NETWORK DESIGN FOR ROYAL UNIVERSITY OF PHNOM PENH

RUNG SETHY SOPHEAK DAVIN

Royal University of Phnom Penh Department of Computer Science Class E6 Year 3 G23

Project: Network Design for Royal University of Phnom Penh

Group Member:

- Rung Sethy
- Sopheak Davin

Teaching By:

• Heng Sovannarith

2022

Contents

1. Introduction	4
2. Physical Topology	12
3. Logical Topology	34
4. Implementation	37
5. Reference	39

1. Introduction

Technology (បច្ចេកវិទ្យា) បានឈានដល់កម្រិតខ្ពស់បំផុតនៃការអភិវឌ្ឍន៍ ជាពិសេសក្នុងការធ្វើឱ្យជីវិតកាន់តែងាយស្រួលសម្រាប់មនុស្ស។ បច្ចេកវិជ្ជាដែល បានអនុវត្តល្អគឺលឿនជាងមនុស្សក្នុងការគណនាដំណើរការ ហើយត្រឹមត្រូវជាង។ បច្ចេកវិទ្យាបានក្លាយជាគំនិតសំខាន់មួយនៅក្នុងជីវិតរបស់យើង។ វាជួយក្នុងការ ក្ជាប់សហគមន៍មនុស្សនៅក្នុងពិភពលោកជាមួយគ្នា។ ជាក់ស្ដែងមនុស្សបានចាប់ ផ្ដើមប្រើប្រាស់បច្ចេកវិទ្យាក្នុងគ្រប់វិស័យនៃជីវិតរួមទាំងការអប់រំ សុខភាព យោធា។ល។

Computer Network (បណ្តាញកុំព្យូទ័រ)តំណាងឱ្យសមាសធាតុមួយ ជាពិសេសអំពីរបៀបដែលវាបង្កើនការអនុវត្តមុខងារនៅក្នុងវិស័យ និងអង្គភាព ផ្សេងៗ ដូចជាក្រុមហ៊ុន និងសាលារៀនជាដើម។ បណ្តាញកុំព្យូទ័ររបស់សាលា អនុវត្តមុខងារជាច្រើនដូចជា ការភ្ជាប់សិស្សជាមួយសាកលវិទ្យាល័យ មហាវិទ្យាល័យ និងបណ្ណាល័យ។ សាកលវិទ្យាល័យភាគច្រើននាពេលបច្ចុប្បន្ននេះ ប្រើប្រាស់ Network ដើម្បីផ្តល់ការអប់រំតាមរយៈអ៊ីនធឺណិតដោយភ្ជាប់សិស្សដែល នៅទីតាំងផ្សេងៗគ្នាជាមួយសាស្ត្រាចារ្យរបស់ពួកគេដោយផ្ទាល់។ សម្រាប់ហេតុ ផលនេះ Computer Network ដើរតួនាទីយ៉ាងសំខាន់ក្នុងវិស័យអប់រំ ដោយផ្តល់ នូវការទំនាក់ទំនងប្រកបដោយប្រសិទ្ធភាពសម្រាប់បរិយាកាសសកលវិទ្យាល័យ។

History of Royal University of Phnom Penh

សាកលវិទ្យាល័យភូមិន្ទក្ខំពេញបានបើកទ្វាររបស់ខ្លួនជាលើកដំបូងជាសាក លវិទ្យាល័យភូមិន្ទខ្មែរនៅថ្ងៃទី ១៣ ខែ មករា ឆ្នាំ ១៩៦០ ដែលមានវិទ្យាស្ថានជាតិ សិក្សាយុត្តិធម៌ និងសេដ្ឋកិច្ច សាលាភូមិន្ទរវេជ្ជសាស្ត្រ សាលាជាតិពាណិជ្ជកម្ម វិទ្យាស្ថានគរុកោសល្យជាតិ មហាវិទ្យាល័យ។ អក្សរសាស្ត្រ និងវិទ្យាសាស្ត្រមនុស្ស និងមហាវិទ្យាល័យវិទ្យាសាស្ត្រ និងបច្ចេកវិទ្យា។ ភាសានៃការបង្រៀនក្នុងអំឡុង ពេលនេះគឺភាសាបារាំង។ ជាមួយនឹងការបង្កើតសាធារណរដ្ឋខ្មែរ សាកលវិទ្យា ល័យភូមិន្ទខ្មែរបានក្លាយជា**សាកលវិទ្យាល័យភ្នំពេញ**។ រវាងឆ្នាំ 1965 និង 1975 សាកលវិទ្យាល័យមាន Ecole Normale Superieure មហាវិទ្យាល័យអក្សរសាស្ត្រ និងមនុស្សសាស្ត្រ វិទ្យាសាស្ត្រ ឱសថស្ថាន ច្បាប់ និងសេដ្ឋកិច្ច វេជ្ជសាស្ត្រ និងទន្តសាស្ត្រ ពាណិជ្ជកម្ម គរុកោសល្យ និងវិទ្យាស្ថានភាសា។

នៅចន្លោះឆ្នាំ 1975 និង 1979 របបខ្មែរក្រហមបានបង្ខំឱ្យបញ្ឈប់ការអប់រំផ្លូវការ។ សាលារៀន និងសាកលវិទ្យាល័យត្រូវបានបិទ និងបំផ្លាញចោល ហើយសេវាកម្ម បង្រៀនក៏ត្រូវបានបំផ្លាញផងដែរ។រួមជាមួយនឹងស្ថាប័នអប់រំផ្សេងទៀតទាំងអស់នៅ ក្នុងប្រទេសកម្ពុជា សាកលវិទ្យាល័យភ្នំពេញបានឈប់ដំណើរការក្នុងអំឡុងពេល នេះ។ ខ្មែរក្រហមបានកំណត់គោលដៅលើអ្នកអប់រំ ហើយសមាជិកមហាវិទ្យាល័យ ជាច្រើននាក់ត្រូវបានសម្លាប់។ ក្នុងចំណោម អ្នកមានការអប់រំដែលរួចផុតពីរបបនេះ មានមនុស្សតិចណាស់បានជ្រើសរើសបន្ត នៅក្នុងប្រទេសកម្ពុជាបន្ទាប់ពីព្រំដែន របស់ខ្លួនបានបើកឡើងវិញ។ ត្រូវបានបោះបង់ចោលអស់រយៈពេលជិតប្រាំឆ្នាំ បរិវេណសាលាបានក្លាយជាជនរងគ្រោះមួយផ្សេងទៀតនៃសម័យកាលដ៏អាក្រក់ក្នុង របបខ្មែរក្រហម។

