Colle 21 - MPSI Espaces Vectoriels

I. Sous-espace vectoriel

Exercice 1

Les parties suivantes sont-elles des sous-espaces vectoriels de \mathbb{R}^2 ?

- 1. $\{(x,y) \in \mathbb{R}^2 | x \le y \}$.
- 2. $\{(x,y) \in \mathbb{R}^2 | x = y \}$.
- 3. $\{(x,y) \in \mathbb{R}^2 | xy = 0 \}$.

Exercice 2

Les parties suivantes sont-elles ses sous-espaces vectoriels de $\mathbb{R}^{\mathbb{N}}$?

- 1. $\{(u_n) \in \mathbb{R}^{\mathbb{N}} | (u_n) \text{ born\'ee} \}$.
- 2. $\{(u_n) \in \mathbb{R}^{\mathbb{N}} | (u_n) \text{ monotone} \}.$
- 3. $\{(u_n) \in \mathbb{R}^{\mathbb{N}} | (u_n) \text{ convergente} \}$.
- 4. $\{(u_n) \in \mathbb{R}^{\mathbb{N}} | (u_n) \text{ arithmétique} \}$.

Exercice 3

Montrer que les parties de $\mathscr{F}([a;b],\mathbb{R})$ suivantes sont des sous-espaces vectoriels :

- 1. $F = \{ f \in \mathcal{C}^1([a;b], \mathbb{R}) | f'(a) = f'(b) \}.$
- 2. $G = \{ f \in \mathcal{C}^0([a; b], \mathbb{R}) | \int_a^b f(t) dt = 0 \}.$

Exercice 4

Soit $E = \mathscr{F}(\mathbb{R}, \mathbb{R})$, \mathscr{C} l'ensemble des fonctions de E croissantes et

$$\Delta = \{ f - g | f, g \in \mathscr{C} \} .$$

Montrer que Δ est un sous-espace vectoriel de E.

II. Algèbre linéaire

Exercice 5

Les familles suivantes de vecteurs de \mathbb{R}^3 sont-elles libres?

Si ce n'est pas le cas, former une relation linéaire liant des vecteurs :

- 1. (x_1, x_2) avec $x_1 = (1, 0, 1)$ et $x_2 = (1, 2, 2)$.
- 2. (x_1, x_2, x_3) avec $x_1 = (1, 0, 0)$ et $x_2 = (1, 1, 0)$ et $x_3 = (1, 1, 1)$.
- 3. (x_1, x_2, x_3) avec $x_1 = (1, 2, 1)$ et $x_2 = (2, 1, -1)$ et $x_3 = (1, -1, -2)$.

Exercice 6

On pose $f_1, f_2, f_3, f_4 : [0; 2\pi] \to \mathbb{R}$ les fonctions définies par

$$f_1(x) = \cos x$$
, $f_2(x) = x \cos x$, $f_3(x) = \sin x$, $f_4(x) = x \sin x$.

Montrer que la famille (f_1, f_2, f_3, f_4) est libre.

Exercice 7

Soient E un \mathbb{K} -espace vectoriel et $(u_1, u_2, ..., u_n, u_{n+1})$ une famille de vecteurs de E. Etablir :

- 1. Si $(u_1, u_2, ..., u_n)$ est libre et $u_{n+1} \notin \text{Vect}(u_1, u_2, ..., u_n)$ alors $(u_1, u_2, ..., u_n, u_{n+1})$ est libre.
- 2. Si $(u_1, u_2, ..., u_n, u_{n+1})$ est génératrice et $u_{n+1} \in \text{Vect}(u_1, u_2, ..., u_n)$ alors $(u_1, u_2, ..., u_n)$ est génératrice.

Exercice 8

On pose $\vec{e}_1 = (1, 1, 1), \vec{e}_2 = (1, 1, 0)$ et $\vec{e}_3 = (0, 1, 1)$. Montrer que $\mathscr{B} = (\vec{e}_1, \vec{e}_2, \vec{e}_3)$ est une base de \mathbb{R}^3 .

