TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIỀN ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH KHOA ĐIỆN TỬ VIỄN THÔNG

BÁO CÁO ĐÒ ÁN ĐIỆN TỬ SỐ KHẢO SÁT MẠCH ĐẾM TUẦN TỰ BẰNG WEBSITE FALSTAD.COM

Sinh viên thực hiện : Nguyễn Tiến Đại

Lớp : 21DTV2

Thành phố Hồ Chí Minh, tháng 5 năm 2022

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIỀN ĐẠI HỌC QUỐC GIA THÀNH PHỐ HỒ CHÍ MINH KHOA ĐIỆN TỬ VIỄN THÔNG

BÁO CÁO ĐÒ ÁN ĐIỆN TỬ SỐ KHẢO SÁT MẠCH ĐẾM TUẦN TỰ BẰNG WEBSITE FALSTAD.COM

Sinh viên thực hiện : Nguyễn Tiến Đại

Lớp : 21DTV2

Thành phố Hồ Chí Minh, tháng 5 năm 2022

MŲC LŲC

MỤC LỤC	i
CHUONG 1: 8-BIT RIPPLE COUNTER	1
1.1 Giới thiệu về mạch 8 bit ripple counter	1
1.2 Nguyên lý hoạt động của 8-bit Binary Ripple Counter	1
1.2.1 Cấu tạo	1
1.2.2 Hoạt động của mạch	1
1.3 Ví dụ mẫu bộ đếm ripple 2, 3, 4 bit	3
1.3.1 Ripple 2 bit	3
1.3.2 Ripple 3 bit	4
1.3.3 Ripple 4 bit	5
1.3.4 Ripple 8 bit	6
1.4 Ưu và nhược điểm	6
1.5 Mô phỏng	6
CHƯƠNG 2: 4-BIT SYNCHRONOUS COUNTER	7
2.1 Giới thiệu mạch đếm đồng bộ 4 bit	7
2.2 Thiết kế mạch	7
2.2.1 Bảng trạng thái khi biết ngõ ra flip-flop JK	7
2.2.2 Bảng trạng thái sơ đồ logic mạch đếm đồng bộ 4 bit	8
2.3 Hoạt động của mạch	12
2.4 Sơ đồ mạch khi lắp & dạng sóng hiển thị	12

2.5 Mô phỏng	12
CHUONG 3: DECIMAL COUNTER	13
3.1 Giới thiệu mạch đếm thập phân	13
3.2 Thiết kế mạch	13
3.2.1 Bảng trạng thái của mạch	13
3.2.2 Hiện thực hoá mạch qua symbol	17
3.3 Mô phỏng	17
CHƯƠNG 4: GRAY CODE COUNTER	18
4.1 Giới thiệu mạch 4 Bit Gray Code Counter	18
4.2 Hoạt động của mạch	18
4.2.1 Clock Input.	18
4.2.2 Binary Counter	18
4.2.3 Chuyển đổi sang Gray Code	18
4.3 Mô phỏng	20
CHUONG 5: JOHNSON COUNTER	21
5.1 Giới thiệu mạch đếm JohnSon 5 Bit	21
5.2 Sơ đồ chuyển đổi trạng thái	21
5.3 Bảng trạng thái của 5 Bit JohnSon Counter	21
5.4 Mô phỏng	22

CHUONG 1: 8-BIT RIPPLE COUNTER

1.1 Giới thiệu về mạch 8 bit ripple counter

Mạch đếm 8 bit binary ripple counter sử dụng JK flip flop dùng để đếm số xung CLOCK và biểu diễn kết quả đếm dưới dạng số nhị phân 8 bit.

1.2 Nguyên lý hoạt động của 8-bit Binary Ripple Counter

1.2.1 Cấu tạo

Mạch gồm 8 JK flip-flop, mỗi flip flop đại diện cho một bit của số nhị phân 8 bit. Các flip flop được mắc theo kiểu bất đồng bộ (*Asynchronous*) với ngõ ra Q của flip flop trước sẽ là ngõ vào clock (*CLK*) của flip flop sau.

1.2.2 Hoạt động của mạch

a. Bảng trạng thái Flip Flop JK

Truth Table

CLK	J	K	Q n+1
↑	0	0	Qn
↑	0	1	0
↑	1	0	1
↑	1	1	Q n'

b. Mô tả hoạt động

Khi J=K=1 (toggle mode) thì ngõ ra Q_{n+1} sẽ đảo trạng thái Q_n nghĩa là trạng thái Q của flip flop sẽ thay đổi mỗi khi có xung clock.

