Matthias Danner Blatt 4

Repetitorium Theoretische Elektrodynamik, WS 07/08

4.1 (Ebene elektromagnetische Welle)

Durch $\mathbf{A}(x,t) = A(x-ct)\mathbf{e}_x$ und $\Phi = 0$ ist eine ebene elektromagnetische Welle definiert.

- (a) Bestimmen Sie das \boldsymbol{E} und \boldsymbol{B} -Feld
- (b) Bestimmen Sie die Energiedichte w_{em} und den Poynting-Vektor S

4.2 (Wellengleichung)

Lösen Sie die homogene Wellengleichung

$$\Box \Phi(\boldsymbol{x}, t) = 0$$

mithilfe eines Separationsansatzes und geben Sie die vollständige Lösung an.

4.3 (Brechung)

Eine ebene Welle trifft schräg auf eine Luft-Glas-Grenzfläche, die in der x-y-Ebene liegt.

- (a) Welche Komponenten welcher Felder sind stetig?
- (b) Erklären Sie, warum die Welle gebrochen wird.

4.4 (Rotierender Kreisring)

Ein Kreisring mit Radius R rotiere mit konstanter Winkelgeschwindigkeit ω um einen Durchmesser. Senkrecht zur Drehachse herrscht ein homogenes B-Feld.

- (a) Berechnen Sie die im Ring erzeugte Induktionsspannung als Funktion der Zeit
- (b) Der Ring bestehe aus einem Metalldraht der Leitfähigkeit σ . Welcher Strom I(t) fließt durch den Ring, wenn man annimmt, dass er homogen über den Querschnitt verteilt ist?

4.5 (Rotierende Hohlkugel)

Auf der Oberfläche einer Hohlkugel mit Radius R ist eine Ladung q gleichmäßig verteilt. Die Kugel rotiert mit der konstanten Winkelgeschwindigkeit ω um einen ihrer Durchmesser.

- (a) Bestimmen Sie die dadurch erzeugte Stromdichte j(x).
- (b) Berechnen Sie das von j(x) erzeugte magnetische Moment der Kugel.
- (c) Bestimmen Sie außerdem das Vektorpotential A(x) sowie das Magnetfeld B(x).