agacctaagg gcgctgaatg
                                                                      120
agtgggaaag ggaa atg ccg acc aat tgc gct gcg gcg ggc tgt gcc act
                                                                      170
                Met Pro Thr Asn Cys Ala Ala Ala Gly Cys Ala Thr
acc tac aac aag cac att aac atc agc ttc cac agg taacctgggc
                                                                      216
Thr Tyr Asn Lys His Ile Asn Ile Ser Phe His Arg
agggagtggg ggtgacggaa actggagttc ctattgtggc tatcgcttgt gtggaaggaa
                                                                      276
caggaggatt ctgctaattc taataacttt cccagctggt agcagggaag catcgtatgt
                                                                      336
cctttgtgtt tctcaaatct gcccaattgt tctctgcttt cggggaagct ttactcattt
                                                                      396
tctaaaagaa atccaagtac tgtttggtca ttacccctta gtaaaaaaaa gtaacaggag
                                                                      456
gatatcgtaa ttttctactg ttttattcct ctgttagacc gggccttgac atgaatgacg
                                                                      516
ccgtaaggga gaaagagatc ttcccaatca gcaatcaccg taaaagcctg ctgtgttccc
                                                                      576
gttaaaatta ggaaattoto actagatgaa ttgacatggg aggcatttag atttotaata
                                                                      636
gtcacatagt aattetgegg aggaattgag teatetttga tageeatgga attaagegat
                                                                      696
gttaattaaa gtgcaaacga taacctttct gttcttacta gaatagagta ataaaaagaa
                                                                      756
                                                                      816
cctaggtttt cttttgtttg ctggaagaaa aatcaaaatt ctttagttct gtcaaaccag
aactettgaa agcaetttga acaatgeetg gaaaataaca ggtaetetgt aaatgtttae
                                                                      876
                                                                      936
cttctctgca agtgcctgcc acgtgcccga agaaaagaca cattaaaaag ttaagtgaca
ccagtcctga ttttatatat tttatatacc taacaacgta tatgttagta tgtagaaatt
                                                                      996
atateettga eetttteee taeetattae gaaetgtaet titattaaaa getgeeacta
                                                                     1056
                                                                     1069
aaaaaaaaa aaa
<210> 59
<211> 1084
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 135..818
<221> polyA signal
<222> 909..914
<221> polyA_site
<222> 1071..1084
<400> 59
eccacteege teteaegact aageteteae gattaaggea egeetgeete gattgteeag
                                                                       60
cetetgecag aagaaagett ageageeage geeteagtag aggeetaagg gegetgaatg
                                                                      120
agtgggaaag ggaa atg ccg acc aat tgc gct gcg gcg ggc tgt gcc act
                                                                      170
```

1			-			Pro	Thr	Asn	Сув	Ala	Ala	Ala	Gly	Cys	Ala	Thr	
Thr Tyr Asn Lys His Ile Asn Ile Ser Phe His Arg Phe Pro Leu Asp 20 25 25 26 26 24 34 39 34 39 36 39 35 40 35 40 35 40 35 36 36 36 36 36 36 36 36 36 36 36 36 36	acc	tac	aac	aaq	_	att	aac	atc	aac	ttc	cac	add	+++		tta	at.	218
15	Thr	Tvr	Asn	Lvs	His	Ile	Asn	Ile	Ser	Phe	His	Ara	Phe	Pro	Len	Asp	210
Pro Lys Arg Arg Lys Glu Trp Val Arg Leu Val Arg Arg Lys Asn Phe 30		-1-		2								5					
Pro Lys Arg Arg Lys Glu Trp Val Arg Leu Val Arg Arg Lys Asn Phe 30	cct	aaa	aga	aga	aaa	gaa	tgg	gtt	cgc	ctg	qtt	agg		aaa	aat	ttt	266
30 35 40	Pro	Lys	Arg	Arg	Lys	Glu	Trp	Val	Arg	Leu	Val	Arg	Arq	Lys	Asn	Phe	
Val Pro Gly Lys His Thr Phe Leu Cys Ser Lys His Phe Glu Ala Ser 45 50 55 60 60			_		•				_			-	_	-			
45 ttt gac cta aca gga caa act cga cga cta aaa atg gat gtt Cys Phe Asp Leu Thr Gly Gln Thr Arg Arg Leu Lys Met Asp Ala Val 65 70 75 Cca acc att ttt gat ttt tgt acc cat ata aag tct atg aaa ctc aag 410 Pro Thr Ile Phe Asp Phe Cys Thr His Ile Lys Ser Met Lys Leu Lys 80 85 90 tca agg aat ctt ttg aag aaa aca aca agt tgt tct cca gct gga cca 458 Ser Arg Asn Leu Leu Lys Lys Asn Asn Ser Cys Ser Pro Ala Gly Pro 95 100 105 tct agt tta aaa tca aca att agt agt cag caa gta cta ctt gaa cac 506 Ser Ser Leu Lys Ser Asn Ile Ser Ser Gln Gln Val Leu Leu Glu His 110 115 120 agc tat gcc ttt agg aat cct atg gag gca aaa acg agg atc att aca 554 Ser Tyr Ala Phe Arg Asn Pro Met Glu Ala Lys Lys Arg Ile Ile Lys 125	gtg	cca	gga	aaa	cac	act	ttt	ctt	tgt	tca	aag	cac	ttt	gaa	gcc	tcc	314
tgt ttt gac cta aca gga caa act cga cga ctt aaa atg gat gct gtt Cys Phe Asp Leu Thr Gly Gln Thr Arg Arg Leu Lys Met Asp Ala Val 65 Cca acc att ttt gat ttt tgt acc cat ata aag tct atg aaa ctc aag 70 Cca acc att ttt gat ttt tgt acc cat ata aag tct atg aaa ctc aag 80 85 So 85 So 86 So 87 So 88 So 88 Sor Arg Asn Leu Leu Lys Lys Asn Asn Ser Cys Ser Pro Ala Gly Pro 100 105 106 Ser Ser Leu Lys Ser Asn Ile Ser Ser Gln Gln Val Leu Leu Glu His 110 115 120 130 135 Cag at agg at cat aaa spa agg at cat ata aag agg atc att aaa 554 Ser Tyr Ala Phe Arg Asn Pro Met Glu Ala Lys Lys Arg Ile Ile Lys 130 Leu Glu Lys Glu Ile Ala Ser Leu Arg Arg Lys Met Lys Thr Cys Leu 145 150 160 161 Caa aag gaa cgc aga gca act cga aga tgg atc aaa agc atg tgt tg Gln Lys Glu Arg Arg Ala Thr Arg Arg Trp Ile Lys Ala Met Cys Leu 160 161 162 Gta aag aat tta gaa gca aat agt gga tgg atc aaa ggc atg tgt tg 80 80 80 85 80 85 86 87 87 88 89 80 85 80 85 80 85 80 85 80 85 80 85 80 85 80 85 80 80	Val	Pro	Gly	Lys	His	Thr	Phe	Leu	Суз	Ser	Lys	His	Phe	Glu	Ala	Ser	
Cys Phe Asp Leu Thr Gly Gln Thr Arg Arg Leu Lys Met Asp Ala Val 65 70 77 75 65 66 70 77 75 66 67 70 75 66 67 70 75 66 67 70 75 67 68 68 69 69 69 60 60 61 61 62 63 64 65 65 66 67 67 67 76 77 75 67 68 68 69 69 68 68 69 69 68 68 69 69 68 68 69 69 68 69 69 69 69 69 69 69 69 69 69 69 69 69	45					50					55					60	
