ENGR 507 (Spring 2025) S. Alghunaim

13. Neural networks

- introduction
- training a neural network
- the backpropagation algorithm

Neural network success

neural networks achieved tremendous success in many real life applications such as

- · speech recognition
- · natural language processing
- image classifications
- · recommendations systems
- cancer cell detection
- ...etc

Neuron

an artificial neural network (NN) is composed of simple subsystems called neurons

Neuron symbol

Single-neuron output

- output \hat{y} is a function of a linear combination of inputs
- $\phi: \mathbb{R} \to \mathbb{R}$ is the activation function
- x_i is the *i*th input; $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ the vector of inputs
- w_i is the weight multiplied by x_i ; $w = (w_1, \dots, w_n) \in \mathbb{R}^n$ is the weight vector

introduction SA—ENGR507 13.3

Activation functions

• *linear* (no activation): $\phi(v) = v$

• softplus:

$$\phi(v) = \log(1 + e^v)$$

• sigmoid or logistic, soft step:

$$\phi(v) = \frac{1}{1 + e^{-v}}$$

binary step:

$$\phi(v) = \begin{cases} 0 & v \le 0 \\ 1 & v > 0 \end{cases}$$

• rectified linear unit (ReLU):

$$\phi(v) = \max(v, 0) = \begin{cases} 0 & v \le 0 \\ v & v > 0 \end{cases}$$

Feedforward neural network

in feedforward NN, neurons are interconnected in layers; data flow in one direction

- the first layer is the input layer
- middle layers are hidden layers
- the last layer is the output layer
- NN is a mapping $g: \mathbb{R}^n \to \mathbb{R}^m$ that is a composition of functions
 - for three layer network $\hat{y} = g(x) = g^3(g^2(g^1(x)))$ where each g^i is called a layer

Neural network predictor

Data fitting

- we have a mapping $F: \mathbb{R}^n \to \mathbb{R}^m$ we aim to approximate using a neural network
- we do not know F but we have observation data

$$(x^{(1)}, y^{(1)}), \dots, (x^{(N)}, y^{(N)}) \in \mathbb{R}^n \times \mathbb{R}^m$$

• each $y^{(i)}$ corresponds to the output of the map F for the input $x^{(i)}$, *i.e.*,

$$y^{(i)} = F(x^{(i)}), \quad i = 1, \dots, N$$

NN predictor

- consider a neural network as a specific mapping $g(x; w) : \mathbb{R}^n \to \mathbb{R}^m$
- w represent the weights of the neural network interconnections
- our objective becomes fine-tuning the network's interconnection weights such that

$$\hat{y} = g(x; w) \approx F(x)$$
 over our data

• g(x; w) is called a neural network *predictor*

136

Outline

- introduction
- training a neural network
- the backpropagation algorithm

NN training

finding the weights of the NN can be cast as the following optimization problem

minimize
$$\sum_{i=1}^{N} \|y^{(i)} - g(w; x^{(i)})\|^2$$

- variable w is typically very large in practice
- this process is called the training or learning phase of the neural network
- after the training phase, NN is used to predict output for unseen input
- can be solved using any algorithm (depending on activation functions)
 - gradient descent (called backpropagation)
 - Levenberg-Marquardt method

Single neuron training

minimize
$$(1/2) \sum_{i=1}^{N} (y^{(i)} - g(x^{(i)T}w))^2$$

- variable $w = (w_1, \dots, w_n) \in \mathbb{R}^n$
- ullet the choice of the method typically depends on the activation function ϕ

Example: when ϕ is the identity function, problem reduces to least squares problem:

minimize
$$(1/2)||y - X^T w||^2$$

where
$$X = [x^{(1)} \cdots x^{(N)}] \in \mathbb{R}^{n \times N}$$
 and $y = (y^{(1)}, \dots, y^{(N)}) \in \mathbb{R}^N$

Outline

- introduction
- training a neural network
- the backpropagation algorithm

Three-layered neural network

- n inputs x_i , i = 1, ..., n, and m outputs \hat{y}_s , s = 1, ..., m
- l neurons in hidden layer
 - $-w_{ji}^{h}$: weight from the *i*th input neuron to the *j*th hidden neuron
 - $w_{s\,j}^o$: weight from the jth hidden neuron to the sth output neuron
- $\phi_j^h: \mathbb{R} \to \mathbb{R}$ are activation functions of the neurons in hidden layer $j=1,\ldots,l,$
- ϕ_s^o activation functions of the neurons in the output layer by, where $s=1,\ldots,m$

Input-output representation

- ullet denote the input to the jth neuron activation function in hidden layer by v_j
- the output of the jth neuron in the hidden layer by z_i
- then, we have

$$v_j = \sum_{i=1}^n w_{ji}^h x_i$$
$$z_j = g_j^h \left(\sum_{i=1}^n w_{ji}^h x_i \right)$$

