MATEMATIČKA ANALIZA I & II

Boris Guljaš

predavanja

Zagreb, 2.10.2018.

Uvod

Matematička analiza I. & II. su standardni jednosemestralni kolegiji koji se predaju na prvoj godini studija matematike na PMF-Matematičkom odsjeku Sveučilišta u Zagrebu. Gradivo tih kolegija izlaže se sa satnicom od tri sata predavanja i tri ili četiri sata vježbi tjedno u prvom i drugom semestru studija. Program kolegija obuhvaća osnovna znanja o funkcijama realne varijable, od definicija osnovnih elementarnih funkcija, preko pojma limesa niza i funkcije, neprekidnosti funkcije, do diferencijalnog i integralnog računa.

Izlaganje gradiva podijeljeno je na šest poglavlja, od kojih se prva tri poglavlja izlažu u prvom semestru, a posljednja tri u drugom semestru studija. Uključena su i dva dodatka koja omogućuju snalaženje u jeziku matematičke logike i jeziku skupova koji se koriste u izlaganju.

U prvom poglavlju obrađuju se osnovni pojmovi o skupovima i funkcijama, na način da se pažnja posvećuje konkretnim skupovima prirodnih, cijelih, racionalnih i realnih brojeva. Prvo se intuitivno i heuristički opisuju svojstva tih skupova, da bi u nastavku dali aksiomatiku skupa realnih brojeva. Pojam funkcije se uvodi kroz ponavljanje poznatih pojmova iz srednje škole, a zatim se kroz uvođenje operacije kompozicije i pojma inverzne funkcije, formalno definiraju arcus i area funkcije. Kod definiranja pojmova infimuma i supremuma skupa, upoznajemo studente s strogim matematičkim načinom formuliranja tih pojmova pomoću logičkih veznika i kvantifikatora. Također se upoznaju s načinom kako razlikovati veličinu beskonačnih skupova kroz pojam prebrojivog i neprebrojivog skupa.

Drugo poglavlje je posvećeno nizovima realnih brojeva i njihovoj konvergenciji. Naročito se inzistira na pojmu konvergencije niza, jer to je prvi ozbiljni susret s pojmom koji zahtijeva shvaćanje beskonačnog matematičkog procesa. Posebno se inzistira na razumijevanju Cauchyjeve definicije limesa niza. Na kraju se uvodi skup kompleksnih brojeva i konvergencija nizova u njemu, te odnos s konvergencijom komponentnih realnih nizova.

U trećem poglavlju obrađuje se limes funkcije i neprekidnost funkcije, s tim da se ti pojmovi uvode pomoću nizova, ali se dokazuju i koriste Cauchyjeve varijante tih pojmova. Pokazuje se veza neprekidnosti i monotonosti funkcije, te se dokazuje neprekidnost svih elementarnih funkcija.

Drugi semestar počinje s četvrtim poglavljem o diferencijalnom računu i teorijski i praktički relevantnim pojmovima u vezi s derivacijom. Posebno, dokazuju se teoremi srednje vrijednosti i primjenjuju na probleme istraživanja toka funkcije. Također pokazujemo neke primjene u numeričkoj matematici.

Pojam integrabilnosti u Riemannovom smislu uvodi se u petom poglavlju. Tu dokazujemo integrabilnost elementarnih funkcija pomoću njihove neprekidnosti ili monotonosti po dijelovima. Također se definira primitivna funkcija i daju se osnovne tehnike integralnog računa. Obrađuju se primjene na nalaženje površina likova i volumena tijela, kao i zakrivljenost ravninskih krivulja.

Posljednje šesto poglavlje je posvećeno redovima brojeva i redovima funkcija. Proučava se apsolutna konvergencija redova i dokazuju se dovoljni uvjeti za konvergenciju redova. Od redova funkcija poseban naglasak je na redovima potencija. Specijalno se promatraju Taylorovi redovi osnovnih funkcija. Također se ukratko obrađuju i osnovne činjenice o Fourierovim redovima periodičkih funkcija.

Dodaci A i B su uvršteni zato da studentima budu na raspolaganju osnovna znanja iz matematičke logike i elementarne teorije skupova potrebna za svladavanje ovog kolegija.

OBAVEZNA LITERATURA:

- 1. S. Kurepa, Matematička analiza 1: Diferenciranje i integriranje, Tehnička knjiga, Zagreb, 1984.
- 2. S. Kurepa, Matematička analiza 2: Funkcije jedne varijable, Tehnička knjiga, Zagreb, 1984.

DOPUNSKA LITERATURA:

1. M. H. Protter, C. B. Morrey, A First Course in Real Analysis, Springer Verlag, 1991.

Boris Guljaš

B. Julas

Sadržaj

$\mathbf{U}\mathbf{vod}$				iii	
1	Skupovi i funkcije				
	1.1	Skupo	vi	1	
		1.1.1	Skupovi $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$	2	
		1.1.2	Prikaz skupova \mathbb{Q} i \mathbb{R} na pravcu	7	
		1.1.3	Decimalni brojevi, aproksimacija	8	
		1.1.4	Kartezijeva ravnina, koordinatni sustav	9	
	1.2	Funkci	,	9	
		1.2.1	Klasifikacija realnih funkcija pomoću grafa	11	
		1.2.2	Linearne funkcije	12	
		1.2.3	Apsolutna vrijednost i udaljenost	13	
		1.2.4	Kvadratna funkcija	15	
		1.2.5	Razlomljene linearne funkcije	16	
		1.2.6	Polinomi	16	
		1.2.7	Racionalne funkcije	17	
		1.2.8	Kompozicija funkcija, inverzna funkcija	17	
		1.2.9	Korijeni	20	
		1.2.10	Eksponencijalna funkcija na Q, logaritamska funkcija,		
			opća potencija	21	
		1.2.11	·	23	
			Trigonometrijske i arkus funkcije	25	
	1.3		ni polja \mathbb{R} , supremum i infimum, potpunost	29	
		1.3.1	Aksiomi polja \mathbb{R}	29	
		1.3.2	Supremum i infimum skupa, potpunost	32	
		1.3.3	Eksponencijalna funkcija na \mathbb{R} (I.)	36	
	1.4	Ekvipo	otentni skupovi, prebrojivost	37	
2	Niz	ovi		41	
	2.1		oodniz	41	
	2.2	1	niza 11 R	42	

vi $SADR\check{Z}AJ$

	2.3	Operacije s konvergentnim nizovima
		2.3.1 Primjeri konvergentnih nizova
		2.3.2 Eksponencijalna funkcija na \mathbb{R} (II.) 5
	2.4	Limes superior i limes inferior
	2.5	Cauchyjev niz
	2.6	Polje \mathbb{C} , nizovi u \mathbb{C}
		2.6.1 Polje kompleksnih brojeva \mathbb{C} 5'
		2.6.2 Eksponencijalna funkcija na \mathbb{C}
		2.6.3 Nizovi u \mathbb{C} , limes niza u \mathbb{C} 60
3	Lim	nes i neprekidnost funkcije 63
	3.1	Limes funkcije
		3.1.1 Limes $u \overline{\mathbb{R}} \dots 6'$
		3.1.2 Jednostrani limes u \mathbb{R} 68
	3.2	Neprekidnost funkcije u točki
		3.2.1 Neprekidnost i operacije s funkcijama
		3.2.2 Neprekidnost eksponencijalne funkcije na \mathbb{R}
		3.2.3 Neprekidnost trigonometrijskih funkcija
		3.2.4 Neprekidnost funkcije na segmentu
	3.3	Neprekidnost i monotonost
		3.3.1 Neprekidnost korijena, logaritamske, area i arcus funkcija 8
	3.4	Jednostrana neprekidnost funkcije
	3.5	Otvoreni skupovi u \mathbb{R}
4	Der	ivacija 89
	4.1	Motivacija
	4.2	Diferencijabilnost i operacije
	4.3	Derivacije elementarnih funkcija 9'
		4.3.1 Potencije i korijeni 9'
		4.3.2 Trigonometrijske i arcus funkcije 9'
		4.3.3 Eksponencijalna funkcija
		4.3.4 Hiperbolne i area funkcije
	4.4	Teoremi srednje vrijednosti
	4.5	Monotonost i derivacija funkcije
	4.6	Taylorov teorem
		4.6.1 Određivanje ekstrema pomoću derivacija višeg reda 100
		4.6.2 Konveksne funkcije, infleksija
		4.6.3 Okomite i kose asimptote na graf funkcije
		4.6.4 Svojstva konveksnih funkcija
		4.6.5 Cauchyjev teorem srednje vrijednosti i
		L'Hospitalovo pravilo

CARRÉAI	••
SADRZAJ	Vll
0110102110	V 11

	4.7	Neke primjene derivacije4.7.1 Lagrangeov interpolacijski polinom4.7.2 Newtonova metoda
5	Rie	mannov integral 125
	5.1	Problem površine i rada sile
	5.2	Integral
	5.3	Osnovna svojstva
	5.4	Integrabilnost monotonih i neprekidnih funkcija
	5.5	Primitivna funkcija
	5.6	Metode integriranja
		5.6.1 Direktna integracija
		5.6.2 Integracija racionalnih funkcija
		5.6.3 Integralni oblik ostatka u Taylorovom teoremu srednje
		vrijednosti
	5.7	Primjene u geometriji
		5.7.1 Volumen rotacionog tijela
		5.7.2 Duljina ravninske krivulje
		5.7.3 Površina rotacione plohe
		5.7.4 Zakrivljenost ravninske krivulje
	5.8	Nepravi integral
		5.8.1 Kriterij konvergencije nepravog integrala 156
6	Red	ovi 159
	6.1	Definicija reda
	6.2	Definicija konvergencije reda
	6.3	Uspoređivanje redova, apsolutna konvergencija 164
	6.4	Uvjeti za konvergenciju reda
	6.5	Produkt redova
	6.6	Redovi potencija
	6.7	Taylorovi redovi
	6.8	Fourierovi redovi
	6.9	Uniformna konvergencija
\mathbf{A}	Alge	ebra izjava 189
	_	Izjave i veznici
		Izjavne funkcije i kvantifikatori
В	Elor	nentarna teorija skupova 193
ע	B.1	Skupovi i operacije sa skupovima
	B.2	Inkluzija i prazan skup
	۵.4	minutarija i pružum skup

viii	$SADR\check{Z}AJ$
------	-------------------

Indeks	2	08
B.9	Konstrukcija potpunog uređenog polja $\mathbb R$	04
B.8	Cantor-Bernsteinov teorem	03
B.7	Relacije i funkcije	01
B.6	Beskonačne unije i presjeci	00
B.5	Kartezijev produkt	99
B.4	Univerzalni skup i komplement $\dots \dots \dots$	98
B.3	Zakoni unije, presjeka i oduzimanja $\ \ldots \ \ldots \ \ldots \ \ldots \ 1$	96

1 Skupovi i funkcije

1.1 Skupovi

Pojmovi skup i element ili član skupa predstavljaju osnovne ili primitivne pojmove koji se ne definiraju. Intuitivno, pojam skupa predstavlja cjelinu koju čine elementi ili članovi tog skupa. Za pisanje činjenice da je a element skupa A koristimo oznaku $a \notin A$, a da a nije element skupa A koristimo oznaku $a \notin A$.

Na primjer, postoji skup čiji članovi su svi primitivni brojevi manji od 10. To je skup od četiri elementa: 2, 3, 5 i 7. Taj skup možemo označiti nabrajajući članove unutar vitičastih zagrada: $\{2,3,5,7\}$. Nazovimo ga s A. Neka je B skup svih rješenja polinomijalne jednadžbe $x^4 - 17x^3 + 101x^2 - 247x + 210 = 0$. Možemo provjeriti da skup B ima točno ista četiri člana 2, 3, 5 i 7. Iz tog razloga skupovi A i B su identični, tj. A = B.

Skup koji nema niti jednog člana zovemo prazan skup i označavamo s \emptyset . Kažemo da je skup A podskup skupa B i pišemo $A \subseteq B$, ako je svaki element $t \in A$ ujedno i element skupa B, tj. $\forall t, (t \in A) \Rightarrow (t \in B)$. Posljednja izjava je napisana pomoću logičkih znakova i glasi: "za svaki t, t element od A povlači (slijedi) t element od B". Znak \forall (za svaki) je logički kvantifikator (univerzalni kvantifikator), i on opisuje opseg izjave koja iza njega slijedi. Znak ⇒ je logički veznik koji zovemo implikacija. On povezuje dvije izjave i čitamo ga "slijedi, povlači, ako - onda". Drug logički kvantifikator je ∃, kvantifikator egzistencije ili postojanja. Npr. izjava $\exists a(a \in A)$, "postoji element a koji je u skupu A", kazuje da skup A ima barem jedan član, tj. $A \neq \emptyset$. Pored navedenih kvantifikatora koristimo još slijedeće veznike ili logičke operacije: ∧, & (konjunkcija) koji odgovara jezičnom vezniku "i", ∨ (disjunkcija)je veznik "ili", a ⇔ (ekvivalencija) čitamo "ako i samo ako", "onda i samo onda" i slično. Navedeni veznici odgovaraju pojedinim operacijama sa skupovima. Operacija presjek skupova A i B u oznaci $A \cap B$ odgovara vezniku "i", a njen rezultat je skup koji sadrži one i samo one članove koji su članovi skupa A i skupa B, tj. $\forall t \ (t \in A \cap B) \Leftrightarrow ((t \in A) \land (t \in B))$. Operacija unija skupova A i B u oznaci $A \cup B$ odgovara vezniku "ili", a njen rezultat je skup koji sadrži one i samo one članove koji su članovi skupa A ili skupa B, tj. $\forall t$ $(t \in A \cup B) \Leftrightarrow ((t \in A) \lor (t \in B))$. Ako veznik \Leftrightarrow povezuje dvije izjave, onda su one jednako vrijedne, obje su istinite ili su obje lažne.

Osnovna znanja o logičkim izjavama i skupovima potrebna u daljnjim razmatranjima obrađena su u Dodatku A (str. 189.) i B (str. 193.). Sada ćemo se posvetiti konkretnim skupovima s kojima ćemo se baviti u ovom kursu.

1.1.1 Skupovi $\mathbb{N}, \mathbb{Z}, \mathbb{Q}$

U našim razmatranjima posebno važnu ulogu igraju skupovi koji nemaju samo konačno mnogo članova. Takav je **skup prirodnih brojeva** kojeg označavamo s \mathbb{N} , a njegovi članovi su prirodni brojevi $1, 2, 3, \ldots$, tj. $\mathbb{N} = \{1, 2, 3, \ldots\}$. Na skupu \mathbb{N} možemo uspoređivati brojeve, tj. za svaka dva različita prirodna broja znamo koji je manji a koji je veći, tj. koji je prije kojega u prirodnom poretku. Zapravo, za svaki prirodni broj znamo koji broj dolazi nakon njega, tj. tko mu je sljedbenik. Ako krenemo od prvog prirodnog broja, kojeg označavamo s 1, i od svakog broja pređemo na njegovog sljedbenika, proći ćemo svim prirodnim brojevima. Sada smo upravo opisali svojstva koja čine **Peanove**¹ **aksiome** skupa \mathbb{N} :

- 1. Svaki prirodni broj ima sljedbenika, tj. $\forall n \in \mathbb{N}, \exists ! s(n) \in \mathbb{N}$ i ako je s(n) = s(m) onda je n = m.
- 2. Postoji prvi element u skupu \mathbb{N} i označavamo ga s 1, tj. $1 \in \mathbb{N}$. To je jedini element koji nije sljedbenik nekog prirodnog broja.
- 3. Vrijedi aksiom matematičke indukcije:

Neka je $S \subseteq \mathbb{N}$ takav da vrijedi:

- 1) $1 \in S$,
- 2) $\forall n \in \mathbb{N}, (n \in S) \Rightarrow (s(n) \in S).$ Tada je $S = \mathbb{N}.$

Svaki skup za kojeg vrijede Peanovi aksiomi poistovjećujemo sa skupom prirodnih brojeva. Naravno, postoje različite realizacije skupa \mathbb{N} . Naprimjer, jednu možemo sagraditi od praznog skupa: $\mathbb{N} = \{\emptyset, \{\emptyset\}, \{\{\emptyset\}\}\}, \{\{\{\emptyset\}\}\}\}, \ldots\}$, gdje je sljedbenik definiran sa $s(a) = \{a\}, \forall a \in \mathbb{N}$.

¹Giuseppe Peano (Cuneo [Piemonte], 27. kolovoz 1858. − Turin, 20. travanj 1932.) talijanski matematičar

1.1. SKUPOVI 3

Pomoću funkcije sljedbenik možemo na N definirati binarnu operaciju zbrajanja tako da stavimo

$$\forall n, m \in \mathbb{N}, \quad n+m = \underbrace{s(s(s(\ldots s(n)\ldots)))}_{m} = s^{[m]}(n).$$

Zadatak 1.1. Provjerite da je operacija zbrajanja asocijativna i komutativna:

$$(\forall n, m, k \in \mathbb{N}), \quad n + (m+k) = (n+m) + k,$$
 (1.1)

$$(\forall n, m \in \mathbb{N}), \quad n+m=m+n. \tag{1.2}$$

Rješenje: Neka su $n, m \in \mathbb{N}$ po volji. Vrijedi $n + (m+1) = s^{[m+1]}(n) = s(s^{[m]}(n)) = s(n+m) = (n+m)+1$. Pretpostavimo da za $k \in \mathbb{N}$ vrijedi n + (m+k) = (n+m)+k. Tada je n + (m+(k+1)) = n + ((m+k)+1) = (n+(m+k)) + 1 = ((n+m)+k) + 1 = (n+m) + (k+1), pa iz aksioma matematičke indukcije slijedi (1.1).

Indukcijom lako slijedi $\forall n \in \mathbb{N}, \ s(n) = s^{[n]}(1)$. Neka je $n \in \mathbb{N}$ po volji. Vrijedi $n+1=s(n)=s^{[n]}(1)=1+n$. Pretpostavimo da je za neko $m \in \mathbb{N}, \ n+m=m+n$. Tada je $n+(m+1)=s^{[m+1]}(n)=s(s^{[m]}(n))=s(n+m)=s(m+n)=(m+n)+1=m+(n+1)=m+(1+n)=(m+1)+n$, pa imamo (1.2).

Osim operacije zbrajanja, na $\mathbb N$ možemo definirati relaciju strogog uređaja < tako da kažemo $\forall n \in \mathbb N, \ n < s(n), \ \text{tj.}$ imamo $1 < 2 < 3 < \cdots < n < n+1 < \cdots$.

Također, odmah imamo i uređaj < ako stavimo

$$(n \le m) \stackrel{def}{\Leftrightarrow} ((n < m) \lor (n = m)).$$

Taj uređaj je linearan ili jednostavan, tj. za svaka dva različita prirodna broja jedan je manji od drugoga, tj. oni su usporedivi.

Kažemo da je uređaj na skupu \mathbb{N} dobar uređaj jer ima svojstvo da svaki neprazan podskup skupa \mathbb{N} ima prvi (najmanji) element.

Dakle, na $\mathbb N$ imamo zadanu algebarsku strukturu i uređaj. Pitanje je sada koliko nam je ta struktura korisna i dostatna. Već u prvim godinama školovanja iz matematike uči se kako razne probleme matematički formulirati i potom rješavati. Već najjednostavniji problemi vode na rješavanje jednadžbe oblika a+x=b, gdje su $a,b\in\mathbb N$. Možemo li tu jednadžbu riješiti u skupu $\mathbb N$ za svaki izbor brojeva $a,b\in\mathbb N$? Naravno, odgovor je negativan već za izbor a=b=1. Naime, u skupu $\mathbb N$ ne postoji broj x sa svojstvom da je x+1=1. To slijedi iz 2. Peanovog aksioma. Kada bi takav broj postojao,

onda je iz definicije zbrajanja jasno da bi vrijedilo $\forall n \in \mathbb{N}, \ x+n=n.$ Što možemo sada učiniti? Uobičajen postupak kod rješavanja sličnih algebarskih problema je da proširimo (ako je moguće) skup tako da u tom većem skupu naša jednadžba ima rješenje. Dodajmo, dakle, skupu \mathbb{N} element koji označavamo s0 i stavimo ga ispred jedinice jer vrijedi 0+1=1, tj. 1=s(0). To je tzv. neutralni element za zbrajanje ili nula, jer pri zbrajanju s0 svi elementi ostaju nepromijenjeni. Odmah je jasno da niti u skupu $\{0\} \cup \mathbb{N}$ nismo u mogućnosti riješiti našu jednadžbu za bilo koji izbor brojeva $a,b \in \{0\} \cup \mathbb{N}.$ Naime, za bilo koji $n \in \mathbb{N}$ jednadžba n+x=0 nema rješenje u $\{0\} \cup \mathbb{N}.$ Takav x zovemo suprotnim element od n i označavamo s-n. Dobro, dodajmo sada skupu suprotne elemente za sve $n \in \mathbb{N}$ i poredajmo ih u obratnom poretku od njihovih originala, tj. $(n,m \in \mathbb{N})$ $((n < m) \Rightarrow (-m < -n))$. Tako smo došli do skupa

$$\mathbb{Z} = \{\ldots, -n, \ldots, -2, -1, 0, 1, 2, \ldots, n, \ldots\} = -\mathbb{N} \cup \{0\} \cup \mathbb{N}$$

kojeg nazivamo **skupom cijelih brojeva**. Na čitav skup \mathbb{Z} možemo također proširiti i operaciju zbrajanja. Za $-m, -n \in -\mathbb{N}$ stavimo -n + -m = -(n+m). Za $-m \in -\mathbb{N}, n \in \mathbb{N}$ promatramo dva slučaja. Ako je $(n \geq m) \Rightarrow \exists k \in \{0\} \cup \mathbb{N}, n = m+k$, pa stavljamo -m+n = n+(-m) = k, a u slučaju $(m \geq n) \Rightarrow \exists k \in \{0\} \cup \mathbb{N}, m = n+k$, pa stavljamo -m+n = n+(-m) = -k. Skup \mathbb{Z} s operacijom + je algebarska struktura sa svojstvima:

- 1. $\forall a, b, c \in \mathbb{Z}, a + (b + c) = (a + b) + c$ (associjativnost).
- 2. $\exists 0 \in \mathbb{Z}, \forall a \in \mathbb{Z}, 0 + a = a + 0 = a \text{ (neutralni element)}.$
- 3. $\forall a \in \mathbb{Z}, \exists -a \in \mathbb{Z}, a+-a=-a+a=0$ (suprotni elementi).
- 4. $\forall a, b \in \mathbb{Z}, a+b=b+a \text{ (komutativnost)}.$

Strukturu (\mathbb{Z} , +) koja zadovoljava svojstva 1., 2. i 3. zovemo **grupa**, ako još vrijedi i svojstvo 4., zovemo je **komutativna** (**Abelova**¹) **grupa**. To je osnovna algebarska struktura u kojoj je uvijek rješiva jednadžba a + x = b.

Na skupu N možemo definirati i drugu binarnu operaciju koju nazivamo množenje ako za $\forall n, m \in \mathbb{N}$ stavimo $n \cdot m = \underbrace{n + n + \dots + n}_{m}$.

Zadatak 1.2. Provjerite da je operacija množenja asocijativna, komutativna i da je 1 neutralni element za množenje. Također vrijedi distributivnost množenja prema zbrajanju.

$$(\forall n, m, k \in \mathbb{N}) \ n \cdot (m \cdot k) = (n \cdot m) \cdot k, \tag{1.3}$$

 $^{^1\}mathrm{Niels}$ Henrik Abel (Nedstrand, 5. kolovoz 1802. - Froland, 6. travanj 1829.) norveški matematičar

1.1. SKUPOVI 5

$$(\forall n, m \in \mathbb{N}) \ n \cdot m = m \cdot n. \tag{1.4}$$

$$(\forall n \in \mathbb{N}) \ n \cdot 1 = 1 \cdot n = n. \tag{1.5}$$

$$(\forall n, m, k \in \mathbb{N}) \ n \cdot (m+k) = n \cdot m + n \cdot k. \tag{1.6}$$

Rješenje: Očito,
$$\forall n \in \mathbb{N}$$
 vrijedi $n \cdot 1 = n$. Također, $1 \cdot n = \underbrace{1 + 1 + \dots + 1}_{n} = \underbrace{(1 + 1) + \dots + 1}_{n-1} + \underbrace{1}_{n} = s^{[n-1]}(1) = n$, tj. vrijedi (1.5). Dakle, $1 \in \mathbb{N}$ je

neutralni element za operaciju množenja. Ujedno je to baza indukcije za dokaz komutativnosti.

Neka je $n \in \mathbb{N}$ po volji. Pretpostavimo da je za neko $m \in \mathbb{N}$, $n \cdot m = m \cdot n$. Tada je $(n+1) \cdot m = \underbrace{(n+1) + \cdots + (n+1)}_{m} = \underbrace{(n+\cdots+n)}_{m} + \underbrace{(1+\cdots+1)}_{m} = \underbrace{(n+\cdots+n)}_{m} + \underbrace{(n+1) \cdot m}_{m} = \underbrace{(n+\cdots+n)}_{m} = \underbrace{(n+\cdots+n)}_{m} + \underbrace{(n+1) \cdot m}_{m} = \underbrace{(n+\cdots+n)}_{m} + \underbrace{(n+1) \cdot m}_{m} = \underbrace{(n+\cdots+n)}_{m} + \underbrace{(n+1) \cdot m}_{m} = \underbrace{(n+\cdots+n)}_{m} = \underbrace{(n+\cdots+n)}_{m} + \underbrace{(n+1) \cdot m}_{m} = \underbrace{(n+\cdots+n)}_{m} = \underbrace{($

Neka su $n, m \in \mathbb{N}$ po volji. Prethodno je pokazano da vrijedi $n \cdot (m+1) =$ $n \cdot m + n = n \cdot m + n \cdot 1$. Pretpostavimo da za $k \in \mathbb{N}$ vrijedi $n \cdot (m + k) = n \cdot m + n \cdot 1$ $n \cdot m + n \cdot k$. Tada je $n \cdot (m + (k+1)) = n \cdot ((m+k) + 1) = n \cdot (m+k) + n \cdot 1 = n$ $(n \cdot m + n \cdot k) + n \cdot 1 = n \cdot m + (n \cdot k + n \cdot 1) = n \cdot m + n \cdot (k+1)$, dakle, imamo (1.6).

tj. vrijedi (1.4).

Za dokaz asocijativnosti množenja uzmimo $n, m \in \mathbb{N}$ po volji, pa imamo $n \cdot (m \cdot 1) = n \cdot m = (n \cdot m) \cdot 1$. Neka tvrdnja vrijedi za $k \in \mathbb{N}$. Tada je $n \cdot (m \cdot (k+1)) = n \cdot (m \cdot k + m \cdot 1) = n \cdot (m \cdot k) + n \cdot m = (n \cdot m) \cdot k + n \cdot m = (n$ $(n \cdot m) \cdot (k+1)$.

Tu operaciju možemo lako proširiti i na skup \mathbb{Z} stavljajući za $-n, -m \in$ $-\mathbb{N}, (-n) \cdot (-m) = n \cdot m, \text{ a za } -m \in -\mathbb{N}, n \in \mathbb{N}, n \cdot (-m) = -(n \cdot m).$ Lako se pokaže da je na skupu $\mathbb Z$ ta operacija asocijativna, komutativna i distributivna prema zbrajanju. U skupu Z postoji neutralni element za množenje 1, tj. $\forall n \in \mathbb{Z}, n \cdot 1 = 1 \cdot n = n$. Promatrajmo sada rješivost jednadžbe $a \cdot x = b$ za $a, b \in \mathbb{Z}$. Već za $a = n \neq 1$ i b = 1 ta jednadžba nema rješenje u \mathbb{Z} . Broj x za koji vrijedi nx = 1 nazivamo recipročni element od n ili inverz od n za operaciju množenje i označavamo s $n^{-1} = \frac{1}{n}$. Ako sada proširimo skup \mathbb{Z} sa svim mogućim rješenjima jednadžbe nx = m, gdje je $n \in \mathbb{N}$ i $m \in \mathbb{Z}$ dobivamo skup

$$\mathbb{Q} = \{ \frac{m}{n} \; ; \; n \in \mathbb{N}, \; m \in \mathbb{Z} \}$$

koji zovemo **skupom racionalnih brojeva**. Napominjemo da je prikaz racionalnog broja u obliku $\frac{m}{n}$ jedinstven ako su brojevimi n relativno prosti, tj. nemaju zajedničkog djelitelja različitog od 1 ili -1.

Operaciju množenje na skupu $\mathbb Q$ definiramo tako da za

$$\forall \frac{m}{n}, \frac{m'}{n'} \in \mathbb{Q}, \text{ stavimo } \frac{m}{n} \cdot \frac{m'}{n'} = \frac{mm'}{nn'} \in \mathbb{Q}.$$

Skup racionalnih brojeva bez nule, s operacijom množenja (\mathbb{Q}, \cdot) je također komutativna grupa. Nula nema recipročnog elementa, tj. s nulom nije moguće dijeliti.

Operaciju zbrajanje je moguće proširiti sa skupa $\mathbb Z$ na skup $\mathbb Q$ na slijedeći način:

$$\forall \frac{m}{n}, \frac{m'}{n'} \in \mathbb{Q}$$
, stavimo $\frac{m}{n} + \frac{m'}{n'} = \frac{mn' + m'n}{nn'} \in \mathbb{Q}$.

Međutim, operacije zbrajanja i množenja su povezane svojstvom distributivnosti množenja prema zbrajanju, tj. $\forall n, m, k \in \mathbb{Q}, n(m+k) = nm + nk$. Struktura $(\mathbb{Q}, +, \cdot)$ s gore navedenim svojstvima naziva se **polje**.

Uređaj sa skupa \mathbb{Z} možemo jednostavno proširiti na skup \mathbb{Q} tako da $\forall \frac{m}{n}, \frac{m'}{n'} \in \mathbb{Q}$, stavimo $\frac{m}{n} \leq \frac{m'}{n'} \Leftrightarrow mn' \leq m'n$. Ta relacija ima slijedeća svojstva:

- 1. $\forall a \in \mathbb{Q}, (a < a), (refleksivnost).$
- 2. $\forall a, b \in \mathbb{Q}, (a \leq b) \land (b \leq a) \Rightarrow (a = b), (antisimetričnost).$
- 3. $\forall a, b, c \in \mathbb{Q}, (a \leq b) \land (b \leq c) \Rightarrow (a \leq c), (tranzitivnost).$
- 4. $\forall a, b \in \mathbb{Q}$, $(a < b) \lor (b < a)$, (linearnost ili totalnost).

Ako uređaj zadovoljava samo svojstva 1., 2. i 3. zovemo ga **parcijalni uređaj**.

Taj uređaj je u suglasju s operacijama zbrajanja i množenja. Vrijedi

- 1. $\forall a, b \in \mathbb{Q}, (a \le b) \Rightarrow (\forall c \in \mathbb{Q} (a + c \le b + c)).$
- 2. $\forall a, b \in \mathbb{Q}, (a < b) \Rightarrow (\forall c > 0 (ac < bc)).$
- $2. \forall a, b \in \mathbb{O}, ((a > 0) \land (b > 0)) \Rightarrow (ab > 0).$

Primjer 1.1. Relacija inkluzije je parcijalni uređaj na partitivnom skupu $\mathcal{P}(U)$ nekog skupa U. Vrijedi

- 1. $\forall A \subseteq U, (A \subseteq A),$
- 2. $\forall A, B \subset U, (A \subset B) \land (B \subset A) \Rightarrow (A = B),$
- 3. $\forall A, B, C \subseteq U$, $(A \subseteq B) \land (B \subseteq C) \Rightarrow (A \subseteq C)$.

Taj uređaj nije linearan, npr. disjunktni skupovi nisu usporedivi.

1.1. SKUPOVI 7

1.1.2 Prikaz skupova $\mathbb Q$ i $\mathbb R$ na pravcu

Skup cijelih brojeva prikazujemo na pravcu tako da izaberemo čvrstu točku za ishodište i njoj pridružimo cijeli broj 0. Zatim izaberemo jediničnu dužinu i nanosimo ju uzastopno na desnu stranu za pozitivne i na lijevu stranu za negativne cijele brojeve, kao što je prikazano na slijedećoj slici.

Da bismo prikazali racionalni broj $\frac{m}{n}$, 0 < m < n, na pravcu poslužimo se Talesovim teoremom o sličnim trokutima. Kao što se vidi na slici desno, prvo na pomoćnom pravcu nanesemo n jednakih dužina, a zatim odredimo traženi broj. Na taj način je jasno da je ravnalom i šestarom moguće na pravcu konstruirati svaki racionalan broj.

Skup racionalnih brojeva Q je **gust u sebi**, tj. $\forall q_1, q_2 \in \mathbb{Q}, q_1 < q_2, \exists q \in \mathbb{Q},$ $q_1 < q < q_2$. Naravno, to je ispunjeno već za $q = \frac{q_1 + q_2}{2}$. Prirodno pitanje je da li su na taj način dobivene sve točke na pravcu, tj. da li svaka točka na pravcu predstavlja neki racionalan broj. Konstruirajmo točku koja je od 0 udaljena za duljinu dijagonale kvadrata sa stranicama duljine 1. Iz Pitagorinog poučka slijedi da ta točka odgovara broju čiji kvadrat je jednak 2, tj. broju $\sqrt{2}$. Dokažimo da $\sqrt{2} \notin \mathbb{Q}$. Metoda kojom dokazujemo tu tvrdnju vrlo je česta u dokazivanju različitih matematičkih tvrdnji. Jedini način da logički točnim

zaključivanjem dobijemo neistinitu tvrdnju je da je polazna pretpostavka neistinita.

Dakle, pretpostavimo da vrijedi $\sqrt{2} \in \mathbb{Q}$. Tada postoje relativno prosti brojevi $m,n\in \mathbb{N}$ (nemaju zajedničkih faktora različitih od 1) takvi da je $\frac{m}{n}=\sqrt{2}$, odnosno $\frac{m^2}{n^2}=2$, a odatle dobijemo $m^2=2n^2$. Pošto je desna

strana posljednje jednakosti prirodan broj djeljiv s 2, tada je i m^2 djeljiv s 2. Tada je i m djeljiv s 2, tj. $m=2m_0$ za neki $m_0 \in \mathbb{N}$. Naime, kada bi bilo $m=2m_0+1$ slijedilo bi $m^2=4m_0^2+4m_0+1$. Sada imamo $4m_0^2=2n^2$, odnosno $2m_0^2=n^2$. Odatle pak zaključujemo da je i $n=2n_0$ za neki $n_0 \in \mathbb{N}$. Dakle, $m=2m_0$ i $n=2n_0$, tj. dobili smo neistinu, odnosno kontradikciju s pretpostavkom da su m i n relativno prosti.

Sada je jasno da sve točke na pravcu ne predstavljaju racionalne brojeve, već ima (puno više) točaka koje ne predstavljaju racionalne nego tzv. iracionalne brojeve. Sve te točke zajedno predstavljaju skup **realnih brojeva** koji označavamo s \mathbb{R} .

1.1.3 Decimalni brojevi, aproksimacija

Broj oblika

$$\pm \left(a_0 + \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n}\right),$$
 (1.7)

gdje je $n, a_0 \in \mathbb{N}$ i $a_1, a_2, \ldots, a_n \in \{0, 1, 2, \ldots, 9\}$, zovemo decimalnim brojem. Svaki decimalni broj je iz \mathbb{Q} , jer se može napisati kao kvocijent cijeloga broja i 10^n . Obratno, svaki racionalni broj oblika $\frac{m}{2^k 5^n}$, gdje je $m \in \mathbb{Z}$, $k, n \in \mathbb{N}$, je decimalan broj. Zato što smo navikli računati u decimalnom sustavu (valjda zbog deset prsti na rukama) decimalni brojevi su nam neophodni u svakodnevnom životu. No tih brojeva ima manje od realnih brojeva, pa ima smisla pitanje da li je moguće svaki realan broj po volji točno aproksimirati pomoću decimalnih brojeva. Drugim riječima, da li je moguće naći decimalan broj koji se od zadanog realnog broja razlikuje za manje od unaprijed zadane tražene točnosti $\varepsilon > 0$.

Mi u ovom trenutku možemo dati samo geometrijsku ideju dokaza te činjenice. Neka je d>0 realan broj koji se nalazi negdje desno od 0 na brojevnom pravcu. Sada uzmimo jediničnu dužinu i nanosimo je uzastopno na desno. Nakon konačno koraka broj d će biti pokriven tom dužinom. Ta geometrijska tvrdnja naziva se Arhimedov¹ aksiom. Na taj način smo našli prirodan broj a_0+1 za koji je $a_0 \leq d < a_0+1$. Podijelimo sada taj segment na deset jednakih dijelova i točka koja reprezentira broj d će pasti u jedan od njih, tj. postoji $a_1 \in \{0,1,2,\ldots,9\}$ tako da je $a_0+\frac{a_1}{10} \leq d < a_0+\frac{a_1}{10}+\frac{1}{10}$. Sada taj segment duljine $\frac{1}{10}$ podijelimo na deset jednakih dijelova i dobijemo broj $a_2 \in \{0,1,2,\ldots,9\}$ tako da je $a_0+\frac{a_1}{10}+\frac{a_2}{10^2} \leq d < a_0+\frac{a_1}{10}+\frac{a_2}{10^2}+\frac{1}{10^2}$. Prethodni postupak ponavljamo n puta, gdje je $\frac{1}{10^n} < \varepsilon$. Tako smo došli do

¹Arhimed (287. pne. – 212. pne.) grčki matematičar, fizičar i astronom

brojeva $a_1, a_2, \dots, a_n \in \{0, 1, 2, \dots, 9\}$ za koje je

$$a_0 + \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} \le d < a_0 + \frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} + \frac{1}{10^n},$$

tj. našli smo decimalan broj koji zadovoljava traženu točnost aproksimacije.

1.1.4 Kartezijeva ravnina, koordinatni sustav

Uređeni par dva objekta a i b je uređen skup koji označavamo s (a,b) i kod kojeg je osim samih elemenata važno i na kojem se mjestu oni nalaze. Dva uređena para (a,b) i (c,d) su jednaka, tj. (a,b)=(c,d), ako i samo ako je a=c i b=d.

Kartezijev ili Dekartov¹ produkt dva skupa A i B je skup kojeg označavamo s $A \times B$, a sastoji se od svih uređenih parova (a, b), gdje je $a \in A$ i $b \in B$, tj. $A \times B = \{(a, b); a \in A, b \in B\}$.

U točki 1.1.2. smo pokazali kako se točke skupova $\mathbb Q$ i $\mathbb R$ reprezentiraju na brojevnom pravcu. Sada ćemo sličnu stvar uraditi u ravnini.

U ravnini nacrtamo dva okomita brojevna pravca i njihovom sjecištu pridružimo broj 0 na jednom i na drugom pravcu. Ta dva pravca zovemo koordinatne osi. Sada svakoj točki ravnine možemo pridružiti par realnih brojeva koji se dobiju tako da se nacrtaju pravci koji su paralelni sa koordinatnim osima. Svaki od njih na pravcu na koji je okomit jednoznačno u svom sjecištu određuje realan broj koji to sjecište predstavlja na koordinatnoj osi. Tako smo svakoj točki ravnine T pridružili uređeni par realnih brojeva (x_0, y_0) kojima je ta točka jednoznačno određena. Ravninu s okomitim

koordinatnim osima zovemo **Kartezijeva koordinatna ravnina** i možemo je poistovjetiti sa skupom $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2 = \{(x, y); \ x, y \in \mathbb{R}\}.$

1.2 Funkcije

Jedan od najvažnijih pojmova u matematici je pojam funkcije. Sada ćemo navesti ne baš previše formalnu definiciju tog pojma.

¹René Descartes (Le Haje [danas Descartes], 31. ožujak 1596. – Stocholm [Švedska], 11. veljače 1650.) francuski filozof i matematičar

Definicija 1.1. Neka su A i B bilo koja dva neprazna skupa. **Funkcija** sa skupa A u skup B je pridruživanje elemenata skupa A elementima skupa B, tako da je **svakom** elementu iz A pridružen **točno jedan** element iz B. Tada pišemo $f: A \to B$, s tim da skup $\mathcal{D}(f) = A$ zovemo **područje definicije** ili **domena** funkcije f, skup $\mathcal{K}(f) = B$ nazivamo **područje vrijednosti** ili **kodomena** funkcije f.

Slika funkcije f je skup $\mathcal{R}(f) = \{f(x); x \in A\} \subseteq B$. Skup $\Gamma(f) = \{(x, f(x)); x \in \mathcal{D}(f)\} \subseteq A \times B$ je **graf funkcije** f.

Dvije funkcije $f: A \to B$ i $g: C \to D$ su jednake točno onda kada vrijedi $A = \mathcal{D}(f) = \mathcal{D}(g) = C, B = \mathcal{K}(f) = \mathcal{K}(g) = D$ i $\forall x \in A, f(x) = g(x)$.

Funkcija g je **restrikcija** ili **suženje** funkcije f ako vrijedi $\mathcal{D}(g) \subseteq \mathcal{D}(f)$ i $\forall x \in \mathcal{D}(g), g(x) = f(x)$. Tada pišemo $g = f|_{\mathcal{D}(g)}$. Također se kaže i da je f **proširenje** od g.

U slučaju kada je $\mathcal{D}(f) \subseteq \mathbb{R}$ i $\mathcal{K}(f) \subseteq \mathbb{R}$, onda je graf $\Gamma(f) \subset \mathbb{R}^2$, tj. možemo ga nacrtati u Kartezijevoj ravnini. Domena se nalazi na osi apscisa (x-osi), a kodomena je na osi ordinata (y-osi). Svojstvo po kojem možemo razlikovati bilo koji podskup Kartezijeve ravnine od grafa funkcije je da u slučaju grafa funkcije, svaki pravac koji je paralelan s osi ordinata siječe graf funkcije u najviše jednoj točki. Na taj način za $c \in \mathcal{D}(f)$ postoji točno jedna točka na grafu oblika (c, f(c)), a onda je jedinstvena i točka f(c) koja je pridružena točki c. Točku f(c) zovemo slikom točke c, a c zovemo originalom od f(c).

11

Na slici desno je primjer krivulje u Kartezijevoj ravnini koja nije graf funkcije. Pravac paralelan s osi y koji prolazi kroz c siječe krivulju u tri točke. Tako nije moguće na jedinstven način preko grafa pridružiti točki funkcijsku vrijednost f(c).

1.2.1 Klasifikacija realnih funkcija pomoću grafa

Mnoga korisna svojstva realnih funkcija mogu se lako uočiti na grafu funkcije.

Definicija 1.2. Za funkciju $f: I \to \mathbb{R}$ kažemo da je:

1. **rastuća** na skupu $I \subseteq \mathbb{R}$, ako

$$(\forall x_1, x_2 \in I) (x_1 < x_2) \Rightarrow (f(x_1) \le f(x_2)), (1.8)$$

2. strogo rastuća na skupu $I \subseteq \mathbb{R}$, ako

$$(\forall x_1, x_2 \in I) (x_1 < x_2) \Rightarrow (f(x_1) < f(x_2)), (1.9)$$

3. **padajuća** na skupu $I \subseteq \mathbb{R}$, ako

$$(\forall x_1, x_2 \in I) (x_1 < x_2) \Rightarrow (f(x_1) \ge f(x_2)),$$
(1.10)

4. strogo padajuća na skupu $I \subseteq \mathbb{R}$, ako

$$(\forall x_1, x_2 \in I) (x_1 < x_2) \Rightarrow (f(x_1) > f(x_2)).$$
(1.11)

Za takve funkcije kažemo da su **monotone**, odnosno, **strogo monotone**.

Definicija 1.3. Za funkciju $f: \langle -a, a \rangle \to \mathbb{R}$ kažemo da je:

1. **parna** na intervalu $\langle -a, a \rangle \subseteq \mathbb{R}$, ako

$$(\forall x \in \langle -a, a \rangle), \ f(-x) = f(x)),$$

$$(1.12)$$

2. **neparna** na intervalu $\langle -a, a \rangle \subseteq \mathbb{R}$, ako

$$(\forall x \in \langle -a, a \rangle), \ f(-x) = -f(x)).$$
(1.13)

1.2.2 Linearne funkcije

Ograničimo se sada na funkcije koje se obrađuju u srednjoj školi. To su prije svega funkcije koje su zadane jednostavnim formulama.

Funkciju zadanu formulom y = f(x) = kx + l, $x \in \mathbb{R}$, zovemo **linearnom funkcijom** (to nije u skladu s definicijom linearnosti u linearnoj algebri). To je funkcija $f : \mathbb{R} \to \mathbb{R}$ čiji graf je pravac. Broj $k = \operatorname{tg} \alpha$ u formuli je koeficijent smjera, a broj l je točka na osi y u kojoj pravac siječe os.

Prisjetimo se nekoliko činjenica koje se uče o pravcima u srednjoj školi.

- i. Jednadžba pravca koji prolazi točkom $(x_0,y_0)\in\mathbb{R}^2$ i koji ima zadan koeficijent smjera k je $y=k(x-x_0)+y_0$
- ii. Jednadžba pravca koji prolazi točkama $(x_0, y_0), (x_1, y_1) \in \mathbb{R}^2, x_0 \neq x_1,$ je $y = \frac{y_1 y_0}{x_1 x_0}(x x_0) + y_0.$
- iii. Segmentni oblik jednadžbe pravca je $\frac{x}{m} + \frac{y}{n} = 1$, gdje su m, n točke u kojima pravac siječe osi x i y.

1.2.3 Apsolutna vrijednost i udaljenost

Kada govorimo o aproksimaciji onda je važno znati kako se mjeri udaljenost među objektima. U slučaju kada se radi o realnim brojevima tu važnu ulogu igra funkcija koju zovemo **apsolutna vrijednost** realnog broja definirana sa:

$$|x| = \begin{cases} x & ; x > 0 \\ 0 & ; x = 0 \\ -x & ; x < 0 \end{cases}$$
 (1.14)

Iz definicije funkcije za svaki $a \in \mathbb{R}$ slijedi nejednakost

$$-|a| \le a \le |a|.$$

Često je potrebno provjeriti nejednakost $|x| \leq \varepsilon$, gdje je $\varepsilon \geq 0$ realan broj. Ta nejednakost je ekvivalentna s dvije nejednakosti $-\varepsilon \leq x \leq \varepsilon$.

Za apsolutnu vrijednost imamo slijedeće rezultate.

Teorem 1.1. 1. Apsolutna vrijednost zbroja realnih brojeva je manja ili jednaka od zbroja apsolutnih vrijednosti pribrojnika, tj.

$$\forall a, b \in \mathbb{R}, |a+b| \le |a| + |b|. \tag{1.15}$$

2. Apsolutna vrijednost produkta realnih brojeva je jednaka produktu apsolutnih vrijednosti faktora, tj.

$$\forall \ a, b \in \mathbb{R}, \ |a \cdot b| = |a| \cdot |b|. \tag{1.16}$$

Dokaz: 1. Iz nejednakosti

$$-|a| \le a \le |a|$$
$$-|b| \le b \le |b|$$

zbrajanjem dobijemo

$$-(|a| + |b|) \le a + b \le |a| + |b|$$

što daje (1.15).

2. Gledamo četiri slučaja: i) $a \ge 0, b \ge 0$, ii) $a \ge 0, b \le 0$, iii) $a \le 0, b \ge 0$, iv) $a \le 0, b \le 0$. U slučaju i) je |a| = a, |b| = b pa je |a||b| = ab = |ab|. U slučaju ii) je $ab \le 0$ pa je |ab| = -(ab) = a(-b) = |a||b|, itd.

Nejednakost (1.15) možemo poopćiti na sumu od konačno realnih brojeva $a_1, \ldots, a_n \in \mathbb{R}$:

$$\left| \sum_{k=1}^{n} a_k \right| \le \sum_{k=1}^{n} |a_k|.$$

Zadatak 1.3. Dokazati prethodnu nejednakost matematičkom indukcijom.

Korolar 1.1. Za bilo koje $a, b \in \mathbb{R}$ vrijedi nejednakost

$$||a| - |b|| \le |a - b|. \tag{1.17}$$

Dokaz: Vrijedi

$$|a| = |(a - b) + b| \le |a - b| + |b| \Rightarrow |a| - |b| \le |a - b|.$$

Zamjenom a sa b dobijemo

$$|b| = |(b-a) + a| \le |b-a| + |a| = |a-b| + |a| \Rightarrow |b| - |a| \le |a-b|.$$

Dakle,

$$-|a-b| \le |a| - |b| \le |a-b|,$$

odakle slijedi nejednakost (1.17).

Ako $a \in \mathbb{R}$ aproksimiramo s $a' \in \mathbb{R}$ onda je **apsolutna greška** jednaka |a - a'| a relativna greška je $\frac{|a - a'|}{|a'|}$.

U numeričkoj matematici se u praksi umjesto točnih brojeva upotrebljavaju aproksimacije brojeva iz dosta ograničenog skupa brojeva koje je moguće reprezentirati na računalu. Tako se zapravo računa s pogrešnim brojevima i ta se greška stalno uvećava kod računskih operacija. Zato je od interesa znati kako se pogreška ponaša kod osnovnih operacija s brojevima, kako bi bili u stanju procjenjivati i kontrolirati pogrešku u procesu računanja.

