Lattice-Based Foundations of Homomorphic Encryption

Efe İzbudak ephemer410liberior.org

December 25, 2024

Definitions

Definition (Lattices)

Let a_1, a_2, \ldots, a_ℓ be linearly independent vectors in \mathbb{R}^n . Then the free \mathbb{Z} —module \mathcal{L} generated by these vectors is called a **lattice** of rank ℓ . We say that \mathcal{L} is a full-rank lattice if $\ell = n$

$$\mathbf{b}_1 = (1/2, 1)$$

$$\mathbf{b}_2 = (1, 0)$$

Definitions

Definition (Dual Lattice)

Let \mathcal{L} be a lattice in \mathbb{R}^n . The **dual** of lattice \mathcal{L} is given by

$$\mathcal{L}^* = \operatorname{Hom}_{\operatorname{Ab}}(\mathcal{L}, \mathbb{Z}) = \{ w \in \operatorname{span}(\mathcal{L}) \mid \langle w, \mathcal{L} \rangle \subset \mathbb{Z} \}$$

Example

- (a) The dual of \mathbb{Z}^n is \mathbb{Z}^n .
- (b) The dual of $2\mathbb{Z} \oplus \mathbb{Z}$ is $\frac{1}{2}\mathbb{Z} \oplus \mathbb{Z}$.
- (c) The dual of $\{x \in \mathbb{Z}^n \mid \sum_i x_i = 0 \mod 2\}$ is $\mathbb{Z}^n + \left(\frac{1}{2}, \frac{1}{2}, \dots, \frac{1}{2}\right)$.

Hard problems [Pei15]

Definition (λ_i)

The value $\lambda_i(\mathcal{L}) \in \mathbb{R}$, called the **ith successive minimum**, gives the smallest $r \in \mathbb{R}$ such that \mathcal{L} contains i linearly independent vectors of ℓ^2 norm not exceeding r.

Definition (SVP)

Given an arbitrary basis \mathcal{B} of lattice \mathcal{L} , find a shortest nonzero lattice vector, i.e., $v \in \mathcal{L}$ such that $\lambda_1(\mathcal{L}) = ||v||$.

Definition (Approx-SVP $_{\gamma}$)

Given a basis \mathcal{B} of n—dimensional lattice \mathcal{L} , find a nonzero vector $v \in \mathcal{L}$ such that $||v|| \leq \gamma(n) \cdot \lambda_1(\mathcal{L})$.

Hard problems [Pei15]

Definition (GapSVP $_{\gamma}$)

Given basis \mathcal{B} of lattice \mathcal{L} , where either $\lambda_1(\mathcal{L}) \leqslant 1$ or $\lambda_1(\mathcal{L}) > \gamma(n)$ determine which is the case.

Definition (SIVP $_{\gamma}$)

Given a basis \mathcal{B} of a full-rank n—dimensional lattice \mathcal{L} output a set $\{s_1, s_2, \dots, s_n\} \subset \mathcal{L}$ of independent vectors such that $||s_i|| \leq \lambda_n(\mathcal{L})$ for $i \in [n]$.

Definition (BDD $_{\gamma}$)

Given basis \mathcal{B} and target point $t \in \mathbb{R}^n$ with $||t - \mathcal{L}|| < d = \lambda_1(\mathcal{L})/2\gamma(n)$, find the unique lattice vector $v \in \mathcal{L}$ with ||t - v|| < d.

Figure: Complexity of SVP, inspired by [Vai24]

Algorithms and complexity

Definition (Sieving, informal, [Ste20])

1. Get a large list S of vectors. $(|S| >> 2^n)$

Algorithms and complexity

Definition (Sieving, informal, [Ste20])

- 1. Get a large list S of vectors. $(|S| >> 2^n)$
- 2. Find the differences of close vectors and add them to S (threshold depends on the algorithm)

Algorithms and complexity

Definition (Sieving, informal, [Ste20])

- 1. Get a large list S of vectors. ($|S| >> 2^n$)
- 2. Find the differences of close vectors and add them to S (threshold depends on the algorithm)
- 3. Update S and remove long vectors (above some threshold)

Algorithms and complexity

Definition (Sieving, informal, [Ste20])

- 1. Get a large list S of vectors. ($|S| >> 2^n$)
- 2. Find the differences of close vectors and add them to S (threshold depends on the algorithm)
- 3. Update S and remove long vectors (above some threshold)
- 4. Stop when a vector with norm close to $\sqrt{\frac{n}{2\pi e}}(\det(\mathcal{L}))^{\frac{1}{n}}$ is found.

