

Théorie de l'information

- Transmission/stockage de l'information
 - La source produit de l'information « pure » sous forme abstraite
 - Ne peut pas être transmise ou stockée dans cet état « pur »
 - Doit avoir une <u>représentation physique</u> pour être transportée/stockée

Codage

- Processus de transformation de l'information
- S'adapte au canal de transmission ou moyen de stockage
- Permet au récepteur de reconvertir (décoder) l'information dans une forme intelligible (même forme qu'à la source)

- Codage ≠ chiffrement
 - Le codage ne protège pas la confidentialité de l'information

Théorie de l'information

- Compression et codage
 - Le codage peut permettre de faire de la compression
 - Moins de symboles utilisés dans la transmission/stockage que par la source
 - 1^{er} théorème de Shannon (voir plus loin)
 - Établit limite de la compression sans perte d'information (lossless compression)
 - Codes de Huffman
 - Lempel-Ziv-Welch (LZW)
 - Ne s'applique pas à la compression avec perte (lossy compression)
 - MP3
 - JPEG
 - MPEG

Théorie de l'information

- Les composants que nous avons évoqués sont du côté de la source
 - On fait l'image miroir pour avoir les composants du côté du récepteur
 - Source codeur ⇒ décodeur récepteur
- On peut alors créer un modèle mathématique plus formel
 - → le modèle de Shannon

Modèle de Shannon

Source

- Produit des symboles d'un "alphabet" (∑)
- Fonctionne "sur demande" (d'où le "bouton")

Codage

 Regroupe et transforme les symboles de la source dans un format pouvant être transmis ou sauvegardé

Canal

- Peut introduire du bruit
 - symbole reçu ≠ symbole transmis

Décodage

- Permet de reconstruire le message original
 - séquence des symboles de source

Source d'informations

Alphabet

- Ensemble discret fini $\Sigma = \{\sigma_1, ..., \sigma_M\}$
- Par convention taille de Σ , $|\Sigma| = M$

Contrôle

Un "bouton" qui permet d'obtenir un symbole à la fois

Principe de la boîte noire

 Autre que le bouton et un nombre petit d'observations (symboles),
 on ne peut rien savoir sur le contenu ou fonctionnement de la source (sauf peut-être Alice, mais pas Ève, Irène ou Bob)

Pourquoi cette abstraction ??

- Permet de discuter de l'efficacité du codage (théorie de l'information)
- Permet d'analyser correctement la résistance à certaines menaces
 - · Algorithmes de chiffrement
 - Choix de mots de passe et phrases de passe

• ...

Sources dérivées

Source par bloc

- Étant donné une source S, et un entier positif b
- S^b représente la source obtenue en encapsulant S par une boîte
 - qui mets b symboles de S dans un tampon (« buffer ») avant de les sortir
- Noter que l'alphabet de S^b est maintenant Σ^b

Sources dérivées

- Source par échantillonnage
 - Étant donné une source S, et un entier positif b,
 - $-S^{1/b}$ représente la source obtenue en encapsulant S par une boîte
 - qui émet seulement le 1er symbole de chaque b symboles sortie de S
 - L'alphabet de $S^{1/b}$ est le même que S, soit Σ

Types de source d'information

Déterministe

 La boîte « connaît » à l'avance toute la séquence de symboles (potentiellement infinie...)

Probabiliste

- La boîte choisit les symboles au fur et à mesure selon une distribution de probabilité
 - Processus markovien ou "sans mémoire"

$$-p_i$$
 = Prob (S => " σ_i "), \forall 1< i < M

- e.g. Prob (
$$S^b => " \sigma_i, \sigma_j"$$
) = $p_i p_j$

Processus non-markovien

 Les probabilités de symboles peuvent dépendre des symboles antérieurs sortis de la source...

