Applied Spatial Statistics for Public Health Data

LANCE A. WALLER

Emory University Department of Biostatistics Atlanta, Georgia

CAROL A. GOTWAY

National Center for Environmental Health Centers for Disease Control and Prevention Atlanta, Georgia

EXERCISES 151

process under consideration [see Cressie (1993, pp. 663–664) for a more formal argument]. We note that the results establish an equivalent Cox process for any Neyman–Scott process (with Poisson numbers of children), but the reverse does not hold, as the class of Cox processes is much larger than those equivalent to Neyman–Scott processes. For example, consider the simple Cox process based on CSR with a variable intensity λ . No realization of this process involves clustering consistent with a Neyman–Scott process (unless one considers a degenerate uniform child-dispersal distribution). Finally, although the conceptual description of Bartlett's equivalence above might suggest that any Poisson cluster process yields an equivalent Cox processes, formalizing the argument mathematically requires precise definitions of valid probability structures, and Cressie (1993, p. 664) points out that the general result remains unproven.

5.5 ADDITIONAL TOPICS AND FURTHER READING

In this chapter we provide only a brief introduction to spatial point processes and their first- and second-order properties. The methods outlined above provide the probabilistic tools to develop the analytic methods in Chapters 6 and 7 for investigating spatial patterns of disease. Many of the applications in Chapters 6 and 7 build from heterogeneous Poisson processes, and our discussion here tends to focus accordingly, resulting in limited treatment of some concepts covered in more detail in more general texts on spatial statistics. In particular, we only provide the barest details regarding tests of CSR. Cressie (1993, Chapter 8) provides a more thorough presentation of such methods.

Due to our focus on heterogeneous Poisson processes, we ignore the sizable literature regarding nearest-neighbor distance distributions. The literature refers to the F function and the G function to represent cumulative distribution functions of the distances between either a randomly chosen point in the study area or a randomly chosen event to the nearest-neighboring event, respectively. See Diggle (1983, Section 2.3) and Cressie (1993, Sections 8.2.6 and 8.4.2) for further details. In addition, van Lieshout and Baddeley (1996) consider the ratio of the F and G functions (termed the J function) as a measure of spatial interaction in a spatial point processes. Van Lieshout and Baddeley (1999) provide an analog to the J function for multivariate point processes (e.g., point processes with more than one type of event, as in the grave site example).

Finally, there are also a wide variety of point process models in addition to the **Po**isson processes outlined above. We refer the reader to Diggle (1983), Ripley (1988), Chapter 8 of Cressie (1993), Stoyan et al. (1995), and Lawson (2001) for **fur**ther details and examples.

5.6 EXERCISES

5.1 Suppose that we have a realization of a spatial point process consisting of N event locations $\{s_1, \ldots, s_N\}$. Let W_i denote the distance between the *i*th

event and its nearest-neighboring event. The literature refers to the cumulative distribution function of W (the nearest event—event distance) as the G function. What is the G function under complete spatial randomness; that is, what is $\Pr[W \leq w]$? (Hint: Consider the probability of observing no events within a circle of radius w.)

- 5.2 Simulate 100 realizations of complete spatial randomness in the unit square with 30 events in each realization. For each realization, calculate the distance between each event and its nearest-neighboring event, denoted W_i for the *i*th event in the realization. Calculate $2\pi\lambda\sum_{i=1}^{30}W_i^2$ (Skellam 1952) for each realization and compare the distribution of values to a χ^2_{2N} distribution where N=30 denotes the number of events, λ the intensity function (30 for this application), and π is the familiar mathematical constant.
- 5.3 Repeat Exercise 5.2, letting the number of events in each realization follow a Poisson distribution with mean 30. What changes in the two settings? Under what assumptions is Skellam's chi-square distribution appropriate?
- 5.4 Simulate 100 realizations of a Poisson cluster process and calculate Skellam's statistic for each realization. Compare the histogram of values to that obtained in Exercise 5.2. How does the distribution of the statistic change compared to its distribution under complete spatial randomness?
- 5.5 For each of $\lambda = 10$, 20, and 100, generate six realizations of CSR on the unit square. For each realization, construct a kernel estimate of $\lambda(s)$ (supposing you did not know that the data represented realizations of CSR). How does each set of six estimates of $\lambda(s)$ compare to the known constant values of λ ? What precautions does this exercise suggest with regard to interpreting estimates of intensity from a single realization (data set)?
- 5.6 The following algorithm outlines a straightforward acceptance—rejection approach to simulating realizations of N events from a heterogeneous Poisson process with intensity $\lambda(s)$. First, suppose that we can calculate $\lambda(s)$ for any point s in the study area A, and that we know (or can calculate) a bounding value λ^* such that $\lambda(s) \leq \lambda^*$ for all $s \in A$.
 - Step 1. Generate a "candidate" event at location s_0 under CSR in area A.
 - Step 2. Generate a uniform random number, say w, in the interval [0, 1].
 - Step 3. If $w \le (\lambda(s)/\lambda^*)$ [i.e., with probability $(\lambda(s)/\lambda^*)$], keep the candidate event as part of the simulated realization; otherwise, "reject" the candidate and omit it from the realization.
 - Step 4. Return to step 1 until the collection of accepted events numbers N.

