Cost Allocation for Routing

- Allocation Problem: If shipments from different firms are sharing the same vehicle, how much should each shipment contribute to the total cost paid to carrier?
 - What is a "fair" allocation?
 - Allocated cost should not exceed cost as an independent shipment
 - Examples:

Ex 22: TL + TL Same O/D

- Shipment 1
 - sets r = 1, d = 300, TL, max c = 300
- Shipment 2
 - same O/D, TL, max c = 300

$$c = c_1 = 300$$

 $c = 300 = c_1 + c_2, \quad c_1 = c_2 = \frac{c}{2} = 150$

Ex 23: TL + LTL Same O/D

- Shipment 1
 - sets r = 1, d = 300, TL, max c = 300
- Shipment 2
 - same O/D, LTL, max c = 100

$$c = 300 = c_1 + c_2$$

	1	2
12	300	0
2 1	200	100
	250	50

$$c_1 = 250$$
, $c_2 = 50$

(Shapley value allocation)

Ex 24: TL + TL Different O/D

- Shipment 1
 - sets r = 1, d = 300, TL, max c = 300
- Shipment 2
 - different O/D, TL, max c = 250

c = 310	$0 = c_1$	$+c_{2}$
---------	-----------	----------

	1	2
12	300	10
2 1	60	250
	180	130

$$c_1 = 180$$
, $c_2 = 130$

Shapley Value Approximation

Shapley value

- Average additional cost each shipment imposes by joining route
- Exact value requires n!

$$\alpha_i = \sum_{0 \leq m \leq n-1} \frac{m!(n-m-1)!}{n!} \sum_{\substack{M \subset N \setminus i \\ |M| = m}} \left(\sigma_{M \cup \{i\}} - \sigma_M\right) \quad \mathbf{g}$$

- Use n^2 pairwise savings approximation:

$$c_i^{\text{sav}} = \frac{c_L^{\text{sav}}}{n} + \frac{1}{n-1} \sum_{j=1}^n \frac{c_{ij}^{\text{sav}} + c_{ji}^{\text{sav}}}{2} - \frac{1}{n(n-1)} \sum_{j=1}^n \sum_{k=1}^n c_{jk}^{\text{sav}}$$

$$c_{ij}^{\text{sav}} = c_i^0 + c_j^0 - c_{(i,j)}, \quad c_L^{\text{sav}} = \sum_{i=1}^n c_i^0 - c_L$$

$$c_L^{\text{sav}} = \sum_{i=1}^n c_i^0 - c_L$$

$$= 300 + 250 + 275 - 430$$

$$= 825 - 430 = $395$$
 savings for load

:	c0	c_equal	c_eq_sav	c_Shap_exact	c_Shap_approx	:			
:-						123:	300	10	120
1:	300	143.33	168.33	130.00	130.00	132:	300	35	95
2:	250	143.33	118.33	122.50	122.50	213:	60	250	120
3:	275	143.33	143.33	177.50	177.50	231:	0	250	180
Total:	825	430.00	430.00	430.00	430.00	312:	120	35	275
Avg:	275	143.33	143.33	143.33	143.33	321:	0	155	275

3

Ex 25: Intercity Trucking

- 4 out 30 available shipments form consolidated load
 - Savings of 824.81 452.47 = 372.34 from consolidation
 - Pairwise approximation differs from exact Shapley value

