1 Approximation Algorithm II Homework 1

A Primal-dual algorithm for set cover

Set cover problem: $E = \{e_1, \ldots, e_n\}$ is a set, $S_1, S_2, \ldots, S_m \subset E$, and w_j is a non-negative weight for S_j . The goal is to minimize weighted collection of S_j 's containing all E, i.e. find a minimal cover of E.

Consider the following LP:

$$\min \sum_{j=1}^{m} x_j \cdot w_j$$
subject to
$$\sum_{j:e_i \in S_j} x_j \ge 1, \qquad i = 1 \dots n$$

$$x_i \ge 0, \qquad j = 1 \dots m$$

Problem 1.1 What is the dual of this LP?

Solution:

$$\max \sum_{i=1}^{n} y_i$$
 subject to
$$\sum_{i:e_i \in S_j} y_i \leq w_j, \quad j = 1 \dots m$$
 $y_i \geq 0, \qquad \qquad i = 1 \dots n$

The primal-dual algorithm

- 1. $y \leftarrow 0$
- 2. $I \leftarrow \emptyset$
- 3. while there is $e_i \notin I$
 - \bullet increate y_i until a lhit boundary: $\sum_{j:e_j \in S_l} y_j = w_l$
 - $I \leftarrow I \cup \{S_l\}$
- 4. return I

Problem 1.2 In how many iterations of the while loop can a given dual variable be increased?

Solution: We assume $\bigcup S_j = E$ or the problem is not solvable. Then any y_i must cause some $\sum_{j:e_j \in S_l} y_j$ increase.

Note if increasing y_i can make $\sum_{j:e_j \in S_l} y_j$ increase, we must have $e_i \in S_l$. Hence in each iteration, at lease one un-covered e_i is added into the sub cover I. So it terminates in at most n times.

Problem 1.3 Using Q2, argue the algorithm terminates to a solution.

Solution: It terminate only when all $e_i \in I$, which is a solution. \square

Approximation Ratio Assume each $e_i \in E$ can appear in at most f sets among S_j 's.

Problem 1.4 Recall a tight lower bound between the value of the optimal fractional solution for the dual $val(y^*)$ and the value of the optimal integral solution for the set cover problem OPT.

Solution: Note the fractional optimal x^* of primal equals to fractional dual

$$val(x^*) = val(y^*)$$

and x^* is the relaxation of the integral problem, so,

$$val(y^*) = val(x^*) \leq OPT$$

.

Problem 1.5 Argue that the solution y is feasible for the dual.

Solution: In the while loop, any increasement will not violate the constraints, so the y_i 's are remaining feasible.

Problem 1.6 Combine Q4 and Q5, recall a tight lower bound between val(y) and OPT.

Solution: By definition $val(y) \leq val(y^*)$, hence

$$val(y) \le val(x^*) \le OPT$$

.

In the following, we want to show:

$$\sum_{j:S_j \in I} w_j \le f \cdot val(y)$$

Problem 1.7 Consider $S_j \in I$, what is the relationship between w_j and $\sum_{i:e_i \in S_j} y_i$?

Solution: By the definition of the algorithm, S_j is included only if $\sum_{i:e_i \in S_j} y_i = w_j$ becomes tight. i.e. the equality holds.

Problem 1.8 Using Q7, give the relationship between $\sum_{j \in I} w_j$ and y_i .

Solution:

$$\sum_{j \in I} w_j = \sum_{j \in I} \sum_{i: e_i \in S_j} y_i$$

Problem 1.9 Recall $|\{j: e_i \in S_j\}| \le f$, using Q8, prove $\sum_{j \in I} w_j \le f \cdot val(y)$.

Solution:

$$\sum_{j \in I} w_j = \sum_{j \in I} \sum_{i: e_i \in S_j} y_i$$

$$= \sum_i \left(\sum_{j \in I} 1_{e_i \in S_j} \right) y_i$$

$$\leq \sum_i f \cdot y_i$$

$$= f \cdot val(y)$$

Problem 1.10 Conclude using Q6 and Q9.

Solution: From Q9, we have $val(X) = \sum_{j \in I} w_j \leq f \cdot val(y)$, and from Q6 we have $val(y) \leq OPT$, so we have

$$val(X) \leq f \cdot OPT$$

.