



#### **Smart Data**

3 Case Studies of Machine Learning in Fundraising Analytics

Claudia Rangel and Mai Bui 2018/7/16 (updated: 2018-08-09)



file:///C:/DAP/apra2018/APRA2018\_Slides2.html#69





### Machine learning: Road to happiness

The Vehicle: Machine Learning

The Destination: Analytics questions

The route: ML analysis workflow











# Machine learning





# Machine learning

Qb Qb

Subfield of Al



### Machine learning



- Subfield of Al
- automated learning approaches used to detect patterns in data -algorithms-
- ubiquitous: antispam software; search engines; product recommendation; website chatbots; face detection in phones and cameras...



### Machine learning



- Subfield of Al
- automated learning approaches used to detect patterns in data -algorithms-
- ubiquitous: antispam software; search engines; product recommendation; website chatbots; face detection in phones and cameras...
- Concerned with prediction error on new data.

--



 Learning the patterns in data, with adjustable parameters tweaks- by optimizing a performance metric -benchmark-

### Machine learning



- Subfield of Al
- automated learning approaches used to detect patterns in data -algorithms-
- ubiquitous: antispam software; search engines; product recommendation; website chatbots; face detection in phones and cameras...
- Concerned with prediction error on new data.

\_\_



 Learning the patterns in data, with adjustable parameters tweaks- by optimizing a performance metric -benchmark-

# Why Machine learning





# Why Machine learning



Data as asset



# Why Machine learning



- Data as asset
- Efficiency



# Why Machine learning



- Data as asset
- Efficiency
- Automated workflow



# Overview of common ML Algorithm



# Overview of common ML Algorithm Unsupervised Learning



# Overview of common ML Algorithm

# ab ab

#### **Unsupervised Learning**

- No target variable defined (identifying the different groups). Task focuses on grouping observations (donors, alumni, organizations) to maximize differences within groups.
- Clustering



# Overview of common ML Algorithm

# ab ab

#### **Unsupervised Learning**

- No target variable defined (identifying the different groups). Task focuses on grouping observations (donors, alumni, organizations) to maximize differences within groups.
- Clustering

#### Supervised Learning

• We know what we are looking for (previous donor, event attendee, engaged alum). Task focuses on correctly classifying new observations.



# Overview of common ML Algorithm

# ab ab

#### **Unsupervised Learning**

- No target variable defined (identifying the different groups). Task focuses on grouping observations (donors, alumni,organizations) to maximize differences within groups.
- Clustering

#### Supervised Learning

- We know what we are looking for (previous donor, event attendee, engaged alum). Task focuses on correctly classifying new observations.
- Classification



# Overview of common ML Algorithm

# ab ab

#### **Unsupervised Learning**

- No target variable defined (identifying the different groups). Task focuses on grouping observations (donors, alumni,organizations) to maximize differences within groups.
- Clustering

#### **Supervised Learning**

- We know what we are looking for (previous donor, event attendee, engaged alum). Task focuses on correctly classifying new observations.
- Classification
- Regression



# Overview of common ML Algorithm

# ab ab

#### **Unsupervised Learning**

- No target variable defined (identifying the different groups). Task focuses on grouping observations (donors, alumni,organizations) to maximize differences within groups.
- Clustering

#### Supervised Learning

- We know what we are looking for (previous donor, event attendee, engaged alum). Task focuses on correctly classifying new observations.
- Classification
- Regression



 Many others out of intro scope: (Semi-supervised learning, Reinforcement learning, Deep Learning, Adversarial Learning)

# ML: Unsupervised Learning



- K-means
- DBSCAN



# Clustering





# ML: Supervised Learning





## ML: Supervised Learning



#### **Rule-based approach**

Decision tree, regression trees, and random forest algorithm.



# ML: Supervised Learning



#### **Rule-based approach**

Decision tree, regression trees, and random forest algorithm.

#### Probabilistic approach

Naive Bayes algorithm.



### ML: Supervised Learning



#### **Rule-based approach**

Decision tree, regression trees, and random forest algorithm.

#### Probabilistic approach

Naive Bayes algorithm.

#### Distance-based approach

I Support vector machine, KNN



### KNN





### SVM





## ML: Classification Algorithms



#### • Ensembles

• Common ML: Random Forest, bagging boosting

• Great: Performance

• Not so great: Interpretability





# Choose and setup your stack





# Choose and setup your stack

**ab** 

Python



## Choose and setup your stack



- Python
- Conda/miniconda



### Choose and setup your stack



- Python
- Conda/miniconda
- IDE, For instance: Jupyter notebook



### Choose and setup your stack



- Python
- Conda/miniconda
- IDE, For instance: Jupyter notebook
- · R



### Choose and setup your stack



- Python
- Conda/miniconda
- IDE, For instance: Jupyter notebook
- .R
- CRAN
- IDE, for instance: Rstudio



