KHẢO SÁT SỰ BIẾN THIÊN VÀ VỄ ĐỔ THỊ HÀM SỐ

1. Sơ đồ khảo sát hàm số

Cho hàm số y = f(x).

- Tìm tập xác định của hàm số.
- * Sự biến thiên
 - · Chiều biến thiên.
 - i. Tính y'.
 - Tìm các nghiệm của phương trình y' = 0 và các điểm tại đó y' không xác định.
 - iii. Xét dấu y' và suy ra các khoảng biến thiên của hàm số.
 - Tìm cực trị (nếu có).
 - Tìm các giới vô cực; các giới hạn tại +∞, -∞ và tại các điểm mà hàm số không xác định.
 - Tìm các đường tiệm cận của hàm số (nếu có).
 - Lập bảng biến thiên.
- Đổ thị.
 - Liệt kê các điểm đặc biệt (điểm cực đại, điểm cực tiểu, tâm đối xứng,...)
 - Xác định giao điểm của (C) với Ox, Oy (nếu có).
 - Vẽ đồ thị.

2. KHẢO SÁT MỘT SỐ HÀM ĐA THỰC VÀ PHÂN THỰC:

a) HÀM SỐ BẬC BA $y = ax^3 + bx^2 + cx + d \quad (a \neq 0)$

	\ /	
TRƯỜNG HỢP	a > 0	a < 0
Phương trình $y'=0$ có 2 nghiệm phân biệt		
Phương trình $y^{\prime}=0$ có nghiệm kép		
Phương trình $y' = 0$ vô nghiệm		

b) HÀM SỐ TRÙNG PHƯƠNG $y = ax^4 + bx^2 + c \quad (a \neq 0)$

	(/	
TRƯỜNG HỢP	a > 0	a < 0
Phương trình $y'=0$ có	\ y ♠	<i>y</i> ↑
3 nghiệm phân biệt	\	
	1	
	O x	0 x

Phương trình y' = 0 có 1 nghiêm.

c) HÀM SỐ NHẤT BIẾN $y = \frac{ax+b}{cx+d}$ $(c \neq 0, ad-bc \neq 0)$

MỘT SỐ PHÉP BIẾN ĐỔI ĐỒ THỊ

Dang 1:

Từ đồ thị (C): y = f(x) suy ra đồ thị (C'): y = f(|x|). $y = f(|x|) = \begin{cases} f(x) & khi \ x \ge 0 \\ f(-x) & khi \ x < 0 \end{cases}$

và y = f(|x|) là hàm chẵn nên đồ thị (C') nhận Oy làm trục đối xứng.

* Cách vẽ (C') từ (C):

- + $Gi\tilde{u}$ nguyên phần đồ thị <u>bên phải Oy</u> của đồ thị (C): y = f(x).
- $+ B\mathring{o}$ phần đồ thị bên trái Oy của (C), **lấy đối xứng phần đồ thị** được giữ qua Oy.

Ví dụ: Từ đồ thị (C): $y = f(x) = x^3 - 3x$

suy ra đồ thị (C'): $y = |x|^3 - 3|x|$.

Biến đổi (C):

+ Bỏ phần đồ thị của $\left(C\right)$ bên trái

Oy, giữ nguyên (C) bên phải Oy.

+ Lấy đối xứng phần đồ thị được giữ qua Oy.

Nguyễn Chiến - Hồng Quân: 0973.514.674

Dang 2:

Từ đồ thị (C): y = f(x) suy ra đồ thị (C'): y = |f(x)|.

Nội dung:

Ta có:

 $y = |f(x)| = \begin{cases} f(x) & khi \ f(x) \ge 0 \\ -f(x) & khi \ f(x) < 0 \end{cases}$

* Cách vẽ (C') từ (C):

+ $Gi\tilde{u}$ nguyên phần <u>đồ thị phía trên Ox</u> của đồ thị (C): y = f(x).

