Inteligência Artificial

Resolução de problemas por meio de busca

Prof. Chauã Queirolo

https://github.com/chaua/inteligencia-artificial

Sumário

- Tipos de ambientes
- Tipos de agentes
- Agentes de resolução de problemas
- Problemas

Tipos de Ambientes

Tipos de Ambientes

Completamente observável x Parcialmente observável

Determinístico x Estocástico

Episódico x Sequencial

Estático x Dinâmico

Discreto x Contínuo

Agente único x Multi-agente

Observável

Completamente observável

- Os sensores do agente transcrevem de forma completa o estado do ambiente a cada instante de tempo
- Agente não precisa manter representação do estado internamente

Parcialmente observável

Caso contrário

Determinístico x Estocástico

Determinístico

- O estado seguinte do ambiente é determinado somente em função do estado atual e da ação executada pelo agente
- Não há incerteza para o agente

Estocástico

Caso contrário

Episódico x Sequencial

Episódico

- A experiência do agente está dividida em episódios atômicos
- O próximo episódio não depende das ações dos episódios anteriores

Sequencial

- A decisão atual afeta as decisões futuras

Estático x Dinâmico

Estático

- O ambiente não é alterado enquanto o agente decide que ação vai tomar

Dinâmico

- Caso contrário

Semi-dinâmico

- ambiente permanece inalterado com a passagem do tempo mas a qualidade do desempenho do agente é alterada

Discreto x Contínuo

Discreto

- O agente tem um número limitado de percepções e ações distintas que estão claramente definidas.

Contínuo

 Quando o agente deve lidar com grandezas contínuas sejam elas ligadas aos estados do ambiente, às percepções ou às ações

Agente único x Multi-agente

Agente único

- Só existe um agente no ambiente

Multi-agente

- Se a outra entidade possui uma função de desempenho ou há comunicação entre as entidades

Tipos de ambientes

- O tipo de ambiente determina o tipo do agente
- O mundo real é:
 - Parcialmente observável
 - Estocástico
 - Sequencial
 - Dinâmico
 - Contínuo
 - Multi-agente

Atividade

- Classifique os ambientes dos seguintes agentes
 - Palavras cruzadas
 - Jogo de xadrez
 - Poker
 - Motorista de taxi
 - Análise de imagens
 - Tutor de inglês
 - Diagnóstico médico

Agentes de reflexos simples

Agentes de reflexos baseados em modelos

Agentes de reflexos baseados em modelos

Agentes baseados em objetivos

Agentes com aprendizagem

- Representações atômicas
 - Estados do mundo são considerados como um todo
 - Não possuem divisão interna
- Cada estado é uma caixa preta
- Única propriedade discernível: ser idêntico ou diferente da outra

- Agentes inteligentes devem maximizar a medida de desempenho
- Objetivo que o agente deseja satisfazer

Objetivos

Os objetivos ajudam

- Organizar o comportamento
- Limitar o que o agente está tentando alcançar
- Ações que ele precisa considerar

Formulação de objetivos baseada na

- Situação atual
- Medida de desempenho

Problemas

O agente deve

- descobrir como agir agora e no futuro para atingir o objetivo
- decidir quais ações e estados deve considerar

Formulação de problemas é o processo de decidir

- ações e estados que devem ser considerados para atingir um determinado objetivo

Busca

Busca

- Processo de procurar uma sequência de ações que alcançam um objetivo

Algoritmo de busca

- Entrada: problema
- Saída: solução como sequência de ações

Exemplo

Formulação do objetivos

- Chegar em Bucharest

Formulação do problema

- Estados: várias cidades
- Ações: dirigir entre as cidades

Solução

- Sequência de cidades

Exemplo

```
function SIMPLE-PROBLEM-SOLVING-AGENT (percept) returns an action
   static: seq, an action sequence, initially empty
            state, some description of the current world state
            goal, a goal, initially null
            problem, a problem formulation
   state \leftarrow \text{Update-State}(state, percept)
   if seq is empty then
        goal \leftarrow FORMULATE-GOAL(state)
        problem \leftarrow Formulate-Problem(state, goal)
        seq \leftarrow Search(problem)
   action \leftarrow Recommendation(seq, state)
   seq \leftarrow Remainder(seq, state)
   return action
```

Definição

- Um problema pode ser definido por 5 componentes
 - Estado inicial
 - Ações
 - Modelo de transição
 - Teste de objetivo
 - Custo do caminho

Estado inicial

• Estado onde o agente começa

Ações

• Conjunto de ações que o agente pode realizar, dado um estado

Cima, Baixo, Esquerda, Direita

Nada, Aspirar, Esquerda, Direita

Modelo de transição

- Estado resultante ao aplicar uma ação a em um estado
- Sucessor: qualquer estado acessível a partir do estado inicial por qualquer sequência de ações

Teste de objetivo

• Determina se um estado é objetivo

Custo do caminho

- Custo numérico a cada caminho
- Reflete a própria medida de desempenho
- Custo do passo:
 - Custo de ações individuais
 - Adotar uma ação a para atingir um estado s'

Definição

- Espaço de estados de um problema
 - Grafo dirigido onde:
 - Vértices são os estados
 - Arestas são as ações
- Solução: caminho do estado inicial até o objetivo
- Solução ótima: menor custo de caminho dentre todas as soluções

Exemplo

Mundo do aspirador de pó

- Estado inicial
- Ações
- Modelo de transição
- Teste de objetivo
- Custo de caminho

Exemplo

Quebra cabeças de 8

- Estado inicial
- Ações
- Modelo de transição
- Teste de objetivo
- Custo de caminho

Goal State

Exemplo

Problema das 8 rainhas

- Estado inicial tabuleiro vazio

- Ações colocar peça (x, y)

colocar peça (x, y)
Modelo de transição - não ocupada

Modelo de transição - não ocupada - não atacada

- Teste de objetivo tem 8 rainhas, nenhuma se atacando

- Custo de caminho 1 para cada ação

Exemplo

Labirinto

- Estado inicial agente na entrada do labirinto
- Ações E, D, B, C
- Modelo de transição
- Teste de objetivo
- Custo de caminho

e + a -> e'

movimentação no labirinto

- sem atravessar parede

agente na saída

1

Exemplo

Cubo mágico

- Estado inicial cubo embaralhado
- Ações girar faces 12 possíveis sentidos
- Modelo de transição
- Teste de objetivo
 todas as faces com a mesma cor
- Custo de caminho 1

jogar agua fora G1 jogar agua fora G2 G1 -> G2 G2 -> G1

Exemplo

Problema das garrafas

- Estado inicial G1 = 5I / G2 = 0I
- Ações
- Modelo de transição
- Teste de objetivo G2 = 11
- Custo de caminho 1

garrafa vazia não passa garrafa vazia não joga não jogar fora se tiver só 11

- Temos 2 garrafas, uma de 5 litros que está inicialmente cheia d'água e outra de 2 litros que está vazia
- O problema é obter exatamente 1 litro de água na garrafa de 2 litros, sendo que apenas duas ações são possíveis: passar a água de uma garrafa para o outra e jogar a água de uma garrafa fora
- Somente os 5 litros iniciais estão disponíveis

Referências Bibliográficas

Referências Bibliográficas

• S. J. Russell & P. Norvig. **Artificial Intelligence: A Modern Approach**. Prentice Hall, 3rd edition, 2010.