Conditional probability estimation and sufficient dimension reduction with support matrix machine

Chanwoo Lee Joint work with Miaoyan Wang

Department of Statistics University of Wisconsin - Madison

May 28, 2020

Introduction: Support Vector Machine

- ▶ Given a set of training data $\{(x_n, y_n) \in \mathbb{R}^d \times \{-1, +1\} : n = 1, ..., N\}$, we would like to learn a model with low error on the training data.
- One successful approach is a support vector machine (SVM).
- ▶ SVM finds an optimal hyperplane $\{x: f(x; \alpha, \beta) = \alpha + \beta^T x = 0\}$ that separate the training data according to the labels.
- ▶ A classification rule induced by $f(x; \alpha, \beta)$ is

$$g(\boldsymbol{x}; \alpha, \boldsymbol{\beta}) = \operatorname{sign}(f(\boldsymbol{x}; \alpha, \boldsymbol{\beta})) = \operatorname{sign}(\alpha + \boldsymbol{\beta}^T \boldsymbol{x}).$$

Introduction: SVM estimation

► The linear SVM solves

$$(\hat{\alpha}_N, \hat{\boldsymbol{\beta}}_N^T)^T = \operatorname*{arg\,min}_{\alpha, \boldsymbol{\beta}} \|\boldsymbol{\beta}\|^2 + \frac{\lambda}{N} \sum_{n=1}^N \left| 1 - y_i(\alpha + \boldsymbol{\beta}^T \boldsymbol{x}_n) \right|_+$$

Using the duality, it can be shown that

$$\hat{oldsymbol{eta}}_N = \sum_{n=1}^N c_n oldsymbol{x}_n \quad ext{ where } c_n \in \mathbb{R}.$$

The case where predictor variables are matrices or higher order tensors

- In many classification problems, the input feature are naturally expressed as matrices or tensors rather than vectors.
 - ex) electroencephalogram (EEG), image classification.
- SVM can not make use of the structure information of the original feature matrix.
- New method is needed, which can consider the correlation between columns and rows in the feature matrix.

Main goals

From a given set of training data

$$\{(\boldsymbol{X}_n, y_m) \in \mathbb{R}^{d_1 \times d_2} \times \{-1, +1\} : n = 1, \dots, N\},\$$

we want to develop estimation methods for

- 1. Classifier (Support Matrix Machine): $g: \mathbb{R}^{d_1 \times d_2} \to \{-1, +1\}$
- 2. Conditional probability: $\mathbb{P}(Y = 1 | X)$
- 3. Sufficient dimension reduction: $Y \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \mid T(X)$
- For 2 and 3, we will focus on linear estimation.

1. Support Matrix Machine (SMM): Linear model

▶ SMM finds an optimal hyperplane that separate the training data,

$$\{X \in \mathbb{R}^{d_1 \times d_2} : f(X; B, \alpha) = \alpha + \langle B, X \rangle \},$$
 (1)

where $\langle \boldsymbol{B}, \boldsymbol{X} \rangle = \operatorname{tr}(\boldsymbol{B}^T \boldsymbol{X})$.

▶ A classification rule induced by $f(X; B, \alpha)$ is

$$\boldsymbol{g}(\boldsymbol{X};\boldsymbol{B},\alpha) = \mathrm{sign}\left(f(\boldsymbol{X};\boldsymbol{B},\alpha)\right) = \mathrm{sign}(\alpha + \langle \boldsymbol{B}, \boldsymbol{X}\rangle).$$

- lackbox When matrix $m{B} \in \mathbb{R}^{d_1 imes d_2}$ is full rank, (1) is the same as SVM.
- lacktriangle To exploit the correlation information of predictor X, we impose low rank structure on B as

$$oldsymbol{B} = oldsymbol{U}oldsymbol{V}^T \quad ext{ where } oldsymbol{U} \in \mathbb{R}^{d_1 imes r}, oldsymbol{V} \in \mathbb{R}^{d_1 imes r}$$

