Нарисовать Дракон-схемы и написать программы решения следующих задач.

- 1. Дано целое число N (> 0). Последовательность вещественных чисел A_k определяется следующим образом: $A_0 = 1$, $A_k = (A_{k-1} + 1)/k$, $k = 1, 2, \ldots$ Вывести элементы A_1, A_2, \ldots, A_N .
- 2. Дано целое число N (> 1) и набор из N целых чисел. Вывести те элементы в наборе, которые меньше своего правого соседа, и количество K таких элементов. Набор генерировать. Массивы не использовать.
- 3. Даны целые числа k, N и набор из N вещественных чисел: A_1, A_2, \ldots, A_N . Вывести k-е степени чисел из данного набора: $(A_1)^k$, $(A_2)^k$, . . ., $(A_N)^k$. Набор генерировать. Массивы не использовать.
- 4. Дано число R и массив A размера N. Найти элемент массива, который *наиболее* близок к числу R (то есть такой элемент A_K , для которого величина $|A_K R|$ является минимальной).
- 5. Дан массив размера N и целое число K ($1 \le K < N$). Осуществить $c\partial виг$ элементов массива вправо на K позиций (при этом A_I перейдет в $A_{K+1}, A_2 —$ в $A_{K+2}, \ldots, A_{N-K} —$ в A_N , а исходное значение K последних элементов будет потеряно). Первые K элементов полученного массива положить равными 0. Bспомогательные массивы не использовать.
- 6. Дан целочисленный массив размера N. Удалить из массива все дубликаты элементов, оставив их первые вхождения.
- 7. Дана квадратная матрица *А* порядка *М* (*М* нечетное число). Начиная с первого элемента и перемещаясь против часовой стрелки, вывести все ее элементы по спирали: первый столбец, последняя строка, последний столбец в обратном порядке, первая строка в обратном порядке, оставшиеся элементы второго столбца и т. д.; последним выводится центральный элемент матрицы.

Задачи сдать ДО КОНЦА СЕМЕСТРА Дракон-схемы представлять в виде рисунков в формате PNG.