Teorem 1.2. Neka su $a', b' \in \mathbb{R}$ aproksimacije brojeva $a, b \in \mathbb{R}$ s točnosti $\varepsilon_1, \varepsilon_2 > 0$, tj. $|a - a'| \le \varepsilon_1$ i $|b - b'| \le \varepsilon_2$, onda je

$$|a+b-(a'+b')| \leq \varepsilon_1 + \varepsilon_2, \tag{1.18}$$

$$|ab - a'b'| \leq \varepsilon_2 |a'| + \varepsilon_1 |b'| + \varepsilon_1 \varepsilon_2. \tag{1.19}$$

Dokaz: Vrijedi

$$|a+b-(a'+b')| = |(a-a')+(b-b')| \le |a-a'|+|b-b'| \le \varepsilon_1+\varepsilon_2.$$

Nadalje,

$$|ab - a'b'| = |a'(b - b') + (a - a')b' + (a - a')(b - b')| \le$$

$$< |a'||b - b'| + |a - a'||b'| + |a - a'||b - b'| < \varepsilon_2|a'| + \varepsilon_1|b'| + \varepsilon_1\varepsilon_2.$$

Iz teorema 1.2 možemo zaključiti da se pogreška zbrajanja ponaša očekivano, tj. da ona nije veća od zbroja pogrešaka pribrojnika. Nasuprot tome, pogreška produkta nije manja od produkta pogrešaka faktora, već tu bitan utjecaj ima veličine faktora pomnožene s greškom kod svakog faktora. Dakle, da bismo smanjili pogrešku računanja, potrebno je u računanju izbjegavati množenje sa suviše velikim brojevima o čemu se stvarno u praksi vodi briga.

1.2.4 Kvadratna funkcija

Funkciju zadanu formulom $f(x) = ax^2$, $x \in \mathbb{R}$, zovemo **kvadratna funkcija**. To je funkcija $f: \mathbb{R} \to \mathbb{R}$ čiji graf je parabola. Ako je koeficijent a > 0 onda funkcija ima minimum jednak 0 u točki $x_0 = 0$, a u slučaju a < 0 je maksimum 0 za $x_0 = 0$. Točku T = (0,0) na grafu zovemo tjeme parabole.

0 a>1 a=1 a>1 a=1 a>1 a<1

Opća kvadratna funkcija je zadana formulom $f(x) = ax^2 + bx + c$. Ona se može napisati u obliku $f(x) = a\left(x + \frac{b}{2a}\right)^2 + c - \frac{b^2}{4a}$. Odatle je vidljivo da je tjeme te parabole u točki $T = \left(-\frac{b}{2a}, -\frac{D}{4a}\right)$, gdje je broj $D = b^2 - 4ac$ diskriminanta kvadratne funkcije. Ako je D < 0 onda kvadratna funkcija ne siječe os apscisa, tj. funkcija nema realne nultočke. Ako je $D \geq 0$ onda funkcija ima nultočke $x_{1,2} = \frac{-b \pm \sqrt{D}}{2a}$.

1.2.5 Razlomljene linearne funkcije

Razlomljena linearna funkcija je zadana formulom $f(x) = \frac{ax+b}{cx+d}$, gdje su $a,b,c,d \in \mathbb{R}$. Prirodno područje definicije te funkcije je skup $\mathcal{D}(f) = \mathbb{R} \setminus \{-\frac{d}{c}\}$, a slika je $\mathcal{R}(f) = \mathbb{R} \setminus \{\frac{a}{c}\}$, tj. $f: \mathbb{R} \setminus \{-\frac{d}{c}\} \to \mathbb{R} \setminus \{\frac{a}{c}\}$. Funkciju je moguće prikazati u obliku $f(x) = \frac{a}{c} + \frac{\frac{bc-ad}{c^2}}{x+\frac{d}{c}}$, odakle je vidljivo da je graf funkcije f moguće dobiti translacijom grafa istostrane hiperbole $h(x) = \frac{\alpha}{x}$, gdje je $\alpha = \frac{bc-ad}{c^2}$. Potrebno je ishodište (0,0) Kartezijevog sustava translatirati u točku $(-\frac{d}{c},\frac{a}{c})$.

1.2.6 Polinomi

Polinom stupnja $n \in \mathbb{N}$ je funkcija zadana formulom $P_n(x) = a_0 + a_1x + a_2x^2 + \cdots + a_nx^n$, gdje su $a_0, a_1, a_2, \ldots, a_n \in \mathbb{R}$ i $a_n \neq 0$. Prirodno područje definicije polinoma kao realne funkcije je skup \mathbb{R} , tj. $P_n : \mathbb{R} \to \mathbb{R}$. Ako je stupanj polinoma P_n veći ili jednak od stupnja polinoma Q_m , onda je $P_n(x) = P_{n-m}(x)Q_m(x) + R_p(x)$, gdje je stupanj polinoma R_p strogo manji od stupnja divizora Q_m , a stupanj od P_{n-m} je razlika stupnjeva P_n i Q_m . Odatle slijedi da za realnu nultočku α polinoma P_n vrijedi $P_n(x) = (x - \alpha)P_{n-1}(x)$. Naime, po prethodnom vrijedi $P_n(x) = P_{n-1}(x)(x-\alpha) + r$, gdje je ostatak r polinom stupnja 0, tj. konstanta. Iz $0 = P_n(\alpha) = r$ slijedi tvrdnja.

Naravno, polinom s realnim koeficijentima možemo shvatiti i kao polinom $P_n: \mathbb{C} \to \mathbb{C}$. U tom slučaju vrijedi $\overline{P_n(x)} = \underline{P_n(\overline{x})}, \, \forall x \in \mathbb{C}$. Ako je $z \in \mathbb{C}$ nultočka od P_n , onda je i \overline{z} nultočka, tj. $0 = \overline{P_n(z)} = P_n(\overline{z})$. Dakle, ako su z, \overline{z} nultočke od P_n , onda je on djeljiv s linearnim polinomima x-z i $x-\overline{z}$ s koeficijentima u \mathbb{C} , odnosno s kvadratnim polinomom $x^2 - (z + \overline{z})x + z\overline{z} = x^2 - 2\mathrm{Re}(z)x + |z|^2$ s realnim koeficijentima. Svaki polinom nad \mathbb{C} može rastaviti na produkt linearnih polinoma ("osnovni teorem algebre"). To ima za posljedicu da se polinom s realnim koeficijentima može faktorizirati u obliku:

$$P_n(x) = a_n(x - x_1)^{k_1} \cdot (x - x_p)^{k_p} (x^2 + b_1 x + c_1)^{l_1} \cdot \dots \cdot (x^2 + b_m x + c_m)^{l_m}, \quad (1.20)$$
gdje je $n = k_1 + \dots + k_p + 2(l_1 + \dots + l_m).$

1.2.7 Racionalne funkcije

Racionalna funkcija zadana je formulom $f(x) = \frac{P(x)}{Q(x)}$, gdje su P,Q polinomi nad \mathbb{R} . Prirodno područje definicije racionalne funkcije skup \mathbb{R} bez nultočaka nazivnika Q. Pošto je broj takvih nultočaka manji ili jednak stupnju polinoma Q, to je domena $\mathcal{D}(f) = \mathbb{R} \setminus \{x_1, \cdots, x_n\}$, gdje je $Q(x_k) = 0$, $(k = 1, \ldots, n)$. Racionalna funkcija je **prava racionalna** funkcija ako je stupanj polinoma u brojniku manji od stupnja polinoma u nazivniku. Svaku racionalnu funkciju je moguće prikazati kao sumu polinoma i prave racionalne funkcije, tj. $\frac{P(x)}{Q(x)} = P_1(x) + \frac{R(x)}{Q(x)}$, gdje je stupanj polinoma R strogo manji od stupnja polinoma Q.

1.2.8 Kompozicija funkcija, inverzna funkcija

Prirodna operacija s funkcijama, koja ne ovisi o tome kakve su strukture zadane na skupovima, je dana u slijedećoj definiciji.

Definicija 1.4. Neka su funkcije $f: A \to B$ i $g: C \to D$. Ako je $\mathcal{R}(f) \subseteq \mathcal{D}(g)$, onda je formulom $h(x) = g[f(x)], \forall x \in A$, definirana funkcija $h: A \to D$. Tu funkciju nazivamo **kompozicijom** funkcija f i g, te koristimo oznaku $h = g \circ f$.

Kompozicija funkcija je asocijativna operacija.

Teorem 1.3. Neka su f,g,h tri funkcije. Ako su definirane kompozicije $g \circ f$, $h \circ g$, $h \circ (g \circ f)$ $(h \circ g) \circ f$, onda vrijedi $h \circ (g \circ f) = (h \circ g) \circ f$.

Dokaz: Da bismo dokazali jednakost funkcija, prvo dokažimo da su im domene jednake. Naime, $\mathcal{D}((h \circ g) \circ f) = \mathcal{D}(f)$ i $\mathcal{D}(h \circ (g \circ f)) = \mathcal{D}(g \circ f) = \mathcal{D}(f)$. Nadalje je $\mathcal{K}((h \circ g) \circ f) = \mathcal{K}(h \circ g) = \mathcal{K}(h)$ i $\mathcal{K}(h \circ (g \circ f)) = \mathcal{K}(h)$. Sada, za pravila vrijedi $\forall x \in \mathcal{D}(f)$, $[h \circ (g \circ f)](x) = h[(g \circ f)(x)] = h\{g[f(x)]\} = (h \circ g)[f(x)] = [(h \circ g) \circ f](x)$.

Primjer 1.2. Kompozicija nije općenito komutativna operacija. To se lako vidi na primjeru funkcija $f, g : \mathbb{R} \to \mathbb{R}$, gdje je $\forall x \in \mathbb{R}$, f(x) = 2x + 1 i $g(x) = x^2 + 2$. Očito postoje funkcije $g \circ f, f \circ g : \mathbb{R} \to \mathbb{R}$, ali $(g \circ f)(0) = g[f(0)] = g(1) = 3 \neq (f \circ g)(0) = f[g(0)] = f(2) = 5$, tj. $g \circ f \neq f \circ g$.

Kao kod svake binarne operacije ima smisla pitanje o postojanju neutralnih elemenata za tu operaciju. Lako se provjeri da funkcija $i_A:A\to A$ definirana s $\forall x\in A,\ i_A(x)=x$ i funkcija $i_B:B\to B$ definirana s $\forall y\in B$,

 $i_B(y) = y$, imaju svojstvo $\forall f: A \to B$, $i_B \circ f = f$ i $f \circ i_A = f$. Dakle, i_A je desni, a i_B je lijevi neutralni element za operaciju \circ i oni su općenito različiti.

Kada imamo lijevi i desni neutralni element za operaciju \circ , po analogiji s operacijama zbrajanja i množenje, ima smisla pitanje o postojanju inverznog elementa za neku funkciju $f:A\to B$.

Definicija 1.5. Neka je zadana funkcija $f: A \to B$. Kažemo da je funkcija $g: B \to A$ **inverzna funkcija** od funkcije f ako vrijedi $g \circ f = i_A$ i $f \circ g = i_B$, odnosno, $\forall x \in A, g[f(x)] = x$ i $\forall y \in B, f[g(y)] = y$. Tada koristimo oznaku $g = f^{-1}$.

Graf $\Gamma_{f^{-1}}$ funkcije f^{-1} simetričan je grafu Γ_f funkcije f s obzirom na pravac y=x koji raspolavlja 1. i 4. kvadrant Kartezijevog koordinatnog sustava. Naime, vrijedi

$$\Gamma_{f^{-1}} = \{(y, f^{-1}(y)); y \in \mathcal{D}(f^{-1})\} =$$

$$= \{(f(x), x); x \in \mathcal{D}(f)\} = \overline{\Gamma}_f,$$

gdje je $\overline{\Gamma}_f$ simetrična slika grafa Γ_f s obzirom na pravac y=x.

Jedinstvenu oznaku za inverznu funkciju f^{-1} funkcije f možemo koristiti zato što je inverzna funkcija, ako postoji, jedinstvena. Naime kada bi postojale funkcije g_1 i g_2 koje ispunjavaju zahtjeve iz definicije 1.5, imali bismo $\forall y \in B, g_1(y) = g_1\{f[g_2(y)]\} = (g_1 \circ f)[g_2(y)] = g_2(y)$, tj. $g_1 = g_2$.

Prije nego odgovorimo na pitanje za koje funkcije postoji inverzna funkcija, definirajmo slijedeće pojmove.

Definicija 1.6. Kažemo da je funkcija $f: A \to B$ injekcija ako vrijedi

$$\forall x_1, x_2 \in A, ((x_1 \neq x_2) \Rightarrow (f(x_1) \neq f(x_2))), \tag{1.21}$$

ili ekvivalentno

$$\forall x_1, x_2 \in A, ((f(x_1) = f(x_2)) \Rightarrow (x_1 = x_2)). \tag{1.22}$$

Dakle, kod funkcije koja je injektivna, različiti elementi domene se preslikaju u različite slike. Kod funkcije koju nazivamo konstantnom funkcijom situacija je potpuno različita. Tamo se svi elementi domene preslikaju u jedan element kodomene. Primijetimo da suprotne implikacije od (1.21) i (1.21) zadovoljava svaka funkcija.

Svojstvo injektivnosti kod funkcija iz \mathbb{R} u \mathbb{R} najlakše možemo ustanoviti ako imamo nacrtan graf funkcije. Tada svaki pravac koji je paralelan s osi x smije sjeći graf funkcije u najviše jednoj točki. Na taj način za svaku točku iz slike funkcije postoji točno jedna odgovarajuća točka na grafu, a s tim i točno jedan original u domeni funkcije.

Svojstvo strogog rasta ili strogog pada funkcije je važno zbog slijedećih posljedica.

Propozicija 1.1. Neka je funkcija $f: I \to \mathbb{R}$, strogo monotona na skupu $I \subseteq \mathbb{R}$. Tada je ona injekcija.

Dokaz: Neka je funkcija strogo rastuće na I. Uzmimo bilo koje $x_1, x_2 \in I$, $x_1 \neq x_2$. Tada je $x_1 < x_2$ ili je $x_2 < x_1$. U prvom slučaju slijedi $f(x_1) < f(x_2)$, a u drugom $f(x_2) < f(x_1)$, pa je $f(x_1) \neq f(x_2)$.

Definicija 1.7. Kažemo da je funkcija $f: A \to B$ surjekcija ako je slika funkcije jednaka kodomeni funkcije, tj. $\mathcal{R}(f) = B$, odnosno ako vrijedi $\forall y \in B, \exists x \in A, (y = f(x)).$

Ako znamo koji skup je slika funkcije, onda možemo jednostavno uzeti taj skup za kodomenu i postigli smo da je dana funkcija surjekcija. U pravilu nije lako pogoditi skup koji je slika funkcije, a tada je još teže dokazati tu činjenicu.

Definicija 1.8. Kažemo da je funkcija $f: A \to B$ bijekcija ili **1-1** ako je ona injekcija i surjekcija, tj.

$$(\forall y \in B) \ (\exists! x \in A) \ (y = f(x)). \tag{1.23}$$

Dakle, za svaki element kodomene postoji i jedinstven je njegov original.

Sada smo u stanju odgovoriti na pitanje o postojanju inverzne funkcije.

Teorem 1.4. Za funkciju $f: A \to B$ postoji inverzna funkcija $f^{-1}: B \to A$ ako i samo ako je f bijekcija.

Dokaz: Neka postoji $f^{-1}: B \to A$. Tada za svaki $y \in B$ postoji $x = f^{-1}(y)$ sa svojstvom $f(x) = f[f^{-1}(y)] = y$, tj. f je surjekcija. Sada, $(f(x_1) = f(x_2)) \Rightarrow (f^{-1}[f(x_1)] = f^{-1}[f(x_2)]) \Leftrightarrow (x_1 = x_2)$, tj. f je injekcija. Dakle, f je bijekcija.

Neka je sada f bijekcija. Uvjet (1.23) kazuje da je svakom $y \in B$ na jedinstven (funkcijski) način pridružen $x \in A$, y = f(x). Tada je dobro definirana funkcija $g: B \to A$, $g: y \mapsto x$. Pokažimo da ta funkcija zadovoljava uvjete iz definicije 1.5. Naime, $\forall x \in A$, g[f(x)] = g(y) = x i $\forall y \in B$, f[g(y)] = f(x) = y. Dakle, $g = f^{-1}$.

Propozicija 1.2. Neka je funkcija $f: I \to \mathcal{R}(f)$, $\mathcal{R}(f) \subseteq \mathbb{R}$ strogo rastuća (padajuća) na skupu $I \subseteq \mathbb{R}$. Tada ona ima inverznu funkciju $f^{-1}: \mathcal{R}(f) \to I$ koja je strogo rastuća (padajuća)na $\mathcal{R}(f)$.

Dokaz: Funkcija $f: I \to \mathcal{R}(f)$, je strogo rastuća surjekcija na skupu $I \subseteq \mathbb{R}$, pa je po propoziciji 1.1. f bijekcija, te postoji $f^{-1}: \mathcal{R}(f) \to I$. Pokažimo da za bilo koje $y_1, y_2 \in \mathcal{R}(f)$, $(y_1 < y_2) \Rightarrow (f^{-1}(y_1) < f^{-1}(y_2))$. U suprotnom bi vrijedilo da postoje $y_1, y_2 \in \mathcal{R}(f)$, $y_1 < y_2$ i $f^{-1}(y_2) < f^{-1}(y_1)$. No tada bismo zbog strogog rasta funkcije f imali $f[f^{-1}(y_2)] < f[f^{-1}(y_1)]$, tj. $y_2 < y_1$, što je suprotno pretpostavci.

Primjer 1.3. Linearna funkcija zadana formulom $f(x) = kx + l, \ k \neq 0$, je bijekcija $f: \mathbb{R} \to \mathbb{R}$. Naime, za bilo koji $y \in \mathbb{R}$ postoji jedinstven $x = \frac{y-l}{k} \in \mathbb{R}$, njegov original. Iz ovoga je odmah vidljivo da vrijedi $f^{-1}(x) = \frac{1}{k}x - \frac{l}{k}$. Grafovi of f i f^{-1} su simetrični na pravac y = x.

Skup realnih polinoma stupnja jednakog 1 je nekomutativna grupa s operacijom kompozicije, a njegov podskup polinoma sa svojstvom da je f(0) = 0 je komutativna podgrupa.

Primjer 1.4. Razlomljena linearna funkcija zadana formulom $f(x) = \frac{ax+b}{cx+d}$, gdje su $a, b, c, d \in \mathbb{R}$ i $ad-bc \neq 0$ ima inverznu funkciju zadanu formulom $f^{-1}(x) = \frac{dx-b}{-cx+a}$, koja je isto razlomljena linearna funkcija.

1.2.9 Korijeni

Neparne potencije su funkcije zadane formulom $f(x) = x^{2n+1}$, $\forall x \in \mathbb{R}$, $n \in \mathbb{N}$. To su bijekcije s \mathbb{R} na \mathbb{R} i imaju inverze $f^{-1}(x) = {}^{2n+1}\!\sqrt{x}$, $\forall x \in \mathbb{R}$, neparne korijene. To su neparne i strogo rastuće funkcije na \mathbb{R} . Za razliku od neparnih potencija, parne potencije zadane formulom $f(x) = x^{2n}$, $\forall x \in \mathbb{R}$, $n \in \mathbb{N}$, su parne funkcije $f : \mathbb{R} \to [0, +\infty)$, pa tako nisu injekcije te nemaju inverze.

Međutim, njihove restrikcije $f_+ = f|_{[0,+\infty)}$ su y strogo rastuće bijekcije $f_+ : [0,+\infty) \to [0,+\infty)$. One imaju inverzne funkcije $f_+^{-1} : [0,+\infty) \to [0,+\infty)$. One imaju inverzne funkcije $f_+^{-1} : [0,+\infty) \to [0,+\infty)$, a zapis je $f_+^{-1}(x) = \sqrt[2n]{x}$, $\forall x \in [0,+\infty)$. Moguće je uzeti i druge restrikcije $f_- = f|_{\langle -\infty,0]}$ koje su strogo padajuće funkcije $f_- : \langle -\infty,0] \to [0,+\infty)$ i koje imaju inverzne funkcije $f_-^{-1} : [0,+\infty) \to \langle -\infty,0]$, a zapis je $f_-^{-1}(x) = -\sqrt[2n]{x}$, of $\forall x \in [0,+\infty)$.

1.2.10 Eksponencijalna funkcija na \mathbb{Q} , logaritamska funkcija, opća potencija

Neka je $a \in \mathbb{R}$, a > 0 i $a \neq 1$. Definiramo:

$$a^1 = a$$

$$a^{n+1} = a^n \cdot a, \forall n \in \mathbb{N}.$$

Na ovaj način smo definirali funkciju $f: \mathbb{N} \to \mathbb{R}_+$, $f(n) = a^n$, $\forall n \in \mathbb{N}$. Ako definiramo $f(0) = a^0 = 1$, onda smo proširili funkciju do $f: \mathbb{N} \cup \{0\} \to \mathbb{R}_+$. Funkcija se lako proširuje dalje do $f: \mathbb{Z} \to \mathbb{R}_+$, stavljanjem $f(-n) = \frac{1}{a^n}$, $\forall n \in \mathbb{N}$.

Zbog $\forall n, m \in \mathbb{N}, a^n a^m = a^{n+m}$ funkcija $f: \mathbb{Z} \to \mathbb{R}_+$ zadovoljava:

(i)
$$f(0) = 1$$
, $f(1) = a$,

(ii)
$$f(n+m) = f(n)f(m), \forall n, m \in \mathbb{Z}$$
.

Proširimo funkciju f na skup racionalnih brojeva \mathbb{Q} . Neka je $q = \frac{m}{n} \in \mathbb{Q}$, gdje su $m \in \mathbb{Z}$, $n \in \mathbb{N}$, pa definiramo vrijednost funkcije s $f(q) = f(\frac{m}{n}) = \sqrt[n]{a^m}$. Tako smo dobili funkciju $f: \mathbb{Q} \to \mathbb{R}_+$ koja i dalje zadovoljava funkcijsku jednadžbu $f(q+q') = f(q)f(q'), \forall q, q' \in \mathbb{Q}$. Naime,

$$f(q+q') = f(\frac{m}{n} + \frac{m'}{n'}) = f(\frac{mn' + m'n}{nn'}) = \sqrt[nn']{a^{mn' + m'n}} =$$

$$= \sqrt[nn']{a^{mn'}} \sqrt[nn']{a^{m'n}} = \sqrt[n]{a^m} \sqrt[n']{a^{m'}} = f(\frac{m}{n})f(\frac{m'}{n'}) = f(q)f(q').$$

Pokažimo da je za a>1 funkcija $f:\mathbb{Q}\to\langle 0,+\infty\rangle$ strogo rastuća na \mathbb{Q} . Uzmimo $q=\frac{m}{n},q'=\frac{m'}{n'}\in\mathbb{Q},\ q< q',$ tj. mn'< m'n. Tada je $a^{mn'}< a^{m'n}$, pa zbog strogog rasta funkcije $x\mapsto {}^{nn'}\!\sqrt{x}$ na \mathbb{R}_+ imamo ${}^{nn'}\!\sqrt{a^{mn'}}< {}^{nn'}\!\sqrt{a^{m'n}}$, odnosno $\sqrt[n]{a^m}< {}^{n'}\!\sqrt{a^{m'}}$, tj. f(q)< f(q').

Teorem 1.5. Postoji točno jedna strogo monotona bijekcija $f : \mathbb{R} \to \langle 0, +\infty \rangle$ tako da vrijedi f(0) = 1, f(1) = a > 0 i f(x + y) = f(x)f(y), $\forall x, y \in \mathbb{R}$.

Bijekciju iz teorema 1.5. zovemo **eksponencijalna funkcija** s bazom a i označavamo s $f(x)=\exp_a(x)=a^x,\, \forall x\in\mathbb{R}.$ Sada funkcionalna jednadžba ima oblik

$$a^{x+y} = a^x a^y, \ \forall x, y \in \mathbb{R}.$$

Eksponencijalna funkcija ima inverznu funkciju $f^{-1}:\langle 0,+\infty\rangle \to \mathbb{R}$ koja je strogo rastuća za a>1 i strogo padajuća za 0< a<1. Tu funkciju zovemo **logaritamska funkcija** s bazom a i označavamo s $f^{-1}(x)=\log_a x, \, \forall x\in\langle 0,+\infty\rangle$. Vrijedi $\log_a 1=0$ i $\log_a a=1$ za sve $0< a\neq 1$. Funkcionalna jednadžba za logaritamsku funkciju ima oblik

$$\log_a(xy) = \log_a x + \log_a y, \ \forall x, y \in \langle 0, +\infty \rangle.$$

To slijedi iz injektivnosti eksponencijalne funkcije i

$$a^{\log_a(xy)} = xy = a^{\log_a x} a^{\log_a y} = a^{\log_a x + \log_a y}.$$

Zadatak 1.4. Za a, b > 0 dokazati da vrijedi

$$\log_a x = \frac{\log_b x}{\log_b a}, \ \forall x \in \langle 0, +\infty \rangle.$$

Rješenje: Formula slijedi iz injektivnosti eksponencijalne funkcije i

$$b^{\log_b x} = x = a^{\log_a x} = b^{\log_b a^{\log_a x}} = b^{\log_a x \log_b a}.$$

Specijalno, za $a=e\approx 2.718281828$ označavamo $\log_e=\ln$ i zovemo prirodni logaritam, a za a=10 pišemo $\log_{10}=\log$ i zovemo Briggsov¹ ili dekadski logaritam.

Sada je moguće definirati **opću potenciju** $f:\langle 0,+\infty\rangle \to \mathbb{R}$ kao funkciju zadanu formulom $f(x)=x^{\alpha}\stackrel{def}{=}e^{\alpha \ln x}$.

¹Henry Briggs (Worley Wood, veljača 1561. – Oxford, 26. siječanj 1630.) engleski matematičar

1.2.11 Hiperbolne i area funkcije

Pomoću eksponencijalne funkcije definiramo hiperbolne funkcije slijedećim formulama:

$$\operatorname{sh} x = \frac{e^x - e^{-x}}{2}, \ \forall x \in \mathbb{R}$$
 (sinus hiperbolni), (1.24)

$$\operatorname{ch} x = \frac{e^x + e^{-x}}{2}, \ \forall x \in \mathbb{R}$$
 (kosinus hiperbolni), (1.25)

th
$$x = \frac{\sinh x}{\cosh x} = \frac{e^{2x} - 1}{e^{2x} + 1}, \ \forall x \in \mathbb{R}$$
 (tangens hiperbolni), (1.26)

$$\operatorname{cth} x = \frac{\operatorname{ch} x}{\operatorname{sh} x} = \frac{e^{2x} + 1}{e^{2x} - 1}, \ \forall x \in \mathbb{R} \setminus \{0\} \ \text{(kotangens hiperbolni).} (1.27)$$

Funkcije sh, th, cth su neparne, a ch je parna funkcija.

Osnovna formula koja vrijedi za hiperbolne funkcije je $\cosh^2 x - \sinh^2 x = 1$ i slijedi direktno iz definicija za ch (1.24) i za sh (1.25). Također vrijede adicione formule

$$\operatorname{sh}(x+y) = \operatorname{sh} x \operatorname{ch} y + \operatorname{ch} x \operatorname{sh} y, \tag{1.28}$$

$$\operatorname{ch}(x+y) = \operatorname{ch} x \operatorname{ch} y + \operatorname{sh} x \operatorname{sh} y. \tag{1.29}$$

Za primjer pokažimo (1.28):

$$\operatorname{sh} x \operatorname{ch} y + \operatorname{ch} x \operatorname{sh} y = \frac{1}{4} [(e^x - e^{-x})(e^y + e^{-y}) + (e^x + e^{-x})(e^y - e^{-y})] =$$

$$= \frac{1}{4} (e^{x+y} + e^{x-y} - e^{-x+y} - e^{-x-y} + e^{x+y} + e^{-x+y} - e^{x-y} - e^{-x-y}) =$$

$$= \frac{1}{2}(e^{x+y} - e^{-(x+y)}) = \operatorname{sh}(x+y).$$

Iz ovih osnovnih formula lako se dobivaju mnoge druge formule za sumu ili produkt hiperbolnih sinusa i kosinusa, kao i za hiperbolni tangens i kotangens.

Funkcije sh, ch i th strogo rastu na $[0, +\infty)$, a cth strogo pada na $\langle 0, +\infty \rangle$. Naime, e^x i $-e^{-x}$ strogo rastu, pa sh kao suma strogo rastućih je strogo rastuće funkcija na \mathbb{R} . Iz ch $^2x = 1 + \sinh^2x \ge 1$ slijedi da je $\mathcal{R}(\operatorname{ch}) \subseteq [1, +\infty)$. Odatle za x, y > 0 imamo $\operatorname{ch}(x+y) = \operatorname{ch} x$ ch $y + \operatorname{sh} x$ sh $y > \operatorname{ch} x$ ch $y > \operatorname{ch} x$, pa ch strogo raste na $[0, +\infty)$. Zbog parnosti ch strogo pada na $\langle -\infty, 0 \rangle$. Za x, y > 0 je

$$\operatorname{th}(x+y) - \operatorname{th} x = \frac{\operatorname{sh}(x+y)\operatorname{ch} x - \operatorname{ch}(x+y)\operatorname{sh} x}{\operatorname{ch}(x+y)\operatorname{ch} x} = \frac{\operatorname{sh}(y)}{\operatorname{ch}(x+y)\operatorname{ch} x} > 0,$$

tj. th $x < \operatorname{th}(x+y)$, odnosno th strogo raste na \mathbb{R}_+ , a zbog neparnosti strogo raste i na \mathbb{R} . Nadalje, zbog cth $x = \frac{1}{\operatorname{th} x}$ slijedi da cth strogo pada na $\langle 0, +\infty \rangle$. Zbog neparnosti je cth strogo padajuća i na $\langle -\infty, 0 \rangle$. Odatle i iz propozicije 1.1. slijedi da su navedene funkcije injekcije.

Uz pretpostavku da je $\mathcal{R}(\exp) = \langle 0, +\infty \rangle$ (dokazati ćemo u korolaru 3.8.), možemo dokazati da su funkcije sh : $\mathbb{R} \to \mathbb{R}$, th : $\mathbb{R} \to \langle -1, 1 \rangle$, cth : $\mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus [-1, 1]$ i ch $|_{[0, +\infty)} = \text{Ch} : [0, +\infty) \to [1, +\infty)$ bijekcije.

Neka je $y \in \mathcal{R}(\mathrm{sh})$, tj. $\exists x \in \mathbb{R}, \ y = \mathrm{sh} \ x = \frac{e^x - e^{-x}}{2}$. Tada je $e^x - e^{-x} - 2y = 0$, odnosno, uz zamjenu $u = e^x$ dobijemo jednadžbu $u^2 - 2yu - 1 = 0$. Moguće rješenja te jednadžbe su $u = y \pm \sqrt{y^2 + 1}$. Zbog $u = e^x > 0$ jedino rješenje je $u = e^x = y + \sqrt{y^2 + 1}$. Odatle je $x = \ln(y + \sqrt{y^2 + 1})$, gdje je funkcija $y \mapsto \ln(y + \sqrt{y^2 + 1})$ definirana na \mathbb{R} . Sada uzmimo bilo koji $y \in \mathbb{R}$ i neka je $x = \ln(y + \sqrt{y^2 + 1})$. Jasno je da odatle slijedi $y = \mathrm{sh} \ x$, tj. $\mathcal{R}(\mathrm{sh}) = \mathbb{R}$. Dakle, inverzna funkcija $\mathrm{sh}^{-1} : \mathbb{R} \to \mathbb{R}$ je definirana formulom $\mathrm{sh}^{-1} x = \ln(x + \sqrt{x^2 + 1})$, $\forall x \in \mathbb{R}$.

Neka je $y \in \mathcal{R}(\text{th}) \subseteq \langle -1, 1 \rangle$, tj. $\exists x \in \mathbb{R}, y = \text{th } x = \frac{e^{2x} - 1}{e^{2x} + 1}$. Odatle je $(1 - y)e^{2x} = 1 + y$, odnosno $x = \frac{1}{2}\ln\left(\frac{1 + y}{1 - y}\right)$. Kao u prethodnom slučaju zaključujemo $\mathcal{R}(\text{th}) = \langle -1, 1 \rangle$ i da je inverzna funkcija $\text{th}^{-1} : \langle -1, 1 \rangle \to \mathbb{R}$ definirana formulom $\text{th}^{-1} x = \frac{1}{2}\ln\left(\frac{1 + x}{1 - x}\right), \forall x \in \langle -1, 1 \rangle$.

Zbog cth $x = \frac{1}{\operatorname{th} x}$, $\forall x \in \mathbb{R} \setminus \{0\}$, je $\mathcal{R}(\operatorname{cth}) = \{\frac{1}{t}; t \in \langle -1, 1 \rangle\} = \mathbb{R} \setminus [-1, 1]$. Također slijedi da je cth⁻¹: $\mathbb{R} \setminus [-1, 1] \to \mathbb{R} \setminus \{0\}$ zadana formulom cth⁻¹ $x = \frac{1}{2} \ln \left(\frac{x+1}{x-1}\right)$, $\forall x \in \mathbb{R} \setminus [-1, 1]$.

Neka je $y \in \mathcal{R}(\mathrm{Ch}) \subseteq [1, +\infty)$, tj. $\exists x \in [0, +\infty)$, $y = \mathrm{Ch}\, x = \frac{e^x + e^{-x}}{2}$. Tada dobijemo jednadžbu $e^{2x} - 2ye^x + 1 = 0$, odnosno $e^x = y \pm \sqrt{y^2 - 1}$. No, $x \ge 0 \Rightarrow e^x \ge 1$ pa je jedino rješenje $e^x = y + \sqrt{y^2 - 1}$, tj. $x = \ln(y + \sqrt{y^2 - 1})$. Odatle dobivamo $\mathcal{R}(\mathrm{Ch}) = [1, +\infty)$ i funkcija $\mathrm{Ch}^{-1} : [1, +\infty) \to \mathbb{R} \setminus \{0\}$ je definirana formulom $\mathrm{Ch}^{-1} x = \ln(x + \sqrt{x^2 - 1})$, $\forall x \in [1, +\infty)$.

1.2.12 Trigonometrijske i arkus funkcije

Neka je u Kartezijevom koordinatnom sustavu zadana kružnica polumjera 1 (trigonometrijska kružnica) i na njoj središnji kut α s vrhom u ishodištu, a prvi krak mu je pozitivni dio osi x. Kutu α pridružujemo realan broj koji odgovara duljini luka na kružnici koji odsjecaju krakovi kuta α . Ako je drugi krak odmaknut od prvoga u pozitivnom smjeru (suprotnom od smjera kazaljke na satu), onda je kut pozitivan, a u suprotnom je negativan. Tu mjeru kuta nazivamo **radijan**. Dakle, puni kut je 2π radijana, a pravi kut je $\frac{\pi}{2}$ radijana. Sa slike je jasno da je pridruživanje koje realnim brojevima koji odgovaraju radijanima pripadnih središnjih kutova pridružuje točke jedinične kružnice K, $\alpha_0 : [0, 2\pi) \to K$, bijekcija. Tu funkciju je moguće proširiti do funkcije $\alpha : \mathbb{R} \to K$, $\alpha(x) = \alpha_0(r_x)$, gdje je $x = 2k\pi + r_x$, $k \in \mathbb{Z}$, $0 \le r_x < 2\pi$.

Sada ćemo geometrijski definirati trigonometrijske funkcije sinus (sin), kosinus (cos), tangens (tg) i kotangens (ctg) tako da pridružimo koordinate $A = (\cos \alpha, \sin \alpha), B = (1, \operatorname{tg} \alpha)$ i $C = (\operatorname{ctg} \alpha, 1)$. Iz sličnosti pripadnih pravokutnih trokuta vrijedi $\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}$ i $\operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha}$.

Definicija 1.9. Za funkciju $f:\mathcal{D}(f)\to\mathbb{R}$ kažemo da je **periodička** perioda $\tau>0$ ako vrijedi

- 1) $\forall x \in \mathcal{D}(f) \Rightarrow x + \tau \in \mathcal{D}(f)$,
- 2) $f(x+\tau) = f(x), \forall x \in \mathcal{D}(f).$

Ako postoji najmanji period $\tau_0 > 0$ onda njega zovemo **temeljni period** funkcije f.

Primijetimo, ako je $\tau > 0$ period funkcije f, onda je $n\tau$ također period od f, $\forall n \in \mathbb{N}$. S druge strane postoje periodičke funkcije koje nemaju temeljnog perioda kao npr. $f : \mathbb{R} \to \mathbb{R}$ definirana s f(x) = 1 za $x \in \mathbb{Q}$ i f(x) = 0 za $x \notin \mathbb{Q}$. Svaki $\tau \in \mathbb{Q}_+$ je njen period, pa taj skup nema minimum veći od 0.

Funkcije $\sin : \mathbb{R} \to [-1,1]$ i $\cos : \mathbb{R} \to [-1,1]$ su periodičke s temeljnim periodom 2π , tj. vrijedi $\sin(x+2\pi) = \sin x$ i $\cos(x+2\pi) = \cos x$, $\forall x \in \mathbb{R}$. Iz slike je jasno da vrijedi $\sin x = \cos(x-\frac{\pi}{2})$, $\forall x \in \mathbb{R}$, odnosno, $\cos x = \sin(x+\frac{\pi}{2})$, $\forall x \in \mathbb{R}$. Nadalje, sin je neparna, a cos parna funkcija.

Sa trigonometrijske kružnice je vidljivo da vrijedi

$$\cos^2 x + \sin^2 x = 1, \ \forall x \in \mathbb{R},\tag{1.30}$$

što je osnovna trigonometrijska jednakost.

Sada ćemo geometrijski dokazati osnovni adicioni teorem za funkciju kosinus:

$$\cos(x+y) = \cos x \cos y - \sin x \sin y, \quad \forall \ x, y \in \mathbb{R}. \tag{1.31}$$

Na slici desno istaknute su točke

$$A = (\cos \beta, -\sin \beta),$$

$$B = (1, 0),$$

$$C = (\cos \alpha, \sin \alpha),$$

$$D = (\cos(\alpha + \beta), \sin(\alpha + \beta)).$$

Iz sličnosti trokuta \triangle OAC i \triangle OBD slijedi jednakost duljina d(A,C)=d(B,D). tj.

$$(\cos \beta - \cos \alpha)^2 + (-\sin \beta - \sin \alpha)^2 = (1 - \cos(\alpha + \beta))^2 + (0 - \sin(\alpha + \beta))^2 \Rightarrow$$
$$\cos^2 \beta - 2\cos \beta \cos \alpha + \cos^2 \alpha + \sin^2 \beta + 2\sin \beta \sin \alpha + \sin^2 \alpha =$$
$$= 1 - 2\cos(\alpha + \beta) + \cos^2(\alpha + \beta) + \sin^2(\alpha + \beta) \Rightarrow$$
$$2 - 2\cos \alpha \cos \beta + 2\sin \alpha \sin \beta = 2 - 2\cos(\alpha + \beta) \Rightarrow (1.31).$$

Iz (1.31) lako slijedi adicioni teorem za funkciju sinus:

$$\sin(\alpha+\beta) = \cos(\frac{\pi}{2} - \alpha - \beta) = \cos(\frac{\pi}{2} - \alpha)\cos\beta + \sin(\frac{\pi}{2} - \alpha)\sin\beta = \sin\alpha\cos\beta + \cos\alpha\sin\beta.$$

Iz prethodnih formula lako dobijemo

$$\sin x \cos y = \frac{1}{2} [\sin(x+y) + \sin(x-y)],$$

$$\cos x \cos y = \frac{1}{2} [\cos(x+y) + \cos(x-y)],$$

$$\sin x \sin y = \frac{1}{2} [\cos(x-y) - \cos(x+y)].$$
(1.32)

Funkcije tg: $\mathbb{R} \setminus \{\frac{\pi}{2} + k\pi; k \in \mathbb{Z}\} \to \mathbb{R}$ i ctg: $\mathbb{R} \setminus \{k\pi; k \in \mathbb{Z}\} \to \mathbb{R}$ imaju osnovni period π . To slijedi iz tg $(x + \pi) = \frac{\sin(x + \pi)}{\cos(x + \pi)} = \frac{-\sin x}{-\cos x} = \text{tg } x$ i ctg $x = \frac{1}{\text{tg } x}$. Funkcije tg i ctg su neparne.

Periodičke funkcije nisu injekcije, pa zato nemaju inverzne funkcije. Međutim, njihove restrikcije na dijelove područja definicije na kojem su strogo monotone, jesu injekcije. Tako definiramo Sin = $\sin|_{[-\frac{\pi}{2},\frac{\pi}{2}]}$, Cos = $\cos|_{[0,\pi]}$, Tg = tg $|_{\langle -\frac{\pi}{2},\frac{\pi}{2}\rangle}$ i Ctg = ctg $|_{\langle 0,\pi\rangle}$. Dakle, parovi inverznih funkcija su:

Naravno, to nisu jedine restrikcije koje su bijekcije. Za svako $n \in \mathbb{Z}$ je sin $|_{[-\frac{\pi}{2}+n\pi,\frac{\pi}{2}+n\pi]}=\mathrm{Sin}_n:[-\frac{\pi}{2}+n\pi,\frac{\pi}{2}+n\pi] \to [-1,1]$ bijekcija. Njena inverzna funkcija $\mathrm{Sin}_n^{-1}:[-1,1] \to [-\frac{\pi}{2}+n\pi,\frac{\pi}{2}+n\pi]$ može se dobiti kao $\mathrm{Sin}_n^{-1}(x)=(-1)^n\,\mathrm{Sin}^{-1}(x)+n\pi,\,\forall x\in[-1,1].$

Isto tako je $\cos|_{[n\pi,(n+1)\pi]} = \cos_n : [n\pi,(n+1)\pi] \to [-1,1]$ bijekcija i za njenu inverznu funkciju $\cos_n^{-1} : [-1,1] \to [n\pi,(n+1)\pi]$ vrijedi $\cos_n^{-1}(x) = (-1)^n(\cos^{-1}(x) - \frac{\pi}{2}) + n\pi + \frac{\pi}{2}, \forall x \in [-1,1].$

Još je jednostavniji slučaj inverznih funkcija restrikcija od tg i ctg. Za tg $|_{\langle -\frac{\pi}{2}+n\pi,\frac{\pi}{2}+n\pi\rangle} = \operatorname{Tg}_n$ vrijedi $\operatorname{Tg}_n^{-1}(x) = \operatorname{Tg}^{-1}(x) + n\pi, \ \forall x \in \mathbb{R}$ i analogno za ctg $|_{\langle n\pi,(n+1)\pi\rangle} = \operatorname{Ctg}_n$ vrijedi $\operatorname{Ctg}_n^{-1}(x) = \operatorname{Ctg}^{-1}(x) + n\pi, \ \forall x \in \mathbb{R}$.

Zadatak 1.5. Riješimo jednadžbe $\sin x = b$ i $\cos y = b$ za $b \in [-1, 1]$.

Rješenje: Za svako
$$n \in \mathbb{Z}$$
 je $x_n = \operatorname{Sin}_n^{-1}(b) = (-1)^n \operatorname{Sin}^{-1}(b) + n\pi$ i $y_n = \operatorname{Cos}_n^{-1}(b) = (-1)^n (\operatorname{Cos}^{-1}(b) - \frac{\pi}{2}) + n\pi + \frac{\pi}{2}.$

Zadatak 1.6. Riješimo nejednadžbu $a \le \sin x \le b$ za -1 < a < b < 1.

Rješenje: Treba uzeti u obzir da su funkcije $\operatorname{Sin}_n^{-1}$ strogo rastuće za parne i strogo padajuće za neparne $n \in \mathbb{Z}$. Zato za $n = 2m, m \in \mathbb{Z}$, imamo $\operatorname{Sin}^{-1}(a) + 2m\pi \le x \le \operatorname{Sin}^{-1}(b) + 2m\pi$, a za $n = 2m - 1, m \in \mathbb{Z}$, je $-\operatorname{Sin}^{-1}(b) + (2m - 1)\pi \le x \le -\operatorname{Sin}^{-1}(a) + (2m - 1)\pi$. Skup rješenja nejednadžbe je unija svih prethodnih zatvorenih intervala (segmenata).

Definicija 1.10. Funkcije koje se dobiju pomoću konačnog broja operacija zbrajanja, množenja i kompozicije iz potencija, eksponencijalne funkcije, hiperbolnih, trigonometrijskih funkcija i njihovih inverznih funkcija korijena, logaritamske funkcije, area i arcus funkcija nazivamo elementarnim funkcijama.

1.3 Aksiomi polja \mathbb{R} , supremum i infimum, potpunost

U ovoj točki uvodimo aksiomatiku skupa realnih brojeva koja karakterizira sva njegova svojstva s obzirom na algebarsku strukturu i uređaj na njemu.

1.3.1 Aksiomi polja $\mathbb R$

 \mathbb{R} je komutativna grupa s obzirom na operaciju zbrajanje $+ : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$.

A 1. Asocijativnost zbrajanja:

$$\forall x, y, z \in \mathbb{R}, \ x + (y + z) = (x + y) + z.$$

A 2. Postoji neutralni element 0 (nula):

$$\exists ! 0 \in \mathbb{R}, \ \forall x \in \mathbb{R} \ 0 + x = x + 0 = x.$$

A 3. Svaki element iz \mathbb{R} ima inverz za zbrajanje (suprotni):

$$\forall x \in \mathbb{R}, \ \exists ! (-x) \in \mathbb{R}, \ x + (-x) = (-x) + x = 0.$$

A 4. Komutativnost zbrajanja:

$$\forall x, y \in \mathbb{R}, \ x + y = y + x.$$

 $\mathbb{R} \setminus \{0\}$ je komutativna grupa s obzirom na množenje $\cdot : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$.

A 5. Asocijativnost množenja:

$$\forall x, y, z \in \mathbb{R}, \ x(yz) = (xy)z.$$

A 6. Postoji jedinstven neutralni element 1 (jedinica):

$$\exists ! 1 \in \mathbb{R}, 1 \neq 0, \ \forall x \in \mathbb{R} \ 1 \cdot x = x \cdot 1 = x.$$

A 7. Svaki element iz $\mathbb{R} \setminus \{0\}$ ima inverz za množenje (recipročni):

$$\forall x \in \mathbb{R} \setminus \{0\}, \ \exists ! x^{-1} = \frac{1}{x} \in \mathbb{R}, \ x \frac{1}{x} = \frac{1}{x} x = 1.$$

A 8. Komutativnost množenja:

$$\forall x, y \in \mathbb{R}, \ xy = yx.$$

A 9. distributivnost množenja prema zbrajanju:

$$\forall x, y, z \in \mathbb{R}, \ x(y+z) = xy + xz.$$

Uređenu trojku $(\mathbb{R}, +, \cdot)$ nazivamo **poljem**.

Primjer 1.5. Iz aksioma dokažimo neka poznata svojstva operacija zbrajanja i množenja.

1. 0 je jedinstven neutralni element za zbrajanje i 1 je jedinstven neutralni broj za množenje.

Kada bi postojao broj $a \in \mathbb{R}$, $a \neq 0$ sa svojstvo da $\forall x \in \mathbb{R}$ a + x = x + a = x, imali bi a = a + 0 = 0, a to je kontradikcija. Analogno, kada bi postojao broj $b \in \mathbb{R}$, $b \neq 1$ sa svojstvo da $\forall x \in \mathbb{R}$ bx = xb = x, imali bi b = b1 = 1.

2. Suprotni i recipročni brojevi su jedinstveni.

Neka je $a \in \mathbb{R}$ i $c \in \mathbb{R}$, $c \neq -a$ njegov suprotni broj, tj. a+c=c+a=0. Tada bi vrijedilo -a=-a+0=-a+(a+c)=(-a+a)+c=0+c=c, što je kontradikcija. Dokaz jedinstvenosti recipročnog broja je analogan.

3. Vrijedi $\forall x \in \mathbb{R}, -(-x) = x$.

Po definiciji suprotnog elementa je -x+(-(-x))=(-(-x))+(-x)=0 i -x+x=x+(-x)=0. Iz jedinstvenosti elementa s danim svojstvom za -x, slijedi x=-(-x).

4. Pokažimo da je -0 = 0.

Za svaki $x \in \mathbb{R}$ vrijedi x + (-0) = x + 0 + (-0) = x + 0 = x i -0 + x = -0 + 0 + x = 0 + x = x, pa zbog jedinstvenosti nule vrijedi -0 = 0.

5. Za svako $x \in \mathbb{R}$ vrijedi x0 = 0x = 0.

Naime, $0x = (0+0)x = 0x + 0x = 2 \cdot 0x$. Kad bi bilo $0x \neq 0$, onda bi taj element imao inverz, pa bi slijedilo 1 = 2, a odatle 0 = 1. To se protivi zahtjevu iz A6.

6. Vrijedi (-1)(-1) = 1.

Imamo
$$(-1)(-1) + (-1) = (-1)(-1) + (-1)1 = (-1)((-1) + 1) = (-1)0 = 0$$
 i isto tako $(-1) + (-1)(-1) = 0$. Odatle je $(-1)(-1) = -(-1) = 1$.

7. Pokažimo $(ab = 0) \Leftrightarrow ((a = 0) \lor (b = 0)).$

Neka vrijedi ab=0. Ako je $a\neq 0$ onda a ima recipročni element, pa je $b=1\cdot b=a^{-1}ab=a^{-1}0=0$. Analogno, ako je $b\neq 0$, onda je a=0. Obratna tvrdnja slijedi iz 5.

Na skupu \mathbb{R} je zadan linearan (totalan) uređaj \leq .

