Notes on Modal Logic

Xin Chen Last update: March 6, 2023

Textbook: the Blue Book

Recommended reading: Davey and Priestley, Introduction to Lattices and Order, CUP 2nd edition, 2002.

陈老师教授的方法论:

Definition	
	:
Example	
	:
Proposition	
	:
Lemma	
	:
Theorem	
	:
Corollary	
	:

Table 1: 文章的一般结构

中间的内容一般是说明性的,或者是过渡段。但有时候这些内容也会影响对概念的理解。

Contents

1	Basic Concepts 2 1.1 Relational structures 2 1.2 Modal languages 3 1.3 Models and Frames 3 1.4 General Frames (skip) 4 1.5 Modal Consequence Relation 4 1.6 Normal Modal Logics 5 1.7 Selected exercises for Ch.1 6
2	Models 11
1	Basic Concepts
1.	1 Relational structures
	L.1 (relational structures). A relational structure is a tuple $\mathfrak{F} = (W, R_i)_{i \in I}$, where $W \neq \emptyset$ and $R_i \subseteq W^r$ a n -ary relation on W for each $i \in I \neq \emptyset$ and $n \in \mathbb{N}$.
	1. R_i can with arbitrary arity.
	2. \mathfrak{F} contains at least one relation since $I \neq \emptyset$.
	There are many examples for relational structure (W, R) :
	• strict partial order: irreflexive + transitive
	• <i>linear order</i> (<i>total order</i>): irreflexive + transitive + trichotomy
	• partial order: transitive + reflexive + antisymmetric
	•
定	\mathbf{X} 1.2 (reflexive closure and transitive closure). For any binary relation R on a non-empty set W ,
	• \mathbb{R}^+ , the reflexive closure of \mathbb{R} is the smallest transitive relation on \mathbb{W} that contains \mathbb{R} .
	• R^* , the reflexive transitive closure of R is the smallest reflexive and transitive relation on W containing R .
命	题 1.3. For any binary relation R on W :
	1. $R^+ = \bigcap \{R' \subseteq W \mid R' \text{ is transitive & } R \subseteq R'\}$
	2. $R^* = \bigcap \{R' \subseteq W \mid R' \text{ is transitive and reflexive & } R \subseteq R'\}$
	3. $R^+uv \Leftrightarrow \text{there is a sequence } u=w_0,w_1,\ldots,w_n=v\ (n>0) \text{ such that } Rw_iw_{i+1} \text{ for each } i< n.$ R^+uv means that v is reachable from u in a finite number of R -steps)
	4. $R^*uv \Leftrightarrow u=v$ or there is a sequence $u=w_0,w_1,\ldots,w_n=v$ $(n>0)$ such that Rw_iw_{i+1} for each $i< n$. (R^+uv means that $u=v$ or v is reachable from u in a finite number of R -steps)
Pr	<i>oof</i> . 内容 ■
	Selected exercises:

1.2 Modal languages

定义 1.4 (Basic modal language). Given a set of countable number of propositional variables Prop and an unary modal operator \diamondsuit . The **basic modal language** $\mathcal{L}_{\diamondsuit}$ is given by following BNF rule:

$$\mathcal{L}_{\Diamond} \ni \varphi ::= p \mid \bot \mid \neg \varphi \mid (\varphi \vee \varphi) \mid \Diamond \varphi$$

where $p \in \mathsf{Prop}$.

NB: Because the bottom $\bot \notin \mathsf{Prop}$, then $\mathcal{L}_{\Diamond} \neq \emptyset$ if $\mathsf{Prop} = \emptyset$.

定义 1.5 (Modal similarity type). A modal similarity type is a pair $\tau = (O, \rho)$ where O is a non-empty set of modal operators and $\rho \colon O \to \mathbb{N}$ assigns to each modal operator a finite *arity*.

