

Jayanth Chennamangalam *University of Oxford*

Aris Karastergiou · David MacMahon · Wes Armour · Jeff Cobb · Duncan Lorimer · Kaustubh Rajwade Andrew Siemion · Dan Werthimer · Christopher Williams

outline

- → Motivation: Realtime detection of FRBs
- → ALFABURST architecture
- → ALFABURST data flow
- → ARTEMIS
 - RFI excision
 - Dedispersion
 - Matched filtering
 - Candidate extraction
- → AMPP
- → Deployment
- → Commissioning tests
- → Commensal survey
- → Future work

motivation

- → Fast Radio Bursts
 - ◆ Broad-band
 - ◆ Pulse widths: ~ms
 - ◆ DM > DM_{Galactic}
- → > 11 known FRBs (10 at Parkes, 1 at Arecibo)
- → Origin:
 - Flaring magnetars?
 - Binary neutron star mergers?
 - Gravitational collapse of neutron stars to black holes?
 - Nearby flare stars?
 - **♦** ...

motivation

- → > 11 known FRBs (> 10 at Parkes, 1 at Arecibo)
- → Estimated rates @ 1.4 GHz: 3.3 x 10³ sky⁻¹ day⁻¹ (for flux density above ~0.1 Jy; Rane et al. 2015)

alfaburst

- → Commensal, automated, real-time FRB monitor
- → ALFA: Arecibo L-band Feed Array, 7 beams (each ~3.5' at ~1400 MHz), 300 MHz bandwidth, T_{sys} ~30 K

alfaburst

- → SERENDIP VI commensal data processing infrastructure
- → ARTEMIS development

alfaburst architecture

alfaburst data flow

9/30

artemis

- → Advanced Radio Transient Event Monitor and Identification System
 - Realtime incoherent dedispersion search
 - Modular architecture extensible, scalable
 - Industry-standard software tools/methodologies
 - \Rightarrow Fast deployment/easy maintenance \Rightarrow More science

artemis

rfi excision

artemis

dedispersion

artemis

matched filtering

- → Each time series (DM channel) is decimated/smoothed: Effective sampling time equals detected pulse width
 - \Rightarrow Maximize S/N
 - Decimation factors: 2, 4, 8, 16, 26, 64

artemis

candidate extraction

- \rightarrow Thresholding: No
- → Diagnostic plots:

alfaburst is an ampp

- ARTEMIS Modular PELICAN Pipeline
 - PELICAN: C++ framework with client-server architecture
 - Distributes incoming data across processing nodes
 - Modular extensible, scalable

ampp

20/30

ampp

21/30

deployment

10GbE switch

ROACH2 boards

deployment

- → Current configuration:
 - Bandwidth: 56 MHz (out of 300 MHz max.)
 - t_s = 256 μs (native 128 μs)
 DM limit: 2560 cm⁻³ pc

 - Only Stokes I

commissioning tests

commissioning tests

commensal survey

- → ALFA usage: 500-1000 hours over the next year
- → Spitler et al. (2014) inferred event rate:
 3.1 x 10⁴ sky⁻¹ day⁻¹ above 350 mJy
- → Instantaneous FoV (including sidelobes): 0.109 sq. deg.
 - \Rightarrow 2-3 FRBs over the next year

commensal survey

commensal survey

→ Web-based monitoring interface

future work

- → Increase DM search limit from 2560 cm⁻³ pc to ~10000 cm⁻³ pc
- → Move from PELICAN to PANDA
- → Increase bandwidth from 56 MHz to 300 MHz
- → Full Stokes recording
- → Better web-based monitoring interface
- → Automated realtime classification
- → Triggering

thank you