République Tunisienne

Ministère de l'Enseignement Supérieur et de la Recherche Scientifique

> Concours Nationaux d'Entrée aux Cycles de Formation d'Ingénieurs Session 2019

Concours Mathématiques et Physique Corrigé de l'épreuve de Mathématiques I

Exercice 1

1. Montrer que, pour tout $A \in \mathcal{M}_p(\mathbb{R})$, les applications

$$d_A: \mathcal{M}_p(\mathbb{R}) \longrightarrow \mathcal{M}_p(\mathbb{R}), N \longmapsto NA$$
 et $g_A: \mathcal{M}_p(\mathbb{R}) \longrightarrow \mathcal{M}_p(\mathbb{R}), N \longmapsto AN$,

sont continues.

Comme d_A et g_A sont des applications linéaires sur l'espace vectoriel de dimension finie $\mathcal{M}_p(\mathbb{R})$ alors elles sont continues.

2. Montrer que la suite $(U_n)_{n\in\mathbb{N}}$ admet au moins une valeur d'adhérence dans $\mathcal{M}_p(\mathbb{R})$. La suite $(M^n)_{n\in\mathbb{N}}$ est bornée donc il existe c>0 tel que, pour tout $n\in\mathbb{N}, \|M^n\|\leq c$. Donc, pour tout $n\in\mathbb{N},$

$$||U_n|| = \frac{1}{n+1} \left| \left| \sum_{k=0}^n M^k \right| \right| \le \frac{1}{n+1} \sum_{k=0}^n \left| M^k \right| \le \frac{1}{n+1} \sum_{k=0}^n c = c.$$

Donc la suite $(U_n)_{n\in\mathbb{N}}$ est bornée dans l'espace vectoriel normé de dimension finie $\mathcal{M}_p(\mathbb{R})$. Cela permet alors de conclure que la suite $(U_n)_{n\in\mathbb{N}}$ admet au moins une valeur d'adhérence dans $\mathcal{M}_p(\mathbb{R})$.

3. Montrer que, pour tout $n \in \mathbb{N}$,

$$MU_n = U_n M = U_n + \frac{1}{n+1} \left(M^{n+1} - I_p \right).$$

Soit $n \in \mathbb{N}$. On voit que U_n est un polynôme en M. Donc $MU_n = U_n M$. D'autre part

$$MU_n = \frac{1}{n+1} \sum_{k=0}^n M^{k+1} = \frac{1}{n+1} \sum_{k=1}^{n+1} M^k = \frac{1}{n+1} \left(\sum_{k=0}^n M^k + M^{n+1} - I_p \right)$$
$$= \frac{1}{n+1} \sum_{k=0}^n M^k + \frac{1}{n+1} \left(M^{n+1} - I_p \right) = U_n + \frac{1}{n+1} \left(M^{n+1} - I_p \right).$$

D'où le résultat démandé.

4. (a) Montrer que ML = LM = L.

Comme L est une valeur d'adhérence de la suite $(U_n)_{n\in\mathbb{N}}$ alors on peut en extraire une sous suite $\left(U_{\varphi(n)}\right)_{n\in\mathbb{N}}$ qui converge vers L. D'après la question précédente, pour

tout $n \in \mathbb{N}$,

$$MU_{\varphi(n)} = U_{\varphi(n)}M = U_{\varphi(n)} + \frac{1}{\varphi(n) + 1} \left(M^{\varphi(n) + 1} - I_p \right).$$
 (*)

Observons maintenant que

- $\odot MU_{\varphi(n)} = g_M\left(U_{\varphi(n)}\right) \underset{n \to +\infty}{\longrightarrow} g_M\left(L\right) = ML \text{ car } g_M \text{ est continue et } U_{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} L.$
- $\odot U_{\varphi(n)}M = d_M\left(U_{\varphi(n)}\right) \underset{n \to +\infty}{\longrightarrow} d_M\left(L\right) = ML \text{ car } d_M \text{ est continue et } U_{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} L.$
- \odot Pour tout $n \in \mathbb{N}$,

$$\left\| \frac{1}{\varphi(n)+1} \left(M^{\varphi(n)+1} - I_p \right) \right\| = \frac{1}{\varphi(n)+1} \left\| \left(M^{\varphi(n)+1} - I_p \right) \right\|$$

$$\leq \frac{1}{\varphi(n)+1} \left(\left\| M^{\varphi(n)+1} \right\| + \left\| I_p \right\| \right)$$

$$\leq \frac{1}{\varphi(n)+1} \left(c + \left\| I_p \right\| \right).$$

Comme $\frac{1}{\varphi(n)+1}\left(c+\left\|I_{p}\right\|\right)\underset{n\to+\infty}{\longrightarrow}0$ alors $\frac{1}{\varphi(n)+1}\left(M^{\varphi(n)+1}-I_{p}\right)\underset{n\to+\infty}{\longrightarrow}0$. En faisant tendre n vers $+\infty$ dans (*), on obtient ML=LM=L.

(b) En déduire que, pour tout $n \in \mathbb{N}$, $U_n L = L U_n = L$.

On montre, par récurrence sur $k \in \mathbb{N}$, que $M^k L = LM^k = L$. Donc

$$U_n L = \frac{1}{n+1} \sum_{k=0}^n M^k L = \frac{1}{n+1} \sum_{k=0}^n L = L \text{ et}$$

$$L U_n = \frac{1}{n+1} \sum_{k=0}^n L M^k = \frac{1}{n+1} \sum_{k=0}^n L = L.$$

5. Montrer que $L_1 = L_2$.

Comme L_1 est une valeur d'adhérence de $(U_n)_{n\in\mathbb{N}}$ alors on peut en extraire une sous suite $\left(U_{\varphi(n)}\right)_{n\in\mathbb{N}}$ qui converge vers L_1 .