定义 1.6 (Modal language under τ). Given a modal similarity type τ and Prop, the **model language** $\mathcal{L}_{(\tau, \text{Prop})}$ is defined by following BNF rule:

$$\mathcal{L}_{(\tau,\mathsf{Prop})} \ni \varphi ::= p \mid \bot \mid \neg \varphi \mid (\varphi \vee \varphi) \mid \triangle(\varphi_1,\ldots,\varphi_{\rho(\triangle)})$$

 \dashv

 \dashv

 \dashv

where $p \in \mathsf{Prop}$ and $\triangle \in \tau$.

Dual operators (nabla):

$$\nabla(\varphi_1,\ldots,\varphi_n) \coloneqq \neg \triangle(\neg \varphi_1,\ldots,\neg \varphi_n)$$

注记 1.7.

- 1. the name of similarity type is from universal algebra.
- 2. τ 说明了一个语言的模态词有哪些以及这些模态词的元数.

定义 1.8 (Substitution). Given a modal language $\mathcal{L}_{(\tau,\mathsf{Prop})}$, a **substitution** is a function $\sigma \colon \mathsf{Prop} \to \mathcal{L}_{(\tau,\mathsf{Prop})}$. We can extend a substitution by $(\cdot)^{\sigma} \colon \mathcal{L}_{(\tau,\mathsf{Prop})} \to \mathcal{L}_{(\tau,\mathsf{Prop})}$ which recursively define as follows:

$$p^{\sigma} = \sigma(p)$$

$$\perp^{\sigma} = \perp$$

$$(\neg \varphi)^{\sigma} = \neg \varphi^{\sigma}$$

$$(\varphi \lor \psi) = \varphi^{\sigma} \lor \psi^{\sigma}$$

$$(\triangle(\varphi_1, \dots, \varphi_n))^{\sigma} = \triangle(\varphi_1^{\sigma}, \dots, \varphi_n^{\sigma})$$

Saying that χ is a **substitution instance** of φ if there is some substitution σ such that $\chi = \varphi^{\sigma}$.

1.3 Models and Frames

When talking about model/frame we often say that, a model/frame for *some language*.

For basic language

定义 1.9 (Modal and frame for basic modal language $\mathcal{L}_{\diamondsuit}$). A frame for $\mathcal{L}_{\diamondsuit}$ is a pair $\mathfrak{F} = (W, R)$ where $W \neq \emptyset$ and $R \subseteq W \times W$.

A **model** for \mathcal{L}_{\Diamond} is structure $\mathfrak{M}=(W,R,V)$, where (W,R) is a frame and V, called a **valuation**, is a map: $\mathsf{Prop} \to \wp(W)$.

Given a model $\mathfrak{M} = (\mathfrak{F}, V)$, we say that \mathfrak{M} is based on \mathfrak{F} , and \mathfrak{F} is the frame underlying \mathfrak{M} .

注记 1.10. A benefit of the definition of V is that, a model can be viewed as a *first-order structure* (or a relational structure) in a natural way, namely

$$\mathfrak{M} = (W, R, V(p), V(q), V(r), \dots)$$

where V(p) is an unary relation on W, i.e., a predicate, also for $V(q), V(r), \dots$

But there are many other ways to define valuation, maybe not equivalent.

定义 1.11 (Satisfiability). For any model $\mathfrak{M}=(W,R,V)$ and $w\in W$, a formula φ satisfied in (\mathfrak{M},w) , notation $\mathfrak{M},w\models\varphi$, recursively define as follows:

$$\begin{array}{lll} \mathfrak{M}, w \Vdash p & : \Leftrightarrow & w \in V(p) & p \in \mathsf{Prop} \\ \mathfrak{M}, w \Vdash \bot & never \\ \mathfrak{M}, w \Vdash \neg \varphi & : \Leftrightarrow & \mathfrak{M}, w \not\Vdash \varphi \\ \mathfrak{M}, w \Vdash \varphi \lor \psi & : \Leftrightarrow & \mathfrak{M}, w \Vdash \varphi \ or \ \mathfrak{M}, w \Vdash \psi \\ \mathfrak{M}, w \Vdash \Diamond \varphi & : \Leftrightarrow & \exists v \in W, Rwv, \mathfrak{M}, v \Vdash \varphi \end{array}$$

A formula φ is **satisfiable** if there is a model \mathfrak{M} and some state w in \mathfrak{M} such that $\mathfrak{M}, w \Vdash \varphi$.

