Federated Learning: Collaborative ML without centralized training data

Sara Khalifa and Abdelwahed Khamis

May 03, 2023

Outline

Recap on Machine Learning / Deep Learning

Centralised Machine Learning

On device inference / Distributed Learning

Federated Learning

Implementing Federated Learning

Recap on ML/DL

• The goal of machine learning/deep learning is to find a model, which produces a desired output given a particular input.

Example task	Given input	Desired output 8	
Image classification	8		
Next-word-prediction	Looking forward to your ?	reply	

- Deep Learning shows great performance on complex tasks:
 - Computer Vision
 - Natural Language Processing
 - Robotics and Internet of Things

Recap on ML/DL

• It learns and represents complex patterns in the input data.

```
model = ML()

optimizer = SGD(model)

for e in epochs:

for pos in range(batch_number):

input, target = get_batch(dataset, pos)

pred = model(input)

loss = Loss(pred, target) # compare results

loss.backward() # calculate updates to model

optimizer.step() # apply model
```


Common ML/DL pipeline

Centralized Machine Learning

Issues:

- Slow training
- Network Latency
- Limited scalability
- Privacy and security

Testing/Evaluation

On-device inference / Distributed ML

Federated Learning (FL)

- In 2016, Google introduced the concept of FL, enabling collaborative ML without centralized training data.
- FL does not share local data but ML models, offering applications in diverse domains such as healthcare, finance, mobile and IoT applications.

FL Advantage:

- Smarter models
- Reduced latency
- Less communication cost
- Privacy preserving

3. New models are combined into a global model

3. New models are combined into a global model

Global Model

Averaging subset of users allows to train model faster Algorithm can tolerate drop of participants

User's data distribution and capabilities

• Non-IID — every user has different data;

• Unbalanced – some users have more data than others;

• Massively distributed – millions of smartphones;

 Limited communication – mobile devices are frequently offline or on slow or expensive connections.

Model Aggregation

How to aggregate the models after they trained locally?

- 1. FedSGD (Federated Stochastic Gradient Descent): FedSGD is a simple federated learning algorithm that aggregates the local model updates using plain averaging. It does not perform any regularization and assumes that the data distribution across the devices is identically and independently distributed (IID).
- 2. FedAvg (Federated Averaging): FedAvg is a popular federated learning algorithm that uses a weighted averaging scheme to aggregate local model updates based on the number of examples on each device. FedAvg can handle non-IID data distributions and is more robust to noisy updates than FedSGD.
- 3. FedAvgM (Federated Averaging with Momentum): FedAvgM is an extension of FedAvg that adds momentum to the local and global updates to improve convergence. FedAvgM can improve the convergence speed and performance compared to FedAvg, especially for non-IID data distributions.
- 4. FedProx (Federated Proximal): FedProx is a federated learning algorithm that adds a proximal term to the local optimization objective to regularize the model and improve its robustness to noisy updates.

FedAvg Algorithm

```
1: Server:
 2: Initialize global model \theta_0
 3: for each communication round t = 1, 2, ... T do
 4:
         Select m = C \times K clients, where C \in (0, 1)
         for each Client k = 1, 2, ...m in parallel do
 6:
              Download \theta_t to Client k
              Do Client k update and receive \theta^k
         end for
         Update global model \theta_t \leftarrow \sum_{k=1}^m \frac{n_k}{n} \theta^k
 9:
10: end for
11:
12: Client k update:
13: Replace local model \theta^k \leftarrow \theta_t
14: for local epoch from 1 to E do
15:
         for batch b \in (1, B) do
              \theta^k \leftarrow \theta^k - \eta \nabla L_k(\theta^k, b)
16:
17:
         end for
18: end for
19: Return \theta^k
```

T is the total number of communication rounds,
C is the participation ratio assuming that not all local clients participate in each round of model updates
K is the total numbers of clients;
M = C*k is the number of participating clients
nk is the local data size, n is the total number of sample pairs
B is the size of mini-batches,
E is the total local training epochs,
n is the learning rate.
L is the loss function
k is the client index

FL Models based on data partitioning

FL Models based on data partitioning

(a) Horizontal Federated Learning (HFL)

FL Models based on data partitioning

Samples

Name	Sex	Weight
Person A	Male	78
Person B	Female	64
Person C	Male	89
Person D	Female	52
Person E	Male	36
Person F	Female	60

Features

FL Models based on data partitioning

FL Models based on number and nature of clients

Cross-device federated learning

millions of intermittently available client devices

Cross-silo federated learning

small number of clients
(institutions, data silos),
 high availability

FL Models based on number and nature of clients

Cross-device federated learning

clients cannot be indexed
directly (i.e., no use of
 client identifiers)

Cross-silo federated learning

each client has an identity or
name that allows the system to
 access it specifically

FL Models based on number and nature of clients

Cross-device federated learning

Server can only access a (possibly biased) random sample of clients on each round.

Cross-silo federated learning

Most clients participate in every round.

Clients can run algorithms that maintain local state across rounds.

Challenges in Federated learning

expensive communication

· massive, slow networks

privacy concerns

user privacy constraints

statistical heterogeneity

· unbalanced, non-IID data

systems heterogeneity

· variable hardware, connectivity, etc

Implementing FL

A reference list of popular federated learning repositories.

Name	Repository	License/Stars	Focus
TF Federated	https://github.com/tensorflow/federated	<u>Apache 2.0</u> / 1.7k	R&D
FedJAX	https://github.com/google/fedjax	<u>Apache 2.0</u> / 130	Research
Flower	https://github.com/adap/flower	<u>Apache 2.0</u> / 529	Usability
FedML	https://github.com/FedML-AI/FedML	<u>Apache 2.0</u> / 839	Research
PySyft	https://github.com/openmined/pysyft	<u>Apache 2.0</u> / 7.7k	Privacy / R&D
IBM federated-learning- lib	https://github.com/IBM/federated-learning- lib	<u>Custom</u> / 244	Enterprise

Practical Implementation using Flower and Pytorch frameworks.

https://github.com/abdelwahed/FL tutorial

Thank you

Dr Abdelwahed Khamis

Dr. Sara Khalifa

Distributed Sensing Systems Research Group Cyber Physical Systems Research Program Data61, CSIRO

