Criptografia RSA gaussiana

Luis Antonio Coêlho

Trabalho de Conclusão de Curso - apresentado à Faculdade de Tecnologia da Universidade Estadual de Campinas

Orientadora: Profa. Dra. Juliana Bueno

21 de fevereiro de 2017

Resumo

 ${\cal O}$ presente artigo expõe o resultado da pesquisa para TCC sobre o algoritmo de criptografia RSA gaussiano.

Sumário

1	Intr	rodução	2	
2	Primos e Fatoração			
	2.1	Ciclos e Restos	7	
	2.2	Números Primos e Compostos	7	
	2.3	Fatoração	8	
3	Operações Modulares			
	3.1^{-}	Definição de módulo	10	
	3.2	Propiedades das congruências	11	
Bi	ibliog	grafia	12	

Capítulo 1

Introdução

O sigilo sempre foi uma arma explorada pelos seres humanos para vencer certas batalhas, mesmo que na cotidiana missão de se comunicar. Foi a partir dessa necessidade que se criou o que chamamos de *criptografia*, nome dado ao conjunto de técnicas usadas para se falar e escrever em códigos. Seu objetivo é garantir que apenas as pessoas envolvidas na comunicação possam compreender a mensagem codificada (ou criptogtafada), garantindo que terceiros não saibam o que foi conversado.

Para compreender como funciona o processo de codificação e decodificação faz-se necessário o uso de uma série de termos técnicos, para fins pedagógicos iremos introduzir tais conceitos apresentando um dos primeiros algorítmos criptogríficos que se tem conhecimento, a criptografia de César, além de seus sucessores.

A chamada *criptografia de César*, criada pelo imperador romano César Augusto, consistia em substituir cada letra por outra que estivesse a três posições a frente, como, por exemplo, a letra A era substituída pela letra D.

Uma forma muito natural de se generalizar o algoritmo de César é fazer a troca da letra da mensagem por outra em uma posição qualquer fixada. A chamada *criptografia de substituição monoalfabética* consite em substituir cada letra pela a que ocupa

n posições a sua frente, sendo que o número n é conhecido apenas pelo emissor e pelo receptor da mensagem. Chamamos este número n de chave criptográfica. Para podermos compreender a mensagem, precisamos substituir as letras que formam a mensagem criptografado pelas as que estão n posições antes.

O algoritmo monoalfabético tem a característica indesejada de ser de fácil decodificação, pois possui apenas 26 chaves possíveis, e isso faz com que no máximo em 26 tentativas o código seja decifrado. Com o intuito de dificultar a quebra do código monoalfabético foram propostas as cifras de substituição polialfabéticas em que a chave criptográfica passa a ser uma palavra ao invés de um número. A ideia é usar as posições ocupadas pelas letras da chave para determinar o número de posições que devemos avançar para obter a posição da letra encriptada. Vejamos, por meio de um exemplo, como funciona esse sistema criptográfico.

Sejam "SENHA" a nossa chave criptográfica e "ABOBORA" a mensagem a ser encriptada. Abaixo colocamos as letras do alfabeto com suas respectivas posições. Observe que repetimos a primeira linha de letras para facilitar a localização da posiçõ da letra encriptada e usamos a barra para indicar que estamos estamos no segundo ciclo.

Vejamos como encriptar a palavra "ABOBORA". Iniciamos o processo escrevendo a mensagem. Ao lado de cada letra da mensagem aparece entre parênteses o número que indica a sua posição. Abaixo da mensagem escrevemos as letras da chave criptográfica, repetindo-as de forma cíclica quando necessário. Analogamente, ao lado de cada letra da chave aparece entre parênteses o número da posição ocupada de cada letra, e o sinal de soma indica que

devemos avançar aquele número de posições. Ao final do processo aparecem as letras encriptadas. Entre parênteses está a posição resultante da combinação das posições da mensagem e da chave.

Observe que a encriptação polialfabética é mais difícil de ser quebrada que a monoalfabética uma vez que letras iguais não têm, necessariamente, a mesma encriptação. Observe que neste tipo de criptografia o emissor precisa passar a chave para o receptor da mensagem de forma segura para que o receptor possa decifrar a mensagem, isto é, a chave usada para encriptar a mensagem é a mesma que deve ser usada para decifrar a mensagem. Veremos que esse é justamente o ponto fraco nesse tipo de encriptação pois usa a chamada *chave simétrica*, ou seja, a chave usada pelo emissor para codificar a mensagem é a mesma usada pelo receptor para decodificar a mensagem. Nesse processo, a chave deve ser mantida em segredo e bem guardada para garantir que o código não seja quebrado e isso requer algum tipo de contato físico entre emissor e receptor.

Durante a Primeira Guerra Mundial o contato físico para a criação de chaves era complicado, isso levou a criação de máquinas automáticas de cripotgrafia. O *Enigma* foi uma destas máquinas e era utilizada pelos alemães tanto para criptografar como para descriptografar códigos de guerra. Semelhante a uma máquina de escrever, os primeiros modelos foram patenteados por Arthur Scherbius em 1918. Essas máquinas ganharam popularidade entre as forças militares alemães devido a facilidade de uso e sua suposta indecifrabilidade do código.

