ANALIZADORES SINTÁCTICOS LR(k)

Víctor Manuel Darriba Bilbao

TALF

3º Grado de Informática darriba@uvigo.es

13 de marzo de 2022

1 Introducción

■ LR(k): Familia de gramáticas independientes del contexto para la que pueden construírse analizadores deterministas ascendentes salto-reducción.

L: Left-to-right scan (lectura de izquierda a derecha).

R: Rightmost derivation (derivación derecha).

k: tamaño del acarreo (nº de símbolos de anticipación).

- Que el algoritmo sea determinista significa que sólo puede haber una alternativa de análisis (acción) en cada paso del algoritmo.
- Que el algoritmo sea ascendente quiere decir que el análisis (la cadena de derivaciones y/o el árbol de análisis) se construye partiendo de los símbolos terminales hacia el símbolo raíz de la gramática.
- Que el algoritmo sea de salto-reducción quiere decir que en función del contenido de la pila y los k primeros símbolos de la porción de cadena de entrada por analizar, el analizador puede realizar las siguientes acciones:
 - SALTO: se mete en la cima de la pila el primer símbolo de la entrada restante.
 - REDUCCIÓN (de una regla $A \to \beta$): se sustituye β por A en la cima de la pila.
 - ACEPTAR: la cadena se ha reconocido con éxito.
 - ERROR: la cadena no pertenece al lenguaje generado por la gramática.
- Además del análisis LR(k) vamos a considerar dos simplificaciones:
 - SLR(k): Simple LR(k).
 - LALR(k): Look-ahead LR(k).
- Relación entre SLR(k), LALR(k) y LR(k):
 - Cobertura: SLR(k) < LALR(k) < LR(k).
 - Tamaño analizador: SLR(k) < LALR(k) < LR(k).
- Lo habitual es usar analizadores con k=1.

2 Definición de Gramática LR(k)

Definición (Gramática Aumentada)

Sea $\mathcal{G} = \{N, \Sigma, P, S\}$ GIC, la gramática aumentada de \mathcal{G} es otra GIC $\mathcal{G}' = \{N', \Sigma, P', S'\}$ con $N' = N \cup \{S'\}$, $P' = P \cup \{S' \rightarrow S\}$ y $S' \notin N$.

(Se añade un nuevo axioma S' y la regla $S' \to S$ para determinar el final del análisis) \diamond

Definición (Gramática LR(k))

Sea $\mathcal{G}=\{N,\Sigma,P,S\}$ GIC y $\mathcal{G}'=\{N',\Sigma,P',S'\}$ su gramática aumentada. Decimos que \mathcal{G} es LR(k), $k\geq 0$ si y sólo si:

$$\begin{cases} S' \overset{*}{\Rightarrow} \alpha A w \Rightarrow \alpha \beta w \\ S' \overset{*}{\Rightarrow} \gamma B x \Rightarrow \alpha \beta y \\ S' \overset{*}{\Rightarrow} \gamma B x \Rightarrow \alpha \beta y \\ FIRST_{k}(w) = FIRST_{k}(y) \end{cases} \Rightarrow \begin{cases} \alpha = \gamma \\ A = B \\ x = y \end{cases}$$

■ La explicación de la definición anterior es que si tenemos 2 derivaciones:

$$\begin{cases} \alpha \ A \ w \underset{\mathcal{G}'rm}{\Rightarrow} \alpha \beta \ w \\ \alpha \ A \ y \underset{\mathcal{G}'rm}{\Rightarrow} \alpha \beta \ y \end{cases}$$

que comparten un prefijo común $\alpha \beta$ y el mismo acarreo de longitud k $(FIRST_k(w) = FIRST_k(y))$ en ambos casos la reducción y el contexto izquierdo son los mismos $(A = B \ y \ \alpha = \gamma)$.

■ Por lo tanto, conociendo $\alpha\beta$ y los primeros k símbolos de w podemos determinar que la única regla que se puede reducir es $A \to \beta$.

3 Analizador sintáctico LR(k)

- lackloss Q es el conjunto finito de estados del analizador (generalmente representados mediante números, con 0 como estado inicial).
- La pila acumula simbolos $X_i \in N' \cup \Sigma$ y estados q_i (el estado en el que se reconoció el símbolo).
- El intérprete LR es el mismo para todos los algoritmos de la familia (LR canónico, SLR y LALR). Los algoritmos se diferencian en el método de cálculo de las tablas ACCION e IR_A :
 - *ACCION*: determina el tipo de movimiento (salto, reducir, aceptar o error).
 - IR_A : determina el nuevo estado destino del salto.

