

On the Dualization of Operator-Valued Kernel Machines

Pierre Laforgue*, Alex Lambert*, Luc Brogat-Motte, Florence d'Alché-Buc

* Equal contribution LTCI, Télécom Paris, Institut Polytechnique de Paris, France

Outline

Motivations

Operator-Valued Kernel Machines

Dualizing Operator-Valued Kernel Machines

Experiments

Function to Function Regression [Kadri et al., 2016]

$$\underset{h \in \mathcal{H_K}}{\operatorname{argmin}} \quad \frac{1}{2n} \sum_{i=1}^{n} \|y_i - h(x_i)\|_{L^2}^2 + \frac{\Lambda}{2} \|h\|^2$$

Classical Use of Kernel Methods

$$\begin{split} \min_{h \in \mathsf{RKHS}} \quad & \frac{1}{n} \sum_{i=1}^n \ell_{\mathsf{hinge}} \Big(h(\mathsf{x}_i), \mathsf{y}_i \Big) + \frac{\Lambda}{2} \|h\|^2, \\ \min_{h \in \mathsf{RKHS}} \quad & \frac{1}{n} \sum_{i=1}^n \ell_{\mathsf{hinge}} \Big(\langle h, \phi(\mathsf{x}_i) \rangle, \mathsf{y}_i \Big) + \frac{\Lambda}{2} \|h\|^2. \end{split}$$

Metabolite Identification [Brouard et al., 2016]

$$\hat{h} = \underset{h \in \mathcal{H}_{\mathcal{K}}}{\text{argmin}} \ \frac{1}{2n} \sum_{i=1}^{n} \|\phi(y_i) - h(x_i)\|_{\mathcal{F}_{\mathcal{Y}}}^2 + \frac{\Lambda}{2} \|h\|_{\mathcal{H}_{\mathcal{K}}}^2,$$

$$g(x) = \underset{y \in \mathcal{Y}}{\operatorname{argmin}} \ \left\| \phi(y) - \hat{h}(x) \right\|_{\mathcal{F}_{\mathcal{Y}}}.$$

Molecule Autoencoding [Laforgue et al., 2019a]

$$\frac{1}{2n} \sum_{i=1}^{n} \|\phi(x_i) - f_2 \circ f_1(\phi(x_i))\|_{\mathcal{F}_{\mathcal{X}}}^2 + \Lambda \ \mathsf{Reg}(f_1, f_2).$$

Outline

Motivations

Operator-Valued Kernel Machines

Dualizing Operator-Valued Kernel Machines

Experiments

Operator-Valued Kernels and vv-RKHSs

Scalar Kernels

- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$
- k(x,x') = k(x',x)
- $\sum_{i,j} \alpha_i k(x_i, x_j) \alpha_j \geq 0$
- RKHS $\mathcal{H}_k \subset \mathcal{F}(\mathcal{X}, \mathbb{R})$ $\mathcal{H}_k = \overline{\operatorname{Span} \{k(\cdot, x) : x \in \mathcal{X}\}}$
- $\forall h \in \mathcal{H}_k, \ h(x) = \langle h, k(\cdot, x) \rangle$

Operator-Valued Kernels and vv-RKHSs

Scalar Kernels

- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$
- $\bullet \quad k(x,x')=k(x',x)$
- $\sum_{i,j} \alpha_i k(x_i, x_j) \alpha_j \geq 0$
- RKHS $\mathcal{H}_k \subset \mathcal{F}(\mathcal{X}, \mathbb{R})$ $\mathcal{H}_k = \overline{\operatorname{Span} \left\{ k(\cdot, x) : x \in \mathcal{X} \right\}}$
- $\forall h \in \mathcal{H}_k, \ h(x) = \langle h, k(\cdot, x) \rangle$

