

軸對稱問題

- ❖如下圖為一厚壁圓管,內外徑分別為a=100mm和b=200mm,其圓管長度L為500mm,內徑面受壓力p_i=3MPa。圓管材料之楊氏模數E=70GPa,普松比v=0.33,試求圓管應力分布。分析單位系統採用:mm、N、MPa。
- ❖本例使用PLANE42元素來模擬

Displacement Constraints

- Displacement constraints are also used to enforce symmetry or antisymmetric boundary conditions.
 - Symmetry BC: Out-of-plane displacements and in-plane rotations are fixed.
 - Antisymmetry BC: In-plane displacements and out-of-plane rotations are fixed.

Axisymmetric axis

PLANE42 輸入資料

Element Name	PLANE42
Nodes	I, J, K, L
Degrees of Freedom	UX, UY
Real Constant	None, if KEYOPT (3) = 0, 1, 2 Thickness, if KEYOPT (3) = 3
Material Properties	EX, NUXY, GXY, ALPX, DENS, DAMP, etc.
Surface Loads	Pressure: face 1 (J-I), face 2 (K-J), face 3 (L-K), face 4 (I-L)
Body Loads	Temperature T(I), T(J), T(K), T(L)
Special Features	Plasticity, Creep, Stress stiffening, Large deflection, Large strain, etc.
KEYOPT(1)	Key for element coordinate system: 0 Element C.S. is parallel to the global C.S. 1 Element C.S. is based on the element I-J side
KEYOPT(2)	Key to include extra shapes: 0 Include extra displacement shapes 1 Suppress extra displacement shapes
KEYOPT(3)	0 Plane stress 1 Axisymmetric 2 Plane strain 3 Plane stress with thickness input

軸對稱有限元素模型

The axis of symmetry must coincide with the global Y-axis. The geometry has to lie on the positive X-axis of the X-Y plane.

The directions of X, Y, and Z are radial, axial, and circumferential, respectively.

○指令說明尽

SFL, LINE, lab, VALI, VALJ

施加表面的負載於線段上。

LINE:表示線段的編號。可爲 ALL、P 或 Component 名稱。

Lab: 邊界條件的代號,於結構分析中是壓力,所以代號爲 PRES。

VALI, VALJ: 分別指起始跟終止的壓力, 只給 VALI, 表示均布壓力。

其他相關指令有 SFA 施加表面的負載於面積上,SF 施加表面的負載於節點上,SFE 施加表面的負載於元素上。

使用的指令設定壓力

SFL, 3, PRES, 0.0533, 0

圓柱座標應力 $\sigma_r(SX)$ (MPa)

圓柱座標應力 $\sigma_{\theta}(SZ)$ (MPa)

討論

❖本例於文獻中有解析解如下:

$$\sigma_r = -\frac{a^2 b^2 p_i}{(b^2 - a^2) r^2} + \frac{a^2 p_i}{b^2 - a^2}$$

$$\sigma_{\theta} = \frac{a^2 b^2 p_i}{(b^2 - a^2) r^2} + \frac{a^2 p_i}{b^2 - a^2}$$

❖將本例題目的數值代入上式可得

$$\sigma_r = \frac{-40000}{r^2} + 1$$
 MPa

$$\sigma_{\theta} = \frac{40000}{r^2} + 1 \quad \text{MPa}$$

A.P. Boresi and K.P. Chong, Elasticity in Engineering Mechanics. Second edition, New York: John Wiley & Sons, 2000

應力 σ_r 和 σ_{θ} 解析解與 ANSYS解的比較

