Université de Mons Faculté des Sciences Département d'Informatique Service d'Informatique Théorique

Résolution de jeux de sûreté joués sur graphes

Directeur : M^{me} Véronique BRUYÈRE Mémoire réalisé par Florent HUYLENBROECK

Rapporteurs : M^r Prénom NOM en vue de l'obtention du grade de M^r Prénom NOM Master en Sciences Informatiques

Remerciements

Nous remercions ...

Table des matières

1	Introduction	1
2	Jeux joués sur graphes 2.1 Arènes 2.2 Coups, parties et objectifs 2.2.1 Jeux de sûreté 2.2.2 Jeux d'atteignabilité 2.3 Stratégies et ensembles gagnants	4
3	Cas fini 3.1 Résolution via les attracteurs	6 9 11 13
4	Cas infini	17
Conclusion		18
Annexes		
A	Première annexe	20
R	Nauviàma annava	21

Chapitre 1

Introduction

Contexte

Définition du problème

Le probleme dumodel-checking consiste a vérifier qu'un système informatique satisfait une spécification quand ceux-ci sont donnes sous la forme de modèles mathématiques. Des spècifications typiques sont : est- ce que le systeme peut atteindre unétat de deadlock? Est-ce qu'une requète reçoit toujours une reponse? Les modeles utilisés peuvent varier : les comportements du système informatique peuventétre modelisè par un automate acceptant des mots infinis, tandis que la specification peutêtre modelisée par une formule de logique temporelle LTL. Plutot que de verifier qu'un système informatique satisfait une spécification, on peut aller plus loin en envisageant la synthese de controleur. Dans le but de definir les interactions d'un système informatique avec son environnement, on considere ici un graphe orienté dont les sommets sont partagès entre le système et l'environnement. Une interaction est alors un chemin infini dans le graphe tel qu'en tout sommet systeme (resp. de l'environnement), c'est lui qui décide quel arc suivrea partir de ce sommet. L'objectif du systeme est, par exemple, d'éviter unètat de deadlock quoique fasse l'environnement, ou encore de repondrea une requéte quoique fasse l'environnement. Pour y arriver, il a besoin d'une strategie gagnante qui n'est rien d'autre qu'un programme de controle. La synthese de controleur revient donca construire (quand c'est possible) une strategie gagnante (contre l'environnement) pour un objectif donnè du système. Dans ce projet, on propose d'etudier ce problème de synthése pour desjeux de surete ' joues sur graphes. Pour ces jeux, le systeme a pour objectif d'éviter de passer par certains sommets du graphe.

INTRODUCTION 2

Présentation et limitations des solutions existantes

Quand le graphe est fini, il existe des algorithmes simples qui indiquent si le systeme peut y parvenir et qui dans ce cas indiquent comment jouer (voir par exemple le livre [1]). Quand le graphe est infini, l'article [2] propose algorithme partiel qui utilise des SAT solveurs.

Objectif du travail et idées principales

Dans le cadre du projet, l'etudiant sera amenè a comprendre ces algorithmes et a reproduire les expérimentations de l'article [2], et d'envisager une implèmentation de calcul de strategie gracea la structure de données "binary decision diagrams" [3,4]

Brève description du contenu, chapitre par chapitre

Chapitre 2

Jeux joués sur graphes

Dans ce chapitre, nous allons présenter les jeux joués sur graphes.

2.1 Arènes

Une *arène* est un graphe $A=(V_0,V_1,E)$ composée de deux ensembles disjoints, non-vides de sommets V_0 et V_1 , avec $V_0 \cup V_1 = V$, et d'un ensemble d'arcs $E \subseteq V \times V$. De plus, chaque sommet d'une arène doit posséder au moins un successeur dans l'arène.

Voici un exemple d'arène :

FIGURE 2.1 – Exemple d'une arène

L'ensemble V_0 est représenté par les sommets carrés, V_1 par les sommets ronds et E par les flèches reliant les sommets.

