ECN 6338 Cours 2

La résolution de systèmes d'équations linéaires

William McCausland

2022-01-19

Systèmes triangulaires

- Notation :
 - ightharpoonup L, une matrice triangulaire inférieure $n \times n$;
 - \triangleright R, une matrice triangularie supérieure $n \times n$.
- ► Il est facile de voir si la matrice est inversible : ssi aucun élément diagonal n'est nul.
- ▶ Pour le *n*-vecteur colonne *y*, la résolution de
 - \triangleright y = Lx est facile par substitution avant
 - ightharpoonup y = Rx est facile par substitution arrière
- Pour le *n*-vecteur ligne y, la solution de y = xL est la transposée de la solution de $y^{\top} = L^{\top}x^{\top}$.

Systèmes orthogonaux I

- ▶ Une matrice $n \times n$ Q est orthogonal ssi $Q^{-1} = Q^{\top}$.
- ► Définition équivalente : . . . ssi $Q^{\top}Q = QQ^{\top} = I_n$.
- Exemple, reflections :

$$Q = Q^ op = egin{bmatrix} 1 & 0 \ 0 & -1 \end{bmatrix}, \quad Q = Q^ op = egin{bmatrix} -1 & 0 \ 0 & -1 \end{bmatrix}.$$

► Exemple, permutation :

$$Q = egin{bmatrix} 0 & 0 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \end{bmatrix}, \quad Q^ op = egin{bmatrix} 0 & 1 & 0 \ 0 & 0 & 1 \ 1 & 0 & 0 \end{bmatrix}.$$

 \triangleright Exemple, rotation par un angle θ :

$$Q = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix},$$

$$Q^{\top} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} = \begin{bmatrix} \cos -\theta & -\sin -\theta \\ \sin -\theta & \cos -\theta \end{bmatrix}$$

Systèmes orthogonaux II

Notes:

- ▶ La solution du système y = Qx est $x = Q^Ty$.
- ▶ Si Q_1 et Q_2 sont orthogonales,
 - \triangleright Q_1^{\top} l'est aussi,
 - \triangleright Q_1Q_2 l'est aussi :

$$(Q_1 Q_2)^{\top} (Q_1 Q_2) = Q_2^{\top} Q_1^{\top} Q_1 Q_2 = Q_2^{\top} Q_2 = I_n,$$

 $Q_1 Q_2 (Q_1 Q_2)^{\top} = Q_1 Q_2 Q_2^{\top} Q_1^{\top} = I_n.$

Décompositions

Trois décompositions permettent la division de la résolution d'un système plus générale en systèmes triangulaires ou orthogonaux :

- ▶ Décomposition LU : A = LU pour A général $n \times n$
- ▶ Décomposition Cholesky : $A = LL^{\top} = R^{\top}R$, pour A symmétrique et définie positive $n \times n$.
- ▶ Décomposition QR : A = QR pour A général $m \times n$

La résolution de systèmes avec la décomposition LU

- ▶ En théorie, la décomposition est A = LU, où
 - L est triangulaire inférieure $n \times n$.
 - ightharpoonup U est triangulaire supérieure $n \times n$.
- En pratique, pour garder contre la division par un nombre près de zéro, la décomposition est A = PLU, où
 - P est une matrice de permutation.
- Pour résoudre le système y = Ax,
 - ightharpoonup Calculer la décomposition A = PLU.
 - Le systéme s'écrit y = PLUx
 - Permuter y avec $P^{\top} = P^{-1}$: $\tilde{y} = P^{\top}y$.
 - Le système s'écrit $\tilde{y} = LUx$.
 - Résoudre le système $\tilde{y} = Lz$ pour trouver $z \equiv Ux$.
 - Résoudre le système Ux = z pour trouver x.
- Pour les systèmes $n \times n$, toutes les décompositions sont $O(n^3)$, la substitution (avant et arrière) est $O(n^2)$ et la multiplication matrice-vecteur est $O(n^2)$.

