MAPSI — cours 6 : Chaîne de Markov

Vincent Guigue, Thierry Artières vincent.guigue@lip6.fr

LIP6 – Université Paris 6, France

Introduction

Les problèmes traités jusqu'ici :

$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ \vdots & & & & \\ x_{N1} & x_{N2} & \cdots & x_{Nd} \end{bmatrix}, \text{ et parfois : } Y = \begin{bmatrix} y_1 \\ \vdots \\ y_N \end{bmatrix}$$

- Chaque individu $\mathbf{x} = [x_1, x_2, \dots, x_d]$ est un vecteur
- Les séquences ne rentrent pas dans ce cadre

Tâches:

- Classification / Clustering
- Etiquetage / Segmentation
- Génération de séquences

Reconnaissance de chaine de caractères

- Reconnaissance de paroles
- Génération/reconnaissance de mouvements
- Reconnaissance de mouvements (2)

Tâches:

- Classification / Clustering
- Etiquetage / Segmentation

- Génération de séquences
- Reconnaissance de chaine de caractères
- Reconnaissance de paroles

Tâches:

- Classification / Clustering
- Etiquetage / Segmentation
- Génération de séquences
- Reconnaissance de chaine de caractères
- Reconnaissance de paroles
- Génération/reconnaissance de mouvements

Tâches:

- Classification / Clustering
- Etiquetage / Segmentation
- Génération de séquences
- Reconnaissance de chaine de caractères
- Reconnaissance de paroles
- Génération/reconnaissance de mouvements
- Reconnaissance de mouvements (2)

Approche générative

Problème

- Difficile d'étendre les méthodes standards de classification ou de clustering à des données de taille variable
- Mais plus facile de concevoir des modèles génératifs de données de taille variable
- Approche de classification par apprentissage des densités

Approche vectorielle :
$$X = \begin{bmatrix} x_{11} & x_{12} & \cdots & x_{1d} \\ \vdots & & & \vdots \\ x_{N1} & x_{N2} & \cdots & x_{Nd} \end{bmatrix}$$

Approche séquentielle :

Modèles génératifs

Vincent Guigue, Thierry Artières vincent.guigue@lip6.fr

LIP6 - Université Paris 6, France

Rappel sur les modèles génératifs

- Choix d'une modélisation des données : $p(\mathbf{x}|\theta)$
- ② Apprentissage = trouver θ
- Application possible : décision bayesienne

$$r(\mathbf{x}) = \arg\max_{k} p(\theta_{k}|\mathbf{x}) = \frac{p(\mathbf{x}|\theta_{k})p(\theta_{k})}{p(\mathbf{x})}$$

1 Application bis : génération de $\tilde{\mathbf{x}} \sim \mathcal{D}(\theta_k)$

Apprentissage d'un modèle génératif ⇔ Estimation de densité

- Estimer θ_k = estimer une densité de probabilité d'une classe
- Hypothèse (forte) : les θ_k sont supposés indépendants
- Techniques d'estimation des θ_k

Maximum de vraisemblance

- $D = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ exemples supposés générés par $p(\mathbf{x}|\theta)$
- Adéquation entre les données et le modèle
 - Notion de vraisemblance des observations
 - Hyp : les données sont indépendantes

$$\mathcal{L}(D, \theta) = p(D|\theta) = \prod_{i=1}^{N} p(\mathbf{x}_i|\theta)$$

Optimisation :

$$\theta^{\star} = \arg\max_{\theta}(\mathcal{L}(D, \theta)) = \arg\max_{\theta}(\log\mathcal{L}(D, \theta))$$

- Résolution :
 - Analytique : $\frac{\partial \mathcal{L}(D,\theta)}{\partial \theta} = 0$
 - Approchée : EM, gradient...

