Realizability toposes as homotopy categories

Jonas Frey

Bures-sur-Yvette, 25 November 2015

History, related work

• Initial inspiration: Jaap van Oosten's talk

A notion of homotopy for the effective topos

at "Réalisabilité à Chambéry" in 2010 (meanwhile published in MSCS)

- discussions with Zhen Lin Low, Rasmus Møgelberg, Benno van den Berg
- result quite different from van Oosten's approach
 - topos is the homotopy category, not the underlying category
 - applies to larger class of structures
- yesterday on arxiv:
 - P. Rosolini, "The category of equilogical spaces and the effective topos as homotopical quotients" (to appear in JHRS)

Overview

In this talk: For any **tripos**¹

$$\mathcal{P}:\mathbb{C}^{\mathsf{op}} \to \mathsf{Ord}$$

define a category of fibrant objects2

 $\mathbb{C}\langle \mathcal{P} \rangle$

such that the homotopy category is isomorphic to the topos

 $\mathbb{C}[\mathcal{P}]$

obtained by the tripos-to-topos construction.

¹J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts. "Tripos theory". In: *Math. Proc. Cambridge Philos. Soc.* 88.2 (1980), pp. 205–231.

²K.S. Brown. "Abstract homotopy theory and generalized sheaf cohomology". In: *Transactions of the American Mathematical Society* 186 (1973), pp. 419–458.

Overview

More generally: For any regular hyperdoctrine

$$\mathfrak{P}:\mathbb{C}^{\mathsf{op}} o \mathsf{Ord}$$

define a category of fibrant objects

$$\mathbb{C}\langle \mathcal{P} \rangle$$

such that the homotopy category is isomorphic to the exact category

$$\mathbb{C}[\mathcal{P}]$$

obtained by the ???-construction.

Regular hyperdoctrines

Definition

A regular hyperdoctrine³ is a (pseudo)functor

 $\mathcal{P}: \mathbb{C}^{op} \to \mathbf{Ord}$ (**Ord** category of preorders and monot. maps)

such that

- C has finite limits
- all $\mathcal{P}(A)$ (for $A \in \mathbb{C}$) have finite meets
- for f: A → B, the reindexing map f* = P(f): P(B) → P(A) has a left adjoint ∃_f = f_i: P(A) → P(B)
- given $f: A \to B$ and **predicates** $\varphi \in \mathcal{P}(A), \psi \in \mathcal{P}(B)$ we have

$$(\exists_f \varphi) \wedge \psi \cong \exists_f (\varphi \wedge f^* \psi)$$

• for all pullbacks $h \not \downarrow g \\ A \Rightarrow C$ we have $\exists_k h^* \cong g^* \exists_f$

³F.W. Lawvere. "Adjointness in foundations". In: *Dialectica* 23.3-4 (1969), pp. 281–296, F.W. Lawvere. "Equality in hyperdoctrines and the comprehension schema as an adjoint functor". In: *Applications of Categorical Algebra* 17 (1970), pp. 1–14

Examples of regular hyperdoctrines

• For X a **locale**, define $\mathcal{P}_A : \mathbf{Set}^{\mathsf{op}} \to \mathbf{Ord}$ by

$$\mathcal{P}_X(A) = (X^A, \leq)$$
 (pointwise ordering)

Define the effective tripos eff : Set^{op} → Ord by

$$\mathbf{eff}(A) = (P(\mathbb{N})^A, \leq)$$

with $\varphi \leq \psi$ if there exists a *partial recursive* $f : \mathbb{N} \longrightarrow \mathbb{N}$ such that

$$\forall a \in A \ \forall n \in \varphi(a) \ . \ f(n) \in \psi(a).$$

Define the primitive recursive hyperdoctrine prim : Set^{op} → Ord by

$$\mathsf{prim}(A) = (P(\mathbb{N})^A, \leq)$$

with $\varphi \leq \psi$ if there exists a *primitive recursive* $f: \mathbb{N} \to \mathbb{N}$ such that

$$\forall a \in A \ \forall n \in \varphi(a) \ . \ f(n) \in \psi(a).$$

Internal logic

From now on $\mathcal{P}:\mathbb{C}^{op}\to \mathbf{Ord}$ is a fixed regular hyperdoctrine

Use **regular logic** $(\land, \top, \exists, =, \text{Olivia's talk})$ as notation for constructions in \mathcal{P} .

