ENM 360: Introduction to Data-driven Modeling

Lecture #3: Function approximation

Example #1:Atmospheric science

	δ_K			
Latitude	K = 0.67	K = 1.5	K = 2.0	K = 3.0
65	-3.1	3.52	6.05	9.3
55	-3.22	3.62	6.02	9.3
45	-3.3	3.65	5.92	9.17
35	-3.32	3.52	5.7	8.82
25	-3.17	3.47	5.3	8.1
15	-3.07	3.25	5.02	7.52
5	-3.02	3.15	4.95	7.3
- 5	-3.02	3.15	4.97	7.35
-15	-3.12	3.2	5.07	7.62
-25	-3.2	3.27	5.35	8.22
-35	-3.35	3.52	5.62	8.8
- 45	-3.37	3.7	5.95	9.25
-55	-3.25	3.7	6.1	9.5

Table 3.1. Variation of the average yearly temperature on the Earth for four different values of the concentration K of carbon acid at different latitudes

Example #2: Finance

Fig. 3.1. Price variation of a stock over two years

Example #3: Biomechanics

Fig. 3.2. A schematic representation of an intervertebral disc

test	stress σ	stress ϵ	test	stress σ	stress ϵ
1	0.00	0.00	5	0.31	0.23
2	0.06	0.08	6	0.47	0.25
3	0.14	0.14	7	0.60	0.28
4	0.25	0.20	8	0.70	0.29

Table 3.2. Values of the deformation for different values of a stress applied on an intervertebral disc

Local approximation with Taylor series

```
1 #!/usr/bin/env python3
2 # -*- coding: utf-8 -*-
 4 Created on Tue Aug 28 12:27:37 2018
6 @author: paris
9 import autograd.numpy as np
10 from autograd import grad
11 from scipy.special import factorial
12 import matplotlib.pyplot as plt
14 if __name__ == '__main__':
15
      def f(x):
16
17
           return np.sin(x) + np.cos(x)
18
      def TaylorSeries(f, x, x0, n = 2):
19
          T = f(x0)*np.ones like(x)
20
          grad f = grad(f)
22
          for i in range(0, n):
23
              T += grad_f(x0)*(x-x0)**(i+1) / factorial(i+1)
               grad_f = grad(grad_f)
24
25
           return T
26
27
28
      N = 100
      x = np.linspace(-4.0, 4.0, N)
      y = f(x)
30
31
32
      x0 = 0.0
33
      n = [0, 1, 5, 10]
34
35
      plt.figure(1)
      plt.plot(x, y, 'k-', label = 'f')
36
      for i in range(0, len(n)):
37
          T = TaylorSeries(f, x, x0, n[i])
38
           plt.plot(x, T, '--', label = '$T_{%d}$' % (n[i]))
39
40
      plt.xlabel('$x$')
      plt.ylabel('$y$')
41
      plt.legend()
```


$$T_n(x) := \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$

Interpolation with Lagrange polynomials

$$f(x) = \sum_{k=1}^{n} y_k \phi_k(x), \quad \phi_k(x) = \prod_{\substack{0 \le k \le n \\ k \ne j}} \frac{x - x_j}{x_k - x_j}$$

This image shows, for four points ((-9, 5), (-4, 2), (-1, -2), (7, 9)), the (cubic) interpolation polynomial L(x) (dashed, black), which is the sum of the scaled basis polynomials $y_0 \ell_0(x)$, $y_1 \ell_1(x)$, $y_2 \ell_2(x)$ and $y_3 \ell_3(x)$. The interpolation polynomial passes through all four control points, and each scaled basis polynomial passes through its respective control point and is 0 where x corresponds to the other three control points.

Runge's phenomenon

Fig. 3.6. Two examples of Runge's phenomenon: to the left, Π_{12} computed for the data of Table 3.1, column K = 0.67; to the right, $\Pi_{12}f$ (solid line) computed on 13 equispaced nodes for the function $f(x) = 1/(1+x^2)$ (dashed line)

Interpolation with trigonometric polynomials

Fig. 3.9. The effects of aliasing: comparison between the function $f(x) = \sin(x) + \sin(5x)$ (solid line) and its trigonometric interpolant (3.11) with M = 3 (dashed line)

Nyquist-Shannon sampling theorem

Numerical differentiation with finite differences

$$\mathbf{A} = \begin{bmatrix} -2 & 1 & & & & & \\ 1 & -2 & 1 & & & & \\ & 1 & -2 & 1 & & & \\ & & 1 & -2 & 1 & & \\ & & & 1 & -2 & 1 & \\ & & & \ddots & \ddots & \ddots \\ & & & & 1 & -2 \end{bmatrix}$$

Central difference stencil for second derivative approximation in 1D

Central difference stencil for second derivative approximation in 2D

Numerical integration: The midpoint rule

Fig. 4.3. The composite midpoint formula (left); the midpoint formula (right)

$$I_{mp}^{c}(f) = H \sum_{k=1}^{M} f(\bar{x}_k)$$

$$I_{mp}(f) = (b-a)f[(a+b)/2]$$

Numerical integration: The trapezoidal rule

Fig. 4.4. Composite trapezoidal formula (left); trapezoidal formula (right)

$$I_t^c(f) = \frac{H}{2} \sum_{k=1}^{M} [f(x_k) + f(x_{k-1})]$$

$$= \frac{H}{2} [f(a) + f(b)] + H \sum_{k=1}^{M-1} f(x_k)$$

$$I_t(f) = \frac{b-a}{2} [f(a) + f(b)]$$

Numerical integration: Simpson's rule

$$I_s(f) = \frac{b-a}{6} \left[f(a) + 4f((a+b)/2) + f(b) \right]$$

Simpson's formula

$$I_s^c(f) = \frac{H}{6} \sum_{k=1}^{M} \left[f(x_{k-1}) + 4f(\bar{x}_k) + f(x_k) \right]$$

The composite Simpson's rule

Gauss-Legendre quadrature

$$I_s(f) = \sum_{j=1}^n w_j f(x_j)$$
 w_j weights x_j nodes

$\underline{}$	x_j	w_{j}
1	$\{\pm 1/\sqrt{3}\}$	{1}
2	$\left\{\pm\sqrt{15}/5,0\right\}$	$\{5/9, 8/9\}$
3	$\{\pm (1/35)\sqrt{525 - 70\sqrt{30}},$	$\{(1/36)(18+\sqrt{30}),$
	$\pm (1/35)\sqrt{525+70\sqrt{30}}$	$(1/36)(18 - \sqrt{30})$
4	$\left\{0, \pm (1/21)\sqrt{245 - 14\sqrt{70}}\right\}$	$\{128/225, (1/900)(322+13\sqrt{70})$
	$\pm (1/21)\sqrt{245 + 14\sqrt{70}}$	$(1/900)(322 - 13\sqrt{70})$

Table 4.1. Nodes and weights for some quadrature formulae of Gauss-Legendre on the interval (-1,1). Weights corresponding to symmetric couples of nodes are reported only once