Exemple, oligopole (Judd, chapitre 3, exo 7)

Voici les fonctions de meilleure réponse de trois firmes en jeu de Cournot

$$q_1 = 5 - 0.5q_2 - 0.3q_3,$$

 $q_2 = 7 - 0.6q_1 - 0.1q_3,$
 $q_3 = 4 - 0.2q_1 - 0.4q_2.$

En équation matriciel Aq = y, où

$$A = \begin{bmatrix} 1.0 & 0.5 & 0.3 \\ 0.6 & 1.0 & 0.1 \\ 0.2 & 0.4 & 1.0 \end{bmatrix}, \quad y = \begin{bmatrix} 5 \\ 7 \\ 4 \end{bmatrix}.$$

L'équilibre Cournot, calculé numériquement

```
data = c(1.0, 0.6, 0.2, 0.5, 1.0, 0.4, 0.3, 0.1, 1.0)
A = matrix(data, nrow = 3, ncol=3, byrow=FALSE)
y = c(5, 7, 4)
q = solve(A, y)
q
```

[1] 1.671554 5.865103 1.319648

Notes:

- solve utilise la commande DGESV de LAPACK.
- ▶ De la documentation LAPACK : "LU decomposition with partial pivoting and row interchanges"
- ▶ Pas d'accès à la décomposition *PLU*, paraît-il.
- ▶ Cependant, si on veut résoudre $Ax^i = y^i$ pour plusieurs i, on peut résoudre AX = Y, où $X = [x^1 \cdots x^N]$ et $Y = [y^1 \cdots y^N]$, avec X = solve(A, Y).

La décomposition QR

Pour une matrice A, $n \times n$, la décomposition suivante existe toujours :

$$A = QR$$

où Q est orthogonal, R est triangulaire supérieur.

- ▶ Normalisation habituelle : choisir *Q* pour que les éléments diagonaux de *R* soient non-négatifs.
- Pour A inversible, la décomposition normalisée est unique.
- ▶ Il y a des décompositions analogues QL, RQ, LQ.

Pour une matrice X, $n \times k$, n > k (souvent $n \gg k$), on peut faire la décomposition

$$A = QR = \begin{bmatrix} Q_1 & Q_2 \end{bmatrix} \begin{bmatrix} R_1 \\ 0 \end{bmatrix} = Q_1R_1$$

où Q est $n \times n$, R est $n \times k$, Q_1 est $n \times k$ et R_1 est $k \times k$.

La résolution de systèmes avec la décomposition QR, I

Pour A carré est inversible, tout est simple:

- Écrire le système à résoudre, y = Ax, comme y = QRx.
- ▶ Définir $\tilde{y} = Q^{\top}y$ et maintenant le système s'écrit $\tilde{y} = Rx$.
- ▶ Résoudre ce système triangulaire avec la substituion arrière.

Pour A grande et mince, l'application principale en économie le calcul des coefficients moindres carrées linéaire.

Aparté, régression linéaire

Équation de régression pour une unité d'observation :

$$y_i = x_{i1}\beta_1 + \ldots + x_{ik}\beta_k + \epsilon_i, \quad E[\epsilon_i|x_{i1},\ldots,x_{ik}] = 0.$$

Cette équations en vecteurs :

$$y_i = x_i^{\top} \beta + \epsilon_i.$$

▶ Toutes les équations, i = 1, ..., n, en matrices :

$$y = X\beta + \epsilon$$
,

- où y et ϵ sont $n \times 1$, X est $n \times k$, β est $k \times 1$.
- ▶ L'estimateur MCO b de β est $(X^TX)^{-1}X^Ty$.

