Αλγόριθμοι και Πολυπλοκότητα: 1ο Σύνολο Ασκήσεων

1. Έστω $f, f_1, f_2, g, g_1, g_2, h$ θετικές συναρτήσεις. Αποφασίστε αν οι παρακάτω προτάσεις είναι αληθείς ή ψευδείς. Δικαιολογήστε τις απαντήσεις σας.

1. Αν
$$f(n) = o(g(n))$$
 τότε $f(n) = O(g(n))$

2. Αν
$$f(n) = O(g(n))$$
 και $f(n) = \Omega(h(n))$ τότε $g(n) = \Theta(h(n))$

3. Αν
$$f_1(n) = O(g_1(n))$$
 και $f_2(n) = O(g_2(n))$ τότε

i.
$$f_1(n) + f_2(n) = O(\max\{g_1(n), g_2(n)\})$$

ii.
$$f_1(n) \cdot f_2(n) = O(g_1(n) \cdot g_2(n))$$
.

4.
$$4n^2 + 5n - 9 = \Omega(10n^2)$$
.

5.
$$\log(n!) = \Theta(n \log n)$$
.

6.
$$f(n) + g(n) = \Theta(\min(g(n), f(n)))$$

7.
$$n + 2\sqrt{n} \neq \Omega(n\sqrt{n})$$

8. Av
$$f(n) = o(q(n))$$
 tote $2^{f(n)} = o(2^{g(n)})$

9. Αν
$$f(n) = O(g(n))$$
 τότε $2^{f(n)} = O(2^{g(n)})$

10.
$$\omega(g(n)) \cap o(g(n)) = \emptyset$$

2. Δίνονται οι παρακάτω συναρτήσεις. Χωρίστε τη λίστα των συναρτήσεων σε κλάσεις, τέτοιες ώστε οι f(n) και g(n) να ανήκουν στην ίδια κλάση αν και μόνο αν $f(n) = \Theta(g(n))$. Στη συνέχεια επιλέξτε έναν εκπρόσωπο από κάθε κλάση και κατατάξτε τους κατά αύξουσα σειρά πολυπλοκότητας.

3. Για κάθε ζεύγος εκφράσεων (A,B) του παρακάτω πίνακα αποφασίστε αν το A είναι O,o,Ω,ω ή Θ του B. Υποθέστε ότι οι $k\geq 1,\epsilon>0$ και c>1 είναι σταθερές. Απαντήστε σημειώνοντας ένα 'ναι' ή ένα 'όχι' σε κάθε θέση του πίνακα.

	A	B	0	0	Ω	ω	Θ
a.	$\log^k n$	n^{ϵ}					
b.	n^k	c^n					
c.	$\overline{2^n}$	$2^{n/2}$					
d.	$n^{\log c}$	$c^{\log n}$					
στ.	n!	n^n					

4. Ποιά είναι η πολυπλοκότητα των ακόλουθων αλγορίθμων;

Αλγόριθμος 1

```
1: sum = 0

2: for i = 1 to 4n do

3: for j = 1 to 2n^2 with step 2 do

4: for k = n to \frac{n}{2} with step -1 do

5: sum = sum + 1

6: end for

7: end for

8: end for
```

Αλγόριθμος 2

```
1: sum = 0

2: for i = 1 to n - 1 do

3: for j = 1 to n * i do

4: for k = 1 to j do

5: sum = sum + 1

6: end for

7: end for

8: end for
```

5. Να υπολογίσετε τον χρόνο εκτέλεσης μέσης περίπτωσης του αλγορίθμου Σειριακής Αναζήτησης δεδομένου ότι γνωρίζουμε πως το στοιχείο που ψάχνουμε x βρίσκεται στην τελευταία θέση με πιθανότητα 1/2, στην προτελευταία θέση με πιθανότητα 1/4, ενώ η πιθανότητα να βρίσκεται σε οποιαδήποτε από τις υπόλοιπες n-2 θέσεις είναι ίση με $\frac{1}{4(n-2)}$.