Regression

José Dorronsoro Escuela Politécnica Superior Universidad Autónoma de Madrid

CONTENTS	2.
CONTENTS	2

Contents

1	Machine Learning Modeling Basics	3
2	Basic Regression	6
3	Non-Linear Regression Models 3.1 Multilayer Perceptrons 3.2 Support Vector Regression 3.3 RFR, GBR and k-NN Regression	16
4	Modeling in Practice 4.1 The Modeling Cycle 4.2 Tools for ML 4.3 ML Algorithms and Big Data	21 21 24

1 Machine Learning Modeling Basics

What Is Machine Learning (ML)?

- Lofty definition: make machines learn!!!
- Have to precise "machines" and "learn"
- The machines of ML: mathematical input–output processes that lend themselves to some form of (numerical) parameterization
- The learning process: adjust the machine's parameters until a goal is reached
- New thing: "goal"?
 - At first sight, get something done
 - Ultimately, to minimize some error measure
- Summing things up: a ML process tries to find a concrete mathematical/algorithmic input-output
 parameterized transformation that minimizes an error measure by iteratively adjusting the
 transformation's parameters

Where Lies ML?

- In the middle of a possibly long process chain
- Before ML starts we must
 - Go from raw to organized data: accessing, gathering, cleaning, formatting, ...
 - Go from organized to (potentially) informative data: extracting basic and derived features
- After ML finishes we must perform
 - Outcome evaluation: how good/actionable it is
 - Outcome exploitation: collect, organize, act
 - Individual model maintenance: monitor performance, tune hyper-parameters
 - Modeling life cycle maintenance: discard old models, introduce new ones ize and communicate our work/results
- ML is in the middle of the global process chain but also in the middle of some subchains

Supervised/Unsupervised Models

- Model types: supervised, unsupervised
- Supervised models:
 - Targets y^p are known and the model tries to predict or estimate them
 - These known targets guide, or supervise, model building
 - Main emphasis here

- Unsupervised models:
 - There are no predetermined or supervising outputs
 - But nevertheless the model is supposed to learn relations or find structure in the data
 - Sometimes as a first step towards a supervised model

Regression and Classification

- Problems (usually) to be solved by models: regression, classification
- Patterns come in pairs (x, y)
 - x: inputs, predictors, features, independent variables
 - y: target, response, dependent variable; numerical in regression, class labels in classification
- **Regression**: the desired output y is regressed into the inputs x to derive a model $\hat{y} = f(x)$
 - We want $y \simeq \hat{y}$ so having $y \hat{y}$ "small" is the natural goal
- Classification: inputs are derived from several classes C_1, \ldots, C_K , to which labels ℓ_k are assigned
 - The model now assigns a label $\ell(x)$ to an input x
 - If x is derived from C_k we want to have $\ell(x) = \ell_k$
 - Here having $\ell(x) \ell_k$ "small" may not make sense

The Boston Housing Problem

- This is a first "toy" problem
- We want to estimate the median of house values over an area from some information about it which we believe relevant
- Features x: several real estate—related variables of Boston areas
 - CRIM: per capita crime rate by town
 - RM: average number of rooms per dwelling
 - NOX: nitric oxides concentration (parts per 10 million)
 - AGE: proportion of owner-occupied units built prior to 1940
 - LSTAT: % lower status of the population
 - . . .
- Target y: MEDV, median value of owner-occupied homes in \$1,000's

Wind Energy Forecasting

- This is a second, real regression problem
- We want to estimate the hourly energy production of a wind farm from NWP variables which we believe relevant

- The **features** are the NWP variables
 - U, V surface wind components
 - U, V 100-meter wind components
 - Temperature
 - Pressure
 - **–** ...
- The target is the energy produced during the outgoing hour

The ML Cycle in Wind Energy

- Raw data: historic wind energy production data plus NWP files from weather forecasters
 - Possibly huge files with special formats
 - We have to extract the relevant NWP information, organize them in a suitable way and pair it with the energy data
- The ML core: whatever set of (non-linear) regression algorithm which you may think useful
- After ML is finished
 - Collect, organize and save the different model outputs
 - Select one single model output or some combination (more ML) of them as your system's output
 - Compute uncertainty estimates
 - Combine your outputs with someone's else
 - And keep up the entire process

How to Build Regression Models

- In general we have a sample $S = \{x^p, y^p\}, 1 \le p \le N$, with x^p the **features** and y^p the **targets**
- We want to build a model $\hat{y} = f(x)$ so that $\hat{y}^p = f(x^p) \simeq y^p$; i.e., we want to **regress** y to the x
- The concrete f is chosen within a certain family \mathcal{F}
 - Examples here: linear regression, multilayer perceptrons (MLPs), SVMs
 - Other useful models: Random Forests (RF), Gradient Boosting (GB), nearest neighbor (NN)
- Natural option to ensure $f(x^p) \simeq y^p$: choose f to minimize the sample mean square error (MSE)

$$\widehat{e}(f) = \widehat{e}_S(f) = \frac{1}{2N} \sum_{p=1}^{N} (y^p - f(x^p))^2$$