A 10. Linearnost uredaja:

$$\forall x, y \in \mathbb{R}, \ (x \le y) \lor (y \le x).$$

A 11. Antisimetričnost uređaja:

$$\forall x, y \in \mathbb{R}, \ ((x \le y) \land (y \le x)) \Rightarrow (x = y).$$

A 12. Tranzitivnost uređaja:

$$\forall x, y, z \in \mathbb{R}, ((x < y) \land (y < z)) \Rightarrow (x < z).$$

Uređaj je u skladu s operacijama zbrajanja i množenja.

A 13. Uskladenost zbrajanja:

$$(x \le y) \Rightarrow (\forall z, (x+z \le y+z)).$$

A 14. Usklađenost množenja:

$$((x \ge 0) \land (y \ge 0)) \Rightarrow (xy \ge 0).$$

 $(\mathbb{R}, +, \cdot, \leq)$ je **uređeno polje**.

Primjer 1.6. Vrijedi monotonost množenja:

$$((x \le y) \land (z \ge 0)) \Rightarrow (xz \le yz).$$

Imamo $x \le y \Rightarrow y - x \ge 0 \Rightarrow (y - x)z \ge 0 \Rightarrow yz - xz \ge 0 \Rightarrow xz \le yz$.

Primjer 1.7. $(\mathbb{Q}, +, \cdot, \leq)$ je uređeno polje.

1.3.2 Supremum i infimum skupa, potpunost

Definicija 1.11. Kažemo da je $S \subset \mathbb{R}$, $S \neq \emptyset$, **omeđen odozgo** u \mathbb{R} , ako postoji broj $M \in \mathbb{R}$ takav da vrijedi $\forall x \in S, x \leq M$. Broj M zovemo **gornja međa** ili **majoranta** skupa S.

Kažemo da je $S \subset \mathbb{R}$, $S \neq \emptyset$, **omeđen odozdo** u \mathbb{R} , ako postoji broj $m \in \mathbb{R}$ takav da vrijedi $\forall x \in S, m \leq x$. Broj m zovemo **donja međa** ili **minoranta** skupa S.

Skup $S \subset \mathbb{R}$, $S \neq \emptyset$, je **omeđen** u \mathbb{R} , ako je omeđen odozdo i odozgo u \mathbb{R} .

Jasno, ako S ima majorantu, onda on ima beskonačno mnogo majoranti. Naime, svaki veći broj je također majoranta. U tom svjetlu ima smisla slijedeća definicija.

Definicija 1.12. Broj $L \in \mathbb{R}$ koji je najmanja majoranta nepraznog odozgo omeđenog skupa $S \subset \mathbb{R}$ nazivamo **supremum** skupa S i pišemo $L = \sup S$.

 $L = \sup S$ je karakteriziran slijedećim svojstvima:

- $(i.) \ \forall x \in S, \ x < L.$
- (ii.) $\forall a \in \mathbb{R}, a < L, \exists x \in S, a < x.$

Cesto je praktično uvjet (ii.) pisati u obliku:

$$(ii.)' \ \forall \varepsilon > 0, \ \exists x \in S, \ L - \varepsilon < x.$$

Supremum koji je u skupu nazivamo **maksimum**, tj. ako je $L = \sup S \in S$ onda je $L = \max S$.

Sada smo u mogućnosti zadati posljednji aksiom skupa R.

A 15. Aksiom potpunosti:

Svaki neprazan odozgo omeđen podskup $S \subset \mathbb{R}$ ima supremum u \mathbb{R} .

Uređeno polje koje zadovoljava i A 15. zovemo **potpuno uređeno polje**. Dakle $(\mathbb{R}, +, \cdot, \leq)$ je potpuno uređeno polje.

Teorem 1.6 (Arhimedov aksiom). U skupu \mathbb{R} vrijedi tvrdnja:

$$\forall a, b \in \mathbb{R}, a > 0, b > 0, \exists n \in \mathbb{N}, na > b.$$

Dokaz: Pretpostavimo da tvrdnja teorema nije istinita, tj. neka vrijedi:

$$\exists a, b \in \mathbb{R}, \ a > 0, b > 0, \ \forall n \in \mathbb{N}, \ na \leq b.$$

To znači da je skup $A = \{na; n \in \mathbb{N}\}$ odozgo ograničen skup u \mathbb{R} . Sada po A15. postoji $c = \sup A$, tj. $\forall n, \ na \leq c \ \text{i} \ \forall \varepsilon > 0, \ \exists n \in \mathbb{N}, \ c - \varepsilon < na$. Sada za $\varepsilon = a > 0$ dobijemo c - a < na, odnosno $c < (n+1)a \in A$, što je kontradikcija s činjenicom da je c gornja međa od A.

Zadatak 1.7. Pokažite bez upotrebe A 15. da Arhimedov aksiom vrijedi u skupu \mathbb{Q} .

Rješenje: Dovoljno je pokazati da $\forall k, m \in \mathbb{N}, \exists n \in \mathbb{N}, nk > m$. U suprotnom bismo imali $k, m \in \mathbb{N}, \forall n \in \mathbb{N}, nk \leq m$. Tada za n = m imamo $mk \leq m \Rightarrow k = 1$. No tada bi vrijedilo $\forall n \in \mathbb{N}, n \leq m$, što nije istina već za n = m + 1. Sada za svaki $q = \frac{m}{k}, q' = \frac{m'}{k'} \in \mathbb{Q}, m, k, m', k' \in \mathbb{N},$ postoji $n \in \mathbb{N}$ takav da je nmk' > m'k, odnosno nq > q'.

Zadatak 1.8. Utvrdite da li postoji i ako postoji odredite supremum skupa $S = \{\frac{n}{n+1}; n \in \mathbb{N}\}.$

Rješenje: Skup S je odozgo ograničen s 1, tj. $\forall n \in \mathbb{N}, \frac{n}{n+1} \leq 1$. Pokažimo da je $1 = \sup S$. Uzmimo bilo koji $\varepsilon > 0$. Trebamo naći $n \in \mathbb{N}$ tako da vrijedi

$$1 - \varepsilon < \frac{n}{n+1} \Leftrightarrow (1-\varepsilon)(n+1) < n \Leftrightarrow -n\varepsilon + 1 - \varepsilon < 0 \Leftrightarrow 1 < (n+1)\varepsilon.$$

Iz Arhimedovog aksioma slijedi postojanje $m \in \mathbb{N}, m\varepsilon > 1$. Uzmimo sada n = m-1 i imamo tvrdnju.

Primjer 1.8. Polje Q nije potpuno.

Neka je $S=\{q\in\mathbb{Q};\ 1< q,\ q^2<2\}$. Očito je S odozgo omeđen s $2\in\mathbb{Q}$. Skup S nema maksimalan element. Naime, za bilo koji $q\in S$ po Arhimedovom aksiomu za brojeve $2-q^2>0$ i 2q+1>0 postoji $n\in\mathbb{N}$ tako da je $n(2-q^2)>2q+1$. Tada je $n^2(2-q^2)>n(2q+1)=2nq+n\geq 2nq+1\Rightarrow (q+\frac{1}{n})^2<2$. Dakle, postoji $q'=q+\frac{1}{n}\in S,\ q'>q$. Pokažimo da vrijedi: $a\in\mathbb{Q},\ a>0$, je majoranta od $S\Leftrightarrow a^2>2$. Neka

Pokažimo da vrijedi: $a \in \mathbb{Q}$, a > 0, je majoranta od $S \Leftrightarrow a^2 > 2$. Neka je $a \in \mathbb{Q}$, a > 0, majoranta od S. Tada je $a^2 \neq 2$ ($\sqrt{2} \notin \mathbb{Q}$). Kada bi bilo $a^2 < 2$, onda bi a bio maksimum od S, a takvog nema. Dakle, mora biti $a^2 > 2$. Obratno, ako je 0 < a i $a^2 > 2$, onda za svaki $q \in S$ imamo $q^2 < 2 < a^2 \Rightarrow q < a$, tj. a je majoranta od S.

Pokažimo da ne postoji najmanja majoranta skupa S u \mathbb{Q} . Neka je a bilo koja majoranta skupa S. Tada po Arhimedovom aksiomu za brojeve $a^2-2>0$ i 2a>0 postoji $n\in\mathbb{N}$ takav da vrijedi $n(a^2-2)>2a$. Odatle je $\frac{2a}{n}< a^2-2< a^2-2+\left(\frac{1}{n}\right)^2\Rightarrow 2<\left(a-\frac{1}{n}\right)^2$. Dakle, postoji majoranta $a'=a-\frac{1}{n}\in\mathbb{Q},\ a'< a$.

Zadatak 1.9. Dokažite da je \mathbb{Q} gust u \mathbb{R} , tj.

$$\forall \varepsilon > 0, \ \forall x \in \mathbb{R}, \ \langle x - \varepsilon, x + \varepsilon \rangle \cap \mathbb{Q} \neq \emptyset.$$

Rješenje: U suprotnom slučaju bi vrijedilo $\exists \varepsilon > 0$, $\exists x \in \mathbb{R}$, $\forall q \in \mathbb{Q}$, $(q \leq x - \epsilon) \lor (x + \varepsilon \leq q)$. Neka je $q_1 \leq x - \epsilon$ i $x + \varepsilon \leq q_2$. Uzmimo $n \in \mathbb{N}$ tako da vrijedi $2n\varepsilon > q_2 - q_1$ i odredimo $\alpha_k = q_1 + \frac{k}{n}(q_2 - q_1) \in \mathbb{Q}$ $(k = 0, 1, \ldots, n - 1, n)$. Neka je $1 \leq k_0 < n$ najveći od indeksa za koje je $\alpha_k \leq x - \epsilon$. Zbog $x + \varepsilon \leq \alpha_{k_0+1}$ vrijedi $\frac{q_2 - q_1}{n} = \alpha_{k_0+1} - \alpha_{k_0} \geq 2\varepsilon$, što je kontradikcija s izborom broja n.

Definicija 1.13. Broj $\ell \in \mathbb{R}$ koji je najveća minoranta nepraznog odozdo omeđenog skupa $S \subset \mathbb{R}$ nazivamo **infimum** skupa S i pišemo $\ell = \inf S$.

 $\ell = \inf S$ je karakteriziran slijedećim svojstvima:

- $(i.) \ \forall x \in S, \ \ell < x.$
- (ii.) $\forall a \in \mathbb{R}, a > \ell, \exists x \in S, x < a.$

 $(ii.)' \ \forall \varepsilon > 0, \ \exists x \in S, \ x < \ell + \varepsilon.$

Infimum koji je u skupu nazivamo **minimum**, tj. ako je $\ell = \inf S \in S$ onda je $\ell = \min S$.

Teorem 1.7. Neka je $S \subset \mathbb{R}$, $S \neq \emptyset$, odozdo ograničen skup. Tada postoji $\ell = \inf S \in \mathbb{R}$.

Dokaz: Neka je $S_- = \{-x; x \in S\}$. Skup S je odozdo omeđen u \mathbb{R} , tj. postoji $m \in \mathbb{R}$ tako da vrijedi $\forall x \in S, m \leq x$. Tada je $\forall -x \in S_-, -x \leq -m$, tj. skup S_- je odozgo omeđen u \mathbb{R} . Prema A 15. postoji $L = \sup S_- \in \mathbb{R}$, tj. $\forall -x \in S_-, -x \leq L$ i $\forall \varepsilon > 0, \exists -x \in S_-, L - \varepsilon < -x$. To možemo napisati i na slijedeći način: $\forall x \in S, -L \leq x$ i $\forall \varepsilon > 0, \exists x \in S, x < -L + \varepsilon$. To kazuje da je $\ell = -L = \inf S$, tj. postoji infimum skupa S.

Zadatak 1.10. Neka je $A \subseteq B \subset \mathbb{R}$ i B ograničen skup. Tada je sup $A \leq \sup B$ i inf $A \geq \inf B$.

Rješenje: Svaka majoranta skupa B ujedno je i majoranta skupa A. Tako je i sup B majoranta za A. Pošto je supremum od A najmanja majoranta skupa A, to vrijedi sup $A \leq \sup B$. Analogno, svaka minoranta skupa B ujedno je i minoranta skupa A, pa je infimum od B minoranta za A. Odatle za infimum skupa a kao najveću minorantu od A vrijedi inf $A \geq \inf B$.

Zadatak 1.11. Neka su $A, B \subset \mathbb{R}$ ograničeni skupovi. Ako vrijedi $\forall a \in A$ $\exists b \in B$ takav da je $a \leq b$ onda je sup $A \leq \sup B$, a u slučaju da vrijedi $\forall b \in B \ \exists a \in A$ takav da je $a \leq b$ onda je inf $A \leq \inf B$.

Rješenje: Iz prvog uvjeta $\forall a \in A$ slijedi $a \leq b \leq \sup B$, tj. $\sup B$ je gornja međa skupa A. Odatle imamo $\sup A \leq \sup B$. Analogno, $\forall b \in B$ vrijedi $b \geq a \geq \inf A$, iz čega slijedi inf $B \geq \inf A$.

Aksiom A 15. karakterizira svojstvo potpunosti koje razlikuje polje \mathbb{R} od polja \mathbb{Q} . Slijedeći teorem opisuje to svojstvo na prihvatljiviji način.

Teorem 1.8. (Cantorov¹ aksiom) Neka za svaki $n \in \mathbb{N}$ imamo segmente $[a_n, b_n] \subset \mathbb{R}$ takve da vrijedi $[a_{n+1}, b_{n+1}] \subset [a_n, b_n]$, $\forall n \in \mathbb{N}$. Tada postoji $x \in \mathbb{R}$ takav da je $x \in [a_n, b_n]$, $\forall n \in \mathbb{N}$.

<sup>Georg Ferdinand Ludwig Philipp Cantor (Saint Petersburg [Rusija], 3. ožujak 1845.
Halle, 6. siječanj 1918.) njemački matematičar</sup>

Dokaz: Označimo s $A = \{a_n; n \in \mathbb{N}\}$ i $B = \{b_n; n \in \mathbb{N}\}$. Skupovi Ai B su ograničeni (odozdo s a_1 i odozgo s b_1) pa postoje sup A i inf B. Zelimo pokazati da vrijedi $[\sup A, \inf B] \subseteq [a_n, b_n], \forall n \in \mathbb{N}.$ Za sve $n \in \mathbb{N}$ očigledno vrijedi $a_n \leq b_n, \ a_n \leq a_{n+1}$ i $b_{n+1} \leq b_n$. Dokažimo da vrijedi $\forall n, m \in \mathbb{N}, a_n \leq b_m$. Ako je n = m onda je to jasno. Ako je n < m, onda $n < n + 1 < \dots < m - 1 < m$ povlači $a_n \le \dots \le a_m \le b_m$, tj. $a_n \le b_m$. analogno vrijedi za m < n. Odatle zaključujemo $\forall n \in \mathbb{N}$ je a_n donja međa za skup B, dakle, $\forall n \in \mathbb{N}, a_n \leq \inf B$. Sada je inf B gornja međa za skup A, pa vrijedi sup $A \leq \inf B$. П

Napomena 1.1. Druga moguća aksiomatika polja \mathbb{R} se dobije ako aksiom A 15. zamijenimo s Arhimedovim aksiomom (teorem 1.6) i Cantorovim aksiomom (teorem 1.8).

1.3.3Eksponencijalna funkcija na \mathbb{R} (I.)

U ovoj točki ćemo proširiti eksponencijalnu funkciju do skupa \mathbb{R} i tako se uvjeriti da je teorem 1.5. istinit.

Zadatak 1.12. Neka su $A, B \subset \mathbb{R}$ odozgo ograničeni neprazni skupovi. Tada je skup $A + B = \{x + y \; ; \; x \in A, y \in B\}$ odozgo ograničen i vrijedi sup(A + B) $B) = \sup A + \sup B.$

Rješenje: Zbog $x \leq \sup A$, $\forall x \in A$, i $y \leq \sup B$, $\forall y \in B$, vrijedi $x + y \leq A$ $\sup A + \sup B, \ \forall x \in A, \ \forall y \in B, \ \text{tj.} \ \sup A + \sup B \ \text{je gornja međa skupa}$ A+B.

Neka je $\varepsilon > 0$ odabran po volji. Postoje $x \, \in \, A$ i $y \, \in \, B$ takvi da je $\sup A - \frac{\varepsilon}{2} < x \text{ i } \sup B - \frac{\varepsilon}{2} < y. \text{ Tada je } x + y > \sup A - \frac{\varepsilon}{2} + \sup B - \frac{\varepsilon}{2} =$ $\sup A + \sup B - \varepsilon$, t
j. $\sup A + \sup B - \varepsilon$ nije gornja međa škupa A + B.

Zadatak 1.13. Neka su $A, B \subset (0, +\infty)$ odozgo ograničeni neprazni skupovi. Tada je skup $AB = \{xy \; ; \; x \in A, y \in B\}$ odozgo ograničen i vrijedi $\sup(AB) = \sup A \sup B.$

Rješenje: Zbog $x \leq \sup A$, $\forall x \in A$, i $y \leq \sup B$, $\forall y \in B$, vrijedi $xy \leq A$

 $\sup A \sup B, \ \forall x \in A, \ \forall y \in B, \ \text{tj. } \sup A \sup B \ \text{je gornja međa skupa} \ AB.$ Neka je $0 < \varepsilon < \frac{(\sup A + \sup B)^2}{4}$ odabran po volji i neka je $0 < \varepsilon_0 < \frac{\sup A + \sup B}{2} - \sqrt{\frac{(\sup A + \sup B)^2}{4} - \varepsilon}$. Postoje $x \in A$ i $y \in B$ takvi da je $\sup A - \varepsilon_0 < \frac{\sup A + \sup B}{2} - \frac{\sup A + \sup B}{4} - \varepsilon$ $x \text{ i sup } B - \varepsilon_0 < y$. Tada je $xy > (\sup A - \varepsilon_0)(\sup B - \varepsilon_0) = \varepsilon_0^2 - (\sup A + \varepsilon_0)$ $\sup B$) $\varepsilon_0 + \sup A \sup B > \sup A \sup B - \varepsilon$. Dakle, $\sup A \sup B - \varepsilon$ nije gornja međa. Zato što je $\varepsilon > 0$ odabran po volji, vrijedi $\sup(AB) = \sup A \sup B$.

Sada eksponencijalnu funkciju proširujemo do funkcije $f: \mathbb{R} \to \langle 0, +\infty \rangle$. Za a > 1 i $x \in \mathbb{R}$ definiramo $f(x) = \sup\{a^q; q \in \mathbb{Q}, q < x\}$. Zbog zadatka 1.13. imamo

$$f(x)f(y) = \sup\{a^q; q \in \mathbb{Q}, q < x\} \sup\{a^{q'}; q' \in \mathbb{Q}, q' < y\} =$$

$$= \sup\{a^{q+q'}; q, q' \in \mathbb{Q}, q < x, q' < y\} =$$

$$= \sup\{a^{q+q'}; q, q' \in \mathbb{Q}, q + q' < x + y\} = f(x+y).$$

1.4 Ekvipotentni skupovi, prebrojivost

Ako imamo dva skupa A i B s konačnim brojem elemenata, teorijski je lako ustanoviti imaju li oni jednak broj elemenata. Naime, provodimo slijedeći postupak: uzmimo element skupa A i element skupa B, sparimo ih. Nastavimo li tako sparivati nesparene elemente skupa A s nesparenim elementima skupa B, nakon konačno koraka doći ćemo do jedne od slijedećih situacija:

- 1. Niti u skupu A, niti u skupu B nema nesparenih elemenata.
- 2. U skupu B nema nesparenih elemenata.
- 3. U skupu A nema nesparenih elemenata.

U slučaju 1. konstruirali smo obostrano jednoznačno preslikavanje sa skupa A na skup B (bijekciju) i jasno je da skupovi A i B imaju jednak broj elemenata. U slučaju 2. konstruirali smo injekciju sa skupa B u skup A i jasno je da skup A ima više elemenata od skupa B. U slučaju 3. konstruirali smo injekciju sa skupa A u skup B i jasno je da skup B ima više elemenata od skupa A. Ovo je motivacija za slijedeću definiciju i u slučaju kada skupovi nemaju konačan broj elemenata.

Definicija 1.14. Za skupove A i B kažemo da imaju jednak broj elemenata, tj. da su **jednakobrojni** ili **ekvipotentni** ako postoji bijekcija $f:A\to B$. Tada još kažemo da A i B imaju jednak kardinalni broj i pišemo k(A)=k(B) ili $A\sim B$.

Ako postoji injekcija $f: A \to B$ onda kažemo da A ima manje ili jednako elemenata od B, tj. $k(A) \leq k(B)$.

Zadatak 1.14. Pokažite da je ekvipotentnost relacija ekvivalencije, tj. da vrijedi

- (i) $A \sim A$,
- $(ii) (A \sim B) \Rightarrow (B \sim A),$
- (iii) $(A \sim B) \land (B \sim C) \Rightarrow (A \sim C)$.

Rješenje:

- (i) Identiteta $i_A: A \to A$ je bijekcija,
- (ii) $f: A \to B$ bijekcija $\Rightarrow (f^{-1}: B \to A)$ bijekcija,

(iii)
$$f: A \to B \land g: B \to C$$
 bijekcije $\Rightarrow g \circ f: A \to C$ je bijekcija.

Slijedeći teorem u konkretnim situacijama bitno olakšava utvrđivanje ekvipotentnosti skupova, a navodimo ga bez dokaza.

Teorem 1.9 (Cantor-Bernstein¹). Ako postoje injekcije $f: A \to B$ i $g: B \to A$, onda je $A \sim B$, odnosno

$$((k(A) \le k(B)) \land (k(B) \le k(A))) \Rightarrow (k(A) = k(B)).$$

Dokaz teorema možete naći u dodatku B.8. na stranici 203.

Primijetimo da prethodni teorem govori o antisimetričnosti uređaja među kardinalnim brojevima.

Definicija 1.15. Kažemo da je beskonačan skup S **prebrojiv** ako je ekvipotentan skupu prirodnih brojeva \mathbb{N} . U suprotnom slučaju kažemo da je taj skup **neprebrojiv**.

Zadatak 1.15. Pokažite da vrijedi

- 1. $\mathbb{N} \sim 2\mathbb{N}$.
- 2. $\mathbb{N} \sim 2\mathbb{N} + 1$.
- 3. $\mathbb{N} \sim \mathbb{Z}$.
- 4. $\forall a, b, c, d \in \mathbb{R}, a < b, c < d, \text{ je } \langle a, b \rangle \sim \langle c, d \rangle \text{ i } [a, b] \sim [c, d].$
- 5. $\forall a, b \in \mathbb{R}, a < b, \text{ je } [a, b] \sim \langle a, b \rangle.$
- 6. $\forall a, b \in \mathbb{R}, a < b, \text{ je } \mathbb{R} \sim \langle a, b \rangle.$

¹Sergej Natanovič Bernstein (Odessa, 5. ožujak 1880. – Moskva, 26. listopad 1968.) ukrajinski matematičar

7. $\mathbb{N} \sim \mathbb{N} \times \mathbb{N}$.

Rješenje:

- 1. Preslikavanje $n \mapsto 2n, \forall n \in \mathbb{N}$, je bijekcija.
- 2. Preslikavanje $n \mapsto 2n+1, \forall n \in \mathbb{N}$, je bijekcija.
- 3. Preslikavanje $f: \mathbb{N} \to \mathbb{Z}$ definirano sf(1) = 0 i f(2n) = n, f(2n+1) = -n, $\forall n \in \mathbb{N}$ je bijekcija.
- 4. $f: \langle a, b \rangle \to \langle c, d \rangle$ definirano s $f(x) = \frac{d-c}{b-a}(x-a) + c$ je bijekcija.
- 5. Identiteta je injekcija s $\langle a,b\rangle$ u [a,b]. Po 4. postoji bijekcija s[a,b] na bilo koji segment u $\langle a,b\rangle$, npr. na $[\frac{3a+b}{4},\frac{a+3b}{4}]$. Tada je to injekcija s[a,b] u $\langle a,b\rangle$. Sada po teoremu 1.9 slijedi tvrdnja.
- 6. $Tg^{-1}: \mathbb{R} \to \langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$ je bijekcija.
- 7. Konstruiramo preslikavanje $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ N kako je grafički prikazano na slici desno. Svakom uređenom paru prirodnih brojeva jednoznačno je određen poredak na putanji 4 označenoj na slici. Funkcija f je definirana formulom:

 $f((m,n)) = \begin{cases} \binom{m+n-1}{2} + n; & m+n-1 \text{ neparan} \end{cases}$ $\begin{cases} \binom{m+n-1}{2} + n; & m+n-1 \text{ paran} \end{cases}$ 1

Propozicija 1.3. Skup racionalnih brojeva \mathbb{Q} je prebrojiv.

Dokaz: Skup $\mathbb{Q} = \{\frac{m}{n} ; n \in \mathbb{N}, m \in \mathbb{Z}, \text{su relativno prosti}\}$, pa postoji injekcija sa \mathbb{Q} u $\mathbb{N} \times \mathbb{N}$. Nadalje, komponiramo tu injekciju s bijekcijom sa $\mathbb{N} \times \mathbb{N}$ na \mathbb{N} iz zadatka 1.15. i dobijemo injekciju s \mathbb{Q} u \mathbb{N} . S druge strane identiteta je injekcija s \mathbb{N} u \mathbb{Q} , pa po teoremu 1.9. imamo $\mathbb{Q} \sim \mathbb{N}$.

Propozicija 1.4. Neprazan podskup prebrojivog skupa je konačan ili prebrojiv.

Dokaz: Neka je $A \sim \mathbb{N}$, $f: A \to \mathbb{N}$ bijekcija, i $B \subseteq A$. Ako je B konačan onda je tvrdnja očita. Ako B nije konačan, onda je identiteta $i: B \to A$, $i(x) = x, \ \forall x \in B$, injekcija sB u A. Tada je $f \circ i: B \to \mathbb{N}$ injekcija. Konstruirajmo injekciju $g: \mathbb{N} \to B$ na slijedeći način:

Uzmimo bilo koji $b \in B$ i stavimo g(1) = b. Pretpostavimo da smo za neki $n \in \mathbb{N}$ definirali $g(k) = b_k \in B$, $1 \le k \le n$, gdje su svi b_1, \ldots, b_n različiti. Pošto skup B nije konačan, to postoji $b_{n+1} \in B$ takav da je $b_{n+1} \ne b_k$, $1 \le k \le n$, pa stavimo $g(n+1) = b_{n+1}$. Takvim postupkom definiramo g(n), $\forall n \in \mathbb{N}$, a funkcija g je po konstrukciji injekcija. Po teoremu 1.9. slijedi $B \sim \mathbb{N}$.

Teorem 1.10. Neka su $a, b \in \mathbb{R}$, a < b. Segment $[a, b] \subset \mathbb{R}$ je neprebrojiv skup.

Dokaz: Kada bi vrijedilo suprotno, tj. da je [a,b] prebrojiv, postojala bi bijekcija $f: \mathbb{N} \to [a,b]$ takva da je $[a,b] = \mathcal{R}(f) = \{f(n); n \in \mathbb{N}\}$. Stavimo $a_1 = a, b_1 = b$. Ako je $f(1) \leq \frac{a_1+b_1}{2}$ stavimo $a_2 = \frac{a_1+3b_1}{4}$ i $b_2 = b_1$, a u slučaju $f(1) \geq \frac{a_1+b_1}{2}$ stavimo $a_2 = a_1$ i $b_2 = \frac{3a_1+b_1}{4}$. U oba slučaja vrijedi $f(1) \notin [a_2,b_2]$ i $[a_2,b_2] \subset [a_1,b_1]$. Na isti način, zamjenom $a_1 \leftrightarrow a_2$ i $b_1 \leftrightarrow b_2$, nađemo f(2) itd. Na taj način dobivamo segmente $[a_n,b_n]$, $\forall n \in \mathbb{N}$, sa svojstvom $[a_n,b_n] \supset [a_{n+1},b_{n+1}]$ i $f(n) \notin [a_{n+1},b_{n+1}]$, $\forall n \in \mathbb{N}$. Po teoremu 1.8. o potpunosti skupa \mathbb{R} postoji $x \in [a,b]$ tako da je $x \in [a_n,b_n]$, $\forall n \in \mathbb{N}$. Zbog pretpostavke o bijektivnosti funkcije $f: \mathbb{N} \to [a,b]$, postoji $m \in \mathbb{N}$ tako da je $x \in [a_m,b_n]$. No, po konstrukciji vrijedi $f(m) \notin [a_{m+1},b_{m+1}]$, što je kontradikcija s izborom točke x.

Korolar 1.2. Skup realnih brojeva \mathbb{R} je neprebrojiv.

Dokaz: Kada bi \mathbb{R} bio prebrojiv, tada bi po propoziciji 1.4. i segment $[a,b] \subset \mathbb{R}$ bio prebrojiv, a to se kosi s tvrdnjom teorema 1.10.

2 Nizovi

2.1 Niz i podniz

Funkciju $a: \mathbb{N} \to S$ zovemo **niz** u S. U ovom slučaju odstupamo od uobičajenog načina označavanja funkcijskih vrijednosti, pa za $n \in \mathbb{N}$ pišemo $a(n) = a_n$ i nazivamo n-tim članom niza. Uobičajena oznaka za niz je $(a_n)_{n \in \mathbb{N}}$ ili $(a_n)_n$ ili samo (a_n) . Kodomena niza može biti bilo koji neprazan skup. Nas će najviše zanimati slučajevi kada je taj skup \mathbb{R} , \mathbb{C} , ili skup realnih ili kompleksnih funkcija.

Evo nekoliko primjera nizova:

- 1. Niz $(a_n)_n$ s $a_n = \frac{1}{n}$, $\forall n \in \mathbb{N}$, je niz u \mathbb{R} .
- 2. Niz $(a_n)_n$ s $a_n = n + \frac{i}{n}$, $\forall n \in \mathbb{N}$, je niz u \mathbb{C} .
- 3. Niz $(a_n)_n$ je niz realnih funkcija, gdje je $\forall n \in \mathbb{N}, a_n : \mathbb{R} \to \mathbb{R}$ funkcija definirana s $a_n(x) = \sin nx, \forall x \in \mathbb{R}$.

Kao i kod drugih funkcija, monotonost je važno svojstvo koje niz može zadovoljavati. Za to je neophodno da je niz u skupu na kojem je definiran uređaj.

Definicija 2.1. Neka je $(a_n)_n$ u \mathbb{R} .

Niz $(a_n)_n$ je rastući ako $\forall n \in \mathbb{N}, a_n \leq a_{n+1}$.

Niz $(a_n)_n$ je strogo rastući ako $\forall n \in \mathbb{N}, a_n < a_{n+1}$.

Niz $(a_n)_n$ je padajući ako $\forall n \in \mathbb{N}, a_n \geq a_{n+1}$.

Niz $(a_n)_n$ je strogo padajući ako $\forall n \in \mathbb{N}, a_n > a_{n+1}$.

Pokažimo da je ta definicija, iako se čini slabijom, ekvivalentna s definicijom monotonosti niza kao funkcije. Naime, niz kao funkcija je rastući ako vrijedi: $\forall n, m \in \mathbb{N}$, $(n < m) \Rightarrow (a_n \leq a_m)$. Jasno je da iz toga slijedi da je niz rastući u smislu definicije 2.1. Dokažimo da vrijedi obrat. Neka su $n, m \in \mathbb{N}$ takvi da je n < m. Tada je $n < n+1 < \cdots < m-1 < m$ pa iz definicije 2.1. slijedi $a_n \leq a_{n+1} \leq \cdots \leq a_{m-1} \leq a_m$, tj. $a_n \leq a_m$.

Definicija 2.2. Za niz $b : \mathbb{N} \to S$ kažemo da je **podniz** niza $a : \mathbb{N} \to S$, ako postoji strogo rastući niz prirodnih brojeva $p : \mathbb{N} \to \mathbb{N}$ takav da je $b = a \circ p$.

U oznakama $(b_n)_n$ i $(a_n)_n$ za nizove pisali bismo $b_n = b(n) = (a \circ p)(n) = a[p(n)] = a_{p(n)} = a_{p_n}$. Važno je uočiti da podniz nekog niza dobijemo tako da izbacimo neke članove polaznog niza, a preostali članovi zadržavaju prijašnji međusobni poredak.

Zadatak 2.1. Neka je $(p_n)_n$ strogo rastući niz u \mathbb{N} . Tada vrijedi $\forall n \in \mathbb{N}$, $n \leq p_n$.

Rješenje: Dokažimo tvrdnju matematičkom indukcijom. Jasno je da vrijedi $1 \le p_1$ tako da imamo bazu indukcije. Pretpostavimo da za $n \in \mathbb{N}$ vrijedi $n \le p_n$. Tad je $p_{n+1} > p_n \ge n$, tj. $p_{n+1} > n$, pa mora biti $p_{n+1} \ge n + 1$.

2.2 Limes niza u $\mathbb R$

Intuitivno poimanje konvergencije ili teženja članova niza $(a_n)_n$ u \mathbb{R} k nekom broju $a \in \mathbb{R}$ sastoji se u tome da je "puno" članova niza po volji blizu broju a, a samo "malen" broj članova daleko. U situaciji kada radimo s beskonačnim (prebrojivim) skupom, onda je prihvatljivo pod "puno" shvaćati beskonačno mnogo članova, a pod "malo" samo konačno njih. U tom smislu fraza "gotovo svi članovi" znači "svi članovi osim eventualno njih konačno mnogo". Dakle, možemo reći da niz $(a_n)_n$ konvergira ili teži broju a ako su gotovo svi članovi po volji blizu broju a.

Prethodna definicija se realizira u skupu $\mathbb R$ tako da blizinu realnih brojeva mjerimo pomoću razdaljinske funkcije d(x,y)=|x-y|. Ako je zadan $\varepsilon>0$, onda brojevi x koji su od a udaljeni za manje od ε zadovoljavaju $|x-a|<\varepsilon$, tj. oni se nalaze u intervalu $\langle a-\varepsilon, a+\varepsilon \rangle$. Pojam konvergencije u $\mathbb R$ ima slijedeći oblik:

Definicija 2.3. Niz realnih brojeva $(a_n)_n$ **konvergira** ili teži k realnom broju $a \in \mathbb{R}$ ako svaki otvoreni interval polumjera ε oko točke a sadrži gotovo sve članove niza, tj.

$$(\forall \varepsilon > 0), (\exists n_{\varepsilon} \in \mathbb{N}), (\forall n \in \mathbb{N}), ((n > n_{\varepsilon}) \Rightarrow (|a_n - a| < \varepsilon)).$$
 (2.1)

Tada a zovemo **granična vrijednost** ili **limes** niza $(a_n)_n$ i pišemo $a = \lim_{n \to \infty} a_n$ ili $a = \lim_{n \to \infty} a_n$.

Ako niz ne konvergira onda kažemo da on divergira.

Jedan slučaj divergencije niza možemo podvesti pod pojam konvergencije. U tu svrhu definiramo okoline od $+\infty$ kao intervale oblika $\langle E, +\infty \rangle$, gdje je E>0.

Definicija 2.4. Kažemo da niz $(a_n)_n$ u \mathbb{R} konvergira k $+\infty$ ako svaka okolina od $+\infty$ sadrži gotovo sve članove niza, tj.

$$(\forall E > 0), (\exists n_{\varepsilon} \in \mathbb{N}), (\forall n \in \mathbb{N}), ((n > n_{\varepsilon}) \Rightarrow (a_n > E)).$$
 (2.2)

U tom slučaju govorimo o konvergenciji niza $(a_n)_n$ u $\overline{\mathbb{R}} = [-\infty, +\infty]$ i pišemo $\lim_{n \to \infty} a_n = +\infty$. Analogno možemo definirati $\lim_{n \to \infty} a_n = -\infty$.

Provjeravanje da li definicija 2.3 vrijedi za neki konkretan niz i konkretan limes sastoji se u tome da se za po volji zadani $\varepsilon > 0$ pronađe ili barem dokaže postojanje prirodnog broja n_{ε} takvog da svi članovi s indeksima većim od n_{ε} leže u intervalu $\langle a - \varepsilon, a + \varepsilon \rangle$.

Primjer 2.1. Pokažimo da niz $(\frac{1}{n})_n$ konvergira i $\lim_n \frac{1}{n} = 0$.

Uzmimo $\varepsilon > 0$ po volji. Iz Arhimedovog aksioma u teoremu (1.6) slijedi postojanje $m \in \mathbb{N}$ tako da vrijedi $m\varepsilon > 1$. Sada za n > m vrijedi $n\varepsilon > m\varepsilon > 1$. Dakle $n_{\varepsilon} = m$ je traženo rješenje. Naime, $\forall n \in \mathbb{N}$,

$$(n > n_{\varepsilon}) \Rightarrow (n\varepsilon > n_{\varepsilon}\varepsilon > 1) \Rightarrow \left(\frac{1}{n} < \varepsilon\right) \Rightarrow \left(\left|\frac{1}{n} - 0\right|\right) < \varepsilon.$$

Teorem 2.1.

- 1. Konvergentan niz u \mathbb{R} ima samo jednu graničnu vrijednost.
- 2. Konvergentan niz u \mathbb{R} je ograničen.

Dokaz: 1. Pretpostavimo da konvergentan niz $(a_n)_n$ ima dvije granične vrijednosti $a, b \in \mathbb{R}, a \neq b$. Tada bi za $\varepsilon = |a - b| > 0$ zbog (2.1) postojali $n_a, n_b \in \mathbb{N}$ takvi da vrijedi

$$(n > n_a) \Rightarrow (|a_n - a| < \frac{\varepsilon}{2}) \text{ i } (n > n_b) \Rightarrow (|a_n - b| < \frac{\varepsilon}{2}).$$

Sada za $n_{\varepsilon} = \max\{n_a, n_b\}$ imamo

$$(n > n_{\varepsilon}) \Rightarrow (|a - b| \le |a - a_n| + |a_n - b| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon = |a - b|),$$

što je očita neistina. Dakle, limes mora biti jedinstven.

2. U definiciji (2.1) uzmimo $\varepsilon = 1$, pa postoji $n_{\varepsilon} \in \mathbb{N}$ tako da $(n > n_{\varepsilon}) \Rightarrow (|a_n - a| < 1)$. Sada za $n > n_{\varepsilon}$ imamo $|a_n| \leq |a_n - a| + |a| \leq 1 + |a|$. Neka je $M = \max\{|a_1|, \ldots, |a_{n_{\varepsilon}}|, 1 + |a|\}$. Tada vrijedi $\forall n \in \mathbb{N}, |a_n| \leq M$, tj. niz je ograničen.

Primjer 2.2. Sama ograničenost nije dovoljna za konvergenciju niza. Niz definiran s $a_n = (-1)^n$, $\forall n \in \mathbb{N}$, je očigledno ograničen, ali niti jedan realan broj nije mu granična vrijednost. Naime, za $0 < \varepsilon < \frac{1}{2}$ i bilo koji $a \in \mathbb{R}$ izvan otvorenog intervala $\langle a - \varepsilon, a + \varepsilon \rangle$ uvijek se nalazi beskonačno članova niza. Dakle, taj interval ne sadrži gotovo sve članove niza.

Za očekivati je da podnizovi niza nasljeđuju dobra svojstva originalnog niza.

Teorem 2.2. Svaki podniz konvergentnog niza u \mathbb{R} i sam je konvergentan i ima istu graničnu vrijednost kao i niz.

Dokaz: Neka je $(a_n)_n$ konvergentan niz u \mathbb{R} , $a = \lim_n a_n$, i neka je $(a_{p_n})_n$ bilo koji njegov podniz. Uzmimo bilo koji $\varepsilon > 0$. Tada iz $a = \lim_n a_n$ i (2.1) postoji $n_{\varepsilon} \in \mathbb{N}$ takav da $(n > n_{\varepsilon}) \Rightarrow (|a_n - a| < \varepsilon)$. Zbog toga što je niz $(p_n)_n$ strogo rastući niz u \mathbb{N} i zadatka 2.1. imamo $\forall n \in \mathbb{N}, p_n \geq n$. Odatle slijedi

$$(\forall n \in \mathbb{N}), (n > n_{\varepsilon}) \Rightarrow (p_n > n_{\varepsilon}) \Rightarrow (|a_{p_n} - a| < \varepsilon),$$

dakle, $a = \lim_{n} a_{p_n}$.

Od interesa je naći jednostavno provjerive dovoljne uvjete za konvergenciju niza.

Teorem 2.3. Svaki ograničen i monoton niz u \mathbb{R} je konvergentan.

Dokaz: Neka je niz $(a_n)_n$ rastući, tj. $\forall n \in \mathbb{N}, a_n \leq a_{n+1}$. Ograničenost rastućeg niza znači ograničenost skupa $A = \{a_n; n \in \mathbb{N}\}$ odozgo, pa postoji $a = \sup A \in \mathbb{R}$. Iz definicije supremuma skupa A imamo:

- 1. $\forall n \in \mathbb{N}, a_n \leq a$
- 2. $\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}, a \varepsilon < a_{n_{\varepsilon}}$.

Iz 1. i 2. i rasta niza $(a_n)_n$ imamo $\forall \varepsilon > 0, \exists n_{\varepsilon} \in \mathbb{N}, \forall n \in \mathbb{N},$

$$(n > n_{\varepsilon}) \Rightarrow (a - \varepsilon < a_{n_{\varepsilon}} \le a_n \le a < a + \varepsilon) \Rightarrow (|a_n - a| < \varepsilon).$$

Dakle, $\lim_{n\to\infty} a_n = \sup\{a_n; n\in\mathbb{N}\}$. Analogno se za padajući niz pokaže $\lim_{n\to\infty} a_n = \inf\{a_n; n\in\mathbb{N}\}$.

Primjer 2.3. Monotonost nije nužna za konvergenciju niza. Npr. niz $\frac{(-1)^n}{n}$ konvergira k 0, a nije monoton.

Na desnoj slici prikazan je odnos svojstava monotonosti (M) i ograničenosti (O) nizova u odnosu na konvergentne (K) nizove u \mathbb{R} .

2.3 Operacije s konvergentnim nizovima

Za nizove u \mathbb{R} kao funkcije s vrijednostima u \mathbb{R} možemo definirati sve operacije po točkama. U slučaju nizova to znači da je suma (razlika) nizova $(a_n)_n$ i $(b_n)_n$ niz oblika $(a_n \pm b_n)_n$, tj. $(a_n)_n \pm (b_n)_n = (a_n \pm b_n)_n$. Isto tako je produkt nizova $(a_n)_n$ i $(b_n)_n$ niz oblika $(a_n \cdot b_n)_n$, tj. $(a_n)_n \cdot (b_n)_n = (a_n \cdot b_n)_n$. Specijalno, za $\lambda \in \mathbb{R}$ je $\lambda(a_n)_n = (\lambda a_n)_n$, pa je skup nizova vektorski prostor (algebra). Sada ćemo proučiti kako se limes ponaša kod navedenih operacija s nizovima.

Teorem 2.4. Neka su $(a_n)_n$ i $(b_n)_n$ konvergentni nizovi u \mathbb{R} . Tada vrijedi:

- 1. Niz $(a_n \pm b_n)_n$ je konvergentan i $\lim_{n \to \infty} (a_n \pm b_n) = \lim_{n \to \infty} a_n \pm \lim_{n \to \infty} b_n$.
- 2. Niz $(a_n \cdot b_n)_n$ je konvergentan i $\lim_{n \to \infty} (a_n \cdot b_n) = \lim_{n \to \infty} a_n \cdot \lim_{n \to \infty} b_n$.
- 3. Ako je $\forall n \in \mathbb{N}, b_n \neq 0, i \lim_{n \to \infty} b_n \neq 0, onda je i niz \left(\frac{a_n}{b_n}\right)_n konvergentan$ $i \lim_{n \to \infty} \left(\frac{a_n}{b_n}\right) = \frac{\lim_{n \to \infty} a_n}{\lim_{n \to \infty} b_n}.$
- 4. Niz $(|a_n|)_n$ je konvergentan i $\lim_{n\to\infty} |a_n| = |\lim_{n\to\infty} a_n|$.

Dokaz: Neka su $\lim_{n\to\infty} a_n = a$ i $\lim_{n\to\infty} b_n = b$. 1. Za $\varepsilon > 0$ zbog (2.1) postoje $n_1, n_2 \in \mathbb{N}$ takvi da vrijedi $\forall n \in \mathbb{N}$,

$$(n > n_1) \Rightarrow (|a_n - a| < \frac{\varepsilon}{2}) i (n > n_2) \Rightarrow (|b_n - b| < \frac{\varepsilon}{2}).$$

Sada za $n_{\varepsilon} = \max\{n_1, n_2\}$ imamo

$$(n > n_{\varepsilon}) \Rightarrow (|a_n + b_n - (a+b)| \le |a_n - a| + |b_n - b| < \varepsilon).$$

2. Prije svega, zbog toga što je konvergentan, niz $(a_n)_n$ je ograničen, tj. postoji M > 0 takav da $\forall n \in \mathbb{N}, |a_n| \leq M$. Sada za $\varepsilon > 0$ zbog (2.1) postoje $n_1, n_2 \in \mathbb{N}$ takvi da vrijedi $\forall n \in \mathbb{N}$,

$$(n > n_1) \Rightarrow (|a_n - a| < \frac{\varepsilon}{M + |b|}) i (n > n_2) \Rightarrow (|b_n - b| < \frac{\varepsilon}{M + |b|}).$$

Sada za $n_{\varepsilon} = \max\{n_1,n_2\}$ imamo

$$(n > n_{\varepsilon}) \Rightarrow (|a_n b_n - ab| \le |a_n||b_n - b|| + |a_n - a||b| < \varepsilon).$$

3. Pokažimo da vrijedi $\lim_{n\to\infty}\frac{1}{b_n}=\frac{1}{b}$. Za $\varepsilon=\frac{|b|}{2}>0$ imamo $n_0\in\mathbb{N}$ tako da $\forall n \in \mathbb{N}.$

$$(n > n_0) \Rightarrow (|b_n - b| < \frac{|b|}{2}) \Rightarrow (|b_n| > \frac{|b|}{2}) \Rightarrow (\frac{1}{|b_n|} < \frac{2}{|b|}).$$

Sada za $\varepsilon > 0$ postoji $n_1 \in \mathbb{N}$ tako da $\forall n \in \mathbb{N}$ vrijedi

$$(n>n_1)\Rightarrow (|b_n-b|<\frac{\varepsilon|b|^2}{2}).$$

Uzmimo $n_{\varepsilon} = \max\{n_0, n_1\}$, pa $\forall n \in \mathbb{N}$ imamo

$$(n > n_{\varepsilon}) \Rightarrow \left(\left|\frac{1}{b_n} - \frac{1}{b}\right| = \frac{|b_n - b|}{|b_n||b|} < \frac{2|b_n - b|}{|b|^2} < \varepsilon\right).$$

Odatle pomoću 2. slijedi 3.

4. Tvrdnja slijedi jednostavno pomoću nejednakosti (1.17),

$$(n > n_{\varepsilon}) \Rightarrow ||a_n| - |a|| \le |a_n - a| < \varepsilon.$$

Korolar 2.1. Neka su $\lim_{n\to\infty} a_n = a$ i $\lim_{n\to\infty} b_n = b$. Tada je za bilo koje $\lambda, \mu \in \mathbb{R}$ $niz (\lambda a_n + \mu b_n)_n \ konvergentan \ i \lim_{n \to \infty} (\lambda a_n + \mu b_n) = \lambda a + \mu b.$

Dokaz: Za bilo koji $\lambda \in \mathbb{R}$ uzmimo konstantni niz $b_n = \lambda, \forall n \in \mathbb{N}$. Tada iz teorema 2.4 2. slijedi $\lim_{n\to\infty} \lambda a_n = \lambda a$. Odatle i iz aditivnosti limesa imamo linearnost.

Napomena 2.1. Skup svih konvergentnih nizova u \mathbb{R} je vektorski prostor (algebra).

Osim operacija na skupu ℝ imamo zadan uređaj ≤. Konvergencija nizova je u skladu s tim uređajem.

Teorem 2.5 (teorem o sendviču). Neka su $(a_n)_n$ i $(b_n)_n$ konvergentni nizovi $u \mathbb{R}$.

- 1. Ako je $\forall n \in \mathbb{N}, a_n \leq b_n, \text{ onda je } \lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n.$
- 2. Ako je $(c_n)_n$ niz za kojeg vrijedi $\forall n \in \mathbb{N}, a_n \leq c_n \leq b_n$ i $\lim_{n \to \infty} a_n =$ $\lim_{n\to\infty} b_n = c, \text{ onda je } (c_n)_n \text{ konvergentan } i \lim_{n\to\infty} c_n = c.$

Dokaz: 1. Neka je niz $(c_n)_n$ konvergentan i takav da vrijedi $\forall n \in \mathbb{N}, c_n \geq 0$. Tada je $\lim_{n\to\infty} c_n = c \ge 0$. Kada bi bilo c < 0, onda bi u okolini $\langle c - \frac{|c|}{2}, c + \frac{|c|}{2} \rangle$ bili gotovo svi članovi niza, što nije moguće zbog $c + \frac{|c|}{2} < 0$.

Sada za $c_n = b_n - a_n$, $\forall n \in \mathbb{N}$, i teorema 2.4. 1. slijedi tvrdnja. 2. Za $\varepsilon > 0$ zbog (2.1) postoje $n_1, n_2 \in \mathbb{N}$ takvi da vrijedi $\forall n \in \mathbb{N}$,

$$(n > n_1) \Rightarrow (|a_n - c| < \varepsilon) i (n > n_2) \Rightarrow (|b_n - c| < \varepsilon).$$

Sada za $n_{\varepsilon} = \max\{n_1, n_2\}$ imamo

$$(n > n_{\varepsilon}) \Rightarrow (c - \varepsilon < a_n \le c_n \le b_n < c + \varepsilon) \Rightarrow (|c_n - c| < \varepsilon).$$

Za računanje limesa nizova koristan je slijedeći rezultat.

