

SEQUENCE LISTING

<110> Schor, Seth Laurence
Schor, Ana Maria

<120> POLYPEPTIDES, POLYNUCLEOTIDES AND USES
THEREOF

<130> 350013-72

<140> 09/581,651
<141> 2000-10-10

<160> 15

<170> FastSEQ for Windows Version 3.0

<210> 1
<211> 660
<212> PRT
<213> Human

<400> 1
Asn Leu Val Ala Thr Cys Leu Pro Val Arg Ala Ser Leu Pro His Arg
1 5 10 15
Leu Asn Met Leu Arg Gly Pro Gly Pro Gly Leu Leu Leu Leu Ala Val
20 25 30
Gln Cys Leu Gly Thr Ala Val Pro Ser Thr Gly Ala Ser Lys Ser Lys
35 40 45
Arg Gln Ala Gln Gln Met Val Gln Pro Gln Ser Pro Val Ala Val Ser
50 55 60
Gln Ser Lys Pro Gly Cys Tyr Asp Asn Gly Lys His Tyr Gln Ile Asn
65 70 75 80
Gln Gln Trp Glu Arg Thr Tyr Leu Gly Asn Ala Leu Val Cys Thr Cys
85 90 95
Tyr Gly Gly Ser Arg Gly Phe Asn Cys Glu Ser Lys Pro Glu Ala Glu
100 105 110
Glu Thr Cys Phe Asp Lys Tyr Thr Gly Asn Thr Tyr Arg Val Gly Asp
115 120 125
Thr Tyr Glu Arg Pro Lys Asp Ser Met Ile Trp Asp Cys Thr Cys Ile
130 135 140
Gly Ala Gly Arg Gly Arg Ile Ser Cys Thr Ile Ala Asn Arg Cys His
145 150 155 160
Glu Gly Gly Gln Ser Tyr Lys Ile Gly Asp Thr Trp Arg Arg Pro His
165 170 175
Glu Thr Gly Gly Tyr Met Leu Glu Cys Val Cys Leu Gly Asn Gly Lys
180 185 190
Gly Glu Trp Thr Cys Lys Pro Ile Ala Glu Lys Cys Phe Asp His Ala
195 200 205
Ala Gly Thr Ser Tyr Val Val Gly Glu Thr Trp Glu Lys Pro Tyr Gln
210 215 220
Gly Trp Met Met Val Asp Cys Thr Cys Leu Gly Glu Gly Ser Gly Arg
225 230 235 240
Ile Thr Cys Thr Ser Arg Asn Arg Cys Asn Asp Gln Asp Thr Arg Thr
245 250 255

RECEIVED
APR 05 2002
TECH CENTER 1600/2900

Ser Tyr Arg Ile Gly Asp Thr Trp Ser Lys Lys Asp Asn Arg Gly Asn
 260 265 270
 Leu Leu Gln Cys Ile Cys Thr Gly Asn Gly Arg Gly Glu Trp Lys Cys
 275 280 285
 Glu Arg His Thr Ser Val Gln Thr Thr Ser Ser Gly Ser Gly Pro Phe
 290 295 300
 Thr Asp Val Arg Ala Ala Val Tyr Gln Pro Gln Pro His Pro Gln Pro
 305 310 315 320
 Pro Pro Tyr Gly His Cys Val Thr Asp Ser Gly Val Val Tyr Ser Val
 325 330 335
 Gly Met Gln Trp Leu Lys Thr Gln Gly Asn Lys Gln Met Leu Cys Thr
 340 345 350
 Cys Leu Gly Asn Gly Val Ser Cys Gln Glu Thr Ala Val Thr Gln Thr
 355 360 365
 Tyr Gly Gly Asn Ser Asn Gly Glu Pro Cys Val Leu Pro Phe Thr Tyr
 370 375 380
 Asn Asp Arg Thr Asp Ser Thr Thr Ser Asn Tyr Glu Gln Asp Gln Lys
 385 390 395 400
 Tyr Ser Phe Cys Thr Asp His Thr Val Leu Val Gln Thr Arg Gly Gly
 405 410 415
 Asn Ser Asn Gly Ala Leu Cys His Phe Pro Phe Leu Tyr Asn Asn His
 420 425 430
 Asn Tyr Thr Asp Cys Thr Ser Glu Gly Arg Arg Asp Asn Met Lys Trp
 435 440 445
 Cys Gly Thr Thr Gln Asn Tyr Asp Ala Asp Gln Lys Phe Gly Phe Cys
 450 455 460
 Pro Met Ala Ala His Glu Glu Ile Cys Thr Thr Asn Glu Gly Val Met
 465 470 475 480
 Tyr Arg Ile Gly Asp Gln Trp Asp Lys Gln His Asp Met Gly His Met
 485 490 495
 Met Arg Cys Thr Cys Val Gly Asn Gly Arg Gly Glu Trp Thr Cys Ile
 500 505 510
 Ala Tyr Ser Gln Leu Arg Asp Gln Cys Ile Val Asp Asp Ile Thr Tyr
 515 520 525
 Asn Val Asn Asp Thr Phe His Lys Arg His Glu Glu Gly His Met Leu
 530 535 540
 Asn Cys Thr Cys Phe Gly Gln Gly Arg Gly Arg Trp Lys Cys Asp Pro
 545 550 555 560
 Val Asp Gln Cys Gln Asp Ser Glu Thr Gly Thr Phe Tyr Gln Ile Gly
 565 570 575
 Asp Ser Trp Glu Lys Tyr Val His Gly Val Arg Tyr Gln Cys Tyr Cys
 580 585 590
 Tyr Gly Arg Gly Ile Gly Glu Trp His Cys Gln Pro Leu Gln Thr Tyr
 595 600 605
 Pro Ser Ser Ser Gly Pro Val Glu Val Phe Ile Thr Glu Thr Pro Ser
 610 615 620
 Gln Pro Asn Ser His Pro Ile Gln Trp Asn Ala Pro Gln Pro Ser His
 625 630 635 640
 Ile Ser Lys Tyr Ile Leu Arg Trp Arg Pro Val Ser Ile Pro Pro Arg
 645 650 655
 Asn Leu Gly Tyr
 660

