Quinta lista de exercícios.

Gráficos de funções. Modelagem. Funções definidas por partes.

- 1. Esboce o gráfico de cada uma das funções abaixo com base em uma tabela de valores da função em pontos que você escolheu.
 - a) f(x) = 5.
 - b) f(x) = x + 1.
 - c) f(x) = 3 2x.
 - d) $f(x) = x^2$.
 - e) $f(x) = x^2 1$.
 - f) $f(x) = 1 x^2$.
 - g) $f(x) = (x-1)^2$.
 - h) $f(x) = \sqrt{x}$.
 - i) $f(x) = 1 + \sqrt{x}$.
 - j) $f(x) = \sqrt{1 + x}$.
 - k) f(x) = 1/x.
- 2. Um fazendeiro pretende usar 400 m de cerca para delimitar uma área retangular que servirá de pasto. Responda aos itens abaixo, lembrando que a área de um terreno retangular com largura l e profundidade p é dada por $l \cdot p$, e que o perímetro desse terreno retangular é igual a 2l + 2p.
 - a) Relacione a profundidade à largura do pasto, considerando o uso dos 400 m de cerca.
 - b) Escreva uma função que forneça a área cercada em relação à largura do pasto.
 - c) Calcule a área de pasto, supondo que sua largura é igual a 75 m. Faça o mesmo para $l = 150 \, m.$
 - d) Esboce o gráfico da função. Determine seu domínio e sua imagem
 - e) Indique em quais intervalos a função é crescente e em quais é decrescente.
 - f) Com base no gráfico, indique se é possível cercar uma área de 12000 m².
 - g) Com base no gráfico, determine a maior área que pode ser cercada e as dimensões do terreno, nesse caso.7
- 3. Calcule o valor das funções abaixo nos pontos x = -2; x = -1; x = 0; x = 0.5; x = 1; x = 2.

a)
$$f(x) = \begin{cases} 3+x, & se \ x \le -1, \\ 2-3x, & se \ x > -1. \end{cases}$$

b) $f(x) = \begin{cases} x, & se \ x < 1, \\ x^2, & se \ x \ge 1. \end{cases}$

b)
$$f(x) = \begin{cases} x, & \text{se } x < 1, \\ x^2, & \text{se } x \ge 1. \end{cases}$$

4. A tabela abaixo fornece o custo de envio de uma carta simples pelo correio, em relação ao peso da carta. Escreva a função que representa esse custo, e trace seu gráfico.

Peso (g)	Preço (R\$)
Até 20	0,75
Mais de 20 até 50	1,15
Mais de 50 até 100	1,60
Mais de 100 até 150	2,00
Mais de 150 até 200	2,45
Mais de 200 até 250	2,85
Mais de 250 até 300	3,30
Mais de 300 até 350	3,70
Mais de 350 até 400	4,15
Mais de 400 até 450	4,55
Mais de 450 até 500	5,00

- 5. Uma companhia de entrega expressa cobra R\$ 20,00 pela entrega de qualquer encomenda com peso menor ou igual a 2 kg. Para cada kg excedente, a companhia cobra R\$ 2,50.
 - a) Defina a função C(p) que fornece o custo de entrega de uma encomenda em relação ao seu peso, p.
 - b) Determine (algebricamente) o peso máximo que se pode transportar (em uma única encomenda) com R\$ 145,00.
 - c) Trace o gráfico de C(p) para p (em kg) no intervalo [0, 10].
- 6. Trace o gráfico das funções abaixo para $x \in [-2,3].$
 - a) $f(x) = \begin{cases} 1-x, & se \ x \le 2, \\ x, & se \ x > 2. \end{cases}$
 - b) $f(x) = \begin{cases} 1, & \text{se } x < 0, \\ -1, & \text{se } x \ge 0. \end{cases}$

c)
$$f(x) = \begin{cases} 0, & \text{se } x < 1, \\ x^2 - 1, & \text{se } x \ge 1. \end{cases}$$

7. As figuras abaixo mostram os gráficos de funções definidas por partes. Escreva a expressão de cada função, e determine o conjunto imagem correspondente.

a)

b)

c)

8. A remuneração semanal de Roberto depende do número de horas de trabalho, que são divididas em horas normais e horas extras. O gráfico abaixo mostra a função R(t), que fornece o valor em reais que Roberto recebe por semana,

em função do número de horas trabalhadas, t. Com base no gráfico

- a) Determine a expressão analítica de R(t).
- b) Determine a partir de quantas horas semanais de trabalho Roberto passa a ganhar por horas extras.
- c) Determine quanto Roberto recebe pela hora normal e pela hora extra.

