APPENDIX C – DIPOLE CALIBRATION CERTIFICATES

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation
The Swiss Accreditation Service is one of the signatories to the EA
Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

C

Client

BACL

Certificate No: D450V2-1010_Nov06

ALIBRATION C			
Object	D450V2 - SN: 1	010	
Calibration procedure(s)	QA CAL-15.v4 Calibration Proc	edure for dipole validation kits below	800 MHz
Calibration data:	November 23, 2	006	· · · · · · · · · · · · · · · · · · ·
Condition of the calibrated item	In Tolerance		
	0.00 11 010 01000	ory facility: environment temperature (22 ± 3)°C and	a number y 10%.
Calibration Equipment used (M&T	TE critical for calibration)		
Calibration Equipment used (M&T	TE critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Calibration Equipment used (M&T Primary Standards Power meter E4419B	TE critical for calibration) ID # GB41293874	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557)	Scheduled Calibration Apr.07
Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A	TE critical for calibration) ID # OB41293874 MY41495277	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557)	Scheduled Calibration Apr.07 Apr.07
Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A	TE critical for calibration) ID # OB41293874 MY41495277 MY41498087	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557)	Scheduled Calibration Apr.07 Apr.07 Apr.07
Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator	ID # OB41293874 MY41495277 MY41498087 SN: S5054 (3c)	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00502)	Scheduled Calibration Apr-07 Apr-07 Apr-07 Aug-07
Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator	ID # OB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b)	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558)	Scheduled Calibration Apr-07 Apr-07 Apr-07 Aug-07 Apr-07
Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ET3DV6	ID # OB41293874 MY41495277 MY41498087 SN: S5054 (3c)	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00502)	Scheduled Calibration Apr-07 Apr-07 Apr-07 Aug-07
Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ET3DV6	ID # OB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN 1507	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00502) 4-Apr-06 (METAS, No. 251-00558) 19-Oct-06 (SPEAG, No. ET3-1507_Oct06) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05)	Scheduled Calibration Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Oct-07
Calibration Equipment used (M&T Primary Standards Power meter E4415B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards	TE critical for calibration) ID # OB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN 1507 SN 601	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00502) 4-Apr-06 (METAS, No. 251-00558) 19-Oct-06 (SPEAG, No. ET3-1507_Oct06)	Scheduled Calibration Apr.07 Apr.07 Apr.07 Aug.07 Apr.07 Oct-07 Dec-06
Calibration Equipment used (M&T Primary Standards Power meter E4415B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ET3DV8 DAE4 Secondary Standards RF generator HP 8648C	TE critical for calibration) ID # OB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN 1507 SN 601 ID #	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00502) 4-Apr-06 (METAS, No. 251-00558) 19-Oct-06 (SPEAG, No. ET3-1507_Oct06) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house)	Scheduled Calibration Apr.07 Apr.07 Apr.07 Aug.07 Apr.07 Oct-07 Dec-06 Scheduled Check
Calibration Equipment used (M&T Primary Standards Power meter E4415B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ET3DV8 DAE4 Secondary Standards RF generator HP 8648C	TE critical for calibration) ID # OB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN 1507 SN 601 ID # US3642U01700	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00502) 4-Apr-06 (METAS, No. 251-00558) 19-Oct-06 (SPEAG, No. ET3-1507_Oct06) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05)	Scheduled Calibration Apr.07 Apr.07 Apr.07 Apr.07 Aug.07 Apr.07 Oct.07 Dec.06 Scheduled Check In house check: Nov-07
Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference 20 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E Calibrated by:	ID # OB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN 1507 SN 601 ID # US3642U01700 US37390585	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 19-Oct-06 (SPEAG, No. ET3-1507_Oct06) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 19-Oct-01 (SPEAG, in house check Oct-06)	Scheduled Calibration Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Oct-07 Dec-06 Scheduled Check In house check: Nov-07 In house check: Oct 07
Calibration Equipment used (M&T Primary Standards Power meter E4419B Power sensor E4412A Power sensor E4412A Reference 3 dB Attenuator Reference Probe ET3DV6 DAE4 Secondary Standards RF generator HP 8648C Network Analyzer HP 8753E	ID # OB41293874 MY41495277 MY41498087 SN: S5054 (3c) SN: S5086 (20b) SN 1507 SN 601 ID # US3642U01700 US37390585 Name	Cal Date (Calibrated by, Certificate No.) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 5-Apr-06 (METAS, No. 251-00557) 10-Aug-06 (METAS, No. 217-00592) 4-Apr-06 (METAS, No. 251-00558) 19-Oct-06 (SPEAG, No. ET3-1507_Oct06) 15-Dec-05 (SPEAG, No. DAE4-601_Dec05) Check Date (in house) 4-Aug-99 (SPEAG, in house check Nov-05) 19-Oct-01 (SPEAG, in house check Oct-06)	Scheduled Calibration Apr-07 Apr-07 Apr-07 Aug-07 Apr-07 Oct-07 Dec-06 Scheduled Check In house check: Nov-07 In house check: Oct 07

