

Description

For the electronic measurement of current: DC, AC, pulsed..., with galvanic isolation between the primary (high power) and the secondary circuit (electronic circuit).

Features

- Closed loop multi-range current sensors
- ◆ Voltage output
- ◆ Unipolar supply voltage

Advantages

- ◆ Very low offset drift
- ◆ Very good dv/dt immunity

Applications

- Uninterruptible Power Supplies (UPS)
- Power supplies for welding applications
- ◆ Switched-Mode Power Supplies (SMPS)
- ◆ Solar inverters
- AC variable speed and servo motor drives

Standards

- ◆ IEC 61800-1:1997
- ◆ IEC 61800-2:2015
- ◆ IEC 61800-3:2004
- ◆ IEC 61800-5-1:2007
- ◆ IEC 62109-1:2010
- ◆ IEC 62477-1:2012

Application Domain

- ♦ industrial
- ◆ Battery supplied applications

Absolute maximum ratings

Parameter	Symbol	Unit	Value
Maximum supply voltage	Vc max	V	7
Maximum primary conductor temperature	$T_{B\;max}$	°C	110
ESD rating ,Human Body Model(HBM)	U _{ESD HBM}	KV	4
RMS voltage for AC isolation test, 50/60Hz/1min	$V_{\rm d}$	KV	3
Insulation resistance, @500VDC	$R_{\rm i}$	$G \Omega$	200
Clearance (pri. –sec.)	$ m d_{cl}$	mm	12.9
Creepage distance (pri. –sec.)	d_{cp}	mm	12.9

Stresses above these ratings may cause permanent damage .Exposure to absolute maximum ratings for extended periods may degrade reliability.

Environment and mechanical characteristics

Parameter	Symbol	Unit	Min	Type	Max	Comment
Ambient operating temperature	T_{A}	$^{\circ}$	-40		85	
Ambient storage temperature	Ts	$^{\circ}$	-55		125	
Mass	m	g		46		

Electrical data BST5-150ICV1M

At T=25 °C ,Vc=+5V ,Np=1turn, RL=10k Ω

Parameter	Symbol	Unit	Min	Туре	Max	Comment
Primary nominal current rms	I_{PN}	A		150		
Primary current, measuring range	I _{PM}	A	-450		450	
Supply voltage	$V_{\rm C}$	V	4.75	5	5.25	
Current consumption	Ic	mA		8+I _P (mA)/N _S	20+I _P (mA)/N _S	N _S =1600 turns
Reference voltage @ I _P =0A	V_{REF}	V	2.485	2.5	2.515	Internal reference
Output voltage	V _{OUT}	V	0.25	$V_{REF} \pm \\ (0.625*I_P/I_{PN})$	4.75	With Vc=5V
Output voltage @ I _P =0	V_{OUT}	V		Vref		
Electrical offset voltage	V_{OE}	mV	-2.5		2.5	100% tested V _{out} -V _{ref}
Electrical offset current referred to primary	IOE	mA	-600		600	100% tested
Temperature coefficient of V _{ref}	TCV_{ref}	ppm/K	-100		100	Internal reference
Temperature coefficient of V _{OUT} @I _P =0A	TCV _{OUT}	ppm/K	-30		30	ppm/K of 2.5V -40°C…85°C
Theoretical sensitivity	G_{th}	mV/A		4.166		625mV/I _{PN}
Sensitivity error	ε _G	%	-0.8		0.8	100% tested(typical value)
Temperature coefficient of S	TCS	ppm/K			75	-40°C…85°C
Linearity error	$\epsilon_{_{ m L}}$	% of I _{PN}	-0.10		0.10	
Magnetic offset voltage (6.66*I _{PN}) referred to primary	V _{OM}	mV	-2		2	
Response time @ 80% of I_{PN}	${ m T_{D80}}$	uS			3	di/it=50A/ µ s primary busbar with the full size of hole dimensions: 11*20.5[H*W in mm]
Frequency bandwidth (±3dB)	BW	KHz	200			
Total error	ε _{tot}	% of I _{PN}			1	
Total error @T _A =85 ℃	ϵ_{tot}	% of I _{PN}			1.4	
Sum of sensitivity and linearity	ε _{sl}	% of I _{PN}			0.83	
Sum of sensitivity and linearity @ $T_A\!\!=\!\!85^{\circ}\!$	$\epsilon_{_{SL}}$	% of I _{PN}			1.2	

Dimensions BST5-150ICV1M (in mm. 1 mm = 0.0394 inch)

1	VCC	
2	GND	
3	Vout	
4	Vref	
5	NC	

PCB footprint

Assembly on PCB

• Recommended PCB hole diameter 1 mm for secondary pin

2 mm for retention pin

Maximum PCB thickness
 2.4 mm

Wave soldering profile maximum 260°C for 10 s

No clean process only

Instructions of use

- 1. When the test current passes through the sensor, you can get the size of the output current. (Warning: wrong connection may lead to sensors damage)
- 2. I_s is positive when I_p flows in the direction of the arrow.
- 3. In order to achieve the best magnetic coupling, the primary windings have to be wound over the top edge of the device.
- 4. According to user needs, different rated input currents and output currents of the sensors can be customized.

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- BYD Microelectronics Co., Ltd. (short for BME) exerts the greatest possible effort to ensure high quality and reliability. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing BME products, to comply with the standards of safety in making a safe design for the entire system, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue. In developing your designs, please ensure that BME products are used within specified operating ranges as set forth in the most recent BME products specifications.
- The BME products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These BME products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of BME products listed in this document shall be made at the customer's own risk.