Uvod u znanost o podacima 2. predavanje

Ak. god. 2021./2022.

Sadržaj

- Rukovanje podacima koraci procesa
- Problemi skupova podataka
- Inženjerstvo značajki
- Zaključak

Rukovanje podacima – koraci procesa

- Engl. data handling
- Općeniti naziv za sve operacije nad podacima koji slijede nakon preuzimanja izvornih podataka s mjesta pohrane sve do početka analize statističkim postupcima i postupcima strojnog učenja
- Alternativni nazivi (suptilne razlike):
 - Priprema podataka (engl. data preparation) podaci se pripremaju za neku vrstu analize
 - Organiziranje podataka (engl. data wrangling) doslovno: svađanje između podataka
 - **Upotpunjavanje podataka** (engl. *data munging*) povijesno, "mung" je pojam za progresivnu degradaciju skupa podataka *backronym* od "mash until no good"
- https://www.talend.com/resources/what-is-data-preparation/

- Korištenje sirovih podataka u daljnjoj statističkoj analizi bez razmišljanja o njima recept za katastrofu!
 - Može onemogućiti ispravno postavljanje cilja analize
 - Može srušiti algoritme strojnog učenja ili davati nevjerodostojne statistike
 - Može dovesti do neispravnih zaključaka
- Na rukovanje podacima odlazi 50% 80% ukupnog vremenog (i novca) tijekom projekta s ciljem otkrivanja znanja u podacima
- Rukovanje podacima je, zajedno s pohranom podataka, temeljno područje kojim se bavi podatkovni inženjer
- Cilj rukovanja podacima: pripremiti podatke da postanu pouzdani i iskoristivi

- Crtež koji je teško opisati ali izvrsno pogađa u suštinu rukovanja podacima, jer je taj proces:
 - Ekstremno ad-hoc u svojoj provedbi
 - Bez savršenog recepta
 - Takav da zahtijeva puno razmišljanja i zdrave logike
 - Najčešće necijenjen u tvrtakama, obično se vrednuje samo modeliranje i rezultati

Prilagođeno iz: EPFL, ADA, 2020.

Proces rukovanja podacima

- Rukovanje podacima sastoji se od sljedećih važnih koraka:
 - 1. Pregled skupa podataka (engl. data survey, data exploration, data learning)
 - Vizualna i statistička dijagnostika skupa podataka (pa i ručno pregledavanje brojaka)
 - Cilj je upoznati se s podacima i ustanoviti njihove nedostatke
 - **2. Transformacija skupa podataka** (engl. data transformation, data organizing, data assembly)
 - Transformacija modela, formata i dimenzija podataka u oblik koristan za analizu
 - Najprije transformacija u relacijski, tablični oblik
 - Može uključivati i pronalazak i spajanje s dodatnim izvorima podataka (engl. data enrichment, data merging)
 - kada svi podaci nisu na jednom mjestu
 - U slučajevima manjih analiza i lokalno dostupnih podataka, može se preskočiti

Proces rukovanja podacima

- Rukovanje podacima sastoji se od sljedećih važnih koraka:
 - 3. Čišćenje skupa podataka (engl. data cleaning)
 - Pronalazak i uklanjanje pogrešaka, duplikata, sinonima, stršećih vrijednosti, nedostajućih vrijednosti i drugih problema u podacima
 - 4. Provjera skupa podataka (engl. data validation, data authentication)
 - Nakon svih prethodnih koraka, provjera jesu li podaci sada ispravni,
 - Ponekad implicitno uključeno u sve prethodne korake, ali se često koristi kao zaseban korak
 - Detaljnije što se sve provjerav: https://corporatefinanceinstitute.com/resources/knowledge/data-analysis/data-validation/

Proces rukovanja podacima

- Rukovanje podacima sastoji se od sljedećih važnih koraka:
 - 5. Učitavanje skupa podataka (engl. data loading) opcionalno kao zasebni korak
 - Podaci se učitavaju u strukturu podataka pogodnu za daljnju analizu (ako su ranije mijenjani na nekom drugom mjestu ili u nekom drugom formatu)
 - 6. Poboljšavanje skupa podataka (engl. data augmentation)
 - Izmjene u veličini i raznolikosti primjera skupa podataka
 - 7. Inženjerstvo značajki (engl. feature engineering)
 - Rad na značajkama vezanima uz skupa podataka

