آمار و احتمال همراه با پایتون (۱)

نجمه مدني

فهرست مطالب

- درس اول
- آشنایی با پایتون و spyder
- آشنایی با مفاهیم پایه احتمال
 - شبیه سازی
- درس سوم: تولید متغیر های تصادفی
 - متغیرهای تصادفی پیوسته
 - متغیرهای تصادفی گسسته
 - متغیرهای تصادفی توام
- محاسبه کواریانس و همبستگی
 - شبیه سازی
- درس چهارم: بررسی قضایا و نامساوی های کاربردی احتمال
 - قضيه دموآور-لاپلاس
 - قضیه حد مرکزی
 - نامساوی مارکوف و چپی شف
 - شبیه سازی
 - درس پنجم: آمار
 - تخمين پارامتر
 - آزمون فرضیه
 - شبیه سازی

درس اول

- مروری بر پایتون و Spyder
- مروری بر مفاهیم پایه احتمال
 - شبیه سازی

- برنامه نویسی با آن ساده است.
- پکیج های متنوعی دارد و استفاده از آنها رایگان است.
 - یک زبان تفسیر شده و سطح بالاست.
 - نسبت به ++C/C++ کندتر است.
- نیازی به گذاشتن سمی کالن در انتهای سینتکس ها نداریم.

ماژول:

فایلی شامل توابع و تعاریف است.

• برای استفاده از توابع و کلاس ها لازم است ماژول ها/ پکیج های حاوی آن ها را وارد برنامه کنیم:

```
project
— package1
module1.py
module2.py
— package2
init__.py
module3.py
module4.py
subpackage1
module5.py (1)
```


1:https://realpython.com/absolute-vs-relative-python-imports/2:http://www.pybloggers.com/2018/04/python-modules-and-packages-an-introduction

mod4.py

mod3.py

• وارد کردن ماژول ها به برنامه

```
import module
    module.func()
import module as mod
    mod.func()
from package import module
    module.func()
```

- همراه با نصب پایتون ماژول های استاندارد math, random, os هم نصب می شوند.
 - ماژول های مورد نیاز را با دستورهای conda/ pipe نصب می کنیم.
 - پکیج ها/ کتابخانه های مهم پایتون برای محاسبات عددی وعلمی:
 - Scipy •
 - Numpy •
 - Matplotlib •

- دو نوع متغیر عددی وجود دارد: int , float.
 - متغیر char وجو د ندارد.
- رشته ها را با استفاده از " " یا ' مقدار می دهیم.
 - متغیرها: نیازی به تعیین نوع متغیر نیست.
- یک متغیر می توند در طی برنامه نوع های مختلف داشته باشد.

نصب پایتون

- Python www.python.org •
- Anaconda www.anaconda.com •
- IDE: مجموعه ای از ابزارهای مناسب برای ویرایش، دیباگ و اجرای برنامه....
 - Spyder: مناسب برای برنامه نویسی محاسباتی و علمی.

آمار و احتمال

احتمال: مفاهيم پايه

- آزمایش تصادفی (Random experiment)
- آزمایش (پدیده) که نتیجه آن را با قطعیت نمی توان مشخص کرد: پرتاب سکه/تاس
 - فضاى نمونه (Sample space)
 - مجموعه تمام نتایج ممکن آزمایش (پدیده) تصادفی .
 - (Event) elevent
 - مجموعه ای از نتایج آزمایش تصادفی که به آن یک احتمال نسبت می دهیم.

تعريف احتمال

- تعریف کلاسیک
- تعریف تعریف فرکانس نسبی
- احتمال با استفاده از اصول موضوعه

تعریف فرکانس نسبی

بار آزمایش تصادفی را انجام می دهیم، n(A) بار واقعه مورد نظر اتفاق می افتد n

$$P(A) \simeq \lim_{n \to \infty} \frac{n(A)}{n}$$

امكان آزمایش تصادفی به دفعات وجود داشته باشد.

