L3 - CMI017 : Signaux et Systèmes Séquence IV

BULOUP Frank

Aix Marseille Université Institut des Sciences du Mouvement

Plan de cette séquence

- Réponse d'un SDLIT à une entrée quelconque
- 2 La Transformée en z
- 3 Obtention de la Réponse Impulsionnelle
- Fonction de transfert en z
- 6 Home work!

Rép. d'un SDLIT à une entrée quelconque

Rappel I

Un SDLIT peut être définit par :

- 1. son EAD
- 2. son diagramme bloc
- 3. sa fonction de transfert en \mathcal{R}

Rappel I

Un SDLIT peut être définit par :

1. son FAD

Rép. d'un SDLIT à une entrée quelconque

- 2. son diagramme bloc
- 3. sa fonction de transfert en \mathcal{R}

Rappel II

La réponse impulsionnelle d'un SDLIT est la réponse de ce système à une impulsion unitaire. C'est une caractéristique fondamentale de ce dernier.

Rappel III

Pour les systèmes non bouclés, l'ensemble des coefficients des puissances de \mathcal{R} de la fonction de transfert donne directement la réponse impulsionnelle.

Rappels 2/2

Rappel III

Pour les systèmes non bouclés, l'ensemble des coefficients des puissances de \mathcal{R} de la fonction de transfert donne directement la réponse impulsionnelle.

Rappel IV

Pour les systèmes bouclés, la fonction de transfert en \mathcal{R} est une fonction rationnelle et le développement en puissance de \mathcal{R} peut être obtenu pas division polynomiale.

Signaux et Systèmes

- 1 Réponse d'un SDLIT à une entrée quelconque
- 2 La Transformée en z
- 3 Obtention de la Réponse Impulsionnelle
- 4 Fonction de transfert en z
- 6 Home work!

Home work!

Rép. d'un SDLIT à une entrée quelconque

On peut considérer tout signal numérique comme une somme pondérée et décalée dans le temps d'impulsions unitaires

Par exemple le signal s(n) dont les valeurs successives sont 1, 2, 4, 3 puis 0 indéfiniment depuis l'origine du temps peut être exprimé de la façon suivante :

$$s(n) = 1 \cdot \delta(n) + 2 \cdot \delta(n-1) + 4 \cdot \delta(n-2) + 3 \cdot \delta(n-3)$$

Présentation

De plus, on ne considère que les SDLIT

Donc la réponse du système à $\alpha\delta(n)$ est la réponse impulsionnelle pondérée par α , d'après l'hypothèse de linéarité

Rép. d'un SDLIT à une entrée quelconque

De plus, on ne considère que les SDLIT

Donc la réponse du système à $\alpha\delta(n)$ est la réponse impulsionnelle pondérée par α , d'après l'hypothèse de linéarité

Et la réponse du système à $\delta(n-n_0)$ est la réponse impulsionnelle décalée de n_0 , d'après l'hypothèse de stationnarité

Pour obtenir la réponse d'un SDLIT à une entrée quelconque, il suffit de développer l'entrée en somme d'impulsions unitaires pondérées et décalées temporellement puis de sommer les réponses impulsionnelles individuelles Rép. d'un SDLIT à une entrée quelconque

Pour obtenir la réponse d'un SDLIT à une entrée quelconque, il suffit de développer l'entrée en somme d'impulsions unitaires pondérées et décalées temporellement puis de sommer les réponses impulsionnelles individuelles

Rép. d'un SDLIT à une entrée quelconque ○○○○●○○

$$\delta(n)$$
 — Système — $h(n)$: rép. imp.

