Preliminary

TOSHIBA Photocoupler GaAlAs IRED + Photo IC

TLP350

Industrial Inverter

Inverter for Air Conditioner

IGBT/Power MOSFET Gate Drive

IH(Induction Heating)

The TOSHIBA TLP350 consists of a GaAlAs light-emitting diode and an integrated photodetector.

This unit is an 8-lead DIP package.

The TLP350 is suitable for gate driving IGBTs or power MOSFETs.

- Peak output current: $I_0 = \pm 2.5 A$ (max)
- Guaranteed performance over temperature: -40 to 100°C
- Supply current:Icc = 2 mA (max)
- Power supply voltage: Vcc = 15 to 30 V
- Threshold input current : IFLH = 5 mA (max)
- Switching time (t_{pLH}/t_{pHL}) : 500 ns (max)
- Common mode transient immunity: $15 \text{ kV/}\mu\text{s}$
- Isolation voltage: 3750 Vrms
- UL Recognized : UL1577,File No.E67349
- Option(D4)

VDE Approved: DIN EN60747-5-2

 $\begin{aligned} & \text{Maximum Operating Insulation Voltage}: 890 V_{PK} \\ & \text{Highest Permissible Over Voltage} \end{aligned} : 4000 V_{PK} \end{aligned}$

(Note):When a EN60747-5-2 approved type is needed, Please designate "Option(D4)"

8 7 6 5 1 2 3 4 9.66±0.25 9.66±0.25 9.60

Unit: mm

Weight: 0.54 g (typ.)

Truth Table

Input	LED	Tr1	Tr2	Output
Н	ON	ON	OFF	Н
L	OFF	OFF	ON	L

Pin Configuration (top view)

A 0.1 μ F bypass capacitor must be connected between pins 8 and 5. (See Note 6)

Maximum Ratings (Ta = 25°C)

	Characteristic	Symbol	Rating	Unit	
	Forward current	lF	20	mA	
	Forward current de-rating (Ta ≥	ΔΙ _Γ /ΔΤα	-0.54	mA/°C	
LED	Peak transient forward current	(Note 1)	I _{FP}	1	Α
	Reverse voltage	VR	5	V	
	Junction temperature	Tj	125	°C	
	"H" peak output current	Ta = -40 to 100°C	I _{OPH}	-2.5	А
ъ	"L" peak output current	(Note 2)	I _{OPL}	2.5	А
Detector	Supply voltage	Ta < 95 °C	V _{CC}	35	V
ă	Supply voltage Derating	Ta≥95 °C	V _{CC} / Ta	-1.0	V /
	Junction temperature		Tj	125	°C
Ope	rating frequency	(Note 3)	f	50	kHz
Stora	age temperature range	T _{stg}	-55 to 125	°C	
Ope	rating temperature range	T _{opr}	-40 to 100	°C	
Lead	soldering temperature (10 s)	T _{sol}	260	°C	
Isola	tion voltage (AC, 1 minute, R.H. ≤	≤ 60%) (Note 5)	BVS	3750	Vrms

Note 1: Pulse width $P_W \le 1 \mu s$, 300 pps

Note 2: Exponential waveform pulse width $P_W \le 0.3 \mu s$, $f \le 15 kHz$

Note 3: Exponential waveform $I_{OPH} \ge -2.0A (\le 0.3 \mu s)$, $I_{OPL} \le 2.0A (\le 0.3 \mu s)$

Note 4: At 2 mm or more from the lead root.

Note 5: This device is regarded as a two terminal device: pins 1, 2, 3 and 4 are shorted together, as are pins 5, 6, 7 and 8.

Note 6: A ceramic capacitor $(0.1 \, \mu F)$ should be connected from pin 8 to pin 5 to stabilize the operation of the high gain linear amplifier. Failure to provide the bypass may impair the switching property. The total lead length between capacitor and coupler should not exceed 1 cm.

