Mathematical Foundations of Deep Neural Networks

§ 1. Optimization Problem

- § 1. Optimization Problem
 - Definition of Optimization Problem
 - Examples of Optimization Problem
 - Local and Global Minimum

§ 1. Optimization Problem

Definition of Optimization Problem

- § 1. Optimization Problem
 - Definition of Optimization Problem
 - Examples of Optimization Problem
 - Local and Global Minimum

Definition 1.1: Optimization Problem

In an **optimization problem**, we minimize or maximize a function value, possibly subject to constraints.

$$egin{aligned} & \min & f(heta) \ & \sup & \in \mathbb{R}^p \ & \sup & h_1(heta) = 0, \ & \cdots & , & h_m(heta) = 0, \ & g_1(heta) \leq 0, \ & \cdots & , & g_n(heta) \leq 0 \end{aligned}$$

- Decision variable: θ
- Objective function: f
- Equality constraint: $h_i(\theta) = 0$ for i = 1, ..., m
- Inequality constraint: $g_i(\theta) \leq 0$ for j = 1, ..., n

In machine learning (ML), we often minimize a "loss", but sometimes we maximize the "likelihood". In any case, minimization and maximization are equivalent since

maximize
$$f(\theta) \Leftrightarrow \min - f(\theta)$$
.

Definition 1.2: Feasible Point and Constraints

 $\theta \in \mathbb{R}^p$ is a **feasible point** if it satisfies all constraints:

$$h_1(\theta) = 0$$
 $g_1(\theta) \le 0$
 \vdots \vdots
 $h_m(\theta) = 0$ $g_n(\theta) \le 0$

Optimization problem is **infeasible** if there is no feasible point. An optimization problem with no constraint is called an **unconstrained optimization problem**. Optimization problems with constraints is called a **constrained optimization problem**.

Definition 1.3: Optimal Value and Solution

Optimal value of an optimization problem is

$$p^* = \inf \{ f(\theta) \mid \theta \in \mathbb{R}^n, \theta \text{ feasible } \}$$

- $p^* = \infty$ if problem is infeasible
- $p^* = -\infty$ is possible
- In ML, it is often a priori clear that $0 \le p^* < \infty$.

If $f(\theta^*) = p^*$, we say θ^* is a **solution** or θ^* is **optimal**.

A solution may or may not exist, and a solution may or may not be unique.

§ 1. Optimization Problem

Examples of Optimization Problem

- § 1. Optimization Problem
 - Definition of Optimization Problem
 - Examples of Optimization Problem
 - Local and Global Minimum

Example 1.4: Curve Fitting

Consider setup with data X_1, \ldots, X_N and corresponding labels Y_1, \ldots, Y_N satisfying the relationship

$$Y_i = f_{\star}(X_i) + \text{error}$$

for $i=1,\ldots,N$. Hopefully, "error" is small. True function f_{\star} is unknown. Goal is to find a function (curve) f such that $f\approx f_{\star}$.

Example 1.5: Least-Squares Minimization

Problem

$$\underset{\theta \in \mathbb{R}^p}{\mathsf{minimize}} \quad \frac{1}{2} \| X\theta - Y \|^2$$

where $X \in \mathbb{R}^{N \times p}$ and $Y \in \mathbb{R}^{N}$. Equivalent to

$$\underset{\theta \in \mathbb{R}^p}{\mathsf{minimize}} \frac{1}{2} \sum_{i=1}^N \left(X_i^\top \theta - Y_i \right)^2$$

where
$$X = \left[\begin{array}{c} X_1^\top \\ \vdots \\ X_N^\top \end{array} \right]$$
 and $Y = \left[\begin{array}{c} Y_1 \\ \vdots \\ Y_N \end{array} \right]$.

Solution

To solve

$$\underset{\theta \in \mathbb{R}^p}{\mathsf{minimize}} \frac{1}{2} \| X\theta - Y \|^2$$

take gradient and set it to 0

Concept 1.6: Least squares is an instance of curve fitting.

Define $f_{\theta}(x) = x^{\top}\theta$. Then LS becomes

$$\underset{\theta \in \mathbb{R}^{p}}{\mathsf{minimize}} \frac{1}{2} \sum_{i=1}^{N} \left(f_{\theta} \left(X_{i} \right) - Y_{i} \right)^{2}$$

and the solution hopefully satisfies

$$Y_i = f_\theta(X_i) + \text{ small.}$$

Since X_i and Y_i is assumed to satisfy

$$Y_i = f_{\star}(X_i) + \text{error}$$

we are searching over linear functions (linear curves) f_{θ} that best fit (approximate) f_{\star} .

§ 1. Optimization Problem

Local and Global Minimum

- § 1. Optimization Problem
 - Definition of Optimization Problem
 - Examples of Optimization Problem
 - Local and Global Minimum

Definition 1.7: Local vs Global Minima

 θ^* is a **local minimum** if $f(\theta) \ge f(\theta^*)$ for all feasible θ within a small neighborhood.

