Math AA HL at KCA - Chapter 13 Notes

 $\operatorname{Tim\ Bao\ } 2023\text{--}2025$

February 26, 2024

Contents

1	Continuity	3
2	The Laws of Limit	4
3	Existence of Limits	4
4	Limits at Infinity	F

1 Continuity

A function is continuous if it can be drawn entirely over its domain without "lifting the pen".

The points of discontinuity are a set of points in the domain of a function at which the function is discontinuous.

2 The Laws of Limit

If $\lim_{x\to a} f(x) = L$ and $\lim_{x\to a} g(x) = M$, then

- Additive: $\lim_{x\to a} f(x) \pm g(x) = L \pm M$
- Multiplicative: $\lim_{x\to a} f(x) \cdot g(x) = LM$
- Reciprocal: $\lim_{x\to a} \left(\frac{f(x)}{g(x)}\right) = \frac{L}{M}$ if $M\neq 0$
- L'Hôpital's: $\lim_{x\to a} \left(\frac{f(x)}{g(x)}\right) = \lim_{x\to a} \left(\frac{f'(x)}{g'(x)}\right)$

Indeterminate forms and the corresponding ways of evaluation

- $\bullet \ \frac{\infty}{\infty} \longrightarrow$ comparison or L'Hôpital's rule
- $\frac{1}{0}$ \longrightarrow lateral limits

3 Existence of Limits

The limit $\lim_{x\to a} f(x) = L$ exists $\iff \lim_{x\to a^-} f(x) = \lim_{x\to a^+} f(x) = L$. I.e. approaching x=a from both positive and negative directions, the function converges to the *same limit* y=L.

The function diverges when there is not a limit or the limit is ∞ .

4 Limits at Infinity