lab seminar

Session2
JUN SOUNG KWAK

General NGS workflow

- 1. library preparation
- 2. Sequencing library
- 3. Raw sequencing data
- 4. Alignment
- 5. Quantification or variant calling
- 6. Bioinformatics analysis

TruSeq[™] Stranded RNA

common sequence between Rd1 SP and Rd2 SP

P5 Index Rd1 SP Rd2 SP Index P7

5'- AATGATACGGCGACCACCGAGATCTACACCAATTAACACACTCTTTCCCTACACGACGCCGTCTTCCGATCTINSERTAGATCGGAAGAGCACACGTCTGAACTCCAGTCACATATCTCGATCTCGTATGCCGTCTTCTGCTTG -3'

Sequencing by synthesis

strand is

washed away

With each cycle, four fluorescently tagged nucleotides compete for addition to the growing chain. Only one is incorporated based on the sequence of the template.

RNA-seq output

common sequence between Rd1 SP and Rd2 SP

5'- AATGATACGGCGACCACCGAGATCTACACCAATTAACACACTCTTTCCCTACACGACGCTCTTCCGATCTINSERTAGATCGGAAGAGCACACGTCTGAACTCCAGTCACATATCTCGATCTCGTATGCCGTCTTCTGCTTG -3' **P7**

P5 Index Rd1 SP Rd2 SP Index

General NGS workflow

FASTQ files

Junsoungs-Mac-mini:bin jun\$ head C1_R1.fastq @A00939:243:HJTTFDSX3:4:1101:4327:1000 1:N:0:CAATTAAC+ATATCTCG Line1: Sequence identifier GTCCTCGTCTCCAGCTCCCTTACCCTGGGACTTCAACTGCGCTGCCTTCTTCACCTCCTCGAACGCAGCCAAGTCCACGGCCATGCCTTTCTCCTCTGCGA Line2: Raw sequence Line3: Quality Score indicator Line4: Quality Score @A00939:243:HJTTFDSX3:4:1101:5647:1000 1:N:0:CAATTAAC+ATATCTCG ATCAAAAAACAGCAAGTAGCCGGCGGTCAGATCCAGAATGAGGCCGCCTCCGTGCACCACCAGCAGACTCACTAACTCCACAGGAAGAATCACTTTGAACG @A00939:243:HJTTFDSX3:4:1101:10673:1000 1:N:0:CAATTAAC+ATATCTCG Junsoungs-Mac-mini:bin jun\$ head C1_R2.fastq @A00939:243:HJTTFDSX3:4:1101:4327:1000 2:N:0:CAATTAAC+ATATCTCG @A00939:243:HJTTFDSX3:4:1101:5647:1000 2:N:0:CAATTAAC+ATATCTCG TGGAATCAAAAAATTGGATGCTGATTGGGTGGAGGGATACTCCATGTCCTACCTGGCACATCACTGGCTTTTTGATCCGTTCAAAGTGATTCTTCCTGTGG @A00939:243:HJTTFDSX3:4:1101:10673:1000 2:N:0:CAATTAAC+ATATCTCG

FASTQ file QC (Quality Control)

FASTQC:

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

Sequence count, Sequence Quality

FASTQC - Sequence count

Beautiful

: Equal number of reads with low duplication

FASTQC - Sequence quality

Beautiful

: Stay above 35

Per Sequence Quality Score, Per Base Sequencing Content

FASTQC - Per sequence quality score

Beautiful

: Equal number of reads with low duplication

FASTQC - Per base sequence content

Beautiful

: Stay above 35

Per Sequence GC-content, Per Base N Content

FASTQC - Per sequence GC-content

Beautiful

: Peak around the average percent GC content of the reference genome (mean around 50%)

FASTQC - Per base N content

Beautiful

: Close to 0 as possible

Sequence duplication levels, Adapter content

FASTQC - Sequence duplication levels

Beautiful

: high complexity or lots of unique reads

FASTQC - Adapter content

Beautiful

: Close to 0 as possible

FASTQ file QC (Quality Control)

FASTQC:

https://www.bioinformatics.babraham.ac.uk/projects/fastqc/

https://usegalaxy.org/