

# Aquarius brightness temperature variations at Dome C and snow metamorphism at the surface

Ludovic Brucker<sup>1,2</sup>, Emmanuel Dinnat<sup>1,3</sup>,  
Ghislain Picard<sup>4</sup>, and Nicolas Champollion<sup>4</sup>

<sup>1</sup> NASA GSFC Cryospheric Sciences Lab., code 615, Greenbelt, MD, USA

<sup>2</sup> Universities Space Research Association – GESTAR

<sup>3</sup> Chapman University, Orange, CA, USA

<sup>4</sup> Uni. Grenoble Alpes/CNRS, LGGE, Grenoble, France



Laboratoire de Glaciologie et Géophysique de l'Environnement

# Motivations

The Antarctic ice sheet is both an **actor** in the climate system  
and an **indicator** of its evolution

Ice sheet area  $\sim 14.10^6 \text{ km}^2$

Antarctica contains  $\sim 90\%$  of total ice on Earth  
Number of Automatic Weather Station  $\sim 100$



# Motivations

The Antarctic ice sheet is both an **actor** in the climate system  
and an **indicator** of its evolution

Ice sheet area  $\sim 14.10^6 \text{ km}^2$

Antarctica contains  $\sim 90\%$  of total ice on Earth  
Number of Automatic Weather Station  $\sim 100$



How to monitor ice temperature?

- ⇒ climate models (global, or regional)
- ⇒ reanalysis (ERA-interim, MERRA...)

⇒ remote sensing

# Motivations

Motivated by **L-band** deep-penetration observations over Antarctica to:

- Analyze their spatial distribution
- Assess the observations' stability
- Contribute to define cal/val and intercalibration experiments

Important initial tasks toward retrieving snow & ice properties

# The current 1.4 GHz (L-band) space-borne radiometers

**Aquarius**

**SMOS**

# The current 1.4 GHz (L-band) space-borne radiometers

## Aquarius

Designed for sea surface salinity retrievals  
 Operates **3** non-scanning radiometers

| Radiometer                           | 1              | 2               | 3               |
|--------------------------------------|----------------|-----------------|-----------------|
| Incidence angle ( $^{\circ}$ )       | 29.2           | 38.4            | 46.3            |
| Footprint size (km $\times$ km)      | 76 $\times$ 94 | 84 $\times$ 120 | 97 $\times$ 156 |
| Northernmost latitude ( $^{\circ}$ ) | 84.99          | 86.07           | 87.40           |
| Southernmost latitude ( $^{\circ}$ ) | 79.01          | 77.90           | 76.54           |

Large footprint sizes, but  
 Excellent sensitivity of **0.2 K**



# The current 1.4 GHz (L-band) space-borne radiometers

## Aquarius

Designed for sea surface salinity retrievals  
 Operates **3** non-scanning radiometers

| Radiometer                           | 1              | 2               | 3               |
|--------------------------------------|----------------|-----------------|-----------------|
| Incidence angle ( $^{\circ}$ )       | 29.2           | 38.4            | 46.3            |
| Footprint size (km $\times$ km)      | 76 $\times$ 94 | 84 $\times$ 120 | 97 $\times$ 156 |
| Northernmost latitude ( $^{\circ}$ ) | 84.99          | 86.07           | 87.40           |
| Southernmost latitude ( $^{\circ}$ ) | 79.01          | 77.90           | 76.54           |

Large footprint sizes, but  
 Excellent sensitivity of **0.2 K**

## SMOS

Designed for moisture & salinity  
 Radiometer with aperture synthesis

Multiple incidence angles (0–65 $^{\circ}$ )

Finer spatial resolution (30–90 km)  
 Coarser sensitivity (2–2.5 K)

# Outline

1. Spatial distribution of Aquarius TB in Antarctica
2. Temporal Aquarius TB variations at Dome C
3. Impact of snow surface state
  - 3.1 Comparison with AMSU-B grain index
  - 3.2 Comparison with surface-based IR surface pictures
4. Conclusion

# Antarctica

Weekly mean brightness temperature (vertical polarization, radiometer 3  $\theta_{\text{inc}} \sim 46.3^\circ$ )



# Coastal open water/sea ice modifies Aquarius TB

(Brucker et al., 2014 TC)

# East Antarctica

Annual mean and standard deviation TB (radiometer 1,  $\theta_{\text{inc}} \sim 29.2^\circ$ )



Areas where melt events occurred since August 1, 2000 were masked.

