Class Overview and Important Concepts

Lecture 1:

- Course Information
- Overview of Control Systems & Engineering

Prof. Seunghoon Woo

Department of Automotive Engineering | College of Automotive Engineering | KOOKMIN UNIVERSITY

Instructors

Class Instructor: Prof. Seunghoon Woo

- Associate Professor @ Dept. of Automotive Engineering
- Office: W1 532, <u>boltra@kookmin.ac.kr</u>
- Website: https://ivdc.kookmin.ac.kr

Course Information

Textbook:

- Dorf, R.C.; Bishop, R.H. *Modern Control Systems*, Pearson, 2017.
 (Currently 13th edition is out, but previous versions are also available)
- Download PDF file @ eCampus. If any typo errors, please let me know.

Weekly Schedule

Days	Contents
Day 1	Important Concepts, Dynamic Models
Day 2	Dynamic Response
Day 3	Analysis of Feedback
Day 4	The Root-Locus Design Method
Day 5	The Frequency-Response Design Method

Any Questions From Students??

Class Overview and Important Concepts

Lecture 1:

- Course Information
- Overview of Control Systems & Engineering

Prof. Seunghoon Woo

Department of Automotive Engineering | College of Automotive Engineering | KOOKMIN UNIVERSITY

- ❖ First, check about what the system is !! → Modeling
- ❖ Controller is to minimize error between the desired input (dream) between the measured output (reality) !! → Design Controller

- Make some object (called **System** or **Plant**) behave as we desire.
- ❖ Imagine "Control" around you !!
 - Room temperature control
 - Car/bicycle driving
 - Voice volume control
 - "Control" (move) the position of the pointer
 - Cruise control or speed control
 - Process control
 - etc.

Why do we need control systems?

- Convenient (room temperature control, laundry machine)
- Dangerous (hot/cold places, space, bomb removal)
- Impossible for human (nanometer scale precision positioning, work inside the small space that human cannot enter)
- It exists in nature. (human body temperature control)
- Lower cost, high efficiency, etc...
- Many examples of control systems around us !!

Robotic Control Systems in USA

❖ Boston Dynamics: Atlas (2017년)

https://www.youtube.com/watch?v=SELVa0jsGkE

Robotic Control Systems in KOREA

❖ Naver Labs: AMBIDEX

https://www.youtube.com/watch?v=BRpUcKsvr4I

Autonomous Vehicle Control

Self-(Controlled)-Driving Car by BMW

https://www.youtube.com/watch?v=xsQvq4WlUYU

Course Objectives are

- ❖ To Understand about what the diverse automatic control systems are in the whole world.
- To Model dynamic systems in the diverse fields: Mechanical, Electrical, Biological and Chemical Systems.
- To Design the controller based on the system dynamic models.
- To Analyze control system response and stability.
- To Test the controller by designed through simulations.

Course Objectives are (cont'd)

Open-loop Control

VS.

Closed-loop Control

Control Loop (1): Open-Loop Control

- Open-Loop Control System
 - Toaster, microwave oven, shooting a basketball

- Calibration is the key !!
- Can be sensitive to disturbances !!

Example: Toaster

❖ A toaster toasts bread, by setting timer.

- Objective: make bread golden browned and crisp.
- * A toaster does not measure the color of bread during the toasting process.
- ❖ For a fixed setting, in winter, the toast can be white and in summer, toast can be black (Calibration is needed !!)
- A toaster would be more expensive with sensors to measure the color and actuators to adjust the timer based on the measured color.

Example: Laundry Machine

* A laundry machine washes clothes, by setting a program.

- ❖ A laundry machine does **not measure** how clean the clothes become.
- Control without measuring devices (sensors) are called open-loop control.

Control Loop (2): Closed-Loop (Feedback) Control

- **Compare** actual behavior with desired behavior.
- Make corrections based on the error.
- Thus, the sensor and the actuator are key elements of a feedback loop.
- So, it require to design control algorithm !!

Ex: Automotive Direction Control (Manual)

- Objective: to change the direction of the automobile.
- Manual closed-loop (feedback) control.
- Although the controlled system is "Automobile", the input and the output of the system can be different, depending on control objectives!!

Ex: Automotive Cruise Control (Automatic)

- Objective: to maintain the speed of the automobile.
- Cruise control can be both manual and automatic.
- Note the similarity of the diagram above to the diagram in the previous slide !!

Ex: Fully Autonomous Vehicle Control

- Objective: to maintain the vehicle speed and steering angle of the automobile.
- Desired vehicle speed and steering angle should be determined by diverse sensors (LiDAR, Camera, GPS, radar and others) for selfdriving.

Other Important Control Systems: Biological & Chemical Systems

Biological Example #1: Physiological Systems

Biological Example #1: Physiological Systems

Bode Plots for the pupillary reflex (동공 반응 정도)

Biological Example #2: Molecular Communications

Biological Example #2: Molecular Communications

Transfer functions for each molecular communication process

$$H_{A}(\omega) = \frac{np_{E}k_{E}}{j\omega + k_{d_{E}}},$$

$$H_{B}(\omega) = \frac{k_{S_{1}}}{\omega\{j(k_{S_{-1}} + k_{S_{2}}) - \omega\}},$$
....
$$H_{F}(\omega) = \frac{k_{Rx}}{j\omega + k_{-Rx}},$$

$$H(\omega) = \frac{np_E k_E}{j\omega + k_{d_E}} \frac{k_{S_1}[S_0]}{\omega \{j(k_{S_{-1}} + k_{S_2}) - \omega\}}$$

$$\times j\omega \frac{e^{-(1+j)\sqrt{\frac{\omega}{2D}}r_{Rx}}}{\pi Dr_{Rx}}$$

$$\cdot \frac{np_R k_R}{k_{d_R}} PoPS_{aux} \frac{k_{RS}}{j\omega + k_{-RS}}$$

$$\cdot \frac{k_{Rx}}{j\omega + k_{-Rx}} [P_{Rx}][RNAP],$$

Chemical Example #1: Process Control

Multi Tanks in Series of Chemical Process

$$\frac{Q_1(s)}{Q(s)} = \frac{1}{\tau_1 s + 1} \bigotimes \frac{H_2(s)}{Q_1(s)} = \frac{R_2}{\tau_2 s + 1} \longrightarrow \frac{H_2(s)}{Q(s)} = \frac{1}{\tau_1 s + 1} \frac{R_2}{\tau_2 s + 1}$$

Where,
$$\tau_1 = R_1 A_1$$
. $\tau_2 = R_2 A_2$.

Summary: goals of this course

Summary

Summary:

- What is the Control?
- Examples of control systems
- Concept of open-loop & closed-loop (feedback) control system