Comme L_2 est une valeur d'adhérence de $(U_n)_{n\in\mathbb{N}}$ alors, en utilisant la question précédente, $U_nL_2=L_2U_n=L_2$ pour tout $n\in\mathbb{N}$. En particulier

$$U_{\varphi(n)}L_2 = L_2U_{\varphi(n)} = L_2.$$
 (**)

Vu que $U_{\varphi(n)}L_2 = d_{L_2}\left(U_{\varphi(n)}\right) \underset{n \to +\infty}{\longrightarrow} d_{L_2}\left(L_1\right) = L_1L_2$ (car d_{L_2} est continue et $U_{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} L_1$) et que $L_2U_{\varphi(n)} = g_{L_2}\left(U_{\varphi(n)}\right) \underset{n \to +\infty}{\longrightarrow} g_{L_2}\left(L_1\right) = L_2L_1$ (car g_{L_2} est continue et $U_{\varphi(n)} \underset{n \to +\infty}{\longrightarrow} L_1$) alors le passage à la limite dans (**) montre que $L_1L_2 = L_2L_1 = L_2$.

En permutant les rôles de L_1 et L_2 on obtient aussi $L_2L_1=L_1L_2=L_1$. Il s'en suit que $L_1=L_2$.

6. Montrer alors que la suite $(U_n)_{n\in\mathbb{N}}$ est convergente.

Les questions 2) et 5) montrent que la suite $(U_n)_{n\in\mathbb{N}}$ admet une seule valeur d'adhérence dans $\mathcal{M}_p(\mathbb{R})$. Comme de plus elle est bornée alors elle converge.

Exercice 2

1. Montrer que $\mu + \lambda > 0$.

On a $p_1=(\mu+\lambda)\,p_0$ donc $\mu+\lambda=\frac{p_1}{p_0}\geq 0$. Si $\mu+\lambda=0$ alors $p_1=0$ et donc, en utilisant la relation de récurrence, $p_k=0$ pour tout $k\geq 1$. Il vient que $1=\sum\limits_{k=0}^{+\infty}p_k=p_0\in]0,1[$ ce qui est absurde. Donc $\mu+\lambda>0$.

2. (a) Montrer que $\forall k \in \mathbb{N}, \ p_k = \frac{\lambda^k}{k!} p_0$.

Récurrence sur k.

(b) Exprimer $\sum_{k=0}^{+\infty} p_k$ en fonction de λ et de p_0 .

La série $\sum\limits_{k\geq 0}p_k$ converge et $\sum\limits_{k=0}^{+\infty}p_k=p_0\sum\limits_{k=0}^{+\infty}rac{\lambda^k}{k!}=p_0e^\lambda.$

(c) En déduire que X suit la loi de Poisson $\mathcal{P}(\lambda)$.

On a $\sum_{k=0}^{+\infty} p_k = \sum_{k=0}^{+\infty} P(X=k) = 1$ donc $p_0 e^{\lambda} = 1$ et $p_0 = e^{-\lambda}$. On en déduit que, pour tout $k \ge 0$, $P(X=k) = \frac{\lambda^k}{k!} e^{-\lambda}$. Donc X suit la loi de Poisson $\mathcal{P}(\lambda)$.

(d) Donner alors son espérance et sa variance.

Comme X suit la loi de Poisson $\mathcal{P}(\lambda)$ alors $E(X) = V(X) = \lambda$.

3. Montrer que pour tout $k \in \mathbb{N}^*$,

$$p_k = p_0 \frac{\alpha (\alpha - 1) ... (\alpha - k + 1)}{k!} (-\mu)^k.$$

Récurrence sur $k \in \mathbb{N}^*$.

4. (a) Montrer que $\mu < 0$.

 $\alpha = -\frac{\mu + \lambda}{\mu} \in \mathbb{N} \text{ donc } -\frac{\mu + \lambda}{\mu} \geq 0. \text{ Comme } \mu + \lambda > 0 \text{ alors } -\mu > 0 \text{ et } \mu < 0.$

(b) Montrer que, pour tout $k \in \mathbb{N}$, $p_k = \begin{cases} p_0 C_{\alpha}^k (-\mu)^k & \text{si} \quad k \leq \alpha, \\ 0 & \text{si} \quad k > \alpha. \end{cases}$

Pour tout $k \leq \alpha$,

$$p_k = p_0 \frac{\alpha (\alpha - 1) \dots (\alpha - k + 1)}{k!} (-\mu)^k = p_0 C_{\alpha}^k (-\mu)^k.$$

Pour $k > \alpha$

$$p_{k} = p_{0} \frac{\alpha (\alpha - 1) \dots (\alpha - k + 1)}{k!} (-\mu)^{k}$$
$$= p_{0} \frac{(-\mu)^{k}}{k!} \prod_{i=0}^{k-1} (\alpha - i) = 0.$$

(c) Calculer $\sum_{k=0}^{\alpha} p_k$ en fonction de p_0 , μ et α . En déduire que $p_0 = (1-\mu)^{-\alpha}$.

On a
$$\sum_{k=0}^{\alpha} p_k = p_0 \sum_{k=0}^{\alpha} C_{\alpha}^k (-\mu)^k = p_0 (1-\mu)^{\alpha}$$
.

D'autre part $\sum\limits_{k=0}^{\alpha}p_k=\sum\limits_{k=0}^{+\infty}p_k=1$ donc $p_0\left(1-\mu\right)^{\alpha}=1$ d'où $p_0=\left(1-\mu\right)^{-\alpha}$.

(d) Montrer alors que X suit la loi binomiale $\mathcal{B}\left(\alpha, \frac{-\mu}{1-\mu}\right)$.

