Big Data La numérisation du monde

SI7

Partie 3

Le Big Data en économie

Rappels

- * www.OECD.org : Lab and trends
- * http://kpcbweb2.s3.amazonaws.com/files/85/ Internet_Trends_2014_vFINAL_-_05_28_14-_PDF.pdf? 1401286773
- * Big Data: transversalité disciplinaires
- * Est-ce qu'il y a de la valeur derrière le Big Data?
- * Est-ce seulement du battage médiatique ?
- * Y-a-t-il de l'argent derrière ce concept ?

Rappels

- * 1 out of 5, « game changers » in USA.
- 1. Big Data: leadership
- 2. Energie : gaz de schiste, indépendance vers 2020 et exportation !
- 3. Commerce : grâce au Big Data
- 4. Education: classement de Shanghai: http://www.shanghairanking.com
- 5. Infrastructures: projets innovants: Hyperloop, marché du tourisme spatial, ...

Rappels

- * Les EU possède 1/3 des données mondiales disponibles.
- * Ils disposent des centres de recherche, mais aussi des start-up.

1. Où sont les sources?

- * Le web : réseaux sociaux, photos, vidéos, documents en lignes, ...
- * Informations commerciales : BD de clients, chaîne de facturation, chaîne statistique, supply chain, historique, ...
- * Informations personnelles : dossier médical d'une personne, profil d'une personne, mails, ...
- * Données scientifiques : physique, astronomie, climat, ...
- * Données ouvertes : open data, http://www.data.gouv.fr

2. Les bonnes pratiques

- * Mise en place progressive, souplesse, tests, ... pas d'urgence.
- * Mise en place d'équipes dédiées.
- * Travailler sur vos données, pas celles de la concurrence.
- * Eviter les corrélations trop évidentes ... 17,200

2. Les bonnes pratiques

- * Mettre en place une solution de « dataviz »
- * Kibana lié à Elasitc Search ...

2. Les bonnes pratiques

* 1869 Charles Joseph Minard : compagne de Russie 1812-1813

3. Data Scientist

- * Mise en place de formation (NYU).
- * Transversalité nécessaire du métier :
 - 1. Mathématicien, statisticien
 - 2. Informaticien
 - Expert métier

3. Data Scientist

- * 4 juillet 2013, Fleur Pellerin lance un plan pour donner une impulsion à la filière Big Data en France :
 - 1. Ouverture d'une formation Data Scientist
 - 2. Ouverture d'un centre de ressources technologiques
 - 3. Lancement d'un fond d'amorçage dédié au Big Data
 - 4. Animation de différents écosystèmes permettant la rencontre entre les nouvelles technologies et les entreprises.

- * Hyper connexion, infobésité, nécessité de décrocher
- * Nous ne sommes pas des machines ...
- * Problématique du Big Data:
 - 1. Problème de communications, de profils, de technologies
 - 2. Problème de disponibilité des données
 - 3. Problème de l'analyse des données
 - 4. Problème sur la communication des données, mise en perspective

- * Paradigme nouveau : non structuration, informations catégorielles
- * Comment se rapprocher du « nowcasting » : limite
- * Le contexte : nécessaire à une analyse, pour lui faire prendre du sens.
- * Bruit parasite : données brutes/données nettoyées

- * Manque de spécialistes : 200000 aux USA (2015)
- * 1,5 millions de managers avec une expertise Big Data

* Transversalité:

- Architectes logiciels (maîtrise des outils et leur mode de déploiement) du Cloud au mobile
- 2. Mathématiciens/statisticiens
- 3. Ergonomes et designers (data visualisation), ce nouveau métier d'ailleurs ne s'apprend pas encore.
- 4. Juristes (vie privée, données anonymes, propriétés intellectuelles)
- 5. Forces de vente (modèle commercial)
- 6. Stratégie (partenariat)

5. Applications économiques

* Thales: projet Babel (dataviz), mur multitouch

5. Applications économiques

- * Big Analytics : x2,2 valorisation boursière
- * VESTAS: éoliennes (16 Po)
- * Université Ontario + IBM : maladies nosocomiales
- * IBM: watson
- * TerrasEcho: ondes lumineuses
- * Problème du business model, aide du Big Data

5. Applications économiques

* «To make money, you've got to predict two things: what's going to happen and what people think is going to happen.»

Hal Varian - chief economist at Google.

- * L'utilisateur doit savoir quand se fait la collecte de données, et son utilité.
- * La jurisprudence qui s'applique est celle de l'état où est implantée l'entreprise (USA)
- * Les requêtes sont systématiquement rejetées de l'autre côté de l'atlantique
- * Nécessité d'une jurisprudence pour la donnée
- * La suppression de 1 Go de données nominatives coûte 18 ooo dollars (recherche, suppression, perte financière, ...).

