Dotplots!

Mark Stenglein, MIP 280A4

Dotplots are a 2D graphical method for comparing two sequences They depict overall similarity between two sequences

Dotplots are a complementary alternative to sequence alignments

1) Split sequence 1 and sequence 2 into non-overlapping words (subsequences of a particular length)

Here, words are length 3 (aka "3-mers")

2) List words from each sequence along the top and side of a matrix

Sequence 1: ACGTCCGTAAAA

		ACG	TCC	GTA	AAA	
	ACG					
	TCG					
	GTA					
-	AAA					

Sequence 2: ACGTCGGTAAAA

3) Color in each cell if the corresponding words from sequence 1 and 2 are identical

Sequence 1: ACGTCCGTAAAA

		ACG	TCC	GTA	AAA
7 \	ACG				
<u>A</u>	TCG				
	GTA				
	AAA				

Sequence 2: ACGTCGGTAAAA

3) Alternatively, color can reflect the level of identity / similarity between words

Dotplots are a different, more visual way to represent sequence similarity

	ACG	TCC	GTA	AAA
ACG				
TCG				
GTA				
AAA				

Sequence 1: ACGTCCGTAAAA

Sequence 2: ACGTCGGTAAAA

Identity between sequences does not have to be along the diagonal

Sequence 3: AAATCCGTAAAA

Sequence 4:

AAATCGGTAAAA

These sequences both have repeated sequence (AAA) at their beginning and end

Dotplots combine global and local alignment information

Sequence 3: AAATCCGTAAAA

Sequence 4:

AAATCGGTAAAA

These sequences both have repeated sequence (AAA) at their beginning and end

This additional level of information is not captured in a single alignment

Sequence 1: AAATCCGTAAAA

Sequence 2: AAATCGGTAAAA

You can make a dotplot using the same sequence twice

Sequence 3: AAATCCGTAAAA

Sequence 3:

AAATCCGTAAAA

Self dot plots will always have the diagonal filled in

Self dot plots can identify regions of self-similarity within a sequence

Dotplots allow you to visualize structural differences between sequences

The same plasmid, but with a GFP gene cloned into it

Bases 909-1391 in pcDNA3.1-GFP are absent in pcDNA3.1

This represents an insertion of the GFP gene into pcDNA3.1

(Or a deletion of the GFP gene from pcDNA3.1-GFP)

Dotplots allow you to visualize structural differences between sequences For example, a gene duplication

Bases 1000-2000 in the shorter sequence are present in 2 copies in the longer sequence

A gene inversion on a dot plot

Bases 1000-2000 in the two sequences are reverse complements of each other

Simple tandem repeat in a herpes simplex virus genome self dotplot

Biological sequence repeats can produce beautiful patterns in dot plots

Human parvovirus B19 self dotplot

Zoomed in view of upper left corner

Bases ~180-360 are the reverse complement of bases 1-180

Genus Protoparvovirus - minute virus of mice - heterotelomeric - 5148 nt

Genus Erythroparvovirus - human parvovirus B19 - homotelomeric - 5596 nt

Genus Ambidensovirus - Galleria mellonella densovirus - homotelomeric - 6039 nt

