- 1. $B = \{(0,3), (1,2), (1,3), (2,1), (2,2), (2,3)\}$
- 2. **a**)
 - 1. Fall: Sei $x \ge 0$, dann ist $x 1 = \frac{1}{2}x$ und damit x = 2.
 - 2. Fall: Sei x < 0, dann ist $-x 1 = \frac{1}{2}x$ und damit $x = \frac{-2}{3}$. Somit erfüllen x = 2 und $x = \frac{-2}{3}$ die Gleichung.

b)

- 1. Fall: Sei $x \ge 3$, dann ist (x-3)-2(x+2)=0 und damit wäre x=-7, wegen $x \ge 3$ tritt dieser Fall nicht auf.
- 2. Fall: Sei $-2 \le x < 3$, dann ist -(x-3) 2(x+2) = 0 und damit ist $x = -\frac{1}{3}$.
- 3. Fall: Sei x < -2, dann ist -(x-3) + 2(x+2) = 0 und damit ist x = -7. Somit sind $x = -\frac{1}{3}$ und x = -7 die beiden Lösungen der Gleichung.

 $\mathbf{c})$

1. Fall: Sei $x \ge -5$, dann ist $x + 5 \ge 0$, und man kann folgern

$$||x+5|-1| \le \frac{1}{2} \iff -\frac{1}{2} \le x+5-1 \le \frac{1}{2}$$

$$\Leftrightarrow -4-\frac{1}{2} \le x \le -4+\frac{1}{2}$$

$$\Leftrightarrow x \in \left[\frac{-9}{2}, \frac{-7}{2}\right]$$

2. Fall: Sei x < -5, dann ist x + 5 < 0 und man kann folgern

$$||x+5|-1| \le \frac{1}{2} \iff -\frac{1}{2} \le -(x+5) - 1 \le \frac{1}{2}$$

$$\Leftrightarrow 6 - \frac{1}{2} \le -x \le 6 + \frac{1}{2}$$

$$\Leftrightarrow -6 - \frac{1}{2} \le x \le -6 + \frac{1}{2}$$

$$\Leftrightarrow x \in \left[\frac{-13}{2}, \frac{-11}{2}\right]$$

Also: x erfüllt die Ungleichung genau dann, wenn

$$x \in \left[\frac{-13}{2}, \frac{-11}{2}\right] \cup \left[\frac{-9}{2}, \frac{-7}{2}\right]$$

ist.

d) Setze a=(x-1)(x-2)(x-3) und b=|x-2|-1. Wegen $a^2+b^2=0$ folgt dann nach Vorlesung a=b=0. Aus a=0 erhält man wegen der Nullteilerfreiheit von $\mathbb{R}: x-1=0$ oder x-2=0 oder x-3=0, d. h. $x\in\{1,2,3\}$. Durch Einsetzen sieht man, daß genau für x=1 und x=3 die Bedingung b=0 erfüllt ist. Die Gleichung ist somit genau für $x\in\{1,3\}$ erfüllt.

- 3. Sei M die Menge der $x \in \mathbb{R}$, die die Ungleichung erfüllen Die drei Fälle $x \geq 3, \ x \leq 2$ und 2 < x < 3 werden einzeln behandelt:
 - (a) Sei $x \geq 3$, insbesondere ist dann auch x > 2, und es folgt, falls x die Ungleichung erfüllt

$$\begin{array}{lll} & x-2 & < & x-3 \\ \Leftrightarrow & -2 & < & -3 \\ \Leftrightarrow & 2 & > & 3 & \text{Widerspruch!} \end{array}$$

Also ist für diese x stets $x \notin M$.

(b) Sei $x \leq 2$, insbesondere ist dann auch x < 3, und für die $x \in M$ gilt

$$\begin{array}{lll} & -(x-2) & < & -(x-3) \\ \Leftrightarrow & 2-x & < & 3-x \\ \Leftrightarrow & 2 & < & 3 & \text{Dieses ist stets erfüllt.} \end{array}$$

Also ist für diese x stets $x \in M$.