Zadnja dva koraka mogu biti dio rukovanja podataka, ali već i analize podataka

Predobrada podataka

(engl. data preprocessing)

 "nešto" što se događa s dotad pripremljenim skupom prije "prave" obrade/analize podataka

Problemi u podacima

Vrste čestih problema u podacima

- Nedostajući podaci (engl. missing data)
- Netočni podaci (engl. incorrect data)
- Nekonzistentnosti u podacima (engl. inconsistent data)
- Stršeći podaci (engl. outliers)
- Rijetki podaci (engl. sparse data)
- **Šumoviti podaci** (engl. *noisy data*)
- Monotoni atributi (engl. monotonic attributes)
- Nebalansirani skupovi podataka (engl. imbalanced datasets) → Tema kasnijih predavanja

Oko 75% problema u podacima zahtijeva ljudsku intervenciju da ih se ispravi (npr. stručnjaci u području, crowdsourcing)

Horor priče o "prljavim podacima"

- Pismo "Dear Idiot"
- 17,000 muškaraca su trudni
- Direktan put ("As the crow flies")

https://www.linkedin.com/pulse/dirty-data-horror-stories-when-michael/

Poanta: značajna količina podataka u tvrtkama je "loša" (10–25%, ovisno o tvrtci, različite procjene)

Nedostajući podaci

Dvije glavne vrste:

- Nedostajuće (ali poznate) vrijednosti
 - Vrijednosti koje nisu unesene u skup podataka, ali postoje u stvarnom procesu
- Prazne (nepoznate) vrijednosti
 - Ne može se pretpostaviti vrijednost u stvarnom svijetu i vrijednost nije unesena
- Često nije jasno o kojoj se vrsti radi
 - razne konkretne vrijednosti pohranjene na mjestu nedostajućeg podatka
 - " prazno polje, '-', 'x', 'NULL', 'N/A', 'BLANK', ',,"" razne vrste navodnika, '?', '???' ...
- Detekcija problema detaljnim pregledom skupa podataka ili korištenjem vizualizacije
- Rješavanje problema nedostajućih podataka u praksi je najčešće neovisno o vrsti

Nedostajući podaci – rješavanje problema

Zanemarivanje svih primjera (objekata) koji ih sadrže

 Ponekad nije moguće, npr. kada većina primjera ima vrijednost nekog atributa nedostajuću – tada je možda bolje maknuti takav atribut

Zamijeniti nedostajuću vrijednost nekom drugom

- Uz osiguranje da informacijski sadržaj skupa podataka ne degradira
- Jednostavni postupci promatraju jedan atribut
 - Očuvati mjeru sredine zamjena sa srednjom vrijednosti, medianom ili najčešćom kategorijom
 - Očuvati varijabilnost po potrebi dodati šum pri zamjeni da se očuva varijabilnost
- Složeniji postupci promatraju odnos između više atributa i biraju zamjenu koja će najmanje utjecati na čitav skup
 - Npr. regresija, algoritam k-najbližih susjeda

Primjer

 Popis stanovništa SAD-a na kojem su prikazani oni stanovnici koji rade kao "zaposlenici na farmi", podaci od 1890. nedostaju jer su zapisi izgorjeli

- Postaviti vrijednost na 0?
- Interpolirati na temelju bliskih podataka?
- Posve zanemariti nedostajuće podatke?

Znanje o domeni i načinu prikupljanja podataka treba voditi izbor metode zamjene!

