A számításelmélet alapjai II. 3. gyakorlat

<u>Cél:</u> Következmény fogalom megismerése. Szemantikus fa és rezolúció használata.

Fogalmak: legszűkebb következmény, előre- és visszakövetkeztetés, literál, klóz, KNF, DNF

Definíció: Azt mondjuk, hogy az ítéletlogikában egy I **interpretáció kielégít egy B formulát** (I
eq 0B), ha a formula helyettesítési értéke **i** az I interpretációban.

Definíció: Azt mondjuk, hogy egy B formula **kielégíthető**, ha legalább egy interpretáció kielégíti. **Definíció:** Azt mondjuk, hogy egy B formula **kielégíthetetlen**, ha egyetlen interpretáció sem elégíti ki.

Definíció: Azt mondjuk, hogy egy B formula **tautológia** ($\models_0 B$), ha minden interpretáció kielégíti. A tautológiát **ítéletlogikai törvénynek** is nevezik.

Legyen $\mathbf{F} = \{A_1, A_2, ..., A_n\}$ formulahalmaz.

Definíció: Azt mondjuk, hogy az ítéletlogikában egy I **interpretáció kielégít egy F formulahalmazt** $(I \models_0 F)$, ha a formulahalmaz minden formulájának helyettesítési értéke **i** az I interpretációban.

Definíció: Azt mondjuk, hogy egy F formulahalmaz **kielégíthető**, ha legalább egy interpretáció kielégíti.

Definíció: Azt mondjuk, hogy F formulahalmaz **kielégíthetetlen**, ha bármely interpretációban legalább egy formulája **h** (nincs olyan interpretáció, ami kielégítené).

Definició: Egy G formula az $F = \{F1, F2, ..., Fn\}$ formulahalmaznak **tautologikus következménye**, ha minden olyan I interpretációra, amelyre $I \models_{\emptyset} \{F1, F2, ..., Fn\}$ fennáll, $I \models_{\emptyset} G$ is fennáll.

Jelölés: $\{F1, F2, ..., Fn\} \models_0 G$

Megjegyzés: Ha egy G formula bármely F feltételhalmaznak következménye, akkor G tautológia.

Előre- és visszakövetkeztetés

Definíció: Legyen a feltételhalmazban szereplő változók száma n. Ekkor a **legszűkebb következmény** az az $\{i,h\}^n \rightarrow \{i,h\}$ leképezés, amely pontosan azokhoz az interpretációkhoz rendel **i** értéket, amelyek kielégítik a feltételhalmazt.

Megjegyzés: Ha F legszűkebb következménye R, akkor következmény minden olyan G formula, amelyre R→G tautológia, azaz R igazhalmaza része G igazhalmazának.

Előre következtetés: ismert az F feltételhalmaz, és keressük F lehetséges következményeit.

Példa. $F = \{Z \rightarrow M \lor P, Z, \neg P\}$

P	M	Z	$Z \rightarrow M \lor P$	Z	$\neg P$	következmény
						h vagy i
h	i	i	i	i	i	i
						h vagy i

Csak egy igazságkiértékelésre kielégíthető a feltételhalmaz. Tehát a legszűkebb következmény : $\neg P \land M \land Z$. De következmény pl.: $M \land Z$, $\neg P \land Z$, M, stb.

Visszakövetkeztetés: Az F feltételhalmaz és a B következményformula ismeretében eldöntjük, hogy B valóban következménye-e F-nek. Mivel F \models ₀B pontosan akkor, ha az {F \cup {¬B}} formulahalmaz kielégíthetetlen. Más szóval B pontosan akkor következménye F-nek, ha minden olyan interpretációban, ahol B hamis az F kielégíthetetlen.

<u>**Példa:**</u> $F = \{Z \rightarrow M \lor P, Z, \neg P\}$ és be kell látni, hogy M következmény. Be kell látni, hogy, ha $\neg M$ igaz, akkor $\{Z \rightarrow M \lor P, Z, \neg P\}$ nem lesz kielégíthető.

