1. Автокорреляция!

Для проверки гипотез мы предполагали условную некоррелированность ошибок:

$$E(\varepsilon_i \varepsilon_j | X) = 0$$
 при $i \neq j$

Что произойдет если эта предпосылка будет нарушена?

- 2. Когда логично ожидать автокорреляцию?
 - * «близость» наблюдений во времени или в пространстве
 - * наличие ненаблюдаемого фактора, действующего на «соседние» наблюдения
- 3. Автокорреляцию подробно изучают!
 - * анализ временных рядов
 - * пространственная эконометрика
- 4. Автокорреляция бывает небезобидной
 - * может привести к несостоятельности оценок \hat{eta}

5. Чудо-доска

$$\varepsilon_1 = \varepsilon_2 = \ldots = \varepsilon_n = \pm 1$$

отметим, что $E(\varepsilon_1 \varepsilon_2 | x) = 1$

- 6. Автокорреляция может иметь очень сложную богатую структуру * AR, MA, ARMA, ARIMA, VAR, VMA, VARMA, VECM, ARCH, GARCH, EGARCH, FIGARCH, TARCH, AVARCH, ZARCH, CCC, DCC, BEKK, VEC, DLM, ...
 - (тут можно страшными сокращениями заполнить весь экран)

7. Мы рассмотрим автокорреляцию порядка p

р = 1: автокорреляция первого порядка

$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t$$

 u_t — независимы между собой,

- независимы от регрессоров
- одинаково распределены

$$-E(u_t) = 0, Var(u_t) = \sigma_u^2$$

8. упражнение у чудо-доски

Как выглядит $Corr(\varepsilon_t, \varepsilon_{t-k})$ при автокорреляции первого порядка?

9. Автокорреляция порядка p:

$$\varepsilon_{t} = \phi_{1}\varepsilon_{t-1} + \phi_{2}\varepsilon_{t-2} + \ldots + \phi_{p}\varepsilon_{t-p}u_{t}$$
допускает более богатую структуру $Corr(\varepsilon_{i}, \varepsilon_{j})$
Как и в случае автокорреляции первого порядка,

$$\lim_{k \to \infty} Corr(\varepsilon_t, \varepsilon_{t-k}) = 0$$

- 10. условная автокорреляция и другие предпосылки
 - * автоматом нарушена предпосылки о незавимости наблюдений (x_i,y_i)
 - * во временных рядах обычно нарушена предпосылка $E(\varepsilon_t|X)=0$ например, использование y_{t-1} в качестве регрессора нарушает $E(\varepsilon_t|X)=0$

(сказать про остальные предпосылки, и более слабые варианты)

11. Мы используем прежние формулы:

Для оценок коэффициентов: $\hat{\beta} = (X'X)^{-1}X'y$

Для оценки ковариационной матрицы оценок коэффициентов, $\widehat{Var}(\hat{\beta}) = \frac{RSS}{n-k}(X'X)^{-1}$

В частности,
$$\widehat{Var}(\hat{\beta}_j) = \frac{\hat{\sigma}^2}{RSS_j}$$
 и $se(\hat{\beta}_j) = \sqrt{\widehat{Var}(\hat{\beta}_j)}$

12. Три группы свойств:

- конечная выборка без предположения о нормальности arepsilon
- конечная выборка с предположением о нормальности ε
- асимптотические свойства (без предположения о нормальности ε) Что происходит в каждом случае?

