6 February 2023

7.7 Classwork: "Onto" mappings, symmetry

1. What is the smallest non-zero angle of rotation about its center that would map the pentagon onto itself?

Name:

- 2. Circle YES or NO to indicate whether the given transformation maps the hexagon onto itself.
 - (a) Yes No A reflection over \overrightarrow{AD}
 - (b) Yes No A rotation of 60° clockwise around the hexagon's center.
 - (c) Yes No A reflection over a line through the midpoints of \overline{BC} , \overline{EF} .
 - (d) Yes No A rotation of 120° counterclockwise around point D.

3. The figure shows a rectangle (not a square).

Which transformations carries the rectangle onto itself? Mark each True or False.

(a) A reflection over the solid diagonal

True False

(b) A reflection over the dashed diagonal

True False

- (c) A clockwise rotation of 90° about the intersection of the diagonals True False
- (d) A clockwise rotation of 180° about the intersection of the diagonals True False

- 4. A transformation maps $\triangle ABC \rightarrow \triangle DEC$, shown below.
 - (a) Fully specify the transformation.
 - (b) Identify each corresponding object.

ii.
$$B \rightarrow$$

iii.
$$C \rightarrow$$

iv.
$$\angle ACB \cong$$

v.
$$\underline{\hspace{1cm}} \cong \overline{DE}$$

- 5. Check those transformations that are rigid motions.
 - ☐ Dilation

□ Rotation

☐ Translation

☐ An isometry

□ Reflection

 \square Horizontal stretch

- 6. In the diagram below, $\triangle ABC$ with sides of 13, 15, and 17, is mapped onto $\triangle DEF$ after a clockwise rotation of 90° about point P.
 - (a) What is A mapped to? $A \rightarrow$

- (b) What corresponds to F?
- (c) Given DF = 2x + 1. Find x.

7. Reflect $\triangle TRS$ across the y-axis, labeling the image $\triangle T'R'S'$. Check those properties that are maintained by reflection.

□ Length

 \square Angle measures

☐ Orientation

 $\hfill\Box$ Parallel relationships

□ Area

8. Draw the line of reflection that would map $\triangle ABC$ onto $\triangle A'B'C'$.

9. An isometry maps $\triangle JKL \rightarrow \triangle MNO$. $m \angle K = 40^{\circ}$ and $m \angle M = 100^{\circ}$. Find the measure of $\angle L$.

10. Translate $\triangle DEF$ by $(x,y) \rightarrow (x+3,y-5)$. Label the image $\triangle D'E'F'$.

11. A translation maps triangle PQR onto triangle STU.

Write each corresponding object.

- (a) $Q \rightarrow \underline{\hspace{1cm}}$
- (b) $\angle QRP \cong \underline{\hspace{1cm}}$
- (c) $\cong \overline{ST}$
- (d) Justify $\triangle PQR \cong \triangle STU$. Use the words "rigid motion".
- 12. Translate $\triangle XYZ$ with X(-1,2), Y(3,4), Z(1,-3) by $(x,y) \rightarrow (x-6,y-1)$, labeling the image $\triangle X'Y'Z'$.

