

THÈSE DE DOCTORAT DE SORBONNE UNIVERSITÉ

Spécialité: Physique

École doctorale nº564: Physique en Île-de-France

réalisée

Laboratoire Jean Perrin

sous la direction de Volker Bormuth

présentée par

Hugo Trentesaux

pour obtenir le grade de :

DOCTEUR DE SORBONNE UNIVERSITÉ

Sujet de la thèse:

Intégration multisensorielle dans le cerveau de la larve de poisson zèbre

soutenue le 1er février 2020

devant le jury composé de :

M.	?	Rapporteur
M.	?	Rapporteur
M.	Christoph Schmidt-Hieber	Tuteur
$\mathbf{M^{me}}$	Marie Breau	Marraine

M. Volker BormuthM. Georges DebrégeasDirecteur de thèse

Table des matières

I	Mic	croscope à feuille de lumière deux photons rotatif	1
	I.1	Effet deux photons	1
		I.1.1 Principe	1
		I.1.2 Concentration spatiale	1
		I.1.3 Concentration temporelle	2
	I.2	Fibre optique, principe et état de l'art	2
		I.2.1 Guide d'onde	3
		I.2.2 Fibre à âme creuse	4
		I.2.3 Utilisation des fibres optiques en microscopie embarquée	5
		a) Imagerie sur rongeur à tête fixée	5
		b) Déportation de l'illumination	5
		c) Déportation de l'illumination et de la détection	7
		d) Lentilles à gradient d'indice	7
		e) Microendoscopes	7
		f) Conclusion	7
	I.3	Caractérisation et utilisation de la fibre PMC-C-9005 B2	7
		I.3.1 Injection d'un laser dans une fibre	8
		I.3.2 Injection 2P	8
		I.3.3 Injection 1P	9
			10
			11
			11
			13
	I.4	Effet de lentille thermique	13
			16
P	iblica)1

Chapitre I

Microscope à feuille de lumière deux photons rotatif

Pour étudier à la fois le système visuel et le système vestibulaire du poisson zèbre, une possibilité est de combiner les deux innovations précédemment citées en un seul microscope : un microscope à feuille de lumière deux photons rotatif. C'est la voie que j'ai explorée, qui a révélé plusieurs défis techniques. Le premier et de guider le laser deux photons vers le module light-sheet en restant stable lors de la rotation du microscope. Le second est de mitiger l'effet de lentille thermique lié à la propagation d'un faisceau haute puissance dans l'eau. Après avoir exploré en détail ces aspects techniques, je montrerai comment le microscope a permis de réaliser l'acquisition du cerveau de la larve sans environnement visuel parasite.

I.1 Effet deux photons

I.1.1 Principe

L'absorption deux photons est un phénomène non linéaire d'absorption simultanée de deux photons par une molécule ou un atome. Cet effet est proportionnel au carré de l'intensité lumineuse incidente et est lié au caractère anharmonique du dipôle oscillant. Pour cette raison, il est négligeable aux petites énergies mais devient important pour une intensité lumineuse élevée. On peut l'observer en concentrant fortement un faisceau puissant. La concentration peut être à la fois spatiale par focalisation et temporelle par impulsion temporelle.

I.1.2 Concentration spatiale

Un système optique peut concentrer la lumière localement, ce qui produit un point de plus grande intensité, le point focal. Comme l'effet deux photons est proportionnel au carré de l'intensité, la zone concernée est d'autant plus restreinte. Cette propriété est utilisée en microscopie multiphoton pour produire une illumination ponctuelle qui permet le sectionnement optique dans la direction de propagation. En microscopie à feuille de lumière, au contraire, une illumination linéaire est recherchée. La focalisation est donc bien moindre et l'effet deux photons contribue à affiner la zone d'excitation (cf Fig. I.1).

FIGURE I.1 – Effet deux-photons en microscpie à feuille de lumière. Comparaison du profil d'intensité (haut) et de son carré (bas). On voit que la zone concernée par l'effet deux photons et restreinte. (paramètres : indice optique 1.33, longueur d'onde 915 nm, waist 6.5 µm)

I.1.3 Concentration temporelle

Une autre manière de concentrer la lumière est la concentration temporelle. Dans le cas d'un laser continu, la puissance est répartie sur toute la longueur de propagation du faisceau. En utilisant un laser pulsé, la puissance est concentrée en paquets beaucoup plus courts (cf Fig. I.2). Par exemple, pour des impulsions de 100 fs, malgré la vitesse élevée de la lumière, la longueur de ces paquets est de 30 mm. Si de plus le taux de répétition du laser est de 80 MHz, la puissance moyenne d'une impulsion est 125 fois plus élevée qu'un laser continu de même puissance moyenne (1/(100fs x 80MHz)). L'effet deux photons étant proportionnel au carré de la puissance instantanée, on a intérêt à choisir les impulsions les plus courtes possibles (petit τ) et le taux de répétition le plus faible possible (grand T) pour un laser de puissance moyenne fixée. Une étude sur les photoperturbations en microscopie à feuille de lumière multiphoton TODOcite maioli-fast-2020 montre que l'on peut pousser l'énergie par impulsion jusqu'à une centaine de nanojoules avant d'obtenir des effets indésirables liés à la phototoxicité. On ne peut alors plus réduire la durée de l'impulsion sans se heurter au phénomène d'automodulation de phase par effet Kerr. En effet, une impulsion ultra-courte induit une biréfringence du milieu traversé, ce qui élargit l'impulsion. Les conditions optimales en microscopie par fluorescence à nappe laser deux photons sont donc autour de f=1MHz, τ =100fs, P=100mW.

