CAPITULO 6: INTRODUCCIÓN A LAS ECUACIONES DIFERENCIALES DE PRIMER ORDEN

Una ecuación diferencial es una ecuación que expresa una relación explicita o implícita entre una función y = f(t) y una o más de sus derivadas o diferenciales. Lo que se busca es una función que no dependa de sus derivadas o diferenciales. En consecuencia, la solución será una función y no un valor numérico. Ejemplos de diferenciales son:

$$\frac{dy}{dt} = 3t + 2$$
 $y' = 3y$ $y'' - 4y' + 5 = 0$

Naturalmente, si se parte de derivadas o diferenciales, para obtener la función original o solución será necesario realizar un proceso de integración. (Note que las dos primeras expresiones son iguales: una notación alternativa de $\frac{dy}{dt}$ es $\frac{x}{y}$).

La derivada dy/dt es la única que puede aparecer en una ecuación diferencial de primer orden, pero puede estar elevada a distintas potencias como $\left(dy/dt\right)^2$, $\left(dy/dt\right)^3$. La potencia más alta es la que dará el grado de la ecuación diferencial. En este capitulo se verá únicamente ecuaciones diferencial de primer orden (EDP).

6.1 EDP DE COEFICIENTE CONSTANTE Y TÉRMINO CONSTANTE

Una ecuación lineal de primer orden tomará generalmente la forma:

$$\frac{\mathrm{d}y}{\mathrm{d}t} + \mathrm{u}(t)y = \mathrm{w}(t) \tag{6.1}$$

donde u y w son funciones de t (cúbicas, cuadráticas, lineales, constantes, etc.).

6.1.1 Caso homogéneo: cuando w(t)=0 y u(t)=a

Cuando u es una función constante (entonces, u(t) = a, donde obviamente, a es una constante) y w es una función nula (w(t) = 0).

$$\frac{\mathrm{dy}}{\mathrm{dt}} + \mathrm{ay} = 0 \tag{6.2}$$

La ecuación (6.2) puede re-escribirse de la siguiente forma:

$$\frac{1}{y}\frac{dy}{dt} = -a \tag{6.3}$$

Al integrar ambos miembros se tiene:

$$\ln y(t) + c_1 = -(at + c_2)$$

$$\ln y(t) = -c_2 - c_1 - at$$

$$y(t) = e^{-c_2 - c_1 - at}$$
de donde,

$$y(t) = Ae^{-at} (6.4)$$

siendo $A = e^{-c_1-c_2}$. La expresión (6.4) es una función que es llamada **solución general.** Una variante de ésta, (6.5) es llamada **solución definida.**

$$y(t) = y(0)e^{-at}$$
 (6.5)

Ejemplo 6-1. Obtener la solución de dy/dt + 4y = 0, cuando y(0) = 1.

Solución. Cuando se tiene una condición inicial debe usarse al final de problema para calcular la constante (A) y así poder obtener una **solución definida**.

Claramente este es el caso más sencillo cuando. Identificando que u(t) = a = 4, se puede aplicar directamente la formula (6.4),

$$y(t) = Ae^{-4t}$$

Por condición, y(0) = 1 entonces, $y(0) = Ae^{-4(0)} = 1$, de donde A = 0. De esta forma, la solución será: $y(t) = e^{-4t}$ (solución definida!).

6.1.2 Caso no homogéneo: cuando w(t) = b ($b \ne 0$)

Cuando en la ecuación (6.1) la función w es distinta de 0 ($w(t) \neq 0$) pero es constante (igual a b).

$$\frac{\mathrm{dy}}{\mathrm{dt}} + \mathrm{ay} = \mathrm{b} \tag{6.6}$$

En este caso, la solución de la ecuación (6.6) será la suma de dos términos, uno de los cuales se llama **función complementaria**, y_c , y el otro se le conoce como integral particular, y_p . La **solución complementaria** se obtiene asumiendo que w es una función nula (caso homogéneo). La solución particular se da cuando la función y es una constante, por lo que dy/dt = 0.

