Name:

COL202: Quiz-3

Maximum marks: 40 Kerberos id:

Instructions.

1. For each problem, you will receive 10% marks for leaving it blank. However, there will be penalty for submitting bogus proofs.

- 2. Please write your proofs clearly (marks will be deducted for skipping steps).
- 3. Clearly mark whether you have attempted the problem or not (put a tick next to "Attempted" in case you have attempted one or more parts of the problem).

Question 1: n sticks in a line (10 marks). There are n sticks of distinct heights, arranged in a line in a uniformly random order. Suppose we look from the left. Let X denote the number of sticks visible. Compute $\mathbb{E}[X]$.

1 /

Question 2: Random Permutations (10 marks) Let σ be a uniformly random permutation over $\{1,2,\ldots,n\}$. Let $A=(\sigma(1),\sigma(2),\ldots,\sigma(n))$. We are interested in the length of the longest increasing subsequence in A. For instance, if $\sigma(1)=3$, $\sigma(2)=5$, $\sigma(3)=4$, $\sigma(4)=1$, $\sigma(5)=2$, then A=(3,5,4,1,2) and the length of the longest increasing subsequence in A is 2.

Let X be a random variable denoting the length of the longest increasing subsequence. Prove that there exists a constant c>0 such that $\mathbb{E}[X]\geq c\sqrt{n}$.

ATTEMPTED

NOT ATTEMPTED

Question 3: Independent Events (20 marks). Let (Ω, p) be any discrete probability distribution. Two events $A \subseteq \Omega$ and $B \subseteq \Omega$ are said to be independent if

$$\Pr[A \cap B] = \Pr[A] \cdot \Pr[B].$$

When we consider n events, there are two ways to define independence:

• (mutual independence) n events A_1, \ldots, A_n are said to be mutually independent if for any subset $I \subseteq \{1, 2, \ldots, n\}$,

$$\Pr\left[\bigcap_{i\in I} A_i\right] = \prod_{i\in I} \Pr[A_i].$$

• (pairwise independence) n events A_1, \ldots, A_n are said to be pairwise independent if for any $1 \le i < j \le n$,

$$\Pr[A_i \cap A_i] = \Pr[A_i] \cdot \Pr[A_i].$$

- Let A_1 denote the event that $\sigma(1) = 1$, and A_2 the event that $\sigma(2) = 2$. Are A_1 and A_2 independent events? Give a one-line justification for your answer.
- 2. (3 marks) Let $\Omega = \{0, 1\}^3$. Define a probability distribution over Ω , and three events A_1, A_2, A_3 such that they are pairwise independent but not mutually independent.
- 3. (3 marks) Let $A \subseteq \Omega$ and $B \subseteq \Omega$ be two events, and let $\overline{B} = \Omega \setminus B$. Prove that if A and B are independent events, then

$$\Pr[A \cap \overline{B}] = \Pr[A] \cdot \Pr[\overline{B}].$$

A. (2 marks) Let A_1, \ldots, A_n be mutually independent events over sample space Ω , and let $I \subseteq \{1, 2, \ldots, n\}$ be any subset. Give an expression for the following probability in terms of $\{\Pr[A_i]\}$:

$$\Pr\left[\left(\bigcap_{i\in I}\overline{A_i}\right)\bigcap\left(\bigcap_{i\notin I}A_i\right)\right].$$

You only need to state the final expression (don't need to prove it).

5. (10 marks) Let (Ω, p) be a discrete probability distribution such that Ω is finite. Let A_1, A_2, \ldots, A_n be mutually independent events such that $0 < \Pr[A_i] < 1$ for all $i \in [n]$. Prove that $|\Omega| \geq 2^n$.