On a $X(\Omega) = \{0,1,...\alpha\}$ et, pour tout $k \in \{0,1,...\alpha\}$,

$$P(X = k) = p_0 C_{\alpha}^k (-\mu)^k = C_{\alpha}^k (-\mu)^k (1 - \mu)^{-\alpha} = C_{\alpha}^k \left(\frac{-\mu}{1 - \mu}\right)^k \left(1 - \frac{-\mu}{1 - \mu}\right)^{\alpha - k}.$$

Donc X suit la loi binomiale $B\left(\alpha, \frac{-\mu}{1-\mu}\right)$.

(e) Donner son espérance et sa variance.

Comme *X* suit la loi binomiale $B\left(\alpha, \frac{-\mu}{1-\mu}\right)$ alors

$$E\left(X\right) = \alpha \frac{-\mu}{1-\mu} = \frac{\mu+\lambda}{1-\mu} \text{ et } V\left(X\right) = \alpha \frac{-\mu}{1-\mu} \left(1 - \frac{-\mu}{1-\mu}\right) = \frac{\mu+\lambda}{\left(1-\mu\right)^{2}}.$$

5. (a) Montrer que G est bien définie et continue sur [-1,1].

On pose, pour tout $k \geq 0$, $f_k : [-1,1] \to \mathbb{R}; t \mapsto p_k t^k$. Les f_k sont continues sur [-1,1]. De plus, pour tout $t \in [-1,1], |f_k(t)| \leq p_k$ et $\sum\limits_{k \geq 0} p_k$ converge. On en déduit que la série de fonctions $\sum\limits_{k \geq 0} f_k$ converge normalement et donc uniformément sur [-1,1]. D'après

le théorème de continuité $G = \sum_{k=0}^{+\infty} f_k$ est bien définie et continue sur [-1,1].

(b) Montrer que le rayon de convergence de la série entière $\sum p_k z^k$ est $\frac{1}{|\mu|}$ et que

$$\forall t \in \left] \frac{-1}{|\mu|}, \frac{1}{|\mu|} \right[, \sum_{k=0}^{+\infty} p_k t^k = p_0 (1 - \mu t)^{\alpha}.$$

Soit $z \in \mathbb{C}^*$. Alors $\left| \frac{p_{k+1}z^{k+1}}{p_kz^k} \right| = \left| \mu + \frac{\lambda}{k+1} \right| |z| \underset{k \to +\infty}{\longrightarrow} |\mu| |z|$. D'aprè la règle de d'Alembert

Si $|z|<rac{1}{|\mu|}$ alors $|\mu|\,|z|<1$ et donc $\sum p_k z^k$ converge absolument et

Si $|z|>\frac{1}{|\mu|}$ alors $|\mu|\,|z|>1$ et donc $\sum p_k z^k$ diverge grossièrement.

On en déduit que le rayon de convergence de la série entière $\sum p_k z^k$ est $\frac{1}{|u|}$.

Si $t \in \left] \frac{-1}{|\mu|}, \frac{1}{|\mu|} \right[\text{alors } |-\mu t| < 1 \text{ et}$

$$\sum_{k=0}^{+\infty} p_k t^k = p_0 + \sum_{k=1}^{+\infty} p_0 \frac{\alpha (\alpha - 1) \dots (\alpha - k + 1)}{k!} (-\mu t)^k$$

$$= p_0 \left(1 + \sum_{k=1}^{+\infty} \frac{\alpha (\alpha - 1) \dots (\alpha - k + 1)}{k!} (-\mu t)^k \right)$$

$$= p_0 (1 - \mu t)^{\alpha}.$$

(c) **Déduire que** $\mu \in [-1,1[$ **et que** $p_0 = (1-\mu)^{-\alpha}$.

La série entière $\sum p_k z^k$ converge pour z=1, donc son rayon de convergence $\frac{1}{|\mu|} \geq 1$. Donc $|\mu| \leq 1$. Supposons que $\mu=1$. Alors

$$\forall t \in]-1,1[: G(t) = \sum_{k=0}^{+\infty} p_k t^k = p_0 (1-t)^{\alpha}.$$

Comme G est continue en 1 alors

$$1 = G(1) = \lim_{t \to 1} p_0 (1 - t)^{\alpha} = \begin{cases} 0 & \text{si } \alpha > 0. \\ \\ +\infty & \text{si } \alpha < 0. \end{cases}$$

ce qui est absurde. Donc $\mu \in [-1,1[$. De plus

$$\forall t \in]-1,1[:G(t) = \sum_{k=0}^{+\infty} p_k t^k = p_0 (1 - \mu t)^{\alpha}.$$

et par continuité en 1

$$1 = G(1) = \lim_{t \to 1} p_0 (1 - \mu t)^{\alpha} = p_0 (1 - \mu)^{\alpha}.$$

On en déduit que $p_0 = (1 - \mu)^{-\alpha}$.

(d) Montrer que G est deux fois dérivable en 1.

On a

$$\forall t \in]-1,1[:G(t) = \sum_{k=0}^{+\infty} p_k t^k = p_0 (1 - \mu t)^{\alpha}.$$

qui se prolonge par continuité au segment [-1,1]:

$$\forall t \in [-1,1] : G(t) = \sum_{k=0}^{+\infty} p_k t^k = p_0 (1 - \mu t)^{\alpha}.$$

Donc *G* est deux fois dérivable en 1.

(e) En déduire que X admet une espérance finie E(X) et une variance finie V(X) qu'on déterminera.

