Time series momentum: Is it there?

Huang, Dashan, Jiangyuan Li, Liyao Wang, and Guofu Zhou. Journal of Financial Economics (March 2020)

解读者: 屠雪永

2020.12.26

Outline

- Introduction
- Research design
 - Univariate time series regression
 - Pooled regression
 - Bootstrap tests
- Empirical results
- Conclusion

1. Introduction-- Motivation

- Time series momentum (TSM) refers to the predictability of the past 12-month return on the next one-month return.
- Moskowitz et al. (MOP, 2012) conclude that time series momentum (TSM) is everywhere: The past 12-month return positively predicts the next one- to 12-month return
- Whether time series predictability is present at the 12-month frequency remains an open question.
- In this paper, using the same data set as MOP (Moskowitz et al., 2012), we reexamine the evidence of TSM, we find that the evidence on TSM is weak.

1. Introduction-- Research question

1.How to prove that the evidence on TSM is weak?

 2. Why is the TSM strategy profitable even though the statistical evidence on time series predictability is weak?

1. Introduction-- Framework

We run a **time series regression** of monthly return for each asset on its past 12-month return.

Answers to the first question

We follow MOP's approach and run a **pooled** regression by stacking all asset returns together.

To assess the degree of over-rejection, we use **two bootstrap methods**.

Answers to the second question

We propose a **times series history (TSH)** strategy that buys assets if their historical mean returns are positive and sells them otherwise.

1. Introduction-- Contribution

• 1. This paper proves the evidence on TSM is weak, and explain the phenomenon why the TSM strategy is profitable.

• 2. The predictability in the asset classes, if it exists, is not as simple as a constant 12-month return rule.

2. Data

- Futures prices: 24 commodities, 9 developed country equity indexes, 13 developed government bonds, and 9 currency forwards from the same data sources as MOP(55).
- Sample period: 1985.01 ~2015.12.
- Futures returns: For each day, we calculate the daily excess return
 of each futures contract with the nearest- or next-nearest-to-delivery
 contract and compound the daily returns to a cumulative month
 return index.

3. Univariate time series regression

 We run univariate time series regressions to explore the predictability of the past 12-month return for individual assets.

$$r_{t+1}^{i} = \alpha + \beta r_{t-12,t}^{i} + \varepsilon_{t+1}^{i}, \tag{1}$$

• Where r_{t+1}^i is the return of asset i in month t+1 and $r_{t-12,t}^i$ is its past 12-month return (i.e., the return between months t-12 and t).

$$R_{OS}^{2} = 1 - \frac{\sum_{t=K}^{T-1} (r_{t+1}^{i} - \hat{r}_{t+1}^{i})^{2}}{\sum_{t=K}^{T-1} (r_{t+1}^{i} - \bar{r}_{t+1}^{i})^{2}},$$

$$\hat{r}_{t+1}^{i} = \hat{\alpha}_{t} + \hat{\beta}_{t} r_{t-12,t}^{i}$$
(2)

Where K is the initial sample size for parameters training.

 \bar{r}_{t+1}^{i} is the sample mean of asset i with data up to month t.

Data spilt:15+16 years

3. Univariate time series regression--results

 Table 2 In- and out-of-sample performance of time series momentum (TSM) with time series regression.

Asset	β_i	t-stat	R^2	R_{OS}^2
Panel A: Commodity futures				
Aluminum	0.30	0.88	0.28	-1.42
Brent oil	0.34	0.69	0.14	-1.29
Cattle	0.38**	2.23	0.94	-0.62
Cocoa	-0.14	-0.28	0.03	-1.51
Coffee	0.21	0.40	0.04	0.23
Copper	0.77*	1.69	0.97	0.21
Average across asset classes			0.39	-0.67
#(10% significance)	8			3

The evidence of TSM across all the assets is very weak. Of the 55 assets, only eight display significant regression slopes at the 10% level; the significance is not concentrated but disperse among the four asset classes; R_{OS}^2 only three are significant at the 10% level.