នៅឆ្នាំ 1980 សាលា Ecole Normale Superieure បានបើកឡើងវិញ ដោយ បង្រៀនម្តងទៀតជាភាសាបារាំង។ នៅឆ្នាំបន្ទាប់មានការបើកវិទ្យាស្ថានភាសាបរ ទេស (IFL)ដំបូងឡើយបណ្តុះបណ្តាលនិស្សិតឱ្យក្លាយជាគ្រូបង្រៀនភាសាវៀត ណាម និងរុស្ស៊ី។ មហាវិទ្យាល័យទាំងពីរបានផ្ដោតលើការបណ្ដុះបណ្ដាលនិស្សិត ឱ្យក្លាយជាគ្រូបង្រៀន ដូច្នេះការកសាងប្រព័ន្ធអប់រំនៅក្នុងប្រទេសកម្ពុជាកំពុងស្ដារ ឡើងវិញ។

នៅឆ្នាំ 1988 Ecole Normale Superieure បានរួមបញ្ចូលគ្នាជាមួយ IFL ដើម្បីបង្កើតសាកលវិទ្យាល័យភ្នំពេញ។ នៅឆ្នាំ១៩៩៦សាកលវិទ្យាល័យបានទទួល ការប្ដូរឈ្មោះចុងក្រោយរបស់ខ្លួន ក្លាយជាសាកលវិទ្យាល័យភូមិន្ទភ្នំពេញ។

ក្នុងអំឡុងពេលមួយទសវត្សរ៍កន្លងមក សាកលវិទ្យាល័យបានបន្តរីកចម្រើន ហើយឥឡូវនេះរួមមានមហាវិទ្យាល័យវិទ្យាសាស្ត្រ មហាវិទ្យាល័យវិទ្យាសាស្ត្រសង្គម និងមនុស្សសាស្ត្រ និងវិទ្យាស្ថានភាសាបរទេស។ នាយកដ្ឋានថ្មី និងកម្មវិធីសញ្ញា ប័ត្រត្រូវបានបង្កើតឡើងជាទៀងទាត់ដើម្បីបំពេញតាមតម្រូវការផ្លាស់ប្តូររបស់សង្គម កម្ពុជា។ ស្របតាមការប្តេជ្ញាចិត្តរបស់ខ្លួនចំពោះការអប់រំថ្នាក់ឧត្តមសិក្សា RUPP បានចាប់ផ្តើមបង្កើតសញ្ញាបត្រក្រោយឧត្តមសិក្សានៅកម្រិតថ្នាក់អនុបណ្ឌិតចាប់តាំ ងពីឆ្នាំ 2001។

សាកលវិទ្យាល័យភូមិន្ទភ្នំពេញ(RUPP) ត្រូវបានបង្កើតឡើងក្នុងឆ្នាំ 1960 ដែលជាសាកលវិទ្យាល័យចំណាស់ជាងគេនៅប្រទេសកម្ពុជាហើយបានឆ្លងកាត់ការ ផ្លាស់ប្តូរជាបន្តបន្ទាប់ ដើម្បីក្លាយជាសាកលវិទ្យាល័យជាតិឈានមុខគេនៅកម្ពុជា។ ការផ្លាស់ប្តូរផ្សេងទៀតនៅតែកើតឡើង។ជាឧទាហរណ៍ក្នុងរយៈពេលប្រាំឆ្នាំចុងក្រោ យនេះសាកលវិទ្យាល័យភូមិន្ទភ្នំពេញមានការរីកចម្រើនគួរឱ្យកត់សម្គាល់ក្នុងវិស័យ ជាច្រើន រួមទាំងរចនាសម្ព័ន្ធអង្គការ ការគ្រប់គ្រងស្ថាប័ន ការកសាងសមត្ថភាព ការអភិវឌ្ឍន៍ហេដ្ឋារចនាសម្ព័ន្ធ ការស្រាវជ្រាវ ការបង្រៀន និងការសិក្សា ការអភិវឌ្ឍន៍កម្មវិធីសិក្សានិងការធានាគុណភាព។សមិទ្ធិផលទាំងនេះបានលើកទឹក ចិត្តដល់ថ្នាក់គ្រប់គ្រង និងមហាវិទ្យាល័យរបស់ សាកលវិទ្យាល័យភូមិន្ទភ្នំពេញ ឱ្យខិតខំអនុវត្តកំណែទម្រង់ស្ថាប័ននិងសម្រេចបាននូវគោលដៅអភិវឌ្ឍន៍។

គោលដៅចម្បងនៃគម្រោងនេះគឺដើម្បីបង្ហាញពីការ Design Network ដែល សមស្របសម្រាប់សាកលវិទ្យាល័យភូមិន្ទភ្នំពេញនៅក្នុងប្រទេសកម្ពុជាដែលជា ប្រទេសមួយដែលកំពុងអភិវឌ្ឍន៍។ សាកលវិទ្យាល័យភូមិន្ទភ្នំពេញកំពុងត្រូវការ ការ រចនាបណ្តាញមួយដើម្បីធានាបានគុណភាពនៃការតំណរភ្ជាប់រវាងកុំព្យូទ័រនៅក្នុងស កលវិទ្យាល័យ និងការតភ្ជាប់រវាងសិស្សនិស្សិតជាមួយសាស្ត្រាចារ្យរបស់ពួកក្នុងរបត់ នៃការរស់នៅសម័យថ្មីនេះ។

