Name **Date**

Directions: Complete as many problems as you can in the 30 minutes allotted to you. No calculators! Figures are not drawn to scale. Do not assume any pair of line segments are congruent, parallel, or perpendicular unless specifically stated. You may assume all lines that appear straight are straight. Use 3.14 for π when necessary.

1. What is the perimeter of the following figure? Assume all consecutive sides to be perpendicular.

- (A) 27
- **(B)** 50
- (C) 54
- **(D)** 57
- **(E)** 60

2. If the area of a circle is 36π , find the circumference.

- (A) 3π
- (\mathbf{B}) 6π
- (C) 12π
- **(D)** 18π
- **(E)** 324π

3. If $\overline{\text{EF}} \perp \overline{\text{FH}}$, $m \angle \text{EFG} = (17x)^{\circ}$, and $m \angle \text{GFH} = (13x)^{\circ}$, find the value of x.

(A) 2

- **(B)** 3
- **(C)** 4
- **(D)** 5
- **(E)** 6

4. If $m\angle 1 = d^{\circ}$, $m\angle 2 = 50^{\circ}$, and $m\angle 3 = 80^{\circ}$, find d.

- (**A**) 110
- **(B)** 115
- (C) 120
- **(D)** 125
- **(E)** 130

5. Which fraction has the smallest value?

(B)
$$\frac{m\angle 3 + 91^{\circ}}{2}$$

(A) $\frac{m\angle 1+91^{\circ}}{2}$ (B) $\frac{m\angle 3+91^{\circ}}{2}$ (C) $\frac{m\angle 1+m\angle 2+m\angle 3+91^{\circ}}{4}$ (D) $\frac{m\angle 1+m\angle 3+91^{\circ}}{3}$ (E) $\frac{m\angle 1+m\angle 2+m\angle 3}{3}$

6. If $l_1 || l_2$, $l_2 \perp l_3$, and each line lies in the same plane, then

- **(A)** $l_1 || l_3$ **(B)** $l_1 \perp l_3$

- (C) $l_2 || l_3$ (D) l_1 and l_3 are skew (E) l_1 and l_2 are skew

7. If X is the midpoint of \overline{YZ} and, Y = -10, and Z = 20 find the length of XY.

- (A) -5
- **(B)** 5
- **(C)** 10
- **(D)** 12
- **(E)** 15

- **(A)** 4-2x
- **(B)** 6-2x
- (C) 7-2x
- **(D)** 8-2x
- **(E)** 10 2x

9. A circular pool has a diameter of 30 ft. and is surrounded by a 5 ft. wide deck. What is the total area of the pool and deck in square feet?

- (A) 20π
- **(B)** 40π
- (C) 400π
- **(D)** 1225π
- **(E)** 1600π

10. An angle is 16° more than its complement. Find the angle.

- **(B)** 37°
- **(D)** 53°
- (\mathbf{E}) 61°

11. What is another name for IH?

- (A) IG
- (B) HG
- (C) HI
- **(D)** IJ
- **(E)** JH

12. If AC = 20, find the area of quadrilateral ABCD. Assume $AC \perp EB$.

- (**A**) 10
- **(B)** 12
- (C) 15
- **(D)** 20
- **(E)** 30

13. For $\triangle EFG$, $m\angle G=30^{\circ}$ and $\angle F$ is an obtuse angle. Which of the following best describes $\angle E$?

- $(A) < 60^{\circ}$
- **(B)** $> 60^{\circ}$
- $(C) < 50^{\circ}$
- **(D)** $> 50^{\circ}$
- $(E) < 40^{\circ}$

14. What is the ratio of the diameter of a circle to its area?

15. The intersection of two planes is a

- (A) line
- (B) point
- (C) midpoint
- (D) segment
- (E) ray

through any two points. 16. There is exactly one_

- (A) plane
- (B) ray
- (C) point
- (D) line
- (E) angle

17. Find the area of the following figure. Assume all pairs of consecutive sides to be perpendicular.

- **(A)** 28x + 6
- **(B)** 42x
- (C) $42x^2$
- **(D)** 48x 6
- **(E)** $48x^2 6$