La solución general es:

$$y(t) = y_c + y_p = Ae^{-at} + \frac{b}{a}$$
 (6.7)

La solución definida se dará cuando:

$$y(0) = A + \frac{b}{a}$$

$$A = y(0) - \frac{b}{a} \tag{6.8}$$

Por lo tanto,

$$y(t) = \left[y(0) - \frac{b}{a} \right] e^{-at} + \frac{b}{a}$$
 (6.9)

Ejemplo 6-2. Dar la solución a dy/dt + 2y = 6 cuando y(0) = 10 **Solución.** Reconociendo que a = 2 y b = 0, se aplican estos datos en la expresión (6.9),

$$y(t) = [10-3]e^{-2t} + 3$$
$$y(t) = 7e^{-2t} + 3$$

Nótese que obteniendo el valor de A de (6.8), y reemplazarlo en la solución general (6.7) conllevaría al mismo resultado.

6.2 EDP DE COEFICIENTE VARIABLE Y TÉRMINO VARIABLE

El caso más general de una EDP es:

$$\frac{\mathrm{dy}}{\mathrm{dt}} + \mathrm{u}(\mathrm{t})\mathrm{y} = \mathrm{w}(\mathrm{t}) \tag{6.10}$$

donde u(t) y w(t) representan un coeficiente variable y un termino variable, respectivamente.

6.2.1 Caso homogéneo: cuando w(t)=0

Partiendo de la función (6.10): $\frac{dy}{dt} + u(t)y = w(t)$, si w(t) = 0 entonces, la solución de la expresión (6.11) será:

$$\frac{\mathrm{d}y}{\mathrm{d}t} + \mathrm{u}(t)y = 0 \tag{6.11}$$

$$\frac{dy}{dt} + u(t)y = 0$$
, ordenando, $\frac{1}{y}\frac{dy}{dt} = -u(t)$

Integrando ambos miembros con respecto a t,

Primer miembro:
$$\int \frac{1}{y} \frac{dy}{dt} dt = \int \frac{dy}{y} = \ln y + c$$

Segundo miembro:
$$\int -u(t)dt = \int -u(t)dt$$

luego,

$$\ln y = -c - \int u(t)dt$$

tomando logaritmos a ambos lados,

$$y(t) = e^{-c - \int u(t)dt}$$

 $y(t) = e^{-c}e^{-\int u(t)dt}$, haciendo $A = e^{-c}$ (A es una constante arbitraria, la cual solo puede definirse o calcularse si se tiene una condición inicial apropiada).

se obtiene la solución general:

$$y(t) = Ae^{-\int u(t)dt}$$
 (6.12)

Ejemplo 6-3. Obtenga la solución general de $dy/dt + 3t^2y = 0$ **Solución.** Sabiendo que $u(t) = 3t^2$, fácilmente se aplica en (6.12):

$$y(t) = Ae^{-\int 3t^2 dt}$$

sabiendo que $-\int 3t^2 dt = -(t^3 + c)$, entonces:

$$y(t) = Ae^{-(t^3+c)}$$

$$y(t) = Ae^{-c}e^{-t^3}$$

$$y(t) = Be^{-t^3}, donde B = Ae^{-c}$$

6.2.2 Caso no homogéneo: cuando w(t)≠0

En este caso, la expresión resultante es igual a la expresión (6.12). Igualmente, la constante A puede ser calculada teniendo una condición inicial idónea.

$$y(t) = e^{-\int u dt} \left(A + \int w e^{\int u dt} dt \right)$$
 (6.13)

Ejemplo 6-4. Dar la solución de $dy/dt + 3t^2y = t^2$

Solución. Claramente, $u(t) = 3t^2$ y $w(t) = t^2$, entonces colocando estos datos en (6.12)

$$y(t) = e^{-\int 3t^2 dt} \left(A + \int t^2 e^{\int 3t^2 dt} dt \right)$$

integrando $-\int 3t^2 dt = -(t^3 + c_1)$, entonces la expresión anterior se reduce a:

$$y(t) = e^{-(t^3 + c_1)} \left[A + \int t^2 e^{(t^3 + c_1)} dt \right]$$
 (6.14)

La expresión $\int t^2 e^{(t^3 + c_1)} dt$ es igual a: $\int t^2 e^{(t^3 + c_1)} dt = \int t^2 e^{t^3} e^{c_1} dt = e^{c_1} \int t^2 e^{t^3} dt$

Para obtener el resultado del término $\int t^2 e^{t^3} dt$ será necesario un cambio de variable, $u = t^3$ lo cual implica que $du = 3t^2 dt$. Re-agrupando

$$\frac{1}{3}e^{c_1} \int 3t^2 dt e^{u}$$

$$\frac{1}{3}e^{c_1} \int e^{u} du$$

$$\frac{1}{3}e^{c_1} (e^{u} + c_2)$$

$$\frac{1}{3}e^{c_1} (e^{t^3} + c_2)$$
(6.15)

