Jan Wira Gotama Putra

Pengenalan Konsep Pembelajaran Mesin dan Deep Learning

Edisi 1.1

July 11, 2018

Kata Pengantar

Buku ini ditujukan sebagai bahan pengantar (atau penunjang) mata kuliah machine learning untuk mahasiswa di Indonesia, khususnya tingkat sarjana (tidak menutup kemungkinan digunakan untuk tingkat pascasarjana). Buku ini hanya merupakan komplemen, bukan sumber informasi utama. Buku ini memuat materi dasar machine learning, yang ditulis sedemikian rupa sehingga pembaca mampu mendapatkan **intuisi**. Pembaca masih harus membaca buku-buku lainnya untuk mendapatkan pemahaman lebih dalam.

Walaupun tidak sempurna, mudah-mudahan buku ini mampu memberi inspirasi. Anggap saja membaca buku ini seperti sedang membaca "light novel". Penulis ingin buku ini bisa menjadi pointer; i.e. dengan membaca buku ini, diharapkan kawan-kawan juga mengetahui harus belajar apa (lebih jauhnya) dalam bidang machine learning. Setelah membaca buku ini, pembaca diharapkan mampu membaca literatur machine learning yang dijelaskan secara matematis (kami memberi rekomendasi bacaan lanjutan).

Di Indonesia, penulis banyak mendengar baik dari teman, junior, senior, dll; suatu pernyataan "kuliah mengajari teori saja, praktiknya kurang, dan tidak relevan dengan industri". Menurut saya di satu sisi itu benar; tapi di sisi lain, karena permikiran macam itu terkadang kita tidak benar-benar mengerti permasalahan. Ketika mengalami kendala, kita buntu saat mencari solusi karena fondasi yang tidak kokoh. Banyak orang terburu-buru "menggunakan tools" karena lebih praktikal. Penulis ingin mengajak saudara/i untuk memahami konsep machine learning secara utuh sebelum memanfaatkan.

Buku ini menjelaskan algoritma machine learning dari sudut pandang "agak" matematis. Pembaca disarankan sudah memahami/mengambil setidaknya mata kuliah statistika, kalkulus, aljabar linear, pengenalan kecerdasan buatan, dan logika fuzzy. Penulis merasa banyak esensi yang hilang ketika materi machine learning hanya dijelaskan secara deskriptif karena itu buku ini ditulis dengan bahasa "agak" matematis. Saat membaca buku ini, disarankan membaca secara runtun. Gaya penulisan buku ini santai/semiformal agar lebih mudah dipahami, dengan notasi matematis dibuat seminimal mungkin, mudah-mudahan tanpa mengurangi esensi materi.

Buku ini ditulis menggunakan template monograph (IATEX) dari Springer yang dimodifikasi. Dengan demikian, mungkin ada kesalahan pemenggalan kata. Tentunya, buku tidak lepas dari kekurangan, misalnya kesalahan tipografi. Kami sarankan pembaca untuk membaca secara seksama, termasuk menginterpretasikan variabel pada persamaan.

Petunjuk Penggunaan

Struktur penyajian buku ini dapat dijadikan acuan sebagai struktur kuliah machine learning untuk satu semester (bab 1 untuk sesi pertama, dst). Agar dapat memahami materi per bab, bacalah keseluruhan isi bab secara utuh sebelum mempertanyakan isi materi. Penulis sangat menyarankan untuk membahas soal latihan sebagai tambahan materi (bisa juga sebagai PR). Soal latihan ditujukan untuk mengarahkan apa yang harus dibaca/dipahami lebih lanjut.

Pembaca dipersilahkan menyebarkan (*share*) buku ini untuk alasan **NON KOMERSIAL** (pendidikan), tetapi **dimohon kesadarannya untuk tidak menyalin /meniru isi buku ini**. Bila ingin memuat konten diktat ini pada media yang pembaca kelola, dimohon untuk mengontak pengarang terlebih dahulu. Tidak semua istilah bahasa asing diterjemahkan ke Bahasa Indonesia supaya makna sebenarnya tidak hilang (atau penulis tidak tahu versi Bahasa Indonesia yang baku).

Bab lebih awal memuat materi yang relatif lebih "mudah" dipahami dibanding bab berikutnya. Buku ini memberikan contoh dimulai dari contoh sederhana (beserta contoh data). Semakin menuju akhir buku, notasi yang digunakan akan semakin simbolik, beserta contoh yang lebih abstrak. Penulis sangat menyarankan untuk membaca buku ini secara sekuensial.

Kutipan

Buku ini tergolong self-published work, tetapi sudah di-review oleh beberapa orang. Kami yakin para reviewers adalah orang yang berkompeten. Silahkan merujuk buku ini sesuai dengan paduan cara merujuk self-published work (apabila diperbolehkan untuk merujuk self-published work pada pekerjaan kamu).