Teorem 2.6 (Stolz¹). Neka su $(a_n)_n$ i $(b_n)_n$ nizovi takvi da je $(b_n)_n$ strogo rastući i neograničen. Ako postoji $\lim_n \frac{a_{n+1}-a_n}{b_{n+1}-b_n}$ tada postoji $\lim_n \frac{a_n}{b_n}$ i oni su jednaki.

Dokaz: Neka je (BSO)² $b_n > 0$, $\forall n \in \mathbb{N}$ i neka je $\lim_{n} \frac{a_{n+1} - a_n}{b_{n+1} - b_n} = L$. Tada

¹Otto Stolz (Hall - Tirol, 3. svibanj 1842. - Innsbruck, 23. studeni 1905.) austrijski matematičar

²"BSO"="bez smanjenja opčenitosti"

za $\forall \varepsilon > 0 \ \exists n_{\varepsilon}^{'} \in \mathbb{N}$ takav da $\forall n \in \mathbb{N}$:

$$(n \ge n_{\varepsilon}^{'}) \Rightarrow L - \frac{\varepsilon}{2} < \frac{a_{n+1} - a_n}{b_{n+1} - b_n} < L + \frac{\varepsilon}{2}.$$

Zbog strogog rasta niza (b_n) množenjem dobijemo

$$(L - \frac{\varepsilon}{2})(b_{n+1} - b_n) < a_{n+1} - a_n < (L + \frac{\varepsilon}{2})(b_{n+1} - b_n).$$

Odatle, za bilo koji prirodni broj $n \geq n_{\varepsilon}^{'}$, sumiranjem prethodnih nejednakosti za $n_{\varepsilon}^{'} \leq i \leq n$ slijedi

$$(L - \frac{\varepsilon}{2}) \sum_{i=n'_{\varepsilon}}^{n} (b_{i+1} - b_i) < \sum_{i=n'_{\varepsilon}}^{n} (a_{i+1} - a_i) < (L + \frac{\varepsilon}{2}) \sum_{i=n'_{\varepsilon}}^{n} (b_{i+1} - b_i),$$

što daje

$$(L - \frac{\varepsilon}{2})(b_{n+1} - b_{n'_{\varepsilon}}) < a_{n+1} - a_{n'_{\varepsilon}} < (L + \frac{\varepsilon}{2})(b_{n+1} - b_{n'_{\varepsilon}}).$$

Dijeljenjem prethodnih nejednakosti s b_{n+1} imamo

$$(L - \frac{\varepsilon}{2})(1 - \frac{b_{n'_{\varepsilon}}}{b_{n+1}}) < \frac{a_{n+1}}{b_{n+1}} - \frac{a_{n'_{\varepsilon}}}{b_{n+1}} < (L + \frac{\varepsilon}{2})(1 - \frac{b_{n'_{\varepsilon}}}{b_{n+1}}),$$

odnosno $c_n^- < \frac{a_{n+1}}{b_{n+1}} < c_n^+$, gdje je $c_n^{\pm} = (L \pm \frac{\varepsilon}{2})(1 - \frac{b_{n'_{\varepsilon}}}{b_{n+1}}) + \frac{a_{n'_{\varepsilon}}}{b_{n+1}}$. Zbog $\lim_n \frac{1}{b_n} = 0$ imamo $\lim_n c_n^{\pm} = L \pm \frac{\varepsilon}{2}$ pa postoje $n_{\varepsilon}^-, n_{\varepsilon}^+ \in \mathbb{N}$ takvi da $(n \ge n_{\varepsilon}^-) \Rightarrow (L - \varepsilon < c_n^-)$ i $(n \ge n_{\varepsilon}^+) \Rightarrow (c_n^+ < L + \varepsilon)$. Sada za $n_{\varepsilon} = \max\{n'_{\varepsilon}, n_{\varepsilon}^+, n_{\varepsilon}^-\}$ imamo $(n \ge n_{\varepsilon}) \Rightarrow (L - \varepsilon < \frac{a_n}{b_n} < L + \varepsilon)$, tj. $\lim_n \frac{a_n}{b_n} = L$.

Korolar 2.2 (Césaro¹). Neka je $(c_n)_n$ konvergentan niz $u \mathbb{R}$ i $\lim_n c_n = \alpha$. Tada je niz $(s_n)_n$, $s_n = \frac{\sum_{k=1}^n c_k}{n}$ $(n \in \mathbb{N})$, aritmetičkih sredina prvih n članova niza $(c_n)_n$, konvergentan i $\lim_n s_n = \alpha$.

Dokaz: Slijedi iz teorema 2.6 za
$$a_n = \sum_{k=1}^n c_k$$
 i $b_n = n, \forall n \in \mathbb{N}$.

Slijedeći primjer pokazuje da u teoremu 2.6 i korolaru 2.2 nije moguće zamijeniti uloge nizova.

Primjer 2.4. Niz $(c_n)_n$, $c_{2n-1}=0$, $c_{2n}=1$, $n\in\mathbb{N}$ nije konvergentan, ali je niz $(s_n)_n$ aritmetičkih sredina $s_{2n-1}=\frac{n-1}{2n-1}$ i $s_{2n}=\frac{1}{2},\ n\in\mathbb{N}$, konvergentan i $\lim_n s_n=\frac{1}{2}$.

¹Ernesto Cesaro (Napulj, 12. travanj 1859. - Torre Annunziata, 12. listopad 1906.) talijanski matematičar

2.3.1 Primjeri konvergentnih nizova

Propozicija 2.1. Neka je b > 0 realan broj. Tada postoji a > 0 takav da je $b = a^2$, tj. $a = \sqrt{b}$ (surjektivnost kvadratne funkcije).

Dokaz: Pretpostavimo da je b > 1. Neka je niz $(x_n)_n$ definiran rekurzijom

$$x_n = \frac{1}{2} \left(x_{n-1} + \frac{b}{x_{n-1}} \right), \ \forall \ n \in \mathbb{N},$$
 (2.3)

uz početnu vrijednost $x_0 = b > 1$. Dokažimo indukcijom da je niz $(x_n)_n$ padajući i odozdo omeđen s 1.

Prvo uočimo da iz (2.3) imamo

$$x_n^2 - b = (x_n - x_{n-1})^2, \ (\forall n \in \mathbb{N}),$$
 (2.4)

$$x_n - x_{n-1} = -\frac{x_{n-1}^2 - b}{2x_{n-1}}, \ (\forall n \in \mathbb{N}).$$
 (2.5)

Baza indukcije slijedi iz $x_1 = \frac{1}{2}(b+1) < b = x_0$ i $x_1 > 1$. Pretpostavimo da vrijedi $1 < x_k < x_{k-1}, k = 1, \dots, n-1$. Sada iz (2.4) imamo $x_{n-1}^2 - b > 0$, a onda iz (2.5) slijedi $x_n - x_{n-1} < 0$. Iz (2.3) i $0 < (x_{n-1} - 1)^2 + b - 1$, $\forall n \in \mathbb{N}$, slijedi $x_n > 1$. Dakle, postoji $a = \lim_n x_n$. Iz (2.3) imamo $a = \frac{1}{2}(a + \frac{b}{a})$, odakle slijedi $b = a^2$.

Za 0 < b < 1 imamo $\frac{1}{b} > 1$, pa postoji c > 1, $\frac{1}{b} = c^2$. Sada je za $a = \frac{1}{c}$ imamo tvrdnju.

Primjer 2.5. Vrijedi $\lim_{n\to\infty} \sqrt[n]{n} = 1$.

Za bilo koji $\varepsilon > 0$ po binomnom teoremu imamo:

$$(1+\varepsilon)^n = 1 + n\varepsilon + \frac{n(n-1)}{2}\varepsilon^2 + \dots + \varepsilon^n > n\frac{n-1}{2}\varepsilon^2.$$

Uzmimo $n_{\varepsilon}\in\mathbb{N}$ za koji vrijedi $(n_{\varepsilon}-1)\varepsilon^2>2.$ Tada vrijedi

$$(n > n_{\varepsilon}) \Rightarrow (1 + \varepsilon)^n > n \frac{n-1}{2} \varepsilon^2 > n \frac{n_{\varepsilon} - 1}{2} \varepsilon^2 > n,$$

odnosno

$$(n > n_{\varepsilon}) \Rightarrow 1 < n < (1 + \varepsilon)^n$$
.

Zbog strogog rasta funkcije $x \mapsto \sqrt[n]{x}$ na $(0, +\infty)$ slijedi

$$(n > n_{\varepsilon}) \Rightarrow 1 < \sqrt[n]{n} < 1 + \varepsilon.$$

Primjer 2.6. Za a > 0 vrijedi $\lim_{n \to \infty} \sqrt[n]{a} = 1$.

U slučaju 1 < a je 1 < a < n za gotovo sve $n \in \mathbb{N}$, odakle imamo $1 < \sqrt[n]{a} < \sqrt[n]{n}$ za gotovo sve $n \in \mathbb{N}$. Sada tvrdnja slijedi iz teorema 2.5. 2. Ako je a < 1 onda je $\frac{1}{a} > 1$, pa je

$$\lim_{n \to \infty} \sqrt[n]{a} = \frac{1}{\lim_{n \to \infty} \sqrt[n]{\frac{1}{a}}} = 1.$$

Primjer 2.7. Nizovi $a_n = \left(1 + \frac{1}{n}\right)^n$, $\forall n \in \mathbb{N}$, i $b_n = \sum_{k=0}^n \frac{1}{k!}$, $\forall n \in \mathbb{N}$, su konvergentni i imaju isti limes.

Niz $(b_n)_n$ je očigledno strogo rastući. Pokažimo da vrijedi $b_n < 3, \forall n \in \mathbb{N}$. Vrijedi

$$b_{n+1} = 1 + \frac{1}{1!} + \left(\frac{1}{2!} + \dots + \frac{1}{(n+1)!}\right) = 2 + \frac{1}{2}\left(1 + \frac{1}{3} + \dots + \frac{1}{(n+1)\dots 3}\right) < 2 + \frac{1}{2}\left(1 + \frac{1}{2} + \frac{1}{3 \cdot 2} + \dots + \frac{1}{n \cdot 2}\right) = 2 + \frac{1}{2}(b_n - 1),$$

tj. imamo rekurziju $b_{n+1} < 2 + \frac{1}{2}(b_n - 1)$, $\forall n \in \mathbb{N}$. Odatle indukcijom slijedi tvrdnja. Naime, $b_1 = 2 < 3$, i $\forall n \in \mathbb{N}$, $b_n < 3 \Rightarrow b_{n+1} < 2 + \frac{1}{2}(b_n - 1) < 2 + \frac{1}{2}(3 - 1) = 3$. Dakle, niz $(b_n)_n$ je konvergentan.

Sada primjenom binomne formule na niz $(a_n)_n$ imamo

$$a_n = \sum_{k=0}^n \binom{n}{k} \frac{1}{n^k} = \sum_{k=0}^n \frac{n(n-1)\cdots(n-k+1)}{k!n^k} =$$

$$\sum_{k=0}^{n} \frac{1}{k!} \left(1 - \frac{1}{n} \right) \cdots \left(1 - \frac{k-1}{n} \right) < \sum_{k=0}^{n} \frac{1}{k!} = b_n.$$

pa je i niz $(a_n)_n$ odozgo ograničen. Zbog $1 - \frac{p}{n+1} \ge 1 - \frac{p}{n}$, za $0 \le p \le n$, vrijedi

$$a_{n+1} = \left[\sum_{k=0}^{n} \frac{1}{k!} \left(1 - \frac{1}{n+1} \right) \cdots \left(1 - \frac{k-1}{n+1} \right) \right] + \frac{1}{(n+1)^{n+1}} > a_n,$$

što kazuje da je i niz $(a_n)_n$ konvergentan.

Sada za bilo koji čvrst $p\in\mathbb{N}$ i svaki n>pimamo

$$a_n > \sum_{k=0}^p \frac{1}{k!} \left(1 - \frac{1}{n} \right) \cdots \left(1 - \frac{k-1}{n} \right).$$

Prethodna nejednakost za $n \to \infty$ daje

$$\lim_{n \to \infty} a_n \ge \sum_{k=0}^p \frac{1}{k!} = b_p, \ \forall p \in \mathbb{N}.$$

Odatle slijedi $\lim_{n\to\infty} a_n \geq \lim_{n\to\infty} b_n$. Zbog ranije pokazane nejednakosti $a_n < b_n$, $\forall n \in \mathbb{N}$, imamo $\lim_{n\to\infty} a_n \leq \lim_{n\to\infty} b_n$, što daje $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = e \approx 2.718281828....$

2.3.2 Eksponencijalna funkcija na \mathbb{R} (II.)

U ovoj točki definiramo eksponencijalnu funkciju exp : $\mathbb{R} \to \langle 0, +\infty \rangle$ kao limes niza funkcija.

U tu svrhu za svaki $n \in \mathbb{N}$ definiramo funkcije $f_n: [0,+\infty) \to \langle 0,+\infty \rangle$ tako da vrijedi

$$f_n(x) = \left(1 + \frac{x}{n}\right)^n, \ \forall x \in [0, +\infty).$$
 (2.6)

Definicija 2.5. Kažemo da niz funkcija $(f_n)_n$, gdje su $f_n: I \to \mathbb{R}$, $I \subseteq \mathbb{R}$, konvergira **obično** ili **po točkama** k funkciji $f: I \to \mathbb{R}$ na intervalu I, ako niz brojeva $(f_n(x))_n$ konvergira k f(x), $\forall x \in I$.

Propozicija 2.2. Niz funkcija $(f_n)_n$, gdje su $f_n: [0, +\infty) \to \langle 0, +\infty \rangle$, $n \in \mathbb{N}$, definirane s (2.6), konvergira na skupu $[0, +\infty)$. Funkcija $f: [0, +\infty) \to \langle 0, +\infty \rangle$, $f = \lim_{n \to \infty} f_n$, zadovoljava :

- 1. f(0) = 1,
- 2. f(1) = e,
- 3. $f(x+y) = f(x)f(y), \forall x, y \in [0, +\infty)$

Dokaz: Uzmimo $x \ge 0$ i pokažimo da je niz $f_n(x)_n$ strogo rastući i omeđen. Vrijedi

$$f_n(x) = \sum_{k=0}^n \binom{n}{k} \frac{x^k}{n^k} = \sum_{k=0}^n \frac{1}{k!} \left(1 - \frac{1}{n} \right) \cdots \left(1 - \frac{k-1}{n} \right) x^k < 0$$

$$<\sum_{k=0}^{n} \frac{1}{k!} \left(1 - \frac{1}{n+1}\right) \cdots \left(1 - \frac{k-1}{n+1}\right) x^k + \frac{x^{n+1}}{(n+1)^{n+1}} = f_{n+1}(x),$$

pa je $(f_n(x))_n$ strogo rastući niz. Neka je $m \in \mathbb{N}$ takav da je $x \leq m$. Tada je $f_n(x) \leq f_n(m)$, $\forall n \in \mathbb{N}$. Za podniz $(f_{nm}(m))_n$ strogo rastućeg niza $(f_n(m))_n$ imamo $f_{nm}(m) = f_n(1)^m$, $\forall n \in \mathbb{N}$. Kako iz primjera 2.7. slijedi $f_n(1) \leq 3$, $\forall n \in \mathbb{N}$, imamo $f_n(x) \leq 3^m$, $\forall n \in \mathbb{N}$. Odatle slijedi konvergencija niza $(f_n(x))_n$, $\forall x \in [0, +\infty)$.

Svojstvo 1. je jasno, a svojstvo 2. slijedi iz primjera 2.7. Za $x,y\geq 0$ imamo

$$\left(1+\frac{x}{n}\right)\left(1+\frac{y}{n}\right) = \left(1+\frac{x+y}{n}+\frac{xy}{n^2}\right) \ge \left(1+\frac{x+y}{n}\right).$$

Vrijedi

$$\left(1 + \frac{x}{n}\right)^n \left(1 + \frac{y}{n}\right)^n - \left(1 + \frac{x+y}{n}\right)^n = \left(1 + \frac{x+y}{n} + \frac{xy}{n^2}\right)^n - \left(1 + \frac{x+y}{n}\right)^n =$$

$$= \frac{xy}{n^2} \left[\sum_{k=0}^{n-1} \left(1 + \frac{x+y}{n} + \frac{xy}{n^2}\right)^{n-1-k} \left(1 + \frac{x+y}{n}\right)^k \right],$$

pa zbog prethodne nejednakosti imamo

$$\frac{xy}{n}\left(1+\frac{x+y}{n}\right)^{n-1} \leq \left(1+\frac{x}{n}\right)^n\left(1+\frac{y}{n}\right)^n - \left(1+\frac{x+y}{n}\right)^n \leq \frac{xy}{n}\left(1+\frac{x}{n}\right)^{n-1}\left(1+\frac{y}{n}\right)^{n-1}.$$

Sada iz prethodne nejednakosti za $n \to \infty$ dobijemo

$$\lim_{n \to \infty} \left[\left(1 + \frac{x}{n} \right)^n \left(1 + \frac{y}{n} \right)^n - \left(1 + \frac{x+y}{n} \right)^n \right] = 0,$$

odakle slijedi svojstvo 3.

Sada definiramo funkciju exp : $\mathbb{R} \to \langle 0, +\infty \rangle$ na slijedeći način:

$$\exp(x) = \begin{cases} f(x) & ; x \ge 0, \\ \frac{1}{f(-x)} & ; x < 0. \end{cases}$$
 (2.7)

Pokažimo da vrijedi $\exp(x+y) = \exp(x) \exp(y), \ \forall x,y \in \mathbb{R}$. Ako su x i y istog predznaka, onda je jednakost jasna. Jedini interesantni slučajevi su x>0, y<0, x+y>0 i x>0, y<0, x+y<0. U prvom slučaju imamo f(x)=f(x+y+(-y))=f(x+y)f(-y), pa je $\exp(x+y)=f(x+y)=f(x)\frac{1}{f(-y)}=\exp(x)\exp(y),$ a drugi ide analogno.

2.4 Limes superior i limes inferior

Lema 2.1. Svaki niz $(a_n)_n$ u \mathbb{R} ima monoton podniz.

Dokaz: Neka je $A_m = \{a_n; n \ge m\}$. Promatramo dva slučaja:

- 1. $\exists m \in \mathbb{N}$ tako da skup A_m nema maksimum.
- 2. $\forall m \in \mathbb{N}$ skup A_m ima maksimum.
- 1. slučaj: Bez smanjenja općenitosti uzmimo da je m=1, tj. već A_1 nema maksimum. To znači da $\forall n \in \mathbb{N} \ \exists k \in \mathbb{N}, \ k > n$ i $a_k > a_n$.

Počnimo sn=1i među svim k>1takvim da je $a_k>a_1$ uzmimo najmanji i označimo ga s $p_1,$ tj. $a_{p_1}>a_1.$ Sada promatramo skup $A_{p_1}.$ Ovaj skup isto nema maksimum, jer kada bi ga imao, onda bi i prethodni A_1 imao. Među svim $k>p_1$ takvim da je $a_k>a_{p_1}$ uzmimo najmanji i označimo ga s $p_2,$ tj. $a_{p_2}>a_{p_1},$ itd. Ovim postupkom dobivamo strogo rastući niz $(p_n)_n$ u $\mathbb N$ takav da je $a_{p_n}< a_{p_{n+1}}, \, \forall n\in \mathbb N,$ tj. podniz $(a_{p_n})_n$ je strogo rastući.

2. slučaj: Neka je $b_1 = \max A_1$. Među onim $k \in \mathbb{N}$ za koje je $a_k = b_1$ uzmimo najmanji i označimo ga s p_1 , tj. $(j < p_1) \Rightarrow (a_j < a_{p_1})$. Sada gledamo A_{p_1+1} i neka je $b_2 = \max A_{p_1+1}$. Jasno, $b_2 \leq b_1$. Među svim $k > p_1$ za koje je $a_k = b_2$ uzmimo najmanji i označimo ga s p_2 . Jasno je da vrijedi $a_{p_2} \leq a_{p_1}$, itd. Tim postupkom dobijemo strogo rastući niz $(p_n)_n$ u \mathbb{N} takav da je $a_{p_n} \geq a_{p_{n+1}}$, $\forall n \in \mathbb{N}$, tj. podniz $(a_{p_n})_n$ je padajući.

Korolar 2.3. Za konačno nizova $a^{(1)}, a^{(2)}, \ldots, a^{(n)}$ postoji strogo rastući niz $p: \mathbb{N} \to \mathbb{N}$ takav da su svi podnizovi $a^{(1)} \circ p, a^{(2)} \circ p, \ldots, a^{(n)} \circ p$ monotoni.

Dokaz: Iz leme 2.1. postoji strogo rastući niz $q^{(1)}: \mathbb{N} \to \mathbb{N}$ takav da je $a^{(1)} \circ q^{(1)}$ monoton podniz od $a^{(1)}$. Sada gledamo podnizove $a^{(1)} \circ q^{(1)}, a^{(2)} \circ q^{(1)}, \ldots, a^{(n)} \circ q^{(1)}$ od kojih je prvi monoton, a ostali ne moraju bit monotoni. Sada po lemi 2.1. postoji strogo rastući niz $q^{(2)}: \mathbb{N} \to \mathbb{N}$ takav da je $a^{(2)} \circ q^{(1)} \circ q^{(2)}$ monoton podniz od $a^{(2)} \circ q^{(1)}$. Zbog toga što je podniz monotonog niza i sam monoton, među podnizovima $a^{(1)} \circ q^{(1)} \circ q^{(2)}, a^{(2)} \circ q^{(1)} \circ q^{(2)}, \ldots, a^{(n)} \circ q^{(1)} \circ q^{(2)}$ su prva dva monotona, a ostali ne moraju biti. Ovim postupkom u n koraka dolazimo do podnizova $a^{(1)} \circ p, a^{(2)} \circ p, \ldots, a^{(n)} \circ p,$ gdje je $p = q^{(1)} \circ q^{(2)} \circ \cdots \circ q^{(n)}$, koji su svi monotoni.

U teoremu 2.1. i primjeru 2.2. smo vidjeli da je ograničenost niza nužna, ali ne i dovoljna za konvergenciju toga niza. Slijedeći teorem govori o tome što se ipak može zaključiti iz ograničenosti niza.

Teorem 2.7 (Weierstrass¹). Ograničen niz u \mathbb{R} ima konvergentan podniz.

Dokaz: Pomoću leme 2.1. možemo naći monoton podniz zadanog niza. Pošto je niz ograničen, onda je i svaki njegov podniz ograničen. Sada za taj ograničen i monoton podniz iz teorema 2.3. slijedi konvergencija.

Definicija 2.6. Kažemo da je $\alpha \in \mathbb{R}$ gomilište niza $(a_n)_n$ realnih brojeva, ako postoji podniz $(a_{p_n})_n$ niza $(a_n)_n$ takav da vrijedi $\lim_{n\to\infty} a_{p_n} = \alpha$.

Iz definicije slijedi da je $\alpha \in \mathbb{R}$ gomilište niza $(a_n)_n$ ako i samo ako $\forall \varepsilon > 0$ okolina $\langle \alpha - \varepsilon, \alpha + \varepsilon \rangle$ sadrži beskonačno članova niza.

Primjer 2.8.

- i. Svaki ograničeni niz ima barem jedno gomilište u \mathbb{R} .
- ii. Svaki konvergentan niz ima točno jedno gomilište, a to je granična vrijednost.
- iii. Niz iz primjera 2.2. ima točno dva gomilišta jer je $(-1)^{2n} \to 1$ i $(-1)^{2n-1} \to -1.$
- iv. Skupovi \mathbb{N} i \mathbb{Q} su ekvipotentni, tj. postoji bijektivni niz $r: \mathbb{N} \to \mathbb{Q}$. Tada je \mathbb{R} skup svih gomilišta niza $(r_n)_n$, tj. svaki realan broj je limes nekog niza racionalnih brojeva.
- v. Niz $(n)_n$ nema niti jedno gomilište u \mathbb{R} .

Definicija 2.7. Neka je $(a_n)_n$ ograničen niz realnih brojeva i $A \subset \mathbb{R}$ skup svih gomilišta tog niza (provjerite da je A ograničen skup).

Supremum skupa A zovemo **limes superior** niza $(a_n)_n$ i označavamo s $\limsup_{n\to\infty} a_n$ ili $\overline{\lim}_n a_n$, .

Infimum skupa A zovemo **limes inferior** niza $(a_n)_n$ i označavamo s $\liminf_{n\to\infty} a_n$ ili $\underline{\lim}_n a_n$, .

Lema 2.2. Broj $L \in \mathbb{R}$ je limes superior niza $(a_n)_n$ ako i samo ako vrijedi:

- 1. $\forall \varepsilon > 0$, je $a_n < L + \varepsilon$ za gotovo sve članove niza.
- 2. $\forall \varepsilon > 0$, je $L \varepsilon < a_n$ za beskonačno članova niza.

¹Karl Theodor Wilhelm Weierstrass (Ostenfelde, 31. listopad 1815. - Berlin, 19. veljača 1897.) njemački matematičar

Broj $\ell \in \mathbb{R}$ je limes inferior niza $(a_n)_n$ ako i samo ako vrijedi:

- 3. $\forall \varepsilon > 0$, je $\ell \varepsilon < a_n$ za gotovo sve članove niza.
- 4. $\forall \varepsilon > 0$, je $a_n < \ell + \varepsilon$ za beskonačno članova niza.

Štoviše, L je najveće, a ℓ je najmanje gomilište niza.

Dokaz: Pretpostavimo da je $L=\limsup a_n$ i da ne vrijedi tvrdnja 1. ili tvrdnja 2., tj. $\exists \varepsilon>0$, takav da je $a_n \geq L+\varepsilon$ za beskonačno mnogo članova niza ili $\exists \varepsilon>0$, $L-\varepsilon< a_n$ samo za konačno članova niza. U prvom slučaju bi postojalo gomilište niza koje je veće ili jednako od $L+\varepsilon$ što je u kontradikciji s definicijom od L kao supremuma skupa svih gomilišta niza. U drugom slučaju bi sva gomilišta niza bila manja ili jednaka od $L-\varepsilon$ što je također u kontradikciji s definicijom od L.

Obratno, neke vrijede 1. i 2.. Iz 1. slijedi da $\forall \varepsilon > 0$ sva gomilišta niza su manja ili jednaka od $L + \varepsilon$, a odatle slijedi da su manja ili jednaka od L. Dakle L je gornja međa skupa svih gomilišta niza. Za bilo koji $\varepsilon > 0$ iz 1. i 2. slijedi da je u intervalu $\langle L - \varepsilon, L + \varepsilon \rangle$ beskonačno članova niza, a to znači da je L i sam gomilište niza, tj. L je maksimum skupa svih gomilišta niza, a tada je i supremum skupa.

Tvrdnje za
$$\ell = \liminf_{n \to \infty} a_n$$
 slijede iz jednakosti $\ell = -\limsup_{n \to \infty} (-a_n)$.

Teorem 2.8. Ograničen niz $(a_n)_n$ u \mathbb{R} je konvergentan ako i samo ako je

$$\liminf_{n \to \infty} a_n = \limsup_{n \to \infty} a_n.$$

Dokaz: Ako je niz $(a_n)_n$ konvergentan, onda je po teoremu 2.2. svaki njegov podniz ima istu graničnu vrijednost kao i niz, pa je skup svih gomilišta niza jednočlan.

Obratno, ako vrijedi gornja jednakost, onda je skup svih gomilišta jednočlan i neka je α njegov element. Tada $\forall \varepsilon > 0$, iz definicije limesa inferiora, gotovo svi članovi niza su $> \alpha - \varepsilon$, a iz definicije limesa superiora, gotovo svi članovi niza su $< \alpha + \varepsilon$, tj. gotovo svi članovi su u intervalu $\langle \alpha - \varepsilon, \alpha + \varepsilon \rangle$. Dakle, $\alpha = \lim_{n \to \infty} a_n$.

Zadatak 2.2. Neka su $(a_n)_n$ i $(b_n)_n$ ograničeni nizovi takvi da $\forall n \in \mathbb{N}, a_n \leq b_n$. Pokažite da vrijedi $\liminf_n a_n \leq \liminf_n b_n$ i $\limsup_n a_n \leq \limsup_n b_n$.

Rješenje: Neka su A i B skupovi svih gomilišta nizova $(a_n)_n$ i $(b_n)_n$ respektivno. Pokažimo da vrijedi $\forall a \in A \ \exists b \in B \ \text{takav}$ da je $a \leq b$ i $\forall b \in B \ \exists a \in A \ \text{takav}$ da je $a \leq b$.

Neka je $a \in A$, $a = \lim_n a_{p_n}$. Niz $(b_{p_n})_n$ je ograničen pa ima konvergentan podniz $(b_{q_n})_n$, $b = \lim_n b_{q_n} \in B$. Zbog $\forall n \in \mathbb{N}$, $a_{q_n} \leq b_{q_n}$ imamo $a \leq b$. Druga tvrdnja se dokazuje analogno. Sada iz zadatka 1.11 slijedi tvrdnja.

2.5 Cauchyjev niz

Sada navodimo nužan i dovoljan uvjet za konvergenciju realnog niza koji u sebi ne upotrebljava pojam limesa. Dakle, pomoću njega možemo ispitati konvergenciju niza a da nemamo kandidata za njegov limes.

Definicija 2.8. Kažemo da je niz $(a_n)_n$ realnih brojeva **Cauchyjev**¹ ili **fundamentalan** niz ako

$$(\forall \varepsilon > 0)(\exists n_{\varepsilon} \in \mathbb{N})(\forall n, m \in \mathbb{N})((n, m > n_{\varepsilon}) \Rightarrow (|a_n - a_m| < \varepsilon)). \tag{2.8}$$

Teorem 2.9. Niz $u \mathbb{R}$ je konvergentan ako i samo ako je Cauchyjev.

Dokaz: Neka je $(a_n)_n$ konvergentan niz i $a = \lim_n a_n$, tj.

$$(\forall \varepsilon > 0)(\exists n_{\varepsilon} \in \mathbb{N})(\forall n \in \mathbb{N})((n > n_{\varepsilon}) \Rightarrow (|a_n - a| < \frac{\varepsilon}{2})).$$

Neka je $n, m > n_{\varepsilon}$, pa imamo $|a_n - a_m| \le |a_n - a| + |a - a_m| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$, dakle uvjet (2.8) je nužan.

Obratno, neka je $(a_n)_n$ Cauchyjev niz. Pokažimo da je taj niz ograničen. Iz (2.8) za $\epsilon = 1$ imamo $n_1 \in \mathbb{N}$ takav da $\forall n, m \in \mathbb{N}$, $(n, m > n_1) \Rightarrow (|a_n - a_m| < 1)$. Odatle za $n > n_1$ imamo $|a_n| \leq |a_n - a_{n_1+1}| + |a_{n_1+1}|$. Sada je $M = \max\{|a_1|, \ldots, |a_{n_1}|, 1 + |a_{n_1+1}|\}$ takav da vrijedi $|a_n| \leq M, \forall n \in \mathbb{N}$.

Po teoremu 2.7. ograničen $(a_n)_n$ niz ima konvergentan podniz $(a_{p_n})_n$, tj. postoji $a = \lim_n a_{p_n}$. Pokažimo da vrijedi $a = \lim_n a_n$. Uzmimo $\varepsilon > 0$ po volji. Iz konvergencije podniza $(a_{p_n})_n$ imamo $n'_{\varepsilon} \in \mathbb{N}$ takav da

$$((n > n'_{\varepsilon}) \Rightarrow (|a_{p_n} - a| < \frac{\varepsilon}{2})).$$

Zato što je niz $(a_n)_n$ Cauchyjev imamo $n''_{\varepsilon} \in \mathbb{N}$ takav da

$$((n, m > n_{\varepsilon}'') \Rightarrow (|a_n - a_m| < \frac{\varepsilon}{2})).$$

Neka je $n_{\varepsilon} = \max\{n'_{\varepsilon}, n''_{\varepsilon}\}$ pa za $n > n_{\varepsilon}$, zbog $p_n \ge n$, slijedi

$$|a_n - a| \le |a_n - a_{p_n}| + |a_{p_n} - a| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon,$$

¹Augustin Louis Cauchy (Paris, 21. kolovoz 1789. – Sceaux-Paris, 23. svibanj 1857.) francuski matematičar

tj.
$$a = \lim_n a_n$$
.

Cauchyjevo svojstvo je posebno važno u općenitijim strukturama od skupa \mathbb{R} , gdje nismo u mogućnosti pomoću uređaja definirati pojam potpunosti skupa, kao u Aksiomu 15. Takav je npr. skup kompleksnih brojeva \mathbb{C} o kojem govorimo u slijedećoj točki. Tada se kaže da je skup potpun ako svaki Cauchyjev niz iz skupa konvergira u tom skupu.

Napomena 2.2. Konstrukcija potpunog uređenog polja moguća je pomoću Cauchyjevih nizova, što je pokazano u dodatku B.9. na str. 204.

2.6 Polje \mathbb{C} , nizovi u \mathbb{C}

2.6.1 Polje kompleksnih brojeva $\mathbb C$

Neka je $\mathbb{R} \times \mathbb{R}$ Kartezijev produkt skupa \mathbb{R} sa samim sobom. $\mathbb{R} \times \mathbb{R}$ je skup svih uređenih parova (a, b) gdje su $a, b \in \mathbb{R}$. Sada na $\mathbb{R} \times \mathbb{R}$ definiramo operacije zbrajanja i množenja.

Neka je $\oplus : (\mathbb{R} \times \mathbb{R}) \times (\mathbb{R} \times \mathbb{R}) \to (\mathbb{R} \times \mathbb{R})$ operacija zbrajanja definiran s

$$\forall (a,b), (c,d) \in \mathbb{R} \times \mathbb{R}, \ (a,b) \oplus (c,d) = (a+c,b+d), \tag{2.9}$$

i neka je $\odot: (\mathbb{R} \times \mathbb{R}) \times (\mathbb{R} \times \mathbb{R}) \to (\mathbb{R} \times \mathbb{R})$ operacija množenja definiran s

$$\forall (a,b), (c,d) \in \mathbb{R} \times \mathbb{R}, (a,b) \odot (c,d) = (ac - bd, ad + bc). \tag{2.10}$$

U daljnjem tekstu ćemo umjesto oznaka \oplus i \odot koristiti iste oznake kao i za operacije u \mathbb{R} , tj. + i \cdot , s tim da je uvijek jasno kada su operacije s parovima realnih brojeva ili sa samim realnim brojevima.

Skup $\mathbb{R} \times \mathbb{R}$ snabdjeven operacijom zbrajanja (2.9) i množenja (2.10) zovemo skup **kompleksnih brojeva** i označavamo s \mathbb{C} .

Teorem 2.10. Skup kompleksnih brojeva \mathbb{C} je polje.

Dokaz: Pokažimo da za skup \mathbb{C} i operacije zbrajanja (2.9) i množenja (2.10) vrijede aksiomi A 1. do A 9. Aksiomi A 1. i A 4. slijede direktno iz istih aksioma za \mathbb{R} i definicije operacije zbrajanja. Neutralni element za zbrajanje je par (0,0), tj. (0,0)+(a,b)=(0+a,0+b)=(a+0,b+0)=(a,b). Za bilo koji par (a,b) suprotni par -(a,b)=(-a,-b). Vrijedi (a,b)+(-a,-b)=(a+(-a),b+(-b))=(0,0) i (-a,-b)+(a,b)=(-a+a,-b+b)=(0,0).

Asocijativnost i komutativnost množenja i distributivnost množenja na zbrajanje slijede direktnim računom iz asocijativnosti i komutativnost množenja

i zbrajanja na \mathbb{R} , te distributivnosti množenja na zbrajanje u \mathbb{R} . Jedinica ili neutralni element za množenje je par (1,0), tj. za svaki par (a,b) imamo (a,b)(1,0)=(a1-b0,a0+b1)=(a,b) i (1,0)(a,b)=(1a-0b,1b+0a)=(a,b). Za svaki $(a,b)\neq (0,0)$, tj. $a^2+b^2\neq 0$, definiramo

$$(a,b)^{-1} = \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right).$$
 Vrijedi $(a,b) \left(\frac{a}{a^2 + b^2}, \frac{-b}{a^2 + b^2}\right) = \left(\frac{aa - b(-b)}{a^2 + b^2}, \frac{a(-b) + ba}{a^2 + b^2}\right) = (1,0).$

Na \mathbb{C} možemo definirati uređaj $((a,b) \preceq (c,d)) \stackrel{def}{=} (a \leq c) \land (b \leq d)$. Taj uređaj je samo parcijalni uređaj, jer npr. (1,0) i(0,1) nisu usporedivi.

Uočimo podskup $\mathbb{R}' = \{(x,0); x \in \mathbb{R}\} \subset \mathbb{C}$. Taj skup je zatvoren na operacije zbrajanja i množenja, tj. (a,0)+(b,0)=(a+b,0) i (a,0)(b,0)=(ab,0). U skupu \mathbb{R}' vrijede aksiomi A 1. do A 9. Štoviše, restrikcija relacija parcijalnog uređaja na \mathbb{C} daje na \mathbb{R}' linearan uređaj koji je u skladu s operacijama zbrajanja i množenja. Tako je \mathbb{R}' potpuno uređeno polje, dakle, možemo ga izjednačiti s \mathbb{R} . U tom smislu pišemo (0,0)=0, (1,0)=1 i općenito (a,0)=a.

Kompleksan broj (0,1) zovemo **imaginarna jedinica** i označavamo ga s i = (0,1). Tako za svaki kompleksan broj vrijedi (a,b) = (a,0)+(b,0)(0,1) pa pišemo (a,b) = a+bi. Tako vrijedi $i^2 = (0,1)(0,1) = (-1,0) = -(1,0) = -1$, pa se operacije s kompleksnim brojevima svode na operacije s binomima. Ako je $z = a + bi \in \mathbb{C}$, onda je a = Rez realni dio i b = Imz imaginarni dio od z.

Za komleksni broj z=a+bi definiramo njegov konjugirani broj $\overline{z}=a-bi$. Realni broj $|z|=\sqrt{a^2+b^2}=\sqrt{z\overline{z}}$ zovemo **modul** kompleksnog broja z. Vrijedi $|\mathrm{Re}z|=|a|\leq \sqrt{a^2+b^2}=|z|$ i $|\mathrm{Im}z|=|b|\leq \sqrt{a^2+b^2}=|z|$. Za $z,v\in\mathbb{C}$ vrijedi $\overline{z+v}=\overline{z}+\overline{v},\,\overline{zv}=\overline{zv}$ i |zv|=|z||v|. Također, za modul vrijedi nejednakost trokuta

$$|z+v| \le |z| + |v|, \ \forall \ z, v \in \mathbb{C}. \tag{2.11}$$

Vrijedi

$$|z+v|^2 = (z+v)(\overline{z}+\overline{v}) = |z|^2 + |v|^2 + z\overline{v} + \overline{z}v = |z|^2 + |v|^2 + 2\operatorname{Re}(z\overline{v}) \le$$

$$\le |z|^2 + |v|^2 + 2|\operatorname{Re}(z\overline{v})| \le |z|^2 + |v|^2 + 2|zv| = (|z| + |v|)^2.$$

Odatle zbog rasta funkcije $\sqrt{\cdot}$ na \mathbb{R}_+ slijedi (2.11).

2.6.2 Eksponencijalna funkcija na $\mathbb C$

Definiramo funkciju $f: \mathbb{C} \to \mathbb{C}$ na slijedeći način:

$$f(x+iy) = e^x(\cos y + i\sin y), \ \forall \ x, y \in \mathbb{R}.$$
 (2.12)

Za y=0 dobijemo $f(x)=e^x, \forall x,y\in\mathbb{R}$, pa je f proširenje eksponencijalne funkcije s \mathbb{R} na \mathbb{C} . Pokažimo da to proširenje zadovoljava osnovnu funkcijsku jednakost koja karakterizira eksponencijalnu funkciju. Za z=x+iy,z'=x'+iy', gdje su $x,x',y,y'\in\mathbb{R}$, imamo

$$f(z)f(z') = f(x+iy)f(x'+iy') = e^x(\cos y + i\sin y)e^{x'}(\cos y' + i\sin y') =$$

$$= e^{x+x'}[\cos y\cos y' - \sin y\sin y' + i(\sin y\cos y' + \cos y\sin y')] =$$

$$= e^{x+x'}[\cos(y+y') + i\sin(y+y')] = f(x+x'+i(y+y')) = f(z+z').$$

Iz (2.12) vidimo da vrijedi $\overline{f(z)} = f(\overline{z}), \forall z \in \mathbb{C}$. Također, ako je f(x+iy) = 0 onda zbog $e^x > 0$ iz (2.12) slijedi $\cos y = \sin y = 0$, što je nemoguće zbog (1.30).

Dakle imamo funkciju $f: \mathbb{C} \to \mathbb{C} \setminus \{0\}$ koju označavamo s $f(z) = e^z$, $\forall z \in \mathbb{C}$. Sada možemo kompleksnu eksponencijalnu funkciju pisati u obliku

$$e^{x+iy} = e^x(\cos y + i\sin y), \ \forall \ x, y \in \mathbb{R}.$$
 (2.13)

Za x = 0 dobije se Eulerova formula

$$e^{iy} = \cos y + i \sin y, \ \forall \ y \in \mathbb{R},$$
 (2.14)

iz koje slijedi veza trigonometrijskih funkcija i eksponencijalne funkcije

$$\sin y = \frac{e^{iy} - e^{-iy}}{2i},$$

$$\cos y = \frac{e^{iy} + e^{-iy}}{2}.$$
(2.15)

Također, za svaki $z \in \mathbb{C}$ možemo definirati

$$\sin z = \frac{e^{iz} - e^{-iz}}{2i}, \quad \cos z = \frac{e^{iz} + e^{-iz}}{2},$$
 (2.16)

$$\operatorname{sh} z = \frac{e^z - e^{-z}}{2}, \quad \operatorname{ch} z = \frac{e^z + e^{-z}}{2}.$$
 (2.17)

Lako se vidi da vrijedi $\cos iz = \operatorname{ch} z$, $\sin iz = i \operatorname{sh} z$.

2.6.3 Nizovi u \mathbb{C} , limes niza u \mathbb{C}

Neka je $(a_n)_n$ niz u \mathbb{C} , gdje je $a_n = \alpha_n + \beta_n i$, $\forall n \in \mathbb{N}$. Tako imamo pridružena dva realna komponentna niza $(\alpha_n)_n$ i $(\beta_n)_n$.

Definicija 2.9. Niz kompleksnih brojeva $(a_n)_n$ konvergira ili teži ka kompleksnom broju $a \in \mathbb{C}$ ako svaki otvoreni krug polumjera ε oko točke a sadrži gotovo sve članove niza, tj.

$$(\forall \varepsilon > 0), (\exists n_{\varepsilon} \in \mathbb{N}), (\forall n \in \mathbb{N}),$$

 $((n > n_{\varepsilon}) \Rightarrow (|a_n - a| < \varepsilon)).$ (2.18)

Definicija limesa niza u \mathbb{C} je formalno ista kao i u \mathbb{R} , te je stoga za očekivati da vrijede svojstva koja vrijede za konvergentne nizove u \mathbb{R} . To se može dokazati koristeći definiciju limesa (2.18). Mi ćemo to učiniti tako što ćemo dokazati da konvergiraju komponentni nizovi $(\alpha_n)_n$ i $(\beta_n)_n$.

Teorem 2.11. Neka je $(a_n)_n$ niz u \mathbb{C} , gdje je $a_n = \alpha_n + \beta_n i$, $\forall n \in \mathbb{N}$. Vrijedi $\lim_n a_n = a = \alpha + \beta i$ ako i samo ako je $\alpha = \lim_n \alpha_n$ i $\beta = \lim_n \beta_n$.

Dokaz: Ako je $a = \lim_n a_n$ i $a = \alpha + \beta i$, onda vrijedi $|\alpha_n - \alpha_n| \le |a_n - a|$ i $|\beta_n - \beta| \le |a_n - a|$, odakle odmah imamo $\alpha = \lim_n \alpha_n$ i $\beta = \lim_n \beta_n$. Obratno, neka je $\alpha = \lim_n \alpha_n$ i $\beta = \lim_n \beta_n$. Zbog $|a_n - a| = \sqrt{|\alpha_n - \alpha_n|^2 + |\beta_n - \beta|^2}$ slijedi $a = \lim_n a_n$, gdje je $a = \alpha + \beta i$.

Zato što se operacije s kompleksnim nizovima svode na operacije s realnim komponentnim nizovima, sada je odmah jasno da i u kompleksnom slučaju vrijedi teorem 2.4. Za konvergentne nizove $(a_n)_n$, $a_n = \alpha_n + \beta_n i$, $\forall n \in \mathbb{N}$ i $(b_n)_n$, $b_n = \gamma_n + \delta_n i$, $\forall n \in \mathbb{N}$, imamo

$$\lim_{n} (a_n + b_n) = \lim_{n} ((\alpha_n + \gamma_n) + (\beta_n + \delta_n)i) = \lim_{n} (\alpha_n + \gamma_n) + \lim_{n} (\beta_n + \delta_n)i =$$

$$= (\lim_{n} \alpha_n + \lim_{n} \beta_n i) + (\lim_{n} \gamma_n + \lim_{n} \delta_n i) = \lim_{n} a_n + \lim_{n} b_n.$$

Naravno, i za množenje imamo

$$\lim_{n} (a_{n}b_{n}) = \lim_{n} ((\alpha_{n}\gamma_{n} - \beta_{n}\delta_{n}) + (\alpha\delta_{n} + \beta_{n}\gamma)i =$$

$$= (\lim_{n} \alpha_{n} \lim_{n} \gamma_{n} - \lim_{n} \beta_{n} \lim_{n} \delta_{n}) + (\lim_{n} \alpha \lim_{n} \delta_{n} + \lim_{n} \beta_{n} \lim_{n} \gamma)i) =$$

$$= (\lim_{n} \alpha_{n} + \lim_{n} \beta_{n}i)(\lim_{n} \gamma_{n} + \lim_{n} \delta_{n}i) = \lim_{n} a_{n} \lim_{n} b_{n}.$$

Također vrijedi i teorem 2.7. o ograničenom nizu. Ako je kompleksni niz $(a_n)_n = (\alpha_n + \beta_n i)_n$ ograničen, onda su ograničeni njegovi komponentni nizovi. Sada pomoću korolara 2.3 imamo njihove monotone podnizove s istim indeksima $(\alpha_{p_n})_n$ i $(\beta_{p_n})_n$, pa smo u mogućnosti konstruirati konvergentan podniz $(a_{p_n})_n = (\alpha_{p_n} + \beta_{p_n} i)_n$ kompleksnog niza $(a_n)_n$.

Primjer 2.9. Neka je $a \in \mathbb{C}$, |a| < 1. Tada je $\lim_{n \to \infty} a^n = 0$.

Zbog $|a^n-0|=|a^n|-0=|a|^n-0$ bez smanjenja općenitosti možemo uzeti 0< a<1. Tada vrijedi $a^{n+1}< a^n, \ \forall n\in \mathbb{N}, \ \text{tj. niz } (a^n)_n$ je strogo padajući. Po teoremu 2.3. $\lim_{n\to\infty}a^n=\alpha=\inf\{a^n;n\in\mathbb{N}\}\geq 0$. Sada iz $\forall n\in \mathbb{N}, \ \alpha\leq a^n, \ \text{imamo} \ \forall n\in \mathbb{N}, \ \frac{\alpha}{a}\leq a^{n-1}$. Iz svojstva infimuma slijedi $\frac{\alpha}{a}\leq \alpha\Rightarrow \alpha(1-a)\leq 0\Rightarrow \alpha\leq 0\Rightarrow \alpha=0$.

3 Limes funkcije i neprekidnost funkcije

U ovom poglavlju obrađujemo važne pojmove limesa funkcije i neprekidnosti funkcije. Želimo intuitivno promišljanje o tim pojmovima pretvoriti u strogi matematički jezik, tako da omogućimo egzaktno korištenje tih pojmova na funkcijama s kojima radimo.

3.1 Limes funkcije

Neka su zadane funkcije $a:\mathbb{N}\to\mathbb{R},\ a(n)=\frac{1}{n},\ \forall n\in\mathbb{N}\ \mathrm{i}\ f:\langle 0,+\infty\rangle\to\mathbb{R},\ f(x)=\frac{1}{x},\ \forall x\in\mathbb{R}.$ Prva funkcija je niz i u prethodnom poglavlju smo dobro proučili što znači $\lim_{n\to\infty}\frac{1}{n}=0.$ Što se tiče funkcije f, prilično je jasno intuitivno poimanje pojma $\lim_{x\to\infty}\frac{1}{x}=0.$ Malo je manje jasno kako u vezu dovesti $\lim_{x\to 1}\frac{1}{x}=1$ i analognu priču s nizom. Kod niza nismo u mogućnosti konstruirati proces približavanja argumenata n k broju 1, dok kod realnih brojeva je to moguće. U slijedećoj definiciji dana je veza limesa funkcije i limesa niza.

Definicija 3.1. Neka je $I \subseteq \mathbb{R}$ otvoren interval i $c \in I$. Za funkciju $f: I \setminus \{c\} \to \mathbb{R}$ kažemo da ima limes u točki c jednak L ako **za svaki** niz $(c_n)_n$ u $I \setminus \{c\}$ vrijedi:

$$(\lim_{n\to\infty} c_n = c) \Rightarrow (\lim_{n\to\infty} f(c_n) = L).$$

Tada pišemo $\lim_{x\to c} f(x) = L$.

