САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ МАТЕМАТИКО-МЕХАНИЧЕСКИЙ ФАКУЛЬТЕТ КАФЕДРА ФИЗИЧЕСКОЙ МЕХАНИКИ

МЕТОДЫ ИЗМЕРЕНИЙ И ЭЛЕКТРОМЕХАНИЧЕСКИЕ СИСТЕМЫ

Отчёт по лабораторной работе №1

«ОБРАБОТКА РЕЗУЛЬТАТОВ ФИЗИЧЕСКИХ ИЗМЕРЕНИЙ. ИЗМЕРЕНИЕ ЦИФРОВЫМ ВОЛЬТМЕТРОМ НАПРЯЖЕНИЯ, СОЗДАВАЕМОГО ПО СТРЕЛОЧНОМУ ПРИБОРУ»

Выполнил студент: Почерникова Елизавета Кирилловна группа: 23.Б12-мм

> Проверил: Морозов Виктор Александрович

Санкт-Петербург, 2025 г.

Содержание

1	Вве	Введение					
			работы				
			емые задачи				
2	Осн	овная	часть				
	2.1	Teoper	тическая часть				
	2.2	-	риментальная часть				
			Погрешность прибора				
	2.3		отка данных и обсуждение результатов				
		2.3.1	Исходный код				
		2.3.2	Исходный код для расчёта инструментальной погрешности при-				
			бора				
		2.3.3	Исходный код программы для обработки 50 измерений на точ-				
			ной шкале				
		2.3.4	Таблицы				
		2.3.5	Графики				
3	Вы	волы					

1 Введение

В данной лабораторной работе проводится многократное измерение напряжения цифровым вольтметром, задаваемого с помощью стрелочного прибора. Целью работы является освоение методики прямых измерений и оценка случайных и систематических погрешностей, возникающих в ходе эксперимента. Результаты измерений подвергаются статистической обработке: рассчитывается среднее значение напряжения, строится гистограмма распределения данных и вычисляется средняя квадратичная погрешность.

1.1 Цель работы

- Оценить точность измерений и проанализировать влияние случайных и систематических погрешностей;
- Провести статистическую обработку результатов измерений: вычислить среднее значение, построить гистограмму распределения данных и определить среднюю квадратичную погрешность.

1.2 Решаемые задачи

- Многократно измерить напряжение цифровым вольтметром;
- Проанализировать результаты: построить гистограмму, рассчитать среднее значение и погрешности;
- Сравнить экспериментальные погрешности с паспортной точностью прибора.

2 Основная часть

2.1 Теоретическая часть

В процессе многократных измерений физической величины полученные результаты могут различаться из-за наличия погрешностей. Чтобы определить наиболее вероятное значение измеряемой величины, используют среднее арифметическое всех проведенных наблюдений:

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i,\tag{1}$$

где x_i — отдельное значение измерения, n — число измерений.

Средняя квадратичная погрешность среднего значения показывает, насколько вычисленное среднее арифметическое может отклоняться от истинного значения измеряемой величины. Она определяется на основе дисперсии всей выборки и количества измерений, что позволяет оценить надежность полученного результата:

$$\sigma \approx \sqrt{\frac{1}{n-1} \sum_{i=1}^{n} (x_i - \overline{x})^2}$$
 (2)

Необходимо оценить, насколько среднее значение всей серии измерений (x) отличается от истинного значения X. Для этого вычислим среднюю квадратичную погрешность среднего, которая показывает точность определения средней величины по выборке:

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}.\tag{3}$$

Итоговый результат измерений записывается в виде:

$$x = \bar{x} \pm \sigma_{\bar{x}}.\tag{4}$$

Для анализа распределения результатов строятся график зависимости измеряемой величины от времени и гистограмма, по которым можно визуально оценить разброс данных и форму распределения.

2.2 Экспериментальная часть

Перед началом измерений была собрана экспериментальная установка в соответствии с вариантом лабораторной работы №16 — измерение напряжения цифровым вольтметром. В состав установки входили следующие компоненты:

- Потенциометр (делитель напряжения);
- Стрелочный вольтметр для задания уровня напряжения;
- Цифровой вольтметр для точного измерения;
- Соединительные провода.

Рис. 1: Блок-схема установки для измерения напряжения (вариант 16)

Проведение измерений. С помощью ручки потенциометра вручную задавалось напряжение в диапазоне от 0,6 до 1,5 В. Для предварительной оценки и настройки были выполнены n=10 измерений на грубой шкале цифрового вольтметра (с пределом измерения $U_k=10$ В). Результаты занесены в таблицу 1.