Comme G est deux fois dérivable en 1 alors X admet une espérance finie E(X) et une variance finie V(X) données par

$$E(X) = G'(1) \text{ et}$$

$$V(X) = E(X^{2}) - E(X)^{2}$$

$$= E(X(X-1)) + E(X) - E(X)^{2}$$

$$= G''(1) + G'(1) - (G'(1))^{2}.$$

D'autre part $\forall t \in [-1,1]$

$$G'(t) = -\mu p_0 \alpha (1 - \lambda t)^{\alpha - 1} = (\mu + \lambda) p_0 (1 - \mu t)^{\alpha - 1}.$$

$$G''(t) = -\mu (\mu + \lambda) (\alpha - 1) p_0 (1 - \mu t)^{\alpha - 2}.$$

Donc

$$G'(1) = (\mu + \lambda) p_0 (1 - \mu)^{\alpha - 1} = \frac{\mu + \lambda}{1 - \mu}.$$

$$G''(1) = -\mu (\mu + \lambda) (\alpha - 1) p_0 (1 - \mu)^{\alpha - 2} = \frac{(\mu + \lambda) (2\mu + \lambda)}{(1 - \mu)^2}.$$

On en déduit que

$$E(X) = \frac{\mu + \lambda}{1 - \mu}.$$

$$V(X) = G''(1) + G'(1) - (G'(1))^{2}$$

$$= \frac{(\mu + \lambda)(2\mu + \lambda)}{(1 - \mu)^{2}} + \frac{\mu + \lambda}{1 - \mu} - (\frac{\mu + \lambda}{1 - \mu})^{2}$$

$$= \frac{(\mu + \lambda)(2\mu + \lambda) + (\mu + \lambda)(1 - \mu) - (\mu + \lambda)^{2}}{(1 - \mu)^{2}}$$

$$= \frac{(\mu + \lambda)(2\mu + \lambda + 1 - \mu - \mu - \lambda)}{(1 - \mu)^{2}}$$

$$= \frac{(\mu + \lambda)}{(1 - \mu)^{2}}.$$

Problème

Partie 1

1. Montrer que g est continue, bornée et paire sur \mathbb{R} .

On pose
$$f(x,t) = \frac{e^{-x^2(1+t^2)}}{1+t^2}$$
, $(x,t) \in \mathbb{R}^2$.

La fonction f est continue sur \mathbb{R}^2 et vérifie pour tout (x,t), $0 \le f(x,t) \le \frac{1}{1+t^2}$, or la fonction $t\mapsto \frac{1}{1+t^2}$ est continue et est intégrable sur $\mathbb R$ puisque $f(t)\underset{+\infty}{\sim}\frac{1}{t^2}$. Donc f est continue sur $\mathbb R$.

On a pour tout $(x,t) \in \mathbb{R}^2$, $0 \le \frac{e^{-x^2(1+t^2)}}{1+t^2} \le \frac{1}{1+t^2}$ donc pour tout $x \in \mathbb{R}$,

 $0 \le g(x) \le \int_0^{+\infty} \frac{1}{1+t^2} dt = M$. Donc g est bornée sur \mathbb{R} .

Pour tout $x \in \mathbb{R}$, $-x \in \mathbb{R}$ et $g(-x) = \int_0^{+\infty} \frac{e^{-(-x)^2(1+t^2)}}{1+t^2} dt = g(x)$. Ainsi g est paire.

2. Calculer g(0) et montrer que $\lim_{x \to +\infty} g(x) = 0$.

On a d'une part, $g(0) = \int_0^{+\infty} \frac{1}{1+t^2} dt = [\arctan t]_0^{+\infty} = \frac{\pi}{2}$. D'autre part, pour tout réel x, $0 \le g(x) = e^{-x^2} \int_0^{+\infty} \frac{e^{-x^2t^2}}{1+t^2} dt \le e^{-x^2} \int_0^{+\infty} \frac{dt}{1+t^2} = \frac{\pi}{2} e^{-x^2} \underset{x \mapsto +\infty}{\longmapsto} 0.$

- 3. Montrer que g est de classe \mathcal{C}^1 sur $]0,+\infty[$ et donner l'expression de sa dérivé en fonction de *l'intégrale de Gauss* $I = \int_0^{+\infty} e^{-t^2} dt$.
 - Pour tout x>0, $t\longmapsto \frac{e^{-x^2(1+t^2)}}{1+t^2}$ est intégrable sur $\mathbb R$ et pour tout $t\in\mathbb R_+$, $x\longmapsto \frac{e^{-x^2(1+t^2)}}{1+t^2}$ est de classe $\mathcal C^1$ sur $]0,+\infty[$ et on a pour tout $(x,t)\in\mathbb R_+\times]0,+\infty[$, $\frac{\partial f}{\partial x}(x,t)=-2xe^{-x^2(1+t^2)}$.
 - Pour tout x > 0, $t \longmapsto -2xe^{-x^2(1+t^2)}$ est continue par morceaux sur \mathbb{R}_+ .
 - Soit $[a,b] \subset]0,+\infty[$, $\left|\frac{\partial f}{\partial x}(x,t)\right|=2xe^{-x^2(1+t^2)}\leq 2be^{-a^2t^2}$: intégrable sur \mathbb{R}_+ .

Donc
$$g$$
 est de classe C^1 sur $]0, +\infty[$ et on a : $g'(x) = -2x \int_0^{+\infty} e^{-x^2(1+t^2)} dt = -2x e^{-x^2} \int_0^{+\infty} e^{-x^2t^2} dt = -2e^{-x^2} \int_0^{+\infty} e^{-u^2} = -2Ie^{-x^2}.$

4. En déduire que

$$\forall x \in \mathbb{R}, \ g(x) = \frac{\pi}{2} - 2I \int_0^{|x|} e^{-u^2} du.$$

On a pour tout x > 0, $g'(x) = -2Ie^{-x^2}$, donc $g(x) = c - 2I\int_0^x e^{-u^2}du$, $c \in \mathbb{R}$. Comme g est continue en 0 et $g(0) = \frac{\pi}{2}$, alors $c = \frac{\pi}{2}$.

D'où, pour tout réel positif x, $g(x) = \frac{\pi}{2} - 2I \int_0^x e^{-u^2} du$.

Par parité, on aura $g(x) = \frac{\pi}{2} - 2I \int_0^{|x|} e^{-u^2} du$, $\forall x \in \mathbb{R}$.