 $\bullet \,$ Thus, the model we select is $\widehat{f}=\widehat{f_S}=\arg\min_{f\in\mathcal{F}}\widehat{e}_S(f)$

Model Parameterization

- Usually individual models are selected through (ideally optimal) parameter sets
 - The parameters (weights) $W \in \mathbb{R}^M$ select a concrete f in \mathcal{F}
- **Parametric** models have a fixed functional form f(x) = f(x; W)
- Simplest example: linear regression, where M = d and $W = (w_0, w)$

$$f(x; w_0, w) = w_0 + \sum_{j=1}^d w_j x_j = w_0 + w \cdot x$$

- Semi-parametric models also use weights but without a predefined functional form; MLPs but also RF or GBR
- Non parametric models do not use weights nor follow any broad functional form; NN models

Model Estimation as Error Minimization

- For a parametric or semiparametric f(x; W) we can write $\widehat{e}_S(f) = \widehat{e}_S(W)$
- The problem to solve becomes

$$\widehat{W}^* = \widehat{W}_S^* = \arg\min_{W} \widehat{e}_S(f(\cdot;W)), \text{ i.e., } \widehat{e}_S(\widehat{W}^*) \leq \widehat{e}_S(W) \; \forall W$$

In linear regression

$$\widehat{e}(w_0, w) = \frac{1}{2N} \sum_{p} (y^p - w_0 - w \cdot x^p)^2$$

which ends up in a simple quadratic form

- The regression problem reduces to **minimize** $\widehat{e}_S(W)$
 - Something in principle well understood in mathematical optimization

2 Basic Regression

Regression Assumptions

- **Key assumption**: x and y are related as $y = \phi(x) + n$ where
 - $\phi(x)$ is the **true** underlying function
 - n is additive noise with 0 mean and finite variance σ_N^2
- Our sample is just a particular instance of a deeper sample generation process
- Thus x, n are produced by random variables X, N
 - And so is y, given by $Y = \phi(X) + N$
- Moreover, X and N are **independent distributions** with densities q(x), $\nu(n)$

7

• Thus, X and Y (or X and N) have a joint density

$$p(x,y) = p(x,\phi(x) + n) = q(x) \ \nu(n) = q(x) \ \nu(y - \phi(x))$$

but with independent components

Linear Models

- The simplest ones but an indispensable first step
- Assuming $x \in \mathbb{R}^d$, the basic linear model is

$$f(x) = w_0 + \sum_{i=1}^{d} w_i x_i = w_0 + w \cdot x$$

- w_0 complicates notation; to drop it we center x and y so that $E[x_i] = E[y] = 0$; then $w_0 = 0$
- Then we are left with the simpler homogeneous model $f(x) = w \cdot x$
- In practice we will always **normalize** x, for instance to have 0 mean and 1 standard deviation (std) on each feature
- But: how do we find w?

1-dimensional Linear Regression (LR)

- \bullet Assume that features X and target Y are **centered**, i.e., have 0 means
- For 1-dimensional patterns x the LR model then becomes

$$f(x) = w \cdot x$$

• And the error is then the function e(w)

$$\widehat{e}(w) = \frac{1}{2N} \sum_{p=1}^{N} (w \cdot x^p - y^p)^2 = \frac{1}{2N} \sum_{p} (r^p)^2$$

with $r^p = w \cdot x^p - y^p$ the **residual** of the p-th element

- The problem has obviously a minimum w^*
- To find it we just solve $\hat{e}'(w) = 0$

Solving $\hat{e}'(w) = 0$

• To compute $\widehat{e}'(w)$ we have

$$\vec{e}'(w) = \frac{1}{2N} \sum_{p} x^{p} r^{p} = \frac{1}{2N} \sum_{p} \left(w(x^{p})^{2} - x^{p} y^{p} \right)$$
$$= w \left(\frac{1}{2N} \sum_{p} (x^{p})^{2} \right) - \frac{1}{2N} \sum_{p} x^{p} y^{p}$$

• The optimal w^* solves $\widehat{e}'(w) = 0$ and is given by

$$w^* = \frac{\frac{1}{2N} \sum_{p} x^p y^p}{\frac{1}{2N} \sum_{p} (x^p)^2} = \frac{\frac{1}{2N} X \cdot Y}{\frac{1}{2N} X \cdot X} = \frac{\frac{1}{2N} X \cdot Y}{\text{var}(x)}$$

where X and Y denote the N dimensional vectors $(x^1,\ldots,x^N)^t, (y^1,\ldots,y^N)^t$

General Linear Regression

- Assume again that X and Y are centered
- The LR model becomes now $f(x) = \sum_{i=1}^{d} w_i x_i = w \cdot x$
- If Y is the $N \times 1$ target vector and we organize the sample S in a $N \times d$ data matrix X, the sample mse is given by

$$\widehat{e}(w) = \frac{1}{2N} \sum_{p} (w \cdot x^{p} - y^{p})^{2} = \frac{1}{2N} (Xw - Y)^{t} (Xw - Y)$$
$$= \frac{1}{2N} (w^{t} X^{t} X w - 2w^{t} X^{t} Y + Y^{t} Y)$$

