NAME:- SHAURYA PRAKASH SHAH

ROLL:- 001811001025

DEPARTMENT:- INFORMATION TECHNOLOGY

4TH YEAR

MACHINE LEARNING ASSIGNMENT 1

import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns
%matplotlib inline
sns.set()

LOADING IRIS DATASET

iris = sns.load_dataset("iris")
iris.head()

	sepal_length	sepal_width	petal_length	petal_width	species
0	5.1	3.5	1.4	0.2	setosa
1	4.9	3.0	1.4	0.2	setosa
2	4.7	3.2	1.3	0.2	setosa
3	4.6	3.1	1.5	0.2	setosa
4	5.0	3.6	1.4	0.2	setosa

iris['species'].unique()

array(['setosa', 'versicolor', 'virginica'], dtype=object)

iris.describe(include='all')

	sepal_length	sepal_width	petal_length	petal_width	species
count	150.000000	150.000000	150.000000	150.000000	150
unique	NaN	NaN	NaN	NaN	3
top	NaN	NaN	NaN	NaN	virginica
freq	NaN	NaN	NaN	NaN	50

iris.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 150 entries, 0 to 149
Data columns (total 5 columns):
```

#	Column	Non-Null Count	Dtype
0	sepal_length	150 non-null	float64
1	sepal_width	150 non-null	float64
2	petal_length	150 non-null	float64
3	petal_width	150 non-null	float64
4	species	150 non-null	object

dtypes: float64(4), object(1)

memory usage: 6.0+ KB

iris.isnull().sum()

```
sepal_length 0
sepal_width 0
petal_length 0
petal_width 0
species 0
dtype: int64
```

REFACTORING DATASET INTO X AND Y MATRICES

```
X=iris.iloc[:,0:4].values
y=iris.iloc[:,4].values
```

TRANSFORMING LABELS TO NUMERIC CLASSES

```
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
y = le.fit_transform(y)
```

```
#Metrics
```

```
from sklearn.metrics import make_scorer, accuracy_score,precision_score
from sklearn.metrics import classification_report
from sklearn.metrics import confusion_matrix
from sklearn.metrics import accuracy_score ,precision_score,recall_score,f1_score
from sklearn.model_selection import GridSearchCV
#Model Select
from sklearn.model_selection import KFold,train_test_split,cross_val_score
```

from sklearn.model_selection import train_test_split

from sklearn.naive_bayes import GaussianNB,BernoulliNB,MultinomialNB

SPLITTING DATASET INTO TRAIN AND TEST

```
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=0)
```

GAUSSIAN NAIVE BAYES CLASSIFIER

```
gaussian = GaussianNB()
gaussian.fit(X train, y train)
Y_pred = gaussian.predict(X_test)
cm = confusion_matrix(y_test, Y_pred)
accuracy = accuracy_score(y_test,Y_pred)
precision =precision_score(y_test, Y_pred,average='micro')
recall = recall_score(y_test, Y_pred,average='micro')
f1 = f1_score(y_test,Y_pred,average='micro')
print('Confusion matrix for Naive Bayes\n',cm)
print('accuracy_Naive Bayes: %.3f' %accuracy)
print('precision Naive Bayes: %.3f' %precision)
print('recall_Naive Bayes: %.3f' %recall)
print('f1-score_Naive Bayes : %.3f' %f1)
     Confusion matrix for Naive Bayes
      [[16 0 0]
      [ 0 18 0]
      [ 0 0 11]]
     accuracy_Naive Bayes: 1.000
     precision_Naive Bayes: 1.000
     recall Naive Bayes: 1.000
     f1-score Naive Bayes : 1.000
```

GAUSSIAN NAIVE BAYES CLASSIFIER WITH PARAMETER TUNING

```
params = {'var_smoothing': np.logspace(0,-9, num=100)}
gaussian_nb_grid = GridSearchCV(GaussianNB(), param_grid=params, n_jobs=-1, cv=5, verbose=
gaussian nb grid.fit(X train, y train)
Y pred = gaussian nb grid.predict(X test)
     Fitting 5 folds for each of 100 candidates, totalling 500 fits
     [Parallel(n jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.
     [Parallel(n_jobs=-1)]: Done 14 tasks
                                                              0.8s
                                                | elapsed:
     [Parallel(n jobs=-1)]: Done 500 out of 500 | elapsed:
                                                              1.4s finished
cm = confusion_matrix(y_test, Y_pred)
accuracy = accuracy_score(y_test,Y_pred)
precision =precision_score(y_test, Y_pred,average='micro')
recall = recall_score(y_test, Y_pred,average='micro')
f1 = f1 score(y test,Y pred,average='micro')
```

```
print('Confusion matrix for Naive Bayes\n',cm)
print('accuracy_Naive Bayes: %.3f' %accuracy)
print('precision_Naive Bayes: %.3f' %precision)
print('recall_Naive Bayes: %.3f' %recall)
print('f1-score_Naive Bayes : %.3f' %f1)

Confusion matrix for Naive Bayes
  [[16 0 0]
  [ 0 17 1]
  [ 0 2 9]]
  accuracy_Naive Bayes: 0.933
  precision_Naive Bayes: 0.933
  f1-score_Naive Bayes : 0.933
```

MULTINOMIAL NAIVE BAYES CLASSIFIER

