DISKRETNA MATEMATIKA

- PREDAVANJE -

Jovanka Pantović

Svako distribuiranje celog ili delova ovih slajdova ZABRANJENO je i predstavlja povredu autorskog prava.

Povezan graf

Reprezentacija grafa

Tema 1

Šetnje u grafu

Definicija

Neka je $G=(V,E,\psi)$ multigraf sa osobinom da za $e_1,\ldots,e_n\in E$ i $v_0,\ldots,v_n\in V$ važi $\psi(e_i)=\{v_{i-1},v_i\}\ (i\in\{1,\ldots,n\}).$

Definicija

Neka je $G=(V,E,\psi)$ multigraf sa osobinom da za $e_1,\ldots,e_n\in E$ i $v_0,\ldots,v_n\in V$ važi $\psi(e_i)=\{v_{i-1},v_i\}\ (i\in\{1,\ldots,n\}).$

 \bullet v_0v_n -šetnja: $v_0e_1v_1e_2\dots e_nv_n$

Definicija

Neka je $G=(V,E,\psi)$ multigraf sa osobinom da za $e_1,\ldots,e_n\in E$ i $v_0,\ldots,v_n\in V$ važi $\psi(e_i)=\{v_{i-1},v_i\}\ (i\in\{1,\ldots,n\}).$

- \bullet v_0v_n -šetnja: $v_0e_1v_1e_2\dots e_nv_n$
- v_0v_n -staza: $v_0e_1v_1e_2\dots e_nv_n$ $(\forall i,j:i\neq j\Rightarrow e_i\neq e_j)$

Definicija

Neka je $G=(V,E,\psi)$ multigraf sa osobinom da za $e_1,\ldots,e_n\in E$ i $v_0,\ldots,v_n\in V$ važi $\psi(e_i)=\{v_{i-1},v_i\}\ (i\in\{1,\ldots,n\}).$

- v_0v_n -šetnja: $v_0e_1v_1e_2\dots e_nv_n$
- v_0v_n -staza: $v_0e_1v_1e_2\dots e_nv_n$ $(\forall i,j:i\neq j\Rightarrow e_i\neq e_j)$
- v_0v_n -put:

$$v_0e_1v_1e_2\dots e_nv_n \qquad (\forall i,j:i\neq j\Rightarrow v_i\neq v_j)$$
(osim eventualno $v_0=v_n$)

Definicija

Neka je $G = (V, E, \psi)$ multigraf sa osobinom da za $e_1, \ldots, e_n \in E$ i $v_0, \ldots, v_n \in V$ važi $\psi(e_i) = \{v_{i-1}, v_i\} \ (i \in \{1, \ldots, n\}).$

- v_0v_n -šetnja: $v_0e_1v_1e_2\dots e_nv_n$
- v_0v_n -staza: $v_0e_1v_1e_2\dots e_nv_n$ $(\forall i, j : i \neq j \Rightarrow e_i \neq e_j)$
- v_0v_n -put:

$$v_0e_1v_1e_2\dots e_nv_n \qquad (\forall i,j:i\neq j\Rightarrow v_i\neq v_j)$$
(osim eventualno $v_0=v_n$)

kontura: $v_0e_1v_1e_2\dots e_nv_n$ $(\forall i, j : i \neq j \Rightarrow v_i \neq v_j)$

 $v_0 = v_n$

Za graf K_6 na slici, dajemo po jedan primer za svaku kategoriju.

- šetnja: aecaefdbf;
- lacktriangledown put: aecfdb;
- 4 kontura: aecfdba.

aecaefdbf

Za graf K_6 na slici, dajemo po jedan primer za svaku kategoriju.

- šetnja: aecaefdbf;
- **2** staza: aecafdbf;
- oput: aecfdb;
- 4 kontura: aecfdba.

aecaefdbf

aecafdbf

Za graf K_6 na slici, dajemo po jedan primer za svaku kategoriju.

