Introducción a la Robótica Móvil

Primer cuatrimestre de 2018

Departamento de Computación - FCEyN - UBA

Planificación de movimientos - clase 9

Seguimiento de trayectorias a lazo abierto

Definiciones: camino y trayectoria

¿Queremos que un robot siga un camino o una trayectoria?

- → Camino: lista ordenada de poses (posición + orientación) por las que quiero que pase el robot. Es una descripción puramente geométrica del movimiento. Pero, ¿cómo lo hago? ¿a qué velocidad?
- → **Trayectoria**: lista ordenadas de poses por las que quiero que pase el robot a las cuales les agregamos restricciones de tiempo. Por ejemplo, velocidades, aceleraciones para cada instante de tiempo.
- → En la práctica muchas veces se usan estos dos términos como sinónimos informalmente, pero no lo son.
- → Cada elemento de estas listas se denominan waypoints o puntos vía.

Definiciones: planificación, generación y seguimiento

Podemos distinguir tres procesos:

- → Planificación de caminos: (path planning) también se suele mal-llamar planificación de trayectorias. Consiste en encontrar un camino que sea factible (lista de poses que el robot pueda alcanzar) y seguro (libre de colisiones) entre un punto inicial (home) y un punto final (goal).
- → Generación de trayectorias: a partir del camino incorporar restricciones de tiempo (velocidades, aceleraciones) para cada punto vía del camino.
- → Seguimiento: conociendo la trayectoria, interpolar o aproximar mediante alguna función (generalmente polinomios) los valores puntos entre dos puntos vía de la trayectoria y calcular los valores a asignar a los actuadores en cada momento para poder seguirla.

Los caminos son usualmente obtenidos mediante un **planificador**, que realiza una búsqueda/optimización en tiempo real, en forma iterativa. Por ahora generaremos trayectorias en forma más simple y *manualmente*, asumiendo que no hay obstáculos.

Definiciones: holonómico, no-holonómico, redundante

La generación de trayectorias requiere tener en cuenta el modelo cinemático de cada plataforma que determinan los grados de libertad del robot:

- → Holonómico: los grados de libertad controlables son iguales a los totales (espacio de configuración).
 Ejemplo: robot omnidireccional moviéndose en el plano (v_x, v_y, ω ↔ x, y, θ)
- → **No-holonómico:** menos grados controlables que totales. Ejemplo: robot diferencial en el plano $(v, \omega \leftrightarrow x, y, \theta)$, entre muchos otros.
- → Redundante: más grados controlables que totales. Ejemplo: brazo humano o manipulador con más de 6 grados de libertad controlables (asumiendo 6 DoF del espacio 3D)

Definiciones: control a lazo abierto y lazo cerrado

Exiten dos formas de controlar el movimiento de un robot:

- → Lazo abierto: asumo que los actuadores siguen perfectamente las consignas y que la trayectoria sigue perfectamente el movimiento del robot.
- → Lazo cerrado: observo si el robot está en la pose deseada en cada instante, realimento el error a los controladores de velocidad, aceleración, etc.

Queremos ir de una pose (posición + orientación) a otra.

Robot en una pose inicial (x_i, y_i, θ_i) tiene como objetivo otra pose (x_f, y_f, θ_f) .

Robot omnidireccional:

$${}^{I}(\dot{x},\dot{y},\dot{\theta})^{t}={}^{I}\vec{R}_{R}(\theta){}^{R}(\dot{x},\dot{y},\dot{\theta})^{t}={}^{I}\vec{R}_{R}(\theta){}^{I}(v_{x},v_{y},\omega)^{t}$$

Tengo control independiente sobre cada velocidad, puedo tratar cada dimensión por separado, armo un camino rectilíneo.

Si asumimos velocidades constantes, se pueden obtener mediante interpolación lineal:

$$\dot{x} = \frac{x_f - x_i}{t_f - t_i}$$

y lo mismo para \dot{y} y $\dot{\theta}$, por lo que quedan definidas v_x, v_y, ω .

Nota: Aca aparece el tiempo en el que recorro el camino: obtengo una *trayectoria*.

Este enfoque simple se puede extender a un camino arbitrario: aplicamos el método anterior para cada par de puntos de una trayectoria.

En cada segmento tengo v_x, v_y, ω constantes.

Pregunta: ¿qué pasa en las uniones?

Quiero una trayectoria suave para que los comandos a los actuadores varíen suavemente y no se asuma una respuesta infinitamente rápida de los mismos (cambios instantáneos de velocidad).

Por ejemplo, podríamos construir un *spline* que una un x_i, y_i, θ_i con $x_{i+1}, y_{i+1}, \theta_{i+1}$. Dado que conozco la derivada del spline, obtengo también $\dot{x}, \dot{y}, \dot{\theta}$ sobre cada punto de la trayectoria.

