

SINGLE-CHANNEL DUAL-CHANNEL 6N138 HCPL-2730 HCPL-2731

DESCRIPTION

The 6N138/9 and HCPL-2730/HCPL-2731 optocouplers consist of an AlGaAs LED optically coupled to a high gain split darlington photodetector.

The split darlington configuration separating the input photodiode and the first stage gain from the output transistor permits lower output saturation voltage and higher speed operation than possible with conventional darlington phototransistor optocoupler. In the dual channel devices, HCPL-2730/HCPL2731, an integrated emitter - base resistor provides superior stability over temperature.

The combination of a very low input current of 0.5 mA and a high current transfer ratio of 2000% makes this family particularly useful for input interface to MOS, CMOS, LSTTL and EIA RS232C, while output compatibility is ensured to CMOS as well as high fan-out TTL requirements.

An internal noise shield provides exceptional common mode rejection of 10 kV/ μ s. An improved package allows superior insulation permitting a 480 V working voltage compared to industry standard 220 V.

FEATURES

- Low current 0.5 mA
- Superior CTR-2000%
- Superior CMR-10 kV/µs
- Double working voltage-480V RMS
- CTR guaranteed 0-70°C
- U.L. recognized (File # E90700)
- Dual Channel HCPL-2730 HCPL-2731

APPLICATIONS

- Digital logic ground isolation
- Telephone ring detector
- EIA-RS-232C line receiver
- High common mode noise line receiver
- μP bus isolation
- · Current loop receiver

ABSOLUTE MAXIMUM RATINGS (No derating required up to 85°	C)		
Parameter	Symbol	Value	Units	
Storage Temperature	T _{STG}	-55 to +125	°C	
Operating Temperature		T _{OPR}	-40 to +85	°C
Lead Solder Temperature		TsoL	260 for 10 sec	°C
EMITTER DC/Average Forward Input Current	Each Channel	IF (avg)	20	mA
Peak Forward Input Current (50% duty cycle, 1	ms P.W.) Each Channel	I _F (pk)	40	mA
Peak Transient Input Current - (≤ 1 µs P.W., 300	I _F (trans)	1.0	А	
Reverse Input Voltage	Each Channel	V _R	5	V
Input Power Dissipation	Each Channel	PD	35	mW
DETECTOR				
Average Output Current	Each Channel	I _O (avg)	60	mA
Emitter-Base Reverse Voltage	(6N138 and 6N139)	V _{EB}	0.5	V
0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	., .,	-0.5 to 7	.,	
Supply Voltage, Output Voltage	(6N139, HCPL-2731)	V _{CC} , V _O	-0.5 to 18	V
Output power dissipation	Each Channel	P _D	100	mW

SINGLE-CHANNEL DUAL-CHANNEL 6N138 HCPL-2730 HCPL-2731

ELECTRICAL CHARACTERISTICS (T _A = 0 to 70°C unless otherwise specified.)								
INDIVIDUAL COMPONENT CHARACTERISTICS								
Parameter Test Conditions		Symbol	Device	Min	Typ**	Max	Unit	
EMITTER		T _A =25°C)		Δ.II		1.30	1.7	V
Input Forward Voltage	Each Cha	nnel (I _F = 1.6 mA)	V _F	All			1.75	V
Input Reverse Breakdown	/oltage (T _A =	25°C, I _R = 10 μA) Each Channel	BV _R	All	5.0	20		V
Temperature coefficient of f	orward voltage	$(I_F = 1.6 \text{ mA})$	$(\Delta V_F/\Delta T_A)$	All		-1.8		mV/°C
DETECTOR $(I_F = 0 \text{ mA}, T)$		V _O = V _{CC} = 18 V)		6N139		0.01	100	μΑ
		Each Channel	I _{OH}	HCPL-2731				
Logic high output current	$(I_F = 0 \text{ mA},$	$V_{O} = V_{CC} = 7 \text{ V}$		6N138		0.01	250	
		Each Channel		HCPL-2730		0.01	250	
	(I _F = 1.6	6 mA, V _O = Open)		6N138		0.4	1.5	
Logio low gupply	$(V_{CC} = 18 \text{ V})$ $(I_{F1} = I_{F2} = 1.6 \text{ mA}, V_{CC} = 18 \text{ V})$		I _{CCL}	6N139		0.4	1.5	
Logic low supply				HCPL-2731		1.3	3	mA
	$(V_{O1} = V_{O2} = C)$	Open, $V_{CC} = 7 \text{ V}$		HCPL-2730		1.3	3	
Logic high supply	(I _F = ($(I_F = 0 \text{ mA}, V_O = \text{Open})$		6N138		0.05	10	
	$(V_{CC} = 18 \text{ V})$			6N139		0.05		
	$(I_{F1} = I_{F2} = 0)$	$V_{CC} = 18 \text{ V}$	Іссн	HCPL-2731		0.1	20	μA
	$(V_{O1} = V_{O2} = C)$	Open, $V_{CC} = 7 \text{ V}$		HCPL-2730		0.1	20	

