

Vectorization

<u>Silvio Stanzani</u>, Raphael Cóbe, Rogério Iope UNESP - Núcleo de Computação Científica <u>silvio@ncc.unesp.br</u>, <u>rmcobe@ncc.unesp.br</u>, rogerio@ncc.unesp.br

Exploiting the parallel universe

Instruction Level Parallelism

- Single thread (ST) performance
- Automatically exposed by HW/tools
- Effectively limited to a few instructions

Data Level Parallelism

- Single thread (ST) performance
- Exposed by tools and programming models
- Operate on 4/8/16 elements at a time

Task Level Parallelism

- Multi thread/task (MT) performance
- Exposed by programming models
- Execute tens/hundreds/thousands task concurrently

Process Level Parallelism

- Multi Process (MP) performance
- Exposed by programming models
- Execute tens/hundreds/thousands of process concurrently across several nodes

Agenda

- Vector Processing Units
- Profiling
- Optimizing Memory Access
- Auto Vectorization
- Guided Vectorization
- Examples

Agenda

- Vector Processing Units
- Profiling
- Optimizing Memory Access
- Auto Vectorization
- Guided Vectorization
- Examples

Vectorial processing Intel® Architecture

MMX	Intel® SSE	Intel® AVX / AVX2	Intel® MIC / AVX-512
Vector size: 64bit	Vector size: 128bit	Vector size: 256bit	Vector size: 512bit
Data types: 8, 16 and	Data types:	Data types: 32 and	Data types:
32 bit integers	8,16,32,64 bit	64 bit floats	32 and 64 bit
VL: 2,4,8	integers	VL: 4, 8, 16	integers
	32 and 64bit float	Sample: Xi, Yi 32 bit	32 and 64bit float
	VL: 2,4,8,16	int or float	VL: 8,16

Exponential & Reciprocal Instructions (ERI)
Prefetch Instructions (PFI)
Foundation instructions (FI)
Conflict Detection Instructions (CDI)
Byte & Word Instructions (BWI)
Double-/Quad-word Instructions (DQI)
Vector Length Extensions (VLE)

Agenda

- Vector Processing Units
- Profiling
- Optimizing Memory Access
- Auto Vectorization
- Guided Vectorization
- Examples

Intel Advisor

- Evaluate multi-threading parallelization
- Intel[®] Advisor XE
 - ☐ Performance modeling using several frameworks for multi-threading in processors and co-processors:
 - OpenMP, Intel[®] Cilk ™ Plus, Intel[®] Threading Bulding Blocks
 - C, C++, Fortran (OpenMP only) and C# (Microsoft TPL)
 - □ Identify parallel opportunities
 - Detailed information about vectorization;
 - Check loop dependencies;
 - ☐ Scalability prediction: amount of threads/performance gains
 - □ Correctness (deadlocks, race conditions)

Intel® Advisor

Intel Advisor

Survey Target;

- Vectorization of loops: detailed information about vectorization;
- Total Time: elapsed time on each loop considering the time involved in internal loops;
- Self Time: elapsed time on each loop not considering the time involved in internal loops;
- Find Trip Counts;
 - Analysis to identify how many time particular loops run;
- Check Dependencies;
 - Analysis it there are many loop-carried dependencies;
- Check Memory Access Patterns.
 - Analysis to identify how your code is iterating with memory.

Advisor – New Project

Advisor - Analysis

Advisor – Survey Target

Advisor – Survey Target

Traits	Data Types	Number of Vector Registers	Vector Widths	Instruction Sets
Extracts; Type Conversions	Float32; Float64; Int32; UIn	15	128/256	AVX; AVX2
Extracts; Inserts; Type Conversions	Float32; Float64	14; 15	128; 256	AVX
Extracts; Inserts; Type Conversions	Float32; Float64; Int32; UIn	16	256	AVX; AVX2

Advanced <					
Transformations	Unroll Factor	Vectorization Details	Optimization Details	Location	
	1			vec.c:50	
Fused; Unrolled	4		LOOP WAS DISTRIBUTED, CHUNK 1; LOOP WAS DISTRIBUTED, C	vec.c:63	
				vec.c:55	

Advisor – Memory Access Patterns

Agenda

- Vector Processing Units
- Profiling
- Optimizing Memory Access
- Auto Vectorization
- Guided Vectorization
- Examples

Stride (array elements)

- Stride:
 - Step size between consecutive access of array elements;
- Strided access with stride k means touching every kth memory element
 - Unit Stride :
 - □ Sequential access (0, 1, 2, 3, 4, 5, 6, ...)
 - Non-unit stride
 - Constant Stride =2 is (0, 2, 4, 6, 8, ...)
 - \Box k is (0, k, 2k, 3k, 4k, ...)
 - Random Access;
- Strides > 1 commonly found in multidimensional data
 - Row accesses (stride=N) & diagonal accesses (stride=N+1)
 - Scientific computing (e.g., matrix multiplication)
- Vectorization more efficient with unit strides
 - Non-unit strides will generate gather/scatter
 - Unit strides also better for data locality

Data layout - Padding

- Data structures may have members with different sizes.
- To maintain proper alignment the translator normally inserts additional unnamed data members so that each member is properly aligned.
- Example:

```
struct stu_a {
   int i;
   char c;
};
```

Actual size 4+1 (5)

After Padding size 4+4 (5)

• ...

Data layout - Array of Structures vs Structure of Arrays

AoS vs SoA (Array of Structures vs Structure of Arrays)

```
// Array of Structures (AoS)
struct coordinate {
    float x, y, z;
} crd[N];
...
for (int i = 0; i < N; i++)
... = ... f(crd[i].x, crd[i],y,
crd[i].z);</pre>
```

```
Consecutive elements in memory
```

```
x0 y0 z0 x1 y1 z1 ... x(n-1) y(n-1) z(n-1)
```

```
// Structure of Arrays (SoA)
struct coordinate {
    float x[N], y[N], z[N];
} crd;
...
for (int i = 0; i < N; i++)
... = ... f(crd.x[i], crd.y[i],
crd.z[i]);</pre>
```

Consecutive elements in memory

Agenda

- Vector Processing Units
- Profiling
- Optimizing Memory Access
- Auto Vectorization
- Guided Vectorization
- Examples

Vectorization on Intel® compilers

Easy of use

Auto Vectorization

Compiler knobs

Guided Vectorization

- Compiler hints/pragmas
- Array notation
- Elemental Functions

Low level Vectorization

- C/C++ vector classes
- Intrinsics/Assembly

Fine control

Auto vectorization

- Relies on the compiler for vectorization
 - No source code changes
 - Enabled with -vec compiler knob (default in -02 and -03 modes)
- Compiler smart enough to apply loop transformations
 - It will allow to vectorize more loops

Option	Description
-00	Disables all optimizations.
-01	Enables optimizations for speed which are know to not cause code size increase.
-02/-0 (default)	 Enables intra-file interprocedural optimizations for speed, including: Vectorization Loop unrolling
-03	 Performs O2 optimizations and enables more aggressive loop transformations such as: Loop fusion Block unroll-and-jam Collapsing IF statements This option is recommended for applications that have loops that heavily use floating-point calculations and process large data sets. However, it might incur in slower code, numerical stability issues, and compilation time increase.

