I Clôture par sur-mots et sous-mots

On fixe un alphabet Σ . Étant donné deux mots $w, w' \in \Sigma^*$, on dit que w' est un sur-mot de w, noté $w \preccurlyeq w'$, s'il existe une fonction strictement croissante ϕ de $\{1, \ldots, |w'|\}$ dans $\{1, \ldots, |w'|\}$ telle que $w_i = w'_{\phi(i)}$ pour tout $1 \le i \le |w|$, où |w| dénote la longueur de w et w_i dénote la i-ème lettre de w. Étant donné un langage L, on note \overline{L} le langage des sur-mots de mots de L, c'est-à-dire $\overline{L} := \{w' \in \Sigma^* \mid \exists w \in L, w \preccurlyeq w'\}$.

- 1. On pose L_0 le langage défini par l'expression rationnelle ab^*a , et L_1 le langage défini par l'expression rationnelle $(ab)^*$. Donner une expression rationnelle pour $\overline{L_0}$ et pour $\overline{L_1}$.
- 2. Montrer que, pour tout langage L, on a $\overline{\overline{L}} = \overline{L}$.
- 3. Existe-t-il des langages L' pour lesquels il n'existe aucun langage L tel que $\overline{L} = L'$?
- 4. Montrer que, pour tout langage régulier L, le langage \overline{L} est également régulier.
- 5. On admettra pour cette question le résultat suivant : pour toute suite $(w_n)_{n\in\mathbb{N}}$ de mots de Σ^* , il existe i < j tels que $w_i \leq w_j$.
 - Montrer que, pour tout langage L (non nécessairement régulier), il existe un langage fini $F \subseteq L$ tel que $\overline{F} = \overline{L}$.
- 6. Un langage L est clos par sur-mots si, pour tout $u \in L$ et $v \in \Sigma^*$ tel que $u \leq v$, on a $v \in L$. Déduire de la question précédente que tout langage clos par sur-mots est régulier.
- 7. On considère un langage L arbitraire, non nécessairement régulier, et on souhaite construire effectivement un automate pour reconnaitre \overline{L} . Comment peut-on procéder, et de quelles opérations sur L a-t-on besoin? Discuter de l'efficacité de cette procédure.
- 8. Un langage L est clos par sous-mots si, pour tout $u \in L$ et $v \in \Sigma^*$ tel que $v \preccurlyeq u$, on a $v \in L$. Montrer que tout langage clos par sous-mots est régulier.
- 9. Démontrer le résultat admis à la question 5.

II Automates pour les valuations de formules booléennes

Soit \mathcal{X} un ensemble fini de variables. Une valuation de \mathcal{X} est une fonction de \mathcal{X} dans $\{0,1\}$. Soit Φ une formule de la logique propositionnelle sur \mathcal{X} . On dit que la valuation ν satisfait Φ si la formule Φ s'évalue à 1 lorsque l'on remplace chaque variable dans Φ par son image par ν .

On fixe l'alphabet $\Sigma = \{0, 1\}$. Soit < un ordre total sur \mathcal{X} : on écrira en conséquence $\mathcal{X} = x_1, \dots, x_n$, avec $x_i < x_j$ pour tout $1 \le i < j \le n$.

Le mot suivant < d'une valuation ν de \mathcal{X} est le mot $\nu(x_1)\cdots\nu(x_n)$ de longueur n sur l'alphabet Σ .

Un automate de valuations pour Φ et < est un automate A sur l'alphabet Σ tel que, pour tout mot $w \in \Sigma^*$, l'automate A accepte w si et seulement si |w| = n et w est le mot suivant < d'une valuation ν qui satisfait Φ .

- 1. Construire un automate de valuations pour la formule $(x_1 \wedge x_3) \vee x_2$.
- 2. Proposer un algorithme naïf qui, étant donné une formule Φ de la logique propositionnelle, construit un automate de valuations pour Φ . Discuter de la complexité de cet algorithme.

Dans les deux prochaines questions, on cherche à améliorer l'efficacité de cet algorithme.

- 3. Pour tout $n \in \mathbb{N}$, on appelle L_n le langage sur Σ défini par $L_n := \{ww \mid w \in \Sigma^n\}$. Montrer que, pour tout $n \in \mathbb{N}$, pour tout automate A qui reconnait L_n , l'automate A a au moins 2^n états.
- 4. En utilisant la question précédente, montrer que, pour tout ensemble de variables totalement ordonné de taille paire $\mathcal{X} = x_1, \dots, x_{2n}$, on peut construire une formule Φ_{2n} de taille O(n) telle que tout automate de valuations pour Φ_{2n} et < ait au moins 2^n états.

Qu'en déduire quant à l'algorithme de la question 1 ?

- 5. Montrer le même résultat qu'à la question précédente pour une famille de formules Φ'_{2n} qui utilise seulement les opérateurs \vee et \wedge (et pas \neg).
- 6. Soit \mathcal{X} un ensemble de variables arbitraire de taille paire totalement ordonné par <, soit 2n la taille de cet ensemble, et soit Φ_{2n} la formule définie à la question 3. Existe-t-il un ordre différent <' sur \mathcal{X} pour lequel il y ait un automate de valuations pour Φ_{2n} et <' de taille plus faible que 2^n ?