

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 096 013 A2

(12)

EUROPÄISCHE PATENTANMELDUNG

(43) Veröffentlichungstag: 02.05.2001 Patentblatt 2001/18

(21) Anmeldenummer: **00122505.1**

(22) Anmeldetag: 14.10.2000

(51) Int. CI.⁷: **C12N 15/53**, C12N 9/02, C12P 13/08

(84) Benannte Vertragsstaaten:

AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

Benannte Erstreckungsstaaten:

AL LT LV MK RO SI

- (30) Priorität: 28.10.1999 DE 19951975
- (71) Anmelder: Degussa AG 40474 Düsseldorf (DE)
- (72) Erfinder:
 - Möckel, Bettina, Dr. 40597 Düsseldorf (DE)

- Weissenborn, Anke
 72076 Tübingen (DE)
- Pfefferie, Walter, Dr. 33790 Halle (Westf.) (DE)
- Pühler, Alfred, Prof. 33739 Bielefeld (DE)
- Kalinowski, Jörn, Dr. 33615 Bielefeld (DE)
- Bathe, Brigitte, Dr.
 33154 Salzkotten (DE)
- Dusch, Nicole, Dr.
 33619 Bielefeld (DE)
- (54) Corynebacterium poxB-Gen codierende Nukleotidsequenzen, und die Verwendung zur Herstellung von L-Lysin
- (57) Isoliertes Polynukleotid enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe
 - a) Polynukleotid, das mindestens zu 70 % identisch ist mit einem Polynukleotid, das für ein Polypeptid codiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
 - b) Polynukleotid, das für ein Polypeptid codiert, das eine Aminosäuresequenz enthält, die zu mindestens 70 % identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
 - d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Basen der Polynukleotidsequenz von a), b) oder c),

und Verfahren zur fermentativen Herstellung von L-Aminosäuren durch Abschwächung des poxB-Gens.

Beschreibung

[0001] Gegenstand der Erfindung sind für das poxB-Gen kodierende Nukleotidsequenzen aus coryneformen Bakterien und ein Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere L-Lysin durch Abschwächung des poxB-Gens.

Stand der Technik

[0002] L-Aminosäuren, insbesondere Lysin finden in der Humanmedizin und in der pharmazeutischen Industrie, in der Lebensmittelindustrie und ganz besonders in der Tierernährung Anwendung.

[0003] Es ist bekannt, daß Aminosäuren durch Fermentation von Stämmen coryneformer Bakterien, insbesondere Corynebacterium glutamicum, hergestellt werden. Wegen der großen Bedeutung wird ständig an der Verbesserung der Herstellverfahren gearbeitet. Verfahrensbesserungen können fermentationstechnische Maßnahmen wie z.B. Rührung und Versorgung mit Sauerstoff, oder die Zusammensetzung der Nährmedien wie z.B. die Zuckerkonzentration während der Fermentation, oder die Aufarbeitung zur Produktform durch z.B. Ionenaustauschehromatographie oder die intrinsischen Leistungseigenschaften des Mikroorganismus selbst betreffen.

[0004] Zur Verbesserung der Leistungseigenschaften dieser Mikroorganismen werden Methoden der Mutagenese, Selektion und Mutantenauswahl angewendet. Auf diese Weise erhält man Stämme, die resistent gegen Antimetabolite oder auxotroph für regulatorisch bedeutsame Metabolite sind und Aminosäuren produzieren.

[0005] Seit einigen Jahren werden ebenfalls Methoden der rekombinanten DNA-Technik zur Stammverbesserung von L-Aminosäure produzierenden Stämmen von Corynebacterium eingesetzt.

Aufgabe der Erfindung

25 [0006] Die Erfinder haben sich zur Aufgabe gestellt, neue Maßnahmen zur verbesserten fermentativen Herstellung von Aminosäuren insbesondere L-Lysin bereitzustellen.

Beschreibung der Erfindung

30 [0007] L-Aminosäuren, insbesondere Lysin finden in der Humanmedizin und in der pharmazeutischen Industrie, in der Lebensmittelindustrie und ganz besonders in der Tierernährung Anwendung. Es besteht daher ein allgemeines Interesse daran, neue verbesserte Verfahren zur Herstellung von Aminosäuren, insbesondere L-Lysin, bereitzustellen. [0008] Gegenstand der Erfindung ist ein isoliertes Polynukleotid enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe
35

- a) Polynukleotid, das mindestens zu 70 % identisch ist mit einem Polynukleotid, das für ein Polypeptid codiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
- b) Polynukleotid, das für ein Polypeptid codiert, das eine Aminosäuresequenz enthält, die zu mindestens 70% identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,
 - c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Basen der Polynukleotidsequenz von a), b) oder c).

[0009] Gegenstand der Erfindung ist ebenfalls das Polynukleotid gemäß Anspruch 1, wobei es sich bevorzugt um eine replizierbare DNA handelt, enthaltend:

- (i) die Nukleotidsequenz, gezeigt in SEQ ID No. 1, oder
- (ii) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Codes entspricht, oder
- (iii) mindestens eine Sequenz, die mit der zur Sequenz (i) oder (ii) komplementären Sequenz hybridisiert, und gegebenenfalls
 - (iv) funktionsneutralen Sinnmutationen in (i).

40

45

50

[0010] Weitere Gegenstände sind

5

10

ein Polynukleotid gemäß Anspruch 2, enthaltend die Nukleotidsequenz wie in SEQ ID No. 1 dargestellt,

ein Polynukleotid gemäß Anspruch 2, das für ein Polypeptid codiert, das die Aminosäuresequenz, wie in SEQ ID No. 2 dargestellt, enthält

ein Vektor, enthaltend das Polynukleotid gemäß Anspruch 1, Punkt d insbesondere pCR2.1poxBint, hinterlegt in E.coli DSM 13114

und als Wirtszelle dienende coryneforme Bakterien, die in dem pox-Gen eine Insertion oder Delektion enthalten.

[0011] Gegenstand der Erfindung sind ebenso Polynukleotide, die im wesentlichen aus einer Polynukleotidsequenz bestehen, die erhältlich sind durch Screening mittels Hybridisierung einer entsprechenden Genbank, die das vollständige Gen mit der Polynukleotidsequenz entsprechend SEQ ID No. 1 enthalten mit einer Sonde, die die Sequenz des genannten Polynukleotids gemäß SEQ ID No. 1 oder ein Fragment davon enthält und Isolierung der genannten DNA-Sequenz.

[0012] Polynukleotidsequenzen gemäß der Erfindung sind geeignet als Hybridisierungs-Sonden für RNA, cDNA und DNA, um cDNA in voller Länge zu isolieren, die für Pyruvat-Oxidase codieren und solche cDNA oder Gene zu isolieren, die eine hohe Ähnlichkeit der Sequenz mit der des Pyruvat-Oxidase Gens aufweisen.

[0013] Polynukleotidsequenzen gemäß der Erfindung sind weiterhin als Primer geeignet, mit deren Hilfe mit der Polymerase Kettenreaktion (PCR) DNA von Genen hergestellt werden kann, die für Pyruvat-Oxidase codieren.

[0014] Solche als Sonden oder Primer dienende Oligonukleotide enthalten mindestens 30, bevorzugt mindestens 20, ganz besonders bevorzugt mindestens 15 aufeinanderfolgende Nukleotide. Geeignet sind ebenfalls Oligonukleotide mit einer Länge von mindestens 40 oder 50 Basen.

[0015] "Isoliert" bedeutet aus seinem natürlichen Umfeld herausgetrennt.

[0016] "Polynukleotid" bezieht sich im allgemeinen auf Polyribonukleotide und Polydeoxyribonukleotide, wobei es sich um nicht modifizierte RNA oder DNA oder modifizierte RNA oder DNA handeln kann.

[0017] Unter "Polypeptiden" versteht man Peptide oder Proteine, die zwei oder mehr über Peptidbindungen verbundene Aminosäuren enthalten.

[0018] Die Polypeptide gemäß Erfindung schließen das Polypeptid gemäß SEQ ID No. 2, insbesondere solche mit der biologischen Aktivität der Pyruvat-Oxidase und auch solche ein, die zu wenigstens 70% identisch sind mit dem Polypeptid gemäß SEQ ID No. 2, bevorzugt zu wenigstens 80% und besonders zu wenigstens 90 % bis 95 % identität mit dem Polypeptid gemäß SEQ ID No. 2 und die genannte Aktivität aufweisen.

[0019] Die Erfindung betrifft weiterhin ein Verfahren zur fermentativen Herstellung von Aminosäuren, insbesondere Lysin, unter Verwendung von coryneformen Bakterien, die insbesondere bereits die Aminosäuren, insbesondere Lysin produzieren und in denen die für das poxB-Gen codierenden Nukleotidsequenzen abgeschwächt, insbesondere auf niedrigem Niveau exprimiert werden.

