Bicategories of automata, automata in bicategories

Fosco Loregian TAL

j/w A. Laretto, S. Luneia, G. Boccali

Prolegomena

Fix a monoidal category (\mathcal{K}, \otimes) .

Definition

A Mealy machine (of input I and output O) in $\mathcal K$ is a span

$$E \stackrel{d}{\longleftarrow} E \otimes I \stackrel{s}{\longrightarrow} O$$

Definition

A Moore machine (of input I and output O) in K is a span

$$E \stackrel{d}{\longleftarrow} E \otimes I, E \stackrel{s}{\longrightarrow} O$$

Prolegomena

```
1 record MealyObj I O : Set (o ⊔ l ⊔ e) where
2 field
3 E: Obj
4 \mathbf{d} : \mathbf{E} \otimes \mathbf{I} \Rightarrow \mathbf{E}
5 \mathbf{s} : \mathbf{E} \otimes \mathbf{I} \Rightarrow \mathbf{0}
```

Mealy.agda
Mealy.agda
Mealy/Bicategory.agda

Mealy and Moore

Definition

The category of Mealy machines¹ has objects the Mealy machines as above, (E, d, s), and morphisms $(E, d, s) \rightarrow (F, d', s')$ the $f : E \rightarrow F$ such that

$$E \stackrel{d}{\longleftarrow} E \otimes I \stackrel{s}{\longrightarrow} O$$

$$\downarrow f \otimes I \qquad \qquad \parallel$$

$$F \stackrel{d'}{\longleftarrow} F \otimes I \stackrel{s}{\longrightarrow} O$$

¹All definitions from now on can be Moore-ified without effort.

Mealy and Moore

Let P be an monoidal monad on \mathcal{K} ; the Kleisli category of P becomes monoidal; dually, if P is opmonoidal, Elienberg-Moore (not the same Moore!) becomes monoidal.

Definition

A P_{λ} -machine is a Mealy machine in Kl(P); a P-machine is a Mealy machine in EM(P).

Why care?

- nondeterminism (if *P* =powerset, *Kl(P)* = **Rel**);
- additional structure on objects (they are *P*-algebras).

Mealy and Moore

Theorem

The category of Mealy machines fits into a (strict, 2-)pullback in **Cat**

$$\begin{array}{ccc} \mathbf{Mly}(I,O) & \longrightarrow \mathbf{Alg}(-\otimes I) \\ & \downarrow & & \downarrow \\ ((-\otimes I)/O) & \longrightarrow \mathcal{K} \end{array}$$

(A similar result holds for Moore: replace the comma $((-\otimes I)/O)$ with the slice \mathcal{K}/O .)

(cf. Adámek-Trnková)

Instead of considering a span

$$E \stackrel{d}{\longleftarrow} E \otimes I \stackrel{s}{\longrightarrow} O$$

consider the action of a generic endofunctor $X : \mathcal{K} \to \mathcal{K}$:

$$E \leftarrow XE \rightarrow O$$

X-algebra obj. of comma

which yields at once a pullback characterization of X-automata, ...

X-Mly fits in a strict 2-pullback

...and in particular when $X \rightarrow R$

Theorem

The category of X-automata is cocomplete when K is, with colimits created by a canonical functor X-Mly $\to K$; it is complete when K is.

From [Mac Lane, V.6, Ex. 3]: in every strict pullback of categories

$$\begin{array}{ccc}
\mathcal{A} & \xrightarrow{U'} & \mathcal{B} \\
V' \downarrow & \longrightarrow & \downarrow V \\
\mathcal{C} & \xrightarrow{U} & \mathcal{K}
\end{array}$$

if U creates, and V preserves, limits of a given shape \mathcal{J} , then U' creates limits of shape \mathcal{J} .

But $\mathbf{Alg}(X) \to \mathcal{K}$ creates all limits, and $X/O \to \mathcal{K}$ all connected limits; thus the problem boils down to find a terminal object (products follow).

Claim: the terminal object of *X*-**Mly** is the terminal coalgebra for the functor

$$A \mapsto RA \times O$$

which (Adámek theorem) is $O_{\infty} = \prod_{n \ge 1} R^n O$, with structural morphisms given by deletion of first factor, and projection over first factor:

$$d_{\infty}: X(\prod_{n\geqslant 1}R^nO) \to \prod_{n\geqslant 1}R^nO$$

$$s_{\infty}: X(\prod_{n\geqslant 1}R^nO) \to O$$

A similar line of reasoning leads to the terminal object in X-Mre being $O_{\infty} = \prod_{n \ge 0} R^n O$.