شبیه سازی

- شبیه سازی پرتاب یک سکه سالم
- محاسبه احتمال شیر آمدن در پرتاب یک سکه سالم

درس دوم:

- متغیر های تصادفی
- متغیرهای تصادفی پیوسته
- متغیرهای تصادفی گسسته
 - شبیه سازی

متغير تصادفي

خواص متغير تصادفي

- سمبل : با حروف بزرگ نمایش داده می شود X و مقادیری که به خود می گیرد با حروف x کوچک x
 - تکیه گاه: (support): مجموعه مقادیری که متغیر تصادفی به خود می گیرد
 - تابع توزیع: pmf یا p
 - (cumulative distributed function) تابع توزیع تجمعی
 - امید ریاضی: میانگین وزن دار
 - انحراف معیار: پراکندگی مقادیری که متغیر تصادفی می گیرد نسبت به امید ریاضی
 - مد: محتمل ترین مقداری که متغیر تصادفی اختیار می کند
 - میانه، آنتروپی

متغير تصادفي گسسته

- مقادیری که متغیر تصادفی می تواند به خود بگیرد قابل شمارش است.
- مثال: تعداد خط ها در n بار پرتاپ سکه، نتیجه پرتاب یک تاس، تعداد ایمیل های دریافتی در هر روز
 - تابع جرم احتمال (probability mass function:pmf) مقادیری که متغیر تصادفی می گیرد و احتمال متناظر آن ها را مشخص می کند.

$$p_X(x_k) = P(X = x_k), k = 1, 2, 3,$$

$$\sum p_X(x_k) = 1, \forall x_k \ p_X(x_k) \ge 0$$

متغيرهاي تصادفي پيوسته

- متغیر تصادفی می تواند هر مقداری در یک بازه از اعداد حقیقی را بگیرد.
- مثال: مدت زمانی که یک مشتری در یک فروشگاه در صف منتظر می ماند.
- در متغیر های تصادفی پیوسته در مورد احتمال بازه ای از اعداد حقیقی صحبت می کنیم
 - با استفاده از تابع چگالی احتمال (PDF) این احتمالات را حساب می کنیم

$$P(x_1 \le X \le x_2) = \int_{x_1}^{x_2} f_X(u) du$$

تابع توزيع تجمعي

• هم برای متغیر های تصادفی پیوسته و هم برای متغیر های تصادفی گسسته تعریف می شود

$$F_X(x) = P(X \le x)$$

• متغیرهای تصادفی پیوسته:

 $F_X(x) = \int_{-\infty}^x f_X(u) du$

• متغیرهای تصادفی گسسته:

$$F_X(x) = \sum_{x_k \le x} p_X(x_k)$$

امید ریاضی-واریانس

گسسته

$$E(X) = \sum x_k p_X(x_k)$$

$$\sigma_X^2 = \sum (x_k - E(X))^2 p_X(x_k)$$

پيوسته

$$E(X) = \int_{-\infty}^{\infty} x f_X(x) dx$$

$$\sigma_X^2 = \int_{-\infty}^{\infty} (x - E(X))^2 f_X(x) dx$$

توزيع نرمال

- بسیاری از پدیده ای طبیعی با این متغیر تصادفی مدل می شوند. قد، وزن، خطاهای اندازه گیری. فشار خون،....
 - مجموع تعدادی زیادی متغیر تصادفی یک متغیر تصادفی نرمال
 - نویز را غالبا با توزیع نرمال مدل می کنیم.

$$X \sim N(\mu, \sigma^2)$$

$$PDF: f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{\sigma^2}}$$

Support: $(-\infty, +\infty)$ Expectation: $E[X] = \mu$ Variance: $Var(X) = \sigma^2$

