Complexitatea algoritmului de String Matching privit ca arbore de decizie¹

Xiaoyu He, Neng Huang, Xiaoming Sun 29 iunie 2018

Link-uri: https://arxiv.org/abs/1712.09738 http://drops.dagstuhl.de/opus/volltexte/2018/9508/

INTRODUCERE

Problema de string-matching constă în determinarea apariției unui pattern într-un string (a unei apariții sau a tuturor aparițiilor). În prezent există a serie de algoritmi care rezolvă această problemă optim, spre exemplu algoritmul KMP dezvoltat de Knuth, Morris și Pratt are complexitatea timp O(n + m), unde n este lungimea string-ului în care se face căutarea și m este lungimea pattern-ului. Acest algoritm este optim deoarece complexitatea lui coincide cu complexitatea citirii inputului.

Considerând că avem o serie de informații apriori despre string-ul în care se face căutarea putem defini complexitatea ca numărul de caractere din string-ul de căutare interogate de algoritm. Spre exemplu peste alfabetul $\Sigma = \{0,1\}$ această măsură reprezintă complexitatea arborelui de decizie² a problemei de căutare pe string-uri booleene.

NOTATII

Fie p un pattern peste alfabetul Σ cu $|\Sigma| = \sigma$, unde $p = p[1] \cdot p[2] \cdot p[3] \cdot ... \cdot p[m]$ și · reprezinta operatia de concatenare a caracterelor (|p| = m). Fie p[i ... j] substring-ul de la indexul i pana la j inclusiv.

Fie A_p un algoritm de string-matching determinist care caută pattern-ul p în orice string s. Definim $D_p(n) = \min_{A_p} w(A_p, n)$ unde $w(A_p, n) = \max_{S} (\langle A_p(s) \rangle)$ unde $\langle A_p(s) \rangle = \text{numărul de caractere}_{|s|=n}$

interogate de A_p primind string-ul s la intrare. Cu alte cuvinte $D_p(n)$ reprezintă numărul maxim de caractere interogate peste toate string-urile de lungime n, efectuate de cel mai performat algoritm de string-matching (numărul minim de caractere interogate pe worst-case). În plus, peste $\Sigma = \{0,1\}$, $D_p(n)$ reprezintă complexitatea arborelui de decizie boolean a problemei de string-matching.

Definiția 1: Un pattern p este evaziv daca $\exists N_0 \in \mathbb{N}$ astfel încât $D_p(n) = n, n > N_0$. (Echivalent un pattern este evaziv dacă orice algoritm determinist interoghează toate caracterele inputului pentru a determina dacă p este în acesta).

Pentru a defini non-evazivitatea în paper se folosesc câteva teoreme și observații demonstrate în trecut, printre care:

¹ Titlul original: <<On the Decision Tree Complexity of String Matching>>

² Complexitatea unei probleme sau a unui algoritm privit ca model de arbore de decizie se numește complexitatea arborelui de decizie

- 1. $D_p(n) \leq D_p(n+1)$
- 2. Margine inferioară lineară pentru $D_p(n)$ dată de Rivest: $D_p(n) \ge n |p| + 1, \forall n \in \mathbb{N}$
- 3. Observația demonstrată a lui Rivest cum ca $\not\equiv p$ astfel încât $D_p(n) = n |p| + 1$ si $D_p(n+1) = n |p| + 2$, $\forall n \in \mathbb{N}$ (limita inferioară a inegalității din teorema anterioara nu se atinge niciodată pentru n-uri consecutive).

Definiția 2: Un pattern p este non-evaziv dacă $\forall N_0 \in \mathbb{N}$ atunci $\exists n > N_0$ astfel încât $D_p(n) = n - |p| + 1$.

