

Урок 1

Прямолинейное движение с постоянным и переменным ускорением

Курс подготовки к вузовским олимпиадам 11 класса

Прямолинейное движение с переменным ускорением

- №1. Тело начинает движение из состояния покоя с ускорением a_0 и далее движется прямолинейно. Из-за действия силы сопротивления воздуха ускорение тела падает с увеличением его скорости V по закону $a = a_0 \cdot V_0 / (V + V_0)$, где V_0 известная постоянная. Через какое время скорость тела достигнет значения $2V_0$?
- №2. Лодку массой m = 100 кг тянули за верёвку по озеру с постоянной скоростью величиной $V_0 = 1$ м/с. В некоторый момент времени верёвка оторвалась.
- 1. Найти зависимость скорости лодки V от пройденного ею расстояния х после этого?
- 2. Какой тормозной путь L пройдёт лодка?
- 3. Какую скорость имела лодка в момент, когда она прошла расстояние L/4? Считайте, что сила сопротивления зависит только от скорости \overrightarrow{V} и ускорения \overrightarrow{a} лодки и определяется выражением $\overrightarrow{F}_c = -\alpha \cdot \overrightarrow{V} \beta \cdot \overrightarrow{a}$, где $\alpha = 10~\text{H} \cdot \text{c/m}$, $\beta = 50~\text{H} \cdot \text{c}^2/\text{m}$.

Прямолинейное движение с переменным ускорением

№3. Проехав «лежачего полицейского» со скоростью $V_0 = 5$ км/ч, автомобиль, двигаясь далее прямолинейно по горизонтальной дороге, увеличивает свою скорость таким образом, что сила тяги, развиваемая двигателем, оказывается пропорциональной скорости автомобиля. На расстоянии $S_1 = 30$ м от «полицейского» автомобиль достиг скорости $V_1 = 20$ км/ч.

На каком расстоянии от «полицейского» у автомобиля будет скорость $V_2 = 30$ км/ч? Сопротивлением движению пренебречь.

№4. С поверхности земли вертикально вверх со скоростью V_0 бросили шарик массой m. Через время τ он достиг наивысшей точки траектории. На какое расстояние переместился камень за это время? Считать, что сила сопротивления $\overrightarrow{F_c}$ движению шарика пропорциональна его скорости \overrightarrow{V} , то есть $\overrightarrow{F_c} = -k \cdot \overrightarrow{V}$, где k — известная постоянная.

Кинематика движения материальной точки

- (1) Перемещение $\vec{S} = \Delta \vec{S}_1 + \Delta \vec{S}_2 + \Delta \vec{S}_3 + ... = \sum \Delta \vec{S}$.
- (2) Скорость $\vec{V} = \frac{\Delta \vec{S}}{\Delta t}$, где $\Delta \vec{S}$ изменение перемещения за малое время Δt .
- (3) Ускорение $\vec{a} = \frac{\Delta \vec{V}}{\Delta t}$, где $\Delta \vec{V}$ изменение скорости за малое время Δt .

Векторное уравнение скорости	Координатное уравнение скорости
$\vec{V} = \vec{V}_0 + \sum \Delta \vec{V} = \vec{V}_0 + \sum \vec{a} \cdot \Delta t$	$V_x = V_{0x} + \sum \Delta V_x = V_{0x} + \sum a_x \Delta t$
Векторное уравнение перемещения	Координатное уравнение перемещения
$\vec{S} = \sum \Delta \vec{S} = \sum \vec{V} \cdot \Delta t$	$S_x = \sum \Delta S_x = \sum V_x \Delta t$

Графический метод в задачах кинематики

Координатное уравнение перемещения имеет вид $S_x = \sum \Delta S_x = \sum V_x \Delta t$.

Как посчитать сумму $\sum V_{\dot{x}}\Delta t$?

Ответ: нарисовать график зависимости проекции скорости V_x от времени t.

Площадь под этим графиком численно совпадёт с проекцией перемещения S_x :

$$S_x = \sum \Delta S_x = \sum V_x \Delta t = S_1 - S_2$$

Основная идея графического метода: для определения проекции перемещения S_x нужно найти численно равную ей площадь под графиком проекции скорости $V_x(t)$. При этом во многих случаях определить геометрически указанную площадь (тем самым, решить задачу или существенно продвинуться в её решении) оказывается значительно легче, чем вычислить искомое перемещение аналитически.

