

www.robosense.ai

Revision History

Revision	Content	Time	Edit
1.0	Initial release	2017-11-20	PD
1.1	Fill in the content according to RS-LiDAR-32	2017-11-28	PD
1.2	Update the RS-LiDAR information and data port setting	2017-12-13	PD
	Update the protocol description of DIFOP		
2.0	Synchronize the common functions of RS-LiDAR-16.	2018-08-03	PD
	Update the appearance to new design		
	Add the sensor clean instruction		
	Add the RSVIEW compatible instruction		
	Add the LiDAR cable route instruction		
2.1	Modify the weight description	2019-04-24	PD
	Refine LiDAR power supply considerations		
	Add the instruction of space between the LiDAR and mounting brackets		
	Modify the DIFOP data format		
	Add laser eye safety level instructions		
	Add aviation connector pin definition		
	Add the Interface Box connection diagram		
	Update the GPS synchronization protocol description		
	Add RS232 to TTL adapter wiring diagram and pin definition		
	Add return mode description		
	Add information to fault diagnosis		
	Modify the UCWP data format and add FOV description		
	Update Appendix C RSView content		
	Add the description of distance resolution 0.5cm		
	Modify the mapping between the channel number and vertical angle in the MSOP		
	Add the description of intensity mode 3		

1

TABLE OF CONTENTS

1 Safety Notices	
2 Introduction	6
3 Product Specifications	7
4 Connections	
4.1 Power	8
4.2 Electrical Configuration	
4.3 Interface Box Description	9
4.4 Interface Box Connection	
5 Communications Protocols	12
5.1 MSOP	12
5.1.1 Header	14
5.1.2 Data Field	
5.1.3 Tail	
5.1.4 Demonstration Data	17
5.2 DIFOP	18
5.3 UCWP	19
6 GPS Synchronization	22
6.1 GPS Synchronization Theory	
6.2 GPS Usage	22
7 Key characteristics	24
7.1 Return Mode	24
7.1.1 Return Mode Principle	24
7.1.2 The Strongest Return	24
7.1.3 Strongest, Last and Dual Returns	24
7.1.4 Return Mode Flag	
7.2 Phase Lock	25
8 Point Cloud	
8.1 Coordinate Mapping	
8.2 Point Cloud Presentation	
9 Laser Channels and Vertical Angles	29
10 Calibrated Reflectivity	32
11 Trouble Shooting	33
Appendix A • Point Time Calculate	35
Appendix B • Information Registers	36
B.1 Motor (MOT_SPD)	36
B.2 Ethernet (ETH)	
B.3 FOV Setting (FOV SET)	37
B.4 Motor Phase Offset (MOT_PHASE)	37
B.5 Top Board Firmware (TOP_FRM)	
B.6 Bottom Board Firmware (BOT_FRM)	37

B.7 Serial Number (SN)	38
B.8 Software Version(SOFTWARE_VER)	38
B.9 UTC Time (UTC_TIME)	38
B.10 STATUS	39
B.11 Fault Diagnosis	40
B.12 ASCII code in GPSRMC Packet	41
B.13 Corrected Vertical Angle (COR_Vert_Ang)	41
B.14 Corrected Horizontal Offset Angle (COR_Hor_Ang)	42
Appendix C • RSView	44
C.1 Features	44
C.2 Install RSView	44
C.3 Set up Network	45
C.4 Visualize Streaming Sensor Data	45
C.5 Capture Streaming Sensor Data to PCAP File	46
C.6 Replay Captured Sensor Data from PCAP File	47
C.7 RS-LiDAR-32 Factory Firmware Parameters Setting	50
C.8 RSView Data Port	51
C.9 Firmware Online Update	52
C.10 Fault Diagnosis	53
Appendix D • RS-LiDAR-32 ROS Package	55
D.1 Prerequisite	55
D.2 Install RS-LiDAR-32 ROS Package	55
D.3 Configure PC IP address	55
D.4 View the real time data	55
D.5 View the recorded pcap file offline	56
Appendix E • Dimensions	58
Appendix F LiDAR Mechanical Installation Suggestion	60
Appendix G How to Distinguish the Port Number of MSOP and DIFOP Packets	61
Appendix H Sensor Clean	62
H.1 Attention	62
H.2 Require Materials	62
H.3 Clean Method	62

Terminologies

MSOP Main Data Stream Output Protocol	
DIFOP Device Info Output Protocol	
UCWP User Configuration Write Protocol	
Azimuth Horizontal angle of each laser firing	
Timestamp	The marker that records the system time
Header	The starting part of the protocol packet
Tail	The ending part of the protocol packet

4

Congratulations on your purchase of a RS-LiDAR-32 Real-Time 3D LiDAR Sensor. Please read carefully before operating the product. Wish you a pleasurable product experience with RS-LiDAR-32.

1 Safety Notices

To reduce the risk of electric shock and to avoid violating the warranty, do not open sensor body.

- Laser safety The laser safety complies with IEC 60825-1:2014
- Read Instructions All safety and operating instructions should be read before operating the product.
- Follow Instructions All operating and use instructions should be followed.
- **Retain Instructions** The safety and operating instructions should be retained for future reference.
- **Heed Warnings** All warnings on the product and in the operating instructions should be adhered to.
- **Servicing** The user should not attempt to service the product beyond what is described in the operating instructions. All other servicing should be referred to RoboSense.

2 Introduction

RS-LiDAR-32, launched by RoboSense, is the first of its kind in China, world leading 16-beam miniature LiDAR product. Its main applications are in autonomous driving, robots environment perception and UAV mapping. RS-LiDAR-32, as a solid-state hybrid LiDAR, integrates 16 laser/detector pairs mounted in a compact housing. Unique features include:

- Measurement range of up to 200 meters
- Within 5 centimeters measurement accuracy
- Data rate of up to 640,000 points/second
- Horizontal Field of View (FOV) of 360°
- Vertical Field of View (FOV) of -25°~+15°

The compact housing of RS-LiDAR-32 mounted with 32 laser/detector pairs rapidly spins and sends out high-frequency laser beams to continuously scan the surrounding environment. Advanced digital signal processing and ranging algorithms calculate point cloud data and reflectivity of objects to enable the machine to "see" the world and to provide reliable data for localization, navigation and obstacle avoidance.

Figure 1 RS-LiDAR Imaging System

Operation of device include:

- Establish communication with RS-LiDAR-32;
- Parse the data packets for azimuth, measured distance, and reported calibrated reflectivity;
- Calculate X, Y, Z coordinates from reported azimuth, measured distance, and vertical angle;
- Store the data as needed;
- Read current device configuration data;
- Set Ethernet, time and rotational speed as needed.

3 Product Specifications

Table 1 Product Parameters

Sensor	Time of Flight Distance Measurement		
	32 Channels		
	Measurement Range: 40cm to 200m (on 20% reflectivity target)		
	Accuracy: ±5cm (typical)		
	Field of View (Vertical): -25°~+15°		
	Angular Resolution (Vertical): at least 0.33°		
	Field of View (Horizontal): 360°		
	Angular Resolution (Horizontal/Azimuth): 0.09°(5Hz) to 0.36°(20Hz)		
	Rotation Speed: 300/600/1200rpm (5/10/20Hz)		
Laser	Class 1		
	Wavelength: 905nm		
	Full Beam Divergence Horizontal:7.4mrad, Vetical: 0.7mrad		
Output	Data Rate: 640,000 points/second		
	100Mbps Ethernet		
	UDP packet, include:		
	Distance		
	Rotation Angle/Azimuth		
	Calibrated Reflectivity		
	Synchronized Timestamp(Resolution: 1us)		
Mechanical/	Power Consumption: 13.5w (typical)		
Electrical/	Operating Voltage: 9-32VDC (with Interface Box and Regulated Power		
Operational	Supply)		
	Weight: 1.013Kg(without cable)		
	Dimensions: 114mm Diameter X 108.73mm Height		
	Protection Level: IP67		
	Operation Temperature: -10°C to +60°C		
	Storage Temperature: -40°C to +85°C		

7

4 Connections

4.1 Power

When equipped with an interface box, the device requires a voltage range of 9-32 VDC, and 12 VDC is recommended.

If the interface box is not used for the LiDAR, a regulated 12 VDC must be used.

The power consumption of the device is about 13.5W (typical).

4.2 Electrical Configuration

RS-LiDAR-32 comes with an integral cable(power/data) that is permanently attached to the sensor and terminates at a standard SH1.25 wiring terminal. Figure 2 illustrates the serial pins and their properties.

To operate RS-LiDAR-32, the user should insert the SH1.25 wiring terminal to the corresponding port on the Interface BOX.

ITEN NO.	CABLE COLOR/SIZE	DESCRIPTION	QTY.
1	blue(26AWG)	GPS REC	1
2	green(26AWG)	GPS PLUSE	1
3	red(26AWG)	+12V	1
4	yellow(26AWG)	+12V	1
5	white(26AWG)	GROUND	1
6	black(26AWG)	GROUND	1
7	brown(26AWG)	ethernet RX-	1
8	brown white(26AWG)	ethernet RX+	1
9	orange(26AWG)	ethernet TX-	1
10	orange white(26AWG)	ethernet TX+	1

Figure 2 Wiring Terminal and Serialized Pin

The RS-LiDAR has a type that uses the aviation connector. The cable length between the LiDAR and the aviation connector is 1 meter. The specific pins of the aviation connector are defined as follows:

Figure 3 Aviation plug pin number

4.3 Interface Box Description

The Interface BOX is connected to the RS-LiDAR-16 by default.