- 13. Конечная выборка без предположения о нормальности ε
 - * Линейность по y
 - * Условная несмещенность, $E(\hat{\beta}|X) = \beta$
 - * (—) Оценки неэффективны
- 14. Конечная выборка с предположением о нормальности ε

*
$$(-)$$
 $\frac{\hat{\beta}_j - \beta_j}{se(\hat{\beta}_j)} | X \sim t_{n-k}$

* (-)
$$\frac{RSS}{\sigma^2}|X \sim \chi^2_{n-k}|$$

* (-)
$$\frac{(RSS_R - RSS_{UR})/r}{RSS_{UR}/(n-k)} \sim F_{r,n-k}$$

15. Асимптотические свойства:

*
$$\hat{\beta} \rightarrow \beta$$

* $\frac{RSS}{n-k} \rightarrow \sigma^2$
* $(-) \frac{\hat{\beta}_j - \beta_j}{se(\hat{\beta}_j)} \rightarrow N(0, 1)$
* $(-) \frac{RSS_R - RSS_{UR}}{RSS_{UR}/(n-k)} \rightarrow \chi_r^2$

16. Мораль:

- * Сами $\hat{\beta}$ можно интерпретировать и использовать
- * Стандартные ошибки $se(\hat{eta}_i)$ несостоятельны
- * Не можем строить доверительные интервалы для eta_j и проверять гипотезы

- 17. Что делать?
 - * Исправить стандартные ошибки!
 - * Другая формула для оценки $\widehat{Var}_{HAC}(\hat{eta})$
 - * Следовательно, другие $se_{HAC}(\hat{eta}_j)$
- 18. Робастная (устойчивая) к условной гетероскедастичности и авто-корреляции оценка ковариационной матрицы

* Вместо
$$\widehat{Var}(\hat{\beta}) = \frac{RSS}{n-k}(X'X)^{-1}$$

использовать

$$\widehat{Var}_{HAC}(\hat{\beta}) = (X'X)^{-1} \hat{\Phi}(X'X)^{-1}$$

* Нью-Вест (Newey-West), 1987 (Существует много вариантов)

$$\hat{\Phi} = \sum_{j=-k}^{k} \frac{k - |j|}{k} \left(\sum_{t} \hat{\varepsilon}_{t} \hat{\varepsilon}_{t+j} x'_{t} . x_{t+j} . \right)$$

19. Суть корректировки:

Мы меняем $se(\hat{\beta}_j)$ на $se_{HAC}(\hat{\beta}_j)$

Какие проблемы решены?

*
$$\frac{\hat{\beta}_j - \beta_j}{se_{HAC}(\hat{\beta}_j)} \to N(0, 1) \text{ (YPA!)}$$

- 20. Какие проблемы не решены?
 - (—) оценки $\hat{\beta}$ не меняются и остаются неэффективными даже при предположении о нормальности ε :

*
$$(-)$$
 $\frac{\hat{\beta}_j - \beta_j}{se(\hat{\beta}_j)} | X \sim t_{n-k}$

*
$$(-)$$
 $\frac{RSS}{\sigma^2}|X \sim \chi^2_{n-k}|$

* (-)
$$\frac{(RSS_R - RSS_{UR})/r}{RSS_{UR}/(n-k)} \sim F_{r,n-k}$$

21. С практической точки зрения:

- * Новая формула для $\widehat{Var}_{HAC}(\hat{eta})$, и, следовательно, для $se_{HAC}(\hat{eta}_j)$
- * ковариационная матрица в R:

model <- lm(y~x, data=data)
vcovHAC(model)</pre>

* С ней жизнь прекрасна!

$$\frac{\hat{\beta}_j - \beta_j}{se_{HAC}(\hat{\beta}_j)} \to N(0, 1)$$

- 22. Когда следует использовать
 - * Когда мы подозреваем наличие автокорреляции и не хотим заниматься её моделированием

- 23. Обнаружение автокорреляции
 - * Оцениваем интересующую нас модель с помощью МНК
 - * Строим график остатков в осях $\hat{\varepsilon}_{t-1}$, $\hat{\varepsilon}_{t}$ /здесь пришлю три графика/
- 24. Формальные тесты на автокорреляцию
 - * тест Дарбина-Уотсона (Durbin-Watson)
 - * тест Бройша-Годфри (Breusch-Godfrey)

