WHAT IS CLAIMED IS:

1	1. A method for using a personal computer memory card international
2	association (PCMCIA) controller to communicate with an Integrated Drive
3	Electronics (IDE) drive comprising:
4	performing a transfer between the static random access memory (SRAM)
5	controller and the IDE drive using PCMCIA interface signals to
6	communicate with the IDE drive and a general purpose input/output
7	signal to communicate with an interrupt request of the IDE drive.
1	2. The method of claim 1 further comprising:
2	generating a Direct Memory Access (DMA) acknowledge signal for the IDE
3	drive based upon a DMA request signal from the IDE drive and a chip
4	enable signal.
1	3. The method of claim 2 wherein:
2	when the DMA request signal is active, then the DMA acknowledge signal for
3	the IDE drive is active.
1	4. The method of claim 2 wherein:
2	when the DMA request signal is inactive and the chip enable signal is active,
3	then the DMA acknowledge signal for the IDE drive is active.
1	5. The method of claim 2 wherein:
2	when the DMA request signal is inactive and the chip enable signal is inactive,
3	then the DMA acknowledge signal for the IDE drive does not change
4	state.
1	6. A method for using a personal computer memory card international
2	association (PCMCIA) controller to communicate with an Integrated Drive
3	Electronics (IDE) drive comprising:
4	performing a transfer between the PCMCIA controller and the IDE drive using
5	PCMCIA interface signals to communicate with the IDE drive;

6	generating a DMA acknowledge signal based upon a DMA request signal and
7	a chip enable signal.
1	7. The method of claim 6 wherein:
2	when the DMA request signal is active, then the DMA acknowledge signal for
3	the IDE drive is active.
1	8. The method of claim 6 wherein:
2	when the DMA request signal is inactive and the chip enable signal is active,
3	then the DMA acknowledge signal for the IDE drive is active.
1	9. The method of claim 6 wherein:
2	when the DMA request signal is inactive and the chip enable signal is inactive
3	then the DMA acknowledge signal for the IDE drive does not change
4	state.
1	10. An apparatus for communicating with an Integrated Drive Electronics
2	(IDE) drive comprising:
3	a personal computer memory card international association (PCMCIA)
4	controller, the PCMCIA controller interfacing with signals conforming
5	to a PCMCIA interface, the PCMCIA controller performing a transfer
6	between the PCMCIA controller and an IDE drive using the PCMCIA
7	interface signals to communicate with the IDE drive; and,
8	a DMA acknowledge control circuit, the DMA acknowledge control circuit
9	generating a DMA acknowledge signal based upon a DMA request
10	signal and a chip enable signal.
1	11. The apparatus of claim 10 wherein:
2	when the DMA request signal is active, then DMA acknowledge control
3	circuit sets the DMA acknowledge signal for the IDE drive active.

1	12. The apparatus of claim 10 wherein:
2	when the DMA request signal is inactive and the chip enable signal is active,
3	the DMA acknowledge control circuit sets the DMA acknowledge
4	signal for the IDE drive active.
1	13. The apparatus of claim 10 wherein:
2	when the DMA request signal is inactive and the chip enable signal is inactive
3	the DMA acknowledge control circuit does not change the state of the
4	DMA acknowledge signal for the IDE drive.