

৪৪তম বিসিএস লিখিত প্রস্তুতি

লেকচার # ১৩

🕶 সরল, দ্বিঘাত সমীকরণ, ধারা, সেট ও ভেনচিত্র

RK সরল, দ্বিঘাত সমীকরণ, ধারা, সেট ও ভেনচিত্র

০১. P এর মানের ব্যবধি বের করুন যার জন্য $x^2-2px+p^2+5p-6=0$ সমীকরণের কোনো বাস্তব মূল নেই।

[৪০তম বিসিএস]

০২. (ক) $ax^2+bx+c=0,\,(a\neq 0)$ সমীকরণটির সমাধান করে x এর মান নির্ণয় করুন।

তি৬তম বিসিএসা

(খ) প্রাপ্ত সূত্র প্রয়োগে নিচের সমীকরণটি সমাধান করুন: $x(x+1)+\frac{12}{x(x+1)}=8$

[৩৬তম বিসিএস]

ov. $\sqrt{\frac{x}{x+16}} + \sqrt{\frac{x+16}{x}} = \frac{225}{12}$

[৩২তম বিসিএস]

- ০৪. একটি অডিটেরিয়ামে সারিতে সজ্জিত মোট ৬১৬টি আসন আছে। প্রতি সারিতে আসন সংখ্যা মোট সারির সংখ্যা চেয়ে ৬ বেশি হলে, প্রতি সারিতে আসন সংখ্যা নির্ণয় করুন। (২৭তম বিসিএসা
- ০৫. এক ব্যক্তি 22000 টাকায় একটি ফ্রিজ কিন্তিতে পরিশোধের মাধ্যমে কিনতে রাজী হন। প্রত্যেক কিন্তি পূর্বের কিন্তি থেকে 500 টাকা বেশি। যদি প্রথম কিন্তি 1000 টাকা হয়, তবে কতগুলো কিন্তিতে তিনি ফ্রিজের দাম পরিশোধ করতে পারবেন এবং সর্বশেষ কিন্তির পরিমাণ কত? তি৫তম বিসিএসা
- ০৬. একটি সমান্তর ধারায় প্রথম পদ 1, শেষ পদ 99 এবং সমষ্টি 2500 হলে ধারাটির সাধারণত অন্তর কত হবে?
- ০৭. $1 + \frac{1}{3} + \frac{1}{9} + \frac{1}{27} + \dots$ ধারাটির প্রথম পাঁচটি পদের সমষ্টি কত?

০৮. A ও B যথাক্রমে 35 এবং 45 এর সকল গুণনীয়কের সেট হলে $A \cup B$ ও $A \cap B$ নির্ণয় কর।

[৩৭তম বিসিএস]

০৯. U = {3, 5, 6, 7, 9}, A = {x | x, 3 এর গুণিতক এবং x < 12}

(৩৬তম বিসিএস)

- (Φ) $A \times A'$ নির্ণয় করুন।
- (খ) $P(A \cup A')$ এবং $P(A \cap A')$ এর উপাদান সংখ্যা সূত্রের সাহায্যে নির্ণয় করুন।
- ১০. একটি স্কল পরীক্ষায় ৭০% পরীক্ষার্থী গণিতে এবং ৮০% পরীক্ষার্থী বাংলায় পাস করে। কিন্তু ১০% পরীক্ষার্থী উভয় বিষয়ে ফেল করে। যদি ৩৬০ জন পরীক্ষার্থী উভয় বিষয়ে পাস করে. তাহলে কতজন পরীক্ষার্থী পরীক্ষায় অংশগ্রহণ করেছিল? [৩২ . ২০ ও ১৫তম বিসিএস]

সরল, দ্বিঘাত সমীকরণ, ধারা, সেট ও ভেনচিত্র

সরল ও দ্বিঘাত সমীকরণ

- ১১. বনভোজনে যাওয়ার জন্য ৫৭০০ টাকায় একটি বাস ভাড়া করা হলো। শর্ত থাকল যে, প্রত্যেক যাত্রী সমান ভাড়া বহন করবে। ৫ জন যাত্রী না যাওয়ায় মাথাপিছু ভাড়া ৩ টাকা বৃদ্ধি পেল। বাসে কতজন যাত্রী গিয়েছিল? [৩৬তম বিসিএস]
- ১২. $ax^2 + bx + c = 0$, $(a \neq 0)$ সমীকরণটির সমাধান করুন এবং ইহার মাধ্যমে $x^2 + 7x 13 = 0$ সমীকরণটির সমাধান করুন। তি৫তম বিসিএসা
- ১৩. ১২০টি পঁচিশ পয়সার মুদ্রা ও দশ পয়সার মুদ্রা একত্রে ২৭ টাকা হলে, কোন প্রকারের মুদ্রার সংখ্যা কত?

[৩০তম বিসিএস]

১৪. সমাধান করুন: $\frac{5}{x-1} + \frac{4}{x-2} + \frac{9}{x-3}$

[২৮তম বিসিএস]

১৫. সমাধান করুন: $\frac{1}{x-1} + \frac{2}{x-2} = \frac{3}{x-3}$

(২৭তম বিসিএসা

- ১৬. বনভোজনে যাওয়ার জন্য ২৪০০ টাকায় একটি বাস ভাড়া ককরা হলো এবং প্রত্যেক যাত্রী সমান ভাড়া বহন করবে ঠিক করল। ১০ জন যাত্রী না আসায় মাথাপিছু ভাড়া ৮ টাকা বৃদ্ধি পেল। বাসে কত জন যাত্রী গিয়েছিল এবং প্রত্যেককে কত করে ভাড়া দিতে হলো? [২৫তম বিসিএস]

(২৫তম বিসিএস)

- ১৮. কোনো শ্রেণীতে যত জন ছাত্র ছিল তাদের প্রত্যেকে তত পাঁচ পয়সা করে চাঁদা দেয়ায় মোট ১২৫.০০ টাকা হলো। ঐ শ্রেণীতে মোট কত জন [২৪তম বিসিএস]
- ১৯. কোন ভগ্নাংশের লব ও হরের সঙ্গে ২ যোগ করলে ভগ্নাংশটি হয় $\frac{7}{9}$; আবার ঐ ভগ্নাংশের লব ও হর থেকে ৩ বিয়োগ করলে ভগ্নাংশটির হয় $\frac{1}{2}$ ভগ্নাংশটি নির্ণয় করুন। [২৪তম বিসিএস]

২০. যদি A এর বয়স B এর অর্ধেক ও B এর বয়স C এর অর্ধেক এবং তাদের বয়সের সমষ্টি 114 বছর হয়, তবে প্রত্যেকের বয়স নির্ণয় করুন। [২২তম বিসিএস]

২১. সমাধান করুন:
$$\frac{2x-9}{7} + \frac{x-5}{6} = \frac{x-3}{3} + \frac{6x+1}{21}$$

[২২তম বিসিএস]

২২. সমাধান করুন:
$$\frac{2}{2x-1} + \frac{3}{3x-1} = \frac{8}{4x+1}$$

[২১তম বিসিএস]

২৩.১৩,১৭,২৩,২৫,৩০ এবং ৪১ এই সংখ্যাগুলোর মধ্যে কোন সংখ্যাটিকে তিনটি ক্রমিক পূর্ণ সংখ্যায় সমষ্টি হিসেবে প্রকাশ করা যায়। এগুলো কি কি এবং কোনটি মৌলিক? [১৮তম বিসিএস]

২৪. কিছু টাকা ক, খ এবং গ-এর মধ্যে এমনভাবে ভাগ করে দেওয়া হলো যেন, ক, খ-এর চাইতে ৩.৫ গুণ পায়, খ,গ-এর চাইতে ৪ গুণ পায় এবং খ, ক অপেক্ষা ৫০৩ টাকা কম পায়। মোট কত টাকা ভাগ করা হয়েছিল। [১৮ তম বিসিএস]

২৫.
$$\frac{3x+1}{x-1}$$
 এর দিগুণানুপাত $25:1$ হলে x -এর মান কত?

[১৮তম বিসিএস]

২৬. একটি প্রকৃত ভগ্নাংশের হর ও লবের অন্তর ৪, হর ও লব উভয় হতে ৭ বিয়োগ করলে যে ভগ্নাংশ পাওয়া যায় তার সাথে $\frac{1}{4}$ যোগ করলে যোগফল দাড়ায় o.8৫। ভগ্নাংশটি কত? [১৮তম বিসিএস]

২৭. কোনো সংখ্যার সাথে ৭ যোগ করে. যোগফলকে ৫ দিয়ে গুণ করে গুণফলকে ৯ দিয়ে ভাগ করে ভাগফল থেকে ৩ বিয়োগ করলে বিয়োগ ফল [১৭তম বিসিএস]

$$8b \cdot \frac{x-a}{b+c} + \frac{x-b}{c+a} + \frac{x-c}{a+b} = 3$$

[১৭তম বিসিএস]

$$8b. \frac{x-a}{b} + \frac{x-b}{a} + \frac{x-3a-3b}{a+b} = 0$$

[১৫তম বিসিএস]

৩০. একটি অভিনয়ে মোট ৩০০ জন দর্শক উপস্থিত ছিল। তাদের মধ্যে কয়েকজন ৬০ টাকার টিকিট কিনে এবং অবশিষ্ট জন ৫০ টাকার টিকিট কিনে। মোট প্রাপ্তি ১৫,৮০০ টাকা হলে কতগুলো কমদামি টিকিট বিক্রি হয়েছিল? [১৩তম বিসিএস]

৩১. সমাধান করুন:
$$\frac{5}{(2x-1)^2} - \frac{13}{2x-1} = 18$$

(১৩তম বিসিএস)

৩২. y=ax+b হলে x=4-এর জন্য y এর মান নির্ণয় করুন যেখানে x=1 এর জন্য y এর মান 4 এবং x=2 এর জন্য y এর মান 7। [১৩তম বিসিএস]

ধারা , সেট ও ভেনচিত্র

৩৩. 2 + 4 + 8 + 16 + ------ ধারাটির n সংখ্যক পদের সমষ্টি 254 হলে n এর মান কত?

৩৪. কোনো সমান্তর ধারায় p তম পদ p^2 এবং q তম পদ q^2 হলে, ধারাটির (p+q) তম পদ কত?

৩৫. কোনো সমান্তর ধারার m তম পদ n ও n তম পদ m হলে, ধারাটির (m+n) তম পদ কত?

৩৬. 29 + 25 + 21 + - 23 কত?

৩৭. $2+4+6+8+\ldots$ ধারাটির প্রথম a সংখ্যক পদের সমষ্টি 2550 হলে, n এর মান নির্ণয় কর।

৩৮. একটি সমান্তর ধারার প্রথম ১২ পদের সমষ্টি ১৪৪ এবং প্রথম ২০ পদের সমষ্টি ৫৬০ হলে, এর প্রথমে ৬ পদের সমষ্টি নির্ণয় কর।

৩৯. কোনো সমান্তর ধারায় p তম q তম ও r তম পদ যথাক্রমে a,b,c হলে দেখাও যে, $a\left(q-r\right)+b\left(r-p\right)+c\left(p-q\right)=0$

৪০. এক ব্যক্তি 2500 টাকার একটি ঋণ কিছু সংখ্যক কিন্তিতে পরিশোধ করতে রাজী হন। প্রত্যেক কিন্তি পূর্বের কিন্তি থেকে 2 টাকা বেশি। যদি প্রথম কিন্তি 1 টাকা হয়, তবে কতগুলো কিন্তিতে ঐ ব্যক্তি তার ঋণ শোধ করতে পারবেন?

8১. একটি গুণোত্তর ধারার পঞ্চম পদ $\frac{2\sqrt{3}}{9}$ এবং দশম পদ $\frac{8\sqrt{2}}{81}$ হলে, ধারাটির তৃতীয় পদ নির্ণয় কর।

৪২.
$$\frac{1}{\sqrt{2}}$$
, -1 , $\sqrt{2}$ - ... থারাটির কোন পদ $8\sqrt{2}$?

