(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER-18 EXAMINATION

Subject Name: Basic Mathematics Model Answer

Subject Code: 17104

<u>Important Instructions to examiners:</u>

- 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.
- 2) The model answer and the answer written by candidate may vary but the examiner may try to assess the understanding level of the candidate.
- 3) The language errors such as grammatical, spelling errors should not be given more Importance (Not applicable for subject English and Communication Skills.
- 4) While assessing figures, examiner may give credit for principal components indicated in the figure. The figures drawn by candidate and model answer may vary. The examiner may give credit for any equivalent figure drawn.
- 5) Credits may be given step wise for numerical problems. In some cases, the assumed constant values may vary and there may be some difference in the candidate's answers and model answer.
- 6) In case of some questions credit may be given by judgement on part of examiner of relevant answer based on candidate's understanding.
- 7) For programming language papers, credit may be given to any other program based on equivalent concept.

Q.	Sub	Ancword	Marking
No.	Q.N.	Answers	Scheme
1.		Attempt any <u>TEN</u> of the following:	20
		Find x, if $\begin{vmatrix} x & 0 & 0 \\ 3 & -2 & 1 \\ -2 & -4 & 1 \end{vmatrix} = 0$ $\begin{vmatrix} x & 0 & 0 \end{vmatrix}$	02
	Ans	$\begin{vmatrix} x & 0 & 0 \\ 3 & -2 & 1 \\ -2 & -4 & 1 \end{vmatrix} = 0$	
		$\therefore x(-2+4) = 0$	1
		$\therefore 2x = 0$	
		$\therefore x = 0$	1
		If $A = \begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 4 & 5 \\ 1 & -3 \end{bmatrix}$, find $2A + B$.	02
	Ans	$2A + B = 2\begin{bmatrix} 1 & 2 \\ -3 & 4 \end{bmatrix} + \begin{bmatrix} 4 & 5 \\ 1 & -3 \end{bmatrix}$	
		$= \begin{bmatrix} 2 & 4 \\ -6 & 8 \end{bmatrix} + \begin{bmatrix} 4 & 5 \\ 1 & -3 \end{bmatrix}$	1
		$= \begin{bmatrix} 6 & 9 \\ -5 & 5 \end{bmatrix}$	1

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

	T ~ = T		
Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	c)	If $A = \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix}$ show that A^2 is null matrix.	02
	Ans	$A^2 = AA = \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 2 & 4 \\ -1 & -2 \end{bmatrix}$	1/2
		$= \begin{bmatrix} 4-4 & 8-8 \\ -2+2 & -4+4 \end{bmatrix}$	1
		$=\begin{bmatrix}0&0\\0&0\end{bmatrix}$	1/2
		$\therefore A^2$ is null matrix	
	d)	If $A = \begin{bmatrix} 3 & -5 \\ 2 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix}$ verify that $AB \neq BA$	02
	Ans	$AB = \begin{bmatrix} 3 & -5 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix}$	
		$= \begin{bmatrix} 3-15 & -6-10 \\ 2+0 & -4+0 \end{bmatrix}$	
		$= \begin{bmatrix} -12 & -16 \\ 2 & -4 \end{bmatrix}$	1
		$BA = \begin{bmatrix} 1 & -2 \\ 3 & 2 \end{bmatrix} \begin{bmatrix} 3 & -5 \\ 2 & 0 \end{bmatrix}$	
		$= \begin{bmatrix} 3-4 & -5+0 \\ 9+4 & -15+0 \end{bmatrix}$	
		$= \begin{bmatrix} -1 & -5 \\ 13 & -15 \end{bmatrix}$	1
		$AB \neq BA$	
	e)	Resolve into partial fraction $\frac{x+4}{x(x+1)}$	02
	Ans	$\frac{x+4}{x(x+1)} = \frac{A}{x} + \frac{B}{x+1}$	1/2
		$\therefore x + 4 = A(x+1) + B(x)$	
		$\dots \times 1 = \Pi(x + 1) + D(x)$	

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

,	-	<u></u>	•
Q. No.	Sub Q.N.	Answers	Marking Scheme
110.	Q.IV.		Scrienie
1.	e)	Put $x = 0$ $A = 4$	1/2
		Put $x = -1$ $B = -3$	1/2
		$\therefore \frac{x+4}{x(x+1)} = \frac{4}{x} + \frac{-3}{x+1}$	1/2
		$\begin{pmatrix} x(x+1) & x & x+1 \\ x & x & x+1 \end{pmatrix}$	
	f)	Define Allied angle.	02
	Ans	If the sum or difference of the measures of two angles is either zero or is an integral	02
		multiple of 90° , i.e., $n \cdot \frac{\pi}{2}$ where $n \in I$, called as Allied angles.	
	g)	Prove that $\sin 2\theta = 2\sin \theta \cos \theta$	02
	Ans	$\sin 2\theta = \sin(\theta + \theta)$	1/2
		$= \sin \theta \cos \theta + \cos \theta \sin \theta$	1
		$=2\sin\theta\cos\theta$	1/2
	h)	If $\sin 80^{0} + \sin 50^{0} = 2 \sin \alpha \cos \beta$, find α , β	02
	Ans	$\sin 80^0 + \sin 50^0 = 2\sin \alpha \cos \beta$	
		$\sin(\alpha + \beta) + \sin(\alpha - \beta) = 2\sin\alpha\cos\beta$	
		$\therefore \alpha + \beta = 80^{\circ} \& \alpha - \beta = 50^{\circ}$	1
		$\therefore \alpha = 65^{\circ} \& \beta = 15^{\circ}$	1
		OR	
		$\sin 80^0 + \sin 50^0 = 2\sin \alpha \cos \beta$	
		$2\sin\left(\frac{80+50}{2}\right)\cos\left(\frac{80-50}{2}\right) = 2\sin\alpha\cos\beta$	1/2
		$2\sin 65\cos 15 = 2\sin \alpha \cos \beta$	1/2
		$\therefore \alpha = 65^{\circ} \& \beta = 15^{\circ}$	1
	i)		
	Ans	Prove that $\sin^{-1}(-x) = -\sin^{-1}x$	02
	AllS	Let $\sin^{-1}(-x) = \theta$	
		$\therefore -x = \sin \theta$	1/2
		$\therefore x = -\sin\theta$	
		$\therefore x = \sin(-\theta)$	1/2
	l	L	L

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Subject Name: Basic Mathematics <u>Model Answer</u>

Subject Code:

