Homework 10: Integrability

This set of problems is from [11, p.46-47].

1. Let (M, J) be an almost complex manifold. Its **Nijenhuis tensor** \mathcal{N} is:

$$\mathcal{N}(v, w) := [Jv, Jw] - J[v, Jw] - J[Jv, w] - [v, w],$$

where v and w are vector fields on M, $[\cdot,\cdot]$ is the usual bracket

$$[v,w] \cdot f := v \cdot (w \cdot f) - w \cdot (v \cdot f)$$
, for $f \in C^{\infty}(M)$,

and $v \cdot f = df(v)$.

- (a) Check that, if the map $v \mapsto [v, w]$ is complex linear (in the sense that it commutes with J), then $\mathcal{N} \equiv 0$.
- (b) Show that $\mathcal N$ is actually a tensor, that is: $\mathcal N(v,w)$ at $x\in M$ depends only on the values $v_x,w_x\in T_xM$ and not really on the vector fields v and w.
- (c) Compute $\mathcal{N}(v, Jv)$. Deduce that, if M is a surface, then $\mathcal{N} \equiv 0$.

A theorem of Newlander and Nirenberg [89] states that an almost complex manifold (M,J) is a complex (analytic) manifold if and only if $\mathcal{N}\equiv 0$. Combining (c) with the fact that any orientable surface is symplectic, we conclude that any orientable surface is a complex manifold, a result already known to Gauss.

- 2. Let $\mathcal N$ be as above. For any map $f:\mathbb R^{2n}\to\mathbb C$ and any vector field v on $\mathbb R^{2n}$, we have $v\cdot f=v\cdot (f_1+if_2)=v\cdot f_1+i\,v\cdot f_2$, so that $f\mapsto v\cdot f$ is a complex linear map.
 - (a) Let \mathbb{R}^{2n} be endowed with an almost complex structure J, and suppose that f is a J-holomorphic function, that is,

$$df \circ J = i df$$
.

Show that $df(\mathcal{N}(v,w)) = 0$ for all vector fields v,w.

- (b) Suppose that there exist n J-holomorphic functions, f_1,\ldots,f_n , on \mathbb{R}^{2n} , which are independent at some point p, i.e., the real and imaginary parts of $(df_1)_p,\ldots,(df_n)_p$ form a basis of $T_p^*\mathbb{R}^{2n}$. Show that $\mathcal N$ vanishes identically at p.
- (c) Assume that M is a complex manifold and J is its complex structure. Show that $\mathcal N$ vanishes identically everywhere on M.

In general, an almost complex manifold has no J-holomorphic functions at all. On the other hand, it has plenty of J-holomorphic curves: maps $f:\mathbb{C}\to M$ such that $df\circ i=J\circ df$. J-holomorphic curves, also known as **pseudo-holomorphic curves**, provide a main tool in symplectic topology, as first realized by Gromov [49].