Notes

Minyoung Heo

Jan 10 2024

Inner Products

vectorspace \mathbb{R}^n

inner product:

$$\mathbb{R}^n \times \mathbb{R}^n \mapsto \mathbb{R}$$

$$\mathbf{v}, \mathbf{w} \int \mathbb{R}^n$$
 then, $\langle \mathbf{v}, \mathbf{w} \rangle = \sum_{i=1}^n v_i w_i$

Cauchy-Schwarz:

$$\begin{aligned} |\left<\mathbf{v},\mathbf{w}\right> &\leq ||\mathbf{v}|| \cdot ||\mathbf{w}|| \\ \text{where } ||\mathbf{v}|| &= \sqrt{\left<\mathbf{v},\mathbf{w}\right>} \end{aligned}$$

Theorem (triangle inequality)

$$\mathbf{v}, \mathbf{w} \in \mathbb{R}^n$$
, then $||\mathbf{v} + \mathbf{w}|| \le ||\mathbf{v}|| + ||\mathbf{w}||$

Proof

$$||\mathbf{v} + \mathbf{w}||^2 = \langle \mathbf{v} + \mathbf{w}, \mathbf{v} + \mathbf{w} \rangle$$

$$= \langle \mathbf{v}, \mathbf{w} \rangle + \langle \mathbf{v}, \mathbf{w} \rangle + \langle \mathbf{w}, \mathbf{v} \rangle + \langle \mathbf{w}, \mathbf{w} \rangle$$

$$= ||\mathbf{v}||^2 + 2 \langle \mathbf{v}, \mathbf{w} \rangle + ||\mathbf{w}||^2$$

$$\rightarrow ||\mathbf{v} + \mathbf{w}||^2 \le ||\mathbf{v}||^2 + 2||\mathbf{v}|| \cdot ||\mathbf{w}|| + ||\mathbf{w}||^2$$

$$= (||\mathbf{v}|| + ||\mathbf{w}||)^2$$

Example of other norms

 $||\cdot||$ is a norm if

Example $x \in \mathbb{R}^n$,

$$||x|| = \max_{1 \le i \le n} |x_i|$$

in
$$n = 2$$
. $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$, $||x|| = \max(|x_1|, |x_2|)$

Ball of radius r

$$B_r(x) = \{ y \in \mathbb{R}^2 : ||y - x|| < r \}$$

It's a square:

$$\leq \{y = \begin{pmatrix} y_1 \\ y_2 \end{pmatrix} : |y_1|, |y_2| < r\}$$

Example $x \in \mathbb{R}^n$

$$||x|| = \sum_{i=1}^{n} |x_i|$$

in
$$n = 2$$
, $x = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \to ||x|| = |x_1| + |x_2|$.

Ball of radius r again. It's a box but looks diagonal. It's called a "taxicab norm". Example $x \in \mathbb{R}^n$

$$||x|| = \left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{n}}$$

(exercise: verify with triangle inequality)

With the same ball of radius r again, it's like the first norm but the corners are curved.

In the complex:

Innerproduct: $x, y \in \mathbb{C}^n$,

$$x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}, y = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix}$$
$$x_i, y_i \in \mathbb{C}$$

for instance $y_j=u_j+iv_j,\,i^2=-1$

 $u_j = \text{Re } y_i \text{ the real part}$

 $v_j = \text{Im } y_i \text{ the imaginary part}$

then
$$y_j\overline{y_j}=(u_j+iv_j)(u_j-iv_j)=(u_j)^2-(iv_j)^2=u_j^2+v_j^2$$

therefore, $y_j \overline{y_j} = |y_j|^2$

then,

$$\langle x, y \rangle = \sum_{j=1}^{n} x_j \overline{y_j}$$

$$y_j = \overline{y_j}$$

only if
$$y_j \in \mathbb{R}.$$

$$u_j + i v_j = u_j - i v_j \rightarrow v_j = 0$$

note:

$$\langle x, y \rangle = \sum_{j=1}^{n} x_{j} \overline{y_{j}}$$

$$\langle y, x \rangle = \sum_{j=1}^{n} y_{j} \overline{x_{j}}$$

$$\overline{\langle y, x \rangle} = \sum_{j=1}^{n} y_{j} \overline{x_{j}}$$

$$= \sum_{j=1}^{n} \overline{y_{j}} \overline{x_{j}}$$

$$= \sum_{j=1}^{n} \overline{y_{j}} x_{j}$$

$$= \langle x, y \rangle$$

Eigenvalues

A is a $n \times n$ real matrix

$$A \in \mathbb{R}^{n \times n}, \, A = (a_{ij})_{1 \leq i,j \leq n}, \, a_{ij} \in \mathbb{R}$$

Characteristic Polynomial

$$P(\lambda) = \det(A - \lambda)$$

degree =
$$n \rightarrow P(\lambda) = 0$$
 has n roots: $\lambda_1, \lambda_2, ... \lambda_n$

 λ_i are eigenvalues of A.

if λ_j is eigenvalue of $\mathcal{A} \to \det(A-\lambda_j) = 0$ (i.e. $A-\lambda_j$ has rank $\leq n-1)$

 \rightarrow it has nontrivial null space

if $\lambda_j \in \mathbb{C} \to \text{there exists } v \in \mathbb{C}^n$ such that

$$Av = \lambda_i v$$

if $\lambda_j \in \mathbb{R} \to$ there exists $v \in \mathbb{R}^n$ such that

$$Av = \lambda_i v$$

then v is called an eigenvector of A to eigenvalue λ_i .

Theorem Assume $A \in \mathbb{R}^{n \times n}$ has n distinct real eigenvalues $\lambda_1, ..., \lambda_n$, then it has n linearly independent eigenvectors.

Proof λ_j eigenvalue \rightarrow there exists $v_j \in \mathbb{R}^n$ so that $Av_j = \lambda_j v_j, j = 1, ..., n$.

We have to know $v_1,...,v_n$ are linearly independent (if

$$\sum_{i=1}^{n} c_j v_j = 0$$

for coefficients $c_1, c_2, ..., c_n$ then one must have $c_j = 0$ for all i.)

Use the trick: Put $z_i = \prod_{k \neq j} (\lambda_k I - A)$ so

$$z_j=(\lambda_nI-A)...(\lambda_{j+1}I-A)(\lambda_{j-1}I-A)...(\lambda_2I-A)(\lambda_1I-A) \text{ (notice no } j \text{ term)}$$
 then,

$$\begin{split} (\lambda_k I - A) v_j &= \lambda_k v_j - \lambda_j v_j = (\lambda_k - \lambda_j) v_j \\ &\to z_j v_j = \Pi_{k \neq j} (\lambda_k - \lambda_j) v_j \neq 0 \end{split}$$

Also

$$z_j v_k = 0$$

Now apply z_i to $\sum_{k=1}^n c_k v_k$.

$$\begin{split} z_i \left(\sum_{k=1}^n c_k v_k \right) &= \sum_{k=1}^n z_i (c_k v_k) \\ &= \sum_{k=1}^n c_k z_j v_k \\ &= c_j z_j v_j \end{split}$$

But $z_j v_j \neq 0$ so if these were to be 0, $c_j = 0$. This is true for all j = 1, 2, ..., n. So $c_j = 0$ for all j.

 $\rightarrow v_1, v_2, ... v_n$ are linearly independent.

Homework

pg 40: 3.8, 3.9