Latent Profile Analysis Enumeration

IMMERSE Training Team

Updated: June 07, 2023

Contents

IN	MMERSE Project	1
	Load packages	2
	Prepare Data	2
	Descriptive Statistics	3
	Enumeration	3
	Table of Fit	5
	Information Criteria Plot	8
	Compare models	9
	Latent Profile Plot	12
	References	13

IMMERSE Project

The Institute of Mixture Modeling for Equity-Oriented Researchers, Scholars, and Educators (IMMERSE) is an IES funded training grant (R305B220021) to support Education scholars in integrating mixture modeling into their research.

- Please visit our website to learn more and apply for the year-long fellowship.
- Follow us on Twitter!

How to reference this walkthrough: This work was supported by the IMMERSE Project (IES - 305B220021) Visit our GitHub account to download the materials needed for this walkthrough.

Example: PISA Student Data

- 1. The first example closely follows the vignette used to demonstrate the tidyLPA package (Rosenberg, 2019).
- This model utilizes the PISA data collected in the U.S. in 2015. To learn more about this data see here.
- To access the 2015 US PISA data & documentation in R use the following code:

```
devtools::install_github("jrosen48/pisaUSA15")
library(pisaUSA15)
```

Latent Profile Models:

- model 1 Class-invariant / Diagonal: Equal variances, and covariances fixed to 0
- model 2 Class-varying / Diagonal: Free variances and covariances fixed to 0
- model 3 Class-invariant / Non-Diagonal: Equal variances and equal covariances
- model 4 Free variances, and equal covariances
- model 5 Equal variances, and free covariances
- model 6 Class Varying / Non-Diagonal: Free variances and free covariances

Load packages

library(naniar)
library(tidyverse)
library(haven)
library(glue)
library(MplusAutomation)
library(here)
library(janitor)
library(gt)
library(tidyLPA)
library(pisaUSA15)
library(cowplot)
library(filesstrings)
here::i_am("lpa.Rmd")

Prepare Data

```
pisa <- pisaUSA15[1:500,] %>%
  dplyr::select(broad_interest, enjoyment, instrumental_mot, self_efficacy)
```

Descriptive Statistics

```
ds <- pisa %>%
  pivot_longer(broad_interest:self_efficacy, names_to = "variable") %>%
  group_by(variable) %>%
  summarise(mean = mean(value, na.rm = TRUE),
            sd = sd(value, na.rm = TRUE))
ds %>%
  gt () %>%
 tab_header(title = md("**Descriptive Summary**")) %>%
  cols_label(
   variable = "Variable",
   mean = md("M"),
   sd = md("SD")
  ) %>%
  fmt_number(c(2:3),
             decimals = 2) \%>\%
  cols_align(
   align = "center",
    columns = mean
```

Descriptive Summary

Variable	M	SD
broad_interest	2.67	0.77
enjoyment	2.82	0.72
$instrumental_mot$	2.13	0.75
$self_efficacy$	2.12	0.64

Enumeration		
tidyLPA		

Enumerate using estimate_profiles():

- Estimate models with classes K = 1:4
- Model has 4 continuous indicators
- Default variance-covariance specifications (model 1)
- Change variances and covariances to indicate the model you want to specify (see Vignette)

Mplus

Alternative method to estimate_profiles(): Run enumeration using mplusObject method You can change the model specification for LPA using the syntax provided in lecture.

```
lpa_k14 <- lapply(1:4, function(k) {</pre>
  lpa_enum <- mplusObject(</pre>
    TITLE = glue("Class {k}"),
    VARIABLE = glue(
    "usevar = broad_interest-self_efficacy;
     classes = c({k}); "),
  ANALYSIS =
   "estimator = mlr;
    type = mixture;
    starts = 100 20;",
  OUTPUT = "sampstat residual tech11 tech14;",
  usevariables = colnames(pisa),
  rdata = pisa)
lpa_enum_fit <- mplusModeler(lpa_enum,</pre>
                 dataout=glue(here("enum_lpa", "lpa_pisa")),
                modelout=glue(here("enum_lpa", "c{k}_lpa_m1.inp")) ,
                 check=TRUE, run = TRUE, hashfilename = FALSE)
})
```

