

TP 12 Constante d'équilibre

Compétences

 Mettre en évidence la présence de tous les réactifs dans l'état final d'un système siège d'une transformation non totale, par un nouvel ajout de réactifs.

- Déterminer la valeur du quotient de réaction à l'état final d'un système, siège d'une transformation non totale, et montrer son indépendance vis-à-vis de la composition initiale du système à une température donnée.

Données

1) Solution S_1 de nitrate d'argent : $[Ag^+] = 0,10 \text{ mol/L}$.

Solution S_2 de sel de Mohr : $[Fe^{2+}] = 0,10 \text{ mol/L}$.

Solution S₃ de nitrate de fer III : $[Fe^{3+}] = 0,020 \text{ mol/L}$.

Solution S₄ de thiocyanate de potassium : [SCN-] = 0,010 mol/L.

Solution S₅ d'acide nitrique : $[H_3O^+] = 0,1 \text{ mol/L}$.

2) Coefficient d'extinction molaire des ions Fe³⁺ (qui colorent en jaune-orangé à la solution qui les contient) pour une longueur d'onde de 480 nm : L/mol/cm

Les ions argent Ag⁺ et les ions fer II Fe²⁺ n'absorbent pas la lumière pour une longueur d'onde de 480 nm.

3) Les couples rédox qui interviennent sont Fe³⁺(aq) / Fe²⁺(aq) et Ag⁺(aq) / Ag(s).

A Notion d'équilibre.

L'objectif est d'étudier la transformation chimique entre les ions argent Ag⁺ et les ions fer II Fe²⁺.

Faire une mesure de l'absorbance de la solution S₃ de nitrate de fer III.

Dans un bécher de 50 mL verser 10,0 mL de la solution S₁ de nitrate d'argent et y ajouter 10,0 mL de la solution S₂ de sel de Mohr (utiliser une pipette 10 mL).

Placer le bécher au bain-marie à 70°C pendant quelques minutes puis refroidir à température ambiante.

Filtrer la solution.

Mesurer l'absorbance du filtrat pour une longueur d'onde de 480 nm.

Q1: Déterminer la valeur du coefficient d'extinction molaire des ions Fe^{3+} .

Q2 : Écrire l'équation de la réaction entre les ions Ag^+ et les ions Fe^{2+} .

Q3 : Quelle est la composition du système à l'état final si la réaction est totale ?

Q4 : A partir de la valeur d'absorbance mesurée, déterminer la composition du système à l'état final.

Q5 : Proposer un protocole pour mettre en évidence la présence des réactifs dans le filtrat (à l'état final).

Après validation par le professeur, mettre en œuvre le protocole proposé à la question Q4.

Q6 : Noter les observations faites lors du test de présence des réactifs.

Q7: Le système chimique étudié (mélange des solutions S_1 et S_2) est à l'état final dans un « état d'équilibre chimique ». Caractériser cet état.

Q8 : Que peut-on dire des vitesses de formation et de disparition des réactifs à l'état d'équilibre ?

B Constante d'équilibre.

L'objectif est d'étudier la transformation chimique entre les ions thiocyanate SCN⁻ et les ions fer III Fe³⁺.

Préparer dans une fiole jaugée de 50 mL une des quatre solution S_A , S_B , S_C , S_D (s'entendre avec les autres groupes pour répartir les solutions) en mélangeant un volume V_{Fe} de solution S_3 de nitrate de fer III et un volume V_{SCN} de solution S_4 de thiocyanate de potassium complétés à 50 mL par la solution S_5 d'acide nitrique.

Solution	SA	S_B	Sc	S_{D}
V _{Fe} (mL)	5.0	5.0	10.0	10.0
V _{SCN} (mL)	5.0	10.0	5.0	10.0
Absorbance à 580 nm				HANG LENGTHUNG
Avancement final (mol)				
Qrà l'équilibre Qr/éq				

Mesurer l'absorbance de chaque solution à la longueur d'onde de 580 nm.

Q1 : Justifier le choix d'une mesure de l'absorbance à 580 nm.

Q2 : Écrire l'équation de la réaction entre les ions SCN et les ions Fe^{3+} .

Q3 : A partir de la valeur d'absorbance mesurée, déterminer l'avancement final.

Q4: Justifier que pour chaque solution, le système a atteint un état d'équilibre chimique.

Q5 : Pour chaque solution, à l'aide d'un tableur, calculer le quotient de réaction à l'état d'équilibre, $Q_{r/éq}$, en ne gardant que deux chiffres significatifs.

Q6: Justifier que le quotient de réaction à l'état d'équilibre, $Q_{r/éq}$, soit appelé constante d'équilibre K.

Données

1) Les ions SCN⁻ et les ions Fe³⁺ forment en milieu aqueux instantanément le complexe Fe(SCN)²⁺ qui donne une coloration rouge à la solution.

Le coefficient d'extinction molaire de Fe(SCN)²⁺pour une longueur d'onde de 480 nm : 510 L/mol/cm

Pour une transformation modélisée par deux réactions opposées, l'équation s'écrit :

a A(aq) + b B(aq) ⇒ c C(aq)

La grandeur appelée quotient de réaction, notée Q, sans dimension, peut être définie par :

$$Q_{i} = \frac{\binom{[C]}{c^{o}}}{\binom{[A]}{c^{o}} \times \binom{[B]}{c^{o}}}$$

avec c° = 1 moi · L⁻¹
La grandeur Q, peut être calculée à chaque état d'avancement de la réaction.