Assignment 1, CSC-370, Daniel German

Louis Kedziora, V00820695, September 13th, 2018

Q1(3.2.2)

```
i)
FDs: A \rightarrow D, B \rightarrow C, B \rightarrow D
b)
\{A\}
c)
{A,B},{A,C},{A,D},{A,B,C},{A,B,D},{A,C,D},{A,B,C,D}
ii)
FDs: AB \rightarrow C, BC \rightarrow D, CD \rightarrow A, AD \rightarrow B
b)
\{AB\}, \{BC\}, \{CD\}, \{AD\}
\{ABCD\}, \{ABC\}, \{ABD\}, \{ACD\}, \{BCD\}
iii)
FDs: A \rightarrow B, B \rightarrow C, C \rightarrow D, D \rightarrow A
b)
\{A\},\{B\},\{C\},\{D\}
c)
{AB},{AC},{AD},{BC},{BD},{CD},{ABC},{ACD},{ABD},{BCD},{ABCD}
```

Q2(3.2.4)

a)

R(A,B,C) FDs: A o B, B o C

The closure of $\{B\}^+=BC$, therefore given $A\to B$ does not imply $B\to A$ **Example:** A= Monkeys, B= Mammals, C= Animals.

Monkeys imply mammals, and mammals imply animals but mammals do not imply monkeys.

b)

$$R(A,B,C)$$
 FDs: $AB \to C, A \to C, C \to D, B \to C$ The closure of $\{B\}^+ = B$, therefore given $AB \to C$ and $A \to C$, does not imply $B \to C$ **Example:** $A = \text{SIN}$ number, $B = \text{Last Name}$, $C = \text{First Name}$.

• A SIN number and a last name or just a SIN number will give me a first name, but a last name on its own does not imply a first name.

Q3(3.2.10)

a)

$$R(A,B,C,D,E)$$
 to $S(A,B,C)$ FDs in R : $AB o DE,C o E,D o C,E o A$ $\{A\}^+=\{A\}$ $\{B\}^+=\{B\}$ $\{C\}^+=\{C,E,A\}$ add $C o A$ to R_1 $\{AB\}^+=\{A,B,D,E\}$ add $AB o C$ to R_1 $\{AC\}^+=\{A,C,E\}$ $\{BC\}^+=\{B,C,E\}$

b)

$$R(A,B,C,D,E)$$
 to $S(A,B,C)$ FDs in R : $A \to D,BD \to E,AC \to E,DE \to B$ $\{A\}^+=\{A,D\}$ $\{B\}^+=\{B\}$ $\{C\}^+=\{C\}$ $\{AB\}^+=\{A,B,D,E\}$ $\{AC\}^+=\{A,C,E,D,B\}$ add $AC \to B$ to R_1 $\{BC\}^+=\{AC \to B\}$

c)

```
R(A,B,C,D,E) to S(A,B,C) FDs in R:AB	o D,AC	o E,BC	o D,D	o A,E	o B \{A\}^+=\{A\} \{B\}^+=\{B\} \{C\}^+=\{C\} \{AB\}^+=\{A,B,D\} \{AC\}^+=\{A,C,E,B\} add AC	o B to R_1 \{BC\}^+=\{AC	o B,BC	o A\}
```

Q4(3.3.1)

a)

```
R(A,B,C,D) \text{ with FDs } AB \to C,C \to D,D \to A \{A\}^+ = \{A\} \{B\}^+ = \{B\} \{C\}^+ = \{C,D,A\} \{D\}^+ = \{D,A\} \{AB\}^+ = \{A,B,C,D\} \text{ Candidate Key} \{BC\}^+ = \{A,B,C,D\} \text{ Candidate Key} \{BD\}^+ = \{A,B,C,D\} \text{ Candidate Key} \{AC\}^+ = \{A,D,C\} \{AD\}^+ = \{D,A\} \{DC\}^+ = \{D,A,C\} i) The FD C \to D is a violation because C is not a Super Key. ii) (ABC)(CD)
```

b)

$$R(A,B,C,D)$$
 with FDs $B \to C, B \to D$ $\{A\}^+=\{A\}$ $\{B\}^+=\{B,C,D\}$ $\{C\}^+=\{C\}$ $\{D\}^+=\{D\}$ $\{AB\}^+=\{A,B,C,D\}$ Candidate Key $\{BC\}^+=\{B,C,D\}$ $\{BD\}^+=\{B,D,C\}$

$$\{AC\}^+ = \{A,C\}$$

$$\{AD\}^+ = \{A,D\}$$

$$\{DC\}^+ = \{D,C\}$$
 The FR P . C is a violation by

i) The FD B
ightarrow C is a violation because B is not a Super Key.

ii) (BCD)(AB)

ii)(ABCD)

c)

$$R(A,B,C,D) \text{ with FDs } AB \to C, BC \to D, CD \to A, AD \to B \\ \{A\}^+ = \{A\} \\ \{B\}^+ = \{B\} \\ \{C\}^+ = \{C\} \\ \{D\}^+ = \{D\} \\ \{AB\}^+ = \{A,B,C,D\} \text{ Candidate Key} \\ \{BC\}^+ = \{B,C,D,A\} \text{ Candidate Key} \\ \{BD\}^+ = \{B,D\} \\ \{AC\}^+ = \{A,C\} \\ \{AD\}^+ = \{A,D,B,C\} \text{ Candidate Key} \\ \{DC\}^+ = \{D,C,A,B\} \text{ Candidate Key} \\ \{DC\}^+ = \{D,C,B,B\} \text{ Candidate Key} \\ \{DC\}^+ = \{D,B,B\} \text{ Cand$$