אינפי 2 ⁻ סמסטר א' תשע"ט תרגיל בית 4

להגשה עד יום שישי, 23 בנובמבר, בשעה 10:00 בבוקר, דרך תיבת ההגשה במודל

- , האינטגרל הלא־מסוים של אינטגרציה (כלומר, מצאו פונקציה קדומה). $\int \frac{e^x}{(1+e^x)^2} dx$ האינטגרל הלא־מסוים של האינטגרציה (א) פונקציה קדומה). $\int \frac{e^x}{(1+e^x)^2} dx$ החליפו את האינטגרל פשוט ככל האפשר.
 - (ב) את ערכו, חשבו את מתכנס. מתכנס $\int_0^\infty \frac{e^x}{(1+e^x)^2} dx$ האם קבעו קבעו
 - $\lim_{n o\infty}rac{\sum_{k=1}^nk^lpha}{C\cdot n^eta}$ = 1 ב ע כן (lpha ב ממשי. מצאו מספרים ממשיים משיים (אשר יכולים להיות תלויים ב lpha כן ממשי. מצאו מספרים ממשיים לא
 - $A(y) = \int_0^y (\cos(t))^{100} dt$ אזרו את הפונקציה .3
 - .(בסעיף הקודם) או ($B\left(x
 ight)=\int_{0}^{e^{x}}\left(\cos\left(t
 ight)
 ight)^{100}dt$ בסעיף הקודם).
- (ג) גזרו את הפונקציה $C\left(x\right)=-\int_{0}^{x^{2}}\left(\cos\left(t\right)\right)^{100}dt$ כתבו כתבו $C\left(x\right)=\int_{x^{2}}^{0}\left(\cos\left(t\right)\right)^{100}dt$ את הרעיון של שני הסעיפים (ג) גזרו את הפונקציה בתבו את הרעיון (ג) אוז מון של שני הסעיפים (ג) הקודמים).
 - .(ב, בסעיפים ב,ג). וואת הפונקציה $D\left(x
 ight)=\int_{x^{2}}^{e^{x}}\left(\cos\left(t
 ight)
 ight)^{100}dt$ היעזרו את הפונקציה (ד
 - . (רמז: חקו את הרעיון מאחורי הסעיפים הקודמים) ווא $E\left(x\right)=\int_{x}^{x^{2}}e^{t\cdot\sin(t)}dt$ הפונקציה ארבעת הפונקציה ווא הרעיון (רמז: חקו את הפונקציה הסעיפים הקודמים).
- . בונוס: תהי $f:[a,b] o \mathbb{R}$ הוכיחו שf:[a,b] o 0 אינטגרבילית בf:[a,b] o 0 לכל f:[a,b] o 0 לכל . f:[a,b] o 0 הוכיחו שf:[a,b] o 0 אינטגרבילית בf:[a,b] o 0 , ומתקיים f:[a,b] o 0 , ומתקיים f:[a,b] o 0
- .5 תהי F פונקציה אינטגרבילית. נגדיר $F:[a,b] \to \mathbb{R}$ על־ידי $F:[a,b] \to \mathbb{R}$ נדוך נקודות $F:[a,b] \to \mathbb{R}$ היזכרו $f:[a,b] \to \mathbb{R}$ במשפט 6.4 (סיכום הרצאה 6). תהי
 - (א) הוכיחו שאם f רציפה ב x_0 , אז f גזירה ב x_0 , וחשבו את $f'(x_0)$ (התשובה קצרה מאוד בהינתן מה שלמדנו).
 - x_0 ב ב גזירה אירר אל גזירה איררציפות איררציפות גזירה ב גזירה (ב)
- (ג) הוכיחו שאם x_0 נקודת אי־רציפות מסוג ראשון של x_0 , אז x_0 לא גזירה ב x_0 (רמז: מצאו דרך להשתמש במשפט 6.4 כדי לחשב את x_0 הוכיחו שאם x_0 ב x_0 ב x_0 ב x_0 .
 - $.x \in [-1,1] \setminus \left\{\pm \frac{1}{n} \mid n \in \mathbb{N}\right\}$ לכל f(x) = 3, ור $n \in \mathbb{N}$ לכל $f(\frac{1}{n}) = f\left(-\frac{1}{n}\right) = 0$ על־ידי $f: [-1,1] \to \mathbb{R}$ על־ידי $f: [-1,1] \to \mathbb{R}$ הוכיחו ש $f: [-1,1] \to \mathbb{R}$ היא נקודת אי־רציפות מסוג שני של $f: [-1,1] \to \mathbb{R}$.i
 - $\int_{-1}^{-\epsilon}f$ ו ר $\int_{\epsilon}^{1}f$ אינטגרבילית ב הפונקציה f אינטגרבילית ב הפונקציה $[\epsilon,1]$ וב הוכיחו שלכל (4.3). חשבו את הפונקציה אינטגרבילית ב הפונקציה וב הוכיחו שלכל (4.3).
 - .[-1,1] אינטגרבילית ל אינטגרבילית מהתרגיל הנוכחי כדי להוכיח ל היעזרו בשאלה קודמת מהתרגיל הנוכחי ל
 - $x_0 = 0$ ב זירה ב F(x) = F(x), והוכיחו ש F(x) = F(x) גזירה ב הידי F(x) = F(x) גזירה ב הידי F(x) = F(x)
- לא גזירה $F:[-1,1] \to \mathbb{R}$ היש פונקציה אינטגרבילית $f:[-1,1] \to \mathbb{R}$ בעלת נקודת אי־רציפות מסוג שני ב $x_0=0$ כך הפונקציה $f:[-1,1] \to \mathbb{R}$ לא גזירה ב $x_0=0$ (כאשר $x_0=0$).