CausalityBackgrounds II

Maciej Liśkiewicz

University of Lübeck

December, 2022

Last Meeting

- Motivation
- Backgrounds
 - Probabilities and Independencies
 - Graphs and Probabilities
 - Bayesian Networks
 - d-separation
 - An Algorithm for d-Separation (presented on the next slides)

- Assume P is a distribution that factorizes over a DAG G, i.e. $P(x_1, \ldots, x_n) = \prod_j P(x_j \mid pa_j)$
- Recall, d-separation in such G allows to infer independences of P simply by examining the d-separation in G
- We have given a definition for d-separation

$$(\mathbf{X} \perp \!\!\! \perp \mathbf{Y} \mid \mathbf{Z})_G$$

in a non-constructive way: every path between a node $X \in \mathbf{X}$ and $Y \in \mathbf{Y}$ should be blocked by \mathbf{Z}

- Remark: by X, Y, etc. we will denote sets
- In this lecture we present very elegant and efficient algorithm for d-Separation, called Bayes-Ball, that requires only linear time in the size of the graph
- Bayes-Ball was proposed by Shachter in 1998

- More precisely,
 - ▶ for a given $G = (V = \{X_1, ..., X_n\}, E)$ and two disjoint subsets $X \subseteq V$, and $Z \subseteq V$
 - ▶ the algorithm finds nodes reachable from **X** given **Z** via open *d*-paths

- More precisely,
 - for a given $G = (V = \{X_1, \dots, X_n\}, E)$ and two disjoint subsets $X \subseteq V$, and $Z \subseteq V$
 - ▶ the algorithm finds nodes reachable from **X** given **Z** via open *d*-paths
- The algorithm runs BFS from **X** using the following rules:
 - ▶ the Bayes ball goes through the entering top edge e and passes through the node V to nodes N_o (out-node), resp. N_i (in-node)
 - Forbidden passes are marked as dashed arrows
 - ▶ The figure shows all possible combinations of types of entering e and leaving edges f and considers two cases: $V \notin \mathbf{Z}$ and $V \in \mathbf{Z}$ (gray)
 - ► The leaving edge f can correspond to the entering edge e in which case the ball might return to the start node of the entering edge, which is called a bouncing ball in the original Bayes-Ball algorithm


```
1: function Bayes-Ball G = (V = \{X_1, \dots, X_n\}, E), X \subseteq V, Z \subseteq V)
2:
        function Visit(f, j)
                                                                         \triangleright Visit node X_i from direction f
            if Mark(f,j) = 0 \land X_i \not\in X then
3:
                                                                            If no such visit is scheduled
                push (f, j) to queue toVisit
4:
                                                                                            ▷ Schedule visit
5:
                Mark(f, i) \leftarrow 1
                                                                                       ▶ Mark as scheduled
                                                                                             ▶ Initial values
6:
        for all j \in \{1, \ldots, n\} do
7:
            for all f \in \{parent, child\} do
8:
                Mark(f, j) \leftarrow 0
                                                                         ▶ Mark all nodes as unreachable
9:
        toVisit = ()

    Start visiting at the neighbours of X

10:
        for all X_i \in X do
             for all X_i \in Pa(X_i) do Visit(child, j)
11:
12:
            for all X_i \in Ch(X_i) do Visit(parent, j)
                                                                                Visit all reachable nodes
13:
        while toVisit not empty do
14:
             pop (f, k) from queue toVisit

    Visit the next (from, node)-tuple

15:
            if X_k \in \mathbf{Z} \wedge f = parent then
                                                       ▶ Node in Z bounces back balls from the parent
                 for all X_i \in Pa(X_k) do Visit(child, j)
16:
17:
            if X_k \notin \mathbf{Z} \wedge f = parent then
                                                          Node not in Z passes balls from the parent
18:
                 for all X_i \in Ch(X_k) do Visit(parent, j)
19:
            if X_k \notin \mathbf{Z} \land f = child then \triangleright Node not in \mathbf{Z} passes and bounces balls from the child
20:
                 for all X_i \in Pa(X_k) do Visit(child, j)
                 for all X_i \in Ch(X_k) do Visit(parent, j)
21:
22:
        return \{X_i : Mark(f, j) = 1 \text{ for some } f\}
```

Theorem (Bayes-Ball Algorytm)

The algorithm Bayes-Ball($G = (\mathbf{V}, \mathbf{E}), \mathbf{X}, \mathbf{Z}$) returns the set of all nodes reachable from \mathbf{X} via d-paths that are active in G given \mathbf{Z} . It runs in linear time in the size of the graph: $|\mathbf{V}| + |\mathbf{E}|$.

