#### Δομές Δεδομένων και Αλγόριθμοι Ασυμπτωτική Πολυπλοκότητα

#### Χρήστος Γκόγκος

Πανεπιστήμιο Ιωαννίνων, Τμήμα Πληροφορικής και Τηλεπικοινωνιών (2019-2020)

#### Τρεις εκδόσεις για έναν απλό αλγόριθμο αναζήτησης

Σειριακή αναζήτηση: Με είσοδο έναν πίνακα α με η μη διατεταγμένες τιμές ζητείται να απαντηθεί το εάν μια τιμή key υπάρχει στον πίνακα ή όχι.

#### Απλή σειριακή αναζήτηση

• Για κάθε αναζήτηση της τιμής key στον a θα πραγματοποιηθούν n+1 συγκρίσεις της μεταβλητής i με το n, λόγω της εντολής for, και n συγκρίσεις του a[i] με το key.

```
#include <iostream>
using namespace std;
int linear_search(int *a, int n, int key)
{
    int position = -1;
    for (int i = 0; i < n; i++)
        if (a[i] == kev)
            position = i;
    return position;
}
int main()
    int a[] = \{5, 7, 2, 1, 6, 3, 4, 0, 9\};
    int n = sizeof(a) / sizeof(int);
    cout << "Found at: " << linear_search(a, n, 6) << endl;</pre>
    cout << "Found at: " << linear_search(a, n, 8) << endl;</pre>
```

## Καλύτερη σειριακή αναζήτηση

- Εφόσον εντοπιστεί το key δεν απαιτείται η εξέταση των υπόλοιπων στοιχείων. Μέσω της εντολής return η συνάρτηση τερματίζει νωρίτερα την εκτέλεσή της.
- Αν το key δεν υπάρχει στον a τότε θα πραγματοποιηθούν n+1 συγκρίσεις της μεταβλητής i με το n, λόγω της εντολής for, και n συγκρίσεις του a[i] με το key.

```
int better_linear_search(int *a, int n, int key)
{
    for (int i = 0; i < n; i++)
        if (a[i] == key)
        return i;
    return -1;
}</pre>
```

#### Ακόμα καλύτερη σειριακή αναζήτηση

- Προχειμένου να αποφευχθούν οι συγχρίσεις του i με το n λόγω της εντολής for, αντιχαθιστούμε το τελευταίο στοιχείο του πίναχα με την τιμή key.
- Αν βρεθεί το στοιχείο πριν τη τελευταία θέση η μεταβλητή i θα έχει τιμή μικρότερη από το n-1.
- Με αποθήκευση της τελευταίας τιμής του πίνακα πριν αντικατασταθεί από το key και επαναφορά της τιμής της όταν τελειώσει η επανάληψη καλύπτεται και η περίπτωση που το key βρίσκεται στη τελευταία θέση του πίνακα.

```
int sentinel_linear_search(int *a, int n, int key)
{
   int last = a[n - 1];
   a[n - 1] = key;
   int i = 0;
   while (a[i] != key)
        i++;
   a[n - 1] = last;
   if (i < n - 1 || a[n - 1] == key)
        return i;
   else
        return -1;
}</pre>
```

#### Η σημασία των αποδοτικών αλγορίθμων

- Η εξέλιξη στην ταχύτητα των υπολογιστών στις δεκαετίες που έχουν περάσει από τη δημιουργία των πρώτων υπολογιστών μέχρι σήμερα είναι εκπληκτική.
- Σήμερα (2019), ένας υπολογιστής μπορεί να εκτελέσει πάνω από 1 δισεκατομμύριο λειτουργίες όπως προσθέσεις, πολλαπλασιασμούς, μεταφορές τιμών κ.α. το δευτερόλεπτο.
- Ωστόσο, συχνά προκύπτουν προβλήματα στα οποία, καθώς το μέγεθος της εισόδου τους μεγαλώνει, γίνονται δυσανάλογα δυσκολότερα στην επίλυσή τους.

