Университет ИТМО

Лабораторная работа №1 «WiFi»

по дисциплине: Беспроводные сети

Выполнили: Соболев Иван, Верещагин Егор, Р34312 Преподаватель: Оголюк Александр Александрович

Санкт-Петербург 2024

1. Настройка ftp-сервера:

На компьютере с ОС Windows был настроен FTP-сервер FileZilla:

Также были настроены разрешения на брэндмауере:

Создание программы для эмуляции ftp-клиента:

Для эмуляции ftp-клиента была написана программа:

```
import os
import time
from ftplib import FTP
import subprocess
address = "192.168.0.8"
command = ["ping", "-c", "10", address]
def ping():
  try:
    result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE,
text=True)
    output = result.stdout
    errors = result.stderr
    print("Выходные данные команды ping:")
    print(output)
    if errors:
      print("Ошибки:")
      print(errors)
  except Exception as e:
    print(f"Произошла ошибка: {e}")
def create large file(filename, size in gb):
  """Создает файл заданного размера в Гб."""
  with open(filename, 'wb') as f:
    f.write(os.urandom(size in gb * 1024 * 1024))
def upload file ftp(ftp, filename):
  """Загружает файл на FTP-сервер и замеряет время передачи."""
  ftp.set_pasv(True)
  start time = time.time()
  with open(filename, 'rb') as f:
    ftp.storbinary(f'STOR {os.path.basename(filename)}', f)
  end_time = time.time()
```

```
elapsed time = end time - start time
  file_size = os.path.getsize(filename)
  speed_mbps = (file_size * 8) / (1024 * 1024 * elapsed_time) # Биты в Мегабиты/сек
  return elapsed time, speed mbps
def main():
  filename = 'large file 2.bin'
  size in mb = 300
  ftp_host = '192.168.0.8'
  ftp user = 'Asus'
  ftp_pass = 'root'
  # print("Создание большого файла...")
  # create large file(filename, size in mb)
  # print(f"Файл {filename} успешно создан.")
  ftp = FTP(ftp host)
  ftp.login(ftp_user, ftp_pass)
  print("Начало загрузки на FTP...")
  elapsed time, speed mbps = upload file ftp(ftp, filename)
  ftp.quit()
  print(f"Загрузка завершена.")
  print(f"Время передачи: {elapsed time:.2f} секунд.")
  print(f"Скорость передачи: {speed mbps:.2f} Мбит/с.")
  ping()
if __name__ == "__main__":
  main()
```

Она подключается к ftp-серверу и загружает на него файл размером 300Мб, при это замеряя скорость и время передачи, также выполняет команду ping 10 раз и собирает информацию.

Сравнение параметров:

На роутере удалось изменить стандарт WiFi на:

WLAN Basic Settings

Стандарт	Время	Скорость передачи	Среднее время	Максимальное
	передачи(сек)	(Мбит/с)	отклика(мс)	время отклика
				(мс)
A	115.57	20.77	17.170	29.644
N	77.43	31	9.542	17.783
A+N	104.95	22.87	23.407	35.724
AC	143.23	16.76	64.338	159.197
N+AC	85.03	28.22	18.020	30.948
A+N+AC	96.16	24.96	19.803	32.641

Можем видеть, что наилучшим по характеристикам стандартом оказался стандарт N.

Также на роутере можно изменить ширину канала:

Ширина канала:

Текущая ширина канала:

Будем измерять различие характеристик от ширины канала на наиболее быстром стандарте - N.

Ширина	Время	Скорость передачи	Среднее время	Максимальное
канала	передачи(сек)	(Мбит/с)	отклика(мс)	время отклика
(МГц)				(мс)
20	82.77	29	18.247	27.899
40	93.91	25.26	26.377	64.475

Можем видеть, что наилучшие параметры передачи достигаются при ширине канала 20 МГц. Чем больше ширина канала, тем больше пакетов данных может обрабатываться одновременно, из-за чего могут быть просадки скорости.

Также на роутере еще можно изменить мощность передатчика:

Мощность	Время	Скорость передачи	Среднее время	Максимальное
передатчика	передачи(сек)	(Мбит/с)	отклика(мс)	время отклика
				(мс)
100	77.43	31	9.542	17.881
80	90.53	26.51	18.625	29.959

60	109.31	21.96	18.635	28.174
40	113.39	21.17	17.569	28.054
20	115.95	20.70	17.520	29.209

Чем больше мощность передатчика, тем быстрее скорость.

Выводы

В рамках выполнения лабораторной работы мы подняли на ноутбуке FTP-сервер и подключились к нему с другого ноутбука по локальной сети. Далее с помощью скрипта измерили характеристики передачи данных при изменении параметров WI-FI. Для нашей локальной сети наиболее быстрым оказался стандарт N с шириной канала 20 МГц и максимальной мощностью передатчика.