8৩. 5 + x + y + 135 গুণোত্তর ধারাভুক্ত হলে, x এবং y এর মান নির্ণয় কর।

88. $1-1+1-1+\ldots$ ধারাটিপর (2n+1) সংখ্যক পদের সমষ্টি নির্ণয় কর।

৪৫. কোনো পরীক্ষায় 60 জন পরীক্ষার্থীর মধ্যে 25 জন বাংলায় 24 জন ইংরেজীতে এবং 32 জন গণিতে ফেল করেছে। 9 জন কেবলমাত্র বাংলায় , 6 জন কেবলমাত্র ইংরেজীতে, 5 জন ইংরেজী ও গণিতে এবং 3 জন বাংলা ও ইংরেজীতে ফেল করেছে। কতজন পরীক্ষার্থী তিন বিষয়ে ফেল এবং কতজন তিন বিষয়ে পাশ করেছে? [৩৬তম বিসিএস]

৪৬. সেটের উপাদানসংখ্যার ক্ষেত্রে n (U) =80, n (A) =40, n(B) =50 এবং n(A \cap B) =20 হলে, সংশ্লিষ্ট সূত্রসমূহ উল্লেখ করে n (A \cup B), $n(A \ B), n(A^c), n(A^c \cap B^c)$ এবং $n(A \oplus B)$ এর মান নির্ণয় করুন। [৩৫তম বিসিএস]

STUDENT & STUDY সরল, দ্বিঘাত সমীকরণ

০১।
$$\sqrt{\frac{\mathbf{x}}{\mathbf{x}+\mathbf{16}}} + \sqrt{\frac{\mathbf{x}+\mathbf{16}}{\mathbf{x}}} = \frac{25}{12}$$
 (৩২তম BCS)

সমাধান :
$$\sqrt{\frac{x}{x+16}} + \sqrt{\frac{x+16}{x}} = \frac{25}{12}$$

ধরি,
$$\frac{x}{x+16} = p$$
 : $\frac{1}{p} = \frac{1}{\frac{x}{x+16}} = \frac{x+16}{x}$

$$\therefore \sqrt{p} + \sqrt{\frac{1}{p}} = \frac{25}{12}$$

ৰা ,
$$\left(\sqrt{p} + \frac{1}{\sqrt{p}}\right)^2 = \left(\frac{25}{12}\right)^2$$
 [উভয় পক্ষে বৰ্গ করে]

$$\text{ } \text{ } \text{ } \text{ } \text{ } (\sqrt{p})^2 + 2.\sqrt{p}.\frac{1}{\sqrt{p}} + \left(\frac{1}{\sqrt{p}}\right)^2 = \frac{625}{144}$$

$$\sqrt[4]{p^2+1} = \frac{337}{144}$$

বা,
$$144p^2 + 144 = 337p$$

বা,
$$144p^2 - 337p + 144 = 0$$

$$p = \frac{-(-337) \pm \sqrt{(-337)^2 - 4 \times 144 \times 144}}{2 \times 144}$$

$$=\frac{337\pm\sqrt{113569-82944}}{288}$$

$$\therefore ax^2 + bx + c = 0$$
 হলে.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{337 \pm \sqrt{30625}}{288} = \frac{337 \pm 175}{288}$$

$$p = \frac{337 + 175}{288}$$

অথবা,
$$p = \frac{337 - 175}{288} = \frac{512}{288} = \frac{162}{288}$$

$$\therefore p = \frac{16}{9} \quad \therefore \quad p = \frac{9}{16}$$

বা,
$$\frac{x}{x+16} = \frac{16}{9} [p$$
 এর মান বসিয়ে]

বা,
$$\frac{x}{x+16} = \frac{9}{16} [pএর মান বসিয়ে]$$

বা,
$$16x + 256 = 9x$$

বা,
$$16x = 9x + 144$$

বা,
$$16x - 9x = -256$$

বা,
$$16x - 9x = 144$$

বা,
$$7x = -256$$

বা,
$$7x = 144$$

ৰা,
$$x = -\frac{256}{7}$$
 ৰা, $x = \frac{144}{7}$

∴ নির্ণেয় সমাধান
$$x = -\frac{256}{7}$$

অথবা,
$$x = \frac{144}{7}$$

০২। সমাধান করুনঃ $ax + by = a^2 + b^2$, 2bx - ay = ab(৩১তম BCS)

সমাধান: ax + by = a²+b²(i)

$$2bx - ay = ab \dots (ii)$$

(i) নং সমীকরণের উভয়পক্ষকে a দারা এবং

(ii) নং সমীকরণের উভয়পক্ষকে b দ্বারা গুণ করে যোগ করে পাই. $a^2x + aby = a^3 + ab^2$

$$2b^2x - aby = ab^2$$

$$\overline{a^2x + 2b^2x = a^3 + 2a}b^2$$
 [যোগ করে]

$$\operatorname{A}(x(a^2+2b^2)) = a(a^2+2b^2)$$

$$\P, \mathbf{x} = \frac{a(a^2 + 2b^2)}{(a^2 + 2b^2)}$$

$$\therefore x = a$$

x- এর মান (ii) নং সমীকরণের বসিয়ে পাই.

$$2b.a - ay = ab$$

$$\overline{1}$$
, $-ay = ab - 2ab$

বা,
$$-ay = -ab$$

বা,
$$y = \frac{-ab}{-a} = b$$

∴ নির্ণেয় সমাধান, (x, y) = (a, b)

০৩। সমাধান করুন ঃ

(২৯তম BCS)

$$2x + \frac{3}{y} = 1$$

$$5x - \frac{2}{y} = \frac{11}{12}$$

সমাধান: $2x + \frac{3}{y} = 1$ (i)

$$5x - \frac{2}{y} = \frac{11}{12}$$
.....(ii)

(i) নং সমীকরণ হতে , $2x+rac{3}{y}=1$

$$\Rightarrow \frac{3}{y} = 1 - 2x \qquad \Rightarrow y = \frac{3}{1 - 2x} \dots (iii)$$

y এর মান (ii) নং সমীকরণে বসিয়ে পাই,

$$5x - \frac{2}{\frac{3}{1 - 2x}} = \frac{11}{12}$$

$$\Rightarrow 5x - \frac{2(1-2x)}{3} = \frac{11}{12}$$

$$\Rightarrow \frac{15x - 2 + 4x}{3} = \frac{11}{12}$$

$$\Rightarrow \frac{19x-2}{3} = \frac{11}{12} \Rightarrow 12(19x-2) = 33$$

$$\Rightarrow 228x - 24 = 33 \Rightarrow 228x = 33 + 24$$

$$\Rightarrow 228x = 57 \Rightarrow x = \frac{57}{228} \therefore x = \frac{1}{4}$$

x এর মান (iii) নং এ বসিয়ে পাই.

$$y = \frac{3}{1 - 2x} = \frac{3}{1 - 2 \cdot \frac{1}{4}} = \frac{3}{1 - \frac{1}{2}} = \frac{3}{\frac{2 - 1}{2}} = \frac{3}{\frac{1}{2}} = 3 \times 2 = 6$$

 \therefore নির্ণেয় সমাধান , $(x, y) = (\frac{1}{4}, 6)$

০৪। সমাধান করুন ঃ $\frac{5}{x-1} + \frac{4}{x-2} = \frac{9}{x-3}$ (২৮৩ম BCS)

সমাধান:
$$\frac{5}{x-1} + \frac{4}{x-2} = \frac{9}{x-3}$$

$$41, \frac{5}{x-1} + \frac{4}{x-2} = \frac{5}{x-3} + \frac{4}{x-3}$$

$$4, \frac{5}{x-1} - \frac{5}{x-3} = \frac{4}{x-3} - \frac{4}{x-2}$$

$$\boxed{4}, \frac{-10}{(x-1)(x-3)} = \frac{4}{(x-3)(x-2)}$$

উভয় পক্ষকে (x – 3) দ্বারা গুণ করে]

$$\sqrt{10}$$
, $-10x + 20 = 4x - 4$

$$\boxed{1, -10x - 4x = -4 - 20}$$

বা,
$$-14x = -24$$

$$\therefore x = \frac{12}{7}$$

∴ নির্ণেয় সমাধান,
$$\mathbf{x} = \frac{12}{7}$$

০৫। সমাধান করুনঃ $\frac{1}{x-1} + \frac{2}{x-2} = \frac{3}{x-3}$ (২৭তম BCS)

সমাধান: $\frac{1}{x-1} + \frac{2}{x-2} = \frac{3}{x-3}$

$$\overline{q}$$
, $\frac{1}{x-1} + \frac{2}{x-2} = \frac{1}{x-3} + \frac{2}{x-3}$

$$\overline{1}, \frac{1}{x-1} - \frac{1}{x-3} = \frac{2}{x-3} - \frac{2}{x-2}$$

$$\text{ at, } \frac{x-3-x+1}{(x-1)(x-3)} = \frac{2x-4-2x+6}{(x-3)(x-2)}$$

$$41, \frac{-2}{(x-1)(x-3)} = \frac{2}{(x-3)(x-2)}$$

ৰা,
$$\frac{-2}{x-1} = \frac{2}{x-2}$$
 [উভয় পক্ষকে $(x-3)$ গুণ করে]

বা,
$$x - 1 = -x + 2$$

বা.
$$x + x = 2 + 1$$

বা,
$$2x = 3$$

ৰা,
$$x = \frac{3}{2}$$

$$\therefore x = 1\frac{1}{2}$$

$$\therefore$$
 নির্ণেয় সমাধান , $\mathrm{x}=1\frac{1}{2}$ ।

০৬। সমাধান করুনঃ
$$\frac{3}{x-2} + \frac{5}{x-6} = \frac{8}{x+3}$$

সমাধান:
$$\frac{3}{x-2} + \frac{5}{x-6} = \frac{8}{x+3}$$

$$41, \ \frac{3}{x-2} + \frac{5}{x-6} = \frac{5}{x+3} + \frac{3}{x+3}$$

$$41, \frac{3}{x-2} - \frac{3}{x+3} = \frac{5}{x+3} - \frac{5}{x-6}$$

বা,
$$\frac{15}{x-2} = \frac{-45}{x-6}$$
 [উভয় পক্ষকে $(x+3)$ দ্বারা গুণ করে]

$$\boxed{1}, \ \frac{1}{x-2} = \frac{-3}{x-6}$$

বা,
$$x - 6 = -3x + 6$$

বা,
$$x + 3x = 6 + 6$$

বা,
$$4x = 12$$
 বা, $x = 3$

∴ নির্ণেয় সমাধান
$$x = 3$$

০৭। সমাধান করুনঃ
$$\frac{1}{x} + \frac{1}{y} = 7$$
, $\frac{1}{x^2} - \frac{1}{y^2} = 21$ (২৩০ম BCS)

সমাধান:
$$\frac{1}{x} + \frac{1}{y} = 7$$
(i)

এবং
$$\frac{1}{x^2} - \frac{1}{v^2} = 21$$

বা,
$$\left(\frac{1}{x} + \frac{1}{y}\right)\left(\frac{1}{x} - \frac{1}{y}\right) = 21$$

ৰা,
$$7\left(\frac{1}{x} - \frac{1}{y}\right) = 21$$

$$\therefore \frac{1}{x} - \frac{1}{y} = 3 \dots (ii)$$

$$(i)$$
 ও (ii) নং সমীকরণ যোগ করে পাই , $\frac{2}{x}\!=10$

বা,
$$x=\frac{1}{5}$$

$$(i)$$
 ও (ii) নং সমীকরণ বিয়োগ করে পাই , $\frac{2}{y} = 4$

বা,
$$y = \frac{1}{2}$$

$$\therefore$$
 নির্ণে সমাধান, $(x, y) = \left(\frac{1}{5}, \frac{1}{2}\right)$

(২৫তম
$$BCS$$
) ০৮। সমাধান করুন ঃ $\dfrac{2x-9}{7}+\dfrac{x-5}{6}=\dfrac{x-3}{3}+\dfrac{6x+1}{21}$

সমাধান:
$$\frac{2x-9}{7} + \frac{x-5}{6} = \frac{x-3}{3} + \frac{6x+1}{21}$$

$$41, \frac{x-5}{6} - \frac{x-3}{3} = \frac{6x+1}{21} - \frac{2x-9}{7}$$

$$\boxed{4, \frac{x-5-2x+6}{6} = \frac{6x+1-6x+27}{21}}$$

$$41, \frac{-x+1}{2} = \frac{28}{7}$$

বা,
$$-x + 1 = 8$$

বা,
$$-x = 8 - 1$$

বা,
$$-x = 7$$

$$\therefore \mathbf{x} = -7$$

∴ নির্ণেয় সমাধান,
$$x = -7$$

০৯। সমাধান করুনঃ
$$\frac{2}{2x-1} + \frac{3}{3x-1} = \frac{8}{4x+1}$$
 (২১তম BCS)

সমাধান:
$$\frac{2}{2x-1} + \frac{3}{3x-1} = \frac{8}{4x+1}$$

$$\P, \ \frac{2(3x-1)+3(2x-1)}{(2x-1)(3x-1)} = \frac{8}{4x+1}$$

$$\boxed{4}, \ \frac{12x-5}{6x^2-5x+1} = \frac{8}{4x+1}$$

$$48x^2 + 12x - 20x - 5 = 48x^2 - 40x + 8$$

$$\sqrt{1}$$
, $-8x + 40x = 8 + 5$

বা,
$$32x = 13$$

বা,
$$x = \frac{13}{32}$$

∴ নির্ণেয় সমাধান,
$$x = \frac{13}{32}$$

১০। সমাধান করুনঃ
$$\frac{\mathbf{x} - \mathbf{a}}{\mathbf{b} + \mathbf{c}} + \frac{\mathbf{x} - \mathbf{b}}{\mathbf{c} + \mathbf{a}} + \frac{\mathbf{x} - \mathbf{c}}{\mathbf{a} + \mathbf{b}} = 3$$
 (১৭তম BCS)