Definiția 3: Fie un pattern p cu |p| = m și $k \in \mathbb{N}$, $cu \ k < m$. Spunem că p este k - periodic sau p are perioada k dacă $p[i] = p[i+k] \ \forall \ i \in \overline{1 \dots m-k}$ (echivalent $p[1 \dots (m-k)] = p[(k+1) \dots m]$). Fie $Period(p) = \{k | p \ este \ k - periodic\}$. Convențional un string p care nu are nici o perioada valida conform definiției va avea o singură perioadă și anume |p|.

TEOREMA LUI TUZA (Worst-case behavior of string-searching algorithms)

Fie mulțimea $BE(b) = \{p \in \Sigma^* \mid p = b \cdot \omega_1 \cdot \omega_2 \cdot ... \cdot \omega_i \cdot b, \omega_j \in \Sigma, j \in \overline{1 \dots l}, i \geq 1, |b| > 0\} \cup \{p \in \Sigma^* \mid p[1 \dots |b|] = b, \ p[m - |b| + 1 \dots m] = b, 0 < |b| < |p| = m < 2|b|\}$ (string-uri care încep și se termină cu b dar sunt diferite de b, b este bifix pentru p).

Dacă $p \in BE(b)$ atunci fie $p(b) = u \cdot b \cdot v$ unde $u \cdot b = b \cdot v = p$.

Teorema lui Tuza: Fie $p \in BE(b)$. Dacă:

- 1. p(b) nu conține un substring p', |p'| = |p|, altul decât sufixul sau prefixul lui p(b) astfel încât p' și p diferă prin cel mult 2 caractere, și
- 2. Pattern-ul pp nu conține un substring p', |p'| = |p|, altul decât sufixul sau prefixul lui pp astfel încât p' și p difera prin cel mult 4 caractere, și
- 3. $n \geq \frac{|p|(2|p|-|b|)}{\gcd(|p|,|b|)}$ atunci $D_p(n) \geq n-k$, $unde\ k=n\ mod\ (\gcd(|p|,|b|))$.

Ca observație, atunci când $gcd(|p|, |b|) = 1 \implies k = n \mod 1 = 0$

 $\Rightarrow D_p(n) \ge n \xrightarrow{D_p(n) \le n} D_p(n) = n$. În plus teorema de mai sus pentru $\Sigma = \{0, 1\}$ stabilește și proporția pattern-urilor evazive care este cel puțin $0.5061 \cdot 2^m$ din totalul de 2^m string-uri de lungime m peste Σ .

UPPER BOUNDS

Lema 1: Fie un pattern p, cu |p| = m si $c = \gcd(Period(p))$ atunci $D_p(n) \le n - (n \mod c)$.

În continuare aceasta lema se va demonstra pe două cazuri: 1. Daca p este un pattern liber de bifixe și 2. p este un pattern oarecare.

1. DACA P ESTE UN PATTERN LIBER DE BIFIXE

Definiția 4: Un string b, |b| = k se numește bifix al string-lui p, |p| = m > k dacă b este atât prefix cat și sufix al lui p (p[1 ... (m - k)] = p[(k + 1) ... m]). Un string p se numeste liber de bifixe dacă nu are alte bifixe decât pe el însuși. (Echivalent p liber de bifixe $\Leftrightarrow \nexists b$ astf el încât $p \in BE(b)$).

Lema 2: Un pattern p, |p| = m are un bifix de lungime $k < m \Leftrightarrow p$ este (m - k) - periodic. Mai mult p este liber de bifixe $\Leftrightarrow p$ are doar o perioadă, anume m.

Lema 3 (**Restricție a Lemei 1**): Fie un pattern p, |p| = m liber de bifixe atunci $D_p(n) \le n - (n \mod c)$ ceea ce înseamnă ca p este non-evaziv, unde $c = \gcd(Period(p)) = \gcd(\{m\}) = m$.

