关系的闭包、等价关系

离散数学一集合论

南京大学计算机科学与技术系

内容提要

- 闭包的定义
- 闭包的计算公式
- 传递闭包的Warshall算法
- 等价关系
- 等价类
- 划分

关系的闭包:一般概念

- 设R是集合A上的关系,P是给定的某种性质(如: 自反、对称、传递),满足下列所有条件的关系R₁ 称为R的关于P的闭包:
 - $R \subseteq R_1$
 - R_1 满足性质P
 - 对于A上的任意一个关系R',如果R'包含R且满足性质P,则 $R_1 \subseteq R$ '
- 自反闭包r(R)、对称闭包s(R)、传递闭包t(R)

自反闭包(reflexive closure)

- 设R的是集合A上的关系,其自反闭包r(R)也是A上的关系,且满足:
 - *r*(*R*)满足自反性;
 - $R \subseteq r(R)$;
 - 对A上的任意关系R', 若R'包含R且满足自反性,则r(R) $\subseteq R'$
- 例子

自反闭包的计算公式

- $r(R) = R \cup I_A$, I_A 是集合A上的恒等关系 (证明所给表达式满足自反闭包定义中的三条性质)
 - 1. 对任意 $x \in A$, $(x,x) \in I_A$, 因此, $(x,x) \in R \cup I_A$
 - 2. $R \subseteq R \cup I_A$
 - 3. 设 R' 集合A 上的自反关系,且 $R \subseteq R'$,则对任意 $(x,y) \in R \cup I_A$,有 $(x,y) \in R$,或者 $(x,y) \in I_A$ 。对两种情况,均有 $(x,y) \in R'$,因此, $R \cup I_A \subseteq R'$

对称闭包(symmetric closure)

- $s(R) = R \cup R^{-1}$, 这里 R^{-1} 是R的逆关系
 - s(R)是对称的。对任意 $x,y \in A$, 如果 $(x,y) \in s(R)$, 则 $(x,y) \in R$ 或者 $(x,y) \in R^{-1}$, 即 $(y,x) \in R^{-1}$, 或者 $(y,x) \in R$, $\therefore (y,x) \in s(R)$
 - $R \subseteq S(R)$
 - 设R'是集合A上的对称关系,并且R $\subseteq R$ ',则对任意 $(x,y) \in s(R)$,有 $(x,y) \in R$,或者 $(x,y) \in R^{-1}$.
 - 情况1: $(x,y) \in R$, 则 $(x,y) \in R$
 - 情况2: $(x,y) \in R^{-1}$, 则 $(y,x) \in R$, 于是 $(y,x) \in R'$ 。根据R'的对称性: $(x,y) \in R'$

因此, $s(R) \subseteq R'$

连通关系

- 定义集合A上的"连通"关系R*如下:
 - 对任意 $a,b \in A$, $a R^*b$ 当且仅当:存在 t_0 , $t_1...t_k \in A(k$ 是正整数),满足 $t_0=a$, $t_k=b$, $(t_{i-1},t_i)\in R$, i=1...k。(可以表述为:从a到b之间存在长度至少为1的通路)
 - 显然:对任意 $a,b \in A$, $a R^*b$ 当且仅当存在某个正整数k, 使得 aR^kb 。
 - 于是: $R^* = R^1 \cup R^2 \cup R^3 \cup \dots R^i \cup \dots = \bigcup_{k=1}^{k} R^k$

传递闭包(transitive closure)

$$t(R) = R *$$

- 1. 若 $(x, y) \in R^*, (y, z) \in R^*, 则有<math>s_1, s_2, ..., s_j$ 以及 $t_1, t_2, ..., t_k$,满足: $(x, s_1), ..., (s_j, y), (y, t_1), ..., (t_k, z) \in R$,因此, $(x, z) \in R^*$.
- $2.R \subseteq R^*$
- 3. 设 R' 是集合A上的传递关系, 且包含R。若 $(x,y) \in R^*$,则有 $t_1, t_2, ..., t_k$,满足: $(x, t_1), ..., (t_k, y) \in R$,于是 $(x, t_1), (t_1, t_2), ..., (t_k, y) \in R'$ 根据R'的传递性, $(x, y) \in R'$.

- 证明: r(s(R)) = s(r(R))
 - $r(s(R)) = r(R \cup R^{-1})$ = $(R \cup R^{-1}) \cup I_A$ = $(R \cup I_A) \cup (R^{-1} \cup I_A^{-1})$ (注意: $I_A = I_A^{-1}$, 并用等幂率) = $(R \cup I_A) \cup (R \cup I_A)^{-1}$ = $s(R \cup I_A)$ = s(r(R))

注意: r(s(R))一般省略为rs(R)

对称关系的传递闭包是对称的

证明: $st(R) \subseteq ts(R)$

注意:左边是t(R)的对称闭包,根据定义,我们只需证明:

(1) ts(R)满足对称性;(2) $t(R) \subseteq ts(R)$

证明(2),考虑到左边是R的传递闭包,我们只需要证明:

(i) $R \subseteq ts(R)$ (显然), (ii) ts(R)满足传递性(显然)。

证明(1):对任意 $(x,y) \in ts(R), \exists t_1, t_2, ..., t_k$,满足

 $(x,t_1) \in s(R), (t_1,t_2) \in s(R), ..., (t_k,y) \in s(R)$,而s(R)满足

对称性,: $(y,t_k) \in s(R),...,(t_2,t_1) \in s(R),(t_1,x) \in s(R),$

于是: $(y,x) \in ts(R)$, :. ts(R)满足对称性。

注意:传递关系的对称闭包不一定是传递的。比如:{(1,3)}

有限集合上的传递闭包

假如|A|=n,则A上的关系R的传递闭包是:

$$t(\mathbf{R}) = \bigcup_{i=1}^{n} R^{i} = R \cup R^{2} \cup \cdots \cup R^{n}$$

上述公式和:
$$t(R) = R^* = \bigcup_{i=1}^{\infty} R^i$$
有何差别?

A 中只有n 个不同的元素,如果在R中存在一条从a到b的长度至少为1的通路,那么存在一条长度不超过n的从a到b的通路。

若 xR^*y ,则存在某个自然数 k, $1 \le k \le n$,满足 xR^ky .

用矩阵乘法计算传递闭包

有限集合上关系的传递闭包:
$$t(R) = \bigcup_{i=1}^{n} R^{i} = R \cup R^{2} \cup \cdots \cup R^{n}$$

$$\therefore M_{t(R)} = M_R \vee M_R^2 \vee M_R^3 \vee ... \vee M_R^n.$$

算法概要:

- 1. 输入M_R;
- 2. 计数器 k 置初值n-1;
- 3. $M_{TR} \leftarrow M_R$; $M' \leftarrow M_R$;
- 4. $M' \leftarrow M' \times M_R$;
- 5. $M_{TR} \leftarrow M_{TR} \lor M'$;
- 6. k←k-1; 若k>0则转4;
- 7. 输出M_{TR};

n×n矩阵相乘,结果中每1项,要做(2n-1次)布尔运算(积与和),总共需要计算n²项。 n×n矩阵相加,要做n²做次布尔运算(和) 本算法共进行n-1次矩阵乘和加。

总运算量(n²(2n-1)+n²)(n-1)=2n³(n-1)

Warshall算法原理

不直接计算 M_R 的乘幂,Warshall算法迭代式地用 W_{i-1} 计算 W_i

这里: $1.W_0$ 即为R的关系矩阵, M_{R°

2. 对 $k = 1, 2, \dots, n, W_k[i, j] = 1$ 当且仅当 从 a_i 到 a_j 存在中间节点均在集合 $\{a_1, a_2, \dots, a_k\}$ 内的通路。

 $3.W_n$ 即 $M_{t(R)}$,也就是所需的结果。

 $W_{k}[i,j]=1$ iff $W_{k-1}[i,j]=1$, or $W_{k-1}[i,k]=1$ and $W_{k-1}[k,j]=1$

all interior vertices in $\{a_1,...,a_{k-1}\}$

Warshall算法过程

- ALGORITHM WARSHALL (M_R: n×n的0-1矩阵)
- 1. W := M_R
- 2. FOR k := 1 to n
- FOR i := 1 to n
- FOR j := 1 to n

这个语句在三重循环内, 执行n³次,每次执行2个 布尔运算(和与积)

总运算量: 2n³

- $\mathbf{W}[i,j] \leftarrow \mathbf{W}[i,j] \lor (\mathbf{W}[i,k] \land \mathbf{W}[k,j])$
- 3. Output W
- END OF ALGORITHM WARSHALL

等价关系的定义

- 满足性质: 自反、对称、传递。
- "等于"关系的推广
- 例子
 - 对3同余关系: $R \subseteq \mathbb{Z} \times \mathbb{Z}$, xRy 当且仅当 $\frac{|x-y|}{3}$ 是整数。
 - $R \subseteq N \times N$, xRy iff 存在正整数k,l,使得 $x^k = y^l$ 。
 - 自反: 若x是任意自然数, 当然x^k=x^k;
 - 对称: 若有k,l, 使x^k=y^l; 也就有l,k, 使y^l=x^k;
 - 传递: 若有k,l, 使 $x^k=y^l$; 并有m, n, 使 $y^n=z^m$; 则有 $x^{kn}=z^{ml}$

等价类

$$\forall x \in A$$
,等价类 $[x]_R = \{y \mid xRy\}$

- 每个等价类是A的一个非空子集
- 举例,对3同余是整数集合上的一个等价关系

$$[1]={\ldots, -5, -2, 1, 4, 7, \ldots};$$

$$[2]={\ldots, -4, -1, 2, 5, 8, 11, \ldots}$$

等价类的代表元素

- 对于等价类 $[x]_R=\{y\mid y\in A\wedge xRy\}$, x称为这个等价类的代表元素.
- - 证明:对任意元素t,若 $t \in [x]$,则xRt,又xRy,根据R的对称性与传递性,可得yRt,因此, $t \in [y]$,所以 $[x] \subseteq [y]$;同理可得 $[y] \subseteq [x]$ 。

商集

- R是非空集合A上的等价关系,其所有等价类的集合称为商集,A/R
- 集合 $A=\{a_1,a_2, ..., a_n\}$ 上的恒等关系 I_A 是等价关系,商集 $A/I_A=\{\{a_1\}, \{a_2\}, ..., \{a_n\}\}$
- 定义自然数集的笛卡儿乘积上的关系R:

(a,b)R(c,d) 当且仅当 a+d=b+c

证明这是等价关系,并给出其商集.

