Лабораторая работа №5

Задача: Провести полный анализ для сегментации датасета

Описание датасета "Predict Online Gaming Behavior Dataset"

Этот набор данных фиксирует комплексные метрики и демографию, связанные с поведением игроков в онлайн-игровых средах. Он включает такие переменные, как демография игроков, детали, характерные для игры, метрики вовлеченности и целевую переменную, отражающую удержание игроков.

Переменная	Описание					
PlayerID	Уникальный идентификатор для каждого игрока.					
Age	Возраст игрока.					
Gender	Пол игрока.					
Location	Географическое местоположение игрока.					
GameGenre	Жанр игры, в которой участвует игрок.					
PlayTimeHours	Среднее количество часов, проведенных за игрой за одну сессию.					
InGamePurchases	Признак того, делает ли игрок внутриигровые покупки (0 — Нет, 1 — Да).					
GameDifficulty	Уровень сложности игры.					
SessionsPerWeek	Количество игровых сессий в неделю.					
AvgSessionDurationMinutes	Средняя продолжительность каждой игровой сессии в минутах.					
PlayerLevel	Текущий уровень игрока в игре.					
AchievementsUnlocked	Количество достижений, разблокированных игроком.					
EngagementLevel	Категоризированный уровень вовлеченности, отражающий удержание игроков ('Высокий', 'Средний', 'Низкий').					

Целевая переменная — EngagementLevel — указывает на уровень вовлеченности игрока и категоризируется как 'Высокий', 'Средний' или 'Низкий'.

```
In [17]: import pandas as pd
    import numpy as np
    from sklearn.cluster import KMeans
    from sklearn.preprocessing import StandardScaler
    from sklearn.metrics import silhouette_score, calinski_harabasz_score, davies_bouldin_score

In []: df = pd.read_csv('../online_gaming_behavior_dataset.csv')
```

In [20]: df.head()

:	PlayerID	Age	Gender	Location	GameGenre	PlayTimeHours	InGamePurchases	GameDifficulty	SessionsPerWeek	AvgSession
0	9000	43	Male	Other	Strategy	16.271119	0	Medium	6	
1	9001	29	Female	USA	Strategy	5.525961	0	Medium	5	
2	9002	22	Female	USA	Sports	8.223755	0	Easy	16	
3	9003	35	Male	USA	Action	5.265351	1	Easy	9	
4	9004	33	Male	Europe	Action	15.531945	0	Medium	2	
4										

Преобразование данных

Оценка качества

Будет использоваться алгоритм K-Means для сегментации данных. Для определения оптимального количества кластеров будем использовать коэффициент силуэта и индекс дэвиса-болдина

```
In [31]: # Определение оптимального количества кластеров
         silhouette scores = []
         calinski_harabasz_scores = []
         davies bouldin scores = []
         for k in range(2, 10):
             kmeans = KMeans(n_clusters=k, random_state=42)
             kmeans.fit(data_scaled)
             silhouette = silhouette_score(data_scaled, kmeans.labels_)
             calinski_harabasz = calinski_harabasz_score(data_scaled, kmeans.labels_)
             davies bouldin = davies bouldin score(data scaled, kmeans.labels )
             silhouette_scores.append(silhouette)
             calinski_harabasz_scores.append(calinski_harabasz)
             davies_bouldin_scores.append(davies_bouldin)
         # Визуализация результатов
         import matplotlib.pyplot as plt
         plt.figure(figsize=(10, 6))
         plt.subplot(1, 2, 1)
         plt.plot(range(2, 10), silhouette scores)
         plt.title('Коэффициент Силуэта')
         plt.xlabel('Количество кластеров')
         plt.ylabel('Коэффициент')
         plt.subplot(1, 2, 2)
plt.plot(range(2, 10), davies_bouldin_scores)
         plt.title('Индекс Дэвиса-Болдина')
         plt.xlabel('Количество кластеров')
         plt.ylabel('Индекс')
         plt.tight_layout()
         plt.show()
```



```
In [30]: # Определение оптимального количества кластеров
silhouette_scores = []
calinski_harabasz_scores = []
davies_bouldin_scores = []

for k in range(2, 10):
    kmeans = KMeans(n_clusters=k, random_state=42)
```

```
kmeans.fit(data_scaled_with_cat)
    silhouette = silhouette score(data scaled with cat, kmeans.labels )
    calinski_harabasz = calinski_harabasz_score(data_scaled_with_cat, kmeans.labels_)
    davies_bouldin = davies_bouldin_score(data_scaled_with_cat, kmeans.labels_)
    silhouette_scores.append(silhouette)
    calinski_harabasz_scores.append(calinski_harabasz)
    davies_bouldin_scores.append(davies_bouldin)
# Визуализация результатов
import matplotlib.pyplot as plt
plt.figure(figsize=(10, 6))
plt.subplot(1, 2, 1)
plt.plot(range(2, 10), silhouette_scores)
plt.title('Коэффициент Силуэта')
plt.xlabel('Количество кластеров')
plt.ylabel('Коэффициент')
plt.subplot(1, 2, 2)
plt.plot(range(2, 10), davies_bouldin_scores)
plt.title('Индекс Дэвиса-Болдина')
plt.xlabel('Количество кластеров')
plt.ylabel('Индекс')
plt.tight_layout()
plt.show()
```


Мы видим, что если включать категориальные переменные в данные, то у нас падают значение наших коэффициентов, поэтому далее будем рассматривать данные без категориальных перменных

```
In []: # Выбор оптимального количества кластеров на основе графиков
    optimal_k = 7

kmeans_optimal = KMeans(n_clusters=optimal_k, random_state=42)
kmeans_optimal.fit(data_scaled)

cluster_labels = kmeans_optimal.labels_

for i in range(optimal_k):
    cluster_data = df[cluster_labels == i]
    print(f"Kластер {i+1}:")
    display(cluster_data.describe())
    print()
```

Clusters Visualized with PCA

T-SNE

Clusters Visualized with t-SNE

In []:

Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js