 θ^{\star} is a **global minimum** if $f(\theta) \geq f(\theta^{\star})$ for all feasible θ .

.././assets/1.1.jpg

In the worst case, finding the global minimum of an optimization problem

§ 11. Variational Autoencoders

- § 11. Variational Autoencoders
 - Latent Variable Model
 - Training Latent Variable Model with Importance Sampling
 - Definition of VAE
 - VAE Standard Instance
 - Training VAE
 - Researches

Prerequisites: Ch A. Appendix - Basics of Monte Carlo

Concept 11.1: Math Review

Let A and B be probabilistic events. Assume A has nonzero probability. **Conditional probability** satisfies

$$\mathbb{P}(B \mid A)\mathbb{P}(A) = \mathbb{P}(A \cap B)$$

Bayes' theorem is an application of conditional probability:

$$\mathbb{P}(B \mid A) = \frac{\mathbb{P}(A \mid B)\mathbb{P}(B)}{\mathbb{P}(A)}$$

Concept 11.2: Math Review

Let $X \in \mathbb{R}^m$ and $Z \in \mathbb{R}^n$ be continuous random variables with joint density p(x, z).

The marginal densities are defined by

$$p_X(x) = \int_{\mathbb{R}^n} p(x, z) dz, \quad p_Z(z) = \int_{\mathbb{R}^m} p(x, z) dx$$

The conditional density function $p(z \mid x)$ has the following properties

$$\mathbb{P}(Z \in S \mid X = x) = \int_{S} p(z \mid x) dz$$
$$p(z \mid x) p_{X}(x) = p(x, z), \quad p(z \mid x) = \frac{p(x \mid z) p_{Z}(z)}{p_{X}(x)}$$

Concept 11.3: Introduction for Variational Autoencoders (VAE)

Key idea of VAE:

- Latent variable model with conditional probability distribution represented by $p_{\theta}(x \mid z)$.
- Efficiently estimate $p_{\theta}(x) = \mathbb{E}_{Z \sim p_Z} [p_{\theta}(x \mid Z)]$ by **importance** sampling with $Z \sim q_{\phi}(z \mid x)$.

We can interpret $q_{\phi}(z \mid x)$ as an encoder and $p_{\theta}(x \mid z)$ as a decoder. VAEs differ from autoencoders as follows:

- Derivations (latent variable model vs. dimensionality reduction)
- VAE regularizes/controls latent distribution, while AE does not.

.././assets/11.1.png

§ 11. Variational Autoencoders

Latent Variable Model

- § 11. Variational Autoencoders
 - Latent Variable Model
 - Training Latent Variable Model with Importance Sampling
 - Definition of VAE
 - VAE Standard Instance
 - Training VAE
 - Researches

- Assumption on data X_1, \ldots, X_N Assumes there is an underlying latent variable Z representing the "essential structure" of the data and an observable variable X which generation is conditioned on Z. Implicitly assumes the conditional randomness of $X \sim p_{X|Z}$ is significantly smaller than the overall randomness $X \sim p_X$.
- Example
 X is a cat picture. Z encodes information about the body position, fur color, and facial expression of a cat. Latent variable Z encodes the overall content of the image, but X does contain details not specified in Z.

Definition 11.4: Latent Variable Model

VAEs implements a **latent variable model** with a NN that generates X given Z. More precisely, NN is a deterministic function that outputs the conditional distribution $p_{\theta}(x \mid Z)$, and X is randomly generated according to this distribution. This structure may effectively learn the latent structure from data if the assumption on data is accurate. 0.4pt1pt 2pt

Sampling process:

$$X \sim p_{\theta}(x \mid Z), \quad Z \sim p_{Z}(z)$$

Usually p_Z is a Gaussian (fixed) and $p_{\theta}(x \mid z)$ is a NN parameterized by θ . Evaluating density (likelihood):

Example 11.5: Example Latent Variable Model

Mixture of 3 Gaussians in \mathbb{R}^2 , uniform prior over components. (We can make the mixture weights a trainable parameter.)

$$p_{Z}(Z = A) = p_{Z}(Z = B) = p_{Z}(Z = C) = \frac{1}{3}$$

$$p_{\theta}(x \mid Z = k) = \frac{1}{2\pi |\Sigma_{k}|^{\frac{1}{2}}} \exp\left(-\frac{1}{2}(x - \mu_{k})^{\top} \Sigma_{k}^{-1}(x - \mu_{k})\right)$$

