

CMT2300A寄存器说明

概要

本应用文档为使用 CMT2300A 进行产品开发的用户提供基本的使用方法和相关寄存器介绍,以方便用户在使用过程查阅各寄存器的说明及用法。

本文档涵盖的产品型号如下表所示。

表 1. 本文档涵盖的产品型号

产品型号	工作频率	调制方式	主要功能	配置方式	封装
CMT2300A	140 - 1020MHz	(G)FSK/OOK	收发一体	寄存器	QFN16

用户需要结合阅读以下的应用文档,以了解全部的信息来辅助软硬件开发。

《AN148-CMT2300A RF-EB 用户指南》

《AN149-CMT2300A 射频参数配置指南》

《AN143-CMT2300A FIFO 和包格式使用指南》

《AN146-CMT2300A 低功耗模式使用指南》

《AN144-CMT2300ARSSI 使用指南》

《AN147-CMT2300A 特色功能使用指南》

《AN141-CMT2300A 原理图与 PCB 版图指南》

《AN142- CMT2300A 快速上手指南》

目 录

1	芯片寄存器介绍	3
-	-/· \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
2	文档变更记录	21
	3413433	
3	联系方式	22

1 芯片寄存器介绍

表 2. CMT2300A 寄存器描述

寄存器名	位数	R/W	比特名	功能说明
			СМТ 🗵	
CUS_CMT1 ~11				A .
0x00 ~ 0x0A			CMT 内部使用寄	字器
(CUS_CMT9 除外)				
CUS_CMT9	7	RW	Deel Offert Sign	RSSI 测量的误差补偿值的符号位。
0x08	,	KVV	RSSI_OFFSET_SIGN	
CUS_RSSI	7:3	RW	RSSI_OFFSET<4:0>	RSSI 测量的误差补偿值。
0x0B	7.3	NVV	N331_OFF3E1<4.0>	
			系统区	
	7:6	RW	LMT_VTR <1:0>	LMT VTR 的电流档位。详见表 2 电流寄
	7.0	INVV	LIVIT_VTK <1.03	存器信息。
	5:4	RW	MIXER_BIAS <1:0>	Mixer 电流档位。详见表 2 电流寄存器
CUS_SYS1	3.4	KVV	WINER_BIAS <1.0>	信息。
0x0C	2.2	DW	LNA MODE 41:05	LNA 电流档位 1。详见表 2 电流寄存器
	3:2	RW	LNA_MODE <1:0>	信息。
	4.0	DW	LNA BIAC 4.0	LNA 电流档位 2。详见表 2 电流寄存器
	1:0	RW	LNA_BIAS <1:0>	信息。
			-0'	重新进行 LFOSC CAL1 校正的使能。在
				每次进入 RX 或 TX 前,如果发现上一次
				的 CAL2 结果超出了边界, 即无法通过细
	7	RW	LFOSC_RECAL_EN	调将频率调准,就可以自动再进行一次
	,	1444	EI GOG_KEGKE_EIV	CAL1 校正,这个校正会有大概几个 ms
				的时间开销。
				0: 不使能
				1: 使能
				LFOSC CAL1 使能,这个校正在上电或
CUS_SYS2				者复位后才会做一次,确保 LFOSC 的频
0x0D	6	RW	LFOSC_CAL1_EN	率粗略地调整到 32 kHz 附近。校正需要
				5ms 的时间。
				0: 不使能
				1: 使能
				LFOSC CAL2 使能,这个校正在 RX 或
				者 TX 状态下会持续地做,确保 LFOSC
	F	DIV	LEGGC CALS EN	的频率比较准确地调整到 32 kHz 附近。
	5	RW	LFOSC_CAL2_EN	这个校正是在TX或RX状态下并行做
				的。其使能的条件是 LFOSC_CAL1_EN
				必须使能。
				0: 不使能

寄存器名	位数	R/W	比特名	功能说明
				1: 使能
				RX 计时器的使能
	4	RW	RX_TIMER_EN	0: 不使能
				 1 : 使能
				SLEEP 计时器的使能
	3	RW	SLEEP_TIMER_EN	0: 不使能
				1: 使能
				TX Duty Cycle 的使能
	2	RW	TX_DC_EN	0: 不使能
				1: 使能
				RX Duty Cycle 的使能
	1	RW	RX_DC_EN	0: 不使能
				1: 使能
				Duty Cycle 暂停
	0	RW	DC_PAUSE	0: 不暂停
				1: 暂停
	7	RW	SLEEP_BYPASS_EN	这个比特必须维持 0。
				晶体稳定时间:
				0: 19.5 us
				1: 39 us
				2: 78 us
	6:4	RW	XTAL_STB_TIME <2:0>	3: 155 us
			~ () '	4: 310 us
				5: 620 us
				6: 1240 us
				7: 2480 us
				完成发射后自动退出到设定的状态,只在
			P	packet 模式下有效,否则芯片不会自动
CUS_SYS3				退出 TX 状态,而是等待 MCU 发 go_*
0x0E	3:2	RW	TX_EXIT_STATE <1:0>	命令来切换:
				0: SLEEP
				1: STBY
				2: TFS
				3: NA
				完成接收后自动退出到设定的状态,只在
				packet 模式下,并且 RX Timer 使能时有
				效,否则芯片不会自动退出 RX 状态,而
	1:0	RW	RX_EXIT_STATE <1:0>	是等待 MCU 发 go_*命令来切换:
				0: SLEEP
				1: STBY
				2: RFS
0110, 03/04	7.0	DVA	OLEED TIMED NA 7.0	3: NA
CUS_SYS4	7:0	RW	SLEEP_TIMER_M <7:0>	定义了 SLEEP TIMER 的计时时间,公

