Álgebra Lineal - LCC - LM - PM

2020

Práctica: CAPÍTULO 5 - AUTOVECTORES Y AUTOVALORES (segunda parte)

Salvo mención en contrario, los vectores se consideran en el espacio vectorial \mathbb{C}^n sobre \mathbb{C} , con el producto interno estándar.

1. En cada uno de los siguientes ítems, siendo $A = S\Lambda S^{-1}$, calcular A^4 .

$$a)S = \begin{bmatrix} 5 & 7 \\ 2 & 3 \end{bmatrix}, \Lambda = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}; \quad b)S = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}, \Lambda = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}; \quad c)S = \begin{bmatrix} 1 & 1 & 2 \\ 1 & 0 & -1 \\ 1 & -1 & 0 \end{bmatrix}, \Lambda = \begin{bmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

- 2. Demostrar que si S diagonaliza a A entonces S diagonaliza a A^k , para todo $k \in \mathbb{N}$.
- 3. Dado que los números de Fibonacci satisfacen el sistema en diferencias:

$$u_{k+1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} u_k = Au_k,$$

 $\text{demostrar que para todo } k \geq 2, \\ F_k = \frac{1}{\sqrt{5}} \left[\left(\frac{1+\sqrt{5}}{2} \right)^k - \left(\frac{1-\sqrt{5}}{2} \right)^k \right].$

- 4. Sean $x = \begin{bmatrix} 2-4i \\ 4i \end{bmatrix}$ e $y = \begin{bmatrix} 2+4i \\ 4i \end{bmatrix}$.
 - a) Calcular $||x|| \le ||y||$.
 - b) Hallar $x^H y$.
- 5. Dadas A y B dos matrices. Demostrar:

a)
$$(AB)^{H} = B^{H}A^{H}$$
.

b)
$$(A^H)^H = A$$
.

6. Dada
$$A = \begin{bmatrix} 1 & i & 0 \\ i & 0 & 1 \end{bmatrix}$$
:

- a) Escribir la matriz A^H y calcular $C = A^H A$.
- b) ¿Cuál es la relación entre C y C^H ?
- 7. Dada A matriz $m \times n$ de entradas complejas. Demostrar:
 - a) $A^H A$ siempre es una matriz hermitiana.
 - b) Si A es una matriz hermitiana entonces su diagonal tiene entradas reales.
- 8. Encontrar la descomposición espectral de las siguientes matrices

$$P = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}, \ Q = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \ R = \begin{bmatrix} 3 & 4 \\ 4 & 3 \end{bmatrix}.$$

- 9. Sea A una matriz hermitiana y S la matriz que diagonaliza a A. Probar que S puede ser elegida con sus columnas ortonormales.
- 10. Sea U una matriz $n \times n$ unitaria. Entonces:

a)
$$U^H U = U U^H = I$$
, es decir $U^{-1} = U^H$.

- b) Para todo $x \in \mathbb{C}^n$, ||Ux|| = ||x||.
- 11. Calcular la tercera columna de ${\cal U}$ de modo que dicha matriz resulte unitaria.

$$U = \begin{bmatrix} \frac{\sqrt{3}}{3} & \frac{i\sqrt{2}}{2} \\ \frac{\sqrt{3}}{3} & 0 \\ \frac{i\sqrt{3}}{3} & \frac{\sqrt{2}}{2} \end{bmatrix}.$$

- 12. Diagonalizar la matriz sesgada hermitiana $K = \begin{bmatrix} i & i \\ i & i \end{bmatrix}$ (esto es, describir M y Λ tales que $K = M\Lambda M^{-1}$).
- 13. Describir todas las matrices de tamaño 3×3 que simultáneamente son hermitianas, unitarias y diagonales.
- 14. Diagonalizar la siguiente matriz unitaria V y describir U y Λ tales que $V = U\Lambda U^H$.

$$V = \frac{\sqrt{3}}{3} \begin{bmatrix} 1 & 1 - i \\ 1 + i & -1 \end{bmatrix}.$$

EJERCICIOS ADICIONALES

1. Supongamos que cada número de $Gibonacci\ G_{k+2}$ es el promedio de los dos números previos, G_{k+1} y G_k . Entonces, $G_{k+2}=\frac{1}{2}\left(G_{k+1}+G_k\right)$ y $G_{k+1}=G_{k+1}$ es:

$$\begin{bmatrix} G_{k+2} \\ G_{k+1} \end{bmatrix} = \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} G_{k+2} \\ G_{k+1} \end{bmatrix}$$

- a) Encontrar los autovalores de A y sus autovectores asociados.
- b) Calcular $\lim_{n\to\infty} A^n$, donde $A^n = S\Lambda^n S^{-1}$.
- c) Si $G_0 = 0$ y $G_1 = 1$, demostrar que los números de Gibonacci tienden a $\frac{2}{3}$.
- 2. Supongamos que hay una epidemia en la cual, cada mes la mitad de los sanos enferman y la cuarta parte de los enfermos fallecen. Encontrar el estado estacionario para el proceso de Markov:

$$\begin{bmatrix} d_{k+1} \\ s_{k+1} \\ w_{k+1} \end{bmatrix} = \begin{bmatrix} 1 & \frac{1}{4} & 0 \\ 0 & \frac{3}{4} & \frac{1}{2} \\ 0 & 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} d_k \\ s_k \\ w_k \end{bmatrix}.$$

Observación: Encontrar el estado estacionario para el proceso de Markov es equivalente a resolver el sistema de ecuaciones en diferencias dado, utilizando $u_k = A^k u_0 = S\Lambda^k S^{-1} u_0$ y calculando $\lim_{k \to \infty} u_k$.