Quiz 3

Due Apr 19 at 11:59pm Points 8 Questions 8

Available Apr 10 at 11:59pm - Apr 19 at 11:59pm 9 days

Time Limit 15 Minutes

This quiz was locked Apr 19 at 11:59pm.

Attempt History

	Attempt	Time	Score
LATEST	Attempt 1	14 minutes	8 out of 8

Score for this quiz: **8** out of 8 Submitted Apr 19 at 11:56pm This attempt took 14 minutes.

Which of the following is/are property/properties of a dynamic programming problem? Overlapping Subproblems Greedy approach Both optimal substructure and overlapping subproblems Optimal Substructure

Question 2 1 / 1 pts

	In dynamic programming, the technique of storing the previously calculated values is called
	Storing value property
Correct!	Memoization
	Saving value property
	O Mapping

Question 3	1 pts
If a problem can be solved by combining optimal solutions to non-overlapping problems, the strategy is called	
Divide and Conquer	
Greedy	
O Dynamic Programming	
Recursion	
Iteration	
	If a problem can be solved by combining optimal solutions to non-overlapping problems, the strategy is called Divide and Conquer Greedy Dynamic Programming Recursion

Question 4 1/1 pts Which of the following standard algorithms is NOT Dynamic Programming based?

Correct!

○ Fibonacci
○ 0-1 Knapsack problem
Binomial Coefficients
Binary Search

Question 5 Consider the following two sequences: X = < K, L, M, L, J, K, L >, and Y = < L, J, M, K, L, K > The length of the longest common subsequence of X and Y is: 2 1 4 3 5

Question 6 1 / 1 pts

The terms in the Fibonacci sequence are given by :

$$F_1 = 1$$
, $F_2 = 1$; $F_n = F_{n-1} + F_{n-2}$

Correct!

Consider the following recursive algorithm to calculate the nth Fibonacci number.

```
int Fib( int n)
{
    if (n <= 1)
        return n;
        return Fib(n-1) + Fib(n-2);
}</pre>
```

What is the running time of the recursive Fib? What is the running time of an efficient DP algorithm to calculate the nth Fibonacci number?

- Recursive O(4ⁿ) and DP: O(lgn)
- Both algorithms are O(n)
- Recursive: Theta(2ⁿ) and DP: Theta(n²)
- Recursive: O(2ⁿ) and DP: Theta(n)
- Recursive: O(n^2) and DP : O(n)

Question 7 1 / 1 pts

Consider the weights and values of items below and a knapsack that can hold at most 20 lbs.

	Value	Weight
Item	in \$	in lbs
1	20	10
2	30	15
3	22	12
4	9	5
5	7	4

	Assume that each item can be used at most once and can not be broken. What is the maximum value of items that can be placed in the knapsack?
Correct!	\$39
	O \$50
	O \$42
	O \$52
	O \$37

	Question 8	1 / 1 pts	
	If a dynamic programming algorithm uses an nxn table then the running time is always :		
	O(n)		
	O(n^3)		
Correct!	not enough information to determine		
	O(n^2)		
	O(nlgn)		

Quiz Score: 8 out of 8