

交通数据分析

第八讲 关联分析: 频繁模式挖掘

沈煜 博士 副教授 嘉定校区交通运输工程学院311室 yshen@tongji.edu.cn 2022年04月15日

计划进度

周	日期	主讲	内容	模块
1	2022.02.25	沈煜	概述	
2	2022.03.04	沈煜	在线数据采集方法	爬虫
3	2022.03.11	沈煜	线性回归模型	
5	2022.03.18	沈煜	广义线性回归	一回归
4	2022.03.25	沈煜	广义线性回归(作业1)	- 分析
6	2022.04.01	沈煜	空间数据描述性分析	
7	2022.04.08	沈煜	空间自回归方法 (作业2)	
8	2022.04.15	沈煜	关联: Apriori	
9	2022.04.22	沈煜	决策树、支持向量机 (作业3)	
10	2022.04.29	沈煜	浅层神经网络	机器
11	2022.05.06	沈煜	卷积神经网络 (期末大作业)	学习
12	2022.05.13	沈煜	经典网络结构	-
13	2022.05.20	沈煜	聚类: K-Means、DBSCAN	
14	2022.05.27	沈煜	贝叶斯方法、卡尔曼滤波	
15	2022.06.03	-	端午节放假	
16	2022.06.10	沈煜	期末汇报(1)	
17	2022.06.17	沈煜	期末汇报(2)	

频繁模式挖掘: 基本概念和方法

- ▶基本概念
- ▶频繁项集挖掘方法
- ▶关联模式评估方法

基本概念

频繁模式 (Frequent Pattern)

频繁模式分析的概念

- ➤频繁模式 (frequent pattern)
 - >频繁地出现在数据集中的模式(如项集、子序列或子结构)
- ➤由Agrawal等于1994年首次提出
- ▶目的:解析数据的内在规律
 - ▶哪些商品经常会被同时购买? (例如:啤酒和尿布)
 - ▶顾客购买了电脑之后经常会再购买哪些商品?
 - ➤哪类DNA对某种新药物的反应敏感?
 - ▶我们能否对网页内容做自动分类?

≻应用场景

▶购买数据分析、交叉市场营销、商品目录设计、销售活动 分析、上网浏览记录分析、DNA序列分析等。

频繁模式发掘的重要性

- ▶频繁模式:数据集内在的与重要的特性。
- ▶频繁模式挖掘是很多数据挖掘方法的重要基础
 - ▶关联性、相关性、因果分析
 - ▶序列、结构(如子图)模式分析
 - ▶时空数据、多媒体数据、时序数据、流数据中的模式分析
 - ➤分类: discriminative, frequent pattern analysis
 - >聚类: 基于频繁模式的聚类
 - ➤数据仓库: iceberg cube and cube-gradient
 - ➤语义数据压缩: fascicles
 - ▶更广泛的应用

关联规则基本模型

- ightharpoonup设 $I = \{i_1, ..., i_m\}$ 为所有项目的集合,D为事务数据库,事务T是一个项目子集($T \subseteq I$)。每一个事务具有唯一的事务标识TID。
- ightharpoonup设A是一个由项目构成的集合,称为**项集**。事务T包含项集A,当且仅当 $A \subseteq T$ 。如果项集A中包含k个项目,则称其为k**项集**。
- ightharpoonup项集A在事务数据库D中出现的次数占D中总事务的百分比叫做项集**支持度**。

▶如果项集的支持度超过用户给定的最小支持度阈值,就称该项

集是频繁项集(或大项集)。

TID	购买的产品
10	啤酒, 花生, 尿布
20	啤酒,咖啡,尿布
30	啤酒, 尿布, 鸡蛋
40	花生,鸡蛋,牛奶
50	花生, 咖啡, 尿布, 鸡蛋, 牛奶

