DOMAINS OF HOLOMORPHY FOR IRREDUCIBLE UNITARY REPRESENTATIONS OF SIMPLE LIE GROUPS

BERNHARD KRÖTZ

Date: February 2, 2008.

1. Introduction

Let us consider a unitary irreducible representation (π, \mathcal{H}) of a simple, non-compact and connected algebraic Lie group G. Let us denote by K a maximal compact subgroup of G. According to Harish-Chandra, the Lie algebra submodule \mathcal{H}_K of K-finite vectors of π consists of analytic vectors for the representation, i.e. for all $v \in \mathcal{H}_K$ the orbit map

$$f_v: G \to \mathcal{H}, \ g \mapsto \pi(g)v$$

is real analytic. For these functions f_v we determine, and in full generality, their natural domain of definition as holomorphic functions (see Theorem 5.1 below):

Theorem 1.1. Let (π, \mathcal{H}) be a unitary irreducible representation of G. Let $v \in \mathcal{H}$ be a non-zero K-finite vector and f_v be the corresponding orbit map. Then there exists a unique maximal $G \times K_{\mathbb{C}}$ -invariant domain $D_{\pi} \subseteq G_{\mathbb{C}}$, independent of v, to which f_v extends holomorphically. Explicitly:

- (i) $D_{\pi} = G_{\mathbb{C}}$ if π is the trivial representation.
- (ii) $D_{\pi} = \Xi^+ K_{\mathbb{C}}$ if G is Hermitian and π is a non-trivial highest weight representation.
- (iii) $D_{\pi} = \Xi^{-}K_{\mathbb{C}}$ if G is Hermitian and π is a non-trivial lowest weight representation.
- (iv) $D_{\pi} = \Xi K_{\mathbb{C}}$ in all other cases.

In the theorem above Ξ, Ξ^+, Ξ^- are certain G-domains in $X_{\mathbb{C}} = G_{\mathbb{C}}/K_{\mathbb{C}}$ over X = G/K with proper G-action. These domains are studied in this paper because of their relevance for the theorem above (see [5]). Let us mention that Ξ is the familiar crown domain and that the inclusion $\Xi K_{\mathbb{C}} \subset D_{\pi}$ traces back to our joint work with Robert Stanton ([6], [7]).

Acknowledgment: I am happy to point out that this paper is related to joint work with Eric M. Opdam [5]. Also I would like to thank Joseph Bernstein who, over the years, helped me with his comments to understand the material much better.

Finally I appreciate the work of a very good referee who made many useful remarks on style and organization of the paper.

2. Notation

Throughout this paper G shall denote a connected simple non-compact Lie group. We denote by $G_{\mathbb{C}}$ the universal complexification of G and suppose:

- $G \subseteq G_{\mathbb{C}}$;
- $G_{\mathbb{C}}$ is simply connected.

We fix a maximal compact subgroup K < G and form

$$X = G/K$$
,

the associated Riemannian symmetric space of the non-compact type. The universal complexification $K_{\mathbb{C}}$ of K will be realized as a subgroup of $G_{\mathbb{C}}$. We set

$$X_{\mathbb{C}} = G_{\mathbb{C}}/K_{\mathbb{C}}$$

and call $X_{\mathbb{C}}$ the affine complexification of X. Note that

$$X \hookrightarrow X_{\mathbb{C}}, \quad gK \mapsto gK_{\mathbb{C}}$$

defines a G-equivariant embedding which realizes X as a totally real form of the Stein symmetric space $X_{\mathbb{C}}$. We write $x_0 = K_{\mathbb{C}} \in X_{\mathbb{C}}$ for the standard base point in $X_{\mathbb{C}}$.

However, the natural complexification of X is not $X_{\mathbb{C}}$, but the *crown* $domain \Xi \subsetneq X_{\mathbb{C}}$ whose definition we recall now. We shall provide the standard definition of Ξ , see [1].

Lie algebras of subgroups L < G will be denoted by the corresponding lower case German letter, i.e. $\mathfrak{l} < \mathfrak{g}$; complexifications of Lie algebras are marked with a \mathbb{C} -subscript, i.e. $\mathfrak{l}_{\mathbb{C}}$ is the complexification of \mathfrak{l} .

