NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA

THESIS

DEVELOPMENT OF A SIMSMART BASED, PROGRESSIVE FLOODING DESIGN TOOL

by

Thomas J. Anderson

March 1999

Thesis Advisor: Co-Advisor:

ANATILA COLSENATOR X

Charles N. Calvano Fotis Papoulias

Approved for public release; distribution is unlimited.

19990409 070

Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)

and Reports, 1215 Jefferson Davis Highway, Suite 1204, A Washington DC 20503.	Arlington, VA 22202-4302, and to the C	office of Management a	and Budget, Paperwork Reduction Project (0704-0100)	
1. AGENCY USE ONLY (Leave blank)	2. REPORT DATE March 1999.	3. REPO Master's	ORT TYPE AND DATES COVERED Thesis	
4. TITLE AND SUBTITLE: DEVELOPMENT OF A SIMSMART BASE TOOL	D, PROGRESSIVE FLOODIN	NG DESIGN	5. FUNDING NUMBERS	
6. AUTHOR(S) Anderson, Thomas J.				
7. PERFORMING ORGANIZATION NA Naval Postgraduate School Monterey CA 93943-5000	ME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER	
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) Naval Sea Systems Command			10. SPONSORING/MONITORING AGENCY REPORT NUMBER	
11. SUPPLEMENTARY NOTES The views expressed here are those of of Defense or the U.S. Government.	the authors and do not refl	ect the official	policy or position of the Department	
12a. DISTRIBUTION/AVAILABILITY S Approved for public release; distribution			12b. DISTRIBUTION CODE	
II				

13. ABSTRACT (maximum 200 words) While the Navy addresses the effects of progressive flooding in its design requirements, its limits for damaged stability are the results of World War II damage analysis and are evaluated under static conditions, without regard for shipboard damage control systems. This thesis develops a program which utilizes the SIMSMART flow analysis program in tandem with naval architecture analysis in Microsoft Excel, to simulate progressive flooding of a ship based on the varying specifics of a given scenario. This program can be used to aid designers in dynamic simulation of the flooding process not only to determine the adequacy of dewatering equipment, but also to establish a timeline, including naval architecture parameters, throughout the process.

14. SUBJECT TERMS Progressive Flooding, Damaged Stability, Simulation Based Design Tool			15. NUMBER OF PAGES 155	
<u> </u>			16. PRICE CODE	
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATION OF THIS PAGE Unclassified	19. SECURITY CLASSIFICATION OF ABSTRACT Unclassified	20. LIMITATION OF ABSTRACT UL	

NSN 7540-01-280-5500

Standard Form 298 (Rev. 2-89) Prescribed by ANSI Std. 239-18 298-102

Approved for public release; distribution is unlimited

DEVELOPEMENT OF A SIMSMART BASED, PROGRESSIVE FLOODING DESIGN TOOL

Thomas J. Anderson Lieutenant, United States Navy B.S.M.E., Boston University, 1991

Submitted in partial fulfillment of the Requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL March 1999

Author:	Thomas & Anderson	
	Thomas J. Anderson	
Approved by:	Charles N. Calvano, Thesis Advisor	
	Marie Contraction of the Contrac	
	Fotis Papoulias, Co-Advisor RMW	
	Terry R. McNelly, Chairman Department of Mechanical Engineering	

ABSTRACT

While the Navy addresses the effects of progressive flooding in its design requirements, its limits for damaged stability are the results of World War II damage analysis and are evaluated under static conditions, without regard for shipboard damage control systems. This thesis develops a program which utilizes the SIMSMART flow analysis program in tandem with naval architecture analysis in Microsoft Excel, to simulate progressive flooding of a ship based on the varying specifics of a given scenario. This program can be used to aid designers in dynamic simulation of the flooding process not only to determine the adequacy of dewatering equipment, but also to establish a timeline, including naval architecture parameters, throughout the process.

TABLE OF CONTENTS

I.	INT	RODUCTION	1
	A.	BACKGROUND	1
	B.	CURRENT DESIGN REQUIREMENTS	3
	C.	CURRENT DESIGN ANALYSIS PROCEDURE	4
	D.	FUTURE DESIGN REQUIREMENTS	5
	E.	SHORTFALLS OF CURRENT ANALYSIS ADDRESSED BY THIS THESIS	
II.	DEV	ELOPMENT OF THE SIMULATION PROGRAM	7
	A.	APPROACH	7
	B.	HULL FORM	8
	C.	SIMSMART	9
	D.	NAVAL ARCHITECTURE	
	E.	SIMULATION PROCESS SUMMARIZED	18
III.	SCE	NARIOS	21
	A.	SCENARIO CONCEPTS. 1. Scenarios 1, 1A, And 1B. 2. Scenario 2. 3. Scenarios 3, 3A, And 3B.	22
	В.	SCENARIO RESULTS 1. Scenario 1 2. Scenario 1A 3. Scenario 1B 4. Scenario 2 5. Scenario 3 6. Scenario 3A 7. Scenario 3B	26 30 37 39

IV.	CONCLUSIONS	49
V.]	RECOMMENDATIONS	51
APPEN	DIX A. COMPONENTS OF SIMSMART MODEL	53
APPEN	DIX B. SIMSMART MODEL SPECIFIC PARAMETERS	57
APPEN	DIX C. COMPARTMENT VOLUME PROGRAM	105
APPEN	DIX D. NAVAL ARCHITECTURE SPREAD SHEET	107
APPEN	DIX E. DRAFT POLYNOMIAL PROGRAM	113
APPEN	DIX F. EXCEL TRANSFER MACRO	115
APPEN	DIX G. SCENARIO 1 RESULTS	117
APPEN	DIX H. SCENARIO 1A RESULTS	119
APPEN	DIX I. SCENARIO 1B RESULTS	123
APPEN	DIX J. SCENARIO 2 RESULTS	127
APPEN	DIX K. SCENARIO 3 RESULTS	129
APPEN	DIX L. SCENARIO 3A RESULTS	133
APPEN	DIX M. SCENARIO 3B RESULTS	135
LIST O	F REFERENCES	139
BIBLIO	GRAPHY	141
INTTIAI	DICTRIPITION I ICT	143

I. INTRODUCTION

A. BACKGROUND

The use of watertight bulkheads as a means of minimizing the adverse effects of flooding in ships is not a new concept. As early as the thirteenth century, Marco Polo referred to the use of watertight bulkheads in Chinese junks [Ref. 1]. While their use made sense qualitatively, at the time their actual impact on damaged stability and ship survival could not be quantified. Dynamic damage control, such as dewatering, is an even older practice, which once again was not undertaken as the result of calculation, but rather because it made sense. As vessels became more and more complex this qualitative approach to damage control, both static and dynamic, became increasingly dangerous. The U.S. Navy acknowledged the potential for disaster in the 1930s when it included, for the first time, damaged stability as a major design factor. Standard procedures for damage control were implemented after they proved successful in limiting flooding during World War I. In the wake of World War I, the Navy began conducting damaged stability studies on new combatants. While these studies were limited by today's standards, they did lead to new designs and modifications that enhanced ship survivability during World War II. In 1947, the Bureau of Ships (BuShips), the current day Naval Sea Systems Command (NAVSEA), conducted a study of 10 combatants (ranging from destroyers to an escort carrier) and 14 auxiliaries that had survived torpedo hits during World War II [Ref. 2]. The results of the study (plotted in Figure 1.1) led the

Navy to require that ships be capable of withstanding a shell opening equal to a certain percent of their length. The length of this opening was designated as 15% for combatants

Figure 1.1. BuShips Length of Hit Study From Ref. [2]

and 12.5% for auxiliaries and, depending on bulkhead displacement, could result in a "flooded length" somewhat longer than the opening. The Navy also established a reserve buoyancy requirement, adopted from merchant practices of the day, that a margin line 3 inches below the bulkhead deck not be submerged. In 1962, a paper by T.H. Sarchin and L.L Goldberg, titled "Stability and Buoyancy Criteria for US Naval Surface Ships" recommended guidelines for ship design stability and buoyancy criteria to BuShips. The criterion developed was "empirical in nature, the result of World War II damage experience, model and full scale caisson explosion tests and general operating experience" [Ref. 3]. The Sarchin and Goldberg paper became the blueprint for the Navy's current design standards for both intact and damaged stability. These standards are delineated in NAVSEA Design Data Sheet 079-1 (DDS 097-1).

B. CURRENT DESIGN REQUIREMENTS

The following are the DDS 097-1 damaged stability criteria for category I ships, without side protection systems and over 300 feet in length. Category I includes combatants and personnel carriers, such as hospital ships and troop transports.

Figure 1.2. Static Stability Curve for Damaged Ship From Ref. [2]

- 1. The initial angle of heel, point C, does not exceed 15 degrees for operational conditions and 20 degrees for design requirements.
- 2. Area A₁ divided by area A₂ is greater than 1.4. The dynamic stability to absorb the energy imparted to the ship by moderately rough seas in combination with beam winds is a measure of adequacy of the stability after damage.

The DDS 097-1 criteria for compartmentation of the aforementioned category of ships is that the ship withstand rapid flooding from a shell opening equal to 15 percent of the ship's length at any point fore and aft along the length of the ship. Buoyancy criteria require that the equilibrium trim line not be above the margin line, which lies 3 inches below the bulkhead deck.

C. CURRENT DESIGN ANALYSIS PROCEDURES

The current procedure utilizes the Navy's primary naval architecture program, Ship Hull Characteristics Program (SHCP). The program consists of a geometry interpreter and several naval architecture subroutines called modules. The analysis procedure is as follows [Ref 4]:

- 1. Define the vessel hull form and compartmentation in SHCP.
- 2. Define the extent of damage longitudinally, transversely, and vertically.

 As noted above, maximum damage length along the longitudinal axis, for combatants and auxiliaries over 300 ft, are 15 and 12.5% of their lengths between perpendiculars (LBP), respectively. Transverse flooding may extend to, but not include, any centerline bulkhead. Vertical flooding is assumed to be unimpeded within a watertight compartment.
- 3. Based on the extent of damage limits and hull compartmentation geometry, identify compartment groups that would experience flooding from a specific damage scenario. Repeat the analysis for each scenario that identifies a new group of compartments.
- 4. Calculate the vessel's equilibrium righting arm curve, utilizing the SHCP damage stability module (DAMST), for each damage scenario.
- 5. Compare the results obtained with the requirements delineated in DDS 097-1.

D. FUTURE DESIGN REQUIREMENTS

In 1987, the CNO endorsed a series of operational characteristics to be incorporated into surface combatants of the year 2010 (SC2010). One of these characteristics requires that the ship have the capability to fight, even though it may have sustained hull damage and be flooded, with whichever weapons systems are available [Ref. 5]. To evaluate this capability the motion of the ship in a variety of wind, wave, operating, and flooding conditions must be evaluated. As has been shown, past design practices only address static stability and thereforee limited computer simulation tools exist to aid in the analysis. As a first step, David Taylor Research Center conducted model testing of current fleet combatants (DD963 and DDG51) in damaged conditions to determine their dynamic stability. The data, in addition to assessing current ship's dynamic stability, will be used to evaluate future prediction techniques.

E. SHORTFALLS OF CURRENT ANALYSIS ADDRESSED BY THIS THESIS

As the Navy shifts to performance-based requirements and embraces integrated design philosophies, the need for more sophisticated simulation tools grows. While the current analysis procedure and criteria have been proven to be effective they are limited in their application. An example of their limitations in evaluating performance has already pointed out in the case of SC 2010 requirements. Advantages of the progressive flooding simulation program developed in this thesis include:

- 1. Evaluation of threat-specific damage. Where the current procedure uses a generic floodable length requirement developed based on WW II hull forms and weapons effects, this program can use damage profiles associated with the performance-based requirements. For example, a requirement that the ship survive two anti-ship cruise missile hits, could be evaluated by simulating the damage associated with a specific type of anti-ship cruise missile.
- 2. Formation of flooding time line. The current procedure is designed to compute the equilibrium position of the damaged ship based purely on static geometry. The program used here finds the ship's equilibrium position based on flow rate dynamics and subsequently provides a time history of how it got there. Uses of this time line data could include the determination of when and to what extent ship's systems become affected by flooding.
- 3. Inclusion of dynamic damage control in the analysis. The current analysis is based on a worst case scenario, where the existence of dynamic damage control capabilities is neglected. That is an overly conservative analysis based on today's damage control technologies and procedures. By including damage control machinery and procedures in the simulation, the program described in this thesis facilitates the evaluation and comparison of their effectiveness.

II. DEVELOPMENT OF THE SIMULATION PROGRAM

A. APPROACH

This thesis primarily investigates the simulation of progressive flooding and efforts to arrest its progression. When a ship's hull is opened to the sea the watertight compartment containing the hole floods. If the watertight bulkheads bounding the compartment remain watertight, flooding is limited to this compartment. However, when the hull is holed as the result of combat damage, it is likely that the watertight bulkheads bounding the affected compartment will also suffer some damage from shock or fragmentation (or they may have ceased to be watertight as the result of abuse or improperly-performed maintenance during the life of the ship). In such cases, flooding will progress through the leaking bulkheads causing progressive flooding of additional compartments. If progressive flooding proceeds far enough, ship loss through foundering (sinking caused when the remaining buoyancy is less than the ship's weight) or loss of stability (resulting in capsize) can follow, even in cases where the initial damage was survivable. (The SS TITANIC sank as a result of progressive flooding which flooded compartments beyond those originally opened to the sea by the iceberg-caused damage.)

SIMSMART is a state-of-the-art, fluid flow simulation program. It provides excellent simulation of fluid systems consisting of components such as pipes, valves, orifices, pumps and tanks. While the program has repeatedly proven its value in the simulation of such systems, it does not deal with buoyancy – that is the fluid system made up of these components is not modeled as being afloat. This thesis extends the

utility of SIMSMART to a ship afloat in the sea by modeling the ship's watertight compartments as tanks (opened to the atmosphere) in the fluid system; the opening to the sea and damage in bounding watertight bulkheads as orifice/short pipe combinations; and pumps and de-watering systems as themselves. As flooding proceeds into the initially damaged compartment/tank as well as into those adjacent to it, naturally, the ship's draft will change as it takes on the weight of the flood water. Since SIMSMART cannot deal directly with buoyancy, the Naval Architecture aspects of the ship, which govern its condition of flotation, are treated outside the SIMSMART program – in this case by using a dynamic link to a Microsoft Excel spreadsheet.

B. HULL FORM

The hull form used in the development and testing of the program was the Wigley hull (Figure 2.1). It was chosen due to its ease of analytical representation. The thought, at the time of this decision, was that if the program could be built analytically (i.e. naval architecture parameters calculated by program) it would be easily reconfigurable for operation with existing tabular data (for example draft vs. moment to trim an inch tables for a specific ship class). The offsets of the Wigley hull are:

$$y = \pm (B/2)(1 - ((T - z)^2 / T^2))(1 - 4(x^2 / L^2))$$
 (1)

Where:

x = longitudinal distance from midships

B = beam (maximum)

y = transverse distance from centerline

T = draft (maximum)

= offset

L = length between perpendiculars

z = height above keel

The dimensions and initial conditions chosen for the model were:

B = 37.5 ft initially

upper deck to keel = 40 ft

T = 30 ft initially

max breadth of upper deck = 40 ft

L = 400 ft

Figure 2.1. Isometric View of Wigley Hull

The hull was subdivided into 10 longitudinal compartments of various lengths.

	Bulkhead location wi	th respect to midships	(feet)
Compartment A	200 to 150	Compartment F	midships to -25
Compartment B	150 to 120	Compartment G	-25 to -90
Compartment C	120 to 80	Compartment H	-90 to -130
Compartment D	80 to 50	Compartment I	-130 to -160
Compartment E	50 to midships	Compartment J	-160 to -200

C. SIMSMART

SIMSMART is a C++ based, fluid flow analysis program developed by Applied
High Technology (AHT) Corp of Montreal, Canada. The backbone of the program is its
capability to determine static pressures at various locations in a model. Once static

Figure 2.2. SIMSMART Wigley Hull Model

pressures are calculated they are applied to components of the model, via the Bernoulli equation, to determine flow parameters. SIMSMART will carry out all flow analysis associated with the simulation tool developed in this thesis.

Figure 2.3. Section of SIMSMART Wigley Hull Model

1. Model Components

Components are selected from pre-existing SIMSMART Marine and NAVSEA libraries or created using the SMART MODEL program. The SMART MODEL program provides a template for creating the C++ code, icon, and variable forms needed to build a component. Pre-existing components are tailored to the simulation by entering component specific parameters via Visual Basic Forms.

Components used in this model, shown in Figure 2.2 and listed in Appendix A, consist of input sources, pipes, tanks, check valves, gate valves, pumps, and output sources.

Input sources, such as "Hole Depth F-I" shown in Figure 2.3, provide the static pressure at the hull hole. The hole is initially 10 ft below the waterline, so:

$$P_{\text{static}} = P_{\text{atm}} + \rho g h$$

$$= 14.7 \text{ psi} + (62.4 \text{ lb}_{\text{m}}/\text{ft}^{3})(32.2 \text{ ft/s}^{2})(10 \text{ ft})(1 \text{ lb}_{\text{f}} \text{ s}^{2}/32.2 \text{ lb}_{\text{m}} \text{ ft})(\text{ft}^{2}/144 \text{ in}^{2})$$

$$= 19.03 \text{ psi}$$
(2)

Pipes and orifices are used in combination to model holes in both the hull and bulkheads. Hull holes, such as pipe "Hull F" and orifice "Hull Hole 3", are circular, 12 inches in diameter, and initially located 10 ft below the waterline. Bulkhead holes, such as pipes "Bulkhead Fefwd" and "Bulkhead Feaft" and orifice "Scenario 3", are circular, 6 inches in diameter, and initially located 17 ft above the keel. Hole sizes and depths were chosen arbitrarily and not as the result of research on hull damage. A discharge coefficient of 0.62 was selected to represent a sharp edged hole [Ref. 6]. Recall that the discharge coefficient is an empirical factor and therefore yields only approximate results. With this in mind, selection of higher valued discharge coefficients as a rule will provide

conservative scenario results. Flow through holes in tanks is governed by the short tube orifice equation:

$$Q = C_d A (2gh)^{0.5}$$
 (3)

Flow through orifices in SIMSMART, however, are calculated based on Bernoulli Obstruction Theory:

$$Q = C_d A(2gh/(1-\beta^4))^{0.5} = \alpha A(2gh)^{0.5}$$
 (4)

Where:

Q = flow rate

A = cross-sectional area of the hole

C_d = discharge coefficient

g = gravitational constant

h = head

 $\beta = d/D$ (d = orifice diameter, D = pipe diameter)

 $\alpha = C_d/(1-\beta^4)$ flow coefficient

It can be seen from the two flow equations above that if the flow coefficient of the SIMSMART orifice is equal to the discharge coefficient desired by the programmer for the short tube orifice, the simulation will be calculating the flow through a hole in a tank. Obtaining the desired flow coefficient is dependent on the selection of the proper β ratio, and thereforee the proper pipe diameter since the orifice diameter is fixed by the hole size required. Errors due to pipe losses are made negligible by using extremely short pipe lengths, 1/3 of an inch. Because the model has hull and bulkhead holes built into every tank, the pipe parameter "mlf_clg", clog percentage, is set to 100% on each inactive hole to prevent flow.

In addition to their use in modeling holes, pipes are used to form the dewatering system. This system consists of 10 compartment suction lines, a dewatering main, and 6

pumps with suction and discharge lines. Each compartment suction line consists of a check valve, section of pipe and gate valve. The dewatering main runs the length of the ship and connects with compartment and pump suction lines via three way tees. All pipes used in the model are 6 inch, CuNi, chosen from the SIMSMART library. The library provides all parameters relevant to fluid flow within the chosen pipe type (surface roughness for example). Model-specific parameters such as length, inlet height, outlet height, and number and types of bends are listed in Appendix B.

Atmospheric tanks ("Compartments A through J") are, as their names imply, used to model flooding compartments. The use of atmospheric tanks in this model is appropriate because, while watertight compartments do not allow for fluid flow through bulkheads, they do allow for unrestricted flow vertically. Tank geometry is defined in SIMSMART through the use of height vs. volume data. Linear interpolation is performed to obtain values in between those inputted. For the Wigley hull, height vs. volume data was obtained by integration of the analytical formula:

$$Vol(x,z) = 2 \iint (B/2)(1 - ((T - z)^2 / T^2))(1 - 4(x^2 / L^2)) dxdz$$
 (5)

where the upper limits of integration are

$$x = x_h$$
 $z = Z$

and the lower limits of integration are

$$x = x_1$$
 $z = 0$

$$Vol(x,z) = B((Z^2/T)-(Z^3/(3T^2))((x_h-x_1)-4(x_h^3-x_1^3)/(3L^2))$$
 (6)

A Matlab program, available in Appendix C, was used to calculate the height vs. volume values for each of the compartments.

"Pumps B, D, E, F, G, and I" model six permanently installed 1200 gal/min positive displacement pumps. Each pump is piped to the main dewatering header and its

own overboard discharge. Pumps were activated manually in the scenarios carried out in this thesis, but the program is capable of operating them in automatic based on control logics. Pump operating parameters include efficiency and overload set points.

Output sources, such as "Overbd F-o", provide the static pressure at the overboard discharges of the pumps. The holes are each located 5 ft below the waterline initially, so by application of Equation 2, their initial static discharge pressure is 16.87 psia

D. NAVAL ARCHITECTURE

While SIMSMART is an excellent fluid system analysis tool, it is not configured to undertake calculations removed from the flow process. For this reason a second computer program, which could interface with SIMSMART and perform the required Naval Architecture calculations, was needed. Microsoft Excel was chosen predominantly because of its compatibility with the SMART ACCESS program, an interface program developed by AHT Corp.. SMART ACCESS allows Excel cells to receive continuous updates of SIMSMART parameters. Additionally it provides for macro-initiated updates of SIMSMART parameters from Excel.

As previously mentioned, the simulation performed in this thesis is based on the analytical form of the Wigley hull and therefore the Excel spreadsheet is designed to calculate all relevant naval architecture parameters. Although not demonstrated, the spreadsheet can be reconfigured for operation with existing tabular data (for example draft vs. moment to trim an inch tables for a specific ship class).

1. Calculations

Calculations within the spreadsheet, provided as Appendix D, commence with receipt of values of compartment flooding height and volume from SIMSMART via SMART ACCESS.

The longitudinal, x axis, centroid of the water in each compartment is determined by:

$$x_{cen} = \underbrace{\iiint x \, dv}_{volume} = \underbrace{(x_h^2 - x_1^2)/2 - (x_h^3 - x_1^3)}_{(x_h - x_1) - (x_h^3 - x_1^3)}$$
(7)

The symmetry of the Wigley hull leads to a longitudinal centroid that is only a function of bulkhead location (i.e. independent of water depth and therefore constant throughout the simulation). This would not be the case had the affects of trim been applied to the flooded water volume (the program does not account for this affect).

The vertical, z axis, centroid of the water in each compartment is determined by:

$$z_{\text{cen}} = \underbrace{\iiint z \, dv}_{\text{volume}} = \underbrace{2((Z^3/3) - (Z^4/320)((x_h - x_1) - (x_h^3 - x_1^3)/120000)}_{\text{volume}}$$
(8)

The vertical centroid is dependent on the values of compartment water height and volume obtained from SIMSMART and therefore, like all of the formulas that follow, will be updated with each SIMSMART iteration.

The transverse, y axis, centroid of the water in each compartment is fixed at centerline for the simulation. This can be attributed to the symmetry of the Wigley hull and the lack of longitudinal bulkheads. This was not an oversight of the thesis, but rather was done intentionally to test the process in 2 dimensions before expanding it to the more complex and less intuitive 3 dimensional case. (It also reflects the fact that U.S. Navy practice is to avoid longitudinal bulkheads in its combatant ships.)

The initial displacement is calculated by using Equation 6 in concert with division by the density of water. The vertical height of the center of gravity of the intact ship with respect to the keel, KG, was initially set to 25 ft, a value approximately equal to that calculated for a Wigley hull of constant density. Revised displacement is calculated by summing tank volumes, received from SIMSMART, dividing by water density, and adding the value to the initial displacement.

The revised draft is calculated by using the revised displaced volume as input to a third order polynomial approximation of the hull's draft vs. displaced volume curve. The polynomial was computed using the Matlab program provided in Appendix E.

KB, the vertical height of the center of buoyancy with respect to the keel, is calculated using the revised draft as input to Equation 8.

BM L, the vertical height of the longitudinal metacenter above the center of buoyancy with respect to the transverse axis, is determined as follows:

BM
$$_{L} = I_{L}/$$
 displaced volume (9)

where I_L is the second moment of the waterplane area about the transverse axis:

$$I_L = \iint x^2 dy dx = 85,333,333.3(1-(40-draft)^2/1600)$$
 (10)

The revised KG is calculated by summing the moments created by the flooding in each compartment (z centroid times water weight), adding the product of initial displacement and KG, and dividing by revised displacement.

The value of GM L, the vertical height of the longitudinal metacenter above the center of gravity with respect to the transverse axis, can then be computing according to:

$$GM_{L} = KB + KM_{L} - KG$$
 (11)

MCT lin (the change in moment required to trim the hull by an inch), trim, and LCG (longitudinal center of gravity), are calculated according to the following equations:

MCT
$$\lim D * GM_L / (12 * L)$$
 (12)

$$Trim = \sum (W * X) / MCT lin$$
 (13)

$$LCG = LCG_o * D_o + \sum (W * X) / D$$
 (14)

where:

W = individual compartment's flood-water weight

X = individual compartment's flood-water x centroid

D = hull displacement (D_o is initial)

 $LCG_0 = 0$ (for Wigley Hull due to symetry)

Note that calculations of terms from KB to MCT 1in would not be required in the case where tabular data of a specific ship was available.

The depths of all hull holes and overboard discharges are determined geometrically, based on hull position, revised draft, LCG and trim. Equation 2 is applied to each, resulting in revised pressure values. SIMSMART input and output sources are updated with these pressures upon activation of the Excel macro provided in Appendix F.

E. SIMULATION PROCESS SUMMARIZED

Upon entering the run time environment, SIMSMART calculates the pressure at each node of the model. These pressures are used to evaluate the flow parameters of each model component according to the Bernoulli theory. Water accumulation in the tanks is then computed by multiplying the net flow into the tank by the time step of the iteration (the time step is the amount of real time being simulated in each iteration). Tank levels are computed using the height vs. volume information provided when building the

model. Tank volume information is then passed to the Excel spreadsheet via SMART ACCESS where it is used to calculate the revised pressures at each hull hole and overboard discharge. Activation of the transfer macro revises the pressures in SIMSMART, effectively imposing the effects of sinkage on the fixed coordinate SIMSMART model.

III. SCENARIOS

To assess the ability of the simulation process to accurately model progressive flooding, several scenarios were developed. Each scenario began with the same initial conditions, outlined in subsections II.B. and C. Scenarios were chosen not only to test the capabilities of the program, but also to demonstrate its utility as a design tool.

Figure 3.1. View of Scenarios 1, 1A, and 1B

A. SCENARIO CONCEPTS

1. Scenarios 1, 1A, and 1B

Each of these three scenarios has Compartment C as the sight of primary flooding with progressive flooding into Compartment B. As described below, the difference among the scenarios lies in the use of the installed dewatering systems. These scenarios will not only be used to validate the program, but will also show its utility in evaluating the effectiveness of various damage control procedures.

In scenario 1 no dewatering equipment is used. This should result in the fastest time to either equilibrium or sinkage, and provide a timeline for the worst case scenario.

Scenario 1A involves the same compartments, but in this case 3 pumps (pumps B, D, and E) are used to attempt to dewater the spaces. The use of pumps is indiscriminant, in other words each takes suction off of the dewatering main with compartment suction lines open. In theory the results should be better than scenario1, but the final outcome is unclear.

Scenario 1B also uses 3 pumps, but in this case it is realized that the pumps are unable to dewater both spaces and that an effective procedure may be to allow the primary compartment to flood while keeping the water level in the secondary compartment as low as possible. This is accomplished by throttling the CompB gate and CompC gate valves to regulate the flow out of the compartments.

Figure 3.2. View of Scenario 2

2. Scenario 2

This scenario involves progressive flooding of two secondary compartments, Compartments C and E, caused by hull damage to Compartment D. No dewatering equipment is used, so as with scenario1, it is simulation of the worst case. The results of this scenario will be useful in comparisons with no pump runs of scenarios 1 and 3. Additionally, it should give insight into errors caused by the program's current limitation in accounting for the effects of trim internally to the hull, as explained in subsection B.4 of this chapter.

3. Scenarios 3, 3A, and 3B

As in scenario 1, each of the three scenarios has the same primary, Compartment F, and secondary, Compartment E, flooding sites. But as described below, the difference between the scenarios lies not in the use of the installed dewatering systems, but rather

their capacities. These scenarios will be used not only to validate the program, but will also show its utility in selection and evaluation of damage control systems.

Figure 3.3. View of Scenarios 3, 3A, and 3B

As in scenarios 1 and 2, scenario 3 does not utilize dewatering equipment. The results of this run, however, serve not only as a worst case timeline, but also as a data source for damage control system selection in scenarios 3A and B.

Scenario 3A uses data from scenario 3 to select pumps capable of dewatering the primary compartment and thereby preventing progressive flooding.

Scenario 3B also uses scenario 3 data, but in this case pumps are selected to keep up with progressive flooding into the secondary compartment.

B. SCENARIO RESULTS

The results provided in the following subsections were compiled by pausing each simulation at various time intervals and recording relevant data.

Time intervals were chosen based on the rate of change of model parameters. For example, when a compartment began to flood and no pumps were on, parameters such as tank volume and level were changing rapidly and therefore required recording every minute of simulated time (Figure 3.4). In contrast, when a scenario approached the equilibrium condition changes were so minute that values needed only to be recorded every 15 minutes of simulation time to show significant changes.

Figure 3.4. Changes in Values vs. Time Exemplified

SIMSMART allows simulations to be run faster than real time by selection of a speed ratio. The speed ratio is equal to the simulated time divided by the real time (i.e. at a speed ratio of 6, 1 minute of simulation takes 10 seconds). Each scenario began at a relatively low speed ratio (3 to 6). As with the time interval, as changes in parameters

took longer, the speed ratio was increased. The largest speed ratio used was 15.

Relevant data was determined to consist of mean draft, forward draft, aft draft, GM (transverse), displacement, LCG, flow rate through hull hole, flow rate through bulkhead hole/s, primary and secondary compartment flooding levels and volumes, pump status, valve status, simulation time, and simulation speed ratio. Each scenario's respective appendix contains the relevant data in tabular form.

1. Scenario 1

Scenario 1 ran for 37 minutes before the margin line was submerged and the simulation was stopped (Figure 3.5).

Figure 3.5. Scenario 1 - Draft vs. Time

From the tabularized data in Appendix G and Figure 3.6 it can be seen that the flow rate through the hull hole started at approximately 5900 gpm and immediately began to slowly increase as the result of hull sinkage. This yielded an almost linear, slightly

Figure 3.6. Scenario 1 – Flow Rate vs. Time

increasing, rate of change in compartment C water volume (Comp C vol.) with respect to time (Figure 3.7). The rate of change in water level (Comp C level), however, was strongly nonlinear due to the geometry of the hull (Figure 3.8). Initially the curve's slope was steep due to the narrowness of the compartment near the keel. As the compartment

Figure 3.7. Scenario 1 - Compartment Volume vs. Time

widened it took more water to create the same change in level, which accounts for the decreasing of curve slope even with increasing flow rate.

Figure 3.8. Scenario 1 – Compartment Depth vs. Time

Approximately 8 ½ minutes into the simulation the bulkhead hole, at a height of 17 feet, was submerged on both sides and progressive flooding began. The bulkhead hole flow rate, as was shown earlier, was proportional to the square root of the height of water above the hole (Comp C level – hole height). It can be seen in Figure 3.6 that even though the bulkhead flow rate was increasing, it was doing so at a decreasing rate. This was due the decreasing rate of change in Comp C level, Figure 3.8. The flow rate into Comp C was increasing due to the increased depth of the hull hole, but not at a rapid enough rate to offset the effects of widening of the compartment with increased level and out flow through the bulkhead hole.

The hull hole became submerged on both sides at approximately 12 minutes and was immediately followed by a continuous decrease in flow rate. This was the result of decreased differences in head on either side of the bulkhead hole (i.e. water level in the

compartment was increasing faster than the bulkhead hole depth). At 33 minutes the bulkhead hole became submerged on both sides resulting in decreased flow rate for similar reasons (i.e. rate of change of Comp B level was greater than that of Comp C).

At 37 minutes the margin line was submerged and the simulation stopped. The data obtained during the simulation has provided valuable insight into the events leading up to the submerging of the margin line. The foundering of the hull should not be surprising based on the arbitrary selection of the hull's bulkhead locations and the placement of holes in this scenario in a longitudinal region traditionally associated with minimum floodable lengths.

Common occurrences discussed in this subsection, such as: initial increase in hull hole flow rate due to increasing depth of hole; rapid initial increase in compartment water level due to hull geometry; decrease in flow rate due to total submergence of hole; etc., will not be readdressed in subsequent subsections unless such a discussion would provide new insight.

Figure 3.9 Scenario 1A – Draft vs. Time

2. Scenario 1A

Scenario 1A ran for 118 minutes before the margin line was submerged and the simulation was stopped (Figure 3.9).

Figure 3.10 Scenario 1A - Compartment Depth vs. Time

From the tabularized data in Appendix H and Figures 3.10, 11, & 12 it can be seen that for the first 3 minutes of scenario 1A the results obtained were identical to those of scenario 1, as expected. At that time gate valve B was opened and pumps B and D were turned on, effectively decreasing the net flow rate into compartment C. The pumps, each operating at a flow rate of 1145 gpm, were not able to overcome the continuously increasing hull hole flow, but did slow the rate at which Comp C level increased (Figure 3.10). This in turn prolonged the time it took for progressive flooding to begin.

Progressive flooding began at 12 min, approximately 4 minutes later than it did in scenario 1 (Figure 3.12). Flooding of compartment B continued unimpeded until gate valve B was opened and pump E was turned on at 16 ½ minutes. By this time Comp B level had reached 3 ½ feet and Comp C level was at 19 feet. Because both compartments

were being dewatered by a common dewatering main and the water level in compartment C was higher, the flow rate through of pipe C1 was greater than that out of pipe B1 (i.e. greater pressure at pipe inlet with common pressure in dewatering main).

Figure 3.11 Scenario 1A - Compartment Depth vs. Time

Figure 3.12 Scenario 1A - Flow Rate vs. Time

A decrease in flow rate through pipe B1 occurred immediately after progressive flooding commenced due to the negative net flow rate into compartment B (Comp B water level was decreasing, Figure 3.10). Because the pumps operated at fixed flow rates, the decrease in flow through pipe B1 resulted in an equal but opposite increase in flow through pipe C1 (Figure 3.12). At 18 minutes the hull hole was submerged on both sides, 6 minutes later than it was in scenario 1.

The net flow rate into compartment B became positive at 21 minutes, causing Comp B level increase. At 27 minutes the rate of increase in Comp B level exceeded that of Comp C and flow rate through pipe B1 began to increase.

At 94 minutes the bulkhead hole was submerged on both sides and at 118 minutes the margin line was submerged (over 1 hour and 20 minutes later than it was in scenario1). The results of this scenario show that indiscriminant use of the modeled damage control system will not necessarily prevent the hull from foundering, but will extend its life significantly.

3. Scenario 1B

Scenario 1B ran for 205 minutes before equilibrium was achieved at a maximum forward draft of 37.4 feet (Figure 3.13); ship loss did not occur.

From the tabularized data in Appendix I and Figures 3.14, 15, 16 & 16a it can be seen that for the first 24 minutes of scenario 1B the procedures used and the results obtained were identical to those of scenario 1A. At that time gate valve C was throttled to 30 %, causing a decrease in flow through pipe C1 and a corresponding increase in flow through pipe B1. That increase placed pipe B1's flow rate nearly equal to that of the

Figure 3.13 Scenario 1B - Draft vs. Time

Figure 3.14 Scenario 1B - Compartment Depth vs. Time

bulkhead hole (Figures 3.16 and 3.16a), resulting in a net flow rate into compartment B of approximately zero. Gate valve C was throttled from 30 to 9 %, over the simulation period of 24 to 56 minutes, in increments necessary to maintain the flow rate out of pipe B1 nearly equal to that of the bulkhead hole.

Figure 3.15 Scenario 1B - Compartment Volume vs. Time

Several phenomena occurred as the result of the throttling process: Comp B level was maintained at approximately 1½ ft (Figure 3.14); Comp B vol. was maintained at approximately 110 ft³ (Figure 3.15); the rate of increase of Comp C vol. and Comp C level were faster than they would have been in an unthrottled condition (a Comp C level of 30 ft was reached at 71 minutes vice the 88 minutes it took in scenario 1A); the centroid of the flooded water volume was maintained closer to midships than it was in scenario 1A, resulting in less trim on the hull and ultimately a lower inlet pressure at the hull hole.

Figure 3.16 Scenario 1B - Flow Rate vs. Time

Figure 3.16a Scenario 1B - Flow rate vs. Time (Close up)

As changes in bulkhead flow rate became increasingly smaller (seen as decreasing slope in Figure 3.16), the precision required in the throttling process became greater.

This was in direct contrast with the operational characteristics of gate valve C, which

yielded increasingly larger changes in pipe C1 flow rate when throttled below 9% in integer increments. As a result, at 60 minutes, throttling of gate valve B commenced in order to obtain greater precision in equating flow rates. The small fluctuations in Comp B level in Figure 3.14 were caused by the inaccuracies of the throttling method and the restriction of throttling the valves in integer increments. Had net flow into compartment B truly been maintained at zero, the plot of Comp B level would have been a straight line of zero slope.

The simulation was stopped at 205 minutes, at which time the flow rates into and out of the hull were equivalent to 5 significant digits and the draft was constant to six significant digits. The results of this scenario show that damage control procedures can be the determining factor in a ship surviving progressive flooding. Additionally, they show that a surviving ship's equilibrium condition is dependent on the effectiveness of the damage control procedures.

Figure 3.17 Scenario 2 – Draft vs. Time

Figure 3.18 Scenario 2 – Flow Rate vs. Time

4. Scenario 2

Scenario 2 (primary flooding of compartment D with progressive flooding of compartments C and E) ran for 61 minutes before the margin line was submerged and the simulation was stopped (Figure 3.17).

As in the previous scenarios, immediately after flooding commenced the hole flow rate began to increase. The tables in Appendix J and Figure 3.18 show however, that its rate of increase was slower than it had been in the earlier scenarios. In scenario 1 the flow rate had increased by 420 gpm after 8 minutes while in this scenario at the same instance it had increased by only 280 gpm. This was due to compartment D lying closer to miships than compartment C (less trim for same flooded volume and shallower depth of hole for same trim).

At 8 minutes progressive flooding began through both the forward and aft bulkheads. Since flooding levels on opposite sides of a compartment can not be equal for

a hull with trim, something is obviously wrong. This scenario highlights a source of error of the program developed in this thesis.

Compartments modeled in SIMSMART are modeled in a fixed reference system. Changes in hole depth are imposed on the hull in the SIMSMART environment by adjusting the static pressure at the input sources, not by the tilting of tanks. Because the compartments modeled in SIMSMART are fixed the program does not account for the effects of trim inside the hull.

At the time that progressive flooding started the trim angle was 0.1544 degrees.

Over the 30 ft length of compartment D the trim angle yields a height difference of approximately 1-inch. While this error is almost negligible and in general trim angles are relatively small, at large angles of trim this shortfall of the program could become a significant source of error. It should not, however, significantly affect the results of the work presented here in.

Figure 3.19 Scenario 2 - Compartment Depth vs. Time

Figure 3.20 Scenario 2 - Compartment Volume vs. Time

Following the start of progressive flooding, Comp C vol. and Comp E vol. remained identical for the reasons stated above. Comp C level and Comp E level however, diverged due to differences in compartment geometry (Figure 3.19). At 49 minutes that difference in geometry leads to the submergence of the forward bulkhead hole and divergence of the compartment volume curves in figure 3.18.

At 61 minutes the margin line was submerged and the simulation stopped. The fact that submergence of the margin line took almost twice as long as it did in scenario 1 gives insight into the effects of hole location not only on floodable length but also on time of evolution.

5. Scenario 3

Scenario 3 (primary flooding of compartment F with progressive flooding of compartments E) ran for 426 minutes before equilibrium was achieved at a maximum forward draft of 38.4 feet (Figure 3.21).

Figure 3.21 Scenario 3 - Draft vs. Time

Figure 3.21a Scenario 3 - Draft vs. Time (Close Up)

From the tabularized data in Appendix K and Figures 3.22, 23, 23, & 24 it can be seen that in general the chain of events of leading up to hull hole submergence was similar to that of scenario 1 with one exception. The trim in this scenario was originally by the stern, due to the fact that the bulkhead hole was aft of miships. At 7 ½ minutes

Figure 3.22 Scenario 3 – Compartment Depth vs. Time

Figure 3.23 Scenario 3 - Compartment Volume vs. Time

progressive flooding began into compartment E which was located forward of miships.

As the water level began to increase in compartment E, the rate of increase in trim by the stern began to slow. At approximately 15 minutes the rate of increase in trim by the stern became zero and the hull began to trim in the opposite direction (Figure 3.21a). It is

important to remember that the Wigley hull is symmetric longitudinally about midships and that compartment E is longer than compartment F (50 and 25 ft respectively). At 52 minutes the hull returned to an even keel at a draft of 32.3 ft. This was accomplished by the equality of moments of compartment E (smaller volume, larger moment arm) and compartment F (larger volume, smaller moment arm).

Figure 3.24 Scenario 3 – Flow Rate vs. Time

Figure 3.24 shows the convergence process of hull and bulkhead hole flow rates to zero. After submergence, flow rate through the bulkhead hole decreased. This decrease led to a decrease in the rate of volumetric increase in compartment E, which in turn led to decreases in the rates of increase of both draft and trim. This domino effect continued until the equilibrium condition was achieved at 426 minutes.

The results obtained in this scenario were used in determining system capacities in the following 2 scenarios.

From the data in Appendix K it can be seen that flooding through the hull hole commenced at a rate of approximately 5900 gpm and rose to a maximum of 6121 gpm in

about 10 minutes. Based on these results, scenario 3A uses three 2000gpm pumps and a 12-inch dewatering main to prevent progressive flooding.

The results also show that the max flow rate through the bulkhead hole was 1787 gpm. Using this data as a starting point and conducting several trial runs, scenario 3B uses the initial dewatering system with three increased capacity, 1737gpm pumps to maintain the water level in compartment E at 2 ft.

In either scenario larger pumps could have been used to meet the requirements, but they would have led to pump cycling, precluding the approximation of an equilibrium condition.

Figure 3.25 Scenario 3A - Draft vs. Time

6. Scenario 3A

Scenario 3A ran for 12 minutes before an approximate equilibrium was achieved at a maximum aft draft of 30.31 feet (Figure 3.25). Approximate equilibrium refers to the fact that, while the draft was constant to six significant digits at the end of the simulation,

Figure 3.26 Scenario 3A - Compartment Volume vs. Time

Figure 3.27 Scenario 3A - Compartment Depth vs. Time

the flow rate out of the hull did exceed the in flow rate by 0.47 gpm. This indicates that even though it would take an extremely long time, eventually the compartment would be dewatered.

Figure 3.28 Scenario 3A – Flow Rate vs. Time

Almost immediately after starting the simulation, 30 seconds, gate valve F was opened and pumps F and G were turned on (Appendix L). Net flow rate into the compartment dropped to approximately 1950 gpm. As Comp F volume and level increased (Figures 3.26 and 3.27 respectively), so to did the hull hole flow rate.

At 10 minutes, as hull hole flow rate reached 6000 gpm, pump G was turned on effectively matching the hole flow rate. As mentioned above, because the match between pumping rate and hull hole flow rate are not exact, eventually the pump will dewater the space.

7. Scenario 3B

Scenario 3B ran for 102 minutes before equilibrium was achieved at a maximum aft draft of 32.1 feet (Figure 3.29).

Figure 3.29. Scenario 3B - Draft vs. Time

- 1 progressive flooding begins
- 2 hull hole submerged on both sides
- 3 pump E on, gate valve E open
- 4 pump E off and gate valve E closed momentarily

Figure 3.30. Scenario 3B - Compartment Depth vs. Time

Figure 3.31. Scenario 3B - Compartment Volume vs. Time

Figure 3.32. Scenario 3B - Flow Rate vs. Time

From the tabularized data in Appendix M and Figures 3.30, 31, & 32 it can be seen that for the first 14 minutes of scenario 3B the results obtained were identical to those of scenario 3. At that time gate valve E was opened and pump E was turned on.

Because the pumping rate was greater than the flow through the bulkhead hole, Comp E level decreased (Figure 3.32). This mismatch in flow rates was to be expected since the pumping capacity was chosen to match both the hull and bulkhead hole flow rates at the equilibrium condition. At 23 minutes pump E was momentarily shut off, allowing a slight rise in Comp E level and preventing the pump from shutting down due to low net positive suction head (npsh). Pump E was shut down again at 40 minutes for the same reason. In figure m.4 it can be see that as time progressed, the three flow rates converged to the designed pumping rate.

The simulation was stopped at 102 minutes, at which time the flow rates into and out of the hull were equivalent to 5 significant digits and the draft was constant to six significant digits.

IV. CONCLUSIONS

This thesis has successfully developed a SIMSMART based, progressive flooding design tool. Through the simulation of several scenarios, the program has proven its ability to accurately model the progressive flooding process. Through scenarios 1, 1A and 1B the utility of the program in evaluating the effectiveness of various damage control procedures was demonstrated. Figure 4.1 shows the results of the three scenarios, which differ only in the damage control procedures utilized.

Figure 4.1 Maximum Draft vs. Time for Sceanrios 1, 1A, and 1B Finally, through scenarios 3, 3A and 3 B the utility of the program in selecting and evaluating damage control systems was demonstrated.

V. RECOMMENDATIONS

The program developed by this thesis was, from the onset, intended to lay the ground work for a more complex and capable simulation tool. The author recommends the following areas be pursued in improving and expanding on the work conducted here in:

- Automate and synchronize the process of data transfer from Excel to SIMSMART and the data recording procedure.
- 2. Build a SIMSMART component that models a short tube orifice (hull/bulkhead hole) and develop a means of accounting for the effects of trim internal to the hull.
- 3. Expand the current model to include longitudinal bulkheads and transverse naval architecture calculations, such as heel and GM.
- 4. Develop model based on existing ship, including damage control systems, and run simulations utilizing pre-existing tabular naval architecture information.
- 5. Validate the program by simulating actual damage received by a vessel, in conjunction with modeling its damage control efforts. Compare the results obtained with those documenting the actual event (ex. USS SAMUEL B. ROBERTS).