2.2 Coups, parties et objectifs

Au début de la partie, un *pion* est placé sur un sommet du graphe. Ce pion est un marquage d'un sommet de l'arène qui va être modifié tour à tour par les joueurs. Dans la suite de ca rapport, *déplacer le pion* réferera à l'action de retirer le marquage du sommet courant, et de marquer un autre sommet du graphe.

Le jeu est joué par deux *joueurs* numérotés j_0 et j_1 qui déplacent le pion le long des arcs de l'arène. Le joueur qui déplace le pion est le joueur à qui appartient le sommet courant où se trouve le pion. Un *coup* est l'action d'un joueur de déplacer le pion le long d'un arc du graphe, depuis un sommet lui appartenant, vers un de ses successeurs.

Une séquence de coups forme une partie.

Définition 2.2.1. Une partie d'un jeu est une séquence infinie $\pi = v_0 v_1 \dots$ où $\forall i \in \mathbb{N}, v_i \in V$, et $(v_i, v_{i+1}) \in E$.

L'objectif Ω d'un jeu joué sur graphes est ce qui va définir la condition de victoire des joueurs. Dans ce rapport nous allons nous intèresser à deux types de jeux, les jeux de sûretés et les jeux d'atteignabilité. Les objectifs pour ces deux types de jeux sont définis par un sous ensemble $F \subseteq V$.

2.2.1 Jeux de sûreté

Un jeu de sûreté est défini par un tuple $\mathfrak{G} = (A, F)$ avec A une arène et $F \subseteq V$ un sous ensemble de sommets dits *sûrs*. L'objectif d'un jeu de sûreté est que tous les sommets visités lors de la partie soient des sommets sûrs.

Définition 2.2.2. Soit $\mathfrak{G} = (A, F)$ un jeu de sûreté, une partie $\pi = v_0 v_1 ...$ est gagnante pour le joueur j_0 si $\forall i \in \mathbb{N}, v_i \in F$

2.2.2 Jeux d'atteignabilité

Un jeu d'atteignabilité est défini par un tuple $\mathfrak{G}=(A,F)$ avec A une arène et $F\subseteq V$ un sous ensemble de sommets à atteindre. L'objectif d'un jeu de sûreté est qu'au moins un sommet de F soit visité au cours de la partie.

Définition 2.2.3. Soit $\mathfrak{G} = (A, F)$ un jeu d'atteignabilité, une partie $\pi = v_0 v_1 \dots$ est gagnante pour le joueur j_0 si $\exists i \in \mathbb{N}, v_i \in F$

Les jeux d'atteignabilité sont complémentaires aux jeux de sûreté.

2.3 Stratégies et ensembles gagnants

Les coups des joueurs sont décidés par la *stratégie* adoptée par ces derniers. Une stratégie est une fonction $s_{j_n}: V^*V_n \to V$ qui indique vers quel sommet le joueur j_n va déplacer le pion depuis le sommet courant $v \in V_n$ selon la séquence de déplacement précédents.

Une stratégie peut être sans mémoire $s_{j_n}: V_n \to V$ si elle ne prend en compte que le sommet actuel où se trouve le pion.

Une stratégie s_{j_n} est gagnante pour le joueur j_n si toutes parties jouées selon cette stratégie mènent à une victoire du joueur j_n .

Définition 2.3.1. Une partie $\pi = v_0 v_1 \dots$ est dite jouée selon une stratégie s_{j_n} si $\forall i \in \mathbb{N}, v_{i+1} = s_{j_n}(v_0 v_1 \dots v_i)$ et $v_i \in V_n$

La notion de stratégie gagnante nous permet de définir un ensemble gagnant.

Définition 2.3.2. Soit $\mathfrak{G}=(A,F)$ un jeu, avec $A=(V_0,V_1,E)$, l'ensemble gagnant $W\subseteq V$ est l'ensemble $W=\{v\in V\mid j_0 \ poss\`e de une stratégie gagnante à partir de <math>v\}$

Chapitre 3

Cas fini

Afin de résoudre les jeux de sûreté joués sur des graphes, nous allons distinguer les arènes possédant un nombre fini de sommet de celles en possèdant un nombre infini.

Définition 3.0.1. Une arène finie est une arène $A = (V_0, V_1, E)$ pour laquelle V_0 et V_1 sont des ensembles finis.