Basic Independencies

BNs combine two related concepts:

- Independencies in distributions and
- Independencies induced by graphs

Basic Independencies

- Let X_1, X_2, \dots, X_n be random variables
- Let $G = (\mathbf{V}, \mathbf{E})$ be a DAG with $\mathbf{V} = \{X_1, X_2, \dots, X_n\}$
- We denote parents of X_i in G as Pa_i or $Pa(X_i)$
- Recall, if P admits the factorization

$$P(x_1,\ldots,x_n)=\prod_j P(x_j\mid pa_j)$$

relative to DAG G, we say

- ▶ that G represents P,
- that G and P are compatible,
- ▶ that *P* is Markov relative to *G*

Basic Independencies

- Let X_1, X_2, \ldots, X_n be random variables
- Let $G = (\mathbf{V}, \mathbf{E})$ be a DAG with $\mathbf{V} = \{X_1, X_2, \dots, X_n\}$
- We denote parents of X_i in G as Pa_i or Pa(X_i)
- Recall, if P admits the factorization

$$P(x_1,\ldots,x_n)=\prod_j P(x_j\mid pa_j)$$

relative to DAG G, we say

- ▶ that G represents P,
- ▶ that *G* and *P* are compatible,
- that P is Markov relative to G
- BN: a DAG G which represents a probability distribution P
- BN = "structure G" + "conditional probability distributions (CPDs)"
- Formally: A BN \mathcal{B} is a pair $\mathcal{B} = (G, P)$ where P factorizes over G, and where P is specified as a set of CPDs associated with G's nodes

BN Example Used in this Lecture

Koller, Friedman (2009)

Consider the problem faced by a company trying to hire a recent college graduate:

- I student's intelligence: low, high
- D difficulty of the course: easy, hard
- G student's grade in some course: 1, 2, 3
- L the quality of the recommendation letter : strong, weak
- S the student's SAT score: low, high

The joint distribution has 48 entries. The corresponding example Bayesian network:

Reasoning Pattern in BNs: $P(H = h \mid E = e)$

Basic Independencies

- Question: which independencies induces (encodes) a DAG?
- E.g.:
 - \triangleright $D \rightarrow G \rightarrow L$
 - $ightharpoonup R o H \leftarrow S$

Basic Independencies

- Alternatively, the formal semantics of a BN graph G can be defined as a set of independence assertions as follows
- Let $De(X_i)$ denote the set of descendants of X_i in G
- Note that

$$\mathbf{V} \setminus De(X_i)$$

are the variables in G that are non descendants of X_i

Basic Independencies

- Alternatively, the formal semantics of a BN graph G can be defined as a set of independence assertions as follows
- Let $De(X_i)$ denote the set of descendants of X_i in G
- Note that

$$\mathbf{V} \setminus De(X_i)$$

are the variables in G that are non descendants of X_i

 Then G in a BN encodes the following set of conditional independence assumptions, called the local independencies, and denoted by \(\mathcal{I}_{local}(G) : \)

$$\forall X_i \quad (X_i \perp \!\!\! \perp \mathbf{V} \setminus (De(X_i) \cup Pa(X_i)) \mid Pa(X_i))$$

Basic Independencies

- Alternatively, the formal semantics of a BN graph G can be defined as a set of independence assertions as follows
- Let $De(X_i)$ denote the set of descendants of X_i in G
- Note that

$$\mathbf{V} \setminus De(X_i)$$

are the variables in G that are non descendants of X_i

 Then G in a BN encodes the following set of conditional independence assumptions, called the local independencies, and denoted by \(\mathcal{I}_{local}(G) : \)

$$\forall X_i \quad (X_i \perp \mathbf{V} \setminus (De(X_i) \cup Pa(X_i)) \mid Pa(X_i))$$

• In other words, the local independencies state that each variable X_i is conditionally independent of its non-descendants given its parents

Basic Independencies

- Alternatively, the formal semantics of a BN graph G can be defined as a set of independence assertions as follows
- Let $De(X_i)$ denote the set of descendants of X_i in G
- Note that

$$\mathbf{V} \setminus De(X_i)$$

are the variables in G that are non descendants of X_i

 Then G in a BN encodes the following set of conditional independence assumptions, called the local independencies, and denoted by \(\mathcal{I}_{local}(G) :\)

$$\forall X_i \quad (X_i \perp \!\!\! \perp \mathbf{V} \setminus (De(X_i) \cup Pa(X_i)) \mid Pa(X_i))$$

- In other words, the local independencies state that each variable X_i is conditionally independent of its non-descendants given its parents
- We show that this definition is, in fact, equivalent with our first definition of a BN as a DAG annotated with CPDs, which define a joint distribution P via the chain rule

