אשנב למתמטיקה

פתרון ממ"ן 12

שאלה 1

 $A = \{1, \emptyset\}$, $A = \{1, \{1\}\}$ א.יהיו

. בעזרת צומדיים $P(A)\setminus\{A\}$, $P(B)\setminus B$, $P(A)\setminus P(B)$, P(B) , P(A) בעזרת צומדיים

 \pm ב.תהי C קבוצה כלשהי. הוכח או הפרך כל אחת מהטענות הבאות

$$P(C) \cap C = \emptyset$$
 (i)

$$P(C) \cap C \neq \emptyset$$
 (ii)

תשובה

$$P(A) = \{\emptyset, \{1\}, \{\{1\}\}, \{1, \{1\}\}\}\}$$
.

$$P(B) = \{ \emptyset, \{1\}, \{\emptyset\}, \{1, \emptyset\} \}$$

$$P(A) \setminus P(B) = \{\{\{1\}\}, \{1, \{1\}\}\}\}$$

$$P(B) \setminus B = \{\{1\}, \{\emptyset\}, \{1, \emptyset\}\}$$

$$P(A) \setminus \{A\} = \{\emptyset, \{1\}, \{\{1\}\}\}\}$$

$$P(C)=\{\varnothing,\{1\},\{\{1\}\},\{1,\{1\}\}\}$$
 אז $C=\{1,\{1\}\}$ ב. $P(C)\cap C=\{\{1\}\} \neq \varnothing$

ואז
$$P(C) = \{\varnothing, \{1\}\}$$
 אז $C = \{1\}$ ואז (ii)

$$. P(C) \cap C = \{\emptyset, \{1\}\} \cap \{1\} = \emptyset$$

שאלה 2

. יהיו A,B,C יהיו

: הוכח את הטענות הבאות

$$(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C) . \aleph$$

$$A \cap C = \emptyset$$
 אז $A \setminus (B \setminus C) \subseteq (A \setminus B) \setminus C$ ב.אם

הוכח או הפרך את הטענות הבאות:

$$\{\emptyset,A\}\in P(B)$$
 אז $P(A)\subseteq B$ גאם.

$$P(A) \subseteq B$$
 זא $\{\emptyset, A\} \in P(B)$ דא.ד

תשובה

. $(A\setminus C)\cup (B\setminus C)\subseteq (A\cup B)\setminus C$ וש- $(A\cup B)\setminus C\subseteq (A\setminus C)\cup (B\setminus C)$ א. יש להוכיח ש- $(A\cup B)\setminus C\subseteq (A\setminus C)\cup (B\setminus C)$ פיוון ראשון:

 $x \notin C$ -1 ($x \in A$ או $x \in B$) כרן $x \notin C$ -1 וווער $x \in A \cup B$ או $x \in A \cup B$ הווער $x \in A \cup C$ או $x \in A \cup C$ הרוב הערכונו כי $x \in A \cup C$ הרוב הערכונו כי $x \in A \cup C$ הרוב הערכונו כי $x \in A \cup C$ הרוב הערכונו שני:

נניח ש- $(x \notin C - 1 \ x \in A)$ לכן $(x \notin C - 1 \ x \in A)$ או $(x \notin C - 1 \ x \in A)$ לכן $(x \notin C - 1 \ x \in A \setminus C)$ או $(x \notin C - 1 \ x \in A)$ לכן $(x \notin C - 1 \ x \in A)$ ומכאן נובע השוויון הדרוש. $(x \notin C - 1 \ x \in A)$ ומכאן נובע השוויון הדרוש.

. $A \cap C = \emptyset$ -ש. ב. עלינו להוכיח

 $x\in C$ נניח בדרך השלילה כי $X\in C$ אז קיים איבר X כך ש- X וגם $X\in C$ נניח בדרך השלילה כי $X\in C$ וכן $X\in C$ (כך הנחנו!) לכן $X\notin B\setminus C$ אז $X\notin C$ שכן, $X\notin C$ וכן $X\notin C$ ומכאן ש- $X\notin C$ -סתירה להנחה! $X\notin C$ ההנחה ש- $X\notin C$ לא נכונה ולכן $X\in C$ לא נכונה ולכן $X\in C$