Demonstrație: Fie următorul algoritm:

```
Input: string s of length n, bifix-free pattern p of length m
Output: whether p is a substring of s
 1: function FIND(s, p)
       if n < m then
           return false
       i \leftarrow m, j \leftarrow m
       query(s[m])
       while j - i \neq m - 1 do
           if s[i..j] is a suffix of p then
               query(s[i-1]), i \leftarrow i-1
               query(s[j+1]), j \leftarrow j+1
10:
       if s[i...j] = p then
11:
12:
           return true
13:
           return FIND(s[m+1..n], p)
15: end function
```

În mod evident dacă p nu este pattern în s atunci algoritmul face $\left[\frac{|s|}{|p|}\right]|p| = \left[\frac{n}{m}\right]m$ pași, și asta este unul din worst-cases $\left(\left[\frac{n}{m}\right]m$ deoarece de la linia 6 la linia 10 se fac m query-uri iar recursia se face din m în m caractere pe s, deci de $\left[\frac{n}{m}\right]$ ultimele $n - \left[\frac{n}{m}\right]m$ caractere fiind skip-uite). În plus $\left[\frac{n}{m}\right]m = n - (n \mod m)$. Și cum acest număr de query-uri este realizabil în worst-case atunci $D_p(n) \le n - (n \mod m)$ (\le deoarece dacă p se află în s mai la început acesta va fi găsit și algoritmul se va opri).

În continuare rămâne de arătat corectitudinea algoritmului. Pentru a arata acest lucru este suficient (datorită recursivității care scurtează noua problemă la un nou s de lungime n-m) să arătam că $\forall k, 1 \le k \le m$ avem că $s[k ... (k+m-1)] \ne p$ (Adică în porțiunea s[1 ... (2m-1)] nu se poate match-ui pattern-ul p). Algoritmul încearcă sa potrivească in s patternul p începând cu poziția |p| din s, căutând în vecinătatea $V(|p|,|p|) = \{1,2,...,m,...2m-1\}, |p| = m$. În mod evident dacă $k=1 \Rightarrow p=s[1 ... m]$ iar algoritmul de mai sus va intra de fiecare dată p prima ramură p if p ului p la final p is p in p

Dacă k=i atunci algoritmul pe liniile 11-12 ar întoarce ture ceea ce este o contradicție $\Rightarrow k \neq i$. Dacă k>i se rezolva analog cazului k < i.

2. DACĂ p ESTE UN PATTERN OARECARE (CAZUL GENERAL)

Demonstrație la Lema1: Fie următorul algoritm, unde $c = \gcd(Period(p))$:

```
Input: string s of length n, pattern p of length m
Output: whether p is a substring of s
 1: function FIND(s, p)
        if n < m then return false
        i \leftarrow m, j \leftarrow m
 3:
 4:
       query(s[m])
        while j - i \neq m - 1 do
            if s[i...j] is a suffix of p then
               query(s[i-1]), i \leftarrow i-1
 7:
               query(s[j+1]), j \leftarrow j+1
 9:
       if s[i..j] = p then
10:
           return true
11:
        l \leftarrow m + c
12:
13:
        while l \le n do
            i \leftarrow l, j \leftarrow l
14:
            query(s[l])
15:
            repeat
16:
               if s[i..j] is a suffix of p then
17:
                   query(s[i-1]), i \leftarrow i-1
18:
19:
               else
20:
                   query(s[j+1]), j \leftarrow j+1
            until c new characters have been queried OR j - i = m - 1
21:
22:
            if s[(j-m+1)..j] = p then
               return true
23:
            l \leftarrow l + c
24:
        return false
26: end function
```

Acest algoritm reprezintă o generalizare a algoritmului anterior însă de aceasta dată string-ul de intrare nu mai este liber de bifixe ci poate avea o serie de perioade. Liniile 3-11 caută pattern-ul p în vecinătatea V(|p|,|p|). Apoi liniile 12-25 caută pattern-ul p în vecinătățile $V(|p|+c,|p|),V(|p|+2c,|p|),...V\left(|p|+\left[\frac{|s|-|p|}{c}\right]c,|p|\right)$

