Categorical Query Language

Ryan Wisnesky Conexus Al

July 2019

Introduction

- This talk describes a new algebraic (purely equational) way to formalize databases and migrate data based on category theory.
- Category theory was designed to migrate theorems from one area of mathematics to another, so it is a very natural language with which to describe migrating data from one schema to another.
- Research has culminated in an open-source prototype ETL and data migration tool, CQL (Categorical Query Language), available at categoricaldata.net.
- Outline:
 - Review of basic category theory.
 - Introduction to CQL.
 - CQL demo.
 - Optional: additional CQL constructions.
 - Extra slides: How CQL instances model the simply-typed λ -calculus.

Motivation / Background

- ► CQL is a 'category-theoretic' SQL, used as an ETL tool.
 - Users define schemas and mappings, which induce data transformations.
- CQL schema mappings must preserve data integrity constraints, requiring the use of an automated theorem prover at compile time.
 - CQL catches mistakes at compile time that existing ETL / data migration tools catch at runtime – if at all.
- Some projects using CQL:
 - NIST several projects.
 - DARPA BRASS project.
 - Empower Retirement.
 - Stanford Chemistry Department.
 - Uber/Tinkerpop
 - and more

Category Theory

- ightharpoonup A category $\mathcal C$ consists of
 - ▶ a set of objects, Ob(C)
 - ▶ forall $X, Y \in \mathsf{Ob}(\mathcal{C})$, a set $\mathcal{C}(X, Y)$ of morphisms a.k.a arrows
 - ▶ forall $X \in \mathsf{Ob}(\mathcal{C})$, a morphism $id \in \mathcal{C}(X,X)$
 - ▶ forall $X, Y, Z \in \mathsf{Ob}(\mathcal{C})$, a function $\circ : \mathcal{C}(Y, Z) \times \mathcal{C}(X, Y) \to \mathcal{C}(X, Z)$ s.t.

$$f \circ id = f$$
 $id \circ f = f$ $(f \circ g) \circ h = f \circ (g \circ h)$

- The category Set has sets as objects and functions as arrows, and the "category" Haskell has types as objects and programs as arrows.
- ▶ A functor $F: \mathcal{C} \to \mathcal{D}$ between categories \mathcal{C}, \mathcal{D} consists of
 - ▶ a function $Ob(C) \rightarrow Ob(D)$
 - ▶ forall $X, Y \in \mathsf{Ob}(\mathcal{C})$, a function $\mathcal{C}(X, Y) \to \mathcal{D}(F(X), F(Y))$ s.t.

$$F(id) = id$$
 $F(f \circ g) = F(f) \circ F(g)$

The functor P: Set → Set takes each set to its power set, and the functor
 List: Haskell → Haskell takes each type t to the type List t.

Schemas and Instances

Emp					
ID	mgr	works	first	last	
101	103	q10	Al	Akin	
102	102	×02	Bob	Во	
103	103	q10	Carl	Cork	

Dept				
ID	sec	name		
q10	101	CS		
×02	102	Math		

String	
ID	
Al	П
Bob	

A CQL Schema: Code

```
entities
    Emp
    Dept
foreign keys
    manager : Emp -> Emp
    works : Emp -> Dept
    secretary : Dept -> Emp
attributes
    first last : Emp -> string
    name : Dept -> string
path equations
    manager.works = works
    secretary.works = Department
```

Categorical Semantics of Schemas and Instances

- The meaning of a schema S is a category $[\![S]\!]$.
 - $\mathsf{Ob}(\llbracket S \rrbracket)$ is the nodes of S.
 - Forall nodes X, Y, $[\![S]\!](X, Y)$ is the set of finite paths $X \to Y$, modulo the path equivalences in S.
 - ▶ Path equivalence in S may not be decidable! ("the word problem")
- A morphism of schemas (a "schema mapping") $S \to T$ is a functor $[\![S]\!] \to [\![T]\!]$.
 - It can be defined as an equation-preserving function:

$$nodes(S) \rightarrow nodes(T)$$
 $edges(S) \rightarrow paths(T).$

- ▶ An S-instance is a functor [S] → Set.
 - ▶ It can be defined as a set of tables, one per node in S and one column per edge in S, satisfying the path equivalences in S.
- A morphism of S-instances $I \to J$ (a "data mapping") is a natural transformation $I \to J$.
 - ullet Instances on S and their mappings form a category, written S-inst.