#### Πως μπορεί να μετρηθεί η αποδοτικότητα αλγορίθμων;

- Η προφανής ερώτηση "Πόσο χρόνο θα χρειαστεί για να εκτελεστεί ένας αλγόριθμος;" είναι δύσκολο να απαντηθεί (λόγω εξάρτησης από την είσοδο, την αρχιτεκτονική του υπολογιστή στον οποίο θα εκτελεστεί, τη γλώσσα προγραμματισμού, την επιδεξιότητα του προγραμματιστή κ.α.).
- Επιλέγουμε να αντικαταστήσουμε την ερώτηση με την "Πως εξελίσσεται ο χρόνος εκτέλεσης καθώς το μέγεθος της εισόδου μεγαλώνει;".

# Παράδειγμα θεωρητικού προσδιορισμού χρόνου εκτέλεσης (σειριακή αναζήτηση) 1/2

- Το βήμα 1 εκτελείται 1 φορά
- Στο βήμα 2:
  - Α. γίνεται αρχικοποίηση της μεταβλητής i
  - B. γίνονται n+1 συγκρίσεις του i με το n
  - C. γίνεται η φορές μοναδιαία αύξηση του i
- Το βήμα 3 εκτελείται η φορές
- Το βήμα 4 μπορεί να εκτελεστεί από 0 μέχρι n φορές
- Το βήμα 5 εκτελείται 1 φορά κάτω όριο:  $t_1+t_{2A}+(n+1)*t_{2B}+n*t_{2C}+n*t_3+0*t_4+t_5$  άνω όριο:  $t_1+t_{2A}+(n+1)*t_{2B}+n*t_{2C}+n*t_3+n*t_4+t_5$

# Παράδειγμα θεωρητικού προσδιορισμού χρόνου εκτέλεσης (σειριακή αναζήτηση) 2/2

#### • κάτω όριο:

$$\bullet \ t_1 + t_{2A} + (n+1) * t_{2B} + n * t_{2C} + n * t_3 + 0 * t_4 + t_5 \Rightarrow \\$$

$$\bullet \ t_1 + t_{2A} + t_{2B} + t_5 + n * t_{2B} + n * t_{2C} + n * t_3 \Rightarrow \\$$

$$\bullet \ (t_{2B} + t_{2C} + t_3) * n + (t_1 + t_{2A} + t_{2B} + t_5) \Rightarrow \\$$

• 
$$c * n + d$$

#### • άνω όριο:

• 
$$t_1 + t_{2A} + (n+1) * t_{2B} + n * t_{2C} + n * t_3 + n * t_4 + t_5 \Rightarrow$$

$$\bullet \ t_1 + t_{2A} + t_{2B} + t_5 + n * t_{2B} + n * t_{2C} + n * t_3 + n * t_4 \Rightarrow \\$$

$$\bullet \ (t_{2B} + t_{2C} + t_3 + t_4) * n + (t_1 + t_{2A} + t_{2B} + t_5) \Rightarrow \\$$

• 
$$c' * n + d$$

#### Πολυπλοκότητα αλγορίθμων

- Η πολυπλοκότητα ενός αλγορίθμου εκφράζεται ως συνάρτηση της διάστασης του προβλήματος που αντιμετωπίζεται. Με τον όρο διάσταση του προβλήματος αναφερόμαστε στο πλήθος των ατομικών δεδομένων που υποβάλλονται για επεξεργασία.
- Για παράδειγμα:
  - Στο πρόβλημα της σειριαχής αναζήτησης που αναφέρθηκε, διάσταση του προβλήματος είναι το μέγεθος n του πίναχα.
  - Στο πρόβλημα εντοπισμού των πρώτων παραγόντων ενός μεγάλου αχέραιου αριθμού, διάσταση του προβλήματος είναι το πλήθος d των ψηφίων του αριθμού.
  - Στο πρόβλημα της άθροισης τιμών, διάσταση του προβλήματος είναι το πλήθος n των τιμών που πρόχειται να αθροιστούν.
  - Στο πρόβλημα του εντοπισμού της συντομότερης διαδρομής από μια αφετηρία προς έναν προορισμό σε έναν χάρτη, διάσταση του προβλήματος είναι ο συνδυασμός του πλήθους των κόμβων |V| και του πλήθους των ακμών |E| του γραφήματος που αναπαριστά αφαιρετικά το χάρτη.

