Classical Numerical Analysis, Chapter 17

Abner J. Salgado and Steven M. Wise

asalgad1@utk.edu swise1@.utk.edu University of Tennessee

Chapter 17

Initial Value Problems (IVPs) For Ordinary

Differential Equations

Existence of Solutions

Classical Solutions

To start, let us define precisely what we mean by a solution to an IVP.

In what follows, we will assume that the following are fixed: d is a positive integer; $\Omega \subset \mathbb{R}^d$ is an open set; \mathbf{u}_0 is a point in Ω ; $I \subset \mathbb{R}$ is a closed interval; t_0 is a point in I; $S = I \times \overline{\Omega}$; and $\mathbf{f} : S \to \mathbb{R}^d$ is a given function, which we call the slope function.

The IVP that we consider seeks a function $\mathbf{u}: I \to \Omega$ that, in some sense. satisfies the *initial condition* $\mathbf{u}(t_0) = \mathbf{u}_0$ and the equation

$$\mathbf{u}'(t) = \mathbf{f}(t, \mathbf{u}(t)). \tag{1}$$

Definition (classical solution)

The function $\mathbf{u} \in C^1(I;\Omega)$ is called a **classical solution** on I to the IVP if and only if (1) holds point-wise for all $t \in I$ and $\lim_{t \to t_0} \mathbf{u}(t) = \mathbf{u}_0$.

Mild Solutions

Definition (mild solution)

We say that $\mathbf{u} \in C(I; \Omega)$ is a **mild solution** on I to the IVP (1) if and only if, for all $t \in I$, we have

$$\mathbf{u}(t) = \mathbf{u}_0 + \int_{t_0}^t \mathbf{f}(s, \mathbf{u}(s)) ds. \tag{2}$$

Theorem (equivalence)

Assume that $\mathbf{f} \in C(S; \mathbb{R}^d)$. A function is a mild solution on I to problem (1) if and only if it is a classical solution to problem (1).

Proof.

An exercise

u-Lipschitz and Globally u-Lipschitz Functions

Definition (**u**-Lipschitz)

Existence of Solutions 0000000

> We say that the slope function $\mathbf{f}: S \to \mathbb{R}^d$ is **u-Lipschitz** on S if and only if there is a constant L > 0 such that

$$\|\mathbf{f}(t, \mathbf{v}_1) - \mathbf{f}(t, \mathbf{v}_2)\|_2 \le L \|\mathbf{v}_1 - \mathbf{v}_2\|_2$$
 (3)

for all $t \in I$ and for all $\mathbf{v}_1, \mathbf{v}_2 \in \Omega$. If (3) holds with $\Omega = \mathbb{R}^d$, we say that \mathbf{f} is globally u-Lipschitz.

A Local Existence Result

Theorem (Picard-Lindelöf Theorem)

Suppose that there exist constants β , $\delta_0 > 0$, such that $I_0 = [t_0 - \delta_0, t_0 + \delta_0] \cap I \neq \emptyset$, and $\overline{B}(\mathbf{u}_0, \beta) \subset \Omega$. Define

$$S_0 = I_0 \times \overline{B}(\mathbf{u}_0, \boldsymbol{\beta}).$$

Assume that $\mathbf{f} \in C(S_0; \mathbb{R}^d)$; there is a constant M > 0 such that, for all $(t, \mathbf{v}) \in S_0$, $\|\mathbf{f}(t, \mathbf{v})\|_2 \leq M$; and \mathbf{f} is \mathbf{u} -Lipschitz on S_0 with constant L > 0. Let

$$\delta_1 = \min \left\{ \delta_0, \frac{1}{2L}, \frac{\beta}{M} \right\}, \quad I_1 = [t_0 - \delta_1, t_0 + \delta_1].$$

Then there is a unique mild solution on l_1 to (1). Moreover, $\mathbf{u} \in C(l_1; B(\mathbf{u}_0, \beta))$.

Proof.

The proof uses the Banach Fixed-Point Theorem. See the book.

Solutions that Blow Up

Example

Suppose that $u_0 > 0$. Observe that $u(t) = (u_0^{-1} - t)^{-1}$ is a classical solution on the interval $[0, u_0)$ to the IVP

$$u'(t) = u^2(t), \quad u(0) = u_0.$$

The autonomous slope function $f(t, u(t)) = u^2(t)$ is not globally u-Lipschitz on $S = [0, T] \times \mathbb{R}$, regardless of the size of T > 0. Clearly, a global solution, i.e., a (classical or mild) solution on \mathbb{R} , cannot be guaranteed. In any case, the Picard-Lindelöf Theorem is applicable, and a unique solution, locally defined around t = 0, can be guaranteed.