1. SMM estimation: Linear model

The linear SMM solves

$$(\hat{\alpha}_N, \hat{\boldsymbol{U}}_N, \hat{\boldsymbol{V}}_N) = \underset{\alpha, \boldsymbol{U}, \boldsymbol{V}}{\operatorname{arg min}} \|\boldsymbol{U}\boldsymbol{V}^T\|^2 + \frac{\lambda}{N} \sum_{n=1}^N \left| 1 - y_n(\alpha + \langle \boldsymbol{U}\boldsymbol{V}^T, \boldsymbol{X} \rangle) \right|_+.$$
(2)

- We can optimize (2) with a coordinate descent algorithm updating U holding V fixed and vice versa.
- Using the duality, it can be shown that

$$\hat{B}_N = \hat{U}_N \hat{V}_N^T = \sum_{n=1}^{N} c_n H_{\hat{U}_N} X_n H_{\hat{V}_N}$$
 where $H_A = A(A^T A)^{-1} A^T$ (3)

▶ (3) gives us intuition how SMM uses information about the correlation among columns or rows.

1. SMM: Nonlinear model

- Linear boundaries in the enlarged space can translate to nonlinear boundaries in the original space.
- We map original space to enlarged space with feature mapping

$$\boldsymbol{h}: \mathbb{R}^{d_1 \times d_2} \mapsto \mathbb{R}^{d'_1 \times d_2}.$$

Nonlinear SMM finds an optimal hyperplane in enlarged space

$$\{\boldsymbol{h}(\boldsymbol{X}) \in \mathbb{R}^{d_1' \times d_2} : \boldsymbol{f}(\boldsymbol{X}; \boldsymbol{U}, \boldsymbol{V}, \alpha) = \alpha + \langle \boldsymbol{U} \boldsymbol{V}^T, \boldsymbol{h}(\boldsymbol{X}) \rangle \}.$$

1. SMM: Nonlinear model

lacktriangle It can be shown that the solution function f(X) can be written as

$$\begin{split} \boldsymbol{f}(\boldsymbol{X}; \boldsymbol{U}, \boldsymbol{V}, \alpha) &= \alpha + \langle \boldsymbol{U}\boldsymbol{V}^T, \boldsymbol{h}(\boldsymbol{X}) \rangle \\ &= \alpha + \sum_{i=1}^N c_i \mathrm{tr} \left(H_{\boldsymbol{V}} \boldsymbol{h}(\boldsymbol{X})^T \boldsymbol{h}(\boldsymbol{X}_i) \right) \\ &= \alpha + \sum_{i=1}^N c_i \mathrm{tr} \left(H_{\boldsymbol{V}} \boldsymbol{K}(\boldsymbol{X}, \boldsymbol{X}_i) \right), \end{split}$$

where we define $K(X, X') = h(X)^T h(X')$ and $c_i \in \mathbb{R}$.

In fact, we need not specify $m{h}(m{X})$ at all, but require only knowledge of $m{K}(m{X},m{X}').$

1. SMM: Nonlinear kernel functions

There are some kernels that might be used often,

Linear:
$$K(X, X') = X^T X'$$
,

Polynomial:
$$\boldsymbol{K}(\boldsymbol{X}, \boldsymbol{X}') = (\boldsymbol{X}^T \boldsymbol{X}' + \boldsymbol{I}_n)^d,$$

Radial:
$$K(X, X') = \exp((X - X')^T (X - X')/\sigma)$$
.

 $lackbox{lack}$ We transform $m{X}_i^* = egin{pmatrix} 0 & m{X}_i^T \ m{X}_i & 0 \end{pmatrix}$ for symmetric adjustment.