Rép. d'un SDLIT à une entrée quelconque $\circ\circ\circ\circ\bullet\circ\circ$

$$\delta(n)$$
 Système $h(n)$: rép. imp. $\delta(n-k)$ Système $h(n-k)$

Rép. d'un SDLIT à une entrée quelconque $\circ\circ\circ\circ\bullet\circ\circ$

$$\delta(n) \longrightarrow \boxed{\text{Système}} \longrightarrow h(n) : \text{rép. imp.}$$

$$\delta(n-k) \longrightarrow \boxed{\text{Système}} \longrightarrow h(n-k)$$

$$e(k)\delta(n-k) \longrightarrow \boxed{\text{Système}} \longrightarrow e(k)h(n-k)$$

Rép. d'un SDLIT à une entrée quelconque

$$\delta(n) \longrightarrow \boxed{\text{Système}} \longrightarrow h(n) : \text{rép. imp.}$$

$$\delta(n-k) \longrightarrow \boxed{\text{Système}} \longrightarrow h(n-k)$$

$$e(k)\delta(n-k) \longrightarrow \boxed{\text{Système}} \longrightarrow e(k)h(n-k)$$

$$e(n) = \sum_{k=0}^{+\infty} e(k)\delta(n-k) \longrightarrow \boxed{\text{Système}} \longrightarrow s(n) = \sum_{k=0}^{+\infty} e(k)h(n-k)$$

Rép. d'un SDLIT à une entrée quelconque

$$\delta(n) \longrightarrow \boxed{\text{Système}} \longrightarrow h(n) : \text{rép. imp.}$$

$$\delta(n-k) \longrightarrow \boxed{\text{Système}} \longrightarrow h(n-k)$$

$$e(k)\delta(n-k) \longrightarrow \boxed{\text{Système}} \longrightarrow e(k)h(n-k)$$

$$e(n) = \sum_{k=0}^{+\infty} e(k)\delta(n-k) \longrightarrow \boxed{\text{Système}} \longrightarrow s(n) = \sum_{k=0}^{+\infty} e(k)h(n-k)$$

Les hypothèses de linéarité et d'invariance temporelle permettent d'obtenir une relation entrée/sortie générique : la sortie d'un système LIT discret est une somme pondérée de réponses impulsionnelles renversées et décalées temporellement.

C'est la convolution

Rép. d'un SDLIT à une entrée quelconque

On a:

$$\mathcal{H}(\mathcal{R}) = \sum_{k=0}^{+\infty} h(k) \mathcal{R}^k$$

h(k) étant la réponse impulsionnelle du système. On peut obtenir la sortie du système à une entrée quelconque en utilisant la relation de convolution :

$$s(n) = \sum_{k=0}^{+\infty} e(k)h(n-k)$$

Signaux et Systèmes

La TZ

- 2 La Transformée en z
- 3 Obtention de la Réponse Impulsionnelle

Définition

Rép. d'un SDLIT à une entrée quelconque

Soit x(n) un signal discret. La transformée en z de x(n) est définie par:

$$X(z) = \sum_{n=0}^{+\infty} x(n)z^{-n}$$

Définition

Rép. d'un SDLIT à une entrée quelconque

Soit x(n) un signal discret. La transformée en z de x(n) est définie par:

$$X(z) = \sum_{n=0}^{+\infty} x(n)z^{-n}$$

Exercice I - Calculs de TZ

Calculer les transformées en z des signaux suivants :

- 1. $\delta(n)$
- 2. $\delta(n-1)$
- 3. $x_1(n) = (\frac{1}{4})^n$
- 4. $x_2(n) = \alpha^n$

Exercice I - Calculs de TZ

Rép. d'un SDLIT à une entrée quelconque

$$X_2(z) = \sum_{n=0}^{+\infty} \alpha^n \cdot z^{-n}$$

Exercice I - Calculs de TZ

Rép. d'un SDLIT à une entrée quelconque

$$X_2(z) = \sum_{n=0}^{+\infty} \alpha^n \cdot z^{-n}$$
$$= \sum_{n=0}^{+\infty} (\alpha \cdot z^{-1})^n$$

La TZ

0000

Home work!