Iz definicije je vidljivo da je približavanje broja x prema c ekvivalentno približavanju svih nizova koji konvergiraju kc. Dakle, u definiciji je potrebno promatrati sve takve nizove, a ne samo jedan niz ili njih konačno mnogo.

Tada se slike tih nizova po funkciji f moraju približavati istom broju L. S druge strane, nizovi koji konvergiraju kc imaju točke i lijevo i desno od c, pa je prirodno pretpostaviti da je točka c iz nekog otvorenog intervala koji je sadržan u domeni funkcije f.

Prethodni pojam je moguće opisati i bez upotrebe nizova. To je sadržaj tzv Cauchyjeve definicije limesa funkcije u točki, koju dokazujemo u sljedećem teoremu.

Teorem 3.1 (Cauchyjeva definicija limesa). Neka je $I \subseteq \mathbb{R}$ otvoren interval, $c \in I$ if $: I \setminus \{c\} \to \mathbb{R}$. Limes funkcije f u točki c postoji i $\lim_{x \to c} f(x) = L$ ako i samo ako vrijedi

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in I) ((0 < |x - c| < \delta) \Rightarrow (|f(x) - L| < \varepsilon)). \tag{3.1}$$

Dokaz: Neka vrijedi (3.1). Uzmimo bilo koji niz $(c_n)_n$ u $I \setminus \{c\}$ takav da je $c = \lim_n c_n$, tj.

$$(\forall \delta > 0)(\exists n_{\delta} \in \mathbb{N})(\forall n \in \mathbb{N})((n > n_{\delta}) \Rightarrow (|c_n - c| < \delta)). \tag{3.2}$$

Pokažimo da je tada $\lim_n f(c_n) = L$, tj.

$$(\forall \varepsilon > 0)(\exists n_{\varepsilon} \in \mathbb{N})(\forall n \in \mathbb{N})((n > n_{\varepsilon}) \Rightarrow (|f(c_n) - L| < \varepsilon)). \tag{3.3}$$

Za $\varepsilon > 0$ postoji $\delta > 0$ tako da vrijedi (3.1). Za taj δ postoji n_{δ} tako je ispunjeno (3.2). Uzmimo sada $n_{\varepsilon} = n_{\delta}$ i za $\forall n \in \mathbb{N}$ imamo

$$(n > n_{\varepsilon}) \Rightarrow (|c_n - c| < \delta) \Rightarrow (|f(c_n) - L| < \varepsilon),$$

a to je upravo (3.3).

Obratno, neka je $\lim_{x\to c} f(x) = L$, tj. vrijedi definicija 3.1. i neka ne vrijedi (3.1), tj.

$$(\exists \varepsilon > 0)(\forall \delta > 0)(\exists x_{\delta} \in I)((0 < |x_{\delta} - c| < \delta) \land (|f(x_{\delta}) - L| \ge \varepsilon > 0)). (3.4)$$

Sada za svaki $n \in \mathbb{N}$ uzmimo $\delta_n = \frac{1}{n}$ u 3.4. i dobijemo $c_n = x_{\frac{1}{n}}$. Tako smo došli do niza $(c_n)_n$ u $I \setminus \{c\}$ za koji vrijedi $|c_n - c| < \frac{1}{n}$ i $|f(c_n) - L| \ge \varepsilon > 0$, dakle, $\lim_n c_n = c$, a niz $(f(c_n))_n$ ne konvergira k L (kontradikcija s definicijom 3.1.). Dakle, ako je $\lim_{x \to c} f(x) = L$, onda vrijedi (3.1).

Napomena 3.1. Cauchyjeva definicija limesa funkcije ima jednostavnu geometrijsku interpretaciju koja glasi:

Za svaku okolinu $\langle L - \varepsilon, L + \varepsilon \rangle$ broja L postoji okolina $\langle c - \delta, c + \delta \rangle$ broja c koja se, s izuzetkom točke c, preslikava u okolinu $\langle L - \varepsilon, L + \varepsilon \rangle$, tj.

$$f(\langle c - \delta, c + \delta \rangle \setminus \{c\}) \subseteq \langle L - \varepsilon, L + \varepsilon \rangle.$$

Limes funkcije je u skladu sa operacijama zbrajanja i množenja s funkcijama. To je posljedica činjenice da je limes niza u skladu s tim operacijama i definicije 3.1.

Teorem 3.2. Neka je $I \subseteq \mathbb{R}$ otvoren interval, $c \in I$ i $f, g : I \setminus \{c\} \to \mathbb{R}$ za koje postoje $\lim_{x \to c} f(x)$ i $\lim_{x \to c} g(x)$. Tada vrijedi:

- 1. Funkcija $f \pm g$ ima limes u c $i \lim_{x \to c} (f(x) \pm g(x)) = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x)$.
- 2. Za svaki $\lambda \in \mathbb{R}$ funkcija λf ima limes u c i $\lim_{x \to c} \lambda f(x) = \lambda \lim_{x \to c} f(x)$.
- 3. Funkcija fg ima limes u c i $\lim_{x\to c} (f(x)g(x)) = \lim_{x\to c} f(x) \lim_{x\to c} g(x)$.
- 4. Ako je $g(x) \neq 0$, $\forall x \in I \setminus \{c\}$ i $\lim_{x \to c} g(x) \neq 0$, funkcija $\frac{f}{g}$ ima limes $u \in I$ i $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)}$.
- 5. Funkcija |f| ima limes $u c i \lim_{x \to c} |f(x)| = |\lim_{x \to c} f(x)|$.

Dokaz: Sve tvrdnje slijede iz odgovarajućih tvrdnji u teoremu 2.4. za nizove $(f(c_n))_n$ i $(g(c_n))_n$.

Teorem 3.3 (teorem o sendviču). Neka je $I \subseteq \mathbb{R}$ otvoren interval, $c \in I$ i $f, g: I \setminus \{c\} \to \mathbb{R}$ za koje postoje $\lim_{x \to c} f(x)$ i $\lim_{x \to c} g(x)$.

- 1. Ako je $f(x) \leq g(x), \forall x \in I \setminus \{c\}, \text{ onda je } \lim_{x \to c} f(x) \leq \lim_{x \to c} g(x).$
- 2. $ako\ je\ h: I\setminus\{c\}\to\mathbb{R}\ takva\ da\ vrijedi\ f(x)\le h(x)\le g(x),\ \forall x\in I\setminus\{c\}\ i$ $\lim_{x\to c}f(x)=\lim_{x\to c}g(x)=L,\ onda\ funkcija\ h\ ima\ limes\ u\ c\ i\lim_{x\to c}h(x)=L.$

Dokaz: Tvrdnje slijede iz odgovarajućih tvrdnji u teoremu 2.5. za nizove $(f(c_n))_n, (g(c_n))_n$ i $(h(c_n))_n$.

Primjer 3.1. Pokazati da je $\lim_{x\to 0} \frac{\sin x}{x} = 1$.

Na trigonometrijskoj kružnici je vidljivo da je duljina luka koji odgovara vrijednosti kuta $\alpha>0$ u radijanima veća od duljine tetive toga luka koja je hipotenuza pravokutnog trokuta $\triangle ACD$ čija je jedna kateta duljine $\sin\alpha$, tj. $\sin\alpha<\alpha$ za $\alpha>0$. Odatle imamo nejednakost $\frac{\sin x}{x}<1$, za x>0. Zbog neparnosti brojnika i nazivnika, ta nejednakost vrijedi za sve $x\neq 0$. Slično, usporedimo li površinu kružnog isječka $P_{OAD}=\frac{1}{2}\alpha$ i površinu trokuta $P_{\triangle OBD}=\frac{1}{2}\operatorname{tg}\alpha$, slijedi $\alpha<\operatorname{tg}\alpha$, tj. $\cos x<\frac{\sin x}{x}$ za $0< x<\frac{\pi}{4}$. Zbog parnosti funkcija s obje strane nejednakosti isto vrijedi za sve $x\neq 0$. Dakle, imamo nejednakosti $\cos x<\frac{\sin x}{x}<1$, za sve $0<|x|<\frac{\pi}{4}$. Zbog $\lim_{x\to 0}\cos x=1$ i teorema 3.3.

slijedi
$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

Primjer 3.2. Pokazati da je
$$\lim_{x\to 0} e^x = 1$$
 i $\lim_{x\to 0} \frac{e^x - 1}{x} = 1$.

Eksponencijalnu funkciju smo definirali u (2.7) pomoću funkcije $f(x) = \lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n$ iz propozicije 2.2. Za x>0 i $n\in\mathbb{N}$ vrijedi

$$1 \le \frac{\left(1 + \frac{x}{n}\right)^n - 1}{x} = \frac{1}{n} \left[\left(1 + \frac{x}{n}\right)^{n-1} + \dots + 1 \right] \le \left(1 + \frac{x}{n}\right)^{n-1},$$

Odakle za $n \to \infty$ imamo

$$1 \le \frac{f(x) - 1}{x} \le f(x). \tag{3.5}$$

Za x < 0, zamjenom x s -x u (3.5) i dijeljenjem s f(-x) > 0 dobijemo

$$\frac{1}{f(-x)} \le \frac{\frac{1}{f(-x)} - 1}{x} \le 1. \tag{3.6}$$

Iz (3.5) i (3.6) pomoću definicije eksponencijalne funkcije (2.7), za svaki $x \neq 0$ imamo

$$\min\{1, e^x\} \le \frac{e^x - 1}{x} \le \max\{1, e^x\},\tag{3.7}$$

a odatle za |x| < 1 slijedi

$$|e^x - 1| \le e|x|. \tag{3.8}$$

Iz (3.8) pomoću teorema 3.3 slijedi $\lim_{x\to 0} e^x = 1$, a odatle zbog $\min\{1,e^x\} = \frac{1}{2}(1+e^x-|1-e^x|)$, $\max\{1,e^x\} = \frac{1}{2}(1+e^x+|1-e^x|)$ i teorema 3.2 imamo $\lim_{x\to 0} \min\{1,e^x\} = 1$ i $\lim_{x\to 0} \max\{1,e^x\} = 1$. Sada iz (3.7) pomoću teorema 3.3 dobijemo drugu tvrdnju.

3.1.1 Limes u $\overline{\mathbb{R}}$

Pojam limesa funkcije možemo proširiti na slučajeve kada argument funkcije teži k $\pm\infty$ ili kada vrijednost funkcije teži k $\pm\infty$ ili oboje. Najprirodnije je to učiniti tako da iskoristimo geometrijsku interpretaciju limesa iz napomene 3.1., s tim da prilagodimo pojam okoline novim situacijama. Već smo kod limesa niza vidjeli da kao okoline točke $+\infty$ mogu poslužiti intervali $\langle E, +\infty \rangle$, gdje je E>0, slično, za okoline točke $-\infty$ uzimamo intervale $\langle -\infty, -E \rangle$, gdje je E>0.

Definicija 3.2.

1. Za funkciju $f:\langle a,+\infty\rangle\to\mathbb{R}$ kažemo da ima limes u točki $+\infty$ jednak $L\in\mathbb{R}$ ako vrijedi:

$$(\forall \varepsilon > 0)(\exists \Delta > 0)(\forall x \in \langle a, +\infty \rangle) ((x > \Delta) \Rightarrow (|f(x) - L| < \varepsilon).$$

Tada pišemo
$$\lim_{x\to +\infty} f(x) = f(+\infty) = L.$$

2. Neka je $I \subseteq \mathbb{R}$ otvoren interval i $c \in I$. Za funkciju $f : I \setminus \{c\} \to \mathbb{R}$ kažemo da ima limes u točki c jednak $+\infty$ ako vrijedi:

$$(\forall E > 0)(\exists \delta > 0)(\forall x \in I) ((0 < |x - c| < \delta) \Rightarrow (f(x) > E)).$$

Tada pišemo $\lim_{x\to c} f(x) = +\infty$.

3. Za funkciju $f:\langle -\infty,a\rangle \to \mathbb{R}$ kažemo da ima limes u točki $-\infty$ jednak $-\infty$ ako vrijedi:

$$(\forall E > 0)(\exists \Delta > 0)(\forall x \in \langle -\infty, a \rangle) \ ((x < -\Delta) \Rightarrow (f(x) < -E).$$

Tada pišemo
$$\lim_{x \to -\infty} f(x) = f(-\infty) = -\infty$$
.

Napomena 3.2. U slučaju 1. konačnog limesa u beskonačnosti, tj. $c = +\infty$ ili $c = -\infty$, vrijede svi rezultati u teoremima 3.2 i 3.3. kao i u slučaju kada je $c \in \mathbb{R}$.

Primjer 3.3. Pokažimo da za bilo koji polinom P vrijedi $\lim_{x \to +\infty} P(x)e^{-x} = 0$. Pošto je P linearna kombinacija potencija dovoljno je dokazati da za bilo koji $n \in \mathbb{N}$ vrijedi $\lim_{x \to +\infty} x^n e^{-x} = 0$. Naime, u propoziciji 2.2. smo pokazali da za bilo koji $m \in \mathbb{N}$ i x > 0 imamo $(1 + \frac{x}{m})^m < e^x$, a odatle slijede nejednakosti $0 < \frac{x^n}{e^x} < \frac{x^n}{(1 + \frac{x}{m})^m}$, što za m > n po teoremu o sendviču daje tvrdnju.

Posebno, slučaj $\lim_{x\to +\infty} f(x) = L$ direktno poopćava limes niza. Tako i neki rezultati koji vrijede za nizove imaju svoj analogon u ovom slučaju. Štoviše, i tehnika dokaza je jednaka.

Teorem 3.4. Neka je $f: \langle a, +\infty \rangle \to \mathbb{R}$ rastuća funkcija na $\langle a, +\infty \rangle$. Limes od f $u + \infty$ postoji ako i samo ako je f ograničena na $\langle a, +\infty \rangle$. Tada vrijedi $\lim_{x \to +\infty} f(x) = \sup_{\langle a, +\infty \rangle} f$.

Dokaz: Neka je f ograničena na $\langle a, +\infty \rangle$, tj. postoji $L = \sup_{\langle a, +\infty \rangle} f$.

Tada vrijedi:

(i)
$$\forall x > a, f(x) \le L$$
,

(ii)
$$\forall \varepsilon > 0, \exists x_{\varepsilon} > a, L - \varepsilon < f(x_{\varepsilon}).$$

Odatle za $\varepsilon > 0$ i $\Delta = x_{\varepsilon}$, zbog rasta funkcije f, imamo

$$(x>\Delta) \Rightarrow (L-\varepsilon < f(x_\varepsilon) \le f(x) \le L < L+\varepsilon) \Rightarrow (|f(x)-L| < \varepsilon),$$
tj.
$$\lim_{x\to +\infty} f(x) = L.$$

3.1.2 Jednostrani limes u \mathbb{R}

Kada bismo u definiciji 3.1. limesa funkcije f u točki c promatrali samo nizove koji konvergiraju kc s lijeve strane, ili samo rastuće nizove u $I \setminus \{c\}$, dobili bismo definiciju limesa slijeva funkcije u točki c. Na isti način bismo definirali i limes zdesna funkcije u točki c.

Sada ćemo dati Cauchyjevu definiciju jednostranog limesa funkcije.

Definicija 3.3.

1. Neka je $I \subseteq \mathbb{R}$ otvoren interval i $c \in I$. Za funkciju $f : I \setminus \{c\} \to \mathbb{R}$ kažemo da ima **limes slijeva** u točki c jednak L ako vrijedi:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in I) ((0 < c - x < \delta) \Rightarrow (|f(x) - L| < \varepsilon)). (3.9)$$
 Tada pišemo $\lim_{x \nearrow c} f(x) = \lim_{x \to c^{-}} f(x) = f(c^{-}) = L.$

2. Neka je $I \subseteq \mathbb{R}$ otvoren interval i $c \in I$. Za funkciju $f : I \setminus \{c\} \to \mathbb{R}$ kažemo da ima **limes zdesna** u točki c jednak L ako vrijedi:

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in I) \ ((0 < x - c < \delta) \Rightarrow (|f(x) - L| < \varepsilon)). \ (3.10)$$
 Tada pišemo $\lim_{x \searrow c} f(x) = \lim_{x \to c+} f(x) = f(c+) = L.$

Jednostrani limes funkcije ima ista svojstva kao i limes funkcije, dakle, vrijede teoremi 3.2. i 3.3 ako u njima limes zamijenimo s lijevim ili desnim limesom.

Primjer 3.4. Funkcija signum (predznak) definirana s

$$\operatorname{sgn}(x) = \begin{cases} \frac{x}{|x|} & x \neq 0, \\ 0 & x = 0. \end{cases}$$

nema limes u nuli, ali ima i lijev i desni limes u nuli i oni su različiti. Za svaki x < 0 je $\operatorname{sgn}(x) = -1$, a za x > 0 je $\operatorname{sgn}(x) = 1$. Odatle zaključujemo da za svaki niz koji konvergira k nuli slijeva, pripadni niz funkcijskih vrijednosti ima limes jednak -1, a za one s desna je jednak 1. To znači da funkcija sgn nema limesa u nuli, ali je zato $\lim_{x \to 0-} \operatorname{sgn}(x) = -1$ i $\lim_{x \to 0+} \operatorname{sgn}(x) = 1$. \square

Veza između limesa funkcije i jednostranih limesa funkcije dana je slijedećim teoremom.

Teorem 3.5. Neka je $I \subseteq \mathbb{R}$ otvoren interval, $c \in I$ if $: I \setminus \{c\} \to \mathbb{R}$. Za funkciju f postoji $\lim_{x \to c} f(x)$ ako i samo ako postoje i jednaki su $\lim_{x \to c-} f(x)$ i $\lim_{x \to c+} f(x)$.

Dokaz: Ako postoji $\lim_{x\to c} f(x) = L$, onda vrijedi (3.1), pa onda (3.9) i (3.10)) vrijede s istim L. Obratno, ako vrijede (3.9) i (3.10) s istim L, onda za dano $\varepsilon > 0$ uzmimo minimalnog $\delta > 0$ od onih koji postoje po (3.9) i (3.10). Za taj $\delta > 0$ vrijedi implikacija u (3.1).

Interesantno je slijedeće svojstvo monotonih funkcija.

Teorem 3.6. Neka je $I \subseteq \mathbb{R}$ otvoren skup i $f: I \to \mathbb{R}$ monotona funkcija. U svakoj točki $c \in I$ funkcija f ima lijevi i desni limes. Ako f raste, onda je $f(c-) \leq f(c) \leq f(c+)$, a ako pada $f(c-) \geq f(c) \geq f(c+)$. Ako je f ograničena na I, onda postoje $f((\inf I)+)$ i $f((\sup I)-)$.

Dokaz: 1. Neka je f rastuća na I. Skup $S = \{f(x); x \in I, x < c\}$ je odozgo ograničen s f(c), pa postoji $d = \sup S$. Ako je f ograničena na I, onda to vrijedi i za $c = \sup I \in \mathbb{R}$. Pokažimo da je d = f(c-), tj.

$$\forall \varepsilon > 0, \ \exists \delta > 0, \ \forall x \in I, \ (c - \delta < x < c) \Rightarrow (|f(x) - d| < \varepsilon).$$

Pošto je $d = \sup S$ imamo

- a) $\forall x \in I, (x < c) \Rightarrow (f(x) \le d),$
- b) $\forall \varepsilon > 0, \exists x_{\varepsilon} \in I, x_{\varepsilon} < c, d \varepsilon < f(x_{\varepsilon}).$

Uzmimo sada $\delta = c - x_{\varepsilon} > 0$ pa zbog rasta funkcije f imamo:

$$(c - \delta = x_{\varepsilon} < x < c) \Rightarrow (d - \varepsilon < f(x_{\varepsilon}) \le f(x) \le d < d + \varepsilon) \Rightarrow (|f(x) - d| < \varepsilon).$$

Analogno se dokazuje postojanje f(c+). Tada je $f(c+) = \inf\{f(x); x \in I, x > c\}$. Slučaj kada je f padajuća funkcija se dokazuje tako da se prethodni slučaj primijeni na funkciju -f.

3.2 Neprekidnost funkcije u točki

Intuitivno geometrijsko poimanje pojma neprekidnosti funkcije povezano je s činjenicom da od takve funkcije očekujemo da joj je graf krivulja povučena u jednom potezu, tj. nije pokidana. U tom smislu je za očekivati da je funkcija sgn iz primjera 3.4. prekidna u točki 0. Dakle, za očekivati je da je postojanje limesa u točki nužan uvjet da bi funkcija u toj točki bila neprekidna. Iz grafa funkcije na slici desno je vidljivo da to nije i dovoljan uvjet. Ta funkcija ima limes u točki c, ali je točka (c, f(c)) izdvojena, tj. limes nije jednak vrijednosti funkcije. I to je vrsta prekida, iako uklonjiva.

Prethodna razmatranja vode nas na sljedeću definiciju pojma neprekidnosti funkcije.

Definicija 3.4. Neka je $I \subseteq \mathbb{R}$ otvoren interval i točka $c \in I$. Za funkciju $f: I \to \mathbb{R}$ kažemo da je **neprekidna** u točki c ako postoji limes funkcije f u točki c i $\lim_{x \to c} f(x) = f(c)$. Funkcija je neprekidna na skupu I ako je neprekidna u svakoj točki $c \in I$.

Teorem 3.7 (Cauchyjeva definicija). Neka je $I \subseteq \mathbb{R}$ otvoren interval, $c \in I$ i funkcija $f: I \to \mathbb{R}$.

Funkcija f je neprekidna u točki c ako i samo ako vrijedi

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in I) ((|x - c| < \delta) \Rightarrow (|f(x) - f(c)| < \varepsilon)). \tag{3.11}$$

Dokaz: Slijedi direktno iz definicije 3.4. i teorema 3.1.

Kako se uvjet (3.11) upotrebljava kod provjere neprekidnosti funkcije u točki? Uzmemo $\varepsilon > 0$ po volji i trebamo naći ili barem dokazati postojanje $\delta > 0$ tako da vrijedi gornja implikacija. Primijetimo, ako smo za neki $\varepsilon_0 > 0$ našli odgovarajući $\delta > 0$, onda je taj δ dobar i za svaki $\varepsilon > \varepsilon_0$. Obratno, ako smo za neki $\varepsilon > 0$ našli odgovarajući $\delta_0 > 0$, onda je svaki $0 < \delta < \delta_0$ dobar i za taj ε .

Cauchyjeva definicija neprekidnosti funkcije u točki (3.11) ima jasnu skupovnu interpretaciju koja glasi:

Za svaki interval polumjera ε oko slike f(c) postoji interval polumjera δ oko c koji se u njega preslikava, tj.

$$f(\langle c - \delta, c + \delta \rangle) \subseteq \langle f(c) - \varepsilon, f(c) + \varepsilon \rangle.$$

Dajemo nekoliko primjera neprekidnih funkcija. Njihovu neprekidnost dokazujemo upotrebom Cauchyjeve definicije.

Primjer 3.5. Pokažimo da je konstantna funkcija $f: \mathbb{R} \to \mathbb{R}$, f(x) = d, $\forall x \in \mathbb{R}$, neprekidna u svakoj točki $c \in \mathbb{R}$. Jasno je da uvijek vrijedi implikacija $(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in I)$ $((|x - c| < \delta) \Rightarrow (0 = |d - d| < \varepsilon))$.

Primjer 3.6. Pokažimo da je funkcija $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x, \forall x \in \mathbb{R}$, neprekidna u svakoj točki $c \in \mathbb{R}$. Uzmimo $\varepsilon > 0$ po volji i neka je $\delta = \varepsilon$. Tada vrijedi implikacija $(\forall x \in I)$ $((|x - c| < \delta = \varepsilon) \Rightarrow (|x - c| < \varepsilon))$, tj. f je neprekidna u c.

Primjer 3.7. Funkcija $f: \mathbb{R} \to \mathbb{R}$, f(x) = |x|, $\forall x \in \mathbb{R}$, neprekidna je u svakoj točki $c \in \mathbb{R}$. Uzmimo $\varepsilon > 0$ po volji i neka je $\delta = \varepsilon$. Zbog nejednakosti 1.17 imamo

$$(\forall x \in I) \ ((|x - c| < \delta = \varepsilon) \Rightarrow (||x| - |c|| \le |x - c| < \delta = \varepsilon)).$$

Primjer 3.8. Pokažimo da je funkcija $f: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2$, $\forall x \in \mathbb{R}$, neprekidna u svakoj točki $c \in \mathbb{R}$. Za $c \in \mathbb{R}$ i za bilo koji $\varepsilon > 0$ uzmimo $\delta = \sqrt{c^2 + \varepsilon} - |c| > 0$. Vrijedi

$$(|x-c| < \delta) \Rightarrow |x^2 - c^2| = |x-c||x+c| \le |x-c|(|x-c| + 2|c|) <$$
$$< \delta(\delta + 2|c|) = (\sqrt{c^2 + \varepsilon} - |c|)(\sqrt{c^2 + \varepsilon} + |c|) = \varepsilon.$$

Primjer 3.9. Pokažimo da je funkcija $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, \ f(x) = \frac{1}{x}, \ \forall x \in \mathbb{R} \setminus \{0\}$, neprekidna u svakoj točki $c \in \mathbb{R} \setminus \{0\}$. Za bilo koji $\varepsilon > 0$ uzmimo $\delta = \min\{\frac{|c|}{2}, \frac{\varepsilon|c|^2}{2}\}$. Imamo

$$(|x - c| < \delta) \Rightarrow \left\{ \begin{array}{l} (|x - c| < \frac{|c|}{2}) \Rightarrow (\frac{|c|}{2} < |x|) \Rightarrow (\frac{\varepsilon |c|^2}{2} < \varepsilon |x||c|) \\ (|x - c| < \frac{\varepsilon |c|^2}{2} \end{array} \right\} \Rightarrow$$

$$\Rightarrow (|x - c| < \varepsilon |x||c|) \Rightarrow \left(\frac{|x - c|}{|x||c|} < \varepsilon\right) \Rightarrow \left(\left|\frac{1}{x} - \frac{1}{c}\right| < \varepsilon\right).$$

Pogledajmo sada nekoliko primjera funkcija koje imaju prekid. Funkcija $f: I \to \mathbb{R}$ ima prekid u točki $c \in I$ ako nije neprekidna u c. To znači da možemo naći niz $(c_n)_n$ u $I \subseteq \mathbb{R}$ takav da je $\lim_n c_n = c$ i da niz $(f(c_n))_n$ ne konvergira k f(c). Negacija Cauchyjeve definicije glasi

$$(\exists \varepsilon > 0)(\forall \delta > 0)(\exists x \in I) \ ((|x - c| < \delta) \land (|f(x) - f(c)| \ge \varepsilon)). \tag{3.12}$$

Primjer 3.10. Za funkciju sgn definiranu u primjeru 3.4. je jasno da je neprekidna u svim točkama osim u točki 0. Funkcija je prekidna u nuli jer ne postoji limes funkcije u nuli. □

Primjer 3.11. Funkcija $f: \mathbb{R} \to \mathbb{R}$ definirana s

$$f(x) = \begin{cases} 1; & x \in \mathbb{Q}, \\ 0; & x \notin \mathbb{Q}. \end{cases}$$

je prekidna u svakoj točki. Neka je $c \in \mathbb{Q}$ i f(c) = 1. Uzmimo niz $(c_n)_n$ iz $\mathbb{R} \setminus \mathbb{Q}$ koji konvergira k c. Tada je $f(c_n) = 0$, pa niz $(f(c_n))_n$ ne konvergira k 1. Analogno, za $c \notin \mathbb{Q}$ i f(c) = 0, uzmimo niz $(c_n)_n$ iz \mathbb{Q} koji konvergira k c. Tada je $f(c_n) = 1$, pa niz $(f(c_n))_n$ ne konvergira k c.

Primjer 3.12. Funkcija $f: \mathbb{R} \to \mathbb{R}$ definirana s

$$f(x) = \begin{cases} x; & x \in \mathbb{Q}, \\ 0; & x \notin \mathbb{Q}. \end{cases}$$

je prekidna u svakoj točki osim u točki 0, gdje je neprekidna.

Da je f prekidna u svakoj točki $c \neq 0$ vidi se slično kao u prethodnom primjeru. Naime, za $c \in \mathbb{Q}$ uzmimo niz $(c_n)_n$ iz $\mathbb{R} \setminus \mathbb{Q}$ koji konvergira k c. Tada je $f(c_n) = 0$, pa niz $(f(c_n))_n$ ne konvergira k c. Za $c \notin \mathbb{Q}$ i f(c) = 0, uzmimo niz $(c_n)_n$ iz \mathbb{Q} koji konvergira k c. Tada je $f(c_n) = c_n$, pa niz $(f(c_n))_n$ konvergira k c, a ne k c0. Ako je c = 0, onda za niz c0, koji konvergira k c0 i niz c1, konvergira k c2.

Iz prethodnih primjera je vidljivo da prekidnost ili neprekidnost u nekoj točki nema utjecaj na prekidnost ili neprekidnost u ostalim točkama.

Ipak, činjenica da je funkcija neprekidna u nekoj točki ima utjecaj na ponašanje funkcije u okolini te točke. O tome se radi u slijedećim lemama.

Lema 3.1. Neka je $I \subseteq \mathbb{R}$ otvoren interval, $c \in I$ i funkcija $f: I \to \mathbb{R}$ neprekidna u c. Tada je f lokalno ograničene oko c, tj. $\exists \eta > 0$ i $\exists M > 0$ tako da je $\forall x \in I$, $(|x - c| < \eta) \Rightarrow (|f(x)| < M)$.

Dokaz: Iz Cauchyjeve definicije za $\varepsilon=1$ postoji $\delta>0$ takav da vrijedi

$$(\forall x \in I) \ ((|x - c| < \delta) \Rightarrow (|f(x)| \le |f(x) - f(c)| + |f(c)| < 1 + |f(c)|)).$$

Dakle, tvrdnja vrijedi za $\eta = \delta$ i M = 1 + |f(c)|.

Lema 3.2. Neka je $I \subseteq \mathbb{R}$ otvoren interval, $c \in I$ i funkcija $f : I \to \mathbb{R}$ neprekidna u c. Ako je $f(c) \neq 0$ onda funkcija lokalno oko c čuva predznak, tj. postoji $\delta > 0$ tako da

$$U$$
 slučaju $(f(c) > 0)$ vrijedi $(|x - c| < \delta) \Rightarrow (f(x) > \frac{1}{2}f(c) > 0)$,

a u slučaju
$$(f(c) < 0)$$
 vrijedi $(|x - c| < \delta) \Rightarrow (f(x) < \frac{1}{2}f(c) < 0)$.

Dokaz: U slučaju f(c)>0 uzmimo $\varepsilon=\frac{1}{2}f(c)>0$ pa iz (3.11) dobijemo $\delta>0$ takav da $\forall x\in I,$

$$(|x - c| < \delta) \Rightarrow (|f(x) - f(c)| < \frac{1}{2}f(c)) \Rightarrow$$

$$\Rightarrow (-\frac{1}{2}f(c) < f(x) - f(c) < \frac{1}{2}f(c)) \Rightarrow (f(x) > \frac{1}{2}f(c)).$$

U slučaju f(c) < 0 uzimamo $\varepsilon = -\frac{1}{2}f(c) > 0$ i postupamo analogno.

3.2.1 Neprekidnost i operacije s funkcijama

Neprekidnost je usklađena sa uobičajenim operacijama s realnim funkcijama. To je posljedica činjenice da je limes funkcije u skladu s tim operacijama. Stoga bez dokaza navodimo slijedeći teorem.

Teorem 3.8. Neka je $I \subseteq \mathbb{R}$ otvoren interval, $c \in I$ i neka su funkcije $f, g: I \to \mathbb{R}$ neprekidne u c. Tada vrijedi:

- 1. Za svaki $\lambda, \mu \in \mathbb{R}$ je funkcija $\lambda f + \mu g$ neprekidna u c.
- 2. Funkcija fg je neprekidna u c.
- 3. Ako je $g(x) \neq 0$, $\forall x \in I$, onda je funkcija $\frac{f}{g}$ neprekidna u c.

Dokaz: Tvrdnje 1. 2. i 3. slijede direktno iz definicije 3.4. i teorema 3.2. □

Korolar 3.1. Za svaki $n \in \mathbb{N}$ je funkcija $f : \mathbb{R} \to \mathbb{R}$, $f(x) = x^n$, $\forall x \in \mathbb{R}$ neprekidna na \mathbb{R} .

Dokaz: Indukcijom pomoću teorema 3.8.2.

Korolar 3.2. Svaki polinom je neprekidna funkcija na \mathbb{R} .

Dokaz: Polinom $P(x) = a_0 + a_1 x + \cdots + a_n x^n$ je linearna kombinacija potencija, pa je neprekidan po teoremu 3.8.1.

Korolar 3.3. Svaka racionalna funkcija je neprekidna na cijelom području definicije.

Dokaz: Racionalna funkcija $f(x) = \frac{P(x)}{Q(x)}$ je kvocijent neprekidnih funkcija, pa je neprekidna po teoremu 3.8.3.

Slijedeći rezultat se odnosi na usklađenost neprekidnosti i operacije kompozicije funkcija.

Teorem 3.9. Neka su $I, J \subseteq \mathbb{R}$ otvoreni intervali, $f: I \to \mathbb{R}$, $g: J \to \mathbb{R}$ funkcije za koje vrijedi $f(I) \subseteq J$, tj. dobro je definirana funkcija $g \circ f: I \to \mathbb{R}$. Ako je funkcija f neprekidna u točki $c \in I$ i funkcija g neprekidna u $d = f(c) \in J$, onda je $g \circ f$ neprekidna u c.

Dokaz: Da bismo dokazali neprekidnost funkcije $g\circ f$ po Cauchyjevoj definiciji, uzmimo $\varepsilon>0$ po volji. Po pretpostavci o neprekidnosti funkcije g u točki d za svaki $\varepsilon>0$ postoji $\eta>0$ tako da vrijedi

$$(\forall y \in J) ((|y - d| < \eta) \Rightarrow (|g(y) - g(d)| < \varepsilon)).$$

Isto tako, iz pretpostavke o neprekidnosti funkcije f u točki c za svaki $\eta>0$ postoji $\delta>0$ tako da vrijedi

$$(\forall x \in I) ((|x - c| < \delta) \Rightarrow (|f(x) - f(c)| < \eta)).$$

Sada imamo

$$(\forall x \in I) ((|x - c| < \delta) \Rightarrow (|f(x) - f(c)| < \eta) \Rightarrow (|g(f(x)) - g(f(c))| < \varepsilon)),$$

dakle, $g \circ f$ je neprekidna u c.

Korolar 3.4. Neka je $I \subseteq \mathbb{R}$ otvoren interval, $c \in I$ i neka su funkcije $f, g : I \to \mathbb{R}$ neprekidne u c. Tada su funkcije $h, k : I \to \mathbb{R}$ definirane s $h(x) = \max\{f(x), g(x)\}\ i \ k(x) = \min\{f(x), g(x)\}, \ \forall x \in I, \ neprekidne \ u \ c.$

Dokaz: Dokaz slijedi iz teorema 3.8. i teorema 3.9. jer se funkcije h i k mogu napisati u obliku

$$h = \frac{f+g+|f-g|}{2}$$
 i $k = \frac{f+g-|f-g|}{2}$.

3.2.2 Neprekidnost eksponencijalne funkcije na $\mathbb R$

Eksponencijalnu funkciju exp : $\mathbb{R} \to \langle 0, +\infty \rangle$ definirali smo u (2.7) pomoću rastuće funkcije $f: [0, +\infty) \to \langle 0, +\infty \rangle$ koja je limes niza funkcija $(f_n)_n$ iz (2.6).

Teorem 3.10. Funkcija exp : $\mathbb{R} \to \langle 0, +\infty \rangle$ je neprekidna na \mathbb{R} .

Dokaz: U primjeru 3.2 pokazali smo da vrijedi $\lim_{x\to 0} \exp(x) = 1 = \exp(0)$, tj. eksponencijalna funkcija je neprekidna u točki 0. Odatle za $c \in \mathbb{R}$ imamo $\lim_{x\to c} \exp(x) = \lim_{x\to c} \exp(x-c) \exp(c) = \lim_{x-c\to 0} \exp(x-c) \exp(c) = \exp(c)$, što po definiciji 3.4 znači neprekidnost funkcije u točki c.

Korolar 3.5. Hiperbolne funkcije su neprekidne na cijelom području definicije.

Dokaz: Funkcije sh i ch su linearne kombinacije funkcije exp i njene kompozicije s funkcijom $x \mapsto -x$, pa su neprekidne po teoremu 3.8.1. Funkcije th i cth su neprekidne kao kvocijenti od sh i ch po teoremu 3.8.3.

3.2.3 Neprekidnost trigonometrijskih funkcija

Teorem 3.11. Funkcija $\sin : \mathbb{R} \to [-1, 1]$ je neprekidna na \mathbb{R} .

Dokaz: U primjeru 3.1. koristili smo nejednakost $|\sin x| \le |x|, |x| < \frac{\pi}{2}$. Sada za bilo koji $\varepsilon > 0$ uzmimo $\delta = \varepsilon$ pa imamo

$$(|x-c|<\delta) \Rightarrow (|\sin x - \sin c| = 2|\sin(\frac{x-c}{2})||\cos(\frac{x+c}{2})| \le 2\frac{|x-c|}{2} < \delta = \varepsilon),$$

dakle, sin je neprekidna u c.

Korolar 3.6. Trigonometrijske funkcije su neprekidne na cijelom području definicije.

Dokaz: Vrijedi $\cos x = \sin(x + \frac{\pi}{2})$, pa je cos kompozicija neprekidnih funkcija te je neprekidna po teoremu 3.9. Funkcije tg i ctg su kvocijenti neprekidnih funkcija pa su neprekidne po teoremu 3.8.3.

3.2.4 Neprekidnost funkcije na segmentu

Neka je funkcija $f:[a,b]\to\mathbb{R}$, gdje je $[a,b]\subset\mathbb{R}$ segment. Za točke $c\in\langle a,b\rangle$ je jasno što znači neprekidnost te funkcije u c, jer smo pojam neprekidnosti definirali za točke koje leže u nekom otvorenom intervalu sadržanom u domeni funkcije. Da bismo definirali neprekidnost i u rubnim točkama segmenta [a,b] poslužimo se slijedećom definicijom.

Definicija 3.5. Neka je $[a,b] \subseteq \mathbb{R}$ i funkcija $f:[a,b] \to \mathbb{R}$ različita od konstantne funkcije. Kažemo da je funkcija f neprekidna na [a,b] ako postoji otvoren interval $I \subseteq \mathbb{R}$ i funkcija $g:I \to \mathbb{R}$ takva da vrijedi:

1.
$$[a,b] \subset I$$
,

2.
$$g(x) = f(x), \forall x \in [a, b]$$
 i

3. g je neprekidna na I.

Analogno definiramo neprekidnost na skupovima oblika [a, b) i $\langle a, b \rangle$.

Iako se čini da zahtjev za neprekidnošću funkcije na segmentu nije bitno različit od zahtjeva za neprekidnošću na otvorenom intervalu, slijedeći važni teorem to opovrgava.

Teorem 3.12 (Bolzano-Weierstrass). Neka je funkcija $f : [a, b] \to \mathbb{R}$ nepre-kidna na segmentu $[a, b] \subseteq \mathbb{R}$. Tada je f([a, b]) = [m, M] također segment.

Dokaz: Tvrdnja teorema može se razdvojiti na tri dijela:

- 1. f je ograničena na [a,b], tj. postoje $m=\inf_{[a,b]}f$ i $M=\sup_{[a,b]}f$.
- 2. Funkcija f postiže svoj minimum i maksimum na [a, b], tj. postoje $x_m, x_M \in [a, b], f(x_m) = m$ i $f(x_M) = M$.
- 3. Za svaki $C \in \langle m, M \rangle$ postoji $c \in [a, b]$ tako da je C = f(c).

Dokaz tvrdnje 1.: Kada bi funkcija f bila neograničena odozgo, za svaki $n \in \mathbb{N}$ bi postojao $x_n \in [a,b]$ takav da vrijedi $f(x_n) > n$. Niz $(x_n)_n$ je u [a,b] pa je ograničen. Po teoremu 2.7. postoji njegov konvergentan podniz $(x_{p_n})_n$ i neka je $\lim_n x_{p_n} = c$. Usklađenost limesa niza i uređaja na \mathbb{R} povlači $c \in [a,b]$. Zbog neprekidnosti funkcije f vrijedi $\lim_n f(x_{p_n}) = f(c)$, tj. niz $(f(x_{p_n}))_n$ je konvergentan, pa je prema teoremu 2.1. ograničen. To je kontradikcija s izborom niza, tj. s $f(x_{p_n}) > p_n \geq n$, $\forall n \in \mathbb{N}$. Dakle, funkcija f je odozgo omeđena. Omeđenost odozdo funkcije f se dokazuje tako da se prethodni dokaz primjeni na funkciju -f.

Dokaz tvrdnje 2.: Ako je $M \in \mathcal{R}(f)$ onda je $M = \max_{[a,b]} f$. Pretpostavimo da $M \notin \mathcal{R}(f)$. Pošto je $M = \sup_{[a,b]} f$, onda postoji niz $(a_n)_n$ u $\mathcal{R}(f)$ takav da je $M = \lim_n a_n$. Zbog $a_n = f(x_n)$, $\forall n \in \mathbb{N}$, imamo niz $(x_n)_n$ u [a,b] koji je ograničen. Tada postoji njegov podniz $(x_{p_n})_n$ koji je konvergentan, tj. $\lim_n x_{p_n} = c \in [a,b]$. Zbog neprekidnosti funkcije f vrijedi $\lim_n a_{p_n} = \lim_n f(x_{p_n}) = f(c)$. No, podniz konvergentnog niza ima isti limes kao i niz, tj. $M = f(c) \in \mathcal{R}(f)$ (kontradikcija). Analogno se dokazuje da je $m \in \mathcal{R}(f)$. Dokaz tvrdnje 3.: Neka je $C \in \langle m, M \rangle$ bilo koji broj. Zbog određenosti pretpostavimo da je $x_m < x_M$. Označimo $A = \{x \in [x_m, x_M]; f(x) < C\}$. Zbog $f(x_m) < C$ je $x_m \in A$, pa je $A \neq \emptyset$. Neka je $c = \sup A$. Uzmimo niz $(c_n)_n$ u A takav da je $c = \lim_n c_n$. Zbog $f(c_n) < C$ i neprekidnosti funkcije f vrijedi $f(c) = \lim_n f(c_n) \le C$. Za svaki $g \in [x_m, x_M]$, $g \in C$ 0, vrijedi $g \in C$ 1. Zbog $g \in C$ 2. Za svaki $g \in C$ 3. Uzmimo niz $g \in C$ 4. Valakav da je

$$c = \lim_n y_n$$
. Tada vrijedi $f(c) = \lim_n f(y_n) \ge C$. Dakle, $C = f(c)$.

Pokažimo neke jednostavne primjene prethodnog teorema.

Korolar 3.7. Za bilo koji $n \in \mathbb{N}$ je funkcija $f : [0, +\infty) \to [0, +\infty)$ definirana s $f(x) = x^n$ surjekcija.

Dokaz: Za bilo koje prirodne brojeve n, m > 1 vrijedi $m < m^n$, pa je m < f(m). Neka je C > 0 bilo koji broj. Tada po Arhimedovom aksiomu (teorem 1.6.) postoji $m \in \mathbb{N}$ takav da je f(0) = 0 < C < m < f(m). Zbog neprekidnosti funkcije f na segmentu [0, m] po teoremu 3.12. je $[0, f(m)] \subseteq \mathcal{R}(f)$, pa je i $C \in \mathcal{R}(f)$. Dakle, $\mathcal{R}(f) = [0, +\infty)$.

U dokazima surjektivnosti logaritamske, hiperbolnih i area funkcija koristili smo pretpostavku da je eksponencijalna funkcija surjekcija. Sada smo u stanju to dokazati.

Korolar 3.8. Funkcija exp : $\mathbb{R} \to \langle 0, +\infty \rangle$ je surjekcija.

Dokaz: Pokažimo najprije $n < 2^n$, $\forall n \in \mathbb{N}$. To je istina za n = 1, tj. $1 < 2^1$. Neka je sada $n < 2^n$. Tada vrijedi $n + 1 < 2^n + 1 < 2^n + 2^n = 2 \cdot 2^n = 2^{n+1}$. Zbog strogog rasta potencija na \mathbb{R}_+ imamo $n < 2^n < e^n = \exp(n)$, $\forall n \in \mathbb{N}$.

Sada uzmimo bilo koji C>1. Tada postoji $n\in\mathbb{N}$ takav da vrijedi $\exp(0)=1< C< n<\exp(n)$. Zbog neprekidnosti funkcije exp na segmentu [0,n] je po teoremu 3.12. $[\exp(0),\exp(n)]\subseteq\mathcal{R}(\exp)$, pa je i $C\in\mathcal{R}(\exp)$, tj. $[1,+\infty)\subseteq\mathcal{R}(\exp)$. Zbog $\exp(-x)=\frac{1}{\exp(x)}$, $\forall x\in[0,+\infty)$ vrijedi $\langle 0,1]\subseteq\mathcal{R}(\exp)$.

Iako je iz geometrijske definicije funkcije sinus možda jasno da je njena slika segment [-1,1], ta se činjenica egzaktno dokazuje na sličan način kao u prethodnom korolaru.

Korolar 3.9. Funkcija $\sin : \mathbb{R} \to [-1, 1]$ je surjekcija.

Dokaz: Funkcija sin je neprekidna na segmentu $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ pa je po teoremu 3.12. $\left[\sin\left(-\frac{\pi}{2}\right), \sin\left(\frac{\pi}{2}\right)\right] = \left[-1, 1\right] \subseteq \mathcal{R}(\sin)$. Obratna inkluzija slijedi iz geometrijske definicije funkcije sin.

3.3 Neprekidnost i monotonost, neprekidnost inverzne funkcije

Uvjet monotonosti i uvjet neprekidnosti funkcije na nekom skupu su različitog tipa. Monotonost je definirana pomoću uređaja na skupu \mathbb{R} , dok je za neprekidnost dovoljno imati pojam okoline točaka skupa, odnosno pojam konvergencije nizova. Ipak, ta dva pojma primijenjena na funkciju često daju isti rezultat. Zapravo, pokazat ćemo da svaki od tih pojmova , uz jedan dodatni uvjet na funkciju, povlači onaj drugi. U slijedećim teoremima interval nije nužno ograničen skup. Svojstvo intervala koje ističemo je da za svake svoje dvije točke sadrži i sve točke između njih.

Teorem 3.13. Neka je $I \subseteq \mathbb{R}$ otvoren interval, funkcija $f: I \to \mathbb{R}$ monotona na I i I' = f(I) otvoren interval. Tada je f neprekidna funkcija na I.

Dokaz: Zbog određenosti uzmimo da f raste na I. Uzmimo bilo koju točku $c \in I$ i pokažimo da je f neprekidna u c. Neka je $\langle a,b \rangle \subseteq I$ konačan interval takav da je $c \in \langle a,b \rangle$. Neka su

$$M_1 = f\left(\frac{c+b}{2}\right) - f(c), \ M_2 = f(c) - f\left(\frac{a+c}{2}\right).$$

Zbog rasta funkcije f vrijedi $M_1 \ge 0$ i $M_2 \ge 0$.

U slučaju $M_1=0$ i $M_2=0$ funkcija f je konstantna na segmentu $\left[\frac{a+c}{2},\frac{c+b}{2}\right]$, pa je onda neprekidna u točki c. Slučajevi $M_1=0$ i $M_2>0$ ili $M_1>0$ i $M_2=0$ su kombinacija prethodnog slučaja i slučaja $M_1>0$ i $M_2>0$, koji sada dokazujemo.

Provjerimo Cauchyjevu definiciju neprekidnosti (3.11). Uzmimo bilo koji $0 < \varepsilon < \min\{M_1, M_2\}$. Vrijedi $\varepsilon < M_1 = f\left(\frac{c+b}{2}\right) - f(c)$, odnosno,

 $f(c) < f(c) + \frac{\varepsilon}{2} < f(c) + \varepsilon < f\left(\frac{c+b}{2}\right)$. Zbog toga što je I' = f(I) interval, to postoji $\delta' \in \mathbb{R}$ tako da vrijedi $f(c) + \frac{\varepsilon}{2} = f(c+\delta')$. Zbog rasta funkcije f mora biti $\delta' > 0$.

Analogno, zbog $\varepsilon < M_2 = f(c) - f\left(\frac{a+c}{2}\right)$, odnosno, $f\left(\frac{a+c}{2}\right) < f(c) - \varepsilon < f(c) - \frac{\varepsilon}{2} < f(c)$, imamo $\delta'' \in \mathbb{R}$ takav da vrijedi $f(c) - \frac{\varepsilon}{2} = f(c + \delta'')$. Zbog rasta funkcije f je $\delta'' < 0$. Uzmimo $\delta = \min\{\delta', -\delta''\}$. Imamo

$$(x \in \langle c, c + \delta \rangle) \Rightarrow (f(c) \le f(x) \le f(c + \delta) \le f(c + \delta') = f(c) + \frac{\varepsilon}{2}) \Rightarrow$$
$$\Rightarrow (-\frac{\varepsilon}{2} \le f(x) - f(c) \le \frac{\varepsilon}{2}) \Rightarrow (|f(x) - f(c)| \le \frac{\varepsilon}{2} < \varepsilon).$$

Isto tako

$$(x \in \langle c - \delta, c \rangle) \Rightarrow (f(c) \ge f(x) \ge f(c - \delta) \ge f(c + \delta'') = f(c) - \frac{\varepsilon}{2}) \Rightarrow$$
$$\Rightarrow (\frac{\varepsilon}{2} \ge f(x) - f(c) \ge -\frac{\varepsilon}{2}) \Rightarrow (|f(x) - f(c)| \le \frac{\varepsilon}{2} < \varepsilon).$$

Dakle, vrijedi (3.11), pa je f neprekidna u c. Zbog toga što je $c \in I$ izabran po volji, f je neprekidna na I.