Schema Mappings

A **schema mapping** $F: S \rightarrow T$ is an equation-preserving function:

$$nodes(S) \rightarrow nodes(T) \qquad edges(S) \rightarrow paths(T)$$

$$F(\mathsf{Int}) = \mathsf{Int} \qquad F(\mathsf{String}) = \mathsf{String}$$

$$F(\mathsf{N1}) = \mathsf{N} \qquad F(\mathsf{N2}) = \mathsf{N}$$

$$F(\mathsf{name}) = [\mathsf{name}] \qquad F(\mathsf{age}) = [\mathsf{age}] \qquad F(\mathsf{salary}) = [\mathsf{salary}]$$

$$F(\mathsf{f}) = []$$

Functorial Data Migration

A schema mapping $F \colon S \to T$ induces three data migration functors:

▶ Δ_F : T-inst \to S-inst (like project)

$$S \xrightarrow{F} T \xrightarrow{I} \mathbf{Set}$$
$$\Delta_F(I) := I \circ F$$

▶ Π_F : S-inst \to T-inst (right adjoint to Δ_F ; like join)

$$\forall I, J. \quad S\text{-inst}(\Delta_F(I), J) \cong T\text{-inst}(I, \Pi_F(J))$$

▶ Σ_F : S-inst → T-inst (left adjoint to Δ_F ; like outer union then merge)

$$\forall I, J. \quad S\text{-inst}(J, \Delta_F(I)) \cong T\text{-inst}(\Sigma_F(J), I)$$

Δ (Project)

 $\stackrel{\Delta_F}{\longleftarrow}$

	N1		ı	1 2
ID	name	salary	ID	age
1	Alice	\$100	4	20
2	Bob	\$250	5	20
3	Sue	\$300	6	30

N					
ID	name	salary	age		
а	Alice	\$100	20		
b	Bob	\$250	20		
С	Sue	\$300	30		

Π (Product)

 Π_F

	N1		N	1 2
ID	name	salary	ID	age
1	Alice	\$100	4	20
2	Bob	\$250	5	20
3	Sue	\$300	6	30

	N						
	ID	name	salary	age			
	a	Alice	\$100	20			
	b	Alice	\$100	20			
	С	Alice	\$100	30			
٠	d	Bob	\$250	20			
	е	Bob	\$250	20			
	f	Bob	\$250	30			
	g	Sue	\$300	20			
	h	Sue	\$300	20			
	i	Sue	\$300	30			

Σ (Outer Union)

	N1		1	V2
ID	Name	Salary	ID	Age
1	Alice	\$100	4	20
2	Bob	\$250	5	20
3	Sue	\$300	6	30

		N				
	ID	Name	Salary	Age		
	a	Alice	\$100	$null_1$		
Σ_F	b	Bob	\$250	$null_2$		
	С	Sue	\$300	$null_3$		
	d	$null_4$	$null_5$	20		
	е	$null_6$	$null_7$	20		
	f	$null_8$	$null_9$	30		

Unit of $\Sigma_F \dashv \Delta_F$

	N1			V2
ID	Name	Salary	ID	Age
1	Alice	\$100	4	20
2	Bob	\$250	5	20
3	Sue	\$300	6	30

	N				
	ID	Name	Salary	Age	
	a	Alice	\$100	$null_1$	
Σ_F	b	Bob	\$250	$null_2$	
	С	Sue	\$300	$null_3$	
	d	$null_4$	$null_5$	20	
	е	$null_6$	$null_7$	20	
Δ_F	f	$null_8$	$null_9$	30	

N1				N2
ID	Name	Salary	ID	Age
а	Alice	\$100	а	$null_1$
b	Bob	\$250	b	$null_2$
С	Sue	\$300	С	$null_3$
d	$null_4$	$null_5$	d	20
е	$null_6$	$null_7$	е	20
f	$null_8$	$null_9$	f	30

 $\mid \eta \mid$

A Foreign Key

 Π_F, Σ_F

	N:	ı	1 2		
ID	name	salary	ID	age	
1	Alice	\$100	4	4	20
2	Bob	\$250	5	5	20
3	Sue	\$300	6	6	30

	ID	name	salary	age
→	a	Alice	\$100	20
	b	Bob	\$250	20
	С	Sue	\$300	30

Queries

A query $Q:S \to T$ is a schema X and mappings $F:S \to X$ and $G:T \to X$.

$$eval_Q \cong \Delta_G \circ \Pi_F \quad coeval_Q \cong \Delta_F \circ \Sigma_G$$

These can be specified using comprehension notation similar to SQL.

