PATENT SPECIFICATION

(11)1415804

(21) Application No. 48395/73 (22) Filed 17 Oct. 1973 (31) Convention Application No. 7238251

(32) Filed 27 Oct. 1972 in

(33) France (FR)

(44) Complete Specification published 26 Nov. 1975

(51) INT CL² B65B 3/12//B25J 21/02

(52) Index at acceptance

B8T 68A 70 72 B4Q 5B 9 F1R 15C

(72) Inventors JACKY BRUNEAU, YVES COHEN MARCEL LEROY and LOUIS MERLIN

(71) We, COMMISSARIAT A L'ENERGIE ATOMIQUE, an organisation created in France by ordinance No. 45-2563 of 18th October, 1945, of 29 rue de la Federation, Paris 15e, France, do hereby declare the invention, for which we pray that a patent may be granted to use, and the method by which it is to be performed, to be particularly described in and by the 10 following statement:-

This invention relates to a device for auto-

matically filling syringes, more particularly with radioactive products.

One important application of the device is to pharmaceutical radioactive control circuits. It can perform the filling quickly and accurately, and has the further advantage of providing complete protection against contamination, when used with radioactive products, e.g. for filling Pravaz syringes.

The operations performed by means of the device are quite safe, since they are started by the operator from an electric controlled desk which, in the case where radioactive products are manipulated, is disposed outside a radioactively sealing-tight chamber in which

the device is disposed.

According to the invention there is provided a device for continuously filling syringes, the device comprising the following components, mounted on a frame; firstly, a slide bearing tongs and an abutment member disposed above the tongs, the space between the tongs and the abutment member receiving a bottle, a motor for vertically moving the slide within given limits, a micro-switch for the upper limit of the slide, a motor for tightening and loosening the tongs, two microswitches for stopping the motor at the end of the tightening and at the end of the loosening operation and, a vertical disc disposed below the abutment member and the aforementioned components and bearing a fork and stationary jaws, a space being 45 formed between the fork and the jaws for

receiving a syringe, and a movable component or sliding gear aligned with the fork and the jaws, the sliding gear being adapted to receive the piston tappet of the syringe and secure it via a ring; a motor adapted to rotate the vertical disc about a horizontal axis, a motor for moving the sliding gear on the disc and modifying its distance from the jaws, and a control switch for each motor.

The invention will now be described by way of example with reference to the accom-

panying drawings, in which:-

Figure 1 is a view in elevation of the

device according to the invention;

Figure 2, which shows the case where radioactive products are manipulated, is a vertical section through a chamber containing the device according to the invention; and

Figure 3 is a diagram of the control desk for the device according to the invention.

As shown in Figure 1, the device comprises on frame 1; a slide 2 bearing two tongs 3 (only one of which is shown in Figure 1); an abutment member 4; a motor F₁ for vertically moving slide 2 within given limits; a motor F2 for tightening and loosening the tongs 3; a vertical disc 5, disposed below the abutment 4, and bearing a fork 6 and stationary spring jaws 7; a component 8 which can move on disc 5 and is called a sliding gear; a motor S₁ for rotating disc 5 around its horizontal axis; a motor S. for vertically moving sliding gear 8 on disc 5 so as to vary the spacing between the top part of the sliding gear and jaws 7. A desk 9 (see Figure 3) is provided with various buttons for actuating motors F1, F2, S1, S2. Sliding gear 8 is protected by a cover 10.

It is assumed, in the following description, that the device according to the invention is for use in manipulating radioactive products, under these conditions, it should be disposed in a radioactively sealing-tight chamber 11 (Figure 2) which can be an existing chamber, owing to the small volume of the device. It

70

75

80

85

95

105

5

10

15

20

25

35

35

Throw-over switch f. (Figure 3) is tilted into the tightening position, thus switching on motor F2, which tightens tongs 3 around the neck of bottle 16.

6. If the sliding gear 8 is in the reverse position 24' with respect to the position shown in Figure 1, the throw-over switch s1 (Figure 3) is tilted to the position where it acts on motor S1, so that the latter, acting via disc 5, moves the sliding gear into the position which it occupies in Figure 1.