1.2 Fibre optique, principe et état de l'art

Dans un microscope statique, la source laser peut être guidée jusqu'à l'échantillon par des miroirs, mais dans un microscope mobile il faut soit embarquer la source laser directement sur le microscope, soit la guider de manière flexible quelque soient les mouve-

FIGURE I.2 – Profil temporel de puissance d'un laser pulsé. Chaque impulsion a une durée τ , elles sont espacées d'une durée T=1/f. À puissance moyenne constante, plus τ est petit, et plus T est grand, plus $P_{\rm max}$ est grand. L'effet deux photons est proportionnel au carré de $P_{\rm max}$.

ments. Dans le cas d'une source laser deux photons très volumineuse, il est impossible de l'embarquer, la solution adoptée est donc une fibre optique adaptée. De telles fibres optiques capables de guider un laser deux photons sont complexes à produire. Avant de nous intéresser aux microscopes à fibre couramment utilisés dans la recherche sur le rongeur, introduisons les caractéristiques d'un guide d'onde.

I.2.1 Guide d'onde

Un guide d'onde est un objet contraignant l'onde à se propager dans une seule dimension. Pour les ondes électromagnétiques dans les fréquences radio, cela peut être réalisé avec des parois métalliques TODOcite packard-origin-1984. Dans le cas de la lumière visible, on utilise généralement une âme d'indice optique supérieur à l'indice du milieu environnant. Le phénomène de réflexion totale sur le dioptre permet alors le guidage de l'onde. De telles fibres optiques sont réalisées avec un fin fil de verre et servent en télécommunication, en éclairage, en imagerie TODOcite wikipedia-fibre-optique...

On dispose notamment de fibres monomodes qui permettent de transmettre le mode fondamental d'un laser d'un bout à l'autre sans dénaturer le profil gaussien TODOcite ankiewicz-generalized-1992. Nous utilisons ce genre de fibre pour guider le laser dans la version un photon du microscope à feuille de lumière rotatif.

Dans le cas d'un laser pulsé utilisé en microscopie deux photons, les fibres à milieu d'indice fonctionnent également mais ont un inconvénient majeur qui les rend inutilisables telles quelles pour cette application dû au phénomène de dispersion TODOcite gloge-dispersion-1971. Un laser pulsé contient d'autant plus de longueurs d'ondes que son pic est étroit. Dans un milieu dispersif, ces différentes longueurs d'onde se propagent à une vitesse différente, ce qui donne lieu à un élargissement de l'impulsion TODOillustration. L'effet deux photons étant lié quadratiquement à la puissance instantanée, il chute de manière critique avec la dispersion. Une solution est de précompenser cette dispersion via des éléments optique positionnés avant l'injection dans la fibre comme une suite de

FIGURE I.3 – Illustration de différents types de fibres évoquées.

- a. Fibre Kagomé (image extraite de Wang 2011 [2])
- b. Schéma du motif Kagomé
- c. Schéma d'un réseau tubulaire comme dans Vincetti 2010 [3]
- d. Schéma d'une fibre à courbure négative
- e. Fibre à courbure négative (image extraite de Yu 2016 [4])

prismes ou de réseaux de diffraction TODOcite fork-negative-1984. Cette solution permet de réduire la largeur temporelle du pic en sortie de fibre pour des puissances relativement faibles, mais pas pour de fortes puissances, pour lesquelles l'automodulation de phase liée à l'effet Kerr optique devient dominant. C'est pourquoi un guide d'onde non dispersif est préférable.

I.2.2 Fibre à âme creuse

Un milieu non dispersif commun est le vide, d'où l'idée de construire un guide d'onde à cœur creux. L'effet de réflexion totale sur le dioptre ne peut plus être utilisé, car il faudrait un milieu d'indice plus petit que 1, c'est à dire dans lequel la lumière se propage plus vite que dans le vide, ce qui n'est pas possible. Une idée consiste donc à utiliser un phénomène de réflexion par interférences comme le miroir de Bragg. Un tel miroir est constitué d'une succession périodique de couches d'indice différents et permet d'obtenir une réflexion quasi totale à la longueur d'onde du motif. On trouve ce genre de réseau pour la première fois en 1999 TODOcite cregan-single-1999.

Cette idée a également donné lieu aux fibres à réseau trihexagonal, ou "Kagomé". De telles fibres ont été construites pour la première fois en 2002 sous le nom de fibre à cristaux photoniques en étirant un réseau de capillaires. Le gain était alors de l'ordre de 2 dB/m [1]. En 2011, un gain de 180 dB/km a été obtenu avec de telles fibres [2]. Un des problèmes des fibres à structure géométrique est la sensibilité aux déformations. Puisque le guidage est lié à la géométrie de la fibre, les déformations qui changent cette géométrie altèrent le guidage. Cela peut prendre la forme de perte de transmission, de couplage entre les modes, d'incidence sur la polarisation. Mais cette sensibilité aux déformations dépendant de la géométrie de la fibre, certaines configurations donnent des résultats très satisfaisants.

Le processus de fabrication de ces fibres à réseau trihexagonal a très naturellement donné lieu à des fibres à "réseaux de tubes" qui ont révélé avoir de bonnes performances. L'analyse numérique de leur fonctionnement a révélé que la première couche du réseau de tube jouait un rôle important dans leurs propriétés [3], ce qui a permis l'apparition

des fibres à "courbure négative", avec une géométrie très simple et de très bonnes caractéristiques. C'est cette configuration qui nous intéresse ici. Nous l'avons retenue pour sa large bande de transmission qui couvre à la fois le visible à 488 nm et l'infrarouge à 915 nm, son bon gain de 100 dB/km, son couplage monomode dans l'infrarouge et sa relative stabilité par rapport aux déformations.

