Continuous Functions

Mathew Calkins
mathewpcalkins@gmail.com

November 21, 2018

1 Convergence of functions

Given a metric space (X, d) and a collection of functions $f_n : X \to \mathbb{R}$, we distinguish between two notions of convergence to $f : X \to \mathbb{R}$.

- Pointwise convergence: for all $x \in X$, $\lim_{n\to\infty} f_n(x) = f(x)$.
- Metric convergence: $\lim_{n\to\infty} ||f_n f|| = 0$ for some metric $||\cdot||$ on the space of functions from which we draw each f_n .

By considering the sequence of maps $f_n:[0,1]\to\mathbb{R}$ given by $x\mapsto x^n$, we see that a pointwise-convergent sequence of continuous functions may have a discontinuous limit. So this is a bad notion of convergence if we want to restrict ourselves to continuous functions.

For continuous functions $f: X \to \mathbb{R}$, a natural norm on spaces of continuous functions is the *uniform* or sup norm

$$||f|| = \sup_{x \in X} |f(x)|.$$

Imagining the behavior of the L^p norm for large p, this is sometimes written $\|\cdot\|_{\infty}$.

- 2 Spaces of continuous functions
- 3 Approximation by polynomials
- 4 Compact subsets of C(K)
- 5 Ordinary differential equations