Japanese Patent Laid-open No. HEI 4-105819 A

Publication date: April 7, 1992

Applicant : Mitsubishi Denki Kabushiki Kaisha

Title: Electric Discharge Machining Apparatus

5

10

15

20

25

Figs. 4 and 5 depict a configuration, operation, and current waveforms of the conventional art shown in Japanese Utility Model Publication No. S57-33950. In Fig. 4, a reference numeral 1 represents an electrode, a reference numeral 2 represents a workpiece, a reference numeral 3 represents a controller, a reference numeral 4 represents a pulse generator, reference signs B_1 and B_2 represent a direct-current power supply, reference signs S_1 and S_2 represent a switching element, a reference sign L_1 represents a coil, reference signs D_1 and D_2 represent a first diode and a second diode, respectively, and a reference sign R_1 represents a current detecting unit. In Fig. 5, the signs S_1 and S_2 represent on/off operations of the switching elements S_1 and S_2 respectively, the sign L_1 represents current passing through the coil L_1 , the sign L_1 represents an upper limit value of the current, and the sign L_1 represents a lower limit value of the current.

The conventional apparatus has the above-described configuration, and the operation of the conventional apparatus will be described below. (1) The first diode D_1 , the second diode D_2 , and the direct-current power supplies S_1 and S_2 are arranged so as to provide a current path through a main circuit that includes at least the direct-current power supplies B_1 and B_2 , the switching element S_1 , the coil L_1 , a machining gap, and the switching element S_2 is turned on and the switching element S_2 is

turned on.

5

10

15

20

25

- (2) The first diode D_1 , the second diode D_2 , and the direct-current power supplies S_1 and S_2 are arranged so as to provide the current path through a first auxiliary circuit that includes at least the direct-current power supply B_2 , the switching element S_1 , the coil L_1 , and the diode D_2 , when the switching element S_1 is turned on and the switching element S_2 is turned off.
- (3) The first diode D_1 , the second diode D_2 , and the direct-current power supplies S_1 and S_2 are arranged so as to provide the current path through a second auxiliary circuit that includes at least the diode D_1 , the coil L_1 , the machining gap, and the switching element S_2 , when the switching element S_1 is turned off and the switching element S_2 is turned on.
- (4) The first diode D_1 , the second diode D_2 , and the direct-current power supplies S_1 and S_2 are arranged so as to provide the current path through a third auxiliary circuit that includes at least the diode D_1 , the coil L_1 , the diode D_2 , and the direct-current power supply B_1 , when the switching element S_1 is turned off and the switching element S_2 is turned off.

Furthermore, the controller (3) that controls the switching element S_1 so as to maintain the current passing through the coil L_1 at a constant value is provided.

When the switching element S_2 is turned from the on state to the off state, the current passing through the machining gap flows instantly out of the main circuit and back to the first auxiliary circuit or the third auxiliary circuit, so that the current waveform having a steep falling edge can be obtained. When the switching element S_2 is turned from the off state to the on state, the current passing through the first auxiliary circuit or the third auxiliary circuit flows

instantly into the machining gap, so that the current waveform having a steep rising edge can be obtained.

Figs. 4, 5 and Figs. 6 to 9 are diagrams of different conventional examples.

5

Fig. 4

First auxiliary circuit

Second auxiliary circuit

Third auxiliary circuit

- 10 Main circuit
 - 4 Pulse generator

199 日本国特許庁(JP)

⑪特許出願公開

[®] 公開特許公報(A) 平4-105819

®Int. Cl. 5

識別記号

庁内整理番号

❸公開 平成4年(1992)4月7日

B 23 H H 03 K 1/02 3/53

7908-3C 8221-5 J В S

> 審査請求 未請求 請求項の数 1 (全8頁)

会発明の名称

放電加工装置

②符 頭 $\Psi 2 - 223470$

22出 平 2 (1990) 8 月24日 蹥

個発 者 松 浩

愛知県名古屋市東区矢田南5丁目1番14号 三菱電機株式

会社名古屋製作所内

の出 頭 三菱電機株式会社 人

東京都千代田区丸の内2丁目2番3号

個代 理 弁理士 大岩 増雄 外2名

1. 発明の名称

放電加工裝置

2. 特許請求の範囲

電優と被加工物との加工間隙に放電を発生させ て上記被加工物を加工する放電加工装置において、 電源と、上記電源から上記加工間隙への加工電流 を給断制御するスイッチング手段と、上記スイッ チング手段と上記加工間隙間に接続されると共に インダクタンス素子と上記加工電流を検出する加 工電流検出手段の直列接続体を含む構成体と、上 記加工電流の電流波形形状信号を出力する電流形 状信号発生手段と、上記加工電流検出手段から出 力される信号と一定周期の基準波形出力手段から 出力される信号を比較し、その結果により上記ス イッチング手段を制御する制御手段を具備する放 電加工装置。

