Planning Maintenance Activities on a Network of Bridges (An Overview)

Zachary Hamida Postdoc James-A. Goulet Professeur

Polytechnique Montréal, Canada Département des génies civil, géologique et des mines

April 30, 2021

Partenaire: MTQ

$\mathsf{Outline}$

Context & Objectives

Planning Interventions

Reinforcement Learning for Planning

Challenges

2/18

•oo Definitions

Interventions & Infrastructures

Infrastructure Health:

Polytechnique Montréal

Interventions & Infrastructures

Infrastructure Health: the capacity of the components to function and serve their roles.

Interventions & Infrastructures

Infrastructure Health: the capacity of the components to function and serve their roles.

Intervention:

Interventions & Infrastructures

Definitions

Infrastructure Health: the capacity of the components to function and serve their roles.

Intervention: maintenance activity that helps sustain or improve the health state of infrastructures.

3 / 18

Interventions & Infrastructures

Definitions

Infrastructure Health: the capacity of the components to function and serve their roles.

Intervention: maintenance activity that helps sustain or improve the health state of infrastructures.

Types of Interventions:

3 / 18

Interventions & Infrastructures

Infrastructure Health: the capacity of the components to function and serve their roles.

Intervention: maintenance activity that helps sustain or improve the health state of infrastructures.

Types of Interventions:

Preventative maintenance.

Interventions & Infrastructures

Infrastructure Health: the capacity of the components to function and serve their roles.

Intervention: maintenance activity that helps sustain or improve the health state of infrastructures.

Types of Interventions:

- ▶ Preventative maintenance.
- ▶ Routine maintenance.

3 / 18

Interventions & Infrastructures

Infrastructure Health: the capacity of the components to function and serve their roles.

Intervention: maintenance activity that helps sustain or improve the health state of infrastructures.

Types of Interventions:

- ▶ Preventative maintenance.
- ► Routine maintenance.
- Repairs.

Interventions & Infrastructures

Infrastructure Health: the capacity of the components to function and serve their roles.

Intervention: maintenance activity that helps sustain or improve the health state of infrastructures.

Types of Interventions:

- Preventative maintenance.
- Routine maintenance.
- Repairs.
- Major activities (i.e., Replacement).

Interventions & Infrastructures

Infrastructure Health: the capacity of the components to function and serve their roles.

Intervention: maintenance activity that helps sustain or improve the health state of infrastructures.

Types of Interventions:

- ▶ Preventative maintenance.
- ► Routine maintenance.
- Repairs.
- ► Major activities (i.e., Replacement).

Same element

Source: MTQ, Manual of Inspection

3 / 18

Objectives

Context & Objectives

▶ Interventions planning under budgetary constraints over time

5 / 18

Objectives

Context & Objectives

- ▶ Interventions planning under budgetary constraints over time

Objectives

Context & Objectives

- ▶ Interventions planning under budgetary constraints over time

Cost Breakdown

Cost Breakdown

Cost Breakdown

Cost Breakdown

Maintenance Costs:

▶ Intervention cost.

- ▶ Intervention cost.
 - > Structural element type.

- ▶ Intervention cost.
 - ▷ Structural element type.
 - ▷ Intervention category.

Cost Breakdown

- ▶ Intervention cost.
 - ▷ Structural element type.
 - ▷ Intervention category.
 - Quantity of the element.

- ▶ Intervention cost.
 - > Structural element type.

 - Quantity of the element.
- Maintenance of traffic and contingency costs.

- ▶ Intervention cost.
 - > Structural element type.

 - Quantity of the element.
- Maintenance of traffic and contingency costs.
 - \triangleright From 0 to 3.5 \times 10⁶.

$$\begin{cases} \mathsf{Time} \ \tau \\ \mathsf{Type} \ h \end{cases}$$

$$\left\{ \mathsf{Time} \; au \ \mathsf{Type} \; h \right\}$$

$$\begin{cases} \mathsf{Time} \ \tau \\ \mathsf{Type} \ h \end{cases}$$

$$\begin{cases} \mathsf{Time} \ \tau \\ \mathsf{Type} \ h \end{cases}$$

Types of Decisions


```
\begin{cases} \mathsf{Time} \ \tau \\ \mathsf{Type} \ h \end{cases} \begin{cases} \mathsf{Time} \ \tau_b \\ \mathsf{Number} \ \mathsf{E} \end{cases}
```

Types of Decisions

Decisions Hierarchy

7 / 18

> Agent: decision maker.

