Web and Intranet Performance Issues

Learning Objectives

- Server architectures and performance issues
- Web infrastructure components
- Web server workloads
- Bandwidth, latency, and traffic in Web applications
- Capacity planning issues

Web Server Performance Issues

Unpredictable nature of information retrieval and service request over the World-Wide web

- load spikes: 8 to 10 greater than avg.
- high variability of document sizes: from 10³ to 10⁷ bytes

Web Server Components

HTTP Contents: server . HTML TCP/IP . graphics . audio O.S. . video . other hardware

Combination of HTTP and TCP/IP

- HTTP defines a request-response interaction;
- HTTP is a ``stateless' protocol;
- One connection per object;
- TCP connection setup overhead;
- Delays due to protocols;
- Small Web objects and TCP ``"slow start" algorithm

HTTP request-response steps

- map the server to an IP address;
- establish a TCP/IP connection with the server;
- transmit the request (URL, method, etc);
- receive the response (HTML text or other information);
- close the TCP/IP connection.

HTTP 1.0 interaction

HTTP 1.1 interaction

HTTP 1.0 and 1.1 interaction

HTTP 1.0

HTTP 1.1

Where are the delays?

- Browser
 - R_{browser}
- Network
 - R_{network}
- Server
 - R_{server}
- User response time: R_r
 - $-R_r = R_{browser} + R_{network} + R_{server}$ or
 - $-R_r = R_{cache}$ if the document is in the user-cache

Anatomy of an HTTP transaction

Average Response Time

- Usually R_{cache} << R_{network} + R_{server}
- p_c denotes the fraction of time the data are found in the local cache
- R_{cache}: response time when the data are found in a local cache

$$R = p_c \times R_{cache} + (1-p_c) \times R_r$$

(example 4.3)

- 20% of the requests are serviced by the local cache
- local cache response time = 400 msec
- average response time for remote Web sites = 3 seconds

(example 4.3)

- 20% of the requests are serviced by the local cache
- local cache response time = 400 msec
- average response time for remote Web sites = 3 seconds

$$R = p_c \times R_{cache} + (1-p_c) \times R_r$$

$$R = 0.20 \times 0.4 + (1-0.20) \times 3.0$$

$$R = 2.48 \text{ sec}$$

(example 4.3)

 What if we increase the size of the local cache?

 Previous experiments show that tripling the cache size would raise the hit ratio to 45%.
 Thus,

(example 4.3)

 What if we increase the size of the local cache?

 Previous experiments show that tripling the cache size would raise the hit ratio to 45%.
 Thus,

$$R = p_c \times R_{cache} + (1-p_c) \times R_r$$

$$R = 0.45 \times 0.4 + (1-0.45) \times 3.0$$

$$R = 1.83 \text{ sec}$$

Bottlenecks

- As the number of clients and servers grow, overall performance is constrained by the performance of some components along the path from the client to the server.
- The components that limit system performance are called bottlenecks

 A home user is unhappy with access times to Internet services. To cut response time down, the user is considering replacing the processor of his/her desktop with one twice as fast.

What will be the response time improvement if I upgrade the speed of my desktop computer?

(example 4.4)

for an average page:

- avg. network residence time:
 - 7,500 msec
- avg. server residence time:
 - 3,600 msec
- avg browser time:
 - 300 msec
- $R_r = R_{browser} + R_{network} + R_{server} = 300+7,500+3,600$
- $R_r = 11,400 \text{ msec} = 11.4 \text{ sec}$

(cont. example 4.4)

Percentage of time:

$$%x = R_x / (R_{browser} + R_{network} + R_{server})$$

- browser = 300/11,400 = 2.14 %
- network = 7,500/11,400 = 65.79 %
- server = 3,600/11,400 = 31.57 %

(cont., example 4.4)

- The CPU upgrade affects mainly the browser time:
 - $R_{browser}^{N} \sim 1/2 \times R_{browser} = 1/2 \times 300 = 150 \text{ msec}$
- $R_{r}^{N} = R_{browser}^{N} + R_{network} + R_{server}$
- $R_r^N = 150 + 7,500 + 3,600 = 11.25 \text{ sec.}$
- Therefore if the speed of the PC were doubled, the response time would decrease only by

$$R_r/R_r^N = 11.40/11.25 = 1.3\%$$

Perception of Performance

- WWW user:
 - fast response time
 - no connection refused

- Web administrators:
 - high throughput
 - high availability

Need for quantitative measurements

WWW Performance Metrics (I)

- connections/second
- Mbits/second
- response time
 - user side
 - server side
- errors/second

WWW Performance Metrics (II)

Web site activity indicators

- Visit: a series of consecutive Web page requests from a visitor within a given period of time.
- Hit: any connection to a Web site, including in-line requests, and errors.
- Metrics
 - hits/day
 - visits/day
 - unique visitors/day
 - pages views/day

WWW Performance Metrics (III)

Web Advertising Measurements

- Exposure metrics (visits/day, pages/day)
 - site exposure
 - page exposure
 - banner exposure
- Interactivity metrics
 - visit duration time
 - inter-visit duration
 - visit depth (total # of pages a visitor is exposed during a single visit to a Web site)

Example of Performance Metrics

The Web site of a travel agency was monitored for 30 minutes and 9,000 HTTP requests were counted. We want to assess the server throughput.

