货物供应中心的选址问题

问题建模

根据题意,我们设选址的位置为s, 坐标为 x_s, y_s 。我们在如图所示的区域中选址s, 四个边界点分别记为 L_1, L_2, L_3, L_4 。

那么在单位运费k=1一定的情况下,保证运费最少也即保证选址s到各个销售点的加权距离之和最小,而这个权重事实上就是每天的货物销售量。我们记 $p_i=(x_i,y_i)$ 为销售点i的位置, c_i 为该销售点的每日货物销售量 $(i=1,2\cdots 5$ 分别对应ABCDE)。考虑欧几里得距离而非曼哈顿距离,从而可以得到以下的二次规划模型:

$$egin{split} \min z &= \sum_{i=1}^5 c_i \sqrt{[(x_s - x_i)^2 + (y_s - y_i)^2]} \ & ext{s.t.} egin{cases} y_s &\geq 6 \ y_s &\leq 10 \ x_s &\leq 18 \ x_s + y_s &\geq 18 \end{cases} \end{split}$$

根据题目,对应数据如下:

专卖店名称	x_i	y_i	每日销售量 c_i
Α	3	12	18
В	6	6	11
С	10	2	5
D	18	12	16
E	12	14	9

代码

```
x(2)>=6;
x(2)<=10;
x(1)<=18;
x(1)+x(2)>=18;
@for(num_i(i):x(i)>=0);
END
```

结果

如图所示,其中X(1) 对应于题目中的 x_s ,X(2) 对应于题目中的 y_s 。可以看到最优解为:

 $x_spprox 8.43, \quad y_s=10$

即最优的选址位置。此时的每日总运输费用: $cost \approx 401$ (上述数值单位均为题目中默认单位)