CPU WORKLOAD

Aggregate metrics comparison of Al-augmented Linux-like baseline scheduler and the Linux-like baseline scheduler:

Metric	Linux-like Baseline Scheduler	Al-augmented Linux-like Scheduler
Simulated Ticks	29,586	29,585
Average Turnaround Time	11,044.21	9,069.18
Median Turnaround Time	7,826.00	7,763.50
Average Response Time	11,002.10	9,027.00
95th Percentile Response	24,999.90	24,999.00
Fairness (Jain Index)	0.018506	0.018506
CPU Utilization (%)	99.93	99.93
Context Switches	105,635	105,325
Tasks Total	942	942
Tasks Completed	942	942
Throughput (tasks/unit time)	0.031838	0.031839

PLOT:

Results Summary —

On a CPU-intensive workload with 942 tasks, the AI-augmented Linux-like scheduler achieved a clear improvement over the baseline:

- Average Turnaround Time reduced by 17.9% (from 11,044 → 9,069 ticks).
- Average Response Time reduced by 17.9% (from 11,002 → 9,027 ticks).
- Median Turnaround Time also showed a slight gain (0.8% lower).
- Fairness, CPU utilization, and throughput remained identical, confirming no trade-off in overall system balance.

 Context switches dropped slightly (~0.3%), showing reduced scheduling overhead.

Interpretation: For compute-heavy tasks, AVIOS significantly improves responsiveness and completion times without compromising fairness or efficiency, demonstrating its ability to allocate CPU cycles more intelligently than the baseline.