CCa acc att ttt gat ttt tgat ttgat ccc cat ata aag tct atg aaa ctc aag 410 Pro Thr Ile Phe Asp Phe Cys Thr His Ile Lys Ser Met Lys Leu Lys 80 85 90 tca agg aat ctt ttg aag aaa aac aac agt tgt tct cca gct gga cca 458 Ser Arg Asn Leu Lu Lys Lys Asn Asn Ser Cys Ser Pro Ala Gly Pro 95 100 105 tct agt tta aaa tca aac att agt agt cag caa gta cta ctt gga cac 506 Ser Ser Leu Lys Ser Asn Ile Ser Ser Gln Gln Val Leu Leu Glu His 110 115 120 agc tat gcc ttt agg aat cct atg gag gca aaa aag agg atc att aaa 554 Ser Tyr Ala Phe Arg Asn Pro Met Glu Ala Lys Lys Arg Ile Ile Lys 125 130 135 140 ctg gaa aaa gaa ata gca agc tta aga aga aaa atg aaa act tgc cta 602 Leu Glu Lys Glu Ile Ala Ser Leu Arg Arg Lys Met Lys Thr Cys Leu 145 caa aag gaa cgc aga gca act cga aga tga aac agc atg tgt ttg 650 Gln Lys Glu Ag Arg Ala Thr Arg Arg Trp Ile Lys Ala Met Cys Leu 160 165 170 gta aag aat tta gaa gca aat agt gta tta cct aag ggt aca tca gaa 698 Val Lys Asn Leu Glu Ala Asn Ser Val Leu Pro Lys Gly Thr Ser Glu 175 180 185 cac atg tta cca act gcc tta agc agt ctc ct ttg gaa gat tt aag 746 Ris Met Leu Pro Thr Ala Leu Ser Ser Leu Pro Leu Glu Asp Phe Lys 190 atc ctt gaa caa gat cac caa gat aaa ac ctg cta agt cta cta gaa gat cat cta gaa cac atg ct tta agc agt cta cta agc cta agt cta cta agc agt cta cta cta aga gat cat cta gaa gat cat cta gaa cac atg tta cca act gcc tta agc agt ctc ct ttg gaa gat tt aag 746 Ris Met Leu Pro Thr Ala Leu Ser Ser Leu Pro Leu Glu Asp Phe Lys 190 atc ctt gaa caa gat cca caa gat aaa aca ctg cta agt cta aat cta 794 Ile Leu Glu Gln Asp Gln Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu 205 220 aaa cag acc aag agt acc ttc att taaatttagc ttgcacaag cttgatgcct 848 Lys Gln Thr Lys Ser Thr Phe Ile 225 atccttcatt cttttcagaa gtaaacattactg aatttgtgaa gacttgatta caaaagataa 4028 aaaaaacttca tattggaaatt ttatttgaaa attagtgtgaa gcgccttaca ttagaaattac 1028																	362
CCC ACC Att Ltt gat Ltt Lgt ACC Cat Ata aag Lct atg aaa Ctc aag A10	Сув	Phe	Asp	Leu	Thr	Gly	Gln	Thr	Arg	Arg	Leu	Lys	Met	Asp	Ala	Val	
Pro Thr Ile Phe Asp Phe Cys Thr His Ile Lys Ser Met Lys Leu Lys Ser Ser Met Lys Leu Lys Ser Ser Asp Asp Leu Lys Lys Asp Asp Asp Leu Lys Lys Asp Asp Ser Cys Ser Pro Ala Gly Pro Pro						,									_		
tca agg aat ctt ttg aag aaa ac aac agt tgt tct cca gct gga cca 458 Ser Arg Asn Leu Leu Lys Lys Asn Asn Ser Cys Ser Pro Ala Gly Pro 95 100 105 tct agt tta aaa tca ac att agt agt cag caa gta cta ctt gaa cac 506 Ser Ser Leu Lys Ser Asn Ile Ser Ser Gln Gln Val Leu Leu Glu His 110 115 120 agc tat gcc ttt agg aat cct atg gag gca aaa aag agg atc att aaa 554 Ser Tyr Ala Phe Arg Asn Pro Met Glu Ala Lys Lys Arg Ile Ile Lys 125 130 135 140 ctg gaa aaa gaa ata gca agc tta aga aga aaa atg aaa act gc cta 602 Leu Glu Lys Glu Ile Ala Ser Leu Arg Arg Lys Met Lys Thr Cys Leu 145 150 155 caa aag gaa cgc aga gca act cga aga tgg atc aat cag gc tta gg atc att aga aga aaa atg aaa act gc cta 165 Gln Lys Glu Arg Arg Ala Thr Arg Arg Trp Ile Lys Ala Met Cys Leu 160 165 170 gta aag aat tta gaa gca aat agt gta tta cct aaa ggt aca tca gaa 698 Val Lys Asn Leu Glu Ala Asn Ser Val Leu Pro Lys Gly Thr Ser Glu 175 180 185 cac atg tta cca act gcc tta agc agt ctc ttg gaa gat ttt aag 746 His Met Leu Pro Thr Ala Leu Ser Ser Leu Pro Leu Glu Asp Phe Lys 190 195 200 atc ctt gaa caa gat cac caa gat aaa aca ctg cta agt cta aat cta 794 Ile Leu Glu Gln Asp Gln Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu 205 aaa cag acc aag agt acc ttc att taaatttagc ttgcacagag cttgatgcct 848 Lys Gln Thr Lys Ser Thr Phe Ile 225 atccttcatt cttttcagaa gtaaagataa ttatggaa gacttgatta caaaagata 968 aaaaaacttca tatggaaatt ttatttgaa atgggtggaa gcccttaca ttagaattac 968 aaaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcccttaca ttagaattac	cca	acc	att	ttt	gat	ttt	tgt	acc	cat	ata	aag	tct	atg	aaa	ctc	aag	410
Ser Arg Asn Leu Leu Lys Lys Asn Asn Ser Cys Ser Pro Ala Gly Pro 95	Pro	Thr	Ile	Phe	Asp	Phe	Cys	Thr	His	Ile	Lys	Ser	Met	Lys	Leu	Lys	
Ser Arg Asn Leu Leu Lys Lys Asn Asn Ser Cys Ser Pro Ala Gly Pro 95				80					85					90			
tct agt tta aaa tca aac att agt agt cag caa gta cta ctt gaa cac 506 Ser Ser Leu Lys Ser Asn Ile Ser Ser Gln Gln Val Leu Leu Glu His 110 115 120 agc tat gcc ttt agg aat cct atg gag gca aaa aag agg atc att aaa 554 Ser Tyr Ala Phe Arg Asn Pro Met Glu Ala Lys Lys Arg Ile Ile Lys 120 130 135 140 ctg gaa aaa gaa ata gca agc tta aga aga aaa atg aaa act tgc cta 602 Leu Glu Lys Glu Ile Ala Ser Leu Arg Arg Lys Met Lys Thr Cys Leu 145 155 150 caa aag gaa cgc aga gca act cga aga tgg atc aaa gcc atg tgt ttg 650 Gln Lys Glu Arg Arg Ala Thr Arg Arg Trp Ile Lys Ala Met Cys Leu 160 165 170 gta aag aat tta gaa gca act tga gat tta cct aaa ggt act ca gaa 698 Val Lys Asn Leu Glu Ala Asn Ser Val Leu Pro Lys Gly Thr Ser Glu 175 180 185 cac atg tta cca act gcc tta agc agt ctt cct ttg gaa gat ttt aag 746 His Met Leu Pro Thr Ala Leu Ser Ser Leu Pro Leu Glu Asp Phe Lys 190 195 200 atc ctt gaa caa gat caa caa gat aaa ac ctg cta agt cta aat cta 794 Ile Leu Glu Gln Asp Gln Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu 205 210 220 aaa cag acc aag agt acc ttc att taaatttagc ttgcacaga cttgatgcct 848 His Gln Thr Lys Ser Thr Phe Ile 225 atccttcatt cttttcagaa gtaaagataa ttattggcact tatgccaaaa ttcattattt 398 aaaaacttca tatggaaatt ttattttgaaa atgagtggaa gcgccttaca ttaggaattac 1028 aaaaacttca tatggaaatt ttattttgaaa atgagtggaa gcgccttaca ttaggaattac 1028	tca	agg	aat	ctt	ttg	aag	aaa	aac	aac	agt	tgt	tct	cca	gct	gga	cca	458
Ser Ser Leu Lys Ser Asn Ile Ser Ser Gln Gln Val Leu Leu Glu His 110	Ser	Arg	Asn	Leu	Leu	Lys	Lys	Asn	Asn	Ser	Cys	Ser	Pro	Ala	Gly	Pro	
Ser Ser Leu Lys Ser Asn Ile Ser Ser Gln Gln Val Leu Leu Glu His 110 115 120			95					100					105				
