Data-Parallel Deep Learning Efficient DL, Episode IV, 2025

Yandex Research

Зачем это всё?

BERT-Large Training Times on GPUs

Time	System	Number of Nodes	Number of V100 GPUs
47 min	DGX SuperPOD	92 x DGX-2H	1,472
67 min	DGX SuperPOD	64 x DGX-2H	1,024
236 min	DGX SuperPOD	16 x DGX-2H	256

(single GPU – **over 2 weeks**)

Зачем это всё?

CodeGeeX

CodeT5Mix

ERNIE-Code

BERT-Large Training Times on GPUs

Time	System	Number of Nodes	Number of V100 GPUs
47 min	DGX SuperPOD	92 x DGX-2H	1,472
67 min	DGX SuperPOD	64 x DGX-2H	1,024
236 min	DGX SuperPOD	16 x DGX-2H	256

(single GPU – **over 2 weeks**)

Зачем мы тут?

Заставить много железяк вместе учить одну модель

Зачем мы тут?

Заставить много железяк вместе учить одну модель

понять общие подходы

закодить своими руками

на python / pytorch

TL;DR our plan

lectures 4,5,6

- Data-parallel deep learning

Train BERT-base on wikipedia in 20 minutes or less

TL;DR our plan

lectures 4,5,6

- Data-parallel deep learning Train BERT-base on wikipedia in 20 minutes or less

- Model-parallel deep learning

Fine-tune and deploy models with 100B+ parameters

TL;DR our plan

lectures 4,5,6

- Data-parallel deep learning Train BERT-base on wikipedia in 20 minutes or less

- Model-parallel deep learning

Fine-tune and deploy models with 100B+ parameters

like OPT, Llama, Qwen, DeepSeek R1, ...

- Advanced techniques

Sharding (FSDP), mixed / hybrid parallelism, practice

Rules: Channel / Pipe

Process A:

Channel (pipe):

- Communication in O(message size)
- Asynchronous read/write

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

cs.cmu.edu/~muli/file/parameter_server_osdi14.pdf

All-Reduce data parallel

arxiv.org/abs/1706.02677

Idea: get rid of the host, each gpu runs its own computation Q: why will weights be equal after such step?

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Naive implementation

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Q: Can we do better?

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Tree-allreduce

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Butterfly-allreduce – split data into chunks (ABCD)

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Butterfly-allreduce – split data into chunks (ABCD)

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Butterfly-allreduce – split data into chunks (ABCD)

Input: each device has its its own vector

Output: each device gets a sum of all vectors

Ring-allreduce – split data into chunks (ABCD)

Ring allreduce

Bonus quest: you can only send data between adjacent gpus

Ring topology

Image: graphcore IPU server

Answer & more: tinyurl.com/ring-allreduce-blog

Ring allreduce

Bonus quest: you can only send data between adjacent gpus

[Time to use the whiteboard]

Answer & more: tinyurl.com/ring-allreduce-blog

All-Reduce data parallel

arxiv.org/abs/1706.02677

Idea: get rid of the host, each gpu runs its own computation Q: why will weights be equal after such step?

</Data-parallel>

- + easy to implement
- + can scale to 100s of gpus
- + can be fault-tolerant
- model must fit in 1 gpu
- large batches aren't always good for generalization
- 2-4 GPUs & no time naive data parallel tinyurl.com/torch-data-parallel
- 4+ GPUs or multiple hosts distributed (allreduce) github.com/horovod/horovod
 - Intro to pytorch distributed: tinyurl.com/distributed-dp or in 15 minutes!
- Somewhat faulty GPU/network: synchronous data parallel + drop stragglers
- Very faulty or uneven resources: asynchronous data parallel (more later)
- Efficient training with large batches: LAMB https://arxiv.org/abs/1904.00962
- Dynamically adding or removing resources: https://tinyurl.com/torch-elastic

Decentralized training vs real-world tasks

arxiv.org/abs/1706.02677

Each gpu has different processing time & delays **Q:** can we improve device utilization?

Recap: Parameter Server

HOGWILD! arxiv.org/abs/1106.5730

Idea: remove synchronization step alltogether, use parameter server

Problem: parameter servers need to ingest tons of data over training

Decentralized Training with Gossip

Gossip (communication): https://tinyurl.com/boyd-gossip-2006 Gossip outperforms All-Reduce: https://tinyurl.com/can-dsgd-outperform

Decentralized Training with Gossip

Source: https://tinyurl.com/can-dsgd-outperform

Figure 2: Comparison between D-PSGD and two centralized implementations (7 and 10 GPUs).

