Gramatici regulate. Automate finite

Outline

Introducere in automate. Automate deterministe finite

DFA - deterministic finite automaton

NFA - nondeterministic finite automaton

Gramatici regulate si automate finite

Automate finite vazute ca sisteme de rescriere

Automate finite pentru gramatici regulate

Introducere in automate. Automate deterministe finite

- ► Letia & Chifu 2.2: 2.2.1
- capitolul 1.1: Finite automata, FORMAL DEFINITION OF A FINITE AUTOMATON, EXAMPLES OF FINITE AUTOMATA, FORMAL DEFINITION OF COMPUTATION "Introduction to the Theory of computation" 3rd edition, Michael Sipser
- ► Introduction to Automata Theory, Languages, and Computation sections 2.1, 2.2, Ullman

Automate finite

- modele pentru calculatoare cu extrem de putina memorie
- colectie finita de stari cu reguli de tranzitie care determina trecerea dintr-o stare in alta

Reprezentarea FA - State diagram

- noduri
- arce indica tranzitia starilor
- etichete (labels) pe arce care definesc ce cauzeaza tranzitia

Exemplu: Recunoasterea cuvintelor care se termina in ".ing"

ingest, reading

$Automat \rightarrow Cod$

- 1. citeste urmatorul input
- 2. decide starea urmatoare
- 3. sari la inceputul codului pentru acea stare

```
2: /* i seen /*
c = getNextInput();
if (c=='n') goto 3;
else if (c=='i') goto 2;
else goto 1;
3: /* "in" seen */
...
```

$Automat \rightarrow Cod$

- 1. citeste urmatorul input
- 2. decide starea urmatoare
- 3. sari la inceputul codului pentru acea stare

```
2: /* i seen /*
    c = getNextInput();
    if (c=='n') goto 3;
    else if (c=='i') goto 2;
    else goto 1;
3: /* "in" seen */
...
```

de fapt: expresii regulate .*ing

Exemplu: Automat

- ▶ 3 stari; start state, accept state
- transitions

Automatul primeste un input string si produce *accept* sau *reject*. fie 1101:

- 1. Start in q_0
- 2. Citeste 1 si urmeaza tranzitia q_1 to q_2
- 3. Citeste 1 si urmeaza tranzitia q_2 to q_2
- 4. Citeste 0 si urmeaza tranzitia q_2 to q_3
- 5. Citeste 1 si urmeaza tranzitia q_3 to q_2
- 6. accept deoarece se afla in starea accept q_2 la sfarsitul input-ului

- Accepta 1, 01, 11, 0101010101?
- ▶ Dar 100, 0100, 110000, 0101000000?
- ▶ dar 0, 10, 101000?

care sunt toate stringurile pe care automatul le accepta? Setul tuturor sirurilor recunoscute de an automat A: L(A)

$$L(A) = ?$$

- Accepta 1, 01, 11, 0101010101? DA
- ▶ Dar 100, 0100, 110000, 0101000000? Da
- ▶ dar 0, 10, 101000? le respinge

care sunt toate stringurile pe care automatul le accepta? Setul tuturor sirurilor recunoscute de an automat A: L(A)

 $L(A) = \{w | w \text{ contine cel putin un } 1 \text{ si se termina cu un numar par de } 0$ -uri dupa ultimul $1\}$

Table of Contents

Introducere in automate. Automate deterministe finite

DFA - deterministic finite automaton

NFA - nondeterministic finite automaton

Gramatici regulate si automate finite

Automate finite vazute ca sisteme de rescriere Automate finite pentru gramatici regulate

Automat finit determinist (Deterministic Finite Automaton) - *formal* definition

$$(\Sigma, Q, \delta, q_0, F)$$

- ightharpoonup un alfabet de intrare Σ set de simboluri
- ▶ un set finit de stari Q
- ightharpoonup o functie de tranzitie δ
- o stare de start q₀
- ▶ un set de stari finale $F \subseteq Q$ (final state, accepting states)

Functia de tranzitie $\delta: Q \times \Sigma \to Q$: $\delta(q, a)$ starea in care automatul DFA trece cand este in starea q si primeste ca input a.