Configuración de un analizador LR(k)

Se define como una tupla con el contenido de la pila, la porción de entrada por analizar y las reglas ya reducidas.

$$(q_0X_1q_1X_2q_2...X_mq_m, a_ia_{i+1}...a_n\$, \Pi_1...\Pi_o)$$

3 Analizador sintáctico LR(k)

Pseudocódigo del Analizador

Entrada: Tablas LR(k) para $\mathcal{G} = \{N, \Sigma, P, S\}$ GIC LR(k)

Cadena a a analizar

Salida: Si $a \in L(\mathcal{G})$ derivación derecha, sino ERROR

- 1. Recuperar el acarreo u de longitud k y el estado actual q_m .
- 2. Consultar la tabla ACCION usando q_m y u
 - a) Si $ACCION(q_m, u) = SALTO$
 - Saltar sobre a_i , primer símbolo de la cinta de entrada
 - Identificar el estado destino del salto $IR_A(q_m, a_i) = q_i$
 - Introducir a_i y q_j en la cima de la pila
 - Volver a 1

$$(q_0 X_1 q_1 \dots X_m q_m, a_i a_{i+1} \dots a_n \$, \Pi_1 \dots \Pi_o) \vdash (q_0 X_1 q_1 \dots X_m q_m a_i q_j, a_{i+1} \dots a_n \$, \Pi_1 \dots \Pi_o)$$

- b) Si $ACCION(q_m, u) = REDUCIR$ l, con $l \equiv A \rightarrow \alpha$
 - ullet Eliminar 2r símbolos de la pila, con r=|lpha|
 - Calcular el nuevo estado $IR_A(q_{m-r},A)=q_i$
 - lacksquare Empilar A y q_j
 - Añadir l a la cinta de salida
 - Volver a 1

$$(q_0 X_1 q_1 \dots X_m q_m, a_i a_{i+1} \dots a_n \$, \Pi_1 \dots \Pi_o) \vdash (q_0 X_1 q_1 \dots X_{m-r} q_{m-r} A q_j, a_i a_{i+1} \dots a_n \$, \Pi_1 \dots \Pi_o l)$$

- c) Si $ACCION(q_m, u) = ERROR$, detener el análisis
- d) Si $ACCION(q_m,u) = ACEPTAR$, fin del análisis y se devuelve el conjunto de reglas

3 Analizador sintáctico LR(k)

Ejemplo.- Analizador LR(1) para la siguiente gramática:

$$\mathcal{G}: S \to SaSb$$
 $\mathcal{G}': (0) S' \to S$
 $S \to \varepsilon$ $(1) S \to Sc$

$$S \to \varepsilon$$

$$(2) S \to \varepsilon$$

Para k = 0, 1 se superponen las dos tablas con la siguiente notación:

 $Sl \rightarrow \mathsf{salto} \; \mathsf{a} \; \mathsf{estado} \; l$ $Rl \rightarrow \text{reducir regla } l$

Las acción de las casillas en blanco es ERROR

		IR_A		
	a	b	\$	S
0	R2		R2	1
1	S2		ACEPTAR	
2	R2	R2		3
3	S5	S4		
4	R1		R1	
5	R2	R2		6
6	S5	S7		
7	R1	R1		

Análisis de w = aabb

$$\begin{array}{c} (0,aabb\$,\varepsilon) \ {\displaystyle \mathop{\vdash}_{R2}} \ (0S1,aabb\$,2) \ {\displaystyle \mathop{\vdash}_{S2}} \ (0S1a2,abb\$,2) \ {\displaystyle \mathop{\vdash}_{R2}} \ (0S1a2S3,abb\$,22) \ {\displaystyle \mathop{\vdash}_{R2}} \ (0S1a2S3a5,bb\$,22) \ {\displaystyle \mathop{\vdash}_{R2}} \ (0S1a2S3a5S6,bb\$,222) \ {\displaystyle \mathop{\vdash}_{S7}} \ (0S1a2S3a5S6b7,b\$,222) \ {\displaystyle \mathop{\vdash}_{R1}} \ (0S1a2S3,b\$,2221) \ {\displaystyle \mathop{\vdash}_{S4}} \ (0S1a2S3b4,\$,2221) \ {\displaystyle \mathop{\vdash}_{R1}} \ (0S1,\$,22211) \ {\displaystyle \mathop{\vdash}_{ACEPTAR}} \end{array}$$