4. Pooled regression

We first replicate the Pooled regression in MOP (overstate the presence of TSM):

$$r_{t+1}^{i}/\sigma_{t}^{i} = \alpha + \beta r_{t-h+1}^{i}/\sigma_{t-h}^{i} + \varepsilon_{t+1}^{i},$$
 (3)

$$(\sigma_t^i)^2 = 261 \sum_{j=0}^{\infty} (1 - \delta) \delta^j (r_{t-1-j}^i - \bar{r}_t^i)^2, \tag{4}$$

$$r_{t+1}^i/\sigma_t^i = \alpha + \beta sign(r_{t-h+1}^i) + \varepsilon_{t+1}^i, \tag{5}$$

where sign is the sign function that equals +1 when $r_{t-h+1}^i \ge 0$ and -1 when $r_{t-h+1}^i < 0$. To highlight fixed effects, a possible specification is

$$r_{t+1}^{i}/\sigma_{t}^{i} = \alpha + \beta r_{t-h+1}^{i}/\sigma_{t-h}^{i} + \mu_{i}/\sigma_{i} + \varepsilon_{t+1}^{i},$$
 (6)

$$\hat{\beta} = \beta + \frac{\text{Cov}(r_{t-h+1}^{i}/\sigma_{t-h}^{i}, \mu_{i}/\sigma_{i})}{\text{Var}(r_{t-h+1}^{i}/\sigma_{t-h}^{i})}.$$
(7)

the slope estimate of Eq. (3) is biased upward

4. Pooled regression--Bootstrap tests

Table 3 p-value from the test that all assets have the same mean or Sharpe ratio.

	ANOVA	Welch's ANOVA	Kruskal-Wallis	Bootstrap
Mean Sharpe ratio	0.08 < 10 ⁻⁵	$< 10^{-3}$ $< 10^{-5}$	$< 10^{-10} < 10^{-15}$	0

Two standard bootstrap approaches:

The first is a more restrictive parametric wild bootstrap

The second is a more general nonparametric **pairs bootstrap** that resamples the predictor and the dependent variable simultaneously.

$$\hat{\varepsilon}_{t+1}^{i} = r_{t+1}^{i} / \sigma_{t}^{i} - \hat{\alpha} - \hat{\beta} r_{t-h+1}^{i} / \sigma_{t-h}^{i}.$$
 (8)

wild bootstrap
$$r_{t+1}^{i*}/\sigma_t^{i*} = \hat{\alpha} + \hat{\beta} r_{t-h+1}^i/\sigma_{t-h}^i + \hat{\epsilon}_{t+1}^i v_{t+1}^i$$
, (9)

$$v_t^i = \begin{cases} 1 & \text{with probability } 1/2, \\ -1 & \text{with probability } 1/2. \end{cases}$$
 (10)

4. Pooled regression--results

6

3.29

9.65

Table 4 t-statistic of pooled regression without controlling for fixed effects.

		Bootstrappe	ed t-statistic		Bootstrappe	d <i>t</i> -statistic
h	t-statistic	Wild	Pairs	t-statistic	Wild	Pairs
Panel A	A: Forecast with 1	eturn lagged <i>h</i>	months			
	$r_{t+1}^i/\sigma_t^i =$	$\alpha_h + \beta_h r_{t-h+1}^i / \sigma$	$\varepsilon_{t-h}^i + \varepsilon_{t+1}^i$	$r_{t+1}^i/\sigma_t^i=\alpha_h$	$+\beta_h sign(r_{t-h+1}^i)$	$)+arepsilon_{t+1}^{i}$
1	3.11	9.26	3.63	2.90	8.18	3.41
2	1.31	4.98	1.98	1.62	4.44	2.31
3	2.89	8.61	3.45	2.83	6.84	3.45
4	0.24	2.46	1.06	1.20	2.12	1.99
5	-0.17	1.88	0.60	-0.34	1.83	0.54
6	0.97	4.18	1.71	1.58	3.62	2.28
D 1.	S 80 1 101 6					
Panel I	3: Forecast with [1 . 1	0 : (i)	
	$r_{t+1}^i/\sigma_t^i=0$	$\alpha_h + \beta_h r_{t-h,t}^i / \sigma_{t-h}^i$	$-1 + \varepsilon_{t+1}^{\iota}$	$r_{t+1}^i/\sigma_t^i=\alpha_h$	$+ \beta_h sign(r_{t-h,t}^i)$	$+ \varepsilon_{t+1}^{\iota}$
1	3.11	9.26	3.63	2.90	8.18	3.41
2	2.92	9.46	3.46	3.07	8.32	3.61
3	3.74	11.45	4.22	4.15	10.20	4.61
4	3.49	10.71	3.97	4.57	9.49	4.96
5	3.11	9.58	3.63	4.24	8.85	4.72
_						

