Mehryar Jannesari Ghomsheh

mehryar.jannesari@ut.ac.ir L

LinkedIn

+98 937 697 9095

EDUCATION

University of Tehran

Tehran, Iran

M.S. in Biomechanical Engineering

GPA: 19.05/20 (4/4)

Sep. 2020 - Present

University of Tehran

Tehran, Iran

B.S. in Mechanical Engineering

GPA: 17.76/20 (3.82/4), Last 2year GPA: 18.51/20 (4/4)

Sep. 2020

RESEARCH INTERESTS

- Thermal-Fluid Science
- Computational Fluid Dynamics
- Non-Newtonian Fluid Mechanics
- Transport Phenomena in Biological Systems
- Targeted Drug Delivery
- Microfluidics
- Deep Learning and Neural Networks

RESEARCH EXPERIENCES

M.S. Thesis: The investigation of hydrodynamic interactions between swimming microorganism in the gastric mucus for improvement on drug delivery

Aug. 2021 - Present

Advisor: Dr. A. Jafari

University of Tehran

- Researched Brinkman and Bi-viscous models to model the gastric mucus
- Scrutinized the H. pylori bacteria locomotion in the gastric mucus

Graduate Research Assistant

Jan. 2021 - Present

Computational Non-Newtonian Fluid Mechanics Lab, Head: Dr. A. Jafari

University of Tehran

- Developed a framework for coupling of MATLAB and COMSOL software to carry out 3D DNS of particle lateral movement in straight microchannels
- Detected the particle trajectory in a square-wave microchannel by post-processing the experimental results and comparing with the obtained numerical results
- Explored the dynamics of different micro-swimmers for the application of targeted drug delivery
- Examined a micro-swimmer trajectory in high Reynolds number flows through FSI simulation with Arbitrary Lagrangian-Eulerian (ALE) method

B.S. Thesis: modeling and optimization of a condenser with phase change material used in electric vehicle heat pump cycle

Jan. 2021 - Present

Advisor: Prof. F. Kowsary

University of Tehran

- · Observed and optimized the thermal performance of PCM heat exchanger in real driving conditions
- Designed an optimal PCM heat exchanger
- Integrated the optimal PCM heat exchanger into the EV model to extend its mileage

ACADEMIC PROJECTS

Inertial Lift on a Spherical Particle in Newtonian and Power-law Fluids

Mar. 2021 – July 2021

Instructor: Dr. A. Jafari

- Calculated position-dependent inertial lift forces for a single particle in the Poiseuille flow of Newtonian fluids and Xanthan gum solutions
- Assessed the validity of Power-law model for Xanthan gum solutions based on shear-rate profiles

Stability Analysis of a Laminar Wall Jet in a Decelerating External Flow

Mar. 2021 - July 2021

Instructor: Prof. K. Sadeghy

- Devised a golden-section optimization algorithm to optimize the pressure gradient parameter
- Carried out temporal stability analysis of the wall jet using spectral method

A Novel Bubble-driven Micromixer/Micropump Based on Thermal-inkjet Technology

Instructor: Dr. V. Bazargan

- Designed an extensible square-wave microchannel toward reaching an optimal design
- Coupled Level Set and Volume-Of-Fluid (CLSVOF) method for bubble-fluid interface tracking

Analysis of the Flow through a Converging-Diverging Duct (Stenosis)

Oct. 2020 - Nov. 2020

Oct. 2020 - Mar. 2021

Instructor: Dr. V. Bazargan

- Obtained different velocity profiles based on stenosis size
- Calculated the pressure drop as a function of stenosis height and length for different Re numbers

Two-dimensional Incompressible Laminar Navier-Stokes Equations in C++

Nov. 2019 - Jan. 2020

Instructor: Dr. A. Jalali

- Developed a SIMPLE algorithm with finite-volume discretization to solve the NS equations
- · Formulated the equations of stream function and vorticity to compare with the SIMPLE algorithm

A Two-dimensional Inverse Heat Conduction Problem to Estimate the Surface Heat

Oct. 2019 - Dec. 2019

Instructor: Prof. F. Kowsary

- Developed a framework for coupling of MATLAB and ANSYS Fluent software to solve and optimize the temperature profile
- Generated genetic and conjugate gradient optimization algorithms