- ג. הטענה נכונה. כידוע, לכל קבוצה A מתקיים $A \subseteq A$ וגם $A \subseteq A$ וגם $A \in P(A)$ וגם $A \in B$ ואז, מן ההכלה $P(A) \subseteq B$ נקבל כי $A \in B$ וגם $A \in B$ מכאן ששני איברי $P(A) \subseteq B$ ואז, מן ההכלה $B \subseteq A$ ואז, מן החכלה $B \subseteq A$ נקבל כי $B \in P(A)$ שייכים לקבוצה B ולכן קבוצה זו מוכלת ב- B כלומר $A \subseteq B$ אבל לפי ההגדרה של $A \subseteq B$ כל קבוצה שחלקית ל- $A \subseteq B$ היא איבר של $A \subseteq B$ במילים אחרות, $A \subseteq B$ היא איבר של $A \subseteq B$ במילים אחרות, $A \subseteq B$ היא איבר של $A \subseteq B$ במילים אחרות, $A \subseteq B$ כפי שרצינו להוכיח.
- ד. הטענה לא נכונה. אם A ו- A שייכות ל- A לכן הקבוצות A ו- A שייכות ל- A שייכות ל- A אבל זה לא מבטיח כי A קבוצה חלקית ל- A היא איבר של A (כמו שדרוש לקיום ההכלה אבל זה לא מבטיח כי נפריך את הטענה על-ידי דוגמה נגדית מתאימה.

נבחר למשל $\{\varnothing,A\}\subseteq B$ ו- A אז A ו- A אז A ו- A לכן $A=\{1,2\}$ ולכן $A=\{1,2\}$ ולכן $A=\{1,2\}$, כמו שנתון בשאלה. $\{\varnothing,A\}\in P(B)$

. הטענה מופרכת. $\{1\} \notin B$ אבל $\{1\} \in P(A)$ שכן, $P(A) \subseteq B$ לכן $P(A) = \{\emptyset, \{1\}, \{2\}, A\}$

שאלה 3

 $A=\{2n|n\in\mathbb{N}\}$ א.על קבוצת המספרים הטבעיים הזוגיים אוגיים $A=\{2n|n\in\mathbb{N}\}$

$$x * y = \frac{(x-2)(y-2)}{2} + 2$$
 , $x, y \in A$ לכל

בדוק אלו מהתכונות אשר בהגדרת החבורה מקיימת הפעולה *. נמק כל טענותיך.

ב.פתור את השאלה מסעיף אי בהנחה כי $\{2\} \setminus A = \mathbf{Q} \setminus \{2\}$ היא קבוצת המספרים הרציונליים).

תשובה

א. 1. סגירות - מתקיימת.

A עלינו לבדוק האם לכל $x,y\in A$ מתקיים $x,y\in A$ נבחר $x,y\in A$ לפי הגדרת $x,y\in A$ לכן: $x,y\in A$ קיימים $x,y\in A$ כך ש- $x,y\in A$ לכן: $x,y\in A$

הוא (n-1)(k-1) הוא לכן $k \ge 1$ ו- $n \ge 1$ לכן (k-1)(k-1) הוא (n-1)(k-1) הוא (n-1)(k-1) הוא מספר טבעי, ומכאן ש- n-1(n-1)(n-1)(n-1) הוא מספר טבעי זוגי, ולכן שייך ל- n-1

2. קיבוציות - מתקיימת.

, אכן (x*y)*z = x*(y*z) מתקיים $x,y,z \in A$ נוכיח שלכל

$$(x*y)*z = \left[\frac{(x-2)(y-2)}{2} + 2\right]*z = \frac{\left[\frac{(x-2)(y-2)}{2} + 2 - 2\right](z-2)}{2} + 2$$
$$= \frac{(x-2)(y-2)(z-2)}{4} + 2$$

ומצד שני,

$$x*(y*z) = x*\left[\frac{(y-2)(z-2)}{2} + 2\right] = \frac{(x-2)\left[\frac{(y-2)(z-2)}{2} + 2 - 2\right]}{2} + 2$$
$$= \frac{(x-2)(y-2)(z-2)}{4} + 2$$

3. קיום איבר נטרלי.