```
multinomial = MultinomialNB()
multinomial.fit(X_train, y_train)
Y pred = multinomial.predict(X test)
cm = confusion_matrix(y_test, Y_pred)
accuracy = accuracy score(y test,Y pred)
precision =precision_score(y_test, Y_pred,average='micro')
recall = recall_score(y_test, Y_pred,average='micro')
f1 = f1_score(y_test,Y_pred,average='micro')
print('Confusion matrix for Naive Bayes\n',cm)
print('accuracy_Naive Bayes: %.3f' %accuracy)
print('precision_Naive Bayes: %.3f' %precision)
print('recall Naive Bayes: %.3f' %recall)
print('f1-score_Naive Bayes : %.3f' %f1)
     Confusion matrix for Naive Bayes
      [[16 0 0]
      [ 0 0 18]
      [ 0 0 11]]
     accuracy_Naive Bayes: 0.600
     precision Naive Bayes: 0.600
     recall_Naive Bayes: 0.600
     f1-score Naive Bayes: 0.600
```

MULTINOMIAL NAIVE BAYES CLASSIFIER WITH PARAMETER TUNING

```
params = {'alpha': [0.01, 0.05, 0.1, 0.5, 1.0, 10.0, ],
     }

multinomial_nb_grid = GridSearchCV(MultinomialNB(), param_grid=params, n_jobs=-1, cv=5, ve
multinomial_nb_grid.fit(X_train, y_train)
Y_pred = multinomial_nb_grid.predict(X_test)

Fitting 5 folds for each of 6 candidates, totalling 30 fits
    [Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.
```

```
[Parallel(n_jobs=-1)]: Done 20 out of 30 | elapsed:
                                                                                 0.0s
                                                              0.1s remaining:
     [Parallel(n iobs=-1)]: Done 30 out of 30 | elansed:
                                                             0.1s finished
cm = confusion_matrix(y_test, Y_pred)
accuracy = accuracy_score(y_test,Y_pred)
precision =precision_score(y_test, Y_pred,average='micro')
recall = recall_score(y_test, Y_pred,average='micro')
f1 = f1_score(y_test,Y_pred,average='micro')
print('Confusion matrix for Naive Bayes\n',cm)
print('accuracy_Naive Bayes: %.3f' %accuracy)
print('precision_Naive Bayes: %.3f' %precision)
print('recall_Naive Bayes: %.3f' %recall)
print('f1-score_Naive Bayes : %.3f' %f1)
     Confusion matrix for Naive Bayes
      [[16 0 0]
      [ 0 0 18]
      [ 0 0 11]]
     accuracy_Naive Bayes: 0.600
    precision_Naive Bayes: 0.600
    recall_Naive Bayes: 0.600
     f1-score_Naive Bayes : 0.600
```

BERNOULLI NAIVE BAYES CLASSIFIER

```
bernoulli = BernoulliNB()
bernoulli.fit(X_train, y_train)
Y_pred = bernoulli.predict(X_test)
accuracy_nb=round(accuracy_score(y_test,Y_pred)* 100, 2)
acc_gaussian = round(bernoulli.score(X_train, y_train) * 100, 2)
cm = confusion_matrix(y_test, Y_pred)
accuracy = accuracy_score(y_test,Y_pred)
precision =precision_score(y_test, Y_pred,average='micro')
recall = recall_score(y_test, Y_pred,average='micro')
f1 = f1_score(y_test,Y_pred,average='micro')
print('Confusion matrix for Naive Bayes\n',cm)
print('accuracy_Naive Bayes: %.3f' %accuracy)
print('precision_Naive Bayes: %.3f' %precision)
print('recall_Naive Bayes: %.3f' %recall)
print('f1-score_Naive Bayes : %.3f' %f1)
     Confusion matrix for Naive Bayes
      [[ 0 0 16]
      [ 0 0 18]
      [ 0 0 11]]
     accuracy_Naive Bayes: 0.244
     precision Naive Bayes: 0.244
     recall_Naive Bayes: 0.244
     f1-score Naive Bayes: 0.244
```

BERNOULLI NAIVE BAYES CLASSIFIER WITH PARAMETER TUNING

```
params = {'alpha': [0.01, 0.05, 0.1, 0.5, 1.0, 10.0],
         }
bernoulli_nb_grid = GridSearchCV(BernoulliNB(), param_grid=params, n_jobs=-1, cv=5, verbos
bernoulli nb grid.fit(X train, y train)
Y_pred = bernoulli_nb_grid.predict(X_test)
     Fitting 5 folds for each of 6 candidates, totalling 30 fits
     [Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.
     [Parallel(n_jobs=-1)]: Done 30 out of 30 | elapsed: 0.1s finished
cm = confusion_matrix(y_test, Y_pred)
accuracy = accuracy_score(y_test,Y_pred)
precision =precision score(y test, Y pred,average='micro')
recall = recall_score(y_test, Y_pred,average='micro')
f1 = f1_score(y_test,Y_pred,average='micro')
print('Confusion matrix for Naive Bayes\n',cm)
print('accuracy_Naive Bayes: %.3f' %accuracy)
print('precision_Naive Bayes: %.3f' %precision)
print('recall Naive Bayes: %.3f' %recall)
print('f1-score_Naive Bayes : %.3f' %f1)
     Confusion matrix for Naive Bayes
      [[ 0 0 16]
      [ 0 0 18]
      [ 0 0 11]]
     accuracy_Naive Bayes: 0.244
     precision_Naive Bayes: 0.244
     recall_Naive Bayes: 0.244
     f1-score_Naive Bayes: 0.244
```

from sklearn.tree import DecisionTreeClassifier, plot_tree

GINI DECISION TREE

