1990 HG1

若
$$\frac{1}{a} + \frac{1}{b} = 5$$
 及 $\frac{1}{a^2} + \frac{1}{b^2} = 13$, 求 $\frac{1}{a^5} + \frac{1}{b^5}$ 的值。

If
$$\frac{1}{a} + \frac{1}{b} = 5$$
 and $\frac{1}{a^2} + \frac{1}{b^2} = 13$, find the value of $\frac{1}{a^5} + \frac{1}{b^5}$.

1992 HG1

有甲、乙、丙三人,甲的年齡較乙和丙的年齡之和大了16歲,甲年齡的平

1993 HG8

若
$$x$$
 及 y 為實數,且
$$\begin{cases} x^2 - xy + y^2 - 3x - 3y = 1 \\ xy = 1 \end{cases}$$
 及 $x > y > 0$,求 x 的值。
$$xy = 1$$
 If x and y are real numbers satisfying
$$\begin{cases} x^2 - xy + y^2 - 3x - 3y = 1 \\ xy = 1 \end{cases}$$
 and $x > y > 0$,

find the value of x.

1997 HI2

若一長方形之闊度增加
$$\frac{1}{3}$$
米,其面積增加 $\frac{5}{3}$ 平方米。若其長度減少 $\frac{1}{2}$ 米,

則面積減少
$$\frac{9}{5}$$
 平方米。設該長方形之面積為 x 平方米,求 x 之值。

If the width of a rectangle is increased by $\frac{1}{3}$ m, its area will be increased by $\frac{5}{3}$

m². If its length is decreased by $\frac{1}{2}$ m, its area will be decreased by $\frac{9}{5}$ m².

Let the area of the rectangle be $x \text{ m}^2$, find the value of x.

2003 FI3.1

已知
$$\begin{cases} wxyz=4\\ w-xyz=3 \end{cases}$$
 且 $w>0$ 。若 w 的解是 P ,求 P 的值。

Given that $\begin{cases} wxyz = 4 \\ w - xyz = 3 \end{cases}$ and w > 0. If the solution of w is P, find the value of P.

2008 HG7

設
$$x$$
 及 y 為實數 ,且滿足
$$\begin{cases} \left(x - \frac{1}{3}\right)^3 + 2008\left(x - \frac{1}{3}\right) = -5 \\ \left(y - \frac{7}{4}\right)^3 + 2008\left(y - \frac{7}{4}\right) = 5 \end{cases}$$

若
$$z=x+y$$
, 求 z 的值。

方較乙和丙的年齡之和的平方大 1632,求甲、乙、丙的年齡之和。 $A, B, C \text{ are three men in a team. The age of } A \text{ is greater than the sum of the ages} \quad \text{Let } x \text{ and } y \text{ be real numbers satisfying} \begin{cases} \left(x-\frac{1}{3}\right)^3 + 2008\left(x-\frac{1}{3}\right) = -5 \\ \left(y-\frac{7}{4}\right)^3 + 2008\left(y-\frac{7}{4}\right) = 5 \end{cases}$ of the ages of B and C by 1632. Find the sum of the ages of A. B and C

If z = x + y, find the value of z.

2008 FI4.2

如圖一,陰影部分由兩同心圓所組成,其面積為 96π cm²。若該兩圓的半徑相差 8 cm及大圓的面 積為 $Q \text{ cm}^2$, 求 Q 的值。(取 $\pi = 3$)

In Figure 1, the shaded area is formed by two concentric circles and has area 96π cm². If the two radii differ by 8 cm and the large circle has area $Q \text{ cm}^2$, find the value of Q. (Take $\pi = 3$)

2008 FG2.4

設實數
$$x \cdot y$$
 及z滿足 $x + \frac{1}{y} = 4$, $y + \frac{1}{z} = 1$ 及 $z + \frac{1}{x} = \frac{7}{3}$ 。求 xyz 的值。

Let x, y and z be real numbers that satisfy $x + \frac{1}{y} = 4$, $y + \frac{1}{z} = 1$ and $z + \frac{1}{x} = \frac{7}{3}$.

Find the value of xyz.

2010 FI1.3

已知 p 及 q 是實數,且 pq = 9 及 $p^2q + q^2p + p + q = 70$ 。 若 $c = p^2 + q^2$, 求 c 的值。

Given that p and q are real numbers with pq = 9 and $p^2q + q^2p + p + q = 70$. If $c = p^2 + q^2$, find the value of c.

2010 FG2.2

已知x、y、z為3個相異實數。

若
$$x + \frac{1}{y} = y + \frac{1}{z} = z + \frac{1}{x}$$
 及 $m = x^2y^2z^2$ 。 求 m 的 值 。

Given that x, y, z are three distinct real numbers.