Затем, для проведения статистической обработки, была выбрана более чувствительная шкала ($U_k=1~\mathrm{B}$), на которой были выполнены n=50 измерений. Эти данные приведены в таблице 2.

2.2.1 Погрешность прибора

Расчёт абсолютной погрешности цифрового вольтметра производился по формуле:

$$\beta = \pm \left(0.05 + 0.05 \cdot \frac{U_k}{U_x}\right)\%,$$

$$\Delta U_{\text{приб}} = \frac{\beta \cdot U_x}{100},$$

где:

- U_k предел измерения выбранной шкалы (В);
- U_x измеренное значение напряжения (В).

2.3 Обработка данных и обсуждение результатов

2.3.1 Исходный код

2.3.2 Исходный код для расчёта инструментальной погрешности прибора

```
#include <iostream>
   #include <vector>
   double calculateInstrumentError(double Ux, double Uk = 10.0) {
4
       double beta_percent = 0.05 + 0.05 * (Uk / Ux);
       return (beta_percent * Ux) / 100.0;
   }
   int main() {
9
       std::vector<double> measurements = {
          0.356, 0.357, 0.358, 0.355, 0.356,
11
          0.357, 0.356, 0.357, 0.356, 0.357
      };
13
14
      for (int i = 0; i < measurements.size(); ++i) {</pre>
          double Ux = measurements[i];
16
          double deltaU = calculateInstrumentError(Ux);
17
          std::cout << "Measurement " << i + 1 << ": Ux = " << Ux
                    << ", Error = " << deltaU << " " << std::endl;
19
      }
20
21
      return 0;
22
  }
```

Листинг 1: Расчёт абсолютной погрешности цифрового вольтметра

2.3.3 Исходный код программы для обработки 50 измерений на точной шкале

```
#include <iostream>
#include <vector>
#include <cmath>
#include <iomanip>
```

```
void printSmart(double value) {
6
       std::cout << std::fixed << std::setprecision(12) << value;</pre>
   }
8
   int main() {
       std::vector<double> measurements = {
11
           0.3583, 0.3580, 0.3595, 0.3599, 0.3593,
           0.3594, 0.3592, 0.3590, 0.3593, 0.3588,
           0.3575, 0.3588, 0.3575, 0.3585, 0.3579,
14
           0.3578, 0.3581, 0.3583, 0.3584, 0.3582,
           0.3584, 0.3582, 0.3586, 0.3582, 0.3588,
           0.3578, 0.3583, 0.3581, 0.3577, 0.3583,
           0.3581, 0.3582, 0.3578, 0.3583, 0.3586,
18
           0.3582, 0.3584, 0.3582, 0.3584, 0.3581,
19
           0.3587, 0.3584, 0.3581, 0.3580, 0.3581,
20
           0.3584, 0.3585, 0.3586, 0.3579, 0.3582
21
       };
22
23
       double sum = 0.0;
24
       for (double u : measurements) {
25
           sum += u;
26
       }
       double mean = sum / measurements.size();
28
       std::cout << "Average value: ";</pre>
30
       printSmart(mean);
31
       std::cout << "\n\n";
33
       for (int i = 0; i < measurements.size(); ++i) {</pre>
34
           double Ux = measurements[i];
35
           double d = Ux - mean;
36
           double d_squared = d * d;
37
           std::cout << "Measurement " << i + 1 << ": Ux = ";
           printSmart(Ux);
40
           std::cout << ", d = ";
41
           printSmart(d);
42
           std::cout << ", d^2 = ";
43
           printSmart(d_squared);
44
           std::cout << std::endl;</pre>
45
       }
46
47
       return 0;
48
   }
49
```

Листинг 2: Расчёт среднего значения, отклонений и квадратов отклонений

2.3.4 Таблицы

Таблица 1. Измерения на грубой шкале

№ п.п.	Диапазон показаний использованной шкалы прибора, (В)	Результаты отдельных наблюдений U_i , (B)	Погрешность прибора на данной шкале $\Delta U_{\rm приб},~({\bf B})$
1	1-10	0,356	0.0051780
2	1-10	0,357	0.0051785
3	1-10	0,358	0.0051790
4	1-10	0,355	0.0051775
5	1-10	0,356	0.0051780
6	1-10	0,357	0.0051785
7	1-10	0,356	0.0051780
8	1-10	0,357	0.0051785
9	1-10	0,356	0.0051780
10	1-10	0,357	0.0051785