The Interface BOX provides indicator LEDs for power, interfaces for power, 100Mbps Ethernet, and GPS inputs. The DC 5.5-2.1 connector for power input, RJ45 Ethernet connector for RS-LiDAR-32 data output and SH1.0-6P female connector for GPS input. We have two different appearance for the Interface BOX, but the interfaces on the box are the same between the two different Interface BOX. (As shown in Figure 4.)

Figure 4 Interface BOX

Note: When RS-LiDAR-32 connects its grounding system with an external system, the external power supply system should share the same grounding system with that of the GPS.

On the Interface BOX, the red light indicator means standard power input, and the green one means standard power output. The Interface BOX access protection status when the red light indicator lights up and green light indicator blacks out. If the red and green light indicators blink at the same time, please check for errors of the power supply. If the power supply is checked without error, the high chance is that the Interface BOX is damaged. Please return damaged Interface BOX to RoboSense for service.

GPS interface definition: GPS REC means GPS UART input, GPS PULSE means GPS PPS input.

Ethernet interface complies with EIA/TIA568 Standard.

Power interface adopts standard DC 5.5-2.1 connector.

4.4 Interface Box Connection

Figure 5 Interface Box connection diagram

5 Communications Protocols

RS-LiDAR-32 adopts UDP protocol and communicates with computer through 100Mbps Ethernet. There two different kinds of UDP output packets: MSOP packets and DIFOP packets. The UDP protocol packet in this manual is of 1290 byte long, and consists of a 1248 bytes payload and a 42 bytes header. The IP address and port number of RS-LiDAR-32 is set in the factory as shown in the Table 2, but can be changed by the user as needed.

Table 2 The IP Address and Port Number Set at the Factory

The default MAC Address of each RS-LiDAR-32 is set in the factory. The MAC Address can be changed as needed. To establish communication between a sensor and a computer, the IP address of the computer should be set at the same network segment of that of the sensor. By default: 192.168.1.102, subnet mask: 255.255.255.0. In case of uncertainty about the internet setting of the sensor, please set the computer subnet mask as 0.0.0.0, connect the sensor to the computer, and parse packet to get the IP and port through Wireshark.

RS-LiDAR-32 adopts 3 kinds of communications protocols to establish communication with the computer:

- MSOP (Main Data Stream Output Protocol). Distance, azimuth and reflectivity data collected by the sensor are packed and output to computer.
- DIFOP (Device Information Output Protocol). Monitor the current configuration information of the sensor.
- UCWP (User Configuration Write Protocol). User can modify some parameters of the sensor as needed.

Protocol Abbreviation Interval **Function** Size Type Main Data Stream **MSOP** Scan Data Output UDP 1248byte ~0.6ms **Output Protocol Device Information DIFOP Device Information** UDP 1248byte ~100ms **Output Protocol** Output **User Configuration UCWP Sensor Parameters** UDP INF 1248byte Setting Write Protocol

Table 3 Protocols Adopted by RS-LiDAR-32

Note: The following section describes and defines the valid payload (1248 byte) of the UDP protocol packet.

5.1 MSOP

I/O type: device output data, computer parse data.

Default port number is 6699.

MSOP outputs data information of the 3D environment in packets. Each MSOP packet is 1248 bytes long and consists of reported distance, calibrated reflectivity values, azimuth values and a time stamp.

Each RS-LiDAR-32 MSOP packet payload is 1248 byte long and consists of a 42 byte header and a 1200 byte data

field containing twelve blocks of 100-byte data records and a 6 byte tail.

The basic data structure of a MSOP packet for single return is as shown in Figure 6.

MSOP Packet (1248 byte)

Figure 6 Single Return MSOP

The basic data structure of a MSOP packet for dual return is as shown in Figure 7.

Figure 7 Dual returns MSOP packet definition diagram

5.1.1 Header

The 42-byte Header marks the beginning of data blocks.

In the 42-byte data header, the first 8 bytes are for header identification, the 21 to 30 bytes records time stamp, the 31st byte represents the LiDAR model, and the rest bytes are reserved for future updates.

The first 8 bytes of the header is defined as 0x55,0xAA,0x05,0x0A,0x5A,0xA5,0x50,0xA0.

Time stamp with a resolution of 1us records the system time. Please refer to the definition of time in Appendix B.9 and Table 8 in part 3 of this section.

The 31st byte LiDAR model is described as below:

Table 4 LiDAR Model Flag

I	LiDAR Model	(1 byte)
0x01		RS-LiDAR-16
0x02		RS-LiDAR-32

5.1.2 Data Field

Data field comprises data blocks that contain valid measurement data. Each data filed contains 12 blocks. Each block is 100-byte long and is a complete measurement data set. Each data block begins with a 2-byte start identifier "0xffee", then a two-byte azimuth value (rotational angle). Each azimuth value records 32 sets of channel data reported by the 32 laser channels. (Please see Section 8 for the relationship between channel sequence and vertical angel.)

5.1.2.1 Azimuth Value

The reported azimuth is associated with the first laser firing in each sequence of 32 laser firings. The Azimuth Value is recorded by the encoder. The zero position on the encoder indicates the zero degree of azimuth value on RS-LiDAR-32. The resolution of Azimuth is 0.01°.

For example, in Figure 9, the azimuth value is calculated through the following steps:

Get azimuth values: 0x53, 0xdd

Combine to a 16 bit, unsigned integer: 0x53dd

Convert to decimal: 21469

Divided by 100 Result: 214.69°

Hence the firing angle is 214.69°

Note: the position of 0° on sensor is the Y axis positive direction in Figure 8.

5.1.2.2 Channel Data

Due to the different firmware versions of RS-LiDAR-32, the channel data part has a different definition for Distance, which can be differentiated according to the firmware version information output in the DIFOP package, and can also be initially defined according to the date of manufacture (December 2018).

(1) 1cm resolution version

Channel data contains 3 bytes, with the upper 2 bytes (16 bit in total) store distance information, and the lower 1 byte contains reflectivity data. The 14 bits from the 0th bit to the 13th bit of the upper 2 bytes indicates the distance, while the 15th bit of the upper 2 bytes indicates the group symbol. The structure of channel data is as shown in Table 5.

Table 5 Channel Data

Channel Data N (3 byte)						
2 bytes 1 byte						
	Distance	Reflectivity				
Flag Distance1 Distance2			Dofloctivity			
[15] [14:8] [7:0]			Reflectivity			

The 2-byte distance data is set in centimeter. The distance resolution is 1 centimeter.

The following shows how to parse channel data.

In the case of Figure 9, the distance information is calculated by:

Get distance values: 0x83,0x48 Get the group flag value: 0x01 Actual distance value: 0x03, 0x48

Remove the group flag to get the distance: 0x0348

Convert to decimal: 840

Multiply 0.01 Result: 8.40m

Hence the distance measured is 8.4m.

(2) 0.5cm resolution version

Channel data contains 3 bytes, with the upper 2 bytes (16 bit in total) store distance information, and the lower 1 byte contains reflectivity data. The structure of channel data is as shown in Table 6.

Table 6 Channel Data

Cha	nnel Data N (3 byte)
2 b	1 byte	
Dista	Reflectivity	
Distance1	Reflectivity	
[15:8]	[7:0]	

The 2-byte distance data is set in centimeter. The distance resolution is 0.5 centimeter.

The following shows how to parse channel data.

In the case of Figure 10, the distance information is calculated by:

Get distance values: 0x83,0x48 Combine to get the distance: 0x8348

Convert to decimal: 33608

Multiply 0.005 Result: 168.04m

Hence the distance measured is 168.04m.

Reflectivity data records relative reflectivity (more definition on reflectivity, please refer to description on calibrated reflectivity in Section 9 of this manual). Reflectivity data reveals the reflectivity performance of the system in real measurement environments, it can be used in distinguishing different materials.

5.1.3 Tail

The tail is 6 bytes long, with 4 bytes unused and reserved for other information, and the other 2 byte as: 0x00,

5.1.4 Demonstration Data

```
1 0.000000
                      192.168.2.103
                                         192.168.1.102
                                                           UDP
                                                                   1290 6677 → 6699 Len=1248
        2 0.001153
                      192.168.2.103
                                        192.168.1.102
                                                           UDP
                                                                   1290 6677 → 6699 Len=1248
                                                           UDP
        3 0.002355
                      192.168.2.103
                                         192.168.1.102
                                                                   1290 6677 → 6699
                                                                                   Len=1248
                                                                   1290 6677 → 6699 Len=1248
                                                           UDP
        4 0.003616
                      192.168.2.103
                                         192.168.1.102
                                                           UDP
        5 0.004768
                      192.168.2.103
                                         192.168.1.102
                                                                   1290 6677 → 6699 Len=1248
▶ Frame 4: 1290 bytes on wire (10320 bits), 1290 bytes captured (10320 bits) on interface 0
▶ Ethernet II, Src: Dell_17:4a:cc (00:1c:23:17:4a:cc), Dst: Dell_48:60:3f (84:7b:eb:48:60:3f)
▶ Internet Protocol Version 4, Src: 192.168.2.103, Dst: 192.168.1.102
▶ User Datagram Protocol, Src Port: 6677 (6677), Dst Port: 6699 (6699)
Data (1248 bytes)
      84 7b eb 48 60 3f 00 1c
                              23 17 4a cc 08 00 45 00
                                                       .{.H`?.. #.J...E.
0000
0010
      04 fc fc 40 40 00 80 11
                              74 92 c0 a8 02 67 c0 a8
                                                       ...@@... <u>t.</u>...g..
0020 01 66 1a 15 1a 2b 04 e8 33 6f 55 aa 05 0a 5a a5
                                                       .f...+.. 30U...Z.
0030
      50 a0 00 00 00 00 00 00
                             00 00 00 00 00 00 00
                                                       P.....
9949
     00 00 00 00 00 00 00 00
                             00 00 00 00 00 00 00 00
0050
     00 00 5a 5a ff ee 2b 70
                              ff ff bc 06 76 09 ff ff
                                                       ..ZZ..+p ....v...
0060 bc 06 7f 07 06 7b 12 06
                              6e 08 06 7d 0e 06 7d 09
                                                       .....{.. n..}..}.
      06 78 0e 06 81 05 06 79
                              08 06 81 13 06 6b 10 06
                                                       .x....y .....k..
0080
     79 0d 06 80 0c 06 7e 0c
                             ff ff bc 06 75 09 ff ff
                                                       y.....~. ....u...
0090
     bc 06 7f 07 06 7a 11 06
                              6d 08 06 7c 0e 06 7c 09
                                                       ....z.. m..|..|.
00a0 06 78 0e 06 80 05 06 79
                             07 06 80 13 06 6a 10 06
                                                       .x....y .....j..
     78 0d 06 7f 0c 06 7f 0c
                              ff ee 2h 78 ff ff hc 06
00h0
                                                       x.....+x...
     75 09 ff ff bc 06 7e 07
                             06 7c 11 06 6c 08 06 7b
00c0
                                                       u.....~. .|..1..{
00d0 0f 06 7c 09 06 77 0e 06
                             7f 05 06 79 07 06 7e 13
                                                       ..|..w.. ...y..~.
00e0 06 68 10 06 77 0d 06 80
                             0c 06 7d 0c ff ff bc 06
                                                       .h..w....}.....
00f0 73 09 ff ff bc 06 7d 07 06 7b 11 06 6c 08 06 7a
                                                       s.....}. .{..1..z
..{..x.. ...w..~.
```

