MEMO 2022 Team Competition: Problem 5.

Let ω be the circumcircle of a triangle ABC with $\angle CAB = 90^{\circ}$. The medians through B and C meet ω again at D and E, respectively. The tangent to ω at D intersects the line AC at X and the tangent to ω at E intersects the line AB at Y. Prove that the line XY is tangent to ω .

Việt hoá: Cho tam giác ABC nội tiếp đường tròn (O) đường kính BC. Trung tuyến từ B và C cắt đường tròn (O) lần lượt tại 2 điểm D và E. Tiếp chuyến của (O) tại D cắt AC tại X, tiếp tuyến tại E của (O) cắt AB tại Y. Chứng minh XY tiếp xúc với đường tròn (O).

Solution 1.

Lấy điểm G là đối xứng của A qua O, đặt M là trung điểm BC. Tiếp tuyến tại G và D của (O) cắt nhau tại X'.

Ta có:
$$\angle GOX' = \frac{1}{2} \angle GOD = \angle GBD = \angle AMB \quad (AC \parallel BC)$$
. Từ đây suy ra $\triangle GOX' \sim \triangle AMB$.

Mặt khác lần lượt có O và M là trung điểm AG và AC. Suy ra $\triangle GAX' \sim \triangle ACB$ $\Rightarrow \angle GAX' = \angle ACB = \angle GAC$. Ta có ngay $X' \equiv X$.

Ta định nghĩa Y' và chứng minh $Y' \equiv Y$ tương tư. Hoàn tất chứng minh.

Solution 2.

Kẻ AG là đường kính của (O).