Nom:

Prénom:

Note: /20

Contrôle de connaissances 6

Électrocinétique : ressort amorti (15')

/24 1 On suppose le système mécanique suivant, constitué du point M de masse m accroché à un ressort idéal (k,ℓ_0) mais subissant des frottements fluides. On travaille dans le référentiel $\mathcal{R}_{\mathrm{sol}}$ supposé galiléen, avec le repère $(O, \overrightarrow{u_x}, \overrightarrow{u_y})$. On suppose le ressort initialement étiré tel que $\ell(0) = L_0 > \ell_0$, lâché sans vitesse initiale.

Effectuer un bilan des forces puis déterminer l'équation différentielle sous forme canonique de $\ell(\mathbf{t})$ pour $t \geq 0$, et la réécrire en effectuant un changement de variable. Déterminer les expressions de ω_0 et \mathbf{Q} , puis résoudre l'équation différentielle sur le changement de variable pour un régime pseudo-périodique. On appelle $x_0 = L_0 - \ell_0$. Exprimer la période \mathbf{T} des oscillations amorties en fonction de Q et de la période \mathbf{T}_0 des oscillations harmoniques, donner sans démonstration l'approximation de \mathbf{t}_{95} et tracer la solution, avec $\mathbf{Q} \approx \mathbf{3}$.

Fig. 6.1 – Tracé solution $Q \approx 3$.