EUROPEAN PATENT OFFICE

Patent Abstracts of Japan

PUBLICATION NUMBER

08115897

PUBLICATION DATE

07-05-96

APPLICATION DATE

13-10-94

APPLICATION NUMBER

06276007

APPLICANT: NITTO DENKO CORP:

INVENTOR: MIKI KAZUYUKI:

INT.CL.

ţ.

: H01L 21/304 B08B 7/00 C09J 7/02

C09J 7/02 C09J 7/02 C09J 7/02

TITLE

: ADHESIVE TAPE AND METHOD FOR

REMOVING FOREIGN MATTER FROM

SEMICONDUCTOR WAFER

ABSTRACT: PURPOSE: To provide a dry cleaning method using an adhesive tape, wherein foreign matter is efficiently removed from semiconductor wafers without causing any

contamination of the wafers due to remaining glue.

CONSTITUTION: An adhesive tape 1 for foreign matter removal is obtained by forming on

a support film 11 an adhesive layer 12 the modulus of tensile elasticity of which is

10-1,000kg/cm² (as tested in accordance with JISK7127). A piece of the

adhesive tape 1 is stuck to the front face 2a and/or underside 2b of a semiconductor wafer 2, and it is stripped, so that foreign matter 3 is removed from the semiconductor wafer 2.

COPYRIGHT: (C)1996,JPO

10

層12上にさらにセパレータ13を設けた構成となつている。

【0013】支持フイルム11は、ポリプロピレン、ポリエステル、ポリカーボネート、ポリエチレン、エチレンー酢酸ビニル共重合体、エチレンーエチルアクリレート共重合体、エチレンープロピレン共重合体、ポリ塩化ビニルなどのプラスチツクからなる、厚さが通常10~1,000μmのフイルムである。

【0014】粘着剤層12は、この支持フイルム11上に、アクリル樹脂系、シリコーン樹脂系、フツ素樹脂系、ゴム系(天然ゴム、合成ゴム)などの常態下で粘着力を有する種々の粘着剤を整着し、加熱などにより架橋処理することにより、また離型紙上に上記と同じ方法で形成した粘着剤層を支持フイルム11上に貼着することにより、形成される。厚さは、通常 $5\sim100\mu m$ である。

【0015】この粘着剤層12は、引張弾性率(試験法JIS K 7127に準ずる、以下同じ)が10~1,000版/cm²、好ましくは15~500kg/cm²、さらに好ましくは100~300kg/cm²の範囲に設定されている。架橋剤の含量により架橋の程度を調整することなどにより、上記設定は容易に行える。アクリル樹脂系の粘着剤を用いると、上記設定がとくに容易であり、好ましい。上記の引張弾性率を有する粘着剤層12の粘着力は、JIS Z-0237に準じて測定されるシリコンウエハに対する180度引き剥がし粘着力(常温、剥離速度300mm/分)が通常50~500g/20mm幅となる程度である。

【0016】セパレータ13は、粘着テープ1の保管時や流通時などでの汚染防止の点から、半導体ウエハに貼 30 り付けるまでの間、粘着剤居12の表面を保護するためのもので、上記貼り付け使用時に剥離除去される。このセパレータ13は、通常、紙(無塵紙)、プラスチツクフイルム、金属箔などからなる柔軟な薄葉体で、必要により剥離剤で表面処理して離型性を付与したものが用いられる。

【0017】本発明においては、上記構成の粘着テープを用いて、半導体ウエハに付着した異物を除去する。この方法は、まず、図2に示すように、粘着テープ1をその粘着剤層12面が内側となるように半導体ウエハ2の表面2aおよび/または裏面2bの全面に貼り付ける。これは、たとえば、ハンドローラにて押圧したのち、数分程度放置するといつた方法で行えばよい。ここで、粘着テープ1は、粘着剤層12の引張弾性率が10~1,000㎏/cm²の範囲にあるため、上記ハンドローラによる押圧でこの層12が適度に塑性変形する結果、半導体ウエハ2の異物3に対し十分に馴染ませることができる。

【0018】このような貼り付け後、図2に示すよう Z-0237に準じて測定される180 度引き剝がしに、粘着テープ1 の端部より引き剥がす、剥離操作を施 50 粘着力(常温、剥離速度300 回一分)で450 g / 2

すと、半導体ウエハ 2上の付着異物 3 は粘着剤層 1 2面に吸着されて、上記ウエハ 2 より除去される。その際、粘着剤層 1 2 の引張弾性率が上記徳囲にあつて、この層 1 2 が適度な強度および凝集力を示す結果、異物 3 の吸着効果がより良く発揮され、また糊残りによるウエハ汚染の問題を引き起こすこともない。このため、一般には、0.2 μ m以上の大きさの異物を 5 0 %以上、好ましくは 7 0 %以上除去できるほどの高い除去率が得られる。

