倒车雷达用锆钛酸铅压电陶瓷材料的研究

文 理1,刘玉红2

(1 广东捷成科创电子有限公司, 广东 肇庆 526060; 2 肇庆市风华锂电池有限公司, 广东 肇庆 526060)

摘 要:对锆钛酸铅陶瓷材料进行了 Nb_2O_5 、 $SrCO_3$ 微量掺杂改性研究,观察了掺杂后陶瓷样品的显微结构,研究了其相对介电常数、压电常数、机电耦合系数及电容量变化率随测试温度变化的规律。实验结果表明: Nb_2O_5 、 $SrCO_3$ 掺杂后,陶瓷结构致密,介电损耗减少,相对介电常数、压电常数、机电耦合系数明显提高,电容量变化率明显改善。当 Nb_2O_5 、 $SrCO_3$ 的添加量为 0.6 wt% 时,制得的压电陶瓷材料具有最佳的压电性能: ε_r = 2100, D_{33} = 450 pC/N, K_p = 0.81, Δ C/C < 10% ($-55\sim85\%$),可以满足高性能的汽车倒车雷达的应用要求。

关键词: 锆钛酸铅压电陶瓷; 倒车雷达; 掺杂; 压电性能

中图分类号: TM282 文献标志码: A 文章编号: 1001 - 9677(2015)014 - 0085 - 03

Study on Lead Zirconate Titanate Piezoelectric Ceramic Materials for Reversing Radar

 $WEN Li^1$, $LIU Yu - hong^2$

(1 Guangdong JC Electronic Technology Co., Ltd., Guangdong Zhaoqing 526060;

2 Zhaoqing Fenghua Lithium Battery Co., Ltd., Guangdong Zhaoqing 526060, China)

Abstract: The lead zirconate titanate ceramic materials doped with Nb₂O₅ , SrCO₃ were studied. The microstructures of the doped ceramic samples were observed. Relative dielectric constant , piezoelectric constant , electromechanical coupling coefficient and capacitance change rates with test temperature were studied. The experimental results showed that Nb₂O₅ , SrCO₃ doping on ceramic , the ceramic becomes denser , the dielectric loss reduces , the relative dielectric constants , piezoelectric constant , electromechanical coupling coefficient increased evidently , the capacitance change rate improved obviously. When the adding amount of Nb₂O₅ , SrCO₃ was 0. 6wt% , the piezoelectric ceramic material prepared had the best piezoelectric poperties , $\varepsilon_{\rm r} = 2100$, D₃₃ = 450 pC/N , K_p = 0.81 , Δ C/C < 10% (– 55 ~ 85 °C) , can meet the requirements of high performance car reversing radar's.

Key words: lead zirconate titanate piezoelectric ceramics; reversing radar; doping; piezoelectric properties

随着高灵敏度、高稳定性的倒车雷达的出现 $^{[1]}$,要求压电材料有高的介电常数、压电常数、机电耦合系数 K_p ,并且要求能在在 $-55\sim+85$ °C 的条件下,其容量变化率控制在 $\pm10\%$,而传统的锆钛酸铅材料 (PZT) 达不到此要求,因此通过对锆钛酸铅陶瓷体系进行掺杂改性 $^{[2-8]}$ 的研究,从而提高压电材料的压电性能。

文献报道,采用锶掺杂可以改善锆钛酸铅的介电损耗性能^[9],铌掺杂可以改善锆钛酸中的介电常数及老化率减少^[10],作者通过研究铌锶复合掺杂对锆钛酸铅压电陶瓷材料的影响,从而制得了高性能的汽车倒车雷达元件用压电陶瓷材料。

1 实验

1.1 压电陶瓷材料的制备

以高纯度 (纯度 > 99.5%) 的氧化物 Pb_3O_4 、 ZrO_2 、 TiO_2 、 Nb_2O_5 、 $SrCO_3$ 为原料,按照化学计量比进行配料,用湿法球磨混合均匀,样品烘干,在实验炉中 $1050~^{\circ}C$ /2 h 预烧,对烧块

第一作者: 文理 (1975 -),男,工程师,主要从事电子元器件的研究。

二次球磨,烘干;所得粉料制备流延浆料,在全自动流延机上流延制备得到 $20~\mu m$ 厚的均匀薄膜,通过叠压成型制得 $\phi 7.6~m m$ $\times 0.18~m m$ 的生坯,在实验炉 $1200~\mathbb{C}$ /2 h 烧结压电陶瓷片;在陶瓷片两面印银,850 $^{\circ}$ C烧银,然后在场强为 1600~V/m m、 $100~\mathbb{C}$ 空气中极化 20~m in,极化好的样品静置 24~h,待测试用。

