MAD 4204, Homework 3

For G = (V, E) an (undirected) graph and $k \in \mathbb{N}$, the *chromatic polynomial* $p_G(k)$ is the number of proper [k]-colorings of G.

For G = (V, E) an (undirected) graph, an **orientation** of G is a directed graph $\rho = (V, E')$ where for each $(u, v) \in E$, exactly one of $u \to v$ and $v \to u$ appears in E'. We say an orientation ρ and a coloring c are **compatible** if $u \to v$ in ρ implies $c(u) \le c(v)$.

Problems to turn in:

1.

- (a) Show the Petersen graph is not planar
- (b) Find the Petersen graph's chromatic number.
- (c) Let $G = (\binom{[5]}{2}, E)$ where $(A, B) \in E$ if and only if $A \cap B \neq \emptyset$. Determine the chromatic number of G. For example, $(\{1, 2\}, \{2, 4\}) \in E$ but $(\{1, 2\}, \{3, 4\}) \notin E$. Is G planar?

(**Hint:** Another way to think about this is to color the **edges** of K_5 so that edges sharing a vertex have different colors)

- 2. Prove for all connected simple planar graphs G = (V, E) with $|V| \ge 3$ that $|E| \le 3 \cdot |V| 6$. As a consequence, show that all simple planar graphs have a vertex of degree at most 5.
- 3. The dual of a matroid \mathcal{M}_B on ground set S defined in terms of bases is

$$\mathcal{M}_B^* = \{ S \setminus B : B \in \mathcal{M}_B \}.$$

- (a) Prove that \mathcal{M}_B^* is a matroid defined in terms of bases.
- (b) Recall for G a connected simple graph that $\mathcal{M}_B(G) = \{T \text{ a spanning tree of } G\}$ is a matroid. For G planar with dual graph G^* , prove $\mathcal{M}_B^*(G) = \mathcal{M}_B(G^*)$.
- 4. (Problems (8)–(12) from the worksheet. You may assume problems (1)–(7))

Let $k \in \mathbb{N}$ and define $\hat{p}_G(k) = (-1)^k p_G(k)$. Prove that $\hat{p}_G(k)$ is the number of compatible pairs (ρ, c) where c is a (not necessarily proper) [k]-coloring of G and ρ is an acyclic orientation. In particular, show $\hat{p}_G(1)$ is the number of acyclic orientations of G.

Hint: Your proof will likely want to use the result

Lemma: Every closed walk $v_0 \to v_1 \to \cdots \to v_n = v_0$ contains a directed cycle.

Recommended problems:

Let \mathcal{M}_I be a matroid defined in terms of its independent sets on finite ground set S. For $T \subseteq S$, the rank of T, denoted r(T), is the maximum size of an independent set $I \in \mathcal{M}_I$ so that $I \subseteq T$. We say $T \subseteq S$ is a k-flat of \mathcal{M}_I if it is a maximal set of rank k, that is r(T) = k and r(T') > k whenever $T \subset T'$ with $T \neq T'$. Let \mathcal{M}_F be the set of flats of \mathcal{M} . (In a linear algebra context, a flat is a maximal set of rank k)

Let \mathcal{M}_I be a matroid on ground set S defined in terms of bases. For $A \subseteq S$, the restriction of \mathcal{M}_I to A is

$$\mathcal{M}_I \mid_A = \{ I \in \mathcal{M}_I : I \in A \}.$$

Now assume $A \in \mathcal{M}_I$ and let $B = S \setminus A$. The *contraction* of \mathcal{M}_I to A is

$$\mathcal{M}_I/A = \{I \subseteq A : I \cup B \text{ is independent}\}.$$

- 1. Let \mathcal{M} be a matroid on finite ground set S. Show that \mathcal{M}_F satisfies:
 - (F1) $S \in \mathcal{M}_F$.
 - (F2) If X and Y are flats, then $X \cap Y$ is a flat.
 - (F3) For X a flat and $y \in S \setminus X$, there is a unique flat Y with $X \cup \{y\} \subseteq Y$ so that $X \subseteq Y$ and if U is a flat with $X \subseteq U \subseteq Y$ then U = X or U = Y.

(W will return to this in a few weeks)

2. For \mathcal{M} a matroid on ground set S with flats \mathcal{M}_F , the characteristic polynomial of \mathcal{M} is

$$\chi_{\mathcal{M}}(x) = \sum_{F \in \mathcal{M}_F} x^{r(F)}.$$

Prove for $s \in S$ that the characteristic polynomial satisfies the deletion-contraction relation

$$\chi_{\mathcal{M}}(x) = \chi_{\mathcal{M}|_{S \setminus \{s\}}}(x) - \chi_{\mathcal{M}/\{s\}}(x).$$

Bonus (get an A in the class): show that the absolute value of the coefficients is unimodal.

- 3. Exercise 12.25 from the text.
- 4. Prove every polyhedron has two faces that have the same number of vertices.
- 5. Let P be a convex polyhedron with no triangular face. Show $|E| \leq 2 \cdot |V| 4$.
- 6. Show if every subgraph of G has a vertex with degree at most d then G is (d+1)-colorable.