CS475/575

Sensing and Sensors

Content adapted from http://www.cs.utexas.edu/~scottm/cs378/schedule.htm
Used with permission

Sensors

- Deliver raw data to applications.
 Measure and monitor
 - -motion
 - -orientation (aka position)
 - -environmental conditions

Kinds

Sensor	Туре	Description	Common Uses
TYPE_ACCELEROMETER	Hardware	Measures the acceleration force in m/s ² that is applied to a device on all three physical axes (x, y, and z), including the force of gravity.	Motion detection (shake, tilt, etc.).
TYPE_AMBIENT_TEMPERATURE	Hardware	Measures the ambient room temperature in degrees Celsius (°C). See note below.	Monitoring air temperatures.
TYPE_GRAVITY	Software or Hardware	Measures the force of gravity in m/s ² that is applied to a device on all three physical axes (x, y, z).	Motion detection (shake, tilt, etc.).
TYPE_GYROSCOPE	Hardware	Measures a device's rate of rotation in rad/s around each of the three physical axes (x, y, and z).	Rotation detection (spin, turn, etc.).
TYPE_LIGHT	Hardware	Measures the ambient light level (illumination) in lx.	Controlling screen brightness.
TYPE_LINEAR_ACCELERATION	Software or Hardware	Measures the acceleration force in m/s ² that is applied to a device on all three physical axes (x, y, and z), excluding the force of gravity.	Monitoring acceleration along a single axis.
TYPE_MAGNETIC_FIELD	Hardware	Measures the ambient geomagnetic field for all three physical axes (x, y, z) in μT .	Creating a compass.

Kinds

TYPE_ORIENTATION	Software	Measures degrees of rotation that a device makes around all three physical axes (x, y, z). As of API level 3 you can obtain the inclination matrix and rotation matrix for a device by using the gravity sensor and the geomagnetic field sensor in conjunction with the getRotationMatrix() method.	Determining device position.
TYPE_PRESSURE	Hardware	Measures the ambient air pressure in hPa or mbar.	Monitoring air pressure changes.
TYPE_PROXIMITY	Hardware	Measures the proximity of an object in cm relative to the view screen of a device. This sensor is typically used to determine whether a handset is being held up to a person's ear.	Phone position during a call.
TYPE_RELATIVE_HUMIDITY	Hardware	Measures the relative ambient humidity in percent (%).	Monitoring dewpoint, absolute, and relative humidity.
TYPE_ROTATION_VECTOR	Software or Hardware	Measures the orientation of a device by providing the three elements of the device's rotation vector.	Motion detection and rotation detection.
TYPE_TEMPERATURE	Hardware	Measures the temperature of the device in degrees Celsius (°C). This sensor implementation varies across devices and this sensor was replaced with the TYPE_AMBIENT_TEMPERATURE sensor in API Level 14	Monitoring temperatures.

Enumerating Sensors

- Obtain the SensorManager object
- Enumerate sensors via getSensorList(...)

SensorManager

Use SensorManager

```
private SensorManager mSensorManager;
private rowermanager mrowermanager;
private WindowManager mWindowManager;
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
    super.onCreate(savedInstanceState);
       Get an instance of the SensorManager
    mSensorManager = (SensorManager) getSystemService(SENSOR SERVICE);
    // Get an instance of the PowerManager
    mPowerManager = (PowerManager) getSystemService(POWER SERVICE);
```

Listing Sensors on a Device

```
private void showSensors() {
    List<Sensor> sensors
            = sensorManager.getSensorList(Sensor.TYPE_ALL);
    Log.d(TAG, sensors.toString());
    for(Sensor s : sensors) {
        Log.d(TAG, s.getName() + " - minDelay: "
             + s.getMinDelay() + ", power: " + s.getPower());
        Log.d(TAG, "max range: " + s.getMaximumRange()
                + ", resolution: " + s.getResolution());
```

Sensor Capabilities

- Various methods in Sensor class to get capabilities of Sensor
- minDelay (in microseconds)
 between 2 events
- power consumption in mA (milliAmps)
- maxRange (of return values)
- getVendor ()
- getVersion ()

Choosing Specific Sensors

```
private SensorManager mSensorManager;
private Sensor mSensor;
mSensorManager = (SensorManager) getSystemService(Context.SENSOR SERVICE);
if (mSensorManager.getDefaultSensor(Sensor.TYPE GRAVITY) != null) {
  List<Sensor> gravSensors = mSensorManager.getSensorList(Sensor.TYPE GRAVITY);
  for(int i=0; i<gravSensors.size(); i++) {
    if ((gravSensors.get(i).getVendor().contains("Google Inc.")) &&
       (gravSensors.get(i).getVersion() == 3)){
      // Use the version 3 gravity sensor.
     mSensor = gravSensors.get(i);
else{
  // Use the accelerometer.
  if (mSensorManager.getDefaultSensor(Sensor.TYPE ACCELEROMETER) != null) {
   mSensor = mSensorManager.qetDefaultSensor(Sensor.TYPE ACCELEROMETER);
  else{
   // Sorry, there are no accelerometers on your device.
   // You can't play this game.
```

Using Sensors

- Obtain the SensorManager object
- create a SensorEventListener for SensorEvents
 - logic that responds to sensor event
 - various amounts of data from sensor depending on type of sensor
- Register the listener (with a particular sensor) in onResume()
- UnRegister the listener in onPause()

SensorEventListener

- Interface with two methods:
 - -void onAccuracyChanged (Sensor sensor, int accuracy)
 - -void onSensorChanged (SensorEvent event)
 - Sensor values have changed
 - this is the key method to override
 - -don't hold onto the event
 - part of pool and the values may be altered soon

OnSensorChanged

```
@Override
public void onSensorChanged(SensorEvent event) {
    if (event.sensor.getType() == Sensor.TYPE_ACCELEROMETER) {
        float[] values = event.values;

        //get movements
        float xx = values[0];
        float yy = values[1];
        float zz = values[2];

        // display them
        x.setText(Float.toString(xx));
        y.setText(Float.toString(yy));
        z.setText(Float.toString(zz));
    }
}
```

 Lots of events here, so do not block method

(Un)Registering a listener

- IMPORTANT
 - -Register in onResume()
 - -Release in onPause()

Sensor Coordinate System

- For most motion sensors
- +x to the right
- +y up
- +z out of front face
- relative to device

AccelerationTest Simple Sensor Example

- App that demos linear acceleration
- displays current
- And average

Odds and Ends

- Register/Unregister sensor listeners
- Harder to use emulator
- Don't block onSensorChanged()
- Don't use deprecated sensor methods or types
- Verify that sensors are there before using

- http:// www.vogella.com/articles/Androi dSensor/article.html
- http://developer.android.com/gui de/topics/sensors/sensors_overvi ew.html