Vectorization: target architecture options

Option	Description
-mmic	Builds an application that runs natively on Intel® MIC Architecture.
-xfeature -xHost	Tells the compiler which processor features it may target, referring to which instruction sets and optimizations it may generate (not available for Intel® Xeon Phi TM architecture). Values for feature are: • COMMON-AVX512 (includes AVX512 FI and CDI instructions) • MIC-AVX512 (includes AVX512 FI, CDI, PFI, and ERI instructions) • CORE-AVX512 (includes AVX512 FI, CDI, BWI, DQI, and VLE instructions) • CORE-AVX2 • CORE-AVX-I (including RDRND instruction) • AVX • SSE4.2, SSE4.1 • ATOM_SSE4.2, ATOM_SSSE3 (including MOVBE instruction) • SSSE3, SSE3, SSE2 When using -xHost, the compiler will generate instructions for the highest instruction set available on the compilation host processor.
-axfeature	Tells the compiler to generate multiple, feature-specific auto-dispatch code paths for Intel® processors if there is a performance benefit. Values for <i>feature</i> are the same described for -xfeature option. Multiple features/paths possible, e.g.: -axSSE2, AVX. It also generates a baseline code path for the default case.

Auto vectorization: not all loops will vectorize

- Data dependencies between iterations
 - Proven Read-after-Write data (i.e., loop carried) dependencies
 - Assumed data dependencies
 - Aggressive optimizations

RaW dependency

```
for (int i = 0; i < N; i++)
a[i] = a[i-1] + b[i];
```

- Vectorization won't be efficient
 - Compiler estimates how better the vectorized version will be
 - Affected by data alignment, data layout, etc.

Inefficient vectorization

```
for (int i = 0; i < N; i++)
    a[c[i]] = b[d[i]];</pre>
```

- Unsupported loop structure
 - While-loop, for-loop with unknown number of iterations
 - Complex loops, unsupported data types, etc.

Function call within loop body

(Some) function calls within loop bodies

```
for (int i = 0; i < N; i++)
    a[i] = foo(b[i]);</pre>
```

Validating vectorization

Generate compiler report about optimizations

```
-qopt-report [=n] Generate report (level [1..6], default 2)
```

```
LOOP BEGIN at gas_dyn2.f90(193,11) inlined into gas_dyn2.f90(4326,31)

remark #15300: LOOP WAS VECTORIZED

remark #15448: unmasked aligned unit stride loads: 1

remark #15450: unmasked unaligned unit stride loads: 1

remark #15475: --- begin vector loop cost summary ---

remark #15476: scalar loop cost: 53

remark #15477: vector loop cost: 14.870

remark #15478: estimated potential speedup: 2.520

remark #15479: lightweight vector operations: 19

remark #15481: heavy-overhead vector operations: 1

remark #15488: --- end vector loop cost summary ---

remark #25456: Number of Array Refs Scalar Replaced In Loop: 1

remark #25015: Estimate of max trip count of loop=4

LOOP END
```

Vectorized loop

```
LOOP BEGIN at gas_dyn2.f90(2346,15)

remark #15344: loop was not vectorized: vector dependence prevents vectorization

remark #15346: vector dependence: assumed OUTPUT dependence between IOLD line 376 and IOLD line 354

remark #25015: Estimate of max trip count of loop=3000001

LOOP END
```

Agenda

- Vector Processing Units
- Profiling
- Optimizing Memory Access
- Auto Vectorization
- Guided Vectorization
- Examples

Intel® compiler directives for vectorization

Directive	Clause	Description
ivdep		Instructs the compiler to ignore assumed vector dependencies.
	always	Force vectorization even when it might be not efficient.
	[un]aligned	Use [un]aligned data movement instructions for all array vector references.
vector	<pre>[non]temporal(var1[,])</pre>	Do or do not generate non-temporal (streaming) stores for the given array variables. On Intel® MIC architecture, generates a cache-line-evict instruction when the store is known to be aligned.
	[no]vecreminder	Do (not) vectorize the remainder loop when the main loop is vectorized.
	[no]mask_readwrite	Enables/disables memory speculation causing the generation of [non-]masked loads and stores within conditions.
simd	<pre>vectorlength(n1[,]) vectorlengthfor(dtype)</pre>	Assume safe vectorization for the given vector length values or data type.
	<pre>private(var1[,]) firstprivate(var1[,]) lastprivate(var1[,])</pre>	Which variables are private to each iteration; <i>firstprivate</i> , initial value is broadcasted to all private instances; <i>lastprivate</i> , last value is copied out from the last instance.
	<pre>linear(var1:step1[,])</pre>	Letting know the compiler that <i>var1</i> is incremented by <i>step1</i> on every iteration of the original loop.
	reduction(oper:var1[,])	Which variables are reduction variables with a given operator.
	[no]assert	Warning or error when vectorization fails.
	[no]vecremainder	Do (not) vectorize the remainder loop when the mail loop is vectorized.

Guided vectorization: disambiguation hints

- Assume function arguments won't be aliased
 - C/C++: Compile with -fargument-noalias
- C99 "restrict" keyword for pointers
 - Compile with -restrict otherwise

Guided vectorization:

- #pragma simd or #pragma ivdep
 - Force loop vectorization ignoring all dependencies
 - □ Additional <u>clauses</u> for specify reductions, etc.

```
__declspec(vector)
void v_add(float c, float a, float b)
{
    c = a + b;
}
...
for (int i = 0; i < N; i++)
    v_add(C[i], A[i], B[i]);</pre>
SIMD function
```

Agenda

- Vector Processing Units
- Profiling
- Optimizing Memory Access
- Auto Vectorization
- Guided Vectorization
- Examples

Matrix Multiplication - Serial

```
void multiply(int msize, int tidx, int numt, TYPE a[][NUM], TYPE
b[][NUM], TYPE c[][NUM], TYPE t[][NUM])
int i,j,k;
   for(i=0; i<msize; i++) {
       for(k=0; k<msize; k++) {
           for(j=0; j<msize; j++) {
              c[i][j] = c[i][j] + a[i][k] * b[k][j];
```

Matrix Multiplication

Matrix Multiplication

 Check dependency analysis shows that it is safe to enforce the vectorization of this loop

Matrix Multiplication - vectorized

```
void multiply(int msize, int tidx, int numt, TYPE a[][NUM], TYPE
b[][NUM], TYPE c[][NUM], TYPE t[][NUM])
int i,j,k;
   for(i=0; i<msize; i++) {
       for(k=0; k<msize; k++) {
            #pragma simd
           for(j=0; j<msize; j++) {
               c[i][j] = c[i][j] + a[i][k] * b[k][j];
```