 \dashv

 \dashv

 \dashv

定义 1.12 (Truth set). Given a model $\mathfrak{M} = (W, R, V)$, the **truth set** of φ in \mathfrak{M} is given by:

$$\llbracket \varphi \rrbracket_{\mathfrak{M}} := \{ w \in W \mid \mathfrak{M}, w \Vdash \varphi \}$$

命题 1.13. Given a model $\mathfrak{M} = (W, R, V)$, then

$$[\![p]\!]_{\mathfrak{M}} = V(p) \qquad [\![\bot]\!]_{\mathfrak{M}} = \emptyset \qquad [\![\neg\varphi]\!]_{\mathfrak{M}} = W \setminus [\![\varphi]\!]_{\mathfrak{M}} \qquad [\![\varphi \vee \psi]\!]_{\mathfrak{M}} = [\![\varphi]\!]_{\mathfrak{M}} \cup [\![\psi]\!]_{\mathfrak{M}}$$
$$[\![\Diamond\varphi]\!]_{\mathfrak{M}} = \{w \in W \mid \exists v, Rwv, v \in [\![\varphi]\!]_{\mathfrak{M}}\}$$
$$[\![\Box\varphi]\!]_{\mathfrak{M}} = \{w \in W \mid \forall v, Rwv \Rightarrow v \in [\![\varphi]\!]_{\mathfrak{M}}\}$$

For more general language

$$\begin{array}{lll} \mathfrak{M}, w \Vdash \triangle(\varphi_1, \dots, \varphi_n) & : \Leftrightarrow & \exists v_1, \dots, v_n \in W, (w, v_1, \dots, v_n) \in R_\triangle, \forall i \in \{1, 2, \dots, n\}, \mathfrak{M}, v_i \Vdash \varphi_i \\ \mathfrak{M}, w \Vdash \nabla(\varphi_1, \dots, \varphi_n) & : \Leftrightarrow & \forall v_1, \dots, v_n \in W, (w, v_1, \dots, v_n) \in R_\triangle \Rightarrow \exists i \in \{1, 2, \dots, n\}, \mathfrak{M}, v_i \Vdash \varphi_i \\ \mathfrak{M}, w \Vdash \bigcirc & : \Leftrightarrow & w \in R_\bigcirc \end{array}$$

where ○ is a *nullary modality*.

注记 1.14. Graded modality $\diamondsuit^{\geq n}$ is a good example to understood this general definition.

Validity

定义 1.15 (Validity and Logic). There are different validity on different levels.

- 1. $\mathfrak{F}, w \Vdash \varphi$: $\forall V \in \wp(W)^{\mathsf{Prop}_1}, (\mathfrak{F}, V), w \Vdash \varphi$.
- 2. $\mathfrak{F} \Vdash \varphi$: $\forall w \in W, (\mathfrak{F}, w) \Vdash \varphi$.
- 3. $F \Vdash \varphi$: $\forall \mathfrak{F} \in F, \mathfrak{F} \Vdash \varphi$.
- 4. $\Vdash \varphi$: $\forall \mathfrak{F}, \mathfrak{F} \Vdash \varphi$.

The set of all valid formulae in a class of frame F is called the **logic of** F, notation Λ_F , that is $\Lambda_F := \{ \varphi \mid F \Vdash \varphi \}$.