^{**} All typicals at $T_A = 25$ °C

SINGLE-CHANNEL DUAL-CHANNEL 6N138 HCPL-2730 HCPL-2731

Parameter	Parameter Test Conditions			Device	Min	Typ**	Max	Unit
COUPLED	OUPLED $(I_F = 0.5 \text{ mA}, V_O = 0.4 \text{ V})$			6N139	400	1100		0/
				HCPL-2731	400	3500		%
Current transfer ratio	$(I_F = 1.6 \text{ mA}, V_O = 0.4)$	V, V _{CC} = 4.5 V)	CTR	6N139	500	1300		%
(Notes 1,2)		Each Channel	CIK	HCPL-2731	300	2500		70
	$(I_F = 1.6 \text{ mA}, V_O = 0.4)$	V, V _{CC} = 4.5 V)		6N138	300	1300		%
				HCPL-2730		2500		76
	$(I_F = 0.5 \text{ mA}, I_O = 2 \text{ mA}, V_{CC} = 4.5 \text{ V})$			6N139		0.08	0.4	
	$(I_F = 1.6 \text{ mA}, I_O = 8 \text{ mA}, V_{CC} = 4.5 \text{ V})$			6N139		0.01	0.4	
		Each Channel]	HCPL-2731		0.01	0.4	
Logic low output voltage	ge^{-} ($I_F = 5 \text{ mA}, I_O = 15 \text{ m}$	$A, V_{CC} = 4.5 V$		6N139		0.13	0.4	
output voltage	Each Channel		V _{OL}	HCPL-2731		0.13	0.4	l v
(Note 2)	$(I_F = 12 \text{ mA}, I_O = 24 \text{ m})$	$A, V_{CC} = 4.5 V$		6N139		0.20	0.4	
		Each Channel		HCPL-2731		0.20	0.4	
$(I_F = 1.6 \text{ mA}, I_O = 4.8 \text{ mA}, V_{CC} = 4.5 \text{ V})$				6N138		0.10	0.4	
		Each Channel	1	HCPL-2730		0.10	0.4	

