

BERT, Compression and Applications

Dongkuan (DK) Xu, Ph.D. Candidate

Pennsylvania State University, Advisor: Xiang Zhang

Web: www.personal.psu.edu/dux19/

04-08-2021

Agenda

BERT Architecture

Model Compression

Applications

Background

- BERT (Bidirectional Encoder Representations from Transformers)
 - Published by Google Al Language [1]
 - Achieved state-of-the-art results in various NLP/CV tasks
- Key Innovation
 - Bidirectional training for language modelling
 - Previous efforts looked at a text sequence from left-to-right, right-to-left or combined way

Background

- Performance on GLUE (General Language Understanding Evaluation) Benchmark
 - The most popular collection for training, evaluating and analyzing NLP systems [1]
 - Constructed by NYU, UW and DeepMind

[1] https://gluebenchmark.com

- General architecture
 - Multiple Transformer encoders
 - Input: Embeddings of words
 - Output: Hidden representations of words
- Downstream task
 - e.g., sentence classification
- How BERT works
 - Pre-training
 - The model is trained on unlabeled data over different pre-training tasks.
 - Fine-tuning
 - The model is first initialized with the pre-trained parameters, and all the parameters are fine-tuned using labeled data from the downstream tasks.

Architecture of BERT

- General architecture
 - Multiple Transformer encoders
 - Input: Embeddings of words
 - Output: Hidden representations of words
- Downstream task
 - e.g., sentence classification
- How BERT works
 - Pre-training
 - The model is trained on unlabeled data over different pre-training tasks.
 - Fine-tuning
 - The model is first initialized with the pre-trained parameters, and all the parameters are fine-tuned using labeled data from the downstream tasks.

Architecture of BERT

- General architecture
 - Multiple Transformer encoders
 - Input: Embeddings of words
 - Output: Hidden representations of words
- Downstream task 2. Shared by all word embeddings
- 1. Only one series of encoders

 - e.g., sentence classification

Architecture of BERT

- How BERT works
 - Pre-training
 - The model is trained on unlabeled data over different pre-training tasks.
 - Fine-tuning
 - The model is first initialized with the pre-trained parameters, and all the parameters are fine-tuned using labeled data from the downstream tasks.

- General architecture
 - Multiple Transformer encoders
 - Input: Embeddings of words
 - Output: Hidden representations of words
- Downstream task
 - e.g., sentence classification
- How BERT works
 - Pre-training
 - The model is trained on unlabeled data over different pre-training tasks.
 - Fine-tuning
 - The model is first initialized with the pre-trained parameters, and all the parameters are fine-tuned using labeled data from the downstream tasks.

Illustration of BERT on classification

- General architecture
 - Multiple Transformer encoders
 - Input: Embeddings of words
 - Output: Hidden representations of words
- Downstream task
 - e.g., sentence classification
- How BERT works
 - Pre-training
 - The model is trained on unlabeled data over different pre-training tasks.
 - Fine-tuning
 - The model is first initialized with the pre-trained parameters, and all the parameters are fine-tuned using labeled data from the downstream tasks.

Illustration of BERT on classification

Transformer Encoder

Architecture of Encoder (Two Encoders Here)

Embedding Look_Up

- Embedding is the element-wise sum of three embeddings
- Goal
 - To give the model a sense of the order of the words

Architecture of Transformer Encoder

Illustration of BERT Input Representation

Embedding Look_Up

Huge embedding table lookup

```
class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.

    """

def __init__(self, config):
    super(BertEmbeddings, self).__init__()

self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
    self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
    self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
```

- nn.Embedding()
 - A simple lookup table that stores embeddings
 - All the elements are parameters
 - Input is a list of indices, and output is the word embeddings
- Implementation links
 - PyTorch: https://pytorch.org/docs/stable/_modules/torch/nn/modules/sparse.html#Embedding
 - TensorFlow: https://github.com/tensorflow/tensorflow/blob/v2.2.0/tensorflow/python/ops/embedding_ops.py#L329-L373