APPENDIX A. COMPONENTS OF SIMSMART MODEL

ORIFICES	<u>PIPES</u>		PIPES	PIPES
Bulkhead BA,	Bulkhead BA aft,	,	Bulkheads BA fwd	Main B
Scenario 1	Bulkhead CB		Bulkhead CB	Main BA
Scenario 2 fwd	Bulkhead DC		Bulkhead DC	Main CB
Scenario 2 aft	Bulkhead ED		Bulkhead ED	Main D
Scenario 3	Bulkhead FE		Bulkhead FE	Main DC
Bulkhead HG	Bulkhead HG		Bulkhead HG	Main ED
Bulkhead IH	Bulkhead IH		Bulkhead IH	Main F
Bulkhead JI	Bulkhead JI		Bulkhead JI	Main FE
Hull Hole A	Hull A	Pipe A1		Main G
Hull Hole B	Hull B	Pipe B1	Pipe B2	Main GF
Hull Hole 1	Hull C	Pipe C1	Pipe D2	Main H
Hull Hole 2	Hull D	Pipe D1		Main HG
Hull Hole E	Hull E	Pipe E1	Pipe F2	Main IH
Hull Hole 3	Hull F	Pipe F1	Pipe G2	Main JI
Hull Hole G	Hull G	Pipe G1		Suction F
Hull Hole H	Hull H	Pipe H1		Suction G
Hull Hole I	Hull I	Pipe I1	Suction D	Suction I
Hull Hole J	Hull J	Pipe J1	Suction E	
INPUT SOURCE			CHECK VALVES	GATE VALVES
Hole Depth A-I	Compartment A		CompA chckvlv	CompA gate
Hole Depth A-I Hole Depth B-i	Compartment A Compartment B		CompA chckvlv CompB chckvlv	CompA gate CompB gate
Hole Depth A-I Hole Depth B-i Hole Depth C-i	Compartment A Compartment B Compartment C		CompA chckvlv CompB chckvlv CompC chckvlv	CompA gate CompB gate CompC gate
Hole Depth A-I Hole Depth B-i Hole Depth C-i Hole Depth D-i	Compartment A Compartment B Compartment C Compartment D		CompA chckvlv CompB chckvlv CompC chckvlv CompD chckvlv	CompA gate CompB gate CompC gate CompD gate
Hole Depth A-I Hole Depth B-i Hole Depth C-i Hole Depth D-i Hole Depth E-i	Compartment A Compartment B Compartment C Compartment D Compartment E		CompA chckvlv CompB chckvlv CompC chckvlv CompD chckvlv CompE chckvlv	CompA gate CompB gate CompC gate CompD gate CompE gate
Hole Depth A-I Hole Depth B-i Hole Depth C-i Hole Depth D-i Hole Depth E-i Hole Depth F-i	Compartment A Compartment B Compartment C Compartment D Compartment E Compartment F		CompA chckvlv CompB chckvlv CompC chckvlv CompD chckvlv CompE chckvlv CompF chckvlv	CompA gate CompB gate CompC gate CompD gate CompE gate CompE gate CompF gate
Hole Depth A-I Hole Depth B-i Hole Depth C-i Hole Depth D-i Hole Depth E-i Hole Depth F-i Hole Depth G-i	Compartment A Compartment B Compartment C Compartment D Compartment E Compartment F Compartment G		CompA chckvlv CompB chckvlv CompC chckvlv CompD chckvlv CompE chckvlv CompF chckvlv CompG chckvlv	CompA gate CompB gate CompC gate CompD gate CompE gate CompE gate CompF gate CompG gate
Hole Depth A-I Hole Depth B-i Hole Depth C-i Hole Depth D-i Hole Depth E-i Hole Depth F-i Hole Depth G-i Hole Depth H-i	Compartment A Compartment B Compartment C Compartment D Compartment E Compartment F Compartment G Compartment H		CompA chckvlv CompB chckvlv CompC chckvlv CompD chckvlv CompE chckvlv CompF chckvlv CompG chckvlv CompH chckvlv	CompA gate CompB gate CompC gate CompD gate CompE gate CompF gate CompF gate CompG gate CompH gate
Hole Depth A-I Hole Depth B-i Hole Depth C-i Hole Depth D-i Hole Depth E-i Hole Depth F-i Hole Depth G-i	Compartment A Compartment B Compartment C Compartment D Compartment E Compartment F Compartment G Compartment H Compartment I		CompA chckvlv CompB chckvlv CompC chckvlv CompD chckvlv CompE chckvlv CompF chckvlv CompG chckvlv CompH chckvlv	CompA gate CompB gate CompC gate CompD gate CompE gate CompF gate CompG gate CompG gate CompH gate CompH gate
Hole Depth A-I Hole Depth B-i Hole Depth C-i Hole Depth D-i Hole Depth E-i Hole Depth F-i Hole Depth G-i Hole Depth H-i	Compartment A Compartment B Compartment C Compartment D Compartment E Compartment F Compartment G Compartment H		CompA chckvlv CompB chckvlv CompC chckvlv CompD chckvlv CompE chckvlv CompF chckvlv CompG chckvlv CompH chckvlv CompJ chckvlv	CompA gate CompB gate CompC gate CompD gate CompE gate CompF gate CompF gate CompG gate CompH gate
Hole Depth A-I Hole Depth B-i Hole Depth C-i Hole Depth D-i Hole Depth E-i Hole Depth F-i Hole Depth G-i Hole Depth H-i Hole Depth I-i	Compartment A Compartment B Compartment C Compartment D Compartment E Compartment F Compartment G Compartment H Compartment I Compartment J		CompA chckvlv CompB chckvlv CompC chckvlv CompD chckvlv CompE chckvlv CompF chckvlv CompG chckvlv CompH chckvlv CompI chckvlv CompJ chckvlv	CompA gate CompB gate CompC gate CompD gate CompE gate CompF gate CompG gate CompG gate CompH gate CompH gate
Hole Depth A-I Hole Depth B-i Hole Depth C-i Hole Depth D-i Hole Depth E-i Hole Depth F-i Hole Depth G-i Hole Depth H-i Hole Depth I-i Hole Depth J-i	Compartment A Compartment B Compartment C Compartment D Compartment E Compartment F Compartment G Compartment H Compartment I Compartment J		CompA chckvlv CompB chckvlv CompC chckvlv CompD chckvlv CompE chckvlv CompF chckvlv CompG chckvlv CompH chckvlv CompI chckvlv CompJ chckvlv CompJ chckvlv Checkvlv B Checkvlv D	CompA gate CompB gate CompC gate CompD gate CompE gate CompF gate CompG gate CompG gate CompH gate CompH gate
Hole Depth A-I Hole Depth B-i Hole Depth C-i Hole Depth D-i Hole Depth E-i Hole Depth F-i Hole Depth G-i Hole Depth H-i Hole Depth I-i Hole Depth J-i	Compartment A Compartment B Compartment C Compartment D Compartment E Compartment F Compartment G Compartment H Compartment I Compartment J		CompA chckvlv CompB chckvlv CompC chckvlv CompD chckvlv CompE chckvlv CompF chckvlv CompG chckvlv CompH chckvlv CompI chckvlv CompJ chckvlv Checkvlv B Checkvlv D Checkvlv E	CompA gate CompB gate CompC gate CompD gate CompE gate CompF gate CompG gate CompG gate CompH gate CompH gate
Hole Depth A-I Hole Depth B-i Hole Depth C-i Hole Depth D-i Hole Depth E-i Hole Depth G-i Hole Depth H-i Hole Depth I-i Hole Depth I-i Hole Depth J-i PUMPS Pump B Pump D	Compartment A Compartment B Compartment C Compartment D Compartment E Compartment F Compartment G Compartment H Compartment I Compartment J OUTPUT SOURCES Overbd B-o Overbd D-o		CompA chckvlv CompB chckvlv CompC chckvlv CompD chckvlv CompE chckvlv CompF chckvlv CompG chckvlv CompH chckvlv CompJ chckvlv CompJ chckvlv Checkvlv B Checkvlv E Checkvlv F	CompA gate CompB gate CompC gate CompD gate CompE gate CompF gate CompG gate CompG gate CompH gate CompH gate
Hole Depth A-I Hole Depth B-i Hole Depth C-i Hole Depth D-i Hole Depth E-i Hole Depth G-i Hole Depth G-i Hole Depth I-i Hole Depth I-i Hole Depth I-i Hole Depth J-i PUMPS Pump B Pump D Pump E	Compartment A Compartment B Compartment C Compartment D Compartment E Compartment F Compartment G Compartment H Compartment I Compartment J OUTPUT SOURCES Overbd B-o Overbd D-o Overbd E-o		CompA chckvlv CompB chckvlv CompC chckvlv CompD chckvlv CompE chckvlv CompF chckvlv CompG chckvlv CompH chckvlv CompJ chckvlv CompJ chckvlv Checkvlv B Checkvlv E Checkvlv F Checkvlv G	CompA gate CompB gate CompC gate CompD gate CompE gate CompF gate CompG gate CompG gate CompH gate CompH gate
Hole Depth A-I Hole Depth B-i Hole Depth C-i Hole Depth C-i Hole Depth E-i Hole Depth F-i Hole Depth G-i Hole Depth H-i Hole Depth I-i Hole Depth J-i PUMPS Pump B Pump D Pump E Pump F	Compartment A Compartment B Compartment C Compartment D Compartment E Compartment F Compartment G Compartment H Compartment I Compartment J OUTPUT SOURCES Overbd B-o Overbd D-o Overbd E-o Overbd F-o		CompA chckvlv CompB chckvlv CompC chckvlv CompD chckvlv CompE chckvlv CompF chckvlv CompG chckvlv CompH chckvlv CompJ chckvlv CompJ chckvlv Checkvlv B Checkvlv E Checkvlv F	CompA gate CompB gate CompC gate CompD gate CompE gate CompF gate CompG gate CompG gate CompH gate CompH gate
Hole Depth A-I Hole Depth B-i Hole Depth C-i Hole Depth D-i Hole Depth E-i Hole Depth G-i Hole Depth G-i Hole Depth I-i Hole Depth I-i Hole Depth I-i Hole Depth J-i PUMPS Pump B Pump D Pump E	Compartment A Compartment B Compartment C Compartment D Compartment E Compartment F Compartment G Compartment H Compartment I Compartment J OUTPUT SOURCES Overbd B-o Overbd D-o Overbd E-o		CompA chckvlv CompB chckvlv CompC chckvlv CompD chckvlv CompE chckvlv CompF chckvlv CompG chckvlv CompH chckvlv CompJ chckvlv CompJ chckvlv Checkvlv B Checkvlv E Checkvlv F Checkvlv G	CompA gate CompB gate CompC gate CompD gate CompE gate CompF gate CompG gate CompG gate CompH gate CompH gate

The following are brief descriptions, provided by the SIMSMART program, of each component type used in the model.

INPUT SOURCES

ISS NAME: pi_marine

DESCRIPTION: Marine Process input - Fuel/Water stream

This object represents the starting point of a process fuel/Water stream on a P&ID. It can also be used as a means of receiving a process stream whose source is in another flowsheet.

ORIFICES

ISS NAME: mrn_orif

DESCRIPTION: Marine in-line orifice plate - Water/Fuel handling

PIPES

ISS NAME: mrn fex

DESCRIPTION: Marine Flexible conection

This model can simulate friction of the pipe wall, and the 45deg or 90deg elbow(s). This model assumes that the fluid flow is turbulent, where the suggest Reynold's number is 1e8.

Moreover, this model can handle also the heat transfer between the pipe with its surrounding (by free convection, or forced convection).

TANKS

ISS NAME: mrn_atank

DESCRIPTION: Atmospheric tank - water handling.

This model is a pressure source in the "pressure driven" network. The user can specify the volume of the tank versus its level, with this feature the user can give any shape to his (her) application. The model simulates also the overflow through the "weir" or simply the overflowing. The user can specify the shape and the height of the "weir".

CHECK VALVES

ISS NAME: mrn_swcval

DESCRIPTION: Marine Swing check valve - water handling

For this valve to be correctly calibrated, the engineer has to enter the equivalent L over D data and lift factor in the corresponding state variables of the tagged valve (IST). This valve model simulates neither incipient cavitation nor choked flow. It is left to the engineer to select a valve or a process configuration to avoid either of these states. Furthermore, it is also assumed that the engineer will enter data taking into account the appropriate correction factors when required (pipe reducer effects, consistency effects (chemical or pulp stock).

GATE VALVES

ISS NAME: mrn_gtval

DESCRIPTION: Manual Gate valve - water handling

The configuration of this valve can be that of any type of common valve, should it be a ball, butterfly, knife or gate valve. To configure the type of valve desired, the engineer must refer to manufacturer specifications for the valve coefficient (Cv value) expressed as a function of the stem position and the valve size. This data is then entered in the corresponding state variables of the tagged valve (IST). This valve model simulates neither incipient cavitation nor choked flow. It is left to the engineer to select a valve or a process configuration to avoid either of these states. Furthermore, it is also assumed that the engineer will multiply the tables' Cv values by the appropriate correction factors when required (pipe reducer effects, consistency effects (chemical or pulp stock).

Reference: DeZurik Control Valve Handbook, Bulletin CVS, Sept. 1975

TEES

ISS NAME: jctD2P1m

DESCRIPTION: junction, 1 input, 1 run output & 1 branch output

K????? represents the total equivalent length coefficient for the specified stream

PUMPS

ISS NAME: screw_pump

DESCRIPTION:

Screw pump, fixed/variable speed, water handling. The operating principle of this pump is such that it isolates the inlet and outlet of the pump. The flowrate is driven by a variation of the volume. From a simulation point of view, this equipment requires flow driven ICONS to produce the flowrate in the section of the pump.

To be able to fix a volumetric flowrate, a pump head is produced by the pump and the volumetric flowrate is limited in the section. The volumetric flowrate is computed from the maximum performance (rate_flow) multiplied by a volumetric efficiency. In applications the screw pump ICON must be between two nodes. By this configuration the pump is the only ICON in its section and the pressure produce by the forced flow in the node ICONS represent's the inlet and outlet pressure of the pump.

OUTPUT SOURCES

ISS NAME: po marine

DESCRIPTION: Marine Process output - Fuel/Water stream

This object represents the end point of a process fuel/Waterstream on a P&ID. It can also be used as a means of transporting a process stream to another flowsheet.

APPENDIX B. SIMSMART MODEL SPECIFIC PARAMETERS

The following is a list of all nonzero component parameters at the start of the scenario 1. The rule (r) and state (s) varibles listed below, with the exception of pump status, valve position, and hole clogging (mlf_clg) are the same for all scenarios. Values are provided in metric units.

SSP engine : hullfull

Bulkhead BA r from out = 1Bulkhead BA s h in = 4.978298Bulkhead BA s h out = 4.978298Bulkhead BA s d in = 406.400818Bulkhead BA s d out = 406.400818Bulkhead BA s d orif = 152.400299 Bulkhead BA s beta = 0.375000Bulkhead BA s a o = 0.018242Bulkhead BA s a in = 0.129718Bulkhead BAs a out = 0.129718Bulkhead BA s mean a o = 0.129718Bulkhead BA s d c = 0.608469Bulkhead BA s $k_f = 115.055374$ Bulkhead BA s spd_limit = 50.000000 Bulkhead BA spi0 $p_s = 101.324997$ Bulkhead BA spi0 h = 70.000000Bulkhead BA spi0 v = 0.001000Bulkhead BA spi0 av visc = 0.001000 Bulkhead BA spi0 water = 100.000000 Bulkhead BA spo0 p s = 101.324997Bulkhead BA spo0 h = 70.000000Bulkhead BA spo0 v = 0.001000Bulkhead BA spo0 av visc = 0.001000 Bulkhead_BA spo0 water = 100.000000 Bulkhead BAaft r from out = 1Bulkhead BAaft r mlf clg = 100 Bulkhead BAaft s h in = 4.978298Bulkhead BAaft s h out = 4.978298Bulkhead BAaft s d_in = 406.400818 Bulkhead BAaft s d out = 406.400818 Bulkhead_BAaft s $l_p = 0.008534$ Bulkhead BAaft s a_in = 0.129718 Bulkhead BAaft s a out = 0.129718Bulkhead BAaft s m pipe = 1.107065 Bulkhead BAaft s k f = 99999986991104.000000 Bulkhead_BAaft s k_pipe = 0.013440 Bulkhead BAaft s friction = 0.640000 Bulkhead BAaft s Re = 100.000000 Bulkhead BAaft s epsilon = 0.001500 Bulkhead BAaft spi0 $p_s = 101.324997$ Bulkhead BAaft spi0 h = 70.000000 Bulkhead BAaft spi0 v = 0.001000 Bulkhead BAaft spi0 av_visc = 0.001000 Bulkhead_BAaft spi0 water = 100.000000 Bulkhead BAaft spo0 p s = 101.324997

Bulkhead BAaft spo0 h = 70.000000 Bulkhead BAaft spo0 v = 0.001000Bulkhead_BAaft spo0 av_visc = 0.001000 Bulkhead BAaft spo0 water = 100.000000 Bulkhead BAfwd r from out = 1Bulkhead BAfwd s h in = 4.978298Bulkhead BAfwd s h out = 4.978298Bulkhead BAfwd s d in = 406.400818 Bulkhead BAfwd s d out = 406.400818Bulkhead BAfwd s $l_p = 0.008534$ Bulkhead BAfwd s a in = 0.129718Bulkhead BAfwd s a out = 0.129718Bulkhead BAfwd s m pipe = 1.107065 Bulkhead BAfwd s k pipe = 0.013440 Bulkhead BAfwd s friction = 0.640000 Bulkhead BAfwd s Re = 100.000000Bulkhead BAfwd s epsilon = 0.001500 Bulkhead BAfwd spi0 p s = 101.324997Bulkhead BAfwd spi0 h = 70.000000 Bulkhead BAfwd spi0 v = 0.001000Bulkhead BAfwd spi0 av visc = 0.001000 Bulkhead_BAfwd spi0 water = 100.000000 Bulkhead BAfwd spo0 p s = 101.324997Bulkhead BAfwd spo0 h = 70.000000Bulkhead BAfwd spo0 v = 0.001000Bulkhead BAfwd spo0 av visc = 0.001000 Bulkhead_BAfwd spo0 water = 100.000000 Bulkhead BAfwd sr order = 1 Bulkhead BAfwd sr clg flag = 2 Bulkhead BAfwd sr clg by mlf = 1Bulkhead BAfwd sr pump_loc = -1Bulkhead BAfwd sr type eq = 0Bulkhead BAfwd ss hi sct = 4.978298Bulkhead BAfwd ss ho sct = 4.978298 Bulkhead BAfwd ss ai sct = 0.129718Bulkhead BAfwd ss ao sct = 0.129718 Bulkhead BAfwd ss v sct = 0.001000Bulkhead BAfwd ss ad max = 1.000000 Bulkhead BAfwd ss sum k =99999986991104.000000 Bulkhead BAfwd ss sum k a2 = 99999986991104.000000 Bulkhead BAfwd ss 1 sct = 0.017069Bulkhead BAfwd ss mu = 0.001000Bulkhead BAfwd ssp w max = 100000.000000 Bulkhead BCaft s h_in = 4.978298

Bulkhead BCaft s h out = 4.978298Bulkhead BCaft s d in = 406.400818 Bulkhead BCaft s d_out = 406.400818 Bulkhead BCaft s 1 p = 0.008534Bulkhead BCaft s a in = 0.129718 Bulkhead BCaft s a out = 0.129718Bulkhead BCaft s m pipe = 1.107065Bulkhead BCaft s k pipe = 0.000366Bulkhead BCaft s friction = 0.017440 Bulkhead BCaft s Re = 113349.148438 Bulkhead BCaft s epsilon = 0.001500 Bulkhead BCaft spi0 p_s = 101.324997 Bulkhead BCaft spi0 h = 70.027069 Bulkhead_BCaft spi0 v = 0.001000 Bulkhead BCaft spi0 av_visc = 0.001000 Bulkhead BCaft spi0 water = 99.999977 Bulkhead BCaft spo0 p s = 101.324997Bulkhead BCaft spo0 h = 70.027069 Bulkhead BCaft spo0 v = 0.001000Bulkhead BCaft spo0 av visc = 0.001000 Bulkhead BCaft spo0 water = 99.999977 Bulkhead BCfwd s h_in = 4.978298 Bulkhead BCfwd s h out = 4.978298Bulkhead BCfwd s d in = 406.400818 Bulkhead BCfwd s d out = 406.400818 Bulkhead BCfwd s $l_p = 0.008534$ Bulkhead BCfwd s a in = 0.129718Bulkhead BCfwd s a out = 0.129718Bulkhead BCfwd s m pipe = 1.107065Bulkhead BCfwd s k pipe = 0.000366Bulkhead BCfwd s friction = 0.017440 Bulkhead BCfwd s Re = 113349.148438 Bulkhead BCfwd s epsilon = 0.001500Bulkhead BCfwd spi $0 p_s = 101.324997$ Bulkhead BCfwd spi0 h = 70.027069 Bulkhead BCfwd spi0 v = 0.001000Bulkhead_BCfwd spi0 av_visc = 0.001000 Bulkhead_BCfwd spi0 water = 99.999977 Bulkhead BCfwd spo0 p s = 101.324997Bulkhead BCfwd spo0 h = 70.027069 Bulkhead BCfwd spo0 v = 0.001000Bulkhead_BCfwd spo0 av visc = 0.001000 Bulkhead BCfwd spo0 water = 99.999977 Bulkhead BCfwd sr order = 1Bulkhead BCfwd sr clg flag = -1 Bulkhead BCfwd sr pump loc = -1Bulkhead BCfwd ss hi sct = 4.978298Bulkhead BCfwd ss ho sct = 4.978298Bulkhead BCfwd ss ai sct = 0.129718 Bulkhead BCfwd ss ao_sct = 0.129718 Bulkhead BCfwd ss v sct = 0.001000Bulkhead BCfwd ss ad max = 1.000000 Bulkhead BCfwd ss sum k = 115.056107Bulkhead BCfwd ss sum_ $k_a2 = 6837.692383$ Bulkhead BCfwd ss 1 sct = 0.017069Bulkhead BCfwd ss mu = 0.001000

Bulkhead CDaft r mlf_clg = 100 Bulkhead CDaft s h in = 4.978298Bulkhead_CDaft s h_out = 4.978298 Bulkhead CDaft s $d_in = 406.400818$ Bulkhead CDaft s d out = 406.400818 Bulkhead CDaft s 1 p = 0.008534Bulkhead CDaft s a_in = 0.129718 Bulkhead CDaft s a out = 0.129718 Bulkhead CDaft s m pipe = 1.107065 Bulkhead CDaft s k pipe = 0.000366 Bulkhead CDaft s friction = 0.017440 Bulkhead CDaft s Re = 113349.148438 Bulkhead CDaft s epsilon = 0.001500 Bulkhead_CDaft spi0 $p_s = 101.324997$ Bulkhead CDaft spi0 h = 70.027069Bulkhead CDaft spi0 v = 0.001000Bulkhead_CDaft spi0 av_visc = 0.001000 Bulkhead CDaft spi0 water = 99.999977 Bulkhead CDaft spo0 p s = 101.324997Bulkhead CDaft spo0 h = 70.027069 Bulkhead CDaft spo0 v = 0.001000Bulkhead CDaft spo0 av visc = 0.001000 Bulkhead CDaft spo0 water = 99.999977 Bulkhead CDfwd r mlf clg = 100 Bulkhead CDfwd s h in = 4.978298Bulkhead CDfwd s h_out = 4.978298 Bulkhead_CDfwd s d_in = 406.400818 Bulkhead_CDfwd s d_out = 406.400818 Bulkhead_CDfwd s l p = 0.008534 Bulkhead_CDfwd s a_in = 0.129718 Bulkhead_CDfwd s a_out = 0.129718 Bulkhead CDfwd s m pipe = 1.107065 Bulkhead CDfwd s k pipe = 0.000366 Bulkhead CDfwd s friction = 0.017440 Bulkhead CDfwd s Re = 113349.148438 Bulkhead_CDfwd s epsilon = 0.001500 Bulkhead CDfwd spi0 p_s = 101.324997 Bulkhead CDfwd spi0 h = 70.027069Bulkhead_CDfwd spi0 v = 0.001000 Bulkhead_CDfwd spi0 av visc = 0.001000 Bulkhead_CDfwd spi0 water = 99.999977 Bulkhead_CDfwd spo0 $p_s = 101.324997$ Bulkhead_CDfwd spo0 h = 70.027069Bulkhead CDfwd spo0 v = 0.001000Bulkhead CDfwd spo0 av visc = 0.001000 Bulkhead_CDfwd spo0 water = 99.999977 Bulkhead CDfwd sr order = 1 Bulkhead CDfwd sr clg flag = -1 Bulkhead CDfwd sr pump_loc = -1 Bulkhead_CDfwd ss hi_sct = 4.978298 Bulkhead CDfwd ss ho_sct = 4.978298 Bulkhead CDfwd ss ai sct = 0.129718Bulkhead CDfwd ss ao_sct = 0.129718Bulkhead CDfwd ss $v_sct = 0.001000$ Bulkhead CDfwd ss ad max = 1.000000 Bulkhead_CDfwd ss sum_k = 115.056107

Bulkhead EDfwd ss ho sct = 4.978298Bulkhead CDfwd ss sum k a2 = 6837.692383Bulkhead EDfwd ss ai sct = 0.129718 Bulkhead CDfwd ss 1 sct = 0.017069 Bulkhead EDfwd ss ao sct = 0.129718Bulkhead EDaft r from out = 1Bulkhead_EDfwd ss v sct = 0.001000 Bulkhead EDaft r mlf clg = 100 Bulkhead EDfwd ss ad max = 1.000000 Bulkhead EDaft s h in = 4.978298Bulkhead EDfwd ss sum k =Bulkhead EDaft s h out = 4.97829899999986991104.000000 Bulkhead EDaft s d in = 406.400818Bulkhead EDfwd ss sum k a2 = Bulkhead EDaft s d out = 406.40081899999986991104.000000 Bulkhead EDaft s 1 p = 0.008534Bulkhead EDfwd ss 1 sct = 0.017069Bulkhead_EDaft s a_in = 0.129718 Bulkhead EDfwd ss mu = 0.001000 Bulkhead EDaft s a out = 0.129718Bulkhead EDfwd ssp w max = 100000.000000Bulkhead EDaft s m pipe = 1.107065 Bulkhead FEaft r from out = 1Bulkhead EDaft s k f= Bulkhead FEaft r mlf_clg = 100 99999986991104.000000 Bulkhead FEaftsh in = 4.978298 Bulkhead EDaft s k pipe = 0.013440 Bulkhead FEaft s h out = 4.978298 Bulkhead EDaft s friction = 0.640000 Bulkhead FEaft s d in = 406.400818 Bulkhead EDaft s Re = 100.000000 Bulkhead FEaft s d out = 406.400818 Bulkhead EDaft s epsilon = 0.001500Bulkhead FEaft s 1 p = 0.008534Bulkhead EDaft spi0 p s = 101.324997Bulkhead EDaft spi0 h = 70.000000 Bulkhead FEafts a in = 0.129718 Bulkhead FEafts a out = 0.129718 Bulkhead_EDaft spi0 v = 0.001000 Bulkhead FEaft s m_pipe = 1.107065 Bulkhead EDaft spi0 av visc = 0.001000 Bulkhead FEaft s k f = Bulkhead EDaft spi0 water = 100.000000 99999986991104.000000 Bulkhead EDaft spo0 p s = 101.324997Bulkhead FEaft s k pipe = 0.013440 Bulkhead EDaft spo0 h = 70.000000 Bulkhead FEaft's friction = 0.640000 Bulkhead EDaft spo0 v = 0.001000Bulkhead FEaft s Re = 100.000000 Bulkhead EDaft spo0 av visc = 0.001000 Bulkhead FEaft's epsilon = 0.001500 Bulkhead EDaft spo0 water = 100.000000 Bulkhead FEaft spi0 p s = 101.324997Bulkhead EDfwd r from out = 1Bulkhead FEaft spi0 h = 70.000000 Bulkhead EDfwd s h in = 4.978298Bulkhead FEaft spi0 v = 0.001000Bulkhead EDfwd s h out = 4.978298Bulkhead FEaft spi0 av visc = 0.001000 Bulkhead EDfwd s d in = 406.400818Bulkhead FEaft spi0 water = 100.000000 Bulkhead EDfwd s d out = 406.400818 Bulkhead FEaft spo0 p s = 101.324997Bulkhead EDfwd s 1 p = 0.008534Bulkhead FEaft spo0 h = 70.000000Bulkhead EDfwd s a in = 0.129718Bulkhead FEaft spo0 v = 0.001000Bulkhead EDfwd s a out = 0.129718 Bulkhead FEaft spo0 av_visc = 0.001000 Bulkhead EDfwd s m pipe = 1.107065 Bulkhead FEaft spo0 water = 100.000000 Bulkhead_EDfwd s k_pipe = 0.013440 Bulkhead FEfwd r from out = 1Bulkhead EDfwd s friction = 0.640000 Bulkhead FEfwd s h in = 4.978298 Bulkhead EDfwd s Re = 100.000000 Bulkhead FEfwd s h out = 4.978298Bulkhead_EDfwd s epsilon = 0.001500 Bulkhead FEfwd s d in = 406.400818 Bulkhead_EDfwd spi0 p s = 101.324997 Bulkhead FEfwd s d out = 406.400818Bulkhead EDfwd spi0 h = 70.000000Bulkhead FEfwd s 1 p = 0.008534Bulkhead EDfwd spi0 v = 0.001000Bulkhead FEfwd s a in = 0.129718Bulkhead EDfwd spi0 av visc = 0.001000 Bulkhead FEfwds a out = 0.129718Bulkhead EDfwd spi0 water = 100.000000 Bulkhead FEfwd s m pipe = 1.107065Bulkhead EDfwd spo0 $p_s = 101.324997$ Bulkhead FEfwd s k pipe = 0.013440Bulkhead EDfwd spo0 h = 70.000000Bulkhead FEfwd s friction = 0.640000 Bulkhead EDfwd spo0 v = 0.001000Bulkhead FEfwd s Re = 100.000000 Bulkhead EDfwd spo0 av visc = 0.001000 Bulkhead FEfwd s epsilon = 0.001500 Bulkhead EDfwd spo0 water = 100.000000 Bulkhead FEfwd spi0 p s = 101.324997 Bulkhead EDfwd sr order = 1 Bulkhead FEfwd spi0 h = 70.000000 Bulkhead EDfwd sr clg_flag = 2 Bulkhead_FEfwd spi0 v = 0.001000 Bulkhead EDfwd sr clg_by mlf = 1 Bulkhead FEfwd spi0 av visc = 0.001000 Bulkhead EDfwd sr pump loc = -1Bulkhead FEfwd spi0 water = 100.000000 Bulkhead EDfwd ss hi sct = 4.978298

Bulkhead_GFaft s a_out = 0.129718 Bulkhead_FEfwd spo0 $p_s = 101.324997$ Bulkhead GFaft s m pipe = 1.107065Bulkhead FEfwd spo0 h = 70.000000Bulkhead GFaft s k f = Bulkhead FEfwd spo0 v = 0.00100099999986991104.000000 Bulkhead FEfwd spo0 av_visc = 0.001000 Bulkhead GFaft s k pipe = 0.013440 Bulkhead_FEfwd spo0 water = 100.000000 Bulkhead GFaft s friction = 0.640000 Bulkhead FEfwd sr order = 1 Bulkhead_GFaft s Re = 100.000000 Bulkhead FEfwd sr clg flag = 2 Bulkhead GFaft s epsilon = 0.001500 Bulkhead FEfwd sr clg by mlf = 1Bulkhead_GFaft spi0 p_s = 101.324997 Bulkhead FEfwd sr pump_loc = -1 Bulkhead GFaft spi0 h = 70.000000Bulkhead FEfwd sr type eq = 0Bulkhead GFaft spi0 v = 0.001000Bulkhead FEfwd ss hi sct = 4.978298 Bulkhead_GFaft spi0 av_visc = 0.001000 Bulkhead FEfwd ss ho_sct = 4.978298 Bulkhead_GFaft spi0 water = 100.000000 Bulkhead_FEfwd ss ai_sct = 0.129718 Bulkhead GFaft spo0 p s = 101.324997Bulkhead FEfwd ss ao sct = 0.129718 Bulkhead GFaft spo0 h = 70.000000Bulkhead FEfwd ss $v_sct = 0.001000$ Bulkhead_GFaft spo0 v = 0.001000 Bulkhead FEfwd ss ad max = 1.000000 Bulkhead_GFaft spo0 av_visc = 0.001000 Bulkhead FEfwd ss sum k = Bulkhead_GFaft spo0 water = 100.000000 99999986991104.000000 Bulkhead_GFfwd r from_out = 1 Bulkhead FEfwd ss sum_ $k_a2 =$ Bulkhead GFfwd s h_in = 4.978298 99999986991104.000000 Bulkhead GFfwd s h out = 4.978298Bulkhead FEfwd ss 1 sct = 0.017069Bulkhead GFfwd s d in = 406.400818 Bulkhead_FEfwd ss mu = 0.001000 Bulkhead_GFfwd s d_out = 406.400818 Bulkhead FEfwd ssp $w_max = 100000.000000$ Bulkhead GFfwd s $1_p = 0.008534$ Bulkhead GF r from out = 1Bulkhead GFfwdsa in = 0.129718 Bulkhead GF s h in = 4.978298Bulkhead_GFfwd s a out = 0.129718 Bulkhead GF s h out = 4.978298Bulkhead GFfwd s m_pipe = 1.107065 Bulkhead_GF s d in = 406.400818 Bulkhead GFfwd s k_pipe = 0.013440 Bulkhead GF s d out = 406.400818Bulkhead GFfwd s friction = 0.640000 Bulkhead GF s d orif = 152.400299Bulkhead GFfwd s Re = 100.000000 Bulkhead_GF s beta = 0.375000 Bulkhead GFfwd s epsilon = 0.001500 Bulkhead GF s a o = 0.018242Bulkhead_GFfwd spi0 $p_s = 101.324997$ Bulkhead GF s a in = 0.129718Bulkhead GFfwd spi0 h = 70.000000 Bulkhead_GF s a_out = 0.129718Bulkhead GFfwd spi0 v = 0.001000Bulkhead GF s mean_a_o = 0.129718Bulkhead_GFfwd spi0 av_visc = 0.001000 Bulkhead GF s d c = 0.608469Bulkhead_GFfwd spi0 water = 100.000000 Bulkhead GF s k f = 115.055374Bulkhead GFfwd spo0 $p_s = 101.324997$ Bulkhead GF s spd limit = 50.000000 Bulkhead GFfwd spo0 h = 70.000000 Bulkhead GF s spd_act 0 Bulkhead GFfwd spo0 v = 0.001000Bulkhead GF spi0 p s = 101.324997Bulkhead GFfwd spo0 av_visc = 0.001000 Bulkhead GF spi0 h = 70.000000Bulkhead_GFfwd spo0 water = 100.000000 Bulkhead GF spi0 v = 0.001000Bulkhead GFfwd sr order = 1 Bulkhead GF spi0 av visc = 0.001000 Bulkhead_GFfwd sr clg_flag = 2 Bulkhead GF spi0 water = 100.000000 Bulkhead_GFfwd sr clg_by_mlf = 1 Bulkhead_GF spo0 p_s = 101.324997 Bulkhead GF spo0 h = 70.000000Bulkhead GFfwd sr pump_loc = -1Bulkhead_GFfwd ss hi_sct = 4.978298 Bulkhead_GF spo0 v = 0.001000Bulkhead GF spo0 av_visc = 0.001000 Bulkhead GFfwd ss ho sct = 4.978298Bulkhead_GFfwd ss ai_sct = 0.129718 Bulkhead GF spo0 water = 100.000000 Bulkhead_GFfwd ss ao_sct = 0.129718 Bulkhead GFaft r from out = 1Bulkhead GFfwd ss $v_sct = 0.001000$ Bulkhead GFaft r mlf_clg = 100 Bulkhead GFfwd ss ad max = 1.000000Bulkhead_GFaft s h in = 4.978298 Bulkhead GFaft s h out = 4.978298 Bulkhead GFfwd ss sum_k = 99999986991104.000000 Bulkhead GFaft s d in = 406.400818 Bulkhead GFfwd ss sum k_a2 = Bulkhead GFaft s d out = 406.400818 99999986991104.000000 Bulkhead GFaft s 1 p = 0.008534Bulkhead_GFfwd ss l_sct = 0.017069 Bulkhead_GFaft s a in = 0.129718

Bulkhead HGfwd s d_out = 406.400818 Bulkhead GFfwd ss mu = 0.001000 Bulkhead HGfwd s 1 p = 0.008534Bulkhead GFfwd ssp w max = 100000.000000Bulkhead HGfwd s a in = 0.129718 Bulkhead HG r from out = 1Bulkhead HGfwd s a out = 0.129718 Bulkhead HG s h in = 4.978298 Bulkhead HGfwd s m pipe = 1.107065 Bulkhead HG s h out = 4.978298Bulkhead HGfwd s k pipe = 0.013440Bulkhead HG s d in = 406.400818Bulkhead HGfwd s friction = 0.640000 Bulkhead HG s d out = 406.400818Bulkhead HGfwd s Re = 100.000000 Bulkhead HG s d orif = 152.400299 Bulkhead HGfwd s epsilon = 0.001500 Bulkhead HG s beta = 0.375000Bulkhead HGfwd spi0 p s = 101.324997Bulkhead HG s a o = 0.018242Bulkhead HGfwd spi0 h = 70.000000 Bulkhead_HG s a_in = 0.129718Bulkhead HGfwd spi0 v = 0.001000 Bulkhead HG s a_out = 0.129718Bulkhead_HGfwd spi0 av visc = 0.001000 Bulkhead_HG s mean a o = 0.129718 Bulkhead HGfwd spi0 water = 100.000000 Bulkhead HG s d c = 0.608469Bulkhead HGfwd spo0 p s = 101.324997Bulkhead_HG s $k_f = 115.055374$ Bulkhead HGfwd spo0 h = 70.000000 Bulkhead HG s spd limit = 50.000000 Bulkhead HGfwd spo0 v = 0.001000Bulkhead HG spi0 p s = 101.324997Bulkhead_HGfwd spo0 av_visc = 0.001000 Bulkhead HG spi0 h = 70.000000Bulkhead HGfwd spo0 water = 100.000000 Bulkhead HG spi0 v = 0.001000Bulkhead HGfwd sr order = 1 Bulkhead HG spi0 av visc = 0.001000 Bulkhead HGfwd sr clg flag = 2 Bulkhead HG spi0 water = 100.000000 Bulkhead HGfwd sr clg by mlf = 1 Bulkhead_HG spo0 $p_s = 101.324997$ Bulkhead HGfwd sr pump loc = -1Bulkhead HG spo0 h = 70.000000Bulkhead HGfwd ss hi sct = 4.978298 Bulkhead_HG spo0 v = 0.001000Bulkhead HGfwd ss ho sct = 4.978298Bulkhead HG spo0 av visc = 0.001000 Bulkhead HGfwd ss ai_sct = 0.129718 Bulkhead HG spo0 water = 100.000000 Bulkhead HGfwd ss ao sct = 0.129718 Bulkhead HGaft r from out = 1Bulkhead HGfwd ss v sct = 0.001000Bulkhead HGaft r mlf clg = 100 Bulkhead HGfwd ss ad max = 1.000000 Bulkhead HGaft s h in = 4.978298Bulkhead HGfwd ss sum k = Bulkhead HGaft s h out = 4.97829899999986991104.000000 Bulkhead HGaft s d in = 406.400818 Bulkhead HGfwd ss sum k a2 = Bulkhead HGaft s d out = 406.400818 99999986991104.000000 Bulkhead HGaft s 1 p = 0.008534Bulkhead HGfwd ss 1 sct = 0.017069Bulkhead HGaft s a in = 0.129718Bulkhead HGfwd ss mu = 0.001000Bulkhead HGaft s a out = 0.129718Bulkhead_HGfwd ssp w_max = 100000.000000 Bulkhead_HGaft s m_pipe = 1.107065 Bulkhead IH r from out = 1Bulkhead HGaft s k f = Bulkhead IH s h_in = 4.978298 99999986991104.000000 Bulkhead IH s h out = 4.978298Bulkhead HGaft s k pipe = 0.013440 Bulkhead_IH s d_in = 406.400818 Bulkhead HGaft s friction = 0.640000 Bulkhead_IH s d_out = 406.400818 Bulkhead HGaft s Re = 100.000000 Bulkhead IH s d orif = 152.400299Bulkhead HGaft s epsilon = 0.001500 Bulkhead IH s beta = 0.375000Bulkhead HGaft spi0 p_s = 101.324997 Bulkhead HGaft spi0 h = 70.000000 Bulkhead IH s a o = 0.018242Bulkhead IH s a in = 0.129718Bulkhead HGaft spi0 v = 0.001000Bulkhead IH s a out = 0.129718Bulkhead HGaft spi0 av visc = 0.001000 Bulkhead IH s mean a o = 0.129718Bulkhead HGaft spi0 water = 100.000000 Bulkhead IH s d c = 0.608469Bulkhead HGaft spo0 p s = 101.324997Bulkhead IH s k f = 115.055374Bulkhead HGaft spo0 h = 70.000000Bulkhead IH s spd limit = 50.000000 Bulkhead HGaft spo0 v = 0.001000Bulkhead IH spi0 p s = 101.324997Bulkhead HGaft spo0 av visc = 0.001000 Bulkhead_IH spi0 h = 70.000000 Bulkhead HGaft spo0 water = 100.000000 Bulkhead_IH spi0 v = 0.001000Bulkhead HGfwd r from out = 1Bulkhead IH spi0 av visc = 0.001000Bulkhead HGfwd s h in = 4.978298Bulkhead IH spi0 water = 100.000000 Bulkhead HGfwd s h out = 4.978298 Bulkhead IH spo0 p_s = 101.324997 Bulkhead HGfwd s d in = 406.400818

Bulkhead IH spo0 h = 70.000000Bulkhead IHfwd ss hi sct = 4.978298Bulkhead IHfwd ss ho sct = 4.978298Bulkhead IH spo0 v = 0.001000Bulkhead IHfwd ss ai sct = 0.129718Bulkhead IH spo0 av visc = 0.001000 Bulkhead_IH spo0 water = 100.000000 Bulkhead IHfwd ss ao sct = 0.129718Bulkhead IHfwd ss v sct = 0.001000Bulkhead IHaft r from out = 1 Bulkhead IHfwd ss ad max = 1.000000 Bulkhead_IHaft r mlf_clg = 100 Bulkhead IHfwd ss sum_k = Bulkhead IHaft s h in = 4.978298 99999986991104.000000 Bulkhead IHaft s h out = 4.978298Bulkhead IHfwd ss sum_k_a2 = Bulkhead IHaft s d in = 406.40081899999986991104.000000 Bulkhead IHaft s d out = 406.400818 Bulkhead IHfwd ss 1 sct = 0.017069Bulkhead IHaft s l p = 0.008534 Bulkhead IHfwd ss mu = 0.001000 Bulkhead IHaft s a in = 0.129718Bulkhead_IHfwd ssp w_max = 100000.000000 Bulkhead IHaft s a out = 0.129718Bulkhead Π r from out = 1 Bulkhead IHaft s m pipe = 1.107065 Bulkhead JI s h in = 4.978298Bulkhead IHaft s k f = 999999986991104.000000 Bulkhead Π s h out = 4.978298 Bulkhead IHaft s k pipe = 0.013440 Bulkhead $\Pi \, s \, d \, in = 406.400818$ Bulkhead IHaft s friction = 0.640000 Bulkhead Π s d out = 406.400818 Bulkhead IHaft s Re = 100.000000 Bulkhead JI s d orif = 152.400299 Bulkhead IHaft s epsilon = 0.001500 Bulkhead JI s beta = 0.375000Bulkhead IHaft spi0 p s = 101.324997Bulkhead JI s a o = 0.018242Bulkhead IHaft spi0 h = 70.000000 Bulkhead JI s a in = 0.129718Bulkhead IHaft spi0 v = 0.001000 Bulkhead JI s a out = 0.129718Bulkhead IHaft spi0 av visc = 0.001000 Bulkhead_ Π s mean_a_o = 0.129718 Bulkhead_IHaft spi0 water = 100.000000 Bulkhead JI s d c = 0.608469Bulkhead_IHaft spo0 p_s = 101.324997 Bulkhead IHaft spo0 h = 70.000000 Bulkhead JI s k f = 115.055374Bulkhead JI s spd_limit = 50.000000Bulkhead IHaft spo0 v = 0.001000Bulkhead JI spi0 p s = 101.324997Bulkhead IHaft spo0 av_visc = 0.001000 Bulkhead JI spi0 h = 70.000000Bulkhead IHaft spo0 water = 100.000000 Bulkhead Π spi0 v = 0.001000 Bulkhead IHfwd r from out = 1Bulkhead_II spi0 av_visc = 0.001000 Bulkhead IHfwd s h in = 4.978298Bulkhead JI spi0 water = 100.000000Bulkhead IHfwd s h out = 4.978298 Bulkhead JI spo0 p s = 101.324997Bulkhead IHfwd s d in = 406.400818Bulkhead_ Π spo0 h = 70.000000 Bulkhead IHfwd s d out = 406.400818Bulkhead JI spo0 v = 0.001000Bulkhead IHfwd s 1 p = 0.008534Bulkhead Π spo0 av visc = 0.001000 Bulkhead IHfwd s a in = 0.129718Bulkhead_ Π spo0 water = 100.000000 Bulkhead_IHfwd s a_out = 0.129718 Bulkhead Π aft r from out = 1 Bulkhead IHfwd s m_pipe = 1.107065 Bulkhead IHfwd s k pipe = 0.013440 Bulkhead II aft r mlf clg = 100 Bulkhead Π aft s h_in = 4.978298 Bulkhead IHfwd s friction = 0.640000 Bulkhead π Jaft s h out = 4.978298 Bulkhead IHfwd s Re = 100.000000 Bulkhead_JIaft s $d_{in} = 406.400818$ Bulkhead IHfwd s epsilon = 0.001500Bulkhead Jlaft s d out = 406.400818Bulkhead IHfwd spi0 p s = 101.324997Bulkhead Jiaft s 1 p = 0.008534Bulkhead_IHfwd spi0 h = 70.000000 Bulkhead_IHfwd spi0 v = 0.001000Bulkhead Jiafts a in = 0.129718Bulkhead IHfwd spi0 av visc = 0.001000 Bulkhead Jlaft s a out = 0.129718Bulkhead Jlaft s m pipe = 1.107065 Bulkhead IHfwd spi0 water = 100.000000 Bulkhead_JIaft s k_f = 999999986991104.000000 Bulkhead IHfwd spo $0 p_s = 101.324997$ Bulkhead Jiaft sk_pipe = 0.013440 Bulkhead_IHfwd spo0 h = 70.000000Bulkhead_ Jaft s friction = 0.640000 Bulkhead IHfwd spo0 v = 0.001000Bulkhead IHfwd spo0 av visc = 0.001000 Bulkhead JIaft s Re = 100.000000 Bulkhead_JIaft s epsilon = 0.001500 Bulkhead IHfwd spo0 water = 100.000000 Bulkhead Jlaft spi0 p s = 101.324997Bulkhead IHfwd sr order = 1 Bulkhead_JIaft spi0 h = 70.000000 Bulkhead IHfwd sr clg flag = 2 Bulkhead Jiaft spi0 v = 0.001000Bulkhead IHfwd sr clg by mlf = 1 Bulkhead Jaft spi0 av visc = 0.001000 Bulkhead IHfwd sr pump loc = -1

Checkvly B s a out = 0.018120Bulkhead Jlaft spi0 water = 100.000000 Checkvlv B s q 0 = 0.025199Bulkhead Π aft spo0 p_s = 101.324997 Checkviv B s q 1 = 0.268013Bulkhead Jlaft spo0 h = 70.000000Checkvlv_B s $dp_0 = 0.740000$ Bulkhead JIaft spo0 v = 0.001000Bulkhead_∏aft spo0 av visc = 0.001000 Checkvlv B s dp 1 = 75.000000Checkvly B s dpmin = 0.740000Bulkhead Jlaft spo0 water = 100.000000 Checkvly B s dpmax = 75.000000Bulkhead JIfwd r from out = 1Checkvly B s debitmin = 0.025199 Bulkhead_JIfwd s h_in = 4.978298 Checkyly B s debitmax = 0.268013Bulkhead JIfwd s h out = 4.978298Checkyly B s itmax = 1.000000Bulkhead JIfwd s d in = 406.400818Checkyly B s eq mass = 68.027214Bulkhead Jlfwd s d out = 406.400818 Checkvlv B spi0 p_s = 24.583595Bulkhead JIfwd s 1 p = 0.008534Checkvlv B spi0 h = 70.013206Bulkhead Jlfwd s a in = 0.129718Checkyly B spi0 v = 0.001000Bulkhead Jlfwd s a out = 0.129718 Checkvlv B spi0 av visc = 0.001000 Bulkhead JIfwd s m pipe = 1.107065 Checkvlv B spi0 water = 99.999969 Bulkhead Jifwd s k pipe = 0.013440Checkvlv B spo0 p s = 116.296883Bulkhead_Ifwd s friction = 0.640000 Checkvly B spo0 h = 70.013206Bulkhead Jifwd s Re = 100.000000Checkvly B spo0 v = 0.001000Bulkhead Jifwd s epsilon = 0.001500Checkvly B spo0 av visc = 0.001000 Bulkhead JIfwd spi0 p s = 101.324997Bulkhead_IIfwd spi0 h = 70.000000 Checkvlv B spo0 water = 99.999969 Bulkhead_JIfwd spi0 v = 0.001000Checkvlv B sr empty2 = 1Checkvlv B sr order = 1 Bulkhead JIfwd spi0 av visc = 0.001000 Checkvly B sr pump loc = -1Bulkhead JIfwd spi0 water = 100.000000 Checkvly B ss hi sct = 0.304800Bulkhead Jlfwd spo0 p s = 101.324997Checkvlv_B ss ho_sct = 7.620000 Bulkhead Jlfwd spo0 h = 70.000000 Checkvlv_B ss ai_sct = 0.018120 Bulkhead_JIfwd spo0 v = 0.001000Checkvlv_B ss ao_sct = 0.018120 Bulkhead_JIfwd spo0 av_visc = 0.001000 Checkvlv_B ss v_sct = 0.001000Bulkhead Jifwd spo0 water = 100.000000 Checkvlv B ss sum_p_hd = 496.399994 Bulkhead JIfwd sr order = 1 Checkyly B ss ad max = 1.000000Bulkhead JIfwd sr clg flag = 2Checkvly B ss sum k = 4.833489Bulkhead_JIfwd sr clg_by_mlf = 1 Checkvly B ss sum k a2 = 14720.953125Bulkhead JIfwd sr pump_loc = -1 Checkvly B ss 1 sct = 18.288000Bulkhead_JIfwd ss hi_sct = 4.978298 Checkvly B ss mu = 0.001000Bulkhead Jlfwd ss ho sct = 4.978298Checkvly B ssp w = 2.621011Bulkhead Jifwd ss ai sct = 0.129718 Checkvly B ssp w max = 72.264412Bulkhead Jlfwd ss ao sct = 0.129718Checkviv B ssp ad = 0.178569Bulkhead JIfwd ss v sct = 0.001000Checkvly B ssp cd = 8.735888Bulkhead Jifwd ss ad max = 1.000000 Checkvlv_B ssp dp = 14.677879Bulkhead JIfwd ss sum k =Checkvlv_B ssp Q = 157.26065199999986991104.000000 Checkvly D r index h = 30Bulkhead JIfwd ss sum_k_a2 = Checkyly D r from out = 199999986991104.000000 Checkyly D r index max = 1Bulkhead JIfwd ss sumk down 0 Checkviv_D s $h_{in} = 7.620000$ Bulkhead Jifwd ss 1 sct = 0.017069Checkvly D s h out = 7.620000Bulkhead JIfwd ss mu = 0.001000Checkvlv_D s d_in = 151.892303 Bulkhead JIfwd ssp w max = 100000.000000Checkyly D s d out = 151.892303Checkvly B r index h = 30Checkvly D s a valve = 0.018120Checkvly $B r from_out = 1$ Checkvly D s a in = 0.018120Checkvlv B r index max = 1Checkviv D s a out = 0.018120Checkvlv_B s h_in = 7.620000 Checkviv_D s $q_0 = 0.025199$ Checkyly B s h out = 7.620000Checkvlv_D s $q_1 = 0.268013$ Checkvlv B s d in = 151.892303Checkvlv D s dp 0 = 0.740000Checkvlv_B s d_out = 151.892303 CheckvIv_D s $dp_1 = 75.000000$ Checkvly B s a valve = 0.018120Checkyly D s dpmin = 0.740000Checkvly B s a in = 0.018120