În mod evident dacă p nu este pattern in s atunci algoritmul face $|p| + \left[\frac{|s| - |p|}{c}\right]c = m + \left[\frac{n-m}{c}\right]c = \left[\frac{m}{c}\right]c + \left[\frac{n-m}{c}\right]c = \left(\left[\frac{m}{c}\right] + \left[\frac{n-m}{c}\right]\right)c \le \left[\frac{m+n-m}{c}\right]c = \left[\frac{n}{c}\right]c$ pași, și asta este unul din worst-cases (saltul se face din c în c caractere pe s de la m mai departe (nu contează că este de la m în colo deoarece și pană la m pot fi privite salturi de lungime c deoarece $\left\{\frac{m}{c}\right\} = 0$), deci $\left[\frac{n}{c}\right]c$ caractere vor fi examinate, rezulta că ultimele $n - \left[\frac{n}{c}\right]c$ caractere sunt skip-uite). În plus $\left[\frac{n}{c}\right]c = n - (n \mod c)$. Cum acest număr de query-uri este realizabil în worst-case atunci $D_p(n) \le n - (n \mod c)$ (\le deoarece dacă p se află în s mai la început acesta va fi găsit și algoritmul se va opri).

Deci s-a stabilit o margine superioară pentru numărul de caractere interogate pe string-uri de lungime n pe worst-case de cel mai performant algoritm $D_p(n) \le n - (n \mod c)$, unde algoritm $c = \gcd(Period(p))$.

ESENȚA LUCRĂRII

Teorema 1: Fie un pattern $p \in \Sigma$ cu $|\Sigma| = \sigma$, |p| = m și $c = \gcd(Period(p))$ atunci $D_p(n) = n - (n \mod c)$ exceptând o fracțiune $O(m^5 \sigma^{\frac{-m}{2}})$ de pattern-uri.

Se poate observa că
$$\lim_{m\to\infty} m^5 \sigma^{\frac{-m}{2}} = \lim_{m\to\infty} \frac{m^5}{\sigma^{\frac{m}{2}}} = \begin{cases} 0, daca \ \sigma > 1 \\ \infty, daca \ \sigma = 1 \end{cases}$$

Anterior s-a stabilit că este decidabil dacă $p \in s$ după maxim $n - (n \mod c)$ interogari (Lema 1). Ei bine această teorema (Teorema 1) afirmă că sunt necesare numărul maxim de query-uri pentru a decide dacă $p \in s$ exceptând o serie de $O(m^5 \sigma^{\frac{-m}{2}})$ de pattern-uri.

EVAZIVITATEA PATTERN-URILOR PESTE $\Sigma = \{0, 1\}$

Folosind algoritmul KMP pentru un pattern p peste $\Sigma = \{0,1\}$ se poate construi un Automat Finit Determinist, cu |p|+1 stări (notate q_i $i \in \overline{1,|p|+1}$ în care q_1 este starea inițială și $q_{|p|+1}$ este starea finală, care să accepte string-uri s de orice lungime doar dacă $p \in s$. Spre exemplu pentru p=1010 DFA-ul este următorul:

Fie $KMP_p(s)=i\ dacă\ q_i\ este\ ultima\ stare\ a\ automatului\ după\ parsarea\ lui\ s\ și\ U_p(n,i)=\{s\ |\ |s|=n,\ KMP_p(s)=i\}.$ Mai mult $KMP_p(s)\in\overline{1,|p|+1}$. Fie $g_p(n,i)=\sum_{s\in U_p(n,i)}x^{||s||_1}\in\mathbb{R}[X]\ \mathrm{cu}\ \mathrm{deg}\left(g_p(n,i)\right)< n+1.$ Conform Rivest si Vuillemin avem următoarea lemă (**Lema R-V**), cum că dacă $\exists l\in\overline{1,n}$ astfel încât $D_p(n)\leq n-l$ atunci $g_p(n,|p|+1)=0\ mod(x+1)^l$. Iar pentru aceasta lemă se deduce următorul corolar: dacă $\exists N_0\in\mathbb{N}$ astfel încât $g_p(n,|p|+1)\neq 0\ mod\ (x+1)\ \forall n>N_0\ atunci\ D_p(n)=n\ și\ implici\ p\ este\ evaziv.$