I-map

- Let P be a distribution over $\mathbf{V} = \{X_1, X_2, \dots, X_n\}$
- We define $\mathcal{I}(P)$ to be the set of independence assertions of the form $(\mathbf{X} \perp \!\!\! \perp \mathbf{Y} \mid \mathbf{Z})$ that hold in P

I-map

Example

Consider a joint probability P over two independent random variables X and Y

X	Y	P(X,Y)
0	0	0.08
0	1	0.32
1	0	0.12
1	1	0.48

- It is easy to see that $(X \perp \!\!\! \perp Y)$ in P. E.g. we have
- $P(X = 1) = 0.6, P(Y = 1) = 0.8, P(X = 1) \cdot P(Y = 1) = 0.48$ and
- P(X = 1, Y = 1) = 0.48
- Thus $\mathcal{I}(P) = \{(X \perp\!\!\!\perp Y)\}$

I-map

Example

Consider a joint probability P over two independent random variables X and Y

X	Y	P(X,Y)
0	0	0.08
0	1	0.32
1	0	0.12
1	1	0.48

- It is easy to see that $(X \perp \!\!\! \perp Y)$ in P. E.g. we have
- $P(X = 1) = 0.6, P(Y = 1) = 0.8, P(X = 1) \cdot P(Y = 1) = 0.48$ and
- P(X = 1, Y = 1) = 0.48
- Thus $\mathcal{I}(P) = \{(X \perp\!\!\!\perp Y)\}$
- For the distribution P':

X	Y	P'(X,Y)
0	0	0.10
0	1	0.16
1	0	0.64
1	1	0.10

we have $(X \perp\!\!\!\perp Y) \not\in \mathcal{I}(P')$. In fact, $\mathcal{I}(P') = \emptyset$

I-map

- Let P be a distribution over $\mathbf{V} = \{X_1, X_2, \dots, X_n\}$
- Let $\mathcal{I}(P) = \{ (\mathbf{X} \perp \!\!\! \perp \mathbf{Y} \mid \mathbf{Z}) : \mathbf{X}, \mathbf{Y}, \mathbf{Z} \subseteq \mathbf{V} \}$
- We can now express the statement that "P satisfies the local independencies associated with G" as

$$\mathcal{I}_{local}(G) \subseteq \mathcal{I}(P)$$

• In this case, we say that G is an independency map, I-map for short, for P

I-map

- However, it is useful to define the concept I-map more broadly
- Let G be a DAG with a set of independencies $\mathcal{I}(G)$
- We say that

G is an I-map for P if
$$\mathcal{I}(G) \subseteq \mathcal{I}(P)$$

- Intuitively, a DAG G is an I-map of a distribution P if all Markov assumptions implied by G
 are satisfied by P
- From direction of inclusion $\mathcal{I}(G) \subseteq \mathcal{I}(P)$:
 - Distribution can have more CIs than the graph
 - Graph does not mislead in independencies existing in P: any CI that G asserts must also hold in P

I-map

Can we read off all independencies $\mathcal{I}(G)$ from a BN defined as a DAG annotated with CPDs?

I-map

Independencies in a DAG G with CPDs

- G encodes factorization: P(d, i, g, s, l) = P(d)P(i)P(g|i, d)P(s|i)P(l|g)
- Local (conditional) independencies $\mathcal{I}_{local}(G)$ are the following

I-map

Independencies in a DAG G with CPDs

- G encodes factorization: P(d, i, g, s, l) = P(d)P(i)P(g|i, d)P(s|i)P(l|g)
- Local (conditional) independencies $\mathcal{I}_{local}(G)$ are the following

```
(L \perp\!\!\!\perp I, D, S \mid G) L is cond. indep. on all other variables given parent G (S \perp\!\!\!\perp D, G, L \mid I) L is cond. indep. on all other variables given parent I G \perp\!\!\!\perp S \mid D, I) G is cond. indep. on G given parents but even given parents, G is not cond. indep. on descendent G variables with no parents are marginally independent G is marginally independent G
```

 Parents of a variable X shield it from a "probabilistic influence": if values of parents are known, we do not learn more about X when we know additionally the values of non-descendants (excluding parents)

I-map

Independencies in a DAG G with CPDs

- G encodes factorization: P(d, i, g, s, l) = P(d)P(i)P(g|i, d)P(s|i)P(l|g)
- Local (conditional) independencies $\mathcal{I}_{local}(G)$ are the following

```
(L \perp\!\!\!\perp I, D, S \mid G) L is cond. indep. on all other variables given parent G (S \perp\!\!\!\perp D, G, L \mid I) L is cond. indep. on all other variables given parent I G \perp\!\!\!\perp S \mid D, I) G is cond. indep. on G given parents but even given parents, G is not cond. indep. on descendent G variables with no parents are marginally independent G G is marginally independent G
```