Exercice I - Calculs de TZ

Rép. d'un SDLIT à une entrée quelconque

$$X_2(z) = \sum_{n=0}^{+\infty} \alpha^n \cdot z^{-n}$$

$$= \sum_{n=0}^{+\infty} (\alpha \cdot z^{-1})^n$$

$$= \lim_{n \to +\infty} \frac{1 - (\alpha \cdot z^{-1})^{n+1}}{1 - \alpha \cdot z^{-1}}$$

Exercice I - Calculs de TZ

Rép. d'un SDLIT à une entrée quelconque

$$X_2(z) = \sum_{n=0}^{+\infty} \alpha^n \cdot z^{-n}$$

$$= \sum_{n=0}^{+\infty} (\alpha \cdot z^{-1})^n$$

$$= \lim_{n \to +\infty} \frac{1 - (\alpha \cdot z^{-1})^{n+1}}{1 - \alpha \cdot z^{-1}}$$

Cette dernière expression converge si $|\alpha \cdot z^{-1}| < 1 \Leftrightarrow |z| > |\alpha|$. Dans ce cas:

$$X_2(z) = \frac{1}{1 - \alpha z^{-1}}$$

Rép. d'un SDLIT à une entrée quelconque Lien avec la foncion de transfert en ${\cal R}$

> On a vu (séquence II - slide n° 23) que les coefficients du développement polynomial de la fonction de transfert en \mathcal{R} donnent la réponse impulsionnelle du système :

$$\mathcal{H}(\mathcal{R}) = \sum_{n=0}^{+\infty} h(n) \cdot \mathcal{R}^n$$

Pour obtenir la fct. de trsf. en z, il suffit de remplacer \mathcal{R} par z^{-1} :

$$\mathcal{H}(z) = \sum_{n=0}^{+\infty} h(n) \cdot z^{-n}$$

avec

$$\mathcal{H}(z) = \frac{S(z)}{E(z)}$$

On a vu (séquence II - slide n° 23) que les coefficients du développement polynomial de la fonction de transfert en \mathcal{R} donnent la réponse impulsionnelle du système :

$$\mathcal{H}(\mathcal{R}) = \sum_{n=0}^{+\infty} h(n) \cdot \mathcal{R}^n$$

Pour obtenir la fct. de trsf. en z, il suffit de remplacer $\mathcal R$ par z^{-1} :

$$\mathcal{H}(z) = \sum_{n=0}^{+\infty} h(n) \cdot z^{-n}$$

avec

La TZ

$$\mathcal{H}(z) = \frac{S(z)}{E(z)}$$

La TZ de la réponse impulsionnelle d'un système est sa fonction de transfert en z

Signaux et Systèmes

- La Transformée en z
- 3 Obtention de la Réponse Impulsionnelle

¿ Question?

Pourquoi s'intéresser de si près à la réponse impulsionnelle?

Pourquoi s'intéresser de si près à la réponse impulsionnelle?

Parce que si l'on connait la Rep. Imp. d'un SDLIT, on connaitra sa réponse pour toute entrée!

Pourquoi et comment?

¿ Question?

Pourquoi s'intéresser de si près à la réponse impulsionnelle?

Parce que si l'on connait la Rep. Imp. d'un SDLIT, on connaitra sa réponse pour toute entrée!

¿ Question?

Comment connaître la réponse d'un SDLIT à une entrée quelconque?

Pourquoi s'intéresser de si près à la réponse impulsionnelle?

Parce que si l'on connait la Rep. Imp. d'un SDLIT, on connaitra sa réponse pour toute entrée!

¿ Question?

Comment connaître la réponse d'un SDLIT à une entrée quelconque?

En utilisant la convolution!

Rép. d'un SDLIT à une entrée quelconque

Il existe plusieurs méthodes d'obtention de la réponse impulsionnelle à partir de la fonction de transfert en z. Nous utiliserons la méthode de la division polynomiale.

Exercice II - Calculs de Réponses Impulsionnelles

Pour chacun des systèmes caractérisés par les fonctions de transfert en z suivantes :

$$\mathcal{H}_1(z) = \frac{1}{1 - \frac{1}{2}z^{-1}}$$
 $\mathcal{H}_2(z) = \frac{1}{1 + 2z^{-1}}$

$$\mathcal{H}_2(z) = \frac{1}{1 + 2z^{-1}}$$

Rép. d'un SDLIT à une entrée quelconque

Exercice II - Calculs de Réponses Impulsionnelles

- 1. Donner les valeurs des pôles de la fonction rationnelle
- 2. Donner l'expression de la réponse impulsionnelle. Vérifier avec **impz**.
- 3. La réponse impulsionnelle converge-t-elle vers zéro pour *n* grand ? Concluez quant au comportement de la sortie du système à une entrée bornée.
- 4. En utilisant la fonction Matlab conv, donner la réponse du système à une sinusoïde de fréquence 1Hz, échantillonnée à 1000Hz pendant 50ms.

