Lesture-4

Three pictures of the Sun

(1) Inge of the sun (through a felter)

(2) & (3) are taken dooring a solar eclipse

Photosphere

Chromosphere / Photosphere 3 Hocked)

Both the photosphere are the chromos phure are Chipsed.

Corona is visible

In the image (1) of photosphere; the control portion is bright while the outskirts are fanter (danker. This phenomenon is called Limb-dankering).

The Spectrum from the Sun

Something about the spectrum

- (I)
- (2) outshirts of the solar dosa
- (3) -> from the centre

In (2) only a few frequentis/wavelengths are visible (which are emitted by the some)

In (3) met et the photons me there except a few that are murring / absorbed.

Sun's spectrum is like a Blackbody spectrum

But there are differences

Kirchoff law

Kirchoff Law: spectrum from the Sun

Let's try to describe all this with equations

In the interior of

the sup the photons

et specific wordingths

are poodwed but

they get setteredly

remtter

Their energies reductorbate; they come in equilibroium with the matter and all sent of wardingth are prisent

An T = Constant

T = Constant

An

Just by extracting the Sample of radiation / photons
that are present in a black body (in which
the matter of radiation are in equallibrium)

I can determine the temperature

Temperature throws measured for the sun is

T 17 5000 to 6000 c

Lette do consider the particles in the Sun.

Sun is a collection of birstills under the influence of growity. Radrus=R

say total mas = M

$$\frac{1}{2} = \frac{G_{1}m^{2}}{12} \left(1 + \epsilon \cos \theta\right)$$

Assume that the particle is doing a circular motion 6=0

 $\frac{1}{2} = \frac{G_1 M_m^2}{L^2}$

We want to find out the K-E., P.E. and the total energy

Circular orbit $E = \sqrt{1 + \frac{2EL^2}{G^2M^2m^3}} = 0$

 $\frac{1}{2L^2}$

$$=-\frac{1}{2}\frac{G_1Mm^2}{Z}\left(\frac{G_1Mm^2}{L^2}\right)^2$$

$$E = -\frac{1}{2} \frac{G_1 M_m}{2} \frac{G_2 M_m^2}{L^2}$$
But $G = 0 \Rightarrow 1 = G_1 M_m^2$

$$\frac{1}{2} \frac{G_1 M_m}{L^2} \frac{G_2 M_m}{L^2} \frac{G_1 M_m}{L^2}$$

$$E = -\frac{1}{2} \frac{GMm}{2} = \frac{1}{2} \left(\frac{Gmm}{2} \right)$$

$$E = \frac{1}{2} \sqrt{\frac{1}{2}} = \frac{1}{2} \sqrt{\frac{1}{$$

Virial theorem

If you repeat for elleptical orbit
then it is doesn't hold true so the
exect energies. But it still holds true
if we define arrespectora time period

$$\begin{cases} \langle K - E \rangle \\ + m period \end{cases} = - \frac{1}{2} \langle P - E \rangle$$

$$E = \frac{1}{2} \langle P - E \rangle$$

VIVI at theorem

This vivial theorem also holds true for a collection of particles say sun (K.E.) = -1 < P.E.) of all the partity in the sm of all the particle in thesum

But what is this for the gas in the sun.

Each particle is not moving fruly; they are colliding

Net mementum change for a partite alliday of the walls of tiny which velome is the sun $\Delta b = 2mv$ By N atom oltdry. Ab = 2mUN the taken st = 2L 12

Rite of charge of momentum $\Delta b_{total} = 2muN$ [1]

Force

Rite of charge of momentum $\Delta b_{total} = 2muN$ At 2L/v

Force exerted on the wall = 2m2N 2L Prannoce exerted on the wall = F = 2mv2N A = 2L-L2 N = n = number dmity mv^2n ρ =

P= m (ux2+ux2+v2) n ~2m v2n

P.-nkrT= = = mv2n

K.E. of all the partials in the sun

RET & KE.

Kinetic theory
of
Crases.

Total K-E-of the sum is rayly RPT N

RF7X108 m

Virial Thesem.

$$Wk_{B}T = -\frac{1}{2} \left(-\frac{3}{5} G_{M}^{2}\right)$$

$$M = 2 \times 10^{30} \text{ kg}$$
 $m_b = 1.67 \times 10^{-27} \text{ kg}$

$$T = \frac{3}{10} \frac{Gm^2}{RNkg} = \frac{3}{10} \frac{Gm^2 m_b}{R^{2}Mkg}$$

$$T = \frac{3}{20} \frac{\text{GrM m}_{b}}{\text{kg R}}$$

$$M = 2 \times 10^{30} \text{ kg}$$
 $k_8 = 1.38 \times 10^{-23}$

$$R = 7 \times 10^8 \text{ m}$$
 $m_b = 1.67 \times 10^{-27} \text{kg}$

(more than a mithin K)

So the actual temperature is more than a million kelvin.

Shectorin calculation, that the temperature of about 5000 k.

This is the Surface temperature.

Problems;				
(1) Prove the	- virial the	olm,	for the	elliptical
orbit:	Chint: y the KE	ou will-	have to c	alculate
	the KE	ep.E. or	ereged over	time period
2)				

Prove that the total gravitational p-tentral energy of sum is $-3\frac{G_1M^2}{5R}$ where Mis the mass of Sum and R the gading

(3) Use the virial theorem argument to colculate the temperature of the sum if

(F) it expands to 10 times its current size

(II) it shrinks to a radius of 10 km

We found that the interior of sun is very hot (> million kelvin) but the surface is not that hot (only around 5000 K). So there must be temperature gradient in successive shells. Using this information; try to explain Limb clarkening in words.