#### Χειρότερη, καλύτερη και μέση περίπτωση

- Χρόνος εκτέλεσης χειρότερης περίπτωσης: Ο μεγαλύτερος χρόνος εκτέλεσης που μπορεί να παρατηρηθεί για οποιαδήποτε είσοδο διάστασης n (αποτελεί άνω όριο του χρόνου εκτέλεσης για οποιαδήποτε είσοδο).
- Χρόνος εκτέλεσης καλύτερης περίπτωσης: Ο συντομότερος χρόνος εκτέλεσης που μπορεί να παρατηρηθεί για οποιαδήποτε είσοδο διάστασης n (αποτελεί κάτω όριο του χρόνου εκτέλεσης για οποιαδήποτε είσοδο).
- Χρόνος εκτέλεσης μέσης περίπτωσης: Η μέση αναμενόμενη επίδοση λαμβάνοντας υπόψη όλες τις πιθανές εισόδους διάστασης n (γενικά είναι καλύτερος από το χρόνο χειρότερης περίπτωσης, αλλά μερικές φορές είναι περίπου το ίδιο "κακός χρόνος" με το χρόνο εκτέλεσης χειρότερης περίπτωσης).

# Τάξη ανάπτυξης ή ρυθμός ανάπτυξης (order of growth) και ασυμπτωτική ανάλυση

- Για είσοδο διάστασης n, αυτό που έχει σημασία είναι η τάξη ανάπτυξης του χρόνου εκτέλεσης ασυμπτωτικά (καθώς το n γίνεται πολύ μεγάλο).
- Πραγματοποιείται:
  - Παράβλεψη των όρων χαμηλότερης τάξης καθώς είναι σχετικά ασήμαντοι για πολύ μεγάλο n. Για παράδειγμα  $n^2+n+\sqrt{n}+\log(n)\Rightarrow n^2$ .
  - Παράβλεψη του συντελεστή του κυρίαρχου όρου, καθώς η συμμετοχή του στο ρυθμό αύξησης δεν είναι εξίσου σημαντική με τον κυρίαρχο όρο. Για παράδειγμα  $3n^2 \Rightarrow n^2$ .
- Η μελέτη του χρόνου εκτέλεσης (ή των απαιτήσεων μνήμης) καθώς αυξάνεται η διάσταση του προβλήματος προσεγγίζοντας πολύ μεγάλες τιμές ονομάζεται ασυμπτωτική ανάλυση.
- Υπάρχουν 3 βασικοί συμβολισμοί οι  $\Theta, O, \Omega$  καθώς και οι συμβολισμοί  $o, \omega$ .

#### Ο συμβολισμός του μεγάλου Ο

Ο συμβολισμός του μεγάλου Ο αφορά το χαρακτηρισμό της χειρότερης περίπτωσης. Τοποθετεί ένα άνω όριο στο χρόνο εκτέλεσης ενός αλγορίθμου.



$$f(n) = \mathrm{O}(g(n))$$
 σημαίνει ότι  $\exists c, n_0 > 0: 0 \leq f(n) \leq cg(n) \quad \forall n \geq n_0$ 

Δηλαδή, η συνάρτηση f(n) είναι O(g(n)) αν υπάρχουν θετικές σταθερές  $c, n_0$  τέτοιες ώστε  $0 \le f(n) \le cg(n)$  για κάθε  $n \ge n_0$  (ή αλλιώς ένα πολλαπλάσιο του g(n) είναι ασυμπτωτικό πάνω όριο για την f(n)).

#### Μεγάλο Ο (μικρότερο προς μεγαλύτερο)

$$\mathrm{O}(1) \ll \mathrm{O}(\log(n)) \ll \mathrm{O}(n) \ll \mathrm{O}(n\log(n)) \ll \mathrm{O}(n^2) \ll \mathrm{O}(n^3) \ll \mathrm{O}(2^n) \ll \mathrm{O}(n!)$$

#### **Big-O Complexity Chart**



<a href="https://www.bigocheatsheet.com/">https://www.bigocheatsheet.com/</a>

#### Παραδείγματα μεγάλου Ο

Ο συμβολισμός του μεγάλου Ο είναι ένας μαθηματικά τυπικός τρόπος σύμφωνα με τον οποίο προκειμένου να χαρακτηριστεί μια συνάρτηση δεν λαμβάνονται υπόψη σταθεροί παράγοντες και όροι χαμηλότερης τάξης παρά μόνο εξετάζεται το "σχήμα" της συνάρτησης.

