KỲ THI TUYỂN SINH VÀO LỚP 10 TRƯỜNG THPT CHUYÊN PHAN BỘI CHÂU TRƯỜNG THPT CHUYÊN – TRƯỜNG ĐH VINH NĂM HỌC 2021 – 2022

ĐÁP ÁN VÀ HƯỚNG DẪN CHẨM ĐỂ THI CHÍNH THỨC

Môn: Toán Đáp án gồm 04 trang

Câu		Nội Dung	Ðiểm
		a) Giải phương trình: $x^2 + 2(2 + \sqrt{x-1}) = 5x$.	
		Điều kiện $x \ge 1$. (*)	0,25
		Ta có $x^2 + 2(2 + \sqrt{x-1}) = 5x \Leftrightarrow (x^2 - 4x + 4) = x - 1 - 2\sqrt{x-1} + 1$	0,5
	a)	$\Leftrightarrow (x-2)^2 = \left(\sqrt{x-1} - 1\right)^2$	0,5
		$\Leftrightarrow \begin{bmatrix} x - 2 = \sqrt{x - 1} - 1 \\ x - 2 = 1 - \sqrt{x - 1} \end{bmatrix}$	0,5
		$\Leftrightarrow \sqrt{x-1} = x-1 \qquad (a)$ $\sqrt{x-1} = 3-x \qquad (b)$	0,25
	3,0	$(a) \Leftrightarrow x - 1 = (x - 1)^{2} \Leftrightarrow \begin{bmatrix} x - 1 = 0 \\ x - 1 = 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 1 \\ x = 2 \end{bmatrix} $ (thỏa mãn điều kiện (*))	0,5
		$\Leftrightarrow \begin{bmatrix} \sqrt{x-1} = x - 1 & (a) \\ \sqrt{x-1} = 3 - x & (b) \end{bmatrix}$ $(a) \Leftrightarrow x - 1 = (x - 1)^2 \Leftrightarrow \begin{bmatrix} x - 1 = 0 \\ x - 1 = 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = 1 \\ x = 2 \end{bmatrix} \text{ (thỏa mãn điều kiện (*))}$ $(b) \Leftrightarrow \begin{cases} x \le 3 \\ x - 1 = x^2 - 6x + 9 \end{cases} \Leftrightarrow \begin{cases} x \le 3 \\ x = 2 \Leftrightarrow x = 2 \text{ (thỏa mãn điều kiện (*))} \\ x = 5 \end{cases}$	0,5
		Vậy tập nghiệm của phương trình là $S = \{1; 2\}$.	
1	b) Giải hệ phương trình: $\begin{cases} 3x^2 + y^2 = 5 + 2xy + 2x - 2y \\ 2x^2 + y^2 = 10 + 2x - 3y \end{cases}$		
		$\begin{cases} 3x^2 + y^2 = 5 + 2xy + 2x - 2y \\ 2x^2 + y^2 = 10 + 2x - 3y \end{cases} \Leftrightarrow \begin{cases} 6x^2 + 2y^2 = 10 + 4xy + 4x - 4y \\ 2x^2 + y^2 = 10 + 2x - 3y \end{cases} $ (1)	0,5
		Lấy (1) trừ (2) theo vế ta được $4x^2 + y^2 = 4xy + 2x - y$	0,5
	b)	$\Leftrightarrow (2x-y)^2 = 2x-y$	0,5
		$\Leftrightarrow \begin{bmatrix} 2x - y = 0 \\ 2x - y = 1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} y = 2x \\ y = 2x - 1 \end{bmatrix}$	0,25
	Trường hợp 1. $y = 2x$ thế vào phương trình (2) ta có		
	3,0	$2x^2 + 4x^2 = 10 + 2x - 6x \Leftrightarrow 6x^2 + 4x - 10 = 0 \Leftrightarrow x = 1 \text{ hoặc } x = -\frac{5}{3}.$	0,25
	3,0	Với $x = 1$ suy ra $y = 2$. Với $x = -\frac{5}{3}$ suy ra $y = -\frac{10}{3}$.	0,25
	Trường hợp 2. $y = 2x - 1$ thế vào phương trình (2) ta có		0.27
		$2x^{2} + (2x-1)^{2} = 10 + 2x - 3(2x-1) \Leftrightarrow x^{2} = 2 \Leftrightarrow x = \pm\sqrt{2}.$	0,25
		Với $x = \sqrt{2}$ suy ra $y = 2\sqrt{2} - 1$. Với $x = -\sqrt{2}$ suy ra $y = -2\sqrt{2} - 1$. Vậy hệ có các nghiệm $(x; y)$ là: $(1; 2)$, $\left(-\frac{5}{3}; -\frac{10}{3}\right)$, $\left(\sqrt{2}; 2\sqrt{2} - 1\right)$, $\left(-\sqrt{2}; -2\sqrt{2} - 1\right)$.	0,5
·		Trong 1/A	