Netočni podaci

- Često kao rezultat zabune pri unosu
- Neki put namjerno unešeni
 - Korisnik ne zna točnu informaciju a ne želi ostaviti prazno
 - Korisnik ne želi da netko drugi sazna točnu informaciju
 - Korisnik ima neku korist unašanjem netočne informacije
- Rijetko rezultat tehničke pogreške sustava (npr. neke izmjene u formatima podataka u bazi podataka)
- U općenitom slučaju, neriješiv problem
- · Zahtijeva detaljan pregled skupa podataka, vizualizaciju i promišljanje o podacima

Nekonzistentnost u podacima

Dva tipa nekonzistentnosti

- Različiti atributi mogu biti predstavljeni istim imenom u različitim sustavima
 - Problem se pojavljuje pri povezivanju podataka iz određenog broja različitih sustava u jednu tablicu
 - Pojavljuju se naizgled duplikati vrijednosti ili atributa, koji to uopće ne moraju biti
 - Potrebno je ručno uklanjanje / odabir atributa
- Jedan atribut može imati više sinonima, u jednom ili više sustava
 - Problem istoznačnica je vrlo često prisutan i ispravlja se samo nakon što se vizualno uoči
 - Teško se otkrivaju ili ispravljaju bilo kojim automatskim postupcima u općenitom slučaju
 - Npr, "zaigrani" zaposlenici u auto-tvrtki pod atributom *car_type* upisuju vrijednosti: "Merc", "Mercedes", "M-Benz", "Mrcds", umjesto jednog tipa automobila: "Mercedes" ovome je moguće doskočiti ispravno izrađenim korisničkim sučeljem i naputcima za zaposlenike, naknadne promjene su teške

Stršeći podaci

- Podaci koji odskaču (odudaraju) daleko izvan uobičajenih vrijednosti za određene atribute
- Razlozi pojave ovakvih podataka: neispravan unos, greške mjerenja, greške obrade podataka, prirodno stanje
- Problem ako su takvi podaci netočni ako nisu rezultat prirodnog stanja
- Potrebno ih je pronaći i po potrebi ukloniti (ako se stručnjaci slože da ne prikazuju prirodno stanje)

Stršeći podaci

- Korišteni postupci otkrivanja
 - Vizualizacija podataka
 - Statistički postupci z-skor, vjerojatnosni modeli, linearna regresija
 - Algoritmi nenadziranog strojnog učenja
 - Temeljeni na udaljenosti, gustoći, grupiranju, itd.
 - Normalizacija podataka poboljšava otkrivanje stršećih podataka
 - https://link.springer.com/article/10.1007/s10618-019-00661-z

Rijetki podaci

- Slučaj kada za neke atribute samo mali broj primjera ima vrijednost različitu od 0
 - Često kod skupova dobivenih analizom teksta i dokumenata
- Većina algoritama strojnog učenja loše radi s rijetkim podacima
 - Prenaučenost modela loša generalizacija na testnim podacima, davanje prednosti ili zanemarivanje atributa s rijetkim podacima
- Pristupi rješavanju problema
 - Uklanjanje atributa s rijetkim podacima
 - Smanjenje dimenzionalnosti npr. analiza glavnih komponenti
 - Korištenje postupaka strojnog učenja otpornijih na rijetke podatke
 - Npr. Entropy weighting k-means algorithm https://ieeexplore.ieee.org/abstract/document/4262534

Šumoviti podaci

- Šum u podacima (engl. *data noise*) je u nekoj mjeri prisutan u svim podacima koji su rezultat mjerenja putem određenih senzora
- Podatak = pravi signal + šum
 - Šum je rezultat utjecaja prirodnih procesa
 - Šum je rezultat nesavršenosti mjernih senzora
 - Prisutan i kod 1D, 2D i 3D signala pa i kod drugih, nevremenskih podataka
- Postoje postupci za redukciju šuma u podacima kada je omjer signal/šum nepovoljan
 - Postupci su iznimno ovisni o konkretnom problemu
 - Npr. korekcija pomaka nulte linije i gradske strujne mreže kod snimanja elektrokardiograma
- Neki put, šum nije moguće dovoljno ili do kraja ukloniti
 - Skup na kojem se gradi model treba imati ista statistička svojstva kao i skup podataka na kojem će se model kasnije testirati/primijeniti