- > Agent: decision maker.
- > Environment: deterioration process.

- > Agent: decision maker.
- > Environment: deterioration process.
- > Actions: type of intervention.

- Agent: decision maker.
- Environment: deterioration process.
- Actions: type of intervention.
- achieving the goal...etc.

Definitions

- > Agent: decision maker.
- Actions: type of intervention.

The goal of an agent is to maximize the total rewards in an episode

Element-Level Problem Formulation

Goal: extend the life span for e for t = 120 years \equiv **Episode**.

Environment and Actions

► Environment: SSM/SSM-KR model.

Environment and Actions

► Environment: SSM/SSM-KR model.

 \triangleright State : $\{\mu_{t|T}, \dot{\mu}_{t|T}, \#$ previous interventions $\}$.

► Actions.

Formulation

Environment and Actions

► Environment: SSM/SSM-KR model.

 \triangleright State : $\{\mu_{t|T}, \dot{\mu}_{t|T}, \# \text{ previous interventions}\}.$

- ► Actions.
 - \triangleright 0: do nothing.

Environment and Actions

► Environment: SSM/SSM-KR model.

 \triangleright State : $\{\mu_{t|T}, \dot{\mu}_{t|T}, \# \text{ previous interventions}\}.$

- Actions.
 - \triangleright 0: do nothing.
 - ▷ 1: preventive maintenance.

Formulation

Environment and Actions

► Environment: SSM/SSM-KR model.

 \triangleright State : $\{\mu_{t|T}, \dot{\mu}_{t|T}, \# \text{ previous interventions}\}.$

- Actions.
 - \triangleright 0: do nothing.
 - ▷ 1: preventive maintenance.
 - ▷ 2: routine maintenance.

Environment and Actions

► Environment: SSM/SSM-KR model.

 \triangleright State : $\{\mu_{t|T}, \dot{\mu}_{t|T}, \# \text{ previous interventions}\}.$

- Actions.
 - \triangleright 0: do nothing.
 - ▷ 1: preventive maintenance.
 - ▷ 2: routine maintenance.
 - ⇒ 3: repairs.

0000000000

Reward Function

► Rewards & penalties.

► Rewards & penalties.

$$ho$$
 $\mu_{t(terminal)} \in [75, 100] \rightarrow r_1$.

► Rewards & penalties.

- ho $\mu_{t(terminal)} \in [75, 100] \rightarrow r_1$.
- ho $\mu_{t(terminal)} \in [50, 75] \rightarrow r_2$.

► Rewards & penalties.

- ho $\mu_{t(terminal)} \in [75, 100] \rightarrow r_1$.
- $\triangleright \mu_{t(terminal)} \in [50, 75] \rightarrow r_2.$
- $\triangleright \mu_{t(\text{terminal})} \in [25, 50] \rightarrow r_3.$

► Rewards & penalties.

- ho $\mu_{t(terminal)} \in [75, 100] \rightarrow r_1$.
- $\triangleright \mu_{t(terminal)} \in [50, 75] \rightarrow r_2.$
- $\triangleright \mu_{t(terminal)} \in [25, 50] \rightarrow r_3.$
- \triangleright Intervention costs $\rightarrow r_4, r_5, r_6$.

Formulation

Rewards & penalties.

$$ho$$
 $\mu_{t(terminal)} \in [75, 100] \rightarrow r_1$.

$$\triangleright \mu_{t(terminal)} \in [50, 75] \rightarrow r_2.$$

$$\triangleright \mu_{t(\text{terminal})} \in [25, 50] \rightarrow r_3.$$

$$\triangleright$$
 Intervention costs $\rightarrow r_4, r_5, r_6$.

$$\triangleright$$
 Bad interventions (early termination) \rightarrow r_7 .

time

0000000000

Formulation

Rewards & penalties.

$$ho$$
 $\mu_{t(terminal)} \in [75, 100] \rightarrow r_1$.

$$\triangleright \mu_{t(\text{terminal})} \in [50, 75] \rightarrow r_2.$$

$$\triangleright \mu_{t(\text{terminal})} \in [25, 50] \rightarrow r_3.$$

$$\triangleright$$
 Intervention costs $\rightarrow r_4, r_5, r_6$.

