

Primitives Data types

- 1. Variables.
- 2. Numbers int and float.
- 3. Boolean.
- 4. Text string and char.

- Variable a container for storing data values (number, text, list etc.).
- Variable assignment: variable_name = variable_value

No type needed

b = 'hello'
print(a)
print(b)

C> 1
hello

```
a = 1
print(a)
a = 'hello'
print(a)
```


Naming convention

Variables:

All small letters.

Separate words with _.

Don't start with a number.

Don't use keywords

* Don't refer to non defined variables

Variables

Primitives (singular)	Non- Primitives(Collections)
Integer	List[]
Float	Dictionary{}
String	Tuple()
Boolean	Set{}
By Python	By Programmer

type(variable_name)→ returns the data type of the variable

6

Convert between types

- type() check the variable type.
- Convert between types using the functions

```
int()
str()
float().
```

```
int_var = int("1")
print(int_var)
type(int var)
int
float var = float(1)
print(float var)
type(float var)
1.0
float
str var = str(1.5)
print(str var)
type(str_var)
1.5
```

str

Numbers

א הטכניון Numbers מיייה לישוי וא

Operator	Name	
+	Addition	
_	Subtraction	
*	Multiplication	
/	Division	
%	Modulus ¹	
**	Exponentiation	
//	Floor division	

¹ the remainder of a division.

int	float
40 + 50	40.0+50.0
90	90.0
4 * 50	4.0*50.0
200	200.0
50 / 4	50.0/4.0
12.5	12.5
50 // 4	50.0//4.0
12	12.0
50 % 4	50.0%4.0
2	2.0

Assignment with an operation:

Exercise

- 1. Declare x and y variables to 8 and -5.
- 2. Print the sum of x and y.
- 3. Print the difference between x and y.
- 4. Print the multiplication between x and y.
- 5. Add y to x and print x.
- 6. Set y to be equal to y squared and print y.

7. Calculate:

1. X // 3

2. X % 3

3. X * 0.5

4. X ** 2

Bonus:

- What type is the result of 10/3?
- What type is the result of 10//3?

Boolean

Can hold two values: True or False.

	Operator	Name	Example	Result
	==	Equal	x == 3	$x = 3 \rightarrow True$ $x = 7 \rightarrow False$
No.	!=	Not equal	x != 3	$x = 3 \rightarrow False$ $x = 7 \rightarrow True$
	>	Greater than ¹	x > 3	$x = 3 \rightarrow False$ $x = 7 \rightarrow True$
	>=	Greater than ¹ or equal to	x >= 3	$x = 3 \rightarrow True$ $x = 7 \rightarrow True$

√ use < for smaller than
</p>

Boolean איימדה ללימודי הוץ ע" מורים הוץ מורי

Logical operators:

Operator	Name	Example	Result
and	Returns True if both statements are true	x < 5 and x < 10	$x = 3 \rightarrow True$ $x = 7 \rightarrow False$
or	Returns True if one of the statements is true	x < 5 or x < 10	$x = 3 \rightarrow True$ $x = 7 \rightarrow True$
not	Reverse the result, returns False if the result is true	not(x < 5 and x < 10)	$x = 3 \rightarrow False$ $x = 7 \rightarrow True$

Exercise

Text

- A single character in text, e.g. "A".
- Not very useful but good to know.
- Adding chars together creates a

- Represent a list of characters.
- · Can be defined with " or ".

```
'this is a string'
"this is also a string"
```


String methods

- String is an object (more about objects later in the course).
- Objects can have methods.
- Call a method:

```
bbject.method()
```

All string methods returns new values, they do not change the original string.

```
result = object.method()
```


String methods

- Find() return the index of a substring.
- Replace() replace a substring with another string.
- Count() return the number of times a substring occurs.
- Upper() return the same string but with all upper-case letters.
- And more...

אַ הטכניון Special strings

f-string syntax:

Easley format strings.

Evaluated at runtime, so you can add any function or calculation in { }.

Special characters in

\n – new line

 $\t - tab$

\\ - backslash

\' – single quote

```
name = "Monty"
print(f"Hello, {name}")
Hello, Monty

print(f'two + two is {2+3}')
two + two is 5
```

```
print('This is a string with \na new line')
This is a string with
a new line
```


Exercise

Exercise same living and living a

- 1. Declare variable named "dollar" as a number your choosing (for example 32).
- 2. Print the conversion of dollar to shekels (1 dollar = 3.72 shekel) in the following format:
- 3. 32\$ is equal to 29.59 NIS.
- 4. Declare a string as "no one can solve this" and replace the words "solve this" with your name.
- 5. Declare str1 as "100+200".
- 6. Cut str1 into two strings (s_num1, s_num2), each consist only with one of the nembers.
- 7. Convert s_num1, s_num2 into numbers num1, num2.
- 8. Print:
 - 1. str1
 - 2. s_num1 + s_num2
 - 3. num1 + num2

Variable

a container for storing data values.

Numbers

Basic arithmetic operations: +, -, * etc.

Boolean

True / False, logical operations.

Text

Strings slicing, methods and special strings.

Convert types

int(), float(), str(), type().

