Mathematics 3 (SM 211): Probability and Statistics

Amit Chattopadhyay

IIIT-Bangalore

Ch. 2: Compound Experiment

Syllabus: Outline

Probability:

- 1. The Concept of Probability
- 2. Compound or Joint Experiment
- 3. Probability Distributions-I
- 4. Mathematical Expectation-I
- 5. Probability Distributions-II
- 6. Mathematical Expectation-II
- 7. Some Important Continuous Univariate Distributions
- 8. Convergence of a Sequence of Random Variables and Limit Theorems

Statistics:

- 1. Random Samples
- 2. Sampling Distributions
- 3. Estimation of Parameters
- 4. Testing of Hypothesis
- 5. Regression

Reference Books

- 1. Mathematical Probability by A. Banerjee, S.K. De and S. Sen
- 2. Mathematical Statistics by S.K. De and S. Sen
- 3. Groundwork of Mathematical Probability and Statistics by Amritava Gupta
- 4. Introduction to Probability and Statistics for Engineers and Scientists by S.M. Ross
- 5. Introduction to Probability Models, by S.M. Ross
- 6. Probability and Statistics, (Schaum's Outlines) by Murray R Spiegel, John J Schiller and R Alu Srinivasan

Compound or Joint Experiment

Objective

- Bernoulli Trials
- Poisson Trials
- Binomial and Multinomial Laws

Compound Experiment

Definition

Let E_1 and E_2 be two random experiments with sample spaces $S_1 = \{u_i^{(1)} : i = 1, 2, ..., m\}$ and $S_2 = \{u_j^{(2)} : j = 1, 2, ..., n\}$, respectively. The joint performance of E_1 and E_2 is called the compound experiment E' (say) of E_1 and E_2 with sample space:

$$S_1 \times S_2 = \{(u_i^{(1)}, u_j^{(2)}) : 1, 2, \dots, m; j = 1, 2, \dots, n\}.$$

Compound Experiment

Definition

Let E_1 and E_2 be two random experiments with sample spaces $S_1 = \{u_i^{(1)}: i=1,2,\ldots,m\}$ and $S_2 = \{u_j^{(2)}: j=1,2,\ldots,n\}$, respectively. The joint performance of E_1 and E_2 is called the compound experiment E' (say) of E_1 and E_2 with sample space:

$$S_1 \times S_2 = \{(u_i^{(1)}, u_j^{(2)}) : 1, 2, \dots, m; j = 1, 2, \dots, n\}.$$

Example

 E_1 : throwing a die with $S_1 = \{1, 2, 3, 4, 5, 6\}$

 E_2 : tossing a coin with $S_2 = \{H, T\}$

Then the compound experiment $E^{'}$ of E_1 and E_2 has the sample space $S_1 \times S_2 = \{(1, H), (2, H), (3, H), (4, H), (5, H), (6, H), (1, T), (2, T),$

$$(3, T), (4,T), (5, T), (6,T)$$
.

Stochastically Independent Random Experiments

Definition

The random experiments E_1 and E_2 are called stochastically independent if the assignment of probabilities to the elementary events of their compound experiment $E^{'}$ are:

$$P\{(u_i^{(1)}, u_j^{(2)})\} = P\{u_i^{(1)}\}P\{u_j^{(2)}\}$$

for all i, j.

Stochastically Independent Random Experiments

Definition

The random experiments E_1 and E_2 are called stochastically independent if the assignment of probabilities to the elementary events of their compound experiment $E^{'}$ are:

$$P\{(u_i^{(1)}, u_j^{(2)})\} = P\{u_i^{(1)}\}P\{u_j^{(2)}\}$$

for all i, j.

Theorem

If A and B are two events connected to the random experiments E_1 and E_2 respectively and if E_1 and E_2 are independent, then

$$P\{(A,B)\} = P(A)P(B).$$

Repeated Independent Trials

Successive performance of some experiment is called repeated trials of the experiment

Bernoulli Trials

Binomial Law

Poisson Approximation to Binomial Law

Poisson Trials

Multinomial Law

