Advanced Engineering Mathematics Vectors, Matrices, and Vector Calculus by Dennis G. Zill Notes

Chris Doble

June 2023

Contents

1	Vectors		
	1.1	Vectors in 2-Space	1
	1.2	Vectors in 3-Space	1
	1.3	Dot Product	1
	1.4	Cross Product	2
	1.5	Lines and Planes in 3-Space	3
	1.6	Vector Spaces	4

1 Vectors

1.1 Vectors in 2-Space

- The zero vector can be assigned any direction
- The vectors **i** and **j** are known as the **standard basis vectors** for \mathbb{R}^2

1.2 Vectors in 3-Space

• In \mathbb{R}^3 the octant in which all coordinates are positive is known as the **first** octant. There is no agreement for naming the other seven octants.

1.3 Dot Product

- \bullet The dot product is also known as the inner product or the scalar product and is denoted $\mathbf{a}\cdot\mathbf{b}$
- $\bullet\,$ Two non-zero vectors are orthogonal iff their dot product is 0
- The zero vector is considered orthogonal to all vectors

- The angles α , β , and γ between a vector and the unit vectors \mathbf{i} , \mathbf{j} , and \mathbf{k} , respectively are called the **direction angles** of the vector
- The cosines of a vectors direction angles (the direction cosines) can be calculated as

$$\cos \alpha = \frac{\mathbf{a} \cdot \mathbf{i}}{\|\mathbf{a}\| \|\mathbf{i}\|}$$

$$= \frac{a_1}{\|\mathbf{a}\|}$$

$$\cos \beta = \frac{\mathbf{a} \cdot \mathbf{j}}{\|\mathbf{a}\| \|\mathbf{j}\|}$$

$$= \frac{a_2}{\|\mathbf{a}\|}$$

$$\cos \gamma = \frac{\mathbf{a} \cdot \mathbf{k}}{\|\mathbf{a}\| \|\mathbf{k}\|}$$

$$= \frac{a_3}{\|\mathbf{a}\|}$$

Equivalently, these can be calculated as the components of the unit vector $\mathbf{a}/|\mathbf{a}||$.

ullet To find the component of a vector ${f a}$ in the direction of a vector ${f b}$

$$\mathrm{comp}_{\mathbf{b}}\mathbf{a} = ||\mathbf{a}||\cos\theta = \frac{\mathbf{a} \cdot \mathbf{b}}{||\mathbf{b}||}$$

ullet To project a vector ${f a}$ onto a vector ${f b}$

$$\mathrm{proj}_{\mathbf{b}}\mathbf{a} = (\mathrm{comp}_{\mathbf{b}}\mathbf{a})\frac{\mathbf{b}}{||\mathbf{b}||} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{b} \cdot \mathbf{b}}\right)\mathbf{b}$$

1.4 Cross Product

- The cross product is only defined in \mathbb{R}^3
- The scalar triple product of vectors a, b, and c is defined as

$$\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

- The area of a parallelogram with sides **a** and **b** is $||\mathbf{a} \times \mathbf{b}||$
- The area of a triangle with sides **a** and **b** is $\frac{1}{2}||\mathbf{a} \times \mathbf{b}||$
- The volume of a paralleleipied with sides \mathbf{a} , \mathbf{b} , and \mathbf{c} is $|\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c})|$
- $\mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0$ iff \mathbf{a} , \mathbf{b} , and \mathbf{c} are coplanar

1.5 Lines and Planes in 3-Space

• There is a unique line between any two points $\mathbf{r_1}$ and $\mathbf{r_2}$ in 3-space. The equation for that line is

$$\mathbf{r} = \mathbf{r_1} + t(\mathbf{r_2} - \mathbf{r_1}) = \mathbf{r_1} + t\mathbf{a}$$

where t is called a **parameter**, the nonzero vector **a** is called a **direction** vector, and its components are called **direction numbers**.

• Equating the components of the equation above we find

$$x = r_1 + ta_1$$

$$y = r_2 + ta_2$$

$$z = r_3 + ta_3.$$

These are the **parametric equations** for the line through $\mathbf{r_1}$ and $\mathbf{r_2}$.

