Machine Learning for IoT

LAB1: Intro & Getting Started

Valentino Peluso valentino.peluso@polito.it

What you will learn

- Develop ML pipelines for IoT applications
 - Collect data with sensors
 - Store & process data
 - Train & optimize ML models for IoT data
 - Deploy ML models at the IoT edge
 - Implement edge-to-cloud/cloud-to-edge communication
- Programming language:
 - Python
- Tools/IDEs:
 - Visual Studio Code (local development)
 - Deepnote (cloud development)
 - Redis (cloud storage)

LAB Schedule

Part I

- LAB1: Getting started
 - 9 Oct, 14:30-17:30 Room 9I
- LAB2: Pre-processing
 - 16 Oct, 14:30-17:30 Room 9I
- Homework #1:
 - 23 Oct, 14:30-17:30 Room 9I
 - 30 Oct, 14:30-17:30 Room 9I
 - Submission deadline: 26 Nov

Part II

- LAB3: Training & Deployment
 - 6 Nov, 14:30-17:30 Room 9I
 - 13 Nov, 14:30-17:30 Room 9I
- LAB4: Optimization
 - 20 Nov, 14:30-17:30 Room 9I
- Homework #2
 - 27 Nov, 14:30-17:30 Room 9I
 - 5 Dec, 8:30-10:00 Room 1I
 - Submission deadline: 7 Jan

Part III

- LAB5: Communication
 - 11 Dec, 14:30-17:30 Room 9I
- Homework #3
 - 18 Dec, 14:30-17:30 Room 9I
 - 9 Jan, 8:30-10:00 Room 1I
 - Submission deadline: 31 Jan

LAB Evaluation

- Homework submissions are mandatory
- Deliverables:
 - Code (Python scripts/notebooks)
 - 1-page PDF report
- Evaluation:
 - 6 points (max.) for each homework
 - 18 (over 32) points total

Use Case: Smart Hygrometer

- Remote monitoring of Temperature/Humidity (T/H)
- The User can start/stop the monitoring using voice commands
- The User can visualize the T/H over time from a Web Application

System Architecture

Local Environment: RPI Kit

- Sensing:
 - USB microphone
 - DHT-11 Temperature & Humidity sensor
- Processing: Raspberry Pi 4 Model B 2GB
 - Visual Studio Code
 - Python 3.11
 - TensorFlow 2.13.1

Raspberry Pi

DHT-11

SD Card

Ethernet Cable

RPI Power Supply

Cloud Environment

- Processing: Deepnote
 - Collaborative Jupyter-like platform for Data Science teams
- Storage: Redis Cloud
 - Key-Value Database
- Communication: Eclipse MQTT Broker
 - Message broker for MQTT protocol

Redis

- NoSQL Database
 - Every record is a key-value pair
 - Key: a string that identifies the record
 - Value: Any kind of data
 - Example:
 - Add a new value

```
SET "message" "Hello World!"
```

Read a value

```
GET "message"
```

- In-Memory: data resides in RAM (instead of disk)
 - Ultra-fast read/write (< 1 ms)
 - good fit for real-time IoT Apps
- Integrates a dedicated data structure for timeseries
 - Redis TimeSeries

Redis TimeSeries

- A Redis TimeSeries is a sequence of records
- Each TimeSeries is associated to a name
 - Example: TS.CREATE "temperature"
- Each TimeSeries record is a key-value pair
 - Key: Unix timestamp in milliseconds
 - Unix timestamp = time difference from the midnight of the 1st of January 1970
 - Value: a floating-point number
 - Example:

TS.ADD "temperature" 1652824475581 25.3

- In-database data processing operations:
 - Compression
 - Filtering
 - Retention
 - Aggregation

LAB1-2: Simplified Architecture

Preparation Status

- Create a group (deadline Oct. 9th): <u>link</u>
- 2. Sign up for Deepnote: accept the invitation received in your student inbox
- Sign up for Redis Cloud: https://redis.com/try-free
- 4. Download VSCode: https://code.visualstudio.com/download
- Please reply to the poll at this <u>link</u>
- Next Steps:
 - Follow the instructions in LAB1-Exercises.pdf
 (Material → Labs → lab1-getting-started)