- 9. Dada a função f cujo gráfico é representado abaixo, determine, para o domínio especificado,
 - a) os valores de f(-1), f(2) e f(3);
 - b) os pontos nos quais f(x) = -0.5;
 - c) os pontos nos quais f(x) < -1;
 - d) os intervalos em que f é crescente, decrescente e constante;
 - e) os pontos de máximo e mínimo local de f e os valores da função nesses pontos;
 - f) os zeros de f.

- 10. Dada a função f cujo gráfico é representado abaixo, determine, para o domínio especificado,
 - a) O domínio e a imagem de f;
 - b) os valores de f(-1,5), f(0) e f(2);
 - c) os pontos nos quais $f(x) \ge 0.5$;

- d) os intervalos em que f é crescente ou decrescente;
- e) os pontos de máximo e mínimo local de f e os valores da função nesses pontos.

- 11. Dadas as funções f e g cujos gráficos são representados abaixo, determine, para o domínio especificado,
 - a) os pontos nos quais $f(x) \le 0.5$;
 - b) os pontos nos quais $g(x) \ge 0.5$;
 - c) os pontos nos quais $f(x) \ge g(x)$;
 - d) os intervalos em que f é crescente ou decrescente;
 - e) os intervalos em que g é crescente ou decrescente;
 - f) os pontos de máximo e mínimo local de f e o valor da função nesses pontos;
 - g) os pontos de máximo e mínimo local de g e o valor da função nesses pontos;
 - h) valores aproximados para os zeros de f.

12. Chico é proprietário de uma barraca que vende pães-de-queijo na feira, e percebeu que, se o preço do pão-de-queijo é baixo, muita gente compra o petisco, mas o rendimento no fim do dia é pequeno. Por outro lado, quando o pão

está muito caro, pouca gente o compra. Assim, Chico fez uma pesquisa com seus clientes e percebeu que o número de pães vendidos por dia é dado pela função $N(p)=1000-500p+60p^2$, em que p é preço de cada pão, em reais. O domínio dessa função é o intervalo [0; 3,33], já que, para preços maiores, ninguém compra o pão-de-queijo.

- a) Escreva a função R(p) que fornece a receita bruta diária pela venda dos pães, dada pelo produto entre o número de pães vendidos e o preço de cada pão.
- b) Para produzir e vender n pães a cada dia, Chico gasta um valor (em reais) dado pela função C(n)=80+0,4n. O lucro diário obtido com a venda dos pães é a diferença entre a receita bruta e o custo. Escreva a função l(p) que fornece o lucro diário, em relação ao preço do pão-de-queijo.
- c) Calcule o lucro diário que Chico teria se cobrasse R\$0,50, R\$1,00, R\$1,50, R\$2,00 R\$2,50 e R\$3,00 por pão de queijo. Qual desses preços fornece o maior lucro?
- 13. Duas locadoras de automóveis oferecem planos diferentes para a diária de um veículo econômico. A locadora Saturno cobra uma taxa fixa de R\$ 30,00, além de R\$ 0,40 por quilômetro rodado. Já a locadora Mercúrio tem um plano mais elaborado: ela cobra uma taxa fixa de R\$ 90,00 com uma franquia de 200 km, ou seja, o cliente pode percorrer 200 km sem custos adicionais. Entretanto, para cada km rodado além dos 200 km incluídos na franquia, o cliente deve pagar R\$ 0,60.
 - a) Determine a função que descreve o custo diário de locação (em reais) de um automóvel na locadora Saturno, em relação à distância percorrida (em km).
 - b) Faça o mesmo para a locadora Mercúrio.
 - c) Represente em um mesmo plano Cartesiano as funções que você obteve nos itens (a) e (b).
 - d) Determine para quais intervalos cada locadora tem o plano mais barato.
 - e) Supondo que a locadora Saturno vá manter inalterada a sua taxa fixa, indique qual deve ser seu novo custo por km rodado para que ela, lucrando o máximo possível, tenha o

plano mais vantajoso para clientes que rodam quaisquer distâncias.

14. O gráfico abaixo mostra as equações $y = x^3 + 3x^2 - 6x - 2$ e y = 6. A partir do gráfico, indique as soluções de $x^3 + 3x^2 - 6x - 2 \ge 6$.

15. Um fabricante de tintas precisa projetar uma lata de metal que comporte 1 litro e tenha formato cilíndrico. A quantidade de metal consumida na fabricação da lata é proporcional à área de sua superfície. A figura a seguir mostra a planificação da lata.

Lembre-se de que o volume de um cilindro de altura h e raio da base r é dado por $\pi h r^2$. Além disso, a área de um retângulo de base b e altura h é igual a bh, a área de um círculo de raio r é dada por πr^2 , e o perímetro desse círculo é igual a $2\pi r$.