Primjena prethodnog teorema u dokazivanju neprekidnosti konkretnih funkcija je otežana činjenicom da je često vrlo teško dokazati da je neki skup slika funkcije. Mi smo već dokazali neprekidnost nekih osnovnih funkcija, pa nas interesira dokazivanje neprekidnosti njihovih inverznih funkcija. U tu svrhu je koristan slijedeći rezultat.

Teorem 3.14. Neka je $I \subseteq \mathbb{R}$ otvoren interval, funkcija $f: I \to \mathbb{R}$ i I' = f(I).

- 1. Ako je f strogo monotona i neprekidna funkcija na I, onda je I' otvoren interval i $f^{-1}: I' \to I$ neprekidna funkcija na I'.
- 2. Ako je f neprekidna bijekcija sa I na I', onda je f strogo monotona funkcija na I i $f^{-1}: I' \to I$ neprekidna funkcija na I'.

Dokaz: 1. Neka je f strogo rastuća na I. Neka je $-\infty \le a' = \inf I'$ i sup $I' = b' \le +\infty$. Pokažimo da vrijedi $a' \notin I'$. Kada bi vrijedilo $a' \in I' = f(I)$ postojao bi $a \in I$, a' = f(a). Pošto je I otvoren interval, to postoji $a_1 \in I$, $a_1 < a$. Tada je $f(a_1) < f(a) = a'$ što je kontradikcija s definicijom infimuma. Analogno se dokazuje $b' \notin I'$.

Neka je $z' \in \langle a', b' \rangle$ bilo koji element. Tada z' nije niti minoranta niti majoranta skupa I'. Dakle, postoje $x', y' \in I'$ takvi da vrijedi x' < z' < y'. Neka je $x = f^{-1}(x')$ i $y = f^{-1}(y')$. Zbog strogog rasta funkcije f, a onda i f^{-1} , imamo x < y. Zbog $[x, y] \subset I$ je f neprekidna na [x, y], pa po teoremu 3.12. vrijedi $f([x, y]) = [x', y'] \ni z'$, tj. $z' \in I'$. Dakle $I' = \langle a', b' \rangle$.

Neprekidnost od f^{-1} slijedi iz teorema 3.13.

2. Funkcija $f: I \to I'$ je neprekidna bijekcija pa postoji $f^{-1}: I' \to I$. Pokažimo da je f strogo monotona na I. Kada f ne bi bila strogo monotona na I, postojale bi točke $x_1, x_2, x_3 \in I$ takve da je $x_1 < x_2 < x_3$ i $(f(x_1) < f(x_2)) \land (f(x_2) > f(x_3))$ ili $(f(x_1) > f(x_2)) \land (f(x_2) < f(x_3))$. U prvom slučaju postoji C tako da je $(f(x_1) < C < f(x_2)) \land (f(x_3) < C < f(x_2))$. Zbog neprekidnosti funkcije f na segmentima $[x_1, x_2]$ i $[x_2, x_3]$ prema teoremu 3.12. postoje $c' \in \langle x_1, x_2 \rangle$ i $c'' \in \langle x_2, x_3 \rangle$ takvi da je C = f(c') i C = f(c'').

To je kontradikcija s pretpostavkom o bijektivnosti funkcije f. Analogno se dobije kontradikcija i u drugom slučaju. Dakle, f je strogo monotona funkcija na I. Sada iz 1. slijedi neprekidnost od f^{-1} .

Neprekidnost korijena, logaritamske, area i arcus 3.3.1 funkcija

Primijenimo rezultate prethodne točke za dokazivanje neprekidnosti inverznih funkcija.

Neparne potencija su neprekidne i strogo rastuće bijekcije s otvorenog (beskonačnog) intervala \mathbb{R} na \mathbb{R} , pa su korijeni neparnih potencija neprekidne funkcije po teoremu 3.14.

Parna potencija nije bijekcija, pa gledamo njenu restrikciju $f:[0,+\infty)\to[0,+\infty)$ koja je neprekidna i strogo rastuća bijekcija, pa postoji inverzna funkcija $f^{-1}:[0,+\infty)\to[0,+\infty)$. f ne ispunjava pretpostavke teorema 3.14. jer joj domena nije otvoren interval (konačan ili beskonačan). No, poslužimo se trikom koji će omogućiti primjenu spomenutog teorema. Proširimo funkciju f do funkcije $g: \mathbb{R} \to \mathbb{R}$ na slijedeći način:

$$g(x) = \begin{cases} x^n; & x \ge 0, \\ x; & x \le 0. \end{cases}$$

 $g(x)=\left\{\begin{array}{ll}x^n;&x\geq 0,\\x;&x\leq 0.\end{array}\right.$ Sada imamo funkciju gkoja zadovoljava uvjete teorema 3.14., pa je njena inverzna funkcija $g^{-1}: \mathbb{R} \to \mathbb{R}$ neprekidna na \mathbb{R} . Zbog toga što je $f^{-1}=$ $g^{-1}|_{[0,+\infty\rangle},$ tj. f^{-1} je restrikcija neprekidne funkcije, funkcija f^{-1} je neprekidna na $[0, +\infty)$ po definiciji 3.5

Zbog toga što je exp : $\mathbb{R} \to \langle 0, +\infty \rangle$ neprekidna bijekcija, iz teorema 3.14. slijedi neprekidnost njene inverzne funkcije $\ln:\langle 0,+\infty\rangle\to\mathbb{R}.$

Isto vrijedi i za hiperbolne funkcije sh : $\mathbb{R} \to \mathbb{R}$ i th : $\mathbb{R} \to \langle -1, 1 \rangle$ koje su neprekidne bijekcije, pa su takve i njihove inverzne funkcije sh $^{-1}: \mathbb{R} \to \mathbb{R}$ $i th^{-1}: \langle -1, 1 \rangle \to \mathbb{R}.$

Funkcija cth : $\mathbb{R} \setminus \{0\} \to \mathbb{R} \setminus [-1,1]$ nema područje definicije interval, pa ne zadovoljava uvjete teorema 3.14. Međutim, svaka njena restrikcija cth_ : $\langle -\infty, 0 \rangle \to \langle -\infty, -1 \rangle$ i cth_ : $\langle 0, +\infty \rangle \to \langle 1, +\infty \rangle$ ima po teoremu 3.14. neprekidan inverz cth_ : $\langle -\infty, -1 \rangle \to \langle -\infty, 0 \rangle$ i cth_ $^{-1}$: $\langle 1, +\infty \rangle \to \langle 0, +\infty \rangle$. Zato što su i domene i slike funkcija cth_ i cth_ disjunktni skupovi, vrijedi

$$cth(x) = \begin{cases} cth_{-}(x) & ; x < 0 \\ cth_{+}(x) & ; x > 0 \end{cases},$$

a odatle slijedi

$$cth^{-1}(x) = \begin{cases}
cth_{-}^{-1}(x) & ; x < -1 \\
cth_{+}^{-1}(x) & ; x > 1
\end{cases}.$$

Bijektivna restrikcija od ch je Ch : $[0, +\infty) \rightarrow [1, +\infty)$ i nju proširujemo do funkcije $g : \mathbb{R} \rightarrow \mathbb{R}$ tako da stavimo

$$g(x) = \begin{cases} \operatorname{ch}(x); & x \ge 0, \\ x+1; & x \le 0. \end{cases}$$

Tada je $\mathrm{Ch}^{-1}:[1,+\infty)\to[0,+\infty)$ restrikcija neprekidne funkcije g^{-1} , pa je neprekidna po definiciji 3.5.

Restrikcije Tg: $\langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle \to \mathbb{R}$ i Ctg: $\langle 0, \pi \rangle \to \mathbb{R}$, imaju po teoremu 3.14. neprekidne inverze Tg⁻¹ = arctg: $\mathbb{R} \to \langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle$, Ctg⁻¹ = arctg: $\mathbb{R} \to \langle 0, \pi \rangle$.

Da bismo dokazali neprekidnost funkcija arcsin = Sin^{-1} i arccos = Cos^{-1} moramo funkcije $\mathrm{Sin}: [-\frac{\pi}{2}, \frac{\pi}{2}] \to [-1, 1]$ i $\mathrm{Cos}: [0, \pi] \to [-1, 1]$ proširiti do neprekidnih bijekcija sa otvorenog intervala na otvoren interval. Tako definiramo $g, h: \mathbb{R} \to \mathbb{R}$ tako da stavimo

$$g(x) = \begin{cases} x + \frac{\pi}{2} - 1 & ; x \le -\frac{\pi}{2}, \\ \sin x & ; -\frac{\pi}{2} \le x \le \frac{\pi}{2}, \\ x - \frac{\pi}{2} + 1 & ; \frac{\pi}{2} \le x. \end{cases}$$

i

$$h(x) = \begin{cases} -x+1 & ; x \le 0, \\ \cos x & ; 0 \le x \le \pi, \\ -x+\pi-1 & ; \pi \le x. \end{cases}$$

Po teoremu 3.14. funkcije g i h imaju neprekidne inverze, pa su i njihove restrikcije $\operatorname{Sin}^{-1} = g^{-1}|_{[-1,1]}$ i $\operatorname{Cos}^{-1} = h^{-1}|_{[-1,1]}$ neprekidne funkcije po definiciji.

Teorem 3.15. Elementarne funkcije su neprekidne na cijelom području definicije.

Dokaz: Sve funkcije od kojih gradimo elementarne funkcije (potencije, eksponencijalna funkcija, hiperbolne, trigonometrijske funkcije i njihove inverzne funkcije korijeni, logaritamske funkcije, area i arcus funkcije) su neprekidne na cijelom području definicije. Budući da operacije pomoću kojih od tih funkcija gradimo elementarne funkcije čuvaju neprekidnost (teoremi 3.8. i 3.9.), to su elementarne funkcije neprekidne.

Definicija 3.6. Neka je $I \subseteq \mathbb{R}$ otvoren interval i $f: I \to \mathbb{R}$. Kažemo da f ima u točki $c \in I$ prekid prve vrste ako u c postoje i lijevi limes f(c-) i desni limes f(c+) funkcije i ako su oni različiti. Ostali prekidi su prekidi druge vrste.

U sljedećem teoremu se vidi kako sam uvjet monotonost ima utjecaj na vrstu i broj prekida kod funkcije.

Teorem 3.16. Neka je $I \subseteq \mathbb{R}$ otvoren interval $i \ f : I \to \mathbb{R}$ monotona funkcija.

- 1. Monotona funkcija može imati samo prekide prve vrste.
- 2. Monotona funkcija ima najviše prebrojivo mnogo prekida.

Dokaz: 1. U teoremu 3.6. je dokazano da monotona funkcija ima u svakoj točki lijevi i desni limes. Ako f ima u točki c prekid, onda je zbog postojanja f(c-) i f(c+) taj prekid prve vrste.

2. Neka je f rastuća funkcija i neka je J skup svih točaka prekida te funkcije. Za svaku točku $a \in J$ imamo f(a-) < f(a+), pa toj točki pridružujemo otvoreni interval $I_a = \langle f(a-), f(a+) \rangle$. Ako su $a,b \in J, \ a \neq b$, onda je $I_a \cap I_b = \emptyset$. Naime, u slučaju a < b, zbog $f(a+) = \inf\{f(x); x \in I, \ a < x\}$ je $f(a+) \leq f(a+\frac{b-a}{2})$. Isto tako, zbog $f(b-) = \sup\{f(x); x \in I, \ x < b\}$ je $f(b-) \geq f(b-\frac{b-a}{2}) = f(a+\frac{b-a}{2})$. Dakle, $(a < b) \Rightarrow (f(a+) \leq f(b-))$, tj. $I_a \cap I_b = \emptyset$, jer su intervali otvoreni. Sada za svaki $a \in J$ uzmemo $r_a \in I_a \cap \mathbb{Q}$ pa imamo injekciju $a \mapsto r_a$ s J u \mathbb{Q} . Dakle, J ima manji ili jednak kardinalni broj od \mathbb{Q} , tj. J je najviše prebrojiv skup.

3.4 Jednostrana neprekidnost funkcije

Definicija 3.7. Neka je $I \subseteq \mathbb{R}$ otvoren interval i točka $c \in I$. Za funkciju $f: I \to \mathbb{R}$ kažemo da je **neprekidna slijeva** u točki c ako postoji limes slijeva funkcije f u točki c i $\lim_{x\to c-} f(x) = f(c)$. Funkcija f je **neprekidna zdesna** u točki c ako postoji limes zdesna funkcije f u točki c i $\lim_{x\to c+} f(x) = f(c)$.

Ako u Cauchyjevu definiciju jednostranog limes uvrstimo vrijednost limesa jednaku f(c) dobijemo Cauchyjevu definiciju jednostrane neprekidnosti: f je neprekidna slijeva ako i samo ako vrijedi

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in I) ((0 \le c - x < \delta) \Rightarrow (|f(x) - f(c)| < \varepsilon)), \quad (3.13)$$

i f je neprekidna zdesna ako i samo ako vrijedi

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in I) \ ((0 \le x - c < \delta) \Rightarrow (|f(x) - f(c)| < \varepsilon)), \quad (3.14)$$

Veza jednostrane neprekidnosti i neprekidnosti funkcije u nekoj točki dana je slijedećim teoremom.

Teorem 3.17. Neka je $I \subseteq \mathbb{R}$ otvoren interval, $c \in I$ i funkcija $f: I \to \mathbb{R}$.

- 1. Funkcija f je neprekidna slijeva u c ako i samo ako postoji funkcija $\tilde{f}: I \to \mathbb{R}$ neprekidna u c i takva da je $\tilde{f}(x) = f(x), \forall x \in I, x \leq c$.
- 2. Funkcija f je neprekidna zdesna u c ako i samo ako postoji funkcija $\tilde{f}: I \to \mathbb{R}$ neprekidna u c i takva da je $\tilde{f}(x) = f(x), \forall x \in I, x \geq c$.
- 3. Funkcija f je neprekidna u c ako i samo ako je neprekidna i slijeva i zdesna u c.

Dokaz: 1. Ako postoji neprekidna funkcija $\tilde{f}: I \to \mathbb{R}$ takva da je $\tilde{f}(x) = f(x), \forall x \in I, x \leq c$, onda vrijedi

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in I) \ ((|x - c| < \delta) \Rightarrow (|\tilde{f}(x) - \tilde{f}(c)| < \varepsilon)).$$

i posebno

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x \in I) \ ((0 \le c - x < \delta) \Rightarrow (|f(x) - f(c)| < \varepsilon)),$$

tj. f je neprekidna slijeva u c.

Obratno, ako je f neprekidna slijeva u c, onda funkcija $\tilde{f}:I\to\mathbb{R}$ definirana s $\tilde{f}(x)=f(x),\,\forall x\in I,\,x\leq c,$ i $\tilde{f}(x)=f(c),\,\forall x\in I,\,x\geq c,$ zadovoljava tražena svojstva.

- 2. se dokazuje analogno kao 1.
- 3. Ako je f neprekidna u c onda f=f zadovoljava uvjete iz 1. i 2. pa je neprekidna i slijeva i zdesna u c. Obratno, neka je f neprekidna i slijeva i zdesna u c. Tada postoje lijevi i desni limes funkcije i jednaki su f(c), pa po teoremu 3.5. postoji limes funkcije i jednak je f(c), tj. funkcija je neprekidna u c.

Korolar 3.10. Funkcija $f:[a,b] \to \mathbb{R}$ je neprekidna na segmentu, ako i samo ako je neprekidna na otvorenom intervalu $\langle a,b \rangle$, te neprekidna zdesna u a i slijeva u b.

Dokaz: Ako je funkcija neprekidna na segmentu u smislu definicije 3.5., onda $\tilde{f}=g$, gdje je g iz definicije 3.5., zadovoljava uvjete tvrdnji 1. i 2. iz teorema 3.17.

Obratno, ako je $f:[a,b] \to \mathbb{R}$ neprekidna na otvorenom intervalu $\langle a,b\rangle$, te neprekidna zdesna u a i slijeva u b, onda ju po teoremu 3.17. postoji njeno neprekidno proširenje i lijevo i desno od segmenta [a,b].

3.5 Otvoreni skupovi u $\mathbb R$

U svim razmatranjima u vezi s pojmom neprekidnosti funkcije u točki ili limesa funkcije u točki bilo je važno da se točka nalazi u otvorenom intervalu. Naime, bilo je važno da s obje strane te točke imamo puno točaka koje se nalaze u domeni funkcije, kako bismo imali mogućnost s obje strane promatrati razne nizove koji konvergiraju k točci. Otvoreni intervali nisu jedini skupovi s takvim svojstvom.

Definicija 3.8. Za skup $S \subseteq \mathbb{R}$ kažemo da je **otvoren skup**, ako je S ili prazan skup ili unija po volji mnogo otvorenih intervala.

Skup $F \subseteq \mathbb{R}$ je **zatvoren skup** ako je komplement otvorenog skupa.

Primjer 3.13. Slijedeći skupovi su otvoreni u \mathbb{R} .

- 1. \mathbb{R} je otvoren jer je $\mathbb{R} = \bigcup_{n \in \mathbb{Z}} \langle n, n+2 \rangle$.
- 2. Skupovi $\langle 0, +\infty \rangle = \bigcup_{n=0}^{\infty} \langle n, n+2 \rangle$ i $\langle -\infty, 0 \rangle = \bigcup_{n=0}^{\infty} \langle -n-2, -n \rangle$ su otvoreni skupovi, a takvi su i skupovi $\langle -\infty, a \rangle$ i $\langle a, +\infty \rangle$, za svaki $a \in \mathbb{R}$.

Primjer 3.14. Slijedeći skupovi su zatvoreni u \mathbb{R} .

- 1. Za svaki $a\in\mathbb{R}$ je jednočlan skup $\{a\}$ zatvoren u \mathbb{R} jer je $\{a\}^C=\langle -\infty,a\rangle\cup\langle a,+\infty\rangle$ otvoren skup.
- 2. Za sve $a,b \in \mathbb{R}$, a < b, je segment [a,b] zatvoren jer je $[a,b]^C = \langle -\infty,a \rangle \cup \langle b,+\infty \rangle$.

Propozicija 3.1. Neprazan skup $S \subseteq \mathbb{R}$ je otvoren ako i samo ako za svaki $x \in S$ postoji $\varepsilon_x > 0$ tako da je $\langle x - \varepsilon_x, x + \varepsilon_x \rangle \subseteq S$.

Dokaz: Ako je $S \subseteq \mathbb{R}$ otvoren skup, onda za svaki $x \in S$ iz definicije 3.8. slijedi postojanje otvorenog intervala takvog da je $x \in \langle a, b \rangle \subseteq S$. Uzmimo $\varepsilon_x = \min\{x - a, b - x\}$ i imamo $\langle x - \varepsilon_x, x + \varepsilon_x \rangle \subseteq S$.

Obratno, neka za svaki $x \in S$ postoji $\varepsilon_x > 0$ tako da je $\langle x - \varepsilon_x, x + \varepsilon_x \rangle \subseteq S$. Tada je $S = \bigcup_{x \in S} \langle x - \varepsilon_x, x + \varepsilon_x \rangle$ pa je stoga otvoren skup.

Skup \mathfrak{T}_E koji sadrži sve otvorene podskupove od \mathbb{R} naziva se *standardna* ili *euklidska* **topologija** na \mathbb{R} .

Propozicija 3.2. Za standardnu topologiju \mathfrak{T} na \mathbb{R} vrijedi:

- 1. \emptyset , $\mathbb{R} \in \mathfrak{T}$.
- 2. Ako je $S_{\lambda} \in \mathfrak{T}$, $\forall \lambda \in \Lambda$, onda je $\bigcup_{\lambda \in \Lambda} S_{\lambda} \in \mathfrak{T}$, tj. unija otvorenih skupova je otvoren skup.
- 3. Ako je $S_k \in \mathfrak{T}$, k = 1, ..., n, onda je $\bigcap_{k=1}^n S_k \in \mathfrak{T}$, tj. presjek od konačno otvorenih skupova je otvoren skup.

Dokaz: Tvrdnja 1. slijedi iz definicije 3.8. i primjera 3.13.

Da bismo dokazali tvrdnju 2. uzmimo $x \in \bigcup_{\lambda \in \Lambda} S_{\lambda}$ po volji. Po definiciju unije postoji $\lambda \in \Lambda$ takav da je $x \in S_{\lambda}$. Sada zbog otvorenosti skupa S_{λ} , prema propoziciji 3.1. postoji $\varepsilon_x > 0$ takav da je $\langle x - \varepsilon_x, x + \varepsilon_x \rangle \subseteq S_{\lambda}$. Tada vrijedi $\langle x - \varepsilon_x, x + \varepsilon_x \rangle \subseteq \bigcup_{\lambda \in \Lambda} S_{\lambda}$, pa je po propoziciji 3.1 skup $\bigcup_{\lambda \in \Lambda} S_{\lambda}$ otvoren.

vrijedi $\langle x - \varepsilon_x, x + \varepsilon_x \rangle \subseteq \bigcup_{\lambda \in \Lambda} S_\lambda$, pa je po propoziciji 3.1 skup $\bigcup_{\lambda \in \Lambda} S_\lambda$ otvoren. Za dokaz tvrdnje 3. uzmimo $x \in \bigcap_{k=1}^n S_k$ po volji. Po definiciju presjeka vrijedi $x \in S_k$, za sve $k = 1, \ldots, n$. Zbog otvorenosti skupova S_k , $k = 1, \ldots, n$, postoje $\varepsilon_x^{(k)} > 0$, $k = 1, \ldots, n$, takvi da je $\langle x - \varepsilon_x^{(k)}, x + \varepsilon_x^{(k)} \rangle \subseteq S_k$, $k = 1, \ldots, n$. Uzmimo $\varepsilon_x = \min\{\varepsilon_x^{(k)}; k = 1, \ldots, n\}$ pa vrijedi $\langle x - \varepsilon_x, x + \varepsilon_x \rangle \subseteq S_k$, $k = 1, \ldots, n$. Odatle je $\langle x - \varepsilon_x, x + \varepsilon_x \rangle \subseteq \bigcap_{k=1}^n S_k$, pa je prema propoziciji

3.1. skup
$$\bigcap_{k=1}^{n} S_k$$
 otvoren.

Navodimo još neke primjere topologija na \mathbb{R} .

Primjer 3.15. Trivijalne topoplogije:

Minimalna (indiskretna) topologija u smislu inkluzije (s najmanje otvorenih skupova) je $\mathfrak{T}_m = \{\emptyset, \mathbb{R}\}$, a maksimalna (diskretna) topologija je partitivni skup $\mathcal{T}_M = \mathfrak{P}(\mathbb{R})$. U diskretnoj topologiji su svi jednočlani skupovi otvoreni i obratno. Dakle, za svaku drugu topologiju \mathfrak{T} na \mathbb{R} vrijedi $\mathfrak{T}_m \subset \mathfrak{T} \subset \mathfrak{T}_M$.

Primjer 3.16. Kofinitna topologija:

 $\mathfrak{T}_0 = \{S \subseteq \mathbb{R}; \operatorname{card}(\mathbb{R} \setminus S) < \aleph_0\} \cup \{\emptyset\}$ je najmanja topologija u kojoj su sve točke (jednočlani skupovi) zatvoreni skupovi. U toj topologiji se različite točke ne mogu razdvojiti disjunktnim otvorenim skupovima. To je zbog činjenice da svaka dva neprazna otvorena skupa u toj topologiji imaju neprazan presjek. Naime, kada bi presjek dva skupa $U, V \in \mathfrak{T}_0$ bio prazan

vrijedilo bi $\mathbb{R} = \mathbb{R} \setminus \emptyset = \mathbb{R} \setminus (U \cap V) = (\mathbb{R} \setminus U) \cup (\mathbb{R} \setminus V)$, a to bi značilo da je \mathbb{R} konačan skup. Limes u topologiji \mathfrak{T}_0 nije jedinstven. Štoviše, svaki niz koji ima beskonačno različitih članova je konvergentan i svaki realan broj je njegov limes.

Također je jasno da vrijedi $\mathfrak{T}_0 \subset \mathfrak{T}_E$, tj. svaki otvoreni skup u kofinitnoj topologiji otvoren je i u standardnoj ili euklidskoj topologiji.

4 Derivacija funkcije

4.1 Motivacija; aproksimacija funkcije, problemi brzine i tangente

Jedna od često upotrebljavanih metoda u rješavanju matematičkih problema je **aproksimacija** ili približno određivanje nekog složenijeg matematičkog objekta pomoću jednostavnijih objekata. Kako je u matematičkoj analizi od interesa proučavanje funkcija, to je razumno pitanje, da li je moguće neku funkciju dobro aproksimirati pomoću funkcija koje dobro razumijemo. Na taj način bismo iz ponašanja jednostavnih funkcija mogli nešto zaključiti o složenijoj funkciji. Funkcije koje svi dobro poznajemo i razumijemo su polinomi, posebno polinomi prvog stupnja čiji su grafovi pravci. Stoga je za neku funkciju $f: I \to \mathbb{R}, \ I \subseteq \mathbb{R}$ otvoren interval, interesantan problem koji je polinom prvog stupnja oblika $g(x) = k(x-c) + l, \ x \in \mathbb{R}$, lokalno oko točke c najbolja aproksimacija funkcije f. U tom slučaju je prirodno zahtijevati da se te funkcije podudaraju u točki oko koje lokalno aproksimiramo funkciju, tj. g(c) = f(c), što daje l = f(c). Sada iz zahtjeva da je $f(x) \approx g(x)$ kada je $x \approx c$ imamo $x \approx \frac{f(x) - f(c)}{x - c}$.

Povijesno su dva po prirodi različita problema bila glavna motivacija za razvoj diferencijalnog računa.

Jedan od njih je fizikalni problem definiranja pojma brzine za čije rješenje je zaslužan **Isaac Newton**. Neka je s(t), $t \geq 0$, funkcija koja mjeri put koji je prošla materijalna točka u vremenskom intervalu [0,t]. Prosječna brzina te materijalne točke u vremenskom intervalu $[t_0,t]$ definira se kao $\overline{v}(t_0,t) = \frac{s(t) - s(t_0)}{t - t_0}$. No pitanje je kako definirati pojam brzine u trenutku t_0 . To je nešto što nije moguće mjeriti, jer mi znamo mjeriti prosječnu brzinu

 $^{^1}$ Isaac Newton, (Woolsthorpe, 4. siječnja 1643. - London, 31. ožujka 1728.), engleski fizičar, matematičar i astronom

90 4. DERIVACIJA

na nekom intervalu, a točka predstavlja vremenski interval $[t_0, t_0]$ duljine 0. Moguće je promatrati ponašanje prosječne brzine na intervalima oko točke t_0 čija duljina se smanjuje. Taj proces opisujemo pomoću limesa funkcije, tj. možemo reći da je brzina u točki $v(t_0) = \lim_{t \to t_0} \overline{v}(t_0, t) = \lim_{t \to t_0} \frac{s(t) - s(t_0)}{t - t_0}$, ako taj limes postoji.

Drugi problem je geometrijske naravi, a njegovo rješenje je našao **G.W.** Leibniz.¹ Odnosi se na pitanje postojanja jedinstvene tangente u nekoj točki

grafa Γ_f funkcije f. Sekanta kroz točke C=(c,f(c)) i D=(d,f(d)) ima koeficijent smjera $k_s=\frac{f(d)-f(c)}{d-c}$. Ako $d\to c$, odnosno, ako se točka D po grafu Γ_f približava točki C, onda sekanta s postaje tangenta t. Dakle, koeficijent smjera sekante prelazi u koeficijent smjera tangente, tj. $k_t=\lim_{d\to c}\frac{f(d)-f(c)}{d-c}$.

U sva tri prethodna problema kao rješenje se nameće broj kojem teži izraz oblika $\frac{f(x)-f(c)}{x-c}$ kojeg nazivamo **kvocijent diferencija** za funkciju f u točki c. Stoga je od interesa slijedeći pojam.

Definicija 4.1. Kažemo da je funkcija $f: I \to \mathbb{R}$, diferencijabilna ili derivabilna u točki c otvorenog intervala $I \subseteq \mathbb{R}$, ako postoji $\lim_{x \to c} \frac{f(x) - f(c)}{x - c}$. Taj broj zovemo **derivacija** (izvod) funkcije f u točki c i pišemo

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}.$$
 (4.1)

Još se koriste oznake Df(c) ili $\frac{df}{dx}(c)$.

Kažemo da je f diferencijabilna na intervalu I ako je ona diferencijabilna u svakoj točki iz I. Tada je na I dobro definirana funkcija $x \mapsto f'(x)$ koju prirodno označavamo s f' i također zovemo derivacija od f na I. Ako je sada ta funkcija diferencijabilna u nekoj točki $c \in I$, onda njenu derivaciju (f')'(c) zovemo druga derivacija od f u c i označavamo s f''(c), tj.

$$f''(c) = \lim_{x \to c} \frac{f'(x) - f'(c)}{x - c}.$$

¹Gottfried Wilhelm Leibniz (Leipzig, 21. lipanj 1646. − Hanover, 14. studeni 1716.) njemački matematičar

4.1. MOTIVACIJA

91

Analogno se definira treća derivacija itd. Općenito, ako postoji n-ta derivacija od f na I, tj. $f^{(n)}: I \to \mathbb{R}$ onda možemo definirati

$$f^{(n+1)}(c) = \lim_{x \to c} \frac{f^{(n)}(x) - f^{(n)}(c)}{x - c},$$

uz uvjet da navedeni limes postoji.

U terminima derivacije funkcije, problemi navedeni kao motivacija imaju slijedeća rješenja:

- 1. Funkcija g definirana s g(x) = f'(c)(x c) + f(c), $x \in \mathbb{R}$, je lokalno najbolja aproksimacija funkcije f oko c među polinomima stupnja ≤ 1 , što dokazujemo u teoremu koji slijedi.
- 2. Brzina materijalne točke, čiji put u vremenu t opisuje funkcija $t \mapsto s(t)$, dana je sv(t) = s'(t), tj. brzina je prva derivacija funkcije puta po vremenu. Analogno se ubrzanje definira kao derivacija brzine po vremenu, tj. a(t) = v'(t) = s''(t).
- 3. Tangenta na graf funkcije f za točku c (ili u točki grafa (c, f(c))) je pravac koji je graf linearne funkcije g iz točke 1. Jasno, moguće je odmah zadati i funkciju $h(x) = \frac{-1}{f'(c)}(x-c) + f(c)$, čiji graf je normala na graf funkcije u točki c.

Primjer 4.1. Naći derivaciju konstantne funkcije $f(x) = \alpha, \forall x \in \mathbb{R}$ u točki $c \in \mathbb{R}$.

Vrijedi

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{\alpha - \alpha}{x - c} = 0,$$

dakle, $f'(x) = 0, \forall x \in \mathbb{R}$.

Primjer 4.2. Naći derivaciju funkcije $f(x) = x, \, \forall \, x \in \mathbb{R}$ u točki $c \in \mathbb{R}$. Vrijedi

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{x - c}{x - c} = 1,$$

dakle, $f'(x) = 1, \forall x \in \mathbb{R}$.

Sada razmotrimo vezu između diferencijabilnosti i neprekidnosti funkcije f. Ako je funkcija neprekidna u nekoj točki, ona ne mora nužno biti diferencijabilna u toj točki. To se vidi u sljedećem primjeru.

92 4. DERIVACIJA

Primjer 4.3. Funkcija $f(x) = |x|, x \in \mathbb{R}$, je neprekidna na \mathbb{R} , a diferencijabilna na $\mathbb{R} \setminus \{0\}$. No, f nije diferencijabilna u 0. Naime,

$$\lim_{x \to 0-} \frac{|x|}{x} = -1 \text{ i } \lim_{x \to 0+} \frac{|x|}{x} = 1,$$

dakle, lijevi i desni limes kvocijenta diferencija su različiti, pa derivacija ne postoji.

Obratno, diferencijabilnost povlači neprekidnost.

Teorem 4.1. Ako je funkcija $f: I \to \mathbb{R}$ diferencijabilna u točki c otvorenog intervala I, onda je f neprekidna u c.

Dokaz: Zbog diferencijabilnosti funkcije f u točki c je funkcija

$$\omega(x) = \begin{cases} \frac{f(x) - f(c)}{x - c} - f'(c) &, \text{ za } x \neq c \\ 0 &, \text{ za } x = c \end{cases}$$
 (4.2)

neprekidna u c. Naime, $\omega(c) = 0 = \lim_{x \to c} \left(\frac{f(x) - f(c)}{x - c} - f'(c) \right) = \lim_{x \to c} \omega(x)$. Sada je

$$f(x) = f(c) + (f'(c) + \omega(x))(x - c), \quad x \in I,$$
(4.3)

odakle zbog neprekidnosti u c funkcija na desnoj strani jednakosti (4.3), slijedi tvrdnja.

Sada egzaktno dokazujemo tvrdnju vezanu za problem aproksimacije

Teorem 4.2. Neka je funkcija $f: I \to \mathbb{R}$ diferencijabilna u točki c otvorenog intervala I i neka je

$$g(x) = f'(c)(x - c) + f(c), \quad \forall x \in \mathbb{R}. \tag{4.4}$$

Ako je h polinom, st $h \leq 1$, i $h \neq g$, onda postoji $\delta_h > 0$ tako da vrijedi

$$\forall x \in I, (0 < |x - c| < \delta_h) \Rightarrow (|f(x) - g(x)| < |f(x) - h(x)|). \tag{4.5}$$

Drugim riječima, polinom g je među svim polinomima stupnja ≤ 1 lokalno oko c najbolja aproksimacija funkcije f.

Dokaz: Polinom h možemo pisati u obliku

$$h(x) = k(x - c) + l, \quad \forall x \in \mathbb{R}, \tag{4.6}$$

gdje su $k, l \in \mathbb{R}$. Iz (4.6) i (4.3) dobivamo

$$f(x) - h(x) = [f(c) - l] + [f'(c) - k + \omega(x)](x - c). \tag{4.7}$$

Uvjet $h \neq g$ je ispunjen u dva slučaja: $(l \neq f(c))$ ili $((l = f(c)) \land (k \neq f'(c)))$. U slučaju $(l \neq f(c))$ zbog neprekidnosti funkcije f - h i $(f - h)(c) \neq 0$ iz leme 3.2. slijedi postojanje $\delta_1 > 0$ tako da vrijedi

$$(|x-c| < \delta_1) \Rightarrow (|f(x) - h(x)| > \varepsilon) \text{ gdje je } \varepsilon = \frac{1}{2}|f(c) - l| > 0.$$
 (4.8)

Također, iz neprekidnosti funkcije f-g u c i zbog (f-g)(c)=0 za ε iz (4.8) postoji $\delta_2>0$, tako da vrijedi

$$(|x - c| < \delta_2) \Rightarrow (|f(x) - g(x)| < \varepsilon). \tag{4.9}$$

Sada, za $\delta_h = \min\{\delta_1, \delta_2\}$ iz (4.8) i (4.9) slijedi (4.5). U slučaju ($(l = f(c)) \land (k \neq f'(c))$) iz (4.7) imamo

$$|f(x) - h(x)| = |f'(c) - k + \omega(x)||x - c|. \tag{4.10}$$

Zbog $\lim_{x\to c}|f'(c)-k+\omega(x)|=|f'(c)-k|>0$, iz leme 3.2. iz M.A.I. slijedi postojanje $\delta_1>0$ tako da

$$(|x-c| < \delta_1) \Rightarrow (|f'(c) - k + \omega(x)| > \varepsilon)$$
 gdje je $\varepsilon = \frac{1}{2}|f'(c) - k| > 0.$ (4.11)

Također, iz neprekidnosti funkcije ω u ci $\omega(c)=0$ dobivamo $\delta_2>0$ tako da

$$(|x - c| < \delta_2) \Rightarrow (|\omega(x)| < \varepsilon). \tag{4.12}$$

Iz (4.11) i(4.12) za $\delta_h = \min\{\delta_1, \delta_2\}$ imamo

$$(|x - c| < \delta_h) \Rightarrow (|\omega(x)| < |f'(c) - k + \omega(x)|). \tag{4.13}$$

Pomnožimo li (4.13) s |x-c| dobivamo (4.5).

4.2 Diferencijabilnost funkcija i operacije s funkcijama

Od interesa je istražiti kako se svojstvo diferencijabilnosti funkcije u točki ponaša kod uobičajenih operacija s funkcijama

94 4. DERIVACIJA

Teorem 4.3. Neka su funkcije $f, g: I \to \mathbb{R}$ diferencijabilne u točki c otvorenog intervala I.

1. Funkcija f + g je diferencijabilna u točki c i

$$(f+g)'(c) = f'(c) + g'(c). (4.14)$$

2. Funkcija fg je diferencijabilna u točki c i

$$(fg)'(c) = f'(c)g(c) + f(c)g'(c). (4.15)$$

3. Ako je funkcija $\frac{f}{g}$ definirana na I, onda je i diferencijabilna u točki c i

$$\left(\frac{f}{g}\right)'(c) = \frac{f'(c)g(c) - f(c)g'(c)}{g(c)^2}.$$
(4.16)

Dokaz:

1. Za funkciju h = f + g imamo

$$\frac{h(x) - h(c)}{x - c} = \frac{f(x) + g(x) - f(c) - g(c)}{x - c} = \frac{f(x) - f(c)}{x - c} + \frac{g(x) - g(c)}{x - c}.$$

Odatle je

$$\lim_{x \to c} \frac{h(x) - h(c)}{x - c} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} + \lim_{x \to c} \frac{g(x) - g(c)}{x - c},$$

odnosno vrijedi (4.14).

2. Za funkciju h = fg imamo

$$\frac{h(x) - h(c)}{x - c} = \frac{f(x)g(x) - f(c)g(c)}{x - c} = \frac{f(x) - f(c)}{x - c}g(x) + f(c)\frac{g(x) - g(c)}{x - c}.$$

Odatle je

$$\lim_{x \to c} \frac{h(x) - h(c)}{x - c} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} \lim_{x \to c} g(x) + f(c) \lim_{x \to c} \frac{g(x) - g(c)}{x - c},$$

što zbog neprekidnosti funkcije g u c (teorem 4.1.) daje (4.15).

3. Uzmimo prvo $h = \frac{1}{a}$, pa imamo

$$\frac{h(x) - h(c)}{x - c} = \frac{\frac{1}{g(x)} - \frac{1}{g(c)}}{x - c} = -\frac{\frac{g(x) - g(c)}{x - c}}{g(c)g(x)}.$$

Zbog neprekidnosti funkcije g u c slijedi

$$\lim_{x \to c} \frac{h(x) - h(c)}{x - c} = -\frac{\lim_{x \to c} \frac{g(x) - g(c)}{x - c}}{g(c) \lim_{x \to c} g(x)},$$

odnosno $h'(c) = \left(\frac{1}{g}\right)'(c) = -\frac{g'(c)}{g(c)^2}$. Sada na funkciju $\frac{f}{g} = f \cdot \frac{1}{g}$ primijenimo pravilo za deriviranje produkta funkcija (4.15) i dobivamo (4.16).

Korolar 4.1. Neka su funkcije $f, g: I \to \mathbb{R}$ diferencijabilne u točki c otvorenog intervala I. Tada je za sve $\lambda, \mu \in \mathbb{R}$ funkcija $\lambda f + \mu g$ diferencijabilna u točki c i

$$(\lambda f + \mu g)'(c) = \lambda f'(c) + \mu g'(c). \tag{4.17}$$

Skup svih funkcija s I u \mathbb{R} koje su diferencijabilne u točki c je vektorski prostor (uz operacije zbrajanja i množenja sa skalarom definiranim po točkama), a pridruživanje $f \mapsto f'(c)$ je linearan funkcional na tom prostoru.

Dokaz: Uzmimo konstantnu funkciju $h(x) = \lambda$, $\forall x \in \mathbb{R}$. Tada je h'(c) = 0 u svakoj točki $c \in \mathbb{R}$. Sada formula za deriviranje produkta daje $(\lambda f)'(c) = (hf)'(c) = h'(c)f(c) + h(c)f'(c) = h(c)f'(c) = \lambda f'(c)$. Primjenom prethodnog rezultata i formule za deriviranje sume dobivamo (4.17).

Teorem 4.4. (Derivacija kompozicije funkcija) Neka su $f: I \to \mathbb{R}$, $g: J \to \mathbb{R}$ i neka je $f(I) \subseteq J$, tj. kompozicija $g \circ f: I \to \mathbb{R}$ je dobro definirana na I. Ako je funkcija f diferencijabilna u točki $c \in I$ i funkcija f diferencijabilna u točki f diferencijabilna u f i vrijedi

$$(g \circ f)'(c) = g'(d)f'(c).$$
 (4.18)

Dokaz: Uzmimo funkciju ω iz (4.2) tako da vrijedi (4.3) i analogno, neka je ω_1 definirana s

$$\omega_1(y) = \begin{cases} \frac{g(y) - g(d)}{y - d} - g'(d) &, \text{ za } y \neq d \\ 0 &, \text{ za } y = d, \end{cases}$$
 (4.19)

96 4. DERIVACIJA

tako da vrijedi

$$g(y) = g(d) + (g'(d) + \omega_1(y))(y - d), \quad y \in J, \tag{4.20}$$

Neka je $h = g \circ f$, pa imamo

$$h(x) = g[f(x)] = g(d) + [g'(d) + \omega_1(f(x))][f(x) - f(c)],$$

što daje

$$\frac{h(x) - h(c)}{x - c} = [g'(d) + \omega_1(f(x))] \frac{f(x) - f(c)}{x - c}.$$
 (4.21)

Zbog neprekidnosti funkcije f u točki c i neprekidnosti ω_1 u d = f(c), funkcija $\omega_1 \circ f$ je neprekidna u c i $(\omega_1 \circ f)(c) = \omega_1[f(c)] = \omega_1(d) = 0$. Sada je

$$h'(c) = \lim_{x \to c} \frac{h(x) - h(c)}{x - c} = \lim_{x \to c} [g'(d) + \omega_1(f(x))] \lim_{x \to c} \frac{f(x) - f(c)}{x - c},$$

odakle slijedi (4.18).

Teorem 4.5. (Derivacija inverzne funkcije) Neka je $f: I \to J$, $I, J \subseteq \mathbb{R}$, I otvoren interval, i neka je f neprekidna bijekcija na I. Ako f ima derivaciju u točki $c \in I$ i ako je $f'(c) \neq 0$, onda je f^{-1} diferencijabilna u točki d = f(c) i vrijedi $(f^{-1})'(d) = \frac{1}{f'(c)}$.

Dokaz: Prema teoremu 3.14. je J otvoren interval i $f^{-1}: J \to I$ je neprekidna funkcija. Nadalje, iz diferencijabilnosti funkcije f u točki c slijedi

$$f(x) - f(c) = (x - c)[f'(c) + \omega(x)],$$

gdje je ω funkcija neprekidna u c definirana s (4.2).

Stavimo d = f(c) i y = f(x) pa dobivamo

$$y - d = [f^{-1}(y) - f^{-1}(d)][f'(c) + \omega(f^{-1}(y))].$$

Odatle dobivamo

$$\frac{f^{-1}(y) - f^{-1}(d)}{y - d} = \frac{1}{f'(c) + \omega(f^{-1}(y))},$$

što zbog neprekidnosti funkcije $\omega\circ f^{-1}$ u točki di $(\omega\circ f^{-1})(d)=0$ daje jednakost

$$(f^{-1})'(d) = \lim_{y \to d} \frac{f^{-1}(y) - f^{-1}(d)}{y - d} = \frac{1}{f'(c)}.$$

Prethodnu formulu često koristimo u obliku

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

4.3 Derivacije elementarnih funkcija

4.3.1 Potencije i korijeni

Neka je $n \in \mathbb{N}$ i $f(x) = x^n, x \in \mathbb{R}$. Tada se indukcijom pomoću formule za deriviranje produkta funkcija lako dobije $f'(x) = nx^{n-1}, \forall x \in \mathbb{R}$. Slično, neka je $n \in \mathbb{N}$ i $f(x) = x^{-n}, x \in \mathbb{R} \setminus \{0\}$. Iz prethodnog i formule za deriviranje kvocijenta dobijemo $(x^{-n})' = (\frac{1}{x^n})' = \frac{-nx^{n-1}}{x^{2n}} = -nx^{-n-1}$. Neka je za n neparan $f^{-1} : \mathbb{R} \to \mathbb{R}$ ili za n paran $f^{-1} : \langle 0, +\infty \rangle \longrightarrow$

Neka je za n neparan $f^{-1}: \mathbb{R} \to \mathbb{R}$ ili za n paran $f^{-1}: \langle 0, +\infty \rangle \longrightarrow \langle 0, +\infty \rangle$ definirana s $f^{-1}(x) = \sqrt[n]{x} = x^{\frac{1}{n}}$. Tada vrijedi $(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))} = \frac{1}{n(\sqrt[n]{x})^{n-1}} = \frac{1}{nx^{\frac{n-1}{n}}} = \frac{1}{n}x^{\frac{1}{n}-1}$.

Neka je $q \in \mathbb{Q} \setminus \{0\}$ i $f : \langle 0, +\infty \rangle \longrightarrow \langle 0, +\infty \rangle$ definirana s $f(x) = x^q$. Pokažimo da vrijedi formula $(x^q)' = qx^{q-1}$. Naime, za $q = \frac{m}{n}, m \in \mathbb{Z}$ i $n \in \mathbb{N}$, iz prethodnog i pomoću formule za deriviranje kompozicije imamo $(x^{\frac{m}{n}})' = [(x^m)^{\frac{1}{n}}]' = \frac{1}{n}(x^m)^{\frac{1}{n}-1}mx^{m-1} = \frac{m}{n}x^{\frac{m}{n}-m+m-1} = \frac{m}{n}x^{\frac{m}{n}-1}$.

4.3.2 Trigonometrijske i arcus funkcije

Za $0 < x < \frac{\pi}{2}$ vrijedi $\sin x < x$ i tgx > x. Odatle, za $x \in \langle -\frac{\pi}{2}, \frac{\pi}{2} \rangle \setminus \{0\}$ vrijedi nejednakost $\cos x < \frac{\sin x}{x} < 1$. Odatle slijedi $\lim_{x \to 0} \frac{\sin x}{x} = 1$.

Sada za $\forall c \in \mathbb{R}$ vrijedi

$$\frac{\sin x - \sin c}{x - c} = \frac{2\sin\frac{x - c}{2}\cos\frac{x + c}{2}}{x - c} = \frac{\sin\frac{x - c}{2}}{\frac{x - c}{2}}\cos\frac{x + c}{2},$$

što daje

$$\lim_{x \to c} \frac{\sin x - \sin c}{x - c} = \lim_{x \to c} \frac{\sin \frac{x - c}{2}}{\frac{x - c}{2}} \lim_{x \to c} \cos \frac{x + c}{2} = \cos c.$$

Odatle je za $f(x) = \sin x$, derivacija $f'(c) = \cos c$ za $\forall c \in \mathbb{R}$ ili u drugoj oznaci $(\sin x)' = \cos x$.

Nadalje, iz $\cos x = \sin(x + \frac{\pi}{2})$ dobivamo $(\cos x)' = \cos(x + \frac{\pi}{2}) \cdot 1 = -\sin x$. Pomoću formule za deriviranje kvocijenta imamo

$$(\operatorname{tg} x)' = (\frac{\sin x}{\cos x})' = \frac{\cos x \cos x - \sin x(-\sin x)}{\cos^2 x} = \frac{1}{\cos^2 x}.$$

Analogno slijedi

$$(\operatorname{ctg} x)' = (\frac{\cos x}{\sin x})' = \frac{-\sin x \sin x - \cos x \cos x}{\sin^2 x} = -\frac{1}{\sin^2 x}.$$

98 4. DERIVACIJA

Za $f(x) = \operatorname{Sin} x$ je $f^{-1}(x) = \operatorname{Sin}^{-1} x$, pa formula za deriviranje inverzne funkcije daje

$$(\operatorname{Sin}^{-1} x)' = \frac{1}{\cos(\operatorname{Sin}^{-1} x)} = \frac{1}{\sqrt{1 - [\sin(\operatorname{Sin}^{-1} x)]^2}} = \frac{1}{\sqrt{1 - x^2}}.$$

Za $f(x) = \operatorname{Cos} x$ je $f^{-1}(x) = \operatorname{Cos}^{-1} x$, pa formula za deriviranje inverzne funkcije daje

$$(\cos^{-1} x)' = \frac{-1}{\sin(\cos^{-1} x)} = \frac{-1}{\sqrt{1 - [\cos(\cos^{-1} x)]^2}} = \frac{-1}{\sqrt{1 - x^2}}.$$

$$(\mathrm{Tg}^{-1} x)' = \frac{1}{\frac{1}{\cos^2(\mathrm{Tg}^{-1} x)}} = \frac{1}{1 + [\mathrm{tg}(\mathrm{Tg}^{-1} x)]^2} = \frac{1}{1 + x^2}, \forall x \in \mathbb{R},$$

$$(\operatorname{Ctg}^{-1} x)' = \frac{1}{\frac{-1}{\sin^2(\operatorname{Ctg}^{-1} x)}} = \frac{-1}{1 + [\operatorname{ctg}(\operatorname{Ctg}^{-1} x)]^2} = \frac{-1}{1 + x^2}, \forall x \in \mathbb{R}.$$

4.3.3 Eksponencijalna funkcija

Za eksponencijalnu funkciju $exp: \mathbb{R} \to \langle 0, +\infty \rangle$ i $c \in \mathbb{R}$ imamo

$$exp'(c) = \lim_{x \to c} \frac{exp(x) - exp(c)}{x - c} = exp(c) \lim_{x - c \to 0} \frac{exp(x - c) - 1}{x - c} = exp(c).$$

Dakle, za $\forall x \in \mathbb{R}$ je $(e^x)' = e^x$.

