Departamento de Engenharia Elétrica - FT - UnB

Disciplina: Dispositivos e Circuitos Eletrônicos - Período 2017.1

Professor: Geovany Araújo Borges

Prova 1: Amplificadores Operacionais - Data: 10/04/2017

Nota:	

Nome: _____ Matrícula: ____

Instruções:

- Explique o desenvolvimento das questões. Resultados sem explicações e sem desenvolvimentos não serão aceitos;
- Não use aproximações, exceto quando explicitamente indicado;
- Não é permitido o uso de máquina calculadora;
- Quando forem solicitados resultados analíticos (*i.e.*, fórmulas literais), estes devem ser desenvolvidos envolvendo as variáveis de interesse e os parâmetros do modelo. Outras variáveis dependentes não devem estar presentes nas fórmulas.

Principais fórmulas:

- Amplificador operacional:

Modelo de primeira ordem (domínio s):

$$V_{\mathcal{S}}(s) = \frac{A_0}{1 + \frac{s}{\omega_k}} \cdot (V_2(s) - V_1(s)),$$

no qual ω_b é a freqüência de corte de malha aberta e $\omega_t = \omega_b \cdot A_0$ é a freqüência de transição. As imperfeições DC são desprezadas.

Modelos de ordem zero (domínio de tempo):

 $v_S = A_0 \cdot (v_2 - v_1)$, considerando ganho finito de malha aberta, e desconsiderando V_{OS} .

 $v_S = A_0 \cdot (v_2 - v_1 + V_{OS})$, considerando ganho finito de malha aberta e imperfeição DC V_{OS} .

Amplificador operacional ideal: modelo de ordem zero com ganho diferencial infinito, sem imperfeições DC e sem *slew-rate*.

Sobre as imperfeições DC de corrente de entrada:

$$I_B = \frac{I_{B1} + I_{B2}}{2}.$$
 $I_{OS} = |I_{B1} - I_{B2}|.$

Questões:

- 1. Na análise de circuitos com amplificador operacional, foi muito reforçado em sala de aula que deve-se fazer projetos com $A_0\beta \gg 1$, com β sendo o ganho de realimentação negativa. Apresente um circuito com amplificador operacional e justifique matematicamente porque essa relação deve ser respeitada (**pontos: 3,0**).
- 2. A imagem da Figura 1 apresenta parte da tabela de características do amplificador operacional TL081. Diante das informações colocadas nessa figura, responda os itens abaixo, justificando sua resposta:
 - (a) Esse dispositivo tem características Rail-To-Rail para as entradas? (pontos: 1,0);

P/	ARAMETER	TEST	T _A ⁽¹⁾	TL081C, TL082C, TL084C				
		CONDITIONS		MIN	TYP	MAX		
	Input offeet	V = 0	25°C		3	15	Г	
V _{IO}	Input offset voltage	et $V_O = 0$, $R_S = 50 \Omega$		Full range			20	

V_{CC±} = ±15 V (unless otherwise noted)

PARAMETER		TEST CONDITIONS	T _A ⁽¹⁾	TL081C, TL082C, TL084C		TL081AC, TL082AC, TL084AC			TL081BC, TL082BC, TL084BC			TL081I, TL082I, TL084I			UNIT	
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	1
l	Innut offeet	V _O = 0, R _S = 50 Ω	25°C		3	15		3	6		2	3		3	6	
V _{IO}	V _{IO} Input offset voltage		Full range			20			7.5			5			9	mV
α _{VIO}	Temperature coefficient of input offset voltage	V _O = 0, R _S = 50 Ω	Full range		18			18			18			18		µV/°C
	Input offset		25°C		5	200		5	100		5	100		5	100	pΑ
I _{IO}	current ⁽²⁾	V _O = 0	Full range			2			2			2			10	nA
	Innuit binn		25°C		30	400		30	200		30	200		30	200	pΑ
I _{IB}	Input bias current ⁽²⁾	V _O = 0	Full range			10			7			7			20	nA
V _{ICR}	Common- mode input voltage range		25°C	±11	–12 to 15		±11	-12 to 15		±11	–12 to 15		±11	–12 to 15		v
	Maximum	R _L = 10 kΩ	25°C	±12	±13.5		±12	±13.5		±12	±13.5		±12	±13.5		
V _{OM}	peak output R _L ≥ 10 kΩ	R _L ≥ 10 kΩ	Full	±12			±12			±12			±12			l _v
voltage swing	voltage	$R_L \ge 2 k\Omega$	range	±10	±12		±10	±12		±10	±12		±10	±12		
	Large-signal	al $V_0 = \pm 10 \text{ V}$, $R_L \ge 2 \text{ k}\Omega$	25°C	25	200		50	200		50	200		50	200		V/mV
A_{VD}	differential voltage amplification		Full range	15			15			25			25			
B ₁	Unity-gain bandwidth		25°C		3			3			3			3		MHz
rį	Input resistance		25°C		10 ¹²			10 ¹²			10 ¹²			10 ¹²		Ω

Figura 1: Tabela de características do TL081 (fonte: "TL08xx JFET-Input Operational Amplifiers", Texas Instruments, 2015).

- (b) Esse dispositivo tem características Rail-To-Rail para a saída? (pontos: 1,0);
- (c) Num circuito com $\beta = 10$, a frequência de corte típica esperada a 25°C é de 30MHz? (pontos: 1,0).
- 3. A Figura 2 foi extraída do amplificador de diferença programável INA145. Pede-se:
 - (a) A relação $V_o = (V_{IN}^+ V_{IN}^-)(1 + R_{G2}/R_{G1})$ corresponde ao circuito apresentado, mesmo com os pinos 1 e 8 deixados em aberto? Justifique sua resposta após analisar o curcuito (**pontos: 1,0**).
 - (b) Se o pino 1 for ligado a 0V e o pino 8 for deixado em aberto, o amplificador operacional A1 estaria com a corrente de polarização I_B compensada? (**pontos: 1,0**).
 - (c) Se o pino 1 for ligado a 0V e o pino 8 for deixado em aberto, o amplificador operacional A2 estaria com a corrente de polarização I_B compensada? Caso não, que restrição se aplicaria a R_{G1} e R_{G2} (pontos: 2,0).

Figura 2: Circuito interno do circuito integrado INA145 (fonte: "INA145 - Programmable Gain DIFFERENCE AMPLIFIER", Burr-Brown, 2000).

BOA PROVA!