Certificate No: D450V2-1010_Nov06

Page 1 of 1

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Glossary:

TSL tissue simulating liquid

ConF sensitivity in TSL / NORM x,y,z N/A not applicable or not measured

Calibration is Performed According to the Following Standards:

- a) IEEE Std 1528-2003, "IEEE Recommended Practice for Determining the Peak Spatial-Averaged Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques", December 2003
- b) CENELEC EN 50361, "Basic standard for the measurement of Specific Absorption Rate related to human exposure to electromagnetic fields from mobile phones (300 MHz - 3 GHz), July 2001
- c) Federal Communications Commission Office of Engineering & Technology (FCC OET), "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields; Additional Information for Evaluating Compliance of Mobile and Portable Devices with FCC Limits for Human Exposure to Radiofrequency Emissions", Supplement C (Edition 01-01) to Bulletin 65

Additional Documentation:

d) DASY4 System Handbook

Methods Applied and Interpretation of Parameters:

- Measurement Conditions: Further details are available from the Validation Report at the end
 of the certificate. All figures stated in the certificate are valid at the frequency indicated.
- Antenna Parameters with TSL: The dipole is mounted with the spacer to position its feed
 point exactly below the center marking of the flat phantom section, with the arms oriented
 parallel to the body axis.
- Feed Point Impedance and Return Loss: These parameters are measured with the dipole
 positioned under the liquid filled phantom. The impedance stated is transformed from the
 measurement at the SMA connector to the feed point. The Return Loss ensures low
 reflected power. No uncertainty required.
- Electrical Delay: One-way delay between the SMA connector and the antenna feed point. No uncertainty required.
- SAR measured: SAR measured at the stated antenna input power.
- SAR normalized: SAR as measured, normalized to an input power of 1 W at the antenna connector.
- SAR for nominal TSL parameters: The measured TSL parameters are used to calculate the nominal SAR result.

Certificate No: D450V2-1010_Nov06

Page 2 of 2

Measurement Conditions

DASY system configuration, as far as not given on page 1.

DASY Version	DASY4	V4.7	
Extrapolation	Advanced Extrapolation		
Phantom	Flat Phantom V4.4	Shell thickness: 6 ± 0.2 mm	
Distance Dipole Center - TSL	15 mm	with Spacer	
Area Scan resolution	dx, dy = 15 mm		
Zoom Scan Resolution	dx, dy, dz = 5 mm		
Frequency	450 MHz ± 1 MHz		

Head TSL parameters

The following parameters and calculations were applied.