Za logaritamsku funkciju $f^{-1}(x) = \ln x$ kao inverznu funkciju od eksponencijalne imamo

$$(\ln x)' = \frac{1}{e^{\ln x}} = \frac{1}{x}, \forall x > 0.$$

Primjer 4.4. Neka je $f(x) = \ln |x|$ za $x \neq 0$. Tada za x > 0 imamo $f(x) = \ln x$, pa je $f'(x) = \frac{1}{x}$. Za x < 0 je $f(x) = \ln(-x)$, pa je $f'(x) = \frac{1}{-x}(-1) = \frac{1}{x}$. Dakle $\forall x \neq 0$ je $(\ln |x|)' = \frac{1}{x}$.

Primjer 4.5. Opća potencija za x > 0 i $\alpha \in \mathbb{R} \setminus \{0\}$ je funkcija definirana s $x^{\alpha} = e^{\alpha \ln x}$. Odatle je $(x^{\alpha})' = e^{\alpha \ln x} \alpha \frac{1}{x} = \alpha x^{\alpha - 1}$.

Primjer 4.6. Eksponencijalna funkcija s bazom a > 0 definira se kao $a^x = e^{x \ln a}$ za $\forall x \in \mathbb{R}$. Odatle je $(a^x)' = e^{x \ln a} \ln a = a^x \ln a$. Njena inverzna funkcija $\log_a x$ ima derivaciju $(\log_a x)' = \frac{1}{a^{\log_a x} \ln a} = \frac{1}{x \ln a}$.

4.3.4 Hiperbolne i area funkcije

$$(\operatorname{sh} x)' = \left(\frac{e^{x} - e^{-x}}{2}\right)' = \frac{e^{x} + e^{-x}}{2} = \operatorname{ch} x, \forall x \in \mathbb{R},$$

$$(\operatorname{ch} x)' = \left(\frac{e^{x} + e^{-x}}{2}\right)' = \frac{e^{x} - e^{-x}}{2} = \operatorname{sh} x, \forall x \in \mathbb{R},$$

$$(\operatorname{th} x)' = \left(\frac{\operatorname{sh} x}{\operatorname{ch} x}\right)' = \frac{\operatorname{ch}^{2} x - \operatorname{sh}^{2} x}{(\operatorname{ch} x)^{2}} = \frac{1}{\operatorname{ch}^{2} x}, \forall x \in \mathbb{R},$$

$$(\operatorname{cth} x)' = \left(\frac{\operatorname{ch} x}{\operatorname{sh} x}\right)' = \frac{\operatorname{sh}^{2} x - \operatorname{ch}^{2} x}{(\operatorname{sh} x)^{2}} = \frac{-1}{\operatorname{sh}^{2} x}, \forall x \in \mathbb{R} \setminus \{0\},$$

$$(\operatorname{sh}^{-1} x)' = \frac{1}{\operatorname{ch}(\operatorname{sh}^{-1} x)} = \frac{1}{\sqrt{1 + (\operatorname{sh}(\operatorname{sh}^{-1} x))^{2}}} = \frac{1}{\sqrt{1 + x^{2}}}, \forall x \in \mathbb{R},$$

$$(\operatorname{Ch}^{-1} x)' = \frac{1}{\operatorname{sh}(\operatorname{Ch}^{-1} x)} = \frac{1}{\sqrt{(\operatorname{ch}(\operatorname{Ch}^{-1} x))^{2} - 1}} = \frac{1}{\sqrt{x^{2} - 1}}, \forall x > 1,$$

$$(\operatorname{th}^{-1} x)' = \frac{1}{\frac{1}{\operatorname{ch}^{2}(\operatorname{th}^{-1} x)}} = \frac{1}{1 - [\operatorname{th}(\operatorname{th}^{-1} x)]^{2}} = \frac{1}{1 - x^{2}}, \forall x \in \langle -1, 1 \rangle,$$

$$(\operatorname{cth}^{-1} x)' = \frac{1}{\frac{1}{\operatorname{sh}^{2}(\operatorname{cth}^{-1} x)}} = \frac{1}{1 - [\operatorname{cth}(\operatorname{cth}^{-1} x)]^{2}} = \frac{1}{1 - x^{2}}, \forall x \in \mathbb{R} \setminus [-1, 1].$$

Primjer 4.7. (Logaritamsko deriviranje) Neka su $f: I \to \langle 0, +\infty \rangle, g: I \to \mathbb{R}, I \subseteq \mathbb{R}$ otvoren interval, diferencijabilne funkcije. Tada je i funkcija $h: I \to \mathbb{R}$, definirana s $h(x) = f(x)^{g(x)}, \forall x \in I$, diferencijabilna. Naime, $\ln(h(x)) = g(x) \ln(f(x))$, pa deriviranjem lijeve i desne strane ove jednakosti imamo: $\frac{h'(x)}{h(x)} = g'(x) \ln(f(x)) + g(x) \frac{f'(x)}{f(x)}$. Odatle je

$$h'(x) = f(x)^{g(x)} \left[g'(x) \ln(f(x)) + g(x) \frac{f'(x)}{f(x)} \right].$$

4.4 Teoremi srednje vrijednosti i primjene

Lema 4.1. Neka je $f: I \to \mathbb{R}$, diferencijabilna u točki c otvorenog intervala $I \subseteq \mathbb{R}$. Ako je f'(c) > 0 onda $\exists \delta > 0$ takav da vrijedi

$$(x \in \langle c - \delta, c \rangle) \Rightarrow (f(x) < f(c)),$$

 $(x \in \langle c, c + \delta \rangle) \Rightarrow (f(c) < f(x)).$

100 4. DERIVACIJA

Ako je f'(c) < 0 onda $\exists \delta > 0$ takav da vrijedi

$$(x \in \langle c - \delta, c \rangle) \Rightarrow (f(x) > f(c)),$$

$$(x \in \langle c, c + \delta \rangle) \Rightarrow (f(c) > f(x)).$$

Dokaz: Slično kao u dokazu teorema 4.1., iz diferencijabilnosti funkcije f u c slijedi neprekidnost u c funkcije $g:I\to\mathbb{R}$ definirane s

$$g(x) = \begin{cases} \frac{f(x) - f(c)}{x - c} &, \text{ za } x \neq c \\ f'(c) &, \text{ za } x = c \end{cases}.$$

Zbog g(c)=f'(c)>0, po lemi 3.2. iz M.A.I. $\exists \delta>0$ takav da $\forall x\in I$ $(|x-c|<\delta)\Rightarrow g(x)\geq \frac{1}{2}g(c)>0$. To daje

$$(x \in \langle c - \delta, c \rangle) \Rightarrow \frac{f(x) - f(c)}{x - c} > 0 \Rightarrow (f(x) - f(c) < 0),$$

$$(x \in \langle c, c + \delta \rangle) \Rightarrow \frac{f(x) - f(c)}{x - c} > 0 \Rightarrow (f(x) - f(c) > 0).$$

Definicija 4.2. Za funkciju $f:I\to\mathbb{R}$ kažemo da u c otvorenog intervala $I\subseteq\mathbb{R}$ ima

- a) lokalni maksimum f(c), ako $\exists \delta > 0$ takav da $\forall x \in I (|x c| < \delta) \Rightarrow (f(x) \leq f(c)),$
- b) strogi lokalni maksimum f(c), ako $\exists \delta > 0$ takav da $\forall x \in I \ (0 < |x-c| < \delta) \Rightarrow (f(x) < f(c))$,
- c) lokalni minimum f(c), ako $\exists \delta > 0$ takav da $\forall x \in I \ (|x c| < \delta) \Rightarrow (f(x) \ge f(c))$,
- d) strogi lokalni minimum f(c), ako $\exists \delta > 0$ takav da $\forall x \in I \ (0 < |x c| < \delta) \Rightarrow (f(x) > f(c))$.

Takve točke zovemo točkama lokalnih ekstrema, odnosno, strogih lokalnih ekstrema.

Lema 4.2 (Fermat). Neka $f: I \to \mathbb{R}$ u točki c otvorenog intervala $I \subseteq \mathbb{R}$ ima lokalni ekstrem. Ako je f diferencijabilna u c, onda je f'(c) = 0.

Dokaz: Neka f ima u c lokalni maksimum. Kada bi bilo f'(c) > 0 onda bi postojao $\delta > 0$ takav da $(x \in \langle c, c + \delta \rangle) \Rightarrow (f(c) < f(x))$, tj. f ne bi imala lokalni maksimum u c. U slučaju $f'(c) < 0 \; \exists \delta > 0$ takav da $(x \in \langle c - \delta, c \rangle) \Rightarrow (f(x) > f(c))$, pa f opet ne bi imala lokalni maksimum u c. Dakle, mora biti f'(c) = 0.

Uvjet da je derivacija u točki jednaka nuli nije dovoljan da bi u toj točki funkcija imala lokalni ekstrem. Točke iz otvorenog intervala u kojima je derivacija jednaka nuli nazivamo **stacionarnim** točkama.

Primjer 4.8. Za funkciju $f(x) = x^3$ je $f'(x) = 3x^2$, tj. f'(0) = 0, ali f nema lokalni ekstrem u 0 jer je f strogo rastuća na \mathbb{R} .

Teorem 4.6 (Rolle¹). Neka je $f: I \to \mathbb{R}$, diferencijabilna na otvorenom intervalu $I \subseteq \mathbb{R}$ i neka za $a, b \in I$, a < b, vrijedi f(a) = f(b) = 0. Tada $\exists c \in \langle a, b \rangle$ takav da je f'(c) = 0.

Dokaz: Budući da je funkcija f neprekidna na segmentu $[a,b] \subset I$, onda ona poprima minimum m i maksimum M na tom segmentu (B-W teorem).

Ako je m=M onda je f konstantna funkcija na tom segmentu, pa je $f'(c)=0, \forall c\in\langle a,b\rangle$. Pretpostavimo da je m< M. Onda se barem jedna od tih vrijednosti poprima unutar intervala $\langle a,b\rangle$, i pretpostavimo da je to M, tj. $\exists x_M \in \langle a,b\rangle, M=f(x_M)$. Sada po lemi 4.2. je $f'(x_M)=0$, tj. $c=x_M$ je tražena točka.

Teorem 4.7 (Lagrange²). Neka je $f: I \to \mathbb{R}$, diferencijabilna na otvorenom intervalu $I \subseteq \mathbb{R}$ i neka su $a, b \in I$, a < b. Tada $\exists c \in \langle a, b \rangle$ takav da je f(b) - f(a) = f'(c)(b - a).

Dokaz: Neka je funkcija $g: I \to \mathbb{R}$ zadana s $g(x) = f(x) - f(a) - \frac{f(b) - f(a)}{b - a}(x - a)$. Funkcija g je diferencijabilna na I i $g'(x) = f'(x) - \frac{f(b) - f(a)}{b - a}$, $\forall x \in I$. Također je g(a) = g(b) = 0, pa g zadovoljava sve uvjete Rolleovog teorema, tj. $\exists c \in \langle a, b \rangle$ takva da je $0 = g'(c) = f'(c) - \frac{f(b) - f(a)}{b - a}$.

 $^{^1\}mathrm{Michel}$ Rolle (Ambert, 21. travanj 1652. – Paris, 8. studeni 1719.) francuski matematičar

²Joseph Louis Lagrange [Giuseppe Lodovico Lagrangia] (Turin [Sardinija] 25. siječanj 1736.– Paris, 10. travanj 1813. , talijansko-francuski matematičar

Geometrijska interpretacija Lagrangeovog teorema srednje vrijednosti kaže da za svako $a,b\in I$ i sekantu koja prolazi točkama (a,f(a)) i (b,f(b)) na grafu $\Gamma(f)$ funkcije f postoji tangenta s diralištem (c,f(c)) na grafu $\Gamma(f)$ koja je paralelna s tom sekantom. Naime, jednakost iz Lagrangeovog teorema može se pisati kao

$$f'(c) = \frac{f(b) - f(a)}{b - a},$$

a to je upravo jednakost koeficijenata smjera tangente i sekante.

Postoji nekoliko sličnih, ali u nekim detaljima različitih, formulacija Rolleovog i Lagrangeovog teorema. Ako je $f:[a,b] \to \mathbb{R}$, onda se pretpostavlja njena neprekidnost na [a,b] i diferencijabilnost na $\langle a,b\rangle$. Neprekidnost na segmentu [a,b] je dovoljna za primjenu Bolzano-Weierstrassovog teorema u dokazu Rolleovog teorema, a stacionarna točka je i onako iz otvorenog intervala $\langle a,b\rangle$, pa je dovoljno pretpostaviti diferencijabilnost na $\langle a,b\rangle$.

Također, nekada se točka $c \in \langle a, b \rangle$ piše u obliku $c = a + \vartheta(b - a), \vartheta \in \langle 0, 1 \rangle$. Sada ćemo dokazati da za funkciju diferencijabilnu na otvorenom intervalu $I \subset \mathbb{R}$, njena derivacija $f': I \to \mathbb{R}$ definirana s $(f')(x) = f'(x), \forall x \in I$, ne može biti bilo kakva funkcija.

Teorem 4.8. Neka je $f: I \to \mathbb{R}$ diferencijabilna na otvorenom intervalu $I \subset \mathbb{R}$ i neka funkcija $f': I \to \mathbb{R}$ ima u točki $c \in I$ limes slijeva (limes zdesna). Tada je f' neprekidna slijeva (zdesna) u c.

Dokaz: Neka je $x \in I$, x < c, pa po Lagrangeovom teoremu srednje vrijednosti postoji točka $c_x \in \langle x, c \rangle$ takva da vrijedi $f(x) - f(c) = f'(c_x)(x - c)$. Odatle je $\frac{f(x) - f(c)}{x - c} = f'(c_x)$. Po pretpostavci postoji $\lim_{x \to c^-} f'(x)$. No, tada je $\lim_{x \to c^-} f'(x) = \lim_{x \to c^-} f'(c_x)$, odnosno, zbog postojanja f'(c) vrijedi $\lim_{x \to c^-} f'(x) = \lim_{x \to c^-} \frac{f(x) - f(c)}{x - c} = \lim_{x \to c} \frac{f(x) - f(c)}{x - c} = f'(c)$.

Interesantna je slijedeća posljedica.

Korolar 4.2. Ako realna funkcija f ima derivaciju f' na otvorenom intervalu $I \subseteq \mathbb{R}$, onda funkcija f' nema prekida prve vrste na I.

Zadatak 4.1. Pokažite za funkciju $f: \mathbb{R} \to \mathbb{R}$ definiranu s $f(x) = x^2 \sin(\frac{1}{x})$

za $x \neq 0$ i f(0) = 0 da je diferencijabilna na \mathbb{R} i da joj je derivacija f' neprekidna na $\mathbb{R} \setminus \{0\}$, a u 0 ima prekid (druge vrste).

4.5 Monotonost i derivacija funkcije

Teorem 4.9. Neka je $f: I \to \mathbb{R}$, diferencijabilna na otvorenom intervalu $I \subseteq \mathbb{R}$. Funkcija f raste na I ako i samo ako je $f'(x) \ge 0$, $\forall x \in I$. Funkcija f pada na I ako i samo ako je $f'(x) \le 0$, $\forall x \in I$.

Dokaz: Neka f raste na I, tj. $\forall x_1, x_2 \in I$ $(x_1 < x_2) \Rightarrow (f(x_1) \leq f(x_2))$. Kada bi postojala točka $c \in I$ takva da je f'(c) < 0, onda bi po lemi 4.1. postojao $\delta > 0$ takav da vrijedi $(x \in \langle c - \delta, c \rangle) \Rightarrow (f(x) > f(c))$, a to je u suprotnosti s rastom funkcije. Dakle, $f'(x) \geq 0$, $\forall x \in I$.

Obratno, neka je $f'(x) \geq 0$, $\forall x \in I$. Neka su $x_1, x_2 \in I$, $x_1 < x_2$. Po Lagrangeovom teoremu srednje vrijednosti $\exists c \in \langle x_1, x_2 \rangle$ tako da je $f(x_2) - f(x_1) = f'(c)(x_2 - x_1) \geq 0$, tj. $f(x_1) \leq f(x_2)$.

Druga tvrdnja slijedi iz prve tvrdnje za funkciju -f.

Uvjet da je f'(x) > 0, $\forall x \in I$, je dovoljan za strogi rast funkcije f na I, ali taj uvjet nije nužan. To pokazuje primjer funkcije $f(x) = x^3$, $\forall x \in \mathbb{R}$. Naime, ta je funkcija strogo rastuća, ali f'(0) = 0. Nužan i dovoljan uvjet dan je u sljedećem teoremu.

Teorem 4.10. Neka je $f: I \to \mathbb{R}$, diferencijabilna na otvorenom intervalu $I \subseteq \mathbb{R}$ i neka je $S = \{x \in I; f'(x) = 0\}$. Funkcija f strogo raste (pada) na I ako i samo ako skup S ne sadrži otvoreni interval i f'(x) > 0 (f'(x) < 0), $\forall x \in I \setminus S$.

Dokaz: Neka f strogo raste na I. Po prethodnom teoremu vrijedi $f'(x) \geq 0$, $\forall x \in I$. Kada bi postojao otvoren interval $I_0 \subset S$, onda bi $\forall x_1, x_2 \in I_0$, $x_1 < x_2$ postojao $c \in \langle x_1, x_2 \rangle$ takav da je $f(x_2) - f(x_1) = f'(c)(x_2 - x_1) = 0$, a to je suprotno pretpostavci o strogom rastu funkcije f na I. Dakle, skup S ne sadrži interval.

Pretpostavimo sada da je f'(x) > 0, $\forall x \in I \setminus S$ i da S ne sadrži interval. Zbog $f'(x) \geq 0$, $\forall x \in S$, prema teoremu 4.9. funkcija f raste na I. Kada bi postojale točke $x_1, x_2 \in I_0$, $x_1 < x_2$, takve da je $f(x_1) = f(x_2)$, onda bi zbog rasta funkcije f za svaki $x \in \langle x_1, x_2 \rangle$ vrijedilo $f(x_1) \leq f(x) \leq f(x_2)$, tj. $f(x) = f(x_1) = f(x_2)$. Tada bi funkcija bila konstantna na intervalu $\langle x_1, x_2 \rangle$, tj. $\langle x_1, x_2 \rangle \subseteq S$, što se protivi pretpostavci.

Sada smo u mogućnosti opisati dovoljne uvjete za lokalne ekstreme diferencijabilne funkcije pomoću njene derivacije.

Teorem 4.11. Neka je $f: I \to \mathbb{R}$, diferencijabilna na otvorenom intervalu $I \subset \mathbb{R}$.

1. Ako je
$$c \in I$$
, $f'(c) = 0$ i ako $\exists \delta > 0$, $\langle c - \delta, c + \delta \rangle \subseteq I$, tako da $(x \in \langle c - \delta, c \rangle) \Rightarrow (f'(x) > 0)$ i $(x \in \langle c, c + \delta \rangle) \Rightarrow (f'(x) < 0)$,

onda f ima u točki c strogi lokalni maksimum.

2. Ako je
$$c \in I$$
, $f'(c) = 0$ i ako $\exists \delta > 0$, $\langle c - \delta, c + \delta \rangle \subseteq I$, tako da $(x \in \langle c - \delta, c \rangle) \Rightarrow (f'(x) < 0)$ i $(x \in \langle c, c + \delta \rangle) \Rightarrow (f'(x) > 0)$,

onda f ima u točki c strogi lokalni minimum.

Dokaz: 1. Neka je f'(c) = 0 i $(x \in \langle c - \delta, c \rangle) \Rightarrow (f'(x) > 0)$ i $(x \in \langle c, c + \delta \rangle) \Rightarrow (f'(x) < 0)$. Prema Lagrangeovom teoremu srednje vrijednosti $\forall x \in \langle c - \delta, c + \delta \rangle \exists t$ između c i x tako da vrijedi f(c) - f(x) = f'(t)(c - x). Sada, za $x \in \langle c - \delta, c \rangle$ imamo x < t < c, pa je f'(t) > 0. Stoga je f(c) - f(x) = f'(t)(c - x) > 0. Za $x \in \langle c, c + \delta \rangle$ je c < t < x, pa je f'(t) < 0, odakle slijedi f(c) - f(x) = f'(t)(c - x) > 0. Dakle, $\forall x \in \langle c - \delta, c + \delta \rangle$, $x \neq c$, je f(x) < f(c), tj. f u c ima strogi lokalni maksimum. Slučaj 2. slijedi iz 1. zamjenom f s -f.

Primjer 4.9. Ispitati lokalne ekstreme i naći intervale monotonosti funkcije $f(x) = \frac{x}{1+x^2}$.

Funkcije
$$f$$
 i f' su definirane na \mathbb{R} i $f'(x) = \frac{1-x^2}{(1+x^2)^2}$.

Stacionarne točke su $x_1 = -1$ i $x_2 = 1$.

Zbog f'(-2) < 0 funkcija pada na $\langle \infty, -1 \rangle$, zbog f'(0) = 1 f raste na $\langle -1, 1 \rangle$ i zbog f'(2) < 0 f pada na $\langle 1, +\infty \rangle$.

Stoga imamo lokalne ekstreme: $\min(-1, -\frac{1}{2})$ i $\max(1, \frac{1}{2})$.

		$\langle -\infty, -1 \rangle$	$\langle -1, 1 \rangle$	$\langle 1, \infty \rangle$
Ī	f'	_	+	_
	f	X	7	×

Primjer 4.10. Ispitati lokalne ekstreme i naći intervale monotonosti funkcije $f(x) = \frac{1}{4}x^4 - x^3 - 2x^2 + 1$.

Funkcije f i f' su definirane na \mathbb{R} i

$$f'(x) = x^3 - 3x^2 - 4x = (x^2 - 3x - 4)x.$$

Stacionarne točke su $x_1 = -1$, $x_2 = 0$ i $x_3 = 4$.

Vrijednosti derivacije između stacionarnih točaka su f'(-2) = -12, $f'(-\frac{1}{2}) = \frac{9}{8}$, f'(1) = -6.

Lokalni ekstremi su: $\min(-1, \frac{1}{4})$, $\max(0, 1)$, $\overline{^{-4}}$ $\min(4, -31)$.

	$\langle -\infty, -1 \rangle$	$\langle -1, 0 \rangle$	$\langle 0, 4 \rangle$	$\langle 4, \infty \rangle$
f	_	+	-	+
f	\searrow	7	X	7

4.6 Taylorov teorem srednje vrijednosti i primjene

Definicija 4.3. Neka je $I\subseteq\mathbb{R}$ otvoren interval i $f:I\to\mathbb{R}$ ima n-tu derivaciju na I. Za $c\in I$ polinom

$$T_n(x) = f(c) + \sum_{k=1}^n \frac{f^{(k)}(c)}{k!} (x - c)^k, \ x \in \mathbb{R},$$
 (4.22)

zovemo Taylorov 1 polinom n-togreda za funkciju fu točki c,a funkciju

$$R_n(x) = f(x) - T_n(x), \ x \in I,$$
 (4.23)

zovemo n-ti ostatak funkcije f u c.

Lagrangeov teorem srednje vrijednosti ima sljedeće uopćenje.

Teorem 4.12. (Taylor) Neka je $I \subseteq \mathbb{R}$ otvoren interval i neka $f: I \to \mathbb{R}$, ima derivaciju n+1-vog reda na I. Neka je $c \in I$ i T_n Taylorov polinom za f u točki c definiran s (4.22). Tada $\forall x \in I$, $\exists c_x$ između c i x, tako da je

$$R_n(x) = \frac{f^{(n+1)}(c_x)}{(n+1)!} (x-c)^{n+1}, (Lagrangeov oblik ostatka).$$
 (4.24)

¹Brook Taylor (Edmonton, 18. kolovoz 1685.– London, 30. studeni 1731.) engleski matematičar

Dokaz: Za čvrsto $x \in I$, $x \neq c$, definirajmo funkciju $F: I \to \mathbb{R}$ formulom

$$F(t) = f(x) - f(t) - \sum_{k=1}^{n} \frac{f^{(k)}(t)}{k!} (x - t)^k - A \frac{(x - t)^{n+1}}{(n+1)!}, \qquad (4.25)$$

gdje je

$$A = \frac{(n+1)!}{(x-c)^{n+1}} \left[f(x) - f(c) - \sum_{k=1}^{n} \frac{f^{(k)}(c)}{k!} (x-c)^{k} \right] . \tag{4.26}$$

Lako je provjeriti da je F(x) = 0, a zbog (4.26) vrijedi F(c) = 0. Nadalje,

$$F'(t) = -f'(t) - \sum_{k=1}^{n} \left[\frac{f^{(k+1)}(t)}{k!} (x-t)^k - \frac{f^{(k)}(t)}{(k-1)!} (x-t)^{k-1} \right] + A \frac{(x-t)^n}{n!}$$
$$= \frac{(x-t)^n}{n!} \left[A - f^{(n+1)}(t) \right].$$

Iz Rolleovog teorema srednje vrijednosti zaključujemo da $\exists c_x$ strogo između c i x takav da vrijedi $F'(c_x) = 0$. To povlači da je $A = f^{(n+1)}(c_x)$, što pomoću (4.26) daje (4.24).

4.6.1 Određivanje ekstrema pomoću derivacija višeg reda

U prošlom teoremu pokazali smo da je f'(c) = 0 nužan uvjet za postojanje lokalnog ekstrema diferencijabilne funkcije f u točki c. Sada ćemo dati dovoljan uvjet za lokalne ekstreme pomoću derivacija višeg reda u točki c. $C^{(n)}(I)$ je skup funkcija koje imaju neprekidnu n-tu derivaciju na I.

Teorem 4.13. Neka je $I \subseteq \mathbb{R}$ otvoren interval, $f: I \to \mathbb{R}$, $f \in C^{(n+1)}(I)$. Neka je $c \in I$ stacionarna točka, tj. f'(c) = 0. Ako postoji $n \in \mathbb{N}$, takav da $\forall k \in \{1, \ldots, n\}$ vrijedi $f^{(k)}(c) = 0$ i $f^{(n+1)}(c) \neq 0$, tada u slučaju

- 1. kada je n+1 paran broj i $f^{(n+1)}(c)>0$, f ima u c strogi lokalni minimum,
- 2. kada je n+1 paran broj i $f^{(n+1)}(c) < 0$, f ima u c strogi lokalni maksimum.
- 3. kada je n+1 neparan broj, f nema u c lokalni ekstrem (ima horizontalnu infleksiju).

Dokaz: Pretpostavimo da je nastupio 1. slučaj. Tada zbog neprekidnosti $f^{(n+1)}$ u točki $c \exists \delta > 0$ takav da $\forall x \in \langle c - \delta, c + \delta \rangle$ vrijedi $f^{(n+1)}(x) > 0$. Po Taylorovom teoremu srednje vrijednosti, $\forall x \in \langle c - \delta, c + \delta \rangle \exists c_x$ između c i x tako da je $f(x) = f(c) + \frac{f^{(n+1)}(c_x)}{(n+1)!}(x-c)^{n+1} > f(c)$ (zbog parnosti eksponenta n+1). Dakle, f ima u c strogi lokalni minimum. Slučaj 2. se dokazuje analogno.

U 3. slučaju, zbog neparnosti eksponenta n+1, na različitim stranama od c vrijednost od $f^{(n+1)}(c_x)(x-c)^{n+1}$ ima različite predznake, tj. u c nije lokalni ekstrem funkcije f.

Primjer 4.11. Ispitati lokalne ekstreme funkcije $f(x) = \frac{1}{4}x^4 - x^3 - 2x^2 + 1$.

Funkcije f, f' i f'' su definirane na \mathbb{R} .

Imamo
$$f'(x) = x^3 - 3x^2 - 4x = (x^2 - 3x - 4)x$$
 i $f''(x) = 3x^2 - 6x - 4$.

Stacionarne točke su $x_1 = -1$, $x_2 = 0$ i $x_3 = 4$.

Vrijedi f''(-1) = 5 > 0, f''(0) = -4 < 0, f''(4) = 20 > 0, pa su točke lokalnih ekstrema:

$$\min(-1, \frac{1}{4}), \max(0, 1), \min(4, -31).$$

Primjer 4.12. Ispitati lokalne ekstreme funkcije $f(x) = x^4 e^{-x^2}$.

Funkcije f, f' i f'' su definirane na \mathbb{R} .

$$f'(x) = e^{-x^2}(4x^3 - 2x^5)$$

$$f''(x) = e^{-x^2}(4x^6 - 18x^4 + 12x^2)$$

$$f'''(x) = e^{-x^2}(-8x^7 + 60x^5 - 96x^3 + 24x)$$

$$f^{(4)}(x) = e^{-x^2} (16x^8 - 176x^6 + 492x^4 - 33612x^2 + 24)$$

Stacionarne točke su $x_1 = -\sqrt{2}$,

$$x_2 = 0 \text{ i } x_3 = \sqrt{2}.$$

Vrijedi
$$f''(-\sqrt{2}) < 0, f''(0) = 0,$$

$$f'''(0) = 0, f^{(4)}(0) = 24 > 0,$$

$$f''(-\sqrt{2}) < 0,$$

0.4 0.3 0.2 0.1

pa imamo lokalne ekstreme: $\max(-\sqrt{2}, 4e^{-2}), \min(0, 0), \max(\sqrt{2}, 4e^{-2}).$

Primjer 4.13. Funkcija $f(x) = \begin{cases} e^{-\frac{1}{x^2}}, & \text{za } x \neq 0 \\ 0, & \text{za } x = 0 \end{cases}$ je klase $C^{(\infty)}(\mathbb{R})$ i vrijedi $f^{(n)}(0) = 0, \forall n \in \mathbb{N}$

Funkcija $\widetilde{f}=f|_{\mathbb{R}\setminus\{0\}}$ je elementarna funkcija i ona je klase $C^{\infty}(\mathbb{R}\setminus\{0\})$ $\{0\}$). Njene derivacije su oblika $\widetilde{f}^{(n)}(x) = P_n(\frac{1}{x})e^{-\frac{1}{x^2}}$, gdje je P_n polinom za kojeg vrijedi $P_n(0) = P'_n(0) = 0$ za sve $n \in \mathbb{N}$. Naime, $\widetilde{f}^{(n+1)}(x) = (\widetilde{f}^{(n)}(x))' = (P_n(\frac{1}{x})e^{-\frac{1}{x^2}})' = P'_n(\frac{1}{x})(-\frac{1}{x^2})e^{-\frac{1}{x^2}} + P_n(\frac{1}{x})e^{-\frac{1}{x^2}}(2\frac{1}{x^3})$ odakle slijedi $P_{n+1} = 2x^3 P_n(x) - x^2 P'_n(x).$

Sada matematičkom indukcijom pokažimo da f ima derivaciju svakog reda u 0 i da je $f^{(n)}(0) = 0$.

Vrijedi
$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{1}{x} e^{-\frac{1}{x^2}} = 0.$$

Vrijedi $f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0} = \lim_{x \to 0} \frac{1}{x} e^{-\frac{1}{x^2}} = 0.$ Zbog $\lim_{x \to 0} P\left(\frac{1}{x}\right) e^{-\frac{1}{x^2}} = 0$, za svaki polinom P (vidi primjer 3.3) imamo

$$f^{(n+1)}(0) = \lim_{x \to 0} \frac{f^{(n)}(x) - f^{(n)}(0)}{x - 0} = \lim_{x \to 0} \frac{1}{x} P_n(\frac{1}{x}) e^{-\frac{1}{x^2}} = 0.$$

Dakle, tu nije moguće primijeniti prethodno pravilo za određivanje ekstrema. Međutim, pomoću prve derivacije $f'(x) = \begin{cases} \frac{2}{x^3} e^{-\frac{1}{x^2}} &, \text{ za } x \neq 0 \\ 0 &, \text{ za } x = 0 \end{cases}$ vidi da f ima u točki 0 strogi lokalni minimum (nacrtaj graf)

Konveksne funkcije, infleksija 4.6.2

Definicija 4.4. Za realnu funkciju f kažemo da je **konveksna** na intervalu $I \subseteq \mathbb{R}$, ako

$$(\forall x_1, x_2 \in I) \ f\left(\frac{x_1 + x_2}{2}\right) \le \frac{f(x_1) + f(x_2)}{2}.$$

$$(4.27)$$

Funkcija f je **strogo konveksna** ako u (4.27) za $x_1 \neq x_2$ vrijedi stroga nejednakost.

Funkcija f je **konkavna** ako vrijedi

$$(\forall x_1, x_2 \in I) \ f(\frac{x_1 + x_2}{2}) \ge \frac{f(x_1) + f(x_2)}{2},$$

a strogo konkavna ako u (4.28)za $x_1 \neq x_2$ vrijedi stroga nejednakost.

Teorem 4.14. (Jensenova nejednakost) Neka je $f: I \to \mathbb{R}$ funkcija definirana na otvorenom intervalu $I \subseteq \mathbb{R}$. Funkcija f je neprekidna i konveksna na I ako i samo ako vrijedi nejednakost

$$(\forall x_1, x_2 \in I), (\forall t \in [0, 1]), f((1-t)x_1 + tx_2) \le (1-t)f(x_1) + tf(x_2).$$
 (4.28)

Ako jednakost u (4.28) vrijedi za neko $t \in \langle 0, 1 \rangle$, onda jednakost vrijedi $\forall t \in [0, 1]$.

Dokaz: Neka je f neprekidna i konveksna na I. Za bilo koje $x_1, x_2 \in I$ definirajmo neprekidnu funkciju $g: [0,1] \to \mathbb{R}$ s

$$g(t) = f((1-t)x_1 + tx_2) - (1-t)f(x_1) - tf(x_2), \ \forall t \in [0,1].$$
 (4.29)

Želimo dokazati da je $g(t) \leq 0$, $\forall t \in [0,1]$. Pretpostavimo suprotno, tj. neka g postiže svoj maksimum u točki c i neka je g(c) > 0. Zbog g(0) = g(1) = 0 je $c \in \langle 0, 1 \rangle$. Neka je $\delta = \min\{c, 1-c\}$, tj. segmenti $[c-\delta, c+\delta]$ i [0,1] imaju barem jedan zajednički rub. Iz konveksnosti funkcije f slijedi konveksnost funkcije g, pa vrijedi

$$g(c) = g\left(\frac{(c-\delta) + (c+\delta)}{2}\right) \le \frac{g(c-\delta) + g(c+\delta)}{2}.$$
 (4.30)

Budući da je $g(c - \delta) = 0$ ili $g(c + \delta) = 0$, to je desna strana od (4.30) strogo manja od g(c), što je kontradikcija s činjenicom da je g(c) > 0 maksimum. Dakle, vrijedi $g(t) \le 0$, $\forall t \in [0, 1]$.

Ako je g(c)=0 za neko $c\in\langle 0,1\rangle$, onda za izbor $\delta>0$ takav da vrijedi $[c-\delta,c+\delta]\subseteq [0,1]$, iz (4.30) slijedi $g(c-\delta)+g(c+\delta)=0$. Zbog $g(c-\delta)\leq 0$ i $g(c+\delta)\leq 0$, to povlači $g(c-\delta)=0$ i $g(c+\delta)=0$. Iz toga slijedi da je $g(t)=0,\,\forall\,t\in [0,1]$, tj. jednakost u (4.28) tada vrijedi za svako $t\in [0,1]$.

Neka za funkciju f vrijedi Jensenova nejednakost (4.28). Za $x_1, x_2, x_3 \in I$, $x_1 < x_3 < x_2$ imamo $x_3 = \frac{x_2 - x_3}{x_2 - x_1} x_1 + \frac{x_3 - x_1}{x_2 - x_1} x_2$. Iz Jensenove nejednakosti (4.28) za $t = \frac{x_3 - x_1}{x_2 - x_1}$ dobivamo $f(x_3) \le \frac{x_2 - x_3}{x_2 - x_1} f(x_1) + \frac{x_3 - x_1}{x_2 - x_1} f(x_2)$. Odatle je

$$f(x_3) - f(x_1) \le \left(\frac{x_2 - x_3}{x_2 - x_1} - 1\right) f(x_1) + \frac{x_3 - x_1}{x_2 - x_1} f(x_2) = (f(x_2) - f(x_1)) \frac{x_3 - x_1}{x_2 - x_1},$$

što daje

$$\frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

Analogno se dobije nejednakost

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_2) - f(x_3)}{x_2 - x_3}.$$

Dakle, $\forall x_1, x_2, x_3 \in I, x_1 < x_3 < x_2 \text{ vrijedi}$

$$\frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_2) - f(x_3)}{x_2 - x_3}.$$
 (4.31)

Uzmimo bilo koju točku $c \in I$ i $\delta > 0$ takav da je $\langle c - \delta, c + \delta \rangle \subset I$.

Definirajmo funkcije

$$g(x) = \begin{cases} \frac{f(c) - f(c - \delta)}{\delta}(x - c) + f(c) & ; x \le c \\ \frac{f(c + \delta) - f(c)}{\delta}(x - c) + f(c) & ; c \le x \end{cases},$$
_{f(c)}

$$h(x) = \begin{cases} \frac{f(c+\delta) - f(c)}{\delta}(x-c) + f(c) & ; x \le c \\ \frac{f(c) - f(c-\delta)}{\delta}(x-c) + f(c) & ; c \le x \end{cases}.$$

Pokažimo da za $x \in \langle c - \delta, c + \delta \rangle$ vrijedi $h(x) \leq f(x) \leq g(x)$. Za x = c je h(c) = f(c) = g(c). Ako je $x \in \langle c - \delta, c \rangle$, onda iz (4.31) za $x_3 = x$, $x_1 = c - \delta$ i $x_2 = c$ imamo $\frac{f(c) - f(c - \delta)}{\delta} \le \frac{f(c) - f(x)}{c - x}$. Odatle je $f(x) \le c$ $\frac{f(c)-f(c-\delta)}{\delta}(x-c) + f(c) = g(x). \text{ Za } x_3 = c, x_1 = x \text{ i } x_2 = c + \delta \text{ imamo } \frac{f(c)-f(x)}{\delta} \leq \frac{f(c+\delta)-f(c)}{\delta}, \text{ a odatle } h(x) = \frac{f(c+\delta)-f(c)}{\delta}(x-c) + f(c) \leq f(x).$ Analogno, za $x \in \langle c, c + \delta \rangle$, iz (4.31) za $x_3 = x$, $x_1 = c$ i $x_2 = c + \delta$ imamo f(c) = f(c)Analogno, Za $x \in (c, c + b)$, Iz (4.31) Za $x_3 = x$, $x_1 = c$ I $x_2 = c + b$ Infamo $\frac{f(x) - f(c)}{x - c} \le \frac{f(c + \delta) - f(c)}{\delta}$. Odatle je $f(x) \le \frac{f(c + \delta) - f(c)}{\delta}(x - c) + f(c) = g(x)$. Za $x_1 = c - \delta$, $x_3 = c$, $x_2 = x$ i imamo $\frac{f(c) - f(c - \delta)}{\delta} \le \frac{f(x) - f(c)}{x - c}$, a odatle $h(x) = \frac{f(c) - f(c - \delta)}{\delta}(x - c) + f(c) \le f(x)$. Teorem 3.3 o sendviču za limes funkcije daje $\lim_{x \to c} f(x) = f(c)$.

Napomena 4.1. Otvorenost intervala u prethodnom teoremu je nužna da bi Jensenova nejednakost povlačila neprekidnost funkcije. To se vidi iz primjera funkcije $f:[0,+\infty)\to\mathbb{R}$ za koju je f(0)=1 i f(x)=0 za x>0.

Teorem 4.15. Neka je $f:I\to\mathbb{R}$ diferencijabilna funkcija na otvorenom intervalu $I \subseteq \mathbb{R}$. Funkcija f je konveksna na I, ako i samo ako je njena derivacija f' rastuća funkcija na I.

Dokaz: Neka je f konveksna na otvorenom intervalu I. Zbog neprekidnosti funkcije f i teorema 4.14 za f vrijedi Jensenova nejednakost (4.28). Odatle, kao u dokazu teorema 4.14 za bilo koje $x_1, x_2, x_3 \in I, x_1 < x_3 < x_2$ imamo nejednakost (4.31). Ako u (4.31) prvo pređemo na $\lim_{x_3 \to x_1}$, a zatim na $\lim_{x_3 \to x_2}$, dobivamo nejednakost

$$f'(x_1) \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le f'(x_2),$$

tj. $(x_1 < x_2) \Rightarrow (f'(x_1) \le f'(x_2))$. Dakle, f' je rastuća funkcija na I.

Obratno, neka je f' rastuća funkcija na I. Uzmimo po volji $x_1, x_2 \in I$, $x_1 < x_2$. Po Lagrangeovom teoremu srednje vrijednosti $\exists c_1 \in \langle x_1, \frac{x_1 + x_2}{2} \rangle$ i $\exists c_2 \in \langle \frac{x_1 + x_2}{2}, x_2 \rangle$ takvi da je

$$f\left(\frac{x_1+x_2}{2}\right)-f(x_1)=f'(c_1)\frac{x_2-x_1}{2}$$
 i $f(x_2)-f\left(\frac{x_1+x_2}{2}\right)=f'(c_2)\frac{x_2-x_1}{2}$.

Zbog $(c_1 < c_2) \Rightarrow (f'(c_1) \le f'(c_2))$ i $x_2 - x_1 > 0$ vrijedi

$$\frac{1}{2} \left[f\left(\frac{x_1 + x_2}{2}\right) - f(x_1) \right] \le \frac{1}{2} \left[f(x_2) - f\left(\frac{x_1 + x_2}{2}\right) \right],$$

odakle slijedi

$$f\left(\frac{x_1+x_2}{2}\right) \le \frac{1}{2}f(x_1) + \frac{1}{2}f(x_2),$$

tj. f je konveksna funkcija na I.

Korolar 4.3. Neka je $f: I \to \mathbb{R}$ dva puta diferencijabilna funkcija na otvorenom intervalu $I \subseteq \mathbb{R}$. Funkcija f je konveksna na I ako i samo ako je $f''(x) \geq 0$, $\forall x \in I$.

Dokaz: Po prethodnom teoremu f je konveksna na I ako i samo ako je f' rastuća na I, a to vrijedi onda i samo onda ako je $f''(x) \ge 0$, $\forall x \in I$.

Definicija 4.5. Neka je $I \subseteq \mathbb{R}$ otvoren interval i $f: I \to \mathbb{R}$. Točka $c \in I$ je točka **infleksije** ili **prijevojna točka**, ako postoji $\delta > 0$ takav da je na intervalu $\langle c - \delta, c \rangle$ funkcija f strogo konveksna, a na intervalu $\langle c, c + \delta \rangle$ je f strogo konkavna ili obratno. Još kažemo da je točka (c, f(c)) točka infleksije grafa funkcije f.

Teorem 4.16. Neka je $f: I \to \mathbb{R}$ dva puta neprekidno diferencijabilna funkcija na otvorenom intervalu $I \subseteq \mathbb{R}$ i neka je $c \in I$ izolirana nultočka od f'', tj. f''(c) = 0 i $f''(x) \neq 0$ na nekom intervalu oko c. Točka c je točka infleksije funkcije f ako i samo ako funkcija f' ima u c strogi lokalni ekstrem.

Dokaz: Neka je f strogo konveksna (strogo konkavna) na $\langle c - \delta, c \rangle$ i strogo konkavna (strogo konveksna) na $\langle c, c + \delta \rangle$. Tada f' strogo raste (pada) na $\langle c - \delta, c \rangle$ i strogo pada (raste) na $\langle c, c + \delta \rangle$, tj. f' ima strogi lokalni maksimum (minimum) u c.

Obratno, neka f' ima u c strogi lokalni maksimum. Tada $\exists \delta > 0$ takav da f'' > 0 na $\langle c - \delta, c \rangle$ i f'' < 0 na $\langle c, c + \delta \rangle$. Stoga je f strogo konveksna na $\langle c - \delta, c \rangle$ i strogo konkavna na $\langle c, c + \delta \rangle$.

Primjer 4.14. Ispitati lokalne ekstreme i točke infleksije funkcije $f(x) = e^{-x^2}$

Funkcije f, f' i f'' su definirane na \mathbb{R} .

$$f'(x) = -2xe^{-x^2}$$

$$f''(x) = (4x^2 - 2)e^{-x^2}$$

Stacionarna točka je $x_1=0$. Moguće točke infleksije su $x_2=-\frac{\sqrt{2}}{2}$ i $x_3=\frac{\sqrt{2}}{2}$.

Vrijednosti f''(-1) > 0, f''(0) < 0, f''(1) > 0, $\max(0,1)$ određuju konveksnost i konkavnost u intervalima između točaka infleksije.

	$\langle -\infty, -\frac{\sqrt{2}}{2} \rangle$	$\langle -\frac{\sqrt{2}}{2}, 0 \rangle$	$\langle 0, \frac{\sqrt{2}}{2} \rangle$	$\langle \frac{\sqrt{2}}{2}, \infty \rangle$
f"	+	_	_	+
f'	+	+	_	_
f	7	7	×	X
	s. konv.	s.konkav.	s. konkav.	s. konv.

Primjer 4.15. Ispitati lokalne ekstreme i točke infleksije funkcije $f(x) = \frac{x}{1+x^2}$. Funkcije f, f' i f'' su definirane na \mathbb{R} .

$$f'(x) = \frac{1-x^2}{(1+x^2)^2}$$

$$f''(x) = \frac{2x(x^2-3)}{(1+x^2)^3}$$

Stacionarne točke su $x_1 = -1$ i $x_2 = 1$.

Moguće točke infleksije su $x_3 = -\sqrt{3}$,

$$x_4 = 0 \text{ i } x_5 = \sqrt{3}.$$

Vrijednosti druge derivacije između točaka infleksije su: f''(-2) > 0, f''(0) < 0, f''(1) > 0, a jedini lokalni ekstrem je $\max(0, 1)$.

	$\langle -\infty, -\sqrt{3} \rangle$	$\langle -\sqrt{3}, -1 \rangle$	$\langle -1, 0 \rangle$	$\langle 0, 1 \rangle$	$\langle 1, \sqrt{3} \rangle$	$\langle \sqrt{3}, \infty \rangle$
f"		+	+	ı	ı	+
f'	_	_	+	+		_
f	×	7	7	7	×	\searrow
	s. konkav.	s. konvek.	s. konvek.	s. konkav.	s. konkav.	s. konvek.

4.6.3 Okomite i kose asimptote na graf funkcije

Definicija 4.6. Neka je $I \subseteq \mathbb{R}$ otvoren skup i $f: I \to \mathbb{R}$ funkcija čiji je graf $\Gamma_f \subset \mathbb{R} \times \mathbb{R}$. Kažemo da je pravac p asimptota na graf funkcije Γ_f , ako udaljenost između pravca i točke $T \in \Gamma_f$ teži k0kako se točka T beskonačno udaljava od ishodišta.

Graf Γ_f ima okomitu asimptotu u rubnoj točki područja definicije $c \in \mathbb{R}$ ako je $\lim_{x \to c\pm} f(x) = \pm \infty$.

Graf Γ_f funkcije $f: I \to \mathbb{R}$ ima kosu ili horizontalnu asimptotu y = kx + l $u \pm \infty$, ako je

1. $\langle a, +\infty \rangle \subseteq I$ za neko $a \in I$, 1'. $\langle -\infty, a \rangle \subseteq I$ za neko $a \in I$,

2.
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} f'(x) = k \in \mathbb{R},$$

2.
$$\lim_{x \to +\infty} \frac{f(x)}{x} = \lim_{x \to +\infty} f'(x) = k \in \mathbb{R}, \quad 2'. \quad \lim_{x \to -\infty} \frac{f(x)}{x} = \lim_{x \to -\infty} f'(x) = k \in \mathbb{R},$$
3.
$$\lim_{x \to +\infty} (f(x) - kx) = l \in \mathbb{R}$$
3'.
$$\lim_{x \to -\infty} (f(x) - kx) = l \in \mathbb{R}$$

3.
$$\lim_{x \to \infty} (f(x) - kx) = l \in \mathbb{R}$$

3'.
$$\lim_{x \to -\infty} (f(x) - kx) = l \in \mathbb{R}$$

Primjer 4.16. Ispitaj tok i nađi asimptote

funkcije
$$f(x) = \frac{\sqrt{x+1}}{x}$$
.

1. Prirodna domena funkcije je

$$\mathcal{D}(f) = [-1,0\rangle \cup \langle 0,+\infty\rangle.$$

2.
$$f'(x) = -\frac{x+2}{2x^2\sqrt{x+1}}, x \in \mathcal{D}(f).$$

	[-1, 0 >	$\langle 0, \infty \rangle$
f'	_	_
f	X	\searrow

114

Primjer 4.17. Ispitaj tok i nađi asimptote funkcije $f(x) = \frac{x^2 - 3}{x - 2}$.

