

Agenda

- Configuring the Appliance
- Trusted Authentication
- Instant File Initialisation
- Transparent Data Encryption
- Permissions Model
- Workload Management
- Backup & Restore
- Monitoring

Configuring the Appliance

PDW Region Domain Administrators

Domains

- Fabric Active Directory
- PDW Active Directory

Creating New Domain Admins

Create new User

- Log into domain virtual machine
- Use dsa.msc to add a user

Add new user to following groups

- Domain Admins
- PDWControlNodeAccess

Password

- Use dwconfig.exe on Management Node to reset
- Don't include \$ in the password

HDInsight Domain Administrators

- Single account called Administrator
 Password Reset
- dwconfig.exe

It is not recommended to add other users into Domain Admins group in the Hadoop Region

Chicken & Egg

What if?

- Domain Admin password has expired
- No active session on management node Answer
- Reset password on the login screen
- Reset password again via dwconfig
 - Ensures password is properly propagated and account is supported

Additional Accounts

- Polybase pdw_user in Hadoop
- System Center Region logins required
- Backup / Restore Customer domain user

Password also needs to be set for Directory Services Restore Mode for active directories

DNS Forwarding

Required for

- Windows Update
- Polybase (Azure)

Set via Powershell

- RDP onto MAD01
- Set-DnsServerRecursion
 - -Enable \$True
- Add-DnsServerForwarder
 - -IPAddress <IP>
 - -PassThru

Externally Trusted Certificates

Required for

- Management Console
- Developer Dashboard
- Hive ODBC Connector

Trusted Authentication

In Scope

Protocols

- Kerberos
- NTLM
- SSPI (API)

* Partial support for Management Console as credentials need to be submitted a second time

Surface Area

- dwloader
- SSIS Destination
 Adaptors
- SSDT
- SQLCMD
- Management Console*

Out of Scope

- Hadoop Region
- Non Windows Domains
- Users outside of corporate identity management systems (Internet)
- Un-Trusted Domains
- Propagation of security Context
 - To Compute Nodes
 - For Polybase
 - Backup / Restore
- Trusted Auth Only Authentication Configuration

Out of Scope – Client Tools

- Informatica Connector
- BO Connector
- DWConfig
- PAV

Important Notes

- Trust is between Corporate Domain and Workload Domain
- Minimum Configuration (NTLM)
 - 1 way (outgoing) external (non-transitive) trust between corporate DC and PDW Workload AD
- Minimum Configuration (Kerberos)
 - 1 way forest
 - 2 way forest
 - 2 way external Trust

Instant File Initialisation

Security Measure

- Windows Policy
 - Perform Volume Maintenance Tasks
- Enabled prevents PDW having to zero-out pre-sized data files
- Disabled requires PDW to zero out data files
- Transaction log file is always zeroed out

Configuration

- Set by dwconfig.exe
- Stop & Start appliance required to take effect

Transparent Data Encryption

TDE = Encryption at rest

Encryption of data at the page level

- Encrypted before written to disk
- Decrypted when read into memory
- TDE does not increase the size of the database
- TDE will impact performance of the appliance

Scope of TDE

- Control Node
- Compute Node
- Database files
- Backups
- PDW Engine log files
- Tempdb and pdwtempdb

Out of Scope

- Encryption between client and PDW
- Encryption during Internal DMS operations
- Cell-level encryption (EncryptByKey/DecryptByKey)
- Shell master database isn't encrypted
- External tables aren't encrypted
- Diagnostic Sessions aren't encrypted
- Memory Dumps

How TDE Works

Initiate

- 1. User Creates Master Key in master
 - 1. PDW Creates Master Key on CTL01
 - 2. PDW Creates Separate Master Key (all CMP)
- User Enables Appliance encryption
 - 1. PDW Encrypts tempdb & pdwtempdb
- 3. User Creates Certificate in master
 - 1. PDW Creates Certificate on CTL01
 - 2. PDW Exports Certificate & Imports it (all CMP)
- 4. User Creates Database Encryption Key
 - 1. PDW Creates Database Encryption key on CTL01
 - 2. PDW Creates Different Database Encryption Key (all CMP)
- 5. Initiate Database Encryption
 - 1. PDW Encrypts user database

Consequences & Limitations

- Both TempDB's are encrypted impacts performance and sizing (tempdb, pdwtempdb)
- sys.certificates: user generated certificates only
- Principals need CONTROL SERVER to create certificates & Database Encryption Keys
- PDW logs by default are also encrypted which may impact support call duration