	Temperature	Permittivity	Conductivity
Nominal Head TSL parameters	22.0 °C	43.5	0.87 mho/m
Measured Head TSL parameters	(22.0 ± 0.2) °C	43.6 ± 6 %	0.86 mho/m ± 6 %
Head TSL temperature during test	(22.1 ± 0.2) °C	_	_

SAR result with Head TSL

SAR averaged over 1 cm ³ (1 g) of Head TSL	condition	
SAR measured	398 mW input power	2.06 mW/g
SAR normalized	normalized to 1W	5.18 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	5.21 mW/g ± 18.1 % (k=2)

SAR averaged over 10 cm ³ (10 g) of Head TSL	condition	
SAR measured	398 mW input power	1.39 mW/g
SAR normalized	normalized to 1W	3.49 mW/g
SAR for nominal Head TSL parameters 1	normalized to 1W	3.50 mW/g ± 17.6 % (k=2)

Certificate No: D450V2-1010_Nov06

Page 3 of 6

¹ Correction to nominal TSL parameters according to d), chapter "SAR Sensitivities"

Appendix

Antenna Parameters with Head TSL

Impedance, transformed to feed point	54.4 Ω - 9.5 jΩ
Return Loss	- 20.0 dB

General Antenna Parameters and Design

Electrical Delay (one direction)	1.363 ns
----------------------------------	----------

After long term use with 100W radiated power, only a slight warming of the dipole near the feedpoint can be measured.

The dipole is made of standard semirigid coaxial cable. The center conductor of the feeding line is directly connected to the second arm of the dipole. The antenna is therefore short-circuited for DC-signals.

No excessive force must be applied to the dipole arms, because they might bend or the soldered connections near the feedpoint may be damaged.

Additional EUT Data

Manufactured by	SPEAG
Manufactured on	November 18, 2002

Certificate No: D450V2-1010_Nov06

Page 4 of 4

DASY4 Validation Report for Head TSL

Date/Time: 23.11.2006 11:09:54

Test Laboratory: SPEAG, Zurich, Switzerland

DUT: Dipole 450 MHz; Type: D450V2; Serial: D450V2 - SN:1010

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium: HSL450;

Medium parameters used: f = 450 MHz; $\sigma = 0.86$ mho/m; $\varepsilon_r = 43.6$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

Measurement Standard: DASY4 (High Precision Assessment)

DASY4 Configuration:

Probe: ET3DV6 - SN1507 (LF); ConvF(6.61, 6.61, 6.61); Calibrated: 19.10.2006

- Sensor-Surface: 4mm (Mechanical Surface Detection)
- Electronics: DAE4 Sn601; Calibrated: 15.12.2005
- Phantom: Flat Phantom 4.4; Type: Flat Phantom 4.4;;
- Measurement SW: DASY4, V4.7 Build 44; Postprocessing SW: SEMCAD, V1.8 Build 171

d=15mm, Pin=398mW 2/Area Scan (61x131x1):

Measurement grid: dx=15mm, dy=15mm

Maximum value of SAR (interpolated) = 2.17 mW/g

d=15mm, Pin=398mW 2/Zoom Scan (7x7x7)/Cube 0:

Measurement grid: dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.1 V/m; Power Drift = -0.010 dB

Peak SAR (extrapolated) = 3.03 W/kg

SAR(1 g) = 2.06 mW/g; SAR(10 g) = 1.39 mW/g

Maximum value of SAR (measured) = 2.22 mW/g

0 dB = 2.22 mW/g

Certificate No: D450V2-1010_Nov06

Page 5 of 6

APPENDIX D – DAE3 CALIBRATION CERTIFICATES

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst S Service suisse d'étalonnage C Servizio svizzero di taratura Swiss Calibration Service

