Exercícios sobre estruturas condicionais e precedência de operadores

Sumário

- Exercício 7 Maior valor
- Exercício 8 Maior de três
- <u>Precedência de operadores</u>
- Exercício 9 Polinômio

Exercício 7 - Maior

- Faça um programa que receba como entrada dois valores, e imprima o maior valor entre eles. O programa deve executar as seguintes tarefas:
 - ENTRADA:
 - 1. Primeiro número
 - 2. Segundo número
 - SAÍDA:
 - 1. Maior número dentre os valores de entrada

```
val1 = int(input("Digite o primeiro valor: "))
val2 = int(input("Digite o segundo valor: "))

if val1>val2:
    print(f"Maior valor: {val1}")
else:
    print(f"Maior valor: {val2}")
```

Podemos também definir uma variável contendo o maior valor e imprimi-la no final

```
val1 = int(input("Digite o primeiro valor: "))
val2 = int(input("Digite o segundo valor: "))

if val1>val2:
    maior_val = val1
else:
    maior_val = val2

print(f"Maior valor: {maior_val}")
```

Exercício 8 - Maior de três

- Faça um programa que receba como entrada 3 números e imprima na tela o maior número entre eles. Você pode considerar que os três números de entrada nunca serão iguais.
 - ENTRADA:
 - 1. Primeiro número
 - 2. Segundo número
 - 3. Terceiro número
 - SAÍDA:
 - 1. Maior número dentre os valores de entrada

```
val1 = int(input("Digite o primeiro valor: "))
val2 = int(input("Digite o segundo valor: "))
val3 = int(input("Digite o terceiro valor: "))

if val1>=val2 and val1>=val3:
    maior_val = val1
if val2>=val1 and val2>=val3:
    maior_val = val2
if val3>=val1 and val3>=val2:
    maior_val = val3

print(f"Maior valor: {maior_val}")
```

Não precisamos da terceira condição se usarmos a estrutura if...elif...else

```
val1 = int(input("Digite o primeiro valor: "))
val2 = int(input("Digite o segundo valor: "))
val3 = int(input("Digite o terceiro valor: "))

if val1>=val2 and val1>=val3:
    maior_val = val1
elif val2>=val1 and val2>=val3:
    maior_val = val2
else:
    maior_val = val3

print(f"Maior valor: {maior_val}")
```

Podemos também resolver o problema da seguinte forma:

```
val1 = int(input("Digite o primeiro valor: "))
val2 = int(input("Digite o segundo valor: "))
val3 = int(input("Digite o terceiro valor: "))
if val1>=val2:
    maior val = val1
else:
    maior val = val2
if val3>maior val:
    maior val = val3
print(f"Maior valor: {maior val}")
```

Mas provavelmente a solução mais simples é

```
val1 = int(input("Digite o primeiro valor: "))
val2 = int(input("Digite o segundo valor: "))
val3 = int(input("Digite o terceiro valor: "))

maior_val = val1
if val2>maior_val:
    maior_val = val2
if val3>maior_val:
    maior_val = val3

print(f"Maior valor: {maior_val}")
```

Precedência de operadores

- Em uma expressão aritmética, os operadores + * / e ** são executados em uma ordem específica;
- O operador ** (potência) sempre é executado primeiro. Portanto dizemos que ele possui a maior precedência;
- Os operadores * (multiplicação) e / (divisão) são executados após a potência e antes das somas e subtrações;
- Portanto, temos a seguinte tabela de precedência:

Operador	Precedência entre os operadores + - * / e **
**	1
* e /	2
+ e -	3

 Se dois operadores com a mesma precedência forem utilizados, eles são avaliados da esquerda para a direita, isto é, o operador mais à esquerda é avaliado primeiro.

Precedência de operadores

Sempre que tivermos dúvida sobre a precedência de uma operação, podemos utilizar parênteses () para garantir que a operação será realizada na ordem esperada.

Alguns exemplos:

Expressão	Resultado	Equivalente a
2-3*4	-10	2-(3*4)
2/2*3	3.0	(2/2)*3
2**2*4	16	(2**2)*4
(2-3)*4	-4	
-2**2	-4	-(2**2)
(-2)**2	4	-2*-2

Precedência de operadores

A precedência não é válida somente para operadores aritméticos. Todos os operadores da linguagem possuem uma precedência:

Operador	Descrição
(), []	
**	
+x, -x	Exemplo: 4*-5 = -20
*, /, %	% é o resto da divisão entre dois números
+, -	
&	AND bit a bit
^	XOR bit a bit
	OR bit a bit
<, <=, >, >=, !=, ==	
not x	not inverte uma expressão entre True e False
and	
or	

Exercício 9 - Polinômio

 Faça um programa que encontre as raízes de um polinômio do segundo grau utilizando a fórmula de Bhaskara

$$ax^{2} + bx + c = 0$$
 $\tilde{x} = \frac{-b \pm \sqrt{b^{2} - 4a * c}}{2a}$

- ENTRADA:
 - 1. Coeficientes **a**, **b** e **c**
- SAÍDA:
 - 1. Raízes do polinômio (valores de x que resolvem a equação)
- Lembrem-se:
 - Se $b^2 4a * c < 0$, não há raízes reais
 - Se $b^2 4a * c = 0$, há apenas uma raiz válida
 - Se a=0, há apenas uma raiz dada por $\tilde{x}=-c/b$
- Para calcular a raiz quadrada:
 - raiz = valor**0.5 (elevar um número a 0.5 é equivalente a calcular a raiz)

```
# Coeficientes do polinômio ax²+bx+c
a = float(input("Coeficiente a: "))
b = float(input("Coeficiente b: "))
c = float(input("Coeficiente c: "))
if a==0:
    if b==0:
        print("Não é um polinômio pois a e b são 0!")
    else:
        # Polinômio do tipo bx+c=0 pois a==0
        x1 = -c/b
        print(f"Existe uma raiz: {x1}")
else:
    delta = b**2-4*a*c
    if delta<0:</pre>
        print("Não existem raízes reais")
    elif delta==0:
        x1 = -b / (2*a)
        print(f"Existe uma raiz: {x1}")
    else:
        x1 = (-b + delta**0.5) / (2*a)
        x2 = (-b - delta**0.5) / (2*a)
        print(f"Raiz 1: {x1}")
        print(f"Raiz 2: {x2}")
```