agc tat gcc ttt agg aat cct atg gag gca aaa aag agg atc att aaa 554 Ser Tyr Ala Phe Arg Asn Pro Met Glu Ala Lys Lys Arg Ile Ile Lys 125 130 135 140 ctg gaa aaa gaa ata gca agc tta aga aga aaa atg aaa act tgc cta 602 Leu Glu Lys Glu Ile Ala Ser Leu Arg Arg Lys Met Lys Thr Cys Leu 145 150 155 caa aag gaa cgc aga gca act cga aga tgg atc aaa gcc atg tgt ttg 650 Gln Lys Glu Arg Arg Ala Thr Arg Arg Trp Ile Lys Ala Met Cys Leu 160 165 170 gta aag aat tta gaa gca aat agt gta tta cct aaa ggt aca tca gaa 698 Val Lys Asn Leu Glu Ala Asn Ser Val Leu Pro Lys Gly Thr Ser Glu 175 180 185 cac atg tta cca act gcc tta agc agt ctt cct ttg gaa gat ttt aag 746 His Met Leu Pro Thr Ala Leu Ser Ser Leu Pro Leu Glu Asp Phe Lys 190 195 200 atc ctt gaa caa gat caa caa gat aaa aca ctg cta agt cta aat cta 794 Ile Leu Glu Gln Asp Gln Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu 205 210 215 220 aaa cag acc aag agt acc ttc att taaatttagc ttgcacagag cttgatgcct 848 Lys Gln Thr Lys Ser Thr Phe Ile 225 atccttcatt cttttcagaa gtaaagataa ttatggcact tatgccaaaa tcattattt 908 aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttaggaattac 1028	tct	agt	tta	aaa	tca	aac	att	agt	agt	cag	caa	gta	cta	ctt	gaa	cac	506
agc tat gcc ttt agg aat cct atg gag gca aaa aag agg atc att aaa 554 Ser Tyr Ala Phe Arg Asn Pro Met Glu Ala Lys Lys Arg Ile Ile Lys 125	Ser	Ser	Leu	Lys	Ser	Asn	Ile	Ser	Ser	Gln	Gln	Val	Leu	Leu	Glu	His	
Ser Tyr Ala Phe Arg Asn Pro Met Glu Ala Lys Lys Arg Ile Ile Lys	,	_															
Ser Tyr Ala Phe Arg Asn Pro Met Glu Ala Lys Lys Arg Ile Ile Lys	agc	tat	gcc	ttt	agg	aat	cct	atg	gag	gca	aaa	aag	agg	atc	att	aaa	554
ctg gaa aaa gaa ata gca agc tta aga aga aaa atg aaa act tgc cta Leu Glu Lys Glu Ile Ala Ser Leu Arg Arg Lys Met Lys Thr Cys Leu 145 150 155 caa aag gaa cgc aga gca act cga aga tgg atc aaa gcc atg tgt ttg Gln Lys Glu Arg Arg Ala Thr Arg Arg Trp Ile Lys Ala Met Cys Leu 160 165 170 gta aag aat tta gaa gca aat agt gta tta cct aaa ggt aca tca gaa Val Lys Asn Leu Glu Ala Asn Ser Val Leu Pro Lys Gly Thr Ser Glu 175 180 185 cac atg tta cca act gcc tta agc agt ctt cct ttg gaa gat ttt aag His Met Leu Pro Thr Ala Leu Ser Ser Leu Pro Leu Glu Asp Phe Lys 190 195 200 atc ctt gaa caa gat caa caa gat aaa aca ctg cta agt cta aat cta Ile Leu Glu Gln Asp Gln Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu 205 210 215 220 aaa cag acc aag agt acc ttc att taaatttagc ttgcacagag cttgatgcct 216 225 atccttcatt cttttcagaa gtaaagataa ttatggcact tatgccaaaa ttcattattt 908 aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttagaattac 1028	Ser	Tyr	Ala	Phe	Arg	Asn	Pro	Met	Glu	Ala	Lys	Lys	Arg	Ile	Ile	Lys	
Leu Glu Lys Glu Ile Ala Ser Leu Arg Arg Lys Met Lys Thr Cys Leu 145 150 155 caa aag gaa cgc aga gca act cga aga tgg atc aaa gcc atg tgt ttg Gln Lys Glu Arg Arg Ala Thr Arg Arg Trp Ile Lys Ala Met Cys Leu 160 165 170 gta aag aat tta gaa gca aat agt gta tta cct aaa ggt aca tca gaa 698 Val Lys Asn Leu Glu Ala Asn Ser Val Leu Pro Lys Gly Thr Ser Glu 175 180 185 cac atg tta cca act gcc tta agc agt ctt cct ttg gaa gat ttt aag 746 His Met Leu Pro Thr Ala Leu Ser Ser Leu Pro Leu Glu Asp Phe Lys 190 200 atc ctt gaa caa gat caa caa gat aaa aca ctg cta agt cta aat cta 794 Ile Leu Glu Gln Asp Gln Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu 205 210 215 220 aaa cag acc aag agt acc ttc att taaatttagc ttgcacagag cttgatgcct 848 Lys Gln Thr Lys Ser Thr Phe Ile 225 atccttcatt cttttcagaa gtaaagataa ttatggcact tatgccaaaa ttcattattt 908 aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttaggaattac 1028	125					130					135					140	•
caa aag gaa cgc aga gca act cga aga tgg atc aaa gcc atg tgt ttg 650 Gln Lys Glu Arg Arg Ala Thr Arg Arg Trp Ile Lys Ala Met Cys Leu 160 165 170 gta aag aat tta gaa gca aat agt gta tta cct aaa ggt aca tca gaa 698 Val Lys Asn Leu Glu Ala Asn Ser Val Leu Pro Lys Gly Thr Ser Glu 175 180 185 cac atg tta cca act gcc tta agc agt ctt cct ttg gaa gat ttt aag 746 His Met Leu Pro Thr Ala Leu Ser Ser Leu Pro Leu Glu Asp Phe Lys 190 195 200 atc ctt gaa caa gat caa caa gat aaa aca ctg cta agt cta aat cta 794 Ile Leu Glu Gln Asp Gln Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu 205 210 215 220 aaa cag acc aag agt acc ttc att taaatttagc ttgcacagag cttgatgcct 848 Lys Gln Thr Lys Ser Thr Phe Ile 225 atccttcatt cttttcagaa gtaaagataa ttatggcact tatgccaaaa ttcattattt 908 aataaagttt tacttgaagt aacattactg aatttgtgaa gacttgatta caaaagaata 968 aaaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttagaattac 1028	ctg	gaa	aaa	gaa	ata	gca	agc	tta	aga	aga	aaa	atg	aaa	act	tgc	cta	602
caa aag gaa cgc aga gca act cga aga tgg atc aaa gcc atg tgt ttg Gln Lys Glu Arg Arg Ala Thr Arg Arg Trp Ile Lys Ala Met Cys Leu 160 165 170 gta aag aat tta gaa gca aat agt gta tta cct aaa ggt aca tca gaa 698 Val Lys Asn Leu Glu Ala Asn Ser Val Leu Pro Lys Gly Thr Ser Glu 175 180 185 cac atg tta cca act gcc tta agc agt ctt cct ttg gaa gat ttt aag 746 His Met Leu Pro Thr Ala Leu Ser Ser Leu Pro Leu Glu Asp Phe Lys 190 195 200 atc ctt gaa caa gat caa caa gat aaa aca ctg cta agt cta aat cta 794 Ile Leu Glu Gln Asp Gln Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu 205 210 215 220 aaa cag acc aag agt acc ttc att taaatttagc ttgcacagag cttgatgcct 848 Lys Gln Thr Lys Ser Thr Phe Ile 225 atccttcatt cttttcagaa gtaaagataa ttatggcact tatgccaaaa ttcattattt 908 aataaagttt tacttgaagt aacattactg aatttgtgaa gacttgatta caaaagaata 968 aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttagaattac 1028	Leu	Glu	Lys	Glu	Ile	Ala	Ser	Leu	Arg	Arg	Lys	Met	Lys	Thr	Cys	Leu	
Gln Lys Glu Arg Arg Ala Thr Arg Arg Trp Ile Lys Ala Met Cys Leu 160 165 170 gta aag aat tta gaa gca aat agt gta tta cct aaa ggt aca tca gaa 698 Val Lys Asn Leu Glu Ala Asn Ser Val Leu Pro Lys Gly Thr Ser Glu 175 180 185 cac atg tta cca act gcc tta agc agt ctt cct ttg gaa gat ttt aag 746 His Met Leu Pro Thr Ala Leu Ser Ser Leu Pro Leu Glu Asp Phe Lys 190 195 200 atc ctt gaa caa gat caa caa gat aaa aca ctg cta agt cta aat cta 794 Ile Leu Glu Gln Asp Gln Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu 205 210 215 220 aaa cag acc aag agt acc ttc att taaatttagc ttgcacagag cttgatgcct 848 Lys Gln Thr Lys Ser Thr Phe Ile 225 atccttcatt cttttcagaa gtaaagataa ttatggcact tatgccaaaa ttcattattt 908 aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttagaattac 1028								•									
