Coordinate Ascent for Off-Policy RL with Global Convergence Guarantees

Hsin-En Su^{1*}, Yen-Ju Chen^{1*}, Ping-Chun Hsieh¹, and Xi Liu²

- ¹ Department of Computer Science, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- ² Applied Machine Learning, Meta AI, Menlo Park, CA, USA
- * Equal Contribution

Introduction

- ➤ We propose CAPO, an off-policy actor-critic framework which naturally enables direct off-policy policy updates with more flexible use of adaptive behavior policies, without the need for distribution correction or importance sampling correction to the gradient.
- ► We show that CAPO converges to a globally optimal policy under tabular softmax parameterization for general coordinate selection rules and further characterize the convergence rates of CAPO under multiple popular variants of coordinate ascent.
- ► Through experiments, we demonstrate that NCAPO achieves comparable or better empirical performance than various popular benchmark methods in the MinAtar.

Coordinate Ascent Policy Optimization (CAPO)

► Off-Policy Actor-Critic (Off-PAC)

$$\theta_{m+1} = \theta_m + \eta \cdot g(\theta)$$

$$g(\theta) = \mathbb{E} \left[\rho(s_t, a_t) \cdot \psi(s_t, a_t) \cdot Q^{\pi, \gamma}(s_t, a_t) \right]$$

► Coordinate Ascent Policy Optimization (CAPO)

$$\theta_{m+1}(s,a) = \theta_m(s,a) + \underbrace{\alpha_m(s,a)}_{\text{learning rate}} \cdot \underbrace{\mathbb{I}\{(s,a) \in B_m\}}_{\text{coordinate ascent}} \cdot \underbrace{\text{sign}(A^{\pi_{\theta_m}}(s,a))}_{\text{update direction}}$$

Asymptotic Global Convergence of CAPO With General Coordinate Selection

Theorem 1:

Consider a tabular softmax parameterized policy π_{θ} . Under CAPO update with $\alpha_m(s,a) \geq \log\left(\frac{1}{\pi_{\theta_m(a|s)}}\right)$, if Condition $\lim_{M\to\infty}\sum_{m=1}^M \mathbb{I}\{(s,a)\in B_m\}\to\infty$ is satisfied, then we have $V^{\pi_m}(s)\to V^*(s)$ as $m\to\infty$, for all $s\in\mathcal{S}$.

Convergence Rates of CAPO With Specific Coordinate Selection Rules

- ▶ Cyclic CAPO: Under Cyclic CAPO, every state action pair $(s, a) \in \mathcal{S} \times \mathcal{A}$ will be chosen for policy update by the coordinate generator cyclically. Specifically, Cyclic CAPO sets $|B_m| = 1$ and $\bigcup_{i=1}^{|\mathcal{S}||\mathcal{A}|} B_{m \cdot |\mathcal{S}||\mathcal{A}|+i} = \mathcal{S} \times \mathcal{A}$.
- ▶ Randomized CAPO: Under Randomized CAPO, in each iteration, one state-action pair $(s, a) \in \mathcal{S} \times \mathcal{A}$ is chosen randomly from some coordinate generator distribution d_{gen} with support $\mathcal{S} \times \mathcal{A}$ for policy update, where $d_{\text{gen}}(s, a) > 0$ for all (s, a). Our convergence analysis can be readily extended to the case of time-varying d_{gen} .
- ▶ Batch CAPO: Under Batch CAPO, we let each batch contain all of the state-action pairs, i.e., $B_m = \{(s, a) : (s, a) \in S \times A\}$, in each iteration.

Algorithm

Convergence Rate

Policy Gradient
$$V^*(\rho) - V^{\pi_m}(\rho) \leq \frac{16 \cdot |\mathcal{S}|}{\inf_{m \geq 1} \pi_m(a^*|s)^2 \cdot (1-\gamma)^6} \cdot \left\| \frac{d_{\mu}^{\pi^*}}{\mu} \right\|_{\infty}^2 \cdot \left\| \frac{1}{\mu} \right\|_{\infty} \cdot \frac{1}{m}$$

Cyclic CAPO $V^*(\rho) - V^{\pi_m}(\rho) \leq \frac{2 \cdot |\mathcal{S}||\mathcal{A}|}{(1-\gamma)^4} \cdot \left\| \frac{1}{\mu} \right\|_{\infty} \cdot \max\left\{ \frac{2}{\min_s \mu(s)}, \frac{|\mathcal{S}||\mathcal{A}|}{(1-\gamma)} \right\} \cdot \frac{1}{m}$

