

Scalable Reinforcement Learning with RLIib

Eric Liang and Richard Liaw

#ray #rllib

Talk overview

Reinforcement learning (RL)

Leveraging Ray for distributed Al

RLlib and
Abstractions for scalable RL

Reinforcement Learning is centered around interaction

Applications of RL

How do we improve RL?

More data from interaction

More Compute

Improved Performance

Distributed RL

How to do distributed RL?

Abstractions for Reinforcement Learning

Distributed Execution Environment

Hardware

Abstractions for Reinforcement Learning

Ray

Provides task parallel API, actor API, and DataFrame API

Distributed Execution Environment

Hardware

Ray provides a Task parallel API

```
@ray.remote
def zeros(shape):
    return np.zeros(shape)
@ray.remote
def dot(a, b):
  return np.dot(a, b)
id1 = zeros.remote([5, 5])
id2 = zeros.remote([5, 5])
id3 = dot.remote(id1, id2)
result = ray.get(id3)
```


Ray also provides an actor API

```
@ray.remote(num_gpus=1)
class Counter(object):
    def init (self):
        self.value = 0
    def inc(self):
        self.value += 1
        return self.value
c = Counter.remote()
id4 = c.inc.remote()
id5 = c.inc.remote()
result = ray.get([id4, id5])
```


Ray Architecture Overview

Ray Architecture Overview

You can run Ray on Spark

- \$ pip install ray
- > sc.parallelize(1 to 100).mapPartitions(_ =>
 "ray start --redis-address=DRIVER_ADDR"!!)

Ray Libraries

Pandas on Ray

Ray tasks and actors

Hardware resources

What is RLIib

Your algorithms RLlib algorithms

RLlib abstractions

Ray tasks and actors

Hardware resources

RLlib is easy to get started with

./train.py --env=CartPole-v0 --run=DQN

RLlib has a simple Python API

from ray.rllib.dqn import DQNAgent

```
env_creator = lambda config: my_env()
agent = DQNAgent(env_creator=creator)
while True:
    print(agent.train())
```


RLlib efficiently scales to multi-core and clusters

Unified framework for scalable RL

Distributed PPO (vs OpenMPI)

Evolution
Strategies
(vs Redis-based)

Ape-X Distributed DQN, DDPG

RLIib algorithms and optimizers

Current RLlib Algorithms:

Policy Gradients (PG)

Proximal Policy Optimization (PPO)

Asynchronous Advantage Actor-Critic (A3C)

Deep Q Networks (DQN)

Evolution Strategies (ES)

Deep Deterministic Policy Gradients (DDPG)

Ape-X Distributed Prioritized Experience Replay, including both DQN and DPG variants

work in progress: IMPALA

work in progress: TRPO

RLlib Policy Optimizers:

AsyncOptimizer

SyncLocalOptimizer

SyncLocalReplayOptimizer

LocalMultiGPUOptimizer

ApexOptimizer

all scale from laptop to clusters

RLlib makes implementing algorithms simple

• Developer specifies policy, postprocessor, loss

Neural network in TF / PyTorch / etc.

Python function

Tensor ops in TF / Pytorch

class rllib.PolicyGraph

Scale RL algorithms with RLlib

Use RLlib to define your learning algorithm

Use RLlib to scale training to a cluster

RLIb abstractions

rllib.PolicyEvaluator

RLIib example algorithms

- 1. Simple parallel policy gradient
- 2. Ape-X distributed experience prioritization

Example: Policy gradient

CartPole task: keep pole balanced on cart

1. Defining the policy network

```
policy
         network out = FullyConnectedNetwork(obs, size=[64, 64])
                                                                         # 2 outputs
  def
                                                                         # e.g., P(LEFT) = 0.8, P(RIGHT) = 0.2
         action_distribution = CategoricalDistribution(network_out)
         action_op = action_distribution.sample()
                                                                         # e.g., LEFT
using
         current_obs = env.reset()
                                                                         # e.g., [1.2, -1.5]
policy
         action = session.run(action_op, feed_dict={obs: current_obs})
                                                                         # returns LEFT or RIGHT
         next_obs, reward, done = env.step(action)
sample
         experiences = [([1.2, -1.5], LEFT, [1.1, -0.2], +1, False),
 data
                         ([1.1, -0.2], RIGHT, [1.2, -0.8], +1, False),
                         ([1.2, -0.8], LEFT, [1.1, -1.1], -10, True)] # batch of experiences
```

