Make your own errors

Ernesto Carrella

June 21, 2018

The Setup

- You have a simulation model
- You want to tune parameters to fit data
- Likelihoods are intractable

Current Solution

- Summarise data and simulation state space: S
- **Compute** some distance function given model parameters θ :

$$(S - S(\theta))^T W(S - S(\theta))$$

Minimize it!

Current Problems:

$$(S - S(\theta))^T W(S - S(\theta))$$

- ► How to choose summary statistics ?
- ► How to weigh the distance ?
- ► How to minimize ?

Turn your minimization into a regression

- 1. Repeatedly run the model each time supplying it a random vector $\hat{\theta}$
- 2. Collect for each simulation its statistics $S(\hat{\theta})$
- 3. Run K separate regressions for each θ against all summary statistics on the data-set just produced:

$$\begin{cases} \theta_{1} = r_{1}(S_{1}, S_{2}, \dots, S_{M}) \\ \theta_{2} = r_{2}(S_{1}, S_{2}, \dots, S_{M}) \\ \vdots \\ \theta_{n} = r_{n}(S_{1}, S_{2}, \dots, S_{M}) \end{cases}$$

4. Plug in the "real" summary statistics S^* in each regression to get the "real" parameters θ^*

Secret ingredient

▶ Use a regularized regression and a large set of candidate *S*. Let the regression choose them.

Works for model selection too

- 1. Repeatedly run each model
- 2. Collect for each simulation its generated summary statistics $S(m_i)$
- 3. Build a classifier predicting the model from summary statistics and train it on the data-set just produced:

$$i \sim g(S_1, S_2, \ldots, S_M)$$

4. Plug in "real" summary statistics S^* in the classifier to predict which model generated it

The literature review slide

- Reviews: Hartig et al. (2011); Grazzini and Richiardi (2015)
- ► Indirect Inference Zhao (2010)
- ➤ Selection and Weighing: Liao (2013), Altonji and Segal (1996), Badham et al. (2017)
- Optimization:
 - Usual suspects (Heppenstall, Evans, and Birkin (2007))
 - ▶ BACCO: Kennedy and O'Hagan (2001); Salle and Yıldızoğlu (2014); Parry et al. (2013); Ciampaglia (2013)
 - ▶ ABC: Beaumont (2010); Grazzini, Richiardi, and Tsionas (2017); Drovandi, Pettitt, and Faddy (2011); Zhang et al. (n.d.)
- ► "Regression-based methods": Blum and Francois (2010); Blum et al. (2013); Beaumont, Zhang, and Balding (2002)

Who needs OLS anyway?

- ▶ There are 10 summary statistics $(S_0, ..., S_9)$
- ▶ Propose the model $S_i = \beta i + \epsilon$ where $\epsilon \sim \mathcal{N}(0,1)$.
- Assuming that the model is correct, find β given (S_0, \ldots, S_9)
 - ▶ Train regression $\beta = \text{Intercept} + \sum b_i S_i$

Compare to ABC

Compare to SMD

Regression is informative

▶ Train regression $\beta = \text{Intercept} + \sum b_i S_i$

Term	Estimate
(Intercept)	0.0279508
b_2	0.0043900
<i>b</i> ₃	0.0110419
<i>b</i> ₄	0.0125185
b_5	0.0156443
b_6	0.0172918
<i>b</i> ₇	0.0214022
<i>b</i> ₈	0.0221615
<i>b</i> ₉	0.0269217

Broken Lines

- ▶ There are 10 summary statistics $(S_0, ..., S_9)$
- Propose the model

$$S_i = \begin{cases} \epsilon & i < 5 \\ \beta i + \epsilon & i \ge 5 \end{cases}$$

- ▶ Assuming that the model is correct, find β given (S_0, \ldots, S_9) .
 - ► Train regression $\beta = \text{Intercept} + \sum b_i S_i$

Ignore useless coefficients

Term	Estimate
(Intercept)	0.0313019
b_5	0.0195684
b_6	0.0199352
<i>b</i> ₇	0.0237299
b_8	0.0263909
<i>b</i> ₉	0.0280121

Compare to ABC

Compare to SMD

Broken or not broken?

- ▶ There are 10 summary statistics $(S_0, ..., S_9)$
- ► Were they generated from the straight line model or broken line model?