^{**} All typicals at T_A = 25°C

SINGLE-CHANNEL
6N138
6N139
DUAL-CHANNEL
HCPL-2730
HCPL-2731

Parameter	•	Test Conditions	Symbol	Device	Min	Тур**	Max	Unit
	$(R_L = 4.7 \text{ k}\Omega, I_F = 0.5 \text{ mA})$			6N139			30	
		T _A = 25°C				4	25	
	(R _L = 4.7	$k\Omega$, $I_F = 0.5 \text{ mA}$)		HCPL-2731			120	
	Each Channel	T _A = 25°C		HCFL-2/31		3	100	
Propagation delay	$(R_L = 27)$	70 Ω, I _F = 12 mA)		6N139			2	μs
time to logic low		T _A = 25°C		011139		0.2	1	
(Note 2) (Fig. 22)	(R _L = 27	$0 \Omega, I_F = 12 \text{ mA}$	T _{PHL}	HCPL-2730			3	
	Each Channel	T _A = 25°C		HCPL-2731		0.3	2	
	(R _L = 2.2	$k\Omega$, $I_F = 1.6 \text{ mA}$)		6N138			15	
		T _A = 25°C		011130		1.5	10	
	(R _L = 2.2	$k\Omega$, $I_F = 1.6 \text{ mA}$)		HCPL-2731			25	
	Each Channel	T _A = 25°C		HCPL-2730		1	20	
	$(R_{L} = 4.7)$	$k\Omega$, $I_F = 0.5 \text{ mA}$)		6N139			00	
		Each Channel		HCPL-2731			90	
	$R_L = 4.7 \text{ k}\Omega, I_F = 0.5$	5 mA) T _A = 25°C		6N139		12	60	
		Each Channel		HCPL-2731		22	00	
	$(R_L = 27)$	0Ω , $I_F = 12 \text{ mA}$		6N139			10	
Propagation delay		T _A = 25°C				1.3	7	
time to logic high (Note 2) (Fig. 22)	(R _L = 270 Ω , I _F = 12 mA) Each Channel		T _{PLH}	HCPL-2730			15	μs
		T _A = 25°C		HCPL-2731		5	10	
	(R _L = 2.2	$k\Omega$, $I_F = 1.6 \text{ mA}$)		6N138			50	
		Each Channel		HCPL-2730/1			50	
·	$(R_L = 2.2 \text{ k}\Omega, I_F = 1.6)$	$^{\circ}$ mA) $T_{A} = 25^{\circ}C$		6N138		7	35	
		Each Channel		HCPL-2730/1		16	35	
Common mode	$(I_F = 0 \text{ mA},$	$ V_{CM} = 10 V_{P-P}$		6N138				
transient	$T_A = 25^{\circ}C$, $(R_L = 2.2 \text{ k}\Omega)$ (Note 3) (Fig. 23)	 CM _H	6N139	1,000	10,000		V/µs
immunity at logic high		Each Channel		HCPL-2730 HCPL-2731	1,000	10,000		ν/με
Common mode	$(I_F = 1.6 \text{ mA}, V_{CM} = 10 V_{P-P}, R_L = 2.2 \text{ k}\Omega)$			6N138				
transient		Note 3) (Fig. 23)		6N139		,		ļ ,
immunity at	^	Each Channel	- CM _L	HCPL-2730	1,000	10,000		V/µs
logic low				HCPL-2731				

^{**} All typicals at T_A = 25°C

SINGLE-CHANNEL DUAL-CHANNEL 6N138 HCPL-2730 HCPL-2731

ISOLATION CHARACTE	ISOLATION CHARACTERISTICS (T _A = 0 to 70°C Unless otherwise specified)							
Characteristics	Test Conditions	Symbol	Min	Тур**	Max	Unit		
	(Relative humidity = 45%)							
Input-output	$(T_A = 25^{\circ}C, t = 5 s)$				4.0			
insulation leakage current	$(V_{I-O} = 3000 \text{ VDC})$	I _{I-O}			1.0	μΑ		
	(Note 8)							
Withstand insulation toot valtage	$(RH \le 50\%, T_A = 25^{\circ}C)$	V _{ISO}	2500			M		
Withstand insulation test voltage	(Note 4) ($t = 1 min.$)		2500			V_{RMS}		
Resistance (input to output)	(Note 4) (V _{I-O} = 500 VDC)	R _{I-O}		10 ¹²		Ω		
Capacitance (input to output)	(Note 4,5) (f = 1 MHz)	C _{I-O}		0.6		pF		
Input-Input (RH ≤ 4	5%, V _{I-I} = 500 VDC) (Note 6)	1		0.005				
Insulation leakage current t =	5 s, (HCPL-2730/2731 only)	I _{I-I}		0.005		μΑ		
Input Input Posistance	$(V_{I-I} = 500 \text{ VDC}) \text{ (Note 6)}$	D		1011		Ω		
Input-Input Resistance	(HCPL-2730/2731 only)	R _{I-I}		10		7.7		
Input Input Congeitance	(f = 1 MHz) (Note 6)	C		0.02		n.E		
Input-Input Capacitance	(HCPL-2730/2731 only)	C _{I-I}		0.03		pF		

