1	Loi de composition interne sur un ensemble.	2
	1.1 Définitions et propriétés	$\overline{2}$
	1.2 Éléments symétrisables	
	1.3 Itérés	
	1.4 Notations multiplicatives et additives	
2	Structure de groupe.	6
	2.1 Définition et exemples	 . 6
	2.2 Sous-groupes	 . 8
	2.3 Morphismes de groupes	
3	Structure d'anneau.	11
	3.1 Définitions et règles de calcul	 . 11
	3.2 Groupe des inversibles dans un anneau.	
	3.3 Nilpotents dans un anneau.	
	3.4 Sous-anneaux, morphismes d'anneaux	
	3.5 Anneaux intègres	
4	Structure de corps.	16
	4.1 Définitions et exemples	 . 16
	4.2 Notation fractionnaire dans un corps	
	4.3 Corps des fractions d'un anneau intègre	
Ex	ercices	17

1 Loi de composition interne sur un ensemble.

1.1 Définitions et propriétés.

Définition 1.

On appelle loi de composition interne sur un ensemble E (on écrira l.c.i.) une application

$$\star: \left\{ \begin{array}{ccc} E \times E & \to & E \\ (x,y) & \mapsto & x \star y \end{array} \right.$$

On notera que l'image de (x, y) par \star est notée $x \star y$ plutôt que $\star (x, y)$.

Soit E un ensemble et \star une loi de composition interne sur E.

• La loi * est dite associative si

$$\forall (x, y, z) \in E^3 \quad (x \star y) \star z = x \star (y \star z).$$

• De deux éléments x et y de E, on dit qu'ils **commutent** pour \star lorsque $x \star y = y \star x$. On dit que la loi \star est **commutative** si deux éléments de E quelconques commutent, c'est-à-dire si

$$\forall (x,y) \in E^2 \quad x \star y = y \star x.$$

• On appelle élément neutre pour la loi \star tout élément $e \in E$ tel que

$$\forall x \in E \quad x \star e = x \text{ et } e \star x = x.$$

Pourquoi loi de composition interne? Grâce à \star , à partir d'un couple (x,y) d'éléments de E, on obtient le composé $x \star y$ qui est un élément de E: la composition s'est faite à l'intérieur de E.

Définition 2 (un peu de vocabulaire qui n'est pas dans le programme).

Un couple (E,\star) , où E est un ensemble et \star une l.c.i. sur E est appelé un magma.

On dit que ce magma est associatif si \star est associative, commutatif si \star est commutative, et **unifère** s'il existe dans E un élément neutre pour \star .

Si (E, \star) est un magma associatif et x, y, z trois éléments de E, la définition de l'associativité donne que l'écriture $x \star y \star z$ n'est pas ambiguë. De la même manière, si t est un quatrième élément de E, on a les égalités

$$(x \star y) \star (z \star t) = ((x \star y) \star z) \star t = x \star ((y \star z) \star t) = x \star (y \star (z \star t)) = (x \star (y \star z)) \star t,$$

de sorte qu'on pourra écrire $x \star y \star z \star t$ sans ambiguïté.

Proposition 3.

Dans un magma unifère, il y a unicité de l'élément neutre.

Définition 4.

Soit (E,\star) un magma. Une partie A de E est dite stable par \star si

$$\forall (x,y) \in A^2 \quad x \star y \in A.$$

Définition 5.

Soit (E,\star) un magma et A une partie de E stable par \star . La restriction de \star à A^2 :

$$\star : \left\{ \begin{array}{ccc} A \times A & \to & A \\ (x,y) & \mapsto & x \star y \end{array} \right.$$

est une loi de composition interne sur A : on l'appelle **loi induite** par \star sur A.

Exemple 6 (Ensembles de nombres).

• L'addition + est une loi de composition interne sur chacun des ensembles \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} . Elle est associative, commutative et admet 0 pour élément neutre.

Les parties $[0, +\infty[$ et $]-\infty, 0[$ de \mathbb{R} sont stables par +.

• La multiplication \times est une l.c.i sur chacun des ensembles \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} . Elle est associative, commutative et admet 1 pour élément neutre.

Les parties $[0, +\infty[$ et \mathbb{R}^* de \mathbb{R} sont stables par \times .

 \bullet La soustraction — est une loi de composition interne sur $\mathbb Z$ qui n'est ni associative, ni commutative et n'admet pas d'élément neutre.

 \mathbb{N} est une partie de \mathbb{Z} qui n'est pas stable par -.

Exemple 7 (Ensemble des parties).

Soit E un ensemble. L'intersection \cap et la réunion \cup définissent des l.c.i. sur $\mathcal{P}(E)$.

- Le magma $(\mathcal{P}(E), \cap)$ est associatif, commutatif et unifère, avec E pour élément neutre.
- Le magma $(\mathcal{P}(E), \cup)$ est associatif, commutatif et unifère, avec \emptyset pour élément neutre.

Exemple 8 (Ensemble de fonctions et composition).