1.4 General Frames (skip)

1.5 Modal Consequence Relation

定义 1.16 (Local semantic consequence). Let S be a class of models or frames, for any formula φ and set of formulae Σ . We say φ is a **local semantic consequence** of Σ over S, notation $\Sigma \Vdash_S \varphi$, if for all models $\mathfrak M$ in S and all states w in $\mathfrak M$: $\mathfrak M$, $w \Vdash \Sigma \Rightarrow \mathfrak M$, $w \Vdash \varphi$.

定义 1.17 (Global semantic consequence). Let S be a class of models or frames, for any formula φ and set of formulae Σ . We say φ is a **gocal semantic consequence** of Σ over S, notation $\Sigma \Vdash_{\mathsf{S}}^g \varphi$, if for all structure \mathfrak{G} in S (\mathfrak{G} could be a model or a frame): $\mathfrak{G} \Vdash \Sigma \Rightarrow \mathfrak{G} \Vdash \varphi$.

¹For any set $A, B, B^A := \{f \mid f : A \to B\}.$

1.6 Normal Modal Logics

定义 1.18 (Axiom system K). The axiom system K is containing following axioms and rules:

- Axioms
 - 1. **PC**: all propositional tautologies;
 - 2. K: $\Box(p \to q) \to (\Box p \to \Box q)$ (also known as *distribution axiom*)
 - 3. Dual: $\Diamond p \leftrightarrow \neg \Box \neg p$
- · Rules
 - 1. MP: $\frac{\varphi \to \psi, \varphi}{\psi}$
 - 2. Sub: $\frac{\varphi}{\varphi^{\sigma}}$ where σ is a substitution
 - 3. $\operatorname{Gen}_{\square}$: $\frac{\varphi}{\square \varphi}$

A **K-proof** is a finite sequence of formulae $\varphi_1, \ldots, \varphi_n$, for each φ_i ($1 \le i \le n$), either φ_i is an axiom of **K**, or φ_i is obtained by one or more earlier formulae in the sequence by applying a rule of **K**.

If $\varphi_1, \ldots, \varphi_n$ is a **K**-proof and $\varphi = \varphi_n$, then we say that φ is **K**-provable, notation $\vdash_{\mathbf{K}} \varphi$, and say φ is a **theorem** of **K**.

注记 1.19. There are some comments on the three rules:

- MP:
 - 1. MP preserves validity: $\vdash \varphi \rightarrow \psi$, $\vdash \varphi \Rightarrow \vdash \psi$
 - 2. MP preserves satisfiability: $\mathfrak{M}, w \Vdash \varphi \to \psi, \mathfrak{M}, w \Vdash \varphi \Rightarrow \mathfrak{M}, w \Vdash \psi$
 - 3. MP preserves *global truth*: $\mathfrak{M} \Vdash \varphi \to \psi, \mathfrak{M} \Vdash \varphi \Rightarrow \mathfrak{M} \Vdash \psi$
- Sub:
 - 1. Sub preserves *validity*: $\Vdash \varphi \Rightarrow \Vdash \varphi^{\sigma}$
 - 2. Sub not preserve satisfiability
 - 3. Sub not preserve global truth
- Gen_□
 - 1. Gen_{\square} preserves *validity*: $\Vdash \varphi \Rightarrow \Vdash \square \varphi$
 - 2. Gen_□ not preserve *satisfiability*
 - 3. Gen preserves global truth: $\mathfrak{M} \Vdash \varphi \Rightarrow \mathfrak{M} \Vdash \Box \varphi$

定义 1.20 (Normal modal logics). A **normal modal logic** Λ is a set of formulae that contains all tautologies, K-axiom, Dual-axiom and is closed under MP, Sub and Gen_□.

 \dashv

 \dashv

The smallest normal modal logic is \mathbf{K} .

命题 1.21. Let F be a class of frames, then $\Lambda_F := \{ \varphi \mid F \Vdash \varphi \}$ is a normal modal logic.

Proof. See here .