gta aag aat tta gaa gca aat agt gta tta cct aaa ggt aca tca gaa 698 Val Lys Asn Leu Glu Ala Asn Ser Val Leu Pro Lys Gly Thr Ser Glu 175 180 185 cac atg tta cca act gcc tta agc agt ctt cct ttg gaa gat ttt aag 746 His Met Leu Pro Thr Ala Leu Ser Ser Leu Pro Leu Glu Asp Phe Lys 190 195 200 atc ctt gaa caa gat caa caa gat aaa aca ctg cta agt cta aat cta 794 Ile Leu Glu Gln Asp Gln Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu 205 210 215 220 aaa cag acc aag agt acc ttc att taaatttagc ttgcacagag cttgatgcct 848 Lys Gln Thr Lys Ser Thr Phe Ile 225 atccttcatt cttttcagaa gtaaagataa ttatggcact tatgccaaaa ttcattattt 908 aataaagttt tacttgaagt aacattactg aatttgtgaa gacttgatta caaaagaata 968 aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttagaattac 1028																	650
gta aag aat tta gaa gca aat agt gta tta cct aaa ggt aca tca gaa 698 Val Lys Asn Leu Glu Ala Asn Ser Val Leu Pro Lys Gly Thr Ser Glu 175 180 185 cac atg tta cca act gcc tta agc agt ctt cct ttg gaa gat ttt aag 746 His Met Leu Pro Thr Ala Leu Ser Ser Leu Pro Leu Glu Asp Phe Lys 190 195 200 atc ctt gaa caa gat caa caa gat aaa aca ctg cta agt cta aat cta 794 Ile Leu Glu Gln Asp Gln Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu 205 210 215 220 aaa cag acc aag agt acc ttc att taaatttagc ttgcacagag cttgatgcct 848 Lys Gln Thr Lys Ser Thr Phe Ile 225 atccttcatt cttttcagaa gtaaagataa ttatggcact tatgccaaaa ttcattattt 908 aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttagaattac 1028	Gln	Lys	Glu	Arg	Arg	Ala	Thr	Arg	Arg	Trp	Ile	Lys	Ala	Met	Cys	Leu	
Val Lys Asn Leu Glu Ala Asn Ser Val Leu Pro Lys Gly Thr Ser Glu 175 180 185 cac atg tta cca act gcc tta agc agt ctt cct ttg gaa gat ttt aag 746 His Met Leu Pro Thr Ala Leu Ser Ser Leu Pro Leu Glu Asp Phe Lys 190 195 200 atc ctt gaa caa gat caa caa gat aaa aca ctg cta agt cta aat cta 794 Ile Leu Glu Gln Asp Gln Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu 205 210 215 220 aaa cag acc aag agt acc ttc att taaatttagc ttgcacagag cttgatgcct Lys Gln Thr Lys Ser Thr Phe Ile 225 atccttcatt cttttcagaa gtaaagataa ttatggcact tatgccaaaa ttcattattt 908 aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttagaattac 1028																	
175 Cac atg tta cca act gcc tta agc agt ctt cct ttg gaa gat ttt aag His Met Leu Pro Thr Ala Leu Ser Ser Leu Pro Leu Glu Asp Phe Lys 190 195 200 atc ctt gaa caa gat caa caa gat aaa aca ctg cta agt cta aat cta 794 Ile Leu Glu Gln Asp Gln Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu 205 210 215 220 aaa cag acc aag agt acc ttc att taaatttagc ttgcacagag cttgatgcct Lys Gln Thr Lys Ser Thr Phe Ile 225 atccttcatt cttttcagaa gtaaagataa ttatggcact tatgccaaaa ttcattattt 908 aataaagttt tacttgaagt aacattactg aatttgtgaa gacttgatta caaaagaata 968 aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttagaattac 1028																	698
cac atg tta cca act gcc tta agc agt ctt cct ttg gaa gat ttt aag 746 His Met Leu Pro Thr Ala Leu Ser Ser Leu Pro Leu Glu Asp Phe Lys 190 195 200 atc ctt gaa caa gat caa caa gat aaa aca ctg cta agt cta aat cta 794 Ile Leu Glu Gln Asp Gln Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu 205 210 215 220 aaa cag acc aag agt acc ttc att taaatttagc ttgcacagag cttgatgcct 848 Lys Gln Thr Lys Ser Thr Phe Ile 225 atccttcatt cttttcagaa gtaaagataa ttatggcact tatgccaaaa ttcattattt 908 aataaagttt tacttgaagt aacattactg aatttgtgaa gacttgatta caaaagaata 968 aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttagaattac 1028	Val	Lys	Asn	Leu	Glu	Ala	Asn	Ser	Val	Leu	Pro	Lys	Gly	Thr	Ser	Glu	
His Met Leu Pro Thr Ala Leu Ser Ser Leu Pro Leu Glu Asp Phe Lys 190 195 200 atc ctt gaa caa gat caa caa gat aaa aca ctg cta agt cta aat cta 794 Ile Leu Glu Gln Asp Gln Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu 205 210 215 220 aaa cag acc aag agt acc ttc att taaatttagc ttgcacagag cttgatgcct Lys Gln Thr Lys Ser Thr Phe Ile 225 atccttcatt cttttcagaa gtaaagataa ttatggcact tatgccaaaa ttcattattt 908 aataaagttt tacttgaagt aacattactg aatttgtgaa gacttgatta caaaagaata 968 aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttagaattac 1028										-							
atc ctt gaa caa gat caa caa gat aaa aca ctg cta agt cta aat cta 794 Ile Leu Glu Gln Asp Gln Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu 205 210 215 220 aaa cag acc aag agt acc ttc att taaatttagc ttgcacagag cttgatgcct 848 Lys Gln Thr Lys Ser Thr Phe Ile 225 atccttcatt cttttcagaa gtaaagataa ttatggcact tatgccaaaa ttcattattt 908 aataaagttt tacttgaagt aacattactg aatttgtgaa gacttgatta caaaagaata 968 aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttagaattac 1028																	746
atc ctt gaa caa gat caa caa gat aaa aca ctg cta agt cta aat cta The Leu Glu Gln Asp Gln Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu 205 210 215 220 aaa cag acc aag agt acc ttc att taaatttagc ttgcacagag cttgatgcct Lys Gln Thr Lys Ser Thr Phe Ile 225 atccttcatt cttttcagaa gtaaagataa ttatggcact tatgccaaaa ttcattattt 908 aataaagttt tacttgaagt aacattactg aatttgtgaa gacttgatta caaaagaata 968 aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttagaattac 1028	His		Leu	Pro	Thr	Ala	Leu	Ser	Ser	Leu	Pro	Leu	Glu	Asp	Phe	Lys	
Ile Leu Glu Gln Asp Gln Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu 205 210 215 220 aaa cag acc aag agt acc ttc att taaatttagc ttgcacagag cttgatgcct 848 Lys Gln Thr Lys Ser Thr Phe Ile 225 atccttcatt cttttcagaa gtaaagataa ttatggcact tatgccaaaa ttcattattt 908 aataaagttt tacttgaagt aacattactg aatttgtgaa gacttgatta caaaagaata 968 aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttagaattac 1028																	
205 210 215 220 aaa Cag acc aag agt acc ttc att taaatttagc ttgcacagag cttgatgcct 848 Lys Gln Thr Lys Ser Thr Phe Ile 225 atccttcatt cttttcagaa gtaaagataa ttatggcact tatgccaaaa ttcattattt 908 aataaagttt tacttgaagt aacattactg aatttgtgaa gacttgatta caaaagaata 968 aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttagaattac 1028																	794
aaa cag acc aag agt acc ttc att taaatttagc ttgcacagag cttgatgcct Lys Gln Thr Lys Ser Thr Phe Ile 225 atccttcatt cttttcagaa gtaaagataa ttatggcact tatgccaaaa ttcattattt 908 aataaagttt tacttgaagt aacattactg aatttgtgaa gacttgatta caaaagaata aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttagaattac 1028		Leu	Glu	Gln	Asp	Gln	Gln	Asp	Lys	Thr	Leu	Leu	Ser	Leu	Asn	Leu	
