FMI, Info, Anul I Semestrul I, 2016/2017 Logică matematică și computațională Laurențiu Leuștean, Alexandra Otiman, Andrei Sipoș

Seminar 3

- (S3.1) Daţi exemple, pe rând, de relaţii care:
 - (i) sunt reflexive şi tranzitive, dar nu sunt simetrice;
 - (ii) sunt reflexive și simetrice, dar nu sunt tranzitive;
- (iii) sunt simetrice și tranzitive, dar nu sunt reflexive.
- (S3.2) Fie $R \subseteq A \times A$ o relație descrisă în fiecare situație de mai jos. Verificați, pe rând, dacă R este relație de ordine parțială, strictă sau totală sau relație de echivalență.
 - (i) $A = \mathbb{N}$ și $(a, b) \in R$ dacă și numai dacă $a \mid b$.
 - (ii) $A = \mathbb{N} \times \mathbb{N}$ și (a, b)R(c, d) dacă și numai dacă $a \leq b$ sau $b \leq d$.
- (iii) $A = \mathbb{N}$ și $(a, b) \in R$ dacă și numai dacă b = a sau b = a + 1.
- (iv) A este mulțimea tuturor cuvintelor în limba engleză și $(a,b) \in R$ dacă și numai dacă a nu este mai lung ca b.
- **Definiția 1.** Fie A o mulțime și $n \in \mathbb{N}$. Spunem că A are n elemente dacă este echipotentă cu $\{j \in \mathbb{N} \mid 1 \leq j \leq n\}$ (mulțime notată și $\{1, ..., n\}$).
- **Definiția 2.** O mulțime A se numește finită dacă există $n \in \mathbb{N}$ astfel încât A are n elemente.
- Definiția 3. O mulțime se numește infinită dacă nu e finită.
- (S3.3) Fie $n \in \mathbb{N}$ și A o mulțime infinită. Să se arate că există $B \subseteq A$ astfel încât B are n elemente.
- (S3.4) Fie A, B mulţimi a.î. există $f: B \to A$ injectivă. Arătaţi, pe rând, următoarele:
 - (i) Dacă B este infinită, atunci și A este infinită.
 - (ii) Dacă B este infinită și A este numărabilă, atunci B este numărabilă. În particular, orice submulțime infinită a unei mulțimi numărabile este numărabilă.