

1.1.2 实际气体

实际气体

在高压、低温条件下,随着气体分子距离的缩短和分子平均动能的降低,分子间的引力和分子自身的体积这两种因素已不能被忽略,实际气体的行为与理想气体的行为之间就发生了很大的偏差。

实际气体

大学化学

1873年,荷兰科学家范德华(Van der Waals)针对引起实际气体与理想气体发生偏差的两个主要原因,对理想气体状态方程进行了如下修正:

1)气体处于高压时分子本身的体积不容忽视,因为实际气体分子可以活动的空间比容器的体积小。

Johannes Diderik van der Waals 1837.11-1923.3

2)由于气体处于高压时存在着不容忽视的分子间吸引力,所以气体分子碰撞器壁所表现出的压力要比无分子间吸引力时小。

3. 实际气体状态方程

大学化学

$$\left(p + \frac{a}{\tilde{v}^2}\right)(\tilde{v} - b) = RT$$
 1摩尔气体

式中: v 为1mol实际气体的体积,单位为m³ b 为与分子体积有关的常数

a 为与分子间作用力有关的常数

$$\left(p + \frac{n^2 a}{V^2}\right)(V - nb) = nRT$$
 n摩尔气体

表1 一些气体的范德华常数

气体	a(L ² .atm.mol ⁻²)	b (L/mol)	气体	a(L ² .atm.mol ⁻²)	b (L/mol)
He H ₂ NO O ₂ N ₂ CO CH ₄ CO ₂ HCI	0.034	0.0237	NH ₃	4.17	0.0371
	0.244	0.0266	C ₃ H ₂	4.39	0.0514
	1.340	0.0279	C ₂ H ₄	4.47	0.0571
	1.36	0.0318	NO ₂	5.28	0.0442
	1.39	0.0391	H ₂ O	5.45	0.0305
	1.49	0.0399	C ₂ H ₆	5.49	0.0638
	2.25	0.0428	CI ₂	6.49	0.0562
	3.592	0.0427	SO ₂	6.71	0.0564
	3.67	0.0408	正-C ₄ H ₁₀	18.00	0.1154