- Now we have to solve $\nabla \widehat{e}(w) = 0$, i.e., $\frac{\partial \widehat{e}}{\partial w_i}(w) = 0$
- It is easy to see that

$$\nabla \widehat{e}(w) = \frac{1}{N} X^t X w - \frac{1}{N} X^t Y = \widehat{R} w - \widehat{b}$$

Solving the Linear Equations

• The optimal \widehat{w}^* must verify $\nabla \widehat{e}(\widehat{w}) = \widehat{R} \ \widehat{w} - \widehat{b} = 0$, where

$$\widehat{R} = \frac{1}{N} X^t X, \ \widehat{b} = \frac{1}{N} X^t Y$$

• Over the original, non-centered data matrix we have

$$\widehat{R} = \frac{1}{N} (X - \overline{X})^t (X - \overline{X});$$

i.e., \widehat{R} is the sample covariance matrix

- If \widehat{R} is invertible, we just solve the linear system \widehat{R} \widehat{w} \widehat{b} = 0
- And obtain the sample-dependent \widehat{w}^* as

$$\widehat{w}^* = \widehat{R}^{-1}\widehat{b} = \left(X^t X\right)^{-1} X^t Y$$

Finding Optimal Models

• For general regression models it is usually not possible to solve analytically the equation $\nabla \widehat{e}(W) = 0$

 For LR and big data, covariance matrices over large datasets or dimensions may not be computed

9

- Numerical methods are needed
- The simplest numerical alternative is **gradient descent**:
 - Starting from some random W^0 we iteratively compute

$$W^{k+1} = W^k - \rho_k \nabla \widehat{e}(W^k)$$

- Component wise: $w_i^{k+1} = w_i^k \rho_k \frac{\partial \hat{e}}{\partial w_i}(W^k)$
- ρ_k is the **learning rate**
- If $W^k \to W^*$, then $\nabla \widehat{e}(W^*) = 0$
 - Since our problems have obviously minima, this should be enough

Measuring Model Fit

- First option: Root Square Error $RSE = \sqrt{\frac{1}{N}\sum (y^p \widehat{y}^p)^2} = \sqrt{\frac{1}{N}RSS}$
- OK, but how good is this? We must always have a base model to benchmark our results
- $\bullet \;$ Simplest "model": the mean $\overline{y} = \frac{1}{N} \sum_1^N y^p,$ with square error

$$\frac{1}{N}\sum (y^p - \overline{y})^2 = \frac{1}{N}TSS = Var(y)$$

• We can compare our model against our base computing

$$\frac{RSE^2}{\text{Var}(y)} = \frac{\sum (y^p - \widehat{y}^p)^2}{\sum (y^p - \overline{y})^2} = \frac{RSS}{TSS}$$

 $\bullet\,$ The widely used R^2 coefficient is simply $R^2=1-\frac{RSS}{TSS}$

Evaluating Expected Performance

- It is obvious that before we start applying a model, we should have a reasonably accurate idea of its performance in practice
 - I.e., we want to estimate the model's generalization performance
 - Estimating the generalization performance only over the sample S used for training results in misleading error values
- We apply Cross Validation (CV) by
 - Randomly splitting the sample S in M subsets S_1, \ldots, S_M
 - Working with M folds: pairs (S_m, S_m^c) , with

$$S_m^c = S - S_m = \cup_{i \neq m} S_i$$

– Building M different models using the S_m^c as training subsets

- Computing their errors e_m on the folds' validation subsets S_m
- Using these errors' average as a first estimate of the true model performance

Regularization

- Our regression solution $\widehat{w}^* = (X^t X)^{-1} X^t Y$ won't work if $X^t X$ is not invertible
 - For instance, when some features are correlated
- We fix this working instead with $X^tX + \alpha I$ for some $\alpha > 0$
- Then $\widehat{w}^* = (X^tX + \alpha I)^{-1} X^tY$ minimizes

$$e_R(w) = \frac{1}{2N} \sum_{p} (y^p - w \cdot x_p^p)^2 + \frac{\alpha}{2} ||w||^2,$$

- This is the **Ridge Regression** problem
 - Our first example of **regularization**, a key technique in Machine Learning
 - All ML models must be regularized in some way
- We find the optimal α by CV

Grid Hyper-parameter Selection

- ullet Build M folds: pairs (S_m,S_m^c) and use S_m^c as training and S_m as the validation subsets
- Fix a hyper–parameter range [0, A]
 - $\alpha = 0$: no penalty and, thus, small bias and high variance
 - $\alpha = A$: large penalty and, thus, small variance but high bias
- Select an L+1 point **grid**

$$G = \left\{0, \frac{A}{L}, \frac{2A}{L}, \dots, \frac{\ell A}{L}, \dots, \frac{LA}{L} = A\right\}$$

