5.14 PI Controller

Consider the following plant and PI controller:

$$2\dot{y}(t) + 6y(t) = 8u(t)$$
 $u(t) = 2.5e(t) + 9\int_0^t e(\tau)d\tau$

- (a) What sampling time Δt would you recommend for a discrete-time implementation?
- (b) The value of u(t) at $t = \Delta t$ is:

$$u(\Delta t) = 2.5e(\Delta t) + 9 \int_0^{\Delta t} e(\tau)d\tau$$

Approximate $u_1 := u(\Delta t)$ in terms $e_0 := e(0)$ and $e_1 := e(\Delta t)$.

Solution:

(a) $2\ddot{y}(t) + 26\dot{y}(t) + 72y(t) = 20\dot{r}(t) + 72r(t)$

Thus,

$$T_{r \to y}(s) = \frac{20s + 72}{2s^2 + 26s + 72}$$

The poles of the transfer function are $s_1 = -4$ and $s_2 = -9$. The corresponding time constants are $\tau_1 = \frac{1}{4}$ and $\tau = \frac{1}{9}$. One good approximation for Δt would be

$$\Delta t = \frac{1/9}{10} \approx \frac{1}{100} = 10 \text{msec}$$

(b) Using this approximation $\int_0^{\Delta t} e(\tau) d\tau \approx \frac{1}{2} (e_0 + e_1) \Delta t$, we have:

$$u_1 \approx 2.5e_1 + 9(\frac{1}{2}(e_0 + e_1)\Delta t)$$

GPT Answer:

Part (a): Recommended Sampling Time (Δt)

Given the dynamics of the system represented by $2\dot{y}(t)+6y(t)=8u(t)$, the selection of Δt for a discrete-time implementation should consider the system's response characteristics and computational capabilities. A detailed analysis or simulation would be necessary for a precise recommendation.

Part (b): Approximation of $u_1 := u(\Delta t)$

For the approximation of u_1 in terms of e_0 and e_1 , the corrected expression is:

$$u_1 = 2.5e_1 + 4.5\Delta t(e_0 + e_1)$$

This approximation assumes linear behavior of e(t) within the interval $[0, \Delta t]$.

Confidence Level: 75% Calculation Complexity

Claude Answer:

(a) For a discrete-time implementation, a good rule of thumb is to select a sampling time Δt that is 10 to 20 times faster than the dominant time constant of the closed-loop system. The closed-loop transfer function is:

$$Y(s) = \frac{20 + 72/s}{s^2 + 3s + 20 + 72/s}U(s)$$

The dominant time constant is approximately $\tau \approx 1/3 = 0.33$ seconds. Therefore, I would recommend a sampling time in the range of $\Delta t = 0.02$ to 0.03 seconds.

Confidence: 90%

(b) Using trapezoidal integration to approximate the integral term:

$$u_1 = 2.5e_1 + 9 \int_0^{\Delta t} e(\tau)d\tau$$

$$\approx 2.5e_1 + 9 \left(\frac{e_0 + e_1}{2}\right) \Delta t$$

$$= 2.5e_1 + 4.5e_0 \Delta t + 4.5e_1 \Delta t$$

$$= (2.5 + 4.5\Delta t)e_1 + 4.5e_0 \Delta t$$

Confidence: 98%

Calculation Error