Exercice 9

Soit E un \mathbb{K} -espace vectoriel de dimension 3 et $e = (e_1, e_2, e_3)$ une base de E. On pose

$$\varepsilon_1 = e_2 + 2e_3$$
, $\varepsilon_2 = e_3 - e_1$ et $\varepsilon_3 = e_1 + 2e_2$

Montrer que $\varepsilon = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est une base de E.

II. Algèbre linéaire

Exercice 10

Soit E un \mathbb{K} -espace vectoriel de dimension 3 et $e = (e_1, e_2, e_3)$ une base de E.

$$\varepsilon_1 = e_1 + 2e_2 + 2e_3$$
 et $\varepsilon_2 = e_2 + e_3$

Montrer que la famille $(\varepsilon_1, \varepsilon_2)$ est libre et compléter celle-ci en une base de E.

Exercice 11

Soit E l'ensemble des fonctions $f: \mathbb{R} \to \mathbb{R}$ telles qu'il existe $a, b, c \in \mathbb{R}$ pour lesquels :

$$\forall x \in \mathbb{R}, f(x) = (ax^2 + bx + c)\cos x.$$

- 1. Montrer que E est un sous-espace vectoriel de $\mathcal{F}(\mathbb{R},\mathbb{R})$.
- 2. Déterminer une base de E et sa dimension.

Exercice 12

Soit $E = \mathbb{R}^{\mathbb{R}}$. Pour tout $n \in \mathbb{N}$, on pose $f_n : x \mapsto x^n$.

- 1. Montrer que $(f_0, ..., f_n)$ est libre.
- 2. En déduire $\dim E$.

Exercice 13

Soient $p \in \mathbb{N}^*$ et E l'ensemble des suites réelles p périodiques, i.e. l'ensemble des suites réelles (u_n) telles que

$$\forall n \in \mathbb{N}, u_{n+n} = u_n.$$

Montrer que E est un \mathbb{R} -espace vectoriel de dimension finie et déterminer celle-ci.

Exercice 14

Soient F, G deux sous-espaces vectoriels d'un \mathbb{K} -espace vectoriel E de dimension finie $n \in \mathbb{N}$. Montrer que si dim F + dim G > n alors $F \cap G$ contient un vecteur non nul.

Exercice 15

Dans \mathbb{R}^4 on considère les vecteurs

$$u = (1, 0, 1, 0), \quad v = (0, 1, -1, 0), \quad w = (1, 1, 1, 1), \quad x = (0, 0, 1, 0), \quad y = (1, 1, 0, -1).$$

Soit F = Vect(u, v, w) et G = Vect(x, y).

Quelles sont les dimensions de F, G, F + G et $F \cap G$?

Exercice 16 (ENS Lyon)

Montrer que deux sous-espaces vectoriels d'une espace vectoriel de dimension finie qui sont de même dimension ont un supplémentaire commun.

Exercice 17 (CENTRALE MP)

Soient \mathbb{K} un sous-corps de \mathbb{C} , E un \mathbb{K} -espace vectoriel de dimension finie, F_1 et F_2 deux sous-espaces vectoriels de E.

- 1. On suppose dim $F_1 = \dim F_2$. Montrer qu'il existe G sous-espace vectoriel de E tel que $F_1 \oplus G = F_2 \oplus G = E$.
- 2. On suppose que dim $F_1 \leq \dim F_2$. Montrer qu'il existe G_1 et G_2 sous-espaces vectoriels de E tels que

$$F_1 \oplus G_1 = F_2 \oplus G_2 = E \text{ et } G_2 \subset G_1.$$

Exercice 18

Déterminer le rang des familles de vecteurs suivantes de \mathbb{R}^4 :

- 1. (x_1, x_2, x_3) avec $x_1 = (1, 1, 1, 1), x_2 = (1, -1, 1, -1)$ et $x_3 = (1, 0, 1, 1)$.
- 2. (x_1, x_2, x_3, x_4) avec $x_1 = (1, 1, 0, 1), x_2 = (1, -1, 1, 0), x_3 = (2, 0, 1, 1)$ et $x_4 = (0, 2, -1, 1)$.

