### UNIVERSIDADE ESTADUAL DE CAMPINAS INSTITUTO DE COMPUTAÇÃO



MO420/MC908: Tópicos em Otimização Combinatória Prof. Cid Carvalho de Souza - IC/UNICAMP 20 Trabalho Prático - 20. semestre de 2012

# Resolução do problema Maximum 2-Independet Sets utilizando branch-and-cut

Aluno: Diego Rodrigo Hachmann - RA 134047

RA: Idogor Rosembert - RA 134058

**CAMPINAS** 

#### Resumo

# 1 O Problema Maximum 2-independent Sets

Este trabalho é fortemente baseado no artigo de Nemhauser e Sigismondi <sup>1</sup>. Heurísticas, rotinas de separação e geração dos cliques inicias, utilizadas neste trabalho, podem ser consultadas na referência acima citada.

#### 1.1 Descrição do Problema

Um conjunto independente de um grafo  $\mathcal{G}$  é um conjunto de vértices  $\mathcal{S}$  tal que não existem dois vértices adjacentes contidos em  $\mathcal{S}$ . O problema Maximum 2-independent Sets (2IS) consiste em maximizar a soma das cardinalidades de dois conjuntos de vértices independentes com intersecção vazia do grafo  $\mathcal{G}$ .

#### 1.2 Formulações

Uma formulação natural(FN) em programação linear é dada abaixo:

$$\max \ z = \sum_{u \in V} x_{Au} + \sum_{u \in V} x_{Bu} \tag{1}$$

$$s.a: x_{Au} + x_{Av} \le 1, \quad \forall (u, v) \in E$$
 (2)

$$x_{Bu} + x_{Bv} \le 1, \quad \forall (u, v) \in E$$
 (3)

$$x_{Au} + x_{Bu} \le 1, \quad \forall u \in V$$
 (4)

$$x_{Au} \in \{0, 1\} \ e \ x_{Bu} \in \{0, 1\} \ \forall u \in V$$
 (5)

Sabe-se que a formulação FN é ruim no sentido de que sua relaxação linear fornece limitantes duais fracos, fazendo com que algoritmos de *branch-and-bound* convencionais encontrem dificuldade ao resolver instâncias não patológicas com 40 nós ou até mesmo menores.

O problema 2IS pode ser formulado em função das cliques maximais de  $\mathcal{G}$  (a partir daqui chamaremos clique maximal apenas como clique). É fácil perceber que um conjunto independente contém não mais que um nó em cada clique de G. Assim, temos a seguinte formulação por cliques (CF):

 $<sup>^1 \, \</sup>mathrm{http://www.jstor.org/stable/2583564}$ 

$$\max \ z = \sum_{u \in V} x_{Au} + \sum_{u \in V} x_{Bu} \tag{6}$$

$$s.a: \sum_{\nu \in C} x_{A\nu} \le 1$$
, para toda clique maximal C (7)

$$\sum_{\nu \in C} x_{B\nu} \le 1, \quad \text{para toda clique maximal C} \tag{8}$$

$$x_{Au} + x_{Bv} \le 1, \quad \forall u, v \in V$$
 (9)

$$x_{Au} \in \{0, 1\} \ e \ x_{Bv} \in \{0, 1\}; \ \forall u, v \in V$$
 (10)

na qual cada aresta de  $\mathcal{G}$  está em pelo menos uma clique. Não são criadas restrições para todas as cliques C, pois para qualquer entrada razoável o número de cliques provavelmente é exponencial. Ao invés disso, são escolhidos alguns cliques maximais que cubram todas as arestas para o modelo inicial, sem que mais cliques podem ser adicionados na rotina de separação por cortes.

A relaxação linear do modelo CF fornece limitantes ao menos tão bons quanto ou em geral muito melhores que os obtidos com a relaxação linear do modelo FN, visto que todas as restrições de cliques definem facetas da envoltória convexa das soluções do I2S.

#### 1.3 Descrição das desigualdades

#### 1.3.1 Modelo FN

As restrições (2) e (3) garantem que dois nós adjacentes u e v não sejam adicionados a um mesmo conjunto independente. As restrições (4) garantem que um vértice pertença a no máximo um conjunto independente.

É fácil notar que as desigualdades (2) e (3) são válidas, pois elas são derivadas diretamente da definição de conjunto independente. As restrições (4) são válidas pois pela definição do Problema 2IS, um nó pode fazer parte de no máximo um conjunto independente, isto é, a interseção entre os dois conjuntos deve ser vazia.

#### 1.3.2 Modelo CF

As restrições (7) e (8) garantem que uma clique não possua mais que um nó no mesmo conjunto independente. As restrições (9) garantem que um vértice do grafo esteja apenas em um dos conjuntos independentes.

As desigualdades (7) e (8) são válidas. Se uma clique possuir mais que um nó de um mesmo conjunto independente I, então tais nós são adjacentes e portanto não podem simultaneamente fazer parte de I. As restrições (9) é válida pois pela definição do Problema 2IS, um nó pode fazer parte de no máximo um conjunto independente.