Xung clock đầu vào được đưa vào flip-flop đầu tiên (LSB) thì flip-flop sau nhận xung clock từ ngõ ra Q flip-flop trước đó → flip-flop thứ 2 sẽ thay đổi trạng thái sau 2 xung clock, flip-flop thứ ba, bốn, v.v...cũng tương tự.

c. Sơ đồ khối

FF0: J0 = K0 = 1 (Toggle mode)

$$FF1: J1 = K1 = 1$$
, $CLK1 = Q0$ (Ngõ ra Q của $FF0$)

FF2:
$$J2 = K2 = 1$$
, $CLK2 = Q1$ (Ngõ ra Q của $FF1$)

- + Mỗi Flip Flop đầu vào chuyển trạng thái với mỗi xung clock
- + Xung clock 1: Q0 thay đổi từ 0→1

Xung clock 2: Q0 thay đổi từ $0 \rightarrow 1$, Q1 thay đổi từ $0 \rightarrow 1$

Xung clock 3: Q0 thay đổi từ 0→1, Q1 giữ nguyên 1

Xung clock 4: Q0 thay đổi từ $0 \rightarrow 1$, Q1 thay đổi từ $1 \rightarrow 0$, Q2 thay đổi từ $0 \rightarrow 1$

+ Quá trình tiếp tục tương tự theo mô hình đếm binary

1.3 Ví dụ mẫu bộ đếm ripple 2, 3, 4 bit

1.3.1 Ripple 2 bit

Số xung CLOCK	Q1	Q0
0		
1	0	0
2	0	1
3	1	0
4	1	1

1.3.2 Ripple 3 bit

Số xung CLOCK	Q2	Q1	Q0
0			
1	0	0	0
2	0	0	1
3	0	1	0
4	0	1	1
5	1	0	0
6	1	0	1
7	1	1	0
8	1	1	1

1.3.3 Ripple 4 bit

Số xung CLK	Q3	Q2	Q1	Q0
0				
1	0	0	0	0
2	0	0	0	1
3	0	0	1	0
4	0	0	1	1
5	0	1	0	0
6	0	1	0	1
7	0	1	1	0
8	0	1	1	1
		•••		
15	1	1	1	1

1.3.4 Ripple 8 bit

1.4 Ưu và nhược điểm

- Ưu điểm:
 - + Thiết kết đơn giản, dễ mô phỏng
 - + Sử dụng ít linh kiện
- Nhược điểm:
 - + Ripple counter có delay lớn do tín hiệu xung truyền qua nhiều flip-flop
 - → không phù hợp cho các mạch đòi hỏi tốc cao

1.5 Mô phỏng

Link Simulation: https://tinyurl.com/24s45zja

CHUONG 2: 4-BIT SYNCHRONOUS COUNTER

2.1 Giới thiệu mạch đếm đồng bộ 4 bit

4 bit synchronous counter là mạch đếm từ 0 đến 15 (2^4) . Mạch sử dụng các flip-flop để lưu trữ các bit đếm và tín hiệu clock chung để đồng bộ hoá sự thay đổi trạng thái của tất cả các flip-flop

2.2 Thiết kế mạch

- Flip-flop đầu tiên sẽ thay đổi trạng thái với mỗi xung clock
- Flip-flop thứ hai sẽ thay đổi trạng thái khi flip-flop đầu tiên chuyển từ 1 sang 0 (nghĩa là bit đầu tiên hoàn thành 1 chu kì).
- Flip-flop thứ ba sẽ thay đổi trạng thái khi flip-flop thứ hai chuyển từ 1 sang 0 và tương tự cho flip-flop thứ tư.

2.2.1 Bảng trạng thái khi biết ngõ ra flip-flop JK

Qn	Q _{n+1}	J	K
0	0	0	Х
0	1	1	Х
1	0	X	1
1	1	Х	0

2.2.2 Bảng trạng thái sơ đồ logic mạch đếm đồng bộ 4 bit

Trại	Trạng thái hiện tại			Trạ	ing th	ái kế t	iếp	Output							
Q3	Q2	Q1	Q0	Q3'	Q2'	Q1'	Q0'	Ј3	K3	J2	K2	J1	K1	J0	K0
0	0	0	0	0	0	0	1	0	X	0	X	0	X	1	X
0	0	0	1	0	0	1	0	0	X	0	X	1	X	X	1
0	0	1	0	0	0	1	1	0	X	0	X	X	0	1	X
0	0	1	1	0	1	0	0	0	X	1	X	X	1	X	1
0	1	0	0	0	1	0	1	0	X	X	0	0	X	1	X
0	1	0	1	0	1	1	0	0	X	X	0	1	X	X	1
0	1	1	0	0	1	1	1	0	X	X	0	X	0	1	X
0	1	1	1	1	0	0	0	1	X	X	1	X	1	X	1
1	0	0	0	1	0	0	1	X	0	0	X	0	X	1	Х
1	0	0	1	1	0	1	0	X	0	0	X	1	X	X	1
1	0	1	0	1	0	1	1	X	0	0	X	X	0	1	X
1	0	1	1	1	1	0	0	X	0	1	X	X	1	X	1
1	1	0	0	1	1	0	1	X	0	X	0	0	X	1	X
1	1	0	1	1	1	1	0	X	0	X	0	1	X	X	1
1	1	1	0	1	1	1	1	X	0	X	0	X	0	1	X
1	1	1	1	0	0	0	0	X	1	X	1	X	1	X	1