Codage

- Translittération
 - Un codage traduit les symboles de source vers un autre « alphabet » $T = \{ \tau_1, ..., \tau_N \}$, (Tau majuscule)
- Fonction de codage
 - $-F:\Sigma \rightarrow T$
 - τ = F(σ), représente comment le symbole σ devra être transmis
- Fonction de décodage
 - F^{-1} : T $\rightarrow \Sigma$
 - $\sigma' = F^{-1}(\tau')$,
 - Si τ' ≠ τ alors σ' ≠ σ
 il y a eu erreur de transmission (bruit dans le canal)
 - Si $\tau' = \tau$ alors $\sigma' = \sigma$ transmission sans erreur Bob reçoit ce que Alice (source) a émis
 - → F est nécessairement une injection

Correction d'erreur

- Code correcteur d'erreur
 - L'introduction de bruit dans le canal est compensé en utilisant un code correcteur d'erreur dans le codage t.q.
 Prob (F⁻¹(τ') = τ) → 1, où τ' est le symbole reçu via le canal
- L'efficacité du code correcteur d'erreur
 - Dépend du niveau de bruit introduit par le canal
 - → celui-ci peut être mesuré avec l'entropie de Shannon
 - Se mesure également en nombre de bits nécessaires par symbole de source, pour un code qui corrige « presque toutes les erreurs »
- 2e Théorème de Shannon
 - Établit le lien entre l'efficacité du code correcteur d'erreur et le niveau de bruit du canal

Correction d'erreur

- En pratique, la correction d'erreur est souvent Une étape distincte et séparée du codage
 - Chez Alice
 - Codage supplémentaire après codage initial
 - Ajout d'information supplémentaire (syndrome)
 - Chez Bob
 - Décodage initial avant décodage final
 - Analyse du syndrome et du message
 - permet de corriger les erreurs (avec haute probabilité)

CRYPTOGRAPHIE I – THÉORIE DE L'INFORMATION – ENTROPIE

Efficacité du codage - Compression

Compression

- Dans certaines circonstances, on voudrait pouvoir coder en utilisant moins de bande passante, p.ex. tel que N < M
- Efficacité du code
 - est mesurée en bits transmis par chaque symbole de source émis
- 1er Théorème de Shannon
 - Efficacité maximum d'un code compresseur est approximativement égale à H(S)
 - Il existe un code compresseur (sans erreur) avec efficacité
 H(S) + 1
- Qu'est-ce « H(S) » \rightarrow L'entropie de la source S

Entropie de Shannon

Définitions

$$- H(S) = \sum_{i} p_{i} \log_{2} 1/p_{i}$$

- Propriétés
 - Fonction convexe
 - $-\Sigma = \{0,1\}$
 - Prob (S="0") = p, Prob (S="1") = q = 1-p
 - Valeur minimale

- Valeur maximale
 - Prob (S="0") = Prob (S="1") = ½
 → H(S) = 1 bit
- Σ arbitraire, $|\Sigma| = N$
 - Valeur minimale
 - Prob (S = σ)=1 pour un σ donné, Prob (S = σ) = 0 pour tous les autres
 → H(S) = 0 bit
 - Valeur maximale

- Prob (S =
$$\sigma_i$$
) = Prob (S = σ_j), \forall σ_i , σ_j ∈ Σ
→ $H(S)$ = log₂ N bit

Entropie

Exemple de calcul d'entropie

- Pile ou face
 - Alphabet {pile, face}
 - Probabilité d'occurrence des symboles (p_i): chaque symbole équiprobable avec une probabilité de ½
 - $H(S) = \sum_{i} p_{i} \log_{2} 1/p_{i}$ - pile: $\frac{1}{2} \log_{2} (1 / \frac{1}{2}) = \frac{1}{2} \log_{2} 2 = \frac{1}{2} * 1 = \frac{1}{2}$ - face: $\frac{1}{2} \log_{2} (1 / \frac{1}{2}) = \frac{1}{2} \log_{2} 2 = \frac{1}{2} * 1 = \frac{1}{2}$ - $H(S) = \frac{1}{2} + \frac{1}{2} = 1 \frac{bit}{2}$
- Alphabet équiprobable
 - Alphabet = {a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z}
 - Probabilité d'occurrence des symboles (p_i):
 - chaque symbole équiprobable avec une probabilité de 1/26
 - $H(S) = \Sigma \frac{1}{26} \log_2 \frac{1}{(1/26)} = 26*1/26* \log_{10}(26)/\log_{10} 2 = \log_{10}(26)/\log_{10} 2 = 4.7$ bits (on peut vérifier : $2^{4.7} = 25.99$)

Analyse fréquentielle vs. entropie

- Problème
 - L'entropie de Shannon
 - est définie à partir de <u>probabilités</u>
 - s'applique seulement aux sources markoviennes
 - Comment calculer/utiliser l'entropie sur
 - des sources non-markoviennes ?
 - des textes/séquences finies de symboles ?
- « Solution »
 - Fréquence de symbole
 - Soit $S_N = s_{1,} s_{2,} \dots s_N$, $s_i \in \Sigma$, une séquence d'une source S_i , on définit:

$$f_i(S_N) = \frac{|\{j \mid s_j = \sigma_i\}|}{N}$$

- Pseudo-entropie
 - Définie/calculée à partir des fréquences (au lieu de probabilités)

