Санкт-Петербургский политехнический университет Петра Великого Институт компьютерных наук и технологий Высшая школа программной инженерии

Курсовая работа по вычислительной математике Вариант №26

Выполнил студент гр.13534/21 Н.А. Русанов

Преподаватель С. П. Воскобойников

«___»____202__ г.

1. Постановка задачи

Залание N 26.

Исследование колебаний нелинейной пружины.

Уравнение движения некоторой нелинейной пружины имеет вид:

$$\frac{d^2y}{dt^2} = -\frac{q}{4k^2} \big[\big(1 - k^2\big) y + 2k^2 y^3 \big];$$

$$y(0) = A;$$

$$y'(0) = B;$$

$$t \in [0,T]$$
.

Построить график y(t) и оценить погрешность результата и влияние на точность погрешности исходных данных.

Значения q, k, A, B, Т задаются преподавателем. Рекомендуемый шаг построения графика h=0.5.

Вариант N 26C.

$$A = \left(\int_{0}^{1} \frac{1 - e^{-0.8Z}}{z(1 + 1.6z)} dz - 0.40874702\right)^{4}; \qquad B = 0.05452555 \cdot x^{*}, \text{ где } x^{*}\text{- ненулевой корень}$$

уравнения: $1 + x = e^{0.75X}$.

Значения k, q, Т являются решением системы уравнений:

$$441k - 162q - 378T = 423$$

$$\left\{-162k + 144q + 216T = 414\right\}$$

$$-378k + 216q + 414T = 216.$$

2. Тексты программ

$$A = \left(\int_{0}^{1} \frac{1 - e^{-0.8Z}}{z(1 + 1.6z)} dz - 0.40874702\right)^{4};$$

Вычисляем интеграл для A с помощью функции QUANC8. После интегрирования вычитаем константу и возводим в степень в соответсвии с условием.

$$1 + x = e^{0.75X}$$

Для нахождения B находим нули функции c помощью ZEROIN. Промежуток вычислен приближенно. (AX = 0.5, BX = 0.8). Zeroin возвращает нули функции, по условию нам нужен не нулевой x^* . Умножаем на константу, получаем переменную B.

$$\begin{cases} 441k - 162q - 378T = 423 \\ -162k + 144q + 216T = 414 \\ -378k + 216q + 414T = 216. \end{cases}$$

С помощью DECOMP и SOLVE находим последние неизвестные переменные k, q, t.

```
Код программы приводится ниже:
```

```
!Function for A
real function functionA(z)
    real z
    functionA = ((1.0 - \exp(-0.8*z))/(z*(1 + 1.6 * z)))
    return
end
!Function for B
real function functionB(x)
    real x
functionB = 1 + x - exp(0.75*x)
return
End
program main
external functionB, functionA, ZEROIN
integer NOFUN,i,j
!vars for quanc
                        :: resA,interval_a,interval_b,rellerr,abserr,flag,errest,result
real
!vars for zeroin
real
                        ::resB,functionB,AX,BX,TOL,ZEROIN
```

```
!vars for decomp, solve
real
                       :: A(3,3),B(3), WORK(3),COND
                        :: NDIM, N, IPTV(3), In, Out
integer
character(*), parameter :: input_file= "../data/input.txt", output_file = "output.txt"
NDIM = 3
open(file=input_file, newunit=In)
    read(In,*) (A(:,i),i=1,N)
   read(In,*) (B(i), i=1,N)
close (In)
    !calclulate A
    interval_a = 1.e-06 !! divide by zero
  interval b = 1.0
    rellerr = 1.e-06
    Abserr = 0.0
Out = 0
open(file=output_file, newunit=Out)
    call quanc8(functionA,interval_a,interval_b,abserr,rellerr,result,errest,NOFUN,flag)
write(Out,1) result,errest,NOFUN,flag
    ! find A
    resA = (result - 0.40874702)**4
   write (Out,2) resA
   !calculate B
AX = 0.5
BX = 0.8
   TOL = 1.0E-7
   resB = ZEROIN(AX, BX, functionB, TOL)
   resB = resB * 0.05452555
  write (Out, 3) resB
  !calculate system
  write(Out,*) "params:"
  write (Out,*) "A is "
  write(Out,4) (A(:,j),j=1,N)
```

```
write (Out,*) "B is "
write(Out,4) B
!CALCULATE SYSTEM
call decomp(NDIM,N,A,COND, IPTV,WORK)
write(Out,5) COND
call SOLVE(NDIM,N,A,B,IPTV)
write(Out,7)
write(Out,6) B(:)
close(Out)
```

3. Результаты

3.1. При выполнении программы были получены следующие значения :

```
A=0.13250E-23 B=0.4000001E-01 k=4.9999995\approx 5 q=4.0000019\approx 4 t=2.9999983\approx 3 Число обусловленности COND = 0.11429E+03
```

4. Решение исходного уравнения с помощью RKF45

Приведем исходное дифференциальное уравнение второго порядка к системе из двух дифференциальных уравнений первого порядка:

$$y'=z$$

 $z'=\frac{-q}{4k^2}[(1-k^2)y+2k^2y^3]$

В таком виде у нас имеются все входные данные, чтобы решить систему с помощью подпрограммы RKF45. В качестве YP(1) и YP(2) примем у' и z' соответственно. Для хранения переменных z и y будем использовать вектор из двух компонентов w: z=w(1) и y=w(2).

