Groupes finis de matrices

Ici \mathbb{K} est un corps commutatif, a priori, de caractéristique nulle, ce qui signifie que le morphisme d'anneaux $k \mapsto k \cdot 1$ de \mathbb{Z} dans \mathbb{K} est injectif, ce qui est encore équivalent à dire que l'égalité $k\lambda = 0$ dans \mathbb{K} avec $k \in \mathbb{Z}$ et $\lambda \in \mathbb{K}^*$ équivaut à k = 0.

Pour toute matrice $A \in \mathcal{M}_n(\mathbb{K})$, on note $\operatorname{tr}(A)$ sa trace.

On présente ici, sous forme d'exercices, quelques résultats sur les groupes finis de matrices.

Exercice 1 Soit G un sous-groupe fini de $GL_n(\mathbb{K})$ de cardinal $p \geq 2$.

- 1. Montrer que $B = \frac{1}{p} \sum_{A \in G} A$ est la matrice dans la base canonique de \mathbb{K}^n d'un projecteur.
- 2. Montrer que $\sum_{A \in G} \operatorname{tr}(A)$ est un entier divisible par p.
- 3. Montrer que si $\sum_{A \in G} \operatorname{tr}(A) = 0$, alors $\sum_{A \in G} A = 0$.

Exercice 2 Soit F un sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ contenant I_n et stable par le produit matriciel. Montrer que $G = F \cap GL_n(\mathbb{K})$ est un sous-groupe infini de $GL_n(\mathbb{K})$.

Exercice 3 On se place sur \mathbb{R}^n muni du produit scalaire euclidien canonique noté $\langle \cdot | \cdot \rangle$ et on se donne G un sous groupe fini G de $GL(\mathbb{R}^n)$.

1. Montrer que l'application :

$$\varphi: (x,y) \mapsto \sum_{g \in G} \langle g(x) \mid g(y) \rangle$$

définit un produit scalaire sur \mathbb{R}^n .

2. Montrer que pour tout $g \in G$ et tous x, y dans \mathbb{R}^n , on a :

$$\varphi\left(g\left(x\right),y\right) = \varphi\left(x,g^{-1}\left(y\right)\right)$$

3. Montrer que si F est un sous-espace vectoriel de \mathbb{R}^n stable par tous les éléments de G, il admet alors un supplémentaire stable par tous les éléments de G.

Exercice 4 Avec cet exercice, on propose une démonstration du théorème de réduction des matrices orthogonales réelles. Ce résultat sera utile pour l'exercice qui suit.

On se place dans un espace euclidien E de dimension $n \geq 1$.

Un endomorphisme $u \in \mathcal{L}(E)$ est dit orthogonal si :

$$\forall (x,y) \in E^{2}, \ \langle u(x) \mid u(y) \rangle = \langle x \mid y \rangle.$$

On note $\mathcal{O}(E)$ l'ensemble des endomorphismes orthogonaux de E.

On rappelle que $u \in \mathcal{O}(E)$ si, et seulement si, pour toute base orthonormée \mathcal{B} de E la matrice A de u dans \mathcal{B} est telle que A $^tA = {^tAA} = I_n$. Une telle matrice A est dite orthogonale et on note $\mathcal{O}_n(\mathbb{R})$ le groupe multiplicatif de toutes ces matrices orthogonales.

- 1. Montrer que pour tout endomorphisme u de E il existe un sous espace vectoriel P de E de dimension 1 ou 2 stable par u.
- 2. Soit $u \in \mathcal{O}(E)$. Montrer qu'il existe des sous espaces vectoriels de E, P_1, \dots, P_r , de dimension égale à 1 ou 2, deux à deux orthogonaux, stables par u et tels que $E = \bigoplus_{j=1}^r P_j$.
- 3. Vérifier que si $A \in \mathcal{O}_n(\mathbb{R})$, on a alors $\det(A) = \pm 1$ et les seules valeurs propres réelles possibles de A sont -1 et 1.

4. Soit $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{O}_2(\mathbb{R})$. Montrer que l'on a:

$$A = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} ou A = \begin{pmatrix} \cos(\theta) & \sin(\theta) \\ \sin(\theta) & -\cos(\theta) \end{pmatrix}$$

 $avec \ \theta \in [0, 2\pi[\ et \ que \ dans \ le \ deuxième \ cas, \ A \ est \ orthogonalement \ semblable \ à \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right).$

5. Soit $A \in \mathcal{O}_n(\mathbb{R})$ avec $n \geq 2$. Montrer qu'il existe une matrice $P \in \mathcal{O}_n(\mathbb{R})$ telle que :

$$P^{-1}AP = \begin{pmatrix} I_p & 0 & 0 & 0 & \cdots & 0 \\ 0 & -I_q & 0 & \ddots & \ddots & \vdots \\ 0 & 0 & R_1 & 0 & \ddots & 0 \\ 0 & \ddots & 0 & R_2 & \ddots & 0 \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & 0 & 0 & R_r \end{pmatrix},$$

où, pour tout $k \in \{1, \dots, r\}$, on a noté:

$$R_k = \begin{pmatrix} \cos(\theta_k) & -\sin(\theta_k) \\ \sin(\theta_k) & \cos(\theta_k) \end{pmatrix}$$

avec $\theta_k \in]0, 2\pi[-\{\pi\}]$ et p, q, r sont des entiers naturels tels p + q + r = n (si l'un de ces entiers est nul, les blocs de matrices correspondants n'existent pas).