4 Construcción de Analizadores LR(k) - Vamos a ver cano

Definición (Prefijo viable)

Sea $S \overset{*}{\underset{rm}{\Rightarrow}} \alpha A w \overset{*}{\underset{rm}{\Rightarrow}} \alpha \beta w$ derivación derecha en $\mathcal{G} = \{N, \Sigma, P, S\}$ GIC, decimos que γ es un prefijo viable de \mathcal{G} si $\gamma \leq \alpha \beta$, es decir, si $\exists \delta/\gamma \delta = \alpha \beta$. \diamond

Definición (Item LR(k))

Sea $\mathcal{G} = \{N, \Sigma, P, S\}$ GIC, decimos que $[A \to \beta_1.\beta_2, u]$ es un item LR(k) para \mathcal{G} , con $A \to \beta_1 \beta_2 \in P$ y $u \in (\Sigma \cup \{\$\})^k$. \diamondsuit

- Si $\beta_2 \neq \varepsilon$, al acarreo u no tendrá efecto.
- Si $\beta_2 = \varepsilon$, se podrá reducir la regla $A \to \beta_1$ sólo si los siguientes k símbolos de la cinta de entrada son u.

Ejemplos.- $[A \to a!S,b]$ $[S' \to .S,\$]$ $[B \to cD.,a|b]$ $E \to T.$ Para las reglas $A \to \varepsilon$, son equivalentes:

Para to region ration
$$[A o.arepsilon,u]\equiv [A oarepsilon,u]\equiv [A o.,u]$$

Definición (Item LR(k) válido) \rightarrow combinación de la 2 anteriore.

Un ítem LR(k) $[A o eta_1.eta_2,u]$ es válido para lpha eta_1 , prefijo viable de \mathcal{G} , si y sólo si existe una derivación de la forma: $S \overset{*}{\underset{rm}{\Rightarrow}} \alpha \ A \ w \overset{}{\underset{rm}{\Rightarrow}} \alpha \ \beta_1 \beta_2 \ w$ tal que $u = FIRST_k(w)$. \diamondsuit

Un $\overline{\text{(tem)}}$ es válido para \mathcal{G} si representa una alternativa válida para continuar el análisis. Es decir:

- Representa el análisis de α β_1 .
- El acarreo u permite que β_2 sea una alternativa para la continuación del análisis.

■ Ejemplo:

[C
ightarrow a.C, arepsilon] es un ítem válido para "aaa" dado que

$$S \stackrel{*}{\underset{rm}{\Rightarrow}} aaC \stackrel{*}{\underset{rm}{\Rightarrow}} aa\ a\ C$$

con
$$\alpha = aa$$
, $\beta_1 = a$ y $\beta_2 = C$.

Para reconocer los prefijos viables y sus ítems válidos correspondientes se utiliza un autómata de estado finito, a partir del cual se obtendrán las tablas de análisis.

Prese su que loga utilizado

Operación CIERRE(I)

- no terminales. P es cience ne oficial a ce so nella.
- Sea I un conjunto de items LR(k),
 - 1. Todo <u>ítem de I estará en CIERRE(I)</u>,
- 2. St $A \to \alpha.B\beta, u$ $\in CIERRE(I)$ y $B \to \gamma \in P$, entonces $B \to \gamma, w \in CIERRE(I)$, $\forall w \in FIRST_k(\beta u)$. Then denote by constitution
- Para k = 0 el punto 2. se reduce a:

$$\forall A \to \alpha.B\beta \in CIERRE(I)$$

$$\forall B \to \gamma \in P$$

$$\Rightarrow B \to .\gamma \in CIERRE(I)$$

Ejemplo:

$$E' \rightarrow E \quad E \rightarrow E + T \quad T \rightarrow T * F \quad F \rightarrow (E)$$

 $\mid T \quad \mid F \quad \mid id$

Calcular CIERRE(I) para LR(1), con $I = \{[E \rightarrow .E + T, \$]\}$.