### libraries code snippet:

# Both RStudio and Jupyter notebooks can handle R and Python code= Great Integration

#### R

```
pacman:: p_load(rattle,RColorBrewer,rpart.plot,rpart,caret,DMwR,randomForest,e10
```

#### **Python**

```
import pandas
import numpy as np
import scipy as sp
import matplotlib.pyplot as plt
import sklearn as sk
```



### Why R/Python?



- Not GUI: code once, reuse many -automation, efficiency
- Code IS documentation -reproducibility
- Open source -free!!! Easy to share
- Extensible: committed people creating ready-to-use libraries for data analysis/ML
- Cross-platform



### **Read Data**



--

**Import** 

--

Merge

--

**Fuzzy match** 



## Data Prep/Data Wrangling





## Data Prep/Data Wrangling



Remove blanks



## Data Prep/Data Wrangling



- Remove blanks
- Convert to numeric



## Data Prep/Data Wrangling



- Remove blanks
- Convert to numeric
- Check imbalanced target variable -rare outcome-



## Data Prep/Data Wrangling



- Remove blanks
- Convert to numeric
- Check imbalanced target variable -rare outcome-
- Run descriptives

--

• Centered/Scale/ Deal with outlier. When appropriate!



|             | Partition 1 | Partition 2 | Partition 3 |
|-------------|-------------|-------------|-------------|
| Iteration 1 | Train       | Train       | Test        |
| Iteration 2 | Train       | Test        | Train       |
| Iteration 3 | Test        | Train       | Train       |



## Script model

Partition 1 Partition 2 Partition 3

Iteration 1 Train Train Test

Iteration 2 Train Test Train

Iteration 3 Test Train Train Train



### Script model

• Understand how choice of parameter (model options) affect your results.

i.e. number of trees in classification tasks, number of neighbors in KNN task

|             | Partition 1 | Partition 2 | Partition 3 |
|-------------|-------------|-------------|-------------|
| Iteration 1 | Train       | Train       | Test        |
| Iteration 2 | Train       | Test        | Train       |
| Iteration 3 | Test        | Train       | Train       |



### Script model

• Understand how choice of parameter (model options) affect your results.

i.e. number of trees in classification tasks, number of neighbors in KNN task

• Cross-validation is important

| Iteration 1 | Train | Train | Test  |
|-------------|-------|-------|-------|
| Iteration 2 | Train | Test  | Train |
| Iteration 3 | Test  | Train | Train |

Partition 2

Partition 1



Partition 3

#### Model Performance

#### Many metrics. Best one depends on your goal.

• Accuracy, ROC, Entropy, Loss Function

|           |   |   | Actual |
|-----------|---|---|--------|
|           |   | 1 | 0      |
| Predicted | 1 | Α | В      |
|           | 0 | C | D      |



#### Version Control: Git - Github - RStudio

#### "FINAL".doc



FINAL.doc!



FINAL\_rev. 2. doc

















FINAL\_rev.18.comments7.

FINAL\_rev.22.comments49. corrections 9. MORE. 30. doc corrections. 10. #@\$ %WHYDID ICOMETOGRADSCHOOL????.doc

WWW.PHDCOMICS.COM







• Git is a version control system



Files structured in a repository



Git is a version control system



Files structured in a repository

• Github provides a hosting service for your git repositories on the internet. (dropbox loose example).

Functionality: share, synch, make changes

Remote repository that we can go back to, after the feared delete/replace/corrupt local files crises.





## Brainstorming





### **Brainstorming**



• Pick a problem from your *unending* analysis to-do list



### **Brainstorming**



- Pick a problem from your *unending* analysis to-do list
- Choose the ML algorithm that best match the question and data



### Brainstorming



- Pick a problem from your *unending* analysis to-do list
- Choose the ML algorithm that best match the question and data
- Think about the nature of the data: preprocessing, imbalanced



### Brainstorming



- Pick a problem from your *unending* analysis to-do list
- Choose the ML algorithm that best match the question and data
- Think about the nature of the data: preprocessing, imbalanced
- What is the *first barrier* to start your road to happiness
  - Can we help? DAS community / book resources / specific questions



Next Steps:





### **Next Steps:**

Detailed R and Python notebooks are available in our github site



### Next Steps:

- Detailed R and Python notebooks are available in our github site
- Got more time?



### Next Steps:

- Detailed R and Python notebooks are available in our github site
- Got more time?

These are some extra Resources



### Next Steps:

- Detailed R and Python notebooks are available in our github site
- Got more time?

#### These are some extra Resources

Github, Git and Rstudio for version control workflows:

http://happygitwithr.com/

- Rstudio
- Rbloggers, useR



• Stackoverflow, Kaggle





#### Thanks!

This presentation used xaringan ninja style.

**CSS file based on Rladies by Alison Presmanes Hill** 

69 / 70 00:50