1 Perceptrons

- Modell eines künstlichen Neurons
- Vorgänger der Sigmoid Neurons, die in heutigen modernen neuronalen Netzen benutzt werden

- Eingaben: $x_1, x_2, \dots, x_n \in \{0, 1\}$
- Weights: $w_1, w_2, \dots, w_n \in \mathbb{R}$ für jede Eingabe x_1 , der die jeweilige Eingabe gewichtet
- Output = $\begin{cases} 0, & \text{wenn } \sum_{j} w_j x_j \leq \text{Treshold, wobei Treshold} \in \mathbb{R} \\ 1, & \text{sonst} \end{cases}$
- vereinfachte Schreibweise:
 - $-\sum_j w_j x_j = w \cdot x,$ wobe
iwund xnun Vektoren beschreiben, dessen Komponenten die Gewichte und Eingaben sind
 - ziehe den Treshold auf die andere Seite der Ungleichung (Bias: b = -Treshold)
 - $-\Rightarrow$ Bias beschreibt, wie einfach es ist ein Perceptron auf 1 zu bringen

$$- \text{ Output} = \begin{cases} 0, & \text{wenn } w \cdot x + b \le 0 \\ 1, & \text{sonst} \end{cases}$$

• Mit Hilfe eines neuronalen Netzes aus Perceptons können kompliziertere Entscheidungen getroffen werden:

- neuronales Netz besteht aus drei Schichten: Input-Layer, Hidden-Layer und Output-Layer
- <u>Ziel:</u> bringe das Netz dazu zu lernen, d.h. ihre Weights und Bias-Werte anzupassen, sodass für jede Eingabe das erwartete Ergebnis erzielt wird

1

2 Sigmoid Neurons

- <u>Anforderung:</u> Eine kleine Änderung in den Weights/Bias-Werten führt nur zu einer kleinen Änderung in der Ausgabe
- \bullet \Rightarrow Perceptrons sind dafür nicht geeignet, da sie nur flippen können
- Sigmoid Neurons:
 - Eingaben: $x_1, x_2, ..., x_n \in [0, 1]$
 - Ausgabe: $\sigma(w \cdot x + b) = \sigma(z) = \frac{1}{1 + e^{-z}}$
 - Ähnlichkeit: $z \to \infty \Rightarrow \sigma(z) \approx 1$ und $z \to -\infty \Rightarrow \sigma(z) \approx 0$

- Beispiel: Schrifterkennung
 - Eingabe: 28 Pixel \times 28 Pixel = 784 Neuronen mit Intensität \in [0, 1]
 - Ausgabe: 10 Neuronen, die die Wahrscheinlichkeiten beschreiben, dass das Bild die entsprechende Zahl zeigt, d.h. Output >0.5
 - <u>Ziel:</u> approximiere die Funktion y(x), die die Trainingsdaten beschreibt, d.h. $y(x) = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0)^T$ für ein Bild x mit einer Null, usw.
 - <u>Methode:</u> minimiere Kostenfunktion $C(w,b)=\frac{1}{2n}\sum_x||y(x)-a(x)||^2$, wobei a(x) der Output des neuronalen Netzes bei Input x ist

2.1 Gradient descent

- Ziel: Lösung des Minimierungsproblems $C(v) = C(v_1, v_2, \dots, v_n)$
- Lösung:
 - definiere den Gradienten $\nabla C = \left(\frac{\partial C}{\partial v_1}, \frac{\partial C}{\partial v_2}, \dots, \frac{\partial C}{\partial v_n}\right)^T$ von C aus den partiellen Ableitungen $\frac{\partial C}{\partial v_i}$ von C
 - $\Rightarrow \Delta C \approx \nabla C \cdot \Delta v$
 - wähle $\Delta v = -\eta \nabla C$, dann gilt $\Delta C \approx -\eta \nabla C \cdot \nabla C = -\eta ||\nabla C||^2$

warum noch mal?

