COMS 6998-06: Computation and the Brain

Christos Papadimitriou

Contents

1	$^{\circ}$ Sp	ontaneous Activity in the Brain: and what it means for neural com-	
	puta	ation"	2
	1.1	The Question	2
	1.2	The Problem	2
	1.3	Three (essential) stories	3
	1.4	Implications	8
2	Lect	sure 7	9
	2.1	Recap	9
	2.2	Hopfield networks	11
	2.3	Cf: the Ising model: all edges are +1	11
	2.4	A discrete-time system: Hopfield net (cont)	11
	2.5	Goal of dynamical systems: pattern completion	11
	2.6	How do you train a Hopfield net so that it pattern completes?	11
	2.7	Do Hopfield nets work?	12
	2.8	Boltzmann Machines	12
	2.9	Back to modeling brain networks: the feedforward + recurrent (FFR) network	12
		What is the solution?	13
		Finally, suppose $\lambda_1 = 1 \ldots \ldots \ldots \ldots \ldots$	13
		Nonlinear FFR networks	13
		Modeling complex cells	14
		Another FFR network: excitation-inhibition balance	14
		E - I balance	14
		How fruit flies remember smells	15
		Flys algorithm (RP&C) outperforms LSH (2017)	15

Scribe: Warren Mo

10/17/2018

Christos Papadimitriou

1 "Spontaneous Activity in the Brain: and what it means for neural computation"

Scribe: Warren Mo

10/17/2018

Speaker: Kenny Kay (kaykenneth@gmail.com)

1.1 The Question

- How is X reducible to neural activity?
 - Human intelligence
 - A general problem solver
 - Cognition
 - * \uparrow now described as following:
 - * Perception
 - * Memory
 - * Decision-making
 - * Imagination
 - * Language
 - * Etc.

1.2 The Problem

- We may have (unknowingly) adopted a dominant paradigm that is limiting us
 - Akin to What if the Sun doesn't revolve around the earth?
- Is there a dominant paradigm?
 - Lets look at the conventional framework
 - Levels
 - * Function
 - * Algorithm
 - * Implementation
 - Approaches
 - * Formal [down-arrow] (Cartesian) top-down
 - * Cognitive science
 - * Comp neuro
 - * Empirical [up-arrow] (Baconian) bottom-up
 - * Neurophysiology

- * Neuroscience
- Apparently not, as many researchers take both approaches
- Lets see where the empirical one takes us

1.3 Three (essential) stories

- † about spontaneous activity in the brain
 - The dark horse
 - * Scientists battle noise in sensory neurons
 - The elephant in the room
 - * Scientists encounter strange giant neural activity
 - The rabbit hole
 - * Scientists jump off the deep end
- The dark horse: background
 - 1926 neural spiking discovered at the sensory periphery
 - * Adrian and Zotterman (1926)
 - Lord Adrian (isolated single frog muscle nerves) discovered two things
 - * Spikes
 - * Stimulus-controlled response
 - -1959 now
 - * In sensory cortex, evocative stimulus features are found to drive responses
 - (a) Record further downstream (inside brain matter)
 - * Visual context (V1)
 - * Cat experiment
 - (b) Stimulate
 - * Hubel & Weisel 1959
 - 1980s now
 - * Upon release from anesthesia and restraint, neurons in sensory cortex are found to fire with **extreme variability** (noise).
 - * Remove anesthesia from cat
 - · Livingstone & Hubel (1981)
 - · Awake
 - · ↑ Neurons specific to direction of stimulus (bar moving)
 - · Asleep

