

Ayudantía 8 Análisis Funcional

Profesor: Michael Karkulik

Ayudante: Sebastián Fuentes

20 de octubre de 2022

Recuerdo 1 (Topología generada por un conjunto de funciones). Sea X conjunto no vacío, $\{(Y_{\alpha}, \mathcal{T}_{\alpha})\}_{\alpha \in \Lambda}$ una colección de espacios topológicos y $\mathcal{F} = \{f_{\alpha}\}_{{\alpha} \in \Lambda}$ una colección de funciones de la forma $f_{\alpha}: X \to Y_{\alpha}$. Se define la topología en X generada por \mathcal{F} como la topología menos fina tal que las funciones de la colección \mathcal{F} son continuas. Denotamos a esta topología por $\sigma(X, \mathcal{F})$.

Problema 1. Sea X conjunto no vacío, $\{(Y_{\alpha}, \mathcal{T}_{\alpha})\}_{{\alpha} \in \Lambda}$ una colección de espacios topológicos y $\mathcal{F} = \{f_{\alpha}\}_{{\alpha} \in \Lambda}$ una colección de funciones de la forma $f_{\alpha}: X \to Y_{\alpha}$. Demuestre que la topología generada por \mathcal{F} existe y que la colección

$$\mathscr{B} = \{ f_{\alpha}^{-1}(\theta_{\alpha}) | \theta_{\alpha} \in \mathcal{T}_{\alpha}, \alpha \in \Lambda \}$$

es una subbase para dicha topología. Considere a continuación $\bar{\ell} \in X'$. Demuestre que la colección

$$\{V_{\overline{\ell}}(x_1,\ldots,x_n;\varepsilon)|x_1,\ldots,x_n\in X,\varepsilon>0\}$$

donde

$$V_{\overline{\ell}}(x_1,\ldots,x_n;\varepsilon) = \{\ell \in X' | |\langle \ell - \overline{\ell}, x_i \rangle_{X',X} | < \varepsilon, \forall i \in \{1,\ldots,n\} \}$$

define una base de vecindades de la topología $\sigma(X',X) := \sigma(X',J(X))$ en torno a $\overline{\ell}$, donde $J:X\to X''$ es la invección canónica.

Problema 2. Sea X conjunto no vacío, $\{(Y_{\alpha}, \mathcal{T}_{\alpha})\}_{{\alpha} \in \Lambda}$ una colección de espacios topológicos y $\mathcal{F} = \{f_{\alpha}\}_{{\alpha} \in \Lambda}, f_{\alpha} :$ $X \to Y_{\alpha}$ funciones de la forma $f_{\alpha}: X \to Y_{\alpha}$. Considere una sucesión $(x_n)_{n \in \mathbb{N}} \subseteq X$. Demuestre que $(x_n) \subseteq X$ converge a $x \in X$ en $\sigma(X, \mathcal{F})$ si y solo si

$$\lim_{n \to \infty} f_{\alpha}(x_n) = f_{\alpha}(x) \qquad \forall \alpha \in \Lambda$$

Utilice lo anterior para demostrar que la convergencia en $\sigma(X',X)$ corresponde a la convergencia puntual.

Problema 3. Sea $(X, \|\cdot\|_X)$ espacio de Banach. Demuestre usando los teoremas de Kakutani y Banach-Alaouglu que $(X, \|\cdot\|_X)$ es reflexivo si y solo si $\sigma(X', X) = \sigma(X', X'')$.

Problema 4. El objetivo de este problema es demostrar que la compacidad en $\sigma(X',X)$ es equivalente al hecho de ser cerrado y acotado. Sea entonces X espacio de Banach y con respecto a la topología $\sigma(X',X)$ pruebe los siguientes hechos:

- 1. Pruebe que $\sigma(X', X)$ es Hausdorff.
- 2. Pruebe que para cada $\lambda > 0$, la función $\varphi_{\lambda} : (X', \sigma(X', X)) \to (X', \sigma(X', X)), \ell \to \lambda \ell$ es un homeomorfismo.
- 3. Demuestre que si $K \subseteq X'$ es débil- \star cerrado y acotado entonces es compacto en $\sigma(X', X)$.
- 4. Demuestre que si K es compacto en $\sigma(X',X)$ entonces es cerrado y acotado. **Indicación:** Considere un cubrimiento por abiertos débiles de la forma $U_{\overline{\ell}}(x) = \{\ell \in X' : |\ell(x) - \overline{\ell}(x)| < 1\}.$ Use la compacidad y concluya por el teorema de Banach-Steinhaus.