LaPIS Diagnostic Test Workbook - Mathematics

Name : Avaneesh V

Class: 7

Section : A

School : AKV Public School

Login ID : AKV100

Avaneesh V's Performance Report

Score: 24/40 Percentage: 60.0%

Avaneesh V's Study Planner

Date	Topics Planned	Q. Numbers	Teacher Remark	Teacher Sign	Parent Sig
		Teacher's Fe	edback to Student		
	Class Teacher S	 Signature	Princi	ipal Signature	

Basic arithmetic

Topics to be Improved	
LCM Finding LCM	

Hi, here in this video you will learn LCM

Question: 1

Fill the hexagon with factors and multiples of 10.

......

Answer:

A _____ (factor/multiple) of a number is an exact divisor of that number.

The factors of 10 are

10 x 1 =	x = 10
2 x = 10	x = 10

Let's find the multiple of 10

10 x 1 =	10 x 4 =
10 x 2 =	10 x 5 =
10 x 3 =	10 x 6 =

Therefore, factors of 10 are _____ and multiples of 10 are ____.

<u>Question: 2</u>

Find the LCM of 50, 100.

Answer:

Complete the division using least common multiple.

50	, 100	

The LCM of 50, 100 is 2 x 2 x ____ x ___.

Question: 3

Every number is the multiple of _____

Answer:

Let's find the first ten multiple of random numbers,

Multiple of $1 = \underline{\hspace{1cm}}$

Multiple of 2 =

Multiple of 13 =

Multiple of 20 = _____

Here, _____ is the common factor of every number.

Data handling

Topics to be Improved		
Arithmetic mean, mode and median Mean, Median and Mode		
Chance of probability Basis of probability, Sample space in probability		

Hi, here in this video you will learn Mean, Median, Mode

Question: 4

Find the mode of the following data: 5, 15, 23, 5, 32, 44, 72, 55, 6, 3, 5, 65, 45, 67, 24, 19 and 98.

Answer:

Mode is the number that occurs _____ (frequently / rarely) in a given list of observations.

Arranging the data in ascending order: _____ occurs most number of times. Then, mode of the given data is _____

Question: 5

Which shape contains median of the given data 3, 5, 6, 2, 7, 9, 6, 4 and 1

......

Answer:

Median is the _____(first/central/last) value of a data when the data is arranged in ascending or descending order.

Arrange the given data in ascending order: _____

Central value of the given data is ______ and it is the _____ of a data.

$\underline{Question: 6}$

Marks scored	100	90	80	70
Number of students	4	5	2	1

 $Mean = \underline{\hspace{1cm}} , Median = \underline{\hspace{1cm}} and Mode = \underline{\hspace{1cm}}.$

Answer:
$Mean = \frac{\text{of all observation}}{\text{number of observation}}.$
Here s sum of all observation = $___$, number of observation = $___$ Therefore, mean = $___$
Arrange the data in ascending order:
Here, $median = \underline{\hspace{1cm}}$, $mode = \underline{\hspace{1cm}}$.
Hi, here in this video you will learn Basics of probability
Question: 7
Identify the sure events and impossible events
(i) The sun rises in the west.
(ii) Water is colourless.
(iii) Clock rotates in clock wise direction.
(iv) Ball is square in shape.
$\underline{Answer:}$
Events that always occur are called (sure/ impossible) events. Events that cannot occur are called (sure/ impossible) events.
Here, The sun rises in the west is event. Water is colourless is event.
Clock rotates in clock wise direction is event. Ball is square in shape is event.
Question: 8
Probability of sure events is (greater / smaller) than probability of impossible events.
Answer:
Probability of sure event = $\underline{\hspace{1cm}}$ (0/ 1/ any number). Probability of impossible event = $\underline{\hspace{1cm}}$ (0/ 1/ any number).
Therefore, Probability of sure event Probability of impossible event.
Question: 9
Raju has pencil, an eraser, a scale, sharpener, colour pencil and protractor in his box. What is the probability of getting a pen from his box.
Answer:
Things Raju have
Does Raju have pen in his box, (Yes/ No). Then probability of getting pen from his box is $(0/1)$

Hi, here in this video you will learn Basics of probability Question: 10 Which of the following contains list of all possible outcomes. Sample space Probability Sure events Impossible events Probability is the measure of ______ (chance /number) of an events happenings. Sample space consists of ______ (possible/ impossible) outcomes.