3. 発明の詳細な説明

〔産製上の利用分野〕

本発明は、放電加工装置に係り、特に加工電流

を波形制御する装置に関するものである。

〔従来の技術〕

この種の従来装置として、例えば実公昭57~ 33950号公報、特公昭62-27928号公 報に開示されたものがある。

寒公昭57-33950号公報に開示されたも のは、エネルギー貯蔵装置としてインダクタンス 素子を用い、スイッチング素子をON/OFF制御する ことにより、インダクタンス素子に流れる電流を 所定値に制御する技術に関するものである。

また、特公昭62-27928号公報に開示さ れたものは、任意の形状の加工電流波形を出力す るものである。

第4回、第5回は、上記実公昭57-3395 0号公報に示された従来技術の構成とその動作並 びに電流波形を示すものである。第4図において、

- (1) は質極、(2) は被加工物、(3) は制御装置、
- (4) はバルス発生装置、 B 、 B 。 は 直流 雷源 。
- Si、Siはスイッチング素子、し、はコイル、
- D,、Dz は鮮し及び第2のダイオード、R,は

(2)

電流検出手段をそれぞれ示す。第5図においてS」、S」は、それぞれスイッチング素子S」、S」のON/OFF動作を示し、またI」はコイルL」を流れる電流、I」はその電流の上限値、I」はその下限値をそれぞれ示す。

従来装置は上記のように構成されており、次に その動作を説明する。

第1のダイオードD」、第2のダイオードD。および直流電源B」、B。は、

②スイッチング素子S」がON、かつスイッチング 素子S」がONしているとき、少なくとも直流電源 B」、B』、スイッチング素子S」、コイルし、、 加工間隙、スイッチング素子S」からなる主回路 中に、

②スイッチング素子 S , が O N 、かつスイッチング 素子 S , が O F F しているとき、少なくとも直流電 源 B , 、スイッチング素子 S , 、コイルし、およ びダイオード D , からなる第 1 の補助回路中に、 ③スイッチング素子 S , が O F F 、かつスイッチン グ聚子 S , が O N しているとき、少なくとも グイオ

(3)

9 2 8 号公報に開示された従来技術の構成、動作及び電流波形を示すもので、図中同一符号は、同一又は相当するものを示す。

この第6図において、(100) は包絡線発生装置で、上限包絡線(16)と、下限包絡線(17)を出力する。(200) は比較装置、(300) はドライブ回路、(21)は電流検出信号、(112)、(113) は、それぞれ包絡線発生装置(100) の上限包絡線出力、下限包絡線出力、(31)はスイッチング業子S」の駆動信号を示している。

第7図(a) ~(c) は、電流液形の包絡線を説明 するもので、(16)は上限包絡線、(17)は下限包絡 線をそれぞれ示す。

又、第8図は、比較装置 (200) の詳細を説明するもので、 [23]、 (24)は比較器、 (25)はフリップフロップである。比較器 (23)、 (24)は、信号線 (112) 、 (113) を介して上限包絡線信号 (16)、下限包絡線信号 (17)を受信し、環流校出手段 R, からコイルし、に流れる電流の電流検出信号 (21)も、この 2 つの比較器 (23) (24)に供給され、それぞれ

ードDı、コイルLı、加工間隙およびスイッチング素子Sıからなる第2の補助回路中に、

③スイッチング素子S」がOFF、スイッチング素子S。がOFF しているとき、少なくともダイオードD。、コイルし。、ダイオードD。および痕流電源B。からなる第3の補助回路中に、

それぞれ電流路を与えるように配列されており、またコイル L 、に流れる電流を所定値に維持するようにスイッチング素子 S 、を制御する制御装置(3) が設けられている。

スイッチング表子S。がONからOFF 状態になると、加工間隙に流れていた電流は、瞬時に第1の補助回路を遠流するため、立ち下がりの急峻な電流波形を得ることができ、またスイッチング素子S。が、OFF からON状態になると、第1の補助回路または第3の補助回路を遠流していた電流が、瞬時に加工間隙に流れ込むので、立ち上がりの急峻な電流波形を得ることができる。

又、第6図~第9図は、前記特公昭62-27 (4)

