Worth: 3% Due: By 12 noon on Tuesday 31 January.

- 1. (a) $\forall x \in D, T(x) \Rightarrow \neg L(x)$
 - (b) There is a long exam question. (Alternate: Some exam question is long.)
 - (c) $\exists x \in D, T(x) \land (\forall y \in D, E(y) \Rightarrow H(x,y))$ (The parentheses are not required, but are added to aid comprehension.)
 - (d) No exam question is harder than every test question.
- 2. (a) Every prime number other than 2 is odd.
 - (b) There is a largest prime number.
- 3. (a) These two statements are equivalent. Suppose $\forall x \in D, (P(x) \land Q(x))$ is true. Then it follows that $\forall x \in D$, both P(x) and Q(x) are true. Hence, $\forall x \in D, P(x)$ is true and $\forall x \in D, Q(x)$ is true. Therefore, $(\forall x \in D, P(x)) \land (\forall x \in D, Q(x))$ is true.
 - Now suppose $(\forall x \in D, P(x)) \land (\forall x \in D, Q(x))$ is true. If x is any element in the domain D, then P(x) is true and Q(x) is true. Hence, for any element x in the domain, $P(x) \land Q(x)$ is true. Since this is true for any x in domain, $\forall x \in D, (P(x) \land Q(x))$ is true.
 - Hence whenever one of the two statements is true, the other one is true. The two given statements are equivalent.
 - (b) Let the domain D be the set \mathbb{R} of real numbers, the predicate P(x) be the expression $x \ge 0$ and the predicate Q(x) be the expression x < 0.
 - With these definitions, it follows that $\forall x \in D, (P(x) \vee Q(x))$, since every real number is either ≥ 0 or < 0.
 - However, the statement $\forall x \in D, P(x)$ is not true, because P(x) is false for negative numbers. And the statement $\forall x \in D, Q(x)$ is also not true, because Q(x) is false for nonnegative numbers. Hence, the statement $(\forall x \in D, P(x)) \lor (\forall x \in D, Q(x))$ is false. The two given statements are not equivalent.
 - (c) These two statements are equivalent. Suppose $\exists x \in D, (P(x) \vee Q(x))$ is true. Then it follows that there is an $x_0 \in D$ such that $(P(x) \vee Q(x))$ is true. We could have $P(x_0)$ true, $Q(x_0)$ true or both $P(x_0)$ and $Q(x_0)$ true. Consider the statements $(\exists x \in D, P(x))$ and $(\exists x \in D, Q(x))$. They cannot both be false, since at least one of $P(x_0)$, $Q(x_0)$ is true. Hence $(\exists x \in D, P(x)) \vee (\exists x \in D, Q(x))$ is true.
 - Now suppose $(\exists x \in D, P(x)) \vee (\exists x \in D, Q(x))$ is true. Then there must be an $x_0 \in D$ which is such that at least one of $P(x_0)$, $Q(x_0)$ is true. Then it follows that $(P(x_0) \vee Q(x_0))$ is true, and then $\exists x \in D, (P(x) \vee Q(x))$ is true.
 - Hence whenever one of the two statements is true, the other one is true. The two given statements are equivalent.
 - (d) If we can construct a domain D and predicate P for which P(x) is sometimes true and sometimes false, then $(\forall x \in D, P(x))$ will be false. This will make the second statement vaccuously true.
 - If we can further construct a Q which is always false, then the statement $P(x) \Rightarrow Q(x)$ will be false for the $x \in D$ for which P(x) is true. This will make the first statement false, and will show that the two statements are not equivalent.
 - Let D represent the set of real numbers, P be the predicate "x = |x|" and Q be the predicate "|x| < 0." Then $(\forall x \in D, Q(x))$ is false. The value of P(42) is true. While the value of P(-42) is false. The statement $P(42) \Rightarrow Q(42)$ is false, and so the first statement is false. We know that $(\forall x \in D, P(x))$ is false, which makes the second statement true. The two statements are not equivalent.

4.
$$\neg (\forall \epsilon \in \mathbb{R}^+, \exists \delta \in \mathbb{R}^+, (\forall x \in \mathbb{R}, 0 < |x - a| < \delta \Rightarrow |f(x) - L| < \epsilon)) \text{ (given)}$$

$$\iff \exists \epsilon \in \mathbb{R}^+, \neg (\exists \delta \in \mathbb{R}^+, \forall x \in \mathbb{R}, 0 < |x - a| < \delta \Rightarrow |f(x) - L| < \epsilon)$$
 (negation of \forall)

$$\iff \exists \epsilon \in \mathbb{R}^+, \forall \delta \in \mathbb{R}^+, \neg (\forall x \in \mathbb{R}, 0 < |x - a| < \delta \Rightarrow |f(x) - L| < \epsilon \qquad \text{(negation of } \exists\text{)}$$

$$\iff \exists \epsilon \in \mathbb{R}^+, \forall \delta \in \mathbb{R}^+, \exists x \in \mathbb{R}, 0 < |x - a| < \delta \land \neg (|f(x) - L| < \epsilon) \qquad \text{(negation of \Rightarrow)}$$

$$\iff \exists \epsilon \in \mathbb{R}^+, \forall \delta \in \mathbb{R}^+, \exists x \in \mathbb{R}, 0 < |x - a| < \delta \land |f(x) - L| \geqslant \epsilon \qquad \text{(negation of <)}$$