10	m . 1: . 1				
	Two acute adjacent angle (A) always	(B) usually	ementary. (C) sometimes	(D) seldom	(E) never
	(A) always	(b) usually	(C) sometimes	(D) seldolli	(E) never
19.	If $CE = 12$, $ED = 12$, and	$\overline{BA} \perp \overline{CD}$, which of the f	following, A through D, ca	annot be proven true?	
	$C \xrightarrow{\begin{array}{c} B \\ \\ \\ \\ A \end{array}} D$			1	
	(A) \overline{BA} bisects \overline{CD}	$(\mathbf{B}) \mathbf{A}\mathbf{B} - \mathbf{B}\mathbf{E} = \mathbf{A}\mathbf{E}$	(C) \overline{CD} is a \perp bisector	(D) $CE = \frac{1}{2}CD$	(E) all statements
				2	are true
20.	What special name does	\overline{AB} have if $CB = DB$?			
	$C \xrightarrow{B} D$				
	(A) median	(B) altitude	(C) \perp bisector	(D) angle bisector	(E) no names apply
21.	What is the ratio of 11 ho	ours, 59 minutes, and 60 se	econds to one week?		
	(A) $\frac{1}{28}$	(B) $\frac{1}{14}$	(\mathbf{C}) $\frac{1}{\mathbf{C}}$	(D) $\frac{1}{7}$	(E) $\frac{1}{2}$
	$\frac{1}{28}$	$(\mathbf{b}) \ \frac{1}{14}$	$\frac{12}{12}$	$(\mathbf{D}) \frac{1}{7}$	$\frac{\mathbf{E}}{2}$
22.	If each edge of a cube is t	tripled, how many times gi	reater will the total surface	e area become?	
	(A) 3	(B) 6	(C) 9	(D) 27	(E) 54
23.	If you double the length a	and the width of a rectangle	e, how many times larger	will the area be?	
	(A) 2	(B) 4	(C) 6	(D) 8	(E) 16
24.	If each base of a trapezoio	d is doubled, how many ti	mes larger will the area be	ecome?	
	(A) 2	(B) 4	(C) 8	(D) 12	(E) 16

25. If the radius of a cylinder is tripled and its height is doubled, how many times larger will the volume become?

(C) 12

(D) 18

(E) 36

(B) 9

(A) 6

Name		Date		
	as many problems as you		llotted to you. No calcula	tors! Figures are not
			, parallel, or perpendicula	
			≈ 3.14 for π when necessar	
_	f - 11 and 4, find the coor		- 2.5	- 2.5
(A) -7.5	(B) −5.5	(C) -4.5	(D) −3.5	(E) -2.5
2. Find the radius of a ci	ircle whose circumference	is π inches.		
(A) 0.25 inches	(B) 0.5 inches	(C) 1 inches	(D) 3.14 inches	(E) 3.14×0.5 inches
3. What is the difference measure is a prime numb		use angle whose measure	is a prime number and the	largest acute angle whose
(A) 4	(B) 6	(C) 8	(D) 10	(E) 12
4. If two-thirds of an inc building in yards?	ch equals 1 foot on some b	uilding plans, and the bu	ilding is 36 inches long on p	paper, how long is the actual
(A) 8 yd.	(B) 18 yd.	(C) 24 yd.	(D) 36 yd.	(E) 54 yd.
5. If \overrightarrow{WT} bisects $\angle ZW$ $X = \frac{120^{\circ} \angle ZW}{W}$	7			
$X = \frac{120p}{W}$	Y			
$(\mathbf{A}) \ 30^{\circ}$	$(\mathbf{B}) 40^{\circ}$	(C) 45°	(D) 50°	$(\mathbf{E}) 60^{\circ}$
6. If each edge of the cu (A) 5 times	be is now 5 times greater, (B) 15 times	how many times greater (C) 25 times	will the volume become? (D) 64 times	(E) 125 times
7. If the area of a paralle (A) 4	elogram is 60 and the base (B) 5	is 10, what is the value of (C) 6	of the base minus the height (D) 7	? (E) 8
8. What is the value of <i>x</i>		$\frac{\sqrt{50^{\circ}}(x+4)^{\circ}}{\sqrt{10^{\circ}}}$		
(A) 76	(B) 80	(C) 84	(D) 96	(E) 104
9. The radius of a cylind	ler is 2 and the height is 5.	If you triple the radius a	nd double the height, what w	will the new volume be?
The volume of a cylinder	r equals $\pi r^2 h$.			
(A) 20π	(B) 36π	(C) 240π	(D) 360π	(E) 640π
	s are corresponding angles			
(A) 1 and 2	(B) 1 and 3	(C) 3 and 5	(D) 2 and 5	(E) 3 and 4
\mathcal{A}_{l}	, l _o			

11. If $\overline{\text{HI}} \perp \overline{\text{CD}}$, what special	al name does $\overline{\rm HI}$ have?	C	D D	
(A) angle bisector	(B) ⊥ bisector	(C) median	(D) altitude	(E) no names apply
12. If \overline{XY} bisects \overline{VW} at T	and $XY = 60$, find b .	V	$\frac{T/b}{a/a}$ W	

13. The area of a triangle is twice the area of a rectangle. If the height of each is 4 and the base of the rectangle is 6, what is the length of the base of the triangle?

