总框架

一、计算

(2) 双数计算
$$\left\{ \begin{array}{c} \textcircled{6} + \\ \\ \times \\ \textcircled{9} A^k \end{array} \right.$$

二、 应用

- (1) 方程组 = ⑤⑦
- (2) 向量 = 方程组+①
- (3) 特征值类 = 向量+248

扫码免费观看网课

高等数学+线性代数

20闻彬考研必过答疑群

向量的正交

一、向量的正交

(1) 向量的正交

定义 当向量的内积 $\alpha^T \beta = 0$ 时,称向量 α 与 β 正交,

几何意义 两向量正交,即两向量互相垂直。 特例 若 $\alpha = 0$,则 α 与任何向量都正交。

(2) 单位向量

向量的长度 用 $\|\alpha\|$ 表示,若 $\alpha = \begin{bmatrix} x \\ y \end{bmatrix}$,则 $\|\alpha\| = \sqrt{x^2 + y^2}$

若
$$\alpha = \begin{bmatrix} x \\ y \\ z \end{bmatrix}, \|\alpha\| = \sqrt{x^2 + y^2 + z^2}$$

单位向量 若 $|\alpha|=1$,称 α 为单位向量。

(3) 施密特正交化

①正交化

$$\beta_1 = \alpha_1$$

$$\beta_2 = \alpha_2 - \frac{(\alpha_1, \alpha_2)}{(\alpha_1, \alpha_1)} \alpha_1$$

2单位化

$$\gamma_1 = \frac{\beta_1}{\|\beta_1\|}$$

$$\gamma_2 = \frac{\beta_2}{\|\beta_2\|}$$

二、求"正交向量"的一般步骤

1. 3个向量,两两正交,已知其中2个向量,求第3个向量的一般步骤:

- (1) 设未知数
- (2) 列方程组
- (3) 解方程组
- (4) 答

2. 3个向量,两两正交,已知其中1个向量,求其他2个向量的一般步骤:

- (1) 设未知向量
- (2) 列方程组
- (3) 解方程组
- (4) 正交化
- (5) 答

三、正交矩阵

定义 列向量都是单位向量,且两两正交,这样的方阵叫做~。

特例 单位向量 $\begin{bmatrix} 1 \\ 0 \\ 1 \\ 0 \end{bmatrix}$, $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ 的组合,如 $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$, 等。

定理 如果 A 为正交矩阵,那么 $A^T A = E(\mathbb{P} A^{-1} = A^T)$,反之亦然。

正交变换 若P为正交矩阵,则线性变换y = Px称为 \sim 。

已知向量
$$\alpha = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
,向量 $\beta = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$ 正交,试求一个非零向量 γ ,使 α, β, γ 两两正交。

老5

462 -

(1)设未知数何意

$$i\hat{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$$

四到方彩组

$$0: Y \perp d$$

$$\therefore \chi^{T}Y = 0$$

$$\therefore x_{1} + x_{2} + x_{3} = 0$$

$$\exists : Y \perp \beta$$

$$\therefore \beta^{T} Y = 0$$

$$\vdots \quad \chi_{1} - \chi_{2} = 0$$

(3) 4733 42 $5 = \begin{bmatrix} -1 \\ -2 \end{bmatrix}$ 34; $1 = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = k!$ (k > 12 > 42)

已知向量
$$\alpha = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
,向量 $\beta = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix}$,试对这 2 个向量进行施密特正交化。

级: ① 正文化

 $Y_1 = \frac{\alpha_1}{||\alpha_1||} = \frac{\alpha_1}{\sqrt{2}} = \begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$

$$y_2 = \frac{\alpha_2}{||\alpha_2||} = \frac{\alpha_2}{2} = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

更多干货 请关注微博 @考研数学闻彬 已知向量 $\alpha = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}$, 试求 2 个非零向量 β, γ ,使 α, β, γ 两两正交。