Exercice 19

Dans $E = \mathbb{R}^{]-1;1[}$ on considère :

$$f_1(x) = \sqrt{\frac{1+x}{1-x}}, \quad f_2(x) = \sqrt{\frac{1-x}{1+x}}, \quad f_3(x) = \frac{1}{\sqrt{1-x^2}}, \quad f_4(x) = \frac{x}{\sqrt{1-x^2}}$$

Quel est le rang de la famille (f_1, f_2, f_3, f_4) ?

I. Sous-espace vectoriel

Correction de l'exercice 1

- 1. $\{(x,y) \in \mathbb{R}^2 | x \leq y\}$ pas stable par multiplication scalaire : (0,1) appartient mais pas -(0,1).
- 2. $\{(x,y) \in \mathbb{R}^2 | x = y \}$ oui.
- 3. $\{(x,y) \in \mathbb{R}^2 | xy = 0\}$ pas stable par addition : (1,0) + (0,1).

Correction de l'exercice 2

- 1. oui
- 2. non
- 3. oui
- 4. oui

Correction de l'exercice 3

1. $F \subset \mathcal{F}(5a; b]\mathbb{R})$ et $0 \in F$.

Soient $\lambda, \mu \in \mathbb{R}$ et $f, g \in F$. La fonction $\lambda f + \mu g$ est de classe \mathcal{C}^1 sur [a; b] et

$$(\lambda f + \lambda g)'(a) = \dots = (\lambda f + \lambda g)'(b)$$

donc $\lambda f + \mu g \in F$.

2. idem.

Correction de l'exercice 4

 $\Delta \subset E$. 0 - 0 = 0, avec $0 \in \mathscr{C}$ donc $0 \in \Delta$.

Soient $h, h' \in \Delta$. On peut écrire h = f - g et h' = f' - g' avec $f, g, f', g' \in \mathscr{C}$. On a alors h + h' = (f + f') - (g + g') avec $(f + f'), (g + g') \in \mathscr{C}$.

 $\forall \lambda \geq 0$, on a $\lambda h = \lambda f - \lambda g$ avec $\lambda f, \lambda g \in \mathscr{C}$.

 $\forall \lambda < 0$, on a $\lambda h = (-\lambda g) - (-\lambda f)$ avec $(-\lambda f), (-\lambda g) \in \mathscr{C}$.

Dans les deux cas $\lambda h \in \Delta$.

II. Algèbre linéaire

Correction de l'exercice 5

- 1. oui
- 2. oui
- 3. non $x_3 = x_2 x_1$.

Correction de l'exercice 6

Supposons

$$af_1 + bf_2 + cf_3 + df_4 = 0$$

On a

$$\forall x \in [0, 2\pi], \quad (a+bx)\cos x + (c+dx)\sin x = 0.$$

Pour x = 0 et $x = \pi$ on obtient le système :

$$\begin{cases} a = 0 \\ a + b\pi = 0 \end{cases}$$

d'où a=b=0. De même en prenant $x=\frac{\pi}{2}$ et $x=\frac{3\pi}{2}$ on obtient c=d=0.

Correction de l'exercice 7

- 1. Supposons $\lambda_1 u_1 + ... + \lambda_n u_n + \lambda_{n+1} u_{n+1} = 0_E$.
 - Si $\lambda_{n+1} \neq 0$ alors $u_{n+1} = \frac{1}{\lambda_{n+1}}(\lambda_1 u_1 + \ldots + \lambda_n u_n)$ ce qui est exclu.