Training objective:

$$\begin{aligned} \underset{\mu, \Sigma}{\text{maximize}} \sum_{i=1}^{N} \log p_{\theta}\left(X_{i}\right) &= \underset{\mu, \Sigma}{\text{maximize}} \sum_{i=1}^{N} \log \left[\frac{1}{3} \frac{1}{2\pi \left|\Sigma_{A}\right|^{\frac{1}{2}}} \exp \left(-\frac{1}{2} \left(X_{i} - \mu_{A}\right)^{T} \right) \right] \\ &+ \frac{1}{3} \frac{1}{2\pi \left|\Sigma_{B}\right|^{\frac{1}{2}}} \exp \left(-\frac{1}{2} \left(X_{i} - \mu_{B}\right)^{T} \right) \\ &+ \frac{1}{3} \frac{1}{2\pi \left|\Sigma_{C}\right|^{\frac{1}{2}}} \exp \left(-\frac{1}{2} \left(X_{i} - \mu_{C}\right)^{T} \right) \end{aligned}$$

§ 11. Variational Autoencoders

Training Latent Variable Model with Importance Sampling

- § 11. Variational Autoencoders
 - Latent Variable Model
 - Training Latent Variable Model with Importance Sampling
 - Definition of VAE
 - VAE Standard Instance
 - Training VAE
 - Researches

From now on, we will focus on **HOW** to train latent variable model with MLE,

$$\underset{\theta \in \Theta}{\mathsf{maximize}} \sum_{i=1}^{N} \log p_{\theta}\left(X_{i}\right) = \underset{\theta \in \Theta}{\mathsf{maximize}} \sum_{i=1}^{N} \log \mathbb{E}_{Z \sim p_{Z}}\left[p_{\theta}\left(X_{i} \mid Z\right)\right]$$

Concept 11.6: VAE Outline

Outline of variational autoencoder (VAE):

 $oldsymbol{0}$ (Choice 1) Approximate intractable objective with a single Z sample

$$\sum_{i=1}^{N} \log \mathbb{E}_{Z \sim p_{Z}} \left[p_{\theta} \left(X_{i} \mid Z \right) \right] \approx \sum_{i=1}^{N} \log p_{\theta} \left(X_{i} \mid Z_{i} \right), \quad Z_{i} \sim p_{Z}$$

② (Choice 2) Improve accuracy of approximation by sampling Z_i with importance sampling

$$\sum_{i=1}^{N} \log \mathbb{E}_{Z \sim p_{Z}} \left[p_{\theta} \left(X_{i} \mid Z \right) \right] \approx \sum_{i=1}^{N} \log \frac{p_{\theta} \left(X_{i} \mid Z_{i} \right) p_{Z} \left(Z_{i} \right)}{q_{i} \left(Z_{i} \right)}, \quad Z_{i} \sim q_{i}$$

- Optimize approximate objective with SGD.
- (D. Kingma and M. Welling, VAE: Auto-encoding variational Bayes, ICLR, 2014.)

Concept 11.7: IWAE Outline

Importance weighted autoencoders (IWAE) approximates intractable with ${\cal K}$ samples of ${\cal Z}$:

$$\sum_{i=1}^{N} \log \mathbb{E}_{Z \sim p_{Z}} \left[p_{\theta} \left(X_{i} \mid Z \right) \right] \approx \sum_{i=1}^{N} \log \frac{1}{K} \sum_{k=1}^{K} \frac{p_{\theta} \left(X_{i} \mid Z_{i,k} \right) p_{Z} \left(Z_{i,k} \right)}{q_{i} \left(Z_{i,k} \right)}, \quad Z_{i,1}, \dots$$

(Y. Burda, R. Grosse, and R. Salakhutdinov, Importance weighted autoencoders, ICLR, 2016.)

Concept 11.8: Why does VAE need IS?

Among the two choices given in Concept 11.6, VAEs improve the accuracy of latent variable model with IS (Choice 2).

Sampling $Z_i \sim p_Z$ (Choice 1) results in a high-variance estimator:

$$\mathbb{E}_{Z \sim p_{Z}}\left[p_{\theta}\left(X_{i} \mid Z\right)\right] \approx p_{\theta}\left(X_{i} \mid Z_{i}\right),$$

In the Gaussian mixture example (Example 11.5), only 1/3 of the Z samples meaningfully contribute to the estimate. More specifically, if X_i is near μ_A but is far from μ_B and μ_C , then $p_\theta\left(X_i\mid Z=A\right)\gg 0$ but $p_\theta\left(X_i\mid Z=B\right)\approx 0$ and $p_\theta\left(X_i\mid Z=C\right)\approx 0$. The issue worsens as the observable and latent variable dimension

The issue worsens as the observable and latent variable dimension increases.