Monotoni atributi

- Monotoni atributi su takvi atributi čija vrijednost raste (ili se smanjuje) bez ograničenja
- Najčešći primjeri
 - Atributi povezani s protjecanjem vremena, npr. datumi u raznim oblicima.
 - Atributi rednih brojeva različitih zapisa i sl.
- Problem je nemogućnost dobivanja korisne informacije iz takve serije
- Rješenja problema:
 - Zanemariti takav atribut (najčešće)
 - Transformirati u određeni oblik pogodan za modeliranje
 - Datum se može pretvoriti u godišnje doba ili dan u tjednu, koji se ciklički ponavljaju, ako postoji potreba za takvim podatkom
 - Datumu se može pristupiti kao vremenskoj seriji (nizu), čime se otvara mogućnost korištenja raznih drugih oblika analiza nad podacima

Savjeti prije početka analize podataka

- Upitati se: "Imam li nedostajućih podataka?" "Ako neki podaci nedostaju, kako ću to saznati?"
- "Sumnjam li na iskvarene, loše podatke?" (zbog grešaka u mjerenju, krivih strategija uzorkovanja, namjernih "pogrešaka" i sl.)
- Obraditi/transformirati podatke u odgovarajući format za svoju specifičnu analizu (vidi i 1. predavanje o modelima podataka)
- Ne iznenaditi se ako je potrebno vratiti se na ovaj korak nakon što je analiza već krenula!

Idealni skupovi podataka

- Skupovi podataka koje prati dokumentacija / stručni članak i programski kod
- Format podataka koji je lako obraditi
 - Česti slučaj za strukturirane i polustrukturirane podatke, problem je za nestruktuirane (potrebni su regularni izrazi, plaćanje radne snage ili napredne metode ovisne o vrsti podataka)
- Ranije očišćeni i pripremljeni skupovi podataka
- U praksi: najčešće nemamo ništa ili vrlo malo od navedenoga

Poboljšavanje skupa podataka

- Poboljšavanje skupa podataka (engl. data augmentation) slijedi nakon faze rukovanja podataka, a prije analize podataka, zajedno s inženjerstvom značajki
- Za razliku od inženjerstva značajki, ovdje je fokus na primjerima (objektima)
- Umjetno povećavanje broja primjera
- Ne provodi se uvijek, već ovisno o potrebi
 - Češće ako se za analizu podataka koriste duboki modeli koji traže puno podataka
 - Rjeđe ako podataka ima dovoljno
 - Rjeđe ako su podaci dobro izbalansirani između klasa kod nadziranog učenja
 - Češće kod računalnog vida i obrade prirodnog jezika

Poboljšavanje skupa podataka

- Blisko povezano s tematikom "naduzorkovanja" (engl. oversampling)
- Generiranje novih sintetskih primjera
 - Izravne kopije starih primjera
 - S dodanim šumom nad starim primjerima
 - Na temelju najbližih susjeda
 - Transformacije starih primjera
 - Kod slika: rotacija, translacija, skaliranje, izvrtanje, izrezivanje, poboljšanje boje, kontrasta, zasićenja...
 - Korištenjem složenih modela npr. GAN (engl. Generative Adversarial Networks)
 - https://www.nature.com/articles/s41598-019-52737-x

Source: https://github.com/xkumiyu/numpy-data-augmentation

https://research.aimultiple.com/data-augmentation-techniques/

https://iq.opengenus.org/data-augmentation/

Inženjerstvo značajki

Inženjerstvo značajki

• Značajka: mjerljivo svojstvo objekta (primjera) koje je potrebno uzeti u obzir

	Α	В	С	D	E	F	G	Н	1	J	K	L
1	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
2	1	0	3	Braund, Mr.	male	22	1	0	A/5 21171	7.25		S
3	2	1	1	Cumings, Mr	female	38	1	0	PC 17599	71.2833	C85	С
4	3	1	3	Heikkinen, M	female	26	0	0	STON/02.31	7.925		S
5	4	1	1	Futrelle, Mrs	female	35	1	0	113803	53.1	C123	S
6	5	0	3	Allen, Mr. Wi	male	35	0	0	373450	8.05		S
7	6	0	3	Moran, Mr. J	male		0	0	330877	8.4583		Q