- At each $\alpha_{\ell} = \frac{\ell}{L}A$, $0 \le \ell \le L$
 - Train M models on the S_m^c using the hyper–parameter α_ℓ
 - Average their M validation errors e_m on the S_m to get the error $e(\alpha_\ell)$ at α_ℓ
- Finally choose the (hopefully) optimal hyper–parameter α^* as

$$\alpha^* = \arg\min_{0 \le \ell \le L} e(\alpha_\ell)$$

3 Non-Linear Regression Models

Going Beyond Linearity

- LR is simple, elegant and illuminating, but not too powerful
 - Linear transformations almost never are
- Solution: go for (highly) non-linear transformations f(x; w)
- We shall briefly explore some such approaches
 - Multilayer Perceptrons (MLPs, a.k.a. Neural Nets)
 - Deep Neural Nets (DNN): MLPs on steroids
 - Support Vector Machines (SVMs)
 - Regression Tree-based methods: Random Forests, Gradient Boosting
 - Model-free models (??): k-Nearest Neighbor (k-NN) regression

3.1 Multilayer Perceptrons

MLP Architecture

- General layout:
 - An input layer (input)
 - One or several hidden layers
 - One output layer
- · Feedforward connections only

• Overall process: f(x; W) with W the set of connecting weights and biases

MLPs for Regression

- MLPs fit nicely in our regression scenario
- Given a sample $S = \{(x^p, y^p)\}$, we define a suitable MLP f(x; W), with W the MLP weight and bias set

3 NON-LINEAR REGRESSION MODELS

• We select the optimal W^* minimizing the sample MSE

$$\widehat{e}(W) = \widehat{e}_S(W) = \frac{1}{2N} \sum_{p=1}^{N} (y^p - f(x^p; W))^2$$

12

- f(x; W) is highly non–linear and $\widehat{e}_S(W)$ more so
- Thus we must use numerical optimization for which we need to compute $\nabla_W \hat{e}_S(W)$

The Simplest Regression MLP

- It is a Single Hidden Layer (SHL) MLP
 - D inputs (determined by the problem at hand)
 - One hidden layer with H units (number to be chosen) and a concrete **activation** σ (sigmoid, tanh, ReLU)
 - One linear output
- While the simplest possible MLP, it provides quite powerful regression models
- Usually enough for many applications

Activation Functions

- Choices for f:
 - Heaviside (in Rosenblatt's Perceptrons): f(a) = 0 if $a \le 0$, f(a) = 1 if a > 0
 - Identity: f(a) = a
 - Sigmoid:

$$f(a) = \frac{1}{1 + e^{-a}}$$

- Hyperbolic tangent:

$$f(a) = \frac{e^a - e^{-a}}{e^a + e^{-a}}$$

- Rectified Linear Units (ReLUs): $r(x) = \max(0, x)$

The SHL MLP Process

• Input-hidden processing: if O are the hidden unit outputs

$$o^h = \sigma \left(w_{h0}^H + \sum_{j=1}^D w_{hj}^H x_j \right)$$

• Hidden–output processing: we have for the outputs y

$$y = w_0^O + \sum_{h=1}^H w_h^O o_h,$$

• Global process:

$$y = f(x; W^O, W^H) = w_0^O + \sum_h w_h^O \sigma \left(w_{h0}^H + \sum_j w_{hj}^H x_j \right)$$

MLPs and Universal Approximation

• We say that $\mathcal{F} = \{f(X; W)\}$ is a **Universal Approximation Family** over a domain \mathcal{R} if For any $\epsilon > 0$ and any reasonable ϕ , we can find a weight set $W_{\phi,\epsilon}$

$$\int \|\phi(x) - f(x; W_{\phi, \epsilon})\|^2 p(x) dx \le \epsilon$$

- Notice that Universal Approximation is just what we need in regression
- In fact a Single Hidden Layer MLP with enough hidden units is an effective universal approximator
- But we have to be able to build them

MLP Training

- Usually done by some form of **gradient descent** over **minibatches**
 - Small random subsets of the entire sample
- Gradients are computed through the **backpropagation** algorithm
- Gradient iterations start from a **random** weight set W_0
 - Different initial W_0 result in different final MLPs
 - Which one to use? If possible, train several and average their predictions
- In general, MLP training is quite costly
 - For a SHL MLP each iteration has a cost of $O(N \times d \times n_H)$, with N sample size, d dimension, n_H the number of hidden units
 - And more if we want several MLPs (although this falls into the embarrassingly parallel category)

MLP Regularization

- MLPs are powerful approximators so we risk overfitting
- Regularization is mandatory so we actually minimize

$$\widehat{e}_R(W) = \widehat{e}(W) + \frac{\alpha}{2} ||W||^2$$

• The new gradient is simply $\nabla \widehat{e}_R(W) = \nabla \widehat{e}(W) + \alpha W$

- We must carefully choose an adequate α (plus the number of hidden units, plus the learning rate, plus . . .)
- Hyper–parameter selection tools (plus careful hyper–parameter analysis) are indispensable

MLP Ensembles

- Recall that e(W) does not have a single minimum
- Moreover, the final MLP depends on the random initial W^0
- And mini-batch training adds extra randomness to the final model
- This suggests
 - To start from M independent initial weights and get M optimal weight sets W_m^*
 - To output the average $f_e(X) = \frac{1}{M} \sum_1^M f(x; W_m^*)$
- $\bullet \;$ We expect outputs of the form $\widehat{y}_k^p=y^p+\epsilon_k^p$ with the ϵ_k^p independent
- Hence $\frac{1}{M}\sum_m \epsilon_m^p \simeq 0$ and $\frac{1}{M}\sum_m \widehat{y}_m^p \simeq y^p$