^{**} All typicals at T_A = 25°C

NOTES

- 1. Current Transfer Ratio is defined as a ratio of output collector current, Io, to the forward LED input current, IF, times 100%.
- 2. Pin 7 open. (6N138 and 6N139 only)
- 3. Common mode transient immunity in logic high level is the maximum tolerable (positive) dVcm/dt on the leading edge of the common mode pulse signal, VcM, to assure that the output will remain in a logic high state (i.e., Vo > 2.0 V). Common mode transient immunity in logic low level is the maximum tolerable (negative) dVcm/dt on the trailing edge of the common mode pulse signal, VcM, to assure that the output will remain in a logic low state (i.e., Vo < 0.8 V).
- 4. Device is considered a two terminal device: Pins 1, 2, 3 and 4 are shorted together and Pins 5, 6, 7 and 8 are shorted together.
- 5. For dual channel devices, C_{I-O} is measured by shorting pins 1 and 2 or pins 3 and 4 together and pins 5 through 8 shorted together.
- 6. Measured between pins 1 and 2 shorted together, and pins 3 and 4 shorted together.

SINGLE-CHANNEL	DUAL-CHANNEL
6N138	HCPL-2730
6N139	HCPL-2731

ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise specified)

Current Limiting Resistor Calculations

$$R_1 \text{ (Non-Invert)} = \frac{V_{DD1} - V_{DF} - V_{OL1}}{I_F}$$

$$R_1 \text{ (Invert)} = \frac{V_{DD1} - V_{OH1} - V_{DF}}{I_F}$$

$$R_2 = \frac{V_{DD2} - = V_{OLX} (@ I_L - I_2)}{I_1}$$

Where:

V_{DD1} - Input Supply Voltage

V_{DD2} - Output Supply Voltage

V_{DF} - Diode Forward Voltage

V_{OL1} - Logic "0" Voltage of Driver

V_{OH1} - Logic "1" Voltage of Driver

I_F - Diode Forward Current

V_{OLX} - Saturation Voltage of Output Transistor

I_L - Load Current Through

Resistor R2

I₂ - Input Current of Output Gate

INIT	PUT					OUTPUT	_		
IINF	1		01100			OUTPUT			
			CMOS	CMOS	74XX	74LXX	74SXX	74LSXX	74HXX
			@ 5 V	@ 10 V	74//	74677	745	74LOXX	7411//
		R1 (Ω)	R2 (Ω)						
CMOS	NON-INV.	2000							
@ 5 V	INV.	510							
CMOS	NON-INV.	5100							
@ 10 V	INV.	4700							
741/1/	NON-INV.	2200							
74XX	INV.	180							
741.20	NON-INV.	1800	1000	2200	750	1000	1000	1000	560
74LXX	INV.	100							
740	NON-INV.	2000							
74SXX	INV.	360							
741.00//	NON-INV.	2000							
74LSXX	INV.	180							
74111//	NON-INV.	2000							
74HXX	INV.	180							

Fig. 1 Resistor Values for Logic Interface

Fig. 2 Non-Inverting Logic Interface

Fig. 3 Inverting Logic Interface

SINGLE-CHANNEL 6N138 6N139

DUAL-CHANNEL HCPL-2730 HCPL-2731

Fig. 4 LED Forward Current vs. Forward Voltage

Fig. 6 Non-saturated Rise and Fall Times vs. Load Resistance (6N138 / 6N139 Only)

Fig. 8 Current Transfer Ratio vs. Forward Current (6N138 / 6N139 Only)