等价关系的一个例子

- R_1,R_2 分别是集合 X_1,X_2 上的等价关系。定义 $X_1 \times X_2$ 上的关系S: $(x_1,x_2)S(y_1,y_2)$ 当且仅当 $x_1R_1y_1$ 且 $x_2R_2y_2$
- 证明: $S = X_1 \times X_2$ 上的等价关系
 - [自反性] 对任意 $(x,y) \in X_1 \times X_2$,由 R_1,R_2 满足自反性可知, $(x,x) \in R_1$, $(y,y) \in R_2$; $\therefore (x,y)S(x,y)$;S自反。
 - [对称性] 假设(x_1,x_2) $S(y_1,y_2)$, 由S的定义以及 R_1,R_2 满足对称性可知: $(y_1,y_2)S(x_1,x_2)$; S对称。
 - [传递性] 假设 $(x_1,x_2)S(y_1,y_2)$, 且 $(y_1,y_2)S(z_1,z_2)$, 则 $x_1R_1y_1,y_1R_1z_1$, $x_2R_2y_2,y_2R_2z_2$, 由 R_1,R_2 满足传递性可知: $x_1R_1z_1$, 且 $x_2R_2z_2$, 于是: $(x_1,x_2)S(z_1,z_2)$; S传递。

集合的划分

集合A的 划分, π , 是A的一组非空子集的集合,即 $\pi \subseteq \rho(A)$, 且满足: 1. 对任意 $x \in A$, 存在某个 $A_i \in \pi$, 使得 $x \in A_i$.

i.e.
$$\bigcup_{i} A_{i} = A$$

2. 对任意 A_i , A_i ∈ π , 如果 $i\neq j$, 则:

$$A_i \cap A_j = \phi$$

由等价关系定义的划分

- 假设R是集合A上的等价关系,给定 $a \in A$,R(a)是由R 所诱导的等价类。
- $Q=\{R(x)|x\in A\}$ 是相应的商集。
- 容易证明,这样的商集即是A的一个划分:
 - 对任意 $a \in A$, $a \in R(a)$ (R 是自反的)
 - 对任意 $a,b \in A$
 - $(a,b) \in R$ 当且仅当 R(a)=R(b),同时
 - $(a,b) \notin R$ 当且仅当 $R(a) \cap R(b) = \emptyset$

商集即划分-证明

- 不相等的等价类必然不相交。换句话说,有公共元素的任意两个等价类必然相等。
- 证明:
 - 假设 $\mathbf{R}(a)$ ∩ $\mathbf{R}(b)\neq\emptyset$,设c是一个公共元素。
 - 根据等价类的定义, $(a,c) \in \mathbb{R}, (b,c) \in \mathbb{R}$
 - 对任意 $x \in \mathbf{R}(a)$, $(a, x) \in \mathbf{R}$, 由R的传递性和对称性,可得 $(c,x) \in \mathbf{R}$, 由此可知 $(b,x) \in \mathbf{R}$, 即 $x \in \mathbf{R}(b)$, $\therefore \mathbf{R}(a) \subseteq \mathbf{R}(b)$
 - 同理可得: $\mathbf{R}(b) \subseteq \mathbf{R}(a)$ 。因此, $\mathbf{R}(a) = \mathbf{R}(b)$ 。

根据一个划分定义等价关系

给定 A 上一个划分,可以如下定 义 A 上的等价关系 R:

 $\forall x,y \in A, (x,y) \in R$ 当且仅当: x,y 属于该划分中的同一块。

显然,关系R满足自反性、对称性、传递性。因此,R是等价关系。

证明:

从1,2,...,2000中任取1001个数,其中必有两个数x,y,满足 $x/y=2^k$ 。(k为整数)

想起鸽笼原理没?

等价关系与划分:一个例子的解

- 建立1000个集合,每个集合包括1至2000之间的一个奇数 以及该奇数与2的k次幂的乘积,但最大不超过2000。可以 证明这1000个集合的集合是集合{1,2,3,...,2000}上的一个 划分。
- 定义集合 $\{1,2,3,...,2000\}$ 上的一个关系R,任意x,y,xRy当且仅当 $x/y=2^k$ 。易证这是一个等价关系。其商集即上面的划分。

作业

- 教材[8.4]
 - p. 424-425: 23, 28
- 教材[8.5]
 - p. 430-434: 15, 20, 35, 41
 - p. 450: 13