A Global Existence Result

Existence of Solutions

Theorem (global existence)

Assume that $S = [0, T] \times \mathbb{R}^d$ and the slope function $\mathbf{f} \in C(S; \mathbb{R}^d)$ is globally \mathbf{u} -Lipschitz with constant L > 0. Then there is at least one mild solution on [0, T] to (1), which we denote by $\mathbf{u} \in C([0, T]; \mathbb{R}^d)$. Moreover, this solution satisfies the estimate

$$\|\mathbf{u}(t) - \mathbf{u}_0\|_2 \le \frac{M}{L} \left(e^{Lt} - 1\right), \quad \forall t \in [0, T],$$

where $M = \|\mathbf{f}(\cdot, \mathbf{u}_0)\|_{L^{\infty}(0, T)}$.

Proof.

The proof in the book.

Uniqueness and Regularity of Solutions

Lemma (Grönwall-type inequalities)

Let T > 0, $K_1 \ge 0$, $K_2 \ge 0$, and $\Phi \in C^1([0, T])$. If $\Phi(0) = 0$, $\Phi(t) \ge 0$, for all $t \in [0, T]$, and

$$\Phi'(t) \leq K_1 \Phi(t) + K_2,$$

then

$$\Phi(t) \leq \frac{K_2}{K_1} \left[e^{K_1 t} - 1 \right]$$

and

$$\Phi'(t) \leq K_2 e^{K_1 t}.$$

Proof.

The solution to the IVP

$$\Phi'(t) - K_1 \Phi(t) = \alpha(t), \quad t \in [0, T], \quad \Phi(0) = 0$$

is

$$\Phi(t) = e^{K_1 t} \int_0^t \alpha(s) e^{-K_1 s} ds.$$

In the present case, $\alpha(t) \leq K_2$ for all $t \in [0, T]$.

Proof Cont.

Hence,

$$\begin{aligned} \Phi(t) &\leq e^{K_1 t} K_2 \int_0^t e^{-K_1 s} \mathrm{d}s \\ &= -\frac{e^{K_1 t} K_2}{K_1} e^{-K_1 s} \bigg|_{s=0}^{s=t} \\ &= e^{K_1 t} \frac{K_2}{K_1} \left[1 - e^{-K_1 t} \right] \\ &= \frac{K_2}{K_1} \left[e^{K_1 t} - 1 \right]. \end{aligned}$$

Finally, using the last estimate,

$$\Phi'(t) = \alpha(t) + K_1 \Phi(t) \le K_2 + K_1 \frac{K_2}{K_1} \left[e^{K_1 t} - 1 \right] = K_2 e^{K_1 t},$$

and the proof is complete.

Theorem (continuous dependence)

Let $\Omega_0 \subseteq \Omega$ (and one or both possibly equal to \mathbb{R}^d). Assume that $\mathbf{f} \in C(S; \mathbb{R}^d)$ is \mathbf{u} -Lipschitz on S with Lipschitz constant L > 0. Assume that, for each $\mathbf{q} \in \Omega_0$, there exists a classical solution, $\mathbf{u}(\cdot; \mathbf{q}) \in C^1([0, T]; \Omega)$, to the parameterized IVP

$$\mathbf{u}'(t;\mathbf{q}) = \mathbf{f}(t,\mathbf{u}(t;\mathbf{q})), \quad \mathbf{u}(0;\mathbf{q}) = \mathbf{q}. \tag{4}$$

Then, for all \mathbf{q}_1 , $\mathbf{q}_2 \in \Omega_0$ and $t \in [0, T]$, we have

$$\|\mathbf{u}(t; \mathbf{q}_1) - \mathbf{u}(t; \mathbf{q}_2)\|_2 \le \exp(Lt) \|\mathbf{q}_1 - \mathbf{q}_2\|_2.$$
 (5)

Proof.

Owing to a previous Theorem, a classical solution is a mild solution. Thus, the corresponding parameterized mild solution satisfies, for all $t \in [0, T]$,

$$\mathbf{u}(t;\mathbf{q}) = \mathbf{q} + \int_0^t \mathbf{f}(s,\mathbf{u}(s;\mathbf{q})) ds.$$

Proof Cont.

