

Regra de Bayes

classe dados
$$P(c \mid d) = \frac{P(d \mid c)P(c)}{P(d)}$$

classe mais provável (MAP - maximum a posteriori)

classe mais provável (MAP - maximum a posteriori)
$$C = \operatorname{aromax} P(C \mid d)$$

$$c_{MAP} = \underset{MAP}{\operatorname{argmax}} P(c \mid d)$$

classe mais provavel (MAP - maximum a posteriori)
$$c_{---} = \operatorname{argmax} P(c \mid d)$$

 $c \in C$

 $c \in C$

 $= \operatorname{argmax} \frac{P(d \mid c)P(c)}{-1}$

 $c \in C$ P(d)

= $\operatorname{argmax} P(d \mid c)P(c)$

= argmax $P(x_1, x_2, ..., x_n \mid c)P(c)$

classe mais provável (MAP - maximum a posteriori)

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} P(x_1, x_2, \dots, x_n \mid c) P(c)$$

difícil de aprender!

Modelo Naïve Bayes

- Assume-se independência condicional
 - $atributos x_i$ são independentes entre si dada a classe

$$P(x_1, \dots, x_n \mid c) = P(x_1 \mid c) \cdot P(x_2 \mid c) \cdot P(x_3 \mid c) \cdot \dots \cdot P(x_n \mid c)$$

classe mais provável (MAP - maximum a posteriori)

$$c_{MAP} = \underset{c \in C}{\operatorname{argmax}} \ P(x_1 \mid c) \bullet P(x_2 \mid c) \bullet P(x_3 \mid c) \bullet \dots \bullet P(x_n \mid c) \bullet P(c)$$

Modelo de aprendizado Naive Bayes

Aprender θ

Para cada saida x dos dados de treinamento ...

$$P_{\mathsf{ML}}(x) = \frac{\mathsf{count}(x)}{\mathsf{total samples}}$$

$$P_{\mathsf{ML}}(\mathbf{r}) = 2/3$$

• Estimativa que maximiza a verossimilhança (likelihood) dos dados

$$L(x,\theta) = \prod_{i} P_{\theta}(x_i)$$

$$P(Y, F_1 ... F_n) = P(Y) \prod_i P(F_i | Y)$$

Aprender θ

Atributos discretos

$$\hat{P}(c_j) = \frac{N(C = c_j)}{N}$$
*# instâncias total

$$\hat{P}(x_i \mid c_j) = \frac{N(X_i = x_i, C = c_j)}{N(C = c_j)} \begin{cases} \text{# vezes valor } x_i \text{ aparece em} \\ \text{instâncias com classe } c_j \end{cases}$$
instâncias com classe c_j

Aprender θ

- Atributos contínuos
 - Probabilidade condicional modelada com a distribuição gaussiana

$$\hat{P}(X_j | C = c_i) = \frac{1}{\sqrt{2\pi}\sigma_{ji}} \exp\left(-\frac{(X_j - \mu_{ji})^2}{2\sigma_{ji}^2}\right)$$

Exemplo: Reconhecimento de dígitos

- Características (Features): atributos usados para decisão sobre classe
 - Pixels: (6,8) = ON
 - Padrões de forma (Shape): NumComponents, AspectRatio, NumLoops
 - ...

Exemplo: Reconhecimento de dígitos

- Possível abordagem:
 - Uma feature (variável) F_{ii} por cada posição da grid <i,j>
 - Valores: on / off
 - Cada exemplo (input) → vetor de características (feature vector).

$$\rightarrow \langle F_{0,0} = 0 \ F_{0,1} = 0 \ F_{0,2} = 1 \ F_{0,3} = 1 \ F_{0,4} = 0 \ \dots F_{15,15} = 0 \rangle$$

Modelo Naïve Bayes:

$$P(Y|F_{0,0}...F_{15,15}) \propto P(Y) \prod_{i,j} P(F_{i,j}|Y)$$

Exemplo: Reconhecimento de dígitos

Valores advém das contagens dos dados de treinamento

Exemplo: Filtro de spam

- Modelo: $P(Y, W_1 \dots W_n) = P(Y) \prod_i P(W_i|Y)$
- Parâmetros

P(Y)

ham:
0.66
spam:
0.33

P(W|spam)

the: 0.0156
to: 0.0153
and: 0.0115
of: 0.0095
you: 0.0093
a: 0.0086
with: 0.0080
from: 0.0075