5. En déduire la valeur de 1.

La fonction $u \longmapsto e^{-u^2}$ est intégrable sur $[0, +\infty[$ et $\lim_{x\mapsto +\infty} g(x) = 0$, donc $0 = \lim_{x \mapsto +\infty} g(x) = \frac{\pi}{2} - 2I^2$. Ainsi, par positivité de I, on aura $I = \frac{\sqrt{\pi}}{2}$.

6. La fonction g est elle dérivable en 0?

La fonction g est continue sur \mathbb{R}_+ et dérivable sur $]0,+\infty[$.

De plus
$$\lim_{x \to 0^+} g'(x) = -2I = -\sqrt{\pi}$$
.

De même, g est continue sur \mathbb{R}_- et, par parité, dérivable sur $]-\infty,0[$ et sa dérivée vaut $2Ie^{-x^2}$. Donc $\lim_{x\to 0^-} g'(x) = 2I = \sqrt{\pi}$.

On conclut que g est dérivable à droite et à gauche en 0 et que $g'_d(0) = -\sqrt{\pi}$ et $\sqrt{\pi} = g'_g(0)$. La fonction g est donc non dérivable en 0.

7. Tracer l'allure de la courbe de g dans un repère orthonormé.

Partie 2

1. Calculer u_n , $n \in \mathbb{N}^*$.

Pour tout $n \in \mathbb{N}^*$, on a $u_n = \frac{1}{n} \int_0^1 \frac{t+n-n}{t+n} dt = \frac{1}{n} \int_0^1 \left(1 - \frac{n}{t+n}\right) dt = \frac{1}{n} - \ln(1 + \frac{1}{n}).$

2. Montrer que la série $\sum_{n\geq 1}u_n$ est convergente. On note γ sa somme.

On a $u_n = \frac{1}{n} - \ln(1 + \frac{1}{n}) = \frac{1}{n} - \left(\frac{1}{n} - \frac{1}{2n^2} + o(\frac{1}{n^2})\right) = \frac{1}{2n^2} + o(\frac{1}{n^2}).$

Comme $\sum_{n\geq 1}\frac{1}{n^2}$ converge, on aura la convergence de $\sum_{n\geq 1}u_n$.

3. Exprimer $\sum_{k=1}^n u_k$ en fonction de γ_n et déduire que $\lim_{n \to +\infty} \gamma_n = \gamma$. $\sum_{k=1}^n u_k = \sum_{k=1}^n \left(\frac{1}{k} - \ln(1+\frac{1}{k})\right) = \sum_{k=1}^n \frac{1}{k} - \sum_{k=1}^n (\ln(k+1) - \ln(k)) = \sum_{k=1}^n \frac{1}{k} - \ln(n+1) = \sum_{k=1}^n \frac{1}{k} - \frac{1}{k$ $\gamma_n - \ln(1 + \frac{1}{n}).$

Donc $(\gamma_n)_n$ est convergente et sa limite est γ .

4. Montrer que $\forall k \ge 2$, $\frac{1}{2k(k+1)} \le u_k \le \frac{1}{2k(k-1)}$.

Soit $k \ge 2$ et $t \in [0,1]$. On a $k \le t+k \le 1+k \Rightarrow \frac{t}{k+1} \le \frac{t}{t+k} \le \frac{t}{k}$. On intègre sur [0,1] et on multiple par $\frac{1}{k}$, on obtient $\frac{1}{2k(k+1)} \le u_k \le \frac{1}{2k^2} \le \frac{1}{k(k-1)}$.

5. En déduire que pour tout entier non nul n, $\frac{1}{2n+2} \le \sum_{k=n+1}^{+\infty} u_k \le \frac{1}{2n}$.

Le deux séries $\sum_{k\geq 1}\frac{1}{2k(k+1)}$ et $\sum_{k\geq 2}\frac{1}{k(k-1)}$ sont convergentes et on a

$$\forall k \ge 2$$
, $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$ et $\frac{1}{k(k-1)} = \frac{1}{k-1} - \frac{1}{k}$.

Soit $n \ge 1$ et N > n. On a $\sum_{k=n+1}^N (\frac{1}{k} - \frac{1}{k+1}) = \frac{1}{n+1} - \frac{1}{N+1}$ et $\sum_{k=n+1}^N (\frac{1}{k-1} - \frac{1}{k}) = \frac{1}{n} - \frac{1}{N}$. On effectue la somme de k = n+1 à k = N dans l'encadrement de la question précédente,

on obtient :

on obtain:
$$\frac{1}{2}(\frac{1}{n+1} - \frac{1}{N+1}) \le \sum_{k=n+1}^{N} u_k \le \frac{1}{2}(\frac{1}{n} - \frac{1}{N}).$$
 On fait tendre N vers $+\infty$, on aura : $\frac{1}{2(n+1)} \le \sum_{k=1}^{+\infty} u_k \le \frac{1}{2n}.$

6. Montrer que pour tout $n \in \mathbb{N}^*$, $0 \le \gamma - S_n \le \frac{1}{2n(n+1)}$, où $S_n = \sum_{k=1}^n u_k + \frac{1}{2(n+1)}$.

On remplace $\sum_{k=n+1}^{+\infty} u_k$ par $\gamma - \sum_{k=1}^{n} u_k$ et on retranche $\frac{1}{2n+2}$, de l'encadrement de la question 5., on obtient :

$$0 \le \gamma - \sum_{k=1}^{n} u_k - \frac{1}{2(n+1)} \le \frac{1}{2n} - \frac{1}{2(n+1)} = \frac{1}{2n(n+1)}.$$

7. Déterminer un entier $N \in \mathbb{N}^*$ pour lequel S_N est une valeur approchée de γ à 10^{-3} près.

Pour que S_N réalise une approximation de γ à 10^{-3} près, il suffit que $\frac{1}{2N(N+1)} \le 10^{-3}$ donc $N(N+1) \ge 500$. L'entier N=22 convient.

