

Optimizing parameter estimation for the NEXI gray matter microstructure model

MIML – Microstructure Imaging meets Machine Learning

Quentin Uhl and Ileana Jelescu quentin.uhl@chuv.ch

Microstructure Mapping Lab

The Neurite Exchange Imaging model

Kernel:	$\mathcal{K}(q, t, \mathbf{g} \cdot \mathbf{n}; f, D_{i,\parallel}, D_e, t_{ex}) = f(e^{-q^2 t D_i'} + (1 - f')e^{-q^2 t D_e'})$
Where: "apparent" diffusivities	$D'_{i/e} = \frac{1}{2} \left\{ D_{i,\parallel} (\mathbf{g} \cdot \mathbf{n})^2 + D_e + \frac{1}{q^2 t_{ex}} \mp \left[\left[D_e - D_{i,\parallel} (\mathbf{g} \cdot \mathbf{n})^2 + \frac{2f - 1}{q^2 t_{ex}} \right]^2 + \frac{4f(1 - f)}{q^4 t_{ex}^2} \right]^{\frac{1}{2}} \right\}$
"apparent" fraction	$f' = \frac{1}{D_i' - D_e'} [f D_{i,\parallel} (\mathbf{g} \cdot \mathbf{n})^2 + (1 - f) D_e - D_e']$
Powder average (over directions):	$S(q,t) = S \Big _{q=0} \cdot \int_0^1 \mathcal{K}(q,t,\mathbf{g} \cdot \mathbf{n}; \mathbf{p}) d(\mathbf{g} \cdot \mathbf{n})$

Source: Jelescu et al. 2022. ArXiv

Quentin Uhl

Nonlinear Least Squares VS. Machine Learning results

- L-BFGS-B bounded method
- Use of the Jacobian

- Optimized by Optuna
- Hidden layers # of neurons :530, 481, 112, 200, 547, 406

With the help of Nicolas Albert

Quentin Uhl

The Cramer-Rao Lower Bound

$$Var_{dMRI\ config}(\widehat{\mathbf{p}}_i) \geq \left(\sum_{\substack{(b,t_d)\ couples \ in\ dMRI\ config}} \mathcal{I}^{-1}\left(b,t_d,\mathbf{p}\right)\right)_{i,i} = CRLB_i$$

Where the Fisher information matrix is : $\mathcal{I}(b, t_d, \mathbf{p}) = \frac{1}{\sigma^2} \cdot \mathbf{J}^T * \mathbf{J}$ and the jacobian of the signal : $\mathbf{J} = \partial S(b, t_d, \mathbf{p}) / \partial \mathbf{p}$

and
$$\begin{pmatrix} \mathbf{p}_0 \\ \mathbf{p}_1 \\ \mathbf{p}_2 \\ \mathbf{p}_3 \end{pmatrix} = \begin{pmatrix} t_{ex} \\ D_i \\ D_e \\ f \end{pmatrix}$$

Optimize the dMRI configuration (best b-td couples)

Compute the lower limit of the variance of our estimations

\sqrt{CRLB} : the lower bound of the standard deviation

In each of these datasets, 3 parameters are set, only 1 varies

Thank you for your attention! Any question?

Contact : quentin.uhl@chuv.ch

Quentin Uhl