Question: 11

Write the possible outcomes while spinning the given wheel.

Sure events always ______ (occurs/don't occurs).

Impossible events ______ (occurs/ don't occurs).

Therefore, _____ contains list of possible outcomes.

......

Answer:
Outcomes are (possible/impossible) results of an experiment. The possible outcomes while spinning wheel are $\P0$, $\P10$,
Question: 12

A bag contains three balss of colour blue, green and red. Write the possible outcomes if two balls are taken out.

Answer:

A bag contains,	and balls.	
If one of the ball is blue in colour	r, then other ball can be or	
If one of the ball is green in color	ır, then other ball can be or	
If one of the ball is red in colour,	then other ball can be or	
Therefore, if two balls are taken	out then possible outcomes are blue +,	
+	+	

Geometry

Topics to be Improved		
Right angle triangle and pythagoras property	Basics of Pythagoras property	
Transversal angle made by transversal	Basics of Transversal angle	
Faces vertex and edges	Idenfication of faces, edges and vertices	
Sum of lengths of two sides of a triangle	of two Sum of two sides of a triangle	
Lines of symmetry for regular polygons	Identification of lines of symmetry	
Angle sum property of triangle	Angle sum property of triangle	

 Hi , here in this video you will learn $\operatorname{\mathbf{Pythagoras}}$ $\operatorname{\mathbf{property}}$

Question: 13	
--------------	--

In a right angled triangle, square of the $___$ = sum of the squares of the legs.

Answer:

Pythagoras theorem is only applicable for ______ triangle.

Longest side of the triangle is _____ (hypotenuse/ legs) and other two sides are called _____ (hypotenuse/ legs).

Pythagoras theorem states that ______.

......

Question: 14

Find the hypotenuse of the triangle ABC if base is 12 m and altitude is 5 m.

Answer:

Pythagoras theorem states that square of the _____ = sum of the squares of its

Given: Base = _____, Altitude = _____,

Base and altitude are _____ (hypotenuse/ legs) of the triangle.

......

Therefore, hypotenuse of the triangle is _____.

Question: 15

Find the length of the rectangle, if breadth is 3 cm and diagonal is 5 cm.

Answer:

Pythagoras theorem states that square on the _____ = sum of the squares on

Is Pythagoras theorem applicable in rectangle? ____ (yes/ no).

Given: breadth = _____, length of diagonal = _____

By Pythagoras theorem,
$$(____)^2 = (____)^2 + (____)^2$$

 $= ___ + ___$

.....

Therefore, diagonal of the rectangle is _____

Hi, here in this video you will learn Basics of Transversal angle

Question: 16

In given diagram, \angle 1 and \angle 7 are ______ (alternate / corresponding) angles.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

Angle that lies on different vertices and on the opposite sides of transversal is _____ angles.

Angle that lies on different vertices and on the same sides of transversal is _____ angles. Therefore, $\angle 1$ and $\angle 7$ are _____

Question: 17

Find the transversal, alternate angles and corresponding angles in a given diagram.

Answer:

A line that intersects two or more lines at distinct points is called a _____ (transversal/Intersecting line).

In a given diagram, _____ is a transversal line. (BF/AD/CE)

Alternate angles	Corresponding angles
$\angle a$ and $\angle g$, $\angle b$ and $\angle h$,	\angle a and \angle e, \angle b and \angle f,

Question: 18

Find $\angle e$ and $\angle g$ if $\angle a = 30^{\circ}$.

Answer:

When parallel lines cut by a transversal,

- (i) Alternate angles are _____ (equal / not equal).
- (ii) Corresponding angles are _____ (equal / not equal).

Here, alternate angle of $\angle a$ is _____ and its value is ____. Corresponding angle of $\angle a$ is _____ and its value is _____.

Hi, here in this video you will learn Basics of 3D model

Question: 19

A point at which two or more lines segments meet is called _____(Vertex/ edges/ faces).

Answer:

has two end point (line/line segment/ray).

A ______is a point where two or more line segments meet(Vertex/ edges/ faces).