```
X[3] \le 0.75
                                       gini = 0.664
                                     samples = 105
                                   value = [34, 32, 39]
                                                   X[2] \le 4.95
                            gini = 0.0
                                                   gini = 0.495
                          samples = 34
                                                   samples = 71
                        value = [34, 0, 0]
                                                value = [0, 32, 39]
              X[3] \le 1.65
                                                                                        X[3] \le 1.75
              gini = 0.161
                                                                                        gini = 0.053
                                                                                       samples = 37
              samples = 34
            value = [0, 31, 3]
                                                                                      value = [0, 1, 36]
                           X[1] \le 3.1
gini = 0.375
                                                                           X[3] <= 1.65
gini = 0.375
   gini = 0.0
                                                                                                      gini = 0.0
                                                                                                    samples = 33
 samples = 30
                           samples = 4
                                                                            samples = 4
value = [0, 30, 0]
                                                                                                  value = [0, 0, 33]
                        value = [0, 1, 3]
                                                                          value = [0, 1, 3]
                gini = 0.0
                                        gini = 0.0
                                                                 gini = 0.0
                                                                                          gini = 0.0
                                     samples = 1
value = [0, 1, 0]
                                                                                      samples = 1
value = [0, 1, 0]
              samples = 3
                                                                samples = 3
            value = [0, 0, 3]
                                                              value = [0, 0, 3]
```

y_pred_gini = iris_gini_cf.predict(X_test)

ENTROPY DECISION TREE

```
X[3] <= 0.75
entropy = 1.58
samples = 105
value = [34, 32, 39]
```

entropy = 0.0 samples = 34 $X[2] \le 4.95$ entropy = 0.993

y_pred_entropy = iris_entropy_cf.predict(X_test) V[2] <= 1.02 \[2] \= 5.05 target_names = ["Iris-setosa", "Iris-versicolor", "Iris-virginica"] print("-----") print("Gini:") print(confusion_matrix(y_test, y_pred_gini)) print(classification_report(y_test, y_pred_gini, target_names=target_names)) print("Entropy:") print(confusion_matrix(y_test, y_pred_entropy)) print(classification_report(y_test, y_pred_entropy, target_names=target_names)) ----- Iris Dataset DecisionTree ------Gini: [[16 0 0] [0 17 1] [0 0 11]] precision recall f1-score support Iris-setosa 1.00 1.00 1.00 16 0.94 Iris-versicolor 1.00 0.97 18 Iris-virginica 0.92 1.00 0.96 11 accuracy 0.98 45 0.98 macro avg 0.97 0.98 45 weighted avg 0.98 0.98 0.98 45 Entropy: [[16 0 0] [0 17 1] [0 0 11]] recall f1-score precision support Iris-setosa 1.00 1.00 1.00 16 Iris-versicolor 1.00 0.94 0.97 18 Iris-virginica 0.92 1.00 0.96 11 0.98 45 accuracy

0.98

0.98

0.98

0.98

45

45

DECISION TREE WITH PARAMETER TUNING

macro avg

weighted avg

0.97

0.98

```
param_grid_desci = {
    'max_depth': [2, 3, 5, 10, 20],
    'min_samples_leaf': [5, 10, 20, 50, 100],
    'criterion': ["gini", "entropy"]
}
```

```
classifier_desci_p = DecisionTreeClassifier()
clf = GridSearchCV(classifier desci p, param grid desci)
clf.fit(X_train, y_train)
     GridSearchCV(cv=None, error_score=nan,
                  estimator=DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None,
                                                    criterion='gini', max_depth=None,
                                                    max_features=None,
                                                    max_leaf_nodes=None,
                                                    min_impurity_decrease=0.0,
                                                    min_impurity_split=None,
                                                    min samples leaf=1,
                                                    min samples split=2,
                                                    min_weight_fraction_leaf=0.0,
                                                    presort='deprecated',
                                                    random_state=None,
                                                    splitter='best'),
                  iid='deprecated', n_jobs=None,
                  param_grid={'criterion': ['gini', 'entropy'],
                               'max_depth': [2, 3, 5, 10, 20],
                               'min_samples_leaf': [5, 10, 20, 50, 100]},
                  pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                  scoring=None, verbose=0)
plt.figure(figsize = (20,10))
plot_tree(clf.best_estimator_,
          filled=True)
plt.show()
```

$X[2] \le 2.35$ gini = 0.664

```
y_pred = clf.predict(X_test)
                         value — [57, 52, 55]
print("----- Iris Dataset DecisionTree Parameter-----")
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred, target_names=target_names))
     ----- Iris Dataset DecisionTree Parameter-----
    [[16 0 0]
     [ 0 17 1]
     [0 3 8]]
                              recall f1-score
                    precision
                                                  support
                         1.00
                                  1.00
                                            1.00
        Iris-setosa
                                                       16
    Iris-versicolor
                         0.85
                                  0.94
                                            0.89
                                                       18
     Iris-virginica
                         0.89
                                  0.73
                                            0.80
                                                       11
                                            0.91
                                                       45
           accuracy
                         0.91
                                  0.89
                                            0.90
                                                       45
          macro avg
       weighted avg
                         0.91
                                  0.91
                                            0.91
                                                       45
```

LOADING DIABETES DATASET

