# SQL Server 2016 and Microsoft R Server

Tomaž Kaštrun March 16, 2017 SQL User Group



### Speaker Info

- BI Developer and data analyst
- SQL Server, SAS, R, Python, C#, SAP, SPSS
- 15years experience MSSQL, DEV, BI, DM
- Spar ICS Austria, Spar Slovenija
- Frequent community speaker
- Avid coffee drinker & Bicycle junkie





tomaz.kastrun@gmail.com





http://github.com/tomaztk

https://mvp.microsoft.com/PublicProfile/5002196



















### Agenda

- 1 R language and available RevoscaleR package for multi-threaded and parallelization computation
- 2 Using R language in T-SQL for data analysis and predictions
- 3 Visualizations (PowerBI)





Common Challenges

Addressing Challanges with



Peace of

mind









Limited business agility



Limited business value





and agility









### A Language Platform

- A Procedural Language optimized for Statistics and data science (and much more)
- A Data Visualization framework
- Provided as Free Software

### A Community and a system

- · Taught on universitieis and many active user groups across the world
- Estimated 3Mio Users
- Repositories (CRAN, BioConductor, Github,...)



### Power of R: R Language + Packages

- R is an open source (GNU) version of the S language developed by John Chambers et al. at Bell Labs in 80's History of R
- R was initially written in early 1990's by <u>Robert Gentleman</u> and <u>Ross Ihaka</u> then with the Statistics Department of the University of Auckland
- R is administered and controlled by the <u>R Foundation</u>
- Microsoft is founding member and Platinum Sponsor of <u>R Consortium</u>



3000 packages added in last 2 years



### R: The #1 software for Advanced Analytics



### R Usage Growth

Rexer Data Miner Survey, 2007-2015



### **Language Popularity**

IEEE Spectrum Top Programming Languages, 2016

| Language Rank  | Types                         | Spectrum Ranking |
|----------------|-------------------------------|------------------|
| 1. C           | [] 🖵 🛢                        | 100.0            |
| 2. Java        | $\bigoplus$ $\square$ $\neg$  | 98.1             |
| 3. Python      | ₩ 🖵                           | 98.0             |
| <b>4.</b> C++  | [] 🖵 🐞                        | 95.9             |
| <b>5.</b> R    | $\Box$                        | 87.9             |
| 6. C#          | $\bigoplus$ $\square$ $\lnot$ | 86.7             |
| <b>7.</b> PHP  |                               | 82.8             |
| 8. JavaScript  |                               | 82.2             |
| 9. Ruby        | ₩ 🖵                           | 74.5             |
| <b>10</b> . Go | ₩ 🖵                           | 71.9             |
|                |                               |                  |



### R is Popular

Microsoft

Most widely used software for Data Mining and Analytics

Used by 2M+ data scientists, statisticians and analysts

**Open Source (GPL) language and environment** 

Easy to bring and explore data, uncover insights and generate predictions

From the most trivial statistical function to the most complex ML technique

Easily create beautiful and unique data visualizations

As seen in New York Times, The Economist and Flowing Data

Thriving open-source community

Over 8000 packages in CRAN and growing; Active forums and groups





### Power of R: R Language + Packages CRAN: 9000+ Add-on packages for R

#### **CRAN Task Views**

CRAN Task Views are guides to the packages and functions useful for certain disciplines and methodologies. Many long-term R users I know have no idea they exist. As an effort to make them more widely known I thought Td jazz up the index page. Images are free to use, and got from SXC stock photo site. Visual puns are mine. Task View links go to the cran r-project org site and not a mirror.



#### Bayesian Inference

Applied researchers interested in Bayesian statistics are increasingly attracted to R. because of the ease of which one can code algorithms to sample [more]



#### Natural Language Processing

This CRAN task view contains a list of packages useful for natural language processing [more]



#### Analysis of Spatial Data

Base R includes many functions that can be used for reading, vizualising, and analysing spatial data. The focus in this view is on "geographical" spatial [more]



#### Chemometrics and Computational Physics

Chemometrics and commutational physics are concerned with the analysis of data arising in chemistry and physics experiments, as well as the simulation



#### Analysis of Pharmacokinetic Data

The primary goal of pharmacokinetic (PK) data analysis is to determine the relationship between the dosing regimen and the body's exposure to the drug



#### Clinical Trial Design. Monitoring, and Analysis

This task view gathers information on specific R packages for design, monitoring and analysis of data from clinical trials. It focuses on including. [more]



#### Official Statistics & Survey Methodology

This CRAN task view contains a list of packages that includes methods typically used in official statistics and survey methodology. Many packages provide.