Checkvlv E spi0 h = 70.048141Checkvly D s dpmax = 75.000000Checkvlv_E spi0 v = 0.001000Checkvlv_D s debitmin = 0.025199 Checkvlv_E spi0 av_visc = 0.001000 Checkvlv D s debitmax = 0.268013 Checkvlv E spi0 water = 99.999977 Checkvly D s itmax = 1.000000Checkvlv_E spo0 p_s = 116.296883Checkvly D s eq mass = 68.027214Checkvlv_E spo0 h = 70.048141Checkvlv_D spi0 $p_s = 24.338196$ Checkvly E spo0 v = 0.001000Checkvlv D spi0 h = 70.012558Checkvlv_E spo0 av_visc = 0.001000 Checkvly D spi0 v = 0.001000Checkvly D spi0 av visc = 0.001000 Checkvlv_E spo0 water = 99.999977 Checkvlv E sr empty2 = 1Checkvlv D spi0 water = 99.999977 Checkvlv E sr order = 1 Checkvlv D spo0 p s = 116.296883Checkvly E sr pump loc = -1Checkvly D spo0 h = 70.012558Checkvlv_E ss hi_sct = 0.304800 Checkvly D spo0 v = 0.001000Checkvlv E ss ho sct = 7.620000Checkvly D spo0 av visc = 0.001000Checkvly E ss ai sct = 0.018120Checkvlv_D spo0 water = 99.999977 Checkvly E ss ao sct = 0.018120Checkvlv D sr empty2 = 1Checkyly E ss v sct = 0.001000Checkvlv_D sr order = 1 Checkvlv E ss sum p hd = 496.399994Checkvly D sr pump_loc = -1Checkvlv_D ss hi_sct = 0.304800 Checkvly E ss ad $\max = 1.000000$ Checkvlv E ss sum_k = 3.322200Checkyly D ss ho sct = 7.620000Checkvlv E ss sum k a2 = 10118.145508Checkvly D ss ai sct = 0.018120Checkvlv E ss sumk down 0 Checkvlv D ss ao sct = 0.018120Checkvlv E ss 1 sct = 18.288000Checkvly D ss v sct = 0.001000Checkvly E ss mu = 0.001000Checkvlv D ss sum_p_hd = 496.399994Checkvlv E ssp cd = 9.939569Checkvly D ss ad max = 1.000000Checkvlv E ssp dp = 16.724440Checkvly D ss sum k = 4.807628Checkvlv D ss sum $k_a2 = 14642.188477$ Checkvly F r index h = 30Checkvly D ss 1 sct = 18.288000Checkvly F r from out = 1 $Checkvlv_F r index_max = 1$ Checkvlv_D ss mu = 0.001000Checkvly F s h in = 7.620000Checkvlv_D ssp w = 2.758049Checkvly F s h out = 7.620000Checkvlv_D ssp w_max = 72.264412Checkvlv_F s $d_{in} = 151.892303$ Checkvlv_D ssp ad = 0.178677 Checkvlv F s $d_{out} = 151.892303$ Checkvly D ssp cd = 8.752007Checkvly F s a valve = 0.018120Checkvly D ssp dp = 15.435936Checkvly F s a in = 0.018120Checkvly D ssp Q = 165.482910Checkvlv_E r index_h = 30 Checkvly F s a out = 0.018120Checkviv F s q 0 = 0.025199Checkvlv_E r from_out = 1 Checkvlv F s q 1 = 0.268013Checkvly E r index max = 1Checkvlv F s dp 0 = 0.740000Checkvlv $E s h_in = 7.620000$ Checkvlv F s dp 1 = 75.000000Checkvlv E s h out = 7.620000Checkvlv F s dpmin = 0.740000 Checkvlv_E s d_in = 151.892303 Checkvly F s dpmax = 75.000000Checkvlv_E s d_out = 151.892303 Checkvlv_F s debitmin = 0.025199 Checkvlv E s a valve = 0.018120 Checkvlv_F s debitmax = 0.268013Checkvlv_E s a_in = 0.018120Checkvlv_F s itmax = 1.000000Checkvly E s a out = 0.018120Checkvly F s eq mass = 68.027214Checkviv E s q 0 = 0.025199Checkvlv F spi0 p s = 20.569763Checkvlv E s q 1 = 0.268013Checkvlv_F spi0 h = 70.000000Checkvlv E s dp_0 = 0.740000Checkvly F spi0 v = 0.001000Checkvlv E s dp 1 = 75.000000Checkvly F spi0 av visc = 0.001000Checkvly E s dpmin = 0.740000Checkvly F spi0 water = 100.000000Checkyly E s dpmax = 75.000000Checkvlv E s debitmin = 0.025199 Checkvly F spo0 p s = 116.296883Checkvlv_F spo0 h = 70.000000Checkvlv E s debitmax = 0.268013 Checkvlv_E s itmax = 1.000000 Checkvly F spo0 v = 0.001000Checkvlv_F spo0 av_visc = 0.001000 Checkvlv E s eq_mass = 68.027214 Checkvly F spo0 water = 100.Checkvly E spi0 p s = 22.127150

Checkviv G ss sum k = 97.005440Checkvly F sr empty2 = 1Checkvlv G ss sum $k_a2 = 295441.281250$ Checkvlv F sr order = 1 Checkyly G ss sumk down 0 Checkvlv F sr pump loc = -1 Checkvlv_G ss 1 sct = 18.288000Checkvly F ss hi sct = 0.304800Checkvly G ss mu = 0.001000Checkvly F ss ho sct = 7.620000Checkvlv_G ssp cd = 2.436490Checkyly F ss ai sct = 0.018120Checkvlv_G ssp dp = 18.455780Checkvly F ss ao sct = 0.018120Checkvly I r index h = 30Checkvlv F ss v sct = 0.001000Checkvly I r from out = 1Checkvlv F ss sum p hd = 496.399994Checkvlv_I r index $\max = 1$ Checkvlv F ss ad_max = 1.000000Checkvlv_I s $h_in = 7.620000$ Checkvly F ss sum k = 97.005440Checkvly I s $h_{out} = 7.620000$ Checkvlv F ss sum $k_a2 = 295441.281250$ Checkvlv I s d in = 151.892303Checkvlv_F ss 1_sct = 18.288000Checkvlv_I s d_out = 151.892303 Checkvly F ss mu = 0.001000Checkvly Is a valve = 0.018120Checkvly F ssp cd = 2.436762Checkvly Is a in = 0.018120Checkvlv_F ssp dp = 17.631561Checkvly Is a out = 0.018120Checkvlv G r index h = 30Checkvlv I s q 0 = 0.025199Checkvlv G r from out = 1 Checkvly I s q 1 = 0.268013Checkvlv_G r index_max = 1· Checkvlv_G s $h_in = 7.620000$ Checkvly I s dp 0 = 0.740000Checkvlv I s dp_1 = 75.000000 Checkvlv_G s h_out = 7.620000Checkvlv_I s dpmin = 0.740000 Checkvlv G s d in = 151.892303Checkvlv I s dpmax = 75.000000Checkvlv G s d out = 151.892303Checkvlv_I s debitmin = 0.025199 Checkvly G s a valve = 0.018120Checkvlv_I s debitmax = 0.268013 Checkvlv G s a in = 0.018120 Checkvlv I s itmax = 1.000000 Checkvlv G s a_out = 0.018120 Checkvlv_I s eq_mass = 68.027214 Checkvlv G s q 0 = 0.025199Checkvlv I spi0 p s = 17.983818Checkvlv G s q 1 = 0.268013Checkvlv_I spi0 h = 70.000000Checkvlv $G \, s \, dp \, 0 = 0.740000$ Checkviv_I spi0 v = 0.001000Checkviv G s dp 1 = 75.000000Checkvlv I spi0 av_visc = 0.001000 Checkvlv_G s dpmin = 0.740000 Checkyly I spi0 water = 100.000000Checkvlv_G s dpmax = 75.000000Checkvly I spo0 p s = 116.296883Checkvlv_G s debitmin = 0.025199 Checkvlv_I spo0 h = 70.000000Checkvlv_G s debitmax = 0.268013 Checkvly I spo0 v = 0.001000Checkvly G s itmax = 1.000000Checkvly I spo0 av_visc = 0.001000 Checkvlv G s eq mass = 68.027214Checkvlv_I spo0 water = 100.000000 Checkyly G spi0 p s = 19.205734Checkvlv I sr empty2 = 1Checkvlv_G spi0 h = 70.000000Checkvlv_I sr order = 1 Checkvlv_G spi0 v = 0.001000Checkvly I sr pump loc = -1Checkvlv_G spi0 av_visc = 0.001000 Checkvlv_I ss hi_sct = 0.304800 Checkvlv_G spi0 water = 100.000000 Checkvly I ss ho sct = 7.620000Checkvlv G spo0 p s = 116.296883Checkyly I ss ai sct = 0.018120Checkvlv_G spo0 h = 70.000000Checkvly I ss ao sct = 0.018120 $Checkvlv_G spo0 v = 0.001000$ Checkvlv_I ss v_sct = 0.001000Checkvlv G spo0 av_visc = 0.001000 Checkvlv_I ss sum_p_hd = 496.399994Checkvlv_G spo0 water = 100.000000 Checkviv I ss ad max = 1.000000 Checkvlv G sr empty2 = 1 Checkvlv_I ss sum_k = 97.005440 $Checkvlv_G sr order = 1$ Checkvlv_I ss sum_ $k_a2 = 295441.281250$ Checkvlv G sr pump_loc = -1 Checkvlv I ss sumk_down 0 Checkvlv G ss hi sct = 0.304800Checkvlv I ss l sct = 18.288000 Checkyly G ss ho sct = 7.620000Checkvly I ss mu = 0.001000Checkvlv_G ss ai_sct = 0.018120 Checkvlv I ssp cd = 2.436244Checkvly G ss ao sct = 0.018120Checkvlv_I ssp dp = 19.220032Checkvly G ss v sct = 0.001000 CompA chckvlv r index_h = 30Checkvlv G ss sum $p_hd = 496.399994$ CompA_chckvlv r index max = 1Checkvlv_G ss ad_max = 1.000000

CompA_gate s a_valve = 0.018120CompA chckvlv s h in = 0.304800CompA_gate s $k_v = 999999986991104.000000$ CompA chckvlv s h out = 0.304800CompA gate s a in = 0.018120CompA chckvlv s d in = 151.892303CompA_chckvlv s d_out = 151.892303 CompA gate s a out = 0.018120CompA chckvlv s a valve = 0.018120CompA gate spi0 p_s = 101.324997CompA gate spi0 h = 70.000000CompA chckvlv s a in = 0.018120CompA gate spi0 v = 0.001000CompA chckvlv s $a_out = 0.018120$ CompA_gate spi0 av_visc = 0.001000 CompA chckvlv s q 0 = 0.025199CompA_gate spi0 water = 100.000000 CompA chckvlv s q 1 = 0.268013CompA_gate spo0 p_s = 96.345711 $CompA_chckvIv s dp_0 = 0.740000$ $CompA_chckvlv s dp_1 = 75.000000$ CompA gate spo0 h = 70.000000CompA gate spo0 v = 0.001000 $CompA_chckvlv s dpmin = 0.740000$ CompA gate spo0 av visc = 0.001000 $CompA_chckvlv s dpmax = 75.000000$ $CompA_gate spo0 water = 100.000000$ CompA_chckvlv s debitmin = 0.025199 CompB chckvlv r index h = 30CompA chckvlv s debitmax = 0.268013 CompB chckvlv r index max = 1CompA chckvlv s itmax = 1.000000CompB_chckvlv s h in = 0.304800 CompA chckvlv s eq mass = 35.380001CompB chckvlv s h out = 0.304800CompA_chckvlv spi0 $p_s = 101.324997$ CompB chckvlv s d_in = 151.892303 CompA_chckvlv spi0 h = 70.000000CompB chckvlv s d out = 151.892303CompA chckvlv spi0 v = 0.001000CompA chckvlv spi0 av_visc = 0.001000 CompB chckvlv s a valve = 0.018120CompA_chckvlv spi0 water = 100.000000 CompB chckvlv s a in = 0.018120CompB chckvlv s a out = 0.018120 $CompA_chckvlv spo0 p_s = 101.324997$ CompA chckvlv spo0 h = 70.000000CompB chckvlv s q 0 = 0.025199CompA chckvlv spo0 v = 0.001000CompB chckvlv s $q_1 = 0.268013$ CompA_chckvlv spo0 av visc = 0.001000 CompB chckvlv s dp 0 = 0.740000CompA chckvlv spo0 water = 100.000000 CompB chckvlv s dp 1 = 75.000000CompB_chckvlv s dpmin = 0.740000 CompA gate r st ind max = 9 $CompB_chckvlv s dpmax = 75.000000$ CompA_gate r index_h = 30CompB chckvlv s debitmin = 0.025199CompA gate r from out = 1CompB chckvlv s debitmax = 0.268013CompA gate s $h_{in} = 0.304800$ CompB chckvlv s itmax = 1.000000CompA gate s h out = 0.304800CompB chckvlv s eq mass = 35.380001CompA gate s d in = 151.892303CompB chckvlv spi0 p s = 101.324997CompA_gate s d_out = 151.892303CompB chckvlv spi0 h = 70.461746CompA_gate s t_vo = 5.000000CompB chckvlv spi0 v = 0.001000 $CompA_gate s t_vc = 5.000000$ CompB chckvlv spi0 av_visc = 0.001001 CompA_gate s cv_1 = 624.000000CompB chckvlv spi0 water = 99.999969 CompA_gate s $cv_2 = 1250.000000$ CompB_chckvlv spo0 p s = 101.324997CompA_gate s $cv_3 = 1780.000000$ CompB chckvlv spo0 h = 70.468079CompA_gate s cv_4 = 2770.000000CompB chckvlv spo0 v = 0.001000CompA gate s $cv_5 = 3210.000000$ CompB chckvlv spo0 av visc = 0.001001 CompA_gate s cv_6 = 3610.000000CompB chckvlv spo0 water = 99.999969 CompA_gate s $cv_7 = 3970.000000$ CompB gate r st ind max = 9CompA_gate s cv_8 = 4240.000000CompA_gate s cv_9 = 4460.000000CompB gate r index h = 30CompB_gate r from_out = 1 CompA_gate s cv_10 = 4678.000000CompB gate s $h_in = 0.304800$ $CompA_gate s st_1 = 0.100000$ CompB gate s h out = 0.304800 $CompA_gate s st_2 = 0.200000$ CompA_gate s st_3 = 0.300000CompB gate s d in = 151.892303CompB gate s d out = 151.892303CompA gate s st_4 = 0.500000CompB_gate s t vo = 5.000000CompA gate s st 5 = 0.600000CompB gate s t vc = 5.000000CompA gate s st 6 = 0.700000CompB_gate s $\overline{cv}_1 = 624.000000$ CompA gate s st 7 = 0.800000CompB gate s cv 2 = 1250.000000CompA_gate s st_8 = 0.900000CompB_gate s cv_3 = 1780.000000CompA gate s st 9 = 1.000000CompB_gate s $cv_4 = 2770.000000$ CompA gate s st_10 = 1.000000

```
CompC_chckvlv s a_i in = 0.018120
CompB_gate s cv_5 = 3210.000000
                                                  CompC_chckvlv s a_out = 0.018120
CompB gate s cv 6 = 3610.000000
                                                  CompC_chckvlv s velocity = 0.267949
CompB gate s cv_7 = 3970.000000
                                                  CompC_chckvlv s q_0 = 0.025199
CompB_gate s cv_8 = 4240.000000
                                                  CompC chckvlv s q_1 = 0.268013
CompB_gate s cv_9 = 4460.000000
                                                  CompC_chckvlv s dp_0 = 0.740000
CompB_gate s cv_10 = 4678.000000
                                                  CompC_chckvlv s dp_1 = 75.000000
CompB_gate s st_1 = 0.100000
                                                  CompC chckvlv s dpmin = 0.740000
CompB_gate s st_2 = 0.200000
                                                  CompC_chckvlv s dpmax = 75.000000
CompB_gate s st_3 = 0.300000
                                                  CompC_chckvlv s debitmin = 0.025199
CompB gate s st 4 = 0.500000
                                                  CompC_chckvlv s debitmax = 0.268013
CompB gate s st 5 = 0.600000
                                                  CompC_chckvlv s itmax = 1.000000
CompB gate s st 6 = 0.700000
                                                  CompC_chckvlv s eq_mass = 35.380001
CompB gate s st_7 = 0.800000
                                                  CompC chckvlv spi0 p_s = 101.324997
CompB gate s st 8 = 0.900000
                                                  CompC chckvlv spi0 h = 70.000175
CompB gate s st 9 = 1.000000
                                                  CompC_chckvlv spi0 v = 0.001000
CompB gate s st 10 = 1.000000
                                                  CompC_chckvlv spi0 av_visc = 0.001000
CompB_gate s a valve = 0.018120
                                                  CompC_chckvlv spi0 water = 100.000000
CompB gate s k_v = 999999986991104.000000
                                                  CompC chckvlv spo0 p s = 101.324997
CompB_gate s a_in = 0.018120
                                                  CompC_chckvlv spo0 h = 70.009270
CompB gate s a_out = 0.018120
                                                  CompC_chckvlv spo0 v = 0.001000
CompB gate spi0 p_s = 101.324997
                                                  CompC_chckvlv spo0 av visc = 0.001001
CompB gate spi0 h = 70.477348
                                                  CompC_chckvlv spo0 water = 99.999985
CompB gate spi0 v = 0.001000
                                                  CompC_gate r psn = 100
CompB_gate spi0 av visc = 0.001001
                                                  CompC_gate r st_ind_max = 9
CompB gate spi0 water = 99.999977
                                                  CompC_gate r st_ind = 8
CompB_gate spo0 p_s = -293.217926
                                                  CompC_gate r index_h = 30
CompB gate spo0 h = 70.477348
                                                  CompC_gate r from_out = 1
CompB_gate spo0 v = 0.001000
                                                  CompC_gate s h_in = 0.304800
CompB gate spo0 av_visc = 0.001001
                                                  CompC_gate s h_out = 0.304800
CompB gate spo0 water = 99.999977
                                                  CompC_gate s d_{in} = 151.892303
CompB_gate sr empty2 = 1
                                                  CompC gate s d_{out} = 151.892303
CompB gate sr order = 1
                                                  CompC_gate s t_vo = 5.000000
CompB gate sr clg flag = 2
                                                  CompC_gate s t_vc = 5.000000
CompB gate sr pump loc = -1
                                                   CompC_gate s cv_1 = 624.000000
 CompB gate ss hi sct = 0.304800
                                                   CompC_gate s cv_2 = 1250.000000
CompB gate ss ho sct = 0.304800
                                                   CompC gate s cv_3 = 1780.000000
 CompB_gate ss ai_sct = 0.018120
                                                   CompC_gate s cv_4 = 2770.000000
 CompB_gate ss ao_sct = 0.018120
                                                  CompC_gate s cv_5 = 3210.000000
 CompB gate ss v_sct = 0.001000
                                                   CompC_gate s cv_6 = 3610.000000
 CompB_gate ss ad_max = 1.000000
                                                   CompC_gate s cv_7 = 3970.000000
 CompB_gate ss sum_k =
                                                   CompC_gate s cv_8 = 4240.000000
 99999986991104.000000
                                                   CompC_gate s cv_9 = 4460.000000
 CompB_gate ss sum_k_a2 =
                                                   CompC_gate s cv_10 = 4678.000000
 99999986991104.000000
                                                   CompC_gate s st_1 = 0.100000
 CompB_gate ss l_sct = 3.048000
                                                   CompC_gate s st_2 = 0.200000
 CompB gate ss mu = 0.001000
                                                   CompC_gate s st_3 = 0.300000
 CompB gate ssp w_max = 100000.000000
                                                   CompC_gate s st_4 = 0.500000
 CompB_gate ssp dp = 394.542908
                                                   CompC gate s st_5 = 0.600000
 CompC_chckvlv r index_h = 30
                                                   CompC gate s st _{6} = 0.700000
 CompC chckvlv r from out = 1
                                                   CompC gate s st_7 = 0.800000
 CompC_chckvlv r index_max = 1
                                                   CompC_gate s st_8 = 0.900000
 CompC chckvlv s h_in = 0.304800
                                                   CompC gate s st_9 = 1.000000
 CompC_chckvlv s h_out = 0.304800
                                                   CompC_gate s st_10 = 1.000000
 CompC_chckvlv s d in = 151.892303
                                                   CompC_gate s a valve = 0.018120
 CompC_chckvlv s d_out = 151.892303
                                                   CompC gate s stem = 1.000000
 CompC_chckvlv s a_valve = 0.018120
```

 $CompC_gate s stem_prv = 1.000000$ CompD chckvlv spo0 v = 0.001000CompD_chckvlv spo0 av visc = 0.001000 CompC_gate s position = 100.000000 CompD_chckvlv spo0 water = 99.999992 CompC gate s $k_v = 0.057475$ $CompD_gate r st_ind_max = 9$ CompC_gate s a_in = 0.018120 $CompC_gate s a_out = 0.018120$ CompD gate r index_h = 30 $CompC_gate spi0 p_s = 101.304298$ CompD gate r from out = 1CompD_gate s $h_in = 0.304800$ CompC_gate spi0 h = 70.009270CompD_gate s $h_out = 0.304800$ $CompC_gate spi0 v = 0.001000$ CompD gate s d in = 151.892303CompC_gate spi0 av_visc = 0.001000 CompD gate s d out = 151.892303CompC gate spi0 water = 99.999985CompD gate s t vo = 5.000000CompC_gate spo0 p_s = -293.021118CompD_gate s $t_vc = 5.000000$ CompC_gate spo0 h = 70.009270CompD_gate s cv 1 = 624.000000 $CompC_gate spo0 v = 0.001000$ CompC_gate spo0 av_visc = 0.001000 CompD gate s cv 2 = 1250.000000CompD_gate s $cv_3 = 1780.000000$ CompC_gate spo0 water = 99.999985 CompD gate s cv 4 = 2770.000000 $CompC_gate sr empty2 = 1$ CompD_gate s cv_5 = 3210.000000 $CompC_gate sr order = 1$ CompD gate s cv_6 = 3610.000000 $CompC_gate sr clg_flag = 2$ CompD_gate s $cv_7 = 3970.000000$ CompC_gate sr pump_loc = -1 CompD_gate s $cv_8 = 4240.000000$ CompC gate ss hi sct = 0.304800CompD gate s cv 9 = 4460.000000CompC gate ss $ho_sct = 0.304800$ CompD_gate s $cv_10 = 4678.000000$ $CompC_gate ss ai_sct = 0.018120$ CompD_gate s st_1 = 0.100000 $CompC_gate ss ao_sct = 0.018120$ $CompC_gate ss v_sct = 0.001000$ CompD gate s st 2 = 0.200000CompD_gate s st_3 = 0.300000CompC gate ss ad_max = 1.000000CompD_gate s st_4 = 0.500000CompC gate ss sum k = 1.898404CompD_gate s st_5 = 0.600000CompC_gate ss sum_k_a2 = 5781.808105 $CompC_gate ss l_sct = 3.048000$ CompD gate s st_6 = 0.700000CompD_gate s st_7 = 0.800000 $CompC_gate ss mu = 0.001000$ CompD gate s st_8 = 0.900000CompC_gate ssp dp = 394.346130CompD_gate s st_9 = 1.000000 $CompD_chckvlv r index_h = 30$ CompD gate s st 10 = 1.000000 $CompD_chckvlv r index_max = 1$ CompD gate s a_valve = 0.018120CompD chckvlv s h in = 0.304800CompD_gate s $k_v = 999999986991104.000000$ CompD chckvlv s h out = 0.304800CompD gate s a_in = 0.018120CompD chckvlv s d in = 151.892303CompD gate s a out = 0.018120CompD_chckvlv s d_out = 151.892303 CompD gate spi0 p s = 101.324997CompD chckvlv s a valve = 0.018120CompD_gate spi0 h = 70.239746CompD_chckvlv s $a_in = 0.018120$ CompD_gate spi0 v = 0.001000CompD_chckvlv s a_out = 0.018120 CompD_gate spi0 av_visc = 0.001000 CompD chckvlv s $q_0 = 0.025199$ CompD_chckvlv s $q_1 = 0.268013$ CompD_gate spi0 water = 99.999992 CompD_gate spo0 p_s = -292.537598CompD chckvlv s dp 0 = 0.740000CompD_gate spo0 h = 70.239746CompD_chckvlv s dp_1 = 75.000000CompD gate spo0 v = 0.001000CompD chckvlv s dpmin = 0.740000 $CompD_chckvlv s dpmax = 75.000000$ CompD gate spo0 av visc = 0.001000CompD_chckvlv s debitmin = 0.025199 CompD gate spo0 water = 99.999992CompD gate sr empty2 = 1CompD chckvlv s debitmax = 0.268013CompD gate sr order = 1CompD chckvlv s itmax = 1.000000CompD_chckvlv s eq_mass = 35.380001 CompD gate sr clg flag = 2CompD gate sr pump loc = -1CompD_chckvlv spi0 p_s = 101.324997CompD_gate ss hi_sct = 0.304800CompD chckvlv spi0 h = 70.225914 $CompD_gate ss ho_sct = 0.304800$ $CompD_chckvlv spi0 v = 0.001000$ CompD_gate ss ai_sct = 0.018120CompD_chckvlv spi0 av_visc = 0.001000 $CompD_gate ss ao_sct = 0.018120$ CompD_chckvlv spi0 water = 99.999992 CompD_chckvlv spo0 p s = 101.324997CompD gate ss $v_sct = 0.001000$ CompD_chckvlv spo0 h = 70.235962CompD gate ss ad max = 1.000000

CompE gate s st 1 = 0.100000CompD gate ss sum k =CompE gate s st 2 = 0.20000099999986991104.000000 CompE gate s st_3 = 0.300000CompD gate ss sum k a2 = CompE gate s st 4 = 0.50000099999986991104.000000 CompE gate s st 5 = 0.600000CompD gate ss 1 sct = 3.048000CompE_gate s st_6 = 0.700000CompD_gate ss $\overline{mu} = 0.001000$ CompE gate s st_7 = 0.800000CompD_gate ssp w max = 100000.000000CompE_gate s st_8 = 0.900000CompD_gate ssp dp = 393.862610 CompE_gate s st_9 = 1.000000CompE chckvlv r index_h = 30CompE_gate s st_10 = 1.000000CompE chckvlv r index_max = 1CompE_gate s a_valve = 0.018120 CompE_chckvlv s h_in = 0.304800CompE_gate s $k_v = 999999986991104.000000$ CompE chckvlv s h out = 0.304800CompE_chckvlv s d_in = 151.892303 CompE gate s a in = 0.018120CompE gate s a_out = 0.018120CompE chckvlv s d out = 151.892303CompE gate spi0 p s = 101.324997CompE chckvlv s a valve = 0.018120CompE gate spi0 h = 70.000000CompE chckvly s a in = 0.018120CompE gate spi0 v = 0.001000CompE chckvly s a out = 0.018120CompE_gate spi0 av_visc = 0.001000 CompE_chckvlv s q_0 = 0.025199 CompE_gate spi0 water = 100.000000 CompE chckvlv s $q_1 = 0.268013$ CompE_gate spo0 p s = -291.319153CompE chckvlv s dp 0 = 0.740000CompE gate spo0 h = 70.000000CompE_chckvlv s dp 1 = 75.000000CompE gate spo0 v = 0.001000CompE chckvlv s dpmin = 0.740000CompE_gate spo0 av_visc = 0.001000 CompE chckvlv s dpmax = 75.000000 CompE_gate spo0 water = 100.000000CompE chckvlv s debitmin = 0.025199 CompE gate sr empty2 = 1CompE_chckvlv s debitmax = 0.268013 CompE gate sr order = 1CompE chckvlv s itmax = 1.000000 $CompE_gate sr clg_flag = 2$ CompE chckvlv s eq mass = 35.380001 CompE_gate sr pump_loc = -1 CompE chckvlv spi0 p s = 101.324997CompE_gate ss hi_sct = 0.304800 CompE_chckvlv spi0 h = 70.000000 $CompE_gate ss ho_sct = 0.304800$ CompE chckvlv spi0 v = 0.001000CompE gate ss ai sct = 0.018120CompE chckvlv spi0 av visc = 0.001000 $CompE_gate ss ao_sct = 0.018120$ CompE_chckvlv spi0 water = 100.000000 CompE chckvlv spo0 $p_s = 101.324997$ CompE gate ss $v_sct = 0.001000$ $CompE_gate ss ad_max = 1.000000$ CompE chckvlv spo0 h = 70.000000CompE_chckvlv spo0 v = 0.001000CompE gate ss sum_k = 99999986991104.000000 CompE chckvlv spo0 av visc = 0.001000CompE gate ss sum_k_a2 = CompE_chckvlv spo0 water = 100.000000 99999986991104.000000 $CompE_gate r st_ind_max = 9$ CompE gate ss 1 sct = 3.048000CompE_gate r index h = 30CompE_gate ss mu = 0.001000CompE_gate r from_out = 1 CompE gate ssp w max = 100000.000000CompE gate s h in = 0.304800CompE gate ssp dp = 392.644165CompE gate s $h_out = 0.304800$ CompF chckvlv r index_h = 30CompE_gate s d_in = 151.892303 $CompF_chckvlv r index_max = 1$ CompE_gate s d_out = 151.892303 CompF_chckvlv s $h_in = 0.304800$ $CompE_gate s t_vo = 5.000000$ CompF_chckvlv s $h_out = 0.304800$ CompE gate s t vc = 5.000000CompF chckvlv s d in = 151.892303CompE gate s cv 1 = 624.000000 $CompF_chckvlv \ s \ d_out = 151.892303$ CompE gate s cv 2 = 1250.000000CompF_chckvlv s a_valve = 0.018120 CompE gate s cv 3 = 1780.000000CompF chckvlv s a in = 0.018120CompE gate s cv_4 = 2770.000000CompF_chckvlv s a_out = 0.018120 CompE_gate s $cv_5 = 3210.000000$ CompF chckvlv s $q_0 = 0.025199$ CompE_gate s cv_6 = 3610.000000CompF chckvlv s q 1 = 0.268013CompE_gate s cv 7 = 3970.000000CompF chckvlv s dp_0 = 0.740000CompE_gate s cv_8 = 4240.000000CompF chckvlv s dp 1 = 75.000000CompE_gate s $cv_9 = 4460.000000$ CompF_chckvlv s dpmin = 0.740000 CompE_gate s $cv_10 = 4678.000000$

CompF_gate spo0 av_visc = 0.001000 CompF chckvlv s dpmax = 75.000000CompF gate spo0 water = 100.000000CompF_chckvlv s debitmin = 0.025199 $CompF_gate sr empty2 = 1$ CompF_chckvlv s debitmax = 0.268013 CompF chckvlv s itmax = 1.000000CompF gate sr order = 1CompF gate sr clg flag = 2CompF_chckvlv s eq_mass = 35.380001 $CompF_gate sr pump_loc = -1$ CompF_chckvlv spi0 p_s = 101.324997CompF_chckvlv spi0 h = 70.000000 CompF gate ss $hi_sct = 0.304800$ CompF gate ss ho sct = 0.304800CompF chckvlv spi0 v = 0.001000CompF_chckvlv spi0 av_visc = 0.001000 CompF gate ss ai_sct = 0.018120CompF_chckvlv spi0 water = 100.000000 CompF gate ss ao_sct = 0.018120CompF_chckvlv spo0 p_s = 101.324997CompF_gate ss $v_sct = 0.001000$ CompF_gate ss ad_max = 1.000000 $CompF_chckvlv spo0 h = 70.000000$ CompF_gate ss sum_k = $CompF_chckvlv spo0 v = 0.001000$ 99999986991104.000000 CompF_chckvlv spo0 av_visc = 0.001000 CompF gate ss sum k a2 = CompF chckvlv spo0 water = 100.000000 99999986991104.000000 CompF gate r st ind max = 9CompF gate ss 1 sct = 3.048000CompF gate r index_h = 30 $CompF_gate ss mu = 0.001000$ CompF gate r from out = 1CompF gate ssp w max = 100000.000000CompF gate s h in = 0.304800CompF gate ssp dp = 391.811157 $CompF_gate s h_out = 0.304800$ CompG chckvlv r index h = 30CompF gate s d_in = 151.892303CompF_gate s $d_out = 151.892303$ CompG chckvlv r index max = 1CompG chckvlv s h in = 0.304800CompF gate s t vo = 5.000000 $CompG_chckvlv s h_out = 0.304800$ CompF gate s $t_vc = 5.000000$ CompG chckvlv s d in = 151.892303CompF gate s cv 1 = 624.000000CompG_chckvlv s d_out = 151.892303 CompF gate s $cv_2 = 1250.000000$ CompG_chckvlv s a_valve = 0.018120 CompF gate s cv_3 = 1780.000000CompG chckvlv s a in = 0.018120CompF gate s cv 4 = 2770.000000CompG_chckvlv s a_out = 0.018120 CompF_gate s $cv_5 = 3210.000000$ CompG chckvlv s q 0 = 0.025199CompF_gate s $cv_6 = 3610.000000$ CompG chckvlv s q 1 = 0.268013CompF_gate s $cv_7 = 3970.000000$ CompG chckvlv s dp 0 = 0.740000CompF_gate s $cv_8 = 4240.000000$ CompF_gate s $cv_9 = 4460.000000$ CompG chckvlv s dp 1 = 75.000000CompF_gate s $cv_10 = 4678.000000$ CompG chckvlv s dpmin = 0.740000 $CompG_chckvlv s dpmax = 75.000000$ CompF_gate s st_1 = 0.100000CompG_chckvlv s debitmin = 0.025199 CompF gate s st_2 = 0.200000CompG chckvlv s debitmax = 0.268013 CompF_gate s st_3 = 0.300000CompG chckvlv s itmax = 1.000000CompF gate s st 4 = 0.500000CompG_chckvlv s eq_mass = 35.380001 CompF_gate s st_5 = 0.600000 $CompG_chckvlv spi0 p_s = 101.324997$ CompF_gate s st_6 = 0.700000 $CompG_chckvlv spi0 h = 70.000000$ CompF_gate s st_7 = 0.800000 $CompG_chckvlv spi0 v = 0.001000$ CompF gate s st 8 = 0.900000CompG_chckvlv spi0 av visc = 0.001000 CompF_gate s st_9 = 1.000000CompG chckvlv spi0 water = 100.000000 CompF_gate s st_10 = 1.000000 $CompG_chckvlv spo0 p_s = 101.324997$ CompF_gate s a_valve = 0.018120 $CompG_chckvlv spo0 h = 70.000000$ CompF_gate s $k_v = 999999986991104.000000$ $CompG_chckvlv spo0 v = 0.001000$ CompF gate s a in = 0.018120CompG_chckvlv spo0 av_visc = 0.001000 $CompF_gate s a_out = 0.018120$ CompG chckvlv spo0 water = 100.000000 CompF gate spi0 p s = 101.324997 $CompG_gate r st_ind max = 9$ CompF_gate spi0 h = 70.000000CompG gate r index h = 30CompF gate spi0 v = 0.001000 $CompG_gate r from_out = 1$ CompF gate spi0 av visc = 0.001000CompG_gate s $h_in = 0.304800$ CompF_gate spi0 water = 100.000000 CompG gate s h_out = 0.304800 CompF_gate spo0 p s = -290.486145CompG_gate s $d_{in} = 151.892303$ CompF_gate spo0 h = 70.000000CompG gate s d out = 151.892303CompF_gate spo0 v = 0.001000

CompH chckvlv s h in = 0.304800CompG gate s t vo = 5.000000CompH_chckvlv s h_out = 0.304800 CompG_gate s $t_vc = 5.000000$ CompH chckvlv s d in = 151.892303 CompG gate s cv 1 = 624.000000CompH chckvlv s d out = 151.892303CompG gate s $cv_2 = 1250.000000$ CompH chckvlv s a valve = 0.018120CompG_gate s cv_3 = 1780.000000CompH chckvlv s a in = 0.018120CompG_gate s cv_4 = 2770.000000CompH_chckvlv s a_out = 0.018120 CompG_gate s cv_5 = 3210.000000CompG_gate s cv_6 = 3610.000000CompH chckvlv s q 0 = 0.025199CompH chckvlv s q 1 = 0.268013CompG_gate s cv_7 = 3970.000000CompH chckvlv s dp 0 = 0.740000CompG_gate s cv 8 = 4240.000000CompH chckvlv s dp 1 = 75.000000CompG_gate s $cv_9 = 4460.000000$ $CompH_chckvlv s dpmin = 0.740000$ CompG gate s cv 10 = 4678.000000CompH_chckvlv s dpmax = 75.000000 CompG_gate s st_1 = 0.100000CompH_chckvlv s debitmin = 0.025199 CompG_gate s st 2 = 0.200000CompH chckvlv s debitmax = 0.268013 CompG gate s st 3 = 0.300000CompH chckvlv s itmax = 1.000000 CompG gate s st 4 = 0.500000CompH chckvlv s eq mass = 35.380001 CompG gate s st 5 = 0.600000CompH chckvlv spi0 p s = 101.324997CompG gate s st 6 = 0.700000CompH_chckvlv spi0 $\bar{h} = 70.000000$ CompG_gate s st_7 = 0.800000CompH chckvlv spi0 v = 0.001000CompG_gate s st_8 = 0.900000CompH chckvlv spi0 av visc = 0.001000 CompG_gate s st_9 = 1.000000CompH chckvlv spi0 water = 100.000000 CompG_gate s st 10 = 1.000000CompH chckvlv spo0 p_s = 101.324997CompG gate s a valve = 0.018120CompH_chckvlv spo0 h = 70.000000CompG_gate s $k_v = 999999986991104.000000$ $CompH_chckvlv spo0 v = 0.001000$ CompG gate s a in = 0.018120CompH_chckvlv spo0 av_visc = 0.001000 CompG gate s a out = 0.018120CompH chckvlv spo0 water = 100.000000 CompG_gate spi0 p_s = 101.324997CompH gate r st_ind_max = 9CompG_gate spi0 h = 70.000000CompH gate r index h = 30CompG_gate spi0 v = 0.001000CompG_gate spi0 av_visc = 0.001000 CompH gate r from out = 1CompH_gate s $h_in = 0.304800$ CompG_gate spi0 water = 100.000000 CompH gate s h out = 0.304800CompG gate spo0 p_s = -289.602631CompH_gate s d in = 151.892303CompG gate spo0 h = 70.000000CompH_gate s d_out = 151.892303 CompG gate spo0 v = 0.001000CompH gate s t vo = 5.000000CompG gate spo0 av visc = 0.001000CompG_gate spo0 water = 100.000000 CompH gate s t vc = 5.000000CompH_gate s $cv_1 = 624.000000$ CompG gate sr empty2 = 1CompH gate s cv_2 = 1250.000000CompG gate sr order = 1CompH_gate s $cv_3 = 1780.000000$ CompG gate sr clg flag = 2CompH gate s cv 4 = 2770.000000CompG gate sr pump loc = -1CompH gate s cv 5 = 3210.000000 $CompG_gate ss hi_sct = 0.304800$ CompH gate s cv 6 = 3610.000000CompG_gate ss ho sct = 0.304800CompH_gate s $cv_7 = 3970.000000$ $CompG_gate ss ai_sct = 0.018120$ CompH gate s cv 8 = 4240.000000 $CompG_gate ss ao_sct = 0.018120$ CompH gate s $cv_9 = 4460.000000$ CompG gate ss v sct = 0.001000CompH_gate s cv_10 = 4678.000000CompG_gate ss ad max = 1.000000CompH gate s st 1 = 0.100000CompG gate ss sum k = CompH gate s st 2 = 0.20000099999986991104.000000 CompH gate s st_3 = 0.300000CompG gate ss sum k a2 = CompH gate s st_4 = 0.50000099999986991104.000000 CompH gate s st_5 = 0.600000CompG gate ss 1 sct = 3.048000CompH gate s st 6 = 0.700000CompG gate ss mu = 0.001000CompH gate s st 7 = 0.800000 $CompG_gate ssp w_max = 100000.000000$ CompH_gate s st_8 = 0.900000CompG gate ssp dp = 390.927612CompH_gate s st_9 = 1.000000CompH chckvlv r index_h = 30CompH gate s st 10 = 1.000000CompH chckvlv r index $\max = 1$

CompI chckvlv spo0 p_s = 101.324997 $CompH_gate s a_valve = 0.018120$ CompI_chckvlv spo0 h = 70.000000CompH gate s k v = 999999986991104.000000CompI chckvlv spo0 v = 0.001000CompH_gate s a_in = 0.018120CompI_chckvlv spo0 av visc = 0.001000 CompH gate s a out = 0.018120CompI_chckvlv spo0 water = 100.000000 CompH gate spi0 p s = 101.324997CompI gate r st_ind_max = 9CompH_gate spi0 h = 70.000000CompI gate r index_h = 30CompH_gate spi0 v = 0.001000 $Compl_gate r from_out = 1$ CompH_gate spi0 av_visc = 0.001000 Compl gate s $h_in = 0.304800$ CompH_gate spi0 water = 100.000000 CompI gate s h out = 0.304800CompH_gate spo0 p_s = -289.193359CompI_gate s $d_{in} = 151.892303$ CompH_gate spo0 h = 70.000000Compl gate s d out = 151.892303CompH gate spo0 v = 0.001000CompI_gate s $t_vo = 5.000000$ CompH gate spo0 av visc = 0.001000CompI_gate s $t_vc = 5.000000$ $CompH_gate spo0 water = 100.000000$ CompI_gate s cv_1 = 624.000000CompH gate sr empty2 = 1CompI gate s $cv_2 = 1250.000000$ CompH gate sr order = 1CompI_gate s cv_3 = 1780.000000CompH_gate sr clg_flag = 2 CompI_gate s $cv_4 = 2770.000000$ CompH gate sr pump loc = -1CompI gate s cv 5 = 3210.000000CompH_gate ss hi_sct = 0.304800 CompI_gate s $cv_6 = 3610.000000$ CompH gate ss ho sct = 0.304800CompI_gate s $cv_7 = 3970.000000$ CompH_gate ss ai_sct = 0.018120CompI_gate s cv 8 = 4240.000000 $CompH_gate ss ao_sct = 0.018120$ CompI_gate s $cv_9 = 4460.000000$ CompH gate ss v sct = 0.001000CompI_gate s $cv_10 = 4678.000000$ CompH gate ss ad max = 1.000000CompI_gate s st_1 = 0.100000CompH gate ss sum k = CompI_gate s st_2 = 0.20000099999986991104.000000 CompI_gate s st_3 = 0.300000CompH gate ss sum k a2 = CompI_gate s st_4 = 0.50000099999986991104.000000 CompI_gate s st_5 = 0.600000CompH gate ss 1 sct = 3.048000CompI_gate s st_6 = 0.700000CompH_gate ss mu = 0.001000CompI_gate s st_7 = 0.800000CompH_gate ssp w max = 100000.000000CompI_gate s st 8 = 0.900000CompH gate ssp dp = 390.518372CompI_gate s st_9 = 1.000000CompI chckvlv r index_h = 30CompI gate s st_10 = 1.000000CompI_chckvlv r index_max = 1 CompI_gate s a_valve = 0.018120CompI chckvlv s h in = 0.304800Compl_gate s $k_v = 999999986991104.000000$ CompI chckvlv s h out = 0.304800CompI gate s a in = 0.018120Compl chckvlv s d in = 151.892303CompI_gate s a_out = 0.018120CompI_chckvlv s d out = 151.892303 CompI_gate spi0 p_s = 101.324997CompI_chckvlv s a valve = 0.018120 Compl gate spi0 h = 70.000000CompI_chckvlv s a_in = 0.018120 CompI gate spi0 v = 0.001000CompI_chckvlv s a_out = 0.018120 CompI_gate spi0 av_visc = 0.001000 CompI_chckvlv s $q_0 = 0.025199$ CompI_gate spi0 water = 100.000000 CompI chckvlv s q 1 = 0.268013CompI_gate spo0 p_s = -288.972076CompI_chckvlv s dp_0 = 0.740000CompI gate spo0 h = 70.000000CompI_chckvlv s dp_1 = 75.000000CompI_gate spo0 v = 0.001000CompI_chckvlv s dpmin = 0.740000 CompI_gate spo0 av_visc = 0.001000 CompI_chckvlv s dpmax = 75.000000 CompI_gate spo0 water = 100.000000 CompI_chckvlv s debitmin = 0.025199 CompI_gate sr empty2 = 1CompI_chckvlv s debitmax = 0.268013 CompI_chckvlv s itmax = 1.000000 Compl gate sr order = 1CompI gate $sr clg_flag = 2$ CompI chckvlv s eq mass = 35.380001 CompI gate sr pump_loc = -1 CompI_chckvlv spi0 p_s = 101.324997CompI_gate ss hi_sct = 0.304800 $CompI_chckvlv spi0 h = 70.000000$ CompI_gate ss ho_sct = 0.304800 $CompI_chckvlv spi0 v = 0.001000$ $CompI_gate ss ai_sct = 0.018120$ Compl chckvlv spi0 av_visc = 0.001000 Compl gate ss ao sct = 0.018120CompI_chckvlv spi0 water = 100.000000

CompJ gate s $cv_10 = 4678.000000$ Compl gate ss v sct = 0.001000CompJ gate s st_1 = 0.100000Compl gate ss ad_max = 1.000000CompJ gate s st 2 = 0.200000CompI gate ss sum k =CompJ_gate s st_3 = 0.30000099999986991104.000000 CompJ gate s st 4 = 0.500000Compl gate ss sum k a2 = CompJ_gate s st_5 = 0.600000999999986991104.000000 CompJ_gate s st_6 = 0.700000CompI gate ss 1 sct = 3.048000CompJ gate s st 7 = 0.800000CompI gate ss mu = 0.001000CompJ gate s st 8 = 0.900000CompI_gate ssp w max = 100000.000000CompJ gate s st 9 = 1.000000CompI_gate ssp dp = 390.297058CompJ_gate s st_10 = 1.000000CompJ chckvlv r index h = 30CompJ_gate s a_valve = 0.018120 CompJ chckvlv r index_max = 1 CompJ_gate s $k_v = 999999986991104.000000$ CompJ chckvlv s h in = 0.304800CompJ_gate s a_in = 0.018120CompJ chckvlv s h out = 0.304800CompJ gate s a out = 0.018120CompJ chckvlv s d in = 151.892303CompJ_gate spi $\overline{0}$ p_s = 101.324997 CompJ chckvlv s d out = 151.892303CompJ_gate spi0 h = 70.000000CompJ chckvlv s a valve = 0.018120 CompJ_gate spi0 v = 0.001000CompJ_chckvlv s a_in = 0.018120 CompJ gate spi0 av visc = 0.001000CompJ chckvlv s a out = 0.018120CompJ_gate spi0 water = 100.000000 CompJ_chckvlv s $q_0 = 0.025199$ CompJ gate spo0 p_s = 89.524017CompJ chckvlv s $q_1 = 0.268013$ CompJ_gate spo0 h = 70.000000CompJ chckvlv s dp_0 = 0.740000CompJ_gate spo0 v = 0.001000CompJ chckvlv s dp_1 = 75.000000CompJ_gate spo0 av_visc = 0.001000 CompJ_chckvlv s dpmin = 0.740000 $CompJ_gate spo0 water = 100.000000$ CompJ chckvlv s dpmax = 75.000000Compartment A r index max = 9CompJ chckvlv s debitmin = 0.025199Compartment A r nb out = 10CompJ chckvlv s debitmax = 0.268013Compartment A s leak cnd = 10.000000 CompJ_chckvlv s itmax = 1.000000 Compartment A s 1.1 = 1.354667CompJ chckvlv s eq mass = 35.380001Compartment A s $1_2 = 2.709333$ CompJ_chckvlv spi0 $p_s = 101.324997$ CompJ_chckvlv spi0 h = 70.000000Compartment A s 1 3 = 4.064000Compartment A s 1 4 = 5.418667CompJ chckvlv spi0 v = 0.001000Compartment A s 1 5 = 6.773333CompJ chckvlv spi0 av_visc = 0.001000 Compartment A s 1 6 = 8.127999CompJ chckvlv spi0 water = 100.000000 Compartment A s $1_{7} = 9.482666$ CompJ_chckvlv spo0 p_s = 101.324997Compartment A s 1 8 = 10.837334CompJ chckvlv spo0 h = 70.000000CompJ_chckvlv spo0 v = 0.001000Compartment A s 1 9 = 12.191999Compartment A s $v_1 = 6.172350$ CompJ chckvly spo0 av visc = 0.001000Compartment A s v 2 = 23.740396CompJ chckvlv spo0 water = 100.000000Compartment_A s $v_3 = 51.279072$ CompJ gate r st ind max = 9Compartment_A s $v_4 = 87.364449$ $CompJ_gate r index_h = 30$ Compartment A s v 5 = 130.572327CompJ gate r from_out = 1Compartment A s v 6 = 179.476761 $CompJ_gate s h_in = 0.304800$ Compartment A s v 7 = 232.654984CompJ_gate s $h_out = 0.304800$ Compartment_A s $v_8 = 288.682190$ CompJ_gate s d_in = 151.892303Compartment A s v 9 = 346.133606CompJ gate s d out = 151.892303Compartment_A s mlf lvl = 0.100000 CompJ gate s t vo = 5.000000Compartment_A s mlf temp = 25.000000CompJ gate s t vc = 5.000000Compartment_A s h $tk_prv = 104.669998$ CompJ_gate s $cv_2 = 1250.000000$ Compartment A s h tk = 104.669998CompJ_gate s $cv_3 = 1780.000000$ Compartment A s 1 tk = 0.012192CompJ gate s cv 4 = 2770.000000Compartment A s $m_tk = 55.551144$ CompJ_gate s cv_5 = 3210.000000Compartment A s $t_{tk} = 25.000000$ CompJ_gate s cv_6 = 3610.000000Compartment_A s m_tk_prv = 55.551144 CompJ_gate s $cv_7 = 3970.000000$ Compartment A s vol = 55.551144CompJ_gate s $cv_8 = 4240.000000$ Compartment A s v tk = 0.055551CompJ gate s cv_9 = 4460.000000

Compartment A s v_tk_prv = 0.055551Compartment A s p tk = 101.444603Compartment A s rho_tk = 999.999939Compartment A s vspec tk = 0.001000Compartment A s lvl_per = 0.100000 Compartment A s water p = 100.000000Compartment A s av visc tk = 0.001112Compartment A s Cp f3gp 11 = 4.186800Compartment A s $Cp_f3gp_15 = 4.186800$ Compartment_A s $Cp_f3gp_25 = 4.186800$ Compartment_A s Cp_spare = 4.186800 Compartment_A s v_f3gp_11m = 0.001000Compartment_A s $v_f3gp_15m = 0.001000$ Compartment A s v $f3gp_25m = 0.001000$ Compartment A s v_spare = 0.001000Compartment A spi0 p s = 101.324997Compartment A spi0 h = 70.000000Compartment A spi0 v = 0.001000Compartment_A spi0 av_visc = 0.001000 Compartment A spi0 water = 100.000000Compartment_A spi1 $p_s = 101.324997$ Compartment A spi1 h = 70.000000Compartment A spi1 v = 0.001000Compartment_A spi1 av_visc = 0.001000 Compartment A spi1 water = 100.000000 Compartment A spi2 p s = 101.300003Compartment_A spi2 h = 70.000000Compartment A spi2 v = 0.001000Compartment_A spi2 av_visc = 0.001000 Compartment A spi2 water = 100.000000Compartment A spi3 $p_s = 101.300003$ Compartment A spi3 h = 70.000000Compartment_A spi3 v = 0.001000Compartment_A spi3 av_visc = 0.001000 Compartment_A spi3 water = 100.000000 Compartment_A spi4 $p_s = 101.300003$ Compartment A spi4 h = 70.000000Compartment_A spi4 v = 0.001000Compartment A spi4 av visc = 0.001000Compartment A spi4 water = 100.000000 Compartment A spo0 p s = 101.300003Compartment A spo0 h = 70.000000Compartment A spo0 v = 0.001000Compartment A spo0 av visc = 0.001000Compartment_A spo0 water = 100.000000Compartment_A spo1 $p_s = 101.300003$ Compartment_A spo1 h = 70.000000Compartment_A spo1 v = 0.001000Compartment_A spo1 av visc = 0.001000 Compartment_A spo1 water = 100.000000 Compartment A spo2 p s = 101.324997Compartment_A spo2 h = 70.000000Compartment A spo2 v = 0.001000Compartment_A spo2 av_visc = 0.001000 Compartment A spo2 water = 100.000000 Compartment A spo3 p s = 101.300003