```
from sklearn.datasets import load_diabetes
X,y=load_diabetes(return_X_y=True)
df1 = pd.DataFrame(X, columns=["age", "sex", "bmi", "bp", "s1", "s2", "s3", "s4", "s5", "s
df2 = pd.DataFrame(y, columns=["Y"])
diabetes = pd.merge(df1, df2, left index=True, right index=True)
print(diabetes.head())
                                bmi
                                                          s4
                                                                    s5
                                                                             s6
             age
                      sex
                                           bp ...
    0 0.038076 0.050680 0.061696 0.021872 ... -0.002592 0.019908 -0.017646 151.0
    1 -0.001882 -0.044642 -0.051474 -0.026328 ... -0.039493 -0.068330 -0.092204
                                                                                 75.0
     2 0.085299 0.050680 0.044451 -0.005671 ... -0.002592 0.002864 -0.025930
                                                                                 141.0
     3 -0.089063 -0.044642 -0.011595 -0.036656 ... 0.034309 0.022692 -0.009362 206.0
    4 0.005383 -0.044642 -0.036385 0.021872 ... -0.002592 -0.031991 -0.046641 135.0
     [5 rows x 11 columns]
diabetes['sex'].unique()
     array([ 0.05068012, -0.04464164])
diabetes.describe(include='all')
```

	age	sex	bmi	bp	s1	
count	4.420000e+02	4.420000e+02	4.420000e+02	4.420000e+02	4.420000e+02	4.420000e-
mean	-3.634285e- 16	1.308343e-16	-8.045349e- 16	1.281655e-16	-8.835316e- 17	1.327024e
std	4.761905e-02	4.761905e-02	4.761905e-02	4.761905e-02	4.761905e-02	4.761905e
min	-1.072256e- 01	-4.464164e- 02	-9.027530e- 02	-1.123996e- 01	-1.267807e- 01	-1.15613
25%	-3.729927e- 02	-4.464164e- 02	-3.422907e- 02	-3.665645e- 02	-3.424784e- 02	-3.03584
50%	5.383060e-03	-4.464164e- 02	-7.283766e- 03	-5.670611e- 03	-4.320866e- 03	-3.81906

diabetes.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 442 entries, 0 to 441
Data columns (total 11 columns):

Data	COTUIIIIS	(cocar ii coium	115).
#	Column	Non-Null Count	Dtype
0	age	442 non-null	float64
1	sex	442 non-null	float64
2	bmi	442 non-null	float64
3	bp	442 non-null	float64
4	s1	442 non-null	float64
5	s2	442 non-null	float64
6	s3	442 non-null	float64
7	s4	442 non-null	float64
8	s5	442 non-null	float64
9	s6	442 non-null	float64
10	Υ	442 non-null	float64

dtypes: float64(11)
memory usage: 38.1 KB

USING 'SEX' COLUMN AS CLASSIFICATION COLUMN

```
y=diabetes.iloc[:,1].values
X=diabetes.drop('sex', axis=1)
print(X.shape, y.shape)

(442, 10) (442,)
```

X.head()

```
bmi
                                                 s1
                                                                      s3
                                                                                            s5
                                      bp
                                                            52
                                                                                 54
               age
          Ი ᲘՉՋᲘ76
                     0.061606
                                በ በ21ደ72
                                         −∪ ∪√√ンンス
                                                    _N N3/1821 _N N/13/101
                                                                          _Ი ᲘᲘᲔᲜᲘᲔ
                                                                                      0.0000
y = le.fit transform(y)
```

SPLITTING DATASET INTO TRAIN AND TEST

```
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=0)
```

GAUSSIAN NAIVE BAYES

```
gaussian.fit(X_train, y_train)
Y_pred = gaussian.predict(X_test)
cm = confusion_matrix(y_test, Y_pred)
accuracy = accuracy_score(y_test,Y_pred)
precision =precision_score(y_test, Y_pred,average='micro')
recall = recall_score(y_test, Y_pred,average='micro')
f1 = f1_score(y_test,Y_pred,average='micro')
print('Confusion matrix for Naive Bayes\n',cm)
print('accuracy_Naive Bayes: %.3f' %accuracy)
print('precision_Naive Bayes: %.3f' %precision)
print('recall_Naive Bayes: %.3f' %recall)
print('f1-score Naive Bayes : %.3f' %f1)
     Confusion matrix for Naive Bayes
      [[48 26]
      [17 42]]
     accuracy_Naive Bayes: 0.677
     precision_Naive Bayes: 0.677
     recall_Naive Bayes: 0.677
     f1-score_Naive Bayes : 0.677
```

GAUSSIAN NAIVE BAYES WITH PARAMETER TUNING

