

Solution of Ordinary Differential Equations (Initial Value Problems) - Lecture 02

Dr. Serhat Hosder

Associate Professor of Aerospace Engineering

Mechanical and Aerospace Engineering

290B Toomey Hall

Missouri S&T

Rolla, MO 65409

Phone: 573-341-7239

E-mail: hosders@mst.edu

AE/ME 5830 Spring 2018

Outline

- Multi-Step Methods for the solution of an Initial Value Problems
- Adams-Bashforth Methods (Open or explicit multi-step methods)

Multi-Step Methods

Single step methods use data at a single point to advance the solution to the next step. The Euler Explicit method is an example of such a method.

Methods that use data at more than one mesh point to determine the next approximation to the solution of the ODE are called multi-step methods.

Multi-step methods require starting values that should be obtained by self-starting methods of equivalent order.

Not surprisingly, multi-step methods can be derived by integrating polynomials that pass through specified data points.

We will begin our discussion of multi-step methods by examining the Adams-Bashforth family of explicit multi-step methods.

Adams-Bashfort Method (Open or Explicit Formulas)

Again, we consider the initial value problem

$$\frac{dy}{dt} = f(t, y) \quad ; \quad y(a) = y_0 \qquad a \le t \le b$$

Expand $y(t_{i+1}) \equiv y_{i+1}$ in a Taylor series about t_i

$$y_{i+1} = y_i + hy_i' + \frac{h^2}{2!}y_i'' + \frac{h^3}{3!}y_i''' + \cdots$$
 But $y' = f;$ $y'' = f';$ $y''' = f'';$ etc. i.e., $y_{i+1} = y_i + hf_i + \frac{h^2}{2}f_i' + \frac{h^3}{6}f_i'' + \cdots$

Replace f'_i by a first order backward difference + it's error term

$$y_{i+1} = y_i + h \left\{ f_i + \frac{h}{2} \left[\frac{f_i - f_{i-1}}{h} + \frac{h}{2} f_i'' + \mathcal{G}(h^2) \right] + \frac{h^2}{6} f_i'' + \cdots \right\}$$

AE/ME 5830 Spring 2018

Adams-Bashfort Method (Open or Explicit Formulas)

Grouping terms yields:

$$y_{i+1} = y_i + h \left[\frac{3}{2} f_i - \frac{1}{2} f_{i-1} \right] + \frac{5}{12} h^3 f_i'' + \mathcal{G}(h^4)$$

Thus the Adams-Bashforth Two-Step Explicit Method is:

$$w_{i+1} = w_i + h \left[\frac{3}{2} f_i - \frac{1}{2} f_{i-1} \right] \quad \forall i = 1, 2, \dots N - 1$$

with $w_0 = y_0$, $w_1 = \alpha_1$

Note that the method is not self-starting. That is to say that it requires some method to generate w_I to get it started. The local truncation error is $\mathcal{G}(h^2)$.

The higher order Adams-Bashforth formulas can be derived in a similar fashion. They can be generalized using backward difference polynomials.

Higher-Order Adams Bashforth Methods

Adams-Bashforth three step method (i=2,3,...N-1)

$$w_{i+1} = w_i + \frac{h}{12} \left[23f_i - 16f_{i-1} + 5f_{i-2} \right] \quad ; \left[TE = \frac{3}{8} y^{iv} (\mu_i) h^3 \right]$$

Adams-Bashforth four step method (i=3,4,...N-1)

$$w_{i+1} = w_i + \frac{h}{24} \left[55 f_i - 59 f_{i-1} + 37 f_{i-2} - 9 f_{i-3} \right] \quad ; \left[\text{TE} = \frac{251}{720} y^{\nu} (\mu_i) h^4 \right]$$

Adams-Bashforth five step method (i=4,5,...N-1)

$$w_{i+1} = w_i + \frac{h}{720} \left[1901 f_i - 2774 f_{i-1} + 2616 f_{i-2} - 1274 f_{i-3} + 251 f_{i-4} \right]$$

;
$$TE = \frac{95}{288} y^{vi}(\mu_i) h^5$$

; $|TE = \frac{95}{288} y^{vi}(\mu_i) h^5$ Starting values for each of these methods must be obtained. (Runge-Kutta is a common approach for starting these methods).

AE/ME 5830 Spring 2018 6

Adams-Bashforth 2 Step Example

This is our last example that we did with the Euler explicit method

$$\frac{dy}{dt} = y - t^2 + 1 \qquad y(0) = 0.5 \qquad 0 \le t \le 2$$
The exact solution is:
$$y(t) = (1+t)^2 - e^t / 2$$

$$y(t) = (1+t)^2 - e^t / 2$$

h=0.2

i	Time	Exact	Euler	Euler Exp.	Adams - Bash .	AB 2Step
		Solution	Explicit	Error	2-Step	Error
0	0.	0.5	0.5	0.	0.5	0.
1	0.2	0.829299	0.8	- 0.0292986	0.8	- 0.02 92986
2	0.4	1.21409	1.152	- 0.0620877	1.178	- 0.0360877
3	0.6	1.64894	1.5504	- 0.0985406	1.6074	- 0.04 15406
4	0.8	2.12723	1.98848	- 0.13875	2.07982	- 0.04 74095
5	1.	2.64086	2.45818	- 0.182683	2.58703	- 0.0 <mark>5</mark> 38331
6	1.2	3.17994	2.94981	- 0.23013	3.11915	- 0.0607897
7	1.4	3.7324	3.45177	- 0.280627	3.66419	- 0.0682053
8	1.6	4.28348	3.95013	- 0.333356	4.20754	- 0.0 <mark>7</mark> 59458
9	1.8	4.81518	4.42815	- 0.387023	4.73138	- 0.08 37964
10	2.	5.30547	4.86578	- 0.439687	5.21404	-0.0914319

Euler explicit method was used to start the AB 2-step method. Note the much smaller error of AB 2 step as time advances.

AE/ME 5830 Spring 2018

Adams-Bashforth 2 Step Example

Note that the errors are the same after the first step since I used the Euler explicit method to start the AB 2-Step method. However, the errors are much smaller with the AB 2-Step method as time advances.

Summary

In this lecture we have

- Learnt Adams-Bashforth (explicit) family of schemes obtained using backward differences
- Demonstrated the application of 2-step Adams-Bashforth method on an example problem.