4. Esperanza y Varianza

- 1. Esperanza
- 2. Varianza
- 3. Momentos
- 4. Covarianza y correlación
- 5. Esperanza condicional
- 6. Desigualdad de *Chebychev*
- 7. Media muestral

Esperanza de una v.a.

• Dada una v.a. X con función de cuantía o densidad f(x), se llama esperanza matemática (o media) de X, E(X) al número:

• V.A. discreta:
$$E(X) = \sum_{i} x_i f(x_i)$$

X	1	2	3	5
f	0'4	0'4	0'1	0'1

• V.A. continua:
$$E(X) = \int_{-\infty}^{\infty} xf(x) dx$$

- Es un número (puede ser un valor de X), no una probabilidad.
- Equivale al centro de masas (equilibrio).

- Puede no existir (aun siendo simétrica).
- Distribución simétrica: $\exists \mu \ \forall x : f(\mu x) = f(\mu + x)$

Problemas

• **Problema 4.1**. Obtener el valor medio o esperanza de la puntuación en el lanzamiento de un dado.

 Problema 4.2. Obtener la esperanza de la v.a. X con función de densidad:

$$f(x) = \begin{cases} \frac{1}{20}x^3, & x \in [1,3] \\ 0, & resto \end{cases}$$

Esperanza de una función

• Dada una v.a. Y que sea función de otra Y = h(X) de la que conocemos su f(x), entonces la esperanza de Y es:

• V.A. discreta:
$$E(Y) = \sum_{i} y_{j} f_{Y}(y_{j}) = E(h(X)) = \sum_{i} h(x_{i}) f(x_{i})$$

• V.A. continua: $E(Y) = \int_{-\infty}^{\infty} y f_Y(y) \, dy = E(h(X)) = \int_{-\infty}^{\infty} h(x) f(x) \, dx$

• No es necesario calcular f_y ya que es la misma f.

<u>.</u>	X	0	1	2
	f	0'1	0'3	0'6
		V	V	1
Y :	$=X^2$	0	1	4
f_Y				

Dada la función de cuantía:

X	-1	0	1	2	4
f	0'2	0'1	0'2	0'4	0'1

Hallar la media de Y = 2X+3.

• Hallar la esperanza de $Y = X^3$ siendo la fd de X:

$$f(x) = \begin{cases} \frac{3}{8}x^2, & x \in [0,2] \\ 0, & resto \end{cases}$$

Esperanza de una función de varias v.a.

- Dada una v.a. Z que es función de otras dos Z = h(X,Y) de la que conocemos la función de cuantía/densidad conjunta f (x, y), entonces la esperanza de Z es:
 - V.A. discretas:

$$E(Z) = E(h(X,Y)) = \sum_{i} \sum_{j} h(x_i, y_j) f(x_i, y_j)$$

• V.A. continuas:

$$E(Z) = E(h(X,Y)) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} h(x,y)f(x,y) dxdy$$

Dada la función de cuantía:

Y				f
1	0'1	0'5	0	
0	0'2	0'1	0'1	
	0	1	2	X

Hallar la media de Z = 2X+Y.

• Hallar la esperanza de Z = 2X + Y siendo la fd conjunta:

$$f(x,y) = \begin{cases} 4xy, & (x,y) \in [0,1] \times [0,1] \\ 0, & resto \end{cases}$$

Estadística

Propiedades de la Esperanza

- Propiedades:
 - E(aX + b) = aE(X) + b
 - $E(X_1 + X_2 + \cdots) = E(X_1) + E(X_2) + \cdots$
 - Si las v.a. son independientes:

$$E(X_1 \cdot X_2 \cdot \cdots) = E(X_1) \cdot E(X_2) \cdot \cdots$$

- Esperanza de la distribución uniforme:
 - V.A. discreta (media aritmética): $E(X) = \sum x_i \cdot \frac{1}{n} = \frac{\sum_{i=1}^{n} x_i}{n}$
 - V.A. continua: $f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & resto \end{cases}$ $E(X) = \int_{a}^{b} x \frac{1}{b-a} dx = \frac{a+b}{2}$

En una asociación de acampada hay 300 familias.
 Considerando el nº de hijos, tenemos que 100 familias tienen un hijo, 70 tienen 2 hijos, 40 tienen 3, 10 familias tienen 4, y el resto no tienen hijos.

A un campamento se inscriben 30 familias de la asociación sin indicar el número de hijos.

Aparte de los adultos, calcula cuántos niños esperamos que vayan al campamento.

Varianza

La varianza es una medida de la dispersión de una v.a. en torno a su media $\mu = E(X)$.