Таблица 2. Измерения на точной шкале

№ п.п.	Результаты отдельных наблюдений U_i , (B)	Случайные отклонения от среднего $d_i = U_i - \overline{U}$, (B)	$d_i^2 = (U_i - \overline{U})^2, (B^2)$
1	0,3583	-0,000086	0,000000007396
2	0,3580	-0,000386	0,000000148996
3	0,3595	0,001114	0,000001240996
4	0,3599	0,001514	0,000002292196
5	0,3593	0,000914	0,000000835396
6	0,3594	0,001014	0,000001028196
7	0,3592	0,000814	0,000000662596
8	0,3590	0,000614	0,000000376996
9	0,3593	0,000914	0,000000835396
10	0,3588	0,000414	0,000000171396
11	0,3575	-0,000886	0,000000784996
12	0,3588	0,000414	0,000000171396
13	0,3575	-0,000886	0,000000784996
14	0,3585	0,000114	0,00000012996
15	0,3579	-0,000486	0,000000236196
16	0,3578	-0,000586	0,000000343396
17	0,3581	-0,000286	0,000000081796

№ п.п.	Результаты отдельных наблюдений U_i , (B)	Случайные отклонения от среднего $d_i = U_i - \overline{U}, \ (\mathbf{B})$	$d_i^2 = (U_i - \overline{U})^2, (B^2)$
18	0,3583	-0,000086	0,000000007396
19	0,3584	0,000014	0,00000000196
20	0,3582	-0,000186	0,000000034596
21	0,3584	0,000014	0,000000000196
22	0,3582	-0,000186	0,000000034596
23	0,3586	0,000214	0,000000045796
24	0,3582	-0,000186	0,000000034596
25	0,3588	0,000414	0,000000171396
26	0,3578	-0,000586	0,000000343396
27	0,3583	-0,000086	0,000000007396
28	0,3581	-0,000286	0,000000081796
29	0,3577	-0,000686	0,000000470596
30	0,3583	-0,000086	0,000000007396
31	0,3581	-0,000286	0,000000081796
32	0,3582	-0,000186	0,000000034596
33	0,3578	-0,000586	0,000000343396
34	0,3583	-0,000086	0,000000007396
35	0,3586	0,000214	0,000000045796
36	0,3582	-0,000186	0,000000034596
37	0,3584	0,000014	0,00000000196
38	0,3582	-0,000186	0,000000034596
39	0,3584	0,000014	0,000000000196
40	0,3581	-0,000286	0,000000081796
41	0,3587	0,000314	0,000000098596
42	0,3584	0,000014	0,000000000196
43	0,3581	-0,000286	0,000000081796
44	0,3580	-0,000386	0,000000148996
45	0,3581	-0,000286	0,000000081796
46	0,3584	0,000014	0,00000000196
47	0,3585	0,000114	0,00000012996
48	0,3586	0,000214	0,000000045796
49	0,3579	-0,000486	0,000000236196

№ п.п.	Результаты отдельных наблюдений U_i , (B)	_	$d_i^2 = (U_i - \overline{U})^2, (B^2)$
50	0,3582	-0,000186	0,000000034596

$$\bar{x} = \bar{U} = 0.358386, \quad \sum x_i = \sum U_i = 17.9193 \quad \sum |d_i| = 0.018816, \quad \sum d_i^2 = 0.0000126602$$

2.3.5 Графики

Зависимость напряжения от номера измерения

Рис. 2: Зависимость результатов наблюдений от времени

3 Выводы

Рис. 3: Распределение результатов наблюдений

В работе проведены прямые многократные измерения напряжения с помощью цифрового вольтметра. Получены 10 предварительных и 50 точных измерений.

На основе результатов:

- Вычислено среднее значение напряжения $\bar{U} = 0.358386~\mathrm{B};$
- Оценена средняя квадратическая погрешность среднего $\sigma_{\bar{U}} \approx 0{,}000014$ B;
- Установлено отсутствие дрейфа и близкое к нормальному распределение измерений;
- Инструментальная погрешность прибора $\Delta U_{\rm приб} \approx 0{,}00518~{\rm B}$ превышает статистическую.

Окончательный результат:

$$U = 0.358386 \pm 0.00518$$
 B.