Dans cette section, nous allons définir la notion d'attracteur, et l'appliquer afin de calculer les régions gagnantes des arènes finies, afin d'en déterminer les stratégies gagnantes des deux joueurs. Nous allons aussi proposer un algorithme qui calcule les attracteurs d'une arène finie.

3.1 Résolution via les attracteurs

Une méthode pour calculer les ensembles gagnants des jeux de sûreté et d'atteignabilité se base sur le principe d'attracteur.

Définition 3.1.1. Soit un jeu $\mathfrak{G} = (A, F)$ avec $A = (V_0, V_1, E)$ une arène finie et F un sous ensemble de sommets tel que $F \subseteq V$, soit $i \in \mathbb{N}$, le i^e attracteur pour le joueur j_n est l'ensemble :

 $Attr^i_{j_n} = \{v \in V \mid le \ joueur \ j_n \ peut \ forcer \ une \ visite \ d'un \ sommet \ de \ F \ depuis \ v \ en \le i \ déplacements \}$

Afin de construire cet objet en incrémentant la valeur de i, [1] nous donne la formule de construction par induction suivante :

$$Attr_{j_n}^{0}(F) = F$$

$$Attr_{j_n}^{i+1}(F) = Attr_{j_n}^{i}(F)$$

$$\cup \{v' \in V_n \mid \exists (v, v') \in E : v \in Attr_{j_0}^{i}(F)\}$$

$$\cup \{v' \in V \setminus V_n \mid \forall (v, v') \in E : v \in Attr_{j_0}^{i}(F)\}$$

$$(3.1)$$

L'intuition derrière cette formule est la suivante :

En 0 coups, le joueur j_n ne peut forcer une visite d'un sommet de F que depuis un sommet de F. On a donc que l'attracteur de départ, $Attr^0_{j_n}(F)$ ne contient que les sommets de F.

Ensuite, en incrémentant le nombre de coups, autrement dit la valeur de i, on va considérer l'ajout des sommets qui sont des prédecesseurs des sommets de l'attracteur courant, car ceux ci mettront, dans le pire des cas, un coup de plus à atteindre un sommet de F. Donc, si un sommet est prédecesseur d'un sommet de l'attracteur sans en faire partie lui-même, il y a deux possibilités (correspondant aux deux ensembles unis à $Attr_{j_n}^i(F)$ dans la formule 3.1). Soit le sommet appartient à j_n et ce sera à lui de jouer un coup à partir de ce sommet. Il pourra ainsi décider de s'approcher d'un sommet de F. Il ne faut donc qu'un seul successeur dans l'attracteur courant pour être ajouté à l'attracteur suivant. Par contre si le sommet appartient au joueur opposé à j_n , alors il faut s'assurer que peu importe le coup qu'il joue, il se rapproche d'un sommet de F. Il est donc nécessaire que tous les successeurs du sommet soient dans $Attr_{j_n}^i(F)$ pour quel sommet soit ajouté à l'attracteur suivant.

Par cette construction, on obtient une séquence d'attracteurs $Attr^0_{j_n}(F)\subseteq Attr^1_{j_n}(F)\subseteq \dots$ laquelle sera fixe à partir d'une certaine itération $k\leq |V|$ vu que V est un ensemble fini et qu'à chaque itération, au moins un sommet de V est ajouté à l'attracteur. On notera $Attr_{j_n}(F)=\bigcup_{i=0}^{|V|}Attr^i_{j_n}(F)$

Théorème 3.1.1. Pour un jeu d'atteignabilité, cette construction de l'attracteur pour j_0 vers F donnera l'ensemble gagnant de j_0 .

Donc j_0 peut gagner la partie à partir de tous les sommets de $Attr_{j_0}(F)$. Il lui suffit, à chaque coups depuis un sommet de $Attr_{j_0}^{i+1}(F)$, de déplacer le pion vers un sommet dans $Attr_{j_0}^i(F)$ afin de se rapprocher progressivement de $Attr_{j_0}^0(F) \subseteq F$, ce qui est possible par la manière dont est construit l'attracteur. Cette construction explique aussi que le joueur opposé sera forcé d'en faire autant. Cette stratégie est donc gagnante pour j_0 depuis chaque sommet de l'attracteur.

