

OUR TEAM

Hafez Ghaemi s289963 Francesco Capobianco s281307

Alessia Leclercq s291871

OVERVIEW

INTRODUCTION

Goal: music genre classification using deep learning architectures

- Feature vectors
- Traditional ML algorithms

SPECTROGRAM

A spectrogram is a visual representation of the spectrum of frequencies of a signal as it varies over time.

- invertible
- both temporal and frequency contents

$$STFT\{x(t)\}(\tau, w) = X(\tau, w) = \int_{-\infty}^{+\infty} x(t)w(t - \tau)e^{-iwt}dt$$

$$m = 2595 \log_{10}(1 + \frac{f}{700})$$

$$d = 10 \log_{10}(\frac{m}{r})$$

CRNN

CRNN exploits:

- Convolutional Neural Network to perform feature extraction
- Recurrent Neural Network to keep the temporal overview over the features

As a consequence, both temporal and frequency related contents are managed simultaneously

THE MUSIC GENRE CLASSIFICATION TASK IS TURNED INTO A COMPUTER VISION TASK

TRANSFER LEARNING

- Transfer learning helps in transferring the knowledge acquired on a specific domain to another and related problem.
- In this case we exploited the knowledge of the backbone ResNet-18 architecture trained on ImageNet to perform feature extraction on the spectrograms
- We will keep the recurrent layers at the bottom of the ResNet to keep the temporal overview on the extracted features

Pros of residual blocks:

- Deeper model and more features to be learned
- The skip connection helps in mitigating the vanishing gradient
- Avoids the deterioration of performance

METHODOLOGY (OVERVIEW)

- Dataset Description
- Preprocessing
- Approaches
- Hyperparameters
- Evaluation

METHODOLOGY (DATASET)

- First introduced by Tzanetakis et. al. [1]
- Can be accessed on Kaggle
- One hundred 30-sec tracks for each 10 genre, a total of 1000 tracks.
- Two CSV files along spectrograms

Blues, Classical, Country, Disco, Hiphop, Jazz, Metal, Pop, Reggae, Rock

METHODOLOGY (PREPROCESSING)

Sampling Rate	22050 Hz
Number of Mel Bins	192
Highest Frequency	8000 Hz
Hop Length	256

METHODOLOGY (PREPROCESSING)

METHODOLOGY (APPROACHES)

- ML baselines (SVM, KNN, RF, LR)
- Base CRNN
- Large CRNN
- ResNet-18 CNN backbone with transfer learning

METHODOLOGY (THE BASE CRNN)

- Inspired by Nasrullah and Zhao [1]
- Originally for music artist classification
- Reimplemented in PyTorch

[1] Nasrullah, Zain, and Yue Zhao. "Music artist classification with convolutional recurrent neural networks." 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019.

13

METHOD (THE LARGE CRNN)

$$R(z) = \begin{cases} z; & z > 0\\ \alpha. (e^z - 1); & z \le 0 \end{cases}$$

Hyperparameter	The Base CRNN	The Large CRNN	
Filters	[64, 128, 128, 128]	[64, 128, 256, 512, 512]	
Kernel	3×3	3×3	
Activation	ELU	ELU	
Batch Normalization	Channel	Channel	
Pooling	[(2,2), (4,2), (4,2), (4,2)]	[(2,2), (2,2), (2,2), (4,1), (4,1)]	
Dropout	0.1	0.1	

METHODOLOGY (GRU and Dense Layers)

GRU Units per Layer	32
GRU Dropout	0.3
Dense Layer Neurons	20
Dense Layer Activation	Softmax

$$s(x_i) = \frac{e^{x_i}}{\sum_{j=1}^{No. \ classes} e^{x_j}}$$

METHODOLOGY (RESNET-18 BACKBONE)

[1] He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings of the IEEE conference on computer vision and pattern recognition. 2016.

METHODOLOGY (Evaluation)

- Traditional ML methods: 80/20 train/test split of the two tabular feature sets
- Deep-learning methods: 80/10/10 train/val/test split of the four image datasets (30/10/3/1 second splits)

$$Loss = -\sum_{i=1}^{No. \, classes} y_i. \log \hat{y}_i$$

Early stopping with patience of 10 epochs

Categorical crossentropy loss after softmax and ADAM optimization

Traditional Machine-Learning approaches results on GTZAN dataset

Model	Train F1 score 30 sec. (%)	Test F1 score 30 sec. (%)	Train F1 score 3 sec. (%)	Test F1 score 3 sec. (%)
SVM (default)	88.89	69.63	92.23	85.98
SVM (C = 10)	99.87	78.03	99.65	91.61
KNN (k = 1)	100	66.67	99.89	91.47
KNN (k = 5)	78.75	69.41	93.44	89.67
Random Forest	100	68.04	100	87.65
Logistic Reg.	100	67	100	72.89

Deep-Learning approaches results on GTZAN dataset

30 seconds chunks

10 seconds chunks

Model	Train F1 score (%)	Validation F1 score (%)	Test F1 score (%)
Base	99.38	57	69
Extended	54.43	55.37	55.08
Transfer	99.88	71	88

Model	Train F1 score (%)	Validation F1 score (%)	Test F1 score (%)
Base	99.71	77.52	76.72
Extended	99.8	78.83	80.33
Transfer	99.92	89.25	89.18

Deep-Learning approaches results on GTZAN dataset

3 seconds chunks

S	е	C	O	n	d	C	h	u	n	KS	

Model	Train F1 score (%)	Validation F1 score (%)	Test F1 score (%)
Base	99.26	89.25	89.18
Extended	99.84	90.7	90.6
Transfer	99.92	90.93	91.7

Model	Train F1 score (%)	Validation F1 score (%)	Test F1 score (%)
Base	99.34	90.93	91.7
Extended	99.76	90.17	89.74
Transfer	99.92	93.5	93.5

Convergence analysis

- Difference of accuracies between train and validation set (model variance) not always mean overfitting!
- Early stopping helps us to avoid overfitting!

Possible trade-off between the number of samples and the length of the splits

Results on external song

- Ten songs, one for each genre, not included in GTZAN
- ResNet-18 based model
- Why much lower performance? Lack of data and poor variety of songs in GTZAN!

Further works and limitations

GTZAN: not the richest dataset!

Model complexity w.r.t. the computational power

Transfer Learning: a way to solve this problem?

CONCLUSION

What have we learn from this experience?

- Power of mel spectrograms
- Combination of CNN and RNN
- Our extension : ResNet-18 as backbone