Reintroduciendo (6.15) en (6.14):

$$y(t) = e^{-(t^3 + c_1)} \left[A + \frac{1}{3} e^{c_1} e^{t^3} + \frac{1}{3} e^{c_1} c_2 \right]$$

$$y(t) = e^{-(t^3 + c_1)} A + \frac{1}{3} e^{-t^3} e^{-c_1} e^{c_1} e^{t^3} + e^{-t^3} e^{-c_1} \frac{1}{3} e^{c_1} c_2$$
(6.16)

Realizando las operaciones, simplificando y agrupando apropiadamente:

$$y(t) = e^{-t^3} \left[Ae^{-c_1} + \frac{c_2}{3} \right] + \frac{1}{3}$$
 (6.18)

La expresión (6.18) es la solución general. ¿Cuál es la solución particular?

6.3 PROBLEMAS RESUELTOS

1. Sea X(t) el número de peces de peces de cierta población durante una estación de pesca, $0 \le t \le T$, y R = X(0) como el reclutamiento inicial. Si M(t) es la tasa de mortalidad natural y F(t) la tasa de mortalidad pesquera, se tiene que:

$$\frac{dX}{dt} = -(M(t) + F(t))X$$

Muestre que el "escape" S = X(t) esta dado por:

$$S = \operatorname{Re} xp \left(-\int_0^T \left(M(t) + F(t) \right) \right)$$

Solución. Reagrupando la expresión $\frac{dX}{dt} = -(M(t) + F(t))X$ se tiene que:

$$\frac{\mathrm{dX}}{\mathrm{dt}} + \left[\mathbf{M}(t) + \mathbf{F}(t) \right] \mathbf{X} = 0$$

En este caso, es posible aplicar directamente la formula 6.12 ($y(t) = Ae^{-\int u(t)dt}$), entonces:

$$X(t) = Ae^{-\int_0^T \left[M(t) + F(t)\right]dt}$$

Pero si X(0) = A entonces,

$$X(t) = X(0)e^{-\int_0^T \left[M(t) + F(t)\right]dt}$$

2. Encuentre la función de demanda Q = f(P) si la elasticidad punto ε es igual a -1 para todo P>0.

Solución.

$$\varepsilon = \frac{dQ}{dP} \frac{P}{Q} = -1$$
, o lo que es igual $\frac{dQ}{dP} = -\frac{Q}{P}$

Separando y ordenando variables,

$$\frac{dQ}{Q} = -\frac{dP}{P}$$

Integrando ambos lado,

$$\ln Q = -\ln P + \ln c$$
 (c = constante de integración)

Agrupando,

$$\ln O + \ln P = \ln c$$

por propiedad de logaritmos, $(\ln a + \ln b = \ln ab)$

$$QP = c \circ Q = c/P$$

3. Encuentre la función de demanda Q=f(P) si $\epsilon=-(5P+2P^2)/Q$ y Q=500 cuando P=10. $\epsilon=$ elasticidad.

Solución.

$$\varepsilon = \frac{dQ}{dP} \cdot \frac{P}{Q} = \frac{-(5P + 2P^2)}{Q}$$
$$\frac{dQ}{dP} = \frac{-(5P + 2P^2)}{Q} \cdot \frac{Q}{P} = -5 - 2P$$

Separando variables,

$$dQ = (-5 - 2P)dP$$

Integrando ambos lados,

$$Q(P) = -5P - P^2 + c$$

Para encontrar el valor de la constante, c, se utiliza los datos dados.

$$Q(10) = -5(10) - (10)^2 + c = 500$$

de donde c = 650. Finalmente,

$$Q(P) = 650 - 5P - P^2$$

6.4 PROBLEMAS PROPUESTOS

1.
$$2\frac{dy}{dt} - 2t^2y - 9t^2 = 0$$
, $y(0) = -2.5$

$$2. \frac{dy}{dt} - 2ty = e^{t^2}$$

3.
$$\frac{dy}{dt} + 3y = 6t$$
, $y(0) = 1/3$

4.
$$\frac{dy}{dt} - \frac{y}{t} = 0$$
, $y(3) = 12$