

SVHN DIGIT RECOGNITION

DEEP LEARNING PROJECT

MIT Applied Data Science Program

Elective Project: Deep learning
Delia McNamara
29 July 2024

CONTENTS / AGENDA

- → Business Problem Overview and Solution Approach
- $\rightarrow \textbf{Data Preprocessing for ANNs}$
- \rightarrow Model Performance Summary for ANNs
- \rightarrow Data Preprocessing for CNNs
- \rightarrow Model Performance Summary for CNNs
- → Conclusion

BUSINESS PROBLEM OVERVIEW & SOLUTION APPROACH

- → Seeking to create a neural network model to identify numerical digits in images.
- → SVHN dataset utilized for model training & testing.
 - Pre-labeled images obtained from Google Street View containing numerical digits.
 - **♦ Images cropped prior to import to contain only digits.**
- → Neural network created will be able to identify digits contained within images without any further external image processing.
- → Artificial neural network (ANN) modeling will be performed for initial modeling.
- → Convolutional neural network (CNN) modeling will be performed to determine the suitability of convolution for this dataset.
- → The best model of all ANNs & CNNs created will be recommended for use in digit identification.

DATA PREPROCESSING FOR ANNS

DATA OVERVIEW

→ 60,000 labeled images from Street View House Numbers (SVHN) dataset.

Label for each of the above images: 2, 6, 7, 4, 4, 0, 3, 0, 7, 3.

Example images from SVHN dataset. Images include digits 0-9.

Metadatum	Value
Image size (px)	32 x 32
Color channels	1 (grayscale)
No. images	60,000

ANN PREPROCESSING

- **▲** Dataset pre-split for model training & validation.
 - ♦ 42,000 images to train (70%).
 - **♦ 18,000 images to test (30%).**

- **→** Flattened independent variable 32 x 32 px images into 1D arrays.
 - **♦ Length 1,024 channel values per image.**

NON-NORMALIZED

33.0704	30.2601	26.852	•••	49.6682	50.853	53.0377

NORMALIZED

- 0.12969 0.11867 0.1053 ... 0.19478 0.1994 0.20799

 One-hot encoded dependent variable for modeling.
- ▲ Normalized independent variable to values between 0 and 1.
 - ♦ Previously 0-255.

Y	
ო	
4	
1	
0	
8	

0	1	2	3	4	5	6	7	8	9
0	0	0	1	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0

△ One-hot encoded dependent variable for modeling.

NEW DATASET SHAPE

Variable	Dimension	Attributes
X (train)	42,000 x 1,024	Normalized 1D array
X (test)	18,000 x 1,024	Normalized 1D array
Y (train)	42,000 x 10	One-hot encoded vector
Y (test)	18,000 x 10	One-hot encoded vector

MODEL PERFORMANCE SUMMARY FOR ANNS

ANN MODEL 1

- \rightarrow ANN model with:
 - ♦ 2 dense hidden layers.
 - ReLU activation.
 - **♦ 1 output layer.**
 - 10 nodes.
 - **■** Softmax

- \rightarrow Compiled with:
 - **♦ Optimizer: Adam**
 - Learning rate:0.001
 - ♦ Loss: Categorical crossentropy
- \rightarrow Fitted with:
 - ♦ Validation split: 20%
 - ♦ Batch size: 128
 - ♦ 20 epochs

- \rightarrow Accuracy roughly 67%.
- \rightarrow Loss roughly 1.10.
- \rightarrow Very little overfitting.
- \rightarrow Good learning rate.
- \rightarrow Seek to improve accuracy.

ANN MODEL 2

- \rightarrow ANN model with:
 - **♦ 5 dense hidden layers.**
 - ReLU activation.
 - ♦ 1 dropout layer.
 - ♦ 1 normalization layer.
 - **♦ 1 output layer.**
 - 10 nodes.
 - Softmax activation.

- \rightarrow Compiled with:
 - **♦ Optimizer: Adam**
 - Learning rate:

0.0005

- ♦ Loss: Categorical crossentropy
- → Fitted with:
 - ♦ Validation split: 20%
 - ♦ Batch size: 128
 - **♦ 30 epochs**

- \rightarrow Accuracy roughly 77%.
 - **♦ Improvement from previous model.**
- \rightarrow Loss roughly 0.73.
 - **♦ Improvement from previous model.**
- \rightarrow Very little overfitting.
- \rightarrow Slightly high learning rate.
- \rightarrow Seek to improve accuracy.

- → Fewest correctly predicted 3s
 - **♦ 7s also low for correct predictions.**
- \rightarrow 3s predicted frequently as 5s.
- \rightarrow Many high values for all digits predicted to actual.
 - **♦ All digits predicted incorrectly many times.**

	Precision (%)	Recall (%)	F1 Score (%)	Support (%)
0	81	80	80	1,814
1	73	83	78	1,828
2	88	73	80	1,803
3	78	69	73	1,719
4	74	85	79	1,812
5	68	77	72	1,768
6	69	81	75	1,832
7	88	76	81	1,808
8	74	71	73	1,812
9	80	72	76	1,804
Accuracy			77	18,000
Total avg.	77	77	77	18,000
Weighted avg.	77	77	77	18,000

- $\rightarrow\,$ Metrics range from 68-88%.
 - **♦ No digits are being predicted well.**
- \rightarrow Digit 3 recall lowest.
 - ♦ Model is predicting true negatives ok, but true positives are lower in comparison to other digits.
- \rightarrow Digit 5 precision lowest.
 - **♦** High proportion of false positives to true positives.
- \rightarrow F1 scores all 72% or higher.
 - ♦ Precision and recall are fairly well-balanced for all digits.