Operator-Valued Kernels

- $\mathcal{K} \colon \mathcal{X} \times \mathcal{X} \to \mathcal{L}(\mathcal{Y})$
- $\mathcal{K}(x,x') = \mathcal{K}(x',x)^*$
- $\sum_{i,j} \langle \alpha_i, \mathcal{K}(x_i, x_j) \alpha_j \rangle_{\mathcal{Y}} \geq 0$
- vv-RKHS $\mathcal{H}_{\mathcal{K}} \subset \mathcal{F}(\mathcal{X}, \mathcal{Y})$ $\mathcal{H}_{\mathcal{K}} = \overline{\operatorname{Span} \left\{ \mathcal{K}(\cdot, x) y : x, y \in \mathcal{X} \times \mathcal{Y} \right\}}$
- $\forall h \in \mathcal{H}_{\mathcal{K}}, \ \langle h(x), y \rangle = \langle h, \mathcal{K}(\cdot, x)y \rangle$
- Decomposable: $\mathcal{K}(x, x') = k(x, x')A$

The Representer Theorem

$$\hat{h} \in \underset{h \in \mathcal{H}_k}{\operatorname{argmin}} V\Big(\{h(x_i)\}_{i \leq n}, \|h\|\Big),$$

with V increasing w.r.t. its last argument, then $\exists \hat{\alpha} \in \mathbb{R}^n$ s.t.

$$\hat{h} = \sum_{i=1}^{n} k(\cdot, x_i) \hat{\alpha}_i$$

The Representer Theorem

$$\hat{h} \in \underset{h \in \mathcal{H}_k}{\operatorname{argmin}} V\Big(\{h(x_i)\}_{i \leq n}, \|h\|\Big),$$

with V increasing w.r.t. its last argument, then $\exists \hat{lpha} \in \mathbb{R}^n$ s.t.

$$\hat{h} = \sum_{i=1}^{n} k(\cdot, x_i) \hat{\alpha}_i$$

Proof.
$$E = \operatorname{Span}(k(\cdot, x_i), i \leq n), \ \hat{h} = \overline{h} + h^{\perp} \text{ with } \overline{h}, h^{\perp} \in E \times E^{\perp}.$$

$$\hat{h}(x_i) = \langle \overline{h} + h^{\perp}, k(\cdot, x_i) \rangle = \overline{h}(x_i) \text{ and } \|\hat{h}\| \geq \|\overline{h}\|, \text{ so } h^{\perp} = 0.$$

C

The Representer Theorem

$$\hat{h} \in \underset{h \in \mathcal{H}_k}{\operatorname{argmin}} V\Big(\{h(x_i)\}_{i \leq n}, \|h\|\Big),$$

with V increasing w.r.t. its last argument, then $\exists \hat{lpha} \in \mathbb{R}^n$ s.t.

$$\hat{h} = \sum_{i=1}^{n} k(\cdot, x_i) \hat{\alpha}_i$$

Proof.
$$E = \operatorname{Span}(k(\cdot, x_i), i \leq n), \ \hat{h} = \overline{h} + h^{\perp} \text{ with } \overline{h}, h^{\perp} \in E \times E^{\perp}.$$

$$\hat{h}(x_i) = \langle \overline{h} + h^{\perp}, k(\cdot, x_i) \rangle = \overline{h}(x_i) \text{ and } \|\hat{h}\| \geq \|\overline{h}\|, \text{ so } h^{\perp} = 0.$$

OVK version:
$$\exists (\hat{\alpha}_i)_{i \leq n} \in \mathcal{Y}^n, \qquad \hat{h} = \sum_{i=1}^n \mathcal{K}(\cdot, x_i) \hat{\alpha}_i$$

OVK Ridge Regression [Micchelli and Pontil, 2005]

$$\min_{f \in \mathcal{H}_{\mathcal{K}}} \quad \frac{1}{2n} \sum_{i=1}^{n} \|y_i - h(x_i)\|_{\mathcal{Y}}^2 + \frac{\Lambda}{2} \|h\|_{\mathcal{H}_{\mathcal{K}}}^2$$

OVK Ridge Regression [Micchelli and Pontil, 2005]

$$\min_{f \in \mathcal{H}_{\mathcal{K}}} \quad \frac{1}{2n} \sum_{i=1}^{n} \|y_i - h(x_i)\|_{\mathcal{Y}}^2 + \frac{\Lambda}{2} \|h\|_{\mathcal{H}_{\mathcal{K}}}^2$$

The Representer Theorem applies: $h = \sum_i \mathcal{K}(\cdot, x_i)\alpha_i$.

