15: INFERENCE FOR SLR

Larsen & Marx 11.3 **Prof Amanda Luby**

1 Properties of MLEs for Simple Linear Regression

Additional Ascumptions:

1.
$$\hat{\beta}_0$$
 and $\hat{\beta}_1$ are normal RV's

2.
$$\hat{\beta}_0$$
 and $\hat{\beta}_1$ are unbiased

3.
$$V(\beta_1) = \frac{\sigma}{\sum (x_i - \bar{X})^2}$$

3.
$$V(\hat{\beta}_1) = \frac{\sigma^2}{\sum (x_i - \bar{X})^2}$$

4. $V(\hat{\beta}_0) = \frac{\sigma^2 \sum x_i^2}{n \sum (x_i - \bar{X})^2} = \sigma^2 \left[\frac{1}{n} + \frac{\bar{x}^2}{\sum (x_i - \bar{x})^2} \right]$
5. $\hat{\beta}_1, \bar{Y}$ and $\hat{\sigma}^2$ are mutually independent

6. $\frac{n\hat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-2}$ 7. $S^2 = \frac{n}{n-2}\hat{\sigma}^2$ is an unbiased estimator for σ^2

Proof: $(\hat{\beta}_1 \text{ is a normal RV})$

$$\hat{\beta}_{1} = \frac{N \sum X_{1} Y_{1} - \left(\sum X_{1}\right) \left(\sum Y_{1}\right)^{2}}{N \left(\sum X_{1}^{2}\right) - \left(\sum X_{1}^{2}\right)^{2}}$$

$$= \frac{\sum X_{1} Y_{1} - \frac{1}{N} \sum X_{1} \left(\sum Y_{1}\right)^{2}}{\left(\sum X_{1}^{2}\right) - \frac{1}{N} \left(\sum X_{1}^{2}\right)^{2}}$$

$$=\frac{Z(x_1-x)Y_1}{(2x_1^2)-nx^2}$$

Everything but the Y's are constant Y: ~ N(BO+B,X1, 02)

Proof:
$$(V(\hat{\beta}_1)) = \underbrace{\sigma^2}_{\text{[K; -K)}^1}$$

$$= \frac{\sum |X_{i}(-\overline{X})Y_{i}|}{|Z_{K_{i}}(-\overline{X})Y_{i}|} \longrightarrow \frac{1}{\alpha} \cdot \sum b_{i}Y_{i} \longrightarrow \frac{1}{bunch} \text{ of Normal LV's}$$

$$\Rightarrow \hat{b}_{i} \text{ is also normally}$$

$$\Rightarrow \hat{b}_{i} \text{ is also normal$$

$$=\frac{1}{(\overline{z}(x_i-\overline{x})^2)^2} \overline{z}(x_i)$$

$$= \frac{\sum (X_i - \overline{X})^2 0^{-2}}{\left(\overline{\sum} (X_i - \overline{X})^2\right)^2}$$

$$= \underbrace{\sum (K_i - \overline{X})^2}$$

2 Inference for Simple Linear Regression

2.1 Inference for
$$\beta_1$$

Test statistic for β_1 Let $(x_1,Y_1),(x_2,Y_2),...,(x_n,Y_n)$ be a set of points satisfying $E(Y|X=x)=\beta_0+\beta_1 x$ and let $S^2=\frac{1}{n-2}\sum\limits_{S/\sqrt{\sum(x_i-\bar{x})^2}}(Y_i-(\hat{\beta}_0+\hat{\beta}_1x_i))^2$. Then, $T=\frac{\hat{\beta}_1-\beta_1}{S/\sqrt{\sum(x_i-\bar{x})^2}} ~~ \text{Then}.$

Proof:
$$\xi(\hat{\beta}_i) = \xi$$
, $Var(\hat{\beta}_i) = \frac{\sigma^2}{\xi(x_i - x_i)^2}$ $\hat{\beta}_i$ is a normal RU

