LaSAFT: Latent Source Attentive Frequency Transformation for Conditioned Source Separation

Woosung Choi, Minseok Kim, Jaehwa Chung, and Soonyoung Jung

Our code and models are available online.

Demonstrations: Conditioned Source Separation

Colab Demonstration - Stella Jang's, Feel the breeze, Other Examples

Youtube Versions: Stella Jang's, Feel this breeze, Other Examples

Abstract

- Recent deep-learning approaches have shown that Frequency Transformation (FT)
 blocks can significantly improve spectrogram-based single-source separation
 models by capturing frequency patterns.
- The goal of this paper is to extend the FT block to fit the multi-source task.
- We propose
 - Latent Source Attentive Frequency Transformation (LaSAFT) block to capture source-dependent frequency patterns.
 - Gated Point-wise Convolutional Modulation (GPoCM), an extension of Featurewise Linear Modulation (FiLM), to modulate internal features.
- By employing these two novel methods, we extend the Conditioned-U-Net (CUNet) for multi-source separation, and the experimental results indicate that our LaSAFT and GPoCM can improve the CUNet's performance, achieving state-of-theart SDR performance on several MUSDB18 source separation tasks.

Preliminaries 1: Categories of Source separation models

Dedicated models

- Most of the deep learning-based models for Music Source Separation (MSS) are dedicated to a single instrument.
- cons1: forces us to train an individual model for each instrument.
- cons2: models cannot use the commonalities between different instruments.

Multi-head models

- Let us generate several outputs at once with a multi-head.
- Although it shows promising results, this approach still has a scaling issue: the number of heads increases as the number of instrument increases, leading
 - a. performance degradation caused by the shared bottleneck
 - b. inefficient memory usage.

Preliminaries 1: An alternative approach

- Conditioning/Meta-Learning
 - o can separate different instruments with the aid of the control mechanism.
 - no shared bottleneck, no multi-head output layer

Core idea: An input x is processed differently depending on external context

The control is done via FiLM (Feature-wise transformations) layers

Preliminaries 1: Conditioned Source Separation

- Task Definition
 - \circ Input: an input audio track A and a one-hot encoding vector C that specifies which instrument we want to separate
 - Output: separated track of the target instrument

Preliminaries 1: Example - Conditioned U-Net

 Conditioned-U-Net extends the U-Net by exploiting Feature-wise Linear Modulation (FiLM)

Preliminaries 2: Frequency Transformation Block

- Frequency patterns
 - Recent spectrogram-based methods for Singing Voice Separation (SVS) or Speech Enhancement (SE) employed Frequency Transformation (FT) blocks to capture *frequency patterns*.
 - Although stacking 2-D convolutions has shown remarkable results, it is hard to capture long-range dependencies along the frequency axis for fully convolutional networks with small sizes of kernels.
 - FT blocks, which have *fully-connected layers* applied in a time-distributed manner, are useful to this end.

Preliminaries 2: Injecting FT blocks into U-Nets

• An FT block called Time-Distributed Fully-connected Layer (TDF):

• TFC-TDF: SDR 6.75dB \rightarrow 7.12dB in Singing Voice Separation

Naive Extention: Injecting FT blocks into C-U-Net?

Baseline U-Net

TFC vs TFC-TDF

model	vocals	drums	bass	other	AVG
dedicated [8]	7.07	5.38	5.62	4.61	5.66
FiLM CUNet	5.14	5.25	4.20	3.40	4.49
+ TDF	5.88	5.70	4.55	3.67	4.95

Naive Extention: Above our expectation

TFC vs TFC-TDF

model	vocals	drums	bass	other	AVG
dedicated [8]	7.07	5.38	5.62	4.61	5.66
FiLM CUNet	5.14	5.25	4.20	3.40	4.49
+ TDF	5.88	5.70	4.55	3.67	4.95

- Although it does improve SDR performance by capturing common frequency patterns observed across all instruments
- Merely injecting an FT block to a CUNet does not inherit the spirit of FT block
- In this paper,
 - We propose the Latent Source-Attentive Frequency Transformation (LaSAFT), a novel frequency transformation block that can capture instrument-dependent frequency patterns by exploiting the scaled dot-product attention

LaSAFT: Extending TDF to the Multi-Source Task (1)

- duplicate \mathcal{I}_L copies of the second layer of the TDF, where \mathcal{I}_L refers to the number of *latent instruments*.
 - \circ ${\mathcal I}_L$ is not necessarily the same as ${\mathcal I}$ for the sake of flexibility
- For the given frame $V \in \mathbb{R}^F$, we obtain the \mathcal{I}_L latent instrument-dependent frequency-to-frequency correlations, denoted by $V' \in \mathbb{R}^{F imes \mathcal{I}_L}$.

LaSAFT: Extending TDF to the Multi-Source Task (2)

- The left side determines how much each *latent source* should be attended
- ullet The LaSAFT takes as input the instrument embedding $z_e \in \mathbb{R}^{1 imes E}$.
- ullet It has a learnable weight matrix $K\in\mathbb{R}^{\mathcal{I}_L imes d_k}$, where we denote the dimension of each instrument's hidden representation by d_k .
- ullet By applying a linear layer of size d_k to z_e , we obtain $Q\in\mathbb{R}^{d_k}$.