[0020] Der Begriff "Abschwächung" beschreibt in diesem Zusammenhang die Verringerung oder Ausschaltung der intrazellulären Aktivität eines oder mehrerer Enzyme (Proteine) in einem Mikroorganismus, die durch die entsprechende DNA kodiert werden, indem man beispielsweise einen schwachen Promotor verwendet oder ein Gen bzw. Allel verwendet, das für ein entsprechendes Enzym mit einer niedrigen Aktivität kodiert bzw. das entsprechende Gen oder Enzym (Protein) inaktiviert und gegebenenfalls diese Maßnahmen kombiniert.

[0021] Die Mikroorganismen, die Gegenstand der vorliegenden Erfindung sind, können Aminosäuren, insbesondere Lysin aus Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke, Cellulose oder aus Glycerin und Ethanol herstellen. Es kann sich um Vertreter coryneformer Bakterien insbesondere der Gattung Corynebacterium handeln. Bei der Gattung Corynebacterium ist insbesondere die Art Corynebacterium glutamicum zu nennen, die in der Fachwelt für ihre Fähigkeit bekannt ist, L-Aminosäuren zu produzieren.

[0022] Geeignete Stämme der Gattung Corynebacterium, insbesondere der Art Corynebacterium glutamicum, sind besonders die bekannten Wildtypstämme

Corynebacterium glutamicum ATCC13032
Corynebacterium acetoglutamicum ATCC15806
Corynebacterium acetoacidophilum ATCC13870
Corynebacterium melassecola ATCC17965
Corynebacterium thermoaminogenes FERM BP-1539
Brevibacterium flavum ATCC14067
Brevibacterium lactofermentum ATCC13869 und

50

Brevibacterium divaricatum ATCC14020

5

10

15

und daraus hergestellte L-Aminosäuren produzierende Mutanten bzw. Stämme, wie beispielsweise die L-Lysin produzierenden Stämme

Corynebacterium glutamicum FERM-P 1709
Brevibacterium flavum FERM-P 1708
Brevibacterium lactofermentum FERM-P 1712
Corynebacterium glutamicum FERM-P 6463
Corynebacterium glutamicum FERM-P 6464 und
Corynebacterium glutamicum DSM 5714 Den Erfindern

gelang es, das neue, für das Enzym Pyruvat-Oxidase (EC 1.2.2.2) kodierende poxB-Gen von C. glutamicum zu isolieren.

[0023] Zur Isolierung des poxB-Gens oder auch anderer Gene von C. glutamicum wird zunächst eine Genbank dieses Mikroorganismus in E. coli angelegt. Das Anlegen von Genbanken ist in allgemein bekannten Lehrbüchern und Handbüchern niedergeschrieben. Als Beispiel seien das Lehrbuch von Winnacker: Gene und Klone, Eine Einführung in die Gentechnologie (Verlag Chemie, Weinheim, Deutschland, 1990) oder das Handbuch von Sambrook et al.: Molecular Cloning, A Laboratory Manual (Cold Spring Harbor Laboratory Press, 1989) genannt. Eine sehr bekannte Genbank ist die des E. coli K-12 Stammes W3110, die von Kohara et al. (Cell 50, 495 - 508 (1987)) in λ-Vektoren angelegt wurde. Bathe et al. (Molecular and General Genetics, 252:255-265, 1996) beschreiben eine Genbank von C. glutamicum ATCC13032, die mit Hilfe des Cosmidvektors SuperCos I (Wahl et al., 1987, Proceedings of the National Academy of Sciences USA, 84:2160-2164) im E. coli K-12 Stamm NM554 (Raleigh et al., 1988, Nucleic Acids Research 16:1563-1575) angelegt wurde. Börmann et al. (Molecular Microbiology 6(3), 317-326, 1992) wiederum beschreiben eine Genbank von C. glutamicum ATCC13032 unter Verwendung des Cosmids pHC79 (Hohn und Collins, Gene 11, 291-298 (1980)). O'Donohue (The Cloning and Molecular Analysis of Four Common Aromatic Amino Acid Biosynthetic Genes from Corynebacterium glutamicum. Ph.D. Thesis, National University of Ireland, Galway, 1997) beschreibt die Klonierung von C. glutamicum Genen unter Verwendung des von Short et al. (Nucleic Acids Research, 16: 7583) beschriebenen \(\text{Zap Expressionssystems.} \)

[0024] Zur Herstellung einer Genbank von C. glutamicum in E. coli können auch Plasmide wie pBR322 (Bolivar, Life Sciences, 25, 807-818 (1979)) oder pUC9 (Vieira et al., 1982, Gene, 19:259-268) verwendet werden. Als Wirte eignen sich besonders solche E. coli-Stämme, die restriktions- und rekombinationsdefekt sind wie beispielsweise der Stamm DH5α (Jeffrey H. Miller: "A Short Course in Bacterial Genetics, A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria", Cold Spring Harbour Laboratory Press, 1992).

[0025] Die mit Hilfe von Cosmiden oder anderen λ-Vektoren klonierten langen DNA-Fragmente können anschließend wiederum in gängige für die DNA-Sequenzierung geeignete Vektoren subkloniert werden.

[0026] Methoden zur DNA-Sequenzierung sind unter anderem bei Sanger et al. (Proceedings of the National Academy of Sciences of the United States of America USA, 74:5463-5467, 1977) beschrieben.

[0027] Die erhaltenen DNA-Sequenzen können dann mit bekannten Algorithmen bzw. Sequenzanalyse-Programmen wie z. B. dem von Staden (Nucleic Acids Research 14, 217-232(1986)), dem GCG-Programm von Butler (Methods of Biochemical Analysis 39, 74-97 (1998)) dem FASTA-Algorithmus von Pearson und Lipman (Proceedings of the National Academy of Sciences USA 85,2444-2448 (1988)) oder dem BLAST-Algorithmus von Altschul et al. (Nature Genetics 6, 119-129 (1994)) untersucht und mit den in öffentlich zugänglichen Datenbanken vorhandenen Sequenzeinträgen verglichen werden. Öffentlich zugängliche Datenbanken für Nukleotidsequenzen sind beispielsweise die der European Molecular Biologies Laboratories (EMBL, Heidelberg, Deutschland) oder die des National Center for Biotechnology Information (NCBI, Bethesda, MD, USA).

[0028] Auf diese Weise wurde die neue für das poxB-Gen kodierende DNA-Sequenz von C. glutamicum erhalten, die als SEQ ID No. 1 Bestandteil der vorliegenden Erfindung ist. Weiterhin wurde aus der vorliegenden DNA-Sequenz mit den oben beschriebenen Methoden die Aminosäuresequenz des entsprechenden Proteins abgeleitet. In SEQ ID No. 2 ist die sich ergebende Aminosäuresequenz des poxB-Genproduktes dargestellt.

[0029] Kodierende DNA-Sequenzen, die sich aus SEQ ID No. 1 durch die Degeneriertheit des genetischen Codes ergeben, sind ebenfalls Bestandteil der Erfindung. In gleicher Weise sind DNA-Sequenzen, die mit SEQ ID No. 1 oder Teilen von SEQ ID No. 1 hybridisieren Bestandteil der Erfindung. Schließlich sind DNA-Sequenzen Bestandteil der Erfindung, die durch die Polymerase-Kettenreaktion (PCR) unter Verwendung von Primern hergestellt werden, die sich aus SEQ ID No. 1 ergeben.

[0030] Anleitungen zur Identifizierung von DNA-Sequenzen mittels Hybridisierung findet der Fachmann unter anderem im Handbuch "The DIG System Users Guide for Filter Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) und bei Liebl et al. (International Journal of Systematic Bacteriology (1991) 41: 255-

260). Anleitungen zur Amplifikation von DNA-Sequenzen mit Hilfe der Polymerase-Kettenreaktion (PCR) findet der Fachmann unter anderem im Handbuch von Gait: Oligonukleotide synthesis: a practical approach (IRL Press, Oxford, UK, 1984) und bei Newton und Graham: PCR (Spektrum Akademischer Verlag, Heidelberg, Deutschland, 1994).

[0031] Die Erfinder fanden heraus, daß coryneforme Bakterien nach Abschwächung des poxB-Gens in verbesserter Weise L-Aminosäuren insbesondere L-Lysin produzieren.

[0032] Zur Erzielung einer Abschwächung können entweder die Expression des poxB-Gens oder die katalytischen Eigenschaften des Enzymproteins herabgesetzt oder ausgeschaltet werden. Gegebenenfalls können beide Maßnahmen kombiniert werden.

[0033] Die Erniedrigung der Genexpression kann durch geeignete Kulturführung oder durch genetische Veränderung (Mutation) der Signalstrukturen der Genexpression erfolgen. Signalstrukturen der Genexpression sind belspielsweise Repressorgene, Aktivatorgene, Operatoren, Promotoren, Attenuatoren, Ribosomenbindungsstellen, das Startkodon und Terminatoren. Angaben hierzu findet der Fachmann z. B. in der Patentanmeldung WO 96/15246, bei Boyd und Murphy (Journal of Bacteriology 170: 5949 (1988)), bei Voskuil und Chambliss (Nucleic Acids Research 26: 3548 (1998), bei Jensen und Hammer (Biotechnology and Bioengineering 58: 191 (1998)), bei Patek et al. (Microbiology 142: 1297 (1996) und in bekannten Lehrbüchern der Genetik und Molekularbiologie wie z. B. dem Lehrbuch von Knippers ("Molekulare Genetik", 6. Auflage, Georg Thieme Verlag, Stuttgart, Deutschland, 1995) oder dem von Winnacker ("Gene und Klone", VCH Verlagsgesellschaft, Weinheim, Deutschland, 1990).