Accredited by the Swiss Federal Office of Metrology and Accreditation The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

rtificate No: DAE3-456 Nov06

Accreditation No.: SCS 108

	ERTIFICATE		The second second second
Object	DAE3 - SD 000 D	03 AA - SN: 456	
calibration procedure(s)	QA CAL-06.v12 Calibration proced	dure for the data acquisition electro	onics (DAE)
Calibration date:	November 22, 200	06	
Condition of the calibrated item	In Tolerance		
Calibration Equipment used (M&TE		facility: environment temperature (22 ± 3)°C a Cal Date (Calibrated by, Certificate No.)	and humidity < 70%. Scheduled Calibration
Calibration Equipment used (M&TE	critical for calibration)		
ralibration Equipment used (M&TE trimary Standards luke Process Calibrator Type 702	critical for calibration)	Cal Date (Calibrated by, Certificate No.)	Scheduled Calibration
Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 (eithley Multimeter Type 2001	ID # SN: 6295803 SN: 0810278	Cal Date (Calibrated by, Certificate No.) 13-Oct-06 (Elcal AG, No: 5492) 03-Oct-06 (Elcal AG, No: 5478)	Scheduled Calibration Oct-07
Calibrations have been conducted Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 (eithley Multimeter Type 2001 Secondary Standards Calibrator Box V1.1	ID # SN: 6295803 SN: 0810278	Cal Date (Calibrated by, Certificate No.) 13-Oct-06 (Elcal AG, No: 5492)	Scheduled Calibration Oct-07 Oct-07
Calibration Equipment used (M&TE Primary Standards Fluke Process Calibrator Type 702 (eithley Multimeter Type 2001 Secondary Standards	ID # SN: 6295803 SN: 0810278	Cal Date (Calibrated by, Certificate No.) 13-Oct-06 (Elcal AG, No: 5492) 03-Oct-06 (Elcal AG, No: 5478) Check Date (in house)	Scheduled Calibration Oct-07 Oct-07 Scheduled Check
Primary Standards Fluke Process Calibrator Type 702 (eithley Multimeter Type 2001 (econdary Standards (alibrator Box V1.1	ID # SN: 6295803 SN: 0810278 ID # SE UMS 006 AB 1002	Cal Date (Calibrated by, Certificate No.) 13-Oct-06 (Elcal AG, No: 5492) 03-Oct-06 (Elcal AG, No: 5478) Check Date (in house) 15-Jun-06 (SPEAG, in house check)	Scheduled Calibration Oct-07 Oct-07 Scheduled Check In house check Jun-07

Certificate No: DAE3-456_Nov06

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst Service sulsse d'étalonnage Servizio svizzero di taratura S Swiss Calibration Service

Accreditation No.: SCS 108

Accredited by the Swiss Federal Office of Metrology and Accreditation

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

- DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.
- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters contain technical information as a result from the performance test and require no uncertainty.
- DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
- Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
- Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
- AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
- Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
- Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
- Input resistance: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
- Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
- Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE3-456_Nov06 Page 2 of 5

Certificate No: DAE3-456_Nov06 Page 3 of 5

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range: 1LSB = 6.1μV, full range = -100...+300 mV
Low Range: 1LSB = 61nV, full range = -1......+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

 Calibration Factors
 X
 Y
 Z

 High Range
 $404.439 \pm 0.1\%$ (k=2)
 $403.906 \pm 0.1\%$ (k=2)
 $403.969 \pm 0.1\%$ (k=2)

 Low Range
 $3.93438 \pm 0.7\%$ (k=2)
 $3.91686 \pm 0.7\%$ (k=2)
 $3.94495 \pm 0.7\%$ (k=2)

Connector Angle

Г	Connector Angle to be used in DASY system	146°±1°
	Connector Angle to be used in Street System	

Certificate No: DAE3-456_Nov06

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range	_	Input (μV)	Reading (µV)	Error (%)
Channel X	+ Input	200000	200000	0.00
Channel X	+ Input	20000	20006.42	0.03
Channel X	- Input	20000	-20005.03	0.03
Channel Y	+ Input	200000	199999.6	0.00
Channel Y	+ Input	20000	20004.36	0.02
Channel Y	- Input	20000	-20008.05	0.04
Channel Z	+ Input	200000	199999.8	0.00
Channel Z	+ Input	20000	20005.63	0.03
Channel Z	- Input	20000	-20006.88	0.03