の包絡線信号と比較される。電流検出信号 (21) が下限包絡線信号 (17) のレベルまで降下すると比較器 (24) は、その出力線路 (241) を介して次段のフリップフロップ (25) に信号を供給し、フリップフロップ (25) に信号を供給し、フリップフロップ (25)をセット状態を保持する。この結果、出力線 (22) には信号が現れ、この信号はドライブ回路 (300) により増幅されて、スイッチング素 四路 (300) により増幅されて、スイッチング素 路に接続する。加工電流の大きさに従って、電流機 出行)の大きさは増大し、そのレベルは下限包絡線 (17) のレベル以下に落ちることはない。

次に、電波検出信号 (21)が上限包絡線信号 (16)のレベルまで上昇すると、比較器 (23)はその出力線路 (231)を介してフリップフロップ (25)をリセットし、次にセットされるまでリセット状態を保持する。その結果スイッチング素子 S. は、0FFの状態となり直流電源 B. を放電加工回路から分離する。その時流れていた電流は、遮流電源 B. を経由せず、ダイオード D. を経由して電流検出

手段R・、コイルし、、加工間隙と循環し、加工電流の大きさに従った電流検出倡号 (21)が上限包絡線信号 (16)を越えることはない。

以上のように、比較装置 (200) は加工ギャップの加工電流と上限包絡線 (16)、下限包絡線 (17)を比較し、その出力信号によりスイッチング素子 S 。を ON/OFF制御し、加工電流を包絡線 (16) (17)の間に納めるよう制御する。

放電加工回路におけるスイッチング素子S」の ON/OFFは、1つの加工パルスの周期中多数回実施 される。

第9図は、加工電流波形と、スイッチング繋子 S. のON/OFFスイッチング動作を示す。

上記2つの従来技術の特徴は、以下の通りである。

① 電流制限抵抗を用いないので、抵抗部のジュール熱による発熱がない。

②パルス発生器のための供給電圧、および加工ギャップにおける動作電圧に左右されない加工電液 値を得ることができ、エネルギーの定常性が維持

(7)

①上限包絡線、下限包格線の2つの基準信号が必要である。

②加工電流は、上限包絡線と、下限包絡線の間に 収まるように制御されるため、必然的に2つの包 絡線の幅に相当する電流リップルを生する。

③急峻な電流の立ち上がり、立ち下がり特性をもち、かつ任意の形状の電流波形を得ることが出来ない。

本発明は上記従来技術の課題を解決することを目的としたものであり、

①1つの電流基準信号により電流波形制御をおこない、上限包格線、下限包格線の2つの基準信号を必要としない。

②電流リップルを低減する。

③急酸な電流の立ち上がり、立ち下がり特性をもち、かつ任意の形状の電流波形を得る。

放電加工装置を提供するものである。

[課題を解決するための手段]

本発明に係る放電加工装置は、電源から加工間隙への加工電流を給断制御するスイッチング手段

される。また加工ギャップに短絡が存在する場合でも、加工電流値は上昇することはないため、電力スイッチにおける電力消費は短絡時にも大きくならない。

③ 実公昭 5 7 - 3 3 9 5 0 号公報に開示の従来例では、急峻な電流の立ち上がり、立ち下がり特性を得ることができる。

④特公昭62-27928号公報に開示の従来例では、任意形状の加工電流波形を得ることができる。

但し、実公昭57~33950公報に開示の従来例のように、コイルし、と加工間隙を分離するスイッチング素子Sェと、スイッチング素子Sェを OFF にした時に極間に流れていた電流を退流させるダイオードDェを持たないので、急峻な電流の立ち上がり、立ち下がり特性を得ることは出来ない。

[発明が解決しようとする課題]

上記説明の従来例に開示された技術には以下の課題がある。即ち、

(8)

と、上記スイッチング手段と上記加工間隙間に接続されると共に、インダクタンス素子と上記加工電流を検出する加工電流検出手段の直列接続体を含む構成体と、上記加工電流の電流波形形状信号を出力する電流形状信号発生手段と、上記加工電流検出手段から出力される信号と一定周期の基準波形出力手段から出力される信号を比較し、その結果により上記スイッチング手段を制御する制御手段を備えたものである。

[作用]

加工電流検出手段から出力される信号と、電流波形の形状信号を比較する比較手段から出力される信号と、一定周期の基準波形出力手段から出力される信号を比較した結果によりスイッチング手段を制御する。

〔発明の実施例〕

第1 図は、本発明の一実施例を示す図で、図中、(101) は、電流形状信号(114) を出力する電流形状信号発生装置、(201) は、一定周期 P W M (バルス幅変調) 制御装置である。

(9)

