Acids & Bases - 1. - Outcomes

1. Write ionic equations, and give observations for

- a) <u>acid</u> reacting with
- i) metal hydroxide
- ii) metal oxide
- iii) carbonate
- iv) hydrogencarbonate
- v) sulfite
- vi) sulfide
- vii) reactive metals
- viii) ammonia
- b) metal <u>hydroxide</u> reacting with i) amphoteric metals
 - ii) amphoteric metal ions
 - iii) amphoteric oxides
 - iv) amphoteric hydroxides
 - v) ammonium ions

2. Theories of acids & bases

- a) Use the Arrhenius acid-base model to define an acid and a base. Use equations to support definition.
- b) Use the Bronsted-Lowry acid-base model to define an acid and a base. Use equations to support definition
- c) Identify conjugate acid/base pairs in a reaction.
- d) Identify in chemical equations the reactants which are acting as acids or bases.

3. Strong and weak acids & bases

- a) Define strong and weak acids and bases, in terms of equilibrium concepts.
- b) Identify examples of acids and bases as strong or weak.
- c) Explain and identify concentrated and dilute acid and base solutions.
- d) Define polyprotic acids.
- e) Define amphoteric metals, oxides and hydroxides. Support definition with equations.

4. [H⁺], [OH⁻] and pH

- a) Explain the existence of H⁺ and OH⁻ in water.
- b) Define the ionisation constant for water.
- c) Calculate the [H⁺] and [OH⁻] in
- i) pure water
- ii) a solution of a strong acid or a strong base
- iii) a mixture of a strong acid and a strong base

- d) Define pH
- e) Explain the pH values of neutral, acidic and basic solutions
- d) Calculate the pH of i) pure water
 - ii) a solution of a strong acid or a strong base
 - iii) a mixture of a strong acid and a strong base
- e) Given the pH of a solution, calculate the [H⁺] and [OH⁻].

5. Salts

- a) Describe the formation of salts by neutralisation reactions between acids and bases.
- b) Distinguish between dissociation and hydrolysis processes.
- c) Predict and explain the acidic, basic or neutral nature of aqueous solutions of salts.

6. Periodic trends in acid & base properties.

- a) Describe the trend in acidic and basic properties of the oxides and the hydroxides across the third row of the Periodic table. Give equations to support description
- b) Describe the trend in acidic and basic properties of the oxides and the hydroxides down a group of the Periodic table.

Acids & Bases - 1. Class Worksheet

1. Reactions of Acids

a)	Background	lll
aı	Backoronno	KUUW/IEUOE.

i) Give the formulae of the following:

i) Give the formulae of the following	5·					
hydrochloric acid	sulfuric acid	nitric acid				
acetic acid	phosphoric acid	hydroxide ion				
hydrobromic acid	hydroiodic acid	oxide ion				
carbonate ion	hydrogencarbonate ion	sulfide ion				
sulfite ion	carbon dioxide	hydrogen sulfide				
sulfur dioxide	hydrogen gas	magnesium				
zinc	calcium	chloride ion				
bromide ion	sulfate ion	acetate ion				
nitrate ion	hydrogen ion	sodium ion				
calcium ion	potassium ion	magnesium ion				
ammonia	ammonium ion					
ii) Complete the following general re	actions:					
acid + hydroxide →	+					
acid + oxide →	+					
acid + carbonate →	+ +					
acid + hydrogencarbonate →	acid + hydrogencarbonate → + +					
acid + sulfite →	acid + sulfite → + +					
acid + sulfide →	+					
acid + 'active' metal →	+					
acid + ammonia \rightarrow						
iii) Ionic equation 'rules'						
acids written	as separated ions					
e.g. hydrochloric acid is wri	tten as					
nitric acid is written as	nitric acid is written as					
sulfur acid is written as	sulfur acid is written as					
acids written	as neutral molecules e.g. acetic acid is writt	en as				
- solid ionic compounds written a	s formulae					
e.g. solid magnesium oxide	e.g. solid magnesium oxide is written as					
solid sodium carbonate	is written as					

- of ionic compounds written as separated ions solution of sodium hydroxide is written as

solution of potassium carbonate is written as

e.g.

D)		dilute hydrochloric acid + solid magnesium oxide
	ii)	nitric acid solution + solution of calcium hydroxide
	iii)	solid copper carbonate + dilute sulfuric acid
	iv)	a solution of sodium hydrogencarbonate + dilute acetic acid
	v)	a solution of hydrobromic acid + a solution of potassium sulfite
	vi)	a solution of phosphoric acid + a solution of potassium hydroxide
	vii) 2.0 mol L^{1} hydrochloric acid is added to aluminium and the mixture heated
	vii	i) ammonia gas is bubbled into a solution of nitric acid
2.	<u>Re</u>	eactions of Bases
a)		Background knowledge
	i)	List the amphoteric metals:
		amphoteric metal hydroxides:
		amphoteric metal oxides:
	ii)	Give the formulae of tetrahydroxoaluminate ion
		tetrahydroxochromate ion
		tetrahydroxozincate ion
	ii)	Complete the following general equations:
		OH^- + most metals \rightarrow
		OH^- + amphoteric metals + \rightarrow +
		OH^- + most metal hydroxides \rightarrow
		OH⁻ + amphoteric metal hydroxides →
		OH⁻ + most metal oxides →
		OH⁻ + amphoteric metal oxides + →

