KRYCY LAB 1C

Paweł Popiołek, Michał Wawrzyńczak, Mateusz Borkowski, Paweł Gryka

Testowanie dostępnych silników reguł

Zdecydowaliśmy się przetestować silnik ElastAlert, który jest częścią środowiska HELK. Zdecydowaliśmy się postawić środowisko HELK lokalnie na maszynie wirtualnej.

Zdecydowaliśmy się zaimportować dane podane jako przykladowe w tutorialu na https://securitydatasets.com/consume/helk.html

Import danych

Kibana

Sprawdziliśmy czy dane zostały poprawnie zaimportowane do Elasticsearch'a i możemy przeglądać je w Kibane. Dodatkowo sprawdziliśmy z jakiego okresu pochodzą te dane co następnie przyda nam się w testowaniu reguł.

Rule

Sprawdziliśmy dostępne typy reguł wspierane przes silnik Elastalert'a. Zapoznaliśmy się z możliwościami reguł każdego typu. Postanowiliśmy stworzyć najprostszą regułę, wykrywającą sprawdzającą zawartości danych parametrów każdego z logów.

Napisana przez nas reguła wygląda w następujący sposób. Jako zapytanie KQL wykorzystaliśmy to podane w tutorialu https://securitydatasets.com/consume/helk.html

W momencie spełnienia się reguły wysłany zostaje alert na Slacka'a

Uruchomienie

Uruchomiliśmy silnik elastalert'a który sprawdza napisaną przez nas regułe. Dodatkowym problemem była konieczność wpisania daty początkowej, od której silnik ma analizować logi tak aby zaimportowane wcześniej logi zostały przeanalizowane


```
INFO:elastalert:Queried rule psh python webserver from 2021-12-15 01:00 UTC to 2021-12-16 01:00 UTC: 0 / 0 hits INFO:elastalert:Queried rule psh python webserver from 2021-12-16 01:00 UTC to 2021-12-17 01:00 UTC: 0 / 0 hits INFO:elastalert:Queried rule psh python webserver from 2021-12-17 01:00 UTC to 2021-12-18 01:00 UTC: 0 / 0 hits INFO:elastalert:Queried rule psh python webserver from 2021-12-18 01:00 UTC to 2021-12-19 01:00 UTC: 0 / 0 hits INFO:elastalert:Queried rule psh python webserver from 2021-12-19 01:00 UTC to 2021-12-19 15:11 UTC: 0 / 0 hits INFO:elastalert:Queried rule psh python webserver from 2021-12-19 01:00 UTC to 2021-12-19 15:11 UTC: 0 / 0 hits INFO:elastalert:Queried rule psh python webserver from 2021-12-19 01:00 UTC to 2021-12-19 15:11 UTC: 0 / 0 hits INFO:elastalert:Alert 'psh python webserver' sent to Slack INFO:elastalert:Ignoring match for silenced rule psh python webserver INFO:elastalert:Ignoring match for silenced rule psh python webserver INFO:elastalert:Ran psh python webserver from 2020-09-21 01:00 UTC to 2021-12-19 15:11 UTC: 0 query hits (0 already seen), 3 matches, 1 alerts sent
```

Slack

Dopasowanie reguł i wysłanie alertów możemy zaobserwować na kanale SLACK

Model detekcji anomalii - detekcja progowa

Wybranie opcji do realizacji

Wybraliśmy opcję z przygotowaniem modelu detekcji anlomalii dla ruchu sieciowego.

Propozycja przykładu anomalii

Zaproponowane metryki

W ramach tego laboratorium proponujemy aż trzy metryki anomalii:

 Anomalia długości połączeń między hostami - korzystając z pliku ground truth (w przypadku wybranych przez nas danych zrzutu ruchu z poniedziałku), obliczmy ile proporcjonalnie powinno być połączeń zawierających się w danym przdziale długości okna czasowego i sprawdzamy czy w danych testowanych nie długości połączeń nie odbiegają za bardzo (0.5gt, 1.5gt) od danych z ground truth. W ten sposób mieliśmy nadzieję orzymać alerty gdy na przykład system będzie intensywnie skanowany. Jednakże w danych, które analizowaliśmy nie udało się to - wszystkie mają podobne rozkłady czasowe - dlatego włąśnie powstały dwie kolejne metryki

- Anomalia w postaci nieznanych portów korzystając z pliku ground truth znajdujemy wszystkie używane numery portów i sprawdzamy czy w pliku testów nie znajdują się zapisy o połączeniach z i na inne porty (niebędące w pliku z gt). Ta analiza dla odmiany była zbyt szeroka i dawała zbyt dużo alertów.
- Anomalie w średnich z wszystkich możliwych metryk bardzo ogólna analiza sprawdzająca średnią z wszystkich możliwych metryk w danych testowych. Alert jest podnoszony gdy średnia z danej metryki z danych testowanych znajduje się poza zakresem 0.1*(średnia z tej samej metryki w danych gt), 1.9*(średnia z tej samej metryki w danych gt). Ta metryka często pokazuje alerty przy wielu przykładowych atakach.