Figure 8 MSOP packet

Figure 9 1cm resolution MSOP Data Block

Figure 10 0.5cm resolution MSOP Data Block

5.2 DIFOP

I/O type: device output, computer read.

Default port number is 7788.

DIFOP is a protocol that reports and outputs only device information including the device serial number, firmware version, driver compatibility, internet setting, calibration data, electrical machine setting and operation status, fault detection information to users. It is a viewer for users to get comprehensive details about the device.

Each DIFOP packet is 1248 byte long, and comprises a 8 byte Header, a 1238 byte data field, and a 2 byte tail. The structure of DIFOP is as shown in Table 7.

Table 7 DIFO Packet

	No.	Information	Offset	Length (byte)
Header	0	DIFOP header	0	8
	1	Motor rotation speed (MOT_SPD)	8	2
	2	Ethernet (ETH)	10	22
	3	FOV setting	32	4
	4	Reserved	36	2
	5	Motor phase lock (MOT_PHASE)	38	2
Data	6	Top board firmware version (TOP_FRM)	40	5
	7	Bottom board firmware version (BOT_FRM)	45	5
	8	Reserved	50	240
	9	Intensity scale	290	1
	10	Intensity Mode	291	1
	11	Serial number (SN)	292	6

	12	Zero angle offset	298	2
	13	Return mode	300	1
	14	Upper computer compatibility	301	2
	15	UTC time (UTC_TIME)	303	10
	16	Operation status (STATUS)	313	18
	17	Reserved	331	11
	18	Fault diagnosis (FALT_DIGS)	342	40
	19	GPSRMC	382	86
	20	Corrected vertical angle	468	96
	21	Corrected horizontal angle	564	96
	22	Reserved	660	586
Tail	23	Tail	1246	2

Note: The Header (the DIFOP identifier) in the table above is 0xA5,0xFF,0x00,0x5A,0x11,0x11,0x55,0x55, among which the first 4 byte 0xA5,0xFF,0x00,0x5A is the sequence to identify the packet.

The tail is 0x0F,0xF0.

For definition of information registers as well as their usage, please check more details in Appendix B of this manual.

5.3 UCWP

I/O type: computer writes into the device.

Function: user can reconfigure Ethernet connection, time and some parameters of the device.

Each UCWP Packet is 1248 byte long, and is comprised of a 8-byte Header and a 40-byte data field.

The UCWP packet structure is as shown below:

Table 8 UCWP Packet

	No.	Info	Offset	Length (byte)
Header	0	UCWP header	0	8
Data	1	Motor rotation speed	8	2
	2	Ethernet	10	22
	3	FOV setting	32	4
	4	Time	36	10
	5	Motor phase lock	46	2

Note: The Header (UCWP identifier) in the table above is 0xAA,0x00,0xFF,0x11,0x22,0x22,0xAA,0xAA, among which, the first 4 bytes 0xAA,0x00,0xFF,0x11 forms the sequence to identify the packet.

Statement: RS-LiDAR-32 doesn't RTC system to support operation while power is off. In the case of no GPS or GPS signal, it is imperative to write time into the device through a computer, or it will use a default system time for clock.

Refer to Part 2, Section 10 of this manual for details on Ethernet, Time, Motor Rotation Speed and Motor Phase Lock.

Below is and example to configure the RS-LiDAR-32:

LiDAR IP: 192.168.1.105,

Destination PC IP: 192.168.1.225, MAC_ADDR: 001C23174ACC

MSOP port: 6688 DIFOP port: 8899 FOV starting angle: 0 FOV end angle: 120

Time: 09:45:30:100:200, March 10, 2017

Rotation speed: 600rpm Motor phase lock: 90 degree

User can reset the above information by following the example in Table 9.

Table 9 Resetting Example

Information	Content	Setting Example	Length (byte)
Header		0xAA,0x00,0xFF,0x11,	8
		0x22,0x22,0xAA,0xAA	
Rotate Speed	1200rpm	0x04	2
		0xB0	
LiDAR IP	192.168.1.105	0xC0	4
(LIDAR_IP)		0xA8	
		0x01	
		0x69	
Destination PC IP	192.168.1.225	0xC0	4
(DEST_PC_IP)		0xA8	
		0x01	
		0xE1	
Device MAC Address	001C23174ACC	0x00,0x1C,0x23,	6
(MAC_ADDR)		0x17,0x4A,0xCC	
MSOP Port (port1)	6688	0x1A20	2
MSOP Port (port2)	6688	0x1A20	2
DIFOP Port (port3)	8899	0x22C3	2
DIFOP Port (port4)	8899	0x22C3	2
FOV starting angle	0	0x0000	2
FOV end angle	12000	0x2EE0	2
UTC_TIME	Year:2017	0x11	10
	Month:3	0x03	
	Day:10	0x0A	
	Hour:9	0x09	
	Minute:45	0x2D	
	Second:30	0x1E	
	Millisecond: 100	0x00,0x64	
	Microsecond: 200	0x00,0xC8	

Motor Phase Lock	90	0x005A	2

While setting the device and computer according to this protocol, it is imperative to set all the information listed in the table above. Addressing or writing in with part of the information will lead to invalid setting. The function refreshes the moment the correspondent parameter is changed, but the network parameters only take effect when the next initialization of device is started.

RSVIEW provides the configuration UI, so we suggest to use RSVIEW to configure the RS-LiDAE-16. When performing the parameter writing process, please keep the power connection for LiDAR and make sure the parameter writing is done when we want to power off the LiDAR, otherwise there is a risk of parameter configurating error.

6 GPS Synchronization

RS-LiDAR-32 supports external GPS receiver connections. With GPS connections, we can synchronize the RS-LiDAR-32 system time and pack the GPSRMC message into DIFOP packets.

6.1 GPS Synchronization Theory

The GPS receiver keeps generating synchronization Pulse Per Second (PPS) signal and GPSRMC message and send them to the sensor. The pulse width of the PPS should between 20ms to 200ms, and the GPSRMC message should be received within 500ms after the PPS signal is generated.

6.2 GPS Usage

There are two different level protocols for RS-LiDAR-32 GPS_REC pins:

3.3V TTL level standard and RS232 level standard respectively.

It can be distinguished by checking the firmware version which is shown in Appendix C RS-View of this user manual, Figure C14. The GPS interface on the Interface BOX is SH1.0-6P female connector, the pin definition is as shown in Figure 3. There are two main differences between the two protocols, which are shown as below:

TTL level pin definition:

Pin GPS REC receives the data that is 3.3V TTL standard from GPS module serial port.

Pin GPS PULSE receives the PPS from GPS module.

RS232 pin definition:

Pin GPS REC receives the data that is R232 level standard from the GPS module serial port;

Pin GPS PULSE receives the PPS from GPS module, and the level requirement is 3.0V~15.0V;

If the GPS output you are using is RS232 serial protocol while the level of the LiDAR receiver is TTL, then you need to purchase a module which converts RS232 level to TTL level. For one example, the wiring diagram and definition are as follows:

Figure 11 RS232 to TTL level conversion module

robosense

Pin +5V can supply the power for GPS module. (Please do not connect the GPS into the +5V pin if the GPS is 3.3V power supply. Also please do not input the power into the +5V pin because the pin is an output.)

Pin GND provide the ground connection for GPS module.

The GPS module should set to 9600bps baud rate, 8 bit data bit, no parity and 1 stop bit. RS-LiDAR-32 only read the GPSRMC message from GPS module., the GPSMRC message format is shown as below:

\$GPRMC,<1>,<2>,<3>,<4>,<5>,<6>,<7>,<8>,<9>,<10>,<11>,<12>*hh

- <1> UTC time
- <2> validity A-ok, V-invalid
- <3> Latitude
- <4> North/South
- <5> Longitude
- <6> East/West
- <7> Ground Speed
- <8> True course
- <9> UTC date
- <10> Variation
- <11> East/West
- <12> Mode (A/D/E/N=)
- *hh checksum from \$ to *

Different GPS module may send out different length GPSRMC message, the RS-LiDAR-32 reserve 86byte space for GPRMC message, so it can be compatible with the majority GPS module in the market.

