Lösung zu Aufgabe 18

- 1) Unter der Annahme unabhängiger, identisch normalverteilter Zufallsvariablen kann man den zweiseitigen t-Test mit unbekannter (aber gleicher) Gruppen-Varianz anwenden. Die Annahme gleicher Varianzen ist kritisch. Die Hypothesen lauten $H_0: \mu_1 = \mu_2$ vs. $H_1: \mu_1 \neq \mu_2$.
- 2) Die Prüfgröße ist $V = \frac{\bar{X}_1 \bar{X}_2 \delta_0}{\sqrt{\left(\frac{1}{n_1} + \frac{1}{n_2}\right) \frac{(n_1 1)S_1^2 + (n_2 1)S_2^2}{n_1 + n_2 2}}}$ mit $\delta_0 = 0$ und
 - 1. $n = n_1 + n_2 2$, hier n = 10 + 10 2 = 18
 - 2. den Gruppen-Stichprobenmitteln \bar{X}_i , i=1,2. Hier $\bar{X}_1=22.1$, $\bar{X}_2=27.8$ (Taschenrechner)
 - 3. den Gruppen-Stichprobenvarianzen $S_i^2,\ i=1,2.$ Hier $S_1^2=39.6\bar{5},\ S_2^2=54.8\bar{4}$ (Taschenrechner)

Also
$$V = \frac{22.1 - 27.8}{\sqrt{\left(\frac{1}{10} + \frac{1}{10}\right) \frac{9 \times 39.6\overline{5} + 9 \times 54.8\overline{4}}{18}}} = \frac{-5.7}{\sqrt{\frac{1}{5} \frac{850.5}{18}}} = \frac{-5.7}{\sqrt{9.45}} \approx -1.854$$
. Für den (symmetrischen) t-Test wird $|V| \approx 1.854$ verwendet.

- 3) Unter den Modellannahmen ist V unter der Hypothese H_0 exakt t(n) = t(18)verteilt. Mit $\alpha = 0.05$ lautet der Schwellenwert des zweiseitigen t-Tests $t_{1-\alpha/2}(n) = t_{0.975}(18) \approx 2.1$ (Tabelle laut Anhang).
- 4) Der Test lehnt die Nullhypothese ab, wenn $|V| > t_{0.975}(18) = 2.1$, was aber hier nicht der Fall ist, d.h. die Nullhypothese gleicher Mittelwerte kann nicht abgelehnt werden.

Lösung zu Aufgabe 19

- a) a1) Zum Modell der Grundgesamtheit: Es handelt sich um st.u. stetig verteilte Zufallsvariablen X_i, Y_j , wobei jeweils X_1, \ldots, X_n und Y_1, \ldots, Y_m identisch verteilt sind. Für die Verteilungsfunktionen muss gelten $F_X(x) = F_Y(x-a)$ mit einem (pauschalen, aber unbekannten Wert $a \in \mathbb{R}$.
 - a2) Zu den Hypothesen: Da es um Vergleichbarkeit und nicht um Anordnung geht, sollte hier ein Hypothesenpaar für zweiseitige Testprobleme verwendet werden: $H_0: med(X) = med(Y)$ vs. $H_1: med(X) \neq med(Y)$
- b) Die Punktetabelle wird um die betreffenden gemeinsamen Ränge ergänzt:

	Nr	Finale (M)	Finale (F)	$rg(X_i)$	$rg(Y_i)$
	1	101.80	101.00	16	15
	2	100.60	100.25	14	12
	3	100.28	100.10	13	10
	4	100.22	99.65	11	9
	5	99.30	99.64	7	8
	6	98.30	98.60	4	6
	7	97.70	98.50	3	5
	8	96.10	97.60	1	2
Summe				W = 69	
				•	

c) Der Test lehnt die Hypothese ab, wenn $W > w_{1-\alpha/2}$ oder $W < w_{\alpha/2}$. Die beiden Vergleichswerte - für $\alpha = 0.05$ werden aus der Quantiltabelle für $n_1 = n_2 = 8$ abgelesen: $w_{0.025}(8,8) = 50$ und $w_{0.975}(8,8) = 8 \times (8+8+1) - w_{0.025}(8,8) = 86$. Der beobachtete Wert W liegt zwischen diesen Grenzen, d.h. H_0 kann nicht abgelehnt werden. Die Leistungen von Männern und Frauen werden demnach nicht als verschieden angesehen (wobei die Nichtablehnung der Hypothese natürlich nicht statistisch gesichert ist).

Lösung zu Aufgabe 20

Approximativer Mittelwerttest. Formuliere die Hypothese mit Hilfe des Erwartungswertes:

$$\pi \le \frac{1}{3} \Leftrightarrow E(X) = \frac{1}{1-\pi} \le \frac{1}{1-\frac{1}{3}} = \frac{3}{2}$$

Damit lassen sich die Hypothesen als $H_0: E(X) \leq \frac{3}{2}, H_1: E(X) > \frac{3}{2}$ formulieren.

Teststatistik: $V = \sqrt{n} \frac{\bar{X} - \mu_0}{\sigma}$ mit $\mu_0 = \frac{3}{2}$, $\sigma = \sqrt{var(X)} = \sqrt{\pi/(1-\pi)^2} = \sqrt{3/4}$ ist für $\mu = \frac{3}{2}$ approximativ $\mathcal{N}(0,1)$ -verteilt.

Ablehnungsbereich $V > z_{1-\alpha} = 2,33$.

Hier ist $v = \sqrt{2523} \frac{1,552-1,5}{\sqrt{3/4}} = 3,016$, also Ablehnung von H_0 .

p-value ist $1 - \Phi(3, 016) \approx 0,0013$.