张梓卫 10235101526 - CSAPP Week 15

9.11

*9.11 在下面的一系列问题中,你要展示 9.6.4 节中的示例内存系统如何将虚拟地址翻译成物理地址,以及如何访问缓存。对于给定的虚拟地址,请指出访问的 TLB条目、物理地址,以及返回的缓存字节值。请指明是否 TLB 不命中,是否发生了缺页,是否发生了缓存不命中。如果有缓存不命中,对于"返回的缓存字节"用"-"来表示。如果有缺页,对于"PPN"用"-"来表示,而 C 部分和 D 部分就空着。

虚拟地址: 0x027c

A. 虚拟地址格式

13					-	- 1	-	-			-		-
0	0	0	0	1	0	0	1	1	1	1	1	0	0

B. 地址翻译

参数	值
VPN	0209
TLB索引	0x1
TLB标记	0402
TLB命中? (是/否)	No
缺页? (是/否)	No
PPN	0217

C. 物理地址格式

D. 物理地址引用

参数	值
字节偏移	0.40
缓存索引	OAF
缓存标记	0a17
缓存命中? (是/否)	No
返回的缓存字节	

13					_	13	-	-		-				22.0
0	0	0	0	1	1	1	0	1	0	1	0	0	1	

B. 地址翻译

参数	值
VPN	0x0E
TLB索引	022
TLB标记	0×03
TLB命中? (是/否)	No
缺页? (是/否)	No
PPN	0211

C. 物理地址格式

		9			-	_		-	_		1000	
0	1	0	0	0	1	1	0	1	0	0	1	

D. 物理地址引用

参数	值
字节偏移	On1
缓存索引	Onl
缓存标记	Oa11
缓存命中? (是/否)	No
返回的缓存字节	*****

9.13

* 9.13 对于下面的地址,重复习题 9.11:

虚拟地址: 0x0040 A. 虚拟地址格式

				-	-		_	5					
0	0	0	0	0	0	0	1	0	0	0	0	0	0

B. 地址翻译

参数	值
VPN	0x01
TLB索引	011
TLB标记	0400
TLB命中? (是/否)	No
缺页? (是/否)	Yes
PPN	0228

C. 物理地址格式

11	10	9	8	7	6	5	4	3	2	1	0
	0	1	0	0	0	0	D	0	0	0	1

D. 物理地址引用

参数	值
字节偏移	On1
缓存索引	000
缓存标记	0228
缓存命中? (是/否)	A lo
返回的缓存字节	-

9.15

*9.15 确定下面的 malloc 请求序列得到的块大小和头部值。假设:1)分配器保持双字对齐,使用隐式空 闲链表,以及图 9-35 中的块格式。2)块大小向上舍入为最接近的 8 字节的倍数。

请求	块大小 (十进制字节)	块头部 (十六进制)
malloc(3)	8	029
malloc(11)	16	0×11
malloc(20)	24	0219
malloc(21)	24	0×19

9.19

- 9. 19 下面给出了三组关于内存管理和垃圾收集的陈述。在每一组中,只有一句陈述是正确的。你的任 务就是判断哪一句是正确的。
 - 1) a 在一个伙伴系统中,最高可达50%的空间可以因为内部碎片而被浪费了。
 - b) 首次适配内存分配算法比最佳适配算法要慢一些(平均而言)。
 - c)只有当空闲链表按照内存地址递增排序时,使用边界标记来回收才会快速。 LIFO 存以 d) 伙伴系统只会有内部碎片,而不会有外部碎片。
 - 2) 刻 在按照块大小递减顺序排序的空闲链表上,使用首次适配算法会导致分配性能很低,但是可 以避免外部碎片。 以避免外部碎片。

 - cx 最佳适配方法选择与请求段匹配的最大的空闲块。
 - d) 在按照块大小递增的顺序排序的空闲链表上,使用首次适配算法与使用最佳适配算法等价。
 - 3) Mark & Sweep 垃圾收集器在下列哪种情况下叫做保守的:
 - a) 它们只有在内存请求不能被满足时才合并被释放的内存。
 - b) 它们把一切看起来像指针的东西都当做指针。
 - c) 它们只在内存用尽时,才执行垃圾收集。
 - d) 它们不释放形成循环链表的内存块。