Self-Attention

Take two words as an example

Architecture of Transformer Encoder

Self-Attention

Take two words as an example

Architecture of Transformer Encoder

Input: Word embedding vectors

Output: New vector representations

Self-Attention in Matrix Calculation

- First step to calculate Q, K, V
 - Rows: words of a sentence
 - Columns: *hidden_dims*

- Second step to calculate the output Z
 - Rows: words of a sentence
 - Columns: *hidden_dims*

Multi-Head Self-Attention

- 1) This is our input sentence*
- 2) We embed each word*
- 3) Split into 8 heads. We multiply X or R with weight matrices
- 4) Calculate attention using the resulting Q/K/V matrices
- 5) Concatenate the resulting Z matrices, then multiply with weight matrix W° to produce the output of the layer

Mo

One attention head

Thinking Machines

* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

Layer Normalization [1]

- Motivations
 - 1. Dynamic length
 - 2. Different meaning of the same position
- Formula

$$y = rac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + eta$$

Comparison between four normalizations [2]

Add & Normalize

Add & Normalize

Self-Attention

Feed Forward

Machines

Feed Forward

Thinking

- [1] Ba, J. L., Kiros, J. R., & Hinton, G. E. (2016). Layer normalization. arXiv preprint arXiv:1607.06450.
- [2] Wu, Y., & He, K. (2018). Group normalization. In *Proceedings of the European Conference on Computer Vision (ECCV)* (pp. 3-19).

Feed-Forward Networks

- Architecture
 - Two linear transformations with a ReLU in between
 - Dimension of input and output =512
 - Dimension of inner-layer = 512*4
- Formula

$$FFN(x) = \max(0, xW_1 + b_1)W_2 + b_2$$

Other Transformer Based NLP Models

XLNet (CMU + Google AI)

• Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In *Advances in neural information processing systems* (pp. 5754-5764).

ALBERT (Google Language)

• Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P., & Soricut, R. (2019). Albert: A lite bert for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942.

RoBERTa (Facebook AI)

• Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., ... & Stoyanov, V. (2019). Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692.

Transformer-XL (CMU + Google Brain)

• Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., & Salakhutdinov, R. (2019). Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860.

• ERNIE (Baidu)

• Sun, Y., Wang, S., Li, Y., Feng, S., Chen, X., Zhang, H., ... & Wu, H. (2019). Ernie: Enhanced representation through knowledge integration. arXiv preprint arXiv:1904.09223.

GPT-2 (OpenAI)

• Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.

Support BERT -> Support All

Agenda

BERT Architecture

Model Compression

Applications

BERT_{Base} v.s. BERT_{Large}

- BERT_{Base}
 - #para = 110M, #encoders = 12, #dim = 768, #head = 12,
 - #FLOPs = 123M * sentence_length * #Batch
- BERT_{Large}
 - #para = 340M, #encoders = 24, #dim = 1024, #head = 16
 - #FLOPs = 1857M * sentence_length * #Batch

Comparison between BERT_based and BERT_Large

Parameter / FLOPs Distributions

Computation Analysis [1]

[1] BGanesh, P., etc. (2020). Compressing large-scale transformer-based models: A case study on bert. arXiv preprint arXiv:2002.11985.

Compression Methods on BERT

- Data Quantization
 - Embedding layer is more sensitive to quantization than other layers
 - More bits to maintain its accuracy
- Pruning
 - Sparse pruning (trending and with promising future):
 - Our NAACL'21 work [1], SparseBERT, achieved SOTA (compression ratio = x20, only 1.4% performance drop)
 - Structured pruning: #encoders, #att_heads, #hidden_dims
- Knowledge Distillation
 - Distillation on output logits, encoder outputs, attention maps
- Architecture-Invariant Compression
 - Parameter sharing, weight matrix decomposition

All The Ways You Can Compress BERT [1]

• Literatures

Paper	Prune	Factor	Distill	W. Sharing	Quant.	Pre- train	Downstream
Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning	Ø					Ø	2
Are Sixteen Heads Really Better than One?	Ø						Ø
Pruning a BERT-based Question Answering Model							Z

