(3)

(3)

- 1. Suppose a list A contains the 30 students in a mathematics class, and a list B contains the 35 students in an English class, and suppose there are 20 names on both lists. Find the number of students:
- (a) only on list A, (b) only on list B, (c) on list A or B (or both), (d) on exactly one list. (2)
- 2. The following defines a relation on the positive integers \mathbf{N} : x is greater than y Check if the relation is (a) reflexive; (b) symmetric; (c) transitive. (2)
- 3. Let $S = \{\Phi, \{a\}, \{b\}, \{a,b\}\}\$ then is $[S, \subseteq]$ TOS? Give proper justification (2)
- 4. The hasse diagram of a lattice $L = \{x,a,b,c,d,e,y\}$ is shown below. Which of the following subsets of 'L' are sublattices of L? (3)
 - a. $\{x,a,b,y\}$
 - b. {x,a,c,y}
 - c. {x,a,e,y}
 - d. $\{x,d,e,y\}$

5. Solve the following:

consider the following functions on set of all integers $f(x) = \chi^2$, $g(x) = \chi^3$ and $h(x) = \lceil \frac{\pi}{2} \rceil$ which of the following is true?

Si) f, is one-one

S2) f is onto

S3) g is one-one.

S4) g is onto

S5) h is one-one.

- 6. Which of the following is not equivalent to p<->q
 - $(A) (p \lor q) \land (p \lor q)$
 - (C) $(\neg p \land q) \lor (p \land \neg q)$

- (B) $(\neg p \lor q) \land (q \rightarrow p)$
- (D) $(\neg p \land \neg q) \lor (p \land q)$

(3)

"Not all that glitters is gold"

Predicate glitters(x) is true if x glitters and predicate gold(x) is true if x is gold. Which one of the following logical formulae represents the above statement?

- (A) $\forall x$: glitters $(x) \Rightarrow \neg gold(x)$
- (B) $\forall x$: $gold(x) \Rightarrow glitters(x)$
- (C) $\exists x : gold(x) \land \neg glitters(x)$
- (D) $\exists x$: glitters $(x) \land \neg gold(x)$
- 8. Draw the planar representation of the following graphs:

9. Count the number V of vertices, the number E of edges, and the number E of regions of the Figure below and verify Euler's formula. Also find the degree E of the outside region. (3)

10. A binary operation on a set of integers is defined as $x \oplus y = x^2 + y^2$.

Which one of the following statements is TRUE about?

(3)

(3)

- (A) Commutative but not associative
- (B) Both commutative and associative
- (C) Associative but not commutative
- (D) Neither commutative nor associative
- 11. On a set A = {a,b,c,d} a binary operation * is defined as

*	a	b	c	d
a	a	c	b	d
Ъ	c	b	d	a
С	b	d	a	c
d	d	a	c	b

The relation is

- A. Commutative but not associative
- B. Neither commutative nor associative
- C. Both commutative and associative
- D. Associative but not commutative