```
gaussian_nb_grid.fit(X_train, y_train)
Y pred = gaussian nb grid.predict(X test)
cm = confusion_matrix(y_test, Y_pred)
accuracy = accuracy_score(y_test,Y_pred)
precision =precision_score(y_test, Y_pred,average='micro')
recall = recall_score(y_test, Y_pred,average='micro')
f1 = f1_score(y_test,Y_pred,average='micro')
print('Confusion matrix for Naive Bayes\n',cm)
print('accuracy_Naive Bayes: %.3f' %accuracy)
print('precision_Naive Bayes: %.3f' %precision)
print('recall_Naive Bayes: %.3f' %recall)
print('f1-score Naive Bayes : %.3f' %f1)
     Fitting 5 folds for each of 100 candidates, totalling 500 fits
     [Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.
     [Parallel(n_jobs=-1)]: Done 14 tasks
                                                | elapsed:
                                                               1.2s
     Confusion matrix for Naive Bayes
```

```
[[51 23]
[18 41]]
accuracy_Naive Bayes: 0.692
precision_Naive Bayes: 0.692
recall_Naive Bayes: 0.692
f1-score_Naive Bayes : 0.692
[Parallel(n_jobs=-1)]: Done 500 out of 500 | elapsed: 2.4s finished
```

BERNOULLI NAIVE BAYES

```
bernoulli.fit(X_train, y_train)
Y pred = bernoulli.predict(X test)
cm = confusion_matrix(y_test, Y_pred)
accuracy = accuracy_score(y_test,Y_pred)
precision =precision_score(y_test, Y_pred,average='micro')
recall = recall_score(y_test, Y_pred,average='micro')
f1 = f1_score(y_test,Y_pred,average='micro')
print('Confusion matrix for Naive Bayes\n',cm)
print('accuracy_Naive Bayes: %.3f' %accuracy)
print('precision_Naive Bayes: %.3f' %precision)
print('recall_Naive Bayes: %.3f' %recall)
print('f1-score Naive Bayes : %.3f' %f1)
     Confusion matrix for Naive Bayes
      [[51 23]
      [14 45]]
     accuracy Naive Bayes: 0.722
     precision_Naive Bayes: 0.722
     recall_Naive Bayes: 0.722
     f1-score_Naive Bayes : 0.722
```

BERNOULLI NAIVE BAYES WITH PARAMETER TUNING

```
bernoulli nb grid.fit(X train, y train)
Y pred = bernoulli nb grid.predict(X test)
cm = confusion_matrix(y_test, Y_pred)
accuracy = accuracy_score(y_test,Y_pred)
precision =precision_score(y_test, Y_pred,average='micro')
recall = recall_score(y_test, Y_pred,average='micro')
f1 = f1_score(y_test,Y_pred,average='micro')
print('Confusion matrix for Naive Bayes\n',cm)
print('accuracy_Naive Bayes: %.3f' %accuracy)
print('precision Naive Bayes: %.3f' %precision)
print('recall_Naive Bayes: %.3f' %recall)
print('f1-score Naive Bayes : %.3f' %f1)
     Fitting 5 folds for each of 6 candidates, totalling 30 fits
     Confusion matrix for Naive Bayes
      [[51 23]
      [14 45]]
     accuracy Naive Bayes: 0.722
     precision Naive Bayes: 0.722
     recall Naive Bayes: 0.722
     f1-score_Naive Bayes : 0.722
```

```
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers. [Parallel(n_jobs=-1)]: Done 30 out of 30 | elapsed: 0.1s finished
```

SCALING REQUIRED FOR MULTINOMIAL NAIVE BAYES AS NEGATIVE VALUES CANNOT BE SUPPLIED.

```
from sklearn.preprocessing import MinMaxScaler
scaler = MinMaxScaler()
X_train = scaler.fit_transform(X_train)
X_test = scaler.fit_transform(X_test)
```

MULTINOMIAL NAIVE BAYES

```
multinomial.fit(X_train, y_train)
Y_pred = multinomial.predict(X_test)
cm = confusion_matrix(y_test, Y_pred)
accuracy = accuracy_score(y_test,Y_pred)
precision =precision_score(y_test, Y_pred,average='micro')
recall = recall_score(y_test, Y_pred,average='micro')
f1 = f1_score(y_test,Y_pred,average='micro')
print('Confusion matrix for Naive Bayes\n',cm)
print('accuracy_Naive Bayes: %.3f' %accuracy)
print('precision Naive Bayes: %.3f' %precision)
print('recall_Naive Bayes: %.3f' %recall)
print('f1-score_Naive Bayes : %.3f' %f1)
     Confusion matrix for Naive Bayes
      [[59 15]
      [23 36]]
     accuracy_Naive Bayes: 0.714
     precision Naive Bayes: 0.714
     recall Naive Bayes: 0.714
     f1-score Naive Bayes: 0.714
```

MULTINOMIAL NAIVE BAYES WITH PARAMETER TUNING

```
multinomial_nb_grid.fit(X_train, y_train)
Y_pred = multinomial_nb_grid.predict(X_test)
cm = confusion_matrix(y_test, Y_pred)
accuracy = accuracy_score(y_test,Y_pred)
precision =precision_score(y_test, Y_pred,average='micro')
recall = recall_score(y_test, Y_pred,average='micro')
f1 = f1_score(y_test,Y_pred,average='micro')
print('Confusion matrix for Naive Bayes\n',cm)
print('accuracy_Naive Bayes: %.3f' %accuracy)
print('precision_Naive Bayes: %.3f' %precision)
print('recall_Naive Bayes: %.3f' %recall)
print('f1-score_Naive Bayes: %.3f' %f1)
```

