2021 Spring MAS 365 Chapter 1: Mathematical Preliminaries and Error Analysis

Donghwan Kim

KAIST

- 1.1 Review of Calculus
- 2 1.2 Round-off Errors and Computer Arithmetic
- 3 1.3 Algorithms and Convergence

Limits and Continuity

Definition 1

A function f defined on a set X of real numbers has the **limit** L at x_0 , i.e.,

$$\lim_{x \to x_0} f(x) = L,$$

if, for any $\epsilon > 0$, there exists $\delta > 0$ such that

$$|f(x) - L| < \epsilon$$
, whenever $x \in X$ and $0 < |x - x_0| < \delta$

Chapter 1 1 / 3

Limits and Continuity (cont'd)

Definition 2

Let f be a function defined on a set X of reals numbers and $x_0 \in X$. Then f is **continuous** at x_0 if

$$\lim_{x \to x_0} f(x) = f(x_0).$$

The function f is **continuous on the set** X if it is continuous at each number in X.

Chapter 1 2 / 3:

Limits and Continuity (cont'd)

Definition 3

Let $\{x_n\}_{n=1}^{\infty}$ be an infinite sequence of real numbers. This has the **limit** x (i.e., converges to x), i.e.,

$$\lim_{n \to \infty} x_n = x,$$

if, for any $\epsilon > 0$, there exists a positive integer $N(\epsilon)$ such that $|x_n - x| < \epsilon$ whenever $n > N(\epsilon)$.

Differentiability

Definition 4

Let f be a function defined an open interval containing x_0 . The function f is differentiable at x_0 if the derivative of f at x_0 :

$$f'(x_0) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0}$$

exists. A function that has a derivative at each number in a set X is differentiable on X.

Q. What should we do if computing a derivative (or integration) is expensive?

Chapter 1 4 / :

Differentiability (cont'd)

- Rolle's Theorem
- Mean Value Theorem
- Extreme Value Theorem
- Intermediate Value Theorem

Chapter 1 5 / 3

Taylor Polynomials and Series

Theorem 1

Suppose $f \in C^n[a,b]$, that $f^{(n+1)}$ exists on [a,b], and $x_0 \in [a,b]$. For every $x \in [a, b]$, there exists a number $\xi(x)$ between x_0 and x with

$$f(x) = P_n(x) + R_n(x),$$

where

$$P_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k \quad \text{and} \quad R_n(x) = \frac{f^{(n+1)}(\xi(x))}{(n+1)!} (x - x_0)^{n+1}.$$

• $P_n(x)$ is called the *n*th Taylor polynomial for f about x_0 , and $R_n(x)$ is called the **remainder term** (or **truncation error**) associated with $P_n(x)$.

Two Objectives of Numerical Analysis

- 1. Find an approximation to the solution of a given problem.
- 2. Determine a bound for the accuracy of the approximation.

Chapter 1 7 / 31

Taylor Polynomials and Series (cont'd)

Ex. Let
$$f(x) = \cos x$$
 and $x_0 = 0$.

- Determine the second Taylor Polynomial for f about x_0 .
- Determine the third Taylor Polynomial for f about x_0 .

Chapter 1 8 /

Taylor Polynomials and Series (cont'd)

Ex. Let
$$f(x) = \cos x$$
 and $x_0 = 0$.

• Use the third Taylor polynomial to approximate $\int_0^{0.1} \cos x dx$.

Chapter 1 9 / 3

Round-off Errors and Computer Arithmetic

• (Finite-digit) computer arithmetic

$$2+2=4$$
 and $(\sqrt{3})^2=3$?

 Round-off error: the error that is produced when a calculator or computer is used to perform real number calculations

Chapter 1 10 / 31

Binary Machine Numbers

 Double-precision floating-point format in IEEE 754-1985 (called binary64 in IEEE 754-2008) uses the following 64-bit (binary digit) representation for a real number.

$$s c_{10} \ldots c_0 f_{51} \ldots f_0$$

Symbol	Bits	Description
S	1	sign $(0 \text{ if positive}, 1 \text{ if negative})$
С	11	characteristic (exponent with base 2)
f	52	mantissa (fraction)

• This gives a floating-point number of the form

$$(-1)^s 2^{c-1023} (1+f),$$

where
$$c=\sum_{k=0}^{10}c_k2^k$$
 and $f=\sum_{k=0}^{51}\frac{f_k}{2^{52-k}}$.