Ha minden feltételformula i kell legyen, akkor Z=i, P=h. Viszont ha M hamis, akkor Z \rightarrow M \lor P=h lehet csak. Tehát M következménye $\textbf{\textit{F}}$ -nek.

Feladat: Lássuk be, hogy $\{X \rightarrow Y, Y \rightarrow Z\} \models_0 X \rightarrow Z$.

X	Y	Z	$X \rightarrow Y$	Y→Z	$X \rightarrow Z$
i	i	i	i	i	i
i	i	h	i	h	h
i	h	i	h	i	i
i	h	h	h	i	h
h	i	i	i	i	i
h	i	h	i	h	i
h	h	i	i	i	i
h	h	h	i	i	i

Mivel a következmény igazsághalmazának részhalmaza a feltételeket kielégítő interpretációk halmaza, ezért igaz az állítás. Ez nem a legszűkebb következmény. Legszűkebb következmény: $(\neg X \land \neg Y) \lor (Y \land Z)$.

<u>Előrekövetkeztetéssel:</u> Ha X \rightarrow Y=i, akkor X=h vagy Y=i. *a)* Ha X=h és Y \rightarrow Z=i, akkor Y=h vagy Z=i. *b)* Ha Y=i és Y \rightarrow Z=i, akkor Z=i. Tehát (\neg X \land \neg Y) \lor (\neg X \land Z) \lor (Y \land Z) a legszűkebb következmény. Mivel, ha (\neg X \land Z)=i, akkor (\neg X \land \neg Y) \lor (Y \land Z)=i, ezért ez utóbbi a legszűkebb következmény egyszerűbb alakja.

<u>Feladat:</u> Visszakövetkeztetéssel lássuk be, hogy $\{P \to Q \lor R , R \to \neg P \land Q, P \lor R\} \models_0 Q$. Tegyük fel, hogy Q=h. Ha $P \to Q \lor R=i$, akkor $P \to R=i$ is teljesül. Ez azt jelenti, hogy P=h vagy R=i. *a)* Ha P=h és $P \lor R=i$, akkor R=i. *b)* Ha R=i és $R \to \neg P \land Q=i$, akkor $\neg P \land Q=i$ kéne legyen, de Q=h, ami ennek ellentmond.

Konjunktív normálforma

Definíció: Egy L formulát **literál**nak nevezünk, ha primformula (azaz ítéletváltozó) vagy a negáltja.

Definíció: Egy C formulát **klóz**nak nevezünk, ha különböző alapú literálok diszjunkciója.

Definíció: Klózok konjunkcióját **konjunktív normálformá**nak nevezzük. (KNF)

<u>Példa:</u> Adjuk meg az $(X \rightarrow Y) \land (Y \rightarrow Z)$ konjunktív normálformát az igazságtábla alapján.

X	Y	Z	$X \rightarrow Y$	Y→Z	$(X \rightarrow Y) \land (Y \rightarrow Z)$
i	i	i	i	i	i
i	i	h	i	h	<mark>h</mark>
i	h	i	h	i	i
i	h	h	h	i	i
h	i	i	i	i	i
h	i	h	i	h	h h
h	h	i	i	i	i
h	h	h	i	i	i

Az $X \wedge Y \wedge \neg Z$ csak akkor igaz, ha X=i és Y=i és Z=h.

Ebből következik, hogy a $\neg (X \land Y \land \neg Z)$ csak a megadott interpretációban hamis.

$$\neg(X \land Y \land \neg Z) = \neg X \lor \neg Y \lor Z$$

Hasonlóan $\neg X \land Y \land \neg Z$ csak akkor igaz, ha X=h és Y=i és Z=h.

Csak ebben az interpretációban hamis az $X \vee \neg Y \vee Z$ formula.

Tehát az $(X \rightarrow Y) \land (Y \rightarrow Z) = (\neg X \lor \neg Y \lor Z) \land (X \lor \neg Y \lor Z)$ kitüntetett konjunktív normálformával.

