Математически модел

Най-напред трябва да пресметнем загубите от пропуснатите лихви за всяко възможно изпращане на чековете. Ако например област Запад изпраща чековете в Ню Йорк, тогава количеството на парите, които са изпратени, но не са инкасирани, е $8 \times 70\,000 = 560\,000$ долара за всеки един ден. Ако инвестиционният процент е 20%, това отговаря на годишна загуба от 112 000 долара. Пресмятайки по подобен начин и останалите загуби, получаваме табл. 1.

От–До	Л.А.	Чикаго	Ню Йорк	Атланта
Запад	28	84	112	112
Среден запад	60	20	50	50
Изток	96	60	24	60
Юг	64	40	40	16

Таблица 1. Годишна загуба на лихви (в хиляди долари)

Тази задача е изцяло с двоични променливи. Да ги въведем по следния начин:

- $x_{ij} = 1$, i, j = 1, 2, 3, 4, ако област i праща чековете до гише j, и $x_{ij} = 0$ в противен случай;
- $y_i = 1$, ако гише i е отворено, и $y_i = 0$, ако то не е отворено.

Тъй като целта ни е да минимизираме общите годишни загуби, целевата функция е

$$\min z = 28x_{11} + 84x_{12} + 112x_{13} + 112x_{14} + 60x_{21} + 20x_{22} + 50x_{23} + 50x_{24}$$

$$+ 96x_{31} + 60x_{32} + 24x_{33} + 60x_{34} + 64x_{41} + 40x_{42} + 40x_{43} + 16x_{44}$$

$$+ 50y_1 + 50y_2 + 50y_3 + 50y_4.$$

Една част от ограниченията получаваме от факта, че всяка област трябва да изпраща чековете в една гише

$$\sum_{j} x_{ij} = 1$$
 за всички i .

Другата част от ограниченията отразява факта, че една област може да изпраща чековете си само на отворено гише

$$\sum_i x_{ij} \le M y_j.$$

Тук M е достатъчно голямо положително число (по-голямо или равно на броя на областите). Нека гише 1 не е отворено. Тогава $y_1 = 0$ и следователно всички x_{11} , x_{21} , x_{31} , x_{41} също трябва да бъдат равни на нула. Ако $y_1 = 1$, тогава няма ограничение за стойностите на променливите x_{i1} , i = 1, 2, 3, 4.

Окончателно получаваме следната 0–1 задача с двайсет променливи и 8 ограничения (16 променливи x и четири променливи y):

$$\min z = 28x_{11} + 84x_{12} + 112x_{13} + 112x_{14} + 60x_{21} + 20x_{22} + 50x_{23} + 50x_{24}$$
$$+ 96x_{31} + 60x_{32} + 24x_{33} + 60x_{34} + 64x_{41} + 40x_{42} + 40x_{43} + 16x_{44}$$
$$+ 50y_1 + 50y_2 + 50y_3 + 50y_4$$

при ограничения

$$x_{11} + x_{12} + x_{13} + x_{14} = 1,$$

$$x_{21} + x_{22} + x_{23} + x_{24} = 1,$$

$$x_{31} + x_{32} + x_{33} + x_{34} = 1,$$

$$x_{41} + x_{42} + x_{43} + x_{44} = 1,$$

$$x_{11} + x_{21} + x_{31} + x_{41} \le My_1,$$

$$x_{12} + x_{22} + x_{32} + x_{42} \le My_2,$$

$$x_{13} + x_{23} + x_{33} + x_{43} \le My_3,$$

$$x_{14} + x_{24} + x_{34} + x_{44} \le My_4,$$

$$x_{ij}, y_j \in \{0, 1\}, i, j = 1, \dots, 4.$$

Това е една напълно приемлива 0–1 формулировка на тази задача. Оптималното решение е отваряне на гишета в Л.А. и Ню Йорк. Област Запад изпраща чековете си в Л.А., а останалите три области — в Ню Йорк.

Да отбележим, че са възможни най-различни промени (издръжката на гише в Ню Йорк е по-скъпа, отколкото на другите места; област Юг не може да изпраща чекове в Л.А. и др.).

Възможни са обаче и други формулировки. Например да разгледаме 16-те ограничения от вида $x_{ij} \leq y_j$, $i, j = 1, \ldots, 4$. Тези ограничения също форсират областите да използват само отворени гишета (Проверете това!). На пръв поглед може да изглежда, че една такава формулировка с повече ограничения е по-малко ефективна и следователно трябва да бъде избягвана. Но това не е така! Ако решим тази задача като непрекъсната линейна задача, получаваме за оптимално решение $x_{11} = x_{23} = x_{33} = x_{43} = y_1 = y_3 = 1$ и останалите са равни на нула. Понеже то е двоично, следователно е оптимално решение на задачата.

Накрая да отбележим, че тази задача е пример на вече разгледаната за- ∂ ача с фиксирани такси/ ∂ оплащания. За отварянето на гише има фиксирана такса, но веднъж отворено, то може да бъде използвано от всички области.