- Parents of a variable X shield it from a "probabilistic influence": if values of parents are known, we do not learn more about X when we know additionally the values of non-descendants (excluding parents)
 - Information about descendants can change beliefs about a node

I-map

Independencies in a DAG G with CPDs

- G encodes factorization: P(d, i, g, s, l) = P(d)P(i)P(g|i, d)P(s|i)P(l|g)
- Local (conditional) independencies $\mathcal{I}_{local}(G)$ are the following

```
(L \perp\!\!\!\perp I, D, S \mid G) L is cond. indep. on all other variables given parent G (S \perp\!\!\!\perp D, G, L \mid I) L is cond. indep. on all other variables given parent I G \perp\!\!\!\perp S \mid D, I) G is cond. indep. on G given parents but even given parents, G is not cond. indep. on descendent G variables with no parents are marginally independent G is marginally independent G
```

- Using properties satisfied by the above CI relations we also get, for example:
- $(L \perp \!\!\!\perp I, D \mid G), (L \perp \!\!\!\perp I, S \mid G), (L \perp \!\!\!\perp I \mid G)$, etc.
- In general: $\mathcal{I}_{local}(G) \subseteq \mathcal{I}(G)$ and, typically, the inclusion is proper

I-map

G is an I-map for P if $\mathcal{I}(G) \subseteq \mathcal{I}(P)$

• Example Consider the following DAGs

DAG			$\mathcal{I}(G)$
$\overline{G_0}$:	Χ	Y	$\mathcal{I}(G_0) = \{(X \perp\!\!\!\perp Y)\}$
G_1 :	Χ –	<i>Y</i>	$\mathcal{I}(G_1) = \emptyset$
G_2 :	$X \leftarrow$	- Y	$\mathcal{I}(G_2) = \emptyset$

• For the probability:

X	Y	P(X,Y)
0	0	0.08
0	1	0.32
1	0	0.12
1	1	0.48

we have
$$\mathcal{I}(P) = \{(X \perp\!\!\!\perp Y)\}$$

- Thus:
 - ▶ G_0 is an I-map of P, since $\{(X \perp\!\!\!\perp Y)\} \subseteq \mathcal{I}(P)$
 - G_1 is an I-map of P, since $\emptyset \subseteq \mathcal{I}(P)$
 - G_2 is an I-map of P, since $\emptyset \subseteq \mathcal{I}(P)$

I-map

G is an I-map for P if $\mathcal{I}(G) \subseteq \mathcal{I}(P)$

• Example Consider the following DAGs

DA	G	$\mathcal{I}(G)$
$G_0: X$. Y	$\mathcal{I}(G_0) = \{(X \perp\!\!\!\perp Y)\}$
$G_1: \lambda$	$X \to Y$	$\mathcal{I}(G_1) = \emptyset$
$G_2: \lambda$	$X \leftarrow Y$	$\mathcal{I}(G_2) = \emptyset$

• For the probability:

X	Y	P(X,Y)
0	0	0.08
0	1	0.32
1	0	0.12
1	1	0.48

we have
$$\mathcal{I}(P) = \{(X \perp\!\!\!\perp Y)\}$$

- Thus:
 - ▶ G_0 is an I-map of P, since $\{(X \perp\!\!\!\perp Y)\} \subseteq \mathcal{I}(P)$
 - G_1 is an I-map of P, since $\emptyset \subseteq \mathcal{I}(P)$
 - G_2 is an I-map of P, since $\emptyset \subseteq \mathcal{I}(P)$
- If G is an I-map of P then it captures some of the independences, but not necessarily all of them

I-map

G is an I-map for P if $\mathcal{I}(G) \subseteq \mathcal{I}(P)$

• Example Consider the following DAGs

DAG	$\mathcal{I}(G)$
$G_0: X Y$	$\mathcal{I}(G_0) = \{(X \perp\!\!\!\perp Y)\}$
$G_1: X \to Y$	$\mathcal{I}(G_1) = \emptyset$
$G_2: X \leftarrow Y$	$\mathcal{I}(G_2) = \emptyset$

• For the probability:

Χ	Y	P'(X,Y)
0	0	0.10
0	1	0.16
1	0	0.64
1	1	0.10

we have
$$\mathcal{I}(P') = \emptyset$$

- Thus:
 - ▶ G_0 is an not an I-map of P, since $\{(X \perp\!\!\!\perp Y)\} \not\subseteq \mathcal{I}(P')$
 - G_1 is an I-map of P, since $\emptyset \subseteq \mathcal{I}(P')$
 - G_2 is an I-map of P, since $\emptyset \subseteq \mathcal{I}(P')$

