A Theory of Model-Based Testing with Labelled Transition Systems

Various Topics

# **Testability Assumption**

## **Comparing Transition Systems**





### **MBT: Testability Assumption**

### **Testability assumption:**

 $\forall$  SUT .  $\exists$   $m_{SUT} \in IOTS$  .

 $\forall t \in TEST$ . SUT passes  $t \iff m_{SUT}$  passes t





### **MBT:** Completeness

SUT conforms to s

```
SUT passes T_s \iff SUT conforms to s
           SUT passes T<sub>s</sub>
                                  SUT passes T_s \Leftrightarrow_{def} \forall t \in T_s. SUT passes t
\Leftrightarrow
           \forall t \in T_s. SUT passes t
          testability assumption: ∀ t ∈TEST . SUT passes t ⇔ m<sub>SUT</sub> passes t
\Leftrightarrow
          \forall t \in T_s . m_{SUT} passes t
                     prove: \forall m \in MOD. (\forall t \in T_s. m passes t) \Leftrightarrow m uioco s
\Leftrightarrow
           m<sub>SUT</sub> uioco s
                                     define: SUT conforms to s iff m<sub>SUT</sub> uioco s
```

### Validation, Verification, Testing



# **Verification and Testing**



### **Verification and Testing**

#### Model-based verification:

- formal manipulation
- prove properties
- performed on model

formal world







Model-based testing:

- experimentation
- show error
- concrete system

concrete world

Verification is only as good as the validity of the model on which it is based

Testing can only show the presence of errors, not their absence

### **Testability Assumption: Adder**



Test a function adding numbers of two dice:

int add (int x, y) for  $x, y \in [1...6]$ 

Is the following a complete test suite?

```
(1,1) (1,2) ..... (1,6)
(2,1) (2,2) ..... (2,6)
...
(6,1) (6,2) ..... (6,6)
```

### **Testability Assumption: Adder**



Test a function adding numbers of two dice:

int add (int x, y) for  $x, y \in [1...6]$ 

#### is sound & exhaustive if

the testability assumption is that implementation

can be modelled as functions:  $i :: [1..6] \times [1..6] \rightarrow Int$ 

# Model-Based Testing with Data: Symbolic Transition Systems

# STS: Symbolic Transition Systems



### STS: Symbolic Transition Systems



Disadvantages unfolded representation:

- infinity
- loss of information (e.g. for test selection)

### suioco: symbolic uioco



### **TorXakis: Lift Test Generation**



### sioco: Symbolic ioco

```
Specification: IOSTS S(\iota_S) = \langle L_S, l_S, \mathcal{V}_S, \mathcal{I}, \Lambda, \to_S \rangle
Implementation: IOSTS \mathcal{P}(\iota_P) = \langle L_P, l_P, \mathcal{V}_P, \mathcal{I}, \Lambda, \to_P \rangle
both initialised, implementation input-enabled, \mathcal{V}_S \cap \mathcal{V}_P = \emptyset
\mathcal{F}_s: a set of symbolic extended traces satisfying [\![\mathcal{F}_s]\!]_{\iota_S} \subseteq Straces((l_0, \iota));
\mathcal{P}(\iota_P) \operatorname{\mathbf{sioco}}_{\mathcal{F}_s} S(\iota_S) \quad \text{iff}
\forall (\sigma, \chi) \in \mathcal{F}_s \ \forall \lambda_\delta \in \Lambda_U \cup \{\delta\} : \iota_P \cup \iota_S \models \overline{\forall}_{\widehat{\mathcal{I}} \cup \mathcal{I}} (\Phi(l_P, \lambda_\delta, \sigma) \wedge \chi \to \Phi(l_S, \lambda_\delta, \sigma))
where \Phi(\xi, \lambda_\delta, \sigma) = \bigvee \{\varphi \wedge \psi \mid (\lambda_\delta, \varphi, \psi) \in \mathbf{out}_s((\xi, \top, \mathsf{id})_0 \operatorname{\mathbf{after}}_s(\sigma, \top))\}
```

#### Theorem 1.

$$\mathcal{P}(\iota_P) \operatorname{\mathbf{sioco}}_{\mathcal{F}_s} \mathcal{S}(\iota_S) \quad iff \quad \llbracket \mathcal{P} \rrbracket_{\iota_P} \operatorname{\mathbf{ioco}}_{\llbracket \mathcal{F}_s \rrbracket_{\iota_S}} \quad \llbracket \mathcal{S} \rrbracket_{\iota_S}$$

