2020-2021学年秋季学期

自然语言处理 Natural Language Processing

授课教师: 胡玥

助 教: 于静

中国科学院大学网络空间安全学院专业核心课

自然语言处理 Natural Language Processing

第8章 神经网络语言模型

授课教师: 胡玥

授课时间: 2020.9

基于深度学习的自然语言处理课程内容

语言处 理方法

第8章 神经网络语言模型

概要

本章主要内容:

1. 介绍神经网络语言模型的基本概念 2.介绍 NNLM神经网络语言模型结构和训练方法 3. 介绍RNNLM神经网络语言型结构和训练方法以及RNNLM模型的变形

本章教学目的:

了解并掌握神经网络语言模型的概念,模型结构及训练方法

内容提要

- 8.1 概述
- 8.2 NNLM 模型
- 8.3 RNNLM 模型

统计语言模型回顾

用句子 $S=W_1,W_2,...,W_n$ 的 概率 p(S) 来定量的刻画句子。

输入: 句子 S

参数: p(w_i|w₁,...,w_{i-1})

统计语言模型:

用概率统计法学习参数

说明:

- (1) W_i 可以是字、词、短语或词类等等,称为统计基元。通常以"词"代之。
- (2) W_i 的概率由 W_1 , ..., W_{i-1} 决定,由特定的一组 W_1 , ..., W_{i-1} 构成的一个序列, 称为 w_i 的历史 (history) 。

问题1: 由于受参数规模限制,需对对词的历史信息进行简化 ,一般假设一个词的出现 概率只与它前面的*n*-1个词相关,距离大于等于n的上文词会被忽略 (n-gram)

根据对 p(wi|w1,...,wi-1)的简化程度而定义:

- ❖ 1元模型 (unigram): $p(w_1,...,w_m) = \prod_{i=1}^m p(w_i)$ w_i 独立于历史
- ❖ 2元模型 (bigram): $p(w_1,...,w_m) = \prod_{i=1}^{m} p(w_i|w_{i-1}) w_i$ 保留前1个词序
- ❖ 3元模型 (trigram): $p(w_1,...,w_m) = \prod_{i=1}^{m} p(wi|w_{i-2}, w_{i-1}) w_i 保留前2个词序$
- *****
- ❖ n 元模型 (n-gram) :p($w_1,...,w_m$)= $\prod_{i=1}^m p(wi|w_{i-(n-1)},w_{i-1})$ w_i 保留前n个词序

问题2: n-gram 语言模型参数 p(w_i|w_{i-(n-1)} w_{i-1}) 由最大似然估计求得使得:

- 存在数据稀疏问题,需要数据平滑。而平滑技术错综复杂而且需要回退到底阶, 使得 该模型无法面向更大的n元文法获取更多的词序信息
- 基于最大似然估计的语言模型缺乏对上下文的泛化

$$p(w_i \mid w_{i-n+1}^{i-1}) = f(w_i \mid w_{i-n+1}^{i-1}) = \frac{\sum_{w_i} c(w_{i-n+1}^i)}{\sum_{w_i} c(w_{i-n+1}^{i-1})}$$

其中: $\sum_{w_i} c(w_{i-n+1}^{i-1})$ 是历史串 w_{i-n+1}^{i-1} 在给定语料中出现的次数 $\sum_{w_i} c(w_{i-n+1}^i)$,为 w_{i-n+1}^{i-1} 与 w_i 同现的次数。

神经网络语言模型提出

2001年 - 神经语言模型 (Neural language models) — 里程碑

Bengio 等人2001年提出了第一个神经网络语言模型 (Neural language models) 它是一种前馈神经网络,该模型在学习语言模型的同时,也得到了词向量。

Paper: Yoshua Bengio, et.al. A neural probabilistic language model (2001, 2003)

概述 8.1

神经网络语言模型概念

用句子 $S=w_1, w_2, ..., w_n$ 的 概率 p(S) 来定量的刻画句子。

$$p(S) = \prod_{i=1}^{n} p(w_i \mid w_1 \dots w_{i-1})$$
 输出: 句子概率p(S)

输入: 句子S

 $p(w_i|w_1,...,w_{i-1})$ 参数:

统计语言模型:

用概率统计法学习参数

神经网络语言模型:

用神经网络学习参数

根据所用神经网络不同,分为:

- NNLM 模型 (使用DNN)
- RNNLM 模型 (使用RNN)

内容提要

- 8.1 概述
- 8.2 NNLM 模型
- 8.3 RNNLM 模型

目标: 用神经网络DNN 求语言模型 $p(S) = \prod_{i=1}^{n} p(w_i | w_1 \dots w_{i-1})$ 模型参数 $p(w_i | w_{i-(n-1)} \dots w_{i-1})$

