Department of Mathematics & Statistics

MTH-102A Ordinary Differential Equations

Assignment III

1. \star Applying Euler's method with step size h = 0.1, find the approximate values for the solution of the differential equation

$$y' + 3y = 7e^{4x}, y(0) = 2$$

x = 0.1, 0.2, 0.3 and compare these values with the values of the solution $y = e^{4x} + e^{-3x}$ at these points.

Do the same problem with improved Euler's method.

2. * Apply Euler's method with step size h = 0.1, h = 0.05 and h = 0.025 to the differential equation

$$y' - 2y = \frac{x}{1 + y^2}, \qquad y(1) = 7$$

to find approximate values x = 1, 1.1, 1.2, 1.3.

3. * Use improved Euler's method to find the approximate values for the solution of the initial value problem

$$y' = -2y^2 + xy + x^2$$
 $y(0) = 1$

with step size h = 0.1 and h = 0.05.

4. \star Verify that $y_1 = x^2$ and $y_2 = \frac{1}{x^2}$ are a set of fundamental solutions of the differential equation $x^2y'' + xy' - 4y = 0$ in $(-\infty, 0) \cup (0, \infty)$.

Find the solution y if (i)(y(1), y'(1)) = (2, 0) and (ii)(y(-1), y'(-1)) = (2, 0).

Observe that $y_1(x) = x^2$ is a solution on the whole of \mathbb{R} .

5. \star Let $p,q:(a,b)\to\mathbb{R}$ be two continuous functions. Let $\{y_1,y_2\}$ be a fundamental set of solutions of the differential equations y'' + py' + qy = 0 in (a, b). Let y be the solution of the differential equation y'' + py' + qy = 0 with initial condition $y(x_0) = k_0$ and $y'(x_0) = k_1$. Show that $y = c_1y_1 + c_2y_2$ where $c_1 = \frac{y_2'(x_0)k_0 - y_2(x_0)k_1}{W(y_1, y_2)(x_0)}$ and $c_2 = \frac{y_1(x_0)k_1 - y_1'(x_0)k_0}{W(y_1, y_2)(x_0)}$.

6. \star In the following problems, use the method of reduction of order to find a solution y_2 that is not a constant multiple of the solution y_1 .

(a)
$$y'' - 2ay' + a^2y = 0$$
, $y(x) = e^{ax}$.

(b)
$$4x^2 \sin xy'' - 4x(x\cos x + \sin x)y' + (2x\cos x + 3\sin x)y = 0,$$
 $y(x) = x^{\frac{1}{2}}.$

7. Use Euler's method to find the approximate value of the following initial value problems.

(a) $y' + \frac{2}{x}y = \frac{3}{x^3} + 1$, y(1) = 1; h = 0.1, h = 0.05 at x = 1.0, 1.1, 1.2, 1.3, 1.4.Compare these approximate values with the values of the exact solution $y = \frac{1}{3x^2}(9 \ln x +$ $x^3 + 2$).

(b)
$$(3y^2+4y)y'+2x+\cos x=0$$
, $y(0)=1$; $h=0.1h=0.05$ at $x=0,0.1,0.2,0.3,0.4$

8. In the exercises given below, use improved Euler's method to find the approximate values of the solution of the given initial value problem at the points $x_i = x_0 + ih$ where x_0 is the initial point and i = 1, 2, 3.

1

(a)
$$y' = 2x^2 + 3y^2 - 2$$
, $y(2) = 1$; $h = 0.05$.
(b) $y' = y + \sqrt{x^2 + y^2}$, $y(0) = 1$; $h = 0.1$.

(b)
$$y' = y + \sqrt{x^2 + y^2}$$
, $y(0) = 1$; $h = 0.1$.

- (c) $y' + x^2y = \sin(xy)$ $y(1) = \pi$; h = 0.2.
- 9. Let $p,q:(a,b)\to\mathbb{R}$ be two continuous functions and y_1 be a solution of the differential equation y''+py'+qy=0 in (a,b). Let $y_2(x)=ky_1(x)$ for all $x\in(a,b)$ and k is a constant. Show that $W(y_1,y_2)\equiv 0$ in (a,b).
- 10. Let $y_1(x) = x^3$ and $y_2(x) = x^2|x|$ for all $x \in \mathbb{R}$. Show that
 - (a) the two functions y_1 and y_2 are linearly independent in any interval (a,b) such that a<0< b,
 - (b) the wronskian $W(y_1, y_2) \equiv 0$ in \mathbb{R} and
 - (c) the two functions y_1 and y_2 can't be solutions of an ordinary differential equation y'' + py' + qy = 0.
- 11. Let y_1 and y_2 be two solutions of $x^2y'' + xy' + (x^2 n^2)y = 0$ in $(0, \infty)$ with $(y_1(0), y_1'(0)) = (1, 0)$ and $(y_2(0), y_2'(0)) = (0, 1)$. Compute $W(y_1, y_2)$.