Soit E un ensemble. La composition \circ est une loi de composition interne sur E^E , l'ensemble des fonctions définies sur E et à valeurs dans E.

Le magma (E^E, \circ) est associatif et unifère : il admet Id_E pour élément neutre.

Si E admet au moins deux éléments, \circ n'est pas commutative.

L'ensemble des fonctions injectives est une partie de E^E stable par \circ .

C'est aussi le cas pour l'ensemble des fonctions surjectives et pour celui des fonctions bijectives.

Définition 9 (Distributivité d'une loi par rapport à une autre).

Soit E un ensemble muni de deux lois de composition internes \oplus et \otimes . On dit que \otimes est **distributive par rapport** à \oplus si

$$\forall (x,y,z) \in E^3 : \begin{cases} x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z) \\ (y \oplus z) \otimes x = (y \otimes x) \oplus (z \otimes x). \end{cases}$$

(Si la loi ⊗ n'est pas commutative, il est primordial de vérifier les deux égalités.)

Exemple 10.

- Dans \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} et \mathbb{C} , la multiplication \times est distributive par rapport à l'addition +.
- Dans $\mathcal{P}(E)$, \cap est distributive par rapport à \cup .
- Dans $\mathcal{P}(E)$, \cup est distributive par rapport à \cap .

1.2 Éléments symétrisables.

Définition 11.

Soit (E, \star) un magma unifère d'élément neutre e, et x un élément de E. On dit que x est **symétrisable** (ou **inversible**) s'il existe un élément x' dans E tel que

$$x \star x' = e$$
 et $x' \star x = e$.

Proposition-Définition 12.

Soit (E, \star) un magma associatif et unifère d'élément neutre e.

Si x est un élément de \overline{E} symétrisable, il existe un unique x' dans E tel que $x \star x' = x' \star x = e$. On appelle cet élément le **symétrique** de x (ou son inverse), et on le note x^{-1} .

Exemples 13.

- Les inversibles du magma (\mathbb{Z}, \times) sont -1 et 1.
- Les inversibles du magma (\mathbb{R}, \times) sont les réels non nuls; on a admis en effet que pour tout $x \in \mathbb{R}^*$, il existe un réel x^{-1} tel que $x \times x^{-1} = x^{-1} \times x = 1$.

Exemple 14.

Les inversibles du magma (E^E, \circ) sont les bijections $f: E \to E$.

Si $f: E \to E$ est une bijection, son inverse f^{-1} est sa réciproque.

Proposition 15.

Soit (E, \star) un magma associatif et unifère, et x et y deux éléments de E.

- 1. Si x est symétrisable, x^{-1} l'est aussi et $(x^{-1})^{-1} = x$.
- 2. Si x et y sont symétrisables, $x\star y$ l'est aussi et

$$(x \star y)^{-1} = y^{-1} \star x^{-1}$$
.

1.3Itérés.

On fixe pour tout ce paragraphe un magma (E, \star) associatif et unifère, dont l'élément neutre est noté e.

Définition 16 (Itérés d'un élément).

Soit $x \in E$.

- 1. Pour $n \in \mathbb{N}$, on définit x^n par récurrence sur $n \in \mathbb{N}$.

 - On pose $x^0 = e$. Pour tout $n \in \mathbb{N}$: $x^{n+1} = x^n \star x$.
- 2. Si x est inversible et $n \in \mathbb{N}^*$, on pose

$$x^{-n} = (x^{-1})^n$$
.

Remarque. Si $n \in \mathbb{N}^*$, x^n est donc égal à $x^n = \underbrace{x \star \ldots \star x}$, écriture non ambiguë par associativité.

Proposition 17 (Propriétés des itérés).

$$\forall x \in E \quad \forall (m,n) \in \mathbb{N}^2 \qquad x^m \star x^n = x^{m+n} \quad \text{et} \quad (x^m)^n = x^{mn}.$$

Si x est <u>inversible</u>, les identités ci-dessus sont vraies pour $(m, n) \in \mathbb{Z}^2$.

Exemple 18 (Itérés d'éléments qui commutent).

Soient x et y deux éléments de E qui commutent (c'est-à-dire que $x \star y = y \star x$). Alors

$$\forall (m,n) \in \mathbb{N}^2 \quad x^m \star y^n = y^n \star x^m,$$

$$\forall n \in \mathbb{N} \quad (x \star y)^n = x^n \star y^n.$$

1.4 Notations multiplicatives et additives.

Utiliser la **notation multiplicative**, lorsqu'on travaille avec un magma (E, \star) consiste à ne pas écrire \star lorsqu'on calcule l'image d'un couple $(x, y) \in E^2$. Concrètement, on note alors xy à la place de $x \star y$.

Lorsqu'on travaille avec un magma associatif, commutatif et unifère, on pourra utiliser la notation + pour la loi de composition interne. Le vocabulaire et les notations introduits plus haut sont alors adaptés à cette **notation additive**, comme explicité dans le tableau ci-dessous.

notation l.c.i	*	•	+
image de (x, y)	$x \star y$	xy	x + y
notation neutre	e	e	0
on dit	symétrisable	inversible	symétrisable
on dit	symétrique	inverse	opposé
notation symétrique	x^{-1}	x^{-1}	-x
notation itéré	x^n	x^n	nx

2 Structure de groupe.

2.1 Définition et exemples.

Définition 19.