Let us denote by $\mathfrak p$ the orthogonal complement to $\mathfrak k$ in $\mathfrak g$ with respect to the Cartan-Killing form. We set

$$\hat{\Omega} = \{ Y \in \mathfrak{p} \mid \operatorname{spec}(\operatorname{ad} Y) \subset (-\pi/2, \pi/2) \}.$$

Then

$$\Xi = G \exp(i\hat{\Omega}) \cdot x_0 \subset X_{\mathbb{C}}$$

is a G-invariant neighborhood of X in $X_{\mathbb{C}}$, commonly referred to as $\operatorname{crown} \operatorname{domain}$. Sometimes it is useful to have an alternative, although less invariant picture of the crown domain: if $\mathfrak{a} \subset \mathfrak{p}$ is a maximal abelian subspace and $\Omega := \hat{\Omega} \cap \mathfrak{p}$, then

$$(2.1) \Xi = G \exp(i\Omega) \cdot x_0.$$

The set Ω is nicely described through the restricted root system $\Sigma = \Sigma(\mathfrak{g}, \mathfrak{a})$:

$$\Omega = \{ Y \in \mathfrak{a} \mid \alpha(Y) < \pi/2 \ \forall \alpha \in \Sigma \}.$$

If W is the Weyl group of Σ , then we note that Ω is W-invariant.

Sometimes we will employ the root space decomposition $\mathfrak{g} = \mathfrak{a} \oplus \mathfrak{m} \oplus \bigoplus_{\alpha \in \Sigma} \mathfrak{g}^{\alpha}$ with $\mathfrak{m} = \mathfrak{z}_{\mathfrak{k}}(\mathfrak{a})$ as usual. We choose a positive system $\Sigma^+ \subset \Sigma$ and form the nilpotent subalgebra $\mathfrak{n} = \bigoplus_{\alpha \in \Sigma^+} \mathfrak{g}^{\alpha}$.

2.1. The example of $G = Sl(2, \mathbb{R})$

For illustration and later use we will exemplify the above notions at the basic case of $G = Sl(2, \mathbb{R})$.

We let $K = SO(2, \mathbb{R})$ be our choice for the maximal compact subgroup and identify X = G/K with the upper half plane $D^+ := \{z \in \mathbb{C} \mid \text{Im } z > 0\}$. We recall that

$$X_{\mathbb{C}} = \mathbb{P}^1(\mathbb{C}) \times \mathbb{P}^1(\mathbb{C}) \setminus \operatorname{diag}[\mathbb{P}^1(\mathbb{C})]$$

with $G_{\mathbb{C}}$ acting diagonally by fractional linear transformations. The G-embedding of $X = D^+$ into $X_{\mathbb{C}}$ is given by

$$z \mapsto (z, \overline{z}) \in X_{\mathbb{C}}$$
.

If D^- denotes the lower half plane, then the crown domain is given by

$$\Xi = D^+ \times D^- \subseteq X_{\mathbb{C}}$$
.

In addition we record two G-domains in $X_{\mathbb{C}}$ which sit above Ξ , namely:

(2.2)
$$\Xi^{+} = D^{+} \times \mathbb{P}^{1}(\mathbb{C}) \setminus \operatorname{diag}[\mathbb{P}^{1}(\mathbb{C})],$$

(2.3)
$$\Xi^{-} = \mathbb{P}^{1}(\mathbb{C}) \times D^{-} \setminus \operatorname{diag}[\mathbb{P}^{1}(\mathbb{C})].$$

Observe that $\Xi = \Xi^+ \cap \Xi^-$.

3. Remarks on G-invariant domains in $X_{\mathbb{C}}$ with proper action

One defines elliptic elements in $X_{\mathbb{C}}$ by

$$X_{\mathbb{C}.\text{ell}} = G \exp(i\mathfrak{p}) \cdot x_0 = G \exp(i\mathfrak{a}) \cdot x_0$$
.

The main result of [1] was to show that Ξ is a maximal domain in $X_{\mathbb{C},\text{ell}}$ with G-action proper. In particular, G acts properly on Ξ .

It was found in [5] that Ξ in general is not a maximal domain in $X_{\mathbb{C}}$ for proper G-action: the domains Ξ^+ and Ξ^- from (2.2)-(2.3) yield

counterexamples. To know all maximal domains is important for the theory of representations [5], Sect. 4.

That Ξ in general is not maximal for proper action is related to the unipotent model for the crown which was described in [5]. To be more precise, we showed that there exists a domain $\hat{\Lambda} \subseteq \mathfrak{n}$ containing 0 such that

$$(3.1) \Xi = G \exp(i\hat{\Lambda}) \cdot x_0.$$

Now there is a big difference between the unipotent parametrization (3.1) and the elliptic parametrization (2.1): If we enlarge Ω the result is no longer open; in particular, $X_{\mathbb{C},\text{ell}}$ is not a domain. On the other hand, if we enlarge the open set $\hat{\Lambda}$ the resulting set is still open; in particular $X_{\mathbb{C},u} := G \exp(i\mathfrak{n}) \cdot x_0$ is a domain. Thus, if there were a bigger domain than Ξ with proper action, then it is likely by enlargement of $\hat{\Lambda}$.

We need some facts on the boundary of Ξ .

