

R1207N Series

STEP-UP DC/DC CONVERTER

NO.EA-298-190808

OUTLINE

The R1207N Series are CMOS-based PWM control type step-up DC/DC converter ICs with low supply current. Each of these ICs consists of an NMOS FET, a diode, an oscillator, a PWM comparator, a voltage reference unit, an error amplifier, a current limit circuit, an under voltage lockout circuit (UVLO), an over-voltage protection circuit (OVP), a soft-start circuit, a Maxduty limit circuit, and a thermal shutdown protection circuit. This step-up DC/DC converter can be easily built with a few external components such as a coil, a resistor, and a capacitor. As the protection functions, the R1207N Series have a Lx peak current limit function, an over voltage protection (OVP) function, an under voltage lock out (UVLO) function and a thermal shutdown function.

The R1207N Series present the R1207N8xxA version that is optimized for the constant voltage power source, and the R1207N8xxB/C version that is optimized for driving the white LED with the constant current. The R1207N8xxB/C is an adjustable version that can change the LED brightness dynamically by using a 200Hz to 300kHz PWM signal toward the CE pin.

The R1207N Series are available in TSOT-23-6 package.

FEATURES

Input Voltage Range	2.3V to 5.5V (R1207N8xxA)
	1.8V to 5.5V (R1207N8xxB/C)
Supply Current	Τyp. 800μA
Standby Current	Max. 5μA
Feedback Voltage	1.0V±1.5% (R1207N8xxA)
	0.2V±10mV (R1207N8xxB)
	0.4V±10mV (R1207N8xxC)
Oscillator Frequency	Typ. 1.2MHz
Maximum Duty Cycle	Typ. 91%
UVLO Function	··· Typ.2.0V (Hys.Typ.0.2V) (R1207N8xxA)
	Typ.1.6V (Hys.Typ.0.1V) (R1207N8xxB/C)
Lx Current Limit Function	Select from 350mA, 700mA
Over Voltage Protection	Typ. 25V
• LED dimming control (R1207N8xxB/C)	by external PWM signal (Frequency 200Hz to 300kHz)
Thermal Protection Function	Typ.150°C(Hys.Typ.50°C)
Switch ON Resistance	Τyp. 1.35Ω
Package	TSOT-23-6
Ceramic capacitors are recommended	

APPLICATION

- Constant Voltage Power Source for portable equipment
- OLED power supply for portable equipment
- White LED Backlight for portable equipment

NO.EA-298-190808

(B) 0.2V (C) 0.4V

SELECTION GUIDE

The OVP threshold voltage, current limit and V_{FB}/Auto discharge are user-selectable options.

Product Name	Package	Quantity per Reel	Pb Free	Halogen Free
R1207N8x3*-TR-FE	TSOT-23-6	3,000 pcs	Yes	Yes
x : Designation of cur (1) 350mA (2) 700mA	rent limit.			
* : Designation of VF (A) 1.0V	В.			

BLOCK DIAGRAMS

R1207N8xxA

R1207N8xxB/C

NO.EA-298-190808

PIN DESCRIPTIONS

TSOT-23-6

Pin No	Symbol	Pin Description	
1	Lx	Switching Pin (Open Drain Output)	
2	GND	Ground Pin	
3	V _{FB}	Feedback Pin	
4	CE	Chip Enable Pin ("H" Active)	
5	Vouт	Output Pin	
6	Vin	Input Pin	

ABSOLUTE MAXIMUM RATINGS

GND=0V

Symbol	Item	Rating	Unit
Vin	V _{IN} Pin Voltage	-0.3 to 6.5	V
Vce	CE Pin Voltage	-0.3 to 6.5	V
V_{FB}	V _{FB} Pin Voltage	-0.3 to 6.5	V
Vout	Vout Pin Voltage	-0.3 to 28	V
V_{LX}	Lx Pin Voltage	-0.3 to 28	V
ILX	Lx Pin Current	1000	mA
Po	Power Dissipation (TSOT-23-6)*	460	mW
Tj	Junction Temperature Range	-40 to 125	°C
Tstg	Storage Temperature Range	-55 to 125	°C

^{*)} Refer to POWER DISSIPATION for detailed information.

