

Sub-second speed 4D-CT image registration using deep learning

ESTR0 2023

Thomas van der Meulen¹, Oscar Pastor-Serrano¹, Steven Habraken², Zoltán Perkó¹
¹Delft University of Technology, Department of Radiation Science and Technology, Delft, The Netherlands
²Erasmus University Medical Center, Department of Radiotherapy, Rotterdam, The Netherlands

Fast image registration between 4D-CT lung phases

- Fast image registration is crucial in several radiotherapy tasks, and especially for treating moving targets.
- We train a model predicting the deformation vector field (DVF)
 φ between fixed and moving phases of 4D-CT lung scans.
- Such model can be used for dose accumulation, contour propagation or future real-time adaptive treatments.

Figure 1. Schematic overview of the Laplacian Pyramid model [1].
Three identical sub-networks predict DVFs at increasingly finer
grids. Stacking them yields superior accuracy.

DVF prediction by unsupervised Laplacian network

- An unsupervised Laplacian pyramid network with three subnetworks was trained [1]. The sub-networks predict DVFs at 1/4, 1/2 and full resolution respectively, in a coarse-to-fine order.
- The DVFs are up-sampled and elementwise combined to obtain the final DVF between the scans.
- Model is unsupervised as it trains without the ground truth DVFs, only by comparing the fixed and moving scans.
- The DVF was used for image deformation and contour propagation to test the trained model's speed and accuracy.

Patient data for training and testing

- The model was trained on 65 lung 4D-CTs and validated on another 7 4D-CTs. Each 4D-CT had 10 phases, with size 80x256x256 and 3 x 1.94 x 1.94 mm³ resolution.
- Predictions were tested in 5 4D-CTs (with 10 phases each) not used in training [2].
- Target Registration Error $TRE = \left\| \vec{\phi}_i + \vec{x}_i^f \vec{x}_i^m \right\|_2$ of 300 landmarks between 0% and 50% phases were determined; and mean absolute HU errors and grid folding between all phases were calculated. Values represent mean \pm standard deviations.

Table 1. Average Target Registration Error In mm for 300 landmarks between 0 and 50% phase for five scans from the DIRLab dataset [2].

Scan	Original TRE in mm	Deformed TRE in mm
1	10.9 ± 7.0	2.9 ± 1.9
2	11.0 ± 7.4	2.2 ± 2.0
3	15.0 ± 9.0	3.1 ± 2.8
4	7.9 ± 4.0	2.5 ± 2.0
5	7.3 ± 6.3	2.8 ± 2.8
Mean	10.4 ± 6.7	2.7 ± 2.3

Results

- The DVF is predicted by the model in 24 ± 4 ms using a NVIDIA Tesla V100S GPU.
- The mean absolute HU error reduces from 23.4 ± 10.5 HU to 15.4 ± 5.4 HU, and the average TRE is reduced from 10.4 ± 6.7 mm to 2.7 ± 2.3 mm after deformation.
- Low number of voxels exhibit grid folding in the DVF. On average, 1.3 ± 6.5 voxels with a negative Jacobian determinant were seen.

Figure 2: Visual comparison of moving, fixed, predicted and DVF in X-Y direction between the 0% to 50% phase.

Conclusions and further plans.

- The Laplacian pyramid network allows for fast and accurate prediction of the DVF between phases in around 20 milliseconds.
- TRE comparable with other deeplearning methods which ranged between 3.7 and 1.1 mm but have longer computational time from seconds to minutes.
- Future plans to use the DVF to perform interplay dose calculation and compare with dose distribution with the dose distribution obtained using a DVF from clinical registration software.

References

- Tony C. W. Mok, Albert C. S. Chung, "Large Deformation Diffeomorphic Image Registration with Laplacian Pyramid Networks" (TMICCAI, 2020, arXiv:2006.16148.)
- Castillo R, Castillo R, Martinez J, Shenoy M, Guerrero T., "Four-dimensional deformable image registration using trajectory modeling." (2009, Phys Med Biol 55 305-327.)