Statistical Inference

Lecture 07b

ANU - RSFAS

Last Updated: Thu Apr 20 13:32:18 2017

Evaluating Estimators

• Thus far we have based consideration, typically, on a fixed sample size n. Now let's consider evaluating an estimator when $n \to \infty$.

Definition A sequence of estimators $T_n = T_n(X_1, ..., X_n)$ is a consistent sequence of estimators for θ , if for every $\epsilon > 0$ and every $\theta \in \Theta$:

$$\lim_{n\to\infty} P(|T_n - \theta| < \epsilon) = 1$$

Or

$$\lim_{n\to\infty} P(|T_n - \theta| \ge \epsilon) = 0$$

This is just convergence in probability.

Evaluating Estimators

ullet Consider an estimator W_n . Then using Chebychev's Inequality we have:

$$P(|W_n - \theta| \ge \epsilon) \le \frac{E[(W_n - \theta)^2]}{\epsilon^2}$$

$$E[(W_n - \theta)^2] = V(W_n) + [Bias(W_n)]^2$$

Theorem: If W_n is a sequence of estimators of a parameter θ satisfying:

- 1. $\lim_{n\to\infty} V(W_n) = 0$
- **2.** $\lim_{n\to\infty} Bias(W_n) = 0$

for every $\theta \in \Theta$, then W_n is a consistent sequence of estimators.

Theorem B: Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x|\theta)$ and let $\hat{\theta}$ be the MLE of θ . Under regularity conditions of $f(x|\theta)$ and thus $L(\theta|x)$ (under appropriate smoothness conditions), we can state:

$$W = \frac{1}{\sqrt{n}} \ell'(\theta | \mathbf{x}) \stackrel{D}{\to} \text{normal}(0, i(\theta))$$

Proof:

$$\frac{\ell'(\theta|\mathbf{x})}{\sqrt{n}} = \frac{\sum_{i=1}^{n} \ell'(\theta|x_i)}{\sqrt{n}} = \frac{\frac{n}{n} \sum_{i=1}^{n} \ell'(\theta|x_i)}{\sqrt{n}} = \sqrt{n} \ \bar{\ell}'$$

ullet $ar{\ell}'$ is the sample average of the first derivative of the log likelihood.

MLEs - Asymptotics

 \bullet We can use the Central Limit theorem! We need to know the mean and variance of $\bar{\ell}'$

$$E[\bar{\ell}'] = E\left[\frac{1}{n}\sum_{i=1}^{n}\ell'(\theta|x_i)\right] = E[\ell'(\theta|x_i)]$$

$$= \int_{-\infty}^{\infty}\ell'(\theta|x_i)f(x_i|\theta)dx_i$$

$$= \int_{-\infty}^{\infty}\frac{\frac{\partial}{\partial\theta}f(x_i|\theta)}{f(x_i|\theta)}f(x_i|\theta)dx_i$$

$$= \int_{-\infty}^{\infty}\frac{\partial}{\partial\theta}f(x_i|\theta)dx_i$$

$$= \frac{\partial}{\partial\theta}\int_{-\infty}^{\infty}f(x_i|\theta)dx_i$$

$$= \frac{\partial}{\partial\theta}1 = 0$$

$$V[\bar{\ell}'] = \frac{1}{n}V[\ell'(\theta|x_i)] = \frac{1}{n}E[\{\ell'(\theta|x_i)\}^2] = -\frac{1}{n}E[\ell''(\theta|x_i)] = \frac{1}{n}i(\theta)$$

So let's subtract off the mean and divide by the standard deviation:

$$\frac{(\bar{\ell}'-0)}{\sqrt{i(\theta)/n}} = \frac{\sqrt{n}(\bar{\ell}'-0)}{\sqrt{i(\theta)}} = \frac{\frac{\ell'(\theta|\mathbf{x})}{\sqrt{n}}}{\sqrt{i(\theta)}} \xrightarrow{D} \text{normal}(0,1)$$

So

$$\frac{\ell'(\theta|\mathbf{x})}{\sqrt{n}} \stackrel{D}{\to} \text{normal}(0, i(\theta))$$