### **Transition Systems: Other Extensions**



### **Real-Time MBT**



### **Real-Time MBT**



## uioco variations

### Variations on a Theme

```
\Leftrightarrow \forall \sigma \in \text{Straces}(s) : \text{ out (i after } \sigma) \subseteq \text{ out (s after } \sigma)
i ioco s
                     \forall \sigma \in (L \cup \{\delta\})^*: out ( i after \sigma) \subseteq out ( s after \sigma)
i ioconf \mathbf{s} \Leftrightarrow \forall \sigma \in \text{traces}(\mathbf{s}) : \text{out (i after } \sigma) \subseteq \text{out (s after } \sigma)
i ioco<sub>F</sub>s \Leftrightarrow \forall \sigma \in F: out (i after \sigma) \subseteq out (s after \sigma)
i uioco s \Leftrightarrow \forall \sigma \in Utraces(s) : out (i after <math>\sigma) \subseteq out (s after <math>\sigma)
                     multi-channel joco
i mioco s
i wioco s
                     non-input-enabled ioco
                     environmental conformance
i eco e
i sioco s
                     symbolic ioco
i suioco s
                     symbolic uioco
i (r)tioco s
                      (real) timed tioco (Aalborg, Twente, Grenoble, Bordeaux,.....)
                     refinement ioco
i iocor s
                     distributed ioco
i dioco s
                     hybrid ioco
i hioco s
i qioco s
                     quantified ioco
i poco s
                     partially observable game ioco
                      real time and symbolic data
i stioco<sub>D</sub> s
```

### uioco variations

ioco<sub>F</sub>: Varying Trace Sets

### Variations on a Theme

```
i ioco s \Leftrightarrow \forall \sigma \in \text{Straces}(s) : \text{ out (i after } \sigma) \subseteq \text{ out (s after } \sigma)
     \mathbf{i} \leq_{ior} \mathbf{s} \Leftrightarrow \forall \sigma \in (\mathsf{L} \cup \{\delta\})^* : \mathsf{out} (\mathsf{i} \mathsf{after} \sigma) \subseteq \mathsf{out} (\mathsf{s} \mathsf{after} \sigma)
•
     i ioconf s \Leftrightarrow \forall \sigma \in \text{traces}(s): out (i after \sigma) \subseteq out (s after \sigma)
     i ioco<sub>F</sub>s \Leftrightarrow \forall \sigma \in F: out (i after \sigma) \subseteq out (s after \sigma)
     i uioco \mathbf{s} \Leftrightarrow \forall \sigma \in \mathsf{Utraces}(\mathsf{s}) : \mathsf{out} (\mathsf{i} \mathsf{after} \sigma) \subseteq \mathsf{out} (\mathsf{s} \mathsf{after} \sigma)
•
                            multi-channel joco
     i mioco s
     i wioco s
                            non-input-enabled ioco
     i eco e
                           environmental conformance
     i sioco s
                           symbolic ioco
     i suioco s
                            symbolic uioco
     i (r)tioco s
                            (real) timed tioco (Aalborg, Twente, Grenoble, Bordeaux,.....)
     i iocor s
                            refinement ioco
     i dioco s
                            distributed ioco
     i hioco s
                            hybrid ioco
     i gioco s
                            quantified ioco
     i poco s
                            partially observable game ioco
                             real time and symbolic data
     i stioco<sub>D</sub> s
```



### Example: (u)ioco

```
i ioconf s = _{def}

\forall \sigma \in traces(s):

out(i \text{ after } \sigma) \subseteq out(s \text{ after } \sigma)
```



```
out(i 	ext{ after ?dub.?dub}) = out(s 	ext{ after ?dub.?dub}) = \{ !tea, !coffee \}  out(i 	ext{ after ?dub.} \delta.?dub) = \{ !coffee \} \neq out(s 	ext{ after ?dub.} \delta.?dub) = \{ !tea, !coffee \}
```

# Compositionality

#### **Compositional Testing** but ?but ?but $i_1$ uioco S<sub>1</sub> ?bu ?but !err !ok !err ?but ?but ?but ok ok τ err err ?but !y ?err ?ok !x ?ok ?ok ?err ?ok ?but ?err uioco $S_2$ !x !y !x ?ok ?err ?ok ?err X $s_1 || s_2$ $i_1||i_2$

# **Compositional Testing**



If  $s_1$ ,  $s_2$  input enabled -  $s_1$ ,  $s_2 \in IOTS$  - then **ioco** is preserved!

### **MBT**: Model-Based Testing

model-based LTS, FSM, test ADT, Logic, SUT generation Properties, ... conforms **SUT** model conforms to model sound exhaustive test SUT **SUT** passes tests execution

pass fail

# MBT: Finite State Machines (FSM)



### **MBT: Property-Based Testing**



- Specification: property over x and y
  - property(x,y) =  $x \ge 0 \implies |y \times y x| \le \varepsilon$
- Implementation is function  $i :: X \to Y$
- Test set T ⊆ X
  - Tools like G∀ST and QuickCheck generate thousands of tests by systematic traversal of all values of type X
  - But still: what is a "good" set?