Source: https://www.datarobot.com/wiki/feature/

Inženjerstvo značajki

- Inženjerstvo značajki je **proces** kojim se nastoje **odabrati ili transformirati** najbitnije varijable (značajke) iz pripremljenog skupa podataka s ciljem uspješnog modeliranja
- Razlikuje se:
 - ručni pristup inženjerstvu značajki (znanje o domeni je jako bitno)
 - poluautomatizirani pristup inženjerstvu značajki (znanje o domeni je manje bitno)
 - potpuno automatizirani pristup inženjerstvu značajki (znanje o domeni ne igra ulogu)

Ručni pristup inženjerstvu značajki

- Izlučivanje (računanje) značajki (engl. feature extraction, feature elicitation)
 - Definiranje, implementacija i računanje značajki iz sirovih podataka
 - Značajke ovisne o domeni primjene, predlaže ih stručnjak (ekspert) u području primjene
 - Potencijalno beskonačni prostor značajki
 - U analizi signala razlikujemo
 - Značajke vremenske domene (često statističke značajke)
 - Značajke frekvencijske domene (značajke dobivene iz spektra signala)
 - Nelinearne značajke (značajke faznog prostora, entropije, ...)
 - Različite značajke slike (npr. histogrami boja) i volumnih podataka
 - Značajke se obično računaju nakon prethodne pripreme (npr. uklanjanje šuma, interpolacije nedostajućih vrijednosti i sl.)

Ručni pristup inženjerstvu značajki

• Karakterizira ga **pregled pojedinačnih značajki**, a zatim:

Dodavanje novih značajki na temelju postojećih

Uklanjanje nebitnih značajki

Ručni pristup inženjerstvu značajki

- Dodavanje novih značajki na temelju postojećih
 - Obično se provodi nakon izlučivanja značajki iz sirovih podataka
 - Izgradnja temeljem jedne postojeće značajke
 - Diskretizacija numeričkih vrijednosti (engl. *binning*)
 - Pretvorba jedne kategoričke značajke u više binarnih (engl. one-hot encoding)
 - Normalizacija vrijednosti (engl. *normalization*)
 - Izgradnja temeljem više postojećih značajki
 - Ručno kombiniranje više značajki u jednu, npr. suma, produkt, kvocijent i sl.

Diskretizacija numeričkih vrijednosti

- Pretvorba numeričke vrijednosti primjera neke varijable (broja) u kategoričku vrijednost
- Pretpostavka: broj kategorija << broj numeričkih vrijednosti
- Često nužan korak u analizi podataka, budući da:
 - Neki algoritmi funkcioniraju samo koristeći diskretne, kategoričke vrijednosti (induktivna pristranost)
 - Performanse algoritama degradiraju ako varijable nemaju uniformnu razdiobu gustoće vjerojatnosti
- Primjeri:
 - Neki algoritmi stabla odluke (engl. decision trees)
 - Neki sustavi temeljeni na induktivnim pravilima (engl. induction rules, rule-based system)
 - Sustavi asocijativnih pravila (engl. association rules)
- Diskretizacijom se uvijek gubi određena informacija, stoga je važno da diskretizacijski
 postupak bude što bolji

Diskretizacija numeričkih vrijednosti

- Vjerojatno najbolju diskretizaciju nekog numeričkog atributa mogu predložiti stručnjaci iz nekog područja
- U izostanku tog prijedloga, neki češće korišteni postupci diskretizacije su:
 - Podjela u N jednakih intervala (engl. equal distance binning),
 - Podjela u intervale s jednakim brojem pojedinaca (engl. equal frequency binning, percentile binning),
 - Diskretizacija minimizacijom entropije (engl. entropy minimization discretization),
 - Diskretizacija algoritmom k-srednjih vrijednosti (engl. k-means discretization)
 - i dr.
- https://machinelearningmastery.com/discretization-transforms-for-machine-learning/

Pretvorba jedne kategoričke značajke u više binarnih

- Mnogi algoritmi strojnog učenja ne mogu raditi direktno s kategoričkim vrijednostima, nego zahtijevaju da sve ulazne i ciljne varijable bude numeričke
- Ograničenje koje je uvela učinkovita implementacija algoritama strojnog učenja
 - nije nužno ograničenje samog algoritma
- Preslikavanje kategoričke značajke u numeričku: kategorija1 -> 1; kategorija2 -> 2
 kategorijan -> n samo u slučaju kada poredak kategorija ima smisla
- Inače, svaka kategorija neke kategoričke značajke postaje nova binarna značajka
 - Od *n* kategorija dobivamo *n* binarnih značajki, koje imaju vrijednost 1 za one primjere za koje bi dotična kategorija vrijedila, a 0 inače
- https://machinelearningmastery.com/why-one-hot-encode-data-in-machine-learning/