3.1. Boundary of Ξ

Let us denote by $\partial \Xi$ the topological boundary of Ξ in $X_{\mathbb{C}}$. One shows that

$$\partial_{\text{ell}}\Xi := G \exp(i\partial\Omega) \cdot x_0 \subseteq \partial\Xi$$

(cf. [7]) and calls $\partial_{\text{ell}}\Xi$ the *elliptic part* of $\partial\Xi$. We define the *unipotent* part $\partial_{\mathbf{u}}\Xi$ of $\partial\Xi$ to be the complement to the elliptic part:

$$\partial_u \Xi = \partial \Xi \setminus \partial_{ell} \Xi$$
.

The relevance of $\partial_u \Xi$ is as follows. Let $X \subset D \subseteq X_{\mathbb{C}}$ denote a G-domain with proper G-action. Then $D \cap \partial_{\text{ell}} \Xi = \emptyset$ by the above cited result of [1]. Thus if $D \not\subset \Xi$, then one has

$$D \cap \partial_{\mathbf{u}}\Xi \neq \emptyset$$
.

Let us describe $\partial_u \Xi$ in more detail. For $Y \in \mathfrak{a}$ we define a reductive subalgebra of $\mathfrak{g}_{\mathbb{C}}$ by

$$\mathfrak{g}_{\mathbb{C}}[Y] = \{ Z \in \mathfrak{g}_{\mathbb{C}} \mid e^{-2i\operatorname{ad}(Y)} \circ \sigma(Z) = Z \}$$

with σ the Cartan involution on $\mathfrak{g}_{\mathbb{C}}$ which fixes $\mathfrak{k} + i\mathfrak{p}$. Then there is a partial result on $\partial_{\mathbf{u}}\Xi$, for instance stated in [2]:

(3.2)
$$\partial_{\mathbf{u}}\Xi \subseteq \{G\exp(e)\exp(iY)\cdot x_0 \mid Y\in\partial\Omega,\}$$

$$(3.3) 0 \neq e \in \mathfrak{g}_{\mathbb{C}}[Y] \cap i\mathfrak{g} \text{ nilpotent} \}.$$

If Y is such that only one root, say α , attains the value $\pi/2$, then we call Y and as well the elements in the boundary orbit $G \exp(e) \exp(iY)$.

 x_0 regular. Accordingly we define the regular unipotent boundary $\partial_{u,reg}\Xi = \{z \in \partial_u\Xi \mid z \text{ regular}\}$. Note that $\mathfrak{g}_{\mathbb{C}}[Y]$ is of especially simple form for regular Y, namely

$$\mathfrak{g}_{\mathbb{C}}[Y] = i\mathfrak{a} \oplus \mathfrak{m} \oplus \mathfrak{g}[\alpha]^{-\theta} \oplus i\mathfrak{g}[\alpha]^{\theta}$$

where $\mathfrak{g}[\alpha] = \mathfrak{g}^{\alpha} \oplus \mathfrak{g}^{-\alpha}$. Hence, in the regular situation, one can choose e above to be in $i\mathfrak{g}[\alpha]^{\theta} + i\mathfrak{a}$. We summarize our discussion:

Proposition 3.1. Let $X \subset D \subseteq X_{\mathbb{C}}$ be a G-invariant domain with proper G-action which is not contained in Ξ . Then $D \cap \partial_{u,reg}\Xi \neq \emptyset$. More precisely, there exists $Y \in \partial \Omega$ regular (with $\alpha \in \Sigma$ the unique root attaining $\pi/2$ on Y) and a non-zero nilpotent element $e \in i\mathfrak{g}[\alpha]^{\theta} + i\mathfrak{a}$ such that

$$\exp(e) \exp(iY) \cdot x_0 \in \partial_{\text{u.reg}} \Xi \cap D$$
.

4. Maximal domains for proper action

The aim of this section is to classify all maximal G-domains in $X_{\mathbb{C}}$ which contain X and maintain proper action. The answer will depend whether G is of Hermitian type or not.

4.1. Non-Hermitian groups.

The objective is to prove the following theorem:

Theorem 4.1. Suppose that G is not of Hermitian type. If $X \subset D \subset X_{\mathbb{C}}$ is a G-invariant domain with proper G-action, then $D \subset \Xi$.

Before we can give the proof of the theorem some preparation is needed. The proof relies partly on a structural fact characterizing non-Hermitian groups (see Lemma 4.4 below) and on a precise knowledge of the basic case of $G = Sl(2, \mathbb{R})$.

Let us begin with the relevant facts for $G = \mathrm{Sl}(2,\mathbb{R})$. With $E = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $T = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ our choices for $\mathfrak a$ and $\mathfrak n$ are

$$\mathfrak{a} = \mathbb{R} \cdot T$$
 and $\mathfrak{n} = \mathbb{R} \cdot E$.

Note that $\Omega = (-\pi/4, \pi/4)T$.