La résolution de systèmes avec la décomposition QR, II

- ▶ On veut calculer $b \equiv (X^T X)^{-1} X^T y$.
- ▶ Soit X = QR la décomposition QR de X.
- ▶ Rappeler que $QR = Q_1R_1$, pour la sous-matrice $n \times k$ Q_1 et la sous-matrice $k \times k$ R_1 .
- On peut écrire

$$(X^{T}X)^{-1}X^{T}y = (R^{T}Q^{T}QR)^{-1}R^{T}Q^{T}y$$

$$= (R^{T}R)^{-1}R^{T}Q^{T}y$$

$$= (R_{1}^{T}R_{1})^{-1}R_{1}^{T}Q_{1}^{T}y$$

$$= R_{1}^{-1}(R_{1}^{T})^{-1}R_{1}^{T}Q_{1}^{T}y$$

$$= R_{1}^{-1}Q_{1}^{T}y$$

- ▶ On peut calculer Q_1 sans calculer Q_2 (Tant mieux, Q a $n \times n$ éléments à calculer)
- Les résultats sont numériquement plus stables que si on décompose X^TX.

La décomposition Cholesky

- ▶ Soit Σ une matrice symmétrique et positive définie $n \times n$.
- ▶ La décomposition est $\Sigma = LL^{\top} = R^{\top}R$, où
 - ► $L = R^{\top}$ est triangulaire inférieure $n \times n$.
- C'est une décomposition LU sans permutation.
- Le calcul est numériquement plus stable, sans recours au pivots.
- Deux opérations intéressantes dans le contexte des variables aléatoires gaussiennes multivariées.
 - ► Multiplication directe *Lx*
 - Résolution du système Lx = y.

Exemple, tirage de variables aléatoires gaussiennes multivariées

Problème : tirer $X \sim N(\mu, \Sigma)$, où la variance Σ de X est $n \times n$ et positive définie.

- La décomposition Cholesky est $Σ = LL^T$.
- ▶ Pour $u \sim N(0, I_n)$, $Lu \sim N(0, \Sigma)$, parce que $LI_nL^{\top} = LL^{\top} = \Sigma$.
- ▶ Alors $Lu + \mu \sim N(\mu, \Sigma)$.

Tirage de variables aléatoire $N(\mu, \Sigma)$ en R

```
M = 100 # Nombre de tirages
n = 3 # Nombre d'éléments du vecteur aléatoire
mu = c(4, 1, 3) # Moyenne mu, variance Sigma
Sigma = matrix(c(4,1,3,1,1,1.5,3,1.5,9), nrow=3, ncol=3)
R = chol(Sigma) # Facteur de Cholesky supérieure
U = matrix(rnorm(n*M), nrow=n, ncol=M) # U_i \sim N(0,I)
X = t(R) \% *\% U + mu \# X i \sim N(mu, Sigma), i=1,...,M
rowMeans(X)
## [1] 3.930382 1.053437 3.155961
var(t(X))
```

```
## [,1] [,2] [,3]
## [1,] 3.8968993 0.9176063 2.495346
## [2,] 0.9176063 1.0130663 1.292524
## [3,] 2.4953462 1.2925241 7.314193
```

Exemple, évaluation de la densité gaussienne multivariée

Si $X \sim N(\mu, \Sigma)$, la densité multivariée est

$$f(x) = |\Sigma|^{-1/2} (2\pi)^{-k/2} \exp\left[-\frac{1}{2}(x-\mu)^{\top} \Sigma^{-1}(x-\mu)\right]$$

Pour calculer $(x - \mu)^{\top} \Sigma^{-1} (x - \mu)$:

$$(x - \mu)^{\top} \Sigma^{-1} (x - \mu) = (x - \mu)^{\top} (LL^{\top})^{-1} (x - \mu)$$
$$= (x - \mu)^{\top} L^{-\top} L^{-1} (x - \mu),$$
$$= ||L^{-1} (x - \mu)||$$

et $L^{-1}(x - \mu)$ est la solution du sytème triangulaire $Lu = (x - \mu)$.

Pour calculer $|\Sigma|$: $|\Sigma| = |L||L^{\top}|$ où $|L| = |L^{\top}|$ est le produit des éléments diagonaux de L, parce qu'elle est triangulaire.