Mark the vertices in the diagram,

Question: 20

Mark and find the number of vertices, edges and faces in a cube.

$\underline{Answer:}$

Mark the vertex, edges and faces in a cube.

	of vertex, edges and faces in a cube. vertices, edges and faces.
Question: 21	
TT	

How many vertices, edges and faces does dices have?

Answer:			
The shape of dice is Dices have vertices,		faces.	
Hi, here in this video you w of the triangle	ill learn Sum	of the length of sid	es
Question: 22			_

Find the greatest distance to reach C from A in the given diagram.

Answer:

The sides of the given triangle are ______

The possible way to reach point C from point A are _____ and AB then to

Side AC = _____

Side AB + BC = _____ + ___ = ____

Therefore, the greatest distance to reach C from A in the given diagram is ______.

Question: 23

_____ (Sum of / Difference between) the length of any two sides of a triangle is smaller than the length of the third side.

.....

Answer:

There are ______ sides in a triangle.

The sum of the two sides of a triangle is ______ than the other side of the triangle.

The difference of the two sides of a triangle is ______ than the other side of the triangle.

Example: In triangle XYZ,

$\underline{Question:\ 24}$

The lengths of two sides of a triangle are 7 cm and 10 cm. Between which two numbers can length of the third side fall?

......

Answer:

1. The sum of the two sides of a triangle is ______ than the third side of the triangle. Therefore, the third side should be _____ (less/ greater) than sum of other two sides. Here, sum of the two sides = _____ + ___ = ____ Therefore, the length of the third side is less than _____

2. The difference of the two sides of a triangle is than the th triangle.	ird side of the
Therefore, the third side should be(less/ greater) than sun	n of other two sides.
Here, difference of the two sides = =	
Therefore, the length of the third side is greater than	
Therefore, length of the third side is greater than but less than	
Hi, here in this video you will learn Symmerty	
<u>Question: 25</u>	
Line of symmetry is divides any shape into (one / two)identical) halves.	(identical / non
Answer:	
Lines of symmetry is a line that divides any shape into (equal Symmetrical image have (identical / non identical) parts. Therefore, line of symmetry is dividing the shape into halves.	/ unequal) halves.
Question: 26	
How many lines of symmetry does square have?	
Answer:	
Square have sides.	
All sides of square are and all angles are	
Mark the lines of symmetry.	
<u> </u>	
Therefore, square has lines of symmetry.	
Question: 27	
Classify the following based on the symmetry. Letter S, scalene triangle, Letter K, Rhombus, Number 8, and circle	
$\underline{Answer:}$	
Lines of symmetry is a line that divides the shape into (equal ,	/ unequal) halves.

Stars is	(symmetrical / asymmetrical) and have	lines of symmetry
Cat is	_ (symmetrical / asymmetrical) and have	
symmetry.		
Rhombus is	(symmetrical / asymmetrical) and have	lines of
symmetry.		
symmetry. The letter K is	(symmetrical / asymmetrical) and have	lines of
· ·	$_$ (symmetrical / asymmetrical) and have $_$	lines of
symmetry.		
The letter S is	(symmetrical / asymmetrical) and have	lines of
TDI 1 44 C :	(, , , , , , , , , , , , , , , , , , ,	

Hi, here in this video you will learn Angle sum property

Question: 28

Sum of the angles of triangle is _____.

Answer:

$$\angle A + \angle B + \angle C = \underline{\hspace{1cm}}$$

Angle sum formula = $(n-2) \times 180^{\circ}$, n = number of sides

Triangle has _____ sides.

Sum of the angles of triangle = $(\underline{} - 2) \times 180^{\circ} = \underline{}$

Question: 29

Which of the following triangle satisfy the angle sum property.

.....