ABSOLUTE MAXIMUM RATINGS

Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause permanent damage and may degrade the life time and safety for both device and system using the device in the field. The functional operation at or over these absolute maximum ratings is not assured.

RECOMMENDED OPERATING CONDITIONS

Symbol	Item	Rating		Unit
V/	Operating Input Voltage	R1207N8xxA	2.3 to 5.5	V
V _{IN} Operating Input Voltage	R1207N8xxB/C	1.8 to 5.5	V	
Ta	Operating Temperature Range	-40 to 85		°C

RECOMMENDED OPERATING CONDITIONS

All of electronic equipment should be designed that the mounted semiconductor devices operate within the recommended operating conditions. The semiconductor devices cannot operate normally over the recommended operating conditions, even if they are used over such conditions by momentary electronic noise or surge. And the semiconductor devices may receive serious damage when they continue to operate over the recommended operating conditions.

NO.EA-298-190808

ELECTRICAL CHARACTERISTICS

R1207N (Ta=25°C)

Symbol	Item	Cond	itions	Min.	Тур.	Max.	Unit
I DD	Supply Current	V _{IN} =5.5V, V _{FB} =0V , L _x at no load			0.8	1.2	mA
Istandby	Standby Current	V _{IN} =5.5V, V _{CE} =0V			1.0	5.0	μΑ
Vinaci	UVLO Detector Threshold	V _{IN} falling	R1207N8xxA	1.9	2.0	2.1	V
Vuvlo1	OVEO Detector Tilleshold	VIN TAILING	R1207N8xxB/C	1.5	1.6	1.7	V
Vivva - LIVI O Relegand Veltars	V _{IN} rising	R1207N8xxA		Vuvlo1 +0.2	2.3	<	
V UVLO2	VuvLo2 UVLO Released Voltage	VIN HSIIIIG	R1207N8xxB/C		Vuvlo1 +0.1	1.8	V
VCEH	CE Input Voltage "H"	VIN=5.5V		1.5			V
VCEL	CE Input Voltage "L"					0.5	V
Rce	CE Pull Down Resistance				1200		kΩ
			R1207N8xxA	0.985	1.000	1.015	
V_{FB}	V _{FB} Voltage Accuracy	VIN=3.6V	R1207N8xxB	0.19	0.2	0.21	V
			R1207N8xxC	0.39	0.4	0.41	
ΔV _{FB} / ΔTa	V _{FB} Voltage Temperature Coefficient	$V_{\text{IN}}\text{=}3.6V\text{, }-40^{\circ}C\leq Ta\leq 85^{\circ}C$			±150		ppm /°C
lгв	V _{FB} Input Current	VIN=5.5V, VFB=0V C	or 5.5V	-0.1		0.1	μΑ
tstart	Soft-start Time		R1207N8xxB/C		2.0	3.0	ms
Ron	FET ON Resistance	I _L x=100mA			1.35		Ω
loff	FET Leakage Current	V _L x=24V				3.0	μΑ
	EET O(1.1)		R1207N81xx	250	350	450	0
Іым	FET Current Limit		R1207N82xx	500	700	900	mA
VF	Diode Forward Voltage	Isw=100mA			0.8		V
IDIODEleak	Diode Leakage Current	Vout=24V, VLX=0V				10	μΑ
fosc	Oscillator Frequency	VIN=3.6V, VFB=0V	VIN=3.6V, VFB=0V		1200	1400	kHz
Maxduty	Maximum Duty Cycle	VIN=3.6V, VFB=0V		86	91		%
V _{OVP1}	OVP Detect Voltage	VIN=3.6V, Vout rising		24.2	25	25.8	V
V _{OVP2}	OVP Release Voltage	VIN=3.6V, VOUT falling			V _{OVP1} -1.8		V
Trsd	Thermal Shutdown Detect Temperature	V _{IN} =3.6V			150		°C
T _{TSR}	Thermal Shutdown Release Temperature	VIN=3.6V			100		°C

THEORY OF OPERATION

Operation of Step-Up DC/DC Converter and Output Current

<Basic Circuit>

<Current through L>

Discontinuous mode

Continuous mode

There are two operation modes of the step-up PWM control-DC/DC converter. That is the continuous mode and discontinuous mode by the continuousness inductor.

