Dynamika

Sila a pohyb

Čo spôsobuje zmenu rýchlosti telesa?

Basketbalista

Vodný lyžiar

kontakt

Sprostredkovaný kontakt

pole

Interakcia (vzájomné pôsobenie) s okolitými objektami

Kvantifikátor – sila [N]

Dynamický prístup

Poznáme príčinu pohybu - sily

Newtonove zákon dynamiky

$$\vec{r}, \vec{v}, \vec{a}$$

Dynamický účinok sily

Newtonove zákon

1. zákon – princíp zotrvačnosti

Teleso, ktoré je v pokoji, alebo v rovnomernom priamočiarom pohybe. zotrváva vo svojom pohybovom stave, pokaľ nie je prinútené vplyvom nejakých interakčných síl, zmeniť svoj pohybový stav.

K udržaniu stálej rýchlosti nepotrebujeme silu

Dokonale hladká podložka

2. zákon – princíp sily

Ak na teleso s hmotnosťou m pôsobí výsledná sila F, potom mu udeľuje zrýchlenie a, pre ktoré platí: $d\vec{p} \rightarrow \vec{F} = m\vec{a}$

Jednotka sily je Newton

$$\vec{F} = \frac{d\vec{p}}{dt} \rightarrow \vec{F} = m\vec{a}$$

3. zákon – zákon akcie reakcie

Ak jedno teleso pôsobí na druhé teleso určitou silou, potom druhé teleso pôsobí na prvé rovnako veľkou silou, opačne orientovanou

Zákon akcie reakcie

Ak jedno teleso pôsobí na druhé teleso určitou silou, potom druhé teleso pôsobí na prvé rovnako veľkou silou, opačne orientovanou

Sily akcie a reakcie pôsobia vždy <u>na rôzne telesá</u>. Nesčítavajú sa a preto sa nemôžu vyrušiť!!!

Druhý Newtonov zákon

Zložka zrýchlenia v smere danej súradnicovej osi je určená výhradne súčtom zložiek všetkých síl pôsobiacich v tomto smere. Jednotlivé zložky sa vzájomne neovplyvňujú.

$$\vec{F} = \sum_{i} \vec{F}_{i}$$

Vektorová výslednica všetkých síl pôsobiacich na teleso

Špeciálny prípad

Ak
$$\sum \vec{F}_i = \vec{0}$$
 teleso je v rovnováhe

Dôsledok:

Ak niektorá zložka sily je nulová, potom teleso v smere tejto zložky nemení svoju rýchlosť.

Ak napr.
$$ma_x = 0 \Rightarrow a_x = 0 \Rightarrow v_x = konst$$

Základné sily

Tiažová sila je sila, ktorá pôsobí na zemskom povrchu na teleso a **udeľuje** mu zrýchlenie g. Sila je orientovaná do stredu Zeme.:

$$\vec{G} = m\vec{g} = -mg\vec{j}$$

 $g=9.81 \text{ m s}^{-2}$

Mass of earth = M_E

Základné sily

Kolmá tlaková sila je sila (N, F_N), pôsobiaca okolitými objektami, ktoré sú v priamom kontakte s telesom (podložka na teleso). Sila má smer normály na podložku.

Ťahová sila

Ťahová sila je sila spôsobená napnutím lanka.

Lanko realizuje spojenie dvoch telies.

Sily, ktorými okolité objekty pôsobia na lanko. Zo zákona akcie reakcie: F=T

$$F' - F = m_{lana}a$$

Nehmotné lanko:

$$m_{long} = 0 \implies F = F' \Rightarrow T = T' = F = F'$$

Trecia sila je sila, ktorá vzniká z dôvodu nedokonalej hladkosti vztyčných plôch. Podstatou je vzájomné pôsobenie povrchových atómov

Obvykle má dynamická trecia sila menšiu veľkosť ako maximálna prípustná hodnota statického trenia

Trecia sila je sila, ktorá vzniká z dôvodu nedokonalej hladkosti vztyčných plôch. Táto sila je vždy orientovaná proti smeru

pohybu telesa.

Vlastnosti trecej sily:

- 1, Ak je teleso v pokoji, má statická trecia sila rovnakú veľkosť ako priemet sily F do smeru podložky a je opačne orientovaná
- 2, Veľkošt trecej sily dosiahne maximálnu hodnotu danú vzťahom

$$F_{s,\text{max}} = f_s F_N$$

3, V okamihu, keď sa teleso dá do pohybu, trecia sila prakticky klesne skokom na hodnotu:

$$F_d = f_d F_N$$

Sila pružnosti

$$F = -kx$$

Dynamický prístup

Poznáme príčinu pohybu - sily

- 1. NZ
- 2. **NZ**
- 3. NZ

 $\vec{r}, \vec{v}, \vec{a}$

Tiažová sila Tlaková sila Ťahová sila Trecia sila Sila pružnost

Sila vzniká ako dôsledok vzájomného pôsobenia a nemôžu vznikať iným spôsobom !!!

Interakčné telesá: Zem, naklonená rovina

Smer pohybu telesa nemusí byť totožný so smerom pôsobiacej sily

Tlaková sila sa nemusí rovnať tiažovej

Charakter pohybu telesa je v danom okamihu určený nielen silami ale aj počiatočnými podmienkami

Pôsobiace sily

Sily pôsobiace na voz

Sily pôsobiace na koňa

Algoritmus riešenia úloh z dynamiky

- 1, Určiť a zakresliť sily pôsobiace na teleso, ktorého pohybový stav popisujeme
- 2, Rozložiť pôsobiace sily do dvoch navzájom kolmých zložiek. Po rozklade treba zabudnúť na pôvodné sily a pracovať iba s jej zložkami.

Pozn. Hoci výber smerov rozkladu je ľubovolný, ukazuje sa výhodné rozkladať sily v smere zrýchlenia telesa a v smere naň kolmom

3, napíšeme newtonov zákon pre jednotlivé smery

Určte koeficient statického trenia, ak poznáte kritický uhol α

3, napíšeme newtonov zákon pre jednotlivé smery

33° mg (a) $\mathbf{a} = 0$

Dynamika

Chlapec ťahá teleso s hmotnosťou m po podložke ktorej dynamický koeficientom trenia je fd. Uhol medzi podložkou a lanom je φ=33°. Určte napätie lana v prípade, že <u>teleso sa</u> pohybuje konštantnou rýchlosťou v.

$$|\vec{F}_N + \vec{F} + \vec{F}_T + \vec{G} = \vec{0}|$$

ZNAMIENKA!!!

T'-mg = -ma

