

Verfasser:

D. Gachet / HTA-FR - Telekommunikation

HTA-FR - Kurs Telekommunikation

Embedded systems 1 und 2

Interne Architektur (Abstrakt)

Klasse T-2 // 2017-2018

User & System

r0
r1
r2
r3
r4
r5
r6
r7
r8
r9
r10
r11
r12
r13(sp)
r14(lr)

cpsr

r15(pc)

37 interne Register mit 32 Bit, davon:

- ❖ 15 allgemeine Register (R0 R14)
- **❖** 1 Programmzähler (PC program counter)
- **❖** 1 Statusregister für den laufenden Status (CPSR)
- 15 spezifische Register für die verschiedenen Modi (banked registers)
- **❖** 5 Statusrerister für die Sicherung (SPSR)

			<u> </u>	
Fast				Privileged mode:
Interrupt				banked registers
Request				
r8 fig				
r9 fiq				
r10 fig	Interrupt			
r11_fiq	Request	Supervisor	Abort	Undefined
r12 fig	Request	Super visor	Aboit	Ondermed
r13_fiq	r13_irq	r13_svc	r13_abt	r13_und
r14_fiq	r14_irq	r14_svc	r14_abt	r14_und
spsr_fiq	spsr_irq	spsr_svc	spsr_abt	spsr_und

Prozessor-Statusregister

Auf das Statusregister kann aus allen Funktionsmodi des Prozessors zugegriffen werden. Es enthält die Bedingungsmarken (*flags*), die Steuerbit für Unterbrechungen (Interrupts), die Steuerbit für den Prozessor-Funktionsmodus und weitere Bit, die sich auf die Prozessorfunktionen beziehen.

31	30	29	28	27	26 2	5 24	23	20	19	16	15		10	9	8	7	6	5	4		0
N	Z	С	v	F	Res	J	Reserve	ed	GE[3:0)]		Reserve	d	E	Α	ı	F	Т		M[4:0]	

The "condition code flags"

The N, Z, C, and V (Negative, Zero, Carry and oVerflow) bits are collectively known as the condition code flags, often referred to as flags. The condition code flags in the CPSR can be tested by most instructions to determine whether the instruction is to be executed.

The "interrupt disable bits"

I, and F are the interrupt disable bits:

I bit Disables IRQ (Interrupt Request) interrupts when it is set.

F bit Disables FIQ (Fast Interrupt) interrupts when it is set.

The "mode" bits

M[4:0] are the mode bits. These determine the mode in which the processor operates (usr, sys, fiq, irq, svc, abt, und)

▶ N : Negative: wenn N==1, negative Zahl.

Dies ist das Vorzeichenbit der Zahlen im 2er-Komplement.

Z : Zero: wenn Z==1, Zahl == 0.

Im Allgemeinen mit Zählern benutzt,

um Schleifen auszuführen.

▶ C : Carry: wenn C==1, report.

Im Allgemeinen mit Zählern benutzt, um

Schleifen auszuführen (Zahlen ohne Vorzeichen).

▶ V : oVerflow: wenn V==1, Kapazitätsüberschreitung (Überlauf).

Hauptsächlich bei arithmetischen Operationen im 2er-Komplement

(Zahlen mit Vorzeichen) verwendet.

Codierung des Befehlssatzes*)

	31302928	2 7	26	2 5	2 4	23	22	21	20	19	18 17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Data processing immediate shift	cond [1]	0	0	0	(рс	ode		s		Rn		Rd				shift amou				nt sh		ft	0		Rı	n	
Miscellaneous instructions: See Figure A3-4	cond [1]	0	0	0	1	0	x	X	0	х	x x	x	x x x x		x x x		x x x		x	x x		x x		0	x	X	X	x
Data processing register shift [2]	cond [1]	0	0	0	(opc	ode		s	Rn			Rd				Rs				0 shift			1	1		Rm	
Miscellaneous instructions: See Figure A3-4	cond [1]	0	0	0	1	0	X	x	0	x	x x	x	x	X	x	x	X	X	x	0	X	x	1	X	X	X	x	
Multiplies: See Figure A3-3 Extra load/stores: See Figure A3-5	cond [1]	0	0	0	x	x	x	x	х	x	х х	x	x	x	X	x	x	X	x	x	1	x	x	1	x	x	x	x
Data processing immediate [2]	cond [1]	0	0	1		орс	ode		s		Rn Rd							rot	ate				im	me	diat			
Undefined instruction	cond [1]	0	0	1	1	0	x	0	0	х	x x	x	X	x x x x				x x x x				x x			x	x	x	x
Move immediate to status register	cond [1]	0	0	1	1	0	R	1	0		Mask	Mask SBO						rotate					im	me				
Load/store immediate offset	cond [1]	0	1	0	Р	U	В	w	L		Rn Rd										im	med	liat	e				
Load/store register offset	cond [1]	0	1	1	Р	U	В	w	L		Rn	Rn Rd					shift amou			our	nt shift		ft	0	Rn		m	
Media instructions [4]: See Figure A3-2	cond [1]	0	1	1	x	x	X	x	x	x	х х	x	X	x	x	x	x	x	x	x	x	х	x	1	x	x	x	x
Architecturally undefined	cond [1]	0	1	1	1	1	1	1	1	x	x x	x	x	x	x	x	x	x	X	x	1	1	1	1	x	x	x	x
Load/store multiple	cond [1]	1	0	0	Р	U	S	w	L		Rn								register list									
Branch and branch with link	cond [1]	1	0	1	L						24-bit offset																	
Coprocessor load/store and double register transfers	cond [3]	1	1	0	Р	U	N	w	L		Rn C						cp_num			1	8-			bit offset				
Coprocessor data processing	cond [3]	1	1	1	0	o	рсс	de	1		CRn	CRd		Rd		С	cp_num		n op		opcode2		0	CF		Rm		
Coprocessor register transfers	cond [3]	1	1	1	0	ор	cod	e1	L		CRn			Rd			cp_num			1	opcode2			1	1 CF		Rm	
Software interrupt	cond [1]	1	1	1	1						swi number																	
Unconditional instructions: See Figure A3-6	1 1 1 1	x	X	X	X	X	X	X	X	X	x x	X	X	X	X	X	X	X	X	X	X	x	x	X	X	X	X	X

Figure A3-1 ARM instruction set summary

Beispiel eines einfachen Befehls

Maschinencode 0xE3A05007

Aktion Speichern des Wertes 7 im Register R5