When the transistor turns ON, the voltage of inductor L becomes equal to V_{IN} voltage. The increase value of inductor current (i1) will be

As the step-up circuit, during the OFF time (when the transistor turns OFF) the voltage is continually supply from the power supply. The decrease value of inductor current (i2) will be

$$\Delta i2 = (V_{OUT} - V_{IN}) \times t_{OPEN} / L$$
 Formula 2

NO.EA-298-190808

At the PWM control-method, the inductor current become continuously when topen=toff, the DC/DC converter operate as the continuous mode.

In the continuous mode, the variation of current of i1 and i2 is same at regular condition.

$$V_{IN} \times ton / L = (V_{OUT} - V_{IN}) \times toff / L$$
 Formula 3

The duty at continuous mode will be

The average of inductor current at tf = toff will be

$$IL(Ave.) = V_{IN} \times ton / (2 \times L)$$
 Formula 5

If the input voltage = output voltage, the lout will be

$$I_{OUT} = V_{IN}^2 \times ton / (2 \times L \times V_{OUT})$$
 Formula 6

If the lout value is large than above the calculated value (Formula 6), it will become the continuous mode, at this status, the peak current (ILmax) of inductor will be

ILmax =
$$I_{OUT} \times V_{OUT} / V_{IN} + V_{IN} \times ton / (2 \times L)$$
 Formula 7

The peak current value is larger than the lout value. In case of this, selecting the condition of the input and the output and the external components by considering of ILmax value.

The explanation above is based on the ideal calculation, and the loss caused by Lx switch and the external components are not included.

The actual maximum output current will be between 50% and 80% by the above calculations. Especially, when the IL is large or V_{IN} is low, the loss of V_{IN} is generated with on resistance of the switch. Moreover, it is necessary to consider Vf of the diode (approximately 0.8V) about V_{OUT}.

Soft-Start (R1207N8xxB/C)

The output and referrence of the error amplifier start from 0V and the referrence gradually rises up to 1.0V. After the softstart time (Tss), output voltage rise up to the setting voltage.

The output of the error amplifier starts from 0V and the inrush current is suppressed when starting by the CE pin "H" input. Moreover, the inrush current can be suppressed by gradually enlarging Duty of the PWM signal to the CE pin.

Current Limit Function

Current limit function monitors the over current and if it reaches the peak current, it will turn off the driver. When the over current decreases, it will restart oscillation and will restart the monitoring.

APPLICATION INFORMATION

Lx

Vout

 V_{FB}

VIN

CE

GND

Typical Applications

R1207N8xxA

R1207N8xxB/C

• Inductor Selection

The peak current of the inductor at normal mode can be estimated as the next formula when the efficiency is 80%.

ILmax=1.25 x Iout x Vout / Vin + 0.5 x Vin x (Vout - Vin) / (L x Vout x fosc)

In the case of start-up or dimming control by CE pin, inductor transient current flows, and the peak current of it must be equal or less than the current limit of the IC. The peak current should not beyond the rated current of the inductor. The recommended inductance value is $10\mu H$ - $22\mu H$.

Table 1 Peak current value in each condition

Condition				
VIN (V)	Vout (V)	louт (mA)	L (μH)	ILmax (mA)
3	14	20	10	215
3	14	20	22	160
3	21	20	10	280
3	21	20	22	225

Table 2 Recommended inductors

L	Part No.	Rated	Size
(μH)	i aitino.	Current (mA)	(mm)
10	LQH32CN100K53	450	3.2x2.5x1.55
10	LQH2MC100K02	225	2.0x1.6x0.9
10	VLF3010A-100	490	2.8x2.6x0.9
10	VLS252010-100	520	2.5x2.0x1.0
22	LQH32CN220K53	250	3.2x2.5x1.55
22	LQH2MC220K02	185	2.0x1.6x0.9
22	VLF3010A-220	330	2.8x2.6x0.9

NO.EA-298-190808

Capacitor Selection

Set 1μF or more value bypass capacitor C1 between V_{IN} pin and GND pin as close as possible.