- (**A**) 12
- **(B)** 24
- **(C)** 30
- **(D)** 36
- **(E)** 48

14. If $\triangle GLK \cong \triangle NWT$, which of the following is not necessarily true?

- (A) $\overline{GK} \cong \overline{NT}$
- **(B)** \angle KGL \cong \angle TNW
- (C) $\angle GKL \cong \angle WTN$
- **(D)** $\overline{KL} \cong \overline{TW}$
- (E) $\angle GKL \cong \angle TWN$

15. Equilateral triangles are ______ equiangular.

- (A) always
- (**B**) usually
- (C) sometimes
- (D) seldom
- (E) never

16. Given $v = \frac{4}{3}\pi r^3$, if the radius of a sphere is tripled, how many times larger will the volume become?

(A) 3

- **(B)** 6
- **(C)** 9
- **(D)** 18
- **(E)** 27

17. If $\frac{3}{8}$ of the area of a triangle is 24, what is $\frac{5}{16}$ of the area of the triangle?

- (**A**) 16
- **(B)** 18
- **(C)** 20
- **(D)** 32
- **(E)** 45

18. Find the area of a trapezoid with vertices (3,1),(4,-1),(-3,-1), and (-2,1).

(A) 2

- **(B)** 12
- **(C)** 13
- **(D)** 14
- **(E)** 21

19. The area of a square and a rectangle both equal 36. If the width of the rectangle is 2 less than the side of a square, how much longer is the length of the rectangle than the side of the square?

(**A**) 1

- (\mathbf{B}) 2
- **(C)** 3
- **(D)** 4
- (\mathbf{E}) 5

20. The $m \angle 1 = (6x + 4)^{\circ}$ and the $m \angle 2 = (2x + 32)^{\circ}$. If $l_1 || l_2$, what is the $m \angle 1$?

- $(\mathbf{A}) 7^{\circ}$
- **(B)** 18°
- (**C**) 46°
- **(D)** 112°
- **(E)** 134°

21. Find the value of	$\int_{C} 2 \left[\frac{\pi \left(\frac{C}{2\pi} \right)^2}{r d\pi} \right] - 1 \text{ where C } ($	circumference), r (radius),	and d (diameter) represer	nt the same circle.		
(A) 0	$(\mathbf{B}) \ \frac{1}{2}$	(C) 1	(D) 2	(E) 3		
22. Which is not a cl (A) opposite side (D) diagonals are	•	rams. (B) opposite angles are concept (E) diagonals bisect each	•	C) opposite sides are parall	lel	
_	ckyard, with a width of 100	_	t, contains a circular pool	I with a diameter of 20 feet.		
	ackyard not covered by the packyard (B) 11,262	(C) 11,464	(D) 11,686	(E) 11,937.2		
24. A six sided figure is called a						
(A) octagon	(B) pentagon	(C) heptagon	(D) hexagon	(E) nonogon		
25. 6, 9, and 6 are th	ree sides of what type of tria	ngle?				
(A) scalene	(B) acute	(C) right	(D) isosceles	(E) none		

Di dr	Name Date					
1.	Which property does the f	following equation illustra	te? $x(y+z)+0=(y+z)$	z(x+0)		
	(A) identity	(B) associative (C) commutative	(D) distributive	(E) transitive	
2.	Find the measure of an angle (A) 54°	gle that is 6 more than twi (\mathbf{B}) 56°	ce its complement. (C) 58°	(D) 60°	(E) 62°	
3.	Which is not a characteris (A) opposite sides are par (D) diagonals are congrue	rallel (B) opposite an	ngles are congruent (C) or re perpendicular	diagonals bisect each other	r	
4.	Through a point not on a l (A) I	I. 1 line skew to t	cular to the given line	(D) I and III	(E) II and III	
5.	Which of the following m	ust be true?	3 3 3	77/ 77/ L		
	(A) $\Delta JHI \cong \Delta KML$ (B)	B) $\Delta HJI \cong \Delta MLK$ (C)	$\Delta IHJ \cong \Delta LKM (\mathbf{D}) \Delta$	$HIJ \cong \Delta MKL (E) not e$	nough information	
6.	For ΔWXZ , XY is a med	dian to ZW. Which of the	following does not have to	o be true?		
	(A) $ZY = YW$ (B) $\frac{ZY}{ZZ}$		=		ZY = XY + YW	
7.	If each base of a trapezoid	d is tripled, how many time	es larger will the area beco	ome?		
	$(\mathbf{A}) \ \frac{3}{2}$	(B) $\frac{9}{2}$	(C) 3	(D) 6	(E) 9	
8.	If the radius of a sphere is	tripled, how many times l	larger will the volume of the	ne sphere be? The volume	e of a sphere is $\frac{4}{3}\pi r^3$	
	(A) 3	(B) 9	(C) 12	(D) 27	(E) 36	
9.	If a 4 ft. person casts a 10 (A) 4.4 ft.	ft. shadow, how tall is a p (B) 4.6 ft.	person that casts a 12 ft. sha (C) 4.8 ft.	adow? (D) 5 ft.	(E) 5.2 ft.	
10	. If the perimeter of ΔML	LN is 24, $m\angle L = m\angle N$,	and $LN = 4$, find ML.			
	(A) 8	(B) 10	(C) 12	(D) 14	(E) 16	
11	. Every square is a(A) II	(B) I and II	I. Rhombus(C) I and III	II. Rectangle(D) II and III	III. Parallelogram (E) I, II, and III	
12	. If WXYZ is a parallelogon (A) \overline{WY} and \overline{YX} bisection (D) $\overline{WY} \cong \overline{ZX}$	et each other (B)	ag must always be true?	(C) $\overline{WY} \perp \overline{ZX}$		
13	. If PQRS is a parallelogra	am and $m\angle Q=62^{\circ}$, find	the value of $m\angle P - m\angle F$	R + <i>m</i> ∠S		
	(A) 62°	(B) 118°	(C) 124°	(D) 164°	(E) 174°	
14	. Which sets of numbers re (A) 3, 4, 6	epresents the lengths of th (B) 6, 8, 12	e sides of a right triangle? (C) 9, 12, 16	(D) 4, 8, 10	(E) 12, 16, 20	

