电动1

的电动基本规律

第1部分 - 电流,电压,功率和法律基尔霍夫?

简介 - 什么是电动?

德?Nition 1。 电动
电荷
该 电力负荷 是物质的基本属性,就像 质量。 两个负载球阀+
TRIC彼此通过通称为相互作用相互作用 电磁相互作用。 有
两种类型的负载,负载 负 和费用 阳性。 这个量在库仑表达,表示为C
和 孔定量?ED 也就是说,它不能采取任何价值。电力负荷必须始终
是的整数倍 基本电荷 Ē ≈ 1 60.10 - 19 <i>C.</i>
v 注:通常情况下,载流子在电路中移动是 电子, 承重
<u> </u>
该电动一般分为两个专业:
我 电动 主要涉及生产,电力和其转化
运输。这是发动机或发电厂的领域。
我 电子 爱好处理信号?∩至添加到它或提取信息。她
允许通过的电流,来传输和处理的信息。
该电动的这两个臂依赖于相同的基本规律。这些都是基本规律
现在我们将学习。要做到这一点,我们将去?氖的精确概念开始
电流。
^ + * * * * + =
一个电流和电压
1.1电流
1.1电流
德?Nition 2。 电流

根据在其中流过电流,电荷载体可以是二erent环境?:

- **我在金属导体(如,?驾驶员),它是金属的自由电子** 允许电流的出现。
- **我 在 电解液(含离子溶液,例如,盐水),它是离子** 溶液,其允许电流的发生。

阿3 N表征的电流,使用一种称为量 强度。

德?Nition 3。	, 电流值
0 0 0 0 0 0 0 0 0 0	
000000000	
0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0	
0 0 0 0 0 0 0 0 0 0	

v 指<u>导公约:</u>

- **我 按照惯例,实际的电流方向的运动方向 正电荷。 在驱动器** 金属,电流是由于电子,负电荷的移动:该电流的方向是
 - 金属,电流是由于电子,贝电何的移动:该电流的方问是相反的电子的运动方向。

人物 1? 公约取向和标志的电流值

乙 如果指控被认为是阴性(q < 0) 过去的结果是相反的,因为强度 总是失望否认对于正电荷的运动!

v 电流的大小的顺序:

目前在二极管	10毫安	致命电击	100毫安
白炽灯	1。	电暖气	10A
电力线	500安	闪电	50 000 A

表 1? 电场强度大小

罗伯C.

1.2电压

一种用于在移动导体的带电粒子必须施加 实力 在他们身上。一

与此力相关 电位 1 可以在每个电路点,关联一个潜在的,通常记录 *V* 在伏表示。

德?Nition 4。 电压	
	•••••••••••••••••••••••••••••••••••
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
000000000000000000	

v 电电压的表示:上的电路图,电压 ÜAB由指示?箭头

从乙定向为A.作为强度,该取向是任意的。

2个法律基尔霍夫的?和准静止制度的近似(arqs)

- 2.1网络电动 词汇
- 2.1.1偶极电动

德?Nition 5。	偶极电动

v 偶极子的示意图: 考虑偶极 d_1 连接在端子之间 - 和 Z 它被概括为

如所示?古尔2.记住,张力 *ü AB* 由a表示?箭头从B到A

人物 2? 偶极原理图

^{1.}您稍后将看到的是实力和潜力之间的确切联系。

的示例性网络中示出了?古尔3。

人物 3? 实施例的电动网络

2.1.2串行协会 - 协会并行

德?Nition 7。 串行协会	

 \mathbf{v} 例如: 在?图3中的偶极子 d_7 和 d_8 串联放置。

德?Nition 8。	并行关联

v 例如:在?图3中的偶极子 d2和 d五被放置在平行。

一个网络的2.1.3说明

德?Nition 9。	词汇

电动的基本规律 - 第1部分 罗伯C.

v 例如: 在所示的网络?图3中,点A,B,C和E是节点,但点d是 没有。部分AB,BDE或CE是分支的例子。在2 N闭合路径是ACEDBA 目,如CABA和BCEDB。

2.1.4重量的电路的

回想一下,电压为二?Erence潜力($\ddot{u}_{AB}=V_{--}V_{B}$),。一个潜在的不测量,因为它总是失望也不添加剂恒定,因此,研究的电路时,?XED任意一电路点为0。此电位被称为 电路接地。

德?Nition 10。	电路的质量

电动的网络是由许多已知的法律管辖 基尔霍夫定律? 这些法律 在一个特定的逼近称为上下文有效 准静止制度逼近。

2.2饮食固定的,准静止

2.2.1稳态

! !Nition 11。 稳态	

虽然这种情况下是远是最常见的,一些电路操作é?Ective处于稳定状态。此外,电动的法律在历史上被定为固定系统。他们仍然然而,在某些情况下,arqs是VERI?ED有效。

2.2.2逼近准静态制度

在通道中传播的电信号以光的速度移动在真空中,或 $g \approx 3.10 \, \mathrm{s}$ MS $^{-1}$ 。先验,电压和在电路中的电流在给定时间 * 可能取决于点电路考虑。例如,考虑两点 * * * * * *

