

AGENDA

- 1 About me
- 2 Case Study
 Background, Requirements, Resources, Objectives
- 3 Data
 Profiling, Pipeline, Measure development
- 4 Dashboard & Analysis
 Widgets, observations and action items
- 5 Next Steps

 Areas of improvements, and expanded pipeline
- 6 Q&A

MARCELINO MAYORGA QUESADA

- 15 Years of Experience in Software
 Development executing multiple technical and delivery management roles.
- Clients: Blackstone, Cambridge Associates, EA Sports, Citibank, CCI Global Channel Management, and BAC Credomatic.
- Passionate about Swimming , Artificial Intelligence , Music , and Video games .

CASE STUDY

CONTEXT

Background

- Databricks deploys its products in multiple regions.
- Each region generates revenue and has dedicated cloud resource footprint.
- We measure the health of each region / product line by tracking the margins.
- Margin = (Revenue Cost)/(Cost).

Resources

- CSV File: Region, Product Line, Month, Cost, Revenue.
- Databricks Community Edition (Python, dbutils, SQL Functions, DataFrames and Visualization).

Requirements: Dashboard

- Global month-over-month margin trend.
- Per region month-over-month margin trend.
- Per product line month-over-month margin trend.
- Per region, per product line month-over-month margin trend.
- Best & worst performing regions & product lines.

Objective: Business Optimization

- 1. Understand regions and product lines current health state.
- 2. Improve regional and product line margins.

DATA

DATA PROFILING

- Date Range: 8 Months (Jan Aug 2023)
- **Regions:** us-west1 and us-east1
- Product Lines: sql and jobs
- Columns: 5
- **Rows:** 32
- Complete Data

region 📤	product_line 📤	month $ riangle$	cost_m_usd 🔺	revenue_m_usd
us-west1	sql	2023-01-01	0.8	0.6
us-west1	jobs	2023-02-01	1.1	1.5
us-west1	jobs	2023-06-01	1.1	1.5
us-west1	jobs	2023-07-01	1.1	1.5
us-east1	sql	2023-01-01	1.5	1.4
us-east1	sql	2023-02-01	1.5	1.4

DATA PIPELINE

1 - Import Data

Forensic Data into Databricks Cluster Results saved into SQL Table

2 - Dashboard Actuals

Data Preprocessing

Metric Development (SQL Functions)

Visualization for dashboard

Notebook File

MEASURE DEVELOPMENT

Margin and Month Over Month Margin (MoM)

pyspark.sql.functions.expr: used for margin calculation, allows SQL-like syntax over the data frame.

1	<pre>df = df.withColumn("margin", expr("(revenue_m_usd - cost_m_usd) / cost_m_usd"))</pre>						
	region 📤	product_line 🔺	month $ riangle$	cost_m_usd 🔺	revenue_m_usd 🔺	margin	
1	us-west1	sql	2023-02-01	0.8	1	0.249999999999994	
2	us-west1	sql	2023-03-01	0.8	1.2	0.49999999999999	
3	us-west1	sql	2023-04-01	0.8	1.3	0.625	
4	us-west1	sql	2023-05-01	0.8	1.3	0.625	
5	us-west1	sql	2023-08-01	0.8	1.5	0.874999999999999	

pyspark.sql.window: used for MoM
calculations, allows partitioning and ordering.

pyspark.sql.functions.lag: operates over capture previous values rows within the defined window.

1	<pre>window_spec = Window.orderBy("month")</pre>		
2	<pre>df = df.withColumn("margin_mom_change",</pre>	col("margin") -	<pre>- lag("margin").over(window_spec))</pre>

	region 📤	product_line 📤	month $ riangle$	cost_m_usd	revenue_m_usd 🔷	margin $ riangle$	margin_mom_change
1	us-west1	sql	2023-01-01	0.8	0.6	-0.25000000000000006	null
2	us-west1	jobs	2023-01-01	1.1	1.1	0	0.25000000000000006
3	us-east1	sql	2023-01-01	1.5	1.4	-0.0666666666666672	-0.0666666666666672
4	us-east1	jobs	2023-01-01	2.1	3	0.4285714285714285	0.4952380952380952
5	us-west1	sql	2023-02-01	0.8	1	0.2499999999999994	-0.17857142857142855

DASHBOARDS & ANALYSIS

Link

1 - GLOBAL MONTH-OVER-MONTH MARGIN TREND

Observations

- January **Peaked** with 0.25 margin MoM.
- Flat **Negative** margin from February through August.

Actions

- Understand what drives January's healthy margin.
- Understand **revenue and cost** that lead to negative margin.
- Analyze differences in avg vs median for outliers. (eg: median shows August's uptrend)

2 - PER REGION MONTH-OVER-MONTH MARGIN TREND

Observations

- us-east1 peaked positive margin in January dropped to zero by February and remained flat.
- **us-west1 dropped to zero** progressively over 2 months and remained flat.

Actions

- Understand what drives both regions' healthier margins in the first quarter.
- Understand zero margins from March-August.

3 - PER PRODUCT LINE MONTH-OVER-MONTH MARGIN TREND

Observations

- Positive Margins in January for both product lines
- 'Jobs' product line is slightly healthier than 'SQI'.
- Both product lines **dropped to zero** in February.

Actions

- Understand zero margins from February-August.
- Review April-June potential anomaly/trend.

4 - PER REGION, PER PRODUCT LINE MONTH-OVER-MONTH MARGIN TREND

Observations

- us-west1: Both product lines had the healthiest margin trend.
 - sql: Leads the **uptick** in the global MoM margin.
 - Jobs: Drops to **zero margin** in March, remains flat.
- us-east1: close to zero margin throughout the year.
 - sql: Shows **slight improvement in May** which aligns with Product Line MoM chart.
 - jobs: remained zero margins

Actions

Identify trends, seasonality, special events & anomalies

5 - BEST & WORST PERFORMING REGIONS & PRODUCT LINES

- Best Region / Product Line: sql in us-west1
- Worst Region / Product Line: jobs in us-east1
- *Based in margin

NEXT STEPS

AREAS OF IMPROVEMENTS

- Set an **iterative automated data process** for analysis and forecasting.
- Incorporate DBU Price and energy consumption, utilization, and distribution for more insights.
- Revisit revenue and cost calculation.
- Identify trends, seasonality, special events & anomalies. Leverage tools such as Pycaret, TSFresh, or Darts.

EXPANDED DATA PIPELINE

1 - Import Data

Forensic Data and define Metrics

2 - Dashboard Actuals

Data Preprocessing
Widget Development
Notebook File

3 - Model Training

Data Preprocessing

Model Selection, Training and

Fine-Tuning

Validation

Notebook File

4 - Forecast Margins

Consume Insights and handling for Adaptability

Evaluate and compare Estimates with Actuals

Q & A