Hence,

$$\mathbf{u}(t;\mathbf{q}_1) - \mathbf{u}(t;\mathbf{q}_2) = \mathbf{q}_1 - \mathbf{q}_2 + \int_0^t [\mathbf{f}(s,\mathbf{u}(s;\mathbf{q}_1)) - \mathbf{f}(s;\mathbf{u}(s;\mathbf{q}_2))] ds,$$

by the triangle inequality, and the fact that \mathbf{f} is \mathbf{u} -Lipschitz,

$$\|\mathbf{u}(t;\mathbf{q}_1) - \mathbf{u}(t;\mathbf{q}_2)\|_2 \le \|\mathbf{q}_1 - \mathbf{q}_2\|_2 + L \int_0^t \|\mathbf{u}(s;\mathbf{q}_1) - \mathbf{u}(s;\mathbf{q}_2)\|_2 ds.$$
 (6)

Define

$$\Phi(t) = \int_0^t \|\mathbf{u}(s; \mathbf{q}_1) - \mathbf{u}(s; \mathbf{q}_2)\|_2 \, \mathrm{d}s;$$

in which case.

$$\Phi'(t) = \left\| \mathbf{u}(t; \mathbf{q}_1) - \mathbf{u}(t; \mathbf{q}_2) \right\|_2.$$

Proof Cont.

By estimate (6), for all $t \in [0, T]$, we have that

$$\Phi'(t) - L\Phi(t) \leq \|\mathbf{q}_1 - \mathbf{q}_2\|_2.$$

The final result now follows from the second Grönwall inequality:

$$\|\mathbf{u}(t; \mathbf{q}_1) - \mathbf{u}(t; \mathbf{q}_2)\|_2 = \Phi'(t) \le \|\mathbf{q}_1 - \mathbf{q}_2\|_2 e^{Lt},$$

as we intended to show.

Corollary (uniqueness)

Assume that $S = [0, T] \times \mathbb{R}^d$ and the slope function $\mathbf{f} \in C(S; \mathbb{R}^d)$ is globally **u**-Lipschitz with constant L > 0. Then the solution $\mathbf{u} \in C^1([0, T]; \mathbb{R}^d)$ is unique.

Proof.

Use the previous results. The details are left for an exercise.

Definition (classes of slope functions)

Assume that $S = [0, T] \times \overline{\Omega}$, with $\Omega \subseteq \mathbb{R}^d$ open. Let $\mathbf{f} \in C(S; \mathbb{R}^d)$ be a slope function. We say that $\mathbf{f} \in F^1(S)$ if and only if $\mathbf{f} \in C^1(S; \mathbb{R}^d)$, and there is a real number A > 0 such that, for any $i, j = 1, \ldots, d$, and all $(t, \mathbf{v}) \in S$,

$$\left|\partial_{u_j}f_i(t,\mathbf{v})\right|\leq A.$$

We also define, for $m \in \mathbb{N}$,

$$\mathcal{F}^m(S) = F^1(S) \cap C^m(S; \mathbb{R}^d).$$

Proposition (F^1 implies Lipschitz)

Assume that $S = [0, T] \times \overline{\Omega}$, with $\Omega \subseteq \mathbb{R}^d$ open and convex. Let \mathbf{f} be a slope function in $F^1(S)$. Then, \mathbf{f} is \mathbf{u} -Lipschitz on S. Moreover, if the hypotheses hold with $\Omega = \mathbb{R}^d$, then \mathbf{f} is globally \mathbf{u} -Lipschitz.

Proof.

A homework exercise.

Remark (simplification)

The assumption that $\mathbf{f} \in F^1(S)$, when $S = [0, T] \times \mathbb{R}^d$, is not often verified in practice. In fact, it often fails to be true. If $\mathbf{f} \in F^1([0, T] \times \mathbb{R}^d)$, then \mathbf{f} would be globally \mathbf{u} -Lipschitz. In many important, real-world problems the slope function is only locally Lipschitz, at best. For example, consider the autonomous differential equation

$$u'(t) = -u^3 + u, \quad t \in [0, \infty)$$

with $u(0)=u_0\in\mathbb{R}$. In this case, $f(t,u)=-u^3+u$. Clearly, the first derivative of the slope function f with respect to u is unbounded; consequently, $f\not\in F^1(S)$. Yet, this autonomous ODE has a bounded classical solution on $[0,\infty)$. In fact, one can show that $\lim_{t\to\infty}u(t)=1$, if $u_0>0$, and $\lim_{t\to\infty}u(t)=-1$, if $u_0<0$.

The use of the class $F^1([0, T] \times \mathbb{R}^d)$ is merely for convenience, as the assumption $\mathbf{f} \in F^1([0, T] \times \mathbb{R}^d)$ makes the analysis much simpler.