Pour montrer que $W_0 \subseteq Attr_{j_0}(F)$, il faut montrer que j_0 ne peut pas gagner la partie à partir d'un sommet hors de $Attr_{j_0}(F)$, autrement dit que j_1 peut forcer le pion à rester en dehors de $Attr_{j_0}(F)$ depuis tout sommet hors de $Attr_{j_0}(F)$. Soit un sommet $v \in V_1 \setminus Attr_{j_0}(F)$, alors v possède au moins une arête (v, v') avec $v' \notin Attr_{j_0}(F)$, sinon on aurait $v \in Attr_{j_0}(F)$. La stratégie gagnante pour

 j_1 est donc de déplacer le pion le long de cet arc afin de rester hors de l'attracteur. Soit un sommet $v \in V_0 \setminus Attr_{j_0}(F)$, alors toutes les arêtes v mènent vers un sommet hors de $Attr_{j_0}(F)$, sinon on aurait $v \in Attr_{j_0}(F)$. j_0 ne peut donc pas entrer dans l'attracteur depuis ce sommet et ne peut donc pas forcer de visite d'un sommet de F depuis ce sommet. Ces deux cas étant exhaustifs, et ayant montré que j_0 est contraint de rester hors de l'attracteur dans ces deux cas, on a bien que $W_0 \subseteq Attr_{j_0}(F)$

L'inclusion étant vérifiée dans les deux sens, on en déduit $W_0 = Attr_{i_0}(F)$.

Ainsi nous avons montré que l'on peut construire l'ensemble gagnant W_0 du joueur j_0 pour un jeu d'atteignabilité en utilisant le principe d'attracteur. On obtient aussi immédiatement l'ensemble gagnant $W_1 = V \setminus W_0$ du joueur j_1 . Chaque joueur peut gagner la partie à partir de chaque sommet de leur ensemble gagnant respectif en adoptant les stratégies énoncée ci-dessus.

De plus, la dualité entre un jeu d'atteignabilité et un jeu de sûreté nous permet d'énoncer le théorème suivant :

Théorème 3.1.2. Cette méthode de résolution pour les jeux d'atteignabilité permet aussi de résoudre les jeux de sûreté.

Preuve. Soit un jeu de sûreté $\mathfrak{G} = (A, F)$ avec A une arène finie. on construit $Attr_{j_1}(V \setminus F)$, autrement dit la liste de sommets depuis lesquels j_1 peut forcer une visite d'un sommet hors de F. En adoptant la même stratégie que j_0 dans un jeu d'atteignabilité, cet attracteur donne l'ensemble gagnant de j_1 pour un jeu de sûreté. De manière analogue, j_0 , en adoptant la stratégie du joueur j_1 du jeu d'atteignabilité, ne pourra gagner le jeu de sûreté que depuis les sommets hors de cet attracteur.

La figure suivante représente, en gris, l'ensemble gagnant du joueur j_0 d'un jeu d'atteignabilité joue sur l'arène de la figure 2.1, avec $F = \{1, 2, 11\}$.

FIGURE 3.1 – Illustration d'un ensemble gagnant

3.2 Algorithme

Nous allons maintenant proposer un algorithme de calcul du i^e attracteur. Pour faciliter la lecture, l'algorithme sera découpé en 3 phases suivies d'explications.

```
Algorithm 1 Attracteur
```

```
Entrées
               G:
                     Graphe, structure de donnée composée d'un tableau à deux
                     dimensions predecessors de prédecesseurs (la liste de
                     prédecesseurs d'un noeud i est stockée à la
                     i^e entrée du tableau) et une liste players (le i^e noeud
                     appartient au joueur dont le numéro figure en
                     i<sup>e</sup> entrée de players).
               \mathbf{F}:
                     Liste de numéro de sommets.
                     Numéro de joueur.
               p :
                     Nombre d'itération pour la construction de
                     l'attracteur, une valeur négative calculera l'attracteur
                     complet.
               Attr_p^i(F)
    Sortie
1: procedure ATTRACTOR(G, F, p, i)
       out\_degrees \leftarrow tableau de taille |G|
                                                                  ⊳ Pré-traitement
       for j allant de 0 à |G| - 1 do
3:
          if G.players[j] \neq p then
4:
              for pred in G.predecessors[j] do
5:
                  out\_degrees[pred] \leftarrow out\_degrees[pred] + 1
6:
7:
              end for
           end if
8:
      end for
9:
```