Para generar una trayectoria suave con *splines* es necesario incorporar al menos 4 restricciones:

$$x(t_i) = x_i, x(t_f) = x_f, \dot{x}(t_i) = \dot{x}_i, \dot{x}(t_f) = \dot{x}_f$$

Entonces planteamos que x(t) es un polinomio cúbico de la forma:

$$x(t) = a_0 + a_1t + a_2t^2 + a_3t^3$$
$$\dot{x}(t) = a_1 + 2a_2t + 3a_3t^2$$

De esta forma, podemos despejar los parámetros a_i :

$$a_0 = x_i$$

$$a_1 = \dot{x}_i$$

$$a_2 = \frac{3}{t_f^2} (x_f - x_i) - \frac{2}{t_f} \dot{x}_i - \frac{1}{t_f} \dot{x}_f$$

$$a_3 = \frac{-2}{t_f^2} (x_f - x_i) + \frac{1}{t_f^2} (\dot{x}_f - \dot{x}_i)$$

Haciendo esto para cada dimensión obtenemos una trayectoria y consignas de velocidad suaves.

Hasta ahora asumimos un vehículo holonómico (robot omnidireccional en el plano). Con un vehículo diferencial (por ser no-holonómico) el problema es más complejo:

- → La matriz que me relaciona las velocidades en el sistema inercial con las velocidades del robot no es cuadrada, no puedo resolver el sistema directamente.
- ightarrow No puedo tratar cada dimensión por separado: incluso con $\omega=0$, mi nueva posición no solo depende de v sino de θ .

$${}^{I}(\dot{x},\dot{y},\dot{\theta})^{t}={}^{I}\vec{R}_{R}(\theta){}^{R}(\dot{x},\dot{y},\dot{\theta})^{t}=\begin{pmatrix}cos(\theta)&0\\sin(\theta)&0\\0&1\end{pmatrix}{}^{R}(v,\omega)^{t}$$

Para generar una trayectoria suave con *splines* para un vehículo diferencial cambian los coeficientes del polinomio:

$$x(t_i) = x_i, x(t_f) = x_f, \dot{x}(t_i) = \dot{x}_i, \dot{x}(t_f) = \dot{x}_f$$

Entonces planteamos que x(t) es un polinomio cúbico de la forma:

$$x(t) = a_0 + a_1t + a_2t^2 + a_3t^3$$
$$\dot{x}(t) = a_1 + 2a_2t + 3a_3t^2$$

De esta forma, podemos despejar los parámetros a_i :

$$a_0 = x_i$$

$$a_1 = n_1 cos(\theta_i)$$

$$a_2 = 3(x_f - x_i) - 2n_1 cos(\theta_i) - n_2 cos(\theta_f)$$

$$a_3 = -2(x_f - x_i) + n_1 cos(\theta_i) + n_2 cos(\theta_f)$$

Donde n_1 y n_2 son parametros de las curvaturas que representan la relación entre v y ω .

Segundo caso: vehículo diferencial (simplificando)

También podemos considerar un caso más simple agregando restricciones sobre la trayectoria:

Asumamos que el camino a seguir cumple que:

$$y = f(x)$$

y, a su vez, que

$$x = g(t)$$

Por ejemplo para el taller van a considerar f(x) = sin(x) y $g(t) = 2\pi t$.

Con esta restricción, queda que:

$$\dot{x} = \frac{\delta g(t)}{\delta t}, \dot{y} = \frac{\delta f(g(t))}{\delta t}$$

Entonces, teniendo \dot{x}, \dot{y} y sabiendo que:

$${}^{I}(\dot{x},\dot{y},\dot{\theta})^{t} = \begin{pmatrix} \cos(\theta) & 0\\ \sin(\theta) & 0\\ 0 & 1 \end{pmatrix}^{R}(v,\omega)^{t}$$

puedo despejar v como:

$$|\dot{x},\dot{y}| = \sqrt{v^2 cos(\theta)^2 + v^2 sen(\theta)^2} = v$$

y θ como:

$$rac{\dot{y}}{\dot{x}} = an(heta)$$
 $heta = atan(rac{\dot{y}}{\dot{x}}) = atan2(\dot{y},\dot{x})$

por ende:

$$\omega = \dot{\theta} = \frac{\delta a tan2(y, x)}{\delta t} = \frac{\delta a tan2(f(g(t)), g(t))}{\delta t}$$

O sea, que podemos encontrar las velocidades para el robot para cada instante de tiempo.

En resumen:

- → Teniendo una relación conocida entre x e y y entre x y t, el problema se hace más fácil
- \rightarrow La forma del camino en función del tiempo viene dado por f y g
- → Las derivadas respecto del tiempo son conocidas
- \rightarrow Las velocidades v, ω quedan determinadas por el modelo cinemático y las derivadas anteriores

Recordar: en el caso general no se tiene una función conocida sino que tengo directamente una trayectoria obtenida por el planificador.

Para el Taller, ¿de dónde venimos?

Para el Taller, ¿qué tenemos que hacer?

Más sobre seguimiento de trayectorias

"Introduction to autonomous mobile robots", Siegwart, Roland, Illah Reza Nourbakhsh, Davide Scaramuzza. MIT press, 2011. **Capítulo 3**