Matrix Multiplication

Function Call Sites and Loops		pops		Tune	Why No	Vecto	Vectorized Loops					
runction C	all bites and L	.oops		•	vector issues	Jell Ilme	local filme	туре	Vectorization?	Vec	Efficiency	Gain E
+ O [loop in multiply4 at multiply.c:245]						0.460s		Vectorized (B		AVX2	~100%	4.24×
☑ 0 [loop in multiply4 at multiply.c:243]						0.010s						
☑						0.000s		Scalar				
U 5 [loop in _INTERNAL_16_offload_host_cpp_ad92						0.000s		Scalar				
য ্ত [loop in func@0x5b810] য ্ত [loop in func@0x54bf0]					3 Data typ.			Scalar				
☐ [loob	in func@0x54	lDTU]			💡 1 System	. 0.000s	0.000s (Scalar				
Source	Top Down	Loop Analytics	Loop Asse	mbly	P Recommend	dations	Compiler Diag	nostic Details				
File: mult	tiply.c:245 n	nultiply4										
Line									Sc	ource		
230		}	r[T] [] , ,	ואזודום	PIKILII.							
231	}	r										
232	} '											
233	//}											
234	}											
235												
		ly4(int msize, i	int tidx, :	int num	nt, TYPE a[][N	IUM], TYPE	b[][NUM], TYF	PE c[][NUM], T	YPE t[][NUM])			
	{											
238	//loop ve	ctorization with	h praqma om	np simo	l							
239	2-6-2-2-1-											
240 241	int i,j,k	: omp parallel fo		. (2)	//num +lanaade/	60)						
		i <msize; i++)="" td="" {<=""><td>or coccaps</td><td>= (2) /</td><td>/num threads</td><td>607</td><td></td><td></td><td></td><td></td><td></td><td></td></msize;>	or coccaps	= (2) /	/num threads	607						
		in multiply4 at	multiply.	c:242]								
	Scal	ar loop. Not ve	ectorized:	inner	loop was alre	ady vector	ized					
	No l	.oop transformat	ions appli	.ed	1							
243 🖃		k <msize; k++)<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></msize;>										
	(loop	in multiply4 at	multiply.	c:243]								
		ar loop										
		.oop transformat	ions appli	.ed								
244		ma omp simd										
245 🖃		=0; j <msize; j++<="" td=""><td></td><td>0451</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></msize;>		0451								
		in multiply4 at orized AVX; FMA			m+ca -l-+-		d includes tw	14				
		orized AVX; FMA was unrolled b		esses	rloat64 data	type(s) an	a includes FM	IA .				
		in multiply4 at		2451								
		ar peeled loop										
		ar peeted toop was unrolled b		ceuj								
		in multiply4 at		c:2451								
		orized AVX; FMA			[not executed] processe	Float64 dat	a type(s) and	includes FMA			
		oop transformat						,,,				
		in multiply4 at										
		ar remainder lo										
I	N - 2	4	.: 1:									

Example

Particle Binning Problem[1]

- Optimizations:
 - Automatic Vectorization
 - Data Alignment

[1] http://colfaxresearch.com/optimization-techniques-for-the-intel-mic-architecture-part-2-of-3-strip-mining-for-vectorization/

Particle Binning - Serial

```
for (int i = 0; i < inputData.numDataPoints; i++) {
   // Transforming from cylindrical to Cartesian coordinates:
   const FTYPE x = inputData.r[i]*COS(inputData.phi[i]);
   const FTYPE y = inputData.r[i]*SIN(inputData.phi[i]);
   // Calculating the bin numbers for these coordinates:
   const int iX = int((x - xMin)*binsPerUnitX);
   const int iY = int((y - yMin)*binsPerUnitY);
```

Particle Binning - Serial

9/6/2016 36

Particle Binning - Vectorized

```
for (int ii = 0; ii < inputData.numDataPoints; ii += STRIP WIDTH) {
   int iX[STRIP WIDTH];
   int iY[STRIP WIDTH];
   const FTYPE* r = &(inputData.r[ii]);
   const FTYPE* phi = &(inputData.phi[ii]);
   // Vector loop
   for (int c = 0; c < STRIP WIDTH; c++) {
      // Transforming from cylindrical to Cartesian coordinates:
      const FTYPE x = r[c]*COS(phi[c]);
     const FTYPE y = r[c]*SIN(phi[c]);
      // Calculating the bin numbers for these coordinates:
      iX[c] = int((x - xMin)*binsPerUnitX);
      iY[c] = int((y - yMin)*binsPerUnitY);
```

Particle Binning - Vectorized

5 15 0 103 11		- 15-1		Туре	Why No Vectorization?	Vectorized L	.oops		>>	Instruction Set Analy	rsis 🔊	Advanced Docation
Function Call Sites and Loops	Vector Issues	Self Time▼	lotal lime		Why No Vectorization?	Vector ISA	Efficiency	Efficiency Gain Estimate		Traits	Data Num	Advanced Location
☑ 🖔 [loop in main at Binning.cc:68]	② 3 Assumed dependency present	0.880s	0.880s	Scalar	vector dependence pre					FMA; Type Conversi	. Float32 7	Binning.cc:68
☑ (5 [loop in BinParticles_3 at Binning.cc:173]	♀ 1 Potential underutilization of FMA instructions	0.850s	1.420s	Scalar	inner loop was already						9	Binning.cc:173
☑ 💍 [loop in BinParticles_3 at Binning.cc:182]	② 1 Data type conversions present	0.570s	0.570s	Vectorized (Body)		AVX2	~100%	17.64×	8	FMA; Type Conversi	. Float3 9	Binning.cc:182
+ 🖰 [loop in main\$omp\$parallel_for@519 at Binning.cc:520]		0.359s	0.359s	Vectorized+Threaded (Body)		AVX	~100%	9.00x	8	NT-stores	Float32 1	Binning.cc:520
☑ 🖔 [loop in operator new]		0.010s[0.010s[Scalar			10,000				0	
☑ (5 [loop in memcmp]		0.010s[0.010s[Scalar							0	
☑ (5 [loop in main at Binning.cc:591]		0.000s (1.420s	Scalar	exception handling for					Divisions	Float64 8	Binning.cc:591
☑ & [loop in main at Binning.cc:528]	② 1 Ineffective peeled/remainder loop(s) present	n/a	n/a	Remainder Completely Un	vectorization possible b							Contains Co Binning.cc:528

Source Top Do	own Loop Analytics	Loop Assembly	Recommendations	Compiler Diagnostic Details							
ile: Binning.cc:0											
Line					Source			Total Tim	e %	Loop Time %	6 Trait
69 thr 70 71 //	readPrivateBins[i][i] = 0;									
70											
71 //	Loop through all bu	unches of particle	S								
	gma omp for										
73 ⊞ for 74	r (int ii = 0; ii <	inputData.numData	Points; ii += STRIP	WIDTH) {				0.05)s (4.250s	
5 i	int iX[STRIP WIDTH]:										
6 i	int iY[STRIP WIDTH];										
77											
78 c	const FTYPE* r = 8	(inputData.r[ii])									
	const FTYPE* phi = 8	i(inputData.phi[ii	1);					0.01	Js (
80											
	// Vector loop										
82 🖃 f		STRIP_WIDTH; c++)									
	loop in BinParticle:										
			Float32; Int32 data	type(s) and includes FMA; Type	Conversions						
	Loop stmts were re	ordered									
	Transforming from c		tesian coordinates:								
	nst FTYPE x = r[c]*0							80900			
85	const FTYPE y = r[c]*SIN(phi[c]);						3.04	Js 🔳		

