

Varianta 5

Subjectul I.

- **a)** $AB = 2\sqrt{2}$.
- **b**) Centrul de greutate al triunghiului ABC este punctul G(1,1).
- c) Aria cercului este $S = 10\pi$.

$$\mathbf{d}) \left| \left(\cos \frac{\pi}{5} + i \cdot \sin \frac{\pi}{5} \right)^{10} \right| = 1$$

- e) Cele două curbe au două puncte comune.
- **f**) Ecuația are o singură soluție, $x = \frac{\pi}{2}$.

Subjectul II.

- 1
- **a**) $x \in \{-3, 3\}.$
- **b**) f(1) + f(2) + ... + f(10) = 395.
- c) Probabilitatea căutată este $p = \frac{2}{3}$.
- **d)** $a_{10} = a_1 \cdot q^9 = 2$.
- e) Suma coeficienților dezvoltării este 81.
- 2
- a) $f'(x) = e^x 1$, $\forall x \in \mathbf{R}$.
- **b**) Deoarece f'(x) < 0, $\forall x \in (-\infty, 0)$, funcția f este strict descrescătoare pe $(-\infty, 0)$.
- c) $f''(x) = e^x > 0$, $\forall x \in \mathbf{R}$, deci funcția este convexă pe \mathbf{R} .
- **d**) x = 0 este punct de minim global pentru f, deci $\forall x \in \mathbf{R}$, $f(x) \ge f(0) = 0$.
- $e) \lim_{x\to\infty}\frac{f(x)}{x^2}=\infty.$

Subjectul III.

- a) Evident.
- **b)** $f(\sqrt[3]{2}) = 0$ și $f \in \mathbf{Q}[X] \implies f \in H$.
- c) Pentru $f_1, f_2 \in H$, avem $(f_1 f_2)(\sqrt[3]{2}) = 0$, deci $f_1 f_2 \in H$.
- **d**) Considerăm $a, b, c \in \mathbf{Q}$, astfel încât $a\sqrt[3]{4} + b\sqrt[3]{2} + c = 0$.

Înmulțind relația anterioară cu $\sqrt[3]{2}$ obținem și $b\sqrt[3]{4} + c\sqrt[3]{2} + 2a = 0$.

Reducându-l pe $\sqrt[3]{4}$ din egalitățile precedente, deoarece $a,b,c\in\mathbf{Q}$, obținem $abc=b^3=2a^3$ și apoi a=b=c=0.

e) Dacă $g \in \mathbf{Q}[X]$, g = aX + b, cu $a, b \in \mathbf{Q}$, $a \neq 0$, din $g(\sqrt[3]{2}) = 0$ rezultă $\sqrt[3]{2} \in \mathbf{Q}$, fals.

Dacă $g \in \mathbf{Q}[X]$, $g = aX^2 + bX + c$, cu $a, b, c \in \mathbf{Q}$, $a \neq 0$, din $g(\sqrt[3]{2}) = 0$ și din punctul **d**) obținem că a = 0, fals.

Aşadar, nici un polinom de grad 1 sau 2 din $\mathbf{Q}[X]$ nu se află în mulțimea H.

f) Considerăm $f \in H$, $f = aX^3 + bX^2 + cX + d$, cu $a, b, c, d \in \mathbf{Q}$, $a \ne 0$.

$$f(\sqrt[3]{2}) = 0 \implies b = c = d + 2a = 0 \implies f = a \cdot (X^3 - 2).$$

g) Evident, avem $M = \{(x^3 - 2) \mid q \mid q \in \mathbb{Q}[X]\} \subset H$

Fie $f \in H$. Din teorema împărțirii cu rest, există și sunt unice $q \in \mathbb{Q}[X]$ și $a, b, c \in \mathbb{Q}$, astfel ca $f = (X^3 - 2) \cdot q + aX^2 + bX + c$.

Din $f(\sqrt[3]{2}) = 0$ rezultă $a\sqrt[3]{4} + b\sqrt[3]{2} + c = 0$ și folosind punctul **d**) se obține că a = b = c = 0, deci $f = (X^3 - 2) \cdot q$, adică și $H \subset M$.

În concluzie, $H = \{(x^3 - 2) \cdot q \mid q \in \mathbf{Q}[X]\}$.

Subjectul IV.

- a) Calcul direct.
- **b)** g'(x) < 0, $\forall x > 0$, deci g este strict descrescătoare pe $(0, \infty)$.

c)
$$g(x) = \frac{1}{x^2 + x} > 0$$
, $\forall x > 0$.

d) Pentru $n \in \mathbb{N}^*$, avem:

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + + \dots + \frac{1}{n \cdot (n+1)} = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{n} - \frac{1}{n+1}\right) = \frac{n}{n+1}.$$

e) Pentru $n \in \mathbb{N}^*$, funcția f este o funcție Rolle pe [n, n+1] și din teorema lui

Lagrange, există $c_n \in (n, n+1)$ astfel ca $\frac{f(n+1)-f(n)}{n+1-n} = f'(c_n)$, de unde rezultă concluzia.

- **f**) Din punctul **b**) deducem că $g(n+1) < g(c_n) < g(n)$ și folosind e) obținem g(n+1) < f(n+1) f(n) < g(n), $\forall n \in \mathbb{N}^*$.
- g) Din punctele a) și f) obținem

$$\frac{1}{k+1} - \frac{1}{k+2} < \ln \frac{k+1}{k+2} - \ln \frac{k}{k+1} < \frac{1}{k} - \frac{1}{k+1}, \quad \forall \ k \in \mathbf{N}^*.$$

Înlocuindu-l succesiv pe k cu numerele 1, 2, ..., n în inegalitatea precedentă și adunând inegalitățile obținute, rezultă concluzia.