DATA PREPROCESSING FOR CNNs

CNN PREPROCESSING

- **▲** Dataset pre-split for model training & validation.
 - \Diamond 42,000 images to train (70%).
 - ♦ 18,000 images to test (30%).

Batch size	Height	Width	Depth
0	32	32	1

▲ Reshaped independent variable 32 x 32 px images into 4D arrays.

NON-NORMALIZED

33.0704	30.2601	26.852	•••	49.6682	50.853	53.0377

NORMALIZED

0.12969	0.11867	0.1053	•••	0.19478	0.1994	0.20799

- **▲** Normalized independent variable to values between 0 and 1.
 - ♦ Previously 0-255.

Y	
3	
4	
1	
0	
8	

0	1	2	თ	4	5	6	7	8	9
0	0	0	1	0	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	1	0	0	0	0	0	0	0	0
1	0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	0	1	0

▲ One-hot encoded dependent variable for modeling.

NEW DATASET SHAPE

Variable	Dimension	Attributes
X (train)	42,000 x 32 x 32 x 1	Normalized 4D array
X (test)	18,000 x 32 x 32 x 1	Normalized 4D array
Y (train)	42,000 x 10	One-hot encoded vector
Y (test)	18,000 x 10	One-hot encoded vector

MODEL PERFORMANCE SUMMARY FOR CNNs

CNN MODEL 1

- → CNN model with:
 - **♦ 2 convolutional layers.**
 - Output size same as input.
 - Kernel size 3 x 3.
 - ♦ 3 Leaky ReLU layers.
 - Slope of 0.1.
 - ♦ 1 max-pooling layer.
 - Pool size 2 x 2.
 - **♦ 1 flatten layer.**
 - **♦ 1 dense layer.**
 - ♦ 1 output layer.
 - 10 nodes.
 - Softmax activation.

- → Compiled with:
 - Loss: categorical crossentropy.
 - **♦ Optimizer: Adam.**
 - Learning rate: 0.001.
- \rightarrow Fitted with:
 - ♦ Validation split: 20%.
 - ♦ Batch size: 32.
 - ♦ 20 epochs.

- \rightarrow Accuracy roughly 98%.
- \rightarrow Loss roughly 0.07.
- \rightarrow Very overfit.
- \rightarrow Prediction error increasing after 7.5 epochs.
- \rightarrow Seek to reduce overfitting.

CNN MODEL 2

- → CNN model with:
 - ♦ 4 convolutional layers.
 - Output size same as input.
 - Kernel size 3 x 3.
 - **♦ 5 Leaky ReLU layers.**
 - Slope of 0.1.
 - ♦ 2 max-pooling layers.
 - o Pool size 2 x 2.
 - ♦ 2 normalization layers.
 - **♦ 1 flatten layer.**
 - **♦ 1 dense layer.**
 - ♦ 1 dropout layer.
 - **♦** Rate of 0.5.
 - ♦ 1 output layer.
 - o 10 nodes.
 - Softmax activation.

- \rightarrow Compiled with:
 - ♦ Loss: categorical crossentropy.
 - **♦ Optimizer: Adam.**
 - Learning rate: 0.001.
- → Fitted with:
 - ♦ Validation split: 20%.
 - ♦ Batch size: 128.
 - ♦ 30 epochs.

- → Accuracy roughly 95%.
 - **♦ Less than previous CNN.**
- \rightarrow Loss roughly 0.15.
 - ♦ Higher than previous CNN.
- \rightarrow Slight overfitting.
 - ♦ Significantly less overfitting than previous CNN
- \rightarrow Prediction error increasing very slightly after 19 epochs.
- \rightarrow Best performance of all models for accuracy without overfitting.

- \rightarrow High values for true positives.
 - ♦ Many good predictions.
- \rightarrow Lower values for incorrect predictions in comparison to ANN.
 - **♦** Significant improvement.

	Precision	Recall	F1 Score	Support
	(%)	(%)	(%)	(%)
0	92	95	93	1,814
1	91	91	91	1,828
2	93	93	93	1,803
3	91	87	89	1,719
4	93	93	93	1,812
5	90	92	91	1,768
6	90	91	90	1,832
7	94	93	93	1,808
8	91	89	90	1,812
9	89	92	90	1,804
Accuracy			91	18,000
Total avg.	91	91	91	18,000
Weighted avg.	91	91	91	18,000

- $\rightarrow\,$ All metrics over 85% for all digits.
 - **♦** Great improvement in comparison to ANN.
- \rightarrow Digit 3 recall lowest.
 - ♦ Model is predicting true negatives well, but true positives are lower in comparison to other digits.
- \rightarrow Precision scores all 89% or higher.
 - **♦ High proportion of true positives to false positives.**
- \rightarrow F1 scores all 89% or higher.
 - ♦ Precision and recall are well-balanced for all digits.

CONCLUSIONS

- \rightarrow Convolution improved model fit well.
- ightarrow ANNs were less prone to overfitting but showed low accuracy, precision, and recall in comparison to CNNs.
- → CNN model 2 showed the best accuracy, precision, & recall with the least overfitting.
 - **♦ Recommend CNN model 2 for digit recognition.**