Setul tuturor sirurilor recunoscute de un automat A:

$$L(A) = \{w | A \text{ accepta } w\}$$

Descrierea formala a automatului:

$$D_1 = (\{0,1\}, \{q_1, q_2, q_3\}, \delta, q_1, \{q_2\})$$

	δ	0	1
\rightarrow	q_1	q_1	q 2
*	q_2	q ₃	q_2
	q 3	q_2	q_2

Acceptare 011 ? $\exists \delta(q_1, 0)$:

$$\delta(q_1,0) = q_1; \delta(q_1,1) = q_2; \delta(q_2,1) = q_2 \in F$$

s-a gasit secventa de stari: q_1, q_1, q_2

Definitie formala a calculului

Fie $A = (\Sigma, Q, \delta, q_0, F)$ si $w = w_1 w_2 ... w_n$, $w_i \in \Sigma$. Automatul recunoaste w daca exista o secventa $r_0, r_1, ..., r_n \in Q$:

Definitie formala a calculului

Fie $A = (\Sigma, Q, \delta, q_0, F)$ si $w = w_1 w_2 ... w_n$, $w_i \in \Sigma$. Automatul recunoaste w daca exista o secventa $r_0, r_1, ..., r_n \in Q$:

- $ightharpoonup r_0 = q_0$
- $\delta(r_i, w_{i+1}) = r_{i+1} \text{ pt } i = 0, ..., n-1$
- $ightharpoonup r_n \in F$

Exemplu:

Ce accepta?

Extended $\hat{\delta}$

$$\hat{\delta}(A,011) = \delta(\delta(\delta(A,0),1),1) =$$
$$\delta(\delta(A,1),1) = \delta(B,1) = C$$

Exemplu:

Ce accepta?

Extended $\hat{\delta}$

$$\hat{\delta}(A,011) = \delta(\delta(\delta(A,0),1),1) =$$
$$\delta(\delta(A,1),1) = \delta(B,1) = C$$

Accepta toate stringurile care nu includ doua simboluri consecutive 1

Table of Contents

Introducere in automate. Automate deterministe finite

DFA - deterministic finite automaton

NFA - nondeterministic finite automaton

Gramatici regulate si automate finite

Automate finite vazute ca sisteme de rescriere Automate finite pentru gramatici regulate

Automat finit nedeterminist - formal definition

$$(\Sigma, Q, \delta, q_0, F)$$

- un alfabet de intrare Σ- set de simboluri
- un set finit de stari Q
- ightharpoonup o functie de tranzitie δ
- o stare de start q₀
- un set de stari finale $F \subseteq Q$ (final state, accepting states)

Functia de tranzitie $\delta: Q \times \Sigma_{\varepsilon} \to P(Q)$: $\delta(q, a)$ starea/starile in care automatul NFA poate trece cand este in starea q si primeste ca input a.

Exemplu - automat nedeterminist

Input: 010110

Exemplu - automat nedeterminist

Input: 010110 Calcul nedeterminist: accept/reject

Table of Contents

Introducere in automate. Automate deterministe finite

DFA - deterministic finite automaton

NFA - nondeterministic finite automaton

Gramatici regulate si automate finite

Automate finite vazute ca sisteme de rescriere

Automate finite pentru gramatici regulate

Outline

Introducere in automate. Automate deterministe finite DFA - deterministic finite automaton NFA - nondeterministic finite automaton

Gramatici regulate si automate finite Automate finite vazute ca sisteme de rescriere Automate finite pentru gramatici regulate

Automat finit - definitie formala ca sistem de rescriere

Automat finit (finite automaton, finite state acceptor):

$$A = (T, Q, R, q_0, F)$$

- Q set nevid setul starilor interne
- ▶ $(T \cup Q, R)$ sistem de rescriere; $T \cap Q = \emptyset$
- $ightharpoonup q_0 \in Q$ starea initiala
- $ightharpoonup F \subseteq Q$ stari finale
- ▶ fiecare element din R are forma $qt \rightarrow q'$, $q, q' \in Q, t \in T$

Definitie formala Automat finit

▶ automatul A accepta/recunoaste setul de stringuri

$$L(A) = \{ \tau \in T^* | q_0 \tau \Rightarrow^* q, q \in F \}$$

Doua automate A si A' sunt echivalente daca si numai daca L(A) = L(A')

Interpretare

- masina care citeste la intrare un input string; citeste simbol cu simbol si isi schimba starea interna
- lacktriangle automatul se afla in starea q cand sirul curent din derivare este q au
- ▶ automatul face o tranzitie din q in q' daca $\tau = t\chi$ si ?? $\in R$ $q\tau = qt\chi \Rightarrow$???
- fiecare tranzitie sterge un simbol din stringul de intrare

