The ElGamal Public Key Encryption Algorithm

The ElGamal Algorithm provides an alternative to the RSA for public key encryption.

- 1) Security of the RSA depends on the (presumed) difficulty of factoring large integers.
- 2) Security of the ElGamal algorithm depends on the (presumed) *difficulty of computing discrete logs* in a large prime modulus.

ElGamal has the disadvantage that the ciphertext is twice as long as the plaintext.

It has the advantage the same plaintext gives a different ciphertext (with near certainty) each time it is encrypted.

Alice chooses

- i) A large prime p_A (say 200 to 300 digits),
- ii) A primitive element α_A modulo p_A ,
- iii) A (possibly random) integer d_A with $2 \le d_A \le p_A 2$.

Alice computes

iv)
$$\beta_{\mathbf{A}} \equiv \alpha_{\mathbf{A}}^{d_{\mathbf{A}}} \pmod{p_{\mathbf{A}}}$$
.

Alice's public key is (p_A, α_A, β_A) . Her private key is d_A .

Bob encrypts a short message M ($M \le p_A$) and sends it to Alice like this:

- i) Bob chooses a random integer *k* (which he keeps secret).
- ii) Bob computes $r \equiv \alpha_A^k \pmod{p_A}$ and $t \equiv \beta_A^k M \pmod{p_A}$, and then discards k.

Bob sends his encrypted message (r, t) to Alice.

When Alice receives the encrypted message (r, t), she decrypts (using her private key d_A) by computing tr^{-d_A} .

Note
$$tr^{-dA} \equiv \beta_A^k M (\alpha_A^k)^{-dA} \pmod{p_A}$$

 $\equiv (\alpha_A^{dA})^k M (\alpha_A^k)^{-dA} \pmod{p_A}$
 $\equiv M \pmod{p_A}$

Even if Eve intercepts the ciphertext (r, t), she cannot perform the calculation above because she doesn't know d_A .

$$\beta_{A} \equiv \alpha_{A}^{d_{A}} \pmod{p_{A}}$$
, so $d_{A} \equiv L_{\alpha_{A}}(\beta_{A})$

Eve can find d_A if she can compute a discrete log in the large prime modulus p_A , presumably a computation that is too difficult to be practical.

Caution: Bob should choose a different random integer k for each message he sends to Alice.

If M is a longer message, so it is divided into blocks, he should choose a different *k* for each block.

Say he encrypts two messages (or blocks) M_1 and M_2 , using the same k, producing ciphertexts

$$(r_1, t_1) = (\alpha_A^k, \beta_A^k M_1), \quad (r_2, t_2) = (\alpha_A^k, \beta_A^k M_2).$$

Then $t_2t_1^{-1} \equiv M_2M_1^{-1} \pmod{p}$, $M_2 \equiv t_2t_1^{-1}M_1 \pmod{p}$. If Eve intercepts both ciphertext messages and discovers one plaintext message M_1 , she can compute the other plaintext message M_2 .

Example: Alice chooses $p_A = 107$, $\alpha_A = 2$, $d_A = 67$, and she computes $\beta_A = 2^{67} \equiv 94 \pmod{107}$. Her public key is $(p_A, \alpha_A, \beta_A) = (2,67,94)$, and her private key is $d_A = 67$.

Bob wants to send the message "B" (66 in ASCII) to Alice. He chooses a random integer k = 45 and encrypts M = 66 as $(r, t) = (\alpha_A^k, \beta_A^k M) \equiv (2^{45}, 94^{45}66) \equiv (28, 9) \pmod{107}$. He sends the encrypted message (28, 9) to Alice.

Alice receives the message (r, t) = (28, 9), and using her private key $d_A = 67$ she decrypts to

$$tr^{-dA} = 9 \cdot 28^{-67} \equiv 9 \cdot 28^{106-67} \equiv 9 \cdot 43 \equiv 66 \pmod{107}.$$