The a slight modification of results in [5], Sect. 3 and 4 yield:

Lemma 4.2. Let $G = Sl(2, \mathbb{R})$ and $\mathcal{J} \subset \mathbb{R}$ be an open subset. Then $\Xi_{\mathcal{J}} := G \exp(iJ \cdot E) \cdot x_0$

is a G-invariant open subset of $X_{\mathbb{C}}$ and the following holds:

- (i) G does not act properly if $\{-1,1\} \subset \mathcal{J}$.
- (ii) $\Xi = \Xi_{(-1,1)}$. (iii) $\Xi^+ = \Xi_{(-1,\infty)}$. (iv) $\Xi^- = \Xi_{(-\infty,1)}$.

We also need that $\partial \Xi$ is a fiber bundle over the affine symmetric space G/H where $H = SO_e(1,1)$. Notice that H is the stabilizer of the boundary point

$$z_H := \exp(-i\pi T/4) \cdot x_0 = (1, -1) \in \partial_{\text{ell}}\Xi.$$

Write τ for the involution on G, resp. \mathfrak{g} , fixing H, resp. \mathfrak{h} , and denote by $\mathfrak{g} = \mathfrak{h} + \mathfrak{g}$ the corresponding eigenspace decomposition. The \mathfrak{h} -module \mathfrak{q} breaks into two eigenspaces $\mathfrak{q} = \mathfrak{q}^+ \oplus \mathfrak{q}^-$ with

$$\mathfrak{q}^{\pm} = \mathbb{R} \cdot e^{\pm}$$
 where $e^{\pm} = \begin{pmatrix} 1 & \mp 1 \\ \pm 1 & -1 \end{pmatrix}$.

Finally write

$$\mathcal{C} = \mathbb{R}_{\geq 0} \cdot e^+ \cup \mathbb{R}_{\geq 0} \cdot e^-$$

and $\mathcal{C}^{\times} = \mathcal{C} \setminus \{0\}$. Note that both \mathcal{C} and \mathcal{C}^{\times} are H-stable. We cite [5], Th. 3.1:

Lemma 4.3. Let $G = Sl(2, \mathbb{R})$. Then the map

$$G \times_H \mathcal{C} \to \partial \Xi, \quad [g, e] \mapsto g \exp(ie) \cdot z_H$$

is a G-equivariant homeomorphism. Moreover,

- (i) $\partial_{\text{ell}}\Xi = G \cdot z_H \simeq G/H$, (ii) $\partial_{\text{u}}\Xi = G \exp(i\mathcal{C}^{\times}) \cdot z_H \simeq G \times_H \mathcal{C}^{\times}$, (iii) $\partial_{\text{u}}\Xi = G \exp(iE) \cdot x_0 \coprod G \exp(-iE) \cdot x_0$.

As a last piece of information we need a structural fact which is only valid for non-Hermitian groups.

Lemma 4.4. Suppose that G is not of Hermitian type. Then for all $\alpha \in \Sigma$ and $E \in \mathfrak{g}^{\alpha}$ there exists an $m \in M = Z_K(\mathfrak{g})$ such that

$$Ad(m)E = -E.$$

Proof. Let us remark first that we may assume that G is of adjoint type. If G is complex, then the assertion is clear as $T := \exp(i\mathfrak{a}) \subset M$ provides us with the elements we are looking for. More generally for $\dim \mathfrak{g}^{\alpha} > 1$ one knows (Kostant) that $M_0 = \exp(\mathfrak{m})$ acts transitively on the unit sphere in \mathfrak{g}^{α} (cf. [4]).

In the sequel we use the terminology and tables of the classification of real simple Lie algebras as found in the monograph [3], App. C. As G is not Hermitian, Kostant's result leaves us with the following cases

for \mathfrak{g} : $\mathfrak{sl}(n,\mathbb{R})$ for $n \geq 3$, $\mathfrak{so}(p,q)$ for $0,2 \neq p,q$ and p+q>2, E I, E II, E V, E VI, E VIII, E IX, F I and G.

Now we make the following observation. The lemma is true for $G = \mathrm{Sl}(3,\mathbb{R})$ as a simple matrix computation shows. Suppose that α is such that it can be put into an A_2 -subsystem of Σ . As dim \mathfrak{g}^{α} is one-dimensional (by our reduction) this means that we can put $E \in \mathfrak{g}^{\alpha}$ in a subalgebra isomorphic to $\mathfrak{sl}(3,\mathbb{R})$. Now it is important to recall the nature of the component group of M, see [3], Th. 7.55. It follows that the M-group of $\mathrm{Sl}(3,\mathbb{R})$ (isomorphic to $(\mathbb{Z}/2\mathbb{Z})^2$) embeds into the M-group of G.

The A_2 -reduction described above deletes most of the cases in our list. We remain with the orthogonal cases $\mathfrak{so}(p,q)$ for $0,2 \neq p,q$ and $p \neq q$. A simple matrix computation, which we leave to the reader, finishes the proof.

Proof. (of Theorem 4.1) Suppose that G is not of Hermitian type. Let $X \subset D \subset \Xi$ be a G-invariant domain with proper G-action which is not contained in Ξ . We shall show that D does not exist.