Remarques

Rép. d'un SDLIT à une entrée quelconque

- 1. Les pôles peuvent être complexes
- 2. Si des pôles ont des modules supérieurs à un, le système est instable
- 3. Cf. stabilité BIBO

Signaux et Systèmes

Rép. d'un SDLIT à une entrée quelconque

- La Transformée en z
- Obtention de la Réponse Impulsionnelle
- 4 Fonction de transfert en z

Théorème du retard

Rép. d'un SDLIT à une entrée quelconque

Si x(n) et X(z) sont des paires de transformées. Alors la transformée de:

$$y(n) = x(n-m)$$

est:

$$Y(z) = z^{-m}X(z)$$

Soient x(n) et X(z) une paire de transformées. Quelle est la transformée de y(n) = x(n-m)?

$$Y(z) = \sum_{n=0}^{+\infty} x(n-m) \cdot z^{-n}$$

Rép. d'un SDLIT à une entrée quelconque

Soient x(n) et X(z) une paire de transformées. Quelle est la transformée de y(n) = x(n-m)?

$$Y(z) = \sum_{n=0}^{+\infty} x(n-m) \cdot z^{-n}$$

Posons k = n - m, alors :

$$Y(z) = \sum_{k=-m}^{+\infty} x(k) \cdot z^{-k-m}$$
$$= z^{-m} \sum_{k=-m}^{+\infty} x(k) \cdot z^{-k}$$

Fct. de trsf. en z

Rép. d'un SDLIT à une entrée quelconque

Soient x(n) et X(z) une paire de transformées. Quelle est la transformée de y(n) = x(n-m)?

$$Y(z) = \sum_{n=0}^{+\infty} x(n-m) \cdot z^{-n}$$

Posons k = n - m, alors :

$$Y(z) = \sum_{k=-m}^{+\infty} x(k) \cdot z^{-k-m}$$
$$= z^{-m} \sum_{k=-m}^{+\infty} x(k) \cdot z^{-k}$$
$$= z^{-m} \sum_{k=0}^{+\infty} x(k) \cdot z^{-k}$$

car x(k) = 0 si k < 0. Finalement :

Soient x(n) et X(z) une paire de transformées. Quelle est la transformée de y(n) = x(n-m)?

$$Y(z) = \sum_{n=0}^{+\infty} x(n-m) \cdot z^{-n}$$

Posons k = n - m, alors :

$$Y(z) = \sum_{k=-m}^{+\infty} x(k) \cdot z^{-k-m}$$
$$= z^{-m} \sum_{k=-m}^{+\infty} x(k) \cdot z^{-k}$$
$$= z^{-m} \sum_{k=0}^{+\infty} x(k) \cdot z^{-k}$$

car x(k) = 0 si k < 0. Finalement :

$$Y(z) = z^{-m}X(z)$$

Linéarité

Rép. d'un SDLIT à une entrée quelconque

Si $x_1(n)$, $X_1(z)$ et $x_2(n)$, $X_2(z)$ sont des paires de transformées. Alors la transformée en z de :

$$y(n) = \alpha x_1(n) + \beta x_2(n)$$

est:

$$Y(z) = \alpha X_1(Z) + \beta X_2(z)$$

Fct. de trsf. en z 0000000

Rép. d'un SDLIT à une entrée quelconque

$$Y(z) = \sum_{n=0}^{+\infty} [\alpha x_1(n) + \beta x_2(n)] \cdot z^{-n}$$

Rép. d'un SDLIT à une entrée quelconque

$$Y(z) = \sum_{n=0}^{+\infty} [\alpha x_1(n) + \beta x_2(n)] \cdot z^{-n}$$

=
$$\sum_{n=0}^{+\infty} \alpha x_1(n) \cdot z^{-n} + \sum_{n=0}^{+\infty} \beta x_2(n) \cdot z^{-n}$$