MITO SI GERO SITURDUM TO THE PLANES, SULTANGE THEORY IN THE PLANES AND A PARAMETERS AND A PAR

Operación $IR_A(I,X)$

■ Sean I conjunto de items LR(k) y $X \in N \cup \Sigma$ un símbolo de \mathcal{G} , el conjunto $IR_A(I,X)$ se define como:

$$IR_A(I,X) = CIERRE(\{[A \rightarrow \alpha X.\beta, u]/[A \rightarrow \alpha.X\beta, u] \in I\})$$

es decir, para cada item $[A \to \alpha.X\beta, u] \in I$ generamos un nuevo item $[A \to \alpha X.\beta, u] \in IR_A(I, X)$, y calculamos su CIERRE().

Ejemplo:

$$E' \rightarrow E \quad E \rightarrow E + T \quad T \rightarrow T * F \quad F \rightarrow (E)$$

$$\mid T \qquad \qquad \mid F \qquad \qquad \mid id$$

Calcular $IR_A(I, +)$ para LR(0), con $I = \{E' \rightarrow E, E \rightarrow E, +T\}$.

$$IR_A(I, +) = CIERRE(\{E \to E + .T\}) =$$

= $\{E \to E + .T, T \to .T * F, T \to .F, F \to .(E), F \to .id\}$

Construcción del Autómata LR(k)

(Cálculo de la colección canónica LR(k))

- Dada $\mathcal{G} = \{N, \Sigma, P, S\}$ GIC:
 - 1. Construír su gramática ampliada \mathcal{G}'
 - 2. Conjunto inicial: $I_0 = CIERRE(\{[S' \rightarrow .S, \$^k]\})$
 - 3. Para cada conjunto I_i y cada símbolo $X \in N \cup \Sigma$
 - Calcular $I_j = IR A(I_i, X)$
 - Almacenar el conjunto I_j en la colección

Repetir hasta que no es posible añadir nuevos conjuntos

Ejemplo:

$$\mathcal{G}: S \to SaSb \qquad \mathcal{G}': (0) S' \to S$$

$$S \to \varepsilon \qquad (1) S \to SaSb$$

$$(2) S \to \varepsilon$$

Construír la colección canónica LR(1).

$$I_{0} = CIERRE(\{[S' \to .S, \$]\}) = \{[S' \to .S, \$], [S \to .SaSb, \$], [S \to ., \$], [S \to .SaSb, a], [S \to ., a]\} = \{[S' \to .S, \$], [S \to .SaSb, \$|a], [S \to ., \$|a]\}$$

$$I_{1} = IR_{-}A(I_{0}, S) = CIERRE(\{[S' \to S., \$], [S \to S.aSb, \$|a]\}) = \{[S' \to S., \$], [S \to S.aSb, \$|a]\}) = \{[S' \to S., \$], [S \to S.aSb, \$|a]\}$$

$$I_{2} = IR_{-}A(I_{1}, a) = CIERRE(\{[S \to Sa.Sb, \$|a]\}) = \{[S \to Sa.Sb, \$|a], [S \to ..a|b]\}\}$$

$$I_{3} = IR_{-}A(I_{2}, S) = CIERRE(\{[S \to SaS.b, \$|a], [S \to S.aSb, a|b]\}) = \{[S \to SaS.b, \$|a], [S \to S.aSb, a|b]\}\}$$

$$I_{4} = IR_{-}A(I_{3}, b) = CIERRE(\{[S \to SaSb, \$|a]\}) = \{[S \to SaSb, \$|a]\}\}$$

$$I_{5} = IR_{-}A(I_{3}, a) = CIERRE(\{[S \to Sa.Sb, a|b]\}) = \{[S \to Sa.Sb, a|b], [S \to ..a|b]\}\}$$

$$I_{6} = IR_{-}A(I_{5}, S) = CIERRE(\{[S \to SaS.b, a|b], [S \to ..a|b]\}) = \{[S \to SaS.b, a|b], [S \to S.aSb, a|b]\}$$

$$I_{7} = IR_{-}A(I_{6}, b) = CIERRE(\{[S \to SaS.b, a|b]\}) = \{[S \to SaS.b, a|b]\}$$