关联规则基本模型

- ightharpoonup关联规则是形如 $X \Rightarrow Y$ 的逻辑蕴含式,其中 $X \subset I$, $Y \subset I$, 且 $X \cap Y = \emptyset$ 。
- ightharpoonup如果事务数据库D中有s%的事务包含 $X \cup Y$,则称关联规则 $X \Rightarrow Y$ 的**支持度为s\%。**
 - ▶实际上,支持度是一个概率值,是一个相对计数。
 - $\triangleright support(X \Rightarrow Y) = P(X \cup Y)$
- ▶项集的**支持度计数 (频率)** support_count
 - ▶包含项集的事务数
- ▶若项集X的**支持度**记为support(X),规则的**置信度**为 $support(X \cup Y)/support(X)$
 - \rightarrow 是一个条件概率P(Y|X)
 - $> confidence(X \Rightarrow Y) = P(Y|X) = \frac{support_count(X \cup Y)}{support_count(X)}$

基本概念: 关联规则

TID	购买的产品
10	啤酒, 花生, 尿布
20	啤酒,咖啡,尿布
30	啤酒, 尿布, 鸡蛋
40	花生, 鸡蛋, 牛奶
50	花生, 咖啡, 尿布, 鸡蛋, 牛奶

- ightharpoonup 项集 $X = \{x_1, ..., x_k\}$
- ightharpoonup 找出满足最小支持度和置信度的所规则 $X \to Y$
 - \triangleright 支持度, s, 事务包含 $X \cup Y$ 的概率
 - ▶ 置信度, c, 事务含X也包含Y的条件概率
- $\Rightarrow \Rightarrow sup_{min} = 50\%, \ conf_{min} = 50\%$
- > 频繁模式:
 - ▶ 啤酒: 3, 花生: 3, 尿布: 4, 鸡蛋: 3, {啤酒, 尿布}: 3
- > 关联规则:
 - ▶啤酒 → 尿布
 - > (支持度60%, 置信度100%)
 - ▶ 尿布 → 啤酒
 - > (支持度60%, 置信度75%)

挖掘关联规则: 示例

TID	购买的商品
10	A , B , C
20	A, C
30	A, D
40	B, E, F

频繁模式	支持度
{A}	75%
{B }	50%
{C }	50%
{ A , C }	50%

- ▶设最小支持度50%;最小置信度50%
- ➤规则 $A \Rightarrow C$:
 - ▶支持度: $support\{\{A\} \cup \{C\}\} = 50\%$
 - ightharpoonup置信度: $support\{{A} \cup {C}\}/support\{{A}\} = 66.6\%$

频繁项集挖掘方法

频繁项集

- >一个长模式包含子模式的数目:
 - ▶例如长度为100, {a₁,..., a₁₀₀}, 包含
 - $ightharpoonup C_{100}^1 + C_{100}^2 + \dots + C_{100}^{100} = 2^{100} 1 \approx 1.27 \times 10^{30}$ 个子模式
- >解决方法: 挖掘闭频繁项集和极大频繁项集
- ➤如果X是频繁的,且不存在X的真超项集Y使得Y与X在D中具有相同的支持度计数,那么频繁项集X在数据集D中是闭的。
 - \blacktriangleright 注: Y = X的真超项集 (super-pattern) : X的每一项都包含在Y中 $(X \subset Y)$, 但是Y中至少有一个项不在X中。
- ▶极大频繁项集:如果X是频繁的,且不存在超项集Y,使得 $X \subset Y$ 并且Y在D中是频繁的。
- ▶两者有不同,极大频繁项集定义中对真超集要松一些。

极大频繁项集

▶如果一个项集是极大频繁的,那么它的所有直接超项

闭频繁项集

- ▶极大频繁项集的问题:
 - ▶其子项集的支持度是未知的,需要对数据库进行额外的扫描
- ▶如果一个项集是闭的,那么它的所有直接超项集都不具有和该项集同样的支持度

TID	Items	
1	{A,B}	
2	$\{B,C,D\}$	
3	$\{A,B,C,D\}$	
4	$\{A,B,D\}$	
5	$\{A,B,C,D\}$	

Itemset	Support
{A}	4
{B}	5
{C}	3
{D}	4
{A,B}	4
{A,C}	2
$\{A,D\}$	3
{B,C}	3
{B,D}	4
{C,D}	3