Figure 3: (a) Convergence Rate; (b) D-PSGD Speedup; (c) D-PSGD Communication Patterns.

Stochastic Gradient Push

Source: https://arxiv.org/abs/1811.10792

(a) Directed Exponential Graph highlighting node 0's out-neighbours

Stochastic Gradient Push

Source: https://arxiv.org/abs/1811.10792

(a) Directed Exponential Graph highlighting node 0's out-neighbours

Algorithm 1 Stochastic Gradient Push (SGP)

Require: Initialize $\gamma>0$, $\boldsymbol{x}_i^{(0)}=\boldsymbol{z}_i^{(0)}\in\mathbb{R}^d$ and $w_i^{(0)}=1$ for all nodes $i\in\{1,2,\ldots,n\}$

- 1: **for** $k = 0, 1, 2, \dots, K$, at node i, **do**
- 2: Sample new mini-batch $\xi_i^{(k)} \sim \mathcal{D}_i$ from local distribution
- 3: Compute mini-batch gradient at $z_i^{(k)}$: $\nabla F_i(z_i^{(k)}; \xi_i^{(k)})$

<to be continued>

Stochastic Gradient Push

Source: https://arxiv.org/abs/1811.10792

(a) Directed Exponential Graph highlighting node 0's out-neighbours

Algorithm 1 Stochastic Gradient Push (SGP)

Require: Initialize $\gamma>0$, $\boldsymbol{x}_i^{(0)}=\boldsymbol{z}_i^{(0)}\in\mathbb{R}^d$ and $w_i^{(0)}=1$ for all nodes $i\in\{1,2,\ldots,n\}$

- 1: **for** $k = 0, 1, 2, \dots, K$, at node i, **do**
- 2: Sample new mini-batch $\xi_i^{(k)} \sim \mathcal{D}_i$ from local distribution
- 3: Compute mini-batch gradient at $z_i^{(k)}$: $\nabla F_i(z_i^{(k)}; \xi_i^{(k)})$
- 4: $x_i^{(k+\frac{1}{2})} = x_i^{(k)} \gamma \nabla F_i(z_i^{(k)}; \xi_i^{(k)})$

normal GD step

<to be continued>

Source: https://arxiv.org/abs/1811.10792

(a) Directed Exponential Graph highlighting node 0's out-neighbours

Algorithm 1 Stochastic Gradient Push (SGP)

Require: Initialize $\gamma > 0$, $\boldsymbol{x}_i^{(0)} = \boldsymbol{z}_i^{(0)} \in \mathbb{R}^d$ and $w_i^{(0)} = 1$ for all nodes $i \in \{1, 2, \dots, n\}$

- 1: **for** $k = 0, 1, 2, \dots, K$, at node i, **do**
- 2: Sample new mini-batch $\xi_i^{(k)} \sim \mathcal{D}_i$ from local distribution
- 3: Compute mini-batch gradient at $z_i^{(k)}$: $\nabla F_i(z_i^{(k)}; \xi_i^{(k)})$
- 4: $\boldsymbol{x}_{i}^{(k+\frac{1}{2})} = \boldsymbol{x}_{i}^{(k)} \gamma \nabla \boldsymbol{F}_{i}(\boldsymbol{z}_{i}^{(k)}; \boldsymbol{\xi}_{i}^{(k)})$
- 5: Send $(p_{j,i}^{(k)} \boldsymbol{x}_i^{(k+\frac{1}{2})}, p_{j,i}^{(k)} w_i^{(k)})$ to out-neighbors; receive $(p_{i,j}^{(k)} \boldsymbol{x}_j^{(k+\frac{1}{2})}, p_{i,j}^{(k)} w_j^{(k)})$ from in-neighbors

<to be continued>

Source: https://arxiv.org/abs/1811.10792

(a) Directed Exponential Graph highlighting node 0's out-neighbours

Algorithm 1 Stochastic Gradient Push (SGP)

Require: Initialize $\gamma>0$, $\boldsymbol{x}_i^{(0)}=\boldsymbol{z}_i^{(0)}\in\mathbb{R}^d$ and $w_i^{(0)}=1$ for all nodes $i\in\{1,2,\ldots,n\}$

