Reregues:

Thm: Soient a, b ETR avec a < b. et (fn) une nuite de forctions eraissantes de [a, b] dans IR qui converge simplement vers y continue. Mois (fn) converge uniformément vers y continue.

Dem: (Ne pas faire le jouris) Gourdon analyse.

Soit Eyo. I est continue or Ia, b] donc d'après le thom de theire, elle yest unif eo: 3250 Va, y E [a, b] 1x-y 1 x 7 => 1f(x)-f(y) 1 x E. (4)

Or définit une subdivision aixo xxxx... xxp=6 de [a,6] de pas x7.

*fn6xi)->f(xi): 3Ni 4n > Ni 1fn(xi)-f(xi) (5 E. : ETO, PT. (**)

On pose N=maxNi: Yn>N Y1sisp Ifn(xi)-f(xi) | \le E.

x Soit x E [a,b]. soit 17, N. il existe i E M, p] to x E [aci, xi+1]

alors If(x)-f(x))/< E par (*)

Dorc (f(x)-fo(x)) = (f(x)-f(xi))+(f(xi)-fo(xi))+(fo(xi)-fo(x)) 5 28 + (fo(x)-fo(xi)) con for extensissante <22 + for 1xi+i)-for (xi) can forest crocksante < 2 2 + 1 f(xi+1) - f(xi+1) + (f(xi+1)-f(xi))+ (f(xi)-fo(xi))

358.

La adorc la convergence uniforme Soit (U), F, P) in espace probabilisé 7hm de Glivenko-Centelli. Soit (Xn) une suite de v-a-vid de forction de réportition commune F. Foces tout + EIR et a EIN on pose

Fri (+) = 4 = 1 -0,+] (Xu) (L'est une v.a. appolée forchion de répartition empirique) thous sop | Fn(+)-F(+)| -00 p.s.

i.e. JAEF TP(A)= 1 twEA sop (Fr(t)(w)-F(t)) -00 tent

Dem: Hape &, sop IFn(+)-F(+)! est bien defini et est une va-

* Soit w E.R. On pose T= sup IFn (+) (w) - F(+) 1. Pourtout x E/R, Fn (x) (w) e+ F(x) sort des réels de To, 13 donc ? est fini. Donc sup IFn (+) - F(+) l'est bien défini.

```
* Sait w E vz 800 | Fn(+)(w)-F(+)| $ 800 | Fn(+)(w)-F(+)| an Q C |R
  * or va montrer l'autre régalité: , soit ex 0, par définition du suprémum, il existe
   2, EIR to T-E < | Francisco) - F(xe) | 57 (1)
   Comme x+5 Fr(x)(w) et F sort continues à goite en tout point, en particulier elles le
  sont en x et la valour absolue de leen différence aumi:
        3850 4+ EJXE, XE+SE | IFn(+thw)-F(+)1- IFn(XE)(W)-F(XE) | SE
 d'ai - 2 5 | Fn (+)(w) - F(+) | - | Fn (xe) (w) - F(xe) | 5 &
      d'ai en particulier 170(+)(w)-F(+)/>/Fn(xe)(w)-F(xe)/-E
    Eleci estarai en particulier pour tout t E JxE, xE + S [n Q + Ø par densité de Q ds/R
d'où sop | Fn(+)(w)-F(+) | > |Fn(xe)(w)-F(xe)|-E
                                 2 P-28 par (1)
  le ci est anai pour tout E>0 donc sup 1Fn(+)(w)-F(+)/>, 7
   donc twee or sup IFACHICWI-FCHI = sup IFACHICWI-FCHI
   * Or pour tED, (x1,-, xn) +> 1/2 / F(+) | est mexerable donc
   4: (x1,-,x5)+ sop 14 Z 1 = F(+) lest mexerable comme sep denombrable de
    forehiors meschables. Donc sop (Fr(+)-F(+) (= 4(X1,...,Xn) esture v-a.
    Etape 2: Problèmes pour appliquer Dini.
  D'après la LGN forte, VIEIR 3 ALE 7 P(A+)= 1 tw & A+ Fn(+)(w) >F(+)
  De pleus poen toert w Eur, ++ s Fn(+)(w) est croissante, nEIN. n-+00
   Or a plusieurs problèmes:
     * + n'est pas a priori continue
      * la convergence n'a pas a priori lieu sur un segment ter
     x Ordait trauen Ademence pleane to VWEA VIER FACTION) - SF(+)
                                                               CS du thm de Bini
  I tape 8: On se namière à des lois uniforme.
  Or introduct l'inverse généralisé de 4 par tue 10,13 F "cu)=unt ) x ER F(x) 7, u 3
  alous on a You EIR Vu E Co, 13 F * (u) < x (=> u < F(x). (2) (BL p50)
    SOFT (U) Soc along yex 3 t < s to +(+) >u ( & n'est gas la borgant) dong pour croissance de +,
F(S) >F(+) / u doc +5 > 2 (5) > u doc per conhaute à doité de f + (x) > u .

Recipant si u < F(x) alors x & hu & IR, Fty > u y donc x > F* (u) = inf) - 4

. F* of croissente donc merwiable donc F*(in) est up to a .

Soit (in) une muite de v.a. ui d de lai U([0,1]) alors F*(in) et Xn ort m lai primen
         P(Fo(Uh) 5+) = TP(Uh 5 F(H)) = F(H) can the est uniforme
   donc 14 2 1 x st = F(F) 10 14 2 4 F* ((n) St - FOF)
```