E.g. for
$$\varphi \in \mathcal{P}(A \times B), \psi \in \mathcal{P}(B \times C)$$
, write

$$\theta(x,z) \equiv \exists y . \varphi(x,y) \wedge \psi(y,z)$$

instead of

$$\theta = \exists_{\partial_1} (\partial_2^* \varphi \wedge \partial_0^* \psi).$$

$$\begin{array}{c}
A \times B \\
\uparrow_{\partial_2} \\
A \times B \times C \xrightarrow{\partial_1} A \times C \\
\downarrow_{\partial_0} \\
B \times C
\end{array}$$

Given predicates $\varphi_1, \ldots, \varphi_n, \psi \in \mathcal{P}(A_1 \times \ldots \times A_k)$, say that the judgment

$$\varphi_1(\vec{x}),\ldots,\varphi_n(\vec{x})\vdash_{\vec{x}}\psi(\vec{x})$$

is valid, if

$$\varphi_1 \wedge \cdots \wedge \varphi_n \leq \psi$$
 in $\mathcal{P}(A_1 \times \ldots \times A_k)$.

More generally, $\varphi_1 \dots \varphi_n, \psi$ can be **formulas** instead of (atomic) predicates.

Validity relation closed under deduction rules for regular logic.

The category $\mathbb{C}[\mathbb{P}]$

Definition

 $\mathbb{C}[\mathbb{P}]$ is the category where

• **objects** are pairs $(A \in \mathbb{C}, \rho \in \mathcal{P}(A \times A))$ such that

(sym)
$$\rho(x, y) \vdash \rho(y, x)$$

(trans) $\rho(x, y), \rho(y, z) \vdash \rho(x, z)$

morphisms (A, ρ) → (B, σ) are (equivalence classes of) predicates
 φ ∈ 𝒫(A × B) such that

```
(strict) \phi(x,y) \vdash \rho x \land \sigma y [short for \rho(x,x) \land \sigma(y,y)]
(cong) \rho(x,x'), \phi(x',y), \sigma(y,y') \vdash \phi(x,y')
(sv) \phi(x,y), \phi(x,y') \vdash \sigma(y,y')
(tot) \rho x \vdash \exists y . \phi(x,y)
```

- $\phi, \phi' \in \mathcal{P}(A \times B)$ are identified as morphisms, if $\phi \cong \phi'$
- · composition is relational composition

Lemma

 $\mathbb{C}[\mathbb{P}]$ is a **Barr-exact** category (and a topos, if \mathbb{P} is a tripos).

Examples

- $\mathbf{Set}[\mathcal{P}_X] \simeq \mathbf{Sh}(X)$ for any locale X
- Set[eff] is the effective topos⁴ (the best-known realizablity topos)
- Set[prim] is a list-arithmetic pretopos⁵

⁴J.M.E. Hyland. "The effective topos". In: *The L.E.J. Brouwer Centenary Symposium* (*Noordwijkerhout, 1981*). Vol. 110. Stud. Logic Foundations Math. Amsterdam: North-Holland, 1982, pp. 165–216.

⁵M. Maietti. "Joyal's arithmetic universe as list-arithmetic pretopos". In: *Theory and Applications of Categories* 24.3 (2010), pp. 39–83.

The category $\mathbb{C}\langle \mathcal{P} \rangle$

Definition

 $\mathbb{C}\langle \mathcal{P} \rangle$ is the category where

• **objects** are pairs $(A \in \mathbb{C}, \rho \in \mathcal{P}(A \times A))$ such that

(sym)
$$\rho(x, y) \vdash \rho(y, x)$$

(trans) $\rho(x, y), \rho(y, z) \vdash \rho(x, z)$

- morphisms $(A, \rho) \to (B, \sigma)$ are morphisms $f : A \to B$ in $\mathbb C$ such that $\rho(x, y) \vdash \sigma(fx, fy)$
- composition and identities are inherited from C

Lemma

 $\mathbb{C}\langle \mathbb{P} \rangle$ has finite limits.

Proof.

Categories of fibrant objects

Definition (Kenneth Brown)

A category of fibrant objects is a category $\mathbb C$ with finite products, and two classes $\mathcal F$, $\mathcal W\subseteq \mathrm{mor}(\mathbb C)$ of morphisms (called fibrations and weak equivalences), subject to the following axioms.

- (A) For any composable pair $A \xrightarrow{f} B \xrightarrow{g} C$, if either two of the three morphisms f, g, and gf are in \mathcal{W} , then so is the third.
- (B) \mathcal{F} contains all isomorphisms and is closed under composition.
- (C) Pullbacks of fibrations along arbitrary maps exist and are fibrations. Pullbacks of trivial fibrations (ie. elements of $\mathcal{F} \cap \mathcal{W}$) are trivial fibrations.
- (D) For any $X \in \mathbb{C}$ there exists a *path object*, i.e. a factorization

$$X \xrightarrow{s} X' \xrightarrow{d=\langle d_0, d_1 \rangle} X \times X$$

of the diagonal, where $s \in W$ and $d \in \mathcal{F}$.

