

高等数学(I)

主讲教师: 李铮

高等数学(I)

上一次课程内容回顾

第二章 极限与连续

第二章 极限与连续

高等数学的研究对象是函数,研究方法是极限。

极限是贯穿学习微积分的基本研究方法,是理论基础。

本章先引入极限的严格定义,完善极限理论的严密性,

学习数列和函数的极限,极限的性质、运算法则和存在准则,

学习计算极限的各种方法。

极限是我们学习高等数学遇到的第一个难点也是重点。

2.1 极限的定义

2.1.1 数列极限的定义

1. 数列

把一些数排成一列称为数列,在本课程中我们主要讨论

无穷数列。

数列常表示为: $\{x_n\}: x_1, x_2, \dots, x_n, \dots$ 其中 x_n 称为数列的

通项或一般项。数列可看成特殊的函数 $f: Z^+ \to R, x_n = f(n), n \in Z^+, m \in Z^+$

数列又称为整标函数。

问题: 数列都可看成整标函数吗?

• 单调数列

若 $\forall n \in \mathbb{Z}^+, x_n \leq x_{n+1}$ 或 $x_n \geq x_{n+1}$,则称数列 $\{x_n\}$ 为单调增数列或单调减数列。

• 有界数列

若 ∃M > 0, $\forall n$, $|x_n| \le M$, 则称数列 $\{x_n\}$ 为有界数列。

子数列

设 $n_1, n_2, \cdots n_k, \cdots$ 是正整数集的一个无穷子集,且

 $n_{k+1} > n_k, k = 1, 2, \dots$,则称数列 $\{x_{n_k}\}$ 为 $\{x_n\}$ 的一个子数列。

2. 数列极限的定义

如果当n无限增大时,数列 $\{x_n\}$ 无限接近于常数a,

那么称 a 为数列 $\{x_n\}$ 的极限,记作: $\lim_{n\to +\infty} x_n = a$,

或
$$x_n \rightarrow a (n \rightarrow +\infty)$$
。

问题: 如何用数学语言来描述数列的极限呢?

数列极限的定义

设一个数列 $\{x_n\}$ 和一个常数a,如果对于任意给定的 正数 ε , 总存在正整数 N, 使得对于一切满足 n > N 的 x_n

都有 $|x_n-a|<\varepsilon$, 则称 a 为数列 $\{x_n\}$ 的极限,

记作: $\lim_{n\to\infty} x_n = a$, 或 $x_n \to a \ (n \to +\infty)$.

数列极限的定义又称为 " $\varepsilon - N$ " 定义。

$$\lim_{n\to+\infty}x_n=a:\forall \varepsilon>0, \exists N\in Z^+, \forall n:n>N\Rightarrow |x_n-a|<\varepsilon.$$

• 数列极限的几何意义

$$\lim_{n\to+\infty} x_n = a : \forall \varepsilon > 0, \exists N \in \mathbb{Z}^+, \forall n : n > N \Longrightarrow |x_n - a| < \varepsilon.$$

【例题1】用极限定义证明: $\lim_{n \to \infty} \frac{n}{n} = 1$. $n \rightarrow +\infty n + 1$

证:基本思想:

 $\forall \varepsilon > 0$, 找 N, 使得当 n > N 时,有 $|\frac{n}{\varepsilon} - 1| < \varepsilon$ 。

基本方法1:解不等式: $\left|\frac{n}{n+1}-1\right|<\varepsilon$,得 $n>\frac{1}{\varepsilon}-1$,

所以 $\forall \varepsilon > 0$, 取 $N = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$, 当 n > N 时,

有 $n > \frac{1}{\varepsilon} - 1$, $\left| \frac{n}{n+1} - 1 \right| < \varepsilon$, 即 $\lim_{n \to +\infty} \frac{n}{n+1} = 1$, 证毕。

【例题2】用极限定义证明: $\lim \frac{n!}{n!} = 0$ 。

证: 基本思想:

 $\forall \varepsilon > 0$,找 N,使得当 n > N 时,有 $|\frac{n!}{n^n} - 0| < \varepsilon$ 。

问题: 怎么办? 不需要找最小的 N

基本方法2: 放大不等式: $|\frac{n!}{n^n}| < \frac{2}{n} < \varepsilon$, 解得 $n > \frac{2}{\varepsilon}$,

所以 $\forall \varepsilon > 0$, 取 $N = \begin{bmatrix} \frac{2}{\varepsilon} \end{bmatrix}$, 当 n > N 时,有 $|\frac{n!}{\varepsilon^n} - 0| < \varepsilon$,

【例题3】用极限定义证明: $\lim_{n\to+\infty}\frac{n^2-2n+3}{2n^2+n-4}=\frac{1}{2}$ 。

证:基本思想:

$$\forall \varepsilon > 0$$
,找 N ,使得当 $n > N$ 时,有 $|\frac{n^2 - 2n + 3}{2n^2 + n - 4} - \frac{1}{2}| < \varepsilon$ 。

$$|| \frac{n^2-2n+3}{2n^2+n-4}-\frac{1}{2}|=|\frac{-5n+10}{2(2n^2+n-4)}|<\varepsilon,$$

问题: 怎么办? 直接解不等式吗?