Batch CAPO $V^*(\rho) - V^{\pi_m}(\rho) \leq \frac{|\mathcal{A}|}{(1-\gamma)^4} \cdot \left\| \frac{1}{\mu} \right\|_{\infty} \cdot \frac{1}{\min\{\mu(s)\}} \cdot \frac{1}{m}$

Randomized CAPO $\mathbb{E}_{(s,a) \sim d_{\text{gen}}} \left[V^*(\rho) - V^{\pi_m}(\rho) \right] \leq \frac{2}{(1-\gamma)^4} \cdot \left\| \frac{1}{\mu} \right\|_{\infty} \cdot \frac{1}{\min\{d_{\text{gen}}(s,a) \cdot \mu(s)\}} \cdot \frac{1}{m}$

Neural Coordinate Ascent Policy Optimization (NCAPO)

➤ To preserve the coordinate update and variable learning rate, we leverage the tabular CAPO to derive target action distributions.

$$\pi_{\theta_m}(a|s) = \frac{\exp(f_{\theta_m}(s,a))}{\sum_{a'\in\mathcal{A}} \exp(f_{\theta_m}(s,a'))}$$

where f_{θ_m} denote the output of the policy network parameterized by θ_m .

- ► After CAPO update, we'll get the target policy π_{m+1} .
- \blacktriangleright We update the policy network f_{θ} by minimizing the NCAPO loss (KL-divergence loss).

$$\mathcal{L}(\theta) = \sum_{m{s} \in m{B}} m{D}_{\mathsf{KL}} \left(\pi_{ heta_{m{m}}}(\cdot | m{s}) \| \pi_{ heta_{m{m}+1}}(\cdot | m{s})
ight)$$

An Ablation Study: Validating Theory

- ➤ We validate the theory under a relatively simple and ideal non-atari environment.
- ► GridWorld: The goal is located at the bottom-right corner with a reward of 100, the agent moves with a cost of -1.

Experimental Results - Comparison with Benchmarks

The following figures show the performance of NCAPO and other benchmark methods algorithms in MinAtar. We can observe that NCAPO has the best performance in *Seaquest, Breakout, Space Invaders*. We also see that NCAPO is more robust across tasks than PPO and Rainbow.

An Ablation Study: CAPO for Low-Fidelity RL Tasks

- ► CAPO requires only the **sign** of the advantage function, instead of the exact advantage value.
- ➤ CAPO could serve as a promising candidate solution for RL tasks with low-fidelity or multi-fidelity value estimation.
- Experiment: We evaluate NCAPO in MinAtar with noisy rewards (for 5% of steps a large noise $\mathcal{N}(\mathbf{0}, \sigma^2)$ is injected).

An Ablation Study: Effect of Learning Rate

- \blacktriangleright Environment: 4-arms bandit with r = [10, 9.9, 9.9, 0].
- ▶ Policy initialization: $\pi_1 \approx [0.0237, 0.4762, 0.4762, 0.0237]$.
- ➤ On-policy CAPO with fixed learning rate can get stuck in a sub-optimal policy due to the skewed policy initialization that leads to insufficient visitation to each action.
- ► Off-policy CAPO with fixed learning rate learns very slowly.

An Ablation Study: Exploration Capability & Stochastic Environments

- ► Chain:
 - \triangleright The environment has a total of n + 1 states, and the agent always starts at S_1 .
- ▶ The agent may choose to move to the terminated state S_0 and receive a reward of 0.1, or to move one state to the right.
- \triangleright The transition from S_{n-1} to S_n would induce a huge reward of 100.
- ▷ A well-performing policy should prefer the delayed reward of 100.
- Stochastic Chain
 - ▶ When moving right, the stride length to be uniformly random between **0** and **3**.

Conclusion

- ► We propose CAPO, which takes the first step towards addressing off-policy policy optimization by exploring the use of coordinate ascent in RL.
- ► We show that the general CAPO can attain asymptotic global convergence and establish the convergence rates of CAPO with several popular coordinate selection rules.
- ➤ We show that the neural implementation of CAPO can serve as a competitive solution compared to the benchmark RL methods experimentally and thereby demonstrates the future potential of CAPO.