Stochastic Methods for Finance

Exam August 26, 2019

Exercice 1 (10-points) Consider a Black-Scholes market and a derivative contract with payoff at the maturity T given by

$$F(n, S_T) = (K - S_T)^+ * 1_{n < S_T < n+1},$$

where K > 0 and 1_A denotes the indicator function of the event A.

- i) Compute the price of the contract $F(n, S_T)$ at any time $t \in [0, T)$ and any n = 0, 1, 2, ...Compute the limit of the price for $n \to \infty$;
 - ii) Compute the Delta of the contract $F(n, S_T)$ and the limit of the Delta for $n \to \infty$;
- iii) Illustrate graphically the change of price and Delta of $F(n, S_T)$ for an upward shift of the volatility;
 - iv) Compute the price of the portfolio F given by

$$F(S_T) = \sum_{n=0}^{\infty} F(n, S_T);$$

v) Compute the amount of Call options with strike price K = 1 one has to buy/sell in order to get a Delta neutral (global) portfolio.

Exercice 2 (6 points)

In the Black-Scholes model, find the price at time $t \leq T$ of an UP-AND-OUT contract where the owner receives the payoff

$$F(n, S_T) = (K - S_T)^+ * 1_{n < S_T < n+1},$$

at the maturity T only if the asset has never reached the upper barrier L > 0. Provide the price of the contract when $n \to +\infty$. Finally, find the Delta of the contract.

Exercice 3 (8 points)

Solve for any n = 1, 2, ... the following PDE for $t \leq T$:

$$\frac{\partial F}{\partial t} + x^2 \frac{\partial^2 F}{\partial x^2} + \frac{\partial^2 F}{\partial y^2} + \frac{\partial^2 F}{\partial z^2} = 0$$

$$F(T, x, y, z) = xze^y.$$

Exercice 4 (6 points)

Questions on the theory.

- i) Show the backward equation satisfied by the optimal value of an American option in a discrete time model and prove it.
- ii) State and prove the PDE satisfied by the price of a European derivative in a Black-Scholes model.
 - iii) Find the moment generating function of the first hitting time for the Brownian motion