МОСКОВСКИЙ ИНСТИТУТ РАДИОТЕХНИКИ ЭЛЕКТРОНИКИ И АВТОМАТИКИ

Техническое руководство

"Система автоматизированной проверки и составления домашних работ по общей электротехнике"

<u>Руководитель проекта</u>: Цыпкин В. Н. <u>Разработано коллективом</u>: Верещагин И. Г.

Бриндеев А. В. Алешов В. А.

Содержание

Описание продукта
Соглашения
Техничес кие требования
Руководство пользователя
Описание программы
Авторы

Описание продукта

Данная программа разработана специально для кафедры ТИССУ МИРЭА под руководством Цыпкина В. Н. Она предназначена для упрощения работы с домашними работами (типовым расчетом по ОЭ III семестра МИРЭА). Программа включает в себя блок расчета с использованием исходных данных, их обработки, а так же их модификации. Информация храниться в базах данных по каждой работе в отдельности. Этот факт позволяет как вызывать уже ранее рассчитанные данные о конкретном варианте, так и их модифицировать путем перезаписи текущих данных. Так же в программу входит блок графического оформления, всплывающих подсказок, различных схем и рисунков, диаграмм и графиков, упрощающий работу с заданиями, а так же система проверки и исправления ввода.

Соглашения

Программа распространяется свободно, как есть ("free", "as is"). Программа распространяется включая все исходные коды программы согласно лицензии GPL (http://www.fsf.org/licensing/licenses/gpl.html)), OSI licence (http://www.opensource.org/). Так же в пакет входят техническое описание, методичка, звуковое сопровождение, необходимые для работы программы рисунки.

В процессе разработки были использованы:

OC:

MS Windows XP SR2 GNU Linux x86 MandrakeLinux 10.1, kernel-2.6.10

Программы:

GNU GCC 3.4.3

Borland BuilderX

Borland C++ Builder 6 Enterprise

Mathsoft Mathcad 11

GIMP 2.2

Adobe Photoshop 6.01

MS Word 2003

OpenOffice.org 1.1.3

KWrite

Технические требования

Программа была протестирована на х86-машинах:

- Intel Pentium 200Mhz MMX, 16Mb RAM, 2Mb Video
- Intel Celeron 400Mhz, 96Mb RAM, 4Mb Video
- AMD Athlon XP 1800+, 512Mb RAM, 64Mb Video
- AMD Athlon XP3200+ Barton, 1024Mb RAM, 128Mb Video
- Intel Pentium 4 3200Mhz Prescot, 2048Mb RAM, 128Mb Video
- Здесь машинка Антона (:Р)

В результате тестирования было установлено:

Минимальные требования:

166Mhz MMX, 16Mb RAM, 2Mb Video, клавиатура, мышь

Рекомендуемые требования:

Intel Pentium III и выше, 128Mb RAM, 64Mb Video, клавиатура, мышь

Программа оптимизирована под архитектуру х86 (i586).

Наличие ММХ – сопроцессора обязательно.

Программа оптимизирована под семейство ОС Windows NT. Рекомендовано использование в среде MS Windows XP.

Наличие каких-либо библиотек не требуется, программа скомпилирована вместе со всеми необходимыми библиотеками.

Для корректной работы программы необходимо, что бы она располагалась на жестком диске и пользователь имел право записи и чтения с этого жесткого диска.

Руководство пользователя

Все управление программой осуществляется с помощью клавиатуры и мыши. После запуска программы вы увидите главное меню, в котором вам будет предложено на выбор :

Нужные работы:

- 1. Закон полного тока
- 2. Закон электромагнитной индукции
- 3. Нелинейная магнитная цепь
- 4. Цепь постоянного тока
- 5. Цепь переменного тока

И еще два пункта:

- О программе
- Выход

Нажатие на первые шесть кнопок приведет к появлению нового окна. Нажатие же на пункт "Выход" приведет к немедленному завершению программы и выгрузке ее из памяти.

Пункт "О программе" содержит краткое описание программы.

