Auszug aus: Die schwache Formulierung der statischen Biegedifferentialgleichung und ihre numerische Anwendung

Michael Karow

May 31, 2012

Es war w_h die Approximation an w(x) als Linearkombination der Basisfunktionen ϕ_k des endlichdimensionalen Funktionenraumes V_h :

$$w_h = \sum_{k=1}^{N} u_k \phi_k$$

Die Wahl des Ansatzraums V_h . Grundsätzlich kann man als Ansatzraum V_h jeden endlichdimensionalen Unterraum von V wählen. Wünschenswert sind folgende Eigenschaften:

- \bullet V_h sollte natürlich eine gute Näherung an die exakte Lösung enthalten.
- Einfache Spezialfälle des Randwertproblems haben Polynome als Lösung. Polynome sollten also durch Funktionen aus V_h gut approximiert werden können.
- Möglichst viele Einträge des Steifigkeitsmatrix sollten 0 sein, damit der Rechenaufwand beim Lösen des Gleichungssystems durch spezielle Techniken klein gehalten werden kann.

Diese Forderung lassen sich durch folgenden Ansatz gut erfüllen: Wähle $n \ge 2$. Setze h = L/(n-1), $x_i = h(i-1)$, i = 1, ..., n und

$$V_h = \{ \phi \in V \mid \phi|_{]x_i,x_{i+1}[} \text{ ist Polynom vom Grad } \leq 3, \ i=1,\ldots,n-1 \}.$$

Die Stellen x_i nennt man Knoten. Jede Funktion $\phi \in V_h$ ist durch die Werte $u_{2i-1} := \phi(x_i)$ und $u_{2i} := \phi'(x_i)$ eindeutig festgelegt.

Jede Funktion $\phi \in V_h$ hat die Darstellung

$$\phi = \sum_{k=1}^{2n} u_k \, \phi_k = \sum_{i=1}^{n} (u_{2i-1} \, \phi_{2i-1} + u_{2i} \, \phi_{2i})$$

mit den folgenden Basisfunktionen $\phi_1, \phi_2, \dots, \phi_{2n-1}, \phi_{2n} \in V_h$: Für $i = 2, \dots, n-1$,

$$\phi_{2i-1}(x) = \begin{cases} \bar{\phi}_3 \left(\frac{x - x_{i-1}}{h} \right) & x \in [x_{i-1}, x_i] \\ \bar{\phi}_1 \left(\frac{x - x_i}{h} \right) & x \in [x_i, x_{i+1}] \\ 0 & \text{sonst.} \end{cases} \qquad \phi_{2i}(x) = \begin{cases} h \, \bar{\phi}_4 \left(\frac{x - x_{i-1}}{h} \right) & x \in [x_{i-1}, x_i] \\ h \, \bar{\phi}_2 \left(\frac{x - x_i}{h} \right) & x \in [x_i, x_{i+1}] \\ 0 & \text{sonst.} \end{cases}$$

Außerdem:

$$\phi_1(x) = \begin{cases} \bar{\phi}_1\left(\frac{x}{h}\right) & x \in [0, h] \\ 0 & \text{sonst.} \end{cases} \qquad \phi_2(x) = \begin{cases} h \,\bar{\phi}_2\left(\frac{x}{h}\right) & x \in [0, h] \\ 0 & \text{sonst.} \end{cases}$$

und

$$\phi_{2n-1}(x) = \begin{cases} \bar{\phi}_3\left(\frac{x-x_{n-1}}{h}\right) & x \in [x_{n-1}, L] \\ 0 & \text{sonst.} \end{cases} \qquad \phi_{2n}(x) = \begin{cases} h \bar{\phi}_4\left(\frac{x-x_{n-1}}{h}\right) & x \in [x_{n-1}, L] \\ 0 & \text{sonst,} \end{cases}$$

wobei

$$\bar{\phi}_1(\xi) = 1 - 3\xi^2 + 2\xi^3, \qquad \bar{\phi}_3(\xi) = 3\xi^2 - 2\xi^3,
\bar{\phi}_2(\xi) = \xi(\xi - 1)^2, \qquad \bar{\phi}_4(\xi) = \xi^2(\xi - 1).$$

Die Funktionen $\bar{\phi}_i$ nennt man Formfunktionen. Es handelt sich bei ihnen um Polynome 3. Grades, die an den Stellen 0 und 1 folgende Werte annehmen.

	$\bar{\phi}_j(0)$	$\bar{\phi}_j'(0)$	$\bar{\phi}_j(1)$	$\bar{\phi}'_j(1)$
j = 1	1	0	0	0
j=2	0	1	0	0
j=3	0	0	1	0
j=4	0	0	0	1

Hier sind die Graphen der Formfunktionen:

Die Basisfunktionen mit ungeradem Index 2i-1 haben die Form eines Buckels mit maximalem Wert 1 am Knoten x_i . Die Basisfunktionen mit geradem Index 2i haben die Form einer Welle mit Steigung 1 am Knoten x_i :