Z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.575
.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.614
.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.651
.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.687
.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.722
.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.754
.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.785
.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.813
.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.838
0.1	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.862
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.883
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.901
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.917
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9279	.9292	.9306	.931
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.944
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.954
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.963
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.970
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.976
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.981
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.985
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.989
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.991
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.993
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.995
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.996
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.997
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.998
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.998
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.999
	ىپ پ									10

CDF of Normal Distribution

• تابع توزیع تجمعی توزیع نرمال استاندارد

$$F_X(x) = P(X \le x) = P(\frac{X - \mu}{\sigma} \le \frac{x - \mu}{\sigma}) = P(Z \le \frac{x - \mu}{\sigma})$$

توزيع نرمال: مثال

$$P(|X - \mu| \le 3\sigma) = P(\mu - 3\sigma \le X \le \mu + 3\sigma)$$

$$= \Phi(\frac{\mu + 3\sigma - \mu}{\sigma}) - \Phi(\frac{\mu - 3\sigma - \mu}{\sigma})$$

$$= \Phi(3) - \Phi(-3)$$

$$= 2\Phi(3) - 1 \approx 1$$

توزيع نمايي

• مثال: مدت زمان تا اتفاق بعدی.

 $X \sim \text{Exp}(\lambda)$

$$\text{PFD:} f_X(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0 \\ 0 & \text{otherwise} \end{cases}$$

 $\operatorname{Support:}[0\infty)$

$$E[X] = \frac{1}{\lambda}$$

$$Var(X) = \frac{1}{\lambda^2}$$

توزیع نمایی:مثال

• بازدیدکنندگان سایت شما بعد به طور متوسط بعد از ۵ دقیقه سایت را ترک می کند. احتمال اینکه یک بازدید کننده بعد از ۱۰ دقیقه سایت را ترک کند چقدر است.

 $X \sim Exp(\lambda), \lambda = ?$:مدت زمانی که طول می کشد که یک بازدید کننده سایت را ترک کند: $X \sim Exp(\lambda), \lambda = ?$

 $E(X) = 5 \rightarrow \lambda = 0.2$. بازدید کنندگان به طور متوسط بعد از Δ دقیقه سایت را ترک می کنند.

$$F_X(x) = P(X \le x) = \int_0^x \lambda e^{-\lambda u} du = (1 - e^{-\lambda x})$$

• تابع توزیع تجمعی:

$$P(X \ge 10) = 1 - F_X(10) = e^{-0.2 \times 10} = 0.135$$

خاصیت منحصر به فرد توزیع نمایی

$$P(X > t + s | X > s) = P(X > t)$$

• بى حافظه بودن

- مثال ۵ دقیقه از ورود آخرین مشتری گذشته احتمال اینکه یک دقیقه دیگر مشتری وارد شود:
 - X: مدت زمانی که طول می کشد تا مشتری جدید وارد شود:

$$P(X > 6 | X > 5) = P(X > 1)$$

توزيع برنولي

- دومقدار می گیرد: مقدار ۱ را با حتمال P و مقدار ۰ را با احتمال P-۱
 - پرتاب یک سکه، تولید یک بیت اطلاعات

$$X \sim Bern(p)$$

 $P(X = 1) = p$
 $P(X = 0) = q = 1 - p$
 $E(X) = p$
 $Var(X) = pq$

توزیع دوجمله ای

- تعداد دفعات موفقیت در n بار انجام یک آزمایش.
- مثال: تعداد بارهایی که در پرتاب n سکه خط حاصل می شود . تعداد بارهایی که یک تبلیغ توسط بازدید کنندگان یک سایت کلیک می شود

$$X \sim \text{Bin}(n, p)$$

 $P(X = k) = \binom{n}{k} p^{k} q^{n-k}$

k = 0, 1,n

E(X) = npVar(X) = npq

توزيع پواسن

- تعداد وقایعی که در یک بازه اتفاق می افتد مشروط به دانستن تعداد متوسط وقوع در این بازه .
 - مثال : تعداد درخواست هایی برای تاکسی اینترنتی در یک منطقه در ۱۰ ثانیه آینده، تعداد زمین لرزه ها در یک سال

