GEOMETRIA ANALÍTICA

Ponto médio (x_M, y_M)

Dado um segmento de reta AB, tal que $A(x_A, y_A)$ e $B(y_B, y_B)$ são pontos distintos, vamos determinar as coordenadas de M, que é ponto médio de AB.

Ponto médio (x_M, y_M)

Por semelhança de triângulos ($\Delta ACM \sim \Delta MEB$), temos:

$$d(A,C) = d(M,E)$$

$$d(C,M) = d(E,B)$$

Ponto médio (x_M, y_M)

Logo:

$$x_M = \frac{x_A + x_B}{2}$$
$$y_M = \frac{y_A + y_B}{2}$$

Dados três pontos $A(x_1, y_1)$, $B(x_2, y_2)$ e $C(x_3, y_3)$, dizemos que os pontos estão alinhados se e somente se:

$$\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix} = 0$$

$$\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix} = 0$$

$$x_1 \cdot y_2 \cdot 1 + y_1 \cdot 1 \cdot x_3 + x_2 \cdot y_3 \cdot 1$$

$$\begin{bmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{bmatrix} = 0$$

$$-x_3 \cdot y_2 \cdot 1 - x_2 \cdot y_1 \cdot 1 - x_1 \cdot y_3 \cdot 1$$

Exemplo:

Verifique se os pontos A, B e C são colineares.

$$A(2,1), B(3,2), C(0,-1)$$

Solução:

$$2 \cdot 2 \cdot 1 + 1 \cdot 1 \cdot 0 + (-1 \cdot 3 \cdot 1) - 1 \cdot 2 \cdot 0 - 1 \cdot 3 \cdot 1 - (-1) \cdot 1 \cdot 2$$

 $4 + 0 - 3 - 0 - 3 + 2 = 0$

Exercícios:

- 1) Verifique se os pontos A, B e C estão alinhados quando:
- a) A (0,2), B (-3,1) e C (4,5)
- **b)** A (-2,6), B (4,8) e C (1,7)
- c) A (-1,3), B (2,4) e C (-4,10)

Exercícios:

2) Determine m para que os pontos A (0,-3), B (-2m,11) e C (-1,10m) estejam em linha reta.

Exercícios:

3) Os pontos A (-1,2), B (3,1) e C (a, b) são colineares. Calcule a e b de modo que o ponto C esteja localizado sobre o eixo das abscissas.

Exercícios:

4) (UCMG) Determine t, sabendo que os pontos A $\left(\frac{1}{2}, t\right)$, B $\left(\frac{2}{3}, 0\right)$ e C (-1, 6) são colineares.

"Dar o melhor de si é mais importante que ser o melhor".

Mike Lermer