donc sup Fn(+)-F(+) = \((x,, xn) \(\psi \) \((u_1),, F*(U_1) \) = sup \(\frac{1}{2} \) \\ + \(\text{C} \) \(\text{I \left } \) \(\text{F*(U_1) } \) + \(\text{C} \) \(\text{I \left } \) \(\text{F*(U_1) } \) + \(\text{C} \) \(\text{I \left } \) \(\text{F*(U_1) } \) + \(\text{C} \) \(\text{I \left } \) \(\text{F*(U_1) } \) + \(\text{C} \) \(\text{I \left } \) \(\text{F*(U_1) } \) + \(\text{C} \) \(\text{I \left } \) \(I \le
D'après l'étape 1 le sup sur Q ou sir R c'est paveil.
80p 4 2 1 F(H) = 80p 4 2 1 F(H) teir n hai unsf(H)
S=F(F) = 80p 1 2 U - 8 5 20p 4 2 U - 8 can F(IR)C[0,1]. SEFURN n h=1 Uhss SEFO,13 n h=1 Uhss can F(IR)C[0,1].
Or pose pour s e To, i3 Gn(s)= 4 2 Juss et G(s)=s.
6 est la forction de répartition de U([0,1]). On est la forction de répartition empirique.
Or est donc ramené à étudier des bis U([0,1]) du fait de l'inégalité abtenue. Les G est continue et or est sur un segment.
Etape 4: Etude poux U(TO, 13).
w) après la LGN faible, 4se ro, 13 JASET P(As)= 1 VWEAS GrUS)(W) -> GCS)
Or pase A= NAS c'est une intresocchion denombrable d'ensembles de menure prheine
donc P(A)= 1. donc Yus EA YSE TO, IJn Q Gn(S)(W) -> G(S) B)
* Or voudrait que ce soit vrai pour s e To, 17: Soit w E A. Soit & E [9,1]. Soit E ro.
Comme an so, i) est dense dans so, i), il existe p, q Eanso, i) tq
8-8 5 p 5 S 5 q 5 S + 8 6 5
Or SI-s Gar(s) (w) est craissante donc Gar(p)(w) & Gar(s)(w) & Gar(q)(w)
d'où S- ε ≤ p = dim Gn(p)(ω) ≤ lim Gn(s)(ω) ≤ lim Gn(s)(ω) ≤ lim Gn(p)(ω) = q ≤ S+ ε
Or SI-sGn(s)(w) est craissante donc Gn(p)(w) < Gn(s)(w) < Gn(q)(w) (3) q & Qn(q) S-E ~ p & On (0,1). C'est unai pour tout &>0. donc lim Gn(s)(w) = lim Gn(s)(w) = S = G(s)
donc YWEA YSE TO, 1] Gr(S)(W) -> G(S)
CS dans le Hom de Dini
abonc d'apprés de thom de aini, true A sup (Gn(s)(w)-G(s) 1-30
Pour tout n , si $(X_k)_{1 \le k \le n}$ est un échantillon de taille n , la fonction F_n est appelée la fonction de répartition empirique de l'échantillon $(X_k)_{1 \le k \le n}$. Le théorème de Glivenko-Cantelli est parfois appelé théorème fondamental de la statistique, car il exprime en quoi une loi de probabilité peut être révélée par la connaissance d'un
ecar il exprime en quoi inte in de probabilité. échantillon suffisamment grand de ladite loi de probabilité. • Le théorème de Glivenko-Cantelli est parfois considéré comme une généralisation du deuxième théorème de Dini, car il ne suppose pas en particulier la continuité de F, ni le fait d'être
• Le théorème de Kolmogorov-Smirnov précise l'énoncé du théorème de Gilvenko-Cantenn dans le cas où F est continue : il donne une estimation de la vitesse de convergence en $\frac{1}{\sqrt{n}}$:
Théorème 4 (de Kotmogorov-Smiritov) Soit $(X_1,,X_n)$ un échantillon de loi μ sur \mathbb{R} de fonction de répartition F . Si F est continue,
$K_n = \sqrt{n} \sup_{x \in \mathbb{R}} F_n(x) - F(x) \longrightarrow^{\mathcal{L}} \mu_{KS}$
où μ_{KS} est une loi universelle ne dépendant pas de F . Elle est portée par \mathbb{R}^+ et a pour fonction de répartition pour $t \geq 0$:
$F_{KS}(t) = 1 + 2\sum_{k=1}^{+\infty} (-1)^k e^{-2k^2 t^2}$
• Le théorème de Kolmogorov-Smirnov est à la base du test d'adéquation à une loi de