华:①设未知向专

①到方務俱

 $364: k_1 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + k_2 \begin{bmatrix} -1 \\ 0 \end{bmatrix} = k_1 \xi_1 + k_2 \xi_2$

 $\beta_{1} = \xi_{1}$ $\beta_{2} = \frac{(\xi_{1}, \xi_{2})}{(\xi_{1}, \xi_{1})} \xi_{1}$

 $\beta = \beta_1 = \begin{cases} 1 = \begin{bmatrix} 1 \\ 1 \end{bmatrix} \\ \gamma = \beta_2 = \begin{bmatrix} -\frac{1}{2} \\ \frac{1}{2} \end{bmatrix}$

4月: ① 面面を支? (2) (3) から年位何复

$$2P = [P_1, P_2, P_3]$$
 $||P_1|| = \sqrt{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}}$
 $||P_1|| = \sqrt{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}}$
 $||P_2|| = \sqrt{\frac{1}{2} + \frac{1}{3}}$
 $||P_2|| = \sqrt{\frac{1}{2} + \frac{1}{3}}$
 $||P_3|| = \sqrt{\frac{1}{6} + \frac{1}{6}}$
 $||P_3|| = \sqrt{\frac{1}{6} + \frac{1}{6}}$

特征值与特征向量

一、矩阵 A 的特征值与特征向量

1. 特征值

(1) 定义

特征值 设A 是n 阶矩阵,如果数 λ 和n 维非零列向量 ξ ,能使 $A\xi = \lambda\xi$ 成立,那么数 λ 称为A 的 \sim 。 $A\xi = \lambda\xi$ 也可以写成 $(\lambda E - A)\xi = 0$ 。

特征方程 $|\lambda E - A| = 0$, 称为 A 的特征方程。故 n 阶矩阵 A 有 n 个特征值。

(2) 公式

加法公式 $\lambda_1 + \lambda_2 + \lambda_3 = a_{11} + a_{22} + a_{33}$

乘法公式 $\lambda_1 \lambda_2 \lambda_3 = A$

因为 λ 有2个定义,2个公式,所以可以简称为"2+2"。

2. 特征向量

(1) 定义

设A是n阶矩阵,如果数 λ 和n维非零列向量,能使 $A\xi = \lambda \xi$ 成立,那么数 λ 称为A的特征值,非零向量 ξ 称为A的对应于特征值 λ 的特征向量。

- (2) 公式(性质)
 - ▶ 1 重特征值对应的所有特征向量为 $k\xi(k \neq 0)$
 - **≥** 2 重特征值对应的所有特征向量为 $k\xi$ 或 $k_1\xi_1+k_2\xi_2(k_1,k_2,k_3\neq 0)$
 - ▶ 不同的特征值对应的特征向量,线性无关

因为 ξ 有1个定义,1张图,所以可以简称为"1+1"。

注: 当特征值和特征向量在题目中同时出现时,应优先分析特征向量。

二、f(A)的特征值与特征向量

1. f (A)

如果 A 的特征值为 λ , 其对应的特征向量为 ξ , 那么以下矩阵的特征值和特征向量分别为:

矩阵	0	Ε	kA	A^{k}	f(A)	A^{-1}	A^*	$f(A) + A^{-1} + A^*$
特征值	0	1	kλ	λ^{k}	f(λ)	$\frac{1}{\lambda}$	$\frac{ A }{\lambda}$	$f(\lambda) + \frac{1}{\lambda} + \frac{ A }{\lambda}$
对应的 特征向量	_	_	5	ξ,	ξ	ξ	5	ξ