17104

Q.	Sub		Marking
No.	Q. N.	Answers	Scheme
1.	i)		
		$-\theta = \sin^{-1} x$	1/2
		$\theta = -\sin^{-1} x$	
		$\sin^{-1}\left(-x\right) = -\sin^{-1}x$	1/2
		OR	
		\cdot (a) \cdot (b)	1/2
		$\sin(-\theta) = -\sin\theta (1)$	/2
		put $\sin \theta = x$ $\therefore \theta = \sin^{-1} x$	1/2
		$(1) \Rightarrow$	/2
		$\sin\left(-\sin^{-1}x\right) = -x$	1/2
		$-\sin^{-1} x = \sin^{-1} \left(-x\right)$	
		$\therefore \sin^{-1}(-x) = -\sin^{-1}x$	1/2
	j)	Evaluate $2\cos 75^{\circ}.\cos 15^{\circ}$ without using calculator.	02
	Ans	$2\cos 75^{\circ}.\cos 15^{\circ} = \cos \left(75^{\circ} + 15^{\circ}\right) + \cos \left(75^{\circ} - 15^{\circ}\right)$	1/2
		$= \cos 90^{\circ} + \cos 60^{\circ}$	1/2
		$=0+\frac{1}{2}$	
		2 1	
		$=\frac{1}{2}$	1
	k)	Prove that the lines $3x-2y+6=0$ and $2x+3y-1=0$ are perpendicular to each other.	02
	Ans	$L_1: 3x - 2y + 6 = 0$	
	Alis		
		$L_{2}:2x+3y-1=0$	
	l		

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
1.	k)		
1.	K)	$m_1 = \frac{-3}{-2} = \frac{3}{2}$ $m_2 = \frac{-2}{3}$	1/2
		3	1/2
		consider $m_1 \cdot m_2 = \frac{3}{2} \cdot \frac{-2}{3} = -1$	1/2
		:. Lines are perpendicular to each other.	1/2
	1)	Find the coefficient of range of the following distribution. $120,100,130,50,150$	02
	Ans	coefficient of range = $\frac{L-S}{L+S}$ = $\frac{150-50}{150+50}$	1
		$= \frac{100}{200} = \frac{1}{2} \text{or} 0.5$	1
2.		Attempt any <u>FOUR</u> of the following:	16
	a)	Solve the following equations by using Cramer's rule	04
	Ans	$3x + y + z = 4, 2x - 3y + z = 7, x + y + 3z = 6$ $D = \begin{vmatrix} 3 & 1 & 1 \\ 2 & -3 & 1 \\ 1 & 1 & 3 \end{vmatrix} = 3(-9 - 1) - 1(6 - 1) + 1(2 + 3) = -30$	1
		$D_x = \begin{vmatrix} 4 & 1 & 1 \\ 7 & -3 & 1 \\ 6 & 1 & 3 \end{vmatrix} = 4(-9-1)-1(21-6)+1(7+18) = -30$ $\therefore x = \frac{D_x}{D} = \frac{-30}{-30} = 1$	1
		$D_{y} = \begin{vmatrix} 3 & 4 & 1 \\ 2 & 7 & 1 \\ 1 & 6 & 3 \end{vmatrix} = 3(21-6)-4(6-1)+1(12-7) = 30$ $D_{y} = 30$	1
		$\therefore y = \frac{D_y}{D} = \frac{30}{-30} = -1$	_

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Sub	Subject Name: Basic Mathematics Model Answer Subject Code: 1710		
Q. No.	Sub Q. N.	Answers	Marking Scheme
2.	a)	$D_{z} = \begin{vmatrix} 3 & 1 & 4 \\ 2 & -3 & 7 \\ 1 & 1 & 6 \end{vmatrix} = 3(-18-7)-1(12-7)+4(2+3) = -60$ $\therefore z = \frac{D_{z}}{D} = \frac{-60}{-30} = 2$	1
	b)	$D = -30$ If $A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$ verify that $(AB)^{T} = B^{T}A^{T}$	04
	Ans	$AB = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$	
		$= \begin{bmatrix} 1+4+0 & 0+2-1 & 0+0-3 \\ 3+0+0 & 0+0+2 & 0+0+6 \\ 4+10+0 & 0+5+0 & 0+0+0 \end{bmatrix}$ $\begin{bmatrix} 5 & 1 & -3 \end{bmatrix}$	
		$AB = \begin{bmatrix} 5 & 1 & -3 \\ 3 & 2 & 6 \\ 14 & 5 & 0 \end{bmatrix}$ $\begin{bmatrix} 5 & 3 & 14 \end{bmatrix}$	1
		$ (AB)^{T} = \begin{bmatrix} 5 & 3 & 14 \\ 1 & 2 & 5 \\ -3 & 6 & 0 \end{bmatrix} $ $ \begin{bmatrix} 1 & 2 & 0 \end{bmatrix} \begin{bmatrix} 1 & 3 & 4 \end{bmatrix} $	1

2.	(a)	$D_z = \begin{vmatrix} 3 & 1 & 4 \\ 2 & -3 & 7 \\ 1 & 1 & 6 \end{vmatrix} = 3(-18-7)-1(12-7)+4(2+3) = -60$	
		$\begin{vmatrix} 1 & 1 & 6 \\ \therefore z = \frac{D_z}{D} = \frac{-60}{-30} = 2 \end{vmatrix}$	1
	b)	If $A = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$ verify that $(AB)^T = B^T A^T$	04
	Ans	$AB = \begin{bmatrix} 1 & 2 & -1 \\ 3 & 0 & 2 \\ 4 & 5 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 3 \end{bmatrix}$	
		$= \begin{bmatrix} 1+4+0 & 0+2-1 & 0+0-3 \\ 3+0+0 & 0+0+2 & 0+0+6 \\ 4+10+0 & 0+5+0 & 0+0+0 \end{bmatrix}$	
		$AB = \begin{bmatrix} 5 & 1 & -3 \\ 3 & 2 & 6 \\ 14 & 5 & 0 \end{bmatrix}$	1
		$ (AB)^T = \begin{bmatrix} 5 & 3 & 14 \\ 1 & 2 & 5 \\ -3 & 6 & 0 \end{bmatrix} $	1
		$B^{T}A^{T} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 3 \end{bmatrix} \begin{bmatrix} 1 & 3 & 4 \\ 2 & 0 & 5 \\ -1 & 2 & 0 \end{bmatrix}$	1
		$= \begin{bmatrix} 1+4+0 & 3+0+0 & 4+10+0 \\ 0+2-1 & 0+0+2 & 0+5+0 \\ 0+0-3 & 0+0+6 & 0+0+0 \end{bmatrix}$	
		$= \begin{bmatrix} 5 & 3 & 14 \\ 1 & 2 & 5 \\ -3 & 6 & 0 \end{bmatrix}$	1
		$ \left(AB\right)^T = B^T A^T $	
			Page 6 of 30

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
2.		If $A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$ prove that $A^2 = I$ $\begin{bmatrix} 0 & 1 & -1 \end{bmatrix}$	04
		$A = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$	
		$A^{2} = AA = \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 1 & -1 \\ 4 & -3 & 4 \\ 3 & -3 & 4 \end{bmatrix}$ $\begin{bmatrix} 0 + 4 - 3 & 0 - 3 + 3 & 0 + 4 - 4 \end{bmatrix}$	1
		$ \begin{bmatrix} 0+4-3 & 0-3+3 & 0+4-4 \\ 0-12+12 & 4+9-12 & -4-12+16 \\ 0-12+12 & 3+9-12 & -3-12+16 \end{bmatrix} $	2
		$= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = I$	1
	d)	If $A = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix}$, show that $A^2 - 8A$ is a scalar matrix	04
	Ans	$A = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix}$	
		$A^{2} = AA = \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix} \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix}$	
		$= \begin{bmatrix} 4+16+16 & 8+8+16 & 8+16+8 \\ 8+8+16 & 16+4+16 & 16+8+8 \\ 8+16+8 & 16+8+8 & 16+16+4 \end{bmatrix}$	1
		$= \begin{bmatrix} 36 & 32 & 32 \\ 32 & 36 & 32 \\ 32 & 32 & 36 \end{bmatrix}$	1

