Лабораторная работа №5 Численные методы решения задачи Коши

Цель работы: изучить численные методы решения задачи Коши; получить практические навыки приближенного решения дифференциальных уравнений с помощью ЭВМ.

Задания к работе

1. Вычислить «вручную» приближенное решение y(x) задачи Коши методом последовательного дифференцирования.

Замечание. Ряд Тейлора ограничить значением производной третьего порядка.

2. Вычислить значение функции $\varphi(x)$, которая является точным решением задачи Коши и функции y(x), которая является приближенным решением задачи Коши по методу последовательного дифференцирования, в точке x = b.

Замечание. x = b — правый конец указанного в задании отрезка, которому принадлежит значение x, $a \le x \le b$.

$$x = b = x_0 + ih$$
, $h > 0$ — шаг сетки, $x_0 = a$.

- 3. Определить относительную и абсолютную погрешности вычисления приближенного решения задачи Коши методом последовательного дифференцирования. Значения погрешностей внести в соответствующие ячейки таблицы 4.
- 4. Вычислить «вручную» приближенное решение y(x) задачи Коши четырьмя численными методами решения:
- методом Эйлера;
- методом Эйлера-Коши;
- модифицированным методом Эйлера;
- методом Рунге-Кутты.

Сначала выполнить вычисления с шагом h = 0.2, а затем с шагом h = 0.1.

Вычисления вручную можно выполнить с помощью MS Excel или другой программы и *обязательно* их включать в отчет.

- 5. Сравнить полученные в пункте 4 значения приближенного решения дифференциального уравнения y(x) с точным значением решения дифференциального уравнения $\varphi(x)$ в точке x=b.
- 6. Определить относительную и абсолютную погрешности вычисления приближенного решения задачи Коши заданными численными методами.

Значения погрешностей внести в соответствующие ячейки таблицы 4.

7. Описать в модуле функции, каждая из которых возвращает приближенное значение решения задачи Коши:

$$\begin{cases} y' = f(x, y), \\ y(x_0) = y_0 \end{cases}$$

в точке x=b с точностью ε , реализующие метод Эйлера, метод Эйлера-Коши, модифицированный метод Эйлера и метод Рунге-Кутты. Оценка точности вычисления должна осуществляться по принципу Рунге.

8. Составить программу для вычисления приближенных значений решения задачи Коши с точностью ε на отрезке [a, b] с шагом h для соответствующего варианта задания с использованием всех функций, описанных в модуле.

Результат работы программы таблица значений приближенного решения задачи Коши для заданного отрезка $a \le x \le b$.

Предусмотреть возможность сохранения результата работы программы в файл.

Таблица 4. Оценка погрешности численных методов решения задачи Коши

	1 1	1			<u> </u>	
	Вычислительный метод					
Погрешность	Последовательного	Эйлера	Эйлера-	Модифицированный	Рунге-	
	дифференцирования		Коши	метод Эйлера	Кутта	
h=0,2						
Δ						
δ						
h=0,1						
Δ						
δ						

Основные теоретические сведения

Задачей Коши для дифференциального уравнения порядка m называется задача нахождения такого решения дифференциального уравнения: y = y(x), которое удовлетворяет заданным m начальным условиям.

Метод последовательного дифференцирования

Решение y = y(x) ищут в виде ряда Тейлора с центром в точке x_0 :

$$y(x)=y(x_0)+y'(x_0)(x-x_0)+\frac{y''(x_0)}{2!}(x-x_0)^2+...+\frac{y^{(m)}(x_0)}{m!}(x-x_0)^m+...$$

Производные порядка 0, 1, ..., m находятся из начальных условий, а следующие вычисляются из данного дифференциального уравнения.

Для дифференциального уравнения первого порядка задача Коши имеет вид:

$$\begin{cases} y' = f(x, y), \\ y(x_0) = y_0 \end{cases}$$

Результат применения любого численного метода — это таблица значений:

χ_i	y_i
x_0	уо
x_1	<i>y</i> ₁
•••	
χ_n	Уn

где y_i — приближенное значение решения задачи Коши в точке x_i ,

$$x_i = x_0 + ih$$
, $i = 1$, ... n .

h — шаг сетки, x_0 — начально значение переменной x.

Метод Эйлера

Задано дифференциальное уравнение первого порядка и начальное условие $y(x_0) = y_0$. Точки $x_0, x_1, ..., x_n$ образуют сетку на оси OX.

Если сетка неравномерна, то значения y_i находятся по формуле

$$y_{i+1} = y_i + f(x_i, y_i)(x_{i+1} - x_i), i = 0,1,...,n-1$$

Если сетка равномерна, то значения y_i находятся по формуле

$$y_{i+1} = y_i + hf(x_i, y_i), i = 0,1,...,n-1$$

 $x_i = a + ih = x_0 + ih$
 $h = \frac{b-a}{n}$

[a, b] — отрезок на котором лежат точки $x_0, x_1, ..., x_n$. Метод Эйлера имеет первый порядок точности.