- Prise en compte de l'information séquentielle présente dans les données
- Nombreux domaines
 - Séries temporelles : finance, consommation, marketing, etc
 - Parole, biologie, langue,
- Méthodes & problématiques
 - Prévision de séries : AR, ARMA, etc
 - Matching (et classification): Dynamic time warping
 - Modèles génératifs : MMC, réseaux de neurones, etc
- Présentation
 - Modèles de Markov, Modèles de Markov Cachés

Chaînes de Markov

- Outil pour faire de la prévision dans des espaces discrets
- Chaîne de Markov d'ordre k
 - Séquence de variables aléatoires $S = (s_1, ..., s_T)$ qui prend ses valeurs dans un ensemble fini d'états $Q = (q_1, ..., q_N)$ et qui vérifie les propriétés dites de Markov :
 - Horizon de taille k :

$$p(s_{t+1} = q_j | s_1, \dots, s_t) = p(s_{t+1} = q_j | s_{t-k+1}, \dots, s_t)$$

Stationnarité :

$$p(s_{t+1} = q_j | s_1, \dots, s_t) = p(s_{k+1} = q_j | s_1, \dots, s_k)$$

- Pour simplifier les notations, on se limite dans la suite à des chaînes d'ordre 1.
- Exemple : météo sur un an (soleil, nuage, pluie)
 - Q = [So, Nu, PI]
 - $S = [s_1 = Nu, s_2 = S_0, \dots, s_{365} = PI]$

CM d'ordre 1

- Une chaîne de Markov d'ordre 1 est entièrement spécifiée par la donnée :
- d'une matrice de transition

$$A = \left[a_{ij} = p(s_{t+1} = q_j | s_t = q_i)\right]$$

• et des probabilités initiales :

$$\Pi = [\pi_i = p(s_1 = q_i)]$$

Probabilité d'une séquence

$$p(S|\lambda) = p(s_1, \ldots, s_T|\lambda)$$

Hypothèse markovienne d'ordre 1

Décomposition du calcul

$$\begin{aligned}
p(S|\lambda) &= p(s_{1},...,s_{T}|\lambda) \\
&= p(s_{T}|s_{1},...,s_{T-1},\lambda) \times p(s_{1},...,s_{T-1}|\lambda) \\
&= p(s_{T}|s_{1},...,s_{T-1},\lambda) \times p(s_{T-1}|s_{1},...,s_{T-2},\lambda) ... \\
&\times p(s_{1},...,s_{T-2}|\lambda)
\end{aligned}$$

$$= \prod_{t=2}^{T} p(s_{t}|s_{1},...,s_{t-1},\lambda) p(s_{1}|\lambda)$$

Après hypothèse d'ordre 1 :

$$p(S|\lambda) = \prod_{t=2}^{T} p(s_t|s_1, \dots, s_{t-1}, \lambda) p(s_1|\lambda) = \prod_{t=2}^{T} p(s_t|s_{t-1}, \lambda) p(s_1|\lambda)$$
$$= \pi_{s_1} \prod_{t=2}^{T} a_{s_{t-1}, s_t}$$

Représentation graphique

Automate basique:

Représentation graphique

En introduisant les notations a, π

Représentation graphique

Avec des noeuds identifiés de début/fin

Algorithme génaratif

Algorithm 1: Génération d'une séquence S

```
Data: A, \Pi

Result: S

S \leftarrow [];

Tirer s_1 en fonction de \Pi;

s_t \leftarrow s_1, t \leftarrow 1;

S \leftarrow [S, s_{courant}];

while s_t n'est pas l'état final do

s_{t+1} \leftarrow \text{tirage selon } (A(s_t,:));

t \leftarrow t+1;
```

- Plusieurs variantes dans la clause du while
- Comment effectuer un tirage selon une loi de probabilité discrète?

Outil pour le tirage aléatoire selon une loi discrète

Soit la loi:

Comment effectuer un tirage selon P(A)?

