PROCESO DE CONTEO

Nexus-Probability

CURSO 4 (PROCESOS ESTOCÁSTICOS II)

PARTE 1 / LECCIÓN 1

Como una introducción a la teoría general que se expondrá más adelante, en este capítulo estudiaremos uno de los ejemplos más importantes de este tipo de modelos: **el proceso de Poisson**. Definiremos este proceso de varias formas equivalentes y estudiaremos algunas de sus propiedades, sus generalizaciones y algunas de sus aplicaciones. El proceso de Poisson es un modelo relevante tanto en las aplicaciones como en la teoría general de los procesos estocásticos.

1. Definición Constructiva del Proceso Poisson.

Suponga que un mismo evento ocurre repetidad veces de manera aleatoria a lo largo del tiempo. Tal evento puede ser, por ejemplo, la llegada de una reclamación a una compañia aseguradora o la recepción de una llamada a un conmutador o los momentos en que una cierta maquinaria requiere reparación etc.

Suponga que las variables aleatorias $T_1, T_2...$ representan los tiempos que transcurren entre una ocurrencia del evento y la siguiente ocurrencia. Suponga que estos tiempos son independientes uno del otro ya que cada uno tiene distribución $exp(\lambda)$.

Definición 1 (Proceso de Conteo) Un proceso estocástico $\{N(t): t \geq 0\}$ es llamado de **conteo** si,

$$N(t) = N$$
úmero de sucesos entre $(0, t]$,

el cual satisface las siguientes condiciones:

- 1. $N(t) \geq 0$
- 2. N(t) es entero valuable.
- 3. Si $s \le t$ entonces $N(s) \le N(t)$
- 4. N(t) N(s): Número de sucesos que ocurre entre (s,t]

Recuerda que:

- Un proceso de conteo tiene Incrementos Independientes si el número de eventos que ocurren en intervalos de tiempo disjuntos son independientes.
- Un proceso de conteo se dice tener Incrementos Estacionarios si la distribución del número de eventos que ocurre en un intervalo de tiempo depende solo de la longitud del intervalo.

Definición 2 (Proceso Poisson) Un proceso de conteo $\{N(t): t \geq 0\}$ se le llama Proceso de Poisson con tasa $\lambda, \ \lambda > 0$ si:

- 1. N(0) = 0
- 2. Posee incrementos independientes.
- 3. El número de eventos de algún intervalo de longitud t esta distribuido Poisson con media λt .

Es decir, para todo $s, t \ge 0$, se tiene que:

$$\mathbb{P}[N(s+t) - N(s) = n] = e^{-\lambda t} \frac{(\lambda t)^n}{n!} \tag{1}$$

Ejercicios

Ejercicio 1 Suponga que una panaderia abre a las 6am y los clientes llegan de acuerdo a un proceso de poisson con una tasa de 30 clientes por hora. Encuentre la probabilidad de que lleguen 65 o mas clientes entre 9 y 11 a.m.

Solución:

```
from scipy.stats import poisson
```

Primero sera importante definir el proceso $\{N(t): t \geq 0\}$ con tasa $\lambda = 30$. Buscamos la probabilidad de que lleguen mas de 65 personas en el intervalo de tiempo [3,5]

$$\mathbb{P}[N(5) - N(3) \ge 65]$$

```
lam = 30

t2 = 5

t1 = 3

prob = 1- poisson(lam * (t2 - t1)).cdf(64)
```

```
print(f'La probabilidad de que lleguen mas de 65 clientes es: {
   prob:.4f}')
```

La probabilidad de que lleguen mas de 65 clientes es: 0.2759

Ejercicio 2 En una fábrica de componentes electrónicos, los pedidos de dos tipos de componentes (A y B) llegan de acuerdo a dos procesos de Poisson independientes. El tipo A llega con una tasa de 5 pedidos por día, mientras que el tipo B llega con una tasa de 3 pedidos por día.

Encuentra la probabilidad de que en 10 días lleguen: Al menos 40 pedidos del tipo A y entre 20 y 30 pedidos del tipo B.

Solución:

Definimos dos procesos de Poisson independientes: uno para el componente A con tasa $\lambda_A=5$ y otro para el componente B con tasa $\lambda_B=3$. Buscamos la probabilidad conjunta de que lleguen al menos 40 pedidos de A y entre 20 y 30 pedidos de B en un intervalo de 10 días.