$P(W|\mathsf{ham})$

the: 0.0210
to: 0.0133
of: 0.0119
2002: 0.0110
with: 0.0108
from: 0.0107
and: 0.0105
a: 0.0100

Valores advém das contagens dos dados de treinamento

Exemplo "brinquedo" do livro

Day	Outlook	Temperature	Humidity	Wind	PlayTennis
D1	Sunny	Hot	High	Weak	No
D2	Sunny	Hot	High	Strong	No
D3	Overcast	Hot	High	Weak	Yes
D4	Rain	Mild	High	Weak	Yes
D5	Rain	Cool	Normal	Weak	Yes
D6	Rain	Cool	Normal	Strong	No
D7	Overcast	Cool	Normal	Strong	Yes
D8	Sunny	Mild	High	Weak	No
D9	Sunny	Cool	Normal	Weak	Yes
D10	Rain	Mild	Normal	Weak	Yes
D11	Sunny	Mild	Normal	Strong	Yes
D12	Overcast	Mild	High	Strong	Yes
D13	Overcast	Hot	Normal	Weak	Yes
D14	Rain	Mild	High	Strong	No

P(Play=No) = 5/14

P(Play=Yes) = 9/14

Sunny	2/9	3/5
Overcast	4/9	0/5
Rain	3/9	2/5

Humidity	Play= <i>Yes</i>	P	lay=No	
High	3/9	4/5		
Normal	6/9		1/5	
Temperature	Play= <i>Yes</i>		Play=No	
Hot	2/9		2/5	
Mild	4/9		2/5	
Cool	3/9		1/5	

Wind	Play=Yes	Play=No
Strong	3/9	3/5
Weak	6/9	2/5

Aplicação do modelo

X'=(Outlook=*Sunny*, Temperature=*Cool*, Humidity=*High*, Wind=*Strong*)

$$P(Outlook=Sunny|Play=Yes) = 2/9 \qquad P(Outlook=Sunny|Play=No) = 3/5 \\ P(Temperature=Cool|Play=Yes) = 3/9 \qquad P(Temperature=Cool|Play==No) = 1/5 \\ P(Huminity=High|Play=Yes) = 3/9 \qquad P(Huminity=High|Play=No) = 4/5 \\ P(Wind=Strong|Play=Yes) = 3/9 \qquad P(Wind=Strong|Play=No) = 3/5 \\ P(Play=Yes) = 9/14 \qquad P(Play=No) = 5/14$$

P(Yes|X'): P(Sunny|Yes)P(Cool|Yes)P(High|Yes)P(Strong|Yes)P(Play=Yes) = 0.0053 P(No|X'): P(Sunny|No) P(Cool|No)P(High|No)P(Strong|No)P(Play=No) = 0.0206

$$P(Yes|\mathbf{X}') < P(No|\mathbf{X}') \equiv \ln \frac{P(Yes|\mathbf{X}')}{P(No|\mathbf{X}')} < 0 \implies \mathbf{C}_{MAP} = "No"$$

Problema: prob condicional = ZERO

Se nenhum exemplo contém um determinado valor de atributo a,

$$P(X=a \mid cj) = 0 \implies \hat{P}(x_1 \mid c_i) \cdots \hat{P}(a_{jk} \mid c_i) \cdots \hat{P}(x_n \mid c_i) = 0$$

- Opções de remédio:
 - Laplace Smoothing $P_{LAP,k}(x|y) = \frac{c(x,y) + k}{c(y) + k|X|}$
 - Linear Interpolation $P_{LIN}(x|y) = \alpha \hat{P}(x|y) + (1.0 \alpha)\hat{P}(x)$

• Pesquisem!

Modelo Naïve Bayes

- Muito rápido
- Robusto contra características irrelevantes
- Bom em domínios com muitas características importantes e bem distribuídas
- É "ótimo" se a suposição de independência é de fato verdadeira, mas funciona bem mesmo que não o seja!