Indian Institute of Science Education and Research, Mohali Classical Mechanics (PHY301)

(August – December 2022) Mid-Semester Exam I) September 19, 2022

Name:	
Roll Number:	
Duration of this exam is 60 minutes.	
Please write your name and roll number on the question paper as well as the answer sheet.	
Consider a harmonic oscillator in two dimensions:	
$U = \frac{1}{2}kr^2 \ , \ r^2 = x^2 + y^2$	
For this system:	
(a) Write down the kinetic energy and potential energy for this system and obtain an for the Lagrangian.	expression [1]
(b) Derive the equation of motion.	[2]
(c) List cyclic coordinates for the system and give an explanation as to why these are dinates?	cyclic coor- [2]
(d) What are the conserved quantities (integrals of motion) for this system?	[2]
(e) Draw phase space diagrams for this system. Please make an attempt to plot all qualithat can occur for this system.	itative types [4]
(f) Derive the Hamiltonian for this system.	[2]
(g) Derive the Hamiltonian equations of motion for this system.	[2]