Model 1

```
lpa_m2_k14 <- lapply(1:4, function(k){</pre>
 MODEL <- lapply(1:k, function(i){</pre>
    glue("
   %c#{i}%
   broad_interest-self_efficacy;    ! variances are freely estimated
   ")
  })
  lpa_enum_m2 <- mplusObject(</pre>
    TITLE = glue("Class {k} - Model2"),
    VARIABLE = glue(
      "usevar = broad_interest-self_efficacy;
     classes = c({k});"),
    ANALYSIS =
      "estimator = mlr;
    type = mixture;
    starts = 100 20;",
    MODEL = glue("{MODEL[1:k]}"),
    OUTPUT = "sampstat residual tech11 tech14;",
    usevariables = colnames(pisa),
    rdata = pisa)
  lpa_m2_fit <- mplusModeler(lpa_enum_m2,</pre>
                              dataout = here("enum_lpa", "lpa_pisa"),
                              modelout = glue(here("enum_lpa","c{k}_lpa_m2.inp")),
                              check = TRUE, run = TRUE, hashfilename = FALSE)
})
```

Model 2

Table of Fit

APA formatted model fit table with additional fit indices

Extract data:

```
output_pisa <- readModels(here("tidyLPA"), quiet = TRUE)</pre>
enum_extract <- LatexSummaryTable(</pre>
  output_pisa,
  keepCols = c(
    "Title",
    "Parameters",
    "LL",
    "BIC",
    "aBIC".
    "BLRT_PValue",
    "Observations"
allFit <- enum_extract %>%
  mutate(CAIC = -2 * LL + Parameters * (log(Observations) + 1)) %>%
  mutate(AWE = -2 * LL + 2 * Parameters * (log(Observations) + 1.5)) %>%
  separate(Title, c("Model", "Class"), sep = "with") %>%
  mutate(SIC = -.5 * BIC) \%
  drop_na(SIC) %>%
  group_by(Model) %>%
  mutate(expSIC = exp(SIC - max(SIC))) %>%
  mutate(BF = exp(SIC - lead(SIC))) %>%
  mutate(cmPk = expSIC / sum(expSIC)) %>%
  ungroup() %>%
  unite(Title, c("Model", "Class"), sep = "with", remove = TRUE) %>%
  dplyr::select(1:5, 8:9, 6, 12, 13) %>%
  mutate(Title = str_to_title(Title)) %>%
  arrange(Title)
```

Create table:

```
allFit %>%
  gt() %>%
  tab header(title = md("**Model Fit Summary Table**")) %>%
  cols label(
   Title = "Classes",
   Parameters = md("Par"),
   LL = md("*LL*"),
   BLRT_PValue = "BLRT",
   BF = md("BF"),
   cmPk = md("*cmPk*")
  ) %>%
 tab_footnote(
   footnote = md(
      "*Note.* Par = Parameters; *LL* = model log likelihood;
BIC = Bayesian information criterion;
aBIC = sample size adjusted BIC; CAIC = consistent Akaike information criterion;
AWE = approximate weight of evidence criterion;
BLRT = bootstrapped likelihood ratio test p-value;
VLMR = Vuong-Lo-Mendell-Rubin adjusted likelihood ratio test p-value;
*cmPk* = approximate correct model probability."
```

```
),
locations = cells_title()
  ) %>%
  tab_options(column_labels.font.weight = "bold") %>%
  fmt_number(
    9,
    decimals = 2,
    drop_trailing_zeros = TRUE,
    suffixing = TRUE
  ) %>%
  fmt_number(c(3:8, 10),
             decimals = 0) %>%
  sub_missing(1:10,
              missing_text = "--") %>%
  fmt(
    c(8, 10),
    fns = function(x)
      ifelse(x < 0.001, "<0.001",
             scales::number(x, accuracy = 0.01))
  ) %>%
  fmt(
    9,
    fns = function (x)
      ifelse(x > 100, ">100",
             scales::number(x, accuracy = .1))
  ) %>%
  tab_row_group(
    label = "Model 1",
    rows = c(1:4)) \%>\%
  tab_row_group(
    label = "Model 2",
    rows =c(5:8)) %>%
  tab_row_group(
    label = "Model 3",
    rows = c(9:12)) \% > \%
  tab_row_group(
   label = "Model 4",
    rows = c(13:16)) \% > \%
  row_group_order(
    groups = c("Model 1", "Model 2", "Model 3", "Model 4")
```

Model Fit Summary Table¹

Classes	Par	LL	BIC	aBIC	CAIC	AWE	BLRT	BF	cmPk
Model 1									
Model 1 With 1 Classes	8	-2,089	4, 227	4, 201	4,235	4,300	_	0.0	< 0.001
Model 1 With 2 Classes	13	-1,997	4,074	4,032	4,087	4,193	< 0.001	0.0	< 0.001
Model 1 With 3 Classes	18	-1,953	4,017	3,960	4,035	4,183	< 0.001	0.0	< 0.001
Model 1 With 4 Classes	23	-1,889	3,921	3,848	3,944	4,133	< 0.001	_	1.00
Model 2									