• the output from the sth neuron of the output layer is

$$y_s = g_s^o \left(\sum_{j=1}^l w_{sj}^o z_j \right)$$

Input-output representation

inputs x_i , i = 1, ..., n and the sth output y_s is related by

$$\hat{y}_{s} = g_{s}^{o} \left(\sum_{j=1}^{l} w_{sj}^{o} g_{j}^{h}(v_{j}) \right)$$

$$= g_{s}^{o} \left(\sum_{j=1}^{l} w_{sj}^{o} g_{j}^{h} \left(\sum_{i=1}^{n} w_{ji}^{h} x_{i} \right) \right)$$

$$= g_{s}(x_{1}, \dots, x_{n})$$

the overall mapping that the neural network implements is therefore given by

$$\begin{bmatrix} \hat{y}_1 \\ \vdots \\ \hat{y}_m \end{bmatrix} = \begin{bmatrix} g_1(x_1, \dots, x_n) \\ \vdots \\ g_m(x_1, \dots, x_n) \end{bmatrix}$$

The training problem

given single training set $(x, y), x \in \mathbb{R}^n$ and $y \in \mathbb{R}^m$, problem reduces to

minimize
$$(1/2)\sum_{s=1}^{m}(y_s-\hat{y}_s)^2$$

- \hat{y}_s , $s = 1, \dots, m$, are outputs of the NN from the inputs x_1, \dots, x_n
- this minimization is taken over

$$w = \{w_{ji}^h, w_{sj}^o : i = 1, \dots, n, j = 1, \dots, l, s = 1, \dots, m\}$$

the neural network requires minimizing the objective function

$$f(w) = (1/2) \sum_{s=1}^{m} (y_s - \hat{y}_s)^2$$

= $(1/2) \sum_{s=1}^{m} \left(y_s - g_s^o \left(\sum_{j=1}^{l} w_{sj}^o g_j^h \left(\sum_{i=1}^{n} w_{ji}^h x_i \right) \right) \right)^2$

- we can solve using the gradient method with stepsize lpha
- doing so leads to the backpropagation algorithm

Partial derivatives

• compute the partial derivative of f with respect to w_{sj}^o :

$$f(w) = (1/2) \sum_{q=1}^{m} \left(y_q - g_q^o \left(\sum_{r=1}^{l} w_{qr}^o z_r \right) \right)^2$$

where $z_r = g_r^h \left(\sum_{i=1}^n w_{ri}^h x_i \right)$

• applying the chain rule, we derive:

$$\frac{\partial f}{\partial w_{sj}^o}(w) = -(y_s - \hat{y}_s)g_s^{o'}\left(\sum_{r=1}^l w_{sr}^o z_r\right)z_j = -\delta_s z_j$$

where
$$\delta_s = (y_s - \hat{y}_s)g_s^{o'}\left(\sum_{r=1}^l w_{sr}^o z_r\right)$$

• the partial derivative of f with respect to w_{ji}^h :

$$\frac{\partial f}{\partial w_{ji}^h}(w) = -x_i \delta_j, \quad \delta_j = g_j^{h'} \left(\sum_{i=1}^n w_{ji}^h x_i \right) \sum_{s=1}^m \delta_s w_{sj}^o$$

The backpropagation algorithm

$$\begin{split} w_{sj}^{o(k+1)} &= w_{sj}^{o(k)} + \alpha \delta_s^{(k)} z_j^{(k)} \\ w_{ji}^{h(k+1)} &= w_{ji}^{h(k)} + \alpha \left(\sum_{q=1}^m \delta_q^{(k)} w_{qj}^{o(k)} \right) g_j^{h'}(v_j^{(k)}) x_i \end{split}$$

where α is the (fixed) step size and

$$\begin{split} v_j^{(k)} &= \sum_{i=1}^n w_{ji}^{h(k)} x_i, \quad z_j^{(k)} = g_j^h(v_j^{(k)}) \\ \hat{y}_s^{(k)} &= g_s^o \left(\sum_{r=1}^l w_{sr}^{o(k)} z_r^{(k)} \right), \quad \delta_s^{(k)} = (y_s - \hat{y}_s^{(k)}) g_s^{o'} \left(\sum_{r=1}^l w_{sr}^{o(k)} z_r^{(k)} \right) \end{split}$$

- $\delta_1^{(k)}, \dots, \delta_m^{(k)}$ are propagated back from the output layer to the hidden layer
- forward pass of the algorithm: using the inputs x_i and the current set of weights, we first compute the quantities $v_i^{(k)}, z_i^{(k)}, \hat{y}_s^{(k)}$, and $\delta_s^{(k)}$, in turn
- reverse pass of the algorithm: compute the updated weights using the quantities computed in the forward pass

Generalized sigmoid function

References and further readings

• E. K.P. Chong, Wu-S. Lu, and S. H. Zak. *An Introduction to Optimization: With Applications to Machine Learning*. John Wiley & Sons, 2023. (ch 13)

references SA — ENGR507 13.16