• Faire la somme cumulée de la loi

- 2 Tirer un nombre x entre 0 et 1 selon la loi uniforme
- 1 Initialiser vx = 1
- Tant que cumsum[vx] < x
 - vx + +

Génération (sur un exemple)

• q_1 = Pluie, q_2 = Nuages, q_3 = Soleil A = 0.15 0.75 0.9 0.05 0.05 0.9 Soleil 0.75 0.8 0.05 0.05 0.1 Pluie Nuages

0.1

0.05

0.1

Problèmes alternatifs

- Quelle est la probabilité d'observer une séquence de soleil de longueur d?
- Quelle est la durée moyenne d'une séquence consécutive de soleil?

Quelle est la probabilité d'observer une séquence de soleil de longueur *d* ?

Loi géométrique

Notons la longueur de la sous-séquence de soleil D_S ,

$$P(D_S = d) = a_{ss}^{d-1}(1 - a_{ss})$$

Problèmes alternatifs

- Quelle est la probabilité d'observer une séquence de soleil de longueur d?
- Quelle est la durée moyenne d'une séquence consécutive de soleil?

Quelle est la longueur moyenne d'une séquence de soleil? Espérance de la loi géométrique

$$E[D_S] = \sum_{d=1}^{\infty} d \ a_{ss}^{d-1} (1 - a_{ss}) = \frac{1}{1 - a_{ss}}$$

Problèmes alternatifs

- Quelle est la probabilité d'observer une séquence de soleil de longueur d?
- Quelle est la durée moyenne d'une séquence consécutive de soleil ?

Quelle est la longueur moyenne d'une séquence de soleil? Espérance de la loi géométrique

$$E[D_S] = \sum_{d=1}^{\infty} d \ a_{ss}^{d-1} (1 - a_{ss}) = \frac{1}{1 - a_{ss}}$$

Sketch of proof (wikipedia) avec k = d - 1 et $p = 1 - a_{ss}$:

$$E(Y) = \sum_{k=0}^{\infty} (1 - p)^{k} p \cdot k$$

= $p \sum_{k=0}^{\infty} (1 - p)^{k} k$
= $p(1 - p) \left[\frac{d}{dp} \left(- \sum_{k=0}^{\infty} (1 - p)^{k} \right) \right]$
= $-p(1 - p) \frac{d}{dp} \frac{1}{p} = \frac{1 - p}{p}$.

Problèmes alternatifs (2)

- Il fait soleil...
- Quel temps fera-t-il dans N jours? (distribution de probabilités)

Problèmes alternatifs (2)

- Il fait soleil...
- Quel temps fera-t-il dans N jours? (distribution de probabilités)
- Je rentre sur la ligne soleil... $s_0 = S$
- A t = 1, {a_s.} me donne la distribution des probabilités des états

$$p(s_1=q_i)=a_{S,i}$$

ATTENTION : Ensuite il s'agit d'un treillis

$$p(s_2 = q_j) = \sum_i p(s_1 = q_i) p(s_2 = q_j | s_1 = q_i)$$

Problèmes alternatifs (2)

- Il fait soleil...
- Quel temps fera-t-il dans N jours? (distribution de probabilités)
- Je rentre sur la ligne soleil... $s_0 = S$
- A t = 1, {a_s.} me donne la distribution des probabilités des états

$$p(s_1=q_i)=a_{S,i}$$

ATTENTION : Ensuite il s'agit d'un treillis

$$p(s_2 = q_j) = \sum_i p(s_1 = q_i) p(s_2 = q_j | s_1 = q_i)$$

Ecriture matricielle simple :

$$p(s_N|s_0=S)=a_{S,\cdot}\times A^{N-1}$$

Problèmes alternatifs (3) - et propriétés

- Stationnarité : existe-t-il une mesure stationnaire μ telle que $\mu = \mu A$?
 - μ = pondération stationnaire (inchangée après une transition)
 - si $\forall i, \ \mu_i \geq 0, \ \sum_i \mu_i = 1 : \mu$ est alors une distribution stationnaire
 - si \emph{A} est irreductible, μ est unique et : μ = distribution moyenne des états

CM irreducible finie

Les chaines sur lesquelles nous travaillons sont irréductibles et finies : partant de chaque état, on y revient en un nombre moyen d'étapes fini.