■ 2 元文法模型 (bigram): p(w₁,...,w_m)=∏_{i=1}^m p(w_i|w_{i-1}) w_i 保留前1个词序
 语句 s = w₁ w₂ ... w_n 的 概率p(S) 为 :

$$p(s) = p(w_1) \times p(w_2/w_1) \times p(w_3/w_2) \times \dots \times p(w_n/w_{n-1})$$

P(w_i|w_{i-1})

|V|
|P(w_i)
|

(1) NNLM模型结构

语言模型参数

输出层有|V|个元素,V是有限词表包括未登录词标识UNK和句子开始和结束补齐符号,一般在10000≈1000000左右,常见规模70000左右

(2) NNLM模型学习 (2-gram)

参数: $\theta = \{ H, U, b^1, b^2 \}$

输出: $p(w_i|w_{i-1})$

$$= \frac{\exp(y(w_i))}{\sum_{k=1}^{|V|} \exp(y(v_k))}$$

 $y(\mathbf{w}_i) = b^2 + U \left(\tanh \left(XH + b^1 \right) \right)$

● 语料: ("无监督")

文本: $S=w_1, w_2, \dots, w_n$, …

实例: X: w_{i-1}

 $\widehat{Y}: \mathbf{w}_{i}$

● 目标函数:

采用log损失函数 L(Y, P(Y|X))=-logP(Y|X)

对于整个语料而言,语言模型需要最大化:

$$\sum_{w_{i-1}: i \in D} \log P(w_i \mid w_{i-1})$$

● 参数训练:

(BP) 随机梯度下降法优化训练目标: 每次迭代,随机从语料D 中选取一段文本

w_{i-(n-1)},···,w_i作为训练样本进行一次梯度迭代

$$\theta \leftarrow \theta + \alpha \frac{\partial \log P(w_i \mid w_{i-1})}{\partial \theta}$$

其中, α学习率, $\theta = \{H, U, b^1, b^2\}$

(3) NNLM模型预测

例: P("wreck a nice beach")

=P(wreck | START)P(a | wreck)P(nice | a)P(beach | nice)

P(wreck | START)

P(a | wreck)

P(nice | a)

P(beach | nice)

P(beach | nice)

P(beach | nice)

P(beach | nice)

"START"

"wreck"

"a"

"nice"

■ n 元文法模型 (n-gram) :p($w_1,...,w_m$)= $\prod_{i=1}^m p(wi|w_{i-(n-1)_{...}}w_{i-1})$ w_i 保留前n个词序

(1) NNLM模型结构

 $p(w_1,...,w_m) = \prod_{i=1}^m p(w_i|w_{i-(n-1)} w_{i-1})$ n-gram:

softmax(y)

U

 W_{i-2} W_{i-1}

输出层:
$$p(w_i|w_{i-(n-1)}, w_{i-1}) = \frac{\exp(y(w_i))}{\sum_{k=1}^{|V|} \exp(y(v_k))}$$

 $y(w_i) = b^2 + U \text{ (tanh (XH+b^1))}$

隐藏层: h=tanh(XH+b¹)

输入层: X: n-1个词 w _{i-(n-1)} ,...,w_{i-1}

参数: $\theta = \{ H, U, b^1, b^2 \}$ 神经网络参数

词以什么形式输入网络 → 词向量问题

 $W_{i-(n-1)}$

(2) NNLM模型学习 (n-gram)

参数: $\theta = \{ H, U, b^1, b^2 \}$

输出: $p(w_i|w_{i-(n-1)}|w_{i-1})$

$$= \frac{\exp(y(w_i))}{\sum_{k=1}^{|V|} \exp(y(v_k))}$$

 $y(\mathbf{w}_i) = b^2 + U \left(\tanh \left(XH + b^1 \right) \right)$

输出层 P(w_i) 输出层 U 隐藏层 输入层 w_{i-(n-1)} w_{i-2} w_{i-1}

● 语料: ("无监督")

文本: $S=w_1, w_2, \dots, w_n$, …

实例: $X: w_1, w_2, \dots, w_{i-1}$

 $\widehat{Y}: \mathbf{w}_{i}$

● 目标函数:

采用log损失函数 L(Y, P(Y|X))=-logP(Y|X)

对于整个语料而言,语言模型需要最大化:

$$\sum_{w_{i-(n-1)}: i \in D} \log P(w_i \mid w_{i-(n-1)}, ..., w_{i-1})$$

● 参数训练:

(BP) 随机梯度下降法优化训练目标: 每次迭代,随机从语料D 中选取一段文本 w_{i-(n-1)},…,w_i作为训练样本进行一次梯度迭代

$$\theta \leftarrow \theta + \alpha \frac{\partial \log P(w_i \mid w_{i-(n-1)}, ..., w_{i-1})}{\partial \theta}$$

其中, α学习率, $\theta = \{H, U, b^1, b^2\}$

(3) NNLM模型预测 (n-gram) 如 n=4

例: P("wreck a very nice beach")