7 Key characteristics

7.1 Return Mode

7.1.1 Return Mode Principle

RS-LiDAR-32 supports multiple return modes: Strongest return, Last return, and Dual return modes. When set to dual return mode, the details of the target will be enhanced, and the number of point is twice than that of a single return.

Due to the divergence of the beam, it is possible to generate multiple laser returns with one laser emission. When the laser pulse is emitted, its light spot gradually becomes larger. Suppose a light spot is large enough to shot multiple targets and produce multiple returns. Generally, the farther away the target is, the weaker it will be at the receiver, while the high reflective surface may be the opposite.

RS-LiDAR-32 analyzes the received multiple return values and outputs the strongest, last or simultaneous output of these two return values depending on the setting. If set to the strongest return mode, only the strongest reflected return value is output. Similarly, if the setting is the last return mode, only the last return value is output; if set to double return mode, the strongest and last return information is output simultaneously.

Note: Only when the distance between two objects is greater than 1 meter, the LiDAR could distinguish these two returns.

7.1.2 The Strongest Return

When the LiDAR beam hits only one object, there is only the strongest return at this time.

7.1.3 Strongest, Last and Dual Returns

When the laser pulse hittwo objects at different distances, there will be two return wave, then it will lead two situation:

- (1) When the strongest return is not the last return, return the strongest and last return;
- (2) When the strongest return is also the last return, return the strongest return and the second strongest return;

7.1.4 Return Mode Flag

The factory default setting for RS-LiDAR-32 is the Strongest Return mode. If you need to change the settings, please refer to Figure C14 in Appendix C of this user manual. The 300th Byte in the DIFOP is the flag of the return mode, which corresponds to the following:

Table 10 Return mode and flag bit comparison table

Flag Position	Return Mode
00	Dual Returns
01	Strongest Return
02	Last Return

7.2 Phase Lock

When using multiple RS-LiDAR-32 sensors in proximity to one another, users may observe interference between them due to one sensor picking up a reflection intended for another. To minimize this interference, RS-LiDAR-32 provides a phase-locking feature that enables the user to control where the lase firings overlap.

The Phase Lock feature can be used to synchronize the relative rotational position of multiple sensors based on the PPS signal and relative orientation. To operate correctly, the PPS signal must be present and locked. Phase locking works by offsetting the rising edge of the PPS signal.

Figure 12 Phase Offset 0° /135° /270°

The red arrows in Figure 12 above indicate the firing direction of the sensor's laser the moment it receives the rising edge of the PPS signal.

In the **Tools > RS-LiDAR Information** of RSVIEW, we can set the Phase Lock angle from 0 to 359.

8 Point Cloud

8.1 Coordinate Mapping

RS-LiDAR-32 exports data packet that contains azimuth value and distance data. But to present a 3-dimensional point cloud effect, a transformation of the azimuth value and distance data into x, y, z coordinates in accordance to Cartesian Coordinate System is necessary. The function of how to transfer the information is as shown below:

$$\begin{cases} x = r\cos(\omega)\sin(\alpha + \delta); \\ y = r\cos(\omega)\cos(\alpha + \delta); \\ z = r\sin(\omega); \end{cases}$$

Here r is the reported distance, ω is the vertical/elevation angle of the laser(which is fixed and is given by the Laser ID), and ω is the horizontal angle/azimuth reported at the beginning of every other firing sequence. and

 δ is the angle offset of the azimuth. x, y, z values are the projection of the polar coordinates on the XYZ Cartesian Coordinate System.

 $\omega_{\rm }$ and $\delta_{\rm }$ can be found from the angle.csv file in the U disk within the RS-LiDAR-32 box.

Figure 13 Coordinate Mapping

Note 1: In the RS-LiDAR-32 ROS package, we use a coordinate transformation by default to compatible with the ROS right-handed coordinate system: ROS-X axis is the Y axis as Figure 13, while ROS-Y axis is -X axis as Figure 80, Z axis keep the same.

Note 2: The origin of the LiDAR coordinate is defined at the center of the LiDAR structure, with 45.36mm high to the bottom of the LiDAR.

8.2 Point Cloud Presentation

In a circular arena, as the RS-LiDAR-32 rotates, the scanning path of the 32 laser beams plots 32 conical scanning surfaces with some face upward and other face downward, and the point cloud produced are the section line between these conical surfaces and the floor which are circles. While in non-circular environments, the point cloud produced are the section lines of the conical surfaces and the surface of objects. Therefore, in a rectangular environment, the section lines of the conical surfaces and the rectangular planes are hyperbolas as shown in Figure 15.

Figure 14 Contour lines plotted on X, Z coordinates

Figure 15 RS-LiDAR-32 Scanning Illustration

The hyperbolas contour lines phenomenon can also be explain by transforming polar coordinates into orthogonal coordinates. As shown in Figure 16, we deduced the function of a hyperbolas

$$\frac{z^2}{\left(y\tan(\omega)\right)^2} - \frac{x^2}{y^2} = 1$$
. In Figure 16, When y and ω are definite values,
$$\frac{z^2}{\left(y\tan(\omega)\right)^2} - \frac{x^2}{y^2} = 1$$
 indicates a

hyperbola with focus on z coordinate. When y is a definite value, as α gains in value, the asymptote slope and eccentricity will decline thereof, which resulted a more curved hyperbola. On the contrary, as α loses in value, a more flat hyperbola is resulted. When ω is a definite value, as y gains in value, the asymptote of the same angle presents same slope, the value of y determines the width between scanning contours.

Figure 16 Hyperbolic Function

9 Laser Channels and Vertical Angles

Figure 17 RS-LiDAR-32 Laser Channels and Vertical Angles

RS-LiDAR-32 has a vertical field of view of -25° to +15° with a nonuniform distribution. The 32 laser heads also called as 32 channels. The laser channels and their designated vertical angles are as shown in the Table 11 or Table 12 However, a lot of elements in the assembling process will lead to slight divergence between the actual angle of laser channels and their ideal angle. The calibrated vertical angle and horizontal angle offset can be found from the U disk (path: configuration_data/angle.csv).

As RS-LiDAR-32 has A group and B group laser channels, so it may have two different mapping relationships between MSOP packets channel sequence and vertical angle as shown in Table 11 and Table 12.

For the 1cm resolution version, it is necessary to determine the correct sequence—according to Table 11 or Table 12 by judging the the 15th bit of the two distance bytes. The 15th bit is 0 for group A data, while the 15th bit is 1 for group B data. Please kindly refer to Section 5.1.2 to view the specific calculation method.

In the 0.5cm resolution version, the sequence is fix at A group ahead of B group, so we can refer to Table 11 to map the channel number and vertical angle.

Laser Channel No.	Vertical Angle	Horizontal Offset Angle	Group
1	-10. 281	8	
2	-6.424	8	
3	2. 333	8	A
4	3. 333	-8	
5	4. 667	8	

Table 11 Laser Channel Number and Their Designated Vertical Angle (A group ahead)

6	7. 000	-8	
7	10. 333	8	
8	15.000	-8	
9	0. 333	-8	
10	0.000	-2.672	
11	-0.333	2.672	
12	-0.667	8	
13	1.667	-8	
14	1. 333	-2.672	
15	1.000	2. 672	
16	0.667	8	
17	-25.000	-8	
18	-14.638	-8	
19	-7.910	-8	
20	-5.407	-8	
21	-3.667	-8	
22	-4.000	-2.672	
23	-4.333	2.672	
24	-4.667	8	В
25	-2.333	-8	D
26	-2.667	-2.672	
27	-3.000	2. 672	
28	-3.333	8	
29	-1.000	-8	
30	-1.333	-2. 672	
31	-1.667	2. 672	
32	-2.000	8	

Table 12 Laser Channel Number and Their Designated Vertical Angle (B group ahead)

Laser Channel No.	Ideal Vertical Angle	Ideal Horizontal Offset Angle	Group
1	-25.000	-8	
2	-14. 638	-8	
3	-7.910	-8	
4	-5.407	-8	D
5	-3.667	-8	В
6	-4.000	-2.672	
7	-4.333	2. 672	
8	-4.667	8	

		1	,
9	-2.333	-8	
10	-2.667	-2.672	
11	-3.000	2. 672	
12	-3.333	8	
13	-1.000	-8	
14	-1.333	-2.672	
15	-1.667	2. 672	1
16	-2.000	8	1
17	-10. 281	8	
18	-6. 424	8	1
19	2. 333	8	1
20	3. 333	-8	1
21	4.667	8	1
22	7.000	-8	1
23	10. 333	8	1
24	15.000	-8	1 . 1
25	0.333	-8	A
26	0.000	-2.672	1
27	-0.333	2. 672	1
28	-0.667	8	
29	1.667	-8	
30	1. 333	-2.672]
31	1.000	2.672]
32	0.667	8	

Every sequence of 32 laser firings consumes 50us.

10 Calibrated Reflectivity

RS-LiDAR-32 produces calibrated reflectivity data of objects. Reflectivity of object is largely determined by the property of objects. Reflectivity therefore is an important information for LiDAR to distinguish objects.

RS-LiDAR-32 reports reflectivity values from 0 to 255 with 255 being the reported reflectivity for an ideal reflector. Diffuse reflection reports values from 0 to 100, with the weakest reflectivity reported from black objects and strongest reflectivity reported from white object. Retro- reflector reports values from 101 to 255.

