

Department of Mechanical Engineering

Course name / Course code: Innovative multidisciplinary Project / R19ME381

Title of the project: Agricultural seed spraying machine by using solar

Class / Section / Semester	•	III MECH / VI
Batch	:	2022-2026
Project Review	:	Third Review
Date	:	16/04/2025
Project Guide with Designation	•	Mr. S. Gokul, B.E. (Gold Medalist), M.E. (Engg. Design)., Assistant Professor Department of Mechanical Engineering Sri Eshwar College of Engineering
Name of the Industry (if applicable)	:	Agricultural Sector
Team Members	:	Adithya.T (722822114003) Naga arjun.R (722822114026) Santhosh.T (722822114039) Tamilarasan.J (722822114047)

OVERVIEW

S.NO	CONTENTS	SLIDE NO.
1	CHALLENGE STATEMENT	4
2	LITERATURE SURVEY	5,6
3	EXISTING METHOD	7
4	PROPOSED METHOD	8
5	BLOCK/SCHEMATIC DIAGRAM	9
6	USE-CASE DIAGRAM	10
7	SOFTWARE/HARDWARE IMPLEMENTATION VIDEO	11
8	DESCRIPTION OF SOFTWARE/HARDWARE IMPLEMENTATION	12
9	EXPERIMENTAL RESULTS	13,14,15
10	CONCLUSION & FUTURE WORK	16
11	REFERENCES	18
12	PAPER PUBLICATION & CONTEST PARTICIPATION	17

CHALLENGE STATEMENT

- Environmental and Economic Impact: Conventional seed spraying methods rely heavily on fuel-powered vehicles, leading to increased operational costs and significant environmental pollution. This dependency on fossil fuels contributes to unsustainable farming practices.
- Inefficiency of Manual Spraying: Manual spraying processes are labor-intensive and time-consuming. They lack efficiency, particularly when covering large farmlands, making them less practical for modern agricultural needs.
- Lack of Accessible Smart Solutions: Small and medium-sized farmers face a shortage of cost-effective, solar-powered seed spraying vehicles. Additionally, the absence of wireless systems operable via mobile hotspots limits rural farmers' access to energy-efficient and smart farming technologies.

16-04-2025 4

LITERATURE SURVEY / BACKGROUND STUDY

S. N	No TITLE	AUTHOR	NAME OF ORGANIZATION &YEAR	DESCRIPTION
1.	Solar Powered Sprayer -A Review	Alam et al.	International Journal of Current Microbiology and Applied Sciences, 2020	 This study focuses on a movable solar-powered sprayer designed to reduce user fatigue, operational costs, and environmental damage caused by fuel-powered sprayers. It operates in both direct and indirect modes using solar energy and a battery. The system demonstrated efficiency in spraying operations and is particularly useful in rural areas with limited power supply.
2.	Development and Manufacture of Solar Power Seed Sprayer Machine		Peer-reviewed Journal, IJARCCE, 2024	 This paper introduces a solar-powered seed sprayer machine that integrates solar panels for energy generation and Bluetooth control for efficient seed sowing operations. The system is designed to reduce manual labor, improve precision, and promote sustainability by eliminating reliance on fossil fuels.
3.	A Review on Solar- Powered Seed and Fertilizer Sprayer System	Ammar A.M. Al-Talib et al.	IJARESM, 2023	 This review highlights the advantages of solar-powered seed and fertilizer sprayers, focusing on their ability to reduce environmental impact, operational costs, and manual effort. It also discusses challenges such as initial costs and weather dependency while emphasizing the potential for integration into precision agriculture systems.

