Оценка погрешностей будущих измерений по имеющимся данным

Поляченко Юрий 10 апреля 2020 г.

1 Постановка задачи

Цель – предсказать погрешность ε выдаваемых нашей программой значений искомого параметра x.

Область изменения $x \in [0;1]$ разбита на интервалы $[a_j;b_j]$, для каждого из которых есть N_j экспериментов. Считается, что изкомая погрешность ε может меняться от интервала к интервалу, но постоянная внутри интервала. Фиксируем j и работаем в выбранном интервале, поэтому далее его индекс опущен.

Есть N экспериментов, про которые известно, что в каждом из них истинное значения x попало в интервал [a;b]. На каждый i-ый из этих экспериментов у нас есть результат работы нашей программы x_i . Предполагается, что истинное значение y_i распределено по гауссу со средним x_i и дисперсией ε . Ищем зависимость

$$\varepsilon \left(a, b, \{x_i\}_{i=1}^N, p_0 \right) \tag{1}$$

такую, что

$$\mathcal{P}(\forall x \in [a; b] \ |x - y| < \varepsilon) = p_0 \tag{2}$$

Из сторонних соображений считается известным минимально возможная погрешность $\varepsilon_{min}.$

2 Предлагаемое решение

2.1 Приближение

Задав ε , можно посчитать вероятность реализации ситуации, описанной в постановке — попадание всех истинных значений y_i параметра, распределенных согласно результатам работы нашей программы по гауссу каждый около своего x_i , в интервал [a;b]. Далее предположение - эта вероятность равна нашей целевой вероятность p_0 . Не очевидно, почему это должно выполняться точно (скорее всего это не выполняется), но для оценки предложено использовать такую модель.

2.2 Расчет

Вероятность попадание *i*-ой истинной точки в интервал

$$p_i(\varepsilon) = \int_a^b g(x, x_i, \varepsilon) dx = \int_{(a-x_i)/\varepsilon}^{(b-x_i)/\varepsilon} g(x, 0, 1) dx,$$
 (3)

где

$$g(x,\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2\right]$$
 (4)

– гауссово распределение.

Введем

$$\operatorname{erf}(x) = \int_{-\infty}^{x} g(t, 0, 1) dt. \tag{5}$$

Попадание каждого истинного значения в интервал - независимое событие, поэтому вероятность реализации нашего случая

$$p(\varepsilon) = \prod_{i=1}^{N} p_i(\varepsilon) = \prod_{i=1}^{N} \left[\operatorname{erf}\left(\frac{b - x_i}{\varepsilon}\right) - \operatorname{erf}\left(\frac{a - x_i}{\varepsilon}\right) \right]$$
 (6)

Для нахождения желаемого ε_0 решаем уравнение $p(\varepsilon_0)=p_0.$ Очевидно, что

$$\begin{cases}
\forall \varepsilon > 0 & p'(\varepsilon) < 0 \\
\operatorname{ran}[p(\varepsilon)] = (0; 1)
\end{cases} \Rightarrow \forall p_0 \in (0; 1) \exists ! \varepsilon > 0 : p(\varepsilon) = p_0, \tag{7}$$

поэтому $\forall p_0 \in (0;1)$ уравнение хорошо решается численно.

2.3 Пример

Для примера можно взять случайный набор из 10 точек в интервале $[0.25\cdot 1.05;\ 0.5\cdot 0.95]$ и считать, что их истинные значения принаждежат [0.25;0.5].

Рис. 1: Расположение 10 пробных точек в интервале [0.25; 0.5].

Рис. 2: Зависимость $p(\varepsilon)$. Красная линия — принятая минимально возможная погрешность $\varepsilon_{min}=0.02$, Синяя вертикаль — найденная оценка, синяя горизонталь — наш выбор $p_0=(1-\mathcal{P}_{gauss}(1\sigma))/2$, зеленый пунктир - минимальное расстояние точек до границы. Видно, что наличие множества точке позволяет улучшить оценку с очевидного значения минимального расстояния до границы — линяя линия левее зеленой.

3 Результат применения

Можно исследовать, как оценка погрешности зависит от количества имеющихся экспериментальных данных в «усредненном» случае, когда ответы нашей программы расположены в интервале на равных промежутках.

Рис. 3: Равномерное расположение 10 пробных точек в интервале [0.25; 0.5].

На глаз зависимость на рис. (4) близка к 1/N, что ожидаемо, т.к. погрешность в основном определяется минимальным расстояние до границы, которое при выбранной расстановке точек убывает как 1/N.

Можно проверить отклонения от закона 1/N – рис. (5).

Видно, что наклон с правда близок к -1, но небольшие отклонения от линейности есть.

Рис. 4: $\varepsilon(N)$

Рис. 5: $\varepsilon(N)$, логарифмический масштаб, попытка линеаризации