Low Range	Input (μV)	Reading (µV)	Error (%)
Channel X + Input	2000	2000.1	0.00
Channel X + Input	200	200.25	0.13
Channel X - Input	200	-200.34	0.17
Channel Y + Input	2000	2000.1	0.00
Channel Y + Input	200	199.41	-0.30
Channel Y - Input	200	-200.64	0.32
Channel Z + Input	2000	2000.1	0.00
Channel Z + Input	200	199.56	-0.22
Channel Z - Input	200	-200.99	0.50

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec: Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	-3.41	-4.27
	- 200	4.45	4.86
Channel Y	200	-7.35	-6.80
	- 200	5.01	5.93
Channel Z	200	9.73	10.44
	- 200	-12.17	-11.92

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	-0.13	-2.47
Channel Y	200	0.11		1.24
Channel Z	200	-1.80	-0.38	-

Certificate No: DAE3-456_Nov06

Page 4 of 5

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

D/O T INCOCCION PAGE	High Range (LSB)	Low Range (LSB)
Channel X	16305	15799
Channel Y	15832	14878
Channel Z	16026	16094

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

nput 10MΩ

riput folvisz	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	-0.23	-1.20	1.19	0.30
Channel Y	-0.80	-1.80	0.08	0.26
Channel Z	-0.31	-1.66	1.10	0.31

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance

ilput i teorioturio	Zeroing (MOhm)	Measuring (MOhm)	
Channel X	0.2001	199.8	
Channel Y	0.2001	199.5	
Channel Z	0.2000	199.8	

8. Low Battery Alarm Voltage (verified during pre test)

Typical values	Alarm Level (VDC)
Supply (+ Vcc)	+7.9
Supply (- Vcc)	-7.6

9. Power Consumption (verified during pre test)

Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.0	+6	+14
Supply (- Vcc)	-0.01	-8	-9

APPENDIX E - TEST SYSTEM VERIFICATIONS SCANS

Measurement Result

System Validation Dipole: D450V2 SN: 1010

Environmental Conditions

Ambient Temperature:	23° C
Relative Humidity:	72%
ATM Pressure:	1033 mbar

^{*} Testing was performed by Eric Hong on 2007-04-30.

Frequency [MHz]	Parameters	Liquid Temp [°C]	Target Value	Measured Value	Deviation [%]	Limits [%]
	εr	22	43.5	43.7	0.46	±5
450	σ	22	0.87	0.86	-1.15	±5
	1g SAR	22	4.9	4.75	-3.06	±10

 $[\]epsilon_r$ = relative permittivity, σ = conductivity and $\rho = 1000 kg/m^3$

Test Laboratory: Bay Area Compliance Laboratories Corp. (BACL) System Performance Check DUT: Dipole 450 MHz; Type: D450V2; Serial: D450V2 - SN: 1010

Communication System: CW; Frequency: 450 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.86 \text{ mho/m}$; $\epsilon r = 43.7$; $\rho = 1000 \text{ kg/m}3$

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1604; ConvF (7.14, 7.14, 7.14); Calibrated: 5/2/2006

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3-Sn456; Calibrated: 11/22/2006

Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.6 Build 23; Post processing SW: SEMCAD, V1.8 Build 161

d=15mm, Pin=1W/Area Scan (61x201x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 5.12 mW/g

d=15mm, Pin=1W/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm, dy=5mm, dz=5mm Reference Value = 62.4 V/m; Power Drift = 0.03 dB Peak SAR (extrapolated) = 5.04 W/kg

SAR(1 g) = 4.75 mW/g; SAR(10 g) = 3.22 mW/gMaximum value of SAR (measured) = 5.08 mW/g