Matrice creuse (sparse matrix), format triple

Matrice creuse A, $m \times n$, avec N éléments (m = 5, n = 6, N = 5):

$$A = \begin{bmatrix} 0 & 0 & A_{13} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & A_{32} & 0 & 0 & A_{35} & 0 \\ 0 & 0 & A_{43} & 0 & 0 & 0 \\ 0 & A_{52} & 0 & 0 & 0 & 0 \end{bmatrix}$$

Triples en ordre colonne par colonne (column major order) :

i	j	X
3	2	A_{32}
5	2	A_{52}
1	3	A_{13}
4	3	A_{43}
3	5	A_{35}

Matrice creuse, format colonne compressée

$$A = \begin{bmatrix} 0 & 0 & A_{13} & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & A_{32} & 0 & 0 & A_{35} & 0 \\ 0 & 0 & A_{43} & 0 & 0 & 0 \\ 0 & A_{52} & 0 & 0 & 0 & 0 \end{bmatrix}$$

i	X
3	A ₃₂
5	A_{52}
1	A_{13}
4	A_{43}
3	A_{35}
_	

Mise en oeuvre en R, format collonne compressé par défaut

```
library(Matrix)

m <- Matrix(nrow=5, ncol=6, data=0, sparse=TRUE)
m[1, 3] <- 13
m[3, 2] <- 32
m[3, 5] <- 35
m[4, 3] <- 43
m[5, 2] <- 52
m</pre>
```

```
## 5 x 6 sparse Matrix of class "dgCMatrix"
##
## [1,] . . 13 . . .
## [2,] . . . . . .
## [3,] . 32 . . 35 .
## [4,] . . 43 . . .
## [5,] . 52 . . . .
```

Représentation en format triple

```
mT <- as(m, "dgTMatrix")
str(mT)
## Formal class 'dgTMatrix' [package "Matrix"] with 6 slots
    ..0 i : int [1:5] 2 4 0 3 2
##
## ..@ j : int [1:5] 1 1 2 2 4
## ..0 Dim : int [1:2] 5 6
## ..@ Dimnames:List of 2
##
    .. ..$ : NULL
    .. ..$ : NULL
##
    ..0 x : num [1:5] 32 52 13 43 35
##
##
    ..@ factors : list()
```

Représentation en format colonne compressée

```
str(m)
## Formal class 'dgCMatrix' [package "Matrix"] with 6 slots
    ..0 i : int [1:5] 2 4 0 3 2
##
    ..0 p : int [1:7] 0 0 2 4 4 5 5
##
## ..0 Dim : int [1:2] 5 6
## ..@ Dimnames:List of 2
##
    .. ..$ : NULL
    .. ..$ : NULL
##
##
    ..0 x : num [1:5] 32 52 13 43 35
    ..@ factors : list()
##
```

Opérations avec les matrices creuses

Opérations rapides et simples

- Soit A une matrice creuse $m \times n$.
- ▶ Quand N = O(n) et les éléments sont bien dispersés, la recherche, l'insertion et la suppression (lookup, insertion, deletion) sont des problèmes
 - \triangleright O(1) pour le format colonne compressée,
 - $ightharpoonup O(\log N)$ pour le format triple.
- Opérations rapides :
 - Recherche: x = A[i,j]
 - Insertion : A[i,j] = Aij
 - Suppression : A[i,j] = 0
 - ► Multiplication par un vecteur : y = A %*% x ou y = x %*% A

Opérations lentes ou difficiles

 Les décompositions LU, QR, Cholesky sont possibles (et disponsibles en R) mais les résultats sont souvent des matrices denses.

Multiplication pour une matrice en format triple

- Soit A une matrice creuse en format triple, n x n avec N éléments non-nuls.
- ▶ Soit x un vecteur, $n \times 1$.
- ► On veut calculer le vecteur dense y = A %*% x.
- ▶ Algorithme : $y \leftarrow 0$ puis pour k = 1, ..., N,

$$y_{i_k} \leftarrow y_{i_k} + A_{i_k,j_k} x_{j_k}$$
.