- * Skype n'est pas un opérateur de téléphonie publique : le droit en matière d'écoute est donc différent ...
- * La vente de MP3 « d'occasion » n'est pas autorisée aux USA (droits d'auteur pas arrivés à terme).
- * Le Big Data soulève deux questions juridiques :
 - Protection juridique des données traitées.
 - 2. Usage qui est fait des traitements.

- * Un fichier ne présente pas toujours une menace.
- * C'est l'interconnexion de fichiers, le croisement de données qui pose problème.
- * USA: la protection d'une BD se fait par le droit d'auteur, qui est caractérisé par l'originalité (effort créatif).
- * Au final, une base de données peut appartenir à tout le monde
- * En Europe : Lorsque l'on produit une BD sur laquelle on peut justifier des investissements matériels, humains, et financiers, la société est alors protégée.
- * Au final, elle ne peut pas appartenir à tout le monde

- * Dommages et intérêts : en cas d'astreinte, une société accusée, qui gagne plus que ce qu'il faut payer, ne reconnaîtra pas sa faute.
- * Danger = Watson: en solution Cloud, exploitable dans tous les pays, avec aucun recours.
- * Avec le Cloud, plus aucune loi ne peut s'appliquer
- * Purger un système de données avant un contrôle est considéré comme une fraude.
- * Le conseil juridique, c'est donc de purger régulièrement vos systèmes de collecte ...

- * Consomme autant que les autres activités ...
- * Peut apporter des économies dans les déplacements, dans les système de transport d'électricité (Smart Grid)
- * Le télétravail reste marginal ...
- * Tous les centres de traitements numériques dans le monde consomment l'équivalent de 30 centrales nucléaires
- * Utilisation de groupes électrogènes diesels d'appoint!
- * Utilisation d'un nombre incalculable de batteries!
- * Aucune substitution ne s'opère.

- * La consommation mondiale de papier reste stable
- * Objectif zéro papier des années 1980 ?

- * Obésité croissante des logiciels : obsolescence matérielle
- * Obésité croissante du web : augmentation de la consommation des infrastructures
- * De 0,8% en 2005 -> 2% en 2012 (consommation mondiale des infrastructures)
- * Dans 25 ans : consommation équivalente à celle de 2008 au niveau mondiale !!!
- * Il est nécessaire de prendre des mesures!

* « Selon l'ADEME, l'essentiel des impacts environnementaux liés à une page web (épuisement des ressources non renouvelables, pollutions des sols et de l'air, eutrophisation de l'eau, etc.) sont notamment corrélés au temps passé par l'internaute devant son ordinateur et à la durée de vie active de cet ordinateur ».

- * Eteignez vos « devices » s'ils ne sont pas utilisés ...
- * Limiter le nombre de requêtes inutiles ...
- * Utiliser des marques pages ... (cela évite également la collecte vous concernant sur vos habitudes)
- * Utiliser des proxy pour jouer le rôle de cache ...
- * Prévilégiez les « devices » aux « desktops »
- * Simplifiez vos infrastructures, limitez les redondances inutiles (stockage)
- * Pensez que l'électricité, ce sont des énergies fossiles le plus souvent (pour l'instant), ou des batteries ...

- * Du point de vue du client qui utilise un site web :
- * Consommation : La moyenne est de 50,1 Wh. La médiane est de 42,2 Wh.

Consommation partie cliente des sites Web

* Corrélation en différentes mesures : ratio

Energie / mémoire	Energie / Page speed	Energie / Nb Req	Energie / Chargement	Energie / Taille	Mémoire / page speed	Mémoire / Nombre de req	Mémoire / Chargement	Mémoire / Taille
0,77	0,17	0,69	0,30	0,50	0,23	0,73	0,39	0,6666

Energie Vs Mémoire

Energie Consommée Vs Score Google Page Speed

- * Google Page Speed : https://developers.google.com/speed/pagespeed/insights/
- * Conseils d'optimisation mobile/PC
- * Indice de chargement
- * Expérience utilisateur

Consommation des sites en fonction des navigateurs

- * consommation moyenne requête http = 28 uWh
- * Une page = 1 à plusieurs dizaine de requêtes
- * Résultat = moyenne de 2,7 mWh avec une médiane de 1,7 mWh pour un panel de 100 sites web le plus utilisés.
- * lemonde.fr= 3,3 mWh

- * 100 sites les plus visités (France) = consommation de 68 GWh soit la consommation de 25 400 foyers (France)!
- * Consommation: partie PC + partie serveur + partie infrastructure
- * La consommation via smartphone est moindre
- * On peut d'ailleurs faire des estimations sur le coût au niveau batterie.

* http://loadstorm.com : Charge temps réel

* http://www.webpagetest.org: impact de chargement d'une page web en temps