3.80

At the 5% level ,define the distribution of the *t*-statistic's 97.5% quantile as the simulated *t*-statistic for significance.

The t-statistic from the real data is smaller than the simulated t-statistics respectively, suggesting that the evidence is weak in support of TSM.

3.88

8.88

4.39

4. Pooled regression--results

 Table 6 t-statistic of pooled regression without volatility scaling and without controlling for fixed effects

		Bootstrapped <i>t</i> -statistic			Bootstrapped t -	statistic
h	t-statistic	Wild	Pairs	t-statistic	Wild	Pairs
Panel	A: Forecast with	return lagged	h months			
	$r_{t+1}^i =$	$\alpha_h + \beta_h r_{t-h+1}^i +$	$\cdot \varepsilon_{t+1}^i$	$r_{t+1}^i = \alpha$	$\alpha_h + \beta_h sign(r_{t-h+1}^i)$	$+\varepsilon_{t+1}^i$
1	1.80	5.49	2.51	2.20	6.13	2.85
2	0.52	2.58	1.47	1.65	2.67	2.45
3	1.43	4.57	2.19	1.84	4.58	2.58
4	0.67	3.21	1.58	1.47	3.21	2.26
5	-1.33	-0.10	-0.14	-0.89	-0.08	0.28
6	1.03	3.37	1.92	1.77	3.45	2.48
Panel	B: Forecast with	past h-month	returns			
	$r_{t+1}^i =$	$\alpha_h + \beta_h r_{t-h,t}^i +$	ε_{t+1}^i	$r_{t+1}^i =$	$\alpha_h + \beta_h sign(r_{t-h,t}^i)$	$)+\varepsilon_{t+1}^{i}$
1	1.80	5.49	2.51	2.20	6.13	2.8
2	1.39	4.56	2.21	2.57	5.10	3.1
3	1.71	5.26	2.45	3.06	5.81	3.6
4	1.82	5.30	2.59	3.75	5.94	4.2
5	1.27	4.27	2.09	3.23	4.75	3.7
6	1.55	4.85	2.39	2.71	5.38	3.3

The t-statistics without volatility scaling are much smaller than those with volatility scaling. Volatility scaling seems at least partially responsible for the performance of the TSM trading strategy.

4. Pooled regression--results

• **Table 7** t-statistic of pooled regression without controlling for fixed effects over **1985:01–2009:12**.