#### Survival Analysis

Survival analysis, also called event histor analysis in social science, or reliability analysis in engineering, deals with time until occurrence of an ... [more]



This CRAN Task View contains a list of packages that can be used for finding groups in data and modelling unobserved cross-sectional heterogeneity. Many.



#### Phylogenetics, Especially Comparative Methods

The history of life unfolds within a phylogenetic context. Comparative phylogenetic methods are statistical approaches for analyzing historical... [more



#### Time Series Analysis

Rase R ships with a lot of functionality useful for time series, in particular in the stats package. This is complemented by many packages on CRAN which are



For most of the classical distributions, base R provides probability distribution functions (p), density functions (d), quantile functions (q), and [more]



#### Multivariate Statistics

Base R contains most of the functionality for classical multivariate analysis. somewhere. There are a large number of packages on CRAN which extend this.



#### Robust Statistical Methods

Robust (or "resistant") methods for statistics modelling have been available in S from the start, in R in package stats (e.g., median(), mean(\*, trim = .), ...[more]



#### Computational Econometrics

Base R ships with a lot of functionality useful for computational econometrics, in particular in the stats package. This functionality is complemented by many



#### Optimization and Mathematical Programming

This CRAN task view contains a list of

optimization problems. Although every

egression model in statistics...[more]

packages which offer facilities for solving

Several add-on packages implement ideas and methods developed at the borderline between computer science and statistics this field of research is usually...[more]

Machine Learning &

Statistical Learning

Analysis of Ecological and

This Task View contains information about

**Environmental Data** 

using R to analyse ecological and

environmental data [more]



#### Statistics for the Social Sciences

Social scientists use a wide range of statistical methods. To make the burden carried by this task view lighter, I have suppressed detail in some areas that...



#### (DoE) & Analysis of **Experimental Data**

Graphic Displays &

**Dynamic Graphics &** 

R is rich with facilities for creating and

developing interesting graphics. Base R.

which each node is a random variable,

and...[more]

including coplots, mosaic. [more]

contains functionality for many plot types

Graphic Devices &

Visualization

This task view collects information on R nackages for experimental design and analysis of data from experiments. Please feel free to suggest enhancements,...[more]



#### **Empirical Finance**

This CRAN Task View contains a list of packages useful for empirical work in Finance, grouped by topic [more]



#### Statistical Genetics

Great advances have been made in the field of genetic analysis over the last years. The availability of millions of single nucleotide polymorphisms (SNPs)...[more]



#### Medical Image Analysis

analysis of medical imaging files...[more



High-Performance and

#### Reproducible Research

The goal of reproducible research is to tie gRaphical Models in R specific instructions to data analysis and experimental data so that scholarship can Wikipedia defines a graphical model as a be recreated, better [more] graph that represents independencies among random variables by a graph in



#### Psychometric Models and Methods

Psychometrics is concerned with the design and analysis of research and the measurement of human characteristics Dsychometricians have also worked

Task View by Barry Rowlingson: <a href="http://www.maths.lancs.ac.uk/~rowlings/R/TaskViews/">http://www.maths.lancs.ac.uk/~rowlings/R/TaskViews/</a>

lars packages on Github and BioConductor project



- Memory Based Data access model
- Interpreted vs. Compiled Performance
- Lack of parallel computation
- Data movement & Duiplication Costs
- Governance and providence oversight
- Community support vs. Enterprise utilization





### Revolution Analytics Product Integration













-> Enhanced and distributed by Revolution analytics

- -> Built in Advanced Analytics and Standalone Server Capability
- -> Leverages the benefits of SQL Server 2016EE



### Microsoft R Platform

Microsoft R Open

Microsoft R Client

Microsoft SQL R Services

Microsoft R Server

#### Different flavors:

Microsoft R server for Linux, Microsoft R Server for Teradata, Microsoft R Server for Hadoop, Microsoft R HDInsight





### Microsoft R Server

- Evolved from Revolution R Enterprise
- Based on open Source R
- Adapted for Enterprise Scale
- For multiple platforms
  - Hadoop
  - Teradata
  - LinuX
  - Azure
  - Windows
- Interoperable
- On-premises + Cloud + Hybrid
- Operationzalize analytics for Big scale datasets and big

### Based on Open Source R

- Open source based
- Runs your normal R Script
- MetaCran / CRAN / Github / Bioconductor