N1 -> select n1.name as name, n1.salary as salary from N as n1

N2 -> select n2.age as age from N as n2

A Foreign Key

	N:	ı	J 2		
ID	name	salary	ID	age	
1	Alice	\$100	4	4	20
2	Bob	\$250	5	5	20
3	Sue	\$300	6	6	30

$eval_Q$	Ļ
$oeval_Q$	
	L

N							
ID	name	salary	age				
а	Alice	\$100	20				
b	Bob	\$250	20				
С	Sue	\$300	30				

CQL Demo

- CQL implements Δ, Σ, Π , and more in software.
 - catinf.com

Interlude - Additional Constructions

- ▶ What is "algebraic" here?
- CQL vs SQL.
- Pivot.
- Non-equational data integrity constraints.
- Data integration via pushouts.
- CQL vs comprehension calculi.

Why "Algebraic"?

A schema can be identified with an algebraic (equational) theory.

```
\label{eq:continuous} \mbox{Emp Dept String}: \mbox{Type} \qquad \mbox{first last}: \mbox{Emp} \rightarrow \mbox{String} \qquad \mbox{name}: \mbox{Dept} \rightarrow \mbox{String} \mbox{works}: \mbox{Emp} \rightarrow \mbox{Dept} \qquad \mbox{mgr}: \mbox{Emp} \rightarrow \mbox{Emp} \qquad \mbox{secr}: \mbox{Dept} \rightarrow \mbox{Emp} \forall e: \mbox{Emp. works}(\mbox{manager}(e)) = \mbox{works}(e) \qquad \forall d: \mbox{Dept. works}(\mbox{secretary}(d)) = d
```

- This perspective makes it easy to add functions such as
 + : Int, Int → Int to a schema. See Algebraic Databases.
- ▶ An S-instance can be identified with the initial algebra of an algebraic theory extending S.

```
\label{eq:mgr} \begin{array}{ll} 101\ 102\ 103: {\sf Emp} & {\sf q10}\ {\sf x02}: {\sf Dept} \\ \\ {\sf mgr}(101) = 103 & {\sf works}(101) = {\sf q10} & \dots \end{array}
```

 Treating instances as theories allows instances that are infinite or inconsistent (e.g., Alice=Bob).

CQL vs SQL

Data migration triplets of the form

$$\Sigma_F \circ \Pi_G \circ \Delta_H$$

can be expressed using (difference-free) relational algebra and keygen, provided:

- *F* is a discrete op-fibration (ensures union compatibility).
- *G* is surjective on attributes (ensures domain independence).
- All categories are finite (ensures computability).
- ► The difference-free fragment of relational algebra can be expressed using such triplets. See *Relational Foundations*.
- Such triplets can be written in "foreign-key aware" SQL-ish syntax.
- For arbitrary F, Σ_F can be implemented using canonical/deterministic chase (fire all active triggers across all rules at once.)

Select-From-Where/For-Where-Return Syntax

Find the name of every manager's department:

```
CQL SQL select e.manager.works.name select d.name from Emp as e from Emp as e1, Emp as e2, Dept as d where e1.manager = e2.ID and e2.works = d.ID
```

Pivot (Instance ⇔ Schema)

		Emp		
ID	mgr	works	first	last
101	103	q10	Al	Akin
102	102	×02	Bob	Во
103	103	q10	Carl	Cork

Dept				
ID	name			
q10	CS			
x02	Math			

Richer Constraints

- Not all data integrity constraints are equational (e.g., keys).
- A data mapping $\varphi:A\to E$ defines a constraint: instance I satisfies φ if for every $\alpha:A\to I$ there exists an $\epsilon:E\to I$ s.t $\alpha=\epsilon\circ\varphi$.

Most constraints used in practice can be captured the above way. E.g.,

$$\forall d_1, d_2 : \mathsf{Dept.} \; \mathsf{name}(d_1) = \mathsf{name}(d_2) \to d_1 = d_2$$

is captured as

$$A(\mathsf{Dept}) = \{d_1, d_2\} \qquad A(\mathsf{name})(d_1) = A(\mathsf{name})(d_2)$$

$$E(\mathsf{Dept}) = \{d\} \qquad \varphi(d_1) = \varphi(d_2) = d$$

 See Database Queries and Constraints via Lifting Problems and Algebraic Model Management.

Pushouts

• A pushout of p, q is f, g s.t. for every f', g' there is a unique m s.t.:

- The category of schemas has all pushouts.
- ► For every schema *S*, the category *S*-inst has all pushouts.
- Pushouts of schemas, instances, and Σ are used together to integrate data see *Algebraic Data Integration*.