[0034] Mutationen, die zu einer Veränderung bzw. Herabsetzung der katalytischen Eigenschaften von Enzymproteinen führen sind aus dem Stand der Technik bekannt; als Beispiele seien die Arbeiten von Qiu und Goodman (Journal of Biological Chemistry 272: 8611-8617 (1997)), Sugimoto et al. (Bioscience Biotechnology and Biochemistry 61: 1760-1762 (1997)) und Möckel ("Die Threonindehydratase aus Corynebacterium glutamicum: Aufhebung der allosterischen Regulation und Struktur des Enzyms", Berichte des Forschungszentrums Jülichs, Jül-2906, ISSN09442952, Jülich, Deutschland, 1994) genannt. Zusammenfassende Darstellungen können bekannten Lehrbüchern der Genetik und Molekularbiologie wie z. B. dem von Hagemann ("Allgemeine Genetik", Gustav Fischer Verlag, Stuttgart, 1986) entnommen werden.

[0035] Als Mutationen kommen Transitionen, Transversionen, Insertionen und Deletionen in Betracht. In Abhängigkeit von der Wirkung des Aminosäureaustausches auf die Enzymaktivität wird von Fehlsinnmutationen (missense mutations) oder Nichtsinnmutationen (nonsense mutations) gesprochen. Insertionen oder Deletionen von mindestens einem Basenpaar in einem Gen führen zu Rasterverschiebungsmutationen (frame shift mutations) in deren Folge falsche Aminosäuren eingebaut werden oder die Translation vorzeitig abbricht. Deletionen von mehreren Kodonen führen typischerweise zu einem vollständigen Ausfall der Enzymaktivität. Anleitungen zur Erzeugung derartiger Mutationen gehören zum Stand der Technik und können bekannten Lehrbüchern der Genetik und Molekularbiologie wie z. B. dem Lehrbuch von Knippers ("Molekulare Genetik", 6. Auflage, Georg Thieme Verlag, Stuttgart, Deutschland, 1995), dem von Winnacker ("Gene und Klone", VCH Verlagsgesellschaft, Weinheim, Deutschland, 1990)oder dem von Hagemann ("Allgemeine Genetik", Gustav Fischer Verlag, Stuttgart, 1986) entnommen werden.

[0036] Ein Beispiel für ein Plasmid, mit Hilfe dessen eine Insertionsmutagenese des poxB-Gens durchgeführt werden kann, ist pCR2.1poxBint (Figur 1).

[0037] Plasmid pCR2.1poxBint besteht aus dem von Mead at al. (Bio/Technology 9:657-663 (1991)) beschriebenen Plasmid pCR2.1-TOPO, in das ein internes Fragment des poxB-Gens, dargestellt in SEQ-ID No. 3, eingebaut wurde. Dieses Plasmid führt nach Transformation und homologer Rekombination in das chromosomale poxB-Gen (Insertion) zu einem Totalverlust der Enzymfunktion. Auf diese Weise wurde beispielhaft der Stamm DSM5715::pCR2.1poxBint hergestellt, dessen Pyruvat-Oxidase ausgeschaltet ist. Weitere Anleitungen und Erläuterungen zur Insertionsmutagenese findet man beispielsweise bei Schwarzer und Pühler (Bio/Technology 9,84-87 (1991)) oder Fitzpatrick et al. (Applied Microbiology and Biotechnology 42, 575-580 (1994)).

[0038] Zusätzlich kann es für die Produktion von L-Aminosauren insbesondere L-Lysin vorteilhaft sein, zusätzlich zur Abschwächung des poxB-Gens eines oder mehrere Enzyme des jeweiligen Biosyntheseweges, der Glykolyse, der Anaplerotik, des Zitronensaure-Zyklus oder des Aminosaure-Exports zu verstärken, insbesondere zu überexprimieren.
[0039] So kann beispielsweise für die Herstellung von L-Lysin

- 90 gleichzeitig das für die Dihydrodipicolinat-Synthase kodierende dapA-Gen (EP-B 0 197 335), oder
 - gleichzeitig das für die Tetradihydrodipicolinat Succinylase kodierende dapD Gen (Wehrmann et al., Journal of Bacteriology 180, 3159-3165 (1998)), oder
- gleichzeitig das Gen für die Succinyldiaminopimelate-Desuccinylase kodierende dapE Gen (Wehrmann et al., Journal of Bacteriology 177: 5991-5993 (1995)), oder
 - gleichzeitig das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende gap-Gen (Eikmanns (1992). Jour-

nal of Bacteriology 174:6076-6086), oder

- gleichzeitig das für die Pyruvat Carboxylase codierende pyc-Gen(Eikmanns (1992). Journal of Bacteriology 174:6076-6086), oder
- gleichzeitig das für die Malat:Chinon Oxidoreduktase kodierende mqo-Gen (Molenaar et al., European Journal of Biochemistry 254, 395 - 403 (1998)), oder
- gleichzeitig das f
 ür den Lysin-Export kodierende lysE-Gen (DE-A-195 48 222)

überexprimiert werden.

5

10

[0040] Weiterhin kann es für die Produktion von Aminosäuren, insbesondere L-Lysin vorteilhaft sein, neben der Abschwächung des poxB-Gens unerwünschte Nebenreaktionen auszuschalten (Nakayama: "Breeding of Amino Acid Producing Micro-organisms", in: Overproduction of Microbial Products, Krumphanzl, Sikyta, Vanek (eds.), Academic Press, London, UK, 1982).

[0041] Die das Polynukleotid gemäß Anspruch 1 enthaltenden Mikroorganismen sind ebenfalls Gegenstand der Erfindung und können kontinuierlich oder diskontinuierlich im batch - Verfahren (Satzkultivierung) oder im fed batch (Zulaufverfahren) oder repeated fed batch Verfahren (repetitives Zulaufverfahren) zum Zwecke der Produktion von L-Aminosäuren insbesondere L-Lysin kultiviert werden. Eine Zusammenfassung über bekannte Kultivierungsmethoden sind im Lehrbuch von Chmiel (Bioprozesstechnik 1. Einführung in die Bioverfahrenstechnik (Gustav Fischer Verlag, Stuttgart, 1991)) oder im Lehrbuch von Storhas (Bioreaktoren und periphere Einrichtungen (Vieweg Verlag, Braunschweig/Wiesbaden, 1994)) beschrieben.

Das zu verwendende Kulturmedium muß in geeigneter Weise den Ansprüchen der jeweiligen Stämme genügen. Beschreibungen von Kulturmedien verschiedener Mikroorganismen sind im Handbuch "Manual of Methods for General Bacteriology, der American Society for Bacteriology (Washington D.C., USA, 1981) enthalten. Als Kohlenstoffquelle können Zucker und Kohlehydrate wie z.B. Glucose, Saccharose, Lactose, Fructose, Maltose, Melasse, Stärke und Cellulose, Öle und Fette wie z. B. Sojaöl, Sonnenblumenöl, Erdnussöl und Kokosfett, Fettsäuren wie z. B. Palmitinsäure, Stearinsäure und Linolsäure, Alkohole wie z. B. Glycerin und Ethanol und organische Säuren wie z. B. Essigsäure verwendet werden. Diese Stoffe können einzeln oder als Mischung verwendet werden. Als Stickstoffquelle können organische Stickstoffhaltige Verbindungen wie Peptone, Hefeextrakt, Fleischextrakt, Malzextrakt, Maisquellwasser, Sojabohnenmehl und Harnstoff oder anorganische Verbindungen wie Ammoniumsulfat, Ammoniumchlorid, Ammoniumphosphat, Ammoniumcarbonat und Ammoniumnitrat verwendet werden. Die Stickstoffquellen können einzeln oder als Mischung verwendet werden. Als Phosphorquelle können Phosphorsäure, Kaliumdihydrogenphosphat oder Dikaliumhydrogenphosphat oder die entsprechenden Natrium haltigen Salze verwendet werden. Das Kulturmedium muß weiterhin Salze von Metallen enthalten wie z.B. Magnesiumsulfat oder Eisensulfat, die für das Wachstum notwendig sind. Schließlich können essentielle Wuchsstoffe wie Aminosäuren und Vitamine zusätzlich zu den oben genannten Stoffen eingesetzt werden. Dem Kulturmedium können überdies geeignete Vorstufen zugesetzt werden. Die genannten Einsatzstoffe können zur Kultur in Form eines einmaligen Ansatzes hinzugegeben oder in geeigneter Weise während der Kultivierung zugefüttert werden.