Theorem: Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x|\theta)$. Let $\hat{\theta}$ be the MLE of θ . Under regularity conditions of $f(x|\theta)$ and thus $L(\theta|\mathbf{x})$ (under appropriate smoothness conditions), we have:

$$\sqrt{n}(\hat{\theta}-\theta) \overset{D}{\to} \operatorname{normal}(0,i(\theta)^{-1})$$

Proof:

• Conduct a Taylor's series expansion of the first derivative of the log likelihood around the true value θ_0 :

$$\ell'(\theta|\mathbf{x}) = \ell'(\theta_0|\mathbf{x}) + (\theta - \theta_0)\ell''(\theta_0|\mathbf{x}) + \cdots$$

• Substitute the MLE for θ :

$$\ell'(\hat{\theta}|\mathbf{x}) = \ell'(\theta_0|\mathbf{x}) + (\hat{\theta} - \theta_0)\ell''(\theta_0|\mathbf{x}) + \cdots$$

• Under the regularity conditions we will ignore higher order terms. Also we know $\ell'(\hat{\theta}|\mathbf{x}) = 0$:

$$0 = \ell'(\theta_0|\mathbf{x}) + (\hat{\theta} - \theta_0)\ell''(\theta_0|\mathbf{x})$$

• Now, replace $\ell''(\theta_0|\mathbf{x})$ with its expectation:

$$0 = \ell'(\theta_0|\mathbf{x}) + (\hat{\theta} - \theta_0)E[\ell''(\theta_0|\mathbf{x})]$$

$$= \ell'(\theta_0|\mathbf{x}) + (\hat{\theta} - \theta_0)E\left[\sum_{i=1}^n \ell''(\theta_0|x_i)\right]$$

$$= \ell'(\theta_0|\mathbf{x}) + (\hat{\theta} - \theta_0)\sum_{i=1}^n E\left[\ell''(\theta_0|x_i)\right]$$

$$= \ell'(\theta_0|\mathbf{x}) + (\hat{\theta} - \theta_0)[-ni(\theta_0)]$$

$$\Rightarrow (\hat{ heta} - heta_0) = \frac{-\ell'(heta_0|\mathbf{x})}{-ni(heta_0)}$$

• Note: $\frac{1}{n}\ell''(\theta_0|\mathbf{x}) \stackrel{\text{LLN}}{\to} E[\frac{1}{n}\ell''(\theta_0|\mathbf{x})] = -i(\theta)$

• Multiply through by \sqrt{n} :

$$\sqrt{n}(\hat{\theta} - \theta_0) = \sqrt{n} \frac{\ell'(\theta_0 | \mathbf{x})}{ni(\theta_0)} = \sqrt{n} \frac{\ell'(\theta_0 | \mathbf{x})}{\mathbf{I}(\theta_0)}$$

$$= \frac{\frac{1}{\sqrt{n}} \ell'(\theta_0 | \mathbf{x})}{\frac{1}{n} \mathbf{I}(\theta_0)} = \frac{\frac{1}{\sqrt{n}} l'(\theta_0 | \mathbf{x})}{i(\theta_0)}$$

Now we saw that:

$$W = \frac{1}{\sqrt{n}} \ell'(\theta | \mathbf{x}) \stackrel{D}{\to} \text{normal}(0, i(\theta))$$

• Since a linear transformation of a normal is normal, we just need the mean and variance:

$$E\left[\frac{W}{i(\theta_0)}\right] = \frac{E[W]}{i(\theta)} = \frac{0}{i(\theta)} = 0$$

$$V\left[\frac{W}{i(\theta_0)}\right] = \frac{V[W]}{i(\theta)^2} = \frac{i(\theta)}{i(\theta)^2} = \frac{1}{i(\theta)}$$

So we have:

$$\sqrt{n}(\hat{\theta} - \theta) \stackrel{D}{\rightarrow} \text{normal}(0, i(\theta)^{-1})$$