Definitie formala Automat finit

▶ automatul A accepta/recunoaste setul de stringuri

$$L(A) = \{ \tau \in T^* | q_0 \tau \Rightarrow^* q, q \in F \}$$

Doua automate A si A' sunt echivalente daca si numai daca L(A) = L(A')

Interpretare

- masina care citeste la intrare un input string; citeste simbol cu simbol si isi schimba starea interna
- lacktriangle automatul se afla in starea q cand sirul curent din derivare este q au
- ▶ automatul face o tranzitie din q in q' daca $\tau = t\chi$ si $qt \to q'$ $\in R$ $q\tau = qt\chi \Rightarrow q'\chi$
- ▶ fiecare tranzitie sterge un simbol din stringul de intrare

Exemplu automat vazut ca sistem de rescriere

$$A = (T = \{0,1\}, Q = \{q_0, q_1\}, R, q_0, F = \{q_1\})$$

$$egin{aligned} R &= \{q_0 1
ightarrow q_1 \ q_0 0
ightarrow q_0 \ q_1 1
ightarrow q_0 \ q_1 0
ightarrow q_1 \ \end{pmatrix}$$

Intrebare: 1001 apartine limbajului automatului? Dar 10? ?Exista derivarea

$$q_01001 \Rightarrow^* q_1$$

Table of Contents

Introducere in automate. Automate deterministe finite

DFA - deterministic finite automaton

NFA - nondeterministic finite automaton

Gramatici regulate si automate finite

Automate finite vazute ca sisteme de rescriere

Automate finite pentru gramatici regulate

Teorema

▶ Pentru fiecare gramatica regulata G exista un automat finit A a.i. L(A) = L(G).

Reamintire: gramatica regulata (din ierarhia lui Chomsky) G = (T, N, Z, P)

▶ fiecare productie are forma

$$X \to t$$
, $X \in \mathbb{N}$, $t \in T \cup \{\varepsilon\}$

sau

$$X \rightarrow tY, X, Y \in \mathbb{N}, t \in T$$

Construirea AF pentru gramatica regulata G

- ▶ **Algoritm** Construirea automatului $A = (T, N \cup \{f\}, R, Z, F)$, $f \notin N$ pentru gramatica G = (T, N, Z, P).
 - 1. daca $X \to t \in P$, $X \in N$, $t \in T$, atunci $Xt \to f \in R$
 - 2. daca $X \to tY \in P$, $X, Y \in N$, $t \in T$, atunci $Xt \to Y \in R$
 - 3. $F = \{f\} \cup \{X | X \rightarrow \varepsilon \in P\}$

Gramatica pentru constante reale - gramatica regulata

Fie gramatica G_3

- $T = \{n, ., +, -, E\}$
- \triangleright $N = \{C, F, I, X, S, U\}$
- ► *P* = {

$$C \rightarrow n, C \rightarrow nF, C \rightarrow .I,$$

 $F \rightarrow .I, F \rightarrow ES,$
 $I \rightarrow n, I \rightarrow nX,$
 $X \rightarrow ES,$
 $S \rightarrow n, S \rightarrow +U, S \rightarrow -U,$
 $U \rightarrow n$

Exemple de derivare:

- $ightharpoonup C \Rightarrow n$
- $ightharpoonup C \Rightarrow .1 \Rightarrow .n$
- $ightharpoonup C \Rightarrow nF \Rightarrow n.I \Rightarrow n.nX \Rightarrow n.nES \Rightarrow n.nE + U \Rightarrow n.nE + n$

FA pentru G_3

Gramatica regulata

- $T = \{n, .., +, -, E\}$
- $N = \{C, F, I, X, S, U\}$
- ► *P* = {

$$C \rightarrow n, C \rightarrow nF, C \rightarrow .I,$$

 $F \rightarrow .I, F \rightarrow ES,$
 $I \rightarrow n, I \rightarrow nX,$
 $X \rightarrow ES,$
 $S \rightarrow n, S \rightarrow +U, S \rightarrow -U,$
 $U \rightarrow n$