寄存器名	位数	R/W	比特名	功能说明
0x0F				式如下:
0110 01/05	7	RW	RESV	
CUS_SYS5	6:4	RW	SLEEP_TIMER_M <10:8>	$T = M \times 2^{(R+1)} \times 31.25 \text{ us}$
0x10	3:0	RW	SLEEP_TIMER_R <3:0>	
CUS_SYS6 0x11	7:0	RW	RX_TIMER_T1_M <7:0>	定义了RXT1TIMER的计时时间,公式
0110 01/07	7	RW	RESV	如下:
CUS_SYS7	6:4	RW	RX_TIMER_T1_M <10:8>	T = M x 2^(R+1) x 20 us
0x12	3:0	RW	RX_TIMER_T1_R <3:0>	1 = W x 2 (K+1) x 20 us
CUS_SYS8 0x13	7:0	RW	RX_TIMER_T2_M <7:0>	定义了RXT2TIMER的计时时间,公式
0110 0700	7	RW	RESV	如下:
CUS_SYS9	6:4	RW	RX_TIMER_T2_M <10:8>	T = M x 2^(R+1) x 20 us
0x14	3:0	RW	RX_TIMER_T2_R <3:0>	1 = W X 2*(N+1) X 20 US
	7	RW	COL_DET_EN	信号冲突检测使能。 0: 不使能 1: 使能
CUS_SYS10 0x15	6	RW	COL_OFS_SEL	信号冲突检测的判断阈值。 0: 10 dB 1: 16 dB
	5	RW	RX_AUTO_EXIT_DIS	这个比特固定为 1。
	4	RW	DOUT_MUTE	Dout Mute 配置。
	3:0	RW	RX_EXTEND_MODE <3:0>	定义了 14 种超低功耗 (SLP) 接收模式, 详情请参考 AN146。
	7	RW	PJD_TH_SEL	PJD 的隐藏配置位,可固定为 0。
	6:5	RW	CCA_INT_SEL <1:0>	信道侦听的方式选择: 0: 通过 PJD 的输出来判断是非有信号 1: 通过用 RSSI 对比来判断是否有信号。 2: 0 和 1 选项两者同时满足 3: NA。
CUS_SYS11 0x16	4:3	RW	RSSI_DET_SEL <1:0>	在 OOK 模式下,只能选择 1。 RSSI 的检测时间点: 0: 一直连续检测 1: 在 PREAM_OK 有效时检测 2: 在 SYNC_OK 有效时检测 3: 在 PKT_OK 有效时检测
	2:0	RW	RSSI_AVG_MODE <2:0>	RSSI 检测的平均滤波阶数: 0: 无滤波 1: 4 阶 2: 8 阶 3: 16 阶