- 25. Тест Дарбина-Уотсона предпосылки:
 - * Автокорреляция первого порядка в остатках

$$\varepsilon_t = \rho \varepsilon_{t-1} + u_t$$

- * нормальность ошибок arepsilon
- * сильная экзогенность, $E(\varepsilon_t|X)=0$
- * H_0 об отсутствии автокорреляции, ho=0
- 26. процедура теста Дарбина-Уотсона
 - * Шаг 1. Оценить основную регрессию, получить $\hat{\varepsilon}_i$
 - * Шаг 2. Посчитать статистику

$$DW = \frac{\sum_{i=2}^{n} (\hat{\varepsilon}_i - \hat{\varepsilon}_{i-1})^2}{\sum_{i=1}^{n} \hat{\varepsilon}_i^2}$$

- 27. Распределение статистики DW
 - * H_0 об отсутствии автокорреляции, ho = 0
 - st Точный закон распределения сложным образом зависит от X
 - * Если $\hat{\rho}$ выборочная корреляция остатков, то $DW = 2(1-\hat{\rho})$
- 28. Качественные выводы по статистике DW

$$DW = 2(1 - \hat{\rho})$$
, поэтому $0 < DW < 4$

- * DW pprox 0 означает положительную автокорреляцию $\hat{
 ho} pprox 1$
- * $DW \approx 2$ означает отсутствие автокорреляции $\hat{\rho} \approx 0$
- * $DW \approx 4$ означает отрицательную автокорреляцию $\hat{\rho} \approx -1$
- 29. иллюстрация (рисунок прилагается: график про Дарбина-Уотсона) теховские надписи для графиков:
 - H_0 не отвергается H_0 отвергается DW_{cr} H_0 : $\rho=0$

- 30. С практической точки зрения:
 - * R рассчитывает точные P-значения для теста DW
 - * существуют таблицы диапазонов критических значений
- 31. Тест Бройша-Годфри (Breusch-Godfrey)
 - * для тестирования автокорреляции порядка p в ошибках

$$\varepsilon_t = \phi_1 \varepsilon_{t-1} + \ldots + \phi_p \varepsilon_{t-p} + u_t$$

- * не требуется нормальность остатков
- * верен при ряде нарушений предпосылки $E(arepsilon_t|X)=0$
- * асимптотический

$$H_0$$
: $\phi_1 = \phi_2 = \ldots = \phi_p = 0$

- 32. Процедура теста Бройша-Годфри
 - * Шаг 1. Оцениваем исходную модель, получаем остатки $\hat{\varepsilon}_t$
 - * Шаг 2. Строим вспомогательную регрессию $\hat{\varepsilon}_t$ на исходные регрессоры, $\hat{\varepsilon}_{t-1}$, $\hat{\varepsilon}_{t-2}$, ..., $\hat{\varepsilon}_{t-p}$, находим R^2_{aux}
 - * Шаг 3. Считаем статистику $BG = (n-p)R_{aux}^2$

33. Тест Бройша-Годфри продолжение

 * При верной H_0 об отсутствии автокорреляции

$$H_0$$
: $\phi_1 = \phi_2 = \ldots = \phi_p = 0$

$$BG = (n-p)R_{aux}^2 \sim \chi_p^2$$

Здесь график распределения BG (рисунок прилагается) Подписи на графике:

 H_0 не отвергается H_0 отвергается $\chi^2_{cr} H_0$: $\phi_1 = \phi_2 = \ldots = \phi_p = 0$

- 34. Тест Бройша-Годфри требует меньше предпосылок
- 35. Вставка с чудо-доской Тест Дарбина-Уотсона и Бройша-Годфри (уже снят) здесь в задаче было дано DW, надо было найти $\hat{\rho}$ и провести тест Бройша-Годфри

36. Мораль

- * Мы рассмотрели ситуацию нарушения предпосылки условной некоррелированности ошибок модели
- * Нарушена во временных рядах и пространственных данных
- * В простейшем случае достаточно использовать специальные стандартные ошибки se_{HAC}
- * Большое количество специальных моделей