• Experimental Results

Paper	Reduction	Of	Speed- up	Accuracy?	Comments
Compressing BERT: Studying the Effects of Weight Pruning on Transfer Learning	30%	params	?	Same	Some interesting ablation experiments and fine-tuning analysis
Are Sixteen Heads Really Better than One?	50-60%	attn heads	1.2x	Same	
Pruning a BERT-based Question Answering Model	50%	attn Heads + FF	2x	-1.5 F1	

[1] http://mitchgordon.me/machine/learning/2019/11/18/all-the-ways-to-compress-BERT.html

SparseBERT: Knowledge-Aware Sparse Pruning [1]

- Motivation: gap of sparse pruning in NLP
- Analysis about knowledge lost

TinyBERT: Distilling BERT for Natural Language Understanding [1]

- Knowledge distillation of the Transformer-based models
- A two-stage learning framework
- Results
 - > 96% the performance of teachers
 - 7.5x smaller and 9.4x faster on inference

[1] Huawei Noah's Ark Lab. Tinybert: Distilling bert for natural language understanding. EMNLP 2020.

Agenda

BERT Architecture

Model Compression

Applications

Novel CV Applications using Transformers [1]

- Transformer for Image Synthesis Sesser et al. (2020)
- Transformer for Multi-Object Tracking Sun et al. (2020)
- Transformer for Music Generation Hsiao et al. (2021)
- Transformer for Dance Generation with Music & Huang et al. (2021)
- Transformer for 3D Object Detection S Bhattacharyya et al. (2021)
- Transformer for Point-Cloud Processing OGuo et al. (2020)
- Transformer for Time-Series Forecasting S Lim et al. (2020)
- Transformer for Vision-Language Modeling Thang et al. (2021)
- Transformer for Lane Shape Prediction 🔗 Liu et al. (2020)
- Transformer for End-to-End Object Detection 🔗 Zhu et al. (2021)

NLP Applications using Transformers

- ☐ Question Answer and Reading Comprehension
- ☐ Web Search and Information Retrieval
- ☐ Dialog System or Chatbot
- ☐ Text Summarization
- ☐ Data Augmentation in NLP areas
- ☐ Text/Word Classification
- ☐ Sequence Labelling
- ☐ Others

Vision Transformer (ViT) [1]

- Open the door of applying Transformer architecture to CV domains
- Split an image into fixed-size patches
- Transformer encoder

Model overview

Vision Transformer (ViT) [1]

- Vision Transformer >> SOTA convolutional networks
 - Need to be pre-trained on large data and transferred to smaller ones
- Substantially fewer computational resources to train

	Ours-JFT (ViT-H/14)	Ours-JFT (ViT-L/16)	Ours-I21k (ViT-L/16)	BiT-L (ResNet152x4)	Noisy Student (EfficientNet-L2)
ImageNet	88.55 ± 0.04	87.76 ± 0.03	85.30 ± 0.02	87.54 ± 0.02	88.4/88.5*
ImageNet ReaL	90.72 ± 0.05	90.54 ± 0.03	88.62 ± 0.05	90.54	90.55
CIFAR-10	99.50 ± 0.06	99.42 ± 0.03	99.15 ± 0.03	99.37 ± 0.06	_
CIFAR-100	94.55 ± 0.04	93.90 ± 0.05	93.25 ± 0.05	93.51 ± 0.08	_
Oxford-IIIT Pets	97.56 ± 0.03	97.32 ± 0.11	94.67 ± 0.15	96.62 ± 0.23	_
Oxford Flowers-102	99.68 ± 0.02	99.74 ± 0.00	99.61 ± 0.02	99.63 ± 0.03	_
VTAB (19 tasks)	77.63 ± 0.23	76.28 ± 0.46	72.72 ± 0.21	76.29 ± 1.70	_
TPUv3-core-days	2.5k	0.68k	0.23k	9.9k	12.3k

Results on popular image classification benchmarks

Results on ImageNet

[1] Google Brain. An image is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021 (oral).

Q & A

Web: www.personal.psu.edu/dux19/

Email: dux19@psu.edu