RTC实时时钟

RTC是个独立的定时器。RTC模块拥有一个连续计数的计数器,在相应的软件配置下,可以提供时钟日历的功能。修改计数器的值可以重新设置当前时间和日期RTC还包含用于管理低功耗模式的自动唤醒单元。在断电情况下RTC仍可以独立运行只要芯片的备用电源一直供电,RTC上的时间会一直走。

两个 32 位寄存器包含二进码十进数格式 (BCD) 的秒、分钟、小时(12 或24 小时制)、星期几、日期、月份和年份。此外,还可提供二进制格式的亚秒值。系统可以自动将月份的天数补偿为28、29(闰年)、30 和31 天。

上电复位后,所有RTC寄存器都会受到保护,以防止可能的非正常写访问。

无论器件状态如何(运行模式、低功耗模式或处于复位状态),只要电源电压保持在工作范围内,RTC 使不会停止工作。

RTC特性

RTC 单元的主要特性如下 (参见图 222: RTC 框图):

- 包含亚秒、秒、分钟、小时(12/24小时制)、星期几、日期、月份和年份的日历。
- 软件可编程的夏令时补偿。
- 两个具有中断功能的可编程闹钟。可通过任意日历字段的组合驱动闹钟。
- 自动唤醒单元,可周期性地生成标志以触发自动唤醒中断。
- 参考时钟检测:可使用更加精确的第二时钟源(50 Hz 或 60 Hz)来提高日历的精确度。
- 利用亚秒级移位特性与外部时钟实现精确同步。
- 可屏蔽中断/事件:
 - 同钟 A 同钟 B 唤醒中断 Z 3 入侵检测 3
- 数字校准电路(周期性计数器调整)
 - 精度为 5 ppm
 - 精度为 0.95 ppm, 在数秒钟的校准窗口中获得
- 用于事件保存的时间戳功能(1个事件)
- 入侵检测:
 - 2个带可配置过滤器和内部上拉的入侵事件
- 20个备份寄存器(80字节)。发生入侵检测事件时,将复位备份寄存器。

RTC中断

中断名	中断类型号
RTC闹钟中断	EXTI17
RTC唤醒中断	EXTI22
RTC入侵中断	EXTI21
RTC时间戳中断	EXTI21

- 1. 将对应的类型中断号配置为中断模式并且使能
- 2. 配置NVIC中的(RTC_Alarm IRQ、RTC_WKUP IRQ、RTC_STAMP IRQ)通道并且使能
- 3. 配置RTC以检测对应的RTC事件

RM0090 复位和时钟控制 (RCC)

HD7279芯片

HD7279A是一片具串行接口的芯片。它可完成LED显示、键盘接口的全部功能。 **可同时驱动8位共阴式数码管的智能显示;还可连接多达64键的键盘矩阵**

HD7279A的控制指令分为二大类——纯指令和带有数据的指令。

纯指令

复位清楚指令A4H

D7	D6	D5	D4	D3	D2	D1	D0
1	0	1	0	0	1	0	0

带数据指令

下载数据按照方式0译码 (80H-87H)

高位:

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	0	0	a2	a1	a0

低位:

D7	D6	D5	D4	D3	D2	D1	D0	
DP	X	X	X	d3	d2	d1	d0	

其中: X 此处不译码; a2、a1、a0为位地址; d3、d2、d1、d0为显示数据

a2	a1	a0	显示位
0	0	0	1
0	0	1	2
0	1	0	3
0	1	1	4
1	0	0	5
1	0	1	6
1	1	0	7
1	1	1	8

d0—d3为数据,收到此指令时,HD7279A按以下规则(译码方式0)进行译码,如下表:

d3-d0(十六进制)	d3	d2	d1	d0	7段显示
00Н	0	0	0	0	0
01H	0	0	0	1	1
02H	0	0	1	0	2
03H	0	0	1	1	3
04H	0	1	0	0	4
05H	0	1	0	1	5
06H	0	1	1	0	6
07H	0	1	1	1	7
08H	1	0	0	0	8
09H	1	0	0	1	9
0AH	1	0	1	0	-
0BH	1	0	1	1	E
0CH	1	1	0	0	н
0DH	1	1	0	1	L
0EH	1	1	1	0	Р
0FH	1	1	1	1	空(无显示)

下载数据按照方式1译码 (C8H - CFH)

高位:

D7	D6	D5	D4	D3	D2	D1	D0
1	1	0	0	1	a2	a1	a0

低位:

D7	D6	D5	D4	D3	D2	D1	D0
DP	Χ	X	Χ	d3	d2	d1	d0

其中: X 此处不译码; a2、a1、a0为位地址; d3、d2、d1、d0为显示数据

a2	a1	a0	显示位
0	0	0	1
0	0	1	2
0	1	0	3
0	1	1	4
1	0	0	5
1	0	1	6
1	1	0	7
1	1	1	8

此指令与上一条指令基本相同,所不同的是译码方式,该指令的译码按下表进行:

d3-d0(十六进制)	d3	d2	d1	d0	7段显示
00H	0	0	0	0	0
01H	0	0	0	1	1
02H	0	0	1	0	2
03H	0	0	1	1	3
04H	0	1	0	0	4
05H	0	1	0	1	5
06H	0	1	1	0	6
07H	0	1	1	1	7
H80	1	0	0	0	8
09H	1	0	0	1	9
0AH	1	0	1	0	Α
0BH	1	0	1	1	b
0CH	1	1	0	0	С
0DH	1	1	0	1	d
0EH	1	1	1	0	E
0FH	1	1	1	1	F

