Lemma 1: if f is closed and Garrex, then all the following are equivalent: $J \in \partial f(x) \iff x \in \partial f'(y) \iff x^T y = f(x) + f(y)$
Proof: if $j \in \partial f(x)$, then $f'(y) = \max_{u} (y^{T}u - f(u)) = yx - f(x)$
: f'(v) = max (vu-f(u))
$7/x^{2}(x-f(x))$, $+x^{2}y-x^{2}y$ $7/x^{2}(x-y)=f(x)+y^{2}x$, $f(y)=y^{2}x-f(x)$ $7/f^{2}(y)+x^{2}(x-y)$
This holds for all v, therefor $X \in \partial f^*(y)$, by Comparison to the definition of the Subgradient.
definition to the Subgradient.
Since f*====================================
- Main proof: xy-f*(y) has aunique maximizer y for every x
y maximizes xy-f*(y) iff x∈ ∂f*(y) [from Lemma]
$x \in \partial f^*(y) \iff y \in \partial f(x) = \{ \nabla f(x) \}$
$\left[: \nabla f(x) = \operatorname{argmax}(x \overline{y} - f(y)) \right]$