$$I_{7} = IR_{-}A(I_{6}, a) = CIERRE(\{[S \to SaS.b, a|b]\}) = I_{5}$$

Construcción Tablas LR(k) canónico

- 1. Se contruye el autómata (colección canónica) LR(k)
- 2. Entradas de la tabla \overline{ACCION} . Reconerna coda parto de itan. Cada conjunto I_i corresponde a un estado i:
 - a) Si $[A \to \alpha ., u] \in I_i \Rightarrow ACCION(i, u) = \text{Reducir } A \to \alpha$
 - b) Si $[S' \to S., \$^k] \in I_i \Rightarrow ACCION(i, \$^k) = Aceptar$
 - c) Si $[A \to \alpha.a\beta, u] \in I_i$ e $IR_A(I_i, a) = I_j$ con $a \in \Sigma \Rightarrow ACCION(i, ax) = Salto j, con <math>x = FIRST_{k-1}(\beta u)$
 - d) En otro caso ERROR

símboso a continuión de parte e un serbaso terminos.

3. Entradas de la tabla IR_A .

Se construye directamente a partir de las transiciones del autómata involucrando símbolos no terminales.

$$IR_A(I_i, S) = I_j \Rightarrow IR_A(i, S) = j$$

Ejemplo:

$$\mathcal{G}: S \to SaSb \qquad \mathcal{G}': (0) S' \to S$$

$$S \to \varepsilon \qquad (1) S \to SaSb$$

$$(2) S \to \varepsilon$$

Entradas de la tabla ACCION:

$$I_{0}: [S \to ., \$|a] \Rightarrow ACCION(0, \$) = ACCION(0, a) = R2$$

$$I_{1}: [S' \to S., \$] \Rightarrow ACCION(1, \$) = ACEPTAR$$

$$[S \to S.aSb, \$|a] \in IR_A(I_{1}, a) = I_{2} \Rightarrow ACCION(1, a) = S2$$

$$I_{2}: [S \to ., a|b] \Rightarrow ACCION(2, a) = ACCION(2, b) = R2$$

$$I_{3}: [S \to SaS.b, \$|a] \in IR_A(I_{3}, b) = I_{4} \Rightarrow ACCION(3, b) = S4$$

$$[S \to SaSb, a|b] \in IR_A(I_{3}, a) = I_{5} \Rightarrow ACCION(3, a) = S5$$

$$I_{4}: [S \to SaSb., \$|a] \Rightarrow ACCION(4, \$) = ACCION(4, a) = R1$$

$$I_{5}: [S \to ., a|b] \Rightarrow ACCION(5, a) = ACCION(5, b) = R2$$

$$I_{6}: [S \to SaS.b, a|b] \in IR_A(I_{6}, b) = I_{7} \Rightarrow ACCION(6, b) = S7$$

$$[S \to SaSb, a|b] \in IR_A(I_{6}, a) = I_{5} \Rightarrow ACCION(6, a) = S5$$

$$I_{7}: [S \to SaSb., a|b] \Rightarrow ACCION(7, a) = ACCION(7, b) = R1$$

Entradas de la tabla IR_A :

$$IR_A(I_0, S) = I_1 \Rightarrow IR_A(0, S) = 1$$

 $IR_A(I_2, S) = I_3 \Rightarrow IR_A(2, S) = 3$
 $IR_A(I_5, S) = I_6 \Rightarrow IR_A(5, S) = 6$

Tablas para el analizador LR(1):

		IR_A		
	a	b	\$	S
0	R2		R2	1
1	S2		ACEPTAR	
2	R2	R2		3
3	S5	S4		
4	R1		R1	
5	R2	R2		6
6	S5	S7		
7	R1	R1		

- Simplificación (menos estados) respecto a LR(k) canónico.
- Varios modos de cálculo. Veremos el consistente en fusión de estados cuyos items sólo se diferencian en el acarreo.
- Núcleo de un item LR(k): Regla punteada (se excluye el acarreo).
- 1. Se construye el autómata (colección canónica) LR(k).
- 2. Se identifican los conjuntos cuyos items tienen los mismos núcleos.
- 3. Se unen dichos conjuntos:
 - El acarreo de los nuevos items es la unión de sus acarreos.
 - Las transiciones de los nuevos estados están formados por la "union" de las transiciones originales.
- 4. Se construye la tabla LALR(k) de la misma forma que la del LR(k) canónico.
 - Ejemplo:

$$\begin{array}{ccc} (0) \ S' \to S & (2) \ C \to aC \\ (1) \ S \to CC & (3) \ C \to b \end{array}$$

