Hochschule Karlsruhe University of Applied Sciences Studiengang EITB SS 22

Digitaltechnik Labor 2

Von halben und vollen Addierern

Vorbereitung

Jan Hoegen*

Erstellt am: 10. April 2022 Betreuer: Prof. Dr. -Ing. Jan Bauer

Inhaltsverzeichnis

1	Um	formung des Halbaddierers	2
	1.1	Umformen der Gleichung	2
	1.2	Schaltbild des umgeformten Halbaddierers	2
	1.3	Simulation der Schaltung	2
2	Um	formen des Volladdierers	2
	2.1	Umformen der Gleichung	3
	2.2	Schaltbild des umgeformten Volladdierers	3
	2.3	Simulation der Schaltung	3
3	Um	formen des 2-Bit-Addierer-Netz	4
	3.1	Blockschaltbild des 2-Bit Ripple-Carry-Addiernetz	4
	3.2	Umformen des Schaltbilds	4
	3.3	Simulation der Schaltung	5

^{*}Matrikelnumer: 82358

1 Umformung des Halbaddierers

In diesem Abschnitt wird ein Halbaddierer durch ausschließlich NAND- und NOR-Gatter realisiert. Nachdem im nächsten Abschnitt auf gleiche Weise Ein Volladdierer umgeformt wird, kann schließlich ein 2-Bit-Ripple-Carry-Addierer nur durch NANDs und NOrs gebildet werden.

1.1 Umformen der Gleichung

Für den Carry-Out des Halbaddieres gilt gemäß der Laboranleitung:

$$c_0 = a \wedge b$$

Nach Umformen durch Idempotenz und Involution ergibt sich:

$$c_{0} = a \wedge b$$

$$c_{0} = (a \wedge b) \wedge (a \wedge b)$$

$$c_{0} = \overline{(a \wedge b) \wedge (a \wedge b)}$$

$$c_{0} = \overline{(a \wedge b)} \wedge \overline{(a \wedge b)}$$

Dies entspricht 2 NAND-Gattern, der Ausgang des Ersten liegt dabei auf beiden Eingängen des Zweiten.

1.2 Schaltbild des umgeformten Halbaddierers

Der vollständige Halbaddierer mit Umformung nach oben stehender Rechnung ergibt folgendes Schaltbild:

1.3 Simulation der Schaltung

Die oben stehende Schaltung in logisim-evolution aufgebaut erzeugt die Wahrheitstabelle aus 1. Sie stimmt mit der eines Halbaddierers überein, die Schaltung erfüllt damit weiterhin ihre Funktion.

2 Umformen des Volladdierers

Nachdem zuerst der Halbaddierer durch NORs und NANDs realisiert wurde, wird nun analog mit dem Volladdierer vorgegangen.

Tabelle 1: Wahrheitstabelle des simulierten Halbaddierers

a	b	c	s
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

2.1 Umformen der Gleichung

Für den Ausgang des Carry-Out eines Volladdierers gilt gemäß der Laboranleitung:

$$c_0 = (a \wedge b) \vee (\bar{s} \wedge c_i)$$

Nach Umformen durch Involution ergibt sich:

$$c_0 = \underbrace{(a \land b) \lor (\bar{s} \land c_i)}_{c_0 = \underbrace{(a \land b) \lor (\bar{s} \land c_i)}_{c_0 = \underbrace{(\bar{a} \land b) \land (\bar{s} \land c_i)}_{\bar{s} \land c_i}}$$

Dies entspricht drei NAND-Gattern. Jede Klammer sowie ihre Verknüpfung ist ein NAND-Gatter.

2.2 Schaltbild des umgeformten Volladdierers

Das vollständige Schaltbild eines Volladdierers nach oben stehender Umformung sieht dann so aus:

2.3 Simulation der Schaltung

Diese Schaltung in logisim-evolution aufgebaut erzeugt die Wahrheitstabelle in 2. Sie stimmt mit der eines Volladdierers überein, die Schaltung erfüllt also weiterhin ihre Funktion.

Tabelle 2: Wahrheitstabelle des simulierten Volladdierers

a	b	c_i	$ c_0$	s
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

3 Umformen des 2-Bit-Addierer-Netz

3.1 Blockschaltbild des 2-Bit Ripple-Carry-Addiernetz

Das Schaltbild des 2-Bit Ripple-Carry-Addiernetz in Blockschaltung sieht so aus:

3.2 Umformen des Schaltbilds

Das vollständige Schaltbild mit einsetzen der Layouts aus Abschnitt 1.2 und 2.2 ergibt:

3.3 Simulation der Schaltung

Diese Schaltung in logisim-evolution aufgebaut erzeugt die Wahrheitstabelle in 3. Sie stimmt mit der eines 2-Bit-Ripple-Carry-Addierers überein, die Schaltung erfüllt also weiterhin ihre Funktion.

Tabelle 3: Wahrheitstabelle des simulierten 2-Bit-Ripple-Carry-Addierer

a_0	b_0	a_1	b_1	c_1	s_1	s_0
0	0	0	0	0	0	0
0	0	0	1	0	1	0
0	0	1	0	0	1	0
0	0	1	1	1	0	0
0	1	0	0	0	0	1
0	1	0	1	0	1	1
0	1	1	0	0	1	1
0	1	1	1	1	0	1
1	0	0	0	0	0	1
1	0	0	1	0	1	1
1	0	1	0	0	1	1
1	0	1	1	1	0	1
1	1	0	0	0	1	0
1	1	0	1	1	0	0
1	1	1	0	1	0	0
_1	1	1	1	1	1	0