1.7 Selected exercises for Ch.1

1.1.1

1.1.2

1.1.3

1.3.1

1.3.4

1.3.5

1.6.7 Let F be a class of frames. Show that Λ_F is a normal modal logic.

Proof. Because all tautologies is valid on any frame, so is for the axioms K and Dual, then we only need to show that Λ_F is closed under MP, Sub and Nec.

(1) MP: if $\phi, \phi \to \psi \in \Lambda_{\mathsf{F}}$, then take any model \mathfrak{M} from F and any state w in \mathfrak{M} we have $\mathfrak{M}, w \models \phi$ and $\mathfrak{M}, w \models \phi \to \psi$, hence $\mathfrak{M}, w \models \psi$, because \mathfrak{M} and w are arbitrary from F , then ψ is valid on F , that is $\psi \in \Lambda_{\mathsf{F}}$.

 \bigstar (2) Sub: we need a lemma here:

lemma: Suppose M=(W,R,V) is a model, and $\phi^{\sigma}=\phi[\psi_1/p_1,\cdots,\psi_n/p_n]$ is the substitution instance of ϕ under substitution σ . Define M'=(W,R,V') by $V'(p_i)=\{w\in W\mid M,w\Vdash\psi_i\}$. Then for any $w\in W$:

$$M, w \Vdash \phi^{\sigma} \iff M', w \Vdash \phi.$$

Assume $\phi \in \Lambda_{\mathsf{F}}$, that is, $\mathsf{F} \Vdash \phi$, but $\phi^\theta \not\in \Lambda_{\mathsf{F}}$ for some substitution θ , i.e $\mathsf{F} \not\models \phi^\theta$. Then for some model M = (W, R, V) from F and some $w \in W$ we have $M, w \not\models \phi^\theta$, hence $M', w \not\models \phi$ by above lemma, but this is contradicts to ϕ is valid in F . Therefore, if $\phi \in \Lambda_{\mathsf{F}}$ then $\phi^\theta \in \Lambda_{\mathsf{F}}$ for any substitution θ .

(3) Nec: suppose $\phi \in \Lambda_{\mathsf{F}}$ but $\Box \phi \not\in \Lambda_{\mathsf{F}}$, then there are a frame F = (W,R) from F , a valuation V and a state $w \in W$ such that $(F,V), w \not\models \Box \phi$. Hence there must be a state $u \in W$ for which Rwu and $(F,V), u \models \neg \phi$, but this contradicts with ϕ is valid on F . Therefore $\Box \phi \in \Lambda_{\mathsf{F}}$

1.3.1 Show that when evaluating a formula ϕ in a model, the only relevant information in the valuation is the assignments it makes to the propositional letters actually occurring in ϕ . More precisely, let $\mathfrak F$ be a frame, and V and V' be two valuations on $\mathfrak F$ such that V(p) = V'(p) for all proposition letters p in ϕ . Show that $(\mathfrak F, V) \Vdash \phi$ iff $(\mathfrak F, V') \Vdash \phi$. Work in the basic modal language.

Proof. Let $\mathfrak{F} = (W, R)$, V and V' are two valuations as mentioned above, we firstly prove the following lemma by induction on ϕ :

(*)
$$\forall w \in W : (\mathfrak{F}, V), w \Vdash \phi \Leftrightarrow (\mathfrak{F}, V'), w \Vdash \phi.$$

Basic cases:

• If ϕ is a propositional letter p, then for all $w \in W$

$$\begin{array}{cccc} (\mathfrak{F},V),w \Vdash p & \Leftrightarrow & w \in V(p), & (\text{ by definition }) \\ & \Leftrightarrow & w \in V'(p), & (\text{ by assumption }) \\ & \Leftrightarrow & (\mathfrak{F},V'),w \Vdash p. & (\text{ by definition }) \end{array}$$

• If $\phi = \bot$, then for all $w \in W$, (\mathfrak{F}, V) , $w \Vdash \phi \Leftrightarrow (\mathfrak{F}, V')$, $w \Vdash \phi$ trivially.