Chapter 1 11 / 31

Binary Machine Numbers (cont'd)

Ex. Consider the machine number

 $0\ 10000000010\ 1011000\cdots 0$

Chapter 1 12 / 31

Binary Machine Numbers (cont'd)

- Exponents range form -1022 to 1023, instead of -1023 to 1024, since -1023 and 1024 are reserved for special numbers (*e.g.*, NaN, infinity, zero).
- Underflow: set to zero when a magnitude is less than

$$2^{-1022}(1+0) \approx 0.22251 \times 10^{-307}.$$

• **Overflow**: typically causes the computations to stop when a magnitude is greater than

$$2^{1023}(2 - 2^{-52}) \approx 0.17977 \times 10^{309}.$$

Chapter 1 13 / 31

Decimal Machine Numbers

 For simplicity, assume that machine numbers are represented in the normalized decimal floating-point form

$$\pm 0.d_1d_2...d_k \times 10^n$$
, $1 \le d_1 \le 9$, and $0 \le d_i \le 9$,

for each $i = 2, \ldots, k$.

Consider any positive real number in a form

$$y = 0.d_1d_2...d_kd_{k+1}d_{k+2}... \times 10^n$$

The floating-point form of y, denoted fl(y), is obtained by terminating the mantissa of y at k decimal digits; **chopping** and **rounding**.

Ex.
$$\pi = 0.3141592... \times 10^1$$

Chapter 1 14 / 31

Decimal Machine Numbers (cont'd)

Definition 5

Suppose that \hat{p} is an approximation to p. The actual error is $\hat{p}-p$, the absolute error is $|\hat{p}-p|$, and the relative error is $\frac{|\hat{p}-p|}{|p|}$, provided that $p \neq 0$.

• Relative error of the floating-point representation fl(y)

$$\frac{|fl(y) - y|}{|y|}$$

Ex.
$$p = 0.300 \times 10^1 \text{ and } \hat{p} = 0.3100 \times 10^1$$

Chapter 1 15 / 31

Decimal Machine Numbers (cont'd)

Definition 6

The number \hat{p} is said to approximate p to t significant digits (or figures) if t is the largest nonnegative integer for which

$$\frac{|\hat{p} - p|}{|p|} \le 5 \times 10^{-t}$$

Ex. Determine $\max |\hat{p} - p|$ for p = 0.1 and 100, when \hat{p} agrees with p to four signifant digits.

Chapter 1 16 / 31

Finite-Digit Arithmetic

• The arithmetic performed in a computer is not exact. A simplified finite-digit arithmetic is given by

$$x \oplus y = fl(fl(x) + fl(y)), \quad x \otimes y = fl(fl(x) \times fl(y))$$

Ex. Let $x=\frac{5}{7}=0.\overline{714285}$ and $y=\frac{1}{3}$. Use five-digit chopping for x+y and report the relative error.

17 / 31

Finite-Digit Arithmetic (cont'd)

Ex. Let $x=\frac{5}{7}=0.\overline{714285}$ and u=0.714251. Determine the five-digit chopping value of $x\ominus u$ and report the relative error.

Chapter 1 18 / 31

Common Error-producing Calculations

1. Subtraction of nearly equal numbers: consider two nearly equal numbers x and y such that x > y and have the k-digit representations

$$fl(x) = 0.d_1d_2 \dots d_p\alpha_{p+1}\alpha_{p+2} \dots \alpha_k \times 10^n$$

$$fl(y) = 0.d_1d_2 \dots d_p\beta_{p+1}\beta_{p+2} \dots \beta_k \times 10^n$$

The floating-point form of x-y is

$$fl(fl(x) - fl(y)) = ?$$

Chapter 1 19 / 31

Common Error-producing Calculations (cont'd)

2. Division by a number with small magnitude: consider z and $\epsilon=10^{-n}$ such that $fl(z)=z+\delta$

$$\frac{z}{\epsilon} \approx fl\left(\frac{fl(z)}{fl(\epsilon)}\right) = (z+\delta) \times 10^n$$

Chapter 1 20 / 31

Common Error-producing Calculations (cont'd)

Ex. The roots of $ax^2 + bx + c = 0$, when $a \neq 0$, are

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a}$$
 and $x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}$.