0.4pt1pt 2pt

Concept 11.9: Naïve Approach

To improve estimation of $\mathbb{E}_{Z \sim p_Z}[p_{\theta}(X_i \mid Z)]$, consider importance sampling (IS) with sampling distribution $Z_i \sim q_i(z)$:

$$\mathbb{E}_{Z \sim p_{Z}} \left[p_{\theta} \left(X_{i} \mid Z \right) \right] \approx p_{\theta} \left(X_{i} \mid Z_{i} \right) \frac{p_{Z} \left(Z_{i} \right)}{q_{i} \left(Z_{i} \right)}$$

Optimal IS sampling distribution

$$q_i^{\star}(z) = \frac{p_{\theta}(X_i \mid z) p_{Z}(z)}{p_{\theta}(X_i)} = p_{\theta}(z \mid X_i)$$

To clarify, optimal sampling distribution depends on X_i . To clarify, $p_{\theta}\left(X_i\right)$ is the unkown normalizing factor so $p_{\theta}\left(z\mid X_i\right)$ is also unkown. We call $q_i^{\star}(z)=p_{\theta}\left(z\mid X_i\right)$ the true **posterior** distribution and we will soon consider the approximation $q_{\phi}(z\mid x)\approx p_{\theta}(z\mid x)$, which we call the **approximate posterior**.

0.4pt1pt 2pt

For each X_i , let $q_i(z)$ be the optimal approximate posterior dependent on X_i , and consider

Concept 11.10: Variational Approach and Amortized Inference

General principle of variational approach: We can't directly use the q we want. So, instead, we propose a parameterized distribution q_{ϕ} that we can work with easily (in this case, sample from easily), and find a parameter setting that makes it as good as possible.

Parametrization of VAE:

$$q_{\phi}\left(z\mid X_{i}\right)pprox q_{i}^{\star}(z)=p_{\theta}\left(z\mid X_{i}\right) \quad ext{ for all } i=1,\ldots,N$$

Amortized inference: Train a neural network $q_{\phi}(\cdot \mid x)$ such that $q_{\phi}(\cdot \mid X_i)$ approximates the optimal $q_i(\cdot)$.

$$\underset{\phi \in \Phi}{\mathsf{minimize}} \sum_{i=1}^{N} D_{\mathsf{KL}} \left(q_{\phi} \left(\cdot \mid X_{i} \right) \| p_{\theta} \left(\cdot \mid X_{i} \right) \right)$$

Approximation $q_{\phi}(z \mid X_i) \approx p_{\theta}(z \mid X_i)$ is often less precise than that of individual inference $q_i(z) \approx p_{\theta}(z \mid X_i)$, but amortized inference is often significantly faster.

Concept 11.11: Encoder q_{ϕ} Optimization

In analogy with autoencoders, we call q_{ϕ} the **encoder**. Optimization problem for encoder (derived from Concept 11.9) :

$$\begin{aligned} & \underset{\phi \in \Phi}{\mathsf{minimize}} \sum_{i=1}^{N} D_{\mathrm{KL}} \left(q_{\phi} \left(\cdot \mid X_{i} \right) \| p_{\theta} \left(\cdot \mid X_{i} \right) \right) \\ & = & \underset{\phi \in \Phi}{\mathsf{maximize}} \sum_{i=1}^{N} \mathbb{E}_{Z \sim q_{\phi}(z \mid X_{i})} \left[\log \left(\frac{p_{\theta} \left(X_{i} \mid Z \right) p_{Z}(Z)}{q_{\phi} \left(Z \mid X_{i} \right)} \right) \right] + \text{ constant independent elements} \\ & = & \underset{\phi \in \Phi}{\mathsf{maximize}} \sum_{i=1}^{N} \mathbb{E}_{Z \sim q_{\phi}(z \mid X_{i})} \left[\log p_{\theta} \left(X_{i} \mid Z \right) \right] - D_{\mathrm{KL}} \left(q_{\phi} \left(\cdot \mid X_{i} \right) \| p_{Z}(\cdot) \right) \end{aligned}$$

Concept 11.12: Decoder p_{θ} Optimization

In analogy with autoencoders, we call p_{θ} the **decoder**. Perform approximate MLE (derived from IS, Choice 2 of Concept 11.6) :

$$\begin{aligned} & \underset{\theta \in \Theta}{\text{maximize}} \sum_{i=1}^{N} \log p_{\theta}\left(X_{i}\right) = \underset{\theta \in \Theta}{\text{maximize}} \sum_{i=1}^{N} \log \mathbb{E}_{Z \sim p_{Z}}\left[p_{\theta}\left(X_{i} \mid Z\right)\right] \\ & \overset{(a)}{\approx} \underset{\theta \in \Theta}{\text{maximize}} \sum_{i=1}^{N} \log \left(\frac{p_{\theta}\left(X_{i} \mid Z_{i}\right) p_{Z}\left(Z_{i}\right)}{q_{\phi}\left(Z_{i} \mid X_{i}\right)}\right), \quad Z_{i} \sim q_{\phi}\left(z \mid X_{i}\right) \\ & \overset{(b)}{\approx} \underset{\theta \in \Theta}{\text{maximize}} \sum_{i=1}^{N} \mathbb{E}_{Z \sim q_{\phi}\left(z \mid X_{i}\right)}\left[\log \left(\frac{p_{\theta}\left(X_{i} \mid Z\right) p_{Z}(Z)}{q_{\phi}\left(Z \mid X_{i}\right)}\right)\right] \\ & = \underset{\theta \in \Theta}{\text{maximize}} \sum_{i=1}^{N} \mathbb{E}_{Z \sim q_{\phi}\left(z \mid X_{i}\right)}\left[\log p_{\theta}\left(X_{i} \mid Z\right)\right] - D_{\text{KL}}\left(q_{\phi}\left(\cdot \mid X_{i}\right) \| p_{Z}(\cdot)\right) \end{aligned}$$

The $\stackrel{(a)}{\approx}$ step replaces expectation inside the log with an estimate with Z_i .