សាកលវិទ្យាល័យភូមិន្ទភ្នំពេញក្នុងប្រទេសកម្ពុជាប្រឈមមុខនឹងបញ្ហាប្រឈមក្នុង ការចេនាបណ្តាញដើម្បីឲ្យត្រូវក្នុងស្គង់ដារនៃប្រទេសកម្ពុជា។ ដែលបញ្ហាចម្បង ដែលសកលវិទ្យាល័យក្នុងប្រទេសកម្ពុជាត្រូវប្រឈមមុខនឹងបញ្ហាឱនភាពថវិកា យ៉ាងជ្រាលជ្រៅក្នុងកំឡុងនៃការរីករាលត្បាតនៃ Virus COVID-19 នេះ។ ការស្រាវ ជ្រាវនេះនឹងជួយសាកលវិទ្យាល័យភូមិន្ទភ្នំពេញក្នុងការរចនាបណ្តាញមួយដែល មាន សុវត្ថិភាព គុណភាព និងមានតម្លៃទាប។

តម្រូវការរបស់សាកលវិទ្យាល័យភូមិន្ទភ្នំពេញទៅលើបណ្តាញNetworkមានដូចជា៖

Capacity

ដោយហេតុតែសាកលវិទ្យាល័យភូមិន្ទភ្នំពេញមានចំនួនមានបុគ្គលិករបស់ សាលា សាស្ត្រាចារ្យ និងសិស្សនិស្សិតជាច្រើន ដែលជាអ្នកប្រើប្រាស់ក្នុង បណ្តាញ network ហេតុនេះតម្រូវឲ្យបណ្តាញ network របស់យើងមាន សមត្ថភាពខ្លាំងគ្រប់គ្រាន់ក្នុងការទប់ទល់នឹងសម្ពាធខ្លាំងពីការប្រើប្រាស់។ ដើម្បី ឲ្យបណ្តាញnetworkរបស់យើងអាចផ្តល់នូវតំណរភ្ជាប់មួយដ៏ល្អមួយដល់អ្នកប្រើ ប្រាស់។

Reliability

បណ្តាញnetworkរបស់សាកលវិទ្យាល័យភូមិន្ទភ្នំពេញត្រូវតែមានភាពក្នុងកា រផ្តល់តំណរភ្ជាប់ទៅអ្នកប្រើប្រាស់បានគ្រប់ពេលពេលវេលា។ ហេតុបណ្តាញរបស់យើងត្រូវប្រើឧបករណ៍ដែលមានគុណភាពទាំង hardware និង software ។ ក្នុងគម្រោងនេះយើងនិងប្រើឧបករណ៍បណ្តាញរបស់ក្រុមហ៊ុន Cisco ដែលជាក្រុមហ៊ុនផលិតដ៏ធំ និងមានការទទួលស្គាល់នៅក្នុងពិភលោក។

Security

ចំណែកឯផ្នែកខាងសុវត្ថិភាពនៅក្នុងបណ្តាញវិញក៏ស្ថិតនៅក្នុងការគិតគួរយ៉ា ងចម្បងមួយដែរ។

ដែលតម្រូវឲ្យមានឧបករណ៍ផ្នែកសុវត្ថិភាពជាច្រើនដែលត្រូវបានចូលរួមក្នុងប ណ្ដាញដើម្បីជានាសុវត្ថិភាពក្នុងបណ្ដាញដូចជា Firewall និងការ Configuration Network Devices ជាដើម ដើម្បី filter ទិន្នន័យដែល ចូលទៅក្នុងបណ្ដាញរបស់យើង។

ប្រសិនបើបញ្ហាណាមួយកើតឡើងចំពោះទិន្នន័យ មានវិធីមួយដើម្បីស្គារទិន្នន័យ ពីម៉ាស៊ីនមេសម្រាប់backup។ កុំព្យូទ័រនីមួយៗនៅក្នុងបណ្តាញមាន antivirus ដើម្បីការពារទិន្នន័យរបស់អ្នកប្រើប្រាស់។ ដូចគ្នានេះផងដែរ Router និង Switch ទាំងអស់ត្រូវបានការពារដោយពាក្យpasswords និង encrypt។ បញ្ហា ប្រឈមដំបូងក្នុងការរចនាបណ្តាញនេះនឹងប្រឈមមុខគឺបញ្ហាសេដ្ឋកិច្ច និង ថវិកា។

តម្លៃសម្រាប់ការរចនាប្រព័ន្ធបណ្តាញមានដែនកំណត់ដែលមិនអាចលើស។ ការរចនាបណ្តាញនេះនឹងក្លាយជាដំណោះស្រាយសម្រាប់ការរចនាបណ្តាញនៅ ក្នុងប្រទេសកំពុងអភិវឌ្ឍន៍។ នេះគឺដោយសារតែការរចនានេះអាចត្រូវបានធ្វើឡើងជាប្រព័ន្ធបណ្តាញរួមបញ្ចុ លគ្នា ជាមួយនឹងសុវត្ថិភាពល្អ និងគុណភាពនៃឧបករណ៍ដោយតម្លៃទាប។

