Algebra e logica matematica 1 Proff. Adami, Cherubini I prova in itinere

1) Si considerino l'insieme $X=\{a,b,c,d,e\}$ e la relazione R su X rappresentata dal seguente grafo:

- a) Dire di che proprietà gode R La chiusura riflessiva e simmetrica di R è una relazione di equivalenza su X? Qual è la relazione di equivalenza generata da R?
- c) Si consideri su X la relazione ρ così definita:

$$(a,b) \in \rho$$
 se e solo se
$$\begin{cases} a = b, & \text{oppure} \\ (a,b) \in R & \text{e} & (b,a) \in R \end{cases}$$

Verificare che ρ è una relazione di equivalenza su X. Determinare l'insieme quoziente X/ ρ .

d) Verificare che la relazione T su X/ρ definita ponendo

 $(\rho_a, \rho_b) \in T$ se e solo se $(a,b) \in R$ $(\rho_a \text{ indica ovviamente la } \rho\text{-classe avente come rappresentante a})$ è antisimmetrica e transitiva. Verificare che la chiusura riflessiva di T è una relazione d'ordine su X/ρ e determinare se esistono elementi massimali, minimali, massimi e minimi di X/ρ rispetto a tale relazione . X/ρ è un reticolo rispetto a tale relazione?

Facoltativo: Nel punto d) non è richiesto di provare che la definizione di T è ben posta. Provarlo.

- 2) Dimostrare che nel gruppo moltiplicativo di Z_5 (classi di resti modulo 5) l'unica soluzione dell'equazione $x^3 = \{1\}$ è la classe $\{1\}$.
- 3) Sia <G,> un gruppo finito di ordine n e sia h \in G. Verificare che l'insieme <h> delle potenze positive di h è un sottogruppo di <G,>. Provare poi che hⁿ=e (dove e indica l'unità di <G,>) e che il minimo intero positivo r per cui h^r=e è un divisore di n. Verificare che <h> è un sottogruppo normale di <G,> se e solo se se per ogni g \in G esiste un intero positivo m tale che h \cdot g=g \cdot h^m.

TRACCIA DI SOLUZIONE

Esercizio 1)

- a) La R è seriale in quanto da ogni vertice del suo grafo di incidenza esce un arco ed è transitiva come si verifica facilmente o attraverso la matrice di incidenza (in quanto il quadrato della matrice non aggiunge nuovi 1) o attraverso la considerazione delle coppie di archi tali che il primo abbia come vertice d'arrivo il vertice di partenza dell'altro. Tali coppie sono: (c,b), (b,a) in corrispondenza ai quali abbiamo l'arco (c,b); (b,b), (b,a) in corrispondenza ai quali abbiamo l'arco (b,a); (b,a), (a,a) in corrispondenza ai quali abbiamo l'arco (b,a); (b,a), (a,b) in corrispondenza ai quali abbiamo l'arco (b,b); (a,b), (b,a) in corrispondenza ai quali abbiamo l'arco (a,a); (c,a), (a,a) in corrispondenza ai quali abbiamo l'arco (c,a); (c,d), (d,e) in corrispondenza ai quali abbiamo l'arco (c,e); (d,e), (e,e) in corrispondenza ai quali abbiamo l'arco (c,e).

 La chiusura riflessiva e simmetrica di R non è di equivalenza in quanto (a,c) e (c,e) appartengono a tale chiusura, mentre non ci appartiene (a,e). La relazione di equivalenza generata da R è la relazione universale, come si può verificare facendo la chiusura transitiva della chiusura riflessiva e simmetrica di R.
- b) R non gode della proprietà antisimmetrica, pertanto nessuna relazione contenente R può essere antisimmetrica, dunque non esiste una relazione d'ordine contenente R. R è seriale e quindi se si considera la matrice di incidenza di R su ogni riga c'è almeno un 1 , sostituendo degli 1 con degli 0 nella matrice di incidenza di R in modo che su ogni riga rimanga esattamente un 1 si trova la matrice di incidenza di una relazione contenuta in R che è una funzione. Queste sostituzioni di 1 con 0 possono essere fare in 16 modi diversi , si ottengono quindi 16 possibili funzioni contenute in R, una di queste è ad esempio la funzione f: f(a)=a, f(b)=b, f(c)=b, f(d)=e, f(e)=e. Non può esserci una funzione contenuta in R che ammetta inversa sinistra perché per ammettere inversa sinistra una funzione deve essere suriettiva e quindi per ogni x∈X in R dovrebbe esserci una coppia che ha come secondo elemento x, mentre non c'è alcuna coppia con secondo elemento c.
- c) La ρ è riflessiva per definizione. E' simmetrica in quanto nella definizione a,b hanno lo stesso ruolo. Verifichiamo che è transitiva. Siano $(a,b)\in\rho$, $(b,c)\in\rho$. Se a=b o b=c, si ha immediatamente $(a,c)\in\rho$. Supponiamo allora $a\neq b$, $b\neq c$; $(a,b)\in\rho$ implica $(a,b)\in R$, $(b,a)\in R$, $(b,c)\in\rho$ implica $(b,c)\in R$, $(c,b)\in R$, da $(a,b)\in R$ e da $(b,c)\in R$ per la transitività di R otteniamo $(a,c)\in R$, analogamente da $(c,b)\in R$ e da $(b,a)\in R$ per la transitività di R otteniamo $(c,a)\in R$, dunque $(a,c)\in\rho$. Si osserva subito che per come è fatta R, si ha $\rho=\{(a,a),(a,b),(b,a),(b,b),(c,c),(d,d),(e,e)\}$. dunque $X/\rho=\{\rho_a,\,\rho_c,\,\rho_d,\,\rho_e\}$ con $\rho_a=\rho_b=\{a,b\}$, $\rho_c=\{c\},\rho_d=\{d\},\rho_e=\{e\}$.
- d) Si verifica che $T=\{(\rho_a,\rho_a),\,(\rho_c,\rho_a),\,(\rho_c,\rho_e),\,(\rho_e,\rho_e)\}$, è immediato verificare che T è antisimmetrica e transitiva, poiché la chiusura riflessiva di T conserva queste caratteristiche è una relazione d'ordine. Rispetto a tale relazione X/ρ ammette come unico elemento minimale ρ_c , che è anche un minimo e come elementi massimali ρ_a e ρ_e . X/ρ non è un reticolo rispetto a tale relazione in quanto non esiste ad esempio $\sup\{\rho_a,\rho_e\}$
- Fac) Per verificare che T è ben posta dobbiamo dimostrare che la definizione non dipende dai rappresentanti usati per le ρ -classi. L'unica ρ -classe che ha più di un rappresentante è $\rho_a=\rho_b=\{a,b\}$, del resto guardando alla definizione di R si ha subito che (ρ_a,ρ_b) , (ρ_b,ρ_a) , (ρ_b,ρ_b) , (ρ_c,ρ_b) stanno ancora in T, quindi anche scegliendo come rappresentante di ρ_a l'elemento b la definizione di T non cambia.