Model 2 With 1 Classes Model 2 With 2 Classes Model 2 With 3 Classes Model 2 With 4 Classes	8 17 26 35	-2,089 $-1,989$ $-1,878$ $-1,855$	4, 227 4, 083 3, 917 3, 927	4, 201 4, 029 3, 834 3, 816	4, 235 4, 100 3, 943 3, 962	4, 300 4, 239 4, 156 4, 249	<0.001 <0.001 <0.001	0.0 0.0 >100	<0.001 <0.001 0.99 0.01
Model 3									
Model 3 With 1 Classes	14	-1,968	4,023	3,979	4,037	4, 152	_	0.1	< 0.001
Model 3 With 2 Classes	19	-1,950	4,018	3,958	4,037	4,192	< 0.001	0.0	0.01
Model 3 With 3 Classes	24	-1,930	4,009	3,933	4,033	4,230	< 0.001	1.9	0.65
Model 3 With 4 Classes	29	-1,916	4,011	3,919	4,040	4,277	< 0.001	_	0.34
Model 4									
Model 4 With 1 Classes	14	-1,968	4,023	3,979	4,037	4,152	_	0.0	< 0.001
Model 4 With 2 Classes	23	-1,931	4,004	3,931	4,027	4,216	< 0.001	0.0	< 0.001
Model 4 With 3 Classes	32	-1,859	3,917	3,815	3,949	4,211	< 0.001	> 100	1.00
Model 4 With 4 Classes	41	-1,883	4,021	3,890	4,062	4,397	0.01	_	< 0.001

 $^{^{1}}$ Note. Par = Parameters; LL = model log likelihood; BIC = Bayesian information criterion; aBIC = sample size adjusted BIC; CAIC = consistent Akaike information criterion; AWE = approximate weight of evidence criterion; BLRT = bootstrapped likelihood ratio test p-value; VLMR = Vuong-Lo-Mendell-Rubin adjusted likelihood ratio test p-value; cmPk = approximate correct model probability.

Information Criteria Plot

Plot information criteria

```
allFit %>%
  filter(grepl("Model 1", Title)) %>%
  dplyr::select(2:7) %>%
  rowid_to_column() %>%
  pivot_longer(`BIC`: `AWE`,
               names_to = "Index",
               values_to = "ic_value") %>%
mutate(Index = factor(Index,
                      levels = c ("AWE", "CAIC", "BIC", "aBIC"))) %>%
  ggplot(aes(x = rowid, y = ic value,
             color = Index, shape = Index,
             group = Index, lty = Index)) +
  geom_point(size = 2.0) + geom_line(size = .8) +
  scale_x_continuous(breaks = 1:6) +
  scale_colour_grey(end = .5) +
  theme_cowplot() +
  labs(x = "Number of Classes", y = "Information Criteria Value") +
  theme(legend.title = element_blank(),
        legend.position = "top")
```


