Aalto University Department of Computer Science

Pekka Orponen

CS-E4530 Computational Complexity Theory (5 cr) First Midterm Exam, Mon 18 Feb 2019, 9–12 a.m.

Write down on each answer sheet:

- Your name, degree programme, and student number
- The text: "CS-E4530 Computational Complexity Theory 18.2.2019"
- The total number of answer sheets you are submitting for grading

Note: You can write down your answers in either Finnish, Swedish, or English.

- 1. Which of the following claims are true and which are false? (No proofs are needed, just indicate your choice by the letter T or F.)
 - (a) The computation of a deterministic Turing machine halts on every input.
 - (b) The complement of any decidable language is semidecidable.
 - (c) The intersection of any two semidecidable languages is decidable.
 - (d) The problem of determining if a Turing machine accepts at least 7 strings is undecidable.
 - (e) The problem of determining if a Turing machine has at least 7 states is undecidable.
 - (f) The problem of determining if a Turing machine runs for at least 7 steps on all inputs of length $|x| \le 7$ is undecidable.
 - (g) The Turing machine Halting Problem belongs to the class NP.
 - (h) All problems in the complexity class NP can be reduced to the Turing machine Halting Problem. 2p.
- 2. Prove that the complexity class NP is closed under unions and intersections. 2p.
- 3. Prove that the following decision problem **TMSAT** is NP-complete:
 - Instance: A tuple $(\alpha, x, 1^n, 1^t)$, where $\alpha, x \in \{0, 1\}^*$
 - Question: Is there a string $u \in \{0,1\}^*$ with $|u| \le n$ such that the Turing machine M_{α} outputs 1 on input (x,u) within t steps? (*)
 - TMSAT = $\{(\alpha, x, 1^n, 1^t)$: Condition (*) holds for $(\alpha, x, 1^n, 1^t)\}$ 3p.
- 4. (a) Define the language L_{ne} representing the decision problem:

Given a Turing machine *M*; does *M* accept *some* input string, i.e. is the language accepted by *M* nonempty?

(b) Prove, by a reduction from the Halting Problem, that the language L_{ne} is not decidable. Is the language semidecidable? (Justify your answer.) 3p.