Brooklyn College

FINAL EXAM Instructor: T. Hauner

This exam is closed book. No graphing calculators or cell phones are allowed. No bathroom breaks are permitted while taking the exam. Good luck!

1 Multiple Choice (2 points each)

 $\lim_{x \to 2^+} \frac{\sqrt{x+2} - \sqrt{x}}{x-2}$ Find the limit if it exists: (1)

- (A) 0
- (B) $\frac{2-\sqrt{2}}{0}$ (C) ∞ (D) $-\infty$

(2) Fill in the blanks: A derivative _____ the ____ change of a function for a given Δx .

(A) equals, horizontal

- (C) equals, vertical
- (B) approximates, horizontal
- (D) approximates, vertical

Suppose that the value V of a machine depreciates with time t (measured in months) at **(3)** the rate $V(t) = 5 + e^{-0.15t+2}$. Find $\lim_{t\to\infty} V(t)$

- (A) 0
- (B) 5
- (C) 7 (D) 12

Find the average rate of change for $f(x) = \sqrt{2x}$ if x increases from 2 to 18. **(4)**

- (A) $\frac{1}{4}$
- (B) $\frac{1}{2}$
- (C) $\frac{-3}{10}$

Find the instantaneous rate of change for $f(x) = \sqrt{2x}$, at x = 18. (5)

- (A) 6

- (B) $\frac{1}{6}$ (C) $\frac{1}{6\sqrt{2}}$ (D) $\frac{1}{2\sqrt{2}}$

A firm faces the profit function $P(x) = -3x^3 + 9x + 9$. At what output level is profit **(6)** maximized?

- (A) $x = 0, \frac{4}{9}$
- (B) x = 1, -1 (C) $x = \sqrt{3}$ (D) x = 1

Suppose the firm in question (6) doubles production, from x=1 to x=2. What is the (7)marginal profit of producing the 2^{nd} unit?

- (A) 12
- (B) \$0
- (C) -\$27

Solve the matrix equation AX = B for $X = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, where $A = \begin{bmatrix} 5 & 6 \\ 4 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ (8)

- $(A) \begin{bmatrix} -7 \\ 6 \end{bmatrix} \qquad (B) \begin{bmatrix} 7 \\ -6 \end{bmatrix} \qquad (C) \begin{bmatrix} 5 & -6 \\ -4 & 5 \end{bmatrix} \qquad (D) \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

(9) Let $A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and $B = \begin{bmatrix} 6 & 1 & 3 \\ 47 & 7 & 1 \\ 1 & 8 & 2 \end{bmatrix}$. Find the product AB if possible.

- (A) $\begin{bmatrix} 6 & 1 & 3 \\ 47 & 7 & 1 \\ 1 & 8 & 2 \end{bmatrix}$ (B) $\begin{bmatrix} 6 \\ 47 \\ 1 \end{bmatrix}$ (C) $\begin{bmatrix} 6 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ (D) $\begin{bmatrix} 6 & 1 & 3 \end{bmatrix}$

Brooklyn College

(10) If f'(x) = 2x + 4 and the graph of f(x) is given below, what is f(x)?

(B)
$$f(x) = 2x^2 + 4x$$

(C)
$$f(x) = \frac{1}{2}x^2 + 4x$$

(D)
$$f(x) = (x-2)^2 - 4$$

2 Short Answer (3 points each)

Remember: number problems clearly, show all of your work, and circle your final answer.

- (11) Is the matrix $N = \begin{bmatrix} -1 & -1 & 1 \\ -2 & -1 & 2 \\ -1 & -1/2 & 3/2 \end{bmatrix}$ the inverse of matrix $M = \begin{bmatrix} 1 & -2 & 2 \\ -2 & 1 & 0 \\ 0 & -1 & 2 \end{bmatrix}$?
- (12) Labor and material costs for producing two guitar models are given:

Model	Labor	Material
\overline{A}	\$30	\$20
B	\$40	\$30

In week 1, \$1,800 is allocated to labor and \$1,200 to materials. In week 2, \$1,750 and \$1,250 are. Use matrix equations to solve the quantities of each model, a and b, to produce each week.

- (13) A new firm lacks a functional model of their revenue. Fortunately, they've hired an analyst (you!) to help them *approximate* the change in their revenue from increasing production by from 55,700 to 56,300 units. Given that their marginal revenue when producing 55,700 units was \$18,000, what is their estimated change in revenue?
- (14) (i) Show that the *limit* of the difference quotient for $f(x) = \frac{1}{x}$ is equal to its derivative, f'(x), as found using derivative properties. (HINT: $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$)
 - (ii) Graph f(x), evaluate f'(2), then write the equation of the tangent line at x=2 and graph. (HINT: $y-y_1=m(x-x_1)$)