Métricas em Machine Learning 2023-24

T3.1 : Aplicação do PCA em Reconhecimento de dígitos

Mestrado em Matemática e Computação

Universidade do Minho

Escola de Ciências

Grupo 4

- Gabriella Lima, pg54401
- Guilherme Martins, pg52214
- Maria Laires, pg52220
- Matheus Ribeiro, pg52254

Tópicos a abordar

- 1. Introdução
- 2. Dataset MNIST
- 3. Dataset de treino
- 4. SVD
- 5. PCA
- 6. Elbow method
- 7. (Exemplos) Médias e Componentes Principais
- 8. Dataset de teste
- 9. Distâncias Euclidiana e de Mahalanobis
- 10. Reconhecimento Imagens de Teste
- 11. Resultados obtidos e Discussão
- 12. Possíveis causas de erros
- 13. Conclusão

Introdução

Principal Component Analysis (PCA) - Análise dos Componentes Principais

THE MNIST DATABASE

of handwritten digits

<u>Yann LeCun</u>, Courant Institute, NYU <u>Corinna Cortes</u>, Google Labs, New York <u>Christopher J.C. Burges</u>, Microsoft Research, Redmond

Indiano séc. III a.C.	1	3	3	3	F	5	2	5	9	
Indiano séc. IV-VI	1	3	3	3	ध	9	1	5	9	0
Árabe Oriental séc. IX	1	7	3	20	4	6	1	8	9	0
Árabe Ocidental séc. XI	1	2	3	2	4	6	7	8	9	0
Europeu séc. XVI)	Z	3	2	5	6	٨	8	9	0
Atual	1	2	3	4	5	6	7	8	9	0

Dataset MNIST (Exemplos de Imagens)

Dataset de treino

60 000 imagens para treino + respetivas labels

- mnist_database/train-images.idx3-ubyte
- mnist_database/train-labels.idx1-ubyte

```
Distribuição das Labels: 0: 5923 ; 1: 6742 ; 2: 5958 ; 3: 6131 ; 4: 5842
; 5: 5421 ; 6: 5918 ; 7: 6265 ; 8: 5851 ; 9: 5949
```


Dataset organizado por dígito

10 dígitos

Aplicado PCA 10 vezes (1 vez por cada dígito)

SVD

SVD Single Value Decomposition

(Fundamento teórico)

$$A = U.\Sigma.V^T$$

Valores próprios U Vetores próprios V

Σ = valores singulares (raízes quadradas dos valores próprios)

PCA (I)

PCA Principal Component Analysis

(Passos aplicados sobre as imagens de treino) 1 vez por cada conjunto de imagens do mesmo dígito

- 1. Centralizar as imagens de teste (subtrair pela média)
- 2. Aplicar SVD aos dados centralizados:
 - 2.1. Obter vetores próprios, Σ (valores singulares) e variância
- 3. Calcular valores próprios (igual ao quadrado de Σ)
- 4. Ordenar os valores próprios por ordem decrescente (e aplicar ordenação nos vetores próprios)
- 5. Para a confiança-alvo pretendida, obter os valores próprios que conservam a percentagem de informação original da confiança-alvo;
- 6. A partir do passo anterior, devolver as componentes principais

PCA (II)

Projeção dos dados no espaço das componentes principais

Dígito	0	1	2	3	4	5	6	7	8	9
#CP	63	37	82	81	77	76	63	67	83	63

Número de componentes principais (#CP) obtidas para cada dígito

Calcular os coeficientes das projeções dos dados nas componentes principais obtidas.

Elbow method (método do cotovelo)

Atenção: foi utilizado apenas para verificar a adequação do número de componentes

principais obtidos para cada um dos 10 dígitos.

Médias e Componentes Principais

(Exemplos)

Média de todas as imagens de treino com dígito 0

Representação gráfica da 1ª componente principal do dígito 0

Médias - restantes dígitos

Dataset de teste

10 000 imagens para teste + respetivas labels

- mnist_database/t10k-images.idx3-ubyte
- mnist_database/t10k-labels.idx1-ubyte

Distâncias Euclidiana e de Mahalanobis

Euclidiana

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Mahalanobis

$$d(x,y) = \sum_{i=1}^p rac{1}{\lambda_p} (x_i - y_i)^2$$
 Distância Euclidiana PONDERADA

LIMITAÇÃO Distância Euclidiana:

A comparação das distâncias obtidas de uma mesma imagem perante os 10 dígitos é feita com vetores de dimensões diferentes (devido ao diferente número de componentes principais em cada modelo de dígito).

SOLUÇÃO: Distância Mahalanobis

Reconhecimento - Imagens de Teste

Euclidiana

$$d(x,y) = \sqrt{\sum_{i=1}^{n} (x_i - y_i)^2}$$

Mahalanobis

$$d(x,y) = \sum_{i=1}^{p} \frac{1}{\lambda_p} (x_i - y_i)^2$$

Distância Euclidiana **PONDERADA**

- 1. Para cada imagem de teste:
 - 1.1. Para cada um dos 10 conjuntos de componentes principais e coeficientes das projeções de cada dígito:
 - 1.1.1. Calcular os coeficientes de projeção da imagem de teste sobre as componentes principais do dígito atual;
 - 1.1.2. Calcular a distância mínima entre os coeficientes da imagem com os do dígito;
 - 1.2. Obter a menor distância entre as distâncias obtidas dos 10 dígitos -> reconhecimento do dígito da distância mais pequena

Resultados obtidos e Discussão

$$accuracy = \frac{\# \text{ classificações corretas}}{\# \text{ número total classificações}} \text{ OU accuracy_digito} = \frac{\# \text{ classificações corretas dígito}}{\# \text{ total labels dígito}}$$

Accuracy	Total	Dígito 0	Díg. 1	Díg. 2	Díg. 3	Díg. 4	Díg. 5	Díg. 6	Díg. 7	Díg. 8	Díg. 9
Valor (%)	83.96	92.04	99.91	65.69	77.82	78.51	79.37	90.91	86.08	79.36	88.00

Resultados - Distância Euclidiana

Accuracy	Total	Dígito 0	Díg. 1	Díg. 2	Díg. 3	Díg. 4	Díg. 5	Díg. 6	Díg. 7	Díg. 8	Díg. 9
Valor (%)	90.64	98.26	99.82	87.69	87.92	82.99	83.29	96.86	87.93	85.31	94.54

Resultados - Distância Mahalanobis

Possíveis causas de erros

Apesar das elevadas *accuracys* obtidas para as duas distâncias, o programa não foi capaz de identificar corretamente todas as imagens.

ERRO de RECONHECIMENTO do dígito

Identificou: 1 Correto: 4

distância Mahalanobis

Ambas as distância

Identificou: 1 Correto: 5

Conclusão

THE MNIST DATABASE

of handwritten digits

Alternativas: Deep Learning;

Combinações do PCA com um algoritmo de clustering, ex: K-means

Possível Melhoria: Tuning de um limite de similaridade para verificar reconhecimento de um dígito específico