সমাধান:
$$\frac{x-a}{b+c} + \frac{x-b}{c+a} + \frac{x-c}{a+b} = 3$$

$$\P, \frac{x-a}{b+c} - 1 + \frac{x-b}{c+a} - 1 + \frac{x-c}{a+b} - 1 = 0$$

ৰা,
$$\frac{x-a-b-c}{b+c} + \frac{x-b-c-a}{c+a} + \frac{x-c-a-b}{a+b} = 0$$

$$\exists t, (x-a-b-c) \left(\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b} \right) = 0$$

किंह,
$$\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b} \neq 0$$

$$\therefore x-a-b-c=0$$
 $\exists t, x=a+b+c$

 \therefore নির্ণেয় সমাধান, x = a + b + c

১১। সমাধান করুনঃ
$$\dfrac{x-a}{b}+\dfrac{x-b}{a}+\dfrac{x-3a-3b}{a+b}=0$$

(১৫তম BCS)

সমাধান:
$$\frac{x-a}{b} + \frac{x-b}{a} + \frac{x-3a-3b}{a+b} = 0$$

$$\Rightarrow \frac{x-a}{b} + \frac{x-b}{a} + \frac{x-3(a+b)}{a+b} = 0$$

$$\Rightarrow \frac{x-a}{b} + \frac{x-b}{a} + \frac{x}{a+b} - 3\frac{(a+b)}{(a+b)} = 0$$

$$\Rightarrow \frac{x-a}{b} + \frac{x-b}{a} + \frac{x}{a+b} - 3 = 0$$

$$\Rightarrow \frac{x-a}{b} - 1 + \frac{x-b}{a} - 1 + \frac{x}{a+b} - 1 = 0$$

$$\Rightarrow \frac{x-a-b}{b} + \frac{x-b-a}{a} + \frac{x-a-b}{a+b} = 0$$

$$\Rightarrow$$
 $\left(x-a-b\right)\left(\frac{1}{b}+\frac{1}{a}+\frac{1}{a+b}\right)=0$

কিন্তু
$$\frac{1}{b} + \frac{1}{a} + \frac{1}{a+b} \neq 0$$

$$\therefore x-a-b=0$$

$$\therefore$$
 $x = (a + b)$

 \therefore নির্ণেয় সমাধান, x = (a + b)

১২। সমাধান করুনঃ
$$\frac{5}{(2x-1)^2} - \frac{13}{2x-1} = 18$$
 (১৩তম BCS)

সমাধান:
$$\frac{5}{(2x-1)^2} - \frac{13}{2x-1} = 18$$

or,
$$\frac{5-13(2x-1)}{(2x-1)^2} = 18$$

or,
$$\frac{5-26x+13}{4x^2-4x+1}=18$$

or,
$$\frac{-26x+18}{4x^2-4x+1}=18$$

or.
$$72x^2 - 72x + 18 = -26x + 18$$

or.
$$72x^2 - 72x + 26x = 18 - 18$$

or,
$$72x^2 - 46x = 0$$

or,
$$x(72x-46)=0$$

$$\therefore x = 0$$

অথবা,
$$72x - 46 = 0$$

or,
$$72x = 46$$

or,
$$x = \frac{46}{72}$$

or,
$$x = \frac{23}{36}$$

or,
$$x = 0.63$$

∴ নির্ণেয় সমাধান
$$x=0$$

অথবা, x = 0.63

১৩। সমাধান করুনঃ
$$\dfrac{8x+37}{18}+\dfrac{29-7x}{5x-12}=\dfrac{4x^2-36}{9x-27}$$

(১১তম BCS)

সমাধান:
$$\frac{8x+37}{18} + \frac{29-7x}{5x-12} = \frac{4x^2-36}{9x-27}$$

$$\boxed{4}, \quad \frac{8x+37}{18} + \frac{29-7x}{5x-12} = \frac{4(x^2-9)}{9(x-3)}$$

$$41, \quad \frac{8x+37}{18} + \frac{29-7x}{5x-12} = \frac{4(x+3)(x-3)}{9(x-3)}$$

$$\boxed{4}, \quad \frac{8x+37}{18} + \frac{29-7x}{5x-12} = \frac{4x+12}{9}$$

$$\text{ } \text{ } \text{ } \frac{29-7x}{5x-12} = \frac{4x+12}{9} - \frac{8x+37}{18}$$

$$\boxed{4}, \quad \frac{29-7x}{5x-12} = \frac{8x+24-8x-37}{18}$$

$$\boxed{4}, \quad \frac{29-7x}{5x-12} = \frac{-13}{18}$$

বা.
$$18(29-7x)=-13(5x-12)$$

$$\sqrt{3}$$
, $522 - 126x = -65x + 156$

$$4$$
, $65x - 126x = 156 - 522$

$$41$$
, -61 x = -366

ৰা,
$$x = \frac{366}{61}$$

$$\therefore x = 6$$

∴ নির্ণেয় সমাধান, x = 6

১৪। সমাধান করুলঃ
$$\frac{10}{2x-5} + \frac{1}{x+5} = \frac{18}{3x-5}$$
 (১০তম BCS)

সমাধান:
$$\frac{10}{2x-5} + \frac{1}{x+5} = \frac{18}{3x-5}$$

উভয় পক্ষকে (3x-5) দ্বারা গুণ করে]

(১০তম BCS)

বা,
$$\frac{5}{2x-5} = \frac{4}{x+5}$$
 [উভয় পক্ষকে 5 দ্বারা ভাগ করে।]

$$4$$
, $5x + 25 = 8x - 20$

বা,
$$5x - 8x = -20 - 25$$

বা,
$$-3x = -45$$

বা,
$$x = \frac{45}{3}$$

∴ নির্ণেয় সমাধান,
$$x = 15$$

১৫। সমাধান করুন ঃ

$$\frac{\mathbf{x}}{\mathbf{a}} + \frac{\mathbf{y}}{\mathbf{b}} = 2$$

$$\mathbf{a}\mathbf{x} + \mathbf{b}\mathbf{y} = \mathbf{a}^2 + \mathbf{b}^2$$

সমাধান:

$$\frac{x}{a} + \frac{y}{b} = 2 \dots (i)$$

$$ax + by = a^2 + b^2$$
 (ii)

সমীকরণ (ii) হতে,
$$ax + by = a^2 + b^2$$
 (iv)

সমীকরণ (iii)
$$\times$$
 a থেকে, $abx + a^2y = 2a^2b$

সমীকরণ (iv)
$$\times$$
 b থেকে, $abx + b^2v = a^2b + b^3$

$$y(a^2-b^2) = b (a^2-b^2)$$
 [বিয়োগ করে]

বা,
$$y = b$$

এখন, সমীকরণ (ii) এ y=b বসাই

$$ax + b.b = a^2 + b^2$$

$$\exists 1$$
, $ax = a^2 + b^2 - b^2$

বা,
$$ax = a^2$$

$$\therefore x = a$$

$$\therefore$$
 নির্ণেয় সমাধান, $(x, y) = (a, b)$

$$\begin{array}{cc} \mathbf{y}^{\mathbf{x}} = \mathbf{4} \\ \mathbf{v}^{2} = \mathbf{2}^{\mathbf{x}} \end{array}$$

সমাধান: $y^x = 4$(i)

$$y^2 = 2^x$$
 (ii)

(ii) নং সমীকরণ থেকে পাই, $v^2 = 2^x$

বা,
$$(y^2)^{1/2} = (2^x)^{\frac{1}{2}}$$

[বর্গমল করে]

বা,
$$y = 2^{\frac{x}{2}}$$
.....(iii)

এখন, (i) সমীকরণ থেকে পাই, $y^x = 4$

ৰা
$$(2^{\frac{x}{2}})^x = 4$$

ৰা, $(2^{\frac{x}{2}})^x = 4$ [(iii) নং হতে $y = 2^{\frac{x}{2}}$ বসিয়ে]

ৰা,
$$2^{\frac{x^2}{2}} = 2^2$$
ৰা, $\frac{x^2}{2} = 2$ ৰা, $x^2 = 4$

$$\therefore x = \pm 2$$

[বর্গমূল করে]

এখন. x-এর মান

(i) নং সমীকরণে বসিয়ে পাই , x=2 হলে , $y^2=4$

$$\therefore$$
 y = ± 2 এবং x = -2 হলে, y $^{-2}$ = 4

ৰা,
$$\frac{1}{y^2} = 4$$

বা,
$$y^2 = \frac{1}{4}$$

$$\therefore y = \pm \frac{1}{2}$$

∴ নির্ণয়ে সমাধান, $(x, y) = (2, 2), (2-2), (-2, \frac{1}{2}), (-2, -\frac{1}{2})$

১৭। সমাধান করুন ঃ $\frac{x-1}{x-2} - \frac{x-2}{x-3} = \frac{x-5}{x-6} - \frac{x-6}{x-7}$

সমাধান: $\frac{x-1}{x-2} - \frac{x-2}{x-3} = \frac{x-5}{x-6} - \frac{x-6}{x-7}$

$$\exists 1, \ \frac{x-1}{x-2} - \frac{x-5}{x-6} = \frac{x-2}{x-3} - \frac{x-6}{x-7}$$

$$\P, \frac{(x-1)(x-6) - (x-5)(x-2)}{(x-2)(x-6)}$$

$$=\frac{(x-2)(x-7)-(x-6)(x-3)}{(x-3)(x-7)}$$

$$41, \frac{x^2 - 7x + 6 - x^2 + 7x - 10}{(x - 2)(x - 6)}$$

$$=\frac{x^2-9x+14-x^2+9x-18}{(x-3)(x-7)}$$

$$4, \frac{-4}{(x-2)(x-6)} = \frac{-4}{(x-3)(x-7)}$$

$$\sqrt{3}$$
, $x^2 - 8x + 12 = x^2 - 10x - 21$

$$4x - 8x - x^2 + 10x = 21 - 12$$

বা,
$$2x = 9$$

বা,
$$x=\frac{9}{2}$$

ৰা,
$$x = 4\frac{1}{2}$$

∴নির্ণেয় সমাধান,
$$x=4\frac{1}{2}$$

১৮। সমাধান করুন ঃ
$$\dfrac{a}{x-a}+\dfrac{b}{x-b}=\dfrac{a+b}{x-a-b}$$

সমাধান:
$$\frac{a}{x-a} + \frac{b}{x-b} = \frac{a+b}{x-a-b}$$

ৰা,
$$\frac{a}{x-a} + \frac{b}{x-b} = \frac{a}{x-a-b} + \frac{b}{x-a-b}$$

ৰা,
$$\frac{a}{x-a} - \frac{a}{x-a-b} = \frac{b}{x-a-b} - \frac{b}{x-b}$$

$$\P, \ \frac{ax - a^2 - ab - ax + a^2}{(x - a)(x - a - b)} = \frac{bx - b^2 - bx + ab + b^2}{(x - a - b)(x - b)}$$

বা,
$$\frac{-ab}{x-a} = \frac{ab}{x-b}$$
 [উভয় পক্ষকে (x-a-b) দ্বারা গুণ করে]

বা,
$$\frac{-1}{x-a} = \frac{1}{x-b}$$
 [ab দ্বারা ভাগ করে]

বা,
$$x - a = -x + b$$

বা,
$$x + x = a + b$$

বা,
$$2x = a + b$$

$$\therefore x = \frac{1}{2}(a+b)$$

∴ নির্ণেয় সমাধান ,
$$x = \frac{1}{2} (a+b)$$

১৯। সমাধান করুন ঃ
$$\frac{8}{2x-1} + \frac{9}{3x-1} = \frac{7}{x+1}$$

সমাধান:
$$\frac{8}{2x-1} + \frac{9}{3x-1} = \frac{7}{x+1}$$

ৰা,
$$\frac{8}{2x-1} - \frac{4}{x+1} = \frac{3}{x+1} - \frac{9}{3x-1}$$

[উভয় পক্ষকে $\frac{12}{(x+1)}$ দ্বারা ভাগ করে]

বা,
$$3x-1=-2x+1$$

বা,
$$3x + 2x = 1 + 1$$

বা,
$$5x = 2$$

বা,
$$x = \frac{2}{5}$$

$$\therefore x = \frac{2}{5}$$

∴নির্ণেয় সমাধান, $x = \frac{2}{5}$

২০। সমাধান করুনঃ
$$\dfrac{x-3}{x-4} + \dfrac{x-6}{x-7} = \dfrac{x-4}{x-5} + \dfrac{x-5}{x-6}$$

সমাধান:
$$\frac{x-3}{x-4} + \frac{x-6}{x-7} = \frac{x-4}{x-5} + \frac{x-5}{x-6}$$

$$\P, \ \frac{x-3}{x-4} - \frac{x-5}{x-6} = \frac{x-4}{x-5} - \frac{x-6}{x-7}$$

[উভয় পক্ষকে –2 দ্বারা ভাগ করে]