On appelle **groupe** un magma associatif et unifère dans lequel tout élément est symétrisable.

Plus précisément, un groupe est la donnée d'un couple (G,\star) , où G est un ensemble et \star une loi de composition interne sur G tels que

- 1. \star est associative : $\forall (x, y, z) \in G^3 \quad (x \star y) \star z = x \star (y \star z)$.
- 2. il existe dans G un élément e neutre pour la loi \star : $\forall x \in G \quad x \star e = e \star x = x$.
- 3. tout élément de G est symétrisable : $\forall x \in G \quad \exists x' \in G \quad x \star x' = x' \star x = e$.

Si de surcroît \star est commutative, alors le groupe (G, \star) est dit **abélien** (ou commutatif).

Remarques. Soit (G, \star) un groupe.

- 1. S'il n'y a pas d'ambiguïté sur la loi de composition interne \star dont on parle, on pourra écrire avec un léger abus que « G est un groupe ».
- 2. Un groupe n'est jamais vide car il contient au moins son élément neutre.

Proposition 20 (Ensembles de nombres).

- 1. $(\mathbb{Z},+)$, $(\mathbb{Q},+)$, $(\mathbb{R},+)$ et $(\mathbb{C},+)$ sont des groupes abéliens.
- 2. (\mathbb{Q}^*, \times) , (\mathbb{R}^*, \times) et (\mathbb{C}^*, \times) sont des groupes abéliens.

Exemple 21 (Ce ne sont pas des groupes).

- 1. $(\mathbb{N}, +)$ n'est pas un groupe car 1 n'est pas symétrisable : il n'a pas d'opposé dans \mathbb{N} .
- 2. (\mathbb{Z}^*, \times) n'est pas un groupe car 2 n'est pas inversible dans \mathbb{Z}^* .
- 3. (\mathbb{C}, \times) n'est pas un groupe car 0 n'a pas d'inverse dans \mathbb{C} .

Exemple 22 (Vérifier les axiomes de groupe sur une loi artificielle).

On pose $G = \mathbb{R}^* \times \mathbb{R}$. Pour $(a, b) \in G$ et $(a', b') \in G$ on définit

$$(a,b) \star (a',b') = (aa',ab'+b).$$

Montrer que (G, \star) est un groupe

Définition 23.

Soit E un ensemble non vide. On appelle **permutation** de E une bijection $\sigma: E \to E$. On note S_E l'ensemble des permutations de E.

Proposition-Définition 24.

 (S_E, \circ) est un groupe, appelé **groupe des permutations** de E, ou encore groupe symétrique de E. Dès que E contient au moins 3 éléments, le groupe S_E n'est pas abélien.

Proposition 25 (Produit de deux groupes).

Soient (G, \star) et (G', \top) deux groupes. On note e le neutre de G et e' celui de G'. Pour (x, x') et (y, y') deux éléments de $G \times G'$, on pose

$$(x, x') \heartsuit (y, y') := (x \star y, x' \top y').$$

Muni de la l.c.i. \heartsuit , le produit cartésien $G \times G'$ est un groupe, d'élément neutre (e, e').

Proposition 26 (Produit de n groupes).

Soient G_1, \ldots, G_n n groupes (les l.c.i. étant sous-jacentes et notées multiplicativement). Pour (x_1, \ldots, x_n) et (y_1, \ldots, y_n) deux éléments de $G_1 \times \cdots \times G_n$, on pose

$$(x_1,\ldots,x_n)\heartsuit(y_1,\ldots,y_n)=(x_1y_1,\cdots,x_ny_n).$$

Muni de la l.c.i. \heartsuit , le produit cartésien $G_1 \times \cdots \times G_n$ est un groupe. Son neutre est le n-uplet (e_1, \ldots, e_n) où pour tout $k \in [1, n]$, e_k est le neutre du groupe G_k .

Application: definition du groupe additif $(\mathbb{R}^n, +)$, dont le neutre est le *n*-uplet $(0, \dots, 0)$.

2.2 Sous-groupes.

Définition 27.

Soit (G, \star) un groupe et H une partie de G.

On dit que H est un sous-groupe de G si H est stable par \star et si (H, \star) est un groupe.

Remarque. Ci-dessus, lorsqu'on écrit (H, \star) , il faut comprendre que \star est la loi induite sur H par la loi \star définie sur G. Cette loi induite est bien définie car H est supposé stable par \star .

Exemples. Si (G, \star) est un groupe, de neutre e, alors $\{e\}$ et G sont des sous-groupes de G. On pourra parler à leur sujet de sous-groupes triviaux.

Proposition 28 (Élément neutre et inverses dans un sous-groupe).

Soit (G, \star) un groupe et H un sous-groupe de G .