Particle Binning - Data Alignment

```
for (int ii = 0; ii < inputData.numDataPoints; ii += STRIP WIDTH) {
   int iX[STRIP WIDTH] attribute ((aligned(64)));
   int iY[STRIP WIDTH] attribute ((aligned(64)));
   const FTYPE* r = &(inputData.r[ii]);
   const FTYPE* phi = &(inputData.phi[ii]);
   // Vector loop
#pragma vector aligned
   for (int c = 0; c < STRIP WIDTH; c++) {
      // Transforming from cylindrical to Cartesian coordinates:
      const FTYPE x = r[c]*COS(phi[c]);
     const FTYPE y = r[c]*SIN(phi[c]);
      // Calculating the bin numbers for these coordinates:
      iX[c] = int((x - xMin)*binsPerUnitX);
      iY[c] = int((y - yMin)*binsPerUnitY);
```

Particle Binning - Data Alignment

Tools Format Fo	ء الده سينسب	tion Call Sites and Loops				Vector Issues	_	C-IFT	Total Time	Type	Why No Vectorization?	Vectorized L	oops		≫	Instruction Set Ana			A	Location
Doop in main at Binning cc.68	unction Call 5	ices and Lo	ops	Vector ISA Efficiency Gain E		Gain Estimate	VL	Traits	Data	. Num.	Advanced	Location								
Doop in pin-Particles, 4 at Enring cc:236 0.370s 1.030s 1	5 [loop in B	inParticles_	4 at Binning.cc:22	26]		♀ 1 Potenti	al underutilization of FMA instructions	0.940s	1.470s	Scalar	inner loop was already							9		Binning.cc:22
Doop in mainterposparallel for@519 at Binning cc. 220 Vectorized+Threaded (Body) AXX 2009 NAX 200	[loop in m	nain at Binn	ing.cc:68]			② 3 Assume	ed dependency present	0.900s	0.900s	Scalar	vector dependence pre					FMA; Type Convers	i Float32	. 7		Binning.cc:68
October Octo	[loop in B	inParticles_	4 at Binning.cc:23	86]		♀ 1 Data ty	pe conversions present	0.530s	0.530s	Vectorized (Body)		AVX2			8	FMA; Type Convers	i Float3	9		Binning.cc:2
Doop in main at Binning.cc536] © Ineffective peeled/remainder loop(s) present N/a N/a Remainder Completely Un © Loop Analytics Loop Assembly Recommendations © Compiler Diagnostic Details tilliming.cc226 timDarticles 4 re Const FIYPE = f(anottotal philipit); Source Total Time % Loop Time % Traits OUTUS Traits Outus % Contains Co Traits Outus % Contains Co Total Time % Loop Time % Traits Outus % Contains Co Total Time % Loop Time % Traits Outus % Contains Co Total Time % Loop Time % Traits Outus % Contains Co Total Time % Loop Time % Traits Outus % Contains Co Total Time % Loop Time % Traits Outus % Contains Co Total Time % Loop Time % Traits Outus % Contains Co Outus % Contains Co Total Time % Loop Time % Traits Outus % Contains Co Outus % Conta	🖔 [loop in m	nain\$omp\$p	oarallel_for@519	at Binning.cc:520]				0.370s	0.370s	Vectorized+Threaded (Body))	AVX	~100%	9.00×	8	NT-stores	Float32	. 1		Binning.cc:5
Contains at Binning.cc.528] © 1 Ineffective pealed/remainder loop(s) present n/a n/a Remainder Completely Un © vectorization possible b Contains Co Binning.cc Top Down Loop Analytics Loop Assembly © Recommendations © Compiler Diagnostic Details ### Binning.cc.226 BinParticles_4 ### Const FIFFE* pn = 4 (InputData phi[ii]): // Vector loop ### Foragana vector alianed ### Contains Co Binning.cc ### Const FIFFE* pn = 4 (InputData phi[ii]): // Vector loop ### Foragana vector alianed ### Contains Co Binning.cc ### Const FIFFE* pn = 4 (InputData phi[ii]): // Vector loop ### Foragana vector alianed ### Contains Co Binning.cc ### Contains Co Bin	5 [loop in m	nemcmp]						0.010s[0.010s[Scalar								0		
Total Time								0.000s (1.470s	Scalar	exception handling for					Divisions	Float64	8		Binning.cc:5
## Binning.cci220 BinParticles_4 Total Time	& [loop in m	nain at Binn	ing.cc:528]			♀ 1 Ineffect	ive peeled/remainder loop(s) present	n/a	n/a	Remainder Completely Un	 vectorization possible b 								Contains Co	Binning.cc:50
const FITPE* phi = @(inputData.phi[ii]); // Vector loop #pragma vector aligned for (int c = 0; c < STRIP_WIDTH; c++) {	THE PERSON NAMED IN	cc:226 Bi	nParticles_4		1				200000000							7.		26	- 1 -	
Source Total Time % Loop Time % Loop Time % Traits	e: Binning	cc:226 Bir	nParticles 4																	
// Vector loop #pragma vector aligned for (int c = 0; c < STRIP_WIDTH; c++) {	ne								Source							To	tal Time	% L	oop Time %	Traits
// Vector loop #praquam vector aligned for (int c = 0; c < STRIP_WIDTH; c++) { Otop in BinParticles_4 at Binning_cc:236 Vectorized AVX; FHA loop processes Float32; Int32 data type(s) and includes FHA; Type Conversions No loop transformations applied // Transforming from cvlindrical to Cartesian coordinates: const FITYPE x = r[c]*COS(phi[c]);		const H	-IYPE* phi = &	inputData.phi[i	11);												0.010s t			
#pragma vector aligned for (int c = 0; c < STRIP_WIDTH; c++) {																				
for (int c = 0, c < STRIP WIDTH; c++) { (loop in BirParticles 4 at Binning, cc:28c) (loop in BirParticles 4) (loop in Bir																				
Options in BirParticles, 4 at Binning, cc:286 Vectorized AVY; FMA loop processes Float32; Int32 data type(s) and includes FHA; Type Conversions No loop transformations applied				STOTO WINTH LL															2 250- 🔳	
Vactorized AVX; FNA loop processes Float32; Int32 data type(s) and includes FNA; Type Conversions No loop transformations applied // Transforming from cylindrical to Cartesian coordinates: const FTYPE x = r[c]*COS(phi_c[); const FTYPE x = r[c]*COS(phi_c[); 2.740s // Calculating the bin numbers for these coordinates: iX[c] = int((x - xMin)* PbinsPerUnitX); iX[c] = int((x - xMin)* PbinsPerUnitX); iX[c] = int((x - xMin)* PbinsPerUnitX); O.310s [FMA; Type		lloop i	n BinParticles	4 at Binning co	2361														3.2303	
// Transforming from cylindrical to Cartesian coordinates: const FTYPE x = r[c]*COS(phi_c[); const FTYPE x = r[c]*COS(phi_c[); 2.740s ■ // Calculating the bin numbers for these coordinates: iX[c] = int((x - xMin)* hbinsPerUnitX); iY[c] = int((y - yMin)* hbinsPerUnitX); iY[c] = int((y - yMin)* hbinsPerUnitX); iX[c] = int(y - yMin)* hbinsPerUnitX);						Int32 data	type(s) and includes FMA; Type	Conversion												
const FTYPE x = r[c]*COS(phi[c]);		No lo	op transformat	ions applied																
const FTYPE y = r[c]*SIN(phi[c]); 2.740s	7	// Transf	orming from cy	vlindrical to Ca	rtesian c	oordinates:														
// Calculating the bin numbers for these coordinates: 2	В																0.090s [
// Calculating the bin numbers for these coordinates: i X[c] = int((x - wMin) **Pains*PerUnitX); i X[c] = int((y - wMin) **Ins*PerUnitX); 0.310s	9	const	: FTYPE y = r[c	:]*SIN(phi[c]);													2.740s	1		
X[c] = int((x - xMin)*binsPerUnitX);	0	SHOWER E	1120 1000 1000	D 7500 1000	733															
0.310s U FMA; Type					se coordi	nates:														
	3 4	T1[C] = 1	rut((A - Awru),	rbinsrerUnitY);													0.3105			FMA; lype

