## "Multitask Principal-Agent Analyses"

A discussion of Milgrom and Holmstrom JLEO '91

## Introduction







The Teacher Example

# Diverse Levels of Measurability Shape Incentive Design

## **Incomplete Contracts and Multi-Task**









**Incomplete Contracts** 

Focus on *Ownership* (Opportunistic Bargaining)

Multitask Principal-Agent

Incentive design given there is a principal

## Model

## **Timeline**

| 1                                         | 2                                          | 3                                                                     | 4                                                                                    |
|-------------------------------------------|--------------------------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| Principal commits to wage function $w(x)$ | Agent chooses efforts $t \in \mathbb{R}^k$ | Principal observes contractible parameters $x = \mu(t) + \varepsilon$ | Agent resp. principal get payoffs $\mathbb{E}[u(w(x)-C(t))]$ $\mathbb{E}[B(t)-w(x)]$ |

Functional Forms  $u(w) = -e^{-rw}$   $arepsilon \sim N(0,\Sigma)$ 

## **Tractability**

- **Theorem** (Holmstrom-Milgrom '87):
  - If all past performance indicators are available to the agent, and
  - time horizon is fixed

then **wages** only depend on the final stage and **are linear** in the aggregate contractible characteristics.

$$\boldsymbol{w}(\boldsymbol{x}) = \alpha \boldsymbol{x} + \boldsymbol{\beta},$$

 $\alpha$  commission rate,  $\beta$  wage

- → (+Normality) Maximise certainty equivalent.
- → Derive First-Order Conditions for the problem.

### **Incentive Measures Considered**



## **Two Predictions**

## Fixed wage can be optimal

- If agents have to subdivide **attention**  $C(t_{\text{test}}, t_{\text{curiosity}}) = C(t_{\text{test}} + t_{\text{curiosity}})$
- and student's curiosity is hard to measure:  $x = \mu(\ell_{\text{test}}, \ell_{\text{curiosity}}) + \varepsilon = \ell_{\text{test}} + \varepsilon$
- then any performance-based pay will induce teacher to substitute away from \( \ell\_{\text{curiosity}} \)
- This lowers principal's payoff  $\mathbb{E}[B(t_{\text{test}}, t_{\text{curiosity}}) w(x)]$  (If the agent likes to work a bit even without commission.)

## Make or Buy (Contractor or Employee)

- There is an asset (e.g. goodwill) whose value is unmeasurable. (attention-division still assumed.)
- Employment: agent gets returns of asset
- Contracting: principal gets returns of asset

#### **Employment**:

- Agent get a fixed wage
- No performance-based incentives not to shift attention away from asset-building

#### **Contracting**:

- Agent gets a positive commission
- Performance-based incentives to shift attention *towards* work for firm





# Extension/ Variation

(Holmström-Milgrom AER '94) Multiple Measurable Efforts

- If agent splits attention,
  levels of incentives for different tasks matter
- → Incentive instruments are **complements** under variation of measurement precision.
- E.g.: under exogenous improvement of output, the optimal
  - commission rate
  - measure of ownership of the agent
  - o permission level of outside activities
- **jointly** increase.