Summing Things Up

- 1. MLPs improve on linear regression by using highly non-linear models
- 2. MLPs are universal approximators
 - Just what we need for regression, but high overfitting risks
- 3. Regularization is crucial
- 4. The definition of MLPs requires to decide on an architecture
 - Can be done by CV but this may be very costly
- 5. MLP training usually done by **gradient descent** (or some variant) over **minibatches**
- 6. Gradients are computed using the **backpropagation** algorithm
- 7. Training large MLPs is costly
- 8. We can exploit randomness in MLP training working with MLP ensembles

Deep Neural Nets

- There was a very intense academic interest in the (by now) standard MLPs in the 1990's
 - Several NN conferences and journals appear
- MLP working and training became well understood
 - Although losing much of neuronal plausibility
- MLPs found relevant applications in many fields

- They were incorporated into data science tools and products
- Although hyper-parameter selection was (is) costly and had (has) to be done very carefully

NN's Golden Autumn?

- This went on strongly until the late 90's when
 - New relevant contributions decreased
 - New competitors appeared: Boosting, SVMs, Random Forests, Gradient Boosting Regression, ...
- A nagging issue were deeper MLPs
 - One hidden layer MLPs were enough for most applications at the time
 - But nobody knew how to train MLPs with three or more hidden layer

The Deep Neural Network Boom

- Breakthroughs by G. Hinton and Y. Bengio around 2007 rekindled the interest in NNs
- Around 2010 the floodgates opened:
 - Large nets with huge number of weights
 - New convolutional layers, regularizations, initializations or activations
 - New techniques appear ... that were not that different from the old ones
- New mood: what was impossible before is now much easier and leads to better results
- Major breakthroughs were achieved in significant problems in computer vision and speech recognition
 - Applied in autonomous vehicles, medical diagnosis, speech transcription, machine translation

What Is New In DNNs?

- New and fancy network structures:
 - Convolutional layers (with non-differentiable components)
 - More flexible feedforward connections
- Automated symbolic backprop derivation
- Network size: large number of layers and huge number of weights
- Very large sample size (sometimes)
- New cost functions and new ways to combine them
- New (non differentiable) activations: ReLUs
- New regularization: dropout, dropconnect
- Recognition that a good weight initialization is critical

3.2 Support Vector Regression

Support Vector Regression

• In SV regression (SVR) we begin with a linear model and try to minimize another regularized error function

$$\sum_{p} [y^{p} - (w \cdot x^{p} + w_{0})]_{\epsilon} + \frac{\alpha}{2} ||w||^{2}$$

where $[z]_{\epsilon} = \max(0,|z|-\epsilon)$ is the $\epsilon\text{--insensitive}$ loss:

- This is a convex optimization problem with a **unique solution**
- Notice that an error $|y^p f(x^p; w, w_0)|$ is only penalized if it is $> \epsilon$
- Thus, we keep the regularization of Ridge regression but introduce a new (non-differentiable) penalty

The ϵ Error Tube

• We only penalize errors that fall **outside an** ϵ **-wide tube** around the true function

- So far we have a possibly non-powerful linear model
 - We must introduce some form of non-linearity

Solving the SVR Minimization Problem

- SVR's penalty function is not differentiable
 - In principle gradient descent would be problematic
- Standard approach:
 - Write it as a constrained optimization problem
 - Apply tools of the general theory for such problems to write an equivalent but simpler dual problem

- Solve the dual problem
- While everything is so far linear, analyzing the dual problem will suggest how to develop non linear SVR

SVR as a Constrained Problem

- We have $f(w, w_0) = \ell_{\epsilon}(w, w_0) + \frac{\alpha}{2} ||w||^2$
 - f is convex but $\ell_{\epsilon} = \sum_{p} \left[y^{p} (w \cdot x^{p} + w_{0}) \right]_{\epsilon}$ is not smooth
 - Direct minimization of $f(w,w_0)$ is difficult, so we re–formulate the unconstrained SVR problem as a constrained one
- If $C = 1/\alpha$, we rewrite f as the **primal problem**

$$f(w, w_0, \xi, \eta) = \frac{1}{2} ||w||^2 + C \sum_{p} (\xi_p + \eta_p)$$

subject to the following constraints on the errors $w \cdot x^p + w_0 - y^p$:

$$-\xi_p - \epsilon \le w \cdot x^p + w_0 - y^p,$$

$$\eta_p + \epsilon \ge w \cdot x^p + w_0 - y^p,$$

$$\xi_p, \eta_p \ge 0$$

The SVR Lagrangian

• We put together the error function and the constrains in the Lagrangian

$$L(w, w_0, \xi, \eta, \alpha, \beta, \gamma, \delta) = \frac{1}{2} ||w||^2 + C \sum_p (\xi_p + \eta_p)$$
$$- \sum_p \alpha_p (w \cdot x^p + w_0 - y^p + \xi_p + \epsilon)$$
$$+ \sum_q \beta_q (w \cdot x^q + w_0 - y^q - \eta_q - \epsilon) - \sum_p \gamma_p \xi_p - \sum_q \delta_q \eta_q$$