- · ↑ Spiking present in between stimulus!
- \cdot ↑ Noise
- · ↑ Stimulus that had large effect when awake does not have much effect when asleep
- * Remove restraint
 - · Erisken et al. (2014)
 - · Self-generated movement
 - · Allow animal (rodent) to run (circular treadmill)
 - · Ramping spking when mouse is moving spontaneously
- * Review: McGinley & McCormick (2015)
- This ongoing work is starting to clarify a different type of independent variable for explaining activity in the brain
- Dark horse unexpected movement
- The elephant in the room
 - 1929 Highlight 1 (alpha rhythm)
 - * Hans Berger
 - * 1929 advent of EEG
 - * Discovery of the alpha rhythm
 - * Experiment on son:
 - · Awake, eyes closed
 - · But sin-like wave from EEG!!
 - · Brain doing this on its own!
 - * Papers:
 - Engel & Singer (2001)
 - · Buzsaki (2006)
 - · Yuste (2015)
 - 1989-2012 Highlight 2 (sharp wave ripple)
 - * The sharp-wave ripple (SWR)
 - * Eeg on rats, no stimuli (Buzsaki (1989))
 - · Spontaneous bursts of activity (100 ms)
 - · 1. Occur in stillness & sleep (no overt stimulus)
 - · 2. Originate in deep region (hippocampus)
 - · 3. 5-10x increase in firing in hippocampus
 - · SWRs drive activity across the brain
 - * Oeltermann et al. 2012

10/17/2018

Scribe: Warren Mo

	"Outside-in" (Stimulus transformation)	"Inside-out" (Autonomous generation)
Paradigm ("classic") cases	V1 simple cells / classic deep NNs	Alpha rhythm place- or grid-cells
Independent variable	External stimulus	Spontaneous activity (behavioral or neural)
The ideal behavior	Reliable	Natural
Behavioral constraint of the animal?	Essential	Removed

- * Buzsaki 2015
- So what is this stuff??
- Nothing obviously comes from the outside, yet spontaneous patterns in the brain are found
- But from the dark horse story, variance
- The rabbit hole
 - At this point, we can revisit the matter of **dominant paradigm**
 - Our previous 2 stories implied this view
 - * Stimulus \rightarrow cognition \rightarrow action
 - * The Outside-In paradigm
 - * The whole neural organism...is, physiologically considered, but a machine for converting stimuli into reactions. - William James (1890)
 - Two paradigms for brain science
 - * Outside In (Stimulus transformation)
 - · Paradigm (classic) cases
 - $\cdot \uparrow V1$ simple cells,
 - · ↑ Classic deep NNs
 - · Independent variable
 - $\cdot \uparrow$ External stimulus
 - · The ideal behavior
 - $\cdot \uparrow \text{Reliable}$
 - · Behavioral constraint of the animal?
 - $\cdot \uparrow Essential$
 - * Inside out (autonomous generation) alternative view
 - · Paradigm (classic) cases
 - · ↑ Alpha rhythm
 - \cdot \uparrow Place- or grid- cells
 - · Independent variable
 - · ↑ Spontaneous activity (behavioral or neural)
 - · The ideal behavior
 - \cdot \uparrow natural

- · Behavioral constraint of the animal?
- $\cdot \uparrow \text{Removed ("jump off the deep end)}$
- $\cdot \uparrow$ See strange things and not understand whats going on

Scribe: Warren Mo

10/17/2018

- · Minority of researchers take this paradigm
- $\cdot \uparrow$ Also researchers that take some middle ground
- Brain scientists abolish behavioral constraints (jump off deep end)
 - * Three (radical) bases of neural activity identified
 - (a) (1969) self-generated movement
 - * .. is identified as a basis for neural activity
 - * Spontaneous behavior of rat
 - * But eeg of neuron reveals that neuron is firing rather regularly
 - (b) (1971) an abstract concept (space)
 - (c) (2000s) prediction/simulation
 - * (Why do these sound bizarre or invalid?)
 - * Some scientists even reject these observations
 - * Possible to synthesize both paradigms
 - · E.g., visual cortex stimulus quieting the noise
- 1969 self-generated movement
 - * ... is identified as a basis for neural activity
 - * Spontaneous behavior of rat
 - * But EEG of neuron reveals that neuron is firing rather regularly
- John OKeefe
 - (a) Free behavior in rats
 - (b) Single cells
 - $* \rightarrow \text{Place cells (1971)}$
 - * Grid cells (2005) \rightarrow neurons can represent location in space \rightarrow an abstract concept (space) is identified as a basis for neural activity
 - * Over decades the next insight was made by studying these cells in time
- Place cell firing in time provides crucial insight
 - * Diba & Buzsaki (2007) figure
 - * Hippocampal replay
 - * Two big spontaneous bursts of activity when the animal wasn't moving or receiving stimuli
 - * † bursts classically called pre-replay