Itemset	Support
$\{A,B,C\}$	2
$\{A,B,D\}$	3
$\{A,C,D\}$	2
$\{B,C,D\}$	2
$\{A,B,C,D\}$	2

》假设事务数据库中只有两个事务:

$$\triangleright$$
 DB = { $<$ a₁, ..., a₁₀₀ $>$, $<$ a₁, ..., a₅₀ $>$ }

- ➤设最小支持度阈值 min_sup = 1:
- ▶有两个频繁项集:
 - ▶ {a₁, ..., a₁₀₀}, 支持度为1
 - ▶ {a₁, ..., a₅₀}, 支持度为2
- >只有一个极大频繁项集:
 - ▶ {a₁, ..., a₁₀₀}, 支持度为1
- ▶我们不能断言{a1,...,a50}是极大频繁项集
 - ▶因为它有一个频繁的超集{a₁,..., a₁₀₀}
- >频繁模式的总数为:
 - \triangleright {a₁}: 2, ..., {a₁, a₂}: 2, ..., {a₁, a₅₁}: 1, ..., {a₁, a₂, ..., a₁₀₀}: 1
 - ▶总共2100 1个

关联模式评估方法

Apriori算法

Apriori算法的步骤

- ➤ Apriori算法命名源于算法使用了频繁项集性质的先验 (Prior) 知识。
- ➤ Apriori算法将发现关联规则的过程分为两个步骤:
 - ▶通过迭代,检索出事务数据库中的所有频繁项集,即支持 度不低于用户设定的阈值的项集;
 - ▶利用频繁项集构造出满足用户最小信任度的规则。
- ▶挖掘或识别出所有频繁项集是该算法的核心,占整个 计算量的大部分。

频繁项集

- ▶为了避免计算所有项集的支持度(实际上频繁项集只占很少一部分), Apriori算法引入潜在频繁项集的概念。
- ightharpoonup若<mark>潜在频繁k项集</mark>的集合记为 C_k ,频繁k项集的集合记为 L_k ,m个项目构成的k项集的集合为 C_k^m ,则三者之间满足关系 $L_k \subseteq C_k \subseteq C_k^m$ 。
- ▶构成潜在频繁项集所遵循的原则是"频繁项集的子集 必为频繁项集"。

关联规则的性质

- ▶性质1: 频繁项集的子集必为频繁项集。
- ▶性质2: 非频繁项集的超集一定是非频繁的。
- ➤ Apriori算法运用性质1,通过已知的频繁项集构成长度更大的项集,并将其称为潜在频繁项集。
 - \triangleright 潜在频繁k项集的集合 C_k 是指由有可能成为频繁k项集的项集组成的集合。
- ▶以后只需计算潜在频繁项集的支持度,而不必计算所有不同项集的支持度,因此在一定程度上减少了计算量。

Apriori: 一种候选产生-测试方法

- > 频繁项集的任何子集必须是频繁的
 - ▶如果 {啤酒, 尿布, 花生} 是频繁的, {啤酒,尿布}也是
 - ▶每个包含 {啤酒,尿布,花生}的事务 也包含 {啤酒,尿布}
- ➤Apriori 剪枝原则:
 - >如果一个项集不是频繁的,将不产生/测试它的超集
- ▶方法:
 - \triangleright 由长度为k的频繁项集产生长度为(k+1)的候选项集,并且
 - ▶根据数据库DB测试这些候选
- ▶性能研究表明了它的有效性和可伸缩性

Apriori算法举例

数据库

 Tid
 Items

 10
 A, C, D

 20
 B, C, E

 30
 A, B, C, E

 40
 B, E

最小支持度:

 $Sup_{min} = 2$

 C_1

第1次扫描

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
	{A}	2
	{B}	3
•	{C}	3
	{E}	3

$ L_2 $	Itemset	sup
	{A, C}	2
	{B, C}	2
	{B, E}	3
	{C, E}	2

[A, B, C]