Plugging and differentiating w.r.t. the $(\alpha_i)_{i \leq n}$

$$\begin{cases} \sum_{i=1}^{n} \left(\mathcal{K}(x_1, x_i) + \Lambda n \delta_{1i} \mathbf{I}_{\mathcal{Y}} \right) \hat{\alpha}_i = y_1, \\ & \cdots \\ \sum_{i=1}^{n} \left(\mathcal{K}(x_n, x_i) + \Lambda n \delta_{ni} \mathbf{I}_{\mathcal{Y}} \right) \hat{\alpha}_i = y_n. \end{cases}$$

OVK Ridge Regression [Micchelli and Pontil, 2005]

$$\min_{f \in \mathcal{H}_{\mathcal{K}}} \quad \frac{1}{2n} \sum_{i=1}^{n} \|y_i - h(x_i)\|_{\mathcal{Y}}^2 + \frac{\Lambda}{2} \|h\|_{\mathcal{H}_{\mathcal{K}}}^2$$

The Representer Theorem applies: $h = \sum_{i} \mathcal{K}(\cdot, x_i) \alpha_i$.

Plugging and differentiating w.r.t. the $(\alpha_i)_{i \leq n}$

$$\begin{cases} \sum_{i=1}^{n} \left(\mathcal{K}(x_{1}, x_{i}) + \Lambda n \delta_{1i} \mathbf{I}_{\mathcal{Y}} \right) \hat{\alpha}_{i} = y_{1}, \\ \dots \\ \sum_{i=1}^{n} \left(\mathcal{K}(x_{n}, x_{i}) + \Lambda n \delta_{ni} \mathbf{I}_{\mathcal{Y}} \right) \hat{\alpha}_{i} = y_{n}. \end{cases}$$

$$\mathcal{K}(x,x') = k(x,x')\mathbf{I}_{\mathcal{Y}}$$
, then $\hat{\alpha}_i = \sum_i M_{ij}y_j$ with $M = (K + \Lambda n\mathbf{I}_n)^{-1}$

Outline

Motivations

Operator-Valued Kernel Machines

Dualizing Operator-Valued Kernel Machines

Experiments

The OVK Dual Problem [Sangnier et al., 2017]

The solution to

$$\min_{h \in \mathcal{H}_{\mathcal{K}}} \quad \frac{1}{n} \sum_{i=1}^{n} \ell_i(h(x_i)) + \frac{\Lambda}{2} ||h||_{\mathcal{H}_{\mathcal{K}}}^2$$

is given by

$$\hat{h} = \frac{1}{\Lambda n} \sum_{i=1}^{n} \mathcal{K}(\cdot, x_i) \hat{\alpha}_i,$$

with $(\hat{\alpha}_i)_{i=1}^n \in \mathcal{Y}^n$ the solutions to the **dual problem**

$$\min_{(\alpha_i)_{i=1}^n \in \mathcal{Y}^n} \quad \sum_{i=1}^n \ell_i^*(-\alpha_i) + \frac{1}{2\Lambda n} \sum_{i,j=1}^n \langle \alpha_i, \mathcal{K}(x_i, x_j) \alpha_j \rangle_{\mathcal{Y}},$$

where f^* : $\alpha \in \mathcal{Y} \mapsto \sup_{y \in \mathcal{Y}} \langle \alpha, y \rangle_{\mathcal{Y}} - f(y)$ denotes the Fenchel-Legendre transform of a function $f : \mathcal{Y} \to \mathbb{R}$.

