Algorithms - 1 Brief Introduction

Algorithms - 1 Brief Introduction

What we focus on the algorithms:

- 1. Correctness:
- 2. Running Time

Method - Divide and Conquer

What we focus on the algorithms:

1. Correctness:

In order to make sure that algorithm works, we need to

- a. prove result is correct
- b. prove that the algorithm always terminate

Normally we can use Loop Invariant to prove the correctness:

Loop invariant: A property that is true before the start of each loop, and true just after the loop ends

Initialization: similar to base case - Prove the loop invariant is true prior to the first iteration of the loop Maintenance: If the loop invariant is true before an iteration, it remains true before the next iteration Termination: When the loop terminates, the loop invariant gives us a useful property that hepls show that the algorithm is correct

Examples:

insertion sort

```
INSERTION-SORT(A)
  for j in range(2, len(A)): # after every loop A[:j] is sorted
    key = A[j]
    i = j - 1
    while i> 0 and A[i] > key:# find a suitable place for key
    A[i+1] = A[i]
    i = i-1
        A[i+1] = key
```

Outer Loop invariant: At the start of each iteration of the for loop index by j, the subarray A[1..j-1] consists of the elements originally in A[1...j-1], but in sorted order

Inner Loop Invariant: At the start of each iteration of the while loop, the subarray A[i+1...j] consists of elements greater than the key, and contains the items originally in A[i+1...j-1] in the same sorted order. The items in position A[1..i] are unchanged.

pow

https://stackoverflow.com/questions/39492263/prove-correctness-of-power-algorithm-using-loop-invariance

```
def Pow(x,y)
    e = 1
    while(y>0):
        if y%2 ==0:
        x = x*x
        y = y/2
        else:
        e = e*x
        y = y - 1
    return e
```

```
y_i,e_i,x_i for i^{th} iteration of the loop loop invariant: p_i>=0 and e_i(x_i)^{y_i}=(x_0)^{y_0} loop terminates, there exists iteration n such that y_n=0,e_n=(x_0)^{p_0}
```

2. Running Time

How can we estimate the running time based on the size of the input: RAM

```
each of normal instructions takes a constant amount of time \text{running time} = \sum cost \ of \ statement \ \cdot \ number \ of \ itmes \ statement \ is \ executed
```

Usually we use worst case, when cover randomized algorithms use average time

Asymptotic Notation

used to describe the growth of function whose domain is the set of natural numbers drop lower-order terms, drop constant coefficients

```
Asymptotic Upper Bound Notation:
```

```
Big-O: f(n) is O(g(n)) if there exists a c > 0 and an n_0 such that f(n) \le cg(n) for all n \ge n_0
Little-o: f(n) is o(g(n)) if for any c > 0 and an n_0 such that f(n) < cg(n) for all n \ge n_0
```

Asymptotic Lower Bound Notation:

```
Big-Omega: f(n) is \Omega(g(n)) if there exists a c>0 and an n_0 such that f(n)\geq cg(n) for all n\geq n_0
Little-o: f(n) is \omega(g(n)) if for any c>0 and an n_0 such that f(n)>cg(n) for all n\geq n_0
```

Asymptotic Lower Bound Notation:

```
Big-Theta: f(n) is \theta(g(n)) if it is both O(g(n)) and \Omega(g(n))
```

Some useful facts:

```
log_{200}n \in log_2n
logn! \in nlogn
n^n dominant n! dominant C^n
log_ab = log_ac^{log_cb} = log_cb \cdot log_ac
Stirling's approximation: n! = \sqrt{2\pi n}(\frac{n}{e})^n(1 + O(\frac{1}{n}))
```

https://www.desmos.com/calculator/0zirxhft0q Drawing lines

Method - Divide and Conquer

Divide: into a number of subproblems that are smaller instances of the same problem

Conquer: solve subproblems recursively

Base case: if the subproblems are small enough, solve by brute force

Combine: merge subproblem solutions to give a solution to the original problem

e.g. Merge Sort