```
Fitting 5 folds for each of 6 candidates, totalling 30 fits
Confusion matrix for Naive Bayes
 [[59 15]
 [23 36]]
accuracy_Naive Bayes: 0.714
precision_Naive Bayes: 0.714
recall_Naive Bayes: 0.714
f1-score_Naive Bayes : 0.714
[Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.
[Parallel(n_jobs=-1)]: Done 24 tasks
                                                         0.1s
                                           elapsed:
[Parallel(n_jobs=-1)]: Done 27 out of
                                       30 | elapsed:
                                                         0.1s remaining:
                                                                            0.0s
[Parallel(n_jobs=-1)]: Done 30 out of 30 | elapsed:
                                                         0.1s finished
```

GINI DECISION TREE


```
y_pred_gini = diab_gini_cf.predict(X_test)
```

ENTROPY DECISION TREE

				-
[[44 30] [21 38]]				
	precision	recall	f1-score	support
0	0.68	0.59	0.63	74
1	0.56	0.64	0.60	59
accuracy			0.62	133
macro avg	0.62	0.62	0.62	133
weighted avg	0.62	0.62	0.62	133
Entropy: [[41 33] [18 41]]				
	precision	recall	f1-score	support
0	0.69	0.55	0.62	74
1	0.55	0.69	0.62	59
accuracy			0.62	133
macro avg	0.62	0.62	0.62	133
weighted avg	0.63	0.62	0.62	133

DECISION TREE WITH PARAMETER TUNING

```
classifier_desci_p = DecisionTreeClassifier()
clf = GridSearchCV(classifier_desci_p, param_grid_desci)
clf.fit(X_train, y_train)
     GridSearchCV(cv=None, error_score=nan,
                  estimator=DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None,
                                                    criterion='gini', max_depth=None,
                                                    max features=None,
                                                    max_leaf_nodes=None,
                                                    min_impurity_decrease=0.0,
                                                    min impurity split=None,
                                                    min_samples_leaf=1,
                                                    min_samples_split=2,
                                                    min weight fraction leaf=0.0,
                                                    presort='deprecated',
                                                    random_state=None,
                                                    splitter='best'),
                  iid='deprecated', n_jobs=None,
                  param_grid={'criterion': ['gini', 'entropy'],
                               'max_depth': [2, 3, 5, 10, 20],
                               'min_samples_leaf': [5, 10, 20, 50, 100]},
                  pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                  scoring=None, verbose=0)
plt.figure(figsize = (20,10))
plot tree(clf.best estimator ,
          filled=True)
plt.show()
```

```
X[5] \le -0.005

gini = 0.499

samples = 309

value = [161, 148]
```

gini = 0.459 samples = 157 value = [56, 101] gini = 0.427 samples = 152 value = [105, 47]

```
y_pred = clf.predict(X_test)
print("----- Diabetes Dataset DecisionTree Parameter----")
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred, target_names=target_names))
       ------ Diabetes Dataset DecisionTree Parameter--------
     [[47 27]
     [15 44]]
                  precision
                            recall f1-score
                                                support
                       0.76
                                0.64
                                          0.69
                                                     74
                       0.62
                                0.75
                                          0.68
                                                     59
                                          0.68
                                                    133
        accuracy
                                0.69
                                          0.68
                      0.69
                                                    133
       macro avg
    weighted avg
                      0.70
                                0.68
                                          0.68
                                                    133
```

LOADING BREAST CANCER DATASET

from sklearn.datasets import load_breast_cancer

X,y=load_breast_cancer(return_X_y=True)

```
X.shape
```

(569, 30)

cancer = pd.DataFrame(X)
cancer.describe(include='all')

	0	1	2	3	4	5	
count	569.000000	569.000000	569.000000	569.000000	569.000000	569.000000	569.0000
mean	14.127292	19.289649	91.969033	654.889104	0.096360	0.104341	0.0887
std	3.524049	4.301036	24.298981	351.914129	0.014064	0.052813	0.0797
min	6.981000	9.710000	43.790000	143.500000	0.052630	0.019380	0.0000
25%	11.700000	16.170000	75.170000	420.300000	0.086370	0.064920	0.029
50%	13.370000	18.840000	86.240000	551.100000	0.095870	0.092630	0.061
75%	15.780000	21.800000	104.100000	782.700000	0.105300	0.130400	0.1307
max	28.110000	39.280000	188.500000	2501.000000	0.163400	0.345400	0.4268

SPLITTING DATASET INTO TEST AND TRAIN

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.3,random_state=0)

GAUSSIAN NAIVE BAYES

```
gaussian.fit(X_train, y_train)
Y_pred = gaussian.predict(X_test)
cm = confusion matrix(y test, Y pred)
accuracy = accuracy_score(y_test,Y_pred)
precision =precision_score(y_test, Y_pred,average='micro')
recall = recall score(y test, Y pred,average='micro')
f1 = f1_score(y_test,Y_pred,average='micro')
print('Confusion matrix for Naive Bayes\n',cm)
print('accuracy_Naive Bayes: %.3f' %accuracy)
print('precision Naive Bayes: %.3f' %precision)
print('recall Naive Bayes: %.3f' %recall)
print('f1-score_Naive Bayes : %.3f' %f1)
     Confusion matrix for Naive Bayes
      [[ 57 6]
      [ 7 101]]
     accuracy_Naive Bayes: 0.924
     precision Naive Bayes: 0.924
     recall Naive Bayes: 0.924
     f1-score Naive Bayes: 0.924
```

GAUSSIAN NAIVE BAYES WITH PARAMETER TUNING

