3. Modelli di variabili aleatorie

Indice

- 3. Modelli di variabili aleatorie
 - Variabili aleatorie di Bernoulli
 - Variabili aleatorie binomiali
 - Variabili aleatorie di Poisson
 - Variabili aleatorie gaussiane
 - Variabili aleatorie esponenziali

Alcuni tipi di variabili aleatorie compaiono molto frequentemente in natura

Variabili aleatorie di Bernoulli

Una variabile aleatoria X si dice di **Bernoulli** se può assumere solo i valori 0 e 1, con probabilità rispettivamente 1-p e p, dove $p\in[0,1]$. La sua funzione di massa di probabilità è:

$$P(X=x) = egin{cases} p & ext{se } x=1, \ 1-p & ext{se } x=0. \end{cases}$$

Il suo valore atteso è E[X]=p, mentre la sua varianza è $\mathrm{Var}(X)=p(1-p)$.

Un **processo di Bernoulli** è una successione di variabili aleatorie indipendenti X_i con uguale distribuzione di Bernoulli $\mathcal{B}(p)$.

La **distribuzione binomiale** descrive la probabilità del numero di successi in n prove di Bernoulli indipendenti, ovvero della variabile aleatoria:

$$S_n = X_1 + X_2 + \cdots + X_n.$$

Variabili aleatorie binomiali

Quando si effettuano n ripetizioni **indipendenti** di un esperimento binario, ciascuna con probabilità di successo p e di fallimento 1-p, il numero totale di successi S_n è una variabile aleatoria **binomiale** $\mathcal{B}(n,p)$.

Il coefficiente binomiale è definito come:

$$\binom{n}{i} = \frac{n!}{i!(n-i)!}.$$

La funzione di massa di probabilità di una variabile aleatoria binomiale è:

$$P(S_n=i)=inom{n}{i}p^i(1-p)^{n-i}, \quad ext{per } i=0,1,\ldots,n.$$

Il suo valore atteso è:

$$E[S_n] = np,$$

mentre la sua varianza è:

$$\operatorname{Var}(S_n) = np(1-p).$$

La figura rappresenta il grafico della funzione di massa di una variabile binomiale con parametri n=10 e p=0.5, che risulta simmetrica rispetto al valore medio.

Variabili aleatorie di Poisson

Una variabile aleatoria X che assume valori interi non negativi $i=0,1,2,\ldots$ si dice **di Poisson** di parametro $\lambda>0$ se la sua funzione di massa di probabilità è:

$$P(X=i)=rac{e^{-\lambda}\lambda^i}{i!}.$$

Il parametro λ rappresenta sia il **valore atteso** $E[X] = \lambda$ sia la **varianza** $\mathrm{Var}(X) = \lambda$.

Nota. Le variabili di Poisson vengono spesso utilizzate come approssimazione delle variabili binomiali $\mathcal{B}(n,p)$ quando n è molto grande e p è molto piccolo, mantenendo $\lambda=np$ costante.

La figura illustra il grafico della funzione di massa di una variabile di Poisson con parametro $\lambda=4.$

Nota. La distribuzione di Poisson viene spesso utilizzata per modellare il numero di eventi in un intervallo di tempo, dato un tasso medio di occorrenza λ

Variabili aleatorie gaussiane

Una variabile aleatoria $X \sim \mathcal{N}(\mu, \sigma^2)$ si dice **gaussiana** (o **normale**) di parametri μ e σ^2 se ha la seguente funzione di densità di probabilità:

$$f(x) = rac{1}{\sqrt{2\pi\sigma^2}} \mathrm{exp}\left(-rac{(x-\mu)^2}{2\sigma^2}
ight).$$

La funzione di densità è una curva a campana, detta **curva di Gauss**, simmetrica rispetto a $x=\mu$, con massimo in $x=\mu$ di altezza $(\sigma\sqrt{2\pi})^{-1}\approx 0.399/\sigma$.

Il valore atteso è $E[X] = \mu$, mentre la varianza è $Var(X) = \sigma^2$.

Nota. Il momento secondo è $E[X^2] = \sigma^2 + \mu^2$.

Proposizione. Se $X \sim \mathcal{N}(\mu, \sigma^2)$ e $Y = \alpha X + \beta$ con $\alpha \neq 0$, allora $Y \sim \mathcal{N}(\alpha \mu + \beta, \alpha^2 \sigma^2)$.

La variabile standardizzata:

$$Z=rac{X-\mu}{\sigma}$$

segue una distribuzione **normale standard** $\mathcal{N}(0,1)$.

Il grafico della funzione di densità di una normale standard mostra la classica forma a campana centrata in zero.

La **funzione** di **ripartizione** della normale standard è indicata con Φ ed è definita come:

$$\Phi(x)=P(Z\leq x)=rac{1}{\sqrt{2\pi}}\int_{-\infty}^x e^{-y^2/2}\,dy.$$

Poiché $Z=\frac{X-\mu}{\sigma}$, possiamo esprimere le probabilità relative a X in termini di Φ :

$$P(X < b) = \Phi\left(rac{b-\mu}{\sigma}
ight).$$

Per a < b:

$$P(a < X < b) = \Phi\left(rac{b-\mu}{\sigma}
ight) - \Phi\left(rac{a-\mu}{\sigma}
ight).$$

L'integrale che definisce $\Phi(x)$ non ha una soluzione analitica esatta; si utilizzano tabelle o approssimazioni numeriche.