b)	Write ionic equations and give observations for the following metal hydroxide reactions:
	i) aluminium is added to a concentrated solution of sodium hydroxide and the mixture is heated
	ii) an excess of potassium hydroxide solution is added to a solution of zinc nitrate
	iii) magnesium oxide is added to a solution of sodium hydroxide
	iv) chromium (III) oxide is added to a solution of potassium hydroxide
	TV) Chromain (TII) oxide is added to a solution of potassian nyaroxide
	v) a solution of sodium hydroxide is mixed with some aluminium hydroxide
	vi) a solution of sodium hydroxide is added to some copper hydroxide
_	
3.	Describe an experiment you could carry out to distinguish between the following substances. Also, give the expected results:
	a) sodium carbonate and sodium oxide
	b) potassium sulfide and potassium hydrogencarbonate
	c) copper carbonate and sodium carbonate
	d) zinc and magnesium
	c) zme me megnestem
	e) aluminium oxide and magnesium oxide
	f) a solution of sodium hydroxide and a solution of hydrochloric acid
<u>Th</u>	eories of Acids and Bases
4.	Complete the following:
	According to the Arrhenius theory, acids
	solution, while bases
	, und u busc is u
5.	What are the three different names for the species $H^+(aq)$?

6. For the following reaction, which reactant is acting as the acid?

	a)	NH ₃ (aq) + HNO ₂ (ac	q) \rightarrow NH ₄ ⁺ (aq) + NO ₂ ⁻	(aq)		
	b)	$HF(l) + NH_3(l) \rightarrow$	H_2F^+ + NH_2^-			
	c)	$HCO_3^-(aq) + H_2O(1)$	\rightarrow H ₂ CO ₃ (aq) + OH ⁻ (aq)		
	d)	$Cr(H_2O)_6^{3+} + H_2O(1)$	$\rightarrow Cr(H_2O)_5(OH)^{2+}(aq) +$	$H_3O^+(aq)$		
	e)	$Mg(s) + 2H^+(aq) -$	\rightarrow Mg ²⁺ (aq) + H ₂ (g)			
7.	a) C	omplete:				
	In an		r, the acid has one	than its conjugat	e	
	b)	Give the conjugate ba	se of the following:			
		i) HNO ₃	ii) H ₂ PO ₄ -	iii) Al(H ₂ O) ₆ ³⁺		
	c)	Give the conjugate act	d of the following:			
		i) PH ₃	ii) HSO ₃	iii) OH ⁻		
<u>St</u>	rong	and Weak Acids and E	Bases			
8.	Com	plete the gaps:				
			neory of acids and bases, a str	ong acid and a strong base undergo		
		ioni:	sation/dissociation in aqueous	s solution, but a weak acid and a weak base undergo onl	y	
		ionisatio	_	Ţ		
9.	Wha	What particles are present (in amounts greater than approx 10 ⁻⁷ moles L ⁻¹) in the following solution?				
	a) 0.	1 mol L ⁻¹ HCl		b) 0.1 mol L ⁻¹ HF		
	c) 0.	1 mol L ⁻¹ NH ₃		d) 0.1 mol L ⁻¹ NaOH		
10	. Com	plete the gaps:				
	The	strength of an acid is def	ined by the equilibrium positi	on of its reaction:		
		$HA(aq) + H_2O$	$O(1) \rightleftharpoons H_3O^+(aq) + A^-(aq)$)		
	•	equilibrium constant for ciation constant)	the hydrolysis reaction of an	acid is sometimes called the acidity constant or acid		
	A str	ong acid is one for whic	h this equilibrium lies far to tl	ne This means that virtually		
		the original H	A is ionised at equilibrium. Th	ere is an important connection between the strength of	an	
	acid	and that of its	base. A strong acid yie	lds a conjugate ba	se	
	i.e. o	ne that has a very low af	finity for a			
	Conv	versely, a <u>weak acid</u> is or	ne for which the equilibrium l	ies far to the Most of the acid		
	origi	nally placed in the soluti	on is still present as	at equilibrium. That is, a weak acid		
	hydr	olyses only to a very	extent in a	queous solution.		
	Beca	use there is a greater ran	ge in acid strength amongst tl	ne weak acids (compared to the strong acids), it		
		be con	cluded that all weak acids wil	l have strong conjugate bases. Only the very,		
	very	weak acids have	conjugate bases	s. Most weak acids have		
	conji	ıgate bases.				

