Dodatek do sprawozdania

Ćwiczenie 4.5

Jan Kwinta, grupa 12 10 maja 2023

Żeby nieco rozszerzyć materiał postanowiłem zaprojektować pełną logikę wyświetlacza siedmiosegmentowego (a nie tylko jednego segmentu, jak w zadaniu 5). Na kolejnych stronach zamieściłem pełny schemat układu logicznego oraz notatki z obliczeń poszczególnych funkcji logicznych z minimalizacją metodą Karnaugha.

Zdaję sobie sprawę że nie jest to najbardziej optymalna implementacja. Moim celem było to, aby układ każdego segmentu dało się zbudować używając jednego układu 7400 i jednego układu 7402; czyli korzystając z co najwyżej 4 bramek NAND i co najwyżej 4 bramek NOR. Niestety, do zbudowania funkcji logicznej segmentu d potrzebowałem użyć czterech bramek NAND i pięciu bramek NOR.

Oczywiście nie miałem czasu przetestować mojego schematu na prawdziwych układach w pracowni elektronicznej, ale skonstruowałem go w programie umożliwiającym symulację bramek logicznych i wyświetlacz działał poprawnie.

Przyjmujemy, że otrzymujemy na wejściu liczbę binarną. Wyświetlacz ma wyświetlić ją jako liczbę ósemkową. Każdą trójkę bitów przetwarzamy osobno jako (A,B,C), gdzie A jest najmłodszym, a C najstarszym bitem. Dla wygody na wejściu dostajemy także trójkę $(\overline{A},\overline{B},\overline{C})$ będącą zaprzeczeniami odpowiednich bitów. Jeżeli komuś bardzo zależy, żeby układ działał wyłącznie na bramkach NAND i NOR to zaprzeczenia możemy realizować na nich, tak jak w zadaniu 4.3.

7-SEGMENT DISPLAY

C	В	A
0	0	0
0	0	1
0	1	0
0	1	1
1	0	0
1	0	1
1	1	B
1	1	1

		1				
a	Ь	C	d	e	5	9
1	1	1	1	1	1	0
0	1	1	0	0	O	0
1	J	0	ı	1	0	١ ١
1	1	ı	ı	0	0	1
0	l	1	0	0	l	1
ſ	0)	1	0	ı	1
ſ	0	1	1	ι	l	1
1	J	ı	O	0	0	0

Segment a

ABC	0	1
00	l	0
01	1	1
11	(1
10	0	(

Segment b

ABC	0	1
00		1
01	1	0
11	ſ	
10	Ţ	0

$$b(A,B,C) = \overline{C} \vee (\overline{A} \wedge \overline{B}) \vee (A \wedge B)$$

= NOT C OR ((ANORB) OR (A AND B))

= C NAND ((A NOR B) NOR (AANDB))

Segment d

d(A,B,C) = (ANORC) OR (NOTC AND B) OR (NOT A AND B) OR (A AND NOTB AND C)

> = ((A NOR () OR ((NOR (NOT B)))OR ((A NOR (NOT B)) OR (((NOT A) NOR B) AND ())

= (((NOTA)NORB)NORC) OR ((KNOR(NOTB)) OR (((NOT t)NORB) KNDC))

segment e

ABC	0	1
00	1	O
01		1
11	0	0
10	O	٥

$$e(+,B,C) = ((NOT +) AND B) OR (A NOR C)$$

$$= (+ NOR (NOT B)) OR (+ NOR C)$$

$$= + NOR (+ NOR C)$$

Segment f

ABC	0	1
00		_ 1
01	0	1
11	0	0
10	D	1

$$f(A,B,C) = A NOR((NOTB) NOR C)$$
(A AND (NOTB) AND C)

= A NOR ((NOT B) NOR C)
OR
(NOT ((A NAND (NOT B)) NAND C))

Segment g

ABC	0	1
00	0	1
01	l	1
11)	0
10	0	1

$$g(A,B,C) = (A NOR(NOTB)) OR$$
(B NOR(NOTC)) OR
((A NANDB) NOR C)

$$g(A,B,C)=((A NOR(NOTB)) NOR$$
(B NOR(NOTC))) NAND(
NOT((A NANDB) NOR C))