### DeployR

- Web service API integration
- Compatible with array of tools
- Abstract usage of R without knowing it

### DevelopR

- R IDE based on Visual studio
- Rstudio for linux Users
- Client Based

Microsoft









### ConnectR

• Serier of connectors for consistent access to scaleR algorithms

### DistributedR

 Normalization layer for ScaleR algoritms (SQLServer,Win, Lin, TeraData, Hadoop, HDI)

### ScaleR

Microsoft

- Typical statistical approaches refactored for parallel computation
- Block-wise computation; No In-Memory constraints







Microsoft















### How does parallelization work





### For Client R / Server R – Remote execution





### Communication between R and SQL Server



### ScaleR algorithms

#### **Data Preparation**

- Data import Delimited, Fixed, SAS, SPSS, OBDC
- Variable creation & transformation
- Recode variables
- Factor variables
- Missing value handling
- Sort, Merge, Split
- Aggregate by category (means, sums)

### **Descriptive Statistics**

- Min / Max, Mean, Median (approx.)
- Quantiles (approx.)
- Standard Deviation
- Variance
- Correlation
- Covariance
- Sum of Squares (cross product matrix for set variables)
- Pairwise Cross tabs
- Risk Ratio & Odds Ratio
- Cross-Tabulation of Data (standard tables & long form)
- Marginal Summaries of Cross Tabulations

#### Statistical Tests

- Chi Square Test
- Kendall Rank Correlation
- Fisher's Exact Test
- Student's t-Test

### Sampling

- Subsample (observations & variables)
- Random Sampling

#### **Predictive Models**

- Sum of Squares (cross product matrix for set variables)
- Multiple Linear Regression
- Generalized Linear Models (GLM) exponential family distributions: binomial, Gaussian, inverse Gaussian, Poisson, Tweedie. Standard link functions: cauchit, identity, log, logit, probit. User defined distributions & link functions.
- Covariance & Correlation Matrices
- Logistic Regression
- Classification & Regression Trees
- Predictions/scoring for models
- Residuals for all models

#### Variable Selection

Stepwise Regression

#### Simulation

- Simulation (e.g. Monte Carlo)
- Parallel Random Number Generation

### Cluster Analysis

K-Means

#### Classification

- Decision Trees
- Decision Forests
- Gradient Boosted Decision Trees
- Naïve Bayes

### 😱 Comb

#### Combination

- rxDataStep
- rxExec
- PEMA-R API Custom Algorithms





### R code in SQL Server as T-SQL



# R code in SQL Server using Scale R algorithms





```
13
             #####-----
          14
         15 #
         16 #
                   LOADING DATA (small sample)
                  178 MB
RevoScaleR Code
          23 ptm <- proc.time()</pre>
          24 #inFile <- file.path(rxGetOption("sampleDataDir"), "AirlineDemoSmall.csv")
          25 inFile <- file.path(rxGetOption("sampleDataDir"), "airsample.csv")
          26 rxTextToXdf(inFile = inFile, outFile = "airline.xdf", stringsAsFactors = T, rowsPerRead = 200000, overwrite=TRUE)
          27 proc.time() - ptm
          28 # ~ 22 seconds!
          29 # - 42 Chunks per 200.000 Rows; Total: 8.400.000 Rows
          30
             # EXPLORING DATA (small sample)
          32
             34
          35
             rxGetInfo(data="airline.xdf", getVarInfo = TRUE, numRows = 5)
          37
          38 #Histograms by day of week
          39 ptm <- proc.time()</pre>
          40 rxHistogram( ~ ArrDelay|DayOfWeek, data = "airline.xdf")
          41 proc.time() - ptm
          42
             #summary
            rxSummary( ~ ArrDelay, data = "airline.xdf")
          45
          46
          47 rxSort(inData="airline.xdf", outFile = "sortFlights.xdf", sortByVars="ArrDelay", decreasing = TRUE, overwrite=TRUE)
          48 # ~ 4 Seconds!
          49 mostflights5 <- rxGetInfo(data = "sortFlights")
          50 mostflights5
          51 top5f <- as.data.frame(mostflights5[[5]])</pre>
          52 topOA <- unique(as.vector(top5f$ArrDelay))</p>
          53 topOA
          54
          55
          56
             # Linear Model with ReportProgress!
             60
          61 # Linear Model using rxLinMod
            sampleDataDir <- rxGetOption("sampleDataDir")
          63 airlineDemoSmall <- file.path(sampleDataDir, "AirlineDemoSmall.xdf")
                 ineLinMod <- rxLinMod(ArrDelay ~ CRSDepTime, data = airlineDemoSmall,</pre>
```



