Name: Kanwar Awais

Page-01

Reg No: Chen 19111052

Section: CHEN-3rd

Department: chemical Engineering

a no-01

1) System:-

Det: In thermodynamics, the system is defined as a definite state space or area on which the study of energy transfer and energy conversions is made.

e.g: transport system, solar system, telephone system etc

2) Surroundings:-

Oef: Anything outside the system which affects the behaviour of the system is Known as surrounding.
e.g: Radiator, enhaust system, air

3) Adiabatic Process:

Def: Adiabatic is a thermodynamic Process where no heat energy is being supplied to the system.

4) 1 So Jated system:

Page. 2

The system in which neither mass nor energy cross the boundaries of the system e.g., A thermos flask

5) Extensive Property:

Extensisive Properties are those that change as the size of an object changes. If the size of the system doubles, the value of an entensive Property simply doubles as well.

Given Data:-

Pressure = P= 7 bax spearfic enthapy = if = 2600 ICJ/Kg

To Find:-

specific volume = ? = v specific internal energy = U = ?

Solution:

$$2600 = 697.1 + x(2064.9)$$

$$2600 = 697.1 = x(2064.9)$$

$$\chi = \frac{1902.9}{2064.9}$$

(ii)
$$\hat{V} = V_f + \chi V f g$$

$$= 696 - 3 + 1726.69$$

$$\hat{u} = 2420.021 < \frac{5}{168}$$

a3:

From steam tables, at P = 2MPa $\hat{v}_e = 0.0012$, $\hat{v}_v = 0.0996$ Since $\hat{v}_i 7 \hat{v}_v$ at P = 2MPa

the steam is superheated

T(°C)
$$\hat{V}(m^3/168)$$
 0.0996
 0.1038

(c)
$$V = ?$$

$$A\hat{U} = \hat{Q} + \hat{W}$$

$$u_1 = ?$$
 $u_1 (165/109)$
 $1(6)$
 2600.3
 212.9
 213.6
 2628.3

At state 2,
$$P_2 = 10 \text{ MPa}$$
, $\hat{V_2} = 0.0342 \frac{\text{m}^3}{1\text{cg}}$

$$\hat{w} = \frac{\hat{u}_{z}}{-\int P_{E} d\hat{v}} = -\int P_{d} \hat{v}$$

$$P_{v}^{1.5} = P_{v}^{1.5} = P_{v}^{1.5} = P_{v}^{1.5}$$

$$P = 2MPa \left(\frac{0.1m^{3}}{0.1m^{5}} \right)^{1.5} \left(\frac{1.5}{1.5} \right)^{1.5}$$

$$P = \frac{0.0632}{0.0342} MPa$$

$$\frac{0.0632}{0.15} dv$$

$$= -\frac{0.0632}{0.0342} \frac{1}{0.0342}$$

$$= -\frac{0.0632}{0.0342} \left(\frac{1}{0.0342} \right)^{0.05}$$

$$= -\frac{0.0632}{0.0342} \left(\frac{1}{0.0342} \right)^{0.05}$$

$$= -\frac{0.0632}{0.0342} \left(\frac{1}{0.0342} \right)^{0.05}$$

$$\frac{Pal(0.1m)}{K60} \left(\frac{1}{V} \right) \frac{1}{W}$$

$$\frac{0.0632}{0.032} \frac{1}{V^{0.5}} \frac{0.0342}{0.0342} = \frac{0.0632}{-0.5} \left(\frac{1}{0.0342^{0.5}} - \frac{1}{0.1^{1.5}} \right)$$

$$= -\frac{0.0632}{-0.5} \left(\frac{1}{0.000} + \frac$$

chen19111057

$$AU = \hat{U}_{1} - \hat{U}_{1}$$

$$= (3095.15 - 2602.97) KJ$$

$$AU = 492.18 KJ/lg$$

$$AU = \hat{Q} + \hat{Q}$$

$$QV = A\hat{U} - \hat{Q}$$

$$\hat{q} = (492.18 - 283.8) | c_3/c_3$$

$$\hat{q} = 208.38| c_3/c_3$$

$$\hat{q} = 208.38| c_3/c_3$$

$$\hat{q} = 208.38| c_3/c_3$$

$$\hat{q} = \frac{1}{200} = \frac{1}{2$$

 $\hat{V}_{2} = \frac{2 \text{ m Part} \left(0.1 \text{ m}^{3}\right)^{1.5}}{1 \text{ com Part}}$ $\hat{V}_{2} = \frac{2 \text{ m Part} \left(0.1 \text{ m}^{3}\right)^{1.5}}{1 \text{ com Part}}$ $\hat{V}_{2} = \frac{10.2 \times (0.1)^{1.5}}{15} = \frac{1}{15} = \frac{0.667}{15}$ $= \frac{1}{15} = \frac{1}{15} = \frac{0.2 \times 0.0316}{15} = \frac{0.667}{15}$ $\hat{V}_{2} = 0.0342 = \frac{1}{15}$