Inductive steps:

If ϕ is of the form $\neg \psi$ or $\psi \lor \chi$, this is easily done. The crucial case is the form $\diamondsuit \psi$.

$$(\mathfrak{F},V),w \Vdash \Diamond \psi \quad \Leftrightarrow \quad \exists v,Rwv,(\mathfrak{F},V),v \Vdash \psi, \quad (\text{ by definition }) \\ \Leftrightarrow \quad \exists v,Rwv,(\mathfrak{F},V'),v \Vdash \psi, \quad (\text{ by induction hypothesis }) \\ \Leftrightarrow \quad (\mathfrak{F},V'),w \Vdash \Diamond \psi. \qquad (\text{ by definition })$$

Then the proposition

$$(\mathfrak{F}, V) \Vdash \phi \Leftrightarrow (\mathfrak{F}, V') \Vdash \phi$$

is just a corollary of (*).

1.3.4 Show that every formula that has the form of a propositional tautology is valid. Further, show that $\Box(p \to q) \to (\Box p \to \Box q)$ is valid.

Proof.

(1) (we only work in the basic modal language here)

Firstly, we give a formal definition for what is a formula has the form of a propositional tautology.

Definition (tautology): A formula ϕ is called a *tautology* (shouldn't be confused with *proposition tautology*), if $\phi = \alpha^{\sigma}$ where σ is a substitution, α is a formula of propositional logic and α is a propositional tautology.

Therefore we have to show that:

(*) Every tautology is valid.

To do that, we need following lemma in the first place.

Lemma 1 Suppose θ is a modal-free formula whose propositional variables are p_1, \ldots, p_n , let ϕ_1, \ldots, ϕ_n be modal formulas, and σ is a substitution such that $\sigma(p_i) = \phi_i$ for each $1 \le i \le n$, that is $[\phi_i/p_i, \cdots, \phi_n/p_n]$ in another notation. If for any propositional assignment v, any model M = (W, R, V), and any $w \in W$ such that $v(p_i) = 1$ iff $M, w \Vdash \phi_i$, then $v \models \theta$ iff $M, w \Vdash \theta^{\sigma}$.

We will prove lemma 1 by induction on θ (propositional logic formula). *Basic cases*:

• if $\theta = \bot$, then $\bot^{\sigma} = \bot$, both $v \not\models \bot$ and $M, w \not\models \bot$.

• if $\theta = p_i$, then

$$\begin{array}{lll} v \vDash p_i & \Leftrightarrow & v(p_i) = 1 \\ & \Leftrightarrow & M, w \Vdash \phi_i & \text{(by assumption)} \\ & \Leftrightarrow & M, w \Vdash p_i^\tau & \text{(since} & p_i^\sigma = \sigma(p_i) = \phi_i, \text{ by the definition of } \sigma). \end{array}$$

Inductive steps

• if $\theta = \neg \chi$, then

• if $\theta = \psi \vee \chi$, then

$$\begin{array}{lll} v \vDash (\psi \lor \chi) & \Leftrightarrow & v \vDash \psi \text{ or } v \vDash \chi \\ & \Leftrightarrow & M, w \Vdash \psi^{\sigma} \text{ or } M, w \Vdash \chi^{\sigma} & \text{(by induction hypothesis)} \\ & \Leftrightarrow & M, w \Vdash \psi^{\sigma} \lor \chi^{\sigma} \\ & \Leftrightarrow & M, w \Vdash (\psi \lor \chi)^{\sigma} & \text{(by the definition of substitution)} \end{array}$$

Hence we complete the induction proof for Lemma 1.

Then we prove (*) by contraposition.

Suppose φ is a tautology but not valid,

then by the definition of tautology above,

there is a proposition tautology θ and a substitution σ such that $\varphi = \theta^{\sigma}$ is invalid.

Namely $M, w \not\models \theta^{\sigma}$ for some model M and some state w in M.

