BACKGROUND

The theoretical explanation for Least Squares Regression Analysis can be found in the Figliola text, Chapter 4 (1, p121). To fit a linear model, $y = a_0 + a_1 x$, to the selected experimental data sets (x_1, y_1) , (x_2, y_2) , ..., (x_N, y_N) we can use the outcomes of the Example 4.9 in the text

The Equations for Linear Least Squares Regression $y = a_0 + a_1 x$

$$a_{0} = \frac{\sum x_{i} \sum x_{i} y_{i} - \sum x_{i}^{2} \sum y_{i}}{(\sum x_{i})^{2} - N \sum x_{i}^{2}}$$

$$a_{1} = \frac{\sum x_{i} \sum y_{i} - N \sum x_{i} y_{i}}{(\sum x_{i})^{2} - N \sum x_{i}^{2}}$$
(4.40)

To determine the "goodness of fit" we can use the correlation coefficient, r, or the coefficient of determination, r^2 . The equation for the correlation coefficient is given below. Once r is calculated, the square of r, r^2 , is also known.

Correlation Coefficient

$$r = r_{xy} = \frac{N \sum_{i=1}^{N} x_i y_i - \sum_{i=1}^{N} x_i \sum_{i=1}^{N} y_i}{\sqrt{N \sum_{i=1}^{N} x_i^2 - \left(\sum_{i=1}^{N} x_i\right)^2} \sqrt{N \sum_{i=1}^{N} y_i^2 - \left(\sum_{i=1}^{N} y_i\right)^2}}$$
(4.41)

Note on units: for our Challenge 6, considering the data we are using from the calibration of the LVDT, the units for each coefficient will be

• Units for slope, a_1 (mV/V) / cm

• Units for intercept, a₀ (mV/V)

BACKGROUND, cont'd

Physical characteristics and sensitivity values for typical commercial LVDTs are shown below (2, p 395).

Table 11.4 Typical Variable Differential Transformer Specifications

Linear Range, Inches	Transformer Size (OD × Length), Inches	Core Size (Diameter × Length), Inches	Sensitivity, mV/0.001 in./V Input into High-Impedance Load Excitation Frequency, Hz				
			±0.005	$\frac{3}{8} \times \frac{9}{16}$	0.10 × 0.20	0.40	
± 0.050	$\frac{7}{8} \times 1\frac{1}{8}$	$0.25 \times \frac{7}{8}$	0.70	3.00	3.7	3.7	3.75
± 0.020	$\frac{1}{2} \times \frac{5}{8}$	0.10 × ¼	0.85		3.5		
±0.200	$\frac{7}{8} \times 2\frac{1}{2}$	$0.25 \times 1\frac{7}{8}$	1.4	2.5	2.5	2.3	2.3
±0.400	$\frac{7}{8} \times 4\frac{3}{8}$	$0.25 \times 3\frac{1}{8}$	0.8	1.0	1.0	0.5	0.5
±1.0	$\frac{7}{8} \times 6\frac{5}{8}$	$0.25 \times 4\frac{1}{4}$	0.1	0.3	0.4	0.4	0.3
±5.0	$\frac{7}{8} \times 18$	0.25 × 6	0.05	0.15	0.15	0.15	0.15

References:

- 1. R.S. Figliola and D.E. Beasley, Theory and Design for Mechanical Measurements, 7th Ed., Hoboken: Wiley, 2019.
- 2. T.G. Beckwith and R.D. Marangoni, *Mechanical Measurements*, 4th Ed., T, New York: Addison Wesley, 1990.