Regularity

Theorem (higher differentiability)

Assume that $S = [0, T] \times \overline{\Omega}$, with $\Omega \subseteq \mathbb{R}^d$ open and convex. Let $m \in \mathbb{N}$. Suppose that the slope function satisfies $\mathbf{f} \in \mathcal{F}^m(S)$. Assume that $\mathbf{u} \in C^1(I, \Omega)$ is a classical solution to (1). Then $\mathbf{u} \in C^{m+1}(I; \Omega)$.

Proof.

As **u** is a classical solution, for all $t \in I$, we have

$$\mathbf{u}'(t)=\mathbf{f}(t,\mathbf{u}(t)).$$

The right-hand side of this identity is differentiable on I; in particular,

$$\frac{\mathrm{d}}{\mathrm{d}t}\left[\mathbf{f}(t,\mathbf{u}(t))\right] = \partial_t \mathbf{f}(t,\mathbf{u}(t)) + D_{\mathrm{u}}\mathbf{f}(t,\mathbf{u}(t))\mathbf{f}(t,\mathbf{u}(t)),$$

where $D_{\mathbf{u}}\mathbf{f} = \left[\partial_{u_j}f_i\right]_{i,j=1}^d$ is the $d \times d$ matrix of partial derivatives of \mathbf{f} with respect to \mathbf{u} . Consequently, $\mathbf{u}''(t)$ exists and is continuous on I. The higher order derivatives exist and are continuous on I, as may be seen via an induction argument.

The Flow Map and the Alekseev–Gröbner Lemma

Definition (flow map)

Assume, for simplicity, that $S = [0, T] \times \mathbb{R}^d$. Suppose that, for some $m \in \mathbb{N}$, the slope function satisfies $\mathbf{f} \in \mathcal{F}^m(S)$. The flow map of $\mathbf{z}'(t) = \mathbf{f}(t, \mathbf{z}(t))$, denoted

$$\mathbf{U}\colon I\times\mathbb{R}^d\times I\to\mathbb{R}^d,$$

is defined by

$$\mathbf{U}(s,\mathbf{v},t)=\mathbf{u}_{s,\mathsf{v}}(t),$$

where $\mathbf{u}_{s,v} \in C^1(I; \mathbb{R}^d)$ is the unique solution to the ODE problem

$$\frac{\mathrm{d}\mathbf{u}_{s,v}}{\mathrm{d}t}(t) = \mathbf{f}(t, \mathbf{u}_{s,v}(t)), \quad \mathbf{u}_{s,v}(s) = \mathbf{v}. \tag{7}$$

The Flow Map and the Alekseev-Gröbner Lemma

Proposition (properties of the flow map)

Assume, for simplicity, that $S = [0, T] \times \mathbb{R}^d$. Suppose that, for some $m \in \mathbb{N}$, the slope function satisfies $\mathbf{f} \in \mathcal{F}^m(S)$. Denote by **U** the flow map of $\mathbf{z}'(t) = \mathbf{f}(t, \mathbf{z}(t))$. Then

The Flow Map and the Alekseev-Gröbner Lemma

$$\mathbf{U}(s, \mathbf{v}, s) = \mathbf{v}, \quad \forall (s, \mathbf{v}) \in S.$$

For any $t_1, t_2 \in I$ and all $\mathbf{v} \in \mathbb{R}^d$, we have

$$\mathbf{U}(s, \mathbf{v}, t_2) = \mathbf{U}(t_1, \mathbf{U}(s, \mathbf{v}, t_1), t_2).$$

In addition, for any $s, t \in I$ and all $\mathbf{v} \in \mathbb{R}^d$,

$$\frac{\partial}{\partial t}\mathbf{U}(s,\mathbf{v},t)=\mathbf{f}(t,\mathbf{U}(s,\mathbf{v},t)).$$

Proposition (properties of the flow map (Cont.))

Finally, **U** is continuously differentiable with respect to its second variable, i.e., the initial condition. This derivative, denoted $D_v \mathbf{U}$, is a $d \times d$ matrix at every point $(s, \mathbf{v}, t) \in I \times \mathbb{R}^d \times I$, and we have

$$[D_{\mathbf{v}}\mathbf{U}(s,\mathbf{v},t)]_{i,j} = \frac{\partial U_{i}}{\partial v_{j}}(s,\mathbf{v},t).$$

Furthermore, $D_v \mathbf{U}$ is differentiable with respect to its third argument, t, and satisfies the differential equation

$$\frac{\partial}{\partial t} D_{\mathbf{v}} \mathbf{U}(s, \mathbf{v}, t) = D_{\mathbf{u}} \mathbf{f}(t, \mathbf{U}(s, \mathbf{v}, t)) D_{\mathbf{v}} \mathbf{U}(s, \mathbf{v}, t)$$

subject to the initial data

$$D_{\mathsf{v}}\mathbf{U}(s,\mathbf{v},s) = \mathsf{I}_{d},$$

where $D_{u}\mathbf{f}$ is the derivative of \mathbf{f} with respect to its second argument.