寄存器名	位数	R/W	比特名	功能说明	
				4: 32 阶	
				这个参数定义了 PJD 需要检测多少次跳	
				变才判断进来的是噪声还是信号。	
CHE EVEAS	7.6	DW	DID WIN SEL 410	0: 4次	
CUS_SYS12 0x17	7:6	RW	PJD_WIN_SEL<1:0>	1: 6 次	
OX17				2: 8 次	
				3: 10 次	
	5:0	RW	RESV	NA	
	1		频率区		
CUS_RF1	7:0	RW	FREQ_RX_N<7:0>	接收模式下 PLL 频率字的整数部分。	
0x18	7.0	1777	TREG_TOC_1147.02	及代展式 TEE 频平 IJ 正 数 III J.	
CUS_RF2	7:0	RW	FREQ_RX_K<7:0>	接收模式下 PLL 频率字的小数部分的第	
0x19	7.0	1000	THEG_TOC_NOT	7到0位。	
CUS_RF3	7:0	RW	FREQ_RX_K<15:8>	接收模式下 PLL 频率字的小数部分的第	
0x1A	7:0	1777	TREG_TO_TC 10.02	15 到 8 位。	
	7	RW	FREQ_PALDO_SEL	当 TX 频率小于 500MHz 时,设成 0;大	
	,	1000	TREG_TREBO_GEE	于等于 500MHz 时,设成 1。	
CUS_RF4	6:4	RW	FREQ_DIVX_CODE<2:0>	用于选择 PLL 的分频系数。详情请参考	
0x1B	0.4	+ RVV	TREGEDIVA_CODE (2.0)	AN199。	
	3:0	RW	FREQ_RX_K<19:16>	接收模式下 PLL 频率字的小数部分的第	
	0.0	1000	THEG_IOC_HC10.102	19 到 16 位。	
CUS_RF5	7:0	RW	FREQ_TX_N<7:0>	发射模式下 PLL 频率字的整数部分。	
0x1C	7.0	1000	THEG_TA_HAT.02	次加快到 ILL	
CUS_RF6	7:0	RW	FREQ_TX_K<7:0>	发射模式下 PLL 频率字的小数部分的第	
0x1D	7.0	1000	THEG_TA_HAT.05	7到0位。	
CUS_RF7	7:0	RW	FREQ_TX_K<15:8>	发射模式下 PLL 频率字的小数部分的第	
0x1E	7.0	100	THEG_TA_HC10.02	15 到 8 位。	
	7	RW	FSK_SWT	内部使用,由 RFPDK 生成,用户不能改	
		IXVV	T GIC_GWT	变它的值。	
CUS_RF8	6:4	RW	FREQ_VCO_BANK	用于选择 VCO 的工作频率区域。详情请	
0x1F	0.4	1777	TREG_VOO_B/WK	参考 AN199。	
	3:0	RW	FREQ_TX_K<19:16>	发射模式下 PLL 频率字的小数部分的第	
	5.0	IXVV	TREQ_TX_RC19.102	19 到 16 位。	
数据率区					
	(Note:	以下未列	出的数据率区寄存器均为 RFPDK 生成的	的视频参数寄存器)	
	7	RW	RESV	NA	
				在 Tracing 模式下,CDR 输出的平均滤	
CUS_CDR1				波阶数:	
0x2B	6:4	RW	CDR_AVG_SEL<2:0>	0: 6/8	
				1: 1/2	
	j			2: 6/16	

寄存器名	位数	R/W	比特名	功能说明
				3: 1/4
				4: 11/64
				5: 1/8
				6: 3/32
				7: 1/16
				在 Tracing 模式下,CDR 可跟踪的
				symbol 长度的最大偏差范围:
				0: +/-6.3%(数据率范围-5.9%到+6.7%)
				1: +/-9.4%(数据率范围-8.6%到
	3:2	RW	CDR_RANGE_SEL<1:0>	+10.4%)
				2: +/-12.5%(数据率范围-11.1%到
				+14.3%)
				3: +/-15.6%(数据率范围-13.5%到
				+18.5%)
				CDR 的工作模式选择:
				0: tracing
		5147		1: counting
	1:0	RW	CDR_MODE<1:0>	2: manchester
			20	3: no cdr
				下文有详细介绍。
				在 tracing 模式下,选择检测数据率的方
				式:
	_	DVA	ODD DET OF	0: 方式 0
	7	RW	CDR_DET_SEL	1: 方式 1
				默认选择方式 1, 用户不需要理解这个比
				特。
CUS_CDR2				在 tracing 模式下,使能连续 3 个 symbol
0x2C		DIA	ODD ODD EN	无跳转时的数据率检测:
	6	RW	CDR_3RD_EN	0: 不使能
				1: 使能
				在 tracing 模式下,使能连续 4 个 symbol
	_	DVA	ODD ATH EN	无跳转时的数据率检测:
	5	RW	CDR_4TH_EN	0: 不使能
				1: 使能
CUS_CDR3	7.0	DW	ODD DD TIL TO	在 tracing 模式下, CDR 需要使用的一个
0x2D	7:0	RW	CDR_BR_TH<7:0>	阈值,其计算方式是: TH = 晶体频率/
				数据率
0110 0004				例如数据率是 15 kHz, 晶体频率时 26
CUS_CDR4	7:0	RW	CDR_BR_TH<15:8>	Mhz,求出的结果经过四舍五入后是
0x2E				1733。

寄存器名	位数	R/W	比特名	功能说明
			基带区	
	7:3	RW	RX_PREAM_SIZE <4:0>	RX 模式 Preamble 的长度,可配置为 0-31 个单位长度,0 表示不检测 Preamble,1 表示检测 1 个长度单位的 Preamble,如此类推。
CUS_PKT1 0x38	2	RW	PREAM_LENG_UNIT	Preamble 的长度单位,TX 和 RX 共用: 0: 单位为 8bits 1: 单位为 4 bits
	1:0	RW	DATA_MODE <1:0>	决定数据处理模式: 0: Direct 模式(默认) 1: NA 2: Packet 模式 3: NA
CUS_PKT2 0x39	7:0	RW	TX_PREAM_SIZE <7:0>	TX 模式 Preamble 的长度,可配置为 0-65535 个单位长度,0 表示不发送
CUS_PKT3 0x3A	7:0	RW	TX_PREAM_SIZE <15:8>	Preamble,1 表示发送 1 个长度单位的 Preamble,如此类推。
CUS_PKT4 0x3B	7:0	RW	PREAM_VALUE <7:0>	Preamble 的值,TX 和 RX 共用: 当 PREAM_LEN_UNIT =0 时 8bit 有效, 当 PREAM_LEN_UNIT =1 时只有<3:0> 有效。
	7	RW	RESV	NA
CUS_PKT5 0x3C	6:4	RW	SYNC_TOL <2:0>	RX 模式对 Sync Word 检测的容错比特数: 0: 不允许有错 1: 允许 1bit 接收错误 2: 允许 2bits 接收错误 3: 允许 3bits 接收错误 4: 允许 4bits 接收错误 5: 允许 5bits 接收错误 6: 允许 6bits 接收错误 7: 允许 7bits 接收错误
C)	3:1	RW	SYNC_SIZE <2:0>	Sync Word 长度: 0: 1 byte 1: 2 bytes 2: 3 bytes 3: 4 bytes 4: 5 bytes 5: 6 bytes 6: 7 bytes 7: 8bytes