The \approx step replaces the random variable with the expectation in These \$\,\{11\}\). Variational Autoencoders

Definition of VAE

- § 11. Variational Autoencoders
 - Latent Variable Model
 - Training Latent Variable Model with Importance Sampling
 - Definition of VAE
 - VAE Standard Instance
 - Training VAE
 - Researches

Definition 11.13: Variational Lower Bound (VLB)

The optimization objectives for the encoder (Concept 11.11) and decoder (Concept 11.12) are the same! Simultaneously train p_{θ} and q_{ϕ} by solving

$$\underset{\theta \in \Theta, \phi \in \Phi}{\operatorname{maximize}} \sum_{i=1}^{N} \underbrace{\mathbb{E}_{Z \sim q_{\phi}(z \mid X_{i})} \left[\log p_{\theta} \left(X_{i} \mid Z \right) \right] - D_{\operatorname{KL}} \left(q_{\phi} \left(\cdot \mid X_{i} \right) \| p_{Z}(\cdot) \right)}_{\overset{\text{def}}{=} \operatorname{VLB}_{\theta, \phi}(X_{i})}$$

We refer to the optimization objective as the **variational lower bound (VLB)** or **evidence lower bound (ELBO)** for reasons that will be explained soon (Concept 11.14).

Concept 11.14: How tight lower bound is the VLB?

How accurate is the approximation?

$$\begin{aligned} & \underset{\theta \in \Theta}{\text{maximize}} \sum_{i=1}^{N} \log p_{\theta}\left(X_{i}\right) = \underset{\theta \in \Theta}{\text{maximize}} \sum_{i=1}^{N} \log \mathbb{E}_{Z \sim q_{\phi}\left(z \mid X_{i}\right)} \left[\frac{p_{\theta}\left(X_{i} \mid Z\right) p_{Z}(Z)}{q_{\phi}\left(Z \mid X_{i}\right)} \right] \\ & \stackrel{?}{\approx} \underset{\theta \in \Theta, \phi \in \Phi}{\text{maximize}} \sum_{i=1}^{N} \mathbb{E}_{Z \sim q_{\phi}\left(z \mid X_{i}\right)} \left[\log \left(\frac{p_{\theta}\left(X_{i} \mid Z\right) p_{Z}(Z)}{q_{\phi}\left(Z \mid X_{i}\right)} \right) \right] \\ & = \underset{\theta \in \Theta, \phi \in \Phi}{\text{maximize}} \sum_{i=1}^{N} \mathsf{VLB}_{\theta, \phi}\left(X_{i}\right) \end{aligned}$$

This turns out that

$$\log p_{\theta}(X_i) \geq \mathsf{VLB}_{\theta,\phi}(X_i)$$

So we are maximizing a lower bound of the log likelihood. How large is the gap?

0.4pt1pt 2pt

Concept 11.15: VLB is tight if encoder is infinitely powerful.

If the encoder q_{ϕ} is powerful enough such that there is a ϕ^{\star} achieving

$$q_{\phi^*}\left(\cdot\mid X_i\right) = p_{\theta}\left(\cdot\mid X_i\right)$$

or equivalently

$$D_{\mathrm{KL}}\left[q_{\phi^{*}}\left(\cdot\mid X_{i}\right) \| p_{\theta}\left(\cdot\mid X_{i}\right)\right]=0$$

Then

$$\underset{\theta \in \Theta}{\operatorname{maximize}} \sum_{i=1}^{N} \log p_{\theta}\left(X_{i}\right) = \underset{\theta \in \Theta, \phi \in \Phi}{\operatorname{maximize}} \sum_{i=1}^{N} \mathsf{VLB}_{\theta,\phi}\left(X_{i}\right)$$

Definition 11.16: Variational Autoencoder (VAE) Terminology

.././assets/11.4.png

- **Likelihood** : $p_{\theta}(x)$ (exact evaluation intractable)
- Prior : $p_Z(z)$
- Conditional distribution (decoder) : $p_{\theta}(x \mid z)$

VAE Standard Instance

- § 11. Variational Autoencoders
 - Latent Variable Model
 - Training Latent Variable Model with Importance Sampling
 - Definition of VAE
 - VAE Standard Instance
 - Training VAE
 - Researches