$\underline{Acidity\ Constants}\ (\text{Equilibrium\ constant\ for\ hydrolysis\ reaction\ of\ the\ acid})$

Common Name of acid	Formula	Acidity Constant	Common name of conjugate base	Formula	Basicity Constant
perchloric acid	HClO ₄	ca. 10 ¹⁰			
hydrogen iodide	HI	ca. 10 ⁹	iodide ion	I-	approx 10 ⁻²³
hydrogen bromide	HBr	ca. 10 ⁹	bomide ion	Br ⁻	approx 10 ⁻²³
hydrogen chloride	HCl	ca. 10 ⁷	chloride ion	Cl-	approx 10 ⁻²¹
nitric acid	HNO ₃	ca. 200	nitrate ion	NO ₃ -	approx 10 ⁻¹⁶
hydronium ion	H ₃ O ⁺	55	water	H ₂ O	approx 10 ⁻¹⁵
hydrogen fluoride	HF	6.6 x 10 ⁻⁴	fluoride ion	F-	approx 10 ⁻¹⁰
nitrous acid	HNO ₂	5.0 x 10 ⁻⁴	nitrite ion	NO ₂ -	approx 10 ⁻¹⁰
acetic acid	CH₃COOH	1.8 x 10 ⁻⁵	acetate ion	CH₃COO-	approx 10 ⁻⁹
aluminium ion	Al(H ₂ O) ₆ ³⁺	1.5 x 10 ⁻⁶			
hydrazoic acid	HN ₃	2.37 x 10 ⁻⁵			
hypochlorous acid	HOCl	2.95 x 10 ⁻⁸	hypochlorite ion	OCl-	approx 10 ⁻⁶
hypobromous acid	HOBr	2.3 x 10 ⁻⁹			
hydrocyanic acid	HCN	5.8 x 10 ⁻¹⁰	cyanide ion	CN-	approx 10 ⁻⁴
ammonium ion	NH ₄ ⁺	5.6 x 10 ⁻¹⁰	ammonia	NH ₃	approx 10 ⁻⁴
water	H ₂ O	1.82 x 10 ⁻¹⁶	hydroxide ion	OH-	approx 10 ²
ammonia	NH ₃	ca. 10 ⁻³⁴		NH ₂ -	approx 10

Common Name of acid	Formul a	Acidity Constant	Common Name of conjugate base	Formula	Basicity Constant
sulfuric acid	H ₂ SO ₄	$K_1 = 2.4 \times 10^6$	hydrogensulfate ion	HSO ₄ -	approx 10 ⁻²⁰
	HSO ₄ -	$K_2 = 1.0 \times 10^{-2}$	sulfate ion	SO ₄ ²⁻	approx 10 ⁻¹²
sulfurous acid	H ₂ SO ₃	$K_1 = 1.71 \times 10^{-2}$			
	HSO ₃ -	$K_2 = 5.98 \times 10^{-8}$			
phosphoric acid	H ₃ PO ₄	$K_1 = 7.1 \times 10^{-3}$	dihydrogenphosphate ion	H ₂ PO ₄	approx 10 ⁻¹¹
	H ₂ PO ₄ -	$K_2 = 6.2 \times 10^{-8}$	hydrogenphosphate ion	HPO ₄ ²⁻	approx 10 ⁻⁶
	HPO ₄ ²⁻	$K_3 = 4.6 \times 10^{-13}$	phosphate ion	PO ₄ ³⁻	approx 10 ⁻¹
carbonic acid	H ₂ CO ₃	$K_1 = 4.35 \times 10^{-7}$	hydrogencarbonate ion	HCO ₃ ²⁻	approx 10 ⁻⁷
	HCO ₃ -	$K_2 = 4.69 \times 10^{-11}$	carbonate ion	CO ₃ ²⁻	approx 10 ⁻³
hydrogen sulfide	H ₂ S	$K_1 = 9 \times 10^{-8}$			
	HS ⁻	$K_2 = ca.10^{-15}$			

11.

Use the data in the table above to identify the following statements as true or false.

- a) 1 L of 0.1 mol $L^{\text{-}1}$ hydrofluoric acid would contain the same number of hydrogen ions as 1 L of 0.1 mol $L^{\text{-}1}$ hydrochloric acid
- b) The equilibrium constant for the hydrolysis reaction for HCl would be larger than that for HF.
- c) The fluoride ion would be a stronger base than the chloride ion
- d) OH- is a stronger base than NH₃
- 12. Classify each of the following as a strong acid, a weak acid, a strong base or a weak base:

HNO3 K_2O NH_3 H_2SO_4 $Ca(OH)_2$ citric acid H_2SO_3 CO_3^{2-} HSO_4^{-} NH_4^+ $F^ HCO_3^{-}$ $CH_3COO^ CH_3COOH$ NO_2^{-} aluminium ions PO_4^{3-} $H_2PO_4^{-}$	hydrochloric acid	phosphoric acid	sodium hydroxide
H_2SO_3 CO_3^{2-} HSO_4^{-} NH_4^+ $F^ HCO_3^{-}$ $CH_3COO^ CH_3COOH$ NO_2^{-}	HNO_3	K_2O	NH_3
NH ₄ ⁺ F- HCO ₃ ⁻ CH ₃ COO ⁺ NO ₂ ⁻	H_2SO_4	Ca(OH) ₂	citric acid
CH ₃ COO ⁻ CH ₃ COOH NO ₂ -	H_2SO_3	CO ₃ ² -	HSO ₄ -
	$\mathrm{NH_4}^+$	F-	HCO ₃ -
aluminium ions PO_4^{3-} $H_2PO_4^{-}$	CH₃COO⁻	CH₃COOH	NO_2^-
	aluminium ions	PO ₄ ³⁻	$H_2PO_4^-$