0 dB = 5.08 mW/g

APPENDIX F - EUT SCANS

Bay Area Compliance Lab Corp. (BACL)

EUT face 2.5 cm separation to flat phantom (Middle Channel)

Kirmuss & Associates/Infinity Advanced; Type: P-1010; Serial: 070424C0004

Communication System: CW; Frequency: 445.250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.86$ mho/m; $\varepsilon_r = 43.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

• Probe: ET3DV6 - SN1604; ConvF(7.14, 7.14, 7.14); Calibrated: 5/2/2006

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 11/22/2006

• Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.6 Build 23; Post processing SW: SEMCAD, V1.8 Build 161

EUT face 2.5 cm separation to flat phantom/Area Scan (61x131x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 4.14 mW/g

EUT face 2.5 cm separation to flat phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 41.3 V/m; Power Drift = 0.12 dB

Peak SAR (extrapolated) = 4.11 W/kg

SAR(1 g) = 3.98 mW/g; SAR(10 g) = 2.34 mW/g

Maximum value of SAR (measured) = 4.02 mW/g

0 dB = 4.02 mW/g

Bay Area Compliance Lab Corp. (BACL)

EUT face 2.5 cm separation to flat phantom (Low Channel)

Kirmuss & Associates/Infinity Advanced; Type: P-1010; Serial: 070424C0004

Communication System: CW; Frequency: 410.005 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.86 \text{ mho/m}$; $\varepsilon_r = 43.7$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1604; ConvF(7.14, 7.14, 7.14); Calibrated: 5/2/2006

• Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn456; Calibrated: 11/22/2006

• Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.6 Build 23; Post processing SW: SEMCAD, V1.8 Build 161

EUT face 2.5 cm separation to flat phantom/Area Scan (61x131x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 4.67 mW/g

EUT face 2.5 cm separation to flat phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 42.3 V/m; Power Drift = 0.051 dB

Peak SAR (extrapolated) = 4.24 W/kg

SAR(1 g) = 4.18 mW/g; SAR(10 g) = 2.44 mW/g

Maximum value of SAR (measured) = 4.25 mW/g

0 dB = 4.25 mW/g

Bay Area Compliance Lab Corp. (BACL)

EUT face 2.5 cm separation to flat phantom (Low Channel)

Kirmuss & Associates/Infinity Advanced; Type: P-1010; Serial: 070424C0004

Communication System: CW; Frequency: 479.987 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.86$ mho/m; $\varepsilon_r = 43.7$; $\rho = 1000$ kg/m³

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1604; ConvF(7.14, 7.14, 7.14); Calibrated: 5/2/2006

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 11/22/2006

Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.6 Build 23; Post processing SW: SEMCAD, V1.8 Build 161

EUT face 2.5 cm separation to flat phantom/Area Scan (61x131x1): Measurement grid: dx=15mm, dy=15mm Maximum value of SAR (interpolated) = 3.89 mW/g

EUT face 2.5 cm separation to flat phantom/Zoom Scan (7x7x7)/Cube 0: Measurement grid: dx=5mm,

dy=5mm, dz=5mm

Reference Value = 40.3 V/m; Power Drift = 0.051 dB

Peak SAR (extrapolated) = 4.04 W/kg

SAR(1 g) = 3.86 mW/g; SAR(10 g) = 2.31 mW/g

Maximum value of SAR (measured) = 3.94 mW/g

0 dB = 3.94 mW/g

Test Laboratory: Bay Area Compliance Lab Corp. (BACL)

EUT touching to flat phantom with belt clip and headset

Kirmuss & Associates/Infinity Advanced; Type: P-1010; Serial: 070424C0004

Communication System: CW; Frequency: 445.250 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.95 \text{ mho/m}$; $\varepsilon_r = 56.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1604; ConvF(7.42, 7.42, 7.42); Calibrated: 5/2/2006

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 11/22/2006

• Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.6 Build 23; Post processing SW: SEMCAD, V1.8 Build 161

