

WHAT IS CLAIMED IS:

- 1 1. A method of determining a potential at a surface of a sample, the method
2 comprising:
 - 3 immersing the sample in a polar solution so as to form a potential gradient
4 at the surface;
 - 5 positioning a tip of a probe of a scanning probe microscope in the solution
6 a perpendicular distance from the surface; and
 - 7 measuring a potential of the probe.
- 1 2. The method of Claim 1, further comprising the step of providing relative
2 scanning movement between the sample and the probe.
- 1 3. The method of Claim 2 further comprising the step of generating a
2 feedback signal based on the potential.
- 1 4. The method of Claim 3, further comprising the step of moving the tip
2 generally orthogonal to the surface in response to the feedback signal so as to maintain a
3 generally constant separation between the two.
- 1 5. The method of Claim 4, further including the step of recording an X-Y
2 scan position associated with the feedback signal so as to facilitate generation of a
3 topography map of the surface of the sample.
- 1 6. The method of Claim 1, wherein the potential is a potential difference
2 between the probe and a reference.
- 1 7. The method of Claim 6, wherein the reference is the sample.

1 8. The method of Claim 1, further including the step of moving the tip
2 relative to the surface so as to keep the potential difference therebetween generally
3 constant.

1 9. The method of Claim 1, further including the step of controlling a
2 potential associated with the sample.

1 10. The method of Claim 1, further including the step of controlling a current
2 through the sample.

1 11. The method of Claim 1, further including the steps of:
2 moving the tip substantially perpendicularly to the surface; and
3 measuring the potential difference between the tip and the sample during
4 said moving step.

1 12. The method of Claim 11, wherein said moving step is performed at a
2 particular X-Y position of the surface of the sample.

1 13. The method of Claim 1, wherein the sample is one of a conductive
2 material and a semi-conductive material.

1 14. The method of Claim 1, wherein the polar solution is one of an aqueous
2 solution and a non-aqueous solution.

1 15. The method of Claim 1, wherein the polar solution is electrolytic.

1 16. The method of Claim 1, wherein the polar solution is a pure liquid.

1 17. The method of Claim 1, wherein the potential gradient is formed by an
2 electrical double layer.

1 18. The method of Claim 1, further comprising the step of altering the ionic
2 concentration of the polar solution.

1 19. The method of Claim 1, wherein the controlling step includes operating in
2 an open circuit condition.

1 20. The method of Claim 1, further comprising the step of providing relative
2 scanning movement between the sample and the probe while maintaining a separation
3 between the tip and the surface generally constant.

1 21. A method of characterizing a sample surface, the method comprising:
2 determining, with a probe of a scanning probe microscope operating in an
3 SEPM mode, a potential across a potential gradient formed at the sample surface; and
4 characterizing the sample with the probe of the scanning probe microscope
5 operating in an STM mode.

1 22. The method of Claim 21, wherein the potential gradient is formed by an
2 electrical double layer.

1 23. The method of Claim 21, further comprising the step of scanning the
2 sample surface with the probe.

1 24. The method of Claim 21, further comprising the steps of:
2 repeating said determining and characterizing steps for a plurality of
3 points on the sample during said scanning step;
4 generating an SEPM image based on said determining step;
5 generating an SPM image based on said characterizing step; and
6 comparing the SEPM and SPM image.

1 25. The method of Claim 24, wherein said comparing step includes
2 subtracting the STM image from the SEPM image so as to generate a charge distribution
3 image.

1 26. A scanning electrochemical potential microscope (SEPM) comprising:
2 a sample support that accommodates a sample immersed in a polar
3 solution, wherein a potential gradient is formed at a surface of the sample;
4 a probe having a tip including a distal end disposed a perpendicular
5 distance from the surface; and
6 a potential measuring device electrically coupled to said tip that measures
7 a potential across said potential gradient.

1 27. The SEPM of Claim 26, further comprising a scanning actuator that
2 provides relative scanning movement between said probe and said sample.

1 28. The SEPM of Claim 26, wherein said scanning actuator is a piezoelectric
2 actuator.

1 29. The SEPM of Claim 26, further comprising a feedback circuit that
2 generates a feedback signal based on said potential.

1 30. The SEPM of Claim 29, further comprising a Z-actuator that translates the
2 Z-position of said tip in response to said feedback signal.

1 31. The SEPM of Claim 26, further comprising a Z-actuator that translates the
2 Z-position of the tip in a spectroscopic mode.

1 32. The SEPM of Claim 26, further comprising a tuning device that modifies a
2 sample potential at the sample surface.

1 33. The SEPM of Claim 32, wherein said tuning device is a bi-potentiostat.

1 34. The SEPM of Claim 26, wherein the polar solution has an associated ionic
2 concentration, and said potential gradient is formed by an electrical double layer.

1 35. The SEPM of Claim 34, wherein said ionic concentration can be modified
2 to tune the operation of the SEPM.