Calculamos la colección canónica LR(1)

$$I_{0} = CIERRE(\{[S' \to .S,\$]\}) = \{[S' \to .S,\$], [S \to .CC,\$], [C \to .aC,a|b], [C \to .b,a|b]\}$$

$$I_{1} = IR_A(I_{0},S) = \{[S' \to S.,\$]\}$$

$$I_{2} = IR_A(I_{0},C) = \{[S \to C.C,\$], [C \to .aC,\$], [C \to .b,\$]\}$$

$$I_{3} = IR_A(I_{0},a) = \{[C \to a.C,a|b], [C \to .aC,a|b], [C \to .b,a|b]\}$$

$$I_{4} = IR_A(I_{0},b) = \{[C \to b.,a|b]\}$$

$$I_{5} = IR_A(I_{2},C) = \{[S \to CC.,\$]\}$$

$$I_{6} = IR_A(I_{2},a) = \{[C \to a.C,\$], [C \to .aC,\$], [C \to .b,\$]\}$$

$$I_{7} = IR_A(I_{2},b) = \{[C \to b.,\$]\}$$

$$I_{8} = IR_A(I_{3},C) = \{[C \to aC.,a|b]\}$$

$$IR_A(I_{3},a) = I_{3}$$

$$IR_A(I_{3},b) = I_{4}$$

$$IR_A(I_{6},c) = \{[C \to aC.,\$]\}$$

$$IR_A(I_{6},a) = I_{6}$$

$$IR_A(I_{6},b) = I_{7}$$

Fusionamos los estados con ítems con el mismo núcleo:

$$I_3 - I_6$$
, $I_4 - I_7$ e $I_8 - I_9$

$$I_{0} = \{[S' \to .S, \$], [S \to .CC, \$], [C \to .aC, a|b], [C \to .b, a|b]\}$$

$$I_{1} = \{[S' \to S, \$]\}$$

$$I_{2} = \{[S \to C.C, \$], [C \to .aC, \$], [C \to .b, \$]\}$$

$$I_{36} = \{[C \to a.C, a|b|\$], [C \to .aC, a|b|\$], [C \to .b, a|b|\$]\}$$

$$I_{47} = \{[C \to b., a|b|\$]\}$$

$$I_{5} = \{[S \to CC, \$]\}$$

$$I_{89} = \{[C \to aC, a|b|\$]\}$$

• Calculamos la tabla LALR(1) (aquí hemos calculado también la tabla LR(1), para comparar ambas)

Tabla LR(1)

	,	4CCIÓI	IR_A		
	a	b	\$	S	C
0	S3	S4		1	2
1			AC		
2	S6	S7			5
3	S3	S4			8
$\mid 4 \mid$	R3	R3			
5			R1		
6	S6	S7			9
7			R3		
8	R2	R2			
9			R2		

masir. Or topp as or times

Tabla LALR(1)

	,	IR_A			
	a	b	\$	S	C
0	S36	S47		1	2
1			AC		
2	S36	S47			5
36	S36	S47			89
47	R3	R3	R3		
5			R1		
89	R2	R2	R2		

- Como se puede apreciar en el ejemplo, las tablas LALR(k) suelen ser más pequeñas que las LR(k).
- Se pierde algo de información:
 - En LR(1) diferenciamos cuando se reduce una C intermendia (estados 4 y 8) o una C al final (estados 7 y 9)
 - Se añaden pasos a la detección de errores (en general LALR(k) realiza más reducciones que LR(k) antes de parar al encontrar un error).

Conflictos

- Una mala elección del contexto necesario (acarreo demasiado pequeño, uso de SLR en lugar de LALR o LR canónico,...) puede llevar a la aparición de **conflictos**, instancias de $ACCION(q_i,u)$ que tienen asociadas dos acciones distintas. Hay dos tipos de conflictos:
 - Conflicto Salto-Reducción
 - Conflicto Reducción-Reducción

