Rotating loop in a rotating magnetic field. Assume that the magnetic flux density vector \mathbf{B} in Fig. Q6.9 also rotates, in the same direction as the loop, with an angular velocity ω_B , where $\omega_B > \omega$ (vectors ω and ω_B are collinear and in the same direction). With \mathcal{E}_0 , \mathcal{E}_{01} , and \mathcal{E}_{02} standing for respective constants, the induced emf in the loop is given by

- (A) $e_{\text{ind}}(t) = \mathcal{E}_0 \cos \omega t$.
- (B) $e_{\text{ind}}(t) = \mathcal{E}_0 \cos \omega_B t$.
- (C) $e_{\text{ind}}(t) = \mathcal{E}_{01} \cos \omega t + \mathcal{E}_{02} \cos \omega_B t$.
- (D) $e_{\text{ind}}(t) = \mathcal{E}_0 \cos(\omega_B \omega)t$.
- (E) $e_{\text{ind}}(t) = \mathcal{E}_0 \cos(\omega_B + \omega)t$.

Solution: (D) Answer: (D)