- šetnja: aecaefdbf;
- 2 staza: aecafdbf;
- \odot put: aecfdb;
- 4 kontura: aecfdba.

Za graf K_6 na slici, dajemo po jedan primer za svaku kategoriju.

- šetnja: aecaefdbf;
- staza: aecafdbf;
- \odot put: aecfdb;
- 4 kontura: aecfdba.

Ako u grafu postoji uv-šetnja (staza), onda postoji i uv-put.

Ako u grafu postoji uv-šetnja (staza), onda postoji i uv-put.

 $aedabeabefbcd \Rightarrow aedabeabefbcd \Rightarrow abcd$

Tema 2

Povezan graf

Povezanost

Definicija

Kažemo da su čvorovi u i v povezani ako postoji uv-put u G.

Povezanost

Definicija

Kažemo da su čvorovi u i v povezani ako postoji uv-put u G.

Svaki čvor je povezan sam sa sobom.

Povezanost

Definicija

Kažemo da su čvorovi u i v povezani ako postoji uv-put u G.

Svaki čvor je povezan sam sa sobom.

Kažemo da je graf G povezan ako za svaka dva čvora $u,v\in V(G)$ važi da su u i v povezani.

Relacija "je povezan sa" je relacija ekvivalencije na skupu čvorova grafa.

Relacija "je povezan sa" je relacija ekvivalencije na skupu čvorova grafa.

R) Refleksivnost sledi direktno iz definicije.

Relacija "je povezan sa" je relacija ekvivalencije na skupu čvorova grafa.

- (R) Refleksivnost sledi direktno iz definicije.
- (S) Neka je $u \neq v$ i neka je uv-put u grafu oblika

$$uv_0 \dots v_{n-1}v$$
.

Relacija "je povezan sa" je relacija ekvivalencije na skupu čvorova grafa.

- (R) Refleksivnost sledi direktno iz definicije.
- (S) Neka je $u \neq v$ i neka je uv-put u grafu oblika

$$uv_0 \dots v_{n-1}v$$
.

Tada je

$$vv_{n-1}\dots v_0u$$

vu-put u grafu.

Relacija "je povezan sa" je relacija ekvivalencije na skupu čvorova grafa.

- (R) Refleksivnost sledi direktno iz definicije.
- (S) Neka je $u \neq v$ i neka je uv-put u grafu oblika

$$uv_0 \dots v_{n-1}v$$
.

Tada je

$$vv_{n-1}\dots v_0u$$

vu-put u grafu.

(T) Pretpostavimo da u grafu G postoje uv-put i vw-put:

$$uu_0 \dots u_{l-1}v$$
 i $vv_0 \dots v_{n-1}w$.

Relacija "je povezan sa" je relacija ekvivalencije na skupu čvorova grafa.

- (R) Refleksivnost sledi direktno iz definicije.
- (S) Neka je $u \neq v$ i neka je uv-put u grafu oblika

$$uv_0 \dots v_{n-1}v$$
.

Tada je

$$vv_{n-1}\dots v_0u$$

vu-put u grafu.

(T) Pretpostavimo da u grafu G postoje uv-put i vw-put:

$$uu_0 \dots u_{l-1}v$$
 i $vv_0 \dots v_{n-1}w$.

Tada je sa

$$uu_0 \dots u_{l-1} vv_0 \dots v_{n-1} w$$

data jedna uw-šetnja (koja ne mora biti put).

Relacija "je povezan sa" je relacija ekvivalencije na skupu čvorova grafa.

- (R) Refleksivnost sledi direktno iz definicije.
- (S) Neka je $u \neq v$ i neka je uv-put u grafu oblika

$$uv_0 \dots v_{n-1}v$$
.

Tada je

$$vv_{n-1}\dots v_0u$$

vu-put u grafu.

(T) Pretpostavimo da u grafu G postoje uv-put i vw-put:

$$uu_0 \dots u_{l-1}v$$
 i $vv_0 \dots v_{n-1}w$.

