BLG 454E Learning from Data

FALL 2022-2023

Assoc. Prof. Yusuf Yaslan

Trees

Lecture Notes from Alpaydın 2010 Introduction to Machine Learning 2e © The MIT Press AND S. Theodoridis, Machine Learning: A Bayesian and Optimization Perspective, Elsevier 2nd Edition AND P. Flach, Chapter 5 Trees, Machine Learning: Making Sense of Data 2013 AND N. De Freitas, Machine Learning-Decision Trees, Random Forest, 2013 Youtube Lecture AND A. Criminisi et al. Decision Forests for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning, 2011, Microsoft Technical Report

Trees/Decision Trees

- Each internal node is labelled with a feature
- Each edge is labelled with a literal
 - Set of literals: Split
- Leaves are
 - Classification: class labels
 - Regression: numeric, average, or local fit w₂₀

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Trees/Decision Trees

- Univariate case
 - Single attribute x₁
 - In case of numeric, binary split x₁ > m
 - In case of discrete, n-way split
- Multivariate case
 - All attributes, x
- Learning is greedy
 - Finding the best split (and feature) recursively

Remarks on Trees

- + Trees can naturally treat mixtures of numeric and categorical variables.
- + They scale well with large data sets.
- + They can treat missing variables in an effective way.
- + They are easily interpretable (expressive).
- Prediction performance may not be as good as other classifiers such as SVM or NNs
- Trees are sensitive to changes in training data unstable
- Bagging/Boosting can reduce variance and improve generalization performance
- Random forests use bagging and often have very good prediction accuracy.

Classification Trees (ID3, CART, C4.5)

• For node m, N_m instances reach m, N_m^i belong to C_i

$$\hat{P}(C_i \mid \mathbf{x}, m) \equiv p_m^i = \frac{N_m^i}{N_m}$$

- Node m is pure if p_m^i is 0 or 1
- Measure of impurity is entropy

$$I_m = -\sum_{i=1}^K p_m^i \log_2 p_m^i$$

Lecture Notes for E Alpaydın 2004 Introduction to Machine Learning © The MIT Press (V1.1)

Impurity

- Every split from X_t to X_{tL} and X_{tR} must generate class-homogeneous sets compared to X_t .
 - Easier to distinguish classes in the new subsets.
- Choose the feature that maximizes the decrease in node impurity
 - Higher Information Gain

$$I = H(\mathcal{S}) - \sum_{i \in \{1,2\}} \frac{|\mathcal{S}^i|}{|\mathcal{S}|} H(\mathcal{S}^i)$$

- Besides entropy
 - Gini Index:

$$I_{m} = -\sum_{i=1}^{K} p_{m}^{i} (1 - p_{m}^{i})$$

Suppose we have the following five positive examples (the first three are the same as in Example 4.1):

```
p1: Length = 3 \land Gills = no \land Beak = yes \land Teeth = many
p2: Length = 4 \land Gills = no \land Beak = yes \land Teeth = many
p3: Length = 3 \land Gills = no \land Beak = yes \land Teeth = few
p4: Length = 5 \land Gills = no \land Beak = yes \land Teeth = many
p5: Length = 5 \land Gills = no \land Beak = yes \land Teeth = few
```

and the following negatives (the first one is the same as in Example 4.2):

```
n1: Length = 5 \land Gills = yes \land Beak = yes \land Teeth = many n2: Length = 4 \land Gills = yes \land Beak = yes \land Teeth = many n3: Length = 5 \land Gills = yes \land Beak = no \land Teeth = many n4: Length = 4 \land Gills = yes \land Beak = no \land Teeth = many n5: Length = 4 \land Gills = no \land Beak = yes \land Teeth = few
```

Example

Similar calculations for Beak and Teeth would give 0.76 and 0.97 respectively.

Pick 'Gills' as the first feature!

Length =
$$[3,4,5]$$
 $[2+,0-][1+,3-][2+,2-]$
Gills = $[yes,no]$ $[0+,4-][5+,1-]$
Beak = $[yes,no]$ $[5+,3-][0+,2-]$
Teeth = $[many,few]$ $[3+,4-][2+,1-]$

Impurity of the root is 5+,5- so it is 1. We will find the feature that maximizes the decrease in impurity.