$$X \sim \text{Poi}(\lambda)$$

$$P(X = k) = \lambda^{k} \frac{e^{-\lambda}}{\lambda!}$$

$$k = 0,1,\ldots \infty$$

$$E(X) = \lambda$$

$$Var(X) = \lambda$$

توزیع پواسن تقریبی از توزیع دو جمله ای

- توزیع پواسن می تواند توزیع نرمال را تقریب بزند. تحت چه شرایطی ؟
 - بزرگ باشد، pوچک باشد و n مقداری متوسط n

$$\binom{n}{k} p^k q^{n-k} \approx \lambda^k \frac{e^{-\lambda}}{\lambda!} \qquad E(X) = np = \lambda$$

$$Var(X) = np(1-p) = \lambda$$

• مثال: n = 1000 لامپ داریم احتمال خراب بودن هر لامپ p = .01 است احتمال اینکه فقط یک لامپ خراب باشد چقدر است.

$$X \sim Bin(1000, .01)$$
 $X \sim Poi(10)$
 $P(X = 1) = {1000 \choose 1} 0.01 \times 0.99^{999}$ $P(X = 1) = 10 \frac{e^{-10}}{10!}$
 $= 0.00043630732$ $= 0.0004539992$

تولید اعداد تصادفی

- مولد اعداد شبه تصادفی (pseudo random number generator: PRNG)
- " الگوریتمی برای تولید دنباله ای از اعداد است که خواص یک دنباله اعداد تصادفی را تقریب می زند".
- دنباله اعداد تولید شده توسط PRNG تصادفی به معنای واقعی نیستند به نحوی که با داشتن مقدار اولیه (seed) قابل تعیین هستند.
 - کاربرد:شبیه سازی مونت کارلو، بازی های کامپیوتری و رمز نگاری

تولید اعداد تصادفی نرمال

- زبان های برنامه نویس رایج مولد های PRN دارند.
- با اغماض می توانیم بگوییم اعدادی که تولید می شوند تقریبا مستقل و دارای توزیع یکنواخت هستند
 - U_{1},U_{2},U_{3} اگر دنباله تولیدی را اینگونه نمایش دهیم. $U_{i} \sim Uniform[0,1]$
- برای تولید نمونه های تصادفی از توزیع های دیگر بر اساس این دنباله روش های مختلفی وجود دارد

تولید نمونه های تصادفی نرمال

• متغیر تصادفی Y دارای توزیع نرمال خواهد بود:

$$P(Y \le y) = P(F^{-1}(X) \le y) = P(X \le F(y)) = F(y)$$

شبیه سازی

- تولید متغیر تصادفی در پایتون
- رسم تابع چگالی احتمال، تابع توزیع احتمال ، رسم هیستوگرام
 - بررسی رابطه توزیع پواسن و توزیع دوجمله ای
 - حل یک مسئله احتمال با استفاده از شبیه سازی

 $Y \sim Exp(\lambda_y)$ بنمایی با A دارای توزیع نمایی با $X \sim Exp(\lambda_x)$ و طول عمر المان A دارای توزیع نمایی با A دارای عمر کند چقدر است.

$$P(Y > X) = \frac{\lambda_x}{\lambda_x + \lambda_y}$$

درس سوم

- متغیرهای تصادفی توام
- استقلال متغیر های تصادفی
 - کواریانس و همبستگی
 - شبیه سازی

توزيع توام

• روی یک فضای نمونه می توان بیش از یک متغیر تصادفی تعریف کرد

• مثال: پرتاپ دو تاس X: مقدار تاس اول Y: مقدار تاس دوم • مثال: پرتاپ دو تاس X: مقدار تاس اول Y: مقدار تاس اول و تاس دو