বা.
$$x^2 - 10x + 24 = x^2 - 12x + 35$$

বা,
$$x^2 - 10x - x^2 + 12x = 35 - 24$$

বা.
$$2x = 11$$

বা,
$$x = \frac{11}{2}$$

বা,
$$x = 5\frac{1}{2}$$

∴নির্ণেয় সমাধান, $x = 5\frac{1}{2}$

২১। সমাধান করুনঃ

$$\frac{a(bcx-a)}{b^2 + c^2} + \frac{b(cax-b)}{c^2 + a^2} + \frac{c(abx-c)}{a^2 + b^2} = 3$$

সমাধান:
$$\frac{a(bcx-a)}{b^2+c^2} + \frac{b(cax-b)}{c^2+a^2} + \frac{c(abx-c)}{a^2+b^2} = 3$$

$$\overline{ \text{ If } }, \quad \left\{ \frac{a(bcx-a)}{b^2 + c^2} - 1 \right\} + \left\{ \frac{b(cax-b)}{c^2 + a^2} - 1 \right\} + \left\{ \frac{c(abx-c)}{a^2 + b^2} - 1 \right\} = 0$$

$$\overline{\text{II}} \,, \quad \left(abc \, x - a^2 - b^2 - c^2 \right) \! \left\{ \frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} + \frac{1}{a^2 + b^2} \right\} = 0$$

किंह,
$$\left\{ \frac{1}{b^2 + c^2} + \frac{1}{c^2 + a^2} + \frac{1}{a^2 + b^2} \right\} \neq 0$$

$$\therefore abcx - a^2 - b^2 - c^2 = 0$$

$$abcx = a^2 + b^2 + c^2$$

ৰা,
$$x = \frac{a^2 + b^2 + c^2}{abc}$$

∴ নির্ণেয় সমাধান,
$$x = \frac{a^2 + b^2 + c^2}{abc}$$

২২। সমাধান করুন:
$$\dfrac{b+x+\sqrt{b^2-x^2}}{b+x-\sqrt{b^2-x^2}}=\dfrac{b}{x}$$

সমাধান •

ৰা,
$$\frac{b+x+\sqrt{b^2-x^2}}{b+x+\sqrt{b^2-x^2}} + \frac{b+x-\sqrt{b^2-x^2}}{b-x} = \frac{b+x}{b-x}$$
[যোজন ও বিয়োজন কবে

$$\boxed{1}, \ \frac{2(b+x)}{2\sqrt{b^2 - x^2}} = \frac{b+x}{b-x}$$

$$\sqrt[4]{b-x} = 1$$

বা.
$$b-x=\sqrt{b^2-x^2}$$

ৰা,
$$(b-x)^2 = \left(\sqrt{b^2 - x^2}\right)^2$$
 [বৰ্গ করে]

ৰা,
$$2x^2 - 2bx = 0$$

ৰা,
$$2x^2 = 2bx$$
 ৰা, $x = \frac{2bx}{2x} = b$

∴ নির্ণেয় সমাধান,
$$\mathbf{x} = \mathbf{b}$$

২৩। সমাধান করুনঃ
$$\frac{x-a}{bc} + \frac{x-b}{ca} + \frac{x-c}{ab} = 0$$

সমাধান:
$$\frac{x-a}{bc} + \frac{x-b}{ca} + \frac{x-c}{ab} = 0$$

ৰা,
$$\frac{ax-a^2+bx-b^2+cx-c^2}{abc} = 0$$

$$\exists 1, ax + bx + cx = a^2 + b^2 + c^2$$

$$\sqrt{a}$$
, x $(a + b + c) = a^2 + b^2 + c^2$

∴ নির্ণেয় সমাধান,
$$x = \frac{a^2 + b^2 + c^2}{a + b + c}$$

২৪। সমাধান সেট নির্ণয় করুন:

$$\frac{x+a^2+2c^2}{b+c} + \frac{x+b^2+2a^2}{c+a} + \frac{x+c^2+2b^2}{a+b} + (b-c)+(c-a)+(a-b)=0$$

সমাধান:

$$+(b-c)+(c-a)+(a-b)=0$$

$$a$$
, $\frac{x+a^2+2c^2}{b+c}+(b-c)+\frac{x+b^2+2a^2}{c+a}+(c-a)$

$$+\frac{x+c^2+2b^2}{a+b}+(a-b)=0$$

ৰা,
$$\frac{x+a^2+2c^2+(b-c)(b+c)}{b+c} + \frac{x+b^2+2a^2+(c+a)(c-a)}{c+a}$$

$$+\frac{x+c^2+2b^2+(a+b)(a-b)}{a+b}=0$$

$$\boxed{\text{41}, \frac{x+a^2+2c^2+b^2-c^2}{a+b} + \frac{x+b^2+2a^2+c^2-a^2}{c+a} + \frac{x+c^2+2b^2+a^2-b^2}{a+b} = 0}$$

$$\exists t, (x+a^2+b^2+c^2) \left(\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b} \right) = 0$$

কিন্তু,
$$\left(\frac{1}{b+c} + \frac{1}{c+a} + \frac{1}{a+b}\right) \neq 0$$

$$\therefore x + a^2 + b^2 + c^2 = 0$$

$$\exists i, x = -(a^2 + b^2 + c^2)$$

∴ নির্ণেয় সমাধান,
$$x = -(a^2 + b^2 + c^2)$$

$$\therefore$$
 সমীকরণটির সমাধান সেট ঃ $\{-(a^2+b^2+c^2)\}$

২৫। সমাধান সেট নির্ণয় করুন: $\frac{x-a}{x-b} + \frac{x-b}{x-a} = \frac{a}{b} + \frac{b}{a}$

সমাধান:
$$\frac{x-a}{x-b} + \frac{x-b}{x-a} = \frac{a}{b} + \frac{b}{a}$$

$$\overline{A}, \frac{x-a}{x-b} - \frac{a}{b} = \frac{b}{a} - \frac{x-b}{x-a}$$

ৰা,
$$\frac{bx-ab-ax+ab}{b(x-b)} = \frac{bx-ab-ax+ab}{a(x-a)}$$

ৰা,
$$\frac{bx - ax}{bx - b^2} = \frac{bx - ax}{ax - a^2}$$

$$4, \frac{bx - ax}{bx - b^2} - \frac{bx - ax}{ax - a^2} = 0$$

হয়,
$$bx - ax = 0$$

বা,
$$x(b-a)=0$$

$$\exists t, \ x = \frac{0}{b-a} = 0$$

অথবা,
$$\frac{1}{bx-b^2} - \frac{1}{ax-a^2} = 0$$

বা.
$$ax - a^2 = bx - b^2$$

বা,
$$ax - bx = a^2 - b^2$$

বা,
$$x(a-b) = (a+b)(a-b)$$

ৰা,
$$x = \frac{(a+b)(a-b)}{a-b} = a+b$$

∴ নির্ণেয় সমাধান সেট, $\{0, a+b\}$

২৬। সমাধান নির্ণয় করুন: $\frac{2}{x} + \frac{3}{y} = 2$ $\frac{5}{x} + \frac{10}{y} = 5\frac{5}{6}$

সমাধান:

$$\frac{2}{x} + \frac{3}{y} = 2$$

$$\frac{5}{x} + \frac{10}{y} = \frac{35}{6}$$

মনে করি,
$$\frac{1}{x} = a$$
, $\frac{1}{v} = b$

তাহলে, 2a + 3b = 2(i)

$$5a + 10b = \frac{35}{6}$$
....(ii)

সমীকরণ (i)-থেকে পাই, 2a = 2 - 3b

ৰা,
$$a = \frac{2-2b}{2}$$
.....(iii)

এখন, সমীকরণ (ii)-এ $a = \frac{2-2b}{2}$ বসিয়ে পাই,

$$\overline{4}, \ \frac{5(2-3b)}{2} + 10b = \frac{35}{6}$$

ৰা,
$$5b+10=\frac{35}{6}\times 2$$

ৰা,
$$5b = \frac{35}{3} - 10$$

$$41, 5b = \frac{35 - 30}{3} = \frac{5}{3}$$

$$b = \frac{5}{3.5} = \frac{1}{3}$$

এখন. b-এর মান সমীকরণ (iii)-এ বসিয়ে পাই,

$$a = \frac{2 - 3 \times \frac{1}{3}}{2} = \frac{2 - 1}{2} = \frac{1}{2}$$

$$a = \frac{1}{x}$$
 হওয়ায়, $\frac{1}{x} = \frac{1}{2}$ $\therefore x = 2$

$$b = \frac{1}{y}$$
 হওয়ায়, $\frac{1}{y} = \frac{1}{3}$: $y = 3$

∴ নির্ণেয় সমাধান,
$$(x, y) = (2, 3)$$

২৭। সমাধান করুন:

$$25x + 27y = 131$$
....(i)

$$27x + 25y = 129$$
(ii)

সমাধান: সমীকরণ (i)-কে 25 দ্বারা এবং সমীকরণ (ii))-কে 27 দারা গুণ করে পাই,

$$625x + 675y = 3275$$

$$729x + 675y = 3483$$

বিয়োগ করে পাই, -104x = -208

বা,
$$104x = 208$$

$$x = \frac{208}{104} = 2$$

এখন, x-এর মান সমীকরণ (i)-এ বসিয়ে পাই,

$$25.2 + 27y = 131$$

বা,
$$50 + 27y = 131$$

বা,
$$27y = 131 - 50$$

বা,
$$27y = 81$$

$$y = \frac{81}{27} = 3$$

∴ নির্ণেয় সমাধান (x, y) = (2, 3)

২৮। সমাধান করুন: $\frac{x}{3} - \frac{2}{y} = 1$; $\frac{x}{6} + \frac{4}{y} = 3$

সমাধান :

$$\frac{x}{3} - \frac{2}{y} = 1$$
....(i)

$$\frac{x}{6} + \frac{4}{y} = 3$$
(ii)

সমীকরণ (i)-কে 2 দ্বারা গুণ করে পাই,

$$\frac{2x}{3} - \frac{4}{y} = 2$$

$$\frac{x}{6} + \frac{4}{y} = 3$$

যোগ করে পাই, $\frac{2x}{3} + \frac{x}{6} = 5$

$$\frac{4x+x}{6} = 5$$

ৰা,
$$5x = 5.6$$

ৰা,
$$x = \frac{30}{5} = 6$$

এখন x-এর মান সমীকরণ (i) এ বসিয়ে পাই, $\frac{6}{3} - \frac{2}{y} = 1$

বা,
$$2 - \frac{2}{v} = 1$$

$$\sqrt{1}$$
, $-\frac{2}{v} = 1 - 2$

ৰা,
$$-\frac{2}{v} = -1$$

বা,
$$\frac{2}{v} = 1$$

বা.
$$v=2$$

∴ নির্ণেয় সমাধান (x, y) = (6, 2)

২৯। সমাধান করুন: $\frac{x}{a} + \frac{y}{b} = 2$

$$ax - by = a^2 - b^2$$

সমাধান:

$$\frac{x}{a} + \frac{y}{b} = 2$$

বা,
$$\frac{bx + ay}{ab} = 2$$

বা,
$$bx + ay = 2ab$$

$$bx + ay - 2ab = 0$$
....(i)

$$ax - by - (a^2 - b^2) = 0$$
....(ii)

বজ্রগুণন সূত্রানুসারে

$$\frac{x}{a.\{-(a^2-b^2)\}-(-b)(-2ab)}$$

$$= \frac{y}{-2ab.a - \{-(a^2 - b^2)\}b} = \frac{1}{b.(-b) - a.a}$$

$$\frac{x}{-a^3+ab^2-2ab^2}$$

$$= \frac{y}{-2a^2b + a^2b - b^3} = \frac{1}{-b^2 - a^2}$$

$$\therefore x = \frac{-a(a^2 + b^2)}{-(a^2 + b^2)} = a$$

∴ নির্ণেয় সমাধান
$$(x, y) = (a, b)$$

৩০। সমাধান করুন: $\frac{4x+5y}{40} = x - y$

$$\frac{2x-y}{3} + 2y = 10$$

সমাধান:

$$\frac{4x+5y}{40} = x - y$$

$$4x + 5y = 40(x - y)$$

$$4x + 5y = 40x - 40y$$

$$4x-40x+5y+40y=0$$

$$\sqrt{36x+45y}=0$$
 $\sqrt{9(-4x+5y)}=0$

$$4x + 5y = 0$$
....(i)

এবং
$$\frac{2x-y}{3} + 2y = 10$$
 বা, $\frac{2x-y+6y}{3} = 10$

বা,
$$2x+5y=30$$
 বা, $2x+5y-30=0$(ii)