		Tim $x, y \in \mathbb{N}$ sao cho $x^3 = 1993.3^y + 2021$.			
		+) N\(\hat{e}u\) $y \ge 2 \Longrightarrow 1993.3^y + 2021 = 1993.3^y + 2016 + 5 \equiv 5 \pmod{9}$			
	a)	$\Rightarrow x^3 \equiv 5 \pmod{9}$ điều này mâu thuẫn vì $\forall x \in \mathbb{N}$ thì $x^3 \equiv 0, 1, 8 \pmod{9}$.			
		+) Nếu $y = 1 \Rightarrow x^3 = 8000 \Leftrightarrow x = 20$.	0,25		
	1,5 +) N\hat{\text{e}} \(y = 0 \Rightarrow x^3 = 4014 \Limins x = \frac{\sqrt{4014}}{4014} \neq \mathbb{N} \).		0,25		
		Vây $(x; y) = (20; 1)$.			
		Tìm số nguyên dương n để $\frac{n-23}{n+89}$ là bình phương của một số hữu tỉ dương.			
2	b)	Giả sử $\frac{n-23}{n+89} = \left(\frac{q}{p}\right)^2$ trong đó $p, q \in \mathbb{N}^*, p > q$ và $(p,q) = 1$.	0,25		
		Khi đó: $\begin{cases} n - 23 = kq^2 \\ n + 89 = kp^2 \end{cases} \Rightarrow k(p - q)(p + q) = 112 = 2^4.7.1 (k \in \mathbb{N}^*). \tag{1}$	0,25		
		Trường hợp 1: Trong hai số p , q có 1 số chẵn và một số lẻ $\Rightarrow p+q$, $p-q$ đều là số lẻ. Từ (1) suy ra $\begin{cases} p-q=1 \\ p+q=7 \Leftrightarrow \begin{cases} p=4 \\ q=3 \Rightarrow n=167. \\ k=2^4 \end{cases}$	0,25		
		Trường hợp 2: Hai số p, q là hai số lẻ . Đặt $p = 2a - 1, q = 2b - 1(a, b \in \mathbb{N}^*, a > b)$. (1) trở thành $k(a+b-1)(a-b) = 28 = 2^2.7.1$.	0,25		
	1,0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0,25		
		$V_{ay} n \in \{32; 37; 73; 86; 167; 361; 752\}.$	0,25		
3	Cho các số dương a, b, c thỏa mãn $ab+bc+ca \le 3abc$. Tìm giá trị nhỏ nhất của biểu th $P = \sqrt{a+b} + \sqrt{b+c} + \sqrt{c+a} - \left(\sqrt{\frac{a^2+b^2}{2a+2b}} + \sqrt{\frac{b^2+c^2}{2b+2c}} + \sqrt{\frac{c^2+a^2}{2c+2a}}\right).$	nức:			
		Ta có $(\sqrt{x} - \sqrt{y})^2 \ge 0 \Leftrightarrow 2(x+y) \ge (\sqrt{x} + \sqrt{y})^2 \Rightarrow \sqrt{2(x+y)} \ge \sqrt{x} + \sqrt{y}, \ \forall x, y \ge 0.$	0,25		
	2,0	Từ đó ta có: $\sqrt{a+b} = \sqrt{\frac{a^2 + b^2 + 2ab}{a+b}} = \sqrt{2\left(\frac{a^2 + b^2}{2a + 2b} + \frac{ab}{a+b}\right)} \ge \sqrt{\frac{a^2 + b^2}{2a + 2b}} + \sqrt{\frac{ab}{a+b}}$.			
		Dấu bằng xảy ra khi và chỉ khi $\frac{a^2 + b^2}{2a + 2b} = \frac{ab}{a + b} \Leftrightarrow a = b.$ Tương tự: $\sqrt{b + c} \ge \sqrt{\frac{b^2 + c^2}{2b + 2c}} + \sqrt{\frac{bc}{b + c}}$ và $\sqrt{c + a} \ge \sqrt{\frac{c^2 + a^2}{2c + 2a}} + \sqrt{\frac{ca}{c + a}}$.	0,25		
		Do đó $P \ge \sqrt{\frac{ab}{a+b}} + \sqrt{\frac{bc}{b+c}} + \sqrt{\frac{ca}{c+a}}$. Đặt $x = \sqrt{\frac{ab}{a+b}}$; $y = \sqrt{\frac{bc}{b+c}}$; $z = \sqrt{\frac{ca}{c+a}}$. Khi đó $x > 0$, $y > 0$, $z > 0$.	0,25		
		Áp dụng bất đẳng thức Cô-si ta có: $ \left(\frac{1}{x^2} + \frac{1}{y^2} + \frac{1}{z^2}\right) (x + y + z)^2 \ge 3\sqrt[3]{\frac{1}{x^2y^2z^2}} \cdot \left(3\sqrt[3]{xyz}\right)^2 = 27. $	0,25		
		Suy ra: $\left(\frac{a+b}{ab} + \frac{b+c}{bc} + \frac{c+a}{ca}\right) \left(\sqrt{\frac{ab}{a+b}} + \sqrt{\frac{bc}{b+c}} + \sqrt{\frac{ca}{c+a}}\right)^2 \ge 27$.	0,25		