Zur pH - Kontrolle der Kultur werden basische Verbindungen wie Natriumhydroxid, Kaliumhydroxid, Ammoniak bzw. Ammoniakwasser oder saure Verbindungen wie Phosphorsäure oder Schwefelsäure in geeigneter Weise eingesetzt. Zur Kontrolle der Schaumentwicklung können Antischaummittel wie z.B. Fettsäurepolyglykolester eingesetzt werden. Zur Aufrechterhaltung der Stabilität von Plasmiden können dem Medium geeignete selektiv wirkende Stoffe z.B. Antibiotika hinzugefügt werden. Um aerobe Bedingungen aufrechtzuerhalten werden Sauerstoff oder Sauerstoff haltige Gasmischungen wie z.B. Luft in die Kultur eingetragen. Die Temperatur der Kultur liegt normalerweise bei 20°C bis 45°C und vorzugsweise bei 25°C bis 40°C. Die Kultur wird solange fortgesetzt bis sich ein Maximum des gewünschten Produktes gebildet hat. Dieses Ziel wird normalerweise innerhalb von 10 Stunden bis 160 Stunden erreicht.

[0044] Methoden zur Bestimmung von L-Aminosäuren sind aus dem Stand der Technik bekannt. Die Analyse kann so wie bei Spackman et al. (Analytical Chemistry, 30, (1958), 1190) beschrieben durch Anionenaustauschchromatographie mit anschließender Ninhydrin Derivatisierung erfolgen, oder sie kann durch reversed phase HPLC erfolgen, so wie bei Lindroth et al. (Analytical Chemistry (1979) 51: 1167-1174) beschrieben.

[0045] Folgender Mikroorganismus wurde bei der Deutschen Sammlung für Mikrorganismen und Zellkulturen (DSMZ, Braunschweig, Deutschland) gemäß Budapester Vertrag hinterlegt:

Escherichia coli Stamm DH5α/pCR2.1poxBint als DSM 13114.

Beispiele

[0046] Die vorliegende Erfindung wird im folgenden anhand von Ausführungsbeispielen näher erläutert.

Beispiel 1

Herstellung einer genomischen Cosmid-Genbank aus Corynebacterium glutamicum ATCC 13032

Chromosomale DNA aus Corynebacterium glutamicum ATCC 13032 wurde wie bei Tauch et al., (1995, Plasmid 33:168-179) beschrieben, isoliert und mit dem Restriktionsenzym Sau3Al (Amersham Pharmacla, Freiburg, Deutschland, Produktbeschreibung Sau3Al, Code no. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Rache Molecular Biochemicals, Mannheim, Deutschland, Produktbeschreibung SAP, Code no. 1758250) dephosphoryliert. Die DNA des Cosmid-Vektors SuperCos1 (Wahl et al. (1987) Proceedings of the National Academy of Sciences USA 84:2160-2164), bezogen von der Firma Stratagene (La Jolla, USA, Produktbeschreibung SuperCos1 Cosmid Vektor Kit, Code no. 251301) wurde mit dem Restriktionsenzym Xbal (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Xbal, Code no. 27-0948-02) gespalten und ebenfalls mit shrimp alkalischer Phosphatase dephosphoryliert. Anschließend wurde die Cosmid-DNA mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BarnHI, Code no. 27-0868-04) gespalten. Die auf diese Weise behandelte Cosmid-DNA wurde mit der behandelten ATCC13032-DNA gemischt und der Ansatz mit T4-DNA-Ligase (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung T4-DNA-Ligase, Code no.27-0870-04) behandelt. Das Ligationsgemisch wurde anschließend mit Hilfe des Gigapack II XL Packing Extracts (Stratagene, La Jolla, USA, Produktbeschreibung Gigapack II XL Packing Extract, Code no. 200217) in Phagen verpackt. Zur Infektion des E. coli Stammes NM554 (Raleigh et al. 1988, Nucleic Acid Res. 16:1563-1575) wurden die Zellen in 10 mM MgSO₄ aufgenommen und mit einem Aliquot der Phagensuspension vermischt. Infektion und Titerung der Cosmidbank wurden wie bei Sambrook et al. (1989, Molecular Cloning: A laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei die Zellen auf LB-Agar (Lennox, 1955, Virology, 1:190) + 100 μg/ml Ampicillin ausplattiert wurden. Nach Inkubation über Nacht bei 37°C wurden rekombinante Einzelklone selektioniert.

Beispiel 2

Isolierung und Sequenzierung des poxB-Gens

Die Cosmid-DNA einer Einzelkolonie wurde mit dem Qiaprep Spin Miniprep Kit (Product No. 27106, Qiagen, Hilden, Germany) nach Herstellerangaben isoliert und mit dem Restriktionsenzym Sau3Al (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung Sau3Al, Product No. 27-0913-02) partiell gespalten. Die DNA-Fragmente wurden mit shrimp alkalischer Phosphatase (Roche Molecular Biochemicals, Mannheim, Deutschland, Produktbeschreibung SAP, Product No. 1758250) dephosphoryliert. Nach geleiektrophoretischer Auftrennung erfolgte die Isolierung der Cosmidfragmente im Größenbereich von 1500 bls 2000 bp mit dem QiaExil Gel Extraction Kit (Product No. 20021, Qiagen, Hilden, Germany). Die DNA des Sequenziervektors pZero-1 bezogen von der Firma Invitrogen (Groningen, Niederlande, Produktbeschreibung Zero Background Cloning Kit, Product No. K2500-01) wurde mit dem Restriktionsenzym BamHI (Amersham Pharmacia, Freiburg, Deutschland, Produktbeschreibung BamHI, Product No. 27-0868-04) gespalten. Die Ligation der Cosmidfragmente in den Sequenziervektor pZero-1 wurde wie von Sambrook et al. (1989, Molecular Cloning: A laboratory Manual, Cold Spring Harbor) beschrieben durchgeführt, wobei das DNA-Gemisch mit T4-Ligase (Pharmacia Biotech, Freiburg, Deutschland) über Nacht inkubiert wurde. Dieses Ligationsgemisch wurde anschließend in den E. coli Stamm DH5αMCR (Grant, 1990, Proceedings of the National Academy of Sciences U.S.A., 87:4645-4649) elektroporiert (Tauch et al. 1994, FEMS Microbiol Letters, 123:343-7) und auf LB-Agar (Lennox, 1955, Virology, 1:190) mit 50 μg/ml Zeocin ausplattiert. Die Plasmidpräparation der rekombinanten Klone erfolgte mit dem Biorobot 9600 (Product No. 900200, Qiagen, Hilden, Deutschland). Die Sequenzierung erfolgte nach der Dideoxy-Kettenabbruch-Methode von Sanger et al. (1977, Proceedings of the National Academies of Sciences U.S.A., 74:5463-5467) mit Modifikationen nach Zimmermann et al. (1990, Nucleic Acids Research, 18:1067). Es wurde der "RR dRhodamin Terminator Cycle Sequencing Kit" von PE Applied Biosystems(Product No. 403044, Weiterstadt, Deutschland) verwendet. Die gelelektrophoretische Auftrennung und Analyse der Sequenzierreaktion erfolgte in einem "Rotiphorese NF Acrylamid/Bisacrylamid" Gel (29:1) (Product No. A124.1, Roth, Karlsruhe, Germany) mit dem "ABI Prism 377" Sequenziergerät von PE Applied Biosystems (Weiterstadt, Deutschland).

[0049] Die erhaltenen Roh-Sequenzdaten wurden anschließend unter Anwendung des Staden-Programpakets (1986, Nucleic Acids Research, 14:217-231) Version 97-0 prozessiert. Die Einzelsequenzen der pZero1-Derivate wurden zu einem zusammenhängenden Contig assembliert. Die computergestützte Kodierbereichsanalyse wurden mit dem Programm XNIP (Staden, 1986, Nucleic Acids Research, 14:217-231) angefertigt. Weitere Analysen wurden mit

den "BLAST search programs" (Altschul et al., 1997, Nucleic Acids Research, 25:3389-3402), gegen die non-redundant Datenbank des "National Center for Biotechnology Information" (NCBI, Bethesda, MD, USA) durchgeführt.

[0050] Die erhaltene Nukleotidsequenz ist in SEQ ID No. 1 dargestellt. Die Analyse der Nukleotidsequenz ergab ein offenes Leseraster von 1737 Basenpaaren, welches als poxB-Gen bezeichnet wurde. Das poxB-Gen kodiert für ein Polypeptid von 579 Aminosäuren.

Beispiel 3

10

15

Herstellung eines Integrationsvektors für die Integrationsmutagenese des poxB-Gens

[0051] Aus dem Stamm ATCC 13032 wurde nach der Methode von Eikmanns et al. (Microbiology 140: 1817 - 1828 (1994)) chromosomale DNA isoliert. Aufgrund der aus Beispiel 2 für C. glutamicum bekannten Sequenz des poxB-Gens wurden die folgenden Oligonukleotide für die Polymerase Kettenreaktion ausgewählt:

poxBint1:

5' TGC GAG ATG GTG AAT GGT GG 3' poxBint2: 5' GCA TGA GGC AAC GCA TTA GC 3'

20 [0052] Die dargestellten Primer wurden von der Firma MWG Biotech (Ebersberg, Deutschland) synthetisiert und nach der Standard-PCR-Methode von Innis et al. (PCR protocols. A guide to methods and applications, 1990, Academic Press) mit Pwo-Polymerase der Firma Boehringer die PCR Reaktion durchgeführt. Mit Hilfe der Polymerase-Kettenreaktion wurde ein ca. 0,9 kb großen DNA-Fragment isoliert, welches ein internes Fragment des poxB-Gens trägt und in der SEQ ID No. 3 dargestellt ist.

