Zeros de funções

Definição 1 O número x^* é um zero da função f se é solução da equação f(x) = 0, ou seja, se $f(x^*) = 0$.

Exemplo 1 O número $x^* = 2$ é um zero (único) de f(x) = 2x - 4.

Definição 2 O número x_k está próximo de x^* com tolerância (precisão) ε se $|x_k - x^*| < \varepsilon$.

Teorema 1 Se a função f é contínua no intervalo [a,b] e f(a)f(b) < 0 então existe (pelo menos um) x^* com $a < x^* < b$ tal que $f(x^*) = 0$ (ou seja, existe um zero de f entre a e b).

Exemplo 2 A função $f(x) = x^3 - 9x + 3$ tem um zero no intervalo [-5, -3], um zero no intervalo [0, 1] e outro no intervalo [2, 3].

Obs. 1 Como $x^3 - 9x + 3 = 0$ é equivalente a $x^3 = 9x - 3$, podemos localizar os zeros de f localizando os pontos de intersecção dos gráficos de $g(x) = x^3$ e h(x) = 9x - 3.

Método da bissecção

Dados $f:[a,b]\to\mathbb{R}$ contínua com f(a)f(b)<0 e $\varepsilon>0$, o método consiste em dividir o intervalo [a,b] ao meio, decidir em qual dos subintervalos está o zero de f, atualizar o intervalo que contém o zero e repetir o procedimento até que o intervalo resultante tenha comprimento menor que ε .

Obs. 2 Outro critério de parada é repetir o procedimento até que $|f(x_k)| < \varepsilon$.

```
Dados: f, a, b, tol, maxit
% exemplo: f=@(x) x^3-9*x+3; a=0; b=1; tol=0.005; maxit=1000;
for k=1:maxit
    x(k)=(a+b)/2;
    if f(a)*f(x(k))<0
        b=x(k);
    else
        a=x(k);
    endif
    if ( abs(b-a)<tol || f(x(k))==0 )
        break
    endif
endfor
k
x_aprox=x(k)</pre>
```

Exemplo 3 A função $f(x) = x \ln x - 1$ tem um zero no intervalo [1, 2].

Método de Newton

Dada uma aproximação x_k , o método de Newton constrói uma nova aproximação x_{k+1} pela intersecção da reta tangente ao gráfico da função f no ponto $(x_k, f(x_k))$ com o eixo x. A equação da reta tangente ao gráfico da função f no ponto $(x_k, f(x_k))$ é

$$y - f(x_k) = f'(x_k)(x - x_k).$$

Esta reta corta o eixo x quando y = 0 (e $x = x_{k+1}$): $0 - f(x_k) = f'(x_k)(x_{k+1} - x_k)$. Portanto,

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}.$$

Exemplo 4 Para $f(x) = x^3 - 9x + 3$, com $x_1 = 0$.

Exemplo 5 Para $f(x) = x^2 - 2$, com $x_1 = 1$. $[x^* = \sqrt{2}]$

Critério de parada: é possível usar $|x_{k+1} - x_k| < \varepsilon$ (ou $|x_{k+1} - x_k| < \varepsilon$ e $|f(x_{k+1})| < \varepsilon$).

```
Dados: x(1), f, df, tol, itmax
% exemplo: x(1)=0; f=@(x) x^3-9*x+3; df=@(x) 3*x^2-9; tol=0.005; itmax=1000;
for k=1:itmax
    x(k+1)=x(k)-f(x(k))/df(x(k));
    if ( abs(x(k+1)-x(k))<tol && abs(f(x(k+1)))<tol )
        break
    endif
endfor</pre>
```

Teorema 2 Se f, f' e f'' são contínuas num intervalo I que contém x^* (solução de f(x) = 0) e $f'(x^*) \neq 0$ então existe um intervalo $I_1 \subset I$ contendo x^* tal que se $x_1 \in I_1$, a sequência (x_k) gerada pelo Método de Newton converge para x^* .

Definição 3 (Ordem de convergência) $Seja\ e_k = |x_k - x^*|$. $Se\lim_{k \to \infty} \frac{e_{k+1}}{e_k^p} = C\ com\ C > 0$ $e\ p \ge 1$, diz-se que a sequência (x_k) converge para x^* com ordem de convergência p.

Obs. 3 Para o método de Newton $e_{k+1} = \frac{1}{2} \left| \frac{f''(\alpha_k)}{f'(\beta_k)} \right| e_k^2$.

Método da secante

Dadas duas aproximações x_k e x_{k+1} , o método da secante constrói uma nova aproximação x_{k+2} pela intersecção da reta secante ao gráfico da função f passando pelos pontos $(x_k, f(x_k))$ e $(x_{k+1}, f(x_{k+1}))$ com o eixo x.

A equação da reta secante ao gráfico da função f é

$$y - f(x_k) = \frac{f(x_{k+1}) - f(x_k)}{x_{k+1} - x_k} (x - x_k).$$

Esta reta corta o eixo x quando y = 0 (e $x = x_{k+2}$): $0 - f(x_k) = \frac{f(x_{k+1}) - f(x_k)}{x_{k+1} - x_k}(x_{k+2} - x_k)$. Portanto,

$$x_{k+2} = \frac{x_k f(x_{k+1}) - x_{k+1} f(x_k)}{f(x_{k+1}) - f(x_k)}.$$

Exemplo 6 $f(x) = x^3 - 9x + 3$, com $x_1 = 0$ e $x_2 = 1$.

Exemplo 7 $f(x) = x^2 - 2$, com $x_1 = 1$ e $x_2 = 2$. $[x^* = \sqrt{2}]$

Critério de parada: é possível usar $|x_{k+2} - x_{k+1}| < \varepsilon$ (ou $|x_{k+2} - x_{k+1}| < \varepsilon$ e $|f(x_{k+2})| < \varepsilon$).

Ordem de convergência: $e_{k+1} = \frac{1}{2} \left| \frac{f''(\alpha_k)}{f'(\beta_k)} \right| e_k e_{k-1}$.

```
Dados: x(1), x(2), f, tol, itmax % exemplo: x(1)=0; x(2)=1; f=0(x) x^3-9*x+3; tol=0.005; itmax=1000; for k=1:itmax  x(k+2)=(x(k)*f(x(k+1))-x(k+1)*f(x(k)))/(f(x(k+1))-f(x(k)));  if (abs(x(k+2)-x(k+1))<tol && abs(f(x(k+2)))<tol ) break endifendfor
```