Notasi Penting

Karakter bold kapital merepresentasikan matriks $(\mathbf{X}, \mathbf{Y}, \mathbf{Z})$. Dimensi matriks ditulis dengan notasi $N \times M$ dimana N merepresentasikan banyaknya baris dan M merepresentasikan banyaknya kolom. Elemen matriks direpresentasikan oleh $\mathbf{X}_{i,j}$, $\mathbf{X}_{[i,j]}$, atau $x_{i,j}$ untuk baris ke-i kolom ke-j (penggunaan akan menyesuaikan konteks pembahasan agar tidak ambigu). Karakter dibold merepresentasikan vektor (\mathbf{x}) . Elemen vektor ke-i direpresentasikan oleh x_i atau $\mathbf{x}_{[i]}$ tergantung konteks. Ketika penulis menyebutkan vektor, yang dimaksud adalah **vektor baris** (row vector, memiliki dimensi $1 \times N$, mengadopsi notasi Goldberg [1]). Perhatikan, literatur machine learning lainnya mungkin tidak menggunakan notasi row vector tetapi column vector. Kami

harap pembaca mampu beradaptasi. Simbol " \cdot " digunakan untuk melambangkan operator dot-product.

Kumpulan data (atau himpunan) direpresentasikan dengan karakter kapital (C, Z), dan anggotanya (data point, data entry) ke-i direpresentasikan dengan karakter c_i . Perhatikan, elemen vektor dan anggota himpunan bisa memiliki notasi yang sama (himpunan dapat direpresentasikan di komputer sebagai array, jadi penggunaan notasi vektor untuk himpunan pada konteks pembicaraan kita adalah tidak salah). Penulis akan menggunakan simbol $\mathbf{x}_{[i]}$ sebagai elemen vektor apabila ambigu. Fungsi dapat direpresentasikan dengan huruf kapital maupun non-kapital $f(\ldots), E(\ldots), G(\ldots)$. Ciri fungsi adalah memiliki parameter! Pada suatu koleksi vektor (himpunan vektor) \mathbf{D} , vektor ke-i direpresentasikan dengan \mathbf{d}_i , dan elemen ke-j dari vektor ke-i direpresentaiskan dengan $\mathbf{d}_{i[j]}, \mathbf{D}_{i,j}$, atau $\mathbf{D}_{[i,j]}$ (karena sekumpulan vektor dapat disusun sebagai matriks).

Karakter non-kapital tanpa bold atau indeks (a,b,c,x,y,z) merepresentasikan $random\ variable$ (statistik) atau variabel (matematik). Secara umum, saat $random\ variable$ memiliki tertentu, dinotasikan dengan x=X (nilai tertentu dinotasikan dengan huruf kapital), kecuali disebutkan secara khusus saat pembahasan. Probabilitas direpresentasikan dengan karakter kapital (P), dengan karakter non-kapital merepresentasikan probability density (p). Penulis yakin pembaca dapat menyesuaikan interpretasi simbol berdasarkan konteks pembahasan. Untuk menginterpretasikan notasi lain, selain yang diberikan pada paduan ini, mohon menyesuaikan dengan ceritera pembahasan.

Ucapan Terima Kasih

Penulis ingin mengucapkan terima kasih pada Bapak/Ibu/Saudara/i atas kontribusi pada pengembangan dan penulisan buku ini: Adhiguna Surya Kuncoro, Arief Yudha Satria, Candy Olivia Mawalim, Chairuni Aulia Nusapati, Genta Indra Winata, Hayyu Luthfi Hanifah, I Gede Mahendra Darmawiguna, dan Tifani Warnita.

Tokyo, Jepang

Jan Wira Gotama Putra https://wiragotama.github.io/

Daftar Isi

Ba	Bagian I Pengetahuan Dasar				
1	Pen	genalan	3		
	1.1	Kecerdasan Buatan			
	1.2	Intelligent Agent	6		
	1.3	Konsep Belajar	8		
	1.4	Statistical Learning Theory	8		
	1.5	Training, Development, Testing Set	10		
	1.6	Supervised Learning	12		
	1.7	Regresi	14		
	1.8	Semi-supervised Learning	14		
	1.9	Unsupervised Learning	15		
	1.10	Proses Belajar	16		
		Tips	17		
		Contoh Aplikasi	18		
		Latihan	18		
2	Fon	dasi Matematis	19		
	2.1	Probabilitas	19		
	2.2	Probability Density Function	21		
	2.3	Expectation dan Variance	23		
	2.4	Bayesian Probability	23		
	2.5	Gaussian Distribution	25		
	2.6	Teori Keputusan	27		
	2.7	Teori Informasi	29		
		2.7.1 Entropy	29		
		2.7.2 Relative Entropy dan Mutual Information	30		
	2.8	Matriks	31		
	2.9	Bacaan Lanjutan	32		
	Soal	Latihan	32		