15. The area of quadrilateral STQR is 15, SP = 8, and RT = 10. Find QP.

(A) 2

- **(B)** 3
- **(C)** 3.5
- **(D)** 4
- **(E)** 5
- 16. \overline{XY} bisects \overline{VW} at T. What is the value of b if VT = 4a, TW = 8b, XT = 3a, TY = 4b, and XY = 60.
 - **(A)** 6

(B) 7

- (C) 8
- **(D)** 9
- (**E**) 12
- 17. Given $\overline{BD} \perp \overline{AC}$, BD = 16 inches, and the area of ABCD = 40 in², find AC. B Hint: Focus on the area of $\triangle ABC$ and $\triangle ADC$.

- (A) 2.5 in.
- **(B)** 5 in.
- (C) 6 in.
- (**D**) 8 in.
- (E) 12in.
- 18. Find the volume of a right rectangular solid if the width is twice the length, *l*, and the height is twice the width.
 - (A) $4l^3$
- **(B)** $6l^3$
- (C) $8l^3$
- **(D)** $8l^2$
- **(E)** $28l^2$

- 19. If a is the midpoint of 4 and -x, find the coordinate of x.
 - **(A)** 4-2a
- **(B)** 2-2a
- (C) 2a-4
- $(\mathbf{D}) \ \frac{2}{a}$
- $(\mathbf{E}) \ \frac{4}{a}$

- 20. A triangle that has sides of 3, 4, and 6 is what type of triangle?
 - (A) scalene right
- (B) isosceles obtuse
- (C) scalene acute
- (D) isosceles acute
- (E) scalene obtuse
- 21. If A = area of a circle, r = radius, and C = circumference, what does diameter equal?
 - I. $\frac{C}{\pi}$

- II. 2r
- III. $2 \cdot \sqrt{\frac{A}{\pi}}$

- (A) I only
- (B) II only
- (C) I and II
- (**D**) II and III
- (E) I, II, and III

22. The following figure is an equilateral triangle.

- (A) x < y < z
- **(B)** x < z < y
- (C) z < x < y
- **(D)** z < y < x
- **(E)** y < z < x
- 23. The circumference of Circle X is 8 times the circumference of Circle Y. How many times longer will the diameter of Circle X be than the diameter of Circle Y?
 - **(A)** 4

- **(B)** 4π
- **(C)** 7

- **(D)** 8
- (E) 8π

- 24. The interior angle sum of a hexagon is
 - **(A)** 360°
- **(B)** 540°
- (C) 720°
- **(D)** 900°
- **(E)** 1080°
- 25. The interior angle sum of a convex polygon is 18000°. How many sides does the polygon have?
 - (**A**) 98
- **(B)** 100
- **(C)** 102
- **(D)** 1000
- **(E)** 1002