2. Physical Topology

សកលវិទ្យាល័យភូមិន្ទភ្នំពេញគឺជាសកលវិទ្យាល័យដែលធំមួយនៅក្នុងប្រទេ សកម្ពុជាដែលមានចំនួនបុគ្គលិក សាស្ត្រាចារ្យ និងនិស្សិតជាច្រើន។ ហើយសកលវិទ្យាល័យភូមិន្ទភ្នំពេញក៏ផ្ទៃដីយ៉ាងធំដែរ ដែលតម្រូវឲ្យយើងត្រូវរចនា network របស់យើងឲ្យត្រូវតាមកត្តាទាំងនេះ ដើម្បីឲ្យ network របស់យើង អាចមានសមត្ថភាពក្នុងការផ្គត់ផ្គង់នូវតំណរភ្ជាប់យ៉ាងល្អមួយបាន។

ដោយហេតុនេះNetworkរបស់យើងនិងត្រូវបានរចនាឡើងដោយបែងចែក បានទៅតាមមហាវិទ្យាល័យរួចបែងចែកទៅតាមដេប៉ាតឺម៉ង់និងតាមកន្លែងសំខាន់ៗ ចំនួននៅក្នុងសកលវិទ្យាល័យ។

• មហាវិទ្យាល័យ ដេប៉ាតឺម៉ង់ និងកន្លែងសំខាន់ៗ

មហាវិទ្យាល័យ	ដេប៉ាតឺម៉ង់
	អក្សរសាស្ត្រខ្មែរ
	ប្រវត្តវិទ្យា
មហាវិទ្យាល័យ សង្គមសាស្ត្រ	ទស្សនវិជ្ជា
មនុស្សសាស្ត្រ	ភូមិវិទ្យា និងរៀបចំដែនដី
	សង្គមកិច្ចវិទ្យា
	ចិត្តវិទ្យា

	គ្រប់គ្រងពាណិជ្ជកម្មអន្តរជាតិ		
	ភាសាវិទ្យា		
	ប្រព័ន្ធផ្សព្វផ្សាយ និងសារគមនាគមន៍		
	ទេសចរណ៍		
	សង្គមវិទ្យា		
	គណិតវិទ្យា		
	បរិស្ថាន		
າສາດຂຸດຄົ້ນນັ້ນດີດຄົ້ນນາ	រូបវិទ្យា		
មហាវិទ្យាល័យ វិទ្យាសាស្ត្រ	គីមី		
	ជីវវិទ្យា		
	ព័ត៌មានវិទ្យា		
	អភិវឌ្ឍន៍សេដ្ឋកិច្ច		
មហាវិទ្យាល័យ សិក្សាអភិវឌ្ឍន៍	គ្រប់គ្រងនិងអភិវឌ្ឍន៍ធនធានធម្មជាតិ		
	អភិវឌ្ឍន៍សហគមន៍		
	វិស្វកម្មទូរគមនាគមន៍ និងអេឡិចត្រូនិច		
មហាវិទ្យាល័យ វិស្វកម្ម	វិស្វកម្ម ជីវិសាស្ត្រ		
	វិស្វកម្ម បច្ចេកវិទ្យាព័ត៌មាន		
	អប់រំពេញមួយជីវិត		
មហាវិទ្យាល័យ អប់រំ	សិក្សារអប់រំ		
	គ្រប់គ្រង និងអភិវឌ្ឍន៍ឧត្តមសិក្សា		
វិទ្យាស្ថានភាសាបរទេស	ភាសាអង់គ្លេស		

ភាសាបារាំង
ភាសាអន្តរជាតិ
ភាសាជប៉ុន
ភាសាចិន
ភាសាកូរ៉េ
កាសាថៃ

និងកន្លែងសំខាន់ៗមាន៖ ការិយាល័យសិក្សារ និង បណ្ណាល័យសម្ដេចហ៊ុនសែន។

• ផែនទីរបស់សកលវិទ្យាល័យភូមិន្ទភ្នំពេញ

• ការជ្រើសរើសឧបករណ៍ និងការរចនា

បណ្តាញ topology កំណត់ពីរបៀបដែលម៉ាស៊ីនត្រូវបានភ្ជាប់ទៅបណ្តាញកុំព្យូទ័រ។ វាកំណត់លក្ខណៈពីរបៀបដែលកុំព្យូទ័រ និងម៉ាស៊ីនផ្សេងទៀតត្រូវបានរៀបចំ និង ភ្ជាប់ទៅគ្នាទៅវិញទៅមក។ មានប្រភេទនៃបណ្តាញ topology ជាច្រើនដូចជា Point-to-Point, Bus, Star, Ring និង Mesh topology ។ ប្រភេទនីមួយៗមាន សំណុំគុណសម្បត្តិ និងគុណវិបត្តិខុសៗគ្នា។

Bus Topology

Bus topology ជាមួយនឹងការកំណត់តម្លៃថោក កុំព្យូទ័រជាច្រើនត្រូវបានភ្ជាប់ ដោយខ្សែតែមួយ។ ផ្នែកនីមួយៗនៃខ្សែមេត្រូវតែភ្ជាប់ទៅស្ថានីយ។ ប្រភេទនៃ topology បណ្តាញនេះគឺតូចនិងងាយស្រួលណាស់ក្នុងការភ្ជាប់ឧបករណ៍ជាមួយ គ្នាដើម្បីបង្កើតជាបណ្តាញ។ Bus topology ប្រើខ្សែសំខាន់មួយសម្រាប់ការតភ្ជាប់ ទាំងអស់ ហើយជាធម្មតាវាឃើញនៅក្នុងបណ្តាញតូចៗ។ ប្រសិនបើខ្សែមេត្រូវ បានខូច វានឹងមានការបរាជ័យក្នុងការទំនាក់ទំនង។ ដោយសារគុណវិបត្តិនៃ បណ្តាញប្រភេទនេះ វាមិនស័ក្តិសមសម្រាប់សាកលវិទ្យាល័យ ដែលជាធម្មតាតម្រូវ វិទ្រានការតភ្ជាប់បណ្តាញធំ និងរឹងមាំ។ វាក៏មានភាពយឺតយ៉ាវផងដែរសម្រាប់ការ ផ្ញើ និងទទួលទិន្នន័យ ដោយសារព័ត៌មានទាំងអស់ត្រូវបានបញ្ជូនតែក្នុងខ្សែតែមួយ