Normalizacija vrijednosti

- Potrebno kada su različite značajke u skupu podataka mjerene na različitim skalama
 - Značajke mjerene na nižim skalama (npr. između 1 i 10) bile bi manje relevantne modelu od onih na višim skalama (npr. Između 1000 i 10000), što bi dovelo do lošijih rezultata
- Najčešća normalizacija je na raspon vrijednosti između 0 i 1
- Postupci normalizacije
 - Decimalno skaliranje (dijeljenje vrijednosti s maksimalnom vrijednosti decimalnog mjesta)
 - Npr. Sa 100, ako su sve vrijednosti do 100, a veće od 10
 - Normalizacija Min-Max (linearna transformacija vrijednosti)
 - Normalizacija z-skorom (statistička normalizacija putem srednje vrijednosti i varijance), poznato i kao standardizacija

Ručni pristup inženjerstvu značajki

- Uklanjanje nebitnih značajki
 - Monotone značajke
 - Konstantne značajke
 - Značajke s vrlo rijetkim podacima
 - Duplikati i statistički redundantne značajke
 - Najčešće korelacijska analiza, mogu i drugi testovi, npr. hi-kvadrat

Uklanjanje statistički redundantnih značajki korelacijskom analizom

HIGHLY CORRELATED ATTRIBUTES

One attribute can be removed without any information loss. As one attribue can easily determine the other.

Source: https://www.geeksforgeeks.org/redundancy-and-correlation-in-data-mining/

Uklanjanje statistički redundantnih značajki korelacijskom analizom

- Računa se korelacija između svakih dviju varijabli u skupu i gradi se korelacijska matrica
- Za one dvije varijable za koje je vrijednost korelacije vrlo visoka (idealno 1) odabire se jedna od njih koja se uklanja iz skupa – ona je redundantna
- Prag vrijednosti korelacijskog koeficijenta za odbacivanje neke značajke ovisi o domeni i cilju analize, ali obično je viši od 0.9
- Ponekad je bolje ne ukloniti značajku ako nismo sigurni da bi to bilo ispravno

Source: https://www.displayr.com/what-is-a-correlation-matrix/

Poluautomatizirani pristup inženjerstvu značajki

- Odabir značajki (engl. feature selection)
- Izgradnja značajki (engl. feature construction)
- **Redukcija dimenzionalnosti** (engl. *dimensionality reduction*) razmatramo u kasnijim predavanjima

Odabir značajki

- Fokus na **smanjenje dimenzije** skupa podataka
- Zadržava se interpretacija značajki, jer se one koje se zadržavaju ne mijenjaju
- Želi se zadržati rezultat modeliranja početnog skupa značajki ili ga poboljšati
- Postupci:
 - Filterski postupci (filteri) (engl. *filters*)
 - Postupci omotača (engl. wrappers)
 - Ugrađeni postupci (engl. embedded methods)
 - Hibridni postupci (engl. hybrid methods)

Odabir značajki

- Optimalan podskup značajki = najmanji mogući broj značajki koji daje najbolje rezultate (za klasifikaciju, predikciju...)
- Potraga za optimalnim podskupom značajki je NP težak problem
 - Pretraga 2^M podskupova značajki, gdje je M broj značajki
- Postojeći empirijski postupci rješavanja obično rade u polinomnom vremenu i ne garantiraju pronalazak optimalnog podskupa
 - Obično pronalaze lokalni optimum
- Radi za:
 - Nadzirano učenje kriterij je određen s obzirom na odnos vrijednosti značajke prema vrijednosti klase ciljne varijable (ili numeričkoj vrijednosti ciljne klase u slučaju regresijskih problema)
 - Nenadzirano učenje kriterij je određen s obzirom na kompaktnost grupa (klastera)