Automat finit

- $T = \{n, .., +, -, E\}$
- $ightharpoonup Q = \{C, F, I, X, S, U, q\}$
- ► *P* = {

$$Cn \rightarrow q, Cn \rightarrow F, C. \rightarrow I,$$

$$F. \rightarrow I, FE \rightarrow S,$$

$$In \rightarrow q, In \rightarrow X,$$

$$XE \rightarrow S$$
,

$$Sn \rightarrow q, S+ \rightarrow U, S- \rightarrow U,$$

$$Un \rightarrow q$$

$$ightharpoonup q_0 = C$$

$$ightharpoonup F = \{q\}$$

Derivare n.n

Gramatica
$$C \Rightarrow nF \Rightarrow n.I \Rightarrow n.n$$
Automat $Cn.n \Rightarrow F.n \Rightarrow In \Rightarrow q$

Pentru orice $Z\tau\chi \Rightarrow^* X\chi \Rightarrow^* q$, $\tau,\chi\in T^*$, $X\in N$, $\tau\chi\in L(A)$, $q\in F$, starea X specifica nonterminalul din G care ar fi trebuit utilizat pentru derivarea lui χ

Derivare n.n

Gramatica
$$C \Rightarrow nF \Rightarrow n.I \Rightarrow n.n$$
Automat $C = n.n \Rightarrow F.n \Rightarrow In \Rightarrow q$

Pentru orice $Z\tau\chi \Rightarrow^* X\chi \Rightarrow^* q$, $\tau,\chi \in T^*$, $X \in N$, $\tau\chi \in L(A)$, $q \in F$, starea X specifica nonterminalul din G care ar fi trebuit utilizat pentru derivarea lui χ

Derivare n.n

Gramatica
$$C \Rightarrow nF \Rightarrow n.I \Rightarrow n.n$$
Automat $Cn.n \Rightarrow F.n \Rightarrow In \Rightarrow q$

Pentru orice $Z\tau\chi\Rightarrow^* X\chi\Rightarrow^* q$, $\tau,\chi\in T^*$, $X\in N$, $\tau\chi\in L(A)$, $q\in F$, starea X specifica nonterminalul din G care ar fi trebuit utilizat pentru derivarea lui χ

Proprietati ale automatului

Pentru orice $Z\tau\chi \Rightarrow^* X\chi \Rightarrow^* q$, $\tau,\chi \in T^*$, $X \in N$, $\tau\chi \in L(A)$, $q \in F$,

starea X specifica nonterminalul din G care ar fi trebuit utilizat pentru derivarea lui χ

Demonstratie prin inductie

- ▶ daca $\tau \chi \in L(G)$. afirmatia este adevarata pentru Z stare initiala
- proprietatea ramana adevarata pana la starea finala Q, care nu genereaza alte simboluri

Fiecare propozitie din L(G) apartine lui L(A) si invers

Evitarea backtrackingului

- ► Automatul generat este nedeterminist: stare / cu inputul *n* sunt mai multe tranzitii posibile
- ▶ la implementare: backtracking necesar in cazul unei decizii incorecte
- motive pentru evitarea backtrackingului:
 - timpul necesar parsarii unui string cu backtracking poate creste exponential cu lungimea stringului
 - daca automatul nu accepta stringul, stringul va fi recunoscut drept incorect. Pinpointingul (tratarea erorilor) devine dificial cu backtracking
 - deoarece in compilator, tranzitiilor de stare le sunt asociate anumite actiuni, la revenire ar trebui anularea acelor actiuni

Automat finit determinist

Un automat este determinist daca fiecare derivare poate fi continuata prin cel mult o mutare.

ightarrow Determinist daca Partile stanga ale tuturor productiilor sunt distincte

Poate fi definit prin Tabelul de stare (state table): q,t contine q' daca si numai daca $qt \to q' \in R$ Backtrackingul poate fi intotdeauna evitat cand se recunosc stringuri pentru limbaje regulate

Automat finit determinist (deterministic finite automaton

Pentru orice gramatica regulata G, exista un automat finit determinist A (DFA) a.i. L(A) = L(G)

Algoritm construire DFA

Idee: construim un automat pentru gramatica G = (T, N, Z, P) a.i. in timpul acceptarii unei propozitii din L(G), starea la fiecare pas sa mentioneze elementul N utilizat pentru a deriva restul stringului.