I-map and Factorization

- A DAG G of a BN encodes a factorization of a distribution P
- ullet Every distribution P for which G is an I-map should satisfy the CIs assumptions encoded by G
- ullet We show the fundamental connection between the CIs encoded by the structure G and the factorization of the distribution P
- We discuss two directions:
 - I-map to Factorization
 - Factorization to I-map

I-map to Factorization

A DAG representation of our example BN

encodes the factorization of the joint distribution:

$$P(i,d,g,l,s) = P(d)P(i)P(g|i,d)P(s|i)P(l|g)$$

However we can also factorize P as follows

$$P(i, d, g, l, s) = P(i)P(d|i)P(g|i, d)P(l|i, d, g)P(s|i, d, g, l)$$

- This factorization relies on no assumptions and it holds for any joint distribution P. Why?
- A drawback: It provides an inefficient representation for CPDs

I-map to Factorization

A DAG representation of our example BN

encodes the factorization of the joint distribution:

$$P(i,d,g,l,s) = P(d)P(i)P(g|i,d)P(s|i)P(l|g)$$

However we can also factorize P as follows

$$P(i, d, g, l, s) = P(i)P(d|i)P(g|i, d)P(l|i, d, g)P(s|i, d, g, l)$$

- This factorization relies on no assumptions and it holds for any joint distribution P. Why?
- A drawback: It provides an inefficient representation for CPDs
- The key observation which allows the compact factorized representation: take into consideration only Cls of distributions for which G should be an I-map

I-map to Factorization

Example: From Cls $\mathcal{I}(P)$ to factorization of P

- Consider our example, with $V = \{I, D, G, L, S\}$
- Due to the chain rule, we get, e.g., the following factorization

$$P(i,d,g,l,s) = P(i) \cdot P(d|i) \cdot P(g|i,d) \cdot P(l|i,d,g) \cdot P(s|i,d,g,l)$$

 Let us assume that the resulting DAG is an I-map for the distribution P for our example "student"

I-map to Factorization

Example: From Cls $\mathcal{I}(P)$ to factorization of P

- Consider our example, with $V = \{I, D, G, L, S\}$
- Due to the chain rule, we get, e.g., the following factorization

$$P(i,d,g,l,s) = P(i) \cdot P(d|i) \cdot P(g|i,d) \cdot P(l|i,d,g) \cdot P(s|i,d,g,l)$$

- Let us assume that the resulting DAG is an I-map for the distribution P for our example "student"
- In particular, we assume implicitly that Intelligence (of a student) and Difficulty (of the course) are independent, i.e. we have that $(D \perp \!\!\!\perp I) \in \mathcal{I}(P)$
- This means: P(d|i) = P(d)

I-map to Factorization

Example: From Cls $\mathcal{I}(P)$ to factorization of P

- Consider our example, with $V = \{I, D, G, L, S\}$
- Due to the chain rule, we get, e.g., the following factorization

$$P(i,d,g,l,s) = P(i) \cdot P(d|i) \cdot P(g|i,d) \cdot P(l|i,d,g) \cdot P(s|i,d,g,l)$$

- Let us assume that the resulting DAG is an I-map for the distribution P for our example "student"
- In particular, we assume implicitly that Intelligence (of a student) and Difficulty (of the course) are independent, i.e. we have that $(D \perp \!\!\!\perp I) \in \mathcal{I}(P)$
- This means: P(d|i) = P(d)
- Similarly, we take assertion: "the professor's recommendation letter depends only on the student's grade in the class", i.e. that we have $(L \perp\!\!\!\perp I, D, S \mid G) \in \mathcal{I}(P)$
- Hence P(I|i,d,g) = P(I|g)

I-map to Factorization

Example: From Cls $\mathcal{I}(P)$ to factorization of P

- Consider our example, with $V = \{I, D, G, L, S\}$
- Due to the chain rule, we get, e.g., the following factorization

$$P(i,d,g,l,s) = P(i) \cdot P(d|i) \cdot P(g|i,d) \cdot P(l|i,d,g) \cdot P(s|i,d,g,l)$$

- Let us assume that the resulting DAG is an I-map for the distribution P for our example "student"
- In particular, we assume implicitly that Intelligence (of a student) and Difficulty (of the course) are independent, i.e. we have that $(D \perp \!\!\!\perp I) \in \mathcal{I}(P)$
- This means: P(d|i) = P(d)
- Similarly, we take assertion: "the professor's recommendation letter depends only on the student's grade in the class", i.e. that we have $(L \perp\!\!\!\perp I, D, S \mid G) \in \mathcal{I}(P)$
- Hence P(I|i,d,g) = P(I|g)
- Finally, we assert $(S \perp \!\!\! \perp D, G, L \mid I) \in \mathcal{I}(P)$ that implies: P(s|i,d,g,I) = P(s|i)
- This leads to the following factorization

$$P(i,d,g,l,s) = P(i) \cdot P(d) \cdot P(g|i,d) \cdot P(l|g) \cdot P(s|i)$$

I-map to Factorization

 Now we are ready to show the first direction of the fundamental connection between the CIs encoded by G and the factorization of P

Theorem (I-map to Factorization)

Let G be a BN structure over a set of random variables V, and let P be a joint distribution over the same space. If G is an I-map for P, then P factorizes according to G.