13. Summarise the acid/base properties of substances by placing the following substances/labels in the correct columns:

most acids	negative ions of strong acids
NH ₄ ⁺	HSO ₄ -, H ₂ PO ₄ -
NH ₃	HCl, HNO ₃ , H ₂ SO ₄ , HClO ₄
transition metal ions and +3 metal ions	metal hydroxides and oxides
negative ions of weak acids	positive ions of Groups 1 and 2

Strong Acids	Weak Acids	Strong Bases	Weak Bases	Neutral

14.	Give the equation to represent what happens when the following species react with water i.e. when they undergo hydrolysis:
	a) NH ₃
	b) HF
	c) CO ₃ ²⁻
	d) NH_4^+
	e) HNO ₂
	f) CN ⁻
	g) HSO ₄
	h) CaO
15.	Give an example of
	a) a concentrated solution of a strong acid
	b) a dilute solution of a weak base
	c) a dilute solution of a weak acid
	d) a concentrated solution of a strong base
<u>Pol</u>	yprotic Acids
16.	a) Give an example of a strong polyprotic acid.
	b) Write equations to show the hydrolysis reactions that occur when this acid dissolves in water.
	c) Comment on the relative size of the equilibrium constant for these reactions.
	d) List the species present in a $1.0 \text{ mol } L^{\text{-}1}$ solution of this acid, in order of largest concentration to least.
17.	Phosphoric acid is a weak triprotic acid.
	a) Write equations to show the hydrolysis reactions that occur when this acid dissolves in water.
	b) Comment on the relative size of the equilibrium constant for these reactions.
	c) List the species present in a 1.0 mol L ⁻¹ solution of this acid.

Amphoteric substances

- 18. a) Aluminium is an amphoteric metal. What does this statement mean?
 - Give equations which show the reaction of aluminium with an acid and with a solution containing hydroxide ions.
- 19. Zinc oxide is an amphoteric oxide. Give two equations to support this statement.
- 20. a) Describe how you could prepare a sample of chromium (III) hydroxide.
 - b) Describe how you would prepare a solution containing the complex ion Cr(OH)₄.

Calculation of [H⁺], [OH⁻] and pH

- 21. a) Give an equation for the self-ionisation reaction of water.
 - b) What is the equilibrium constant, at 25°C, for this reaction?
 - c) What is this equilibrium constant called?
 - d) Calculate the concentration of H⁺ and OH⁻ in pure water at 25°C.
- 22. In any aqueous solution, at 25°C, what relationship will exist between the concentration of H⁺ and OH⁻?
- 23. If pure water is added to 0.100 mole of HCl to make 1 L of solution, what are the concentrations, in mol L⁻¹, of H⁺ and OH⁻ in this solution?
- 24. If 0.200 mole of NaOH is added to pure water and the solution made up to 500 mL, what are the concentrations, in mol L⁻¹, of OH⁻ and H⁺ in this solution?
- 25. If 300 mL of 0.4 mol L⁻¹ HCl is mixed with 100 mL of 0.2 mol l⁻¹ KOH, what are the concentrations of H⁺ and OH⁻ in the resultant mixture?
- 26. What formula is used to determine the pH of a solution?

27. Calculate the pH of solutions with the following concentrations:

- a) $[H^+] = 1 \times 10^{-2} \text{ mol L}^{-1}$
- b) $[H^+] = 1 \times 10^{-10} \text{ mol L}^{-1}$
- c) $[H^+] = 0.00100 \text{ mol } L^{-1}$
- d) $[H^+] = 1.00 \text{ mol } L^{-1}$
- e) $[H^+] = 0.000520 \text{ mol } L^{-1}$
- f) $[H^+] = 4.60 \times 10^{-6} \text{ mol L}^{-1}$
- g) $[OH^{-}] = 1 \times 10^{-3} \text{ mol } L^{-1}$
- h) $[OH^{-}] = 0.0781 \text{ mol } L^{-1}$

28. a) Explain why pure water has a pH of 7 at 25°C.

