고려대학교 빅데이터 연구회

KU-BIG

Decision Tree & Ensemble

목차

Decision Tree

Ensemble

Boosting

IV Bagging

Random Forest

PART. I Decision Tree

Decision Tree

"Decision Tree"라?

의사결정 규칙을 나무구조로 나타내어 전체 자료를 몇 개의 소집단으로 분류(classification)하거나 예측(prediction)을 수행하는 분석방법

특징

• 머신러닝 알고리즘 중 하나인 Random Forest의 기본 구성요소

• 다른 머신러닝 모델들에 비해 이해하기가 비교적 쉬우며, 정확도도 높은 편이라 자주 사용되는 모델 중 하나

구조

분류방법(Split rule)

그렇다면..

Decision Tree에서 분류는 어떻게 진행될까?

분류방법(Split rule)

순도(homogeneity) ↑ (= 불순도(impurity) ↓)

• 지표 : 지니계수(Gini index), 엔트로피(Entropy), 카이제곱 통계량(Chisquare statistic), 분산(Deviance), 오분류오차(Misclassification error)

예시

지니계수(Gini index)

i번째 노드의 지니계수 정의:

$$G_i = 1 - \sum_{k=1}^n p_{i,k}^2$$

Pi,k=i번째 노드에 있는 훈련 샘플 중 클래스 k에 속한 샘플의 비율

예시 - 지니계수(Gini index)

Rule 1

Root node의 지니계수

$$\left| 1 - \left[\left(\frac{100}{200} \right)^2 + \left(\frac{100}{200} \right)^2 \right] = 0.5$$

왼쪽 Child node의 지니계수

$$1 - \left[\left(\frac{100}{100} \right)^2 + \left(\frac{0}{100} \right)^2 \right] = 0$$

$$\rightarrow \Delta(t) = 0.5 - \left[\left(\frac{100}{200} \right) * 0 + \left(\frac{100}{200} \right) * 0 \right] = 0.5$$

오른쪽 Child node의 지니계수

$$1 - \left[\left(\frac{0}{100} \right)^2 + \left(\frac{100}{100} \right)^2 \right] = 0$$

예시 - 지니계수(Gini index)

Rule 2

Root node의 지니계수

$$1 - \left[\left(\frac{100}{200} \right)^2 + \left(\frac{100}{200} \right)^2 \right] = 0.5$$

왼쪽 Child node의 지니계수

$$\left| 1 - \left[\left(\frac{50}{100} \right)^2 + \left(\frac{50}{100} \right)^2 \right] = 0.5 \right|$$

$$\rightarrow \Delta(t) = 0.5 - \left[\left(\frac{100}{200} \right) * 0.5 + \left(\frac{100}{200} \right) * 0.5 \right] = 0$$

오른쪽 Child node의 지니계수

$$1 - \left[\left(\frac{50}{100} \right)^2 + \left(\frac{50}{100} \right)^2 \right] = 0.5$$

엔트로피(Entropy)

i번째 노드의 엔트로피 정의 :

$$H_i = -\sum_{k=1}^{n} p_{i,k} \log_2(p_{i,k})$$

Pi,k=i번째 노드에 있는 훈련 샘플 중 클래스 k에 속한 샘플의 비율

예시 – 엔트로피(Entropy)

Rule 1

Root node의 엔트로피

$$\left| -\left[\left(\frac{100}{200} \right) log_2 \left(\frac{100}{200} \right) + \left(\frac{100}{200} \right) log_2 \left(\frac{100}{200} \right) \right] = 1 \right|$$

왼쪽 Child node의 엔트로피

$$-\left[\left(\frac{100}{100}\right)log_{2}\left(\frac{100}{100}\right) + \left(\frac{0}{100}\right)log_{2}\left(\frac{0}{100}\right)\right] = 0$$

오른쪽 Child node의 엔트로피

$$\left| - \left[\left(\frac{0}{100} \right) log_2 \left(\frac{0}{100} \right) + \left(\frac{100}{100} \right) log_2 \left(\frac{100}{100} \right) \right] = 0 \right|$$

$$\rightarrow \Delta(t) = 1 - \left[\left(\frac{100}{200} \right) * 0 + \left(\frac{100}{200} \right) * 0 \right] = 1$$

카이제곱 통계량

$$\chi^2 = \sum (관측값 - 기댓값)^2/기댓값$$

가지치기(Pruning)

"가지치기"란?

