Badanie ogniwa fotowoltaicznego Ćwiczenie nr 326 z działu Optyka

Maciej Kaszkowiak, Lab 4, 151856

1 Cel ćwiczenia

Przeprowadzone ćwiczenie ma następujące cele:

- 1. Zapoznanie się z podstawowymi wiadomościami na temat ogniw fotowoltaicznych.
- 2. Wyznaczenie:
 - Zależności prądu fotoogniwa od natężenia oświetlenia;
 - Charakterystyk prądowo-napięciowych fotoogniwa dla różnych wartości natężenia oświetlenia;
 - Oporu wewnętrznego oświetlonego fotoogniwa.

2 Wstęp teoretyczny

Ogniwo fotowoltaiczne składa się z dwóch warstw półprzewodników, które są połączone metalicznymi elektrodami. Gdy na ogniwo pada światło o dostatecznie dużej energii, wewnątrz ogniwa zachodzi proces fotoelektryczny, w wyniku którego powstają pary dziura-elektron. Te nośniki ładunku są dyfuzyjnie przenoszone do złącza p-n. W zależności od strony, z której docierają, są tam odpowiednio zbierane. W ten sposób powstaje różnica potencjałów pomiędzy elektrodami, a po podłączeniu do odbiornika w zamkniętym obwodzie elektrycznym popłynie prąd elektryczny. Natężenie tego prądu jest w przybliżeniu proporcjonalne do natężenia oświetlenia fotoogniwa. Można określić charakterystyki prądowo-napięciowe oraz mocy od napięcia dla ogniwa fotowoltaicznego w zależności od natężenia światła. Maksymalny prąd zmienia się proporcjonalnie do jego oświetlenia, zaś maksymalna moc może zostać uzyskana, gdy rezystancja odbiornika jest równa rezystancji wewnętrznej ogniwa.

3 Przebieg ćwiczenia

- 1. Włączyliśmy lampę i ustawiliśmy naprzeciwko niej detektor światła podłączony do luksomierza
- 2. Wykonaliśmy pomiary natężenia oświetlenia L w funkcji odległości od źródła światła r w zakresie 20 90 cm (początkowo zmieniając odległość co 2 cm, potem co 5 cm a na koniec co 10 cm).
- 3. Odłączylismy detektor światła od luksomierza a następnie obrócilismy. Połączylismy ogniwo fotowoltaiczne zgodnie ze schematem.
- 4. Na rezystorze dekadowym ustawiliśmy wartość $R_R=0$ Ω , a następnie wykonaliśmy pomiary natężenia prądu I w funkcji odległości r od źródła światła w zakresie 20 90 cm.
- 5. Ustawiliśmy fotoogniwo w odległości r = 30 cm od lampy i wykonaliśmy pomiary natężenia prądu fotoogniwa od napięcia zmieniając rezystancję R_R . Pomiary te powtórzyliśmy dla odległości 35 cm oraz 45 cm.

Rysunek 1: Schemat elektryczny obwodu pomiarowego

4 Wyniki pomiarów

Dystans	Natężenie światła	Dokładność	Natężenie prądu	Dokładność
(cm)	(lux)	luksomierza	(mA)	amperomierza
20	25800	100	70.0	0.1
22	21100	100	58.2	0.1
24	16440	10	48.8	0.1
26	14090	10	41.6	0.1
28	12030	10	36.1	0.1
30	10500	10	31.6	0.1
35	7750	10	23,6	0.1
40	5940	10	18,15	0.01
45	4770	10	14,73	0,01
50	3920	10	12,26	0,01
55	3330	10	10,46	0,01
60	2880	10	9,10	0,01
70	2080	10	7,16	0,01
80	1827	1	5,85	0,01
90	1535	1	4,91	0,01

Tabela 1: Pomiar natężenia światła zmierzonego przez luksomierz oraz natężenia prądu ogniwa fotowoltaicznego w zależności od dystansu od źródła światła.