ប៉ុណ្ណោះហើយខ្សែនោះអាចបង្កើតបញ្ហាដំណើរការបាន។ "ចរាចរណ៍បណ្ដាញខ្លាំង អាចបន្ថយឡានក្រុងបានច្រើន ដោយសារកុំព្យូទ័រណាមួយអាចបញ្ជូនបានគ្រប់ ពេល។ ប៉ុន្តែបណ្ដាញមិនសម្របសម្រួលនៅពេលដែលព័ត៌មានត្រូវបានផ្ញើ។ កុំព្យូទ័ររំខានគ្នាទៅវិញទៅមកអាចប្រើកម្រិតបញ្ជូនបានច្រើន។

Ring Topology

topology មួយទៀតគឺ ring topology ដែលប្រើកុំព្យូទ័រតភ្ជាប់ជារាងរង្វង់។
កុំព្យូទ័រប្រភពបញ្ជូនព័ត៌មានទៅកាន់ខ្សែសង្វាក់ ហើយព័ត៌មាននេះស្វែងរកទិសដៅ
របស់វាដោយចូលទៅកាន់កុំព្យូទ័រនីមួយៗនៅលើសង្វៀនរហូតដល់វាទទួលបាន
Node ទិសដៅរបស់វា។ យោងតាមអត្ថបទ "ការពិនិត្យឡើងវិញនៃបណ្ដាញ
Topology" ដោយ Jiang "ស្ថានីយការងារដែលនៅជាប់គ្នាត្រូវបានភ្ជាប់ដោយ
ផ្ទាល់។ គូផ្សេងទៀតនៃស្ថានីយការងារត្រូវបានភ្ជាប់ដោយប្រយោល ទិន្នន័យដែល

ឆ្លងកាត់ node កម្រិតមធ្យមមួយ ឬច្រើន" (Jiang 1175) ។ topology នេះត្រូវ បានប្រើសម្រាប់បណ្តាញ LAN (Local area network) និង WAN (Wide Area វាមានភាពងាយស្រួលក្នុងការដំឡើង ប៉ុន្តែពិបាកក្នុងការពង្រីក Network) ។ ring topology គឺយឺតណាស់ក្នុងការផ្ញើ និងទទួលទិន្នន័យ។ និងថែទាំ។ នេះបើយោងតាមលោក Yurcik ។ topology នេះផ្តល់នូវភាពជឿជាក់ពីកំណើត ចាប់តាំងពីសញ្ញាពីប្រភពធ្វើដំណើរជុំវិញសង្វៀនទៅកាន់គោលដៅ និងត្រឡប់ទៅ ប្រភពវិញជាការទទួលស្គាល់។ ring ដែលចំណាយតិចបំផុតអាចខិតជិតតម្លៃ ដើម ដែលចំណាយតិចបំផុត ប៉ុន្តែជាទូទៅមានតម្លៃថ្លៃជាង ហើយមានការពន្យារពេល នេះគឺដោយសារតែព័ត៌មានមិនទៅកាន់គោលដៅកុំព្យូទ័រដោយផ្ទាល់ ច្រើន»។ ប៉ុន្តែឆ្លងកាត់កុំព្យូទ័រទាំងអស់រវាងប្រភព និងទិសដៅ។ គុណវិបត្តិនៃ topology នេះគឺថា ប្រសិនបើ host មួយបិទ បុខូច បណ្តាញទាំងមូលនឹងបរាជ័យ

ក្នុងការទំនាក់ទំនង។ ម្យ៉ាងទៀត Hardware ដែលប្រើសម្រាប់ភ្ជាប់ឧបករណ៍ នីមួយៗសម្រាប់ topology នេះគឺមានតម្លៃថ្លៃណាស់។ ប្រភេទនៃ topology នេះមិនមានប្រយោជន៍សម្រាប់សាកលវិទ្យាល័យក្នុងប្រទេសកំពុងអភិវឌ្ឍន៍ទេ ដោយសារតែសាកលវិទ្យាល័យទាំងនោះមិនមានធនធានសម្រាប់ទិញកុំព្យូទ័របែប នេះ។

ជាពិសេសដែលបានផ្តល់ឱ្យថាប្រូបាប៊ីលីតេនៃការបរាជ័យបណ្តាញគឺខ្ពស់ណាស់។

Mesh Topology

រចនាសម្ព័ន្ធ Mesh តម្រូវឱ្យកុំព្យូទ័រនីមួយៗភ្ជាប់ដោយផ្ទាល់ទៅកុំព្យូទ័រ ដោយមាន ខ្សែតភ្ជាប់កុំព្យូទ័រជាច្រើនទៅគ្នាទៅវិញទៅមក។ រឿងល្អមួយអំពី topology នេះគឺថា ប្រសិនបើបន្ទាត់មួយបរាជ័យ ឬព័ត៌មានទៅកាន់គោលដៅ។ វាកាត់បន្ថយ

