Suites et Séries – TD_7 – Complément 24-25 octobre 2022

Exercice 1.

Soit $(p_k)_{k\in\mathbb{N}^*}$ la suite des nombres premiers ordonnés par ordre croissant. Le but de l'exercice est d'étudier la divergence de la série $\sum_k \frac{1}{p_k}$. Pour tout $n \in \mathbb{N}^*$, on pose :

$$V_n = \prod_{k=1}^n \frac{1}{1 - \frac{1}{p_k}}$$

- 1. Montrer que la suite $(V_n)_{n\in\mathbb{N}^*}$ est convergente si, et seulement si, la suite $(\ln(V_n))_{n\in\mathbb{N}^*}$ est convergente.
- 2. En déduire que la suite $(V_n)_{n\in\mathbb{N}^*}$ est convergente si, et seulement si, la série $\sum_k \frac{1}{p_k}$ est convergente.
- 3. Démontrer que :

$$\forall n \in \mathbb{N}^*, \ V_n = \prod_{k=1}^n \left(\sum_{j=0}^{+\infty} \frac{1}{p_k^j}\right).$$

4. En déduire que :

$$V_n \geqslant \sum_{j=1}^n \frac{1}{j}$$

Cette question utilise la notion de "produit de Cauchy". Cette notion sera vue pendant la semaine 7.

- 5. Quelle est la nature de la série $\sum_{k} \frac{1}{p_k}$?
- 6. Pour $\alpha \in \mathbb{R}$, quelle est la nature de la série $\sum_{k} \frac{1}{p_k^{\alpha}}$?

Exercice 2. (première série de l'exercice 2.3.1 du polycopié)

Discuter suivant la valeur du paramètre x > 0 la nature de la série de terme général :

$$u_n = \sqrt{n!} \times \prod_{k=1}^n \sin\left(\frac{x}{\sqrt{k}}\right).$$

Exercice 3. (une série étrange!)

Pour $k \in \mathbb{N}^*$, on note p_k le nombre de chiffres dans l'écriture décimale de k. Par exemple, $p_5 = 1$; $p_{31} = 2, p_{58472} = 5,...$

Soit a > 0. Déterminer, selon $a \in \mathbb{R}$, la nature de la série $\sum_{k} \frac{a^{p_k}}{p_k}$.

Exercice 4. (Sommation par parties, aussi appelée transformation d'Abel)

1. Soit $(a_n)_{n\in\mathbb{N}^*}$ et $(b_n)_{n\in\mathbb{N}^*}$ deux suites réelles. Pour $n\in\mathbb{N}^*$, on pose :

$$B_n = \sum_{k=1}^n b_k$$
, et $B_0 = 0$

Montrer que pour tout $n \ge 1$, on a la formule de sommation par parties :

$$\sum_{k=1}^{n} a_k b_k = a_n B_n - \sum_{k=1}^{n-1} (a_{k+1} - a_k) B_k.$$

2. Montrer que pour tout $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$ et tout $n \in \mathbb{N}^*$,

$$\left| \sum_{k=1}^{n} \sin(kx) \right| \leqslant \frac{1}{|\sin(\frac{x}{2})|}.$$

- 3. Déduire des questions précédentes que pour $x \in \mathbb{R}$, la série $\sum_{n} \frac{\sin(nx)}{n}$ est convergente.
- 4. Montrer que pour tout $x \in \mathbb{R}$, la série $\sum_{n} \frac{\sin(nx)}{n^2}$ converge.
- 5. Soit $x \in \mathbb{R} \setminus 2\pi\mathbb{Z}$. En utilisant une méthode similaire aux questions précédentes, montrer que pour tout $N \in \mathbb{N}^*$, on a

$$\left| \sum_{n=N+1}^{+\infty} \frac{\sin(nx)}{n^2} \right| \leqslant \frac{2}{(N+1)^2 |\sin(\frac{x}{2})|}.$$

6. Montrer que la fonction $f: x \mapsto \sum_{n=1}^{+\infty} \frac{\sin(nx)}{n^2}$ n'est pas dérivable en 0.