[0053] Das amplifizierte DNA Fragment wurde mit dem TOPO TA Cloning Kit der Firma Invitrogen Corporation (Carlsbad, CA, USA; Katalog Nummer K4500-01) in den Vektor pCR2.1-TOPO (Mead at al. (1991) Bio/Technology 9:657-663) ligiert.

[0054] Anschließend wurde der E. coli Stamm DH5α mit dem Ligationsansatz (Hanahan, In: DNA cloning. A practical approach. Vol.I. IRL-Press, Oxford, Washington DC, USA, 1985) elektroporiert. Die Selektion von Plasmid-tragenden Zellen erfolgte durch Ausplattieren des Transformationsansatzes auf LB Agar (Sambrook et al., Molecular cloning: a laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989), der mit 25 mg/l Kanamycin supplementiert worden war. Plasmid-DNA wurde aus einer Transformante mit Hilfe des QIAprep Spin Miniprep Kit der Firma Qiagen isoliert und durch Restriktion mit dem Restriktionsenzym EcoRl und anschließender Agarosegel-Elektrophorese (0,8%) überprüft. Das Plasmid wurde pCR2.1poxBint genannt.

Beispiel 4

Integrationsmutagenese des poxB-Gens in dem Lysinproduzenten DSM 5715

Der in Beispiel 2 genannte Vektor pCR2.1poxBint wurde nach der Elektroporationsmethode von Tauch et.al. [0055] (FEMS Microbiological Letters, 123:343-347 (1994)) in Corynebacterium glutamicum DSM 5715 elektroporiert. Bei dem Stamm DSM 5715 handelt es sich um einen AEC resistenten Lysin-Produzenten. Der Vektor pCR2.1poxBint kann in DSM5715 nicht selbständig replizieren und bleibt nur dann in der Zelle erhalten, wenn er ins Chromosom von DSM 5715 integriert hat. Die Selektion von Klonen mit ins Chromosom integriertem pCR2.1poxBint erfolgte durch Ausplatttieren des Elektroporationsansatzes auf LB Agar (Sambrook et al., Molecular cioning: a laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.), der mit 15 mg/l Kanamycin supplementiert worden war. Für den Nachweis der Integration wurde das poxBint Fragment nach der Methode "The DIG System Users Guide for Filter Hybridization* der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) mit dem Dig-Hybridisierungskit der Firma Boehringer markiert. Chromosomale DNA eines potentiellen Integranten wurde nach der Methode von Eikmanns et al. (Microbiology 140: 1817 - 1828 (1994)) isoliert und jeweils mit den Restriktionsenzymen Sall, Sacl und HinDIII geschnitten. Die entstehenden Fragmente wurden mit Agarosegel-Elektrophorese aufgetrennt und mit dem Dig-Hybrisierungskit der Firma Boehringer bei 68°C hybridisiert. Das in Beispiel 3 genannte Plasmid pCR2.1poxBint hatte innerhalb des chromosomalen poxB-Gens ins Chromosom von DSM5715 inseriert. Der Stamm wurde als DSM5715::pCR2.1poxBint bezeichnet.

Beispiel 5

15

20

25

30

35

40

50

55

Herstellung von Lysin

Der in Beispiel 3 erhaltene C. glutamicum Stamm DSM5715::pCR2.1poxBint wurde in einem zur Produktion von Lysin geeigneten Nährmedium kultiviert und der Lysingehalt im Kulturüberstand bestimmt.

[0057] Dazu wurde der Stamm zunächst auf Agarplatte mit dem entsprechenden Antibiotikum (Hirn-Herz Agar mit Kanamycin (25 mg/l) für 24 Stunden bei 33°C inkubiert. Ausgehend von dieser Agarplattenkultur wurde eine Vorkultur angeimpft (10 ml Medium im 100 ml Erlenmeyerkolben). Als Medium für die Vorkultur wurde das Vollmedium CgIII verwendet. Diesem wurde Kanamycin (25 mg/l) zugesetzt. Die Vorkultur wurde 48 Stunden bei 33°C bei 240 rpm auf dem Schüttler inkubiert. Von dieser Vorkultur wurde eine Hauptkultur angeimpft, so daß die Anfangs-OD (660nm) der Hauptkultur 0,1 OD betrug. Für die Hauptkultur wurde das Medium MM verwendet.

Medium MM	
CSL (Corn Steep Liquor)	5 g/l
MOPS	20 g/l
Glucose (getrennt autoklaviert)	50g/l
Salze:	
(NH ₄) ₂ SO ₄)	25 g/l
KH ₂ PO₄	0,1 g/l
MgSO ₄ * 7 H ₂ O	1,0 g/l
CaCl ₂ * 2 H ₂ O	10 mg/l
FeSO ₄ * 7 H ₂ O	10 mg/l
MnSO ₄ • H ₂ O	5,0mg/l
Biotin (sterilfiltriert)	0,3 mg/l

Thiamin * HCI (sterilfiltriert)

Leucin (steriffiltriert)

CaCO₃

[0058] CSL, MOPS und die Salzlösung werden mit Ammoniakwasser auf pH 7 eingestellt und autoklaviert. Anschließend werden die sterilen Substrat- und Vitaminlösungen zugesetzt, sowie das trocken autoklavierte CaCO₃ zugesetzt.

0,2 mg/l

0,1 g/l

25 g/l

[0059] Die Kultivierung erfolgt in 10 ml Volumen in einem 100 ml Erlenmeyerkolben mit Schikanen. Es wurde Kanamycin (25 mg/l) zugesetzt. Die Kultivierung erfolgte bei 33°C und 80% Luftfeuchte.

[0060] Nach 48 Stunden wurde die OD bei einer Meßwellenlänge von 660 nm mit dem Biomek 1000 (Beckmann Instruments GmbH, München) ermittelt. Die gebildete Lysinmenge wurde mit einem Aminosäureanalysator der Firma Eppendorf-BioTronik (Hamburg, Deutschland) durch Ionenaustauschchromatographie und Nachsäulenderivatisierung mit Ninhydrindetektion bestimmt.

[0061] In Tabelle 1 ist das Ergebnis des Versuchs dargestellt.

Tabelle 1

Stamm	OD(660)	Lysin-HCl g/l
DSM5715	13,1	9,5
DSM5715::pCR2.1poxBint	12,5	12,9

Beispiel 6

Integrationsmutagenese des poxB-Gens in dem Valinproduzenten FERM-BP 1763

Der in Beispiel 2 genannte Vektor pCR2.1poxBint wurde nach der Elektroporationsmethode von Tauch et.al. [0062] (FEMS Microbiological Letters, 123:343-347 (1994)) in Brevibacterium lactofermentum FERM-BP 1763 elektroporiert. Bei dem Stamm FERM-BP 1763 handelt es sich um einen Mycophenolsäure-resistenten Valin-Produzenten (US-A-5,188,948). Der Vektor pCR2.1poxBint kann in FERM-BP 1763 nicht selbständig replizieren und bleibt nur dann in der Zelle erhalten, wenn er ins Chromosom von FERM-BP 1763 integriert hat. Die Selektion von Klonen mit ins Chromosom Integriertem pCR2.1poxBint erfolgte durch Ausplattieren des Elektroporationsansatzes auf LB Agar (Sambrook et al., Molecular cioning: a laboratory manual. 2nd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.), der mit 15 mg/l Kanamycin supplementiert worden war. Für den Nachweis der Integration wurde das poxBint Fragment nach der Methode "The DIG System Users Guide for Filter Hybridization" der Firma Boehringer Mannheim GmbH (Mannheim, Deutschland, 1993) mit dem Dig-Hybridisierungskit der Firma Boehringer markiert. Chromosomale DNA eines potentiellen Integranten wurde nach der Methode von Eikmanns et al. (Microbiology 140: 1817 - 1828 (1994)) isoliert und jeweils mit den Restriktionsenzymen Sall, Sacl und HinDIII geschnitten. Die entstehenden Fragmente wurden mit Agarosegel-Elektrophorese aufgetrennt und mit dem Dig-Hybrisierungskit der Firma Boehringer bei 68°C hybridisiert. Das in Beispiel 3 genannte Plasmid pCR2.1poxBint hatte innerhalb des chromosomalen poxB-Gens ins Chromosom von FERM-BP 1763 inseriert. Der Stamm wurde als FERM-BP 1763::pCR2.1poxBint bezeichnet.

Beispiel 7

20

35

40

45

50

Herstellung von Valin

[0063] Der in Beispiel 6 erhaltene B. lactofermentum Stamm FERM-BP 1763::pCR2.1poxBint wurde in einem zur Produktion von Valin geeigneten N\u00e4hrmedium kultiviert und der Valingehalt im Kultur\u00fcberstand bestimmt.