EUT back touching to flat phantom with belt clip and headset/Area Scan (141x281x1): Measurement grid:

dx=7mm, dy=7mm

Maximum value of SAR (interpolated) = 7.58 mW/g

EUT back touching to flat phantom with belt clip and headset/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 51.1 V/m; Power Drift = -0.216 dB

Peak SAR (extrapolated) = 7.99 W/kg

SAR(1 g) = 7.16 mW/g; SAR(10 g) = 5.85 mW/g

Maximum value of SAR (measured) = 7.25 mW/g

0 dB = 7.25 mW/g

Test Laboratory: Bay Area Compliance Lab Corp. (BACL)

EUT touch to flat phantom with belt clip and headset (Low Channel)

Kirmuss & Associates/Infinity Advanced; Type: P-1010; Serial: 070424C0004

Communication System: CW; Frequency: 410.005 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.95 \text{ mho/m}$; $\varepsilon_r = 56.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1604; ConvF(7.42, 7.42, 7.42); Calibrated: 5/2/2006

• Sensor-Surface: 4mm (Mechanical Surface Detection)

• Electronics: DAE3 Sn456; Calibrated: 11/22/2006

• Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.6 Build 23; Post processing SW: SEMCAD, V1.8 Build 161

EUT back touching to flat phantom with belt clip and headset/Area Scan (141x281x1): Measurement grid:

dx=7mm, dy=7mm

Maximum value of SAR (interpolated) = 7.69 mW/g

EUT back touching to flat phantom with belt clip and headset/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 52.4 V/m; Power Drift = -0.045 dB

Peak SAR (extrapolated) = 8.03 W/kg

SAR(1 g) = 7.22 mW/g; SAR(10 g) = 5.88 mW/g

Maximum value of SAR (measured) = 7.28 mW/g

Test Laboratory: Bay Area Compliance Lab Corp. (BACL) Body Touch to flat phantom with belt clip and headset (High Channel) Kirmuss & Associates/Infinity Advanced; Type: P-1010; Serial: 070424C0004

Communication System: CW; Frequency: 479.987 MHz; Duty Cycle: 1:1

Medium parameters used: f = 450 MHz; $\sigma = 0.95 \text{ mho/m}$; $\varepsilon_r = 56.9$; $\rho = 1000 \text{ kg/m}^3$

Phantom section: Flat Section

DASY4 Configuration:

Probe: ET3DV6 - SN1604; ConvF(7.42, 7.42, 7.42); Calibrated: 5/2/2006

Sensor-Surface: 4mm (Mechanical Surface Detection)

Electronics: DAE3 Sn456; Calibrated: 11/22/2006

Phantom: SAM with CRP; Type: Twin SAM; Serial: TP-1032

Measurement SW: DASY4, V4.6 Build 23; Post processing SW: SEMCAD, V1.8 Build 161

EUT back touching to flat phantom with belt clip and headset/Area Scan (141x281x1): Measurement grid: dx=7mm, dy=7mm

Maximum value of SAR (interpolated) = 7.34 mW/g

EUT back touching to flat phantom with belt clip and headset/Zoom Scan (7x7x7)/Cube 0: Measurement grid:

dx=5mm, dy=5mm, dz=5mm

Reference Value = 50.6 V/m; Power Drift = -0.09 dB

Peak SAR (extrapolated) = 7.97 W/kg

SAR(1 g) = 7.11 mW/g; SAR(10 g) = 5.82 mW/g

Maximum value of SAR (measured) = 7.23 mW/g

0 dB = 7.23 mW/g

APPENDIX G – CONDUCTED OUTPUT POWER MEASUREMENT

Provision Applicable

The measured peak output power should be greater and within 5% than EMI measurement.

Test Procedure

The RF output of the transmitter was connected to the input of the spectrum analyzer through sufficient attenuation.