- Assume G is an I-map for P, i.e. $\mathcal{I}_{local}(G) \subseteq \mathcal{I}(P)$
- ullet To prove the theorem, we need to show that P factorizes according to G
- To this end, we generalise our example analysis

Factorization to I-map

• The opposite direction says the following:

Theorem (Factorization to I-map)

Let G be a BN structure over a set of random variables V, and let P be a joint distribution over the same space. If P factorizes according to G, then G is an I-map for P.

- Let P be some distribution that factorizes according to G
- ullet To prove the theorem, we need to show that $\mathcal{I}_{\textit{local}}(G) \subseteq \mathcal{I}(P)$

Factorization to I-map

Example: Illustration of the theorem

Assume the DAG representation:

that encodes the factorization: $P(i, d, g, l, s) = P(i) \cdot P(d) \cdot P(g \mid i, d) \cdot P(s \mid i) \cdot P(l \mid g)$

 \bullet Consider e.g. variable S; The analysis for other variables is analogous

Factorization to I-map

Example: Illustration of the theorem

Assume the DAG representation:

that encodes the factorization: $P(i, d, g, l, s) = P(i) \cdot P(d) \cdot P(g \mid i, d) \cdot P(s \mid i) \cdot P(l \mid g)$

- Consider e.g. variable S; The analysis for other variables is analogous
- We have that $(S \perp \!\!\!\perp D, G, L \mid I)$ belongs to local independencies $\mathcal{I}_{local}(G)$
- The task is to prove that $(S \perp D, G, L \mid I)_P$, i.e. that $P(s \mid i, d, g, I) = P(s \mid i)$

Factorization to I-map

Example: Illustration of the theorem

Assume the DAG representation:

that encodes the factorization: $P(i, d, g, l, s) = P(i) \cdot P(d) \cdot P(g \mid i, d) \cdot P(s \mid i) \cdot P(l \mid g)$

- Consider e.g. variable S; The analysis for other variables is analogous
- We have that $(S \perp \!\!\!\perp D, G, L \mid I)$ belongs to local independencies $\mathcal{I}_{local}(G)$
- The task is to prove that $(S \perp \!\!\!\perp D, G, L \mid I)_P$, i.e. that $P(s \mid i, d, g, I) = P(s \mid i)$
- By definition: $P(s \mid i, d, g, l) = \frac{P(s, i, d, g, l)}{P(i, d, g, l)}$

Factorization to I-map

Example: Illustration of the theorem

Assume the DAG representation:

that encodes the factorization: $P(i, d, g, l, s) = P(i) \cdot P(d) \cdot P(g \mid i, d) \cdot P(s \mid i) \cdot P(l \mid g)$

- Consider e.g. variable S; The analysis for other variables is analogous
- We have that $(S \perp \!\!\!\perp D, G, L \mid I)$ belongs to local independencies $\mathcal{I}_{local}(G)$
- The task is to prove that $(S \perp \!\!\!\perp D, G, L \mid I)_P$, i.e. that $P(s \mid i, d, g, I) = P(s \mid i)$
- By definition: $P(s \mid i, d, g, l) = \frac{P(s, i, d, g, l)}{P(i, d, g, l)}$
- ullet From the marginalizing over a joint distribution and factorization of P we get

$$P(i,d,g,l) = P(i) \cdot P(d) \cdot P(g \mid i,d) \cdot P(l \mid g) \cdot \sum_{s} P(s \mid i) = P(i) \cdot P(d) \cdot P(g \mid i,d) \cdot P(l \mid g)$$

Factorization to I-map

Example: Illustration of the theorem

Assume the DAG representation:

that encodes the factorization: $P(i, d, g, l, s) = P(i) \cdot P(d) \cdot P(g \mid i, d) \cdot P(s \mid i) \cdot P(l \mid g)$

