CS 611: Theory of Computation

Hongmin Li

Department of Computer Science California State University, East Bay

Notation for encodings and TMs

Notation for encodings and TMs

- If O is some object (e.g., polynomial, automaton, graph, etc.), we write $\langle O \rangle$ to be an encoding of that object into a string.
- If O_1, O_2, \ldots, O_k is a list of objects then we write $\langle O_1, O_2, \ldots, O_{-k} \rangle$ to be an encoding of them together into a single string.

Notation for writing Turing machines:

We will use high-level English descriptions of algorithms when we describe TMs, knowing that we could (in principle) convert those descriptions into states, transition function, etc. Our notation for writing a TM $\it M$ is

```
M = ''On input w
   [English description of the algorithm]''
```


TM - example revisited

```
TM M recognizing B = \{a^k b^k c^k | k \ge 0\}
```

```
M = ``On input w
```

- 1. Check if $w \in a^*b^*c^*$, reject if not
- 2. Count the number of a, b, c in w
- Accept if all counts are equal; reject if not.''

High-level description is ok. You do not need to manage tapes, states, etc . . .

Let $A_{DFA} = \{\langle B, w \rangle | B \text{ is a DFA and } B \text{ accept } w\}$

Theorem:

 A_{DFA} is decidable

Proof: Give TM $D_{A_{DFA}}$ that decides A_{DFA} .

Let $A_{DFA} = \{\langle B, w \rangle | B \text{ is a DFA and } B \text{ accept } w\}$

$\mathsf{Theorem}$:

A_{DFA} is decidable

Proof: Give TM $D_{A_{DFA}}$ that decides A_{DFA} .

- $D_{A_{DFA}} = \text{On input } \langle B, w \rangle$
 - 1. Simulate the computation of B on w
 - 2. If B ends in an accept state then accept. If not then reject

Let $A_{NFA} = \{\langle B, w \rangle | B \text{ is a NFA and } B \text{ accept } w\}$

Theorem:

 A_{NFA} is decidable

Proof: Give TM $D_{A_{NFA}}$ that decides A_{NFA} .

Let $A_{NFA} = \{\langle B, w \rangle | B \text{ is a NFA and } B \text{ accept } w\}$

$\mathsf{Theorem}$:

 A_{NFA} is decidable

Proof: Give TM $D_{A_{NFA}}$ that decides A_{NFA} .

- $D_{A_{NFA}} = \text{On input } \langle B, w \rangle$
 - 1. Simulate the computation of B on w
 - 2. If B ends in an accept state then accept. If not then reject

Let $A_{NFA} = \{\langle B, w \rangle | B \text{ is a NFA and } B \text{ accept } w\}$

Theorem:

 A_{NFA} is decidable

Proof: Give TM $D_{A_{NFA}}$ that decides A_{NFA} .

Let $A_{NFA} = \{\langle B, w \rangle | B \text{ is a NFA and } B \text{ accept } w\}$

Theorem:

 A_{NFA} is decidable

Proof: Give TM $D_{A_{NFA}}$ that decides A_{NFA} .

```
D_{A_{NFA}} = On input \langle B, w \rangle
```

- 1. Convert NFA B to equivalent DFA B'
- 2. Run TM $D_{A_{DFA}}$ on input $\langle B', w \rangle$ (Recall $D_{A_{DFA}}$ decides A_{DFA})
- 3. If $D_{A_{DFA}}$ accepts then accept. Reject if not.

New element: Use conversion construction and previously constructed TM as a subroutine.

Emptiness Problem for DFAs

Let $E_{DFA} = \{\langle B \rangle | B \text{ is a DFA and } L(B) = \Phi\}$

Theorem:

 E_{DFA} is decidable

Proof: Give TM $D_{E_{DFA}}$ that decides E_{DFA} .

Emptiness Problem for DFAs

Let
$$E_{DFA} = \{\langle B \rangle | B \text{ is a DFA and } L(B) = \Phi\}$$

Theorem:

 E_{DFA} is decidable

Proof: Give TM $D_{E_{DFA}}$ that decides E_{DFA} .

- $D_{E_{DFA}}$ = ''On input $\langle B \rangle$
 - 1. Mark start state
 - Repeat until no new state is marked
 Mark every state that has an incoming arrow
 from a previously marked state.
 - Accept if no accept state is marked.Reject if some accept state is marked."

Equivalence Problem for DFAs

Let $EQ_{DFA} = \{\langle A, B \rangle | A, B \text{ are DFAs and } L(A) = L(B)\}$

Theorem:

EQ_{DFA} is decidable

Proof: Give TM $D_{EQ_{DFA}}$ that decides EQ_{DFA} .

Equivalence Problem for DFAs

Let $EQ_{DFA} = \{\langle A, B \rangle | A, B \text{ are DFAs and } L(A) = L(B)\}$

Theorem:

EQ_{DFA} is decidable

Proof: Give TM $D_{EQ_{DFA}}$ that decides EQ_{DFA} .

$$D_{EQ_{DFA}}$$
 = ' On input $\langle A, B \rangle$
1. Construct DFA C

- where $L(C) = (L(A) \cap \overline{L(B)}) \cup (\overline{L(A)} \cap L(B))$
- 2. Run $D_{E_{DFA}}$ on $\langle C \rangle$
- 3. Accept if $D_{E_{DFA}}$ accept. Reject if $D_{E_{DFA}}$ reject."

Let $A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG and } w \in L(G)\}$

Theorem:

 A_{CFG} is decidable

Proof: Give TM $D_{A_{CFG}}$ that decides A_{CFG} .