Daca $X \rightarrow tU$ si $X \rightarrow tV \in P$,

atunci cand t este urmatorul simbol, restul stringului poate fi derivat atat din U cat si din V

dar pentru a avea DFA, R trebuie sa contina o singura productie Xt o q'

deci starea q' trebuie sa contina un set de nonterminale - acelea care puteau fi utilizate pentru derivarea restului sirului

Algoritm construire DFA pt G=(T,N,Z,P)

$$A = (T, Q, R, q_0, F), q$$
 reprezinta $N_q \subseteq N \cup \{f\}, f \notin N$

- 1. initial $Q = \{q_0\}$ si $R = \emptyset, N_{q_0} = \{Z\}$
- 2. pentru $q \in Q$ netratat se efectueaza pasii 3-5 pentru fiecare $t \in \mathcal{T}$
- 3. fie $next(q, t) = \{U | \exists X \in N_q \text{ a.i. } X \to tU \in P\}$
- 4. daca exista un $X \in N_q$ a.i. $X \to t \in P$, atunci adauga f la next(q,t) daca nu era deja adaugat; daca exista $X \in N_q$ a.i. $X \to \varepsilon \in P$ atunci adauga f la N_q
- 5. daca $next(q, t) \neq \emptyset$, atunci fie q' starea ce reprezinta $N_{q'} = next(q, t)$. Adauga q' la Q si $qt \rightarrow q'$ in R
- 6. daca toate starile din Q au fost considerate, atunci $F = \{q | f \in N_q\}$ si terminat; altfel continua cu pasul 2

DFA

	n	.	+	_	E	N
q_0	q_1	q_2				<i>{C}</i>
q_1		q_2			q ₃	{ <i>f</i> , <i>F</i> }
q_2	q_4					{1}
q_3	q 5		q 6	q 6		<i>{S}</i>
q 4					q 3	{ <i>f</i> , <i>X</i> }
q 5						{ <i>f</i> }
q 6	q ₅					{ <i>U</i> }

$$T = \{n, ., +, -, E\}, F = \{q_1, q_4, q_5\}$$

$$q_0 \, n
ightarrow q_1, \, q_0.
ightarrow q_2, \ q_1.
ightarrow q_2, \, q_1 E
ightarrow q_3, \ q_2 \, n
ightarrow q_4 \ q_3 \, n
ightarrow q_5, \, q_3 +
ightarrow q_6, \, q_3 -
ightarrow q_6, \ q_4 E
ightarrow q_3 \ q_6 \, n
ightarrow q_5 \}$$

DFA

	n		+	—	Ε	N
q_0	q_1	q ₂				<i>{C}</i>
q_1		q_2			q_3	<i>{f,F}</i>
q_2	q_4					{1}
q 3	q ₅		q 6	q 6		<i>{S}</i>
q_4					q 3	{ <i>f</i> , <i>X</i> }
q 5						{ <i>f</i> }
q 6	q ₅					{ <i>U</i> }

$$T = \{n, ., +, -, E\}, F = \{q_1, q_4, q_5\}$$

$$q_0$$
 $n \rightarrow q_1, q_0. \rightarrow q_2,$
 $q_1. \rightarrow q_2, q_1 E \rightarrow q_3,$
 q_2 $n \rightarrow q_4$
 q_3 $n \rightarrow q_5, q_3 + \rightarrow q_6, q_3 - \rightarrow q_6,$
 q_4 $E \rightarrow q_3$
 q_6 $n \rightarrow q_5$ $\}$

Diagrama de stare

Fie
$$T = \{n, ., +, -, E\}$$
, $F = \{q_1, q_4, q_5\}$
 $Q = \{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$

$$P = \{q_0 n \to q_1, q_0. \to q_2, \ q_1. \to q_2, q_1 E \to q_3, \ q_2 n \to q_4 \ q_3 n \to q_5, q_3 + \to q_6, q_3 - \to q_6, \ q_4 E \to q_3 \ q_6 n \to q_5\}$$

Diagrama de stare

cale care incepe in q_0 si se termina intr-o stare finala $\in L(A)$

Diagrama de stare

Fie $A = (T, Q, R, q_0, F)$ un automat finit,

- $f:(q,q') \rightarrow \{t|qt \rightarrow q' \in R\}$ o mapare de la D la P(T)

Graful directionat (Q, D) cu etichetele muchiilor f((q, q')) este diagrama de stare a automatului A