Bad interventions (early termination) $\rightarrow r_7$.

time

► Rewards & penalties.

$$\triangleright \mu_{t(terminal)} \in [75, 100] \rightarrow r_1.$$

$$\triangleright \mu_{t(terminal)} \in [50, 75] \rightarrow r_2.$$

$$\triangleright \mu_{t(terminal)} \in [25, 50] \rightarrow r_3.$$

- \triangleright Intervention costs $\rightarrow r_4, r_5, r_6$.
- \triangleright Bad interventions (early termination) \rightarrow r_7 .

► Rewards & penalties.

$$\triangleright \mu_{t(terminal)} \in [75, 100] \rightarrow r_1.$$

$$\triangleright \mu_{t(\text{terminal})} \in [50, 75] \rightarrow r_2.$$

$$\triangleright \mu_{t(\text{terminal})} \in [25, 50] \rightarrow r_3.$$

- \triangleright Intervention costs $\rightarrow r_4, r_5, r_6$.
- \triangleright Bad interventions (early termination) \rightarrow r_7 .

► Rewards & penalties.

$$\triangleright \mu_{t(terminal)} \in [75, 100] \rightarrow r_1.$$

$$\triangleright \mu_{t(terminal)} \in [50, 75] \rightarrow r_2.$$

$$\triangleright \mu_{t(\text{terminal})} \in [25, 50] \rightarrow r_3.$$

- \triangleright Intervention costs $\rightarrow r_4, r_5, r_6$.
- \triangleright Bad interventions (early termination) \rightarrow r_7 .

- ► Rewards & penalties.
 - $\triangleright \mu_{t(terminal)} \in [75, 100] \rightarrow r_1.$
 - $\triangleright \mu_{t(\text{terminal})} \in [50, 75] \rightarrow r_2.$
 - $\triangleright \mu_{t(\text{terminal})} \in [25, 50] \rightarrow r_3.$
 - \triangleright Intervention costs $\rightarrow r_4, r_5, r_6$.
 - \triangleright Bad interventions (early termination) $\rightarrow r_7$.

time

- Rewards & penalties.
 - ho $\mu_{t(terminal)} \in [75, 100] \rightarrow r_1$.
 - $\triangleright \mu_{t(\text{terminal})} \in [50, 75] \rightarrow r_2.$
 - $\triangleright \mu_{t(\text{terminal})} \in [25, 50] \rightarrow r_3.$
 - \triangleright Intervention effectiveness $\rightarrow \delta_1/r_4, \delta_2/r_5, \delta_3/r_6$.
 - Bad interventions (early termination) $\rightarrow r_7$.

0000000000

time

Formulation

- Rewards & penalties.
 - $\triangleright \mu_{t(terminal)} \in [75, 100] \rightarrow r_1.$
 - $\triangleright \mu_{t(terminal)} \in [50, 75] \rightarrow r_2.$
 - $\triangleright \mu_{t(terminal)} \in [25, 50] \rightarrow r_3.$
 - \triangleright Intervention effectiveness $\rightarrow \delta_1/r_4, \delta_2/r_5, \delta_3/r_6$.
 - Bad interventions (early termination) $\rightarrow r_7$.

Convergence is either slow or unsatisfactory

time

Reward Shaping

Reward Shaping: a technique to incorporate knowledge about the agent's goal.

Reward Shaping

Reward Shaping: a technique to incorporate knowledge about the agent's goal.

Reward Shaping

Reward Shaping: a technique to incorporate knowledge about the agent's goal.

The total rewards:

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$$

The Q-value:

$$Q(s_t, a_t) = \mathbb{E}[R_t | s_t, a_t]$$

The total rewards:

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$$

The Q-value:

$$Q(s_t, a_t) = \mathbb{E}[R_t | s_t, a_t]$$

$$Q(s, a) = r(s, a, s') + \gamma \max_{a'} Q(s', a')$$

The total rewards:

$$R_t = r_t + \gamma r_{t+1} + \gamma^2 r_{t+2} + \dots$$

000000000

The Q-value:

$$Q(s_t, a_t) = \mathbb{E}[R_t|s_t, a_t]$$

$$Q(s,a) = Q(s,a) + \alpha[r(s,a,s') + \gamma \max_{a'} Q(s',a') - Q(s,a)]$$

Algorithm 1 Q Learning for estimating π^*

1: Initialize $Q(s,a), \alpha, \gamma$

Reinforcement Learning for Planning

000000000

Q-Learning

Algorithm 2 Q Learning for estimating π^*

- 1: Initialize $Q(s, a), \alpha, \gamma$
- 2: for episode = 1 to N do

Reinforcement Learning for Planning

000000000

Q-Learning

Algorithm 3 Q Learning for estimating π^*

- 1: Initialize $Q(s, a), \alpha, \gamma$
- 2: **for** episode = 1 to N **do**
- Initialize s 3:

Reinforcement Learning for Planning

000000000

Q-Learning

Algorithm 4 Q Learning for estimating π^*

- 1: Initialize $Q(s, a), \alpha, \gamma$
- **for** episode = 1 to N **do**
- Initialize s 3:
- 4: for step = 1 to terminal-state do

Algorithm 5 Q Learning for estimating π^*

- 1: Initialize $Q(s, a), \alpha, \gamma$
- **for** episode = 1 to N **do**
- Initialize s 3:
- 4: for step = 1 to terminal-state do
- $a \leftarrow \text{select-action}(Q, s, \epsilon)$ 5:

000000000

Q-Learning

Algorithm 6 Q Learning for estimating π^*

- 1: Initialize $Q(s, a), \alpha, \gamma$
- **for** episode = 1 to N **do**
- Initialize s 3:
- 4: for step = 1 to terminal-state do
- $a \leftarrow \text{select-action}(Q, s, \epsilon)$ 5:
- $s', r \leftarrow \operatorname{agent-environment}(a)$ 6:

000000000

Q-Learning

Algorithm 7 Q Learning for estimating π^*

- 1: Initialize $Q(s, a), \alpha, \gamma$
- **for** episode = 1 to N **do**
- Initialize s 3:
- 4: for step = 1 to terminal-state do
- $a \leftarrow \text{select-action}(Q, s, \epsilon)$ 5:
- $s', r \leftarrow \text{agent-environment}(a)$ 6:

7:
$$Q(s,a) = Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$

000000000

Q-Learning

Algorithm 8 Q Learning for estimating π^*

- 1: Initialize $Q(s, a), \alpha, \gamma$
- 2: **for** episode = 1 to N **do**
- Initialize s 3:
- 4: for step = 1 to terminal-state do
- $a \leftarrow \text{select-action}(Q, s, \epsilon)$ 5:
- $s', r \leftarrow \text{agent-environment}(a)$ 6:
- $Q(s, a) = Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') Q(s, a) \right]$ 7:
- $s \leftarrow s'$ 8:

000000000

Q-Learning

Algorithm 9 Q Learning for estimating π^*

- 1: Initialize $Q(s, a), \alpha, \gamma$
- 2: **for** episode = 1 to N **do**
- Initialize s 3:
- 4: for step = 1 to terminal-state do
- $a \leftarrow \text{select-action}(Q, s, \epsilon)$ 5:
- $s', r \leftarrow \text{agent-environment}(a)$ 6:

7:
$$Q(s,a) = Q(s,a) + \alpha \left[r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right]$$

- $s \leftarrow s'$
- end for 9:
- 10: end for

000000000

$$Q(s, a) = Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]$$

000000000

$$Q(s, a) = Q(s, a) + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right]$$

High computational demand.

000000000

000000000

$$\mathcal{L} = \|\underbrace{r + \gamma \max_{a'} Q(s', a')}_{\mathsf{Target}} - \underbrace{Q(s, a)}_{\mathsf{Predicted}}\|^2$$

Algorithm 10 Deep Q Learning with Experience Replay for estimating π^*

1: Initialize Memory Size, Batch Size, ϵ, γ

Algorithm 11 Deep Q Learning with Experience Replay for estimating π^*

- 1: Initialize Memory Size, Batch Size, ϵ, γ
- 2: for episode = 1 to N do

Algorithm 12 Deep Q Learning with Experience Replay for estimating π^*

- 1: Initialize Memory Size, Batch Size, ϵ, γ
- 2: **for** episode = 1 to N **do**
- 3: Initialize *s*

Q-Learning

Algorithm 13 Deep Q Learning with Experience Replay for estimating π^*

- 1: Initialize Memory Size, Batch Size, ϵ, γ
- 2: **for** episode = 1 to N **do**
- 3: Initialize *s*
- 4: **for** step = 1 to terminal-state **do**

Algorithm 14 Deep Q Learning with Experience Replay for estimating π^*

- 1: Initialize Memory Size, Batch Size, ϵ, γ
- **for** episode = 1 to N **do**
- Initialize s 3:
- for step = 1 to terminal-state do 4:
- $a \leftarrow \text{select-action}(Q, s, \epsilon)$ 5:

