Rozwiązanie problemu marszrutyzacji przy użyciu algorytmu symulowanego wyżarzania i algorytmu genetycznego

Dorota Rzewnicka, Oliwia Trzcińska, Jan Kwiecień, Jakub Niemyjski

2 czerwca 2025

Spis treści

- Problem
- 2 Algorytm symulowanego wwyżarzania
- 3 Rodzaje zbieżności zależnie od tempa schładzania
- 4 Algorytm genetyczny
- 5 Wybór parametrów dla algorytmu genetycznego
- 6 Porównanie algorytmów
- Podsumowanie

Opis problemu

- Jesteśmy firmą logistyczną posiadającą flotę samochodów dostawczych i jedną bazę, z której rozwozimy przesyłki o różnej wielkości do naszych klientów.
- Każdego dnia stajemy przed problemem:
 - ile wysłać pojazdów z naszej floty
 - jakie im wyznaczyć trasy,

tak, aby funkcja kosztu dla danego rozwiązania była najmniejsza.

Obowiązują jednak ograniczenia:

- Każdy pojazd z naszej floty ma ograniczoną pakowność Q (każdy taką samą) oraz ograniczony czas pracy D (każdy taki sam),
- klient musi być obsłużony wyłącznie przez jeden pojazd z floty.

Dane wejściowe

Jako dane wejściowe dostajemy tablicę współrzędnych bazy i punktów dostawy oraz wektor d wymiaru $1 \times m$, gdzie m to ilość klientów do obsłużenia, w którym d_i reprezentuje wielkość dostawy do i-tego klienta.

Przestrzeń stanów – możliwe realizacje dostarczenia klientom ich pakunków.

Proponowanymi stanami, do których łańcuch może przejść w jednym kroku są takie, które:

- różnią się albo zamianą kolejności obsługi wybranej w sposób losowy (jednostajnie) pary na trasie pewnego, dokładnie jednego pojazdu z floty,
- powstały z obecnego w ten sposób, że zamieniono dostawce. dla pewnego, losowo wybranego klienta (wybór każdego klienta jest jednakowo prawdopodobny) i tegoż klienta wstawiono jako ostatnia przesyłkę nowego przewoźnika jego przesyłki.

Funkcja kary

W problemie VRP istnieje kilka możliwości wyboru funkcji kary do optymalizacji. W tym projekcie zdecydowaliśmy się na

$$f(x,y) = \alpha x + \beta y,$$

gdzie α, β to współczynniki, stałe proporcjonalności, które mogą być wybrane wedle uznania, zależnie od potrzeb, x oznacza liczbę pojazdów finalnie wysłanych w drogę, a y sumę odległości pokonanych przez wszystkie pojazdy.

Posłuży nam ona w algorytmie symulowanego wyżarzania do wyznaczania prawdopodobieńswa przejścia ze stanu k do l:

$$\min\left\{1,\exp\left(-\frac{1}{T}\left(f(I)-f(k)\right)\right)\right\}$$

Rodzaje zbieżności

Rozważane typy schładzania:

- **geometryczne** w każdej iteracji temperatura jest przemnażana przez przyjętą wcześniej stałą $\gamma \in (0,1)$,
- logarytmiczne w k tej iteracji temperatura jest mnożona zgodnie ze wzorem: $\frac{\ln(1+k)}{\ln(2+k)}$,
- liniowe temperatura zmniejszana jest liniowo, tj. zawsze o tę samą stałą wartość,
- harmoniczne w każdej iteracji mnożymy temperaturę przez $\frac{1}{k}$, gdzie k numer iteracji.

Figure: Schładzanie geometryczne, temperatura startowa niższa po lewej.

Figure: Schładzanie logarytmiczne, temperatura startowa niższa po lewej.

Figure: Schładzanie liniowe, temperatura startowa niższa po lewej.

Figure: Schładzanie harmoniczne, temperatura startowa niższa po lewej.

Porównanie temp schładzania

Figure: Porównanie temp schładzania.

Model rozwiązania

Algorytm genetyczny, inspirowany procesami ewolucji biologicznej, operuje na populacji możliwych rozwiązań, które ewoluują w kolejnych pokoleniach dzięki zastosowaniu mechanizmów selekcji, krzyżowania i mutacji.

Podstawą działania algorytmu genetycznego jest operowanie na populacji rozwiązań, które z pokolenia na pokolenie ewoluują w kierunku coraz lepszych rozwiązań problemu marszrutyzacji. Każde rozwiązanie (tzw. chromosom) jest reprezentowane jako permutacja genów, gdzie genem może być klient lub symboliczny znacznik 'truck', wyznaczający początek trasy nowego pojazdu.

Funkcja kary

Funkcja kary, tak samo jak w poprzednim algorytmie, ocenia chromosom według wzoru:

$$f(x,y) = \alpha x + \beta y,$$

gdzie x to liczba użytych pojazdów, a y to łączny dystans przejechany przez wszystkie pojazdy, liczony na podstawie odległości pomiędzy punktami trasy każdego pojazdu.

Działania na chromosomach

Operator mutacji:

Operator krzyżowania:

Działanie algorytmu

Selekcja rodziców odbywa się metodą turniejową: z populacji losuje się podzbiory rozmiaru k, a do dalszego etapu przechodzą osobniki o najlepszym przystosowaniu w każdej grupie. Nowa populacja tworzona jest z: części osobników (tzw. elita) bez zmian, osobników pochodzących z krzyżowania wybranych rodziców, osobników powstałych po mutacjach dzieci z krzyżowania.

Główna pętla algorytmu wykonuje zadaną liczbę iteracji. W każdej z nich tworzona jest nowa generacja według powyższego schematu. Na końcu wybierany jest najlepszy chromosom spełniający wszystkie warunki (ładowność i długość trasy). Jeśli żaden nie spełnia ograniczeń, algorytm sygnalizuje brak dopuszczalnego rozwiązania.

Wybór wielkości początkowej

Figure: Zależność wartości uśrednionej funkcji kary od wielkości początkowej.

Wybór wielkości turniejowych

Figure: Zależność wartości uśrednionej funkcji kary od wielkości grup turniejowych.

Porównanie parametru ratio cross

Figure: Zależność wartości uśrednionej funkcji kary od parametru ratio cross.

Porównanie parametru prob mutate

Figure: Zależność wartości uśrednionej funkcji kary od parametru prob mutate.

Pierwszy zbiór

Figure: Porównanie wartości funkcji kary oraz zależność pomiędzy czasem a jakością działania obydwu algorytmów na pierwszym zbiorze danych.

Drugi zbiór

Figure: Porównanie wartości funkcji kary oraz zależność pomiędzy czasem a jakością działania obydwu algorytmów na drugim zbiorze danych.

Porównanie kary i czasu

Figure: Wykresy skrzynkowe ilustrujące wartość funkcji kary i czas wykonania obydwu algorytmów.

Szybkość zbieżności

Figure: Zależność wartości funkcji kary od numeru pokolenia lub iteracji.

Podsumowanie

- Zaimplementowano dwa algorytmy optymalizacyjne: genetyczny i symulowanego wyżarzania.
- Algorytm genetyczny osiąga lepsze wyniki:
 - uzyskuje niższe wartości funkcji kary,
 - działa szybciej niż algorytm symulowanego wyżarzania,
 - charakteryzuje się większą stabilnością wyników.

Dziękujemy za uwagę