武汉大学计算机学院2008-2009学年第二学期 2006级《编译原理》参考答案

-, (1)

$$\operatorname{start} \to 0 \stackrel{1}{\to} 2 \stackrel{0}{\to} 3 \stackrel{\varepsilon}{\to} 5 \stackrel{0}{\to} 3 \stackrel{1}{\to} 1 \stackrel{0}{\to} 5 \stackrel{1}{\to} 5$$

或

(2)

$$A = \{0,1,2\}$$

$$B = \{3,4,5\}$$

$$C = \{1,2,5\}$$

状态转换图为:

- (4) 以一个或多个连续的1或以0开始并不再有两个或多个连续的1为子串的非空字符串集合。 或由0和1组成且至少含有一个0并不含"011"子串的非空字符串集合。
- 二、(1)最右推导如下:

$$S \implies aaSb$$

$$\implies aaaaSbb$$

$$\implies aaaabBbb$$

$$\implies aaaabbb$$

|语法树:

- $(2) \{a^{2m}b^n \mid m, n \in \mathbb{N} \land 0 \leqslant 2m \leqslant 2n\}.$
- (3) First(S) = { a, b, ε }; First(B) = { b, ε } Follow(S) = { b, \$ }; Follow(B) = { b, \$ }.

(4)

		a	b	\$
ľ	S	$S \to aaSb$	$S \to B$	$S \to B$
ľ	\overline{B}		$B \to bB, B \to \varepsilon$	$B \to \varepsilon$

(5) 与G(S)等价的LL(1)文法:

$$\begin{array}{ccc} S & \to & AB \\ A & \to & aaAb \mid \varepsilon \\ B & \to & bB \mid \varepsilon \end{array}$$

(6) 由上最右推导得知, LR分析器识别语句 $a^{2m}b^pb^m(p \ge 0)$ 的步骤应该是: 在移进2m个a之后,先把前p个多余的b归约为B,再将B归约为S得到活 前缀 $a^{2m}S$,最后将剩余的m个b用产生式 $S \rightarrow aaSb$ 逐个归约。由于多余 的b可以任意多,且LR分析从左到右的扫描机制,及只能向前查看固定 次数的符号,因此分析器无法知道有多少个b是多余的,从而无法解决何 时停止将多余的b归约为B。故不是LR(k)文法。

或者简答为: LR分析器由于无法知道有多少个b, 因此不能判断多少 个b归约为B,多少个b用于平衡a。

(1) 面对输入"n + n + n"有两个不同的最左推导。

推导1:

 $E \implies E + E$ $\implies n + E$ $\implies n + E + E$ $\implies n + E + E$ $\implies n + n + E$ $\implies n + n + n$

推导2:

$$E \implies E + E$$

$$\implies E + E + E$$

$$\implies n + E + E$$

$$\implies n + n + E$$

$$\implies n + n + E$$

$$\implies n + n + n$$

(2)

$$E \rightarrow T + E \mid T$$

$$T \rightarrow \sqrt{T} \mid F$$

$$F \rightarrow F^{2} \mid n$$

四、 (1) 识别活前缀的自动机在吃进 $\sqrt{E} + E +$ 之后到达状态 I_2 ,因此它是活前 缀, 其对应的有效项目集即是I2所对应的项目集:

$$\overline{\{E \to E + \bullet E\}} = \{E \to E + \bullet E, E \to \bullet E + E, E \to \bullet \sqrt{E}, E \to \bullet \sqrt{E}, E \to \bullet n\}$$

识别活前缀的自动机在吃进 $\sqrt{\sqrt{E+E^2}}$ 之后到达状态 I_4 , 不能再接受任 何非终结符,因此 $\sqrt{\sqrt{E+E^{2}}}$ 不是活前缀。

(2) 状态 I_3 和 I_7 面对+有移进/归约冲突。

(3) $\operatorname{First}(E) = \{n, \sqrt{\}}, \operatorname{Follow}(E) = \{+, {}^2\$\}, \operatorname{SLR分析表如下所示}$:

	action					goto E
状态	+	n		2	\$	E
0		s5	s6			1
1	s2			s4	acc	
2		s5	s6			3
3	r1			s4	r1	
4	r3			r3	r3	
5	r4			r4	r4	
6		s5	s6			7
7	r2			s4	r2	

(4) " $\sqrt{n+n^2}$ "的分析过程如下所示:

剩余串	分析栈	分析动作
$\sqrt{n+n^2}$ \$	0	shift
$n + n^2$ \$	$0\sqrt{6}$	shift
$+n^{2}$ \$	$0\sqrt{6n5}$	reduce $E \to n$
$+n^2$ \$	$0\sqrt{6E7}$	reduce $E \to \sqrt{E}$
$+n^2$ \$	0E1	shift
n^2 \$	0E1 + 2	shift
² \$	0E1 + 2n5	reduce $E \to n$
² \$	0E1 + 2E3	shift
\$	$0E1 + 2E3^24$	reduce $E \to E^2$
\$	0E1 + 2E3	reduce $E \to E + E$
\$	0E1	分析成功

五、(1)

产生式语义规则
$$E \rightarrow E_1 + E_2$$
 $E.val = E_1.val + E_2.val$ $E \rightarrow \sqrt{E_1}$ $E.val = \text{sqrt } (E_1.val)$ $E \rightarrow E_1^2$ $E.val = E_1.val * E_1.val$ $E \rightarrow n$ $E.val = n.val$

(2) $\sqrt{3^2} + \sqrt{4^2}$ 的附注语法树:

七、程序在调用outputc()后的内存格局如下(little endian):

address	memory	note
X	0	← a
x-1	0x30	
x-2	0x31	
x-3	0x32	
x-4	0x33	← b
x-5	0x30	
x-6	0x31	
x-7	0x32	
x-8	0x33	← 实参
x-12	ret add	
x-16	old fp	
x-20	x-8	← ср

这时指针cp指向实参的首地址,语句"while (*cp) printf("%c", *cp++);"将以字节为单位并按内存地址增长方向连续输出内存对应的ASCII字符,直到内存值为0为止。故反向以字符方式两次输出整数0x30313233。