Ambigüedad

- Definición: Sea $\mathcal{G} = \{N, \Sigma, P, S\}$ GIC, se dice que \mathcal{G} es ambigua si existe alguna cadena $w \in L(\mathcal{G})$, que puede ser generada partiendo de S por **más de una** derivación por la izquierda (respectivamente por la derecha).
- Ejemplo:

$$\mathcal{G}_1: E \to E + E \quad E \to E * E \quad E \to (E) \quad E \to id$$

Es una gramática ambigua. Por ejemplo, para la cadena w=id+id+id, tenemos dos posibles derivaciones por la derecha:

$$E \Rightarrow E + E \Rightarrow E + id \Rightarrow E + E + id \Rightarrow E + id + id \Rightarrow id + id + id$$

$$E \Rightarrow E + E \Rightarrow E + E + E \Rightarrow E + E + id \Rightarrow E + id + id \Rightarrow$$

$$\Rightarrow id + id + id$$

■ Ello no sucedería si utilizáramos una gramática no ambigua que generara el mismo lenguaje:

$$\mathcal{G}_2: E \to E + T \quad T \to T * F \quad F \to (E)$$

 $E \to T \quad T \to F \quad F \to id$

■ Para \mathcal{G}_2 sólo puede haber una derivación de w = id + id + id por la derecha:

 $E \Rightarrow E + T \Rightarrow E + F \Rightarrow E + id \Rightarrow E + T + id \Rightarrow E + F + id \Rightarrow$ $\Rightarrow E + id + id \Rightarrow T + id + id \Rightarrow F + id + id \Rightarrow id + id + id$ Las diferencias se pueden apreciar más fácilmente si dibujamos los árboles correspondientes a las derivaciones:

- \mathcal{G}_2 es no ambigua porque incluye la precedencia y asociatividad de los operadores en la propia estructura de la gramática:
 - Precedencia: El operador suma es derivado desde el axioma E $(E \to E + T)$, mientras que el producto es generado desde T $(T \to T * F)$, a su vez derivado desde E. Construyendo el árbol de abajo a arriba, cualquier subárbol correspondiente al producto será construído antes que el correspondiente a una suma.
 - Asociatividad: Los operadores suma y producto, asociativos por la izquierda, se definen en reglas recursivas por la izquierda. Ello significa que, de haber dos operadores suma (resp. producto) consecutivos, el subárbol de la expresión E (resp. término T) correspondiente al primero de ellos tiene que ser construído antes de poder construír el del segundo operador.

■ La explicación anterior puede entenderse más fácilmente con dos ejemplos:

- En los analizadores LR(k) la ambiguedad se manifiesta en forma de conflictos en la tabla ACCION.
- En muchos casos, para solventar el problema de la ambigüedad se debe rediseñar la gramática.
- Solución (en lenguajes basados en operadores). Se elige una de las acciones en cada conflicto:
 - 1. Se escoge la acción que permita reducir antes la regla del operador con mayor precedencia
 - 2. Si los dos operadores tienen la misma precedencia, se escoge la acción concordante con la asociatividad del operador (generalmente, reducir si es asociativo por la izquierda).

• Ejemplo (gramática aumentada para \mathcal{G}_1):

$$(0) E' \rightarrow E$$

$$(2) E \to E * E$$

$$(4) E \rightarrow id$$

$$\begin{array}{lll} (0) \ E' \rightarrow E & (2) \ E \rightarrow E * E & (4) \ E \rightarrow id \\ (1) \ E \rightarrow E + E & (3) \ E \rightarrow (E) \end{array}$$

$$(3) E \rightarrow (E)$$

■ Tabla SLR(1):

	ACCIÓN						IR_A
	id	+	*	()	\$	$\mid E \mid$
0	S3			S2			1
1		S4	S5			ACEPTAR	
2	S3			S2			6
3		R4	R4		R4	R4	
$\parallel 4 \parallel$	S3			S2			7
5	S3			S2			8
6		S4	S5		S9		
$\lceil 7 \rceil$		R1/S4	R1/S5		R1	R1	
8		R2/S4	R2/S5		R2	R2	
9		R3	R3		R3	R3	

- Conflicto Salto-Reducción en (7,+),(7,*),(8,+), y (8,*).
- Solución: se selecciona una de las dos opciones en cada conflicto usando asociatividad y precedencia.
 - Asociatividad a la izquierda de '*' y '+'
 - Precedencia de operadores: '*' > '+'

$$7 \quad ACCION(7,+) = R1$$
 Por asociatividad izda. de '+' $ACCION(7,*) = S5$ Por mayor precedencia de '*' $8 \quad ACCION(8,+) = R2$ Por mayor precedencia de '*' $ACCION(8,*) = R2$ Por asociatividad izda. de '*'

Ejemplos de los diferentes conflictos:
 Indicamos con las líneas de puntos el subárbol correspondiente a la regla que reduce, o el símbolo sobre el que se salta

