The World's Most Awesome Slides

Vishnu Boddeti

Michigan State University

CVPR 2019

>>> Problem Setting: Adversarial Representation Learning

- * Three player game between:
 - * Encoder extracts features z
 - * Target Predictor for desired task from features z
 - * Adversary extracts sensitive information from features z

[^]\$ _

>>> Maximum Entropy Adversarial Representation Learning

Key Idea

Optimize the encoder to maximize entropy of adversary as opposed to minimizing its likelihood.

[3/4]

>>> Maximum Entropy Adversarial Representation Learning

Key Idea

Optimize the encoder to maximize entropy of adversary as opposed to minimizing its likelihood.

[*]\$ ______

>>> Maximum Entropy Adversarial Representation Learning

Key Idea

Optimize the encoder to maximize entropy of adversary as opposed to minimizing its likelihood.

Contributions:

- $\ensuremath{\boldsymbol{\ast}}$ Theoretical analysis of equillibrium and convergence dynamics.
- $\ensuremath{\boldsymbol{\ast}}$ Visualization and empirical evaluation on multiple datasets.

>>> Summary

- * A striving step towards explicitly controlling information in learned representations.
- * MaxEnt-ARL: optimize the encoder to maximize entropy of adversary instead of minimizing likelihood.
- MaxEnt-ARL is practically effective and enjoys theoretical benefits.

[*]\$ _

>>> Summary

- * A striving step towards explicitly controlling information in learned representations.
- * MaxEnt-ARL: optimize the encoder to maximize entropy of adversary instead of minimizing likelihood.
- MaxEnt-ARL is practically effective and enjoys theoretical benefits.

Code:

https://github.com/human-analysis/MaxEnt-ARL.git

More Details: Poster # 175

[^]\$ _