CSE 379

General Purpose Input/Output with the ARM Processor

General Purpose Input/Output (GPIO) Highlights - Tiva

RGB LED

- General Purpose I/O Details
 - Two User Momentary Push Buttons
 - ♦ SW1
 - ♦ SW2
 - RGB LED
 - ♦ Individual control of red, blue, green LEDs

General Purpose Input/Output (GPIO) Highlights - Alice EduBase Board

© 2022 Kris Schindler

- General Purpose I/O Details
 - Eight Momentary Push Buttons
 - Four LEDs
 - - ♦ Controlled by pulse width modulated signals
 - Keypad
 - 4x4 matrix
 - □ 16x2 LCD Display
 - Four Digit Seven Segment Display
 - Speaker
 - Breadboard
 - Allows for connection to other components, such as
 - √ Additional Seven-Segment Displays
 - ✓ Additional Switches
 - √ Temperature Sensors

GPIO Overview

- GPIO Organized into Ports (A-F)
 - Each port has 8 I/O pins
 - A pin can be input or output
 - Senses or drives a one or a zero

Procedure for Using GPIO

- Enable a Clock for GPIO Port
 - Fach GPIO Port Needs Clock to Read/Write Data
- Set Direction for Each Pin Configured for GPIO
 - Configured by GPIO Direction Register
- Set Each GPIO Configured Pin as Digital
 - Configured by GPIO Digital Enable Register
- Using GPIO
 - Output
 - ♦ To Set GPIO Output High
 - ✓ Write 1 to GPIO Data Register Pin
 - ♦ To Set GPIO Output Low
 - ✓ Write 0 to GPIO Data Register Pin
 - Input
 - ♦ Reading GPIO Value
 - ✓ Read from GPIO Data Register Pin

Details

Details for each of the aforementioned steps in the procedure will be outlined

Enabling the Clock

- Controlled via System Run Mode Clock Gating Control Register (SYSCTL_RCGC)
 - Controls & Enables a Clock for Various Components
 - Was Used in UART0 Setup
 - SYSCTL RCGC UARG Register
 - ✓ Offset: 0x618
 - ♥ Write 1 to enable clock for UART0
- SYSCTL_RCGC_GPIO Details
 - Base Value: 0x400FE000

 - Effective Address: 0x400FE608
 - Description
 - ♦ Enables Clock for GPIO Ports
 - ✓ Disable Clock
 - · Write 0
 - ✓ Enable Clock
 - · Write 1

GPIO Base Addresses

- Each port has its own region mapped in memory
- Each port can support up to 8 inputs & outputs
- Base Addresses
 - GPIO Port A

♦ Address: 0x40004000

GPIO Port B

♦ Address: 0x40005000

GPIO Port C

♦ Address: 0x40006000

GPIO Port D

♦ Address: 0x40007000

GPIO Port E

♦ Address: 0x40024000

GPIO Port F

♦ Address: 0x40025000

Using Base Addresses to Access a GPIO Control Register for a Port

- Accessing a GPIO Register for a Specific Port
 - Add the Port Base to the Offset Value for a Register to Obtain Effective Address
 - ♦ Example
 - ✓ Port C Data Direction Register Address
 - · 0x40006400

© 2022 Kris Schindler

- ✓ To derive that address:
 - · Add base address (0x40006000) to offset (0x400)
- ✓ To write to Port C Data Direction Register.

```
mov r0, \#0xC000; Base Address Stored in r0 movt r0, \#0x4000 strb r1, [r0, \#0x400]
```

Alternative method of writing to the data direction register using constants to make code more readable

Setting GPIO Pin Direction

- Controlled via GPIO Direction Register (GPIODIR)
 - Controls whether each GPIO pin is input or output
- GPIODIR Details
 - Offset Value: 0x400
- Reserved
- 7 DIR
- //
- Accessing a Port's Data Direction Register
 - ♥ Description
 - ✓ For each pin on the port, the pin can be configured as input or output
 - Configuring Pin as Input
 - Write 0
 - Configuring Pin as Output
 - Write 1

Configuring GPIO Pin as Digital

- Controlled via GPIO Digital Enable Register (GPIODEN)
 - Controls whether each GPIO pin is enabled for digital I/O use
- GPIODEN Details
 - Offset Value: 0x51C
- Reserved
- 7 DEN

- Description
 - ♦ For each pin on the port, the pin can be enabled for digital I/O
 - Initially all pins on each port are disabled
 - ♥ Configuration
 - ✓ Disable Pin
 - Write 0
 - ✓ Digital Pin
 - · Write 1

Using GPIO

- GPIO Data Register (GPIODATA)
 - Offset Value: 0x3FC
- Description

- Allows data to be read or written for each pin on the port
- When Configured as Input
 - Reading 0, Pin is Low
 - Reading 1, Pin is High
- When Configured as Output
 - ♥ Writing 0, Pin is Set Low
 - ♥ Writing 1, Pin is Set High