According to Proposition 3.1 we find a regular $Y \in \partial \Omega$ and a non-zero nilpotent $e \in \mathfrak{g}_{\mathbb{C}}[Y] \cap i\mathfrak{g}$ such that

$$\exp(e) \exp(iY) \cdot x_0 \in \partial_{u,reg} \Xi \cap D$$
.

Let $\alpha \in \Sigma$ be the root corresponding to Y. Write $Y = Y^{\alpha} + Y'$ with $Y^{\alpha}, Y' \in \mathfrak{a}$ such that $\alpha(Y') = 0$. It is known that $Y^{\alpha} \in \partial\Omega$ and $Y' \in \Omega$. Hence we may use $\mathfrak{sl}(2)$ -reduction which in conjunction with Lemma 4.3 implies the existence of $E^{\alpha} \in \mathfrak{g}^{\alpha}$ such that:

- $\{E^{\alpha}, \theta(E^{\alpha}), [E^{\alpha}, \theta(E^{\alpha})]\}$ is an $\mathfrak{sl}(2)$ -triple,
- $\exp(iE^{\alpha}) \exp(iY') \cdot x_0 \in \partial_{u,\text{reg}}\Xi \cap D$,

Now, as G is not of Hermitian type, Lemma [?] implies that there exists an element $m \in M$ such that $Ad(m)E^{\alpha} = -E^{\alpha}$. Hence

$$\exp(-iE^{\alpha})\exp(iY')\cdot x_0 \in \partial_{u,reg}\Xi$$

as well. But this contradicts Lemma 4.2(i).

4.2. Hermitian groups

Let now G be of Hermitian type and $G \subseteq P^-K_{\mathbb{C}}P^+$ be a Harish-Chandra decomposition of G in $G_{\mathbb{C}}$. We define flag varieties

$$F^+ = G_{\mathbb{C}}/K_{\mathbb{C}}P^+$$
 and $F^- = G_{\mathbb{C}}/K_{\mathbb{C}}P^-$

and inside of them we declare the flag domains

$$D^+ = GK_{\mathbb{C}}P^+/K_{\mathbb{C}}P^+$$
 and $D^- = GK_{\mathbb{C}}P^-/K_{\mathbb{C}}P^-$.

Then

$$(4.1) X_{\mathbb{C}} \hookrightarrow F^{+} \times F^{-}, \quad gK_{\mathbb{C}} \mapsto (gK_{\mathbb{C}}P^{+}, gK_{\mathbb{C}}P^{-})$$

identifies $X_{\mathbb{C}}$ as a Zariski open affine piece of $F^+ \times F^-$. In more detail: As G is of Hermitian type, there exist $w_0 \in N_{G_{\mathbb{C}}}(K_{\mathbb{C}})$ such that $w_0 P^{\pm} w_0^{-1} = P^{\mp}$. In turn, this element induces a $G_{\mathbb{C}}$ -equivariant biholomorphic map:

$$\phi: F^+ \to F^-, \quad gK_{\mathbb{C}}P^+ \mapsto gw_0K_{\mathbb{C}}P^-.$$

With that the embedding (4.1) gives the following identification of $X_{\mathbb{C}}$:

(4.2)
$$X_{\mathbb{C}} = \{(z, w) \in F^+ \times F^- \mid \phi(z) \uparrow w\},\$$

where \intercal stands for the transversality notion in the flag variety F^- . We recall what it means to be transversal. First note that the notion is $G_{\mathbb{C}}$ -invariant, i.e. for $z, w \in F^-$ and $g \in G_{\mathbb{C}}$ one has $z \uparrow w$ if and only if $gz \uparrow gw$. Now for the base point $z^- = K_{\mathbb{C}}P^- \in F^-$ one has $z^- \uparrow w$ if and only if $w \in P^-w_0z^-$.

We keep the realization of $X_{\mathbb{C}}$ in $F^+ \times F^-$ (cf. (4.1) in mind and recall the description of Ξ :

$$\Xi = D^+ \times D^-$$

(see [7]).

For subsets $X^{\pm} \subset F^{\pm}$ we write $X^{+} \times_{\mathsf{T}} X^{-}$ for those elements $(x^{+}, x^{-}) \in X^{+} \times X^{-}$ which are transversal, i.e. $\phi(x^{+}) \,_{\mathsf{T}} x^{-}$. With this terminology in mind we finally define

$$\Xi^+ = D^+ \times_{\mathsf{T}} F^-,$$

$$\Xi^- = F^+ \times_{\mathsf{T}} D^-.$$

4.2.1. Basic structure theory of Ξ^+ and Ξ^- . It is obvious that both Ξ^+ and Ξ^- are open and G-invariant. However, as was pointed out by the referee, it is a priori not clear that they are connected. In order to see this let $p_+:\Xi^+\to D^+$ be the projection onto the first factor. Likewise we define $p_-:\Xi^-\to D^-$.