Enabling TDE in the Appliance

```
-- Create Master Key in master database:
USE master;
CREATE MASTER KEY ENCRYPTION
BY PASSWORD = 'P@55word';
GO
```

Enabling TDE in the Appliance

```
-- Enable encryption:
EXEC sp pdw database encryption 1;
GO
-- Disable encryption:
EXEC sp pdw database encryption 0;
GO
-- Rotate certificate and DEK for internal databases.
This will succeed only if TDE is enabled:
EXEC sp pdw database encryption regenerate_system_keys;
GO
```

```
-- Step 1
-- Create certificate in master database:
USE master;
CREATE CERTIFICATE cert_20140101
  WITH SUBJECT= 'PDW DB certificate 2014-01-01';
GO
```

```
-- Step 2
-- Back up the certificate with private key
BACKUP CERTIFICATE cert 20140101
  TO FILE = '\\SECURE SERVER\cert\20140101.cer'
  WITH PRIVATE KEY
    FILE = '\\SECURE SERVER\cert\20140101.key'
   ENCRYPTION BY PASSWORD = 'P@55w0rd2'
GO
```

```
-- Step 3
-- Create DEK in user DB
USE PDW_AU1_DB;
CREATE DATABASE ENCRYPTION KEY
  WITH ALGORITHM = AES_128
-- AES_192 AES_256 TRIPLE_DES_3KEY also supported...
  ENCRYPTION BY SERVER CERTIFICATE cert_20140101;
GO
```

```
-- Step 4
-- Turn the encryption on
ALTER DATABASE PDW_AU1_DB SET ENCRYPTION ON;
GO
```

PDW Engine Log Encryption

```
-- Disable masking - queries & data appear in PDW Engine Log
EXEC sp pdw log user data_masking 0;
GO
-- Enable masking of PDW Engine Log
EXEC sp_pdw_log_user_data_masking 1;
GO
-- Remove queries completely from PDW Engine Log
EXEC sp_pdw_log_user_data_masking 2;
GO
-- Show Current State
EXEC sp_pdw_log_user_data_masking;
GO
```

Catalog Views and DMVs

- sys.databases
- sys.certificates
- sys.dm_pdw_nodes_database_encryption_keys

PDW Permissions Model

Similar to SQL Server

Server Principals

- Logins
- Server rolesDatabase Principals
- Database Roles
- Users
- User defined Roles

Permissions

- Grant
- Revoke
- Deny

User Defined Roles are recommended

Adding users to fixed database roles requires membership of db_owner

Exceptions

- Mixed mode authentication
 - cannot be changed to trusted only
- sa account
 - Cannot be disabled or removed
- Server Roles
 - Cannot be joined
 - Cannot be created
 - sa account is sole member of sysadmin

sa needed to add first user to db_owner

User defined database roles more flexible and adhere to SQL Servers "modern" security regime

Creating administrators in PDW

• Use CONTROL SERVER for sa level permissions

Permissions Model for ELT

Server level

- ADMINISTER BULK OPERATIONS
- VIEW SERVER STATE

Databases

- Staging
- User Database

Database Level

- AITFR
- VIEW DEFINITION

Control Server

TDE

- Certificates
- Keys
- Procedures
 - Sp_pdw_database_encryption
 - Sp_pdw_database_encryption_reg enerate_system_keys
 - Sp_pdw_log_user_data_masking

Polybase

- External Data Source
- External File Format
 DMVs
- nodes_columns
- nodes_indexes
- nodes_partitions

Administer Bulk Operations

Polybase

- Create External Table
 - Also Required
 - Create Table
 - Alter Schema

Data Loading

View Server State

Required for

- Management Console
- Catalog Views
 - Columnstore
 - Server permissions

• DMVs

- Connections
- Requests
- Sessions

DBCC Commands

- PDW_SHOWPARTITIONSTATS()
- PDW_SHOWEXECUTIONPLAN
- PDW_SHOWSPACEUSED

Alter Server State

DBCC Commands

- Shrinklog
- Freeproccache

Configuring Backup

- sp_pdw_add_network_credentials
- sp_pdw_remove_network_credentials

Sessions

Kill

Diagnostic Sessions

Create Diagnostic
 Sessions

Granting Access to Server State DMVs

... Without granting View Server State...