Код функции, вычисляющей правые части уравнений:

```
subroutine spring_vibration (t, w, yp)
    real t, w(2), yp(2)
    real q, k
    !TO DO input params
    q = 4.0
    k = 5.0
    yp(1)=(-q/(4*k**2))*((1-k**2)*w(2)+2*k**2*w(2)**3)
    yp(2)=w(1)
    return
end
```

Код в основном блоке, из которого вызывается RKF45:

```
! ======= B(1) = k B(2) = q B(3) = T========
! TODO rename B(3) !!!
!init vars for dif system
neqn = 2
w(1) = resB
w(2) = resA
t = 0.0
q = B(1)
k = B(2)
```

```
Tfinal = 30.0
iflag = 1
tout = t
tprint = 0.5
!calculate RKF
10 call RKF45(spring_vibration,neqn,w,t,tout,relerr,abserr,iflag,rwork,iwork)
        write (0ut, 11) t, w(1), w(2)
        go to (80,20,30,40,50,60,70,80),iflag
20 tout=tprint + t
        if(t.lt.tfinal) go to 10
        stop
30 write( Out,31)relerr,abserr
      go to 10
40 write (Out, 41)
      go to 10
50 abserr=0.1e-07
     write (Out, 31) relerr, abserr
      go to 10
60 relerr=relerr*10.0
     write (Out, 31) relerr,abserr
     iflag=2
     go to 10
70 print 71
     iflag=2
      go to 10
80 write (Out, 81)
close(Out)
      stop
Результаты вычислений:
```

Т	W(1)	W(2)
0.00	0.040000	0.13249834E-23
0.50	0.044895	0.20809447E-01
1.00	0.060741	0.46706099E-01
1.50	0.091211	0.83971247E-01
2.00	0.142834	0.14142759E+00
2.50	0.224253	0.23178609E+00
3.00	0.339116	0.37141255E+00
3.50	0.456752	0.57192802E+00
4.00	0.449576	0.80799985E+00
4.50	0.143316	0.96945804E+00
5.00	-0.297124	0.92687744E+00
5.50	-0.480285	0.71863008E+00
6.00	-0.416788	0.48843551E+00
6.50	-0.291941	0.31127644E+00
7.00	-0.189160	0.19244070E+00
7.50	-0.120113	0.11641417E+00
8.00	-0.077514	0.67922696E-01
8.50	-0.053234	0.35863772E-01
9.00	-0.041857	0.12553735E-01
9.50	-0.040711	76852413E-02
10.00	-0.049525	29804738E-01
10.50	-0.070379	59202220E-01
11.00	-0.108007	10296224E+00
11.50	-0.169991	17125881E+00
12.00	-0.264608	27843982E+00
12.50	-0.387864	44091794E+00
13.00	-0.479832	66182888E+00
13.50	-0.370963	88725710E+00
14.00	0.034510	98001391E+00
14.50	0.407079	85875791E+00
15.00	0.473751	62693262E+00
15.50	0.369283	41322744E+00
16.00	0.248574	25967664E+00
16.50	0.159055	15922888E+00
		95312856E-01
17.00	0.101194	
17.50	0.066429	54197758E-01
18.00	0.047567	26249997E-01
18.50	0.040285	47153379E-02
19.00	0.042861	0.15665371E-01
19.50	0.055907	0.39877474E-01
20.00	0.082474	0.73810220E-01
20.50	0.128407	0.12556255E+00
21.00	0.202101	0.20684615E+00
21.50	0.309795	0.33343571E+00
22.00	0.433551	0.51976287E+00
22.50	0.473520	0.75379735E+00
23.00	0.242120	0.94677848E+00
23.50	-0.206924	0.95653212E+00
24.00	-0.466631	0.77421182E+00
24.50	-0.442732	0.53878450E+00
25.00	-0.320553	0.34711561E+00
25.50	-0.210087	0.21579003E+00
26.00	-0.133574	0.13124606E+00
26.50	-0.085589	0.77454843E-01
27.00	-0.057618	0.42337183E-01
27.50	-0.043558	0.17534509E-01
28.00	-0.040134	29801358E-02
28.50	-0.046532	24224143E-01
29.00	-0.064268	51387813E-01
29.50	-0.097423	91045223E-01
30.00	-0.152954	15252678E+00
50.00	-0.132334	.132320701 100