#### 1.4 Dimensão do Poliedro

Proposição 1. A dimensão do poliedro descrito pelo formulação FN é 2 \* |V|

Demonstração. Basta provar que o poliedro possui 2\*|V|+1 vetores afim independentes. Sejam A e B os dois conjuntos independentes. Seja S o conjunto de soluções viáveis para a formulação FN:

$$S = v_A \forall v_A \in V \cup v_B \forall v_B \in V$$

Ou seja, S é o conjunto de soluções com apenas apenas um vértice no conjunto A e nenhum vértice no conjunto B unido com as soluções com apenas um vértice no conjunto B e nenhum no conjunto A. Seja A a matriz formada por todos os vetores característicos  $\mathcal{X}^s \forall s \in S$ . É fácil perceber que A é uma matriz identidade, logo o número de linhas linearmente independentes é 2 \* |V|. Temos ainda que  $\mathcal{X}^0$  (vetor nulo) também é uma solução para o problema 2IS e portanto temos 2 \* |V| + 1 vetores afim independentes.

Podemos usar o mesmo argumento dado na prova acima para provar que a formulação CF também possui dimensão 2\*|V|.

# 2 Geração dos cliques da formulação - CLQ1

A rotina CLQ1, apresentada no Algoritmo 1 gera as cliques inicias da formulação CF tal que todas toda a aresta do grafo de entrada seja coberta por pelo meno uma clique.

Algorithm 1: Algoritmo CLQ1

#### 2.1 Rotinas de Separação

Dada uma solução ótima para a relaxação de um programa linear inteiro, uma rotina de separação tenta achar uma desigualdade válida para a formulação inteira que é violada pela solução ótima da relaxação.

Seja L o conjunto de todas as cliques encontrados pelo procedimento CLQ1. A rotina de separação implementada tenta achar uma clique  $C \notin L$  com  $\sum_{v \in C} > 1$ . Uma vez que a solução relaxada é inviável se tal C não existe,  $C \notin L$ . Ao invés de adicionarmos no máximo um único corte a cada momento que o cplex chama o callback da rotina de corte, resolvemos adicionar no máximo cinco cortes. Além disso, só e adicionado os cortes se a altura do nó da relaxação linear é não for maior que 10.

Os algoritmos 2 e 3 são utilizadas para a separação. Testes realizados mostraram que o tempo das rotinas de corte são muito baratas se comparado ao tempo total da solução do programa linear. Decidimos então executar a rotina mais vezes para encontrar no máximo 50 cortes e destes selecionar apenas os cinco que mais violam a solução ótima fracionária. Outro critério do algoritmo é que a interseção de todos os cortes são vazios, ou seja, uma variável só pode aparecer em apenas um corte.

```
Data: Grafo G, Solução Relaxada x*
Result: Conjunto de Cortes que violam x*
if Profundida do nó atual > 10 then
retorne Ø;
end
C = conjunto de cortes, inicialmente vazio
V = conjunto de vértices já em algum corte, inicialmente vazio
for i \in 1...50 do
   for cada conjunto independente S do
      x^{**} = x^* \mid A \# parte da solução referente ao conjunto S
      Corte a = Corte(G, x^{**}, CLQ2A, R)
      Corte b = Corte(G, x^{**}, CLQ2B, R)
      if a==b== "Todos vértices utilizados" then
       goto fim
       end
      C = a \cup b \# somente se forem válidos;
   \quad \text{end} \quad
end
```

0114

fim: retorne os 5 cortes em C que mais violam x\*
Algorithm 2: Algoritmo NCortes

Data: Grafo G, Solução Relaxada x\*, Critério de Seleção CLQ2, Conjunto de vértices R já escolhidos em outro corte para a mesma solução x\*
Result: Clique máximal S, que viola x\*, se existir
S = clique inicialmente vazio
while conseguir aumentar S do
| x = maximiza x<sub>i</sub> ∈ x\* conforme critério CLQ2 AND ∉ R AND adjacente a todos os vértices em S
R = R ∪ {x}
S = S ∪ {x}
end
if S = ∅ then
retorne "Todos vértices utilizados";

```
end  \begin{aligned} & \text{sum} = \text{soma dos valores dos vértices em S} \;; \\ & \text{if } sum > 1 \, + \, EPS \; \text{then} \\ & \middle| \; \; \text{retorne corte} \; \sum_{\nu \in S} x_{\nu} <= 1 \;; \\ & \text{else} \\ & \middle| \; \; \text{retorne "corte não encontrado"} \;; \end{aligned}
```

Algorithm 3: Algoritmo Corte

Os dois critérios de escolha utilizados nos algoritmos 2 e 3 são:

- ullet CLQ2A : Escolha uma variável que maximize  $\{ {
  m x}_{
  u} < 1 \}$
- CLQ2B : Escolha uma variável que minimize  $\{|x_v 1/2| : 0 < x_v < 1\}$

#### 3 Resultados

end

Foram utilizadas 60 instâncias de testes. O nome de cada instância inicia com a letra g e o número de nós do grafo descrito por ela. A instância g60\_10\_1, por exemplo, possui 60 vértices. O tempo máximo de execução de cada instância foi de 20 minutos (1200 segundos). Os experimentos foram executados em um servidor com processador Intel Xeon 2.67GHz com 42GB de memória RAM. O cplex foi configurado para utilizar o tempo de CPU ao invés do tempo de máquina, impedindo que outros processos concorrentes pudessem interferir na qualidade dos dados obtidos.