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Subject Code: | 17104 **Subject Name: Basic Mathematics Model Answer**

Juk	Jeec III	T / 1	.04
Q. No.	Sub Q.N.	Answers	Marking Scheme
2.	d)	$8A = 8 \begin{bmatrix} 2 & 4 & 4 \\ 4 & 2 & 4 \\ 4 & 4 & 2 \end{bmatrix} = \begin{bmatrix} 16 & 32 & 32 \\ 32 & 16 & 32 \\ 32 & 32 & 16 \end{bmatrix}$ $A^{2} - 8A = \begin{bmatrix} 36 & 32 & 32 \\ 32 & 36 & 32 \\ 32 & 32 & 36 \end{bmatrix} - \begin{bmatrix} 16 & 32 & 32 \\ 32 & 16 & 32 \\ 32 & 32 & 16 \end{bmatrix} = \begin{bmatrix} 20 & 0 & 0 \\ 0 & 20 & 0 \\ 0 & 0 & 20 \end{bmatrix}$	1
		$\therefore A^2 - 8A$ is a scalar matrix	
	e)	Resolve into partial fraction $\frac{2x-3}{(x^2-1)(x+1)}$	04
	Ans	Let $\frac{2x-3}{(x^2-1)(x+1)} = \frac{2x-3}{(x-1)(x+1)^2} = \frac{A}{x-1} + \frac{B}{(x+1)} + \frac{C}{(x+1)^2}$	1/2
		$\therefore 2x-3 = A(x+1)^2 + B(x-1)(x+1) + C(x-1)$	
		Put $x = 1$ $2(1)-3 = A(1+1)^2$	
		-1 = A(4)	
		$\therefore A = -\frac{1}{4}$ Put $x = -1$	1
		2(-1)-3 = C(-1-1) $-5 = C(-2)$	
		$-5 = C(-2)$ $\therefore C = \frac{5}{2}$	1
		Put $x = 0$ $\therefore -3 = A - B - C$	
		$\therefore -3 = -\frac{1}{4} - B - \frac{5}{2}$ $\Rightarrow 1 5 \Rightarrow 3$	
		$\therefore B = -\frac{1}{4} - \frac{5}{2} + 3$ $\therefore B = \frac{1}{4}$	1
		b - 4	1

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

-	,	The Dasic Mathematics Model Answer Subject code: = 7 = 9	
Q. No.	Sub Q.N.	Answers	Marking Scheme
2.	e)	$\therefore \frac{2x-3}{(x^2-1)(x+1)} = \frac{-\frac{1}{4}}{x-1} + \frac{\frac{1}{4}}{(x+1)} + \frac{\frac{5}{2}}{(x+1)^2}$	1/2
	f)	Resolve into partial fraction $\frac{3x-1}{(x-4)(2x+1)(x-1)}$	04
	Ans	Let $\frac{3x-1}{(x-4)(2x+1)(x-1)} = \frac{A}{x-4} + \frac{B}{2x+1} + \frac{C}{x-1}$	1/2
		$\therefore 3x-1 = A(2x+1)(x-1) + B(x-4)(x-1) + C(x-4)(2x+1)$	
		Put $x = 4$	
		3(4)-1 = A(2(4)+1)(4-1)	
		11 = A(9)(3)	
		11 = A(27)	
		$\therefore A = \frac{11}{27}$	1
		Put $x = \frac{-1}{2}$	
		$3\left(\frac{-1}{2}\right) - 1 = B\left(\frac{-1}{2} - 4\right)\left(\frac{-1}{2} - 1\right)$	
		$\frac{-5}{2} = B\left(\frac{-9}{2}\right)\left(\frac{-3}{2}\right)$	
		$\frac{-5}{2} = B\left(\frac{27}{4}\right)$	
		$\therefore B = \frac{-10}{27}$	1
		Put $x = 1$	
		3(1)-1=C(1-4)(2(1)+1)	
		$2 = C(-3)(3)$ $\therefore C = \frac{-2}{9}$	
		$\therefore C = \frac{-2}{9}$	1

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Q. No.	Sub Q. N.	Answers	Marking Scheme
2.	f)	$\therefore \frac{3x-1}{(x-4)(2x+1)(x-1)} = \frac{\frac{11}{27}}{x-4} + \frac{\frac{-10}{27}}{2x+1} + \frac{\frac{-2}{9}}{x-1}$	1/2
3.		Attempt any <u>FOUR</u> of the following:	16
	a)	Using matrix inversion method, solve the following equations.	04
		3x + y + 2z = 3, $2x - 3y - z = -3$, $x + 2y + z = 4$	04
	Ans	$Let A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1 \end{bmatrix}$	
		A = 3(-3+2)-1(2+1)+2(4+3)	1/2
		$\therefore A = 8$	/2
		$A = \begin{bmatrix} 3 & 1 & 2 \\ 2 & -3 & -1 \\ 1 & 2 & 1 \end{bmatrix}$	
		Matrix of minors = $\begin{bmatrix} \begin{vmatrix} -3 & -1 \\ 2 & 1 \end{vmatrix} & \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} & \begin{vmatrix} 2 & -3 \\ 1 & 2 \end{vmatrix} \\ \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} & \begin{vmatrix} 3 & 2 \\ 1 & 1 \end{vmatrix} & \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} \\ \begin{vmatrix} 1 & 2 \\ -3 & -1 \end{vmatrix} & \begin{vmatrix} 3 & 2 \\ 2 & -1 \end{vmatrix} & \begin{vmatrix} 3 & 1 \\ 2 & -3 \end{vmatrix} \end{bmatrix}$	
		$= \begin{bmatrix} -1 & 3 & 7 \\ -3 & 1 & 5 \\ 5 & -7 & -11 \end{bmatrix}$	1/2
		Matrix of cofactors = $\begin{bmatrix} -1 & -3 & 7 \\ 3 & 1 & -5 \\ 5 & 7 & -11 \end{bmatrix}$	1/2
		OR	
		$\begin{vmatrix} C_{11} = + \begin{vmatrix} -3 & -1 \\ 2 & 1 \end{vmatrix} = -3 + 2 = -1, \ C_{12} = - \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} = -(2+1) = -3$	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Subject Code: 17104 **Subject Name: Basic Mathematics Model Answer**