*

- Place cells represent hypothetical paths

*

- * Place cell maps \rightarrow infer \rightarrow spatial path
- * Question: what does this path represent?
 - \cdot Seems spatial paths more concentrated in areas of interest (food, play)
 - \cdot BUT, paths/fields present in uninteresting places too
- * Papers:
 - · Pfeiffer & Foster (2013)
 - · Carr, Jadhav, & Frank (2012)
 - · Foster (2017)
- 2000s **prediction/simulation** is clarified as a basis for neural activity
 - * Related concepts

- · Psychological
- \cdot Imagination
- · Deliberation
- · Planning
- · (day)dreaming
- · Mind-wandering
- · Prospection
- * Representational
 - · Hypotheticals
 - \cdot Counterfactuals
 - \cdot (???) thought
- Neural representation of hypotheticals is **multiplexed in time at** \sim 8 Hz (Kenneth Kay)
 - * Rat in maze
 - * Place cell 1 left path in maze
 - * Place cell 2 right path in maze
 - * EEG: place cells seem to avoid each other in firing time (i.e., one fires but not at the same time as the other)
- Collective activity of place cells
 - * Segmented (jumps between left arm and right arm)
 - * Reflects the traveling wave in hippocampus

1.4 Implications

- The Question How is X reducible to neural activity?
 - The true implications (of these stories) remain unclear, whether via biological or artificial neural computation
- The problem a default paradigm
- Implications
 - We need researchers with open and critical minds
- Reconsider neural computation via two alternative paradigms
 - Outside-in vs inside-out
 - O-I
 - * Independent var.

- · External input
- * Fundamental repr.
 - · The present
- * Essential property of the NN
 - · feedforward
- I-O
 - * Independent var.
 - · Activity generated within the NN
 - * Fundamental repr.
 - · Hypotheticals
 - * Essential property of the NN
 - · Recurrence, re-entrance
- Rabbit hole properties of neural representation:
 - * Depends on internal dynamics (synchronization)
 - * Rhythmic
 - * Multiplexed

2 Lecture 7

2.1 Recap

- Response to Bengio et al. (Towards Biologically plausible deep learning)
 - Backprop thought of as evolution
 - Feedforward circuit and/or the weights are a phenotype that depends on many genes
 - Minibatch: the collective experience of a generation
 - Selection changes the allele statistics of the next generation through a variant of gradient descent (if allele didn't perform well, fewer percent of next generation will have that allele)
 - Can learning happen this way?
- How to measure information in spike trains (a bit array for each Δt , then subtract noise)
- Result: frog auditory neurons respond with much higher entropy to sounds that resemble frog calls than to white noise despite the fact that the latter has higher entropy

- Summary of dynamical systems:
 - 1D: no cycles, just fixpoints or growth)
 - * But have bifurcations: change in parameters qualitatively changes behavior
 - 2D: cycles happen (oscillators)
 - * Poincare-Bendixson
 - * Because of planarity and logic, flow lines cannot cross (or else we'll have cycles)
 - · Control and discipline each other
 - 3D: chaos (Lorenz)
 - * $x^{t+1} = ax^t(1-x^t)$: already chaos
- Against chaos: properties you want your dynamical system to have
 - Linear: can sole closed form: e^{At}
 - 2D: (P-B to the rescue)
 - Conservative systems: conserve energy
 - Reversible systems: they can be run backwards
 - Systems that have a Lyapunov function (progress toward convergence)
- Fundamental theorem of dynamical systems (conley 1984)
 - Redefine cycle in discrete time systems
 - Infinitesimal jumps between steps are allowed (think round-off error).
 - Then the (compact) domain is decomposed into the chain connected components and the transient part; in the latter a Lyapunov function is at work
 - * If you squint a little, chaos goes away
- The feedforward + recurrent network
 - Two populations of neurons
 - Feedforward and recurrent synaptic connections
 - -U,v: vectors of firing rates
 - -W, R: matrices of synaptic weights
 - $-\tau \cdot dv/dt = -v + F(W\dot{u} + R \cdot v)$
 - F is the response function of the red neurons (recurrent)
 - What if F is linear?
 - W: matrix of synaptic weights

2.2 Hopfield networks

- A discrete-time dynamical system: the hopfield network
- Nodes have two values: +1, -1
- Nodes are happy when $\sum_{j} v_i v_j w_{ij} \ge 0 \ge \Theta_i$
- When there is an unhappy node, flip it

