AVL Trees

Cost of the BST Operations

Our Goal

 Develop a data structure that has guaranteed O(log n) worst-case complexity for lookup, insert and find_min

➤ always!

	Unsorted array	Array sorted by key	Linked list	Hash Table	
lookup	O(n)	O(log n)	O(n)	O(1) average and amortized	O(log n)
insert	O(1) amortized	O(n)	O(1)	O(1) average and amortized	O(log n)
find_min	O(n)	O(1)	O(n)	O(n)	O(log n)

Do binary search trees achieve this?

Complexity

Do lookup, insert and find_min have O(log n) complexity?

- But we are interested in the worst-case complexity
- Do lookup, insert and find_min have O(log n) complexity for every BST?

Complexity

 Do lookup, insert and find_min have O(log n) complexity for every BST?

 Consider this sequence of insertions into an initially empty BST

insert 10 insert 20 insert 30 insert 40 insert 50 insert 60 O It produces this tree:

 Then to lookup 70, we have to go through all the nodes

➤ This is O(n)

This tree has degenerated into a linked list!

10

20

60

 If the insertion sequence is sorted, lookup cost O(n) Inserting 70 would also cost O(n)

Exercise: find a sequence that yields O(n) cost for find_min

Back to Square One

Something

else ...

 Develop a data structure that has guaranteed O(log n) worst-case complexity for lookup, insert and find min

➤ always!

	Unsorted array	Array sorted by key	Linked list	Hash Table	BST	
lookup	O(n)	O(log n)	O(n)	O(1) average and amortized	O(n)	O(log n)
insert	O(1) amortized	O(n)	O(1)	O(1) average and amortized	O(n)	O(log n)
find_min	O(n)	O(1)	O(n)	O(n)	O(n)	O(log n)

- BSTs are **not** the data structure we were looking for
 - O What else?

Balanced Trees

An Equivalent Tree

 Is there a BST with the same elements that yields O(log n) cost?

• How about this one?

- It contains the same elements,
- o it is sorted,
- but the nodes are arranged differently

Reframing the Problem

- Depending on the tree, BST lookup can cost
 - O(log n) or
 - O(n)
- Is there something that remains the same cost-wise?
 - ➤ Can we come up with a cost parameter that gives the same complexity in every case?
 - The cost of lookup is determined by how far down the tree we need to go
 - ➤ if the key is in the tree, the worst case is when it is in a leaf
 - → if it is not in the tree, we have to reach
 a leaf to say so
 - The length of the longest path from the root to a leaf is called the height of the tree

Reframing the Problem

- lookup for a tree of height h has complexity O(h)
 - always!
 - o same for insert and find_min

- But ...
 - \circ h can be in O(n) or in $O(\log n)$
 - > where *n* is the number of nodes in the tree

The Height of a Tree

- The length of the longest path from the root to a leaf
- Let's define it mathematically

Balanced Trees

- A tree is **balanced** if $h \in O(\log n)$
 - where h is its height andn is the number of nodes

On a balanced tree, lookup, insert and find_min cost O(log n)

Self-balancing Trees

New goal:

o make sure that a tree remains balanced as we insert new nodes

... and continues to be a valid BST

- Trees with this property are called self-balancing
 - There are lots of them.
 - > AVL trees

We will study this one

- > Red-black trees
- ➤ Splay trees
- ➤ B-trees
- **>** ...

Why so many?