_			
Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	a)	$C_{13} = + \begin{vmatrix} 2 & -3 \\ 1 & 2 \end{vmatrix} = 4 + 3 = 7, \ C_{21} = - \begin{vmatrix} 1 & 2 \\ 2 & 1 \end{vmatrix} = -(1 - 4) = 3$	
		$C_{22} = + \begin{vmatrix} 3 & 2 \\ 1 & 1 \end{vmatrix} = 3 - 2 = 1, \ C_{23} = - \begin{vmatrix} 3 & 1 \\ 1 & 2 \end{vmatrix} = -(6 - 1) = -5$	
		$C_{31} = + \begin{vmatrix} 1 & 2 \\ -3 & -1 \end{vmatrix} = (-1+6) = 5, \ C_{32} = - \begin{vmatrix} 3 & 2 \\ 2 & -1 \end{vmatrix} = -(-3-4) = 7$	
		$C_{33} = + \begin{vmatrix} 3 & 1 \\ 2 & -3 \end{vmatrix} = -9 - 2 = -11,$	
		Matrix of cofactors = $\begin{bmatrix} -1 & -3 & 7 \\ 3 & 1 & -5 \\ 5 & 7 & -11 \end{bmatrix}$	1
		$Adj.A = \begin{bmatrix} -1 & 3 & 5 \\ -3 & 1 & 7 \\ 7 & -5 & -11 \end{bmatrix}$	1/2
		$A^{-1} = \frac{1}{ A } A \mathrm{dj.} A$	
		$\therefore A^{-1} = \frac{1}{8} \begin{bmatrix} -1 & 3 & 5 \\ -3 & 1 & 7 \\ 7 & -5 & -11 \end{bmatrix}$	1/2
		$X = A^{-1}B$ $\therefore \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{8} \begin{bmatrix} -1 & 3 & 5 \\ -3 & 1 & 7 \\ 7 & -5 & -11 \end{bmatrix} \begin{bmatrix} 3 \\ -3 \\ 4 \end{bmatrix}$ $\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -3 - 9 + 20 \\ 0 & 3 + 28 \end{bmatrix}$	1/2
		$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{8} \begin{bmatrix} -3 - 9 + 20 \\ -9 - 3 + 28 \\ 21 + 15 - 44 \end{bmatrix}$ $\therefore \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{8} \begin{bmatrix} 8 \\ 16 \\ -8 \end{bmatrix}$	1/2

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	a)	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}$ $\therefore x = 1, y = 2, z = -1$	1/2
	b)	Resolve into partial fraction : $\frac{x-2}{x^3+1}$	04
	,		04
	Ans	$\frac{x-2}{x^3+1} = \frac{x-2}{(x+1)(x^2-x+1)}$	
		$\therefore \frac{x-2}{(x+1)(x^2-x+1)} = \frac{A}{x+1} + \frac{Bx+C}{x^2-x+1}$	1/2
		$\therefore x - 2 = A\left(x^2 - x + 1\right) + \left(Bx + C\right)\left(x + 1\right)$	
		Put $x = -1$	
		$\therefore -3 = 3A$	
		$\therefore A = -1$	1
		Put $x = 0$	
		-2 = (1)A + (1)C	
		-2 = (1)(-1) + C	
		$\therefore C = -1$	1
		Put $x = 1$	
		$\therefore 1 - 2 = (1)A + 2(B + C)$	
		$\therefore -1 = A + 2B + 2C$	
		$\therefore -1 = -1 + 2B - 2$	
		$\therefore -1 + 3 = 2B$	
		$\therefore 2 = 2B$	
		$\therefore B = 1$	1
		$\therefore \frac{x-2}{(x+1)(x^2-x+1)} = \frac{-1}{x+1} + \frac{x-1}{x^2-x+1}$	1/2
	c)	Resolve into partial fraction : $\frac{x^4}{x^2-1}$	04
			ago 12 of 20

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Subject Name: Basic Mathematics	Model Answer	Subject Code:	17104	
Subject Name: Basic Mathematics	Wiodel Allswei	Subject code.	1/104	

		7 171		
Q. No.	Sub Q.N.	Answers	Marking Scheme	_
3.	c)	$x^{2}+1$		
	Ans	(x^2-1) (x^2+1) (x^4-1)		
	7 1113	$x^4 - x^2$	1	
		— +		
		$\frac{x}{x^2}$		
		x^2-1		
		$-\frac{+}{1}$		
		$\therefore \frac{x^4}{x^2 - 1} = \left(x^2 + 1\right) + \frac{1}{x^2 - 1}$	1/2	
		,, <u> </u>	1/	
		Let $\frac{1}{x^2 - 1} = \frac{1}{(x+1)(x-1)} = \frac{A}{x+1} + \frac{B}{x-1}$	1/2	
		$\therefore 1 = A(x-1) + B(x+1)$		
		put $x = -1$		
		$\therefore 1 = A(-1-1)$		
		$\therefore A = -\frac{1}{2}$	1/2	
			/2	
		put x = 1		
		$\therefore 1 = B(1+1)$		
		$\therefore B = \frac{1}{2}$	1/2	
		-		
		$\frac{1}{x^2 - 1} = \frac{\frac{-1}{2}}{x + 1} + \frac{\frac{1}{2}}{x - 1} = \frac{1}{2} \left(\frac{1}{x - 1} - \frac{1}{x + 1} \right)$	1/2	
		$\therefore \frac{x^4}{x^2 - 1} = \left(x^2 + 1\right) + \frac{1}{2} \left(\frac{1}{x - 1} - \frac{1}{x + 1}\right)$		
		$\frac{1}{x^2-1} - \frac{x^2-1}{2} - \frac{x^2-1}{2} = \frac{x^2-1}{x-1} - \frac{x^2-1}{x+1}$	1/2	
	d)	Prove that $\sin(A+B).\sin(A-B) = \cos^2 B - \cos^2 A$	04	
	Ans	$LHS = \sin(A+B).\sin(A-B)$		
		$= (\sin A.\cos B + \cos A.\sin B)(\sin A.\cos B - \cos A.\sin B)$	1	
		$= (\sin A.\cos B)^2 - (\cos A.\sin B)^2$	1	
		$= \sin^2 A \cos^2 B - \cos^2 A \sin^2 B$		

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
3.	d)	LHS = $(1-\cos^2 A)\cos^2 B - \cos^2 A(1-\cos^2 B)$	1
		$=\cos^2 B - \cos^2 B \cdot \cos^2 A - \cos^2 A + \cos^2 B \cdot \cos^2 A$	
		$=\cos^2 B - \cos^2 A$	1
		= RHS	
	e)	Prove that $\tan 70^{\circ} - \tan 50^{\circ} - \tan 20^{\circ} = \tan 70^{\circ} \cdot \tan 50^{\circ} \cdot \tan 20^{\circ}$	04
	Ans	consider $\tan 70^{\circ} = \tan \left(50^{\circ} + 20^{\circ} \right)$	1/2
		$\tan 70^{0} = \frac{\tan 50^{0} + \tan 20^{0}}{1 - \tan 50^{0} \cdot \tan 20^{0}}$	1
			1
		$\tan 70^{0} \left(1 - \tan 50^{0} \cdot \tan 20^{0}\right) = \tan 50^{0} + \tan 20^{0}$ $\tan 70^{0} - \tan 70^{0} \cdot \tan 50^{0} \cdot \tan 20^{0} = \tan 50^{0} + \tan 20^{0}$	
		$\tan 70^{\circ} - \tan 70^{\circ} \cdot \tan 20^{\circ} = \tan 30^{\circ} + \tan 20^{\circ}$ $\tan 70^{\circ} - \tan 50^{\circ} - \tan 20^{\circ} = \tan 70^{\circ} \cdot \tan 50^{\circ} \cdot \tan 20^{\circ}$	½ 1
	f)	Prove that $\tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right) = \cot^{-1}\left(\frac{9}{2}\right)$	04
	Ans	$LHS = \tan^{-1}\left(\frac{1}{7}\right) + \tan^{-1}\left(\frac{1}{13}\right)$	
		$= \tan^{-1} \left(\frac{\frac{1}{7} + \frac{1}{13}}{1 - \frac{1}{7} \cdot \frac{1}{13}} \right)$	1
		$= \tan^{-1} \left(\frac{20}{90} \right)$	
		$=\tan^{-1}\left(\frac{2}{9}\right)$	2
		$= \cot^{-1}\left(\frac{9}{2}\right) = RHS$	1
4.		Attempt any <u>FOUR</u> of the following:	16
	a)	Prove that $\cos 2A = 2\cos^2 A - 1$	04
	Ans	$LHS = \cos 2A$	
		$=\cos(A+A)$	1/2