Let
$$Z = \frac{\hat{\beta}_i - \hat{\beta}_i}{\int Vor(\hat{\beta}_i)} \sim N(0,1) = \frac{\hat{\beta}_i - \hat{\beta}_i}{0 / \sqrt{\sum (X_i - \overline{X})^2}}$$

$$\frac{n\hat{\sigma}^2}{\sigma^2} = \frac{(n-2)\hat{S}^2}{\sigma^3} \sim \chi^2_{n-2}$$

$$\frac{2}{\sqrt{\chi^{2}/\sqrt{2}}} = \frac{2}{\sqrt{(N-2)} \sum_{i=1}^{2} \sqrt{(N-2)^{2}}} = \frac{\hat{\beta}_{i} - \beta_{i}}{\sqrt{\sqrt{\chi(\chi_{i} - \bar{\chi})^{2}}}} = \frac{\hat{\beta}_{i} - \beta_{i}}{\sqrt{\chi(\chi_{i} - \bar{\chi})^{2}}} = \frac{\hat{\beta}_{i} - \hat{\beta}_{i}}{\sqrt{\chi(\chi_{i} - \bar$$

Note: Hypothesis tests based on T are GLRTs!

2.2 Inference for σ^2

$$\frac{(n-2)(2)}{\sigma^{2}} \sim \chi^{2}_{n-2} \implies P(\chi^{2}_{al_{2},n-2} \leq \frac{(n-2)(2)}{\sigma^{2}} \leq \chi^{2}_{1-al_{2},n-2}) = 1-\alpha$$
(If for σ^{-2} :
$$-reciprocal / lip sign - reciprocal / lip sign - multiply by $(n-2)(2)$

$$- multiply by $(n-2)(2)$

$$\frac{(n-2)(2)}{\chi^{2}_{1-\frac{1}{2},n-2}} = \frac{(n-2)(2)}{\chi^{2}_{al_{2},n-2}} = 1-\alpha$$

$$\frac{(n-2)(2)}{\chi^{2}_{1-\frac{1}{2},n-2}} = 1-\alpha$$$$$$

$$\chi_{5} = \frac{1}{(n-5)} \frac{c_{5}}{c_{5}} \sim \chi_{3}^{2} - \frac{1}{2}$$
Habatheric feet:
$$\chi_{5} = \frac{1}{(n-5)} \frac{c_{5}}{c_{5}} \sim \chi_{3}^{2} - \frac{1}{2}$$

Point estimate: $\hat{\gamma}_i = \hat{\beta}_0 + \hat{\beta}_i x_i$ want to find rampling dist. of $\hat{\gamma}_i$ (normal distibution)

 $E(\hat{y}_i) = E(\hat{\beta}_0 + \hat{\beta}_i, X_i) = E(\hat{\beta}_i) + E(\hat{\beta}_i) X_i = \hat{\beta}_0 + \hat{\beta}_i X_i \rightarrow \text{unioi and estimator}$ for $E(Y|X_i)$

$$Vow[\hat{Y}_{i}] = Vow[\hat{\beta}_{0} + \hat{\beta}_{1} X_{i}] = Vow[\overline{Y} - \hat{\beta}_{1} \overline{X} + \hat{\beta}_{1} X_{i}]$$

$$= Vow[\overline{Y}] + \hat{\beta}_{1} [X_{i} - \overline{X}]^{2} Vow[\hat{\beta}_{1}]$$

$$= \frac{1}{N} p^{2} + \frac{(X_{i} - \overline{X})^{2}}{Z(X_{i} - \overline{X})^{2}}$$

$$= \sigma^{2} \left[\frac{1}{N} + \frac{(X_{i} - \overline{X})^{2}}{Z(X_{i} - \overline{X})^{2}} \right]$$

2.4 Inference for new Y_i 's

Let (x^*, y^*) be a hypothetical new observation (y^*) is independent of Y_i 's) Point estimate for y^* : $\hat{Y} = \hat{\beta}_0 + \hat{\beta}_i x^*$

Let $E = \hat{Y}^- Y^* \subset \text{han far away is prediction from the new observation?}$ $E(\hat{Y}^* - Y^*) = E(\hat{Y}^*) - E(Y^*) = \beta_0 + \beta_1 X^* - (\beta_0 + \beta_1 X^*) = 0 \subset \text{unbiased}$ $VOY(\hat{Y}^* - Y^*) = VOY(\hat{Y}^*) + VOY(Y^*)$ $= \sigma^2 \left[\frac{1}{n} + \frac{(X^* - \overline{X})^2}{\overline{Z}(X - \overline{X})^2} \right] + \sigma^2$ $= \sigma^2 \left[\frac{1}{n} + \frac{(X^* - \overline{X})^2}{\overline{Z}(X - \overline{X})^2} \right]$