Метод Эйлера-Коши

$$y_{k+1}^{3-K} = y_k^{3-K} + \frac{1}{2}h(f(x_k, y_k^{3-K}) + f(x_k + h, y_k^{3-K} + hf(x_k, y_k^{3-K}))), k = 0,..., n-1$$

Метод Эйлера-Коши имеет второй порядок точности.

Модифицированный метод Эйлера

$$y_{k+1}^{M9} = y_k^{M9} + h f\left(x_k + \frac{h}{2}, y_k^{M9} + \frac{h}{2} f(x_k, y_k^{M9})\right), k = 0,..., n-1$$

Модифицированный метод Эйлера имеет второй порядок точности. При i=0 получаем:

$$y_0^{9-K} = y_0^{M9} = y_0 = y(x_0)$$

Метод Рунге-Кутты

$$y_{k+1}^{PK} = y_k^{PK} + \frac{h}{6} \left(m_k^{(1)} + 2m_k^{(2)} + 2m_k^{(3)} + m_k^{(4)} \right), \quad k = 0, ..., n-1$$

$$m_k^{(1)} = f \left(x_k, y_k \right)$$

$$m_k^{(2)} = f \left(x_k + \frac{h}{2}, y_k + \frac{h}{2} m_k^{(1)} \right)$$

$$m_k^{(3)} = f \left(x_k + \frac{h}{2}, y_k + \frac{h}{2} m_k^{(2)} \right)$$

$$m_k^{(4)} = f \left(x_k + h, y_k + h m_k^{(3)} \right)$$

Метод Рунге-Кутты имеет четвертый порядок точности.

Практическая оценка погрешности численных методов решения задачи Коши выполняется по принципу Рунге.

После применения любой численной формулы вычисления с шагом h, уменьшаем шаг вдвое, и повторяем вычисления с шагом (h/2), получим два приближенных значения функции в одной и той же точке x_k .

Введем обозначение погрешности:

$$\delta = \frac{y_{k+1}^{(h/2)} - y_{k+1}^{(h)}}{2^p - 1}$$

 $y_{k+1}^{(h/2)}, y_{k+1}^{(h)}$ – приближенные значения решения задачи Коши, вычисленные с шагом h и с шагом (h/2) на одном и том же отрезке $[x_0, x_n]$.

Вычисления выполняются пока модуль полученной погрешности больше заданной точности. В итоге решение задачи Коши формируется в виде:

$$y^{T}(x_{k+1}) \approx y_{k+1}^{(h/2)} + \delta$$

Варианты заданий

№	Задача Коши	Точное решение
1	$y' - \frac{3y}{x} = x^3 + x$, $y _{x=1} = 3$, $1 \le x \le 2$	$\varphi(x) = x^4 - x^2 + 2x^3$