Chapter 1 21 / 31

Nested Arithmetic

 Accuracy loss due to round-off error can be reduced by rearranging calculations, e.g.,

$$f(x) = x^3 - 6.1x^2 + 3.2x + 1.5 = ((x - 6.1)x + 3.2)x + 1.5$$

Chapter 1 22 / 31

Algorithm and Pseudocode

- An algorithm is a procedure that describes, in an unambiguous manner, a finite sequence of steps to be performed in a specified order.
- We use a **pseudocode** to describe the algorithms.

For
$$i = 1, 2, \dots, n$$

Set $x_i = a + i * h$

While
$$i < N$$
 do Steps $3-6$

If ... then

 The steps in the algorithms follow the rules of structured program construction.

Chapter 1 23 / 31

Algorithm and Pseudocode (cont'd)

- INPUT: N, x_1, x_2, \dots, x_n .
- OUTPUT: $SUM = \sum_{i=1}^{N} x_i$
- Step 1: Set SUM = 0.
- Step 2: For $i=1,2,\ldots,N$ do $\operatorname{set}\,SUM=SUM+x_i.$
- Step 3: OUTPUT (SUM); STOP.

1 24 / 31

Characterizing Algorithms

- A variety of approximation problems will be studied throughout the course. We thus need a variety of conditions to categorize their accuracy.
- Stability: An algorithm is said to be **stable** if small changes in the initial data produce correspondingly small changes in the final results; otherwise it is said to be **unstable**. An algorithm is called **conditionally stable**, if it is stable only for certain choices of initial data.

Chapter 1 25 / 31

Characterizing Algorithms (cont'd)

Definition 7

Suppose that E_0 denotes an error introduced at some stage in the calculations and E_n represents the magnitude of the error after n subsequent operations.

- If $E_n \approx CnE_0$ for a constant C, then the growth of error is said to be linear.
- If $E_n \approx C^n E_0$ of some C > 1, then the growth of error is called exponential.
- Linear growth of error is usually unavoidable, and such behavior is considered stable.

Chapter 1 26 / 3

Characterizing Algorithms (cont'd)

Ex. For any constants c_1 and c_2 ,

$$p_n = c_1 \left(\frac{1}{3}\right)^n + c_2 3^n$$

is a solution to the recursive equation

$$p_n = \frac{10}{3}p_{n-1} - p_{n-2}$$
, for $n = 2, 3, ...$

• Consider five-digit rounding arithmetic.

Chapter 1 27 / 31

Rates of Convergence

Definition 8

Suppose $\{\beta_n\}_{n=1}^{\infty}$ is a sequence known to converge to zero, and $\{\alpha_n\}_{n=1}^{\infty}$ converges to number α . If a positive constant K exists with

$$|\alpha_n - \alpha| \le K|\beta_n|$$
, for large n ,

then we say that $\{\alpha_n\}_{n=1}^{\infty}$ converges to α with rate, or order, of convergence $O(\beta_n)$. (read "big oh of β_n ".) It is indicated by writing $\alpha_n = \alpha + O(\beta_n)$.

• In most of cases, we use

$$\beta_n = \frac{1}{n^p}$$

for some number p > 0.

- ullet We are generally interested in the largest value of p.
- $o(\beta_n)$ (read "small oh of β_n "), when "<" is used instead of " \leq ".

28 / 31

Rates of Convergence (cont'd)

Ex. Determine rate of convergence for the sequence $\{\alpha_n\}_{n=1}^\infty$, where $\alpha_n=\frac{3n^2+n+1}{n^2}$ and $\lim_{n\to\infty}\alpha_n=3$.

Chapter 1 29 / 3

Rates of Convergence (cont'd)

 \bullet $O(\cdot)$ notation for describing the rate at which functions converge.

Definition 9

Suppose that $\lim_{h\to 0}G(h)=0$ and $\lim_{h\to 0}F(h)=L$. If a positive constant K exists with

$$|F(h) - L| \le K|G(h)|$$
, for sufficiently small h,

then we write F(h) = L + O(G(h)).

- We usually consider $G(h) = h^p$, where p > 0.
- We are generally interested in the largest value of p.

Chapter 1 30 / 31

Rates of Convergence (cont'd)

Ex. Use the third Taylor polynomial about 0 to show that $\cos h + \frac{1}{2}h^2 = 1 + O(h^4)$.

Chapter 1 31 / 31