Pentru fiecare automat finit A exista o gramatica regulata G a.i. L(A) = L(G)

Din automatul $A = (T, Q, R, q_0, F)$ construim gramatica $G = (T, Q, q_0, P)$:

$$P = \{q \rightarrow tq' | qt \rightarrow q' \in R\} \cup \{q \rightarrow \varepsilon | q \in F\}$$

Gramatici pentru automat

$$\begin{split} F = \{q_1, q_4, q_5\} \quad P = \{ & \quad q_0 n \to q_1, q_0. \to q_2, \\ & \quad q_1. \to q_2, q_1 E \to q_3, \\ & \quad q_2 n \to q_4 \\ & \quad q_3 n \to q_5, q_3 + \to q_6, q_3 - \to q_6, \\ & \quad q_4 E \to q_3 \\ & \quad q_6 n \to q_5 \} \end{split}$$

Productii gramatica

$$egin{aligned} q_0 & o nq_1|.q_2, \ q_1 & o .q_2|Eq_3|arepsilon, \ q_2 & o nq_4 \ q_3 & o nq_5|+q_6|-q_6, \ q_4 & o Eq_3|arepsilon \ q_5 & o arepsilon \ q_6 & o nq_5 \} \end{aligned}$$

Productii gramatica fara productii ε

$$egin{aligned} q_0 & o n | n q_1 |. q_2, \ q_1 & o . q_2 | E q_3, \ q_2 & o n | n q_4 \ q_3 & o n | + q_6 | - q_6, \ q_4 & o E q_3 \ q_6 & o n \} \end{aligned}$$

Gramatici pentru automat

$$\begin{split} F = \{q_1, q_4, q_5\} \quad P = \{ & \quad q_0 n \to q_1, q_0. \to q_2, \\ & \quad q_1. \to q_2, q_1 E \to q_3, \\ & \quad q_2 n \to q_4 \\ & \quad q_3 n \to q_5, q_3 + \to q_6, q_3 - \to q_6, \\ & \quad q_4 E \to q_3 \\ & \quad q_6 n \to q_5 \} \end{split}$$

Productii gramatica

$$q_0
ightarrow nq_1|.q_2,$$
 $q_1
ightarrow .q_2|Eq_3|arepsilon,$
 $q_2
ightarrow nq_4$
 $q_3
ightarrow nq_5|+q_6|-q_6,$
 $q_4
ightarrow Eq_3|arepsilon$
 $q_5
ightarrow arepsilon$
 $q_6
ightarrow nq_5\}$

Productii gramatica fara productii ε

$$q_0 \rightarrow \frac{n}{n} |nq_1| . q_2,$$

$$q_1 \rightarrow . q_2 |Eq_3,$$

$$q_2 \rightarrow \frac{n}{n} |nq_4|$$

$$q_3 \rightarrow \frac{n}{n} + q_6 |-q_6,$$

$$q_4 \rightarrow Eq_3$$

$$q_6 \rightarrow \frac{n}{n}$$

- Pentru orice gramatica regulata G, exista un automat finit A a.i. L(A) = L(G)
- Pentru fiecare automat finit A exista o gramatica regulata G a.i. L(A) = L(G)

Gramaticile regulate si automatele finite sunt echivalente

DFA vs NFA

Ambele automate, deterministe si nedeterministe, sunt capabile sa recunoasca toate limbajele regulate:

$$L(NFA) = L(DFA)$$

Diferenta principala: spatiu vs timp:

- ▶ DFA sunt mai rapide decat NFA
- DFA sunt exponential mai mari decat NFA

FA sunt folosite ca mdoele pentru:

- software for designing digital circuits
- lexical analyzer of a compiler
- software for verifying finite state systems, such as communication protocols: exemplul cu planeta

Rezumat

Introducere in automate. Automate deterministe finite

DFA - deterministic finite automaton

NFA - nondeterministic finite automaton

Gramatici regulate si automate finite

Automate finite vazute ca sisteme de rescriere

Automate finite pentru gramatici regulate

Extended Example - ullman slides

- On a distant planet, there are three species, a, b, and c. Any two different species can mate. If they do:
 - 1. The participants die.
 - 2. Two children of the third species are born.
- ► The planet fails if at some point all individuals are of the same species. Then, no more breeding can take place.
- ► State = sequence of three integers the numbers of individuals of species a, b, and c.