Tabela 1: Resultados para densidade 0.10

|                   |    | FN 1200 1 |      |         |    | CQL | BB 120 | 0 1    | CLQBC 1200 1 |    |      |        |
|-------------------|----|-----------|------|---------|----|-----|--------|--------|--------------|----|------|--------|
| I1                | C1 | C2        | D1   | D2      | C1 | C2  | D1     | D2     | C1           | C2 | D1   | D2     |
| g60_10_1          | 43 | 0         | 3    | 9376    | 43 | 0   | 0      | 631    | 43           | 0  | 0    | 631    |
| $g60\_10\_2$      | 43 | 0         | 5    | 10213   | 43 | 0   | 0      | 776    | 43           | 0  | 0    | 496    |
| g60_10_3          | 42 | 0         | 8    | 19554   | 42 | 0   | 0      | 296    | 42           | 0  | 0    | 296    |
| $g80\_10\_1$      | 52 | 0         | 176  | 277501  | 52 | 0   | 4      | 3718   | 52           | 0  | 4    | 2502   |
| g80_10_2          | 50 | 0         | 545  | 908836  | 50 | 0   | 15     | 12721  | 50           | 0  | 21   | 10719  |
| g80_10_3          | 52 | 0         | 249  | 370691  | 52 | 0   | 10     | 9771   | 52           | 0  | 15   | 9225   |
| $g100_{-}10_{-}1$ | 57 | 12        | 1205 | 1513210 | 58 | 0   | 387    | 193643 | 58           | 0  | 553  | 230178 |
| $g100_{-}10_{-}2$ | 55 | 16        | 1204 | 1512504 | 57 | 1   | 1201   | 646557 | 57           | 1  | 1202 | 527593 |
| g100_10_3         | 56 | 14        | 1205 | 1512072 | 57 | 0   | 954    | 424801 | 57           | 0  | 630  | 254859 |
| $g120_{-}10_{-}1$ | 60 | 29        | 1205 | 1002844 | 62 | 8   | 1203   | 298080 | 61           | 9  | 1203 | 233820 |
| $g120_{-}10_{-}2$ | 61 | 28        | 1204 | 1120187 | 64 | 5   | 1202   | 243761 | 65           | 4  | 1202 | 193539 |
| g120_10_3         | 60 | 29        | 1204 | 1086153 | 64 | 4   | 1202   | 262071 | 63           | 5  | 1203 | 232916 |

Tabela 2: Resultados para densidade 0.30

|           |    | FN 1200 1 |      |         |    | CQL | BB 120 | 0 1    | CQLBC 1200 1 |    |      |       |
|-----------|----|-----------|------|---------|----|-----|--------|--------|--------------|----|------|-------|
| I1        | C1 | C2        | D1   | D2      | C1 | C2  | D1     | D2     | C1           | C2 | D1   | D2    |
| g60_30_1  | 24 | 0         | 180  | 237872  | 24 | 0   | 2      | 1304   | 24           | 0  | 4    | 849   |
| g60_30_2  | 23 | 0         | 281  | 412555  | 23 | 0   | 4      | 3077   | 23           | 0  | 6    | 1483  |
| g60_30_3  | 23 | 0         | 258  | 390342  | 23 | 0   | 3      | 2565   | 23           | 0  | 4    | 893   |
| g80_30_1  | 25 | 13        | 1204 | 1194832 | 26 | 0   | 150    | 52348  | 26           | 0  | 109  | 12082 |
| g80_30_2  | 25 | 12        | 1204 | 1166355 | 27 | 0   | 61     | 20335  | 27           | 0  | 56   | 5599  |
| g80_30_3  | 26 | 10        | 1204 | 1179326 | 27 | 0   | 158    | 48308  | 27           | 0  | 155  | 16628 |
| g100_30_1 | 27 | 27        | 1203 | 822147  | 30 | 0   | 738    | 125786 | 30           | 0  | 458  | 32071 |
| g100_30_2 | 26 | 27        | 1202 | 828584  | 29 | 1   | 1202   | 208478 | 28           | 3  | 1201 | 70956 |
| g100_30_3 | 25 | 29        | 1202 | 803526  | 28 | 3   | 1202   | 232443 | 28           | 3  | 1202 | 84629 |
| g120_30_1 | 25 | 48        | 1202 | 516271  | 30 | 8   | 1204   | 149932 | 30           | 7  | 1203 | 46936 |
| g120_30_2 | 26 | 46        | 1203 | 511231  | 28 | 10  | 1202   | 151564 | 29           | 8  | 1203 | 58022 |
| g120_30_3 | 27 | 47        | 1203 | 481929  | 27 | 11  | 1204   | 156435 | 29           | 9  | 1204 | 56601 |

#### 3.1 Formulações

A seguinte notação foi utilizada:

Nesta seção comparamos o desempenho das formulações FN (modelo FN) e CLQ1 (modelos CLBQQ e CLQBC). Todas os testes foram executados utilizando as heurísticas implementadas. As instâncias foram agrupadas pela densidade dos grafos de entrada. Os resultados podem ser vistos nas tabelas 1, 2, 3, 4 e 5.

