Alex Reibman

Financial Econometrics

Assignment 3

4/25/16

Question 1

A.

B.

 ${\bf C}.$ The following are linear regressions and Newey-West estimator results:

Linear regres	sion			Number of	obs =	741
				F(6, 734)	=	129.26
				Prob > F	=	0.0000
				R-squared	1 =	0.5235
				Root MSE	=	1.1435
		Robust				
ES1	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
YTM1	9613479	.0790553	-12.16	0.000	-1.116549	8061464
f12	4306752	.1457702	-2.95	0.003	7168516	1444989
f23	.9324971	.1537879	6.06	0.000	. 6305805	1.234414
f34	.2667452	.1395698	1.91	0.056	0072583	.5407488
f45	.2165648	.0959842	2.26	0.024	.0281284	.4050012
t	0001158	.0001888	-0.61	0.540	0004864	.0002548
_cons	6859436	.122609	-5.59	0.000	9266498	4452375
Linear regress	sion			Number of F(6, 734) Prob > F R-squared Root MSE	=	741 107.15 0.0000 0.4792 2.1835
ES2	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
YTM1	-1.149752	.1546732	-7.43	0.000	-1.453406	8460971
f12	-1.766706	.2834814	-6.23	0.000	-2.323237	-1.210175
f23	1.922048	.297792	6.45	0.000	1.337422	2.506674
f34	.5948563	.2661031	2.24	0.026	.0724423	1.11727
f45	.3901537	.1879981	2.08	0.038	.0210757	.7592318
t	000071	.0003517	-0.20	0.840	0007615	.0006194
_cons	9053892	. 2330085	-3.89	0.000	-1.362832	4479467

Linear re	egressi	on			Number of F(6, 734) Prob > F R-squared Root MSE		= = = =	741 86.31 0.0000 0.4229 3.1937
	ES3	Coef.	Robust Std. Err.	t	P> t	[95%	Conf.	Interval]
3	YTM1	-1.383661	.2281558	-6.06	0.000	-1.83	1577	9357452

		Robust				
ES3	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
YTM1	-1.383661	.2281558	-6.06	0.000	-1.831577	9357452
f12	-2.192685	.4167673	-5.26	0.000	-3.010883	-1.374487
f23	1.987904	.4501981	4.42	0.000	1.104074	2.871733
f34	.9110069	.3967731	2.30	0.022	.1320615	1.689952
f45	. 6202983	.2695941	2.30	0.022	.0910309	1.149566
t	.0005994	.0005048	1.19	0.235	0003917	.0015906
_cons	-1.135169	.3362718	-3.38	0.001	-1.795338	4749996

Linear regression	Number of obs	=	741
	F(6, 734)	=	76.40
	Prob > F	=	0.0000
	R-squared	=	0.3898
	Root MSE	=	4.0545

ES4	Coef.	Robust Std. Err.	t	P> t	[95% Conf.	Interval]
YTM1	-1.585066	.2848825	-5.56	0.000	-2.144347	-1.025784
f12	-2.499103	.5174275	-4.83	0.000	-3.514917	-1.483289
f23	2.470911	.553005	4.47	0.000	1.385251	3.556571
f34	.5847637	.4960238	1.18	0.239	3890309	1.558558
f45	.8843231	.3439494	2.57	0.010	.2090812	1.559565
t	.0013731	.0006463	2.12	0.034	.0001043	.0026419
_cons	-1.117042	.4197213	-2.66	0.008	-1.941039	2930446

Newey West:

Regression with Newey-West standard errors

maximum lag: 4

Number of obs = 741 F(6, 734) = 39.37 Prob > F = 0.0000

ES1	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
YTM1	9613479	.1267611	-7.58	0.000	-1.210205	7124904
f12	4306752	.2125997	-2.03	0.043	8480512	0132993
f23	.9324971	.2119743	4.40	0.000	.5163488	1.348645
f34	.2667452	.1720107	1.55	0.121	0709464	. 6044369
f45	.2165648	.1445131	1.50	0.134	0671435	.5002731
t	0001158	.0003637	-0.32	0.750	0008299	.0005982
_cons	6859436	.2355088	-2.91	0.004	-1.148295	2235925

