Notes on Stochastic Programming

Jingyuan Yang, Chuwen Zhang Stochastic Programming Reading Group

February 27, 2022

1 Mathematical Background

1.1 Functions

Definition 1.1. An extended real valued function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is proper if $f(x) > -\infty$ for all $x \in \mathbb{R}^n$ and its domain, dom f, is nonempty.

Definition 1.2. An extended real valued function $f : \mathbb{R}^n \to \overline{\mathbb{R}}$ is lower semicontinuous if at every point $x_0 \in \mathbb{R}^n$, $f(x_0) \leq \liminf_{x \to x_0} f(x)$.

f is lower semicontinuous iff its epigraph is a closed subset of \mathbb{R}^{n+1} .

Definition 1.3. An extended real valued function $f: \mathbb{R}^n \to \overline{\mathbb{R}}$ is polyhedral if it is proper convex and lower semicontinuous, its domain is a convex closed polyhedron, and $f(\cdot)$ is piecewise linear on its domain.

Definition 1.4. We refer \mathscr{G} which is a mapping from Ω into the set of subsets of \mathbb{R}^n as a multifunction.

Definition 1.5. The function $F(x,\omega)$ is random lower semicontinuous if the associated epigraphical multifunction $\omega \mapsto \operatorname{epi} F(\cdot,\omega)$ is closed valued and measurable.

Theorem 1.1. Let $F: \mathbb{R}^n \times \Omega \to \overline{\mathbb{R}}$ be a random lower semicontinuous function. Then the optimal value function $v(\omega)$ and the optimal solution multifunction $X^*(\omega)$ are both measurable.

2 Linear Two-Stage Problems

2.1 Basic Properties

We discuss two-stage stochastic linear programming problems of the form

$$\min_{x} c^{T}x + \mathbb{E}[Q(x,\xi)]
\text{s.t.} Ax = b, x \ge 0,$$
(1)

where $Q(x,\xi)$ is the optimal value of the second-stage problem

$$\min_{y} q^{T} y
\text{s.t.} Tx + Wy = hy, y \ge 0.$$
(2)

The dual problem of problem (2) can be written in the form

$$\max_{\pi} \quad \pi^{T}(h - Tx)
\text{s.t.} \quad W^{T}\pi \leq q.$$
(3)

We define

$$s_q(\chi) \triangleq \inf\{q^T y : Wy = \chi, y \ge 0\}.$$

Clearly, $Q(x,\xi) = s_q(h-Tx)$. In addition, by duality theory,

$$s_q(\chi) = \sup_{\pi \in \Pi(q)} \pi^T \chi,$$

where $\Pi(q) \triangleq \{\pi : W^T \pi \leq q\}.$

Proposition 2.1. For any given ξ , $Q(\cdot,\xi)$ is convex. Moreover, if $\{\pi : W^T\pi \leq q\}$ is nonempty and problem (2) is feasible for at least one x, then the function $Q(\cdot,\xi)$ is polyhedral.

Proposition 2.2. Suppose that for given $x = x_0$ and $\xi \in \Xi$, the value $Q(x_0, \xi)$ is finite. Then $Q(\cdot, \xi)$ is subdifferentiable at x_0 and

$$\partial Q(x_0, \xi) = -T^T \mathfrak{D}(x_0, \xi),$$

where $\mathfrak{D}(x_0,\xi) \triangleq arg \max_{\pi \in \Pi(q)} \pi^T(h-Tx)$ is the set of optimal solutions of the dual problem (3).

2.1.1 The domain of $s_q(\chi)$

The positive hull of a matrix W is defined as

$$\text{pos } W \triangleq \{\chi: \chi = Wy, y \geq 0\}.$$

The recession cone of $\Pi(q)$ is equal to

$$\Pi_0 \triangleq \{\pi : W^T \pi \le 0\}.$$

Denote the polar cone to Π_0 as Π_0^* . We have

$$dom \ s_q = pos \ W = \Pi_0^*.$$

2.2 The Expected Recourse Cost

$$\phi(x) \triangleq \mathbb{E}[Q(x,\xi)].$$

With discrete distribution of ξ , if for at least one scenario, the corresponding second-stage problem is infeasible, $\phi(x)$ is $+\infty$.

To ensure that $\phi(x)$ is well defined, we have to verify two conditions:

- 1. $Q(x,\cdot)$ is measurable [followed by Theorem 1.1];
- 2. either $\mathbb{E}[Q(x,\xi)_+]$ or $\mathbb{E}[(-Q(x,\xi))_+]$ is finite.