វានឹងប្រើផ្លូវផ្សេងទៀតដើម្បីបញ្ជូនប្រូបាប៊ីលីតេនៃការបរាជ័យបណ្តាញ សរុប។ Mesh topology គឺលឿនជាងបើប្រៀបធៀបទៅនឹងប្រភេទ topology ផ្សេងទៀត ប៉ុន្តែវាមានតម្លៃប្លៃណាស់។ យោងទៅតាម Clarke គុណវិបត្តិនៃ គឺជាការចំណាយលើការភ្ជាប់ខ្សែបន្ថែម mesh topology និងចំណុចប្រទាក់បណ្តាញ ដើម្បីបង្កើតផ្លូវជាច្រើនរវាងប្រព័ន្ធនីមួយៗ។ ដោយសារតែចំនួន Network Interface Cards (NIC) និងការតភ្ជាប់ខ្ពស់។ នៅ ពេលដែលកុំព្យូទ័រនីមួយៗភ្ជាប់ទៅកុំព្យូទ័រទាំងអស់នៅក្នុងបណ្តាញ (មួយទៅទាំង អស់) កុំព្យូទ័រនីមួយៗត្រូវការ NIC ច្រើនជាងមួយ។ **ឧទាហរណ៍** ប្រសិនបើ ឧបករណ៍បណ្តាញ mesh topology ត្រូវបានភ្ជាប់ទៅឧបករណ៍កុំព្យូទ័រចំនួនប្រាំ កុំព្យូទ័រនីមួយៗក្នុងបណ្តាញត្រូវតែមានឧបករណ៍ NIC ដើម្បីក្លាប់ទៅកុំព្យូទ័រផ្សេងទៀតទាំងអស់ ហើយចំនួននៃការតភ្ជាប់នឹងមាន ការតភ្ជាប់។ វាត្រូវបានគណនាដោយរូបមន្តខាងក្រោម៖ n(n-1)/2 (n តំណាង ឱ្យចំនួនកុំព្យូទ័រក្នុងរូបភាពខាងក្រោម)។ យោងតាមអត្ថបទ "បណ្ដាញភ្ជាប់ពេញ បាននិយាយថា លេញជាមួយការតភ្ជាប់ក្នុងតំបន់" ដោយ Kornilovitch "គុណវិបត្តិចម្បងនៃបណ្តាញក្លាប់ពេញលេញគឺភាពស្មុគស្មាញ។ បណ្តាញថ្នាំង N ត្រូវការយ៉ាងហោច N (N – 1)/2 តំណភ្ជាប់តាមគូបុគ្គល ដើម្បីភ្ជាប់យ៉ាងពេញ លេញ។"

យោងតាមរូបមន្តខាងលើនៅពេលក្ជាប់កុំព្យូទ័រចំនួនប្រាំមួយជាមួយគ្នាបណ្តាញត្រូវ ការការតក្ជាប់ចំនួន 15 ។ ជាងនេះទៅទៀត បណ្តាញនៅក្នុង mesh topology គឺពិបាកខ្លាំងណាស់ក្នុងការថែរក្សា រៀបចំ និងគ្រប់គ្រង។

Star Topology

Star topology គឺជា network topology ដែលឧបករណ៍និមួយៗបានតភ្ជាប់ ទៅកាន់ central node មួយដូចជា router, hub or switch ជាដើម។ Star topology គឺលឿនជាងបើប្រៀបធៀបទៅនឹងប្រភេទ topology ផ្សេងទៀត ប៉ុន្តែវាមានតម្លៃថ្លៃណាស់។ តែវាអាចឲ្យយើងងាយស្រួលក្នុងពង្រីកនៅពេលក្រោយ និងគុណភាពនៃការតំណរភ្ជាប់បានល្អមិនងាយមានការបរាជ័យក្នុងការបញ្ជូន។

ដូច្នេះបណ្តាញ Network របស់យើងនិងជ្រើសរើសយក Star Topology មកធ្វើការប្រើប្រាស់។

• តារាងឧបករណ៍ដែលត្រូវការ

Туре	Device	Cost	Quantity	Total cost	
Router	Cisco 1941 Integrated Services Router	1,595 \$	8	12760 + 2625 = 15385 \$	
	Cisco 2901 Integrated Services Router	2,625 \$	1		
Switch	Cisco Catalyst 2950-24	995 \$	29	28855 + 74288 = 103143 \$	
CWICH	Cisco Catalyst 3650-24ps	9,286 \$	8		
Access Point	ss Point Access Points-PT-N 495 \$ 2		990 \$		
Server	Server	8400 \$			
Cable Modem	ble Modem Cable Modem-PT 3477 \$ 1		3477 \$		
Total price of all of	131395 \$				

• តារាងឈ្មោះដែលត្រូវដាក់ឲ្យឧបករណ៍

Device	Host Name		
Cisco 2901 Integrated Services Router	R-Main		
Cisco 1941 Integrated Services Router	R-Office		
	R-Lib-HS		
	R-Fac-SH		
	R-Fac-Eng		
	R-Fac-Dev		
	R-Fac-Sci		
	R-Fac-Edu		
	R-IFL		
Cisco Catalyst 3560-24PS	MS-Office		
	MS-HS		
	MS-SH		
	MS-Eng		
	MS-Edu		
	MS-IFL		
	MS-Sci		
	MS-Dev		
Cisco Catalyst 2950-24	S1	S16	
	S2	S17	
	S3	S18	
	S4	S19	
	S5	S20	
	S6	S21	
	S7	S22	
	S8	S23	

	S9	S24	
	S10	S25	
	S11	S26	
	S12	S27	
	S13	S28	
	S14	S29	
	S15	S30	
	S31	S32	
	S33	S34	
Cisco Catalyst 9100 Access Points	AP1		
	AP2		
Cable Modem-PT	СМ		
Server	RUPP-Server		

• ការរៀបចំរចនាសម្ព័ន្ធ

រូបភាពពី Cisco Packet Tracer

Router R-Main port Se0/1/0 បានតភ្ជាប់ទៅកាន់ router R-Office port
 Se0/1/0 តាមរយៈខ្សែ Serial DCE ។ តាមរយៈខ្សែ Copper Straight-