$X \backslash Y$	1	2	3	4	5	6
1	1/36	1/36	1/36	1/36	1/36	1/36
2	1/36	1/36	1/36	1/36	1/36	1/36
3	1/36	1/36	1/36	1/36	1/36	1/36
4	1/36	1/36	1/36	1/36	1/36	1/36
5	1/36	1/36	1/36	1/36	1/36	1/36
6	1/36	1/36	1/36	1/36	1/36	1/36

MIT18 05S14 class7slides

توزيع توام

- در اکثر شرایط نیاز به دو یا چند متغیر تصادفی برای توصیف مسئله داریم
 - مثال: شاخص های فیزیولوژیکی مختلف از جامعه بیماران
 - مثال: سن افراد عضو فیسبوک و تعداد دوستان آن ها
 - مثال: نرخ بیماری های تنفسی و سطح آلودگی هوا در یک شهر
- تابع توزیع مشترک: برای محاسبه واقعه هایی که دو یا چند متغیر تصادفی در آن نقش دارند و بررسی رابطی بین متغیرهای تصافی
 - ساده ترین حالت: متغیر های تصادفی مستقل. در غیر این صورت از کواریانس یا ضریب همبستگی به عنوان یکی از پارامترهای که برای تعیین توزیع مشترک لازم است. استفاده می شود

توزيع توام

پيوسته

- تابع چگالی احتمال مشترک
- تابع توزیع مشترک $F_{XY}(x,y) = P\{X \le x, Y \le y\}$ $= \int_{-\infty}^{x} \int_{-\infty}^{y} f_{X,Y}(u,v) du dv$

$$f_X(x) = \int_{-\infty}^{y} f_{X,Y}(x,y) dy$$

گسسته

- تابع چگالی جرم مشترک
 - تابع توزیع مشترک

$$X : \{x_1, x_2, \dots, x_n\}$$
 $Y : \{y_1, y_2, \dots, y_m\}$

$$p_{X,Y}(x_i, y_j) = P(\{X = x_i\} \cap \{Y = y_j\})$$

$$F_{XY}(x,y) = \sum_{x \le x_i} \sum_{y \le y_j} P(x_i, y_j)$$

$$P(X = x_i) = \sum_{j=1}^{m} P(x_i, y_j)$$

استقلال دو متغیر تصادفی

 $P(A \cap B) = P(A)P(B)$

• دواقعه مستقل:

• دو متغیر تصادفی مستقل:

$$F_{XY}(x, y) = P(X \le x, Y \le y) = P(X \le x)P(Y \le y) = F_X(x)F_Y(y)$$

 $f_{XY}(x,y) = f_X(x)f_y(y)$:مثال

کواریانس- همبستگی

• کواریانس: میزانی برای اندازه گیری تغیرات دو متغیر تصادفی نسبت به هم. تغییر یک متغیر تصادفی چگونه بر متغیر تصادفی دیگر تاثیر می گذارد.

$$Cov(X,Y) = E((X - E(X))(Y - E(Y)))$$
 همبستگی: نرمالیزه کواریانس •

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X)Var(Y)}}$$

ماتریس کواریانس

$$C = \begin{bmatrix} \underbrace{E(X - E(X))^2}_{\sigma_x^2} & \underbrace{E(X - E(X))(Y - E(Y))}_{\rho\sigma_x\sigma_y} \\ \underbrace{E(X - E(X))(Y - E(Y))}_{\rho\sigma_x\sigma_y} & \underbrace{E(Y - E(Y))^2}_{\sigma_y^2} \end{bmatrix}$$

تابع توزیع گوسی تو ام دو بعدی

$$f_{XY}(x,y) = \frac{1}{\sqrt{2\pi |\Sigma|}} e^{-\frac{\left[X - E(X)\right]^T \Sigma^{-1} \left[X - E(X)\right]}{2}}$$

$$\begin{bmatrix} X - E(X) \\ Y - E(Y) \end{bmatrix}^{T} \Sigma^{-1} \begin{bmatrix} X - E(X) \\ Y - E(Y) \end{bmatrix} = K$$