Impurity of using 'Length' is

$$-2/2 * \log 1 - 0/2* \log 0/2 = 0$$

 $-1/4 * \log (1/4) - \frac{3}{4}* \log (3/4) = 0.81$
 $-2/4 * \log (2/4) - 2/4* \log (2/4) = 1$
Total entropy is weighted average:
 $2/10 * 0 + 4/10 * 0.81 + 4/10 * 1 = 0.72$

Impurity of 'Gills' is

$$-0/4 * log 0 - 4/4 * log 1 = 0$$

$$-5/6*log(5/6) - 1/6*log(1/6) =$$
Total entropy is
$$4/10*0 + 6/10 * (-5/6*log(5/6) - 1/6*log(1/6)) = 0.39$$

Example cont'd

- After the first feature is selected, the right side of the tree reaches the final leaf node. NEGATIVE
- Perform similar operations to decide on the second feature, then third, and forth until you reach the class labels in the leaf nodes.

Figure from P. Flach, Chapter 5 Trees, Machine Learning: Making Sense of Data 2013

Another Example

- Let's compare Pat (Patrons) and Type
 - I(Pat) = 0.541, I(Type) = 0

Example	Input Attributes										Goal
Lampie	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
x ₁	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	$y_1 = Yes$
\mathbf{x}_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	$y_2 = No$
x ₃	No	Yes	No	No	Some	\$	No	No	Burger	0-10	$y_3 = Yes$
\mathbf{x}_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	10-30	$y_4 = Yes$
X 5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	$y_5 = No$
x ₆	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	$y_6 = Yes$
X7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	$y_7 = No$
x ₈	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	$y_8 = Yes$
X 9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	$y_9 = No$
x ₁₀	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	$y_{10} = No$
x ₁₁	No	No	No	No	None	\$	No	No	Thai	0–10	$y_{11} = No$
x ₁₂	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	$y_{12} = Yes$
Figure 18.3 Examples for the restaurant domain.											

Example from S. Russell and P. Norvig, Chapter 18, Artificial Intelligence: A Modern Approach, 3rd Ed. 2010

Regression Trees

Error at node m:

$$b_m(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} \in \mathcal{X}_m : \mathbf{x} \text{ reaches node } m \\ 0 & \text{otherwise} \end{cases}$$

$$E_m = \frac{1}{N_m} \sum_{t} (r^t - g_m)^2 b_m(\mathbf{x}^t) \qquad g_m = \frac{\sum_{t} b_m(\mathbf{x}^t) r^t}{\sum_{t} b_m(\mathbf{x}^t)}$$

After splitting:

$$b_{mj}(\mathbf{x}) = \begin{cases} 1 & \text{if } \mathbf{x} \in \mathcal{X}_{mj} : \mathbf{x} \text{ reaches node } m \text{ and branch } j \\ 0 & \text{otherwise} \end{cases}$$

$$E'_{m} = \frac{1}{N_{m}} \sum_{j} \sum_{t} (r^{t} - g_{mj})^{2} b_{mj}(\mathbf{x}^{t}) \qquad g_{mj} = \frac{\sum_{t} b_{mj}(\mathbf{x}^{t}) r^{t}}{\sum_{t} b_{mj}(\mathbf{x}^{t})}$$

Model Selection in Trees:

Pruning Trees

- Remove subtrees for better generalization (decrease variance)
 - Prepruning: Early stopping
 - Postpruning: Grow the whole tree then prune subtrees which overfit on the pruning set
- Prepruning is faster, postpruning is more accurate (requires a separate pruning set)

Rule Extraction from Trees

- R1: IF (age>38.5) AND (years-in-job>2.5) THEN y = 0.8
- R2: IF (age>38.5) AND (years-in-job \leq 2.5) THEN y = 0.6
- R3: IF (age \leq 38.5) AND (job-type='A') THEN y = 0.4
- R4: IF (age \leq 38.5) AND (job-type='B') THEN y = 0.3
- R5: IF (age \leq 38.5) AND (job-type='C') THEN y = 0.2

Random Trees Random Forest

- How to build a random tree?
 - Randomly select two features, pick the best one in terms of impurity

 $p(c|\mathbf{v}) = \frac{1}{T} \sum_{t=1}^{T} p_t(c|\mathbf{v})$

- Continue to grow the tree until you reach the leaf nodes.
- How to avoid the impact of randomization?
 - Execute this many (T) times:
 - Pick a sample Z of size N from the training data (Bagging)
 - Build a random tree by recursively following the steps
 - Select m random features, pick the best split, split the node
 - Output the ensemble
 - Final prediction: Average over all trees
- The first example of ensemble of classifiers in this course