

Universidade Federal de Pelotas Centro de Desenvolvimento Tecnológico Bacharelado em Ciência da Computação Cálculo Numérico e Computacional

Soluções de Equações Algébricas e Transcedentes- Zeros

Glauco Roberto Munsberg dos Santos Guilherme Porto Britto Cousin Gustavo Lima Magalhões

1. Introdução

1.1 Consideraçãos sobre o trabalho

As considerações impostas pela professora para o desenvolvimento e implementação do trabalho são:

- I. Data da entrega e apresentação: 07/05/2014 Entrega do trabalho escrito e apresentação do programa/pacote;
- II. O trabalho escrito deve apresentar o problema a ser resolvido, métodos utilizados para a solução do problema, resultados numéricos (tabelas), gráficos (se for o caso), (de 7 a 10 páginas), comparação entre os métodos e a documentação do pacote desenvolvido (tipo um manual de utilização);
- III. Na resolução do problema, identificar o sistema de ponto flutuante, a precisão, a exatidão, identificar o critério de parada, calcular a convergência (se for o caso) e os erros nas aproximações da solução;
- IV. Resolver conforme o caso, por todos os métodos;
- V. Construir a tabela com todas as iterações, soluções e erros;
- VI. É livre a escolha da linguagem de programação. A apresentação (do programa/pacote e solução do problema) terá duração de 10 minutos (10 minutos para apresentação e 5 minutos para perguntas ao grupo);
- VII. Enviar para pelo Ava a tarefa/trabalho;
- VIII. Os problemas a serem resolvidos estão indicados pelo número da ordem da chamada do nome do aluno.

1.2 Apresentação do Problema a ser resolvido

O problema dado para solucionar é o quinto de uma série de problemas que podem ser acessados no repositório do programa (item 2.1), segue abaixo sua transcrição:

"A concentração de uma bactéria poluente num lago é descrita por C = 70 e^{-1,5t}+2,5e^{-0,075t}. Encontrar o tempo para que a concentração seja reduzida para nove."

São utilizados os seguintes métodos para a solução do problema proposto acima:

- 1. Método 1
 - Resumo
- 2. Método 2 Resumo

1.3 Solução de Sistema para o Problema

Uma maneira de se obter a solução da equação de Laplace :

$$((\partial^{\wedge} 2)^* u)\%(\partial(x^{\wedge} 2)) + ((\partial^{\wedge} 2)^* u)\%(\partial(y^{\wedge} 2)) = 0$$

Em uma região retangular consiste em se fazer uma discretização que transforma a equação em um problema aproximado, consistindo em uma equação de diferenças cuja solução, em um caso particular, exige a solução do seguinte sistema linear:

	4	-1	0	-1	0	0	1	- 1	\mathbf{X}_{1}			1	100	
I	-1	4	-1	0	-1	0	1		X_2	1		I	0	I
1	0	-1	4	0	0	-1	x	I	X_3	I	=	I	0	I
I	-1	0	0	4	-1	0	1		X_4	1		I	100	I
I	0	-1	0	-1	4	-1	1		X ₅	1		I	0	I
ı	0	0	-1	0	-1	4	1	1	X ₆	1		ı	0	1

1.4 Linguagem escolha e justificativa

A linguagem escolhida para solucionar o problema é a Phyton¹. Por dispor de uma bibliotéca de matemática robusta o suficiente para nos permitir a disolvisão do problema ao mesmo tempo que torna ágil o desenvolvimento do programa que o soluciona.

2. Utilização do Programa

- 2.1 Estruturação e fonte do programa
- 2.2 Como o programa resolve o problema proposto
- 2.3 Como executar

3. Resultados

- 3.1 Resultados obtidos
- 3.2 Interrelação dos resultados obtidos

¹ Python é uma linguagem de programação de alto nível5 , interpretada, imperativa, orientada a objetos, funcional, de tipagem dinâmica e forte. Foi lançada por Guido van Rossum em 1991

3.3 Consideração Finais

4. Bibliografia

Segue abaixo uma série de livros, webpages que foram fundamentais para o desenvolvimento do mesmo:

PILGRIM, Mark. *Dive into Python*. 2 ed. Nova Iorque: Apress, 2004. **CATUNDA**, Marcos. *Python: Guia de consulta rápida*. 1 ed. SãoPaulo:Novatec, 2003