```
gaussian_nb_grid.fit(X_train, y_train)
Y pred = gaussian nb grid.predict(X test)
cm = confusion_matrix(y_test, Y_pred)
accuracy = accuracy_score(y_test,Y_pred)
precision =precision_score(y_test, Y_pred,average='micro')
recall = recall_score(y_test, Y_pred,average='micro')
f1 = f1_score(y_test,Y_pred,average='micro')
print('Confusion matrix for Naive Bayes\n',cm)
print('accuracy_Naive Bayes: %.3f' %accuracy)
print('precision_Naive Bayes: %.3f' %precision)
print('recall_Naive Bayes: %.3f' %recall)
print('f1-score Naive Bayes : %.3f' %f1)
     Fitting 5 folds for each of 100 candidates, totalling 500 fits
     [Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.
     [Parallel(n_jobs=-1)]: Done 14 tasks
                                            elapsed:
                                                              0.8s
     Confusion matrix for Naive Bayes
      [[ 57
            6]
      [ 7 101]]
     accuracy_Naive Bayes: 0.924
     precision_Naive Bayes: 0.924
     recall_Naive Bayes: 0.924
     f1-score Naive Bayes : 0.924
     [Parallel(n_jobs=-1)]: Done 500 out of 500 | elapsed: 1.6s finished
```

BERNOULLI NAIVE BAYES

```
bernoulli.fit(X_train, y_train)
Y_pred = bernoulli.predict(X_test)
cm = confusion matrix(y test, Y pred)
accuracy = accuracy_score(y_test,Y_pred)
precision =precision_score(y_test, Y_pred,average='micro')
recall = recall_score(y_test, Y_pred,average='micro')
f1 = f1_score(y_test,Y_pred,average='micro')
print('Confusion matrix for Naive Bayes\n',cm)
print('accuracy_Naive Bayes: %.3f' %accuracy)
print('precision Naive Bayes: %.3f' %precision)
print('recall Naive Bayes: %.3f' %recall)
print('f1-score_Naive Bayes : %.3f' %f1)
     Confusion matrix for Naive Bayes
      [[ 0 63]
      [ 0 108]]
     accuracy_Naive Bayes: 0.632
     precision Naive Bayes: 0.632
     recall Naive Bayes: 0.632
     f1-score Naive Bayes : 0.632
```

BERNOULLI NAIVE BAYES WITH PARAMETER TUNING

```
bernoulli nb grid.fit(X train, y train)
Y pred = bernoulli nb grid.predict(X test)
cm = confusion_matrix(y_test, Y_pred)
accuracy = accuracy_score(y_test,Y_pred)
precision =precision_score(y_test, Y_pred,average='micro')
recall = recall_score(y_test, Y_pred,average='micro')
f1 = f1_score(y_test,Y_pred,average='micro')
print('Confusion matrix for Naive Bayes\n',cm)
print('accuracy Naive Bayes: %.3f' %accuracy)
print('precision_Naive Bayes: %.3f' %precision)
print('recall_Naive Bayes: %.3f' %recall)
print('f1-score Naive Bayes : %.3f' %f1)
     Fitting 5 folds for each of 6 candidates, totalling 30 fits
     Confusion matrix for Naive Bayes
      [[ 0 63]
      [ 0 108]]
     accuracy Naive Bayes: 0.632
     precision Naive Bayes: 0.632
     recall_Naive Bayes: 0.632
     f1-score_Naive Bayes : 0.632
     [Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.
     [Parallel(n jobs=-1)]: Done 30 out of 30 | elapsed: 0.1s finished
```

MULTINOMIAL NAIVE BAYES

```
multinomial.fit(X_train, y_train)
Y_pred = multinomial.predict(X_test)
cm = confusion_matrix(y_test, Y_pred)
accuracy = accuracy_score(y_test,Y_pred)
precision =precision_score(y_test, Y_pred,average='micro')
recall = recall_score(y_test, Y_pred,average='micro')
f1 = f1 score(y test,Y pred,average='micro')
print('Confusion matrix for Naive Bayes\n',cm)
print('accuracy_Naive Bayes: %.3f' %accuracy)
print('precision Naive Bayes: %.3f' %precision)
print('recall Naive Bayes: %.3f' %recall)
print('f1-score_Naive Bayes : %.3f' %f1)
     Confusion matrix for Naive Bayes
      [[ 48 15]
      [ 2 106]]
     accuracy Naive Bayes: 0.901
     precision_Naive Bayes: 0.901
     recall_Naive Bayes: 0.901
     f1-score Naive Bayes: 0.901
```

MULTINOMIAL NAIVE BAYES WITH PARAMETER TUNING

```
multinomial_nb_grid.fit(X_train, y_train)
Y_pred = multinomial_nb_grid.predict(X_test)
cm = confusion_matrix(y_test, Y_pred)
accuracy = accuracy_score(y_test,Y_pred)
precision =precision score(v test, Y pred,average='micro')
https://colab.research.google.com/drive/1cY3h1p8n0ZklwYYxVShVjELgEmIzDdxQ#scrollTo=piKbo1upppJ5&printMode=true
```

