

INCOM 2021

17th IFAC Symposium on Information Control Problems in Manufacturing 7-9 June 2021, Budapest, Hungary

Automated Digital Twins Generation for Manufacturing Systems: a Case Study

Giovanni LUGARESI

Andrea MATTA

CONTENTS

1. Introduction

- Industrial Relevance
- Problem Introduction
- 2. State of the Art
- 3. Methodology
 - Overview
 - Model Generation Basics
 - Model Tuning

4. Case Study

- Lab-Scale Models
- Test and Results
- 5. Challenges and Future Developments

INDUSTRIAL RELEVANCE

CHALLENGES:

Pressure from market demand

Complexity increases events' impact

Pressures on cost reduction

OPPORTUNITIES:

Collecting information with high frequency

Understanding emerging behaviors

Evaluating alternative **scenarios**

Affordable data analytics

ONLINE SUPPORT TOOLS FOR PRODUCTION PLANNING AND CONTROL

PROBLEM INTRODUCTION

Manufacturing systems change frequently due to external drivers (e.g. demand, price uncertainty). Hence, <u>current simulation techniques are poor</u> as tools for <u>short-term decision making</u>.

PROBLEM INTRODUCTION

By exploiting the data produced by the parts and resources, it is possible to achieve higher reactivity in the simulation model building phase.

STATE OF THE ART

Applications of Process Mining in manufacturing:

Reference	Framework	Graph	Policies	Formal Model	Parameters
W.M.P. Van der Aalst., 2016	X	Χ			
A.K. Alves de Medeiros et al., 2006	X	Χ			
A.L. Wolf and J.E. Cook, 1995		Χ			
A. Rozinat et al., 2009	X				
Bergmann et al. 2015			X		
Farooqui et al. 2019				X	
Milde and Reinhart, 2019			X		Χ
Martin et al. 2015					X
Martin et al. 2016					X
Martin et al. 2017			X		X
Peter Denno et al. 2018		Χ			
Ferreira and Vasilyev 2015					X

Existing approaches of Model Tuning:

User is not free in the choice of aggregation level

Highly sensitive to rare or wrong sequences of events;

X No relationship with performance estimation from the obtained model

A. Rozinat, R.S. Mans, M. Song, W. Van der Aalst. "Discovering simulation models." Information systems 34.3 (2009): 305-327.

Specific contributions aimed at DES for manufacturing are missing in the literature.

SCOPUS: 0 results for the query: "process mining" AND "manufacturing" AND "discrete event simulation"

OVERVIEW

MODEL GENERATION BASICS

MANUFACURING SYSTEM

EVENT LOG

/				
,	Timestamp	Part-ID	Activity-ID	_ '
	2020-11-23T16:37:40Z	1	S1	
	2020-11-23T16:37:44Z	1	S2	
	2020-11-23T16:37:47Z	2	S1	
	2020-11-23T16:37:51Z	2	S2	
	2020-11-23T16:37:52Z	3	S1	
			•••	

TRACES: 1 {S1, S2}
2 {S1, S2} ...

ACTIVITY RELATIONSHIPS: "Station 2 follows Station 1", ...

PARAMETERS (SYSTEM PROPERTIES)

Lugaresi, Giovanni, and Andrea Matta. "Automated manufacturing system discovery and digital twin generation." *Journal of Manufacturing Systems* 59 (2021): 51-66.

MODEL TUNING 6 **MODEL GENERATION EVENT LOG** a MANUF. SYSTEM S1S3S2b conveyor

station

sensor

pallet

Research Questions:

- Model Structure:
 - How many parts are necessary to discover the system structure (graph-model)
- Buffer Capacities:
 - Observe the **transitory** to discover the correct values
 - Can Buffer Capacities always be discovered?
- Processing Times:
 - Which fitting method is most suitable with few data
 - Observe the transitory to discover the correct model parameters
- Policies (not in this work)
- Reliability Models (not in this work)

LAB-SCALE MODELS

Lugaresi, Giovanni, Vincenzo Valerio Alba, and Andrea Matta. "Lab-scale Models of Manufacturing Systems for Testing Real-time Simulation and Production Control Technologies." *Journal of Manufacturing Systems* 58 (2021): 93-108.

- <u>@POLIMI: Laboratory for testing Real-Time Simulation</u> based on the needs from the literature and considering I4.0 developments (e.g., Internet of Things, Cyber Physical Systems).
- Stations controlled by LEGO[®] EV3[®] intelligent bricks
- Each station has sensors for entrance checking, processing, blocking.
- Wooden circles tagged with red plates represent pallets/parts.

Physical Model for Case Study

Test: Model Generation while the system is running, observing the warm-up phase

Model Structure:

- Initial transient determines the capability of discovering the correct model of the system;
- Model structure can be infered correctly with very few parts;
 - Parameters (buffer capacities) require more data points.

Test: Model Generation while the system is running, observing the warm-up phase

• Buffer Capacities

- Buffers can be identified with enough data points.
- Not all capacities may be saturated
 → Biased estimation.

Test: Model Generation while the system is running, observing the warm-up phase

 Processing Time on Station 5: comparison between (1) Kernel Density Estimation and (2) Empirical Cumulative Distribution Function.

- With few data points, both KDE and ECDF perform badly
- ECDF performs well even without very large datasets
- With large datasets, both methods may be used

LIMITATIONS AND FUTURE DEVELOPMENTS

LIMITATIONS

- Hypothesis of single Part-IDs (limited for assembly/disassemly operations)
- **Limited information** in the log translates in less descriptive models (e.g., reliability model)
- Manual log-preprocessing is still necessary (e.g., events with same timestamp are removed)

FUTURE DEVELOPMENTS

- Investigate the value of prior information;
- Test on realistic datasets, real manufacturing systems;
- Extend the analysis to unexplored model elements (policies, resource utilization);
- Understand the behavior with very large logs;
- Investigate Simulation-Optimization applications.

Q&A

Selected References

G. Lugaresi and A. Matta. *Real-time simulation in manufacturing systems: Challenges and research directions.* 2018 Winter Simulation Conference, pp. 3319–3330, IEEE.

Günther, Christian W., and Wil MP Van Der Aalst. "Fuzzy mining-adaptive process simplification based on multi-perspective metrics." International conference on business process management. Springer, Berlin, Heidelberg, 2007.

M. Prodel, Modelisation automatique et simulation de parcours de soins a partir de bases de donnees de sante. Ph.D. Thesis, 2017.

M. Mesabbah and S. McKeever. *Presenting a hybrid processing mining framework for automated simulation model generation.* Winter Simulation Conference, pp. 1370–1381, IEEE, 2018.

A. Rozinat, R.S. Mans, M. Song, W. Van der Aalst. "Discovering simulation models." Information systems 34.3 (2009): 305-327.

@: giovanni.lugaresi@polimi.it

PHONE

+39 347 9604232

OTHER PUBLICATIONS