- there are many ways to guarantee that the tree remains balanced after each insertion
- some of these tree types have other properties of interest

Self-balancing Trees

- "the tree stays balanced after each insertion" is too vague
 - $\circ h \in O(\log n)$ is an asymptotic behavior
 - > we can't check it on any given tree
- We want algorithmically-checkable constraints that
 - 1. guarantee that $h \in O(\log n)$
 - 2. are cheap to maintain
 - > at most O(log n)
- We do so by imposing an additional representation invariants on trees
 - > on top of the ordering invariant
 - \circ this balance invariant, when valid, ensures that $h \in O(\log n)$

A Bad Balance Invariant

- Require that
 - (the tree be a BST)
 - all the paths from the root to a leaf have height either h or h-1
 - the leaves at height h be on the left-hand side of the tree
- Does it satisfy our requirements?
 - 1. guarantees that $h \in O(\log n)$
 - ➤ Definitely!
 - 2. cheap to maintain at most $O(\log n)$
 - > Let's see

A Bad Balance Invariant

- Does it satisfy our requirements?

 1. guarantees that $h \in O(\log n)$ Let's insert 5 in this tree
 - We changed all the pointers to maintain the balance invariant!
 ➤ O(n)
 - 2. cheap to maintain at most $O(\log n)$

AVL Trees

AVL Trees

Landis

The first self-balancing trees (1962)

That's what the balance invariant of AVL trees is called

Height invariant

At every node, the heights of the left and right subtrees differ by at most 1

- An AVL tree satisfies two invariants
 - the ordering invariant
 - the height invariant

The Invariants of AVL Trees

- The nodes are ordered
- At every node, the heights of the left and right subtrees differ by at most 1
- At any node, there are 3 possibilities

• Is it sorted?

 Do the heights of the two subtrees of every node differ by at most 1?

- Is it sorted?
- Do the heights of the two subtrees of every node differ by at most 1?

• Is it sorted?

- **1**
- Do the heights of the two subtrees of every node differ by at most 1?
 It doesn't hold at node 15

• We say there is a violation at node 15

NO

- Is it sorted?
- Do the heights of the two subtrees of every node differ by at most 1?

- Is it sorted?
- Do the heights of the two subtrees of every node differ by at most 1?
 - There is a violation at node 15
 and another violation at node 10

 Do the heights of the two subtrees of every node differ by at most 1?

The height invariant does **not** imply that the length of every path from the root to a leaf differ by at most 1

Rotations

Insertion Strategy

- 1. Insert the new node as in a BST
 - this preserves the ordering invariant
 - but it may break the height invariant
- 2. Fix any height invariant violation
 - o fix the **lowest** violation
 - > this will take care of all other violations

We will see why later

- This is a common approach
 - of two invariants, preserve one and temporarily break the other
 - o then, patch the broken invariant
 - > cheaply

Example 1

Example 2

Example 1 Revisited

• If this example was part of a bigger tree, what would it look like?

Example 2

Example 2

Left Rotation

This transformation is called a left rotation

- Note that it maintains the ordering invariant
- We do a left rotation when C has become too tall after an insertion

Right Rotation

The symmetric situation is called a right rotation

- It too maintains the ordering invariant
- We do a right rotation when A has become too tall after an insertion

Single Rotations Summary

Right and left rotations are single rotations

- They maintain the ordering invariant
- We do one of them when
 - the lowest violation is at the root
 - one of the outer subtrees has become too tall

That's either y or x

That's either A or C respectively

Example 3

Double Rotations

 We can generalize this example to the case where the nodes have subtrees

Right-left Double Rotation

Here's the general pattern

 We do this double rotation when the subtree rooted at y has become too tall after an insertion

Left-right Double Rotation

The symmetric transformation is a left-right double rotation

 We do this double rotation when the subtree rooted at y has become too tall after an insertion

Double Rotations Summary

- Double rotations maintain the ordering invariant
- We do one of them when
 - o the **lowest violation** is at the root
 - one of the inner subtrees has become too tall

Why is it Called a *Double* Rotation?

AVL Rotation When-to

If the insertion that caused the lowest violation x happened ...

... **then** do a ...

Self-balancing Requirements

Does the height constraint satisfy our requirements?