Compartment A spo3 h = 70.000000Compartment A spo3 v = 0.001000Compartment_A spo3 av_visc = 0.001000 Compartment A spo3 water = 100.000000Compartment_A spo4 $p_s = 101.300003$ Compartment_A spo4 h = 70.000000Compartment_A spo4 v = 0.001000Compartment_A spo4 av_visc = 0.001000 Compartment A spo4 water = 100.000000Compartment A spo5 lvl inst = 0.012192Compartment_A spo6 tmp_inst = 25.000000 Compartment B r index max = 9Compartment $B r nb_out = 10$ Compartment_B s leak_cnd = 10.000000 Compartment B s 1 1 = 1.354667Compartment_B s $1_2 = 2.709333$ Compartment B s 1 3 = 4.064000Compartment B s 1 4 = 5.418667Compartment B s 1 5 = 6.773333Compartment B s 1 6 = 8.127999Compartment B s 1 7 = 9.482666Compartment B s 1 8 = 10.837334Compartment B s 1 9 = 12.191999Compartment B s v 1 = 8.767032Compartment B s v 2 = 33.719810Compartment_B s $v_3 = 72.834869$ Compartment_B s v 4 = 124.089012Compartment B s v 5 = 185.459366Compartment B s v $_{6} = 254.922180$ Compartment B s v 7 = 330.454803Compartment B s v 8 = 410.033508Compartment B s v 9 = 491.635681Compartment B s mlf lvl = 0.100000Compartment B s mlf temp = 16.783258Compartment B s h tk prv = 70.268150Compartment B s h_tk = 70.268150Compartment B s 1 tk = 0.012192 Compartment B s m tk = 78.903259Compartment_B s $t_{\overline{t}k} = 16.783258$ Compartment B s m tk prv = 78.903259Compartment B s vol = 78.903282Compartment B s v tk = 0.078903Compartment B s v tk prv = 0.078903Compartment B s p tk = 101.444603Compartment_B s rho_tk = 999.999695 Compartment_B s vspec_tk = 0.001000 Compartment B s lvl per = 0.100000Compartment_B s water_p = 99.999977 Compartment_B s av_visc_tk = 0.001018 Compartment_B s $Cp_f3gp_11 = 4.186800$ Compartment_B s $Cp_f3gp_15 = 4.186800$ Compartment_B s $Cp_f3gp_25 = 4.186800$ Compartment_B s Cp_spare = 4.186800 Compartment B s v f3gp 11m = 0.001000Compartment B s v $f3gp_15m = 0.001000$ Compartment B s v $f3gp_25m = 0.001000$

0.001000	Commontment C a 1 1 = 1 254667
Compartment_B s v_spare = 0.001000	Compartment $C \text{ s } 1 = 1.354667$
Compartment_B spi0 $p_s = 101.324997$	Compartment $C s 1_2 = 2.709333$
Compartment_B spi0 $h = 70.027069$	Compartment_C s $1_3 = 4.064000$
Compartment_B spi0 $v = 0.001000$	Compartment_C s $1_4 = 5.418667$
Compartment_B spi0 av_visc = 0.001000	Compartment_C s $1_{-5} = 6.773333$
Compartment_B spi0 water = 99.999977	Compartment_C s 1_6 = 8.127999
Compartment_B spi1 $p_s = 101.324997$	Compartment_C s $1_7 = 9.482666$
Compartment_B spi1 $h = 70.000000$	Compartment_C s $1_8 = 10.837334$
Compartment_B spi1 $v = 0.001000$	Compartment_C s $1_9 = 12.191999$
Compartment_B spi1 av_visc = 0.001000	Compartment_C s $v_1 = 16.088608$
Compartment_B spi1 water = 100.000000	Compartment_C s $v_2 = 61.880112$
Compartment_B spi2 $p_s = 101.300003$	Compartment_C s $v_3 = 133.661179$
Compartment_B spi2 $h = 70.000000$	Compartment_C s $v_4 = 227.719070$
Compartment_B spi2 $v = 0.001000$	Compartment_C s $v_5 = 340.341034$
Compartment B spi2 av_visc = 0.001000	Compartment C s $v_6 = 467.814270$
Compartment_B spi2 water = 100.000000	Compartment_C s $v_7 = 606.425842$
Compartment_B spi3 $p_s = 101.300003$	Compartment_C s $v_8 = 752.463135$
Compartment_B spi3 $h = 70.000000$	Compartment_C s $v_9 = 902.213806$
Compartment_B spi3 $v = 0.001000$	Compartment_C s mlf_lvl = 0.523569
Compartment_B spi3 av_visc = 0.001000	Compartment_C s mlf_temp = 16.719255
Compartment B spi3 water = 100.000000	Compartment_C s w_net = 369.389648
Compartment_B spi4 p_s = 101.300003	Compartment C s h_tk_prv = 70.000343
Compartment B spi4 h = 70.000000	Compartment_C s $h_{tk} = 70.000175$
Compartment_B spi4 $v = 0.001000$	Compartment_C s $l_tk = 0.063834$
Compartment_B spi4 av_visc = 0.001000	Compartment_C s m_tk = 758.114319
Compartment_B spi4 water = 100.000000	Compartment_C s $t_t = 16.719255$
Compartment_B spo0 p_s = 101.300003	Compartment_C s m_tk_prv = 388.724670
Compartment B spo0 h = 70.000000	Compartment_C s vol = 758.114319
Compartment B spo0 $v = 0.001000$	Compartment_C s $v_{tk} = 0.758114$
Compartment_B spo0 av_visc = 0.001000	Compartment_C s v_tk_prv = 0.388725
Compartment_B spo0 water = 100.000000	Compartment C s p tk = 101.951210
Compartment_B spo1 $p_s = 101.300003$	Compartment_C s rho_tk = 999.999939
Compartment_B spo1 h = 70.000000	Compartment_C s vspec_tk = 0.001000
Compartment_B spo1 v = 0.001000	Compartment_C s lvl_per = 0.523569
Compartment_B spo1 av_visc = 0.001000	Compartment C s water $p = 100.000000$
Compartment_B spo1 water = 100.000000	Compartment_C s av_visc_tk = 0.001000
Compartment_B spo2 p_s = 101.324997	Compartment C s Cp_f3gp_11 = 4.186800
Compartment_B spo2 h = 70.461746	Compartment C s Cp_f3gp_15 = 4.186800
Compartment_B spo2 v = 0.001000	Compartment_C s Cp_f3gp_25 = 4.186800
Compartment_B spo2 av_visc = 0.001001	Compartment_C s Cp_spare = 4.186800
Compartment_B spo2 water = 99.999969	Compartment_C s v_f3gp_11m = 0.001000
Compartment_B spo3 p_s = 101.300003	Compartment C s v_f3gp_15m = 0.001000
Compartment B spo3 h = 70.000000	Compartment_C s v_f3gp_25m = 0.001000
Compartment_B spo3 v = 0.001000	Compartment C s v spare = 0.001000
Compartment_B spo3 v_visc = 0.001000	Compartment_C spi0 $p_s = 101.324997$
Compartment_B spo3 water = 100.000000	Compartment_C spi0 h = 70.027069
	Compartment_C spi0 v = 0.001000
Compartment_B spo4 p_s = 101.324997	Compartment_C spi0 av_visc = 0.001000
Compartment_B spo4 h = 70.000000	Compartment_C spi0 water = 99.999977
Compartment B spo4 $v = 0.001000$	Compartment_C spi1 p_s = 101.324997
Compartment B spo4 av_visc = 0.001000	Compartment C spi1 $h = 70.000000$
Compartment B spo4 water = 100.000000	Compartment_C spi1 v = 0.001000
Compartment B spo5 lvl inst = 0.012192	Compartment_C spi1 av_visc = 0.001000
Compartment B spo6 tmp_inst = 16.783258	Compartment_C spi1 water = 100.000000
Compartment C r index max = 9	Compartment C spi2 $p_s = 101.300003$
Compartment C r nb out = 10	Compartment C spi2 $p_s = 101.50005$ Compartment C spi2 $h = 70.000000$
Compartment_C s leak_cnd = 10.000000	Comparament_C spiz it = 70.00000

Compartment D s v 6 = 419.388153Compartment C spi2 v = 0.001000Compartment D s v_7 = 543.651306Compartment C spi2 av visc = 0.001000Compartment D s v 8 = 674.571411Compartment C spi2 water = 100.000000 Compartment D s v 9 = 808.820007Compartment C spi3 p s = 101.300003Compartment_D s $mlf_lvl = 0.100000$ Compartment C spi3 h = 70.000000Compartment_D s mlf_temp = 16.747805 Compartment C spi3 v = 0.001000Compartment D s h tk prv = 70.119659Compartment C spi3 av visc = 0.001000Compartment D s h tk = 70.119659Compartment C spi3 water = 100.000000 Compartment D s 1 tk = 0.012192Compartment C spi4 p s = 101.300003Compartment C spi4 h = 70.000000Compartment D s m tk = 129.810654Compartment D s t tk = 16.747805Compartment_C spi4 v = 0.001000Compartment D s m tk prv = 129.810654Compartment C spi4 av_visc = 0.001000 Compartment_D s vol = 129.810623Compartment C spi4 water = 100.000000 Compartment_D s $v_{tk} = 0.129811$ Compartment C spo0 p s = 101.300003Compartment D s v tk prv = 0.129811Compartment_C spo0 h = 70.000000Compartment_D s $p_tk = 101.444603$ Compartment C spo0 v = 0.001000Compartment D s rho_tk = 1000.000305Compartment_C spo0 av_visc = 0.001000 Compartment D s vspec tk = 0.001000Compartment C spo0 water = 100.000000Compartment D s lvl per = 0.100000Compartment C spo1 p s = 101.300003Compartment D s water p = 99.999962Compartment C spo1 h = 70.000000Compartment D s av visc tk = 0.001020Compartment_C spo1 v = 0.001000Compartment D s Cp f3gp 11 = 4.186800Compartment_C spo1 av_visc = 0.001000 Compartment D s Cp f3gp 15 = 4.186800Compartment_C spo1 water = 100.000000 Compartment_D s Cp_f3gp 25 = 4.186800Compartment C spo2 p s = 101.324997Compartment D s Cp_spare = 4.186800 Compartment C spo2 h = 70.000175Compartment D s v_f3gp_11m = 0.001000Compartment C spo2 v = 0.001000Compartment_D s v_f3gp_15m = 0.001000Compartment_C spo2 av_visc = 0.001000 Compartment D s v f3gp 25m = 0.001000Compartment_C spo2 water = 100.000000 Compartment_D s $v_{spare} = 0.001000$ Compartment C spo3 p s = 101.300003Compartment D spi0 p s = 101.324997Compartment C spo3 h = 70.000000Compartment_C spo3 v = 0.001000Compartment D spi0 h = 70.000000Compartment D spi0 v = 0.001000Compartment C spo3 av visc = 0.001000 Compartment D spi0 av visc = 0.001000Compartment C spo3 water = 100.000000Compartment D spi0 water = 100.000000 Compartment C spo4 p_s = 101.324997Compartment D spi1 p s = 101.324997Compartment C spo4 h = 70.027069Compartment D spi1 h = 70.000000Compartment C spo4 v = 0.001000Compartment D spi1 v = 0.001000Compartment C spo4 av visc = 0.001000Compartment D spi1 av_visc = 0.001000 Compartment C spo4 water = 99.999977 Compartment_D spi1 water = 100.000000 Compartment C spo5 lvl_inst = 0.063834 Compartment_D spi2 p_s = 101.300003 Compartment C spo6 tmp inst = 16.719255Compartment_D spi2 h = 70.000000Compartment D r index max = 9Compartment_D spi2 v = 0.001000Compartment_D s leak_cnd = 10.000000 Compartment_D spi2 av_visc = 0.001000 Compartment D s 1 1 = 1.354667Compartment D spi2 water = 100.000000 Compartment D s 1 2 = 2.709333Compartment D spi3 p s = 101.300003Compartment D s 1 3 = 4.064000Compartment D spi3 h = 70.000000Compartment_D s $1_4 = 5.418667$ Compartment D spi3 v = 0.001000Compartment D s 1 5 = 6.773333Compartment D spi3 av visc = 0.001000 Compartment D s 1 6 = 8.127999Compartment_D spi3 water = 100.000000 Compartment D s $1_{7} = 9.482666$ Compartment D spi4 p s = 101.300003Compartment D s $1 \ 8 = 10.837334$ Compartment_D spi4 h = 70.000000Compartment D s 1 9 = 12.191999Compartment_D s $\overline{\mathbf{v}}_1$ = 14.423402 Compartment D spi4 v = 0.001000Compartment D spi4 av_visc = 0.001000 Compartment D s v 2 = 55.474625Compartment_D spi4 water = 100.000000 Compartment D s v 3 = 119.825195Compartment_D spo0 $p_s = 101.300003$ Compartment D s v 4 = 204.146606Compartment_D spo0 h = 70.000000Compartment D s v 5 = 305.110413

Compartment_E s v tk_prv = 0.237360 Compartment D spo0 v = 0.001000Compartment E s p_tk = 101.444603Compartment_D spo0 av_visc = 0.001000 Compartment_E s rho_tk = 999.999939Compartment D spo0 water = 100.000000Compartment E s vspec tk = 0.001000Compartment D spo1 p s = 101.300003Compartment E s lvl_per = 0.100000Compartment_D spo1 h = 70.000000Compartment E s water p = 100.000000Compartment D spo1 v = 0.001000Compartment_E s av_visc_tk = 0.001026 Compartment D spo1 av visc = 0.001000Compartment E s Cp_f3gp_11 = 4.186800Compartment D spo1 water = 100.000000Compartment_E s $Cp_f3gp_15 = 4.186800$ Compartment_D spo2 $p_s = 101.324997$ Compartment E s Cp f3gp 25 = 4.186800Compartment_D spo2 h = 70.225914Compartment E s Cp spare = 4.186800 Compartment D spo2 v = 0.001000Compartment E s v $f3gp_11m = 0.001000$ Compartment D spo2 av visc = 0.001000Compartment E s v $f3gp_15m = 0.001000$ Compartment_D spo2 water = 99.999992 Compartment E s v $f3gp_25m = 0.001000$ Compartment D spo3 p s = 101.300003Compartment E s v spare = 0.001000Compartment_D spo3 h = 70.000000Compartment E spi0 p_s = 101.324997Compartment D spo3 v = 0.001000Compartment E spi0 h = 70.000000Compartment D spo3 av visc = 0.001000Compartment E spi0 v = 0.001000Compartment D spo3 water = 100.000000Compartment_E spi0 av_visc = 0.001000 Compartment D spo4 p s = 101.324997Compartment_E spi0 water = 100.000000 Compartment_D spo4 h = 70.027069Compartment E spi1 $p_s = 101.324997$ Compartment_D spo4 v = 0.001000Compartment_E spi1 h = 70.000000Compartment_D spo4 av_visc = 0.001000 Compartment_E spi1 v = 0.001000Compartment D spo4 water = 99.999977Compartment_E spi1 av_visc = 0.001000 Compartment D spo5 lvl inst = 0.012192Compartment_E spi1 water = 100.000000 Compartment D spo6 tmp inst = 16.747805Compartment E spi2 $p_s = 101.300003$ Compartment E r index max = 9Compartment E spi2 h = 70.000000Compartment_E r nb_out = 10 Compartment E spi2 v = 0.001000Compartment E s leak cnd = 10.000000 Compartment E spi2 av visc = 0.001000 Compartment E s 1 1 = 1.354667Compartment_E spi2 water = 100.000000 Compartment E s 1 2 = 2.709333Compartment_E spi3 p s = 101.300003Compartment E s 1 3 = 4.064000Compartment E spi3 h = 70.000000Compartment E s $1_4 = 5.418667$ Compartment E spi3 v = 0.001000Compartment E s 1 5 = 6.773333Compartment E spi3 av visc = 0.001000Compartment E s 1 6 = 8.127999Compartment_E spi3 water = 100.000000 Compartment E s 1 7 = 9.482666Compartment E spi4 $p_s = 101.300003$ Compartment E s 1 8 = 10.837334Compartment E spi4 h = 70.000000Compartment E s 1 9 = 12.191999Compartment E spi4 v = 0.001000Compartment E s v 1 = 26.373323Compartment_E spi4 av_visc = 0.001000 Compartment E s v 2 = 101.435852Compartment E spi4 water = 100.000000Compartment E s v 3 = 219.101456Compartment E spo0 av visc = 0.001000 Compartment E s v 4 = 373.283966Compartment E spo0 water = 100.000000Compartment E s v_5 = 557.897217Compartment_E spo1 $p_s = 101.300003$ Compartment E s v 6 = 766.855103Compartment E spo1 h = 70.000000Compartment E s $v_7 = 994.071350$ Compartment E spo1 v = 0.001000Compartment E s v 8 = 1233.459961Compartment E spo1 av visc = 0.001000Compartment E s v 9 = 1478.934814Compartment E spo1 water = 100.000000Compartment E s mlf lvl = 0.100000Compartment E spo2 $p_s = 101.324997$ Compartment E s mlf temp = 25.000000Compartment E spo2 h = 70.000000Compartment_E s h_tk_prv = 104.669998Compartment E spo2 v = 0.001000Compartment E s h_tk = 104.669998Compartment E spo2 av visc = 0.001000 Compartment E s 1 tk = 0.012192Compartment E spo2 water = 100.000000Compartment E s m tk = 237.359879Compartment_E spo3 $p_s = 101.300003$ Compartment E s t tk = 25.000000Compartment E spo3 h = 70.000000Compartment E s m tk prv = 237.359879Compartment E spo3 v = 0.001000Compartment_E s vol = $\overline{237.359894}$ Compartment_E spo3 av_visc = 0.001000 Compartment E s v_tk = 0.237360

Compartment_E spo3 water = 100.000000 Compartment F spi0 v = 0.001000Compartment F spi0 av visc = 0.001000Compartment E spo4 p s = 101.324997Compartment F spi0 water = 100.000000Compartment E spo4 h = 70.000000Compartment F spi1 $p_s = 101.324997$ Compartment E spo4 v = 0.001000Compartment F spi1 h = 70.000000Compartment E spo4 av visc = 0.001000Compartment F spi1 v = 0.001000Compartment_E spo4 water = 100.000000 Compartment F spi1 av visc = 0.001000Compartment_E spo5 lvl_inst = 0.012192 Compartment_F spi1 water = 100.000000 Compartment_E spo6 tmp_inst = 25.000000 Compartment_F spi2 $p_s = 101.300003$ Compartment F r index max = 9Compartment F spi2 h = 70.000000Compartment_F r nb_out = 10 Compartment F spi2 v = 0.001000Compartment_F s leak_cnd = 10.000000 Compartment F spi2 av visc = 0.001000 Compartment F s 1 1 = 1.354667Compartment F spi2 water = 100.000000 Compartment F s 1 2 = 2.709333Compartment_F spi3 $p_s = 101.300003$ Compartment $F \, s \, l_3 = 4.064000$ Compartment F spi3 h = 70.000000Compartment F s $1_4 = 5.418667$ Compartment F spi3 v = 0.001000Compartment F s 1 5 = 6.773333Compartment F spi3 av visc = 0.001000 Compartment F s $1_{6} = 8.127999$ Compartment F spi3 water = 100.000000 Compartment F s 1 7 = 9.482666Compartment_F spi4 $p_s = 101.300003$ Compartment F s 1 8 = 10.837334Compartment F spi4 h = 70.000000Compartment F s 1 9 = 12.191999Compartment F spi4 v = 0.001000Compartment $F \, s \, v \, 1 = 13.397087$ Compartment F spi4 av visc = 0.001000 Compartment $F s v_2 = 51.527256$ Compartment F spi4 water = 100.000000 Compartment $F \, s \, v_3 = 111.297707$ Compartment F spo0 p s = 101.300003Compartment F s v 4 = 189.620300Compartment_F spo0 h = 70.000000Compartment F s v 5 = 283.399902Compartment F spo0 v = 0.001000Compartment F s v 6 = 389.546051Compartment_F spo0 av_visc = 0.001000 Compartment F s $v_7 = 504.967133$ Compartment F spo0 water = 100.000000Compartment F s v 8 = 626.571411Compartment_F spo1 $p_s = 101.300003$ Compartment F s v 9 = 751.267395Compartment_F spo1 h = 70.000000Compartment_F s mlf lvl = 0.100000 Compartment_F spo1 v = 0.001000Compartment_F s mlf_temp = 25.000000 Compartment_F spo1 av_visc = 0.001000 Compartment_F s $h_tk_prv = 104.669998$ Compartment_F spo1 water = 100.000000 Compartment_F s $h_tk = 104.669998$ Compartment F spo2 p s = 101.324997Compartment $F s l_t = 0.012192$ Compartment_F spo2 h = 70.000000Compartment F s m tk = 120.573769Compartment F spo2 v = 0.001000Compartment F s t tk = 25.000000Compartment F spo2 av visc = 0.001000Compartment F s m_tk_prv = 120.573769 Compartment F spo2 water = 100.000000 Compartment F s vol = 120.573776Compartment F spo3 p s = 101.300003Compartment $F s v_t = 0.120574$ Compartment F spo3 h = 70.000000Compartment F s v tk prv = 0.120574Compartment F spo3 v = 0.001000Compartment F s p tk = 101.444603Compartment F spo3 av visc = 0.001000Compartment F s rho tk = 999.999939Compartment F spo3 water = 100.000000 Compartment F s vspec tk = 0.001000Compartment_F spo4 $p_s = 101.324997$ Compartment_F s lvl_per = 0.100000 Compartment_F spo4 h = 70.000000Compartment_F s water_p = 100.000000 Compartment_F spo4 v = 0.001000Compartment_F s av_visc tk = 0.001051Compartment F spo4 av visc = 0.001000Compartment F s Cp_f3gp_11 = 4.186800Compartment_F spo4 water = 100.000000 Compartment F s Cp $f3gp_15 = 4.186800$ Compartment F spo5 lvl inst = 0.012192Compartment F s Cp f3gp 25 = 4.186800Compartment_F spo6 tmp_inst = 25.000000Compartment F s Cp spare = 4.186800Compartment_G r index max = 9Compartment F s v f3gp 11m = 0.001000Compartment_G s leak_cnd = 10.000000 Compartment_F s v_f3gp_15m = 0.001000Compartment $G \, s \, l_1 = 1.354667$ Compartment F s v f3gp 25m = 0.001000Compartment $G \, s \, 1 \, 2 = 2.709333$ Compartment F s v spare = 0.001000Compartment_G s $1_3 = 4.064000$ Compartment F spi0 p s = 101.324997Compartment_G s $1_4 = 5.418667$ Compartment_F spi0 h = 70.000000

Compartment G spi3 v = 0.001000Compartment $G s 1_5 = 6.773333$ Compartment G spi3 av visc = 0.001000 Compartment $G \, s \, 1 \, 6 = 8.127999$ Compartment_G spi3 water = 100.000000 Compartment G s 1 7 = 9.482666Compartment G spi4 p s = 101.300003Compartment G s 1 8 = 10.837334Compartment G spi4 h = 70.000000Compartment $G \, s \, 1 \, 9 = 12.191999$ Compartment G spi4 v = 0.001000Compartment $G \, s \, v \, 1 = 31.811890$ Compartment G spi4 av visc = 0.001000Compartment $G \, s \, v \, 2 = 122.356682$ Compartment G spi4 water = 100.000000 Compartment $G \, s \, v \, 3 = 264.288177$ Compartment G spo0 $p_s = 101.300003$ Compartment $G \, s \, v \, 4 = 450.268616$ Compartment G spoo h = 70.000000Compartment $G \, s \, v \, 5 = 672.883850$ Compartment G spo0 v = 0.001000Compartment $G \, s \, v_6 = 924.932129$ Compartment G spo0 av visc = 0.001000 Compartment $G \, s \, v_7 = 1199.069946$ Compartment G spo0 water = 100.000000Compartment $G \, s \, v \, 8 = 1487.651123$ Compartment_G spo1 $p_s = 101.300003$ Compartment $G \, s \, v_9 = 1783.878540$ Compartment G spo1 h = 70.000000Compartment G s mlf_lvl = 0.100000 Compartment G spo1 v = 0.001000Compartment_G s mlf_temp = 25.000000 Compartment G spo1 av_visc = 0.001000 Compartment G s h tk prv = 104.669998Compartment_G spo1 water = 100.000000 Compartment G s h tk = 104.669998Compartment G spo2 p s = 101.324997Compartment G s 1 tk = 0.012192Compartment G spo2 h = 70.000000Compartment G s m tk = 286.306976Compartment_G spo2 v = 0.001000Compartment_G s t \bar{t} k = 25.000000 Compartment G spo2 av visc = 0.001000 Compartment G s m tk prv = 286.306976 Compartment G spo2 water = 100.000000Compartment G s vol = 286.306976Compartment_G spo3 $p_s = 101.300003$ Compartment G s v tk = 0.286307Compartment G spo3 h = 70.000000Compartment_G s v_tk_prv = 0.286307 Compartment G spo3 v = 0.001000Compartment $G s p_t k = 101.444603$ Compartment G spo3 av_visc = 0.001000 Compartment_G s rho_tk = 999.999939Compartment G spo3 water = 100.000000Compartment_G s vspec_tk = 0.001000 Compartment G spo4 p s = 101.324997Compartment G s lvl per = 0.100000Compartment G spo4 h = 70.000000Compartment G s water p = 100.000000Compartment G spo4 v = 0.001000Compartment_G s av_visc_tk = 0.001022 Compartment G spo4 av_visc = 0.001000 Compartment_G s $Cp_f3gp_11 = 4.186800$ Compartment G spo4 water = 100.000000Compartment_G s $Cp_f3gp_15 = 4.186800$ Compartment G spo5 lvl inst = 0.012192 Compartment G s Cp f3gp 25 = 4.186800Compartment G spo6 tmp inst = 25.000000 Compartment G s Cp_spare = 4.186800 Compartment H r index max = 9 Compartment_G s $v_f3gp_11m = 0.001000$ Compartment_G s $v_f3gp_15m = 0.001000$ Compartment H r nb out = 10 Compartment_H s leak_cnd = 10.000000 Compartment_G s $v_f3gp_25m = 0.001000$ Compartment H s 1 1 = 1.354667Compartment $G s v_spare = 0.001000$ Compartment H s 1° 2 = 2.709333 Compartment G spi0 p s = 101.324997Compartment H s 1 3 = 4.064000Compartment G spi0 h = 70.000000Compartment H s $1_4 = 5.418667$ Compartment G spi0 v = 0.001000Compartment_G spi0 av visc = 0.001000 Compartment H s 1 5 = 6.773333Compartment H s 1 6 = 8.127999Compartment_G spi0 water = 100.000000 Compartment $H \, s \, 1 \, 7 = 9.482666$ Compartment_G spi1 $p_s = 101.324997$ Compartment H s 1 8 = 10.837334Compartment G spi1 h = 70.000000Compartment H s 1 9 = 12.191999Compartment G spi1 v = 0.001000Compartment G spil av visc = 0.001000 Compartment H s v 1 = 14.957505Compartment H s v 2 = 57.529305Compartment_G spi1 water = 100.000000 Compartment H s v $_{3} = 124.263184$ Compartment G spi2 p s = 101.300003Compartment H s v 4 = 211.707504Compartment_G spi2 h = 70.000000Compartment_H s $v_5 = 316.410919$ Compartment G spi2 v = 0.001000Compartment_H s $v_{6} = 434.921143$ Compartment G spi2 av visc = 0.001000 Compartment H s v 7 = 563.786621Compartment G spi2 water = 100.000000 Compartment H s $v_8 = 699.555664$ Compartment_G spi3 p s = 101.300003Compartment H s v 9 = 838.776978Compartment_G spi3 h = 70.000000

Compartment H spo1 h = 70.000000Compartment_H s mlf_lvl = 0.100000 Compartment_H s mlf_temp = 25.000000 Compartment H spo1 v = 0.001000Compartment_H spo1 av_visc = 0.001000 Compartment H s h tk prv = 104.669998Compartment_H spo1 water = 100.000000 Compartment H s h tk = 104.669998Compartment H spo2 $p_s = 101.324997$ Compartment $H s l_t = 0.012192$ Compartment H spo2 h = 70.000000Compartment_H s m_tk = 134.617538Compartment_H spo2 v = 0.001000Compartment H s t tk = 25.000000Compartment H spo2 av_visc = 0.001000 Compartment H s m tk prv = 134.617538Compartment_H spo2 water = 100.000000 Compartment H s vol = 134.617554Compartment_H spo3 $p_s = 101.300003$ Compartment H s v tk = 0.134618Compartment H spo3 h = 70.000000Compartment H s v tk prv = 0.134618Compartment H spo3 v = 0.001000Compartment_H s $p_tk = 101.444603$ Compartment H spo3 av visc = 0.001000 Compartment_H s rho_tk = 999.999939 Compartment_H spo3 water = 100.000000 Compartment H s vspec tk = 0.001000Compartment_H spo4 $p_s = 101.324997$ Compartment_H s lvl_per = 0.100000 Compartment_H spo4 h = 70.000000Compartment_H s water_p = 99.999992Compartment H spo4 v = 0.001000Compartment H s av_visc tk = 0.001046 Compartment H spo4 av_visc = 0.001000Compartment H s Cp f3gp 11 = 4.186800Compartment H spo4 water = 100.000000 Compartment H s Cp_f3gp 15 = 4.186800Compartment H spo5 lvl inst = 0.012192 Compartment H s Cp $f3gp_25 = 4.186800$ Compartment H spo6 tmp inst = 25.000000Compartment H s Cp_spare = 4.186800 Compartment I r index max = 9Compartment $H s v f3gp_11m = 0.001000$ Compartment_H s v_f3gp_15m = 0.001000Compartment I r nb out = 10Compartment_I s leak_cnd = 10.000000 Compartment $H s v f3gp_25m = 0.001000$ Compartment $I \, s \, l \, 1 = 1.354667$ Compartment H s v spare = 0.001000Compartment I s 1 2 = 2.709333Compartment H spi0 p s = 101.324997Compartment $1 \text{ s } 1 \ 3 = 4.064000$ Compartment_H spi0 h = 70.000000Compartment I s 1 4 = 5.418667Compartment_H spi0 v = 0.001000Compartment_H spi0 av_visc = 0.001000 Compartment I s 1 5 = 6.773333Compartment I s 1 6 = 8.127999Compartment_H spi0 water = 100.000000 Compartment_I s $1_{7} = 9.482666$ Compartment H spi1 $p_s = 101.324997$ Compartment I s $1_8 = 10.837334$ Compartment H spil h = 70.000000Compartment I s 1 9 = 12.191999Compartment H spi1 v = 0.001000Compartment_I s v 1 = 7.635929Compartment H spi1 av_visc = 0.001000 Compartment I s v 2 = 29.369003Compartment H spi1 water = 100.000000 Compartment I s v 3 = 63.436863Compartment H spi2 p s = 101.300003Compartment I s v 4 = 108.077728Compartment H spi2 h = 70.000000Compartment I s v 5 = 161.528946Compartment_H spi2 v = 0.001000Compartment I s v 6 = 222.029022Compartment H spi2 av visc = 0.001000 Compartment I s v 7 = 287.816437Compartment_H spi2 water = 100.000000 Compartment I s $v_8 = 357.126038$ Compartment_H spi3 p s = 101.300003Compartment I s $v_9 = 428.198822$ Compartment H spi3 h = 70.000000Compartment I s mlf lvl = 0.100000 Compartment H spi3 v = 0.001000Compartment I s mlf temp = 25.000000Compartment H spi3 av visc = 0.001000 Compartment I s h tk prv = 104.669998Compartment H spi3 water = 100.000000 Compartment I s h tk = 104.669998Compartment_H spi4 $p_s = 101.300003$ Compartment I s 1 tk = 0.012192Compartment H spi4 h = 70.000000Compartment I s m tk = 68.723358Compartment_H spi4 v = 0.001000Compartment I s t tk = 25.000000Compartment H spi4 av_visc = 0.001000 Compartment Is m tk prv = 68.723358Compartment H spi4 water = 100.000000 Compartment I s vol = 68.723358Compartment_H spo0 p s = 101.300003Compartment I s v tk = 0.068723Compartment H spo0 h = 70.000000Compartment I s v tk prv = 0.068723Compartment H spo0 v = 0.001000Compartment I s p tk = 101.444603Compartment_H spo0 av_visc = 0.001000 Compartment_I s rho_tk = 999.999939 Compartment H spo0 water = 100.000000Compartment I s vspec tk = 0.001000Compartment H spo1 p s = 101.300003

Compartment_I s lvl_per = 0.100000	Compartment_I spo4 $p_s = 101.324997$
Compartment_I s water_p = 100.000000	Compartment_I spo4 $h = 70.000000$
Compartment_I s av_visc_tk = 0.001090	Compartment_I spo4 $v = 0.001000$
Compartment I s Cp_f3gp_11 = 4.186800	Compartment_I spo4 av_visc = 0.001000
Compartment_I s $Cp_f3gp_15 = 4.186800$	Compartment_I spo4 water = 100.000000
Compartment I s $Cp_f3gp_25 = 4.186800$	Compartment_I spo5 lvl_inst = 0.012192
Compartment I s Cp_spare = 4.186800	Compartment_I spo6 tmp_inst = 25.000000
Compartment_I s v_f3gp_11m = 0.001000	Compartment_J r index_max = 9
Compartment_I s v_f3gp_15m = 0.001000	Compartment_J r nb_out = 10
Compartment_I s v_f3gp_25m = 0.001000	Compartment_J s leak_cnd = 10.000000
Compartment_I s v_spare = 0.001000	Compartment $J s l_1 = 1.354667$
Compartment I spi0 $p_s = 101.324997$	Compartment $J s 1 = 2.709333$
Compartment_I spi $0 h = 70.000000$	Compartment $J s 1_3 = 4.064000$
Compartment_I spi0 $v = 0.001000$	Compartment J s $1.4 = 5.418667$
Compartment_I spi0 av_visc = 0.001000	Compartment_J s $1_{}5 = 6.773333$
Compartment I spi0 water = 100.000000	Compartment_J s $1_6 = 8.127999$
Compartment_I spi1 $p_s = 101.324997$	Compartment_J s $1_{-7} = 9.482666$
Compartment_I spi1 $h = 70.000000$	Compartment_J s $1_{-8} = 10.837334$
Compartment_I spi1 $v = 0.001000$	Compartment_J s $1_9 = 12.191999$
Compartment_I spi1 av_visc = 0.001000	Compartment_J s $\mathbf{v}_1 = 4.022294$
Compartment_I spi1 water = 100.000000	Compartment J s v $_2$ = 15.470098
Compartment_I spi2 $p_s = 101.300003$	Compartment_J s v_3 = 33.415367
Compartment_I spi2 $h = 70.000000$	Compartment J s v $_{4} = 56.929768$
Compartment_I spi2 $v = 0.001000$	Compartment J s $v_5 = 85.085258$
Compartment_I spi2 av_visc = 0.001000	Compartment_J s v_6 = 116.953499
Compartment_I spi2 water = 100.000000	Compartment J s v_7 = 151.606461
Compartment_I spi3 $p_s = 101.300003$	Compartment J s $v_8 = 188.115784$
Compartment_I spi3 $h = 70.000000$	Compartment J s $v_{9} = 225.553162$
Compartment_I spi3 $v = 0.001000$	Compartment_J s mlf_lvl = 0.100000
Compartment_I spi3 av_visc = 0.001000	Compartment_J s mlf_temp = 25.000000
Compartment_I spi3 water = 100.000000	Compartment_J s h_tk_prv = 104.669998 Compartment_J s h_tk = 104.669998
Compartment I spi4 $p_s = 101.300003$	Compartment J s 1_t k = 0.012192
Compartment_I spi4 h = 70.000000	Compartment_J s m_tk = 36.200638
Compartment I spi4 v = 0.001000	Compartment_J s t_tk = 25.000000
Compartment I spi4 av visc = 0.001000	Compartment_J s m_tk_prv = 36.200638
Compartment I spi4 water = 100.000000	Compartment_J s vol = 36.200638
Compartment_I spo0 p_s = 101.300003 Compartment_I spo0 h = 70.000000	Compartment J s v tk = 0.036201
Compartment I spoo ii - 70.000000	Compartment_J s v_tk_prv = 0.036201
Compartment I spo0 $v = 0.001000$	Compartment J s p_tk = 101.444603
Compartment_I spo0 av_visc = 0.001000 Compartment_I spo0 water = 100.000000	Compartment_J s rho_tk = 999.999939
Compartment_I spot water = 100.000000 Compartment_I spot p_s = 101.300003	Compartment_J s vspec_tk = 0.001000
Compartment_I spo1 h = 70.000000	Compartment_J s lvl_per = 0.100000
Compartment I spo1 $v = 0.001000$	Compartment J s water $p = 100.000000$
Compartment_I spo1 v = 0.001000 Compartment_I spo1 av_visc = 0.001000	Compartment_J s av_visc_tk = 0.001171
Compartment_I spo1 water = 100.000000	Compartment J s Cp_f3gp_11 = 4.186800
Compartment I spo2 p s = 101.324997	Compartment_J s Cp_f3gp_15 = 4.186800
Compartment I spo2 $h = 70.000000$	Compartment_J s Cp_f3gp_25 = 4.186800
Compartment I spo2 $v = 0.001000$	Compartment_J s Cp_spare = 4.186800
Compartment_I spo2 av_visc = 0.001000	Compartment $J s v_f 3gp_11m = 0.001000$
Compartment_I spo2 water = 100.000000	Compartment $J s v f 3gp 15m = 0.001000$
Compartment_I spo3 $p_s = 101.300003$	Compartment $J s v f3gp_25m = 0.001000$
Compartment_I spo3 $h = 70.000000$	Compartment_J s v_spare = 0.001000
Compartment_I spo3 v = 0.001000	Compartment_J spi0 $p_s = 101.300003$
Compartment_I spo3 av_visc = 0.001000	Compartment J spi0 $h = 70.000000$
Compartment_I spo3 water = 100.000000	Compartment_J spi0 $v = 0.001000$

Hole Depth_A-i spo0 water = 100.000000 Compartment J spi0 av_visc = 0.001000 Hole Depth B-i s p s = 131.242416Compartment_J spi0 water = 100.000000 Hole Depth B-i s h = 70.000000Compartment J spi1 $p_s = 101.324997$ Hole Depth B-i s v = 0.001000Compartment J spi1 h = 70.000000Hole Depth B-i s av visc = 0.001000 Compartment J spi1 v = 0.001000Hole_Depth_B-i s water = 100.000000 Compartment J spi1 av_visc = 0.001000 Hole_Depth_B-i spo0 $p_s = 131.242416$ Compartment J spi1 water = 100.000000Hole Depth B-i spo0 h = 70.000000Compartment_J spi2 $p_s = 101.300003$ Hole_Depth_B-i spo0 v = 0.001000Compartment J spi2 h = 70.000000Hole_Depth_B-i spo0 av_visc = 0.001000 Compartment_J spi2 v = 0.001000Hole Depth_B-i spo0 water = 100.000000 Compartment J spi2 av_visc = 0.001000 Compartment_J spi2 water = 100.000000 Hole Depth_C-i s p_s = 131.242416Hole Depth C-i s h = 70.000000Compartment J spi3 p s = 101.300003Hole Depth C-i s v = 0.001000Compartment_J spi3 h = 70.000000Hole Depth C-i s av_visc = 0.001000 Compartment J spi3 v = 0.001000Hole Depth C-i s water = 100.000000Compartment J spi3 av visc = 0.001000Compartment_J spi3 water = 100.000000 Hole Depth C-i spo0 p s = 131.242416Hole Depth C-i spo0 h = 70.000000Compartment J spi4 p s = 101.300003Hole Depth C-i spo0 v = 0.001000Compartment J spi4 h = 70.000000Hole Depth C-i spo0 av visc = 0.001000 Compartment_J spi4 v = 0.001000Hole Depth_C-i spo0 water = 100.000000 Compartment_J spi4 av_visc = 0.001000 Hole Depth D-i s p_s = 131.242416Compartment J spi4 water = 100.000000 Hole_Depth_D-i s h = 70.000000Compartment J spo0 p s = 101.300003Compartment_J spo0 h = 70.000000Hole Depth D-is v = 0.001000Hole_Depth_D-i s av_visc = 0.001000 Compartment_J spo0 v = 0.001000Hole Depth D-i s water = 100.000000Compartment_J spo0 av_visc = 0.001000 Hole Depth D-i spo0 p s = 131.242416Compartment J spo0 water = 100.000000Hole Depth_D-i spo0 h = 70.000000Compartment_J spo1 p s = 101.324997Hole Depth D-i spo0 v = 0.001000Compartment_J spo1 h = 70.000000Hole Depth D-i spo0 av visc = 0.001000Compartment J spo1 v = 0.001000Hole Depth D-i spo0 water = 100.000000Compartment_J spo1 av_visc = 0.001000 Hole Depth F-i s p s = 131.242416Compartment_J spo1 water = 100.000000 Hole Depth F-i s h = 70.000000Compartment_J spo2 $p_s = 101.300003$ Hole Depth F-i s v = 0.001000Compartment J spo2 h = 70.000000Hole_Depth_F-i s av_visc = 0.001000 Compartment_J spo2 v = 0.001000Hole_Depth_F-i s water = 100.000000 Compartment_J spo2 av_visc = 0.001000 Hole Depth F-i spo0 $p_s = 131.242416$ Compartment_J spo2 water = 100.000000 Hole Depth F-i spo0 h = 70.000000Compartment_J spo3 $p_s = 101.300003$ Hole Depth F-i spo0 v = 0.001000Compartment J spo3 h = 70.000000Hole Depth F-i spo0 av visc = 0.001000Compartment J spo3 v = 0.001000Hole_Depth_F-i spo0 water = 100.000000 Compartment_J spo3 av_visc = 0.001000 Hole Depth $G-i s p_s = 131.242416$ Compartment J spo3 water = 100.000000Hole Depth G-i s h = 70.000000Compartment J spo4 p s = 101.324997 $Hole_Depth_G-i \ s \ v = 0.001000$ Compartment_J spo4 h = 70.000000Hole Depth G-i s av visc = 0.001000 Compartment_J spo4 v = 0.001000Hole Depth G-i s water = 100.000000Compartment_J spo4 av_visc = 0.001000 $Hole_Depth_G-i spo0 p_s = 131.242416$ Compartment J spo4 water = 100.000000 $Hole_Depth_G-i spo0 h = 70.000000$ Compartment J spo5 lvl_inst = 0.012192 Hole Depth G-i spo0 v = 0.001000Compartment_J spo6 tmp_inst = 25.000000 Hole_Depth_G-i spo0 av_visc = 0.001000 Hole Depth A-i s p s = 131.242416Hole Depth G-i spo0 water = 100.000000 $Hole_Depth_A-i s h = 70.000000$ Hole Depth H-i s p_s = 131.242416 $Hole_Depth_A-i s v = 0.001000$ Hole_Depth_H-i s h = 70.000000Hole_Depth_A-i s av_visc = 0.001000 Hole Depth H-i s v = 0.001000Hole_Depth_A-i s water = 100.000000 Hole Depth_H-i s av_visc = 0.001000 Hole Depth A-i spo0 p s = 131.242416Hole_Depth_H-i s water = 100.000000 Hole Depth A-i spo0 av_visc = 0.001000

 $Hull_A ss v_sct = 0.001000$ $Hole_Depth_H-i spo0 p_s = 131.242416$ Hull A ss ad max = 1.000000Hole_Depth_H-i spo0 h = 70.000000Hull A ss sum_k = 999999986991104.000000 $Hole_Depth_H-i spo0 v = 0.001000$ Hull_A ss sum_k a2 = 999999986991104.000000 Hole_Depth_H-i spo0 av visc = 0.001000 Hull A ss 1 sct = 0.003048Hole Depth_H-i spo0 water = 100.000000 Hull A ss mu = 0.001000Hole Depth I-i s p_s = 131.242416Hull A ssp w max = 100000.000000Hole Depth I-i s h = 70.000000 $Hull_A ssp dp = 29.917419$ Hole Depth I-i s v = 0.001000Hull B r from out = 1Hole_Depth_I-i s av_visc = 0.001000 Hull Brmlf clg = 100Hole Depth_I-i s water = 100.000000Hull B s h in = 5.689600Hole Depth I-i spo0 p s = 131.242416 $Hull_B s h_out = 5.689600$ Hole Depth I-i spo0 h = 70.000000Hull B s d in = 812.801636Hole_Depth_I-i spo0 v = 0.001000Hull B s d_out = 812.801636Hole Depth I-i spo0 av visc = 0.001000 Hole_Depth_I-i spo0 water = 100.000000 Hull B s 1 p = 0.003048Hull Bs a in = 0.518872Hole Depth J-isp s = 131.242416Hull Bs a out = 0.518872Hole Depth J-i s h = 70.000000Hull B s m pipe = 1.581521Hole Depth J-i s v = 0.001000Hull_B s k_f = 999999986991104.000000 Hole Depth J-i s av visc = 0.001000 Hull B s k pipe = 0.002400 $Hole_Depth_J-i s water = 100.000000$ Hull B s friction = 0.640000 Hole Depth J-i spo0 p_s = 131.242416Hull B s Re = 100.000000Hole_Depth_J-i spo0 h = 70.000000Hole_Depth_J-i spo0 v = 0.001000Hull B spi0 p s = 131.242416Hull B spi0 h = 70.000000Hole Depth J-i spo0 av_visc = 0.001000 Hull_B spi0 v = 0.001000Hole Depth J-i spo0 water = 100.000000Hull B spi0 av_visc = 0.001000 $Hull_A r from_out = 1$ Hull_B spi0 water = 100.000000 Hull Armlf clg = 100Hull B spo0 p s = 101.324997Hull A s h in = 5.689600Hull B spo0 h = 70.000000Hull A s h out = 5.689600 $Hull_B spo0 v = 0.001000$ Hull_A s d_in = 812.801636 Hull B spo0 av visc = 0.001000Hull A s d out = 812.801636Hull B spo0 water = 100.000000Hull Asl p = 0.003048Hull B sr order = 1 $Hull_A s a_in = 0.518872$ Hull B sr clg by mlf = 1Hull As a out = 0.518872 $Hull_B sr pump_loc = -1$ Hull As m pipe = 1.581521Hull_A s k_f = 999999986991104.000000 Hull B ss hi sct = 5.689600Hull_B ss ho_sct = 5.689600 Hull A s k pipe = 0.002400Hull B ss ai sct = 0.518872Hull A s friction = 0.640000Hull_B ss ao_sct = 0.518872 $Hull_A s Re = 100.000000$ Hull B ss v sct = 0.001000Hull A spi0 p s = 131.242416Hull B ss ad max = 1.000000Hull A spi0 h = 70.000000Hull B ss sum k = 999999986991104.000000Hull A spi0 v = 0.001000Hull_B ss sum_ $k_a2 = 999999986991104.000000$ Hull A spi0 av visc = 0.001000Hull B ss 1 sct = 0.003048Hull_A spi0 water = 100.000000 Hull B ss mu = 0.001000 $Hull_A spo0 p_s = 101.324997$ Hull_B ssp w_max = 100000.000000 $Hull_A spo0 h = 70.000000$ Hull B ssp dp = 29.917419Hull A spo0 v = 0.001000Hull_A spo0 av_visc = 0.001000 Hull $C r from_out = 1$ $Hull_C s h_in = 5.689600$ Hull_A spo0 water = 100.000000 $Hull_C s h_out = 5.689600$ Hull A sr order = 1 $Hull_C s d_in = 812.801636$ Hull_A sr clg by mlf = 1 Hull C s d out = 812.801636Hull A sr pump loc = -1Hull C s 1 p = 0.003048Hull A ss hi sct = 5.689600 $Hull_C s a_in = 0.518872$ $Hull_A ss ho_sct = 5.689600$ Hull C s a out = 0.518872 $Hull_A ss ai_sct = 0.518872$ Hull $C s m_pipe = 1.581521$ Hull A ss ao sct = 0.518872

Hull D spo0 water = 100.000000Hull C s k pipe = 0.000048Hull C s time flow = 0.004226Hull D sr order = 1Hull D sr clg by mlf = 1Hull C s friction = 0.012732 $Hull_D sr pump_loc = -1$ Hull C s Re = 586246.687500Hull D ss hi sct = 5.690616 $Hull_C spi0 p_s = 101.315033$ $Hull_C spi0 h = 70.000000$ $Hull_D$ ss $ho_sct = 5.689600$ Hull D ss ai sct = 0.518872Hull C spi0 v = 0.001000Hull D ss ao sct = 0.518872Hull C spi0 av_visc = 0.001000Hull D ss v sct = 0.001000Hull C spi0 water = 100.000000Hull D ss ad max = 1.000000 $Hull_C spo0 p_s = 101.324997$ Hull D ss sum k = 999999986991104.000000Hull C spo0 h = 70.000000 $Hull_D ss sum_k_a2 = 999999986991104.000000$ Hull C spo0 v = 0.001000 $Hull_D ss l_sct = 0.003048$ Hull C spo0 av visc = 0.001000Hull D ss mu = 0.001000Hull C spo0 water = 100.000000 $Hull_D ssp w_max = 100000.000000$ $Hull_C$ sr order = 1 Hull D ssp dp = 29.927387Hull $C \operatorname{sr} \operatorname{clg} \operatorname{flag} = -1$ Hull Depth E-isp s = 131.242416Hull C sr pump loc = -1Hull Depth E-i s h = 70.000000Hull C ss hi sct = 5.690616Hull Depth E-is y = 0.001000Hull C ss ho sct = 5.689600Hull Depth E-i s av visc = 0.001000 $Hull_C$ ss ai_sct = 0.518872Hull Depth E-i s water = 100.000000 $Hull_C$ ss ao_sct = 0.518872Hull Depth E-i spo0 $p_s = 131.242416$ Hull C ss v sct = 0.001000Hull Depth E-i spo0 h = 70.000000Hull C ss ad max = 1.000000Hull Depth E-i spo0 v = 0.001000Hull C ss sum k = 115.055420Hull Depth E-i spo0 av_visc = 0.001000 Hull C ss sum k a2 = 427.353210Hull Depth E-i spo0 water = 100.000000 Hull C ss 1 sct = 0.003048Hull Er from out = 1 $Hull_C ss mu = 0.001000$ $Hull_E r mlf_clg = 100$ Hull C ssp w = 374.244934Hull Esh in = 5.689600Hull C ssp $w_max = 100000.000000$ Hull Esh out = 5.689600Hull C ssp ad = 12.505098Hull Esd in = 812.801636Hull_C ssp cd = 68.410301Hull E s d out = 812.801636 $Hull_C ssp dp = 29.927387$ $Hull_C ssp Q = 22454.697266$ Hull E s 1 p = 0.003048 $Hull_E s a_in = 0.518872$ Hull D r from out = 1Hull Drmlf clg = 100 Hull Esa out = 0.518872Hull Esm pipe = 1.581521Hull D s h in = 5.689600Hull Esk f = 999999986991104.000000Hull D s h out = 5.689600Hull E s k pipe = 0.002400Hull D s d in = 812.801636Hull E s friction = 0.640000Hull D s d out = 812.801636Hull E s Re = 100.000000 $Hull_D s l_p = 0.003048$ $Hull_E spi0 p_s = 131.242416$ Hull D s a in = 0.518872Hull E spi0 h = 70.000000Hull D s a out = 0.518872Hull E spi0 v = 0.001000Hull D s m pipe = 1.581521Hull_E spi0 av visc = 0.001000 Hull Dsk f = 999999986991104.000000Hull E spi0 water = 100.000000 Hull D s k pipe = 0.002400Hull E spo0 p s = 101.324997Hull D s friction = 0.640000Hull E spo0 h = 70.000000Hull D s Re = 100.000000Hull E spo0 v = 0.001000Hull D spi0 p s = 131.242416Hull E spo0 av visc = 0.001000Hull D spi0 h = 70.000000Hull E spo0 water = 100.000000 $Hull_D spi0 v = 0.001000$ Hull E sr order = 1 Hull D spi0 av visc = 0.001000 $Hull_E sr clg_by_mlf = 1$ Hull D spi0 water = 100.000000 $Hull_E sr pump_loc = -1$ Hull D spo0 p s = 101.324997Hull E ss hi sct = 5.689600Hull D spo0 h = 70.000000Hull E ss ho_sct = 5.689600Hull D spo0 v = 0.001000Hull E ss ai sct = 0.518872Hull D spo0 av visc = 0.001000