Problèmes alternatifs (4) - et propriétés

 Des sous-séries d'observations sont-elles récurrentes dans une CM?

Périodicité

- Un état est dit périodique de période k (k > 1), si on ne peut y revenir (après l'avoir quitté) qu'en un nombre d'étapes multiples de k.
- La période d'une CM est définie comme le PGCD de la période de tous ses états.
- La période d'une CM est égale au PGCD de la longueur de tous les circuits (élémentaires) du graphe associé.
- Une CM est dite apériodique si sa période est égale à 1.

Modélisation (2)

Séquence de lancers de pièce(s)... Mais combien y en a-t-il?

p : probabilité de faire *pile*

 p_k : probabilité de faire *pile* avec la pièce k

Modélisation (3)

- Modélisation de parcours utilisateur sur un site web
 - Catégorsation / publicité personnalisée
 - Optimisation du site / pré-chargement de pages
- 1 trace = longueur variable...

Modélisation (3)

- Modélisation de parcours utilisateur sur un site web
 - Catégorsation / publicité personnalisée
 - Optimisation du site / pré-chargement de pages
- 1 trace = longueur variable...

Modélisation (4)

Modèles de N-grams

- Construire un modèle de langage qui permette de capturer la succession des mots
- Modèle de N-grams = CM d'ordre N 1
- Exemple : vocabulaire 20K mots

Modèle	Nb paramètres					
Bigram	$20k \times 19k = 4 \cdot 10^8$					
Trigram	8 10 ¹²					
4-gram	1.6 10 ¹⁷					

Modelisation (4) suite

- ⇒ En général, nous nous limitons aux N-grams dont le nombre d'occurence dépassent un certain seuil (de nombreuses combinaisons d'existent pas!)
- $p(w_j|w_{j-N},...,w_{j-1}) = \frac{p(w_{j-N},...,w_j)}{p(w_{j-N},...,w_{j-1})}$
- En pratique, besoin d'estimateurs plus robustes
 - eg : modèle d'interpolation de Jelinek :

$$p(w_{j}|w_{j-2},w_{j-1}) = \lambda_{1}p(w_{j}) + \lambda_{2}p(w_{j}|w_{j-1}) + \lambda_{3}p(w_{j}|w_{j-2},w_{j-1})$$
$$\lambda_{1} + \lambda_{2} + \lambda_{3} = 1$$

Jelinek 1997 - Statistical Methods for Speech Recognition

Apprentissage des chaines de Markov

Vincent Guigue, Thierry Artières vincent.guigue@lip6.fr

LIP6 - Université Paris 6, France

Questions

Etant donnée une séquence d'états, calculer sa probabilité
 Vu précédemment :

$$p(S|\lambda) = \prod_{t=2}^{T} p(s_{t}|s_{1},...,s_{t-1},\lambda)p(s_{1}|\lambda) = \prod_{t=2}^{T} p(s_{t}|s_{t-1},\lambda)p(s_{1}|\lambda)$$

$$= \pi_{s_{1}} \prod_{t=2}^{T} a_{s_{t-1},s_{t}}$$

- Comment apprendre une CM à partir d'exemples ?
- Comment faire de la classification de séquences avec des CM?

Apprentissage

- Soit une base de séquences $B = \{S^1, \dots, S^K\}$ (N états possibles)
- Critère de vraisemblance

$$\log \mathcal{L}(B, \lambda) = \log(\prod_{k=1}^{N} p(S^{k}|\lambda)) = \sum_{k} \log(p(S^{k}|\lambda))$$

Optimisation :

$$\lambda^{\star} = \arg\max_{\lambda} \log \mathcal{L}(B, \lambda)$$

Contraintes:

$$\forall i \in [1, N], \sum_{j=1}^{N} a_{ij} = 1$$
 $\sum_{j=1}^{N} \pi_{j} = 1$