Esercizio 2)

Si può svolgere molto facilmente considerando le potenze terze dei quattro elementi del gruppo moltiplicativo di Z_5 . Infatti $\{1\}^3 = \{1\}$, $\{2\}^3 = \{3\}$, $\{3\}^3 = \{2\}$, $\{4\}^3 = \{4\}$. Si può anche svolgere osservando che il gruppo moltiplicativo di Z_5 ha ordine 4 quindi per quanto detto nell'esercizio successivo il minimo intero r tale che $a^r = \{1\}$, con a elemento del gruppo moltiplicativo di Z_5 , è un divisore di 4 pertanto è 1,2 o 4. Una soluzione b dell'equazione $x^3 = \{1\}$ è un elemento di Z_5 per cui $b^3 = \{1\}$, quindi il minimo intero r tale che $b^r = \{1\}$ non può essere 4, se fosse 2 avremmo $b^2 = \{1\}$ e $b^3 = \{1\}$, cioè $b^2 \cdot b = \{1\} \cdot b = \{1\}$ cioè $b = \{1\}$, se infine fosse 1 avremmo subito $b = \{1\}$.

Esercizio 3)

Poiché G è finito per dimostrare che <h>è sottogruppo basta provare che il prodotto di due elementi di <h> sta in <h>. Siano $h_1,h_2 \in$ <h> questo significa che esistono due interi positivi s,t tali che $h_1 = h^s$, $h_2 = h^t$, allora $h_1 \cdot h_2 = h^s \cdot h^t = h^{s+t} \in$ <h>, perché s+t>0.

Poiché <h> è un sottogruppo, $e \in <h>$, dunque esiste un intero positivo m tale che $e=h^m$. Sia r il minimo intero positivo tale che $e=h^r$, <h> contiene esattamente r elementi. Infatti h, h^2 ,..., $e=h^r=h^0$ sono tutti elementi distinti in quanto se fosse $h^t=h^v$ con t< v< r si avrebbe $e=h^{v-t}$ con 0< v-t< r, assurdo. Inoltre per ogni i>r si ha $h^i=h^{rq+s}$, con $0\le s< r$, cioè $h^i=e\cdot h^s$, quindi ogni potenza positiva di h coincide con uno degli elementi h, h^2 ,..., $e=h^r=h^0$. Dunque |<h>|=r e per il teorema di Lagrange r divide n, sia allora n=rt, si ha $h^n=h^{rt}=(h^r)^t=e^t=e$.

Ora supponiamo che <h> sia un sottogruppo normale, allora per ogni $g \in G$ e per ogni $h_1 \in <h>$ deve essere $g^{-1}h_1g \in <h>$, in particolare $g^{-1}h_1g \in <h>$ dunque deve esistere un intero positivo m tale che $g^{-1}h_1g = h^m$, da cui moltiplicando a sinistra entrambi i membri per g, si ha $hg = gh^m$. Viceversa supponiamo che per ogni $g \in G$ esista un intero positivo m tale che $hg = gh^m$. Moltiplicando a sinistra per g^{-1} otteniamo $g^{-1}h_1g = h^m$, consideriamo ora un qualsiasi elemento $h_1 \in <h>$, esiste un intero positivo s tale che $h_1 = h^s$, allora $g^{-1}h_1g = g^{-1}h^sg = (g^{-1}hg)(g^{-1}hg)...(g^{-1}hg)$ s volte, da cui $g^{-1}h_1g = (g^{-1}hg)^s = (h^m)^s = h^{ms} \in <h>$, in quanto sm>0.