ST221 Introduction to Statistics

Dr Rafael Moral

Dept of Mathematics and Statistics Maynooth University

rafael.deandrademoral@mu.ie

5.1 Sampling distributions

Parameter: Population characteristic.

For example, μ , σ , σ^2 , π .

Sample statistic: Any quantity computed from values in a sample.

For example \bar{x} , s, s^2 , p.

The value of a population characteristic is fixed, but if you take, for example, 10 samples from a population and compute \bar{x} for each sample, would you expect each \bar{x} to be the same?

A sample statistic (considered in the context of any possible sample from the population) is a random variable and it has a probability distribution called the 'sampling distribution'.

NB: The 'sampling distribution' of a sample statistic is NOT the same as the 'sample distribution' which is the distribution of the raw data in the sample.

The sampling distribution of the mean

Example 1

Suppose exam results in a population are normally distributed with a mean of 51 and a variance of 64. If we take a sample of size 50 from this population, what would we expect a histogram of the data to look like?

 $\bar{x}_1 = 53.03$

Example 1 contd

Suppose we repeat this process 100 times, i.e. take 100 samples each of size 50 from the N(51, 64) population and record \bar{x} in each case.

What would we expect a histogram of the means from the 100 samples to look like?

Example 1 contd

The sampling distribution of the mean

Example 2

If you roll a fair die, you are equally likely to get any number from 1 to 6, i.e. the distribution of this population is uniform. Suppose we take a sample of size 50 from this population, i.e. roll a die 50 times and record the values.

 $\bar{x}_1 = 3.52$

Example 2 contd

Suppose we repeat this process 100 times, i.e. take 100 samples each of size 50 from the Uniform[1,6] population and record \bar{x} in each case.

What would we expect a histogram of the means from the 100 samples to look like?

Example 2 contd

How would you describe the shape of this data?

Dr Rafael Moral Maynooth University

Recap

A sample statistic (considered in the context of any possible sample from the population) is a random variable and it has a probability distribution called the 'sampling distribution'.

NB: The 'sampling distribution' of a sample statistic is NOT the same as the 'sample distribution' which is the distribution of the raw data in the sample.

5.2 The Central Limit Theorem

Any linear combination of n independent random variables has an approximate normal distribution for large n.

What does this mean? In practice...

What does this NOT mean? In practice...

What does this mean? Algebraically:

Suppose $X_1, ..., X_n$ are independent random variables with mean $E[X_i] = \mu_i$ and variance $Var(X_i) = \sigma_i^2$. Then for all constants $a_1, ..., a_n$

$$\sum_{i=1}^n a_i X_i \sim N(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2)$$

approximately for large n (usually the approximation works well for $n \ge 30$). We can see

$$E[\sum_{i=1}^{n} a_i X_i] = \sum_{i=1}^{n} E[a_i X_i] = \sum_{i=1}^{n} a_i E[X_i] = \sum_{i=1}^{n} a_i \mu_i$$

and

$$Var(\sum_{i=1}^{n} a_i X_i) = \sum_{i=1}^{n} Var(a_i X_i) = \sum_{i=1}^{n} a_i^2 Var(X_i) = \sum_{i=1}^{n} a_i^2 \sigma_i^2$$

1. Special case of the CLT

Let $X_1,...,X_n$ be independent random variables. Let $\mu_1=\mu_2=...=\mu_n=\mu$ $\sigma_1^2=\sigma_2^2=...=\sigma_n^2=\sigma^2$

$$a_1 = a_2 = \dots = a_n = 1.$$

Let $S = \sum_{i=1}^{n} X_i$. Then

$$S \sim_{approx} N(n\mu, n\sigma^2)$$

We can see that

$$E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} \mu = n\mu$$

and

$$Var(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} Var(X_i) = \sum_{i=1}^{n} \sigma^2 = n\sigma^2$$

2. Special case of the CLT

Let $X_1, ..., X_n$ be independent random variables. Let $\mu_1 = \mu_2 = ... = \mu_n = \mu$ $\sigma_1^2 = \sigma_2^2 = ... = \sigma_n^2 = \sigma^2$

$$a_1 = a_2 = ... = a_n = \frac{1}{n}$$
. Let $\bar{X} = \frac{\sum_{i=1}^n X_i}{n}$. Then

$$\bar{X} \underset{approx}{\sim} N(\mu, \frac{\sigma^2}{n})$$

We can see that

$$E\left[\frac{\sum_{i=1}^{n} X_{i}}{n}\right] = \frac{1}{n} \sum_{i=1}^{n} E[X_{i}] = \frac{1}{n} \sum_{i=1}^{n} \mu = \frac{n\mu}{n} = \mu$$

and

$$Var(\frac{\sum_{i=1}^{n} X_i}{n}) = \frac{1}{n^2} \sum_{i=1}^{n} Var(X_i) = \frac{1}{n^2} \sum_{i=1}^{n} \sigma^2 = \frac{n\sigma^2}{n^2} = \frac{\sigma^2}{n}$$

CLT Illustration (separate handout)

Example

Suppose that scores from a test have a distribution with mean 50 and standard deviation 10.

Suppose that a class of 35 students represents a random sample from the distribution. What is the probability that their average test result is great than 55?

Example

An online shop sells t-shirt merchandise from four different television shows. The proportion of t-shirts for each show and the profit per show is

	Α	В	C	D
Profit €	1	0.5	3	2
Proportion	0.2	0.4	0.2	0.2

If the store sells 100 t-shirts in a day, what is the probability they make less than $\\eqref{150}$ profit?

5.3 Normal approximation to the binomial

Let $X \sim \text{Binomial}(n, p)$. Remember that E[X] = np and Var(X) = np(1 - p).

Then, for large n

$$X \sim_{approx} N(np, np(1-p))$$

To see this, suppose that X = # heads in n tosses of a coin, p=P(Head).

We can write $X = X_1 + ... + X_n$, where $X_i = 1$ if the i^{th} toss is a head and 0 if it is a tail and each $X_i \sim \text{Binomial}(n = 1, p)$.

Since X is a sum of independent random variables $X_1, ..., X_n$ and each X_i has $E[X_i]=p$ and $Var(X_i)=p(1-p)$, then, by the CLT

$$X \sim_{approx} N(np, np(1-p))$$

Example

O-negative blood can be given to anyone, regardless of the recipient's blood type. Suppose that 6% of people from a particular population have O-negative blood. A blood donor unit is set up and it samples randomly from this population. It is estimated that it will need at least 1850 units of O-negative blood this year and that it will sample 32000 donors over the course of the year.

What is the probability that the unit will fall short of its O-negative requirement?

Note about continuity correction

When approximating a discrete distribution by a continuous distribution, we are using a curve instead of a histogram to calculate probabilities.

Example - graphical

Note about continuity correction contd

More generally, suppose X is a discrete random variable (takes values on the integer) which can be approximated by a normal random variable X^* . Then, $P(X \le x) \approx P(X^* \le x + \frac{1}{2})$. If follows that

$$P(X < x) \approx P(X^* \le x - \frac{1}{2})$$

$$P(X \ge x) \approx P(X^* \ge x - \frac{1}{2})$$

$$P(X > x) \approx P(X^* \ge x + \frac{1}{2})$$

$$P(X = x) \approx P(x - \frac{1}{2} \le X^* \ge x + \frac{1}{2})$$