Diffuse Reflector

Black, diffuse reflector Intensity≈0

White, diffuse reflector Intensity<100

Retro-Reflector

Retro-reflector covered with semi-transparent Intensity>100

Retro-reflector without any coverage intensity \$\approx 255\$

Figure 18 Reflector Types

To calculate each point intensity, we need use the intensity value from MOSP packet and the values from the calibrated reflectivity file. The calibrated reflectivity file can be found from the U disk (path: configuration_data/curves.csv). The calculate code is suggested to refer to the function calibrateIntensity() in rawdata.cc from RS-LiDAR-32 ROS package.

Note 1: Because of the firmware upgrade, the calculation of the intensity in the calibrateIntensity() function has been adjusted for several times, and the new code is backward compatible with the earlier firmware. There are three mode to calculate the reflectivity. The first two need to convert the intensity byte output by the LiDAR to obtain the final result. The mode 3 method directly uses the intensity output by the LiDAR, and the conversion and calculation are done inside the LiDAR.

11 Trouble Shooting

This section provides detail on how to troubleshoot your sensor.

Problem	Resolution
Interface BOX red LED doesn't light or blink	 Verify the power connection and polarity Verify the power supply satisfy the requirement (at least 2A @ 12V)
Interface BOX red LED lights on but green LED doesn't light or blink	Verify the connection between Interface BOX and LiDAR is solid.
Rotor doesn't spin	Verify the Interface BOX LEDs is okay
	Verify the connection between Interface BOX and LiDAR is solid.
Reboot at the boot time	Verify the power connection and polarity
	Verify the power supply satisfy the requirement (at least 2A @ 12V)
	 Check if the LiDAR mounting plane is level or if the LiDAR bottom fixing screws are too tight.
Unit spin but no data	Verify network wiring is functional.
	Verify receiving computer's network settings.
	Verify packet output using another application (e.g. Wireshark)
	 Verify no security software is installed which may block Ethernet broadcasts.
	Verify input voltage and current draw are in proper ranges
Can see data in Wireshark	Check no firewall is active on receiving computer.
but not RSVIEW	 Check the receiving computer's IP address is the same as LiDAR destination IP address.
	Check the RSVIEW Data Port setting.
	Check the RSVIEW installation path and LiDAR configuration files path both

	do not contain any Chinese characters.
	Check if the wireshark receive the MSOP packets.
Data dropouts	This is nearly always an issue with the network and/or user computer.
	Check the following:
	Is there excessive traffic and/or collisions on network?
	 Are excessive broadcast packets from another service being received by the sensor? This can slow the sensor down.
	Is the computer fast enough to keep up with the packet flow coming from
	the sensor?
	Remove all network devices and test with a computer directly connected to
	the sensor.
GPS not synchronizing	• Check baud rate is 9600 and serial port set to 8N1 (8 bits, no parity, 1 stop
	• bit).
	Check the signal level is RS232 level
	Check electrical continuity of PPS and serial wiring
	Check incorrect construction of NMEA sentence
	Check the GPS and Interface BOX are connected to the same GND
	Check the GPS receive the valid data
No data via router	Close the DHCP function in router or set the Sensor IP in router configuration
Sensor point cloud data distortion	Check the configuration files is right
A blank region rotates in the cloud data when using ROS driver	This is the normal phenomenon as the ROS driver use fixed packets quantity to divide display frame. The blank region data will output in the next frame.
Point cloud data to be a radial	If the computer is windows 10 OS, then run the RSVIEW with windows 7 OS compatible mode.

Appendix A • Point Time Calculate

In a MSOP packet, there are 12 blocks, each block has one sequence for the whole 32 laser firings, so in a MOSP packet, there are 12 groups for the whole 32 laser firings. At every firing moment, there are two laser firing together, all 32 lasers are fired and recharged every 50.0 μ s. The cycle time between firing is 3 μ s. There are 16 firings (16 x 3 μ s) followed by a short period of 2 μ s. Therefore, the timing cycle to fire and recharge all 32 lasers is given by ((32/2 x 3 μ s) + (1 x 2 μ s)) = 50 μ s.

Set the channel number data_index is 1~32, firing sequences is 1~12. Because the time stamp is the time of the first data point in the packet, you need to calculate a time offset for each data point and then add this offset to the time stamp.

Time offset is:

Time offset = 50us * (sequence index -1) + 3us * (mod(data index,16)-1)

To calculate the exact point time, add the Time Offset to the timestamp:

Exact_point_time = Timestamp + Time_offset

Channel ID 10 11 12 0.00 50,00 100,00 150,00 200,00 250,00 300,00 350, 00 400, 00 450 00 500,00 550.00 453. 00 3.00 53.00 153.00 303.00 353.00 553.00 103.00 203.00 253.00 403.00 503.00 6.00 9.00 59.00 309, 00 562.00 62.00 112.00 162.00 212.00 262.00 312.00 362. 00 412.00 462.00 512.00 12.00 15.00 65.00 165.00 265.00 115.00 215.00 315.00 365.00 415.00 465.00 515.00 565.00 18.00 68.00 118.00 168.00 218.00 268.00 318.00 368.00 418.00 468.00 518.00 568.00 8 21.00 121.00 271.00 321.00 371.00 471.00 571.00 First 171.00 421.00 521.00 274.00 324.00 424. 00 524.00 Firing 9 24.00 74.00 124.00 174.00 224.00 374.00 474.00 574.00 10 127.00 30.00 80.00 130.00 180.00 280.00 330.00 380.00 430.00 480.00 530.00 580.00 230.00 12 33.00 83.00 133.00 183.00 233.00 283.00 333.00 383. 00 433.00 483.00 533.00 583.00 13 36.00 86.00 136.00 186.00 286.00 336, 00 386, 00 436, 00 486, 00 586, 00 14 39.00 89.00 139.00 189.00 239.00 289.00 339.00 389.00 439.00 489.00 539.00 589.00 15 42.00 92.00 142.00 192.00 242.00 292.00 342,00 392, 00 442.00 492, 00 542.00 592.00 16 45.00 95.00 145.00 195.00 245.00 295, 00 345,00 395, 00 445, 00 495, 00 545.00 595,00 100,00 150,00 300,00 350, 00 400.00 450, 00 550,00 403. 00 18 3.00 53.00 103.00 153.00 203.00 253.00 303.00 353.00 453.00 503.00 553.00 19 6.00 56.00 106.00 156.00 206.00 306.00 356. 00 456.00 506.00 59.00 20 9.00 109.00 159.00 209.00 259.00 309.00 359.00 409.00 459.00 509.00 559.00 12.00 62.00 112.00 162.00 212.00 312.00 362.00 412.00 462.00 512.00 562.00 21 262.00 15,00 65,00 22 115,00 165.00 265,00 315,00 365, 00 415, 00 465, 00 565,00 23 18 00 68 00 118 00 168 00 218 00 268 00 318 00 368 00 418 00 468 00 518 00 568 00 24 21.00 71.00 121.00 171.00 271.00 321.00 371.00 421.00 471.00 521.00 571.00 Firing 25 24.00 74.00 124.00 174.00 224.00 274.00 324.00 374.00 424.00 474.00 524.00 574.00 26 27.00 127.00 177.00 327.00 427.00 477.00 27 30.00 80.00 130.00 180.00 280.00 330.00 380.00 430.00 480.00 530.00 580.00 230.00 28 33.00 83.00 183.00 283.00 333.00 383. 00 483.00 29 36.00 86.00 286.00 586.00 136.00 186.00 236.00 336.00 386, 00 436, 00 486.00 536, 00 30 39.00 289.00 339.00 539.00 89.00 139.00 189.00 239.00 389.00 439.00 489.00 589.00 31 42.00 92.00 142.00 192.00 242.00 292.00 342.00 392.00 442.00 492.00 542.00 592.00 45.00 95.00 145.00 195.00 245.00 295.00 345.00 395. 00 445. 00 495. 00 545.00 595.00

Table A-1 Time Offset for Each Channel

Appendix B • Information Registers

Here are definitions and more details on information registers as mentioned in Section 5.

B.1 Motor (MOT_SPD)

	Motor Speed(2 bytes in total)										
Byte No. byte1 byte2											
Function	МО	TOR									

Register description:

- (1) This register is used to set the rotation direction and rotation speed.
- (2) The data storage format adopts big endian format.
- (3) Supported rotation speed:

(byte1==0x04) && (byte2==0xB0) speed 1200rpm, clockwise rotation; (byte1==0x02) && (byte2==0x58) speed 600rpm, clockwise rotation; (byte1==0x01) &&(byte2==0x2C) speed 300rpm, clockwise rotation;

If set with data other than the above described, the rotation speed of the motor is 0.

B.2 Ethernet (ETH)

			Ethern	et (26 bytes i	n total)			
Byte No.	byte1	byte2	byte3	byte4	byte5	byte6	byte7	byte8
Function		LIDA	R_IP		IP_DEST			
Byte No.	byte9 byte10 byte11 byte12				byte13	byte14	byte15	byte16
Function			MAC_	ADDR	port1			rt1
Byte No.	byte17	byte18	byte19	byte20	byte21	byte22	byte23	byte24
Function	ро	rt2	ро	rt3	port4 port5			rt5
Byte No.	byte25	byte26						
Function	Port6							

Register description:

- (1) LIDAR_IP is the LiDAR source IP address, it takes 4 bytes.
- (2) DEST_PC_IP is the destination PC IP address, it takes 4 bytes.
- (3) MAC_ADDR is the LiDAR MAC Address.
- (4) port1~port6 signals the number of ports. Port1 and port2 are the MSOP packet ports, we suggested to set them to the same number. Port3 and port4 are the DIFOP packet ports, we suggested to set them to the same number.

