小说文本生成

姓名<u>李祎柔</u> 学号 20231181

一、实验要求

利用给定语料库(金庸语小说语料链接见作业三),用Seq2Seq与 Transformer两种不同的模型来实现文本生成的任务(给定开头后生成武侠小 说的片段或者章节),并对比与讨论两种方法的优缺点。

二、实验原理

2.1 seq2seq 模型

Seq2seq 模型就是一种能够根据给定的序列,通过特定的方法生成另一个序 列的方法。它在许多领域产生了一些运用。目前, 它主要的应用场景有: 机器翻 译、聊天机器人、文本生成等。

Seq2seq 模型主要由编码器和解码器两部分构成,在这个结构中,输入一个句子后,生成语义向量 c,编码过程比较简单;解码时,每个 c、上一时刻的 yi-1,以及上一时刻的隐藏层状态 si-1 都会作用到 cell,然后生成解码向量。

编码器端往往采用序列模型,如 RNN, LSTM 等。在编码的每个时刻,模型 的输入除了上一时刻产生的隐层状态编码,还有当前时刻的输入字符,并将最后 模型最后一个时刻的隐层状态做为整个序列的编码表示,传递给解码器。

解码器端与编码器端近乎相同,不过解码器端需要保存模型的输出用于产生输出序列。在模型的训练阶段,模型的输入是文本内容以及上一刻的状态变量,模型输出为预测的下一个序列变量。在模型的预测阶段, 模型输入为上一个时刻的输出以及状态,来预测下一个时刻的输出。

整个编码-解码器的预测阶段的工作流程如下图所示

图 1 seq2seq 模型

2.2 LSTM模型

长短期记忆网络(Long Short-Term Memory, LSTM)是一种常用的循环神经网络(Recurrent Neural Network, RNN)架构,用于处理序列数据,特别是具有长期依赖关系的序列数据。

LSTM通过引入一种称为"门"的机制来解决传统RNN中的梯度消失和梯度爆炸问题,使其能够有效地捕捉和利用长期依赖关系。下面是LSTM的主要组成部分及其工作原理:

- 1. 输入门(Input Gate):控制是否将新的输入信息添加到细胞状态中。它通过对输入和前一个时刻的隐藏状态进行加权和,然后经过一个sigmoid函数来生成一个0到1之间的值,表示每个输入元素的重要性。
- 2. 遗忘门(Forget Gate): 控制前一个时刻的细胞状态中哪些信息被保留下来。它通过对输入和前一个时刻的隐藏状态进行加权和,然后经过一个sigmoid函数来生成一个0到1之间的值,表示每个细胞状态元素的保留程度。
- 3. 细胞状态更新(Cell State Update):根据输入门和遗忘门的结果,计算新的候选细胞状态。首先,使用输入门来确定哪些信息将被添加到细胞状态中。然后,使用遗忘门来决定前一个时刻的细胞状态中哪些信息应该被遗忘。最后,将两者结合得到新的细胞状态。
- 4. 输出门(Output Gate):根据输入和前一个时刻的隐藏状态来控制当前时刻的输出。它通过对输入和前一个时刻的隐藏状态进行加权和,然后经过一个sigmoid函数来生成一个0到1之间的值,表示每个细胞状态元素对输出的贡献程度。同时,将当前细胞状态通过一个tanh函数进行处理,得到一个介于-1和1之间的值,表示当前时刻的输出。

LSTM的单元结构如下图所示:

通过以上步骤,LSTM能够有效地处理序列数据,并在学习过程中保留和利用 长期依赖关系。它的主要优点是能够对输入和输出的时间步长没有限制,并且 能够捕捉到较长距离的依赖关系。这使得LSTM在诸如语言建模、机器翻译、语 音识别等序列数据处理任务中取得了广泛应用。

三、实验过程

3.1 文本预处理

过程与前几次实验大体相同,包括文本的读取,去除特殊标点符号,去除停 词,分词等操作。为了让分词更准确,在网站上下载了人名、门派、武功的专有 词汇,用于分词过程中。

3.2 模型定义

模型的定义与训练包括 Word2Vec 模型LSTM模型以及 Seq2Seq 模型。

在对 seq2seq 模型进行训练前,采用基于 CBOW 方法的 Word2Vec 模型,通过对金庸小说文本进行训练,生成文本信息的编码,用词向量来表示文本信息。

Seq2Seq 模型编码器和解码器均采用 LSTM, 在模型的输入和输出前增加线性映射层。

3.3 模型的训练和预测

简单起见,模型的训练 loss 采用计算余弦相似度的方法,即通过衡量预测词向量与目标词向量之间的余弦相似度,若相似度较大,则损失较小,反之亦然。

在模型的预测过程中,通过设定预测结束的条件,即对输出的总词数以及输出句子的数量进行限制,得到最后的输出。该部分参考了[1]的实现方法。

采用《天龙八部》 的全部内容作为训练数据,对模型进行训练,共训练 100epoch,采用 SGD 优化器,学习率为 0.01。测试过程中挑选书中的某半句话 作为测试输入。