Partie 3

- 1. Montrer que G est de classe \mathcal{C}^{∞} sur \mathbb{R} et exprimer ses dérivées successives sous forme intégrale. On pose $F: \mathbb{R}^2 \longrightarrow \mathbb{C}$ $(t,x) \mapsto e^{-t^2}e^{-itx}$.
 - la fonction F admet des dérivées partielles par rapport à x à tout ordre dont l'expression est $\frac{\partial^n F}{\partial x^n}(t,x) = (-it)^n F(x,t)$.
 - Pour tout $t \in \mathbb{R}$, $n \in \mathbb{N}$, $x \mapsto \frac{\partial^n F}{\partial x^n}(t,x)$ est continue sur \mathbb{R} .
 - Pour tout $x \in \mathbb{R}$, $n \in \mathbb{N}$, $t \mapsto \frac{\partial^n F}{\partial x^n}(t,x)$ est continue par morceaux sur \mathbb{R} .
 - Pour tout $n \in \mathbb{N}$, $(t,x) \in \mathbb{R}^2$, $\left| \frac{\partial^n F}{\partial x^n}(x,t) \right| = |t|^n e^{-t^2}$ et $t \mapsto |t|^n e^{-t^2}$ est continue par morceaux et intégrable sur \mathbb{R} car négligeable devant $\frac{1}{t^2}$ au voisinage de $\pm \infty$.

Donc, G est de classe \mathcal{C}^{∞} sur \mathbb{R} et ses dérivées successives sont données par

$$\forall n \in \mathbb{N}, \ \forall x \in \mathbb{R}, \quad G^{(n)}(x) = \int_{-\infty}^{+\infty} (-it)^n e^{-t^2} e^{-itx} dt.$$

2. Montrer que G satisfait une équation différentielle linéaire homogène d'ordre 1.

Pour tout $x \in \mathbb{R}$,

$$G'(x) = \int_{-\infty}^{+\infty} -ite^{-t^2} e^{-itx} dt = \left[\frac{i}{2} e^{-t^2} e^{-itx} \right]_{-\infty}^{+\infty} - \frac{1}{2} \int_{-\infty}^{+\infty} x e^{-t^2} e^{-itx} dt = -\frac{x}{2} G(x),$$
puisque $\lim_{x \to \pm \infty} \left| \frac{i}{2} e^{-t^2} e^{-itx} \right| = \lim_{x \to \pm \infty} \frac{1}{2} e^{-t^2} = 0.$

3. Résoudre l'équation différentielle obtenue et déduire que $G(x)=\sqrt{\pi}e^{-\frac{x^2}{4}}$.

La fonction G est solution, $\mathbb R$ de l'équation différentielle $y'=-\frac{x}{2}y$, dont la solution générale est $y(x)=\lambda e^{-\int_0^x \frac{t}{2}dt}=\lambda e^{-\frac{x^2}{4}}$. Comme $G(0)=\int_{-\infty}^{+\infty}e^{-t^2}dt=2\int_0^{+\infty}e^{-t^2}dt=\sqrt{\pi}$, d'après la première partie. On conclut que $G(x)=\sqrt{\pi}e^{-\frac{x^2}{4}}$.

- 4. En développant G en série entière sur \mathbb{R} , montrer que $\forall m \in \mathbb{N}$, $G^{(2m)}(0) = \sqrt{\pi} \frac{(-1)^m (2m)!}{m!4^m}$. Le développement en série entière su \mathbb{R} est donné par : $G(x) = \sqrt{\pi} \sum_{n=0}^{+\infty} \frac{(-1)^n x^{2n}}{4^n n!}$. Donc $\forall m \in \mathbb{N}$, $\frac{G^{(2m)}(0)}{(2m)!} = \sqrt{\pi} \frac{(-1)^m}{m!4^m}$
- 5. (a) Montrer que la fonction $t\mapsto t^{2m}(1+\frac{t^2}{n})^{-n}$ est intégrable sur $\mathbb R$ si et seulement si n>m. La fonction $t\mapsto t^{2m}(1+\frac{t^2}{n})^{-n}$ est continue par morceaux sur $\mathbb R$ pour tout $n\geq 1$ et on a $t^{2m}(1+\frac{t^2}{n})^{-n} \underset{t\mapsto\pm\infty}{\sim} \frac{1}{n^n}\frac{1}{t^{2n-2m}}$. Cette dernière fonction est intégrable au voisinage de $\pm\infty$ si, et seulement si, 2n-2m>1. Donc $t\mapsto t^{2m}(1+\frac{t^2}{n})^{-n}$ est intégrable sur $\mathbb R$ si et seulement si n>m.
 - (b) Soit $t \in \mathbb{R}$ fixé. En étudiant les variations de $g_t: x \mapsto -x \ln\left(1+\frac{t^2}{x}\right)$ sur $[1,+\infty[$, montrer que la suite $\left((1+\frac{t^2}{n})^{-n}\right)_{n\geq 1}$ est décroissante.

 Soit $t \in \mathbb{R}$. La fonction g_t est indéfiniment dérivable sur $[1,+\infty[$ et on a : $g_t'(x) = \frac{t^2}{x+t^2} \ln(1+\frac{t^2}{x})$ et $g_t''(x) = \frac{t^4}{x(x+t^2)^2}$.

 Comme $g_t'' \geq 0$ sur $[1,+\infty[$, donc g_t' est croissante sur $[1,+\infty[$, de plus sa limite en $+\infty$ est 0 donc elle est négative et par suite g_t est décroissante sur $[1,+\infty[$. En particulier, pour tout entier non nul n, on a $g_t(n+1) \leq g_t(n)$, donc $e^{g_t(n+1)} \leq e^{g_t(n)}$. La suite $\left((1+\frac{t^2}{n})^{-n}\right)_{n\geq 1}$ est donc décroissante.
 - (c) Montrer alors que $\lim_{n \to +\infty} \int_{-\infty}^{+\infty} t^{2m} (1 + \frac{t^2}{n})^{-n} dt = \frac{\sqrt{\pi}(2m)!}{m!4^m}$.

