Ernesto Jiménez-Ruiz¹ Bernardo Cuenca Grau² Ulrike Sattler Thomas Schneider Rafael Berlanga¹

 1 Computer Languages and Systems, Universitat Jaume I, Spain 2 Computing Laboratory, University of Oxford, UK

IMG Seminar, 14th February 2008

Our approach in a nutshell

Why re-use?

- Logic-based methodology for the re-use of ontologies
- Safe use of imported symbols
- Economic import of the relevant parts of external ontologies
- Tool support Protégé plugin
- Work in progress!

And now ...

- Why ontology re-use?
- A safe and economic methodology
- Tool support and experiments

A re-use scenario: the Health-e-Child Project

- Build an ontology JRAO that describes JRA:
 Juvenile Rheumatoid Arthritis
- Describe JRA subkinds by
 - Joints affected

Why re-use?

00000

- Occurrence of concomitant symptoms e.g., fever
- Treatment with certain drugs
- Re-use information provided by biomedical ontologies
 - NCI diseases, drugs, proteins etc.
 - Galen human anatomy

JRA and related diseases in NCI

Why re-use?

000000

Building JRAO

A case for safe and economic re-use

Reasons for re-use

- Saves time for re-writing
- Provides access to well-established knowledge
- Doesn't require expertise in drugs, proteins, anatomy etc.

Guarantees to provide

- [safe] Importing terms doesn't change their meaning.
- [eco] Import all relevant parts of external ontologies.
- [aux] The order of imports doesn't matter.

The two main import guarantees

Safety

Importing terms doesn't change their meaning.

Directed inwards: How do we re-use terms in our local ontology?

Module Coverage

Import all relevant parts of external ontologies.

```
JRAO∪NCI ⊨ JRA ⊑ GeneticDisorder

iff JRAO∪NCI-module ⊨ JRA ⊑ GeneticDisorder
```

Directed outwards: How many external terms do we re-use?

The two main import guarantees

Safety

Importing terms doesn't change their meaning.

Directed inwards: How do we re-use terms in our local ontology?

Module Coverage

Import all relevant parts of external ontologies.

Directed outwards: How many external terms do we re-use?

The third import guarantee

Module Independence

The order of imports doesn't matter.

If it is safe to import an **NCI** module, then this is still the case after importing a Galen module.

And now ...

- 1 Why ontology re-use?
- A safe and economic methodology
- 3 Tool support and experiments
- 4 Conclusion and perspectives

$$S_1 = \{JRA\}$$
 $\mathcal{E}_1 = NCI$

$$S_1 = \{JRA\}$$
 $\mathcal{E}_1 = NCI$
 $S_2 = \{KneeJoint, Fever\}$
 $\mathcal{E}_2 = Galen$

 $S_1 = \{JRA\}$ $\mathcal{E}_1 = NCI$ $S_2 = \{KneeJoint, Fever\}$ $\mathcal{E}_2 = Galen$

Refine S_1 Refine + reference S_2

Formalising the Safety Guarantee

Safety

Importing terms doesn't change their meaning.

Definition (Safety)

 \mathcal{L} guarantees safety if for every $i = 1, \ldots, n$:

For every \mathcal{E}'_i with $\operatorname{Sig}(\mathcal{L}) \cap \operatorname{Sig}(\mathcal{E}'_i) \subseteq S_i$, for all axioms α with $\operatorname{Sig}(\alpha) \subseteq S_i$, $\mathcal{L} \cup \mathcal{E}'_i \models \alpha$ iff $\mathcal{E}'_i \models \alpha$.

Example

Providing safety

Theorem [Cuenca Grau, Horrocks, Kazakov, Sattler 2007]

If \mathcal{L} is local w.r.t. each S_i , then \mathcal{L} guarantees safety.

Locality ...

- is a syntactic approximation of conservativity.
- can be decided efficiently; conservativity often can't.
- comes in two "flavours" for refinement/generalisation.
- is sufficient, but not necessary, for safety.

If non-local axioms are found, the user may want to repair \mathcal{L} .

Providing safety

Theorem [Cuenca Grau, Horrocks, Kazakov, Sattler 2007]

If \mathcal{L} is local w.r.t. each S_i , then \mathcal{L} guarantees safety.

Locality ...

- is a syntactic approximation of conservativity.
- can be decided efficiently; conservativity often can't.
- comes in two "flavours" for refinement/generalisation.
- is sufficient, but not necessary, for safety.

If non-local axioms are found, the user may want to repair \mathcal{L} .

Example: $C_7 \sqsubseteq JRA \checkmark$ GeneticDisorder $\sqsubseteq C_7 \checkmark$

0000000

Formalising the Module Coverage Guarantee

Module coverage

Import all relevant parts of external ontologies.