سطوح تراز بیضی هستند

نکاتی از جبر خطی

- ماتریس کواریانس متقارن و positive definite است.
- در ماتریس متقارن، بردارهای ویژه بر هم عمود هستند.
- جهت بردارهای ویژه در ماتریس کواریانس جهت بیشترین میزان پراکندگی داده را نشان می دهد و مقدار ویژه متناظر میزان این پراکندگی را نشان می دهد.
- سطوح تراز تابع چگالی احتمال مشترک گوسی بیضی هستند و محور های اصلی آن منطبق بر بردارهای ویژه هستند.

تولید نمونه تصادفی از توزیع گوسی مشترک

• برای نمونه برداری از یک توزیع گوسی مشترک با میانگین و واریانس دلخواه می توان

• از توزیع گوسی استاندارد نمونه برداری کرد و با داشتن ماتریس کواریانس و میانگین آن ها را به نمونه هایی از توزیع مورد نظر تبدیل کرد

$$X \sim N(\begin{bmatrix} 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix})$$

$$Y = LX + \overrightarrow{\mu} \quad Y \sim N(\overrightarrow{\mu}, \Sigma_{y})$$

$$\sum_{y} = E((Y - E(Y))(Y - E(Y))^{T})$$

$$= L \sum_{x} L^{T} = LL^{T}$$

Cholesky decomposition

Eigen decomposition

$$\sum_{y} = Q \Lambda Q^{T} = Q \sqrt{\Lambda} (Q \sqrt{\Lambda})^{T}$$
eigen-
vectors

$$T = Q \sqrt{\Lambda}$$
rotation scaling

$$Y = TX + \overrightarrow{\mu}$$

تولید نمونه تصادفی از توزیع گوسی مشترک

شبیه سازی

- تابع چگالی احتمال مشترک گوسی
 - بررسی کواریانس

درس چهارم

- قضيه لاپلاس-دموآور
 - قضیه حد مرکزی
 - نامساوی مارکوف
 - نامساوی چپی شف
 - شبیه سازی

قضيه دموآور-لاپلاس

• توزیع دوجمله ای تحت شرایطی با توزیع نرمال قابل تقریب است.

Bin(n,p)
$$\binom{n}{k} p^{k} q^{n-k} \simeq \frac{1}{\sqrt{npq}} e^{\frac{-(k-np)^{2}}{npq}}$$

$$k = np + c\sqrt{npq}$$

$$n \to \infty$$

قضيه دموآور-لاپلاس: مثال

• مثال: جمعیتی خاص که نیمی از آن ها مرد و نیمی از آن ها زن هستنددرنظر بگیرد. ۱۰۰۰۰ نفر به تصادف از این جمعیت انتخاب شده اند. احتمال اینکه ۴۹% تا ۵۱% جمعیت افراد شده مرد باشد چقدر است ؟

Bin(10000,
$$\frac{1}{2}$$
)

$$P(4900 \le X \le 5100) = \sum_{k=4900}^{k=5100} {10000 \choose k} \left(\frac{1}{2}\right)^k \left(\frac{1}{2}\right)^{10000-k} = ?$$

$$E(X) = np = 5000$$

$$Var(X) = npq = 2500$$
 $\sqrt{npq} = 50$

$$P(4900 \le X \le 5100) \approx \Phi(\frac{5100 - 5000}{50}) - \Phi(\frac{4900 - 5000}{50}) = \Phi(2) - \Phi(-2)$$
$$= 2\Phi(2) - 1$$
$$= 2 \times 0.9772 - 1$$
$$= .9544$$

- X: تعداد مرد ها در میان ۱۰۰۰۰ نفر
- احتمال مرد بودن = احتمال زن بودن

بررسى قضاياى احتمال

• قضیه حد مرکزی:

 $E(X_i) = \mu_i, Var(X_i) = \sigma^2$ و (iid) و داری توزیع یکسان $X_1, X_2,, X_n$ متغیر های تصادفی مستقل از هم و داری توزیع یکسان n به اندازه کافی بزرگ باشد تقریبی از یک توزیع نرمال هست.