寄存器名	位数	R/W	比特名	功能说明
	0	RW	SYNC_MAN_EN	Sync Word 的曼切斯特编解码使能: 0: 不使能 1: 使能
CUS_PKT6 0x3D	7:0	RW	SYNC_VALUE <7:0>	
CUS_PKT7 0x3E	7:0	RW	SYNC_VALUE <15:8>	c×.
CUS_PKT8 0x3F	7:0	RW	SYNC_VALUE <23:16>	
CUS_PKT9 0x40	7:0	RW	SYNC_VALUE <31:24>	Sync Word 的值,根据不同的 SYNC_SIZE 设置来填入不同的寄存器,
CUS_PKT10 0x41	7:0	RW	SYNC_VALUE <39:32>	详见表 3。
CUS_PKT11 0x42	7:0	RW	SYNC_VALUE <47:40>	
CUS_PKT12 0x43	7:0	RW	SYNC_VALUE<55:48>	
CUS_PKT13 0x44	7:0	RW	SYNC_VALUE <63:56>	
	7	RW	RESV	NA
	6:4	RW	PAYLOAD_LENG <10:8>	11-bit Payload 长度的<10:8>位。 在 PKT_TYPE 设置为定长包时,可配置的内容为 0-2047,指 1-2048 个 bytes。 在 PKT_TYPE 设置为可变包时,只有 <7:0>有效,可配置长度是 1-256 个 bytes。
CUS_PKT14	3	RW	AUTO_ACK_EN	使能自动打包 ACK 数据包的功能 0: 不使能 1: 使能
0x45	2	RW	NODE_LENG_POS_SEL	在可变包中,Node ID 和 Length Byte 的 位置关系 0: Node ID 在 length Byte 之前 1: Node ID 在 length Byte 之后
C,	1	RW	PAYLOAD_BIT_ORDER	0: 先对 payload+CRC 每个 byte MSB 进行编解码 1: 先对 payload+CRC 每个 byte LSB 进 行编解码
	0	RW	PKT_TYPE	12-bit Payload 长度的<7:0>位 说明同上。
CUS_PKT15 0x46	7:0	RW	PAYLOAD_LENG <7:0>	12-bit Payload 长度的<7:0>位 说明同上。

寄存器名	位数	R/W	比特名	功能说明
	7:6	RW	RESV	NA
	5	RW	NODE_FREE_EN	在 RX 模式下, 让 Node ID 检测电路独立出来的使能位。 0: 不使能 1: 使能
	4	RW	NODE_ERR_MASK	Node ID 检测错误,会输出 PKT_ERR 中断,同时可同步复位解码电路,该比特控制是否进行同步复位。 0: 允许同步复位 1: 不同步复位
CUS_PKT16 0x47	3:2	RW	NODE_SIZE <1:0>	Node ID 的长度: 0: 1 byte 1: 2 bytes 2: 3 bytes 3: 4 bytes
	1:0	RW	NODE_DET_MODE <1:0>	Node ID 的检测模式: 0: 不检测 1: TX 模式发送 NODE_VALUE 的内容; RX 模式仅识别 NODE_VALUE 的内容 2: TX 模式发送 NODE_VALUE 的内容; RX 模式仅识别 NODE_VALUE 的内容和全 0 3: TX 模式发送 NODE_VALUE 的内容; RX 模式仅识别 NODE_VALUE 的内容; RX 模式仅识别 NODE_VALUE 的内容; A 模式仅识别 NODE_VALUE 的内容; A 模式仅识别 NODE_VALUE 的内容;
CUS_PKT17 0x48	7:0	RW	NODE_VALUE <7:0>	
CUS_PKT18 0x49	7:0	RW	NODE_VALUE <15:8>	· 32-bit Node ID 的值。详见表 4.
CUS_PKT19 0x4A	7:0	RW	NODE_VALUE <23:16>	or privide in Hills William
CUS_PKT20 0x4B	7:0	RW	NODE_VALUE <31:24>	
CHS BKT24	7	RW	FEC_TYPE	FEC(7,4)编解码的多项式选择: 0: 多项式为 x^3+x+1 1: 多项式为 x^3+x^2+1
CUS_PKT21 0x4C	6	RW	FEC_EN	FEC(7,4)编解码的使能: 0: 不使能 1: 使能
	5	RW	CRC_BYTE_SWAP	CRC 的收发顺序:

寄存器名	位数	R/W	比特名	功能说明
				0: 先收发高字节
				1: 先收发低字节
				CRC 码是否取反:
	4	RW	CRC_BIT_INV	0:CRC code 不取反
				1:CRC code 逐位取反
				CRC 的计算范围:
	3	RW	CRC_RANGE	0: 整个 payload
				1: 仅为 data
				CRC 多项式类型:
				0:CCITT-16
	2:1	RW	CRC_TYPE [1:0]	1:IBM-16
				2:ITU-16(相当于倒序 CCITT-16)
				3: NA
				CRC 使能
	0	RW	CRC_EN	0: 不使能
OUIO DICTOR				1: 使能
CUS_PKT22	7:0	RW	CRC_SEED [7:0]	
0x4D			201	CRC 多项式的初始值。
CUS_PKT23	7:0	RW	CRC_SEED [15:8]	
0x4E				
	7	RW	CDC BIT ODDED	CRC 大小端顺序配置:
	<i>'</i>	KVV	CRC_BIT_ORDER	0: CRC bytes 按 bit15 到 bit0 顺序收发 1: CRC bytes 按 bit 0 到 bit 15 顺序收发
				白化编解码多项式的种子的第8位。
	6	RW	WHITEN_SEED <8>	当白化编解码的方式为 PN9 时,种子取
	0	IXVV	WHITEN_SEED <0>	全 9bits; 为 PN7 时,种子取低 7bits。
				白化编解码多项式为 PN7 时的种子类
			, ,	型:
	5	RW	WHITEN_SEED_TYPE	= : 0:按 A7139的方式计算 PN7 seed
				1: PN7 seed 为 whiten_seed 定义的值
CUS_PKT24				白化编解码的方式:
0x4F				0: PN9 CCITT 编解码
UA-TI	4:3	RW	WHITEN_TYPE <1:0>	1: PN9 IBM 编解码
				2: PN7 编解码
				3: 无效
				白化编解码的使能:
	3	RW	WHITEN_EN	0: 无 whiten 编解码
	-			1: 有 whiten 编解码
				曼切斯特编解码的方式:
	2	RW	MANCH_TYPE	0: 01 表示 1; 10 表示 0
	_			1: 10表示 1; 01表示 0
	1	RW	MANCH_EN	曼切斯特编解码的使能:
	ı	1777	IVIAINOI I_LIN	又约对1寸洲州印以民化:

寄存器名	位数	R/W	比特名	功能说明	
				0: 不使能	
				1: 使能	
CUS_PKT25 0x50	7:0	RW	WHITEN_SEED <7:0>	白化编解码多项式的种子的 7:0 位。	
	7:2	RW	RESV	NA	
CUS_PKT26 0x51	1:0	RW	TX_PREFIX_TYPE <1:0>	TX Prefix 是指在 Packet 模式下,进入发射状态后,由于 FIFO 数据还没有准备好,但是 PA 已经开始发射了,就需要定义预发射的内容,可以定义为: 0: 发送 0 1: 发送 1 2: 发送 Preamble 3: NA	
CUS_PKT27 0x52	7:0	RW	TX_PKT_NUM <7:0>	TX 模式下每次重复发的包个数: 0-255 表示发送 1-256 个包	
CUS_PKT28 0x53	7:0	RW	TX_PKT_GAP <7:0>	TX 模式下重复发包时,包与包之间的间隔: 0-255 表示包与包之间的发送间隔为1-256 个 Symbol	
	7	RW	FIFO_AUTO_RES_EN	每次发完一个包就自动 restore TX FIFO,如果每次进入 TX 要重复发送超过 1 个包(TX_PKT_NUM> 0),这个比特就必须设成 1。	
CUS_PKT29 0x54	6:0	RW	FIFO_TH <6:0>	FIFO 的填入阈值,单位是 byte,对 RX 来说,当未读数据超过这个阈值时, RX_FIFO_TH_FLG 就会置 1; 对 TX 来说,当未发数据小过这个阈值时, TX_FIFO_TH_FLG 就会置 0。 当 FIFO_MERGE_EN = 0 时,有效范围是 1 到 31。 当 FIFO_MERGE_EN = 1 时,有效范围是 1 到 63。	
发射区					
	(Note:	以下未列	引出的发射区寄存器均为 RFPDK 生成的		
CUS_TX1 0x55	2	RW	TX_DIN_SOURCE	选择 TX 的数据来源位置: 0: TX 数据从 TX FIFO 获取 1: TX 数据从 GPIO 直接输入	
CUS_TX9 0x5D	7:5	RW	LBD_COMP_OFFSET<2:0>	发射时,电池电压会出现降低的情况,不同的应用环境会有降低不同的值,设置好这个 OFFSET,就可以让芯片在电压降	