- 1. L'élément neutre du groupe H n'est autre que celui de G.
- 2. Soit $x \in H$. L'inverse de x dans le groupe (H, \star) et celui dans le groupe (G, \star) sont égaux.

Théorème 29 (Caractérisation des sous-groupes).

Soit (G, \star) un groupe dont l'élément neutre est noté e, et H une partie de G. Les trois assertions suivantes sont équivalentes.

- 1. H est un sous-groupe de (G, \star) .
- 2. $\begin{cases} \bullet \ e \in H \\ \bullet \ \forall (x,y) \in H^2 \quad x \star y^{-1} \in H. \end{cases}$
- 3. $\begin{cases} \bullet \ e \in H \\ \bullet \ \forall (x,y) \in H^2 \quad x \star y \in H \\ \bullet \ \forall x \in H \quad x^{-1} \in H. \end{cases}$

Remarque. Récrivons une des équivalences ci-dessus dans le contexte où on utilise la <u>notation additive</u>. Soit (G, +) un groupe dont l'élément neutre est noté 0 et H une partie de G. On a

$$H \text{ est un sous-groupe de } (G,+) \iff \begin{cases} 0 \in H \\ \forall (x,y) \in H^2 & x-y \in H. \end{cases}$$

Proposition 30 (Ensembles de nombres).

- 1. $(\mathbb{Q}, +)$ est un sous-groupe de $(\mathbb{R}, +)$, qui est lui-même un sous-groupe de $(\mathbb{C}, +)$.
- 2. \mathbb{R}_{+}^{*} est un sous-groupe de (\mathbb{R}^{*}, \times) .
- 3. \mathbb{U} et \mathbb{U}_n sont des sous-groupes de (\mathbb{C}^*, \times) .

Exemple 31 (Une intersection de sous-groupes est un sous-groupe).

Soient H et H' deux sous-groupes d'un groupe (G, \star) . Montrer que $H \cap H'$ est un sous-groupe de G.

Plus généralement, on peut prouver que si $(H_i)_{i\in I}$ est une famille de sous-groupes d'un même groupe G, alors $\bigcap_{i\in I} H_i$ est un sous-groupe de G.

Exemple 32 (Une union de sous-groupes n'est pas toujours un sous-groupe).

Montrer que $\mathbb{U}_2 \cup \mathbb{U}_3$ n'est pas un sous-groupe de (\mathbb{C}^*, \times) .

On note $H = \bigcup_{n \in \mathbb{N}^{\star}} \mathbb{U}_n$. Montrer que H est un sous-groupe de $(\mathbb{C}^{\star}, \times)$.

Exemple 33 (Centre d'un groupe).

Soit (G, \star) un groupe. On note

$$Z(G) = \{ x \in G \mid \forall a \in G \ x \star a = a \star x \}.$$

Montrer que Z(G) est un sous-groupe de G.

Proposition 34 (Sous-groupes de $(\mathbb{Z}, +)$ (programme spé)).

Pour $n \in \mathbb{N}$, on note

$$n\mathbb{Z} = \{ nk \mid k \in \mathbb{Z} \} .$$

Les sous-groupes de $(\mathbb{Z}, +)$ sont exactement les $n\mathbb{Z}$, avec $n \in \mathbb{N}$.

Plus précisément,

- 1. Pour tout $n \in \mathbb{N}$, $n\mathbb{Z}$ est un sous-groupe de $(\mathbb{Z}, +)$.
- 2. Si H est un sous-groupe de $(\mathbb{Z}, +)$ alors $\exists ! n \in \mathbb{N} \ H = n\mathbb{Z}$.

Exemple 35 ((*) Sous-groupes de $(\mathbb{R}, +)$).

Pour $a \in \mathbb{R}_+$, on note

$$a\mathbb{Z} = \{ak \mid k \in \mathbb{Z}\}.$$

Soit H un sous-groupe de $(\mathbb{R}, +)$.

Ou bien il existe un réel a positif tel que $H = a\mathbb{Z}$, ou bien H est dense dans \mathbb{R} .

2.3 Morphismes de groupes.

Définition 36.

Soient (G, \star) et (G', \top) deux groupes.

On appelle morphisme de groupe de G dans G' toute application $f:G\to G'$ telle que

$$\forall (x,y) \in G^2 \quad f(x \star y) = f(x) \top f(y).$$

Si de surcroît f est bijective, on dit qu'une telle application f est un **isomorphisme** de groupes. Un morphisme d'un groupe G vers lui même est appelé **endomorphisme** de G. Si un tel endomorphisme est bijectif, on parle d'**automorphisme** de G.

Définition 37.

On dit que deux groupes sont **isomorphes** s'il existe un isomorphisme du premier vers le deuxième.

Exemple 38.

- L'exponentielle réelle est un isomorphisme de groupes de $(\mathbb{R},+)$ dans $(]0,+\infty[,\times)$.
- L'exponentielle complexe est un morphisme de groupes de $(\mathbb{C}, +)$ dans (\mathbb{C}^*, \times) .
- $t \mapsto e^{it}$ est un morphisme de groupes de $(\mathbb{R}, +)$ dans (\mathbb{U}, \times) .
- Le logarithme népérien est un isomorphisme de groupes de $(]0, +\infty[, \times)$ dans $(\mathbb{R}, +)$.