Cum $g_p(n,i) \in \mathbb{R}[X]$ are $\deg \left(g_p(n,i)\right) < n+1$ si $g_p(n+1,j) \in \mathbb{R}[X]$ are $\deg \left(g_p(n+1,j)\right) < n+2$, $\forall i,j \Rightarrow g_p(n+1,|p|+1) = (x+1)g_p(n,|p|+1) + r \cdot g_p(n,|p|), r \in \{0,\pm 1\}$ (intuitiv și în conformitate cu lema R-V: sumă după numărul de 1 din toate string-urile acceptate de lungime n+1 este multiplu de (x+1) (lema R-V) la o putere cel puțin 1, înmulțit cu numărul de 1 din toate string-urile de lungime n acceptate plus suma tuturor caracterelor 1 din toate string-urile de lungime n la care automatul se oprește în penultima stare). De aici se deduce ca $g_p(n+1,|p|+1) \mod (x+1) = \left[(x+1)g_p(n,|p|+1) + r \cdot g_p(n,|p|)\right] \mod (x+1)$

 $\Leftrightarrow g_p(n+1,|p|+1) \ mod \ (x+1) = r \cdot g_p(n,|p|) \ mod \ (x+1) \quad \text{Dar} \quad \text{cum} \quad r \in \{0,\pm 1\} \\ \Rightarrow g_p(n+1,|p|+1) \ mod \ (x+1) = r \cdot g_p(n,|p|) \ mod \ (x+1) = r \cdot g_p(n,|p|)$ $1, |p|+1) \ mod \ (x+1) = g_p(n, |p|) \ mod(x+1) \\ \Leftrightarrow g_p(n+1, |p|+1) \\ \equiv g_p(n, |p|) \ mod(x+1).$ Și de aici următoarea lemă:

Lema 4: $g_p(n+1,|p|+1) \equiv 0 \mod(x+1) \Leftrightarrow g_p(n,|p|) \equiv 0 \mod(x+1)$. În plus $\exists N_0 \in \mathbb{N}$ astfel încât $g_p(n, |p| + 1) \neq 0 \mod (x + 1) \forall n > N_0$ atunci $D_p(n) = n$ și implici p este evaziv.

Pentru a defini $g_p(n+1,i)$ în termeni de $g_p(n,j)_{j\in\overline{1,|p|}} \ \forall i\in\overline{1,|p|}$ se face următoarea constructie:

$$\begin{pmatrix} g_{p}(n+1,1) \\ g_{p}(n+1,2) \\ g_{p}(n+1,3) \\ \dots \\ g_{p}(n+1,|p|) \end{pmatrix} = T_{p} \cdot \begin{pmatrix} g_{p}(n,1) \\ g_{p}(n,2) \\ g_{p}(n,3) \\ \dots \\ g_{p}(n,|p|) \end{pmatrix}, T_{p} \in \mathcal{M}(\mathbb{R}[X])$$

Unde T_p se construiește astfel:

- considerăm $T_p^* = (t_{i,j}^*)_{\substack{i \in \overline{1,|p|}, \ j \in \overline{1,|p|}}}$, unde $t_{i,j}^* = \begin{cases} 1, \exists \ in \ KMP \ tranzitie \ de \ la \ j \ la \ i \\ 0, \ alf \ el \end{cases}$
- $T_p = (t_{i,j})_{i \in \overline{1,|p|}}$, $unde\ t_{i,j} = \begin{cases} t^*_{i,j}, i\ impar \\ x \cdot t^*_{i,j}, \ i\ par \end{cases}$ $\overline{T_p} = (\overline{t}_{i,j})_{i \in \overline{1,|p|}}$, $unde\ \overline{t}_{i,j} = t_{i,j}(-1)$ (deci teste matricea de polinoame T_p evaluata în x = -1

deoarece ne interesează rezultatele mod(x + 1) iar x + 1 se anulează în x = -1)