Let
$$A_{CFG} = \{\langle G, w \rangle | G \text{ is a CFG and } w \in L(G)\}$$

$\mathsf{Theorem}$:

 A_{CFG} is decidable

Proof: Give TM $D_{A_{CFG}}$ that decides A_{CFG} .

- $D_{A_{CFG}}$ = ''On input $\langle G, w \rangle$
 - 1. Convert G into CNF
 - 2. Try all derivations of length 2|w|-1
 - Accept if any generate w Reject if not.''

Recall Chomsky Normal Form (CNF) only allows rules: $A \to BC$ $B \to b$

Lemma 1:

Can convert every CFG into CNF.

Proof and construction in book.

Recall Chomsky Normal Form (CNF) only allows rules: $A \to BC$ $B \to b$

Lemma 1:

Can convert every CFG into CNF.

Proof and construction in book.

Lemma 2:

If G is in CNF and $w \in L(G)$ then every derivation of w has 2|w|-1 steps.

Proof: exercise.

Recall Chomsky Normal Form (CNF) only allows rules: $A \to BC$ $B \to b$

Corollary:

Every CFL is decidable

Proof: Let A be a CFL, generated by CFG G. Construct TM

```
M_G = "On input \langle w \rangle
1. Run D_{A_{CFG}} on \langle G, w \rangle
2. Accept if D_{A_{CFG}} accepts. Rejectively.
```

2. Accept if $D_{A_{CFG}}$ accepts. Reject if it rejects.

Emptiness Problem for CFGs

Let $E_{CFG} = \{\langle G \rangle | G \text{ is a CFG and } L(G) = \Phi\}$

Theorem:

 E_{CFG} is decidable

Proof: Give TM $D_{E_{CFG}}$ that decides E_{CFG} .

Emptiness Problem for CFGs

Let $E_{CFG} = \{\langle G \rangle | G \text{ is a CFG and } L(G) = \Phi\}$

Theorem:

 E_{CFG} is decidable

Proof: Give TM $D_{E_{CFG}}$ that decides E_{CFG} .

- $D_{E_{CFG}}$ = ''On input $\langle G \rangle$
 - 1. Mark all occurences of terminal in G
 - 2. Repeat until no new variables are marked Mark all occurrences of variable A if $A \rightarrow B_1 B_2 \dots B_k$ is a rule and all B_i were already marked
 - Reject if the start variable is marked Accept if not.''

Equivalence Problem for CFGs

Let $EQ_{CFG} = \{\langle G_1, G_2 \rangle | G_1, G_2 \text{ are CFGs and } L(G_1) = L(G_2)\}$

Theorem:

EQ_{CFG} is undecidable

Let $AMBIG_{CFG} = \{\langle G \rangle | G \text{ is an ambiguous CFG} \}$

Theorem:

AMBIG_{CFG} is undecidable

Let $A_{TM} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem:

 A_{TM} is undecidable

Proof: next lecture

Theorem:

 A_{TM} is T-recognizable.

Let $A_{TM} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem:

 A_{TM} is T-recognizable.

Proof: The following TM U recognizes A_{TM}

```
U = \text{``On input } \langle M, w \rangle
```

- 1. Simulate M on w
- 2. If simulated M accepts w, then accept else reject (by moving to $q_{\rm rej}$)

Let $A_{TM} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem:

 A_{TM} is T-recognizable.

Proof: The following TM U recognizes A_{TM}

- $U = ``On input \langle M, w \rangle$
 - 1. Simulate M on w
 - 2. If simulated M accepts w, then accept else reject (by moving to $q_{\rm rej}$)

U (the Universal TM) accepts $\langle M, w \rangle$ iff M accepts w. i.e.,

$$L(U) = A_{\text{TM}}$$

Let $A_{TM} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem:

 A_{TM} is T-recognizable.

Proof: The following TM U recognizes A_{TM}

$$U = "On input \langle M, w \rangle$$

- 1. Simulate M on w
- 2. If simulated M accepts w, then accept else reject (by moving to $q_{\rm rej}$)

U (the Universal TM) accepts $\langle M, w \rangle$ iff M accepts w. i.e.,

$$L(U) = A_{\scriptscriptstyle {
m TM}}$$

But U does not decide A_{TM}

Let $A_{TM} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem:

 A_{TM} is T-recognizable.

Proof: The following TM U recognizes A_{TM}

- $U = ``On input \langle M, w \rangle$
 - 1. Simulate M on w
 - 2. If simulated M accepts w, then accept else reject (by moving to $q_{\rm rej}$)

U (the Universal TM) accepts $\langle M, w \rangle$ iff M accepts w. i.e.,

$$L(U) = A_{\text{TM}}$$

But U does not decide A_{TM} : If M rejects w by not halting, U rejects $\langle M, w \rangle$ by not halting.

Let $A_{TM} = \{\langle M, w \rangle | M \text{ is a TM and } M \text{ accepts } w\}$

Theorem:

 A_{TM} is T-recognizable.

Proof: The following TM U recognizes A_{TM}

$$U = "On input \langle M, w \rangle$$

- 1. Simulate M on w
- 2. If simulated M accepts w, then accept else reject (by moving to $q_{\rm rej}$)

U (the Universal TM) accepts $\langle M, w \rangle$ iff M accepts w. i.e.,

$$L(U) = A_{\scriptscriptstyle \mathrm{TM}}$$

But U does not decide $A_{\rm TM}$: If M rejects w by not halting, U rejects $\langle M, w \rangle$ by not halting. Indeed (as we shall see) no TM decides $A_{\rm TM}$.