寄存器名	位数	R/W	比特名	功能说明
				低是自动补偿功率。具体取值详见表 5。
CUS_LBD 0x5F	7:0	RW	LBD_TH<7:0>	LBD 阈值。
			控制区 1	
CUS_MODE_CTL 0x60	7:0	:0 RW	CHIP_MODE_SWT <7:0>	状态切换的命令: 00000010: go_stby 00000100: go_rfs 00001000: go_rx 00010000: go_sleep 00100000: go_tfs
	_		DEOV	01000000: go_tx 10000000: go_switch 其余值: 不允许发送。
	7 6	RW	RESV	NA NA
	5	RW	RSTN_IN_EN	NA 0: 屏蔽外部复位管脚 RSTN 1: 使能外部复位管脚 RSTN
	4	RW	CFG_RETAIN	保护 0x00-0x5F 配置区的数据不会被软复位擦除掉。 0: 不保护 1: 保护
CUS_MODE_STA 0x61	3:0	RW	CHIP_MODE_STA <3:0>	芯片状态: 0000: IDLE 0001: SLEEP 0010: STBY 0011: RFS 0100: TFS 0100: TS 0101: RX 0110: TX 1000: ERROR 1001: CAL 其余值: 无效 ERROR 状态是指由于芯片受到偶发性 的严重干扰导致出现异常,不宜进行发射 和接收,用户可以选择性地让芯片停留在 这个状态,后续有章节详细介绍。CAL 状态就是校正状态,芯片不会长期停留在 校正状态,因此用户通常是查询不到 CAL 状态的。
CUS_EN_CTL	7	RW	RESV	NA
0x62	6	RW	RESV	NA NA
502	L			· ··· ·

寄存器名	位数	R/W	比特名	功能说明
	5	5 RW	UNLOCK_STOP_EN	当 PLL 无法锁定时,用户可以选择让芯片无法进入 TX 或者 RX,而停留在状态 1000,并等待 MCU 将芯片切换回 SLEEP 或者 STBY 状态。这个比特是这
				个功能的使能位。 0: 不使能,即照常切换状态 1: 使能
	4	RW	LBD_STOP_EN	当检测到 LBD 有效时,即电压过低时,用户可以选择让芯片无法进入 TX 或者 RX,而停留在状态 1000,并等待 MCU 将芯片切换回 SLEEP 或者 STBY 状态。这个比特是这个功能的使能位。 O: 不使能,即照常切换状态
	2.0	DW	RESV	1: 使能
CHC EDEO CHNI	3:0	RW		NA 255 A 25
CUS_FREQ_CHNL 0x63	7:0	RW	FH_CHANNEL <7:0>	设置快速手动跳频的频道数量,共 255 个频道。
CUS_FREQ_OFS 0x64	7:0	7:0 RW FH_OFFSET <7:0>		设置快速手动跳频的频道宽度。每一个比特增加大约 2.5kHz,最大的频道宽度是 2.5x255 = 637.5 kHz。
	7:6	RW	RESV	NA
				GPIO3 的选项:
	5:4	RW	GPIO3_SEL <1:0>	0: CLKO
				1: DOUT/DIN
				2: INT2 3: DCLK (TX/RX)
				GPIO2 的选项:
CUS_IO_SEL				0: INT1
0x65	3:2	RW	GPIO2_SEL <1:0>	1: INT2
		Ť		2: DOUT/DIN
				3: DCLK (TX/RX)
				GPIO1 的选项:
				0: DOUT/DIN
	1:0	RW	GPIO1_SEL <1:0>	1: INT1
				2: INT2
				3: DCLK (TX/RX)
				天线开关信号使能 1
0110 1117: 07:	7	RW	RF_SWT1_EN	0: 不使能
CUS_INT1_CTL				1: 使能
0x66				不能和 RF_SWT2_EN 配置成同时有效
	6	RW	RF_SWT2_EN	天线开关信号使能 2
				0: 不使能

寄存器名	位数	R/W	比特名	功能说明
				1: 使能
				不能和 RF_SWT1_EN 配置成同时有效
				中断输出极性选择:
	5	RW	INT_POLAR	0: 0 无效, 1 有效
				0: 0 有效, 1 无效
	4:0	RW	INT1_SEL <4:0>	INT1 的映射选项,请参考下面的中断映
				射表。
	7	RW	RESV	NA
	6	RW	LFOSC_OUT_EN	0: 不从 GPIO 输出 LFOSC 时钟
0110 11170 071				1: 从 GPIO 输出 LFOSC 时钟
CUS_INT2_CTL				发射数据反转控制,无论发射数据来源于
0x67	5	RW	TX_DIN_INV	TX FIFO 还是 GPIO,该比特都有效:
				0: 不反转发射数据
	4-0	DW	INTO OF IAO	1: 反转发射数据
	4:0	RW	INT2_SEL [4:0]	INT2 的映射选项。
	7	RW	CL TAGO EN	睡眠超时中断使能
			SL_TMO_EN	0: 不使能 1: 使能
		RW	RX_TMO_EN	
	6			接收超时中断使能
			KA_TIVIO_EIV	0: 不使能 1: 使能
				发射完成中断使能
	5	RW	TX_DONE_EN	0: 不使能
				1: 使能
	4	RW		Preamble 检测成功中断使能
			PREAM_OK_EN	0: 不使能
CUS_INT_EN				1: 使能
0x68	3			Sync Word 检测成功中断使能
		RW	SYNC_OK_EN	0: 不使能
		*		1: 使能
				Node ID 检测成功中断使能
	2	RW	NODE_OK_EN	0: 不使能
				1: 使能
				CRC 检测成功中断使能
	1	RW	CRC_OK_EN	0: 不使能
				1: 使能
	0	RW		Packet 接收完成(不管对错)中断使能
			PKT_DONE_EN	0: 不使能
				1: 使能
CUS_FIFO_CTL	_			用于选择 GPIO 中 DOUT/DIN 的选项:
0x69	7	RW	TX_DIN_EN	0: 使能 DOUT
				1: 使能 DIN

