

Practical Machine Learning

Day 12: Sep22 DBDA

Kiran Waghmare

Agenda

- Naïve Bayes
- Decision Tree

Process (1): Model Construction

Process (2): Using the Model in Prediction

Decision Tree Induction: An Example

- ☐ Training data set: Buys_computer
- ☐ The data set follows an example of Quinlan's ID3 (Playing Tennis)
- □ Resulting tree:

,	1	`

age	income	student	credit rating	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Decision Tree

Decision tree analysis in five steps Start with your idea Add chance and decision nodes Expand until you reach end points Calculate tree values **Evaluate outcomes**

Entropy
$$(P) = -\sum_{i=1}^{n} p_i \log_2(p_i)$$

Information Gain and Gini Index in Decision Tree

$$Gini(P) = 1 - \sum_{i=1}^{n} (p_i)^2$$

Information Gain

$$IG(D_p, f) = I(D_p) - \frac{N_{left}}{N}I(D_{left}) - \frac{N_{right}}{N}I(D_{right})$$

f: feature split on

D_p: dataset of the parent node

Dieft: dataset of the left child node

D_{right}: dataset of the right child node

I: impurity criterion (Gini Index or Entropy)

N: total number of samples

N_{left}: number of samples at left child node

N_{right}: number of samples at right child node

٥

Entropy: Entropy is a metric to measure the impurity in a given attribute. It specifies randomness in data. Entropy can be calculated as:

- S= Total number of samples
- •P(yes)= probability of yes
- •P(no)= probability of no

Brief Review of Entropy

- Entropy (Information Theory)
 - A measure of uncertainty associated with a random variable
 - Calculation: For a discrete random variable Y taking m distinct values $\{y_1, \dots, y_m\}$,
 - $H(Y) = -\sum_{i=1}^{m} p_i \log(p_i)$, where $p_i = P(Y = y_i)$
 - Interpretation:
 - Higher entropy => higher uncertainty
 Lower entropy => lower uncertainty €
- Conditional Entropy
 - $H(Y|X) = \sum_{x} p(x)H(Y|X = x)$

m = 2

Attribute Selection Measure: Information Gain (ID3/C4.5)

- Select the attribute with the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Expected information (entropy) needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

• Information needed (after using A to split D into v partitions) to classify D:

Info_A
$$(D) = \sum_{j=1}^{v} \frac{|D_j|}{|D|} \times Info(D_j)$$
Information gained by branching on attribute A

$$Gain(A) = Info(D) - Info_A(D)$$

Entropy = $-0.5 \log_2 0.5 - 0.5 \log_2 0.5 = 1$

a) Entropy using the frequency table of one attribute:

$$E(S) = \sum_{i=1}^{c} -p_i \log_2 p_i$$

b) Entropy using the frequency table of two attributes:

$$E(T,X) = \sum_{c \in X} P(c)E(c)$$

		Play	Golf	
		Yes	No	
	Sunny	3	2	5
Outlook	Overcast	4	0	4
	Rainy	2	3	5
				14

$$\mathbf{E}(PlayGolf, Outlook) = \mathbf{P}(Sunny)^*\mathbf{E}(3,2) + \mathbf{P}(Overcast)^*\mathbf{E}(4,0) + \mathbf{P}(Rainy)^*\mathbf{E}(2,3)$$

$$= (5/14)^*0.971 + (4/14)^*0.0 + (5/14)^*0.971$$

$$= 0.693$$

Step 1: Calculate entropy of the target.

```
Entropy(PlayGolf) = Entropy (5,9)

= Entropy (0.36, 0.64)

= - (0.36 log<sub>2</sub> 0.36) - (0.64 log<sub>2</sub> 0.64)

= 0.94
```

		Play	Golf
		Yes	No
	Sunny	3	2
Outlook	Overcast	4	0
	Rainy	2	3
	Gain = 0	0.247	

		Play	Golf
		Yes	No
	Hot	2	2
Temp.	Mild	4	2
	Cool	3	1
	Gain = 0	.029	

		Play	Golf
		Yes	No
I I and a second	High	3	4
Humidity	Normal	6	1
	Gain = 0).152	

		Play	Golf
		Yes	No
145-4	False	6	2
Windy	True	3	3
	Gain = 0	.048	

$$Gain(T, X) = Entropy(T) - Entropy(T, X)$$

Step 3: Choose attribute with the largest information gain as the decision node, divide the dataset by its branches and repeat the same process on every branch.

	_	Play Golf	
7	*	Yes	No
	Sunny	3	2
Outlook	Overcast	4	0
	Rainy	2	3
	Gain = 0.	247	

Step 4a: A branch with entropy of 0 is a leaf node.

Temp.	Humidity	Windy	Play Golf	1		
Hot	High	FALSE	Yes]		
Cool	Normal	TRUE	Yes]	Outlook	
Mild	High	TRUE	Yes]	Outlook	
Hot	Normal	FALSE	Yes]		
				Sunny	Overcast	Rainy
					Play=Yes	

Step 4b: A branch with entropy more than 0 needs further splitting.

Step 5: The ID3 algorithm is run recursively on the non-leaf branches, until all data is classified.

Decision Tree to Decision Rules

A decision tree can easily be transformed to a set of rules by mapping from the root node to the leaf nodes one by one.

Home work

+			L	
ID	Fever	Cough	Breathing issues	Infected
1	NO	NO	NO	NO
2	YES	YES	YES	YES
3	YES	YES	NO	NO
4	YES	NO	YES	YES
5	YES	YES	YES	YES
6	NO	YES	NO	NO
7	YES	NO	YES	YES
8	YES	NO	YES	YES
9	NO	YES	YES	YES
10	YES	YES	NO	YES
11	NO	YES	NO	NO
12	NO	YES	YES	YES
13	NO	YES	YES	NO
14	YES	YES	NO	NO

The decision nodes here are questions like "'Is the person less than 30 years of age?', 'Does the person eat junk?', etc. and the leaves are one of the two possible outcomes viz. Fit and Unfit.

IG calculation for Fever:

In this(Fever) feature there are 8 rows having value YES and 6 rows having value NO.

As shown below, in the 8 rows with YES for Fever, there are 6 rows having target value YES and 2 rows having target value NO.

Fever	Cough	Breathing issues	
	YES	YES	YES
	YES		NO NO
YES			YES
	YES	YES	YES
YES			YES
YES		:	YES
:	YES	NO	YES
	YES		NO

As shown below, in the 6 rows with NO, there are 2 rows having target value YES and 4 rows having target value NO.

		Breathing issues	
NO	NO NO		NO NO
NO	YES		NO NO
NO	YES		YES
NO	YES		NO NO
NO	YES		YES
	YES	YES	NO

The block, below, demonstrates the calculation of Information Gain for Fever.

data set that has Breathing Issues and Fever both values as YES.

original data set that have Breathing Issues value as YES and Fever as NO.