【0019】このように、本発明では、粘着剤層12の引張弾性率を上記特定の範囲に設定したことにより、貼り付け時の粘着剤層12と異物3との馴染みが良くなり、しかもこの層12が適度な強度と凝築力を示すため、異物3の吸着効果が増大し、またウエハ汚染の問題も回避されるという顕著な効果が奏される。これに対し、粘着剤層12の引張弾性率が10㎏/cm²未満となると、この層12の強度と凝築力が不十分で、異物3の吸着効果が低下し、ウエハ汚染の問題も大きくなる。また、上記引張弾性率が1,000㎏/cm²を超えると、粘着剤層12が塑性変形しにくく、粘着力も低くなり、異物除去率がやはり低下する。

【0020】このような貼り付けおよび剥離操作により、半導体ウエハ上の異物を高い除去率で洗浄除去すると、回路形成時の回路の断線やショート、露光不良発生が低減し、半導体デバイスの歩留りや信頼性が大きく向上する。また、地球環境保全の立場からみて、従来のウエット洗浄やドライ洗浄のような純水、薬品、空気、電力などを大量に消費する洗浄方式を、上記本発明の方式に置き換えることで、地球環境保全に大きく寄与させることもできる。

[0021]

【発明の効果】本発明の異物除去用粘着テープとその除去方法によれば、糊残りによるウエハの汚染という問題をきたすことなく、半導体ウエハ上の異物を高い除去率で除去でき、半導体デバイスの歩留りや信頼性の向上に寄与できる。また、従来の他の洗浄方式などに比べて、地球環境保全の前での寄与効果も得られる。

[0022]

【実施例】つぎに、本発明の実施例を記哉して、より具体的に説明する。なお、以下において、部とあるのは類量部を意味する。

【0023】実施例1

厚さ50μmのポリエステル支持フイルムのコロナ処理面に、アクリル系樹脂100部とイソシアネート系架橋剤1部とからなるアクリル系粘着剤の溶液を整布して、120℃で3分間加熱架構処理し、厚さ20μmの粘着剤層を有する粘着テープを作製した。この粘着テープのシリコンウエハ(ミラー面)に対する粘着力は、JISZ-0237に準じて測定される180度引き剝がし

以外は、実施例1と同様にして、厚さ20 µmの粘着剤 層を有する粘着テープを作製した。このテープのシリコ ンウエハ (ミラー面) に対する粘着力は、JIS Z-0237に準じて測定される180度引き剥がし粘着力 (常温、剥離速度300㎜/分)で50g/20㎜幅で . あつた。また、粘着剤層の引張弾性率は、1,090Kg*

*/cm² であつた。このテープを用い、実施例1と同様に して、異物洗浄試験および粘着剤汚染試験を行った。こ れらの試験結果は、後記の表1に示されるとおりであつ

[0034]

【表1】

表1

	ウエハの表裏	異物洗浄試験			粘着剤汚染試験
		異物数 (個)		M 4/ MA 1	
		洗浄前	洗浄後	異物除去率 付着異物数 (%) (個)	
実施例1	表面	303	9 0	70.3	1 5
	英面	7, 231	2, 126	70.6	
実施例2	表面	2 2 2	6 5	70.7	15
	裏面	6, 588	1, 913	71.0	
尖施例3	表面	3 3 2	8 9	73.2	1 3
	意皿	8, 130	2, 072	74. 5	
実施例4	表面	236	70	70.3	1 2
	英面	5, 989	1, 736	71.0	

[0035]

※ 《【表2】 表 2

	ウエハの表裏	異物洗浄試験			粘着剂汚染試験
		異物数	(個)	異物除去率 付着異物数 (%) (個)	
		洗浄前	洗浄後		
比較例1	表面	199	141	29. 1	6 0
	裏面	5, 901	3, 982	32. 5	
比較例2	表面	3 5 4	2 4 2	31.6	1 0
	直连	7, 410	5, 010	32.4	

【0036】上記の表1、表2の結果から明らかなよう に、本発明の尖施例1~4の粘着テープによれば、粘着

ウエハの表面や裏面に付着した異物を70%以上もの高 い除去率で除去できるものであることがわかる。これに 剤によるウエハ汚染の問題を生じることなく、シリコン 50 対し、粘着剤層の引張弾性率が $1.0\,\mathrm{Kg/cm^{\circ}}$ 未満の比較