Use a Stored Procedure

- Select from sys.dm_pdw_exec_requests
- Reduce columns
- Filter rows

```
CREATE PROCEDURE dbo.logicalRequests @pSession id nvarchar(32)
AS
SELECT
request_id AS Request_ID
,[status] AS Request_Status
start time AS Request StartTime
,end_compile_time AS Request_EndCompileTime
end time AS Request EndTime
total elapsed time AS Request TotalElapsedDuration ms
,DATEDIFF(ms, submit_time, start_time)
AS Request_InitiateDuration_ms
,DATEDIFF(ms,start_time,end_compile_time)AS Request_CompileDuration_ms
,DATEDIFF(ms,end_compile_time,end_time) AS Request_ExecDuration ms
--,[label] as Request QueryLabel
, CASE WHEN [label] IS NOT NULL
     THEN N'<Sensitive Info Access Denied>'
     ELSE command
END
              as Request_Command
database id as Request Database ID
FROM sys.dm_pdw_exec_requests
WHERE session_id = @pSession id;
```

Workload Management

Workload Management

- PDW engine manages a pool of 32 concurrency "slots"
- Maximum number of queries executing at the same time is 32
- Slots can also be bundled together to increase the resources allocated to a users query
- The bundles are defined in PDW as server roles
- Resource Governor allocates resources to server roles

Why Is Workload Management important?

Enables you to

- Reduce concurrent queries running on PDW
- Allocate more resources to running queries
- Evenly affinitizes resources across appliance

Resource Classes

- Server role = Resource class
- Only non-default resource classes are visible

```
sp1.name AS owner_principal_name
SELECT
       sp1.type_desc AS owner_type_desc
       sp.name AS server_principal_name
       sp1.type_desc AS server_type_desc
       sys.server_principals sp
FROM
       sys.server_principals sp1
JOIN
       sp.owning_principal_id
ON
       sp1.principal_id
       sp.type_desc = 'SERVER_ROLE'
WHERE
       sp1.name = 'NT SERVICE\sqldwengine'
AND
```

	owner_principal_name	owner_type_desc	server_principal_name	server_type_desc
1	NT SERVICE\sqldwengine	WINDOWS_LOGIN	xlargerc	WINDOWS_LOGIN
2	NT SERVICE\sqldwengine	WINDOWS_LOGIN	largerc	WINDOWS_LOGIN
3	NT SERVICE\sqldwengine	WINDOWS_LOGIN	mediumrc	WINDOWS_LOGIN

Resource Pools

rp.name ,max_memory_kb*1.0/1048576 AS rp_max_mem_GB ,min_cpu_percent ,max_cpu_percent ,max_memory_percent FROM sys.dm_pdw_nodes_resource_governor_resource_pools rp JOIN sys.dm_pdw_nodes nod ON rp.pdw_node_id = nod.pdw_node_id WHERE rp.name <> 'internal' AND nod.[type] = 'compute';

Resource Pool Configuration

	name	rp_max_mem_GB	min_cpu_percent	max_cpu_percent	min_memory_percent	max_memory_percent
1	default	22.844551086	0	100	0	100
2	QueryPool_A	20.940818786	0	100	11	11
3	QueryPool_B	20.940818786	0	100	11	11
4	QueryPool_C	20.940818786	0	100	11	11
5	QueryPool_D	20.940818786	0	100	11	11
6	QueryPool_E	20.940818786	0	100	11	11
7	QueryPool_F	20.940818786	0	100	11	11
8	QueryPool_G	20.940818786	0	100	11	11
9	QueryPool_H	20.940818786	0	100	11	11

- CPU not impacted by Resource Governor
- Pools A-H each have 11% of the memory

Workload Groups

SELECT DISTINCT

```
AS rp_name
 rp.name
                                  AS wg name
,wg.name
, importance
, max memory kb*1.0/1048576 AS rp max mem GB
,(max_memory_kb*1.0/1048576/100)
 *request_max_memory_grant_percent AS request_max_memory_grant_GB
FROM sys.dm pdw nodes resource governor resource pools rp
JOIN sys.dm pdw nodes nod ON rp.pdw node id = nod.pdw node id
JOIN sys.dm pdw_nodes_resource_governor_workload_groups wg
                          ON rp.pdw_node_id= wg.pdw_node_id
                          AND rp.pool id= wg.pool id
WHERE rp.name <> 'internal'
AND nod.[type] = 'compute'
ORDER BY rp name, request max memory grant GB;
```