Fig. 5 LED Forward Voltage vs. Temperature

Fig. 7 Non-saturated Rise and Fall Times vs. Load Resistance (HCPL-2730 / HCPL-2731 Only)

 R_L - LOAD RESISTANCE (k $\!\Omega)$

Fig. 9 Current Transfer Ratio vs. Forward Current (HCPL-2730 / HCPL-2731 Only)

SINGLE-CHANNEL 6N138 6N139

DUAL-CHANNEL HCPL-2730 HCPL-2731

Fig. 10 Output Current vs Output Voltage (6N138 / 6N139 Only)

Fig. 11 Output Current vs Output Voltage (HCPL-2730 / HCPL-2731 Only)

Fig. 12 Output Current vs. Input Diode Forward Current (6N138 / 6N139 Only)

Fig. 13 Output Current vs Input Diode Forward Current (HCPL-2730 / HCPL-2731 Only)

IF - INPUT DIODE FORWARD CURRENT (mA)

IF - INPUT DIODE FORWARD CURRENT - mA

SINGLE-CHANNEL
6N138
HCPL-2730
HCPL-2731

Fig. 16 Propagation Delay vs. Input Diode Forward Current (6N138 / 6N139 Only)

Fig. 17 Propagation Delay vs. Input Diode Forward Current (HCPL-2730 / HCPL-2731 Only)

Fig. 18 Propagation Delay to Logic Low vs. Pulse Period (6N138 / 6N139 Only)

Fig. 19 Propagation Delay to Logic Low vs. Pulse Period (HCPL-2730 / HCPL-2731 Only)

Fig. 20 Propagation Delay vs. Temperature (6N138 / 6N139 Only)

Fig. 21 Propagation Delay vs. Temperature (HCPL-2730 / HCPL-2731 Only)

SINGLE-CHANNEL
6N138
HCPL-2730
HCPL-2731

Fig. 22 Switching Time Test Circuit

*Includes Probe and Fixture Capacitance

Fig. 23 Common Mode Immunity Test Circuit

SINGLE-CHANNEL DUAL-CHANNEL 6N138 HCPL-2730

6N139 HCPL-2731

NOTEAll dimensions are in inches (millimeters)

SINGLE-CHANNEL	DUAL-CHANNEL
6N138	HCPL-2730
6N139	HCPL-2731

ORDERING INFORMATION

Option	Order Entry Identifier	Description
R2	.R2	Opto Plus Reliability Conditioning
S	.S	Surface Mount Lead Bend
SD	.SD	Surface Mount; Tape and reel
W	.W	0.4" Lead Spacing

Corporate Headquarters

QT Optoelectronics 610 North Mary Avenue Sunnyvale, CA 94086 (408) 720-1440 Phone (408) 720-0848 Fax

European Sales

QT Optoelectronics
"Le Levant"
2, rue du Nouveau Bercy
F-94277-CHARENTON-LE PONT Cedex
FRANCE
33 [0] 1.45.18.78.78 Phone
33 [0] 1.43.75.77.57 Fax

North American Sales

QT Optoelectronics 16775 Addison Rd.,Suite 200 Addison, TX 75001 (972) 447-1300 Phone (972) 447-0784 Fax

Asia/Pacific Sales

QT Optoelectronics B613, 6th Floor East Wing, Wisma Tractors Jalan SS16/1, Subang Jaya 47500 Petaling Jaya Selangor Darul Eshan, Malaysia 603/735-2417 Phone 603/736-3382 Fax

European Sales

Quality Technologies Deutschland GmbH Max-Huber-Strasse 8 D-85737 Ismaning, Germany 49 [0] 89/96.30.51 Phone 49 [0] 89/96.54.74 Fax

European Sales

Quality Technologies (U.K) Ltd. 10, Prebendal Court, Oxford Road Aylesbury, Buckinghamshire HP19-3EY United Kingdom 44 [0] 1296/30.44.99 Phone 44 [0] 1296/39.24.32 Fax

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.