O nível lógico digital

Capítulo

Portas e Álgebra Booleana (1)

- (a) Inversor com transistor.
- (b) Porta NAND.
- (c) Porta NOR.

Portas e Álgebra Booleana (2)

Símbolos e comportamento funcional das cinco portas básicas.

Álgebra Booleana

- (a) Tabela-verdade para a função majoritária de três variáveis.
- (b) Um circuito que implementa a função descrita em (a).

Equivalência de circuitos (1)

Construção de portas (a) NOT, (b) AND, e (c) OR, usando somente portas NAND ou somente portas NOR.

Equivalência de circuitos (2)

Α	В	O	AB	AC	AB + AC
0	0	0	0	0	0
0	0	~	0	0	0
0	1	0	0	0	0
0	1	Τ-	0	0	0
1	0	0	0	0	0
1	0	1	0	1	1
1	1	0	1	0	1
1	1	1	1	1	1
(a)					

Α	В	С	Α	B+C	A(B + C)
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	0	1	0
1	0	0	1	0	0
1	0	1	1	1	1
1	1	0	1	1	1
1	1	1	1	1	1

(b)

Duas funções equivalentes (a) AB + AC, (b) A(B + C).

Equivalência de circuitos (3)

Nome	Forma AND	Forma OR
Lei da identidade	1A = A	O + A = A
Lei do elemento nulo	0A = 0	1 + A = 1
Lei idempotente	AA = A	A + A = A
Lei do inverso	$A\overline{A} = 0$	$A + \overline{A} = 1$
Lei comutativa	AB = BA	A + B = B + A
Lei associativa	(AB)C = A(BC)	(A + B) + C = A + (B + C)
Lei distributiva	A + BC = (A + B)(A + C)	A(B + C) = AB + AC
Lei da absorção	A(A + B) = A	A + AB = A
Lei de DeMorgan	$\overline{AB} = \overline{A} + \overline{B}$	$\overline{A} + \overline{B} = \overline{A}\overline{B}$

Algumas identidades da álgebra Booleana.

Equivalência de circuitos (4)

$$\overline{AB} = \overline{A} + \overline{B}$$

$$(a)$$

$$\overline{AB} = \overline{A} + \overline{B}$$

$$(b)$$

$$\overline{AB} = \overline{A} + \overline{B}$$

$$(c)$$

$$\overline{A} + \overline{B} = \overline{A} + \overline{B}$$

$$\overline{A} + \overline{B} = \overline{A} + \overline{B}$$

$$(d)$$

Símbolos alternativos para algumas portas: (a) NAND, (b) NOR, (c) AND, (d) OR

Equivalência de circuitos (5)

Α	В	XOR			
0	0	0			
0	1	1			
1	0	1			
1	1	0			
(a)					

(a) Tabela-verdade para a função XOR.

(b-d) Três circuitos para calcular essa tabela.

Equivalência de circuitos (6)

Α	В	F
0	0	OV
0	5 ^V	0^
5 ^V	0^	OV
5 ^V	5 ^V	5 ^V

Α	В	F
0	0	0
0	1	0
1	0	0
1	1	1

Α	В	F
1	1	1
1	0	1
0	1	1
0	0	0

(a)

(b)

(c)

- (a) Características elétricas de um dispositivo.
- (b) Lógica positiva.
- (c) Lógica negativa.

Circuitos integrados

Chip SSI que contém quatro portas.

Multiplexadores (1)

Circuito multiplexador de oito entradas.

Multiplexadores (2)

- (a) Multiplexador MSI.
- (b) O mesmo multiplexador ligado para calcular a função majoritária.

Decodificadores

 D_0 Circuito decodificador 3 para 8. D_1 D_2 D_3 D_4 D_5 D_6 - D₇

Comparadores

Comparador simples de 4 bits.

Arranjos Lógicos Programáveis

Arranjo lógico programável de 12 entradas e 6 saídas. Os quadradinhos representam fusíveis que podem ser queimados para determinar a função a ser calculada. Os fusíveis são arranjados em duas matrizes: a superior para as portas AND e a inferior para as portas OR.

Deslocadores

Deslocador esquerda/direita de 1 bit.

Somadores (1)

Α	В	Soma	Transporte
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- (a) Tabela-verdade para adição de 1 bit.
- (b) Circuito para um meio-somador.

Somadores (2)

Α	В	Vem- um	Soma	Vai- um
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

- (a)
- (a) Tabela-verdade para um somador completo.
- (b) Circuito para um somador completo.

Unidades Lógica e Aritmética (1)

ALU de 1 bit.

Unidades Lógica e Aritmética (2)

Oito segmentos de ALU de 1 bit conectados para formar uma ALU de 8 bits. Os sinais de habilitação e de inversão não são mostrados por simplicidade.

Relógios

- (a) Relógio.
- (b) Diagrama de temporização para o relógio.
- (c) Geração de um relógio assimétrico.

Latches (memória de 1 bit) (1)

- (a) Latch NOR no estado 0.
- (b) Latch NOR no estado 1.
- (c) Tabela-verdade para NOR.

Latches (2)

Latch SR com relógio.

Latches (3)

Latch D com relógio.

Flip-Flops (1)

Flip-Flops (2)

Flip-flop tipo D.

Flip-Flops (3)

Latches e flip-flops tipo D.

Flip-Flops (4)

Flip-flop D dual.

Flip-Flops (5)

Flip-flop octal.

Organização de memória (1)

Diagrama lógico para uma memória 4 x 3.

Cada linha é uma das quatro palavras de 3 bits.

Organização de memória (2)

- (a) Buffer não inversor.
- (b) Efeito de (a) quando o controle está alto.
- (c) Efeito de (a) quando o controle está baixo.
- (d) Buffer inversor.

Chips de memória (1)

Dois modos de organizar um chip de memória de 4 Mbits.

Chips de memória (2)

Dois modos de organizar um chip de memória de 512 Mbits.

Chips de memória não-volátil

Tipo	Categoria	Modo de apagar	Byte alterável	Volátil	Utilização típica
SRAM	Leitura/escrita	Elétrico	Sim	Sim	Cache de nível 2
DRAM	Leitura/escrita	Elétrico	Sim	Sim	Memória principal (antiga)
SDRAM	Leitura/escrita	Elétrico	Sim	Sim	Memória principal (nova)
ROM	Somente de leitura	Não é possível	Não	Não	Equipamentos e grande volume
PROM	Somente de leitura	Não é possível	Não	Não	Equipamentos e pequeno volume
EPROM	Principalmente leitura	Luz UV	Não	Não	Prototipagem de dispositivos
EEPROM	Principalmente leitura	Elétrico	Sim	Não	Prototipagem de dispositivos
Flash	Leitura/escrita	Elétrico	Não	Não	Filme para câmera digital

Comparação entre vários tipos de memória.