Tada je sa

$$uu_0 \dots u_{l-1} vv_0 \dots v_{n-1} w$$

data jedna uw-šetnja (koja ne mora biti put). Ako u grafu postoji uw-šetnja, onda postoji i uw-put.

Broj komponenti povezanosti

Broj komponenti povezanosti grafa G, u oznaci $\omega(G)$, jednak je broju klasa ekvivalencije u odnosu na relaciju povezanosti.

Lemma

G je povezan akko $\omega(G)=1$.

Neka je $G = (\{a,b,c,d,e,f,g,h,i\},E)$ graf na slici.

Neka je $G = (\{a,b,c,d,e,f,g,h,i\},E)$ graf na slici.

Broj komponenti povezanosti datog grafa je $\omega(G)=3.$ Komponente povezanosti su indukovane sledećim skupovima čvorova:

$$\{a,b\},\{c,d,e\},\{f,g,h,i\}.$$

Neka je $n \geq 2$.

Graf sa n čvorova i manje od n-1 grana nije povezan.

Neka je $n \geq 2$.

Graf sa n čvorova i manje od n-1 grana nije povezan.

Dokaz: Indukcijom po n.

Baza n=2: Graf sa dva čvora i 0 grana nije povezan.

Neka je $n \geq 2$.

Graf sa n čvorova i manje od n-1 grana nije povezan.

Dokaz: Indukcijom po n.

Baza n=2: Graf sa dva čvora i 0 grana nije povezan.

 $\underline{\text{Induktivna pretpostavka:}} \text{ Pretpostavimo da nijedan graf sa } n \text{ \'evorova i manje od } n-1 \text{ grana nije}$

povezan.

Neka je $n \geq 2$.

Graf sa n čvorova i manje od n-1 grana nije povezan.

Dokaz: Indukcijom po n.

Baza n=2: Graf sa dva čvora i 0 grana nije povezan.

Induktivna pretpostavka: Pretpostavimo da nijedan graf sa n čvorova i manje od n-1 grana nije povezan.

Induktivni korak: Neka je G graf sa n+1 čvorova i manje od n grana.

Neka je $n \geq 2$.

Graf sa n čvorova i manje od n-1 grana nije povezan.

Dokaz: Indukcijom po n.

Baza n=2: Graf sa dva čvora i 0 grana nije povezan.

Induktivna pretpostavka: Pretpostavimo da nijedan graf sa n čvorova i manje od n-1 grana nije povezan.

Induktivni korak: Neka je G graf sa n+1 čvorova i manje od n grana.

Postoji čvor v stepena $d_G(v) \leq 1$.

Neka je $n \geq 2$.

Graf sa n čvorova i manje od n-1 grana nije povezan.

Dokaz: Indukcijom po n.

Baza n=2: Graf sa dva čvora i 0 grana nije povezan.

Induktivna pretpostavka: Pretpostavimo da nijedan graf sa n čvorova i manje od n-1 grana nije povezan.

Induktivni korak: Neka je G graf sa n+1 čvorova i manje od n grana.

Postoji čvor v stepena $d_G(v) \leq 1$.

Ako je $d_G(v) = 0$: broj komponenti povezanosti je bar dva i graf nije povezan.

Neka je $n \geq 2$.

Graf sa n čvorova i manje od n-1 grana nije povezan.

Dokaz: Indukcijom po n.

Baza n=2: Graf sa dva čvora i 0 grana nije povezan.

Induktivna pretpostavka: Pretpostavimo da nijedan graf sa n čvorova i manje od n-1 grana nije povezan.

Induktivni korak: Neka je G graf sa n+1 čvorova i manje od n grana.

Postoji čvor v stepena $d_G(v) \leq 1$.

Ako je $d_G(v) = 0$: broj komponenti povezanosti je bar dva i graf nije povezan.

Ako je $d_G(v) = 1$:

Neka je $n \geq 2$.

Graf sa n čvorova i manje od n-1 grana nije povezan.

Dokaz: Indukcijom po n.

