Model identification and flight control design for the Prometheus mapping drone

Nicola Dal Lago

Corso di Laurea Magistrale in Ingegneria dell'Automazione Dipartimento di Ingegneria dell'Informazione

10 ottobre 2016

Prometheus mapping drone

Scopo del progetto

Realizzazione di un UAV per navigazione e mappatura 3D in autonomo

Progetto diviso in 3 parti:

- 1 Design e costruzione della parte meccanica
- 2 Modello matematico, system identification, traiettorie e controllo
- 3 Algoritmi di navigazione e mapping

Design

- Telaio di un quadricottero standard
- Uso di un sensore laser Lidar, mapping in 2D
- Aggiunta di una piattaforma rotante per mapping in 3D

Modello matematico

Cinematica di Newton-Eulero

$$\begin{bmatrix} \mathbf{f} \\ \boldsymbol{\tau} \end{bmatrix} = \begin{bmatrix} m \cdot I_3 & \mathbf{0} \\ \mathbf{0}^T & I_{cm} \end{bmatrix} \begin{bmatrix} \ddot{\mathbf{x}}_{\mathbf{B}} \\ \dot{\boldsymbol{\omega}}_{\boldsymbol{B}} \end{bmatrix} + \begin{bmatrix} \mathbf{0} \\ \boldsymbol{\omega}_{\boldsymbol{B}} \times I_{cm} \cdot \boldsymbol{\omega}_{\boldsymbol{B}} \end{bmatrix}$$

$$\mathbf{f}_{i}(t) = a_{f,i} \Omega_{i}^{2} \mathbf{n}_{i} = a_{f,i} \Omega_{max,i}^{2} u_{i}(t)^{2} \mathbf{n}_{i}$$
$$\boldsymbol{\tau}_{i}(t) = -\operatorname{sgn}(\Omega_{i}) b_{f,i} \Omega_{max,i}^{2} u_{i}(t)^{2} \mathbf{n}_{i}$$
$$u_{i}(t) \approx \frac{1}{\tau_{i}s + 1} u_{in,i}(t)$$

$$\begin{bmatrix} \mathbf{f}_{total} \\ \boldsymbol{\tau}_{total} \end{bmatrix} = \begin{bmatrix} \sum\limits_{i=1}^{4} \mathbf{f}_{i}(u_{i}^{2}) \\ \sum\limits_{i=1}^{4} \mathbf{l}_{i} \times \mathbf{f}_{i}(u_{i}^{2}) + \boldsymbol{\tau}_{i}(u_{i}^{2}) \end{bmatrix}$$

Dinamica complessiva

$$\begin{bmatrix} \ddot{\mathbf{x}}_{B} \\ \dot{\boldsymbol{\omega}}_{B} \end{bmatrix} = \begin{bmatrix} \dots & \frac{a_{f,i}\Omega_{max,i}^{2}\mathbf{n}_{i}}{m} & \dots \\ \dots & I_{cm}^{-1} \Big[(\mathbf{l}_{i} + \Delta \boldsymbol{l}) \times a_{f,i}\Omega_{max,i}^{2}\mathbf{n}_{i} - \operatorname{sgn}(\Omega_{i})b_{f,i}\Omega_{max,i}^{2}\mathbf{n}_{i} \Big] & \dots \end{bmatrix} \begin{bmatrix} \vdots \\ u_{i}^{2} \\ \vdots \end{bmatrix} + \\ + \begin{bmatrix} \mathbf{0} \\ I_{cm}^{-1}(\boldsymbol{\omega}_{B} \times I_{cm}\boldsymbol{\omega}_{B}) \end{bmatrix} + \frac{1}{m_{cort}} \begin{bmatrix} \mathbf{f}_{cart} \\ \mathbf{0} \end{bmatrix}$$

System identification

Semplificazioni

$$a_{f,i}\Omega_{max,i}^2 \approx a_f$$

 $b_{f,i}\Omega_{max,i}^2 \approx b_f$
 $\tau_i \approx \tau$

Linearizzazione

- $I_{cm}^{-1}(\boldsymbol{\omega}_B \times I_{cm}\boldsymbol{\omega}_B) \approx 0$
- muovere il quadrato degli ingressi al modello del motore

Definisco nuovo stato aumentato

$$\mathbf{x}_{est} = \begin{bmatrix} \boldsymbol{\omega}_B & \mathbf{u}_{in} & \boldsymbol{\beta} & \boldsymbol{\tau} \end{bmatrix}^T \in \mathbb{R}^{15}, \quad \boldsymbol{\beta} = \begin{bmatrix} \frac{a_f}{m} & \frac{a_f}{I_{xx}} & \frac{a_f}{I_{yy}} & \frac{a_f}{I_{zz}} & \frac{b_f}{I_{zz}} & \Delta l_x & \Delta l_y \end{bmatrix}^T$$