Algorithms and complexity

Example (Simplified LLL in \mathbb{Z}^2 , [Ste20])

1. Consider a lattice \mathcal{L} generated by $b_1 = (101, 20)$ and $b_2 = (5, 1)$.

Algorithms and complexity

- 1. Consider a lattice \mathcal{L} generated by $b_1 = (101, 20)$ and $b_2 = (5, 1)$.
- 2. Modify the basis such that $||b_1|| \leqslant ||b_2||$, $||b_2|| \leqslant ||b_2 \pm b_1||$

Algorithms and complexity

- 1. Consider a lattice \mathcal{L} generated by $b_1 = (101, 20)$ and $b_2 = (5, 1)$.
- 2. Modify the basis such that $\|b_1\| \leqslant \|b_2\|$, $\|b_2\| \leqslant \|b_2 \pm b_1\|$

Algorithms and complexity

- 1. Consider a lattice \mathcal{L} generated by $b_1 = (101, 20)$ and $b_2 = (5, 1)$.
- 2. Modify the basis such that $\|b_1\| \leqslant \|b_2\|$, $\|b_2\| \leqslant \|b_2 \pm b_1\|$

$$\begin{bmatrix} 101 & 5 \\ 20 & 1 \end{bmatrix} \xrightarrow{\mathsf{swap}} \begin{bmatrix} 5 & 101 \\ 1 & 20 \end{bmatrix}$$

Algorithms and complexity

- 1. Consider a lattice \mathcal{L} generated by $b_1 = (101, 20)$ and $b_2 = (5, 1)$.
- 2. Modify the basis such that $\|b_1\| \leqslant \|b_2\|$, $\|b_2\| \leqslant \|b_2 \pm b_1\|$

$$\begin{bmatrix} 101 & 5 \\ 20 & 1 \end{bmatrix} \xrightarrow{\text{swap}} \begin{bmatrix} 5 & 101 \\ 1 & 20 \end{bmatrix} \xrightarrow{\text{reduce}} \begin{bmatrix} 5 & 1 \\ 1 & 0 \end{bmatrix}$$

Algorithms and complexity

- 1. Consider a lattice \mathcal{L} generated by $b_1 = (101, 20)$ and $b_2 = (5, 1)$.
- 2. Modify the basis such that $\|b_1\| \leqslant \|b_2\|$, $\|b_2\| \leqslant \|b_2 \pm b_1\|$

$$\begin{bmatrix} 101 & 5 \\ 20 & 1 \end{bmatrix} \xrightarrow{\text{swap}} \begin{bmatrix} 5 & 101 \\ 1 & 20 \end{bmatrix} \xrightarrow{\text{reduce}} \begin{bmatrix} 5 & 1 \\ 1 & 0 \end{bmatrix} \xrightarrow{\text{swap}} \begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix}$$

Algorithms and complexity

Example (Simplified LLL in \mathbb{Z}^2 , [Ste20])

- 1. Consider a lattice \mathcal{L} generated by $b_1 = (101, 20)$ and $b_2 = (5, 1)$.
- 2. Modify the basis such that $\|b_1\| \leqslant \|b_2\|$, $\|b_2\| \leqslant \|b_2 \pm b_1\|$

$$\begin{bmatrix} 101 & 5 \\ 20 & 1 \end{bmatrix} \xrightarrow{\text{swap}} \begin{bmatrix} 5 & 101 \\ 1 & 20 \end{bmatrix} \xrightarrow{\text{reduce}} \begin{bmatrix} 5 & 1 \\ 1 & 0 \end{bmatrix} \xrightarrow{\text{swap}} \begin{bmatrix} 1 & 5 \\ 0 & 1 \end{bmatrix} \xrightarrow{\text{reduce}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

3. (1,0) is our solution to the SVP problem.

Algorithms and complexity

We instead consider the conditions

- 1. $||b_1||^2 \le ||\tilde{b_2}||^2 + \mu^2 ||b_1||^2$
- 2. $|\mu| \leqslant 1/2$

where $\tilde{b_2}$ is the Gram-Schmidt vector attained from $b_2 = \mu \cdot b_1 + \tilde{b_2}$.