Definition (Module coverage)

```
Let \mathcal{E}_i^M \subseteq \mathcal{E}_i such that S_i \subseteq \operatorname{Sig}(\mathcal{E}_i^M).
```

 \mathcal{E}_i^M guarantees coverage of S_i if:

For every \mathcal{L}' with $\operatorname{Sig}(\mathcal{L}') \cap \operatorname{Sig}(\mathcal{E}_i) \subseteq S_i$,

for all ax. α with $Sig(\alpha) \subseteq S_i$, $\mathcal{L}' \cup \mathcal{E}_i \models \alpha$ iff $\mathcal{L}' \cup \mathcal{E}_i^M \models \alpha$.

Example

```
JRAO ∪ NCI ⊨ JRA ⊑ GeneticDisorder

iff JRAO ∪ NCI-module ⊨ JRA ⊑ GeneticDisorder
```

Formalising the Module Coverage Guarantee

Module coverage

Import all relevant parts of external ontologies.

Definition (Module coverage)

```
Let \mathcal{E}_i^M \subseteq \mathcal{E}_i such that S_i \subseteq \operatorname{Sig}(\mathcal{E}_i^M).
```

 \mathcal{E}_{i}^{M} guarantees coverage of S_{i} if:

For every \mathcal{L}' with $\operatorname{Sig}(\mathcal{L}') \cap \operatorname{Sig}(\mathcal{E}_i) \subseteq S_i$,

for all ax. α with $Sig(\alpha) \subseteq S_i$, $\mathcal{L}' \cup \mathcal{E}_i \models \alpha$ iff $\mathcal{L}' \cup \mathcal{E}_i^M \models \alpha$.

Example

Providing the Module Coverage Guarantee

- Coverage is provided by locality-based modules.
- = syntactic approximations of conservativity-based modules
 - in general not minimal
 - efficiently computable

The Module Independence Guarantee

Module independence

The order of imports doesn't matter.

Is provided by locality and the disjointness of the S_i .

And now ...

- 1 Why ontology re-use?
- 2 A safe and economic methodology
- 3 Tool support and experiments
- 4 Conclusion and perspectives

Safe Protégé Manager: a plugin

See demo . . .

"Synthetic" Experiments

Setting

- Took arbitrary class name from Galen or NCI
- Added 0...3 levels of super/subclasses
- \rightarrow Signature of size 1...330
 - Computed modules UM and LUM for each such signature

Results

- 99 % of Galen UM contain < 10 % of Galen's axioms
- 99 % of Galen LUM contain < 5 % of Galen's axioms
- similar findings for NCI

Statistics

Statistics

"Real-life" Experiments

Setting

- Health-e-Child context: JRA + Cardiomyopathies
- Manually selected + expanded signatures from Galen and NCI
- Computed LUM

Results							
Disease	Ext. Ont.	#Sig.	# axioms	# classes	# properties		
JRA	Galen	11	105	96	20		
JRA	Galen	76	736	427	119		
CMP	Galen	72	620	363	99		
JRA	NCI	18	488	18			
JRA	NCI	144	5057	312	14		
CMP	NCI	124	4751	321	11		

Comparing Experiments

Setting

- SNOMED (health care; restricted language; 350,000 axioms)
- Initial signatures: terms from intensive care unit
- Computed LUM; conservativity-based modules (Wolter et al.); Seidenberg/Rector segments; PROMPT segments (Noy, Musen)

Results

	# axioms segment : SNOMED					
$\#\operatorname{Sig}$.	Wol++	Sei/Rec	LUM			
≈4,000	2 %	2 %	4 %			
≈ 16,000	7 %	7 %	10 %			
≈24,000		10 %	15 %			
time	4–5 s	< 1s	4–7 s			

And now ...

- 1 Why ontology re-use?
- 2 A safe and economic methodology
- 3 Tool support and experiments
- Conclusion and perspectives

Conclusion

- Logic-based approach to re-use of ontologies that is . . .
 - safe importing terms doesn't change their meaning
 - economic the relevant parts are imported
- Re-use methodology
- Tool support
- Work in progress!

Perspectives

Why re-use?

- Extend module scope customisation: "shopping for symbols"
 - Browse external ontology
 - Pick symbols
 - At each stage, view resulting module
 - "Check out" module
- Optimise module extraction
- Perform user study and improve interface
- Import "by reference" as opposed to "by value"
- Multi-user scenario

Conclusion and perspectives

We want you...

- ... to test our plugin and give us feedback
 - protege.stanford.edu
 - krono.act.uji.es/people/Ernesto/ safety-ontology-reuse
- ...r favourite ontologies and real-life signatures!

We want you...

- ... to test our plugin and give us feedback
 - protege.stanford.edu
 - krono.act.uji.es/people/Ernesto/ safety-ontology-reuse
- ...r favourite ontologies and real-life signatures!

Thank you!

More links

Health-e-Child

• www.health-e-child.org

NCI and Galen

- nciterms.nci.nih.gov/NCIBrowser/Dictionary.do
- ftp1.nci.nih.gov/pub/cacore/EVS/NCIThesaurus
- www.co-ode.org/galen