IEEE 802.11

IEEE 802.11 MAC

- The IEEE 802.11 specification includes both the Physical (PHY) layer and the link layer.
- IEEE 802.11 wireless LAN standard is used for infrastructure as well as ad-hoc networks.

Main Requirements for 802.11 MAC

- Single MAC to support multiple PHYs.
 - Support single and multiple channel PHYs.
 - and PHYs with different Medium Sense characteristics
- Should allow overlap of multiple networks in the same area and channel space.
 - Need to be able to share the medium.
 - Allow re-use of the same medium.

Main Requirements (cont'd)

- Need to be Robust for Interference.
 - Microwave interferers
 - Other un-licensed spectrum users
 - Co-channel interference
- Need mechanisms to deal with Hidden Nodes.
- Need provisions for *Time Bounded Services*.
- Need provisions for Privacy and Access Control.

Basic Access Protocol Features

- Use Distributed Coordination Function (DCF) for efficient medium sharing without overlap restrictions.
 - Use CSMA with Collision Avoidance derivative.
 - Based on Carrier Sense function in PHY called Clear Channel Assessment (CCA).
- Robust for interference
 - CSMA/CA + ACK for unicast frames, with MAC level recovery.
 - CSMA/CA for Broadcast frames.

Basic Access Protocol Features

- Parameterized use of RTS / CTS to provide a Virtual Carrier Sense function to protect against Hidden Nodes.
 - Duration information is distributed by both transmitter and receiver through separate RTS and CTS Control Frames.
- Includes fragmentation to cope with different PHY characteristics.
- Frame formats to support the access scheme
 - For Infrastructure and Ad-Hoc Network support
 - and Wireless Distribution System.

CSMA/CA

CSMA/CA + ACK

$$Th = \frac{P_s P_{tr} E[P]}{(1 - P_{tr})\sigma + P_{tr} P_s T_s + P_{tr} (1 - P_s) T_c}$$

 P_{tr} : transmission probability

 P_s : success probability

 T_s : Duration of a successful transmission (in s) T_c : Duration of a colliding transmission (in s)

E[P]: Average packet length (in bits)

PHY	Slot Time (σ)	CW_{\min}	CW_{\max}
FHSS	$50 \mu s$	16	1024
DSSS	20 μs	32	1024
$_{ m IR}$	8 μs	64	1024

CSMA/CA

- · Reduce collision probability where mostly needed.
 - Stations are waiting for medium to become free.
 - Select Random Backoff after a Defer, resolving contention to avoid collisions.
- Efficient Backoff algorithm stable at high loads.
 - Exponential Backoff window increases for retransmissions.
 - Backoff timer elapses only when medium is idle.
- Implement different fixed priority levels.
 - To allow immediate responses and PCF coexistence.

Performance Analysis

Average throughput can be obtained by

$$Th = \frac{E[Payload]}{E[length\ of\ a\ round]}$$

Giuseppe Bianchi, Performance Analysis of the IEEE 802.11 Distributed Coordination Function, *IEEE JSAC*, Vol. 18, No 3, pp. 535-547, Mar. 2000.

$$Th = \frac{P_s P_{tr} E[P]}{(1 - P_{tr})\sigma + P_{tr} P_s T_s + P_{tr} (1 - P_s) T_c}$$

 $P_{tr}=$ at least one node transmits $=1-(1- au)^n$

 $P_{\rm s}=$ only one node is transmitting, knowing that there $\underline{\rm is}$ a transmission

$$= \frac{n\tau(1-\tau)^{n-1}}{P_{tr}} = \frac{n\tau(1-\tau)^{n-1}}{1-(1-\tau)^n}$$

where n is the number of nodes, and τ is the probability that a given node tries to access the channel.

How do we compute τ ?

To find τ , 2 nonlinear equations to solve with unknowns p and τ . First equation:

- ullet p= collision prob. during a transmission. $=1-(1- au)^{n-1}$
- Second equation is derived from a Markov Chain.
 - Observe the state of a node
 - Assumptions:
 - There are a number of nodes always have packets to transmit (saturated senders)
 - · Constant collision probability

Second equation is derived from:

where i is the backoff level, W_i is the contention window for level i, and m is the max backoff level.

To find τ , 2 nonlinear equations to solve:

•
$$p = 1 - (1 - \tau)^{n-1}$$

•
$$\tau = \frac{2(1-2p)}{(1-2p)(W+1)+pW(1-(2p)^m)}$$

→ solve the 2 equations using Matlab

Channel capacity: 1Mbps, no RTS/CTS, sims. using ns-2.

Optional Point Coordination Function (PCF)

- Contention Free Service uses Point Coordination Function (PCF) on a DCF Foundation.
 - PCF can provide lower transfer delay variations to support Time Bounded Services
 - Asynchronous Data, Voice or mixed implementations possible.
 - Point Coordinator resides in AP.
- Coexistence between Contention and optional Contention Free does not burden the implementation.

