<u>Eigenschaften der Alkansäuren –</u>

Stärke der zwischenmolekularen Kräfte nimmt bei gleicher Molekülgröße zu!

Wasserstoffbrücken

Doppelmolekül (Dimer)

Merke:

Alkansäurenmoleküle lagern sich über zwei Wasserstoffbrücken zwischen den Carboxylgruppen zu **Doppelmolekülen** zusammen. Diese Doppelmoleküle sind größer als die einzelnen Moleküle und nach außen hin **unpolar**.

Übungsaufgaben:

Buch S. 310, Aufgaben 1-4 (schriftliche Begründung mit Verwendung von Fachbegriffen)

1.
$$H_{3}C-CH_{2}-CH_{$$

Ausbildung von unpolaren Doppelmolekülen, zwischen ihnen wirken temporäre Dipolkräfte. Decansäure-Doppelmoleküle haben eine größere Oberfläche als Ethansäure-Doppelmoleküle, daher ist der Schmelzpunkt von Decansäure höher.

	H ₃ C-CH ₂ -CH ₂ -CH ₃	H_3C-CH_2-C	$H_3C-CH_2-CH_2-\overline{\underline{O}}-H$	H ₃ C-CH ₂ -C O-H
	Pentan	Propanal	Propanol	Propansäure
Siedetemperatur	36°C	48°C	97°C	141°C
Dipolcharakter des Moleküls	Unpolar	Unpolarer Ethylrest polare Aldehydgruppe	Unpolarer Propylrest Polare Hydroxygruppe	Unpolarer Ethylrest Polare Carboxylgruppe
Zwischenmole- kulare Wechsel- wirkungen	Temporäre Dipole	Temporäre Dipole Dipol-Dipol-WW	Temporäre Dipole Wasserstoffbrücken	Zweifache Wasserstoffbrücken → unpolare Doppelmoleküle mit temporären Dipolen
Fazit	Schwache WW → niedrigste Sdt	Durch die Dipol- Dipol-WW etwas stärkere WW > leicht höhere Sdt	Durch Wasserstoffbrücken starke WW → hohe Sdt	Sehr große unpolare Moleküle, dadurch starke WW → höchste Sdt

Löslichkeit in Wasser:

Die stark polaren Wassermoleküle sind in der Lage, die Wasserstoffbrücken zwischen den Carboxylgruppen zu ersetzen. Daher löst sich Propansäure mit Wasser in jedem Verhältnis.

Löslichkeit in Heptan:

Die Propanmoleküle bilden unpolare Doppelmoleküle aus. Daher können sie mit den Heptan-Molekülen über temporäre Dipole wechselwirken. Daher löst sich Propansäure auch in Heptan in jedem Verhältnis.

4.

Methansäure-Doppelmoleküle

- Wassermoleküle können Wasserstoffbrücken zwischen den Doppelmolekülen ersetzen → gute Löslichkeit in Wasser
- Kein unpolarer Alkylrest → keine Löslichkeit im unpolaren Heptan

Decansäure-Doppelmoleküle

- Sehr große unpolarer Doppelmoleküle → sehr gute Löslichkeit im unpolaren Heptan
- Wassermoleküle können die Wasserstoffbrücken zwischen den Doppelmolekülen zwar ersetzen, werden durch den großen unpolaren Alkylrest jedoch daran gehindert → keine Löslichkeit in Wasser