Példa: Adjuk meg az $(X \rightarrow Y) \land (Y \rightarrow Z)$ konjunktív normálformát ekvivalens átalakításokkal.

$$(X \rightarrow Y) \land (Y \rightarrow Z) = (\neg X \lor Y) \land (\neg Y \lor Z)$$

Rezolúció

Tétel: F \models_0 G akkor és csak akkor, ha F U $\{\neg G\}$ kielégíthetetlen.

Definíció: Legyenek C_1 és C_2 pontosan 1 komplemens literált tartalmazó klózok, azaz $C_1 = C_1$ ' \vee L és $C_2 = C_2$ ' \vee \neg L. Ekkor C_1 ' \vee C_2 ' klózt C_1 és C_2 klózpár rezolvensének nevezzük. Jelölés: $res(C_1,C_2) := C_1$ ' \vee C_2 '

Megjegyzés: Ha $C_1 = L$ és $C_2 = \neg L$, akkor $res(C_1, C_2) = False$. Ezt üres klóznak is nevezzük.

Állítások formalizálása ítéletlogikában

Példa:

A1: Ha Aladár busszal utazik, és a busz késik, akkor nem ér oda a találkozóra.

A2: Ha nem ér oda a találkozóra és nem tud telefonálni, akkor nem kapja meg az állást.

A3: Ha rossz a kocsija, akkor busszal kell mennie.

A4: Aladárnak rossz napja van, mert a kocsija nem indul, rossz a telefonja és a busz késik.

B: Tehát Aladár nem kapja meg az állást.

Az eddigiek alapján lássuk be, hogy $\{A1,A2,A3,A4\} \mid =_0 B$ teljesül az előző feladatban kapott formulákra.

Ítéletváltozók: B: busszal utazik; K: késik a busz; O: odaér a találkozóra; T: tud telefonálni; R: rossz a kocsija; M: megkapja az állást.

```
A1: B \wedge K \rightarrow \neg O
```

A2:
$$\neg O \land \neg T \rightarrow \neg M$$

$$A3: R \rightarrow B$$

$$A4: R \land \neg T \land K$$

Írjuk át a A1,A2,A3,A4, formulákat és az állítás tagadottját KNF-re.

$$A1: \neg B \lor \neg K \lor \neg O$$

$$A4: R \land \neg T \land K$$

$$\neg B$$
: M

Az így kapott formulák klózhalmaza:

{

1.
$$\neg B \lor \neg K \lor \neg O$$
,

2.
$$0 \lor T \lor \neg M$$
,

Erről kell belátni, hogy kielégíthetetlen. Ha a *szemantikusfa* minden ágát lezárja valamelyik klóz, akkor egyszerre minden klóz nem kielégíthető.

Másik módszer a rezolválás.

Egy lehetséges rezolúciós levezetés a következő lépésekből áll:

Lépések sorszáma:

- 1. M
- 2. $0 \lor T \lor \neg M$
- 3. $0 \lor T$ res(1,2)
- 4. ¬T
- 5. $0 ext{res}(3,4)$
- 6. ¬B ∨ ¬K ∨ ¬0
- 7. $\neg B \lor \neg K$ res(5,6)
- 8. K
- 9. ¬B res(7,8)
- 10. ¬R ∨ B
- 11. $\neg R$ res(9,10)
- 12. R
- 13. □ (üres klóz) res(11,12)

Gyakorlás (házi feladat):

Formalizálja ítéletkalkulusban az alábbi szöveget és rezolúciós levezetéssel bizonyítsa, hogy a A1,A2 tautologikus következménye B!

- A1: Ha elég ennivalót csomagoltam az útra, akkor nem leszek éhes.
- A2: Ha nem leszek éhes, akkor jól érzem magam.
- B: Tehát, ha nem érzem jól magam, akkor nem csomagoltam elég ennivalót az útra.