Tabella A.1 Funzione di ripartizione della distribuzione normale standard

$$\Phi(x) := \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{x} e^{-y^2/2} dy$$

					,						
	\boldsymbol{x}	0.00	0.01	0.02	0.03	0.04	0.05	0,06	0.07	0.08	0.09
	0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.\$239	0.5279	0.5319	0.5359
	0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5753
	0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
	0.3		0.6217	0.6255		0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
	0.4	0.6554		0.6628		0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
	0.5	0.6915	-0.6950			0.7054		0.7123		0.7190	0.7224
	0.6	0.7257		0.7324			0.7422			0.7517	0.7549
	0.7	0.7580		0.7642		0.7704		0.7764		0.7823	0.7852
	0.8	0.7881	0.7910	0.7939		0.7995		0.8051		0.8106.	0.8133
	0.9	0.8159		0.8212				1		0.8365	0.8389
	1.0	0.8413			0.8485		0.8531	0.8554		0.8599	
	1.1	0.8643		0.8686		0.8729	0.8749			0.8810	
1	1.2		-0.8869	0.8888		0.8925	0.8944		0.8980	b	0.9015
	1.3		0.9049			0.9099		0.9131		0.9162	
•	1.4				0.9236					0.9306	
	1.5		0.9345			0.9382				0.9429	
	1.6.		0.9463				0.9505			0.9535	0.9545
	1.7	0.9554						0.9608			0.9633
	1.8_	0.9641			0.9664			0.9686			0.9706
`	1.9	0.9713	0.9719	. 0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9761	0.9767
	2.0		0.9778	0.9783	0.9788	0.9793	0.9798	0.9803			0.9817
	2.1	0.9821			0.9834					0.9854	0.9857
,	2.2	0.9861			0.9871		0.9878	0.9881	0.9884	0.9887	0.9890
(23		0.9896			0.9904	0.9906	776 6 776	0.9911	0.9913	0.9916
	2.4					0.9927	0.9929	0.9931	0.9932	0.9934	0.9936
	2.5		0.9940		0.9943	0.9945	0.9946	0.9948	0.9949	0.9951	0.9952
	2.6		0.9955			0.9959	0.9960	0.9961	0.9962	0.9963	0.9964
	2.7 2.8	0.12.2.00	0.9966		0.9968	0.9969	0.9970	0.9971	0.9972	0.9973	0.9974
	2.8		0.9975			0.9977	0.9978	0.9979	0.9979	0.9980	0.9981
		0.9981		0.9982 0.9987	0.9983	0.9984	0.9984	0.9985	0.9985	0.9986	0.9986
	3.0	0.9987	0.9987	0.9987	0.9988	0.9988	0.9989	0.9989	0.9989	0.9990	0.9990
	3.2	0.9990		0.9991	0.9991	0.9992		0.9994	0.9992	0.9993	0.9993
	3.3	0.9995	0.9995	0.9994	0.9994	0.9994	0.9994	0.9994	0.9995	0.9995	0.9995
	3.4	0.9997		0.9993						0.9996	
	3.4	0.3337	0.3331	0.3331	0.3337	0.9997	0.9997	0.9997	0.9997	0.9997	0.9998

Poiché la normale standard è simmetrica rispetto a zero:

$$\Phi(-x) = 1 - \Phi(x).$$

Per ogni $\alpha \in (0,1)$, definiamo z_{α} come:

$$P(Z>z_{lpha})=lpha \quad \Rightarrow \quad z_{lpha}=\Phi^{-1}(1-lpha).$$

Il **quantile** k-esimo della normale standard è il valore m tale che:

$$\Phi(m) = \frac{k}{100}.$$

Ponendo $k=100(1-\alpha)$, otteniamo z_{α} , indicando che la normale standard è inferiore a z_{α} nel k% dei casi.

Variabili aleatorie esponenziali

Una variabile aleatoria continua X si dice **esponenziale** con parametro $\lambda>0$ se la sua funzione di densità di probabilità è:

$$f(x) = egin{cases} \lambda e^{-\lambda x} & ext{se } x \geq 0, \ 0 & ext{se } x < 0. \end{cases}$$

La funzione di ripartizione è:

$$F(x) = P(X \leq x) = egin{cases} 1 - e^{-\lambda x} & ext{se } x \geq 0, \ 0 & ext{se } x < 0. \end{cases}$$

La distribuzione esponenziale modella tipicamente il **tempo di attesa** prima che si verifichi un evento casuale. Il suo **valore atteso** è:

$$E[X] = rac{1}{\lambda},$$

il momento secondo è:

$$E[X^2]=rac{2}{\lambda^2},$$

e la varianza è:

$$\operatorname{Var}(X) = rac{1}{\lambda^2}.$$

La proprietà fondamentale è l'assenza di memoria:

$$P(X > s + t \mid X > t) = P(X > s), \quad \forall s, t > 0.$$

Esempio. Se X rappresenta il tempo di vita di un oggetto, sapendo che ha già funzionato per un tempo t, la probabilità che continui a funzionare per un ulteriore tempo s è la stessa che avrebbe avuto all'inizio.

Per la distribuzione esponenziale, vale:

$$P(X>s+t)=P(X>s)P(X>t).$$

Questo riflette la proprietà di assenza di memoria, poiché la probabilità che l'evento non si sia verificato entro s+t è il prodotto delle probabilità di non verificarsi in s e t.