Na	ame	D	Oate		
dr	rections: Complete as marawn to scale. Do not assume all	ıme any pair of line segm	ents are congruent, para	allel, or perpendicular u	
1.	Find the total area of a rig	ht rectangular solid if the d	dimensions are 6, 5, and 4		
	(A) 74	(B) 120	(C) 148	(D) 180	(E) 240
2.	The sum of the number of (A) 13	sides of a hexagon and an (B) 14	octagon equals (C) 15	(D) 16	(E) 17
3.	Find the value of <i>x</i> .				
	x $\sqrt{8}$ x x	$(\mathbf{B}) \sqrt{2}$	(C) $\sqrt{3}$	(D) $2\sqrt{2}$	(E) 4
	(A) 2	(B) $\sqrt{2}$	(C) \\ \(\psi \)	$(\mathbf{D})^{-} \mathbf{Z} \mathbf{V} \mathbf{Z}$	(E) 4
4.	Find the perimeter of the f	Collowing isosceles triangle	2.		
	10	6 10			
	(A) 36	(B) 40	(C) 42	(D) 46	(E) 50
5.	When constructing a circu	ımscribed circle about a tri	angle, need t	to be constructed.	
	(A) 2 diameters	(B) 2 medians	(C) 2 ∠ bisectors	(D) $2 \perp \text{bisectors}$	(E) 2 altitudes
6	How many sides does a co	onvex nolvoon have if the i	interior angle sum is 3 60	∩° 2	
٠.	(A) 16	(B) 18	(C) 20	(D) 22	(E) 24
7	If the sum of two angles is	6.4° and the difference by	otwoon the two engles is 3	36° what is the massure of	f the smallest angle?
	_	(B) 16°			_
	, ,				
8.	What is the ratio of the are r^2	_	_	=	d d represent diameter
	(A) $\frac{r^2}{2}$	(B) $\frac{d}{2}$	(C) $\frac{r}{2}$	(D) $\frac{2}{r}$	$(\mathbf{E}) \ \frac{2}{d}$
_		_	-		
9.	Find the area of a triangle (A) 10	if the base is 4 and the hei	ght is 6. (C) 14	(D) 16	(E) 24
	\ / ·	` /	` /	` / -	\ /

10. Find the value of x.

(**A**) 6

- **(C)** $3\sqrt{2}$
- **(D)** $3\sqrt{3}$
- **(E)** 12

11. Find the positive value of w if the geometric mean between 1 and 9 is w.

(**A**) 3

- **(B)** 3.5
- **(C)** 4
- **(D)** 4.5
- **(E)** 5

12. Which of the following is the largest?

- (A) $\sin x$
- **(B)** $\cos x$
- (C) $\tan y$
- (**D**) $\tan x$
- $(\mathbf{E}) \cos y$

13. The total area of a cylinder is $2\pi rh + 2\pi r^2$. If the diameter is 12 and the height is 8, how much will the total area be?

- (A) 168π
- **(B)** 186π
- (C) 196π
- **(D)** 224π

14. If you change the diameter of a sphere so that the diameter is doubled, by how many times larger will the volume be? The volume of a sphere equals $\frac{4}{3}\pi r^3$.

- (A) 6 times
- (**B**) 8 times
- (**C**) 12 times
- **(D)** 27 times
- **(E)** 64 times

15. If the diameter of a circle is tripled, then the area of the new circle will be how many times greater?

- (C) 9x
- (E) 36x

16. If $\overline{\text{EF}} \perp \overline{\text{FH}}$, $m \angle \text{EFG} = (17x)^{\circ}$, and $m \angle \text{GFH} = (13x)^{\circ}$, find the value of $\sqrt{3x} + 1$.

- **(A)** $\sqrt{3} + 1$
- **(B)** $\sqrt{6} + 1$
- (C) $\sqrt{180} + 1$
- **(D)** 4
- **(E)** 10

17. The total area of a cylinder is $2\pi rh + 2\pi r^2$. If the radius is doubled, by how much will the total area increase?

- (A) $2\pi rh + 4\pi r^2$
- **(B)** $2\pi rh + 6\pi r^2$
- (C) $2\pi rh + 10\pi r^2$
- **(D)** $4\pi rh + 4\pi r^2$
- (E) $4\pi rh + 6\pi r^2$

18. Given $m \angle 1 = 20^{\circ}$ and $m \angle 2 = (150 - 3x)^{\circ}$, express the $m \angle 3$ in terms of x.

- **(A)** $(10+3x)^{\circ}$
- **(B)** $(10-3x)^{\circ}$ **(C)** $(30+3x)^{\circ}$ **(D)** $(30-3x)^{\circ}$ **(E)** $(50+3x)^{\circ}$

