CP decomposition for matching algorithm in progress

Geonwoo Ban

Pusan National University Department of Statistics

2022 2/17

In progress

- 1. Ranks comparison
 - Two right shoe images per two person; A(005969), B(001351)
 - Rank: 1, 5, 10, 30
- 2. Brand comparison
 - Two left shoe images with two brands(Nike, Adidas) per two person;
 Nike(A,B), Adidas(C,D)
 - Just use rank 1
- 3. decomposed vector comparison (next to do)
 - Compare decomposed vectors' distance between match and non-match

Original

Sum up

- It can be useful to use just rank 1
 - low dimension
 - low cost
- Can distinguish between matching and non-matching with just eyes
- It can be the only case for Nike shoe images

Brand comparison

→ What about the difference between Nike and Adidas

Nike

Nike rank 1

Adidas

Adidas rank 1

Sum up

- These results have different points between brands in rank 1 images
- These results have the same points in the same person images
- Just using the rank 1 decomposition, we would be able to find matched images.

Next to do

- Rotated image decomposition
- Distance calculation with decomposed vectors
- Automation method for matching algorithm