		Bootstrapped	d t-statistic		Bootstrapped	t-statistic
h	t-statistic	Wild	Pairs	t-statistic	Wild	Pairs
Panel	A: Forecast with	return lagged	h months			
	$r_{t+1}^i/\sigma_t^i =$	$\alpha_h + \beta_h r_{t-h+1}^i / \sigma_t^i$	$\varepsilon_{-h}^{i} + \varepsilon_{t+1}^{i}$	$r_{t+1}^i/\sigma_t^i =$	$\alpha_h + \beta_h sign(r_{t-h+}^i)$	$_{1})+\varepsilon_{t+1}^{i}$
1	3.71	10.68	4.20	3.75	9.31	4.19
2	0.97	4.07	1.68	1.34	3.65	2.02
3	2.48	7.43	3.11	2.44	6.09	3.01
4	0.22	2.40	1.14	0.65	2.28	1.59
5	-0.15	1.53	0.67	-0.38	1.56	0.66
6	0.52	3.08	1.30	1.35	2.78	2.15
Panel	B: Forecast with	past h-month	returns			
	$r_{t+1}^i/\sigma_t^i =$	$\alpha_h + \beta_h r_{t-h,t}^i / \sigma_t^i$	$_{-1}+arepsilon_{t+1}^{i}$	$r_{t+1}^i/\sigma_t^i =$	$= \alpha_h + \beta_h sign(r_{t-1}^i)$	$(t_{t+1}) + \varepsilon_{t+1}^i$
1	3.71	10.68	4.20	3.75	9.31	4.19
2	3.09	9.53	3.54	3.19	8.39	3.70
3	3.74	11.53	4.27	4.43	9.96	4.94
4	3.45	10.37	3.98	4.78	9.19	5.19
5	3.06	9.27	3.63	4.36	8.39	4.85
6	3.17	9.31	3.73	4.03	8.52	4.46

For the 1985 to 2009 sample period, the t-statistics from real data are still smaller than the simulated t-statistics.

4. Pooled regression $r_{t+1}^i/\sigma_t^i - \overline{r^i/\sigma^i} = \beta(r_{t-h+1}^i/\sigma_{t-h}^i - \overline{r_{-h+1}^i/\sigma_{-h}^i}) + \varepsilon_{t+1}^i$, (12)

Table 8 t-statistic of pooled regression controlling for fixed effects.

		Bootstrapped <i>t</i> -statistic			Bootstrapped	<i>t</i> -statistic
h	t-statistic	Wild	Pairs	t-statistic	Wild	Pairs
Panel	A: Forecast with	return lagged				
	$r_{t+1}^i/\sigma_t^i=c$	$\alpha_h^i + \beta_h r_{t-h+1}^i / \sigma_t^i$	$\varepsilon_{-h}^{i} + \varepsilon_{t+1}^{i}$	$r_{t+1}^i/\sigma_t^i =$	$\alpha_h^i + \beta_h sign(r_{t-h+}^i)$	$_{1})+\varepsilon_{t+1}^{i}$
1	2.80	8.51	3.39	2.66	7.60	3.19
2	0.96	4.17	1.66	0.94	3.85	1.67
3	2.53	7.77	3.12	2.17	6.36	2.83
4	-0.19	1.56	0.70 0.25	0.36	1.56	1.27
5	-0.56	1.00		-0.94	1.03	0.02
6	0.58	3.26	1.36	1.07	2.90	1.79
Panel	B: Forecast with	past h-month	returns			
	$r_{t+1}^i/\sigma_t^i=\sigma_t^i$	$\alpha_h^i + \beta_h r_{t-h,t}^i / \sigma_t^i$	$_{-1}+arepsilon_{t+1}^{i}$	r_{t+1}^i/σ_t^i =	$= \alpha_h^i + \beta_h sign(r_{t-h}^i)$	$(0,t) + \varepsilon_{t+1}^i$
1	2.80	8.51	3.39	2.66	7.60	3.19
2	2.51	8.43	3.07	2.62	7.41	3.19
3	3.23	10.17	3.74	3.56	9.08	4.17
4	2.89	9.24	3.46	3.60	8.36	4.11
5	2.44	7.89	2.99	3.17	7.45	3.66
6	2.53	7.97	3.12	3.15	7.27	3.70

Compared with Table 4, after controlling for the fixed effects, the t-statistic is smaller than that without controlling for fixed effects. Insufficient evidence exists in support of TSM.

4. Pooled regression-- Out-of-sample performance

• Fig. 4. Time series momentum (TSM) with pooled regression: out-of-sample

A pooled regression can improve the out-of-sample forecasting power, but such improvement is restricted to international equity markets. it cannot provide significant support for TSM either.