L'algorithme commence par une phase de pré-traitement au cours de laquelle on va calculer le *demi-degré extérieur* (le nombre d'arcs sortant) de chaque noeud n'appartenant pas au joueur p. Pour cela, on initialise une liste *out_degrees* de la taille du nombre de noeuds du graphe. Ensuite, on parcours le tableau des prédecesseurs du graphe *G.predecessors*. On incrémente l'indice de *out_degrees* correspondant à chaque noeud rencontré dans ce tableau car s'il est prédécesseur d'un autre noeud, alors un arc en sort pour aller vers celui-ci.

```
10: attractor \leftarrow tableau \ de \ taille \ |G| \triangleright Initialisation
11: for index \ in \ F \ do
12: attractor[index] \leftarrow 1
13: end for
14: attractor\_new \leftarrow F
```

On initialise ensuite le tableau attractor qui va indiquer quels sommets sont marqués comme appartenant a l'attracteur courant. On y marque les sommets de F. Cette étape correspond au calcul de $Attr_n^0(F)$.

On initialise ensuite la liste $attractor_new$. Cette liste va contenir, après chaque itération de la boucle principale, les sommets qui ont été ajoutés à l'attracteur lors de cette itération. On ajoute initialement les sommets de F à cette liste car $Attr_p^0(F)$ est déjà calculé.

```
while attractor\_new non-vide and i \neq 0 do

⊳ Calcul de l'attracteur

15:
            to\_check \leftarrow attractor\_new
16:
            attractor\_new \leftarrow []
17:
            for index in to_check do
18:
                for pred in G.predecessors[index] do
19:
                    if attractor[pred] = 0 then
20:
21:
                        if G.players[pred] = p then
                            attractor\_new.append(pred)
22:
                        else
23:
                            out\_degrees[pred] \leftarrow out\_degrees[pred] - 1
24:
                            if out\_degrees[pred] = 0 then
25:
                                attractor\_new.append(pred)
26:
                            end if
27:
28:
                        end if
                    end if
29:
                end for
30:
            end for
31:
            for index in attractor_new do
32:
                attractor[index] \leftarrow 1
33:
            end for
34:
            i \leftarrow i - 1
35:
        end while
36:
        return attractor
37:
38: end procedure
```

La boucle principale de cet algorithme se base sur la construction par in-

duction de $Attr_{i_n}^i(F)$. On y retrouve les 3 éléments de l'union qui constitue

- $Attr_{j_n}^{i+1}(F)$:

 $Attr_{j_n}^i(F)$ se retrouve à la ligne 32. A chaque étape on ne crée pas un nouvel attracteur mais on marque dans attractor les nouveaux sommets présents dans attractor_new.
 - $-\{v' \in V_n \mid \exists (v,v') \in E : v \in Attr^i_{i_n}(F)\}$. Dans la boucle intérieure, ligne 21, si un prédecesseur du noeud en cours de traitement appartient au joueur cible, alors il est ajouté à attractor_new afin d'être ajouté à l'attracteur.
 - $\{v' \in V \setminus V_n \mid \forall (v, v') \in E : v \in Attr^i_{j_n}(F)\}$. Dans la boucle intérieure, ligne 23, si un prédecesseur du noeud en cours de traitement n'appartient pas à p, alors il est ajouté à l'attracteur si tous ses successeurs sont aussi dans l'attracteur. C'est à cette étape que le pré-traitement joue un rôle. A chaque fois qu'un noeud est rencontré dans la liste des prédecesseurs d'un autre noeud, on décremente la valeur correspondante dans out_degrees. Si cette valeur atteint 0, cela veut dire que tous les successeurs de ce noeud font partie de l'attracteur (car on ne visite les prédecesseurs d'un noeud que s'il a été ajouté à l'attracteur et on y ajoute chaque noeud qu'une fois). On peut donc l'ajouter à son tour à l'attrac-