Rezystancja Ω	Napięcie mV	Natężenie mA	Moc mW
1	196.5	31.1	6.11
2	226	31	7.01
3	256	30.9	7.91
4	285	30.8	8.78
5	314	30.6	9.61
6	342	30.4	10.40
7	367	29.9	10.97
8	390	29.5	11.51
9	410	28.8	11.81
10	426	19.83	8.45
12	449	18.51	8.31
14	463	17.33	8.02
16	472	16.28	7.68
18	478	15.35	7.34
20	483	14.5	7.00
25	492	12.76	6.28
30	497	11.38	5.66
35	500	10.28	5.14
40	503	9.37	4.71
45	505	8.6	4.34
50	508	7.96	4.04
60	509	6.91	3.52
70	510	6.11	3.12
80	511	5.47	2.80
90	512	4.96	2.54
100	513	4.52	2.32
200	515	1.698	0.87
300	516	1.28	0.66
400	517	1.027	0.53
500	517	0.857	0.44
600	517	0.736	0.38
700	517	0.644	0.33
800	517	0.573	0.30
900	517	0.517	0.27
1000	517	0.47	0.24

Tabela 2: Pomiar zależności natężenia prądu od napięcia dla
r $=30\mathrm{cm},\,\mathrm{L}=10500$ lux

Rezystancja Ω	Napięcie mV	Natężenie mA	Moc mW
1	143.7	22.9	3.29
2	166	22.8	3.78
3	188.2	22.8	4.29
4	211	22.7	4.79
5	232	22.7	5.27
6	254	22.6	5.74
7	276	22.5	6.21
8	296	22.4	6.63
9	317	22.3	7.07
10	336	22.2	7.46
12	372	21.7	8.07
14	401	21	8.42
16	423	20	8.46
18	469	14.61	6.85
20	473	13.85	6.55
25	479	12.26	5.87
30	484	10.97	5.31
35	487	9.93	4.84
40	489	9.07	4.44
45	491	8.33	4.09
50	493	7.72	3.81
60	495	6.72	3.33
70	497	5.94	2.95
80	498	5.33	2.65
90	499	4.83	2.41
100	500	4.41	2.21
200	504	1.660	0.84
300	505	1.252	0.63
400	506	1.005	0.51
500	506	0.839	0.42
600	506	0.720	0.36
700	506	0.631	0.32
800	507	0.561	0.28
900	507	0.506	0.26
1000	507	0.460	0.23

Tabela 3: Pomiar zależności natężenia prądu od napięcia dla
r $=35\mathrm{cm},\,\mathrm{L}=7750$ lux

Rezystancja Ω	Napięcie mV	Natężenie mA	Moc mW
1	216	14.17	3.06
2	229	14.13	3.24
3	243	14.09	3.42
4	256	14.05	3.60
5	269	14.01	3.77
6	282	13.95	3.93
7	294	13.9	4.09
8	307	13.82	4.24
9	319	13.75	4.39
10	330	13.66	4.51
12	352	13.45	4.73
14	371	13.17	4.89
16	387	12.85	4.97
18	400	12.47	4.99
20	412	12.06	4.97
25	431	11.03	4.75
30	443	10.06	4.46
35	451	9.21	4.15
40	457	8.47	3.87
45	461	7.83	3.61
50	465	7.28	3.39
60	470	6.37	2.99
70	473	5.66	2.68
80	475	5.09	2.42
90	477	4.62	2.20
100	479	4.23	2.03
200	486	1.607	0.78
300	489	1.211	0.59
400	490	0.972	0.48
500	490	0.812	0.40
600	490	0.697	0.34
700	490	0.611	0.30
800	491	0.544	0.27
900	491	0.49	0.24
1000	491	0.446	0.22

Tabela 4: Pomiar zależności natężenia prądu od napięcia dla
r $=45\mathrm{cm},\,\mathrm{L}=4770$ lux

5 Opracowanie wyników

Rysunek 2: Zależność natężenia światła od odległości czujnika od źródła światła.

