Predicting Repaid Loans

Ryan, Casey, Rachel

The Data

- 307,511 rows
- 122 columns
- Target
 - 1: Client had difficulties with loan payments
 - 0: No difficulties with loan payments

Data Cleaning

Null Values

- 62 columns with greater than 1000 null values
- Remaining rows with null values dropped
- Left with 306,562 rows, 60 columns

Target column

- o 0's 281,810
- o 1's 24,752
- Incredibly imbalanced

Variable Selection - Domain Knowledge

17 Features:

- AMT_GOODS_PRICE,
 NAME_CONTRACT_TYPE,
 CNT_CHILDREN, etc.
- Left gender variable out
- A lot of variables seemed to have nothing to do with defaulting

Data Formatting

- One-hot encoding
 - 38 features
- Standard Scaling
- AMT_GOODS_PRICE variable
 - AMT_GOODS_PRICE / AMT_CREDIT

Variable Selection Options:

Stepwise Variable Selection:

Doesn't check all combinations

Future added variables could invalidate previous ones

Variable Selection - L1 Regularization

$$J(lpha,eta) = rac{1}{n} \sum_{i=1}^n -y_i (lpha + ec{x}_i ec{eta}) + log(1 + e^{lpha + ec{x}_i ec{eta}}) + \lambda \sum_{j=1}^p eta_j^2$$

- L2 steps sizes decrease as we converge
- L1 steps sizes constant
- Some coefficients go to 0
- Logistic Regression w/ hyperparameter tuning

Hyperparameter Tuning

- RandomSearch: isn't exhaustive
- GridSearch: searching all combinations is inefficient
- Both don't learn from past trials
- Bayesian Optimization (TPE) uses past trials to determine new values to try

Optimization History Plot

Optimization History Plot

Best Class Weights Model

Final lambda = 0.02775159018992187 Final class weight = 7.839529551742979.

	Perceptron	Logistic Regression	
F1 Score	0.2408	.2413	
Accuracy	0.7884	.7968	

Decision Boundary Plots

- Blue Perceptron
- Orange Logistic Regression
- SVM failed a lot
- Multiple different variables tried
- Perceptron and Logistic Regression very similar

Decision Boundary plots

Blue - Perceptron

Orange - Logistic Regression

Green - SVM

Own Implementations

Didn't add class weights to our implementations

Used sub-sampling with balanced target labels

Trained on sub-sample then predicted on entire dataset

Model Comparison

- Cross-validation F1 Scores when trained on sub-sample of data with balanced target labels
- Calculate F1 scores after predicting on entire data

Final Model

- Perceptron
 - o 16 features
 - Lambda = 0.108

	Logistic	SVM	Perceptron
Accuracy	0.755	0.751	0.790
F1 Score	0.397	0.393	0.435

```
(-5.786649851087536e-17,
array([-0.00076532, -0.00335159, 0.00281297, -0.00329937, 0.11590957,
-0.605524 , -0.00666676, -0.00420152, -0.00246973, -0.09627809,
-0.00184908, -0.05588842, 0.01078155, 0.00664245, -0.00429602,
0.02765359]))
```

Ethical Considerations

- Other columns that could be excluded like unemployed, because it is unfair
- Excluded gender column
- We wanted to exclude gender from our model because we didn't want our model to discriminate against the basis of gender
 - But maybe there are inherently different practices (though unethical) that incorporate gender to make predictions?
- We could have also excluded unemployment and other variables for the same reason
 - Though unemployment

Reflection

- We could've used domain knowledge from a real domain expert
- Despite the unbalanced data, we dealt with it the best we could using class weights or balanced sub-sampling
- Our F1 scores are too low to recommend usage of these models