The ϵ -insensitive Losses

Let $\ell: \mathcal{Y} \to \mathbb{R}$ be a convex loss with unique minimum at 0, and $\epsilon > 0$. The ϵ -insensitive version of ℓ , denoted ℓ_{ϵ} , is defined by:

$$\forall y \in \mathcal{Y}, \quad \ell_{\epsilon}(y) = \begin{cases} \ell(0) & \text{if } ||y||_{\mathcal{Y}} \leq \epsilon \\ \inf_{\|d\|_{\mathcal{Y}} \leq 1} \ell(y - \epsilon d) & \text{otherwise} \end{cases}$$

Infimal Convolution and Fenchel-Legendre Transforms

$$\left(\frac{1}{2}\|\cdot\|^2\right)_{\epsilon} = \frac{1}{2}\|\cdot\|^2 \square \chi_{\mathcal{B}_{\epsilon}},$$

with \square the infimal-convolution operator [Bauschke et al., 2011] such that $(f \square g)(x) = \inf_y f(y) + g(x - y)$,

and χ_S the indicator function of S: $\chi_S(x) = \begin{cases} 0 & \text{if } x \in S \\ +\infty & \text{otherwise} \end{cases}$.

$$\left(\frac{1}{2}\|\cdot\|^2\right)_{\epsilon}^{\star} = \left(\frac{1}{2}\|\cdot\|^2 \square \chi_{\mathcal{B}_{\epsilon}}\right)^{\star} = \left(\frac{1}{2}\|\cdot\|^2\right)^{\star} + \chi_{\mathcal{B}_{\epsilon}}^{\star} = \frac{1}{2}\|\cdot\|^2 + \epsilon\|\cdot\|.$$

ϵ -Ridge Dual Problem (1/2)

The solution to

$$\min_{h \in \mathcal{H}_{\mathcal{K}}} \quad \frac{1}{n} \sum_{i=1}^{n} \|y_i - h(x_i)\|_{\epsilon}^2 + \frac{\Lambda}{2} \|h\|_{\mathcal{H}_{\mathcal{K}}}^2$$

is given by

$$\hat{h} = \frac{1}{\Lambda n} \sum_{i=1}^{n} \mathcal{K}(\cdot, x_i) \hat{\alpha}_i,$$

with $(\hat{\alpha}_i)_{i=1}^n \in \mathcal{Y}^n$ minimizing

$$\frac{1}{2\Lambda n} \sum_{i,j=1}^{n} \left\langle \alpha_{i}, \left(\mathcal{K}(x_{i}, x_{j}) + \Lambda n I_{\mathcal{Y}}\right) \alpha_{j} \right\rangle_{\mathcal{Y}} + \epsilon \sum_{i=1}^{n} \|\alpha_{i}\|_{\mathcal{Y}} - \sum_{i=1}^{n} \left\langle \alpha_{i}, y_{i} \right\rangle_{\mathcal{Y}}$$

ϵ -Ridge Dual Problem (2/2)

$$\frac{1}{2 \Lambda n} \sum_{i,j=1}^{n} \left\langle \alpha_{i}, \left(\mathcal{K}(x_{i}, x_{j}) + \Lambda n \mathbf{I}_{\mathcal{Y}} \right) \alpha_{j} \right\rangle_{\mathcal{Y}} + \epsilon \sum_{i=1}^{n} \|\alpha_{i}\|_{\mathcal{Y}} - \sum_{i=1}^{n} \left\langle \alpha_{i}, y_{i} \right\rangle_{\mathcal{Y}}$$