Baza n=2: Graf sa dva čvora i 0 grana nije povezan.

Induktivna pretpostavka: Pretpostavimo da nijedan graf sa n čvorova i manje od n-1 grana nije povezan.

 ${\color{red} {\rm Induktivni\ korak:}}$ Neka je G graf sa n+1 čvorova i manje od n grana.

Postoji čvor v stepena $d_G(v) \leq 1$.

Ako je $d_G(v) = 0$: broj komponenti povezanosti je bar dva i graf nije povezan.

Ako je $d_G(v) = 1$:

$$G' = G - v = (V \setminus \{v\}, E \setminus \{\{u, v\}\})$$

Neka je $n \geq 2$.

Graf sa n čvorova i manje od n-1 grana nije povezan.

Dokaz: Indukcijom po n.

Baza n=2: Graf sa dva čvora i 0 grana nije povezan.

Induktivna pretpostavka: Pretpostavimo da nijedan graf sa n čvorova i manje od n-1 grana nije povezan.

 ${\color{red} {\rm Induktivni\ korak:}}$ Neka je G graf sa n+1 čvorova i manje od n grana.

Postoji čvor v stepena $d_G(v) \leq 1$.

Ako je $d_G(v)=0$: broj komponenti povezanosti je bar dva i graf nije povezan.

Ako je $d_G(v) = 1$:

$$G' = G - v = (V \setminus \{v\}, E \setminus \{\{u, v\}\})$$

$$|V(G')| = n$$
 $|E(G')| = |E(G)| - 1 < n - 1$ $\omega(G') = \omega(G)$

Prema induktivnoj pretpostavci,

$$\omega(G') \ge 2 \Rightarrow \omega(G) \ge 2$$

Neka je G povezan i neka je C kontura u G. Ako je e grana konture, onda je G-e povezan.

Neka je G povezan i neka je C kontura u G. Ako je e grana konture, onda je G-e povezan.

Izaberimo proizvoljno dva čvora $u,v\in V$.

Neka je G povezan i neka je C kontura u G. Ako je e grana konture, onda je G-e povezan.

Izaberimo proizvoljno dva čvora $u,v\in V$. Kako je G povezan, postoji uv-put

$$P = uv_1 \dots v_i v_{i+1} \dots v_{n-1} v.$$

Neka je G povezan i neka je C kontura u G. Ako je e grana konture, onda je G-e povezan.

Izaberimo proizvoljno dva čvora $u,v\in V$. Kako je G povezan, postoji uv-put

$$P = uv_1 \dots v_i v_{i+1} \dots v_{n-1} v.$$

- (i) Ako e ne pripada uv-putu, onda je P uv-put u G e.
- (ii) Ako e pripada uv-putu, onda možemo pretpostaviti da je to grana $\{v_i,v_{i+1}\}$ i da je kontura C oblika

$$C = v_i v_{i+1} u_1 \dots u_l v_i.$$

Neka je G povezan i neka je C kontura u G. Ako je e grana konture, onda je G-e povezan.

Izaberimo proizvoljno dva čvora $u,v\in V$. Kako je G povezan, postoji uv-put

$$P = uv_1 \dots v_i v_{i+1} \dots v_{n-1} v.$$

- (i) Ako e ne pripada uv-putu, onda je P uv-put u G e.
- (ii) Ako e pripada uv-putu, onda možemo pretpostaviti da je to grana $\{v_i,v_{i+1}\}$ i da je kontura C oblika

$$C = v_i v_{i+1} u_1 \dots u_l v_i.$$

To znači da u grafu G - e postoji put Q od v_i do v_{i+1} :

$$Q = v_i u_l u_{l-1} \dots u_1 v_{i+1}$$

Neka je G povezan i neka je C kontura u G. Ako je e grana konture, onda je G - e povezan.

