Definition

• [[Binärbäume]], welche in symmetrischer Reihenfolge sortiert sind

Zusammenfassung:

- Minimum
- Maximum
- Vorgänger
- Nachfolger
- Einfügen
- Löschen
- Suchen

Alle Operationen in **O(h)** Zeit h ... Baumhöhe

Vorteil: dynamische Lösung des Wörte⊌buchproblems

Nachteil: Zeiten bis zu $\Theta(n)$ (bei entarteten Bäumen).

Operationen

Suchen (binäre Suche):

```
SUCHE (b, k)

if k=nil or b=wert(k) then
    write k

else if b<wert(k) then
    SUCHE(b, links(k))

else SUCHE(b, rechts(k))
```

Suchzeit: O(h)

h ... Höhe des Baumes (= Länge des längsten Astes)

Minimum und Maximum:

BAUM_MINIMUM(k)

1: **WHILE** links(k)≠nil

2: $k \leftarrow links(k)$

RETURN wert(k)

BAUM_MAXIMUM(k)

WHILE rechts(k)≠nil

2: k ← rechts(k)

RETURN wert(k)

Einfügen:

EINFÜGEN(B,k)

1: $y \leftarrow nil; x \leftarrow wurzel(B)$

2: WHILE x≠nil

3: y ← x

4: **IF** wert(k) < wert(x) **THEN**

 $x \leftarrow links(x)$

6: ELSE

5:

7: $x \leftarrow rechts(x)$

8: parent(k) \leftarrow y

9: **IF** y=nil **THEN**

10: wurzel(B) \leftarrow k

11: ELSE IF wert(k) < wert(y) THEN

12: $links(y) \leftarrow k$

13: **ELSE** rechts(y) \leftarrow k

Laufzeit: O(h)

Fügt den Knoten k in den Binärbaum B ein

Simuliere eine Suche nach k, bis zu einer freien Stelle (x=nil).

y...zukünftiger Parent

Dort fügen wir das Element als Kind von y ein.

- Baum B war leer

Vorgänger und Nachfolger:

Nachfolger von k: Nächster Knoten in der (nach Werten) sortierten Reihenfolge (= nächstgrößerer Wert im Baum oder gleicher Wert)

NACHFOLGER(k)

- 1: IF rechts(k) ≠ nil
- 2: return BAUM_MINIMUM(rechts(k))
- 3: $y \leftarrow parent(k)$
- 4: WHILE y ≠ nil AND k = rechts(y)
- 5: k ← y
- 6: $y \leftarrow parent(y)$
- 7: return(y)

Wenn ein **rechtes** Kind existiert, suche das **Minimum** in diesem Teilbaum, ...

... sonst suche den niedrigsten Knoten, bei dem sich k im **linken** Teilbaum befindet

Laufzeit: O(h)

Vorgänger und Nachfolger:

Vorgänger von k: Vorgängerknoten in der (nach Werten) sortierten Reihenfolge

VORGÄNGER(k)

- 1: IF links(k) ≠ nil
- 2: return BAUM_MAXIMUM(links(k))
- 3: $y \leftarrow parent(k)$
- 4: WHILE y ≠ nil AND k = links(y)
- 5: k ← y
- 6: $y \leftarrow parent(y)$
- 7: return(y)

Wenn ein **linkes** Kind existiert, suche das **Maximum** in diesem Teilbaum, ...

... sonst suche den niedrigsten Knoten, bei dem sich k unter dem **rechten** Kind befindet

Laufzeit: O(h)

Entfernen:

Suchen \Rightarrow Knoten k

a) k ist Blatt: abhängen

b) k hat nur ein Kind:
Teilbaum von diesem Kind an Parent(k) anhängen

k hat 2 Kinder: Finde k': nächster
 Knoten in der sortierten Knotenfolge
 (Nachfolger: gehe einmal rechts, dann immer links)
 → k' hat kein linkes Kind!

Setze WERT(k) = WERT(k') Entferne k', (Fall a oder b)

Laufzeit: O(h)

Aufbau eines sortierten Baumes

• wiederholtes Einfügen

Binärbaum hängt von der Reihenfolge der Elemente ab

$$T(n) \in \Theta(h \cdot n)$$

$$T(n) \in \Theta(n^2), \text{ wenn } h \in \Theta(n)$$

Einige Reihenfolgen liefern **entartete** Bäume (= Listen)

Fügt man randomisiert ein, ist $E[h] = \Theta(\log n)$