Algorithms and complexity

We instead consider the conditions

- 1. $||b_1||^2 \le ||\tilde{b_2}||^2 + \mu^2 ||b_1||^2$
- 2. $|\mu| \leqslant 1/2$

1.
$$\det(\mathcal{L}) = ||b_1|| \cdot ||\tilde{b_2}||$$

Algorithms and complexity

We instead consider the conditions

- 1. $||b_1||^2 \le ||\tilde{b_2}||^2 + \mu^2 ||b_1||^2$
- 2. $|\mu| \leqslant 1/2$

- 1. $\det(\mathcal{L}) = ||b_1|| \cdot ||\tilde{b_2}||$
- 2. $\min\{\|b_1\|, \|\tilde{b_2}\|\} \leqslant \lambda_1(\mathcal{L}) \leqslant \|b_1\|$

Algorithms and complexity

We instead consider the conditions

- 1. $||b_1||^2 \le ||\tilde{b_2}||^2 + \mu^2 ||b_1||^2$
- 2. $|\mu| \leqslant 1/2$

- 1. $\det(\mathcal{L}) = ||b_1|| \cdot ||\tilde{b_2}||$
- 2. $\min\{\|b_1\|, \|\tilde{b_2}\|\} \leqslant \lambda_1(\mathcal{L}) \leqslant \|b_1\|$

$$\Longrightarrow \|b_1\| \leqslant \sqrt{4/3} \cdot \|\tilde{b_2}\|$$

Algorithms and complexity

We instead consider the conditions

- 1. $||b_1||^2 \le ||\tilde{b_2}||^2 + \mu^2 ||b_1||^2$
- 2. $|\mu| \leqslant 1/2$

- 1. $\det(\mathcal{L}) = ||b_1|| \cdot ||\tilde{b_2}||$
- 2. $\min\{\|b_1\|, \|\tilde{b_2}\|\} \leqslant \lambda_1(\mathcal{L}) \leqslant \|b_1\|$

$$\implies ||b_1|| \leqslant \sqrt{4/3} \cdot ||\tilde{b_2}||$$
$$\implies ||b_1|| \leqslant \sqrt{4/3} \cdot \lambda_1(\mathcal{L})$$

Algorithms and complexity

Definition (LLL Algorithm, [Ste20])

(i)
$$\delta \cdot \|\tilde{b_i}\| \leqslant \|\tilde{b_{i+1}}\|^2 + \mu_{i,i+1}^2 \cdot \|\tilde{b_i}\|^2$$

(ii)
$$|\mu_{i,j}| \leq 1/2$$

- 1. If (ii) is not satisfied, reduce.
- 2. If (i) is not satisfied, swap b_i and b_{i+1}
- 3. Repeat until both are satisfied.

Remark

This algorithm solves $\sqrt{(4/3)^n}$ – SVP in polynomial time.

Discrete Gaussians

Definition (Elliptic Gaussian)

We say that a random variable X has the continuous **elliptic** N-dimensional Guassian distribution of mean zero and covariance matrix Σ if it has probability density function

$$\rho_{\textbf{r}}(\textbf{x}) = \frac{1}{\sqrt{(2\pi)^N \mathrm{det}(\Sigma)}} \mathrm{exp}\left(-\frac{1}{2}\textbf{x}^\mathrm{T} \Sigma^{-1}\textbf{x}\right)$$

Discrete Gaussians

Definition (Elliptic Gaussian)

We say that a random variable X has the continuous **elliptic** N-dimensional Guassian distribution of mean zero and covariance matrix Σ if it has probability density function

$$\rho_{\textbf{r}}(\textbf{x}) = \frac{1}{\sqrt{(2\pi)^N \mathrm{det}(\Sigma)}} \mathrm{exp}\left(-\frac{1}{2}\textbf{x}^\mathrm{T} \Sigma^{-1}\textbf{x}\right)$$

Definition (Discrete Gaussian)

Let \mathcal{L} be a full-rank lattice in \mathbb{R}^N . We say that the discrete random variable X supported on \mathcal{L} is a **discrete elliptic Gaussian random variable** if it has the probability distribution

$$\Pr[X = \mathbf{x}] = \frac{\rho_{\mathbf{r}}(\mathbf{x})}{\rho_{\mathbf{r}}(\mathcal{L})} \text{ for all } \mathbf{x} \in \mathcal{L}.$$