Decision tree에서 적합성에 큰 영향을 주는 과적합(overfitting)을 방지하고 적합성을 가진 모델을 만들기 위한 방법

가지치기 방법

• 사전 가지치기 : Decision tree의 분류정지 조건을 사전에 설정하여, 분할을 멈추도록 하는 방식

• 사후 가지치기 : Full tree를 먼저 생성한 뒤, 모델에 대한 해석과 평가 가 완화되는 방향으로 tree의 branch를 쳐내는 방식

가지치기 방법

장점과 단점

장점

- 구조가 단순하여 결과해석이 쉬움
- 선형성, 정규성, 등분산성 가정이 불필요한 비모수적 모형

단점

- 기준값의 경계선 근방의 자료 값에 대해서는 오차가 클 수 있음
- 새로운 자료에 대한 예측이 불안정
- 선형성이 미흡해 모델의 안정성이 낮음

PART. II Ensemble

1. 앙상블의 개념

여러 개의 예측 모형을 만든 후 그 모형들을 종합하여 하나의 최종 예측 모형을 만드는 방법

1. 앙상블의 개념

앙상블의 원리

- Ex) 오분류율이 0.05인 분류기 5개 있을 때
 - 1. 5개 분류기 오분류율의 평균

$$E_{Avg} = 0.05$$

2. 앙상블 모형의 오분류율 (절반이상이 오분류할 때)

$$E_{ensemble} = \sum_{i=3}^{5} (0.05)^{i} (1 - 0.05)^{5-i} = 0.0001$$

1. 앙상블의 개념

앙상블 최종 모델 결정 방법

1. 평균

2. 다수결

3. 가중 평균

Model1	Model2		Average Prediction
45	55	60	50

Model1	Model2		Voting Prediction
1	0	0	0

	Model1	Model2	Model3	Weight Average Prediction
Weight	0.4	0.3	0.3	
Prediction	45	55	60	52.5

2. 앙상블의 장단점

장점	단점	
 이상치에 대한 대응력이 높아진다. Variance를 감소시키거나 (Bagging) Bias를 감소시키거나 (Boosting) 예 측력을 높인다. (Stacking) Data가 너무 작거나 클 때 특히 유용하다. Overfitting의 가능성을 줄여준다. 	 모형의 투명성이 떨어지게 되어 현상에 대한 원인을 분석할 때 적합하지 않다. 앙상블을 만들기 위해 모델을 선택하는 것이 매우 어렵다. 시간이 오래 걸리고 해석이 어렵다. 	

3. 앙상블의 종류

1) 학습 데이터의 다양화 ex) Bagging, Boosting

2) 데이터와 변수의 다양화 ex) Random Forest

3) 분류기의 다양화 ex) Stacking

PART. III Boosting

Boosting

"Boosting"이란?

간단한 약분류기(weak classifier)들이 상호보완 하 도록 단계적으로 학습하고, 이를 조합하여 만들어진 최종 강분류기(strong classifier)의 성능을 증폭시키 는 원리

Boosting 종류

Ada Boost

Gradient Boost

XG Boost

Ada Boost

"Ada Boost"란?

Adaptive Boosting의 약자.
이전의 분류기가 잘 분류하지 못한 것들을 이어지는
약한 학습기들이 수정해줄 수 있다는 점에서 다양한
상황에 적용할 수 있다(adaptive).

Ada Boost

Ada Boost 작동단계

Ada Boost 작동단계

현재 주어진 데이터셋에 대해 상대적으로 단순한 모델을 이용하여 학습

학습오류가 큰 개체의 선택확률을 증가, 오류가 작은 개체의 선택확률을 감소

→ 반복적으로 오류가 큰 데이터에 집중

일반적으로 분류모델의 경우는 Weighted Majority Vote, 회귀모델의 경우에는 Weighted Sum을 사용하여 최종 모델을 생성

Ada Boost 특징

- Ada Boosting은 Bias를 줄이려는 것에 초점을 맞춘 기법
 - → Outlier에 취약하다

(WHY?? 오류가 크게 발생하는 Outlier에 반복적으로 집중하기때문)

- 과적합(Overfitting)의 문제가 발생 할 수 있다.
 - → 모델의 모수를 적절하게 조정하는 것이 중요!!

