DIFFERENTIAL CALCULUS & CO-ORDINATE GEOMETRY

Concepts of Exam

ABU ABDILLAH MOHAMMAD NASIM

Lecturer, Department of CSE, RMU. abuabdillahmath@outlook.com

Differential Calculus

01 Function

Definition: Function, Domain, Range, Inverse function, Odd function, Even Function etc.

02 Limit

Definition of Limit, $(\delta - \epsilon)$ definition,

By $(\delta - \epsilon)$ definition prove

i.
$$\lim_{x \to 4} (2x - 2) = 6$$

ii.
$$\lim_{x \to 3} (2x^3 - 3x^2 - 18x + 29) = 2$$

iii.
$$\lim_{x \to -2} \frac{x^2 - 4}{x + 2} = -4$$

etc.

Definition of Left-Hand Limit and Right-Hand Limit.

Prove the followings:

i.
$$\lim_{x \to 0} \frac{x^2 \sin \frac{1}{x}}{\sin x} = 0$$

ii.
$$\lim_{x \to \pi} \frac{\sin x}{\pi - x} = 1$$

iii.
$$\lim_{\substack{x \to \frac{\pi}{4}}} (\sec 2x - \tan 2x) = 0$$

Find the following limits:

i.
$$\lim_{x \to 0} \frac{1 - \cos x}{x}$$

ii.
$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{\tan x} \right)$$

iii.
$$\lim_{x \to 0} \frac{x(\cos x + \cos 2x)}{\sin x}$$

iv.
$$\lim_{x \to \frac{\pi}{4}} \frac{2\cos x - \sin 2x}{1 + \cos 2x}$$

etc.

L'Hospital's rule: Prove the followings

i.
$$\lim_{x\to 0} \frac{e^x - e^{-x} - 2x}{x - \sin x} = 2$$

ii.
$$\lim_{x \to 0} \frac{a^{x-1-x \ln a}}{x^2} = \frac{1}{2} (\ln a)^2$$

iii.
$$\lim_{x \to 0} \frac{e^x - e^{-x} - 2\ln(1+x)}{x \sin x} = 0$$

iv.
$$\lim_{x \to 0} \frac{3 \tan x - 3x - x^3}{x^5} = \frac{2}{5}$$

$$\lim_{x\to 0} (\sin x)^x = 1$$

vi.
$$\lim_{x \to 0} (\cos x)^{\cot x} = \frac{1}{\sqrt{e}}$$

03 Continuity

Definition of continuous function.

Questions:

- Discuss the discontinuity of $\tan x$ at $x = \frac{\pi}{2}$. i.
- ii. The function *f* is defined as follows:

$$f(x) = \begin{cases} -x & \text{when } x \le 0 \\ x & \text{when } 0 < x < 1 \\ 2 - x & \text{when } x \ge 1 \end{cases}$$

show that it is continuous at x = 0 and x = 1.

iii. Discuss the continuity of the following functions at the points indicated:

a.
$$f(x) = \begin{cases} x & when \ 0 < x < 1 \\ 2 - x & when \ 1 \le x \le 2 \\ x - \frac{1}{2}x^2 & when \ 0 < x < 1 \end{cases}$$
b.
$$f(x) = \begin{cases} \frac{\tan^2 x}{3x} & when \ x \ne 0 \\ \frac{2}{3} & when \ x = 0 \end{cases}$$
c.
$$f(x) = \begin{cases} x^2 + x & when \ 0 \le x < 1 \\ 2 & when \ x = 1 \\ 2x^3 - x + 1 & when \ 1 < x < 2 \end{cases}$$
at $x = 2$

b.
$$f(x) = \begin{cases} \frac{\tan^2 x}{3x} & when \ x \neq 0 \\ \frac{2}{3} & when \ x = 0 \end{cases}$$
 at $x = 0$

c.
$$f(x) = \begin{cases} x^2 + x & when & 0 \le x < 1 \\ 2 & when & x = 1 \\ 2x^3 - x + 1 & when & 1 < x < 2 \end{cases}$$
 at $x = 1$

iv. The function *f* is defined as follows:

$$f(x) = \begin{cases} -2\sin x & when -\pi \le x \le -\frac{\pi}{2} \\ a\sin x + b & when -\frac{\pi}{2} < x < \frac{\pi}{2} \\ \cos x & when \frac{\pi}{2} \le x \le \pi \end{cases}$$

if f(x) is continuous in the interval $-\pi \le x \le \pi$, find the values of a and b.