7. Throw-over switch s₂ is tilted to the "piston driven-in" position and switches on motor S₂, which drives sliding gear 8 in the direction of jaws 7. The limit micro-switch (not shown) stops the sliding gear when it reaches the position shown in Figure 1.

8. An empty syringe 15 is gripped by gripping means (not shown) manipulated from the outside of chamber 11, and the syringe, after its piston 23 has been com-pletely driven in is secured by inserting the syringe needle 24 between the arms of fork 6 (against which dome 25 abuts), and by subsequently inserting, by simple pressure, the lugs of the syringe into jaws 7; the syringe tappet 26 is jammed against sliding

gear 8 by a ring 27.

9. Switch f₁ (Figure 3) is tilted to the "bottle lowering" position, whereupon it

acts on motor F1, which lowers bottle 16 to its bottom position (shown in Figure 1), where bottle stopper is impaled on the syringe needle 24.

10. Switch s. (Figure 3) which switches on motor S2, is used to lower the sliding gear 3, which pulls piston 23 downwards so that the required quantity of product is sucked from the bottle 16 into the syringe. The suction is stopped by moving switch s₂ to another position, i.e. "piston-out" position.

11. Bottle 16 is lifted again, by means of

Syringe 15 is then ready for an injection and merely has to be withdrawn from the apparatus. If, however, it is desired to discharge the syringe in pipette fashion, it is left secured to fork 6 and jaws 7, and switch s₁ (Figure 3) is tilted to the "needle downwards" position, thus switching on motor S, which, acting via disc 5, rotates the sliding gear and syringe 15 through 180°. Conse-

quently, the syringe needle 24 occupies the position denoted by 24' in Figure 1.

After needle 24' has been placed above a selected receptacle 28, e.g. by means of an operating handle 13 (Figure 2), switch selected receptacle 28, e.g. by means of an operating handle 13 (Figure 2), switches is tilted to the position in which it switches on motor S₂, which moves sliding gear 8 towards jaws 7. In this manner, the product in the syringe is continuously ejected into receptacle 28, if switch s, is kept in the lastmentioned position. If, on the other hand, it is desired to introduce the product drop by drop, pressure is exerted on switch se for short periods.

Since all the aforementioned operations are limited by micro-switches, there is no danger of mishandling resulting in the destruction of the apparatus.

The chamber 11 surrounding the device according to the invention can comprise gloves 29 used for manipulation.

WHAT WE CLAIM IS:-

1. A device for continuously filling 110 syringes, the device comprising the following components, mounted on a frame: firstly, a slide bearing tongs and an abutment member disposed above the tongs, the space between the tongs and the abutment member receiving bottle, a motor for vertically moving the slide within given limits, a micro-switch for the upper limit of the slide, a motor for tightening and loosening the tongs, two microswitches for stopping the motor at the end of the tightening and at the end of the loosening operation and, a vertical disc disposed below the abutment member and the aforementioned components and bearing a fork and stationary jaws, a space being formed between the fork and the jaws for receiving a syringe, and a movable component or sliding gear aligned with the fork and the jaws,

the sliding gear being adapted to receive the piston tappet of the syringe and secure it via a ring; a motor adapted to rotate the vertical disc about a horizontal axis, a motor for moving the sliding gear on the disc and modifying its distance from the jaws, and a control switch for each motor.

2. A device for continuously filling resistance and device horizon whetevicilly are

syringes, said device being substantially as

described and as shown in the accompanying drawings.

For the Applicants:

F. J. CLEVELAND & COMPANY,
Chartered Patent Agents,
Lincoln's Inn Chambers,
40—43 Chancery Lane,
London, WC2A 1JQ.

Printed for Her Majesty's Stationery Office, by the Courier Press, Learnington Spa, 1975. Published by The Patent Office, 25 Southampton Buildings, London, WC2A IAY, from which copies may be obtained.

COMPLETE SPECIFICATION

3 SHEETS

This drawing is a reproduction of the Original on a reduced scale Sheet 1

COMPLETE SPECIFICATION

3 SHEETS

This drawing is a reproduction of the Original on a reduced scale

Sheet 2

FIG. 2

COMPLETE SPECIFICATION

This drawing is a reproduction of the Original on a reduced scale

Sheet 3 3 SHEETS

FIG. 3