Cryptography

Cryptography

Cryptography

Cryptography is the study of secure communications techniques that allow only the sender and intended recipient of a message to view its contents.

ABC (meaningful message)-> ZYX(cipher)

Symmetric vs Asymmetric Cryptography

Symmetric Encryption

Asymmetric Encryption

What is AES?

- AES is an encryption standard chosen by the National Institute of Standards and Technology(NIST), USA to protect classified information. It has been accepted world wide as a desirable algorithm to encrypt sensitive data.
- It is a block cipher which operates on block size of 128 bits for both encrypting as well as decrypting.
- Each Round performs same operations.

Why AES?

- In 1990's the cracking of DES algorithm became possible.
- Around 50hrs of bruteforcing allowed to crack the message.
- NIST started searching for new feasible algorithm and proposed its requirement in 1997.
- In 2001 Rijndael algorithm designed by Rijment and Daemon of Belgium was declared as the winner of the competition. [1,2]
- It met all Security, Cost and Implementation criteria. [3]

How Does it works?

• AES basically repeats 4 major functions to encrypt data. It takes 128 bit block of data and a key and gives a ciphertext as output. The functions are:

- I. Substitute Bytes
- II. Shift Rows
- III. Mix Columns
- IV. Add Key

How Does it works?

Here, E=encryption function for a symmetric block cipher m=plaintext message of size 128bits n=ciphertext

k=key of size 128bits which is same for both encryption and decryption D= Decryption function for symmetric block cipher

Steps for encryption and decryption

Figure 1 (Encryption on the left, Decryption on the right)

How Does it works?

- **Key-expansions-** In the key Expansion process the given 128 bits cipher key is stored in [4]x[4] bytes matrix (16*8=128 bits) and then the four column words of the key matrix is expanded into a schedule of 44 words (44*4=176) resulting in 11 round keys (176/11=16bytes or 128 bits).
- Number of round keys = Nr + 1. Where Nr is the number of rounds (which is 10 in case of 128 bits key size) So here the round keys = 11.

 SubBytes- Each element of the matrix is replaced by the an element of s-box matrix.

SubBytes

For an element {d1} corresponding value is {3e}

							<i>•</i>					<u> </u>				
	x 0	x1	x 2	x 3	×4	x 5	x 6	x 7	x 8	x 9	xa	xb	xc	xd	xe	xf
0x	63	7c	77	7b	£2	6b	6£	c5	30	01	67	2b	fe	d7	ab	76
1x	ca	82	c9	7d	fa	59	47	f0	ad	d4	a2	af	9c	a4	72	c0
2x	b7	fd	93	26	36	3f	£7	CC	34	a5	e5	f1	71	d8	31	15
3 x	04	c7	23	с3	18	96	05	9a	07	12	80	e2	eb	27	b2	75
4x	09	83	2c	1a	1b	6e	5a	a0	52	3b	d6	b3	29	e3	2f	84
5x	53	d1	00	ed	20	fc	b1	5b	6a	cb	be	39	4a	4c	58	cf
6x	d0	ef	aa	fb	43	4d	33	85	45	£9	02	7f	50	3c	9f	a8
7x	51	a3	40	8£	92	9d	38	£5	bc	b6	da	21	10	ff	£3	d2
8x	cd	0c	13	ec	5f	97	44	17	c4	a7	7e	3d	64	5d	19	73
9x	60	81	4f	dc	22	2a	90	88	46	ee	b8	14	de	5e	d0	db
ax	e0	32	3a	0a	49	06	24	5c	c2	d3	ac	62	91	95	e4	79
bx	e7	c8	37	6d	89	d5	4e	a9	60	56	£4	ea	65	7a	ae	08
CX	ba	78	25	2e	1c	a6	b4	c6	e8	dd	74	1f	4b	bd	d8	8a
dx	70	3e	b5	66	48	03	f6	0e	61	35	57	b9	86	c1	1d	9e
ex	e1	f8	98	11	69	d9	8e	94	9b	1e	87	e9	ce	55	28	df
fx	8c	a1	89	0d	bf	e6	42	68	41	99	2d	0f	b0	54	bb	16

Inverse SubBytes

right (low-order) nibble b **d5** 30 36 a5 38 bf 40 a3 9e 81 £3 d7 fb 7c **e**3 39 82 9b 2f ff 87 34 8e 43 44 de **C4** e9 cb 7b 94 32 a6 c2 23 3d 4c 95 0b 42 fa c3 ee 4e d9 24 a2 6d 08 2e a1 66 28 b2 76 5b 49 8b d1 25 f6 72 f8 64 86 68 98 16 **d4** a4 5c 5d 65 b6 92 CC eft (high-order) nibble da 5e 6c 70 48 50 fd ed b9 15 46 57 a7 8d 9d 84 £7 d8 d3 58 90 ab 00 80 bc 0a e4 05 **b8** b3 45 06 d0 2c 1e 8f 3f 0f 02 c1 af bd 03 01 13 6b ca 8a 4 E 97 3a 91 11 41 dc cf ce £O **b4 e**6 73 ea e2 £9 37 df 74 22 **e**7 35 85 10 75 ad **e8** 6e ac 71 6£ **b7** 62 f1 1a 1d 29 **c**5 89 0e 18 16 aa be 56 c6 d2 79 9a db fe cd £4 3e 4b 20 c0 78 5a dd 31 b1 12 59 a8 33 88 07 c7 10 27 80 5£ ec 60 51 7 f a9 19 **b**5 4a DO 2d e5 7a 9f 93 c9 9c ef e0 3b 4d 2a £5 b0 C8 eb bb 3c 83 53 99 61 a0 ae **d6** 55 26 e1 7d ba

