Predictive Analysis of Late Payments in B2B E-commerce & Retail

Data-driven insights for better payment collection strategies.

Shayon Deb Siddharth Joshi Sanket Kamble

Content:-

- Business Problem
- Data Overview
- Data Analysis & Insights
- Predictive Model Performance
- Recommendations
- Business Implications
- Conclusion & Next Steps

Business Problem

1 Late Payments

Impact cash flow and operational efficiency.

Payment Delay Factors

Crucial for improving collection strategies.

Predictive Model

3

Identify high-risk invoices and recommend corrective actions.

Data Overview

- Dataset source: Kaggle,
 E-commerce & Retail B2B Case
 Study
- 2 Contains transaction details, invoice types, payment status, and customer information
- Key variables: invoice type, payment status, payment amount, customer segmentation

Late payment distributions

proportion

Data Analysis & Insights

Payment Delay Trends

51.1% on-time, 48.9% delayed

Invoice Type Impact

Credit Note invoices faced highest delays

Cluster ID with Late Payment ratio 1.0 0.8 Late Payment Ratio 0.2 0 Cluster ID

cluster ID 2 has significantly higher ratio of default than clusters 0 and 1

Data Analysis & Insights

Invoice Amount Impact

Lower-value payments had higher late payment rates

Customer Segmentation

Early payment cluster showed high delay rates

Train Data

Best hyperparameters: {'n_estimators': 150, 'min_samples_split': 2, 'min_samples_leaf': 1, 'max_depth': 30}

Best f1 score: 0.9393260434851571

		precision	recall	f1-score	support
	0	0.96	0.91	0.94	22349
	1	0.96	0.98	0.97	42618
accur	racy			0.96	64967
macro	avg	0.96	0.95	0.95	64967
weighted	avg	0.96	0.96	0.96	64967

Test Data

	precision	recall	f1-score	suppor
0	0.91	0.86	0.88	952
1	0.93	0.96	0.94	1831
accuracy			0.92	2784
macro avg	0.92	0.91	0.91	2784
weighted avg	0.92	0.92	0.92	2784

Predictive Model Performance

Model used: Random Forest
Classifier, hyperparameters
optimized

Performance metrics:
Training F1 Score 0.97,
Testing F1 Score 0.94

Model effectively predicts late payments, helps mitigate risk

Recommendations

Payment Policy Review

Stricter terms for Credit
Notes and Goods-type
invoices

Low-Value Payment Strategies

Tiered penalties and early payment discounts

Customer Segmentation Approach

Close monitoring of

"early payment" cluster

Automated Reminders

Alert system for predicted late invoices

Business Implications

Improved Cash Flow

Early identification of risky invoices

Enhanced Customer Relations

Personalized follow-ups for better collection efficiency

Strategic Policy Adjustments

Refined penalties and discounts for timely payments

Data-Driven Decision Making

Proactive strategies based on predictive analytics

Conclusion & Next Steps

1

Actionable insights to minimize late payments

2

Implement recommendations for improved collections

3

Deploy models in real-time payment monitoring

4

Test and iterate policies for continuous improvement

Thank You!