IN THE CLAIMS

Please amend the claims as follows:

Claims 1-5 (Canceled).

Claim 6 (Currently Amended): [[The]]An organic electroluminescence device according to Claim 5, wherein said light emitting layer comprises a host material and a phosphorescent material and wherein the host material comprises the material for an organic electroluminescence device according Claim 1.

comprising an anode, a cathode and an least one organic thin film layer comprising a light emitting layer sandwiched between the anode and the cathode, wherein the light emitting layer comprises a host material and a phosphorescent material and wherein the host material comprises a material for an organic electroluminescence device which comprises a compound represented by any one of following general formulae (1) to (3):

$$\begin{pmatrix} R_1 & X & Cz & X & R_1 & X & R_3 \\ Cz & R_2 & Cz & R_3 & Cz & R_2 & Cz \end{pmatrix}^2 Cz$$

wherein R₁ to R₃ each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 40 carbon atoms and further may have a substituent, a heterocyclic group having 3 to 30 carbon atoms and further may have a substituent, an alkoxy group having 1 to 40 carbon atoms and further may have a substituent, an aryl group having 6 to 40 carbon atoms and further may have a substituent, an aryloxy group having 6 to 40 carbon atoms and further may have a substituent, an aralkyl group having 7 to 40 carbon atoms and further may have a substituent, an alkenyl group having 2 to 40 carbon atoms and further may

have a substituent, an alkylamino group having 1 to 80 carbon atoms and further may have a substituent, an arylamino group having 6 to 80 carbon atoms and further may have a substituent, an aralkylamino group having 7 to 80 carbon atoms and further may have a substituent, an alkylsilyl group having 3 to 10 carbon atoms and further may have a substituent, and an arylsilyl group or a cyano group having 6 to 30 carbon atoms and further may have a substituent;

each of R₁ to R₃ may plurally exist, and an adjacent group may form a saturated or an unsaturated ring structure between each other respectively;

X is a group expressed by any one of following general formulae (4) to (9).

$$R_{4}$$
 Y_{1}
 Y_{2}
 Y_{3}
 Y_{3}
 Y_{1}
 Y_{2}
 Y_{3}
 Y_{1}
 Y_{2

wherein R₄ to R₁₃ each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 40 carbon atoms and further may have a substituent, a heterocyclic group having 3 to 30 carbon atoms and further may have a substituent, an alkoxy group having 1 to 40 carbon atoms and further may have a substituent, an aryl group having 6 to 40 carbon atoms and further may have a substituent, an aryloxy group having 6 to 40 carbon

atoms and further may have a substituent, an aralkyl group having 7 to 40 carbon atoms and further may have a substituent, an alkenyl group having 2 to 40 carbon atoms and further may have a substituent, an alkylamino group having 1 to 80 carbon atoms and further may have a substituent, an arylamino group having 6 to 80 carbon atoms and further may have a substituent, an aralkylamino group having 7 to 80 carbon atoms and further may have a substituent, an alkylsilyl group having 3 to 10 carbon atoms and further may have a substituent, and an arylsilyl group or a cyano group having 6 to 30 carbon atoms and further may have a substituent;

each of R₄ to R₁₃ may plurally exist, and an adjacent group may form a saturated or an unsaturated ring structure between each other respectively;

 Y_1 to Y_3 each independently represents --CR or a nitrogen atom while R represents a hydrogen atom, a group which bonds to X in any one of the above general formulae (1) to (3), or any one of R_4 , R_5 , R_6 , R_8 , R_9 and R_{10} ; and when any of Y_1 to Y_3 represents an nitrogen atom, it exists at least 2 in the same group; t is an integer of 0 or 1;

Cz is a group expressed by a following general formula (10) or a following general formula (11):

wherein A represents a single bond, $-(CR_{14}R_{15})n-$, $-SiR_{16}R_{17}-$, $-NR_{18}-$, -O- or - S--; while a couple of R_{14} and R_{15} , and a couple of R_{16} and R_{17} may bond each other to form a saturated or an unsaturated ring structure; and n represents an integer of 1 to 3;

wherein R₁₄ to R₂₀ each independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 30 carbon atoms and further may have a substituent, a heterocyclic group having 3 to 20 carbon atoms and further may have a substituent, an alkoxy group having 1 to 30 carbon atoms and further may have a substituent, an aryl group having 6 to 40 carbon atoms and further may have a substituent, an aryloxy group having 6 to 30 carbon atoms and further may have a substituent, an aralkyl group having 7 to 40 carbon atoms and further may have a substituent, an alkenyl group having 2 to 40 carbon atoms and further may have a substituent, an alkylamino group having 1 to 80 carbon atoms and further may have a substituent, an arylamino group having 6 to 80 carbon atoms and further may have a substituent, an aralkylamino group having 7 to 80 carbon atoms and further may have a substituent, an alkylsilyl group having 3 to 10 carbon atoms and further may have a substituent, and an arylsilyl group or a cyano group having 6 to 30 carbon atoms and further may have a substituent;

each of R₁₉ to R₂₀ may plurally exist, and an adjacent group may form a saturated or an unsaturated ring structure between each other respectively; and Z represents an alkyl group having 1 to 20 carbon atoms which may be substituted, an aryl group having 1 to 18 carbon atoms which may be substituted or an aralkyl group having 7 to 40 carbon atoms which may be substituted.

Claim 7 (Currently Amended): The organic electroluminescence device according to claim [[5]]6, wherein a reductive dopant is added in an interfacial region between said cathode and said organic thin film layer.

Application No. 10/582,963 Reply to Office Action of March 11, 2010

Claim 8 (Currently Amended): The organic electroluminescence device according to claim [[5]]6, which further comprises an electron injecting layer between said light emitting layer and said cathode and wherein the electron injecting layer comprises a nitrogen atom-containing ring derivative.

6