Distribution and problems

Definition (LWE distribution)

For a vector $s \in \mathbb{Z}_q^n$, the LWE distribution $\mathcal{A}_{s,\chi}$ over $\mathbb{Z}_q^n \times \mathbb{Z}_q$ is induced by the process

$$a \leftarrow U(\mathbb{Z}_a^n)$$
, $e \leftarrow \chi$, $b = \langle s, a \rangle + e$, output (a, b) .

where $U(\mathbb{Z}_q^n)$ is the uniform distribution on \mathbb{Z}_q^n and χ is the error distribution.

Definition (Search-LWE_{n,q,χ,m})

Given m linearly independent samples from $A_{s,\chi}$, find s.

Definition (Decision-LWE_{n,q,χ,m})

Given m linearly independent vectors from $\mathbb{Z}_q^n \times \mathbb{Z}$, determine whether they are uniformly distributed or sampled from some $\mathcal{A}_{s,\chi}$ for uniformly random $s \in \mathbb{Z}_q^n$.

Reformulation of GapSVP [Pei15]

Definition (GapSVP_{ζ,γ})

Given a basis $\mathcal B$ of lattice $\mathcal L$ and real number d with

- (a) $\lambda_1(\mathcal{L}) \leqslant \zeta(n)$.
- (b) $\min_i \|\tilde{b}_i\| \geqslant 1$ where \tilde{b}_i is the Gram-Schmidt orthogonalized version of $b_i \in \mathcal{B}$
- (c) $1 \geqslant d \geqslant \zeta(n)/\gamma(n)$

determine whether $\lambda_1(\mathcal{L}) \leqslant d$ or $\lambda_1(\mathcal{L}) > \gamma(n) \cdot d$.

Reformulation of GapSVP

Remark

- 1. $\min_i \|\tilde{b}_i\| \geqslant 1$ implies $\lambda_1(\mathcal{L}) \geqslant 1$ and this is without loss of generality by scaling \mathfrak{B} .
- 2. $1 \ge d \ge \zeta(n)/\gamma(n)$ is without loss of generality because the instance is trivially solvable when d lies outside of the range.
- 3. For $\zeta(n) \geqslant 2^{(n-1)/2}$ the GapSVP $_{\zeta,\gamma}$ problem is equivalent to the GapSVP $_{\gamma}$ since we can use the LLL algorithm to find another basis with

$$\lambda_1(\mathcal{L}) \leqslant \|\textit{b}_1\| \leqslant 2^{(\textit{n}-1)/2} \cdot \min_{\textit{i}} \|\tilde{\textit{b}_{\textit{i}}}\|$$

Hardness

Theorem ([Reg05])

For any $m=\operatorname{poly}(n)$, any modulus $q\leqslant 2^{\operatorname{poly}(n)}$ and any discretized Gaussian error distribution χ of parameter α where $\alpha q\geqslant 2\sqrt{n}$ and $0<\alpha<1$, solving the Decision-LWE_{n,q,\chi,m} problem is at least as hard as quantumly solving GapSVP $_{\gamma}$ and SIVP $_{\gamma}$ on arbitrary n-dimensional lattices, for some $\gamma=\tilde{\mathbb{O}}(n/\alpha)$.

Hardness

Theorem ([Reg05])

For any $m=\operatorname{poly}(n)$, any modulus $q\leqslant 2^{\operatorname{poly}(n)}$ and any discretized Gaussian error distribution χ of parameter α where $\alpha q\geqslant 2\sqrt{n}$ and $0<\alpha<1$, solving the Decision-LWE_{n,q,\chi,m} problem is at least as hard as quantumly solving GapSVP $_{\gamma}$ and SIVP $_{\gamma}$ on arbitrary n-dimensional lattices, for some $\gamma=\tilde{\mathbb{O}}(n/\alpha)$.