Height Analysis

Insertion into an AVL Tree

 Assume we are inserting a node into an AVL tree of height h

One of two things can happen:

- 1. This causes a height violation
 - o we fix it with a rotation
 - ➤ the resulting tree is a valid AVL tree
 - the fixed tree still has height h
 - > the tree does not grow
- 2. This does not cause a violation
 - the resulting tree has height h or h+1
 - ➤ the tree may grow only when there is no violation

Let's see

why

Fixing the Lowest Violation

- Assume an insertion causes a violation
 - > possibly more than one

- We will focus on the subtree under the lowest violation
 - We will find that fixing it yields a subtree with the same height h as the original subtree
 - This necessarily resolves all violations above it

- because the height of this subtree has not changed

Fixing the lowest violation fixes the whole tree

The Lowest Violation

- Let's expand the tree
 - O T cannot be empty ————No violation possible
 - o the new node can have been inserted in its left or right subtree
- Let's consider insertion in T_R

- To have a violation
 - ➤ T_R must be taller than T_L
 - h-1 vs. h-2
 - > T_R must have grown after the insertion
 - from h-1 to h

The Lowest Violation

Let's expand the right subtree

○ T_R cannot be empty

No violation possible

 the new node can have been inserted in its left or right subtree

○ Let's examine each case in turn

Insertion in the Outer Subtree

• How tall are T_i and T_o?

$$0 h_0 = h-2$$

> T_o needs to be as tall as possible to causes the violation

$$0 h_i = h_0 = h-2$$

- h_i may be either h-2 or h-3
- ➤ but if h_i were h-3, the lowest violation would be here

Insertion in the Outer Subtree

T_i and T_o have height h-2

This is the situation where we do a single left rotation

○ Is this an AVL tree?

Insertion in the Outer Subtree

Is this an AVL tree?

- BST insertion and the rotations maintains the ordering invariant
- T_L, T_i and T'_o are AVL trees
 ➤ because x was the lowest violation
- T_L-x-T_i is an AVL tree of height h-1
 ➤ because both T_L and T_i have height h-2
- (T_L-x-T_i)-y-T'_o is an AVL tree of height h
 because T'_o also has height h-1

The height invariant is restored

• How tall are T_i and T_o?

- \circ h_i = h-2
 - > T_i needs to be as tall as possible to causes the violation
- $0 h_0 = h_i = h-2$

 - ➤ but if h_o were h-3, the lowest violation would be here

T_i and T_o have the same height

T_i and T_o have height h-2

- T'_i contains at least the inserted node
 - ➤ let's expand it
 - T₁ and T₂ have height h-2 or h-3
 - ➤ one of them has height h-2
 - o the inserted node could be
 - \triangleright the root if T₁ and T₂ are empty
 - > in T₁
 - \triangleright in T₂

 This is the situation where we do a double right/left rotation

○ *Is this an AVL tree?*

Is this an AVL tree?

BST insertion and the rotations maintains the ordering invariant

Is this an AVL tree?

- T_L, T₁, T₂ and T_o are AVL trees
 - because x was the lowest violation
- T_I -x-T₁ is an AVL tree of height h-1
 - because T_L has height h-2 and
 - ➤ T₁ has height either h-2 or h-3
- \circ T₂-z-T₀ is an AVL tree of height h-1
 - ▶ because T₂ has height either h-2 or h-3
 - > To has height h-2 and
- \circ (T_L-x-T_i)-y-(T₂-z-T_o) is an AVL tree of height h

The height invariant is restored

Summary

- When inserting into an AVL tree of height h
 - \circ If there is no violation, the tree height remains h or grows to h+1
 - If there is a violation, the tree height remains *h*
- To fix a violation
 - perform a rotation on the lowest violation
 - > a single rotation if the node was inserted in its outer subtree
 - > a double rotation if the node was inserted in its inner subtree
- One rotation fixes the whole tree
 - The resulting tree is again an AVL tree
 - lookup, insert and find_min cost O(log n) in it
 - > where *n* is the number of nodes