 $Hull_G s a_out = 0.518872$ Hull E ss ao sct = 0.518872Hull $G \, s \, m \, pipe = 1.581521$ Hull E ss v sct = 0.001000Hull G s k f = 999999986991104.000000Hull E ss ad max = 1.000000Hull_G s k_pipe = 0.002400Hull E ss sum k = 999999986991104.000000Hull G s friction = 0.640000 Hull E ss sum $k_a2 = 999999986991104.000000$ $Hull_G s Re = 100.000000$ Hull E ss 1 sct = 0.003048 $Hull_G spi0 p_s = 131.242416$ Hull E ss mu = 0.001000Hull G spi0 h = 70.000000Hull E ssp w max = 100000.000000Hull G spi0 v = 0.001000Hull E ssp dp = 29.917419Hull_G spi0 av_visc = 0.001000 Hull Fr from out = 1 Hull_G spi0 water = 100.000000 Hull Frmlf clg = 100 $Hull_G spo0 p_s = 101.324997$ Hull F s h in = 5.689600Hull G spo0 h = 70.000000Hull F s h out = 5.689600Hull G spo0 y = 0.001000Hull $F s d_{in} = 812.801636$ Hull_G spo0 av_visc = 0.001000 Hull F s d out = 812.801636Hull G spo0 water = 100.000000Hull F s 1 p = 0.003048Hull G sr order = 1 Hull F s a in = 0.518872Hull G sr clg by mlf = 1Hull F s a out = 0.518872Hull $G \operatorname{sr pump_loc} = -1$ Hull F s m pipe = 1.581521Hull G ss hi sct = 5.689600Hull $F s k_f = 999999986991104.000000$ $Hull_G ss ho_sct = 5.689600$ Hull F s k pipe = 0.002400Hull G ss ai sct = 0.518872Hull F s friction = 0.640000Hull G ss ao sct = 0.518872Hull F s Re = 100.000000Hull G ss v sct = 0.001000Hull F spi0 p s = 131.242416Hull G ss ad max = 1.000000Hull F spi0 h = 70.000000Hull G ss sum k = 999999986991104.000000 $Hull_F spi0 v = 0.001000$ $Hull_G ss sum_k_a2 = 999999986991104.000000$ Hull F spi0 av visc = 0.001000Hull G ss 1 sct = 0.003048Hull F spi0 water = 100.000000Hull G ss mu = 0.001000Hull F spo0 p_s = 101.324997 $Hull_F spo0 h = 70.000000$ Hull G ssp w max = 100000.000000Hull G ssp dp = 29.917419Hull F spo0 v = 0.001000 $Hull_H r$ from out = 1 Hull F spo0 av_visc = 0.001000 $Hull_H r mlf_clg = 100$ Hull_F spo0 water = 100.000000 Hull H s h in = 5.689600Hull F sr order = 1 Hull H s h out = 5.689600Hull_F sr clg_by_mlf = 1 Hull H s d in = 812.801636Hull F sr pump loc = -1Hull_H s d_out = 812.801636 Hull F ss hi sct = 5.690616Hull H s 1 p = 0.003048Hull F ss ho sct = 5.689600Hull H s a in = 0.518872Hull F ss ai sct = 0.518872Hull H s a out = 0.518872Hull F ss ao sct = 0.518872 $Hull_F ss v_sct = 0.001000$ Hull H s m pipe = 1.581521Hull H s k f = 999999986991104.000000Hull F ss ad max = 1.000000 $Hull_F ss sum_k = 999999986991104.000000$ Hull H s k pipe = 0.002400 $Hull_H s friction = 0.640000$ Hull F ss sum $k_a2 = 999999986991104.000000$ $Hull_H s Re = 100.000000$ $Hull_F ss 1 sct = 0.003048$ $Hull_H spi0 p_s = 131.242416$ Hull F ss mu = 0.001000Hull H spi0 h = 70.000000 $Hull_F ssp w_max = 100000.000000$ $Hull_H spi0 v = 0.001000$ Hull F ssp dp = 29.927387Hull H spi0 av visc = 0.001000 Hull Gr from out = 1 Hull H spi0 water = 100.000000Hull Grmlf clg = 100Hull H spo0 p s = 101.324997Hull G s h in = 5.689600Hull H spo0 h = 70.000000Hull G s h out = 5.689600 $Hull_H spo0 v = 0.001000$ Hull G s d in = 812.801636Hull H spo0 av visc = 0.001000Hull_G s d_out = 812.801636 Hull H spo0 water = 100.000000 $Hull_G s l_p = 0.003048$ Hull H sr order = 1 $Hull_G s a_in = 0.518872$

Hull Hole 2 spi0 water = 100.000000 $Hull_H sr clg_by_mlf = 1$ Hull Hole 2 spo0 p s = 131.242416Hull H sr pump loc = -1Hull H ss hi sct = 5.689600Hull Hole 2 spo0 h = 70.000000Hull H ss $ho_sct = 5.689600$ Hull Hole 2 spo0 v = 0.001000Hull Hole 2 spo0 av visc = 0.001000Hull H ss ai sct = 0.518872 $Hull_H ss ao_sct = 0.518872$ Hull Hole 2 spo0 water = 100.000000Hull Hole_3 r from in = 1 Hull H ss v sct = 0.001000Hull Hole 3 s h in = 5.690616 $Hull_H ss ad_max = 1.000000$ Hull H ss sum k = 999999986991104.000000 $Hull_{Hole_3} s h_{out} = 5.690616$ Hull_H ss sum_k_a2 = 999999986991104.000000 Hull Hole 3 s d in = 812.801636Hull H ss 1 sct = 0.003048Hull Hole 3 s d out = 812.801636Hull Hole 3 s d orif = 304.800598Hull H ss mu = 0.001000 $Hull_H ssp w_max = 100000.000000$ Hull Hole 3 s beta = 0.375000Hull Hole $3 \, \text{sa} \, \text{o} = 0.072966$ Hull H ssp dp = 29.917419Hull Hole 3 s a in = 0.518872Hull Hole 1 r from in = 1Hull_Hole_3 s a_out = 0.518872Hull Hole 1 s h in = 5.690616Hull_Hole_3 s mean_a_o = 0.518872Hull Hole 1 s h out = 5.690616Hull_Hole_3 s d_c = 0.608469Hull Hole 1 s d in = 812.801636Hull Hole 1 s d out = 812.801636Hull Hole 3 s k f = 115.055374Hull Hole 1 s d orif = 304.800598Hull Hole 3 s pd limit = 50.000000Hull Hole 1 s beta = 0.375000Hull Hole 3 spi0 p s = 131.242416 $Hull_{Hole_1} s a_o = 0.072966$ Hull Hole 3 spi0 h = 70.000000Hull Hole 3 spi0 v = 0.001000Hull Hole 1 s a in = 0.518872 $Hull_Hole_3 spi0 av_visc = 0.001000$ Hull Hole 1 s a out = 0.518872Hull Hole 3 spi0 water = 100.000000 Hull Hole 1 s mean $a_0 = 0.518872$ Hull Hole 1 s d c = 0.608469Hull Hole $3 \text{ spo0 p}_s = 131.242416$ Hull_Hole_3 spo0 h = 70.000000Hull Hole 1 s k f = 115.055374Hull_Hole_1 s spd_limit = 50.000000 Hull_Hole_3 spo0 v = 0.001000Hull_Hole_3 spo0 av_visc = 0.001000 Hull Hole 1 spi0 p_s = 131.242416Hull Hole 3 spo0 water = 100.000000Hull Hole 1 spi0 h = 70.000000 $Hull_Hole_1 spi0 v = 0.001000$ Hull Hole A r from in = 1Hull Hole 1 spi0 av visc = 0.001000Hull Hole Ash in = 5.689600Hull Hole Ash out = 5.689600Hull Hole 1 spi0 water = 100.000000Hull Hole Asd_in = 812.801636Hull Hole 1 spo0 p s = 101.315033 $Hull_{Hole_1} spo0 h = 70.000000$ Hull Hole Asd out = 812.801636Hull_Hole_A s d_orif = 304.800598 $Hull_Hole_1 \text{ spo0 } v = 0.001000$ $Hull_Hole_A$ s beta = 0.375000Hull Hole 1 spo0 av_visc = 0.001000Hull Hole As a o = 0.072966Hull Hole 1 spo0 water = 100.000000Hull Hole As a in = 0.518872Hull Hole 2 r from in = 1 Hull Hole As a out = 0.518872Hull Hole_2 s h_in = 5.690616 $Hull_Hole_A s mean_a_o = 0.518872$ Hull Hole 2 s h out = 5.690616Hull Hole 2 s d in = 812.801636 $Hull_Hole_A s d_c = 0.608469$ Hull Hole Ask f = 115.055374Hull Hole 2 s d out = 812.801636Hull Hole A s spd limit = 50.000000Hull Hole $2 \text{ s d}_{\text{orif}} = 304.800598$ $Hull_{Hole_A spi0 p_s = 131.242416}$ Hull Hole 2 s beta = 0.375000 $Hull_Hole_A spi0 h = 70.000000$ Hull Hole 2 s a o = 0.072966Hull Hole A spi0 v = 0.001000 $Hull_{Hole_2} s a_{in} = 0.518872$ Hull Hole A spi0 av visc = 0.001000 $Hull_Hole_2 s a_out = 0.518872$ Hull_Hole_A spi0 water = 100.000000 Hull Hole 2 s mean a o = 0.518872Hull Hole 2 s d c = 0.608469Hull Hole A spo0 p s = 131.242416Hull_Hole_A spo0 h = 70.000000Hull Hole 2 s k f = 115.055374Hull Hole A spo0 v = 0.001000Hull Hole 2 s spd limit = 50.000000Hull_Hole_A spo0 av visc = 0.001000 Hull Hole 2 spi0 p_s = 131.242416 $Hull_{Hole_2 spi0 h} = 70.000000$ Hull_Hole_A spo0 water = 100.000000 Hull Hole Br from in = 1 Hull Hole 2 spi0 v = 0.001000Hull_Hole_2 spi0 av_visc = 0.001000 Hull Hole B s h in = 5.689600

Hull Hole G s mean $a_0 = 0.518872$ Hull Hole B s h out = 5.689600Hull Hole G s d c = 0.608469Hull Hole B s d in = 812.801636 $Hull_{Hole_G s k_f} = 115.055374$ $Hull_Hole_B \ s \ d_out = 812.801636$ Hull_Hole_G s spd_limit = 50.000000 Hull Hole B s d_orif = 304.800598 Hull Hole G spi0 p_s = 131.242416Hull Hole B s beta = 0.375000Hull Hole G spi0 h = 70.000000Hull Hole Bsa o = 0.072966Hull Hole G spi0 v = 0.001000Hull Hole Bs a in = 0.518872Hull Hole G spi0 av_visc = 0.001000 Hull Hole B s a_out = 0.518872Hull_Hole_G spi0 water = 100.000000 Hull Hole B s mean a o = 0.518872Hull Hole G spo0 $p_s = 131.242416$ Hull Hole B s d_c = 0.608469Hull Hole G spo0 h = 70.000000Hull Hole $B s k_f = 115.055374$ $Hull_Hole_G spo0 v = 0.001000$ Hull_Hole_B s spd_limit = 50.000000 Hull Hole_G spo0 av_visc = 0.001000 Hull Hole B spi0 p_s = 131.242416Hull_Hole_G spo0 water = 100.000000 Hull Hole B spi0 h = 70.000000Hull Hole H r from in = 1 Hull Hole_B spi0 v = 0.001000Hull Hole_H s $h_in = 5.689600$ Hull_Hole_B spi0 av_visc = 0.001000 Hull Hole H s h out = 5.689600Hull Hole B spi0 water = 100.000000Hull Hole_H s d_in = 812.801636Hull Hole B spo0 p_s = 131.242416Hull Hole H s d out = 812.801636Hull_Hole_B spo0 h = 70.000000 Hull Hole H s d orif = 304.800598Hull Hole B spo0 v = 0.001000Hull_Hole_B spo0 av_visc = 0.001000 Hull Hole H s beta = 0.375000Hull_Hole_H s a o = 0.072966 Hull_Hole_B spo0 water = 100.000000 Hull Hole H s a in = 0.518872Hull Hole Er from in = 1 Hull Hole H s a_out = 0.518872 $Hull_Hole_E s h_in = 5.689600$ Hull Hole H s mean_a_o = 0.518872Hull Hole E s h out = 5.689600Hull Hole H s d c = 0.608469Hull Hole Esd in = 812.801636 Hull Hole H s k f = 115.055374Hull Hole E s d out = 812.801636Hull Hole H s spd limit = 50.000000 Hull Hole E s d orif = 304.800598 $Hull Hole H spi0 p_s = 131.242416$ Hull Hole E s beta = 0.375000Hull Hole H spi0 h = 70.000000Hull Hole Esa o = 0.072966Hull Hole H spi0 v = 0.001000Hull_Hole_E s a_in = 0.518872 Hull Hole H spi0 av_visc = 0.001000 Hull Hole Esa out = 0.518872Hull_Hole_H spi0 water = 100.000000 Hull Hole E s mean_a_o = 0.518872 $Hull_{Hole_{H} spo0 p_{s} = 131.242416}$ Hull Hole E s d c = 0.608469Hull $Hole_H spo0 h = 70.000000$ Hull Hole E s $k_f = 115.055374$ $Hull_Hole_H spo0 v = 0.001000$ Hull Hole E s spd_limit = 50.000000 Hull Hole H spo0 av_visc = 0.001000 Hull Hole E spi0 $p_s = 131.242416$ Hull_Hole_H spo0 water = 100.000000 Hull Hole E spi0 h = 70.000000Hull_Hole_I r from in = 1 Hull Hole E spi0 v = 0.001000Hull Hole I s $h_{in} = 5.689600$ Hull Hole E spi0 av visc = 0.001000Hull Hole I s h out = 5.689600Hull Hole E spi0 water = 100.000000Hull Hole Isd in = 812.801636Hull Hole E spo0 p s = 131.242416Hull Hole Is $d_{out} = 812.801636$ Hull Hole E spo0 h = 70.000000Hull Hole Isd orif = 304.800598 Hull Hole E spo0 v = 0.001000Hull Hole Is beta = 0.375000Hull_Hole_E spo0 av_visc = 0.001000 Hull Hole Is a o = 0.072966Hull_Hole_E spo0 water = 100.000000 Hull Hole Is a in = 0.518872Hull Hole Gr from in = 1 $Hull_Hole_I s a_out = 0.518872$ Hull Hole G s h in = 5.689600 Hull_Hole_I s mean_a_o = 0.518872 Hull Hole $G s h_out = 5.689600$ Hull Hole Isd c = 0.608469Hull Hole $G s d_{in} = 812.801636$ Hull Hole_I s $k_f = 115.055374$ Hull_Hole_G s d_out = 812.801636 Hull Hole Is spd_limit = 50.000000 Hull Hole G s d orif = 304.800598Hull Hole I spi0 p s = 131.242416Hull Hole G s beta = 0.375000Hull_Hole_I spi0 h = 70.000000 Hull Hole $G s a_0 = 0.072966$ Hull Hole_I spi0 v = 0.001000Hull Hole G s a in = 0.518872Hull_Hole_I spi0 av_visc = 0.001000 Hull Hole G s a out = 0.518872

Hull I sr pump loc = -1Hull Hole I spi0 water = 100.000000Hull I ss hi sct = 5.689600Hull Hole I spo0 p_s = 131.242416Hull I ss ho sct = 5.689600Hull Hole_I spo0 h = 70.000000Hull I ss ai sct = 0.518872Hull Hole I spo0 v = 0.001000Hull I ss ao sct = 0.518872Hull Hole I spo0 av visc = 0.001000Hull_Hole_I spo0 water = 100.000000 Hull I ss v sct = 0.001000Hull I ss ad max = 1.000000Hull Hole Jr from in = 1Hull I ss sum k = 999999986991104.000000 $Hull_Hole_J s h_in = 5.689600$ Hull I ss sum k a2 = 999999986991104.000000Hull Hole Jsh out = 5.689600Hull I ss 1 sct = 0.003048Hull Hole Jsd in = 812.801636Hull I ss mu = 0.001000Hull Hole J s d out = 812.801636 Hull I ssp w max = 100000.000000Hull Hole Jsd orif = 304.800598Huli I ssp dp = 29.917419 $Hull_Hole_J s beta = 0.375000$ Hull_J r from_out = 1 Hull_Hole_J s a_o = 0.072966 $Hull_Hole_J s a_in = 0.518872$ Hull Jrmlf clg = 100Hull J s h in = 5.689600Hull Hole Js a out = 0.518872Hull Jsh out = 5.689600Hull Hole Js mean a o = 0.518872Hull J s d in = 812.801636Hull Hole Jsd c = 0.608469Hull J s d out = 812.801636Hull Hole Jsk f = 115.055374Hull J s 1 p = 0.003048Hull Hole J s spd limit = 50.000000Hull Js a in = 0.518872Hull Hole J spi0 p s = 131.242416Hull J s a out = 0.518872 $Hull_{Hole_{J}} spi0 h = 70.000000$ Hull J s m pipe = 1.581521Hull Hole J spi0 v = 0.001000Hull $J s k_f = 999999986991104.000000$ Hull_Hole_J spi0 av_visc = 0.001000 Hull Hole J spi0 water = 100.000000 Hull J s k_pipe = 0.002400Hull J s friction = 0.640000Huli Hole J spo0 p s = 131.242416Hull J s Re = 100.000000Hull_Hole_J spo0 h = 70.000000Hull J spi0 p s = 131.242416Hull Hole J spo0 v = 0.001000Hull J spi0 h = 70.000000Hull Hole J spo0 av visc = 0.001000Hull J spi0 v = 0.001000Hull Hole_J spo0 water = 100.000000 Hull J spi0 av visc = 0.001000Hull I r from out = 1Hull J spi0 water = 100.000000Hull Irmlf clg = 100Hull J spo0 p_s = 101.324997Hull Ish in = 5.689600Hull J spo0 h = 70.000000Hull Ish out = 5.689600Hull J spo0 v = 0.001000Hull Isd in = 812.801636Hull J spo0 av visc = 0.001000Hull Is $d_{out} = 812.801636$ Hull J spo0 water = 100.000000Hull Isl p = 0.003048Hull J sr order = 1 Hull Is a in = 0.518872Hull $J \operatorname{sr} \operatorname{clg} \operatorname{by} \operatorname{mlf} = 1$ Hull Is a out = 0.518872Hull J sr pump loc = -1Hull Is m pipe = 1.581521Hull_I s $k_f = 999999986991104.000000$ Hull J ss $hi_sct = 5.689600$ Hull J ss ho sct = 5.689600 $Hull_I s k_pipe = 0.002400$ Hull J ss ai sct = 0.518872Hull Is friction = 0.640000 $Hull_J ss ao_sct = 0.518872$ Hull Is Re = 100.000000Hull J ss v sct = 0.001000Hull I spi0 p s = 131.242416Hull J ss ad max = 1.000000Hull I spi0 h = 70.000000Hull J ss sum k = 999999986991104.000000 $Hull_I spi0 v = 0.001000$ Hull J ss sum k a2 = 999999986991104.000000Hull I spi0 av visc = 0.001000Hull J ss 1 sct = 0.003048Hull I spi0 water = 100.000000Hull J ss mu = 0.001000Hull I spo0 p s = 101.324997 $Hull_J ssp w_max = 100000.000000$ Hull I spo0 h = 70.000000Hull J ssp dp = 29.917419 $Hull_I spo0 v = 0.001000$ Main B s h in = 0.304800Hull I spo0 av visc = 0.001000 $Main_B s h out = 0.304800$ Hull I spo0 water = 100.000000Main B s d in = 151.892303Hull I sr order = 1Hull_I sr clg_by_mlf = 1 Main B s d out = 151.892303

Main BA spi0 av visc = 0.001000Main B s 1 p = 3.048000Main BA spi0 water = 100.000000Main B s a in = 0.018120Main BA spo0 p s = -293.663116Main B s a out = 0.018120Main BA spo0 h = 70.000000Main B s m pipe = 55.230301Main BA spo0 v = 0.001000Main_B s $k_{pipe} = 0.859833$ Main_BA spo0 av_visc = 0.001000 Main B s time flow = 139.624161Main BA spo0 water = 100.000000 Main B s friction = 0.042848Main BA sr empty2 = 1Main B s Re = 3315.660400 $Main_B s epsilon = 0.001500$ Main BA sr order = 1Main BA sr clg flag = 3 Main B spi0 p s = -293.217926Main BA sr pump loc = -1Main B spi0 h = 70.010262Main BA ss hi sct = 0.304800Main B spi0 v = 0.001000Main BA ss ho sct = 0.304800Main B spi0 av_visc = 0.001000 Main BA ss ai sct = 0.018120Main B spi0 water = 99.999977 Main BA ss ao sct = 0.018120Main B spo0 p s = -293.663116Main BA ss v sct = 0.001000Main B spo0 h = 70.010735Main BA ss ad max = 1.000000Main B spo0 v = 0.001000Main BA ss sum k = 999999986991104.000000 Main B spo0 av visc = 0.001000Main BA ss sum_k_a2 = Main B spo0 water = 99.99997799999986991104.000000 Main B sr order = 1Main BA ss 1 sct = 12.191999 $Main_B sr clg_flag = -1$ Main BA ss mu = 0.001000Main_B sr pump loc = -1Main_BA ssp w_max = 100000.000000 Main B ss hi sct = 0.304800Main_BA ssp dp = 394.988098 Main B ss ho sct = 0.304800Main CB s h in = 0.304800Main B ss ai sct = 0.018120Main CB s h out = 0.304800Main B ss ao_sct = 0.018120 Main CB s d in = 151.892303 Main B ss v sct = 0.001000Main CB s d out = 151.892303Main B ss ad max = 1.000000Main CB s $l_p = 9.144000$ Main B ss sum k = 1.159328Main CB s a in = 0.018120Main B ss sum $k_a = 3530.869385$ Main CB s a out = 0.018120Main_B ss $l_sct = 3.048000$ Main CB s m pipe = 165.690918Main B ss mu = 0.001000Main CB s k pipe = 2.097635Main_B ssp w = 2.231064Main CB s time flow = 209.435608Main B ssp w max = 100000.000000Main_CB s friction = 0.034844 Main B ssp ad = 5.011483Main_CB s Re = 6631.353027Main B ssp cd = 0.676155Main CB s epsilon = 0.001500Main B ssp dp = 0.445190Main CB spi0 p s = -293.217926Main B ssp Q = 133.863831Main CB spi0 h = 70.010262Main BA r num 90 = 1Main CB spi0 v = 0.001000Main_BA r from out = 1Main CB spi0 av visc = 0.001000Main BA s h in = 0.304800Main CB spi0 water = 99.999977 $Main_BA s h_out = 0.304800$ Main CB spo0 p_s = -293.021118Main BA s d in = 151.892303Main_CB spo0 h = 70.009270Main BA s d out = 151.892303Main CB spo0 v = 0.001000Main BA s 1 p = 9.144000Main CB spo0 av visc = 0.001000Main_BA s a_in = 0.018120Main_CB spo0 water = 99.999985 Main BA s a out = 0.018120Main CB $sr clg_flag = -1$ Main_BA s m_pipe = 165.690887Main_CB sr pump_loc = -1Main BA s k f = 19.199999Main CB ss hi sct = 0.304800Main BA s k pipe = 38.528351Main CB ss ho sct = 0.304800Main BA s friction = 0.640000Main CB ss ai sct = 0.018120Main BA s Re = 100.000000 Main CB ss ao_sct = 0.018120Main BA s epsilon = 0.001500 $Main_CB ss v_sct = 0.001000$ Main BA spi0 p_s = 96.345711Main CB ss ad max = 1.000000Main BA spi0 h = 70.000000Main CB ss sum k = 2.397130Main_BA spi0 v = 0.001000

Main DC s a in = 0.018120Main CB ss sum k a2 = 7300.738281Main DC s a out = 0.018120Main CB ss 1 sct = 9.144000Main DC s m pipe = 165.690918Main CB ss mu = 0.001000Main_DC s k_pipe = 1.401781 Main_CB ssp w = -1.841438Main DC s time_flow = 45.162556Main CB ssp w max = 100000.000000Main DC s friction = 0.023285Main CB ssp ad = 9.356528Main DC s Re = 30752.058594Main CB ssp cd = 2.581556Main DC s epsilon = 0.001500Main CB ssp dp = -0.196808Main DC spi0 p s = -293.021118 $Main_CB ssp Q = -110.486290$ Main_DC spi0 h = 70.009270 Main D s h in = 0.304800Main DC spi0 v = 0.001000Main D s h out = 0.304800Main DC spi0 av visc = 0.001000Main D s d in = 151.892303Main DC spi0 water = 99.999985Main D s d out = 151.892303Main_DC spo0 $p_s = -292.905060$ Main_D s $1_p = 3.048000$ Main_DC spo0 h = 70.010277Main D s a in = 0.018120Main_DC spo0 v = 0.001000Main D s a out = 0.018120Main_DC spo0 av_visc = 0.001000 Main D s m pipe = 55.230301Main_DC spo0 water = 99.999985 Main D s k pipe = 0.480160Main DC sr order = 1Main D s time flow = 16.870485 $Main_DC sr clg_flag = -1$ Main D s friction = 0.023928Main DC sr pump_loc = -1Main_D s Re = 27441.195313Main DC ss hi sct = 0.304800Main D s epsilon = 0.001500Main DC ss ho sct = 0.304800Main_D spi0 $p_s = -292.905060$ $Main_D spi0 h = 70.010269$ Main DC ss ai sct = 0.018120Main DC ss ao sct = 0.018120Main D spi0 v = 0.001000Main DC ss $v_{sct} = 0.001000$ Main_D spi0 av_visc = 0.001000 $Main_DC ss ad_max = 1.000000$ Main_D spi0 water = 99.999985 Main DC ss sum k = 1.701276Main D spo0 p s = -292.537598Main_DC ss sum_ $k_a2 = 5181.433594$ Main_D spo0 h = 70.010727 $Main_DC ss 1_sct = 9.144000$ Main D spo0 v = 0.001000Main DC ss mu = 0.001000Main D spo0 av visc = 0.001000Main_DC ssp w = -1.451643Main D spo0 water = 99.999977 $Main_DC ssp w_max = 100000.000000$ Main D sr order = 1Main DC ssp ad = 12.507873Main D sr clg flag = -1Main DC ssp cd = 7.290377Main D sr pump_loc = -1Main DC ssp dp = -0.116058Main D ss hi sct = 0.304800 $Main_DC ssp Q = -87.098572$ Main D ss ho_sct = 0.304800 $Main_E s h_in = 0.304800$ Main D ss ai sct = 0.018120Main E s h out = 0.304800Main D ss ao sct = 0.018120Main E s d in = 151.892303Main_D ss $v_{sct} = 0.001000$ Main E s d out = 151.892303Main D ss ad max = 1.000000Main E s 1 p = 3.048000Main D ss sum_k = 0.779656Main E s a in = 0.018120Main D ss sum_ $k_a2 = 2374.532715$ Main_E s a_out = 0.018120Main D ss 1 sct = 3.048000Main E s m pipe = 55.230301Main D ss mu = 0.001000Main E s k pipe = 0.512118Main_D ssp w = -3.821185Main_E s time_flow = 21.950468 $Main_D ssp w_max = 100000.000000$ Main E s friction = 0.025521Main D ssp ad = 10.398853Main E s Re = 21090.478516Main D ssp cd = 8.450093Main E s epsilon = 0.001500Main D ssp dp = -0.367462Main E spi0 p_s = -291.616547Main D ssp Q = -229.271088Main E spi0 h = 70.011818Main DC s h in = 0.304800Main_E spi0 v = 0.001000Main DC s h out = 0.304800Main E spi0 av visc = 0.001000Main DC s $d_{in} = 151.892303$ Main E spi0 water = 99.999977Main DC s d out = 151.892303Main E spo0 $p_s = -291.319153$ $Main_DC s l_p = 9.144000$

Main ED ss 1 sct = 9.144000Main E spo0 h = 70.026382Main ED ss mu = 0.001000Main E spo0 v = 0.001000Main ED ssp w = -3.433045Main E spo0 av visc = 0.001000Main ED ssp w max = 100000.000000Main E spo0 water = 99.999985 Main ED ssp ad = 3.727313Main E sr order = 1Main ED ssp cd = 4.641545Main E sr clg_flag = -1 Main ED ssp dp = -0.921051Main E sr pump loc = -1Main ED ssp Q = -205.982712Main E ss hi sct = 0.304800Main F s h in = 0.304800Main E ss ho sct = 0.304800Main F s h out = 0.304800Main E ss ai sct = 0.018120Main F s d in = 151.892303Main E ss ao sct = 0.018120Main F s d out = 151.892303 $Main_E ss v_sct = 0.001000$ Main F s 1 p = 3.048000Main E ss ad max = 1.000000Main E ss sum k = 0.811614Main F s a in = 0.018120Main F s a out = 0.018120Main E ss sum k a2 = 2471.864014Main F s m pipe = 55.230301Main E ss 1 sct = 3.048000Main F s k pipe = 0.556989Main E ss mu = 0.001000Main F s time flow = 30.542418Main E ssp w = -3.047368Main F s friction = 0.027757Main E ssp w max = 100000.000000Main F s Re = 15157.785156Main E ssp ad = 10.246910Main F s epsilon = 0.001500Main E ssp cd = 7.486439Main F spi0 p s = -290.709442Main E ssp dp = -0.297394Main_F spi0 h = 70.027077Main E ssp Q = -182.842041Main F spi0 v = 0.001000Main ED s h in = 0.304800Main_F spi0 av_visc = 0.001000 Main ED s $h_{out} = 0.304800$ Main F spi0 water = 99.999969 Main ED s d in = 151.892303Main F spo0 p s = -290.486145Main ED s d out = 151.892303Main F spo0 h = 70.027077Main ED $sl_p = 9.144000$ Main F spo0 v = 0.001000Main ED s a in = 0.018120Main F spo0 av_visc = 0.001000Main ED s a out = 0.018120Main F spo0 water = 99.999977Main ED s m pipe = 165.690918Main F sr order = 1 Main ED s time flow = 57.392921Main ED s friction = 0.024669 Main F sr clg flag = -1 Main F sr pump loc = -1Main ED s Re = 24198.763672Main F ss hi sct = 0.304800Main ED s epsilon = 0.001500 $Main_F ss ho_sct = 0.304800$ Main ED spi0 p s = -292.537598Main_ED spi0 h = 70.010727 Main F ss ai sct = 0.018120 $Main_F ss ao_sct = 0.018120$ Main ED spi0 v = 0.001000Main F ss v sct = 0.001000Main ED spi0 av visc = 0.001000Main F ss ad max = 1.000000Main ED spi0 water = 99.999977 Main F ss sum k = 0.856485Main ED spo0 p s = -291.616547Main F ss sum_ $k_a2 = 2608.524658$ Main ED spo0 h = 70.011818Main F ss 1 sct = 3.048000Main ED spo0 v = 0.001000Main F ss mu = 0.001000Main ED spo0 av visc = 0.001000Main F ssp w = -2.279579Main ED spo0 water = 99.999977 $Main_F ssp w_max = 100000.000000$ Main ED sr order = 1Main F ssp ad = 10.208725Main ED sr clg flag = -1Main F ssp cd = 6.412834Main ED sr pump loc = -1Main F ssp dp = -0.223297Main ED ss hi sct = 0.304800Main F ssp Q = -136.774719Main ED ss ho_sct = 0.304800Main FE r num 45 = 0Main ED ss ai sct = 0.018120Main FE s h in = 0.304800Main ED ss ao sct = 0.018120Main FE sh out = 0.304800Main ED ss $v_sct = 0.001000$ Main FE s d in = 151.892303Main ED ss ad max = 1.000000Main FE s d out = 151.892303Main ED ss sum k = 1.784610Main FE s 1 p = 7.620000Main ED ss sum k a2 = 5435.236328

Main G spo0 h = 70.027077Main FE s a in = 0.018120 $Main_G spo0 v = 0.001000$ Main FE s a out = 0.018120Main $G \text{ spo0 av_visc} = 0.001000$ Main FE s m pipe = 138.075760Main_G spo0 water = 99.999969 Main FE s k_pipe = 1.331210Main G sr order = 1 Main FE s time flow = 64.085999 $Main_G sr clg_flag = -1$ Main FE s friction = 0.026535Main G sr pump_loc = -1 Main FE s Re = 18059.927734 $Main_G ss hi_sct = 0.304800$ Main FE s epsilon = 0.001500Main G ss ho_sct = 0.304800Main FE spi0 p s = -291.319153Main G ss ai sct = 0.018120Main FE spi0 h = 70.026382Main G ss ao sct = 0.018120 $Main_FE spi0 v = 0.001000$ $Main_G ss v_sct = 0.001000$ Main FE spi0 av_visc = 0.001000 $Main_G ss ad_max = 1.000000$ Main_FE spi0 water = 99.999985 $Main_G ss sum_k = 1.556313$ Main_FE spo0 p s = -290.709442 $Main_G ss sum_k_a2 = 4739.932129$ Main FE spo0 h = 70.027077Main G ss 1 sct = 6.096000Main FE spo0 v = 0.001000Main G ss mu = 0.001000Main FE spo0 av visc = 0.001000Main G ssp w = -1.516535Main_FE spo0 water = 99.999969 $Main_G ssp w_max = 100000.000000$ Main FE sr order = 1Main G ssp ad = 5.366503Main FE sr clg flag = -1Main_G ssp cd = 3.652541Main FE sr pump_loc = -1 $Main_G ssp dp = -0.282593$ Main FE ss hi sct = 0.304800 $Main_G ssp Q = -90.992088$ Main FE ss ho sct = 0.304800 $Main_GF s h_in = 0.304800$ Main FE ss ai sct = 0.018120Main GF s h out = 0.304800Main FE ss ao sct = 0.018120Main GF s d in = 151.892303Main FE ss v sct = 0.001000Main GF s d out = 151.892303Main FE ss ad max = 1.000000Main GF s 1 p = 10.668000Main FE ss sum k = 1.630705Main GF s a_in = 0.018120Main FE ss sum k a2 = 4966.501465Main_GF s a_out = 0.018120 Main FE ss 1 sct = 7.620000 $Main_GF \ s \ m_pipe = 193.306061$ $Main_FE ss mu = 0.001000$ Main GF s k pipe = 2.058228Main FE ssp w = -2.662910Main GF s time flow = 131.366104Main FE ssp w max = 100000.000000Main GF s friction = 0.029305 Main FE ssp ad = 4.367497Main_GF s Re = 12334.566406 Main FE ssp cd = 4.418777 $Main_GF s epsilon = 0.001500$ Main_FE ssp dp = -0.609711Main_GF spi0 p_s = -290.486145Main FE ssp Q = -159.774567Main_GF spi0 h = 70.027077Main G s h in = 0.304800Main_GF spi0 v = 0.001000 $Main_G s h_out = 0.304800$ Main GF spi0 av visc = 0.001000Main G s d in = 151.892303Main GF spi0 water = 99.999977 Main G s d out = 151.892303Main GF spo0 p_s = -289.885223Main G s 1 p = 6.096000Main GF spo0 h = 70.027077Main $G s a_{in} = 0.018120$ Main GF spo0 v = 0.001000 $Main_G s a_out = 0.018120$ Main_GF spo0 av visc = 0.001000Main_G s m_pipe = 110.460602Main_GF spo0 water = 99.999969 Main $G s k_pipe = 1.256818$ Main GF sr order = 1Main G s time flow = 95.839989Main GF sr clg flag = -1 $Main_G s friction = 0.031316$ Main GF sr pump loc = -1 $Main_G s Re = 9661.006836$ $Main_GF$ ss $hi_sct = 0.304800$ $Main_G s epsilon = 0.001500$ Main GF ss ho sct = 0.304800Main G spi0 p s = -289.885223Main GF ss ai sct = 0.018120Main G spi0 h = 70.027077Main GF ss ao sct = 0.018120 $Main_G spi0 v = 0.001000$ Main GF ss $v_sct = 0.001000$ Main_G spi0 av_visc = 0.001000 Main GF ss ad max = 1.000000Main G spi0 water = 99.999969Main GF ss sum_k = 2.357724 $Main_G spo0 p_s = -289.602631$

Main HG s a out = 0.018120Main GF ss sum $k_a2 = 7180.721680$ Main_HG s m_pipe = 220.921204 Main_GF ss $1_{sct} = 10.668000$ Main HG s k pipe = 2.742751Main GF ss mu = 0.001000Main HG s time_flow = 261.069000Main GF ssp w = -1.897424Main_HG s friction = 0.034170 $Main_GF ssp w_max = 100000.000000$ Main HG s Re = 7093.226074Main GF ssp ad = 3.157522Main_HG s epsilon = 0.001500 Main GF ssp cd = 3.108884Main HG spi0 p s = -289.602631Main GF ssp dp = -0.600922Main HG spi0 h = 70.027077 Main_GF ssp Q = -113.845406Main HG spi0 v = 0.001000 $Main_H s h_in = 0.304800$ Main HG spi0 av visc = 0.001000Main H s h out = 0.304800Main_HG spi0 water = 99.999969 Main H s d in = 151.892303Main HG spo0 p s = -289.193359Main H s d out = 151.892303Main_HG spo0 h = 70.027077Main $H s 1_p = 3.048000$ Main_HG spo0 v = 0.001000Main H s a in = 0.018120Main HG spo0 av visc = 0.001000Main H s a out = 0.018120Main HG spo0 water = 99.999977 Main H s m_pipe = 55.230301Main HG sr order = 1Main H s k pipe = 0.776874Main HG sr clg flag = -1Main H s time flow = 99.261856Main HG sr pump loc = -1Main H s friction = 0.038714 Main HG ss hi_sct = 0.304800Main H s Re = 4663.980957Main HG ss ho_sct = 0.304800Main H s epsilon = 0.001500 $Main_HG$ ss $ai_sct = 0.018120$ Main H spi0 p s = -289.193359Main HG ss ao sct = 0.018120Main H spi0 h = 70.027077Main HG ss v sct = 0.001000Main H spi0 v = 0.001000Main HG ss ad max = 1.000000 Main H spi0 av visc = 0.001000Main HG ss sum k = 3.042247Main_H spi0 water = 99.999969 Main HG ss sum k a2 = 9265.515625 $Main_H spo0 h = 70.027077$ Main HG ss 1 sct = 12.191999Main H spo0 v = 0.001000Main HG ss mu = 0.001000Main H spo0 av visc = 0.001000Main_HG ssp w = -1.136434Main H spo0 water = 99.999969 Main HG ssp w max = 100000.000000Main H sr order = 1Main HG ssp ad = 2.776726Main H sr clg flag = -1Main HG ssp cd = 2.219539Main_H sr pump loc = -1 Main HG ssp dp = -0.409271 $Main_H ss hi_sct = 0.304800$ Main HG ssp Q = -68.186050Main H ss ho sct = 0.304800Main IH s h in = 0.304800Main H ss ai sct = 0.018120Main IH s h out = 0.304800Main H ss ao sct = 0.018120Main IH s d in = 151.892303Main H ss v sct = 0.001000Main IH s d out = 151.892303Main H ss ad max = 1.000000Main IH s 1 p = 13.716000Main H ss sum k = 1.076370Main IH s a_in = 0.018120Main H ss sum $k_a2 = 3278.209473$ Main IH s a out = 0.018120Main H ss 1 sct = 3.048000Main IH s m pipe = 248.536362Main H ss mu = 0.001000Main_IH s k pipe = 2.768924Main H ssp w = -0.757477Main IH s time flow = 910.841064Main H ssp w max = 100000.000000Main IH s friction = 0.030663 Main H ssp ad = 10.464168Main IH s Re = 2287.225830Main H ssp cd = 3.620900Main IH s epsilon = 0.001500Main_H ssp dp = -0.072388Main IH spi0 p s = -288.972076Main H ssp Q = -45.448616Main_IH spi0 h = 70.027077Main HG s h in = 0.304800 $Main_IH spi0 v = 0.001000$ $Main_HG s h_out = 0.304800$ Main IH spi0 av visc = 0.001000Main HG s d_in = 151.892303Main IH spi0 water = 99.999985Main HG s d out = 151.892303Main IH spo0 $p_s = -289.120972$ Main_HG s $l_p = 12.191999$ Main IH spo0 h = 70.027077Main HG s a_in = 0.018120

Main JI ss sum k a2 = Main IH spo0 v = 0.001000Main_IH spo0 av_visc = 0.001000 99999986991104.000000 Main Π ss 1 sct = 10.667999 Main IH spo0 water = 99.999969 Main_JI ss mu = 0.001000Main IH sr clg flag = -1Main JI ssp w max = 100000.000000Main_IH sr pump_loc = -1 $Main_{JI} ssp dp = 390.297058$ Main IH ss hi sct = 0.304800Overbd B-o s p_s = 116.296883 $Main_IH ss ho_sct = 0.304800$ Overbd_B-o s h = 70.013206Main IH ss ai sct = 0.018120Overbd B-o s v = 0.001000Main IH ss ao sct = 0.018120Overbd B-o s av visc = 0.001000Main IH ss v sct = 0.001000Overbd_B-o s water = 99.999969 Main IH ss ad max = 1.000000Overbd_B-o spi0 $p_s = 116.296883$ Main IH ss sum k = 3.068419Overbd_B-o spi0 h = 70.013206Main IH ss sum k a2 = 9345.225586Overbd B-o spi0 v = 0.001000Main_IH ss $1_{sct} = 13.716000$ Overbd B-o spi0 av_visc = 0.001000 $Main_IH ss mu = 0.001000$ Overbd_B-o spi0 water = 99.999969 Main IH ssp w = 0.378473Overbd D-o s $p_s = 116.296883$ Main IH ssp w max = 100000.000000Overbd_D-o s h = 70.012558Main IH ssp ad = 2.541874Overbd D-o s v = 0.001000Main IH ssp cd = 1.197405Overbd_D-o s av_visc = 0.001000Main_IH ssp dp = 0.148895Overbd D-o s water = 99.999977 Main IH ssp Q = 22.708376Overbd D-o spi0 p s = 116.296883Main Π r from out = 1 Overbd D-o spi0 h = 70.012558Main JI s h in = 0.304800Overbd D-o spi0 v = 0.001000Main JI s h out = 0.304800Overbd_D-o spi0 av_visc = 0.001000 Main Π s d in = 151.892303 Overbd D-o spi0 water = 99.999977 Main Π s d out = 151.892303 Overbd E-o s p s = 116.296883Main $\Pi s 1 p = 7.620000$ Overbd_E-o s h = 70.048141Main_ Π s a in = 0.018120 Overbd_E-o s v = 0.001000Main Π s a out = 0.018120 Overbd E-o s av visc = 0.001000Main JI s m pipe = 138.075745Overbd E-o s water = 99.999977 Main Π s k pipe = 32.106956 Overbd E-o spi0 $p_s = 116.296883$ Main_ Π s friction = 0.640000 Overbd_E-o spi0 h = 70.048141Main JI s Re = 100.000000Overbd E-o spi0 v = 0.001000 $Main_JI s epsilon = 0.001500$ Overbd E-o spi0 av visc = 0.001000Main JI spi0 p s = 89.524017Overbd_E-o spi0 water = 99.999977 Main Π spi0 h = 70.000000 Overbd_F-o s $p_s = 116.296883$ Overbd F-o s h = 70.000000Main Π spi0 av_visc = 0.001000 Overbd F-o s v = 0.001000Main Π spi0 water = 100.000000 Overbd F-o s av_visc = 0.001000Main Π spo0 p s = -288.972076 Overbd F-o s water = 100.000000Main JI spo0 h = 70.000000Overbd_F-o spi0 p_s = 116.296883Main Π spo0 v = 0.001000 Overbd F-o spi0 h = 70.000000Main_JI spo0 av_visc = 0.001000 Overbd F-o spi0 v = 0.001000Main_ Π spo0 water = 100.000000 Overbd F-o spi0 av visc = 0.001000Main Π sr empty2 = 1 Overbd F-o spi0 water = 100.000000Main Π sr order = 1 Overbd G-o s p s = 116.296883Main Π sr clg flag = 3 Overbd G-o s h = 70.000000Main Π sr pump loc = -1Overbd_G-o s $\mathbf{v} = 0.001000$ Main_ Π ss hi_sct = 0.304800 Overbd_G-o s av_visc = 0.001000 $Main_{JI}$ ss $ho_{sct} = 0.304800$ Overbd G-o s water = 100.000000Main Π ss ai sct = 0.018120 Overbd G-o spi0 $p_s = 116.296883$ Main Π ss ao_sct = 0.018120 Overbd_G-o spi0 h = 70.000000Main Π ss v sct = 0.001000 Overbd_G-o spi0 v = 0.001000Main_ Π ss ad_max = 1.000000 Overbd_G-o spi0 av_visc = 0.001000 Overbd G-o spi0 water = 100.000000

Pipe B1 spo0 p s = 101.324997Overbd I-o s p s = 116.296883Pipe B1 spo0 h = 70.477348Overbd I-o s h = 70.000000Pipe B1 spo0 v = 0.001000Overbd_I-o s $\mathbf{v} = 0.001000$ Pipe_B1 spo0 av_visc = 0.001001 Overbd_ I-o s av visc = 0.001000 Pipe B1 spo0 water = 99.999977 Overbd I-o s water = 100.000000Pipe B2 r from in = 1Overbd I-o spi0 p_s = 116.296883Pipe B2 s h in = 1.524000Overbd I-o spi0 h = 70.000000Pipe B2 s h out = 7.620000Overbd_I-o spi0 v = 0.001000Pipe B2 s d in = 151.892303Overbd_I-o spi0 av_visc = 0.001000 Pipe B2 s d out = 151.892303Overbd_I-o spi0 water = 100.000000 Pipe B2 s 1 p = 15.240000Pipe A1 r num 90 = 1Pipe B2 s a in = 0.018120Pipe A1 r from in = 1Pipe_B2 s a out = 0.018120 $Pipe_A1 s h_in = 0.304800$ Pipe B2 s m pipe = 276.151520Pipe_A1 s h_out = 0.304800Pipe B2 s k pipe = 2.724983Pipe A1 s d in = 151.892303Pipe B2 s friction = 0.027159Pipe A1 s d out = 151.892303Pipe B2 s Re = 16490.109375Pipe A1 s $l_p = 3.048000$ Pipe B2 s epsilon = 0.001500 $Pipe_A1 s teta = 45.000000$ Pipe_B2 spi0 p s = 101.300003Pipe_A1 s a_in = 0.018120 Pipe B2 spi0 h = 70.011238 $Pipe_A1 s a_out = 0.018120$ Pipe_B2 spi0 v = 0.001000Pipe A1 s m pipe = 55.230293Pipe B2 spi0 av visc = 0.001000Pipe A1 s k f = 19.199999Pipe_B2 spi0 water = 99.999977 Pipe A1 s k pipe = 12.842783Pipe_B2 spo0 p_s = 24.583595 $Pipe_A1 s friction = 0.640000$ Pipe B2 spo0 h = 70.013206 $Pipe_A1 s Re = 100.000000$ Pipe B2 spo0 v = 0.001000 $Pipe_A1 s epsilon = 0.001500$ Pipe B2 spo0 av visc = 0.001000Pipe_A1 spi0 $p_s = 101.324997$ Pipe B2 spo0 water = 99.999969 Pipe A1 spi0 h = 70.000000Pipe C1 r num 90 = 1Pipe_A1 spi0 v = 0.001000Pipe A1 spi0 av visc = 0.001000Pipe $C1 r from_out = 1$ Pipe C1 s h in = 0.304800Pipe_A1 spi0 water = 100.000000 Pipe C1 s h out = 0.304800Pipe A1 spo0 p_s = 101.324997Pipe_C1 s d in = 151.892303 Pipe A1 spo0 h = 70.000000Pipe C1 s d out = 151.892303Pipe A1 spo0 v = 0.001000Pipe_C1 s $l_p = 3.048000$ Pipe A1 spo0 av visc = 0.001000Pipe C1 s a in = 0.018120Pipe_A1 spo0 water = 100.000000 Pipe C1 s a_out = 0.018120Pipe B1 r num 90 = 1Pipe C1 s m pipe = 55.230301Pipe B1 r from in = 1Pipe_C1 s $k_f = 0.654438$ Pipe B1 s h in = 0.304800Pipe C1 s k pipe = 0.437751Pipe B1 s h out = 0.304800Pipe C1 s time flow = 11.375288Pipe B1 s d in = 151.892303Pipe C1 s friction = 0.021815Pipe_B1 s d_ out = 151.892303 Pipe C1 s Re = 40669.539063Pipe B1 s 1 p = 3.048000 $Pipe_C1 s epsilon = 0.001500$ Pipe B1 s a in = 0.018120Pipe C1 spi0 p_s = 101.324997Pipe_B1 s $a_{out} = 0.018120$ Pipe C1 spi0 h = 70.009270Pipe B1 s m pipe = 55.230282Pipe_C1 spi0 v = 0.001000Pipe B1 s k f = 0.496047Pipe C1 spi0 av visc = 0.001001Pipe B1 s k pipe = 0.331803Pipe C1 spi0 water = 99.999985 Pipe B1 s friction = 0.016535Pipe C1 spo0 p s = 101.304298Pipe B1 s Re = 149662.640625Pipe C1 spo0 h = 70.009270Pipe B1 s epsilon = 0.001500Pipe_C1 spo0 v = 0.001000Pipe B1 spi0 $p_s = 101.324997$ Pipe C1 spo0 av_visc = 0.001000 Pipe B1 spi0 h = 70.468079Pipe_C1 spo0 water = 99.999985 Pipe_B1 spi0 v = 0.001000Pipe D1 r num 90 = 1Pipe B1 spi0 av visc = 0.001001Pipe D1 r from in = 1Pipe B1 spi0 water = 99.999969