- SubBytes
- The S-box is a special lookup table which is constructed by Galois fields.
- The Generating function used in this algorithm is GF(2⁸)
- i.e. 256 values are possible
- The elements of the sbox are written in hexadecimal system

- Shift Rows
- In this step rows of the block are cylindrically shifted in left direction.
- The first row is untouched, the second by one shift, third by two and fourth by 3.

Shift Rows

$S_{0,0}$	$S_{0,1}$	$S_{0,2}$	S _{0,3}
$S_{1,0}$	$S_{1,1}$	$S_{1,2}$	$S_{1,3}$
$S_{2,0}$	<i>s</i> _{2,1}	<i>s</i> _{2,2}	S _{2,3}
S _{3,0}	S _{3,1}	S _{3,2}	S _{3,3}

$S_{0,0}$	$S_{0,1}$	$S_{0,2}$	$S_{0,3}$
$S_{1,1}$	$S_{1,2}$	$S_{1,3}$	$S_{1,0}$
$S_{2,2}$	S _{2,3}	S _{2,0}	$s_{2,1}$
$S_{3,3}$	S _{3,0}	S _{3,1}	S _{3,2}

- Mix columns
- This is the most important part of the algorithm
- It causes the flip of bits to spread all over the block
- In this step the block is multiplied with a fixed matrix.
- The multiplication is field multiplication in galois
- field.

For each row there are 16 multiplication, 12 XORs and a 4 byte output.

Mix Columns

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 & 03 \\ 03 & 01 & 01 & 02 \end{bmatrix} \times \begin{bmatrix} s_{0.0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1.0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2.0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3.0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s'_{0.0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1.0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2.0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3.0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix}$$

$$\begin{bmatrix} 02 & 03 & 01 & 01 \\ 01 & 02 & 03 & 01 \\ 01 & 01 & 02 \end{bmatrix} \begin{bmatrix} s_{0,0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1,0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2,0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3,0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix} \Longrightarrow \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix} \Longrightarrow \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,j} & s'_{1,j} & s'_{1,j} & s'_{1,j} & s'_{1,j} & s'_{1,j} & s'_{2,j} & s'_{2,j} \\ s'_{2,j} & s_{3,j} & s'_{3,j} & s'_{3,j} & s'_{3,j} & s'_{3,j} \end{bmatrix} \Longrightarrow \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,j} & s'_{1,j} & s'_{1,j} & s'_{1,j} & s'_{1,j} & s'_{1,j} & s'_{2,j} & s'_{2,j} \\ s'_{2,j} & s'_{3,j} & s'_{3,j} & s'_{3,j} & s'_{3,j} & s'_{3,j} \end{bmatrix} \Longrightarrow \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,j} & s'_{1,j} & s'_{1,j} & s'_{1,j} & s'_{1,j} & s'_{1,j} & s'_{2,j} & s'_{2,j} \\ s'_{2,j} & s'_{3,j} & s'_{3,j} & s'_{3,j} & s'_{3,j} & s'_{3,j} \end{bmatrix} \Longrightarrow \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,j} & s'_{1,j} & s'_{1,j} & s'_{1,j} & s'_{1,j} & s'_{1,j} & s'_{2,j} \\ s'_{2,j} & s'_{2,j} & s'_{3,j} & s'_{3,j} & s'_{3,j} \end{bmatrix} \Longrightarrow \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,j} & s'_{2,2} & s'_{2,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix} \Longrightarrow \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{2,3} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix} \Longrightarrow \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1,0} & s'_{1,1} & s'_{1,2} & s'_{2,2} \\ s'_{2,0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3,0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix} \Longrightarrow \begin{bmatrix} s'_{0,0} & s'_{0,1} & s'_{0,2} & s'_{0,1} \\ s'_{0,0} & s'_{0,1} & s'_{0,1} & s'_{0,1} & s'_{0,2} \\ s'_{0,0} & s'_{0,1} & s'_{0,1} & s'_{0,1} & s'_{$$