LaSAFT: Extending TDF to the Multi-Source Task (3)

We now can compute the output of the LaSAFT as follows:

$$\circ \ Attention(Q,K,V') = softmax(rac{QK^T}{\sqrt{d_k}})V'$$

• We apply a LaSAFT after each TFC in the encoder and after each Film/GPoCM layer in the decoder. We employ a skip connection for LaSAFT and TDF, as in TFC-TDF.

Effects of employing LaSAFTs instead of TFC-TDFs

model	vocals	drums	bass	other	AVG
dedicated [8]	7.07	5.38	5.62	4.61	5.66
FiLM CUNet	5.14	5.25	4.20	3.40	4.49
+ TDF	5.88	5.70	4.55	3.67	4.95
+ LaSAFT	6.74	5.64	5.13	4.32	5.46

GPoCM: FiLM is also not enough

Feature-wise Linear Modulation (FiLM)

Point-wise Conolutional Modulation (PoCM)

GPoCM: PoCM

PoCM is an extension of FiLM. While FiLM does not have inter-channel operations

$$\circ \ FiLM(X^i_c|\gamma^i_c,eta^i_c)=\gamma^i_c\cdot X^i_c+eta^i_c$$

$$i \circ PoCM(X_c^i | \omega_c^i, eta_c^i) = eta_c^i + \sum_j \omega_{cj}^i \cdot X_j^i$$

• where γ_c^i and β_c^i are parameters generated by the condition generator, and X^i is the output of the i^{th} decoder's intermediate block, whose subscript refers to the c^{th} channel of X

GPoCM: Gated PoCM

- Since this channel-wise linear combination can also be viewed as a point-wise convolution, we name it PoCM. With inter-channel operations, PoCM can modulate features more flexibly and expressively than FiLM.
- Instaed of PoCM, we use Gated PoCM (GPoCM), since GPoCN is robust for source separation task. It is natural to use *gated* apporach the source separation tasks becuase a sparse latent vector (that contains many near-zero elements) obtained by applying GPoCMs, naturally generates separated result (i.e. more silent than the original).
- ullet $GPoCM(X_c^i|\omega_c^i,eta_c^i)=\sigma(PoCM(X_c^i|\omega_c^i,eta_c^i))\odot X_c^i$
 - \circ where σ is a sigmoid and \odot means the Hadamard product.

Experimental Results

model	vocals	drums	bass	other	AVG	
dedicated [8]	7.07	5.38	5.62	4.61	5.66	
FiLM CUNet	5.14	5.25	4.20	3.40	4.49	
+ TDF	5.88	5.70	4.55	3.67	4.95	
+ LaSAFT	6.74	5.64	5.13	4.32	5.46	
GPoCM CUNet	5.43	5.30	4.43	3.51	4.67	
+ TDF	5.94	5.46	4.47	3.81	4.92	
+ LaSAFT	6.96	5.84	5.24	4.54	5.64	

Table 1. An ablation study: *dedicated* means U-Nets for the single source separation, trained separately. FiLM CUNet refers the baseline in §2. The last row is our proposed model.

model	vocals	drums	bass	other	AVG
DGRU-DConv[1]	6.85	5.86	4.86	4.65	5.56
Meta-TasNet[4]*	6.40	5.91	5.58	4.19	5.52
Nachmani[19]*	6.92	6.15	5.88	4.32	5.82
D3Net [2]	7.24	7.01	5.25	4.53	6.01
proposed	7.33	5.68	5.63	4.87	5.88

Table 2. A comparison SDR performance of our models with other systems. '*' denotes model operating in time domain.

our model's excellent SDR performance on vocals.

LaSAFT + GPoCM

• achieved state-of-the-art SDR performance on vocals and other tasks in Musdb18.

RANK	MODEL	SDR (VOCALS)	SDR (DRUMS)	SDR (BASS)	SDR (OTHER)	EXTRA TRAINING DATA	PAPER	CODE	RESULT	YEAR
1	LaSAFT+GPoCM	7.33	5.68	5.63	4.87	×	LaSAFT: Latent Source Attentive Frequency Transformation for Conditioned Source Separation	O	Ð	2020
2	DEMUCS (extra)	7.05	7.08	6.70	4.47	~	Demucs: Deep Extractor for Music Sources with extra unlabeled data remixed	O	Ð	2019
3	Spleeter (MWF)	6.86	6.71	5.51	4.02	~	Spleeter: A Fast And State-of-the Art Music Source Separation Tool With Pre-trained Models	O	Ð	2019
4	Conv-TasNet	6.81	6.08	5.66	4.37	×	Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation	O	Ð	2019
5	Conv-TasNet (extra)	6.74	7.11	7.00	4.44	~	Conv-TasNet: Surpassing Ideal Time-Frequency Magnitude Masking for Speech Separation	O	Ð	2019

Discussion

- The authors of cunet tried to manipulate latent space in the encoder,
 - assuming the decoder can perform as a general spectrogram generator, which is `shared' by different sources.
- However, we found that this approach is not practical since it makes the latent space (i.e., the decoder's input feature space) more discontinuous.
- Via preliminary experiments, we observed that applying FiLMs in the decoder was consistently better than applying FilMs in the encoder.