for (int c = 0; c < STRIP WIDTH; c++)
 threadPrivateBins[iX[c]][iY[c]]++;</pre>

Diffusion - Serial

REAL ce, REAL cw, REAL cn, REAL ct, REA								
② [loop in diffusion, baseline at diffusion hase c.104] ② 1.Potential. ② 0.010s [10.450s Scalar ☐ outer loop was not auto-vectorized: consider using SIMD ② [loop in diffusion, baseline at diffusion hase c.105] ② 2.Assume 0.000s [0.080s	Function C	all Sites and Loops▲		• Vector Issues	Self Time	Total Time	Туре	Why No Vectorization?
2 Assume 0.1305 10.370 Scalar vector dependence assumed dependence between lines vector dependence assumed dependence vector depende	☑ (loop	in diffusion_baseline at diffusion_b	pase.c:103]	💡 1 Potential	0.000s (10.530s	Scalar	outer loop was not auto-vectorized: consider using SIMD
### Source Top Down Loop Analytics Loop Assembly	□ (5 [loop	in diffusion baseline at diffusion b	pase.c:104]	♀ 1 Potential	0.010s[10.450s	Scalar	uter loop was not auto-vectorized: consider using SIMD
### Source Top Down Loop Analytics Loop Assembly	gool] 🖰 🗵	in diffusion baseline at diffusion b	pase.c:105]	2 Assume	0.130s[10.370s	Scalar	vector dependence: assumed dependence between lines
### Source Top Down Loop Analytics Loop Assembly Recommendations Compiler Diagnostic Details				2 Assume	0.000s (0.080s (Scalar Versions	
Source Top Down Loop Analytics Loop Assembly P Recommendations Compiler Diagnostic Details Filest diffusion_base.cs107 diffusion_base.cs107 void diffusion baseline (REAL *f1, REAL *f2, int nx, int ny, int nz, REAL ce,	gool] 🖰 🗵	in diffusion baseline at diffusion b	pase.c:107]	2 Assume	10.240s	10.240s	Scalar	vector dependence: assumed dependence between lines
Source Top Down Loop Analytics Loop Assembly P Recommendations Compiler Diagnostic Details Filest diffusion_base.cs107 diffusion_base.cs107 void diffusion baseline (REAL *f1, REAL *f2, int nx, int ny, int nz, REAL ce,			-			_		
File diffusion base.c107 diffusion_baseline Line Source yoid diffusion baseline(REAL *f1, REAL *f2, int nx, int ny, int nz, REAL ce, REAL ce, REAL ce, REAL ct, REA				-		0.060s[
File diffusion base.c107 diffusion_baseline Line Source yoid diffusion baseline(REAL *f1, REAL *f2, int nx, int ny, int nz, REAL ce, REAL ce, REAL ce, REAL ct, REA								
File diffusion base.c107 diffusion_baseline Line Source yoid diffusion baseline(REAL *f1, REAL *f2, int nx, int ny, int nz, REAL ce, REAL ce, REAL ce, REAL ct, REA					76			
void diffusion baseline(REAL *fl, REAL *f2, int nx, int ny, int nz, REAL ce, REAL ce, REAL cr, REAL ct, REAL ce, REAL ct, REAL ct, REAL ce, REAL ct, REAL ct, REAL ct, REAL	Source	Top Down Loop Analytics	Loop Assembly	Recommendation	ıs 📮 Comp	piler Diagnostic	Details	
void diffusion baseline(REAL *f1, REAL *f2, int nx, int ny, int nz, REAL ce, REAL ce, REAL cn, REAL ct, REAL ce, REAL ce, REAL ct, REAL ce, REAL ce, Real ct, Real ce, Real c	File: diffu	sion_base.c:107 diffusion_ba	seline					
diffusion baseline(REAL *f1, REAL *f2, int nx, int ny, int nz, REAL ce, REAL cw, REAL ch, REAL cs, REAL ct, REAL cc, REAL cc, REAL ct, REAL cc, REAL ct, Int count) { int i: int i: for (i = 0; i < count; ++i) { for (int z = 0; z < nz; z++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nx; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+) { for (int x = 0; x < nz; x+) { for (int x = 0; x < nz; x+) { for (int x = 0; x < nz; x+) { for (int x = 0; x < nz; x+) { for (int x = 0; x < nz; x+) { for (int x = 0; x < nz; x+) { for (int x = 0; x < nz; x+	Line						Source	
diffusion baseline(REAL *f1, REAL *f2, int nx, int ny, int nz, REAL ce, REAL cw, REAL ch, REAL cs, REAL ct, REAL cc, REAL cc, REAL ct, REAL cc, REAL ct, Int count) { int i: int i: for (i = 0; i < count; ++i) { for (int z = 0; z < nz; z++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nx; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x++) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+-) { for (int x = 0; x < nz; x+) { for (int x = 0; x < nz; x+) { for (int x = 0; x < nz; x+) { for (int x = 0; x < nz; x+) { for (int x = 0; x < nz; x+) { for (int x = 0; x < nz; x+) { for (int x = 0; x < nz; x+) { for (int x = 0; x < nz; x+	97	eaid.						
REAL ce, REAL cw, REAL cn, REAL ct, REAL ct, REAL cb, REAL cc, REAL dt, Int count) { Int i; If or (i = 0; i < count; ++i) { If or (int z = 0; z < nz; z++) { If or (int v = 0; v < nv; v++) { If or (int x = 0; x < nx; x++) { If or (int x = 0; x < nx; x++) { If op in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied Iloop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied Iloop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied Iloop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied Iloop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied Iloop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied Iloop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines			REAL *f2 int	ny int ny int n	7			
REAL cb, REAL cc, REAL dt, int i; int i; for (i = 0; i < count; ++i) { for (int z = 0; z < nz; z++) { for (int y = 0; y < ny; y++) { //#pragma simd for (int x = 0; x < nx; x++) { [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107]	99							
int count) { int i; int i; int i; int i; if or (i = 0; i < count; ++i) { for (int z = 0; z < nz; z++) { for (int x = 0; x < nz; x++) { //*pragma simd for (int x = 0; x < nz; x++) { (loop in diffusion_baseline at diffusion_base.c:107) Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied (loop in diffusion_baseline at diffusion_base.c:107) Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied (loop in diffusion_baseline at diffusion_base.c:107) Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied (loop in diffusion_baseline at diffusion_base.c:107) Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied (loop in diffusion_baseline at diffusion_base.c:107) Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied (loop in diffusion_baseline at diffusion_base.c:107) Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied (loop in diffusion_baseline at diffusion_base.c:107) Scalar loop. Vector dependence: assumed dependence between lines	100							
# for (i = 0; i < count; ++i) { for (int z = 0; z < nz; z++) { for (int x = 0; x < nx; x++) { //#pragma simd 107 ☐ for (int x = 0; x < nx; x++) { [loop in diffusion_baseline at diffusion_base.c:107]	101		•					
for (int z = 0; z < nz; z++) { for (int z = 0; z < nz; z++) { //#pradma simd for (int x = 0; x < nx; x++) { //#pradma simd for (int x = 0; x < nx; x++) {	102							
for (int y = 0; y < ny; y++) { //#pragma simd for (int x = 0; x < nx; x++) {	103 🛨	for (i = 0; i < count; ++	i) {					
/#pragma simd for (int x = 0; x < nx; x++) { (loop in diffusion_baseline at diffusion_base.c:107	104 ±	for (int z = 0; z < nz;	z++) {					
for (int x = 0; x < nx; x++) {	105 ±		y; y++) {					
<pre>(loop in diffusion_baseline at diffusion_base.c:107) Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied (loop in diffusion_baseline at diffusion_base.c:107) Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied (loop in diffusion_baseline at diffusion_base.c:107) Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied (loop in diffusion_baseline at diffusion_base.c:107) Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied (loop in diffusion_baseline at diffusion_base.c:107) Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied (loop in diffusion_baseline at diffusion_base.c:107) Scalar loop. Vector dependence: assumed dependence between lines</pre>	106							
Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines	107 🗖							
No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines Scalar loop. Vector dependence: assumed dependence between lines								
<pre>①[loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied ①[loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied ①[loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied ②[loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines Scalar loop. Vector dependence: assumed dependence between lines</pre>				sumed dependence be	etween lines	5		
Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied (()[loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied (()[loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied (()[loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines Scalar loop. Vector dependence: assumed dependence between lines								
No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines					1:			
 [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines 				sumea aepenaence be	etween lines	5		
Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied (() [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied (() [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines				ion has s: 1071				
No loop transformations applied ()[loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied ()[loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines					stwaan lina	-		
<pre>①[loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied ②[loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines</pre>				sulled dependence be	erween cine:	>		
Scalar loop. Vector dependence: assumed dependence between lines No loop transformations applied ()[loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines				sion base c:1071				
No loop transformations applied (i) [loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines					etween lines	5		
<pre>①[loop in diffusion_baseline at diffusion_base.c:107] Scalar loop. Vector dependence: assumed dependence between lines</pre>								
Scalar loop. Vector dependence: assumed dependence between lines				sion base.c:107]				
					etween lines	5		
No loop transformations applied		•						