Прямолинейное равноускоренное движение ($\overrightarrow{a} = \overrightarrow{const}$)

Если
$$\vec{a} = \vec{const}$$
, то $\vec{V} = \vec{V}_0 + \sum \vec{\Delta V} = \vec{V}_0 + \sum \vec{a} \cdot \Delta t = \vec{V}_0 + \vec{a} \cdot t$ $\vec{V}_x = V_{0x} + a_x \cdot t$

Векторное уравнение скорости	Координатное уравнение скорости
$\vec{V} = \vec{V}_0 + \vec{a} \cdot t$	$V_x = V_{0x} + a_x \cdot t$
Векторное уравнение перемещения	Координатное уравнение перемещения
$\vec{S} = \vec{V}_{0} \cdot t + \frac{1}{2} \vec{a} \cdot t^{2}$	$S_{x} = V_{0x} \cdot t + \tfrac{1}{2} a_{x} \cdot t^2$

Прямолинейное движение с переменным ускорением

- №5. В последнюю секунду свободного падения без начальной скорости тело прошло путь вдвое больший, чем в предыдущую секунду. Сколько времени падало тело? На какой высоте оно изначально находилось? Считать, что $g = 10 \text{ м/c}^2$. Сопротивлением воздуха пренебречь.
- №6. Автомобиль двигался по прямолинейной дороге. Заметив впереди себя препятствие, он начал тормозить с постоянным ускорением до полной остановки. Какова была скорость автомобиля в середине тормозного пути, если торможение заняло $\tau = 4$ с, а тормозной путь составил S = 20 м?
- №7. Время отправления электрички по расписанию 12:00. На ваших часах 12:00, но мимо вас уже начинает проезжать предпоследний вагон, который движется мимо вас в течение $t_1 = 10$ с. Последний вагон проходит мимо вас в течение $t_2 = 8$ с. Электричка отправилась вовремя и движется равноускоренно. На какое время отстают ваши часы?
- №8. Товарный поезд, двигаясь с постоянным ускорением, въезжает в туннель со скоростью V_0 . Известно, что первый вагон пробыл в туннеле в два раза дольше, чем последний. Какую скорость имел поезд в тот момент, когда целиком выехал из туннеля, если известно, что его длина равна длине туннеля? Длиной вагона по сравнению с длиной всего поезда пренебречь.

Правило нечётных чисел ($\vec{a} = \vec{const}$, $\vec{V}_0 = \vec{0}$)

Если
$$\vec{a} = \vec{const}$$
 и $\vec{V}_0 = \vec{0}$, то $\vec{V} = \vec{a} \cdot t$ $\vec{V} = \vec{a} \cdot t$

При равноускоренном движении без начальной скорости перемещения, совершённые точкой за последовательные равные промежутки времени, относятся как последовательный ряд нечётных чисел.

Прямолинейное движение с постоянным ускорением

- №9. За последнюю секунду свободно падающее без начальной скорости тело пролетело 3/4 всего пути. Сколько времени падало тело? Сопротивлением воздуха пренебречь.
- №10. С балкона вертикально вверх бросают мяч. Через время т скорость летящего вверх мяча уменьшается на 20%. С какой высоты был осуществлён бросок, если в момент удара о землю скорость мяча в два раза превышала начальную? Сопротивлением воздуха пренебречь.
- №11. С поверхности земли вертикально вверх бросили камень. С какой скоростью его бросили, если известно, что он дважды побывал на одной высоте через $t_1 = 0.6$ с и через $t_2 = 0.8$ с после начала своего движения? Чему равна эта высота? Считать, что $g = 10 \text{ м/c}^2$. Сопротивлением воздуха пренебречь.
- №12. Аэростат поднимается с земли вертикально вверх с ускорением $a=2~\text{м/c}^2$. Через $t_0=5~\text{с}$ от начала движения аэростата из него выпал предмет. Через сколько времени этот предмет упадёт на землю? Начальная скорость аэростата равна нулю. Считать, что $g=10~\text{м/c}^2$. Сопротивлением воздуха пренебречь.

Основные формулы для равноускоренного движения ($\vec{a} = \frac{\Delta \vec{V}}{\Delta t} = const$):

$$1 \qquad \overrightarrow{\mathsf{V}} = \overrightarrow{\mathsf{V}}_0 + \overrightarrow{\mathsf{a}} \cdot \mathsf{t}$$

3

$$\vec{S} = \vec{V}_0 \cdot t + \frac{1}{2} \vec{a} \cdot t^2 = \vec{V} \cdot t - \frac{1}{2} \vec{a} \cdot t^2$$

$$2\cdot(\vec{a};\vec{S})=|\vec{V}|^2-|\vec{V}_0|^2$$
, где $(\vec{a};\vec{S})=|\vec{a}|\cdot|\vec{S}|\cdot\cos\theta$ – скалярное произведение вектора ускорения \vec{a} на вектор перемещения \vec{S} (θ – угол между этими векторами)

$$\vec{\mathsf{S}} = \frac{1}{2} (\vec{\mathsf{V}}_0 + \vec{\mathsf{V}}) \cdot \mathsf{t}$$

Геометрическая иллюстрация основных формул:

mapenkin.ru

ПРЕЗЕНТАЦИЮ ПОДГОТОВИЛ

Михаил Александрович ПЕНКИН

- w /penkin
- /mapenkin
- fmicky@gmail.com