C1: Maior solução primal encontrada

C2: Menor GAP (solução dual - valor do inbumbent)

D1: Tempo em segundos

D2: Número de iterações

Como era de se esperar, os resultados encontrados para a formulação FN foram insatisfatórios quando comparado a formulação CLQ1, obtendo apenas 18 resultados ótimos dentre os 60 possíveis, contra 46 do

Tabela 3: Resultados para densidade 0.50

|           |    | FI | V 1200 | 1      |    | CQL | BB 120 | 0 1    | CQLBC 1200 1 |    |      |       |
|-----------|----|----|--------|--------|----|-----|--------|--------|--------------|----|------|-------|
| I1        | C1 | C2 | D1     | D2     | C1 | C2  | D1     | D2     | C1           | C2 | D1   | D2    |
| g60_50_1  | 14 | 0  | 258    | 305629 | 14 | 0   | 4      | 2339   | 14           | 0  | 11   | 998   |
| g60_50_2  | 15 | 0  | 144    | 151257 | 15 | 0   | 6      | 2715   | 15           | 0  | 7    | 717   |
| g60_50_3  | 14 | 0  | 233    | 276000 | 14 | 0   | 8      | 3824   | 14           | 0  | 10   | 1047  |
| g100_50_1 | 17 | 24 | 1202   | 558093 | 18 | 0   | 484    | 65998  | 18           | 0  | 541  | 15730 |
| g100_50_2 | 17 | 26 | 1202   | 415451 | 18 | 0   | 489    | 72719  | 18           | 0  | 533  | 15769 |
| g100_50_3 | 16 | 28 | 1203   | 399199 | 18 | 0   | 499    | 66049  | 18           | 0  | 636  | 19492 |
| g120_50_1 | 17 | 44 | 1201   | 317890 | 17 | 7   | 1202   | 104925 | 19           | 5  | 1204 | 24576 |
| g120_50_2 | 17 | 44 | 1201   | 236306 | 19 | 5   | 1202   | 102116 | 19           | 5  | 1203 | 19717 |
| g120_50_3 | 17 | 47 | 1202   | 173774 | 18 | 6   | 1202   | 99911  | 17           | 7  | 1200 | 19162 |
| g80_50_1  | 17 | 6  | 1203   | 818171 | 17 | 0   | 58     | 16885  | 17           | 0  | 32   | 1823  |
| g80_50_2  | 16 | 8  | 1202   | 833316 | 16 | 0   | 52     | 13134  | 16           | 0  | 95   | 4543  |
| g80_50_3  | 16 | 8  | 1203   | 805574 | 16 | 0   | 73     | 16286  | 16           | 0  | 106  | 6230  |

Tabela 4: Resultados para densidade 0.70

|                   |    | TJA | T 1000 | 1          | CQLBB 1200 1 |      |         |       | CQLBC 1200 1 |    |      |       |
|-------------------|----|-----|--------|------------|--------------|------|---------|-------|--------------|----|------|-------|
|                   |    | FT  | V 1200 | <u>l</u> , |              | CQL. | BB 1200 | J 1   |              |    |      |       |
| I1                | C1 | C2  | D1     | D2         | C1           | C2   | D1      | D2    | C1           | C2 | D1   | D2    |
| g60_70_1          | 11 | 0   | 63     | 52657      | 11           | 0    | 2       | 371   | 11           | 0  | 2    | 30    |
| g60_70_2          | 11 | 0   | 46     | 41480      | 11           | 0    | 1       | 308   | 11           | 0  | 2    | 17    |
| g60_70_3          | 10 | 0   | 74     | 63980      | 10           | 0    | 2       | 534   | 10           | 0  | 4    | 130   |
| g80_70_1          | 11 | 0   | 613    | 330992     | 11           | 0    | 18      | 3953  | 11           | 0  | 34   | 923   |
| $g80\_70\_2$      | 12 | 0   | 480    | 220608     | 12           | 0    | 7       | 1297  | 12           | 0  | 13   | 279   |
| g80_70_3          | 12 | 0   | 452    | 214169     | 12           | 0    | 15      | 2738  | 12           | 0  | 16   | 433   |
| $g100_{-}70_{-}1$ | 12 | 21  | 1201   | 223765     | 12           | 0    | 158     | 24341 | 12           | 0  | 143  | 3742  |
| $g100_{-}70_{-}2$ | 11 | 21  | 1202   | 220028     | 12           | 0    | 179     | 22989 | 12           | 0  | 112  | 2745  |
| g100_70_3         | 11 | 22  | 1202   | 242839     | 12           | 0    | 118     | 14694 | 12           | 0  | 114  | 3593  |
| $g120_{-}70_{-}1$ | 12 | 42  | 1201   | 144017     | 13           | 0    | 563     | 34791 | 13           | 0  | 436  | 5914  |
| $g120_{-}70_{-}2$ | 12 | 40  | 1201   | 139830     | 12           | 2    | 1201    | 68461 | 12           | 1  | 1201 | 15126 |
| g120_70_3         | 11 | 41  | 1202   | 148093     | 12           | 0    | 1086    | 70790 | 12           | 2  | 1200 | 14824 |

