The group G is isomorphic to the group labelled by [24, 14] in the Small Groups library Ordinary character table of $G \cong C2 \times C2 \times S3$:

	1a	2a	2b	2c	3a	2d	2e	2f	6a	6b	2g	6c
χ_1	1	1	1	1	1	1	1	1	1	1	1	1
χ_2	1	-1	-1	-1	1	1	1	1	-1	-1	-1	1
χ_3	1	-1	-1	1	1	1	-1	-1	-1	1	1	-1
χ_4	1	-1	1	-1	1	-1	1	-1	1	-1	1	-1
χ_5	1	-1	1	1	1	-1	-1	1	1	1	-1	1
χ_6	1	1	-1	-1	1	-1	-1	1	-1	-1	1	1
χ_7	1	1	-1	1	1	-1	1	-1	-1	1	-1	-1
χ_8	1	1	1	-1	1	1	-1	-1	1	-1	-1	-1
χ_9	2	0	-2	-2	-1	0	0	2	1	1	0	-1
χ_{10}	2	0	-2	2	-1	0	0	-2	1	-1	0	1
χ_{11}	2	0	2	-2	-1	0	0	-2	-1	1	0	1
χ_{12}	2	0	2	2	-1	0	0	2	-1	-1	0	-1

Trivial source character table of $G \cong C2 \times C2 \times S3$ at $p = 2$:																					
Normalisers N_i		V_1	N_2		N_3		N_4 .		$\int_{5} I $	V_6	V_7	N_8	N_9	N_{10}	N_{11}	Λ	I_{12}	N_{13}	N_{14}	N_{15}	N_{16}
p-subgroups of G up to conjugacy in G		1	P_2		P_3		P_4		$_{5}\mid I$	6	P_7	P_8	P_9	P_{10}	P_{11}	l P	12	P_{13}	P_{14}	P_{15}	P_{16}
Representatives $n_j \in N_i$		3a	1a	3a	1a	3a	1a	$3a \mid 1a$	$a \mid 1$	$a \mid $	$1a \mid 1$	1a	1a	1a	1a	1a	3a	1 <i>a</i>	1a	1a	1a
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	8	8	0	0	0	0	0	0 0) (0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 1 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12}$		-4	0	0	0	0	0	0 0)	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$		4	4	4	0	0	0	0 0) '	0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 1 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$		-2	4	-2	0	0	0	0 0)	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	4	0	0	4	4	0	0 0) '	0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 1 \cdot \chi_{11} + 1 \cdot \chi_{12}$		-2	0	0	4	-2	0	0 0)	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	4	0	0	0	0	4	4 0		0	0	0	0	0	0	0	0	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 1 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	4	-2	0	0	0	0	4 -	$-2 \mid 0$) '	0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 1 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	4	0	0	0	0		0 4		0	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	4	0	0	0	0	0	0 0) .	4	0	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	4	0	0	0	0	0	0 0)	0	4	0	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	4	4	0	0	0	0	0	0 0)	0	0	4	0	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 1 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	0	0	2	2	0	0 2	2	0	2	0	2	0	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	2	0	0	0	$0 \mid 2$	2 1	2	0	0	0	2	0	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$		2	0	0	0	0	2	$2 \mid 2$	2	0	0	2	0	0	2	0	0	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	2	2	2	2	2 0) (0	0	0	0	0	0	2	2	0	0	0	0
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 1 \cdot \chi_{12}$	2	-1	2	-1	2	-1	2 -	$-1 \mid 0$)	0	0	0	0	0	0	2	-1	0	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	0	0	2	2	0	0 0) :	2	0	2	0	0	0	0	0	2	0	0	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	2	2	0	0	0	0 0)	0	2	2	0	0	0	0	0	0	2	0	0
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	2	2	0	0	0	0	2	2 0)	2	2	0	0	0	0	0	0	0	0	2	0
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7 + 0 \cdot \chi_8 + 0 \cdot \chi_9 + 0 \cdot \chi_{10} + 0 \cdot \chi_{11} + 0 \cdot \chi_{12}$	1	1	1	1	1	1	1	1 1		1	1	1	1	1	1	1	1	1	1	1	1

```
P_2 = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24)]) \cong C2
P_3 = Group([(1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24)]) \cong \mathbb{C}_2
P_4 = Group([(1,9)(2,13)(3,4)(5,17)(6,7)(8,20)(10,11)(12,23)(14,15)(16,24)(18,19)(21,22)]) \cong \mathbf{C2}
P_5 = Group([(1,2)(3,6)(4,7)(5,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,19)(17,24)(20,23)]) \cong \mathbb{C}_2
P_6 = Group([(1,7)(2,4)(3,13)(5,22)(6,9)(8,19)(10,24)(11,16)(12,15)(14,23)(17,21)(18,20)]) \cong \mathbb{C}_2
P_7 = Group([(1,6)(2,3)(4,13)(5,21)(7,9)(8,18)(10,16)(11,24)(12,14)(15,23)(17,22)(19,20)]) \cong \mathbb{C}_2
```