- * η wird das Lerntempo (engl. learning rate) genannt
- * da $||\nabla C||^2 \ge 0$ folgt, dass $\Delta C \le 0$ für alle $\eta \in \mathbb{R}^+$
- * wähle η so, dass wir nicht zu langsam lernen, aber dennoch eine gute Approximation erhalten

2.1.1 Gradient descent in neuronalen Netzen

- ∇C besteht aus partiellen Ableitungen der Komponenten w_k und b_l
- <u>Problem:</u> ∇C wird berechnet aus dem Mittelwert der Gradienten $\nabla C_x = \frac{1}{2}||y(x) a(x)||^2$ für alle Trainingsdaten $x \Rightarrow$ berechnungsintensiv
- Lösung: Stochastic gradient descent
 - <u>Idee:</u> berechne ∇C aus einer kleinen Anzahl m zufällig gewählter Trainingsdaten X_1, X_2, \dots, X_m
 - vorausgesetzt m ist groß genug, dann gilt $\frac{1}{m} \sum_{i=1}^{m} \nabla C_{X_i} \approx \frac{1}{n} \sum_{x} \nabla C_{x} = \nabla C_{x}$

3 Backpropagation

• berechnet den Gradienten ∇C_x der Kostenfunktion C_x

3.1 Notation

- w_{jk}^l beschreibt das Gewicht des kten Neurons im (l-1)ten Layer zu dem jten Neuron im lten Layer
- b_j^l beschreibt den Bias des jten Neurons im lten Layer
- a_j^l beschreibt die Ausgabe (Aktivierung) des j
ten Neurons im l
ten Layer
- $\Rightarrow a_i^l = \sigma((\sum_k w_{ik}^l a_k^{l-1}) + b_i^l)$
- <u>Intuition</u>: lässt uns die Aktivierung und den Bias als Vektor schreiben, die Gewichte zwischen zwei Layern als Matrix
 - Beispiel:
 - * Layer 1 besitzt 4 Neuronen, Layer 2 besitzt 3 Neuronen

$$* a^{1} = \begin{pmatrix} a_{1}^{1} \\ a_{2}^{1} \\ a_{3}^{1} \\ a_{4}^{1} \end{pmatrix}, b^{2} = \begin{pmatrix} b_{1}^{2} \\ b_{2}^{2} \\ b_{3}^{2} \end{pmatrix}, w^{2} = \begin{pmatrix} w_{11}^{2} & w_{12}^{2} & w_{13}^{2} & w_{14}^{2} \\ w_{21}^{2} & w_{22}^{2} & w_{23}^{2} & w_{24}^{2} \\ w_{31}^{2} & w_{32}^{2} & w_{33}^{2} & w_{34}^{2} \end{pmatrix}$$

- * $a^2 = \sigma(w^2 \cdot a^1 + b^2)$, wobe
i σ auf jeder Komponente einzeln angewendet wird
- $z^l \equiv w^l a^{l-1} + b^l$ wird als gewichtete Eingabe bezeichnet
- $\Rightarrow C_x = \frac{1}{2}||y(x) a^L(x)||^2$, wobei $a^L(x)$ der Vektor des letzten Layers bei Eingabe x beschreibt

3.1.1 Hadamard Produkt $s \odot t$

- elementweise Multiplikation zweier Vektoren
- Beispiel: $\begin{pmatrix} 1 \\ 2 \end{pmatrix} \odot \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 1 \cdot 3 \\ 2 \cdot 4 \end{pmatrix} = \begin{pmatrix} 3 \\ 8 \end{pmatrix}$

3.2 Die vier fundamentalen Gleichungen der Backpropagation

- $\delta^l_j \equiv \frac{\partial C_x}{\partial z^l_i}$ bezeichnet den Fehler im j
ten Neuron im l
ten Layer
 - Veranschaulichung:
 - 1. an dem jten Neuron im lten Layer kommt eine Eingabe z_j^l an
 - 2. es wird eine Kleine Veränderung Δz_j^l vorgenommen, sodass die Kosten minimiert werden
 - * wenn $\frac{\partial C_x}{\partial z_j^l}$ einen großen (negativen) Wert hat, dann können die Kosten reduziert werden, wenn Δz_j^l entgegengesetzt zur Steigung gewählt wird
 - *wenn $\frac{\partial C_x}{\partial z_i^l}$ nahe an Null, dann ist auch Δz_j^l nahe bei Null
 - 3. anstatt $\sigma(z_i^l)$ wird $\sigma(z_i^l + \Delta z_i^l)$ weitergeleitet
- Backpropagation berechnet δ^l_j und projiziert den Fehler auf $\frac{\partial C_x}{\partial w^l_{jk}}$ und $\frac{\partial C_x}{\partial b^l_j}$

1. Der Fehler δ^L im Output-Layer:

- \bullet die Komponenten von δ^L sind gegeben durch $\delta^L_j=\frac{\partial C_x}{\partial a_i^L}\sigma'(z_j^L)$
- $\frac{\partial C_x}{\partial a_j^L} = (a_j y_j)$ beschreibt, wie schnell sich die Kosten in der jten Ausgabe verändern
- $\bullet \ \Rightarrow$ wenn C_x unabhängig von dem Ausgabeneuron j, dann ist δ^l_j klein
- Matrix-Schreibweise: $\delta^L = \nabla_a C_x \odot \sigma'(z^L)$