Using Pushouts for Data Integration

Step 1: integrate schemas. Given input schemas S_1 , S_2 , an overlap schema S, and mappings F_1, F_2 :

$$S_1 \stackrel{F_1}{\leftarrow} S \stackrel{F_2}{\rightarrow} S_2$$

we propose to use their pushout T as the integrated schema:

$$S_1 \stackrel{G_1}{\rightarrow} T \stackrel{G_2}{\leftarrow} S_2$$

▶ Step 2: integrate data. Given input S_1 -instance I_1 , S_2 -instance I_2 , overlap S-instance I and data mappings $h_1: \Sigma_{F_1}(I) \to I_1$ and $h_2: \Sigma_{F_2}(I) \to I_2$, we propose to use the pushout of:

$$\Sigma_{G_1}(I_1) \stackrel{\Sigma_{G_1(h_1)}}{\leftarrow} \left(\Sigma_{G_1 \circ F_1}(I) = \Sigma_{G_2 \circ F_2}(I) \right) \stackrel{\Sigma_{G_2(h_2)}}{\rightarrow} \Sigma_{G_2}(I_2)$$

as the integrated T-instance.

Schema Integration

Data Integration

 \rightarrow

Quotients for Integration

In practice, rather than providing entire schema mappings and instance transforms to define pushouts, it is easier to provide equivalence relations and use quotients. In CQL:

```
schema T = S1 + S2 /
  S1 Observation = S2.Observation
  S1_Person = S2_Patient
  S1_0bsType = S2_Type
  S1_f = S2_f
 S1_g = S2_g1.S2_g2
instance J = sigma F1 I1 + sigma F2 I2 /
  Peter = Pete
  BloodPressure = BP
  Wt = BodyWeight
```

Conclusion

- We described a new algebraic (equational) approach to databases based on category theory.
 - Schemas are categories, instances are set-valued functors.
 - Three adjoint data migration functors, Σ, Δ, Π manipulate data.
 - Instances on a schema model the simply-typed λ -calculus.
- Our approach is implemented in CQL, an open-source project, available at catinf.com. Collaborators welcome!
- CQL is only one example of a language I've developed that includes strong static reasoning principles; others include
 - HIL
 - Hoare Type Theory (Coq RDBMS, etc)

Partial Bibliography

- Patrick Schultz, Ryan Wisnesky. Algebraic Data Integration. (JFP-PlanBig 2017)
- Patrick Schultz, David I. Spivak, Christina Vasilakopoulou,, Ryan Wisnesky.
 Algebraic Databases. (TAC 2017)
- Patrick Schultz, David I. Spivak, Ryan Wisnesky. Algebraic Model Management:
 A Survey. (WADT 2016)
- David I. Spivak, Ryan Wisnesky. Relational Foundations for Functorial Data Migration. (DBPL 2015).
- Georgia Koutrika, Ryan Wisnesky, Mauricio Hernandez, Rajasekar Krishnamurthy, Lucian Popa. HIL: A High-Level Scripting Language for Entity Integration. (EDBT 2013).
- Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wisnesky. Toward a Verified Relational Database Management System. (POPL 2010).
- Adam Chlipala, Gregory Malecha, Greg Morrisett, Avraham Shinnar, and Ryan Wisnesky. Effective Interactive Proofs for Higher-order Imperative Programs. (ICFP 2009).

Extra Slides

CQL is "one level up" from LINQ

- LINQ
 - Schemas are collection types over a base type theory

Set
$$(Int \times String)$$

Instances are terms

$$\{(1,\mathsf{CS})\} \cup \{(2,\mathsf{Math})\}$$

Data migrations are functions

$$\pi_1$$
: Set (Int × String) \rightarrow Set Int

- CQL
 - Schemas are type theories over a base type theory

Dept, name: Dept
$$\rightarrow$$
 String

Instances are term models (initial algebras) of theories

$$d_1, d_2$$
: Dept, $name(d_1) = CS$, $name(d_2) = Math$

Data migrations are functors

$$\Delta_{\mathsf{Dept}} \colon (\mathsf{Dept}, \mathsf{name} \colon \mathsf{Dept} \to \mathsf{String}) \operatorname{-} \mathsf{inst} \to (\mathsf{Dept}) \operatorname{-} \mathsf{inst}$$

Part 2

- For every schema S, S-inst models simply-typed λ -calculus (STLC).
- The STLC is the core of typed functional languages ML, Haskell, etc.
- We will use the internal language of a cartesian closed category, which is equivalent to the STLC.
- Lots of "point-free" functional programming ahead.
- The category of schemas and mappings is also cartesian closed see talk at Boston Haskell.