[0064] Dazu wurde der Stamm zunächst auf Agarplatte mit dem entsprechenden Antibiotikum (Hirn-Herz Agar mit Kanamycin (25 mg/l) für 24 Stunden bei 33°C inkubiert. Ausgehend von dieser Agarplattenkultur wurde eine Vorkultur angeimpft (10 ml Medium im 100 ml Erlenmeyerkolben). Als Medium für die Vorkultur wurde das Vollmedium CgIII verwendet. Diesem wurde Kanamycin (25 mg/l) zugesetzt. Die Vorkultur wurde 48 Stunden bei 33°C bei 240 rpm auf dem Schüttler inkubiert.

[0065] Von dieser Vorkultur wurde eine Hauptkultur angeimpft, so daß die Anfangs-OD (660nm) der Hauptkultur 0,1 OD betrug. Für die Hauptkultur wurde das Medium MM verwendet.

Medium MM	
CSL	5 g/l
MOPS	20 g/l
Glucose (getrennt autoklaviert)	50g/l
Salze:	
(NH ₄) ₂ SO ₄)	25 g/l
KH ₂ PO ₄	0,1 g/l
MgSO ₄ * 7 H ₂ O	1,0 g/l
CaCl ₂ * 2 H ₂ O	10 mg/l
FeSO ₄ * 7 H ₂ O	10 mg/l
MnSO ₄ * H ₂ O	5,0mg/l
Isoleucin (sterilfiltriert)	0,1 g/l
Methionin (sterilfiltriert)	0,1 g/l
Thiamin * HCI (sterilfiltriert)	0,2 mg/l
Leucin (sterilfiltriert)	0,1 g/l
CaCO ₃	25 g/l

[0066] CSL (Corn Steep Liquor), MOPS (Morpholinopropansulfonsäure) und die Salzlösung werden mit Ammoniakwasser auf pH 7 eingestellt und autoklaviert. Anschließend werden die sterilen Substrat- und Vitaminlösungen zugesetzt, sowie das trocken autoklavierte CaCO₃ zugesetzt.

[0067] Die Kultivierung erfolgt in 10 ml Volumen in einem 100 ml Erlenmeyerkolben mit Schikanen. Es wurde Kanamycin (25 mg/l) zugesetzt. Die Kultivierung erfolgte bei 33°C und 80% Luftfeuchte.

[0068] Nach 48 Stunden wurde die OD bei einer Meßwellenlänge von 660 nm mit dem Biomek 1000 (Beckmann Instruments GmbH, München) ermittelt. Die gebildete Valinmenge wurde mit einem Aminosäureanalysator der Firma Eppendorf-BioTronik (Hamburg, Deutschland) durch Ionenaustauschchromatographie und Nachsäulenderivatisierung mit Ninhydrindetektion bestimmt.

[0069] In Tabelle 2 ist das Ergebnis des Versuchs dargestellt.

Tabelle 2

Stamm	OD(660)	Valin-HCl g/l
FERM-BP 1763	8,6	12,1
FERM-BP 1763::pCR2.1poxBint	9,5	13,0

[0070] Folgende Figuren sind beigefügt:

Figur 1: Karte des Plasmids pCR2.1poxBint.

[0071] Die verwendeten Abkürzungen und Bezeichnungen haben folgende Bedeutung.

ColE1 ori: Replikationsursprung des Plasmids ColE1

5 Ende des β-Galactosidase Gens

f1 ori: Replikationsursprung des Phagen f1

lacZ:

5

10

15

20

25

40

45

KmR: Kanamycin Resistenz

ApR: Ampicillin Resistenz

5 BamHI: Schnittstelle des Restriktionsenzyms BamHI

EcoRI: Schnittstelle des Restriktionsenzyms EcoRI

poxBint: internes Fragment des poxB-Gens

```
SEQUENZPROTOKOLL
             <110> Degussa-Hüls AG
5
             <120> Neue fur das poxB-Gon codierende Nuklcotidsequenzen
             <130> 990159 BT
             <140>
10
             <141>
             <160> 3
             <170> PatentIn Ver. 2.1
15
             <210> 1
             <211> 2160
             <212> DNA
             <213> Corynebacterium glutamicum
             <220>
20
             <221> CDS
             <222> (327)..(2063)
             <220>
             <221> -35 signal
             <222> (227)..(232)
25
             <220>
             <221> -10_signal
             <222> (25<del>6</del>)..(261)
30
             <400> 1
             ttagaggega ttetgtgagg teaetttttg tggggteggg gtetaaattt ggeeagtttt 60
             cgaggcgacc agacaggcgt gcccacgatg tttaaatagg cgatcggtgg gcatctgtgt 120
            ttggtttcga cgggctgaaa ccaaaccaga ctgcccagca acgacggaaa tcccaaaagt 180
35
            gggcatccct gtttggtacc gagtacccac ccgggcctga aactccctgg caggcgggcg 240
            aagcgtggca acaactggaa tttaagagca caattgaagt cgcaccaagt taggcaacac 300
            aatagccata acgttgagga gttcag atg gca cac agc tac gca gaa caa tta
40
                                           Met Ala His Ser Tyr Ala Glu Gln Leu
                                                                                 401
            att gac act ttg gaa gct caa ggt gtg aag cga att tat ggt ttg gtg
             lle Asp Thr Leu Glu Ala Gln Gly Val Lys Arg Ile Tyr Gly Leu Val
             10
45
                                  15
                                                       20
                                                                                 449
             ggt gad ago oft aat dog ato gtg gat got gtd dgc caa toa gat att
            Gly Asp Ser Leu Asn Pro Ile Val Asp Ala Val Arg Gln Ser Asp Ile
                              30
                                                   35
                                                                        40
50
            gag tgg gtg cac gtt cga aat gag gaa gcg gcg ttt gca gcc ggt
                                                                                 497
            Glu Trp Val His Val Arg Asn Glu Glu Ala Ala Ala Phe Ala Ala Gly
                          45
                                               50
                                                                   55
```

5	gcg Ala	gaa Glu	tcg Ser 60	ttg L e u	atc lle	act Thr	ggg Gly	gag Glu 65	ctg L e u	gca Ala	gta Val	t.gt Cys	get Ala 70	gct Ala	tct Ser	t gt Cys	545
3	ggt Gly	cct Pro 75	gga Gly	aac Asn	aca Thr	cac His	ctg Lou 80	att Ile	cag Gln	ggt Gly	ctt Leu	tat Tyr 85	gat Asp	tcg Ser	cat His	cga Arg	593
10	aat Asn 90	ggt Gly	gcg Ala	aag Lys	gtg Val	ttg Leu 95	gcc Ala	atc Ile	gct Ala	agc Ser	cat His 100	att Ile	ccg Pro	agt Ser	gcc Ala	cag Gln 105	641
15	att Ile	ggt Gly	tcg Ser	acg Thr	ttc Phe 110	ttc Phe	cag Gln	gaa Glu	acg Thr	cat His 115	ccg Pro	gag Glu	att Ile	ttg Leu	ttt Phe 120	aag Lys	689
	gaa Glu	tgc Cys	tct Ser	ggt Gly 125	tac Tyr	tgc Cys	gag Glu	atg Met	gtg Val 130	aat Asn	ggt Gly	ggt Gly	gag Glu	cay Gln 135	ggt Gly	gaa Glu	737
20	cgc Arg	att Ile	ttg Leu 140	cat His	cac His	gcg Ala	att Ile	cag Gln 145	tcc Ser	acc Thr	atg Met	gcg Ala	ggt Gly 150	aaa Lys	ggt Gly	gtg Val	785
25	tcg Ser	gtg Val 155	gta Val	gtg Val	att Ile	cct Pro	ggt Gly 160	gat Asp	atc Ile	gct Ala	aag Lys	gaa Glu 165	gac Asp	gca Ala	ggt Gly	gac Asp	833
	ggt Gly 170	act Thr	tat Tyr	tcc Ser	aat Asn	tcc Ser 175	act Thr	att Ile	tct Ser	tct Ser	ggc Gly 180	act Thr	cct Pro	gtg Val	gtg Val	ttc Phe 185	881
30	ccg Pro	gat Asp	cct Pro	act Thr	gag Glu 190	gct Ala	gca Ala	gcg Ala	ctg Leu	gtg Val 195	gag Glu	gcg	att Ile	aac Asn	aac Asn 200	gct Ala	929
35	aag Lys	tct Ser	gtc Val	act Thr 205	ttg Leu	ttc Phe	tgc Cys	ggt Gly	gcg Ala 210	ggc Gly	gtg Val	aag Lys	aat Asn	gct Ala 215	cqc Arg	gcg Ala	977
	c ag Gln	gtg Val	ttg Leu 220	gag Glu	ttg Leu	gcg Ala	gag Glu	aag Lys 225	att Ile	aaa Lys	tca Ser	ccg Pro	atc Ile 230	ggg Gly	cat His	gcg Ala	1025
40	ctg Leu	ggt Gly 235	ggt Gly	aag Lys	cag Gln	tac Tyr	atc Ile 240	Gln	cat His	gag Glu	aat Asn	ccg Pro 245	ttt Phe	gag Glu	gtc Val	ggc Gly	1073
45	atq Met 250	Ser	qqc Gly	ctq Leu	ctt Leu	qgt Gly 255	Tyr	ggc	qcc Ala	tgc Cys	gtg Val 260	Asp	gcg Ala	tcc Ser	aat Asn	g a g Glu 265	1121
	gcg Ala	gat Asp	ctg Leu	ctg Leu	att 11e 270	Len	ttg Leu	ggt Gly	acg Thr	gat Asp 275	Phe	cct Pro	tat Tyr	tct Ser	gat Asp 280	Phe	1169
50				gac Asp 285	Asn					Asp					His		1217

