Aufgabe

Ein offener Wasserbehälter aus Stahl mit einer Masse von 25kg ist mit 50 liter Wasser von 15°C gefüllt (Stahlbehälter hat die gleiche Temperatur.) Im Behälter befindet sich eine elektrische Heizung mit einer Leistung von 5 kW.

Barometerstand pb = 0.1 MPa.

- a) nach welcher Zeit sind 20 Kg Wasser verdampft, wenn vom Behälter an die Umgebungsluft ein Wärmestrom von 1000 kJ/h abgegeben wird?
- b) Der Wassergehalt wird so isoliert, dass keine Wärmeverluste auftreten. Nach welcher Zeit ist das gesamte Wasser verdampft (Isolierung soll sich nicht mit aufheizen)

Rechnung Teil a.

Stahlmasse, die erwärmt werden muss.

> m[S] = 25*Unit(kg); addParameter(%):

$$m_S = 25 [kg]$$
 (1)

Wasservolumen, das erwärmt werden muss.

>
$$V[W] = 50*Unit(liter); addParameter(%):$$

$$V_W = 50 [L]$$
(2)

Spezifische Wärmekapazität von Stahl aus "Taschenbuch der Physik" von Stöcker.

> c[S] = 0.51*Unit(kJ/(kg*K)): lhs(%)=convert(rhs(%), units,kJ/(kg*K)); simplify(%): addParameter(%):

$$c_S = 0.51000 \left[\left[\frac{kJ}{kg K} \right] \right]$$
 (3)

Spezifische Wärmekapazität von Wasser.

> c[W] = 4.187*Unit(kJ/(kg*K)): lhs(%)=convert(rhs(%),units,kJ/
 (kg*K)); simplify(%): addParameter(%):

$$c_W = 4.1870 \left[\frac{kJ}{kg K} \right]$$
 (4)

Dichte von Wasser. (Bei 20°C, die Temperaturabhängigkeit aller Stoffeigenschaften wird hier vernachlässigt.)

> rho[W] = 0.998*Unit(kg/liter): lhs(%)=convert(rhs(%), units,
 kg/liter); simplify(%): addParameter(%):

$$\rho_W = 0.99800 \left[\frac{kg}{L} \right]$$
 (5)

Bis zum Siedepunkt 100°C muss Stahbehälter und Wasser um ΔT erwärmt werden.

> dT = (100-15) *Unit(K); addParameter(%):

$$\Delta T = 85 \parallel K \parallel$$
 (6)

Wärmestrom an die Umgebung.

> P[U] = 1000.0*Unit(kJ/h): lhs(%)=convert(rhs(%),units,kJ/h);
simplify(%); addParameter(%):

$$P_{U} = 1000.0 \left[\frac{kJ}{h} \right]$$

$$P_{U} = 277.78 \left[W \right]$$
(7)

Wärmestrom aus der Heizung.

> P[H] = 5*Unit(kW); addParameter(simplify(%)):

$$P_H = 5 \left[kW \right]$$
 (8)

Die Temperaturänderung wird in der Zeit t₁ erfolgen. Energiebilanz für diesen Zeitraum:

>
$$(m[S]*c[S] + V[W]*rho[W]*c[W])*dT + P[U]*t[1] = P[H]*t[1];$$

 $(m_S c_S + V_W \rho_W c_W) \Delta T + P_U t_1 = P_H t_1$ (9)

Auflösen nach der Zeit t₁.

> isolate((9),t[1]): simplify(%): sort(%);

$$t_1 = \frac{\left(V_W c_W \rho_W + c_S m_S\right) \Delta T}{P_H - P_U} \tag{10}$$

Die Zahlenwerte ergeben.

> subs(parameters,(10)): simplify(%); lhs(%)=convert(rhs(%),units,
 min);

$$t_1 = 3990.3 [s]$$
 $t_1 = 66.504 [min]$ (11)

Verdampfen soll die Wassermasse

> m[V] = 20*Unit(kg);

$$m_V = 20 \, \llbracket kg \, \rrbracket \tag{12}$$

Spezifische Verdampfungsenthalpie von Wasser.

> h[V] = 2265*Unit(kJ/kg): lhs(%)=convert(rhs(%),units,kJ/kg);
simplify(%): addParameter(%):

$$h_V = 2265 \left[\left[\frac{kJ}{kg} \right] \right] \tag{13}$$

Die Verdampfung wird in der Zeit t₂ erfolgen. Die Temperatur des Wassers und des Behälters bleibt dabei konstant. Die Energiebilanz für diesen Zeitraum:

>
$$m[V]*h[V] + P[U]*t[2] = P[H]*t[2];$$

 $m_V h_V + P_{IJ} t_2 = P_{IJ} t_2$ (14)

Auflösen nach der Zeit t₂.

> isolate((14),t[2]): simplify(%): sort(%);

$$t_2 = \frac{h_V m_V}{P_H - P_U} \tag{15}$$

Die Zahlenwerte ergeben.

> subs(parameters,(12),(15)): simplify(%); lhs(%)=convert(rhs(%),
 units,min);

$$t_2 = 9592.9 [s]$$
 $t_2 = 159.88 [min]$ (16)

Die Zeit für den gesamten Vorgang.

> t = t[1]+t[2];
$$t=t_1+t_2$$
 (17)

> subs ((11),(16),(17)); t = 226.39 [min] (18)

Rechnung Teil b.

Fast alle Überlegungen aus Teil a können übernommen werden.

Die Temperaturänderung wird in der Zeit t₁ erfolgen. Energiebilanz für diesen Zeitraum, es fehlt der Wärmestrom an die Umgebung:

>
$$(m[S]*c[S] + V[W]*rho[W]*c[W])*dT = P[H]*t[1];$$

 $(V_W c_W \rho_W + c_S m_S) \Delta T = P_H t_1$ (19)

Auflösen nach der Zeit t₁.

> isolate((19),t[1]): simplify(%): sort(%);
$$t_{1} = \frac{\left(V_{W}c_{W}\rho_{W} + c_{S}m_{S}\right)\Delta T}{P_{H}} \tag{20}$$

Die Zahlenwerte ergeben.

> subs(parameters,(20)): simplify(%); lhs(%)=convert(rhs(%),units,
 min);

$$t_1 = 3768.6 [s]$$

 $t_1 = 62.810 [min]$ (21)

Verdampfen soll die gesamte Wassermasse.

$$> m[V] = V[W] * rho[W];$$

$$m_V = V_W \rho_W \tag{22}$$

Die Verdampfung wird in der Zeit t₂ erfolgen. Die Temperatur des Wassers und des Behälters bleibt dabei konstant. Die Energiebilanz für diesen Zeitraum, auch hier fehlt der Wärmestrom an die Umgebung:

>
$$m[V]*h[V] = P[H]*t[2]; subs((22),%);$$

 $m_V h_V = P_H t_2$

$$V_W \rho_W h_V = P_H t_2 \tag{23}$$

Auflösen nach der Zeit t₂.

> isolate((23),t[2]): simplify(%): sort(%);

$$t_2 = \frac{V_W h_V \rho_W}{P_H} \tag{24}$$

Die Zahlenwerte ergeben.

> subs(parameters,(24)): simplify(%); lhs(%)=convert(rhs(%),units,
 min);

$$t_2 = 22605$$
. [s]
 $t_2 = 376.74$ [min] (25)

Die Zeit für den gesamten Vorgang.

$$> t = t[1] + t[2];$$

$$t = t_1 + t_2 \tag{26}$$

> subs ((21),(25),(26)); t = 439.55 [min] (27)