2.3 Cf: the Ising model: all edges are +1

- All are happy
- Algorithm:
 - Repeat
 - * Pick a node at random
 - * If unhappy, flip
 - * If k-happy, flip with probability $e^{-k/T}$
 - Until ferromagnetic (all are same)

2.4 A discrete-time system: Hopfield net (cont)

- Theorem [Hopfield 1982]: dynamical system converges
- \bullet at each step total happiness increases by 2 \times the unhappiness of flipped node

2.5 Goal of dynamical systems: pattern completion

- Regions of attraction
- Equilibria

2.6 How do you train a Hopfield net so that it pattern completes?

- Given a set of desired memories $M_1, \ldots, M_m \in \{-1, +1\}$
- Set the weight of edge a-b to $\sum_k M_{ka} \times M_{kb}$
- ullet For every memory k, we bias the weight in the direction "memory k wants to be"
- With n nodes, 0.138n random patterns can be stored with probability of erroneous retrieval < 0.4%

2.7 Do Hopfield nets work?

- Not really, because of spurious memories
- Spurious memories: if M is stored, -M is also retrieved
- Also, if M, M, M are stored, so are $\pm M$, $\pm M$, $\pm M$
- Finally, if you store M K times, it will be retrieved L ¿¿ K times more often than other memories

2.8 Boltzmann Machines

- Exactly hopfield nets, but they have hidden nodes, and can be trained
- Visible nodes receive training data by clamping
- After each training data vector is put in, the whole network is left free to run until it reaches "thermal equilibrium"
- Restricted Boltzmann machine: graph is bipartite [Hinton 2005]

2.9 Back to modeling brain networks: the feedforward + recurrent (FFR) network

• $\tau \cdot dv/dt = -v + F(W \cdot u + R \cdot v)$, F is the response of the red neurons

•

• $\tau \cdot dv/dt = h + (M - I) \cdot v$

- Symmetric synaptic matrix M
 - $\rightarrow pos.$ Eigenvalues
 - Symmetry helps (assumed for Boltzmann, assume it here too)

2.10 What is the solution?

• Assume $lambda_k \leq 1$ (exponential growth otherwise)

subsection Suppose that $\lambda_2 << \lambda_1 \approx 1$

• $(e_1 \cdot h) \cdot e_1$: projection of eigenvector

2.11 Finally, suppose $\lambda_1 = 1$

- So the circuit integrates the feedforward inputs projection on e_1
- NB: integration means memory integration
- A system like this seems to be at work in the brain stem of vertebrates, remembering eye position

2.12 Nonlinear FFR networks

- Cant solve explicitly
- But can simulate
- Can model simple and complex cells

2.13 Modeling complex cells

2.14 Another FFR network: excitation-inhibition balance

Scribe: Warren Mo

10/17/2018

•

- Gn, p: everything is either present or absent with the same probability
- Blue cells spike, causing red cells to fire, which causes green cells to fire and inhibit red
- then green cells receive less input from red, and they inhibit less
- ullet after 2 or 3 jumps, the excitatory cells will be constant

2.15 E - I balance

- $\tau E \dot{E} = GT(TE, np(E-I), np(1-p)(E+I)) E$
- $\bullet \ \tau I\dot{I} = GT(TI, npI, np(1-p)I) I$
- If τE is sufficiently larger than τI , an E I balance will be reached after a few up and down oscillations

•

2.16 How fruit flies remember smells

- Each of the ~ 50 odorant receptor neuron type (ORN) is excited by a different amount, so you have a vector
- Odor \rightarrow 50 odorant receptor neuron (ORN) types \rightarrow \sim 50 projection neurons (PNs) \rightarrow \sim 2000 Kenyon cells (KCs) \rightarrow APL
- APL inhibitory
- Random 100 winners (Kenyon cells) take all
- Is $PN \to KC$ a random bipartite graph? How to know?
 - Columbia experiment
 - Sampled about 200 Kenyon cells and did all possible random tests to show it is random
 - Generated adjacency matrix!
 - This means the genome has a space for random number generation
 - Got complete connectome of fly

2.17 Flys algorithm (RP&C) outperforms LSH (2017)

• But not in 2018