Gradient Boost

"Gradient Boost"란?

경사하강법을 사용해 손실함수를 최소화 하는 가중 치를 적용하여 Ada Boosting보다 성능을 개선한 Boosting기법

Gradient Boost 특징

- 특성의 스케일을 조정하지 않아도 되고(outlier에 덜 민감하게 반응), 연속적인 데이터 특성에서도 잘 작동
- Ada Boosting에서 보다 학습훈련의 시간이 길게 걸리므로 경사 하강 법 적용 시 적절한 변수 조정이 필요함
- 고차원 데이터에서는 잘 작동하지 않을 수 있음
- Regression과 Classification 문제에 모두 적용 가능

XG Boost

"XG Boost"란?

Extreme Gradient Boosting의 약자 기존의 Gradient Boosting의 속도문제를 해결하기 위해 전산속도와 모델의 성능에 초점을 맞춘 기법

XG Boost 특징

- 기존 Gradient Boosing 비해 연산속도가 빠르고 모델의 성능이 향상된다
- 과적합(Overfitting)이 잘 일어나지 않는다
- 훈련하는 동안 컴퓨터의 사용 가능한 모든 CPU를 사용함으로써 트리의 구조를 병 렬화 한다
- 다른 알고리즘과 연계활용성이 좋다
- 최근의 앙상블 모델 중에서 가장 우수한 알고리즘으로 평가받아 각종 대회에서 사용된다

PART. IV Bagging

1. Bagging의 개념

: Bootstrap Aggregating 의 줄임말

원 데이터 집합으로부터 크기가 같은 표본을 여러 번 단순임의 복원추출하여 각 표본(Bootstrap Sample)에 대해 분류기 (classifiers)를 생성한 후 그 결과를 앙상블하는 방법

1. Bagging의 개념

Test

n:전체 관측치 개수

n' : bag 안의 관측치 개수

B: bag의 개수

일반적으로 n'=n

단순임의복원추출시 중복값 제외 하면 약 60%

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = e^{-1} = 0.3678$$

1. Bagging의 개념

Out-of-Bag(OOB) error

: Bootstrap Sampling 과정에서 표본으로 뽑히지 않은 데이터

$$\lim_{n \to \infty} \left(1 - \frac{1}{n} \right)^n = e^{-1} = 0.3678$$

따로 test data를 구성할 필요 없이 OOB 데이터를 이용해서 test error를 구하거나 변수의 중요도를 측정할 수 있다.

Out-of-Bag(OOB) error

2. Bagging의 알고리즘

1) n개의 training data에서 크기 n의 bootstrap sample을 B $\mathcal{H}(D_1,D_2,...,D_B)$ 생성한다.

2) 각각의 bootstrap sample들로 B개의 분류기를 학습시킨다.

3) 모델들을 결합해 최종 모델 산출

2. Bagging의 알고리즘

- 주로 decision tree에 대해 많이 쓰이지만 어떤 모델에 대해서도 사용 가능하다.
- 가지치기(pruning)를 하지 않고 최대로 성장한 tree들을 활용한다.
- 최대로 성장한 각 tree들의 variance는 크고 bias는 작다.
- Bagging을 통해 최종 모델의 variance는 줄어들게 된다.
- $Z_1, Z_2, ..., Z_n$ 의 n개의 독립적인 관측치가 있을 때 각각의 분산이 σ^2 이라 하면 \bar{Z} 의 분산은 σ^2/n 이 되는것과 비슷한 원리

2. Bagging vs Boosting

학습데이터 생성

Bagging : 단순임의복원추출

Boosting: 가중치 부여된 데이터셋에서

단순임의 복원 추출

모델과 학습데이터와의 관계

Bagging : 병렬적 학습 (분류기 상호

연관 x)

Boosting: 연속적 학습 (이전 분류기

학습 다음에 영향)

2. Bagging vs Boosting

적용 목적

Bagging: Variance를 줄여 Overfitting 방지하는 것이 목적

-> 단일 모델의 Variance는 크고, Bias는 작을 때 적절하다.