下载数据不译码 (90H - 97H)

高位:

D7	D6	D5	D4	D3	D2	D1	D0
1	0	0	1	0	a2	a1	a0

低位:

D7	D6	D5	D4	D3	D2	D1	D0
DP	Α	В	С	D	Е	F	G

其中,a2,a1,a0为位地址(参见'下载数据且译码'指令),A-G和DP为显示数据,分别对应7段LED数码管的各段。数码管各段的定义见下图。当相应的数据位为'1'时,该段点亮,否则不亮。

SPI接口

Serial Peripheral interface , 即串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。

在芯片的管脚上**只占用四根线**,具有节约芯片管脚、可为PCB节省空间等优点。

主要应用在 EEPROM、FLASH、实时时钟、AD转换器、数字信号处理器和数字信号解码器之间。可以是8位数据传送,也可以是16位,可编程;既可以高位先行,也可以低位先行。

W25Q16特点

- 1. SPI接口,容量为 16Mb,也就是 2 M字节。
- 2. W25Q16将2M的容量分为32 个块(Block)
- 3. 每个块(Block)大小为64K字节,有16个Sector
- 4. W25Q16的擦写周期多达10万次(读不损耗)
- 5. 具有 20 年的数据保存期限

在STM32F407的开发环境中,"变量"的值可以在"调试"时观察

与7279的区别

都是串行芯片

但7279: MCU通过软件,来模拟实现并变串、串变并的对HD7279的数据传输,采用半双工通信

W25Q16:MCU通过硬件,来模拟实现并变串、串变并的对W25Q16的数据传输,可以采用全双工通信

命令识别码

INSTRUCTION NAME	BYTE 1 (CODE)
Write Enable	06h
Write Disable	04h
Read Status Register-1	05h
Read Status Register-2	35h
Write Status Register	01h
Page Program	02h
Quad Page Program	32h
Block Erase (64KB)	D8h
Block Erase (32KB)	52h
Sector Erase (4KB)	20h
Chip Erase	C7h/60h
	G.1GG
Erase Suspend	75h
-	
Erase Suspend	75h
Erase Suspend Erase Resume	75h 7Ah
Erase Suspend Erase Resume Power-down	75h 7Ah B9h
Erase Suspend Erase Resume Power-down High Performance Mode	75h 7Ah B9h A3h
Erase Suspend Erase Resume Power-down High Performance Mode Mode Bit Reset (4) Release Power down or HPM / Device ID Manufacturer/ Device ID ⁽⁶⁾	75h 7Ah B9h A3h FFh
Erase Suspend Erase Resume Power-down High Performance Mode Mode Bit Reset (4) Release Power down or HPM / Device ID Manufacturer/	75h 7Ah B9h A3h FFh

SPI内部结构简明图

SPI接口一般使用4条线通信:

MISO 主设备数据输入,从设备数据输出。 MOSI 主设备数据输出,从设备数据输入。 SCLK时钟信号,由主设备产生。 CS从设备片选信号,由主设备控制。

从器件选择 (NSS) 引脚管理

可以使用 SPI_CR1 寄存器中的 SSM 位设置硬件或软件管理从器件选择。

- 软件管理 NSS (SSM = 1) 从器件选择信息在内部由 SPI_CR1 寄存器中的 SSI 位的值驱动。外部 NSS 引脚空 闲,可供其它应用使用。
- 硬件管理 NSS (SSM = 0) 根据 NSS 输出配置 (SPI_CR1 寄存器中的 SSOE 位),硬件管理 NSS 有两种模式。
 - NSS 输出使能(SSM = 0, SSOE = 1) 仅当器件在主模式下工作时才使用此配置。当主器件开始通信时, NSS 信号驱动 为低电平, 并保持到 SPI 被关闭为止。
 - NSS 输出禁止(SSM = 0, SSOE = 0)
 对于在主模式下工作的器件,此配置允许多主模式功能。对于设置为从模式的器件, NSS 引脚用作传统 NSS 输入:在 NSS 为低电平时片选该从器件,在 NSS 为高电平时取消对它的片选。

点阵

16x16点阵用的是四块 CL-788BS (8*8微型点阵)和四块74HC595的8位串入并出的位移寄存器。

24X24LCD点阵:\

CL-788BS 共9片,\

74HC595 (行加一片,列加一片)共6片\

如图,这是16x16的接线图,将 CL-788BS 组成3x3矩阵,同时再加两片74HC595 对应相比16x16的多出的1行和1列。