Regression with Newey-West standard errors

maximum lag: 4

Number of obs = 741 F(6, 734) = 33.45 Prob > F = 0.0000

ES2	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
YTM1	-1.149752	.2489214	-4.62	0.000	-1.638434	6610687
f12	-1.766706	.4180871	-4.23	0.000	-2.587495	9459167
f23	1.922048	.4165182	4.61	0.000	1.104339	2.739757
f34	.5948563	.3122841	1.90	0.057	0182201	1.207933
f45	.3901537	.2784334	1.40	0.162	156467	.9367745
t	000071	.000669	-0.11	0.915	0013845	.0012424
_cons	9053892	.4486415	-2.02	0.044	-1.786163	0246156

Regression	with	Newey-West	standard	errors
maximum lac	r: 4			

Number	of	obs	=	741
F(6,		734)	=	25.74
Drob >	T.		_	0.0000

ES3	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
YTM1	-1.383661	.374407	-3.70	0.000	-2.118697	6486248
f12	-2.192685	. 6300582	-3.48	0.001	-3.429616	9557538
f23	1.987904	.6121092	3.25	0.001	.7862101	3.189597
f34	.9110069	.4786498	1.90	0.057	028679	1.850693
f45	. 6202983	.4019208	1.54	0.123	1687531	1.40935
t	.0005994	.0009505	0.63	0.528	0012665	.0024654
_cons	-1.135169	.6516604	-1.74	0.082	-2.414509	.1441717

Regression with Newey-West standard errors maximum lag: 4

Number	of	obs	=	741
F(6,		734)	=	22.18
Prob >	F		=	0 0000

		Newey-West				
ES4	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
YTM1	-1.585066	. 4754759	-3.33	0.001	-2.51852	6516108
f12	-2.499103	.7948212	-3.14	0.002	-4.059497	9387092
f23	2.470911	.754312	3.28	0.001	.9900448	3.951777
f34	.5847637	.6090827	0.96	0.337	6109882	1.780516
f45	.8843231	.5127665	1.72	0.085	1223407	1.890987
t	.0013731	.0012139	1.13	0.258	0010101	.0037562
_cons	-1.117042	.8091126	-1.38	0.168	-2.705493	.4714089

The regressions show that Yield to Maturity is generally a good estimator since its p-value is less than 0.05 for all excess returns. However, the forwards prices are less accurate. For the Excess returns at Tau=1 through 4, the forwards 1,2 and 2,3 have p-values less than 0.05. However, the forwards 3,4 and 4,5 lose their predictability.

According to the expectations hypothesis, the estimates in the regression should not be statistically different than o. However, the estimated coefficients are significant, and the forward rates seem to predict excess returns. The R² for the regressions are large. This means there is strong empirical evidence against the expectations hypothesis.

The forward yield on future bond become less accurate predictors of the excess yields. These regressions and Newey-West estimates indicate that the expectations hypothesis is false. The expectations hypothesis doesn't take into account the risk of holding long term bonds, and as a result these results indicate that such prior information will not

accurately predict the excess yields. The rejection is most likely due to the presence of time-varying risk premia.