Recommended Operating Conditions

Characteristic		Symbol	Min	Тур.	Max	Unit
Input current, ON	(Note 7)	I _{F (ON)}	7.5	_	10	mA
Input voltage, OFF		V _F (OFF)	0	_	0.8	V
Supply voltage		V _{CC}	15	_	30	V
Peak output current		I _{OPH} /I _{OPL}	_	_	±2.0	Α
Operating temperature		T _{opr}	-40	_	100	°C

Note 7: Input signal rise time (fall time) $< 0.5 \mu s$.

2

Electrical Characteristics (Ta = -40 to 100°C, unless otherwise specified)

Characteristic		Symbol	Test Circuit	Test C	Conditions	Min	Тур.*	Max	Unit
Forward voltage		V _F	_	$I_F = 10 \text{ mA}, Ta = 25^{\circ}\text{C}$		_	1.6	1.8	V
Temperature coefficient of forward voltage		ΔV _F /ΔΤα	_	I _F = 10 mA		_	-2.0	_	mV/°C
Input reverse current		I _R	_	V _R = 5 V, Ta = 25°C		_	_	10	μА
Input capacitance		C _T	_	V = 0 , f = 1 MHz,Ta = 25°C		_	45	250	pF
Output current (Note 8)	"H" Level	Іорн	1	$V_{CC} = 30 \text{ V,I}_F = 5 \text{ mA}$ $V_{8-6} = -3.5 \text{ V}$		_	-1.6	-1.0	
	n Level	ЮРН	'	V _{CC} = 15 V,I _F = 5 mA V ₈₋₆ = -7.0 V		_	_	-2.0	_
	<i>(4)</i> N. I	1	0	$V_{CC} = 30 \text{ V,I}_F = 0 \text{ mA}$ $V_{6-5} = 2.5 \text{V}$		1.0	1.6	_	A
	"L" Level	"L" Level I _{OPL}	2	$V_{CC} = 15 \text{ V,I}_F = 0 \text{ mA}$ $V_{6-5} = 7.0 \text{V}$		2.0	_	_	
O to toolke as	"H" Level	V _{OH}	3	V _{CC 1} = +15 V V _{EE 1} = -15 V	I _F = 5 mA	11	13.7	_	V
Output voltage	"L" Level	V _{OL}	4	R _L = 200	V _F = 0.8 V	_	-14.9	-12.5	ľ
Supply current	"H" Level	Icch	5	V _{CC} = 30 V	I _F = 10 mA	_	1.3	2.0	mA
Зирріу сипені	"L" Level	ICCL	6	V _O open	I _F = 0 mA		1.3	2.0	IIIA
Threshold input current	$L \rightarrow H$	I _{FLH}	_	V _{CC} = 15V , V _O > 1V , Io = 0mA		_	1.8	5	mA
Threshold input voltage	$H \rightarrow L$	V _{FHL}	_	$V_{CC} = 15V$, $V_O < 1V$, $IO = 0mA$		0.8	_	_	V
Supply voltage		V _{CC}	_	_		15	_	30	V
UVLO threshhold		V _{UVLO+}	_	V _O > 2.5 V , I _F = 5 mA		11.0	12.5	13.5	V
		V _{UVLO} -	_			9.5	11.0	12.0	V
UVLO hysteresis		UVLO _{HYS}					1.5		V

^{*:} All typical values are at Ta = 25°C

Note 8: Duration of I_O : \leq 50 μ s(1PULSE)

Note 9: This product is more sensitive to static electricity (ESD) than the conventional product because of its minimal power consumption design.

General static electricity precautions are necessary for handling this component.

