

Experiment-3.1

Student Name: YANA SRIVASTAVA UID: 20BCS2279

Branch: CSE Section/Group: 20BCS_WM-906/B

Semester: 5th Subject Code: 21CST-317

Subject Name: Machine learning lab

1. Aim/Overview of the practical: Implement Kmeans.

2. Requirements: Any Dataset for classification, Jupyter notebook or Google collab.

3. Description/ Code:

importing all necessary libraries

import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from sklearn.cluster import KMeans from sklearn.model_selection import train_test_split

Reading the data

df=pd.read_csv("3D_spatial_network.txt",names=['OSM_ID','LONGITUDE','LATITUDE','AL TITUDE']) df.head()

	OSM_ID	LONGITUDE	LATITUDE	ALTITUDE
0	144552912	9.349849	56.740876	17.052772
1	144552912	9.350188	56.740679	17.614840
2	144552912	9.350549	56.740544	18.083536
3	144552912	9.350806	56.740485	18.279465
4	144552912	9.351053	56.740486	18.422974

Preprocessing the data and Splitting the dataset into train and test

data = df.drop('OSM_ID',axis=1)

train_data,test_data = train_test_split(data,test_size=0.3)

std_scaler = MinMaxScaler()

train_data['LONGITUDE']=train_data['LONGITUDE']/train_data['LONGITUDE'].max() train_data['LATITUDE']=train_data['LATITUDE']/train_data['LATITUDE'].max() train_data['ALTITUDE']=train_data['ALTITUDE']/train_data['ALTITUDE'].max()

test_data['LONGITUDE']=test_data['LONGITUDE']/test_data['LONGITUDE'].max() test_data['LATITUDE']=test_data['LATITUDE']/test_data['LATITUDE'].max() test_data['ALTITUDE']=test_data['ALTITUDE']/test_data['ALTITUDE'].max()

train_data.head()

	LONGITUDE	LATITUDE	ALTITUDE
212414	0.871023	0.989723	0.063734
135673	0.929270	0.997163	0.032702
291118	0.922388	0.991339	0.122259
307128	0.899849	0.984240	0.341964
358740	0.760997	0.980894	0.146135

test_data.head()

	LONGITUDE	LATITUDE	ALTITUDE
308941	0.883420	0.982314	0.416726
380476	0.914637	0.997535	0.050558
212702	0.885900	0.988021	0.022134
237919	0.878948	0.985133	0.120827
100458	0.877304	0.990803	0.052138

Training Kmeans model for clustering

clustering_Kmeans = KMeans(n_clusters=6)
clustering_Kmeans.fit(train_data)

Predicting the test data for SVM

pred=clustering_Kmeans.predict(test_data)
print(pred)

array([1, 3, 3, ..., 2, 1, 0])

Clustering

$$\label{eq:plt.figure} \begin{split} & plt.figure(figsize=(30,5)) \\ & plt.subplot(1,3,1) \\ & sns.scatterplot(test_data['LONGITUDE'],test_data['LATITUDE'],hue=pred) \end{split}$$

plt.subplot(1,3,2) sns.scatterplot(test_data['LONGITUDE'],test_data['ALTITUDE'],hue=pred)

plt.subplot(1,3,3) sns.scatterplot(test_data['LATITUDE'],test_data['ALTITUDE'],hue=pred)

Learning outcomes (What I have learnt):

• Kmeans clustering

Evaluation Grid (To be created as per the SOP and Assessment guidelines by the faculty):

Sr. No.	Parameters	Marks Obtained	Maximum Marks
1.			
2.			
3.			