=P(very | START wreck a)P(nice | wreck a very) P(beach | a very nice)

P(very | START wreck a)

"START wreck a"

P(nice | wreck a very)

"wreck a very"

P(beach | a very nice)

"a very nice"

每求一个参数用一遍神经网络

内容提要

- 8.1 概述
- 8.2 NNLM 模型
- 8.3 RNNLM 模型

目标: 用循环神经网络RNN 求语言模型 $p(S) = \prod_{i=1}^{n} p(w_i \mid w_1 \dots w_{i-1})$

X

■ 2 元文法模型 (bigram): $p(w_1,...,w_m) = \prod_{i=1}^m p(w_i|w_{i-1}) w_i$ 保留前1个词序

语句 $s = w_1 w_2 ... w_n$ 的 概率p(S)定义为:

$$p(s) = p(w_1) \times p(w_2/w_1) \times p(w_3/w_2) \times ... \times p(w_n/w_{n-1})$$

随着模型逐个读入语料中的词 $\mathbf{w}_1; \mathbf{w}_2 \cdots$.隐藏层不断地更新为 $\mathbf{h}(1), \mathbf{h}(2) \cdots$...,通过这种迭代推进方式,每个隐藏层实际上包含了此前所有上文的信息,相比NNLM 只能采用上文 \mathbf{n} 元短语作为近似,RNNLM 包含了更丰富的上文信息,也有潜力达到更好的效果。

语言模型参数

softmax(y)

输出层: $p(w_i|w_{i-1}) = \frac{\exp(y(w_i))}{\sum_{k=1}^{|V|} \exp(y(v_k))}$

隐藏层: h(t)=tanh(XH+Mh(t-1)+b¹)

参数: $\theta = \{H, U, M, b^1, b^2\}$

(2) RNNLM模型学习

参数: $\theta = \{ H, U, M, b^1, b^2 \}$

输出:
$$p(w_i | w_{i-1}) = \frac{\exp(y(w_i))}{\sum_{k=1}^{|V|} \exp(y(v_k))}$$

$$y(w_i) = b^2 + U (tanh (XH + Mh(t-1) + b^1))$$

● 目标函数:

对于整个语料,语言模型需要最大化

$$\sum_{v_{i-1} \ i \in D} \log P(w_i \mid w_{i-1})$$

RNN网络

● 语料: ("无监督")

文本: $S=W_1, W_2,..., W_n$,

• • • • •

实例: X: START, W₁, W₂,..., W_{n-1}

 $\hat{Y}: W_1, W_2, ..., W_{n-1} W_n$

● 参数训练:

(BPTT) 随机梯度下降法优化训练目标:

(3) RNNLM模型预测

例: $P(w_1, w_2, w_3, \dots, w_n)$

= $P(w_1)P(w_1|w_2)P(w_3|w_1,w_2) \cdot \cdot \cdot \cdot P(w_n|w_1,w_2 \cdot \cdot \cdot w_{n-1})$

8.3 RNNLM 模型(优点)

RNNLM 优点:

- 模型 (RNNLM) 可以保留每个词的全部历史信息,不需简化为n-gram
- 引入词向量作为输入后不需要数据平滑

在神经网络中常用RNN语言模型

$$P(w_1, w_2, w_3, \dots, w_n)$$

■ 正向语言模型

■ 反向语言模型

■ 双向语言模型

每个时刻都有一个正向输入的隐层 \overline{ht} 和·一个反向输入隐层 $\overline{h_t}$ 两个隐层分别可以表示一个词的上文信息和下文信息

■ 单向多层RNN语言模型

$$h^{i}(t) = \sigma(W^{i}_{i} h^{i-1}(t) + W^{i}_{h} h^{i}(t-1) + b^{i})$$

 $Y = softmax(W_oh^L(t))$

采用多个隐层,每个隐层向后一层传递序列信息

■ 双向多层RNN语言模型

$$\vec{h}_{t}^{(i)} = f(\vec{W}^{(i)} h_{t}^{(i-1)} + \vec{V}^{(i)} \vec{h}_{t-1}^{(i)} + \vec{b}^{(i)})$$

$$\vec{h}_{t}^{(i)} = f(\vec{W}^{(i)} h_{t}^{(i-1)} + \vec{V}^{(i)} \vec{h}_{t+1}^{(i)} + \vec{b}^{(i)})$$

$$y_{t} = g(U[\vec{h}_{t}^{(L)}; \vec{h}_{t}^{(L)}] + c)$$

各层每个时刻都有一个正向输入 $\overline{h_t^i}$ 和·一个反向输入 $\overline{h_t^i}$ 每个隐层向后一层传递序列信息

游游各位!

课程编码 201M4005H 课程名称 自然语言处理 授课团队名单 胡玥、于静