{A, B, E}

{B, C, E}

C₂ Itemset sup

{A, B} 1

{A, C} 2

{A, E} 1

{B, C} 2

{B, E} 3

{C, E} 2

第2次扫描

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

第3次扫描	L

Itemset	sup
{A, B, C}	1
{A, B, E}	1
{B, C, E}	2

Apriori算法: 伪代码

- C_k : 长度为k的候选项集
- L_k: 长度为k的频繁项集
- (1) L_1 ={频繁1项集};
- (2) for $(k = 2; L_{k-1} = \emptyset; k + +)$ do begin
- (3) $C_k = \operatorname{apriori_gen}(L_{k-1})$; //新的潜在频繁项集
- (4) for all *transactions* $t \in D$ do begin
- (5) $C_t = \text{subset}(C_k, t)$; //找出t中包含的潜在的频繁项
- (6) for all *candidates* $c \in C_t$ do
- (7) c.count++;
- (8) end;
- (9) $L_k = \{c \in C_k | \text{c.count} \ge \text{minsup}\}$
- (10) end;
- (11) Answer= $\bigcup_k L_k$

Apriori的重要细节

▶如何产生候选?

▶步骤1: Lk的自连接

▶步骤2:剪枝

>产生候选,例如

►L3={abc, abd, acd, ace, bcd}

▶自连接: L3*L3

➤ 由abc和abd生成abcd

➤ 由acd和ace生成acde

▶剪枝:

➤删除acde: 因为ade不在L3里

>C4 = {abcd}

如何产生候选


```
假定 L_{k-1} 中的项集已排序(按字典序排序)
步骤 1: L_{k-1}自连接
procedure apriori gen(L_{k-1}: frequent(k-1) itemset)
  for each项集l_1 \in L_{k-1}
     for each项集l_2 \in L_{k-1}
       if (l_1[1] = l_2[1]) \land ... \land (l_1[k-2] = l_2[k-2]) \land (l_1[k-1] < l_2[k-1])
then
            c = l_1 \bowtie l_2; //连接步, 产生候选
          if has_infrequent_subset(c, L_{k-1}) then
            delete c;
          else add c to C_k
return C_k
```

如何产生候选


```
步骤 2:剪枝 procedure has_infrequent_subset(c: candidate k itemset, L_{k-1}: frequent (k-1) itemset) //使用先验知识 for each (k-1) subset s of c if s \notin L_{k-1} then return TRUE return FALSE
```

示例 (支持度计数=2)

AllElectronics 数据库

TID	List of item_ID's
T100	I1,I2,I5
T200	I2,I4
T300	I2,I3
T400	I1,I2,I4
T500	I1,I3
T600	I2,I3
T700	I1,I3
T800	I1,I2,I3,I5
T900	I1,I2,I3

C_1	
集	支持度计数
I1}	б
[2]	7
[3]	6
rai.	1 -

比较候选支持度计数 与最小支持度计数

	느ㅣ
项集	支持度计数
{I1}	б
{I2}	7
{I3}	6
{I4}	2
{I5}	2

由L₁产生 候选C₂

U_2	
项集	
{I1,I2}	
{I1,I3}	
{I1,I4}	
{I1,I5}	
{I2,I3}	
${I2,I4}$	
{I2,I5}	
{I3,I4}	
{I3,I5}	
{I4,I5}	

扫描D,对每 个候选计数

<u>-</u>	
项集	支持度计数
{I1,I2}	4
{I1,I3}	4
{I1,I4}	1
{I1,I5}	2
{I2,I3}	4
{I2,I4}	2
{I2,I5}	2
{I3,I4}	0
{I3,I5}	1
{I4,I5}	0