基本方法3: 先增加限制条件, 再放大不等式求解。

【例题3】证(续):增加限制条件n>4、

放大不等式:
$$\left|\frac{-5n+10}{2(2n^2+n-4)}\right| < \frac{5n}{4n^2} < \varepsilon$$
,解得 $n > \frac{5}{4\varepsilon}$,

所以
$$\forall \varepsilon > 0$$
, 取 $N = \max\{4, \lfloor \frac{5}{4\varepsilon} \rfloor\}$, 当 $n > N$ 时,

有
$$\left|\frac{n^2-2n+3}{2n^2+n-4}-\frac{1}{2}\right|<\varepsilon$$
,即 $\lim_{n\to+\infty}\frac{n^2-2n+3}{2n^2+n-4}=\frac{1}{2}$,证毕。

思考题:
$$|\frac{2n^2+3n-1}{2n^3-3n^2+4}|<\varepsilon$$
 如何处理?

【例题4】用极限定义证明: $\lim \sqrt[n]{a} = 1(a > 1)$ 。 $n \rightarrow +\infty$

证: 基本思想:

 $\forall \varepsilon > 0$, 找 N, 使得当 n > N 时,有 $|\sqrt[n]{a-1}| < \varepsilon$ 。

证法1:解不等式 $|\sqrt[n]{a}-1| < \varepsilon$,得: $n > \frac{1}{\log_a(1+\varepsilon)}$,略。

证法2: 设 $t = \sqrt[n]{a} - 1(a > 1 \Rightarrow t > 0)$, 则 $a = (1+t)^n > 1 + nt$,

|
$$\sqrt[n]{a}-1$$
|= $t<\frac{a-1}{n}$,

所以 $\forall \varepsilon > 0$, 取 $N = \left[\frac{a-1}{c}\right]$, 当 n > N 时,有 $|\sqrt[n]{a} - 1| < \varepsilon$, 证毕。

思考题:

- 1. 如何用极限定义证明: $\lim_{n\to+\infty} \sqrt[n]{a} = 1(0 < a < 1)$ 。
- 2. 如何用极限定义证明: $\lim_{n\to +\infty} \sqrt[n]{n} = 1$ 。

【例题5】设 $\lim_{n\to\infty} x_n = a$,证明: $\lim_{n\to\infty} |x_n| = |a|$,反之不然。

问题: 能否分别讨论 $x_n > 0, x_n = 0, x_n < 0$?

【例题5】证明:

曲
$$\lim_{n\to\infty} x_n = a$$
, 知: $\forall \varepsilon > 0$, $\exists N$, 当 $n > N$ 时, $|x_n - a| < \varepsilon$,

所以: $\forall \varepsilon > 0$, 取上述 N, 当 n > N 时, $|x_n - a| < \varepsilon$,

此时
$$||x_n|-|a|| \leq |x_n-a| < \varepsilon$$
,

即证得
$$\lim_{n\to\infty} |x_n| = |a|$$
。

反之,可考虑数列 $\{x_n\} = \{(-1)^{n-1}\}$ 。

【例题6】设数列 $\{x_n\}$ 有界,且 $\lim_{n\to\infty}y_n=0$,证明: $\lim_{n\to\infty}x_n\cdot y_n=0$ 。

证明: 由数列 $\{x_n\}$ 有界知 $\exists M > 0, \forall n, |x_n| < M$

此时, $|x_n \cdot y_n| < M \cdot \varepsilon$,

, $|x_n\cdot y_n| < M\cdot arepsilon$, $|x_$

怎样描述更加规范呢?

【例题6】证明(续):

对于
$$\varepsilon_1 = \frac{\varepsilon}{M}$$
, $\exists N$,当 $n > N$ 时, $|y_n - 0| < \varepsilon_1 = \frac{\varepsilon}{M}$,

所以: $\forall \varepsilon > 0$, 取上述 N, 当 n > N 时,

$$|x_n \cdot y_n| < M \cdot \frac{\varepsilon}{M} = \varepsilon,$$

即
$$\lim_{n\to\infty} x_n \cdot y_n = 0$$
, 证毕。

【例题7】设 $\lim x_n = a \ (a \neq 0)$,证明: $\lim x_n^2 = a^2$ 。

证明: $|x_n^2 - a^2| = |x_n + a||x_n - a||$

问题:如何处理 $|x_n+a|$ 呢?

曲 $\lim x_n = a$ 知, 对于 $\varepsilon_0 = |a|, \exists N_1, \text{ if } n > N_1$ 时,

有 $|x_n-a|<\varepsilon_0=|a|$,故 $|x_n|-|a|\leq |x_n-a|<|a|$

进一步,可得 $|x_n+a|<3|a|,(n>N_1)$ 。

【例题7】证明(续):

又由
$$\lim_{n\to\infty} x_n = a$$
,知 $\forall \varepsilon > 0$,对于 $\varepsilon_1 = \frac{\varepsilon}{3|a|}$, $\exists N_2$,

当
$$n>N_2$$
 时,有 $|x_n-a|<\varepsilon_1=\frac{\varepsilon}{3|a|}$

所以: $\forall \varepsilon > 0$, 取 $N = \max\{N_1, N_2\}$,

当
$$n>N$$
 时, $|x_n^2-a^2|=|x_n+a||x_n-a|<3|a|\cdot\frac{\varepsilon}{3|a|}=\varepsilon$,

即
$$\lim_{n\to\infty} x_n^2 = a^2$$
,证毕。

思考题: 设
$$\lim_{n\to\infty} x_n = a \ (a > 0)$$
, 证明: $\lim_{n\to\infty} \sqrt{x_n} = \sqrt{a}$.

第二章 极限与连续

本次课程内容小结

下次课程内容预告

第二章 极限与连续

