CS 6041 Theory of Computation

Conclusion

Kun Suo

Computer Science, Kennesaw State University

https://kevinsuo.github.io/

Language universe in a big picture

Language Map

DFA: deterministic finite automata

NFA: non-deterministic finite automata

RL: regular language

Deterministic finite automata (DFA)

- Finite automaton is a 5-tuple M=(Q, Σ , δ ,q₀,F)
 - Q: finite set called states
 - \circ Σ : finite set called the alphabet
 - δ : Q× Σ \rightarrow Q, transition function
 - \circ q₀∈Q: start state
 - F⊆Q: accept states

Deterministic finite automata (DFA)

How to design deterministic finite automata

Relationship of regular language and DFA

- Regular languages are closed under regular operations
 - \circ Union, $A \cup B$
 - Concatenation, $A \cap B$
 - Star, A*
 - \circ Complement, $ar{A}$
 - Boolean operation, AND: \land , $OR: \lor$, $XOR: \bigoplus$

Nondeterministic finite automaton (NFA)

$$N = (Q, \Sigma, \delta, q_0, F)$$
, where

- Q: finite set of states
- Σ: finite alphabet as input; ($Σ_ε = Σ ∪ {ε}$)
- δ : Q×Σ_ε→P(Q), transition function
- \circ q₀∈Q: start state
- F⊆Q: accept state set

Nondeterministic finite automaton (NFA)

 Equivalence of NFAs and DFAs: Every nondeterministic finite automaton has an equivalent deterministic finite automaton

Regular language

- A language is called a RL if some DFA recognizes it
- A language is called a RL if some NFA recognizes it

- Use NFA to prove RL are closed under regular operations
 - Union, $A \cup B$
 - Concatenation, $A \cap B$
 - \circ Star, A^*
 - \circ Complement, $ar{A}$
 - Boolean operation, AND:∧, OR: ∨, XOR: ⊕

Regular expression

 Regular expressions are those describing languages by using regular operations

- R is regular expression if R is
 - \circ a, where a∈Σ;
 - o E;
 - Ø;
 - $(R_1 \cup R_2)$, where R_1 and R_2 are all regular expressions;
 - \circ (R₁R₂), where R₁ and R₂ are all regular expressions;
 - \circ (R₁*), where R₁ is regular expression.

Regular expression

- A language is regular if some <u>deterministic</u> <u>finite automaton</u> recognizes it
- A language is regular if and only if some nondeterministic finite automaton recognizes it
- A language is regular if and only if some <u>regular</u> <u>expression</u> describes it

Language universe in a big picture

DFA: deterministic finite automata

NFA: non-deterministic finite automata

RL: regular language

CFL: context free language CFG: context free grammar

PDA: push down automata

Non-regular languages

- (Pumping lemma) A is RL, then there is a number p (pumping length), where if s∈A and |s|≥p, then s=xyz, satisfying the following:
 - 1) $\forall i \geq 0$, $xy^iz \in A$;
 - 2) |y|>0;
 - 3) $|xy| \le p$.

Context-free languages (CFL)

• Context-free grammar (CFG) is a 4-tuple $G=(V,\Sigma,R,S)$,

- 1) V: finite variable set
- 2) Σ : finite terminal set
- 3) R: finite rule set $(A \rightarrow w, w \in (V \cup \Sigma)^*)$
- 4) S∈V: start variable

How to design context-free grammar

Ambiguity in CFL

 If a grammar generates the same string in several different ways, we say that the string is derived ambiguously in that grammar.

 If a grammar generates some string ambiguously, we say that the grammar is ambiguous.

Chomsky normal form (CNF)

- CNF: only allow CFG in the following forms
 - \circ S $\rightarrow \epsilon$
 - \circ A \rightarrow BC
 - \circ A \rightarrow a

How to transfer CFG into CNF

Pushdown Automata (PDA)

- PDA M=(Q, Σ , Γ , δ ,q₀,F), where
 - 1) Q: set of states
 - 2) Σ : input alphabet, $\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$
 - 3) Γ : stack alphabet, $\Gamma_{\varepsilon} = \Gamma \cup \{\varepsilon\}$
 - 4) $\delta: Q \times \Sigma_{\varepsilon} \times \Gamma_{\varepsilon} \rightarrow P(Q \times \Gamma_{\varepsilon})$, transition function
 - 5) $q_0 \in \mathbb{Q}$: start state
 - 6) F⊆Q: accept state set

Equivalence of PDA and CFG

 A language is context free if and only if some pushdown automaton recognizes it

A language is CFL ⇔ some PDA recognizes it

Language universe in a big picture

Non-context-free language (Non-CFL)

(Pumping lemma) Suppose A is CFL,

then there exist a number p(the pumping length) where, if $s \in A$ and $|s| \ge p$, then s = uvxyz,

- Satisfying the following
 - 1) $\forall i \geq 0$, $uv^i xy^i z \in A$;
 - 2) |vy|>0;
 - 3) |vxy|≤p.

Turing machine

	Turing machine	Finite automata	Pushdown automata
Header	Read and write	Only read	Only read
Header move	Left and right	Only right	Only right
Input	infinite	finite	finite
Output	Accept and reject, also non-halt	Accept and reject	Accept and reject, also non-halt (loop in stack)

Turing machine

- Turing-recognizable vs. Turing-decidable
 - Accept/reject/non-halt
 - Accept/reject

- Variants of TMs
 - Multitape Turing machine
 - Nondeterministic Turing machine

Decidable problems concerning regular languages

- Acceptance problem for DFAs
 - whether a DFA accepts a string
- Acceptance problem for NFAs
 - whether a NFA accepts a string
- Regular expression decidability
 - Whether a regular expression generates a string
- Emptiness testing for DFAs
 - Whether a DFA is empty
- Equivalence of DFAs
 - Whether two DFAs recognize the same language

Decidable problems concerning context-free languages

- CFG generation decidability
 - Whether a CFG generates a particular string
- Emptiness testing for CFGs
 - Whether a CFG is empty
- Equivalence of CFGs
 - Whether two CFGs recognize the same language
- CFL decidability
 - Whether a CFL is decidable

Undecidable and unrecognizable

- A_{TM} is undecidable
 - Diagonalization method

• $\overline{A_{TM}}$ is not Turing-recognizable

	DFA	CFG	TM
Acceptance	√	√	×
Emptiness	√	√	×
Equivalence	√	×	×

Halting problem and reducibility

- TM halting problem:
 - whether a Turing machine halts (by accepting or rejecting)
 on a given input

- HALT_{TM} is undecidable
- E_{TM} is undecidable
- REGULAR_{TM} is undecidable.
- EQ_{TM} is undecidable.

Post Correspondence Problem (PCP)

Closure on operations

	Complement \overline{A}	Intersection ∩	Union ∪	Star <i>A</i> *
Regular/DFA/ NFA	√	√	√	√
CFL/ PDA	×	×	√	√
Turing- decidable TM	√	√	√	√
Turing- recognizable TM	×	√	√	1

Language universe in a big picture

Time complexity

- O() vs. o()
- Polynomial bounds vs. Exponential bounds
- Single-tape TM vs. multitape TM
 - o O(n) vs. O(n²)
- Deterministic TM vs. nondeterministic TM
 - O(n) vs. O(aⁿ)
- Class P vs. Class NP
- NP-completeness

Conclusion

Thanks