Proposition 2.3. Suppose that the recourse is fixed and

$$\mathbb{E}[||q||||h||] < +\infty \ \ and \ \mathbb{E}[||q||||T||] < +\infty.$$

Consider a point $x \in \mathbb{R}^n$. Then $\mathbb{E}[Q(x,\xi)_+]$ is finite iff $h - Tx \in pos\ W$ holds w.p. 1.

Proof. By Hoffman's lemma.

Moreover, if the recourse is complete, $\phi(\cdot)$ is well defined and is less than $+\infty$. Since the function $\phi(\cdot)$ is convex, we have that if $\phi(\cdot)$ is finite valued in at least one point, then $\phi(\cdot)$ is finite valued on the entire space \mathbb{R}^n .

Proposition 2.4. Suppose that the probability distribution of ξ has finite support $\Xi = \{\xi_1, \ldots, \xi_K\}$ and $\phi(\cdot)$ has a finite value in at least one point $\bar{\xi} \in \mathbb{R}^n$. Then the function $\phi(\cdot)$ is polyhedral, and for any $\xi_0 \in \text{dom } \phi$,

$$\partial \phi(x_0) = \sum_k p_k \partial Q(x_0, \xi_K).$$

Proof. By Proposition 2.1.

Remark. ϕ is differentiable at x_0 iff for every ξ_k , the corresponding second-stage dual problem has a unique optimal solution.

Proposition 2.5. Suppose that the expectation function $\phi(\cdot)$ is proper and its domain has a nonempty interior. Then for any $x_0 \in dom\ phi$,

$$\partial \phi(x_0) = -\mathbb{E}[T^T \mathfrak{D}(x_0, \xi)] + \mathcal{N}_{dom \ \phi}(x_0),$$

where

$$\mathfrak{D}(x_0, \xi) \triangleq \arg \max_{\pi \in \Pi(q)} \pi^T (h - Tx).$$

Moreover, ϕ is differentiable at x_0 iff x_0 belongs to the interior of dom ϕ and the set $\mathfrak{D}(x_0,\xi)$ is a singleton w.p. 1.

Proposition 2.6. Suppose that (i) the recourse is fixed, (ii) for a.e. q the set $\Pi(q)$ is nonempty, (iii) condition $\mathbb{E}[||q||||h||] < +\infty$ and $\mathbb{E}[||q||||T||] < +\infty$ holds, (iv) the conditional distribution of h, given (T,q) is absolutely continuous for almost all (T,q). Then ϕ is continuously differentiable on the interior of its domain.

In the case of a continuous distribution of ξ , the expectation operator smoothes the piecewise linear function $Q(\cdot, \xi)$.

Theorem 2.7. Let \bar{x} be a feasible solution of problem (1). Then \bar{x} is an optimal solution iff there exist $\pi_k \in \mathfrak{D}(\bar{x}, \xi_k), k = 1, \dots, K$, and $\mu \in \mathbb{R}^m$ such that

$$\sum_{k} p_k T_k^T \pi_k + A^T \mu \le c$$

$$\bar{x}^T (c - \sum_{k} p_k T_k^T \pi_k - A^T \mu) = 0.$$
(4)

If we deal with general distributions of the problem's data, additional conditions are needed to ensure the subdifferentiability of the expected recourse cost and the existence of Lagrange multipliers.

Theorem 2.8. Let \bar{x} be a feasible solution of problem (1). Suppose that the expected recourse cost function $\phi(\cdot)$ is proper, $int(dom \ \phi) \cap X$ is nonempty, and $\mathcal{N}_{dom \ \phi}(\bar{x}) \subset \mathcal{N}_X(\bar{x})$. Then \bar{x} is an optimal solution iff there exist a measurable function $\pi(\omega) \in (x, \xi(\omega))$, and a vector $\mu \in \mathbb{R}^m$ such that

$$\mathbb{E}[T^T \pi] + A^T \mu \le c$$

$$\bar{x}^T (c - \mathbb{E}[T^T \pi] - A^T \mu) = 0.$$
(5)

The assumptions can be substituted by i) the recourse is fixed, (ii)for a.e. q the set $\Pi(q)$ is nonempty, (iii) condition $\mathbb{E}[||q||||h||] < +\infty$ and $\mathbb{E}[||q||||T||] < +\infty$ holds and T is deterministic.