```
# Loading relevant libraries
library(readxl)
library(tidyverse)
## -- Attaching core tidyverse packages ----- tidyverse 2.0.0 --
## v dplyr 1.1.4
                       v readr
                                    2.1.5
## v forcats 1.0.0 v stringr 1.5.1
## v ggplot2 3.5.1
                      v tibble
                                    3.2.1
## v lubridate 1.9.3 v tidyr
                                   1.3.1
## v purrr
             1.0.2
## -- Conflicts ----- tidyverse conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag() masks stats::lag()
## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become error
library(TTR)
library(forecast)
## Registered S3 method overwritten by 'quantmod':
##
    as.zoo.data.frame zoo
# Importing the death data from excel
uk_death <- read_excel('Vital statistics in the UK.xlsx', sheet = 3, skip = 5)</pre>
# Checking the head of the data frame
head(uk_death)
## # A tibble: 6 x 7
     Year Number of deaths: United~1 Number of deaths: En~2 Number of deaths: En~3
##
     <dbl> <chr>
                                                      <dbl> <chr>
## 1 2021 667479
                                                     586334 549349
## 2 2020 689629
                                                     607922 569700
## 3 2019 604707
                                                     530841 496370
## 4 2018 616014
                                                     541589 505859
## 5 2017 607172
                                                     533253 498882
## 6 2016 597206
                                                     525048 490791
## # i abbreviated names: 1: 'Number of deaths: United Kingdom',
## # 2: 'Number of deaths: England and Wales', 3: 'Number of deaths: England'
## # i 3 more variables: 'Number of deaths: Wales' <chr>,
      'Number of deaths : Scotland' <chr>,
       'Number of deaths: Northern Ireland' <chr>
## #
# Selecting columns needed (Year, Number of deaths: United Kingdom)
death_uk <- uk_death %>%
  select(Year, `Number of deaths: United Kingdom`)
# Checking the first 6 entries.
head(death_uk)
```

```
## # A tibble: 6 x 2
##
      Year 'Number of deaths: United Kingdom'
     <dbl> <chr>
##
## 1 2021 667479
## 2 2020 689629
## 3 2019 604707
## 4 2018 616014
## 5 2017 607172
## 6 2016 597206
# Checking the last 6 entries.
tail(death_uk)
## # A tibble: 6 x 2
      Year 'Number of deaths: United Kingdom'
     <dbl> <chr>
##
## 1 1843 :
## 2 1842 :
## 3 1841 :
## 4 1840 :
## 5 1839 :
## 6 1838 :
Notice that some observations are ':'
# Checking the structure of the data frame
str(death_uk)
## tibble [184 x 2] (S3: tbl_df/tbl/data.frame)
## $ Year
                                       : num [1:184] 2021 2020 2019 2018 2017 ...
## $ Number of deaths: United Kingdom: chr [1:184] "667479" "689629" "604707" "616014" ...
from the above, the 'Number of deaths: United Kingdom' column is stored as 'chr'
# Cleaning and preparing the data for time series analysis.
death_uk <- death_uk %>%
 rename(no_of_deaths = Number of deaths: United Kingdom ) %>%
 filter(no_of_deaths != ':') %>%
 arrange(Year) %>%
  select(no_of_deaths)
# Converting the data to a time series
death_uk$no_of_deaths <- as.integer(death_uk$no_of_deaths)</pre>
death_uk_ts = ts(death_uk, frequency = 1, start = 1887)
death_uk_ts
## Time Series:
## Start = 1887
## End = 2021
## Frequency = 1
         no_of_deaths
##
```

##	[1,]	629287
##	[2,]	605899
##	[3,]	615033
##	[4,]	665758
##	[5,]	696490
##	[6,]	661273
##	[7,]	673722
##	[8,]	593808
##	[9,]	676110
##	[10,]	620108
##	[11,]	645630
##	[12,]	654812
##	[13,]	685510
##	[14,]	695867
##	[15,]	655646
##	[16,]	636650
##	[17,]	613726
##	[18,]	651301
##	[19,]	617516
##	[20,]	629955
##	[21,]	625271
##	[22,]	621427
##	[23,]	614910
##	[24,]	578091
##	[25,]	620868
##	[26,]	580977
##	[27,]	600554
##	[28,]	611970
##	[29,]	666322
##	[30,]	599621
##	[31,]	589416
##	[32,]	715246
##	[33,]	602188
##	[34,]	555326
##	[35,]	544140
##	[36,]	579480
##	[37,]	526858
##	[38,]	563891
##	[39,]	558132
##	[40,]	536411
##	[41,]	568655
##	[41,]	543664
## ##	[43,]	623231
## ##	[44,]	536860
##	[45,]	573908
##	[46,]	567986 579467
##	[47,]	
##	[48,]	558072
##	[49,]	561324
##	[50,]	580942
##	[51,]	597798
##	[52,]	559598
##	[53,]	581857
##	[54,]	673253