Theorem ([Pei09])

Let $\alpha=\alpha(n)\in(0,1)$ and $\gamma=\gamma(n)\geqslant n/(\alpha\sqrt{\log n})$. Suppose $\zeta=\zeta(n)\geqslant\gamma$ and $q=q(n)\geqslant(\zeta/\sqrt{n})\cdot\omega(\sqrt{\log n})$. Then there exists a (classic) probabilistic polynomial-time reduction from solving $\mathsf{GapSVP}_{\zeta,\gamma}$ in the worst case (with overwhelming probability) to solving $\mathsf{Search-LWE}_{n,q,\chi_\alpha,m}$.

Learning with errors Shortcomings

- 1. Large key sizes (public key size increases with $O(n^2 \log q)$)
- 2. Slow multiplication (Lacking in FFT-like algorithms)

Interlude on ideal lattices

Definition (Ideal lattice)

An ideal lattice is in integer lattice $\mathcal{L}(\mathcal{B}) \subset \mathbb{Z}^n$ corresponding to some ideal of $\mathcal{R} = \mathbb{Z}[x]/(f)$ where f is irreducible, monic, and of degree n.

Example

Consider $\Re = \mathbb{Z}[x]/(1+x^2)$ which can be embedded into \mathbb{C}^2 via the Minkowski canonical embedding.

$$\sigma \colon \mathcal{R} \to \mathbb{C}^2$$
$$1 \mapsto (1,1)$$
$$x \mapsto (i,-i)$$

Then the vectors (1,0,1,0), (0,1,0,-1) generate an ideal lattice in \mathbb{R}^4 .

Return of the Discrete Gaussian

Discrete Gaussians on Ideal Lattices

Remark

Note that if we embed \mathbb{R} into \mathbb{R}^N using the coefficient embedding σ_{coeff} then $\sigma_{coeff}(\mathbb{R})$ is an ideal lattice. Moreover, if X is a discrete Gaussian random variable with values in $\sigma_{coeff}(\mathbb{R})$ then we can define the random variable X_q of finite support consisting of the reductions of the values of X modulo q. More explicitly,

$$\Pr[X_q = \mathbf{x}] = \sum_{\substack{\mathbf{z} \in \sigma_{coeff}(\mathcal{R}) \\ \mathbf{z} \equiv \mathbf{x} \mod q}} \frac{\rho_{\mathbf{r}}(\mathbf{z})}{\rho_{\mathbf{r}}(\sigma_{coeff}(\mathcal{R}_q))} \text{ for all } \mathbf{x} \in \sigma_{coeff}(\mathcal{R}_q).$$

where ρ_r is the probability density function of the discrete Gaussian.

Ring Learning with Errors

Distribution and problems

Definition (RLWE distribution)

Let K be a number field and \mathfrak{O}_K be its ring of integers. For rational prime q, $s \in R_q = \mathfrak{O}_K/q\mathfrak{O}_K$ and error distribution χ on R_q the RLWE distribution $\mathcal{A}_{s,\chi}$ is given by

$$a \leftarrow U(R_q)$$
, $e \leftarrow \chi$, $b = as + e$, output (a, b) .

That is, the joint probability distribution of random variables ${\bf a}$ and ${\bf b}$ is given by

$$\mathbb{P}_{s,\chi}(a_0,b_0) = \mathbb{P}[\mathbf{a} = a_0]\mathbb{P}[\mathbf{b} = b_0 \mid \mathbf{a} = a_0] = \mathbb{P}_{s,\chi}(a_0,b_0) = \frac{1}{|R_q|}\bar{\chi}(b - a_0s)$$

where
$$\bar{\chi}(e') = \sum_{\substack{e \in R \\ e \mod g = e'}} \chi(e)$$

Ring Learning with Errors

Distribution and problems [RSW18]

Definition (Decision RLWE)

Given m independent samples $(a_i, b_i) \in R_q \times R_q$, $i \in \{1, ..., m\}$ determine whether these samples are

- (i) from $A_{s,x}$ for some fixed s
- (ii) from the uniform distribution on $R_q imes R_q$

Definition (Search RLWE)

Given m samples $(a_i, b_i) \in \mathcal{D}_{s,\chi}$, $i \in \{1, ..., m\}$, where $s \leftarrow U(R_q)$, find s.

Remark

Decision RLWE is the problem that we base our cryptosystems on.

Hardness of RLWE

Theorem ([LPR10], informal)

For m=poly(n), the cyclotomic ring R of degree n over $\mathbb Z$ and appropriate choices of modulus q and error distribution χ of error rate $\alpha<1$, solving the $RLWE_{q,\chi,m}$ problem is at least as hard as quantumly solving the SVP_{γ} problem on arbitrary ideal lattices in R for $\gamma=poly(n)/\alpha$.