Filterski postupci

- Filterski postupci definiraju kriterij koliko je određena značajka bitna za opis ciljne varijable
- Obično se značajke rangiraju s obzirom na taj kriterij
 - Korisnik može onda odabrati prvih n značajki
- Različiti filteri (svaki ima svoju matematičku formulaciju):
 - Zajednička informacija (engl. mutual information)
 - hi-kvadrat, χ² (engl. chi-square, χ²)
 - Simetrična nesigurnost (engl. symmetrical uncertainty)
 - Relief (Relief, ReliefR, ReliefC...)
 - Korelacijski koeficijent (uglavnom za regresijske probleme) (engl. correlation coefficient)
- Neki filteri mogu istovremeno određivati bitnost i redundantnost značajki
 - Npr. mRMR (engl. minimum redundancy maximum relevance)

Postupci omotača

- Koriste **algoritam strojnog učenja za evaluaciju** određenog podskupa značajki kako bi donijeli odluku o tome je li taj podskup bolji / isti / lošiji od nekog nadskupa
- Algoritam strojnog učenja često nije onaj koji se kasnije koristi za izgradnju modela
 - Preferiraju se brzi algoritmi kako bi se što više skupova značajki evaluiralo npr. Naivni Bayes
- Pretraživanje prostora podskupova značajki može početi od punog skupa ili od praznog skupa i koristiti različite strategije (naivni pristup je slučajno pretraživanje)
 - Pohlepne strategije (npr. najbolji prvi)
 - Unaprijednu selekciju i eliminaciju unazad, zrakasto pretraživanje
 - Evolucijske algoritme
- U pravilu: sporiji, ali točniji postupci od filtera

Ugrađeni postupci

- Izbor značajki koji se temelji na nekom algoritmu strojnog učenja
- Unutarnja struktura izgrađenog modela oslikava važnost značajki, bilo zbog broja pojavljivanja određene značajke u modelu ili njezine težine (značaja) u modelu
- Mogu se koristiti za dobivanje rangirane važnosti pojedinačnih značajki prema određenom kriteriju ili samo za dobivanje podskupa bitnih značajki
- Primjeri
 - Slučajna šuma
 - Logistička regresija s penalizacijom (ridge, LASSO, elastic net)
 - Stroj s potpornim vektorima
- http://www.sthda.com/english/articles/36-classification-methods-essentials/149-penalized-logistic-regression-essentials-in-r-ridge-lasso-and-elastic-net/

Hibridni postupci

- Kombiniraju najbolja svojstva filtera i postupaka omotača
- Primjena dvaju ili više različitih postupaka filtera, omotača i ugrađenih postupaka
 - Najčešće najprije primijenjen filter kako bi značajno smanjili prostor značajki
 - Potom primijenjen postupak omotača kojim se nastoji pronaći optimalni podskup značajki
 - Moguće i drugačije kombinacije
- Nema garancije niti da su filterom zadržane sve bitne značajke niti da se postupkom omotača dobiva najbolji skup
- U praksi se pokazuju točnijima od filterskih postupaka i bržima od postupaka omotača
- https://heartbeat.comet.ml/hands-on-with-feature-selection-techniques-hybrid-methods-b93b1b06d3a5

Izgradnja značajki

- Fokus na **poboljšanju performansi**
- Iterativna primjena različitih operatora za izgradnju novih značajki
- Dobivene značajke po potrebi se dijelom uklanjaju korištenjem algoritama za odabir značajki
- Nastoji se izbjeći veliko povećanje broja značajki
- Nije toliko često u praksi kao odabir značajki i redukcija dimenzionalnosti
- Uobičajeni pristupi izgradnji novih značajki su temeljeni na:
 - Stablima odluke
 - Genetskom programiranju
- Za detalje vidjeti: http://sifaka.cs.uiuc.edu/~sondhi1/survey3.pdf