5. Trading strategy--TSM versus TSH at asset level

• asset $i \sim \text{iid} \sim N(\mu^i, \sigma^i)$, the probability of the past 12-month return being positive is

$$Pr(r_{t-12,t}^{i} > 0) = 1 - Pr\left(\frac{r_{t-12,t}^{i} - 12\mu^{i}}{\sqrt{12}\sigma^{i}} \le -\sqrt{12}\frac{\mu^{i}}{\sigma^{i}}\right)$$
$$= \Phi(\sqrt{12}\mu^{i}/\sigma^{i}), \tag{16}$$

$$r_{t+1}^{\text{TSH},i} = sign(r_{1,t}^i)r_{t+1}^i, \tag{17}$$

$$r_{t+1}^{\text{TSM},i} = sign(r_{t-12,t}^{i})r_{t+1}^{i}. \tag{18}$$

TSH: buys the futures contract if its **historical sample mean** is non-negative and sells it if its historical sample mean is negative.

TSM: buys the future contract if its **past 12-month return** is non-negative and sells it if its past 12-month return is negative.

5. Trading strategy-- TSM versus TSH at asset level

• **Table 9** Time series momentum (TSM) versus time series history (TSH) at the asset level(55).

Asset	TSM return	TSH return	TSM Sharpe ratio	TSH Sharpe ratio	Return difference	<i>p</i> -value of return difference	Sharpe ratio difference	<i>p</i> -value of Sharpe ratio difference
Aluminum	0.27	-0.47	0.05	-0.08	0.74**	0.04	0.13**	0.04
Brent oil	0.80	0.32	0.09	0.04	0.48	0.44	0.05	0.44
Cattle	0.28	0.08	0.07	0.02	0.20	0.48	0.05	0.48
Cocoa	-0.46	0.13	-0.06	0.02	-0.59	0.32	-0.08	0.31
Coffee	0.18	-0.55	0.02	-0.05	0.73	0.30	0.07	0.30
Copper	0.77	0.94	0.10	0.12	-0.17	0.74	-0.02	0.73
JPY/USD	0.46	0.09	0.14	0.03	0.37	0.11	0.11	0.11
NOK/USD	0.06	-0.06	0.02	-0.02	0.12	0.58	0.04	0.58
NZD/USD	0.24	0.02	0.07	0.01	0.22	0.38	0.06	0.38
SEK/USD	0.04	-0.05	0.01	-0.02	0.09	0.70	0.03	0.70
CHF/USD	0.18	0.19	0.05	0.06	-0.01	0.96	-0.01	0.97
GBP/USD	0.00	-0.03	0.00	-0.01	0.03	0.87	0.01	0.87
#(significance)					7		7	

Of the 55 assets, only five(+) show that the TSM strategy generates a higher average return than the TSH strategy.

The TSM strategy does not significantly outperform at the asset level the TSH strategy that does not require predictability.

5. Trading strategy-- TSM versus TSH at portfolio level

 Table 10 Time series momentum (TSM) versus time series history (TSH) at the portfolio level.