Worst case approx-SVP in R on ideal lattices in R
$$\leq$$
 search RLWE \leq decision RLWE \leq decision RLWE \leq decision RLWE \leq approximately \leq decision RLWE \leq decision RLWE

Hardness of RLWE

Theorem ([PRS17], informal)

Let K be any number field of degree n and $R=\mathcal{O}_K$ be its ring of integers. For large enough modulus q and appropriate choice of error distribution χ of error rate $\alpha<1$, solving the $RLWE_{q,\chi,m}$ problem is at least as hard as quantumly solving the SVP_{γ} problem on arbitrary ideal lattices in R for $\gamma=\max\{\eta(\mathfrak{I})\cdot\sqrt{2}/\alpha\cdot\omega(1),\sqrt{2n}/\lambda_1(\mathfrak{I}^\vee)\}$.

Worst case approx-SVP on ideal lattices in
$$R$$
 \leqslant decision RLWE
$$(quantum, anv R = \mathfrak{O}_{\kappa})$$

Definition of PLWE

Definition (PLWE Distribution)

Let f(x) be a monic irreducible polynomial in $\mathbb{Z}[x]$. Denote by \mathbb{O}_f the quotient ring $\mathbb{Z}[x]/(f(x))$ and set $R_q=\mathbb{O}_f/q\mathbb{O}_f$. For $s\in R$ and χ an error distribution over R, the PLWE distribution $\mathbb{B}_{s,\chi}$ is given by

$$a \leftarrow U(R_a), \quad e \leftarrow \chi, \quad b = a \cdot s + e, \quad \text{return } (a, b)$$

PLWE Problems

Definition (Decision PLWE)

Given m independent samples $(a_i, b_i) \in R_q \times R_q$, $i \in \{1, ..., m\}$ determine whether these samples are

- (i) from $\mathcal{B}_{s,x}$ for some fixed s
- (ii) from the uniform distribution on $R_q \times R_q$

Definition (Search PLWE)

Given m samples $(a_i, b_i) \in \mathcal{B}_{s,\chi}$, $i \in \{1, ..., m\}$, where $s \leftarrow U(R_a)$, find s.

Some attacks on PLWE

Theorem ([Eli+16], [BDS24], informal)

If the polynomial f(x) has a root α of small order and small residue in a field extension of \mathbb{F}_q the decision PLWE problem can be solved in polynomial time.

Some attacks on PLWE

Theorem ([Eli+16], [BDS24], informal)

If the polynomial f(x) has a root α of small order and small residue in a field extension of \mathbb{F}_q the decision PLWE problem can be solved in polynomial time.

Theorem ([CDW17])

Let $\mathfrak a$ be an ideal of $\mathfrak O_K$ where K is a cyclotomic number field of prime power conductor. Assuming GRH, there exists a quantum polynomial time algorithm which returns an element $v \in \mathfrak a$ with

$$||v||_{Euc} \leq Na^{1/n} exp(O(\sqrt{n}))$$

Maximal Totally Real Subfields of Cyclotomic Fields?

Theorem ([BL24], [Bla22b], informal)

The small root attacks for $\alpha=\pm 2$ and $\alpha=\pm 1$ are ineffective when the irreducible polynomial f(x) is defined over the maximal totally real subextension of the cyclotomic field.

Maximal Totally Real Subfields of Cyclotomic Fields?

Theorem ([BL24], [Bla22b], informal)

The small root attacks for $\alpha=\pm 2$ and $\alpha=\pm 1$ are ineffective when the irreducible polynomial f(x) is defined over the maximal totally real subextension of the cyclotomic field.

Remark

The ring of integers of a maximal totally real subextension of a cyclotomic field is not in general an ideal of the ring of integers of the cyclotomic field.

• $R = \mathbb{Z}[X]/(1+X^{2^k})$, $R_q = R/qR$. Symmetric key $s \leftarrow R_q$.