Lys Gln Thr Lys Ser Thr Phe Ile 225 atccttcatt cttttcagaa gtaaagataa ttatggcact tatgccaaaa ttcattattt 908 aataaagttt tacttgaagt aacattactg aatttgtgaa gacttgatta caaaagaata 968 aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttagaattac 1028																	
225 atccttcatt cttttcagaa gtaaagataa ttatggcact tatgccaaaa ttcattattt 908 aataaagttt tacttgaagt aacattactg aatttgtgaa gacttgatta caaaagaata 968 aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttagaattac 1028									taaa	attta	agc t	tgca	acaga	ag ct	tgat	gcct	848
atccttcatt cttttcagaa gtaaagataa ttatggcact tatgccaaaa ttcattattt 908 aataaagttt tacttgaagt aacattactg aatttgtgaa gacttgatta caaaagaata 968 aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttagaattac 1028	Lys	Gln	Thr	Lys		Thr	Phe	Ile									
aataaagttt tacttgaagt aacattactg aatttgtgaa gacttgatta caaaagaata 968 aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttagaattac 1028					_												
aaaaacttca tatggaaatt ttatttgaaa atgagtggaa gcgccttaca ttagaattac 1028																	
																	968
ggacttaaaa attttgctaa taaattgtgt gtttgaaagg tgaaaaaaaa aaaaaa 1084																	
	gga	ctta	aaa a	attti	tgcta	aa ta	aaati	gtgt	gtt	tgaa	aagg	tgaa	aaaa	aaa a	aaaa	ıa	1084

<210> 60

<211> 419

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 33..290

<221> sig_peptide <222> 33..92

WO 99/31236 -38- PCT/IB98/02122

<223> Von Heijne matrix score 5.4 seq WFVHSSALGLVLA/PP

sed Mr. AUSSAUGDADA LA	
.400. 60	
<400> 60	53
aatggtagge etteatgtga geeagttaet ac atg aat ett eat tte eea cag	33
Met Asn Leu His Phe Pro Gln	
-20 -15	
tgg ttt gtt cat tca tca gcg tta ggc ttg gtc ctg gct cca cct ttc	101
Trp Phe Val His Ser Ser Ala Leu Gly Leu Val Leu Ala Pro Pro Phe	
-10 -5 1	
tee tet eeg gge act gae eec ace ttt eeg tgt att tae tgt agg eta	149
Ser Ser Pro Gly Thr Asp Pro Thr Phe Pro Cys Ile Tyr Cys Arg Leu	
<u> </u>	107
tta aat atg atc atg acc cgc ctt gca ttt tca ttc atc acc tgt tta	197
Leu Asn Met Ile Met Thr Arg Leu Ala Phe Ser Phe Ile Thr Cys Leu	
20 25 30 35	
tgc cca aat tta aag gaa gtt tgt ctc att ttg cca gaa aaa aat tgt	245
Cys Pro Asn Leu Lys Glu Val Cys Leu Ile Leu Pro Glu Lys Asn Cys	
40 45 50	
	290
aat agt cgg cac gct gga ttt gta ggg cca gca aaa ttg cgg cag	250
Asn Ser Arg His Ala Gly Phe Val Gly Pro Ala Lys Leu Arg Gln	
55 60 65	
tgaaactagt ttcacttcta aagcccttca tttcccacaa ggttaagctc tcgaaaccc	c 350
atttgatect tggttectat ttegatecte etttggaate tgaaaategg tetecatgt	t 410
gtatgcaaa	419
3000000	
· ·	
<210> 61	
<211> 682	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 485616	
<221> polyA site	
<222> 669682	
<400> 61	
	g 60
ctcctttctc attccttatc ttgcgtgttt ttaccttttt ttcataacta agtttttga	+ 120
gaagttagtg ttcttttcaa agaaccggtt cgaaatgtac ttttctttgc tactttttg	t 120
tattttattg atcacatctt taatcttttg ttctctatac gtggcctgtt ttgatttat	t 180
ttactattct tgctttctaa ggtaagtatt ttgttgtgta gtgctttatt tttttcatc	t 240
ttcttcttga ataataatga catttttagg ttataaattt tcctctggta ctcagtttg	c 300
ctcattaatt ttggcagtaa gcattctcct tttattgctt tctatgtagt ctttaattt	t 360
gcttttaact tottotttga totaaggatt acctacttgt taatttocaa atattatot	t 420
atotatotat ctatotatot atotatotat ctatotatot acctatgtga gacgaagto	t 480
atotalotat otatotatot atotatotat otatotatot acciatytya yacyaayto	E 20
gget atg teg eeg agg etg gag tge agt ggt gea ate ttg get cae tge	529
Met Ser Pro Arg Leu Glu Cys Ser Gly Ala Ile Leu Ala His Cys	
1 5 10 15	
aac ccc cgc ctc cca ggt tca agt tat tct cct gcc tca gct act tgg	577
Asn Pro Arg Leu Pro Gly Ser Ser Tyr Ser Pro Ala Ser Ala Thr Trp	
20	626
gtg aga gga tcc ctt gag ccg ggg agg ttg agg ctg cag tgagccataa	020

Val Arg Gly Ser Leu Glu Pro Gly Arg Leu Arg Leu Gln

35 40 ccactactct ccagcctgga taacaaaagt gagactctga ccaaaaaaaa aaaaaa

```
<210> 62
<211> 1191
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 54..995
<221> sig_peptide
<222> 54..227
<223> Von Heijne matrix
      score 4.1
      seg LVHHCPTWQWATG/EE
<221> polyA signal
<222> 1130..1135
<221> polyA_site
<222> 1181..1191
<400> 62
caeggetgea etttecatee egtegegggg eeggeegeta etceggeece agg atg
                                                                       56
cag aat gtg att aat act gtg aag gga aag gca ctg gaa gtg gct gag
                                                                      104
Gln Asn Val Ile Asn Thr Val Lys Gly Lys Ala Leu Glu Val Ala Glu
                            -50
tac ctg acc ccg gtc ctc aag gaa tca aag ttt agg gaa aca ggt gta
Tyr Leu Thr Pro Val Leu Lys Glu Ser Lys Phe Arg Glu Thr Gly Val
                        -35
att acc cca gaa gag ttt gtg gca gct gga gat cac cta gtc cac cac
                                                                      200
Ile Thr Pro Glu Glu Phe Val Ala Ala Gly Asp His Leu Val His His
                    -20
                                        -15
tgt cca aca tgg caa tgg gct aca ggg gaa gaa ttg aaa gtg aag gca
                                                                      248
Cys Pro Thr Trp Gln Trp Ala Thr Gly Glu Glu Leu Lys Val Lys Ala
                -5
                                    1
tac cta cca aca qqc aaa caa ttt ttg qta acc aaa aat gtg ccg tgc
                                                                      296
Tyr Leu Pro Thr Gly Lys Gln Phe Leu Val Thr Lys Asn Val Pro Cys
                            15
tat aag cgg tgc aaa cag atg gaa tat tca gat gaa ttg gaa gct atc
Tyr Lys Arg Cys Lys Gln Met Glu Tyr Ser Asp Glu Leu Glu Ala Ile
    25
                        30
                                                                      392
att gaa gaa gat gat ggt gat ggc gga tgg gta gat aca tat cac aac
Ile Glu Glu Asp Asp Gly Asp Gly Gly Trp Val Asp Thr Tyr His Asn
                    45
                                        50
aca ggt att aca gga ata acg gaa gcc gtt aaa gag atc aca ctg gaa
                                                                      440
Thr Gly Ile Thr Gly Ile Thr Glu Ala Val Lys Glu Ile Thr Leu Glu
                                    65 .