Workload Group Configuration

	rp_name	wg_name	importance	rp_max_mem_GB	request_max_memory_grant_GB
1	default	default	Medium	22.844551086	5.711138
2	QueryPool_A	QueryGroup_A	Medium	20.940818786	0.628225
3	QueryPool_A	QueryGroupMedium_A	Medium	20.940818786	1.884674
4	QueryPool_A	QueryGroupLarge_A	High	20.940818786	4.397572
5	QueryPool_A	QueryGroupExtraLarge_A	High	20.940818786	13.820940
6	QueryPool_B	QueryGroup_B	Medium	20.940818786	0.628225
7	QueryPool_B	QueryGroupMedium_B	Medium	20.940818786	1.884674
8	QueryPool_B	QueryGroupLarge_B	High	20.940818786	4.397572
9	QueryPool_B	QueryGroupExtraLarge_B	High	20.940818786	13.820940

- Only Large and extra Large have High Priority
- Memory Grant increases significantly with larger classes
- Each Pool has separate workload group for the class

NUMA Node Mapping

```
SELECT DISTINCT
 node affinity
,local tcp port
,rp.name
FROM sys.dm pdw nodes exec connections con
JOIN sys.dm pdw nodes exec sessions sess
    con.most_recent_session_id = sess.session_id
ON
AND con.pdw_node_id = sess.pdw_node_id
JOIN sys.dm_pdw_nodes nod
    con.pdw_node_id = nod.pdw_node_id
ON
JOIN sys.dm_pdw_nodes_resource_governor_workload_groups wg
    sess.group_id = wg.group_id
ON
AND sess.pdw_node_id = wg.pdw_node_id
JOIN sys.dm pdw nodes resource governor resource pools rp
ON rp.pool_id = wg.pool_id
AND rp.pdw_node_id = wg.pdw_node_id
WHERE nod.[type] = 'compute'
     wg.name <> 'default';
AND
```

NUMA Node Mapping Result

	node_affinity	local_tcp_port	name
1	0	1500	QueryPool_A
2	1	1501	QueryPool_B
3	2	1502	QueryPool_C
4	3	1503	QueryPool_D
5	4	1504	QueryPool_E
6	5	1505	QueryPool_F
7	6	1506	QueryPool_G
8	7	1507	QueryPool_H

- Soft NUMA configuration clearly visible
- Resource Pools

```
SELECT node affinity
,local tcp port
                                                NUMA TCP Ports
,net transport
,protocol_type
,encrypt option
,SUM(CASE WHEN sess.[program_name] LIKE 'RCMedium%' THEN 1 ELSE 0 END) 'RCMedium'
SUM(CASE WHEN sess.[program_name] LIKE 'RCLarge%' THEN 1 ELSE 0 END) 'RCLarge'
SUM(CASE WHEN sess.[program_name] LIKE 'RCXLarge%' THEN 1 ELSE 0 END) 'RCXLarge'
FROM sys.dm_pdw_nodes_exec_connections con
JOIN sys.dm_pdw_nodes_exec_sessions sess
ON con.most_recent_session_id = sess.session_id
and con.pdw_node_id = sess.pdw_node_id
JOIN sys.dm_pdw_nodes nod
ON con.pdw node id = nod.pdw node id
JOIN sys.dm_pdw_nodes_resource_governor_workload_groups wg
ON sess.group_id = wg.group_id
AND sess.pdw_node_id = wg.pdw_node_id
WHERE nod.[type] = 'compute'
```

AND	wg.na	ame <>	'default'					
GROUP	BY no	ode_af	finity					
<pre>,local_tcp_port</pre>								
,net_transport								
<pre>,protocol_type</pre>								
<pre>,encrypt_option;</pre>								

	node_affinity		net_transport	protocol_type	encrypt_option	RCMedium	RCLarge	RCXLarge
1	0	1500	TCP	TSQL	FALSE	20	8	2
2	1	1501	TCP	TSQL	FALSE	20	8	2
3	2	1502	TCP	TSQL	FALSE	20	8	2
4	3	1503	TCP	TSQL	FALSE	20	8	2
5	4	1504	TCP	TSQL	FALSE	20	8	2
6	5	1505	TCP	TSQL	FALSE	20	8	2
7	6	1506	TCP	TSQL	FALSE	20	8	2
8	7	1507	TCP	TSQL	FALSE	20	8	2

Query Affinity

Compute Nodes use Soft NUMA for resource affinity to distribution aligned queries

- Resource Class Name is embedded in the session program name
 - Used for resource pool assignment
- 8 TCP Port Server Side listeners 1500-1507 exist on each Compute Node
 - map to distributions A-H via Resource Pools
- TCP port is used to affinitize the query
 - Port maps to correct workload group for resource allocation

