HUMAN ACTIVITY RECOGNITION (HAR) USING SMARTPHONE SENSOR DATA

Project Summary

This project aims to classify human activities using smartphone sensor data. Motion data from accelerometers and gyroscopes is collected and analyzed using machine learning models to recognize activities such as *walking*, *standing*, *sitting*, *lying down*, *and stair movement*.

Dataset Overview

Source: UCI.csv

Size: 10,299 rows × 562 columns

Features: Various statistical metrics (mean, std, min, max, skewness, etc.)

Class Distribution: Slight imbalance among activity types

Missing Values: None

Data Preprocessing Steps

- Handling missing values
- Encoding categorical variables
- Removing outliers (Z-score method)
- Feature scaling
- Removing duplicates

Exploratory Data Analysis (EDA) Insights

- -Class Imbalance: Detected in some activity classes
- Sensor Correlations: Strong relationships among acceleration features
- Outliers: Observed in accelerometer data
- Key Visualizations: Histograms, correlation heatmaps, PCA plots, and activity trends

Next Steps: Model Training

- Applying Random Forest, SVM, and Neural Networks
- Evaluating models using accuracy, F1-score, and precision-recall
- Optimizing with **hyperparameter tuning**
- Deploying the final model for **real-time activity classification**

Repository Structure

HAR_Project

► data (raw & processed datasets)

► protebooks (EDA, preprocessing, modeling)

► scripts (training models)

► visuals (plots & reports)

- README.md, final report.pdf

Contributors

-Project Leader: Esther Wachira

- GitHub Manager: Jeff Omondi

- Data Preprocessing & Modeling: Linda Chepngeno

- Visualization & Storytelling: Moris Gachanja

- Blog Writer: Tracey Mugo

License

This project is open-source under the MIT License.