aat aag gac aat ata agg ctt caa gat tgc tca gca cta tgt gaa gag
                                                                      488
Asn Lys Asp Asn Ile Arg Leu Gln Asp Cys Ser Ala Leu Cys Glu Glu
                                80
gaa gaa gat gaa gat gaa gga gaa gct gca gat atg gaa gaa tat gaa
                                                                      536
Glu Glu Asp Glu Asp Glu Gly Glu Ala Ala Asp Met Glu Glu Tyr Glu
                            95
                                                100
gag agt gga ttg ttg gaa aca gat gag gct acc cta gat aca agg aaa
                                                                      584
Glu Ser Gly Leu Leu Glu Thr Asp Glu Ala Thr Leu Asp Thr Arg Lys
                         110
ata gta gaa gct tgt aaa gcc aaa act gat gct ggc ggt gaa gat gct
                                                                      632
Ile Val Glu Ala Cys Lys Ala Lys Thr Asp Ala Gly Gly Glu Asp Ala
                    125
                                        130
```

att ttg caa acc aga act tat gac ctt tac atc act tat gat aaa tat

WO 99/31236 -40- PCT/IB98/02122

Ile Leu Gln Thr Arg Thr Tyr Asp Leu Tyr Ile Thr Tyr Asp Lys Tyr 140 145 150	
tac cag act cca cga tta tgg ttg ttt ggc tat gat gag caa cgg cag Tyr Gln Thr Pro Arg Leu Trp Leu Phe Gly Tyr Asp Glu Gln Arg Gln 155 160 165	728
cct tta aca gtt gag cac atg tat gaa gac atc agt cag gat cat gtg Pro Leu Thr Val Glu His Met Tyr Glu Asp Ile Ser Gln Asp His Val 170 175 180	776
aag aaa aca gtg acc att gaa aat cat cct cat ctg cca cca cct ccc Lys Lys Thr Val Thr Ile Glu Asn His Pro His Leu Pro Pro Pro 185 190 195	824
atg tgt tca gtt cac cca tgc agg cat gct gag gtg atg aag aaa atc Met Cys Ser Val His Pro Cys Arg His Ala Glu Val Met Lys Lys Ile 200 205 210 215	872
att gag act gtt gca gaa gga gga gaa ctt gga gtt cat atg tat Ile Glu Thr Val Ala Glu Gly Gly Glu Leu Gly Val His Met Tyr 220 225 230	920
ctt ctt att ttc ttg aaa ttt gta caa gct gtc att cca aca ata gaa Leu Leu Ile Phe Leu Lys Phe Val Gln Ala Val Ile Pro Thr Ile Glu 235 240 245	968
tat gac tac aca aga cac ttc aca atg taatgaagag agcataaaat Tyr Asp Tyr Thr Arg His Phe Thr Met 250 255	1015
ctatcctaat tattggttct gatttttaaa gaattaaccc atagatgtga ccattgacca	1075
tattcatcaa tatatacagt ttctctaata agggacttat atgtttatgc attaaataaa	1135
aatatgttcc actaccagcc ttacttgttt aataaaaatc agtgcaaaaa aaaaaa	1191
<210> 63 <211> 1008 <212> DNA <213> Homo sapiens	
<220>	
<221> CDS <222> 657923	
<221> sig_peptide	
<222> 657896	
<223> Von Heijne matrix score 3.5 seq RGLLSACAPWGDG/ST	
<221> polyA_signal <222> 957962	
<221> polyA_site	
<222> 9741008 <400> 63	
ntcgnatgtg gcacaaaacc cctctgctgg ctcatgtgtg caactgagac tgtcagagca tggctagctc tggggtccag ctctgctggg tgggggctag agaggaagca gggagtatct gcacacagga tgcctgcgct caggtggttg cagaagtcag tgcccaggc ccccacaca gtccccaaaag gtccggcctc cccagcggg ggctcctcgt ttgaggggag gtgacttccc tcccagcagg ctcttggaca cagtaagctt ccccagccct gcctgagcag cctttcctcc ttgccctgtt ccccactcc cggctccagt ccagggagct cccagggaag tggtcgaccc ctccagtggc tgggccactc tgctagagtc catccgcaa gctggggga tcggcaaggc cagctgcgc agcatgaagg agcgaaagct ggagaagaag aagcagaagg agcaggagca agtgagagcc acgagccaag gtgggcactt gatgtcggat ctcttcaaca agctggtcat gaggcgcaag ggcatctctg ggaaagacc tggggctggt gaggggcccg gaggagcctt	60 120 180 240 300 360 420 480 540
tgecegegtg teagaeteea teeeteetet geegeeaeeg eageageeae aggtag atg	659

PCT/IB98/02122

	•												
Met -80													
agg aca agg acg act ggg aat cct agg ggg ctc cat gac acc ttc ccc Arg Thr Arg Thr Thr Gly Asn Pro Arg Gly Leu His Asp Thr Phe Pro -75 -70 -65	707												
cgc aga ccc aga ctt ggc cgt tgc tct gac atg gac aca gcc agg aca Arg Arg Pro Arg Leu Gly Arg Cys Ser Asp Met Asp Thr Ala Arg Thr -60 -55 -50	755												
agc tgc tca gac ctg ctt ccc tgg gag ggg gtg acg gaa cca gca ctg Ser Cys Ser Asp Leu Leu Pro Trp Glu Gly Val Thr Glu Pro Ala Leu -45 -40 -35	803												
tgt gga gac cag ctt caa gga acg gaa ggc tgg ctt gag gcc aca cag Cys Gly Asp Gln Leu Gln Gly Thr Glu Gly Trp Leu Glu Ala Thr Gln -30 -25 -20	851												
ctg ggg cgg gga ctt ctg tct gcc tgt gct cca tgg ggg gac ggc tcc Leu Gly Arg Gly Leu Leu Ser Ala Cys Ala Pro Trp Gly Asp Gly Ser -15 -5 1	899												
acc cag cct gtg cca ctg tgt tct taagaggctt ccagagaaaa cggcacacca Thr Gln Pro Val Pro Leu Cys Ser	953												
atcaataaag aactgagcag aaaaaaaaaa aaaaaaaaaa	1008												
<210> 64 <211> 568 <212> DNA <213> Homo sapiens													
<220> <221> CDS <222> 18311													
<222> 18311 <221> sig_peptide <222> 1862 <223> Von Heijne matrix													
<pre><400> 64 agtgctgctt acccatc atg gaa gca atg tgg ctc ctg tgt gtg gcg ttg</pre>	50												