Definition 11.17: VAE Standard Instance

A standard VAE setup:

$$egin{aligned} &p_Z = \mathcal{N}(0,I) \ &q_\phi(z\mid x) = \mathcal{N}\left(\mu_\phi(x), \Sigma_\phi(x)
ight) \end{aligned} ext{ with diagonal } \Sigma_\phi \ &p_ heta(x\mid z) = \mathcal{N}\left(f_ heta(z), \sigma^2 I
ight) \end{aligned}$$

 $\mu_{\phi}(x), \Sigma_{\phi}^{2}(x)$, and $f_{\theta}(z)$ are deterministic NN. 0.4pt1pt 2pt

Using the following equation,

$$egin{aligned} &D_{\mathrm{KL}}\left(\mathcal{N}\left(\mu_{\phi}(X), \Sigma_{\phi}(X)
ight) \|\mathcal{N}(0, I)
ight) \ =& rac{1}{2}\left(\mathrm{tr}\left(\Sigma_{\phi}(X)
ight) + \|\mu_{\phi}(X)\|^2 - d - \log\det\left(\Sigma_{\phi}(X)
ight)
ight) \end{aligned}$$

the training objective

$$\underset{\theta \in \Theta, \phi \in \Phi}{\mathsf{maximize}} \sum_{i=1}^{N} \mathbb{E}_{Z \sim q_{\phi}(z \mid X_{i})} \left[\log p_{\theta} \left(X_{i} \mid Z \right) \right] - D_{\mathrm{KL}} \left(q_{\phi} \left(\cdot \mid X_{i} \right) \| p_{Z}(\cdot) \right)$$

Concept 11.18: VAE Standard Instance with Reparameterization Trick

The standard instance of VAE

$$\underset{\theta \in \Theta, \phi \in \Phi}{\operatorname{minimize}} \sum_{i=1}^{N} \frac{1}{\sigma^{2}} \mathbb{E}_{Z \sim \mathcal{N}\left(\mu_{\phi}(X_{i}), \Sigma_{\phi}(X_{i})\right)} \left\|X_{i} - f_{\theta}(Z)\right\|^{2} + \operatorname{tr}\left(\Sigma_{\phi}\left(X_{i}\right)\right) + \left\|\mu_{\phi}\left(X_{i}\right)\right\|^{2} - \operatorname{tr}\left(\Sigma_{\phi}\left(X_{i}\right)\right) + \left\|\mu_{\phi}\left(X_{i}\right)\right\|^{2} + \operatorname{tr}\left(\Sigma_{\phi}\left(X_{i}\right)\right) + \left\|\mu_{\phi}\left(X_{i}\right)\right\|^{2} - \operatorname{tr}\left(\Sigma_{\phi}\left(X_{i}\right)\right) + \left\|\mu_{\phi}\left(X_{i}\right)\right\|^{2} + + \left\|$$

can be equivalently written with the reparameterization trick

$$\underset{\theta \in \Theta, \phi \in \Phi}{\operatorname{minimize}} \sum_{i=1}^{N} \frac{1}{\sigma^{2}} \mathbb{E}_{\varepsilon \sim \mathcal{N}(0,I)} \left\| X_{i} - f_{\theta} \left(\mu_{\phi} \left(X_{i} \right) + \Sigma_{\phi}^{1/2} \left(X_{i} \right) \varepsilon \right) \right\|^{2} + \operatorname{tr} \left(\Sigma_{\phi} \left(X_{i} \right) \right) + \| C_{\phi} \left(X_{i} \right) - C_{\phi} \left(X_{i} \right) \right) + \| C_{\phi} \left(X_{i} \right) - C_{\phi} \left(X_{i} \right) \right) + \| C_{\phi} \left(X_{i} \right) - C_{\phi} \left(X_{i} \right) \right) + \| C_{\phi} \left(X_{i} \right) - C_{\phi} \left(X_{i} \right) \right) + \| C_{\phi} \left(X_{i} \right) - C_{\phi} \left(X_{i} \right) \right) - C_{\phi} \left(X_{i} \right) + C_{\phi} \left(X_{i} \right) + C_{\phi} \left(X_{i} \right) \right) + \| C_{\phi} \left(X_{i} \right) - C_{\phi} \left(X_{i} \right) \right) - C_{\phi} \left(X_{i} \right) + C_{\phi} \left$$

where $\Sigma_{\phi}^{1/2}$ is diagonal with $\sqrt{\cdot}$ of the diagonal elements of Σ_{ϕ} . (Remember, Σ_{ϕ} is diagonal.)

To clarify $Z \stackrel{\mathcal{D}}{=} \mu_{\phi}(X_i) + \Sigma_{\phi}^{1/2}(X_i) \varepsilon$, where $\stackrel{\mathcal{D}}{=}$ denotes equality in distribution.

We now have an objective amenable to stochastic optimization.