Pipe D1 s h in = 0.304800	Pipe_E1 s $k_f = 19.199999$
Pipe D1 s h_out = 0.304800	Pipe_E1 s k_pipe = 12.842783
Pipe_D1 s d_in = 151.892303	Pipe_E1 s friction = 0.640000
Pipe D1 s d out = 151.892303	Pipe_E1 s Re = 100.000000
Pipe D1 s $1_p = 3.048000$	Pipe_E1 s epsilon = 0.001500
Pipe_D1 s a_in = 0.018120	Pipe_E1 spi0 p_s = 101.324997
Pipe D1 s a out = 0.018120	Pipe_E1 spi0 $h = 70.000000$
Pipe D1 s m pipe = 55.230312	Pipe_E1 spi0 $v = 0.001000$
Pipe D1 s k $f = 0.425089$	Pipe_E1 spi0 av_visc = 0.001000
Pipe D1 s k pipe = 0.284340	Pipe E1 spi0 water = 100.000000
Pipe D1 s friction = 0.014170	Pipe_E1 spo0 p_s = 101.324997
Pipe D1 s Re = 340838.625000	Pipe_E1 spo0 $h = 70.000000$
$Pipe_D1 s epsilon = 0.001500$	Pipe_E1 spo0 $v = 0.001000$
Pipe_D1 spi0 p_s = 101.324997	Pipe_E1 spo0 av_visc = 0.001000
Pipe_D1 spi0 $h = 70.235962$	Pipe_E1 spo0 water = 100.000000
Pipe D1 spi0 $v = 0.001000$	$Pipe_E2 r from_in = 1$
Pipe D1 spi0 av visc = 0.001000	Pipe E2 s h in = 1.524000
Pipe_D1 spi0 water = 99.999992	Pipe_E2 s h_out = 7.620000
Pipe D1 spo0 p s = 101.324997	Pipe_E2 s d_in = 151.892303
Pipe D1 spo0 h = 70.239746	Pipe_E2 s d_out = 151.892303
Pipe_D1 spo0 v = 0.001000	Pipe_E2 s $l_p = 15.240000$
Pipe D1 sp00 av visc = 0.001000	Pipe E2 s a in = 0.018120
Pipe D1 sp00 water = 99.999992	Pipe E2 s a out = 0.018120
Pipe D2 r from_in = 1	Pipe E2 s m_pipe = 276.151550
Pipe_D2 s h_in = 1.524000	Pipe_E2 s k_pipe = 1.716785
Pipe_D2 s h_out = 7.620000	Pipe E2 s friction = 0.017111
Pipe_D2 s d_in = 151.892303	Pipe E2 s Re = 126003.531250
Pipe_D2 s d_out = 151.892303	Pipe_E2 s epsilon = 0.001500
Pipe_D2 s l_p = 15.240000	Pipe_E2 spi0 p_s = 101.300003
Pipe_D2 s a_in = 0.018120	Pipe_E2 spi0 $h = 70.029968$
Pipe_D2 s a_out = 0.018120	Pipe_E2 spi0 $v = 0.001000$
Pipe_D2 s m_pipe = 276.151520	Pipe_E2 spi0 av_visc = 0.001000
Pipe D2 s k pipe = 2.707730	Pipe E2 spi0 water = 99.999962
Pipe_D2 s friction = 0.026987	Pipe E2 spo0 p s = 22.127150
Pipe D2 s Re = 16903.480469	Pipe E2 spo0 $h = 70.048141$
Pipe_D2 s epsilon = 0.001500	Pipe E2 spo0 $v = 0.001000$
Pipe D2 spi0 p_s = 101.300003	Pipe_E2 spo0 av_visc = 0.001000
Pipe_D2 spi0 h = 70.010735	Pipe_E2 spo0 water = 99.999977
Pipe D2 spi0 v = 0.001000	$Pipe_F1 r num_90 = 1$
Pipe D2 spi0 av_visc = 0.001000	Pipe_F1 r from_in = 1
Pipe D2 spi0 water = 99.999977	Pipe_F1 s h_in = 0.304800
Pipe D2 sp00 p s = 24.338196	Pipe_F1 s h_out = 0.304800
Pipe_D2 spo0 h = 70.012558	Pipe_F1 s d_in = 151.892303
Pipe D2 spo0 $v = 0.001000$	Pipe_F1 s d_out = 151.892303
Pipe_D2 spo0 av_visc = 0.001000	Pipe F1 s1 $p = 3.048000$
Pipe D2 spo0 water = 99.999977	Pipe F1 s a in = 0.018120
Pipe E1 r num $90 = 1$	Pipe F1 s a out = 0.018120
Pipe E1 r from in = 1	Pipe F1 s m_pipe = 55.230293
Pipe E1 s h in = 0.304800	Pipe_F1 s k_ $f = 19.199999$
Pipe E1 s h out = 0.304800	Pipe_F1 s k_pipe = 12.842783
Pipe_E1 s d_in = 151.892303	Pipe_F1 s friction = 0.640000
Pipe_E1 s d_out = 151.892303	Pipe_F1 s Re = 100.000000
Pipe E1 s $1_p = 3.048000$	Pipe_F1 s epsilon = 0.001500
Pipe_E1 s a_in = 0.018120	Pipe_F1 spi0 p_s = 101.324997
Pipe_E1 s a_out = 0.018120	Pipe_F1 spi0 $h = 70.000000$
Pipe_E1 s m_pipe = 55.230293	Pipe_F1 spi0 $v = 0.001000$

Pipe G2 s h in = 1.524000Pipe_F1 spi0 av visc = 0.001000Pipe G2 s h out = 7.620000Pipe F1 spi0 water = 100.000000Pipe_G2 s $d_in = 151.892303$ Pipe F1 spo0 $p_s = 101.324997$ Pipe G2 s d out = 151.892303 Pipe F1 spo0 h = 70.000000Pipe G2 s1 p = 15.240000Pipe F1 spo0 v = 0.001000Pipe G2 s a in = 0.018120Pipe F1 spo0 av visc = 0.001000Pipe G2 s a out = 0.018120Pipe F1 spo0 water = 100.000000Pipe G2 s m pipe = 276.151489Pipe F2 r from in = 1Pipe G2 s k pipe = 64.213913Pipe F2 s h in = 1.524000Pipe G2 s friction = 0.640000Pipe F2 s h out = 7.620000Pipe G2 s Re = 100.000000Pipe F2 s d in = 151.892303 $Pipe_G2 s epsilon = 0.001500$ Pipe F2 s d out = 151.892303Pipe G2 spi0 p s = 101.300003Pipe F2 s 1 p = 15.240000Pipe G2 spi0 h = 70.000000Pipe F2 s a in = 0.018120Pipe G2 spi0 v = 0.001000Pipe F2 s a out = 0.018120Pipe G2 spi0 av visc = 0.001000Pipe F2 s m pipe = 276.151489Pipe G2 spi0 water = 100.000000 Pipe F2 s k pipe = 64.213913Pipe G2 spo0 p s = 19.205734Pipe_F2 s friction = 0.640000 Pipe G2 spo0 h = 70.000000Pipe F2 s Re = 100.000000Pipe_G2 spo0 v = 0.001000Pipe F2 s epsilon = 0.001500Pipe G2 spo0 av visc = 0.001000Pipe_F2 spi0 $p_s = 101.300003$ Pipe G2 spo0 water = 100.000000Pipe F2 spi0 h = 70.000000Pipe H1 r num 90 = 1Pipe F2 spi0 v = 0.001000Pipe H1 r from in = 1Pipe F2 spi0 av visc = 0.001000Pipe_H1 s h_in = 0.304800Pipe F2 spi0 water = 100.000000Pipe H1 s h out = 0.304800Pipe_F2 spo0 p_s = 20.569763Pipe H1 s d in = 151.892303Pipe F2 spo0 h = 70.000000Pipe H1 s d out = 151.892303Pipe F2 spo0 v = 0.001000Pipe H1 s 1 p = 3.048000Pipe_F2 spo0 av visc = 0.001000Pipe H1 s a in = 0.018120Pipe F2 spo0 water = 100.000000Pipe H1 s a out = 0.018120Pipe G1 r num 90 = 1Pipe_G1 r from in = 1 Pipe H1 s m pipe = 55.230293Pipe_G1 s h_in = 0.304800Pipe HI s k f = 19.199999Pipe H1 s $k_{pipe} = 12.842783$ Pipe G1 s h out = 0.304800Pipe_H1 s friction = 0.640000 Pipe G1 s d in = 151.892303Pipe H1 s Re = 100.000000Pipe G1 s d out = 151.892303Pipe H1 s epsilon = 0.001500Pipe G1 s1 p = 3.048000Pipe H1 spi0 p s = 101.324997Pipe G1 s a in = 0.018120Pipe H1 spi0 h = 70.000000Pipe G1 s a out = 0.018120Pipe H1 spi0 v = 0.001000Pipe G1 s m pipe = 55.230293Pipe_H1 spi0 av_visc = 0.001000 Pipe G1 s k f = 19.199999Pipe H1 spi0 water = 100.000000Pipe G1 s k pipe = 12.842783Pipe H1 spo0 p s = 101.324997Pipe G1 s friction = 0.640000Pipe H1 spo0 h = 70.000000Pipe G1 s Re = 100.000000Pipe H1 spo0 v = 0.001000Pipe G1 s epsilon = 0.001500Pipe H1 spo0 av_visc = 0.001000Pipe G1 spi0 p s = 101.324997Pipe H1 spo0 water = 100.000000Pipe G1 spi0 h = 70.000000Pipe_G1 spi0 v = 0.001000Pipe Il r num 90 = 1Pipe I1 r from in = 1Pipe G1 spi0 av visc = 0.001000Pipe I1 s h in = 0.304800Pipe G1 spi0 water = 100.000000Pipe I1 s h out = 0.304800Pipe G1 spo0 p s = 101.324997Pipe I1 s d in = 151.892303Pipe G1 spo0 h = 70.000000Pipe_II s d_out = 151.892303Pipe_G1 spo0 v = 0.001000Pipe I1 s 1 p = 3.048000Pipe G1 spo0 av visc = 0.001000Pipe I1 s a in = 0.018120Pipe_G1 spo0 water = 100.000000 Pipe II s a out = 0.018120Pipe G2 r from in = 1

Pipe_II s m_pipe = 55.230293	Pipe_J1 spi0 $v = 0.001000$
Pipe II s k $f = 19.199999$	Pipe_J1 spi0 av_visc = 0.001000
Pipe_I1 s k_pipe = 12.842783	Pipe_J1 spi0 water = 100.000000
Pipe_I1 s friction = 0.640000	Pipe_J1 spo0 p_s = 101.324997
Pipe I1 s Re = 100.000000	Pipe_J1 spo0 $h = 70.000000$
$Pipe_{II} s epsilon = 0.001500$	Pipe_J1 spo0 $v = 0.001000$
Pipe_I1 spi0 p_s = 101.324997	$Pipe_J1 spo0 av_visc = 0.001000$
Pipe_I1 spi0 $h = 70.000000$	Pipe_J1 spo0 water = 100.000000
Pipe_I1 spi0 $v = 0.001000$	Pump_B r man_speed = 95
Pipe_I1 spi0 av_visc = 0.001000	Pump_B r sw_auto = 1
Pipe_I1 spi0 water = 100.000000	Pump_B r man_switch = 1
Pipe_I1 spo0 p_s = 101.324997	Pump_B s h_in = 0.304800
Pipe_I1 spo0 $h = 70.000000$	Pump_B s h_out = 1.524000
Pipe_I1 spo0 $v = 0.001000$	Pump_B s d_in = 151.892303
Pipe_I1 spo0 av_visc = 0.001000	Pump_B s d_out = 151.892303
Pipe_I1 spo0 water = 100.000000	Pump_B s vol_flow = 0.072264
Pipe_I2 r from_in = 1	Pump_B s rate_flow = 0.075710
Pipe I2 s h_in = 1.524000	Pump B s max_pres = 496.399994
Pipe_I2 s h_out = 7.620000	Pump_B s npsh_r = 0.100000
Pipe_I2 s d_in = 151.892303	Pump B s npsh_a = 9.821173
Pipe I2 s d_out = 151.892303	Pump B s t ru = 5.000000
Pipe I2 s 1 p = 15.240000	Pump_B s t_rd = 5.000000
Pipe 12 s a in = 0.018120	Pump_B s spd_rated = 2000.000000
Pipe_I2 s a_out = 0.018120	Pump_B s spd_p = 2000.000000
Pipe_12 s a_oii = 0.018120 Pipe_12 s m_pipe = 276.151489	Pump_B s spd_rel = 100.000000
Pipe_12 S III_pipe = 270.131409	Pump B s power_pump = 5.000000
Pipe_I2 s k_pipe = 64.213913 Pipe_I2 s friction = 0.640000	Pump_B s press_out = 101.300003
	Pump_B s press_in = 96.345711
Pipe_I2 s Re = 100.000000 Pipe_I2 s capillan = 0.001500	Pump_B s vol_eff = 95.449234
Pipe_I2 s epsilon = 0.001500	Pump_B s eff_0 = 100.000000
Pipe_I2 spi0 p_s = 101.300003 Pipe_I2 spi0 h = 70.000000	Pump_B s eff_1 = 95.000000
	Pump_B s eff_2 = 90.000000
Pipe_I2 spi0 v = 0.001000	Pump_B s eff_3 = 86.000000
Pipe_I2 spi0 av_visc = 0.001000	Pump_B s eff_4 0
Pipe_I2 spi0 water = 100.000000	Pump_B s press_1 = 111.300003
Pipe_I2 spo0 p_s = 17.983818	Pump_B s press_2 = 222.899994
Pipe_I2 spo0 h = 70.000000	Pump B s press 3 = 385.000000
Pipe_I2 spo0 v = 0.001000	Pump B s press_4 = 870.000000
Pipe_I2 spo0 av_visc = 0.001000	Pump_B s me_eff_0 = 100.000000
Pipe_I2 spo0 water = 100.000000	Pump_B s me_eff_1 = 95.000000
Pipe_J1 r num_90 = 1	Pump B s me_eff_2 = 90.000000
Pipe_Jl r from_in = 1	Pump_B s me_eff_3 = 85.000000
Pipe_J1 s h_in = 0.304800	Pump B s me_eff_4 = 80.000000
Pipe J1 s h out = 0.304800	Pump_B s me_eff = 95.449234
Pipe_J1 s d_in = 151.892303	Pump_B s X = 100.000000
Pipe_J1 s d_out = 151.892303	Pump_B s power_h = 0.463699
Pipe_J1 s $l_p = 3.048000$	Pump B sao0 value = 100.000000
Pipe_J1 s a_in = 0.018120	Pump B slo0 value = 1
Pipe_J1 s a_out = 0.018120	Pump_B spi0 p_s = 96.345711
Pipe_J1 s m_pipe = 55.230293	Pump B spi0 h = 70.011238
Pipe_J1 s k $f = 19.199999$	Pump B spi0 v = 0.001000
Pipe_J1 s k_pipe = 12.842783	Pump_B spi0 av_visc = 0.001000
Pipe_J1 s friction = 0.640000	Pump_B spi0 av_visc = 0.001000 Pump_B spi0 water = 99.999977
Pipe_J1 s Re = 100.000000	Pump R cno0 p c = 101 300003
Pipe_J1 s epsilon = 0.001500	Pump_B spo0 p_s = 101.300003 Pump_B spo0 h = 70.011238
Pipe_J1 spi0 p_s = 101.324997	
Pipe_J1 spi0 $h = 70.000000$	Pump_B spo0 $v = 0.001000$

Pump E s d in = 151.892303Pump B spo0 av visc = 0.001000Pump_B spo0 water = 99.999977 Pump E s d out = 151.892303Pump E s rate flow = 0.075710Pump D r man_speed = 95Pump_E s max_pres = 496.399994 Pump D r sw auto = 1 Pump_E s npsh r = 0.100000Pump D r man switch = 1Pump E s npsh a = 9.570770Pump D s h in = 0.304800Pump E s t ru = 5.000000Pump D s h out = 1.524000Pump_E s $t_rd = 5.000000$ Pump D s d in = 151.892303Pump E s spd rated = 2000.000000Pump D s d out = 151.892303Pump E s power pump = 5.000000Pump_D s vol flow = 0.072264Pump E s press out = 101.300003Pump D s rate flow = 0.075710Pump_E s press_in = 93.889275 Pump D s max pres = 496.399994Pump E s vol eff = 95.449234 $Pump_D s npsh_r = 0.100000$ Pump E s eff 0 = 100.000000Pump_D s npsh_a = 9.796158Pump E s eff_1 = 95.000000Pump D s t ru = 5.000000Pump E s eff 2 = 90.000000Pump_D s t_rd = 5.000000Pump E s eff 3 = 86.000000Pump D s spd rated = 2000.000000Pump E s press 1 = 111.300003Pump D s spd p = 2000.000000Pump E s press 2 = 222.899994Pump D s spd rel = 100.000000Pump E s press 3 = 385.000000Pump D s power pump = 5.000000Pump_E s press_4 = 870.000000Pump D s press out = 101.300003Pump E s me eff_0 = 100.000000Pump_D s press_in = 96.100311 Pump E s me eff 1 = 95.000000Pump D s vol eff = 95.449234Pump E s me eff 2 = 90.000000Pump D s eff 0 = 100.000000Pump E s me eff_3 = 85.000000Pump D s eff 1 = 95.000000Pump E s me eff 4 = 80.000000Pump D s eff 2 = 90.000000Pump E s me eff = 95.449234Pump_D s eff 3 = 86.000000 $Pump_E s X = 100.000000$ Pump D s press 1 = 111.300003Pump_E s power_h = 0.132512Pump D s press 2 = 222.899994Pump E spi0 p s = 93.889275Pump D s press 3 = 385.000000Pump E spi0 h = 70.029968Pump D s press 4 = 870.000000Pump E spi0 v = 0.001000Pump_D s me_eff_0 = 100.000000Pump E spi0 av visc = 0.001000Pump_D s me_eff_1 = 95.000000 Pump_E spi0 water = 99.999962 Pump D s me_eff_2 = 90.000000Pump E spo0 p s = 101.300003Pump D s me eff 3 = 85.000000Pump_E spo0 h = 70.029968Pump D s me eff 4 = 80.000000Pump E spo0 v = 0.001000Pump D s me eff = 95.449234Pump E spo0 av visc = 0.001000 $Pump_D s X = 100.000000$ Pump E spo0 water = 99.999962Pump_D s power h = 0.490207Pump F r man speed = 95 Pump D sao0 value = 100.000000 Pump F r sw auto = 1Pump_D sli0 value = 0 Pump F s h in = 0.304800Pump D slo0 value = 1 Pump F s h out = 1.524000Pump D spi0 p s = 96.100311Pump_D spi0 h = 70.010735Pump F s d in = 151.892303Pump_F s d_out = 151.892303 Pump D spi0 v = 0.001000Pump F s rate flow = 0.075710Pump_D spi0 av visc = 0.001000Pump_F s max_pres = 496.399994Pump D spi0 water = 99.999977 Pump F s npsh r = 0.100000Pump D spo0 p s = 101.300003Pump F s npsh a = 9.412016Pump D spo0 h = 70.010735Pump F s t ru = 5.000000Pump D spo0 v = 0.001000Pump F s t rd = 5.000000Pump D spo0 av visc = 0.001000Pump F s spd rated = 2000.000000Pump D spo0 water = 99.999977 $Pump_F s power_pump = 5.000000$ Pump E r man speed = 95Pump F s press out = 101.300003Pump Ersw auto = 1 Pump F s press in = 92.331871Pump E s h in = 0.304800Pump_F s vol_eff = 95.449234 Pump E s h out = 1.524000

Pump G s X = 100.000000Pump F s eff 0 = 100.000000 $Pump_F s eff_1 = 95.000000$ Pump_G spi0 p_s = 90.967842Pump_G spi0 h = 70.000000Pump F s eff 2 = 90.000000Pump G spi0 v = 0.001000Pump F s eff 3 = 86.000000Pump G spi0 av visc = 0.001000Pump F s press 1 = 111.300003Pump_G spi0 water = 100.000000Pump_F s press_2 = 222.899994Pump G spo0 p s = 101.300003Pump F s press 3 = 385.000000 $Pump_G spo0 h = 70.000000$ $Pump_F s press_4 = 870.000000$ Pump G spo0 v = 0.001000Pump F s me eff 0 = 100.000000Pump_F s me_eff_1 = 95.000000 $Pump_G spo0 av_visc = 0.001000$ Pump_F s me_eff_2 = 90.000000Pump G spo0 water = 100.000000Pump Ir man_speed = 95Pump F s me eff 3 = 85.000000Pump F s me eff 4 = 80.000000Pump Irsw auto = 1Pump I s h in = 0.304800Pump F s me eff = 95.449234Pump Ish out = 1.524000Pump F s X = 100.000000Pump Isd in = 151.892303Pump F spi0 p s = 92.331871Pump_I s $d_out = 151.892303$ Pump F spi0 h = 70.000000Pump_F spi0 v = 0.001000Pump I s rate flow = 0.075710Pump_I s max_pres = 496.399994Pump_F spi0 av_visc = 0.001000 Pump I s npsh r = 0.100000Pump F spi0 water = 100.000000Pump Is npsh_a = 9.148413Pump F spo0 p s = 101.300003 $Pump_I s t_r u = 5.000000$ $Pump_F spo0 h = 70.000000$ Pump Ist rd = 5.000000Pump F spo0 v = 0.001000Pump_I s spd_rated = 2000.000000 Pump_F spo0 av_visc = 0.001000Pump I s power pump = 5.000000Pump F spo0 water = 100.000000Pump_I s press out = 101.300003 $Pump_G r man_speed = 95$ Pump_I s press_in = 89.745926 Pump $Grsw_auto = 1$ Pump I s vol_eff = 95.449234Pump $G s h_i n = 0.304800$ Pump_I s eff_0 = 100.000000Pump $G s h_out = 1.524000$ Pump I s eff 1 = 95.000000Pump G s d in = 151.892303Pump_I s eff_2 = 90.000000Pump G s d out = 151.892303Pump I s eff 3 = 86.000000Pump G s rate flow = 0.075710Pump_I s press_1 = 111.300003Pump G s max pres = 496.399994Pump I s press 2 = 222.899994 $Pump_G s npsh_r = 0.100000$ Pump I s press 3 = 385.000000Pump G s npsh_a = 9.272971Pump I s press_4 = 870.000000Pump $G s t_n u = 5.000000$ Pump Is me eff_0 = 100.000000Pump G s t rd = 5.000000Pump Is me eff 1 = 95.000000Pump G s spd_rated = 2000.000000 Pump Is me eff 2 = 90.000000Pump G s power_pump = 5.000000Pump I s me_eff_3 = 85.000000Pump G s press out = 101.300003Pump_I s me_eff_4 = 80.000000Pump_G s press_in = 90.967842Pump I s me eff = 95.449234Pump G s vol eff = 95.449234 $Pump_I s X = 100.000000$ Pump G s eff 0 = 100.000000Pump_I spi0 p_s = 89.745926Pump_G s eff 1 = 95.000000Pump I spi0 h = 70.000000Pump G s eff 2 = 90.000000Pump I spi0 v = 0.001000Pump G s eff 3 = 86.000000Pump I spi0 av visc = 0.001000Pump G s press 1 = 111.300003Pump_I spi0 water = 100.000000 Pump_G s press_2 = 222.899994Pump_I spo0 p_s = 101.300003 $Pump_G s press_3 = 385.000000$ Pump_I spo0 h = 70.000000Pump G s press 4 = 870.000000 $Pump_I spo0 v = 0.001000$ Pump $G s me_{eff_0} = 100.000000$ Pump_G s me_eff_1 = 95.000000Pump_I spo0 av_visc = 0.001000Pump I spo0 water = 100.000000Pump G s me eff 2 = 90.000000Scenario_1 s $h_{in} = 4.978298$ Pump_G s me_eff_3 = 85.000000Scenario 1 s $h_out = 4.978298$ $Pump_G s me_eff_4 = 80.000000$ Scenario 1 s d in = 406.400818Pump G s me eff = 95.449234

Scenario 2fwd s spd limit = 50.000000Scenario 1 s d out = 406.400818Scenario 2fwd spi0 p s = 101.324997Scenario 1 s d orif = 152.400299 Scenario 2fwd spi0 h = 70.027069Scenario_1 s beta = 0.375000Scenario 2fwd spi0 v = 0.001000Scenario 1 s a o = 0.018242Scenario 1 s a in = 0.129718Scenario 2fwd spi0 av visc = 0.001000 Scenario 1 s a out = 0.129718Scenario 2fwd spi0 water = 99.999977 Scenario 2fwd spo0 p s = 101.324997Scenario 1 s mean a o = 0.129718Scenario 1 s d c = 0.608469Scenario 2fwd spo0 h = 70.027069Scenario 1 s k f = 115.055374Scenario 2fwd spo0 v = 0.001000Scenario 2fwd spo0 av visc = 0.001000Scenario 1 s spd limit = 50.000000Scenario_2fwd spo0 water = 99.999977Scenario 1 spi0 p_s = 101.324997Scenario_3 r from_out = 1 Scenario 1 spi0 h = 70.027069Scenario 1 spi0 v = 0.001000Scenario 3 s h in = 4.978298Scenario 1 spi0 av visc = 0.001000Scenario_3 s h_out = 4.978298Scenario 3 s d in = 406.400818Scenario 1 spi0 water = 99.999977 Scenario 1 spo0 p s = 101.324997Scenario 3 s d out = 406.400818Scenario 1 spo0 h = 70.027069Scenario 3 s d orif = 152.400299 Scenario 1 spo0 v = 0.001000Scenario 3 s beta = 0.375000Scenario 1 spo0 av visc = 0.001000Scenario 3 s a o = 0.018242Scenario 3 s a in = 0.129718Scenario 1 spo0 water = 99.999977 Scenario 2aft r from_out = 1 Scenario 3 s a out = 0.129718Scenario_3 s mean_a_o = 0.129718Scenario 2aft s h in = 4.978298Scenario 3 s d c = 0.608469Scenario 2aft s h out = 4.978298Scenario 3 s k f = 115.055374Scenario 2aft s d in = 406.400818 Scenario 3 s spd $\lim_{t \to \infty} 1 = 50.000000$ Scenario 2aft s d out = 406.400818Scenario_3 spi0 $p_s = 101.324997$ Scenario 2aft s d orif = 152.400299Scenario 3 spi0 h = 70.000000Scenario 2aft s beta = 0.375000Scenario 3 spi0 v = 0.001000Scenario 2aft s a o = 0.018242Scenario_3 spi0 av visc = 0.001000 Scenario 2aft s a in = 0.129718Scenario 2aft s a out = 0.129718Scenario 3 spi0 water = 100.000000Scenario 3 spo0 p s = 101.324997Scenario 2aft s mean a o = 0.129718Scenario 2aft s d c = 0.608469Scenario 3 spo0 h = 70.000000Scenario_3 spo0 v = 0.001000Scenario 2aft s k f = 115.055374Scenario 3 spo0 av_visc = 0.001000Scenario 2aft s spd limit = 50.000000Scenario 3 spo0 water = 100.000000Scenario 2aft spi0 p s = 101.324997Scenario 2aft spi0 h = 70.000000Suction Br num 90 = 1Suction B r from in = 1Scenario 2aft spi0 v = 0.001000Scenario_2aft spi0 av visc = 0.001000 Suction B s h in = 0.304800Suction B s h out = 0.304800Scenario 2aft spi0 water = 100.000000 Suction B s d in = 151.892303Scenario_2aft spo0 $p_s = 101.324997$ Suction B s d out = 151.892303Scenario 2aft spo0 h = 70.000000Suction B s 1 p = 3.048000Scenario 2aft spo0 v = 0.001000Scenario 2aft spo0 av visc = 0.001000Suction B s a in = 0.018120Suction B s a out = 0.018120Scenario 2aft spo0 water = 100.000000Scenario 2fwd s $h_in = 4.978298$ Suction B s m pipe = 55.230301Suction B s k f = 0.814771Scenario 2fwd s h out = 4.978298Suction B s k pipe = 0.544996Scenario 2fwd s d in = 406.400818Suction B s friction = 0.027159Scenario 2 fwd s d out = 406.400818Suction B s Re = 16490.125000Scenario 2fwd s d orif = 152.400299 Scenario 2fwd s beta = 0.375000Suction B s epsilon = 0.001500Scenario 2fwd s a o = 0.018242Suction B spi0 p_s = -293.663116Suction B spi0 h = 70.010735Scenario 2fwd s a in = 0.129718Suction B spi0 v = 0.001000Scenario 2fwd s a out = 0.129718Suction B spi0 av visc = 0.001000Scenario 2fwd s mean a o = 0.129718Suction B spi0 water = 99.999977 Scenario 2fwd s d c = 0.608469Suction B spo0 p_s = 96.345711Scenario 2fwd s k f = 115.055374

Suction F s h in = 0.304800Suction B spo0 h = 70.011238Suction F s h out = 0.304800Suction B spo0 v = 0.001000Suction_B spo0 av visc = 0.001000 Suction F s d in = 151.892303Suction_F s $d_{out} = 151.892303$ Suction B spo0 water = 99.999977 Suction F s 1 p = 3.048000Suction D r num 90 = 1Suction F s a in = 0.018120Suction_D r from_in = 1 Suction F s a out = 0.018120Suction D s h in = 0.304800Suction F s m pipe = 55.230293Suction D s h out = 0.304800Suction F s k f = 19.199999Suction D s d in = 151.892303Suction F s k pipe = 12.842783 Suction D s d out = 151.892303Suction_F s friction = 0.640000 Suction D s 1 p = 3.048000Suction_F s Re = 100.000000Suction D s a in = 0.018120Suction F s epsilon = 0.001500Suction D s a out = 0.018120Suction_F spi0 $p_s = -290.709442$ Suction D s m pipe = 55.230301Suction_F spi0 h = 70.000000Suction D s k f = 0.809613Suction F spi0 v = 0.001000Suction D s k pipe = 0.541546Suction_F spi0 av_visc = 0.001000 Suction D s friction = 0.026987Suction F spi0 water = 100.000000Suction D s Re = 16903.494141Suction F spo0 p s = 92.331871Suction D s epsilon = 0.001500Suction F spo0 h = 70.000000Suction D spi0 p s = -292.905060Suction F spo0 v = 0.001000Suction D spi0 h = 70.010300Suction F spo0 av visc = 0.001000Suction D spi0 v = 0.001000Suction_F spo0 water = 100.000000Suction D spi0 av visc = 0.001000Suction_G r num 90 = 1Suction D spi0 water = 99.999985Suction Gr from in = 1Suction D spo0 p s = 96.100311Suction_G s $h_{in} = 0.304800$ Suction D spo0 h = 70.010735Suction_G s $h_out = 0.304800$ Suction_D spo0 v = 0.001000Suction $G \, s \, d \, in = 151.892303$ Suction D spo0 av visc = 0.001000Suction_G s $d_out = 151.892303$ Suction_D spo0 water = 99.999977 Suction_G s $1_p = 3.048000$ Suction Ernum 90 = 1Suction G s a in = 0.018120 Suction Er from in = 1Suction G s a out = 0.018120Suction_E s $h_in = 0.304800$ Suction G s m pipe = 55.230293Suction E s h out = 0.304800Suction G s k f = 19.199999Suction E s d in = 151.892303Suction G s k pipe = 12.842783 Suction $E s d_out = 151.892303$ Suction_G s friction = 0.640000 Suction E s 1 p = 3.048000Suction_G s Re = 100.000000Suction E s a in = 0.018120Suction_G s epsilon = 0.001500Suction E s a out = 0.018120Suction G spi0 p_s = -289.885223Suction E s m pipe = 55.230309Suction_G spi0 h = 70.000000Suction Esk f = 0.513320Suction_G spi0 v = 0.001000Suction Esk pipe = 0.343357Suction_G spi0 av_visc = 0.001000 Suction E s friction = 0.017111Suction_G spi0 water = 100.000000 Suction E s Re = 126003.679688 Suction_G spo0 p_s = 90.967842Suction E s epsilon = 0.001500Suction G spo0 h = 70.000000Suction E spi0 p s = -291.616547Suction_E spi0 h = 70.029167 Suction G spo0 v = 0.001000Suction G spo0 av visc = 0.001000Suction_E spi0 v = 0.001000Suction_G spo0 water = 100.000000Suction E spi0 av visc = 0.001000Suction Ir num 90 = 1Suction E spi0 water = 99.999969 Suction I r from in = 1Suction E spo0 p s = 93.889275Suction Ish in = 0.304800Suction E spo0 h = 70.029968Suction_I s $h_{out} = 0.304800$ Suction E spo0 v = 0.001000Suction Isd in = 151.892303Suction_E spo0 av_visc = 0.001000 Suction I s d out = 151.892303Suction_E spo0 water = 99.999962 Suction_I s $1_p = 3.048000$ Suction Fr num 90 = 1Suction Is a in = 0.018120Suction F r from in = 1

Tee_G spo0 water = 99.999969

Suction Is a out = 0.018120Suction Is m pipe = 55.230293Suction Is k f = 19.199999Suction Isk pipe = 12.842783Suction I s friction = 0.640000Suction I s Re = 100.000000Suction I s epsilon = 0.001500Suction I spi0 p s = -289.120972Suction I spi0 h = 70.000000Suction I spi0 v = 0.001000Suction_I spi0 av_visc = 0.001000 Suction_I spi0 water = 100.000000 Suction I spo0 p_s = 89.745926Suction I spo0 h = 70.000000Suction I spo0 v = 0.001000Suction_I spo0 av_visc = 0.001000 Suction I spo0 water = 100.000000Tee $Grpnode_id = 3$ Tee G r JctType = 1Tee GrKValType = 1Tee_G s p_s_j = -289.602631Tee_G s $h_j = 70.027077$ Tee_G s $v_j = 0.001000$ Tee G s cap j = 0.001000Tee G s sum w net = 0.306335 $Tee_G s vol_j = 0.001000$ Tee $G s m_j = 1.000000$ Tee $G s cd_lk = 100.000000$ Tee G s k f tr = 0.299496Tee G s k f tb = 0.898487Tee G s epsilon = 0.046000Tee_G s av_visc_j = 0.001000Tee G s water j = 99.999969 $Tee_G s angle = 90.000000$ Tee $G \, s \, KBrnIn = 50.000000$ Tee $G \, s \, KRunIn = 10.000000$ Tee $G ext{ s } KRunOut = 10.000000$ Tee G spi0 $p_s = -289.602631$ Tee G spi0 h = 70.027077Tee G spi0 v = 0.001000 $Tee_G spi0 av_visc = 0.001000$ Tee_G spi0 water = 99.999969Tee G spi1 $p_s = -289.602631$ Tee_G spi1 h = 70.000000Tee G spil v = 0.001000Tee_G spil av_visc = 0.001000Tee G spi1 water = 100.000000 $Tee_G spo0 p_s = -289.602631$ Tee G spo0 h = 70.027077Tee G spo0 v = 0.001000

Tee $G \text{ spo0 av_visc} = 0.001000$

APPENDIX C. COMPARTMENT VOLUME PROGRAM

```
% This program computes 10 values of height vs. volume for each
% compartment of the Wigley Hull
format long
j=1;
x=[200,150,120,80,50,0,-25,-90,-130,-160,-200]; % bulkheads
                           % 10 heights with first being zero
tvol=zeros(10,11);
while j<11
   i=1:
   zdelta=40/9;
      for z=0:zdelta:40
                           % compartment's aft bulkhead
         xl=x(j+1);
                           % compartment's fwd bulkhead
         xh=x(j);
         tvol(i,1)=z;
                           % height
         tvol(i,j+1)=2*((z^2)/2-(z^3)/240)*((xh-xl)-
(4/(3*400^2))*(xh^3-xl^3));
          i=i+1;
      end
   tvol
   j=j+1;
 end
end
%results
%tvol =
  1.0e+004 *
                      Volume
                                         Volume
                                                           Volume
                                         Compartment B
                                                            Compartment C
        height
                      Compartment A
                                                            0.05681085200427
                                         0.03095747599451
                      0.02179545800945
  0.00044444444444
                                                            0.21850327693949
  0.00088888888889
                      0.08382868465173
                                         0.11906721536351
                                         0.25718518518519
                                                            0.47196707818930
                      0.18106995884774
  0.00133333333333
                                         0.43816735253772
                                                            0.80409205913733
                      0.30848955951837
  0.0017777777778
                      0.46105776558451
                                         0.65486968449931
                                                            1.20176802316720
  0.0022222222222
                                                            1.65188477366255
                      0.63374485596708
                                         0.90014814814815
   0.00266666666667
                                                            2.14133211400701
                                         1.16685871056241
   0.00311111111111
                      0.82152110958695
                                                            2.65699984758421
                                         1.44785733882030
                      1.01935680536504
   0.0035555555556
                                         1.73600000000000
                                                            3.18577777777778
                      1.2222222222222
   0.00400000000000
                      Volume
                                         Volume
                                                            Volume
용
  Volume
                                                            Compartment G
                      Compartment E
                                         Comaprtment F
용
   Compartment D
                                     Λ
                                         0.04730605090687
                                                            0.11233180917543
  0.05093004115226
                      0.09312604785856
용
                                                            0.43204541990550
                                         0.18194634964182
                      0.35817710714830
  0.19588477366255
                                                            0.93321810699588
                                         0.39300411522634
                      0.77366255144033
  0.42311111111111
                      1.31809175430575
                                         0.66956256668191
                                                            1.58992714525225
  0.72085596707819
                                         1.00070492303003
                                                            2.37624980948026
                      1.96997408931565
  1.07736625514403
                                                            3.26626337448560
  1.48088888888889
                      2.70781893004115
                                         1.37551440329218
욧
                                                            4.23404511507392
                                         1.78307422648986
                      3.51013565005335
&
   1.91967078189300
                                         2.21246761164457
                                                            5.25367230605091
                      4.35543362292334
   2.38195884773663
                                                            6.2992222222222
                                         2.6527777777778
   2.85600000000000
                      5.2222222222222
```

용	Volume	Volume	Volume
용	Compartment H	Compartment I	Compartment J
용	0	0	0
용	0.05281633897272	0.02696296296296	0.01420271300107
용	0.20313976527968	0.10370370370370	0.05462581923487
ક	0.43878189300412	0.22400000000000	0.11799176954733
용	0.74755433622923	0.38162962962963	0.20102301478433
8	1.11726870903826	0.57037037037037	0.30044200579180
용	1.53573662551440	0.78400000000000	0.41297119341564
ક	1.99076969974089	1.01629629629630	0.53533302850175
용	2.47017954580095	1.26103703703704	0.66424996189605
ş.	2.9617777777778	1.51200000000000	0.79644444444444

APPENDIX D. NAVAL ARCHITECTURE SPREADSHEET

>(:PI):	41111	•
Scena	41 IV	

Compartment A (x coords: 200 to 150) Compartment F (x coords: 0 to -25)				
Tank level	tank level			
Tank volume	tank volume			
167.04545 x coord centroid	-12.46728 x coord centroid			
0.0002491 z coord centroid	0.0002491 z coord centroid			
Compartment B (x coords: 150 to 120)	Compartment G (x coords: -25 to -90)			
Tank level	tank level			
Tank volume	tank volume			
134.06682 x coord centroid	-56.38586 x coord centroid			
12.543783 z coord centroid	0.0002491 z coord centroid			
Compartment C (x coords: 120 to 80)	Compartment H (x coords: -90 to -130)			
Tank level	tank level			
Tank volume	tank volume			
99.107143 x coord centroid	-108.9436 x coord centroid			
20.147253 z coord centroid	0.0002491 z coord centroid			
Compartment D (x coords: 80 to 50)	Compartment I (x coords: -130 to -160)			
Tank level	tank level			
Tank volume	tank volume			
64.726891 x coord centroid	-143.8492 x coord centroid			
0.0002491 z coord centroid	0.0002491 z coord centroid			
Compartment E (x coords: 50 to 0)	Compartment J (x coords: -200 to -160)			
Tank level	tank level			
Tank volume	tank volume			
24.734043 x coord centroid	-173.5714 x coord centroid			
0.0002491 z coord centroid	0.0002491 z coord centroid			

	Initial displacement		
25	Initial KG		
	Revised dis		
32 37524	Revised dra	aft	
20.27218	KB		
396.7514	BM (L)		
417.0235	KM (L)		
24.1678	KG		
392.8557	GM (L)		
484.6742	Moment to	trim 1 in	
169.7025	Trim (in)	1	
13.88929	LCG		
39 93723			
24 81326	Draft aft		
48.36139	BM(T)		
68.63357	KM(T)		
44.46577	GM(T)		

	Hull hole scenario 3		overboard B		overboard F
-15	Initial x coord	135	Initial x coord	-12.5	Initial x coord
20	Initial z coord	25	Initial z coord	1	Initial z coord
11.35387	Revised depth	12.29617	Revised depth		Revised depth
19.62001	Revised pressure	20.02834	Revised pressure	17 49165	Revised pressure
	Simsmart pressure		overboard D		overboard G
	Hull hole scenario 2	65	Initial x coord		Initial x coord
65	Initial x coord	25	Initial z coord		Initial z coord
20	Initial z coord	9.451958	Revised depth		Revised depth
14.45196	Revised depth	18.79585	Revised pressure	16.84053	Revised pressure
20.96251	Revised pressure		overboard E		overboard I
	Simsmart pressure	25	Initial x coord		Initial x coord
	Hull hole scenario 1	25	Initial z coord		Initial z coord
100	Initial x coord	7.826691	Revised depth		Revised depth
20	Initial z coord	18.09157	Revised pressure	15.4617	Revised pressure
15.87407	Revised depth				
21.57876	Revised pressure				
	Simsmart pressure				

Excel cell formulas

	Α	В
1	Compartment A (x coords: 200 to 150)	
2	(Simlinkser PFhullfull!'Compartment_A@I_tk@s')	tank level
3	(Simlinkser PFhullfull!'Compartment_A@v_tk@s')	tank volume
	(((A32^2-A33^2)/2)-(A32^4-A33^4)/(400^2))/((A32-A33)-4*(A32^3-A33^3)/(3*(400^2)))	x coord centroid
5	(((A2^3)/3)-((A2^4)/320))*((A32-A33-(A32^3-A33^3)/120000)/(A3/2))	z coord centroid
6		
7	Compartment B (x coords: 150 to 120)	
8	(Simlinkser PFhullfull!'Compartment_B@I_tk@s')	tank level
9	(Simlinkser PFhullfull!'Compartment_B@v_tk@s')	tank volume
	(((A33^2-A34^2)/2)-(A33^4-A34^4)/(400^2))/((A33-A34)-4*(A33^3-A34^3)/(3*(400^2)))	x coord centroid
11	(((A8^3)/3)-((A8^4)/320))*((A33-A34-(A33^3-A34^3)/120000)/(A9/2))	z coord centroid
12		
13	Compartment C (x coords: 120 to 80)	
14	(Simlinkser PFhullfull!'Compartment_C@l_tk@s')	tank level
15	(Simlinkser PFhullfull!'Compartment_C@v_tk@s')	tank volume
16	(((A34^2-A35^2)/2)-(A34^4-A35^4)/(400^2))/((A34-A35)-4*(A34^3-A35^3)/(3*(400^2)))	x coord centroid
17	(((A14^3)/3)-((A14^4)/320))*((A34-A35-(A34^3-A35^3)/120000)/(A15/2))	z coord centroid
18		
19	Compartment D (x coords: 80 to 50)	
20	(Simlinkser PFhullfull!'Compartment_D@I_tk@s')	tank level
21	(Simlinkser PFhullfull!'Compartment_D@v_tk@s')	tank volume
22	(((A35^2-A36^2)/2)-(A35^4-A36^4)/(400^2))/((A35-A36)-4*(A35^3-A36))/(3*(400^2)))	x coord centroid
23	(((A20^3)/3)-((A20^4)/320))*((A35-A36-(A35^3-A36^3)/120000)/(A21/2))	z coord centroid
25	Compartment E (x coords: 50 to 0)	
26	(SimlinkserIPFhullfull!'Compartment_E@I_tk@s')	tank level
27	(Simlinkser PFhullfull!'Compartment_E@v_tk@s')	tank volume
28	(((A36^2-A37^2)/2)-(A36^4-A37^4)/(400^2))/((A36-A37)-4*(A36^3-A37^3)/(3*(400^2)))	x coord centroid
29	(((A26^3)/3)-((A26^4)/320))*((A36-A37-(A36^3-A37^3)/120000)/(A27/2))	z coord centroid
30		
31	Bulkheads	
32	200	
	150	
34	120	
35	80	
36	50	
37	0	
38	-25	
39	-90	
40	-130	
41	-160	
71	-200	

	D	E
1	Compartment F (x coords: 0 to -25)	
2	(Simlinkser PFhullfull!'Compartment_F@I_tk@s')	tank level
3	(Simlinkser PFhullfull!'Compartment_F@v_tk@s')	tank volume
4	(((A37^2-A38^2)/2)-(A37^4-A38^4)/(400^2))/((A37-A38)-4*(A37^3-A38^3)/(3*(400^2)))	x coord centroid
5	(((D2^3)/3)-((D2^4)/320))*((A37-A38-(A37^3-A38^3)/120000)/(D3/2))	z coord centroid
6		
7	Compartment G (x coords: -25 to -90)	
8	(Simlinkser PFhullfull!'Compartment_G@I_tk@s')	tank level
9	(Simlinkser PFhullfull!'Compartment_G@v_tk@s')	tank volume
10	(((A38^2-A39^2)/2)-(A38^4-A39^4)/(400^2))/((A38-A39)-4*(A38^3-A39^3)/(3*(400^2)))	x coord centroid
11	(((D8^3)/3)-((D8^4)/320))*((A38-A39-(A38^3-A39^3)/120000)/(D9/2))	z coord centroid
12		
13	Compartment H (x coords: -90 to -130)	
14	(Simlinkser PFhullfull!'Compartment_H@I_tk@s')	tank level
15	(Simlinkser PFhullfull!'Compartment_H@v_tk@s')	tank volume
1	(((A39^2-A40^2)/2)-(A39^4-A40^4)/(400^2))/((A39-A40)-4*(A39^3-A40^3)/(3*(400^2)))	x coord centroid
17	(((D14^3)/3)-((D14^4)/320))*((A39-A40-(A39^3-A40^3)/120000)/(D15/2))	z coord centroid
18		
19	Compartment I (x coords: -130 to -160)	
20	(Simlinkser PFhullfull!'Compartment_l@l_tk@s')	tank level
21	(Simlinkser PFhullfull!'Compartment_l@v_tk@s')	tank volume
22	(((A40^2-A41^2)/2)-(A40^4-A41^4)/(400^2))/((A40-A41)-4*(A40^3-A41^3)/(3*(400^2)))	x coord centroid
23	(((D20^3)/3)-((D20^4)/320))*((A40-A41-(A40^3-A41^3)/120000)/(D21/2))	z coord centroid
24		
25	Compartment J (x coords: -200 to -160)	
26	(Simlinkser PFhullfull!'Compartment_J@I_tk@s')	tank level
27	(Simlinkser PFhullfull!'Compartment_J@v_tk@s')	tank volume
28	(((A41^2-A42^2)/2)-(A41^4-A42^4)/(400^2))/((A41-A42)-4*(A41^3-A42^3)/(3*(400^2)))	x coord centroid
29	(((D26^3)/3)-((D26^4)/320))*((A41-A42-(A41^3-A42^3)/120000)/(D27/2))	z coord centroid

	G	Н
1	180000/35	initial displacement
2	25	initial KG
3	G1+(A3+A9+A15+A21+A27+D3+D9+D15+D21+D27)/35	revised displacement
4	G3^3*(10^-11)*(8.404)-G3^2*(10^- 6)*(1.30242217)+G3*0.00973063695146+2.973060313161	revised draft
5	(((G4^3)/3)-((G4^4)/320))*(266.66666/((35*G3)/2))	KB
6	85333333.33*(1-((40-G4)/40)^2)/(G3*35)	BM (L)
7	G5+G6	KM (L)
8	(G2*G1+(A3*A5+A9*A11+A15*A17+A21*A23+A27*A29+D3*D5+D9*D11+D15* D17+D21*D23+D27*D29)/35)/G3	KG
9	G7-G8	GM (L)
10	G3*G9/(12*400)	moment to trim 1 in
	*D22+D27*D28)/(35*G10)	trim (in)
12	(A3*A4+A9*A10+A15*A16+A21*A22+A27*A28+D3*D4+D9*D10+D15*D16+D21 *D22+D27*D28)/(35*G3)	LCG
13	G4+(200+ABS(G12))*(G11)/(400*12)	draft fwd
14	2*G4-G13	draft aft
15	(2/3)*(20^3)*((1-((40-G4)^2)/40^2)^3)*(2)*1050.071/(G3*35)	BM(T)
16	G5+G15	KM(T)
17	G16-G8	GM(T)

	J	K
1		hull hole scenario 3
2	-15	Initial x coord
3	20	Initial z coord
4	G4-J3+(G12-J2)*(-1)*(G4-G14)/(200+G12)	Revised depth
5	14.7+62.4*J4/144	Revised pressure
6	(Simlinkser PFhullfull!'Hole_Depth_F-i@p_s@s')	Simsmart pressure
7		hull hole scenario 2
8	65	Initial x coord
9	20	Initial z coord
10	G4-J9-(J8-G12)*(G4-G13)/(200-G12)	Revised depth
11	14.7+62.4*J10/144	Revised pressure
12	(Simlinkser PFhullfull!'Hole_Depth_D-i@p_s@s')	Simsmart pressure
13		hull hole scenario 1
14	100	Initial x coord
15	20	Initial z coord
16	G4-J15-(J14-G12)*(G4-G13)/(200-G12)	Revised depth
17	14.7+62.4*J16/144	Revised pressure
18	(Simlinkser PFhullfull!'Hole_Depth_C-i@p_s@s')	Simsmart pressure

	M	N
1		Overboard B
2	13	Initial x coord
3	2	Initial z coord
4	G4-M3-(M2-G12)*(G4-G13)/(200-G12)	Revised depth
5	14.7+62.4*M4/144	Revised pressure
6		Overboard D
7	6	Initial x coord
8	2	Initial z coord
9	G4-M8-(M7-G12)*(G4-G13)/(200-G12)	Revised depth
10	14.7+62.4*M9/144	Revised pressure
11		Overboard E
12	29	Initial x coord
13	25	Initial z coord
14	G4-M13-(M12-G12)*(G4-G13)/(200-G12)	Revised depth
15	14.7+62.4*M14/144	Revised pressure

	P	Q
1		overboard F
2	-12.5	Initial x coord
3	25	Initial z coord
4	G4-P3+(G12-P2)*(-1)*(G4-G14)/(200+G12)	Revised depth
5	14.7+62.4*P4/144	Revised pressure
6		overboard G
7	-55	Initial x coord
8	25	Initial z coord
9	G4-P8+(G12-P7)*(-1)*(G4-G14)/(200+G12)	Revised depth
10	14.7+62.4*P9/144	Revised pressure
11		overboard I
12	-145	Initial x coord
13	25	Initial z coord
14	G4-P13+(G12-P12)*(-1)*(G4-G14)/(200+G12)	Revised depth
15	14.7+62.4*P14/144	Revised pressure

APPENDIX E. DRAFT POLYNOMIAL PROGRAM

```
% This program computes a third order polynomial of draft as a function
% of displaced volume. It is accomplished by first creating a curve of
% draft vs. displaced volume and then applying a curve fitting routine,
% such as polyfit, to it.
format long
tvol=zeros(101,2);
i=1;
zdelta=40/100;
for z=0:zdelta:40
           x1 = -200;
           xh=200;
           tdisp(i,1)=z;
           tdisp(i,2)=2*((z^2)/2-(z^3)/240)*((xh-x1)-(4/(3*400^2))*(xh^3-xh^2))*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-xh^2)*(xh^3-x
x1^3)/35;
           i=i+1;
end
plot(tdisp(:,2),tdisp(:,1));
y=tdisp(:,1);
x=tdisp(:,2);
p=polyfit(x,y,3);
 % polynomial approximation
 % z=(vol^3)*0.00000000008404 - (vol^2)*0.00000130242217 +
               vol*0.00973063695146 + 2.80840409822672
                               8.403941735996557e-011
 8p(1)
 %p(2) -1.302422165138507e-006
 <del>%</del>p(3)
                               0.00973063695146
                               2.80840409822672
 8թ(4)
```

APPENDIX F. EXCEL TRANSFER MACRO

```
Sub transfer()
  'transfer Macro
  'Macro recorded 10/30/98 by Preferred Customer
  'establishes a conversation with a server application
  'that supports the specified service name and topic
  'name pair
  SIMSMARTchan = Application.DDEInitiate("simlinkser", "PFhullfull")
  'WriteValues
  Set J5 = Worksheets("Sheet1").Range("J5")
  Set J11 = Worksheets("Sheet1").Range("J11")
  Set J17 = Worksheets("Sheet1").Range("J17")
  Set M5 = Worksheets("Sheet1").Range("M5")
  Set M10 = Worksheets("Sheet1").Range("M10")
  Set M15 = Worksheets("Sheet1").Range("M15")
  Set p5 = Worksheets("Sheet1").Range("p5")
  Set p10 = Worksheets("Sheet1").Range("p10")
  Set p15 = Worksheets("Sheet1").Range("p15")
  'write data through chanel
  If 2 \ge 1 Then
  Application.DDEPoke SIMSMARTchan, "Hole_Depth_F-i@p_s@s", J5
  Application DDEPoke SIMSMARTchan, "Hole_Depth_D-i@p_s@s", J11
  Application.DDEPoke SIMSMARTchan, "Hole_Depth_C-i@p_s@s", J17
  Application DDEPoke SIMSMARTchan, "Overbd_B-o@p_s@s", M5
  Application.DDEPoke SIMSMARTchan, "Overbd_D-o@p_s@s", M10
  Application DDEPoke SIMSMARTchan, "Overbd_E-o@p_s@s", M15
  Application DDEPoke SIMSMARTchan, "Overbd_F-o@p_s@s", p5
  Application.DDEPoke SIMSMARTchan, "Overbd_G-o@p_s@s", p10
  Application.DDEPoke SIMSMARTchan, "Overbd_I-o@p_s@s", p15
  End If
   'close the conversation
   Application.DDETerminate SIMSMARTchan
```

End Sub

APPENDIX G. SCENARIO 1 RESULTS

Entire scenario run at speed ratio of 6.