ϵ -Ridge Dual Problem (2/2)

$$\frac{1}{2\Lambda n} \sum_{i,j=1}^{n} \left\langle \alpha_{i}, \left(\mathcal{K}(x_{i}, x_{j}) + \Lambda n \mathbf{I}_{\mathcal{Y}} \right) \alpha_{j} \right\rangle_{\mathcal{Y}} + \epsilon \sum_{i=1}^{n} \|\alpha_{i}\|_{\mathcal{Y}} - \sum_{i=1}^{n} \langle \alpha_{i}, y_{i} \rangle_{\mathcal{Y}}$$

$$Y = \mathsf{Span}(y_i, i \leq n), \qquad \forall i \quad \alpha_i = \alpha_i^Y + \alpha_i^\perp \in Y \times Y^\perp$$

ϵ -Ridge Dual Problem (2/2)

$$\frac{1}{2\Lambda n} \sum_{i,j=1}^{n} \left\langle \alpha_{i}, \left(\mathcal{K}(x_{i}, x_{j}) + \Lambda n \mathbf{I}_{\mathcal{Y}}\right) \alpha_{j} \right\rangle_{\mathcal{Y}} + \epsilon \sum_{i=1}^{n} \|\alpha_{i}\|_{\mathcal{Y}} - \sum_{i=1}^{n} \left\langle \alpha_{i}, y_{i} \right\rangle_{\mathcal{Y}}$$

$$Y = \mathsf{Span}(y_i, i \leq n), \qquad \forall i \quad \alpha_i = \alpha_i^Y + \alpha_i^\perp \in Y \times Y^\perp$$

If for all $i, j \leq n$, Y is an invariant subspace of $\mathcal{K}(x_i, x_j)$, then $\hat{\alpha}_i \in Y$ for all $i \leq n$.

Reparametrization $\hat{lpha}_i = \sum_j \omega_{ij} y_j o \mathsf{dual}$ problem in Ω computable.

The Double Representer Theorem [Laforgue et al., 2019b]

- $\forall i \leq n, \ \forall (\alpha^{Y}, \alpha^{\perp}) \in Y \times Y^{\perp}, \quad \ell_{i}^{\star}(\alpha^{Y}) \leq \ell_{i}^{\star}(\alpha^{Y} + \alpha^{\perp}).$ $\forall i \leq n, \exists L_{i} : \mathbb{R}^{n+n^{2}} \to \mathbb{R}, \ \forall \ \boldsymbol{\omega} \in \mathbb{R}^{n}, \quad \ell_{i}^{\star}(\sum_{j} \omega_{j} \ y_{j}) = L_{i}(\boldsymbol{\omega}, K^{Y}).$
- $\forall i, j \leq n$, Y is an invariant subspace of $\mathcal{K}(x_i, x_j)$.

Then, $\hat{h} = \operatorname{argmin} \frac{1}{n} \sum_{i} \ell(h(x_i), y_i) + \frac{\Lambda}{2} ||h||_{\mathcal{H}_{\kappa}}^2$ is given by

$$\hat{h} = \frac{1}{\Lambda n} \sum_{i,j=1}^{n} \mathcal{K}(\cdot, x_i) \, \hat{\omega}_{ij} \, y_j,$$

with $\hat{\Omega} = [\hat{\omega}_{ij}] \in \mathbb{R}^{n \times n}$ the solution to

$$\min_{\Omega \in \mathbb{R}^{n \times n}} \ \sum_{i=1}^{n} L_i\left(\Omega_{i:}, K^Y\right) + \frac{1}{2 \Lambda n} \mathbf{Tr}\left(\tilde{M}^\top (\Omega \otimes \Omega)\right),$$

with \tilde{M} the $n^2 \times n^2$ matrix writing of M s.t. $M_{ijkl} = \langle y_k, \mathcal{K}(x_i, x_j) y_l \rangle_{\mathcal{Y}}$.

The Double Representer Theorem (cont.)