Example: Policy gradient

CartPole task: keep pole balanced on cart

2. Experience postprocessing

temporal discounting: propagate consequences of actions

Example: Policy gradient

CartPole task: keep pole balanced on cart

3. Defining the loss function

```
policy,
experiences Loss() float
```

```
loss = -tf.reduce_mean(dist.logp(action) * advantages)
train_op = tf.train.GradientDescentOptimizer.minimize(loss)
```

Parallel Policy Gradient with RLlib

```
class PolicyGradientGraph(rllib.TFPolicyGraph):
   def __init__(self, obs_space, action_space):
        self.obs, self.adv = tf.placeholder(), tf.placeholder()
        model = FullyConnectedNetwork(self.obs, size=[64, 64])
        dist = rllib.action distribution(action space, model)
        self.act = dist.sample()
        self.loss = -tf.reduce mean(dist.logp(self.act) * self.adv)
   def postprocess(self, batch):
        return rllib.compute_advantages(batch)
```


Parallel Policy Gradient with RLlib

```
# Setup distributed workers
workers = [rllib.PolicyEvaluator.remote(
    env="CartPole-v0", policy_graph=PolicyGradientGraph)
    for _ in range(10)]
# Choose policy optimizer
optimizer = rllib.AsyncPolicyOptimizer(workers)
# Training loop
while True:
    optimizer.step()
    print(optimizer.foreach_policy(lambda p: p.get_stats()))
```

Example: Ape-X distributed DQN

Basic idea: prioritize important experiences

Example: Ape-X distributed DQN

<200 lines of Python

RLlib is a scalable framework for reinforcement learning

We're continuing to improve RLlib Find us at github.com/ray-project/ray

Thank you!

{ekl, rliaw}@berkeley.edu

Performance: single-node

Policy graph abstraction => automatic optimizations

- Vectorization of policy execution (including support for sparse vector envs, e.g., ELF)
- Execution of multiple agents and policies can be fused together into one neural network evaluation

High-performance data exchange between processes

- Shared-memory object store between Ray actors and tasks
- Column batch format for fast processing of experiences
- Compress experience batches with LZ4 (~1GB/s/core)

Performance: distributed

Choice of policy optimizers for distributed execution

- Take advantage of differing hardware configurations (e.g., availability of GPUs, CPU vs GPU balance, large clusters)
- Easy to experiment with novel distributed algorithms

Leverage Ray's unified parallel and distributed execution:

- Lightweight tasks "spill over" to multiple nodes
- Asynchronous tasks enable pipelining of computation
- Object store enables efficient data transfers between actors bypassing the driver

How general is this formulation?

• Can define basic alg. with $\pi_{\theta}(o_t)$, $\rho_{\theta}(X)$, $L(\theta, X)$

•
$$\pi_{\theta}(o_t, h_t) => (a_t, h_{t+1}, y_t^1 ... y_t^n)$$

Recurrent policies, actor-critic methods

•
$$\rho_{\theta}(X_{pre}, X_{pre}^{1...k}) => X_{post}$$

Multi-agent, Hindsight Experience Replay

•
$$u^{1..m}(\theta) => (msg, \theta_{update})$$

DQNs, distributed prioritization, model-based/hybrid algs (e.g. AlphaZero)

RLIib abstractions for algorithms

1. Policy
$$\pi_{\theta}(o_t) => a_t$$

2. Experience postprocessing $X = \text{batch of } (o_t, a_t, r_t, o_{t+1}) \text{ tuples}$

3. Loss function: improve TT

Case study: Ape-X distributed DQN

• $\pi_{\theta}(s) = \operatorname{argmax}_{a} Q(s, a)$

• $u^{1}(\theta) = assign(\theta_{q_{target}}, \theta_{q})$

Compute Q error on workers ("distributed prioritization")

Case study: Ape-X distributed DQN

Deep Reinforcement Learning

Gathering more data

Simulation-based Learning