Exercice 5 Soit G un sous groupe de $\mathcal{O}_n(\mathbb{R})$. Montrer que s'il existe $m \in \mathbb{N}^*$ tel que $A^m = I_n$ pour tout $A \in G$ (on dit que G est d'exposant fini), alors l'ensemble :

$$\operatorname{tr}(G) = \{\operatorname{tr}(A) \mid A \in G\}$$

est fini.

Exercice 6 On se propose de montrer que si G est un sous groupe de $\mathcal{O}_n(\mathbb{R})$ tel que $\operatorname{tr}(G)$ est fini, alors G est fini.

Soient G un sous groupe de $\mathcal{O}_n(\mathbb{R})$, F le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{R})$ engendré par G et $\mathcal{B} = (A_1, \dots, A_p)$ une base de F extraite de G.

- 1. Montrer que l'application $(A, B) \mapsto \langle A \mid B \rangle = \operatorname{tr}(A \,^t B)$ définit un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.
- 2. Montrer que la matrice $B = ((\operatorname{tr}(A_i^{t}A_j)))_{1 \leq i,j \leq p}$ est inversible dans $\mathcal{M}_p(\mathbb{R})$.
- 3. Montrer que si $\operatorname{tr}(G)$ est fini, alors G est fini.
- 4. Le résultat de la question précédente est-il encore vrai pour un sous-groupe de $GL_n(\mathbb{R})$?

Exercice 7 Cet exercice nous sera utile pour celui qui sui.

On dit qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est nilpotente s'il existe un entier q strictement positif tel que $A^{q-1} \neq 0$ et $A^q = 0$ (q est l'indice de nilpotence de A).

- 1. Montrer que si $A \in \mathcal{M}_n(\mathbb{K})$ est nilpotente, alors 0 est valeur propre de A et $\operatorname{Tr}(A) = 0$.
- 2. Montrer qu'une matrice $A \in \mathcal{M}_n(\mathbb{K})$ est nilpotente si et seulement si $\operatorname{tr}(A^k) = 0$ pour tout entier naturel non nul k.

Exercice 8 Soient G un sous groupe de $GL_n(\mathbb{K})$, F le sous-espace vectoriel de $\mathcal{M}_n(\mathbb{K})$ engendré par G et $\mathcal{B} = (A_1, \dots, A_p)$ une base de F extraite de G.

1. On considère l'application :

$$\varphi: G \to \mathbb{K}^p$$

$$A \mapsto (\operatorname{tr}(AA_1), \cdots, \operatorname{tr}(AA_p))$$

et A, B dans G telles que $\varphi(A) = \varphi(B)$.

- (a) Montrer que $\operatorname{tr}(AB^{-1}M) = \operatorname{tr}(M)$ pour tout $M \in G$.
- (b) En notant $C = AB^{-1}$, en déduire que $\operatorname{tr}(C^k) = n$ pour tout $k \geq 1$, puis que $C I_n$ est nilpotente.
- (c) En déduire que, si on suppose de plus que toutes les matrices de G sont diagonalisables, alors φ est injective.
- 2. Montrer que si toutes les matrices de G sont diagonalisables et si $\operatorname{tr}(G)$ est fini, alors G est fini.
- 3. Déduire de ce qui précède qu'un sous groupe G de $GL_n(\mathbb{C})$ est fini si, et seulement si, il est d'exposant fini (c'est-à-dire qu'il existe $m \in \mathbb{N}^*$ tel que $A^m = I_n$ pour tout $A \in G$). Ce résultat est un théorème de Burnside.

Exercice 9 Montrer que pour tout nombre premier $p \geq 2$ et tout entier $n \geq 1$, on a :

card
$$(GL_n(\mathbb{Z}_p)) = (p^n - 1) (p^n - p) \cdots (p^n - p^{n-1})$$

= $p^{\frac{n(n-1)}{2}} (p^n - 1) (p^{n-1} - 1) \cdots (p^n - 1)$

et qu'il existe dans $GL_n(\mathbb{Z}_p)$ un sous-groupe d'ordre $p^{\frac{n(n-1)}{2}}$.

Exercice 10 Soit \mathbb{K} un corps fini (et commutatif, d'après le théorème de Wedderburn) et φ un morphisme de groupes de $GL_n(\mathbb{K})$ dans \mathbb{K}^* . On note $(E_{ij})_{1 \leq i,j \leq n}$ la base canonique de $\mathcal{M}_n(\mathbb{K})$. Pour $\lambda \in \mathbb{K}^*$ on note :

$$D_{\lambda} = I_n + (\lambda - 1) E_{nn}$$

une matrice de dilatation et pour $\lambda \in \mathbb{K}$, $i \neq j$ compris entre 1 et n :

$$T_{\lambda} = I_n + \lambda E_{ii}$$

une matrice de transvection (le couple (i, j) avec $i \neq j$ est fixé).

1. Montrer qu'il existe un entier naturel r tel que :

$$\forall \lambda \in \mathbb{K}^*, \ \varphi(D_{\lambda}) = \lambda^r.$$

- 2. Montrer que, pour $i \neq j$ fixés entre 1 et n et λ, μ dans \mathbb{K} , on a $T_{\lambda}T_{\mu} = T_{\lambda+\mu}$.
- 3. Que dire d'un morphisme de groupes de $(\mathbb{K},+)$ dans (\mathbb{K}^*,\cdot) ?
- 4. Montrer que, pour $i \neq j$ fixés entre 1 et n, on a :

$$\forall \lambda \in \mathbb{K}, \ \varphi(T_{\lambda}) = 1.$$

5. Déduire de ce qui précède que :

$$\forall A \in GL_n(\mathbb{K}), \ \varphi(A) = (\det(A))^r.$$