Donc $\lambda_{n+1} = 0$ donc $\lambda_1 u_1 + \dots + \lambda_n u_n = 0_E$ donc $\lambda_1 = \lambda_2 = \dots = \lambda_n = 0$ car la famille (u_1, \dots, u_n) est libre.

2. Soit $x \in E$. On peut écrire $x = \lambda_1 u_1 + ... + \lambda_n u_n + \lambda_{n+1} u_{n+1}$ car $(u_1, ..., u_{n+1})$ génératrice.

On peut écrire $u_{n+1} = \frac{1}{\lambda_{n+1}}(\lambda_1 u_1 + ... + \lambda_n u_n)$ car $u_{n+1} \in \text{Vect}(u_1, ..., u_n)$, on a donc $x = \mu_1 u_1 + ... + \mu_n u_n$ avec $\mu_i = \lambda_i + \lambda_{n+1} \mu_i$. On a donc $x \in \text{Vect}(u_1, ..., u_n)$.

Finalement $(u_1, ..., u_n)$ est génératrice.

II. Algèbre linéaire

Correction de l'exercice 8

Supposons $\lambda_1 \vec{e}_1 + \lambda_2 \vec{e}_2 + \lambda_3 \vec{e}_3 = \vec{0}$. On a

$$\begin{cases} \lambda_1 + \lambda_2 &= 0\\ \lambda_1 + \lambda_2 + \lambda_2 &= 0\\ \lambda - 1 + \lambda_3 & 0 \end{cases}$$

qui donne $\lambda_1 = \lambda_2 = \lambda_3 = 0$.

La famille \mathcal{B} est une famille libre formée de $3 = \dim \mathbb{R}^3$ vecteurs de \mathbb{R}^3 , c'est donc une base de \mathbb{R}^3 .

Correction de l'exercice 9

idem

Correction de l'exercice 10

Les vecteurs ε_1 et ε_2 ne sont pas colinéaires donc forme une famille libre.

Pour $\varepsilon_3 = e_2$ (ou e_3 mais surtout pas e_1), on montre que la famille $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ est libre et donc est une base de E.

Correction de l'exercice 11

- 1. $E = \text{Vect}(f_0, f_1, f_2)$ avec $f_0(x) = \cos x$, $f_1(x) = x \cos x$ et $f_2(x) = x^2 \cos x$. E est donc un sous espace-vectoriel et (f_0, f_1, f_2) en est une famille génératrice.
- 2. Supposons $\alpha f_0 + \beta f_1 + \gamma f_2 = 0$. On a $\forall x \in \mathbb{R}$, $(\alpha + \beta x + \gamma x^2) \cos x = 0$. Pour $x = 2n\pi$, on obtient, $\alpha + 2n\pi\beta + 4n^2\pi^2\gamma = 0$ pour tout $n \in \mathbb{N}$. Si $\gamma \neq 0$, alors $\alpha + 2n\pi\beta + 4n^2\pi^2\gamma \to \pm\infty$. C'est exclu, donc $\gamma = 0$. On alors $\alpha + 2n\pi\beta = 0$ pour tout $n \in \mathbb{N}$.

Pour n = 0, puis n = 1 on obtient successivement $\alpha = \beta = 0$.

Finalement (f_0, f_1, f_2) est une famille libre. C'est donc une base de E de dim E = 3.

Correction de l'exercice 12

1. Supposons $\lambda_0 f_0 + ... + \lambda_n f_n = 0$. On a $\forall x \in \mathbb{R}$:

$$\lambda_0 + \lambda_1 x + \dots + \lambda_n x^n = 0.$$

Si $\lambda_n \neq 0$ alors $\lambda_0 + \lambda_1 x + ... + \lambda_n x^n \to \pm \infty, x \to +\infty$, c'est absurde.

Nécessairement $\lambda_n = 0$ puis de même $\lambda_{n-1} = \dots = \lambda_0 = 0$.

Finalement $(f_0, ..., f_n)$ est libre.