	l				
		$\Rightarrow P^2 \ge \left(\sqrt{\frac{ab}{a+b}} + \sqrt{\frac{bc}{b+c}} + \sqrt{\frac{ca}{c+a}}\right)^2 \ge \frac{27}{2\left(\frac{1}{a} + \frac{1}{b} + \frac{1}{c}\right)} = \frac{27abc}{2(ab+bc+ca)}.$			
		Từ giả thiết ta có $ab + bc + ca \le 3abc \Leftrightarrow \frac{abc}{ab + bc + ca} \ge \frac{1}{3}$.			
		Suy ra $P^2 \ge \frac{9}{2} \Rightarrow P \ge \frac{3\sqrt{2}}{2}$.			
		Dấu bằng xảy ra khi và chỉ khi: $\begin{cases} ab + bc + ca = 3abc \\ a = b = c \end{cases} \Leftrightarrow a = b = c = 1.$			
		Vậy min $P = \frac{3\sqrt{2}}{2}$ đạt được khi $a = b = c = 1$.			
4		Cho đường tròn (O) có dây cung BC cố định và không đi qua tâm O . Gọi A là điểm di động trên đườn			
		tròn (O) sao cho tam giác ABC nhọn và $AB < AC$. Gọi M là trung điểm của cạnh BC và H là			
		tâm tam giác ABC . Tia MH cắt đường tròn O tại K , đường thẳng AH cắt cạnh BC tại D và đường			
		thẳng AO cắt đường tròn O tại E (E khác A).			
		a) Chứng minh rằng tứ giác $BHCE$ là hình bình hành và $HA.HD = HK.HM$. b) Tia KD cắt đường tròn O tại I (I khác K), đường thẳng đi qua I và vuông góc với đường thẳng			
		BC cắt AM tại J . Chứng minh rằng các đường thẳng AK , BC và HJ cùng đi qua một điểm.			
	a)	c) Một đường tròn thay đổi luôn tiếp xúc với AK tại A và cắt các cạnh AB , AC lần lượt tại P , Q phân			
		biệt. Gọi N là trung điểm của PQ . Chứng m		, 2 1	
		tròn) = Mà H	$ACE = 90^{\circ}$ (góc nội tiếp chắn nửa đường $EC \perp AC$. Trực tâm tam giác $ABC \Rightarrow BH \perp AC$. Từ là $EC \parallel BH$.	0,5	
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<i>x HC // BE</i>	0,5	
	3,0	tứ giác	Xét tứ giác BHCE có EC // BH và HC // BE nên tứ giác BHCE là hình bình hành. Mà M là trung điểm của BC nên ba điểm H, M, E thẳng hàng.		
		E $H, M,$			
		Lại có ba điểm M, K, H thắng hàng. Tù	đó suy ra ba điểm K, H, E thăng hàng.	0,25	
		Ta có $AKE = 90^{\circ}$ (góc nội tiếp chắn nửa đ	tường tròn) $\Rightarrow AKM = 90^{\circ}$.	0,25	
		Xét ΔAKH và ΔMDH có: $AKM = MDH$	$V(=90^{\circ})$; $KHA = DHM$ (hai góc đối đỉnh).	0,25	
		$\Rightarrow \Delta AKH \backsim \Delta MDH \ (g.g) \Rightarrow \frac{HA}{HM} = \frac{HK}{HD} \Rightarrow HA.HD = HK.HM \ .$			
		A A	Kéo dài AK cắt đường thẳng BC tại S , ΔSAM có hai đường cao AD và MK cắt nhau tại $H \Rightarrow H$ là trực tâm tam giác SAM .	0,25	
	b)		X ét tam giác ΔHDM và ΔSDA có	0,25	
		H I O	$ADS = HDM = 90^{\circ} \text{ và } DMH = DAS$,	
			(cùng phụ với ASM).		
		$S \qquad B \qquad M \qquad C \qquad \Rightarrow \Delta HDM \sim \Delta SDA \ (g.g).$		0,25	
	2,5	I E	$\Rightarrow \frac{HD}{DM} = \frac{DS}{AD}.$ (1)	0,25	
		Tương tự H là trực tâm $\triangle ABC \Rightarrow \triangle BDH \sim \triangle ADC \Rightarrow \frac{BD}{HD} = \frac{AD}{CD}$. (2)		0,25	