1.2.3 Utilisation des fibres optiques en microscopie embarquée

Les propriétés de guidage de la lumière d'une fibre optique lui permettent d'alléger considérablement ou de déporter certaines parties des microscopes pour les rendre compatibles avec l'imagerie embarquée. Un microscope est en effet composé d'un axe d'illumination, d'un échantillon, et d'un axe de détection. Les axes peuvent être séparés dans différents bras ou réunis sur une portion du montage optique et sont généralement composés d'éléments optiques rigides passifs tels que des objectifs, miroirs, filtres... Ces différentes parties parfois très volumineuses peuvent être remplacées ou déportées à l'aide de fibres optique. Nous allons voir par la suite plusieurs types de microscopes embarqués utilisant une fibre optique.

a) Imagerie sur rongeur à tête fixée

Une méthode répandue en imagerie cérébrale sur rongeur est de fixer un animal sous un microscope classique immobile. Le cerveau est rendu accessible par une opération chirurgicale pendant laquelle le crane est retiré localement et remplacé par une vitre. Le fait d'immobiliser la tête pendant l'imagerie peut limiter le répertoire comportemental et constituer une gène pour l'animal. Une solution est un système où le rat se positionne volontairement sous le microscope [10], une autre est le système en réalité virtuelle. Dans cette deuxième solution, le rongeur marche sur une boule en polystyrène sur coussins d'air alors qu'un environnement visuel est projeté sur un écran autour de lui [5]. Le microscope est ici entièrement statique et rigide. La réalité virtuelle a également été utilisée avec des enregistrement en électrophysiologie [11][12].

b) Déportation de l'illumination

Une pièce particulièrement volumineuse dans les microscopes multiphotons utilisée pour l'imagerie neuronale est le laser pulsé. En effet, ces systèmes dépendent de beaucoup d'éléments optiques et d'une stabilité thermique et mécanique poussée. Pour construire des microscopes embarqués, il est donc nécessaire de guider le laser depuis la source jusqu'à l'échantillon, ce qui est réalisé à l'aide de fibre optique. Il est possible d'utiliser une fibre optique monomode à cœur de verre [6] mais également des fibres à cœur creux TODOcite tai-two-2004 TODOcite choi-improving-2014 [13] [14]. Dans le cas de fibre à cœur de verre, il est nécessaire de précompenser la dispersion pour conserver une impulsion suffisamment courte pour produire l'effet non linéaire recherché, ce qui est réalisé avec une paire de réseaux de diffraction. La partie de détection est quant à elle également embarquée. On peut avoir un simple photomultiplicateur/photodiode pour l'imagerie par balayage [6] ou un capteur CMOS pour une imagerie en champ plein [15].

FIGURE I.4 – Différentes techniques de microscopie en imagerie neuronale fonctionnelle chez le rongeur.

- a. Un microscope deux photons statique réalise l'imagerie du cerveau d'une souris lors d'une expérience en réalité virtuelle [5].
- b. Un microscope deux photons est fixé sur la boite cranienne d'un rat. Le laser est guidé à travers une fibre à coeur de verre dont la dispersion est précompensée. L'unité de détection est intégrée au microscope [6].
- c. Un microscope deux photon est fixé sur le crane d'un rat, mais l'unité de détection est externe, la lumière étant collectée par une fibre [7].
- d. Un fibroscope deux photons utilise des fibres à gradient d'indice comme lentilles pour réduire l'encombrement. Le laser est guidé au moyen d'une fibre à cristaux photoniques et la lumière est collectée par une fibre à large cœur [8].
- e. Un endoscope sans optique permet de réduire considérablement l'encombrement et d'atteindre des régions plus profondes du cerveau, mais nécessite une calibration préalable [9].

c) Déportation de l'illumination et de la détection

Dans les exemples précédents, le laser est amené par une fibre, mais le capteur est sur place, le signal repartant sous forme de signal électrique. Il est également possible de déporter le système de détection en collectant la lumière par fibre optique. Certains utilisent pour cela une fibre multimode [13] [7], d'autres une "fibre plastique" [14], d'autres encore un faisceau de fibres [16]. Dans ce cas, la lumière collectée est mesurée en sortie de fibre à l'aide d'un système optique adapté sans limite d'encombrement. On peut ainsi utiliser des sytèmes régulés en température ou munis d'une électronique complexe.

d) Lentilles à gradient d'indice

Malgré la déportation de l'illumination et de la détection, les systèmes optiques restent encore assez volumineux du fait des composants utilisés et des éléments mécanique nécessaires. Une possibilité pour pousser la miniaturisation encore plus loin est d'utiliser des fibres à gradient d'indice (*GRIN lens*, *GRadient INdex lens*). Ces fibres sont constituées d'un milieu à gradient d'indice qui leur donne des propriétés similaires à des lentilles mais sont plus fines et ne nécessitent pas d'éléments mécaniques. Cela permet d'obtenir des microscopes ultra-compacts portables et de poids très réduit [17][8].

e) Microendoscopes

D'autres techniques d'imagerie neuronale se passent même d'optique et sont uniquement consitués d'une fibre insérée dans l'échantillon. On parle alors plutôt de microendoscope. L'idée générale est d'utiliser la même fibre pour éclairer l'échantillon et collecter la lumière. Des éléments actifs peuvent être utilisés pour moduler le front d'onde, et plusieurs techniques reposent sur une phase de calibration préalable [18][19][9]. Ces techniques utilisent des fibres optiques multimodes classiques. L'avantage de l'endoscopie est que les tissus sont traversés par la fibre, et pas directement par la lumière, ce qui contourne le phénomène de dispersion. Il existe également des systèmes plus sophistiqués qui combinent plusieurs fibres en une seule de manière à profiter de propriétés différentes pour l'émission et collection de lumière [20][21][22].

f) Conclusion

Les fibres servent à plein de choses...

