МИНОБРНАУКИ РОССИИ ФГБОУ ВО «СГУ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

ЛОГИЧЕСКИЕ ЭЛЕМЕНТЫ И СХЕМЫ

ЛАБОРАТОРНАЯ РАБОТА

студента 3 курса 331 группы	
специальности 100501 — Компьютерная безоп	асность
факультета КНиИТ	
Окунькова Сергея Викторовича	
Проверил	
аспирант	А. А. Мартышкин

СОДЕРЖАНИЕ

ЗАКЛЮЧЕНИЕ		6
------------	--	---

Цель работы:

Ознакомление с основными характеристиками логических элементов и основами синтеза логических схем.

Задание 1.

Построим схему основных и базовых логических элементов.

Рисунок 1 – Реализация схемы из задания 1

Оперируя ключами $1, 2, \ldots, 9$ сформируем все возможные комбинации аргументов x1 и x2 (00, 01, 10, 11) на входе дизьюнктора (OR), конъюнктора (AND), штриха Шеффера (NAND) и стрелки Пирса (NOR) и запишем значения выходных логических функций ук (0 или 1) в таблицу.

OR		AND		NOT		NAND			NOR				
\mathbf{X}_1	\mathbf{X}_2	Y	\mathbf{X}_1	\mathbf{X}_2	Y	X	Y	X_1	\mathbf{X}_2	Y	X_1	\mathbf{X}_2	Y
0	0	1	0	0	0	0	1	0	0	1	0	0	1
0	1	1	0	1	0			0	1	0	0	1	1
1	0	1	1	0	0	1	0	1	0	0	1	0	1
1	1	1	1	1	1			1	1	0	1	1	0

Рисунок 2 – Таблица всех возможных комбинаций аргументов

Задание 2.

Соберем схему для реализации заданной логической функции $y = (ab + \neg c)(\neg a + \neg b + c)(a + b + c)$

Рисунок 3 – Реализация схемы из задания 2

Функция равна нулю при любых входных сигналах.

Вывод: ознакомились с основными характеристиками логических элементов и основами синтеза логических схем.

Тестовые задания к работе 29:

1. Укажите признаки характеризующие основные логические элементы: используя основные логические операции И, ИЛИ и НЕ, можно аналитически выразить любую сложную логическую функцию; минимальный логический базис составляют операции ИЛИ и НЕ или И и НЕ;

входные и выходные сигналы логических элементов могут принимать только два значения: логическую 1 и логический 0;

2. Укажите выражение логической функции двух переменных x1 и x2, реализуемой элементом «стрелка Пирса»:

$$y = \overline{x_1 + x_2}$$

3. Укажите выражение логической функции двух переменных x1 и x2, реализуемой элементом «штрих Шеффера»:

$$y = \overline{x_1 x_2}$$

4. Укажите выражение логической функции трех переменных а, б и с, записанной в совершенной дизъюнктивной нормальной форме (СДНФ):

$$y(a, b, c) = \overline{a}bc + a\overline{b}c + ab\overline{c} + abc$$

5. Укажите элемент ИЛИ-НЕ:

Рисунок 4 – Элемент ИЛИ-НЕ

6. Укажите элемент И:

Рисунок 5 – Элемент И

7. Укажите значение функции $y=(ab+\overline{c})(\overline{a}+\overline{b})$ если ${\bf a}={\bf b}={\bf c}=1$: 0

ЗАКЛЮЧЕНИЕ

В рамках данной лабораторной работы были рассмотренны теоритические основы свойств бинарных отношений, их видов и методов их замыкания по каждому из свойств. На основе этой теоретической части была смоделирована программа на языке Python с использованием средств библиотеки Numpy, которая способна определить свойства заданного множества, его вид и построить систему замыкания по каждому из основных свойств бинарного отношения, а так же была оценена асимптотика каждого реализованного алгоритма.