Categorical Abstract Machine Language (CAML)

▶ Types *t*:

$$t ::= 1 \mid t \times t \mid t^t$$

▶ Terms f, g:

$$id_{t}: t \to t \qquad ()_{t}: t \to 1 \qquad \pi_{s,t}^{1}: s \times t \to s \qquad \pi_{s,t}^{2}: s \times t \to t$$

$$eval_{s,t}: t^{s} \times s \to t \qquad \frac{f: s \to u \quad g: u \to t}{g \circ f: s \to t} \qquad \frac{f: s \to t \quad g: s \to u}{(f,g): s \to t \times u}$$

$$\frac{f: s \times u \to t}{\lambda f: s \to t^{u}}$$

Equations:

$$\begin{split} id \circ f &= f \qquad f \circ id = f \qquad f \circ (g \circ h) = (f \circ g) \circ h \qquad () \circ f = () \\ \pi^1 \circ (f,g) &= f \qquad \pi^2 \circ (f,g) = g \qquad (\pi^1 \circ f, \pi^2 \circ f) = f \\ eval \circ (\lambda f \circ \pi^1, \pi^2) &= f \qquad \lambda (eval \circ (f \circ \pi^1, \pi^2)) = f \end{split}$$

Programming CQL in CAML

- \triangleright For every schema S, the category S-inst is cartesian closed.
 - Given a type t, you get an S-instance [t].
 - Given a term $f: t \to t'$, you get a data mapping $[f]: [t] \to [t']$.
 - All equations obeyed.
- ► S-inst is further a topos (model of higher-order logic / set theory).
- We consider the following schema in the examples that follow:

Programming CQL in CAML: Unit

▶ The unit instance 1 has one row per table:

▶ The data mapping $()_t: t \to 1$ sends every row in t to the only row in 1. For example,

$$p, q, r, t \xrightarrow{()_t} x$$

Programming CQL in CAML: Products

Products $s \times t$ are computed row-by-row, with evident projections $\pi^1: s \times t \to s$ and $\pi^2: s \times t \to t$. For example:

							_	а	b	
а		b		а		b		ID	f	ID
ID	f	ID	×	ID	f	ID	_	(1,a)	(3,c)	(3,c)
1	3	3	^	a	С	С		(1,b)	(3,c)	(3,d)
2	3	4		b	С	d		(2,a)	(3,c)	(4,c)
								(2,b)	(3,c)	(4,d)

- Given data mappings $f: s \to t$ and $g: s \to u$, how to define $(f,g): s \to t \times u$ is left to the reader.
 - hint: try it on π^1 and π^2 and verify that $(\pi^1,\pi^2)=id$.

Programming CQL in CAML: Exponentials

• Exponentials t^s are given by finding all data mappings $s \to t$:

а		b	1	а		b	
ID	f	ID	1	ID	f	ID] _
1	3	3		a	С	С	
2	3	4		b	С	d	

a	
ID	f
$1 \mapsto a, 2 \mapsto b, 3 \mapsto c, 4 \mapsto d$	$3 \mapsto c, 4 \mapsto d$
$1 \mapsto b, 2 \mapsto a, 3 \mapsto c, 4 \mapsto d$	$3 \mapsto c, 4 \mapsto d$
$1 \mapsto a, 2 \mapsto a, 3 \mapsto c, 4 \mapsto d$	$3 \mapsto c, 4 \mapsto d$
$1 \mapsto b, 2 \mapsto b, 3 \mapsto c, 4 \mapsto d$	$3 \mapsto c, 4 \mapsto d$
$1 \mapsto a, 2 \mapsto b, 3 \mapsto d, 4 \mapsto c$	$3 \mapsto d, 4 \mapsto c$
$1 \mapsto b, 2 \mapsto a, 3 \mapsto d, 4 \mapsto c$	$3 \mapsto d, 4 \mapsto c$
$1 \mapsto a, 2 \mapsto a, 3 \mapsto d, 4 \mapsto c$	$3 \mapsto d, 4 \mapsto c$
$1 \mapsto b, 2 \mapsto b, 3 \mapsto d, 4 \mapsto c$	$3 \mapsto d, 4 \mapsto c$

b	
ID	
$3 \mapsto c, 4 \mapsto c$	I
$3 \mapsto c, 4 \mapsto d$	ĺ
$3 \mapsto d, 4 \mapsto c$	Ī
$3 \mapsto d, 4 \mapsto d$	
	Ī

• Defining eval and λ are left to the reader.