1.2 压电性能测试

1.2.1 介电常数的测试

介电常数 ϵ , 的测试方法: 使用常州同惠电子有限公司生产的 TH2618 型电容测试仪,在 1 kHz 下测试待测样品的电容,由公式(1)计算介电常数 ϵ .:

$$\varepsilon_r = 14.4 \times C \times t/\Phi^2 \tag{1}$$

式中: C——电容, PF

t——压电陶瓷试样的厚度,cm

 Φ ——压电陶瓷试样的圆形银电极直径,cm

1.2.2 介电损耗 tanδ

使用常州同惠电子有限公司生产的 TH2618 型电容测试仪

测试,在1KHz下测试待测样品的损耗值。

1.2.3 电容温度变化率 ΔC/C

将样品置于上海龙松检测设备有限公司的 LS – T – 107 – C 高低试验箱试验,当箱内到达设定温度后,保温 0.5 h,使用中国常州同惠电子有限公司生产的 TH2618 型电容测试仪测量在1 kHz 下测试电容量,测试温度点为: 25 ∞ 、 -55 ∞ 、85 ∞ ,通过公式(2)计算得出 -55 ∞ 、85 ∞ 下的容温变化率:

$$\Delta C/C = (C_t - C_{25})/C_{25}$$
 (2)

式中: C_{25} ——25 $^{\circ}$ $^{\circ}$ C 下的电容量,F C_{1} ——温度分别为 t_1 、 t_2 时的电容量,F $(t_1 = -55)$ $^{\circ}$ $^$

1.2.4 机电耦合系数 K_n

采用北京邦联时代电子科技有限公司的 PV90A - 阻抗分析

仪测试样品的谐振频率 $F_{\rm r}$ 、 反谐振频率 $F_{\rm a}$, 通过公式(3) 计算机电耦合系数 $K_{\rm n}$:

$$K_{p} = \sqrt{2.53 \times \frac{F_{a} - F_{r}}{F_{r}}}$$
 (3)

1.2.5 压电常数 D₃₃

采用中科院声学所的 ZJ – 3AN 准静态压电常数 d_{33} 测试仪 对样品进行测试。

1.3 SEM 测试

采用上海 Phennomr pw – 100 – 010 的扫描电镜观察陶瓷晶 粒形貌。

2 结果与讨论

表 1 不同添加量对材料性能的影响

Table 1 Effects of different additive amount on the properties of materials

实验编号	添加剂类别	添加量 x (ω)/%	$oldsymbol{arepsilon}_{ m r}$	K_p	Tanδ/%	D ₃₃ / (pC/N)	ΔC/C (-55 °C) /%	ΔC/C (+85 °C) /%
A0	等摩尔 的 氧 化 铌、 碳酸锶混合物	0	1450	0. 62	4. 5	300	- 17	13
A1		0. 2	1750	0.71	4. 1	320	- 16	14
A2		0. 4	1950	0.78	2. 5	380	-12	10
A3		0.6	2100	0.81	1. 5	450	-6.50	7. 80
A4		0.8	1750	0.71	1. 2	410	-16	17

图 1 不同添加量对材料介电常数 ϵ_r 、机电耦合系数 K_p 的影响 Fig. 1 Effect of additive content on the dielectric constant and the electromechanical coupling coefficient of the materials

图 2 不同添加量对材料介电损耗 tanδ、压电常数 D₃₃的影响 Fig. 2 Effect of additive content on the dielectricloss and the Piezoelectric constant of the materials

从表 1 和图 1 中可以看出,锶铌复合掺杂可以改善材料的压电性能,但掺杂量太大将会引起性能下降。当碳酸锶、氧化铌的添加量 $x \le 0.6\%$ 时,随着添加量的增加,其介电常数 ϵ_r 、机电耦合系数 K_a 是呈现增加的趋势,当添加量 x 为 0.6% 时,

其介电常数 ε_r 及机电耦合系数 K_p 均处于最大值,其介电常数 ε_r 可达到 2100,机电耦合系数 K_p 可达到 0.81; 随着添加量的不断增加,其介电常数 ε_r 及机电耦合系数 K_g 是呈下降的趋势。

从图 2 可以看出,随着碳酸锶、氧化铌的添加量的增加, 其损耗值 $tan\delta$ 是呈下降的趋势;在添加量 $x \le 0.6\%$ 时,随着添加量的增加,其 D_{33} 呈现增加的趋势,当添加量 x 为 0.6% 时, 其 D_{33} 处于最大值,可达到 450~pC/N,随着添加量的不断增加, 其 D_{33} 又开始下降。

图 3 不同添加量的电容变化率随温度变化曲线

Fig. 3 Capacitance change rates of ceramic contain different amount additives with temperature

从表 1 和图 3 可以看出,锶铌复合掺杂可以改变材料的容温特性,当碳酸锶、氧化铌添加量 $x \le 0.6\%$ 时,随着其添加量的增加,其电容温度变化率是变好的,可以将其容量温度变化率向小变化率靠近,当添加量 x 为 0.6% 时,其电容温度变化率最好, -55 $^{\circ}$ 及 85 $^{\circ}$ 的容量变化率为 -6.5% 及 7.3%,其绝对值均达到 $\le 10\%$,随着其添加量的不断增加,其温度系数又向变差的方向发展。