$$Y(z) = \sum_{n=0}^{+\infty} [\alpha x_1(n) + \beta x_2(n)] \cdot z^{-n}$$

$$= \sum_{n=0}^{+\infty} \alpha x_1(n) \cdot z^{-n} + \sum_{n=0}^{+\infty} \beta x_2(n) \cdot z^{-n}$$

$$= \alpha \sum_{n=0}^{+\infty} x_1(n) \cdot z^{-n} + \beta \sum_{n=0}^{+\infty} x_2(n) \cdot z^{-n}$$

$$Y(z) = \sum_{n=0}^{+\infty} [\alpha x_1(n) + \beta x_2(n)] \cdot z^{-n}$$

$$= \sum_{n=0}^{+\infty} \alpha x_1(n) \cdot z^{-n} + \sum_{n=0}^{+\infty} \beta x_2(n) \cdot z^{-n}$$

$$= \alpha \sum_{n=0}^{+\infty} x_1(n) \cdot z^{-n} + \beta \sum_{n=0}^{+\infty} x_2(n) \cdot z^{-n}$$

$$= \alpha X_1(z) + \beta X_2(z)$$

À partir de la forme générale de l'EAD :

$$s(n) = \sum_{k=0}^{N-1} b(k)e(n-k) - \sum_{k=1}^{M-1} a(k)s(n-k)$$

et des deux résultats précédents, il est possible d'en déduire la forme générale de la fonction de transfert $\mathcal{H}(z)$:

$$\mathcal{H}(z) = \frac{\sum_{k=0}^{N-1} b(k) \cdot z^{-k}}{1 + \sum_{k=1}^{M-1} a(k) \cdot z^{-k}}$$

Fct. de trsf. en z

Que l'on peut réécrire de la facon suivante :

$$\mathcal{H}(z) = \frac{b(0) + b(1)z^{-1} + b(2)z^{-2} + \dots + b(N-1)z^{-N+1}}{1 + a(1)z^{-1} + a(2)z^{-2} + \dots + a(M-1)z^{-M+1}}$$
$$= z^{M-N}b(0) \cdot \frac{(z - z_0)(z - z_1)(z - z_2) \dots (z - z_{N-1})}{(z - p_0)(z - p_1)(z - p_2) \dots (z - p_{M-1})}$$

Que l'on peut réécrire de la façon suivante :

$$\mathcal{H}(z) = \frac{b(0) + b(1)z^{-1} + b(2)z^{-2} + \dots + b(N-1)z^{-N+1}}{1 + a(1)z^{-1} + a(2)z^{-2} + \dots + a(M-1)z^{-M+1}}$$
$$= z^{M-N}b(0) \cdot \frac{(z - z_0)(z - z_1)(z - z_2) \dots (z - z_{N-1})}{(z - p_0)(z - p_1)(z - p_2) \dots (z - p_{M-1})}$$

Remarques

- 1. Les z_i sont les zéros de $\mathcal{H}(z)$
- 2. Les p_i sont les pôles de $\mathcal{H}(z)$
- 3. Le système est stable si tous les pôles ont des modules inférieurs àun

Signaux et Systèmes

- Réponse d'un SDLIT à une entrée quelconque
- 2 La Transformée en z
- 3 Obtention de la Réponse Impulsionnelle
- 4 Fonction de transfert en z
- 6 Home work!

Exercice III - Calculs de Réponses Impulsionnelles

Pour les systèmes caractérisés par les fonctions de transfert en z suivantes :

$$\begin{aligned} \mathcal{H}_3(z) &= \frac{1}{3} + \frac{2}{3}z^{-1} + \frac{1}{3}z^{-2} \\ \mathcal{H}_4(z) &= \frac{1}{1+z^{-1}} \\ \mathcal{H}_5(z) &= \frac{1}{(1-\frac{1}{2}z^{-1})(1+2z^{-1})} \end{aligned}$$

Rép. d'un SDLIT à une entrée quelconque

- 1. Donner les valeurs des pôles de la fonction rationnelle
- 2. Donner l'expression de la réponse impulsionnelle
- 3. La réponse impulsionnelle converge-t-elle vers zéro pour *n* grand ? Concluez quant au comportement de la sortie du système à une entrée bornée