R1207NxxxA

Set $1\mu F - 4.7\mu F$ or more capacitor C2 between V_{OUT} and GND pin.

Table 3-A Recommended components for R1207NxxxA

	Rated voltage(V)	Part No.	
C1	6.3	CM105B105K06	
C2	25	GRM21BR11E105K	
C3	25	22pF	
R1		For Vou⊤ Setting	
R2		For Vou⊤ Setting	
R3		2kΩ	

If the transient drop of output voltage by the load fluctuation is large and exceeds the allowable range in above setting, refer to Table 3-B to change the capacitors of C2 and C3 for the response improvement and the transient voltage drop reduction.

Table 3-B Recommended components for R1207xxxxA

	Rated voltage(V)	Part No.	
C1	6.3	CM105B105K06	
C2	50	GRM31CR71H475M	
C3	25	220pF	
R1		For Vout Setting	
R2		For Vout Setting	
R3		2kΩ	

R1207NxxxB/C

Set $0.22\mu F$ or more capacitor C2 between V_{OUT} and GND pin. (R1207N8xxB) Set $0.47\mu F$ or more capacitor C2 between V_{OUT} and GND pin. (R1207N8xxC) Note the V_{OUT} that depends on LED used, and select the rating of V_{OUT} or more.

Table 4 Recommended components for R1207NxxxB/C

	Rated voltage(V)	Part No.
C1	6.3	CM105B105K06
	25	GRM21BR11E224
C2	25	C2012X7R1E474K
	50	GRM21BR71H224

External Components Setting

If the V_{OUT} spike noise is high, it may influence on the V_{FB} pin to cause the operation of R1205x8xxA unstable. To reduce the noise coming into V_{FB} pin, please place a $1k\Omega$ to $5k\Omega$ resistor in R3 in Fig. 1.

Application of Using 5.5V or more Power Supply

Other than the IC power supply, if there is a power supply greater than 5.5V, the high power output can be achieved by using the power supply as an inductor power supply. In this case, please place a capacitor between an inductor power supply and GND (shown in Fig. 2) aside from a bypass capacitor between the V_{IN} pin and GND of the IC.

Fig. 1 R1207N8xxA

Fig. 2 R1207N8xxB/C

The Method of Output Voltage Setting (R1207N8xxA)

The output voltage (Vout) can be calculated with divider resistors (R1 and R2) values as the following formula:

Output Voltage (Vout) =
$$V_{FB} \times (R1 + R2) / R1$$

The total value of R1 and R2 should be equal or less than $300k\Omega$. Make the V_{IN} and GND line sufficient. The large current flows through the V_{IN} and GND line due to the switching. If this impedance (V_{IN} and GND line) is high, the internal voltage of the IC may shift by the switching current, and the operating may become unstable. Moreover, when the built-in L_X switch is turn OFF, the spike noise caused by the inductor may be generated. As a result of this, recommendation voltage rating of capacitor (C2) value is equal 1.5 times larger or more than the setting output voltage.

• LED Current setting (R1207N8xxB/C)

When CE pin input is "H" (Duty=100%), LED current can be set with feedback resistor (R1)

NO.EA-298-190808

LED Dimming Control (R1207N8xxB/C)

The LED brightness can be controlled by inputting the PWM signal to the CE pin. If the CE pin input is "L" in the fixed time (Typ.0.5ms), the IC becomes the standby mode and turns OFF LEDs.

The current of LEDs can be controlled by Duty of the PWM signal of the input CE pin. The current of LEDs when High-Duty of the CE input is "Hduty" reaches the value as calculatable following formula.

The frequency of the PWM signal is using the range between 200Hz to 300kHz.