2. Par suite $n+1 \leq \dim E$ pour tout $n \in \mathbb{N}$, donc dim $E = +\infty$.

Correction de l'exercice 13

On vérifie aisément que E est un sous-espace vectoriel de $\mathbb{R}^{\mathbb{N}}$.

Pour tout $0 \le i \le p-1$, on note e_i la suite définie par

$$e_i(n) = \begin{cases} 1 & \text{si } n = i \ [p] \\ 0 & \text{sinon} \end{cases}$$

On vérifie aisément que les suites $e_0, ..., e_{p-1}$ sont linéairement indépendantes et on a

$$\forall u \in E, u = \sum_{i=0}^{p-1} u(i)e_i$$

La famille $(e_0, ..., e_{p-1})$ est donc une base de E et par suite dim E = p.

Correction de l'exercice 14

On sait (formule de Grassmann) que

$$\dim(F+G) = \dim F + \dim G - \dim(F \cap G)$$

donc

$$\dim(F \cap G) = \dim F + \dim G - \dim(F + G)$$

or $\dim(F+G) \leq \dim E = n$, donc $\dim(F \cap G) > 0$.

Par suite $F \cap G$ possède un vecteur non nul.

II. Algèbre linéaire 5

Correction de l'exercice 15

(u, v, w) forme une famille libre donc une base de F. Ainsi dim F = 3.

(x,y) forme une famille libre donc une base de G. Ainsi dim G=2.

(u, v, w, x) forme une famille libre donc une base de \mathbb{R}^4 . Ainsi F + G = E et dim(F + G) = 4. Enfin

 $\dim(F \cap G) = \dim F + \dim G - \dim(F + G) = 1.$

Correction de l'exercice 16 (ENS Lyon)

Notons F et G les sous-espaces vectoriels de même dimension d'un espace vectoriel E.

Raisonnons par récurrence décroissante sur $n = \dim F = \dim G \in \{0, 1, ..., \dim E\}$.

Si $n = \dim E$, l'espace nul est un supplémentaire commun.

Supposons la propriété établie au rang $n+1 \in \{1, ..., \dim E\}$. Soient F et G deux sous-espaces vectoriels de dimension n.

Si F = G alors n'importe quel supplémentaire de F est convenable.

Sinon, on a $F \not\subset G$ et $G \not\subset F$ car ils sont de même dimension. Il existe donc $x \in F$ et $x' \in G$ tels que $x \not\in G$ et $x' \not\in F$.

On a alors $x + x' \notin F \cup G$.

Posons $F' = F \oplus \text{Vect}(x + x')$ et $G' = \oplus \text{Vect}(x + x')$.

Comme dim $F' = \dim G' = n + 1$, par hypothèse de récurrence, F' et G' possède un supplémentaire commun H et par suite $H \oplus \operatorname{Vect}(x + x')$ est supplémentaire commun à F et G.

Récurrence établie.

Correction de l'exercice 17 (Centrale MP)

- 1. idem exercice précédent
- 2. Soit F'_1 un sous-espace vectoriel contenant F_1 et de même dimension que F_2 .

 F'_1 et F_2 possèdent un supplémentaire commun G.

Considérons H un supplémentaire de F_1 dans F'_1 .

En posant $G_1 = H \oplus G$ et $G_2 = G$ on conclut.

Correction de l'exercice 18

- 1. (x_1, x_2, x_3) est libre donc de rang 3
- 2. $x_3 = x_1 + x_2$ et $x_4 = x_1 x_2$, on a

$$Vect(x_1, x_2, x_3, x_4) = Vect(x_1, x_2)$$

Comme (x_1, x_2) est libre, le rang de la famille est 2.

Correction de l'exercice 19

On a $f_1 = f_3 + f_4$ et $f_2 = f_3 - f_4$ donc

$$rg(f_1, f_2, f_3, f_4) = rg(f_3, f_4) = 2$$

car (f_3, f_4) est libre.