Zgodnie z teorią natężenie oświetlenia maleje z kwadratem odległości od źródła światła $L = \frac{1}{r}$.

Rysunek 3: Zależność prądu ogniwa fotowoltaicznego w zależności od natężenia światła.

Możemy zauwazyć, że prąd ogniwa fotowoltaicznego rośnie liniowo w zależności od natężenia światła.

Rysunek 4: Charakterystyki prądowo-napięciowe fotoogniwa dla różnych wartości natężenia oświetlenia.

Rysunek 5: Zależność mocy od napięcia.

Gwałtowne skoki widoczne w kształcie wykresu odbiegające od teoretycznych założeń, w szczególności dostrzegalne dla odległości r=30cm, wynikają z niedokładności aparatury pomiarowej. Punkty z gwałtownym spadkiem wynikają ze zmiany zakresu pomiarowego na mierniku, celem osiagniecia możliwie najdokładniejszych wyników.

W trakcie wykonywania pomiarów zanotowaliśmy szczególny przypadek w celu uwypuklenia powyższego problemu - zmierzone natężenie prądu wynosiło 2,3 mA na większym zakresie, natomiast 1,607 mA na mniejszym zakresie. Poszczególny przypadek miał miejsce przy ustawionym 200 Ohm rezystancji na rezystorze dekadowym i 45 cm odległości od źródła światła. Możemy zauważyć, że błąd bezwzględny wynosi 0,693 mA, natomiast błąd względny stanowi aż 43,1%, przyjmując wartość natężenia z dokładniejszego zakresu pomiaru jako prawidłową.

Rysunek 6: Teoretyczne charakterystyki prąd-napięcie oraz moc-napięcie przy różnym oświetleniu ogniwa fotowoltaicznego.

Pomijając gwałtowne skoki wynikające ze zmiany zakresu pomiarowego na mierniku, uzyskane pomiary zgadzają się z teoretycznymi założeniami. Możemy zaobserwować, że prąd fotoogniwa rośnie wraz z natężeniem oświetlenia padającego na fotoogniwo. Możemy również odczytać punkty największej mocy dla poszczególnych natężeń światła.

$$r = 30cm, L = 10500 lux U_{max} = 410mV, P_{max} = 11.81mW$$

$$r = 35cm, L = 7750 lux U_{max} = 423mV, P_{max} = 8.46mW$$

$$r = 45cm, L = 4770 lux U_{max} = 400mV, P_{max} = 4.99mW$$

Możemy również wyznaczyć rezystancję odbiornika R_{odb} , która w tym przypadku jest równa rezystancji wewnętrznej fotoogniwa R_F .

$$R_{odb} = R_F = \frac{U_{max}^2}{P_{max}} \tag{1}$$

 $r = 30cm, L = 10500 lux R_o db = 14.23\Omega$

 $r = 35cm, L = 7750 lux R_o db = 21.15\Omega$

 $r = 45cm, L = 4770 lux R_o db = 32.06\Omega$

6 Wnioski

Doświadczenie pozwoliło wykazać że prąd fotoogniwa rośnie liniowo wraz ze wzrostem natężenia światła. Umożliwiło również wyznaczenie charakterystyk prądowo-napięciowych ogniwa fotowolta-icznego dla różnych wartości natężenia oświetlenia i zauważenie, że maksymalne napięcie zależy od tego natężenia w niewielkim stopniu gdzie maksymalny prąd zmienia się znacząco. Dzięki wykresom moc-napięcie udało się wyznaczyć rezystancję wewnętrzną fotoogniwa dla poszczególnych odległości od źródła światła.

7 Bibliografia

1. Badanie ogniwa fotowoltaicznego (Krzysztof Łapsa)