第2図は、第1図の一定周期PWM(バルス幅変調)制御装置(201)の詳細を説明するもので、(202)は、電流形状信号(114)と電流検出手段R,の出力信号(21)の差信号(203)を検出する減算手段、(204)は増幅器、(205)は積分要素、(206)は増幅器(205)の出力信号、(207)は一定周期の基準三角波形出力手段、(208)は一定周期を準三角波形、(209)は比較器である。

本発明の一実施例装置は上記のように構成され ており、次にその動作を説明する。

電流形状信号発生装置(101)は、電流形状信号(114)を出力する。一定周期 P W M 制御装置(201)において、減算手段(202)は、電流形状信号(114)と電流検出手段 R 、の出力信号(21)の差信号(203)を増幅し、信号(206)を出力する。比較器(209)は、増幅器(204)の出力信号(206)と一定周期基準三角波形信号(208)とを比較し、出力信号(206)が一定周期基準三角波形信号より「大」の間、スイッチング器子 S 、を ONにする信号を出力し、出力

態になると、加工間隙に流れていた電流は、瞬時にダイオートD。を含む前述第1の補助回路または、第3の補助回路に退流するため、急峻な電流の立ち下がり特性を示す。また、スイッチング素子S。が、OFF からON状態になると、第1の補助回路に退流していた電流が、瞬時に加工間隙に流れるため急峻な電流の立ち上がり特性を示す。

(111)

[発明の効果]

以上のように本発明によれば、エネルギー貯蔵 装置としてインダクタンス素子を用い、一定周期 のパルス幅変調でスイッチング素子をON/OFF制御 することにより、インダクタンス素子に流れる電 流を、電流形状信号に追値するように制御を行な うので、以下効果が得られる。

- ① 電流制限抵抗を用いないので、抵抗部のジュール熱による発熱がない。
- ②パルス発生器のための供給電圧、および加工ギャップにおける動作電圧に左右されない加工電流 値を得ることができ、エネルギーの定常性が維持

信号 (206) が一定周期基準三角波形信号より「小」の間、スイッチング素子S、を 0FF にする信号を出力し、即ち、スイッチング素子S、を バルス幅変調により 0N/0FF制御し、電流を電流形状信号に遺値制御する。この電流のフィードバックループにおいて、増幅器 (204) は積分要素 (205) を含んでおり、そのため低減ゲインが十分高いので、電流形状信号 (114) と電流検出手段 R、の出力信号(21)の差信号 (203) は十分小さくなるように制御される。

第3図は、一定周期PWM制御装置 (201) の動作と、電流波形、タイミングを示す図である。 I ***, は加工間隙に流れる電流波形、 I **はコイルし、に流れる電流波形、 I ***はスイッチング素子 S ** が OFF の時にダイオード D ** を返流する電流波形である。ここで、スイッチング素子 S ** は、加工パルスの期間を制御するパルス発生器 (4) により制御されている。コイルし、に流れる電流 I *** は、上記説明により、電流形状 信号 (1:4) に追値制御する。スイッチング器子 S ** が ONから OFF 状

される。また、加工ギャップに短絡が存在する場合でも、加工電流値は上昇することはないため、電力スイッチにおける電力消費は短絡時にも大きくならない。

- ③ 1 つの電流基準信号により電流波形制御をおこない、上限包絡線、下限包絡線の2 つの基準信号を必要としない。
- ④電流リップルを低減する。
- ⑤急娘な電流の立ち上がり、立ち下がり特性をもち、かつ任意の形状の電流波形を得る。

放電加工において、急峻な電流立ち下がり特性は、 休止時間を短く設定出来る効果により、加工時間 を短縮することができ、急峻な前縁と正の勾配を 持つ電流波形が、銅電極の低消耗特性を改善する ことは、すでに認められている。

本発明は、上記①~⑤の効果により、放電加工特性を改善するとともに、安価で、発熱の極めて少ない放電加工装置を提供することができる。

4. 図面の簡単な説明

第1図は本発明の一実施例を示す図、第2図は

(14)

(13)

第1図中に示す一定商期バルス幅変調制御装置の詳細を示す図、第3図は第2図に示す一定周期バルス幅変調制御装置の動作と電流波形並びにタイミングを示す図、第4図~第5図及び第6図~第9図は夫々異なる従来例を示す図である。

・図中、(1) は電極、(2) は被加工物、(4) はバルス発生装置、(101) は電流形状信号発生装置、(201) は一定周期パルス幅変調制御装置、(300) は増幅器、B」、B。は直流電源、S」、S。はスイッチング案子、L」はコイル、D」、D。はダイオード、R」は電流検出手段である。

なお、図中、同一符号は同一、又は相当部分を 示す。

代理人 大岩增雄

(15)

第 / 図

第 2 図

第 4 図

第 5 図