Concept 11.19: VAE Standard Instance Architecture

• Training (Without reparameterization trick)

.././assets/11.5.png

Concept 11.20: Why variational

VAE loss (VLB) contains a reconstruction loss resembling that of an autoencoder.

$$\begin{aligned} \mathsf{VLB}_{\theta,\phi}\left(X_{i}\right) &= \mathbb{E}_{Z \sim q_{\phi}\left(z \mid X_{i}\right)}\left[\log p_{\theta}\left(X_{i} \mid Z\right)\right] - D_{\mathrm{KL}}\left(q_{\phi}\left(\cdot \mid X_{i}\right) \| p_{Z}(\cdot)\right) \\ &= -\frac{1}{2\sigma^{2}}\mathbb{E}_{Z \sim q_{\phi}\left(z \mid X_{i}\right)}\left[\left\|X_{i} - f_{\theta}(Z)\right\|^{2}\right] - D_{\mathrm{KL}}\left(q_{\phi}\left(\cdot \mid X_{i}\right) \| p_{Z}(\cdot)\right) \\ &= -\underbrace{\frac{1}{2\sigma^{2}}\mathbb{E}_{\varepsilon \sim \mathcal{N}\left(0,I\right)}\left\|X_{i} - f_{\theta}\left(\mu_{\phi}\left(X_{i}\right) + \Sigma_{\phi}^{1/2}\left(X_{i}\right)\varepsilon\right)\right\|^{2}}_{\mathsf{Reconstruction loss}} - \underbrace{D_{\mathrm{KL}}\left(q_{\phi}\left(X_{i}\right) + \Sigma_{\phi}^{1/2}\left(X_{i}\right)\varepsilon\right)}_{\mathsf{Reconstruction loss}} + \underbrace{D_{\mathrm{KL}}\left(Q_{\phi}\left(X_{$$

VLB also contains a regularization term on the output of the encoder, which is not present in standard autoencoder losses.

The choice of σ determines the relative weight between the reconstruction loss and the regularization.

◆ロト ◆問 ト ◆ 恵 ト ◆ 恵 ・ 夕 Q ○

Training VAE

- § 11. Variational Autoencoders
 - Latent Variable Model
 - Training Latent Variable Model with Importance Sampling
 - Definition of VAE
 - VAE Standard Instance
 - Training VAE
 - Researches

Concept 11.21: Training VAE with RT

To obtain stochastic gradients of the VAE standard instance

$$\underset{\theta \in \Theta, \phi \in \Phi}{\operatorname{minimize}} \sum_{i=1}^{N} \frac{1}{\sigma^{2}} \mathbb{E}_{\varepsilon \sim \mathcal{N}(0, I)} \left\| X_{i} - f_{\theta} \left(\mu_{\phi} \left(X_{i} \right) + \Sigma_{\phi}^{1/2} \left(X_{i} \right) \varepsilon \right) \right\|^{2} + \operatorname{tr} \left(\Sigma_{\phi} \left(X_{i} \right) \right) + \left\| X_{i} - f_{\theta} \left(\mu_{\phi} \left(X_{i} \right) + \Sigma_{\phi}^{1/2} \left(X_{i} \right) \varepsilon \right) \right\|^{2} + \operatorname{tr} \left(\Sigma_{\phi} \left(X_{i} \right) \right) + \left\| X_{i} - f_{\theta} \left(\mu_{\phi} \left(X_{i} \right) + \Sigma_{\phi}^{1/2} \left(X_{i} \right) \varepsilon \right) \right\|^{2} + \operatorname{tr} \left(\Sigma_{\phi} \left(X_{i} \right) \right) + \left\| X_{i} - f_{\theta} \left(\mu_{\phi} \left(X_{i} \right) + \Sigma_{\phi}^{1/2} \left(X_{i} \right) \varepsilon \right) \right\|^{2} + \operatorname{tr} \left(\Sigma_{\phi} \left(X_{i} \right) \right) + \left\| X_{i} - f_{\theta} \left(\mu_{\phi} \left(X_{i} \right) + \Sigma_{\phi}^{1/2} \left(X_{i} \right) \varepsilon \right) \right\|^{2} + \operatorname{tr} \left(\Sigma_{\phi} \left(X_{i} \right) \right) + \left\| X_{i} - f_{\theta} \left(\mu_{\phi} \left(X_{i} \right) + \Sigma_{\phi}^{1/2} \left(X_{i} \right) \varepsilon \right) \right\|^{2} + \operatorname{tr} \left(\Sigma_{\phi} \left(X_{i} \right) \right) + \left\| X_{i} - f_{\theta} \left(\mu_{\phi} \left(X_{i} \right) + \Sigma_{\phi}^{1/2} \left(X_{i} \right) \varepsilon \right) \right\|^{2} + \operatorname{tr} \left(\Sigma_{\phi} \left(X_{i} \right) \right) + \left\| X_{i} - f_{\theta} \left(\mu_{\phi} \left(X_{i} \right) + \Sigma_{\phi}^{1/2} \left(X_{i} \right) \varepsilon \right) \right\|^{2} + \operatorname{tr} \left(\Sigma_{\phi} \left(X_{i} \right) \right) + \left\| X_{i} - f_{\phi} \left(X_{i} \right) \right\|^{2} + \operatorname{tr} \left(\Sigma_{\phi} \left(X_{i} \right) \right) + \left\| X_{i} - f_{\phi} \left(X_{i} \right) \right\|^{2} + \left\| X_{i} - f_{\phi} \left(X_{i} \right) \right\|$$