درعمل اکثر اوقات میانگین و واریانس توزیع نمی دانیم

میانگین و ورایانس را با استفاده از مجموعه داده تخمین می زنیم و از

قضیه حد مرکزی استفاده می کنیم.

$$n = ?$$

قضیه حد مرکزی

- مثال: ده تاس را پرتاپ می کنیمcontinuity correction
- $Y = X_1 + X_2 + \dots X_{10}$ مجموع اعدادی که تاس ها نشان می دهد
 - $P(Y \le 45) ? \bullet$

$$E(X_i) = \frac{\sum_{i=1}^{6} 1 + 2 \dots + 6}{6} = 3.5 \qquad Var(X_i) = E(X_i^2) - E(X_i)^2 = \frac{35}{12}$$

• با استفاده از قضیه حد مرکزی

$$Y \sim N (10 \times 3.5, 10 \times \frac{35}{12})$$
 $P(Y \le 45) = \Phi(\frac{10}{\sqrt{10 \times \frac{35}{12}}}) = \Phi(1.8516) = 0.9678$

• با استفاده از شبیه سازی:؟ ۹۷۵۲۶

نامساوی مارکوف- چپی شف

support: $x \ge 0$ متغیر تصادفی X متغیر تصادفی •

$$P(X > a) \le \frac{E(X)}{a}$$

$$P(|X - \mu| \ge a) \le \frac{Var(X)}{\sigma^2}$$

 $P(|X - \mu| \ge a) \le \frac{Var(X)}{\sigma^2}$ نامساوی چپیشف: X متغیر تصادفی •

نامساوي ماركوف: مثال

$$P(X \ge n) = ?$$

 $P(X \ge n) = ?$ تعداد خط ها در n يرتاب يک سکه سالم: $X \bullet$

$$X \sim \text{Bin}(n, \frac{1}{2}) \longrightarrow E(X) = \frac{n}{2}$$

$$P(X \ge n) \le \frac{1}{2}$$

• با استفاده از نامساوی مارکوف

$$P(X \ge n) = P(X = n) = \left(\frac{1}{2}\right)^n$$

• با استفاده از توزیع

نامساوی چپیشف: مثال

$$P(X \ge n) = ?$$

 $P(X \ge n) = ?$ تعداد خط ها در n يرتاب يک سکه سالم: $X \bullet$

$$X \sim \text{Bin}(n, \frac{1}{2}) \longrightarrow E(X) = \frac{n}{2}$$

$$P(X \ge n) \le \frac{1}{2}$$

• با استفاده از نامساوی مارکوف

$$P(X \ge n) = P(X = n) = \left(\frac{1}{2}\right)^n$$

• با استفاده از توزیع

نامساوي چييشف: مثال

$$P(X \ge n) = ?$$

 $P(X \ge n) = ?$ تعداد خط ها در n پرتاپ یک سکه سالم: $X \bullet$

$$X \sim \text{Bin}(n, \frac{1}{2})$$

$$Var(X) = \frac{n}{4}$$

$$P(X \ge \frac{3n}{4}) \le \frac{2}{3}$$

• با استفاده از نامساوی مارکوف

 $P(X \ge \frac{3n}{4}) = P(X - \frac{n}{2} \ge \frac{N}{4}) \le P(\left|X - \frac{n}{2}\right| \ge \frac{n}{4}) = P(\left|X - E(X)\right| \ge \frac{n}{4}) \le \frac{4}{n}$

$$P(X - \frac{n}{2} \ge \frac{N}{4}) + P(X - \frac{n}{2} \le \frac{-N}{4})$$

نامساوی چپیشف-مارکوف

https://github.com/kartikdube/Probability-and-Statistics-in-Data-Science-Using-Python/blob/master/09-Inequalities%20and%20Limit/Inequalities%20and%20Limit.ipynb