Exemple 39.

Justifier que les groupes $(\mathbb{R}^2, +)$ et $(\mathbb{C}, +)$ sont isomorphes.

Proposition 40.

Soient G et G' deux groupes de neutres respectifs e et e', et $f: G \to G'$ un morphisme de groupes.

- 1. f(e) = e'.
- 2. $\forall x \in G \ f(x^{-1}) = (f(x))^{-1}$.
- 3. $\forall x \in G \ \forall p \in \mathbb{Z} \ f(x^p) = (f(x))^p$.
- 4. Si H est un sous-groupe de G alors f(H) est un sous-groupe de G'.
- 5. Si H' est un sous-groupe de G', alors $f^{-1}(H')$ est un sous-groupe de G.
- 6. Si f est un isomorphisme de G vers G', alors f^{-1} est un isomorphisme de G' vers G.

Remarques. 1. En notation additive, le résultat 2 s'écrit $\forall x \in G \ f(-x) = -f(x)$.

2. En notation additive, le résultat 3 s'écrit $\forall x \in G \ \forall p \in \mathbb{Z} \ f(px) = pf(x)$.

Définition 41.

Soient G et G' deux groupes de neutres respectifs e et e', et $f: G \to G'$ un morphisme de groupes.

1. On appelle **noyau** de f et on note Kerf l'ensemble

$$Ker f = \{x \in G \mid f(x) = e'\}.$$

2. On appelle **image** de f et on note Im f l'ensemble

$$\operatorname{Im} f = \{ y \in G' \mid \exists x \in G : y = f(x) \}.$$

Proposition 42.

Soient G et G' deux groupes de neutres respectifs e et e', et $f: G \to G'$ un morphisme de groupes.

1. Kerf est un sous-groupe de G et

$$f$$
 est injective \iff Ker $f = \{e\}$.

2. Im f est un sous-groupe de G' et

$$f$$
 est surjective \iff Im $f = G'$.

Donner le noyau et l'image des morphismes de groupes donnés en exemple plus haut.

3 Structure d'anneau.

3.1 Définitions et règles de calcul.

Définition 43.

On appelle **anneau** tout triplet $(A, +, \times)$, où A est un ensemble et + et \times des l.c.i. tels que

- (A, +) est un groupe abélien, de neutre 0_A .
- (A, \times) est un magma associatif et unifère, de neutre 1_A ,
- \bullet × est distributive par rapport à +.

Les lois + et \times sont appelées respectivement addition et multiplication de l'anneau A.

Si de surcroît \times est commutative, on dit que l'anneau A est commutatif.

Remarques. Soit $(A, +, \times)$ un anneau.

- 1. Par définition des éléments neutres, $\forall a \in A \ a + 0_A = 0_A + a = a$ et $1_A \times a = a \times 1_A = a$.
- 2. (A, +) étant un groupe, tout élément a de A est symétrisable pour +, c'est-à-dire admet un opposé -a tel que $a + (-a) = 0_A = (-a) + a$.
- 3. En revanche, tout élément de A n'est pas nécessairement symétrisable (inversible) dans (A, \times) et c'est d'ailleurs ce qui empêche (A, \times) d'être un groupe.
- 4. Généralement, A possède plus de deux éléments, sauf si $0_A = 1_A$ (A est alors réduit à $\{0_A\}$).

Exemples 44 (Ensembles de nombres).

 $(\mathbb{Z},+,\times), (\mathbb{Q},+,\times), (\mathbb{R},+,\times)$ et $(\mathbb{C},+,\times)$ sont des anneaux commutatifs.

Exemple 45 (Anneau de fonctions).

On rappelle que, pour X une partie de \mathbb{R} , $\mathcal{F}(X,\mathbb{R})$, ensemble des fonctions définies sur X et à valeurs réelles a été muni d'une addition et d'une multiplication + et \times de la manière suivante :

$$\forall f, g \in \mathcal{F}(X, \mathbb{R}) \quad f + g : \left\{ \begin{array}{ccc} X & \to & \mathbb{R} \\ x & \mapsto & f(x) + g(x) \end{array} \right. \text{ et } f \times g : \left\{ \begin{array}{ccc} X & \to & \mathbb{R} \\ x & \mapsto & f(x)g(x) \end{array} \right. .$$

Le triplet $(\mathcal{F}(X,\mathbb{R}),+,\times)$ est un anneau commutatif.

L'élément neutre pour + est la fonction nulle sur X.

L'élément neutre pour \times est la fonction constante sur X égale à 1.

En particulier $(\mathbb{R}^{\mathbb{N}}, +, \times)$ est un anneau commutatif : celui des suites réelles.

Exemples 46 (Pas des anneaux).

- $(2\mathbb{Z}, +, \times)$ n'est pas un anneau car...
- $(\mathcal{F}(\mathbb{R},\mathbb{R}),+,\circ)$ n'est pas un anneau car...