(c) Sei nun 2 < x < 3. Für $x \in M$ ist dann

$$\begin{array}{rcl} x-2 & < & -(3-x) \\ \Leftrightarrow & x-2 & < & 3-x \\ \Leftrightarrow & 2x & < & 5 \end{array}$$

$$\Leftrightarrow x & < \frac{5}{2}$$

Also: von diesen x liegen genau diejenigen mit $x < \frac{5}{2}$ in der Menge M.

Insgesamt folgt $M = \{x \in \mathbb{R} \mid x < \frac{5}{2}\}$. Dieses sind genau diejenigen $x \in \mathbb{R}$, die dichter an 2 als an 3 liegen!

4. Man wende die Dreiecksungleichung auf die beiden Zahlen a und d=b+c an:

$$|a+b+c| = |a+d| \le |a| + |d| = |a| + |b+c|$$

Eine zweite Anwendung der Dreicksungleichung und anschließende Addition von |a| liefern:

$$|b+c| \le |b|+|c| \implies |a|+|b+c| \le |a|+|b|+|c|$$

Beide Ungleichungen zusammen liefern das Ergebnis:

$$|a+b+c| \le |a| + |b+c| \le |a| + |b| + |c|$$

5. Beweis durch vollständige Induktion über n:

Induktionsanfang: Sei n = 0:

linke Seite :
$$\binom{37}{0} = 1$$

rechte Seite : $\binom{38+0}{0} = \binom{38}{0} = 1$

2

Induktionsschluß: Die Behauptung gelte für n-1 als bewiesen; dann folgt:

$$\sum_{i=0}^{n-1} {37+i \choose i} = {37+n \choose n-1} + {37+n \choose n}$$

$$\sum_{i=0}^{n} {37+i \choose i} = {37+n \choose n-1} + {37+n \choose n}$$

$$= {37+n+1 \choose n} = {38+n \choose n},$$

da allgemein für $a, b \in \mathbb{N}$, $a \ge b$ die Regel $\binom{a}{b} + \binom{a}{b-1} = \binom{a+1}{b}$ gilt. Damit ist alles bewiesen.

6. Zur Auflösung der Beträge nimmt wie üblich Fallunterscheidungen vor. Hier lauten die beiden Fälle " $a \ge b$ " bzw. "a < b". Für die erste Gleichung berechnet man im Fall " $a \ge b$ " wegen |a - b| = (a - b):

$$\frac{(a+b)+|a-b|}{2} = \frac{(a+b)+(a-b)}{2} = a = \max(a,b)$$

Im umgekehrten Fall "a < b" hat man wegen |a - b| = (b - a):

$$\frac{(a+b)+|a-b|}{2} = \frac{(a+b)+(b-a)}{2} = b = \max(a,b)$$

Entsprechend verfährt man bei der zweiten Gleichung.

7. Die Menge

$$M := \{x \mid x = \frac{1}{n} - \frac{1}{n+1} \text{ mit } n \in \mathbb{N} \}.$$

ist sowohl nach oben als auch noch unten beschränkt und besitzt außerdem ein Maximum:

Das Maximum: Es ist

$$x_1 = \frac{1}{1} - \frac{1}{2} = \frac{1}{2} \in M$$

Andererseits ist für alle $n \geq 2$

$$\frac{1}{n} - \frac{1}{n+1} < \frac{1}{n} \le \frac{1}{2} = x_1$$
also
$$\frac{1}{n} - \frac{1}{n+1} \le x_1 \text{ für alle } x \in M$$

Daher ist x_1 der größte in M enthaltene Wert; x_1 ist damit die kleinste obere Schranke von M und damit auch das Maximum von M.

Das Infimum: Man erkennt sofort, daß M durch 0 nach unten beschränkt ist: Für jedes $n \in \mathbb{N}$ ist nämlich

$$\frac{1}{n} > \frac{1}{n+1}$$

$$\Rightarrow \qquad \frac{1}{n} - \frac{1}{n+1} > 0 \tag{1}$$

Da andererseits sich die Elemente der Menge M für immer größer werdendes n der Null beliebig stark annähern, kann es keine größere untere Schranke als 0 geben. Daher ist 0 die größte untere Schranke von M, d. h. es ist $0 = \inf(M)$. Da aber, wie man anhand von (1) sieht, $0 \notin M$ ist; ist Null kein Minimum von M.