How to induce a terminal morphism

$$E \stackrel{d}{\longleftarrow} XE \stackrel{s}{\longrightarrow} O$$

$$|E \downarrow \qquad X|E \downarrow \qquad |E \downarrow \qquad |E$$

 $!_E: E \to O_{\infty}$ is defined as

$$d_{\infty}: \mathsf{mate}\big(\cdots \to \mathsf{XXXE} \xrightarrow{\mathsf{XXd}} \mathsf{XXE} \xrightarrow{\mathsf{Xd}} \mathsf{XE} \xrightarrow{\mathsf{s}} O\big)$$

$$s_{\infty}: \mathsf{mate}\big(\cdots \to XXXE \xrightarrow{XXd} XXE \xrightarrow{Xd} XE \xrightarrow{s} O\big)$$

Products are computed as pullbacks along terminal maps:

The pullback P_{∞} can be thought as the bisimulation object for X-machines. As a corollary,

- Mly(I, O) complete with terminal object [I⁺, O] (← free semigroup).
- Mre(I, O) complete with terminal object [I*, O] (← free monoid).

Behaviour as an adjunction

Assume the forgetful $U : \mathbf{Alg}(X) \to \mathcal{K}$ has a lef adjoint F.

There is a composite of adjoint functors

$$\mathcal{K}_{/O_{\infty}} \overset{\tilde{F}}{\underset{\tilde{U}}{\longleftarrow}} \mathsf{Alg}(X)_{/(O_{\infty},d_{7})} \overset{L}{\underset{B}{\longleftarrow}} X\text{-Mre}$$

where B is a 'behaviour' functor defined as

$$(E, d, s) \mapsto (!_E : E \rightarrow O_{\infty})$$

and its left adjoint L is determined through the 'free' Moore machine on a X-algebra over the terminal O_{∞} .

Bicategories

So far so good.

It's all fun and games until someone loses an eyeuses a bicategory.

- under which assumptions is Mly(I, O) the hom-category of a bicategory?
- similar question for Mealy.
- A monoidal category is justTM a bicategory with a single object; but then what is a Mealy automaton in a bicategory B?

of Automata

Bicategories

The bicategory Mly

Let $\mathcal K$ be a Cartesian category. Define a bicategory $\underline{\mathbf{Mly}}_{\mathcal K}$ as follows

- 1. its **objects** are the same objects of K;
- 2. its **1-cells** $I \rightarrow O$ are the Mealy machines (E, d, s), i.e. the objects of the category $\mathbf{Mly}_{\mathcal{K}}(I, O)$;
- 3. its 2-cells are Mealy machine morphisms defined ibid.;
- 4. the composition of 1-cells $-\circ$ is defined as [postponed];
- 5. the **vertical** composition of 2-cells is the composition of Mealy machine morphisms $f: E \to F$;
- 6. the **horizontal** composition of 2-cells is the operation defined thanks to bifunctoriality of $-\circ$;
- 7. the associator and the unitors are inherited from \mathcal{K} .

Composition of 1-cells

Given two Mealy machines $(E, d, s) : I \rightarrow J$ and $(F, d', s') : J \rightarrow K$,

$$E \stackrel{d}{\longleftarrow} E \times I \stackrel{s}{\longrightarrow} J$$
$$F \stackrel{d'}{\longleftarrow} F \times J \stackrel{s'}{\longrightarrow} K$$

define their composition $(E \times F, d' \diamondsuit d, s' \diamondsuit s) : I \to K$ as

$$s' \diamondsuit s = s' \cdot (E \times s) : F \times E \times I \to F \times J \to K$$
$$d' \diamondsuit d = \langle d \cdot \pi_F, d' \cdot (E \times s) \rangle : F \times E \times I \to F \times E$$

where
$$E \xleftarrow{d} E \times I \xleftarrow{\pi_F} E \times F \times I \xrightarrow{E \times s} F \times J \xrightarrow{d'} F$$