04 Differentiability

Define derivative of a function. Define differentiable function, define Left-Hand Derivative and Right-Hand Derivative.

05 Differentiation

Find, from the definition of differentiation (or first principle), derivatives (or differential coefficients) of the following functions:

- e^{x}
- ii. $\sin x$
- $\cos x$ iii.
- iv. \sqrt{x}

etc.

Find the derivatives of the following functions with respect to x:

 e^{x^x} i.

- xi.

 $e^{\tan x}$ ii.

- xii.
- tan ln sin e^{x^2}

 $e^{\sin^{-1}x}$ iii.

٧.

- xiii.
- iv. $\log_{\sin x} \sec x$

 $\cos 2x \cos 3x$

- xiv. $\cos^{-1} \frac{1-x^2}{1+x^2}$
- $\sin 2x \cos x$ vi.
- xv. $\sin^{-1} \frac{2x}{1+x^2}$

 $\tan^{-1}\sqrt{x}$ vii.

- xvi. $\tan^{-1} \frac{2x}{1+x^2}$
- $\tan \sin^{-1} x$ viii.

 $x^3\sqrt{\frac{x^2+4}{x^2+3}}$ ix.

xvii. $\tan^{-1} \frac{x}{\sqrt{1-x^2}}$

Find $\frac{dy}{dx}$ from the followings:

- i. $x = y \ln(xy)$

- ii. $y = x^y$ vi. $x^y y^x = 1$ iii. $(\cos x)^y = (\sin y)^x$ vii. $e^{xy} 4xy = 2$ iv. $\ln(xy) = x^2 + y^2$
- If $y = x + \frac{1}{x + \frac{1}{x + \frac{1}{x + to \infty}}}$, show that $\frac{dy}{dx} = \frac{1}{2 \frac{x}{x + \frac{1}{x + to \infty}}}$.

06 Successive differentiation

State and prove Leibnitz's theorem.

Find the followings:

i.
$$\frac{d^n}{dx^n}\sin x$$

iv.
$$\frac{d^n}{dx^n}x^n$$

ii.
$$\frac{d^n}{dx^n}\cos x$$

$$V. \qquad \frac{d^n}{dx^n}e^{mx}$$

iii.
$$\frac{d^n}{dx^n} \ln x$$

vi.
$$\frac{d^n}{dx^n}\log_a x$$

Answer the followings:

i. If
$$y = \cos(m \sin^{-1} x)$$
, show that

a.
$$(1-x^2)y_2 - xy_1 + m^2y = 0$$

b.
$$(1-x^2)y_{n+2} - (2n+1)x y_{n+1} + (m^2 - n^2)y_n = 0$$

ii. If
$$y = e^{\cos^{-1} x}$$
, show that

$$(1 - x^2)y_2 - x y_1 - y = 0$$

iii. If
$$y = (\sin^{-1} x)^2$$
, show that

a.
$$(1-x^2)y_2 - xy_1 - 2 = 0$$

b.
$$(1-x^2)y_{n+2} - (2n+1)x y_{n+1} - n^2y_n = 0$$

etc.

07 Expansion of function

Find the expansion of the following functions:

- i. $\sin x$
- ii. $\cos x$
- iii. e^x
- iv. ln(1+x)

٧.

08 Maxima and Minima

i. Find for what values of x, the following expression is maximum and minimum respectively:

$$2x^3 - 21x^2 + 36x - 20$$
.

- ii. Examine $f(x) = x^3 6x^2 + 24x 12$ for maximum or minimum values.
- iii. Examine whether $x^{1/x}$ possesses a maximum or a minimum and determine the same.
- iv. Find the maximum and the minimum values of u where

$$u = \frac{4}{x} + \frac{36}{y}$$
 and $x + y = 2$.

- v. Show that of all rectangles of given area, the square has the smallest perimeter.
- vi. Show that of all rectangles of given perimeter, the square has the largest area.

vii.