When controlling the LED brightness by the PWM signal of 5kHz or less, R1207N8xxB/C are recomended to avoide discharge function during dimming control.

When controlling the LED brightness by the PWM signal of 20kHz or less, the increasing or decreasing of the inductor current might be make a sounds in the hearable sound wave area. In that case, please use the PWM signal in the high frequency area.

Dimming Control by CE Pin Input

Low luminance Dimming Accuracy (R1207N8xxC)

Low luminance Dimming filtered V_{FB} voltage tolerance depends on the offset voltage of the internal DC/DC converter. By this offset voltage, some voltage difference may be generated between VREF voltage and V_{FB} voltage. Low luminance Dimming Accuracy is shown below.

Low luminance Dimming Accuracy for R1207N8xxC (R1=20ohm)

The duty of a PWM signal for the CE pin	ILED Min.	ILED Max.
3.5% (Frequency = 20kHz ~ 300kHz)	0.01mA*2	2.1mA*2

^{*2} guaranteed by design engineering (Ta=25 °C)

TECHNICAL NOTES

Current Path on PCB

The current paths in an application circuit are shown in Fig. 3 and 4.

A current flows through the paths shown in Fig. 3 at the time of MOSFET-ON, and shown in Fig. 4 at the time of MOSFET-OFF. In the paths pointed with red arrows in Fig. 4, current flows just in MOSFET-ON period or just in MOSFET-OFF period. Parasitic impedance / inductance and the capacitance of these paths influence stability of the system and cause noise outbreak. So please minimize this side effect. In addition, please shorten the wiring of other current paths shown in Fig. 3 and 4 except for the paths of LED load.

Layout Guide for PCB

- Please shorten the wiring of the input capacitor (C1) between V_{IN} pin and GND pin of IC. The GND pin should be connected to the strong GND plane.
- The area of Lx land pattern should be smaller.
- · Please put output capacitor (C2) close to the Vou⊤ pin.
- · Please make the GND side of output capacitor (C2) close to the GND pin of IC.

PCB Layout

R1207N (PKG: TSOP-23-6pin)

U1-■ indicates the position of No.1 pin.

TYPICAL CHARACTERISTICS

1) Efficiency vs. Output Current Characteristics (R1207N823A)

Typical Applications with Using 5.5V or Greater Vout=15V, L=10μH (LQH32CN100K53)

Vουτ=20V, L=10μH (LQH32CN100K53)

2) Efficiency vs. Output Current Characteristics (R1207N823B/C)

4LED, L=22μH (LQH32CN220K53)

NO.EA-298-190808

Typical Applications with Using 5.5V or Greater

3) Output Voltage vs. Output Current (R1207N823A)

Vouт=10V, L=10μH (LQH32CN100K53)

V_{OUT}=10V, L=22μH (LQH32CN220K53)

Vouτ=15V, L=10μH (LQH32CN100K53)

Voυτ=15V, L=22μH (LQH32CN220K53)

NO.EA-298-190808

Vouτ=20V, L=10μH (LQH32CN100K53)

Vouτ=20V, L=22μH (LQH32CN220K53)

Vout=20V, VIN=3.6V

Typical Applications with Using 5.5V or Greater

Vουτ=15V, L=10μH (LQH32CN100K53)

Vouτ=20V, L=10μH (LQH32CN100K53)

4) Maxduty vs. ILED

R1207N823B/C

25 20 (¥) 15 10 5 — 200Hz — 10kHz — 300kHz

5) OVP Output Waveform R1207N823B/C

6) Waveform (6LED)

20

0 6

R1207N823B/C (CE Freq=200Hz)

Duty (%)

40

60

80

100

R1207N823B/C (CE Freq=10KHz)

R1207N823B/C (CE Freq=300KHz)