- Se define como: $Var(X) = E((X \mu)^2)$
- Se calcula como: $Var(X) = E(X^2) E(X)^2$
 - Puede no existir (es una esperanza).
 - Siempre es <u>positiva</u>.
 - **Desviación típica** σ : raíz cuadrada <u>positiva</u> de la varianza.

Dada la función de cuantía:

X	-1	0	1	2	4
f	0'2	0'1	0'2	0'4	0'1

Hallar la varianza y la desviación típica.

Hallar la varianza y la desviación típica de la v.a. X con fd:

$$f(x) = \begin{cases} \frac{3}{8}x^2, & x \in [0,2] \\ 0, & resto \end{cases}$$

Propiedades de la Varianza

- Propiedades:
 - $Var(aX + b) = a^2Var(X) \rightarrow no está afectada por traslaciones.$
 - Si las v.a. son independientes:

$$Var(X_1 + X_2 + \cdots) = Var(X_1) + Var(X_2) + \cdots$$

- Varianza de la distribución uniforme:
 - $Var(X) = \frac{1}{n} \sum_{i=1}^{n} x_i^2 \mu^2$ • V.A. discreta:
 - V.A. continua:

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & resto \end{cases}$$
$$Var(X) = \frac{(a-b)^2}{12}$$

 En una fábrica se producen neumáticos cuyo índice de degradación es una v.a. X con función de densidad:

$$f(x) = \begin{cases} x/8, & x \in [0,4] \\ 0, & resto \end{cases}$$

El precio base del neumático se calcula como $Y = 3X + 20 \in$. Obtener la esperanza y la varianza de Y.

Momentos

- Los momentos son parámetros que permiten caracterizar la distribución aportando información sobre la misma.
- Momentos <u>centrales</u>
 - Dada una v.a. X con media μ , momento central de orden k es:

$$E((X-\mu)^k)$$

- Momento central de orden 2 es la varianza: $Var(X) = E((X \mu)^2)$
- Momentos respecto al <u>origen</u>
 - Dada una v.a. *X*, momento de orden *k* respecto al origen es:

$$E(X^k)$$

• Momento de orden 1 es la media: $\mu = E(X)$.

Función generatriz de momentos

Dada una v.a. *X*, se llama f.g.m. a la función real de variable *t*:

$$\psi(t) = \mathrm{E}(e^{tX})$$

Si la f.g.m. existe en un entorno de 0, entonces es derivable en t = 0 un número arbitrario de veces:

$$\psi^{(k)}(0) = \mathrm{E}(X^k)$$

- La f.g.m. por tanto permite generar los momentos respecto al origen:
 - Obtener la f.g.m. calculando la esperanza de e^{tX} (debemos conocer la función de cuantía o densidad).
 - Realizamos derivadas sucesivas hasta el orden del momento buscado.
 - Sustituimos en las derivadas t=0 obteniendo los momentos.

Universidad de Alicante

Estadística

Dada la función de cuantía:

X	-1	0	1	2	4
f	0'2	0'1	0'2	0'4	0'1

Hallar la esperanza y la varianza usando la f.g.m.

$$\psi(t) = \mathcal{E}(e^{tX}) = \sum_{x} e^{tx} f(x) = e^{-t} \cdot 0'2 + e^{0t} \cdot 0'1 + e^{t} \cdot 0'2 + e^{2t} \cdot 0'4 + e^{4t} \cdot 0'1$$

 $Var(X) = E(X^2) - E(X)^2 = 3'6 - 1'2^2 = 2'16$

$$\psi'(t) = -0'2e^{-t} + 0'2e^{t} + 0'8e^{2t} + 0'4e^{4t}$$

$$E(X) = \psi'(0) = -0'2 + 0'2 + 0'8 + 0'4 = 1'2$$

$$\psi''(t) = 0'2e^{-t} + 0'2e^{t} + 1'6e^{2t} + 1'6e^{4t}$$

$$E(X^{2}) = \psi''(0) = 0'2 + 0'2 + 1'6 + 1'6 = 3'6$$

Propiedades de la f.g.m.

- Sea una v.a. con f.g.m. ψ_X y sea Y = aX + b, entonces $\psi_{\rm V}(t) = e^{bt}\psi_{\rm V}(at)$
- Sean *n* v.a. independientes X_i con f.g.m. ψ_i y sea Y la variable suma $Y = X_1 + \cdots + X_n$ con f.g.m. ψ_Y , entonces

$$\psi_Y(t) = \prod_{i=1}^n \psi_i(t)$$

- Si las f.g.m. de dos v.a. X e Y son idénticas en un entorno de 0, entonces las distribuciones de X e Y son idénticas.
 - Básicamente, si dos v.a. tienen los mismos momentos, entonces tienen la misma distribución.