(i)-নং (ii)-সমীকরণ হতে বজ্রগুণনের সূত্রানুসারে,

$$\frac{x}{5.(-30) - 5.0} = \frac{y}{0.2 - (-30)(-4)} = \frac{1}{(-4).5 - 2.5}$$

$$41, \frac{x}{-150-0} = \frac{y}{0-120} = \frac{1}{-20-10}$$

$$41, \frac{x}{-150} = \frac{y}{-120} = \frac{1}{-30}$$

$$\sqrt{1}$$
, $\frac{x}{-150} = \frac{1}{-30}$

$$41, \ x = \frac{-150}{-30} = 5 \quad 41, \ \frac{y}{-120} = \frac{1}{-30}$$

বা,
$$y = \frac{-120}{-30} = 4$$
 : নির্ণেয় সমাধান $(x, y) = (5, 4)$

లు
$$(x+7)(y-3)+7=(y+3)(x-1)+5$$

 $5x-11y+35=0$

সমাধান:

$$(x+7)(y-3)+7=(y+3)(x-1)+5$$

$$\P$$
, $xy = 3x + 7y - 21 + 7 = xy - y + 3x - 3 + 5$

$$\sqrt{3}$$
, $-6x + 4y - 16 = 0$

$$\sqrt{3}$$
, $2(-3x+4y-8)=0$

$$4x - 3x + 4y - 8 = 0$$
....()

এবং
$$5x-11y+35=0$$
....(ii)

বজ্রগুণনের সূত্রানুসারে,

$$\frac{x}{4.35 - (-11)(-8)} = \frac{y}{(-8).5 - 35.(-3)}$$

$$=\frac{1}{(-3)(-11)-5.4}$$

$$\sqrt{140-88} = \frac{y}{-40+105} = \frac{1}{33-20}$$

ৰা,
$$\frac{x}{52} = \frac{1}{13}$$

এবং
$$\frac{y}{65} = \frac{1}{13}$$

ৰা,
$$y = \frac{65}{13} = 5$$

∴ নির্ণেয় সমাধান (x, y) = (4, 5)

৩২। সমাধান করুন:
$$\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} = \frac{5}{2}$$
 $x + y = 10$

সমাধান:

$$\sqrt{\frac{x}{y}} + \sqrt{\frac{y}{x}} = \frac{5}{2}$$

$$\overline{1}, \ \frac{x+y}{\sqrt{xy}} = \frac{5}{2}$$

[x + y = 10 মান বসিয়ে]

ৰা,
$$5\sqrt{xy} = 20$$

[আডগুণন করে]

বা,
$$\sqrt{xy} = 4$$

[উভয় পক্ষকে 5 দারা ভাগ করে]

বা,
$$xy = 4^2$$

ৰা,
$$xy = 16....(i)$$

$$x + y = 10....(ii)$$

(ii) নং সমীকরণ থেকে পাই, $x = 10 - y \dots (ii)$

(i) নং সমীকরণে x = 10 - y মান বসিয়ে পাই,

$$v(10-v)=16$$

বা.
$$10y - y^2 = 16$$

বা.
$$0 = v^2 - 10v + 16$$

$$\sqrt{10}$$
, $v^2 - 10v + 16 = 0$

বা.
$$v^2 - 8v - 2v + 16 = 0$$

$$\forall 1, y(y-8)-2(y-8)=0$$

বা,
$$(y-8)(y-2)=0$$

হয়
$$v - 8 = 0$$

অথবা,
$$y-2=0$$

$$\therefore y = 8$$

$$\therefore y = 2$$

এখন y=8 (iii) নং সমীকরণে বসিয়ে পাই, x=10-8=2

$$y = 2$$
 " " $x = 10 - 2 = 8$

∴ নির্ণেয় সমাধান (x, y) = (2,8), (8,2)

৩৩। সমাধান করুন:
$$x^2+xy+y^2=3$$

$$x^2-xy+y^2=7$$

$$x^2 + xy + y^2 = 3$$
(i)

$$x^2 - xy + y^2 = 7$$
(ii) বিয়োগ করে পাই, $2xy = -4$

ৰা,
$$xy = -\frac{-4}{2}$$
 ৰা, $xy = -2$

$$\therefore x = -\frac{2}{y}....(iii)$$

এখন, $x = -\frac{2}{v}$ সমীকরণ নং (i)- এ বসিয়ে পাই,

$$\left(\frac{-2}{y}\right)^2 + y\left(\frac{-2}{y}\right) + y^2 = 3$$

$$4, \frac{4}{y^2} - 2 + y^2 = 3$$

$$4 - 2y^2 + y^4 = 3$$

$$41, y^2 - 2y^2 + 4 = 3y^2$$

$$\sqrt{3}$$
, $y^4 - 2y^2 - 3y^2 + 4 = 0$

ৰা.
$$v^4 - 5v^2 + 4 = 0$$

$$4x + 4y^2 - y^2 + 4 = 0$$

হয়,
$$y^2 - 4 = 0$$

অথবা,
$$y^2 - 1 = 0$$

বা,
$$y^2 = 4$$
 বা,

$$y^2 = 1$$
 বা, $y = \sqrt{4}$

বা,
$$y = \sqrt{1}$$

$$\therefore y = \pm 2 \quad \therefore y = \pm 1$$

এখন, $y = \pm 2$ ও $y = \pm 1$ সমীকরণ (iii)-তে বসিয়ে পাই, $y = \pm 2$ হলে,

$$x = \frac{-2}{v} = \frac{-2}{\pm 2} = \pm 1$$

$$y = \pm 1$$
 হলে, $x = \frac{-2}{+1} = \pm 2$

∴ নির্ণেয় সমাধান

$$(x, y) = (1,-2), (2,-1), (-1,2), (-2,1)$$

৩৪। দই অংকবিশিষ্ট কোন সংখ্যার দশক স্থানীয় অংকটি একক স্থানীয় অংক হতে ৫ বড়। সংখ্যাটি থেকে অংকদ্বয়ের সমষ্টির পাঁচ গুণ বিয়োগ করলে অংকদ্বয়ের স্থান বিনিময় হয়। সংখ্যাটি কত?

(২৩তম BCS)

সমাধান:

মনে করি. একক স্থানীয় অংক X

∴ সংখ্যাটি =
$$10 (x + 5) + x$$

= $10x + 50 + x$
= $11x + 50$.

এবং অংকদ্বয়ের সমষ্টি =
$$x + x + 5$$

$$= 2x + 5$$

প্রামতে,
$$11x + 50 - 5(2x + 5) = 10x + x + 5$$

$$\sqrt{11}x + 50 - 10x - 25 = 11x + 5$$

বা,
$$x - 11x = 5 - 25$$

বা,
$$-10x = -20$$

$$\therefore x = 2$$

৩৫। দুই অংকবিশিষ্ট একটি সংখ্যার অংকদ্বয়ের সমষ্টি ৯। অংক দুটি স্থান বিনিময় করলে যে সংখ্যা পাওয়া যায়. তা প্রদত্ত সংখ্যা হতে 45 কম। সংখ্যাটি নির্ণয় করুন। (২৩তম BCS)

সমাধান:

মনে করি, একক স্থানীয় অংক x

প্রামতে,
$$10x + 9 - x = 90 - 9x - 45$$

বা,
$$9x + 9 = 45 - 9$$

বা,
$$18x = 36$$

$$\therefore x = 2$$

∴ সংখ্যাটি =
$$90 - 9 \times 2 = 72$$
 (Ans)

৩৬। দুই অংক বিশিষ্ট কোনো সংখ্যার অংক দুটির অন্তর 2; অংক দুটি ছান বিনিময় করলে যে সংখ্যা পাওয়া যায়, তা প্রদত্ত সংখ্যার দিগুণ অপেক্ষা 6 কম। সংখ্যাটি কত? (২১তম BCS)

সমাধান:

মনে করি, দশক স্থানীয় সংখ্যা x

দশক স্থানীয় অঙ্কটি বড হলে সংখ্যাটির মান বেডে যায় এবং প্রদত্ত শর্তপুরণ করে না।

∴ প্রশ্নতে, y – x = 2

বা,
$$y = 2 + x$$
(i)

এবং,
$$10y + x = 2(10x + y) - 6$$

$$41,10y + y - 20x - 2y = -6$$

$$\sqrt{3}$$
, $8y - 19x = -6$

বা , 8(2+x)-19x = -6 [i নং সমীকরণ থেকে y এর মান বসিয়ে]

$$4x - 19x = -6 - 16$$

বা.
$$-11x = -22$$

বা,
$$x = 2$$

x- এর মান (i) নং সমীকরণ বসিয়ে পাই-

$$y = 2 + x$$

$$= 2 + 2$$

∴ সংখ্যাটি হবে, 10x + y

$$= 10 \times 2 + 4$$

$$= 24$$

উত্তর ঃ সংখ্যাটি = 24

৩৭। দুই অংক বিশিষ্ট কোনো সংখ্যার অংকদ্বয়ের সমষ্টি 5। সংখ্যাটির সাথে 9 যোগ করলে অংক দুইটি ছান পরিবর্তন করে। সংখ্যাটি কত? (২০তম BCS)

সমাধান:

মনেকরি, একক স্থানীয় অংকটি xএবং দশক স্থানীয় অংকটি y

প্রশানুসারে,
$$x + y = 5$$
(i)

এবং
$$10y + x + 9 = 10x + y$$

ৰা,
$$9 = 10x + y - 10y - x$$

বা,
$$9 = 9x - 9y$$

বা,
$$9 = 9(x - y)$$

$$x - y = 1$$
(ii)

(i) ও (ii) যোগ করে-

$$x - y = 5$$

$$x - y = 1$$

$$2x = 6$$

$$\therefore$$
 $x = 3$

(i) থেকে (ii) বিয়োগ করে-

$$x + y = 5$$

$$x - y = 1$$

$$2y = 4$$

$$\therefore$$
 y = 2

৩৮। একটি প্রকৃত ভগ্নাংশের হর ও লবের অন্তর 4, হর ও লব উভয় হতে

7 বিয়োগ করলে যে ভগ্নাংশ পাওয়া যায় তার সাথে $rac{1}{4}$ যোগ করলে

যোগফল দাঁড়ায় 0.45। ভগ্নাংশটি কত? (১৮তম BCS)

সমাধান:

মনে করি, ভগ্নাংশটির হর X

∴ ভগ্নাংশটি =
$$\frac{x-4}{x}$$

শার্তমতে,
$$\frac{x-4-7}{x-7} + \frac{1}{4} = 0.45$$

$$\frac{x-11}{x-7} = \frac{45}{100} - \frac{1}{4}$$

$$\frac{x-11}{x-7} = \frac{9-5}{20}$$

ৰা,
$$20x - 220 = 4x - 28$$

বা,
$$20x - 4x = -28 + 220$$

বা,
$$16x = 192$$

বা,
$$x = \frac{192}{16}$$
 বা, $x = 12$

ভগ্নাংশটি =
$$\frac{x-4}{x} = \frac{12-4}{12} = \frac{8}{12} = \frac{2}{3}$$
 (Ans)

৩৯। $\frac{3x+1}{x-1}$ এর দিগুণানুপাত 25:1 হলে x- এর মান কত?

(১৮তম BCS)

সমাধান : শর্তমতে,
$$\left(\frac{3x+1}{x-1}\right)^2 = \frac{25}{1}$$

$$4x - 25x^2 - 50x + 25 = 9x^2 + 6x + 1$$

$$4. 25x^2 - 9x^2 - 50x - 6x + 25 - 1 = 0$$

বা,
$$16x^2 - 56x + 24 = 0$$

বা.
$$2x^2 - 7x + 3 = 0$$

বা.
$$2x^2 - 6x - x + 3 = 0$$

$$\exists 1, 2x(x-3)-1(x-3)=0$$

$$\P$$
, $(x-3)(2x-1)=0$

বা,
$$x-3=0$$
 বা, $2x-1=0$

$$∴ x = 3 \ \text{at}, x = \frac{1}{2}$$

∴ x এর মান 3 বা,
$$\frac{1}{2}$$
 (Ans)

80। একটি ভগ্নাংশের হর লব অপেক্ষা 1 বেশি। লব থেকে 2 বিয়োগ $|8\rangle$ । এবং হরের সাথে 2 যোগ করলে যে ভগ্নাংশ গঠিত হয় , তা $\frac{1}{6}$ এর সমান হলে, ভগ্নাংশটি নির্ণয় কর।

সমাধান: মনে করি, ভগ্নাংশটির লব = x

সুতরাং, ভগ্নাংশটি =
$$\frac{x}{x+1}$$

শর্তমতে,
$$\frac{x-2}{(x+1)+2} = \frac{1}{6}$$

$$4x - 12 = x + 3$$
 $4x - x = 3 + 12$

ৰা,
$$5x = 15$$
 ৰা, $x = \frac{15}{5}$ ৰা, $x = 3$

∴ ভগ্নাংশটি =
$$\frac{x}{x+1} = \frac{3}{3+1} = \frac{3}{4}$$

- ∴ নির্ণেয় ভগ্নাংশটি $\frac{3}{4}$ (উত্তর)
- 83। A, B ও C- এর মধ্যে 26 টাকা এরূপে ভাগ করে দাও যেন A-এর অংশের 2 গুণ, B- এর অংশের 3 গুণ এবং C- অংশের 4 গুণ পরস্পর সমান হয়।

সমাধান:

মনে করি, A পায় x টাকা।

B পায় y টাকা।

এবং C পায় z টাকা।

দেওয়া আছে, A-এর অংশের 2 গুণ, B-এর অংশের 3 গুণ এবং C-এর অংশের ৪ গুণ পরস্পর সমান।

অতএব,
$$2x = 3y = 4z$$

$$\therefore 2x = 4z, 3y = 4z$$

বা,
$$x = 2z$$
 (i)

বা,
$$y = \frac{4z}{3}$$
....(ii)

এখন, x + y + z = 26

বা,
$$2z + \frac{4z}{3} + z = 26$$
 [i ও ii থেকে মান বসিয়ে]

$$\frac{6z+4z+3z}{3}=26$$

ৰা,
$$\frac{13z}{3} = 26$$
 ৰা, $z = 26 \times \frac{3}{13}$ ৰা, $z = 6$

(i) হতে পাই, $x = 2z = 2 \times 6 = 12$

(ii) হতে পাই,
$$y = \frac{4z}{3} = \frac{4 \times 6}{3} = 8$$

∴ A পায় 12 টাকা। B পায় 8 টাকা। **বিভর**) এক ব্যক্তি ঘন্টায় 4 মাইল বেগে হেঁটে এক স্থান হতে অপর এক স্থানে পৌছে। ঘন্টায় 5 মাইল বেগে হাঁটলে সে এ স্থানে 2 ঘন্টা পূর্বে পৌছতে পারত। স্থান দুইটির দূরত্ব কত?

