U.T.N. F.R.B.A. ANALISIS MATEMATICO II 1ER PARCIAL

Apellido y Nombre: Legajo:

T1)a)Defina superficie y punto regular de una superficie. Analice si $\overline{A}=(2,1,1)$ es punto regular de la superficie de ecuación $\overline{X}=(u,u-v,v^2)$ con $(u,v)\in\Re^2$ b)Sea r_0 la recta normal en $\overline{A}=(1,2,3)$ a la superficie Σ de ecuación $z=y+x^2$ con $(x,y)\in\Re^2$, calcule la longitud del segmento $\overline{AB}\subset r_0$, siendo \overline{B} el punto en que r_0 interseca al plano xy

- T2) Sea $F:A\subseteq R^2\to R$ si F es diferenciable en $\overline{X_0}$ interior a A mostrar que F admite derivada en toda dirección en $\overline{X_0}$ y deducir la fórmula de derivación respecto de un vector $\overline{V}\in R^2$
- **E1)** Sea z=f(u,v) la función definida implícitamente por la ecuación $2v+ue^z+z=-1$ en un entorno del punto $(1,-1,z_0)$
- a) Hallar la derivada direccional máxima de f en (1,-1)
- b) con la misma z=f(u,v) del punto anterior sean $u=x^2-y+1$ y $v=x+y^2-3$; queda definida una función w(x,y)=w(u(x,y);v(x,y)). Calcular en forma aproximada w(x,y)=w(0.98;1.01)

E2)
$$f(x, y) = \begin{cases} \frac{xsen(xy)}{x^2 + y^2} & si(x, y) \neq (0, 0) \\ 0 & si(x, y) = (0, 0) \end{cases}$$

- a) Estudiar la continuidad en el origen
- b) Analizar existencia de derivadas direccionales en (0,0)
- c) La grafica de f ; admite plano tangente en el punto (0,0,f(0,0))
- E3) Hallar el ángulo que forma la normal a la superficie $x^2 + y^2 + z^2 = 1$ en el punto $(1/2,1/2,\sqrt{2}/2)$ con la normal a la superficie parametrizada por $F(u,v) = (u\cos v; u\cos v, u)$ en el mismo punto
- **E4**) Determine $K \in \mathbb{R}$ de manera que las familias $y^3 = Ax$; $x^2 + Ky^2 = B^2$ sean ortogonales