

厦门大学 RM2021 技术报告 Hero 英雄机器人

组长: 林越峣

组员: 王晨浩、林羿朴、曹浟扬

一、需求确定

根据规则要求,英雄机器人要能实现发射 42mm 大弹丸,移动性能良好,在满足功率限制的情况下,能够实现对前哨战、哨兵机器人、敌方基地的吊射。英雄机器人弹丸伤害巨大。在比赛中起决定性作用。在比赛中,英雄机器人需要迅速的攻下对方前哨战,对弹道的准确性,移动的快速性要求较大。同时因为英雄机器人内置 100 颗 42mm 大弹丸,重量较大,需要设计良好的减震模块。

二、结构设计

优化现有的拨弹轮结构,采用下供弹方式,降低英雄机器人的中心;在弹道轨道中增加弹簧,降低弹丸与轨道之间摩擦力,提高发射精度;为发射口设置软限位,相对固定弹丸发射前的位置,提高弹道的精确度;为上述云台发射系统研制配套底盘,设计全新的底盘以追求更高的机械效率,并加大复合材料使用比例以减轻重量,同时提高越野能力以适应新规则。

1. 如下图所示,自主设计的多级软限位系统,最大限度的稳定弹丸与摩擦轮接触前的位置,减少接触位置不确定带来的偏差。

2.如下图所示,新设计的拨弹轮可以更流畅地供弹。

3. 下供弹弹丸轨迹如下图所示

4.采用 7075 铝合金制作枪管,提高了发射的稳定性。

5. 全新的配套的底盘,与现有底盘相比提高越野性能,减轻重量,提高机械效率。

三、程序设计

四、电路设计

五、系统分析

考虑到现有的加工设备,零件多设计为板件,复杂结构零件采用 3D 打印方式制作。考虑靠拆卸装配,轴承孔配合选取 K6/k6 配合。在设计的时候尽量使用可以买到的标准件来降低成本。

对云台地盘连接板进行有限元分析,结果如图所示,结构较为稳定,满足使用要求。

六、人机工程

底盘部分采用型材连接,结构较为稳定,同时方便搬运。

七、工业设计

机器人采用框架式结构,通过预留安装孔位,将机器人硬件部分固定在框架内。避免线束、重要硬件外露的 同时,增强机器人的稳定性与美观性。

八、成本控制

考虑到现有的加工设备,零件多设计为板件,复杂结构零件采用 3D 打印方式制作。考虑靠拆卸装配,轴承孔配合选取 K6/k6 配合。在设计的时候尽量使用可以买到的标准件来降低成本。

九、BOM 表

零件名称	材料
底盘框架	铝合金型材
轮组固定板	玻纤板
轮组加固	玻纤板
轮组电机保护	PLA
轴承压片	PLA
卡弹保护	PLA
减震安装	玻纤板
抵消力矩	铝合金
弹舱	PLA
枪管	铝合金
弹道轨道	PLA
弹道固定	玻纤板
俯仰连杆	玻纤板
电机固定	铝合金
云台发射连接板	铝合金