Tabela 5: Resultados para densidade 0.90

| •      |                        |    | FI | V 1200 | 1      | CQLBB 1200 1 |    |     |      | CQLBC 1200 1 |    |     |     |
|--------|------------------------|----|----|--------|--------|--------------|----|-----|------|--------------|----|-----|-----|
|        | I1                     | C1 | C2 | D1     | D2     | C1           | C2 | D1  | D2   | C1           | C2 | D1  | D2  |
|        | g60_90_1               | 6  | 0  | 27     | 13904  | 6            | 0  | 0   | 434  | 6            | 0  | 4   | 0   |
|        | g60_90_2               | 6  | 0  | 19     | 14579  | 6            | 0  | 0   | 148  | 6            | 0  | 0   | 0   |
|        | g60_90_3               | 7  | 0  | 17     | 11932  | 7            | 0  | 0   | 314  | 7            | 0  | 0   | 0   |
|        | g80_90_1               | 7  | 0  | 115    | 34851  | 7            | 0  | 3   | 998  | 7            | 0  | 13  | 0   |
| [!H!]  | g80_90_2               | 8  | 0  | 101    | 30049  | 8            | 0  | 3   | 690  | 8            | 0  | 6   | 0   |
| [:11:] | g80_90_3               | 8  | 0  | 137    | 31152  | 8            | 0  | 3   | 822  | 8            | 0  | 1   | 0   |
|        | $\mathtt{g}120\_90\_1$ | 8  | 19 | 1201   | 98648  | 8            | 0  | 130 | 7915 | 8            | 0  | 185 | 117 |
|        | $\mathtt{g}100\_90\_2$ | 8  | 0  | 433    | 70136  | 8            | 0  | 23  | 2851 | 8            | 0  | 39  | 0   |
|        | g100_90_3              | 8  | 0  | 545    | 78380  | 8            | 0  | 12  | 2125 | 8            | 0  | 54  | 65  |
|        | g100_90_1              | 8  | 0  | 395    | 66491  | 8            | 0  | 20  | 3167 | 8            | 0  | 26  | 0   |
|        | g120_90_2              | 8  | 17 | 1203   | 101512 | 8            | 0  | 89  | 6510 | 8            | 0  | 153 | 422 |
|        | g120_90_3              | 8  | 8  | 1201   | 109607 | 8            | 0  | 62  | 4538 | 8            | 0  | 127 | 91  |

da formulação CLQ1. Para os as instâncias que não obtiveram resultados ótimos, o erro encontrado na formuação FN foi bem superior, chegando a casa dos 100%.

Podemos observar que quanto maior a densidade do grafo, melhor é a qualidade da solução encontrada e menor é o número de nós explorados. Ainda, é possível notar que a formulação CLQBB tende ser mais eficiente que a formulação CLQBC a medida que a densidade do grafo aumenta.

#### 3.2 Heurísticas

Nesta seção são analisados os resultados obtidos com as heurísticas implementadas neste trabalho. Para tanto, comparamos o desempenho do algoritmo branch-anb-bound -CLQBB- com e sem o uso das heurísticas. Os resultados são apresentados na Tabela 6. A coluna H1 mostra a quantidade de heurísticas aplicadas que melhoraram o *incumbent*. As outras colunas foram definidas anteriormente. Os valores em verde significam que o valor obtido com o uso da heurística foi melhorado (menor tempo, menor GAP, menor número de nos explorados) quando comparado ao não uso das heurísticas. Os valores em verdes tem significado contrário.