 On énoncera avec précision le théorème du cours utilisé.

 La suite des fonctions continues par morceaux $\left(t^{2m}(1+\frac{t^2}{n})^{-n}\right)_n$ converge simplement sur $\mathbb R$ vers la fonction $t \mapsto t^{2m}e^{-t^2}$ qui est continue par morceaux.

 De plus pour tout entier $n \geq m+1$, $0 \leq t^{2m}(1+\frac{t^2}{n})^{-n} \leq \phi_m(t) = t^{2m}(1+\frac{t^2}{m+1})^{-m-1}$.

 La fonction ϕ_m est continue par morceaux sur $\mathbb R$ et est intégrable au voisinage de $\pm \infty$ car équivalente à $\frac{1}{(m+1)^{m+1}}\frac{1}{t^2}$ au voisinage de $\pm \infty$.

 D'après le théorème de la convergence dominée, $\lim_{n \mapsto +\infty} \int_{-\infty}^{+\infty} t^{2m} (1+\frac{t^2}{n})^{-n} dt = \int_{-\infty}^{+\infty} t^{2m} e^{-t^2} dt = (-1)^m G_{2m}(0) = \sqrt{\pi} \frac{(2m)!}{m!4^m}$.

Énoncé T.C.D. : Soit $(f_n)_{n \geq n_0}$ une suite des fonctions de I vers \mathbb{K} . Si

- Les fonctions f_n sont continues par morceaux sur I.
- La suite $(f_n)_n$ converge simplement sur I vers une fonction f continue par morceaux sur I.
- Il existe une fonction ϕ continue par morceaux et intégrable sur I et telle que $\forall n \geq n_0, |f_n(t)| \leq \phi(t), \forall t \in I.$

Alors f et f_n sont intégrables et on a $\lim_{n \to +\infty} \int_I f_n = \int_I f$.

6. Montrer que pour tout $n > m \ge 0$, $\int_{-\infty}^{+\infty} t^{2m} (1 + \frac{t^2}{n})^{-n} dt = n^{m + \frac{1}{2}} J_{n;m}$, où

$$J_{n;m} = \int_{-\infty}^{+\infty} \frac{u^{2m}}{(1+u^2)^n} du.$$

On a
$$\int_{-\infty}^{+\infty} t^{2m} (1 + \frac{t^2}{n})^{-n} dt = \int_{u = \frac{t}{\sqrt{n}}} u^{m+\frac{1}{2}} \int_{-\infty}^{+\infty} u^{2m} (1 + u^2)^{-m} = u^{m+\frac{1}{2}} J_{n;m}.$$

7. Montrer que pour tout $n > m \ge 0$, $J_{n+1;m} = (1 - \frac{2m+1}{2n})J_{n;m}$. Pour $n > m \ge 0$, on a $J_{n+1;m} - J_{n;m} = -\int_{-\infty}^{+\infty} \frac{u^{2m+2}}{(1+u^2)^{n+1}} du$. On effectue un intégration par parties dans la dernière intégrale en posant, $X = u^{2m+1}$, $Y' = \frac{u}{(1+u^2)^{n+1}}$, on obtient :

$$J_{n+1;m}-J_{n;m}=\underbrace{\left[\frac{1}{2n}\frac{u^{2m+1}}{(1+u^2)^n}\right]_{-\infty}^{+\infty}}_{-0}-\underbrace{\frac{2m+1}{2n}\int_{-\infty}^{\infty}\frac{u^{2m}}{(1+u^2)^n}du=-\frac{2m+1}{2n}J_{n;m}.$$

8. Montrer que pour tout $m \in \mathbb{N}^*$, $J_{m+1;m} = \frac{2m-1}{2m} J_{m;m-1}$.

On effectue une intégration par parties dans l'intégrale $J_{m+1;m} = \int_{-\infty}^{+\infty} \frac{u^{2m}}{(1+u^2)^{m+1}} du$, en posant $X' = \frac{u}{(1+u^2)^{m+1}}$ et $Y = u^{2m-1}$, on obtient :

$$J_{m+1;m} = \underbrace{\left[\frac{1}{2m} \frac{u^{2m-1}}{(1+u^2)^m}\right]_{-\infty}^{+\infty}}_{=0} + \underbrace{\frac{2m-1}{2m} \int_{-\infty}^{\infty} \frac{u^{2m-2}}{(1+u^2)^m} du}_{=0} = \underbrace{\frac{2m-1}{2m} J_{m;m-1}}_{=0}.$$

9. En déduire une expression simplifiée de $J_{m+1;m}$, $m \in \mathbb{N}$, à l'aide des factorielles.

Soit $m \in \mathbb{N}$, on a

$$J_{m+1;m} = \frac{2m-1}{2m} J_{m;m-1}$$

$$J_{m;m-1} = \frac{2m-3}{2m-2} J_{m-1;m-2}$$

$$\vdots$$

$$J_{2;1} = \frac{1}{2} J_{1;0}.$$

$$Donc J_{m+1;m} = \frac{(2m-1)(2m-3)\cdots 3\cdot 1}{2m(2m-2)\cdots 4\cdot 2} J_{1;0} = \frac{(2m)!}{(2^m m!)^2} J_{1;0}. \text{ Or } J_{1;0} = \int_{-\infty}^{+\infty} \frac{du}{1+u^2} = \pi.$$

$$D'où, J_{m+1;m} = \frac{(2m)!}{(2^m m!)^2} \pi.$$

10. Montrer alors que pour tout n > m + 1,

$$\int_{-\infty}^{+\infty} t^{2m} (1 + \frac{t^2}{n})^{-n} dt = n^{m + \frac{1}{2}} \frac{\pi(2m)!}{4^m (m!)^2} \prod_{k=m+1}^{n-1} \left(1 - \frac{2m+1}{2k} \right).$$