• $\overline{g_p}(n,i) = g_p(n,i)(-1)$

$$\mathrm{Deci:} \left(\overline{g_p}(n+1,i) \right)^T_{i \in \overline{1,|p|}} = \overline{T_p} \cdot \left(\overline{g_p}(n,i) \right)^T_{i \in \overline{1,|p|}}$$

Fie polinomul caracteristic asociat lui p cu |p| = m, polinomul caracteristic al matricei $\overline{T_n}$: $P(\lambda) = \lambda^m + c_{m-1}\lambda^{m-1} + \dots + c_0$. în plus se dovedește că avem următoarea recurență (folosind Hamilton-Cayley):

$$\overline{g_p}(n+m,m) + c_{m-1}\overline{g_p}(n+m-1,m) + \dots + c_0\overline{g_p}(n,m) = 0$$

În plus conform V. Halava, T. Harju, M. Hirvensalo, si J. Karhumaki avem că pentru un șir recurent $\{u_n\}_{n=1}^{\infty}$ unde $u_n = \sum_{i=0}^{m-1} a_i u_{n-m+i}$, $a_i \in \mathbb{N} \ \forall i \in \overline{0,m-1}$ și un polinom $p(\lambda) = \lambda^m + 1$ $a_{m-1}\lambda^{m-1}+\cdots+a_0$ care are descompunerea $p(\lambda)=\prod_{i=1}^r(\lambda-\lambda_i)^{m_i}$ unde $\lambda_i\in\mathbb{C}$, $i\in\overline{1,r}$ sunt rădăcini distincte, cu $|\lambda_1| \ge |\lambda_2| \ge \cdots \ge |\lambda_r|$ și una din următoarele condiții se întâmplă:

- $|\lambda_1| > |\lambda_2|$ sau
- $|\lambda_1| = |\lambda_2| > |\lambda_3| cu \lambda_1 = \overline{\lambda_3}$ sau
- $|\lambda_1| = |\lambda_2| = |\lambda_3| > |\lambda_4| cu \lambda_2 \in \mathbb{R}, \lambda_2 = \overline{\lambda_3}$

atunci $\exists N_0 \in \mathbb{N}$ astfel încât $u_n \neq 0 \ \forall \ n > N_0$. În plus este decidabil algoritmic că există o constantă $N_0 \in \mathbb{N}$ \mathbb{N} astfel încât $u_n \neq 0 \ \forall \ n > N_0$, deci tot ceea ce trebuie făcut este să se determine existența zerourilor în şirul $\{u_n\}$ cu $n \le N_0$.

În plus se demonstrează că $c_{m-k} = \begin{cases} (-1)^{\|p[1...k]\|_1}, k \in Period(p) \\ 0, alfel \end{cases}$. Ceea ce este computațional mai bine decât varianta anterioara în care trebuia calculata matricea de tranziție $\overline{T_p}$.

CONCLUZII

În acest paper se stabilește o margine exacta pentru a decide dacă un pattern $p \in s$ după maxim de interogări exceptând o serie de neglijabilă de pattern-uri. Acest lucru este realizat după o analiză a proprietăților structurale a pattern-urilor în funcție de periodicitatea caracterelor ce apar în pattern-uri.

Apoi se conturează a abordare algoritmică pentru a decide dacă un pattern peste alfabetul $\Sigma = \{0,1\}$ este evaziv. Acest lucru este realizabil prin două metode algebrice: prin comparație cu problema Skolem din matematică și prin analiza polinomului caracteristic asociat unui pattern.