Le calcul s'arrête quand aucun noeud n'est ajouté à l'attracteur au cours d'une itération (attractor_new est vide). Cela veut dire que le point fixe de la séquence d'attracteur $Attr^0_p(F)\subseteq Attr^1_p(F)\subseteq \dots$ est atteint et que l'attracteur complet a été calculé.

L'algorithme peut aussi retourner le i^e attracteur si on lui passe en argument une valeur de i positive (et inférieure au nombre d'itération qu'il faut pour atteindre le point fixe). En effet, i intervient dans le calcul de la condition d'arrêt. Celui-ci est décrémenté à chaque nouvel attracteur calculé. Cependant, la condition d'arrêt ne vérifie qui si $i \neq 0$. Une valeur négative de i en entrée assurera donc le calcul de l'attracteur complet, car celui-ci ne causera pas l'arrêt de la boucle principale.

3.2.1 Complexité

Considérons un graphe G possédant n noeuds et m arêtes. Alors l'algorithme Attractor possède une complexité dans le pire des cas en O(n+m).

Preuve. Afin de calculer la complexité totale de l'algorithme, intéressons-nous à la complexité des 3 boucles principales :

— Pré-traitement

Le calcul du demi-degré extérieur à l'aide d'une structure de données telle que décrite dans l'entête de l'algorithme se fait en temps O(m). En effet il s'agit d'itérer sur la liste de prédecesseurs et, pour chaque noeud rencontré, incrémenter son demi-degré extérieur. Le graphes possédant m arêtes, il y aura au plus m éléments dans la liste des prédécesseurs.

— Initialisation

Cette étape se fait en temps O(n) car il y au plus n noeuds dans le graphes, donc pour lesquels on souhaite construire l'attracteur.

— Calcul de l'attracteur

Considérons une valeur de i négative pour le pire des cas. Il y aura au maximum n passages dans la boucle extérieure (ligne 15) car, à chaque étape, $attractor_new$ doit contenir au moins un noeud de G hors de l'attracteur courant. L'évaluation de la condition d'arrêt se fait en O(1). La boucle à la ligne 18 itère sur les noeuds d' $attractor_new$ et, pour chacun d'entre eux, la boucle à la ligne 19 va itèrer sur ses prédecesseurs. Toutes les opérations à l'intérieur de cette boucle sont en temps constant O(1). On a donc que, dans le pire des cas, l'algorithme va effectuer des opérations en O(1) pour chaque prédecesseur de chaque noeud de G. Finalement, la boucle à la ligne 32 effectuera dans le pire des cas n fois une opération en O(1), car au plus n noeuds seront ajoutés à l'attracteur. Cela nous donne une comlexité en O(n (évaluation de la condition d'arrêt) +m (boucle intérieure) +n (ajout à l'attracteur) =O(2n+m)=O(n+m).

Nous obtenons donc une complexité totale de O(n+m+(n+m))=O(2(n+m))=O(n+m).

13

3.2.2 **Exemple**

Afin d'illustrer le fonctionnement de l'algorithme, considérons l'arène de la figure 2.1 et calculons l'attracteur pour le joueur j_0 avec $F = \{1, 2, 11\}$, dans le but de calculer les ensembles gagnants des deux joueurs pour un jeu d'atteignabilité. Supposons i négatif afin de calculer l'attracteur complet.