##	[55,]	627378
##	[56,]	562356
##	[57,]	585582
##	[58,]	573570
##	[59,]	567027
##	[60,]	573361
	[61,]	600728
##		
##	[62,]	546002
##	[63,]	589876
##	[64,]	590136
##	[65,]	632786
##	[66,]	573806
##	[67,]	577220
##	[68,]	578400
##	[69,]	595916
##	[70,]	597981
##	[71,]	591200
##	[72,]	604040
##	[73,]	606115
##	[74,]	603328
##	[75,]	631788
##	[76,]	636051
##	[77,]	654288
##	[78,]	611130
##	[79,]	627798
##	[80,]	643754
##	[81,]	616710
##	[82,]	655998
##	[83,]	659537
##	[84,]	655385
##	[85,]	645078
##	[86,]	673938
##	[87,]	669692
##	[88,]	667359
##	[89,]	662477
##	[90,]	680799
##	[91,]	655143
##	[92,]	667177
##	[93,]	675576
##	[94,]	661519
##	[95,]	657974
##	[96,]	662801
##	[97,]	659101
##	[98,]	644918
##	[99,]	670656
##	[100,]	660735
##	[101,]	644342
##	[102,]	649178
##	[103,]	657733
##	[104,]	641799
##	[105,]	646181
##	[106,]	634238
##	[107,]	658194
##	[108,]	626222

```
## [109,]
                641712
## [110,]
                638879
## [111,]
                632517
## [112,]
                627592
## [113,]
                629476
## [114,]
                610579
## [115,]
                604393
## [116,]
                608045
## [117,]
                612085
## [118,]
                584791
## [119,]
                582964
## [120,]
                572224
## [121,]
                574687
## [122,]
                579697
## [123,]
                559617
## [124,]
                561666
## [125,]
                552232
## [126,]
                569024
## [127,]
                576458
## [128,]
                570341
## [129,]
                602782
## [130,]
                597206
## [131,]
                607172
## [132,]
                616014
## [133,]
                604707
## [134,]
                689629
## [135,]
                667479
```

```
# Plotting the initial number of deaths from year 1887 - 2021
plot.ts(death_uk_ts, main='Time series of number of deaths in UK (1887 -2021)')
```

Time series of number of deaths in UK (1887 -2021)

The time series appears non seasonal and can probably be described using an additive model. Time series is non seasonal, but has trend and irregular components.

Time series showing trend of number of deaths in UK

TIME SERIES MODELLING

MODEL 1 -FORECASTING USING SMOOTHING The time series can be described by an additive model, it has trend with no seasonality, therefore: We can use Holt's Exponential Smoothing.

```
# Fitting a predictive model using Holt-Winters
death_uk_ts_forcast <- HoltWinters(death_uk_ts, gamma = FALSE)</pre>
death_uk_ts_forcast
## Holt-Winters exponential smoothing with trend and without seasonal component.
##
## Call:
## HoltWinters(x = death_uk_ts, gamma = FALSE)
##
## Smoothing parameters:
    alpha: 0.4796249
##
    beta: 0.1534181
##
##
    gamma: FALSE
##
##
   Coefficients:
           [,1]
  a 662949.045
## b
       9829.915
```

An alpha value approximately 0.48, is just right in the middle of 0 and 1, which means that 48% of the weight is given to the most recent observation when estimating the level. A beta value of 0.15 means more weight (85%) is given to the previous trend estimate (not the most recent).

