Carnegie Mellon School of Computer Science

Deep Reinforcement Learning and Control

Multigoal RL

CMU 10-703

Katerina Fragkiadaki

So far we train one policy/value function per task, e.g., win the game of Tetris, win the game of Go, reach to a *particular* location, put the green cube inside the gray bucket, etc.

Universal value function Approximators

$$V(s;\theta)$$
 \longrightarrow $V(s,g;\theta)$ $\pi(s;\theta)$ \longrightarrow $\pi(s,g;\theta)$

- · All methods we have learnt so far can be used.
- At the beginning of an episode, we sample not only a start state but also a goal g, which stays constant throughout the episode
- The experience tuples should contain the goal.

$$(s, a, r, s') \rightarrow (s, g, a, r, s')$$

Universal value function Approximators

$$V(s,\theta)$$
 \longrightarrow $V(s,g;\theta)$ $\pi(s;\theta)$ \longrightarrow $\pi(s,g;\theta)$

What should be my goal representation?

The goal representation is usually the same as your state representation. Usually one of the two:

- Manual/oracle: 3d centroids of objects, robot joint angles and velocities, 3d location of the gripper, etc.
- Learnt: Some feature encoding over images directly

Marcin Andrychowicz*, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel†, Wojciech Zaremba† OpenAI

Main idea: use failed executions under one goal g, as successful executions under an alternative goal g' (which is where we ended at the end of the episode).

Marcin Andrychowicz*, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel[†], Wojciech Zaremba[†] OpenAI

Main idea: use failed executions under one goal g, as successful executions under an alternative goal g' (which is where we ended at the end of the episode).

Algorithm 1 Hindsight Experience Replay (HER)

end for

end for

```
Given:
  • an off-policy RL algorithm A,
                                                                    ▷ e.g. DQN, DDPG, NAF, SDQN
  • a strategy S for sampling goals for replay,
                                                                        \triangleright e.g. \mathbb{S}(s_0,\ldots,s_T)=m(s_T)
  • a reward function r: \mathcal{S} \times \mathcal{A} \times \mathcal{G} \rightarrow \mathbb{R}.
                                                                      \triangleright e.g. r(s, a, g) = -[f_q(s) = 0]
                                                                       ⊳ e.g. initialize neural networks
Initialize A
Initialize replay buffer R
for episode = 1, M do
   Sample a goal g and an initial state s_0.
    for t = 0, T - 1 do
        Sample an action a_t using the behavioral policy from A:
                                                                             a_t \leftarrow \pi_b(s_t||g)
        Execute the action a_t and observe a new state s_{t+1}
    end for
    for t = 0, T - 1 do
        r_t := r(s_t, a_t, g)
        Store the transition (s_t||g, a_t, r_t, s_{t+1}||g) in R
                                                                          Sample a set of additional goals for replay G := \mathbb{S}(\mathbf{current\ episode})
                                                                                          G: the states of the current episode
        for q' \in G do
            r' := r(s_t, a_t, g')
            Store the transition (s_t||g', a_t, r', s_{t+1}||g') in R
                                                                                                  ▷ HER
        end for
    end for
                                                                                     Usually as additional goal
    for t = 1, N do
        Sample a minibatch B from the replay buffer R
```

Perform one step of optimization using \mathbb{A} and minibatch B

we pick the goal that this episode achieved, and the reward becomes non zero

Ashvin Nair*, Vitchyr Pong*, Murtaza Dalal, Shikhar Bahl, Steven Lin, Sergey Levine University of California, Berkeley

{anair17, vitchyr, mdalal, shikharbahl, stevenlin598, svlevine}@berkeley.edu

Main ideas:

- Train a generative model of images in an unsupervised manner (they used a VAE). The trained model can geenrate images by sampling latent codes from a gaussian distribution.
- Use that latent code as the state and goal representation
- · Use L2 distance over latent codes as the (inverse of) reward function.
- Sample goals from that generative model for goal relabelling (augmenting experience)
- Retrain the generative model as the policy changes and the agent visits different parts of the state space

Learning Generative models of images

- Why simple gaussian noise suffices to create complex outputs?
- The neural net will transform it to a complex distribution!

Training Networks with Stochastic Units

Each sample z should give me a realistic image X once it passes through the neural network

We want to learn a mapping from z to the **output image X**, usually we assume a Gaussian distribution to sample every pixel from:

$$P(X|z;\theta) = \mathcal{N}(X|f(z;\theta), \sigma^2 \cdot I)$$

Let's maximize data likelihood. This requires an intractable integral, too many zs..

$$\max_{\theta} . \quad P(X) = \int P(X|z;\theta)P(z)dz$$

What if we forget that it is intractable and approximate it with few samples?

$$\min_{\theta} \cdot \sum_{j} -\log P(X_j) = -\sum_{j} \sum_{z_i \sim \mathcal{N}(\mathbf{0}, I)} \log P(X_j | z; \theta) = -\sum_{j} \sum_{z_i \sim \mathcal{N}(\mathbf{0}, I)} ||f(z_i; \theta) - X_j||^2$$

(Q: do we know how to take gradients here?)

This is a bad approximation, except if we have a very large number of zs. Only few zs would produce after training reasonable X. How will we find the zs that produce good X?