寄存器名	位数	R/W	比特名	功能说明
				选择发射数据从哪个 GPIO 输入:
		RW		0: GPIO1
	6:5		TX_DIN_SEL <1:0>	1: GPIO2
				2: GPIO3
				3: 一直发数据 1
	4	RW	FIFO_AUTO_CLR_DIS	0: 进入 RX 前自动清零 RX FIFO, 1:
				不自动清零
				0: TX FIFO 只能用 SPI 写,1: RX FIFO
	3	RW	FIFO_TX_RD_EN	可被 SPI 读取。该比特只对 TX FIFO 有
				效,除了给用户测试时可以使用,其余时
				候都应该设成 0。
	2	RW	FIFO_RX_TX_SEL	当作为一个 64-byte FIFO 时可使用。0:
				用作 RX FIFO,1: 用作 TX FIFO。
	1	RW	FIFO_MERGE_EN	0: 分成 2 个独立的 32-byte 的 FIFO, 1:
				合并成 1 个 64-byte 的 FIFO。
	0	RW	ODI EIEO DD WD OEI	0: SPI 的操作是读 FIFO, 1: SPI 的操
			SPI_FIFO_RD_WR_SEL	作是写 FIFO。必须在访问 FIFO 前设置
	7.0	107	DEO/	好。
	7:6	W	RESV	NA THO THE T
	5	W	SL_TMO_FLG	SL_TMO 中断标志
	4	W	RX_TMO_FLG	RX_TMO 中断标志
	3	W	TX_DONE_FLG	TX_DONE 中断标志
	2	W	TX DONE CLR	TX_DONE 中断清零
CUS_INT_CLR1			TX_DONE_CLR	0: 无动作 1: 清零
0x6A				SL_TMO 中断清零
	1	W	SL_TMO_CLR	0: 无动作
			GC_TWO_GER	1: 清零
				RX_TMO 中断清零
	0	W	RX_TMO_CLR	0: 无动作
		''		1: 清零
			· 控制区 2	
	7:6	W	RESV	NA
				LBD 有效(成功检测到低电压)中断清
		147		零
OLIO INIT OLIDO	5	W	LBD_CLR	0: 无动作
CUS_INT_CLR2				1: 清零
0x6B				PREAM_OK 中断清零
	4	W	PREAM_OK_CLR	0: 无动作
				1: 清零
	3	W	SYNC_OK_CLR	SYNC_OK 中断清零

寄存器名	位数	R/W	比特名	功能说明
				0: 无动作
				1: 清零
				NODE_OK 中断清零
	2	W	NODE_OK_CLR	0: 无动作
				1: 清零
				CRC_OK 中断清零
	1	W	CRC_OK_CLR	0: 无动作
				1: 清零
				PKT_DONE 中断清零
	0	W	PKT_DONE_CLR	0: 无动作
				1: 清零
	7:3	W	RESV	NA
				供用户进行手动 restore TX FIFO,
		107	FIFO DECTORE	restore 的意思是复位读指针,维持写指
	2	W	FIFO_RESTORE	针不变,这样 TX FIFO 又回到未读状态,
				可以再次重复发射之前填入的数据。
0110 5150 01 5	1	W	FIFO OLD DV	0: 无效, 1: 清零 RX FIFO。
CUS_FIFO_CLR				用户将这个比特设成 1 之后, 无需将它
0x6C			FIFO_CLR_RX	再设回 0,这个比特在内部会自动设回为
				0.
	0	W	FIFO_CLR_TX	0: 无效,1: 清零 TX FIFO
				用户将这个比特设成 1 之后, 无需将它
				再设回 0,这个比特在内部会自动设回为
				0.
	7	R	LPD ELC	LBD 有效(成功检测到低电压)中断标
	'	ĸ	LBD_FLG	志
	6	R	COL_ERR_FLG	COL_ERR 中断标志
OLIO INIT FLAG	5	R	PKT_ERR_FLG	PKT_ERR 中断标志
CUS_INT_FLAG	4	R	PREAM_OK_FLG	PREAM_OK 中断标志
0x6D	3	R	SYNC_OK_FLG	SYNC_OK 中断标志
	2	R	NODE_OK_FLG	NODE_OK 中断标志
	1	R	CRC_OK_FLG	CRC_OK 中断标志
	0	R	PKT_OK_FLG	PKT_OK 中断标志
	7	R	RESV	NA
				指示 RX FIFO 非空的中断标志位。
	6	R	RX_FIFO_FULL_FLG	0: 无效
CUS_FIFO_FLAG				1: 有效
0x6E				指示 RX FIFO 未读内容超过 FIFO TH 的
	_	_	DV FIEO NIMTY FLO	中断。
	5	R	RX_FIFO_NMTY_FLG	0: 无效
				1: 有效

