Atelier 2 : Les classes et les Objets

Contexte

Le but de ce TP est de créer une classe point qui représente les différentes caractéristiques d'un point dans le plan, ainsi que ses méthodes.

Enoncé

La classe **Point** est caractérisée par :

- Les attributs suivants privés :
 - Nom de type chaîne caractères
 - **Abscisse** de type entier
 - Ordonnée de type entier
- Et les méthodes suivantes :
 - 3 Constructeurs avec 3, 2 et 1 paramètres.
 - La méthode **void Affiche** () qui permet d'afficher les coordonnées d'un point sous le format suivant :

nom (abscisse, ordonnée).

- La méthode **void TranslHoriz** (**int a**) qui permet de translater le point horizontalement.
- La méthode **void TranslVert** (**int a**) qui permet de translater le point Verticalement.
- La méthode **void Translation (int a, int b)** qui permet de translater le point dans les deux sens.

MHAFDHI Houda 7 | P a g e

- La méthode **boolean Coïncide** (**Point p**) qui permet de tester si 2 points coïncident.
- La méthode **String getNom**() qui retourne le nom du point
- La méthode int getAbscisse() qui retourne l'abscisse du point
- La méthode int getOrdonnées() qui retourne l'ordonnée du point
- La méthode **void** setNom(String ch) qui modifie le nom du point
- La méthode void setAbscisse(int a) qui modifie l'abscisse du point
- La méthode void setOrdonnée(int a) qui modifie l'ordonnée du point

Travail demandé

- 1- Ecrire en Java la classe Point.
- 2- Ecrire et exécuter la classe **Test Point** qui permet de tester la classe Point et qui contient le code suivant :

```
public class Test_Point
{
    public static void main (String [] args)
    {
        point p1;
        p1 = new point (3, 5);
        point p2 = new point ("a");
        point p3 = new point ("b", 3,5);
        System.out.println("\n -----\n");
        System.out.println("les points créés sont :");

        p1.Affiche ();
        p2.Affiche ();
```

MHAFDHI Houda 8 | P a g e

```
p3.Affiche ();
System.out.println("\n -----\n");
if (p1.Coincide(p3) == true)
     System.out.println("Les 2 points p1 et p3 coïncident");
else
     System.out.println("Les 2 points ne coïncident pas");
System.out.println("\n ----\n");
System.out.println("translation des point ");
p1.TranslHoriz (4);
p2.TranslVert (3);
p3.Translation (5,2);
pl.Affiche ();
p2.Affiche ();
p3.Affiche ();
System.out.println("\n -----\n");
System.out.println("modification des attributs des points") ;
p1.setNom("SRI21");
p2.setAbscisse(25);
p3.setOrdonnée(50);
pl.Affiche ();
p2.Affiche ();
p3.Affiche ();
System.out.println("\n -----\n");
System.out.println("utilisation des méthodes get");
String x=p1.getNom();
int y=p1.getAbscisse();
int z=p1.getOrdonnée();
System.out.println(" le nom du point p1 est : " + x);
System.out.println(" son abscisse est : " + y);
```

MHAFDHI Houda 9 | P a g e

```
System.out.println(" son ordonnée est : " + z);
}
```

Question:

```
Ajouter les instructions suivantes :
p3.Nom="Test" ;
p3.Abscisse=2 ;
p3.Ordonnée=4 ;
```

Qu'est-ce que vous remarquez ?

MHAFDHI Houda 10 | P a g e