5					acg Thr												1265
			-		att Ile	-			-	-	-			-	-		1313
10			_		atg Me t		-	-			_	-	-	_	-	- •	1361
15	_		-		aca Thr 350			-		-							1409
20			-	-	tct Ser		_			•		-	_	-			1457
					acc Thr												1505
25	-		_		gga Gly	_	_	-						-			1553
30					gcg Ala												1601
	Thr 410 cga	Met aac	Ala	Asn cag		Leu 415 atc	Pro gcg	His atg	Ala	Ile ggc	Gly 420 gat	Ala ggt	Gln ggt	Ser	Val ggc	Asp 425 atg	1601
<i>30</i>	Thr 410 cga Arg	Met aac Asn ctg	Ala cgc Arg	Asn cag Gln gag	Ala gtg Val	Leu 415 atc Ile	Pro gcg Ala acc	His atg Met	Ala tgt Cys	ggc Gly 435 ctg	Gly 420 gat Asp	Ala ggt Gly	Gln ggt Gly ctt	Ser ttg Leu ccg	Val ggc Gly 440 ctg	Asp 425 atg Met	
	Thr 410 cga Arg ctg Leu	Met aac Asn ctg Leu gtg	Ala cgc Arg ggt Gly	cag Gln gag Glu 445	Ala gtg Val 430 ctt	Leu 415 atc Ile ctg Leu	Pro gcg Ala acc Thr	His atg Met gtt Val	Ala tgt Cys aag Lys 450	ggc Gly 435 ctg Leu	Gly 420 gat Asp cac His	Ala ggt Gly caa Gln	Gln ggt Gly ctt Leu	ttg Leu ccg Pro 455	yal ggc Gly 440 ctg Leu	Asp 425 atg Met aag Lys	1649
35	Thr 410 cga Arg ctg Leu gct Ala	aac Asn ctg Leu gtg Val	Ala cgc Arg ggt Gly gtg Val 460	cag Gln gag Glu 445 ttt Phe	gtg Val 430 ctt Leu	Leu 415 atc Ile ctg Leu aac Asn	Pro gcg Ala acc Thr agt Ser	His atg Met gtt Val tct Ser 465	Ala tgt Cys aag Lys 450 ttg Leu	ggc Gly 435 ctg Leu ggc Gly	Gly 420 gat Asp cac His atg Met	Ala ggt Gly caa Gln gtg Val	Gln ggt Gly ctt Leu aag Lys 470 gag	ttg Leu ccg Pro 455 ttg Leu	yal ggc Gly 440 ctg Leu gag Glu	Asp 425 atg Met aag Lys atg Met	1649
35 40	Thr 410 cga Arg ctg Leu gct Ala ctc Leu ttc	aac Asn ctg Leu gtg Val 475 gca	Ala cgc Arg ggt Gly gtg Val 460 gag Glu	cag Gln gag Glu 445 ttt Phe gga Gly	gtg Val 430 ctt Leu aac Asn	Leu 415 atc Ile ctg Leu aac Asn cca Pro	Pro gcg Ala acc Thr agt Ser gaa Glu 480 gct	His atg Met gtt Val tct Ser 465 ttt Phe	Ala tgt Cys aag Lys 450 ttg Leu ggt Gly	ggc Gly 435 ctg Leu ggc Gly act Thr	Gly 420 gat Asp cac His atg Met	Ala ggt Gly caa Gln gtg Val cat His 485 tcg	Gln ggt Gly ctt Leu aag Lys 470 gag Glu gta	ttg Leu ccg Pro 455 ttg Leu gaa Glu	Val ggc Gly 440 ctg Leu gag Glu gtg Val	Asp 425 atg Met aag Lys atg Met aat Asn	1649 1697 1745

5	gga Gly	cct Pro	gta Val	ctg Leu 525	atc Ile	gat Asp	atc Ile	gtc Val	acg Thr 530	gat Asp	cct Pro	aat Asn	gcg Ala	ctg Leu 535	tcg Ser	atc Ile	1937
	cca Pro	cca Pro	acc Thr 540	atc Ile	acg Thr	tgg Trp	gaa Glu	cag Gln 545	gtc Val	atg Met	gga Gly	ttc Phe	agc Ser 550	aag Lys	gcg Ala	gcc Ala	1985
10	acc Thr	cga Arg 555	acc Thr	gtc Val	ttt Phe	ggt Gly	gga Gly 560	gga Gly	gta Val	gga Gly	gcg Ala	atg Met 565	atc Ile	gat Asp	ctg Leu	gcc Ala	2033
15								cct Pro		cca Pro	tgat	gatt	ga 1	tacad	cctgo	st	2083
	gtto	tcai	ttg a	accgo	gago	eg ct	taa	ctgc	c aac	catt	сса	ggat	ggc	agc 1	tcac	gccggt	2143
	gcc	atga	aga 1	tgc	cct												2160
20	<212	l > 5° 2 > Pi	RT	eb a ci	teri	nwa:	lutai	micu	ח								
25	<401)> 2								Ile 10	Asp	Thr	Leu	Glu	Ala 15	Gln	
30	Gly	Val	Lys	Arg 20		Tyr	Gly	Leu	Va l 25	Gly	Asp	Ser	Leu	Asn 30		Ile	
	Val	Asp	Ala 35	Val	Arg	Gln	Ser	Asp 40	Ile	Glu	Trp	Val	His 45	Val	Arg	Asn	
35		50					55			Ala		60					
	Glu 65	Leu	Ala	Val	Cys	Ala 70	Ala	Ser	Cys	Gly	Pro 75	Gly	Asn	Thr	His	Leu 80	
40	Ile	Gln	Gly	Leu	Tyr 85	Asp	Ser	His	Arg	As n 90	Gly	Ala	Lys	Val	Leu 95	Ala	
	He	Ala	Ser	His 100		Pro	Ser	Ala	Gln 105	Ile	Gly	Ser	Thr	Phe 110		Gln	
45	Glu	Thr	His 115		Glu	Ile	Leu	Phe 120		Glu	Cys	Ser	Gly 125		Суз	Glu	
50	Met	Val 130		Gly	Gly	Glu	Gln 135	_	Glu	Arg	Ile	Leu 140		His	Ala	Ile	
	Gln 145		Thr	Met	Ala	Gly 150		Gly	Val	Ser	Val 155		Val	Ile	Pro	Gly 160	

	Asp	He	Ala	Lys	Glu 165	Asp	Ala	Gly	Asp	Gly 170	Thr	Туr	Ser	Asn	Ser 175	Thr
5	Ile	Ser	Ser	Gly 180	Thr	Pro	Val	Val	Phe 185	Pro	Asp	Pro	Thr	Glu 190	Ala	Ala
	Ala	Leu	Val 195	G1 u	Ala	Ile	Asn	Asn 200	Ala	Lys	Ser	Val	Thr 205	Leu	Phe	Cys
10	Gly	Ala 210	Gly	Val	Lys	Asn	Ala 215	Arg	Ala	Gln	Val	Leu 220	Glu	l.eu	Ala	Glu
	Lys 225	Ile	Lys	Ser	Prc	11e 230	Gly	His	Ala	Leu	Gly 235	Gly	Lys	Gln	Tyr	Ile 240
15	Gln	His	Glu	neA	Pro 245	Phe	Glu	Val	Gly	Met 250	Ser	Gly	Leu	Leu	Gly 255	Tyr
	Gly	Ala	Суз	Val 260	Asp	Ala	Ser	Asn	Glu 265	Ala	Asp	Leu	Leu	11e 270	Leu	Leu
20	Gly	Thr	Asp 275	Phe	Prc	Tyr	Ser	As p 280	Phe	Leu	Pro	Lys	Asp 285	Asn	Val	Ala
	Gln	Val 290	Asp	Ile	Asn	Gly	Ala 295	His	Ile	Gly	Arg	Arg 300	Thr	Thr	Val	Lys
25	Tyr 305	Pro	Val	Thr	Gly	Asp 310	Val	Ala	Ala	Thr	Ile 315	Glu	Asn	Ile	Leu	Pro 320
	His	Val	Lys	Glu	Lys 325	Thr	qeA	Arg	Ser	Phe 330	Leu	Asp	Arg	Met	Leu 335	Lys
30	Ala	His	Glu	Arg 340	Lys	Leu	Ser	Ser	Val 3 4 5	Val	Glu	Thr	Tyr	Thr 350	His	Asn
35	Val	Glu	Lys 355	His	Val	Pro	Ile	His 360	Pro	Glu	Tyr	Val	Ala 365	Ser	Ile	Leu
	Asn	Glu 370	Leu	Ala	Asp	Lys	Asp 375	Ala	Val	Phe	Thr	Val 380	Asp	Thr	Gly	Met
40	Cys 385	Asn	Val	Trp	His	Ala 390	Arg	Tyr	Ile	Glu	Asn 395	Pro	Glu	G1 y	Thr	Arg 400
	Asp	Phe	Val	Gly	Ser 105	Phe	Arg	His	Gly	Thr 410	Met	Ala	Asn	Ala	Leu 415	Pro
4 5	His	Ala	Ile	Gly 4 20	Ala	Gln	Ser	Val	Asp 425	Arg	Asn	Arg	Gln	Val 430	Ile	Ala
	Met	Cys	Gly 435	qzA	Gly	G1 y	Leu	Gly 440	Met	Leu	Leu	Gly	Glu 445	Leu	Leu	Thr
50	Val	Lys 450	Leu	His	Gln	Leu	Pro 455	Leu	Lys	Ala	Val	Val 460	Phe	Asn	Asn	Ser
	Ser 465	Leu	Gly	Met	Val	Lys 470	Leu	Glu	Met	Leu	Val 475	Glu	G1 y	Gln	Pro	Glu 480