```
recall = recall score(y test, Y pred,average='micro')
f1 = f1_score(y_test,Y_pred,average='micro')
print('Confusion matrix for Naive Bayes\n',cm)
print('accuracy_Naive Bayes: %.3f' %accuracy)
print('precision_Naive Bayes: %.3f' %precision)
print('recall_Naive Bayes: %.3f' %recall)
print('f1-score_Naive Bayes : %.3f' %f1)
     Fitting 5 folds for each of 6 candidates, totalling 30 fits
     Confusion matrix for Naive Bayes
      [[ 48 15]
      [ 2 106]]
     accuracy_Naive Bayes: 0.901
     precision Naive Bayes: 0.901
     recall_Naive Bayes: 0.901
     f1-score Naive Bayes: 0.901
     [Parallel(n_jobs=-1)]: Using backend LokyBackend with 2 concurrent workers.
     [Parallel(n_jobs=-1)]: Done 30 out of 30 | elapsed: 0.1s finished
```

GINI DECISION TREE

```
y_pred_gini = bcw_gini_cf.predict(X_test)
ENTROPY DECISION TREE
                                                        value = [6, 12] value = [11, 0]
bcw_entropy_cf = DecisionTreeClassifier(criterion='entropy').fit(X_train, y_train)
plt.figure(figsize = (20,10))
plot_tree(bcw_entropy_cf,
          filled=True)
plt.show()
```

```
print(classification_report(y_test, y_pred_entropy, target_names=target_names))
     ----- Breast Cancer Wisconsin Dataset DecisionTree ------
     Gini:
     [[59 4]
      [11 97]]
                   precision
                               recall f1-score
                                                  support
                        0.84
                                 0.94
                                           0.89
                                                       63
                1
                        0.96
                                 0.90
                                           0.93
                                                      108
                                           0.91
                                                      171
         accuracy
                       0.90
                                 0.92
                                           0.91
                                                      171
        macro avg
                                           0.91
     weighted avg
                       0.92
                                 0.91
                                                      171
     Entropy:
     [[ 60 3]
      [ 8 100]]
                   precision
                              recall f1-score
                                                  support
                0
                       0.88
                                 0.95
                                           0.92
                                                       63
                1
                        0.97
                                 0.93
                                           0.95
                                                      108
                                           0.94
         accuracy
                                                      171
                       0.93
                                 0.94
                                           0.93
                                                      171
        macro avg
     weighted avg
                       0.94
                                 0.94
                                           0.94
                                                      171
```

DECISION TREE WITH PARAMETER TUNING

```
classifier_desci_p = DecisionTreeClassifier()
clf = GridSearchCV(classifier_desci_p, param_grid_desci)
clf.fit(X_train, y_train)
     GridSearchCV(cv=None, error_score=nan,
                  estimator=DecisionTreeClassifier(ccp_alpha=0.0, class_weight=None,
                                                    criterion='gini', max_depth=None,
                                                    max_features=None,
                                                    max leaf nodes=None,
                                                    min_impurity_decrease=0.0,
                                                    min_impurity_split=None,
                                                    min_samples_leaf=1,
                                                    min_samples_split=2,
                                                    min_weight_fraction_leaf=0.0,
                                                    presort='deprecated',
                                                    random state=None,
                                                    splitter='best'),
                  iid='deprecated', n_jobs=None,
                  param_grid={'criterion': ['gini', 'entropy'],
                               'max_depth': [2, 3, 5, 10, 20],
                               'min_samples_leaf': [5, 10, 20, 50, 100]},
                  pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
                  scoring=None, verbose=0)
plt.figure(figsize = (20,10))
plot tree(clf.best estimator ,
          filled=True)
plt.show()
```

X[27] <= 0.142 gini = 0.468 samples = 398 value = [149, 249]

X[20] <= 17.615 gini = 0.147 samples = 263 value = [21, 242] X[22] <= 97.49 gini = 0.098 samples = 135 value = [128, 7]

X[13] <= 35.26 gini = 0.077 samples = 250 value = [10, 240] X[28] <= 0.254 gini = 0.26 samples = 13 value = [11, 2]

gini = 0.49 samples = 7 value = [3, 4] $X[10] \le 0.241$ gini = 0.046 samples = 128 value = [125, 3]

gini = 0.034 samples = 232 value = [4, 228]

weighted avg

gini = 0.444 samples = 18 value = [6, 12] gini = 0.48 samples = 5 value = [3, 2] gini = 0.0 samples = 8 value = [8, 0] gini = 0.444 samples = 6 value = [4, 2] gini = 0.016 samples = 122 value = [121, 1]

```
y_pred = clf.predict(X_test)
print("----- Breast Cancer Wisconsin Dataset DecisionTree Parameter-----")
print(confusion_matrix(y_test, y_pred))
print(classification_report(y_test, y_pred, target_names=target_names))
     ----- Breast Cancer Wisconsin Dataset DecisionTree Parameter-----
     [[ 59
            4]
        5 103]]
                  precision
                              recall f1-score
                                                 support
                       0.92
                                0.94
                                          0.93
               0
                                                      63
                       0.96
                                0.95
                                          0.96
                                                     108
               1
        accuracy
                                          0.95
                                                     171
                       0.94
                                0.95
                                          0.94
                                                     171
       macro avg
```

0.95

171

0.95

0.95

✓ 0s completed at 21:59

×