<210> 2
 <211> 2147
 <212> DNA

<213> Human

<400> 2

caaacttggt	ggcaacttgc	ctcccggtgc	gggcgtctct	cccccaccgt	ctcaacatgc	60
ttaggggtcc	ggggcccggg	ctgctgctgc	tggccgtcca	gtgcctgggg	acagcggtgc	120
cctccacggg	agcctcgaag	agcaagaggc	aggctcagca	aatggttcag	ccccagtccc	180
cggtggtgt	cagtcaaagc	aagcccgggt	gttatgacaa	tggaaaacac	tatcagataa	240
atcaacagtg	ggagcggacc	tacctaggca	atgcgttgg	ttgtacttgt	tatggaggaa	300
gccgagggtt	taactgcgag	agtaaacctg	aagctgaaga	gacttgctt	gacaagtaca	360
ctggaaacac	ttaccgagtg	ggtgacactt	atgagcgtcc	taaagactcc	atgatctggg	420
actgtacctg	catcggggct	gggcgagggg	gaataagctg	taccatcgca	aaccgctgcc	480
atgaaggggg	tcagtcttac	aagattggtg	acacctggag	gagaccacat	gagactggtg	540
gttacatgtt	agagtgtgtg	tgtcttggta	atggaaaagg	agaatggacc	tgcaagccca	600
tagctgagaa	gtgtttgtat	catgctgctg	ggacttccta	tgtggtcgga	gaaacgtggg	660
agaagcccta	ccaaggctgg	atgatggtag	attgtacttg	cctgggagaa	ggcagcggac	720
gcatcacttg	cacttctaga	aatagatgca	acatcagga	cacaaggaca	tcctatagaa	780
ttggagacac	ctggagcaag	aaggataatc	gaggaaacct	gctccagtgc	atctgcacag	840
gcaacggccg	aggagagtgg	aagtgtgaga	ggcacacctc	tgtcagacc	acatcgagcg	900
gatctggccc	cttcaccgtat	gttcgtgcag	ctgtttacca	accgcagcct	caccccccagc	960
ctcccccata	tggccactgt	gtcacagaca	gtgggtgtgg	ctactctgtg	gggatgcagt	1020
ggctgaagac	acaagaaat	aagcaaatgc	tttgcacgtg	cctggcaac	ggagttagct	1080
gccaagagac	agctgttaacc	cagacttacg	gtggcaactc	aatggagag	ccatgtgtct	1140
taccattcac	ctacaacgac	aggacggaca	gcacaacttc	gaattatgag	caggaccaga	1200
aatactctt	ctgcacagac	cacactgtt	tggttcagac	tcgaggagga	aattccaaatg	1260
gtgccttgcg	ccacttcccc	ttcctataca	acaaccacaa	ttacactgtat	tgcacttctg	1320
agggcagaag	agacaacatg	aagtgggtg	ggaccacaca	gaactatgtat	gccgaccaga	1380
agtttgggtt	ctgccccatg	gctgcccacg	aggaaatctg	cacaaccaat	gaaggggtca	1440
tgtaccgcat	tggagatcag	tgggataaagc	agcatgacat	gggtcacatg	atgaggtgca	1500
cgtgtttgg	gaatggtcgt	gggaaatgga	catgcattgc	ctactcgcag	cttcgagatc	1560
agtgcattgt	tgatgacatc	acttacaatg	tgaacgacac	attccacaag	cgtcatgaag	1620
aggggcacat	gctgaactgt	acatgcttcg	gtcagggtcg	ggcaggtgg	aagtgtgatc	1680
ccgtcgacca	atgccaggat	tcagagactg	ggacgtttta	tcaaattgga	gattcatggg	1740
agaagtatgt	gcatgggtgc	agataccagt	gctactgcta	tggccgtggc	attggggagt	1800
ggcattgcca	acctttacag	acctatccaa	gctcaagtgg	tcctgtcgaa	gtatttatca	1860
ctgagactcc	gagtcaagccc	aactcccacc	ccatccagtg	gaatgcacca	cagccatctc	1920
acatttccaa	gtacattctc	aggtggagac	ctgtgagtat	cccacccaga	aaccttgat	1980
actgagtctc	ctaatcttat	caattctgtat	ggttctttt	tttcccagct	tttgagccaa	2040
caactctgtat	taactattcc	tatagcattt	actatatttg	tttagtgaac	aaacaatatg	2100
tggtaattta	aattgacttg	tagactgaaa	aaaaaaaaaa	aaaaaaa		2147