1.3 Caractérisation et utilisation de la fibre PMC-C-9005 B2

La fibre que j'ai utilisé pour coupler le laser femtoseconde dans notre microscope est un modèle de recherche et développement réalisé par l'entreprise Glophotonics. Je commente ici certaines caractérisation fournies par le constructeur et y apporte des éléments supplémentaires relativement à la polarisation.

Une des particularités de cette fibre est sa large bande passante qui lui permet de transmettre à la fois de la lumière visible et de la lumière infrarouge. Dans mon cas, je l'utilise à la fois à 488 nm pour l'imagerie un photon et à 915 nm pour l'imagerie deux photons.

FIGURE I.5 – Ce spectre de transmission de la fibre PMC-C-9005 B2 a été réalisé en lumière blanche. Il montre deux zones de transmission, l'une autour de 500nm, l'autre entre 800 nm et 1200 nm. Le gain y est autour de 100 dB/km, soit une transmission d'environ 97% à travers un mètre de fibre.

I.3.1 Injection d'un laser dans une fibre

Pour injecter le laser dans la fibre, il faut aligner tous les éléments dans l'axe optique et régler finement les degrés de liberté en translation et en rotation. De plus, comme on souhaite un couplage monomode, il faut faire coincider le mode laser d'entrée de fibre avec le mode propre de la fibre. Le laser ayant un largeur initiale de D, il faut le ramener à une largeur de fibre ω (23 $\mu m \pm 1 \mu m$ d'après la documentation). Pour cela, il faut utiliser une lentille de focale f et satisfaire l'équation suivante :

$$f = D \frac{\pi \omega}{4\lambda}$$

I.3.2 Injection 2P

Le laser "Mai-Tai" que j'ai utilisé est proche d'un faisceau gaussien $(M^2<1.1)$ et son waist (w0) est large d'environ 1 mm. Ces valeurs sont données par la documentation pour une utilisation à 800 nm, mais elles peuvent évoluer légèrement en accordant la longueur d'onde de fonctionnement.

La largeur d'un faisceau gaussien est définie par la fonction :

$$w(z) = w_0 \sqrt{1 + \left(\frac{z}{z_{\rm R}}\right)^2}$$

avec

FIGURE I.6 – schéma de l'injection à deux lasers dans la fibre. Le miroir M2 est amovible et permet de basculer entre l'injection 1P et 2P

$$z_{\rm R} = \frac{\pi w_0^2}{\lambda}$$

La largeur du laser est donc d'environ 2 mm après un mètre de propagation. En prenant D = 2 mm, ω = 23 μ m, et à λ = 915 nm, on trouve donc f = 40 mm, c'est pourquoi j'ai utilisé une lentille de focale 40 mm (référence Thorlabs AC254-040-B-ML). Cette lentille dispose également d'un traitement de surface pour optimiser la transmission dans l'infrarouge.

J'ai fixé une extrémité de la fibre sur une platine de translation xyz à 40 mm de la lentille. Pour faciliter l'alignement, j'ai tout d'abord injecté un laser visible grâce à un connecteur fibre à fibre dans l'autre extrémité. Cela m'a permis de pré-aligner deux miroirs sur support rotatifs en visant l'orifice du laser parallèlement à l'axe optique. En allumant le laser à faible puissance pour ne pas endomager la fibre, j'ai donc obtenu facilement une transmission suffisante pour pouvoir mesurer la puissance en sortie de fibre. À partir de cette étape, il suffit d'optimiser la puissance transmise en jouant sur les réglages. Dans un premier temps, les deux degrés de rotations de chacun des deux miroirs, et dans un deuxième temps, les deux degrés de rotation du second miroir et les trois degrés de translation de la platine. Cette technique permet d'obtenir en un temps raisonnable (1h) une transmission optimale (96%).

I.3.3 Injection 1P

Pour injecter un deuxième laser, il faut à nouveau faire coïncider le mode de la fibre avec celui du laser, mais en conservant la même lentille d'injection et sans utiliser la platine de translation. Il faut donc adapter la largeur du faisceau à l'aide d'un téléscope ou beam expander (BEX). En remplaçant 915 nm par 488 nm, on obtient D=1 mm. La lentille étant optimisée pour l'infrarouge, sa transmission dans le bleu n'est que de 50%,

FIGURE I.7 – profil de dispersion de la fibre PMC-C-9005 B2

mais la puissance du laser bleu est suffisante pour compenser cette perte. Par contre, la fibre n'est pas tout à fait monomode à cette longueur d'onde, et l'on distingue clairement en sortie le mode TEM11 ou les modes TEM10 / TEM01 en fonction de la position de la fibre. La meilleure transmission obtenue est de l'ordre de 50%, mais cela est suffisant pour l'imagerie statique (fibre immobile).

1.3.4 Dispersion et pré-compensation

Un paramètre important pour la transmission d'un laser pulsé est la dispersion. C'est celui qui nous force à utiliser des fibre à cœur creux et qui permet de conserver une impulsion aussi courte que possible. Mais la dispersion d'une fibre à cœur creux n'est pas nulle, elle est de l'ordre de 1 ps/nm/km (élargissement temporel / largeur spectrale / distance parcourue) comme on peut le voir sur la courbe.