O matemático Alan Turing foi o responsável por quebrar o código dos alemães durante a Segunda Guerra Mundial. A descoberta de Turing mostrou a fragilidade da criptografia baseada em chave simétrica e colocou novos desafios à criptografia. O

grande problema passou a ser a questão dos protocolos, isto é, como transmitir a chave para o receptor de forma segura sem que haja contato físico entre as partes?

Em 1949, com a publicação do artigo Communication Theory of Secrecy Systems [Sha49] de Shannon, temos a inauguração da criptografia moderna. Neste artigo ele escreve matematicamente que cifras teoricamente inquebráveis são semelhantes as cifras polialfabéticas. Com isso ele transformou a criptografia que até então era uma arte em uma ciência.

Em 1976 Diffie e Hellman publicaram New Directions in Cryptography [DH76]. Neste artigo há a introdução ao conceito de chave assimétrica, onde há chaves diferentes entre o emissor de mensagens e seu receptor. Com a assimetria de chaves não era mais necessário um contato tão próximo entre emissor e receptor, que já havia sido problema no passado. Neste mesmo artigo é apresentado o primeiro algoritmo de criptografia de chave assimétrica ou como é mais conhecido nos dias atuais Algorito de Criptografia de Chave Pública, o protocolo de Diffie-Hellman.

Um dos algoritmos mais famosos da criptografia assimétrica é o RSA(RIVEST et al, 1983) [RSA78], algoritmo desenvolvido por Rivest, Shamir e Adleman. Este algoritmo está presente em muitas aplicações de alta segurança, como bancos, sistemas militares e servidores de internet, e ele utiliza para a geração de chaves dois números primos de grandeza superior a 2^{512} multiplicados entre si.

Neste trabalho será feita a exposição detalhada da chamada criptografia RSA clássica, enfatizando a parte matemática relacionada a teoria dos números, necessária para a construção do algoritmo.

O maior objetivo deste é analisar a viabilidade em se propor um criptografia derivada do RSA, mas centrada no conjunto dos números primos de Gauss, que são todos os números complexos de forma a+bi tais que a e b existam no conjunto dos inteiros e a^2+b^2 resulte em um número primo, a qual chamamos de criptografia RSA gaussiana.

Como primeiro avanço necessário para este novo algoritmo se faz necessária a adaptação de uma série de resultados própios dos números primos para os números primos gaussianos, por isso grande parte do trabalho se centrará em demonstrar resultados matemáticos e discutir algumas dificuladades em obtê-los.

Como se trata de uma proposta inovadora, deixamos para trabalhos futuros a análise comparativa entre a RSA clássica e a RSA gaussiana.

Capítulo 2

Primos e Fatoração

2.1 Ciclos e Restos

Para podermos compreender a aritmética modular, precisamos começar entendendo o conceito de ciclicidade, que são os fatos que ocorrem sempre após um determinado período constante. Um bom exemplo deste conceito é o nascer do sol, que é um evento que ocorre sempre após um ciclo de 24 horas, assim como o dia de seu aniversário ocorre uma vez a cada ciclo de um ano.

O mesmo tipo de evento é observado com o resto dos números inteiros. Tomemos por exemplo os restos de divisão pelo número inteiro 4:

É visível que após 4 números o resto tende a se repetir. O mesmo feito ocorre a qualquer número inteiro n, onde o ciclo se repetirá sempre a cada n iterações. Os números que apresentam o resto 0 são conhecidos como múltiplos de n.

2.2 Números Primos e Compostos

Existe um tipo especial de número que só é múltiplo, ou seja, possui resto 0, em duas condições, quando n é igual a 1 ou quando ele é igual a n. A esse conjunto de números atribui-se o nome de $números\ primos$.

Existem infinitos números primos, caso não acredite vamos supor que o conjunto finito de primos seja composto por $p_1, p_2, ..., p_r$. Considerando que o número inteiro $n = (p_1)(p_2)...(p_r) + 1$. n deve possuir um fator p, que está contido em $p_1, p_2, ..., p_r$, mas isso significa q p divide 1, o que é absurdo e prova que o conjunto não tem fim.

Todo o número que não é primo é chamado de *Número Com*posto, sendo que este número composto pode ser escrito em uma combinação única de fatores primos. O processo de se descobrir estes fatores é chamado de fatoração.

2.3 Fatoração

Anteriormente falamos que todo o número pode ser escrito por uma combinação de fatores primos, neste capítulo vamos abordar como se pode obter estes fatores.

Começamos por escolher o número inteiro n ao qual iremos fatorar, em seguida testamos a sua divisibilidade por 2, se for tente dividí-lo novamente por 2, senão passa-se para o próximo número primo, o 3. Repete-se esse procedimento até chegarmos a \sqrt{n} , caso não achemos nenhum fator primo até \sqrt{n} , n é primo.