Règles de calcul. Soit $(A, +, \times)$ un anneau.

On rappelle les faits ci-dessous concernant les itérés d'un élément pour l'addition et la multiplication.

1. (A, +) étant un groupe, le nème itéré d'un élément a, noté na, est défini par

$$na = \underbrace{a + \ldots + a}_{n \text{ termes}}$$
 si $n \ge 1$ $na = \underbrace{(-a) + \ldots + (-a)}_{(-n) \text{ termes}}$ si $n \le -1$ et $0a = 0_A$.

On a aussi, pour tous $(a, b) \in A^2$ et $(p, q) \in \mathbb{Z}^2$,

$$pa + qa = (p+q)a$$
, $p(qa) = (pq)a$ $pa + pb = p(a+b)$,

la dernière égalité étant vraie par commutativité de +.

2. (A, \times) étant un magma <u>associatif</u>, le nème itéré d'un élément x, noté a^n , est défini par

$$a^n = \underbrace{a \times \ldots \times a}_{n \text{ facteurs}}$$
 si $n \ge 1$ et $a^0 = 1_A$.

On a aussi, pour tous $(a,b) \in A^2$ et $(m,n) \in \mathbb{N}^2$,

$$a^m \times a^n = a^{m+n}, \qquad (a^m)^n = a^{mn},$$

3. Si a est un élément <u>inversible</u> dans A, on peut alors définir la puissance nème de a pour n strictement négatif par $a^n = (a^{-1})^{-n}$. Les identités de (2) sont alors vraies pour $(m, n) \in \mathbb{Z}^2$.

12

Proposition 47.

Soit $(A, +, \times)$ un anneau. En utilisant la notation multiplicative pour la loi \times ,

- 1. $\forall a \in A \quad 0_A \times a = a \times 0_A = 0_A$.
- 2. $\forall (a,b) \in A^2$ a(-b) = (-a)b = -(ab).
- 3. $\forall (a,b) \in A^2 \quad (-a)(-b) = ab.$
- 4. $\forall (a,b) \in A^2 \quad \forall n \in \mathbb{Z} \quad a(nb) = (na)b = n(ab).$

Proposition 48 (Identités remarquables : si ça commute, d'accord).

Soit $(A, +, \times)$ un anneau et $(a, b) \in A^2$.

- 1. Si ab = ba, alors $\forall n \in \mathbb{N} \ (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$.
- 2. Si ab = ba, alors $\forall n \in \mathbb{N}^*$ $a^n b^n = (a b) \sum_{k=0}^{n-1} a^k b^{n-1-k}$.

En particulier: $\forall n \in \mathbb{N}^*$ $1_A - a^n = (1_A - a) \sum_{k=0}^{n-1} a^k$.

3.2 Groupe des inversibles dans un anneau.

Définition 49.

Dans un anneau $(A, +, \times)$, les **inversibles** sont les éléments de A inversibles pour la loi \times .

L'ensemble des éléments de A qui sont inversibles sera noté U(A).

Exemples 50.

- $U(\mathbb{Z}) = \{-1, 1\}.$
- $U(\mathbb{R}) = \mathbb{R}^*$.
- Pour X une partie de \mathbb{R} , $U(\mathcal{F}(X,\mathbb{R}))$ est l'ensemble des fonctions ne s'annulant pas sur X.

Proposition 51.

Si $(A, +, \times)$ est un anneau, $(U(A), \times)$ est un groupe. On l'appelle **groupe des inversibles**. On a notamment

 $\forall (a,b) \in (U(A))^2$ ab est inversible et $(ab)^{-1} = b^{-1}a^{-1}$,

3.3 Nilpotents dans un anneau.

Définition 52.

Dans un anneau $(A, +, \times)$ on dit d'un élément $a \in A$ qu'il est **nilpotent** s'il possède une puissance nulle, c'est-à-dire

$$\exists p \in \mathbb{N}^* \quad a^p = 0_A.$$

Exemple 53.

Soit $(A, +, \times)$ un anneau et $(a, b) \in A^2$.

- 1. Montrer que si a est nilpotent et si b commute avec a, alors ab est nilpotent.
- 2. Montrer que si ab est nilpotent, alors ba est nilpotent.

Exemple 54.

Soit $(A, +, \times)$ un anneau non réduit à $\{0_A\}$ et $a \in A$ un élément nilpotent.

- 1. Montrer que a n'est pas inversible.
- 2. Montrer $1_A a$ est inversible et exprimer son inverse.

3.4 Sous-anneaux, morphismes d'anneaux.

Proposition-Définition 55.

Soit $(A, +, \times)$ un anneau et B une partie de A. On dit que B est un sous-anneau de A si

- $\forall (a,b) \in B^2 \ a-b \in B$,
- $\bullet \ \forall (a,b) \in B^2 \ ab \in B,$
- $1_A \in B$.

Muni des lois induites par + et \times , B est un anneau.

Exemples 56.

