Processamento Digital de Sinais

MÓDULO 6 FFT - Transformada Rápida de Fourier

Gustavo Luís F. Vicente

- Introdução
 - Karl Friedrich Gauss século 19 (não tinha um computador)
 - Cooley & Tukey 1965
 - Baseada na DFT Complexa
 - Centenas de vezes mais rápida que o método básico de cálculo da DFT
 - Podemos calcular a DFT Real a partir da DFT Complexa
 - Temos de saber como transferir os dados entre as duas versões de DFT...

Real DFT

Complex DFT

- Notação de números complexos
 - Os domínios do tempo e da frequência possuem UM sinal de N amostras, cada amostra é um número complexo, com parte real e parte imaginária
 - Ao calcular a FFT devemos ter em mente que cada ponto do sinal é um número complexo, representado por dois valores reais (desconsideramos i)

Complex DFT

- Operação básica da FFT
 - Decompõe um sinal no tempo de N pontos em N sinais no tempo de um ponto cada
 - Calcula a DFT dos N sinais, gerando um espectro de N frequências
 - Sintetiza o espectro de frequências único, a partir as N frequências geradas pela DFT

Frequency Domain Data

- PASSO1: Decomposição de um sinal de 16 pontos em 16 sinais de um ponto
 - Obs.: Decomposição entrelaçada (amostras pares e ímpares)
 - Número de passos da decomposição: Log_2N

 Detalhe: a FFT reordena os pontos do sinal de acordo com a ordem reversa de bits de suas posições

Ordem Normal			Ordem Reversa de Bits	
Decimal	Binary		Decimal	Binary
0	0000		0	0000
1	0001		8	1000
2	0010		4	0100
3	0011		12	1100
4	0100		2	0010
5	0101		10	1010
6	0110		6	0110
7	0111		14	1110
8	1000		1	0001
9	1001		9	1001
10	1010		5	0101
11	1011		13	1101
12	1100		3	0011
13	1101		11	1011
14	1110		7	0111
15	1111		15	1111

- PASSO 2: calcular o espectro de frequência de cada sinal de um ponto.
 - O espectro de frequência de um sinal de 1 ponto é ele mesmo
 - Nada a fazer...
 - Apenas considerar que agora os valores representam um espectro de frequência e não mais um sinal no domínio do tempo...

- PASSO 3: síntese do espectro de frequências
 - Intercalação de zeros entre amostras no tempo equivale à duplicação dos pontos em frequência
 - deslocamento de uma amostra no tempo equivale à multiplicação por uma senóide em frequência

- PASSO 3: síntese do espectro de frequências
 - sintetiza-se o espectro a partir da composição dos pontos pares com os pontos ímpares, da forma abaixo, conhecida como *butterfly*

- PASSO 3: síntese do espectro de frequências
 - Exemplo de síntese de 2 sinais de 4 pontos no domínio da frequência

Velocidade e Precisão

Código da decomposição no tempo em "bit-reverse"

```
1050 \text{ PI} = 3.14159265
                                                         'Set constants
1060 \text{ NM} 1\% = \text{N}\% - 1
1070 \text{ ND}2\% = \text{N}\%/2
1080 \text{ M}\% = \text{CINT}(\text{LOG}(\text{N}\%)/\text{LOG}(2))
1090 \text{ J}\% = \text{ND}2\%
1100'
1110 FOR I% = 1 TO N%-2
                                                         'Bit reversal sorting
1120 IF I% >= J% THEN GOTO 1190
1130 TR = REX[J%]
1140 TI = IMX[J\%]
1150 REX[J\%] = REX[I\%]
1160 IMX[J\%] = IMX[I\%]
1170 REX[I\%] = TR
1180 IMX[I\%] = TI
1190 K% = ND2%
1200 IF K% > J% THEN GOTO 1240
1210 J% = J%-K%
1220 K\% = K\%/2
1230 GOTO 1200
1240 J% = J%+K%
1250 NEXT I%
```

Código da síntese na frequência do espectro

```
1260 '
                                              'Loop for each stage
1270 FOR L% = 1 TO M%
1280 LE% = CINT(2^L%)
1290 LE2% = LE%/2
1300 UR = 1
1310 UI = 0
                                              'Calculate sine & cosine values
1320 SR = COS(PI/LE2\%)
1330 SI = -SIN(PI/LE2\%)
1340 FOR J% = 1 TO LE2%
                                              'Loop for each sub DFT
1350 JM1% = J%-1
                                              'Loop for each butterfly
1360 FOR I% = JM1% TO NM1% STEP LE%
1370 IP\% = I\% + LE2\%
                                              'Butterfly calculation
1380 TR = REX[IP%]*UR - IMX[IP%]*UI
1390 TI = REX[IP\%]*UI + IMX[IP\%]*UR
1400
       REX[IP\%] = REX[I\%]-TR
1410 IMX[IP\%] = IMX[I\%]-TI
1420 REX[I\%] = REX[I\%] + TR
1430 \quad IMX[I\%] = IMX[I\%] + TI
1440 NEXT I%
1450 TR = UR
1460 UR = TR*SR - UI*SI
1470 UI = TR*SI + UI*SR
1480 NEXT J%
1490 NEXT L%
1500 '
1510 RETURN
```

Exercício

 Implementar na placa de desenvolvimento (com o MikroC) a FFT, mostrando no display gráfico o espectro de frequência do sinal amostrado.