- 1: **for** $k = 0, 1, 2, \dots, K$, at node i, **do**
- 2: Sample new mini-batch $\xi_i^{(k)} \sim \mathcal{D}_i$ from local distribution
- 3: Compute mini-batch gradient at $z_i^{(k)}$: $\nabla F_i(z_i^{(k)}; \xi_i^{(k)})$
- 4: $\mathbf{x}_{i}^{(k+\frac{1}{2})} = \mathbf{x}_{i}^{(k)} \gamma \nabla \mathbf{F}_{i}(\mathbf{z}_{i}^{(k)}; \xi_{i}^{(k)})$
- 5: Send $(p_{i,i}^{(k)} \mathbf{x}_i^{(k+\frac{1}{2})}, p_{i,i}^{(k)} w_i^{(k)})$ to out-neighbors; receive $(p_{i,j}^{(k)} x_j^{(k+\frac{1}{2})}, p_{i,j}^{(k)} w_j^{(k)})$ from in-neighbors
- 6: $\boldsymbol{x}_{i}^{(k+1)} = \sum_{j} p_{i,j}^{(k)} \boldsymbol{x}_{j}^{(k+\frac{1}{2})}$ 7: $w_{i}^{(k+1)} = \sum_{j} p_{i,j}^{(k)} w_{j}^{(k)}$ 8: $\boldsymbol{z}_{i}^{(k+1)} = \boldsymbol{x}_{i}^{(k+1)} / w_{i}^{(k+1)}$ weighted average

9: end for

Source: https://arxiv.org/abs/1811.10792

SGP vs ImageNet (ResNet50 + SGD w/ momentum)

Source: https://arxiv.org/abs/1811.10792

SGP vs WMT English-German (Transformer, Adam)

Gossip vs All-Reduce

Your thoughts?

Gossip + All-Reduce

Source: arxiv.org/abs/2005.00124

Core idea: run all-reduce in independent groups You only have to synchronize for your small group Swap groupmates between iterations

Gossip + All-Reduce

Source: arxiv.org/abs/2005.00124

Core idea: run all-reduce in independent groups You only have to synchronize for your small group **Swap** groupmates between iterations

Gossip + All-Reduce

Source: arxiv.org/abs/2005.00124

Experiment setup: up to 1024 GPU, Natural (or emulated) network latency

Reinforcement Learning DDPO on Habitat

Q: what if sending tensors during

AllReduce takes too long?

Quantized communication

https://arxiv.org/abs/1511.04561

TL;DR

- send data in 8-bit
- all computations in 32-bit
- choose best data format

PROFIT: same quality as float16

Can we compress further?

without losing quality

https://arxiv.org/abs/1901.09847 - EF theory https://arxiv.org/abs/1905.13727 - PowerSGD

TL;DR - use extreme compression, e.g. 1-bit or top-5% gradients

- if you lose something in compression, reuse it on the next step

time flows left to right

https://arxiv.org/abs/1901.09847 - EF theory https://arxiv.org/abs/1905.13727 - PowerSGD

TL;DR - use extreme compression, e.g. 1-bit or top-5% gradients

https://arxiv.org/abs/1901.09847 - EF theory https://arxiv.org/abs/1905.13727 - PowerSGD

TL;DR - use extreme compression, e.g. 1-bit or top-5% gradients

https://arxiv.org/abs/1901.09847 - EF theory https://arxiv.org/abs/1905.13727 - PowerSGD

TL;DR - use extreme compression, e.g. 1-bit or top-5% gradients

https://arxiv.org/abs/1901.09847 - EF theory https://arxiv.org/abs/1905.13727 - PowerSGD

TL;DR - use extreme compression, e.g. 1-bit or top-5% gradients

https://arxiv.org/abs/1901.09847 - EF theory https://arxiv.org/abs/1905.13727 - PowerSGD

- 1: hyperparameters: learning rate γ , momentum parameter λ
- 2: **initialize** model parameters $\mathbf{x} \in \mathbb{R}^d$, momentum $\mathbf{m} \leftarrow \mathbf{0} \in \mathbb{R}^d$, replicated across workers
- 3: at each worker $w = 1, \dots, W$ do
- initialize memory $\mathbf{e}_w \leftarrow \mathbf{0} \in \mathbb{R}^d$ 4: 5:
 - for each iterate $t = 0, \dots$ do Compute a stochastic gradient $\mathbf{g}_w \in \mathbb{R}^d$.
- 6:
 - ▶ Incorporate error-feedback into update $\Delta_w \leftarrow \mathbf{g}_w + \mathbf{e}_w$