寄存器名	位数	R/W	比特名	功能说明
				指示 RX FIFO 填满的中断。
	4	R	RX_FIFO_TH_FLG	0: 无效
				1: 有效
				指示 RX FIFO 溢出的中断。
	3	R	RX_FIFO_OVF_FLG	0: 无效
				1: 有效
				指示 TX FIFO 非空的中断。
	2	R	TX_FIFO_FULL_FLG	0: 无效
				1: 有效
				指示 TX FIFO 未读内容超过 FIFO TH 的
	1	R	TX_FIFO_NMTY_FLG	中断。
	'	I.	TX_FIFO_NWITT_FLG	0: 无效
				1: 有效
				指示 TX FIFO 满的中断。
	0	R	TX_FIFO_TH_FLG	0: 无效
				1: 有效
CUS_RSSI_CODE	7:0	R	RSSI_CODE [7:0]	RSSI 的读取值,是 SAR ADC 经过滤波
0x6F	7.0	IX	70	后的输出,没有单位,是一个8位码。
				RSSI的读取值,减去 128 后就是等效到
CUS_RSSI_DBM	7:0	R	RSSI_DBM [7:0]	天线输入端的信号功率值,单位为 dBm,
0x70	7.0	K		是 SAR ADC 经过滤波后,再将单位转换
				为 dBm 的输出。
CUS_LBD_RESULT 0x71	7:0	R	LBD_RESULT [7:0]	LBD 的检测结果

表 2. 电流寄存器信息

电流档	RF 性能档	LMT_VTR<1:0>	MIXER_BIAS<1:0>	LNA_MODE<1:0>	LNA_BIAS<1:0>
低	低	2	2	1	1
中	中	2	2	1	2
高	高	1	2	3	2

表 3. SYNC_VALUE 信息

	SYNC_VALUE							
SYNC_SIZE	<63:56>	<55:48>	<47:40>	<39:32>	<31:24>	<23:16>	<15:8>	<7:0>
0	√							
1	√	√						
2	√	√	√			5		
3	√	√	√	√				
4	√	√	√	√	1			
5	√	√	√	√	7	√		
6	√	√	√	1	√	√	√	
7	√	√	√	√	√	√	√	√

表 4. NODE_VALUE 信息

	NODE_VALUE					
NODE_SIZE	<31:24>	<23:16>	<15:8>	<7:0>		
0	√					
1	1	√				
2	√	√	√			
3	√	√	√	√		

表中打勾的地方表示要填入的寄存器。举例说明,如果 NODE_SIZE 设置为 1,即长度为 2 个 byte,值为 0x5678,那 么用户就将这个值填入 SYNC_VALUE<31:24>和 SYNC_VALUE<23:16>两个寄存器,msb 对应的是第 31 位,lsb 对应的是第 16 位,即将 0x56 填入 SYNC_VALUE<31:24>,0x78 填入 SYNC_VALUE<23:16>。

表 5. 功率补偿与寄存器值的对应关系

LBD_COMP_OFFSET<2:0>	补偿的电压值
0	不补偿
1	57 mV
2	114 mV
3	171 mV
4	228 mV
5	285 mV
6	342 mV
7	399 mV

2 文档变更记录

表 6. 文档变更记录表

版本号	节章	变更描述	日期
0.5	所有	初始版本发布	2020-10-14

3 联系方式

无锡泽太微电子有限公司深圳分公司 深圳市南山区西丽街道万科云城 3 期 8 栋 A 座 30 楼

邮编: 518055

电话: +86-755-83231427

销售: <u>sales@cmostek.com</u>

技术支持: <u>support@cmostek.com</u>

网址: <u>www.cmostek.com</u>

Copyright. CMOSTEK Microelectronics Co., Ltd. All rights are reserved.

The information furnished by CMOSTEK is believed to be accurate and reliable. However, no responsibility is assumed for inaccuracies and specifications within this document are subject to change without notice. The material contained herein is the exclusive property of CMOSTEK and shall not be distributed, reproduced, or disclosed in whole or in part without prior written permission of CMOSTEK. CMOSTEK products are not authorized for use as critical components in life support devices or systems without express written approval of CMOSTEK. The CMOSTEK logo is a registered trademark of CMOSTEK Microelectronics Co., Ltd. All other names are the property of their respective owners.