Algorithm 15 Deep Q Learning with Experience Replay for estimating π^*

- 1: Initialize Memory Size, Batch Size, ϵ, γ
- 2: **for** episode = 1 to N **do**
- 3: Initialize *s*
- 4: **for** step = 1 to terminal-state **do**
- 5: $a \leftarrow \text{select-action}(Q, s, \epsilon)$
- 6: $s', r, \text{terminal} \leftarrow \text{agent-environment}(a)$

Q-Learning

Algorithm 16 Deep Q Learning with Experience Replay for estimating π^*

- 1: Initialize Memory Size, Batch Size, ϵ, γ
- 2: **for** episode = 1 to N **do**
- 3: Initialize *s*
- 4: **for** step = 1 to terminal-state **do**
- 5: $a \leftarrow \text{select-action}(Q, s, \epsilon)$
- 6: $s', r, \text{terminal} \leftarrow \text{agent-environment}(a)$
- 7: Memory $\leftarrow s, a, r, s'$, terminal

Q-Learning

Algorithm 17 Deep Q Learning with Experience Replay for estimating π^*

- 1: Initialize Memory Size, Batch Size, ϵ, γ 2: **for** *episode* = 1 to *N* **do**
- 3: Initialize *s*
- 4: **for** step = 1 to terminal-state **do**
- 5: $a \leftarrow \text{select-action}(Q, s, \epsilon)$
- 6: $s', r, \text{terminal} \leftarrow \text{agent-environment}(a)$
- 7: Memory $\leftarrow s, a, r, s'$, terminal
- 8: Sample n experience from Memory

Algorithm 18 Deep Q Learning with Experience Replay for estimating π^*

Reinforcement Learning for Planning

000000000

- 1: Initialize Memory Size, Batch Size, ϵ, γ
- **for** episode = 1 to N **do**
- Initialize s 3:
- 4: for step = 1 to terminal-state do
- $a \leftarrow \text{select-action}(Q, s, \epsilon)$ 5:
- $s', r, \text{terminal} \leftarrow \text{agent-environment}(a)$ 6:
- Memory $\leftarrow s, a, r, s'$, terminal 7:
- Sample *n* experience from Memory 8:

9:
$$y = \begin{cases} r, \text{ if terminal,} \\ r + \gamma \max_{a'} Q(s', a'; \theta') \end{cases}$$

Minimize $||y - Q(s, a; \theta)||^2$ 10:

Algorithm 19 Deep Q Learning with Experience Replay for estimating π^*

Reinforcement Learning for Planning

000000000

```
1: Initialize Memory Size, Batch Size, \epsilon, \gamma
     for episode = 1 to N do
          Initialize s
 3:
 4:
          for step = 1 to terminal-state do
               a \leftarrow \text{select-action}(Q, s, \epsilon)
 5:
               s', r, \text{terminal} \leftarrow \text{agent-environment}(a)
 6:
               Memory \leftarrow s, a, r, s', terminal
 7:
               Sample n experience from Memory
 8:
               y = \begin{cases} r, & \text{if terminal,} \\ r + \gamma \max_{s'} Q(s', a'; \theta') \end{cases}
 9:
               Minimize ||y - Q(s, a; \theta)||^2
10:
          end for
11:
12: end for
```

Preliminary Results

Time [Year]

Preliminary Results

Challenges

► Convergence to sub-optimal / unrealstic solutions.

- ► Convergence to sub-optimal / unrealstic solutions.
- ► Account for need-based interventions.

- ► Convergence to sub-optimal / unrealstic solutions.
- ► Account for need-based interventions.
- ► Type of intervention is not determined.

- ► Convergence to sub-optimal / unrealstic solutions.
- ► Account for need-based interventions.
- ► Type of intervention is not determined.

- ► Convergence to sub-optimal / unrealstic solutions.
- ► Account for need-based interventions.
- ▶ Type of intervention is not determined.
 - ▷ Intervention costs vary significantly within each intervention category.
- ▶ Determine the total long-term budget per structural element / bridge.

Challenges

- ► Convergence to sub-optimal / unrealstic solutions.
- Account for need-based interventions.
- ▶ Type of intervention is not determined.
 - > Intervention costs vary significantly within each intervention category.
- ▶ Determine the total long-term budget per structural element / bridge.
- ▶ Online deterioration analyses in the environment.

- Convergence to sub-optimal / unrealstic solutions.
- Account for need-based interventions.
- ▶ Type of intervention is not determined.
 - ▷ Intervention costs vary significantly within each intervention category.
- Determine the total long-term budget per structural element / bridge.
- Online deterioration analyses in the environment.
- Network-level analyses.