Proposition 4.5. Let $\epsilon \in \{-, +\}$. The map $p_{\epsilon} : \Xi^{\epsilon} \to D^{\epsilon}$ induces the structure of a holomorphic fiber bundle with fiber isomorphic to P^{ϵ} .

Proof. We confine ourselves with the case $\epsilon = +$.

As p_+ is G-equivariant and D^+ is G-homogeneous, it is sufficient to determine the fiber $p_+^{-1}(z^+)$. Recall that $z^+ = K_{\mathbb{C}}P^+ \in F^+$ is the base point. Now

$$p_+^{-1}(z^+) = \{(z^+, w) \in F^+ \times F^- \mid \phi(z^+) \uparrow w\}.$$

Observe that $\phi(z^+) = w_0 z^-$ and that $w_0 z^- \intercal w$ is equivalent to $z^- \intercal w_0^{-1} w$. By the definition of transversality this means that $w_0^{-1} w \in P^- w_0 z^-$ or $w \in w_0 P^- w_0 z^-$. It is no loss of generality to assume that $w_0 = w_0^{-1}$. So we arrive at $w \in P^+ z^-$ and this concludes the proof of the proposition.

Corollary 4.6. Both Ξ^+ and Ξ^- are contractible.

It was observed by the the referee that Proposition 4.5 allows the following interesting reformulation.

Corollary 4.7. The map

$$G \times_K P^+ \to \Xi^+, \quad [g, p] \mapsto (gz^+, gpz^-)$$

is a G-equivariant diffeomorphism. In particular Ξ^+ is G-biholomorphic to $T^{0,1}D^+$, the antiholomorphic tangent bundle of D^+ . Likewise, Ξ^- is G-biholomorphic to $T^{0,1}D^-$.

Corollary 4.7 combined with the Harish-Chandra decomposition implies that $\Xi^{\epsilon} \simeq D^{\epsilon} \times P^{\epsilon}$ as complex manifolds. In particular Ξ^{ϵ} is Stein.

The fact that $K_{\mathbb{C}}$ normalizes P^{ϵ} allows us to speak of $G \times P^{\epsilon}$ -invariant domains in $X_{\mathbb{C}}$. It follows from (4.1) and Corollary 4.7 that Ξ^{ϵ} is $G \times P^{\epsilon}$ -invariant.

Proposition 4.8. Let $\epsilon \in \{-,+\}$. The real group G acts properly on Ξ^{ϵ} . Moreover Ξ^{ϵ} is a maximal $G \times P^{\epsilon}$ -invariant domain in $X_{\mathbb{C}}$ for proper G-action.

Proof. As the G-action is proper on D^{ϵ} , it follows that G acts properly on Ξ^{ϵ} . In the sequel we deal with $\epsilon = +$ only. It remains to show that Ξ^+ is a maximal $G \times P^+$ -invariant domain in $X_{\mathbb{C}}$ for proper G-action. We argue by contradiction and suppose that $D \supsetneq \Xi^+$ is a $G \times P^+$ -domain in $X_{\mathbb{C}}$ with proper G-action. Then $D = (D_0 \times F^-) \cap X_{\mathbb{C}}$ with $D_0 \supsetneq D^+$ a G-domain with proper action. Now recall the following facts:

- There are only finitely many G-orbits in F^+ .
- There are precisely two orbits with proper G-action: D^+ and $\phi^{-1}(D^-)$.

The assertion follows.

Remark 4.9. Suppose that G is of Hermitian type. Then it can be shown that if $X \subseteq D \subseteq X_{\mathbb{C}}$ is a G-invariant domain with proper G-action, then $D \subseteq \Xi^+$ or $D \subseteq \Xi^-$.

As we will not need this fact, we refrain from a proof.

If $D \subseteq X_{\mathbb{C}}$ is a subset, then we write $DK_{\mathbb{C}}$ for its preimage in $G_{\mathbb{C}}$ under the canonical projection $G_{\mathbb{C}} \to X_{\mathbb{C}}$.

Proposition 4.10. The following assertions hold:

- (i) $\Xi^+ K_{\mathbb{C}} = GK_{\mathbb{C}}P^+$,
- (ii) $\Xi^- K_{\mathbb{C}} = GK_{\mathbb{C}}P^-$.

Proof. It suffices to prove (i). Recall the embedding (4.1), and the definition of transversality condition. We deduce that $P^+ \subset \Xi^+ K_{\mathbb{C}}$. As $\Xi^+ K_{\mathbb{C}}$ is $G \times K_{\mathbb{C}}$ -invariant, it follows that $GP^+ K_{\mathbb{C}} = GK_{\mathbb{C}}P^+ \subset \Xi^+ K_{\mathbb{C}}$. Conversely, Corollary 4.7 implies that GP^+ maps onto Ξ^+ and thus

Conversely, Colonary 4.7 implies that GI imaps onto Ξ and thus $\Xi^+ \subset GP^+K_{\mathbb{C}}$.