▶ Memorize local errors

 \triangleright Reconstruct an update $\in \mathbb{R}^d$

- $\mathcal{C}(\Delta_w) \leftarrow \text{COMPRESS}(\Delta_w)$
- $\mathbf{e}_w \leftarrow \Delta_w \mathsf{DECOMPRESS}(\mathcal{C}(\Delta_w))$ $\mathcal{C}(\Delta) \leftarrow \mathsf{AGGREGATE}(\mathcal{C}(\Delta_1), \dots, \mathcal{C}(\Delta_W))$ 10:
 - $\Delta' \leftarrow \text{DECOMPRESS}(\mathcal{C}(\Delta))$
- 11: $\mathbf{m} \leftarrow \lambda \mathbf{m} + \Delta'$ 12:
- $\mathbf{x} \leftarrow \mathbf{x} \gamma \left(\Delta' + \mathbf{m} \right)$ 13:
 - end for
- 14: 15: end at

PowerSGD: low-rank approx grads + Error Feedback

https://arxiv.org/abs/1901.09847 - EF theory https://arxiv.org/abs/1905.13727 - PowerSGD

 \triangleright Now, $P = \frac{1}{W}(M_1 + ... + M_W)Q$

 \triangleright Now, $Q = \frac{1}{W}(M_1 + ... + M_W)^{\top} \hat{P}$

- 1: The update vector ∆w is treated as a list of tensors corresponding to individual model parameters. Vector-shaped parameters (biases) are aggregated uncompressed. Other parameters are reshaped into matrices. The functions below operate on such matrices independently. For each matrix M∈ R^{n×m}, a corresponding Q∈ R^{m×r} is initialized from an i.i.d. standard normal distribution.
- 2: **function** COMPRESS+AGGREGATE(update matrix $M \in \mathbb{R}^{n \times m}$, previous $Q \in \mathbb{R}^{m \times r}$)

3:
$$P \leftarrow MQ$$

4:
$$P \leftarrow \text{ALL REDUCE MEAN}(P)$$

$$\hat{P} \leftarrow \text{ORTHOGONALIZE}(P)$$

6:
$$Q \leftarrow M^{\top} \hat{P}$$

7:
$$Q \leftarrow \text{ALL REDUCE MEAN}(Q)$$

8: **return** the compressed representation
$$(\hat{P}, Q)$$
.

- 9: end function
- 10: **function** DECOMPRESS($\hat{P} \in \mathbb{R}^{n \times r}, Q \in \mathbb{R}^{m \times r}$)
- 11: return $\hat{P}Q^{\top}$
- 12: end function

Read More: gradient compression

https://arxiv.org/abs/1901.09847 - EF theory

https://arxiv.org/abs/2106.05203 - better EF'21

https://arxiv.org/abs/1905.13727 - PowerSGD

https://arxiv.org/abs/2110.03294 - more EF'21

```
import torch.distributed.algorithms.ddp_comm_hooks.powerSGD_hook as powerSGD
    ddp_model = nn.parallel.DistributedDataParallel(
 3
         module=model,
         device_ids=[rank],
 5
 6
    state = PowerSGD.PowerSGDState(
      process_group=process_group,
10
      matrix_approximation_rank=1,
11
      start_powerSGD_iter=1_000,
12
    ddp_model.register_comm_hook(state, PowerSGD.powerSGD_hook)
13
```

"I hat's all Folks!"

Summary: operation parallelism

Data-parallel: ???

Model-parallel: ???

Summary: operation parallelism

Data-parallel:

one process applies all model on **partial data** best for smaller model, more computations

Model-parallel: one process applies partial model on all data best for larger model, fewer computations

Which one is better..
for ResNet50?
for Llama 70B?
In general?

Summary: operation parallelism

Data-parallel:

one process applies all model on **partial data** best for smaller model, more computations

Model-parallel: one process applies partial model on all data best for larger model, fewer computations

Which one is better..

for ResNet50? In Llama 70B? It depends...

- on model size
- on compute