Logique et Théorie des Ensembles Série 06-B

Automne 2024 Série 06-B Buff Mathias

Exercice 1. Déterminer quelles sont les fonctions injectives, surjectives, et bijections parmi la liste suivante. Justifier vos affirmations.

1.
$$f: \mathbb{R} \setminus \{0\}$$
 $\rightarrow \mathbb{R} \setminus \{0\}$ $\mapsto \frac{1}{x}$

2.
$$g: \mathbb{N} \setminus \{0,1\} \xrightarrow{x} \mathbb{N}$$
 \mapsto le plus petit nombre premier divisant n

3. Pour
$$A\subset E,\ h: \mathcal{P}(E) \longrightarrow \mathcal{P}(A) \atop X \longmapsto X\cap A$$
 (la réponse dépend de A).

- 1. f est injective : Soient $x, x' \in \mathbb{R}$, alors $\frac{1}{x} = \frac{1}{x'} \implies \frac{1}{1/x} = \frac{1}{1/x'} \implies x = x'$. f est surjective : Soit $y \in \mathbb{R}$, alors $x := \frac{1}{y} \in \mathbb{R}$ satisfait y = f(x). f est donc bijective, avec $f^{-1} : y \mapsto \frac{1}{y}$.
- 2. g n'est pas injective, car g(2)=g(4). g n'est pas surjective, car $4 \in \mathbb{N}$ n'est pas premier, donc $\forall x \in \mathbb{N} \setminus \{0,1\}, f(x) \neq 4$.
- 3. Si $A=E: \forall X\subset E,\, X\cap E=X,$ donc h est alors la fonction identité dans $\mathcal{P}(E),$ $h: \begin{matrix} \mathcal{P}(E) & \to \mathcal{P}(E) \\ X & \mapsto X \end{matrix}$

Elle est donc bijective, et $h^{-1} = h$. Si $A \neq E$: Comme $\mathcal{P}(A) \subset \mathcal{P}(E)$, alors $\forall Y \in \mathcal{P}(A), Y \in \mathcal{P}(E)$ et h(Y) = Y, donc h est surjective.

De plus, $\forall X \subset E \setminus A \in \mathcal{P}(E), h(X) = \emptyset$, donc h n'est pas injective.

On en conclut que h est surjective indépendamment de A, mais qu'elle n'est injective que si A=E.

Exercice 2. (Fonctions caractéristiques χ_A).

Soient E un ensemble et $A \subset E$. La fonction caractéristique de A est définie par

$$E \longrightarrow \{0,1\}$$

$$\chi_A: \underset{x}{\longmapsto} \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{sinon.} \end{cases}$$

1. Montrer que deux ensembles sont égaux si et seulement si ils ont la même fonction caractéristique.

2. Que peut-on dire sur A et B si $\chi_A(x) \leq \chi_B(x)$ pour tout $x \in E$?

(ii)
$$\chi_A \leq \chi_B$$
 indique que $\chi_A = 1 \Rightarrow \chi_B = 1$.

Autrement dit si un élément xEE appartient à A (donc $\chi_A = 1$) alors il appartient également à B ($\chi_B = 1$).

On peut donc en déduire que $\chi_A \leq \chi_B \Rightarrow A \in B$.

3. Montrer que $\chi_{A \cap B} = \chi_A \chi_B$, $\chi_{A^C} = 1 - \chi_A$ et $\chi_{A \cup B} = \chi_A + \chi_B - \chi_A \chi_B$.

4. Montrer que les formules de De Morgan pour $(A \cup B)^C$ et $(A \cap B)^C$ en utilisant les fonctions caractéristiques.

Formules de De Norgan:
$$(AUB)^c = A^c DB^c$$
; $(ADB)^c = A^c UB^c$

• $\mathcal{N}(AUD)^c = 1 - \mathcal{N}_{AUB} = 1 - (\mathcal{N}_A + \mathcal{N}_D - \mathcal{N}_A \mathcal{N}_B) = 1 - \mathcal{N}_A - \mathcal{N}_B + \mathcal{N}_A \mathcal{N}_B = (I - \mathcal{N}_A)(I - \mathcal{N}_B) = \mathcal{N}_{A^c} \cdot \mathcal{N}_{B^c} = \mathcal{N}_{(A^c DB^c)}$

• $\mathcal{N}_{(A^c UB^c)} = 1 - \mathcal{N}_{(ADB)} = 1 - \mathcal{N}_A \mathcal{N}_B = 1 - \mathcal{N}_A \mathcal$

Exercice 3. Soient $f: E \to F$ et $g: F \to G$ deux fonctions.

- 1. On suppose que $g \circ f$ est injective. Montrer que f est injective et trouver un exemple pour lequel g ne l'est pas.
- 2. On suppose que $g\circ f$ est surjective. Montrer que g est surjective et trouver un exemple pour lequel f ne l'est pas.
- 3. Montrer que $g \circ f$ bijective n'implique pas que f et g soient bijectives.

Soit
$$f:[0,\infty) \to \mathbb{R}$$
 et $g:\mathbb{R} \to [0,\infty)$

Il peut être mootré que f est injective sans être surjective, g est surjective sans être injective, g est surjective sans être injective, g est surjective sans être injective, g est elles que g est et g est est pas injective, g est ense g est ense g est pas injective, g est ense g est pas injective, g ense g est pas forcément injective, comme mostré dans l'exemple g est pas forcément injective, comme mostré dans l'exemple g est surjective, g est surjective, g est surjective.

Preuve per contraposée: Si g n'est pas surjective alors il existe g est ell que pour tout g est g est g en en en entré en surjective, g est g es

Exercice 4. Montrer que si f est une application de E dans F et $(E_i)_{i \in I}$ est une famille d'ensembles inclus dans E,

$$f\Big(\bigcup_{i\in I} E_i\Big) = \bigcup_{i\in I} f(E_i)$$

De plus, montrer que si f est injective,

$$f\Big(\bigcap_{i\in I} E_i\Big) = \bigcap_{i\in I} f(E_i)$$

Que peut-on dire si f n'est pas injective?

$$f\left(\bigcup_{i \in I} E_i\right) = f(\{x \in E \mid \exists i \in I, x \in E_i\})$$

$$= \{f(x) \in F \mid \exists i \in I, x \in E_i\}$$

$$= \{f(x) \in F \mid \exists i \in I, f(x) \in f(E_i)\}$$

$$= \bigcup_{i \in I} f(E_i)$$

Sans considération particulière de f: Soit $x \in \bigcap_{i \in I} E_i$, alors $\forall i \in I, x \in E_i$ donc $f(x) \in f(E_i)$, et par conséquent $f(x) \in \bigcap_{i \in I} f(E_i)$.

Ainsi,
$$f\left(\bigcap_{i\in I} E_i\right) \subset \bigcap_{i\in I} f(E_i)$$
 (1)

De plus, supposons f injective : Soit $y:=f(x)\in\bigcap_{i\in I}f(E_i)$, alors $\forall i\in I,y\in f(E_i)$ et comme f injective $x\in E_i$, alors $x\in\bigcap_{i\in I}E_i$ et $f(x) \in f(\bigcap_{i \in I} E_i)$.

Ainsi,
$$\bigcap_{i \in I} f(E_i) \subset f\left(\bigcap_{i \in I} E_i\right)$$
 (2)

Par (1) et (2), on conclut que si f est injective, $f\left(\bigcap_{i\in I} E_i\right) = \bigcap_{i\in I} f(E_i)$.