(A) $12\sqrt{3}$	(B) 24	(C) $24\sqrt{3}$	(D) $\frac{12}{\sqrt{3}}$	$(\mathbf{E}) \ \frac{24}{\sqrt{3}}$
21. If each edge of the (A) 2 inches	cube is doubled and the vo (B) 4 inches	olume is now 64 in ³ , what (C) 6 inches	t was the original length of (D) 8 inches	the edge of the cube? (E) 16 inches
22. If $m \angle 4 = (2x+2)^{\circ}$, $m \angle 2 = (3x + 3)^{\circ}$, and $m = (3x + 3)^{\circ}$	$\angle 3 = (4x - 14)^\circ$, find $m \angle$	2. Assume $l_1 l_2$.	
4	5/6 l ₁			
12/	l_2			
(A) 21°	$(\mathbf{B}) \ 22^{\circ}$	(C) 63°	(D) 66°	(E) 69°
23. Find the perimeter of triangle that is not one of		ne altitude to the base is 3	and the base is 8. Assume	e the base is a side of the
(A) 16	(B) 18	(C) 20	(D) 22	(E) 24
24. What is the suppler	ment of the smallest obtuse	e angle that is prime?		
(\mathbf{A}) 81°	(B) 83°	(C) 87°	(D) 89°	(\mathbf{E}) 97°
25. Find the length of the	he leg of an isoscoles right	t triangle if the hypotenus	e is 12.	
$(\mathbf{A}) \ 6\sqrt{3}$	(B)	(C) $\frac{6}{\sqrt{2}}$	(D) $\frac{12}{\sqrt{3}}$	$(\mathbf{E}) \ \frac{12}{\sqrt{2}}$

(E) $8\sqrt{2}$

(D) $16\sqrt{2} - 8$

19. If the leg of an isosceles right triangle is 8, how much longer is the hypotenuse than the leg?

(C) 8

20. The longest leg of a 30-60-90 triangle is 12. Which of the following would be equivalent to the length of the hypotenuse?

(B) $8\sqrt{2} - 8$

(A) $8\sqrt{3} - 8$

GEOMETRY TEST 1 ANSWERS

1. E	2. C	3. B	4. E	5. E
6. B	7. E	8. E	9. C	10. D
11. A	12. E	13. A	14. B	15. A
16. D	17. E	18. E	19. C	20. A
21. B	22. C	23. B	24. A	25. D

1.
$$2(8+3+5+4+10)=60$$

2.
$$36\pi = \pi r^2 \rightarrow r = 6, d = 12 \rightarrow C = \pi d = 12\pi$$

3.
$$17x + 13x = 90 \rightarrow x = 3$$

4.
$$m \angle 3 + m \angle 2 = m \angle 1 \rightarrow 80 + 50 = 130$$

5. A = 91; B = 90; C = 90; D is greater than E because
$$91^{\circ} > m \angle 2$$

6.
$$l_1 \perp l_3$$

7.
$$5 - (-10) = 15$$

8.
$$7-(2x-3)=10-2x$$

9.
$$A = \pi r^2 = \pi (20)^2 = 400\pi$$

10.
$$x = 16 + (90 - x) \rightarrow x = 53$$

11.
$$\overrightarrow{IG}$$

12.
$$A_{AABC} - A_{ADC} = A_{ABCD} \rightarrow \frac{1}{2} \cdot 20 \cdot 5 - \frac{1}{2} \cdot 20 \cdot 2 = 30$$

13.
$$m\angle E = 180^{\circ} - (m\angle G + m\angle F) = 180^{\circ} - [30^{\circ} + (90^{\circ} + x^{\circ})] = 150^{\circ} - (90^{\circ} + x^{\circ}) = 60^{\circ} - x^{\circ}$$
 which is an angle less than 60° .

14.
$$\frac{d}{\pi r^2} = \frac{2r}{\pi r^2} = \frac{2}{\pi r}$$

16. line

17.
$$(6x \cdot 8x) - (2 \cdot 3) = 48x^2 - 6$$

- 18. never
- 19. C
- 20. median

21. 11 hr 59 min 60 sec = 12 hours.
$$\frac{12 \text{ hours}}{24 \text{ hours} / \text{day} \times 7 \text{ days}} = \frac{1}{2 \times 7} = \frac{1}{14}$$

22.
$$TA_1 = 6e^2$$
 $TA_2 = 6(3e)^2 = 9(6e)^2 = 9TA_1$

23.
$$A_1 = lw$$
; $A_2 = (2l)(2w) = 4(lw) = 4A_1$

24.
$$A_1 = \frac{1}{2}h(b_1 + b_2); A_2 = \frac{1}{2}h(2b_1 + 2b_2) = 2\left[\frac{1}{2}h(b_1 + b_2)\right] = 2A_1$$

25.
$$V_1 = Bh = \pi r^2 h$$
; $V_2 = Bh = \pi r^2 h = \pi (3r)^2 (2h) = 18\pi r^2 h = 18V_1$

GEOMETRY TEST 2 ANSWERS

1. D	2. B	3. C	4. B	5. A
6. E	7. A	8. A	9. D	10. C
11. D	12. C	13. B	14. E	15. A
16. E	17. C	18. B	19. C	20. C
21. A	22. D	23. D	24. D	25. D