2. Conditional probability estimation

- We estimate conditional probability $\mathbb{P}(Y=1|\boldsymbol{X})$ based on SMM inference where $\boldsymbol{X} \in \mathbb{R}^{d_1 \times d_2}$.
- SMM classifier can be fit in the following regularization frame work with $\mathcal{F} = \{ \boldsymbol{f}(\boldsymbol{X}; \boldsymbol{B}, \alpha) = \alpha + \langle \boldsymbol{B}, \boldsymbol{X} \rangle : \alpha \in \mathbb{R}, \boldsymbol{B} \in \mathbb{R}^{d_1 \times d_2} \} \text{ and } J\left(\boldsymbol{f}(\boldsymbol{X}; \boldsymbol{B}, \alpha)\right) = \|\boldsymbol{B}\|^2.$ sign(f(x)) = G(x) (classifier; classification rule) f: argument function?

$$\min_{\boldsymbol{f} \in \mathcal{F}} J(\boldsymbol{f}) + \frac{\lambda}{N} \sum_{n=1}^{N} \omega_{\pi}(Y_n) \left| 1 - Y_n \boldsymbol{f}(\boldsymbol{X}_n) \right|_{+}, \tag{4}$$

where $\omega_{\pi}(Y) = 1 - \pi$ if Y = 1 and π if Y = -1 with a weight $\pi \in (0, 1)$.

▶ We base our estimation method on the following theorem.

Theorem 1

When $N\to\infty$, minimizing (4) with respect to ${m f}$ targets directly at $sign[\mathbb{P}(Y=1|{m X})-\pi]$

2. Conditional probability estimation: Algorithm

- From a set of training data $\{(\boldsymbol{X}_n,Y_n)\}_{n=1}^N$, we estimate $\mathbb{P}(Y=1|\boldsymbol{X})$ for new predictor $\boldsymbol{X} \in \mathbb{R}^{d_1 \times d_2}$ as follows.
 - 1. Initialize $\pi_h = (h-1)/H$, for h = 1, ..., H+1.
 - 2. Train a weighted margin classifgier for π_h as in (4), for $h=1,\ldots H+1$.
 - 3. Estimate labels of X by sign $\left(\hat{f}_{\pi_h}(X)\right)$.
 - 4. Sort sign $(\hat{f}_{\pi_h}(X))$, $h=1,\ldots,H+1$, and obtain estimated probability $\hat{\mathbb{P}}(Y=1|X)$ as

$$\frac{1}{2} \left(\operatorname*{arg\,max}_{\pi_h} \{ \operatorname{sign}(\hat{\boldsymbol{f}}_{\pi_h}(\boldsymbol{X})) = 1 \} + \operatorname*{arg\,max}_{\pi_h} \{ \operatorname{sign}(\hat{\boldsymbol{f}}_{\pi_h}(\boldsymbol{X})) = -1 \} \right).$$

3. Sufficient Dimension Reduction

For a matrix predictor $m{X} \in \mathbb{R}^{d_1 imes d_2}$, sufficient dimension reduction assumes that

$$Y \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \perp \!\!\! \mid X \mid X \times_1 U \times_2 V, \tag{5}$$

where $\boldsymbol{U} \in \mathbb{R}^{d_1 \times k_1}, \boldsymbol{V} \in \mathbb{R}^{d_2 \times k_2}$.

► We can equivalently express (5) as

$$Y \perp \!\!\! \perp \!\!\! X | \left\{ \left\langle \boldsymbol{u}_{i} \boldsymbol{v}_{j}^{T}, \boldsymbol{X} \right\rangle \right\}_{i \in [k_{1}], j \in [k_{2}]}$$

where u_i is *i*-th column of U and v_i is *j*-th column of V.

▶ The central subspace in matrix case is defined as

$$S_{Y|\boldsymbol{X}} = \bigcap_{\{(\boldsymbol{U},\boldsymbol{V}): Y \perp \!\!\! \perp X \mid \boldsymbol{X} \times_1 \boldsymbol{U} \times_2 \boldsymbol{V}\}} \operatorname{span}(\boldsymbol{U}) \times \operatorname{span}(\boldsymbol{V}),$$

3. Sufficient Dimension Reduction

▶ We can consider the linear principal weighted support matrix machine

$$\Lambda_{\pi}(\boldsymbol{u},\boldsymbol{v}) = \mathsf{Var}(\langle \boldsymbol{u}\boldsymbol{v}^T,\boldsymbol{X}\rangle) + \lambda \mathbb{E}\left\{\omega_{\pi}(Y)\left|1 - Y\boldsymbol{f}(\boldsymbol{X};\boldsymbol{u},\boldsymbol{v},\alpha)\right|_{+}\right\}, (6)$$
 where $\boldsymbol{f}(\boldsymbol{X};\boldsymbol{u},\boldsymbol{v},\alpha) = \alpha + \langle \boldsymbol{u}\boldsymbol{v}^T,\boldsymbol{X} - \mathbb{E}(\boldsymbol{X})\rangle.$