There are grid cells (36 km) without observations.

# Dome C, Antarctic Plateau (3240 m)



Snow temperature below 15 m:  
 $218.42 \pm 0.07$  K (*Brucker et al., 2011*)

Snow accumulation:  
8–10 cm of snow (*Urbini et al., 2008*)

Ideal site to study the relationship: microwave observations – ice properties

# Dome C – TB timeseries



# Dome C – TB angular diagram



Beam 3 TB V (K)  
 Beam 2 TB V (K)  
 Beam 1 TB V (K)

209.50±0.26  
 206.79±0.25  
 202.54±0.28

Beam 1 TB H (K)  
 Beam 2 TB H (K)

189.97±0.44  
 186.22±0.53  
 181.39±0.72

**Sensitivity** ~0.2 K

# Dome C – TB timeseries



Fast variations  $\rightsquigarrow$  surface changes?

# Dome C – TB H/V timeseries

Focus on  $\frac{TB_H}{TB_V}$  . removes the dependency on the physical temperature  
. highlights emissivity variations

# Dome C – TB H/V timeseries

Focus on  $\frac{TB_H}{TB_V}$  . removes the dependency on the physical temperature  
 . highlights emissivity variations



Variation  $> 0.001$  is above the radiometric noise  
 The largest variations are observed by radiometer 3

# Satellite monitoring of the snow surface at Dome C

AMSU-B grain index derived from AMSU-B (*Picard et al., 2012*),

$$GI = 1 - \frac{TB_{150}}{TB_{89}}$$

with shallow penetration (few cm) channels

# Satellite monitoring of the snow surface at Dome C

AMSU-B grain index derived from AMSU-B (Picard et al., 2012),

$$GI = 1 - \frac{TB_{150}}{TB_{89}}$$

with shallow penetration (few cm) channels



L-band observations have a large penetration in ice

# Satellite monitoring of the snow surface at Dome C

AMSU-B grain index derived from AMSU-B (Picard et al., 2012),

$$GI = 1 - \frac{TB_{150}}{TB_{89}}$$

with shallow penetration (few cm) channels



Good synchronization of the variations in summer

# Surface-based monitoring of the snow surface at Dome C



(Champollion et al., 2013)

Near IR camera  
2 m high  
imaged area  $\sim 4 \text{ m}^2$

# Surface-based monitoring of the snow surface at Dome C



(Champollion et al., 2013)

Near IR camera  
2 m high  
imaged area  $\sim 4 \text{ m}^2$



# Surface-based monitoring of the snow surface at Dome C



(Champollion et al., 2013)

Near IR camera  
2 m high  
imaged area  $\sim 4 \text{ m}^2$



# Surface-based monitoring of the snow surface at Dome C



(Champollion et al., 2013)

Near IR camera  
2 m high  
imaged area  $\sim 4 \text{ m}^2$



No hoar

# Surface-based monitoring of the snow surface at Dome C



(Champollion et al., 2013)

Near IR camera  
2 m high  
imaged area  $\sim 4 \text{ m}^2$



# Aquarius and hoar crystal on the surface



# Aquarius and hoar crystal on the surface



**L-band observations are sensitive to surface snow properties**

# A simple calculation with Fresnel's reflection coefficients at the air/snow interface



A density variation of  $75 \text{ kg m}^{-3}$   
could explain the largest change in TB H/V (in Dec. 2011)

# Conclusion

- Aquarius radiometers . have an excellent sensitivity (0.2 K)
  - . are thus appealing to study the ice sheets
- TB variability at H polarization . is larger than at V polarization
  - . increases as  $\theta_{inc}$  increases
  - . is larger than the sensors' sensitivity
- L-band radiation . has a deep penetration
  - . but is sensitive to surface snow properties
- Hoar crystals on the surface may influence cal/val experiments

*Brucker et al., 2014: Effect of Snow Surface Metamorphism on Aquarius L-Band Radiometer Observations at Dome C, Antarctica. IEEE TGRS 52(11): 7408-7417, doi:10.1109/TGRS.2014.2312102.*

# Dome C

Wind direction

Hoar crystals present



Hoar crystals disappear



(Champollion et al., 2013)

See also: Gallet et al. (2014), The growth of sublimation crystals and surface hoar on the Antarctic plateau, *The Cryosphere*.