• By solving the parametric equations for t and equating the results we find the **symmetric equations** for the line

$$t = \frac{x - r_1}{a_1} = \frac{y - r_2}{a_2} = \frac{z - r_3}{a_3}.$$

• Given a point P_1 and a vector \mathbf{n} , there exists only one plane containing P_1 with \mathbf{n} normal. The vector from P_1 to another point P on that plane will be perpendicular to \mathbf{n} , so the equation for the plane is

$$\mathbf{n} \cdot (\mathbf{r} - \mathbf{r}_1) = 0$$

where $\mathbf{r} = \overrightarrow{OP}$ and $\mathbf{r_1} = \overrightarrow{OP_1}$. If

$$\mathbf{n} = a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$$

the cartesian form of this equation is

$$a(x - x_1) + b(y - y_1) + c(z - z_1) = 0$$

and is called the **point-normal form**.

- The graph of any equation ax + by + cz + d = 0, where a, b, and c are not all zero, is a plane with the normal vector $\mathbf{n} = a\hat{\mathbf{i}} + b\hat{\mathbf{j}} + c\hat{\mathbf{k}}$.
- Given three noncollinear points, a normal vector can be found by forming two vectors from two pairs of points and take their cross product.
- A line and a plane that aren't parellel intersect at a single point.
- Two planes that aren't parallel must intersect in a line.

1.6 **Vector Spaces**

- The length of a vector is called its **norm**
- The process of multipying a vector by the reciprocal of its norm is called normalizing the vector
- Two nonzero vectors **a** and **b** in \mathbb{R}^n are said to be orthogonal if $\mathbf{a} \cdot \mathbf{b} = 0$

Definition 7.6.1 Vector Space

Let V be a set of elements on which two operations called **vector addition** and **scalar multiplication** are defined. Then V is said to be a **vector space** if the following 10 properties are satisfied.

Axioms for Vector Addition:

- If x and y are in V, then x + y is in V. (*i*)
- For all \mathbf{x} , \mathbf{y} in V, $\mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$.
- (iii) For all \mathbf{x} , \mathbf{y} , \mathbf{z} in V, $\mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$.
- (iv) There is a unique vector $\mathbf{0}$ in V such that
 - 0 + x = x + 0 = x.
- For each x in V, there exists a vector -x such that
- ← zero vector

← distributive law

← distributive law

← commutative law

← associative law

- x + (-x) = (-x) + x = 0.
- ← negative of a vector

Axioms for Scalar Multiplication:

- (vi) If k is any scalar and x is in V, then kx is in V.
- $(vii) \quad k(\mathbf{x} + \mathbf{y}) = k\mathbf{x} + k\mathbf{y}$
- $(viii) (k_1 + k_2)\mathbf{x} = k_1\mathbf{x} + k_2\mathbf{x}$
- $(ix) \quad k_1(k_2\mathbf{x}) = (k_1k_2)\mathbf{x}$
- (x) 1x = x
- If a subset W of a vector space V is itself a vector space under the operations of vector addition and scalar multiplication defined on V, then Wis called a **subspace** of V
- Every vector space has at least two subspaces: itself and the zero subspace
- A set of vectors $\{x_1, x_2, \dots, x_n\}$ is said to be linearly independent if the only constants satisfying the equation

$$k_1\mathbf{x_1} + k_2\mathbf{x_2} + \dots + k_n\mathbf{x_n} = \mathbf{0}$$

are $k_1 = k_2 = \cdots = k_n = 0$. If the set of vectors is not linearly independent it is said to be **linearly dependent**.

- If a set of vectors $B = \{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ in a vector space V is linearly independent and every vector in V can be expressed as a linear combination of vectors in B then B is said to be a **basis** for V.
- The number of vectors in a basis B for a vector space V is said to be the dimension of the space.

- If the basis of a vector space contains a finite number of vectors, then the space is **finite dimensional**; otherwise it is **infinite dimensional**.
- If S denotes any set of vectors $\{\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n\}$ in a vector space V, then the set of all linear combinations of the vectors in S

$$c_1\mathbf{x}_1 + c_2\mathbf{x}_2 + \dots + c_n\mathbf{x}_n$$

is called the **span** of the vectors and is denoted Span(S).

- Span(S) is a subspace of V and is said to be a subspace spanned by its vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$.
- If V = Span(S) then S is said to be a **spanning set** for the vector space V or that S **spans** V.