Active GNN reading notes

S2: An efficient graph based active learning algorithm with application to nonparametric classification

- Problem setup
 - o active learning for binary label prediction on a graph
 - o nonparametric active learning, S2 sequentially select vertices to be labeled
 - cut-set: $C=\{\{x,y\}\in E: f(x)\neq f(y)\}$
 - ullet boundary: $\partial C = \{x \in V: \exists e \in C ext{ with } x \in e\}$ goal is to identify ∂C
 - algorithm assume a noiseless oracle that return label of a multiset of vertices, noisy oracle version algorithms can be transferred from noiseless
 - can be extended to multi-class
- Datasets
 - o Digits:
 - Cedar Buffalo binary digits database
 - construct symmetrized 10-nearest-neighbor graph
 - Congressional Voting Records (CVR):
 - 380 vertices, boundary size of 234
 - Grid:
 - synthetic example of a 15x15, positive core in the center
- Methods
 - S2: Shortest Shortest Path

Algorithm 1 S2: Shortest Shortest Path

```
Input Graph G = (V, E), BUDGET \leq n
 1: L \leftarrow \emptyset
 2: while 1 do
       x \leftarrow \text{Randomly chosen unlabeled vertex}
 4:
       do
 5:
         Add (x, f(x)) to L
         Remove from G all edges whose two ends have different labels.
 6:
         if |L| = BUDGET then
 7:
            Return LABELCOMPLETION(G, L)
 8:
         end if
 9:
       while x \leftarrow MSSP(G, L) exists
10:
11: end while
```

■ LABELCOMPLETION: Any off-the-shelf graph prediction algorithms

 MSSP: return midpoint on the shortest among all the shortest-paths that connect oppositely labeled vertices in L

Sub-routine 2 MSSP

```
Input Graph G = (V, E), L \subseteq V

1: for each v_i, v_j \in L such that f(v_i) \neq f(v_j) do

2: P_{ij} \leftarrow shortest path between v_i and v_j in G

3: \ell_{ij} \leftarrow length of P_{ij} (\infty if no path exists)

4: end for

5: (i^*, j^*) \leftarrow \arg\min_{v_i, v_j \in L: f(v_i) \neq f(v_j)} \ell_{ij}

6: if (i^*, j^*) exists then

7: Return mid-point of P_{i^*j^*} (break ties arbitrarily).

8: else

9: Return \emptyset

10: end if
```

- Can be seen as: random sampling + aggressive search
 - aggressive search: like binary search to find the cut-edge, then unzip the cut-edge
- Baselines
 - measure query complexity
 - AFS On the complexity of finding an unknown cut via vertex queries
 - ZLG Combining active learning and semi- supervised learning using Gaussian fields and harmonic functions
 - BND Towards active learning on graphs: An error bound minimization approach

Active Learning for Networked Data

- Problem setup
 - classifying nodes (labels prediction)
 - node features
 - graph structure
 - features/labels of neighbor nodes
 - collective classification:
 - simultaneously predicting labels of all nodes
 - active learning
 - request labels, with goals of decreasing number of labels needed
 - pool-based setting:
 - initially provided with pool of unlabeled examples
 - each step select batch of instances, remove from pool, add to labeled corpus
 - task:
 - collective classification as base learner

- train: active learning learn CC, CO
- test: ICA + CC
- Methods
 - 1. cluster nodes based on graph structure: modularity clustering
 - 2. iterate:
 - 1. re-train CO, CC
 - 2. score clusters based on CO/CC disagreement, pick top k clusters
 - 3. label one of unlabeled node from each of the k clusters, remove them from pool
 - the node with greatest disagreement LD between CO, CC, majority is picked
 - 4. Semi-supervision and Dimensionality reduction
 - 1. semi-supervised collective classification method, use CO to predict unobserved neighbor
 - 2. PCA
 - o note:
 - CC: $P(Y_i|X_i, \operatorname{aggr}(N_i))$, consider neighbor labels
 - CO: $P(Y_i|X_i)$ local classifier with only node features
- Datasets
 - Cora & CiteSeer
 - citation network
 - ignore directions
 - cleaned up
- Baselines
 - 1. Semi-supervision and Dimensionality Reduction (Base Learner)
 - 1. CO
 - 2, CC
 - 3. CC+Semi-supervision
 - 4. CC+Semi-supervision+PCA
 - 2. ALFNET
 - 1. Random
 - 2. Uncertainty sampling
 - 3. Ablation
 - 1. disagreement: no cluster structure
 - 2. clustering: select cluster randomly