Through ។ Router R-Office port Gig0/1 បានតក្ជាប់ទៅកាន់ Switch Ms-Office port Gig0/1 បន្ទាប់មក Ms-Office port Gig0/2 បានក្ជាប់ទៅកាន់ S33 port Fa0/24 ហើយ S33 port Fa0/2 ក្ជាប់ទៅកាន់ RUPP-Server port Fa0 ។ Ms-Office port Fa0/24 បានតក្ជាប់ទៅកាន់ S34 port Gig0/1 តាមរយៈខ្សែ Copper Cross-Over ហើយ S34 port Fa0/5, Fa0/2, Fa0/3, Fa0/4 បានតក្ជាប់ទៅកាន់ Access point AP2 port 0, PC64 port Fa0, Laptop0 port Fa0, PC65 port Fa0 តាមរយៈខ្សែ Copper Straight-Through ។

- Router R-Main port Se0/2/1 បានតភ្ជាប់ទៅកាន់ router R-Lib-HS port Se0/1/0 តាមរយៈខ្សែ Serial-DCE ។ R-Lib-HS port Gig0/1 បានតភ្ជាប់ទៅកាន់ MS-HS port Gig0/1 បន្ទាប់មក MS-HS port Fa0/1, Fa0/2, Fa0/3, Fa0/4, Fa0/5 បានតភ្ជាប់ទៅកាន់ Access point AP1 port 0, PC66 port Fa0, PC67 port Fa0, Laptop1 port Fa0, Labtop2 Fa0 តាមរយៈខ្សែ Copper Straight-Through ។

Router R-Main port Se0/0/0 បានតភ្ជាប់ទៅកាន់ router R-Fac-SH port Se0/1/0 តាមរយៈខ្សែ Serial DCE តាមរយៈខ្សែ Copper Straight-Through ។R-Fac-SH port Gig0/1 តភ្ជាប់តាមរយៈខ្សែ Copper Straight-Through ទៅកាន់ MS-SH port Gig0/1 ។ MS-SH port Fa0/1,

0/2, 0/3, 0/4, 0/5, 0/6, 0/7, 0/8, 0/9, 0/10, 0/11 ក្លាប់តាមរយៈខ្សែ Copper Straight-Through ទៅកាន់ S1, S2, S2, S3, S4, S5, S6, S7, S8, S9, S10, S21 port Fa0/3 ហើយ Switch ទាំងនោះក្លាប់ទៅកាន់ PC តាមរយៈខ្សែ Copper Straight-Through ។

Router R-Main port Se0/0/1 បានតភ្ជាប់ទៅកាន់ router R-Fac-Sci port Se0/1/0 តាមរយៈខ្សែ Serial DCE ។ R-Fac-Sci port Gig0/1តភ្ជាប់តាមរយៈខ្សែ Copper Straight-Through ទៅកាន់ MS-Sci port Gig0/1 ។ MS-Sci port Fa0/1, 0/2, 0/3, 0/4, 0/5 ភ្ជាប់តាមរយៈខ្សែ Copper Straight-Through ទៅកាន់ S12, S13, S14, S15, S16 port

Fa0/3 ហើយ Switch ទាំងនោះបានភ្ជាប់ទៅកាន់ PC តាមរយៈខ្សែ Copper Straight-Through ។

Router R-Main port Se0/2/0 បានតក្ជាប់ទៅកាន់ router R-Fac-Dev port Se0/1/0 តាមរយៈខ្សែ Serial DCE ។ R-Fac-Sci port Gig0/1 តក្ជាប់ តាមរយៈខ្សែ Copper Straight-Through ទៅកាន់ MS-Dev port Gig0/1 ។ MS-Dev port Fa0/1, 0/2, 0/3 ក្ជាប់តាមរយៈខ្សែ Copper Straight-Through ទៅកាន់ S17, S18, S19 port Fa0/3 ហើយ Switch ទាំង នោះបានក្ជាប់ទៅកាន់ PC តាមរយៈខ្សែ Copper Straight-Through ។

Router R-Main port Se0/1/1 បានតក្លាប់ទៅកាន់ router R-IFL port Se0/1/0 តាមរយៈខ្សែ Serial DCE ។ R-IFL port Gig0/1 តក្លាប់តាមរយៈខ្សែ Copper Straight-Through ទៅកាន់ MS-IFL port Gig0/1 ។ MS-IFL port Fa0/1, 0/2, 0/3, 0/4, 0/5, 0/6, 0/7 ក្លាប់តាមរយៈខ្សែ Copper Straight-Through ទៅកាន់ S26, S27, S28, S29, S30, S31, S32 port Fa0/3 ហើយ Switch ទាំងនោះបាន ក្លាប់ទៅកាន់ PC តាមរយៈខ្សែ Copper Straight-Through ។

Router R-Main port Se0/3/1 បានតក្ជាប់ទៅកាន់ router R-Fac-Edu port Se0/1/0 តាមរយៈខ្សែ Serial DCE ។R-Fac-Edu port Gig0/1 តក្ជាប់តាមរយៈខ្សែ Copper Straight-Through ទៅកាន់ MS-Edu port Gig0/1 ។ MS-Edu port Fa0/1, 0/2, 0/3 ក្ជាប់តាមរយៈខ្សែ Copper Straight-Through ទៅកាន់ S23, S24, S25 port Fa0/3 ហើយ Switch ទាំងនោះបានក្ជាប់ទៅកាន់ PC តាមរយៈខ្សែ Copper Straight-Through ។

Router R-Main port Se0/3/0 បានតភ្ជាប់ទៅកាន់ router R-Fac-Eng port Se0/1/0 តាមរយៈខ្សែ Serial DCE ។ R-Fac-Eng port Gig0/1 តភ្ជាប់តាមរយៈខ្សែ Copper Straight-Through ទៅកាន់ MS-Eng port Gig0/1 ។ MS-Eng port Fa0/1, 0/2, 0/3 ភ្ជាប់តាមរយៈខ្សែ Copper