Composition of 1-cells

Proof of associativity is bureaucracy:

$$\begin{array}{l} (d_{1} \diamondsuit d_{2}) \diamondsuit d_{3} = \langle d_{3} \cdot \pi_{12}, \langle d_{2} \cdot \pi_{1}, d_{1} \cdot (E_{1} \times s_{2}) \rangle \cdot (E_{1} \times E_{2} \times s_{3}) \rangle \\ = \langle d_{3} \cdot \pi_{12}, \langle d_{2} \cdot \pi_{1} \cdot (E_{1} \times E_{2} \times s_{3}), d_{1} \cdot (E_{1} \times s_{2}) \cdot (E_{1} \times E_{2} \times s_{3}) \rangle \rangle \\ = \langle d_{3} \cdot \pi_{12}, \langle d_{2} \cdot \pi_{1} \cdot (E_{1} \times E_{2} \times s_{3}), d_{1} \cdot (E_{1} \times (s_{2} \cdot (E_{2} \times s_{3}))) \rangle \rangle \\ d_{1} \diamondsuit (d_{2} \diamondsuit d_{3}) = \langle \langle d_{3} \cdot \pi_{2}, d_{2} \cdot (E_{2} \times s_{3}) \rangle \cdot \pi_{1}, d_{1} \cdot (E_{1} \times (s_{2} \cdot (E_{2} \times s_{3}))) \rangle \\ = \langle \langle d_{3} \cdot \pi_{2} \cdot \pi_{1}, d_{2} \cdot (E_{2} \times s_{3}) \cdot \pi_{1} \rangle, d_{1} \cdot (E_{1} \times (s_{2} \cdot (E_{2} \times s_{3}))) \rangle \\ = \langle d_{3} \cdot \pi_{12}, \langle d_{2} \cdot (E_{2} \times s_{3}) \cdot \pi_{1}, d_{1} \cdot (E_{1} \times (s_{2} \cdot (E_{2} \times s_{3}))) \rangle \rangle \\ s_{1} \diamondsuit (s_{2} \diamondsuit s_{3}) = s_{1} \cdot (E_{1} \times (s_{2} \cdot (E_{2} \times s_{3}))) \\ = s_{1} \cdot (E_{1} \times s_{2}) \cdot (E_{1} \times E_{2} \times s_{3}) \\ (s_{1} \diamondsuit s_{2}) \diamondsuit s_{3} = s_{1} \cdot (E_{1} \times s_{2}) \cdot (E_{1} \times E_{2} \times s_{3}) \end{array}$$

Unitality follows a similar (simpler) strategy.

Corollar(ies)

- there are categories
 Mly_{Set}, Mly_{Cat}, Mly_{Top}, Mly_{Pos}, Mly_{Mon}, . . .
- if $\mathcal K$ is Cartesian closed, all right/left Kan extensions/lifts exist;
- as a corollary, the terminal objects $[I^+, O], [I^*, O]$ (and even before, I^+, I^*) can be characterised as Kan extensions!
- ? the assignment $\mathcal{K}\mapsto \underline{\mathbf{Mly}}_{\mathcal{K}}$ is (2-)functorial $\mathbf{CCat}\to 2\mathbf{-Cat}$ (careful with the 2-cells, Eugene).
- ? Guitart defines a 'bicategory of Mealy machines' as Spn_F(Mon), spans in Cat between monoids whose left leg is a fibration. Interesting adjunctions with our Mly's?

Automata in bicategories

A monoidal category is just a bicategory with a single object. What is a machine inside a bicategory $\mathbb B$ with objects $A,B,C\ldots$? A bicategorical Moore machine consists of a span of 2-cells in $\mathbb B$

$$e \stackrel{\delta}{\longleftarrow} e \circ i \stackrel{\sigma}{\Longrightarrow} o$$

or rather a diagram of 2-cells

for objects $A, B \in \mathbb{B}$.

Examples

- the mere fact that the 2-cells δ, σ exist implies that i is an endomorphism;
- so, iterated compositions $i \circ \cdots \circ i$ make sense as much as iterated tensor powers $I \otimes \cdots \otimes I$ made sense in K;
- one can find examples in
 - categories, functors and natural transformations;
 - categories, functors and lax transformations;
 - categories, profunctors and 2-cells (a fortiori, in **Rel**);
 - sets and metric relations;
 - topological, approach, closure spaces,...

