Esercitazione 2

Tiziano Marzocchella $\left[655205\right]$

A.A. 2022/2023

1 Esercizio 1

- SSC_1 : $\{1, 2, 3, 10\}$
- SSC_2 : $\{4, 5, 6, 7, 8, 9, 13, 14, 15, 16, 17\}$
- SSC_3 : {11}
- SSC_4 : {12}

2 Esercizio 2

A) Dato un grafo G=(V,E) che rappresenta le amicizie su Facebook, prendendo due persone in V=FB p_1 e p_2 possiamo sempre individuare un path da p_1 a p_2 di lunghezza ≤ 6

B)

$$FB \times FB \subseteq \bigcup_{i=1}^{6} FBFriends^{i}$$

3 Esercizio 3

 $R \cap R^{op} \subseteq Id_A$ {Definizione di \subseteq } $\iff \forall (a,b) \in A \times A \text{ se } (a,b) \in R \cap R^{op} \text{ allora } (a,b) \in Id_A$ {Definizione di \cup } $\iff \forall (a,b) \in A \times A \text{ se } (a,b) \in R \wedge (a,b) \in R^{op} \text{ allora } (a,b) \in Id_A$ {Definizione di $\cdot \cdot \cdot^{op}$ } $\iff \forall (a,b) \in A \times A \text{ se } (a,b) \in R \wedge (b,a) \in R \text{ allora } (a,b) \in Id_A$ {Definizione di $\cdot \cdot^{op}$ } $\iff \forall (a,b) \in A \times A \text{ se } (a,b) \in R \wedge (b,a) \in R \text{ allora } a=b$ {Definizione di anti-simm.} $\iff R \text{ è anti-simmetrica}$

4 Esercizio 4

L'enunciato è falso. Un controesempio è

 $A = \{a, b, c\}$ $R = \{(a, b), (b, c), (c, a)\}$

$$R^* = \{(a,a),(b,b),(c,c),(a,b),(b,c),(c,a),(a,c),(c,b),(b,a)\}$$

5 Esercizio 5

a) Falso. Un controesempio è il grafo ${\cal G}$ non riflessivo.

$$G = (\{a,b,c\},\{(a,b),(b,c)\})$$

b) False. Un controesempio è il grafo G non transitivo.

$$G = (\{a, b, c\}, \{(a, b), (b, c)\})$$

c) Vero. Per dimostrare questo fatto dobbiamo dimostrare che E^* sia riflessiva, transitiva e antisimmetria, dalla definizione di ordinamento parziale. E^* è la chiusura riflessiva e transitiva di E, quindi per definizione è riflessiva e transitiva.

Manca quindi da dimostrare che E^* sia anti-simmetrica, quindi l'implicazione

$$(x,y),(y,x) \in E^* \implies x = y$$

Prese due coppie del tipo (x, y) e $(y, x) \in E^*$, per definizione di chiusura transitiva e riflessiva, se G è un DAG allora esiste un path da x a y, e viceversa. Quindi se x fosse diverso da y avremmo un ciclo da x a x e quindi G non potrebbe essere un DAG.

6 Esercizio 6

- 1. Vero. Ogni nodo sorgente per definizione avrà grado di ingresso uguale a 0. Quindi considerando il DAG $H = (V, E^{op})$ abbiamo che tutti gli archi connessi ai nodi sorgenti sono invertiti, di conseguenza i nodi sorgenti avranno grado di uscita e entrata invertiti, quindi diventano pozzi.
- 2. Vero. Stessa dimostrazione del punto 1, ma considerando i pozzi.
- 3. Falso. Un controesempio è

$$G = (\{a,b\},\{(a,b)\})$$
 $H = (\{a,b\},\{(b,a)\})$

- 4. Vero. Se posso seguire gli archi in E per arrivare da y a x in H, allora certamente posso seguire la stessa sequenza di archi invertiti in E^{op} per arrivare da x a y in G. Se esiste un walk da x a y in G ciò significa che posso seguire una sequenza di archi in E per arrivare da x a y in G, allora certamente posso seguire la stessa sequenza di archi invertiti in E^{op} per arrivare da y a x in H.
- 5. Vero. G è DAG se e solo se E^* è ordinamento parziale, quindi mi basta dimostrare che $(E^{op})^*$ sia ordinamento parziale.

Per la legge di distributività di * su . op

$$(E^{op})^* = (E^*)^{op}$$

ma allora considerando che per ipotesi di DAG E^* è ordinamento parziale, devo dimostrare che la relazione opposta di E^* ordinamento parziale sia a sua volta ordinamento parziale. Considerando una relazione di ordinamento parziale, che quindi è riflessiva transitiva e antisimmetrica, devo verificare che queste tre proprietà siano mantenute facendo la relazione opposta.

- Riflessività: invertendo le coppie del tipo (a, a) ottengo esattamente le stesse coppie
- Transitività: prese due coppie qualsiasi (a, b), (b, c) per transitività ho anche la coppia (a, c). Ma invertendo tutte e tre le coppie, ottengo (c, b), (b, a)e(c, a) quindi mantengo la transitività.
- Anti-simmetria: se la relazione non contiene coppie del tipo (a, b), (b, a) con $a \neq b$, allora invertendo tutti gli archi non potrò mai ottenere tali coppie.

Verificate queste proprietà, possiamo dire che $(E^*)^{op}$ è ordinamento parziale, e che quindi $(E^{op})^*$ è ordinamento parziale.

7 Esercizio 7

1. P(n): mult 2(n,m) = mult 2(n) + mult (m) Caso base: Per ogni $m \in \mathbb{N}$ vale

$$P(0) = mult2(0 + m)$$
 {calcolo}
= $mult2(m)$ {calcolo}
= $0 + mult2(m)$ {clausola base mult2}
= $mult2(0) + mult2(m)$

Passo induttivo: Per ogni $m \in \mathbb{N}$ vale

$$\forall n \in \mathbb{N} \text{ vale che } P(n) \implies P(n+1)$$

```
mult2(n+1+m) =  {calcolo}

= mult2(n+m+1) =  {clausola induttiva mult2}

= 2 + mult2(n+m) =  {ipotesi induttiva}

= 2 + mult2(n) + mult2(m) {clausola induttiva mult2 al contrario}

= mult2(n+1) + mult2(m)
```

2. Q(n): sum(n, f; mult2(n, m)) = mult2(sum(n, f))Caso base: Per ogni $f \in Fun(\mathbb{N}, \mathbb{N})$ vale Q(0)

$$sum(0, f; mult2) = mult2(sum(0, f))$$
 {clausola base di sommatoria} $(f; mult2)(0) = mult2(f(0))$

Passo induttivo: Per ogni $f \in Fun(\mathbb{N}, \mathbb{N})$ vale $Q(n) \implies Q(n+1)$

```
\begin{aligned} sum(n+1,f;mult2) &= mult2(sum(n+1,f)) & \{\text{clausola induttiva sommatoria}\} \\ &= mult2(f(n+1) + sum(n,f)) & \{\text{P(n)}\} \\ &= mult2(f(n+1)) + mutl2(sum(n,f)) & \{\text{ipotesi induttiva}\} \\ &= mult2(f(n+1)) + sum(n,f;mult2) & \{\text{g(f(x))} = (f;g)(x)\} \\ &= (f;mult2)(n+1) + sum(n,f;mult2) & \{\text{clausola induttiva sommatoria}\} \\ &= sum(n+1,f;mult2) & \{\text{clausola induttiva sommatoria}\} \end{aligned}
```