Potpuno automatizirani pristup

- Učenje značajki (engl. feature learning, representation learning)
 - Pristup kojim zaobilazimo ekspertno izlučivanje (računanje) značajki
 - Pristup je nezavisan o poznavanju domene
 - Sve češće korišteno u različitim područjima primjene (biomedicina, računalni vid)
 - Pretpostavka je da se radi **nad sirovim ulaznim podacima** (očišćenim, pripremljenim) i to najčešće:
 - Signalima (1D vremenskim nizovima)
 - Slikama 2D signalima
 - Volumnim podacima 3D signalima
 - Sirovi podaci se transformiraju unutar algoritma u unutarnji model koji je opisan značajkama niske razine (engl. low-level features)
 - Značajke koje imaju jasnu matematičku formulaciju ali nejasnu semantiku

Potpuno automatizirani pristup

- Koristi se određeni algoritam strojnog učenja koji interno uči nove značajke
 - Ideja je da nove značajke budu **visoko diskriminatorne i korisne** za problem koji se rješava
 - Nove značajke su dobivene transformacijama ulaznih podataka ili početnog skupa značajki
 - Nove značajke često se nazivaju reprezentacijama (engl. representations)
 - Koriste se i algoritmi nadziranog i nenadziranog strojnog učenja
- Neki poznati algoritmi za učenje značajki
 - Tradicionalni: analiza glavnih komponenata (PCA), analiza neovisnih komponenata (ICA)
 - Duboko učenje: višeslojni perceptron, konvolucijske neuronske mreže, autoenkoderi i ograničeni Boltzmanovi strojevi
- https://towardsdatascience.com/unsupervised-feature-learning-46a2fe399929

Zaštita privatnih podataka

- Rukovanje osjetljivim, privatnim podacima krajnjih korisnika je često u praksi
- Tvrtke obično s klijentima potpisuju različite sporazume o zaštiti privatnih podataka
 - Ugovor između poslovnih subjekata
 - Sporazum o neotkrivaju informacija (engl. Non-disclosure agreement, NDA)
 - Različiti sporazumi na internetu (npr. sporazum o licenci za krajnjeg korisnika, engl. End-user license agreement, EULA)
- Opća uredba o zaštiti podataka (engl. General Data Protection Regulation), 2016.
 - Osigurava da osjetljivim podacima upravlja samo ovlaštena osoba pozitivno!
 - U praksi, veća sigurnost otežava životnost protok informacija
 - Problem identifikacije osobe putem privatnih podataka što je sve privatni podatak?

Zaštita privatnih podataka

- Najosjetljiviji podaci:
 - medicinski podaci
 - financijski podaci
 - osobni podaci (npr. OIB, broj osobne iskaznice, broj putovnice...)
- Malo manje osjetljivi podaci: socio-demografski podaci (dob, spol, obrazovanje, narodnost, vjenčani status, prihodi kućanstva...)
- Neki put je jednostavna anonimizacija podataka najučinkovitije rješenje
- Tvrtke rade na rješenjima za sveobuhvatnu zaštitu privatnih podataka
- https://inteligencija.com/poslovna-inteligencija-i-fer-uz-pomoc-eu-fondova-razvijaju-platformu-za-klasifikaciju-osobnih-podataka-i-njihovo-kontrolirano-uklanjanje-9712/

Literatura

- Alice Zheng, Amanda Casari (2018.), Feature Engineering for Machine Learning,
 O'Reilly Media
- Dorian Pyle (1999.), Data Preparation for Data Mining, Morgan Kaufmann
- Alan Jović, Karla Brkić, Nikola Bogunović (2015.), A review of feature selection methods with application, *MIPRO 2015*, https://ieeexplore.ieee.org/abstract/document/7160458

Zaključci

- Rukovanje podacima je složen proces kojim podatke pripremamo za analizu
 - Sastoji se od niza koraka i transformacija podataka
- Veliku ulogu u tom procesu igra priroda podataka veličina i značajke skupa podataka
- Podaci mogu imati različite probleme, od kojih su neki lako, a neki teško rješivi
 - Savršenog rješenja za sve probleme nema
 - Zahtijeva puno inženjerskog rada
- Inženjerstvo značajki naglašava važnost koje imaju značajke za korisnost daljnje analize podataka
 - Ručni pristup, poluautomatizirani pristup, potpuno automatizirani pristup
 - Cilj je pronaći optimalni skup značajki za dani problem