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	a)	$LHS = \cos A \cdot \cos A - \sin A \cdot \sin A$	1
		$=\cos^2 A - \sin^2 A$	1/2
		$=\cos^2 A - \left(1 - \cos^2 A\right)$	1
		$= 2\cos^2 A - 1 = RHS$	1
	b)	If $\tan(x+y) = \frac{3}{4}$ and $\tan(x-y) = \frac{8}{15}$, show that $\tan 2x = \frac{77}{36}$	04
	Ans	LHS = $\tan 2x$	
		$= \tan \left[\left(x + y \right) + \left(x - y \right) \right]$	1
		$= \frac{\tan(x+y) + \tan(x-y)}{1 - \tan(x+y)\tan(x-y)}$	1
		$=\frac{\frac{3}{4} + \frac{8}{15}}{1 - \frac{3}{4} \times \frac{8}{15}}$	1
		$= \frac{77}{36}$ $= RHS$	1
	c)	In any $\triangle ABC$, prove that $\tan A + \tan B + \tan C = \tan A \cdot \tan B$	04
	Ans	In any $\triangle ABC$	
		$A + B + C = 180^{\circ} \text{ or } \pi$	
		$\therefore A + B = 180^{\circ} - C$	1
		$\therefore \tan\left(A+B\right) = \tan\left(180^{\circ} - C\right)$	1/2
		$\therefore \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} = -\tan C$	1
		$\therefore \tan A + \tan B = -\tan C \left(1 - \tan A \cdot \tan B \right)$	1/2
		$\therefore \tan A + \tan B = -\tan C + \tan A \cdot \tan B \cdot \tan C$	/2
		$\therefore \tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$	1

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	d)	Prove that $\frac{\cos 2A + 2\cos 4A + \cos 6A}{\cos A + 2\cos 3A + \cos 5A} = \cos A - \tan 3A \cdot \sin A$	04
	Ans	LHS = $\frac{\cos 2A + 2\cos 4A + \cos 6A}{\cos A + 2\cos 3A + \cos 5A}$ = $\frac{\cos 2A + \cos 6A + 2\cos 4A}{\cos A + \cos 5A + 2\cos 3A}$ $2\cos\left(\frac{2A + 6A}{\cos A}\right)\cos\left(\frac{2A - 6A}{\cos A}\right) + 2\cos 4A$	
		$= \frac{2 \cdot \cos\left(\frac{2A+6A}{2}\right) \cdot \cos\left(\frac{2A-6A}{2}\right) + 2\cos 4A}{2 \cdot \cos\left(\frac{A+5A}{2}\right) \cdot \cos\left(\frac{A-5A}{2}\right) + 2\cos 3A}$	1
		$= \frac{2\cos 4A \cdot \cos(-2A) + 2\cos 4A}{2\cos 3A \cdot \cos(-2A) + 2\cos 3A}$	1/2
		$= \frac{2\cos 4A \left[\cos(-2A) + 1\right]}{2\cos 3A \left[\cos(-2A) + 1\right]}$	
		$= \frac{\cos(3A+A)}{\cos 3A}$ $\cos 3A \cdot \cos A \sin 3A \cdot \sin A$	1
		$= \frac{\cos 3A \cdot \cos 3A}{\cos 3A} - \frac{\sin 3A \cdot \sin 7A}{\cos 3A}$ $= \cos A - \tan 3A \cdot \sin A = \text{RHS}$	1 1/2
	e) Ans	Prove that $\cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$ (without using calculator.) Let $\cos^{-1}\left(\frac{4}{5}\right) = A$	04
		$\therefore \cos A = \frac{4}{5}$ $\therefore \sin^2 A = 1 - \cos^2 A$	
		$=1 - \frac{16}{25} \\ = \frac{9}{25}$	
		$= \frac{9}{25}$ $\therefore \sin A = \frac{3}{5}$	1

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Q. No.	Sub Q.N.	Answers	Marking Scheme
4.	e)	$\cos^{-1}\left(\frac{12}{13}\right) = B$	
		$\therefore \cos B = \frac{12}{13}$	
		$\therefore \sin^2 B = 1 - \cos^2 B$	
		$=1-\frac{144}{169}$	
		$=\frac{25}{169}$	
		$\therefore \sin B = \frac{5}{13}$	1
		13 $\therefore \cos(A+B) = \cos A \cos B - \sin A \sin B$	
		$=\frac{412}{513} - \frac{3}{513} = \frac{5}{13}$	1
		$=\frac{48}{65} - \frac{15}{65}$	
		$\therefore \cos(A+B) = \frac{33}{65}$ $\therefore A+B = \cos^{-1}\left(\frac{33}{65}\right)$	1
		$\therefore \cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$	
		OR	
		Let $\cos^{-1}\left(\frac{4}{5}\right) = A$	
		$\therefore \cos A = \frac{4}{5}$ $\therefore \tan A = \frac{3}{4}$	
		$A = \tan^{-1} \left(\frac{3}{4}\right) $ 12	
		$\therefore \cos^{-1}\left(\frac{4}{5}\right) = \tan^{-1}\left(\frac{3}{4}\right)$	1

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Sub	ject Na	ame: Basic Mathematics	Model Answer	Subject Code:	1/10)4
Q. No.	Sub Q. N.		Answers	ı		Marking Scheme
4.	e)	$\cos^{-1}\left(\frac{12}{13}\right) = B$				
		$\therefore \cos B = \frac{12}{13}$ $\therefore \tan B = \frac{5}{12}$				
		$B = \tan^{-1}\left(\frac{5}{12}\right)$				1
		$\therefore \cos^{-1}\left(\frac{12}{13}\right) = \tan^{-1}\left(\frac{5}{12}\right)$ $L.H.S. = \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{5}{12}\right)$				1
		$= \tan^{-1} \left(\frac{\frac{3}{4} + \frac{5}{12}}{1 - \frac{3}{4} \frac{5}{12}} \right)$				
		$= \tan^{-1} \left(\frac{56}{33} \right)$				1
		Let $\tan^{-1}\left(\frac{56}{33}\right) = C$ ∴ $\tan C = \frac{56}{33}$	56 65			
		33 $\therefore \cos C = \frac{33}{65}$ $\therefore C = \cos^{-1}\left(\frac{33}{65}\right)$	33			
		$\therefore C = \cos^{-1}\left(\frac{33}{65}\right) \tag{33}$	`			1
		$\therefore \cos^{-1}\left(\frac{4}{5}\right) + \cos^{-1}\left(\frac{12}{13}\right) = \cos^{-1}\left(\frac{33}{65}\right)$) 			
	f)	Prove that $\tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right) = \frac{\pi}{4}$	$\frac{7}{4}$			04
	Ans	$LHS = \tan^{-1}\left(\frac{1}{2}\right) + \tan^{-1}\left(\frac{1}{3}\right)$				