Optimisation Lagrangienne

Critère intégrant les contraintes :

$$C(\lambda) = \mathcal{L}(B, \lambda) - \sum_{i=1}^{N} \nu_i \left(\sum_{j=1}^{N} a_{ij} - 1 \right) - \eta \left(\sum_{j=1}^{N} p_{ij} - 1 \right)$$

 Si la dérivée par rapport au coefficient de contrainte est nulle, la contrainte est satisfaite :

$$\frac{\partial \mathcal{C}(\lambda)}{\partial \eta} = 0 \Leftrightarrow \sum_{j=1}^{N} p i_j - 1 = 0$$

Résolution au tableau... Et optimum en :

$$a_{ij} = \frac{n_{ij}}{n_{i.}}$$
 $\pi_j = \frac{I_j}{K}$, avec : $n_{i.} = \sum_i n_{ij}$

En pratique

- Approche par comptage
- Calcul des fréquences des évènements = solution au sens MV
- Chaque ligne de A est une distribution (sommant à 1)
- En faisant une hypothèse de stationnarité, il est possible d'estimer les π_i sur toute la base de données :

classique :
$$\pi_j = \frac{I_j}{K}$$
 alternative stationnaire : $\pi_j = \frac{n.j}{\sum_{ij} n_{ij}}$

Distance entre séquences

Vincent Guigue, Thierry Artières vincent.guigue@lip6.fr

LIP6 - Université Paris 6, France

Idée générale

- Similarité/distance = outil de base
 - k-plus proches voisins...
- La similarité peut concerner une partie seulement du signal
 - Reflexion sur les besoins spécifiques

Dynamic Time Warping (DTW)

- L'analyse du signal est locale (cf. stationnarité)
- Unités de reconnaissance plus globales (phonèmes, mots, ...)
- Nécessité de comparer des séquences de vecteurs
- DTW = distance entre séquences
 - ayant des longueurs différentes
 - insensible à certaines variabilités d'élocution
 - calculable efficacement

Distance entre séquences

Idée:

- Existence d'une distance entre séquences capable de
 - Prendre en compte les différences de rythme dans les séquences
 - Comparer des séquences de longueur différente
- Dynamic Time Warping (DTW)

Distance entre séquences (2)

Notion de chemin d'alignement :

• Chemin : $c = \{(i_k, j_k)\}_{k=1,...,K}$ tel que :

$$\forall k, \ (i_k, j_k) = \begin{cases} (i_{k-1} - 1, j_{k-1}) & i_1 = j_1 = 1\\ (i_{k-1} - 1, j_{k-1} - 1) & j_K = T_2\\ (i_{k-1}, j_{k-1} - 1) & i_K = T_1 \end{cases}$$

Distance suivant un alignement :

$$D_c(S_1, S_2) = \sum_{k=1}^K d_{c(k)}(S_1[i(k)], S_2[j(k)])$$

Distance entre 2 séquences

$$D(S_1,S_2) = \min_c D_c(S_1,S_2)$$

Distance entre séquences (3)

Phase avant:

- calcul des $\forall i, j, d(S_1[i], S_2[j])$
- sommes cumulées

3	2	5	2	4	2	2
2	2	3	2	1	4	4
2	1	2	2	2	3	4
1	1	2	1	1	3	2
1	1	3	3	3	3	4
3	3	4				
3 2	3 2 4	4				

2	/2					
1 4	2					
9	7	10	8	10	9	11
6	5	6	6	7	11	13
4	3	4	6	7	9	13
2	2	4	5	6	9	11
1	2	5	8	11	14	18

Distance entre séquences (4)

Phase retour:

Chemin correspondant au cout minimum

9	7	10	8	10	_ 9 ◀	11
6	5	6	6	7 ×	11	13
4	3	4	6	7	9	13
2	2	4	5	6	9	11
1	2	5	8	11	14	18

Distance entre séquences (5)