সমাধান:

মনে করি, স্থান দুটির দূরত্ব x মাইল।

১ম ক্ষেত্রে. লোকটি 4 মাইল যায় 1 ঘণ্টায়

" 1 " "
$$\frac{1}{4}$$
 "

২য় ক্ষেত্রে, লোকটি 5 মাইল যায় 1 ঘণ্টায়

" 1 " "
$$\frac{1}{5}$$
 "

প্রশানুসারে,
$$\frac{x}{4} - \frac{x}{5} = 2$$

ৰা,
$$\frac{5x - 4x}{20} = 2$$
 ৰা, $\frac{x}{20} = 2$

বা,
$$x = 2 \times 20$$
 বা, $x = 40$

- ∴ নির্ণেয় স্থান দুটির দূরত্ব 40 মাইল (উত্তর)
- ৪৩। দুই অঙ্কবিশিষ্ট কোন সংখ্যার অঙ্কদ্বয়ের সমষ্টি 7; অঙ্ক দুইটি স্থান বিনিময় করলে যে সংখ্যা পাওয়া যায়, তা প্রদত্ত সংখ্যা হতে 27 কম। সংখ্যাটি নির্ণয় কর।

সমাধান:

মনেকরি, একক স্থানীয় একটি = x

এখন অঙ্কদ্বয় স্থান বিনিময় করলে সংখ্যাটি = 10.x+(7-x)= 9x + 7

শর্তমতে,
$$(70-9x)-(9x+7)=27$$

বা,
$$70 - 9x - 9x - 7 = 27$$

ৰা,
$$-18x = 27 - 70 + 7$$
 বা, $-18x = -36$

বা,
$$x = \frac{-36}{-18}$$
 বা, $x = 2$

$$=70-9\times2=70\ 18=52$$

∴ নির্ণেয় সংখ্যাটি 52 (উত্তর)

88। কোন ক্ষুলের ছাত্রসংখ্যার $\frac{2}{3}$ অংশ মুসলমান এবং $\frac{1}{6}$ অংশ হিন্দু । মুসলমান ছাত্রের সংখ্যা হিন্দু ছাত্রের সংখ্যা অপেক্ষা 120 বেশি হলে, ক্ষুলের ছাত্র সংখ্যা নির্ণয় কর ।

সমাধান: মনেকরি, স্কুলের ছাত্র সংখ্যা = x জন

$$\therefore$$
 মুসলমান ছাত্র সংখ্যা $=$ $\frac{2x}{3}$ জন।

এবং হিন্দু ছাত্র সংখ্যা
$$=rac{x}{6}$$
 জন।

শর্তমতে,
$$\frac{2x}{3} - \frac{x}{6} = 120$$

ৰা,
$$\frac{4x-x}{6} = 120$$

ৰা,
$$\frac{3x}{6} = 120$$

বা,
$$\frac{x}{2} = 120$$

∴ নির্ণেয় ছাত্র সংখ্যা 240 জন (উত্তর)

৪৫। একটি ভগ্নাংশের লব, হর অপেক্ষা 13 কম। লবের সাথে 3 যোগ করলে এবং হর হতে 5 বিয়োগ করলে যে ভগ্নাংশ গঠিত হয়, তার

মান
$$\frac{3}{4}$$
; ভগ্নাংশটি নির্ণয় কর।

সমাধান:

মনে করি, ভগ্নাংশটির লব = x

$$\therefore$$
 ভগ্নাংশটি = $\frac{x}{x+13}$

শর্তমতে,
$$\frac{x+3}{(x+13)-5} = \frac{3}{4}$$
 বা, $\frac{x+3}{x+13-5} = \frac{3}{4}$

$$\overline{1}$$
, $\frac{x+3}{x+8} = \frac{3}{4}$ $\overline{1}$, $4x + 12 = 3x + 24$

বা,
$$4x - 3x = 24 - 12$$
 বা, $x = 12$

∴ ভগ্নাংশটি =
$$\frac{x}{x+13}$$

$$= \frac{12}{12+13} = \frac{12}{25}$$

∴ নির্ণেয় ভয়াংশটি 12/25 (উত্তর)

৪৬। একটি প্রকৃত ভগ্নাংশের লব ও হরের অন্তর 2; লব ও হর উভয় হতে 5 বিয়োগ করে যে ভগ্নাংশ হয়, তার সঙ্গে $\frac{1}{4}$ যোগ করলে

সমাধান:

মনেকরি, ভগ্নাংশটির লব = x

যোগফল 1 হয়। ভগ্নাংশটি কত ?

"
$$= x + 2$$

∴ ভগ্নাংশটি =
$$\frac{x}{x+2}$$

$$\therefore$$
 শর্তমতে, $\frac{x-5}{x+2-5} + \frac{1}{4} = 1$

$$\sqrt{\frac{x-5}{x-3}} + \frac{1}{4} = 1$$

$$\sqrt{\frac{x-5}{x-3}} = \frac{4-1}{4}$$

বা,
$$4x - 20 = 3x - 9$$

বা,
$$4x - 3x = 9 - 20$$

বা,
$$x = 11$$

∴ ভগ্নাংশটি =
$$\frac{x}{x+2} = \frac{11}{11+2} = \frac{11}{13}$$

89। এক ব্যক্তি স্রোতের অনুকূলে দাঁড় বেয়ে 10 ঘন্টায় 70 মাইল গেল এবং স্রোতের প্রতিকূলে দাঁড় বেয়ে ফিরে আসতে তার 70 ঘন্টা লাগল। দাঁড়জনিত বেগ ও স্রোতের বেগ নির্ণয় কর।

সমাধান:

স্রোতের অনুকূলে, 10 ঘণ্টায় যায় 70 মাইল

1 " "
$$\frac{70}{10}$$
 "

স্রোতের প্রতিকূলে, 70 ঘণ্টায় যায় 70 মাইল

1 " "
$$\frac{70}{70}$$
 "

∴ স্রেতের অনুকূলে বেগ 7 মাইল/ঘণ্টা

মনেকরি, দাঁড়ের বেগ = x মাইল/ঘণ্টা

- ∴ শর্তমতে, x + y = 7(i)
- এবং, x y = 1(ii)
- (i) ও (ii) যোগ করে পাই 2x = 8

বা,
$$x = 4$$

(i) ও (ii) বিয়োগ করে পাই 2y=6

বা,
$$y = 3$$

- ∴ নির্ণেয় দাঁড়ের বেগ 4 মাইল/ঘণ্টা
 স্রোতের বেগ 3 মাইল/ঘণ্টা
 উত্তর
- ৪৮। দুইটি সংখ্যার প্রথমটিকে দ্বিতীয়টির পাঁচ গুণের সাথে যোগ করলে যোগফল হয় 52 হয়, কিন্তু দ্বিতীয়টিকে প্রথমটির আটগুণের সাথে যোগ করলে যোগফল 65 হয়। সংখ্যা দুইটি নির্ণয় কর।

সমাধান:

মনে করি, ১ম সংখ্যাটি = x

২য় সংখ্যাটি
$$= y$$

- ∴ ১ম শর্তমতে, x + 5y = 52(i)
- ২য় শর্তমতে, 8x + y = 65(ii)
- (i) নং কে 8 দ্বারা গুণ করে পাই, 8x + 40y = 416 (iii)
- (iii) হতে (ii) বিয়োগ করে পাই,

$$39y = 351$$

$$y = \frac{351}{39}$$

y এর মান (i) নং এ বসিয়ে পাই,

$$x + 5 \times 9 = 52$$

বা,
$$x + 45 = 52$$

বা,
$$x = 52 - 45$$

বা,
$$x = 7$$

∴ নির্ণেয় প্রথম সংখ্যাটি 7 এবং দ্বিতীয় 9 উত্তর ৪৯। 27 কি.মি.ব্যবধানে থেকে দুই ব্যক্তি একই সময়ে একই রেখায় একই দিকে যাত্রা করলে 9 ঘন্টায় মিলিত হতে পারে, কিন্তু পরস্পরের দিকে চললে 3 ঘন্টায় মিলিত হতে পারে। তাদের প্রত্যেকের গতিবেগ নির্ণয় কর।

সমাধান:

একই দিকে ব্যক্তিদ্বয় 9 ঘণ্টায় যায় 27 কিঃ মিঃ

আবার, পরস্পারের দিকে ব্যক্তিদ্বয় 3 ঘণ্টায় যায় 27 কিঃ মিঃ

মনেকরি, প্রথম ব্যক্তির বেগ x কিঃ মিঃ/ঘণ্টা

এবং, দ্বিতীয় ব্যক্তির বেগ y কিঃ মিঃ/ঘণ্টা

শর্তমতে
$$x - y = 9$$
(i)

$$(i)$$
 ও (ii) যোগ করে পাই, $2x = 12$

বা,
$$x = 6$$

(i) থেকে (ii) বিয়োগ করে পাই , 2y=6

বা,
$$y = 3$$

৫০। একটি আয়তক্ষেত্রের পরিসীমা ৩০ সেমি.। এটার ক্ষেত্রফল ৫০ বর্গ সেমি. হলে আয়তক্ষেত্রটির দৈর্ঘ্য কত হবে। (১৩তম BCS)

সমাধান:

ধরি, দৈর্ঘ্য = x cm এবং প্রস্থ = y cm

$$\Rightarrow$$
 x + y = 15 (i)

$$(x - y) = \sqrt{(x + y)^2 - 4xy}$$
$$= \sqrt{225 - 200} = \sqrt{25}$$

$$x - y = 5$$
(iii)

$$(i) + (iii)$$
 হতে পাই $\Rightarrow 2x = 20 \Rightarrow x = 10$

$$(i) - (iii)$$
 হতে পাই $\Rightarrow 2y = 10 \Rightarrow y = 5$

∴ আয়ত ক্ষেত্রটির দৈর্ঘ্য = 10cm

STUDENT & STUDY

০১। কোন সমান্তর ধারার m তম পদ m^2 এবং n তম পদ n^2 হলে. ধারাটির (m + n) তম পদ কত?

সমাধান: মনে করি. প্রথম পদ a এবং সাধারণ অন্তর d

$$= a + md - d$$

$$= a + nd - d$$

প্রশ্নতে, $a + md - d = m^2$

$$a + nd - d = n^2$$

বিয়োগ করে, $md - nd = m^2 - n^2$

বা,
$$d(m-n) = (m+n)(m-n)$$

$$\therefore d = \frac{(m+n)(m-n)}{(m-n)} = (m+n)$$

এখন, (m+n) তম পদ = a + (m+n-1)d

$$= a + md + nd - d = (a + md - d) + nd$$

$$= m2 + n \cdot (m + n) [a + md - d]$$

 $= m^2$ এবং d এর মান বসিয়ে]

$$= m^2 + mn + n^2$$

Ans. $m^2 + mn + n^2$

০২। একটি সমান্তর ধারার 12 তম পদ 77 হলে, তার প্রথম 23 পদের

সমাধান: মনে করি, প্রথম পদ a এবং সাধারণ অন্তর d

প্রশ্নতে,
$$a + 11d = 77$$

প্রথম 23 পদের সমষ্টি (S) =
$$\frac{23}{2}$$
 [$2a + (23 - 1)d$]

$$=\frac{23}{2}(2a+22d)$$

$$= \frac{23}{2} \cdot 2(a + 11d)$$

$$= 23. (77)$$

= 1771 Ans.