Predefine Matrix

State Array

New State Array

2	3	1	1
1	2	3	1
1	1	2	3
3	1	1	2

87	F2	4D	97
6E	4C	90	EC
46	E7	4A	C3
A6	8C	D8	95

$$\begin{array}{c} 97 \\ EC \\ \hline C3 \\ \end{array} \mapsto \begin{array}{c} ((02) \cdot (87)) \bigoplus_{(\{03\} \cdot \{6E\})} \bigoplus_{\{46\}} \bigoplus_{\{46\}} \bigoplus_{\{A6\}} = \{47\} \\ \bigoplus_{\{87\}} \bigoplus_{\{6E\}} \bigoplus_{\{(02\} \cdot \{46\})} \bigoplus_{\{46\}} \bigoplus_{\{(03\} \cdot \{46\})} \bigoplus_{\{03\} \cdot \{A6\})} = \{94\} \\ \bigoplus_{\{(03\} \cdot \{87\})} \bigoplus_{\{6E\}} \bigoplus_{\{46\}} \bigoplus_{\{46\}} \bigoplus_{\{(02\} \cdot \{A6\})} = \{ED\} \end{array}$$

= (47)

47	40	A3	4C
37	D4	70	9F
94	E4	3A	42
ED	A5	A6	BC

Inverse Mix Columns

$$\begin{bmatrix} 0E & 0B & 0D & 09 \\ 09 & 0E & 0B & 0D \\ 0D & 09 & 0E & 0B \\ 0B & 0D & 09 & 0E \end{bmatrix} \times \begin{bmatrix} s_{0.0} & s_{0,1} & s_{0,2} & s_{0,3} \\ s_{1.0} & s_{1,1} & s_{1,2} & s_{1,3} \\ s_{2.0} & s_{2,1} & s_{2,2} & s_{2,3} \\ s_{3.0} & s_{3,1} & s_{3,2} & s_{3,3} \end{bmatrix} = \begin{bmatrix} s'_{0.0} & s'_{0,1} & s'_{0,2} & s'_{0,3} \\ s'_{1.0} & s'_{1,1} & s'_{1,2} & s'_{1,3} \\ s'_{2.0} & s'_{2,1} & s'_{2,2} & s'_{2,3} \\ s'_{3.0} & s'_{3,1} & s'_{3,2} & s'_{3,3} \end{bmatrix}$$

Add round key

- Add round key
- In this step each byte is XOR-ed with corresponding element of key's matrix.

 In the last round of Encryption the mix column step is skipped.

Self Study

- Rationale behind the steps
- Sbox and Inverse Sbox table generation

RSA

- RSA is one of the oldest asymmetric encryption algorithm
- The acronym "RSA" comes from the surnames of Ron Rivest, Adi Shamir and Leonard Adleman
- The security of RSA relies on the practical difficulty of factoring the product of two large prime numbers, the "<u>factoring problem</u>".

RSA algorithm steps

```
1 Vov Congration
Step-1: Select two large prime numbers p
and g where p \neq g.
Step-2: Calculate n = p * q.
Step-3: Calculate \Phi(n) = (p-1) * (q-1).
Step-4: Select e such that, e is relatively
prime to \Phi(n), i.e. gcd(e, \Phi(n)) = 1 and 1 < e
<\Phi(n)
Step-5: Calculate d = e^{-1} \mod \Phi(n) or ed = 1
\mod \Phi(n).
Step-6: Public key = \{e, n\}, private key =
{d, n}.
```

Step - 1: Select two Xample numbers p and q where $p \neq q$.

Example, Two prime numbers p = 13, q = 11.

Step - 2: Calculate n = p * q. **Example,** n = p * q = 13 * 11 = 143.

Step - 3: Calculate $\Phi(n) = (p-1) * (q-1)$. **Example,** $\Phi(n) = (13 - 1) * (11 - 1) = 12 * 10 = 120$.

Step - 4: Select e such that, e is relatively prime to $\Phi(n)$,

i.e. $gcd(e, \Phi(n)) = 1 \text{ and } 1 < e < \Phi(n)$.

Example, Select e = 13, gcd (13, 120) = 1.

Step - 5: Calculate $d = e^{-1} \mod \Phi(n)$ or e $* d = 1 \mod \Phi(n)$ **Example,** Finding d: $e * d \mod \Phi(n) = 1$ 13 * d mod 120 = 1(How to find: $d *e = 1 \mod \Phi(n)$ $d = ((\Phi(n) * i) + 1) / e$ d = (120 + 1) / 13 = 9.30 (:: i = 1) d = (240 + 1) / 13 = 18.53 (:: i = 2)d = (360 + 1) / 13 = 27.76 (:: i = 3)d = (480 + 1) / 13 = 37 (:: i = 4)

Step - 6: Public key = $\{e, n\}$, private key = $\{d, n\}$.

Example, Public key = $\{13, 143\}$

2. Encryption

Find out cipher text using the formula, $E = P^e \mod n$ where, P < n.

Example, Plain text P = 13. (Where, P < 2) $P = P^e \mod n = 13^{13} \mod 143 = 52$.

3. Decryption

P = Cd mod n. Plain text P can be obtain asing the given formula.

Example, Cipher text C = 52 $P = C^{d} \mod n = 52^{37} \mod 143 = 13$.

References

- 1. <u>AES Proposal: Rijndael</u>, Joan Daemen, Vincent Rijmen
- 2. The Design of Rijndael, Joan Daemen, Vincent Rijmen
- 3. https://csrc.nist.gov/csrc/media/publications/fips/197/final/documents/fips-197.pdf