Izaberimo proizvoljno dva čvora $u,v\in V$. Kako je G povezan, postoji uv-put

$$P = uv_1 \dots v_i v_{i+1} \dots v_{n-1} v.$$

- (i) Ako e ne pripada uv-putu, onda je P uv-put u G e.
- (ii) Ako e pripada uv-putu, onda možemo pretpostaviti da je to grana $\{v_i,v_{i+1}\}$ i da je kontura C oblika

$$C = v_i v_{i+1} u_1 \dots u_l v_i.$$

To znači da u grafu G - e postoji put Q od v_i do v_{i+1} :

$$Q = v_i u_l u_{l-1} \dots u_1 v_{i+1}$$

onda je

$$P_2 = uv_1 \dots v_{i-1} Q v_{i+2} \dots v_{n-1} v$$

šetnja u grafu G-e od u do v. Ako postoji šetnja u G-e, onda postoji uv-put G-e.

Neka je G povezan i neka je C kontura u G. Ako je e grana konture, onda je G-e povezan.

Izaberimo proizvoljno dva čvora $u,v\in V$. Kako je G povezan, postoji uv-put

$$P = uv_1 \dots v_i v_{i+1} \dots v_{n-1} v.$$

- (i) Ako e ne pripada uv-putu, onda je P uv-put u G e.
- (ii) Ako e pripada uv-putu, onda možemo pretpostaviti da je to grana $\{v_i,v_{i+1}\}$ i da je kontura C oblika

$$C = v_i v_{i+1} u_1 \dots u_l v_i.$$

To znači da u grafu G - e postoji put Q od v_i do v_{i+1} :

$$Q = v_i u_l u_{l-1} \dots u_1 v_{i+1}$$

onda je

$$P_2 = uv_1 \dots v_{i-1} Q v_{i+2} \dots v_{n-1} v$$

šetnja u grafu G-e od u do v. Ako postoji šetnja u G-e, onda postoji uv-put G-e. Znači, za svaka dva čvora u grafu G-e postoji put koji ih povezuje.

Definition

Neka je G povezan graf. Rastojanje d(u,v), između čvorova u i v je dužina najkraćeg puta od u do v, u slučaju da je $u \neq v$, inače je 0.

- $d(u,v) \ge 0$
- d(u,v)=0 akko u=v
- d(u,v) = d(v,u)
- $d(u,v) + d(v,w) \ge d(u,w)$

Tema 3

Reprezentacija grafa

Reprezentacija grafa

• Neka je G=(V,E) prost graf i m=|V|. Matrica susedstva $A(G)=[a_{ij}]_{m\times m}$

$$a_{ij} = \begin{cases} 1 &, \{i, j\} \in E \\ 0 &, \{i, j\} \notin E \end{cases}$$

② Neka je $G=(V,E,\psi),\, m=|V|$ i |E|=n. Matrica incidencije $M(G)=[a_{ie}]_{m\times n}$

$$a_{ie} = \left\{ \begin{array}{ll} 1 & \text{, grana } e \text{ je incidentna sa čvorom } i \\ 0 & \text{, grana } e \text{ nije incidentna sa čvorom } i \end{array} \right.$$

Neka je G=(V,E) prost graf, gde je $V=\{1,\ldots,n\}, n\geq 1$, i neka je A matrica susedstva grafa G. Element a_{ij} u matrici $A^k, k\geq 1$, jednak je broju različitih ij-šetnji dužine k u tom grafu.

(matematičkom indukcijom po k) $k = 1 : a_{ij}$ je broj šetnji dužine 1

Neka je G=(V,E) prost graf, gde je $V=\{1,\ldots,n\}, n\geq 1$, i neka je A matrica susedstva grafa G. Element a_{ij} u matrici $A^k, k\geq 1$, jednak je broju različitih ij-šetnji dužine k u tom grafu.

(matematičkom indukcijom po k)

 $k = 1 : a_{ij}$ je broj šetnji dužine 1

 $T_{k-1} \Rightarrow T_k$: Označimo sa $a_{ij}^{(k)}$ elemente matrice A^k .

