Basic Definitions

Groups

Albelian

Commutative

Associative

A group (G, *) is associative if, for any $\forall u, v, w \in G$:

$$(u * v) * w = u * (v * w)$$

Isomorphism

Let (G, *) and (H, *) be groups, if there exists a $f: G \to H$ which is bijective. Then G and H are isomorphic.

Basic Properties

Cancelation

Theorem 1.3: Let (G, *) be a group, then:

- 1. The identity element e exists and is unique.
- 2. Any element a has a unique inverse b where ab = ba = e.