La largeur spectrale d'une impulsion est donnée par

$$\Delta \lambda_t = \frac{\lambda^2}{c\Delta t}$$

et vaut donc 28 nm. Pour une impulsion de 100 fs à 915 nm, cela donne un élargissement de l'ordre de 28 fs au bout d'un mètre de propagation dans la fibre, soit une perte de concentration de 30% et donc une perte d'effet deux photons de 50%. Heureusement, il est possible de pré-compenser cette dispersion à l'aide d'un système optique placé en amont de la fibre. Le laser "Mai-Tai" est justement accompagné d'un élément "Deepsee" qui permet une telle précompensation réglable de -8 900 à -24 500 fs² d'après la documentation.

> The amount of dispersion, or GVD compensation, provided for each wavelength depends on the position of the DeepSee motor that moves optical material on a stage

within the beam path.

En mesurant la durée de l'impulsion en sortie de fibre à l'aide d'un autocorrélateur, on confirme que la précompensation permet de retrouver une impulsion de 100 fs dans l'échantillon.

1.3.5 Gain de courbure

Un des facteurs qui peut affecter la transmissission de la fibre est sa courbure. Certaines fibres comme les fibres à cristaux photoniques Kagome sont très sensibles à la courbure. La première fibre que j'ai testée voyait ainsi varier sa transmission d'un facteur un à cinq en fonction de sa courbure. Puisque la rotation du microscope engendre des déformations de la fibre, on se retrouve avec un éclairage incident corrélé à la stimulation, ce qui crée un signal parasite. Si ce signal parasite dépasse environ 1%, le rapport signal à bruit devient trop faible, et les données ne sont plus analysables. Pour caractériser les pertes de transmission liées à la courbure, il suffit de placer un puissance-mètre en sortie de fibre et de faire varier la courbure.

Des modèles numériques [4] [23] et des applications pratiques suggèrent que le gain évolue de manière inversement proportionelle au carré du rayon de courbure. J'ai observé la même tendance sur notre fibre.

On constate que le gain lié à la courbure est bien similaire au modèle théorique. Les pertes par mètre de fibre restent cependant petites car autour de 0.1 dB (2%) même pour un rayon assez court de 7 cm. De plus, un rayon de courbure si court est rarement atteint sur une longue section de fibre. Dans le pire des cas la fibre peut effectuer un 'U' de 5 cm de rayon sur une longueur de $\pi \times 5$ cm soit 16 cm maximum, ce qui correspond à une perte inférieure à 5%, mais il est facile d'éviter cette situation en positionnant la fibre correctement.

I.3.6 Polarisation

Quand l'axe d'excitation est dans la même direction que l'axe d'observation, la polarisation incidente importe peu car le dipôle (l'échantillon, en l'occurence le fluorophore) oscille dans le plan orthogonal. Mais quand les deux sont perpandiculaires, tourner la polarisation peut faire varier la lumière collectée de 0 à 100%.

Il est donc important de caractériser le comportement de la fibre par rapport à la polarisation. Deux cas sont donc à envisager : une rotation de la polarisation et un changement d'ellipticité. En mesurant l'orientation de la polarisation en sortie de fibre, j'ai montré que celle-ci pouvait tourner largement en fonction de la courbure de la fibre. Par exemple, entre un rayon de courbure de 15 cm et 25 cm, une polarisation linéaire peut tourner de 10°. À cause de l'anisotropie du rayonnement dipôlaire, une polarisation tournée de 90° fait chuter le signal de 100%. Une rotation de 10° fait chuter le signal de 17%. En pratique, il est difficile de mainenir la fibre parfaitement droite, et donc de minimiser la rotation de la polarisation, c'est pourquoi j'ai cherché à obtenir une polarisation invariante par rotation, c'est-à-dire une polarisation circulaire.

En polarisation circulaire, la rotation n'est plus un problème, mais la fibre peut toujours transformer la polarisation circulaire en une polarisation elliptique, qui perd sa symétrie et devient donc sensible à la rotation. J'ai donc caractérisé la variation d'ellipticité

FIGURE I.8 – A. schéma du setup de catactérisation

- B. gain en fonction de la courbure
- C. ellipticité en fonction de la courbure (quasi circulaire)
- D. angle de polarisation en fonction de la courbure (quasi linéaire)

dans le cas d'une polarisation circulaire. Pour cela, j'ai positionné deux puissance-mètre sur les bras d'un cube polariseur en sortie de fibre. Pour chaque courbure de fibre, je mesurais l'intensité minimale et l'intensité orthogonale, ce qui permet de déduire le grand axe (a) et le petit axe (b) de l'ellipse, et donc l'ellipticité (θ) définie par

$$\tan(\theta) = \frac{b}{a}$$

Je montre que l'ellipticité peut varier de 5° entre deux courbures extrêmes. Pour une polarisation elliptique à 40°, la différence entre grand axe et petit axe est de 16%. Une rotation de 90° en polarisation elliptique avec cette ellipticité donnerait alors lieu à une variation de détection de 16%, ce qui est beaucoup mieux que 100%. Il est cependant nécessaire d'effectuer des tests en conditions réelles afin de vérifier que ce pire cas n'est pas atteint.

FIGURE I.9 – a. Comme dans un microscope deux photons classique, la direction d'émission et de détection sont alignées, et la polarisation est dans le plan orthogonal. Quelle que soit la polarisation, la lumière détectée est toujours la même.

b. Dans un microscope à feuille de lumière, la direction d'émission est dans le plan orthogonal à la détection. La direction de polarisation fait alors un angle α avec la direction de détection. Pour $\alpha=90^{\circ}$, la lumière détectée est maximale, mais pour $\alpha=0^{\circ}$, elle est nulle.

