Question 1

What is the optimal value of alpha for ridge and lasso regression? What will be the changes in the model if you choose double the value of alpha for both ridge and lasso? What will be the most important predictor variables after the change is implemented?

Solution 1

Optimal Value of alpha:

Ridge: 1.0Lasso: 0.0001

- If we double the value of alpha, the following impacts it will have on our model:
 - If we double the value of alpha it will penalize the curve more and model will be more complex.
 - In case of Lasso more coefficients will be 0.
 - There is a little reduction in r2 value and hence error increased in training and test data.

Ridge

Before (Alpha = 1.0)

Featur	es rfe	_support	rfe_ranking	Coefficient
OverallQu	ıal	True	1	0.2031
1stFirs	SF	True	1	0.1341
OverallCo	nd	True	1	0.1173
2ndFirs	SF	True	1	0.1132
TotalBsmt	SF	True	1	0.0879
GarageAr	ea	True	1	0.0642
MSZoning_F	V	True	1	0.0610
BsmtQu	ıal	True	1	0.0583
MSZoning_F	RL	True	1	0.0459
Foundation_SI	ab	True	1	0.0450

After (Alpha = 2.0)

	Features	rfe_support	rfe_ranking	Coefficient
	OverallQual	True	1	0.1873
	1stFirSF	True	1	0.1292
	2ndFlrSF	True	1	0.1121
	OverallCond	True	1	0.1116
	TotalBsmtSF	True	1	0.0815
	GarageArea	True	1	0.0657
	BsmtQual	True	1	0.0548
	MSZoning_FV	True	1	0.0491
	Foundation_Slab	True	1	0.0392
	HeatingQC	True	1	0.0386

<u>Lasso</u> Before (Alpha = 0.0001)

Features	rfe_support	rfe_ranking	Coefficient
OverallQual	True	1	0.231731
1stFIrSF	True	1	0.145573
OverallCond	True	1	0.119130
2ndFlrSF	True	1	0.115552
TotalBsmtSF	True	1	0.081355
GarageArea	True	1	0.064252
BsmtQual	True	1	0.051300
LotArea	True	1	0.036174
KitchenQual	True	1	0.035929
Foundation_Slab	True	1	0.035371

After (Alpha = 0.0002)

Features	rfe_support	rfe_ranking	Coefficient
OverallQual	True	1	0.235686
1stFirSF	True	1	0.127186
OverallCond	True	1	0.114835
2ndFlrSF	True	1	0.097156
GarageArea	True	1	0.067440
TotalBsmtSF	True	1	0.060114
BsmtQual	True	1	0.041579
KitchenQual	True	1	0.038506
HeatingQC	True	1	0.033807
LotArea	True	1	0.032942

Question 2

You have determined the optimal value of lambda for ridge and lasso regression during the assignment. Now, which one will you choose to apply and why?

Solution 2

• Hyperparameter Lambda:

Ridge: 1.0Lasso: 0.0001

R2 value on train data & test data for Ridge & Lasso

Train: Ridge(0.92), Lasso(0.91)Test: Ridge(0.87), Lasso(0.87)

MSE

Ridge: 0.002728Lasso: 0.002730

We can see that in terms of accuracy, best performance is given by the Ridge Regression model (alpha = 1), but Lasso (alpha = 0.0001) is extremely close with an added advantage that it can reduce the number of features if required by fine tuning the alpha value which is not possible with Ridge. Hence, I will be using Lasso (with alpha 0.0001) in this case.

Another advantage of using Lasso is that we can bring down the number of predictor variables by increasing the alpha value without compromising too much on the error in the model. Using lower number of predictor variable without compromising too much on the errors is a great because it helps to keep the model simple.

Question 3

After building the model, you realised that the five most important predictor variables in the lasso model are not available in the incoming data. You will now have to create another model excluding the five most important predictor variables. Which are the five most important predictor variables now?

Solution 3

If the most 5 important variables are not present in the model in that case following 5 most important predictor variables are:

- 1) GarageArea
- 2) BsmtQual
- 3) LotArea
- 4) KitchenQual

5) Foundation Slab

Question 4

How can you make sure that a model is robust and generalisable? What are the implications of the same for the accuracy of the model and why?

Solution 4

- Model should not be impacted by outliers. Model can be impacted while using test data and model and can fail on that, if too much focus is given to outliers during model building.
- The accuracy of training data and test data should be comparable. If the model performs well on training data but does not perform well on test data then it is a sign of overfitting and hence the model is not robust.
- Regularization is used to ensure that the model is resilient and generalizable. It penalizes the model if it becomes more complex.
- Bias Variance is achieved with the help of Regularization. It increases the bias to a optimum position. Both variance and bias should be low for a good-fit model.

