1. Let
$$f(x) = x^2 + \frac{2}{x^2}$$
, then $f'(-2) =$

- (A) $\frac{-9}{2}$ (B) 5 (C) $\frac{-7}{2}$ (D) -8 (E) none of these

2.
$$\lim_{h\to 0} \left[\frac{5(x+h)^2 - 5x^2}{h} \right]$$
 (fast!!)=

- (B)10x (A) 5x
- (C) 5x2
 - (D)10x + 5h
- (E) none of these

3. If
$$y = \cos^2 \frac{x}{2} - \sin^2 \frac{x}{2}$$
,
then $y' =$

- (A) 0 (B) $\cos x$ (C) $\sin x$ (D) $-4\sin\frac{x}{2}\cos\frac{x}{2}$ (E) $-\sin x$

4. If
$$f(x) = 2\sin\frac{x}{2} + 8\cos\frac{x}{2}$$
, then $f\left(\frac{\pi}{2}\right) =$

- (A) $5\sqrt{2}$ (B) $-3\sqrt{2}$ (C) $\frac{-3\sqrt{2}}{2}$
- (D) $3\sqrt{2}$ (E) $\frac{3}{\sqrt{2}}$

5. If
$$f(x) = (2x+1)^4$$
, then the 4th derivative of $f(x)$ at $x = 0$ is

- (A)0

- (B) 24 (C) 48 (D) 240
- (E) 384

6. If
$$y = \frac{3}{4 + x^2}$$
, then $\frac{dy}{dx} = \frac{1}{4x^2}$

(A)
$$\frac{-6x}{\left(4+x^2\right)^2}$$
 (B) $\frac{3x}{\left(4+x^2\right)^2}$ (C) $\frac{6x}{\left(4+x^2\right)^2}$ (D) $\frac{-3}{\left(4+x^2\right)^2}$ (E) $\frac{3}{2x}$

7. if f(x) = x, then f'(5) =

(A) 0 (B) $\frac{1}{5}$ (C) 1 (D) 5 (E) $\frac{25}{2}$

8. The function defined by $f(x) = x^3 - 3x^2$ for all real numbers, x has a relative maximum at x =

- (A) -2 (B) 0 (C) 1 (D) 2 (E) 4
- 9. If $\frac{dy}{dx} = \cos(2x)$, then y =

(A)
$$-\frac{1}{2}\cos(2x) + c$$
 (B) $-\frac{1}{2}\cos^2(2x) + c$ (C) $\frac{1}{2}\sin(2x) + c$ (D) $\frac{1}{2}\sin^2(2x) + c$ (E) $-\frac{1}{2}\cos(2x) + c$

Answers:

Multiple Choice:

1.c 2.b 3.e 4.c 5.e 6.a 7.c 8.b 9.c

Free Response:

- 1. a) t = 5; b) velocity = 50ft/sec, speed = 50ft/sec, acceleration = 0ft/ s^2 ; c) 0 < t < 4 d) (5, 6)
- 2. a) 8x-4 b) $4x\cos(2x^2+1)$; c) $\frac{5}{2} + \frac{3}{x^2} \frac{8}{x^3}$
- 3. a) $v = -6t^2 + 12t$; b) a = -12t + 12; c) -4; d) -18; e) 18; f) -24; g) speeding up; h) left
- 4. a) $-10x^{-2}$; b) $y = -10x^{-2} + c$; c) $y = -10x^{-2} + 11$
- 5. $y-5=\frac{-1}{12}(x-1)$

6. check with other students