Classification Quiz Last Updated: 2022-05-24 | Time to Complete: 90 min

miatta.sinayoko@gmail.com Switch account

Oraft saved

* Indicates required question

Email *

Record miatta.sinayoko@gmail.com as the email to be included with my response

What is your cohort name? *

Ouintela

- 1. Of the following types of questions, which one can be answered best by a 8 points Classification model?
- How many or how much of something
- What should we expect to happen next?
- Is this new observation in the predefined group A or B (or C, D, etc)?
- Is this observation weird?
- What are the groupings that exist in the data already

2. Which of the following algorithms are used to predict categorical outcomes based on historical outcomes? (Select all that apply)						
Decision Tree						
K-Means						
K-Nearest Neighbors						
Linear Regression						
Logistic Regression						
Random Forest						
 3. Which of the following are true regarding test, validate and train datasets? 8 points (Select all that apply) A "Test" data set is not a sample from the original dataset, but is instead gathered later, after having initially built the model on all of the original data. A "Train" data set is the generally largest of the 3 samples. One purpose of splitting the data into 3 samples is to avoid overfitting your model to one sample. The primary purpose of a "Test" data set is to test many different algorithms and see which performs best. Only the best model should be tested on the "Test" dataset. 						

4. When determining which independent variable(s) will help predict a target variable, i.e. what are key drivers of a target variable, what method(s) should be used? (Select all that apply) statistical tests confusion matrix data visualization baseline prediction	8 points
5. What method(s) can be used to avoid overfitting? Select all that apply.	8 points
adjust hyperparameters	
fit model on unseen data	
split train dataset into validate and test	
skip cleaning the raw data	
6. A Decision Tree algorithm learns patterns within sets of labeled points, the classifier produces a in order to classify new incoming data. Other to classify new incoming data.	7 points
fact rule	
O decision rule	
Choice rule	
Choice fule	

7. How does the K-Nearest Neighbor algorithm make its predictions? 7 points					
O It makes predictions based on how many features a new data point has compared to a known data point.					
It makes predictions based on coefficients that weight each input variable.					
It makes predictions based on a sequence of rules applied to the new data point.					
It makes predictions based on how close a new data point is to known data points.					
8. The Logistic Regression algorithm transforms a(n) into a logistic 7 points model using a logistic function.					
C Linear model					
O Discrete model					
Exponential model					
Strategic model					

9. Put the following steps in the correct order. 1 is first, 5 is last. 15 points					
	1	2	3	4	5
Evaluate the model using the validate data frame	0	0	0	0	0
Explore, visualize, and test relationships between variables	0	0	0	0	0
Split the data into train, validate, and test data frames	0	0	0	0	0
Fit and evaluate the model on the training dataframe	0	0	0	0	0
Evaluate the best model on test data frame	0	0	0	0	0

10. Given the following labeled sample, we want to predict whether or not a 7 points customer will churn in the next month (1-yes or 0-no).

has_churned = [1, 1, 0, 0, 1, 0, 0, 0, 0, 0], where churning is the positive case, represented by a 1.

What should our baseline prediction be?

- 0
- .27

11. Given the above scenario (we want to predict whether or not a customer 8 points will churn in the next month), answer the following 2 questions related to the confusion matrix that would result from your baseline predictions. 1. Fill out blocks A-D using your baseline prediction NOTE: One value may apply to multiple cells. Remember: has_churned = [1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0]

	CONFUSION MATRIX	Has Churned (1)	Has Not Churned (0)		_	
	Predicted Churn (1)	Α	В	Е		
	Predicted Not Churn (0)	С	D	F		
		G	Н	ı		
		0	8		11	3
Α						
В						
С						
D						

12. (continuing from question above, relating to the confusion matrix that would result from your baseline predictions). 2. Match the metric VALUE with the cell in the confusion matrix. NOTE: One value may apply to multiple cells. Remember: has_churned = [1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0]

10 points

CONFUSION MATRIX	Has Churned (1)	Has Not Churned (0)		
Predicted Churn (1)	Α	В	E	
Predicted Not Churn (0)	С	D	F	
	G	н	I	
	0		.73	3 1
Е				
F				
G				
Н				
I				

A copy of your responses will be emailed to miatta.sinayoko@gmail.com.

Page 1 of 1

Submit Clear form 6/28/23, 9:06 AM Classification Quiz

Never submit passwords through Google Forms.

This form was created inside of Codeup. Report Abuse

Google Forms