

United International **University**

School of Science and Engineering

Final Examination Trimester: Spring-2024
Course Title: Fundamental Calculus

Course Code: Math 1151 Marks: 40 Time: 2 Hours

Answer all the questions. Answer all parts of a question together.

1. (a) The following figure represents a position function of a particle at time t.

[5]

- (i) Find the average velocity over the time interval [2, 6].
- (ii) What is the instantaneous velocity at t = 8. Explain the reason.
- (iii) **Determine** whether the velocity doesn't exist. **Explain** the reason.
- **(iv)** Roughly sketch the velocity graph of the particle.

(b) Consider the function

[5]

$$f(x) = \begin{cases} 3 - x^2; & x < 1 \\ 4 - 2x; & x \ge 1 \end{cases}$$

- (i) Sketch the graph of f(x).
- (ii) **Determine** whether the function f(x) is continuous and differentiable at x = 1.
- 2. (a) Consider, the function $f(x) = x^2 2$.
 - (i) Find the slope of tangent line to the graph of f(x) at the point x = 0. [1]
 - (ii) Find the equation tangent line to the graph of f(x) at the point x = 0. [2]
 - (iii) Draw the graph of f(x) together with the tangent line from (ii) in the same [2] axes.
 - (b) If $s = \cot w$ and $w = t^3 \frac{2}{\sqrt{t}} + 3$, then find $\frac{ds}{dt}$. [2.5]
 - (ii) If $y = \sec^3(2 3x^2 \cos x)$, then find $\frac{dy}{dx}$. [2.5]

3. (a) **Evaluate** the following integrals:

(i)
$$\int \frac{t^3 - t^2 \cos t - 2t + 3}{t^2} dt$$
 [2]

$$(ii) \qquad \int \frac{x^3}{\sqrt{5-2x^4}} dx \tag{2}$$

(iii)
$$\int \frac{x}{1+x^4} dx$$
 [2]

(b) Evaluate
$$\int_{-2}^{4} f(x) dx$$
, where $f(x) = \begin{cases} 2x + 1; & x \le 1 \\ 5 - 2x; & x > 1 \end{cases}$ [4]

4. (a) Use a suitable method to **evaluate** the area of the following shaded regions:

(i)

(ii)

[7]

[3]

(b) Evaluate the integral: $\int_0^{\pi} 2t \sin 2t \, dt$