09 Partial differentiation

- i. State and prove Euler's theorem on homogeneous function.
- ii. If $u = \tan^{-1} \frac{x^3 + y^3}{x y}$, then show that $x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = \sin 2u$.
- iii. Verify Euler's theorem for the function $u(x, y) = ax^2 + 2hxy + by^2$.

iv.

10 Tangent and Normal

- i. Define tangent and normal.
- ii. Define angle of intersection of two curves.
- iii. Find the equation of tangent at the point (x, y) on the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
- iv. Find the equation of tangent at the point θ on the curve $x = a \cos \theta$, $y = b \sin \theta$.
- v. Find the equation of tangent at the point (1, -1) on the curve

$$x^3 + xy^2 - 3x^2 + 4x + 5y + 2 = 0.$$

vi. Show that the normal at the point $\theta = \pi/4$ on the curve

$$x = 3\cos\theta - \cos^3\theta$$
,

$$y = 3\sin\theta - \sin^3\theta$$

passes through the origin.

vii.

Co-ordinate Geometry

00. Co-ordinates

- i. Find the poler co-ordinates of the point whose Cartesian co-ordinates are (-3,2).
- ii. Find the Cartesian co-ordinates of the point whose poler co-ordinates are $\left(4,\frac{5\pi}{4}\right)$.
- iii. Find the distance between the points (x_1, y_1) and (x_2, y_2) .

i۷.

01. Transformation of Co-ordinates

- i. Find the relation between the new co-ordinates and old co-ordinates when the origin is transferred to (α, β) without changing the direction of axes.
- ii. Find the relation between the new co-ordinates and old co-ordinates when the origin is unchanged, and the axes are rotated through an angle θ .
- iii. Transform the equation $2x^2 2xy + 9y^2 x + y + 17 = 0$ to axes through the point (-1,2) inclined at an angle $\frac{\pi}{4}$ to the original axes.
- iv. Transform the equation $11x^2 + 3xy + 7y^2 + 19 = 0$ so as to remove the term xy.
- v. Transform the equation $9x^2 + 24xy + 2y^2 6x + 20y + 41 = 0$ so as to remove the terms in x, y and xy.

vi.

02. The straight line

- i. Derive the equation of straight line when the slope is known.
- ii. Derive the equation of straight line passing through a fixed point (x_1, y_1) and having inclination α .
- iii. Derive the equation of straight line passing through two points.
- iv. Derive the equation of straight line in the interception form.
- v. Derive the poler equation of a straight line.
- vi. Find the distance of a point from a straight line.
- vii. Find the angle between two straight lines.
- viii. Find the co-ordinates of the point of intersection of two straight lines.
- ix. Find the equation of the straight line that passes through the point (-1,2) and parallel to the line 3x + 5y + 8 = 0.
- x. Find the equation of the line which passes through the point of intersection of the lines 7x 6y + 6 = 0, 2x + 9y 5 = 0 and perpendicular to x 3y + 19 = 0.

xi.

03. Pair of straight line

i. Prove that a homogeneous equation of the second degree always represent a pair of straight lines through the origin.

- ii. Find the condition that the general equation of the second degree $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ may represent a pair of straight lines.
- iii. Prove that the equation $2x^2 + xy y^2 x 7y 10 = 0$ represents a pair of straight lines.
- iv. Find for what value of λ the equation $12x^2 + 36xy + \lambda y^2 + 6x + 6y + 3 = 0$ represents a pair of straight lines.

٧.

04. The circle

- i. Define circle.
- ii. Derive the equation of a circle whose centre is at (α, β) and radius r.
- iii. Find the co-ordinates of the centre and the radius of the circle $x^2 + y^2 + 2gx + 2fy + c = 0$.
- iv. Derive the poler equation of circle.
- v. Find the condition that the general equation of second degree $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$ may represent a circle.
- vi. Find the equation of the circle passing through the points (-3,2), (1,7) and (5,-3).
- vii. Find the equation of tangent at the point (x_1, y_1) to the circle $x^2 + y^2 + 2gx + 2fy + c = 0$.
- viii. Find the condition that the line y = mx + c should be a tangent to the circle $x^2 + y^2 = a^2$.
- ix. Find the condition that the circles $x^2 + y^2 + 2gx + 2fy + c = 0$ and $x^2 + y^2 + 2g'x + 2f'y + c' = 0$ should cut orthogonally.
- x. Find the condition that the two circles $x^2+y^2+2g_1x+2f_1y+c_1=0$ and $x^2+y^2+2g_2x+2f_2y+c_2=0$ may touch.

xi.