Or

$$\hat{\theta} \stackrel{\cdot}{\sim} n\left(\theta, \frac{1}{ni(\theta)}\right) = \text{normal}(\theta, \mathbf{I}(\theta)^{-1})$$

Delta Method

Theorem (See Rice 4.6): Let Y_n be a sequence of random variables such that:

$$\sqrt{n}(Y_n - \theta) \stackrel{D}{\to} \operatorname{normal}(0, \sigma^2)$$

ullet For a given function g and a specific value heta, suppose that g'(heta) exists and is not 0, then

$$\sqrt{n}(g(Y_n) - g(\theta)) \stackrel{D}{\to} \text{normal}(0, \sigma^2[g'(\theta)]^2)$$

• We can extend the theorem to functions $\tau(\theta)$:

Theorem: Let $X_1, \ldots, X_n \stackrel{\text{iid}}{\sim} f(x|\theta)$. Let $\hat{\theta}$ be the MLE of θ and let $tau(\theta)$ be a continuous function of θ . Under regularity conditions (i.e. under appropriate smoothness conditions) of $f(x|\theta)$ and thus $L(\theta|\mathbf{x})$, we have:

$$\sqrt{n}(\tau(\hat{\theta}) - \tau(\theta)) \stackrel{D}{\rightarrow} \text{normal}(0, \nu(\theta))$$

• Where $\nu(\theta) = \frac{[\tau'(\theta)]^2}{i(\theta)}$ is the Cramer-Rao lower bound for a single data point.

Or

$$\tau(\hat{\theta}) \stackrel{.}{\sim} \operatorname{normal}\left(\tau(\theta), \frac{[\tau'(\theta)]^2}{I(\theta)}\right)$$

We can get this result from the Delta method!

- So asymptotically, MLEs are:
- 1. unbiased;
- 2. achieve the Cramer-Rao lower bound;
- 3. asymptotically normally distributed.
 - Because these estimators achieve (1-3) they are asymptotically efficient!
 - We can also note that MLEs are consistent estimators.

Bayesian Asymptotics (Rice 8.6.2) - Rough Idea

- Suppose we have $y_1, \ldots, y_n \sim p(y|\theta)$.
- Let's consider the posterior distribution:

$$p(\theta|\mathbf{y}) \propto p(\mathbf{y}|\theta) p(\theta)$$

= $exp[log p(\mathbf{y}|\theta)] exp[log p(\theta)]$

• As $n \to \infty$ the posterior is dominated by the likelihood. When n is large the prior is nearly constant.

$$p(\theta|\mathbf{y}) \propto exp [log \ p(\mathbf{y}|\theta)]$$

• Thus to an approximation we have the following:

$$\begin{split} \rho(\theta|\mathbf{y}) & \propto & \propto \exp\left[\log \, p(\mathbf{y}|\theta)\right] \\ & \propto & \exp\left[\ell(\theta)\right] \\ & \propto & \exp\left[\ell(\hat{\theta}) + (\theta - \hat{\theta})\ell'(\hat{\theta}) + \frac{1}{2}(\theta - \hat{\theta})^2\ell''(\hat{\theta})\right] \\ & \propto & \exp\left[\frac{1}{2}(\theta - \hat{\theta})^2\ell''(\hat{\theta})\right] \end{split}$$

• Where: $\hat{\theta}$ is the MLE.

• Note: $\ell(\hat{\theta})$ is a constant.

• Note: $\ell'(\hat{\theta}) = 0$

$$\rho(\theta|\mathbf{y}) \propto \exp\left[\frac{1}{2}(\theta - \hat{\theta})\ell''(\hat{\theta})\right] \\
\propto \exp\left[\frac{1}{2}(\theta - \hat{\theta})^2 \left[-I(\hat{\theta})\right]\right] \\
\propto \exp\left[-\frac{1}{2\left[I(\hat{\theta})\right]^{-1}}(\theta - \hat{\theta})^2\right]$$

 We see that this expression is poportional to a normal distribution. So we have:

$$p(\theta|\mathbf{y}) pprox \operatorname{normal}\left(\hat{\theta}, \left[I(\hat{\theta})\right]^{-1}\right)$$