3

ENGINEERING & MANAGEMENT EXAMINATIONS, DECEMBER - 2008 MATHEMATICS

SEMESTER - 1

Time: 3 Hours]

[Full Marks: 70

GROUP - A

(Multiple Choice Type Questions)

1.	Choose	the	correct	alternatives	for	any	ten	of	the	following	:

 $10 \times 1 = 10$

- i) The value of $\lim_{x \to 0} \frac{\log \sin x}{6 tx}$ is
 - a) 0

b) $\frac{1}{2}$

c) 1

- d) none of these.

- ii) The sequence $\left\{\frac{1}{3^n}\right\}$ is
 - a) monotonic increasing
- b) oscillatory

c) divergent

d) monotonic decreasing.

iii) The distance between the two parallel planes

$$x + 2y - z = 4$$
 and $2x + 4y - 3z = 3$ is

a) $\frac{5}{\sqrt{24}}$

b) $\frac{5}{24}$

c) $\frac{11}{\sqrt{24}}$

d) none of these.

- iv) n^{th} derivative of sin (5x + 3) is
 - a) $5^{n}.\cos(5x+3)$
- b) $5^{n}.\sin\left(\frac{n\pi}{2}+5x+3\right)$
- c) $15.\sin\left(\frac{n\pi}{2}+5x+3\right)$
- d) $-\sin(5x+3)$.

4

v) If $u(x, y) = \tan^{-1}\left(\frac{y}{x}\right)$, then the value of $x \frac{\partial u}{\partial x} + y \frac{\partial}{\partial y}$ is

a) 0

b) 2u(x, y)

c) u(x, y)

d) none of these.

vi) If f(x) is continuous in [a, a+h], derivable in (a, a+h) then $f(a+h)-f(a)=hf(a+\theta h), \text{ where }$

a) θ is any real

b) $0 < \theta < 1$

c) $\theta > 1$

d) θ is an integer.

vii) The value of $\int_{1}^{0} \int_{0}^{1} (x + y) dxdy =$

a) 2

b)

c) 1

) O

viii) The series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if

a) $p \ge 1$

b) p > 1

c) p < 1

d) $p \le 1$.

(x) Value of $\int_C x \, dy$ where C is the arc cut off from the parabola $y^2 = x$ from the

point (0, 0) to (1, -1) is

a) $-\frac{1}{3}$

b) $\frac{1}{3}$

c) 0

d) none of these.

5

$$x) \int_{0}^{\pi/2} \sin^2 x \, \mathrm{d}x =$$

a) $\frac{7}{15}$

b) $\frac{8}{15}$

c) $\frac{8\pi}{15}$

d) $\frac{4}{15}$

xi) If u + v = x, uv = y, then $\frac{\partial (x, y)}{\partial (u, v)} =$

a) u – v

b) u

c) $u+\iota$

d) u/v

xii) If $f(x) = \frac{1 - \sin x}{\sin 2x}$, $x \neq \frac{\pi}{2}$ is continuous at $x = \frac{\pi}{2}$ then $f(\frac{\pi}{2}) = \frac{\pi}{2}$

a) $\frac{1}{2}$

b)

c) - 1

d) (

xiii) The value of the constant p, so that the vector function \overrightarrow{p} (vector \overrightarrow{p}) \overrightarrow{p} (vector \overrightarrow{p}) \overrightarrow{p}

 $\overrightarrow{f} = (x + 3y) \hat{i} + (y - 2z) \hat{j} + (x + pz) \hat{k}$ is solenoidal, is

a) - 1

b) 2

c) -2

d) 1

xiv) If $\vec{\alpha} = 3\hat{i} - 2\hat{j} + \hat{k}$, $\vec{\beta} = 2\hat{i} - \hat{k}$, then $(\vec{\alpha} \times \vec{\beta})$. $\vec{\alpha}$ is equal to

a) (

b)

c) $\frac{1}{2}$

d) – 1

xv) The limit $\underset{y \to 0}{\lim} \frac{xy}{x^2 + y^2}$ does not exist.

a) True

b) False.

6

GROUP - B

(Short Answer Type Questions)

Answer any three of the following.

 $3 \times 5 = 15$

- 2. Prove that if, $I_n = \int_0^{\pi/2} x^n \sin x \, dx$, then $I_n + n(n-1) I_{n-2} = n(\pi/2)^{n-1}$.
- 3. Test the convergence of the series

$$\sum_{n=1}^{\infty} \left(\sqrt{n^4 + 1} - \sqrt{n^4 - 1} \right).$$

4. If $f(x) = \sin^{-1} x$, 0 < a < b < 1, use mean value theorem to prove

$$\frac{b-a}{\sqrt{(1-a^2)}} < \sin^{-1} b - \sin^{-1} a < \frac{b-a}{\sqrt{(1-b^2)}}.$$

- 5. Show that $\frac{d^n}{dx^n} \left(\frac{\log x}{x} \right) = (-1)^n \frac{n!}{x^{n-1}} \left(\log x 1 1/2 1/3 \dots 1/n \right)$.
- 6. Find the values of a and b such that

$$\lim_{\theta \to 0} \frac{\theta (1 + a \cos \theta) - b \sin \theta}{\theta^3} = 1.$$

7. Find the equation of the sphere having the circle $x^2 + y^2 + z^2 - 10y + 4z - 8 = 0$, x + y + z = 6 as a great circle.