05. Conics in general

$$ax^{2} + 2hxy + by^{2} + 2gx + 2fy + c = 0$$

$$\Delta = \begin{vmatrix} a & g & h \\ h & b & f \\ g & f & c \end{vmatrix}$$

$$C = ab - h^{2}$$

$$I = a + b$$

Case	Conditions on the invariants	Types of locus
Proper conic	$C > 0$; $a = b$, $h = 0$; I , Δ opposite in sign.	Circle
$\Delta \neq 0$	$C>0$; I,Δ opposite in sign.	Ellipse
	C < 0.	Hyperbola
	C=0.	Parabola
	$C > 0$; I, Δ same sign.	No real locus.
Degenerate conic $\Delta = 0$	A pair of straight lines.	

i. Reduce the equation $x^2 - 4xy + y^2 + 8x + 2y - 5 = 0$ to its standard form.

ii. Reduce the equation $x^2 - 6xy + 9y^2 - 2x - 3y + 1 = 0$ to its standard form.

iii.

06. The parabola

Elements of parabola	$y^2 = 4ax$	$x^2 = 4ay$
Vertex	(0,0)	(0,0)
Focus	(a, 0)	(0, a)
Equation of directrix	x = -a	y = -a
Equation of axis	y = 0	x = 0
Equation of latus rectum	x = a	y = a
Length of latus rectum	4 <i>a</i>	4a
Equation of tangent at vertex	x = 0	y = 0

Find vertex, focus, length of latus rectum, equation of latus rectum, equation of axis, and equation of directrix of the following parabolas:

i.
$$y^2 = 4x + 4y - 8 = 0$$

ii.
$$x^2 - 8x + 2y + 7 = 0$$

iii.

07. The ellipse

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

	I	T
Elements of ellipse	a > b	a < b
Centre	(0,0)	(0,0)
Length of major axis	2 <i>a</i>	2 <i>b</i>
Length of minor axis	2 <i>b</i>	2 <i>a</i>
Equation of major axis	y = 0	x = 0
Equation of minor axis	x = 0	y = 0
Eccentricity	$e = \sqrt{1 - \frac{b^2}{a^2}}$	$e = \sqrt{1 - \frac{a^2}{b^2}}$
Vertices	(±a, 0)	$(0,\pm b)$
Foci	(±ae,0)	$(0,\pm be)$
Equation of directrix	$x = \pm \frac{a}{e}$	$y = \pm \frac{b}{e}$
Equation of axis	y = 0	x = 0
Equation of latus rectum	$x = \pm ae$	$y = \pm be$
Length of latus rectum	$\frac{2b^2}{a}$	$\frac{2a^2}{b}$
Distance between the foci	2ae	2be

Find the eccentricity and length of latus rectum of the ellipse $4x^2 + 5y^2 - 16x + 10y + 1 = 0$. Find focus and equation of directrix of the ellipse $6x^2 + 4y^2 - 36x - 4y - 43 = 0$. i.

iii.

ii.

08. Hyperbola

Elements of hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	$\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$
Centre	(0,0)	(0,0)
Eccentricity	$e = \sqrt{1 - \frac{b^2}{a^2}}$	$e = \sqrt{1 - \frac{a^2}{b^2}}$
Vertices	(±a, 0)	$(0,\pm b)$
Foci	(±ae, 0)	$(0,\pm be)$
Equation of directrix	$x = \pm \frac{a}{e}$	$y = \pm \frac{b}{e}$
Equation of latus rectum	$x = \pm ae$	$y = \pm be$
Length of latus rectum	$\frac{2b^2}{a}$	$\frac{2a^2}{b}$
Distance between the foci	2ae	2be

i. Find vertex, eccentricity, focus, equation of directrix, length of latus rectum of the hyperbola $x^2-3y^2-2x-8=0$.

ii.

Preference:

- i. Midterm questions
- ii. Red marks questions