We conclude this subsection with some easy facts on the structure of Ξ^+ and Ξ^- which will be used later on.

4.2.2. Unipotent model for Ξ^+ and Ξ^- . We begin with the unipotent parameterization of Ξ^+ and Ξ^- . Some terminology is needed.

According to C. Moore, Σ is of type C_n or BC_n . Hence we find a subset $\{\gamma_1, \ldots, \gamma_n\}$ of long strongly orthogonal restricted roots. We fix $E_j \in \mathfrak{g}^{\gamma_j}$ such that $\{E_j, \theta(E_j), [E_j, \theta E_j]\}$ becomes an $\mathfrak{sl}(2)$ -triple. Set $T_j := 1/2[E_j, \theta E_j]$ and note that

$$\Omega = \bigoplus_{j=1}^{n} (-\pi/2, \pi/2) T_j.$$

We set $V = \bigoplus_{j=1}^{n} \mathbb{R} \cdot E_j$ and take a cube inside V by

$$\Lambda = \bigoplus_{j=1}^{n} (-1, 1) E_j.$$

In [5], Sect. 8, we have shown that

$$\Xi = G \exp(i\Lambda) \cdot x_0.$$

In this parametrization of Ξ the unipotent boundary piece has a simple description:

(4.3)
$$\partial_{\mathbf{u}}\Xi = G \exp(i\partial\Lambda) \cdot x_0.$$

The strategy now is to enlarge Ξ by enlarging Λ while maintaining that the object stays a domain on which G acts properly. But now we have to be a little bit careful with our choice of E_j . Replacing E_j by $-E_j$ has no effect for the matters cited above, but for the sequel.

Our choice is such that $\gamma_1, \ldots, \gamma_n$ are positive roots (this determines the non-compact roots in Σ^+ uniquely). We set

$$\Lambda^+ = \bigoplus_{j=1}^n (-1, \infty) E_j$$
 and $\Lambda^- = \bigoplus_{j=1}^n (-\infty, 1) E_j$.

Then, a direct generalization of Lemma 4.2(iii),(iv) yields:

Proposition 4.11. The following assertions hold:

- (i) $\Xi^+ = G \exp(i\Lambda^+) \cdot x_0$,
- (ii) $\Xi^- = G \exp(i\Lambda^-) \cdot x_0$.

Remark 4.12. If we define subcones of the nilcone $\mathcal{N} \subseteq \mathfrak{g}$ by

$$\mathcal{N}^+ = \operatorname{Ad}(K) \left[\bigoplus_{j=1}^n [0, \infty) E_j \right] \quad and \quad \mathcal{N}^- = -\mathcal{N}^+,$$

then one can show that the maps

$$G \times_K \mathcal{N}^{\pm} \to \Xi^{\pm}, \quad [g, Y] \mapsto g \exp(iY) \cdot x_0$$

are homeomorphic.

5. Representation theory

Let (π, \mathcal{H}) be a unitary representation of G and \mathcal{H}_K the underlying Harish-Chandra module of K-finite vectors. Notice that \mathcal{H}_K is naturally a module for $K_{\mathbb{C}}$.

We say that (π, \mathcal{H}) is a highest, resp. lowest, weight representation if G is of Hermitian type and $\mathfrak{p}^+ = \text{Lie}(P^+)$, resp. \mathfrak{p}^- , acts on \mathcal{H}_K in a finite manner.

We turn to the main result of this paper.

Theorem 5.1. Let (π, \mathcal{H}) be a unitary irreducible representation of G. Let $v \in \mathcal{H}$ be a non-zero K-finite vector and

$$f_v: G \to \mathcal{H}, \quad g \mapsto \pi(g)v$$

the corresponding orbit map. Then there exists a unique maximal $G \times K_{\mathbb{C}}$ -invariant domain $D_{\pi} \subseteq G_{\mathbb{C}}$, independent of v, to which f_v extends holomorphically. Explicitly:

- (i) $D_{\pi} = G_{\mathbb{C}}$ if π is the trivial representation.
- (ii) $D_{\pi} = \Xi^+ K_{\mathbb{C}}$ if G is Hermitian and π is a non-trivial highest weight representation.
- (iii) $D_{\pi} = \Xi^{-}K_{\mathbb{C}}$ if G is Hermitian and π is a non-trivial lowest weight representation.

(iv) $D_{\pi} = \Xi K_{\mathbb{C}}$ in all other cases.

