Watson Studio

Prescriptive Analytics

Emmanuel Génard – <u>genard@fr.ibm.com</u>
Cloud Developer Advocate Europe &
Data Scientist

October 2019

Descriptive Analytics

uses statistical models and forecasts techniques to understand the past and answer: "What has happened?"

Predictive Analytics

which uses data aggregation and data mining to provide insight and answer: "What could happen?"

Prescriptive Analytics

which use optimization and cognitive computing to advice on possible outcomes and answer: "What should we do?"

What is Prescriptive Analytics?

What's the best that can happen?
What ACTIONS do I need to take to achieve my desired goals?

Gartner Hype Cycle

11% of large and mid-size organizations have some form of prescriptive analytics; this will grow to 37% by 2022.

Gartner (Jan 2019)

IBM Board of Advisors / June 2018 / @ 20

Prescriptive Analytics – How does it work?

Decision Optimization

the secret sauce for better decisions

Decision optimization technology has delivered significant ROI across industries

25% increase in transport punctuality. 33% reduction in daily kilometres walked¹

Optimize
manufacturing of

10K
products
across 20 plants²

30% savings on energy costs⁴

What is Decision Optimization?

Business problem

Build optimization models using either:

General purpose programming language APIs

Optimization
Programming Language

Optimization engines that can solve:

Mathematical programming models

Constraint programming and constraint-based scheduling models

Optimal decisions

What-if analysis to evaluate alternate scenarios

Recommended actions to achieve business goals

Supports all sizes of optimization models

Support for unlimited decision variables and constraints

High performance and scalable

What is Decision Optimization?

Decision Optimization artefacts

Docplex available on Cloud

Python API Model Builder (UI based modeling assistant) OPL model

What is an optimization model?

A translation of your business problem into math... without any specific instructions on how to solve

Business goals / KPIs

Increase profits

Model objectives

Maximize Profit

Levers / decisions affecting goals

How much product A should we produce?

Model variables

Production ProductA

Business "rules" constraining decisions

Production must be less than plant capacity

Model constraints

Production_ProductA
≤ Capacity_A

A Production Planning Example

A manufacturer wants to sell a product
The product can be made either

- Inside the factory
 - Scarce resources are used
 - Cost per unit to manufacture
- Outside the factory
 - Higher cost per unit to purchase

All demand must be satisfied

Goal: minimize total cost

Data Declarations

Sets of products and resources

```
setof(string) Products = ...;
setof(string) Resources = ...;
```

Number of units of each resource needed to produce one unit of each product

```
float consumption[Products] [Resources] = ...;
```

Total number of available resources

```
float capacity[Resources] = ...;
```

Number of units in demand for each product

```
float demand[Products] = ...;
```

Cost per unit of inside and outside production

```
float insideCost[Products] = ...;
float outsideCost[Products] = ...;
```

Products Could Be Jewelry

Products and Resources

```
Products = { rings earrings };
Resources = { gold diamonds };
```

- Consumption
- A ring requires 3 units of gold and 1 diamond
- A set of earrings requires 2 units of gold and 2 diamonds

```
consumption = [ [3, 1], [2, 2] ];
```

Capacity (Available units of gold and diamonds)

```
capacity = [ 130, 180 ];
```

Demand (Number of rings and earrings)

```
demand = [100, 150];
```

Costs (per unit for rings and earrings)

```
insideCost = [ 250, 200 ];
outsideCost = [ 260, 270 ];
```


Products Could Be Pasta

outsideCost = [0.8, 0.9, 0.4];

```
Products and Resources
Products = { kluski capellini fettucine };
Resources = { flour eggs };
Consumption
- Kluski requires 0.5 units of flour and 0.2 eggs
- Capellini requires 0.4 units of flour and 0.4 eggs
- Fettucine requires 0.3 units of flour and 0.6 eggs
consumption = [[0.5, 0.2], [0.4, 0.4], [0.3, 0.6]];
Capacity (Available units of flour and eggs)
capacity = [20, 40];
Demand (Number of each pasta needed)
demand = [100, 200, 300];
Costs (per unit for each pasta)
insideCost = [0.6, 0.8, 0.3];
```


Problem Model Is Identical (1/2)

```
setof(string) Products = ...;
setof(string) Resources = ...;

float consumption[Products][Resources] = ...;
float capacity[Resources] = ...;
float demand[Products] = ...;
float insideCost[Products] = ...;
float outsideCost[Products] = ...;
```

Data initialization

```
dvar float+ inside[Products];
dvar float+ outside[Products];
```

Decision Variables

Problem Model Is Identical (2/2)

```
minimize
   sum(p in Products)
      (insideCost[p] * inside[p] +
       outsideCost[p]* outside[p] );
                                                       Objective Function
subject to {
  forall (r in Resources)
     sum (p in Products)
       consumption[p][r]*inside[p] <= capacity[r];</pre>
  forall (p in Products)
     inside[p] + outside[p] >= demand[p];
};
                                                     Constraints
```

Watson Studio and Watson Machine Learning inject AI firepower into your business

Embed ML in your business Operationalize

Watson Machine Learning

Mix and Match your deployment

- ✓ Cloud IBM Cloud, Azure, AWS
- ✓ On Premise / Private Data center
- ✓ Desktop

Decision Optimization within Watson Studio

Visualization

Thank You