gcg gtc ttg gca tgg ggc ttc ctc tgg gtt tgg gac tcc tca gaa cga Ala Val Leu Ala Trp Gly Phe Leu Trp Val Trp Asp Ser Ser Glu Arg 1 5 10	98												
atg aag agt cgg gag cag gga cgg ctg gga gcc gaa agc cgg acc Met Lys Ser Arg Glu Gln Gly Gly Arg Leu Gly Ala Glu Ser Arg Thr 15 20 25	146												
ctg ctg gtc ata gcg cac cct gac gat gaa gcc atg ttt ttt gct ccc Leu Leu Val Ile Ala His Pro Asp Asp Glu Ala Met Phe Phe Ala Pro 30 35 40	194												
aca gtg cta ggc ttg gcc cgc cta agg cac tgg gtg tac ctg ctt tgc Thr Val Leu Gly Leu Ala Arg Leu Arg His Trp Val Tyr Leu Leu Cys 45 50 55 60	242												
ttc tct gca gtt ttc cgt agg gag cta agt gaa tac acc gaa ggt ctt Phe Ser Ala Val Phe Arg Arg Glu Leu Ser Glu Tyr Thr Glu Gly Leu 65 70 75	290												
acc tct gaa ccc ctc aca gcc tagggacagg ageggeegge ttacctggtg Thr Ser Glu Pro Leu Thr Ala 80	341												
ggttggggga cgtcggcagc tcgcgtacta cgccagcagg attgaggagc agagaaacag	401												

568

ttgcagttgg ttgtattcag tacctgcatt tccgttggga actccacctg tacttgttat

totgtggaac ttttttatt tgtagaagga gcaagaatat tgaccttact atatagcaca

cgaa	acaa	tc t	atgo	tgta	t cg	tgcc	tgct	caa	tcct	taa	agtt	aac					568
<210 <211 <212 <213	> 53 > DN	8 'A	apie	ns													
<220 <221 <222	> CD		26														·
<221 <222 <223	> 15 > Vc sc	12 on He ore	58 ijne 5.2	le mat LLGF		'KV											
<221 <222	-		-	al													
<221 <222	_		site 38	:													
cact	gctt	ca a	gegte	tgct	c gt	ggaa	acca	aga : atq	actgg ataaa g ctt Leu -35	igat : gto : Va]	gccc c acc	attt cag	tc o	cacca a cta	acca a gt ı Va	ag .c	60 120 174
tac Tyr	caa Gln	ggt Gly	tat Tyr -25	ttg Leu	gca Ala	gct Ala	aat Asn	tct Ser -20	aga Arg	ttt Phe	gga Gly	tca Ser	ttg Leu -15	ccc Pro	aaa Lys	.	222
gtt Val	gca Ala	ctt Leu -10	gct	ggt Gly	ctc Leu	ttg Leu	gga Gly -5	ttt	ggc Gly	ctt Leu	gga Gly	aag Lys 1	gta	tca Ser	tac Tyr	:	270
ata Ile 5	gga Gly	gta	tgc Cys	cag Gln	agt Ser 10	aaa Lys	ttc	cat His	ttt Phe	ttt Phe 15	gaa Glu	gat	cag Gln	ctc Leu	cgt Arg 20	i I	318
gjà aaa	gct Ala	ggt Gly	ttt Phe	ggt Gly 25	cca Pro	cag Gln	cat His	aac Asn	agg Arg 30	cac His	tgc Cys	ctc Leu	ctt Leu	acc Thr 35	tgt Cys	<u>.</u>	366
gag Glu	gaa Glu	tgc Cys	Lys	ata	aag Lys	cat His	gga Gly	tta Leu 45	agt Ser	gag Glu	aag Lys	gga Gly	gac Asp 50	tct Ser	cag Gln	J	414
			40														
	tca Ser			taaa	attci	tgt g	gtctg		ct tt	cga	agtti	t tt		cctc			466

<210> 66 <211> 1747 <212> DNA <213> Homo sapiens

<221> CDS <222> 10..1062 <221> sig peptide <222> 10..57 <223> Von Heijne matrix score 4.9 seg FIYLQAHFTLCSG/WS <221> polyA signal <222> 1710..1715 <221> polyA_site <222> 1735..1747 <400> 66 geeteacea atg gtt eee tte ate tat etg caa gee cae ttt aca ete tgt Met Val Pro Phe Ile Tyr Leu Gln Ala His Phe Thr Leu Cys -10 tct ggg tgg tcc agc aca tac cgg gac ctc cgg aag ggt gtg tat gtg 99 Ser Gly Trp Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val ccc fac acc cag ggc aag tgg gaa ggg gag ctg ggc acc gac ctg gta 147 Pro Tyr Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val 20 25 age ate eec cat gge eec aac gte act gtg egt gee aac att get gee 195 Ser Ile Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala 40 atc act gaa tca gac aag ttc ttc atc aac ggc tcc aac tgg gaa ggc 243 Ile Thr Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly ate etg ggg etg gee tat get gag att gee agg eet gae gae tee eeg 291 Ile Leu Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Pro 70 gag cct ttc ttt gac tct ctg gta aag cag acc cac gtt ccc aac ctc 339 Glu Pro Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu tto too etg cag oft tgt ggt gct ggc tto ccc ctc aac cag tot gaa 387 Phe Ser Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu 100 gtg ctg gcc tct gtc gga ggg agc atg atc att gga ggt atc gac cac 435 Val Leu Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His 115 120 483 teg etg tac aca gge agt etc tgg tat aca ecc atc egg egg gag tgg Ser Leu Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp 130 135 531 tat tat gag gtg atc att gtg cgg gtg gag atc aat gga cag gat ctg Tyr Tyr Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu 150 aaa atg gac tgc aag gag tac aac tat gac aag agc att gtg gac agt 579 Lys Met Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser 165 170 ggc acc acc aac ctt cgt ttg ccc aag aaa gtg ttt gaa gct gca gtc 627 Gly Thr Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val 180 185 aaa too ato aag goa goo too too acg gag aag tto cot gac ggt tto 675 Lys Ser Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe 200 tgg cta gga gag cag ctg gtg tgc tgg caa gca ggc acc acc cct tgg 723

Trp Leu Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp 215

aac att ttc cca gtc atc tca ctc tac cta atg ggt gag gtt acc aac

220

771

Asn	Ile	Phe 225	Pro	Val	Ile	Ser	Leu 230	Tyr	Leu	Met	Gly	Glu 235	Val	Thr	Asn	
