Н

Weekly Activity & Quiz Week04 Activity 9/19 Review Test Submission: Week04 Quiz Ch03 (2)

Review Test Submission: Week04 Quiz Ch03 (2)

User	Keerthi Teja Konuri	
Course	CS 6364.001 - Artificial Intelligence - F15	
Test	Week04 Quiz Ch03 (2)	
Started	9/19/15 3:54 PM	
Submitted	9/19/15 4:17 PM	
Due Date	9/19/15 11:59 PM	
Status	Completed	
Attempt Score	23 out of 25 points	
Time Elapsed	23 minutes out of 40 minutes	
	ed All Answers, Submitted Answers, Correct Ans	

Question 1 11 out of 13 points

> The majority of work in the area of search has gone into finding the right search strategy for a problem. Select the best choice for each question

Question	Correct Match	Selected Match	
is to simultaneously search both forward from the initial state and backward from the goal, and stop when the two searches meet in the middle.	A. bidirectional search	A. bidirectional search	
is a strategy that sidesteps the issue of choosing the best depth limit by trying all possible depth limits: first depth 0, then depth 1, then depth 2, and so on.	M. Iterative deepening search	M. Iterative deepening search	
imposes a cutoff on the maximum depth of a path.	J. Depth- limited search	J. Depth- limited search	
The drawback of is that it can get stuck going down the wrong path.	L.Depth-first search	L.Depth-first search	
The term means that they have no information about the number of steps or the path cost from the current state to the goal—all they can do is distinguish a goal state from a nongoal state.	H.UninformedSearch	H.UninformedSearch	
is also sometimes called blind search .	⊘ H.	⊘ H.	

Uninformed

Uninformed

Search Search Strategies called informed search strategies are also called 🕜 D. O. Heuristic Heuristic Search Search In this strategy, the root node is expanded first, then all the 🕜 l. 🕜 I. breadth-first breadth-first nodes generated by the root node are expanded next, and then their successors, and so on. search search 🕜 l. 🕜 l. In \int , all the nodes at depth d in the search tree are expanded breadth-first breadth-first before the nodes at depth d + 1. search search B. modifies the breadth-first strategy by always expanding the **o** B. **U**niform **Uniform** lowest-cost node on the fringe (as measured by the path cost g(n)), cost search cost search rather than the lowest-depth node. B. finds the cheapest solution provided a simple requirement is € C. met: the cost of a path must never decrease as we go along the Uniform Optimality cost search path. 🕜 L. 🕜 L. always expands one of the nodes at the deepest level of the Depth-first Depth-first tree. Only when the search hits a dead end (a nongoal node with search search no expansion) does the search go back and expand nodes at shallower levels. needs to store only a single path from the root to a leaf 🕜 L. M. Iterative node, along with the remaining unexpanded sibling nodes for Depth-first search deepening each node on the path. search

All Answer Choices

- A. bidirectional search
- B. Uniform cost search
- C. Optimality
- D. Heuristic Search
- E. Space complexity
- F. Completeness
- G. Time complexity
- H. Uninformed Search
- I. breadth-first search
- J. Depth-limited search
- K. Informed Search
- L. Depth-first search
- M. Iterative deepening search

Question 2

8 out of 8 points

There are two empty jugs, one of 4 gallons, one of 3 gallons. Fill the 4-gallon jug with 2 gallons of water. Consider how to represent states.

 s_0 : (initial state) (0,0)

 s_i : (state i) (x_i,y_i) where: x_i is the content of 4-gallon jug, y_i is the content of 3-gallon jug

s_G: (goal state) (2,0)

Actions are to fill or empty the jugs. And the rules of actions are described as follows.

Rule1. Fill jug if empty: if jug X is empty, fill jug X to the rim.

Rule2. Transfer water from jug to jug: if jug X is empty and jug Y has water, then move water from jug Y to jug X where X > Y (that is, the amount of water in jug X is greater than the amount of water in jug Y).

Rule3. Empty jug if it is not empty (on the ground)

A state-transition from a state (x_i, y_i) will be its next state (x_{i+1}, y_{i+1}) after an action

$$(x_i, y_i) \rightarrow_{Action} (x_{i+1}, y_{i+1})$$

Question

and x > 0

 $(x, y) \rightarrow (0, x + y)$ \bigcirc F.

Select the best answer (action) for each state-transition

Correct Match

~	0 0 1 1 0 0 1 1 1 1 0 1 1 1
$(x, y) \rightarrow (4, y)$ where $x < 4$	G. Fill the 4-gallon jug
$(x, y) \rightarrow (x, 3)$ where y < 3	E. Fill the 3-gallon jug
$(x, y) \rightarrow (0, y)$ where $x > 0$	A. Empty the 4-gallon jug on the ground
$(x, y) \rightarrow (x, 0)$ where $y > 0$	
$(x, y) \rightarrow (4, y - (4 - x))$ where $(x + y) \ge 4$ and $y > 0$	C. Pour water from the 3-gallon jug into the 4-gallon jug until the 4-gallon jug is full
$(x, y) \to (x - (3 - y),$ 3) where $4 \ge (x + y)$ and $y > 0$	 ✓ D. Pour water from the 4-gallon jug into the 3-gallon jug until the 3-gallon jug is full
$(x, y) \rightarrow (x + y, 0)$ where $3 \ge (x + y)$	H.Pour all the water from the 3-

Selected Match

- 🤣 G. Fill the 4-gallon jug
- E. Fill the 3-gallon jug
- A. Empty the 4-gallon jug on the ground
- ⊗ B. Empty the 3-gallon jug on the ground
- C. Pour water from the 3-gallon jug into the 4-gallon jug until the 4-gallon jug is full
- D.

 Pour water from the 4-gallon jug into the 3-gallon jug until the 3-gallon jug is full

 H.
- Pour all the water from the 3-gallon jug into the 4-gallon jug
- 🕜 F.

gallon jug into the 4-gallon jug

Pour all the water from 4-gallon jug into the 3-gallon jug

Pour all the water from 4-gallon jug into the 3-gallon jug

All Answer Choices

- A. Empty the 4-gallon jug on the ground
- B. Empty the 3-gallon jug on the ground

Pour water from the 3-gallon jug into

- C. the 4-gallon jug until the 4-gallon jug is full
- D. Pour water from the 4-gallon jug into the 3-gallon jug until the 3-gallon jug is full
- E. Fill the 3-gallon jug
- F. Pour all the water from 4-gallon jug into the 3-gallon jug
- G. Fill the 4-gallon jug
- H. Pour all the water from the 3-gallon jug into the 4-gallon jug

Question 3 4 out of 4 points

The majority of work in the area of search has gone into finding the right **search strategy** for a problem. In our study of the field we will evaluate strategies in terms of four criteria. Select the best choice for each criteria.

Question	Correct Match	Selected Match
Is the strategy guaranteed to find a solution when there is one?	Completeness	Completeness
how long does it take to find a solution?	A. Time complexity	A. Time complexity
how much memory does it need to perform the search?	✓ B.Space complexity	☑ B.Space complexity
does the strategy find the highest-quality solution when there are several different solutions?		D. Optimality

All Answer Choices

- A. Time complexity
- B. Space complexity
- C. Completeness
- D. Optimality

Tuesday, October 6, 2015 4:52:56 PM CDT

← OK