- b) When an acid is dissolved in water, an acidic solution is said to have formed. Why does an acidic solution have a pH less than 7?
- c) Why do basic solutions have a pH greater than 7?
- 29. Complete the gaps in the following:
 - i) As the $[H^{\scriptscriptstyle +}]$ increase, the pH
 - ii) The lower the pH the the $[H^{\scriptscriptstyle +}]$ in the solution
 - iii) The higher the pH the the [OH-] in the solution
 - iv) A solution is one with a pH of 7.
 - v) A change in pH unit represents a tenfold change in the [H⁺].
- 30. Calculate the pH of the following solutions:
 - a) 0.0200 mol L⁻¹ HNO₃
 - b) 0.00700 mol L⁻¹ Ca(OH)₂
 - c) a solution formed when 40.0~mL of $3.00~\text{mol}\ l^{-1}$ HCl is mixed with 30.0~mL of $4.10~\text{mol}\ l^{-1}$ NaOH
- 31. a) Calculate the concentration of a solution of HCl that has a pH of 4.3.
 - b) Calculate the concentration of a solution of KOH that has a pH of 14.8
 - c) What mass of NaOH must be dissolved in water to give a 2.00 L of a solution with a pH of 13.2?

Salts

c) CO₂

32.	Name and give the formula of the salt formed when the following acids and bases react: a) hydrochloric acid + calcium hydroxide
	b) acetic acid + sodium hydroxide
	c) ammonia + sulfuric acid
	d) HCN + potassium hydroxide
33.	Define the following words. Give an example to support your definition.
	a) Dissociation
	b) Hydrolysis
	c) Ionisation
34.	a) i) Define the term "acidic solution".
	ii) Define the term "basic solution".
	b) Will the following salts form acidic, basic or neutral solutions? Give equations to support your answers.i) potassium fluoride
	ii) ammonium chloride
	iii) sodium acetate
	iv) sodium hydrogencarbonate
	v) magnesium hydrogensulfate
35.	Which would be the stronger acid a) HNO ₃ or H ₃ PO ₃ ? b) HBrO ₄ or H ₃ AsO ₄ ?
36.	Give an example of a) an acidic oxide b) an amphoteric hydroxide c) a basic oxide d) an acidic hydroxide e) a basic hydroxide
37.	Write an equation to show what happens when each of the following are added to water: a) Na_2O
	b) SO ₃

ANSWERS

```
1.
       a)
               i)
       hydrochloric acid HCl
                                                      sulfuric acid
                                                                         H_2SO_4
                                                                                                    nitric acid
                                                                                                                    HNO<sub>3</sub>
       acetic acid
                       CH<sub>3</sub>COOH
                                                      phosphoric acid
                                                                             H_3PO_4
                                                                                                    hydroxide ion
                                                                                                                       OH.
       hydrobromic acid
                              HBr
                                                      hydroiodic acid HI
                                                                                                    oxide ion
                          CO_3^2
                                                                                                                    S^{2-}
       carbonate ion
                                                      hydrogencarbonate ion
                                                                                     HCO<sub>3</sub>
                                                                                                    sulfide ion
                                                      carbon dioxide
       sulfite ion
                       SO_3^{2-}
                                                                         CO_2
                                                                                                    hydrogen sulfide H<sub>2</sub>S
       sulfur dioxide
                          SO_2
                                                      hydrogen gas
                                                                                                    magnesium
                                                                         H_2
                                                                                                                   Mg
       zinc Zn
                                                      calcium Ca
                                                                                                    chloride ion Cl
                                                                     SO_4^{2-}
       bromide ion Br-
                                                      sulfate ion
                                                                                                                   CH<sub>3</sub>COO
                                                                                                    acetate ion
                                                                         H^{+}
       nitrate ion
                       NO_3
                                                      hydrogen ion
                                                                                                    sodium ion
                                                                                                                   Na^{+}
        calcium ion
                       Ca^{2+}
                                                      potassium ion
                                                                         K^{+}
                                                                                                    magnesium ion Mg<sup>2+</sup>
        ammonia
                       NH_3
                                                      ammonium ion
                                                                             NH_4^+
   ii) acid + hydroxide → water + salt solution
        acid + oxide → water + salt solution
       acid + carbonate → carbon dioxide + water + salt solution
       acid + hydrogencarbonate → carbon dioxide + water + salt solution
       acid + sulfite → sulfur dioxide + water + salt solution
       acid + sulfide → hydrogen sulfide + salt solution
       acid + 'active' metal → hydrogen + salt solution
       acid + ammonia → ammonium salt
    iii) Ionic equation 'rules'
       - strong acids written as separated ions
                   hydrochloric acid is written as
                                                         H_{+} + Cl_{-}
               nitric acid is written as H<sup>+</sup> + NO<sub>3</sub><sup>-</sup>
                                              H^{+} + SO_{4}^{2}
               sulfur acid is written as
        - weak acids written as neutral molecules e.g. acetic acid is written as H<sup>+</sup> + CH<sub>3</sub>COO<sup>-</sup>
       - solid ionic compounds written as neutral formulae
                   solid magnesium oxide is written as
           e.g.
                   solid sodium carbonate is written as
       - solutions of ionic compounds written as separated ions
                   solution of sodium hydroxide is written as
                                                                     Na+ + OH-
           e.g.
                   solution of potassium carbonate is written as
                                                                         K^{+} + CO_3^{2-}
b)
           2H^{+}(aq) + MgO(s) \rightarrow Mg^{2+}(aq) + H_{2}O(l)
                                                                 white solid dissolves to form colourless solution
     ii) H^+(aq) + OH^-(aq) \rightarrow H_2O(1)
                                                      no observable change - colourless solution remains
     iii) 2H^{+}(aq) + CuCO_{3}(s) \rightarrow CO_{2}(g) + H_{2}O(l) + Cu^{2+}(aq)
                                                                         solid dissolves to form colourless, odourless gas
                                                                     and blue solution
     iv) CH_3COOH(aq) + HCO_3(aq) \rightarrow CO_2(g) + H_2O(l) + CH_3COO(aq)
                                                                                        - colourless, odourless gas forms,
                                                                                     solution remains colourless
     v) 2H^{+}(aq) + SO_3^{2-}(aq) \rightarrow SO_2(g) + H_2O(l)
                                                              colourless gas with pungent odour forms, solution
                                                                 remains colourless
     vi) H_3PO_4(aq) + 3OH^-(aq) \rightarrow 3H_2O(1) + PO_4^{3-}(aq)
                                                                         no observable change, solution remains
                                                                         colourless
      vii) 6H^{+}(aq) + 2Al(s) \rightarrow 3H_{2}(g) + 2Al^{3+}(aq)
                                                                 colourless, odourless gas and colourless
                                                                 solution formed
     viii) NH_3(g) + H^+(aq) \rightarrow NH_4^+(aq)
                                                         colourless solution forms, pungent odour disappears
2. a)
           i)
                   amphoteric metals:
                                              Al, Cr, Zn
                                                          Al(OH)<sub>3</sub>, Cr(OH)<sub>3</sub>, Zn(OH)<sub>2</sub>
                   amphoteric metal hydroxides:
                   amphoteric metal oxides:
                                                  Al<sub>2</sub>O<sub>3</sub>, Cr<sub>2</sub>O<sub>3</sub>, ZnO
               tetrahydroxoaluminate ion
   ii)
                                                  [Al(OH)_4]
               tetrahydroxochromate ion
                                                  [Cr(OH)_4]
               tetrahydroxozincate ion
                                              [Zn(OH)_4]^{2-}
```