1.
$$\frac{-11+4}{2} = -3.5$$

2.
$$C = \pi d = \rightarrow \pi = \pi d \rightarrow d = 1 \rightarrow r = 0.5$$

3.
$$97 - 89 = 8$$

4.
$$36 \div \frac{2}{3} = 54 \text{ ft.} = 18 \text{ yd.}$$

5.
$$m \angle TWY = \frac{1}{2} \cdot 60^{\circ} = 30^{\circ}$$

7.
$$h = \frac{A}{b} = \frac{60}{10} = 6 \rightarrow b - h = 10 - 6 = 4$$

8.
$$x+4=80 \rightarrow x=76$$

9.
$$V = \pi (6)^2 \cdot 10 = 360\pi$$

10. 3 and 5

11. altitude

12.
$$\begin{cases} a+b=60 \\ a=2b \end{cases} \to 2b+b=60 \to b=20$$

13.
$$A_{\Delta} = 2A_{\text{rect}} \rightarrow \frac{1}{2}b_1 4 = 2 \cdot 6 \cdot 4 \rightarrow b_1 = 24$$

14. E

15. always

16.
$$V_1 = \frac{4}{3}\pi r^3$$
; $V_2 = \frac{4}{3}\pi r^3 = \frac{4}{3}\pi (3r)^3 = 27\left(\frac{4}{3}\pi r^3\right) = 27V_1$

17.
$$\frac{3}{8}A = 24 \rightarrow A = 24 \cdot \frac{8}{3} = 64 \rightarrow \frac{5}{16}A = \frac{5}{16} \cdot 64 = 20$$

18.
$$A = \frac{1}{2}h(b_1 + b_2) = \frac{1}{2} \cdot 2(7+5) = 12$$

19.
$$s^2 = 36 \rightarrow s = 6$$
, therefore $w = s - 2 = 6 - 2 = 4$. $A = lw \rightarrow l = \frac{A}{w} = \frac{36}{4} = 9$. $l - s = 9 - 6 = 3$

20.
$$6x+4=2x+32 \rightarrow x=7 \rightarrow m\angle 1=6.7+4=46^{\circ}$$

21.
$$2\left[\frac{\pi\left(\frac{C}{2\pi}\right)^{2}}{rd\pi}\right] - 1 = 2\left[\frac{\pi\left(\frac{2\pi r}{2\pi}\right)^{2}}{r \cdot 2r\pi}\right] - 1 = 2\left(\frac{\pi r^{2}}{r \cdot 2r\pi}\right) - 1 = 1 - 1 = 0$$

23.
$$lw - \pi r^2 = 100 \cdot 120 - 3.14(10)^2 = 12000 - 314 = 11,686$$

24. hexagon by definition.

25. isosceles by definition.

GEOMETRY TEST 3 ANSWERS

1. C	2. E	3. E	4. E	5. A
6. D	7. C	8. D	9. C	10. B
11. E	12. B	13. A	14. E	15. E
16. A	17. B	18. C	19. A	20. E
21. E	22. D	23. D	24. C	25. C

1. commutative

2.
$$x = 6 + 2(90 - x) \rightarrow x = 6 + 180 - 2x \rightarrow 3x = 186 \rightarrow x = 62$$

- 3. diagonals are perpendicular
- 4. II and III
- 5. $\Delta JHI \cong \Delta KML$
- 6. It cannot be proven true that $m\angle ZXY = m\angle WXY$.
- 7. 3

8.
$$V = \frac{4}{3}\pi (3r)^3 = 27\left(\frac{4}{3}\pi r^3\right)$$

9.
$$\frac{4}{10} = \frac{x}{12} \rightarrow x = 4.8$$

- 10. $2x + 4 = 24 \rightarrow x = 10$
- 11. I. II. and III
- 12. ∠XWZ≅∠XYZ
- 13. $m\angle P m\angle R + m\angle S = 0 + 62^{\circ} = 62^{\circ}$
- 14. 12, 16, and 20

15.
$$Area_{\Delta RST} - Area_{RSTQ} = Area_{\Delta RQT} \rightarrow \frac{1}{2} \cdot 10 \cdot 8 - 15 = \frac{1}{2} \cdot 10 \cdot QP \rightarrow 25 = 5QP \rightarrow QP = 5$$

16.
$$\begin{cases} 3a + 4b = 60 \\ 4a = 8b \end{cases} \to \begin{cases} 3a + 4b = 60 \\ a = 2b \end{cases} \to 6b + 4b = 60 \to b = 6$$

17.
$$40 = \frac{1}{2}h_1b + \frac{1}{2}h_2b \rightarrow 40 = \frac{1}{2}b(h_1 + h_2) 40 = \frac{1}{2}b \cdot 16 \rightarrow b = 5$$

18.
$$V = lwh = l(2l)(4l) = 8l^3$$

19.
$$\frac{4-x}{2} = a \rightarrow x = 4-2a$$

- 20. 3,4,5 is right. Therefore 3,4,6 is obtuse. Also scalene.
- 21. Solving the circumference equation for diameter produces I. II is obviously true. Solving the area equation of a circle for diameter produces III.