Soit n > m + 1. Pour m fixé, on réitère l'égalité de la question 8. de k = m + 1 jusqu'à k = n,

$$J_{n;m} = \left(1 - \frac{2m+1}{2(n-1)}\right) J_{n-1;m}$$
$$J_{n-1;m} = \left(1 - \frac{2m+1}{2(n-2)}\right) J_{n-2;m}$$
$$\vdots$$

$$J_{m+2;m} = (1 - \frac{2m+1}{2(m+1)})J_{m+1;m}.$$

Par multiplication terme à terme, on obtient : $J_{n;m} = J_{m+1;m} \prod_{k=m+1}^{n-1} (1 - \frac{2m+1}{2k})$. D'après la question précédente, on aura : $J_{n;m} = \pi \frac{(2m)!}{(2^m m!)^2} \prod_{k=m+1}^{n-1} (1 - \frac{2m+1}{2k}).$ La formule demandée découle de la question 6.

- 11. Donner le développement en série entière de $f(t) = \ln(1-t)$ et préciser l'intervalle de validité. $\ln(1-t) = -\sum_{n=1}^{+\infty} \frac{t^n}{n}, \ t \in]-1,1[.$
- 12. Montrer que pour tout $m \in \mathbb{N}^*$,

$$\ln(\pi) = 2\ln(m!) + (2m+1)\left(\gamma - \sum_{k=1}^{m} \frac{1}{k}\right) + 2\sum_{k=m+1}^{+\infty} \sum_{p=2}^{\infty} \frac{(m+\frac{1}{2})^p}{pk^p}.$$

Puisque $\lim_{n \to +\infty} \int_{-\infty}^{+\infty} t^{2m} (1 + \frac{t^2}{n})^{-n} dt = \frac{\sqrt{\pi}(2m)!}{m!4^m}$; donc d'après les questions précédentes, on aura $\lim_{n \to +\infty} \left(n^{m+\frac{1}{2}} \prod_{k=m+1}^{n-1} (1 - \frac{2m+1}{2k}) \right) = \frac{m!}{\sqrt{\pi}}$, donc, en appliquant le logarithme, on obtient : $\lim_{n \to +\infty} \left((2m+1) \ln n + 2 \sum_{k=m+1}^{n-1} \ln (1 - \frac{m+\frac{1}{2}}{k}) \right) = 2 \ln m! - \ln \pi$. Or $\forall k \geq m+1$, $\ln (1 - \frac{m+\frac{1}{2}}{k}) = -\sum_{p=1}^{\infty} \frac{(m+\frac{1}{2})^p}{pk^p}$ puisque $\frac{m+\frac{1}{2}}{k} \in]0,1[$. D'où,

$$\begin{split} 2\ln m! - \ln \pi &= \lim_{n \to +\infty} \left((2m+1) \ln n - 2 \sum_{k=m+1}^{n-1} \sum_{p=1}^{\infty} \frac{(m+\frac{1}{2})^p}{pk^p} \right) \\ &= \lim_{n \to +\infty} \left((2m+1) \ln n - 2 \sum_{k=m+1}^{n-1} \frac{m+\frac{1}{2}}{k} - 2 \sum_{k=m+1}^{n-1} \sum_{p=2}^{\infty} \frac{(m+\frac{1}{2})^p}{pk^p} \right) \\ &= \lim_{n \to +\infty} \left((2m+1) \left(\sum_{k=1}^{m} \frac{1}{k} - \gamma_n + \frac{1}{n} \right) - 2 \sum_{k=m+1}^{n-1} \sum_{p=2}^{\infty} \frac{(m+\frac{1}{2})^p}{pk^p} \right) \\ &= (2m+1) \left(\sum_{k=1}^{m} \frac{1}{k} - \gamma \right) - 2 \sum_{k=m+1}^{+\infty} \sum_{p=2}^{\infty} \frac{(m+\frac{1}{2})^p}{pk^p} . \end{split}$$

13. Montrer que

$$\ln(\pi) = \gamma + \sum_{p=2}^{\infty} \frac{\zeta(p)}{p2^{p-1}}, \quad \text{où } \zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}, \ s > 1.$$

L'égalité de la question 10. est valable pour m=0, on obtient, en passant à la limite : $\sqrt{\pi}=\lim_{n\mapsto +\infty}\left(\sqrt{n}\pi\prod_{k=1}^{n-1}(1-\frac{1}{2k})\right)$, ce qui donne, $\ln\pi=\gamma+2\sum_{k=1}^{+\infty}\sum_{p=2}^{\infty}\frac{1}{p2^pk^p}$.

La famille $\left(\frac{1}{p2^pk^p}\right)_{k>1,p>2}$ est sommable puisque à termes positifs, la série

 $\sum_{k\geq 1} \frac{1}{p2^p k^p} = \frac{1}{p2^p} \sum_{k\geq 1} \frac{1}{k^p}$ est convergente $(p\geq 2)$, sa somme vaut $\frac{\zeta(p)}{p2^p}$ et la série $\sum_{p\geq 2} \frac{\zeta(p)}{p2^p}$ est convergente puisque $0\leq \frac{\zeta(p)}{p2^p}\leq \frac{\zeta(2)}{p2^p}$: terme général d'une série convergente.

Ainsi, par permutation des sommes :

$$\ln \pi = \gamma + 2\sum_{p=2}^{+\infty} \sum_{k=1}^{\infty} \frac{1}{p2^{p}k^{p}} = \gamma + \sum_{p=2}^{+\infty} \frac{1}{p2^{p-1}} \sum_{k=1}^{\infty} \frac{1}{k^{p}} = \gamma + \sum_{p=2}^{\infty} \frac{\zeta(p)}{p2^{p-1}}.$$