Aufgabe 1

a) Erstellen Sie für die Gruppe (\mathbb{Z}, \oplus) eine Gruppentafel. (Hinweis: $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$) und \oplus (manchmal \oplus_6) bedeutet + mit $mod \ 6$)

\oplus	0	1	2	3	4	5
0	0	1	2	3	4	5
1	1	2	3	4	5	0
2	2	3	4	5	0	1
3	3	4	5	0	1	2
4	4	5	0	1	2	3
5	5	0	1	2	3	4

b) Bestimmen Sie für die Elemente 3 und 4 in \mathbb{Z}_6 die bezüglich \oplus inversen Elemente.

Das inverse Element verknüpft mit dem eigentlichen Element muss gleich dem neutralen Element sein. Also $(3+x) \mod 6 = 0$, bzw. $(4+x) \mod 6 = 0$.

- Inverses von 3: 3
- Inverses von 4: 2
- c) Lösen Sie in \mathbb{Z}_6 die Gleichung $x \oplus 4 = 1$

x = 3

Aufgabe 2

Gegeben sei die Menge \mathbb{Z}_{10} zusammen mit der bekannten Multiplikation \otimes .

a) Geben Sie eine Verknüpfungstafel an.

\otimes	0	1	2	3	4	5	6	7	8	9
0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9
2	0	2	4	6	8	0	2	4	6	8
3	0	3	6	9	2	5	8	1	4	7
4	0	4	8	2	6	0	4	8	2	6
5	0	5	0	5	0	5	0	5	0	5
6	0	6	2	8	4	0	6	2	8	4
7	0	7	4	1	8	5	2	9	6	3
8	0	8	6	4	2	0	8	6	4	2
9	0	9	8	7	6	5	4	3	2	1

b) Bestimmen Sie alle bezüglich dieser Verknüfung invertierbaren Elemente $\mathbb{U}(\mathbb{Z}_{10})\subseteq\mathbb{Z}_{10}$

Das inverse Element verknüpft mit dem eigentlichen Element muss gleich dem neutralen Element sein.

$$\mathbb{U}(\mathbb{Z}_{10}) = \{1, 3, 7, 9\}$$

c) Ist $\mathbb{U}(\mathbb{Z}_{10}) \subseteq \mathbb{Z}_{10}$ bezüglich \otimes abgeschlossen? Es ist abgeschlossen, da jedes Element genau einmal in jeder Zeile und Spalte vorkommt (Sudoku).

d) Geben Sie eine Verknüpfungstafel für $(\mathbb{U}(\mathbb{Z}_{10}), \otimes)$ an. Definiert diese Verknüpfung eine Gruppenstruktur? Zu welcher bekannten Gruppe ist (eventuell) diese Gruppe isomorph? Geben Sie ggf. einen Isomorphismus an.

\otimes	1	3	7	9
1	1	3	7	9
3	3	9	1	7
7	7	1	9	3
9	9	7	3	1