Diffusion - Vectorized

Potential inefficient memory access;

9/6/2016 42

Diffusion - alignment

Pragma omp simd - Interpolation

```
declspec(vector)
int FindPosition(double x) {
  return (int)(log(exp(x*steps)));
  _declspec(vector)
double Interpolate(double x, const point*
vals)
  int ind = FindPosition(x);
  return res;
```

```
int main ( int argc , char argv [] )
{
    ...
    for ( i=0; i <ARRAY_SIZE;++ i ) {
        dst[i] = Interpolate( src[i], vals );
    }
    ...
}</pre>
```

George M. Raskulinec, Evgeny Fiksman "Chapter 22 - SIMD functions via OpenMP", In High Performance Parallelism Pearls, edited by James Reinders and Jim Jeffers, Morgan Kaufmann, Boston, 2015, Pages 171-190, ISBN 9780128038192

Vectorization report - Interpolate

```
Begin optimization report for: Interpolate.. simdsimd3 H2n v1 s1.P(double, const point *)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [ main.c(74,48) ]
Begin optimization report for: Interpolate.._simdsimd3__H2m_v1_s1.P(double, const point *)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [ main.c(74,48) ]
Begin optimization report for: Interpolate.._simdsimd3__L4n_v1_s1.V(double, const point *)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [main.c(74,48)]
remark #15415: vectorization support: gather was generated for the variable pnt: indirect access, 64bit indexed [main.c(78,26)]
remark #15415: vectorization support: gather was generated for the variable pnt: indirect access, 64bit indexed [main.c(78,36)]
Begin optimization report for: Interpolate.. simdsimd3 L4m v1 s1.V(double, const point *)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [main.c(74,48)]
remark #15415: vectorization support: gather was generated for the variable pnt: masked, indirect access, 64bit indexed [main.c(78,26)]
remark #15415: vectorization support: gather was generated for the variable pnt: masked, indirect access, 64bit indexed [main.c(78,36)]
```

9/6/2016 45

Vectorization report - FindPosition

```
egin optimization report for: FindPosition.. simdsimd3 H2n v1.P(double)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [main.c(70,28)]
Begin optimization report for: FindPosition.._simdsimd3__H2m_v1.P(double)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [main.c(70,28)]
Begin optimization report for: FindPosition.._simdsimd3__L4n_v1.V(double)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [main.c(70,28)]
Begin optimization report for: FindPosition.. simdsimd3 L4m v1.V(double)
  Report from: Vector optimizations [vec]
remark #15301: FUNCTION WAS VECTORIZED [main.c(70,28)]
```