 $+ B_0^{\circ}$ phần đồ thị phía dưới Ox của (C), **lấy đối xứng phần đồ thị** b_0° qua Ox.

Ví dụ: Từ đồ thị (C): $y = f(x) = x^3 - 3x$

suy ra đồ thị $y = |x^3 - 3x|$.

Biến đổi (C):

+ Bỏ phần đồ thị của $\left(C\right)$ dưới

Ox, giữ nguyên (C) phía trên Ox.

+ Lấy đối xứng phần đồ thị bị bỏ qua Ox .

 $Ch\acute{u}\acute{y}$ với dạng: $y=\left|f\left(\left|x\right|\right)\right|$ ta lần lượt biến đổi 2 đồ thị $y=f\left(\left|x\right|\right)$ và $y=\left|f\left(x\right)\right|$

Ví dụ: Từ đồ thị

(C): $y = f(x) = x^3 - 3x$ suy ra đồ thị

 $y = \left\| x \right\|^3 - 3 \left| x \right|$. Biến đổi $\left(C \right)$ để được đồ

thị (C'): $y = |x|^3 - 3|x|$. Biến đổi

(C'): $y = |x|^3 - 3|x|$ ta được đồ thị

 $(C''): y = |x|^3 - 3|x|.$

Dạng 3: Từ đồ thị (C): y = u(x).v(x) suy ra đồ thị (C'): y = |u(x)|.v(x).

Ta có: $y = |u(x)| \cdot v(x) = \begin{cases} u(x) \cdot v(x) = f(x) & khi \ u(x) \ge 0 \\ -u(x) \cdot v(x) = f(x) & khi \ u(x) < 0 \end{cases}$

* Cách vẽ (C') từ (C):

+ $Gi\tilde{u}$ nguyên phần đồ thị trên miền $u(x) \ge 0$ của đồ thị (C): y = f(x).

 $+ B\mathring{o}$ phần đồ thị <u>trên miền</u> u(x) < 0 của (C), **lấy đối xứng phần đồ thị** $b\mathring{o}$ qua Ox.

Ví du

a) Từ đồ thị (C): $y = f(x) = 2x^3 - 3x^2 + 1$ suy ra đồ thị (C'): $y = |x-1|(2x^2 - x - 1)$

b) Từ đồ thị
$$(C): y = f(x) = \frac{x}{x-1}$$
 suy ra đồ thị $(C'): y = \frac{x}{\left|x-1\right|}$

$$y = |x - 1| (2x^2 - x - 1) = \begin{cases} f(x) & khi \ x \ge 1 \\ -f(x) & khi \ x < 1 \end{cases}$$

Đồ thị (C'):

- + Giữ nguyên (C) với $x \ge 1$.
- + Bỏ (C) với x < 1. Lấy đối xứng phần đồ thị bị bỏ qua Ox.

Nhân xét: Trong quá trình thực hiện phép suy đồ thị nên *lấy đối xứng các điểm đặc* biệt của (C): giao điểm với Ox, Oy, CĐ, CT...

$$y = \left| x - 1 \right| \left(2x^2 - x - 1 \right) = \begin{cases} f\left(x \right) & khi \ x \ge 1 \\ -f\left(x \right) & khi \ x < 1 \end{cases} \quad y = \frac{x}{\left| x - 1 \right|} = \begin{cases} \frac{x}{x - 1} & khi \ x \in \left(1; + \infty \right) \\ -\frac{x}{x - 1} & khi \ x \in \left(-\infty; 1 \right) \end{cases}.$$

Đồ thi (C'):

- + Bổ phần đồ thị của (C) với x < 1, giữ nguyên (C) với x > 1.
- + Lấy đối xứng phần đồ thị bị bỏ qua Ox.

Nhân xét: Đối với hàm phân thức thì nên lấy đối xứng các đường tiệm cận để thực hiện phép suy đồ thị một cách tương đối chính xác.