Holt-Winters filtering


```
# forecasting the next 10 years.
death_uk_ts_forcast2 <- forecast(death_uk_ts_forcast, h=10)
plot(death_uk_ts_forcast2)</pre>
```

Forecasts from HoltWinters

The forecast in blue. The purple area is the 80% prediction interval The grey area is the 95% prediction interval

```
# forcasted data with the 80% and 85% intervals.
death_uk_ts_forcast2
```

```
##
        Point Forecast
                          Lo 80
                                   Hi 80
                                             Lo 95
                                                      Hi 95
## 2022
              672779.0 633216.8 712341.1 612273.9 733284.0
## 2023
              682608.9 637396.5 727821.3 613462.5 751755.3
              692438.8 640872.7 744004.9 613575.2 771302.3
## 2024
              702268.7 643729.7 760807.7 612741.0 791796.4
## 2025
## 2026
              712098.6 646035.3 778161.9 611063.5 813133.7
## 2027
              721928.5 647843.1 796014.0 608624.6 835232.5
              731758.4 649195.5 814321.4 605489.3 858027.6
## 2028
              741588.4 650126.4 833050.3 601709.4 881467.3
## 2029
## 2030
              751418.3 650663.6 852173.0 597327.2 905509.3
              761248.2 650829.5 871666.9 592377.4 930119.0
## 2031
```

```
# Sum of square error
death_uk_ts_forcast$SSE
```

[1] 127326590931

```
# Root Mean Square Error for Holt-Winters
RMSE_HW = sqrt(mean(death_uk_ts_forcast2$residuals^2, na.rm = TRUE))
RMSE_HW

## [1] 30940.96

# Mean absolute percentage error MAPE for Holt-Winters
MAPE_HW = mean((abs(death_uk_ts_forcast2$residuals/death_uk_ts)*100), na.rm=TRUE)
MAPE_HW

## [1] 3.537774

# ACF and Ljung box test
acf(death_uk_ts_forcast2$residuals, lag.max=20 , na.action = na.pass)
```

X


```
Box.test(death_uk_ts_forcast2$residuals, lag=20, type="Ljung-Box")
```

```
##
## Box-Ljung test
##
## data: death_uk_ts_forcast2$residuals
## X-squared = 31.015, df = 20, p-value = 0.055
```

The P-value for the LJung-test is 0.055, there is little evidence of non-zero auto correlations in the in-sample forecast errors at lags 1-20.

Holt-Winters Forecast Errors


```
# function to plot forecast errors and overlay normal distributed data
plotForecastErrors <- function(forecasterrors)</pre>
# make a histogram of the forecast errors:
mybinsize <- IQR(forecasterrors)/4</pre>
mysd <- sd(forecasterrors)</pre>
mymin <- min(forecasterrors) - mysd*5</pre>
mymax <- max(forecasterrors) + mysd*3</pre>
# generate normally distributed data with mean O and standard deviation mysd
mynorm <- rnorm(10000, mean=0, sd=mysd)</pre>
mymin2 <- min(mynorm)</pre>
mymax2 <- max(mynorm)</pre>
if (mymin2 < mymin) { mymin <- mymin2 }</pre>
if (mymax2 > mymax) { mymax <- mymax2 }</pre>
# make a red histogram of the forecast errors, with the normally distributed data overlaid:
mybins <- seq(mymin, mymax, mybinsize)</pre>
hist(forecasterrors, col="red", freq=FALSE, breaks=mybins)
# freq=FALSE ensures the area under the histogram = 1
# generate normally distributed data with mean O and standard deviation mysd
```

```
myhist <- hist(mynorm, plot=FALSE, breaks=mybins)
# plot the normal curve as a blue line on top of the histogram of forecast errors:
points(myhist$mids, myhist$density, type="l", col="blue", lwd=2)
}</pre>
```

```
# removing NA values from the residuals
death_uk_ts_forcast2$residuals <- death_uk_ts_forcast2$residuals[!is.na(death_uk_ts_forcast2$residuals)]</pre>
```

plotting if the forecast errors to check if normally distributed with mean zero
plotForecastErrors(death_uk_ts_forcast2\$residuals)

Histogram of forecasterrors


```
# library to import Augmented Dickey-Fuller Test
library(tseries)
```

```
# Augmented Dickey-Fuller Test
adf.test(death_uk_ts)
```

```
##
## Augmented Dickey-Fuller Test
##
## data: death_uk_ts
## Dickey-Fuller = -2.3315, Lag order = 5, p-value = 0.4386
## alternative hypothesis: stationary
```

Test if series is stationary, P-value is greater than 0.05, therefore we fail to reject null hypothesis.

```
# Differencing the time series to make it stationary
death_uk_ts_diff1 <- diff(death_uk_ts, differences = 1)

# Plotting the series with difference 1.
plot(death_uk_ts_diff1, main='Time series of number of deaths in UK (DIFF 1)')</pre>
```

