Iterative computing pattern: approximating square root

How to compute values iteratively instead of symbolically

Terence Parr
MSDS program
University of San Francisco

Iterative computing

- There are lots of useful functions with no closed form solution, meaning we can't just do a computation and return the value
- Instead, we approximate function values with iterative methods
- Examples include:
 - sine (with Taylor series expansion)
 - square root (as we'll do in this lecture)
 - optimize a cost or error function (e.g., gradient descent in the introduction to machine learning course)

Babylonian method for sqrt

• The idea: pick an initial estimate, x_0 , and then iterate with better and better estimates, x_i , using the (<u>Babylonian method</u>) recurrence relation:

$$x_{i+1} = \frac{1}{2}(x_i + \frac{n}{x_i})$$

- This process relies on the midpoint of x_i and $\frac{n}{x_i}$ getting closer and closer to the square root of n
- The amazing thing is that the iteration converges very quickly

The goal

- Our goal is to write a function that takes a single number and returns it square root
- What do we know about the function before thinking about code?
- Well, we have a clear description of the problem per the recurrence relation, and we also have the function signature:

• Because we are implementing a recurrence relation, we know that we will have a loop that computes x_{i+1} from x_i

$$x_{i+1} = \frac{1}{2}(x_i + \frac{n}{x_i})$$

Convergence

- The terminating condition of the loop is when we have reached convergence or close to it
- Convergence just means that x_{i+1} is pretty close to x_i
- Because we can never compare to real numbers for equality, we have to check for the difference being smaller than some precision like 0.00000001

Algorithm

- Iterative methods all share the same basic outline
- Python does not have a repeat-until loop so we fake it with an infinite loop containing a conditional that breaks out upon convergence

```
set x_0 to initial value repeat: x_{i+1} = \text{function-giving-next-value}(x_i) until abs(x_{i+1} - x_i) < precision return x_{i+1}
```

```
set x_0 to initial value while True: x_{i+1} = \text{function-giving-next-value}(x_i) if abs(x_{i+1} - x_i) < precision return x_{i+1}
```

Implementation

• The translation to Python is fairly straightforward but notice that we don't need to track all x_i ; we just need the previous/current

```
sqrt(100)
```

Testing our implementation

 To test our square root approximation, we can compare it to math.sqrt() and use numpy's isclose() to do the comparison

```
import numpy as np
def check(n):
    assert np.isclose(sqrt(n), np.sqrt(n))
def test_sqrt():
    check(125348)
    check(89.2342)
    check(100)
    check(1)
    check(0)
```

Exercise

- Go to the <u>notebook version of this lecture[1]</u> and do the exercise at the bottom
- Try not to cut and paste the code; see if you can implement the recurrence relation yourself
- Then, had a print statement so you can track how the x_i values converge as we iterate

sqrt(125348.0)

1.0
62674.5
31338.249992
15671.1249162
7839.56178812
3927.77547356
1979.84435152
1021.5781996
572.139273508
395.612894667
356.228988269
354.051888518
354.045194918
354.045194855