- ▶ Weighted SMM is a splecial case of (6). (when $\mathbb{E}(\text{Vec}(\boldsymbol{X})) = 0 \in \mathbb{R}^{d_1 d_2}$, $\text{cov}(\text{Vec}(\boldsymbol{X})) = \boldsymbol{I}_{d_1 d_2}$)
- ▶ We base our estimation method on the following theorem.

Theorem 2 (Not verified yet)

Assume that $\mathbb{E}(X|X \times_1 U \times_2 V)$ is a linear function of $X \times_1 U \times_2 V$. Then for any given weight $\pi \in (0,1)$, the optimizer $(u_{0,\pi}, v_{0,\pi})$ of (6) belongs to $S_{Y|X}$ under (5).

3. Sufficient Dimension Reduction: Algorithm

▶ The sampled version of Λ_{π} in (6) is,

$$\hat{\Lambda}_{N,\pi} = \operatorname{Vec}(\boldsymbol{u}\boldsymbol{v}^{T})^{T} \hat{\boldsymbol{\Sigma}}_{\mathbf{N}} \operatorname{Vec}(\boldsymbol{u}\boldsymbol{v}^{T}) + \frac{\lambda}{N} \sum_{i=1}^{N} \omega_{\pi}(Y_{i}) \left(1 - Y_{i} \hat{f}_{N}(\boldsymbol{X}_{i}; \boldsymbol{u}, \boldsymbol{v}, \alpha) \right)_{+},$$
(7)

- From standardization for $\{\operatorname{Vec}(\boldsymbol{X}_n)\}_{n=1}^N$ and reparameterization, (7) is expressed as regular weighted SMM objective function.
- We obtain the optimizer $(\hat{u}_{N,\pi},\hat{v}_{N,\pi})$ with the same algorithm in Section 2.

3. Sufficient Dimension Reduction: Algorithm

- From a set of training data $\{(\boldsymbol{X}_n,Y_n)\}_{n=1}^N$, we estimate the central subspace $S_{Y|X}$ as follows
 - 1. Initialize $\pi_h = (h-1)/H$, for h = 1, ..., H+1.
 - 2. Given a grid $0 < \pi_1 < \dots < \pi_H < 1$, we obtained H-candidates $\{\hat{u}_{n,\pi_h}\hat{v}_{n,\pi_h}^T\}_{h=1}^H$ for the central subspace.
 - 3. Obtain the candidate tensor $\hat{\mathcal{M}} \in \mathbb{R}^{H \times d_1 \times d_2}$ such that $\hat{\mathcal{M}}_{h \cdots} = \hat{u}_{n,\pi_h} \hat{v}_{n,\pi_h}^T$
 - 4. Obtain order-3 SVD as,

$$\hat{\mathcal{M}} = \hat{\mathcal{C}} \times_1 \hat{\boldsymbol{U}}_1 \times_2 \hat{\boldsymbol{U}}_2 \times_3 \hat{\boldsymbol{U}}_3,$$

where $\mathcal{C} \in \mathbb{R}^{H \times d_1 \times d_2}, U_1 \in \mathbb{R}^{H \times H}, U_2 \in \mathbb{R}^{d_2 \times d_2}$, and $U_3 \in \mathbb{R}^{d_3 \times d_3}$.

5. Estimate the central subspace as

$$\hat{S}_{Y|X} = \{ [\hat{U}_2]_i \}_{i=1}^{k_1} \times \{ [\hat{U}_3]_i \}_{i=1}^{k_2}.$$

We can reduce the dimension of \boldsymbol{X} as $\{\boldsymbol{u}^T\boldsymbol{X}\boldsymbol{v} \mid \text{where } (\boldsymbol{u},\boldsymbol{v}) \in \hat{S}_{Y|\boldsymbol{X}}\}$.