In this algorithm, events have a higher probability of being retained in the realization in locations where the ratio $(\lambda(s)/\lambda^*)$ is higher. The closer the

value λ^* is to $\max_{s \in A} \lambda(s)$, the more efficient the algorithm will be (as fewer candidates will be rejected overall). [See Lewis and Shedler (1979), Ogata (1981), and Stoyan et al. (1995, Section 2.6.2) for more detailed discussions of this and similar algorithms.]

For a heterogeneous intensity $\lambda(s)$ and study area A of your choice, generate six realizations with 30 events each from the same underlying heterogeneous Poisson process. For each realization, estimate $\lambda(s)$ via kernel estimation. Plot the realizations with respect to your known intensity $\lambda(s)$. Provide separate plots of each kernel density estimate and compare to the true intensity function $\lambda(s)$.

On a separate plot, indicate the location of the mode (maximal value) of each kernel estimate of $\lambda(s)$. How do these six values compare to the true mode of $\lambda(s)$? What (if any) implications do your results suggest with respect to identifying modes of disease incidence based on intensity estimated from a single data realization (e.g., a set of incident cases for a single year)?

5.7 The medieval grave site data set introduced in Section 5.2.5 appear in Table 5.2. Estimate the intensity functions for affected and nonaffected sites for a variety of bandwidths. For what bandwidths do the two intensities appear similar? For what bandwidths do they appear different?

Table 5.2 Medieval Grave Site Data^a

Aff	υ	и	Aff	υ	и	Aff	υ	и
Ö	8528	8614	0	7953	9004	0	8970	8072
. 0.	8039	8996	1	8641	8876	1	8337	9139
0	8923	9052	0	9010	8320	0	8892	7898
0	5737	9338	0	6474	9194	0	7438	9130
0	6073	9183	0	6740	9334	0	7636	8102
0	6393	9110	0	6916	8639	0	7272	8889
0	6903	8341	0 .	7095 -	9272	0	5609	8167
0	4570	9215	1	4177	9419	0	6218	8 546
1	5450	9310	0	5067	9110	0	4117	8 400
0	4226	8536	0	4935	8303	1	7166	9 361
0	4787	8797	0	5720	8189	1	4473	9 435
$ \neq 1 $	9541	8326	0	4785	. 8457	0	9300	8 326
0	8761	7042	0	9379	8373	0	6466	5100
0	8262	7212	0	7463	4492	0	6455	47 14
1	7972	7768	1	7789	7468	0	7467	7209
. 0	7299	7237	1	7009	7639	0	7657	7 796
0	3588	9149	1	6 9 18	6934	0	6039	7 620
1	7264	7042	0	7784	7119	0	5 7 76	7 708
1	3319	9485	0	3844	8778	1	6234	7 039
0	6353	5456	1	6065	5306	1	6065	5 305
0	7472	5231	0	7725	5597	0	6023	5 717
0	8271	6252	0	5969	4862	1	7 671	60 92

(continued overleaf)

Table 5.2 (continued)

Aff	v	- u	Aff	\boldsymbol{v}	и	Aff	v	u
0	7127	6258	0	7391	6569	1	7164	6720
0	7957	9352	1	9114	9208	0	9403	9558
0	6332	7974	0	6024	7505	0	8826	9473
0	9257	9756	0	7269	8126	0	6229	7634
0	10431	9405	0	8273	10073	0	6468	9752
0	10068	9262	1	3085	10100	0	8141	10147
0	9393	8831	0	9661	9305	0	3824	9990
0	7690	9547	0	8356	9656	0	9059	9570
0	9611	8937	0	8846	9502	0	9223	9416
0	7271	10232	0	4389	10324	0	4790	10263
0	7065	9722	0	7463	9412	0	7564	9497
0	5937	10061	0	6309	9879	1	5276	9757
1	5554	9665	0	7240	9699	0	6713	9716
1	3208	10373	0	6317	10143	1	5225	10156
0	7633	8846	0	8894	9072	0	8840	8575
0	5835	8217	0	7068	9230	1	6958	9131
0	4862	8175	0	4497	8685	0	5106	8458
0	7115	5101	0	5006	8789	0	5377	8598
0	8280	7507	0	6590	5109	0	6733	4716
0	6341	7068	0.	3882	8861	0	6591	7459
0	7052 .	5385	0	6147	4612	0	7046	5683
1	6222	7759	1	6278	5952	0	7541	6720
0	3469	9770	0	6739	10070	0	6730	7628
1	4581	9702	0	9541	9667	1	3656	9850
0	4673	9953	0	7562	10292	0	4274	10030
			1-	5222	10148	0	5291	10192

 $^{^{}a}u$ and v denote the coordinates of each location and "Aff" indicates whether the grave site included missing or reduced wisdom teeth (Aff = 1) or did not (Aff = 0). See text for details.

5.8 Simulate 10 realizations from the Baddeley and Silverman (1984) process defined in Section 5.3.4 on a 100×100 unit grid. Plot the K function for each realization and plot the average of the 10 K functions at each distance value. Does the average of the K-function estimates appear consistent with the K function for complete spatial randomness? Does each of the 10 estimated K functions appear consistent with the K function from complete spatial randomness?