Pontificia Universidad Católica de Chile y Universidad de Chile

Facultad de Matemáticas

@

 \odot

Profesor: José Samper

Curso: Álgebra II Fecha: 1 de octubre de 2025

Ayudante: José Cuevas Barrientos

Sigla: MPG3201

Caracteres

EJERCICIOS

A lo largo de esta ayudantía, siempre consideraremos a \mathbb{C} como cuerpo de coeficientes.

1. Calcule la tabla de caracteres simples del grupo de cuaterniones

$$Q_8 = \langle i, j, k : i^2 = j^2 = k^2 = -1, \quad ijk = -1 \rangle.$$

2. Calcule la tabla de caracteres simples de A_4 .

3. Recuerde que el grupo simétrico \mathfrak{S}_n siempre admite la representación por permutación $\rho \sim$ \mathbb{C}^n dada por $\sigma \cdot (v_1, \ldots, v_n) = (v_{\sigma(1)}, \ldots, v_{\sigma(n)})$. Esta fija al vector $(1, \ldots, 1)$ que genera la subrepresentación trivial, el complemento de ella es la representación estándar cuyo caracter

$$\chi_{\rm st}(\sigma) = \chi_{\rm perm}(\sigma) - \chi_0(\sigma) = \chi_{\rm perm}(\sigma) - 1.$$

Pruebe que la representación estándar es siempre simple.

PISTA: Ingénieselas para convertir el problema en contar dimensión del subespacio fijo de la acción por doble permutación $S_n \curvearrowright \mathbb{C}^{n^2}$ dada por $\sigma \cdot (v_{i,j})_{i,j=1}^n := (v_{\sigma(i),\sigma(j)})_{i,j}$.

4. Sea G un grupo finito.

a) Si C_1, \ldots, C_h son las clases de conjugación de G, pruebe que los elementos

$$c_j := \sum_{g \in C_j} [g] \in \mathbb{C}[G],$$

forman una \mathbb{C} -base para el centro $Z(\mathbb{C}[G])$.

b) Sea χ un caracter simple de G de grado $n := \chi(1)$, y sea $g \in C_i \subseteq G$. Pruebe que $|C_i| \frac{1}{n} \chi(g)$ es un entero algebraico (i.e., es raíz de un polinomio mónico con coeficientes en \mathbb{Z}). PISTA: Para ello, note que la representación ρ que induce a χ satisface que $\rho(c_j) = b_j \operatorname{Id} y$

pruebe que b_j es el valor propio de una matriz a coeficientes enteros.

c) Pruebe que el grado de toda representación simple divide al orden de G. PISTA: Para esto podría necesitar que los enteros algebraicos son cerrados bajo suma y productos, y que los enteros algebraicos de \mathbb{Q} son exactamente los enteros \mathbb{Z} .

5. Sea $H \leq G$ un subgrupo de un grupo finito y sea χ el caracter de una representación $\rho \colon H \curvearrowright V$. Recuerde de la ayudantía anterior (ej. 2c) que asociado a V^{ρ} tenemos la representación inducida $\operatorname{Ind}_H^G(\rho)$ cuyo caracter denotaremos $\operatorname{Ind}_H^G(\chi)$. Pruebe que tenemos la siguiente fórmula para todo $g \in G$:

$$\operatorname{Ind}_{H}^{G}(\chi)(g) = \frac{1}{|H|} \sum_{\substack{t \in G \\ tgt^{-1} \in H}} \chi(t^{-1}gt).$$

COMENTARIOS ADICIONALES BREVES Α.

Parte del objetivo del primer ejercicio está en que tras calcular la tabla de caracteres de Q_8 el lector puede observar que coincide con la del grupo diedral D_8 , de modo que dos grupos no isomorfos pueden tener la misma tabla de caracteres. Esto es interesante porque la tabla de caracteres determina completamente a un grupo abeliano finito, por ejemplo; esto es un buen ejercicio para el lector.

¹Relativo al producto, obvio.

Así mismo, hay una serie de observaciones adicionales que el lector podría hacer tras calcular la tabla de un grupo. Por ejemplo, para Q_8 la representación simple de grado 2 es inducida del subgrupo normal $\langle i \rangle$; para A_4 todas las representaciones simples son restricciones, o bien de un cociente, o bien de S_4 . Esto ejemplifica la utilidad de tener criterios sencillos para la irreducibilidad de caracteres inducidos, para lo cual recomendamos al lector leer sobre el criterio de Mackey en [2], §7.4.

El ejercicio 4 lo extraje de [1]. Dicha referencia incluye después de ello una serie de aplicaciones de la teoría de caracteres a preguntas exclusivamente de grupos finitos, como el famoso teorema de Burnside de la resolubilidad de grupos de orden p^aq^b . Por un largo tiempo se desconocieron pruebas con exclusivamente lenguaje de grupos de dicho teorema; además de la prueba con representaciones, hay otra que emplea cohomología de grupos.

Referencias

- 1. Huppert, B. Finite Groups I (Springer Nature Switzerland, 2025).
- 2. Serre, J.-P. Linear Representations of Finite Groups (Springer-Verlag, 1977).

Correo electrónico: josecuevasbtos@uc.cl URL: https://josecuevas.xyz/teach/2025-2-alg/