Chapter Four

Combinational Logic

- Two basic types of logic circuits
 - Combinational
 - Output(s) depend solely on the inputs
 - Sequential
 - Output(s) depend on inputs and a feedback mechanism.
 - More on sequential circuits in Chapter 5

Copyright ©2013 Pearson Education, publishing as Prentice Hall

For n inputs

2ⁿ possible combinations

For each combination of inputs, there is one possible value for each output variable.

Therefore, a combinational circuit can be described by a

Truth Table.

Common Combinational Circuits

- Adders/subtractors
- Comparators
- Decoders
- Encoders
- Multiplexers.

Analysis of a given circuit

- 1. Make sure the circuit is combinational and not sequential.
 - No Feedback paths
 - No Memory elements
- 2. Obtain the Boolean functions or truth table applicable to the circuit.

Obtaining the Boolean Functions

- 1. Label all gate outputs that are a function of the inputs.
 - Labels are arbitrary, BUT
 - Names should be meaningful
- 2. Label the gates that are a function of input variables and/or previously labeled gates.
- 3. Repeat Step 2
- 4. Substitution

Substitution

$$F_1 = T_3 + T_2$$

$$F_1 = T_3 + T_2$$

$$T_3 = F'_2T_1$$

$$T_2 = ABC$$

$$T_1 = A + B + C$$

$$F_2 = AB + AC + BC$$

And now derive the truth table

Table 4.1 *Truth Table for the Logic Diagram of Fig. 4.2*

A	В	C	F ₂	F ' ₂	<i>T</i> ₁	T ₂	T ₃	F ₁
0 0 0	0 0 1	0 1 0	0 0 0	1 1 1	0 1 1	0 0 0	0 1 1	0 1 1
0 1 1 1 1	1 0 0 1 1	1 0 1 0	1 0 1 1	0 1 0 0	1 1 1 1	0 0 0 0	0 1 0 0	0 1 0 0

Design

Starts with a specification.

- 1. Determine the number of required inputs.
- 2. Derive the truth table.
- 3. Obtain the simplified Boolean Functions.
- 4. Implement the circuit.

Example Circuit

Need a circuit that takes 2 inputs and has 2 outputs.

When the inputs are both 0, the outputs are both zero.

When the inputs are both 1, the outputs are 1 and 0, respectively.

When the inputs are different, the outputs are 0 and 1 respectively.

- How many inputs are needed?
 - 2, let's call them x and y.
- How many outputs are needed?
 - 2, let's call them C and S
- Build the table.

x	У	С	S
0	0		
0	1		
1	0		
1	1		

- How many inputs are needed?
 - 2, let's call them x and y.
- How many outputs are needed?
 - 2, let's call them C and S
- Build the table.

x	У	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$C = xy$$

 $S = xy' + x'y$

X	У	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

$$C = xy$$

$$S = xy' + x'y$$

$$= x \oplus y$$

$$x$$

$$y$$

$$S$$

x	У	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

Half-Adder

A combinational circuit that performs the addition of two bits.

Full-Adder

X	у	Z	С	S
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		
1	1	0		
1	1	1		

Full-Adder

X	y	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	1	0
1	1	0	1	0
1	1	1	1	1

Find the Boolean Functions

Full Adder							
X	y	z	C	S			
0	0	0	0	0			
0	0	1	0	1			
0	1	0	0	1			
0	1	1	1	0			
1	0	0	0	1			
1	0	1	1	0			
1	1	0	1	0			
1	1	1	1	1			

Eull Adder

Further Examination

Further Examination

X	у	Z	С	S
0	0	0	0	0
0	0	1	0	1
0	1	0	0	1
0	1	1	1	0

Another implementation

Binary Adder

- Provides the arithmetic sum of two binary numbers.
- n full adders cascaded
- OR 1 half-adder and n-1 full adders cascaded

Full-Adders Cascaded

