НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ «МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ»

Лабораторная работа 5.2.1 «Опыт Франка-Герца»

Шумаков Иван Игоревич студент группы Б01-009 3 курс ФРКТ **Цель работы:** Методом электронного возбуждения измерить энергию первого уровня атома гелия в динамическом и статическом режимах.

В работе используются: Трёхэлектродная лампа ЛМ-2, батарея 4,5 В, микроамперметр, понижающий трансформатор, осциллограф, блок источников питания, вольтметр В7-22А

1 Теоретические положения

Опыт Франка-Герца подтверждает существование дискретных уровней энергии атомов. Разреженный одноатомный газ заполняет трёхэлектродную лампу. Электроны, испускаемые разогретым катодом, ускоряются в постоянном электрическом поле, созданном между катодом и сетчатым анодом лампы. Передвигаясь от катода к аноду, электроны сталкиваются с атомами гелия.

- энергия электрона недостаточна, чтобы возбудить/ионизировать атом -> ynpysoe столкновение, электрон не теряет энергию
- при большой разности потенциалов энергия электрона достаточна для возбуждения атомов -> *неупругое столкновение*, кинетическая энергия передаётся одному из атомных электронов, в результате чего происходит:
 - возбуждение переход одного из атомных электронов на свободный энергетический уровень
 - ионизация отрыв электрона от атома

Рис. 1. Схема опыта Франка и Герца

Рис. 2. Схематический вид зависимости тока коллектора от напряжения на аноде

Объясним вид зависимости тока коллектора (измеряется микроамперметром) от напряжения на аноде. При увеличении потенциала анода ток в лампе сначала растёт (зависимость, подобная ВАХ вакуумного диода). Когда энергия электронов становится достаточной для возбуждения атомов, ток коллектора резко уменьшается. Это происходит потому, что при неупругих соударениях с атомами электроны теряют свою энергию и не могут преодолеть задерживающее напряжение (около 1 В) между анодом и коллектором. При дальнейшем увеличении потенциала ток коллектора вновь возрастает: электроны, испытавшие неупругие соударения, при дальнейшем движении к аноду успевают набрать энергию, достаточную для преодоления задерживающего потенциала. Следующее замедление роста тока происходит в момент, когда часть электронов неупруго сталкивается с атомами два раза. Таким образом, на кривой зависимости тока коллектора от напряжения анода имеется ряд максимумов и минимумов, отстоящих друг от друга на равные расстояния, равные энергии первого возбуждённого состояния.

2 Ход работы

2.1 Динамический метод

В данном опыте были получены осциллограммы, характеризующие изменение тока коллектора от напряжения на аноде.

Рис. 3. осциллограмма при 4В

Рис. 4. осциллограмма при 6В

Рис. 5. осциллограмма при 9В

По графикам были определены расстояния между максимумами: По-

$U_{\text{коллектор}}$ [В]	$\Delta U_{\text{максимумы}}$ [В]
4	16
6	16
9	15

грешность определения расстояний между максимумами равна:

$$\Delta = 1[B] \qquad \delta = 0.07 \tag{1}$$

Таким образом энергия первого уровня атома гелия равна:

$$E_H = (16 \pm 1)[9B]$$
 (2)

2.2 Статический метод

В данном опыте были измерены значения тока коллектора и разности потенциалов в камере. По этим данным были построены графики и по ним получены расстояния между экстремумами.

Расстояние между максимумами и минимумами:

$U_{\text{коллектор}}$ [В]	$\Delta U_{\text{максимумы}}$ [В]	$\Delta U_{\text{минимумы}}$ [В]
4	17	23.6
6	18.5	21.3
9	17.4	19.4

Экспериментальные данные:

4B		6B			9B	
U[B]	I [mA]	U[B]	I [мA]		U[B]	I [MA]
4.25	0.062	2.60	0.019		5.28	0.015
6.25	0.094	6.05	0.066		10.0	0.090
8.14	0.127	9.12	0.120		12.6	0.133
10.8	0.171	12.3	0.169		14.9	0.167
14.6	0.223	16.0	0.221		17.4	0.203
17.5	0.258	16.7	0.228		19.5	0.228
17.9	0.262	17.4	0.239		20.7	0.235
18.7	0.269	18.1	0.249		21.6	0.236
19.7	0.274	19.1	0.258		22.5	0.233
21.0	0.274	20.0	0.263		24.0	0.203
21.9	0.271	21.0	0.263		24.3	0.183
22.3	0.261	21.9	0.257		24.5	0.098
22.7	0.251	22.5	0.252		25.2	0.078
23.0	0.221	23.2	0.236		26.5	0.071
23.3	0.211	23.4	0.221		27.6	0.077
24.3	0.213	23.5	0.205		28.8	0.093
24.7	0.218	23.8	0.169		29.6	0.112
25.4	0.232	24.8	0.144		30.6	0.138
26.3	0.249	25.8	0.152		31.6	0.160
26.8	0.259	27.7	0.194		33.8	0.207
27.6	0.275	29.0	0.220		35.8	0.240
28.5	0.293	29.9	0.240		37.0	0.250
29.4	0.309	31.9	0.277		38.6	0.255
32.1	0.359	33.4	0.306		39.4	0.253
33.8	0.389	35.0	0.333		41.1	0.241
35.0	0.409	36.9	0.346		42.9	0.229
37.3	0.419	39.0	0.347		44.4	0.218
38.5	0.419	40.9	0.330		46.4	0.201
39.4	0.411	42.9	0.316		48.2	0.196
40.5	0.400	44.5	0.308		50.1	0.192
40.9	0.395	46.1	0.305		51.7	0.199
41.7	0.391	47.7	0.308		52.7	0.204
42.7	0.387	49.4	0.317			
44.5	0.388	51.6	0.330			
45.2	0.390	53.1	0.343			
49.4	0.417	56.0	0.370			