 $P_8 = Group([(1,13)(2,9)(3,7)(4,6)(5,24)(8,23)(10,22)(11,21)(12,20)(14,19)(15,18)(16,17)]) \cong C2$ $P_9 = Group([(1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24),(1,2)(3,6)(4,7)(5,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,19)(17,24)(20,23)]) \cong C2 \times C2$

 $P_{12} = Group([(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24)]) \cong C2 \times C2$

 $N_2 = Group([(1,2)(3,6)(4,7)(5,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,19)(17,24)(20,23), (1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,5,12)(2,8,16)(3,10,18)(4,11,19)(6,14,21)(7,15,22)(9,17,23)(13,20,24)]) \\ \cong C2 \times C2 \times S3$ $N_3 = Group([(1,2)(3,6)(4,7)(5,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,19)(17,24)(20,23), (1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24), (1,5,12)(2,8,16)(3,10,18)(4,11,19)(6,14,21)(7,15,22)(9,17,23)(13,20,24)]) \\ \cong C2 \times C2 \times S3$ $N_4 = Group([(1,2)(3,6)(4,7)(5,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,19)(17,24)(20,23), (1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(5,11)(6,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24), (1,4)(2,7)(3,9)(23,24), (1,4)(23,24)(23,24)(23,24)(23,24)(23,24), (1,4)(23,24)(23,24)(23,24)(23,24)(23,24)(23,24)(23,24)(23,24)$ $N_8 = Group([(1,13)(2,9)(3,7)(4,6)(5,24)(8,23)(10,22)(11,21)(12,20)(14,19)(15,18)(16,17),(1,2)(3,6)(4,7)(5,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,20)(16,21)(19,23)(22,24),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24)]) \\ \cong C_2 \times C_2 \times C_2 \times C_3 \times C_4 \times C_4 \times C_5 \times C_$ $N_{12} = Group([(1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(22,24),(1,4)(2,7)(3,9)(5,11)(6,13)(8,15)(10,17)(12,19)(14,20)(16,22)(18,23)(21,24),(1,2)(3,6)(4,7)(5,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,19)(17,24)(20,23),(1,5,12)(2,8,16)(3,10,18)(4,11,19)(6,14,21)(7,15,22)(9,17,23)(13,20,24)]) \\ \cong C2 \times C2 \times S3$

 $N_1 = Group([(1,2)(3,6)(4,7)(5,16)(8,12)(9,13)(10,21)(11,22)(14,18)(15,19)(17,24)(20,23), (1,3)(2,6)(4,9)(5,10)(7,13)(8,14)(11,17)(12,18)(15,20)(16,21)(19,23)(21,24), (1,5,12)(2,8,16)(3,10,18)(4,11,19)(6,14,21)(7,15,22)(9,17,23)(13,20,24)]) \\ \cong C_2 \times C_2 \times S_3 \times$