০৩। কোনো ধারার প্রথম n সংখ্যক পদের সমষ্টি n(n+1) হলে, ধারাটির নির্ণয় করুন।

সমাধান:

$$n$$
 পদের সমষ্টি = $S_n = n (n + 1) = n^2 + n$

$$n=1$$
 হলে, ১ম পদের সমষ্টি $\mathbf{S}_1=1^2+1=2$

$$n=2$$
 " ২য় " " $S_2=2^2+2=6$

$$n = 3$$
 " ৩য় " " $S_3 = 3^3 + 2 = 12$

$$n=4$$
 " 8 % " " $S_4=4^2+4=20$

ধারা

২য় পদ
$$t_2 = S_2 - S_1 = 6 - 2 = 4$$

৩য় পদ
$$t_3 = S_3 - S_2 = 12 - 6 = 6$$

ক্ষে পদ
$$t_5 = S_5 - S_4 = 30 - 20 = 10$$

০৪। 5 + x + v + 135 গুণোত্তর ধারা ভুক্ত হলে, x এবং v এর মান নির্ণয় করুন।

সমাধান:

মনে করি, সাধারণ অনুপাত q

তৃতীয় পদ
$$aq^2 = v$$

ৰা,
$$q^3 = \frac{135}{5}$$

বা,
$$q^3 = 27$$
 বা, $q^3 = (3)^3$

$$\therefore$$
 q = 3

$$\therefore$$
 দ্বিতীয় পদ $x = aq = 5 \cdot 3 = 15$

তৃতীয় পদ
$$y = aq2 = 5 \cdot (3)^2 = 5 \cdot 9 = 45$$

Ans.
$$x = 15$$
, $y = 45$.

০৫ । log 2+ log 4 + log 8 + ধারাটির প্রথম দশটি পদের সমষ্টি কত?

সমাধান: দেওয়া আছে,

ধারাটি =
$$\log 2 + \log 4 + \log 8 + \dots$$

মনে করি. নির্ণেয় ধারাটির সমষ্টি = S_{10}

$$= \log 2^1 + \log 2^2 + \log 2^3 + \dots \log 2^{10}$$

$$= (1 + 2 + 3 + \dots + 10) \lg 2$$

$$=\frac{10(10+1)}{2} = \frac{10\times11}{2} = 55$$

$$S_{10} = (1+2+3+....+10) \log 2$$

= 55 lgo 2 **Ans.**

০৬। $2+4+8+16+\dots$ ধারাটির n সংখ্যক পদের সমষ্টি 254 হলে, n এর মান কত?

সমাধান:

এটি একটি গুণোত্তর ধারা।

ধারাটির প্রথম পদ (a) = 2

সাধারণ অনুপাত
$$q=rac{4}{2}=2$$

যেহেতু
$${
m q}>1$$
 সুতরাং সমষ্টি = $a \, rac{q^n-1}{q-1}$

প্রশ্নতে,
$$2 \cdot \frac{2^n - 1}{2 - 1} = 254$$
বা, $2 \cdot (2^n - 1) = 254$
বা, $2^n - 1 = \frac{254}{2}$
বা, $2^n - 1 = 127$
বা, $2^n = 127 + 1$
বা, $2^n = 128$
বা, $2^n = 2^7$
বা, $n = 7$
Ans. 7

STUDENT & STUDY

০১। যে সকল স্বাভাবিক সংখ্যা দ্বারা 311 এবং 419 কে ভাগ করলে প্রতিক্ষেত্রে 23 অবশিষ্ট থাকে, তাদের সেট নির্ণয় করুন।

সমাধান : এখানে 311 - 23 = 288 এবং 419 - 23 = 396

এখন মনে করি, 23 অপেক্ষা বড় 288 এর গুণনীয়কগুলোর সেট = A

" 396 " "

সেট = B

11

এবং 23

2 288

2|144

23 অপেক্ষা বড় 288 এর গুণনীয়কগুলো হল ঃ

32, 48, 96, 36, 72, 144, 288

আবার. 23 অপেক্ষা বড 396 এর গুণনীয়কগুলো হল ঃ

33, 36, 44, 66, 99, 132, 198, 396

এখানে $A = \{32, 36, 48, 72, 96, 144, 288\}$

এবং B = { 33, 36, 44, 66, 99, 132, 198, 396 }

অতএব, $A \cap B = \{ 36 \}$ Ans.

০২। $A = \{1,3,5,7\}, B = \{1,2,3,4\}$ এবং $C = \{2,4,6,8\}$ হলে দেখান যে, $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$.

সমাধান:

দেওয়া আছে,
$$A=\{\ 1,\,3,\,5,\,7\},\,B=\{1,\,2,\,3,\,4\}$$
 এবং $C=\{2,\,4,\,6,\,8\}$

দেখাতে হবে যে, $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$.

 $(A \cap B) = \{1, 3, 5, 7\} \cap \{1, 2, 3, 4\} = \{1, 3\}$

সেট ও ভেনচিত্র

$$\therefore (A \cap B) \cup C = \{1, 3\} \cup \{2, 4, 6, 8\}$$
$$= \{1, 2, 3, 4, 6, 8\}$$

আবার,
$$(A \cup C) = \{1, 3, 5, 7\} \cup \{2, 4, 6, 8\}$$

= $\{1, 2, 3, 4, 5, 6, 7, 8\}$

$$(B \cup C) = \{1, 2, 3, 4\} \cup \{2, 4, 6, 8\}$$
$$= \{1, 2, 3, 4, 6, 8\}$$

$$\therefore$$
 (A \cup C) \cap (B \cup C)

$$= \{1, 2, 3, 4, 5, 6, 7, 8\} \cap \{1, 2, 3, 4, 6, 8\}$$

$$= \{1, 2, 3, 4, 6, 8\}$$

$$\therefore$$
 (A \cap B) \cup C = (A \cup C) \cap (B \cup C) . (Showed)

০৩।
$$U=\{1,2,3,4,5,6\}, A=\{1,3,5\}, B=\{2,4,6,\}$$
 হলে প্রমাণ করুন যে, $(A\cap B)'=A'\cup B'$

সমাধান : দেওয়া আছে, $U = \{1, 2, 3, 4, 5, 6\}$, $A = \{1, 3, 5\}$, $B = \{2, 4, 6,\}$;

প্রমাণ করতে হবে যে,
$$(A \cap B)' = A' \cup B'$$

 $A \cap B = \{1, 3, 5\} \cap \{2, 4, 6\} = \emptyset$

$$\therefore (A \cap B)' = U - (A \cap B)$$

$$= \{1, 2, 3, 4, 5, 6\} - \emptyset$$

$$= \{1, 2, 3, 4, 5, 6\}$$

আবার,
$$A' = U - A$$

$$= \{1, 2, 3, 4, 5, 6\} - \{1, 3, 5\}$$

$$= \{2, 4, 6\}$$

$$B' = \{1, 2, 3, 4, 5, 6\} - \{2, 4, 6\}$$
$$= \{1, 3, 5\}$$

$$\therefore A' \cup B' = \{ 2, 4, 6 \} \cup \{1, 3, 5 \}$$
$$= \{1, 2, 3, 4, 5, 6 \}$$

$$\therefore$$
 (A \cap B)' = A' \cup B' (**Proved**)

 $08 \mid U = \{1, 2, 3, 4, 5, 6\}, A = \{1, 3, 5\}, B = \{2, 4, 6, \}$ এবং $C = \{2, 3, 4, 5\}$ হয় তবে দেখান যে,

 $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

সমাধান: দেওয়া আছে, $U = \{1, 2, 3, 4, 5, 6\}$, A = {1, 3, 5}, B = {2, 4, 6,} এবং C = {2, 3, 4, 5}; দেখাতে হবে যে, $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$.

 $B \cap C = \{2, 4, 6\} \cap \{2, 3, 4, 5\} = \{2, 4\}$

$$\therefore A \cup (B \cap C) = \{1, 3, 5,\} \cup \{2, 4\}$$
$$= \{1, 2, 3, 4, 5\}$$

আবার, $(A \cup B) = \{1, 3, 5\} \cup \{2, 4, 6\}$ $= \{1, 2, 3, 4, 5, 6\}$

$$A \cup C$$
) = {1, 3, 5} \cup {2, 3, 4, 5}
= {1, 2, 3, 4, 5}

$$\therefore (A \cup B) \cap (A \cup C)$$
= {1, 2, 3, 4, 5, 6} \cup {1, 2, 3, 4, 5}
= {1, 2, 3, 4, 5}

$$\therefore$$
 A \cup (B \cap C) = (A \cup B) \cap (A \cup C) (Showed)

০৫ $: A = \{a, b\}, B = \{b, c, d\},$ এবং $C = A \cup B$ হলে, P(C) নির্ণয় করুন।

সমাধান: দেওয়া আছে, $A = \{a, b\}, B = \{b, c, d\},$ এবং $C = A \cup B$. P(C) নির্ণয় করতে হবে। $C = A \cup B = \{a, b\} \cup \{b, c, d\} = \{a, b, c, d\}$

 \therefore P(C) = {a, b, c, d}, {a, b, c}, {a, b, d}, {b, c, d}, ${a, c, d}, {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, {c}$ d}, {a}, {b}, {c}, {d}, \emptyset } (Ans).

০৬। যদি
$$A=\{-1,1\},\, B=\left\{rac{1}{2},rac{1}{3}
ight\}$$
 হয়,

তবে $\mathbf{A} \times \mathbf{B}$ এবং $\mathbf{B} \times \mathbf{A}$ নির্ণয় করুন।

সমাধান: দেওয়া আছে, $A = \{-1, 1\},$

 $\mathbf{B} = \left\{ \frac{1}{2}, \frac{1}{3} \right\}$ হয়, তবে $\mathbf{A} \times \mathbf{B}$ এবং $\mathbf{B} \times \mathbf{A}$ নির্ণয় করতে হবে।

$$\therefore A \times B = \{-1, 1\} \times \left\{\frac{1}{2}, \frac{1}{3}\right\}$$

$$= \left\{ \left(-1, \frac{1}{2}\right), \left(-1, \frac{1}{3}\right), \left(1, \frac{1}{2}\right), \left(1, \frac{1}{3}\right) \right\}$$
 (Ans).

এবং
$$\mathbf{B} \times \mathbf{A} = \left\{ \frac{1}{2}, \frac{1}{3} \right\} \times \{-1, 1\}$$

$$= \left\{ \left(\frac{1}{2}, -1\right), \left(\frac{1}{2}, 1\right), \left(\frac{1}{3}, -1\right), \left(\frac{1}{3}, 1\right) \right\}$$
 (Ans).

০৭। যদি $A = \{3, 4, 5\}, B = \{4, 5, 6, 7\}, C = \{a, b\}$ এবং $D = \{b, c\}$ হয়, তবে $(A \cap B) \times (C \cup D)$ নির্ণয় করুন।

সমাধান: দেওয়া আছে, $A = \{3, 4, 5\}, B = \{4, 5, 6, 7\},$ $C = \{a, b\}$ এবং $D = \{b, c\}$;

 $(A \cap B) \times (C \cup D)$ এর মান নির্ণয় করতে হবে।

$$A \cap B = \{3, 4, 5\} \cap \{4, 5, 6, 7\} = \{4, 5\}$$

$$C \cup D = \{a, b\} \cup \{b, c\} = \{a, b, c\}$$

$$\therefore (A \cap B) \times (C \cup D) = \{4, 5\} \times \{a, b, c\}$$
= \{(4, a), (4, b), (4, c), (5, a), (5, b), (5, c)\} (Ans).

০৮। যদি $A = \{x, y, z\}, B = \{2, 3, 4\}$ এবং $C = \{6, 7, 8\}$ হয়, তবে $\mathbf{A} \times (\mathbf{B} - \mathbf{C})$ এবং $\mathbf{A} \times (\mathbf{A} - \mathbf{B})$ নির্ণয় করুন।

সমাধান: দেওয়া আছে. $A = \{x, y, z\}$.

$$B = \{2, 3, 4\}$$
, এবং

 $C = \{6, 7, 8\};$

A imes (B-C) এবং A imes (A-B) নির্ণয় করতে হবে। $B-C = \{2, 3, 4\} - \{6, 7, 8\} = \{2, 3, 4\}$

$$A \times (B - C) = \{x, y, z\} \times \{2, 3, 4\}$$

 $= \{(x, 2), (x, 3), (x, 4), (y, 2),$

(y, 3), (y, 4), (z, 2), (z, 3), (z, 4)

এবং $A - B = \{x, y, z\} - \{2, 3, 4\} = \{x, y, z\}$

$$\therefore A \times (A - B) = \{x, y, z\} \times \{x, y, z\}$$

 $= \{(x, x), (x, y), (x, z), (y, x),$

(y, y), (y, z), (z, x), (z, y), (z, z) (Ans).

ob $U = \{1, 2, 3, 4, 5, 6\},\$

 $A = \{1, 2, 3\},\$

 $B = \{2, 4, 6\}$ হলে $A' \cap B' = \infty$?