При нажатии на первые пять кнопок вы окажетесь в новом окне, которое позволит работать с интересующей вас информацией. В этом случае главное меню останется на фоне, но станет неактивным и вы его уже больше не сможете выбрать до того момента, пока не закроете активное окно. Окно закрывается нажатием на крестик в правом верхнем углу окна. Окна не масштабируемые, но зато они переносятся в нужное место экрана.

Окно работы обычно состоит из:

- Переключателя вариантов
- Полей ввода информации (исходные данные)
- Полей вывода информации (нередактируемые поля)
- Сопровождающего рисунка/схемы
- Кнопки "Рассчитать"
- Кнопки "Сохранить"
- И, возможно, графика/диаграммы в зависимости от варианта

При взаимодействии с переключателем вариантов происходит выбор интересующего варианта (с 1 до 25). При этом происходит обновление полей (данные подгружаются из файлов). Переключатель может быть задействован как

и вводом нужного номера и последующего нажатия на клавишу "Enter", так и прилегающими стрелками вверх и вниз. Инкремент и декремент, естественно, установлены в позицию 1.

В поле ввода информации (обычно это верхние поля) вводятся исходные данные, предназначенные для расчета. Переключение между полями может производиться как мышкой, так и клавишей "Таb". В поля следует вводить только корректную информацию во избежание ошибки. Система проверки и исправления ввода корректирует ваш ввод, тем, что вы можете вводить как символ ".", так и "," разделяющий целую и дробную часть числа. Все остальное (кроме "-" в первой позиции) будет рассмотрено как ошибка и будет выдано предупреждение о некорректности ввода.

Поля вывода информации не редактируются, но с них могут быть сняты нужные значения. Поля вывода информации обновляются при изменении варианта задания и при нажатии на кнопку "Расчет".

Кнопка "Расчет" приведет к немедленному расчету введенных данных. Будьте уверены, что вы ввели правильные значения в поля ввода. После расчета информация будет рассчитана и выведена в поля вывода информации.

Кнопка "Сохранить" позволяет сохранить рассчитанные данные. Эти данные сохраняются и после завершения работы программы. Не забывайте после нажатия на кнопку "Расчет" сохранять данные, однако помните, что после нажатия на кнопку "Сохранить" старая информация о текущем варианте потеряется навсегда. Будьте внимательны!

Описание программы

Программа написана на языке C++, Borland Objective C++ (GUI). Пакет исходных кодов состоит из:

Файлы БД

- 1.dat Закон полного тока
- 2.dat Закон электромагнитной индукции
- 3.dat Цепь постоянного тока
- 4.dat Цепь переменного тока
- 5.dat Нелинейная магнитная цепь

GUI

lab1.cpp – коды реализации формы "Закон полного тока"

lab2.cpp – коды реализации формы "Закон электромагнитной индукции"

lab3.cpp – коды реализации формы "Цепь постоянного тока"

lab4.cpp – коды реализации формы "Цепь переменного тока"

lab5.cpp – коды реализации формы "Нелинейная магнитная цепь"

lab1.h – заголовочный файл формы "Закон полного тока"

lab2.h – заголовочный файл формы "Закон электромагнитной индукции"

lab3.h – заголовочный файл формы "Цепь постоянного тока"

lab4.h – заголовочный файл формы "Цепь переменного тока"

lab5.h – заголовочный файл формы "Нелинейная магнитная цепь"

author.h - заголовочный файл формы "О программе"

author.cpp - коды реализации формы "О программе"

main.h – заголовочный файл главной формы

main.cpp – коды реализации главной формы

oe_gui.h - заголовочный файл инициализации GUI

oe_gui.cpp - файл реализации инициализации GUI

Файлы логики (nanka logic)

header.h – содержит прототипы всех функций и классов

syserr.cpp – содержит файл реализации проверки и исправления ошибок

lab1Z.cpp – коды реализации логики "Закон полного тока"

lab2Z.cpp – коды реализации логики "Закон электромагнитной индукции"

lab3Z.cpp – коды реализации логики "Цепь постоянного тока"

lab4Z.cpp – коды реализации логики "Цепь переменного тока"

lab5Z.cpp – коды реализации логики "Нелинейная магнитная цепь"

