Capstone Project 2

Prediction of board game rates based on their reviews

Problem Statement

➤ Board games have regained popularity in recent years

➤ Purpose: build a model with machine learning and natural language processing to predict the rates of board games considering the reviews of players, the number of players, the average time of a game, the number of rates......

Dataset

- > Scraping and APIs on the website: https://boardgamegeek.com
- For each of the 50 most rated boardgames:
 - ID
 - Name
 - Year of design
 - Minimum and maximum number of players required
 - Minimum and maximum number of minutes required to complete the game
 - Minimum age required
 - Category
 - Number of rates
 - Username of players
 - Reviews
 - Rates (score out of 10)
- Dataset with 304864 raws

Distribution of all the rates

Relation between year of design and mean rates per game

Positive correlation between the year of the design of a game and the mean of rates of this game. More a boardgame is recent and more he seems to have higher mean rates.

Relation between the mean rates per boardgame and the number of rates per games

- No correlation between the number of rates of a game and the mean of rates of this game.
- ➤ No bias in the rates related to the fact we took the 50 most rated games from boardgamegeek.com.

Linear Regression Model

$$R^2 = 0.636$$

Most significant features (p < 0.05):

Features	+/-	Coefficients
Year	+	0.043
Max_play	-	0.099
Min_age	+	0.095
Nb_rate	+	8.42 ^{e-06}

Linear Regression Model

Natural Language Processing

Only the preprocessed 'review' column

Machine Learning Algorithms

Entire dataset

- Random Forest Regressor
- Support Vector Regressor

In a pipeline and using a cross-validation with 5 folds:

R² training data = 0.21 R² test data = 0.21

Best predictor words

=> New model with only reviews as features

'Good words'	P(high rate word)
Love	
Favorite	
Great	
Best	
Perfect	
Excellent	
Fantastic	
Amazing	
Awesome	
Firm	

'Bad words'	P(high rate word)
Precio	
Better	
Long	
Like	
Felt	
Bad	
Maybe	
Wa	
Random	
Boring	

Conclusion

→ We choose the model with TfidfVectorizer to process the 'review' column and Random Forest Regressor as machine learning algorithm.

→ Managers of gaming shops or department stores should focus on more recently created games, games with a minimum age not too low and a maximum number of players not too high.

→ We need to improve the natural language processing of the 'review' column with a more powerful computer to improve the model.