# Fundamentos de Data Stream Mining

Fabrício Enembreck PhD Encontro 1

# Introdução a DSM

#### Global Data Growth



Figura 6—Tendência de crescimento do volume de dados durante os anos (Fonte: UNECE Statistics wikis)

## Dados x Recursos

Dados



Recurso

Ciclo da Mineração de Dados

#### Processo

- Selecionar Dados
- Preparar Dados
- Gerar Modelo/Avaliar
- Implantar

#### Características

- Forte dependência de espec
- Quantidade de dados é finita
- Modelo em produção não muda (estático)
- Projeto de modelagem pode durar meses!



## Ciclo da Mineração de Dados (cont.)

- Modelo degrada
- Modelo precisa ser retreinado
- Dados precisam ser armazenados, mesmo sem ser usados
- Porque
  - Coisas mudam
  - Processo de geração de dados muda
  - Usuários mudam
  - Perfis de compra mudam

## Ciclo da Mineração de Dados (cont.)

#### Visualmente



## Ciclo da Mineração de Dados (cont.)

- Retreinar é fácil?
  - Por que modelo degradou?
  - Quando ocorreu(ram) a(s) mudança(s)?
  - Quais variáveis foram afetadas?
  - Qual porção de dados reflete a mudança?
  - Quais dados selecionar?
    - 6 meses? 12 meses?
    - Junta com dados antigos ou treina apenas com mais recentes? Mas afinal, o que significa "mais recentes"?
- Restrições computacionais e algoritmicas

## Mineração de Fluxo de Dados

#### Modelos online

- Treina com dados mesmo em produção
- Quantidade de dados pode ser infinita
- Mudanças devem ser detectadas automaticamente
- Alterações no modelo também são automáticas
- Modelos tornam-se dinâmicos
- Ciclo de vida praticamente infinito

# Característica de uma Stream de Dados

- Volume potencialmente infinito
- Dados podem ser voláteis
- Não pode ser armazenada inteiramente em memória
- Pode ter elevada dimensionalidade
- Podem ser fontes variadas
  - ecommerce, transações bancárias, sensores, cliques de usuários, fluxos de rede, mensagens de redes sociais, etc.
- Pode possuir dependência temporal

# Características de um Algoritmo de DSM

- Eficiente
  - Usa pouca memória
  - Usa pouco processamento
- Explora paralelismo (threads, GPU, big data frameworks)
- Precisa detectar mudanças
  - Explicitamente
  - Implicitamente
- Precisa adaptar o modelo gerado às mudanças

#### Características do Processo de DSM

- Cada instância é usada apenas uma vez e descartada
- Processamento deve ser rápido para evitar bufferização/perda de dados
- Precisa ser monitorado
- Reduz a dependência do especialista
- Ciclo de vida longo
- Modelo anytime

## Características do Processo de DSM



# Áreas Relacionadas a DSM

#### Marketing



- Calculando a média de uma variável x
  - Some x<sub>i</sub> em s para cada novo valor informado em um instante i
  - Quando precisar calcular a média, calcule s/n, sendo n a quantidade de observações

- Calculando o desvio padrão de uma variável x
  - Some x<sub>i</sub> em s para cada novo valor informado em um instante i
  - Some  $x_i^2$  em s' para cada novo valor informado em um instante i
  - Quando precisar calcular o desvio no instante n, calcule:

$$d_{x n} = sqrt((s' - (s^2/n)) / (n - 1))$$

- Calculando a correlação entre duas variáveis x e
  - Some  $x_i$  em  $x_i$  em  $y_i$  em  $y_i$  para cada novo valor informado de  $x_i$  em  $y_i$  em  $y_i$  para cada novo valor
  - Some  $x_i^2$  em xs' e  $y_i^2$  em ys' para cada novo valor informado de x e y em um instante i
  - Some  $(x_i * y_i)$  em p para ter o produto vetorial corr(x,y) = (p (xs\*yx) / n) / sqrt(xs'-xs'/n)\*sqrt(ys'-ys'/n)

- Média, desvio e correlação, mesmo sendo calculadas de forma incremental, são exatas
- Ajudam a descrever o comportamento de variáveis mesmo com quantidade infinita de observações

- Intervalo aproximado de uma variável
  - Como não é possível armazenar todos os valores para uma variável, muitas vezes é necessário estimar os seus limites (mínimo e máximo) a partir da média atual

Absolute approximation:  $\overline{X} - \epsilon \le \mu \le \overline{X} + \epsilon$ , where  $\epsilon$  is the absolute error;

Relative approximation:  $(1-\delta)\overline{X} \leq \mu \leq (1+\delta)\overline{X}$ , where  $\delta$  is the relative error.

- Intervalo aproximado de uma variável
- Hoeffding Bound

Theorem 2.2.3 (Hoeffding Bound) Let  $X_1, X_2, ..., X_n$  be independent random variables. Assume that each  $x_i$  is bounded, that is  $P(X_i \in R = [a_i, b_i]) = 1$ . Let  $S = 1/n \sum_{i=1}^{n} X_i$ , whose expected value is E[S]. Then, for any  $\epsilon > 0$ ,

$$P[S - E[S] > \epsilon] \le e^{-\frac{2n^2\epsilon^2}{R^2}} \tag{2.3}$$

From this theorem, we can derive the absolute error (Motwani and Raghavan, 1997):

$$\epsilon \le \sqrt{\frac{R^2 ln(2/\delta)}{2n}} \tag{2.4}$$

- Sendo R o range da variável e delta o fator de confiança esperado
- Isso permite dizer a média esperada é >= (r − e) com um fator de confiança, independente da distribuição da variável, para a média r observada

## Técnicas de Janelamento

- Sliding Windows
  - Tamanho fixo ou variável (mensal, diário, etc)
  - Processamento FIFO (Fila)
  - Estatísticas dependem do conteúdo da janela



## Técnicas de Janelamento

- Landmark Windows
  - Tamanho fixo ou variável (mensal, diário, etc)
  - Tamanho depende de um ponto inicial (landmark)
  - Chunks disjuntos de dados. Um novo landmark é usado para exluir elementos da janela anterior e iniciar uma nova



## Técnicas de Janelamento

- Damped Windows
  - Instâncias são ponderadas (mais recentes possuem maior peso, cor preta)
  - Função de decaimento exponencial.
    - Ex:  $2^{(-\alpha^*(t-t0))}$  para  $\alpha > 0$
  - Janela possui instâncias com peso > 0



# Atividade em Grupos

- Formar grupos de até 4 pessoas
- Entregar por email (uma única mensagem por equipe) até o final da aula
- Realizar Atividade 1 Blackboard