- iii) OH^- + most metals \rightarrow no reaction
 - OH^- + amphoteric metals + $H_2O \rightarrow H_2$ + complex ion
 - OH⁻ + most metal hydroxides → no reaction
 - OH⁻ + amphoteric metal hydroxides → complex ion
 - OH⁻ + most metal oxides → no reaction
 - OH⁻ + amphoteric metal oxides + H₂O → complexion
 - b) i) 2Al(s) + 2 OH (aq) + 6 $H_2O(l) \rightarrow 3 H_2(g) + 2Al(OH)_4$ (aq) colourless, odourless gas and colourless solution form
 - ii) $Zn^{2+}(aq) + 4OH^{-}(aq) \rightarrow Zn(OH)_4^{2-}(aq)$ no observable change, solution remains colourless
 - iii) no reaction
 - iv) $Cr_2O_3(aq) + 2 OH(aq) + 3 H_2O(l) \rightarrow 2 Cr(OH)_4(aq)$ solid dissolves to form a dark green solution
 - v) $Al(OH)_3(s) + OH(aq) \rightarrow Al(OH)_4(aq)$ solid dissolves to form colourless solution
 - vi) no reaction
- a) Add hydrochloric acid carbonate will form colourless gas, oxide will not
 - b) Add hydrochloric acid sulfide will form gas with putrid odour, hydrogencarbonate will form odourless gas
 - c) Copper carbonate is green, sodium carbonate is white
 - d) Add a solution of sodium hydroxide zinc will react to form colourless gas, magnesium will not react
 - e) Add a solution of sodium hydroxide aluminium oxide will react and dissolve, magnesium oxide will not
 - f) Add litmus sodium hydroxide will turn blue, hydrochloric acid will turn red
- According to the Arrhenius theory, acids **form hydrogen ions** in aqueous solution, while bases **form hydroxide** ions. In terms of the Bronsted-Lowry theory, an acid is a hydrogen ion donor, and a base is a hydrogen ion acceptor.
- 5. hydrogen ion, hydronium ion, proton
- 6. a) HNO₂
- b) NH₃
- c) H₂O
- d) $Cr(H_2O)_6^{3+}$
- e) neither reactant

- a) more hydrogen ion
- b) i) NO₃
- ii) HPO₄²⁻
- iii) Al(H₂O)₅(OH)²⁺

- c) i) PH₄⁺
- ii) H₂SO₃
- iii) H₂O
- 8. complete, partial

9.

- a) H₂O, H⁺, Cl⁻ b) H₂O, HF, H⁺, F⁻
 - c) H₂O, NH₃, NH₄⁺, OH⁻
- d) H₂O, Na⁺, OH⁻
- 10. The strength of an acid is defined by the equilibrium position of its **hydrolysis** reaction:

$$HA(aq) + H2O(l) \rightleftharpoons H3O+(aq) + A-(aq)$$

A strong acid is one for which this equilibrium lies far to the **right**. This means that virtually **all** the original HA is ionised at equilibrium. There is an important connection between the strength of an acid and that of its conjugate base. A strong acid yields a very weak conjugate base - one that has a very low affinity for a hydrogen ion.