- A est un sous-anneau de A. Si $0_A \neq 1_A$, alors $\{0_A\}$ n'est pas un sous-anneau de A
- \bullet Montrer que $\mathbb Z$ est le seul sous-anneau de $\mathbb Z.$

Exemple 57 (Anneau de Gauss).

Soit l'ensemble

$$\mathbb{Z}[i] = \left\{ a + ib \mid (a, b) \in \mathbb{Z}^2 \right\}.$$

Montrer que $(\mathbb{Z}[i], +, \times)$ est un anneau commutatif et déterminer ses éléments inversibles.

Définition 58.

Soient $(A, +, \times)$ et $(A', +, \times)$ deux anneaux.

On appelle morphisme d'anneaux de A dans A' toute application $f: A \to A'$ telle que

- $\forall (a,b) \in A^2 \ f(a+b) = f(a) + f(b),$
- $\forall (a,b) \in A^2$ f(ab) = f(a)f(b),
- $f(1_A) = 1_{A'}$.

Si de surcroît f est bijective, on dit qu'une telle application f est un **isomorphisme** d'anneaux.

Exemple 59.

La conjugaison

$$\operatorname{conj}: \left\{ \begin{array}{ccc} \mathbb{C} & \to & \mathbb{C} \\ z & \mapsto & \overline{z} \end{array} \right.$$

est un isomorphisme de l'anneau $(\mathbb{C}, +, \times)$ dans lui-même.

3.5 Anneaux intègres.

Définition 60.

Soit $(A, +, \times)$ un anneau. On dit d'un élément a de A qu'il est un diviseur de zéro si $a \neq 0_A$ et s'il existe un élément b dans $A \setminus \{0_A\}$ tel que $ab = ba = 0_A$.

Exemples 61.

- Dans l'anneau $(\mathbb{Z}, +, \times)$, il n'y a pas de diviseurs de zéro.
- Dans l'anneau $(\mathbb{R}^{\mathbb{R}}, +, \times)$, il existe des diviseurs de zéro. En exhiber un.

Définition 62.

On appelle anneau intègre tout anneau commutatif sans diviseurs de 0. Dans un tel anneau,

$$\forall (a,b) \in A^2$$
 $(ab = 0_A) \Longrightarrow (a = 0_A \text{ ou } b = 0_A).$

Exemples 63.

 \mathbb{Z} est un anneau intègre.

Dans les chapitres suivants, nous définirons deux anneaux importants :

- l'anneau des polynômes, $\mathbb{K}[X]$, qui sera un anneau intègre,
- pour $n \geq 2$, l'anneau de matrices $M_n(\mathbb{K})$, qui ne sera pas intègre.

4 Structure de corps.

4.1 Définitions et exemples.

Définition 64.

On appelle **corps** tout anneau commutatif $(K, +, \times)$, non réduit à $\{0_K\}$, dans lequel tout élément non nul est inversible.

Par définition, si K est un corps, $U(K) = K \setminus \{0_K\}$. Ce groupe commutatif pourra être noté K^* .

Exemples. $(\mathbb{Q}, +, \times)$, $(\mathbb{R}, +, \times)$ et $(\mathbb{C}, +, \times)$ sont des corps.

Proposition 65.

Tout corps est un anneau intègre. La réciproque est fausse.

Exemple 66.

Soit

$$\mathbb{Q}[\sqrt{2}] = \left\{ x \in \mathbb{R} \mid \exists (a, b) \in \mathbb{Q}^2, x = a + b\sqrt{2} \right\}.$$

Montrer que $\mathbb{Q}[\sqrt{2}]$ est un corps.

4.2 Notation fractionnaire dans un corps.

Soit $(K, +, \times)$ un corps.

Soient $a \in K$ et $b \in K^*$. b est inversible donc b^{-1} existe. K étant commutatif, on a $ab^{-1} = b^{-1}a$.

L'élément
$$ab^{-1}$$
 est noté $\frac{a}{b}$

Pour $(a,c) \in K^2$ et $(b,d) \in (K^*)^2$, on peut vérifier que

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} \qquad \qquad \frac{a}{b} \times \frac{c}{d} = \frac{ac}{bd} \qquad \qquad \frac{a}{b} = \frac{c}{d} \Longleftrightarrow ad = bc \qquad \qquad \frac{1}{a} = a^{-1}.$$

4.3 Corps des fractions d'un anneau intègre.

(Théorème 67.

Pour tout anneau intègre A, il existe un unique corps commutatif K contenant A et vérifiant

$$\forall x \in K \quad \exists a \in A \ \exists b \in A \setminus \{0_A\} \ x = \frac{a}{b}.$$

16

Le corps K est appelé $\operatorname{\mathbf{corps}}$ des fractions de l'anneau A.

Exemple. Le corps des fractions de \mathbb{Z} n'est autre que \mathbb{Q} .

Exercices

On rappelle que les exemples du cours (et ils sont nombreux dans celui-ci) sont autant d'exercices classiques (et corrigés) : n'hésitez pas à les refaire!

Groupes, sous-groupes, morphismes de groupes.