- Consider e.g. variable S; The analysis for other variables is analogous
- We have that $(S \perp \!\!\! \perp D, G, L \mid I)$ belongs to local independencies $\mathcal{I}_{local}(G)$
- The task is to prove that $(S \perp \!\!\!\perp D, G, L \mid I)_P$, i.e. that $P(s \mid i, d, g, I) = P(s \mid i)$
- By definition: $P(s \mid i, d, g, l) = \frac{P(s, i, d, g, l)}{P(i, d, g, l)}$
- ullet From the marginalizing over a joint distribution and factorization of P we get

$$P(i,d,g,I) = P(i) \cdot P(d) \cdot P(g \mid i,d) \cdot P(I \mid g) \cdot \sum_{s} P(s \mid i) = P(i) \cdot P(d) \cdot P(g \mid i,d) \cdot P(I \mid g)$$

• Then we can conclude

$$P(s \mid i, d, g, l) = \frac{P(s, i, d, g, l)}{P(i, d, g, l)} = \frac{P(i) \cdot P(d) \cdot P(g \mid i, d) \cdot P(s \mid i) \cdot P(l \mid g)}{P(i) \cdot P(d) \cdot P(g \mid i, d) \cdot P(l \mid g)} = P(s \mid i)$$

 As we have seen a graph structure G encodes a certain set of conditional independence assumptions:

$$\mathcal{I}_{local}(G) = \{ (X_i \perp \!\!\! \perp \mathbf{V} \setminus (De(X_i) \cup Pa(X_i)) \mid Pa(X_i)) : \forall X_i \in \mathbf{V} \}$$

- Question:
 - which independencies ($\mathbf{X} \perp \mathbf{Y} \mid \mathbf{Z}$) hold in a distribution associated with a BN with the structure G or, equivalently,
 - which independencies follow from $\mathcal{I}_{local}(G)$?
- We will denote all CIs which follows from $\mathcal{I}_{local}(G)$ as $\mathcal{I}(G)$

We analyse the problem as follows

- W start with the case of single variables X and Y in G
- Assume X and Y are not directly connected in G, but they are connected via Z as

$$X \sim Z \sim Y$$

- When "influence" can flow from X to Y via Z, we say that the path $X \sim Z \sim Y$ is active
- By case analysis for active two-edge paths we get

Causal path $X \to Z \to Y$: active iff Z is not observed

Evidential path $X \leftarrow Z \leftarrow Y$: active iff Z is not observed

Common cause $X \leftarrow Z \rightarrow Y$: active iff Z is not observed

Common effect $X \to Z \leftarrow Y$: active iff either Z or one of Z's descendants is observed

Definition

A structure $X \to Z \leftarrow Y$, where X and Y are not directly connected is called v-structure

We can generalize this analysis to longer paths $X_1 \sim X_2 \sim \ldots \sim X_n$ in G

- ullet Let G be a BN structure, and $X_1 \sim X_2 \sim \ldots \sim X_n$ be a path in G.
- Let **Z** be a subset of observed variables
- The path $X_1 \sim X_2 \sim \ldots \sim X_n$ is active given **Z** if
 - ▶ Whenever we have a v-structure $X_{i-1} \to X_i \leftarrow X_{i+1}$, then X_i or one of its descendants are in **Z**
 - ▶ no other node along the path is in **Z**

We can generalize this analysis to longer paths $X_1 \sim X_2 \sim \ldots \sim X_n$ in G

- ullet Let G be a BN structure, and $X_1 \sim X_2 \sim \ldots \sim X_n$ be a path in G.
- Let **Z** be a subset of observed variables
- The path $X_1 \sim X_2 \sim \ldots \sim X_n$ is active given **Z** if
 - ▶ Whenever we have a v-structure $X_{i-1} \to X_i \leftarrow X_{i+1}$, then X_i or one of its descendants are in **Z**
 - ▶ no other node along the path is in **Z**
- Putting these together, we get justification for the notion of d-separation and the following definition

$$\mathcal{I}(G) = \{ (\mathbf{X} \perp \!\!\! \perp \mathbf{Y} \mid \mathbf{Z}) : \text{ for all } \mathbf{X}, \mathbf{Y}, \mathbf{Z} \text{ sets of nodes in } G \text{ with } (\mathbf{X} \perp \!\!\! \perp \mathbf{Y} \mid \mathbf{Z})_G \}$$

We can generalize this analysis to longer paths $X_1 \sim X_2 \sim \ldots \sim X_n$ in G