# R code in SQL Server as T-SQL to generate graphs DECLARE @RScript nvarchar(max)

```
DECLARE @RScript nvarchar(max)
DECLARE @SQLScript nvarchar(max)
SET @RScript = N'library(plotly)
                library(ggplot2)
                library(htmlwidgets)
                #setwd("C:/DataTK/HTML")
                 image file <- tempfile()</pre>
                 jpeg(filename = image file, width = 500, height = 500)
                 df <- InputDataSet
                 d <- df[sample(nrow(df), 10), ]</pre>
                 p <- plot_ly(d, x = OrderQty, y = DiscountPct, text = paste("OrderQty: ", OrderQty),</pre>
                         mode = "markers", color = OrderQty, size = OrderQty)
                 saveWidget(as.widget(p), "index.html")
                 OutputDataSet <- data.frame(data=readBin(file(image file, "rb"), what=raw(), n=1e6))'
SET @SQLScript = N'SELECT
                     ps.[Name]
                    ,AVG(sod.[OrderQty]) AS OrderQty
                    ,so.[DiscountPct]
                    ,pc.name AS Category
                FROM Adventureworks.[Sales].[SalesOrderDetail] sod
                INNER JOIN Adventureworks.[Sales].[SpecialOffer] so
                ON so.[SpecialOfferID] = sod.[SpecialOfferID]
                INNER JOIN Adventureworks.[Production].[Product] p
                ON p.[ProductID] = sod.[ProductID]
                INNER JOIN Adventureworks.[Production].[ProductSubcategory] ps
                ON ps.[ProductSubcategoryID] = p.ProductSubcategoryID
                INNER JOIN Adventureworks.[Production].[ProductCategory] pc
                ON pc.ProductCategoryID = ps.ProductCategoryID
                GROUP BY ps.[Name], so.[DiscountPct], pc.name
EXECUTE sp execute external script
@language = N'R',
@script = @RScript,
@input_data_1 = @SQLScript
```

**Microsoft** 

WITH RESULT SETS ((Plot varbinary(max)))







- Based on Open source R
- Different versions available (Open, Client and Server)
- Distributed workloads, multi-threading and parallelization
- Interoperable (Windows, Linux, MacOS) with different flavors (Hadoop, Teradata, HDInsight)
- Faster model prediction and model deployment
- No "in-memory" constraints, less data movement, less bottlenecks in performance, no data size limitations
- Hybrid topologies, agile development, stable platform for data operationalization, investment protection (SLA, Terms and agreements)
- R Code is available in SSMS environment
- Community and commercial support
- R Language is growing in popularity





### Bunch of demos





### SQL Server vNext (CTP1 and above)





- SQL Server vNext (CTP1)
- R 3.3.2
- RevoScaleR (9.0.3)
- MicrosoftML (1.0.0)





