CS201: Discrete Math for Computer Science
2022 Spring Semester Written Assignment # 5
Due: May 20th, 2022, please submit one pdf file through Sakai
Please answer questions in English. Using any other language will
lead to a zero point.

Plagiarism in an Assignment or a Quiz:

- For the first time: the score of the assignment or quiz will be zero
- For the second time: the score of the course will be zero
- When two assignments are nearly identical, the policy will apply to BOTH students, unless one confesses having copied without the knowledge of the other.

Any late submission will lead to a zero point with no exception.

- **Q. 1.** (5 points) Show that a subset of an *antisymmetric* relation is also *antisymmetric*.
- **Q. 2.** (5 points) Suppose that the relation R is symmetric. Show that R^* is symmetric.
- **Q. 3.** (5 points) Let R be a reflexive relation on a set A. Show that $R \subseteq R^2$.
- **Q. 4.** (5 points) Suppose that R is a *symmetric* relation on a set A. Is \overline{R} also symmetric? Explain your answer.
- **Q. 5.** (10 points) For two positive integers, we write $m \leq n$ if the sum of the (distinct) prime factors of the first is less than or equal to the product of the (distinct) prime factors of the second. For instance $75 \leq 14$, because $3+5 \leq 2 \cdot 7$.
 - (a) Is this relation reflexive? Explain.
 - (b) Is this relation antisymmetric? Explain.
 - (c) Is this relation transitive? Explain.

- **Q. 6.** (10 points) Give an examples of a relation R such that its transitive closure R^* satisfies $R^* = R \cup R^2 \cup R^3$, but $R^* \neq R \cup R^2$.
- **Q. 7.** (10 points) Which of the following are equivalence relations on the set of all people?
 - (1) $\{(x,y)|x \text{ and } y \text{ have the same sign of the zodiac}\}$
 - (2) $\{(x,y)|x \text{ and } y \text{ were born in the smae year}\}$
 - (3) $\{(x,y)|x \text{ and } y \text{ have been in the same city}\}$
- **Q. 8.** (10 points) Show that $\{(x,y)|x-y\in\mathbb{Q}\}$ is an equivalence relation on the set of real numbers, where \mathbb{Q} denotes the set of rational numbers. What are [1], $[\frac{1}{2}]$, and $[\pi]$?
- **Q. 9.** (10 points) Consider a relation \propto on the set of functions from \mathbb{N}^+ to \mathbb{R} , such that $f \propto g$ if and only if f = O(g).
 - (a) Is \propto an equivalence relation?
 - (b) Is \propto a partial ordering?
 - (c) Is \propto a total ordering?
- **Q. 10.** (10 points) Let $\mathbf{R}(S)$ be the set of all relations on a set S. Define the relation \leq on $\mathbf{R}(S)$ by $R_1 \leq R_2$ if $R_1 \subseteq R_2$, where R_1 and R_2 are relations on S. Show that $\mathbf{R}(s), \leq$) is a poset.
- **Q. 11.** (10 points) We consider partially ordered sets whose elements are sets of natural numbers, and for which the ordering is given by \subseteq . For each such partially ordered set, we can ask if it has a minimal or maximal element. For example, the set $\{\{0\}, \{0,1\}, \{2\}\}$, has minimal elements $\{0\}, \{2\}$, and maximal elements $\{0,1\}, \{2\}$.
 - (a) Prove or disprove: there exists a nonempty $R \subseteq \mathcal{P}(\mathbb{N})$ with no maximal element.
 - (b) Prove or disprove: there exists a nonempty $R \subseteq \mathcal{P}(\mathbb{N})$ with no minimal element.
 - (c) Prove or disprove: there exists a nonempty $T \subseteq \mathcal{P}(\mathbb{N})$ that has neither minimal nor maximal elements.

Q. 12. (10 points) Answer these questions for the partial order represented by this Hasse diagram.

- (a) Find the maximal elements.
- (b) Find the minimal elements.
- (c) Is there a greatest element?
- (d) Is there a least element?
- (e) Find all upper bounds of $\{a, b, c\}$.
- (f) Find the least upper bound of $\{a,b,c\}$, if it exists.
- (g) Find all lower bounds of $\{f,g,h\}$.
- (h) Find the greatest lower bound of $\{f,g,h\}$, if it exists.