3	Dat	a Analytics	35
0	3.1	Pengenalan Data Analytics	35
	3.2	Nilai Atribut dan Transformasi	37
	3.3	Ruang Konsep	38
	3.4	Linear Separability	39
	3.5	Seleksi Fitur	40
	3.6	Classification, Association, Clustering	41
	3.7	Mengukur Kinerja	42
	3.8	Evaluasi Model	42
	3.9	Kategori Jenis Algoritma	44
		Tahapan Analisis	44
		Latihan	
	Soar		
Ba	gian	II Algoritma Pembelajaran Mesin	
4	Algo	oritma Dasar	49
	4.1	Naive Bayes	49
	4.2	K-means	51
	4.3	K-nearest-neighbor	54
	Soal	Latihan	54
5	Mod	del Linear	57
	5.1	Curve Fitting dan Error Function	57
	5.2	Binary Classification	60
	5.3	Log-linear Binary Classification	61
	5.4	Multi-label Classification	62
	5.5	Pembelajaran sebagai Permasalahan Optimisasi	64
	5.6	Batasan Model Linear	68
	5.7	Overfitting dan Underfitting	69
	5.8	Regularization	70
	5.9	Transformasi Data	72
	5.10	Bacaan Lanjutan	73
	Soal	Latihan	73
6	Poh	on Keputusan	75
	6.1	Inductive Learning	75
	6.2	ID3	76
	6.3	Isu pada ID3	80
	6.4	Pembagian Ruang Konsep	80
	Soal	Latihan	81

		Daftar Isi	XIII
7	Support Vector Classifier		. 83
	7.1 Maximal Margin Classifier		. 83
	7.2 Support Vector Classifier		. 88
	7.3 Support Vector Machine		. 89
	7.4 Klasifikasi lebih dari dua kelas		. 90
	7.5 Tips		. 91
	Soal Latihan		. 91
8	Hidden Markov Model		. 93
	8.1 Probabilistic Reasoning		. 93
	8.2 Generative Model		. 96
	8.3 Part-of-speech Tagging		. 97
	8.4 Hidden Markov Model Tagger		. 100
	8.5 Algoritma Viterbi		. 102
	8.6 Proses Training Hidden Markov Model		. 104
	Soal Latihan		. 108
9	Seleksi Fitur dan Metode Evaluasi		. 109
	9.1 Feature Engineering		
	9.2 High Dimensional Data		
	9.3 Feature Selection		. 110
	9.3.1 Subset Selection (Feature Ablation)		. 111
	9.3.2 Shrinkage		. 112
	9.3.3 Principal Components Analysis (Dimension		
	9.4 Cross Validation	,	
	9.5 Replicability, Overclaiming dan Domain Adaptati	ion	. 116
	Soal Latihan		
10	Clustering		. 119
	10.1 K-means, Pemilihan Centroid, Kemiripan Data		
	10.2 Hierarchical Clustering		
	10.3 Evaluasi		
	Soal Latihan		. 124
	vion III Nouvel Notworks		
Day	gian III Neural Networks		
11	Artificial Neural Network		
	11.1 Definisi		
	11.2 Single Perceptron		
	11.3 Permasalahan XOR		
	11.4 Multilayer Perceptron		
	11.5 Interpretability		
	11.6 Binary Classification		. 136

	11.8 Deep Neural Network	137
	11.9 Tips	140
	11.10Regularization and Dropout	141
	11.11Vanishing and Exploding Gradients	
	11.12Rangkuman	
	Soal Latihan	
12	Autoencoder	145
	12.1 Representation Learning	
	12.2 Singular Value Decomposition	
	12.3 Ide Dasar Autoencoder	
	12.4 Representing Context: Word Embedding	151
	12.4.1 Vector Space Model	
	12.4.2 Sequential, Time Series dan Compositionality	
	12.4.3 Distributed Word Representation	
	12.4.4 Distributed Sentence Representation	
	12.5 Tips	
	Soal Latihan	159
13	Arsitektur Neural Network	
	13.1 Convolutional Neural Network	
	13.1.1 Convolution	
	13.1.2 Pooling	
	13.1.3 Rangkuman	
	13.2 Recurrent Neural Network	
	13.3 Part-of-speech Tagging Revisited	
	13.4 Sequence to Sequence	
	13.4.1 Encoder	
	13.4.2 Decoder	
	13.4.3 Beam Search	
	13.4.4 Attention-based Mechanism	
	13.4.5 Variasi Arsitektur Sequence to Sequence	
	13.4.6 Rangkuman	
	13.5 Arsitektur Lainnya	
	13.6 Architecture Ablation	
	Soal Latihan	183
Bag	gian IV Aplikasi dan Topik Tambahan	
14	3	
	14.1 Sistem Rekomendasi	
	14.1.1 Content-based Filtering	
	14.1.2 Collaborative Filtering	
	14.2 Peringkasan Dokumen	191

	Daftar	Isi	XV
14.2.1 Pipelined Approach	. .		193
14.2.2 Single-view Approach			193
14.3 Konklusi			194
14.4 Saran Buku Lanjutan			195
Soal Latihan			196
Referensi			199