Compare models

```
# MplusAutomation Method using `compareModels`
parallelModels <- readModels(here("tidyLPA"))

compareModels(parallelModels[["model_3_class_2.out"]],
    parallelModels[["model_4_class_2.out"]], diffTest = TRUE)</pre>
```

```
##
## ==========
##
## Mplus model comparison
## ------
##
## -----
##
## -----
## Model 1: C:/Users/dinan/Box/IES_IMMERSE/Training Materials/lpa_enum/tidyLPA/model_3_class_2.out
## Model 2: C:/Users/dinan/Box/IES_IMMERSE/Training Materials/lpa_enum/tidyLPA/model_4_class_2.out
## ------
##
## Model Summary Comparison
```

```
## -----
##
            m1
##
                                 m2
## Title model 3 with 2 classes model 4 with 2 classes
## Observations 488
                                 488
## Estimator MLR
                                 MLR
## Parameters 19
           -1950.111
3938.222
## LL
                                 -1930.959
## AIC
                                 3907.919
## BIC
            4017.838
                                 4004.296
##
##
    MLR Chi-Square Difference Test for Nested Models Based on Loglikelihood
    ______
##
##
##
    Difference Test Scaling Correction: 0.738925
##
    Chi-square difference: 51.8375
##
    Diff degrees of freedom: 4
    P-value: 0
##
##
##
    Note: The chi-square difference test assumes that these models are nested.
##
    It is up to you to verify this assumption.
##
##
    MLR Chi-Square Difference test for nested models
##
    _____
##
##
    Difference Test Scaling Correction:
##
    Chi-square difference:
    Diff degrees of freedom:
##
##
    P-value:
##
## Note: The chi-square difference test assumes that these models are nested.
    It is up to you to verify this assumption.
##
## ======
##
## Model parameter comparison
## -----
   Parameters present in both models
## ======
##
   Approximately equal in both models (param. est. diff <= 1e-04)
    _____
##
## None
##
##
##
    Parameter estimates that differ between models (param. est. diff > 1e-04)
    _____
##
##
    paramHeader
                  param
                                       LatentClass m1_est m2_est . m1_se
## BROAD_IN.WITH ENJOYMENT
                                                1 0.263 0.201 | 0.030
## BROAD_IN.WITH ENJOYMENT
                                                2 0.263 0.201 | 0.030
## BROAD_IN.WITH INSTRUMENT
                                               1 -0.133 -0.096 | 0.030
## BROAD_IN.WITH INSTRUMENT
                                               2 -0.133 -0.096 | 0.030
## BROAD_IN.WITH SELF_EFFIC
                                               1 -0.091 -0.078 | 0.027
## BROAD IN.WITH SELF EFFIC
                                                2 -0.091 -0.078 | 0.027
```

```
## ENJOYMEN.WITH INSTRUMENT
                                                      1 -0.198 -0.140 | 0.030
   ENJOYMEN.WITH INSTRUMENT
                                                      2 -0.198 -0.140 | 0.030
   ENJOYMEN.WITH SELF EFFIC
                                                      1 -0.139 -0.112 | 0.023
  ENJOYMEN.WITH SELF_EFFIC
                                                      2 -0.139 -0.112 | 0.023
   INSTRUME.WITH SELF EFFIC
                                                      1 0.117 0.088 | 0.023
##
   INSTRUME.WITH SELF EFFIC
                                                      2 0.117 0.088 | 0.023
##
           Means BROAD INTE
                                                      1 2.645 2.790 | 0.036
           Means BROAD INTE
##
                                                      2 3.221 2.406 | 0.270
                       C1#1 Categorical.Latent.Variables 3.317 0.739 | 0.366
##
           Means
                                                       1 2.805 2.982 | 0.033
##
           Means ENJOYMENT
##
           Means ENJOYMENT
                                                       2 3.272 2.485 | 0.261
##
           Means INSTRUMENT
                                                       1 2.070 1.983 | 0.035
##
                                                        3.752 2.435 | 0.098
           Means INSTRUMENT
                                                       2
##
           Means SELF_EFFIC
                                                       1 2.138 2.065 | 0.030
##
           Means SELF_EFFIC
                                                      2 1.760 2.249 | 0.184
##
       Variances BROAD_INTE
                                                      1 0.584 0.410 | 0.038
##
       Variances BROAD_INTE
                                                      2 0.584 0.858 | 0.038
##
       Variances ENJOYMENT
                                                      1 0.507 0.314 | 0.035
                                                      2 0.507 0.730 | 0.035
##
       Variances ENJOYMENT
                                                      1 0.464 0.344 | 0.037
##
       Variances INSTRUMENT
##
       Variances INSTRUMENT
                                                      2 0.464 0.910 | 0.037
##
       Variances SELF EFFIC
                                                      1 0.409 0.347 | 0.027
##
       Variances SELF_EFFIC
                                                      2 0.409 0.528 | 0.027
##
   m2_se . m1_est_se m2_est_se . m1_pval m2_pval
## 0.033 |
            8.836 6.174 |
                                   0.000
                                         0.000
  0.033 l
              8.836
                         6.174 l
                                   0.000
                                          0.000
## 0.031 |
              -4.504
                        -3.077 |
                                   0.000
                                          0.002
## 0.031 |
              -4.504
                        -3.077 |
                                   0.000
                                          0.002
## 0.028 |
             -3.406
                                   0.001
                                          0.005
                       -2.831 |
## 0.028 |
            -3.406
                        -2.831 |
                                          0.005
                                   0.001
## 0.024 |
             -6.685
                        -5.750 l
                                   0.000
                                           0.000
## 0.024 |
              -6.685
                        -5.750 l
                                   0.000
                                          0.000
##
  0.024 |
              -5.960
                        -4.577 |
                                   0.000
                                           0.000
## 0.024 |
              -5.960
                        -4.577 |
                                   0.000
                                          0.000
## 0.025 |
                         3.557 |
              5.108
                                   0.000
                                          0.000
## 0.025 l
              5.108
                         3.557 |
                                   0.000
                                          0.000
## 0.060 l
            74.314
                        46.719
                                   0.000
                                           0.000
## 0.112 |
            11.934
                        21.469 |
                                   0.000
                                           0.000
## 0.281 |
                                           0.009
              9.058
                        2.630 |
                                   0.000
## 0.044 |
              84.651
                                   0.000
                                           0.000
                        68.113 |
## 0.116 |
            12.558
                        21.453 |
                                   0.000
                                           0.000
## 0.045 |
            58.820
                        44.495 |
                                   0.000
                                          0.000
## 0.101 |
              38.149
                        24.215 I
                                   0.000
                                          0.000
## 0.057 |
             71.163
                        36.164 |
                                   0.000
                                          0.000
## 0.109 |
              9.587
                        20.656
                                   0.000
                                           0.000
## 0.057 |
             15.492
                         7.149 |
                                   0.000
                                           0.000
## 0.119 |
              15.492
                         7.204 |
                                   0.000
                                           0.000
## 0.032 |
             14.381
                         9.772
                                   0.000
                                           0.000
              14.381
                                          0.000
  0.069 |
                        10.538 |
                                   0.000
## 0.033 |
              12.422
                        10.567 |
                                   0.000
                                           0.000
## 0.100 |
            12.422
                         9.061 |
                                   0.000
                                          0.000
## 0.051 |
            14.936
                         6.789 |
                                   0.000
                                           0.000
## 0.076 l
              14.936
                         6.921 |
                                   0.000
                                           0.000
##
```

```
##
##
    P-values that differ between models (p-value diff > 1e-04)
   -----
##
                                       LatentClass m1_est m2_est . m1_se
##
    paramHeader
                  param
## BROAD_IN.WITH INSTRUMENT
                                               1 -0.133 -0.096 | 0.030
## BROAD IN.WITH INSTRUMENT
                                               2 -0.133 -0.096 | 0.030
## BROAD IN.WITH SELF EFFIC
                                               1 -0.091 -0.078 | 0.027
## BROAD_IN.WITH SELF_EFFIC
                                                2 -0.091 -0.078 | 0.027
##
          Means
                    C1#1 Categorical.Latent.Variables 3.317 0.739 | 0.366
## m2_se . m1_est_se m2_est_se . m1_pval m2_pval
## 0.031 |
            -4.504 -3.077 | 0.000
## 0.031 |
            -4.504 -3.077 |
                              0.000
                                    0.002
## 0.028 |
          -3.406 -2.831 | 0.001 0.005
## 0.028 | -3.406 -2.831 | 0.001 0.005
## 0.281 | 9.058 2.630 | 0.000 0.009
##
##
##
    Parameters unique to model 1: 0
##
    -----
##
##
    None
##
##
##
    Parameters unique to model 2: 0
    _____
##
##
##
  None
##
##
## =======
```