Proof. If π is trivial, then the assertion is clear. So let us assume that π is non-trivial in the sequel. Fix a nonzero K-finite vector v and consider the orbit map $f_v: G \to \mathcal{H}$. We recall the following two facts:

- f_v extends to a holomorphic G-equivariant map $f_v : \Xi K_{\mathbb{C}} \to \mathcal{H}$ (see [7], Th. 1.1).
- If $D_v \subseteq G_{\mathbb{C}}$ is a $G \times K_{\mathbb{C}}$ -invariant domain to which f_v extends holomorphically, then G acts properly on $D_v/K_{\mathbb{C}}$ (see [5], Th. 4.3)

We begin with the case where G is not of Hermitian type. Here the assertion follows from the bulleted items above in conjunction with Theorem 4.1.

So we may assume for the remainder that G is of Hermitian type. If π is a highest weight representation, then it is clear that f_v extends to a holomorphic map $GK_{\mathbb{C}}P^+ \to \mathcal{H}$. Thus, in this case $\Xi^+K_{\mathbb{C}} = GK_{\mathbb{C}}P^+$ (cf. Proposition 4.10) is a maximal domain of definition for f_v by Proposition 4.8 and the second bulleted item from above. Likewise, if (π, \mathcal{H}) is a lowest weight representation, then $\Xi^-K_{\mathbb{C}}$ is a maximal domain of definition of f_v . As both Ξ^+ and Ξ^- are simply connected with sufficiently regular boundary, it follows that these maximal domains are in fact unique.

It remains to show:

- If f_v extends holomorphically on a domain $D \supset \Xi$ such that $D \cap [\Xi^+ \setminus \Xi] \neq \emptyset$, then (π, \mathcal{H}) is a highest weight representation.
- If f_v extends holomorphically p on a domain $D \supset \Xi$ such that $D \cap [\Xi^- \setminus \Xi] \neq \emptyset$, then (π, \mathcal{H}) is a lowest weight representation.

It is sufficient to deal with the first case. So suppose that f_v extends to a bigger domain D such that $D \cap [\Xi^+ \setminus \Xi] \neq \emptyset$. Taking derivatives and applying the fact that $d\pi(\mathcal{U}(\mathfrak{g}_{\mathbb{C}}))v = \mathcal{H}_K$, we see that f_u extends to D for all $u \in \mathcal{H}_K$. By Proposition 3.1, (4.3) and our assumption we find $1 \leq j \leq n$ be such that $\exp(iE_j) \exp(iY) \cdot x_0 \in D$ for some $Y \in \Omega$ with $\gamma_j(Y) = 0$. Let $G_j < G$ be the analytic subgroup corresponding to the $\mathfrak{sl}(2)$ -triple $\{E_j, \theta(E_j), [E_j, \theta(E_j)]\}$. Basic representation theory of type I-groups in conjunction with [5], Th. 4.7, yields that $\pi|_{G_j}$ breaks into a direct sum of highest weight representations. Applying $N_K(\mathfrak{a})$ (which in particular permutes the G_k and preserves \mathcal{H}_K) we see that above matters hold for any other G_k as well (note that Y might change but this does not matter as Ω is $N_K(\mathfrak{a})$ -invariant). It follows that π is a highest weight representation and completes the proof of the theorem.

Г

Remark 5.2. The domains Ξ , Ξ^+ and Ξ^- are independent of the choice of the connected group G. Accordingly, the above theorem holds for all simple connected non-compact Lie groups G, i.e. we can drop the assumption that $G \subseteq G_{\mathbb{C}}$ and $G_{\mathbb{C}}$ simply connected.

Problem 5.3. The above theorem should hold true for all irreducible admissible Banach representations of G under the reservation that (i) gets modified to : $D_{\pi} = G_{\mathbb{C}}$ if π is finite dimensional.

References

- [1] D.N. Akhiezer and S.G. Gindikin, On Stein extensions of real symmetric spaces, Math. Ann. **286** (1990), 1-12.
- [2] G. Fels and A. Huckleberry, *Characterization of cycle domains via Kobayashi hyperbolicity*, Bull. Soc. Math. France **133**(2005), no. **1**, 121–144.
- [3] A. W. Knapp, *Lie Groups Beyond an Introduction*, 2nd edition, Progress in Math. **140**, Birkhäuser.
- [4] B. Kostant, A branching law for subgroups fixed by an involution and a noncompact analogue of the Borel-Weil theorem, Noncommutative harmonic analysis, 291–353, Progr. Math. 220, Birkhäuser
- [5] B. Krötz and E.M. Opdam, Analysis on the crown domain, math.RT/0606213, to appear in GAFA
- [6] B. Krötz and R. Stanton, Holomorphic extensions of representations: (I) automorphic functions, Ann. Math. 159 (2004), 641–724.
- [7] —, Holomorphic extensions of representations: (II) geometry and harmonic analysis, GAFA 15 (2005), 190–245.

MAX-PLANCK-INSTITUT FÜR MATHEMATIK, VIVATSGASSE 7, D-53111 BONN EMAIL: kroetz@mpim-bonn.mpg.de