Answer:

Angle sum property of triangle: sum of the angles of a triangle is _____

Number system

Topics to be Improved		
Decimals Multiplication and division of decimals		
Positive and negative rational numbers	Identification of positive rational numbers	
Exponents	Solving exponents	

Positive and negative rational numbers	Identification of positive rational numbers					
Exponents	Solving exponents					
Hi, here in this video you	ı will learn	Basics o	f decir	mals		
Question: 31						
Shade 0.4 part of the given sha						
Answer:						
There are boxes. 0.4 can be expressed as This fraction represents So, we need to shade b	_ parts out o	_	_	5.		
$Question: 32 \dots$						
Solve the following.						
(i) 0.4×1.2						
(ii) 0.48×1.2						
$\underline{Answer:}$						
(i) 0.4 × 1.2 : Multiplication of 0.4 × 1. The number of digits after	er decimal po	oint in 0.4 is		and 1.2		

(i)	0.4×1.2 :
	Multiplication of 0.4×1.2 assuming there is no decimal point is
	The number of digits after decimal point in 0.4 is and 1.2 is
	Total digits after decimal point in the product of two numbers is
	Count that digits from the right towards left and place the decimal point, the result is

(ii) 0.48×1.2 :

Multiplication of 0.48×1.2 assuming there is no decimal point is _____. The number of digits after decimal point in 0.48 is _____ and 1.2 is _____. Total digits after decimal point in the product of two numbers is _____. Count that digits from the right towards left and place the decimal point, the result is

Question: 33

One box of chocolate costs Rs.20.10. What is the cost of 15 chocolates, if a box contains 10 chocolates?

Answer:

One box contains _____ chocolates. The cost of one box is ____ Then cost of one chocolate = ____ ÷ ___ = ___

- (i) Total digits after decimal point in decimal number = _____
- (ii) Divide the two numbers assuming there is no decimal point.

$$\frac{2010}{15} =$$

......

(iii) Place the decimal point after _____ digits counting from the right in the quotient after division.

Then the cost of one chocolate is $____$.

The cost of 15 chocolates = cost of one chocolate \times ____ = __ x ___ = ___

Hi, here in this video you will learn **Positive and Negative rational numbers**

Question: 34

Segregate positive and negative rational number.

A	n.s	3713	er	
71	100	w	\mathbf{c}_{i}	•

• If both the numerator and the denominator of a rational number are
• If either the numerator and the denominator of a rational number are negative, then it is (positive/negative) rational number.
In the given circle, positive rational numbers are and negative rational numbers are
$Question: \ 35$
$\frac{-3}{-4}$ is a (positive /negative / neither positive nor negative) rational number.
$\underline{Answer:}$
-3 is a number, -4 is a number.
-3 is a number, -4 is a number. Division of $\frac{-3}{-4} = \boxed{\boxed{}}$ and this rational number.
(Positive / Negative / Neither positive nor negative rational number)
$Question: \ 36$
The product of a positive rational number and a negative rational number isrational number. (Positive/ Negative/ neither positive nor negative)
Answer:
Examples for positive rational numbers: Examples for negative rational numbers: Positive rational number × Negative rational number = × = and this is rational number
Hi, here in this video you will learn Exponents and power
Question: 37
Find the exponential form of 1000.
$\underline{Answer:}$
(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result. Exponents is also called as (Base / Power).
1000 can be written as = $10 \times $ $\times $ $\times $ 10 is raised to the power of = (10)
$Question: \ 38$

Find the value of $(-2)^3$.

Answer:

(Exponents/Base) tells us how many times a number should be multiplied by itself to get the desired result.

In this exponential form $(-2)^3$, base = ____, power = ___. $(-2)^3 = _-__ \times _-__ \times _-_ = _-_.$ Question: 39

(i) Tenth power of 100 is ____ ($(10)^{100}$ or $(100)^{10}$).

(ii) k is raised to the power of 5 is ____ ($(k)^5$ or $(5)^k$).

Answer:

Exponential form = (Base)—

(i) Tenth power of 100 : Base = ____, Power/Exponents = ____, exponential form = ____.

(ii) k is raised to the power of 5: Base = ____, Power/Exponent = ____,

exponential form = ____.

Algebra

Topics to be Improved		
Basics of simple equation Solving of simple equation		
Monomials, binomials, trinomials and polynomials	Types of algebraic expression	
subtraction of algebraic expressions	subtraction of algebraic expressions	

......

.....

Hi,	here	in	this	${\rm video}$	you	will	learn	Solving	an	equation
-----	------	----	------	---------------	-----	------	------------------------	---------	----	----------

Question:	ln.
Question:	40

If ©=5, then 5 © +5 =

Answer:

The value of the given smiley \circledcirc is _____.