从图 4 中可以看出,随着碳酸锶、氧化铌添加量 x 的增加, 其样品的平均晶粒会适当增大,当添加量为 0.6wt% 时,其样 品的平均晶粒大约在 $5~\mu m$,并且晶粒很致密,气孔很少,因此

其样品的压电性能(介电常数、机电耦合系数 K_{p} 、 D_{33} 、介电损耗)都处于最佳的参数,随着添加量的增加,其晶粒已过分长大,性能开始下降。

图 4 不同添加量的样品表面晶粒 SEM 图 Fig. 4 SEM of samples with different additive content

通过 ${\rm Nb}^{5+}$ 、 ${\rm Sr}^{2+}$ 的引入对纯的 PZT 压电陶瓷进行复合掺杂,获得锶铌掺杂改性的压电陶瓷。通常选取活性更高、稳定性更好的碳酸锶作为添加物, ${\rm Sr}^{2+}$ 取代部分 ${\rm A}$ 位的 ${\rm Pb}^{2+}$ 、铌 (${\rm Nb}^{5+}$),金属离子进入固溶体之后,因其离子半径的大小与 ${\rm B}$ 位 ${\rm Ti}^{4+}$ 的离子半径相近,通常会占据 ${\rm B}$ 位 + 的位置,通过 ${\rm A}$ ${\rm B}$ 位的置换,其晶格产生畸变,从而有利于畴壁运动,在较小的电场或机械力应力作用下就能进行畴壁运动,因此介电常数、 ${\rm K}_{\rm p}$ 、 ${\rm D}_{33}$ 、介电损耗等性能会提高,并且老化性好,容量温度变化率小,适量的加入可保证材料的压电性能的情况下,又具有良好的容量温度特性。

3 结 论

铌、锶复合掺杂可使样品介电常数、机电耦合系数 K_p 、 D_{33} 、容量温度系数有较明显的改善,当添加量为 0.6% 时,可得到致密的压电陶瓷材料,其压电性能为: $ε_r=2100$, $D_{33}=450$ pC/N, $K_p=0.81$ 及 ΔC/C < 10%($-55\sim85$ ℃),可以满足高性能的汽车倒车雷达的应用要求。

参考文献

- [1] 董子和 李永辉. 超声波测距系统的建立及其在汽车防撞系统的应用. 汽车电器 ,1997(1):1-3.
- [2] Park J H ,Park J Park J G. Piezoelectric properties in PMN PT relaxor ferroelectrics with MnO₂ addition [J]. J Eur Ceram Soc 2001 21 (5): 1383
- [3] Zhang R F ,Zhang H P ,Ma J. Effect of Y and Nb codoping on the microstructure and electrical properties of lead zirconate titanate ceramics [J]. Solid State tonics 2004 ,166:214.
- [4] Tanasoiu C ,Dimitriu E ,Miclea C. d. Effect of Nb , Li doping on structure and piezoelectric properties of PZT type ceramics [J]. Eur Ceram Soc ,1999 (9):1187.
- [5] Jin B M ,Lee D S ,Jkwon J H. The additices of improving piezoelectric and ferroctric properties of 0. 2Pb (Mg_{1/3} Nb_{2/3}) O₃ 0. 8 [PbZrO₃ PbTiO₃] ceramics [J]. CeramInter 2004 ,J:1.
- [6] Long J W ,Chen H Y. Effects of compositions and Nb doping on microstucture and piezoelectric properties of PMS - PZ - PT system [J]. Materials Science and Engineering 2003 ,B99:445.
- [7] 雷淑梅, 匡同春, 自晓军. 压电陶瓷材料的研究现状与发展趋势 [J]. 佛山陶瓷 2005(3):36-38.
- [8] 鄂世举 吴博达 杨志刚. 压电式微小驱动器的发展及应用[J]. 压电与声光 2002 24(6):447-451.
- [9] 邵起越 董岩 方峰 等. Sr 掺杂锆钛酸铅(PSZT)薄膜的电可调性 研究[J]. 电子元件与材料 2008(3):51-54.
- [10] 晏伯武 熊皓. 压电变压器用的锆钛酸铅压电陶瓷材料的研究[J]. 陶瓷学报 2007(2):152-155.

(上接第81页)

- [2] 冯嘉 李秋义. 木塑建筑模板力学性能与经济性分析[J]. 低温建筑技术 2010(9):27-30.
- [3] 张友新. 粉煤灰在 PVC 木塑结皮发泡建筑模板中的应用研究 [J]. 橡塑技术与装备 2013 39(5):19-22.
- [5] 张友新. 活化粉煤灰在 PVC 建筑模板中的应用 [J]. 聚氯乙烯, 2011 39(11):30-31.
- [6] 李华. 粉煤灰在填充塑料中的应用研究[J]. 粉煤灰综合利用 2000 (1):56-57.