Mean	Fwd	Aft	GM(T)	Displacement	LCG (ft)	Time
Draft	Draft	Draft	O(.)			(min)
30.00392			45.44269	5144.16146	-7E-08	0
30.07891	30.29863		45.4847	5169.13938	0.478898	1.12
30.15465	30.59678	29.71253	45.51058	5194.36422	0.957856	2.22
30.21598	30.83856	29.5934	45.52039	5214.78786	1.342256	3.1
30.2918	31.13789	29.44571	45.53066	5240.03224	1.813248	4.18
30.36713			45.52702	5265.10460	2.27656	5.25
30.44072	31.72713		45.51716	5289.59063	2.724799	6.28
30.49095	31.9262	29.0557	45.51123	5306.2943	3.0282	7
30.57532	32.26096	28.88968	45.49167	5334.33747	3.533297	8.15
30.65442	32.57545	28.7334	45.46233	5360.61137		
30.72065	32.84286	28.59844	45.43851	5382.59132	4.398718	
30.79738	33.15553	28.43922	45.41591	5408.03241	4.859011	11.17
30.861	33.41647	28.30554	45.3931	5429.11074		
30.94943	33.78124	28.11762	45.35458	5458.37161	5.767459	
31.01976	34.07317	27.96634	45.32118	5481.61477	6.185585	
31.08483	34.34464	27.82501	45.28696	5503.09394	6.571191	15.08
31.15648	34.64491	27.66804	45.255	5526.71605	6.994203	
31.21647	34.89735	27.53559	45.22602	5546.46962		1
31.29178	35.21555	27.36801	45.18597			
31.35886	35.50023	27.2175	45.14774			
31.41818	35.75286	27.0835	45.11413			
31.48148	36.02341	26.93955				
31.53337	36.24595	26.82078				
31.59915	36.52907	26.66924				
31.66354	36.80709	26.51999	44.96173			
31.71906	37.04761	26.39052	44.92659	5710.87497		
31.77272	37.28068	26.26475	44.89098			
31.82088	37.49043	26.15133				
31.88098	37.75291	26.00906				
31.93553	37.9918					
31.99088						
32.04783			1			1
32.09281						
32.14546					12.63766	
32.18988						
32.23848						
32.28077		- 				
32.33499					· · · · · · · · · · · · · · · · · · ·	
32.37524	39.93723	24.81326	44.46577	5921.85905	13.88929	37.52

Hull hole	Bulkhd	Comp_B	Comp_B	Comp_C	Comp_C	Time
(gpm)	(gpm)	Level	vol	level	vol	(min)
0	0	0.04	2.78613	0.04	5.1129	0
5972.82	0	0.04	2.78613	5.299947	879.3398	1.12
6028.86	0	0.04	2.78613	7.726685	1762.209	2.22
6075.77	0	0.04	2.78613	9.400917	2477.037	3.1
6130.01	0	0.04	2.78613	10.950212	3360.59	4.18
6177.61	0	0.04	2.78613	12.488948	4238.123	5.25
6228.43	0	0.04	2.78613	13.835773	5095.134	6.28
6262	0	0.04	2.78613	14.618114		7
6320.89	0	0.04	2.78613	15.931557	6661.273	8.15
6373.19	188.887	0.071662	4.991493	17.159182	7578.654	9.23
6402.18	485.334	0.706899	49.23783	18.07147	8303.706	10.13
6469.03	659.216	1.853814	129.1242	18.977345	9114.258	11.17
6511.47	771.805	3.025334	210.7244	19.710651	9770.399	12
6378.56	902.512	4.616314	343.6428	20.706675	10661.61	13.2
6212.78	992.057	5.234919	466.2795	21.478798	11352.49	14.17
6060.76	1066.66	5.871991	592.5775	22.177828		15.08
5913.63	1133.69	6.639455	744.7254	22.849125	12652.58	16.12
5795.14	1185.55	7.330605	881.744	23.396494	13206.94	17
5645.12	1246.41	8.260505	1066.094	24.07015	13889.19	18.13
5512.87	1297.17	9.053617	1241.862	24.657717	14484.26	19.17
5396.54	1339.62	9.583136	1406.418	25.167187	15000.23	20.1
5272.19	1382.66	10.178622	1591.475	25.700441	15540.29	21.12
5172.37	1416.34	10.690466			15974.82	22
5046.46	1457.12	11.370498	1961.869		16514.89	23.07
4936.87	1492.13	12.068411	2178.756	27.132723	17032.1	24.17
4843.26	1521.09	12.694996	2373.477	27.529812	17469.39	25.13
4755.38	1548.05	13.32219	2568.388	27.906473	17884.2	26.08
4675.64	1571.45	13.768641	2749.112	28.238644	18250	26.95
4580.98	1599.62	14.341268	2982.291	28.645195	18697.71	28.05
4494.81	1624.23	14.879302	3201.383	29.006302	19095.39	29.07
4405.19	1648.32	15.44337	3431.077	29.365128		30.12
4317.17	1672.21	16.042955	3675.234	29.726038	19888	31.22
4249.69	1690.45	16.530535	3873.781	30.005178	20195.41	32.1
4171.04	1703.6	17.116545		30.325308		33.15
4103.98	1688.43	17.617554	4316.424	30.592163		34.05
4020.7	1675.53	18.104879		30.881947		35.05
3967.31	1665.29	18.509371	4738.381	31.130783	21436.15	35.53
3893.71	1650.64	19.032047	4993.228	31.43227	21785.95	37.08
3837.38	1639.36	19.422863	5183.783	31.654278	22043.53	37.52

APPENDIX H. SCENARIO 1A RESULTS

Entire scenario run at speed ratio 6.

Mean		Aft	GM(T)	Displacement	LCG (ft)	Pumps	Valves	Time
Draft	Draft	Draft			75 00	on	open	(min)
30.00392	30.00392	30.00392					none	0
30.07896		29.8591					none	1.12
30.14773		29.72594		5192.06009			none	2.12
30.22405	30.87039		45.522	5217.47461	1.3926		C gate	3.22
30.26645	31.03774			5231.59102			C gate	4.15
30.3068	31.19716			5245.02506			C gate	5.07
30.35711	31.3961	29.31812		5261.77084			C gate	6.2
30.40113	31.57034	29.23193	45.521	5276.42063			C gate	7.18
30.444	31.74013	29.14788	45.517	5290.68214			C gate	8.13
30.48797	31.91438	29.06156	45.512	5305.30305	3.010249	B/D	C gate	9.1
30.5997	32.35777	28.84162	45.484	5342.43656	3.678186	B/D	C gate	11.5
30.65039	32.55933	28.74144	45.464	5359.27087	3.978226	B/D	C gate	12.62
30.70548	32.78298	28.62798	45.444	5377.55616	4.311021	B/D	C gate	13.78
30.76829	33.04125	28.49534	45.429	5398.39135	4.69377	B/D	C gate	15.1
30.82454	33.27445	28.37464	45.413	5417.03487	5.037245	B/D/E	B/C gate	16.27
30.85304		28.3215	45.397	5426.4737	5.194004	B/D/E	B/C gate	17.05
30.89041	33.52936	28.25145	45.374	5438.84487	5.399304	B/D/E	B/C gate	18.1
30.93078					5.622863	B/D/E	B/C gate	19.27
30.96627					5.820565	B/D/E	B/C gate	20.33
30.9899					5.952794	B/D/E	B/C gate	21.04
31.0212					6.12849	B/D/E	B/C gate	22.07
31.05243					6.304397	B/D/E	B/C gate	23.05
31.08464						B/D/E	B/C gate	24.15
31.11678						B/D/E	B/C gate	25.28
31.14836					6.846895	B/D/E	B/C gate	26.43
31.19065		 			7.086692	B/D/E	B/C gate	28.03
31.21949						B/D/E	B/C gate	29.17
31.2442					7.390593	B/D/E	B/C gate	30.17
31.29276					7.666494	B/D/E	B/C gate	32.07
31.33951	35.34874			 	7.932985	B/D/E	B/C gate	34.05
31.38377						B/D/E	B/C gate	36.23
31.42047					8.396924	B/D/E	B/C gate	38.05
31.45748					8.6099	B/D/E	B/C gate	39.57
	35.94994						B/C gate	41.27
	36.16173					B/D/E	B/C gate	44.05
31.565							B/C gate	46.07
31.59747							B/C gate	48.07
31.63103							B/C gate	50.25
31.65862					9.775079		B/C gate	52.05
31.68748							B/C gate	54.03
31.71655				ļ			B/C gate	56.1
	37.12898						B/C gate	58.75
	37.12090						B/C gate	60

Mean	Fwd	Aft	GM(T)	Displacement	LCG (ft)	Pumps	Valves	Time
Draft	Draft	Draft	, ,			on	open	(min)
31.80868	37.38096	26.2364	44.825	5739.95604	10.65347	B/D/E	B/C gate	63.13
31.84421	37.54044	26.14798	44.805	5751.4657	10.86242	B/D/E	B/C gate	66.05
31.88677	37.73244	26.0411	44.781	5765.23487	11.11308	B/D/E	B/C gate	69.7
31.91243	37.84864	25.97622	44.767	5773.52806	11.26432	B/D/E	B/C gate	72
31.94867	38.01344	25.88391	44.748	5785.22964	11.47825	B/D/E	B/C gate	75.32
31.98193	38.16529	25.79856	44.731	5795.95325	11.67474	B/D/E	B/C gate	78.5
32.00828	38.28604	25.73052	44.717	5804.44383	11.83054	B/D/E	B/C gate	81.07
32.03761	38.42081	25.65441	44.701	5813.88391	12.00394	B/D/E	B/C gate	84
32.07729	38.6037	25.55087	44.678	5826.63944	12.23842	B/D/E	B/C gate	88.13
32.09515	38.68627	25.50404	44.668	5832.3784	12.34393	B/D/E	B/C gate	90.03
32.13219	38.85776	25.40662	44.645	5844.2626	12.56244	B/D/E	B/C gate	94.07
32.16815	39.0239	25.3124	44.622	5855.78678	12.77285	B/D/E	B/C gate	98.1
32.2027	39.18233	25.22307	44.6	5866.84464	12.97195	B/D/E	B/C gate	102.12
32.23548	39.3321	25.13886	44.579	5877.32318	13.15905	B/D/E	B/C gate	106.1
32.26679	39.47475	25.05883	44.558	5887.3194	13.33628	B/D/E	B/C gate	110.08
32.29759	39.61473	24.98045	44.537	5897.14468	13.50927	B/D/E	B/C gate	114.18
32.32596	39.74329	24.90862	44.517	5906.18064	13.66734	B/D/E	B/C gate	118.13
32.35301	39.86562	24.8404	44.498	5914.78872	13.81707	B/D/E	B/C gate	122.08

							0	T:
Hull hole			Pipe_B1		Comp_B	Comp_C	—	Time
	(gpm)	(gpm)	(3)	level	vol	level	Vol	(min)
0	0	0	0	0.04	2.78613	0.04	5.1129	0
5973.68	0	0	0	0.04	2.78613	5.30152		1.12
6016.52	0	0	0	0.04	2.78613			2.12
6076.55	0	0	0	0.04	2.78613	9.56581	2571.073	3.22
6111.89	0	2291.1	0	0.04	2.78613	10.4322	3065.147	4.15
6140.17	0	2291.11	0	0.04	2.78613	11.2566		5.07
6174.19	0	2291.11	0	0.04	2.78613	12.2843		6.2
6205.69	0	2291.11	0	0.04	2.78613	13.1834	4634.184	7.18
6235.19	0	2291.04	0	0.04	2.78613	13.8869	5133.336	8.13
6265.27	0	2291.04	0	0.04	2.78613	14.5717	5645.068	9.1
6339.88	0	2291.04	0	0.04	2.78613	16.3109	6944.741	11.5
6374.89	147.93	2291.03	0	0.06175	4.301369	17.0973	7532.427	12.62
6412	436.98	2290.98	0	0.78277	54.52256	17.8686	8122.191	13.78
6454.48	589.58	2290.98	0	2.09265	145.7596	18.5816	8760.186	15.1
6492.47	695.09	2290.97	0	3.53605	246.2973	19.1985	9312.171	16.27
6509.43	757.25	2297.07	1139.01	3.00041	208.9884	19.6094	9679.839	17.05
6498.04	831.19	2338.1	1098.03	2.35051	163.7204	20.1439	10158.1	18.1
6371.98	902.1	2374	1062.19	1.87705	130.7423	20.7033	10658.64	19.27
6262.39	958.53	2398.93	1037.3	1.63554	113.9205	21.1812	11086.18	20.33
6191.28	993.59	2412.17	1024.08	1.55969	108.6378	21.4927	11364.9	21.04
6096.83	1037.4	2425.95	1010.36	1.5583	108.5407	21.8973	11726.92	22.07
6006.09	1077.6	2435.41	1000.91	1.66386	115.8935	22.2842	12080.49	23.05
5924.78	1113	2440.33	996.005	1.86989	130.2438	22.6374	12438.11	24.15
5845.16	1146.6	2442.02	994.334	2.16434	150.7529	22.9835	12788.65	25.28
5767.35	1178.2	2440.71	995.66	2.53537	176.597	23.3177	13127.14	26.43

Hull hole	Bulkhd	Pipe C1	Pipe B1	Comp_B	Comp_B	Comp_C	Comp_C	Time
(gpm)	(gpm)		(gpm)	level	vol	level	Vol	(min)
5664.19	1218.5	2434.63	1001.77	3.15133	219.5002	23.7567	13571.77	28.03
5594.78	1244.7	2427.79	1008.61	3.64496	253.883	24.0508	13869.63	29.17
5419.66	1307.4	2416.87	1019.44	4.69777	359.7905	24.7788	14606.86	32.07
5311.45	1344.3	2417.32	1019	5.12959	445.3986	25.2246	15058.4	34.05
5211.87	1377.3	2414.85	1021.47	5.60892	540.424	25.6325	15471.51	36.23
5131.84	1403.2	2410.66	1025.67	6.0586	629.5717	25.9602	15803.35	38.05
5052.74	1428	2404.49	1031.84	6.55913	728.8015	26.2809	16128.16	39.57
5002.8	1443.7	2399.41	1036.92	6.91127	798.6118	26.4849	16334.8	41.27
4909.77	1472.8	2385.77	1050.56	7.69115	953.2204	26.8717	16744.64	44.05
4850.66	1491.2	2374.22	1062.1	8.2704	1068.055	27.1206	17018.76	46.07
4795.97	1508.2	2361.98	1074.35	8.85267	1183.49	27.3524	17274	48.07
4740.81	1525.1	2355.53	1080.76	9.27196	1309.716	27.5854		50.25
4697.37	1538.4	2349.67	1086.62	9.62547	1419.573	27.7712	17735.2	52.05
4651.81	1551.9	2342.71	1093.59	10.0138	1540.267	27.9601	17943.23	54.03
4612.48	1564.9	2334.85	1101.44	10.4237	1667.634	28.1447	18146.59	56.1
4563.09	1580.2	2324.08	1112.21	10.9515	1831.649	28.3638	18387.82	58.75
4541.02	1587.1	2318.65	1117.64	11.2069	1911.027	28.4634	18497.46	60
4490.46	1603	2304.67	1131.62	11.8413	2108.168	28.695	18752.54	63.13
4448.23	1616.6	2291.52	1144.76	12.433			18971.47	66.05
4400.61	1632.1	2275.03	1161.25	13.1741	2522.375		19223.09	69.7
4373.47	1641	2266.13	1170.14	13.5645	2665.986			72
4338.14	1653.1	2254.49	1181.78	14.0802	2875.963		19569.32	75.32
4308	1663.7	2242.99	1193.28	14.5697	3075.326		19745.29	78.5
4285.67	1671.7	2233.38	1202.89	14.9681	3237.526		19880.26	81.07
4262.46	1680.4	2222.21	1214.06	15.421	3421.962		20026.22	84
4232.94	1691.7	2206.38	1229.89	16.0483	3677.427	30.025	20217.2	88.13
4220.65	1696.7	2199.01	1237.25	16.3357	3794.429		20301.06	90.03
4196.11	1706.6	2183.36	1252.9	16.9403				94.07
4171.47	1683	2168.89	1267.37	17.5173	4275.621	30.4081	20639.16	98.1
4141.86	1661.7	2157.88	1278.37	17.9986	4489.332	30.5655	1	
4143.02	1645	2149.36	1286.89	·				
4081.76	1629.7	2141.62	1294.63	18.7815				110.08
4048.33	1615.3		1301.86					114.18
4020.45	1602.3	2127.95	1308.29					118.13
3993.51	1590.1	2121.92	1314.32	19.783	5359.367	31.2897	21620.49	122.08

APPENDIX I. SCENARIO 1B RESULTS

Scenario 1B was run at 2 speed ratios.

Speed ratio		Time(min)
	6	0
	3	31.97
	6	99.97

Speed ratio was slowed to allow time to regulate gate valves during simulation.

Mean	Fwd	Aft	GM(T)	Displacement	LCG (ft)	Valves	Pumps	Time
Draft	Draft	Draft	\ ,	•		open	on	(min)
30.07896		29.8591	45.485	5169.1557	0.4792	none	None	1.12
30.14773		29.72594	45.509	5192.0601	0.9143	none	None	2.12
30.22405	30.87039	29.5777	45.522	5217.4746	1.3926	C gate	B/D	3.22
30.26645	31.03774	29.49515	45.529	5231.591		C gate	B/D	4.15
30.3068	31.19716	29.41644	45.531	5245.02506	1.9059	C gate	B/D	5.07
30.35711	31.3961	29.31812	45.528	5261.7708	2.2152	C gate	B/D	6.2
30.40113	31.57034	29.23193	45.521	5276.4206	2.4842	C gate	B/D	7.18
30.444		29.14788	45.517	5290.6821	2.7447	C gate	B/D	8.13
30.48797	31.91438	29.06156	45.512	5305.303	3.0102	C gate	B/D	9.1
30.5997		28.84162	45.484	5342.4366	3.6782	C gate	B/D	11.5
30.65039		28.74144	45.464	5359.2709	3.9782	C gate	B/D	12.62
30.70548			45.444	5377.5562	4.311	C gate	B/D	13.78
30.76829		28.49534	45.429	5398.3914	4.6938	C gate	B/D	15.1
30.82454	33.27445	28.37464	45.413	5417.0349	5.0372	B/C gate	B/D/E	16.27
30.85304			45.397	5426.4737		B/C gate	B/D/E	17.05
30.89041	33.52936	28.25145	45.374	5438.8449		B/C gate	B/D/E	18.1
30.93078	33.68732	28.17423	45.347	5452.2037		B/C gate	B/D/E	19.27
30.96627		28.1052	45.323	5463.9387	5.8206	B/C gate	B/D/E	20.33
30.9899	33.92115	28.05865	45.307	5471.7511	1	B/C gate	B/D/E	21.04
31.0212	34.04606	27.99635	45.285	5482.0918		B/C gate	B/D/E	22.07
31.05639	34.18733	27.92545	45.262	5493.7104		B/C gate	B/D/E	23.18
31.0841	34.29857	27.86963	45.245			B(100%)/C(30%)	B/D/E	24
31.11248	34.41194	27.81302	45.228	5512.2152		B(100%)/C(24%)		25
31.13866	34.51646	27.76087	45.21	5520.8462		B(100%)/C(22%)		25.53
31.16804	34.63365	27.70242	45.19	5530.5241		B(100%)/C(19%)		26
31.19301	34.73329	27.65274	45.172	5538.7495		B(100%)/C(18%)		27
31.21516		27.60866	45.155	5546.0391		B(100%)/C(17%)		27.97
31.24187	34.92818	27.5555	45.135	5554.824		B(100%)/C(16%)		28.97
31.26493		27.50965	45.116	5562.4077		B(100%)/C(15%)		29.95
31.30843	35.19322	27.42363	45.08	5576.6991		B(100%)/C(13%)		31.97
31.35106	35.36325	27.33888	45.043			B(100%)/C(12%)		34
31.39043	35.52055	27.26031	45.007	5603.6053		B(100%)/C(12%)		36.05
31.425	35.65866	27.19134	44.975	5614.9309		B(100%)/C(11%)		37.97
31.45833				5625.8424		B(100%)/C(11%)	B/D/E	39.95
31.48998			44.918	5636.1969		B(100%)/C(10%)		41.97
31.51879			44.892	5645.611	8.8186	B(100%)/C(10%)	B/D/E	43.88

Mean	Fwd	Aft	GM(T)	Displacement	LCG (ft)	Valves	Pumps	Time
Draft	Draft	Draft	(.)			open	on	(min)
31.54652	36.14372	26.94933	44.867	5654.6699	8.9635	B(100%)/C(10%)	B/D/E	45.97
31.57236	36.2477	26.89702		5663.1038	9.099	B(100%)/C(10%)	B/D/E	48
31.597	36.34654	26.84747	44.822	5671.1425	9.2272	B(100%)/C(9%)	B/D/E	50.08
31.61996	36.43783	26.80209	44.799	5678.6258	9.3447	B(100%)/C(9%)	B/D/E	52.18
31.63936	36.51542	26.76331	44.781	5684.9467	9.4446	B(100%)/C(9%)	B/D/E	54.1
31.65787	36.58982	26.72592	44.763	5690.9721	9.5403	B(100%)/C(9%)	B/D/E	56.07
31.67416	36.65374	26.69457	44.745	5696.2729		B(100%)/C(8%)	B/D/E	57.93
31.69691	36.74438	26.64945	44.722	5703.675	9.737	B(35%)/C(8%)	B/D/E	60.7
31.70799	36.7896	26.62638	44.712	5707.2766	9.7952	B(30%)/C(8%)	B/D/E	62.1
31.72098	36.84147	26.60049	44.698	5711.4977	9.8611	B(30%)/C(8%)	B/D/E	64
31.7336	36.89213	26.57507	44.686	5715.5978	9.9255	B(30%)/C(8%)	B/D/E	66.03
31.74487	36.93759	26.55215	44.674	5719.2573	9.9834	B(30%)/C(8%)	B/D/E	68
31.76244	37.00856	26.51632	44.657	5724.9611	10.074	B(30%)/C(8%)	B/D/E	71
31.78258	37.09092	26.47424	44.639	5731.4953	10.179	B(100%)/C(8%)	B/D/E	75.5
31.78474	37.09967	26.46981	44.636	5732.1951	10.19	B(30%)/C(7%)	B/D/E	76.1
31.79493	37,13941	26.45044	44.624	5735.4998	10.239	B(25%)/C(7%)	B/D/E	78.55
31.79992	37.15848	26.44137	44.617	5737.1195	10.262	B(25%)/C(7%)	B/D/E	80.03
31.80587	37.18124	26.4305	44.609	5739.0468	10.29	B(25%)/C(7%)	B/D/E	81.97
31.81168	37.20356	26.4198	44.601	5740.9299	10.318	B(25%)/C(7%)	B/D/E	84.08
31.81756	37.22758	26.40754	44.596	5742.8341	10.348	B(25%)/C(7%)	B/D/E	86.07
31.82188	37.24427	26.3995	44.59	5744.2354	10.369	B(25%)/C(7%)	B/D/E	88
31.82634	37.26153	26.39115	44.584	5745.6787	10.39	B(23%)/C(7%)	B/D/E	90.18
31.83617	37.30461	26.36773	44.579	5748.863		B(23%)/C(7%)	B/D/E	93
31.84153	37.32555	26.35751	44.573	5750.5977	10.472	B(23%)/C(7%)	B/D/E	96.5
31.84648	37.34547	26.3475	44.567	5752.2018	10.497	B(23%)/C(7%)	B/D/E	99.97
31.85087	37.36284	26.33889	44.562	5753.6205	10.519	B(24%)/C(7%)	B/D/E	104.07
31.85436	37.37672	26.33199	44.558	5754.75	10.536	B(25%)/C(7%)	B/D/E	108.07
31.85727	37.3882	26.32633	44.555	5755.6924		B(25%)/C(7%)	B/D/E	112.08
31.85969	37.39786	26.32152	44.552			B(26%)/C(7%)	B/D/E	116.17
31.86182	37.4063	26.31735	44.549			B(28%)/C(7%)	B/D/E	120.57
31.86323	37.41173	26.31474	44.547	5757.6223		B(29%)/C(7%)	B/D/E	124.15
31.86518	37.41913	26.31122	44.545	I		B(29%)/C(7%)	B/D/E	130
31.86629	37.42341	26.30917				B(29%)/C(7%)	B/D/E	136.08
31.86723	37.42707					B(29%)/C(7%)	B/D/E	142.25
31.86772	37.42897					B(29%)/C(7%)	B/D/E	146.45
31.86809	37.43046					B(29%)/C(7%)	B/D/E	150.37
31.86829						B(29%)/C(7%)	B/D/E	152.75
31.86875						B(30%)/C(7%)	B/D/E	160.08
31.86897						B(30%)/C(7%)	B/D/E	165.25
31.86912						B(30%)/C(7%)	B/D/E	170.12
31.86923						B(30%)/C(7%)	B/D/E	175.04
31.86934						B(30%)/C(7%)	B/D/E	181
31.86938						B(30%)/C(7%)	B/D/E	185.25
31.86943						B(30%)/C(7%)	B/D/E	190.1
31.86947						B(30%)/C(7%)	B/D/E	195.6
31.86949	37.4357					B(30%)/C(7%)	B/D/E	200.66
31.86948	37.43567	26.30329	44.539	5759.6444	10.609	B(30%)/C(7%)	B/D/E	205.12

Hull hole	Rulkhd	Pine C1	Pine R1	Comp_B	Comp B	Comp_C	Comp_C	Time
1	I				. —	level	vol	(min)
0	0	0	0	0.04	2.78613	0.04	5.1129	0
5973.68	0	0	0	0.04	2.78613	5.301516	879.9105	1.12
6016.52	0	0	0	0.04	2.78613	7.505018	1681.565	2.12
6076.55	0	0	0	0.04	2.78613	9.565808	2571.073	3.22
6111.89	0	2291.1	0	0.04	2.78613	10.43216	3065.147	4.15
6140.17	0	2291.11	0	0.04	2.78613	11.25663	3535.339	5.07
6174.19	0	2291.11	0	0.04	2.78613	12.28435	4121.441	6.2
6205.69	0	2291.11	0	0.04	2.78613	13.18343	4634.184	7.18
6235.19	0	2291.04	0	0.04	2.78613	13.8869	5133.336	8.13
6265.27	0	2291.04	0	0.04	2.78613	14.57169	5645.068	9.1
6339.88	0	2291.04	0	0.04	2.78613	16.31089	6944.741	11.5
6374.89	147.925		0	0.06175	4.301369	17.09732	7532.427	12.62
6412	436.978		0	0.78277	54.52256	17.86861	8122.191	13.78
6454.48	589.581	2290.98	0	2.09265	145.7596	18.58163	8760.186	15.1
6492.47	695.09	2290.97	0	3.53605	246.2973	19.19853	9312.171	16.27
6509.43	757.254		1139.01	3.00041	208.9884	19.60944	9679.839	17.05
6498.04	831.19		1098.03	2.35051	163.7204	20.14395	10158.1	18.1
6371.98	902.102	2374	1062.19	1.87705	130.7423	20.70335	10658.64	19.27
6262.39	958.528		1037.3	1.63554	113.9205	21.18117	11086.18	20.33
6191.28	993.588		1024.08	1.55969	108.6378	21.49267	11364.9	21.04
6096.83	1037.36	2425.95	1010.36	1.5583	108.5407	21.89727	11726.92	22.07
5992.22	1082.01		1000.13	1.68422	117.3116	22.32799	12124.8	23.18
5913.99	1112.96			1.78396	124.2583	22.63712	12437.88	24
5853.86	1144.4			1.79161	124.7915	22.96011	12764.99	25
5782.88			1172.6	1.78594	124.3967	23.25878	13067.47	25.53
5699.31	1203.76	2218.34	1217.84	1.76655	123.0456	23.59457	13407.54	26
5629.18	1229.57			1.74451	121.5107	23.88035	13696.97	27
5566.68			1256.48	1.72813	120.37			27.97
5488.56		2155.85	1280.29	1.69851	118.3068	24.43903	14262.78	28.97
5422.62	1300.96	2125.96	1310.28	1.67695	116.8051	24.7026	14529.71	29.95
5291.05	1342.75	2050.04	1386.18	1.54784	107.8121	25.20537		31.97
5161.05	1382.11	2062.71	1373.54	1.48348	103.3294	25.69347		
5038.51	1417.21	2016.4	1419.84	1.46904				36.05
4929.93	1447.31	1959.61	1476.61	1.45376	101.259	26.53309		
4828.72	1474.39	1967.81	1468.44	1.41308	98.42529	26.89319		
4735.48	1498.7	1898.14	1538.06	1.41533	98.58241	27.22213		
4646.73	1520.89	1905.52	1530.52	1.32486				
4561.29	1541.48	1910.85	1525.39	1.33925		1		
4484.65	1559.99	1913.78	1522.48	1.44541	1	28.07538		
4408.03	1577.67	1828.69	1607.52	1.49445	104.0935	28.32776		
4332.07	1594.47	1834.21	1602.01	1.42065		28.57026		
4268.86	1608.23					28.77085		
4209.53	1620.98	1839.73						
4149.83	1633.13	1741.96	1694.22					
4070.66	1649.09	1766.19	1670.02					
4036.62	1656.09							
3990.99	1664.99	1774.85						
3947.45	1673.43	1776.28	1659.95	1.43156	99.71289	29.74461	19908.46	66.03

Hull hole	Bulkhd	Pipe_C1	Pipe B1	Comp_B	Comp_B	Comp_C	Comp_C	Time
(gpm)	(gpm)	(gpm)	(gpm)	level	vol	level	vol	(min)
3909.25	1680.77	1776.98	1659.26	1.49756	104.31	29.85674	20031.94	68
3849.5	1692.1	1777.86	1658.39	1.61293	112.346	30.03072	20223.54	71
3784.31	1704.36	1749.66	1686.58	1.90111	132.4183	30.22017	20432.16	75.5
3775.2	1705.72	1749.69	1686.54	1.92005	133.7376	30.24121	20455.34	76.1
3734.43	1713.08	1671.44	1764.74	1.76988	123.2778	30.35574	20581.46	78.55
3711.38	1716.93	1674.08	1762.1	1.63224	113.6907	30.41592	20647.74	80.03
3684.03	1721.46	1677.08	1759.12	1.47895	103.0133	30.48687	20725.87	81.97
3653.73	1725.84	1679.83	1756.37	1.34089	93.39719	30.55545	20801.4	84.08
3635.86	1729.35	1679.21	1755.88	1.42323	99.13271	30.61076	20862.31	86.07
3618.12	1732.55	1681.35	1754.85	1.33224	92.79495	30.66105	20917.69	88
3598.24	1735.78	1685.01	1753.8	1.24899	86.99592	30.71219	20974.01	90.18
3578.83	1739.85	1682.66	1753.55	1.83321	127.689	30.77644	21044.76	93
3552.74	1743.61	1684.42	1751.8	1.76063	122.6338	30.83616	21110.53	96.5
3536.68	1746.75	1684.82	1751.39	1.77963	123.9572	30.88594	21165.35	99.97
3518.53	1749.66	1685.71	1750.51	1.75886	122.5105	30.93234	21216.46	104.1
3504.39	1751.96	1682.95	1753.27	1.74854	121.7914	30.9689	21256.71	108.1
3492.01	1753.92	1680.61	1755.6	1.72579	120.2072	31.00029	21291.28	112.1
3482.13	1755.51	1681.02	1755.2	1.72086	119.8634	31.02555	21319.1	116.2
3473.29	1756.91	1678.69	1757.53	1.71072	119.157	31.04807	21343.9	120.6
3466.59	1757.95	1674.52	1761.69	1.67941	116.9765	31.06455	21362.05	124.2
3456.74	1759.42	1673.5	1762.71	1.62321	113.062	31.08811	21387.99	130
3451.17	1760.24	1674.04	1762.18	1.59662	111.2098	31.10124	21402.45	136.1
3447.19	1760.9	1674.4	1761.81	1.58024	110.069	31.11193	21414.27	142.3
3444.95	1761.22	1674.67	1761.67	1.57486	109.6939	31.117	21420.15	146.5
3443.62	1761.46	1674.62	1761.59	1.57271	109.5441	31.12078	21424.55	150.4
3443.15	1761.57	1674.65	1761.57	1.57244	109.5252	31.12269	21426.75	152.8
3440.74	1761.9	1672.97	1763.24	1.56049	108.6933	31.12789	21432.79	160.1
3439.51	1762.08	1673.16	1763.05	1.54909	107.8993	31.13075	21436.12	165.3
3438.68	1762.2	1673.3	1762.92	1.54124	107.3524	31.13269	21438.36	170.1
3438.04	1762.29	1673.4	1762.82	1.53535	106.9422	31.13415	21440.06	175
3437.55	1762.36	1673.45	1762.76	1.53239	106.7358	31.13534	21441.43	181
3437.24	1762.4	1673.5	1762.72	1.52951	106.5353	31.13595	21442.14	185.3
3437.04	1762.44	1673.54	1762.67	1.52694	106.3565	31.13653	21442.82	190.1
3436.76	1762.47	1673.58	1762.64	1.52485	106.2104	31.13711	21443.48	195.6
3436.67	1762.49	1673.6	1762.62	1.52347	106.1145	31.13734	21443.76	200.7
3436.66	1762.49	1673.61	1762.6	1.52243	106.0425	31.13734	21443.76	205.1

APPENDIX J. SCENARIO 2 RESULTS

Entire scenario run at speed ratio of 6.

	nario run a			m: 1	1.00 (8)	T:
	Fwd Draft	Aft Draft	GM(T)	Displacement	LCG (II)	Time
Draft	00 00000	00 00000	45 44060	E144 16146	-7E-08	(min)
30.00392	30.00392	30.00392				0
30.07087	30.19887	29.94287	45.48026		0.279379	
30.14493	30.4146	29.87526	45.50469		0.585588	2.08
30.21152	30.60864	29.81439	45.51614		0.858425	
30.28538	30.82397	29.7468	45.52234		1.158321	
30.35275	31.02041	29.68509	45.51475		1.429316	
30.42635	31.23506	29.61764	45.50702		1.722619	
30.50394	31.46138	29.54649	45.49115	5310.61259	2.028742	7.25
30.5666	31.6442	29.48899	45.46983	5331.44034	2.273678	8.13
30.63552	31.84483	29.42622	45.44589	5354.33606	2.539752	9.08
30.70726	32.05304	29.36148	45.43274	5378.14781	2.812942	10.08
30.78303	32.27262	29.29344	45.41717	5403.27764	3.098014	11.13
30.86723	32.51626	29.21819	45.39691	5431.17217	3.410767	12.3
30.93291	32.70606	29.15976	45.37857	5452.90959	3.651828	13.25
31.00938		29.09205	45.35415	5478.18665	3.929275	14.3
31.09575		29.016	45.33202		4.238613	15.6
31.16058		28.9592			4.468051	16.6
31.22619		28.90199			4.697871	17.68
31.28538		28.85061	45.28953		4.90314	18.58
31.36167		28.78468				
31.43431		28.72226				
31.49778		28.668				
31.55444		28.61978		<u> </u>		
31.61497		28.56852		·		
31.6644		28.52687				
31.72239		28.47822				+
31.77148		28.43723				
31.82993		28.38866				
		28.34668				
31.88068		28.30307				
31.93364	<u> </u>	28.21686				L
32.0391		28.13206				
32.14388 32.24566						
	 					
32.3498			<u> </u>			
32.44315			 			
32.545						
32.64728						
32.75424						
32.83724						
32.94651						
33.08795						
33.18921						
33.28229						
33.4308						
33.53823	39.97085	27.10561	44.69427	6282.34158	11.42748	62.13

	Bulkhd	Bulkhd	Comp C	Comp C	Comp D	Comp D	Comp_E	Comp E	Time
l .		Aft	level	Vol	level	vol	level	vol	(min)
	(gpm)	(gpm)							
0	0	0	0.04	5.1129	0.04	4.583704		8.381344	0
5944.1	0	0	0.04	5.1129	5.290003	785.0779	0.04	8.381344	1
5963.62	0	0	0.04	5.1129	7.936844	1648.34	0.04	8.381344	2.08
6023.11	0	0	0.04	5.1129	9.799664	2424.49	0.04	8.381344	3.03
6050.1	0	0	0.04	5.1129	11.48338	3285.303	0.04	8.381344	4.12
6087.3	0	0	0.04	5.1129	13.01855	4070.176		8.381344	5.08
6124.96	0	0	0.04	5.1129	14.37249	4927.267		8.381344	6.13
6157.73	0	0	0.04		15.72056			8.381344	7.25
6186.69	0	0	0.04		16.80869			8.381344	8.13
6217.18	441.274	441.274	0.296791			7295.047		41.205	9.08
6250.78	619.355	619.355	0.859067					113.0766	10.08
6282.16		755.872						210.1302	11.13
6179.04	876.789	876.789	2.618097	334.6516					12.3
6018.43	956.239	956.239	3.514359	449.2141				452.4828	13.25
5837.24	1036.87		4.527233					601.4876	14.3
5656.25	1111.07		5.041433						15.6
5534.31	1158.46		5.458658						16.6
5415.18	1202.5	1202.5	5.907113	1100.233	23.58075	12007.11			17.68
5311.47			6.333456		23.98917			1258.609	18.58
5183.18								1469.433	19.88
5055.75	1320.98	1320.98	7.495207	1677.996				1681.264	21.1
4973.85	1351.73	1351.73	8.027297					1874.843	
4881.77	1377.36	1377.36	8.52043	2050.981	25.63387			2054.25	23.17
4804.19			9.001486					2252.512	24.25
4738.8	1422.67							2419.365	
4665.28								2620.605	26.17
4608.44	1461.39	1461.39	9.953486	2792.164	26.71954	14861.09	7.570338	2795.434	27.07
4550.73					26.95995				28.15
4502.47			10.65798						29.1
4452.76	1508.75		11.00993						30.1
4369.87	1535.7				27.73312			3808.358	
			12.46741		28.0735		9.581355		34.15
4232.9	1581.11	1581.11	13.20373	4645.757	28.37728	16497.71	10.03054	4649.035	36.15
4178.28	1600.88	1600.88	13.82265	5085.327	28.66362	16780.4	10.50075	5088.606	38.22
4134.88	1617.1	1617.1	14.35994	5486.835	28.90113	17014.88	10.93024	5490.112	40.08
4100.22	1633.32	1633.32	14.95596	5932.226	29.14106	17251.76	11.40667	5935.503	42.13
4065.9	1648.31	1648.31	15.56257	6385.536	29.36495	17472.8	11.89158	6388.816	44.2
4039.79	1662.77	1662.77	16.20425	6865.047	29.58285	17687.92	12.40451	6868.325	46.37
4021.77	1673.23	1673.23	16.70651	7240.377	29.74161	17844.65	12.80601	7243.657	48.05
4005.88	1661.92	1686.22	17.36981	7736.055	29.94018	18040.7	13.33721	7741.373	50.27
3975.59	1627.47	1702.76	18.14084	8365.777	30.19534	18292.6	13.86728	8390.691	53.13
3967.1	1606.12	1714.39	18.63594	8808.779	30.37629	18471.25	14.24949	8858.886	55.18
3953.06		1724.9	19.08503	9210.608	30.54077	18633.63	14.6029	9291.803	57.07
3931.65	1555.47	1741.38	19.78905	9840.551	30.80069	18890.24	15.17028	9986.818	60.07
3915.74	1533.14	1753.07	20.28887	10287.77	30.98657	19073.75	15.58338	10492.86	62.13

APPENDIX K. SCENARIO 3 RESULTS

Scenario 3 was run at 3 speed ratios.

Speed ratio	Time (min)
6	
10	90.6
15	216

		10 5 0	01100	Displacement	LCC (ft)	Time
Mean	Fwd Draft	Aft Draft	GM(T)	Displacement	LUG (II)	Time (min)
Draft	00 00000	00 00000	45.44269	5144.16146	-7E-08	0
30.00392	30.00392	30.00392		5170.61126	-0.06378	1.18
30.08333	30.05412	30.11254	45.48539	5202.47055	-0.13973	2.58
30.17899	30.11468	30.2433	45.50741		-0.21877	4.05
30.27981	30.17859	30.38103	45.51641	5236.04088	-0.27144	5.05
30.34774	30.2217	30.47378		5258.65295		5.05
30.41705	30.26574	30.56837		5281.71700	-0.32469	7.05
30.48897	30.31148	30.66645	45.4821	5305.63494	-0.37943	8.15
30.56468	30.3608	30.76855		5330.80232	-0.43413	9.08
30.63012	30.40803	30.85222		5352.54349	-0.47136	
30.70051	30.46122	30.9398			-0.50606	10.08
30.7686		31.02276			-0.53566	11.05
30.83893		31.10651	45.35617	5421.80025	-0.56201	12.08
30.9032		31.18136	45.32523	5443.07939	-0.58237	13.07
30.96509		31.25196	45.29971	5463.54899	-0.59881	14.05
31.02772		31.322			-0.61243	15.08
31.08327	30.7836	31.38295			-0.62199	L
31.1415		31.44556			-0.62934	17.07
31.19666	30.88969	31.50363			-0.63373	
31.24722		31.55576			-0.63548	
31.29845	30.98943	31.60746			-0.63494	
31.34693	31.03859	31.65528	45.11948		-0.63215	
31.39368	31.08702				-0.62735	
31.43811	31.134	31.74223	45.08003		-0.62091	23.05
31.48252	31.1819	31.78314	45.06076	<u> </u>	-0.61257	
31.52472	31.22835	31.8211	45.04219			
31.56489	31.27342	31.85636	45.02426	5660.66541	-0.59177	
31.6044	31.31863	31.89017	45.00635	5673.55389	-0.5792	
31.64449	31.36543	31.92355	44.98789	5686.6165		
31.68143	31.40941	31.95345	44.97054	5698.63813		<u> </u>
31.71779	31.45354	31.98205	44.95764	5710.46184		
31.78502	31.53736	32.03268				
31.84913	31.62004	32.07823	44.91523			
31.91062	31.70216	32.11908	44.89709			
31.96733	31.78014	32.15451	44.88092			
32.02472	31.861	32.18845	44.86457	5809.73762		
32.07795	31.93798	32.21792	44.84949	5826.85186	-0.27826	42.07

