MASS MOBILIZATION PROJECT

Future Development & Predictive Applications

Presented by:

Emily Naftalin, Hayden Tsutsui, Paul Miller, Heather Johansen

ON Overview of objectives for today's meeting.

The countries, protests and data that make up the study.

DATA EVALUATION & CLEANSING

Transforming data into features for predictive analytics.

MODELING PROCESS

Predictive model development, interpretation & applications.

PROJECT RECOMMENDATIONS
Guidance on future applications and development.

TABLE OF CONTENTS

O INTRODUCTION

In partnership with Binghamton University, University of Notre Dame, the Political Instability Task Force (PITF), and with generous funding from the Central Intelligence Agency, we are here today to discuss the future of the Mass Mobilization project and the following objectives:

MM Researchers	US Government	Data Scientists
 Improve data usability Identify potential use cases & beneficiaries Address asks from US government 	 Prepare for future protests Address protester concerns Resolve protests without violence. 	 Inform project direction Develop predictive solutions with this data.

17,145
Protests and Demonstrations

166
Countries

30 Years of Data

Protester Demands

5
Protest Sizes

13
Participant Types

State Responses

Recorded Protests

https://public.tableau.com/views/Mass-Protests_ProtestNumMostCommonResponse/Sheet1?:language=en&:display_count=v&:origin=viz_share_link

State Responses

Protest Sizes

03 DATA EVALUATION & CLEANSING

Clean & Complete

Completed Protester Size Ranges, Transformed text into numbers

Encoding Categories

Countries, Regions, Participants, Protest Size

External Data

Prosperity Index, Population & Density

04

MODELING PROCESS

MULTI-LABEL

What it does: Predicts multiple targets per observation.

Models Run: Neural Network and Multi-label Classifier (using Random Forest and Bagging)

Results: Neural network was not interpretable. Other models had low scores.

Observation	Prediction
Protest #1	Arrests, Ignore
Protest #2	Shootings
Protest #3	Arrests, Beatings, Killings

04

MODELING PROCESS

MULTI-LABEL

What it does: Predicts multiple targets per observation.

Models Run: Neural Network and Multilabel Classifier (using Random Forest and Bagging Classifier) Results: Neural network was not interpretable. Other models had low scores due to imbalanced classes.

MULTI-MODEL

What it does: One model per target, predicts binary classification for target
Model Run: Logistic

Regression

models perform well for some classes, but imbalanced classes are still an issue.

Observation	Arrests
Protest #1	Yes
Protest #2	No
Protest #3	Yes

Observation	Beatings		
Protest #1	No		
Protest #2	No		
Protest #3	Yes		

Observation	Ignore	Observation	Shootings	
Protest #1	Yes	Protest #1	No	
Protest #2	No	Protest #2	Yes	
Protest #3	No	Protest #3	No	

MULTI-LABEL

What it does: Predicts multiple targets per observation.

Models Run: Neural Network and Multilabel Classifier (using Random Forest and Bagging Classifier) Results: Neural network was not interpretable. Other models had low scores due to imbalanced classes.

MULTI-MODEL

What it does: One model per target, predicts binary classification for target

Model Run: Logistic

Regression

Results: Logistic regression models performing well on more frequent targets.
Imbalanced classes did not perform well.

MULTI-MODEL with TARGET ENGINEERING

Modeled "Ignore" as above. Other state responses only modeled observations with no "Ignore" response. Accounted for imbalances with hyperparameters.

Results: Scores improved across the board.

State Response: Ignored Protest

Model Metric	Score
Precision	0.701
Recall/Sensitivity	0.895
Specificity	0.533

State Response: Ignored Protest

Note: Positive & Negative Coefficient Predictive Power are not to scale.

State Response: Violent Responses

Shootings

Model Metric	Score
Precision	0.247
Recall/Sensitivity	0.840
Specificity	0.611

Killings

Model Metric	Score
Precision	0.224
Recall/Sensitivity	0.797
Specificity	0.648

Beatings

Model Metric	Score
Precision	0.180
Recall/Sensitivity	0.726
Specificity	0.584

State Response: Violent Responses

Model Application: US Protests

Logistic Regression - Includes all observations, but leads to **imbalanced** classes. Accuracy of predictions is driven by model never predicting underrepresented targets.

	PREDICTED STATE RESPONSE							
	Arrests	Accomodation	Beatings	Crowd Dispersal	Ignore	Killings	Shootings	Violent Response
1999 Seattle WTO Protest	0 🗶	0 🗸	0 🗸	0 🗶	0 🗸	0 🗸	0 🗸	0 🗸
2011 Occupy Atlanta	0 ×	0 🗸	0 🗸	0 %	1 X	0 /	0 🗸	0 🗸
2018 March For Our Lives	0 /	0 🗸	0 /	0 🗸	1 🗸	0 /	0 /	0 /
2020 Michigan Covid Lockdown	0 🗸	0 🗸	0 🗸	0 🗸	1 🗸	0 1	0 🗸	0 🗸
2021 D.C. Riot	0 X	0 🗸	0 %	1 🗸	0 🗸	0 X	0 %	0 🗶
1000	Predicte	ed Positive Response	✓ Correct	Prediction	X	Incorrect Pre	diction	

Model Application: US Protests

Incorrect Prediction

Logistic Regression - Includes only protests **WITH** a government response. Accuracy has decreased, but specificity is stronger due to more nuanced predictions.

	PREDICTED STATE RESPONSE							
	Arrests	Accomodation	Beatings	Crowd Dispersal	Killings	Shootings	Violent Response	
1999 Seattle WTO Protest	1 🗸	1 X	0 🗸	1 🗸	0 🗸	1 X	0 🗸	
2011 Occupy Atlanta	1 🗸	1 X	0 🗸	1 🗸	0 /	0 /	0 🗸	
2018 March For Our Lives	1 X	0 🗸	1 X	1 X	0 /	0 🗸	0 🗸	
2020 Michigan Covid Lockdown	1 X	0 🗸	0 🗸	1 X	0 🗸	0 🗸	0 🗸	
2021 D.C. Riot	1 🗸	0 🗸	1 🗸	1 🗸	1 🗸	1 🗸	0 %	

Predicted Positive Response

Correct Prediction

OF PROJECT RECOMMENDATIONS

- → Factors that correlate most strongly with a protest being **ignored**:
 - ♦ Higher prosperity index for country
 - Protests involving workers and union members
- → Primary **protester type** and **protester violence** predict **violent state responses** more than other categorical features in the data set.
- → Dataset somewhat vague in certain places.
 - Primary recommendation to the research team is more precise mechanisms for collecting and recording data.
- → Drawing conclusions from data with highly imbalanced classes makes finding significant results extremely difficult
 - Research teams could help ameliorate this roadblock by recording data in meaningful classes - i.e. recording data in categories instead of continuous categorical variables.

Next Steps

- Gather data for US protests
 - Add other protest data and potentially other relevant national datasets
- More advanced multi-label modeling techniques
 - Ex: boosting, clustering
 - K-Means clustering for unsupervised inferences on data