If K further satisfies $K(x,x') = \sum_t k_t(x,x')A_t$, then tensor M simplifies to $M_{ijkl} = \sum_t [K_t^X]_{ij} [K_t^Y]_{kl}$ and the problem rewrites

$$\min_{\Omega \in \mathbb{R}^{n \times n}} \sum_{i=1}^{n} L_{i} \left(\Omega_{i:}, K^{Y} \right) + \frac{1}{2 \Lambda n} \sum_{t=1}^{T} \mathsf{Tr} \left(K_{t}^{X} \Omega K_{t}^{Y} \Omega^{\top} \right).$$

Rmk. Only need the n^4 tensor $\langle y_k, \mathcal{K}(x_i, x_j) y_l \rangle_{\mathcal{Y}}$ to learn OVKMs. Simplifies to 2 n^2 matrices $K_{ii}^X K_{kl}^Y$ if \mathcal{K} is decomposable.

Admissible Losses

- $\ell_i(y) = f(\langle y, z_i \rangle), z_i \in Y \text{ and } f : \mathbb{R} \to \mathbb{R} \text{ convex. (MMR)}$
- $\ell(y) = f(||y||)$, $f : \mathbb{R}_+ \to \mathbb{R}$ cvx inc. s.t. $t \mapsto \frac{f'(t)}{t}$ is cont.
- $\forall \lambda > 0$, with \mathcal{B}_{λ} the centered ball of radius λ ,
 - $\bullet \ \ell(y) = \lambda \|y\|, \qquad \bullet \ \ell(y) = \lambda \|y\| \log(\|y\|),$
 - $\bullet \ \ell(y) = \chi_{\mathcal{B}_{\lambda}}(y), \qquad \bullet \ \ell(y) = \lambda(\exp(\|y\|) 1).$
- $\ell_i(y) = f(y y_i)$ for f above.
- Any infimal convolution of previous functions

Back to *ϵ*-Ridge Regression

If $\mathcal{K}=k\mathbf{I}_{\mathcal{Y}}$, the solution to the ϵ -Ridge regression problem

$$\min_{h \in \mathcal{H}_{\mathcal{K}}} \quad \frac{1}{2n} \sum_{i=1}^{n} \max \left(\|y_i - h(x_i)\|_{\mathcal{Y}} - \epsilon, 0 \right)^2 + \frac{\Lambda}{2} \|h\|_{\mathcal{H}_{\mathcal{K}}}^2,$$

is given by the *Double Representer Theorem*, with $\hat{\Omega}=\hat{W}V^{-1}$, and \hat{W} the solution to the **Multi-Task Lasso problem**

$$\boxed{\min_{W \in \mathbb{R}^{n \times n}} \ \frac{1}{2} \|AW - B\|_{\mathsf{Fro}}^2 + \epsilon \|W\|_{2,1},}$$

with V, A, B s.t. $K^Y = VV^T$, $\frac{K^X}{\Lambda n} + \mathbf{I}_n = A^T A$, and $V = A^T B$.

The Huber Loss

For $\kappa > 0$, the Huber loss is $\ell_{H,\kappa}(y) = \left(\kappa \|\cdot\|_{\mathcal{Y}} \square \frac{1}{2} \|\cdot\|_{\mathcal{Y}}^2\right)(y)$, or:

$$\forall y \in \mathcal{Y}, \quad \ell_{H,\kappa}(y) = \begin{cases} \frac{1}{2} \|y\|_{\mathcal{Y}}^2 & \text{if } \|y\|_{\mathcal{Y}} \leq \kappa \\ \kappa \left(\|y\|_{\mathcal{Y}} - \frac{\kappa}{2} \right) & \text{otherwise} \end{cases}$$