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

	•	-	
Q. No.	Sub Q. N.	Answers	Marking Scheme
4.	f)	$= \tan^{-1} \left[\frac{\frac{1}{2} + \frac{1}{3}}{1 - \frac{1}{2} \times \frac{1}{3}} \right]$	1
		$= \tan^{-1} \left[\frac{\frac{5}{6}}{1 - \frac{1}{6}} \right]$	
		$=\tan^{-1}\left(1\right)$	2
		$=\frac{\pi}{4}$	1
5.		Attempt any <u>FOUR</u> of the following:	16
	a)	Prove that $\sin C + \sin D = 2\sin\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$	04
	Ans	We know that,	
		$\sin(A+B) + \sin(A-B) = 2\sin A\cos B (1)$	1
		Put $A + B = C$	
		A - B = D	
		$\therefore A = \frac{C+D}{2}$ and	1
		$B = \frac{C - D}{2}$	1
		\therefore (1) \Rightarrow	
		$\therefore \sin C + \sin D = 2\sin\left(\frac{C+D}{2}\right)\cos\left(\frac{C-D}{2}\right)$	1
	b)	Prove that $\frac{\sin x - \sin 5x + \sin 9x - \sin 13x}{\cos x - \cos 5x - \cos 9x + \cos 13x} = \cot 4x$	04
	Ans	$LHS = \frac{\sin x - \sin 5x + \sin 9x - \sin 13x}{\cos x - \cos 5x - \cos 9x + \cos 13x}$	

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Subject Name: Basic Mathematics

Model Answer

Subject Code: 17104

Q. No.	Sub Q. N.	Answers	Marking Scheme
5.	b)	LHS = $\frac{(\sin x + \sin 9x) - (\sin 5x + \sin 13x)}{(\cos x - \cos 9x) - (\cos 5x - \cos 13x)}$	
		$= \frac{2.\sin\left(\frac{x+9x}{2}\right).\cos\left(\frac{x-9x}{2}\right) - 2.\sin\left(\frac{5x+13x}{2}\right).\cos\left(\frac{5x-13x}{2}\right)}{2.\sin\left(\frac{x+9x}{2}\right).\sin\left(\frac{9x-x}{2}\right) - 2.\sin\left(\frac{5x+13x}{2}\right).\sin\left(\frac{13x-5x}{2}\right)}$	1
		$= \frac{\sin 5x \cdot \cos(-4x) - \sin 9x \cdot \cos(-4x)}{\sin 5x \cdot \sin 4x - \sin 9x \cdot \sin 4x}$	1
		$= \frac{\cos(-4x)[\sin 5x - \sin 9x]}{\sin 4x [\sin 5x - \sin 9x]}$	1
		$= \frac{\cos 4x}{\sin 4x}$ $= \cot 4x = RHS$	1
	c)	Prove that $\tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}(\frac{x+y}{1-xy})$ if $x > 0$, $y > 0$ and $xy < 1$.	04
	Ans	Let $\tan^{-1} x = A$ & $\tan^{-1} y = B$ $\therefore x = \tan A$ $\therefore y = \tan B$	1
		Consider	
		$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}$ $x + y$	
		$=\frac{3}{1-xy}$	1
		$\therefore A + B = \tan^{-1} \left[\frac{x + y}{1 - xy} \right]$	1
		$\therefore \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left[\frac{x+y}{1-xy}\right]$	1
	d)	Find the distance between two parallel line $3x - y + 7 = 0$ and $3x - y + 16 = 0$	04
	Ans	$L_1: 3x - y + 7 = 0 \& L_2: 3x - y + 16 = 0$ $\therefore c_1 = 7 \& c_2 = 16$	

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

•		1, 1	•
Q. No.	Sub Q. N.	Answers	Marking Scheme
5.	d)	$p = \left \frac{c_2 - c_1}{\sqrt{a^2 + b^2}} \right \text{OR} p = \left \frac{c_1 - c_2}{\sqrt{a^2 + b^2}} \right $ $= \left \frac{16 - 7}{\sqrt{3^2 + (-1)^2}} \right \qquad = \left \frac{7 - 16}{\sqrt{3^2 + (-1)^2}} \right $ $= \left \frac{9}{\sqrt{10}} \right \qquad = \left \frac{-9}{\sqrt{10}} \right $	2
		$=\frac{9}{\sqrt{10}}$ OR 2.846	2
	e)	Find the acute angle between the lines $3x - 4y = 420$ and $4x + 3y = 420$	04
	Ans	For $3x-4y = 420$ slope $m_1 = -\frac{a}{b} = -\frac{3}{-4} = \frac{3}{4}$ For $4x+3y=420$	1
		slope $m_2 = -\frac{a}{b} = -\frac{4}{3}$ $\tan \theta = \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $	1
		$= \left \frac{\frac{3}{4} - \left(\frac{4}{-3}\right)}{1 + \frac{3}{4} \times \left(\frac{4}{-3}\right)} \right $	1
		$= \infty$ $\therefore \theta = \tan^{-1}(\infty)$	1
		$\therefore \theta = \frac{\pi}{2} \text{ or } 90^{\circ}$	
	f)	Find the equation of a line passing through $(2,5)$ and the point of intersection of $x + y = 0$ and $2x - y = 9$.	04
	Ans	x + y = 0, $2x - y = 9$	

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Q. No.	Sub Q. N.	Answers	Marking Scheme
5.	f)	$\therefore x + y = 0$ $\underline{2x - y = 9}$ $\Rightarrow x = 3 \qquad \therefore y = -3$ $\therefore \text{ point of intersection } = (3, -3) = (x_1, y_1)$ and given point $= (2, 5) = (x_2, y_2)$ $\therefore \text{ Equation of line is } \frac{y - y_1}{y_2 - y_1} = \frac{x - x_1}{x_2 - x_1}$ $\therefore \frac{y - (-3)}{5 - (-3)} = \frac{x - 3}{2 - 3}$ $\therefore \frac{y + 3}{8} = \frac{x - 3}{-1}$	1 1
6.		$\therefore -1(y+3) = 8(x-3)$ $\therefore -y-3 = 8x-24$ $\therefore 8x+y=21$	1 16
	a) Ans	If m_1 and m_2 are the slope of two lines then prove that angle between two lines is $\theta = \tan^{-1} \left \frac{m_1 - m_2}{1 + m_1 m_2} \right $	04
		L_1 θ_2 $Let \ \theta_1 = \text{Angle of inclination of } L_1$ $\theta_2 = \text{Angle of inclination of } L_2$	1