Tabela 6: Resultado do uso das heurísticas

|           | Sen  | n heur | ísticas | Com heurística |      |    |        |  |  |
|-----------|------|--------|---------|----------------|------|----|--------|--|--|
| I1        | D1   | G1     | D2      | H1             | D1   | G1 | D2     |  |  |
| g100_10_1 | 414  | 0      | 193950  | 7              | 387  | 0  | 193643 |  |  |
| g100_10_2 | 1202 | 2      | 530611  | 5              | 1201 | 1  | 646557 |  |  |
| g100_10_3 | 591  | 0      | 252958  | 5              | 954  | 0  | 424801 |  |  |
| g100_30_1 | 646  | 0      | 110660  | 1              | 738  | 0  | 125786 |  |  |
| g100_30_2 | 1200 | 3      | 178597  | 3              | 1202 | 1  | 208478 |  |  |
| g100_30_3 | 1202 | 3      | 207017  | 5              | 1202 | 3  | 232443 |  |  |
| g100_50_1 | 573  | 0      | 83146   | 1              | 484  | 0  | 65998  |  |  |
| g100_50_2 | 451  | 0      | 64173   | 3              | 489  | 0  | 72719  |  |  |
| g100_50_3 | 521  | 0      | 71397   | 2              | 499  | 0  | 66049  |  |  |
| g100_70_1 | 146  | 0      | 21182   | 3              | 158  | 0  | 24341  |  |  |
| g100_70_2 | 158  | 0      | 18125   | 3              | 179  | 0  | 22989  |  |  |
| g100_70_3 | 127  | 0      | 15941   | 1              | 118  | 0  | 14694  |  |  |
| g100_90_1 | 17   | 0      | 2538    | 2              | 20   | 0  | 3167   |  |  |
| g100_90_2 | 26   | 0      | 2780    | 3              | 23   | 0  | 2851   |  |  |
| g100_90_3 | 11   | 0      | 1877    | 1              | 12   | 0  | 2125   |  |  |
| g120_10_1 | 1201 | 8      | 270087  | 2              | 1203 | 8  | 298080 |  |  |
| g120_10_2 | 1201 | 5      | 210085  | 6              | 1202 | 5  | 243761 |  |  |

| g120_10_3 | 1202 | 4  | 257237 | 3 | 1202 | 4  | 262071 |
|-----------|------|----|--------|---|------|----|--------|
| g120_30_1 | 1202 | 9  | 136229 | 3 | 1204 | 8  | 149932 |
| g120_30_2 | 1203 | 10 | 151501 | 2 | 1202 | 10 | 151564 |
| g120_30_3 | 1203 | 10 | 147254 | 2 | 1204 | 11 | 156435 |
| g120_50_1 | 1203 | 5  | 108559 | 2 | 1202 | 7  | 104925 |
| g120_50_2 | 1202 | 4  | 94896  | 3 | 1202 | 5  | 102116 |
| g120_50_3 | 1203 | 4  | 101366 | 3 | 1202 | 6  | 99911  |
| g120_70_1 | 559  | 0  | 40099  | 3 | 563  | 0  | 34791  |
| g120_70_2 | 1201 | 1  | 80075  | 4 | 1201 | 2  | 68461  |
| g120_70_3 | 865  | 0  | 60141  | 3 | 1086 | 0  | 70790  |
| g120_90_1 | 107  | 0  | 8025   | 2 | 130  | 0  | 7915   |
| g120_90_2 | 62   | 0  | 5806   | 1 | 89   | 0  | 6510   |
| g120_90_3 | 49   | 0  | 4451   | 3 | 62   | 0  | 4538   |
| g60_10_1  | 0    | 0  | 583    | 3 | 0    | 0  | 631    |
| g60_10_2  | 0    | 0  | 490    | 2 | 0    | 0  | 776    |
| g60_10_3  | 0    | 0  | 322    | 2 | 0    | 0  | 296    |
| g60_30_1  | 3    | 0  | 1755   | 2 | 2    | 0  | 1304   |
| g60_30_2  | 4    | 0  | 3465   | 2 | 4    | 0  | 3077   |
| g60_30_3  | 5    | 0  | 2247   | 2 | 3    | 0  | 2565   |
| g60_50_1  | 5    | 0  | 2721   | 2 | 4    | 0  | 2339   |
| g60_50_2  | 6    | 0  | 2735   | 2 | 6    | 0  | 2715   |
| g60_50_3  | 6    | 0  | 3471   | 2 | 8    | 0  | 3824   |
| g60_70_1  | 1    | 0  | 227    | 1 | 2    | 0  | 371    |
| g60_70_2  | 1    | 0  | 446    | 3 | 1    | 0  | 308    |
| g60_70_3  | 1    | 0  | 575    | 2 | 2    | 0  | 534    |
| g60_90_1  | 0    | 0  | 346    | 2 | 0    | 0  | 434    |
| g60_90_2  | 0    | 0  | 145    | 2 | 0    | 0  | 148    |
| g60_90_3  | 0    | 0  | 298    | 1 | 0    | 0  | 314    |
| g80_10_1  | 6    | 0  | 4811   | 3 | 4    | 0  | 3718   |
| g80_10_2  | 14   | 0  | 10932  | 5 | 15   | 0  | 12721  |
| g80_10_3  | 11   | 0  | 8870   | 5 | 10   | 0  | 9771   |
| g80_30_1  | 148  | 0  | 53071  | 4 | 150  | 0  | 52348  |
| g80_30_2  | 51   | 0  | 14752  | 4 | 61   | 0  | 20335  |
| g80_30_3  | 190  | 0  | 60118  | 1 | 158  | 0  | 48308  |