The Huber Dual

If $\mathcal{K} = k \mathbf{I}_{\mathcal{Y}}$, the solution to the Huber regression problem

$$\min_{h \in \mathcal{H}_{\mathcal{K}}} \ \frac{1}{n} \sum_{i=1}^{n} \ell_{H,\kappa}(y_i - h(x_i)) + \frac{\Lambda}{2} \|h\|_{\mathcal{H}_{\mathcal{K}}}^2,$$

is given by the *Double Representer Theorem*, with $\hat{\Omega} = \hat{W}V^{-1}$, and \hat{W} the solution to the **constrained least squares problem**

$$\begin{aligned} \min_{W \in \mathbb{R}^{n \times n}} & & \frac{1}{2} \left\| AW - B \right\|_{\mathsf{Fro}}^2, \\ \text{s.t.} & & \|W\|_{2,\infty} \leq \kappa, \end{aligned}$$

with V, A, and B as in the ϵ -insensitive Regression.

Outline

Motivations

Operator-Valued Kernel Machines

Dualizing Operator-Valued Kernel Machines

Experiments

Surrogate Approaches

Figure 1: Structured Prediction (Output Kernel Regression)

Figure 2: Representation Learning (2-Layer Kernel Autoencoder)

Figure 3: MSEs w.r.t. ϵ .

Table 1: Huber test accuracies (%) with respect to κ

κ	Top 1	Top 10	Top 20	$\ W\ _{2,1}$
0.5	38.0	83.5	89.6	2789.6
1.0	38.9	83.8	89.9	5572.4
1.5	38.6	83.7	89.8	8231.9

Outline

Motivations

Operator-Valued Kernel Machines

Dualizing Operator-Valued Kernel Machines

Experiments

- ullet OVK and vv-RKHSs tailored to infinite dimensional outputs y
- RT: expansion with no information on the coefficients
- Duality: coefficients solutions to the (infinite) dual problem

- OVK and vv-RKHSs tailored to infinite dimensional outputs y
- RT: expansion with no information on the coefficients
- Duality: coefficients solutions to the (infinite) dual problem
- Double RT: coefficients linear combinations of the outputs
- Allows to cope with many losses $(\epsilon, Huber)$ and kernels
- Empirical improvements on surrogate approaches

- OVK and vv-RKHSs tailored to infinite dimensional outputs y
- RT: expansion with no information on the coefficients
- Duality: coefficients solutions to the (infinite) dual problem
- Double RT: coefficients linear combinations of the outputs
- ullet Allows to cope with many losses (ϵ , Huber) and kernels
- Empirical improvements on surrogate approaches
- Integral Losses: $\ell(y, f(x)) = \int_{\Theta} \ell_{\theta}(y(\theta), f(x)(\theta)) d\mu(\theta)$
- Preprint available at: arxiv.org/1910.04621

References I

Bauschke, H. H., Combettes, P. L., et al. (2011).

Convex analysis and monotone operator theory in Hilbert spaces, volume 408.

Springer.

Brouard, C., Szafranski, M., and d'Alché-Buc, F. (2016). Input output kernel regression: Supervised and semi-supervised structured output prediction with operator-valued kernel.

Journal of Machine Learning Research, 17:176:1–176:48.

References II

Kadri, H., Duflos, E., Preux, P., Canu, S., Rakotomamonjy, A., and Audiffren, J. (2016).

Operator-valued kernels for learning from functional response data.

Journal of Machine Learning Research, 17:20:1-20:54.

Laforgue, P., Clémençon, S., and d'Alché-Buc, F. (2019a). **Autoencoding any data through kernel autoencoders.** In *Artificial Intelligence and Statistics*, pages 1061–1069.

Laforgue, P., Lambert, A., Motte, L., and d'Alché Buc, F. (2019b).

On the dualization of operator-valued kernel machines. arXiv preprint arXiv:1910.04621.

References III

Micchelli, C. A. and Pontil, M. (2005).

On learning vector-valued functions.

Neural computation, 17(1):177–204.

Sangnier, M., Fercoq, O., and d'Alché-Buc, F. (2017).

Data sparse nonparametric regression with ϵ -insensitive losses.

In Asian Conference on Machine Learning, pages 192-207.