1.3.7 Test en conditions réelles

Pour tester les variations d'intensité dues aux déformations de la fibre en conditions réelles, j'ai monté un cube polariseur et un puissance-mètre à la place de l'échantillon et ai soumis l'ensemble à des stimulations périodiques guidées par un moteur.

Finalement, tous les effets liés à la position de la fibre engendrent des variations de l'intensité détectée inférieurs à 1.2% dans les conditions des expériences. Les effets parasites sont donc connus et mineurs, ce qui est à prendre en compte lors de l'analyse des données.

1.4 Effet de lentille thermique

Un des problèmes auxquels j'ai été confronté est l'effet de lentille thermique (thermal lens effect). Lorsqu'un faisceau traverse un milieu absorbant, ce milieu chauffe sur la trajectoire du faisceau, ce qui change son indice optique. Le gradient d'indice ainsi formé dévie les rayons, formant une lentille à gradient d'indice (GRIN lens). Pour l'eau, à 915 nm,

Figure I.10 -

- a. Setup de test en condition réelle
- b. Réponse à une stimulation sinusoïdale périodique de 10° . On constate que les variations de puissance ne dépassent pas 0.6% et que ces variations combinées aux changement de la polarisation (ellipticité et rotation) n'excèdent pas 1.2%.
- c. Réponse à une stimulation périodique en marches de 20° . Les variations combinées n'excèdent pas 1.2%. On remarque que l'intensité maximale est atteinte pour un angle du moteur de 0° , soit la position de repos de la fibre.

le changement d'indice est de l'ordre de -1e-4 par degré. La température étant plus élevée au centre du faisceau, l'indice optique est plus faible, et donc la lentille équivalente est divergente. Cet effet peut être utile, par exemple pour mesurer le coefficient d'absorption d'un liquide [24], mais il a deux conséquences gênantes dans mon cas. D'une part un effet statique lié à la perte de focalisation du faisceau altère l'effet deux-photons, d'autre part un effet dynamique lié à la réponse du système à une perturbation de la température d'équilibre dévie le faisceau lors des mouvements du microscope.

Le phénomène et a été décrit théoriquement en 1965 par Gordon *et al* [25] et en 1974 par Whinnery *et al* [24] pour une fine cellule de liquide et dans le cadre de l'approximation parabolique. En 1982, Sheldon *et al* [26] étend cette description hors de l'approximation parabolique pour prendre en compte les aberration induites. Dans notre cas, il ne s'agit pas d'une cellule fine, car le laser traverse plusieurs centimètres d'eau avant d'atteindre l'échantillon, créant un gradient d'indice sur sa trajectoire. Je suis donc allé m'inspirer du livre *Gradient-Index Optics* (2002) [27], dans lequel les auteurs s'intéressent à la propagation d'un faisceau dans un milieu d'indice : (équation 1.63 du livre)

$$n(r,z) = n_0(z) \left(1 \pm \frac{g^2(z)}{2} r^2 \right)$$

Dans le cas d'un signe négatif (lentille convergente), les calculs sont largement détaillés et aboutissent à une solution oscillante. Malheureusement le cas d'un signe positif (lentille divergente) n'est pas exploré. Pour obtenir un résultat en ordre de grandeur, nous avons donc opté pour un approche discrète numérique en appliquant à chaque tranche de liquide d'épaisseur *1* les résultats obtenus pour une cellule fine [25][24]. Cette approximation ignore la diffusion thermique le long de l'axe et considère l'absorption négligeable.

Le différentiel de température par rapport à l'équilibre $\Delta T(r,t)$ est décrit par l'équation de diffusion :

$$c\rho \frac{\partial}{\partial t} [\Delta T(r,t)] = \dot{q}(r) + k\nabla^2 [\Delta T(r,t)]$$

Le terme source de l'équation lié à l'absorption du faisceau de puissance *P* par le milieu de coefficient d'absorption α vaut :

$$\dot{q}(r) = \frac{\alpha P}{\pi w_z^2} \exp\left(\frac{-2r^2}{w_z^2}\right)$$

Ce qui donne une solution de la forme :

$$\Delta T(r,t) = \frac{\alpha P}{4\pi k} \int_0^t \left(\frac{1}{1+2t'/t_c}\right) \exp\left(\frac{-2r^2/w_z^2}{1+2t'/t_c}\right) \mathrm{d}t' \\ \text{où } t_c = \frac{w_z^2}{4D}$$

Dans notre cas, on se contentera de l'approximation au premier ordre de cette solution:

$$\Delta T(r,t) \simeq \frac{\alpha P}{4\pi k} \left[\ln \left(1 + \frac{2t}{t_c} \right) - \frac{2(r^2/w_z^2)}{1 + t_c/2t} \right]$$

Le premier terme est indépendant de *r* et correspond au réchauffement progressif global de la tranche de liquide. De plus, il est de plus en plus lent à mesure que l'on

s'éloigne du waist et se retrouve dominé par les conditions aux limites et par la diffusion le long de l'axe ici non exprimées. On peut donc l'ignorer pour simplifier le calcul sans altérer le résultat. On a donc :

$$\Delta T(r,t) = \Delta T_{\infty} \frac{1}{1 + t_c/2t} \text{où } \Delta T_{\infty} = \Delta T(r,t_{\infty}) = -\frac{\alpha P}{2\pi k} \frac{r^2}{w_z^2}$$