Moreover, we assume only p_i, \ldots, p_n are occurring in θ ,

and V satisfies $v(p_i) = \phi_i$ for each $1 \le i \le n$.

Now we define a propositional assignment v such that

$$v(p_i) = 1 \iff M, w \Vdash \phi_i$$

Then, by **lemma 1**, we have that : $v \models \theta \iff M, w \Vdash \theta^{\sigma}$.

Since $M, w \not\models \theta^{\sigma}$, therefore $v \not\models \theta$.

But this contradicts with θ is a proposition tautology.

Consequently, (*) is holds, that is, every tautology is valid.

(2)

Following we show that $\Box(p \to q) \to (\Box p \to \Box q)$ is valid.

Take any frame \mathfrak{F} and any state w in \mathfrak{F} , and let V be a valuation on \mathfrak{F} .

We have to show that if $(\mathfrak{F}, V), w \Vdash \Box (p \to q)$ and $(\mathfrak{F}, V), w \Vdash \Box p$, then $(\mathfrak{F}, V), w \Vdash \Box q$.

So assume that $(\mathfrak{F}, V), w \Vdash \Box(p \to q)$ and $(\mathfrak{F}, V), w \Vdash \Box p$.

Then, by definition for any state v such that Rwv we have $(\mathfrak{F}, V), v \Vdash p \to q$ and $(\mathfrak{F}, V), v \Vdash p$,

hence $(\mathfrak{F}, V), v \Vdash q$, but since Rwv and v is an arbitrary state,

then by definition we have $(\mathfrak{F}, V), w \Vdash \Box q$.

1.3.5 Show that every formula of the following formulas is not valid by constructing a frame $\mathfrak{F} = (W, R)$ that refutes it.

(a)
$$\Box \bot$$
 (b) $\Diamond p \to \Box p$ (c) $p \to \Box \Diamond p$ (d) $\Diamond \Box p \to \Box \Diamond p$.

Proof. Let's consider following frame \mathfrak{F} , then we show that this frame refutes all above formulas.

Let
$$\mathfrak{F} = (W, R)$$
 where $W = \{w, u\}$ and $R = \{(w, w), (w, u)\},\$

we visualize \mathfrak{F} (with a valuation) as follows:

Now we define a valuation V on \mathfrak{F} by

$$V(q) = \begin{cases} \{w\} & q = p \\ \emptyset & q \neq p \end{cases}$$

We use $w \Vdash \varphi$ instead of $(\mathfrak{F}, V), w \Vdash \varphi$ for convenience. Then we know:

- $w \Vdash \Diamond p \text{ since } Rww \text{ and } w \Vdash p;$
- $w \not\Vdash \Box p \text{ since } Rwv \text{ but } u \not\Vdash p;$
- $w \not\vdash \Box \Diamond p$ since Rwu but u has no successors, which means $u \not\vdash \Diamond p$;
- $w \Vdash \Diamond \Box p$ since Rwu and v is a 'dead end', that is $u \Vdash \Box p$.

Then for those four formulas:

- (a) $w \not\Vdash \Box \bot$ since Rwu but $u \not\Vdash \bot$;
- (b) $w \not\Vdash \Diamond p \to \Box p$ since $w \Vdash \Diamond p$ but $w \not\Vdash \Box p$
- (c) $w \not\Vdash p \to \Box \Diamond p \text{ since } w \Vdash p \text{ but } w \not\Vdash \Box \Diamond p$
- (d) $w \not\Vdash \Diamond \Box p \to \Box \Diamond p \text{ since } w \Vdash \Diamond \Box p \text{ but } w \not\Vdash \Box \Diamond p$

Show that K is sound with respect to the class of all frames.

Proof. We already known that:

- (1) All axioms of **K** are valid.
- (all tautologies are valid and the K-axiom is valid (see exercise 1.3.4, p27), moreover the Dual-axiom is valid (see the discussion in paragraph 5 of p34))
 - (2) Furthermore, we assume that all rules of **K** are preserve validity, we will give a proof in the last.