| g80_50_1 | 41 | 0 | 11091 | 2 | 58 | 0 | 16885 |
|----------|----|---|-------|---|----|---|-------|
| g80_50_2 | 60 | 0 | 14174 | 3 | 52 | 0 | 13134 |
| g80_50_3 | 68 | 0 | 16808 | 2 | 73 | 0 | 16286 |
| g80_70_1 | 14 | 0 | 3241  | 1 | 18 | 0 | 3953  |
| g80_70_2 | 10 | 0 | 2304  | 4 | 7  | 0 | 1297  |
| g80_70_3 | 13 | 0 | 3369  | 3 | 15 | 0 | 2738  |
| g80_90_1 | 3  | 0 | 1116  | 2 | 3  | 0 | 998   |
| g80_90_2 | 2  | 0 | 525   | 2 | 3  | 0 | 690   |
| g80_90_3 | 2  | 0 | 791   | 2 | 3  | 0 | 822   |
|          |    |   |       |   |    |   |       |

Da coluna H1, concluímos que, independente do numero de nós explorados (coluna D2), a quantidade de *incumbents* melhorados não sofreu aumento significativo. Quanto a melhora da solução pelo uso das heurísticas, percebe-se que não houve uma comportamento padrão de melhora.

Observando o log do cplex, percebemos que na maioria das instâncias o BB com o uso das heurísticas proporcionou melhora no *incumbent* logo no inicio da execução. Por outro lado, o BB sem heurísticas encontra mais soluções inteiras alguns segundos após o inicio da execução.

#### 3.3 Cortes

Nesta seção são analisados os resultados obtidos com a rotina de separação por cortes implementadas neste trabalho. Para tanto, comparamos o desempenho do algoritmo branch-anb-bound -CLQBC- com o algoritmo branch-and-cut -CLQBC-, ambos com o uso das heurísticas. Os resultados são apresentados na Tabela 7. A coluna N1 mostra a quantidade de cortes aplicados. As outras colunas foram definidas anteriormente. Os valores em verde significam que o valor obtido com o uso dos cortes foi melhorado (menor tempo, menor GAP, menor número de nos explorados) e em vermelho piorou.

Tabela 7: Resultado do uso dos cortes

|           | S    | em co | rtes   | Com cortes |      |    |        |  |  |  |
|-----------|------|-------|--------|------------|------|----|--------|--|--|--|
| I1        | D1   | G1    | D2     | N 1        | D1   | G1 | D2     |  |  |  |
| g100_10_1 | 387  | 0     | 193643 | 24         | 556  | 0  | 230178 |  |  |  |
| g100_10_2 | 1201 | 1     | 646557 | 8          | 1202 | 1  | 527656 |  |  |  |
| g100_10_3 | 954  | 0     | 424801 | 22         | 624  | 0  | 254859 |  |  |  |
| g100_30_1 | 738  | 0     | 125786 | 963        | 458  | 0  | 32071  |  |  |  |
| g100_30_2 | 1202 | 1     | 208478 | 1057       | 1201 | 3  | 70956  |  |  |  |

| g100_30_3 | 1202 | 3  | 232443 | 1095 | 1202 | 3 | 84629  |
|-----------|------|----|--------|------|------|---|--------|
| g100_50_1 | 484  | 0  | 65998  | 2156 | 541  | 0 | 15730  |
| g100_50_2 | 489  | 0  | 72719  | 2474 | 533  | 0 | 15769  |
| g100_50_3 | 499  | 0  | 66049  | 2037 | 636  | 0 | 19492  |
| g100_70_1 | 158  | 0  | 24341  | 1943 | 143  | 0 | 3742   |
| g100_70_2 | 179  | 0  | 22989  | 1601 | 112  | 0 | 2745   |
| g100_70_3 | 118  | 0  | 14694  | 1592 | 114  | 0 | 3593   |
| g100_90_1 | 20   | 0  | 3167   | 697  | 26   | 0 | 0      |
| g100_90_2 | 23   | 0  | 2851   | 729  | 39   | 0 | 0      |
| g100_90_3 | 12   | 0  | 2125   | 1191 | 54   | 0 | 65     |
| g120_10_1 | 1203 | 8  | 298080 | 65   | 1203 | 9 | 235207 |
| g120_10_2 | 1202 | 5  | 243761 | 24   | 1203 | 4 | 194976 |
| g120_10_3 | 1202 | 4  | 262071 | 42   | 1203 | 5 | 241406 |
| g120_30_1 | 1204 | 8  | 149932 | 1582 | 1203 | 7 | 46936  |
| g120_30_2 | 1202 | 10 | 151564 | 1423 | 1203 | 8 | 58022  |
| g120_30_3 | 1204 | 11 | 156435 | 1450 | 1204 | 9 | 56601  |
| g120_50_1 | 1202 | 7  | 104925 | 2702 | 1204 | 5 | 24576  |
| g120_50_2 | 1202 | 5  | 102116 | 2981 | 1203 | 5 | 19717  |
| g120_50_3 | 1202 | 6  | 99911  | 3139 | 1200 | 7 | 19162  |
| g120_70_1 | 563  | 0  | 34791  | 2235 | 436  | 0 | 5914   |
| g120_70_2 | 1201 | 2  | 68461  | 2786 | 1201 | 1 | 15126  |
| g120_70_3 | 1086 | 0  | 70790  | 2460 | 1200 | 2 | 14824  |
| g120_90_1 | 130  | 0  | 7915   | 1362 | 185  | 0 | 117    |
| g120_90_2 | 89   | 0  | 6510   | 1703 | 153  | 0 | 422    |
| g120_90_3 | 62   | 0  | 4538   | 1344 | 127  | 0 | 91     |
| g60_10_1  | 0    | 0  | 631    | 0    | 0    | 0 | 631    |
| g60_10_2  | 0    | 0  | 776    | 2    | 0    | 0 | 496    |
| g60_10_3  | 0    | 0  | 296    | 0    | 0    | 0 | 296    |
| g60_30_1  | 2    | 0  | 1304   | 197  | 4    | 0 | 849    |
| g60_30_2  | 4    | 0  | 3077   | 228  | 6    | 0 | 1483   |
| g60_30_3  | 3    | 0  | 2565   | 176  | 4    | 0 | 893    |
| g60_50_1  | 4    | 0  | 2339   | 756  | 11   | 0 | 998    |
| g60_50_2  | 6    | 0  | 2715   | 537  | 7    | 0 | 717    |
| g60_50_3  | 8    | 0  | 3824   | 718  | 10   | 0 | 1047   |