Substituting the value in the expression $= 5(\underline{\hspace{1cm}}) + 5 = \underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.

Question: 41

Which of the following number can be placed in the box to make the equation correct (-2, -1, 0, 1, 2)

$$7 \square + 3 = -4$$

Answer:

The given equation is 7 = -4 Substitute the values (-2, -1, 0, 1, 2) in the circle,

$$7 \times \underline{\hspace{1cm}} + 3 = \underline{\hspace{1cm}}$$

$$7 \times$$
 ____+ $3 =$ ____

Therefore, _____ is the number that can be placed in a box to make the equation correct.

<u>Question: 42</u>

Arrange the terms in the descending order when the value of x is 2. 2x $5x \times 1$ x + 3 2x - 4 $\frac{1}{2}x$

Answer:

The given expression are _____

The value of x is _____.

substituting value of x

$$2x = 2 \times \underline{\hspace{1cm}} = \underline{\hspace{1cm}} 2x - 4 = 2 \times \underline{\hspace{1cm}} - 4 = \underline{\hspace{1cm}}$$
 $x + 3 = \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$
 $5x \times 1 = 5 \times \underline{\hspace{1cm}} \times 1 = \underline{\hspace{1cm}}$

......

......

Arranging in descending order: ____, ____, ____, ____, ____.

Their respective algebraic terms are ____, ____, ____, ____, ____.

Hi, here in this video you will learn **Types of expression**

Question: 43

There are _____ terms in the expression 7x + 3y + m + 5.

Answer:

In algebraic expression, $___$ (variables/ terms) are connected together with operations of addition.

The terms in the expression are ______, _____, and ______.

Therefore, there are _____ terms in the expression.

Question: 44

Classify the following expression into monomial, binomial and polynomial.

- 1. 7m + n + 2
- $2. 8x^2 + 0$
- 3. 7xy + 4m

Answer:

- 1. The terms in expression $8x^2 + 0$ are _____. Here, expression has _____ term and it is a _____.
- 2. The terms in expression 7xy + 4m are _____. Here, expression has _____ term and it is a _____.
- 3. The terms in expression 7m + n + 2 are _____. Here, expression has ____ term and it is a _____.

Question: 45

 $5m^2 + m + 0$ is a ______ expression. (Monomial/ Binomial/ Trinomial)

Answer:				
The terms in expression Here, the expression has	expression.			
Hi, here in this vie	deo you will learn	Subtraction	on expressi	on 25000000000000000000000000000000000000
Question: 46				
Find the sum of two ex	expressions $a + b + c$	and $b + c + d$		
Answer:				
The given two expressions The two terms will get The sum of two expressions. The answer is	added only if they ar sions $= \underline{\qquad} + \underline{\qquad}$	e(Like/	/ Unlike) terms.	
Question: 47				
		School A	School B	
	Number of boys	100b	250b	

	SCHOOL A	SCHOOL D
Number of boys	100b	250b
Number of girls	150g	200g
Number of teachers	25t	45t

- (i) Total number of boys in school A and B is _____
- (ii) Total number of students in school B is _____
- (iii) How many more teachers are there in school B than school A?

Answer:

- (i) Number of boys in school A= ______, Number of boys in school B= ______. Total number of boys in school A and school B is ______ + ____ = _____.
- (ii) Number of boys in school $B = \underline{\hspace{1cm}}$, Number of girls in school $B = \underline{\hspace{1cm}}$. Total number of students in school B is $\underline{\hspace{1cm}} + \underline{\hspace{1cm}} = \underline{\hspace{1cm}}$.
- (iii) Number of teachers more in school B than school A = Teachers in school B Teachers in school A = $__$.

Question: 48

Solve the following:

$$\begin{array}{cccc}
 & 13x + \underline{\hspace{1cm}} \\
 & (+) & 12x + 10y \\
 & \underline{\hspace{1cm}} & + 25y
\end{array}$$

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$

Answer:

The two terms will get added only if they are _____ (like/unlike) terms.

$$\begin{array}{r}
 3a - 5b \\
 \hline
 (-) \quad 5a - 7b \\
 \hline
 -2a - \underline{\hspace{1cm}}
 \end{array}$$