- $R = \mathbb{Z}[X]/(1+X^{2^k})$, $R_q = R/qR$. Symmetric key $s \leftarrow R_q$.
- $\operatorname{Enc}_s(m \in R_2)$: choose a "short" $e \in R$ such that $e = m \mod 2$. Let

$$c_1 \leftarrow R_q$$
 and $c_0 = -c_1 \cdot s + e \in R_q$

and output
$$c(S) = c_0 + c_1 S \in R_q[S]$$
. (Notice: $c(s) = e \mod q$.)

- $R = \mathbb{Z}[X]/(1+X^{2^k})$, $R_q = R/qR$. Symmetric key $s \leftarrow R_q$.
- $\operatorname{Enc}_s(m \in R_2)$: choose a "short" $e \in R$ such that $e = m \mod 2$. Let

$$c_1 \leftarrow R_q$$
 and $c_0 = -c_1 \cdot s + e \in R_q$

- $R = \mathbb{Z}[X]/(1+X^{2^k})$, $R_q = R/qR$. Symmetric key $s \leftarrow R_q$.
- $\operatorname{Enc}_s(m \in R_2)$: choose a "short" $e \in R$ such that $e = m \mod 2$. Let

$$c_1 \leftarrow R_q$$
 and $c_0 = -c_1 \cdot s + e \in R_q$

and output $c(S) = c_0 + c_1 S \in R_q[S]$. (Notice: $c(s) = e \mod q$.) Security: (c_1, c_0) is an RLWE sample (essentially).

• $Dec_s(c(S))$: get short $d \in R$ such that $d = c(s) \mod q$. Output $d \mod 2$.

- $R = \mathbb{Z}[X]/(1+X^{2^k})$, $R_q = R/qR$. Symmetric key $s \leftarrow R_q$.
- $\operatorname{Enc}_{s}(m \in R_{2})$: choose a "short" $e \in R$ such that $e = m \mod 2$. Let

$$c_1 \leftarrow R_q$$
 and $c_0 = -c_1 \cdot s + e \in R_q$

- $Dec_s(c(S))$: get short $d \in R$ such that $d = c(s) \mod q$. Output $d \mod 2$.
- EvalAdd(c, c') = (c + c')(S), EvalMul $(c, c') = (c \cdot c')(S)$. Decryption works if e + e', $e \cdot e'$ are "short enough".

- $R = \mathbb{Z}[X]/(1+X^{2^k})$, $R_q = R/qR$. Symmetric key $s \leftarrow R_q$.
- $\operatorname{Enc}_s(m \in R_2)$: choose a "short" $e \in R$ such that $e = m \mod 2$. Let

$$c_1 \leftarrow R_q$$
 and $c_0 = -c_1 \cdot s + e \in R_q$

- $Dec_s(c(S))$: get short $d \in R$ such that $d = c(s) \mod q$. Output $d \mod 2$.
- EvalAdd(c, c') = (c + c')(S), EvalMul $(c, c') = (c \cdot c')(S)$. Decryption works if e + e', $e \cdot e'$ are "short enough".
- Many mults ⇒ large power of expansion factor

- $R = \mathbb{Z}[X]/(1+X^{2^k})$, $R_q = R/qR$. Symmetric key $s \leftarrow R_q$.
- $\operatorname{Enc}_s(m \in R_2)$: choose a "short" $e \in R$ such that $e = m \mod 2$. Let

$$c_1 \leftarrow R_q$$
 and $c_0 = -c_1 \cdot s + e \in R_q$

- $Dec_s(c(S))$: get short $d \in R$ such that $d = c(s) \mod q$. Output $d \mod 2$.
- EvalAdd(c, c') = (c + c')(S), EvalMul $(c, c') = (c \cdot c')(S)$. Decryption works if e + e', $e \cdot e'$ are "short enough".
- Many mults ⇒ large power of expansion factor ⇒ tiny error rate

- $R = \mathbb{Z}[X]/(1+X^{2^k})$, $R_q = R/qR$. Symmetric key $s \leftarrow R_q$.
- $\operatorname{Enc}_s(m \in R_2)$: choose a "short" $e \in R$ such that $e = m \mod 2$. Let

$$c_1 \leftarrow R_q$$
 and $c_0 = -c_1 \cdot s + e \in R_q$

- $Dec_s(c(S))$: get short $d \in R$ such that $d = c(s) \mod q$. Output $d \mod 2$.
- EvalAdd(c, c') = (c + c')(S), EvalMul $(c, c') = (c \cdot c')(S)$. Decryption works if e + e', $e \cdot e'$ are "short enough".
- Many mults \implies large power of expansion factor \implies tiny error rate $\alpha \implies$ big parameters!