Lattice Boltzmann

	-41	A 1,5-1-		Self Time	T-4-1 T	T	Why No	Vecto	rized Loops		>>
Function Call Sites ar	nd Loops.	• Vecto	or Issues	Self Time	Total Time	Type	Vectorization?	Vec	Efficiency	Gai	VL
☑ 🖔 [loop in fCalcInt	eraction_ShanChen_Boundary at lbpFORCE.c	· 2/	Assume	0.130s[0.210s[Scalar	vector depende				
🗵 🍊 [loop in fCalcInt	eraction_ShanChen_Boundary at lbpFORCE.c	· 2/	Assume	0.080s (0.080s (Scalar	vector depende				
🗵 🍊 [loop in fCalcPo	tential_ShanChen at lbpF0RCE.cpp:36]			0.000s (5.742s	Scalar	loop control vari				
	tential_ShanChen at lbpF0RCE.cpp:49]	₽ 1F	Potential	0.000s (5.742s	Threaded (OpenMP)	🔳 inner loop was al				
	nBGK\$omp\$parallel@338 at lbpBGK.cpp:351]	₽ 11	Ineffecti	0.160s (0.160s(Vectorized (Remainder)		AVX2	~67%	2.69×	
	quilibriumF at lbpSUB.cpp:615]		Data t		3.910s	Vectorized (Body;		AVX.	~91%	3.6	
	EquilibriumF at lbpSUB.cpp:615]		Data typ		3.120s	Vectorized (Body)		AVX2			4
□ 🖰 [loop in fGet	EquilibriumF at lbpSUB.cpp:6151	□ 10	Data tvp	0.790s l	0.790s ſ	Remainder				_	_
			50								
Source Top Dov	vn Loop Analytics Loop Assembly 🂡 R	ecommendatio	ons 📮 C	Compiler Diagr	nostic Details						
File: lbpSUB.cpp:6	15 fGetEquilibriumF										
Line					Source						
501 502											
603											
504 int fGetE	EquilibriumF(double *feq, double *v, do	uble rho)									
505 {											
506											
	ulate equilibrium distribution function / suitable for square lattices. not sui										
008 // ont/	/ sultable for square lattices, not sul	table for ind	compress:	ible fluid							
	modv = v[0]*v[0] + v[1]*v[1] + v[2]*v[1]	21.									
511 double		-1.									
512											
	agma loop count(20)										
	r(int i=0; i <lbsy.nq +1;="" i++)<="" td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lbsy.nq>										
	int i=0; i <lbsy.nq; i++)<br="">op in fGetEquilibriumF at lbpSUB.cpp:61</lbsy.nq;>	<u>-1</u>									
	op in foetEquilibriumF at lopsob.cpp:61 calar loop. Not vectorized: vector depe		onte vest	onization							
	o loop transformations applied	endence preve	encs vecc	.0112401011							
	op in fGetEquilibriumF at lbpSUB.cpp:61	.51									
	ectorized AVX; FMA loop processes Float		JInt32 da	ata type(s)	and include	s FMA; Type Conversion	ns; Unpacks				
	o loop transformations applied										
	op_in fGetEquilibriumF at lbpSUB.cpp:61	.5]									
	calar remainder loop										
N	o loop transformations applied										