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

	Sub	<u> </u>	Marking
Q. No.	Q. N.	Answers	Marking Scheme
6.	a)	\therefore Slope of L_1 is $m_1 = \tan \theta_1$	1/2
		Slope of L_2 is $m_2 = \tan \theta_2$	
		∴ from figure	
		$\theta = \theta_1 - \theta_2$	
		$\therefore \tan \theta = \tan (\theta_1 - \theta_2)$	1/2
			1
		$= \frac{\tan(\theta_1) - \tan(\theta_2)}{1 + \tan(\theta_1)\tan(\theta_2)}$	1
		$=\frac{m_1 - m_2}{1 + m_1 \cdot m_2}$	
		$\begin{array}{c} 1 + m_1 \cdot m_2 \\ \therefore \theta \text{ is acute} \end{array}$	
		$\therefore \tan \theta = \left \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right $	1/2
		$\therefore \theta = \tan^{-1} \left \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \right $	1/2
	b)	Find the equation of a line passing through the poing of intersection of lines	 04
		x-2y-5=0 and $x+3y=10$ and parallel to the line $3x+4y=0$.	04
	Ans	$x-2y=5 \times 3$	
		$x + 3y = 10 \times 2$	
		$\therefore 3x - 6y = 15$	
		+ 2x + 6y = 20	
		5x = 35	
		x = 7	1
		$\therefore 7 - 2y = 5$ $\therefore -2y = -2$	
		$\therefore y = 1$	1
		$\therefore Point of intersection = (7, 1)$	
	l .		

(Autonomous)

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

		7 2720										
Q. No.	Sub Q. N.	Answers										
6.	b)	Slope of the line $3x + 4y = 0$ is,										
		$m_1 = -\frac{a}{b} = -\frac{3}{4}$										
		. Slope of the required line is,										
		$m = m_1 = -\frac{3}{4}$										
		equation of line is ,										
		$y - y_1 = m(x - x_1)$										
		$y - 1 = -\frac{3}{4}(x - 7)$										
		3x + 4y - 25 = 0										
	c)	The runs scored by two batsman A and B in 5	5 one day matches are are given below.									
		A 48 50 39	46 37									
		B 50 52 60	55 53	04								
		Who is more consistent? Why?										
	Ans	For Batsman A										
		X_i $d_i = x_i - \overline{x}$	d_i^2									
		48 4	16									
		50 6	36									
		39 -5	25	1/2								
		46 2 4										
		37 -7 49										
		$\sum x_i = 220 \qquad \qquad \sum d_i^2 = 130$										
		$\therefore Mean, x = \frac{\sum x_i}{N} = \frac{220}{5} = 44$										
		$\therefore Mean, \vec{x} = \frac{\sum x_i}{N} = \frac{220}{5} = 44$ $\therefore S.D. = \sqrt{\frac{\sum d_i^2}{N}} = \sqrt{\frac{130}{5}} = 5.099$ OI	R	1/2								
		, 11										

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Sub	ject Nan	ne: Basic Mat	hematics	Model	Answer	Subject Code:	1710	04	
Q. No.	Sub Q. N.			A	nswers			Mark Sche	
6.	c)	For Batsmar	n A						
			X_i	x_i^2					
			48	2304					
			50	2500					
			39	1521				1/:	/ 2
			46	2116					
			37	1369					
			$\sum x_i = 220$	$\sum x_i^2 = 9810$					
		\therefore Mean, $x = \frac{1}{x}$	$=\frac{\sum x_i}{N} = \frac{220}{5} =$	44	•				
		$\therefore S.D. = \sqrt{-1}$	$= \frac{\sum x_i}{N} = \frac{220}{5} = \frac{\sum x_i^2}{N} - (\bar{x})^2 = \sqrt{\frac{\sum x_i^2}{N}} = \sqrt{\frac{1}{N}}$	$\sqrt{\frac{9810}{5} - 44^2} = 5$	5.099			1/:	/ 2
		For Batsmar	n B						
			X_i	$d_i = x_i - \overline{x}$	$d_i^{\ 2}$				
			50	-4	16				
			52	-2	4				
			60	6	36			1/2	2
			55	1	1				
			53	- 1	1				
			$\sum x_i = 270$		$\sum d_i^2 = 58$				
		\therefore Mean, $x = \frac{1}{x}$	$=\frac{\sum x_i}{N} = \frac{270}{5} =$	54					
		$\therefore S.D. = \sqrt{\frac{1}{2}}$	$\frac{\overline{\sum d_i^2}}{N} = \sqrt{\frac{58}{5}} =$	3.406				1/:	/ 2
					OR				
		For Batsman	n B						

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Subject Name: Basic Mathematics	Model Answer	Subject Code:	17104	
O Sub			N/I	nrl

6.	c)	$x_{i} x_{i}^{2}$ $50 2500$ $52 2704$ $60 3600$ $55 3025$ $53 2809$ $\sum x_{i} = 270 \sum x_{i}^{2} = 14638$ $\therefore Mean, \overline{x} = \frac{\sum x_{i}}{N} = \frac{270}{5} = 54$ $\therefore S.D. = \sqrt{\frac{\sum x_{i}^{2}}{N} - (\overline{x})^{2}} = \sqrt{\frac{14638}{5} - 54^{2}} = 3.406$	1/2
		$\therefore Mean, \bar{x} = \frac{\sum x_i}{N} = \frac{270}{5} = 54$ $\sum x^2 = 0$	
		$\therefore S.D. = \sqrt{\frac{2}{N}} - (x)^2 = \sqrt{\frac{14638}{5}} - 54^2 = 3.406$ For Batsman A $C.V.(A) = \frac{\sigma}{x} \times 100$	1/2
		$= \frac{5.099}{44} \times 100$ $= 11.589\%$ For Batsman B $C.V.(B) = \frac{\sigma}{=} \times 100$	1/2
		$= \frac{3.406}{54} \times 100$ $= 6.307\%$ $C.V.(B) < C.V.(A)$ $\therefore \text{ Batsman B is more consistent.}$	½ 1
	d)	Calculate mean and standard deviation of the following frequency distribution.	
		Class 0-10 10-20 20-30 30-40 40-50 Frequency 14 23 27 21 15	04

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

Subject Name: Basic Mathematics	Model Answer	Subject Code:	17104	
---------------------------------	---------------------	---------------	-------	--