נניח ש- e איבר נטרלי ביחס לפעולה * אז, למשל, e שהוכחנו פרים לפעולה e שהוכחנו כאן הוא e - מכאן ש- e ביחס מכאן ש- e ביחס לפעולה . e - e ביחס מכאן ש- e ביחס מכאן מידים מכאן ש- e ביחס מכאן ביחס מכאן מידים מכאן מידים מכאן מידים מכאן מידים מידים

לא קיומו של איבר נטרלי (שכן, יצאנו מן ההנחה ש- e איבר נטרלי), אבל מצאנו שאם לא קיומו של איבר נטרלי אז הוא בהכרח שווה ל- 4. כעת נוכיח ש- 4 איבר נטרלי. אכן, $x \in A$ לכל $A \in A$ לכל $A \in A$

$$x*4 = \frac{(x-2)(4-2)}{2} + 2 = (x-2) \cdot 1 + 2 = x$$

$$x*4 = \frac{(x-2)(4-2)}{2} + 2 = (x-2) \cdot 1 + 2 = x$$

לפיכך x*4=4*x=x ולכן 4 איבר נטרלי.

4. קיום איבר נגדי.

6*x=4 -ש כך $x\in A$ קיים $6\in A$ קיים כי למשל אם נניח כי למשל אם נניח כי לאיבר

עדיין

נקבל כי x=3 כלומר 2(x-2)+2=4 כלומר $\frac{(6-2)(x-2)}{2}+2=4$, וזו סתירה, כי

. לפיכך, תכונת האיבר הנגדי לא מתקיימת. $3 \notin A$

.II. ב סגירות.

נניח ש- $\{2\}$ של חיבור וכפל של מספרים (שכן, תוצאה של חיבור וכפל של מספרים $x*y \neq 2$ שוב מספר רציונליט. לכן, נשאר לבדוק ש- $\{x*y \neq 2\}$ במספר רציונליט. לכן, נשאר לבדוק ש- $\{x*y \neq 2\}$ או ב מספר רציונליט. לכן $\{x*y \neq 2\}$ לכן $\{x*y \neq 2\}$ כלומר $\{x*y \neq 2\}$ או $\{x*y \neq 2\}$ מכאן ש- $\{x*y \neq 2\}$ ומכאן ש- $\{x*y \neq 2\}$ או ביגוד להנחה ש- $\{x*y \neq 2\}$ לכן $\{x*y \neq 2\}$ ומכאן ש- $\{x*y \neq 2\}$ מלומר תכונת הסגירות מתקיימת.

2. קיבוציות.

עבור אהה לזו שעשינו אינו $x,y,z\in \mathbf{Q}\setminus\{2\}$ לכל לכל $x,y,z\in \mathbf{Q}\setminus\{2\}$

3. קיום איבר נטרלי.

.($4 \in \mathbf{Q} \setminus \{2\}$ כמו בסעיף אי מוכיחים כי 4 איבר נטרלי. (ברור כי $\mathbf{Q} \setminus \{2\}$).

x*y=4 כלומר $y\in \mathbf{Q}\setminus\{2\}$ אנו מחפשים x*y=4 כלומר x*y=4 יהי $y=\frac{4}{x-2}$ - על-ידי חילוץ ישר אואר ידי חילוץ ישר ידי $\frac{(x-2)(y-2)}{2}+2=4$

. $y = 2 + \frac{4}{x-2}$ חייב להיות אז נגדי אז נגדי א לאיבר איש לאיבר שאם מה שהוכחנו עד כה הוא ש

x - x - x הוא נגדי $y = 2 + \frac{4}{x - 2}$ כעת נוכיח שאכן

2 -ם חוא שונה (כמנה וסכום של רציונליים) הוא רציונלי. $x \neq 2$ כי מוגדר, מוגדר, מוגדר, כי

 $.2 + \frac{4}{x-2} \in \mathbf{Q} \setminus \{2\}$ לפיכך (כי אם .4 = 0 ואז .4 = 0 ואז

: כמו-כן, מתקיים

$$x*\left(2+\frac{4}{x-2}\right) = \frac{(x-2)\left(2+\frac{4}{x-2}-2\right)}{2} + 2 = \frac{(x-2)\frac{4}{x-2}}{2} + 2 = \frac{4}{2} + 2 = 4$$

. מכאן שלכל $x \in \mathbf{Q} \setminus \{2\}$ קיים נגדי

 \bullet לפעולה ביחס לפעולה $\mathbf{Q} \setminus \{2\}$ היא חבורה ביחס לפעולה