Conversely, a weak acid is one for which the equilibrium lies far to the left . Most of the acid originally placed in the solution is still present as **HA** at equilibrium. That is, a weak acid hydrolyses only to a very **slight** extent in aqueous solution.

Because there is a greater range in acid strength amongst the weak acids (compared to the strong acids), it can **not** be concluded that all weak acids will have strong conjugate bases. Only the very very weak acids have **strong** conjugate bases. Most weak acids have weak conjugate bases.

- 11. a) False
- b) True
- c) True
- d) True

12.	hydrochloric acid - strong acid
	HNO₃ - strong acid
	H ₂ SO ₄ - strong acid
	H ₂ SO ₃ - weak acid
	NH4 ⁺ - weak acid
	CH₃COO⁻ - weak base
	aluminium ions - weak acid

phosphoric acid - weak acid K₂O - strong base Ca(OH)₂ - strong base CO₃²⁻ - weak base F - weak base CH₃COOH - weak acid PO₄³⁻ - weak base

sodium hydroxide - strong base NH₃ - weak base citric acid - weak acid HSO₄ - weak acid HCO₃ - weak base NO₂ - weak base H₂PO₄ - weak acid

13.

Strong Acids	Weak Acids	Strong Bases	Weak Bases	Neutral
- HCl, HNO ₃ ,	- most acids	- metal hydroxides	- NH ₃	- negative ions of
H ₂ SO ₄ , HClO ₄	- NH ₄ ⁺	and oxides	- negative ions of	strong acids
	- HSO ₄ -, H ₂ PO ₄ -		weak acids	- positive ions of
	- transition metal ions			Groups 1 and 2
	and +3 metal ions			_

14.	a) NH ₃ + H ₂ O	\rightleftharpoons	NH ₄ ⁺ + OH ⁻	b) HF + H_2O \rightleftharpoons F ⁻ + H_3O^+
	c) $CO_3^2 - H_2O$	\rightleftharpoons	$H_2CO_3 + OH^-$	d) $NH_4^+ + H_2O \rightleftharpoons NH_3 + H_3O^+$
	e) HNO ₂ + H ₂ O	\rightleftharpoons	$NO_2^- + H_3O^+$	f) CN + H ₂ O
	g) HSO ₄ + H ₂ O	\rightleftharpoons	$SO_4^{2-} + H_3O^+$	h) CaO + $H_2O \rightarrow Ca^{2+} + 2OH^{-}$

- 15. a) 10 mol L⁻¹ HCl
- b) 0.01 mol L⁻¹ NH₃
- c) 0.05 mol L⁻¹ CH₃COOH d) 12 mol L⁻¹ NaOH

16. a) H₂SO₄

b)
$$H_2SO_4 + H_2O \rightarrow HSO_4^- + H_3O^+ + H_2O \rightleftharpoons SO_4^{2-} + H_3O^+$$

- c) First reaction has a very large equilibrium constant, second one has a small equilibrium constant (approx 0.01)
- d) H₂O, H₃O⁺, HSO₄⁻, SO₄²-, H₂SO₄

17. a)
$$H_3PO_4 + H_2O \rightleftharpoons H_2PO_4^- + H_3O^+$$

 $H_2PO_4^- + H_2O \rightleftharpoons HPO_4^{2-} + H_3O^+$
 $HPO_4^{2-} + H_2O \rightleftharpoons PO_4^{3-} + H_3O^+$

- b) the first reaction has a small equilibrium constant (approx 10⁻³), the second one a smaller K and the third one an even smaller K
- c) H₂O, H₃PO₄, H₃O⁺, H₂PO₄, HPO₄²⁻, PO₄³⁻ (given in order of decreasing amounts)
- 18. a) It reacts with both acids and bases

b)
$$6H^{+}(aq) + 2Al(s) \rightarrow 3H_{2}(g) + 2Al^{3+}(aq)$$

 $2Al(s) + 2OH^{-}(aq) + 6H_{2}O(l) \rightarrow 3H_{2}(g) + 2Al(OH)_{4}^{-}(aq)$

19.
$$ZnO(s) + 2H^{+}(aq) \rightarrow H_{2}O(l) + Zn^{2+}(aq)$$

 $ZnO(aq) + 2OH^{-}(aq) + H_{2}O(l) \rightarrow Zn(OH)_{4}^{2-}(aq)$

- 20. a) Add a small amount of a dilute solution of sodium hydroxide to a solution of chromium (III) nitrate
 - b) Add an excess of a solution of sodium hydroxide to a solution of chromium (III) nitrate