Neka je G=(V,E) prost graf, gde je $V=\{1,\ldots,n\}, n\geq 1$, i neka je A matrica susedstva grafa G. Element a_{ij} u matrici $A^k, k\geq 1$, jednak je broju različitih ij-šetnji dužine k u tom grafu.

(matematičkom indukcijom po k)

 $k=1:a_{ij}$ je broj šetnji dužine 1

 $T_{k-1}\Rightarrow T_k$: Označimo sa $a_{ij}^{(k)}$ elemente matrice A^k . Kako je $A^k=A\cdot A^{k-1},$ onda važi

Neka je G = (V, E) prost graf, gde je $V = \{1, ..., n\}, n \ge 1$, i neka je A matrica susedstva grafa G. Element a_{ij} u matrici A^k , $k \ge 1$, jednak je broju različitih ij-šetnji dužine k u tom grafu.

(matematičkom indukcijom po k)

 $k=1:a_{ij}$ je broj šetnji dužine 1

 $T_{k-1}\Rightarrow T_k$: Označimo sa $a_{ij}^{(k)}$ elemente matrice A^k . Kako je $A^k=A\cdot A^{k-1},$ onda važi

$$a_{ij}^{(k)} = a_{i1}a_{1j}^{(k-1)} + a_{i2}a_{2j}^{(k-1)} + \ldots + a_{in}a_{nj}^{(k-1)} \tag{1}$$

Neka je G = (V, E) prost graf, gde je $V = \{1, ..., n\}, n \ge 1$, i neka je A matrica susedstva grafa G. Element a_{ij} u matrici A^k , $k \ge 1$, jednak je broju različitih ij-šetnji dužine k u tom grafu.

(matematičkom indukcijom po k)

 $k=1:a_{ij}$ je broj šetnji dužine 1

 $T_{k-1}\Rightarrow T_k:$ Označimo sa $a_{ij}^{(k)}$ elemente matrice $A^k.$ Kako je $A^k=A\cdot A^{k-1},$ onda važi

$$a_{ij}^{(k)} = a_{i1}a_{1j}^{(k-1)} + a_{i2}a_{2j}^{(k-1)} + \dots + a_{in}a_{nj}^{(k-1)}$$
(1)

Prema induktivnoj pretpostavci, $a_{lj}^{(k-1)}$ je jednak broju šetnji dužine k-1 od čvora k do čvora j $(l \in \{1, \ldots, n\})$.

Zadatak

Primer

Koliko ima šetnji dužine 3 od a do d u grafu:

Zadatak

Primer

Koliko ima šetnji dužine 3 od a do d u grafu:

Matrice $A, A^2 A^3$ su:

$$\begin{bmatrix} 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \end{bmatrix} \quad \begin{bmatrix} 2 & 2 & 1 & 0 & 0 & 0 \\ 2 & 3 & 2 & 0 & 0 & 0 \\ 1 & 2 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 2 & 2 & 1 \\ 0 & 0 & 0 & 2 & 3 & 2 \\ 0 & 0 & 0 & 1 & 2 & 2 \end{bmatrix} \quad \begin{bmatrix} 0 & 0 & 0 & 4 & 5 & 3 \\ 0 & 0 & 0 & 5 & 7 & 5 \\ 0 & 0 & 0 & 3 & 5 & 4 \\ 4 & 5 & 3 & 0 & 0 & 0 \\ 5 & 7 & 5 & 0 & 0 & 0 \\ 5 & 7 & 5 & 0 & 0 & 0 \\ 3 & 5 & 4 & 0 & 0 & 0 \end{bmatrix}$$

Znači, postoje tačno 4 šetnje dužine 3 od čvora a do čvora d:

adbd, adad, aebd, aead

Posledica

Neka je $G=(V,E),\,|V|=n,$ prost graf sa matricom susedstva A. Tada je G povezan akko $\sum\limits_{k=0}^{n-1}A^k$ ima samo ne nula elemente.

Posledica

$$d(v_i, v_j) = \min\{k \ge 0 : a_{ij}^{(k)} \ne 0\}.$$