Tiva GPIO

- Momentary Push Buttons
 - Switches 1 & 2
 - ♥ We'll use switch 1
 - ♦ Labelled as SW1
 - ✓ Port F, Pin 4
- RGB LED
 - Port F
 - The RGB LED consists of three LEDS:
 - ♥ Red
 - ✓ Pin 1
 - ♥ Green
 - ✓ Pin 3
 - ♥ Blue
 - ✓ Pin 2
 - The three LEDS can be controlled independently
 - ♥ Write a 1 to turn on
 - ♥ Write a 0 to turn off
- Switch Configuration
 - We'll use SW1
 - SW1 Schematic

Schematic derived from Texas
Instruments Incorporated,
Tiva™ C Series TM4C123G
Launch Pad Evaluation Board
User's Guide, SPMU296, April
2013, Texas Instruments

- When the switch is closed, what value is on Port F, Pin 4?
- How about when the switch is open?

A pull-up resistor is needed

- Port F, Pin 4
 - ♦ 1 when SW1 is open
 - ♥ 0 when SW1 is closed
- Configuring a Pull-Up Resistor
 - Controlled via GPIO Pull-Up Select Register (GPIOPUR)
 - Controls whether a pull-up resistor is connected to each GPIO pin
 - GPIOPUR Details
 - ♦ Offset Value: 0x510
 - Description

- ✓ For each pin on the port, a pull-up resistor can be enabled or disabled
- ✓ Configuration
 - · Enable pull-up resistor
 - Write 1
 - · Disable pull-up resistor
 - Write 0

Alice EduBase Board GPIO

- Keypad
 - Wiring

Derived from Figure 3-7, page 64, Muhammad Ali Mazidi, Shujen Chen, Sarmad Naimi, Sepehr Naimi, *Programming ARM Corect-M4 TM4C123G with C*, First Edition, MicroDigitalEd, 2014-2016

© 2022 Kris Schindler

```
Details

♦ Keypad – 4x4 Matrix

          ♥ Rows
               ✓ Connected to Port D (Pins 0-3)
          ♥ Columns
               ✓ Connected to Port A (Pins 2-5)
          Momentary push button located at each intersection of row & column
               ✓ Blue & red wires are not connected unless button is pressed
    Operation
          ♥ Use GPIO to
               ✓ Drive line

    Output a 1 (5 V) or 0 (0 V)

               ✓ Sense lines
                   · Input
                      What connections were made by the push buttons?
          ♥ Hint

✓ What happens when a button is pressed?

✓ How can this be observed by writing & reading from GPIO?

LEDs
    Port B, Pins 0-3
    Pin Number Corresponds to LED Number

    Momentary Push Buttons

    Switches 2 − 5

          \triangleright Port D. Pins 0-3
               ✓ Switch 2 is Pin 0

✓ Switch 5 is Pin 3.

    RGB LED

    The RGB LED consists of three LEDS:
          ♥ Red
          ♥ Green
          ♥ Blue
    The three LEDS can be controlled independently
          ♦ The combination of red, blue, and green at varied intensities can be used
             to illuminate any color
               ✓ Example
                      Purple is created by turning red and blue on (green off)
    Procedure for RGB LED Use
          Enable System Clock to Port F
          ♦ Set Direction (Output)
               ✓ Port F
                   · Pins 1, 2, 3
          ♦ Set Type (Digital)
               ✓ Port F
                   · Pins 1, 2, 3
```

© 2022 Kris Schindler

- Controlling the RGB LED
 - ♥ Red LED
 - ✓ To Turn On
 - Data Register Port F, Pin 1 High
 - ✓ To Turn Off
 - Data Register Port F, Pin 1 Low
 - ♥ Blue LED
 - ✓ To Turn On
 - · Data Register Port F, Pin 2 High
 - ✓ To Turn Off
 - Data Register Port F, Pin 2 Low
 - ♥ Green LED
 - ✓ To Turn On
 - · Data Register Port F, Pin 3 High
 - ✓ To Turn Off
 - Data Register Port F, Pin 3 Low
- Keypad
 - Write a routine to return which key has been pressed

References

- Kris Schindler, Introduction to Microprocessor Based Systems Using the ARM Microprocessor, Second Edition, Pearson, 2013
- Muhammad Ali Mazidi, Shujen Chen, Sarmad Naimi, Sepehr Naimi, Programming ARM Corect-M4 TM4C123G with C, First Edition, MicroDigitalEd, 2014-2016
- Texas Instruments Incorporated, Tiva™ TM4C123GH6PM Microcontroller Data Sheet, June 12, 2014, Texas Instruments – Production Data, 2007-2014
- Texas Instruments Incorporated, Tiva™ C Series TM4C123G Launch Pad Evaluation Board User's Guide, SPMU296, April 2013, Texas Instruments
- Alice EduBase for Tiva and MSP432 Launchpad User's Guide, Version 1.21, EVB+, February 4, 2017