

On considère la fonction suivante définie sur]0; $+\infty$ [:

$$f(x) = 1x^2 + 4x + 2 - 12x^2 \ln(x)$$

- 1. Calculer la limite de f en 0^+
- **2.** Calculer la limite de f en $+\infty$
- **3.** Calculer la dérivée de f.
- **4.** Calculer la dérivée seconde de f.
- **5.** Déterminer le signe de f''(x).
- **6.** En déduire le tableau de variation de f'(x).
- **7.** Déterminer le nombre de solutions de f'(x) = 0 et en donner un encadrement d'amplitude 10^{-2} .
- **8.** En déduire le tableau de variation de f(x).
- **9.** Déterminer le nombre de solutions de f(x) = 0.

Logarithme

Correction:

1. On sait que:

$$\lim_{x \to 0^{+}} 1x^{2} + 4x + 2 = 2$$

$$\lim_{x \to 0^{+}} 12x^{2} \ln(x) = 0 \quad \text{par propriété du cours}$$

$$\text{donc } \lim_{x \to 0^{+}} 1x^{2} + 4x + 2 - 12x^{2} \ln(x) = 2$$

2.

$$\lim_{x \to +\infty} 1x^2 + 4x + 2 = +\infty$$

$$\lim_{x \to +\infty} -12x^2 \ln(x) = -\infty \quad \text{par propriété du cours}$$
 donc
$$\lim_{x \to +\infty} 1x^2 + 4x + 2 - 12x^2 \ln(x) = -\infty \quad \text{par prédominance de } x^2 \ln(x)$$

3.

$$f'(x) = 2x + 4 - 12(x^{2}\ln(x))'$$

$$= 2x + 4 - 12((x^{2})'\ln(x) + x^{2} \times \ln(x)')$$

$$= 2x + 4 - 12(2x\ln(x) + x^{2} \times \frac{1}{x})$$

$$= 2x + 4 - 12(2x\ln(x) + x)$$

$$= -10x + 4 - 24\ln(x)$$

4.

$$f''(x) = -10 - 24 (x \ln(x))'$$

$$= -10 - 24 (x' \ln(x) + x \times \ln(x)')$$

$$= -10 - 24 (\ln(x) + x \times \frac{1}{x})$$

$$= -10 - 24 (\ln(x) + 1)$$

$$= -34 - 24 \ln(x)$$

5.

$$f'(x) \ge 0$$
$$-34 - 24 \ln(x) \ge 0$$
$$-24 \ln(x) \ge 34$$
$$\ln(x) \le \frac{34}{-24}$$
$$x \le e^{\frac{34}{-24}}$$

6. On a:

Logarithme TG

x	0		$e^{\frac{34}{-24}}$		+∞
<i>f</i> "(x)		+	0	-	
f'(x)	4		$4 + 24e^{\frac{34}{-24}}$		$-\infty$

7. D'après le tableau de variation, comme 4 > 0, la fonction f' ne peut pas s'annuler sur l'intervalle $]0; e^{\frac{34}{-24}}]$.

Pour $x > e^{\frac{34}{-24}}$, la fonction est décroissante de $4 + 24e^{\frac{34}{-24}} > 0$ vers $-\infty$, donc, d'après le théorème des valeurs intermédiaires, il existe une unique valeur $\alpha > e^{\frac{34}{-24}}$ telle que $f'(\alpha) = 0$.

En utilisant la calculatrice, on trouve :

$$f'(0.24) > 0$$

 $f'(0.25) < 0$
 $0.24 < \alpha < 0.25$

8. On a:

9. D'après le tableau de variation, comme 2 > 0, la fonction f ne peut pas s'annuler sur l'intervalle $]0; \alpha]$.

Pour $x > \alpha$, la fonction est décroissante de $f(\alpha) > 0$ vers $-\infty$, donc, d'après le théorème des valeurs intermédiaires, il existe une unique valeur $\beta > \alpha$ telle que $f(\beta) = 0$.

$$f(1.48) < 0$$

$$f(1.47) > 0$$

$$donc 1.47 < \beta < 1.48$$