with $\alpha_p, \beta_q, \gamma_r, \delta_s$ all ≥ 0

• Notice that we have by construction

$$L(w, w_0, \xi, \eta, \alpha, \beta, \gamma, \delta) < f(w, w_0, \xi, \eta)$$

SVR's Dual Problem

We define the dual function as

$$\Theta(\alpha, \beta, \gamma, \delta) = \min_{w, w_0, \xi, \eta} L(w, w_0, \xi, \eta, \alpha, \beta, \gamma, \delta)$$

• Thus, again by construction, we have

$$\Theta(\alpha, \beta, \gamma, \delta) < L(w, w_0, \xi, \eta, \alpha, \beta, \gamma, \delta) < f(w, w_0, \xi, \eta)$$

• And the dual problem is

$$\max_{\alpha,\beta,\gamma,\delta\geq 0}\Theta(\alpha,\beta,\gamma,\delta)$$

- At first sight the constraints are now much simpler
- If Θ is simple enough, we will end up with a dual problem simpler than the primal
 - This will be the case but new constraints will be added to the previous simple ones

SVR's Dual Function

• We derive the dual function solving the equations

$$\frac{\partial L}{\partial w_i} = 0, \ \frac{\partial L}{\partial w_0} = 0, \ \frac{\partial L}{\partial \xi_n} = 0, \ \frac{\partial L}{\partial \eta_n} = 0$$

• Plugging the results back in L, the dual function Θ becomes

$$\Theta(\alpha, \beta) = -\frac{1}{2} \sum_{p,q} (\alpha_p - \beta_p)(\alpha_q - \beta_q) x^p \cdot x^q - \epsilon \sum_p (\alpha_p + \beta_p) + \sum_p y^p (\alpha_p - \beta_p)$$

which is (minus) a semidefinite positive quadratic form

- And the final constraints become $0 \le \alpha_p, \beta_q \le C, \sum \alpha_p = \sum \beta_q$
- γ and δ disappear but the new constraint $\sum \alpha_p = \sum \beta_q$ is tricky

The Primal, the Lagrangian and the Dual

- Summing things up, we started with SVR's **primal problem** but we much prefer to solve the **dual problem** provided **both solutions are equivalent**
- This indeed so: if $w^*, w_0^*, \xi^*, \eta^*$ and α^*, β^* are the primal and dual solutions respectively, we have $\Theta(\alpha^*, \beta^*) = f(w^*, w_0^*, \xi^*, \eta^*)$
- Moreover, once we know the optimal α^*, β^* we have $w^* = \sum_p (\alpha_p^* \beta_p^*) x^p$
- And the Lagrangian $L(w^*,w_0^*,\xi^*,\eta^*,\alpha^*,\beta^*)$ gets squeezed in the middle
- In particular, if $0 < \alpha_p^*, \beta_q^* < C$,

$$0 = \alpha_p^*(w^* \cdot x^p + w_0^* - y^p + \epsilon),$$

$$0 = \beta_q^*(w^* \cdot x^q + w_0^* - y^q - \epsilon)$$

from which we can derive w_0^*

The Kernel Trick for SVR

- Summing things up, the optimal dual solutions α^*, β^* enable us to recover the optimal primal solutions w^*, w_0^*
- It turns out that we only need to compute dot products among patterns to apply the model

$$f(x; w^*, w_0^*) = w_0^* + w^* \cdot x = w_0^* + \sum_{p} (\alpha_p^* - \beta_p^*) x^p \cdot x$$

- Moreover, we just also need to compute dot products $x^p \cdot x^q$ to set up and solve the dual problem
- We can extend this replacing $x^p \cdot x^q$ by $k(x^p, x^q)$ where k is an appropriate **kernel**
- Standard choice: the Gaussian kernel $k(x, x') = e^{-\gamma ||x x'||^2}$
- This leads to a very powerful non-linear Gaussian SVR model $f_G(x) = w_0^* + \sum_p (\alpha_p^* \beta_p^*) e^{-\gamma \|x x^p\|^2}$

Gaussian SVR Hyper-parameters

- The linear SVR problem requires to fine tune two hyperparameters: the penalty $C=\frac{1}{\alpha}$ and the tube's width ϵ
- Gaussian SVR adds the kernel's width γ
- As usual, optimal hyper-parameters are selected by CV
 - Useful values for ϵ can be obtained as $2^{-k}\sigma_y$, with σ_y the standard deviation of the target y
 - Gaussian SVR inputs are usually scaled to a [-1,1] range, which suggests to consider γ values of the form $\frac{2^k}{d}$ with $-K_L \le k \le K_R$ and d pattern's dimension
 - Customary values for C are $0.1, 1, 10, \ldots, 10,000$
- But SVR training is costly and we have to work in a 3-dimensional grid ...
- SVR hyper-parameterization requires both patience and computing power!!