(E) For any $X \in \mathbb{C}$, the map $X \to 1$ is a fibration.

$\mathbb{C}\langle \mathcal{P} \rangle$ as a category of fibrant objects

Definition

A morphism
$$f: (A, \rho) \to (B, \sigma)$$
 in $\mathbb{C}\langle \mathcal{P} \rangle$ is a **fibration**, if (fib) ρx , $\sigma(fx, u) \vdash \exists y . \rho(x, y) \land fy = u$

holds. It is a weak equivalence, if

(inj)
$$\rho x$$
, $\sigma(fx, fy)$, $\rho y \vdash \rho(x, y)$ and (esurj) $\sigma u \vdash \exists x . \rho x \land \sigma(fx, u)$

hold.

Lemma

$$f: (A, \rho) \to (B, \sigma)$$
 is a trivial fibration if and only if (inj) and (surj) $\sigma u \vdash \exists x . \rho x \land f x = u$

hold.

Theorem

 $\mathbb{C}\langle \mathcal{P} \rangle$ with the above classes of fibrations and weak equivalences is a category of fibrant objects.

The homotopy category

- Homotopy category is solution to the problem of freely inverting weak equivalences
- Want to show that C[P] is the homotopy category of C⟨P⟩
- direct description of homotopy category of a category of fibrant objects fairly complicated
- · easier to verify universal property

Definition Define the functor $E: \mathbb{C}\langle \mathcal{P} \rangle \rightarrow \mathbb{C}[\mathcal{P}]$ by

The homotopy category

Lemma

$$[\phi]: (A, \rho) \to (B, \sigma)$$
 is iso in $\mathbb{C}[\mathbb{P}]$ iff the judgments $(inj^*) \ \phi(x, u), \phi(y, u) \vdash \rho(x, y)$ $(esurj^*) \ \sigma u \vdash \exists x \ . \phi(x, u)$ hold in \mathbb{P} .

Lemma

 $f:(A,\rho) \to (B,\sigma)$ is a weak equivalence in $\mathbb{C}\langle \mathcal{P} \rangle$ iff E(f) is an iso in $\mathbb{C}[\mathcal{P}]$.

The homotopy category

Theorem

 $E: \mathbb{C}\langle \mathcal{P} \rangle \to \mathbb{C}[\mathcal{P}]$ is universal among functors inverting weak equivalences in $\mathbb{C}\langle \mathcal{P} \rangle$, i.e. for every $F: \mathbb{C}\langle \mathcal{P} \rangle \to \mathbb{D}$ inverting weak equivalences, there exists a unique $\tilde{F}: \mathbb{C}[\mathcal{P}] \to \mathbb{D}$ with $\tilde{F} \circ E = F$.

$$\begin{array}{c}
\mathbb{C}\langle \mathbb{P} \rangle \\
E \downarrow \qquad F \\
\mathbb{C}[\mathbb{P}] - - > \mathbb{D}
\end{array}$$

Proof (sketch).

 \tilde{F} coincides with F on objects. For $[\phi]: (A, \rho) \to (B, \sigma)$ construct the span

$$(A, \rho) \stackrel{\phi_I}{\longleftarrow} (A \times B, (\rho \bowtie \sigma)|_{\phi}) \stackrel{\phi_r}{\longrightarrow} (B, \sigma)$$

where the underlying maps are projections, and

$$(\rho \bowtie \sigma)|_{\phi}(a,b,a',b') \equiv \rho(a,a') \wedge \sigma(b,b') \wedge \phi(a,b).$$

Then ϕ_l is a weak equivalence, and $\tilde{F}([\phi])$ is given by

$$\tilde{F}([\phi]) = F(\phi_r) \circ F(\phi_l)^{-1}$$

Conclusion

- new description of categories C[₱] (up to iso), and of localic Grothendieck toposes (up to equivalence)
- homotopy theory in $\mathbb{C}\langle \mathcal{P} \rangle$ degenerate since $A' \to A \times A$ monic
- In the construction of the homotopy category of a category C of fibrant objects, Brown considers an intermediate category π(C). If P is a tripos, then π(C(P)) is a *q-topos*⁶

⁶J. Frey. "Triposes, q-toposes and toposes". In: *Annals of pure and applied logic* 166.2 (2015), pp. 232–259.

Thanks for your attention!