#### • Ασκήσεις

- $\Delta$ είξτε ότι η συνάρτηση f(n) = 2n + 10 είναι O(n).
- Δείξτε ότι η συνάρτηση f(n) = 2n + 10 είναι  $O(n^2)$ .
- Δείξτε ότι η συνάρτηση  $f(n)=n^2$  δεν είναι  $\mathrm{O}(n).$
- Δείξτε ότι η συνάρτηση  $f(n) = 2^{n+5}$  είναι  $O(2^n)$ .
- Δείξτε ότι η συνάρτηση  $f(n) = 2^{5n}$  δεν είναι  $\mathrm{O}(2^n)$ .

#### Ο συμβολισμός Ω

Ο συμβολισμός του μεγάλου  $\Omega$  αφορά το χαρακτηρισμό της καλύτερης περίπτωσης. Τοποθετεί ένα κάτω όριο στο χρόνο εκτέλεσης ενός αλγορίθμου.



$$f(n) = \Omega(g(n))$$
 σημαίνει ότι  $\exists c, n_0 \geq 0: 0 \leq cg(n) \leq f(n) \forall n \geq n_0$ 

#### Ο συμβολισμός Θ

Ο συμβολισμός του μεγάλου Θ αφορά τον ταυτόχρονο προσδιορισμό του χρόνου εκτέλεσης με κάτω και άνω όρια. Σημαίνει ότι καθώς  $n\to\infty$  ο χρόνος εκτέλεσης f(n) είναι το πολύ  $c_2g(n)$  και τουλάχιστον  $c_1g(n)$  για κάποιες σταθερές  $c_1$  και  $c_2$ .



$$\begin{split} f(n)&=\Theta(g(n)) \text{ σημαίνει ότι} \\ \exists c_1,c_2,n_0>0:0\leq c_1g(n)\leq f(n)\leq c_2g(n) & \forall n\geq n_0 \\ \text{Ισχύει ότι } f(n)&=\Theta(g(n)) \text{ αν και μόνο αν } f(n)&=\mathrm{O}(g(n)) \text{ και } f(n)&=\Omega(g(n)). \end{split}$$

# Παραδείγματα με μεγάλο Θ

- Ασκήσεις

#### Ο συμβολισμός του μικρού ο

Ο συμβολισμός του μικρού o αφορά το χαρακτηρισμό της χειρότερης περίπτωσης.  $f(n) = o(g(n)) \ \text{σημαίνει ότι} \ \forall c>0, \exists n_0>0: 0 \leq f(n) < cg(n) \quad \forall n \geq n_0$ 

 $\Delta \eta \lambda a \delta \eta$ , η συνάρτηση f(n) είναι ασυμπτωτικά ασήμαντη σε σχέση με ένα πολλαπλάσιο της g(n).

#### Ο συμβολισμός του μιχρού ω

Ο συμβολισμός του μιχρού  $\omega$  αφορά το χαραχτηρισμό της χαλύτερης περίπτωσης.  $f(n)=\omega(g(n)) \text{ σημαίνει ότι } \forall c>0, \exists n_0>0: 0\leq cg(n)< f(n) \quad \forall n\geq n_0$ 

### Σχέση μεταξύ συμβολισμών $\mathbf{O}, \Omega, o, \omega$



- Το μεγάλο Ο περιγράφει ένα σφικτό άνω όριο (αν και μπορεί να είναι και χαλαρό).
- Το μικρό o περιγράφει ένα άνω όριο που δεν μπορεί να είναι σφικτό.
- Το μεγάλο  $\Omega$  περιγράφει ένα σφικτό κάτω όριο (αν και μπορεί να είναι και χαλαρό).
- $\bullet$  Το μικρό  $\omega$  περιγράφει ένα κάτω όριο που δεν μπορεί να είναι σφικτό.