Boosting: Bias를 줄여 Underfitting 방지하는 것이 목적

-> 단일 모델의 Variance는 작고, Bias는 클 때 적절하다.

3. Bagging의 장단점

장점

- 변동성이 큰 모델의 Variance를 줄일 수 있다.
- 과적합을 방지할 수 있다.
- 데이터 양이 적어도 모델 생성이 가능하다.

단점

- Tree에서 활용되는 독립변수 선정에 대한 고려가 없기 때문에 tree간의 높은 상관성이 생기게 된다.
- => 이 문제점을 해결하는 방법이 Random Forest

PART. V Random Forest

1. Random Forest의 개념

: 다수의 Decision tree를 결합하여 하나의 모형을 생성하는 방법

Random Forest

Bagging

Random Subspace method (변수 선택)

Random Subspace Method

: 기계학습에서 변수를 전부 이용하는 것 대신 몇 가지를 임의 추출하여 이용하는 것을 의미한다.

CORRELATED TREES BECAUSE WE USE ALL THE FEATURES

- 극소수의 변수들이 강한 영향력을 가진다면 여러 tree들에 그 변수들이 중복되어 선택되고 tree들이 상관화된다.
- 이를 방지하기 위해 변수도 임의 추출한다.

2. Random Forest의 알고리즘

- 1) n개의 training data에서 크기 n의 bootstrap sample을 B개 $(D_1, D_2, ..., D_B)$ 생성한다.
- 2) 각 sample에서 전체 p개 변수 중 p/3개(회귀 tree)나 \sqrt{p} 개(분류 tree)의 변수를 임의 추출한다.
- 3) 각각의 bootstrap sample들로 B개의 분류기(decision tree)를 학습시킨다.
- 4) 모델들을 결합해 최종 모델 산출

2. Random Forest의 알고리즘

3. 결과 분석 방법 - 적정 Tree 개수

- 모형을 학습 데이터로 적합했으므로 Training set의 오분류율은 비교적 낮다. 반대로 OOB 오분류율은 높게 나타난다. 실제 평가용 데이터에 대한 오분류율은 그 둘 사이에 존재하게 된다.
- 오분류율이 안정화되는 지점(대략 50개)의 tree 개수를 선택하면 된다.

3. 결과 분석 방법 - 변수 중요도

- Bagging이나 Random Forest는 다수의 tree를 결합하여 만들었으므로 어떤 변수가 예측과정에서 얼마나 중요한지 정확히 알 순 없지만 전체적인 중요도를 다음 방법을 통해 알 수 있다.
 - ① RSS(Residual Sum of Squares) 회귀 tree
 - ② Gini 계수 분류 tree
 - ③ Permutation Importance

3. 변수 중요도 - RSS

 R_j : x 변수에 대해 겹치지 않는 j번째 영역

RSS : 실제 y값들과 \hat{y}_{R_i} 값들의 차이의 제곱합

- 1) x 변수에 대해 J개의 겹치지 않는 영역을 만든다.
- 2) B개의 tree에 대해 각 변수에서의 split으로 인해 RSS가 감소된 정도를 측정하고 평균을 낸다.
- 3) 해당 변수의 RSS 감소량이 클수록 중요한 변수임을 의미한다.

3. 변수 중요도 - RSS

■ 3. 변수 중요도 – Gini 계수

$$G = \sum_{k=1}^{K} \hat{p}_{mk} (1 - \hat{p}_{mk})$$

K:y 범주의 개수

 $G = \sum_{k=1} \hat{p}_{mk} (1 - \hat{p}_{mk})$ \hat{p}_{mk} :m영역에 속하는 레코드 중 k범주에 속 하는 레코드의 비율

- 1) Split 되기 전의 불순도(Gini 계수)를 구한다.
- 2) 왼쪽으로 Split된 node의 Gini 계수, 오른쪽으로 Split된 node의 Gini 계수를 구 하고 각 방향으로 갈 확률을 곱해준 뒤 더한다. (Split 후의 Gini 계수)
- 3) 각 변수마다 Split 전후의 Gini 계수를 계산한다. Gini 계수의 감소량이 클수록 중요한 변수임을 의미한다..