Źródło danych i faktyczne dane

Źródłem danych są przetworzone dane o ruchu sieciowym z CIC-IDS2017. Badana sieć składa się z modemu, direwall'a, kilku switchy, routerów i wielu maszyn z systemem Windows/Ubuntu lub Mac OS X. Dane zawierają zrzuty dane w formie csv z 5 dni - poniedziałek jest dniem przykłądowym (w którym nie ma ataków), a przez kolejne dmni następują ataki takie jak Brute Force FTP, Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet i DDoS.

```
Friday-WorkingHours-Afternoon-DDos.pcap_ISCX.csv
Friday-WorkingHours-Afternoon-PortScan.pcap_ISCX.csv
Friday-WorkingHours-Morning.pcap_ISCX.csv
Monday-WorkingHours.pcap_ISCX.csv
Thursday-WorkingHours-Afternoon-Infilteration.pcap_ISCX.csv
Thursday-WorkingHours-Morning-WebAttacks.pcap_ISCX.csv
Tuesday-WorkingHours.pcap_ISCX.csv
Wednesday-workingHours.pcap_ISCX.csv
archive.zip
```

Notatnik

Poniżej przedstawiamy wymagania i sekcje kodu(w notatniku) je realizujące:

```
Wymaganie
                                           Realizacja
ANO.PROG.3.1
                                            monday_df = pd.read_csv('data/Monday-WorkingHours.pcap_ISCX.csv', sep=',', encoding='UTF8')
test_df = pd.read_csv('data/Tuesday-WorkingHours.pcap_ISCX.csv', sep=',', encoding='UTF8')
                                               analytics_dict['flow_duration_mean'] = np.mean(flow_duration)
analytics_dict['dur_0_200'] = 0
                                               analytics_dict['dur_200_1000'] = 0
                                                analytics_dict['dur_1000000_1000000000'] = 0
analytics_dict['dur_100000000_more'] = 0
                                                    elif dur <=100000:
                                                         analytics_dict['dur_100000_1000000'] += 1
ANO.PROG.3.2
                                            def calculate_overall_analytics(data_frame):
                                                  res_dict = {}
                                                  for key in data_frame:
                                                               res_dict[key] = np.mean(data_frame[key])
                                                  return res_dict
```

Wymaganie	Realizacja
ANO.PROG.3.3, ANO.PROG.3.4, ANO.PROG.3.5	<pre>idef find_anomaly_in_flow_duration(gt_data, test_data): gt_analysis = flow_duration_analytics(gt_data) test_analysis = flow_duration_analytics(test_data) test_analysis = normalize_test_data(gt_analysis, test_analysis) for key in gt_analysis: if not (gt_analysis[key]*0.5 < test_analysis[key] < gt_analysis[key]*1.5): print(f"ALERT {key}, gt={gt_analysis[key]}, test={test_analysis[key]}") def compare_overall_analytics(test_frame, gt_analytics): important_keys = [] for key in test_frame: try: if 0.1*gt_analytics[key] > np.mean(test_frame[key]): print(f"ALERT a lot less {key}") important_keys.append(key) elif np.mean(test_frame[key]) > 1.9*gt_analytics[key]: print(f"ALERT a lot more {key}") important_keys.append(key) except: pass return important_keys for port in unique_ports_test: if port not in unique_ports_gt: print(f"ALERT port={port}")</pre>
##### Integracja analizy z notatnika z rozwiązaniem z Lab 1A	
W celu zintegrowania notatnkia powstał nowy plik threshold_detection.py (i został dodany jako funkcja click), który był adaptacją kodu z notatnika.	