select a data X_i , sample $\varepsilon_i \sim \mathcal{N}(0, I)$, evaluate

$$-\mathsf{VLB}_{\theta,\phi}\left(X_{i},\varepsilon_{i}\right) \stackrel{\mathsf{def}}{=} \frac{1}{\sigma^{2}} \left\|X_{i} - f_{\theta}\left(\mu_{\phi}\left(X_{i}\right) + \Sigma_{\phi}^{1/2}\left(X_{i}\right)\varepsilon_{i}\right)\right\|^{2} + \mathsf{tr}\left(\Sigma_{\phi}\left(X_{i}\right)\right) + \left\|X_{i} - f_{\phi}\left(X_{i}\right)\right\|^{2} + \mathsf{tr}\left(\Sigma_{\phi}\left(X_{i}\right)\right) + \mathsf{tr}\left(\Sigma_{\phi}$$

and backprop on $VLB_{\theta,\phi}(X_i,\varepsilon_i)$.

Usually, batch of X_i is selected.

One can sample multiple $Z_{i,1}, \ldots, Z_{i,K}$ (equivalently $\varepsilon_{i,1}, \ldots, \varepsilon_{i,K}$) for each X_i .

4 D > 4 A D > 4 B > 4 B > 9 Q P

Concept 11.22: Traning VAE with Log-Derivative Trick

Computing stochastic gradients without the reparameterization trick.

$$\underset{\theta \in \Theta, \phi \in \Phi}{\operatorname{maximize}} \sum_{i=1}^{N} \underbrace{\mathbb{E}_{Z \sim q_{\phi}(z|X_{i})} \left[\log \left(\frac{p_{\theta}\left(X_{i} \mid Z\right) p_{Z}(Z)}{q_{\phi}\left(Z \mid X_{i}\right)} \right) \right]}_{\stackrel{\text{def}}{=} \mathsf{VLB}_{\theta, \phi}(X_{i})}$$

To obtain unbiased estimates of ∇_{θ} , compute

$$\frac{1}{K}\sum_{k=1}^{K}\log p_{\theta}\left(X_{i}\mid Z_{i,k}\right), \quad Z_{i,1},\ldots,Z_{i,K}\sim q_{\phi}\left(z\mid X_{i}\right)$$

and backprop with respect to θ .

We differentiate the VLB objectives

$$\nabla_{\phi} \mathbb{E}_{Z \sim q_{\phi}(z|X_{i})} \left[\log \left(\frac{p_{\theta}(X_{i} \mid Z) p_{Z}(Z)}{q_{\phi}(Z \mid X_{i})} \right) \right] = \nabla_{\phi} \int \log \left(\frac{p_{\theta}(X_{i} \mid z) p_{Z}(z)}{q_{\phi}(z \mid X_{i})} \right) q_{\phi}$$

$$= \mathbb{E}_{Z \sim q_{\phi}(z|X_{i})} \left[(\nabla_{\phi} \log q_{\phi}(Z \mid X_{i})) \right]$$
§ 11. Variational Autoencoders

Researches

- § 11. Variational Autoencoders
 - Latent Variable Model
 - Training Latent Variable Model with Importance Sampling
 - Definition of VAE
 - VAE Standard Instance
 - Training VAE
 - Researches

Concept 11.23: VQ-VAE

.././assets/11.8.png

Concept 11.25: β -VAE

Uses the loss

$$\ell_{\theta,\phi}\left(X_{i}\right) = \mathbb{E}_{Z \sim q_{\phi}\left(z \mid X_{i}\right)}\left[\log p_{\theta}\left(X_{i} \mid Z\right)\right] - \beta D_{\mathrm{KL}}\left(q_{\phi}\left(\cdot \mid X_{i}\right) \| p_{Z}(\cdot)\right)$$

when $\beta=1, \ell_{\theta,\phi}\left(X_{i}\right)=\mathsf{VLB}_{\theta,\phi}\left(X_{i}\right)$, i.e., β -VAE coincides with VAE when $\beta=1.$

With $\beta > 1$, authors observed better feature disentanglement.

(I. Higgins, L. Matthey, A. Pal, C. Burgess, X. Glorot, M. Botvinick, S. Mohamed, and A. Lerchner, -VAE: Learning basic visual concepts with a constrained variational framework, ICLR, 2017.)

|ロト 4回 ト 4 差 ト 4 差 ト | 差 | 釣 Q ()