Theorem (Alekseev–Gröbner Lemma)

Let $t_0 \in I$ and, for some $m \in \mathbb{N}$, $\mathbf{f}, \mathbf{g} \in \mathcal{F}^m(S)$. Denote by \mathbf{U} the flow map of $\mathbf{z}'(t) = \mathbf{f}(t, \mathbf{u}(t))$. Suppose that $\mathbf{u}, \mathbf{v} \in C^1(I; \mathbb{R}^d)$ are the unique classical solutions on L of

$$\mathbf{u}'(t) = \mathbf{f}(t, \mathbf{u}(t)),$$
 $t \in I,$ $\mathbf{u}(t_0) = \mathbf{u}_0,$ $\mathbf{v}'(t) = \mathbf{f}(t, \mathbf{v}(t)) + \mathbf{g}(t, \mathbf{v}(t)),$ $t \in I,$ $\mathbf{v}(t_0) = \mathbf{u}_0.$

Then

$$\mathbf{v}(t) = \mathbf{u}(t) + \int_{t_0}^t D_{\mathbf{v}} \mathbf{U}(s, \mathbf{v}(s), t) \mathbf{g}(s, \mathbf{v}(s)) ds.$$
 (8)

The Flow Map and the Alekseev-Gröbner Lemma

Dissipative Equations

Definition (monotonicity)

Suppose that (\cdot, \cdot) is an inner product on \mathbb{C}^d and $\|\cdot\|$ is the induced norm. Let $\mathbf{f}: [0, T] \times \mathbb{C}^d \to \mathbb{C}^d$. We say that \mathbf{f} is monotone with respect to (\cdot, \cdot) , if and only if

$$\Re [(\mathbf{v}_1 - \mathbf{v}_2, \mathbf{f}(t, \mathbf{v}_1) - \mathbf{f}(t, \mathbf{v}_2))] \leq 0,$$

for all $t \in [0, T]$ and every $\mathbf{v}_1, \mathbf{v}_2 \in \mathbb{C}^d$.

Theorem (dissipativity)

Assume that $\mathbf{f} \colon [0,T] \times \mathbb{C}^d \to \mathbb{C}^d$ is monotone with respect to (\cdot,\cdot) . Let $\mathbf{u}_0, \mathbf{v}_0 \in \mathbb{C}^d$. Assume that \mathbf{f} is such that there are unique classical solutions on [0,T] to the problems

$$\mathbf{u}'(t) = \mathbf{f}(t, \mathbf{u}(t)), \quad \mathbf{u}(0) = \mathbf{u}_0, \quad \mathbf{v}'(t) = \mathbf{f}(t, \mathbf{v}(t)), \quad \mathbf{v}(0) = \mathbf{v}_0.$$

In this setting, we have that, for all $t \in [0, T]$,

$$\frac{\mathrm{d}}{\mathrm{d}t} \|\mathbf{u}(t) - \mathbf{v}(t)\|^2 \leq 0.$$

Furthermore, for all $0 \le t_1 \le t_2 \le T$,

$$\|\mathbf{u}(t_2) - \mathbf{v}(t_2)\| \le \|\mathbf{u}(t_1) - \mathbf{v}(t_1)\| \le \|\mathbf{u}_0 - \mathbf{v}_0\|.$$

Proof.

Set

$$E(t) = \frac{1}{2} \|\mathbf{u}(t) - \mathbf{v}(t)\|^2$$
.

Proof Cont.

Then,

$$\frac{\mathrm{d}}{\mathrm{d}t}E(t) = \Re\left[\left(\mathbf{u}(t) - \mathbf{v}(t), \mathbf{u}'(t) - \mathbf{v}'(t)\right)\right]$$

$$= \Re\left[\left(\mathbf{u}(t) - \mathbf{v}(t), \mathbf{f}(t, \mathbf{u}(t)) - \mathbf{f}(t, \mathbf{v}(t))\right)\right]$$

$$\leq 0.$$

This proves that the function E is nonincreasing. Thus, the second inequality follows.

Example

Let $A \in \mathbb{C}^{d \times d}$ be such that if $\lambda \in \sigma(A)$, then $\Re \lambda \leq 0$. The slope function

$$f(t, \mathbf{v}) = A\mathbf{v}$$

is monotone.