## Ιδιότητες ασυμπτωτικών συμβολισμών (1/2)

• Αν 
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = a \neq 0$$
 τότε  $f(n) = \Theta(g(n))$ 

• Αν 
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = 0$$
 τότε  $f(n) = o(g(n))$ 

Αν 
$$\lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty$$
 τότε  $f(n) = \omega(g(n))$ 

#### Ιδιότητες ασυμπτωτικών συμβολισμών (2/2)

- Μεταβατικότητα (transitivity)
  - Αν  $f(n) = \Theta(g(n))$  και  $g(n) = \Theta(h(n))$  τότε  $f(n) = \Theta(h(n))$
  - Αν  $f(n) = \mathcal{O}(g(n))$  και  $g(n) = \mathcal{O}(h(n))$  τότε  $f(n) = \mathcal{O}(h(n))$
  - Αν  $f(n) = \Omega(g(n))$  και  $g(n) = \Omega(h(n))$  τότε  $f(n) = \Omega(h(n))$
  - Αν f(n) = o(g(n)) και g(n) = o(h(n)) τότε f(n) = o(h(n))
  - Αν  $f(n) = \omega(g(n))$  και  $g(n) = \omega(h(n))$  τότε  $f(n) = \omega(h(n))$
- Συμμετρία (symmetry)
  - $f(n) = \Theta(g(n))$  αν και μόνο αν  $g(n) = \Theta(f(n))$
- Ανάστροφη συμμετρία (transpose symmetry)
  - f(n) = O(g(n)) αν και μόνο αν  $g(n) = \Omega(f(n))$
  - f(n) = o(g(n)) αν και μόνο αν  $g(n) = \omega(f(n))$
- Πράξεις
  - $\bullet \ \operatorname{O}(g_1(n)) + \operatorname{O}(g_2(n)) = \operatorname{O}(\max(g_1(n), g_2(n)))$
  - $\bullet \ \operatorname{O}(g_1(n)) * \operatorname{O}(g_2(n)) = \operatorname{O}(g_1(n) * g_2(n))$

#### Πολυωνυμικοί αλγόριθμοι

Πολυωνυμικοί αλγόριθμοι είναι οι αλγόριθμοι που έχουν πολυωνυμικό χρόνο εκτέλεσης δηλαδή έχουν πολυπλοκότητα  $O(n^k)$  όπου k>0 είναι μια σταθερά.

Οι πολυωνυμικοί αλγόριθμοι ορίζουν μια κλάση προβλημάτων που ονομάζεται P δηλαδή προβλήματα γα τα οποία η επίλυσή τους μπορεί να δοθεί από αλγορίθμους με πολυωνυμικό χρόνο εκτέλεσης.

### Σταθερός χρόνος

Στο σταθερό χρόνο, ο χρόνος εκτέλεσης είναι O(1). Δηλαδή, ο χρόνος εκτέλεσης είναι φραγμένος από πάνω από μια σταθερά που δεν εξαρτάται από τη διάσταση του προβλήματος n.

- Παραδείγματα:
  - Διακλάδωση υπό συνθήκη
  - Αριθμητική ή λογική πράξη
  - Αρχικοποίηση μιας μεταβλητής
  - Πρόσβαση στο στοιχείο i ενός πίνακα
  - Σύγκριση/ανταλλαγή δύο στοιχείων σε έναν πίνακα

```
bool is_even(int x){ return (x\%2==0); }
```

#### Γραμμικός χρόνος

Στο γραμμικό χρόνο, ο χρόνος εκτέλεσης είναι O(n).

Παράδειγμα O(n) αλγορίθμου. Συγχώνευση δύο διατεταγμένων ακολουθιών (std::vector).

```
vector<int> a{1, 4, 5, 7, 8};
vector<int> b{2, 6, 9, 10};
vector<int> c; int i = 0, j = 0;
while (i < a.size() && j < b.size())
    if (a[i] <= b[j])</pre>
    {
        c.push_back(a[i]);i++;
    }
    else
        c.push_back(b[j]); j++;
    }
if (i == a.size())
    c.insert(end(c), begin(b) + j, end(b));
else
    c.insert(end(c), begin(a) + i, end(b));
```

#### Λογαριθμικός χρόνος

Στο λογαριθμικό χρόνο ο χρόνος εκτέλεσης είναι O(logn).

Παράδειγμα O(logn) χρόνου: Δίνεται ένας διατεταγμένος πίνακας με n διακριτούς ακεραίους αριθμούς και ένας ακέραιος x και ζητείται να βρεθεί ο δείκτης του x στον πίνακα.

```
int binary_search(int *a, int lo, int hi, int x)
{
    while (lo <= hi)
    {
        int mid = (lo + hi) / 2;
        if (x < a[mid])
            hi = mid - 1;
        else if (x > a[mid])
            lo = mid + 1;
        else
            return mid;
    }
    return -1;
}
```

Στο τέλος κάθε επανάληψης η διάσταση του προβλήματος μειώνεται στο μισό σε σγέση με την αργή της επανάληψης.