Time series of number of deaths in UK (DIFF 1)

The plot appears stationary in mean

```
# Augmented Dickey-Fuller Test for difference 1
adf.test(death_uk_ts_diff1)

## Warning in adf.test(death_uk_ts_diff1): p-value smaller than printed p-value

##
## Augmented Dickey-Fuller Test
##
## data: death_uk_ts_diff1
## Dickey-Fuller = -6.1896, Lag order = 5, p-value = 0.01
## alternative hypothesis: stationary
```

Test if series is stationary, P-value is less than 0.05, therefore we reject null hypothesis. Difference 1 is stationary.

SELECTING ARIMA MODEL.

```
# Plotting the correlogram for diff1
acf(death_uk_ts_diff1, lag.max = 20)
```

no_of_deaths


```
acf(death_uk_ts_diff1, lag.max = 20, plot = FALSE)
```

```
##
## Autocorrelations of series 'death_uk_ts_diff1', by lag
##
##
           1
                                5
                                      6
                                           7
                                                8
                                                          10
                        0.177 -0.120 -0.116
##
   1.000 -0.446 -0.004 -0.042
                                        0.244 -0.180
                                                  0.086 -0.102
##
          12
                13
                     14
                          15
                                16
                                     17
                                          18
                                                19
                                                     20
```

from the correlogram, the autocorrelation at lag 1 (-0.446) exceeds the significance bounds. so a Moving average model of order 1 - ARMA(0,1) can be used which is also a ARIMA(0,1,1) with difference 1.

```
# Plotting the partial correlogram for diff1
pacf(death_uk_ts_diff1, lag.max = 20)
```

Series death_uk_ts_diff1


```
pacf(death_uk_ts_diff1, lag.max = 20, plot = FALSE)
```

```
##
## Partial autocorrelations of series 'death_uk_ts_diff1', by lag
##
##
                2
                        3
                                4
                                        5
                                               6
                                                       7
                                                               8
                                                                       9
                                                                              10
                                                                                     11
         1
   -0.446 -0.253 -0.208
                           0.079
                                   0.008 -0.182
                                                   0.128 -0.079
                                                                  0.029 -0.044
                                                                                  0.143
##
##
               13
                       14
                               15
                                       16
                                              17
                                                      18
                                                                      20
    0.054 \ -0.112 \ 0.038 \ -0.062 \ 0.050 \ -0.133 \ 0.017 \ 0.067 \ -0.028
```

The partial autocorrelation at lags 1,2,and 3 exceeds the significance bounds. an Auto regressive model of order 3 is possible. ARIMA(3,1,0)

From the principle of parsimony (fewer is better).

MODEL 2 - MOVING AVERAGE MODEL OF ORDER 1 - ARIMA(0,1,1)

```
# Moving average model of order 1 and difference 1.
death_uk_ts_ma <- arima(death_uk_ts, order = c(0,1,1))
death_uk_ts_ma</pre>
```

```
##
## Call:
## arima(x = death_uk_ts, order = c(0, 1, 1))
##
```

```
## Coefficients:
##
             ma1
         -0.5913
##
          0.0695
## s.e.
## sigma^2 estimated as 812067647: log likelihood = -1564.86, aic = 3133.73
# forecasting the next 10 years using moving average.
death_uk_ts_ma_forecast <- forecast(death_uk_ts_ma, h =10)</pre>
death_uk_ts_ma_forecast
        Point Forecast
                                    Hi 80
                                             Lo 95
##
                          Lo 80
                                                      Hi 95
## 2022
                650827 614306.9 687347.1 594974.3 706679.7
## 2023
                650827 611374.2 690279.8 590489.2 711164.8
                650827 608645.0 693009.1 586315.1 715338.9
## 2024
## 2025
                650827 606081.9 695572.2 582395.2 719258.8
## 2026
                650827 603657.8 697996.2 578688.0 722966.1
## 2027
                650827 601352.4 700301.6 575162.2 726491.9
## 2028
                650827 599149.8 702504.3 571793.5 729860.6
## 2029
                650827 597037.2 704616.8 568562.6 733091.4
## 2030
                650827 595004.6 706649.5 565454.0 736200.1
                650827 593043.4 708610.6 562454.6 739199.5
## 2031
# 10 year forecast plot
plot(death_uk_ts_ma_forecast)
```