Latent Profile Plot

```
source("plot_lpa_function.txt")
plot_lpa_function(model_name = output_pisa$model_1_class_2.out)
```

Model 1 With 2 Classes Profile Plot

● Class 1 (25%) ▲ Class 2 (75%)

save figure

ggsave(here("figures", "C4_LPA_Plot.png"), dpi="retina", height=5, width=7, units="in")

References

Hallquist, M. N., & Wiley, J. F. (2018). MplusAutomation: An R Package for Facilitating Large-Scale Latent Variable Analyses in Mplus. Structural equation modeling: a multidisciplinary journal, 25(4), 621-638.

Miller, J. D., Hoffer, T., Suchner, R., Brown, K., & Nelson, C. (1992). LSAY codebook. Northern Illinois University.

Muthén, B. O., Muthén, L. K., & Asparouhov, T. (2017). Regression and mediation analysis using Mplus. Los Angeles, CA: Muthén & Muthén.

Muthén, L.K. and Muthén, B.O. (1998-2017). Mplus User's Guide. Eighth Edition. Los Angeles, CA: Muthén & Muthén

Rosenberg, J. M., van Lissa, C. J., Beymer, P. N., Anderson, D. J., Schell, M. J. & Schmidt, J. A. (2019). tidyLPA: Easily carry out Latent Profile Analysis (LPA) using open-source or commercial software [R package]. https://data-edu.github.io/tidyLPA/

R Core Team (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

Wickham et al., (2019). Welcome to the tidyverse. Journal of Open Source Software, 4(43), 1686, https://doi.org/10.21105/joss.01686

UC SANTA BARBARA