SVKM's D. J. Sanghvi College of Engineering

Program: B.Tech in Electronics Academic Year: 2022 Duration: 3 hours

Engineering Date: 12.01.2023

Time: 10:30 am to 01:30 pm

Subject: Advanced Control Systems (Semester V)

Marks: 75

Instructions: Candidates should read carefully the instructions printed on the question paper and on the cover page of the Answer Book, which is provided for their use.

- (1) This question paper contains two pages.
- (2) All Questions are Compulsory.
- (3) All questions carry equal marks.
- (4) Answer to each new question is to be started on a fresh page.
- (5) Figures in the brackets on the right indicate full marks.
- (6) Assume suitable data wherever required, but justify it.
- (7) Draw the neat labelled diagrams, wherever necessary.

(8)

Question		Max.
No.		Marks
Q1 (a)	Express the following transfer function in the OCF form.	[10]
	$2\frac{d^3y}{dt^3} + 4\frac{d^2y}{dt^2} + 6\frac{dy}{dt} + 3y = 4u$	
	OR	
Q1 (a)	Obtain the transfer function from the given state space model.	[10]
	$\begin{bmatrix} x_1 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -5 & -1 \\ 3 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 2 \\ 5 \end{bmatrix} u$	
	$y = \begin{bmatrix} 1 & 2 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$	
Q1 (b)	State and prove the properties of the state transition matrix	[05]
Q2 (a)	A LTI system is characterized by the state variable model. Comment on the	[10]
	controllability (state and output) and observability of the system.	
	$A = \begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & -3 \\ 0 & 1 & -4 \end{bmatrix} \qquad B = \begin{bmatrix} 40 \\ 10 \\ 0 \end{bmatrix} \qquad C = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}$	
Q2 (b)	Explain controllability and observability with its necessary condition for	50.77
	stability.	[05]
	OR	

******* 1 *******

Q2 (b)	List the advantages of the state space model over the transfer function model.	[05]
Q3 (a)	Explain the concept of sampling in a digital control system. Explain the concept	[10]
	of reconstruction of discrete time signal.	
Q3 (b)	Compare discrete time signal with digital signal.	[05]
	OR	
Q3 (b)	Explain the advantages and disadvantages of a digital control system.	[05]
Q4 (a)	Explain the impulse invariance discretization method.	[10]
	OR	
Q4 (a)	The open-loop pulse transfer function of a unity feedback control system is given	[10]
	by $G(z) = \frac{0.7870z}{(z-1)(z-0.6065)}$ Determine the critical value of K for a sampling	
	period of $T = 1$ sec. Also sketch the root locus plot.	
Q4 (b)	What is sampling? Explain the different types of sampling.	[05]
Q5 (a)	Solve any two.	
	i. Model Predictive Control	[05]
	ii. Robust Control	[05]
	iii. Lag Compensator	[05]
	iv. Lead Compensator	[05]
Q5 (b)	Explain the need for compensation. Explain the different types of compensation.	[05]

******* 2 *******