Concurrency Matrix

Resource Class	Request Importance	Max Memory (Per Distribution)	Query Concurrency Slots used
Default	Medium	400MB	1
Medium	Medium	1200MB	3
Large	High	2.8GB	7
XLarge	High	8.4GB	22

Maximum
Memory figure
here is "real
world" figure

Resource Governor figure is a theoretical max

Remember 32 is the maximum number of query concurrency slots

Switching Resource Classes

```
ALTER SERVER ROLE xlargerc ADD MEMBER JRJ;
ALTER SERVER ROLE xlargerc DROP MEMBER JRJ;
```

- Login can be a member of > 1 Resource Class
- Max Resource Class is the one that is used
- Don't be over-zealous especially with xlarge
- Requires CONTROL SERVER or membership of the role being adjusted

Identify Resource Class

```
Of a request
SELECT
 request id
,session id
,[status]
, command
resource class
FROM sys.dm_pdw_exec requests;
```

Of a Login

```
SELECT
```

```
sp1.name AS owner_principal_name
     sp1.type_desc AS owner_type_desc
     sp.name AS server_principal_name
     sp1.type_desc AS server_type_desc
     sp2.name AS member_principal_name
     sp2.type_desc AS member_type_desc
FROM sys.server_principals sp
JOIN
     sys.server_principals sp1
ON
     sp.owning_principal_id = sp1.principal_id
JOIN
     sys.server_role_members rm
     sp.principal_id = rm.role_principal_id
0n
JOIN
     sys.server_principals sp2
     rm.member_principal_id = sp2.principal_id
ON
WHERE sp.type_desc = 'SERVER_ROLE'
     sp1.name = 'NT SERVICE\sqldwengine';
AND
```

```
WITH rw
                              Waiting for your turn?
AS
(SELECT session id
       request id
       [type]
     [object_type]
    [object name]
    request_time
       acquire_time
       DATEDIFF(ms,request_time,acquire_time) AS acquire_duration_ms
       concurrency_slots_used
,CASE WHEN resource class = 'smallrc' THEN 1
     WHEN resource_class = 'mediumrc' THEN 3
     WHEN resource_class = 'largerc' THEN 7
     WHEN resource_class = 'xlargerc' THEN 22
     ELSE 0 END request_resource_class
FROM sys.dm pdw resource waits
SELECT request id
      concurrency slots used
      request_resource_class -concurrency_slots_used AS slots_required
FROM rw:
```

Backups

Backups in PDW

Simple Recovery Model

- Full
- Differential

A full backup must have occurred before a differential can take place

Backup surface area

- Shell Database
- Compute Databases
- Appliance Metadata

Backup Server Configuration

Backup Server pre-requisites

- Windows file system
- Storage to backup database
- UNC file share
- Customer domain username & password
- Ideally connectivity to Infiniband (IB) network

PDW Backup Configuration

- sp_pdw_add_network_credentials
- Use Infiniband IP addresses
- One entry per IP network
- sys.dm_pdw_network_credentials

Example Backup Syntax: Diff

```
BACKUP DATABASE [AdventureWorksPDW2012]
TO DISK =
'\\172.16.254.100\pdwbackups\aw 20140705 001'
WITH
    DIFFERENTIAL
          = 'AdventureWorksPDW2012'
    NAME
   DESCRIPTION = 'AdventureWorksPDW2012 backup'
```

Standard Backup Process

- Initiated via T-SQL
 - Use SQL Server Agent Loading Server
- User database set to read only during backup
 - Use IB network to minimize duration
- One user database at a time
- Four PDW databases backed up in parallel
- All files written to fileshare using embedded credentials

"Backup" to Hadoop

Export data to HDFS

- Low cost storage
- Agnostic format
- Avoids backup constraints
 - Database available for write
 - Partial backup
 - Parallel backups
- Avoids restore constraints
 - No DB Restore size restriction

Interesting use cases

- Obfuscation
- Sub-setting
- Archive
- Hybrid analysis with Azure

Be aware

- No concurrency control
- No hard consistency point
- Additional load on Hadoop

Integration with Backup products

- PDW database backups do not conform with SQL SMP standard backups
- No direct integration with third party products

Agnostic Approach

- Backup database to file
- Configure a filesystem backup with backup software

Restore Database

Restore database

User Database

- Restore from backup location
- Master Database
- Restore using dwconfig.exe

Restore Process

- Initiated via T-SQL
- One user database at a time
- One Backup or Restore process
- All databases restored in parallel
- Must be to same size appliance or larger
 - If larger PDW automatically re-distributes the data during restore
 - If smaller PDW will raise an exception