D

D.						
. newey sprea	d1 gamma1 t,	lag(4)				
Regression wi	Number o	of obs =	741			
maximum lag:	F(2,	738) =	5.88			
				Prob > E	· =	0.0029
		Newey-West				
spread1	Coef.	Std. Err.	t	P> t	[95% Conf.	Interval]
gamma1	4014376	.3395861	-1.18	0.238	-1.068108	. 2652324
t	0012121	.0004329	-2.80	0.005	002062	0003622
_cons	.2984007	.1947037	1.53	0.126	0838385	. 6806399
. newey spread	12 gamma2 t, 1	Lag (4)				
Regression with Newey-West standard errors					f obs =	741
maximum lag: 4	ŀ				738) =	7.21
				Prob > F	=	0.0008
		Newey-West				
spread2		Std. Err.	t	P> t	[95% Conf.	Interval]
gamma2	6985031	. 4023865	-1.74	0.083	-1.488462	.0914555
t	0010707	.000392	-2.73	0.006	0018403	000301
_cons	.3231254	.173512	1.86	0.063	0175105	. 6637613
. newey spread	d3 gamma3 t,	lag(4)				
Regression wit	th Newey-West	standard er	rors	Number o	of obs =	741
Regression with Newey-West standard errors maximum lag: 4				F(2,		10.50
				Prob > F		0.0000
		Newey-West				
spread3	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
spread3 gamma3	Coef.	_	t -2.34	P> t 0.019	[95% Conf.	Interval]
		Std. Err.				

```
. newey spread4 gamma4 t, lag(4)
Regression with Newey-West standard errors
                                                Number of obs
                                                                            741
maximum lag: 4
                                                F(2, 738) =
                                                                          10.77
                                                Prob > F
                                                                         0.0000
                           Newey-West
                            Std. Err.
     spread4
                    Coef.
                                                P>|t|
                                                           [95% Conf. Interval]
      gamma4
                -1.032769
                            . 4777753
                                        -2.16
                                                0.031
                                                         -1.970729
                                                                     -.0948081
                -.0009715
                           .0003425
                                        -2.84
                                                0.005
                                                         -.0016439
                                                                     -.0002992
           t
                 .4049288
                            .1431687
                                         2.83
                                                0.005
                                                           .1238624
                                                                       . 6859952
       cons
```

Reject hypothesis since the hypothesis is gamma = 1, but none have coefficients equal to 1. In fact, they all have negative correlations. The expectations hypothesis predicts that the slope of the yield curve ought to be steep and that future long-term interest rates should rise. However, the regressions show that the rates are actually falling. This implies that there are time-varying bond risk and term premia. The p values for each of these regressions except for the first spread seem to imply some level of statistical significance.

This data once again suggests that we should reject the expectations hypothesis

These yield curves indicate that as years to maturity increase, there are increasing yet diminishing yields to coupon bonds. So, they both have positive slopes but relatively flat slopes. The curves show. The curvature for 4-7-2016 is much flatter, but it has some slight curvature that shows higher yields in the long term. The curve for 4-7-2014 shows

more curvature because of low yields in the short term higher yield levels in the long term.

Question 2.

A.

This graph would seem to indicate that futures and spot prices are pretty strongly correlated with one another. However, there are varying periods of backwardation and contango where the curves overlap each other. Generally, in periods of financial decline or when oil prices decline, there are periods of backwardation. When there are periods of uncertainty, there is contango.

Some points of interest on this graph include a period between 1990 and 1991 as well as in 2008. The spike in spot and futures prices in the early 90s could easily be attributed to the Gulf War. During the Gulf War, oil price expectations soared after the Kuwaiti oil well fires. Additionally, the 2008 financial crisis could be used to explain the steep decline in prices. Recent drops in oil prices could be due to advancements in technology that have made the supply of oil much cheaper.

В.

The oil market was mostly in backwardation over this period of time since the convenience yield is positive for the majority of this time period.

```
C.
```

```
. newey ScaleChange CYS yearyield t, lag(4)
```

Regression with Newey-West standard errors Number of obs = 1,316 maximum lag: 4 F(3, 1312) = 13.09 Prob > F = 0.0000

ScaleChange	Coef.	Newey-West Std. Err.	t	P> t	[95% Conf.	Interval]
CYS	-1.166703	.1940693	-6.01	0.000	-1.547423	7859833
yearyield	.013344	.015887	0.84	0.401	0178227	.0445106
t	0000744	.0000931	-0.80	0.424	0002571	.0001083
_cons	.1447866	.1069605	1.35	0.176	0650456	.3546188

The p-value for the CY/S coefficient is 0 which is less than 0.05 meaning that is statistically significant. However, the p value for the 1-year yield is 0.4 which is greater than 0.05 meaning it is not statistically significant.

The convenience yield is a fairly good predictor of future changes in the spot price of oil. The expected discounted future flow of convenience yields does a good job determining the spot commodity price. The convenience yield often plays the role of dividend because of this.