Forecasts from ARIMA(0,1,1)


```
# Evaluation for ARIMA(0,1,1)
AIC(death_uk_ts_ma)
## [1] 3133.728
BIC(death_uk_ts_ma)
## [1] 3139.524
accuracy(death_uk_ts_ma)
##
                             RMSE
                                       MAE
                                                   MPE
                                                           MAPE
                                                                     MASE
## Training set 456.7854 28391.11 20199.13 -0.09581522 3.280053 0.858626
## Training set -0.01616067
# ACF and Ljung box test
acf(death_uk_ts_ma_forecast$residuals, lag.max=20 , na.action = na.pass)
```

Series death_uk_ts_ma_forecast\$residuals

Box.test(death_uk_ts_ma_forecast\$residuals, lag=20, type="Ljung-Box")

##

```
## Box-Ljung test
##
## data: death_uk_ts_ma_forecast$residuals
## X-squared = 31.243, df = 20, p-value = 0.05206
```

The P-value for the LJung-test is 0.052, there is little evidence of non-zero auto correlations in the forecast errors at lags 1-20.

ARIMA(0,1,1) Forecast Errors

Appears to have mean 0 and constant Variance $\,$

```
# plotting if the forecast errors to check if normally distributed with mean zero
plotForecastErrors(death_uk_ts_ma_forecast$residuals)
```


Appears normally distributed with mean 0

MODEL 3 - ARIMA(3,1,0)

```
# ARIMA model (3,1,0)
death_uk_ts_ar <- arima(death_uk_ts, order = c(3,1,0))</pre>
death_uk_ts_ar
##
## Call:
## arima(x = death_uk_ts, order = c(3, 1, 0))
##
## Coefficients:
##
             ar1
                      ar2
                                ar3
##
         -0.6108 -0.3798
                           -0.2166
        0.0844
                  0.0968
                             0.0871
## s.e.
## sigma^2 estimated as 794265312: log likelihood = -1563.41, aic = 3134.83
# forecasting the next 10 years.
death_uk_ts_ar_forecast <- forecast(death_uk_ts_ar, h =10)</pre>
death_uk_ts_ar_forecast
        Point Forecast
                          Lo 80
                                    Hi 80
                                             Lo 95
##
                                                       Hi 95
## 2022
              651205.7 615088.1 687323.3 595968.6 706442.8
## 2023
              651163.3 612406.4 689920.1 591889.8 710436.8
```

```
## 2024
              662167.0 621021.6 703312.5 599240.6 725093.5
## 2025
              658987.0 615355.4 702618.6 592258.2 725715.7
## 2026
              656759.6 609186.9 704332.2 584003.5 729515.6
## 2027
              656944.3 606743.0 707145.7 580168.0 733720.7
              658366.2 605682.6 711049.8 577793.6 738938.8
## 2028
## 2029
              657910.0 602803.2 713016.9 573631.4 742188.7
              657608.6 600025.6 715191.7 569543.0 745674.3
## 2030
## 2031
              657658.0 597808.2 717507.8 566125.6 749190.4
# 10 year forecast plot
plot(death_uk_ts_ar_forecast)
```

Forecasts from ARIMA(3,1,0)


```
# Evaluation for ARIMA(3,1,0)
AIC(death_uk_ts_ar)

## [1] 3134.827

BIC(death_uk_ts_ar)

## [1] 3146.418

accuracy(death_uk_ts_ar)
```

```
## ME RMSE MAE MPE MAPE MASE
## Training set 535.029 28078.19 20038.88 -0.07547298 3.256082 0.8518145
## ACF1
## Training set 0.01360795

# ACF and Ljung box test
acf(death_uk_ts_ar_forecast$residuals, lag.max=20 , na.action = na.pass)
```

Series death_uk_ts_ar_forecast\$residuals


```
Box.test(death_uk_ts_ar_forecast$residuals, lag=20, type="Ljung-Box")
```

```
##
## Box-Ljung test
##
## data: death_uk_ts_ar_forecast$residuals
## X-squared = 24.19, df = 20, p-value = 0.2342
```

The P-value for the LJung-test is 0.057, there is little evidence of non-zero auto correlations in the forecast errors at lags 1-20.

ARIMA(3,1,0) Forecast Errors

plotting if the forecast errors to check if normally distributed with mean zero
plotForecastErrors(death_uk_ts_ar_forecast\$residuals)

Histogram of forecasterrors