- Let G be a BN structure, and $X_1 \sim X_2 \sim \ldots \sim X_n$ be a path in G.
- Let **Z** be a subset of observed variables
- The path $X_1 \sim X_2 \sim \ldots \sim X_n$ is active given **Z** if
 - ▶ Whenever we have a v-structure $X_{i-1} \to X_i \leftarrow X_{i+1}$, then X_i or one of its descendants are in **Z**
 - ▶ no other node along the path is in **Z**
- Putting these together, we get justification for the notion of d-separation and the following definition

$$\mathcal{I}(\textit{G}) = \{(\textbf{X} \perp\!\!\!\perp \textbf{Y} \mid \textbf{Z}): \text{ for all } \textbf{X}, \textbf{Y} \text{ , } \textbf{Z} \text{ sets of nodes in } \textit{G} \text{ with } (\textbf{X} \perp\!\!\!\perp \textbf{Y} \mid \textbf{Z})_{\textit{G}}\}$$

The important result is that (local) basis set of d-separation statements

$$\{(X_i \perp \!\!\! \perp \mathbf{V} \setminus (De(X_i) \cup Pa(X_i)) \mid Pa(X_i))_G : \forall X_i \in \mathbf{V}\}$$

entails all other statements $\mathcal{I}(G)$ when combining them using the axioms of conditional independence

Markov equivalence

• Let us consider the sets $\mathcal{I}(G)$ of the following four DAGs

$$G_1: X \to Z \to Y$$
 $G_2: X \leftarrow Z \leftarrow Y$ $G_3: X \leftarrow Z \to Y$ and $G_4: X \to Z \leftarrow Y$

Interestingly, we get that

$$\mathcal{I}(G_1) = \mathcal{I}(G_2) = \mathcal{I}(G_3) = \{(X \perp\!\!\!\perp Y \mid Z)\}$$

and

$$\mathcal{I}(G_4) = \{(X \perp\!\!\!\perp Y)\}$$

- Thus, G_1, G_2, G_3 encode the same CIs, while G_4 not
- This leads to the following

Definition Two DAGs G and G' over \mathbf{V} are Markov equivalent (called also I-equivalent) if $\mathcal{I}(G) = \mathcal{I}(G')$

Markov equivalence

- ullet Question: how can we verify that two DAGs G and G' are Markov equivalent?
- The skeleton of a graph G over V is an undirected graph over V that contains an edge X-Y for every edge $X\to Y$ or $X\leftarrow Y$ in G

Theorem (Verma, Pearl)

Let G and G' be two DAGs over \mathbf{V} . The graphs are Markov equivalent if and only if G and G' have the same skeleton and the same set of v-structures.

Markov equivalence

- Question: how can we verify that two DAGs G and G' are Markov equivalent?
- The skeleton of a graph G over V is an undirected graph over V that contains an edge X-Y for every edge $X\to Y$ or $X\leftarrow Y$ in G

Theorem (Verma, Pearl)

Let G and G' be two DAGs over V. The graphs are Markov equivalent if and only if G and G' have the same skeleton and the same set of v-structures.

For example

```
G_1: X \to Z \to Y G_2: X \leftarrow Z \leftarrow Y G_3: X \leftarrow Z \to Y and G_4: X \to Z \leftarrow Y all graphs have he same skeleton X - Z - Y
```

- ullet The set of v-structures for G_1, G_2, G_3 is empty, thus they are Markov equivalent
- G_4 has a v-structure $X \to Z \leftarrow Y$, thus it is not Markov equivalent with G_i , i = 1, 2, 3

Markov equivalence

Fact

The set of all DAGs over ${\bf V}$ is partitioned into a set of mutually exclusive and exhaustive Markov equivalent classes, which are the set of equivalence classes induced by the Markov equivalence relation

Markov equivalence

Fact

The set of all DAGs over \mathbf{V} is partitioned into a set of mutually exclusive and exhaustive Markov equivalent classes, which are the set of equivalence classes induced by the Markov equivalence relation

For example, for $\mathbf{V} = \{X, Y, Z\}$ the equivalence classes induced by the Markov equivalence are the following

- $\{G = (\{X, Y, Z\}, \mathbf{E}) : |\mathbf{E}| = 3 \text{ and } G \text{ is no cycle}\}$
- ullet For DAGs with $|\mathbf{E}|=2$ we show only the case, when X and Y are not incident

$$\blacktriangleright \ X \to Z \leftarrow Y$$

- DAGs with $|\mathbf{E}| = 1$
 - $ightharpoonup X o Z Y, X \leftarrow Z Y$
 - $\blacktriangleright \ \, X \to Y \quad Z, \quad X \leftarrow Y \quad Z$
 - $ightharpoonup Y
 ightharpoonup Z X, Y \leftarrow Z X$
- $\bullet \ \ \mathsf{DAGs} \ \mathsf{with} \ |\textbf{E}| = 0$
 - ► X Z Y

Literatur

- D. Koller and N. Friedman (2009), Ch.3
- J. Pearl (2009), Ch.1
- J. Pearl, M. Glymour, and N.P. Jewell (2016), Ch. 1,2