Then to show **K** is *sound*, it is sufficient to show that all **K**-provable formulas are valid.

For any formula φ , suppose φ is **K**-provable,

then there is finite a sequence of formulas ψ_1, \ldots, ψ_n such that $\varphi = \psi_n$.

By induction on n.

Basic case:

• If n=1, then by the definition of **K**-proof, that means φ is an axiom of **K**, but all axioms of **K** are valid, hence φ is valid.

Inductive step: Suppose φ has a proof of length n > 1.

- If φ is an axiom of **K**, then φ is valid as same as basic case.
- If φ is obtained by MP from previous formulas χ → φ and χ, by induction hypothesis, χ → φ and χ are valid, and MP preserves validity, hence φ is valid.
- If φ is obtained by Sub or Gen_□ from χ, by inductive hypothesis, χ is valid, and Sub or Gen_□ both preserve validity, therefore φ is valid.

From basic case and inductive step, we complete the induction proof.

In the end, we show that *modus ponens* (MP), *uniform substitution* (Sub) and *Generalization* (Gen $_{\square}$) are preserve validity.

• For MP.

That is to show: if $\varphi \to \psi$ and ψ are valid, then so is ψ .

Suppose $\vdash \phi, \vdash \phi \rightarrow \psi$,

Then $M, w \models \phi$ and $M, w \models \phi \rightarrow \psi$ for some model M and some w in M since $\varphi \rightarrow \psi, \varphi$ are valid.

Hence $M, w \models \psi$ by the definition.

Therefore $\Vdash \psi$ because M and w are arbitrary.

• For Gen_□.

That is to show: if φ is valid, then so is $\Box \varphi$.

Assume $\Vdash \varphi$. To show $\Vdash \Box \varphi$, let M = (W, R, V) be any model and $w \in W$.

For any $u \in W$, if Rwu then $M, u \Vdash \varphi$ since φ is valid, and hence $M, u \Vdash \Box \varphi$ by the definition.

Since M and w are arbitrary, then $\Vdash \Box \varphi$.

• For Sub.

That is to show: if ϕ is valid, then so is ϕ^{σ} for any substitution σ .

First we need a lemma:

lemma: Suppose ϕ only contains p_1, \ldots, p_n as its propositional letters, and ϕ^{σ} is the substitution instance of ϕ under substitution σ , where $\sigma(p_i) = \psi_i$ for each $1 \le i \le n$.

For any models M=(W,R,V), define M'=(W,R,V') by $V'(p_i)=\{w\in W\mid M,w\Vdash\psi_i\}$. Then for any $w\in W$:

$$M, w \Vdash \phi^{\sigma} \Leftrightarrow M', w \Vdash \phi.$$

Proving this lemma by induction on ϕ .

Basic case:

- if
$$\psi = p$$
, then $p_i^{\sigma} = \psi_i$.

Hence $M, w \Vdash \psi_i \iff M', w \Vdash p_i$ by the definition of V'.

– if
$$\phi = \bot$$
, then $\bot^{\sigma} = \bot$.

Both $M, w \not\Vdash \bot$ and $M', w \not\Vdash \bot$.

Inductive step:

If ϕ is of the form $\neg \psi$ or $\psi \lor \chi$, this is easily done. The more crucial case is the form $\diamondsuit \psi$.

$$- \text{ if } \phi = \diamondsuit \psi,$$

Hence we complete the induction proof of above lemma.

Assume ϕ is valid, but ϕ^{σ} is invalid for some substitution σ , and $\sigma(p_i) = \psi_i$.

Then $M, w \not\Vdash \phi^{\sigma}$ for some model M = (W, R, V) and some $w \in W$,

hence we have $M', w \not\vdash \phi$ by above **lemma**,

but this contradicts with that ϕ is valid.

Therefore, if ϕ is valid, then so is ϕ^{σ} for any substitution σ .

2 Models