 $I(P,T)=I(M,T-\mathcal{H})$

哪里 的L/C装置,用于将信号移到所需要的时间 中号至 P. 这意味着什么?é当前 P 即刻 \check{T} 相同的瞬间M的电流 \check{T} - 的L/C。 固定制度的近似忽略这个 长期延迟。

德?Nition 12。 准静止制度的逼近	
	, , , , , , , , , , , , , , , , , , , ,
	,
实施例1。 考虑一个频率信号 <i>F =</i> 50 赫兹电路中的传播,应该是什么	
大肥別 1。 考応一 1 例平信号 ア = 50 勝致 电射中 10 1を指,歴 10 定刊 A 电路尺寸为arqs不再VERI?ED?	
	>
•••••••••••••••••••••••••••••••••••	
现在考虑一个特征尺寸电路 <i>d</i> ≈ 1 米,最多任何频率可以是	
工作永远是arqs的一部分吗?	

在此过程中的其余部分,研究了所有的法律只在arqs都适用。	
2.3法律基尔霍夫?	
· · 点2.3.1法案	
节点的规律,从物理学的基本规律,这就是派生 电荷守恒定律	
电。	
法1。 电荷守恒	
	,
)

罗伯C.

在稳定状态,并且因此arqs下,它不能在电荷累积 点导体。并且,强度跨驾驶员的部分是保守的。 节点的法律是以前的评论的结果。的总电荷在给定的

节点的法律是以前的评论的结果。的总电荷在给定的节点n÷N发生 电路等于出现的总电荷。因此,到达的N个的总强度必须等于 总强度,以该弹簧N.这个结果称为 节点的规律。

行动2。 节点法			
	, , , , , , , , , , , , , , , , , , , ,		
	, , , , , , , , , , , , , , , , , , , ,		
	,		
	,		
	,		

人物 4?节点法

实施例2。	写节点的法律吗?古尔4所示的情况。
	•••••••••••••••••••••••••••••••••

v 注意: 在稳定状态,强度往往会以标记?我?资本,而一个使用吗?我? 小写变速(如果该强度取决于时间)。

2.3.2网格法

?AN到国家法律网,通过突出显示加和性紧张开始,谢谢在?古尔5中,其中任何两个偶极子串联连接所示的情况。 这是,通过紧张的德nition?:

因此,电压系列偶极终端遵循相加模型法Chasles的规律。

^{2.}这意味着什么吗?是尽可能多的负载,因为回国费用来驾驶者即

人物 5? 加性紧张

v 后果: 沿着网格,电压之和为零,因为它返回到起点。它 用来写 网格法。

德?Nition 13。 网格法

实施例3。 考虑如下图所示电动的网络。表达目律网

ABC尊重选择的取向方向。

 U_1

本?箭头的紧张局势已经在上面任意取向,我们将在下一节看到有然而,二?erent惯例可循。

3个指导公约和偶极子的力量

3.1接收机公约 - 由偶极接收功率

德?Nition 14。	接收器公约

我们将会从这个协议死吗?NE由偶极子接收到的功率。

v 提醒: 该功率对应于每单位时间的能量。由偶极子的接收功率为

因而第二期间由从周围电路偶极接收的能量。

德?Nition 15。	电力接收器惯例

v 通过常规的设备消耗的功率量值:

手机	1瓦	灯泡	50瓦
计算机	100瓦	洲阻力?赌注	1千瓦
核电	1 GW	法国电力公园	100 GW

接收功率的标志

接收到的功率 *P_{IR}是一*个代数量为:

我 是,如果接收器偶极阳性。它接收来自电路的其余部分的功率(例如,电阻 洲?赌注)

我 如果负偶极子的生成。它提供能量到所述电路(例如,电化学电池)。

该公约接收器可用于治疗受体偶极子的情况。

v 注意: 由偶极子转移到电路的其余部分的功率为相对的接收功率。

3.2发电机公约

德?Nition 16。 发电机公约	
•••••••••••••••••••••••••••••••••••••	
德?Nition 17。 发电机在出售协议	
•••••••••••••••••••••••••••••••••••••••	
•••••••••••••••••••••••••••••••••••••••	

这是接收功率的对面,该协议是更适合于发电机的描述。

登录割让权力

动力传输 Pc是一个代数量为:

我 是正的,如果偶极发生器:它提供能量到所述电路(例如,电化学电池),

我 负如果接收机偶极是:它接收来自电路的其余部分的能量(例如,电阻

洲?赌注)。

v 注意: 该公约的选择是任意的,没有基本的物理意义。必须

然而,这是使用一个?为了避免混淆,并签署错误明确。

结论

我们在本章看到电动的基础知识,在德?宁特定的强度和概念

电压。我们了解到,对于固定系统或近似的一部分

几乎静止的制度(arqs),电量分别跨越司机一致

一个给定的时间,然后允许引入法律基尔霍夫?:节点和网格法的法律。在?N,

我们得出的结论由能量方面,由德?宁在接收或传送由偶极子电源

两个公约:接收器或发生器。

下一章的主题是学习一般的偶极天线和应用基尔霍夫定律?以网络 电动真实。