7) Diode Forward Voltage vs. Temperature

NO.EA-298-190808

8) Standby Current vs. Temperature

9) Supply Current vs. Temperature

10) UVLO Output Voltage vs. Temperature R1207N8xxA

R1207N8xxB

11) VFB Voltage vs. Temperature

R1207N8xxB

NO.EA-298-190808

12) Switch ON Resistance RON vs. Temperature

14) Lx Current Limit vs. Temperature

13) OVP Voltage vs. Temperature

R1207N82xx

NO.EA-298-190808

15) Oscillator Frequency vs. Temperature

16) Maxduty vs. Temperature

17) Thermal Shutdown Detect / Release Temperature vs. Input Voltage

18) Load Transient Response

 $V_{IN} = 3.6 \text{ V}, V_{OUT} = 15 \text{ V}$ $I_{OUT} = 0 \text{ mA} \Leftrightarrow 30 \text{ mA}$

$L = 10 \mu H$ Setting: Table 3-A

$L = 22 \mu H$ Setting : Table 3-A

L=10 µH Setting: Table 3-B

NO.EA-298-190808

 $L = 22 \mu H$ Setting : Table 3-B

Ver A

The power dissipation of the package is dependent on PCB material, layout, and environmental conditions. The following conditions are used in this measurement.

Measurement Conditions

	Standard Test Land Pattern
Environment	Mounting on Board (Wind Velocity = 0 m/s)
Board Material	Glass Cloth Epoxy Plastic (Double-Sided Board)
Board Dimensions	40 mm × 40 mm × 1.6 mm
Copper Ratio	Top Side: Approx. 50%
	Bottom Side: Approx. 50%
Through-holes	φ 0.5 mm × 44 pcs

Measurement Result

 $(Ta = 25^{\circ}C, Tjmax = 125^{\circ}C)$

	Standard Test Land Pattern
Power Dissipation	460 mW
Thermal Resistance	θja = (125 - 25°C) / 0.46 W = 217°C/W
	θjc = 40°C/W

O IC Mount Area (mm)

Power Dissipation vs. Ambient Temperature

Measurement Board Pattern

Ver. A

TSOT-23-6 Package Dimensions (Unit: mm)

- The products and the product specifications described in this document are subject to change or discontinuation of
 production without notice for reasons such as improvement. Therefore, before deciding to use the products, please refer
 to our sales representatives for the latest information thereon.
- 2. The materials in this document may not be copied or otherwise reproduced in whole or in part without prior written consent of our company.
- 3. Please be sure to take any necessary formalities under relevant laws or regulations before exporting or otherwise taking out of your country the products or the technical information described herein.
- 4. The technical information described in this document shows typical characteristics of and example application circuits for the products. The release of such information is not to be construed as a warranty of or a grant of license under our company's or any third party's intellectual property rights or any other rights.
- 5. The products listed in this document are intended and designed for use as general electronic components in standard applications (office equipment, telecommunication equipment, measuring instruments, consumer electronic products, amusement equipment etc.). Those customers intending to use a product in an application requiring extreme quality and reliability, for example, in a highly specific application where the failure or misoperation of the product could result in human injury or death (aircraft, spacevehicle, nuclear reactor control system, traffic control system, automotive and transportation equipment, combustion equipment, safety devices, life support system etc.) should first contact us.
- 6. We are making our continuous effort to improve the quality and reliability of our products, but semiconductor products are likely to fail with certain probability. In order to prevent any injury to persons or damages to property resulting from such failure, customers should be careful enough to incorporate safety measures in their design, such as redundancy feature, fire containment feature and fail-safe feature. We do not assume any liability or responsibility for any loss or damage arising from misuse or inappropriate use of the products.
- 7. Anti-radiation design is not implemented in the products described in this document.
- 8. The X-ray exposure can influence functions and characteristics of the products. Confirm the product functions and characteristics in the evaluation stage.
- 9. WLCSP products should be used in light shielded environments. The light exposure can influence functions and characteristics of the products under operation or storage.
- 10. There can be variation in the marking when different AOI (Automated Optical Inspection) equipment is used. In the case of recognizing the marking characteristic with AOI, please contact our sales or our distributor before attempting to use AOI.
- 11. Please contact our sales representatives should you have any questions or comments concerning the products or the technical information