Straight-Through ទៅកាន់ S20, S21, S22 port Fa0/3 ហើយ Switch ទាំងនោះបានក្លាប់ទៅកាន់ PC តាមរយៈខ្សែ Copper Straight-Through ។

Router R-Main port Gig0/1/1 បានតក្ជាប់ទៅកាន់ Cable Modem port 1 តាមរយៈខ្សែ Copper Straight-Through ។ បន្ទាប់មក Cable Modem port-0 តក្ជាប់តាមរយៈខ្សែ Coaxial ទៅកាន់ ISP Internet ។

3. Logical Topology

• តារាង IP Address

Device Name	Interface	IP Address	Subnet Mark	Default Gateway
	S0/0/0	192.168.8.6	255.255.255.252	N/A
	S0/0/1	192.168.8.10	255.255.255.252	N/A
	S0/1/0	192.168.8.2	255.255.255.252	N/A
	S0/1/1	192.168.8.26	255.255.255.252	N/A
R-Main	S0/2/0	192.168.8.14	255.255.255.252	N/A
	S0/2/1	192.168.8.30	255.255.255.252	N/A
	S0/3/0	192.168.8.18	255.255.255.252	N/A
	S0/3/1	192.168.8.22	255.255.255.252	N/A
	G0/0	192.168.8.33	255.255.255.252	N/A
R-Office	S0/1/0	192.168.8.1	255.255.255.252	N/A
	G0/1	192.168.6.1	255.255.255.0	N/A
R-Fac-SH	S0/1/0	192.168.8.5	255.255.255.252	N/A
	G0/1	172.16.1.1	255.255.254.0	N/A
R-Fac-Sci	S0/1/0	192.168.8.9	255.255.255.252	N/A

	G0/1	192.168.1.1	255.255.255.0	N/A
R-Fac-Dev	S0/1/0	192.168.8.13	255.255.255.252	N/A
Triad Bov	G0/1	192.168.2.1	255.255.255.0	N/A
R-Fac-Eng	S0/1/0	192.168.8.17	255.255.255.252	N/A
Truc Ling	G0/1	192.168.3.1	255.255.255.0	N/A
R-Fac-Edu	S0/1/0	192.168.8.21	255.255.255.252	N/A
Truc Edd	G0/1	192.168.4.1	255.255.255.0	N/A
R-IFL	S0/1/0	192.168.8.25	255.255.255.252	N/A
	G0/1	192.168.5.1	255.255.255.0	N/A
R-Lib-HS	S0/1/0	192.168.8.29	255.255.255.252	N/A
TV EIS TIG	G0/1	192.168.7.1	255.255.255.0	N/A
PC0 - PC21	NIC	DHCP	255.255.254.0	172.16.1.1
PC22 – PC31	NIC	DHCP	255.255.255.0	192.168.1.1
PC32 – PC37	NIC	DHCP	255.255.255.0	192.168.2.1
PC38 – PC43	NIC	DHCP	255.255.255.0	192.168.3.1
PC44 - PC49	NIC	DHCP	255.255.255.0	192.168.4.1
PC50 – PC63	NIC	DHCP	255.255.255.0	192.168.5.1

PC64,				
PC65,				
Laptop0,	NIC	DHCP	255.255.255.0	192.168.6.1
Laptop4,	TVIC	Brior	200.200.200.0	132.100.0.1
SmartPhone2,				
SmartPhone3				
PC66, PC67,				
Laptop1,				
Laptop2,				
Laptop4,	NIC	DHCP	255.255.255.0	192.168.7.1
SmartPhone0,				
SmartPhone1,				
Tablet PC0				
RUPP-Server	NIC	192.168.6.2	255.255.255.0	192.168.6.1

4. Implementation

ដោយដើម្បីឲ្យNetworkរបស់យើងមានដំណើរការបានល្អដែលធានាដល់ការទំនាក់ ទំនងនោះ Network ឬបស់យើងនិងត្រូវបានធ្វើ Implementation នូវ Network Protocol មួយចំនួនទៀតគឺមាន៖

- DHCPv4
- DNS
- RIPv2
- Firewall
- និង ACL ជាដើម។

ជាដំបូងយើងនិងនិយាយមូលហេតុដែលយើងនិងImplementationនូវProtocolនិ មួយៗ៖

• DHCPv4

ដោយនៅក្នុងNetworkរបស់យើងគឺមាននូវcomputerជាច្រើន ហើយcomputerនិមួយៗត្រូវការនូវ IP address ដើម្បីទំនាក់ទំនងគ្នាដែល យើងមិនអាចដាក់IP address ឲ្យ computer ម្ដងមួយគ្រឿងៗបាន ហេតុនេះហើយយើងត្រូវការProtocol DHCPv4 ដើម្បីមកបោះIP address ឲ្យ computer និមួយៗដោយស្វ័យប្រវិត្ត។

DNS

ជា Protocol មួយប្រើសម្រាប់កត់សម្គាល់ IP address ណាដែលត្រូវ គ្នាជាមួយនិង Domain Name។

• RIPv2

ប្រើសម្រាប់ Route នូវ packet ពី Networkមួយទៅ Network មួយទៀត ព្រោះក្នុងបណ្ដាញរបស់យើងមានnetworkយ៉ាងច្រើន។

• Firewall និង ACL

ចំណែក Firewall និង ACL ប្រើសម្រាប់ Block និង Filter នូវ Network របស់យើងឲ្យមាន Security ខ្ពស់។ មិនឲ្យ network របស់យើងងាយ រងនូវការវាយប្រហារពីជនអានាមិក។

5. Reference

1. RUPP Website: http://www.rupp.edu.kh/

2. Cisco Website: https://www.cisco.com/

3. Netacad Website: https://www.netacad.com/

4. Computer Network Design for Universities in Developing

Countries Book. Available at: https://scholar.valpo.edu/itcrpr/2/