 \mathbb{C}_2

比较候选支持度计数 与最小支持度计数

 L_2

	项集	支持度计数
ŗ	{I1,I2}	4
	{I1,I3}	4
	{I1,I5}	2
	{I2,I3}	4
	{I2,I4}	2
	{I2,I5}	2

示例

比较候选支持度计数 与最小支持度计数

 L_2

	项集	支持度计数
Г	{I1,I2}	4
	{I1,I3}	4
	{I1,I5}	2
	{I2,I3}	4
	{I2,I4}	2
	{I2,I5}	2

由L2产生 候选C₃

项集

 $\{I1,I2,I3\}$ {I1,I2,I5}

Сз

扫描D,对每 个候选计数

C₃

项集	支持度计数
{I1,I2,I3}	2
{11,12,15}	1 2

比较候选支持度计数 与最小支持度计数

Lз

项集	支持度计数
{I1,I2,I3}	2
{I1,I2,I5}	2

示例:说明

> 连接:

- $ightharpoonup C_3 = L_2 \bowtie L_2 = \{\{I1, I2\}, \{I1, I3\}, \{I1, I5\}, \{I2, I3\}, \{I2, I4\}, \{I2, I5\}\}$
- $\triangleright\bowtie\{\{I1,I2\},\{I1,I3\},\{I1,I5\},\{I2,I3\},\{I2,I4\},\{I2,I5\}\}=$
- \rightarrow {{I1, I2, I3}, {I1, I3, I5}, {I1, I2, I5}, {I2, I3, I4}, {I2, I4, I5}, {I2, I3, I5}

 L_2

项集	支持度计数
{I1,I2}	4
{I1,I3}	4
{I1,I5}	2
{I2,I3}	4
{I2,I4}	2
{I2,I5}	2

➤ 使用Apriori性质剪枝

- > 频繁项集的所有子集必须是频繁的
- ightharpoonup {*I*1, *I*2, *I*3}的2项子集是{*I*1, *I*2}, {*I*1, *I*3}, {*I*2, *I*3}。{*I*1, *I*2, *I*3}的所有2项子集都是 L_2 的元素。 因此,保留{*I*1, *I*2, *I*3}在 C_3 中。
- 》 $\{I1, I2, I5\}$ 的2项子集是 $\{I1, I2\}, \{I1, I5\}, \{I2, I5\}$ 。 $\{I1, I2, I5\}$ 的所有2项子集都是 L_2 的元素。因此,保留 $\{I1, I2, I5\}$ 在 C_3 中。
- \blacktriangleright {*I*1, *I*3, *I*5}的2项子集是{*I*1, *I*3}, {*I*1, *I*5}, {*I*3, *I*5}。{*I*3, *I*5}不是 L_2 的元素,因而不是频繁的。 因此,从 C_3 中删除{*I*1, *I*3, *I*5}

由频繁项集产生关联规则

- ▶根据公式产生关联规则
- $\triangleright confidence(A \Rightarrow B) = P(B|A) = \frac{support_count(A \cup B)}{support_count(A)}$
- ▶对于每个频繁项集I,产生所有非空子集
- ▶对于每个的非空子集s,如果 $\frac{support_count(l)}{support_count(s)} \ge min_conf$
- ightarrow则输出规则 $s \rightarrow (l s)$

由频繁项集产生关联规则

- ▶X = {I1, I2, I5}, 最小置信度阈值=70%
- ▶X的非空子集包括{I1,I2}, {I1,I5}, {I2,I5}, {I1}, {I2}, {I5}
 - \gt {*I*1, *I*2} \Rightarrow *I*5, confidence=2/4=50%
 - \gt {*I*1, *I*5} \Rightarrow *I*2, confidence=2/2=100%
 - $> \{12, 15\} \Rightarrow 11, \text{ confidence} = 2/2 = 100\%$
 - $> I1 \Rightarrow \{I2, I5\}$, confidence=2/6=33%
 - $> I2 \Rightarrow \{I1, I5\}, \text{ confidence} = 2/7 = 29\%$
 - $\gt I5 \Rightarrow \{I1, I2\}, \text{ confidence} = 2/2 = 100\%$
- ➤輸出关联规则: {I1,I5} ⇒ I2, {I2,I5} ⇒ I1, I5 ⇒ {I1,I2}