Split 후의 Gini 계수 : $p_L * i(t_L) + p_R * i(t_R)$

 $\mathrm{p_L}$: 왼쪽 node로 분류될 확률 $i(t_\mathrm{L})$: 왼쪽 node의 Gini 계수

 p_R : 오른쪽 node로 분류될 확률 $i(t_R)$: 오른쪽 node의 Gini 계수

$$EX$$

$$EX$$

$$X3 = \{male\} \qquad X3 = \{female\} \qquad \frac{1}{2} \left(\frac{4}{10} * \frac{6}{10} + \frac{6}{10} * \frac{4}{10} \right) + \frac{1}{2} \left(\frac{4}{10} * \frac{6}{10} + \frac{6}{10} * \frac{4}{10} \right) = 0.48$$

만약 split rule1이 $X_1 > 1$, split rule2가 $X_2 > 2$ 일 때

Root node의 Gini 계수:

$$\frac{5}{9} * \frac{4}{9} + \frac{4}{9} * \frac{5}{9} = \frac{40}{81}$$

split rule1 이후의 Gini 계수:

$$\frac{3}{9} \left(\frac{3}{3} * \frac{0}{3} + \frac{0}{3} * \frac{3}{3} \right) + \frac{6}{9} \left(\frac{2}{6} * \frac{4}{6} + \frac{4}{6} * \frac{2}{6} \right) = \frac{8}{27}$$

$$\frac{40}{81} - \frac{8}{27} = \frac{16}{81}$$
 만큼 Gini 계수 감소

split rule2 이후의 Gini 계수:

$$\frac{2}{6} \left(\frac{0}{2} * \frac{2}{2} + \frac{2}{2} * \frac{0}{2} \right) + \frac{4}{6} \left(\frac{0}{4} * \frac{4}{4} + \frac{4}{4} * \frac{0}{4} \right) = 0$$

$$\frac{8}{27} - 0 = \frac{8}{27}$$
 만큼 Gini 계수 감소

 X_2 의 Gini 계수 감소량이 더 크므로 이 tree에 선 X_2 가 더 중요한 변수이다.

FIGURE 8.9. A variable importance plot for the Heart data. Variable importance is computed using the mean decrease in Gini index, and expressed relative to the maximum.

변수별 평균적인 Gini 계수 감소량을 min-max scaling 하여 상대적인 중요도를 알 수 있다.

- 1) B개 tree에 대해 OOB error를 구한다.
- 2) OOB 데이터의 특정 변수를 선택한 후 그 변수의 값들을 재조합 (permutation)한다. (값들의 위치를 서로 무작위로 바꾼다.)
- 3) 그 후에 OOB error를 다시 구하고 원래 OOB error와의 차이를 구한다. 차이가 클수록 중요한 변수이다.

m개 tree에 대해 OOB error를 구한다.

OOB 데이터의 특정 변수를 선택한 후 그 변수의 값들 을 재조합(permutation)한 다

그 후에 OOB error를 다시 구하고 원래 OOB error와 의 차이를 구한다.

 $d_1, ..., d_m$ 의 평균 \bar{d} 가 한 변수의 중요도가 된다.

3. Stacking(= Meta Ensemble)

서로 다른 모델들을 조합해서 최고의 성능을 내는 모델을 생성한다.

-> 모델 간의 장점은 취하고 단점은 상호 보완

SVM, Random Forest, KNN 등 다양한 알고리즘 사용 가능하다.

하나의 예측 모델 계층 위에 또 하나의 모델이 설정된다.

- -> 하위모델은 training set으로만 분석
- -> 상위계층의 모델은 하위 단계를 거쳐서 도출된 결과들을 토대로 결론을 도출한다.