B.3 FOV Setting (FOV SET)

	FOV Setting (Total 4bytes)										
Ī	No. byte1 byte2 byte3 byte4										
	Function	FOV_S	START	FOV_	END						

Register Description: Set the horizontal angle range of the device for outputting valid data, FOV_START and FOV_END adjustment range $0^{\circ}36000$, corresponding angle $0^{\circ}360^{\circ}$, the data storage format adopts big endian formate. For example: byte1=93, byte2=192, byte3=31, byte4=64, so:

FOV_START = 93*256+192=24000

FOV_END = 31*256+64=8000

Indicates that the valiad data output has a horizontal angle ranging from 240.00 $^\circ$ to 80.00 $^\circ$.

B.4 Motor Phase Offset (MOT_PHASE)

	Motor Phase Offset (2bytes in total)										
Byth No.	byte1	byte2									
Function	MOT_PHASE										

Register description: It can be used to adjust the phase offset of the motor with the PPS together. The value can be set from 0 to 360. The data storage format adopts big endian format. For example: the byte1=1, byte2=14, so the motor phase should be 1*256+14 = 270.

B.5 Top Board Firmware (TOP FRM)

Top Board Firmware (5bytes in total)										
序号 byte1 byte2 Byte3 Byte4 Byte5										
Function			TOP_FRM							

Register description:

If our top board firmware revision is T6R23V6_T6_A, then TOP_FRM will output 06 23 06 06 A0. In the output, the A represent release version Application, while the F represent factory version Factory.

B.6 Bottom Board Firmware (BOT_FRM)

	Bottom Board Firmware (5bytes in total)										
序号	序号 byte1 byte2 Byte3 Byte4 Byte5										
Function			BOT_FRM								

Register description:

If our top board firmware revision is B7R14V4_T1_F, then BOT_FRM will output 06 23 06 06 F0. In the output, the A represent release version Application, while the F represent factory version Factory.

B.7 Serial Number (SN)

	Serial Number(6 bytes in total)									
Byte No. 1byte 2byte 3byte 4byte 5byte 6byte										
Function	Function SN									

The Serial Number of each device adopts the same format as the MAC_Address, namely, a 6-byte hexadecimal number.

B.8 Software Version (SOFTWARE_VER)

	Software Version (2 bytes in toatal)									
Byte No. byte1 byte2										
Function	SOFTWA	ARE_VER								

B.9 UTC Time (UTC_TIME)

	UTC Time (8 bytes in total)											
Byte No.	byte1	byte2	byte3	byte4	byte5	byte6	byte7	byte8				
Function	year	month	day	hour	min	sec	ms					
Byte No.	byte9	byte10										
Function	us											

Register description:

(1) Year

	reg name: set_year									
Byte No.	bit7	bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0								
Function	Function set_year[7:0]: data 0~255 corresponds year 2000 to year 2255.									

(2) month

reg name: set_month										
Byte No. bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0										
Function reserve reserve reserve set_month[3:0]: 1~12 month										

(3) Day

	reg name: set_day										
Byte No. bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0											
Function reserve reserve set_day[4:0]: 1~31 day											

(4) Hour

reg name: set_hour

Byte No.	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
Function	reserve	reserve	reserve		set_ho	ur[4:0]: 0~2	3 hour	

(5) Min

	reg name: set_min										
Byte No.	Byte No. bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0										
Function	reserve	reserve		set_min[5:0]: 0~59 min							

(6) Sec

	reg name: set_sec									
Byte No.	Byte No. bit7 bit6 bit5 bit4 bit3 bit2 bit1 bit0									
Function	reserve	reserve		set_sec[5:0]: 0~59 sec						

(7) Ms

	reg name: set_ms										
Byte No.	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8			
Function	reserve	reserve	reserve	reserve	reserve	reserve	ms[9:8]				
Byte No.	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0			
Function		set_ms[7:0]									

Note: set_ms[9:0] value: 0~999

(8) Us

	reg name: set_us											
Byte No.	bit15	bit14	bit13	bit12	bit11	bit10	bit9	bit8				
Function	reserve	reserve reserve reserve reserve us[9:8]										
Byte No.	bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0				
Function		set_us[7:0]										

Note: set_us[9:0] value: 0~999

B.10 STATUS

	Status (18bytes in total)									
Byte No.	byte1	byte2	byte3	byte4	byte5	byte5 byte6		byte8		
Function		ldat1_reg			Idat2_reg		Vdat_12V_reg			
Byte No.	byte9	byte10	byte11	byte12	byte13	byte14	byte15	byte16		
Function	Vdat_12	V_M_reg	Vdat_!	5V_reg	Vdat_3	V3_reg	Vdat_2	V5_reg		
Byte No.	17byte	18byte								
Function	Vdat_1	V2_reg								

Register description:

(1) Idat1 is sensor power supply current, Idat2 is top board power supply current. We use Idat to represent Idat1 or Idat2. Idat_reg contains 3 bytes to be Idat_reg[23:0]. Idat_reg[23] is symbol flag, while Idat_reg[22:0] is current value. The LSB for Idat is 1uA, the formula is as below:

$$Idat = \begin{cases} Idat_reg[22:0] \cdots \cdots (Idat_reg[23] = 0) \\ -Idat_reg[22:0] \cdots \cdots (Idat_reg[23] = 1) \end{cases}$$

For example, if byte1 = 8C, byte2 = D5 and byte3 = 00, then the current value is:

Idat = -Idat_reg[22:0] =
$$-0x0CD500 \text{ uA} = -840960 \text{uA} \approx -841 \text{mA}$$

(2) We have six different voltage, each voltage register has 2 bytes to be Vdat_reg[15:0]. Vdat_reg[15:12] is invalid, while Vdat[11:0] represent the voltage value. The six different voltage formula is as below: formula

$$Vdat_12V = Vdat_12V_reg[11:0]/4096*2.5*12$$

$$Vdat_12V_M = Vdat_12V_M_reg[11:0]/4096*2.5*12$$

$$Vdat_5V = Vdat_5V_reg[11:0]/4096*2.5*4$$

$$Vdat_3V3 = Vdat_3V3_reg[11:0]/4096*2.5*2$$

$$Vdat_2V5 = Vdat_2V5_reg[11:0]/4096*2.5*2$$

$$Vdat_1V2 = Vdat_1V2_reg[11:0]/4096*2.5*2$$

The unit above is volt (V).

B.11 Fault Diagnosis

			Fault Diag	nosis (40byte	es in total)					
Byte No.	byte1	byte2	byte3	byte4	byte5	byte6	byte7	byte8		
Function				rese	erve					
Byte No.	byte9	byte10	e10 byte11 byte12 byte13 byte14 byte15 byte16							
Function	rese	erve	cksum_st	cksum_st manc_err1 manc_err2						
Byte No.	byte17	byte18	byte19	byte20	byte21	byte22	byte23	byte24		
Function	tempera	ture1_reg	temperat	ure2_reg	temperat	:ure3_reg	temperat	ure4_reg		
Byte No.	byte25	byte26	byte27	byte28	byte29	byte30	byte31	byte32		
Function	temperat	:ure5_reg		reserve r_r						
Byte No.	byte33	byte34	byte35	byte35 byte36 byte37 byte38 byte39 byte						
Function	r_rpm2		reserve							

Register description:

- (1) chksum_st represents the temperature compensation status. If chksum_st=0, the temperature compensation is working. If chksum_st=0, the temperature compensation is, the temperature compensation is abnormal.
- (2) manc_err1 and manc_err2 are used to calculate the bit error rate of the data communication. manc_err1 represents 1bit error, while manc_err2 represents 2bit error. The error rate formula is as below:

$$manc_err1_per = manc_err1/65536 * 100\%$$

 $manc_err2_per = manc_err2/65536 * 100\%$

When the manc_err1_per and manc_err1_per are both zero, the system data communication is normal.

(3) Temperature1 and temperature2 represent the bottom board temperature, while temperature3 and temperature4 represent the top board temperature. Each temperature register contains 2 bytes to be temperature_reg[15:0]. temperature_reg[2:0] is invalid. temperature_reg[15:3] is temperature value, while temperature_reg[15] is symbol flag. The temperature formula is as below:

$$temperature 1_4 = \begin{cases} temperature [15:3] & /16 \\ -((8192 - temperature [15:3])/16) \end{cases} \qquad (temperature [15] = 0)$$

$$(temperature [15] = 1)$$

Temperature5 represents bottom board tempreture. The temperature register contains 2 bytes to be temperature_reg[15:0]. temperature_reg[15:12] is invalid. temperature_reg[11:0] is temperature value, while temperature reg[15] is symbol flag

$$temperature = \begin{cases} temperature_reg[11:0]/4 & (temperature_reg[11]=0) \\ -(4096-temperature_reg[11:0])/4 & (temperature_reg[11]=1) \end{cases}$$

(4) Byte16 represents the GPS input status register gps_st, this register use 3 bit to describe the validation for PPS, GPRMC, and timestamp. The details are shown below:

		GPS i	nput status register gps_st				
BIT	Function	Value	Status				
bit0		0	PPS is valid				
	PPS_LOCK	1	PPS is invalid				
bit1	GPRMC 标志:	0	GPRMC is valid				
	GPRMC_LOCK	1	GPRMC is invalid				
bit2	UTC_LOCK	0	LiDAR internal timestamp is not synchronizing the UTC.				
		1 LiDAR internal timestamp is synchronizing the UTC.					
bit3~bit7	Reserved	d x N/A					

(5) The real-time rotation speed of the motor is composed of two bytes, byte32 and byte33. The calculation formula is as follows:

Motor real-time rotation speed = $(256 * r_rpm1 + r_rpm2) \div 6$

(6) The reset is used for debug, they are not opened.

B.12 ASCII code in GPSRMC Packet

GPSRMC register reserve 86byte, it can store the whole GPSRMC message from GPS module in to the register in ASCII code.

