Formulaire de trigonométrie pour futurs PTSI.

On écrit souvent $\cos x$ et $\sin x$ au lieu de $\cos(x)$ et $\sin(x)$, pour alléger.

Formule fondamentale

$$(\sin x)^2 + (\cos x)^2 = 1$$

Formules d'addition

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$
$$\cos(a-b) = \cos a \cos b + \sin a \sin b$$
$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$
$$\sin(a-b) = \sin a \cos b - \cos a \sin b$$

Formules de duplication

$$\cos(2x) = (\cos x)^2 - (\sin x)^2$$
On en tire:
$$= 2(\cos x)^2 - 1$$

$$= 1 - 2(\sin x)^2$$

$$\sin(2x) = 2\sin x \cos x$$

$$(\cos x)^2 = \frac{1 + \cos(2x)}{2}$$

$$(\sin x)^2 = \frac{1 - \cos(2x)}{2}$$

Transformations

$$\cos(-x) = \cos(x)$$

$$\sin(-x) = -\sin(x)$$

$$\cos(\frac{\pi}{2} + x) = -\sin(x)$$

$$\sin(\frac{\pi}{2} + x) = \cos(x)$$

$$\cos(\frac{\pi}{2} + x) = \cos(x)$$

$$\cos(\frac{\pi}{2} + x) = \cos(x)$$

$$\cos(\frac{\pi}{2} + x) = \cos(x)$$

$$\sin(\frac{\pi}{2} - x) = \sin(x)$$

$$\sin(\frac{\pi}{2} - x) = \cos(x)$$

$$cos(\pi + x) = -cos(x)$$
$$sin(\pi + x) = -sin(x)$$

Cercle trigonométrique

Formulaire pour futurs PTSI : dérivées usuelles.

Sous réserve de définition :

F(x)	F'(x)
C constante	0
x^a	ax^{a-1}
$\frac{1}{x}$	$-\frac{1}{x^2}$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$
ln(x)	$\frac{1}{x}$
$\exp(x)$	$\exp(x)$
$\sin(x)$	$\cos(x)$
$\cos(x)$	$-\sin(x)$
$\lambda u(x) + \mu v(x)$	$\lambda u'(x) + \mu v'(x)$
u(x)v(x)	u'(x)v(x) + u(x)v'(x)
$\frac{1}{u(x)}$	$-\frac{u'(x)}{\left(u(x)\right)^2}$
$\frac{u(x)}{v(x)}$	$\frac{u'(x)v(x) - u(x)v'(x)}{(v(x))^2}$
$\sqrt{u(x)}$	$\frac{u'(x)}{2\sqrt{u(x)}}$
$(u(x))^a$	$au'(x) (u(x))^{a-1}$
$\exp\left(u(x)\right)$	$u'(x)\exp(u(x))$
$\ln\left(u(x)\right)$	$\frac{u'(x)}{u(x)}$
$g\left(f(x)\right)$	f'(x) g'(f(x))