其中: $f(A) = a_0 E + a_1 A + \dots + a_m A^m$ 是矩阵 A 的多项式,

$$f(\lambda) = a_0 + a_1 \lambda + \dots + a_m \lambda^m$$
 是 λ 的多项式。

2. f(A) = 0

如果 A 的特征值为 λ , 且矩阵 A 满足 f(A)=0, 则 $f(\lambda)=0$ 。

三、"数值矩阵"特征值 γ 与特征向量 ξ 的求法

- (1) $|\lambda E A| = 0$ ⇒特征值 λ
- (2) $(\lambda E A)x = 0$ ⇒ 特征向量 ξ

注:对角矩阵,三角矩阵的特征值口算即可求出

扫码免费观看网课

高等数学+线性代数

20闻彬考研必过答疑群

入二土

 $\lambda_1 = 1$, λ_2

(2017) 设矩阵
$$A = \begin{pmatrix} 4 & 1 & -2 \\ 1 & 2 & a \\ 3 & 1 & -1 \end{pmatrix}$$
的一个特征向量为 $\begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$,则 $a = -1$

$$A \longrightarrow \emptyset + \emptyset$$

$$A : ' \cdot A = \lambda$$

$$A : A = \lambda$$

$$A :$$

更多干货 请关注微博 @考研数学闻彬 (2015) 设 3 阶矩阵 A 的特征值为 (2, -2, 1), $B = A^2 - A + E$, 其中 E 为 3 阶单位矩阵,则行列式 |B| = 2.

A -f(A) \sqrt

研:设Aが特征位为入 例Bの特征位为于(入)=プー入ナト

·! $\lambda = 2, -2, |$

二f(X)=3,7,1,即为3分特征值

-- 13 = 3×7×1 =21

$$A_{1} = \lambda$$

$$B_{1} = \lambda$$

$$B_{2} = \lambda$$

$$B_{2} = \beta \cdot \lambda = \lambda$$

· 及可为特征位为2, 其对应特征向差分月

设 $A \neq 2$ 阶矩阵,且满足 $A^2 + A - 6 = Q$. 则 |A + 5E| = 4.

42 :

$$(\lambda + 3)(\lambda - 2) = 0$$

$$\lambda_1 = -3$$
, $\lambda_2 = 2$

A+5E加特征值:2,7

求矩阵
$$A = \begin{pmatrix} -1 & 1 & 0 \\ -4 & 3 & 0 \\ 1 & 0 & 2 \end{pmatrix}$$
 的特征值和特征向量.

好: (1) 求特证值

$$|\lambda E - A| = \begin{vmatrix} \lambda + 1 & -1 & 0 \\ 4 & \lambda - 3 & 0 \\ -1 & 0 & \lambda - \lambda \end{vmatrix} = (\lambda - 2)(\lambda - 1)^{2}$$

$$\therefore \lambda_{1} = \lambda_{2} = \lambda_{3} = 1$$

(2) 求特征向党

k, {, (k, ≠0)为对应于入,=2为气部特征向到

设(1)
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$$
, (2) $B = \begin{bmatrix} 3 & 0 & 0 \\ 0 & 3 & 0 \\ 0 & 0 & 3 \end{bmatrix}$, 求A, B的特征值.
 $A = \begin{bmatrix} \lambda + 1 & -1 & 0 \\ 0 & \lambda - 2 \end{bmatrix} = \begin{bmatrix} \lambda + 1 & -1 & 0 \\ 0 & \lambda - 2 \end{bmatrix} = \begin{bmatrix} \lambda + 1 & 1 \\ \lambda - 2 & \lambda - 2 \end{bmatrix}$

$$A = \begin{bmatrix} \lambda \\ \lambda - 2 \end{bmatrix} = \begin{bmatrix} \lambda \\ \lambda - 3 \\ \lambda - 3 \end{bmatrix} = \begin{bmatrix} \lambda \\ \lambda - 3 \\ \lambda - 3 \end{bmatrix} = \begin{bmatrix} \lambda \\ \lambda - 3 \\ \lambda - 3 \end{bmatrix} = \begin{bmatrix} \lambda \\ \lambda - 3 \end{bmatrix}$$

$$A = \begin{bmatrix} \lambda \\ \lambda - 3 \end{bmatrix} = \begin{bmatrix} \lambda \\$$