References L

D. Aggarwal and N. Stephens-Davidowitz,

"Just Take the Average! An Embarrassingly Simple 2^n -Time Algorithm for SVP (and CVP),"

In: arXiv preprint arXiv:1709.01535, 2017. [Online]. Available: https://arxiv.org/abs/1709.01535.

I. Blanco-Chacón, R. Durán-Díaz, and R. M. Sanchéz-Ledesma. "A Generalized Approach to Root-based Attacks towards PLWE." Submitted (2024).

I. Blanco-Chacón and L. López-Hernanz.

"RLWE/PLWE equivalence for the maximal totally real subextension of the $2^r pq$ -th cyclotomic field."

In: Advances in Mathematics of Communications 18.5 (2024), pp. 1343-1363.

References II

I. Blanco-Chacón.

"On the RLWE/PLWE equivalence for cyclotomic number fields."

In: Appl. Algebra Eng., Commun. Comput. 33.1 (2022), pp. 53-71.

I. Blanco-Chacón.

"RLWE/PLWE equivalence for totally real cyclotomic subextensions via quasi-Vandermonde matrices."

In: Journal of Algebra and Its Applications 21.11 (2022).

Z. Brakerski and V. Vaikuntanathan,

"Fully Homomorphic Encryption from Ring-LWE and Security for Key Dependent Messages,"

In: Advances in Cryptology - CRYPTO 2011, vol. 6841 of Lecture Notes in Computer Science, P. Rogaway, Ed. Springer, 2011, pp. 505–524. DOI: https://doi.org/10.1007/978-3-642-22792-9_29.

References III

"Mildly Short Vectors in Cyclotomic Ideal Lattices in Quantum Polynomial Time." In: *Journal of the ACM (JACM)* 58.2 (2021), pp. 1–26.

L. Ducas and A. Durmus.

"Ring-LWE in Polynomial Rings."

In: Public Key Cryptography – PKC 2012. PKC 2012. Lecture Notes in Computer Science, vol. 7293. Springer, 2012.

Y. Elias, K. Lauter, E. Ozman, and K. Stange. "Ring-LWE Cryptography for the Number Theorist." In: vol. 3. Springer Cham, Sept. 2016, pp. 271–290.

S. Khot.

Hardness of approximating the shortest vector problem in lattices.

In: J. ACM, 52(5):789-808, 2005. Preliminary version in FOCS 2003.

References IV

V. Lyubashevsky, C. Peikert, and O. Regev,

On ideal lattices and learning with errors over rings,

In: Annual International Conference on the Theory and Applications of Cryptographic Techniques, Springer, pp. 1–23, 2010.

O. Regev,

On Lattices, Learning with Errors, Random Linear Codes, and Cryptography,

In: arXiv:2401.03703, 2024. Available at: https://arxiv.org/abs/2401.03703.

C. Peikert, O. Regev, and N. Stephens-Davidowitz,

Pseudorandomness of ring-LWE for any ring and modulus,

In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC), ACM, pp. 461–473, 2017.

References V

C. Peikert.

Public-key cryptosystems from the worst-case shortest vector problem.

In Proceedings of the 41st Annual ACM Symposium on Theory of Computing (STOC), pages 333–342, Bethesda, MD, 2009. ACM.

C. Peikert,

A Decade of Lattice Cryptography,

In: IACR Cryptology ePrint Archive, Report 2015/939, 2015, pp. 22–27. Available at https://eprint.iacr.org/2015/939.

N. Stephens-Davidowitz,

Algorithms for lattice problems.

January 2020

At: Simons Institute Lattices: Geometry, Algorithms, and Hardness,

References VI

M. Rosca, D. Stehlé, and A. Wallet.

"On the Ring-LWE and Polynomial-LWE Problems."

In: Advances in Cryptology - EUROCRYPT 2018. Springer International Publishing, 2018, pp. 146–173.

C. P. Schnorr.

A hierarchy of polynomial time lattice basis reduction algorithms.

In: Theor. Comput. Sci., 53:201–224, 1987.

V. Vaikuntanathan,

Lecture notes.

Fall 2024

Advanced Topics in Cryptography: From Lattices to Program Obfuscation