#### Γραμμολογαριθμικός χρόνος

Στο γραμμολογαριθμικό χρόνο ο χρόνος εκτέλεσης είναι O(nlogn).

Παράδειγματα O(nlogn) χρόνου είναι οι αποδοτιχοί αλγόριθμοι ταξινόμησης με σύγχριση όπως η ταξινόμηση με συγχώνευση (mergesort), η γρήγορη ταξινόμηση (quicksort), η ταξινόμηση σωρού (heapsort) χ.α.

#### Τετραγωνικός χρόνος

Στον τετραγωνικό χρόνο ο χρόνος εκτέλεσης είναι  $O(n^2)$ .

Παράδειγμα  $O(n^2)$  χρόνου: Δίνεται μια λίστα n σημείων του καρτεσιανού επιπέδου  $(x_1,y_1),...,(x_n,y_n)$  και ζητείται να βρεθεί το ζεύγος σημείων που είναι πλησιέστερα το ένα στο άλλο.

Τα σημεία (3,3) και (2,1) είναι πλησιέστερα το ένα με το άλλο.

#### Κυβικός χρόνος

Στον κυβικό χρόνο ο χρόνος εκτέλεσης είναι  $O(n^3)$ .

Παράδειγμα  $O(n^3)$  χρόνου:  $\Delta$ ίνεται ένας πίνακας n διακριτών ακεραίων και ζητείται να βρεθούν όλες οι τριάδες τιμών με άθροισμα μηδέν.

#### Εκθετικός χρόνος

Στον εκθετικό χρόνο ο χρόνος εκτέλεσης είναι  $O(a^n)$  με a>1.

```
Υπολογισμός του n-οστού αριθμού Fibonacci με αναδρομή.
int fibo(int n)
{
    if (n <= 1)
        return n;
    else
        return fibo(n - 2) + fibo(n - 1);
}
```

Αποδεικνύεται ότι ο παραπάνω κώδικας έχει πολυπλοκότητα  $O(1.6^n)$ .

# Δυνάμεις

• 
$$n^0 = 1$$

• 
$$n^1 = n$$

• 
$$n^{-1} = \frac{1}{n}$$

$$\bullet \ n^a \cdot n^b = n^{a+b}$$

$$\frac{n^a}{n^b} = n^{a-b}$$

$$\bullet \ (n^a)^b = (n^b)^a = n^{ab}$$

#### Λογάριθμοι (1/2)

- Ο λογάριθμος με βάση b ενός αριθμού a ισούται με την τιμή του εκθέτη x στην οποία θα πρέπει να υψωθεί το b έτσι ώστε να ληφθεί ως αποτέλεσμα το a. Δηλαδή:  $\log_b a = x \Leftrightarrow b^x = a$ .
- Το πεδίο ορισμού της λογαριθμικής συνάρτησης είναι το  $(0, +\infty)$  και το πεδίο τιμών της είναι το  $\mathbb{R}$ .
- Η βάση b του λογαρίθμου  $\log_b a$  μπορεί να λαμβάνει μόνο θετικές τιμές, διαφορετικές του 1. Η συμπεριφορά του λογαρίθμου είναι διαφορετική για b>1 από ότι για 0< b<1.
- Συνηθισμένοι λογάριθμοι:
  - $\log_{10} x$  δεκαδικός ή κοινός λογάριθμος
  - $\bullet$   $\log_e x = \ln x$  φυσικός λογάριθμος,  $e = \sum_{n=0}^{\infty} \frac{1}{n!} = 2,71828...$
  - $\log_2 x = \lg x$  δυαδικός λογάριθμος (στην επιστήμη υπολογιστών οι λογάριθμοι, εφόσον δεν δίνεται διευκρίνηση, θεωρείται ότι είναι δυαδικοί)
- Παραδείγματα:
  - $\log_{10} 100 = 2$
  - $\log_2 8 = 3$
  - $\log_8 2 = \frac{1}{3}$
  - $\log_2 \frac{1}{8} = -3$
  - $\log_2 \frac{1}{2} = -\frac{1}{2}$