Isolation Characteristics (Ta = 25°C)

Characteristic	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Capacitance input to output	Cs	V = 0,f = 1MHz (Note6)	_	1.0	_	pF
Isolation resistance	Rs	$V_S = 500 \text{ V}, \text{Ta} = 25^{\circ}\text{C},$ R.H. $\leq 60\%$ (Note6)	1×10 ¹²	10 ¹⁴	_	Ω
		AC,1 minute	3750	_	_	V
Isolation voltage	BV_S	AC,1 second,in oil	_	10000	_	V _{rms}
		DC,1 minute,in oil	_	10000	_	Vdc

3 2005-08-05

Switching Characteristics (Ta = -40 to 100°C, unless otherwise specified)

Characteristic		Symbol	Test Circuit	Test Cor	nditions	Min	Тур.*	Max	Unit
Propagation delay time	$L \rightarrow H$	t _{pLH}		$V_{CC} = 30 \text{ V}$ $R_g = 20 \Omega$ $C_g = 10 \text{ nF}$	$I_F = 0 \rightarrow 5 \text{ mA}$	50	260	500	
	$H \rightarrow L$	t _{pHL}			$I_F = 5 \rightarrow 0 \text{ mA}$	50	260	500	
Switching Time Dispersion between ON and OFF		tpHL-tpLH	7	$\begin{aligned} &V_{CC}=30 \text{ V} \\ &R_g=20 \Omega, \\ &C_g=10 \text{ nF} \end{aligned}$				350	ns
Output rise time (10-90%)		t _r		V _{CC} = 30 V	$I_F = 0 \rightarrow 5 \text{ mA}$	_	15	_	
Output fall time (90-10%)		t _f		$R_g = 20 \Omega$ $C_g = 10 \text{ nF}$	$I_F = 5 \rightarrow 0 \text{ mA}$	_	8	_	
Common mode transient immunity at high level output		СМН		$V_{CM} = 1000 \text{ Vp-p}$ 8 Ta = 25°C	I _F = 5 mA V _{O (min)} =26V	-15000	_	_	V/µs
Common mode transient immunity at low level output		CML	0		I _F = 0 mA V _{O (max)} =1V	15000	_	_	ν/μ5

^{*:} All typical values are at Ta = 25°C

Test Circuit 1: I_{OPH}

Test Circuit 2: IOPL

Test Circuit 3: V_{OH}

Test Circuit 4: V_{OL}

Test Circuit 5: I_{CCH}

Test Circuit 6: I_{CCL}

Test Circuit 7: t_{pLH} , t_{pHL} , t_{r} , t_{f} , PDD

Test Circuit 8: CMH, CML

CML (CMH) is the maximum rate of rise (fall) of the common mode voltage that can be sustained with the output voltage in the low (high) state.

5

^{*:} The above graphs show typical characteristics.

^{*:} The above graphs show typical characteristics.

^{*:} The above graphs show typical characteristics.

RESTRICTIONS ON PRODUCT USE

Handbook" etc..

030619EBC

- The information contained herein is subject to change without notice.
- The information contained herein is presented only as a guide for the applications of our products. No responsibility is assumed by TOSHIBA for any infringements of patents or other rights of the third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of TOSHIBA or others.
- TOSHIBA is continually working to improve the quality and reliability of its products. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing TOSHIBA products, to comply with the standards of safety in making a safe design for the entire system, and to avoid situations in which a malfunction or failure of such TOSHIBA products could cause loss of human life, bodily injury or damage to property.
 In developing your designs, please ensure that TOSHIBA products are used within specified operating ranges as set forth in the most recent TOSHIBA products specifications. Also, please keep in mind the precautions and conditions set forth in the "Handling Guide for Semiconductor Devices," or "TOSHIBA Semiconductor Reliability
- The TOSHIBA products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These TOSHIBA products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of TOSHIBA products listed in this document shall be made at the customer's own risk.
- The products described in this document are subject to the foreign exchange and foreign trade laws.
- TOSHIBA products should not be embedded to the downstream products which are prohibited to be produced and sold, under any law and regulations.
- GaAs(Gallium Arsenide) is used in this product. The dust or vapor is harmful to the human body. Do not break, cut, crush or dissolve chemically.