California State University
EGCP 450
Lab 4
Professor
Zaid Frayeh

Code:

Main.c:

```
#include <stdint.h>
#include "msp432p401r.h"
#include "SOUND.h"
#include "PIANO.h"
#include "SysTickInts.h"
void main(void){
     uint8_t PIAN0 = 0;
       PIANO_INIT();
       Sound_Init();
       EnableInterrupts();
       WaitForInterrupt();
      while(1) {
       PIANO = PIANO_IN();
                                        if(PIANO == 0 \times 00)
                                             SysTick->LOAD=0;
                                        else if(PIAN0 == 0 \times 01)
                                             SysTick->LOAD=269;
                                        }
                                        else if(PIAN0 == 0 \times 02)
                                             SysTick -> LOAD = 190;
                                        }
                                        else if(PIAN0 == 0 \times 04)
                                             SysTick -> LOAD = 213;
                                        }
       }
};
```

```
Dac.h:
```

```
#ifndef DAC_H_
#define DAC H
void DAC_INIT(void);
void DAC_OUT(uint32_t data);
#endif /* DAC_H_ */
Dac.c:
#include <stdint.h>
#include "SOUND.h"
#include "msp432p401r.h"
#include "DAC.h"
#define DAC_out (*((volatile uint8_t *)0x40004C23))
void DAC_INIT(void)
             //output pins for dac port 4 pins 0-3
             P4SEL0 &= ~0x0F;
             P4SEL1 &= \sim 0 \times 0 F;
            P4DIR \mid = 0 \times 0 F;
void DAC_OUT( uint32_t data )
    DAC_out=data;
```

Sound.h:

```
#ifndef SOUND_H_
#define SOUND_H_
void Sound_Init(void);
void Sound_play(uint8_t note);
#endif /* SOUND_H_ */
```

Sound.c:

```
#include <stdint.h>
#include "msp432p401r.h"
#include "SOUND.h"
#include "DAC.h"
#include "SysTickInts.h"
    int sound = 0;
    int indx = 0;
const uint8_t wave[32]= {
   8,9,11,12,13,14,14,15,15,15,14,
   14,13,12,11,9,8,7,5,4,3,2,
   2,1,1,1,2,2,3,4,5,7};
void Sound_Init(void){
    DAC_INIT();
    SysTick_Init(0);
}
void Sound_play(uint8_t note){
    if(note == 1)
                       {
            indx = (indx + 1) \&0x1f;
            DAC_OUT(wave[indx]);
    else if(note == 2) {
            indx = (indx + 1) \&0x1f;
            DAC OUT(wave[indx]);
                        }
    else if (note == 4) {
           indx = (indx + 1) \&0x1f;
            DAC_OUT(wave[indx]);
                        }
    else if(note == 0) {
            DAC_OUT(0);
                        }
}
```

Piano.h:

#endif

```
#ifndef PIANO_H_
#define PIANO_H_
void PIANO_INIT(void);
int PIANO_IN( void);
#endif /* PIANO_H_ */
Piano.c:
#include <stdint.h>
#include "msp432p401r.h"
#include "piano.h"
#define piano_Input (*((volatile uint8_t *)0x40004C40))
//input port 5 pins 5.4 5.5 5.6 because other pins are giving wrong values
void PIANO_INIT(void){
            P5SEL0 &= ~0x70;
             P5SEL1 &= ~0x70;
            P5DIR &= \sim 0 \times 70;
int PIANO_IN(void){
        uint32_t input;
        input = (piano_Input&0x70);
        input= input/16;
        return input;
SysTickints.h:
#ifndef __SYSTICKINTS_H__
#define __SYSTICKINTS_H__
void SysTick_Init(uint32_t period);
void SysTick_Handler(void);
```

SysTickints.c:

```
#include <stdint.h>
#include "SOUND.h"
#include "PIANO.h"
#include "DAC.h"
#include "msp432p401r.h"
void DisableInterrupts(void); // Disable interrupts
void EnableInterrupts(void);  // Enable interrupts
long StartCritical (void);  // previous I bit, disable interrupts
void EndCritical(long sr);  // restore I bit to previous value
void WaitForInterrupt(void); // low power mode
volatile uint32_t Counts;
volatile uint32_t note;
void SysTick_Init(uint32_t period) {
       long sr = StartCritical();
       Counts = 0;
       SysTick->CTRL = 0;
                                                  // disable SysTick during setup
       SysTick->LOAD = period - 1;
                                                 // maximum reload value
       SysTick -> VAL = 0;
                                                 // any write to current clears it
       SCB - > SHP[3] = (SCB - > SHP[3] & 0 \times 00 + 00 \times 400000000;
                                                                    // priority 2
       SysTick->CTRL = 0 \times 00000007;
                                                 // enable SysTick with no
interrupts
       EndCritical(sr);
}
void SysTick_Handler(void){
                                         if(SysTick->LOAD == 213)
                                                  Sound_play(4);
                                             else if(SysTick->LOAD == 190)
                                                   Sound_play(2);
                                             else if(SysTick->LOAD == 269)
                                                  Sound_play(1);
                                             else if(SysTick->LOAD == 0)
                                                  Sound_play(0);
}
```

Table for voltages:

DECIMAL VALUE	VOLTAGE (V) lab	Voltage Theoreticle
0	35.6m	0
1	247.6m	0.22
2	460.7m	0.44
3	0.672	0.66
4	0.864	0.88
5	1.075	1.1
6	1.288	1.32
7	1.499	1.54
8	1.667	1.76
9	1.878	1.98
10	2.089	2.2
11	2.301	2.42
12	2.491	2.64
13	2.701	2.86
14	2.913	3.08
15	3.123	3.3

My values appear to be right for our voltage range is supposed to be between 0 and 3.3v for the DAC that I am designing and they are close to the theoretical values our values are supposed to be increments of 0.22 because that is our resolution.

	Theoretical	LAB
Range	0-3.3 v	35.6m – 3.123 v
Resolution	3.3/(2^4 -1)	3.123-35.6m/(2^4 -1)
	=0.22	=0.206
Precision	2^4 = 16	16

I believe my values are correct they are close to the theoretical values our range is supposed to be between 0 and 3.3v range is close and as well as resolution. There is a slight difference in resolution due to the range since it depends on the range Precision will be the same since we have the same number of bits.

Systic load values:

A note:

3000000/440=6818.18 6818/32=> 213 counts

B note:

3000000/494=6072.87 6073/32=> 190 counts

F note:

3000000/349=8595.9 8596/32=> 269 counts

My values are correct because when I use the visual analyzer to check my frequency I am getting the expected frequency that I want my DAC to output for each note

Screenshots:

A note (actual value is 440Hz)

B note (actual value is 494 Hz)

F note (actual value is 349 Hz)

Sources:

I used the sources from the HTML document provided as well as brainstorming with David Mouser about the functions and where each function belongs in the project's file .