| g60_70_1 | 2   | 0 | 371   | 292  | 2   | 0 | 30    |
|----------|-----|---|-------|------|-----|---|-------|
| g60_70_2 | 1   | 0 | 308   | 296  | 2   | 0 | 17    |
| g60_70_3 | 2   | 0 | 534   | 580  | 4   | 0 | 130   |
| g60_90_1 | 0   | 0 | 434   | 303  | 4   | 0 | 0     |
| g60_90_2 | 0   | 0 | 148   | 217  | 0   | 0 | 0     |
| g60_90_3 | 0   | 0 | 314   | 90   | 0   | 0 | 0     |
| g80_10_1 | 4   | 0 | 3718  | 6    | 5   | 0 | 2502  |
| g80_10_2 | 15  | 0 | 12721 | 4    | 19  | 0 | 10719 |
| g80_10_3 | 10  | 0 | 9771  | 4    | 15  | 0 | 9225  |
| g80_30_1 | 150 | 0 | 52348 | 597  | 109 | 0 | 12082 |
| g80_30_2 | 61  | 0 | 20335 | 578  | 56  | 0 | 5599  |
| g80_30_3 | 158 | 0 | 48308 | 553  | 155 | 0 | 16628 |
| g80_50_1 | 58  | 0 | 16885 | 1113 | 32  | 0 | 1823  |
| g80_50_2 | 52  | 0 | 13134 | 1216 | 95  | 0 | 4543  |
| g80_50_3 | 73  | 0 | 16286 | 1185 | 106 | 0 | 6230  |
| g80_70_1 | 18  | 0 | 3953  | 1127 | 34  | 0 | 923   |
| g80_70_2 | 7   | 0 | 1297  | 1152 | 13  | 0 | 279   |
| g80_70_3 | 15  | 0 | 2738  | 1114 | 16  | 0 | 433   |
| g80_90_1 | 3   | 0 | 998   | 451  | 13  | 0 | 0     |
| g80_90_2 | 3   | 0 | 690   | 446  | 6   | 0 | 0     |
| g80_90_3 | 3   | 0 | 822   | 196  | 1   | 0 | 0     |
|          |     |   |       |      |     |   |       |

Claramente a coluna D2 mostra que o uso dos cortes de cliques maximais proporcionou uma diminuição no número de nós explorados, apesar de a diminuição no tempo de execução nem sempre ser observada. Novamente observamos no log do cplex que as melhores com o uso de cortes eram obtidas logo no inicio da execução, ficando mais lenta depois de um certo tempo.

## 4 Conclusão

Neste trabalho foram implementados rotinas de separação de cortes e heurísticas que convertem uma solução fracionário em uma solução inteira do problema 2IS. Dois modelos foram implementados, FN e CLQ, sendo que o segundo resultados muito superiores ao primeiro. Foram realizados experimentos com os algoritmos de branch-and-bound e branch-and-cut implementados na biblioteca cplex. Os experimentos mostram que instâncias com grafos mais densos são mais "fáceis" de serem solucionadas. Os experimentos mostraram ainda

que as heurísticas não proveram grandes melhorias nos resultados. Os cortes de cliques maximais diminuíram o número de nós explorados, porém como cortes eram adicionados, não houve melhora perceptiva nos tempos de execução.