Si l'on suppose constant le coefficient de variation de l'indice optique (*dn/dT*), on a donc un profil d'indice quadratique en *r*:

$$n(r,z) = n_0 + \frac{\mathrm{d}n}{\mathrm{d}T} \Delta T n(r,z) = n_0 \left(1 + \delta (r/w_z)^2 \right) \text{ où } \delta = -\frac{\mathrm{d}n}{\mathrm{d}T} \frac{\alpha P}{2\pi k n_0} \frac{2}{1 + t_c/2t}$$

Pour un profil d'indice quadratique tel que celui-ci et dans l'approximation des lentilles minces, on peut définir la distance focale équivalente :

$$f' = -\frac{w_z^2}{2ln_0\delta}$$

Cela permet d'établir la valeur de la focale *F* au cours du temps :

$$f'(t) = f'_{\infty} \left(1 + \frac{t_c}{2t} \right)$$
 où $f'_{\infty} = \frac{\pi k w_z^2}{\alpha P l(\mathrm{d}n/\mathrm{d}T)}$

On part du principe que le faisceau reste gaussien tout au long du parcours, il peut donc être entièrement décrit pour chaque *z* par la position et la largeur de son waist. Pour chaque tranche de liquide d'épaisseur l, on peut donc écrire la formule des lentilles gaussiennes pour trouver le déplacement du waist et son élargissement.

On peut mesurer expérimentalement la position de cette largeur minimum du faisceau dans la fluorescine.

I.4.1 TODO analyse temporelle

FIGURE I.11 – On voit ici le résultat de la simulation pour plusieurs puissances de laser. Comme attendu, plus la puissance est élevée, plus l'effet divergent est fort, et donc plus le waist est éloigné et large.

 $\label{eq:figure I.12-On voit ici une feuille de lumière imagée dans la fluorescéine pour plusieurs puissances laser différentes. La position du maximum d'intensité, et donc de la largeur minimale, est marquée par un trait en pointillé$

 ${\it Figure~I.13-voici~la~comparaison~entre~les~donn\'es~num\'eriques~et~exp\'erimentales}$

Bibliographie

- [1] F. BENABID; «Stimulated Raman Scattering in Hydrogen-Filled Hollow-Core Photonic Crystal Fiber»; 298, p. 399–402. ISSN 00368075, 10959203. https://www.sciencemag.org/lookup/doi/10.1126/science.1076408. 4
- [2] Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts & F. Benabid; «Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber»; **36**, p. 669. ISSN 0146-9592, 1539-4794. https://www.osapublishing.org/abstract.cfm?URI=ol-36-5-669. 4
- [3] L. VINCETTI & V. SETTI; «Waveguiding mechanism in tube lattice fibers»; 18, p. 23 133-23 146. ISSN 1094-4087. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-18-22-23133; publisher: Optical Society of America. 4
- [4] F. Yu & J. C. Knight; «Negative Curvature Hollow-Core Optical Fiber»; 22, p. 146-155. ISSN 1077-260X, 1558-4542. https://ieeexplore.ieee.org/document/7225120/. 4, 11
- [5] D. A. DOMBECK, C. D. HARVEY, L. TIAN, L. L. LOOGER & D. W. TANK; «Functional imaging of hippocampal place cells at cellular resolution during virtual navigation»; 13, p. 1433–1440. ISSN 1097-6256. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2967725/. 5, 6
- [6] F. HELMCHEN, M. S. FEE, D. W. TANK & W. DENK; «A Miniature Head-Mounted Two-Photon Microscope: High-Resolution Brain Imaging in Freely Moving Animals»; 31, p. 903-912. ISSN 0896-6273. http://www.sciencedirect.com/science/article/pii/S0896627301004214. 5, 6
- [7] J. SAWINSKI, D. J. WALLACE, D. S. GREENBERG, S. GROSSMANN, W. DENK & J. N. D. KERR; «Visually evoked activity in cortical cells imaged in freely moving animals»; 106, p. 19557–19562. ISSN 0027-8424. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2773198/. 6, 7
- [8] C. J. ENGELBRECHT, R. S. JOHNSTON, E. J. SEIBEL & F. HELMCHEN; «Ultracompact fiber-optic two-photon microscope for functional fluorescence imaging in vivo»; 16, p. 5556–5564. ISSN 1094-4087. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-16-8-5556; publisher: Optical Society of America. 6, 7
- [9] S. TURTAEV, I. T. LEITE, T. ALTWEGG-BOUSSAC, J. M. P. PAKAN, N. L. ROCHE-FORT & T. ČIŽMÁR; «High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging»; 7, p. 92. ISSN 2047-7538. http://www.nature.com/articles/ s41377-018-0094-x. 6, 7

22 BIBLIOGRAPHIE

[10] B. SCOTT, C. BRODY & D. TANK; «Cellular Resolution Functional Imaging in Behaving Rats Using Voluntary Head Restraint»; 80, p. 371–384. ISSN 0896-6273. http://www.sciencedirect.com/science/article/pii/S0896627313007125.