সমাধান: $A' = \{ x \in U : x \notin A \} = \{4, 5, 6\}$

 $B' = \{ x \in U : x \notin B \} = \{1, 3, 5\}$

 $A' \cap B' = \{4, 5, 6\} \cap \{1, 3, 5\} = \{5\}$

∴ নির্ণেয় উত্তর : {5}

১০। যদি U = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9},

 $A = \{0, 1, 2, 3, 4\},\$

 $B = \{2, 3, 4, 5, 6, 7\}$

তাহলে $\mathbf{U} \cap (\mathbf{A} \cup \mathbf{B})$ এর মান নির্ণয় করুন।

সমাধান:

 $U \cap (A \cup B) = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \cap$

 $[\{0, 1, 2, 3, 4\} \cup \{2, 3, 4, 5, 6, 7\}]$

 $= \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \cap \{0, 1, 2, 3, 4, 5, 6, 7\}$

 $= \{0, 1, 2, 3, 4, 5, 6, 7\}$

∴ নির্ণেয় উত্তর : {0, 1, 2, 3, 4, 5, 6, 7}

 $A = \{0, 2, 3, 7, 9\}, B = \{1, 5, 6, 8, 11\},$

 $C = \{2, 5, 7, 8, 12, 14\}$ হলে $(A \cap B) \cup (A \cup C)$ হবে-

সমাধান: $(A \cap B) \cup (A \cap C)$

 $= [\{0, 2, 3, 7, 9\} \cap \{1, 5, 6, 8, 11\}] \cup [\{0, 2, 3, 9\}]$

7, 9 \cap {2, 5, 7, 8, 12, 14}]

 $= \{\emptyset\} \cup \{2, 7\} = \{2, 7\}$

∴ নির্ণেয় উত্তর : {2, 7}

- ১২। যদি $A=\{a,\,b\}$ এবং $B=\{1,\,2\}$ হয়, এবং $C=\{2,\,3\}$ হয়, তবে দেখাও যে,
 - (1) $\mathbf{A} \times (\mathbf{B} \cup \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \cup (\mathbf{A} \times \mathbf{C})$
 - (2) $\mathbf{A} \times (\mathbf{B} \cap \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) \cap (\mathbf{A} \times \mathbf{C})$

সমাধান: (১) এখানে (B U C) = {1, 2, 3}

সুতরাং, $A \times (B \cup C) = \{a, b\} \times \{1, 2, 3\}$

 $= \{(a, 1), (a, 2), (a, 3), (b, 1), (b, 2), (b, 3)\}$

আবার, $A \times B = \{(a, 1), (a, 2), (b, 1), (b, 2)\}$

এবং A × C = {(a, 2), (a, 3), (b, 2), (b, 3)}

সুতরাং, $(A \times B) \cup (A \times C) = \{(a, 1), (a, 2),$

(a, 3), (b, 1), (b, 2), (b, 3)

 $\therefore \ A \times (B \cap C) = (A \times B) \cap (A \times C).$ (দেখানো হলো)

(২) এখানে $B \cap C = \{2\}$

 $A \times (B \cap C) = \{a, b\} \times \{2\} = \{(a, 2), (b, 2)\}$

আবার, $(A \times B) \cap (A \times C) = \{(a, 2), (b, 2)\}$

 $\therefore A \times (B \cap C) = (A \times B) \cap (A \times C)$. (দেখানো হলো)

১৩ $| A = \{a, b\}$ এবং $B = \{b, c\}$ হয়,

তবে দেখাও যে, $P(A) \cup P(B) \subset P(A \cup B)$

সমাধান : এখানে, P (A) = {Ф, {a}, {b}, {a, b}}

 $P(B) = {\Phi, {b}, {c}, {b, c}}$

 $P(A) \cup P(B) = \{\Phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a$

 ${a, c}, {b, c}, {a, b, c}$

আবার, $A \cup B = \{a, b, c\}$

 $P(A \cup B) = \{\Phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\},$

 $\{b, c\}, \{a, b, c\}\}$

সুতরাং, $P(A) \cup P(B) \subset P(A \cup B)$. (দেখানো হলো)

 $\mathbf{38} \mid \mathbf{U} = \{1, 2, 3, 4, 5, 6, 7, 8\}, \mathbf{A} = \{1, 2, 6, 7\},$

 $B = \{2, 3, 5, 6\}$ এবং $C = \{4, 5, 6, 7\}$ হলে,

দেখাও যে, (i) $(A \cup B)' = A' \cap B'$

এবং (ii) $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$

সমাধান: (i) চিত্রে একটি আয়তক্ষেত্র দ্বারা Uএবং পরস্পরছেদী দুইটি বৃত্তক্ষেত্র দ্বারা যথাক্রমে A, B সেটকে নির্দেশ করা হলো।

সেট	উপাদান
$A \cup B$	1, 2, 3, 5,
$(A \cup B)'$	6, 7
A'	4, 8
B'	3, 4, 5, 8
$A' \cap B'$	1, 4, 7, 8
	4, 8

 $\therefore (A \cup B)' = A' \cap B'$ (দেখানো হলো)

(ii) চিত্রে একটি আয়ক্ষেত্র দ্বারা Uএবং পরস্পরছেদী তিনটি বৃত্তক্ষেত্র দ্বারা যথাক্রমে $A,\,B,\,C$ সেটকে নির্দেশ করা হলো। লক্ষ করি

সেট	উপাদান
$A \cap B$	2, 6
$(A \cap B) \cup C$	2, 4, 5, 6, 7
$A \cup C$	1, 2, 4, 5, 6, 7
$B \cup C$	2, 3, 4, 5, 6, 7
$(A \cup C) \cap (B \cup C)$	2, 4, 5, 6, 7

- \therefore $(A \cap B) \cup C = (A \cup C) \cap (B \cup C)$. (দেখানো হলো)
- ১৫। যদি ${f A}=\{1,2,3\}$ এবং ${f B}=\{2,3,4\}$ হয়, তবে দেখাও যে, ${f P}({f A})\cap {f P}({f B})={f P}({f A}\cap {f B})$

সমাধান: এখানে, A = {1, 2, 3} এবং B ={2, 3, 4}

সুতরাং, $P(A) = {\Phi, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}}$

এবং, P (B) = {Φ, {2}, {3}, {4}, {2,3}, {2,4}, {3,4},{2,3,4}

 \therefore P (A) \cap P (B) = { Φ , {2}, {3}, {2, 3}

এখানে $A \cap B = \{1, 2, 3\} \cap \{2, 3, 4\} = \{2, 3\}$

 $P(A \cap B) = \{\Phi, \{2\}, \{3\}, \{2, 3\}\}$

সুতরাং, $P(A) \cap P(B) = P(A \cap B)$. (দেখানো হলো)

১৬। দেওয়া আছে, $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9\}$,

$$A = \{2, 4, 6, 8\}, B = \{4, 8\}$$
 এবং

 $C = \{1, 3, 5, 6\}$ ভেনচিত্র অংকন কর

- (a) $A \cap B$ এবং $A \cap B'$
- (b) B ∩ C এবং B' ∩ C'

সমাধান:

(a) যেহেতু $B \subseteq A$

$$A \cap B = B = \{4, 8\}$$

$$A \cap B' = A = \{2, 6\}$$

(b) $B \cap C = \{ \}$

$$B' \cap C' = B = \{2, 7, 9\}$$

উক্ত উদাহরণ থেকে পাই $B \cap C = \{\ \}$ অতএব সেট B ও C কে বলা হয় নিশ্চদ সেট।

 $\bf B$ ও $\bf C$ সেটদ্বয় নিশ্ছেদ $\Leftrightarrow \bf B \cap \bf C = \bf \Phi$.

১০৯

- ১৭। দেওয়া আছে $U=\{p,\,q,\,r,\,s,\,t,\,u,\,v,\,w\},\,A=\{p,\,q,\,r,\,s\},\,B=\{r,\,s,\,t\}$ এবং $C=\{s,\,t,\,u,\,v,\,w\}$
 - (a) $A\cap B, B\cap C$ এবং $C\cap A$ এর উপাদানগুলো তালিকা পদ্ধতিতে লিপিবদ্ধ কর এবং ভেনচিত্রে দেখাও
 - (b) A∩B∩C এর উপাদানগুলো তালিকা পদ্ধতিতে প্রকাশ কর:
 সমাধান :

- (a) $A \cap B = \{r, s\}$ $B \cap C = \{s, t\}$ $C \cap A = \{s\}$
- (b) $A \cap B \cap C = \{r, s\} \cap C = \{r, s\} \cap \{s, t, u, v, w\} = \{s\}$
- ১৮। 100 জন শিক্ষার্থীর মধ্যে কোনো পরীক্ষায় 88 জন বাংলায়, 80 জন গণিতে এবং 70 জন উভয় বিষয়ে পাস করেছে। ভেনচিত্রের সাহায্যে তথ্যগুলো প্রকাশ কর এবং কতজন শিক্ষার্থী উভয় বিষয়ে ফেল করেছে, তা নির্ণয় করুন।

সমাধান: ভেনচিত্রে আয়তাকার ক্ষেত্রটি 100 জন শিক্ষার্থীর সেট U এবং বাংলায় ও গণিতে পাস শিক্ষার্থীদের সেট যথাক্রমে B ও M দ্বারা নির্দেশ করে। ফলে ভেনচিত্রটি চারটি নিশ্ছেদ সেটে বিভক্ত হয়েছে, যাদেরকে $P,\,Q,\,R,\,F$ দ্বারা চিহ্নিত করা হলো।

এখানে, উভয় বিষয়ে পাস শিক্ষার্থীদের সেট $Q=B\cap M$, যার সদস্য সংখ্যা 70

P= শুধু বাংলায় পাস শিক্ষার্থীদের সেট,

যার সদস্য সংখ্যা = 88 - 70 = 18

R = শুধু গণিতে পাস শিক্ষার্থীদের সেট,

যার সদস্য সংখ্যা = 80 - 70 = 10

 $P \cup O \cup R = B \cup M$,

এক এবং উভয় বিষয়ে পাস শিক্ষার্থীদের সেট,

যার সদস্য সংখ্যা = 18 + 10 + 70 = 98

F = উভয় বিষয়ে ফেল করা শিক্ষার্থীদের সেট,

যার সদস্য সংখ্যা = 100 - 98 = 2

- ∴ উভয় বিষয়ে ফেল করেছে 2 জন শিক্ষার্থী।
- ১৯। 50 জন লোকের মধ্যে 35 জন ইংরেজি, 25 জন ইংরেজি ও বাংলা বলতে পারে এবং প্রত্যেকেই দুইটি ভাষার অন্তত একটি বলতে পারে। বাংলা বলতে পারে কত জন? কেবল মাত্র বাংলা বলতে পারে কত জন?

সমাধান: মনে করি, সকল লোকের সেট S এবং তাদের মধ্যে যারা ইংরেজি বলতে পারে তাদের সেট E. যারা বাংলা বলতে পারে তাদের সেট B।

তাহলে প্রশানুসারে, S=50, E=35, E \cap B=25, S=E \cup B.

মনে করি, B = x

তাহলে, $S = E \cup B = E + B - E \cap B$ থেকে পাই,

$$50 = 35 + x - 25$$

অর্থাৎ, B = 40.

∴ বাংলা বলতে পারে 40 জন।

এখন যারা কেবল বাংলা বলতে পারে তাদের সেট হচ্ছে (B\E).

মনেকরি, $B \setminus E = y$; যেহেতু $E \cap B$ এবং $B \setminus E$ নিশ্ছেদ এবং $B = (E \cap B) \cup (B \setminus E)$ [ভেনচিত্র দ্রষ্টব্য]

সুতরাং, $B = (E \cap B) + (B \setminus E)$

 $\therefore 40 = 25 + y$

বা, y = 40 - 25 = 15

অর্থাৎ, B\E = 15

∴ কেবল বাংলা বলতে পারে 15 জন।

অতএব , বাংলা বলতে পারে 40 জন এবং কেবলমাত্র বাংলা বলতে পারে 15 জন ।

- ∴ निर्तिष्ठ উত্তর ঃ বাংলা বলতে পারে 40 জন এবং কেবলমাত্র বাংলা বলতে পারে 15 জন।
- ২০। কোন ক্লাসের 32 জন্য ছাত্রের মধ্যে প্রত্যেক ছাত্র অন্তত ভূগোল বা ইতিহাস বিষয়ে পড়াশোনা করছে। তাদের মধ্যে 22 জন ভূগোল এবং 15 জন ইতিহাসে। কতজন ছাত্র ইতিহাস ও ভূগোল উভয় বিষয়ে পড়ছে তা ভেনচিত্রে দেখাতে হবে।

সমাধান:

ধরি, ভূগোলে পড়ে এমন ছাত্রদের সেট Gইতিহাসে পড়ে এমন ছাত্রদের সেট H

- \therefore উভয় বিষয় পড়ে এমন ছাত্রদের সেট, $x=H\cap G$
- শুধু ভূগোলে পড়ে = 22 x

শুধু ইতিহাসে পড়ে = 15 - x

 \therefore মোট পড়ে = 22 - x + 15 - x + x

 \Rightarrow 32 = 37 - x \Rightarrow - x = -5 \therefore x = 5

- ∴ উভয় বিষয় পড়ে 5 জন।
- ∴ নির্ণেয় উত্তর ঃ 5 জন।