#### Βασικές ιδιότητες λογαρίθμων (2/2)

- Η συνάρτηση του λογαρίθμου είναι αντίστροφη της εκθετικής συνάρτησης.
- $\log_b 1 = 0$
- $\log_b b = 1$
- $\log_b^b a = \frac{1}{\log_b^- b}$  (εναλλαγή βάσης και ορίσματος)
- $b^{\log_b a} = a$
- $\bullet \log_b a^n = n \log_b a$
- $\bullet \, \log_b(x * y) = \log_b x + \log_b y$
- $\log_b(\frac{x}{y}) = \log_b x \log_b y$
- $n^{\log_a b} = b^{\log_a n}$

Αλλαγή βάσης λογαρίθμου από  $b_2$  σε  $b_1$ :  $log_{b_1} a = \frac{\log_{b_2} a}{\log_{b_2} b_1}$ . Για παράδειγμα αν έχουμε μια υπολογιστική μηχανή που έχει τη δυνατότητα να υπολογίζει μόνο λογαρίθμους με βάση 10 μπορούμε να υπολογίσουμε το  $\log_2 1000 \ \omega \varsigma$  εξής:  $log_2 1000 = \frac{\log_{10} 1000}{\log_{10} 2} = \frac{3}{0.301} = 9.966$ 

#### Παραγοντικό (1/2)

Το παραγοντικό (factorial) ορίζεται αναδρομικά για μη αρνητικούς ακέραιους αριθμούς  $n \geq 0$  ως εξής:

$$n! = \begin{cases} 1 & n = 0 \\ n(n-1)! & n > 0 \end{cases}$$

- $n! = 1 * 2 * 3 * \cdots * n$ 
  - 5! = 120
  - 10! = 3628800
  - 100! = 9.332621544E + 157
- $n! < n^n$  yia  $n \ge 2$
- Προσέγγιση του Stirling για το παραγοντικό :  $n! = \sqrt{2\pi n} (\frac{n}{e})^n$

#### Παραγοντικό (2/2)

#### Μερικές χρήσεις του παραγοντικού:

- Με πόσους διαφορετιχούς τρόπους μπορεί να διαταχθεί ένα σύνολο n αντιχειμένων; Απάντηση: Υπάρχουν n επιλογές για το πρώτο αντιχείμενο, (n-1) επιλογές για το δεύτερο αντιχείμενο, (n-2) επιλογές για το τρίτο αντιχείμενο χ.ο.χ. Άρα οι διαφορετιχές διατάξεις είναι
  - $n*(n-1)*(n-2)*\cdots*1=n!.$ 
    - Για παράδειγμα για 3 αντιχείμενα A,B,C οι διατάξεις είναι οι εξής 1\*2\*3=6: ABC, ACB, BAC, BCA, CAB, CBA.
- Με πόσους διαφορετικούς τρόπους μπορούν να επιλεγούν k αντικείμενα από ένα σύνολο n αντικειμένων; Απάντηση:  $\binom{n}{k} = \frac{n!}{k!(n-k)!}$ .
  - Για παράδειγμα για 8 παίκτες, οι συνδυασμοί 5 παικτών που μπορούν να δημιουργηθούν είναι  $\binom{8}{5} = \frac{8!}{5!3!} = 56$ .

#### Αθροίσματα

$$\begin{array}{l} \bullet \ \, \sum_{i=1}^n i = 1+2+\cdots + n = \frac{n(n+1)}{2} \\ \bullet \ \, \sum_{i=0}^n x^i = 1+x+x^2+\cdots + x^n = \frac{x^{n+1}-1}{x-1} \\ \bullet \ \, \sum_{i=0}^n 2^i = 2^{n+1}-1 \\ \bullet \ \, \sum_{i=0}^\infty x^i = \frac{1}{1-x} \ \, \epsilon \text{and} \ \, 0 \leq x \leq 1 \\ \bullet \ \, \sum_{i=0}^\infty \frac{1}{2^i} = 2 \end{array}$$

 $\sum_{i=1}^{n} a_i - a_{i-1} = a_n - a_0$ 

 $\sum_{i=1}^{\infty} \frac{1}{2^i} = 1$ 

- $H_n = \sum_{k=1}^n \frac{1}{k} \approxeq \ln n$  αρμονιχός αριθμός n