Lattice Boltzmann

	- 0 - 2					- 15		_	Why No	Vector	rized Loops		×
Function	Call Sites and Lo	oops▲		•	Vector Issues	Self Time	Total Time	Type	Vectorization?	Vec	Efficiency	Gai	VL
ы (] (] пос	p in fCalcPotent	ial_ShanChen at lbp	FORCE.cpp:49]		♀ 1 Potential	0.000s (5.871s	Threaded (OpenMP)	inner loop was al				
+ <u>(</u> 5 [loc	p in fCollisionBG	K\$omp\$parallel@3	38 at lbpBGK.cpp:3	351]	💡 1 Ineffecti	0.290s [0.290s[Vectorized (Remainder)		AVX2	~67%	2.69×	4
- (lo	op in fGetEquil	ibriumF at lbpSUI	B.cpp:614]		💡 1 Data t	4.000s	4.000s	Vectorized (Body)		AVX.	~88%	3.5	4
2 (<u>0</u>	loop in fGetEqui	ilibriumF at lbpSUB.	cpp:614]		💡 1 Data typ	4.000s	4.000s	Vectorized (Body)		AVX2			4
√ [loc	p in fGetEquilibri	iumF at lbpSUB.cpp	:614]		♀ 3 Assume	0.030s (0.030s[Scalar	vector depende				
⊴ <u>(</u> 5 [loc	p in fGetEquilibri	iumF at lbpSUB.cpp	:614]		💡 3 Assume	0.010s[0.010s[Scalar	vector depende				
F 🖰 [loc	p in fGetFracSite	e at lbpGET.cpp:121]		💡 2 Ineffecti	0.210s[0.210s[Vectorized Versions		AVX	~31%	2.50×	4; 8
☑ <u>(</u> [loc	p in fGetOneDire	ecSpeedSite at lbp0	6ET.cpp:241]			0.030s (0.140s[Scalar					
_				0 -									
Source	Top Down	Loop Analytics	Loop Assembly	Recommenda	ations 📮 Comp	oiler Diagnostio	Details						
	SUB.cpp:614 f	fGetEquilibriumF											
Line							Source						
03													
04	int fGetEqui	libriumF(double	*feq, double *:	v. double rho)									
05	{												
05 06	•												
05 06 07	// calcula	te equilibrium o											
605 606 607 608	// calcula	te equilibrium o itable for squa											
505 506 507 508 509	// calcula // only su	itable for squar	re lattices, no	t suitable for									
505 506 507 508 509 510	// calcula // only su		re lattices, no	t suitable for									
505 506 507 508 509 510	// calcula // only su	itable for squar	re lattices, no	t suitable for									
505 506 507 508 509 510 511	// calcula // only su double mod double uv;	itable for squar	re lattices, no	t suitable for									
05 06 07 08 09 10 11 12	// calcula // only su double mod double uv; #pragma	uitable for squar v = v[0]*v[0] + loop count(20)	re lattices, not	t suitable for									
05 06 07 08 09 10 11 12	// calcula // only su double mod double uv; #pragma	itable for squar	re lattices, not v[1]*v[1] + v[: *1; i++)	t suitable for 2]*v[2];									
05 06 07 08 09 10 11 12	// calcula // only su double mod double uv; #pragma for(int	itable for squar v = v[0]*v[0] + loop count(20) i=0; i <lbsy.nq +<="" td=""><td>re lattices, not v[1]*v[1] + v[: +1; i++) umF at lbpSUB.c</td><td>t suitable for 2]*v[2]: pp:614]</td><td>incompressible</td><td>fluid</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lbsy.nq>	re lattices, not v[1]*v[1] + v[: +1; i++) umF at lbpSUB.c	t suitable for 2]*v[2]: pp:614]	incompressible	fluid							
05 06 07 08 09 10 11 12	// calcula // only su double mod double uv; #pragma for(int () [loop i	itable for squar v = v[0]*v[0] + loop count(20) i=0; i <lbsy.nq -<br="">in fGetEquilibri</lbsy.nq>	re lattices, not v[1]*v[1] + v[: +1; i++) umF at lbpSUB.c torized: vector	t suitable for 2]*v[2]: pp:614]	incompressible	fluid							
05 06 07 08 09 10 11 12	// calcula // only su double mod double uv; #pragma for(int () [loop i Scali	itable for squar v = v[0]*v[0] + loop count(20) i=0; i <lbsy.nq =<br="">in fGetEquilibri ar loop. Not vec</lbsy.nq>	re lattices, not v[1]*v[1] + v[: *1; i++) umF at lbpSUB.c torized: vector ons applied	t suitable for 2]*v[2]; pp:614] r dependence pro	incompressible	fluid							
05 06 07 08 09 10 11 12	// calcula // only su double mod double uv; #pragma for(int (loop i	itable for squar v = v[0]*v[0] + loop count(20) i=0; i <lbsy.nq -<br=""> in fGetEquilibria ar loop. Not vecoop transformatic</lbsy.nq>	re lattices, not v[1]*v[1] + v[; +1; i++) umF at lbpSUB.c torized; vector ons applied umF at lbpSUB.c	t suitable for 2]*v[2]; pp:614] r dependence pro	incompressible	fluid							
005 006 007 008 009 010 011 012	// calcula // only su double mod double uv; #pragma for(int) [loop i Scali No le (loop i Scali No le	itable for squar v = v[0]*v[0] + loop count(20) i=0; i <lbsy.nq -<br="">in fGetEquilibri ar loop. Not vec oop transformati ar loop. Not vec oop transformati</lbsy.nq>	v[1]*v[1] + v[2] v[1]*v[1] + v[2] v[1; i++) umF at lbpSUB.c torized: vector umF at lbpSUB.c torized: vector cons applied	t suitable for 2]*v[2]; pp:614] r dependence pro pp:614] r dependence pro	incompressible	fluid							
505 506 507 508 509 510 511 512	// calcula // only su double mod double uv; #pragma for(int	itable for squar v = v[0]*v[0] + loop count(20) i=0; i <lbsy.nq -="" fgetequilibri="" i="" in="" td="" ="" <=""><td>re lattices, not v[1]*v[1] + v[: t]; i++) umF at lbpSUB.c torized: vector cons applied umF at lbpSUB.c torized: vector cons applied umF at lbpSUB.c</td><td>t suitable for 2]*v[2]: pp:614] r dependence pro pp:614] r dependence pro</td><td>incompressible events vectori; events vectori;</td><td>fluid</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></lbsy.nq>	re lattices, not v[1]*v[1] + v[: t]; i++) umF at lbpSUB.c torized: vector cons applied umF at lbpSUB.c torized: vector cons applied umF at lbpSUB.c	t suitable for 2]*v[2]: pp:614] r dependence pro pp:614] r dependence pro	incompressible events vectori; events vectori;	fluid							
505 506 507 508 509 510 511 512	// calcula // only su double mod double uv; #praqma for(int	itable for squar v = v[0]*v[0] + loop count(20) i=0; i <lbsy.nq -="" ar="" avx;="" fgetequilibric="" fma<="" in="" loop.="" not="" orized="" td="" transformation="" vectoop="" =""><td>re lattices, not v[1]*v[1] + v[: *1; i++) umF at lbpSUB.c torized: vector ons applied umF at lbpSUB.c torized: vector ons applied umF at lbpSUB.c</td><td>t suitable for 2]*v[2]: pp:614] r dependence pro pp:614] r dependence pro</td><td>incompressible events vectori; events vectori;</td><td>fluid</td><td>includes FM</td><td>IA; Type Conversions;</td><td>Unpacks</td><td></td><td></td><td></td><td></td></lbsy.nq>	re lattices, not v[1]*v[1] + v[: *1; i++) umF at lbpSUB.c torized: vector ons applied umF at lbpSUB.c torized: vector ons applied umF at lbpSUB.c	t suitable for 2]*v[2]: pp:614] r dependence pro pp:614] r dependence pro	incompressible events vectori; events vectori;	fluid	includes FM	IA; Type Conversions;	Unpacks				
505 506 507 508 509 510 511 512	// calcula // only su double mod double uv; #pragma for(int () [loop i Scali No lo () [loop i Vecto No lo	itable for squar v = v[0]*v[0] + loop count(20) i=0; i< bsy.ng - in f6etEquilibria ar loop. Not vectoop transformatia ar loop. Not vectoop transformatia in f6etEquilibria orized AVX; FMA soop transformatia	re lattices, not v[1]*v[1] + v[2 *1; i++) umF at lbpSUB.c torized: vector ons applied umF at lbpSUB.c torized: vector ons applied umF at lbpSUB.c loop processes ons applied	t suitable for 2]*v[2]; pp:614] r dependence pro pp:614] r dependence pro pp:614] Float64; Int32	incompressible events vectori; events vectori;	fluid	includes FM	IA; Type Conversions;	Unpacks				
605 606 607 608 609 610 611 612	// calcula // only su double mod double uv; #pragma for(int	itable for square v = v[0]*v[0] + loop count(20) i=0; i <lbsy.nq -="" fgeteq<="" fgetequilibria="" for="" in="" of="" oop="" td="" transformatia="" =""><td>v[1]*v[1] + v[2] v[1]*v[1] + v[2] v[1; i++) umF at lbpSUB.c torized: vector ons applied umF at lbpSUB.c torized: vector ons applied umF at lbpSUB.c loop processes ons applied umF at lbpSUB.c</td><td>t suitable for 2]*v[2]; pp:614] r dependence pro pp:614] r dependence pro pp:614] Float64; Int32</td><td>incompressible events vectori; events vectori;</td><td>fluid</td><td>includes FM</td><td>IA; Type Conversions;</td><td>Unpacks </td><td></td><td></td><td></td><td></td></lbsy.nq>	v[1]*v[1] + v[2] v[1]*v[1] + v[2] v[1; i++) umF at lbpSUB.c torized: vector ons applied umF at lbpSUB.c torized: vector ons applied umF at lbpSUB.c loop processes ons applied umF at lbpSUB.c	t suitable for 2]*v[2]; pp:614] r dependence pro pp:614] r dependence pro pp:614] Float64; Int32	incompressible events vectori; events vectori;	fluid	includes FM	IA; Type Conversions;	Unpacks 				
505 506 507 508 509 510 511 512	// calcula // only su double mod double uv; #pragma for(int) [loop i Scal: No le (loop i Vector No le (loop i Scal:	itable for squar v = v[0]*v[0] + loop count(20) i=0; i< bsy.ng - in f6etEquilibria ar loop. Not vectoop transformatia ar loop. Not vectoop transformatia in f6etEquilibria orized AVX; FMA soop transformatia	re lattices, not v[1]*v[1] + v[: t]; i++) umF at lbpSUB.c torized: vector cons applied umF at lbpSUB.c torized: vector cons applied umF at lbpSUB.c loop processes cons applied umF at lbpSUB.c p [not executed	t suitable for 2]*v[2]; pp:614] r dependence pro pp:614] r dependence pro pp:614] Float64; Int32	incompressible events vectori; events vectori;	fluid	includes FM	IA; Type Conversions;	Unpacks				_