$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				Fama-French four-factor model			Asness-Moskowitz-Pedersen three-factor model						
TSM strategy Long leg 0.34*** 0.12** 0.16*** 0.05** 0.09*** 0.32*** 42.57% 0.09 0.16*** 0.14*** 0.14*** 0.14*** 0.38*** 41.92% (4.92) (2.29) (7.73) (2.24) (2.62) (7.19) (1.60) (7.21) (2.99) (7.33) Short leg -0.05 -0.03 0.14*** 0.11*** 0.03 -0.28*** 48.31% 0.02 0.13*** -0.09 -0.32*** 45.85% (-0.72) (-0.46) (5.30) (4.01) (0.96) (-8.34) (0.23) (5.08) (-1.42) (-6.89) Long - short 0.39*** (4.73) (1.94) (0.61) (-1.83) (1.01) (9.99) (1.01) (0.93) (2.50) (8.79) TSH strategy Long leg 0.27*** 0.07 0.28*** 0.14*** 0.14*** 0.10*** 0.08* 49.07% 0.10 0.26*** 0.01 0.26*** 0.01 0.08* 45.30% (2.56) (0.95) (8.79) (4.41) (3.90) (1.93) (1.13) (7.73) (0.24) (1.65) Short leg 0.02 0.02 0.02 0.03*** 0.03* 0.03* 0.02 -0.04** 8.73% 0.01 0.03*** 0.03 -0.03 8.04% (0.61) (0.52) (3.51) (1.83) (1.47) (-2.01) (0.25) (3.17) (1.15) (-1.04) Long - short 0.25*** 0.05 0.25*** 0.11*** 0.08*** 0.13*** 44.83% 0.09 0.23*** 0.09 0.23*** -0.00 0.14*** 0.14*** 0.38*** 41.92% 0.16*** 0.16*** 0.16*** 0.14*** 0.38*** 41.92% 0.16*** 0.16*** 0.16*** 0.14*** 0.10*** 0.023) (5.08) (-1.42) (-6.89) 0.03 0.23*** 0.70*** 47.39% 0.10 0.26*** 0.01 0.08* 45.30% 0.24) (1.65) 0.25** 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03		Mean	Alpha	World	SMB	HML	UMD	R^2	Alpha	World			_
Long leg	Panel A: Equal v	veighting, i.e.	., portfolio	weight =	$\frac{1}{N}$								
Long - short $\begin{pmatrix} -0.72 \\ 0.39^{****} \\ (4.73) \end{pmatrix} \begin{pmatrix} -0.46 \\ 0.15^{**} \\ 0.02 \\ (4.73) \end{pmatrix} \begin{pmatrix} (4.01) \\ 0.02 \\ (0.61) \\ (0.52) \end{pmatrix} \begin{pmatrix} (4.01) \\ 0.02 \\ (0.61) \\ (0.52) \end{pmatrix} \begin{pmatrix} (4.01) \\ 0.06 \\ 0.06 \\ (0.06) \\ (0.06) \end{pmatrix} \begin{pmatrix} (-8.34) \\ 0.06 \\ 0.60^{****} \end{pmatrix} \begin{pmatrix} (0.23) \\ (5.08) \\ (0.27^{***} \\ (0.07) \\ (0.03) \end{pmatrix} \begin{pmatrix} (-1.42) \\ 0.03 \\ (0.07^{***} \\ (0.07^{***} \\ (0.07^{***} \\ (0.08^{**$								42.57%					41.92%
Long - short 0.39*** 0.15* 0.02	Short leg							48.31%					45.85%
TSH strategy Long leg 0.27*** 0.07 0.28*** 0.14*** 0.10*** 0.08* 49.07% 0.10 0.26*** 0.01 0.08* 45.30% (2.56) (0.95) (8.79) (4.41) (3.90) (1.93) (1.13) (7.73) (0.24) (1.65) Short leg 0.02 0.02 0.03*** 0.03* 0.02 -0.04** 8.73% 0.01 0.03*** 0.03 -0.03 8.04% (0.61) (0.52) (3.51) (1.83) (1.47) (-2.01) (0.25) (3.17) (1.15) (-1.04) Long - short 0.25*** 0.05 0.25*** 0.11*** 0.08*** 0.13*** 44.83% 0.09 0.23*** -0.02 0.11* 42.01%	Long - short	0.39***	0.15*	0.02	-0.06*	0.06	0.60***	46.03%	0.07	0.03	0.23**	0.70***	47.39%
Short leg 0.02 0.03 *** 0.03* 0.02 -0.04** 8.73% 0.01 0.03*** 0.03 -0.03 8.04% (0.61) (0.52) (3.51) (1.83) (1.47) (-2.01) (0.25) (3.17) (1.15) (-1.04) Long - short 0.25*** 0.05 0.25*** 0.11*** 0.08*** 0.13*** 44.83% 0.09 0.23*** -0.02 0.11* 42.01%		0.27***	0.07	0.28***	0.14***	0.10***	0.08*	49.07%	0.10	0.26***	0.01	0.08*	45.30%
Long - short 0.25*** 0.05 0.25*** 0.11*** 0.08*** 0.13*** 44.83% 0.09 0.23*** -0.02 0.11* 42.01%	Short leg	0.02	0.02	0.03***	0.03*	0.02	-0.04**	8.73%	0.01	0.03***	0.03	-0.03	8.04%
TSM versus TSH Mean difference $r_{t+1}^{\text{TSM}} = \frac{1}{N_t} \sum_{i=1}^{N_t} $	Long - short	0.25***	0.05	0.25***	0.11***	0.08***	0.13***	44.83%	0.09	0.23***	-0.02	0.11*	
Alpha difference		0.14										r_t^{T}	$\sum_{t=1}^{TSM} = \frac{1}{N_t} \sum_{i=1}^{N_t} \sum_{t=1}^{N_t} \sum_{i=1}^{N_t} \sum_{t=1}^{N_t} \sum_{i=1}^{N_t} \sum_{t=1}^{N_t} \sum_{i=1}^{N_t} \sum_{t=1}^{N_t} \sum_$
	Alpha difference											r_t^{1}	$\sum_{t+1}^{SH} = \frac{1}{N_t} \sum_{t+1}^{N_t}$