21. a)
$$2H_2O(1) \rightleftharpoons H_3O^+(aq) + OH^-(aq)$$

- b) 1 x 10⁻¹⁴
- c) ionisation constant of water
- d) conc of H^{+} = conc of OH^{-} = 1 x 10⁻⁷ mol L^{-1}
- 22. conc of H^+ x conc of $OH^- = 1 \times 10^{-14}$
- 23. $[H^+] = 0.100 \text{ mol } L^{-1} [OH^-] = 1.00 \text{ x } 10^{-13} \text{ mol } L^{-1}$
- 24. moles of $OH^{-} = 0.200$ $[OH^{-}] = 0.200/0.500 = 0.400 \text{ mol } L^{-1}$ $[H^+] = 1 \times 10^{-14}/0.400 = 2.5 \times 10^{-14} \text{ mol L}^{-1}$

```
25. moles of HCl = 0.300 \times 0.400 = 0.120 = \text{moles of H}^+ moles of KOH = 0.100 \times 0.200 = 0.0200 = \text{moles of OH}^- H^+ + OH^- \rightarrow H_2O   0.0200 moles of OH^- will react with 0.0200 moles of H^+ i.e. will have 0.120 - 0.0200 = 0.100 moles of H^+ remaining after reaction conc of H^+ = 0.100/0.400 = 0.250 mol L^{-1} conc of OH^- = 1 \times 10^{-14}/0.250 = 4.00 \times 10^{-14} mol L^{-1}
```

- 26. $pH = -\log_{10}[H^+]$
- 27. a) 2 b) 10 c) 3 d) 0 e) 3.28 f) 5.34 g) 11 h) 12.9
- 28. a) in pure water $[H^+] = [OH^-]$ and $[H^+] \times [OH^-] = 1 \times 10^{-14}$ i.e. $[H^+] = 1 \times 10^{-7}$ mol L⁻¹, so pH = 7
 - b) When an acid dissolves in water, more H⁺ ions are formed i.e. the [H⁺] will now be greater than 10⁻⁷ mol L⁻¹, e.g. 10⁻³ mol L⁻¹, so pH will be less than 7 in an acidic solution.
 - c) When a base dissolves in water, more OH^- ions are formed. Because in this solution $[H^+]$ x $[OH^-] = 1$ x 10^{-14} , if the $[OH^-]$ becomes greater than 10^{-7} mol L^{-1} , then $[H^+]$ must become less than 10^{-7} mol L^{-1} , e.g. 10^{-9} mol L^{-1} . So pH will be greater than 7 in a basic solution.
- 29. i) As the [H⁺] increase, the pH **decreases**
 - ii) The lower the pH the **greater** the [H⁺] in the solution
 - iii) The higher the pH the **greater** the [OH-] in the solution
 - iv) A **neutral** solution is one with a pH of 7.
 - v) A change in **one** pH unit represents a tenfold change in the [H⁺].
- 30. a) 1.70 b) 12.1 c) moles of H⁺ before reaction = 0.12 moles of OH⁻ remaining after reaction = 0.003 conc of H⁺ = $1 \times 10^{-14}/0.0429 = 2.33 \times 10^{-13}$ pH = 12.6
- 31. a) $5.01 \times 10^{-5} \text{ mol L}^{-1}$ b) 6.31 mol L^{-1} c) 12.7 g
- 32. a) calcium chloride, CaCl₂ b) sodium acetate, NaCH₃COO c) ammonium sulfate, (NH₄)₂SO₄ d) potassium cyanide, KCN
- 33. a) The process whereby a soluble ionic solid, when placed in water dissolves to form a solution of its ions. $NaCl + aq \rightarrow Na^+ + Cl^$
 - b) The reaction of a substance with water. $CO_3^{2-} + H_2O \rightleftharpoons HCO_3^{-} + OH^{-}$
 - c) The process whereby a covalent molecular substance reacts with water to produce a solution containing ions. $HCl + H_2O \rightarrow H_3O^+ + Cl^-$
- 34. a) i) a solution in which the [H⁺] is greater than the [OH⁻] ii) a solution in which the [OH⁻] is greater than the [H⁺]
 - b) i) basic $F^- + H_2O \rightleftharpoons HF + OH^-$ ii) acidic NH_4
 - i) i) basic $F^- + H_2O \rightleftharpoons HF + OH^-$ ii) acidic $NH_4^+ + H_2O \rightleftharpoons H_3O^+ + NH_3$ iii) basic $CH_3COO^- + H_2O \rightleftharpoons CH_3COOH + OH^-$ iv) basic $HCO_3^- + H_2O \rightleftharpoons H_2CO_3 + OH^-$ v) acidic $HSO_4^- + H_2O \rightleftharpoons H_3O^+ + SO_4^{2-}$
- 35. a) HNO₃ b) HBrO₄
- 36. a) CO₂; SO₃; P₄O₁₀... b) Al(OH)₃; Zn(OH)₂; Cr(OH)₃ c) Na₂O; MgO; CaO ... d) H₂SO₄; H₃PO₄; HNO₃ e) NaOH; KOH; Ba(OH)₂
- 37. a) $O^{2-} + H_2O \rightarrow 2OH^-$ b) $SO_3 + H_2O \rightarrow H_2SO_4$; then $H_2SO_4 + H_2O \rightarrow H_3O^+ + HSO_4^-$ c) $CO_2 + 2H_2O \rightleftharpoons H_3O^+ + HCO_3^-$