 $\overline{\text{D\'emo}}$ ntrer qu'il existe dans E un élément idempotent, c'est-à-dire un élément x tel que $x^2=x$.

17.2 $[\blacklozenge \diamondsuit \diamondsuit]$ Pour x et y dans]-1,1[, on pose $x \star y = \frac{x+y}{1+xy}$. Montrer que $(]-1,1[,\star)$ est un groupe abélien.

17.3 $[\blacklozenge \diamondsuit \diamondsuit]$ Soient (G, \star) un groupe et H un sous-groupe de G. Pour $a \in G$, on pose

$$aHa^{-1} = \{a \star h \star a^{-1}, h \in H\}.$$

Montrer que aHa^{-1} est un sous-groupe de G.

17.4 $[\diamond \Diamond \Diamond]$ Soit $(a_n)_{n \in \mathbb{N}} \in \mathbb{R}^{\mathbb{N}}$. Posons

$$H = \{x \in \mathbb{R} \mid \cos(a_n x) \to 1\}.$$

Montrer que H est un sous-groupe de $(\mathbb{R}, +)$.

17.5 [$\Diamond \Diamond \Diamond$] Soit l'ensemble d'applications

$$G = \{x \mapsto ax + b, a \in \mathbb{R}^*, b \in \mathbb{R}\}.$$

En vous appuyant sur un groupe connu, montrer que (G, \circ) est un groupe.

17.6] Soit G un groupe noté multiplicativement, et H et K deux sous-groupes de G. On définit

$$HK = \{x \in G \mid \exists h \in H \ \exists k \in K, x = hk\}.$$

Démontrer que HK est un sous-groupe de G si et seulement si HK = KH.

- 1. Pour tout $a \in G$, montrer que $\tau_a \in S_G$.
- 2. Montrer que $a \mapsto \tau_a$ est un morphisme injectif de G dans S_G .

17.8 $[\phi \phi \phi]$ Soit G un groupe. Montrer qu'une partie H finie, non vide et stable par la loi de G est nécessairement un sous-groupe de G.

17.9 $[\blacklozenge \blacklozenge \diamondsuit]$ Soit (G, \cdot) un groupe. On note Aut(G) l'ensemble des automorphismes de G. Pour $g \in G$, on note σ_g l'application $x \mapsto gxg^{-1}$.

- 1. Démontrer que $(\operatorname{Aut}(G), \circ)$ est un groupe.
- 2. Montrer que pour tout $g \in G$, $\sigma_g \in Aut(G)$.
- 3. Démontrer que l'application $\sigma: g \mapsto \sigma_g$ est un morphisme de groupes de G dans $\operatorname{Aut}(G)$.
- 4. Montrer que $Ker(\sigma) = Z(G)$, où G est le centre de G.

17.10 $[\blacklozenge \blacklozenge \blacklozenge]$ Soit (G, \cdot) un groupe fini et χ un morphisme de groupes de (G, \cdot) dans (\mathbb{C}^*, \times) . Calculer

$$S = \sum_{x \in G} \chi(x).$$

Anneaux, corps.

17.11 [♦♦♦]

Montrer que dans un anneau, la somme de deux éléments nilpotents qui commutent est nilpotent.

$$ab + ba = 1_A$$
 et $a^2b + ba^2 = a$

- 1. Montrer que $a^2b = ba^2$ et 2aba = a.
- 2. Montrer que a est inversible et que $a^{-1} = 2b$.

17.13 $[\blacklozenge \blacklozenge \diamondsuit]$ Soit E un ensemble. On définit sur E la différence symétrique

$$\Delta: \left\{ \begin{array}{ccc} E \times E & \to & E \\ (A,B) & \mapsto & A\Delta B = (A \cup B) \setminus (A \cap B) \end{array} \right..$$

- 1. Montrer que $(\mathcal{P}(E), \Delta)$ est un groupe commutatif.
- 2. Montrer que $(\mathcal{P}(E), \Delta, \cap)$ est un anneau commutatif.
- 3. Démontrer que si E possède au moins deux éléments, alors l'anneau $(\mathcal{P}(E), \Delta, \cap)$ n'est pas intègre.

17.14 $[\blacklozenge \blacklozenge \blacklozenge]$ On appelle anneau de Boole un anneau A dans lequel $\forall x \in A \ x^2 = x$.

- 1. Montrer que $(\{0,1\},+,\times)$ est un anneau de Boole (avec + définie telle que 1+1=0).
- 2. Montrer que pour un ensemble $E, (\mathcal{P}(E), \Delta, \cap)$ est un anneau de Boole.
- 3. Donner un exemple d'anneau de Boole infini.
- 4. Démontrer que pour tout élément x d'un anneau de Boole, $x + x = 0_A$ puis démontrer qu'un anneau de Boole est toujours commutatif.
- 5. Démontrer qu'il n'existe pas d'anneau de Boole à trois éléments.

Démontrer que A est un corps si et seulement si il possède exactement un élément nilpotent et exactement deux éléments idempotents (éléments x tels que $x^2 = x$).