MTH102: Analysis in One variable Home Work No. 05 Sent on 25 February 2018

- Please do as many problems as possible.
- Please maintain a separate notebook for home work problems.
- Tutors will discuss some of these problems during tutorial sessions.
- \bullet N denote the set of natural numbers.
- Z denote the ring of integers.
- Q denote the field of rational numbers.
- \bullet \mathbb{R} denote the field of real numbers.
- (1) Use the definition of uniform continuity to show that the function $f:[0,2]\to\mathbb{R}$ defined by $f(x) = x^3$ is uniformly continuous.
- (2) Show that the function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^3$ is not uniformly continuous.
- (3) Use the definition of uniform continuity to show that the function $f:[0,3]\to\mathbb{R}$ defined by $f(x) = \frac{x}{x+2}$ is uniformly continuous.
- (4) Determine the following limits:
 - (a) $\lim_{x\to 0^+} \frac{x}{|x|}$ and $\lim_{x\to 0^-} \frac{x}{|x|}$. (b) $\lim_{x\to 1^+} \frac{1}{x-1}$.
- (5) Let $\lim_{x\to a^+} f_1(x) = L_1$ and $\lim_{x\to a^+} f_2(x) = L_2$ and $f_1(x) \leq f_2(x)$ for all x in some interval (a,b). Then prove that $L_1 \leq L_2$.
- (6) For each of the following power series, determine the radius of convergence and also the exact interval of convergence:
 - (a) $\sum_{n=0}^{\infty} \sqrt{n} x^n$
 - (b) $\sum_{n=0}^{\infty} \frac{2^n}{n^2} x^n$
 - (c) $\sum_{n=0}^{\infty} n^2 x^n$
 - (d) $\sum_{n=0}^{\infty} \left(\frac{x}{n}\right)^n$
- (7) Let $\sum_{n=0}^{\infty} a_n x^n$ be a power series with radius of convergence R. Suppose that all the coefficients a_n are integers and all but finitely many a_n 's are non-zero. Then prove that
- (8) Give an example of a power series whose exact interval of convergence is (-1,1].
- (9) Let $\sum_{n=0}^{\infty} a_n x^n$ and $\sum_{n=0}^{\infty} b_n x^n$ be two power series with radius of convergence R_1 and R_2 , respectively. Define their sum as

$$\sum_{n=0}^{\infty} a_n x^n + \sum_{n=0}^{\infty} b_n x^n = \sum_{n=0}^{\infty} (a_n + b_n) x^n.$$

Prove that if R is the radius of convergence of $\sum_{n=0}^{\infty} (a_n + b_n) x^n$, then $R \ge \min\{R_1, R_2\}$.

(10) In the preceding problem, give examples of power series where $R = \min\{R_1, R_2\}$, and where $R > \min\{R_1, R_2\}.$