Container Networking

Baohua Yang 2016-06-27

Outline

- Introduction
- Access Mechanisms
- Carrier Network Mechanisms
- Potential Solutions
- Conclusion

Introduction

- Two fundamental questions (since VMs)
 - How to access/bind to the under carrier networks
 - How to provide the carrier networks?
- More requirements with Container Cloud
 - Scalability
 - Isolation
 - Dynamics
 - Virtual address (IP, Port)
 - Service Discovery
 - QoS
 - Integration
 - And ...

Today, we try to answer the 2 basic questions.

How to access the network?

Access Mechanisms

- Software Based
 - Virtual ports + Linux Bridges/ovs
- Hardware Based
 - Mapping virtual Nic
- Libnetwork
 - Supported since *1.7.0* (2015-06-16)
 - Docker official API to create network and bind container

Software Based

Hardware Based

Libnetwork

- Experimentally support cross-host networking
- Based on socketplane
- Separated networking module from the core Docker engine
- New pluggable architecture
- Implements the Container Network Model (CNM)
- New network API/CLI

Libnetwork (cont.)

- Main Concepts:
 - Sandbox: Configuration of a container's network stack
 - Network: Endpoints that can communicate with Each other
 - Endpoint: Connects sandbox to networks
 - NetworkController: controller, exposes REST API to Docker Engine
 - Driver: handler real works (IPAM) for networkcontroller
- SDN style
 - Similar to Neutron Core concepts

Libnetwork (cont.)

- Supported drivers:
 - Built-in
 - Null: no network
 - Host: user host network stack
 - Bridge: traditional Docker networking (new implementation)
 - Overlay: multi-host networking
 - Remote: Connecting to Docker Network plugins
 - Uses JSON-RPC
 - Can utilize 3rd party networking solution

How to design the network?

Carrier Network Mechanisms

- NAT
- L2 switching
- L3 routing
- Overlay
 - VLAN
 - GRE
 - VXLAN
 - STT
 - NVGRE
 - GENEVE

Potential Solutions

- NAT
- L2/L3 forwarding
- Overlay
- Flannel
- Weave
- Calico
- Neutron + Kuryr

Flannel

- CoreOS
- bridge + UDP Tunnel

Weave

- Zett.io
- Pcap+UDP Tunnel

Hosts A, B & C running the containers shown in previous figure

Calico

- Pure Layer 3 approach using vRouter + BGP
- Linux routing + iptables

Kuryr

- Bridge CNM with Openstack Neutron
- Kuryr is a Docker network plugin that uses Neutron
 - Provides networking services to Docker
 - Provides containerized images for the common Neutron plugins
 - Provides volume plugin for Docker (planed)

Kubernetes

- CNI
 - Rkt networking model
 - Container: a linux network namespace
 - Network: uniquely addressable entities that can communicate with each other

Noop, bridge, local-host

Kuryr cont.

- Docker Networks: Neutron networks
- Docker Endpoints: Neutron ports
 - Neutron subnets gets created from a predefined Neutron subnetpool
 - Docker IPAM driver for Kuryr in the works
- Docker Join/Leave: plug/unplug

Kubernetes

- Abstractions
 - pods:
 - group of containers on same host
 - IP per pod
 - service:
 - proxy, load balancing
 - IP per service
 - replication controller: maintain exact number of pods
- Networking support
 - kube-proxy: a Kubernetes component
 - flannel: an overlay network (other options available)
 - iptables rules: kernel support

Kubernetes Cluster in Operation

Networking Setup

Neutron: VLAN-Aware VMs

- Provides an efficient way for interconnecting containers deployed within VMs
- Avoids using overlays on top of overlays
- Define new types of Neutron Ports
 - Trunk ports
 - Parent/Children relationship
- Initial patches under review
- Building momentum with increased interest

T: Trunk Port S: Subport

Optimistic Comparison

	Swam	Kubernetes	Mesos	OpenStack	CoreOS	CloudFoundry
NAT	Υ	Υ	Υ	N	Υ	Υ
L2/L3 forwading	Υ	Υ	Υ	Υ	Υ	Υ
Flannel	Υ	Υ	N	N	Υ	N
Weave	Υ	Υ	Υ	N	Υ	N
Calico	Υ	Υ	Υ	Υ	Υ	N
Neutron + Kuryr	Υ	Υ	Υ	Υ	N	N

^{*} CF is discussing to support overlay.

Conclusion

- SDN is the de-facto standard in Cloud, everyone supports it!
- Libnetwork is key in Docker ecosystem.
- Host side networking is becoming more important.
- Many opportunities for new Cloud vendors.

Q&A