_			_					_	_			_		cca Pro		819
_	-		_	-			_	_	_		_			atc Ile		867
														ggc Gly 285		915
				_	_									gtc Val	_	963
_	_				_				_	-			_	ggc Gly		1011
	-						_	_						aca Thr	-	1059
aga Arg 335	tgag	gtcaa	acc (ctcat	gaco	a ta	agcct	atgt	cat	ggct	gcc	atct	gcg	ccc		1112
tctt	cate	gct g	gccad	ctctg	ge et	cate	gtgt	gt:	agt	gcg	ctgo	ctc	gc 1	cgcct	gegee	1172
agca	agcat	ga t	tgact	ttg	ct ga	atgad	catct	c cc	tgct	:gaa	gtga	ıggaç	gc d	ccato	ggcag	1232
aaga	atage	gga 1	ttcc	ctg	ga co	cacac	ctc	gtg	gtto	cact	ttgg	gtcad	caa g	gtagg	gagaca	1292
caga	atggo	cac	etgt	gcca	ag ag	gcaco	ctcag	ggad	cct	ccc	acco	cacca	aaa 1	tgcct	ctgcc	1352
ttga	itgga	aga a	aggaa	aaagg	ge to	gcaa	iggt	g ggt	tcca	ıggg	acto	gtaco	tg t	cagga	agacag	1412
															taagt	1472
			-				_	_	-		_				aattc	1532
			-												aggtta	1592
			-												tgctg	1652
			•							tgc	ttta	ıgaga	aca 9	gggad	etgtat	1712
aaac	caago	ect a	aacat	tggt	g ca	aaaaa	aaaa	a aaa	aaa							1747

<210> 67

<211> 1686

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 78..491

<221> sig_peptide

<222> 78..218

<223> Von Heijne matrix score 5.8 seq LMCFGALIGLCAC/IC

<221> polyA_signal

<222> 1652..1657

<221> polyA_site

<222> 1673..1686

<400> 67

ggtatagccc accagaaagg acagagtcat ttgatgtggt cacaaaatgt gtgagtttca 60 cactaactga gcagttc atg gag aaa ttt gtt gat ccc gga aac cac aat 110 Met Glu Lys Phe Val Asp Pro Gly Asn His Asn

	-45										_	-40				
agc	aaa	att	gat	ctc	ctt	agg	acc	tat	ctt	tgg	cgt	tgc	cag	ttc	ctt	158
Ser	Glv	Ile	Asp	Leu	Leu	Arg	Thr	Tyr	Leu	Trp	Arg	Cys	Gln	Phe	Leu	
	-35		•			-30		-			-25					
tta	cct	ttt	gtg	agt	tta	ggt	ttg	atg	tgc	ttt	ggg	gct	ttg	atc	gga	206
Leu	Pro	Phe	Val	Ser	Leu	Gly	Leu	Met	Cys	Phe	Gly	Ala	Leu	Ile	Gly	
-20					-15					-10					-5	
ctt	tgt	gct	tgc	att	tgc	cga	agc	tta	tat	ccc	acc	att	gcc	acg	ggc	254
Leu	Cys	Āla	Cys	Ile	Cys	Arg	Ser	Leu	Tyr	${\tt Pro}$	Thr	Ile	Ala	Thr	Gly	
				1				5					10			
att	ctc	cat	ctc	ctt	gca	ggt	ctg	tgt	aca	ctg	ggc	tca	gta	agt	tgt	302
Ile	Leu	His	Leu	Leu	Ala	Gly	Leu	Cys	Thr	Leu	Gly	Ser	Val	Ser	Cys	
		15					20					25				
tat	gtt	gct	gga	att	gaa	cta	ctc	cac	cag	aaa	cta	gag	ctc	cct	gac	350
Tyr	Val	Ala	Gly	Ile	Glu		Leu	His	Gln	Lys		Glu	Leu	Pro	Asp	
	30					35					40				A A.	200
aat	gta	tcc	.ggt	gaa	ttt	gga	tgg	tcc	ttc	tgc	ctt	gct	tgt	gtc	tct	398
Asn	Val	Ser	Gly	Glu		Gly	Trp	Ser	Phe		Leu	Ala	Cys	vaı	Ser 60	
45					50					55		•				446
gct	CCC	tta	cag	ttc	atg	gct	tct	gct	CTC	TTC	atc	tgg	gct	gct	UdC Uic	440
Ala	Pro	Leu	Gln		Met	Ala	ser	Ala		Pne	TTE	Trp	Ald	75	UIP	
				65					70	~~~	+-+	+	ata			491
acc	aac	cgg	aga	gag	tac	acc	tta	Mot	Tare	gça Nla	Tare	Ara	yey val	Δla		
Thr	Asn	Arg	Arg 80	GIU	TAT	Int	Tien	-85	пур	MIG	ıyı	n. 9	90	1124		
tgagcaagaa actgcctgct ttacaattgc catttttatt tttttaaaat aatactgata														ctgata	551	
Lya	toon	gaa	acty	coly	ta t		acty		attt	ataa	ata	tacc	att	ttat	tatqaa	611
ttttccccac ctctcaattg tttttaattt ttatttgtgg atataccatt ttattatgaa aatctatttt atttatacac attcaccact aaatacacac ttaataccac taaaatttat														671		
aac	attt	act	ttaa	acae	ta c	catc	tttc	a aa	taaa	ctaa	tct	aggt	cta	qaca	gaaaga	731
gtggtttact ttaagcgatg ccatctttca aataaactaa tctaggtcta gacagaaaga aatggataga gacttgacac aaatttatga aagaaaattg ggagtaggaa tgtgaccgaa														791		
aacaagttgt gctaatgtct gttagacttt tcagtaaaac caaagtaact gtatctgttc														851		
aactaaaaac tctatattag tttctttggg aaacctctca tcgtcaaaac tttatgttca															911	
ctt	tact	att	qtaq	ataq	cc a	gtca	acca	g ca	gtat	tagt	gct	gttt	tca	aaga	tttaag	971
ctttgctgtt gtagatagcc agtcaaccag cagtattagt gctgttttca aagatttaag ctctataaaa ttgggaaatt atctaagatc attttcccta agcattgaca catagcttca														gcttca	1031	
tct	gagg	tga	gata	tggc	ag c	tgtt	tgta	t ct	gcac	tgtg	tct	gtct	aca	aaga	gtgaaa	1091
aat	acag	tgt	ttac	ttga	aa t	ttta	actt	t gt	aact	gcaa	gaa	ttcc	agt	tcgg	ccgggc	1151
gaq	gatt	agt	atta	tttt	ta a	ctct	ccgt	a ag	attt	tcag	tac	cacc	aaa	ttgt	tttgga	1211
ttt	tttt	tct	ttcc	tctt	ca c	atac	cagg	g tt	atta	aaag	tgt	gctt	tct	tttt	acatta	1271
tat	taca	gtt	acaa	ggta	aa a	ttcc	tcaa	c tg	ctat	ttat	tta	ttcc	agc	ccag	tactat	1331
aaa	gaac	gtt	tcac	cata	at g	acco	tcca	g ag	ıctgg	gaaa	cct	acca	caa	gato	taaagt	1391
tct	ggct	gtc	catt	aacc	tc c	aact	atgg	t ct	ttat	ttct	tgt	ggta	ata	tgat	gtgcct	1451
ttc	cttg	cct	aaat	ccct	tc c	tggt	gtgt	a to	aaca	ttat	tta	atgt	ctt	ctaa	ttcagt	1511
cat	tttt	tat	aagt	atgt	ct a	taaa	catt	g aa	cttt	aaaa	aac	ttat	tta	ttta	ttccac	1571
tac	tgta	gca	attg	gacag	at t	aaaa	aaat	g ta	actt	cata	att	tctt	acc	ataa	cctcaa	1631
tgt	cttt	ttt	aaaa	aata	aa a	ttaa	aaat	g aa	aaga	gaco	: caa	aaaa	ıaaa	aaaa	ıa	1686

<211> 542 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 69..371 <221> sig_peptide <222> 69..287 <223> Von Heijne matrix

score 4

seq AVGFLFWVIVLTS/WI

<210> 68