	<u> </u>	
2	$ y' - \frac{y}{x} = x^2, y _{x=1} = 0, 1 \le x \le 2$	$\varphi(x) = \frac{x^3 - x}{2}$
3	$y' - y \operatorname{ctg} x = 2x \sin x, y \Big _{x=\pi/2} = 0, \frac{\pi}{2} \le x \le \frac{\pi}{2} + 1$	$\varphi(x) = \left(x^2 - \frac{\pi^2}{4}\right) \sin x$
4	$y' - \frac{y}{x+2} = x^2 + 2x$, $y _{x=-1} = 1.5$, $1.5 \le x \le 2.5$	$\varphi(x) = \frac{\left(x^2 + 2\right)\left(x + 2\right)}{2}$
5	$\left y' + y \operatorname{tg} x = \cos^2 x, y \right _{x=\pi/4} = \frac{1}{2}, \frac{\pi}{4} \le x \le \frac{\pi}{4} + 1$	$\varphi(x) = \sin x \cdot \cos x$
6	$y' - \frac{1}{x+1}y = e^x(x+1), y _{x=0} = 1, 0 \le x \le 2$	$\varphi(x) = e^x (x+1)$
7	$y' - \frac{y}{x} = x \sin x$, $y\Big _{x=\pi/2} = 1$, $\frac{\pi}{2} \le x \le \frac{\pi}{2} + 1$	$\varphi(x) = x \left(\frac{2}{\pi} - \cos x\right)$
8	$y' + \frac{y}{x} = \sin x$, $y\Big _{x=\pi} = \frac{1}{\pi}$, $\pi \le x \le \pi + 1$	$\varphi(x) = \frac{\sin x - x \cos x + 1 - \pi}{x}$
9	$y' + \frac{y}{2x} = x^2$, $y _{x=1} = 1$, $1 \le x \le 2$	$\varphi(x) = \frac{2}{7}x^3 + \frac{5}{7\sqrt{x}}$
10	$y' + \frac{2x}{1+x^2}y = \frac{2x^2}{1+x^2}, y\Big _{x=0} = \frac{2}{3}, \frac{2}{3} \le x \le \frac{5}{3}$	$\varphi(x) = \frac{2(x^3 + 1)}{3(x^2 + 1)}$
11	$y' - \frac{2x-5}{x^2}y = 5$, $y _{x=2} = 4$, $2 \le x \le 4$	$\varphi(x) = x^2$
12	$y' + \frac{y}{x} = \frac{x+1}{x}e^x$, $y _{x=1} = e$, $1 \le x \le 2$	$\varphi(x) = e^x$
13	$y' - \frac{y}{x} = -2\frac{\ln x}{x}, y _{x=1} = 1, 1 \le x \le 2$	$\varphi(x) = 2(\ln x + 1) - x$
14	$y' - \frac{y}{x} = -\frac{12}{x^3}, y _{x=1} = 4, 1 \le x \le 2$	$\varphi(x) = \frac{4}{x^2}$
15	$y' + \frac{2y}{x} = x^3$, $y\Big _{x=1} = -\frac{5}{6}$, $1 \le x \le 2$	$\varphi(x) = \frac{x^4}{6} - \frac{1}{x^2}$
	$y' + \frac{y}{x} = 3x$, $y _{x=1} = 1$, $1 \le x \le 3$	$\varphi(x) = x^2$
	$y' - \frac{2xy}{x^2 + 1} = x^2 + 1$, $y _{x=1} = 3$, $1 \le x \le 2$	$\varphi(x) = x^3 + 0.5x^2 + x + 0.5$
18	$y' + \frac{1-2x}{x^2}y = 1$, $y _{x=1} = 1$, $1 \le x \le 2$	$\varphi(x) = x^2 \Big(2e^{1/x - 1} - 1 \Big)$
19	$y' + \frac{3y}{x} = \frac{2}{x^3}, y _{x=1} = 1, 1 \le x \le 3$	$\varphi(x) = \frac{2}{x^2} - \frac{1}{x^3}$
20	$y' + 2xy = -2x^3$, $y\Big _{x=1} = \frac{1}{e}$, $1 \le x \le 2$	$\varphi(x) = -x^2 + 1 + e^{-x^2}$
21	$y' + \frac{xy}{2(1-x^2)} = \frac{x}{2}, y \Big _{x=0} = \frac{2}{3}, 0 \le x \le 2$	$\varphi(x) = \sqrt[4]{1 - x^2} - \frac{1}{3} (1 - x^2)$
22	$y' + xy = -x^3$, $y _{x=0} = 3$, $0 \le x \le 2$	$\varphi(x) = 1 - x^2 + e^{-x^2/2}$
	$y' - \frac{2}{x+1}y = e^x(1+x)^2$, $y _{x=0} = 1$, $1 \le x \le 2$	$\varphi(x) = e^x (x+1)^2$
24	$y' + 2xy = xe^{-x^2} \sin x$, $y _{x=0} = 1$, $0 \le x \le 1$	$\varphi(x) = e^{-x^2} \left(-x \cos x + \sin x + 1 \right)$

25	$y' + \frac{2y}{x+1} = (1+x)^2$, $y _{x=0} = \frac{1}{2}$, $0 \le x \le 2$	$\varphi(x) = \frac{x^4}{2} + 2x^3 + 3x^2 + 2x + \frac{1}{2}$
26	$y' - y\cos x = -\sin 2x, y _{x=0} = 3, 0 \le x \le 2$	$\varphi(x) = 2(\sin x + 1) + e^{\sin x}$
27	$y' - 4xy = -4x^3, y \Big _{x=0} = -\frac{1}{2}, 0 \le x \le 2$	$\varphi(x) = 2x - 4xe^{2x^2}$
28	$y' - \frac{y}{x} = -\frac{\ln x}{x}, y _{x=1} = 1, 1 \le x \le 2$	$\varphi(x) = \ln x + 1$
29	$y' - y\cos x = \sin 2x, y _{x=0} = -1, 0 \le x \le 1$	$\varphi(x) = -2(\sin x + 1) + e^{\sin x}$
30	$y' - \frac{y}{x} = -\frac{2}{x^2}, y _{x=1} = 1, 1 \le x \le 2$	$\varphi(x) = \frac{1}{x}$

Контрольные вопросы

- 1. Определение дифференциального уравнения (ДУ). Порядок ДУ. Определение решения ДУ.
- 2. Постановка задачи Коши. Решение задачи Коши.
- 3. Понятие аналитического метода приближенного решения задачи Коши.
- 4. Понятие численного метода приближенного решения задачи Коши.
- 5. Метод последовательного дифференцирования.
- 6. Геометрический смысл метода Эйлера.
- 7. Методы второго порядка точности: формулы вычисления.
- 8. Метод Рунге-Кутты: формулы вычисления.
- 9. Относительная и абсолютная погрешность.
- 10. Применение принципа Рунге для достижения заданной точности. Приближенное значение функции в точке по методу Рунге.