Los eventos se pueden representar como:

$$\mathbb{P}[N_A(10) \ge 40 \text{ y } 20 \le N_B(10) \le 30]$$

Dado que los procesos son independientes, calculamos las probabilidades por separado y luego multiplicamos los resultados:

1. Probabilidad de que lleguen al menos 40 pedidos del tipo A:

$$\mathbb{P}[N_A(10) \ge 40] = 1 - \mathbb{P}[N_A(10) \le 39]$$

2. Probabilidad de que lleguen entre 20 y 30 pedidos del tipo B:

$$\mathbb{P}[20 \le N_B(10) \le 30] = \mathbb{P}[N_B(10) \le 30] - \mathbb{P}[N_B(10) \le 19]$$

La probabilidad conjunta es el producto de las dos probabilidades, dado que los procesos son independientes:

$$\mathbb{P}[N_A(10) > 40 \text{ y } 20 < N_B(10) < 30]$$

Al calcular esto, obtenemos la probabilidad conjunta.

```
# Parametros del tipo A
lam_A = 5  # tasa de pedidos del tipo A por dia
t_A = 10  # 10 dias
lower_bound_A = 40  # al menos 40 pedidos

# Parametros del tipo B
```

```
lam_B = 3 # tasa de pedidos del tipo B por dia
  t_B = 10 \# 10 \text{ dias}
  lower_bound_B = 20 # al menos 20 pedidos
  upper_bound_B = 30 # no mas de 30 pedidos
10
11
  # Probabilidad para el tipo A (al menos 40 pedidos)
12
  prob_A = 1 - poisson.cdf(lower_bound_A - 1, lam_A * t_A)
13
  # Probabilidad para el tipo B (entre 20 y 30 pedidos)
15
  prob_B = poisson.cdf(upper_bound_B, lam_B * t_B) - poisson.cdf(
16
      lower_bound_B - 1, lam_B * t_B)
  # Probabilidad conjunta (independencia)
18
  prob_total = prob_A * prob_B
19
20
  print(f'La probabilidad de que lleguen al menos 40 pedidos del
      tipo A y entre 20 y 30 pedidos del tipo B es: {prob_total:.4f
      }')
```

La probabilidad de que lleguen al menos 40 pedidos del tipo A y entre 20 y 30 pedidos del tipo B es: 0.4925

Ejercicio 3 En un call center, las llamadas entrantes siguen un proceso de Poisson con una tasa de 25 llamadas por hora.

Encuentra la probabilidad de que lleguen entre 45 y 60 llamadas entre las 10:00 a.m. y las 12:00 p.m.

Solución:

Definimos el proceso $N(t): t \ge 0$ con tasa $\lambda = 25$. Buscamos la probabilidad de que lleguen entre 45 y 60 llamadas en el intervalo de tiempo [10, 12].

$$\mathbb{P}[45 \le N(12) - N(10) \le 60]$$

```
lam = 25  # tasa de llamadas por hora
t2 = 12
t1 = 10
lower_bound = 45
upper_bound = 60

# Probabilidad de que lleguen entre 45 y 60 llamadas
prob = poisson.cdf(upper_bound, lam * (t2 - t1)) - poisson.cdf(
    lower_bound - 1, lam * (t2 - t1))
```

La probabilidad de que lleguen entre 45 y 60 llamadas es: 0.7068

Ejercicio 4 En un almacén, los pedidos de productos llegan de acuerdo a un proceso de Poisson con una tasa de 7 pedidos por día.

Encuentra la probabilidad de que lleguen al menos 25 pedidos en una semana (7 días).

Solución:

Definimos el proceso $N(t): t \ge 0$ con tasa $\lambda = 7$ por día. Buscamos la probabilidad de que lleguen al menos 25 pedidos en un intervalo de tiempo de 7 días (una semana).

```
lam = 7  # tasa de pedidos por dia
t2 = 7  # numero de dias (una semana)
lower_bound = 25  # al menos 25 pedidos

# Probabilidad de que lleguen al menos 25 pedidos en 7 dias
prob = 1 - poisson.cdf(lower_bound - 1, lam * t2)
print(f'La probabilidad de que lleguen al menos 25 pedidos en una semana es: {prob:.4f}')
```

La probabilidad de que lleguen al menos 25 pedidos en una semana es: 0.9999