	上1			
项集	支持度计数			
{I1}	6			
{I2}	7			
{I3}	6			
{I4}	2			
{I5}	2			

L2				
项集	支持度计数			
{I1,I2}	4			
{I1,I3}	4			
{I1,I5}	2			
{I2,I3}	4			
{I2,I4}	2			
{I2,I5}	2			

频繁模式挖掘的挑战

- ▶挑战
 - ▶事务数据库的多遍扫描
 - ▶数量巨大的候选
 - ▶候选支持度计数繁重的工作量
- **▶**改进Apriori的基本思想
 - ▶减少事务数据库的扫描遍数
 - ▶压缩候选数量
 - >便于候选计数

提高Apriori算法的方法

- ➤ Hash-based itemset counting (散列项集计数)
- ➤ Transaction reduction (事务压缩)
- ➤ Partitioning (划分)
- ➤ Sampling (采样)

基于散列(hash): DHP

- **▶DHP算法生效于Apriori算法的剪枝步过程中。**
 - ➤在第k次扫描时,生成每个事务的k+1项集,代入一个Hash 函数中,生成一个Hash表,同时记录每个桶中元素个数。
- ➤当生成C_{k+1}时,对L_k*L_k自连接产生的结果先进行代入 上述Hash函数若所落的该桶的计数小于最小支持阈值, 则该元素必定不为频繁项集,故可以过滤掉,不放入 C_{k+1}中
 - ▶所有具有相同Hash值的项的总个数小于最小支持阈值

基于散列(hash): 样例

- ▶ 假设最小支持度计数为2,即min_sup = 2
- ➤ 第一次扫描,生成1-项目候选集C1

$$ightharpoonup C1 = \{\{A\}, \{B\}, \{C\}, \{D\}, \{E\}\}\}$$

▶ 统计支持度,得到对应L1

$$ightharpoonup L1 = \{\{A\}, \{B\}, \{C\}, \{D\}, \{E\}\}\}$$

- ▶ 对每个事务生成所有2项集
- ➤ 构造Hash函数

TID	Items			
T1	ADE			
T2	B D			
T3	BDE			
T4	CE			
T5	C D			
T6	CE			
T7	ACDE			
T8	CDE			

\rightarrow hash(x,y) = (order(x)	*10 + order(y)) % 7,	如order(A) = $^{\prime}$	1, order(B) = 2
-------------------------------------	----------------------	-------------------------	-----------------

地址	0	1	2	3	4	5	6
元素	{A,D} {C,E} {C,E} {C,E} {A,D} {C,E}	{A,E} {A,E}	×	{D,E} {B,D} {B,D} {D,E} {D,E} {D,E}	{B.E}	*	{A,C} {C,D} {C,D} {C,D}
计数	6	2	0	6	1	0	4

- ➤ L1 * L1 ={ {A, C}, {A, D}, {A, E}, {B, D}, {B, E}, {C, D}, {C, E}, {D, E} }
- ▶ 得到C2 = { {A, C}, {A, D}, {A, E}, {B, D}, {C, D}, {C, E}, {D, E} }

划分: 只扫描数据库两次

- ➤任何在数据库 (DB) 中频繁的项集必须必须至少在 DB的一个划分中是频繁的
 - ▶扫描 1: 划分数据库, 并找出局部频繁模式 (local frequent itemset)
 - ▶扫描 2: 求出全局频繁模式

划分: 只扫描数据库两次

抽样-频繁模式

- ➤选取原数据库的一个样本,使用Apriori算法在样本中 挖掘频繁模式
- >扫描一次数据库, 验证在样本中发现的频繁模式.
- >再次扫描数据库,找出遗漏的频繁模式
- > 牺牲一些精度换取有效性。

小结

- ▶频繁项集的定义及其挖掘的意义
- ▶关联规则的表达形式,支持度、置信度的计算方法
- ▶极大频繁项集、闭频繁项集的定义和判别方法
- **▶**APRIORI算法的原理和计算步骤
- ▶参考资料
 - ▶《数据挖掘概念与技术》第六章(重点: 6.1-6.2.3)

第八讲 结束