QUEUING MODEL: HARBOUR SYSTEM

Huzefa Ayub BSc Sem 6 Maths (Hons) 203034-11-0103 034-1215-0354-20

AGENDA

Introduction

Timeline

Diagram

Summary of Simulation

Summary

Presentation title 3

INTRODUCTION

A mathematical model is an abstract description of a concrete system using mathematical concepts and language. The process of developing a mathematical model is termed *mathematical modeling*. Mathematical models are used in applied mathematics and in the natural sciences and engineering disciplines (such as computer science, electrical engineering), as well as in non-physical systems such as the social sciences (such as economics, psychology, sociology, political science). It can also be taught as a subject in its own right.

	Ship 1	Ship 2	Ship 3	Ship 4	Ship 5
Time between successive ships	15	35	20	100	35
Unloading time	65	55	60	70	80

Timeline 1

Ship 1 arrives 15 min after clock starts at t = 0 mins i.e at t = 15 mins and starts unloading. Ship 1 finishes unloading at t = 15 + 65 = 80 mins. Ship 2 arrives at t = 15 + 35 = 50 mins. Hence idle time of unloading facility is 15 mins.

Clock(mins)

Timeline 2

Ship 2 arrives at t = 50 mins, starts unloading at t = 80 mins and completes unloading at t = 80 + 55 = 135 mins. Ship 3 arrives at t = 50 + 20 = 70 mins and waits for 135 - 70 = 65mins to start unloading.

Timeline 3

Ship 3 starts unloading at t = 135 mins and completes at t = 135 + 60 = 195 mins. Ship 4 arrives at t = 70 + 100 = 170 mins and waits 195 - 170 = 25 mins to start unloading.

Timeline 4

Ship 4 starts unloading at t = 195 mins and finishes at t = 195 + 70 = 265 mins. Ship 5 arrives at t = 205 mins, waits for 60 mins to start unloading at t = 265 mins and completes at t = 265 + 80 = 345 mins.

DIAGRAM

Summary of simulation

Ship No	Random time btw successive ship arrival	Arrival time	Start Service	Queue length at arrival	Wait time	Random unload time	Time in harbour	Dock idle time
1	15	15	15	0	0	65	65	15
2	35	50	80	1	30	55	85	0
3	20	70	135	2	65	60	125	0
4	100	170	195	1	25	70	95	0
5	35	205	265	1	60	80	140	0
Total	(mins)				180	330	510	15
Avera	ages (mins)				36	66	102	

Presentation title

SUMMARY

The mathematical model used for harbour system simulation consists of not one model, but a series of many models, each representing a particular piece of hardware or important physics.

THANK YOU