درس هفتم

- آمار
- تخمین پارمتر (میانگین و واریانس)
 - شبیه سازی

نمونه(sample)

- متغیرهای تصادفی X_1, X_2, \dots, X_n است اگر X_1, X_2, \dots, X_n
 - .(iid) ها داری توزیع یکسان و از هم مستقل باشند X_i
- $Var(X_i) = \sigma^2$ دارای میانگین و واریانس یکسان باشند . X_i
 - (0.7, 0.5, 0.3, 0.4, 0.33, -0.3) (X₁, X₂, X₃, X₄, X₅, X₆)
- می خواهیم میانگین و واریانس توزیع F را با استفاده از یک نمونه از توزیع تخمین بزنیم \bullet

تخمین میانگین: میانگین نمونه

$$\overline{X} = \frac{1}{n} \sum_{i=0}^{n} X_i$$

- است. \overline{X} یک تخمین برای \overline{X}
- ست. است و μ یک متغیر تصادفی است و \overline{X}
 - $E(\overline{X}) = \mu$ یک تخمین ناریب از μ است: \overline{X} •
- $\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$ قضیه حد مرکزی: برای n های به اندازه کافی بزرگ •

خطای تخمین

 $E(\hat{\theta} - \theta)^2 = ?$ پارامتر θ را با متغیر تصادفی $\hat{\theta}$ تخمین می زنیم. خطای تخمین:

$$E(\hat{\theta} - \theta)^{2} = \operatorname{var}(\hat{\theta} - \theta) + (E(\hat{\theta} - \theta))^{2}$$

$$= \underbrace{\operatorname{var}(\hat{\theta})}_{\theta \text{ is not random}} + \underbrace{(E(\hat{\theta}) - \theta)^{2}}_{bias}$$

$$E(\overline{X} - \mu)^2 = \frac{\sigma^2}{n} + 0_{bias}$$

- خطای (تخمین گر)میانگین نمونه:
- برای n های بزرگ به سمت صفر میل می کند n
 - $\sqrt{\frac{\sigma^2}{n}}$ خطای استاندارد •

فاصله اطمینان برای میانگین نمونه

$$\left(\overline{X} - z^* \frac{\sigma}{n} \quad \overline{X} + z^* \frac{\sigma}{n}\right)$$

$$\overline{X} \sim N(\mu, \frac{\sigma^2}{n})$$

$$P(\frac{\overline{X} - \mu}{\sigma} < z^*) = CI$$

$$\frac{\sigma}{\sqrt{n}}$$

$$P(\mu - z^* \frac{\sigma}{\sqrt{n}} < \overline{X} < \mu + z^* \frac{\sigma}{\sqrt{n}}) = 2\Phi(z^*) - 1$$

• فاصله اطمینان

С	z *
99%	2.576
98%	2.326
95%	1.96
90%	1.645

https://www.omnicalculator.com/statistics/confidence-interval

تخمين واريانس: واريانس نمونه

• در صورتی که مقدار میانگین را داشته باشیم

$$\sigma^2 = E((X_i - E(X_i)^2) \Longrightarrow$$

$$\overline{\sigma^2} = \frac{1}{n} \sum_{i=1}^n (X_i - \mu)^2$$

• در صورتی که مقدار میانگین را نداشته باشیم ابتدا آن را با میانگین نمونه تخمین می زنیم و در این صورت واریانس نمونه (n-1) ناریب این صورت واریانس به صورت زیر خواهد بود. ضریب (n-1) ناریب بودن تخمین را تضمین می کند.

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$