3.4 模型效果

3.4.1 Seq2Seq 模型

采用《天龙八部》对模型进行训练,并摘取其中某一句话作为引导词,观察模型的输出。

引导词: 段誉望望

原文语句: 段誉望望王语嫣,又望望阿朱、阿碧, 只见三个少女都笑眯眯的 听着,显是极感兴味。

模型输出:段誉望望朱四哥,再运羊儿,缝套无意之中吵醒丁老怪。吵醒闪 讲小虫,这倒确天堂。

引导词: 虚竹恍然

原文语句:虚竹心下恍然,知道童姥为了恼他宁死不肯食荤,却去掳了一个少女来,诱得他破了淫戒,不由得又是悔恨,又是羞耻,突然间纵起身来,脑袋 疾往坚冰上撞去,砰的一声大响,掉在地下。

模型输出:虚竹心下恍然,铁丑怕羞。朱四哥缝套粗心,腐骨丸无法无天,无意之中痛快小贼,毒得朱四哥饮水。

总体来看,模型的输出语句与金庸风格比较相近,学会了基本的形容词-名词,动词-副词等语法,并且学会了书中的一些特有词汇,比如腐骨丸、铁丑等词的词性和用法。但是,内容上缺乏实际含义,前后语言不搭,说明模型还没有理解语言背后的深层含义。

3.4.2 LSTM模型

初始输入句:

,但见那乘马奔到大街转弯角处,忽然站住。完颜洪烈又是一奇,心想 马匹

模型生成句:

,但见那乘马奔到大街转弯角处,忽然站住。完颜洪烈又是一奇,心想 马匹,就留给两个还没出世,忽然转念:"别鬼使神差的,偏偏有人这时过来 撞见。"鼓起勇气,过去拉那尸首,想拉入草丛之中藏起,再去叫丈夫。不料 她伸手一拉,那尸首又呻吟了一下,声音甚是微弱。她才知此人未死。定睛看 时,见他背后肩头中了一枝狼牙利箭,深入肉里,箭枝上染满了血污。天空雪 花兀自不断飘下,那人全身已罩上了薄薄一层白雪,

期待生成句:

,但见那乘马奔到大街转弯角处,忽然站住。完颜洪烈又是一奇,心想 马匹疾驰,必须逐渐放慢脚步方能停止,此马竟能在急行之际斗然收步,实是 前所未睹,就算是武功高明之人,也未必能在发力狂奔之时如此神定气闲的蓦 地站定。只见那矮胖子飞身下马,钻入一家店内。完颜洪烈快步走将过去,只 见店中直立着一块大木牌,写着"太白遗风"四字,却是一家酒楼,再抬头看 时,楼头一块极大的金字招牌,写着"醉仙楼"三个大字

初始输入句:

- 。那人腰里插了一柄砍柴用的短斧,斧刃上有几个缺口。两人刚 模型生成句:
- 。那人腰里插了一柄砍柴用的短斧,斧刃上有几个缺口。两人刚笑道: "说不定!"这时了五年龙廷,那人全身已罩上了薄薄一层白雪,只须过得半夜,便冻也冻死了。她自幼便心地仁慈,只要见到受了伤的麻雀、田鸡、甚至虫豸蚂蚁之类,必定带回家来妥为喂养,直到伤愈,再放回田野,若是医治不好,就会整天不乐,这脾气大了仍旧不改,以致屋子里养满了诸般虫蚁、小禽小兽。她父亲是个屡试不第的村

期待生成句:

。那人腰里插了一柄砍柴用的短斧,斧刃上有几个缺口。两人刚坐定,楼下脚步声响,上来两人。那渔女叫道: "五哥、六哥,你们一齐来啦。"前面一人身材魁梧,少说也有二百五六十斤,围着一条长围裙,全身油腻,敞开衣襟,露出毛茸茸的胸膛,袖子卷得高高的,手臂上全是寸许长的黑毛,腰间皮带上插着柄尺来长的尖刀,瞧模样是个杀猪宰羊的屠夫。后面那人五短身材,头戴小毡帽,白净面皮,手里提了一杆秤,

四、对比分析

从结果来看,Seq2Seq模型在处理中小规模数据集和短文本生成任务时, 表现较好,训练稳定且简单易用。但在处理长文本时,容易出现长距离依赖问 题,生成的文本可能缺乏连贯性。

Transformer模型通过自注意力机制,能有效捕捉长距离依赖,适合长文本生成和大规模数据集,并行计算提高了训练效率。然而,它需要更多的计算资源和大规模数据支持,模型训练和调优也更为复杂。