Behaviour as a Kan extension

A bicategorical Moore machine in $\mathbb B$ of fixed input and output i,o is a diagram

The 'terminal way' of filling such a span is the right extension of the output cell along the free monad i^{\natural} on the input:

- from the unit $\eta: 1_A \Rightarrow i^{\natural}$, get $Ran_i \Rightarrow Ran_1 = 1_A$, and thus $\sigma: Ran_i o \Rightarrow o$;
- from the multiplication $\mu: i^{\natural} \circ i^{\natural} \Rightarrow i^{\natural}$ get $\operatorname{Ran}_{i^{\natural}} \Rightarrow \operatorname{Ran}_{i^{\natural}} \circ \operatorname{Ran}_{i^{\natural}}$, and thus

$$\delta: \mathsf{Ran}_{i^\natural} o \circ i \xrightarrow{\mathsf{Ran}_{i^\natural} o * \boldsymbol{\eta}} \mathsf{Ran}_{i^\natural} o \circ i^\natural \longrightarrow \mathsf{Ran}_{i^\natural} o$$

Intertwiners

Definition

An intertwiner $(u, v): (e, \delta, \sigma)_{A,B} \hookrightarrow (e', \delta', \sigma')_{A',B'}$ consists of a pair of 1-cells $u: A \to A', v: B \to B'$ and a triple of 2-cells ι, ϵ, ω disposed as follows:

such that:

Intertwiners

Definition

Let $(u,v), (u',v'): (e,\delta,\sigma) \hookrightarrow (e',\delta',\sigma')$ be two parallel intertwiners between bicategorical Mealy machines; a 2-cell $(\varphi,\psi): (u,v) \Rightarrow (u',v')$ consists of a pair of 2-cells $\varphi: u \Rightarrow u'$, $\psi: v \Rightarrow v'$ such that the following identities hold true:

$$\frac{\varphi}{\epsilon} = \frac{\epsilon}{2}$$

Intertwiners

Specialized to the monoidal case, the previous two definitions become

· morphisms of type

$$\iota: I' \otimes U \to V \otimes I, \epsilon: E' \otimes U \to V \otimes E, \omega: O' \otimes U \to V \otimes O;$$

· such that

$$\epsilon \circ (d' \otimes U) = (V \otimes d) \circ (\epsilon \otimes I) \circ (E' \otimes \iota)$$
$$\omega \circ (s' \otimes U) = (V \otimes s) \circ (\epsilon \otimes I) \circ (E' \otimes \iota)$$

• **pairs** $f: U \rightarrow U'$ and $g: V \rightarrow V'$ such that

$$\begin{array}{c|c} E' \otimes I' \otimes U \xrightarrow{d' \otimes U} \to E' \otimes U & V \otimes E \otimes I \xrightarrow{V \otimes d} V \otimes E \\ E' \otimes I' \otimes f / & \downarrow E' \otimes f & g \otimes E \otimes I / & \downarrow g \otimes E \\ E' \otimes I' \otimes U' \xrightarrow{d' \otimes U'} \to E' \otimes U' & V' \otimes E \otimes I \xrightarrow{V' \otimes d} V' \otimes E \end{array}$$

Open problems

Of other bicategories

In 1974 Guitart defined a bicategory of Mealy machines:

- the objects are categories M, N, \ldots (actually, monoids);
- the 1-cells are spans

$$M \stackrel{D}{\longleftarrow} \mathcal{E} \stackrel{S}{\longrightarrow} N$$

where *D* is a fibration and *S* is a functor.

- composition of 1-cells is as in **Span**.
- G then proves that MAC is the Kleisli bicategory of the diagram monad C → Cat/C;

We conjecture the existence of a left pseudo-adjoint L in

$$L: \underline{\mathsf{Mly}_{\mathsf{Cat}}} \xrightarrow{\bot} \mathsf{MAC}: G$$

Nondeterminism in equipments

• In **Rel**, $R = \operatorname{Ran}_{T^{\natural}} O$ is the relation defined as

$$(\alpha,b) \in R \iff \forall \alpha' \in A.((\alpha',\alpha) \in I^{\natural} \Rightarrow (\alpha',b) \in O).$$

This relation expresses *reachability* of b from a:

$$a R b \iff \left((a' = a) \lor (a' \xrightarrow{I} a_1 \xrightarrow{I} \dots \xrightarrow{I} a_n \xrightarrow{I} a) \Rightarrow a' O b \right)$$

 Passing from automata in Cat to automata in Prof accounts for a form of nondeterminism; one can conjecture to be able to address nondeterministic BA in B as deterministic BA in a proarrow equipment.

Thanks!

We're still in the process of finishing this up. Get in touch if you have ideas / want to join!