Quando acabamos de realizar a fatoração, chegamos a um número fatorado da forma $n=(2^{a_1})(3^{a_2})...(p^{a_p})$, todo o número inteiro pode ser escrito nessa forma, chamada forma fatorada, veja, por exemplo o $12=(2^2)(3^1)$ e o $19=(19^1)$.

Essa forma fatorada nos é formalmente apresentada pelo $Teorema\ da\ Fatoração\ \'Unica$. Ele nos diz que dado um número inteiro $n\geq 2$ pode-se escrevê-lo de forma única como:

$$n = (p_1^{e_1})...(p_k^{e_k})$$

onde $1 < p_1 < ... < p_k$ são primos e $e_1, ..., e_k$ são inteiros.

Mesmo algoritmo da fatoração sendo tão simples de se compreender, ele é demorado até para os mais modernos computadores. Para se ter uma ideia disto, um computador comum executa cerca de 50 divisões por segundo, para se calcular com certeza que um número próximo a 10^{100} é primo ele levaria cerca de 317 decilhões de anos.

Capítulo 3

Operações Modulares

3.1 Definição de módulo

Já lhe foi apresentado anteriormente o conceito da ciclicidade para a definição de restos, neste capítulo iremos nos aprofundar mais sobre esse conceito, estudando as propiedades necessárias da aritmética modular para a elaboração da cripotgrafia RSA.

Um dos conceitos mais importantes da aritmética modular é o de congruência, representado pelo símbolo ≡. Talvez o exemplo mais comum de congruência em nossas vidas sejam os dias da semana, embora o número do dia venha a variar ao longo do mês, sempre após 7 dias voltará a ser domingo, por exemplo, logo a semana é uma congruência de módulo 7.

Para exemplificar vamos supor que primeiro domingo deste mês foi dia 4, e o último será dia 25, logo temos que

$$4 \equiv 25 \pmod{7}$$

Fique claro que tornou 25 congruente a 4 no módulo 7 não foi o fato de caírem no mesmo dia, isso é apenas um consequência, o que os torna congruentes é o fato de que divididos pelo módulo, no caso 7, eles apresentam o mesmo resto. Esse fato não se repete, por exemplo, se o módulo for 5, neste caso $4 \equiv 4 \pmod{5}$ e $25 \equiv 0 \pmod{5}$.

3.2 Propiedades das congruências

Assim como as igualdades e desigualdades, as congruências também possuem uma listagem de propiedades em suas operações. Ao longo desta seção lhe serão demonstradas essas propiedades. Fique atento pois as propiedades das congruências nos facilitarão a compreensão de alguns conceitos importantes do algoritmo RSA mais a frente.

A primeira propiedade das congruências, e a mais simples dela, é a *reflexiva*, onde se diz que um número sempre é congruente a si mesmo. Para termos certeza vamos tomar um número qualquer a, sendo $a \equiv a(modn)$, é equivalente dizermos que $a - a \equiv 0(modn)$. Por 0 ser múltiplo de qualquer número podemos confirmar que $a \equiv a(modn)$.

A propiedade sim'etrica nos diz que se $a \equiv b(modn)$, $b \equiv a(modn)$. A afirmaç ao anterior ode ser escrito como se a-b é múltiplo de n, mas para isso deve ocorrer algum número k que equivala à:

$$a - b = k \cdot n$$

Caso multipliquemos esta equação por -1, vamos obter:

$$b - a = (-k) \cdot n$$

Que nos prova que b-a é múltiplo de n, logo $b \equiv a(modn)$.

A terceira propiedade das congruências é a transitiva, onde se diz que se $a \equiv b(modn)$ e $b \equiv c(modn)$, $a \equiv c(modn)$. Para prová-la vamos observar as equações

$$a - b = k \cdot n$$
 e $b - c = l \cdot m$

Sabendo que k e l são inteiros escolhidas de forma adequada as equações, podemos somar as equações, resultando em:

$$(a-b) + (b-c) = k \cdot n + l \cdot m$$

Que pode ser simplificada em:

$$a - c = (k + l) \cdot m$$

Essa equação equivale em valor a $a \equiv c(modn)$, logo a propiedade transitiva é válida.

Referências Bibliográficas

- [Gau15] Gauss, Carl Friedrich: Methodus nova integralium valores per approximationem inveniendi. apvd Henricvm Dieterich, 1815.
- [mil] Millennium Problems Clay Mathematics Institute.

 http://www.claymath.org/millennium-problems. Acessado em
 15/11/2016.
- [Rie59] Riemann, Bernhard: <u>Ueber die Anzahl der Primzahlen unter einer gegebenen Grosse</u>. Ges. Math. Werke und Wissenschaftlicher Nachlaß, 2:145–155, 1859.
- [RSA78] Rivest, Ronald L, Adi Shamir e Leonard Adleman:

 <u>A method for obtaining digital signatures and public-key cryptosystems.</u>

 Communications of the ACM, 21(2):120–126, 1978.
- [SF09] Sinkov, Abraham e Todd Feil: <u>Elementary cryptanalysis</u>, volume 22. MAA, 2009.
- [Sha49] Shannon, Claude E: <u>Communication theory of secrecy systems</u>. Bell system technical journal, 28(4):656–715, 1949.