Computación Científica II

Introducción

Cristopher Arenas cristopher.arenas@usm.cl

Universidad Técnica Federico Santa María Computación Científica II - ILI286

v1.0

Computación Científica

¿Qué es la Computación Científica?

Computación Científica

Es la colección de herramientas, técnicas y teorías requeridas para resolver modelos matemáticos en ciencia e ingeniería usando un computador.

Computación Científica Análisis Numérico

- Antes de los computadores, ya existía un desarrollo de técnicas y teorías matemáticas para modelar problemas en ciencia e ingeniería.
- Se le conoce como Análisis Numérico al conjunto de técnicas y teorías desarrolladas en matemáticas.
- Con la llegada de los computadores, los métodos del Análisis Numérico se adaptaron para ser usados en computadores.
- Implica que se tomaron en cuenta factores como:
 - Lenguajes de programación
 - Sistemas Operativos
 - Manejo de grandes cantidades de datos
 - Correctitud de programas

Computación Científica

¿Qué implica la computación científica?

- El computador realizará cálculos por nosotros.
- Operaciones elementales: adición y multiplicación.
- Resultados serán aproximaciones.
- Buen diseño de algoritmos y técnicas.
- Análisis de estabilidad.
- ...

¿Porqué queremos hacer computación científica?

- Para simular fenómenos de la naturaleza.
- Para diseñar prototipos virtuales en alguna área de la ingeniería.
- ...

Computación Científica

Anteriormente en Computación Científica I:

- Repaso de Álgebra Lineal
- Aritmética de punto flotante
- Ceros de Funciones 1D (Bisección, FPI, Secante, ...)
- Sistemas de Ecuaciones: métodos directos (PA=LU, Cholesky)
- Sistemas de Ecuaciones: métodos iterativos (Jacobi, GS, SOR, GC, NM, ...)
- Interpolación Polinomial (Lagrange, Diferencias Divididas, ...)
- Mínimos Cuadrados (QR, GMRes)

Computación Científica II

- Valores y Vectores Propios
- Integración Numérica
- Ecuaciones Diferenciales Ordinarias: IVP, BVP
- Ecuaciones Diferenciales Parciales: Elípticas, Parabólicas, Hiperbólicas.

Propiedades de Matrices Matriz Identidad

Matriz Identidad

La matriz I_n de $n \times n$ es **matriz identidad** si posee elementos I_{ij} tal que:

$$I_{ij} = \left\{ \begin{array}{ll} 1 & \text{, si } i = j \\ 0 & \text{, si } i \neq j \end{array} \right.$$

Se cumple que $AI_n = I_nA = A$, $\forall A$ matriz de $n \times n$.

Propiedades de Matrices Matriz Inversa

Matriz Inversa

Considerar una matriz cuadrada A de $n\times n$. La **matriz inversa** de A, denotada por A^{-1} es una matriz de $n\times n$ que cumple con $A^{-1}A=AA^{-1}=I_n$.

- Si *A* tiene matriz inversa, se dice que es **invertible** o **no singular**.
- \blacksquare Si A no tiene matriz inversa, se dice que es **no invertible** o **singular**.

Propiedades de Matrices Matriz Identidad

Algunas propiedades de la inversa:

$$(A^{-1})^{-1} = A$$

$$(AB)^{-1} = B^{-1}A^{-1}$$

$$(\alpha A)^{-1} = \frac{1}{\alpha} A^{-1}, \operatorname{con} \alpha \neq 0$$

$$(A^n)^{-1} = (A^{-1})^n$$

$$\qquad \qquad \mathbf{A}^{-1} = \frac{1}{det(A)} adj(A) \text{, donde } adj(a) \text{ es la adjunta de } A.$$

Propiedades de Matrices Matriz Traspuesta

Matriz Traspuesta

Considerar la matriz $A \in \mathbb{R}^{m \times n}$ de $m \times n$. La **matriz traspuesta** de A, denotada por A^T es una matriz de $n \times m$, cuyos coeficientes cumplen con $a_{ij}^T = a_{ji}$.

Ejemplo:

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \end{bmatrix} \qquad A^T = \begin{bmatrix} a_{11} & a_{21} & a_{31} \\ a_{12} & a_{22} & a_{32} \\ a_{13} & a_{23} & a_{33} \\ a_{14} & a_{24} & a_{34} \end{bmatrix}$$

lacksquare Si $A=A^T$, se dice que A es simétrica.

Propiedades de Matrices Matriz Traspuesta

Algunas propiedades de la traspuesta:

$$(A^T)^T = A$$

$$(A+B)^T = A^T + B^T$$

$$(AB)^T = B^T A^T$$

$$(\alpha A)^T = \alpha A^T$$

$$(A^T)^{-1} = (A^{-1})^T$$

Propiedades de Matrices Matriz Traspuesta Conjugada

Matriz Traspuesta Conjugada

Considerar la matriz $A \in \mathbb{C}^{m \times n}$ de $m \times n$. La **matriz traspuesta conjugada** de A, denotada por A^* es una matriz de $n \times m$, cuyos coeficientes cumplen con $a_{ij}^* = \overline{a_{ji}}$.

Ejemplo:

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \end{bmatrix}$$

$$A^* = \begin{bmatrix} \overline{a_{11}} & \overline{a_{21}} & \overline{a_{31}} \\ \overline{a_{12}} & \overline{a_{22}} & \overline{a_{32}} \end{bmatrix}$$

Propiedades de Matrices Matriz Traspuesta Conjugada

Observación

El complejo conjugado de un escalar z, escrito como z^* o \overline{z} , es obtenido negando su parte imaginaria. Si $z \in \mathbb{R}$, entonces $\overline{z} = z$.

- Si $A = A^*$, se dice que A es hermitiana.
- Si $A^* = A^{-1}$, se dice que A es unitaria.

Propiedades de Matrices Matriz Traspuesta Conjugada

Algunas propiedades de la traspuesta conjugada:

- $(A^*)^* = A$
- $(A+B)^* = A^* + B^*$
- $(AB)^* = B^*A^*$
- $(\alpha A)^* = \overline{\alpha} A^*$
- $\quad \blacksquare \ A^* = A^T \text{, si } A \in \mathbb{R}^{m \times n}.$

Referencias

Numerical Analysis, Timothy Sauer, Second Edition, Pearson, 2012.