- a) Escreva a área da superfície da lata usando r e h.
- b) Escreva h em função de r usando o fato de que o volume da lata é igual a 1 litro = 1000 cm^3 .
- c) Usando as respostas dos itens (a) e (b), escreva uma função que forneça a área da superfície em relação ao raio da base da lata.
- d) Defina o domínio dessa função.

- e) Trace o gráfico da função para r entre 2 e
 10.
- f) Determine em que intervalos a função é crescente e em quais é decrescente.
- g) Observando o gráfico, determine, aproximadamente, o raio da base que proporciona o menor gasto de metal.
- 16. A tabela abaixo fornece as informações necessárias paro o cálculo mensal do imposto de renda em 2012.

Renda mensal (R\$)	Alíquota (%)	Parcela a deduzir (R\$)
Até 1.637,11	0,0	0,00
De 1.637,12 a 2.453,50	7,5	122,78
De 2.453,51 a 3.271,38	15,0	306,80
De 3.271,39 a 4.087,65	22,5	552,15
Acima de 4.087,65	27,5	756,53

- a) Escreva uma função I(r) que forneça o valor mensal do imposto (em Reais) em relação ao rendimento (em Reais).
- b) Calcule o valor do imposto pago por Joana, que recebe R\$ 2.000,00 por mês, e por Lucas, que tem um salário mensal de R\$ 4.500,00.
- c) Esboce o gráfico de I(r) para $0 \le r \le 6000$.
- 17. Em um mercado A, o arroz é vendido por peso, a R\$ 2,50 o quilograma. Entretanto, se o consumidor adquirir 5 kg ou mais, o mercado dá um desconto de 12% do preço total do arroz. Já em um supermercado B, o arroz é vendido em embalagens fechadas. Neste supermercado, o saco de 1 kg custa R\$ 2,50 e o saco de 5 kg custa R\$ 10,00. Com base nesses dados,
 - a) determine o menor valor que um consumidor pagaria, tanto no mercado A como no supermercado B, para comprar 7,2 kg de arroz;
 - b) para cada mercado, desenhe a curva que representa o custo do arroz em função da quantidade adquirida, em kg, supondo que o consumidor gaste sempre o menor valor possível. Considere que a quantidade adquirida varia entre 0 e 10 kg.

Respostas.

- 1. ...
- 2. a) p = 200 l.
 - b) $A(l) = 200l l^2$.
 - c) A(75) = 9375; A(150) = 7500.
 - d) $D(A) = \{l \in \mathbb{R} \mid 0 < l < 200\},\ Im(A) = \{y \in \mathbb{R} \mid 0 < y \le 10000\}.$

- e) Crescente em (0,100) e decrescente em (100, 200).
- f) Não é possível, pois 12000 não pertence à imagem do gráfico.
- g) A maior área corresponde a 10000 m², que é atingida quando l=p=100 m.

3. a)
$$f(-2) = 1$$
, $f(-1) = 2$, $f(0) = 2$, $f(0,5) = 0.5$; $f(1) = -1$, $f(2) = -4$

b)
$$f(-2) = -2$$
, $f(-1) = -1$, $f(0) = 0$, $f(0,5) = 0.5$; $f(1) = 1$, $f(2) = 4$

4.

$$c(x) = \begin{cases} 0.75; & se \ x \leq 20; \\ 1.15; & se \ 20 < x \leq 50; \\ 1.60; & se \ 50 < x \leq 100; \\ 2.00; & se \ 100 < x \leq 150; \\ 2.45; & se \ 150 < x \leq 200; \\ 2.85; & se \ 200 < x \leq 250; \\ 3.30; & se \ 250 < x \leq 300; \\ 3.70; & se \ 300 < x \leq 350; \\ 4.15; & se \ 350 < x \leq 400; \\ 4.55; & se \ 400 < x \leq 450; \\ 5.00; & se \ 450 < x \leq 500; \end{cases}$$

5. a)
$$c(p) = \begin{cases} 20, & \text{se } p < 2; \\ 20 + 2,5(p-2), & \text{se } p \ge 2. \end{cases}$$

b) 52 kg.

40 30 20 10

10

6. a)

c)

b)