22.
$$x-7 = y-6 \rightarrow x = y+1 \rightarrow y < x$$
; $x-7 = z-5 \rightarrow x = z+2 \rightarrow z < x$; $y-6 = z-5 \rightarrow y = z+1 \rightarrow z < y$. $\therefore z < y < x$

23.
$$C_x = 8C_y \rightarrow \pi d_x = 8\pi d_y \rightarrow d_x = 8d_y$$

24.
$$S = (n-2)180^{\circ} = (6-2)180^{\circ} = 720^{\circ}$$

25.
$$S = (n-2)180^{\circ} \rightarrow 18000 = (n-2)180 \rightarrow 100 = n-2 \rightarrow n = 102$$

GEOMETRY TEST 4 ANSWERS

1. C	2. B	3. A	4. A	5. D
6. D	7. A	8. C	9. B	10. A
11. A	12. D	13. A	14. B	15. C
16. D	17. B	18. A	19. B	20. E
21. A	22. D	23. B	24. B	25. E

1.
$$2(6.5+4.5+6.4)=2(30+20+24)=148$$

$$2. 6 + 8 = 14$$

3. Since it is a 45-45-90 triangle, then
$$h = l\sqrt{2}$$
. Therefore $x = \frac{\sqrt{8}}{\sqrt{2}} = 2$

4.
$$6^2 + x^2 = 10^2 \rightarrow x = 8 \rightarrow \text{base} = 2x = 16 \rightarrow \text{perimeter} = 10 + 10 + 16 = 36$$

5. 2 perpendicular bisectors

6.
$$3600 = (n-2)180 \rightarrow n-2 = 20 \rightarrow n = 22$$

7.
$$\begin{cases} x + y = 64 \\ x - y = 36 \end{cases} \to 2x = 100 \to x = 50, \ y = 14$$

$$8. \quad \frac{\pi r^2}{2\pi r} = \frac{r}{2}$$

9.
$$A = \frac{1}{2}bh = \frac{1}{2} \cdot 4 \cdot 6 = 12$$

10.
$$h = 2s = 2 \cdot 3 = 6$$

11.
$$\frac{1}{w} = \frac{w}{9} \to w^2 = 9 \to w = \pm 3$$
. Therefore 3.

13.
$$2\pi \cdot 6 \cdot 8 + 2\pi \cdot 36 = 96\pi + 72\pi = 168\pi$$

14. If the diameter is doubled, then the radius is doubled. Therefore
$$V = \frac{4}{3}\pi(2r)^3 = \frac{4}{3}\pi(8r^3) = 8\left(\frac{4}{3}\pi r^3\right)$$

15. When the diameter is tripled, the radius is also tripled. Therefore $A = \pi r^2 = \pi (3r)^2 = 9\pi r^2$.

16.
$$17x + 13x = 90 \rightarrow x = 3 \rightarrow \sqrt{3x} + 1 = 3 + 1 = 4$$

17.
$$A_1 - A_2 = 2\pi (2r)h + 2\pi (2r)^2 - (2\pi rh + 2\pi r^2) = 4\pi rh + 8\pi r^2 - 2\pi rh - 2\pi r^2 = 2\pi rh + 6\pi r^2$$

18.
$$m \angle 1 + m \angle 2 + m \angle 3 = 180^{\circ} \rightarrow 20 + 150 - 3x + m \angle 3 = 180^{\circ} \rightarrow m \angle 3 = (10 + 3x)^{\circ}$$

19.
$$h = 8\sqrt{2}$$
. Therefore $8\sqrt{2} - 8$

20.
$$l = \sqrt{3}s \to 12 = \sqrt{3}s \to s = \frac{12}{\sqrt{3}}$$
 and $h = 2s = \frac{24}{\sqrt{3}}$

21.
$$v = e^3 \rightarrow 64 = (2e)^3 \rightarrow e = 2$$

22.
$$m \angle 4 + m \angle 2 + m \angle 3 = 180 \rightarrow 9x - 9 = 180 \rightarrow x = 21 \rightarrow m \angle 2 = 66^{\circ}$$

23.
$$10 + 4 + 4 = 18$$

24. The smallest obtuse angle that is prime is 97° . Therefore the supplement of 97° is 83° .

25. For a 45-45-90 triangle, the hypotenuse equals
$$\sqrt{2}$$
 times a leg. $l = \frac{h}{\sqrt{2}} = \frac{12}{\sqrt{2}}$