Sequential logic design

Vikas Dhiman for ECE275

November 30, 2022

1 Objectives

- 1. Perform a state assignment using the guideline method
- 2. Reduce the number of states in a state table using row reduction and implication tables
- 3. Partition a system into multiple state machines

2 Full procedure for designing sequential logic circuit

- 1. Convert the word problem to a state transition diagram. Let the states be $S_0, S_1, S_2, \ldots, S_n$.
- 2. Draw state transition table with named states. For example,

Next State $X = 0$ $X = 1$		Outputs		
X = 0	X = 1	X=0	X=1	
S_1	S_2	0	0	
S_2	S_0	0	0	
:	:	:	:	
	$X = 0$ S_1	$X = 0 X = 1$ $S_1 S_2$	$X = 0 X = 1 X=0$ $S_1 S_2 0$	

- 3. State reduction step: Reduce the number of required states to a minimum. Eliminate unnecessary or duplicate states.
- 4. State assignment step: Assign each state a binary representation. For example,

State name	State assignments $(Q_2Q_1Q_0)$
$S_0 S_1$	000
S_1	001
:	:

5. Draw State assigned transition table. For example,

Inj	puts (X_1X_0)	Present State (Q_1Q_0)	Next State $(Q_1^+Q_0^+)$	Outputs (Z_1Z_0)
0	0	00	01	0 0
0	0	01	10	0 0
:	:	<u>:</u>	÷	: :

(a) Use excitation tables to find truth tables for the combinational circuits. For example, the excitation table for J-K ff is

Q	Q^+	J	K
0	0	0	d
0	1	1	d
1	0	d	1
1	1	$\begin{vmatrix} d \\ d \end{vmatrix}$	0

3 State assignment by guideline method [1, Section 8.2.5]

3.1 State Maps

Example 1. Draw a state map for a sequential assignment of the states

Figure 8.27 Five-state finite state machine.

3.2 Guideline method

Guideline method states that the following states should be adjacent in the state map according the following priorities:

Example 2. A state transition table is given. Find optimal state assignment by using the guideline method.

Input Sequence	Present State	X=0	X=1	X=0	X=1
Reset	S_0	Sí	S_1'	0	0
0 or 1	Sí	S_3'	S_4'	0	0
00 or 10	S' ₃	S_0	S_0	0	0
01 or 11	S:	Sa	Sa	1	0

Next State

Figure 8.30 Reduced state diagram for 3-bit sequence detector.

Example 3. Draw a Mealy FSM for detecting binary string 0110 or 1010. The machine returns to the reset state after each and every 4-bit sequence. Draw the state transition diagram on your own as practice problem. The state transition diagram is given here. Find optimal state assignment by using the guideline method.

Output

4 State reduction by implication chart

Example 4. Design a Mealy FSM for detecting binary sequence 010 or 0110. The machine returns to reset state after each and every 3-bit sequence. For now the state transition table is given. Reduce the following state transition table

Input Sequence	Present State		State X=1	Out X=0	tput X=1
Reset	S_0	S_1	S_2	0	0
0	S_1	S_3	S_4	0	0
1	S_2	S_5	S_6	0	0
00	S_3	S_0	S_0	0	0
01	S_4	S_0	S_0	1	0
10	S_5	S_0	S_0	0	0
11	S_6	S_0	S_0	1	0

4.1 Implication chart Summary

The algorithms for state reduction using the implication chart method consists of the following steps

- 1. Construct the implication chart, consisting of one square for each possible combination of states taken two at a time.
- 2. For each square labeled by states S_i and S_j , if the outputs of the states differ, mark the square with an X; the states are not equivalent. Otherwise, they may be equivalent. Within the square write implied pairs of equivalent next states for all input combinations.
- 3. Systematically advance through the squares of the implication chart. If the square labeled by states S_i, S_j contains an implied pair S_m, S_n and square S_m, S_n is marked with an X, then mark S_i, S_j with an X. Since S_m, S_n are not equivalent, neither are S_i, S_j .
- 4. Continue executing Step 3 until no new squares are marked with an X.
- 5. For each remaining unmarked square S_i, S_j , we can conclude that S_i, S_j are equivalent.

References

[1] Randy Katz and Gaetano Barriello. Contemporary Logic Design. Prentice Hall, 2004. Ask for reference PDF if you need it.