Discretizzazione

Filtro di Kalman

Risultati

- Carrello non in movimento
- Identificazione dei parametri anche con condizioni iniziali molto sbagliate

Generatore di traiettorie

Definizione traiettorie

Polinomi di grado $n \ \mathrm{su} \ m$ waypoints.

$$\sigma_d(t) = \begin{cases} \sum_{i=0}^n \sigma_{d,i,1} t^i & t_0 \le t < t_1 \\ \sum_{i=0}^n \sigma_{d,i,2} t^i & t_1 \le t < t_2 \\ \vdots & \vdots & \vdots \\ \sum_{i=0}^n \sigma_{d,i,m} t^i & t_{m-1} \le t < t_m \end{cases}$$

Minimizzare funzione costo

$$\begin{aligned} & \min & & \int_{t_0}^{t_m} \mu_{\mathbf{x}} \left| \left| \frac{d^{k_{\mathbf{x}}} \mathbf{x}_d}{dt^{k_{\mathbf{x}}}} \right| \right|^2 + \mu_{\psi} \left(\frac{d^{k_{\psi}} \psi_d}{dt^{k_{\psi}}} \right)^2 dt \\ & \text{subject to} & & \sigma_d(t_i) = \sigma_{d,i}, \quad i = 0, \dots, m \\ & & \frac{d^p x_d}{dt^p} \Big|_{t=t_j} = 0, \quad j = 0, m; \quad p = 1, \dots, k_r \\ & & \frac{d^p y_d}{dt^p} \Big|_{t=t_j} = 0, \quad j = 0, m; \quad p = 1, \dots, k_r \\ & & \frac{d^p z_d}{dt^p} \Big|_{t=t_j} = 0, \quad j = 0, m; \quad p = 1, \dots, k_r \\ & & \frac{d^p \psi_d}{dt^p} \Big|_{t=t_j} = 0, \quad j = 0, m; \quad p = 1, \dots, k_{\psi} \end{aligned}$$

Riscrittura della funzione costo

 \min subject to $A\mathbf{c} \leq \mathbf{b}$

$$\mathbf{c}^T H \mathbf{c} + f^T \mathbf{c}$$
 \Rightarrow

Problema quadratico di programmazione matematica, veloce

 $A_{eq}\mathbf{c} = \mathbf{b}_{eq}$

Controllo

Definizione degli errori

$$\mathbf{e}_{x} = \mathbf{x} - \mathbf{x}_{d}$$

$$\mathbf{e}_{v} = \dot{\mathbf{x}} - \dot{\mathbf{x}}_{d}$$

$$\mathbf{e}_{R} = \frac{1}{2} (R_{c}^{T} R - R^{T} R_{C})^{\vee}$$

$$\mathbf{e}_{ct} = \boldsymbol{\omega} - R^{T} R_{C} \hat{\boldsymbol{\omega}}_{c}$$

 R_C è tale che $R_C \in SO(3)$

Contributo di forza

$$f = -(k_x \mathbf{e}_x + k_v \mathbf{e}_v - g \mathbf{e}_3 - \ddot{\mathbf{x}}_d)^T R \mathbf{e}_3$$

Contributo di momento torcente

$$\boldsymbol{\tau} = -k_R \mathbf{e}_R - k_\omega \boldsymbol{e}_\omega + \boldsymbol{\omega} \times I_{cm} \boldsymbol{\omega}$$

Risultati

Conclusioni e sviluppi futuri

Conclusioni

- System identification del modello semplificato
- Generatore di traiettorie
- Controllo con compensazione del movimento del sensore

Sviluppi futuri

- System identification per il modello non lineare
- Imporre vincoli basati sulla dinamica dell'UAV nelle traiettorie
- Controllo in grado di prevedere la dinamica, come MPC

Grazie per l'attenzione!

Prometheus mapping drone

Model Predictive Control (MPC)

Definizione

$$\min_{U_{t \to t+N|t}} J_t = \sum_{i=1}^N ||\mathbf{r}_i - \mathbf{x}_i||_{W_x}^2 + \sum_{i=1}^N ||\Delta \mathbf{u}||_{W_u}^2$$
subject to
$$\mathbf{x}_{t+k+1|t} = A\mathbf{x}_{t+k|t} + B\mathbf{u}_{t+k|t}, \qquad k = 1, \dots, N$$

$$\mathbf{x}_{t+k|t} \in X, \quad \mathbf{u}_{t+k|t} \in U, \qquad k = 1, \dots, N$$

$$\mathbf{x}_{t|t} = \mathbf{x}(t)$$

Pro:

- Include modello motori
- Vincoli negli ingressi

Contro:

- Linearizzazione del modello
- Complessità computazionale

Modello lineare più approsimazione piccoli angoli

Switching MPC