B.13 Corrected Vertical Angle (COR_VERT_ANG)

	Corrected Vertical Angle (48bytes)										
Byte No.	byte1	byte2	byte3	byte4	byte5	byte6	byte7	byte8	byte9		
Function		Channel 1			Channel 2			Channel 3			
byte No.	byte10	byte11	byte12	byte14	byte14	byte15	byte16	byte17	byte18		
Function		Channel 4			Channel 5			Channel 6			
byte No.	byte19	byte20	byte21	byte22	byte23	byte24	byte25	byte26	byte27		
Function	Channel 7				Channel 8			Channel 9			
byte No.	byte28	byte29	byte30	byte31	byte32	byte33	byte34	byte35	byte36		

Function		Channel 10			Channel 11			Channel 12		
Byte No.	byte37	byte38	byte39	byte40	byte41	byte42	byte43	byte44	byte45	
Function		Channel 13			Channel 14			Channel 15		
Byte No.	byte46	byte47	byte48	byte49 byte50 byte51			byte52	byte53	byte54	
Function	Channel 16				Channel 17			Channel 18		
Byte No.	byte55	byte56	byte57	byte58	byte59	byte60	byte61	byte62	byte63	
Function	Channel 19			Channel 20				Channel 21		
Byte No.	byte64 byte65 byte66			byte67	byte68	byte69	byte70	byte71	byte72	
Function		Channel 22		Channel 23				Channel 24		
Byte No.	byte73	byte74	byte75	byte76 byte77 byte78			byte79	byte80	byte81	
Function		Channel 25			Channel 26			Channel 27		
Byte No.	byte82	byte83	byte84	byte85	byte86	byte87	byte88	byte89	byte90	
Function	Channel 28			Channel 29				Channel 30		
Byte No.	byte91 byte92 byte93			byte94 byte95 byte96						
Function	Channel 31			Channel 32						

Register description:

- (1) The angle value is signed integer, vertical angle for each channel is consist of 3 bytes, while the first byte represents the sign, the second byte and the third byte represent the value for the angle.
- (2) The first byte 0x00 represents positive while 0x01 represents negative.
- (3) LBS=0.001;
- (4) For example the register for vertical angle of Channel 1is as below: byte1=0x01, byte2=0x28 convert to decimal is 40, byte3=0x29 convert to decimal is 41, so the vertical angle of Channel 1 is:

- (40*256+41) *0.001=-10.281

B.14 Corrected Horizontal Offset Angle (COR_HOR_ANG)

		(Corrected h	orizontal of	fset Angle((48bytes)				
Byte No.	byte1	byte2	byte3	byte4	byte5	byte6	byte7	byte8	byte9	
Function		Channel 1			Channel 2			Channel 3		
byte No.	byte10	byte11	byte12	byte14 byte14 byte15			byte16	byte17	byte18	
Function	Channel 4				Channel 5			Channel 6		
byte No.	byte19	byte20	byte21	byte22	byte23	byte24	byte25	byte26	byte27	
Function	Channel 7			Channel 8			Channel 9			
byte No.	byte28	byte29	byte30	byte31	byte32	byte33	byte34	byte35	byte36	
Function		Channel 10			Channel 11			Channel 12		
Byte No.	byte37	byte38	byte39	byte40	byte40 byte41 byte42		byte43	byte44	byte45	
Function		Channel 13		Channel 14				Channel 15		
Byte No.	byte46	byte47	byte48	byte49	byte50	byte51	byte52	byte53	byte54	
Function	Channel 16				Channel 17			Channel 18		
Byte No.	byte55 byte56 byte57			byte58 byte59 byte60			byte61	byte62	byte63	
Function	Channel 19				Channel 20		Channel 21			

Byte No.	byte64	byte65	byte66	byte67	byte68	byte69	byte70	byte71	byte72
Function	Channel 22			Channel 23			Channel 24		
Byte No.	byte73	byte74	byte75	byte76	byte77	byte78	byte79	byte80	byte81
Function	Channel 25			Channel 26			Channel 27		
Byte No.	byte82	byte83	byte84	byte85	byte86	byte87	byte88	byte89	byte90
Function	Channel 28			Channel 29			Channel 30		
Byte No.	byte91	byte92	byte93	byte94	byte95	byte96			
Function	Channel 31			Channel 32					

Register description:

- (1) The angle value is signed integer, vertical angle for each channel is consist of 3 bytes, while the first byte represents the sign, the second byte and the third byte represent the value for the angle.
- (2) The first byte 0x00 represents positive while 0x01 represents negative.
- (3) LBS=0.001;
- (4) For example the register for vertical angle of Channel 10 is as below: byte1=0x01, byte2=0x0A convert to decimal is 40, byte3=0x70 convert to decimal is 41, so the vertical angle of Channel 10 is:

Appendix C - RSView

This appendix gets you started with RSView. It shows you how to use the application to acquire, visualize, save, and replay sensor data.

You can examine sensor data with other free tools, such as Wireshark or tcp-dump. But to visualize the 3D data, use RSView. It's free and relatively easy to use.

The version used this time is RSView3.1.3.

C.1 Features

RSView provides real-time visualization of 3D LiDAR data from RoboSense LiDAR sensors. RSView can also playback pre-recorded data stored in "pcap" (Packet Capture) files, but RSView still does not support .pcapng files.

RSView displays distance measurements from a RoboSense LiDAR sensor as point data. It supports custom-colored display of variables such as intensity-of-return, time, distance, azimuth, and laser ID. The data can be exported as XYZ data in CSV format. The previous versions of RSView does not support generating point cloud files in LAS, XYZ, or PLY formats, while the RSView 3.1.3 supports generating LAS format.

Functionality and features include:

- Visualize live streaming sensor data over Ethernet
- Record live sensor data in pcap files
- Visualize sensor data from a recording (pcap file)
- Interprets point data such as distance timestamp, azimuth, laser ID, etc.
- Tabular point data inspector
- Export to CSV format
- Ruler tool
- Display multiple frames of data simultaneously (Trailing Frames)
- Display or hide subsets of lasers
- Crop views

C.2 Install RSView

Installer for RSView is provided for Windows 64-bit system and it has no need for other dependencies. You can find the executable installer **RSView_X.X.X_Setup.exe** from the U disk in the RS-LiDAR-32 box. Also you can download the latest version from RoboSense website (http://www.robosense.ai/web/resource/en). Launch the installer and follow the on-screen instructions to finish the installation. The installation path should not contain any Chinese character.

C.3 Set up Network

As mentioned in the RS-LiDAR-32 User's Manual, the default IP address of the computer should be set as 192.168.1.102, sub-net mask should be 255.255.255.0. You should make sure that RSView does not be shielded by firewall in the computer.

C.4 Visualize Streaming Sensor Data

- 1. Connect the sensor to your computer and power it up.
- 2. Right Click to start the RSView application with Run as administrator.
- 3. Click on **File > Open** and select **Sensor Stream** (Fig C-1).

Fig C-1 RSView Open Sensor Stream

4. The Sensor Configuration dialog will appear. The application contains a default configuration folder of RSLIDAR-16 called "RSlidar16CorrectionFile" for reference, but please add the right configuration files folder of the RSLIDAR-16 you have, or you will get chaos point cloud display with the default configuration files. Select the configuration files folder of your lidar and then click **OK** (Fig C-2). The path of the folder should only include English characters and should include all three csv files (angle.csv, ChannelNum.csv, curves.csv). You can find the configuration files folder named "configuration_data" in the U disk in the RS-LiDAR-32 package box or you can ask the RoboSense support to get the files. The path contains the configuration files should not contain any Chinese character.

Fig C-2 RSView Select Sensor Correction File

5. RSView begins displaying the sensor data stream (Fig C-3). The stream can be paused by pressing the **Play** button. Press it again to resume streaming.

Fig C-3 RSView Sensor Stream Display

C.5 Capture Streaming Sensor Data to PCAP File

1. Click the **Record** button when streaming (Fig C-4).

Fig C-4 RSView Record Button

2. A Choose Output File dialog will pop up. Navigate to where you want the file to be saved and click the **Save** button (Fig C-5). RSView begins writing packets to your pcap file. (Note: RS-LiDAR-32 sensors generate a lot of data. The pcap file can become quite large if the recording duration is lengthy. Also, it is best to record to a fast, local HDD or SSD, not to a slow subsystem such as a USB storage device or network drive.)

Fig C-5 RSView Record Saving Dialog

3. Recording will continue until the **Record** button is clicked again, which stops the recording and closes the pcap file.

C.6 Replay Captured Sensor Data from PCAP File

To replay (or examine) a pcap file, open it with RSView. You can press **Play** to let it run, or scrub through the data frames with the Scrub slider. Select a set of 3D rendered data points with your mouse and examine the numbers with a Spreadsheet sidebar.

1. Click on File > Open and select Capture File (Fig C-6).

Fig C-6 RSView Open Capture File

2. An Open File dialog will pop up. Navigate to a pcap file, select it, and click the **Open** button.

Fig C-7 Select the PCAP file

- 3. The Sensor Configuration dialog will pop-up. Select your sensor configuration folder and click OK.
- 4. Press **Play** to replay/pause the data stream. Use the Scrub slider tool (it looks like an old-fashioned volume slider) to move back and forth through the data frames. Both controls are in the same toolbar as the **Record** button (Fig C-8).

Fig C-8 RSView Play Button

5. To take a closer look at some data, scrub to an interesting frame and click the Spreadsheet button (Fig C-9). A sidebar of tabular data is displayed to the right of the rendered frame, containing all data points in the frame.