Restore Syntax

Full Restore RESTORE DATABASE Database Name FROM DISK = '\\<UNC_path>\full_backup_folder'; Differential Restore RESTORE DATABASE <Database_Name> FROM DISK = '\\<UNC>_path\differential_backup_folder' WITH BASE = '\\<UNC_path>\full_backup_folder'; RESTORE HEADERONLY FROM DISK = '\\UNC path\backup folder';

Monitoring PDW

System Center Integration

- Management packs available
 - Hadoop Region uses Ambari
- Uses SQL Authentication
- Requires Login with View Server State
- Executes Appliance Health DMV queries
- Polling Frequency 15 minutes

Rolling your own Monitoring

- APS can be configured to report via hardware
 - iLO HP
 - iDRAC DELL
- PDW doesn't support pro-active notifications
 - DMV Polling is required
- 3rd Party monitoring solutions: limited support
 - Generic monitoring agent modules can call SQL code

PDW Data Collection Frequency

- Cluster 60 Seconds
- Heartbeat 60 Seconds
- Perf counters 3 Seconds
- All other components 5 minutes

Alerts

Active Alerts

- sys.dm_pdw_component_health_active_alerts
- sys.dm_pdw_errors
- sys.pdw_health_alerts

Alert History

- sys.dm_pdw_component_health_alerts
- Last 10,000 alerts retained in DMVs
- Last 500 shown in Management Console

Health Alerts

```
SELECT
pha.alert name
, n. name
,n.[type]
,hcg.group name
,phc.component name
,haa.component_instance_id
,pha.[state]
,pha.[status]
,pha.[type]
,pha.[description]
,pha.[condition]
,haa.create time
FROM sys.pdw health alerts pha
JOIN sys.dm_pdw_component_health_alerts haa on
                                                pha.component_id = haa.component_id
                                            and pha.alert_id = haa.alert_id
                                               haa.pdw_node_id = n.pdw_node_id
JOIN sys.dm pdw nodes n
                                            on
JOIN sys.pdw health components pho
                                                haa.component id = phc.component id
                                            on
JOIN sys.pdw_health_component_groups hcg
                                                phc.group id
                                                                 = hcg.group id
                                            on
order by create time desc
```

select n.name ,n.[type] ,phc.component name ,hcg.group_name ,cha.alert name ,cha.severity ,cha.[state] ,cha.[description] ,haa.create time ,haa.component instance id ,hcg.group_name +' - '+phc.component_name ,haa.current value ,cha.[type] ,haa.previous value from sys.dm pdw component health active alerts haa JOIN sys.dm pdw nodes n JOIN sys.pdw_health_components phc JOIN sys.pdw health component groups hcg

JOIN sys.pdw health alerts cha

Active Alerts

```
on haa.pdw_node_id = n.pdw_node_id
on haa.component_id = phc.component_id
on phc.group_id = hcg.group_id
ON haa.alert_id = cha.alert_id;
```

PDW Errors

```
SELECT n.name
,e.[type]
,e.session_id
,e.request_id
,e.thread_id
,e.source
,e.create_time
,e.details
,e.spid
,e.error_id
,e.request_id
,e.session_id
FROM sys.dm_pdw_errors e
JOIN sys.dm_pdw_nodes n on e.pdw_node_id= n.pdw_node_id;
```

Components

Nodes

- sys.dm_pdw_nodes
- Component
- sys.pdw_health_component_groups
- sys.pdw_health_components
- sys.pdw_health_component_properties Health Status
- sys.dm_pdw_component_health_status

Component Details

SELECT n.name ,n.[type] ,phc.component_name ,hcp.property_name ,hcp.physical name ,haa.property value ,haa.update time ,haa.component_instance_id FROM sys.dm pdw component health status haa JOIN sys.dm pdw nodes n on haa.pdw_node_id = n.pdw_node_id JOIN sys.pdw health components pho on haa.component_id = phc.component_id JOIN sys.pdw_health_component_properties hcp on haa.property id = hcp.property id;

Storage Capacity

- Management Console hard coded to top 10 databases
- Use DMVs!

Storage DMVs for database file sizes

- sys.dm_pdw_nodes_os_performance_counters

Data File(s) Size%
 Log File(s) Size%

Performance Counters

Storage Alerts

PDW will automatically generates alerts

- Warning <30% on any volume
- Critical <10% on any volume

