8 décembre 2020 L1 FDV

Partiel de mathématiques (partie logique)

1 Ensembles

Soient A et B deux ensembles. Démontrer l'équivalence :

$$A \cup B = A \cap B \iff A = B$$

Solution: Notons P la proposition de gauche et Q celle de droite :

$$P \stackrel{\text{def}}{\equiv} A \cup B = A \cap B$$
$$Q \stackrel{\text{def}}{\equiv} A = B$$

Pour montrer l'équivalence, montrons que $P \implies Q$ et $Q \implies P$.

- Supposons P vraie. Pour montrer A = B, montrons que $A \subseteq B$ et $B \subseteq A$.
 - Soit $x \in A$. Alors $x \in A \cup B$ par définition d'une union. Or $A \cup B = A \cap B$, donc $x \in A \cap B$. Puisque $A \cap B$ est l'ensemble des éléments qui sont dans A et B, cela implique que $x \in B$. On vient de montrer : $A \subseteq B$.
 - La preuve que $B\subseteq A$ est le symétrique de la preuve précédente en échangeant A et B.

Ainsi A = B. D'où : $P \implies Q$.

— Supposons Q vraie, c'est-à-dire A = B. Alors

$$A \cup B = A \cup A$$

= A
= $A \cap A$
= $A \cap B$ c'est-à-dire P .

 $D'où:Q \implies P.$

2 Récurrence

1. Étudier le signe de $(x+1)(x^2-x-1)$ en fonction de $x \in \mathbb{R}$.

Solution:

x	$-\infty$		-1		$\frac{1-\sqrt{5}}{2}$		$\frac{1+\sqrt{5}}{2}$		$+\infty$
x+1		_	0			+			
$x^2 - x - 1$			+		0	_	0	+	
f(x)		_	0	+	0	_	0	+	

2. Pour $n \in \mathbb{N}$, on définit la factorielle de n, notée n!, par :

$$n! = 1 \times 2 \times \cdots \times (n-1) \times n$$

Montrer par récurrence que pour tout $n \ge 4$, $n! \ge n^2$. On pourra utiliser la question précédente.

Solution: Soit Q(n) le prédicat « $n! \ge n^2$ ». D'abord, l'initialisation : montrons que $4! \ge 4^2$. La factorielle de 4 est égale à 24 et son carré à 16, donc c'est vrai. Maintenant, soit $n \ge 4$, supposons Q(n) vrai et montrons Q(n+1).

$$(n+1)! = n! \cdot (n+1)$$
 par définition
 $\geqslant n^2 \cdot (n+1)$ d'après $Q(n)$

Pour conclure, il suffirait de montrer $n^2(n+1) \ge (n+1)^2$. Or on a les équivalences suivantes :

$$n^{2}(n+1) \geqslant (n+1)^{2}$$

$$\iff n^{2}(n+1) - (n+1)^{2} \geqslant 0$$

$$\iff (n+1)(n^{2} - n - 1) \geqslant 0$$

Cette dernière proposition, d'après la question précédente, est vraie pour tout $n \geqslant \frac{1+\sqrt{5}}{2}$, ce qui est le cas puisque par hypothèse $n \geqslant 4$. On a donc

$$(n+1)! \ge n^2(n+1) \ge (n+1)^2$$

Q(n+1) est donc bien démontré.

3. Soit P(n) le prédicat affirmant qu'« une grille de taille $2^n \times 2^n$ peut être recouverte de tuiles en forme de L de façon à ce que toutes les cases soient recouvertes, excepté celle du coin supérieur gauche. » Voici un exemple d'un tel pavage pour n=3, avec une grille de taille 8×8 :

Montrer par récurrence que P(n) est vrai pour tout $n \in \mathbb{N}^*$.

Solution:

— Initialisation : il faut montrer qu'on peut paver une grille de taille $2^0 \times 2^0 = 1 \times 1$ avec des tuiles en forme de L en laissant la case supérieure gauche vide. Il se trouve que dans ce cas, la case supérieure gauche constitue l'entièreté de la grille, il suffit donc de la laisser vide :

— Hérédité : soit $k \ge 2$, supposons P(k) vraie, c'est-à-dire qu'on peut paver une grille de taille $2^k \times 2^k$ en laissant la case supérieure gauche vide. On doit montrer cela pour une grille de taille $2^{k+1} \times 2^{k+1}$. On peut diviser cette grille en quatre sections, chacune de taille $2^k \times 2^k$:

La taille des sections permet d'utiliser l'hypothèse de récurrence : on sait qu'on peut trouver un pavage de chaque section qui laisse sa case supérieure gauche vide. On peut ensuite tourner de 90° les sections supérieure droite et inférieure gauche afin que trois cases vides se rejoignent au milieu :

Ces trois cases vides forment alors un L, il suffit donc d'y placer une nouvelle tuile. On a alors une grille de taille $2^{k+1} \times 2^{k+1}$ avec seule la case supérieure gauche laissée vide, comme on le souhaitait.