Look only at what is important

Term	Estimate
(Intercept)	-9.6861570
b_1	0.1729165
b_2	1.1348468
b_3	1.4334659
<i>b</i> ₄	1.9689561

Model Selection Methods

Example 2: RBC Method

- ▶ Basic RBC model, 6 parameters: $\beta, \gamma, \eta, \mu, \phi, \sigma$
- Implemented in R (Klima, Podemski, and Retkiewicz-Wijtiwiak 2018)
- ► Each run, I observe 150 quarters
- ► Can we find the parameters by looking at:
 - 1. t = -5, ..., +5 cross-correlation matrix of Y and r, I, C, L
 - 2. the lower-triangular covariance matrix of Y, r, I, C, L.
 - And all the squares, and all the pair-wise products (2486 summary statistics)

Out of sample prediction

Easy to diagnose

Variable	Variable Bounds	Average Bias	Average RMSE	Predictivity
$\overline{\beta}$	[0.891,0.999]	0.0003105	0.0000351	0.963567
δ	[0.225,0.275]	-0.0000435	0.0000010	0.4896138
η	[1.8,2.2]	-0.0009048	0.0066570	0.4868083
μ	[0.27,0.33]	0.0001420	0.0000761	0.7462549
σ	[0.01,0.03]	-0.0000385	0.0000071	0.7928857
ϕ	[0.855,0.999]	-0.0001569	0.0001229	0.9249848

RBC - Other summary statistics

- ▶ Same RBC model, 6 parameters: $\beta, \gamma, \eta, \mu, \phi, \sigma$
- ▶ Implemented in R (Klima, Podemski, and Retkiewicz-Wijtiwiak 2018)
- Can we find the parameters by looking at (40 summary statistics):
 - 1. Pair-wise VAR-1 fits of Y on r, I, C, L.
 - 2. the lower-triangular covariance matrix of Y, r, I, C, L.
 - 3. Linear regression Y on r, C, L
 - 4. AR(5) parameters of Y
 - And all the squares, and all the pair-wise products (2486 summary statistics)

Better fit

Easy to diagnose

β	[0.891,0.999]	0.0000144	0.0000023	0.9975823
δ	[0.225,0.275]	-0.0000311	0.0000004	0.8219723
η	[1.8,2.2]	0.0000300	0.0012209	0.9067242
μ	[0.27,0.33]	-0.0000061	0.0000410	0.8612406
σ	[0.01,0.03]	-0.0000604	0.0000060	0.8121216
ϕ	[0.855,0.999]	0.0002949	0.0000215	0.9878289

Variable Variable Bounds Average Bias Average RMSE Predictivity

Conclusion

- Simple way to parametrise model
- ► We know regressions
 - ► No new knowledge required
 - Easy to diagnose
- Ask me for a draft paper

Bibliography

Altonji, Joseph G., and Lewis M. Segal. 1996. "Small-Sample Bias in GMM Estimation of Covariance Structures." *Journal of Business & Economic Statistics* 14 (3). Taylor & Francis, Ltd.American Statistical Association:353. https://doi.org/10.2307/1392447.

Badham, Jennifer, Chipp Jansen, Nigel Shardlow, and Thomas French. 2017. "Calibrating with Multiple Criteria: A Demonstration of Dominance." *Journal of Artificial Societies and Social Simulation* 20 (2). JASSS:11. https://doi.org/10.18564/jasss.3212.

Beaumont, Mark A. 2010. "Approximate Bayesian Computation in Evolution and Ecology." *Annual Review of Ecology, Evolution, and Systematics* 41 (1):379–406. https://doi.org/10.1146/annurev-ecolsys-102209-144621.

Beaumont, Mark A, Wenyang Zhang, and David J Balding. 2002. "Approximate Bayesian computation in population genetics." *Genetics* 162 (4):2025–35. https://doi.org/Genetics December 1, 2002 vol. 162 no. 4 2025-2035.

Blum, M G B, M A Nunes, D Prangle, and S A Sisson. 2013. "A comparative review of dimension reduction methods in approximate Bayesian computation." *Statistical Science* 28 (2):189–208. https://doi.org/10.1214/12-STS406.

Blum, Michael G B, and Olivier Francois. 2010. "Non-linear regression models for Approximate Bayesian Computation." *Statistics and Computing* 20 (1):63–73. https://doi.org/10.1007/s11222-009-9116-0.

Ciampaglia, Giovanni Luca. 2013. "A framework for the calibration of social simulation models." *Advances in Complex Systems* 16 (04n05). World Scientific