3 types of Web objects

- HTML pages: 30% and avg. size of 11,200 bytes
- images: 65% and avg. size of 17,200 bytes
- video clips: 5% and avg. size of 439,000 bytes

Example of Performance Metrics

Throughput

- in terms of requests:
 - (No. of requests)/(period of time) =
 - $-9,000/(30 \times 60) = 5 \text{ requests/sec}$
- In terms of bits/sec per class
 - (total requests x class % x avg. size) / (period of time)

Example of Performance Metrics

- HTML throughput (Kbps)
 - $9,000 \times 0.30 \times (11,200 \times 8) / 1,800 = 131.25$
- Image throughput (Kbps)
 - $9,000 \times 0.65 \times (17,200 \times 8) / 1,800 = 436.72$
- Video throughput (Kbps)
 - $9,000 \times 0.05 \times (439,000 \times 8) / 1,800 = 857.42$

- Total throughput
 - 131.25 + 436.72 + 857.42 = 1,425.39 Kbps

Web infrastructure

Quality of Service

- As Web sites become a fundamental component of businesses, quality of service will be one of the top management concerns.
- The quality of the services provided by a Web environment is indicated by its service levels, namely:
 - response time
 - availability
 - predictability
 - cost

Quality of Service

- The problem of quality of service on the Web is exacerbated by the unpredictable nature of interaction of users with Web services. It is usual to see the load of a Web site being multiplied by 8 on the occurrence of a special event.
- How does management establish the service levels of a Web site?

Quality of Service

- Typical questions to help to establish the service level of a Web service:
 - Is the objective of the Web site to provide information to external customers?
 - Do your mission-critical business operations depend on the World Wide Web?
 - Do you have high-end business needs for which 24 hours-a-day, 7 days-a-week uptime and high performance are critical, or can you live with the possibility of Web downtime?

Web Proxy Architecture

Web Proxy Architecture

- A proxy acts as an agent, representing the server to the client and the client to the server.
- A proxy accepts request from clients and forwards them to Web servers.
- Once a proxy receives responses from remote servers, it passes them to clients.
- Proxies can be configured to cache relayed responses, becoming then a caching proxy.

Web Caching Proxy: an example

(example 4.6)

- A large company decided to install a caching proxy server on the corporate intranet. After 6 months of use, management wanted to assess the caching effectiveness. So, we need performance metrics to provide quantitative answer for management.
- <u>Cache A</u>: we have a cache that only holds small documents, with average size equal to 4,800 bytes. The observed hit ratio was 60%.
- <u>Cache B</u>: the cache management algorithm was specified to hold medium documents, with average size of 32,500 bytes. The hit ratio was 20%

Web Caching Proxy: an example

(example 4.6)

- The proxy was monitored during 1 hour and 28,800 requests were handled in that interval.
- Let us compare the efficiency of the two cache strategies by the amount of saved bandwidth
- SavedBandwidth = (No-of-Req.×Hit-Ratio ×Size)/Int.
- SavedBandwidth-A = (28,800 ×0.6×4,800 ×8)/3,600
 = 180 Kbps
- SavedBandwidth-B = (28,800 ×0.2×32,500 ×8)/3,600
 = 406.3 Kbps

Workload: dynamic Web pages

(example 4.8)

- The Web site of a virtual bookstore receives an average of 20 visitors per second. One out of 10 visitors places an order for books. Each order transaction generates a CGI script, which is executed on the Web server. The Webmaster wants to know what is the CPU load generated by the CGI script.
- Consider that the average CPU service demand of a CGI script is: D_{cpu} = 120 msec.
- Using the Service Demand Law:
- $U_{cpu} = X_{cgi} \times D_{cpu}$

Workload: dynamic Web pages

(example 4.8)

- $X_{cgi} = \lambda_{cgi} = VisitRate \times PercentageOfOrders$ = $20 \times (1/10) = 2 CGI/sec$
- $U_{cpu} = 2 \times 0.12 = 0.24 = 24\%$
- What would be the impact of replacing the CGI applications by servlets? Let us assume that Java servlet transactions are 30% less resource-intensive than CGI applications.

$$D_{cpu}^{s} = D_{cpu}^{cgi} \times 0.7 = 120 \times 0.7 = 84$$
 msec.

The CPU utilization due to servlets would be

$$U_{cpu} = 2 \times 0.084 = 0.168 = 16.8\%$$

Novel Features in the WWW

- The Web exhibits extreme variability in workload characteristics:
 - Web document sizes vary in the range of 10² to 10⁶ bytes
 - The distribution of file sizes in the Web exhibits heavy tails. In practical terms, heavy-tailed distributions indicate that very large values are possible with non-negligible probability.
- Web traffic exhibits a bursty behavior
 - Traffic is bursty in several time scales.
 - It is difficulty to size server capacity and bandwidth to support demand created by load spikes.

Novel Features in the WWW

- The manager of the Web site of a large publishing company is planning the capacity of the network connection.
- 1 million HTTP operations per day
- average document requested was 10 KB
- The required bandwidth (Kbps) is:
 HTTP op/sec × average size of documents (KB)
 11.6 HTTP ops/sec × 10 KB/HTTP op = 928 Kbps
- Assume that protocol overhead is 20%

Novel Features in the WWW

The actual throughput required is

$$928 \times 1.20 = 1.114 \text{ Mbps}$$

which can be provided by a T1 connection.

 Assume that management decided to plan for peak load. The hourly peak traffic ratio observed was 5 for some big news event. Then the required bandwidth is:

$$1.114 \times 5 = 5.57 \text{ Mbps}$$

which requires four T1 connections.

Capacity Planning of Web Servers

 It can be used to avoid some of the obvious and most common pitfalls: site congestion and lack of bandwidth. Typical capacity planning questions:

- ☐ Is the corporate network able to sustain the intranet traffic?
- □Will Web server performance continue to be acceptable when twice as many people visit the site?
- ☐ Are servers and network capacity adequate to handle load spikes?

Summary

- Web server problems
- Combination of HTTP and TCP/IP
- Simple examples using operational analysis
- Bottlenecks
- Perception of performance and metrics
- Quality of Service
- Web caching proxy