If
$$x + \frac{1}{y} = y + \frac{1}{z} = z + \frac{1}{x}$$
 and $m = x^2y^2z^2$, find the value of m.

2011 FG3.3

設
$$x$$
 及 y 為正實數且 $x < y$ 。若 $\sqrt{x} + \sqrt{y} = 1$ 、 $\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} = \frac{10}{3}$ 及 $x < y$,

求 y-x 的值。

Let x and y be positive real numbers with x < y.

If
$$\sqrt{x} + \sqrt{y} = 1$$
, $\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} = \frac{10}{3}$ and $x < y$, find the value of $y - x$.

2013 FI4.4

設
$$(x_0, y_0)$$
 是以下方程組的一個解:
$$\begin{cases} xy = 6 \\ x^2y + xy^2 + x + y - 61 = 2 \end{cases}$$

求
$$d = x_0^2 + y_0^2$$
 的值。

Suppose that
$$(x_0, y_0)$$
 is a solution of the system:
$$\begin{cases} xy = 6 \\ x^2y + xy^2 + x + y - 61 = 2 \end{cases}$$
.

Find the value of $d = x_0^2 + y_0^2$.

2015 HG8

已知
$$a \cdot b \cdot x$$
 及 y 為非零整數,其中 $ax + by = 4 \cdot ax^2 + by^2 = 22 \cdot ax^3 + by^3 = 46$ 及 $ax^4 + by^4 = 178 \cdot x$ 的值。

Given that a, b, x and y are non-zero integers, where ax + by = 4, $ax^2 + by^2 = 22$, $ax^3 + by^3 = 46$ and $ax^4 + by^4 = 178$. Find the value of $ax^5 + by^5$.

2017 FG1.1

若實數
$$x \cdot y$$
 及 z 满足 $x + \frac{1}{y} = -1$, $y + \frac{1}{z} = -2$ 及 $z + \frac{1}{x} = -5$ 。求 $a = \frac{1}{xyz}$ 的值。

If real numbers x, y and z satisfy $x + \frac{1}{y} = -1$, $y + \frac{1}{z} = -2$ and $z + \frac{1}{x} = -5$. Determine

the value of $a = \frac{1}{xyz}$.

2018 HG5

求可滿足下列方程組的
$$x$$
 的值:
$$\begin{cases} x^2 + 9x - 10y - 220 = 0 & \cdots (1) \\ y^2 - 5x + 6y - 166 = 0 & \cdots (2). \end{cases}$$
 $xy = 195 \cdots (3)$

Find the value of x that satisfy the following system of equations:

$$\begin{cases} x^2 + 9x - 10y - 220 = 0 \\ y^2 - 5x + 6y - 166 = 0 \\ xy = 195 \end{cases}$$

2019 HI15

Given that x, y and z are positive real numbers satisfying $\begin{cases} x^2 + xy + y^2 = 7 \\ y^2 + yz + z^2 = 21. \\ x^2 + xz + z^2 = 28 \end{cases}$

If a = x + y + z, find the value of a.

2019 FG2.2

假設
$$\begin{cases} x+y=5 \\ 4x^2+y^2=80 \end{cases}$$
, 及 $P=(x_1,y_1)$ 和 $Q=(x_2,y_2)$ 為兩個不同的點, 同時

滿足這兩個等式。若 $B = y_1 - x_1 + y_2 - x_3$, 求 B 的值。

Suppose that
$$\begin{cases} x+y=5\\ 4x^2+y^2=80 \end{cases}$$
, and $P=(x_1,y_1)$ and $Q=(x_2,y_2)$ are two

different points, simultaneously satisfy these two equations.

If $B = y_1 - x_1 + y_2 - x_2$, determine the value of B.

2023 HG6

設
$$x \cdot y$$
 及 z 為實數 ,且滿足方程
$$\begin{cases} x + yz = 6 \\ y + zx = 6 \end{cases}$$
 ,求 xyz 的最大值。
$$z + xy = 6$$

If x, y and z are real numbers that satisfy the system of equations $\begin{cases} x + yz = 6 \\ y + zx = 6, \\ z + xy = 6 \end{cases}$

find the largest possible value of xyz.

Answers

1990 HG1	1992 HG1	1993 HG8 $2 + \sqrt{3}$	1997 HI2	2003 FI3.1
275	102		18	4
2008 HG7 25 12	2008 FI4.2 300	2008 FG2.4 1	2010 FI1.3 31	2010 FG2.2 1
2011 FG3.3 $\frac{1}{2}$	2013 FI4.4	2015 HG8	2017 FG1.1	2018 HG5
	69	454	-1	-15
2019 HI15 7	2019 FG2.2 6	2023 HG6 8		