Training Networks with Stochastic Units

Each sample z should give me a realistic image X once it passes through the neural network

We want to learn a mapping from z to the **output image X**, usually we assume a Gaussian distribution to sample every pixel from:

$$P(X|z;\theta) = \mathcal{N}(X|f(z;\theta), \sigma^2 \cdot I)$$

Let's maximize data likelihood. This requires an intractable integral, too many zs..

$$\max_{\theta} . \quad P(X) = \int P(X|z;\theta)P(z)dz$$

What if we forget that it is intractable and approximate it with few samples?

$$\min_{\theta} . \sum_{j} -\log P(X_{j}) = -\sum_{j} \sum_{z_{i} \sim \mathcal{N}(\mathbf{0}, I)} \log P(X_{j} | z; \theta) = -\sum_{j} \sum_{z_{i} \sim \mathcal{N}(\mathbf{0}, I)} ||f(z_{i}; \theta) - X_{j}||^{2}$$

(Q: do we know how to take gradients here?)

$$\min_{\theta} - \sum_{i} \min_{z_i \sim \mathcal{N}(\mathbf{0}, I)} \|f(z_i; \theta) - X_j\|^2 \qquad \text{K-best loss}$$

Deep Variational Inference

Let's consider sampling zs from an alternative distribution Q(z) and try to minimize the KL between this (variational approximation) and the true posterior, P(z|X). And because I can pick any distribution Q I like, I will also condition it on X to help inform the sampling.

$$\begin{split} D_{KL}(Q(z|X)||P(z|X)) &= \int Q(z|X)\log\frac{Q(z|X)}{P(z|X)}dz \\ &= \mathbb{E}_Q\log Q(z|X) - \mathbb{E}_Q\log P(z|X) \\ &= \mathbb{E}_Q\log Q(z|X) - \mathbb{E}_Q\log\frac{P(X|z)P(z)}{P(X)} \\ &= \mathbb{E}_Q\log Q(z|X) - \mathbb{E}_Q\log\frac{P(X|z)P(z)}{P(X)} \\ &= \mathbb{E}_Q\log Q(z|X) - \mathbb{E}_Q\log P(X|z) - \mathbb{E}_Q\log P(z) + \log P(X) \\ &= D_{KL}(Q(z|X)|P(z)) - \mathbb{E}_Q\log P(X|z) + \log P(X) \end{split}$$

$$\min_{\phi,\theta} \ D_{KL}(Q(z \mid X; \phi) \mid | P(z)) - \mathbb{E}_Q \log P(X \mid z; \theta)$$
 decoder

Variational Autoencoder

From left to right: re-parametrization trick!

$$\min_{\phi,\theta} \ D_{\mathit{KL}}(Q(z\,|\,X;\phi)\,|\,|\,P(z)) - \mathbb{E}_Q \log P(X\,|\,z;\theta)$$
 decoder encoder

Variational Autoencoder

At test time

Conditional VAE

$$\min_{\phi} . \quad D_{KL}(Q(z|X,Y)||P(z|\mathcal{D}) = \min_{\phi} . \quad D_{KL}(Q(z|X,Y)|P(z)) - \mathbb{E}_{Q} \log P(\mathcal{D}|z)$$

Ashvin Nair*, Vitchyr Pong*, Murtaza Dalal, Shikhar Bahl, Steven Lin, Sergey Levine University of California, Berkeley

{anair17, vitchyr, mdalal, shikharbahl, stevenlin598, svlevine}@berkeley.edu

Ashvin Nair*, Vitchyr Pong*, Murtaza Dalal, Shikhar Bahl, Steven Lin, Sergey Levine University of California, Berkeley

{anair17, vitchyr, mdalal, shikharbahl, stevenlin598, svlevine}@berkeley.edu

At training time the agent imagines goals to reach by simply sampling codes (vectors) from the latent space.

Ashvin Nair*, Vitchyr Pong*, Murtaza Dalal, Shikhar Bahl, Steven Lin, Sergey Levine University of California, Berkeley

{anair17, vitchyr, mdalal, shikharbahl, stevenlin598, svlevine}@berkeley.edu

At test time, the human supplies a goal image which is encoded into a latent code by the trained encoder.

Algorithm 1 RIG: Reinforcement learning with imagined goals

```
Store (s_t, a_t, s_{t+1}, z_g) into replay buffer \mathcal{R}.
Require: VAE encoder q_{\phi}, VAE decoder p_{\psi}, policy
                                                                    9:
                                                                               Sample transition (s, a, s', z_q) \sim \mathcal{R}.
     \pi_{\theta}, goal-conditioned value function Q_w.
                                                                   10:
 1: Collect \mathcal{D} = \{s^{(i)}\} using exploration policy.
                                                                              Encode z' = e(s').
                                                                   11:
                                                                               (Probability 0.5) replace z_g with z_g' \sim p(z).
 2: Train \beta-VAE on \mathcal{D} by optimizing (2).
                                                                   12:
                                                                              Compute new reward r = -||z' - z_g||.
 3: for n = 0, ..., N - 1 episodes do
                                                                   13:
                                                                               Minimize (1) using (z, a, z', z_g, r).
                                                                   14:
        Sample latent goal from prior z_g \sim p(z).
 4:
                                                                   15:
                                                                           end for
        Sample initial state s_0 \sim E.
 5:
                                                                           Fine-tune \beta-VAE every K episodes on mixture
                                                                   16:
       for t = 0, ..., H - 1 steps do
 6:
                                                                        of \mathcal{D} and \mathcal{R}.
 7:
           Get action a_t = \pi_{\theta}(e(s_t), z_q) + \text{noise}.
                                                                   17: end for
           Get next state s_{t+1} \sim p(\cdot \mid s_t, a_t).
 8:
```

$$\mathcal{E}(w) = \frac{1}{2} ||Q_w(s, a, g) - (r + \gamma \max_{a'} Q_{\bar{w}}(s', a', g))||^2$$

Figure 7: (Left) Our method compared to the HER baseline and oracle on a real-world visual reaching task. (Middle) Our robot setup is pictured. (Right) Test rollouts of our learned policy.

HER here is using L2 over images, that's a terrible (inverse of) reward function