Test i prezentacja działania zintegrowanego projektu:

Poniżej znajdują się wyniki analizy długości połączeń oraz średnich z wszystkich możliwych metryk:

```
(Dase) — (kali@kali)-[~/Desktop/KRYCY/scen1]

$ python blue_toolkit.py anomaly-detection -f _./data/Tuesday-WorkingHours.pcap_ISCX.csv -t flow_duration
[L06] 2021-12-19 16:41:26.502511 anomaly-detection(../data/Tuesday-WorkingHours.pcap_ISCX.csv, flow_duration) - loaded test data
[L06] 2021-12-19 16:41:26.616248 anomaly-detection(../data/Tuesday-WorkingHours.pcap_ISCX.csv, flow_duration) - Analysis is done

(base) — (kali@kali)-[~/Desktop/KRYCY/scen1]

$ python blue_toolkit.py anomaly-detection -f _./data/Tuesday-WorkingHours.pcap_ISCX.csv, flow_duration) - Analysis is done

[L06] 2021-12-19 10:421:37.145603 anomaly-detection(../data/Tuesday-WorkingHours.pcap_ISCX.csv, high_difference) - loaded test data
[L08] 2021-12-19 10:421:37.148212 anomaly-detection(../data/Tuesday-WorkingHours.pcap_ISCX.csv, high_difference) - Calculating all possible analytics - this may take a while
[ALERT] 2021-12-19 10:421:56.287959 compare_overall_analytics(test_frame, gt_analytics) - Fwd Header Length values are a lot smaller in tested data
[ALERT] 2021-12-19 10:42:56.394261 compare_overall_analytics(test_frame, gt_analytics) - RST Flag Count values are a lot bigger in tested data
[ALERT] 2021-12-19 10:42:56.315822 compare_overall_analytics(test_frame, gt_analytics) - ECE Flag Count values are a lot bigger in tested data
[ALERT] 2021-12-19 10:42:56.315822 compare_overall_analytics(test_frame, gt_analytics) - ECE Flag Count values are a lot bigger in tested data
[ALERT] 2021-12-19 10:42:56.31582 compare_overall_analytics(test_frame, gt_analytics) - Wide Header Length. Values are a lot smaller in tested data
[ALERT] 2021-12-19 10:42:56.352402 compare_overall_analytics(test_frame, gt_analytics) - Wide Header Length. Values are a lot smaller in tested data
[ALERT] 2021-12-19 10:42:56.352402 compare_overall_analytics(test_frame, gt_analytics) - wide Header Length. Values are a lot smaller in tested data
[ALERT] 2021-12-19 10:42:56.352402 compare_overall_analytics(test_frame, gt_analytics) - wide Header Length. Values are a lot smaller i
```

Poniżej znajduje się kawałek analizy występowania połączeń z nieznanch portów. Wyników jest jeszcze więcej niż pokazane jest na zrzucie ekranu, ale nie jest to bardzo zaskakujące biorąc pod

uwagę, że pliki mają po około 500000 logów:

Wykorzystanie znanych rozwiązań dla reguł YARA

```
Wymaganie
                                      Realizacja
REG.DET.1
                                      YARA
                                       (DNS) [osboxes@osboxes scen1]$ python3 blue_toolkit.py list-yara-rules -r /home/osboxes -d Found YARA rules:
                                        1. crypto_signatures.yar

    rogue_ip.yar
    dummy_rule.yar

                                       (DNS) [osboxes@osboxes scen1]$ python3 blue_toolkit.py scan-files-with-yara-rules --help Usage: blue_toolkit.py scan-files-with-yara-rules [OPTIONS]
                                       Options:
                                                                                                       Path to directory with YARA rules / Path to single rule [required]
Search for rules in subdirectories
                                           -r, --rules TEXT
REG.DET.2.1
                                          -D, --rules-deep
-s, --rule-selection TEXT
                                                                                                       Comma separated numbers of rules to use (e.g. -r 1,3,4 ), by default all available rules from are used
                                                                                                       Path to file or directory to scan
                                           -p, --path TEXT
                                                                                                        [required]
Scan files in subdirectories
                                           -d, --deep
-t, --type [txt|json|xml|evtx]
                                                                                                       File type to load. By deafult all types are
                                                                                                        loaded
                                                                                                        Show this message and exit.
                                                     boxes@osboxes scen1]$ python3 server.py
Will watch for changes in these directories: ['/home/osboxes/Desktop/KRYCY/scen1']
Uvicorn running on http://127.0.0.1:8000 (Press CTRL+C to quit)
Started reloader process [3445]
Started server process [3447]
Waiting for application startup.
Application startup complete.
REG.DET.2.2
                                       ALERT
                                       name: YARA rulescontent:
                                       YARA rule RogueIP match file /home/osboxes/Desktop/test/folder3/tajneip.txt:
_>Found $localhost string (b'127.0.0.1') in file /home/osboxes/Desktop/test/folder3/tajneip.txt (offset=0)
REG.DET.3.1
                                      N/D
                                                                                                         python-2021.12.1559732655/requirements.txt:
38272076f) in file /home/osboxes/.vscode/extensions/ms-python.python-2021.12.1559732655/requirements.txt (offset=169)
992f1b9345') in file /home/osboxes/.vscode/extensions/ms-python.python-2021.12.1559732655/requirements.txt (offset=254)
REG.DET.3.2
```