Test Equipment

Equipment Description	Model Number	Serial Number	Calibration Date
Agilent Spectrum Analyzer	8565EC	3946A00131	2007-01-24

Test Results

Channel	Frequency (MHz)	Conducted Output Power (dBm)	
Low	410.005	35.10	
Middle	445.250	36.20	
High	479.987	34.75	

APPENDIX H – EUT TEST SET UP PHOTOS

EUT Face-held 2.5 cm separation to flat phantom

APPENDIX I– EUT PHOTO

EUT – Front View

EUT – Rear View

EUT – Battery off View

APPENDIX J - INFORMATIVE REFERENCES

- [1] Federal Communications Commission, \Report and order: Guidelines for evaluating the environmental effects of radiofrequency radiation", Tech. Rep. FCC 96-326, FCC, Washington, D.C. 20554, 1996.
- [2] David L. Means Kwok Chan, Robert F. Cleveland, \Evaluating compliance with FCC guidelines for human exposure to radiofrequency electromagnetic fields", Tech. Rep., Federal Communication Commission, O_ce of Engineering & Technology, Washington, DC, 1997.
- [3] Thomas Schmid, Oliver Egger, and Niels Kuster, \Automated E-_eld scanning system for dosimetric assessments", IEEE Transactions on Microwave Theory and Techniques, vol. 44, pp. 105{113, Jan. 1996.
- [4] Niels Kuster, Ralph K.astle, and Thomas Schmid, \Dosimetric evaluation of mobile communications equipment with known precision", IEICE Transactions on Communications, vol. E80-B, no. 5, pp. 645 (652, May 1997.
- [5] CENELEC, \Considerations for evaluating of human exposure to electromagnetic fields (EMFs) from mobile telecommunication equipment (MTE) in the frequency range 30MHz 6GHz", Tech. Rep., CENELEC, European Committee for Electrotechnical Standardization, Brussels, 1997.
- [6] ANSI, ANSI/IEEE C95.1-1992: IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, The Institute of Electrical and Electronics Engineers, Inc., New York, NY 10017, 1992.
- [7] Katja Pokovic, Thomas Schmid, and Niels Kuster, \Robust setup for precise calibration of E-field probes in tissue simulating liquids at mobile communications frequencies", in ICECOM _ 97, Dubrovnik, October 15{17, 1997, pp. 120-24.
- [8] Katja Pokovic, Thomas Schmid, and Niels Kuster, \E-field probe with improved isotropy in brain simulating liquids", in Proceedings of the ELMAR, Zadar, Croatia, 23 {25 June, 1996, pp. 172-175.
- [9] Volker Hombach, Klaus Meier, Michael Burkhardt, Eberhard K. uhn, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 900 MHz", IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1865-1873, Oct. 1996.
- [10] Klaus Meier, Ralf Kastle, Volker Hombach, Roger Tay, and Niels Kuster, \The dependence of EM energy absorption upon human head modeling at 1800 MHz", IEEE Transactions on Microwave Theory and Techniques, Oct. 1997, in press.
- [11] W. Gander, Computermathematik, Birkhaeuser, Basel, 1992.
- [12] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recepies in C, The Art of Scientific Computing, Second Edition, Cambridge University Press, 1992. Dosimetric Evaluation of Sample device, month 1998 9
- [13] NIS81 NAMAS, \The treatment of uncertainty in EMC measurement", Tech. Rep., NAMAS Executive, National Physical Laboratory, Teddington, Middlesex, England, 1994.
- [14] Barry N. Taylor and Christ E. Kuyatt, \Guidelines for evaluating and expressing the uncertainty of NIST measurement results", Tech. Rep., National Institute of Standards and Technology, 1994. Dosimetric Evaluation of Sample device, month 1998 10.
- [15] SAR Measurement Procedures for 3G Devices \Laboratory Division, Office of Engineering and Technology, Federal Communications Commission.

END OF REPORT