

Mini Project

Loan Default Prediction

Guided by:
Dr. Anup Kumar Barman
Assistant Professor
Dept. of Computer Science and Engineering

Submitted by:
Swmdwn Choudhury(202102021011)
MD Dildar Mandal (202102021043)
Gulnaaz Parveen (202102021055)

Introduction

"Loan default prediction" using machine learning is crucial for financial institutions to assess credit risk and optimize lending decisions. This project aims to develop a predictive model that can forecast whether a borrower is likely to default on a loan based on historical data and key features. By leveraging advanced analytics, we seek to enhance risk management practices and improve loan approval processes.

PROBLEM STATEMENT

- Time-Consuming Manual Process
- Inefficiencies and Delays
- Lack of Real-Time Responses
- Slower and Less Accurate Decisions

SOLUTION

- Implement Automated Loan Default Assessment
- Utilize Predictive Modeling
- Real-Time Decision Making
- Continuous Monitoring and Model Updating

Methodolgy

Loan Data (Input Data)

Data Preprocessing

Machine Learning Model Training

Model Evaluation

Loan Default Prediction

Deployment

Output

Data

- Age
- Income
- LoanAmount
- Credit Score
- Months Employed
- NumCreditLines
- Interest Rate
- Loan Term
- DTI Ratio

- Education
- Employment Type
- MaritalStatus
- Has Mortgage
- Has Dependents
- Loan Purpose
- Has Co Signer
- Loan Default

	Age	Income	LoanAmo	CreditSco	MonthsEn	r NumCredit	InterestR	a LoanTern	DTIRatio	Educati	on Employ	me Marita	lSta HasM	lortga HasDe	epen LoanP	urpc HasCo	oSign Default
21184 ZZY5HORA	22	123437	9163	582	108	1	8.39	36	0.69	PhD	Unemploy	Single	No	Yes	Education	No	0
21185 ZZZDJ23O	30	118720	93079	619	51	1	5.41	60	0.65	High School	Unemploy	Married	No	Yes	Other	No	0
21186 002EJYQA	39	61393	167431	841	68	4	8.93	60	0.26	Master's	Full-time	Married	No	No	Education	No	1
21187 0042NIHB	24	95283	159587	539	50	4	20.61	36	0.63	Master's	Full-time	Divorced	No	Yes	Business	Yes	1
21188 004WNVB	52	111151	191688	843	54	4	23.93	12	0.27	High School	Full-time	Married	No	Yes	Other	No	1
21189 00DWW2	25	90046	155267	367	8	4	24.39	12	0.48	PhD	Full-time	Single	No	No	Education	No	1
21190 00W5DU2	23	124025	31936	664	44	2	24.61	48	0.52	Master's	Full-time	Divorced	No	No	Education	No	1
21191 013DGAE	34	19665	126745	541	55	1	17.36	12	0.77	PhD	Full-time	Divorced	Yes	No	Business	Yes	1
21192 01HCWM	36	35479	193321	489	14	1	17.92	48	0.15	High School	Full-time	Single	No	Yes	Auto	No	1
21193 01LTICCI6	32	18684	67703	743	61	4	3.07	48	0.11	Master's	Full-time	Divorced	Yes	Yes	Home	Yes	1
21194 01YOH9E9	50	129370	232769	810	16	3	11.37	48	0.11	High School	Full-time	Married	No	Yes	Auto	Yes	1
21195 02D4E6RR	40	122111	178171	705	97	1	24.63	36	0.33	High School	Full-time	Divorced	Yes	No	Business	No	1
21196 02GDBSIJI	47	38647	63255	449	5	3	20.13	24	0.29	PhD	Full-time	Divorced	Yes	Yes	Other	No	1
21197 02IKVK76\	23	22161	127466	753	103	3	17.45	12	0.54	PhD	Full-time	Married	Yes	Yes	Other	Yes	1
21198 02MA61E	55	97676	157845	558	107	3	13.47	36	0.28	PhD	Full-time	Married	No	Yes	Education	Yes	1
21199 03IO75CA	36	18586	97436	512	102	1	2.01	36	0.71	High School	Full-time	Married	Yes	No	Business	No	1
21200 03L2IR9Q	58	36191	131550	736	7	2	23.25	60	0.64	PhD	Full-time	Single	Yes	No	Other	Yes	1
21201 03NS8IFY	27	43996	166090	417	25	2	18.15	60	0.24	Master's	Full-time	Married	No	Yes	Auto	No	1

Machine Learning Models

models	accuracy					
RandomForestClassifier	0.99					
XGBClassifier	0.99					
KNeighborsClassifier	0.92					
GaussianNB	0.80					
LogisticRegression	0.69					

exported model: Random forest

Loan Default Prediction Result

Prediction: default

39 61393 167431 841 68 8.93 60 0.26 Master's Full-Time Married No Mortgage No Dependents Education No Co-Signer

Loan Default Prediction Result

Prediction: no default

Loan Default Prediction Result

Predict

Loan Default Prediction

Prediction: default

Conclusion

- By identifying high-risk loans early, financial institutions can take proactive measures to mitigate losses.
- Some of the key factors influencing loan default are age, income, loan amount, credit score, and employment status.
- Future steps include exploring advanced algorithms and real time data for enhanced model performance.

Reference

- 1. Madaan, Mehul & Kumar, Aniket & Keshri, Chirag & Jain, Rachna & Nagrath, Preeti. (2021). Loan default prediction using decision trees and random forest: A comparative study. IOP Conference Series: Materials Science and Engineering. 1022. 012042. 10.1088/1757-899X/1022/1/012042.
- 2.ManjeetKumar, Vishesh Goel, Tarun Jain, Sahil Singhal, DR. Lalit Mohan Goel. (2018). Neural Network Approach To Loan Default Prediction, International Research Journal of Engineering and Technology (IRJET), p-ISSN: 2395-0072
- 3.Xu Zhu, Qingyong Chu, Xinchang Song, Ping Hu, Lu Peng, Explainable prediction of loan default based on machine learning models, Data Science and Management, Volume 6, Issue 3,2023, Pages 123-133, ISSN 2666-7649, https://doi.org/10.1016/j.dsm. 2023.04.003

Thank You!