- [11] D. Aronov & D. Tank; «Engagement of Neural Circuits Underlying 2D Spatial Navigation in a Rodent Virtual Reality System»; 84, p. 442–456. ISSN 0896-6273. http://www.sciencedirect.com/science/article/pii/S0896627314007430. 5
- [12] J. R. WHITLOCK; «Navigating actions through the rodent parietal cortex»;
 8. ISSN 1662-5161. https://www.frontiersin.org/articles/10.3389/fnhum.
 2014.00293/full; publisher: Frontiers. 5
- [13] W. PIYAWATTANAMETHA, E. D. COCKER, L. D. BURNS, R. P. J. BARRETTO, J. C. JUNG, H. RA, O. SOLGAARD & M. J. SCHNITZER; «In vivo brain imaging using a portable 2.9 g two-photon microscope based on a microelectromechanical systems scanning mirror»; **34**, p. 2309–2311ISSN 0146-9592. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2826365/. 5, 7
- [14] A. KLIOUTCHNIKOV, D. J. WALLACE, M. H. FROSZ, R. ZELTNER, J. SAWINSKI, V. PAWLAK, K.-M. VOIT, P. S. J. RUSSELL & J. N. D. KERR; «Three-photon head-mounted microscope for imaging deep cortical layers in freely moving rats»; 17, p. 509–513. ISSN 1548-7105. https://www.nature.com/articles/s41592-020-0817-9; number: 5 Publisher: Nature Publishing Group. 5, 7
- [15] B. B. Scott, S. Y. Thiberge, C. Guo, D. G. R. Tervo, C. D. Brody, A. Y. Karpova & D. W. Tank; «Imaging Cortical Dynamics in GCaMP Transgenic Rats with a Head-Mounted Widefield Macroscope»; 100, p. 1045–1058.e5. ISSN 0896-6273. http://www.sciencedirect.com/science/article/pii/S0896627318308523.
- [16] W. ZONG, R. WU, M. LI, Y. HU, Y. LI, J. LI, H. RONG, H. WU, Y. XU, Y. LU, H. JIA, M. FAN, Z. ZHOU, Y. ZHANG, A. WANG, L. CHEN & H. CHENG; «Fast high-resolution miniature two-photon microscopy for brain imaging in freely behaving mice»; 14, p. 713-719. ISSN 1548-7105. https://www.nature.com/articles/nmeth.4305; number: 7 Publisher: Nature Publishing Group. 7
- [17] B. A. FLUSBERG, J. C. JUNG, E. D. COCKER, E. P. ANDERSON & M. J. SCHNITZER; «In vivo brain imaging using a portable 3.9 g two-photon fluorescence microendo-scope»; 30, p. 2272-2274. ISSN 1539-4794. https://www.osapublishing.org/ol/abstract.cfm?uri=ol-30-17-2272; publisher: Optical Society of America. 7
- [18] I. N. PAPADOPOULOS, S. FARAHI, C. MOSER & D. PSALTIS; «High-resolution, lensless endoscope based on digital scanning through a multimode optical fiber»; 4, p. 260–270. ISSN 2156-7085. https://www.osapublishing.org/boe/abstract.cfm?uri=boe-4-2-260; publisher: Optical Society of America. 7
- [19] S. OHAYON, A. CARAVACA-AGUIRRE, R. PIESTUN & J. J. DICARLO; «Minimally invasive multimode optical fiber microendoscope for deep brain fluorescence imaging»; 9, p. 1492–1509. ISSN 2156-7085. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5905901/.
- [20] E. R. Andresen, G. Bouwmans, S. Monneret & H. Rigneault; «Two-photon lensless endoscope»; **21**, p. 20713-20721. ISSN 1094-4087. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-18-20713; publisher: Optical Society of America. 7

BIBLIOGRAPHIE 23

[21] A. KUDLINSKI, A. CASSEZ, O. VANVINCQ, D. SEPTIER, A. PASTRE, R. HABERT, K. BAUDELLE, M. DOUAY, V. MYTSKANIUK, V. TSVIRKUN, H. RIGNEAULT & G. BOUWMANS; «Double clad tubular anti-resonant hollow core fiber for nonlinear microendoscopy»; 28, p. 15062. ISSN 1094-4087. https://www.osapublishing.org/abstract.cfm?URI=oe-28-10-15062.

- [22] A. LOMBARDINI, V. MYTSKANIUK, S. SIVANKUTTY, E. R. ANDRESEN, X. CHEN, J. WENGER, M. FABERT, N. JOLY, F. LOURADOUR, A. KUDLINSKI & H. RIGNEAULT; «High-resolution multimodal flexible coherent Raman endoscope»; 7, p. 10. ISSN 2047-7538. https://www.nature.com/articles/s41377-018-0003-3; number: 1 Publisher: Nature Publishing Group. 7
- [23] V. Setti, L. Vincetti & A. Argyros; «Flexible tube lattice fibers for terahertz applications»; 21, p. 3388-3399. ISSN 1094-4087. https://www.osapublishing.org/oe/abstract.cfm?uri=oe-21-3-3388; publisher: Optical Society of America.
- [24] J. R. WHINNERY; «Laser measurement of optical absorption in liquids»; 7, p. 225-231. ISSN 0001-4842, 1520-4898. https://pubs.acs.org/doi/abs/10.1021/ar50079a003. 15
- [25] J. P. GORDON, R. C. C. LEITE, R. S. MOORE, S. P. S. PORTO & J. R. WHINNERY; «Long-Transient Effects in Lasers with Inserted Liquid Samples»; 36, p. 3–8. ISSN 0021-8979, 1089-7550. http://aip.scitation.org/doi/10.1063/1.1713919. 15
- [26] S. J. SHELDON, L. V. KNIGHT & J. M. THORNE; «Laser-induced thermal lens effect: a new theoretical model»; **21**, p. 1663. ISSN 0003-6935, 1539-4522. https://www.osapublishing.org/abstract.cfm?URI=ao-21-9-1663. 15
- [27] C. GOMEZ-REINO, M. V. PEREZ & C. BAO; Gradient-Index Optics (Springer Berlin Heidelberg); ISBN 978-3-642-07568-1 978-3-662-04741-5. http://link.springer.com/10.1007/978-3-662-04741-5. 15