3.3 RFR, GBR and k-NN Regression

Decision Trees

- Decision trees are built following a sample split procedure according to most relevant variables
- Variables and split values are selected according to some gain criterion

Regression Trees

- These splits divide feature space into rectangular regions
- \bullet In regression trees a **single prediction value** is assigned to each region R

- Usual choice: the average of y^p over the samples $x^p \in R$

Random Forest Regression

- Single trees may not yield good models
- In Random Forest Regression
 - Many trees T_k are **randomly** built (the forest)
 - The final model is their average $\mathcal{T}_M(x) = \frac{1}{M} \sum_1^M T_k(x)$
- The forest's trees must also be built independently
- Randomness and independence are achieved by
 - Randomly and independently select a subsample when building each tree
 - Randomly and independently select a subset of features for each split
- Pros: good, easy to build models which allow some interpretation of variable relevance; can handle categorical features

• Cons: random final model, several hyper–parameters to be tuned

Gradient Boosting Regression

- A forest is also built with random trees but each new tree tries to **reduce the error of the combined previous trees**
- Very different from Random Forests
 - In RFR each tree is built the same way with the same targets
 - In GBR each tree amends the error of the previous ensemble and has a new specific target
- Moreover the outcomes of a new tree G_k are **shrunk** when it is added: $\mathcal{G}_M(x) = \epsilon G_M(x) + \mathcal{G}_{M-1}(x)$
- Good selection of ϵ and M are crucial

k-Nearest Neighbor Regression

- Sometimes the relation between features x and targets y doesn't justify a strong model $y = \phi(x) + n$
- *k*–NN Regression relies on a reasonable assumption: **Predictors that are close should give predictions that are also close**
- In k-NN Regression we fix a number k of neighbors to be considered and for an input x set

$$\hat{y} = Y_{kNN}(x) = \frac{1}{k} \sum_{x^p \in N_k(x)} y^p$$

where $N_k(x)$ denotes the k sample points closest to x

- Weighted variants: for instance, $Y^w_{kNN}(x) = \frac{1}{C_k(x)} \sum_{x^p \in N_k(x)} \frac{1}{\|x^p x\|} y^p$
 - $C_k(x) = \sum_{x^p \in N_k(x)} \frac{1}{\|x^p x\|}$ is a normalizing constant

4 Modeling in Practice

4.1 The Modeling Cycle

Before Modeling Starts

- Two key tasks before modeling can start
 - Data capture
 - Data cleaning and organization
- Can be long, hard and costly
- Even more so in Big Data
- Always needed but we leave out of this discussion

- Our set up here: supervised modeling
- Starting point: we have received a sample

$$S = \{(x^1, y^1), \dots, (x^N, y^N)\}$$

from which we build the $N \times d$ data matrix $X=(X_{pi})=(x_i^p)$ and the N-th dimensional target vector $Y=(Y_p)=(y^p)$

Modeling Cycle

- Modeling goal: to build a model $\hat{y} = f(x; W^*)$ such that $f(x^p; W^*) \simeq y^p$ for all p
- Cycle phases:
 - 1. Data visualization
 - 2. Feature and target analysis
 - 3. Definition of training, validation and test sets or folds
 - 4. Selection of the (first) models to use
 - 5. Selection of optimal model hyperparameters
 - 6. Definitive (for the time being!) model building (training)
 - 7. Starting model application and real use data collection
 - 8. Follow up of the model in exploitation, analysis of its results and, if needed,
 - 9. Start all over again, often from step 4

CRISP-DM

• The latest formalization of this is the **Cross Industry Standard Process for Data Mining** (CRISP–DM)

From Wikipedia

Data Exploration

- Individual feature visualization and analysis
 - Simple feature graphics, feature—target graphics
 - Histograms, boxplots, scatterplots
 - Outlier identification
 - And whatever else we figure out that may help
- Correlations
 - Are there strong correlations among features? Are some of them redundant?
 - Have features a predictive value? Are there correlated with the target?
- And, again, whatever else we figure out that may help

Model and Hyperparameter Selection

- There are more or less clear starting elections for medium size problems
 - Linear (linear, logistic regression) models, as a first reference and as a follow up of data analysis
 - SVC, SVR
 - Batch MLPs, always with weight decay, second order training and averaging different MLPs
 - Random Forests, Gradient Boosting Regression
- For large size problems
 - Minibatch MLPs, specialized SVC/SVR using Dual Coordinate Descent (DCD) or online SVMs: Pegasos, ...
 - Dimensionality reduction using Principal Components if $N\gg d$, or sparse regression (Lasso, Elastic Net) if $d\gg N$
- Use CV for model evaluation and hyperparameter selection
- Adapt CV to the problem at hand (for instance if it has a time structure)

Train and test

- Keep training information: error evolution at least, partial models if possible, ...
 - Training is usually costly: better stop it if it doesn't advance
 - Also, retain intermediate models just in case some incidence happens
- Over test data
 - Measure error measures: MSE or MAE in regression, accuracy, recall, precision in classification

- Analyze **error distribution** in regression, posterior class probabilities in classification
- Detect and correct biases and systematic errors
- If possible, visualize features and errors

How to Make All This?