L'étape de pré-traitement sera rendue visuelle en ajoutant aux noeuds de j_1 la valeur correspondant dans le tableau out_degrees. Les noeuds faisant partie de l'attracteur courant attractor seront colorés en gris et ceux étant ajoutés à l'attracteur à l'itération précédente (les noeuds de la liste attractor_new) seront entourés en rouge. Nous obtenons donc, avant l'entrée dans la boucle principale de l'algorithme, la représentation suivante :

Nous avons donc bien $Attr^0_{j_0}(F)=\{1,2,11\}$. La première itération du calcul de l'attracteur va ajouter les noeuds 3 et 10 à l'attracteur. En effet, la valeur de out_degrees de 3 va être décrémentée deux fois, une fois en suivant les prédecesseurs de 1 et une autre fois en suivant ceux de 2. Cette valeur atteignant 0, il sera ajouté à l'attracteur. La valeur de out_degrees de 4 sera aussi décrémentée une fois en partant de 1. Le cas de 10 est plus trivial, il appartient à j_0 et a été rencontré en suivant les prédecesseurs de 11, il est donc ajouté à l'attracteur. La valeur de out_degrees de 9 est elle aussi décrémentée car le noeud 9 est un prédecesseur de 11. Nous obtenons donc la représentation suivante:

14

Qui correspond à $Attr^1_{j_0}(F)=\{1,2,3,10,11\}$. 5 possède maintenant un successeur dans l'attracteur, il y sera donc ajouté à l'étape suivante. La valeur de out_degrees de 4 est décrémentée une fois, car il est prédecesseur de 3. Le noeud 9 est atteint une deuxième fois, cette fois depuis 10. Sa valeur de *out_degrees* passant à 0, il est ajouté à l'attracteur.

Nous obtenons $Attr^2_{j_0}(F)=\{1,2,3,5,9,10,11\}$ 4 est atteint une dernière fois car il est prédecesseur de 5. Sa valeur de out_degree passant à 0, il est ajouté à l'attracteur. Cette même valeur pour 6 est décrémentée deux fois lors de cette itération car il est successeur de 5 et 9.

On obtient $Attr^3_{j_0}(F) = \{1, 2, 3, 4, 5, 9, 10, 11\}$

La valeur de *out_degrees* de 6 est décrémentée une fois car il est prédecesseur de 4. Aucun noeud n'est ajouté à *attractor_new*, l'algorithme s'arrête.

L'attracteur final calculé par l'algorithme est donc $Attr_{j_0}^4(F) = Attr_{j_0}^3(F) = Attr_{j_0}^3(F) = \{1, 2, 3, 4, 5, 9, 10, 11\}$

Cet attracteur correspond à l'ensemble gagnant W_0 du joueur j_0 . Par exemple, si le pion est initialement placé sur le sommet 5, ce sera à j_0 de le déplacer. Selon la stratégie gagnante pour le joueur j_0 décrite dans la section précédente, celui-ci déplacera le pion vers 3. Le coup suivant sera décidé par le joueur j_1 . Celui ci n'aura pas le choix et devra déplacer le pions sur un sommet de F:1 ou 2. Le joueur j_0 gagne la partie.

L'ensemble $W_1 = \{6, 7, 8\}$ est donc l'ensemble gagnant du joueur j_1 . Si le pion est initialement placé sur un sommet de cet ensemble, alors j_1 gagne. Par exemple, le pion placé initialement sur 6 sera déplacé par le joueur j_1 vers 7 (en passant éventuellement par 8 selon la stratégie gagnante pour le joueur j_1 car ni 7 ni 8 ne font partie de l'attracteur). Le joueur j_0 déplacera le pion de 7 vers 6 et la partie consistera en une répétition infinie de coups entre 6, 7 et 8.

16

Cet attracteur permet de résoudre un jeu d'atteignabilité avec $F=\{1,2,11\}$ et donc, par le théorème 3.1.2, permettrait aussi de résoudre un jeu de sûreté avec comme ensemble de sommets sûrs $G=V\setminus F$ pour le joueur j_1 .

Chapitre 4

Cas infini

Conclusion

Mettez votre conclusion ici. Dressez le bilan de votre travail effectué, en prenant du recul. Discuter de si vous avez bien réussi les objectifs du travail ou non. Présentez les perspectives futurs.

Bibliographie

[1] W. Thomas. Church's problem and a tour through automata theory. Master's thesis, RWTH Aachen, Lehrstuhl Informatik 7, 52056 Aachen, Germany, 2008.

Annexe A

Première annexe

Annexe B Deuxième annexe