Challenge Project #1:

Detecting cases of hypothyroidism Dhrithi Guntaka, Nithika Vivek, Sofie Budman

What problem or goal did your project address, and why did you choose this topic?

- Hypothyroidism is characterized by non-specific symptoms, making it difficult for medical professionals to diagnose.
- While it is an endocrine disorder, thyroid dysfunction affects multiple body systems. In fact, 23.3% of patients with coronary artery disease suffer from some form of thyroid dysfunction.
- Our project detects early thyroid dysfunction using lab results to achieve high sensitivity and specificity.

Image from biorender

What steps did you take during the development of your project?

- Data Cleaning
- Chose the 4 features with best correlation (FTI, TT4, T3, TSH)
- Normalized data
- First trained logistic model and zero rule model
- Trained Random Forest Model
- Feature engineering (number of trees, max tree depth, min leaves)
 - o 99 trees, max depth = 5, min leaves = 15

	FTI	TT4	Т3	TSH	Class			FTI	TT4	Т3	TSH
0	109.0	125.0	2.5	1.30	0	→	0	-0.042950	0.474170	0.659712	-0.155486
1	107.0	102.0	2.0	4.10	0		1	-0.107833	-0.196624	-0.022889	-0.005409
2	120.0	109.0	2.0	0.98	0		2	0.313910	0.007531	-0.022889	-0.172638
3	107.0	175.0	1.9	0.16	0		3	-0.107833	1.932416	-0.159409	-0.216589
4	70.0	61.0	1.2	0.72	0		4	-1.308179	-1.392385	-1.115051	-0.186574

ROC Curve

Unbalanced Data Confusion Matrix

What challenges did you face, and how did you overcome them?

- 1. Data cleaning and correlation matrices
 - a. "TBG Measured" column in the correlation matrix kept giving NaNs when correlated with any other feature
 - b. TBG measured had only the "f" variable and no variance, so it could not be correlated

Class distributions

- a. We visualized our model predictions, and they were all 0
- We visualized the class distributions in the dataset and found that 92% of the data belongs to class 0 (very biased)
 - That corresponds with the 92% accuracy of our model – the 8% misclassified were all the 1s.
- c. We ran it with parameter class_weight = balanced, and our accuracy was 32%
- d. We tried to solve this in the future model using SMOTF

If you had more time or resources, how would you improve or expand your project?

SMOTE

- a. SMOTEENN for noisy barriers
- b. SMOTE variants like Borderline SMOTE, SVM SMOTE
- c. Have SMOTE take into account context when making augmented data (to avoid impossible combinations of data like a patient on thyroxine and a high TSH) through Casual-AWARE
- d. Run SMOTE for each subgroup (male and female to avoid undersampling a certain feature with isn't as prominent)
- e. SMOTE also has limitations so optimizing hyperparameters without SMOTE could be a good idea
- 2. Automatedly test other hyperparameters other than # of trees as well as other model types like deep learning
- 3. Try a Random Forest that adjusts it's hyperparameters as it trains to identify ideal hyperparameters rather than iterative training for each combination (saves time, more accurate) self mutating?
- 4. Group the features into medical data (TSH, T3, T4U, etc) vs patient profile (age, sex, on_thyroxine) and find feature importance per group to avoid ruling out groups of features that are actually correlated
- 5. Test different thresholds as well