- The whole process requires a lot of work but also has a partially repetitive nature: it fits in a **data flow** scenario
- The best model is not clear beforehand: we need to have as many implementations available as possible
- That was very difficult, say, about the year 2000
- Now it is much easier, as we have many tools

4.2 Tools for ML

Overview

- Reference tools
 - Commercial: SAS Enterprise Miner, IBM's SPSS, Matlab
 - Academic: Matlab/Octave, Weka, R, Python libraries
- SAS Enterprise Miner, IBM's SPSS
 - Full range business inteligence software with several machine learning techniques
 - Needs professional installation and support
- Weka, Knime, RapidMiner: easy to use, good for a first try (and even a second one!!), perhaps not for application development
- R, Matlab: excellent packages in most areas of statistics and engineering, respectively
 - Very strong on RFR, GBR; rather weak in MLPs
 - For SVC/SVR all give wrappers around LIBSVM or LIBLINEAR
 - Elementary script languages under the hood; not for product development

Python

- Lingua franca of Big Data (Hadoop) and (increasingly) Data Science and Machine Learning
- Over-simple characterization: object-oriented pseudo C with tons of good libraries
- More seriously: simple, easy to learn **general purpose** language
 - Succinct and \pm clean basic code with indentation-based blocks
 - Handy for data preparation and model exploitation
- Very strong community

- But also many strong critics
- Many environments and IDEs
- Very strong support network: stackoverflow, tutorials, MOOCS, ...

Python for ML

- Best tool for exploratory data analysis, initial model building and simple programming: IPython OT Console
- Best tool for data flow and analysis description: IPython Notebooks
- A lot of very good libraries for a very wide range of applications
- Numerical and Data Science libraries: Numpy, Scipy, Statsmodels, Matplotlib
- Machine Learning: Scikit-learn (sklearn)
- Nice overview in The Python Ecosystem for Data Science

Scikit-learn

- Reference library for ML in Python (and probably the best overall)
- Implements all the approaches mentioned above (only partially for deep networks)
 - Keras + TensorFlow are the DNN reference
- Model work follows a common define-fit-predict approach
- Sklearn has also tools for data pre–processing, cross validation–based model performance estimation and hyper–parameter selection
- Can be put together under a pipeline framework
- A first step toward automated ML?

IPython Notebooks

- Excellent for summarizing data information and model definition, and reporting model results
- Notebooks are organized in code and text cells
- Code cells have Python code that can be edited and executed with Ctrl+Enter
- Text cells have either raw text or (much better) **markdown** text: headings, lists, other formatting or LaTeXformulae
- Notebooks can be saved as such, as Python code and as html or pdf files
- Main use: tell the story in the data
 - Should have mostly explanatory information
 - Code should be written into modules to be imported

4.3 ML Algorithms and Big Data

What Is Big Data?

- Many definitions but a simple operative one may be: problems whose datasets do not fit in memory of single-server hardware
- Of course, this changes with the hardware we can work with:
 - Desktop PCs: up to 100 GB of RAM
 - Rack-based servers: up to 1 TB of RAM
- Datasets smaller than this can be handled with "standard" computing equipment
- Other considerations aside, larger datasets have to go to the cloud
- Thus, we can take as a first approximation: Big Data = Cloud Data
- Cloud offers data and process parallelization
 - Essentially no restrictions on data sizes plus highly parallel computing structures
 - This somehow decides which algorithms can more easily go to the Cloud

ML and the Cloud: Processes

- Process parallelization is usually simpler
 - In fact, more or less straightforward for single multicore machines
 - But may impose communication costs when working with different nodes
- Some ML algorithms are better suited for process parallelization than others
- Simplest for Random Forest Regression: individual trees are built independently
- Simple for ensembles of MLPs-DNNs or of GBRs
 - Different networks can be trained in parallel
- SVM models are essentially unique, so single sample ensembles do not make sense
- Parallelization crucial for hyper-parameter selection
 - Very costly computationally but embarrassingly parallel

ML and the Cloud: Data

- Distributed data handling is trickier
- Again simplest for Random Forest Regression: individual trees are built on independent subsamples
- Harder but possible for single MLP-DNN training:
 - Minibatches for training can be sent to different machines (map)

- But some coordination is needed (reduce?)
- More or less the same situation for GBR
- Quite harder for SVM models:
 - Samples have to be much reduced when using dual solvers (LIBSVM)
 - Better situation for primal linear solvers (LIBLINEAR) but effective models are only obtained in large dimension problems
- Ad-hoc cloud tools indispensable
- And Big Data problems usually impose very simple, most likely linear, algorithms

Summing Things Up

- There is no best overall ML model for regression
- Linear regression should be the first model to try on a new problem
 - It sets a first benchmark
- MLPs/DNNs, SVR, RFR, GBR are independent approaches to attack a given problem
 - If possible, they all should be considered
- Cloud tools for ML are becoming available, such as Spark
- But at the end ML models are just tools to be added to a problem's solution:
 - They have to be adequately tuned
 - The problem must be amenable to them and the features used the best possible