1.0

0.5

- 3 · 2 · 1

1 2 3

7. a)
$$f(x) = \begin{cases} -1 & se \ x < 0; \\ 2x - 1, & se \ 0 \le x < 2; \\ 3, & se \ x \ge 2. \end{cases}$$

$$Im(f) = \{ y \in \mathbb{R} \mid -1 \le y \le 3 \}$$
b) $f(x) = \begin{cases} 1 & se \ x < -1; \\ \frac{2}{3}x + \frac{2}{3}, & se \ -1 \le x < 2; \\ 8 - 2x, & se \ x \ge 2. \end{cases}$

$$Im(f) = \{ y \in \mathbb{R} \mid y \le 4 \}$$
c) $f(x) = \begin{cases} -\frac{1}{2}x + 1, & se \ x < 2; \\ x - 2, & se \ x \ge 2. \end{cases}$

$$Im(f) = \{ y \in \mathbb{R} \mid y \ge 0 \}$$

- 8. a) $R(t) = \begin{cases} 8t, & \text{se } t \le 40; \\ 12t 160, & \text{se } x > 40. \end{cases}$
 - b) A partir de 40 h.
 - c) R\$ 8,00 pela hora normal e R\$ 12,00 pela hora extra.
- 9. a) f(-1) = -1.5; f(2) = -0.5; f(3) = -2.
 - b) x = -1.4, x = -0.5, $1.5 \le x \le 2.5$ e x = 3.3.
 - c) $-1.2 \le x \le 0.75$ e $2.666... \le x \le 3.1$
 - d) Crescente em (-1; 0,5) e (3; 3,5). Decrescente em (-2; -1), (0,5; 1,5), (2,5; 3) e (3,5; 4). Constante em [1,5; 2,5].
- 10. a) $D(f) = \{x \in \mathbb{R} \mid -1.5 \le x \le 3.5\},\$ $Im(f) = \{y \in \mathbb{R} \mid y \le 4\}.$
 - b) f(-1,5) = 1,5; f(0) = -0,5; f(2) = 2.
 - c) $-1.5 \le x \le -0.5$ e $1.5 \le x \le 2$.
 - d) Crescente em [0, 2]. Decrescente em [-1,5; 0) e em (2; 3,5].
 - e) Ponto de máximo local: x = 2. Não há pontos de mínimo local.
- 11. a) $-1 \le x \le 1,5$ e $x \ge 3$.
 - b) $-1 \le x \le 0.8$ e $3 \le x \le 3.9$.
 - c) $x \le -1$ e $1 \le x \le 3$.
 - d) Crescente em (0; 2,25). Decrescente em (-2,
 - 0) e em (2,25; 4).
 - e) Crescente em (-2, 0) e em (1,5; 3,5). Decrescente em (0; 1,5) e (3,5; 4).
 - f) Ponto de máximo local: x = 2,25. f(2,25) =
 - 0,7. Ponto de mínimo local: x = 0. f(0) = -1.
 - g) Pontos de máximo local: x = 0 (f(0) = 1,5) e x = 3,5 (f(3,5) = 1). Ponto de mínimo local: x = 1,5 (f(1,5) = -1,5).
 - h) x = -2; x = 1; x = 2.8; x = 3.95.
- 12. a) $R(p) = p(1000 500p + 60p^2)$.
 - b) $l(p) = (p 0.4)(1000 500p + 60p^2) 80.$
 - c) l(0.50) = R\$ 3.50; l(1.00) = R\$ 256.00;
 - l(1,50) = R\$ 343,50; l(2,00) = R\$ 304,00;
 - l(2,50) = R\$ 182,50; l(3,00) = R\$ 24,00.

O preço que fornece o maior lucro é R\$ 1,50.

13. a) $c_S = 30 + 0.4d$.

b)
$$c_M = \begin{cases} 90, & \text{se } d \le 200; \\ 90 + 0.6(d - 200), & \text{se } d > 200. \end{cases}$$

c)

- d) A locadora Mercúrio é a mais barata para $150 \, km < d < 300 \, km$. Por sua vez, a locadora Saturno é mais vantajosa para $d < 150 \, km$ e para $d > 300 \, km$.
- e) A locadora saturno deve cobrar R\$ 0,30 por quilômetro rodado (vide gráfico abaixo).

- 14. $-4 \le x \le -1$ e $x \ge 2$.
- 15. a) $A = 2\pi r^2 + 2\pi rh$.
 - b) $h = 1000/(\pi r^2)$.
 - c) $A = 2\pi r^2 + 2000/r$.
 - d) $D(A) = \{r \in \mathbb{R} \mid r > 0\}.$

- f) Decrescente em (0; 5,42) e crescente em $(5,42; \infty)$.
- g) $r \approx 5,42$ cm. Nesse caso, $h \approx 10,84$ cm.

$$16. \ f(x) = \begin{cases} 0; & se \ r \leq 1637,11 \\ 0,075r - 122,78; & se \ 1637,11 < r \leq 2453,50 \\ 0,150r - 306,80; & se \ 2453,50 < r \leq 3271,38 \\ 0,225r - 552,15; & se \ 3271,38 < r \leq 4087,65 \\ 0,275r - 756,35; & se \ r > 4087,65 \end{cases}$$

Joana: R\$ 27,22. Lucas: R\$ 480,97.

17. a) Em A: R\$ 15,84. Em B: R\$ 17,50.

b)

