Comparator

Two-Bit Comparator

<u> </u>

we'll need a 4-variable Karnaugh map for each of the 3 output functions

Two-Bit Comparator (cont'd)

K-map for EQ

K-map for GT

$$LT = A'B'D + A'C + B'CD$$

$$EQ = A'B'C'D' + A'BC'D + ABCD + AB'CD'$$

$$GT = BC'D' + AC' + ABD'$$

Equality Comparator

$$Z = X XNOR Y$$

X	Y	Z
0	0	1
0	1	0
1	0	0
1	1	1

4-bit Equality Detector

4-Bit Equality Comparator

4-bit Magnitude Comparator

How can we find A_GT_B?

How many rows would a truth table have?

$$2^8 = 256!$$

If
$$A = 1101$$
 and $B = 1011$ is $A > B$? Why?

Because
$$A3 = B3$$
 and $A2 > B2$
i.e. $C3 = 1$ and $A2 \cdot B2' = 1$

Therefore, the next term in the logic equation for A_GT_B is C3.A2.B2'

If
$$A = 1010$$
 and $B = 1001$ is $A > B$? Why?

Because
$$A3 = B3$$
 and $A2 = B2$ and $A1 > B1$
i.e. $C3 = 1$ and $C2 = 1$ and $A1 \cdot B1' = 1$

Therefore, the next term in the logic equation for A_GT_B is C3. C2. A1. B1'

If
$$A = 1011$$
 and $B = 1010$ is $A > B$? Why?

Because
$$A3 = B3$$
 and $A2 = B2$ and $A1 = B1$ and $A0 > B0$
i.e. $C3 = 1$ and $C2 = 1$ and $C1 = 1$ and $A0 \cdot B0' = 1$

Therefore, the last term in the logic equation for A_GT_B is C3. C2. C1. A0. B0'

TTL 74x85

TTL 74x85

> if
$$(A > B)$$
 $|t=0$, $eq=0$, $gt=1$
> if $(A < B)$ $|t=1$, $eq=0$, $gt=0$
> if $(A = B)$ $|t=1$, $eq=e$, $gt=g$

eq
gt

➤ The three I, e and g inputs are used when cascading.

Comparator (continued...)

Let us now cascade four of the 74x85 to construct a 16 bit comparator.

tahlil ba khodetoon

TTL 74x682

➤ 8-bit Comparator

- Arithmetic conditions derived from 74x682 outputs?
- And their circuits?

Maximum Finder

Design a maximum finder