Trang 3/4

	$T\dot{\mathbf{r}}(1)\dot{\mathbf{v}}\dot{\mathbf{a}}(2) \Rightarrow \frac{HD}{DM}.\frac{BD}{HD} = \frac{DS}{AD}.\frac{AD}{CD} \Rightarrow \frac{BD}{DM} = \frac{DS}{CD} \Rightarrow BD.CD = DM.DS (3)$					
	Mà $\triangle BDK \sim \triangle IDC \ (g.g) \Rightarrow \frac{BD}{ID} = \frac{DK}{DC} \Rightarrow BD.CD = DI.DK$ (4)					
		Từ (3) và (4) \Rightarrow $DI.DK = DM.DS$ nêr Mà $AKDM$ là tứ giác nội tiếp (do AK Từ đó suy ra $SMI = DMA$.	n $SKMI$ là tứ giác nội tiếp $\Rightarrow SMI = SKI$. $SKM = ADM = 90^{\circ}$) $\Rightarrow SKI = DMA$.	0,25		
	X ét ΔMIJ có $SMI = DMA$ và $IJ \perp BC \Rightarrow BC$ là đường trung trực của IJ .					
		⇒ $SJM = SIM = 90^{\circ}$ (vì $SKMI$ là tứ gi = $180^{\circ} - 90^{\circ} = 90^{\circ}$) ⇒ $SJ \perp AM$. Mà H là trực tâm ΔSAM ⇒ $SH \perp AM$	tác nội tiếp nên $SIM = 180^{\circ} - SKM$ Từ đó suy ra ba điểm S, H, J thẳng hàng.	0,25		
		Vậy các đường thẳng AK , BC và HJ cùng đi qua một điểm.				
		A	Gọi N' là giao điểm của PQ và AE . Xét $\Delta AQN'$ và ΔBEM có:	0,25		
		K P $N \equiv N'$ O Q B D M	QAN' = EBM; $AQN' = KAP = BEM$			
	c)		$\Rightarrow \Delta AQN' \sim \Delta BEM (g.g) \Rightarrow \frac{AN'}{QN'} = \frac{BM}{EM} (5)$	0,25		
			Do $QAN' = EBM$; $AQN' = KAP = BEM$ nên theo tính chất góc ngoài của $\Delta AQN'$ và ΔBEM ta có $EMC = PN'A$.	0,25		
			Mà $PAN' = ECM$ nên $\Delta ECM \sim \Delta PAN'(g.g)$	0,25		
		E	$\Rightarrow \frac{CM}{EM} = \frac{AN'}{PN'}. (6)$	0,25		
		Từ (5) và (6) và kết hợp $BM = CM \implies$ Vậy AN luôn đi qua một điểm cố định	$\Rightarrow \frac{AN'}{QN'} = \frac{AN'}{PN'} \Rightarrow QN' = PN' \Rightarrow N \equiv N'.$	0,25		
5			ứng minh rằng có ít nhất hai số trong các số đã ch	o mà		
		hiệu của chúng chia hết cho 2022.				
		Ta có 2022 = 2.3.337 và 2, 3, 337 là c		0,25		
	Trong 676 số nguyên tố khác nhau có ít nhất 673 số khác các số 2, 3, 337.					
	2,0	Một số nguyên tố (khác 3) khi chia 3 dư 1 hoặc dư 2. Trong 673 số nói trên, theo nguyên lý Dirichlet thì có ít nhất 337 số khi chia cho 3 có cùng số dư. Chọn 337 số này.		0,5		
		số dư (vì một số nguyên tố khi chia cho		0,25		
		Chọn hai số này, dễ thấy hiệu của chún		0,25		
		Vậy nên hiệu của hai số đã chọn chia hết cho 2022.				
			TÔNG	20,0		