Fig C-9 RSView Spreadsheet Tool

6. Adjust the columns to get a better view of the numbers. If you've adjusted columns in Excel, some of this will be familiar. You can change column widths by dragging the column header divider left or right, and by double-clicking them. Drag column headers left or right to reorder them. Sort the table by clicking column headers. And you can make the table itself wider by dragging the table's sides left or right. Make Points_m_XYZ wider to expose the XYZ points themselves.

Fig C-10 RSView Data Point Table

7. Click **Show only selected elements** in the Spreadsheet (Fig C-11). Since no points are selected yet, the table will be empty.

Fig C-11 RSView Show Only Selected Elements

8. Click the Select All Points tool. This turns your mouse into a point selection tool(Fig C-12).

Fig C-12 RSView Select All Points

9. In the 3D rendered data pane use your mouse to draw a rectangle around a small number of points. They will immediately populate the data table (Fig C-13).

Fig C-13 RSView List Selected Points

10. At any point you can save a subset of data frames by doing File > Save As > Select Frames.

C.7 RS-LiDAR-32 Factory Firmware Parameters Setting

RSView provide a tool which integrates UCWP function. We can use this tool to modify Rotation Speed, Network and Time in the RS-LiDAR-32 factory firmware

- 1. We need connect RS-LiDAR-32 to the PC and confirm we can view the real time data. Then click **Tools > RS-LiDAR Information**.
- 2. A RS-LiDAR Information dialog will appear. Click **Get** button, it will display the current RS-LiDAR-32 parameters setting.

Fig C-14 RS-LiDAR Information

3. We can modify the parameters to the ones we want to have, then click **Set LiDAR**. We need re-power and connect the RS-LiDAR-32 to make the modified parameters valid. After the device connecting again, we can use RSView to see the RS-LiDAR Information again to check if the modification take effect.

Fig C-15 Set LiDAR information

Fig C-16 Set LiDAR information successful

Attention 1: Please do not power off the sensor when we are setting LiDAR information, it may cause the sensor internal parameters broken.

Attention 2: if we modify the MSOP Port or DIFOP parameters above, we need setting the RSView MSOP Port and DIFOP Port according to C.8 section to make RS-LiDAR-32 can be connected correctly.

C.8 RSView Data Port

In the RS-LiDAR-32 factory firmware, the default MSOP port is 6699, the default DIFOP port is 7788, if we change the RS-LiDAR-32 ports number by modify the 2 parameters in C.7 section, we need configure the RSView Data Port first or we will see nothing in the RSView. If we do not know the RS-LiDAR-32 ports configuration, we can use Wireshark to capture the packets to check the Dst Port.

Click **Tools > Data Port**, enter the real MSOP port and DIFOP port of RS-LiDAR-32, then click **Set Data Port**. After that we can see the cloud point data again in the RSView.

Fig C-17 Data Port Setting

C.9 Firmware Online Update

Before begin firmware online update, we need make sure the RS-LiDAR-32 is working normally, that means we can view the Pointcloud and get LiDAR information in RSVIEW.

Click **Tools > Online Update**, we can select the top board firmware update and bottom board firmware update as shown in Figure C-18.

Fig C-18 Online Update

For example, when we choose "Bottom Board Update", we need direct to choose the .rpd firmware file for update, and then click Open to begin the online update process. The online update process would take some time, if the firmware update successfully, it will show "Online Update Successful".

Note: The Config Update option is not available.

Fig C-19 Select the Firmware for Update

Fig C-20 Online Update Successful

C.10 Fault Diagnosis

Before begin firmware online update, we need make sure the RS-LiDAR-32 is working normally, that means we can view the Pointcloud and get LiDAR information in RSVIEW.

Click **Tools > Fault Diagnosis**, the Fault Diagnosis window will pop up. Then we can click Start button to monitor the LiDAR status in real time, including current, voltage, temperature, error rate of the data communication, etc.

Fig C-21 Fault Diagnosis

Appendix D ■ RS-LiDAR-32 ROS Package

This appendix describes how to use ROS to view the RS-LiDAZR-16 data.

D.1 Prerequisite

- 1. Install Ubuntu 14.04. Please download from ubuntu website and install the ubuntu 14.04.
- 2. Please refer the link (http://wiki.ros.org/indigo/Installation/Ubuntu) to install the ROS indigo version.
- 3. Download and install libpcap-dev.

D.2 Install RS-LiDAR-32 ROS Package

1. Create the work space for ros:

cd ~
mkdir -p catkin_ws/src

- 2. Copy the ros_rslidar_package into the work space ~/catkin_ws/src. You can find the ros_rslidar package in the U disk in the RS-LiDAR-32 box. You can also ask RoboSense to get these files. The latest version of the ros_rslidar driver can be downloaded from https://github.com/RoboSense-LiDAR/ros_rslidar.
- 3. Build

cd ~/catkin_ws
catkin_make

D.3 Configure PC IP address

For the default RS-LiDAR-32 firmware, it is configured the "192.168.1.200" as its own IP address, and the "192.168.1.102" as its destination PC IP address. So we need set the PC static IP as "192.168.1.102" and the net mask as "255.255.255.0", while the gateway address is not necessary. After configuration, we can use "ifconfig" command to check if the IP is work.

D.4 View the real time data

- 1. Connect the RS-LiDAR-32 to your PC via RJ45 cable, and power on it.
- 2. We have provided an example launch file named "rs_lidar_32.launch" under rslidar_pointcloud/launch to start the node, we can run the launch file to view the real time point cloud data. Open a terminal:

cd ~/catkin_ws source devel/setup.bash

roslaunch rslidar_pointcloud rs_lidar_32.launch

3. Open a new terminal:

rviz

Set the Fixed Frame to "rslidar". Add a Pointcloud2 type and set the topic to "rslidar_points":

D.5 View the recorded pcap file offline

We can also use the ros_rslidar ROS package to view the recorded .pcap data.

1. Modify the "rs_lidar_32.launch" file to something like below (please pay attention to the red line):

2. Open an teminal:

```
cd ~/catkin_ws
source devel/setup.bash
roslaunch rslidar_pointcloud rs_lidar_32.launch
```

3. Open a new terminal and run:

rviz

Appendix E ■ **Dimensions**

Appendix F LiDAR Mechanical Installation Suggestion

Please make sure the platform surface used for mount LiDAR is smooth as possible.

Please make sure the locating pin on the mount surface do exceed 4mm high.

The material of the mount platform is suggested to be aluminum alloy in order to thermolysis.

When the LiDAR is installed, if there is a contact mounting surface on the upper and bottom sides of the LiDAR, make sure that the spacing between the mounting surfaces is greater than the height of the LiDAR to avoid squeezing the LiDAR.

We do not suggest to mount the LiDAR in a tilt position that the tilt angle exceed 90 degree, this will reduce the sensor life time.

When we route the LiDAR cable in the mount device, we need keep the cable a little slack.

Appendix G How to Distinguish the Port Number of MSOP and DIFOP Packets

According to the Chapter 5, RS-LiDAR-32 outputs MSOP packets and DIFOP packets. We can use the Wireshark software to filter the MSOP packets or DIFOP packets so that we can know which port number the packets send to. After that we can set the Data Port in the RSVIEW.

We first need connect the RS-LiDAR-32 to the PC and power on the RS-LiDAR-32. The we can start the Wireshark and select the right network to begin capturing the packets.

In the Display Filter, we can enter **data.data[0:1]==55** expression to filter the MSOP packets, then we can see the port number in the Info column, as shown in Fig F-1.

In the Display Filter, we can enter **data.data[0:1]==a5** expression to filter the DIFOP packets, then we can see the port number in the Info column, as shown in Fig F-2.

Fig F-1 Wireshark filter the MSOP packets

Fig F-2 Wireshark filter the DIFOP packets

Appendix H Sensor Clean

Please make sure the platform surface used for mount LiDAR is smooth as possible.

Please make sure the locating pin on the mount surface do exceed 4mm high.

The material of the mount platform is suggested to be aluminum alloy in order to thermolysis.

We do not suggest to mount the LiDAR in a tilt position that the tilt angle exceed 90 degree, this will reduce the sensor life time.

H.1 Attention

Please read through this entire Appendix H content before clean the RS-LiDAR. Improper handling can permanently damage it.

H.2 Require Materials

- 1. Clean microfiber cloths
- 2. Mild, liquid dish-washing soap
- 3. Spray bottle with warm, clean water
- 4. Spray bottle with warm, mildly soapy water
- 5. Isopropyl alcohol

H.3 Clean Method

If the sensor is just covered by dust, use a clean microfiber cloth with a little isopropyl alcohol to clean the sensor directly, then dry with another clean microfiber cloths.

If the sensor is caked with mud or bugs, use a spray bottle with clean, warm water to loosen any debris from it. Do not wipe dirt directly off the sensor. Doing so may abrade the surface. Then use warm, mildly-soapy water and gently wipe the sensor with a clean microfiber cloth. Wipe the ring lens gently along the curve of the sensor, not top-to-bottom. To finish, spray the sensor with clean water to rinse off any remaining soap (if necessary, use isopropyl alcohol and a clean microfiber cloth to clean any remaining dirt from the sensor), then dry with another clean microfiber cloth.

400 6325 830

激光雷达 看见大世界 More than what you see

深圳市速腾聚创科技有限公司 Shenzhen Suteng Innovation Technology Co., LTD.

Address: 深圳市南山区桃源街道留仙大道 1213 号众冠红花岭工业南区 1 区速腾科技楼 Robosense Building, Block 1, South of Zhongguan Honghualing Industrial District, No. 1213 Liuxian Avenue, Taoyuan Street, Nanshan District, Shenzhen, China.

Web: www.robosense.ai Tel: 0755-8632-5830 Email: Service@sz-sti.com