Pseudo-entropie

- Pour une séquence finie SN $\Psi(S_N) = \sum_i f_i(S_N) \log \frac{1}{f_i(S_N)}$
- Pour une séquence S $\Psi(S) = \lim_{N \to \infty} \Psi(S_N)$
- Pour une source d'information quelconque S
 - A chaque fois qu'on utilise la source « N fois »
 - On obtient une séquence SN différente de longueur N
 - On calcule la pseudo entropie $\Psi(S_N)$ de cette séquence, qui est elle-même une variable aléatoire
 - Sa valeur espérée $\overline{\Psi(S_N)}$ représente une pseudo-entropie de la source sur des séquences de longueur N
- On considère alors la pseudo-entropie de la source comme étant la limite de cette valeur espérée

$$\Psi(S) = \lim_{N \to \infty} \overline{\Psi(S_N)}$$

Entropie vs. pseudo-entropie

Pour les sources markoviennes

- La pseudo-entropie d'une séquence générée par la source va s'approcher de l'entropie
- Cette convergence est bonne lorsque la taille de la sous-séquence est grande, parce que les fréquences f_i s'approchent des probabilités p_i (loi des grands nombres)
 - Quand $N \to \infty$, alors $\Psi(S_N) \to H(S)$
 - Si N est trop petit, alors
 - déductions faites à partir des f_i non valable statistiquement
 - → cryptanalyse difficile (voir TP 1)

Pour les sources non-markoviennes

- L'entropie H(S) n'est pas vraiment définie,
 - On utilise $\Psi(S)$ à la place (outil de calcul d'entropie TP1)
 - On écrira dans le reste du cours « H(S) »,
 mais on veut vraiment dire Ψ(S) ...

Interprétation de l'entropie d'une source

- Interprétation de H(S)
 - 1^{er} théorème : Chaque symbole émit par S peut être codé individuellement avec en moyenne H(S) bits
 - Et si on permet que le codage regroupe 2 lettres à la fois ?
 - → Par 1^{er} théorème on peut coder chaque digramme (2 symboles) avec $H(S^2)$ bits, soit $H(S^2)/2$ bits par symbole
 - → Mais si $H(S^2)/2 \le H(S)$, donc on peut avoir un gain en compression
- Taux de compression
 - Sans compression
 - → log N bits par symbole, dans le pire cas (entropie maximale)
 - Avec compression par bloc de b symbole
 - \rightarrow $H(S^b)/b$ bits par symbole
 - Taux de compression = $\frac{H(S^b)/b}{\log N}$

Source markovienne vs. non markoviennes

- Source markovienne
 - Si S est markovienne, alors $H(S^b) = b^*H(S)$
 - Conséquence: Aucun gain de compression en codant par bloc
 - <u>Intuition</u>: Il n'existe pas de corrélation entre les symboles (distribution de probabilité indépendante), et chaque symbole doit être codé individuellement
- Source non markovienne
 - En général $H(S^b)$ ≤ b*H(S)
 - Conséquence1: Il y a en général un gain de compression en codant par bloc
 - Intuition:
 - Les probabilités des symboles dépendent des symboles antérieurs
 - Cette « dépendance » statistique peut être exploité par le codage pour réduire le nombre de symboles ou le nombre de bits dans leur codage P.ex. en français
 - la lettre « u » suit (presque toujours) la lettre « q »
 - Un sujet est suivi d'un verbe, p.ex. « Je_ » doit être suivi d'un verbe conjugué à la 1^e personne du singulier
 - Le gain de compression devrait augmenter en considérant des tailles de blocs plus grandes

Entropie du langage de la source

- En théorie,
 - plus la taille de bloc b est grande,
 plus le taux de compression est élevé (jusqu'à une certaine limite)
- Langage associé à une source S
 - ensembles de chaines finies générées par S
- L'entropie H₁ du langage associé à la source S,

$$H_L(S) = \lim_{b \to \infty} \frac{H(S^b)}{b}$$

- est le minimum de bits nécessaires (en moyenne) pour coder chaque symbole de chaînes émises par S, même si on permet de coder avec des tailles de blocs arbitraires
- représente la limite ultime de compression