1. The performance of the two strategies mainly stems from the long legs; 2. The alpha differential between the TSM and TSH strategies is always indifferent from zero.

5. TSM and TSH forecast comparison: predictive slope

• **Table 11** Time series momentum (TSM) and time series history (TSH) forecast comparison.

	r_{t+1}^i =	$= \alpha + \beta \hat{r}_{t+1}^{TSM,i} + \epsilon$	şi t+1	$\hat{r}_t^{\scriptscriptstyle{ extsf{T}}}$	$\hat{r}_{t+1}^{TSM,i} = d\hat{r}_{t+1}^{TSH,i} + u_t^i$			
Asset class	β	t-statistic	R^2	d	t-statistic	R^2		
Panel A: $\hat{r}_{t+1}^{TSM,i}$ is	s estimated	with volatility	scaling					
Overall	0.19	0.61	0.04	1.09***	18.56	40.33		
Commodity	0.15	0.42	0.02	1.24***	11.62	23.53		
Equity	0.07	0.10	0.01	0.84***	14.90	45.06		
Bond	0.23	0.60	0.08	0.99***	68.75	92.27		
Currency	-0.08	-0.12	0.01	1.01***	14.95	4.45		
Panel B: $\hat{r}_{t+1}^{\text{TSM},i}$ is	estimated	without volati	lity scaling	;				
Overall	0.30	0.45	0.03	1.04***	41.89	54.96		
Commodity	0.09	0.11	0.00	1.01***	26.53	37.65		
Equity	-0.37	-0.32	0.07	0.93***	35.34	77.93		
Bond	-0.49	-0.52	0.07	1.00***	72.40	91.38		
Currency	0.03	0.03	0.00	1.64***	19.78	14.32		

The TSM strategy has little predictive power and behaves in a very similar manner to the TSH strategy.

5. When does the TSM outperform the TSH?

• **Fig. 5.** Annualized mean return difference between time series momentum (TSM) and time series history (TSH) $r_{t+1}^i = \alpha^i + \beta \frac{r_{t-12,t}^i}{12} + \varepsilon_{t+1}^i$,

When the slope is 0.4, the TSM dominates the TSH in the sense that it does better in almost all the simulated data sets.

6. Conclusion

Firstly, The predictability of the TSM is weak.

 Secondly, The performance of the TSM strategy is likely driven by differences in mean returns, not predictability.