Skriftlig eksamen på Økonomistudiet Vinteren 2017 - 2018

DYNAMISKE MODELLER

Mandag den 19. februar 2018

3 timers skriftlig prøve med hjælpemidler. Alle sædvanlige hjælpemidler må benyttes, dog ikke lommeregnere eller cas-værktøjer.

Dette sæt omfatter 3 sider med 4 opgaver ud over denne forside

OBS: Bliver du syg under selve eksamen på Peter Bangs Vej, skal du kontakte eksamenstilsynet for at blive registeret som syg.

I den forbindelse skal du udfylde en blanket.

Derefter afleverer du en blank besvarelse i systemet og forlader eksamen.

Når du kommer hjem, skal du kontakte din læge og indsende en lægeerklæring til Det Samfundsvidenskabelige Fakultet senest en uge efter eksamensdagen.

Københavns Universitets Økonomiske Institut

2. årsprøve 2018 V-2DM rx

Skriftlig eksamen i Dynamiske Modeller Mandag den 19. februar 2018

Opgavesæt bestående af 3 sider med i alt 4 opgaver.

Løsningstid: 3 timer

Alle sædvanlige hjælpemidler må benyttes, dog ikke medbragte lommeregnere eller nogen form for cas-værktøjer.

Opgave 1. Vi betragter fjerdegradspolynomiet $P: \mathbf{C} \to \mathbf{C}$, som er givet ved forskriften

$$\forall z \in \mathbf{C} : P(z) = z^4 - z^3 - z^2 - z - 2.$$

Desuden betragter vi differentialligningerne

(*)
$$\frac{d^4x}{dt^4} - \frac{d^3x}{dt^3} - \frac{d^2x}{dt^2} - \frac{dx}{dt} - 2x = 0,$$

og

$$\frac{d^4x}{dt^4} - \frac{d^3x}{dt^3} - \frac{d^2x}{dt^2} - \frac{dx}{dt} - 2x = 16e^t,$$

samt differentialligningen

$$(***) \frac{d^4x}{dt^4} - \frac{d^3x}{dt^3} - \frac{d^2x}{dt^2} - \frac{dx}{dt} - 2x = 4t^3 - 13.$$

- (1) Vis, at tallet z = i er rod i polynomiet P. Bestem dernæst samtlige rødder i polynomiet P.
- (2) Bestem den fuldstændige løsning til differentialligningen (*).
- (3) Bestem den fuldstændige løsning til differentialligningen (**).

(4) Bestem den fuldstændige løsning til differentialligningen (***).

For ethvert $s \in \mathbf{R}$ betragter vi den homogene, lineære differentialligning

$$(****) \frac{d^4x}{dt^4} + \frac{d^3x}{dt^3} + 2\frac{d^2x}{dt^2} + \frac{dx}{dt} + sx = 0,$$

(5) Opstil Routh-Hurwitz matricen $A_4(s)$ for differentialligningen (* * **), og bestem de $s \in \mathbf{R}$, hvor (* * **) er globalt asymptotisk stabil.

Opgave 2. Vi betragter korrespondancen $F: \mathbf{R} \to \mathbf{R}$, som er givet ved forskriften

$$F(x) = \begin{cases} [1,2], & \text{for } x < 0\\ [-3,3], & \text{for } 0 \le x \le 3\\ [0,1], & \text{for } x > 3 \end{cases}.$$

og den funktion $f: \mathbf{R}^2 \to \mathbf{R}$, som er defineret ved udtrykket

$$\forall (x,y) \in \mathbf{R}^2 : f(x,y) = x^2 + y^2 x.$$

- (1) Vis, at korrespondancen F har afsluttet graf egenskaben, at den ikke er nedad hemikontinuert, men at den er opad hemikontinuert.
- (2) Bestem fixpunkterne for korrespondancen F. Altså de punkter $x^* \in \mathbf{R}$, hvorom det gælder, at $x^* \in F(x^*)$.
- (3) Bestem en forskrift for den maksimale værdifunktion $v_u : \mathbf{R} \to \mathbf{R}$. som er defineret ved udtrykket

$$\forall x \in \mathbf{R} : v_u(x) = \max\{f(x, y) \mid y \in F(x)\}.$$

(4) Bestem en forskrift for den maksimale værdikorrespondance $M_u: \mathbf{R} \to \mathbf{R}$, som er defineret ved udtrykket

$$\forall x \in \mathbf{R} : M_u(x) = \{ y \in F(x) \mid f(x, y) = v_u(x) \}.$$

- (5) Vis, at den maksimale værdikorrespondance M_u ikke har afsluttet graf egenskaben, at den ikke er nedad hemikontinuert, og at den ikke er opad hemikontinuert.
- (6) Bestem evt. fixpunkter for den maksimale værdikorrespondance M_u .

Opgave 3. Vi betragter vektordifferentialligningen

(§)
$$\frac{dx}{dt} = Ax,$$

hvor $x \in \mathbf{R}^3$ og

$$A = \left(\begin{array}{ccc} 3 & 2 & 0 \\ 2 & 3 & 0 \\ 0 & 0 & 7 \end{array}\right).$$

- (1) Bestem den fuldstændige løsning til vektordifferentialligningen (§).
- (2) Opskriv fundamentalmatricen $\Phi(t)$ for vektordifferentialligningen (§).
- (3) Bestem resolventen R(t,0) for vektordifferentiallignigen (§), idet udgangspunktet er $t_0 = 0$.

Opgave 4. Vi betragter integralet

$$I(x) = \int_0^{\sqrt{2}} (2u^2 + x^2 + x) dt,$$

hvor $x(0) = -\frac{1}{2}, x(\sqrt{2}) = e^2 - \frac{1}{2}$ og $\dot{x} = f(t, x, u) = 2u$.

Vi skal løse dette optimale kontrolproblem, hvor man altså har, at

$$F(t, x, u) = 2u^2 + x^2 + x.$$

- (1) Opskriv Hamiltonfunktionen H = H(t, x, u, p) for dette optimale kontrolproblem.
- (2) Afgør, om dette optimale kontrolproblemet er et maksimums- eller et minimumsproblem.
- (3) Bestem det optimale par (x^*, u^*) for dette optimale kontrolproblem.