Draft	Mean	Fwd Draft	Aft Draft	GM(T)	Displacement	LCG (ff)	Time
32.12956 32.01411 32.24501 44.83432 5843.41888 -0.22907 44.05 32.18005 32.08967 32.27403 44.81845 5859.59625 -0.17897 46.03 32.28068 32.244315 32.31821 44.7949 5891.75272 -0.07405 50.1 32.37672 32.3919 32.36154 44.77599 5922.32784 0.029839 54.07 32.47609 32.4361 32.46533 32.3819 44.75695 5927.21587 0.081808 56.03 32.47109 32.53996 32.40222 44.75404 5952.2623 0.134757 58.03 32.51928 32.61588 32.42269 44.741 5967.50736 0.188578 60.07 32.62368 32.7802 32.46715 44.7635 5982.8929 0.242685 62.12 32.6368 32.7802 32.46715 44.7637 6004.2569 0.304084 64.45 32.66718 32.84896 32.48541 44.69217 6014.10259 0.352423 66.28 32.71612 <td></td> <td>Wa Dian</td> <td>All Diale</td> <td>0.01(1)</td> <td>Вюршоот</td> <td></td> <td></td>		Wa Dian	All Diale	0.01(1)	Вюршоот		
32.22938 32.16463 32.29414 44.80442 5875.37457 -0.128 48 32.28068 32.24315 32.31821 44.7949 5891.75272 -0.07405 50.1 32.33083 32.32068 32.34099 44.78546 5907.73238 -0.01999 52.1 32.342361 32.46533 32.3819 44.76562 5937.21587 0.081808 56.03 32.47109 32.53996 32.40222 44.75404 5952.2623 0.134757 58.03 32.51928 32.61588 32.42269 44.7741 5967.50736 0.188578 60.07 32.6638 32.7802 32.46715 44.7035 5982.8929 0.242685 62.12 32.6338 32.7802 32.46715 44.7037 6014.10259 0.352423 66.28 32.71612 32.92584 32.50644 44.67287 6029.45694 0.405672 68.33 32.75989 32.99416 32.52561 44.6541 6043.16177 0.452258 70.17 32.85466 33.14139		32.01411	32.24501	44.83432	5843.41888	-0.22907	44.05
32.28068 32.24315 32.31821 44.7949 5891.75272 -0.07405 50.1 32.33083 32.32068 32.34099 44.78546 5907.73238 -0.01999 52.17 32.37672 32.3919 32.36154 44.77599 5922.32780 0.029839 54.07 32.47109 32.53996 32.40222 44.75404 5952.2623 0.134757 58.03 32.51928 32.61588 32.42269 44.741 5967.50736 0.188578 60.07 32.56306 32.62368 32.7802 32.46715 44.7078 6000.42569 0.304084 64.45 32.62368 32.7802 32.46541 44.67287 6029.45694 0.405672 68.33 32.71612 32.92584 32.5064 44.67287 6029.45694 0.405672 68.33 32.75989 32.99416 32.536545 44.6541 6043.16177 0.452258 70.17 32.85446 33.14133 32.56753 44.5744 6017.0694 0.69595 80.25 33.66113 </td <td>32.18005</td> <td>32.08967</td> <td>32.27043</td> <td>44.81845</td> <td>5859.59625</td> <td>-0.17897</td> <td>46.03</td>	32.18005	32.08967	32.27043	44.81845	5859.59625	-0.17897	46.03
32.3083 32.32068 32.34099 44.78546 5907.73238 -0.01999 52.17 32.37672 32.3919 32.36154 44.77599 5922.32784 0.029839 54.07 32.47109 32.53996 32.40222 44.75404 5952.2623 0.134757 58.03 32.47109 32.53996 32.40222 44.75404 5952.2623 0.134757 58.03 32.51928 32.61588 32.42269 44.741 5967.50736 0.188578 60.07 32.562368 32.7802 32.46715 44.7078 6000.42569 0.304084 64.45 32.66718 32.84896 32.48541 44.69217 6014.10259 0.352423 66.28 32.75989 32.99416 32.55661 44.67287 6029.45694 0.405672 68.33 32.75989 32.99416 32.55651 44.6541 6043.16177 0.452258 70.17 32.80696 33.06747 32.54645 44.63889 6057.87371 0.501826 72.15 32.85446 33.14	32.22938	32.16463	32.29414	44.80442	5875.37457		
32.37672 32.3919 32.36154 44.77599 5922.32784 0.029839 54.07 32.42361 32.46533 32.3819 44.76562 5937.21587 0.081808 56.03 32.47109 32.53996 32.40222 44.75404 5952.2623 0.13477 58.03 32.51928 32.61588 32.42269 44.741 5967.50736 0.188578 60.07 32.562368 32.7802 32.46715 44.7078 6000.42569 0.304084 64.45 32.66718 32.84896 32.46541 44.67287 6014.10259 0.352423 66.28 32.71612 32.92584 32.5064 44.67287 6029.45694 0.405672 68.33 32.75989 32.99416 32.52561 44.6541 6043.16177 0.452258 70.17 32.86546 33.14139 32.56753 44.62348 6072.68632 0.551516 74.17 32.99738 33.3618 26.3295 44.57041 6117.06994 0.69595 80.25 33.66113 34.37343<	32.28068	32.24315	32.31821		5891.75272		
32.42361 32.46533 32.3819 44.76562 5937.21587 0.081808 56.03 32.47109 32.53996 32.40222 44.75404 5952.2623 0.134757 58.03 32.51928 32.61588 32.42269 44.7741 5967.50736 0.188578 60.07 32.56368 32.7802 32.46715 44.7078 6000.42569 0.304084 64.45 32.66718 32.88489 32.48541 44.69217 6014.10259 0.352423 66.28 32.75989 32.99584 32.5064 44.67287 6029.45694 0.405672 68.33 32.75989 32.99416 32.52561 44.6541 6043.16177 0.452258 70.17 32.85446 33.14139 32.566753 44.65348 6072.68632 0.551516 74.17 32.99738 33.3618 32.63295 44.57041 6117.06994 0.69595 80.25 33.2867 33.71623 32.74111 44.6686 6188.2787 0.921558 90.6 33.44703 34.08767<	32.33083	32.32068					
32.47109 32.53996 32.40222 44.75404 5952.2623 0.134757 58.03 32.51928 32.61588 32.42269 44.741 5967.50736 0.188578 60.07 32.55802 32.69262 32.44343 44.72635 5982.8929 0.242685 62.12 32.66718 32.84896 32.48541 44.69217 6004.2569 0.304084 64.45 32.71612 32.92584 32.5064 44.67287 60029.45694 0.405672 66.28 32.75983 32.99416 32.52561 44.6341 6043.16177 0.452258 70.17 32.80696 33.06747 32.54645 44.63889 6057.87371 0.501826 72.15 32.99738 33.3618 32.63295 44.57041 6117.06994 0.69595 80.25 33.44703 34.04876 32.24349 44.5048 6319.27971 1.321328 110.5 34.05011 34.98519 33.14883 44.01932 6439.57262 1.674581 100.5 34.2556 35.5457							
32.51928 32.61588 32.42269 44.741 5967.50736 0.188578 60.07 32.56802 32.69262 32.44343 44.72635 5982.8929 0.242685 62.12 32.62368 32.7802 32.46715 44.7078 6000.42569 0.304084 64.45 32.62368 32.7802 32.48541 44.69217 6014.10259 0.352423 66.28 32.71612 32.92584 32.5064 44.67287 6029.45694 0.405672 68.33 32.7989 32.99416 32.52561 44.6541 6043.16177 0.452258 70.17 32.80698 33.06747 32.54645 44.63889 6057.87371 0.501826 72.15 32.89738 33.3618 32.63295 44.57041 6117.06994 0.69595 80.25 33.44703 34.04876 32.84531 44.35038 6254.7812 1.126493 100.5 33.68113 34.37343 32.94883 44.24648 6319.27971 1.321328 110.5 34.06701 34.98519<	32.42361	32.46533					
32.56802 32.69262 32.44343 44.72635 5982.8929 0.242685 62.12 32.62368 32.7802 32.46715 44.7078 6000.42569 0.304084 64.45 32.66718 32.84896 32.48541 44.69217 6014.10259 0.352423 66.28 32.71612 32.92584 32.5064 44.67287 6029.45694 0.405672 68.33 32.75989 32.99416 32.52561 44.6541 6043.16177 0.452258 70.17 32.80696 33.06747 32.556753 44.63889 6057.87371 0.501826 72.15 32.99738 33.3618 32.63295 44.57041 6117.06994 0.69595 80.25 33.44703 34.04876 32.84531 44.35038 6254.78127 1.126493 100.5 33.66113 34.37343 32.94883 44.24648 6319.27971 1.321328 110.5 34.06701 34.98519 33.14883 44.01932 6439.57262 1.674581 130.72 34.61535 35	32.47109						
32.62368 32.7802 32.46715 44.7078 6000.42569 0.304084 64.45 32.66718 32.84896 32.48541 44.69217 6014.10259 0.352423 66.28 32.71612 32.92584 32.5064 44.67287 6029.45694 0.405672 68.33 32.75989 32.99416 32.52561 44.6541 6043.16177 0.452258 70.17 32.85446 33.14139 32.56753 44.6348 6072.68632 0.551516 74.17 32.9738 33.3618 32.63295 44.57041 6117.06994 0.69595 80.25 33.2867 33.71623 32.74111 44.6686 6188.2787 0.921558 90.6 33.46703 34.04876 32.84531 44.35038 6254.78127 1.126493 100.5 33.66113 34.37343 32.94883 44.2648 6319.27971 1.321328 110.5 33.67617 34.98519 33.14883 44.01355 6380.9623 1.554164 125.2 34.2556 35.26771 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
32.66718 32.84896 32.48541 44.69217 6014.10259 0.352423 66.28 32.71612 32.92584 32.5064 44.67287 6029.45694 0.405672 68.33 32.75989 32.99416 32.52561 44.6541 6043.16177 0.452258 70.17 32.80696 33.06747 32.54645 44.63889 6057.87371 0.501826 72.15 32.85446 33.14139 32.56753 44.62348 6072.68632 0.551516 74.17 32.99738 33.3618 32.63295 44.57041 6117.06994 0.69595 80.25 33.24871 33.71623 32.74111 44.46686 6188.2787 0.921558 90.6 33.44703 34.04876 32.84531 44.35038 6254.78127 1.126493 100.5 33.86815 34.68612 33.05018 44.13555 6380.9623 1.504164 120.5 34.06701 34.98519 33.14883 44.01932 6439.57262 1.674581 130.72 34.61535 35.							
32.71612 32.92584 32.5064 44.67287 6029.45694 0.405672 68.33 32.75989 32.99416 32.52561 44.6541 6043.16177 0.452258 70.17 32.80696 33.06747 32.54645 44.63889 6057.87371 0.501826 72.15 32.85446 33.14139 32.56753 44.62348 6072.68632 0.551516 74.17 32.99738 33.3618 32.63295 44.57041 6117.06994 0.69595 80.25 33.44703 34.04876 32.84531 44.35038 6254.78127 1.126493 100.5 33.86815 34.68612 33.05018 44.13555 6380.9623 1.504164 120.5 34.06701 34.98519 33.14883 44.01932 6439.57262 1.674581 130.72 34.61535 35.80352 33.42719 43.68945 6597.85024 2.119836 161 34.77809 36.04454 33.5164 43.5876 6643.87 2.245259 170.68 35.43619 37.5067							
32.75989 32.99416 32.52561 44.6541 6043.16177 0.452258 70.17 32.80696 33.06747 32.54645 44.63889 6057.87371 0.501826 72.15 32.85446 33.14139 32.56753 44.62348 6072.68632 0.551516 74.17 32.99738 33.3618 32.63295 44.57041 6117.06994 0.69595 80.25 33.22867 33.71623 32.74111 44.46686 6188.2787 0.921558 90.6 33.44703 34.04876 32.84531 44.35038 6254.78127 1.126493 100.5 33.86815 34.68612 33.05018 44.1355 6380.9623 1.504164 100.5 34.06701 34.98519 33.14883 44.01932 6439.57262 1.674581 130.72 34.2556 35.26771 33.24349 43.90109 6494.5638 1.831722 140.61 34.77809 36.04454 33.51164 43.5876 6643.87 2.245259 170.68 35.9039 36.50467							
32.80696 33.06747 32.54645 44.63889 6057.87377 0.501826 72.15 32.85446 33.14139 32.56753 44.62348 6072.68632 0.551516 74.17 32.99738 33.3618 32.63295 44.57041 6117.06994 0.69595 80.25 33.22867 33.71623 32.74111 44.46686 6188.2787 0.921558 90.6 33.44703 34.04876 32.84531 44.35038 6254.78127 1.126493 100.5 33.66113 34.37343 32.94883 44.24648 6319.27971 1.321328 110.5 33.86815 34.68612 33.05018 44.1355 6380.9623 1.504164 120.5 34.06701 34.98519 33.14883 44.01932 6439.57262 1.674581 130.72 34.2556 35.26771 33.24349 43.90109 6494.5638 1.831722 140.61 34.77809 36.04454 33.51164 43.5876 6548.3568 1.982765 170.68 35.9939 36.50							
32.85446 33.14139 32.56753 44.62348 6072.68632 0.551516 74.17 32.99738 33.3618 32.63295 44.57041 6117.06994 0.69595 80.25 33.22867 33.71623 32.74111 44.46686 6188.2787 0.921558 90.6 33.44703 34.04876 32.84531 44.35038 6254.78127 1.126493 100.5 33.66113 34.37343 32.94883 44.24648 6319.27971 1.321328 110.5 34.06701 34.98519 33.14883 44.01932 6439.57262 1.674581 130.72 34.0556 35.26771 33.24349 43.90109 6494.5638 1.831722 140.61 34.4196 35.54573 33.32719 43.68945 6597.85024 2.119836 161 34.77809 36.04454 33.51164 43.5876 6643.87 2.245259 170.68 35.49257 36.28827 33.59686 43.48127 6689.93534 2.370745 181 35.0939 36.50467 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
32.99738 33.3618 32.63295 44.57041 6117.06994 0.69595 80.25 33.22867 33.71623 32.74111 44.46686 6188.2787 0.921558 90.6 33.44703 34.04876 32.84531 44.35038 6254.78127 1.126493 100.5 33.66113 34.37343 32.94883 44.24648 6319.27971 1.321328 110.5 33.86815 34.68612 33.05018 44.13555 6380.9623 1.504164 120.5 34.06701 34.98519 33.14883 44.01932 6439.57262 1.674581 130.72 34.2556 35.26771 33.24349 43.90109 6494.5638 1.831722 140.61 34.4196 35.54573 33.3382 43.79376 6548.33568 1.982761 151 34.61535 35.80352 33.42719 43.68945 6597.85024 2.119836 161 34.77809 36.04454 33.51164 43.5876 6643.87 2.245259 170.68 35.09039 36.50467 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
33.22867 33.71623 32.74111 44.46686 6188.2787 0.921558 90.6 33.44703 34.04876 32.84531 44.35038 6254.78127 1.126493 100.5 33.66113 34.37343 32.94883 44.24648 6319.27971 1.321328 110.5 33.86815 34.68612 33.05018 44.13555 6380.9623 1.504164 120.5 34.06701 34.98519 33.14883 44.01932 6439.57262 1.674581 130.72 34.2556 35.26771 33.24349 43.90109 6494.5638 1.831722 140.61 34.4196 35.54573 33.3382 43.79376 6548.33568 1.982761 151 34.61535 35.80352 33.42719 43.68945 6597.85024 2.119836 161 34.77809 36.04454 33.51164 43.5876 6643.87 2.245259 170.68 34.94257 36.28827 33.59686 43.48127 6689.93534 2.370745 181 35.09039 36.50467 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
33.44703 34.04876 32.84531 44.35038 6254.78127 1.126493 100.5 33.66113 34.37343 32.94883 44.24648 6319.27971 1.321328 110.5 33.86815 34.68612 33.05018 44.1355 6380.9623 1.504164 120.5 34.06701 34.98519 33.14883 44.01932 6439.57262 1.674581 130.72 34.2556 35.26771 33.24349 43.90109 6494.5638 1.831722 140.61 34.44196 35.54573 33.3382 43.79376 6548.33568 1.982761 151 34.61535 35.80352 33.42719 43.68945 6597.85024 2.119836 161 34.77809 36.04454 33.51164 43.5876 6643.87 2.245259 170.68 34.94257 36.28827 33.59686 43.48127 6689.93534 2.370745 181 35.09039 36.50467 33.67611 43.38248 6730.95164 2.477668 191 35.43619 37.01009 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
33.66113 34.37343 32.94883 44.24648 6319.27971 1.321328 110.5 33.86815 34.68612 33.05018 44.1355 6380.9623 1.504164 120.5 34.06701 34.98519 33.14883 44.01932 6439.57262 1.674581 130.72 34.2556 35.26771 33.24349 43.90109 6494.5638 1.831722 140.61 34.44196 35.54573 33.3382 43.79376 6548.33568 1.982761 151 34.61535 35.80352 33.42719 43.68945 6597.85024 2.119836 161 34.77809 36.04454 33.51164 43.5876 6643.87 2.245259 170.68 34.94257 36.28827 33.59686 43.48127 6689.93534 2.370745 181 35.09039 36.50467 33.67611 43.38248 6730.95164 2.477668 191 35.43619 37.01009 33.86229 43.15754 6825.483 2.722258 216 35.8926 37.50679							
33.86815 34.68612 33.05018 44.1355 6380.9623 1.504164 120.5 34.06701 34.98519 33.14883 44.01932 6439.57262 1.674581 130.72 34.2556 35.26771 33.24349 43.90109 6494.5638 1.831722 140.61 34.44196 35.54573 33.3382 43.79376 6548.33568 1.982761 151 34.61535 35.80352 33.42719 43.68945 6597.85024 2.119836 161 34.77809 36.04454 33.51164 43.5876 6643.87 2.245259 170.68 34.94257 36.28827 33.59686 43.48127 6689.93534 2.370745 181 35.09039 36.50467 33.67611 43.38248 6730.95164 2.477668 191 35.2966 36.70847 33.75084 43.28993 6769.26123 2.577283 200.5 35.43619 37.01009 33.86229 43.15754 6825.483 2.722258 216 35.77862 37.50679							
34.06701 34.98519 33.14883 44.01932 6439.57262 1.674581 130.72 34.2556 35.26771 33.24349 43.90109 6494.5638 1.831722 140.61 34.44196 35.54573 33.3382 43.79376 6548.33568 1.982761 151 34.61535 35.80352 33.42719 43.68945 6597.85024 2.119836 161 34.77809 36.04454 33.51164 43.5876 6643.87 2.245259 170.68 34.94257 36.28827 33.59686 43.48127 6689.93534 2.370745 181 35.09039 36.50467 33.67611 43.38248 6730.95164 2.477668 191 35.22966 36.70847 33.75084 43.28993 6769.26123 2.577283 200.5 35.43619 37.01009 33.86229 43.15754 6825.483 2.722258 216 35.77862 37.50679 34.05045 42.93055 6917.14009 2.952539 245.6 36.15947 38.05336							
34.2556 35.26771 33.24349 43.90109 6494.5638 1.831722 140.61 34.44196 35.54573 33.3382 43.79376 6548.33568 1.982761 151 34.61535 35.80352 33.42719 43.68945 6597.85024 2.119836 161 34.77809 36.04454 33.51164 43.5876 6643.87 2.245259 170.68 34.94257 36.28827 33.59686 43.48127 6689.93534 2.370745 181 35.09039 36.50467 33.67611 43.38248 6730.95164 2.477668 191 35.22966 36.70847 33.75084 43.28993 6769.26123 2.577283 200.5 35.43619 37.01009 33.86229 43.15754 6825.483 2.722258 216 35.61581 37.27115 33.96047 43.03954 6873.8018 2.844582 230.45 35.826 37.65676 34.10844 42.86017 6944.59031 3.020018 261 36.15924 38.05336							
34.44196 35.54573 33.3382 43.79376 6548.33568 1.982761 151 34.61535 35.80352 33.42719 43.68945 6597.85024 2.119836 161 34.77809 36.04454 33.51164 43.5876 6643.87 2.245259 170.68 34.94257 36.28827 33.59686 43.48127 6689.93534 2.370745 181 35.09039 36.50467 33.67611 43.38248 6730.95164 2.477668 191 35.22966 36.70847 33.75084 43.28993 6769.26123 2.577283 200.5 35.43619 37.01009 33.86229 43.15754 6825.483 2.722258 216 35.61581 37.27115 33.96047 43.03954 6873.8018 2.844582 230.45 35.77862 37.50679 34.05045 42.93055 6917.14009 2.952539 245.6 36.8266 37.65676 34.10844 42.86017 6944.59031 3.020018 261 36.24362 38.17394							
34.61535 35.80352 33.42719 43.68945 6597.85024 2.119836 161 34.77809 36.04454 33.51164 43.5876 6643.87 2.245259 170.68 34.94257 36.28827 33.59686 43.48127 6689.93534 2.370745 181 35.09039 36.50467 33.67611 43.38248 6730.95164 2.477668 191 35.22966 36.70847 33.75084 43.28993 6769.26123 2.577283 200.5 35.43619 37.01009 33.86229 43.15754 6825.483 2.722258 216 35.61581 37.27115 33.96047 43.03954 6873.8018 2.844582 230.45 35.8826 37.65679 34.05045 42.93055 6917.14009 2.952539 245.6 35.8826 37.65676 34.10844 42.86017 6944.59031 3.020018 261 36.15924 38.05336 34.26511 42.67062 7016.76492 3.193419 291 36.24362 38.17394							
34.77809 36.04454 33.51164 43.5876 6643.87 2.245259 170.68 34.94257 36.28827 33.59686 43.48127 6689.93534 2.370745 181 35.09039 36.50467 33.67611 43.38248 6730.95164 2.477668 191 35.22966 36.70847 33.75084 43.28993 6769.26123 2.577283 200.5 35.43619 37.01009 33.86229 43.15754 6825.483 2.722258 216 35.61581 37.27115 33.96047 43.03954 6873.8018 2.844582 230.45 35.8826 37.50679 34.05045 42.93055 6917.14009 2.952539 245.6 35.8826 37.65676 34.10844 42.86017 6944.59031 3.020018 261 36.15924 38.05336 34.26511 42.67062 7016.76492 3.193419 291 36.24362 38.17394 34.3133 42.61262 7038.5328 3.245061 306 36.35132 38.32829							
34.94257 36.28827 33.59686 43.48127 6689.93534 2.370745 181 35.09039 36.50467 33.67611 43.38248 6730.95164 2.477668 191 35.22966 36.70847 33.75084 43.28993 6769.26123 2.577283 200.5 35.43619 37.01009 33.86229 43.15754 6825.483 2.722258 216 35.61581 37.27115 33.96047 43.03954 6873.8018 2.844582 230.45 35.77862 37.50679 34.05045 42.93055 6917.14009 2.952539 245.6 35.8826 37.65676 34.10844 42.86017 6944.59031 3.020018 261 36.05065 37.898 34.20329 42.74552 6988.5816 3.126247 275.67 36.15924 38.05336 34.26511 42.67062 7016.76492 3.193419 291 36.39726 38.26532 34.34919 42.57004 7054.87401 3.284585 320.45 36.38087 38.36613 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
35.09039 36.50467 33.67611 43.38248 6730.95164 2.477668 191 35.22966 36.70847 33.75084 43.28993 6769.26123 2.577283 200.5 35.43619 37.01009 33.86229 43.15754 6825.483 2.722258 216 35.61581 37.27115 33.96047 43.03954 6873.8018 2.844582 230.45 35.77862 37.50679 34.05045 42.93055 6917.14009 2.952539 245.6 35.8826 37.65676 34.10844 42.86017 6944.59031 3.020018 261 36.05065 37.898 34.20329 42.74552 6988.5816 3.126247 275.67 36.15924 38.05336 34.26511 42.67062 7016.76492 3.193419 291 36.24362 38.17394 34.3133 42.61262 7038.53238 3.245061 306 36.35132 38.3613 34.34919 42.57004 7054.87401 3.284585 320.45 36.38087 38.3613							
35.22966 36.70847 33.75084 43.28993 6769.26123 2.577283 200.5 35.43619 37.01009 33.86229 43.15754 6825.483 2.722258 216 35.61581 37.27115 33.96047 43.03954 6873.8018 2.844582 230.45 35.77862 37.50679 34.05045 42.93055 6917.14009 2.952539 245.6 35.8826 37.65676 34.10844 42.86017 6944.59031 3.020018 261 36.05065 37.898 34.20329 42.74552 6988.5816 3.126247 275.67 36.15924 38.05336 34.26511 42.67062 7016.76492 3.193419 291 36.24362 38.17394 34.3133 42.61262 7038.53238 3.245061 306 36.35132 38.32829 34.37435 42.54045 7066.15007 3.311366 335.83 36.38087 38.3613 34.39844 42.52462 7072.15939 3.324618 351.25 36.38289 38.37229 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
35.43619 37.01009 33.86229 43.15754 6825.483 2.722258 216 35.61581 37.27115 33.96047 43.03954 6873.8018 2.844582 230.45 35.77862 37.50679 34.05045 42.93055 6917.14009 2.952539 245.6 35.8826 37.65676 34.10844 42.86017 6944.59031 3.020018 261 36.05065 37.898 34.20329 42.74552 6988.5816 3.126247 275.67 36.15924 38.05336 34.26511 42.67062 7016.76492 3.193419 291 36.24362 38.17394 34.3133 42.61262 7038.53238 3.245061 306 36.35132 38.26532 34.34919 42.57004 7054.87401 3.284585 320.45 36.35145 38.3613 34.3884 42.52462 7072.15939 3.324618 351.25 36.38087 38.36952 34.39222 42.52057 7073.69494 3.327635 366 36.38389 38.37229							
35.61581 37.27115 33.96047 43.03954 6873.8018 2.844582 230.45 35.77862 37.50679 34.05045 42.93055 6917.14009 2.952539 245.6 35.8826 37.65676 34.10844 42.86017 6944.59031 3.020018 261 36.05065 37.898 34.20329 42.74552 6988.5816 3.126247 275.67 36.15924 38.05336 34.26511 42.67062 7016.76492 3.193419 291 36.24362 38.17394 34.3133 42.61262 7038.53238 3.245061 306 36.30726 38.26532 34.34919 42.57004 7054.87401 3.284585 320.45 36.35132 38.32829 34.37435 42.54045 7066.15007 3.311366 335.83 36.38087 38.36952 34.39222 42.52057 7073.69494 3.327635 366 36.38387 38.37362 34.39412 42.51855 7074.46062 3.329141 396 36.38425 38.37414<							
35.77862 37.50679 34.05045 42.93055 6917.14009 2.952539 245.6 35.8826 37.65676 34.10844 42.86017 6944.59031 3.020018 261 36.05065 37.898 34.20329 42.74552 6988.5816 3.126247 275.67 36.15924 38.05336 34.26511 42.67062 7016.76492 3.193419 291 36.24362 38.17394 34.3133 42.61262 7038.53238 3.245061 306 36.30726 38.26532 34.34919 42.57004 7054.87401 3.284585 320.45 36.35132 38.32829 34.37435 42.54045 7066.15007 3.311366 335.83 36.37485 38.3613 34.3884 42.52462 7072.15939 3.324618 351.25 36.38289 38.37229 34.39349 42.51921 7074.21146 3.328661 380.5 36.38387 38.37362 34.39412 42.51855 7074.5566 3.329345 411.5 36.38425 38.3746							
35.8826 37.65676 34.10844 42.86017 6944.59031 3.020018 261 36.05065 37.898 34.20329 42.74552 6988.5816 3.126247 275.67 36.15924 38.05336 34.26511 42.67062 7016.76492 3.193419 291 36.24362 38.17394 34.3133 42.61262 7038.53238 3.245061 306 36.30726 38.26532 34.34919 42.57004 7054.87401 3.284585 320.45 36.35132 38.32829 34.37435 42.54045 7066.15007 3.311366 335.83 36.37485 38.3613 34.3884 42.52462 7072.15939 3.324618 351.25 36.38087 38.36952 34.39222 42.52057 7073.69494 3.327635 366 36.38289 38.37229 34.39412 42.51855 7074.21146 3.329141 396 36.38425 38.37414 34.39435 42.51829 7074.5566 3.329345 411.5 36.3846 38.37464 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>							
36.05065 37.898 34.20329 42.74552 6988.5816 3.126247 275.67 36.15924 38.05336 34.26511 42.67062 7016.76492 3.193419 291 36.24362 38.17394 34.3133 42.61262 7038.53238 3.245061 306 36.30726 38.26532 34.34919 42.57004 7054.87401 3.284585 320.45 36.35132 38.32829 34.37435 42.54045 7066.15007 3.311366 335.83 36.37485 38.3613 34.3884 42.52462 7072.15939 3.324618 351.25 36.38087 38.36952 34.39222 42.52057 7073.69494 3.327635 366 36.38289 38.37229 34.39449 42.51921 7074.21146 3.328661 380.5 36.38387 38.37362 34.39412 42.51855 7074.5566 3.329345 411.5 36.3846 38.37464 34.39457 42.51805 7074.64801 3.329531 426							
36.15924 38.05336 34.26511 42.67062 7016.76492 3.193419 291 36.24362 38.17394 34.3133 42.61262 7038.53238 3.245061 306 36.30726 38.26532 34.34919 42.57004 7054.87401 3.284585 320.45 36.35132 38.32829 34.37435 42.54045 7066.15007 3.311366 335.83 36.37485 38.3613 34.3884 42.52462 7072.15939 3.324618 351.25 36.38087 38.36952 34.39222 42.52057 7073.69494 3.327635 366 36.38289 38.37229 34.39349 42.51921 7074.21146 3.328661 380.5 36.38387 38.37362 34.39412 42.51855 7074.46062 3.329141 396 36.38425 38.37414 34.39435 42.51829 7074.5566 3.329345 411.5 36.3846 38.37464 34.39457 42.51805 7074.64801 3.329531 426							
36.24362 38.17394 34.3133 42.61262 7038.53238 3.245061 306 36.30726 38.26532 34.34919 42.57004 7054.87401 3.284585 320.45 36.35132 38.32829 34.37435 42.54045 7066.15007 3.311366 335.83 36.37485 38.3613 34.3884 42.52462 7072.15939 3.324618 351.25 36.38087 38.36952 34.39222 42.52057 7073.69494 3.327635 366 36.38289 38.37229 34.39349 42.51921 7074.21146 3.328661 380.5 36.38387 38.37362 34.39412 42.51855 7074.46062 3.329141 396 36.38425 38.37414 34.39435 42.51829 7074.5566 3.329345 411.5 36.3846 38.37464 34.39457 42.51805 7074.64801 3.329531 426							
36.30726 38.26532 34.34919 42.57004 7054.87401 3.284585 320.45 36.35132 38.32829 34.37435 42.54045 7066.15007 3.311366 335.83 36.37485 38.3613 34.3884 42.52462 7072.15939 3.324618 351.25 36.38087 38.36952 34.39222 42.52057 7073.69494 3.327635 366 36.38289 38.37229 34.39349 42.51921 7074.21146 3.328661 380.5 36.38387 38.37362 34.39412 42.51855 7074.46062 3.329141 396 36.38425 38.37414 34.39435 42.51829 7074.5566 3.329345 411.5 36.3846 38.37464 34.39457 42.51805 7074.64801 3.329531 426							
36.35132 38.32829 34.37435 42.54045 7066.15007 3.311366 335.83 36.37485 38.3613 34.3884 42.52462 7072.15939 3.324618 351.25 36.38087 38.36952 34.39222 42.52057 7073.69494 3.327635 366 36.38289 38.37229 34.39349 42.51921 7074.21146 3.328661 380.5 36.38387 38.37362 34.39412 42.51855 7074.46062 3.329141 396 36.38425 38.37414 34.39435 42.51829 7074.5566 3.329345 411.5 36.3846 38.37464 34.39457 42.51805 7074.64801 3.329531 426							320.45
36.37485 38.3613 34.3884 42.52462 7072.15939 3.324618 351.25 36.38087 38.36952 34.39222 42.52057 7073.69494 3.327635 366 36.38289 38.37229 34.39349 42.51921 7074.21146 3.328661 380.5 36.38387 38.37362 34.39412 42.51855 7074.46062 3.329141 396 36.38425 38.37414 34.39435 42.51829 7074.5566 3.329345 411.5 36.3846 38.37464 34.39457 42.51805 7074.64801 3.329531 426			L				335.83
36.38087 38.36952 34.39222 42.52057 7073.69494 3.327635 366 36.38289 38.37229 34.39349 42.51921 7074.21146 3.328661 380.5 36.38387 38.37362 34.39412 42.51855 7074.46062 3.329141 396 36.38425 38.37414 34.39435 42.51829 7074.5566 3.329345 411.5 36.3846 38.37464 34.39457 42.51805 7074.64801 3.329531 426						3.324618	351.25
36.38289 38.37229 34.39349 42.51921 7074.21146 3.328661 380.5 36.38387 38.37362 34.39412 42.51855 7074.46062 3.329141 396 36.38425 38.37414 34.39435 42.51829 7074.5566 3.329345 411.5 36.3846 38.37464 34.39457 42.51805 7074.64801 3.329531 426					7073.69494	3.327635	366
36.38387 38.37362 34.39412 42.51855 7074.46062 3.329141 396 36.38425 38.37414 34.39435 42.51829 7074.5566 3.329345 411.5 36.3846 38.37464 34.39457 42.51805 7074.64801 3.329531 426				42.51921	7074.21146	3.328661	380.5
36.38425 38.37414 34.39435 42.51829 7074.5566 3.329345 411.5 36.3846 38.37464 34.39457 42.51805 7074.64801 3.329531 426					7074.46062	3.329141	396
36.3846 38.37464 34.39457 42.51805 7074.64801 3.329531 426						3.329345	411.5
						3.329531	426
	36.3846					3.329531	440

Hull hole	Rulkhd	Comp_E	Comp_E	Comp_F	Comp_F	Time
1	(gpm)	level	vol	level	vol	(min)
0	0	0.04	8.381344	0.04		0
5938.5	0	0.04	8.381344			1.18
5973.95	0	0.04		9.363991	2045.0754	2.58
6006.66	0	0.04	8.381344	11.838267	3220.0371	4.05
6028.71	0	0.04	8.381344	13.46424	4011.4595	5.05
6043.18	0	0.04	8.381344	14.761503	4818.7012	6
6071.77	0	0.04	8.381344	16.106792	5655.8291	7.05
6089.35	332.961	0.096723	20.266655	17.503262	6524.8022	8.15
6101.39	572.481	0.37679	78.950096	18.491045	7227.0596	9.08
6121.25	736.803	0.797702	167.14545	19.470299	7956.6724	10.08
6040.73	863.357	1.293026	270.93243	20.39197	8643.3818	11.05
5771.35	973.858	1.900344	398.18591	21.315947	9331.8105	12.08
5553.45	1062.31	2.540154	532.24768	22.135612	9942.5186	13.07
5354.28	1131.26	3.229253	676.63696	22.824028	10514.565	14.05
5134.5	1194.39	3.996542	837.40973	23.49226	11078.101	15.08
4965.49	1246.35	4.547115	992.48938	24.069464	11564.867	16.03
4762.22	1297.19	4.841869	1168.2708	24.657896	12061.104	17.07
4581.71	1342.24	5.142767	1347.7156	25.199093	12517.51	18.08
4430.48	1381.09	5.437928	1523.7391	25.6807	12923.659	19.05
4243.82	1418.24	5.757014	1714.0304	26.153889	13322.708	20.07
4080.73	1451.4	6.07873	1905.8905	26.587019	13687.977	21.07
3936.65	1479.72	6.407357	2101.8723	26.964785	14028.523	22.07
3806.48	1504.87	6.736341	2298.0669	27.306387	14341.775	23.05
3669.64	1528.75	7.082064	2504.2441	27.63619	14644.209	24.07
3543.87	1550.31	7.427204	2710.073	27.938255		25.07
3440.47	1569.81	7.771107	2915.1646	28.215143		26.05
3309	1588.02	8.125064				27.05
3193.36	1605.5	8.500915			<u></u>	28.1
3091	1620.74					29.1
2988.64	1634.91	9.108737		 		30.12
2807.58						32.08
2666.51	1679.39					
2495.7	1			1		
2420.74						
2306.22						
2202.74						
2136.96						
2094.93				1		
2045.91						
2040.84						
2018.58						
1995.28						
1958.02						56.03
1949.5						
1942.45						
1952.52			J			
1966.03						
1935.82	1787.98	16.982302	12206.488	31.549295	18254.09	66.28

Hull hole	Bulkhd	Comp_E	Comp_E	Comp_F	Comp_F	Time
(gpm)	(gpm)	level	vol	level	vol	(min)
1961.38	1767.68	17.380075	12693.744	31.6012	18304.236	
1956.27	1748.86	17.7318	13124.595	31.651731	18353.055	
1922.17	1732.03	18.053907	13585.925	31.707197	18406.643	
1917.1	1715.39	18.370691	14050.563	31.762886	18460.445	74.17
1901.1	1666.5	19.308052	15425.426	31.947708	18639.01	80.25
1807.88	1586.15	20.804836	17620.811	32.255039	18935.932	90.6
1722.83	1508.07	22.198187	19664.488	32.548901	19219.844	100.5
1636.6	1439.98	23.395611	21647.744	32.832703	19494.033	110.5
1558.5	1371.76	24.538771	23545.564	33.102924	19755.104	120.5
1485.74	1303.69	25.62475	25348.455	33.360104	20003.574	130.72
1407.73	1236.39	26.643833	27040.287	33.601128	20236.434	140.61
1334.52	1174.24	27.561861	28694.207	33.837219	20464.529	151
1264.19	1113.94	28.406099	30218.24	34.05352	20673.506	161
1200.96	1054.96	29.19025	31633.797	34.255493	20868.641	170.68
1146.57	990.571	29.980986	33061.246	34.446812	21053.479	181
1066.2	933.481	30.67326	34310.945	34.639198	21239.35	191
1000.83	877.001	31.312307	35484.02	34.812843	21407.111	200.5
902.427	790.226	32.220211	37210.773	35.062298	21648.119	216
803.465	707.781	32.999203	38692.355	35.279221	21857.695	230.45
716.123	625.187	33.696861	40019.246	35.475826	22047.645	245.6
645.75	566.871	34.138054	40858.363	35.600586	22169.285	261
525.512	459.361	34.842319	42197.813	35.802711	22369.531	275.67
426.27	375.155	35.29287	43054.727	35.933434	22499.033	291
318.454	294.362	35.639179	43717.422	36.033527	22598.199	306
237.733	212.055	35.89756	44221.332	36.102215	22666.246	320.45
145.382	130.648	36.074535	44566.48	36.152191	22715.76	335.83
48.3141	39.3801	36.165485	44743.863	36.185444	22748.703	351.25
14.5904	11.7151	36.187477	44786.754	36.1964	22759.557	366
6.39578	4.96113	36.194912	44801.258	36.200008	22763.131	380.5
3.13793	2.63407	36.198452	44808.156	36.201847	22764.953	396
2.26588	1.77247	36.199883	44810.945	36.202423	22765.523	411.5
1.48141	0.98916	36.20121	44813.539	36.203037	22766.129	426
1.48141	0.98916	36.20121	44813.539	36.203037	22766.129	440

APPENDIX L. SCENARIO 3A RESULTS

Entire scenario run at speed ratio of 3.

Mean	Fwd Draft	Aft Draft	GM(T)	Displacement	LCG (ft)	Pumps	Valves	Time
Draft	i wa Dian	, at Drait			,	on	open	(min)
30.00392	30.00392	30.00392	45.44269	5144.16146	-7E-08	none	none	0
30.04185	30.02789	30.05581	45.46543	5156.79718	-0.03055	F/G	F gate	0.5
30.05848	30.0384	30.07855	45.47377	5162.33333	-0.04389	F/G	F gate	1.05
30.07039			45.47966	5166.30256	-0.05343	F/G	F gate	1.58
30.08084		30.10913	45.48434	5169.78165	-0.06178	F/G	F gate	2.05
30.09242	30.05988	30.12497	45.48897	5173.63928	-0.07103	F/G	F gate	2.57
30.10216	30.06603	30.13828	45.49238	5176.88074	-0.0788	F/G	F gate	3
30.1149	30.0741	30.1557	45.49615	5181.12505	-0.08895	F/G	F gate	3.57
30.12579	30.08099	30.17059	45.49871	5184.7532	-0.09761	F/G	F gate	4.05
30.15066		30.20458	45.50212	5193.03389	-0.11733	F/G	F gate	5.15
30.17107		30.23248	45.50551	5199.83231	-0.13348	F/G	F gate	6.05
30.19421	30,12432	30.2641	45.5106	5207.53821	-0.15173	F/G	F gate	7.07
30.21666	30.13855	30.29477	45.51416	5215.01293	-0.16938	F/G	F gate	8.05
30.22738		 	45.51536	5218.58484	-0.1778	E/F/G	F gate	8.55
30.22878		30.31133	45.51549	5219.04897	-0.17889	E/F/G	F gate	9.55
30.22877		30.31132	45.51549	5219.04683	-0.17889	E/F/G	F gate	10.95
30.22876	30.14622	30.31131	45.51549	5219.04491	-0.17888	E/F/G	F gate	12.12

Hull hole	Bulkhd	Pipe_F1	Comp_E	Comp_E	Comp_F	Comp_F	Time
(gpm)	(gpm)	(gpm)	level	vol	level	vol	(min)
0	0	0	0.04	8.381344	0.04	4.257545	0
5940.72	0	0	0.04	8.381344	4.194978	446.5076	0.5
5949.9	0	4000.5	0.04	8.381344	4.996408	640.2729	1.05
5951.23	0	4000.5	0.04	8.381344	5.45499	779.1958	1.58
5955.3	0	4000.53	0.04	8.381344	5.856944	900.9641	2.05
5956.21	0	4000.53	0.04	8.381344	6.302632	1035.981	2.57
5960.74	0	4000.56	0.04	8.381344	6.677131	1149.432	3
5963.91	0	4000.56	0.04	8.381344	7.167494	1297.983	3.57
5967.31	0	4000.56	0.04	8.381344	7.586668	1424.968	4.05
5974.94	0	4000.55	0.04	8.381344	8.543372	1714.793	5.15
5981.21	0	4000.37	0.04	8.381344	9.169541	1952.737	6.05
5988.52	0	4000.37	0.04	8.381344	9.737498	2222.444	7.07
5995.16	0	4000.36	0.04	8.381344	10.288417	2484.059	8.05
5999.19		4000.34	0.04	8.381344	10.551682	2609.076	8.55
5999.61	 	6000.09	0.04	8.381344	10.585891	2625.32	9.55
5999.61	0	6000.08	0.04	8.381344	10.585733	2625.245	10.95
5999.61	O	6000.08	0.04	8.381344	10.585591	2625.178	12.12

APPENDIX M. SCENARIO 3B RESULTS

Scenario 3B was run at 4 speed ratios.

Speed ratio	Time
ratio	(min)
5	0
2	22.1
6	57.67
10	102.7

Speed ratio was slowed to monitor pump for low net positive suction head (npsh).

Mean	Fwd	Aft Draft	GM(T)	Displacement	LCG (ft)	Pumps on	Valves	Time
Draft	Draft		, ,				open	(min)
30.00392	30.00392	30.00392	45.44269	5144.16146	-7E-08	none	none	0
30.07935	30.05161	30.10709	45.4837	5169.28462	-0.06059	none	none	1.07
30.14657	30.09415	30.199	45.50181	5191.67419	-0.1141	none	none	2.05
30.2232	30.14269	30.3037	45.51493	5217.19136	-0.17452	none	none	3.17
30.28633	30.18273	30.38993	45.51596	5238.21119	-0.22384	none	none	4.08
		30.48587		5261.60134	-0.27827	none	none	5.1
		30.58055		5284.68792	-0.33152	none	none	6.1
		30.67079		5306.69346	-0.38184	none	none	7.05
30.56206	30.35898	30.76514	45.45397	5329.93256	-0.43249	none	none	8.05
		30.85639		5353.64156	-0.4731	none	none	9.07
		30.95269			-0.51089	none	none	10.17
		31.10918		5422.5395	-0.56284	none	none	12.05
30.96926		31.25671	45.2979	5464.92828	-0.5999	E	E gate	14.05
	30.72232	31.38116	45.22659	5492.17542	-0.68447	E	E gate	16.12
		31.48306			-0.75361	E	E gate	18.05
		31.57447			-0.81409	E	E gate	20.03
		31.65675		5552.64652	-0.8673	E	E gate	22.1
		31.67825		5557.78879	-0.87867	none	none	22.7
		31.71798			-0.87063	E	E gate	23.7
31.31566		31.74912			-0.88847	E	E gate	24.7
	30.89306				-0.9072	E	E gate	25.7
		31.80521	44.93991	5591.61605	-0.92326	E	E gate	26.7
	30.91243		44.91898		-0.93975	E	E gate	27.7
31.38785	30.92086	31.85483	44.901	5602.75718	-0.95359	E	E gate	28.7
		31.87873		5608.13682	-0.96804	E	E gate	29.7
		31.89481			-0.97771	E	E gate	30.7
		31.91309			-0.98864	E	E gate	31.7
31.43903		31.92915			-0.99819	E	E gate	32.7
	30.95448		44.82836	5622.81729	-1.00679	E	E gate	33.7
		31.95684			-1.01454	E	E gate	34.7
		31.96867		5628.48322	-1.02148	E	E gate	35.7
31.47367		31.97914			-1.02759	E	E gate	36.7
		31.99046			-1.03418	E	E gate	37.88
		31.99665		5634.84597		E (tripped)	E gate	38.65
		32.00675			-1.04245	E (tripped)	E gate	39.65

Mean	Fwd	Aft Draft	GM(T)	Displacement	LCG (ft)	Pumps on	Valves	Time
Draft	Draft		` .				open	(min)
31.49779	30.98342	32.01215	44.77118				none	40.7
31.51447	31.00862	32.02031	44.77574	5644.19988	-1.02644	E	E gate	41.45
		32.02755					E gate	42.7
31.52379	31.01512	32.03246	44.76603	5647.24653	-1.0317	E	E gate	43.7
31.52719	31.01707	32.03731	44.76182	5648.35572			E gate	44.83
		32.04039			-1.03621	Ε	E gate	45.7
31.53184	31.01975	32.04394	44.75604	5649.87673			E gate	46.75
		32.04643			-1.03963	E	E gate	47.62
31.53546	31.02184	32.04909	44.75154	5651.05973			E gate	48.7
31.5373	31.02291	32.0517	44.74925				E gate	49.7
31.5384	31.02354	32.05325	44.7479	5652.01712			E gate	50.7
31.53962	31.02425	32.05498	44.74639	5652.41525	-1.04443	E	E gate	51.7
		32.05643		5652.7504	-1.04524	E	E gate	52.7
31.54148	31.02534	32.05762	44.74408	5653.02443	-1.04589	E	E gate	53.65
		32.05875		5653.28529	-1.04652	E	E gate	54.7
		32.05972		5653.51196	-1.04706	E	E gate	55.7
		32.06075					E gate	56.95
		32.06127		5653.87193	-1.04791	E	E gate	57.67
		32.06248					E gate	59.75
		32.06346		5654.38456	-1.04908	E	E gate	62.05
31.54593		32.06386					E gate	63.15
		32.06433			-1.04952	E	E gate	64.9
		32.06468			-1.0497	E	E gate	67.5
		32.06546			-1.04844	E	E gate	69.42
		32.06573					E gate	71.77
		32.06592			-1.04871	E	E gate	74.05
		32.06605			-1.04879	E	E gate	76.27
		32.06614			-1.04885	E	E gate	78.42
		32.06621			-1.04889	E	E gate	80.67
		32.06627			-1.04893	E	E gate	82.94
		32.06633		5655.31444			E gate	88.29
		32.06636		5655.31998	-1.04901	E	E gate	93.32
		32.06636					E gate	98.5
		32.06636					E gate	102.7
		32.06629				E	E gate	293.6
	·	1						

Hull hole	Bulkhd	Pipe_E1	Comp_E	Comp_E	Comp_F	Comp_F	Time
1 1	(gpm)	(gpm)		vol	level	vol	(min)
0	0	0	0.04	8.381344		4.257545	0
5950.72	0	0	0.04	8.381344	5.79952	883.5679	1.07
5972.09	0	0	0.04	8.381344	8.38628	1667.203	
5993.45	0	0	0.04	8.381344	10.448977	2560.304	3.17
6013.78	0	0	0.04	8.381344	11.998228	3295.998	
6033.77	0	0	0.04	8.381344	13.630075	4114.653	5.1
6054.79	0	0	0.04	8.381344	14.928606		
6074.78	0	0	0.04	8.381344		5692.877	
6096.5	317.35	0	0.088992	18.64673			
6117.43	581.385	0	0.39392	82.53943			
6140.03	757.909	0	0.86777	181.8271			<u> </u>
5782.72	977.164	0	1.919437	402.1866			
5341.7	1135.68	0	3.275965			10553.05	
4930.98	1254.13	1735.94	2.642357	553.6625			
4565.69	1343.38			441.1679			
4213.49	1418.5			347.4606		13325.56	
3882.03	1480.71		ļ	268.8736		14040.74	
3797.82	1495.46	1727.05		265.5681			
3664.28	1519.07	0		461.1803			
3536.79	1540.01	1735.95					
3401.81	1560.14	1735.99					ļ <u></u>
3283.63	1577.32						
3156.17	1594.87						
3042.97		<u> </u>					
2919.45	<u> </u>			342.9326			
2833.74				331.1375			
2733.19							
2642.31	1656.58						
2557.81	1665.62						
2477.36							
2403.72		1736.01		280.088			
2336.34				273.2941			
2261.21							
2220.08							
2151.26							
2115.24							
2091.31	 					<u> </u>	
2044.39							
2007.69							
1970.67							
1947.41							
1919.01							
1899.76							
1878.51				 			
1856.79							
1844.45							
1830.18	1730.31	1736.02	1.904232	413.7073	30.023048	17000.70	0

Hull hole	Bulkhd	Pipe_E1	Comp_E	Comp_E	Comp_F	Comp_F	Time
(gpm)	(gpm)	(gpm)	level	vol	level	vol	(min)
1817.95	1731.17		1.980895	415.0641			52.7
1808.04	1731.87	1736.02	1.978226	414.5048	30.650476	17408.34	53.65
1798.65	1732.54	1736.02	1.975761	413.9884	30.660995	17417.98	54.7
1790.53	1733.12	1736.02	1.9737	413.5565	30.67012	17426.35	55.7
1781.84	1733.73	1736.02	1.971639	413.1247	30.679682	17435.12	56.95
1777.32	1734.04	1736.02	1.970641	412.9154	30.684555	17439.59	57.67
1767.1	1734.74	1736.02	1.968532	412.4737	30.695751	17449.86	
1758.65	1735.33	1736.02	1.967121	412.1779	30.704927	17458.27	62.05
1755.36	1735.56	1736.02	1.966691	412.0879	30.70857	17461.61	63.15
1751.03	1735.83	1736.02	1.966339	412.0142	30.712921	17465.6	
1748.29	1736.04	1736.02	1.966256	411.9966	30.716204		67.5
1745.14	1736.32	1737.02	2.021297	423.5298	30.720707	17472.74	69.42
1742.73	1736.49	1737.02	2.02037	423.3354	30.723293	17475.11	71.77
1741.1	1736.6	1736.6	2.019681	423.1911	30.725042	17476.72	74.05
1739.94	1736.68	1737.02	2.019142	423.0781	30.726288	17477.86	76.27
1739.13	1736.73	1737.02	2.018709	422.9873	30.727156	17478.65	78.42
1738.49	1736.77	1737.02	2.018329	422.9078	30.727825	17479.27	80.67
1738.04	1736.81	1737.02	2.017992	422.8371	30.728315	17479.72	82.94
1737.44	1736.84	1737.02	2.017328	422.698	30.728945	17480.29	
1737.14	1736.87	1737.02	2.016856	422.5992	30.729263	17480.59	
1737.1	1736.87	1737.02	2.016361	422.4954	30.729288	17480.61	98.5
1737.1	1736.87	1737.02	2.015872	422.3929			102.7
1736.87	1736.87	1737.02	2.003031	419.7022	30.729288	17480.61	293.6

LIST OF REFERENCES

- 1. Society of Naval Architects and Marine Engineers (SNAME), *Principles of Naval Architecture, Second Revision*, vol. 1, pp. 143, Jersey City, NJ, 1988.
- 2. Surko, S. W., "An Assessment of Current Warship Damaged Stability Criteria," *Naval Engineers Journal*, pp. 123, May 1994.
- 2. Sarchin, T.H. and Goldberg, L.L., "Stability and Buoyancy Criteria for U.S. Naval Surface Ships," *SNAME Transactions*, vol. 70, pp. 418, 1962.
- Advanced Marine Enterprises, Inc., Advanced Stabiltiy Algorithm Phase I Technology Assessment, pp. 2-2, Naval Surface Warfare Center Carderock Division, Code 8530, Annapolis, Maryland, August 1996.
- 5. Jones, H. D., *DDG-51 Intact and Damage Stability in Beam Waves and Wind*, pp. 1, David Taylor Research Center, Bethesda, Maryland, January 1992.
- 6. Lindeburg, M. R., Mechanical Engineering Reference Manual for the PE Exam, 10th Edition, Professional Publications Inc., Belmont, CA, 1997.

BIBLIOGRAPHY

Dawson III, P., Computer Modelling of Ship Progressive Flooding as a Design Tool, Thesis, Naval Postgraduate School, June 1995.

Ferreiro, L. D. and M. H. Stonehouse, "A Comparative Study of US and UK Frigate Design," *SNAME Transactions*, Vol. 99, 1991.

Jones, H. D., DD963 Intact and Damage Stability in Beam Waves and Wind, David Taylor Research Center, Bethesda, Maryland, September 1991.

Jones, H. D., DDG-51 Intact and Damage Stability in Beam Waves and Wind, David Taylor Research Center, Bethesda, Maryland, January 1992.

Lindeburg, M. R., Mechanical Engineering Reference Manual for the PE Exam, 10th Edition, Professional Publications Inc., Belmont, CA, 1997.

Naval Ship Engineering Center, Design Data Sheet (DDS) 079-1, Stability and Buoyancy of U.S. Naval Surface Ships, Hyattsville, Maryland, June 1976.

Robertson Jr., J. B., G. C. Nickum, R. I. Price and E. M. Middleton, "The New Equivalent International Regulations on Subdivisions and Stability of Passenger Ships," *SNAME Transactions*, Vol. 82, 1974.

Society of Naval Architects and Marine Engineers (SNAME), Principles of Naval Architecture, Second Revision, Jersey City, NJ, 1988.

Sarchin, T.H. and Goldberg, L.L., "Stability and Buoyancy Criteria for U.S. Naval Surface Ships," *SNAME Transactions*, Vol. 70, 1962.

Surko, S. W., "An Assessment of Current Warship Damaged Stability Criteria," *Naval Engineers Journal*, May 1994.

INITIAL DISTRIBUTION LIST

1.	Defense Technical Information Center
2.	Dudley Knox Library
3.	Professor Charles N. Calvano, Code ME/CA
4.	Professor Fotis Papoulias, Code ME/PA
5.	Naval/Mechanical Engineering Curricular Office (Code 34)1 Department of Mechanical Engineering Naval Postgraduate School Monterey, CA 93943
6.	LT Thomas J. Anderson
7.	Mr. Bob Keane
8.	Mr. Al Brauer
9.	Mr. Robert R Wunderlick
10.	Mr. C. E. Bogner

11.	CAPT Dennis Mahoney, USN						
	Professor of Naval Architecture & Marine Eng.						
	Navy Academic Office, Room 5-317						
	Cambridge, MA 02139						
12.	Mr. Michel Masse1						
	President, AHT (Applied High Technology);						
	P.O. Box 385, Station B						
	Montreal, (QC) Canada H3B3J7						