	C1-									NA1 *		
Q. No.	Sub Q. N.					Answers				Marking Scheme		
6.	d)	Cl	ass	X_i	f_{i}	$x_i f_i$	x_i^2	$f_i x_i^2$				
	Ans	0-	10	5	14	70	25	350				
		10	-20	15	23	345	225	5175				
		20	-30	25	27	675	625	16875		2		
		30	-40	35	21	735	1225	25725				
		40	-50	45	15	675	2025	30375				
					100	2500		78500				
			Mean $\bar{x} = \frac{\sum f_i x_i}{N} = \frac{2500}{100} = 25$ S.D. $= \sigma = \sqrt{\frac{\sum f_i x_i^2}{N} - (\bar{x})^2}$									
		S.D. = $\sigma = \sqrt{\frac{\sum f_i x_i^2}{N} - (\bar{x})^2}$ = $\sqrt{\frac{78500}{100} - (25)^2}$ $\sigma = 12.649$ OR										
			Clas 0-10 10-2 20-3 30-4 40-5	0 5 0 15 0 25 0 35 0 45	14 - 23 - 27 21 15 100	$egin{array}{lll} d_i & f_i d_i \\ -2 & -28 \\ -1 & -23 \\ 0 & 0 \\ 1 & 21 \\ 2 & 30 \\ 00 \\ \end{array}$	$egin{array}{ccccc} d_i^2 & f_i a \\ 4 & 56 \\ 1 & 23 \\ 0 & 0 \\ 1 & 27 \\ 4 & 66 \\ & 16 \\ \hline \end{array}$	5 3 1		2		
		Mean = $\bar{x} = A + h \left(\frac{\sum f_i d_i}{N} \right) = 25 + 10 \times \left(\frac{0}{100} \right) = 25$										
			$S.D. = \sigma = \sqrt{\frac{\sum f_i d_i^2}{N} - \left(\frac{\sum f_i d_i}{N}\right)^2} \times h$									
		$=\sqrt{\frac{1}{1}}$	$\frac{60}{00} - \left(\frac{0}{10}\right)$	$\left(\frac{\sqrt{100}}{000}\right)^2 \times 1000$								
		=12.								1		

(Autonomous) (ISO/IEC - 27001 - 2013 Certified)

ject Nan	ne: Basic M	athema	atics	I	Model Ans	swer		Sul	oject Code:	171	04
Sub Q. N.		Answers									
6. e) Find the mean deviation from mean of the following distribution.											
	Maı	rks	0-10	10-20	20-30	30-4	0 40	0-50			04
	No. of st	tudent	s 5	8	15	16		06			
Ans	Marks	x_i	f_i	$f_i x_i$	$\frac{-}{x_{\cdot}-x}$	x - x	$f _{x-x}$				
	0-10	5			-22	$\frac{ x_i-x_i }{22}$	$\frac{J_i x_i - x}{110}$				
	10-20	15	8	120	-12	12	96				
	20-30	25			-2	2	30				2
								_			
	40-50	45			18	18		_			
	Σ	$\int f_i x_i$					1, 2				
		$\sum f_i$									
	$=\frac{13}{4}$	350 50									
	=27	7									1
	$M.D. = \sum_{i=1}^{n}$	$\int f_i x_i $	x								
		_									
	$=\frac{1}{50}$	0									
	=9.4	44 - – – – -						. — — — -			1
f)	Find varia	nce and	d the coe	fficient of	variance fo	or the fol	llowing di	stributio	on.		
	Class-In	terval	10-20	20-30	30-40	40)-50	50-60	60-70		
	Freque	ency	4	6	10	-	18	9	3		04
									_		
	Sub Q. N. e)	Sub Q. N. e) Find the man Man No. of standard No. of standar	Sub Q. N. e) Find the mean definition of students Ans Marks No. of students Ans Marks No. of students 20-30 25 30-40 35 40-50 45 Mean = $\frac{\sum f_i x_i}{\sum f_i}$ = $\frac{1350}{50}$ = 27 M.D. = $\frac{\sum f_i x_i }{\sum f_i}$ = $\frac{472}{50}$ = 9.44	Q. N. e) Find the mean deviation from Marks 0-10 No. of students 5 Marks x_i f_i 0-10 5 5 10-20 15 8 3 20-30 25 15 3 30-40 35 16 3 40-50 45 06 3 Mean = $\frac{\sum f_i x_i}{\sum f_i}$ = $\frac{1350}{50}$ = 27 M.D. = $\frac{\sum f_i x_i - \bar{x} }{\sum f_i}$ = $\frac{472}{50}$ = 9.44 Find variance and the coefficients of the state of t	Sub Q. N. e) Find the mean deviation from mean $\frac{\text{Marks}}{\text{Marks}} = \frac{0-10}{10-20} = \frac{10-20}{10-20}$ No. of students $\frac{\text{Marks}}{\text{No. of students}} = \frac{10-20}{10-20} = \frac{15}{10-20} = \frac{1350}{10-20} = 135$	Sub Q. N. e) Find the mean deviation from mean of the following forms are substituted by the f	Sub Q. N. Find the mean deviation from mean of the following di Marks No. of students Marks No. of students Marks No. of students No. of studen	Sub Q. N. Find the mean deviation from mean of the following distribution Marks	Sub Q. N. Find the mean deviation from mean of the following distribution.	Sub Q. N. Find the mean deviation from mean of the following distribution.	Sub Q. N. Find the mean deviation from mean of the following distribution. Marks 0-10 10-20 20-30 30-40 40-50 No. of students 5 8 15 16 06 Ans Marks x_i f_i f_ix_i $x_i - \overline{x}$ $x_i - \overline{x}$ $f_i x_i - \overline{x} $ $f_i $

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Q. No.	Sub Q. N.				Answe	rs			Marking Scheme		
6.	f)										
			1								
	Ans	Class	x_i	f_i	$f_i x_i$	x_i^2	$f_i x_i^2$				
		10-20	15	4	60	225	900				
		20-30	25	6	150	625	3750				
		30-40	35	10	350	1225	12250		2		
		40-50	45	18	810	2025	36450				
		50-60	55	9	495	3025	27225				
		60-70	65	3	195	4225	12675				
				50	2060		93250				
		mean $\bar{x} = \frac{\sum f_i x}{N}$ S.D. $\sigma = \sqrt{\frac{\sum f_i x}{N}}$ $= \sqrt{\frac{93250}{50}}$ $= \sqrt{1865}$ $= \sqrt{167.50}$	$\overline{x} = 41.2$ $\overline{x_i^2 - (\overline{x})^2}$ $\overline{x_i^2 - (41.2)^2}$ $\overline{x_i^2 - (41.2)^2}$ $\overline{x_i^2 - (41.2)^2}$	_							
		$\sigma = 12.94$									
		Variance = σ^2 =		=167.44					1/2		
		C.V. = $\frac{\text{S.D.}}{\text{Mean}} \times 1$ = $\frac{12.94}{41.2} \times 10$							½		
		OR									

(ISO/IEC - 27001 - 2013 Certified)

SUMMER – 18 EXAMINATION

Q. No.	Sub Q. N.	Answers	Marking Scheme						
6.	f)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2						
		Mean = $\bar{x} = A + h \left(\frac{\sum f_i d_i}{N}\right) = 35 + 10 \times \left(\frac{31}{50}\right) = 41.2$ S.D. = $\sigma = \sqrt{\frac{\sum f_i d_i^2}{N} - \left(\frac{\sum f_i d_i}{N}\right)^2} \times h$ = $\sqrt{\frac{103}{50} - \left(\frac{31}{50}\right)^2} \times 10$ = 12.94 Variance = $\sigma^2 = (12.94)^2 = 167.44$ C.V. = $\frac{\text{S.D.}}{\text{Mean}} \times 100 = \frac{12.94}{41.2} \times 100 = 31.41$							
	Important Note In the solution of the question paper, wherever possible all the possible alternative								
		methods of solution are given for the sake of convenience. Still student may follow a method other than the given herein. In such case, first see whether the method falls within the scope of the curriculum, and then only give appropriate marks in accordance with the scheme of marking.	c						