Recursividade

Prof. Msc. Bruno Brandão

Sumário

1	Contando Formas de Subir Escadarias	2
2	Verificando Palíndromos	3
3	Combinando Cédulas para um Valor Exato	4
4	Contando Permutações de uma String	4
5	Escrevendo Números por Extenso	(

1 Contando Formas de Subir Escadarias

Escreva um programa que encontre o número de formas distintas de subir uma escada com n degraus. É possível dar um passo de um único degrau ou dois degraus.

A entrada será um número inteiro n ($0 \le n \le 10$). A saída deve conter apenas o número total de formas distintas de subir a escada.

Entrada

A entrada contém uma única linha com o número n.

Saída

A saída deve conter uma linha com o número total de formas distintas de subir a escada.

Exemplo

Entrada
2
Saída
2
Entrada
4
4 Saída
_

Explicação dos Exemplos

No primeiro exemplo (2), as formas distintas de subir a escada são 2:

- 1 + 1
- 2

No segundo exemplo (4), as formas distintas são 5:

- 1 + 1 + 1 + 1
- 1 + 1 + 2
- 1 + 2 + 1
- 2 + 1 + 1
- 2 + 2

2 Verificando Palíndromos

Escreva um programa que verifique se uma string s é um palíndromo. Uma string é considerada um palíndromo se ela pode ser lida da mesma forma de trás para frente.

A entrada será uma string *s* de tamanho máximo 100 caracteres, todos minúsculos. A saída deve indicar se a string é um palíndromo ou não.

Entrada

A entrada contém uma única linha com a string s.

Saída

A saída deve conter uma linha indicando "sim"se a string for um palíndromo e "não"caso contrário.

Exemplo

Entra	da				
arara	ì				
Saída					
sim					
Entra	la				
teste					
Saída					
não					
Entrada					
subi	no	onibus			
Saída					
sim					

3 Combinando Cédulas para um Valor Exato

Um caixa eletrônico precisa calcular de quantas formas diferentes é possível entregar um valor exato utilizando as cédulas disponíveis. Cada tipo de cédula possui uma quantidade limitada, e o caixa eletrônico só pode entregar valores que possam ser formados exatamente com as cédulas disponíveis.

Programe o caixa eletrônico escrevendo um programa que determine o número de combinações possíveis para entregar um valor exato.

Entrada

A entrada contém um inteiro v $(1 \le v \le 100)$ representando o valor a ser retirado. A próxima linha contém um número inteiro n $(1 \le n \le 10)$, o número de tipos de cédulas. Na linha seguinte, há n inteiros a_1, a_2, \ldots, a_n $(1 \le a_i \le 100)$ indicando os valores das cédulas disponíveis. Na linha seguinte, há n inteiros q_1, q_2, \ldots, q_n $(0 \le q_i \le 100)$ indicando a quantidade disponível de cada cédula correspondente.

Saída

A saída deve conter uma linha com o número total de combinações possíveis. Se nao houver combinações disponíveis, a saída deve conter apenas 0.

Exemplo

Explicação dos Exemplos

No primeiro exemplo (v=10), temos as seguintes combinações possíveis:

- 10 (uma cédula de 10)
- 5+5 (duas cédulas de 5)
- 5+1+1+1+1+1 (uma de 5 e cinco de 1)

No segundo exemplo (v=7), não é possível formar o valor exato com as cédulas disponíveis.

4 Contando Permutações de uma String

Escreva um programa que encontre o número de permutações distintas de uma string fornecida. As permutações que resultam em sequências idênticas, como a troca de caracteres iguais, não devem ser contadas.

A entrada será uma string composta apenas por letras maiúsculas e minúsculas. A saída deve conter apenas o número total de permutações distintas.

Entrada

A entrada contém uma única linha com a string s $(1 \le |s| \le 100)$.

Saída

A saída deve conter uma linha com o número total de permutações distintas da string.

Exemplo

Entrada
ABC
Saída
6
Entrada
Entrada AAA
AAA

Explicação dos Exemplos

No primeiro exemplo (ABC), as permutações distintas são 6.
ABC
ACB
BAC
BCA
CBA
CAB

No segundo exemplo (AAA), há apenas uma permutação distinta.

5 Escrevendo Números por Extenso

Escreva um programa que converta um número inteiro n (onde $0 \le n \le 999999$) em sua representação por extenso, em letras minúsculas.

A entrada será um número inteiro n. A saída deve conter o número escrito por extenso.

Entrada

A entrada contém uma única linha com o número n.

Saída

A saída deve conter uma linha com o número escrito por extenso.

Dica

Utilize vetores de strings para guardar os nomes nos casos quando o padrão muda, como de unidades, entre dez e vinte, dezenas, e centenas.

Exemplo

Entrada

ntos e vinte e dois mil					
Entrada					
zentos e trinta e quatro					
]					