Q3Q2 Q1Q0	00	01	11	10
00	0	0	X	X
01	0	0	X	Х
11	0	1	X	X
10	0	0	X	X

J3 = Q0.Q1.Q2

Kmap cho K3

Q3Q2 Q1Q0	00	01	11	10
00	X	X	0	0
01	X	Х	0	0
11	X	Х	1	0
10	X	X	0	0

K3 = Q0.Q1.Q2

Q3Q2 Q1Q0	00	01	11	10
00	0	X	X	0
01	0	Х	X	0
11	1	Х	X	1
10	0	X	X	0

J2 = Q0.Q1

Kmap cho K2

Q3Q2 Q1Q0	00	01	11	10
00	X	0	0	X
01	Х	0	0	X
11	X	1	1	X
10	X	0	0	X

K2 = Q0.Q1

Q3Q2 Q1Q0	00	01	11	10
00	0	0	0	0
01	1	1	1	1
11	X	X	X	X
10	X	X	X	Х

J1 = Q0

Kmap cho K1

Q3Q2 Q1Q0	00	01	11	10
00	X	X	X	X
01	X	X	X	X
11	1	1	1	1
10	0	0	0	0

K1 = Q0

2.3 Hoạt động của mạch

- Khi tín hiệu clock thay đổi → ff Q0 sẽ toggle → Q1 sẽ toggle khi Q0=1 → Q2 toggle khi Q0=1 và Q1=1 → Q3 toggle khi Q0=1, Q1=1, Q2=1

2.4 Sơ đồ mạch khi lắp & dạng sóng hiển thị

2.5 Mô phỏng

Link Simulation: https://tinyurl.com/25a4v7vx

CHUONG 3: DECIMAL COUNTER

3.1 Giới thiệu mạch đếm thập phân

Mạch đếm thập phân được thiết kế để đếm từ 0 đến 9. Mạch đếm này thực hiện bằng cách sử dụng các flip-flop và cổng logic để kiểm soát trạng thái

3.2 Thiết kế mạch

- Logic Reset: khi mạch đếm đến trạng thái $1010~(s\acute{o}~10)$ \rightarrow mạch sẽ tự động đặt lại về 0000 trong xung clock tiếp theo.
 - Đếm đến số 9 → 1001 → dùng 4 flip flop

3.2.1 Bảng trạng thái của mạch

Trại	Trạng thái hiện tại			Trạng thái kế tiếp			Output								
Q3	Q2	Q1	Q0	Q3'	Q2'	Q1'	Q0'	Ј3	K3	J2	K2	J1	K1	Ј0	K0
0	0	0	0	0	0	0	1	0	X	0	X	0	X	1	X
0	0	0	1	0	0	1	0	0	X	0	X	1	X	X	1
0	0	1	0	0	0	1	1	0	X	0	X	X	0	1	X
0	0	1	1	0	1	0	0	0	X	1	X	X	1	X	1
0	1	0	0	0	1	0	1	0	X	X	0	0	X	1	X
0	1	0	1	0	1	1	0	0	X	X	0	1	X	X	1
0	1	1	0	0	1	1	1	0	X	X	0	X	0	1	X
0	1	1	1	1	0	0	0	1	X	X	1	X	1	X	1
1	0	0	0	1	0	0	1	X	0	0	X	0	X	1	X
1	0	0	1	0	0	0	0	X	1	0	X	0	X	X	1

Chon J0 = K0 = 1

Q3Q2 Q1Q0	00	01	11	10
00	0	0		X
01	0	0		Х
11	0	1		
10	0	0		

J3 = Q0.Q1.Q2

Kmap cho K3

Q3Q2 Q1Q0	00	01	11	10
00	X	X		0
01	Х	Х		1
11	Х	Х		
10	X	X		

K3 = Q0.Q3

Q3Q2 Q1Q0	00	01	11	10
00	0	Х		0
01	0	Х		0
11	1	X		
10	0	X		

J2 = Q0.Q1

Kmap cho K2

Q3Q2 Q1Q0	00	01	11	10
00	X	0		X
01	Х	0		X
11	Х	1		
10	X	0		

 $\mathbf{K2} = \mathbf{Q0.Q1}$

Q3Q2 Q1Q0	00	01	11	10
00	0	0		0
01	1	1		0
11	X	X		
10	X	X		

 $J1 = Q0.\overline{Q3}$

Kmap cho K1

Q3Q2 Q1Q0	00	01	11	10
00	X	X		X
01	X	X		Х
11	1	1		
10	0	0		

 $K1 = Q0.\overline{Q3}$

Tóm tắt:

$$J3 = Q0.Q1.Q2$$

$$J2 = K2 = Q0.Q1$$

$$J1 = K1 = Q0.\overline{Q3}$$

$$K3 = Q0.Q3$$

3.2.2 Hiện thực hoá mạch qua symbol

a. Đếm từ 0 **→** 9

Các flip-flop sẽ đổi trạng thái theo các xung clock tạo ra từ các giá trị nhị phân $0000 \rightarrow 1001$

b.Reset khi đếm tới 1001

Khi đếm tới $9 = 1001_2$ (Q3=1 và Q0=1) khi qua cổng AND lúc này J=0, K=1 theo như trong bảng trạng thái flip-flop JK tín hiệu sẽ được RESET về 0000.

3.3 Mô phỏng

Link Simulation: https://tinyurl.com/27hw7zhm

CHUONG 4: GRAY CODE COUNTER

4.1 Giới thiệu mạch 4 Bit Gray Code Counter

Mạch đếm Gray Code Counter là một mạch đếm đặc biệt mà mỗi trạng thái kế tiếp chỉ khác với trạng thái trước đó đúng 1 bit. Điều này giúp giảm thiểu lỗi chuyển đổi bit trong các hệ thống điện tử.

4.2 Hoạt động của mạch

4.2.1 Clock Input

Tín hiệu Clock được đưa vào bộ đếm Counter và điều khiển việc tăng giá trị đếm nhị phân.

4.2.2 Binary Counter

Bộ Counter tạo ra các bit nhị phân theo thứ tự từ $0 \rightarrow 16$ (4 Bit)

4.2.3 Chuyển đổi sang Gray Code

- Các bit nhị phân được chuyển đổi sang Gray code thông qua các cổng XOR

Bảng trạng thái cổng XOR

- Nhờ tính chất cổng XOR mà chuyển được bit nhị phân sang gray
- Nếu 2 bit giống nhau thì bit Gray là 0, 2 bit khác nhau thì bit Gray là 1

Ví dụ:

Bảng mã Gray 4-bit

Decimal	Binary	Gray Code
0	0000	0000
1	0001	0001
2	0010	0011
3	0011	0010
4	0100	0110
5	0101	0111
6	0110	0101
7	0111	0100
8	1000	1100
9	1001	1101
10	1010	1111
11	1011	1110

12	1100	1010
13	1101	1011
14	1110	1001
15	1111	1000

4.3 Mô phỏng

Link Simulation: https://tinyurl.com/2xpbq3ov

CHUONG 5: JOHNSON COUNTER

5.1 Giới thiệu mạch đếm JohnSon 5 Bit

Mạch đếm JohnSon sử dụng D flip-flop yêu cầu nối các flip-flop sao cho đầu ra của flip-flop cuối cùng được đưa trở lại đầu vào của flip-flop đầu tiên với trạng thái đảo. Mạch sẽ có chu kỳ đếm 10 trạng thái.

5.2 Sơ đồ chuyển đổi trạng thái

5.3 Bảng trạng thái của 5 Bit JohnSon Counter

Count Value		Boolean Expression				
	Q5	Q4	Q3	Q2	Q1	
0	0	0	0	0	0	<u>Q5. Q1</u>
1	1	0	0	0	0	Q5. <u>Q4</u>
2	1	1	0	0	0	Q4. <u>Q</u> 3
3	1	1	1	0	0	$Q3.\overline{Q2}$
4	1	1	1	1	0	Q2. <u>Q1</u>
5	1	1	1	1	1	Q5.Q1
6	0	1	1	1	1	<u>Q</u> 5.Q4

7	0	0	1	1	1	Q 4.Q3
8	0	0	0	1	1	Q 3.Q2
9	0	0	0	0	1	<u>Q</u> 2.Q1

5.4 Mô phỏng

Link Simulation: https://tinyurl.com/2yb2efa3

TÀI LIỆU THAM KHẢO

[1] Elprocus. (May 25, 2022). A Brief about Ripple Counter with Circuit and Timing Diagrams. https://www.elprocus.com/a-brief-about-ripple-counter-with-circuit-and-timing-diagrams/

[2] Virtual Labs. (May 16, 2022). Design and Verify the 4-bit Synchronous/Asynchronous Counter using JK flip flop. https://de-iitr.vlabs.ac.in/exp/4bit-synchronous-asynchronous-counter/theory.html