### Quick recap: RevoScaleR (9.0.1)

### Importing functions and computation context

rxImport rxDataStep rxGetInfo rxSetInfo

rxGetVarInfo rxSetVarInfo

rxGetVarNames rxCreateColInfo

rxCompressXdf

RxXdfData

RxTextData

RxOdbcData RxSqlServerData

rxOpen

rxClose

rxReadNext

rxSetFileSystem rxGetFileSystem

rxNativeFileSystem

rxSetComputeContext

rxGetComputeContext

RxHadoopMR

RxInSqlServer

RxComputeContext

RxLocalSeq

RxLocalParallel

RxForeachDoPar

rxInstalledPackages

IVIICIUSUIL

rxFindPackage

**Data Manipulation** 

xDataStep

rxFactors

rxGetFuzzyDist

rxGetFuzzyKeys

rxSplit

rxSort

rxMerge

rxExecuteSQLDDL

**Data Visualization** 

rxHistogram

rxLinePlot

rxLorenz

rxRocCurve

Descriptive /cross-tab Statistics

rxQuantile

rxSummary

rxCrossTabs

rxCube

rxMarginals

as.xtabs

rxChiSquaredTest

rxFisherTest

rxKendallCor

rxPairwiseCrossTab

rxRiskRatio

rxOddsRatio

**Analysis and Predictive statistics** 

rxLinMod

rxLogit

rxGlm

rxCovCor

rxDTree

**rxBTrees** 

**rxDForest** 

rxPredict

rxKmeans

**rxNaiveBayes** 

rxCov

rxCor

rxSSCP

rxRoc

Shorter list of functions



### Quick recap: RevoScaleR (9.0.1)

|                                   | Task                     |                              |                | Scalability    |             | v       |                  |                                                                                                          |
|-----------------------------------|--------------------------|------------------------------|----------------|----------------|-------------|---------|------------------|----------------------------------------------------------------------------------------------------------|
|                                   | Predict ca               | ategories                    | Predict values |                | Scalability |         | y                | Description                                                                                              |
| RevoScaleR<br>functions / learner | Binary<br>classification | Multiclass<br>classification | Regression     | Other          | rows        | columns | CPU /<br>threads | Description                                                                                              |
| rxLinMod                          |                          |                              | Yes            |                | 100 Mil.    | 10 K    | Multi            | Linear model for regression model (analog to lm()) with stepwise                                         |
| rxLogit                           | yes                      |                              |                |                | 100 Mil.    | 10 K    | Multi            | Logistic regression (similar to glm with family = binomial())                                            |
| rxGlm                             | yes                      |                              | Yes            |                | 10 Mil      | 5 K     | Multi            | Generalized linear regression models (with specified family)                                             |
| rxDTree                           | Yes                      | Yes                          | Yes            |                | 100 Mil.    |         | Multi            | (recursive partitioning and regression ) decision trees                                                  |
| rxBTrees                          | Yes                      | yes                          | Yes            |                | 100K        | 1K      | Multi            | Stohastic gradient Boosting DT (gaussian - Regression; bernoulli -<br>Binary; Multinominal - multiclass) |
| rxDForest                         | Yes                      | Yes                          | Yes            |                |             |         | Multi            | Random forests (gaussian - Regression; bernoulli - Binary;<br>Multinominal - multiclass)                 |
| rxKmeans                          |                          |                              |                | Classification |             | <10 K   |                  | Lloyd based K-means classification                                                                       |
| rxNaiveBayes                      | Yes                      | Yes??                        |                |                | 100Mil      |         | Multi            | Naive Bayes learner (class and probability)                                                              |

All functions / learners work with XDF data formats





### MicrosoftML (1.0.0)



- New fast and accurate learners (Sentiment analysis, Customer Churn, Loadn risk prediction, demand prediction)
- Text Classification (Sentiment Analysis, Classification of Support ticket, Complaint book,. etc)
- DNN with GPU Accelleration (Retail image matching, medical image classification, metal/iron/steel industry control check (with live stream)
- **High-Dimensional Categorical data** (regression predictions with a lot of productIDs, customerIDs, Web Analytics (click through predictions))





### Algorithms in MicrosoftML

|                      | Task               |                |                       |                   | Scalability  |         |             |                                                                  |
|----------------------|--------------------|----------------|-----------------------|-------------------|--------------|---------|-------------|------------------------------------------------------------------|
|                      | Predict categories |                | <b>Predict values</b> |                   | Scalability  |         | У           | Description                                                      |
| MicrosoftML          | Binary             | Multiclass     | Pagrasian             | Other ro          | rows columns | columns | CPU/        | Description                                                      |
| Learner              | classification     | classification | Regression            |                   |              | threads |             |                                                                  |
| rxFastLinear         | Yes                |                | Yes                   |                   | 1 Bil.       | 1 Bil.  | Multi       | Fast Linear (SDCA) with L1 & L2                                  |
| rxLogisticRegression | Yes                | Yes            |                       |                   |              | 100 Mil |             | Logistic regression with L1 & L2                                 |
| rxNeuralNet          | Yes                | Yse            | Yes                   |                   | unlimited    | 10 Mil  | Multi / GPU | Neural Network / GPU-accelerated NET# DNN with convolutions      |
| rxFastTree           | Yes                |                | Yes                   |                   |              | 50 K    | Multi       | Boosted Decision Tree                                            |
| rxFastForest         | Yes                |                | Yes                   |                   |              | 50 K    | Multi       | Random Forest                                                    |
| rxOneClassSvm        |                    |                |                       | Anomaly/Reduction |              | 1 K     | Single      | Anomaly detection / reduction / unbalanced binary classification |

All learners work with XDF data formats





### Questions?



http://tomaztsql.wordpress.com



tomaz.kastrun@gmail.com



@tomaz\_tsql



/in/tomaztsql



http://github.com/tomaztk



https://mvp.microsoft.com/PublicProfile/5002196