GROUP - C

(Long Answer Type Questions)

Answer any three of the following.

 $3 \times 15 = 45$

8. a) Using mean value theorem prove that

$$\frac{x}{1+x^2} < \tan^{-1} x < x, \ 0 < x < \frac{\pi}{2}.$$

5

7

b) If z is a function of x and y and $x = r \cos \theta$, $y = r \sin \theta$ then prove that

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = \frac{\partial^2 z}{\partial r^2} + \frac{1}{r} \frac{\partial z}{\partial r} + \frac{1}{r^2} \frac{\partial^2 z}{\partial \theta^2}.$$

c) If
$$f(h) = f(0) + hf'(0) + \frac{h^2}{2!} f''(\theta h)$$
, $0 < \theta < 1$, $f(x) = 1 / (1 + x)$ and $h = 7$, find θ .

9. a) Show that for the function

$$f(x, y) = \begin{cases} \frac{x^2 y^2}{x^2 + y^2} & (x, y) \neq (0, 0) \\ 0 & (x, y) = (0, 0) \end{cases}$$

$$f_{xy}(0,0) = f_{yx}(0,0).$$

b) State comparison test for convergence of an infinite series. Test the convergence of any *one* of the following series:

i)
$$\frac{6}{1.3.5} + \frac{8}{4.5.7} + \frac{10}{5.7.9} + \dots$$

ii)
$$1 + \frac{2^p}{2!} + \frac{3^p}{3!} + \frac{4^p}{4!} + \dots (p > 0).$$

c) Find the extreme values, if any, of the following function:

$$f(x, y) = x^3 + y^3 - 3axy.$$

- 10. a) Obtain the reduction formula for $\int_{0}^{\pi/2} \cos^{n} x \, dx$. Hence evaluate $\int_{0}^{\pi/2} \cos^{5} x \, dx$. 5
 - b) Compute the value of $\iint_R^y dxdy$ where R is the region in the first quadrant bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
 - c) Obtain the reduction formula for $\int_{0}^{\pi/2} \sin^{m} x \cos^{n} x dx$, where m, n are positive

integers (m > 1, n > 1). Hence evaluate

$$\int_{0}^{\pi/2} \sin^4 x \cos^8 x \, \mathrm{d}x.$$
 5

8

11. a) If $u = \sin^{-1} \sqrt{\frac{x^{\frac{1}{3}} + y^{\frac{1}{3}}}{x^{\frac{1}{2}} + y^{\frac{1}{2}}}}$ then verify whether the following indentity is ture:

$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = \frac{\tan u}{12} \left(\frac{13}{12} + \frac{\tan^2 u}{12} \right).$$

b) Find the angle between the surfaces $x^3 + y^3 + z^3 - 3xyz = 5$ and

$$x^2 y + y^2 z + z^2 x - 5xyz = 8$$
 at the point (1, 0, 1).

- c) Evaluate $\begin{bmatrix} \vdots & \cdots & \cdots \\ \overrightarrow{r} & \overrightarrow{r} & \overrightarrow{r} \end{bmatrix}$ where $\overrightarrow{r} = a \cos u \hat{\imath} + a \sin u \hat{\jmath} + bu \hat{k}$.
- 12. a) A variable plane passes through a fixed point (a, b, c) and meets the coordinate axes at A, B, C. Show that the locus of the point of intersection of the plane through A, B, C and parallel to the coordinate planes is $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 1$.
 - b) Show that the straight lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$ and

$$\frac{x-5}{4} = \frac{y-4}{4} = \frac{z-5}{5} \text{ are coplanar.}$$

c) Find the length of the perimeter of the asteroid, $x^{\frac{2}{3}} + x^{\frac{2}{3}} = a^{\frac{2}{3}}$.

Determine also the length of the cycloid $x = a(\theta + \sin \theta)$, $y = a(1 - \cos \theta)$.

- 13. a) Discuss the convergence of the series $\sum_{n=1}^{\infty} \frac{\cos(n\pi)}{n^2 + 1}$ Is it absolutely convergent?
- b) Find the directional derivative of $f(x, y, z) = x^2 yz + 4xz^2$ at the point (1, 2, -1) in the direction of the vector $2\hat{i} \hat{j} 2\hat{k}$.
 - c) Find the moment of inertia of a thin uniform lamina in the form of an ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about its major and minor axes respectively.

END