S. No	TITLE	AUTHOR	NAME OF ORGANIZATION &YEAR	DESCRIPTION
4.	Solar-Powered Plant Protection Equipment: Perspective and Prospects	/	MDPI, 2022	 This paper explores the use of solar-powered equipment in agriculture, including seed sprayers, to address challenges like high fuel costs and environmental pollution. It emphasizes the role of renewable energy in improving agricultural practices while aligning with Sustainable Development Goals (SDGs).
5.	Solar Powered Seed Sprayer Machine	Ammar A.M. Al- Talib et al.	Semantic Scholar	 This study focuses on the design of a solar-powered seed sprayer machine that operates using renewable energy to achieve efficient seed distribution. It highlights the system's ability to reduce labor intensity while addressing environmental concerns associated with traditional methods.
6.	Design and Fabrication of Solar Seed Sprayer Machine	T. Ravi, D. GobiGanesh	Proceedings of International Conference on Artificial Life and Robotics, 2024	 Focuses on developing a solar-powered seed sprayer machine to reduce manual labor, enhance seed distribution efficiency, and promote sustainability in agriculture. Incorporates Bluetooth control and DC motors for automation

EXISTING METHOD

- Seed spraying is commonly done using manual hand sprayers, tractor sprayers, or engine-powered equipment, all requiring continuous human effort and fossil fuel consumption, which increases costs and environmental pollution.
- Advanced automated sprayers and drones exist but are expensive and often inaccessible to small and medium-sized farmers.
- Most current systems do not offer solar-powered operation or wireless control, making them less practical for rural and off-grid farming communities.

PROPOSED / INNOVATIVE METHOD

- Fuel-Free, Cost-Effective Operation: The project proposes a solar-powered seed spraying vehicle to reduce dependence on fuel and lower operational costs for farmers.
- Simple, Efficient System Design: The vehicle consists of a basic frame with a solar panel, 12V battery, motor-driven wheels, and an air blower for seed spraying, ensuring efficient and reliable operation.
- Remote Control and Farmer-Focused Benefits: Powered by solar energy and remotely controlled via a mobile hotspot, this environmentally friendly system is tailored for small and medium-sized farmers, offering an affordable and sustainable solution for precision farming.

BLOCK / SCHEMATIC DIAGRAM

USE CASE DIAGRAM

SOFTWARE / HARDWARE IMPLEMENTATION VIDEO

DESCRIPTION OF SOFTWARE/HARDWARE IMPLEMENTATION

Runs on Solar Power:

• Uses sunlight to charge its battery, so it doesn't need fuel and is good for the environment.

Strong and Easy to Move:

• Has four sturdy wheels and motors to move easily in the field.

Easy to Control:

• Can be driven and used with a simple app on your phone.

Great for Farmers:

• Saves money, is easy to use, and works well for small and medium farms.

EXPERIMENTAL RESULTS

- The solar-powered seed spraying vehicle was built and tested in real field conditions.
- It moved easily in all directions using a mobile phone and the Blynk app.
- The vehicle worked well with just solar power and didn't need any fuel.
- It was easy to control, sprayed seeds well, and was good for the environment, making it a smart choice for small and medium farmers.

Front view

Top view

Side view

Isometric view

Experimental Video

CONCLUSION & FUTURE WORK

- The vehicle was controlled by a mobile hotspot, didn't need a driver, and used solar power, so it saved energy and was good for the environment.
- It was easy to use, worked well, and was affordable for farmers.
- In the future, the vehicle can be improved with features like GPS, sensors to check seed and fertilizer levels, obstacle detection, and better solar panels.
- The design can also be changed to work with different types of seeds or fertilizers, making it more useful for farmers.

PAPER PUBLICATIONS

REFERENCES

- https://www.academia.edu/27758564/DESIGN_AND_FABRICATION_OF_SOLAR_SEED_SPRAY ER_MACHINE_T_Ravi_D_GobiGanesh_R_Gokulakannan_M_Kandeeswaran_V_Kesavan
- https://www.academia.edu/122011603/Development_and_Manufacture_of_Solar_Power_Seed_Sprayer _Machine
- https://ijarcce.com/papers/development-and-manufacture-of-solar-power-seed-sprayer-machine/
- https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3645393
- https://www.mdpi.com/1996-1073/15/19/7379

THANK YOU