	Phe	Gly	Thr	Asp	His 485	Glu	Glu	Val	Asn	Phe 490	Ala	Glu	Ile	Ala	Ala 495	Ala	
5	Ala	Gly	Ile	Lys 500	Ser	Val	Arg	Ile	Thr 505	Asp	Pro	Lys	Lys	Val 510	Arg	Glu	
10	Gln	Leu	Ala 515	Glu	Ala	Leu	Ala	Tyr 520	Pro	Gly	Pro	Val	Leu 525	Ile	Asp	Ile	
	Val	Thr 530	Asp	Pro	Asn	Ala	Leu 535	Ser	Ile	Pro	Pro	Thr 540	Ile	Thr	Trp	Glu	
15	Gln 545	Val	Met	Gly	Phe	Ser 550	Lys	Ala	Ala	Thr	Arg 555	Thr	Val	Phe	Gly	Gly 560	
	Gly	Val	Gly	Ala	Met 565	Ile	Asp	Leu	Ala	Arg 570	Ser	Asn	Ile	Arg	Asn 575	Ile	
20	Pro	Thr	Pro														
25	<212 <212	0> 3 1> 87 2> DN 3> Co	AV	ah a a	·ori	van 67.	lut se	-i cu-	_								
		3> CC 0> 3	or Am	EDAC	.eii	un g.	lucai	итсш	et.								
30	acca gcaq	atggo ggtga	egg (gtaa: gtac	aggto ttati	gt gi	tcgg1	tggta ccaci	a gto	gatto ttct1	cctg	gtga	state ctcc1	ege 1	taagq ggtg1	cagtcc gaagac ttcccg	120 180
05	ttct	tgcg	gtg (cggg	cgtga	aa ga	aatgo	ctcg	c gc	gcag	gtgt	tgga	agtto	ggc (ggaga	actttg aagatt ccgttt	300
35	gage	gtcg	gca '	tgtc	tggc	ct g	cttg	gttad	c gg	egact	tgcg	tgga	atgc	gtc (caate	gaggcg gacaac	420
	gttq	gecea	agg '	tgga	tatca	aa c	ggtg	cgcad	c at	tggt	cgac	gtad	cac	ggt (gaagt	tatccg	540
	gtga	accg	gtg	atgt	tgct	gc a:	caat	toga	a aat	tatti	ttgc	ctca	atgte	gaa (ggaaa	aaaca	600
40	gate	egete	CCT '	cact.	tgato	eg ga	atget	ccaa	g gca	acac	gage	gtaa	agtt(gag (catta	gtggta gcctct	720
	atti	ttgaa	aca .	aget	aaca	ya ta	ayaq aagga	atoca	a ato	sttt	acta	taaa	stace	caa (cato	tgcaat	780
	gtgt	tggca	atg	cgag	gtac	at co	gagaa	atcc	g gad	gggaa	acgc	gcga	actti	tgt (gggt1	cattc	840
		cacgo									-	•					875

Patentansprüche

50

- 1. Isoliertes Polynukleotid enthaltend eine Polynukleotidsequenz, ausgewählt aus der Gruppe
 - a) Polynukleotid, das zu mindestens 70 % identisch ist mit einem Polynukleotid, das für ein Polypeptid codiert, das die Aminosäuresequenz von SEQ ID No. 2 enthält,
 - b) Polynukleotid, das für ein Polypeptid codiert, das eine Aminosäuresequenz enthält, die zu mindestens 70 % identisch ist mit der Aminosäuresequenz von SEQ ID No. 2,

- c) Polynukleotid, das komplementär ist zu den Polynukleotiden von a) oder b), und
- d) Polynukleotid, enthaltend mindestens 15 aufeinanderfolgende Basen der Polynukleotidsequenz von a), b) oder c).
- Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine replizierbare, bevorzugt rekombinante DNA ist.
- 3. Polynukleotid gemäß Anspruch 1, wobei das Polynukleotid eine RNA ist.
- 4. Polynukleotid gemäß Anspruch 2, enthaltend die Nukleinsäuresequenz wie in SEQ ID No. 1 dargestellt.
- 5. Polynukleotidsequenz gemäß Anspruch 2, die für ein Polypeptid codiert, das die Aminosäuresequenz in SEQ ID No. 2 darstellt, enthält.
 - Replizierbare DNA gemäß Anspruch 2, enthaltend

5

10

20

25

35

- (i) die Nukleotidsequenz, gezeigt in SEQ-ID-No. 1, oder
- (ii) mindestens eine Sequenz, die der Sequenz (i) innerhalb des Bereichs der Degeneration des genetischen Codes einspricht, oder
- (iii) mindestens eine Sequenz, die mit der zur Sequenz (i) oder (ii) komplementären Sequenz hybridisiert, und gegebenenfalls
- (iv) funktionsneutrale Sinnmutanten in (i)
- 30 7. Vektor, enthaltend das Polynukleotid gemäß Anspruch 1, insbesondere Punkt d, hinterlegt in E.coli, DSM 13114.
 - 8. Als Wirtszelle dienende coryneforme Bakterien, die eine Deletion oder eine Insertion in dem poxB-Gen enthalten.
 - Verfahren zur Herstellung von L-Aminosäuren, insbesondere L-Lysin, dadurch gekennzeichnet,
 - daß man folgende Schritte durchführt,
 - a) Fermentation der die gewünschte L-Aminosäure produzierenden Bakterien, in denen man zumindest das poxB-Gen abschwächt,
 - b) Anreicherung des gewünschten L-Aminosäure im Medium oder in den Zellen der Bakterien, und
 - c) Isolieren der L-Aminosäure.
 - Verfahren gemäß Anspruch 9,
 - dadurch gekennzeichnet,
- 45 daß man Bakterien einsetzt, in denen man zusätzlich weitere Gene des Biosyntheseweges der gewünschten L-Aminosäure verstärkt.
 - 11. Verfahren gemäß Anspruch 9,
 - dadurch gekennzeichnet,
- 50 daß man Bakterien einsetzt, in denen die Stoffwechselwege zumindest teilweise ausgeschaltet sind, die die Bildung der gewünschten L-Aminosäure verringern.
 - 12. Verfahren gemäß Anspruch 9,
 - dadurch gekennzeichnet,
 - daß man die Expression des Polynukleotids gemäß Anspruch 1, insbesondere 1 a bis 1 c verringert.
 - Verfahren gemäß Anspruch 9, dadurch gekennzeichnet,

daß man die katalytischen Eigenschaften des Polypeptids (Enzymproteins) herabsetzt, für das das Polynukleotid gemäss Anspruch 1, insbesondere 1 a bis 1 c codiert.

14. Verfahren gemäß Anspruch 9,

5

10

15

20

25

.35

40

50

55

dadurch gekennzeichnet,

daß man Bakterien einsetzt, in denen man zur Abschwächung die Integrationsmutagenese mittels des Plasmids pCR2.1poxBint, dargestellt in Figur 1 und hinterlegt als DSM 13114, oder eines seiner Bestandteile verwendet.

15. Verfahren gemäß Anspruch 9,

dadurch gekennzeichnet,

daß man für die Herstellung von L-Lysin Bakterien fermentiert, in denen man gleichzeitig eines oder mehrere Gene überexprimiert, ausgewählt aus der Gruppe

- das f
 ür die Dihydrodipicolinat-Synthase kodierende dapA-Gen,
- das die S-(2-Aminoethyl)-Cystein-Resistenz vermittelnde DNA-Fragment,
- das die Pyruvat-Carboxylase kodierende pyc-Gen,
- das Gen für die Succinyldiaminopimelate-Desuccinylase kodierende dapE Gen
- das für die Glyceraldehyd-3-Phosphat Dehydrogenase kodierende dap-Gen
- das für die Malat: Chinon Oxidoreduktase kodierende mgo-Gen
- das für den Lysin-Export kodierende lysE-Gen.
- Verfahren gemäß einem oder mehreren der vorhergehenden Ansprüche, dadurch gekennzeichnet,
- daß man Mikroorganismen der Gattung Corynebacterium glutamicum einsetzt.

Figur 1: Plasmidkarte pCR2.1poxBint

