Networking Introduction

ECE 650

Systems Programming & Engineering Duke University, Spring 2016

Computer Networking

- A background of important areas was covered in 550
 - http://people.ee.duke.edu/~adh39/courses/fall 2015/ece550/lectures/14 net.pdf
 - What is a network
 - 7 layer OSI networking stack
 - IP and routing
 - TCP sessions
- · We will cover more depth on these topics and more
- · Next assignment will be network focused
- · May want to review this background material

ECE 650 - Fall 2016

What is a Computer Network?

- A network is a group of interconnected computers
- · Motivations for computer networks
 - Share resources:
 - · Files, information, databases (and remote data access)
 - Compute resources (distributed computing)
 - Devices (e.g. printers)
 - Communication (any-to-any) between users & applications
 - Separate client and server
 - Connection to Internet network is now an important part of a PC

Internet We are familiar with "network endpoints: - PCs, servers, mobile devices, etc. · Network goal is for any-to-any communication

Network Links

- · At the lowest level we have links
- DSL, T1, T3, Fiber, etc.
- · Characterized by
 - Bit rate (e.g. 100 Mbps, 1Gbps)

 - Propagation delay (latency; mostly a function of distance)
 Transfer time on a link = #bits / bit rate + propagation delay

ECE 650 - Fall 2016

Connectivity in the Internet · A point-to-point mesh? Clearly not sustainable for large networks - N² links required - Add new endpoint: new link added to all existing endpoints ECE 650 - Fall 2016

Circuit Switching Process

- 1. Establish the end-to-end circuit
 - "Dialing" in phone network
- 2. Communication
 - Send information through network
- 3. Close circuit ("tear down")
 - Deallocate resources
- · If no end-to-end circuit can be established
 - E.g. due to lack of resources available
 - Re-try is required (e.g. busy signal on phone)

ECE 650 - Fall 2016

Circuit Switching Networks

- · Often not efficient
 - Capacity of circuit is allocated for entire duration of connection
 - The transmission often does not fully utilize channel for duration
- · Delay is required to establish the circuit
- · Network is transparent to users after circuit is established
 - Like having a dedicated wire to the target endpoint
- Data may be transmitted at fixed rate w/ propagation delay

ECE 650 - Fall 2016

) – Fall 2016

Multiplexing

- · Routers & Links can carry multiple communications
 - E.g. if each communication uses only a fraction of total B/W
- · Need a mechanism to divide network resources into pieces
- How can we divide link B/W into pieces? Multiplexing!
 - Frequency division multiplexing (FDM)
 - Time division multiplexing (TDM)
 - Code division multiplexing (often used in cellular technology)
- Motivation
 - Carry multiple signals on a single medium
 - More efficient use of transmission medium

ECE 650 - Fall 2016

TDM

- · Divide time into frames; frames into slots
- Each transmission stream gets a relative slot position within a frame

· Requires synchronization between sender and receiver

ECE 650 - Fall 2016

16

FDM

- Separate frequency spectrum of the medium
 - Into non-overlapping, smaller frequency bands
- · A channel is allocated to a smaller frequency band
 - Has access to that frequency band for the entire life of circuit
- Can combine TDM + FDM
 - Use FDM to divide frequency spectrum
 - Use TDM to time-slice channels across slots within each band

ECE 650 - Fall 2016

Packet Switching

- Break information in small chunks: packets
- Each packet forwarded independently
 - Must add metadata to each packet
- · Allows statistical multiplexing
 - + High utilization
 - + Very flexible
 - Fairness not automatic
 - Highly variable queueing delays
 - Different paths for each packet

ECE 650 - Fall 2016

) – Fall 2016

Sample Packet Format

- Highly simplified example we will look more closely later
- Header
 - Source Address (SA)
 - Destination Address (DA)
 - Sequence number (which packet index within a transmission)?
- Data (or payload)
- Trailer: e.g. CRC for error detection

1010 0110 0001 1010100010110001 010110

SA DA SEQ Payload CRC

ECE 650 - Fall 2016

...

Packet Routing

- · Store & Forward Routing
 - Entire packet must arrive at router before next hop
 - Each router adds delay to the packet transmission latency
- · Cut-through Routing
 - Pieces of a packet may be forwarded onto next hop right away
 - More difficult to manage packet transmission

ECE 650 - Fall 2016

Packet Routing

- · Queues introduce new effects:
 - Variable delay
 - Delay = queueing delay + propagation delay + transmission delay + processing delay
 - Packet loss
 - · When packet arrive to a router with a full queue, they are dropped
- Ordering is impacted:
 - Packets of a stream may arrive at destination endpoint out of order
 - May take different paths through network

ECE 650 - Fall 2016

21

22

Comparison

Circuit Switching	
Constant delay	Variable delay
In-order packet arrival	Out-of-order packet arrival
Inefficient use of bandwidth	Efficient use (sharing) of bandwidth
Simple routing	Complex routing
Quality is "all or nothing"	"Graceful" degradation of quality
Low complexity of control	High complexity of control

ECE 650 - Fall 2016

Managing Complexity

- · Let's turn attention back to the endpoints
 - Now that we briefly understand what the network looks like
- · Very large number of computers
- Incredible variety of technologies
 - Each with very different constraints
- · No single administrative entity
- Evolving demands, protocols, applications
 - Each with very different requirements!
- · How do we make sense of all this?

ECE 650 - Fall 2016

2016

Layer 3

- Bridges multiple "subnets" to provide end-to-end connectivity between nodes
- Provides global addressing (IP addresses)
- Only provides best-effort delivery of data
 - No retransmissions, etc.
- · Works across different link technologies

ECE 650 - Fall 2016

Layer 4

- End-to-end communication between processes
- Different types of services provided:
 - UDP: unreliable datagramsTCP: reliable byte stream
- "Reliable" = keeps track of what data were received properly and retransmits as necessary
- · This is the layer that applications talk with

ECE 650 - Fall 2016

Layer 5

- · Communication of whatever you want
- Can use whatever transport(s) is(are) convenient/appropriate
- · Freely structured
- Examples:
 - Skype (UDP)
 - SMTP = email (TCP)

 - HTTP = web (TCP)
 Online games (TCP and/or UDP)

ECE 650 - Fall 2016