Lecture 6: Statistical Inference

Heidi Perry, PhD

Hack University
heidiperryphd@gmail.com

10/27/2016

Overview

- Inference for Numerical Data
- 2 Inference for Categorical Data
- Bias
- 4 Exercise Inference for numerical and categorical data

Statistical Inference

- Determine which point estimate or test statistic is useful.
- Identify an appropriate distribution for the point estimate or test statistic.
- Oreate a confidence interval or hypothesis test using the chosen distribution.

Distributions

- Normal distribution: large sample, independent observations
- Student's *t*-distribution: small sample, independent observations, observations come from a nearly normal distribution
- F-distribution: Compare means of more than two groups using ANOVA
- χ^2 distribution: categorical data

Student's *t*-distribution

Degrees of freedom: $\nu = n-1$ Test statistics: $T_{df} = \frac{\text{point estimate - null value}}{\textit{SE}}$

By Skbkekas - Own work, CC BY 3.0,

Analysis of Variability (ANOVA)

- Anova tests if means across many groups are equal.
- Null hypothesis: All means are equal. ($H_0: \mu_1 = \mu_2 = ...$)
- Alternative hypothesis: All means are not equal.
- F statistic:

$$F = \frac{\text{Variation among sample means}}{\text{Variation within groups}}$$

- To reject H_0 , $p value < \alpha$, requires $F \gg 0$.
- ANOVA can only provide evidence that sample means are different among subgroups, but not which means are different.
- With an $\alpha=0.05$, there is a 5% chance of Type 1 error for each ANOVA test performed. Performing multiple pair-wise tests to determine which sample means differ would lead to balooning error rate, so to find which means differ, use $\alpha^*=\alpha/K$ where $K=\frac{k(k-1)}{2}$, the number of possible pairs.

F-distribution

Degrees of freedom:

 $d_1 = k - 1$, k is the number of groups $d_2 = n - 1$, n is the total sample size

By IkamusumeFan - Own work, CC BY-SA 4.0

F-statistic

$$F=rac{ ext{Variation among sample means}}{ ext{Variation within groups}}=rac{ ext{MSG}}{ ext{MSE}}$$
 $SSG=\sum_{i=1}^k n_k (ar{x}_i-ar{x})^2$ $MSG=rac{SSG}{k-1}$ $SST=\sum_{i=1}^n (x_i-ar{x})^2$ $SSE=SST-SSG$ $MSE=rac{SSE}{dz-dz}$

Categorical Data

	nationality	response	year
0	Afghanistan	non-atheist	2012
1	Afghanistan	non-atheist	2012
2	Afghanistan	non-atheist	2012
3	Afghanistan	non-atheist	2012
4	Afghanistan	non-atheist	2012

What is the parameter of interest?

- **Parameter of interest**: Proportion of global population that is atheist, *p*.
- **Point estimate**: Proportion of sample who are atheist, \hat{p} .
- Confidence interval: $\hat{p} \pm ME = \hat{p} \pm \text{critical value} \times SE_{\hat{p}}$

$$SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

Central Limit Theorem for Proportions

Sample proportions are nearly normally distributed with mean equal to the population mean, p, and standard deviation equal to the standard error,

$$SE_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$
.

Conditions

- Independent observations
- At least 10 each "successes" and "failures"

Binomial distribution with p=0.10, n shown below histogram. [Diez, 2016]

χ^2 distribution

 χ^2 -test used for more than two categories.

hrefhttps://commons.wikimedia.org/w/index.php?curid=9884213By Geek3 - Own work, CC BY 3.0

Bias

- Selection
 - Data
 - Non-response (or voluntary response)
 - Convenience sample
- Confirmation
- Reporting
- Recall

References

David Diez, Christopher Barr, & Mine Çetinkaya-Rundel (2015) OpenIntro Statistics, OpenIntro

Recommended Reading

OpenIntro Statistics, Chapters 5-6

Exercise

 $Lesson 6_Statistical Inference.ipynb$

- Inference for numerical data
- Inference for categorical data