2. Der Fehler δ^l in Abhängigkeit zu δ^{l+1} :

- $\delta^l = \left(\left(w^{l+1} \right)^T \cdot \delta^{l+1} \right) \odot \sigma'(z^l)$
- \bullet Angenommen, wir kennen den Fehler δ^{l+1}
- \bullet das Transponieren der Matrix w^{l+1} kann als rückwärts durch das Netz gehen verstanden werden
- 3. Abhängigkeit des Fehlers δ^l_j zur Kostenveränderung bzgl. des Bias b^l_j :
 - $\bullet \ \ \frac{\partial C_x}{\partial b_j^l} = \delta_j^l$
- 4. Abhängigkeit des Fehlers δ^l_j zur Kostenveränderung bzgl. des Gwichts $w^l_{jk}\!:$

4

$$\bullet \ \frac{\partial C_x}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l$$

3.3 Algorithmus

- 1. fülle das Netz mit beliebigen Gewichten und Bias-Werten
- 2. setze x als Eingabe des Netzes
- 3. berechne z^l und $a^l = \sigma(z^l)$ für jeden Layer
- 4. bestimme den Output-Error δ^L über die erste Gleichung
- 5. bestimme den Fehler δ^l rückwärts für jeden Layer lmit $l=\{L-1,L-2,\dots,2\}$
- 6. berechne die Gradienten $\frac{\partial C_x}{\partial w_{jk}^l}$ und $\frac{\partial C_x}{\partial b_j^l}$
- \bullet für eine zufällige Anzahlman Trainingsdaten gilt dann (Stochastic gradient descent):
 - 1. berechne den Fehler $\delta^{x,l}$ in jeder Schicht l und für jede Eingabe x
 - 2. verändere die Gewichte anhand folgender Regel:

$$- w^{l} \to w^{l} - \frac{\eta}{m} \sum_{x} \delta^{x,l} (a^{x,l-1})^{T}$$
$$- b^{l} \to b^{l} - \frac{\eta}{m} \sum_{x} \delta^{x,l}$$

warum?

4 Cross-Entropy

- Netz lernt wohlmöglich ziemlich langsam (braucht viele Iterationen, um die Trainingsdaten gut zu approximieren)
- Netz lernt langsam, wenn $\frac{\partial C}{\partial w} = (a-y)\sigma'(z)x$ und $\frac{\partial C}{\partial b} = (a-y)\sigma'(z)$ klein
- $\bullet \ \Rightarrow \sigma'(z)$ ist klein für große/kleine z-Werte
- kann verbessert werden, in dem eine andere Kostenfunktion benutzt wird ⇒ Cross-Entropy:

$$C = -\frac{1}{n} \sum_{x} y \ln a + (1 - y) \ln(1 - a)$$

4.1 Eigenschaften

- C > 0:
 - $-y, a, (1-y), (1-a) \in [0,1]$
 - $-\ln x$ ist negativ für $x \in [0,1]$
- wenn $a = \sigma(z) \approx y$, dann ist $C \approx 0$
- $\frac{\partial C}{\partial w_j} = -\frac{1}{n} \sum_x \left(\frac{y}{\sigma(z)} \frac{1-y}{1-\sigma(z)} \right) \frac{\partial \sigma}{\partial w_j} = -\frac{1}{n} \left(\frac{y}{\sigma(z)} \frac{1-y}{1-\sigma(z)} \right) \sigma'(z) x_j = \frac{1}{n} \sum_x \frac{\sigma'(z) x_j \cdot (\sigma(z) y)}{\sigma(z) (1-\sigma(z))}$
- mit $\sigma(z) = \frac{1}{1+e^{-z}}$ ergibt sich $\sigma'(z) = \sigma(z)(1-\sigma(z))$
- $\Rightarrow \frac{\partial C}{\partial w_j} = \frac{1}{n} \sum_x x_j (\sigma(z) y)$

- $\bullet\,$ die Gechwindigkeit, mit der das Gewicht lernt, ist abhängig ist abhängig von dem Fehler in der Ausgabe $\sigma(z)-y$
- für den Bias ergibt sich $\frac{\partial C}{\partial b} = \frac{1}{n} \sum_{x} (\sigma(z) y)$
- $\bullet \; \Rightarrow$ Lernrate ist unabhängig von $\sigma'(z)$