<210> 3

<211> 20

<212> PRT

<213> Human

<400> 3

Ile	Ser	Lys	Tyr	Ile	Leu	Arg	Trp	Arg	Pro	Val	Ser	Ile	Pro	Pro	Arg
1				5					10			15			

Asn	Leu	Gly	Tyr
20			

<210> 4

<211> 21

<212> PRT

<213> Human

<400> 4
 Gln Gln Trp Glu Arg Thr Tyr Leu Gly Asn Ala Leu Val Cys Thr Cys
 1 5 10 15
 Tyr Gly Gly Ser Arg
 20

<210> 5
 <211> 23
 <212> PRT
 <213> Human

<400> 5
 Pro Cys Val Leu Pro Phe Thr Tyr Asn Asp Arg Thr Asp Ser Thr Thr
 1 5 10 15
 Ser Asn Tyr Glu Gln Asp Gln
 20

<210> 6
 <211> 20
 <212> PRT
 <213> Human

<400> 6
 Thr Asp His Thr Val Leu Val Gln Thr Arg Gly Gly Asn Ser Asn Gly
 1 5 10 15
 Ala Leu Cys His
 20

<210> 7
 <211> 21
 <212> PRT
 <213> Human

C11
 <400> 7
 Val Gly Asn Gly Arg Gly Glu Trp Thr Cys Ile Ala Tyr Ser Gln Leu
 1 5 10 15
 Arg Asp Gln Cys Ile
 20

<210> 8
 <211> 21
 <212> PRT
 <213> Human

<400> 8
 Gln Gln Trp Glu Arg Thr Tyr Leu Gly Asn Val Leu Val Cys Thr Cys
 1 5 10 15
 Tyr Gly Gly Ser Arg
 20

<210> 9
 <211> 39
 <212> PRT
 <213> Human

<400> 9

Glu Pro Cys Val Leu Pro Phe Thr Tyr Asn Gly Arg Thr Phe Tyr Ser
 1 5 10 15
 Cys Thr Thr Glu Gly Arg Gln Asp Gly His Leu Trp Cys Ser Thr Thr
 20 25 30
 Ser Asn Tyr Glu Gln Asp Gln
 35

<210> 10
 <211> 21
 <212> PRT
 <213> Human

<400> 10
 Cys Thr Asp His Thr Val Leu Val Gln Thr Gln Gly Gly Asn Ser Asn
 1 5 10 15
 Gly Ala Leu Cys His
 20

<210> 11
 <211> 21
 <212> PRT
 <213> Human

<400> 11
 Val Gly Asn Gly Arg Gly Glu Trp Thr Cys Tyr Ala Tyr Ser Gln Leu
 1 5 10 15
 Arg Asp Gln Cys Ile
 20

<210> 12
 <211> 20
 <212> PRT
 <213> Human

<400> 12
 Ile Ser Lys Tyr Ile Leu Arg Trp Arg Pro Lys Asn Ser Val Gly Arg
 1 5 10 15
 Trp Lys Glu Ala
 20

<210> 13
 <211> 11
 <212> PRT
 <213> Human

<400> 13
 Thr Ala Ser Gly Val Ala Glu Thr Thr Asn Cys
 1 5 10

<210> 14
 <211> 24
 <212> PRT
 <213> Human

<220>

<400> 14
Glu Pro Cys Val Leu Pro Phe Thr Tyr Asn Asp Arg Thr Asp Ser Thr
1 5 10 15
Thr Ser Asn Tyr Glu Gln Asp Gln
20

Ch
<210> 15
<211> 21
<212> PRT
<213> Human

<400> 15
Cys Thr Asp His Thr Val Leu Val Gln Thr Arg Gly Gly Asn Ser Asn
1 5 10 15
Gly Ala Leu Cys His
20