Файлы проекта

oe_gui.bpr – линк-файл пректа Borland для программы

Файлы звукового сопровождения

sound.mid – мелодия, проигрывающаяся во время просмотра формы "О Программе"

Файлы рисунков (папка ріс)

Содержит все рисунки в формате JPEG, использующиеся в программе

Файлы подкачки

swap.tmp – используется во время чтения/записи на диск

Все модификации могут быть произведены согласно лицензии GPL. Вы можете заменить файлы рисунков, желательно соблюдая их формат и размер.

Программа написана в двух частях – в блоке логики (которая может быть использована с некоторыми изменениями и в ОС Linux, UNIX, QNX). И блоком GUI, ориентированным под компилятор Borland – Borland C++ Bulder 6 и ОС Windows.

Программа написана в виде классов и методов.

При этом следует указать, что при загрузке той или иной ее части (в GUI-варианте – формы) в память загружаются классы и остаются там до окончания работы программы, а не только до времени закрытия формы. Все классы существуют в единичной формы для экономии памяти ОЗУ, и нужные данные каждый раз подгружаются из файлов. Однако при необходимости можно переназначить класс и использовать его для множественных целей (как typedef, так и многомерными указателями).

В процессе общения блоков ЛОГИКА-GUI используется функции Change, GetData, NewLab.

Для подробного рассмотрения функций смотрите исходные коды программы.

В процессе работы используются следующие заголовочные файлы:

- iostream.h для консольного ввода-выода
- conio.h для консольного ввода-вывода
- stdio.h для консольного ввода-вывода

Как говорилось ранее, программу можно использовать и без GUI-блоков. Для этого следует либо воспользоваться другой средой (MS Visual, GTK, QT), либо эти заголовочные файлы понадобятся для работе в терминальном режиме.

- math.h для математических функций и констант (M_PI, atan(x) и т.п.)
- stdlib.h для обеспечения работы некоторых консольных и вычислительных функций
- string.h для работы проверки и для распознавания текста (не используется)
- alloc.h для работы с динамической памятью (не используется)
- fstream.h для работы с файлами в потоковом режиме
- vcl.h для инициализации графического интерфейса
- StdCtrls.hpp для работы с типом AnsiString из консольного режима
- Classes.hpp для работы с графическими классами
- Controls.hpp для управления GUI
- Forms.hpp для работы с формами
- CSPIN.h для использования переключателя варинтов
- Chart.hpp для создания диаграмм и графиков
- ExtCtrls.hpp для внешнего применения, менеджер расширений
- jpeg.hpp для работы с форматом JPEG
- TeEngine.hpp работа с системой GUI
- TeeProcs.hpp работа с системой GUI
- Series.hpp для создания графиков и диаграмм
- ArrowCha.hpp для создания графиков и диаграмм
- MPlayer.hpp для работы с музыкальными файлами

Программа вычисляет требуемые значения с погрешностью не более 0,1%. Все остальные погрешности считать физическими и систематическими (большинство расчетов ведется с допущениями, описанными в заданиях).

Авторы

<u>Шыпкин В. Н.</u> - руководитель и куратор проекта, кафедра ТИССУ, МИРЭА <u>Верещагин И. Г.</u> - главный разработчик и идейный лидер (Разработка классов, логики 1, 3, 4 заданий, GUI, оформление, техническая документация, GUI-диаграммы), ИП-4-03

<u>Бриндеев А. В.</u> - разработчик алгоритмов, оптимизация кода (разработка логики 2 и 4 задания, логика диаграммы), ИП-4-03

<u>Алешов В. А.</u> - разработчик и главный бета-тестер (исправления к 4 заданию, кодинг 3 задания, бета-тестинг, отлавливание багов), ИП-4-03