Exercise 2

The deviation from the nominal center to center distance of a piston rod is known to be characterized by:

```
• \mu=0.4417~\mu\mathrm{m}
```

```
• \sigma=3.4914~\mu\mathrm{m}
```

A sample of size n=5 is acquired on a daily basis. The measurements of 25 consecutive days are reported in the file <code>ESE09_ex2.csv</code> .

- 1. Design a Xbar-S control chart for the process.
- 2. Design a CUSUM control chart (h = 4, k = 0.5).
- 3. Design an EWMA control chart ($\lambda = 0.2$).

```
In []: # Import the necessary libraries
   import numpy as np
   import matplotlib.pyplot as plt
   import pandas as pd
   from scipy import stats
   import qda

# Import the dataset
   data = pd.read_csv('ESE09_ex2.csv')

# Inspect the dataset
   data.head()
```

Out[]:		X1	Х2	Х3	X4	X5
	0	1.2102	-0.5621	-0.7336	4.6353	-2.4700
	1	-0.5686	3.6728	5.1017	-3.3084	3.0759
	2	-1.6336	1.3034	-1.2234	0.2847	-3.0211
	3	2.8496	-8.4910	4.1368	-3.2575	4.1078
	4	4.4853	0.6767	-0.6653	3.6053	3.5055

Visualize the dataset.

```
In []: # Make a scatter plot of all the columns against the index
    plt.plot(data['X1'], linestyle='none', marker='o', label = 'x1')
    plt.plot(data['X2'], linestyle='none', marker='o', label = 'x2')
    plt.plot(data['X3'], linestyle='none', marker='o', label = 'x3')
    plt.plot(data['X4'], linestyle='none', marker='o', label = 'x4')
    plt.plot(data['X5'], linestyle='none', marker='o', label = 'x5')
    # place the Legend outside the plot
    plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
    plt.show()
```


Point 1

Design a Xbar-S control chart for the process.

Check if the data is normally distributed.

```
In []: # Stack the data into a single column
data_stack = data.stack()

# Check the normality assumption
# We can use the Shapiro-Wilk test
_, p_value_SW = stats.shapiro(data_stack)
print('p-value of the Shapiro-Wilk test: %.3f' % p_value_SW)

# QQ-plot
stats.probplot(data_stack, dist="norm", plot=plt)
plt.show()
```

p-value of the Shapiro-Wilk test: 0.841

No information is given about the acquisition order of the data. Randomness is only qualitatively assessed from the scatter plot. Let's design an Xbar-S control chart for the process.

```
In [ ]: # Input the known mean and standard deviation
    mean = 0.4417
    stdev = 3.4914
    n = 5

    data_XS = qda.ControlCharts.XbarS(data, mean = mean, sigma = stdev)
```

Xbar-S charts

The process is in control.

Point 2

Design a CUSUM control chart (h=4, k=0.5) and a CUSUM FIR chart.

```
In []: # input the parameters of the CUSUM control chart
h = 4
k = 0.5

# extract the sample_mean column from data_XS and put it in a new dataframe
data_mean = pd.DataFrame(data_XS['sample_mean'])

# Design the CUSUM control chart
data_CUSUM = qda.ControlCharts.CUSUM(data_mean, 'sample_mean', params=(h,k), mea
```


Point 3

Design an EWMA control chart ($\lambda=0.2$).

```
In [ ]: # Input the parameters of the EWMA control chart
    lambda_ = 0.2

# Design the EWMA control chart
data_EWMA = qda.ControlCharts.EWMA(data_mean, 'sample_mean', params=(lambda_), m
```


Exercise 2.1

Import the 5 additional samples that were collected in phase 2. Determine if the process is still in control using the three control charts.

```
In [ ]: # Import the dataset
         data_p2 = pd.read_csv('ESE09_ex2_phase2.csv')
         data_p2.head()
Out[]:
                X1
                        X2
                               Х3
                                       X4
                                                X5
                    -0.8182 3.6395
                                    4.5988
                                            8.86949
             3.9634
                   -5.1245 1.6469
                                    5.7935
                                            2.23434
             3.2074
                    0.2740 4.4500
                                   -4.2358
                                            5.71082
             6.7545 9.4610 6.6967 -0.3139
                                            0.92709
            -0.2426
                     3.7593 7.0754
                                    7.5853 -2.80609
In [ ]:
         phase1_size = len(data)
         print(phase1_size)
         25
```

In []: data_all = pd.concat([data, data_p2], ignore_index=True)

In []: data_XS = qda.ControlCharts.XbarS(data_all, mean = mean, sigma = stdev, subset_s

Xbar-S charts


```
In [ ]: # extract the sample_mean column from data_XS and put it in a new dataframe
    data_mean = pd.DataFrame(data_XS['sample_mean'])
```

```
# Design the CUSUM control chart
data_CUSUM = qda.ControlCharts.CUSUM(data_mean, 'sample_mean', params=(h,k), mea
```