Two-dimensional Incompressible Laminar Energy Equation in C++

Oct. 2019 - Dec. 2019

Instructor: Dr. A. Jalali

- Programmed explicit and implicit time advance schemes to compare the stability
- Applied approximate factorization to solve the linear system of implicit discretization

Implementation of Elliptic Equations' Solving Methods in C++

Sep. 2019 - Nov. 2019

Instructor: Dr. A. Jalali

- Second-order finite difference discretization of Poisson's and Laplace's equations
- Implementation of Gauss-Seidel, P-SOR, and L-SOR algorithms

PUBLICATIONS

- Hanie Rezaei, Mehryar Jannesari Ghomsheh, Farshad Kowsary, Pouria Ahmadi, "Performance assessment of a range-extended electric vehicle under real driving conditions using novel PCM-based HVAC system," Sustainable Energy Technologies and Assessments, 47(101527), 2021.
- "Inertial lift on a particle in a straight microchannel of Newtonian, Power-law, and Carreau-Yasuda fluids: a simulation study toward optimized particle separation (to be submitted)"

TEACHING EXPERIENCES

Teaching Assistant, Fluid Mechanics II

Sep. 2021 - Present

School of Mechanical Engineering, University of Tehran

Assigning and grading homework and guizzes

Teaching Assistant, Optimization of Mechanical Systems

Sep. 2020 - Jan. 2021

School of Mechanical Engineering, University of Tehran

• Assigned and graded homework and projects, lectured additional course materials

Teaching Assistant, Heat Transfer I

Sep. 2020 - Jan. 2021

School of Mechanical Engineering, University of Tehran

Assigned and graded homework and projects

Teaching Assistant, Fluid Mechanics II

Sep. 2019 - Jan. 2020

School of Mechanical Engineering, University of Tehran

· Assigned and graded homework and quizzes, held weekly office hours for a class of 30 students

Private Tutor, Mathematics

Mar. 2019 – Apr. 2019

Math Home, Tehran, Iran

• Tutored 10 high school students attending International Mathematics Competition (IMC)

SELECTED COURSES

Graduate Level

- Non-Newtonian Fluid Mechanics (19.75/20.00), Instructor: Dr. A. Jafari
- Advanced Fluid Mechanics (19.75/20.00), Instructor: Prof. K. Sadeghy
- Fluid Mechanics in Biological Systems (19.0/20.0), Instructor: Dr. V. Bazargan

Undergraduate Level

- Computational Fluid Dynamics (19.5/20.0), Instructor: Dr. A. Jalali
- Optimization of Mechanical Systems (20.0/20.0), Instructor: Prof. F. Kowsary

TECHNICAL SKILLS

EngineeringANSYS Workbench, COMSOL Multiphysics, SolidWorks **Programming**MATLAB, Python, C/C++, HTML/CSS (beginner level)

488th Place among 162,879 Participants, Iranian University Entrance Exam (Konkur)

Operating Systems Windows, Linux (beginner level)

Other Microsoft Office, ŁTFX

HONORS AND AWARDS

Deep Learning and Neural Networks with Keras, Certification IBM, Coursera	Apr. 2021
Machine Learning, Certification Stanford Online, Coursera	Mar. 2021
Full Scholarship for M.S. Program School of Mechanical Engineering, University of Tehran, Tehran, Iran	July 2020
Ranked Among Top 10% of the Entry	July 2020
School of Mechanical Engineering, University of Tehran, Tehran, Iran	
Full Scholarship for B.S. Program School of Mechanical Engineering, University of Tehran, Tehran, Iran	Aug. 2016

LANGUAGE

English: Professional Working Proficiency

• TOEFL iBT: 103 (Reading: 29/30, Listening: 26/30, Speaking: 23/30, Writing: 25/30)

Oct. 2020

Persian: Native

REFERENCES*

Dr. A. Jafari

Assistant Professor of Mechanical Engineering, University of Tehran

PHD Graduated from EPFL

azadeh.jafari@ut.ac.ir

*Others available upon request

Prof. F. Kowsary

Professor of Mechanical Engineering, University of Tehran

2016

• PHD Graduated from Virginia Polytechnic Institute

fkowsari@ut.ac.ir