

P5: Segmentez des clients d'un site e-commerce

22/06/2022 DUBART Maxime

Identifier les différents types d'utilisateurs

Bons vs. moins bons clients en termes de commandes et satisfaction

Analyse de stabilité des segments

Fréquence de mise à jour et contrat de maintenance

RFM (récence, fréquence, montant)

Récence : temps depuis le dernier achat

Fréquence : fréquence des achats sur la période

Montant : montant des achats sur la période

Extension (RFMe)

<u>Satisfaction</u>: satisfaction moyenne

Données disponibles

Récence Fréquence Montant Sotisfaction

Orders: table des commandes

Champs d'intérêt : order_id, customer_id, order_status, order_approved_at

<u>Customers</u>: table des clients

Champs d'intérêt : customer_id, customer_unique_id

Payments: table des paiements (possiblement fractionnés)

Champs d'intérêt : order_id, payment_value

<u>Reviews</u>: table des avis / notes clients par commande

Champs d'intérêt : order_id, review_score

RFM

RFM

Clients avec une commande

RFM

Clients avec une commande

Clients avec plus d'une commande (env. 3%)

RFMe

Difficile à représenter en 4D Réduction de dimension (t-SNE)

Pas de segmentation claire

Méthodes

K-means

Clustering hiérarchique

DBScan

k-means

Meilleur \mathbf{k} a priori : k = 5

Distortion (wcss):
$$\sum_{i}^{N} d(x_i, K(i))^2$$

k-means

Meilleur \mathbf{k} a priori : $\mathbf{k} = 5$

Groupe #1 (33%): vielle
Groupe #2 (44%): récente
Groupe #3 (17%): ?
Groupe #4 (2%): un montant très important

k-means

Meilleur \mathbf{k} a priori : k = 5

Groupe #1 (33%): vielle
Groupe #2 (44%): récente
Groupe #3 (17%): ?
Groupe #4 (2%): un montant très important

k-means

Meilleur \mathbf{k} a priori : $\mathbf{k} = 5$

Groupe #1 (33%): vielle
Groupe #2 (44%): récente
Groupe #3 (17%): ?
Groupe #4 (2%): un montant très important

Faut-il conserver le groupe #4 ? À voir avec le client

k-means

Meilleur \mathbf{k} a priori : $\mathbf{k} = 5$

Groupe #1 (33%): vielle Groupe #2 (44%): récente Groupe #3 (17%): ? Groupe #4 (2%): un montant très important

Stabilité

Calcule de l'ARI entre prédictions de modèles entrainés sur des échantillons aléatoires (20% et 30% des données), répété 20x

 $ARI = 0.98 \pm 0.0072$

Clustering hiérarchique (k=5) – entrainement 30%

Configurations alternatives

Clustering hiérarchique (k=5)

Stabilité

Calcule de l'ARI entre prédictions de modèles (via knn) entrainés sur des échantillons aléatoires (30% des données), répété 5x

 $ARI = 0.46 \pm 0.15$

Comparé au k-means

 $ARI = 0.56 \pm 0.09$

Clustering hiérarchique (k=5)

Stabilité

Calcule de l'ARI entre prédictions de modèles (via knn) entrainés sur des échantillons aléatoires (30% des données), répété 5x

 $ARI = 0.46 \pm 0.15$

Comparé au k-means

 $ARI = 0.56 \pm 0.09$

Clustering hiérarchique (k=5)

Hierarchical clustering

Clustering hiérarchique (k=5)

Hierarchical clustering

Clustering hiérarchique (k=5)

Bons clients

Montants importants

Hierarchical clustering

Clustering hiérarchique (k=5)

Segmentation moins claire / moins stable que k-means

Ne permet pas (par défaut) la segmentation de nouveau clients

Difficile à utiliser sur grand jeu de données

DBscan

Heuristique pour déterminer les hyper-paramètres (ε, minPts)

 ε : calculer pour chaque point de l'espace la distance à son plus proche voisin. Prendre ε tel qu'une part « suffisamment grande » des points aient une distance à son plus proche voisin inférieure à ε

minPts: calculer pour chaque point le nombre de ses voisins dans un rayon de taille ε (la taille de son ε -voisinage). Prendre MinPts tel qu'une part « suffisamment grande » des points aient plus de MinPts points dans leur ε -voisinage.

$$(\epsilon, minPts) = (0.046, 1)$$

754 clusters identifiés ... Dbscan non adapté (données non homogènes, pas de distinction claire)

Conlusion sur méthode clustering

K-means: produits segments stables, répétables, logiques

Hclust: segmentation instable

DBScan: inadapté

Fréquence de mise à jour ?

Fréquence de mise à jour ?

Fréquence de mise à jour ?

A quel t_x l'ARI < 0.8 (acc. < 0.9) ?

Avec ARI: environ 70/80 jours.

Avec Accuracy: environ 100 jours.

Segments instables?

Segment « bons clients » : très stable

Autres segments : transferts en partie artéfactuels (liés à la standardisation)

Classification k-means permet de segmenter le clients en 5 catégories, facile à décrire (clients avec commande récente / ancienne, avec montant important, avec une fréquence importante, ou mécontents).

Une **maintenance** tous les 2/3 mois permet d'assurer la stabilité des segments.

Transfert vieux -> récents

Transfert vieux -> récents

Transfert récents -> vieux


```
Montant ++
               [[ 1297,
                                                      0],
                             11,
                                      0,
                                              0,
Fréq ++
                      0,
                          1923,
                                      0,
                                              0,
                                                      0],
                                                      0],
                     61,
                              0, 12318,
Pas content
                              0,
                                   336, 20451, 2881],
                   157,
Vieille
                                              0, 27736]],
                   104,
                              0,
                                      0,
Récente
```