Stacionarne točke su $x_1 = 1$ i $x_2 = 3$.

$$\lim_{x \to 2^{-}} \frac{x^2 - 3}{x - 2} = -\infty , \lim_{x \to 2^{+}} \frac{x^2 - 3}{x - 2} = +\infty.$$

Dakle, f ima okomitu asimptotu u 2.

$$\lim_{x \to \pm \infty} \frac{x^2 - 3}{x(x - 2)} = 1, \lim_{x \to \pm \infty} \frac{x^2 - 3}{x - 2} - x = \lim_{x \to \pm \infty} \frac{2x - 1}{x - 2} = 2, \text{ tj.}$$

y = x + 2 je kosa asimptota u $\pm \infty$.

	$\langle -\infty, 1 \rangle$	$\langle 1, 2 \rangle$	$\langle 2, 3 \rangle$	$\langle 3, +\infty \rangle$
f'	+	_	_	+
f	7	7	×	7

4.6.4 Svojstva konveksnih funkcija

Definicija 4.7. Neka je $I \subseteq \mathbb{R}$ otvoren interval i $f: I \to \mathbb{R}$. Kažemo da f ima u točki $c \in I$ lijevu derivaciju ako postoji $f'_{-}(c) = \lim_{x \to c^{-}} \frac{f(x) - f(c)}{x - c}$, odnosno desnu derivaciju ako postoji $f'_{+}(c) = \lim_{x \to c^{+}} \frac{f(x) - f(c)}{x - c}$.

Napominjemo da treba razlikovati $f'_{-}(c)$ od limesa s lijeva derivacije f'(c-), odnosno $f'_{+}(c)$ od limesa s desna derivacije f'(c+)

Teorem 4.17. Neka je $I \subseteq \mathbb{R}$ otvoren interval $i \ f : I \to \mathbb{R}$ neprekidna i konveksna funkcija na I.

- 1. U svakoj točki $x \in I$ funkcija f ima lijevu $f'_{-}(x)$ i desnu $f'_{+}(x)$ desnu derivaciju, te vrijedi $f'_{-}(x) \leq f'_{+}(x)$.
- 2. Funkcija $x\mapsto f'_-(x)$ je rastuća i neprekidna slijeva na I, a funkcija $x\mapsto f'_+(x)$ je rastuća i neprekidna zdesna na I.

3. Funkcija f ima derivaciju na $I \setminus J$, gdje je $J \subset I$ najviše prebrojiv skup.

Dokaz: Za $a < x_1 < x_3 < x_2 < b$, kao u dokazu teorema 4.14., vrijedi

$$\frac{f(x_3) - f(x_1)}{x_3 - x_1} \le \frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_2) - f(x_3)}{x_2 - x_3}.$$
 (4.32)

1. Neka je $c \in I$ bilo koja točka. Za $x_2 = c, x_1 = c - s$ i $x_3 = c - t$ desna nejednakost u (4.32) daje

$$\frac{f(c) - f(c - s)}{s} \le \frac{f(c) - f(c - t)}{t} \qquad (0 < t < s). \tag{4.33}$$

Za $x_1 = c$, $x_3 = c + t$ i $x_2 = c + s$ lijeva nejednakost u (4.32) daje

$$\frac{f(c+t) - f(c)}{t} \le \frac{f(c+s) - f(c)}{s} \qquad (0 < t < s). \tag{4.34}$$

Zbog

$$f(c) = f\left[\frac{(c+t) + (c-t)}{2}\right] \le \frac{1}{2}[f(c+t) + f(c-t)] \Rightarrow$$
$$\Rightarrow f(c) - f(c-t) \le f(c+t) - f(c).$$

Odatle, dijeljenjem s t i upotrebom (4.33) i (4.34) dobivamo:

$$\frac{f(c) - f(c - t)}{t} \le \frac{f(c + s) - f(c)}{s} \qquad (0 < t < s). \tag{4.35}$$

Iz (4.33) slijedi da funkcija definirana s $F(t)=\frac{f(c)-f(c-t)}{t}$ pada na intervalu $\langle 0, \varepsilon \rangle$ za neki $\varepsilon > 0$ i zbog (4.35) je na njemu odozgo ograničena. Kao u teoremu 3.6 pokazuje se da padajuća funkcija ima limes zdesna u 0, tj. postoji F(0+) i

$$F(0+) = \lim_{t \to 0+} F(t) = \lim_{t \to 0+} \frac{f(c) - f(c-t)}{t} = \lim_{t \to 0-} \frac{f(c-t) - f(c)}{-t} = f'_{-}(c).$$

Analogno, iz (4.34) dobivamo egzistenciju $f'_{+}(c)$. Za $t \to 0+$ u (4.35) i onda $s \to 0+$ slijedi $f'_{-}(c) \le f'_{+}(c)$.

2. Neka je $x < y \ (x,y \in I)$. Iz vanjske nejednakosti u (4.32) za $x_1 = x$, $x_2 = y$ i $x_3 = x + t = y - t$ slijedi:

$$\frac{f(x+t) - f(x)}{t} \le \frac{f(y) - f(y-t)}{t}.$$
 (4.36)

Lijeva strana od (4.36) je veća od $f'_{+}(x)$, a desna strana manja od $f'_{-}(y)$, pa je $f'_{+}(x) \leq f'_{-}(y)$. Budući da je u točki 1. pokazano $f'_{-}(x) \leq f'_{+}(x)$ i $f'_{-}(y) \leq f'_{+}(y)$ imamo

$$(x < y) \Rightarrow (f'_{-}(x) \le f'_{-}(y)), (f'_{+}(x) \le f'_{+}(y)), (f'_{+}(x) \le f'_{-}(y)),$$
 (4.37)

tj. funkcije f'_{-} i f'_{+} su rastuće na I.

Pokažimo da je f'_+ neprekidna zdesna na I. Neka je $c \in I$ bilo koja točka. Za svaki $x \in I$ i dovoljno malo t > 0 imamo:

$$f'_{+}(x) \le \frac{f(x+t) - f(x)}{t}.$$
 (4.38)

Prelaskom na limes $x \to c+$ u (4.38), zbog neprekidnosti funkcije f, imamo:

$$\lim_{x \to c+} f'_{+}(x) \le \frac{f(c+t) - f(c)}{t}.$$
(4.39)

Odavde za $t \to 0+$ dobivamo:

$$\lim_{x \to c+} f'_{+}(x) \le f'_{+}(c). \tag{4.40}$$

S druge strane, zbog rasta funkcije f'_{+} je $\lim_{x\to c+} f'_{+}(x) \geq f'_{+}(c)$. Dakle, vrijedi $\lim_{x\to c+} f'_{+}(x) = f'_{+}(c)$, tj. f'_{+} je neprekidna s desna. Analogno se dokazuje neprekidnost slijeva funkcije f'_{-} .

3. Za $x < y \ (x, y \in I)$ imamo

$$f'_{-}(x) \le f'_{+}(x) \le f'_{-}(y).$$
 (4.41)

Prema teoremu 3.16. iz M.A.I. rastuća funkcija f'_{-} ima najviše prebrojivo prekida na intervalu I. Ako je f'_{-} neprekidna u točki $x \in I$, onda iz (4.41) za $y \to x+$ dobivamo $f'_{-}(x) \le f'_{+}(x) \le f'_{-}(x)$, odnosno $f'_{-}(x) = f'_{+}(x)$. Dakle, f ima derivaciju u svakoj točki u kojoj je f'_{-} neprekidna funkcija.

4.6.5 Cauchyjev teorem srednje vrijednosti i L'Hospitalovo pravilo

Sada ćemo dokazati tzv. Cauchyjev poopćeni teorem srednje vrijednosti za dvije diferencijabilne funkcije.

Teorem 4.18 (Cauchy). Neka su $f, g: I \to \mathbb{R}$, diferencijabilne na otvorenom intervalu $I \subseteq \mathbb{R}$ i neka su $a, b \in I$, a < b. Tada $\exists c \in \langle a, b \rangle$ takav da je (f(b) - f(a))g'(c) = (g(b) - g(a))f'(c).

Dokaz: Neka je funkcija $h: I \to \mathbb{R}$ zadana formulom $h(x) = (f(b) - f(a))(g(x) - g(a)) - (f(x) - f(a))(g(b) - g(a)), \forall x \in I$. Funkcija h je diferencijabilna na I i $h'(x) = (f(b) - f(a))g'(x) - f'(x)(g(b) - g(a)), \forall x \in I$. Također je h(a) = h(b) = 0, pa h zadovoljava sve uvjete Rolleovog teorema, tj. $\exists c \in \langle a, b \rangle$ takav da je 0 = h'(c) = (f(b) - f(a))g'(c) - f'(c)(g(b) - g(a)).

Teorem o limesu kvocijenta funkcija $\frac{f}{g}$ u točki $c \in \mathbb{R}$ podrazumijeva postojanje limesa obje funkcije u toj točki i $\lim_{x\to c} g(x) \neq 0$. Slijedeći teorem predstavlja uopćenje tog rezultata, ali uz određene uvjete na derivacije funkcija f i g.

Teorem 4.19. (L'Hospitalovo¹ pravilo) Neka su f i g funkcije definirane na $I \setminus \{c\} \subset \mathbb{R}$, neka su diferencijabilne na tom skupu i neka vrijedi

$$\lim_{x \to c} f(x) = 0, \lim_{x \to c} g(x) = 0, g(x) \neq 0, g'(x) \neq 0, \forall x \in I \setminus \{c\}.$$

Ako je
$$\lim_{x \to c} \frac{f'(x)}{g'(x)} = L \ tada je \lim_{x \to c} \frac{f(x)}{g(x)} = L.$$

Dokaz: Bez smanjenja općenitosti možemo pretpostaviti da su funkcije f i g neprekidne na I i da je f(c) = g(c) = 0. Iz Cauchyjevog teorema srednje vrijednosti 4.18. za svaki $x \in I \setminus \{c\}$ vrijedi:

$$\frac{f(x)}{g(x)} = \frac{f(x) - f(c)}{g(x) - g(c)} = \frac{f'(c_x)}{g'(c_x)},\tag{4.42}$$

gdje je c_x između c i x. Sada zbog $x \to c$ vrijedi $c_x \to c$ iz čega slijedi tvrdnja teorema.

Korolar 4.4. Ako funkcije f, g imaju n-tu derivaciju na skupu $I \setminus \{c\} \subset \mathbb{R}$ i ako vrijedi

$$\lim_{x \to c} f^{(k)}(x) = 0, \lim_{x \to c} g^{(k)}(x) = 0, (k = 0, 1, \dots, n - 1),$$

$$g^{(k)}(x) \neq 0, \forall x \in I \setminus \{c\}, (k = 0, 1, \dots, n).$$

Ako je
$$\lim_{x \to c} \frac{f^{(n)}(x)}{g^{(n)}(x)} = L \ tada je \lim_{x \to c} \frac{f(x)}{g(x)} = L.$$

Dokaz: Slijedi rekurzivnom primjenom teorema 4.19.

¹Guillaume Franois Antoine Marquis de L'Hospital (Paris, 1661. − Paris, 2. veljača 1704.) francuski matematičar

Napomena 4.2. Teorem 4.19. i korolar 4.4. vrijede i za slučaj jednostranih limesa u c (dokaz je isti), a također i za $c = \pm \infty$. Posljednje slijedi iz

$$\lim_{x \to +\infty} \frac{f(x)}{g(x)} = \lim_{y \to 0+} \frac{f(\frac{1}{y})}{g(\frac{1}{y})} = \lim_{y \to 0+} \frac{(f(\frac{1}{y}))'}{(g(\frac{1}{y}))'} = \lim_{y \to 0+} \frac{f'(\frac{1}{y})(-\frac{1}{y^2})}{g'(\frac{1}{y})(-\frac{1}{y^2})} = \lim_{x \to +\infty} \frac{f'(x)}{g'(x)}.$$

4.7 Neke primjene derivacije

U ovoj točki pokazujemo kako se ideje povezane s derivacijom primjenjuju na neke praktične zadaće kao što su numeričko rješavanje nelinearnih jednadžbi i aproksimacija funkcija pomoću polinoma.

4.7.1 Lagrangeov interpolacijski polinom

Neka je \mathcal{P}_n skup svih polinoma s realnim koeficijentima stupnja $\leq n$ oblika

$$p(x) = \sum_{k=0}^{n} a_k x^k ,$$

s realnim koeficijentima a_0, \ldots, a_n .

Zadani su uređeni parovi realnih brojeva (x_k, f_k) , (k = 0, 1, ..., n), gdje su $x_0 < x_1 < x_2 < \cdots < x_n$ čvorovi interpolacije. Nađimo $p \in \mathcal{P}_n$ tako da vrijedi

$$p(x_k) = f_i \ (k = 0, 1, \dots, n).$$
 (4.43)

Takav polinom zovemo **interpolacijski** za parove (x_k, f_k) , (k = 0, 1, ..., n).

Teorem 4.20. Neka su zadani parovi realnih brojeva (x_k, f_k) , (k = 0, 1, ..., n), gdje su $x_0 < x_1 < x_2 < \cdots < x_n$ čvorovi interpolacije.

Postoji točno jedan polinom $p \in \mathcal{P}_n$ takav da je

$$p(x_k) = f_i \ (k = 0, 1, \dots, n) \ .$$

Dokaz: (jedinstvenost:) Neka su $p_1, p_2 \in \mathcal{P}_n$ interpolacijski polinomi. Tada je $p_1 - p_2 \in \mathcal{P}_n$ jer je \mathcal{P}_n vektorski prostor. Očigledno vrijedi $(p_1 - p_2)(x_k) = 0$, (k = 0, 1, ..., n), tj. $p_1 - p_2 \in \mathcal{P}_n$ ima n + 1 nultočku. Dakle, vrijedi $p_1 - p_2 \equiv 0$.

(egzistencija:) Egzistenciju dokazujemo pomoću tzv. Lagrangeovih polinoma. Promatrajmo specijalni interpolacijski problem: čvorovi interpolacije x_k (k = 0, 1, ..., n) su kao i prije, a tražimo polinome $L_i \in \mathcal{P}_n$ (i = 0, 1, ..., n) tako da vrijedi

$$L_i(x_k) = \delta_{ik} = \begin{cases} 1 & \text{za} & i = k, \\ 0 & \text{za} & i \neq k. \end{cases}$$

Znači $L_i \in \mathcal{P}_n$ ima nultočke $x_0, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$ pa je nužno oblika

$$L_i(x) = \alpha(x - x_0) \cdots (x - x_{i-1})(x - x_{i+1}) \cdots (x - x_n)$$
.

Koeficijent α određujemo iz uvjeta $L_i(x_i) = 1$ što daje

$$\alpha = 1/(x_i - x_0) \cdots (x_i - x_{i-1})(x_i - x_{i+1}) \cdots (x_i - x_n) .$$

Polinom $f_i L_i \in \mathcal{P}_n$ ima svojstvo

$$f_i L_i(x_k) = f_i \delta_{ik} = \begin{cases} f_i & \text{za} & i = k, \\ 0 & \text{za} & i \neq k, \end{cases}$$

pa je polinom $p = \sum_{i=0}^n f_i L_i \in \mathcal{P}_n$ traženi interpolacijski polinom. Njega možemo zapisati u tzv. Lagrangeovom obliku:

$$p(x) = \sum_{i=0}^{n} f_i L_i(x) = \sum_{i=0}^{n} f_i \prod_{j=0 (j \neq i)}^{n} \frac{x - x_j}{x_i - x_j} .$$

Prirodno pitanje je koliko točno polinom P aproksimira funkciju f u točkama koje se razlikuju od čvorova, dakle treba ocijeniti f(x) - P(x) za $x \neq x_k$.

S tom svrhom dokazujemo slijedeći teorem srednje vrijednosti.

Teorem 4.21. Neka je $a \le x_0 < x_1 < x_2 < \cdots < x_n \le b$ i funkcija $f \in C^{n+1}[a,b]$. Tada za svaki $x \in \langle a,b \rangle$ postoji $\xi(x) \in \langle a,b \rangle$ tako da vrijedi

$$f(x) - P(x) = \frac{1}{(n+1)!} f^{(n+1)}(\xi(x))(x - x_0)(x - x_1) \cdots (x - x_n) . \quad (4.44)$$

Dokaz: Neka je $x \neq x_k$ (k = 0, 1, ..., n), inače je jednakost (4.44). trivijalno zadovoljena. Definirajmo pomoćnu funkciju

$$G(x) = f(x) - P(x) - \alpha(x - x_0) \cdots (x - x_n), x \in [a, b], \qquad (4.45)$$

gdje je $\alpha \in \mathbb{R}$ za sada neodređen. Očigledno vrijedi $G(x_k) = 0$ $(k = 0, 1, \ldots, n)$ neovisno o izboru α . Izaberimo α tako da vrijedi G(x) = 0.

Zbog $x \neq x_k$, funkcija G ima u [a,b] n+2 različite nultočke. Tada po Rolleovom teoremu srednje vrijednosti derivacija G' ima na [a,b] barem n+1 različitu nultočku. Istim načinom dolazimo do zaključka da n+1-va derivacija $G^{(n+1)}$ ima barem jednu nultočku u $\langle a,b\rangle$. Označimo tu nultočku s $\xi(x)$. Zbog $P \in \mathcal{P}_n$ vrijedi $P^{(n+1)} \equiv 0$, pa imamo

$$0 = G^{(n+1)}(\xi(x)) = f^{(n+1)}(\xi(x)) - \alpha(n+1)!,$$

a odatle slijedi tvrdnja teorema.

Lema 4.3. Neka su čvorovi interpolacije jednoliko udaljeni, tj. $x_{k+1}-x_k=h$ $(k=0,1,\ldots,n-1)$. Tada za svako $n\in\mathbb{N}$ vrijedi

$$|(x-x_0)(x-x_1)\cdots(x-x_n)| < n!h^{n+1}$$
.

Dokaz: Za $0 \neq x \in [x_0, x_n]$ postoji $i \in \{1, ..., n\}$ tako a je $x \in [x_{i-1}, x_i]$. Tada vrijedi $|x - x_{i+k}| < (k+1)h$ (k = 0, ..., i-n) i $|x - x_{i+k}| < |k|h$ (k = -1, ..., -i). Dakle,

$$|(x-x_0)(x-x_1)\cdots(x-x_n)| < i!(n+1-i)!h^{n+1}$$
.

Zbog
$$\binom{n+1}{i} \ge n+1 \ (i=1,\ldots,n)$$
 slijedi tvrdnja. \square

Primjer 4.18. Neka su zadani čvorovi interpolacije $x_1 = 1$, $x_2 = 2$, $x_3 = 3$ i $x_4 = 4$. Interpolacijski polinom za funkciju f je oblika

$$p(x) = -\frac{1}{6}f(1)(x-2)(x-3)(x-4) + \frac{1}{2}f(2)(x-1)(x-3)(x-4) - \frac{1}{2}f(3)(x-1)(x-2)(x-4) + \frac{1}{6}f(4)(x-1)(x-2)(x-3).$$

U slijedećim primjerima smo interpolirali funkcije

1.
$$f(x) = 3\sin(x + \frac{1}{2}) + 2x - \frac{2}{5}$$
, 4. $f(x) = \ln x$

2.
$$f(x) = 3\cos(x) + \frac{2}{5}$$
, 5. $f(x) = \frac{1}{2}\sin(4x) + \frac{1}{2}$

3.
$$f(x) = \frac{1}{x}$$
, 6. $f(x) = \operatorname{tg}(\frac{1}{2}x - \frac{5}{4})$,

s tim da su na slikama grafovi funkcija isprekidani, a grafovi interpolacijskih polinoma puni.

4.7.2 Newtonova metoda

Neka je $f: I \to \mathbb{R}$, I = [a, b], funkcija klase $C^2(\langle a, b \rangle)$. Pretpostavimo da je $x_* \in \langle a, b \rangle$ nultočka funkcije f, tj. $f(x_*) = 0$. Neka je $x_0 \in \langle a, b \rangle$ aproksimacija nultočke x_* . Prema Taylorovom teoremu srednje vrijednosti postoji η između x_0 i x_* tako da vrijedi

$$0 = f(x_*) = f(x_0) + f'(x_0)(x_* - x_0) + \frac{1}{2}f''(\eta)(x_* - x_0)^2.$$

Ako je x_0 blizu x_* , tj. za $(x_0 - x_*)^2 \ll 1$, promatrajmo jednadžbu koja se dobije tako da se funkcija f zamijeni s najboljom lokalnom aproksimacijom funkcije f u blizini x_* , tj.

$$0 = f(x_0) + f'(x_0)(x - x_0) . (4.46)$$

U tom je slučaju razumno očekivati da će rješenje jednadžbe (4.46) biti dobra aproksimacija rješenja originalne jednadžbe, barem bolja od x_0 . Ako je $f'(x_0) \neq 0$, moguće je to rješenje x_1 dobiti u obliku

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$
.

Nastavljanjem tog postupka dobije se niz $(x_n)_{n\in\mathbb{N}_0}$ definiran rekurzijom

$$x_n = x_{n-1} - \frac{f(x_{n-1})}{f'(x_{n-1})}, n \in \mathbb{N},$$
(4.47)

s početnom vrijednosti x_0 . Taj postupak nalaženja aproksimacije rješenja naziva se **Newtonovom metodom** ili **metodom tangenti**. Naime, geometrijski smisao ove metode dan je idućom slikom.

Slijedeći teorem se zasniva na geometrijskim svojstvima Newtonove metode.

Teorem 4.22. Neka je $f \in C^2([a,b])$ i neka vrijedi

$$f(a) \cdot f(b) < 0, \tag{4.48}$$

$$f'(x) \neq 0, f''(x) \neq 0, \forall x \in [a, b].$$
 (4.49)

Tada za $x_0 \in [a, b]$ takav da vrijedi $f(x_0) \cdot f''(x_0) > 0$, niz definiran s (4.47) konvergira k jedinstvenoj nultočki x_* funkcije f na [a, b].

Vrijedi ocjena pogreške

$$|x_n - x_*| \le C|x_{n-1} - x_*|^2, (n \in \mathbb{N}),$$
 (4.50)

$$gdje \ je \ C = \frac{\max_{[a,b]} f''}{2\min_{[a,b]} f'}.$$

Dokaz: Egzistencija nultočke slijedi iz Bolzano - Weierstrassovog teorema i uvjeta (4.48). Zbog $f'(x) \neq 0$ funkcija je strogo monotona pa je nultočka jedinstvena na [a, b]. Razlikujemo slučajeve

1.
$$f(a) > 0$$
, $f(b) < 0$, $f' < 0$, $f'' < 0$

2.
$$f(a) > 0$$
, $f(b) < 0$, $f' < 0$, $f'' > 0$

3.
$$f(a) < 0, f(b) > 0, f' > 0, f'' < 0$$

4.
$$f(a) < 0, f(b) > 0, f' > 0, f'' > 0$$

Dokazujemo samo slučaj 4. koji odgovara slici, a ostali se dokazuju analogno.

Zbog $f'(x) \cdot f''(x) > 0$ je $x_* < x_0$. Pokažimo indukcijom da za $(x_n)_{n \in \mathbb{N}_0}$ vrijedi $x_* < x_n, n \in \mathbb{N}$. Tvrdnja vrijedi za n = 0. Pretpostavimo da tvrdnja vrijedi za n. Zbog

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)},$$

$$x_{n+1} - x_* = x_n - x_* - \frac{f(x_n)}{f'(x_n)} = \frac{f(x_*) - f(x_n) - f'(x_n)(x_* - x_n)}{f'(x_n)},$$

$$x_{n+1} - x_* = \frac{f''(\eta_n)(x_* - x_n)^2}{2f'(x_n)} > 0, \eta_n \in [x_*, x_n],$$
(4.51)

slijedi $x_* < x_{n+1}$. Zbog $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} < x_n$ niz $(x)_{n \in \mathbb{N}_0}$ je padajući. Za padajući i odozdo ograničen niz postoji $x_{**} = \lim x_n$. Zbog neprekidnosti

funkcija f i f' iz (4.47) slijedi $f(x_{**}) = 0$, što zbog jedinstvenosti nultočke daje $x_{**} = x_*$. Ocjena pogreške slijedi iz (4.51).

Korolar 4.5. Za svaki $m \in \mathbb{N}$ i svaki realni broj b > 0 postoji a > 0 takav da je $b = a^m$.

Dokaz: Neka je m > 1 i b > 1. Neka je niz $(x_n)_n$ definiran rekurzijom (4.47) za funkciju $f(x) = x^m - b$ uz početnu aproksimaciju $x_0 = b$, tj.

$$x_n = \frac{(m-1)x_{n-1}^m + b}{m x_{n-1}^{m-1}}, \quad (\forall n \in \mathbb{N}).$$
 (4.52)

Funkcija $f:[1,b] \to \mathbb{R}$ zadovoljava uvjete teorema 4.22. slučaj 4. tj. $f(1)=1-b<0, \ f(b)=b^m-b>0, \ f'(x)=mx^{m-1}>0$ i $f''(x)=m(m-1)x^{m-2}>0, \ \forall x\in[1,b],$ pa niz konvergira k jedinstvenoj nultočki funkcije f u intervalu $\langle 1,b\rangle$. Funkcije f' i f'' su rastuće na [1,b] pa je $\max_{[1,b]}f''=m(m-1)b^{m-2}$ i $\min_{[1,b]}f'=m$. Odatle slijedi ocjena pogreške $|x_n-a|\leq \frac{(m-1)b^{m-2}}{2}|x_{n-1}-a|^2, \ (n\in\mathbb{N}).$

Primjer 4.19. Izračunajmo $\sqrt[3]{5}$ Newtonovom metodom na 50 decimala. Zbog ocjene pogreške (4.50) kažemo da niz konvergira kvadratnom brzinom. Kvadratna brzina konvergencije u pravilu znači da je u svakoj novoj iteraciji dvostruko veći broj **točnih** znamenaka.

 $x_0 = 5$

 $x_2 = 2.0643062857645366549205092932833336474017123008021$

 $x_3 = 1.767315594852839675630814501991099802877564157758$

 $x_4 = 1.711816182730850357259567369723776592320652455091$

 $x_5 = 1.709977924257737717994546579193826487753056762840$

 $x_6 = 1.70997594667898405119733103179107967836688376517$

 $x_7 = 1.70997594667669698935311193144763560051192536599$

 $x_8 = 1.70997594667669698935310887254386010986805511054$

5 Riemannov integral

5.1 Problem površine i rada sile

Znamo odrediti površinu nekih jednostavnih likova u ravnini, npr. kvadrata, pravokutnika, trokuta, trapeza itd.

Postavlja se problem određivanja površine likova koji imaju složenije granice. Takav je dio ravnine omeđen grafom funkcije (pseudotrapez) kao na slici desno. Označimo s μ funkciju koja dijelu ravnine P pridružuje realnu vrijednost koju zovemo površina, $\mu(P)$. Od te funkcije očekujemo slijedeća svojstva.

2.
$$P_1 \cap P_2 = \emptyset \Rightarrow$$

 $\mu(P_1 \cup P_2) = \mu(P_1) + \mu(P_2),$

3.
$$P_1 \subseteq P_2 \Rightarrow \mu(P_1) \leq \mu(P_2)$$
.

Funkciju koja zadovoljava gornja svojstva zovemo mjera.

Ako već odmah nismo u mogućnosti neposredno odrediti $\mu(P)$ (ako taj broj uopće ima smisla), onda pokušajmo aproksimirati dio ravnine P pomoću jednostavnijih likova čije površine znamo jednostavno izračunati, npr. pravokutnika. Podijelimo segment [a,b] na $n \in \mathbb{N}$ dijelova točkama $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$ kao na slici desno. Pravokutnici koje smo tako dobili imaju svojstvo $\bigcup_{k=1}^n p_k \subseteq P \subseteq \bigcup_{k=1}^n P_k$. Njihove površine su jednake $\mu(p_k) = m_k(x_k - x_{k-1}), \ \mu(P_k) = M_k(x_k - x_{k-1}), \ (k = 1, \ldots, n), \ \text{gdje su } m_k, M_k$ visine upisanih i opisanih pravokutnika.

Odatle imamo $\sum_{k=1}^{n} \mu(p_k) = \sum_{k=1}^{n} m_k(x_k - x_{k-1}) \leq \mu(P) \leq \sum_{k=1}^{n} M_k(x_k - x_{k-1}) = \sum_{k=1}^{n} \mu(P_k)$. Različitim podjelama segmenta [a, b] dobivamo različite aproksimacije površine lika P odozdo, odnosno odozgo. Sa slike je jasno da će aproksimacija biti u pravilu bolja ako je podjela segmenta finija. Dakle, površina $\mu(P)$ će imati smisla ako možemo po volji blizu naći jednu gornju i jednu donju aproksimaciju oblika kao u prethodnoj nejednakosti

U klasičnoj mehanici se rad konstantne sile f(x) = c za sve x, koja djeluje na materijalnu točku između x = a i x = b, tj. na putu duljine s = b - a, definira kao $W = c \cdot s$. Ako funkcija f nije konstantna, onda čitav put podijelimo na manje dijelove $a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b$, a na tim dijelovima silu aproksimiramo odozdo i odozgo konstantnom silom m_k i M_k . Tako za rad sile W na tom putu dobivamo donju i gornju aproksimaciju $\sum_{k=1}^n m_k(x_k - x_{k-1}) \le W \le \sum_{k=1}^n M_k(x_k - x_{k-1})$. Pojam rada sile na putu će imati smisla ako možemo dobiti po volji bliske donje i gornje aproksimacije. Dakle, problem određivanja rada sile na putu je istovjetan problemu određivanja površine ispod grafa funkcije.

5.2 Riemannov¹ integral ograničene funkcije na segmentu

Neka je [a,b], a < b, segment u \mathbb{R} i neka je $f:[a,b] \to \mathbb{R}$ funkcija ograničena na segmentu [a,b]. To znači da postoje $m = \inf_{[a,b]} f$ i $M = \sup_{[a,b]} f$, tj. $\forall x \in [a,b]$, $m \le f(x) \le M$.

Uočimo, ako je $[a',b']\subseteq [a,b]$ podsegment, onda vrijedi $\forall x\in [a',b'],\ m\leq$

¹Georg Friedrich Bernhard Riemann (Breselenz, 17. studeni 1826. – Selasca[Italija], 20. srpanj 1866.) njemački matematičar

5.2. INTEGRAL 127

 $m' \leq f(x) \leq M' \leq M$, gdje je $m' = \inf_{[a',b']} f$ i $M' = \sup_{[a',b']} f$. Dakle, infimum na podsegmentu je veći ili jednak infimumu na segmentu i supremum na podsegmentu je manji ili jednak supremumu na segmentu.

Sada ćemo provesti konstrukciju koju smo najavili u prethodnoj točki. Za $n \in \mathbb{N}$ podijelimo (izvršimo subdiviziju) segment [a, b] točkama

$$a = x_0 < x_1 < \dots < x_k < \dots < x_{n-1} < x_n = b$$
 (5.1)

na n dijelova. Neka je $m_k = \inf_{[x_{k-1},x_k]} f$ i $M_k = \sup_{[x_{k-1},x_k]} f$, $(k=1,\ldots,n)$. Za po volji izabrane točke $t_k \in [x_{k-1},x_k]$, $(k=1,\ldots,n)$, definirajmo sume:

$$s = \sum_{k=1}^{n} m_k (x_k - x_{k-1}), \ \sigma = \sum_{k=1}^{n} f(t_k) (x_k - x_{k-1}), \ S = \sum_{k=1}^{n} M_k (x_k - x_{k-1}).$$
(5.2)

Broj s zovemo donja Darbouxova¹ suma, S je gornja Darbouxova suma, a σ je integralna suma. Jasno je da vrijedi

$$m(b-a) \le s \le \sigma \le S \le M(b-a). \tag{5.3}$$

Neka je A skup svih donjih Darbouxovih suma s, B je skup svih gornjih Darbouxovih suma S, a C je skup svih integralnih suma σ funkcije f na segmentu [a,b]. Sve te sume dobiju se variranjem broja $n \in \mathbb{N}$, svim različitim izborima subdivizije (5.1) i točaka t_k . Iz nejednakosti (5.3) slijedi da su skupovi A, B i C ograničeni odozdo s m(b-a) i odozgo s M(b-a). Prema aksiomu potpunosti postoje

$$\mathcal{I}_*(f; a, b) = \sup A, \ \mathcal{I}^*(f; a, b) = \inf B. \tag{5.4}$$

Definicija 5.1. Broj \mathcal{I}_* zovemo **donji Riemannov integral** funkcije f na segmentu [a,b], a broj \mathcal{I}^* zovemo **gornji Riemannov integral** funkcije f na segmentu [a,b].

Iz prethodnog je jasno da donji i gornji Riemannov integral postoje za svaku funkciju $f:[a,b] \to \mathbb{R}$ koja je ograničena na segmentu [a,b].

Teorem 5.1. Neka je $f:[a,b] \to \mathbb{R}$ funkcija ograničena na segmentu [a,b], neka su \mathcal{I}_* i \mathcal{I}^* donji i gornji Riemannov integral funkcije f na segmentu [a,b]. Tada je

$$\mathcal{I}_*(f;a,b) \le \mathcal{I}^*(f;a,b). \tag{5.5}$$

 $^{^1{\}rm Jean}$ Gaston Darboux (N
mes, 14. kolovoz 1842. – Paris, 23. veljača 1917.) francuski matematičar

Dokaz: Dokaz provodimo u tri dijela.

Prvo pokažimo da se donja Darbouxova suma poveća ili ostane jednaka, a gornja Darbouxova suma se smanji ili ostane jednaka ako subdiviziji dodamo jednu točku. Dakle, neka je sa $a=x_0 < x_1 < \ldots < x_{k-1} < x_k < \ldots < x_{n-1} < x_n = b$ zadana subdivizija Σ i neka su s i S pripadne Darbouxove sume. Napravimo novu subdiviziju Σ' tako da subdiviziji Σ dodamo točku x' takvu da je $x_{k-1} < x' < x_k$. Pripadne Darbouxove sume označimo s s' i s'. Suma s' nastaje iz s tako da pribrojnik s dodamo točku s i s' i s' suma s' nastaje iz s tako da pribrojnik s in s' judici s in s' judici s judici da su s judici ju

Primijetimo sada da isti zaključak vrijedi ako nekoj subdiviziji dodamo konačan broj novih točaka. Naime, možemo zamisliti da te točke dodajemo jednu po jednu pa svaki put vrijedi zaključak iz prethodnog razmatranja. To znači da se donja Darbouxova suma s' na novoj subdiviziji ne smanji, tj. $s \leq s'$, a gornja ne poveća, tj. $S' \leq S$.

Sada pokazujemo da je svaka donja Darbouxova suma manja ili jednaka svakoj gornjoj Darbouxovoj sumi, bez obzira na subdivizije na kojima su nastale. Dakle, neka su Σ_1 i Σ_2 dvije subdivizije i neka je s_1 donja Darbouxova suma određena subdivizijom Σ_1 i S_2 gornja Darbouxova suma određena subdivizijom Σ_2 . Napravimo sada novu subdiviziju Σ_3 od unije točaka iz subdivizija Σ_1 i Σ_2 i označimo pripadne Darbouxove sume sa s_3 i S_3 . Dakako, Σ_3 je nastala iz Σ_1 dodavanjem (konačno) točaka iz Σ_2 ali također i iz Σ_2 dodavanjem (konačno) točaka iz Σ_1 . Iz prethodnog zaključka slijedi $s_1 \leq s_3$ i $S_3 \leq S_2$. Pošto vrijedi $s_3 \leq S_3$, jer su obje Darbouxove sume na istoj subdiviziji Σ_3 , imamo $s_1 \leq s_3 \leq S_2$.

Dakle, dokazali smo $(\forall s \in A) \ (\forall S \in B)$, $s \leq S$. Odatle zaključujemo $(\forall s \in A) \ s \leq \inf B$, a odatle sup $A \leq \inf B$, tj. $\mathcal{I}_* \leq \mathcal{I}^*$.

Definicija 5.2. Za funkciju $f:[a,b]\to\mathbb{R}$ ograničenu na segmentu [a,b] kažemo da je **integrabilna u Riemannovom smislu** ili R-integrabilna na segmentu [a,b] ako je

$$\mathcal{I}_*(f;a,b) = \mathcal{I}^*(f;a,b). \tag{5.6}$$

Tada se broj $\mathcal{I} = \mathcal{I}_* = \mathcal{I}^*$ naziva **integral** ili R-integral funkcije f na seg-

5.2. INTEGRAL 129

mentu [a, b] i označava jednom od slijedećih oznaka

$$\mathcal{I} = \int_{[a,b]} f(t)dt = \int_{a}^{b} f(x)dx = \int_{[a,b]} f = \int_{a}^{b} f.$$
 (5.7)

Neka je $f:[a,b]\to\mathbb{R}_+$ integrabilna funkcija na [a,b] i neka je $P=\{(x,y)\in\mathbb{R}\times\mathbb{R}; 0\leq y\leq f(x),\ \forall\ x\in[a,b]\}$ pseudotrapez. Sada površinu $\mu(P)$ pseudotrapeza definiramo s

$$\mu(P) = \int_{a}^{b} f(x)dx.$$

Zadatak 5.1. Neka su $A, B \subset \mathbb{R}$ takvi da je sup $A \leq \inf B$. Ako postoje $A' \subseteq A$ i $B' \subseteq B$ takvi da je sup $A' = \inf B'$ onda je i sup $A = \inf B$.

Rješenje: Zbog $A' \subseteq A$ imamo sup $A' \le \sup A$, a zbog $B' \subseteq B$ imamo inf $B \le \inf B'$. Odatle je sup $A' \le \sup A \le \inf B \le \inf B'$, što daje sup $A = \inf B$.

Iz ovog zadatka zaključujemo da je za integrabilnost funkcije na segmentu dovoljno da supremum nekog podskupa A' skupa svih donjih Darbouxovih suma A bude jednak infimumu nekog podskupa B' skupa svih gornjih Darbouxovih suma B. Tako je ponekad dovoljno gledati samo tzv. ekvidistantne subdivizije, tj. za $n \in \mathbb{N}$ su točke oblika $x_k = a + kh$, $k = 0, 1, \ldots, n$, $h = \frac{b-a}{n}$.

Izračunajmo direktno iz definicije integrale nekih jednostavnih funkcija.

Primjer 5.1. Neka je $C \in \mathbb{R}_+$ i f(x) = C, $\forall x \in \mathbb{R}$. Za $a, b \in \mathbb{R}_+$, a < b, izračunajmo $\int_a^b f(x)dx = \int_a^b Cdx$. Za bilo koju subdiviziju uvijek vrijedi $m_k = M_k = C$, $\forall k \in \{1, \ldots, n\}$. Odatle je

$$s = \sum_{k=1}^{n} m_k(x_k - x_{k-1}) = S = \sum_{k=1}^{n} M_k(x_k - x_{k-1})$$

$$= C \sum_{k=1}^{n} (x_k - x_{k-1}) = C(b - a),$$

tj. $A = B = \{C(b-a)\}$. Dakle, imamo $\mathcal{I}_* = \sup A = \inf B = \mathcal{I}^* = C(b-a)$, pa je $\int_a^b C dx = C(b-a)$.

Primjer 5.2. Neka je $f(x) = x, \forall x \in \mathbb{R}$, i $a, b \in \mathbb{R}_+$, a < b. Lik na slici desno je trapez (okrenut) s bazama duljine a i b, te visinom b-a. Njegova površina je $\frac{a+b}{2}(b-a)$. Izračunajmo integral:

Uzmimo bilo koji $n \in \mathbb{N}$ i uzmimo pripadnu ekvidistantnu subdiviziju segmenta [a,b], tj. $x_k = a + kh, \, k = 0,1,\ldots,n, \, h = \frac{b-a}{n}$. Budući da f raste na \mathbb{R} , to je $\forall \, k \in \{0,1,\ldots,n\}$

$$m_k = f(x_{k-1}) = a + (k-1)h,$$

 $M_k = f(x_k) = a + kh.$

Odatle je

$$s_n = \sum_{k=1}^n (a + (k-1)h)h = nah + h^2 \sum_{k=1}^n (k-1) =$$

$$= nha + h^2 \frac{(n-1)n}{2} = na \frac{b-a}{n} + \frac{(b-a)^2}{n^2} \frac{(n-1)n}{2} \implies$$

$$s_n = \frac{b^2}{2} - \frac{a^2}{2} - \frac{(b-a)^2}{2n}.$$

Analogno se dobije

$$S_n = \frac{b^2}{2} - \frac{a^2}{2} + \frac{(b-a)^2}{2n}.$$

Neka je sada

$$A' = \{s_n; n \in \mathbb{N}\} = \left\{\frac{b^2}{2} - \frac{a^2}{2} - \frac{(b-a)^2}{2n}; n \in \mathbb{N}\right\},$$

$$B' = \{S_n; n \in \mathbb{N}\} = \left\{\frac{b^2}{2} - \frac{a^2}{2} + \frac{(b-a)^2}{2n}; n \in \mathbb{N}\right\}.$$

Odatle imamo sup
$$A' = \inf B' = \int_a^b x dx = \frac{b^2}{2} - \frac{a^2}{2}$$
.

Primjer 5.3. Neka je $f(x) = x^2$, $\forall x \in \mathbb{R}$, i $a, b \in \mathbb{R}$, 0 < a < b.

Uzmimo bilo koji $n \in \mathbb{N}$ i uzmimo pripadnu ekvidistantnu subdiviziju segmenta [a,b], tj. $x_k = a + kh, \, k = 0, 1, \ldots, n, \, h = \frac{b-a}{n}$. Budući da f raste na [a,b], to je $\forall \, k \in \{0,1,\ldots,n\}$

$$m_k = f(x_{k-1}) = (a + (k-1)h)^2$$

 $M_k = f(x_k) = (a + kh)^2$.

Računamo

$$s_n = \sum_{k=1}^n (a + (k-1)h)^2 h = na^2 h + 2ah^2 \sum_{k=1}^n (k-1) + h^3 \sum_{k=1}^n (k-1)^2 =$$

$$= na^2 h + 2ah^2 \frac{(n-1)n}{2} + h^3 \frac{(n-1)n(2n-1)}{6} =$$

$$= \frac{(b-a)^3}{3} \left(1 - \frac{3}{2n} + \frac{1}{2n^2}\right) + a(b-a)^2 \left(1 - \frac{1}{n}\right) + a^2(b-a)$$

i analogno

$$S_n = \frac{(b-a)^3}{3} \left(1 + \frac{3}{2n} + \frac{1}{2n^2} \right) + a(b-a)^2 \left(1 + \frac{1}{n} \right) + a^2(b-a).$$

Odatle,

$$\sup A' = \inf B' = \frac{(b-a)^3}{3} + a(b-a)^2 + a^2(b-a) = \frac{b^3}{3} - \frac{a^3}{3}.$$

5.3 Osnovna svojstva Riemannovog integrala

Teorem 5.2. Neka je $f:[a,b] \to \mathbb{R}$ ograničena funkcija na $[a,b] \subset \mathbb{R}$. Funkcija f je integrabilna na [a,b] ako i samo ako $\forall \varepsilon > 0$ postoji subdivizija segmenta [a,b] takva da za pripadne Darbouxove sume vrijedi $S-s < \varepsilon$.

Dokaz: Neka $\forall \varepsilon > 0$ postoji subdivizija segmenta [a, b] takva da za pripadne Darbouxove sume vrijedi $S-s < \varepsilon$. Tada $\forall \varepsilon > 0$ vrijedi $0 \le \mathcal{I}^* - \mathcal{I}_* \le S - s < \varepsilon$ i stoga je $\mathcal{I}^* = \mathcal{I}_*$.

Obratno, neka je f R-integrabilna na [a,b], tj. $\mathcal{I}^* = \mathcal{I}_*$. Iz svojstava infimuma i supremuma slijedi da $\forall \varepsilon > 0$ postoje Darbouxove sume S_1 i s_2 (općenito na različitim subdivizijama) takve da vrijedi $S_1 < \mathcal{I}^* + \varepsilon/2$ i

 $s_2 > \mathcal{I}_* - \varepsilon/2$. Uzmimo novu subdiviziju koja je određena unijom točaka iz subdivizija od S_1 i s_2 , te neka su S i s pripadne Darbouxove sume. Iz dokaza prethodnog teorema znamo da je $s_2 \leq s \leq S \leq S_1$. Sada imamo $S - s \leq S_1 - s_2 < \mathcal{I}^* + \varepsilon/2 - \mathcal{I}_* + \varepsilon/2 = \varepsilon$. Q.E.D

Glavna svojstva Riemannovog integrala dana su slijedećim teoremima.

Teorem 5.3. Neka su $f, g : [a, b] \to \mathbb{R}$ integrabilne funkcije na $[a, b] \subset \mathbb{R}$. Za bilo koje $\alpha, \beta \in \mathbb{R}$ funkcija $\alpha f + \beta g$ je integrabilna na [a, b] i vrijedi $\int_a^b (\alpha f + \beta g) = \alpha \int_a^b f + \beta \int_a^b g$. Ako je $f \leq g$ na [a, b] onda je $\int_a^b f \leq \int_a^b g$. Također vrijedi $|\int_a^b f| \leq \int_a^b |f| \leq (b-a) \sup_{[a,b]} f$.

Dokaz: Iz $\inf_K f + \inf_K g \leq f(x) + g(x) \leq \sup_K f + \sup_K g$ za svako $x \in K \subseteq [a,b]$ slijedi $\inf_K f + \inf_K g \leq \inf_K (f+g) \leq \sup_K (f+g) \leq \sup_K f + \sup_K g$ za svaki $K \subseteq [a,b]$. Odatle, na bilo kojoj subdiviziji $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = b$ segmenta [a,b], za Darbouxove sume funkcija f,g,f+g imamo $s_f + s_g \leq s_{f+g} \leq s_{f+g} \leq s_f + s_g$. Po teoremu 5.3 za bilo koji $\varepsilon > 0$ postoje subdivizije segmenta [a,b] tako da za pripadne Darbouxove sume s_f', s_f', s_g'', s_g'' vrijedi $s_f' - s_f' < \varepsilon/2$ i $s_g'' - s_g'' < \varepsilon/2$. Na subdiviziji koja je određena unijom točaka iz prethodnih subdivizija za pripadne Darbouxove sume s_f, s_f, s_g, s_g vrijedi $s_f' - s_f' \leq s_f' - s_f' < \varepsilon/2$ i $s_g' - s_g' \leq s_g'' - s_g'' < \varepsilon/2$. Sada za Darbouxove sume funkcije $s_f' - s_f' < \varepsilon/2$ i $s_g' - s_g' < \varepsilon/2$. Sada po teoremu $s_f' - s_f' \leq s_f' + s_g' - s_f' < \varepsilon/2$ i sada po teoremu 5.3 zaključujemo da je funkcija $s_f' + s_g' +$

$$\int_{a}^{b} (f+g) - \int_{a}^{b} f - \int_{a}^{b} g \le S_{f+g} - s_{f} - s_{g} \le S_{f} + S_{g} - s_{f} - s_{g} = S_{f} - s_{f} + S_{g} - s_{g} < \varepsilon$$
 .

$$\int_{a}^{b} (f+g) - \int_{a}^{b} f - \int_{a}^{b} g \ge s_{f+g} - S_{f} - S_{g} \ge s_{f} + s_{g} - S_{f} - S_{g} = s_{f} - S_{f} + s_{g} - S_{g} > -\varepsilon,$$

tj. $|\int_a^b (f+g) - \int_a^b f - \int_a^b g| < \varepsilon$. Odatle slijedi aditivnost integrala, tj. $\int_a^b (f+g) = \int_a^b f + \int_a^b g$.

Za $\alpha > 0$ i bilo koji $\varepsilon > 0$ prema teoremu 5.3 postoji subdivizija segmenta [a,b] takva da za pripadne Darbouxove sume vrijedi $S-s<\varepsilon/\alpha$. Zbog $\inf_K \alpha f = \alpha \inf_K f$ i $\sup_K \alpha f = \alpha \sup_K f$ za svaki $K \subseteq [a,b]$ vrijedi $s_{\alpha f} = \alpha s_f$ i $S_{\alpha f} = \alpha S_f$, pa imamo $S_{\alpha f} - s_{\alpha f} = \alpha (S_f - s_f) < \varepsilon$, što po teoremu 5.2. daje integrabilnost funkcije αf . Također vrijedi

$$-\varepsilon < \alpha(s_f - S_f) = s_{\alpha f} - \alpha S_f \le \int_a^b \alpha f - \alpha \int_a^b f \le S_{\alpha f} - \alpha s_f = \alpha(S_f - s_f) < \varepsilon,$$

tj. $|\int_a^b \alpha f - \alpha \int_a^b f| < \varepsilon$. To povlači $\int_a^b \alpha f = \alpha \int_a^b f$. Jasno, iz aditivnosti slijedi $\int_a^b -f = -\int_a^b f$, pa za $\alpha < 0$ po prethodnom vrijedi $\int_a^b \alpha f = \int_a^b -(-\alpha)f = -\int_a^b (-\alpha)f = -(-\alpha)\int_a^b f$. Za $\alpha = 0$ prethodna tvrdnja je očita, dakle, integral je homogeno preslikavanje, što uz aditivnost daje linearnost integrala.

Ako je $f \ge 0$ onda su sve Darbouxove sume nenegativne pa je i $\int_a^b f \ge 0$. Za $f \le g$ je $g - f \ge 0$, pa zbog linearnosti imamo $\int_a^b g - \int_a^b f \ge 0$.

Pokažimo da integrabilnost funkcije f povlači integrabilnost funkcije |f|. Definirajmo funkcije $f_+ = \max\{f,0\}$ i $f_- = \max\{-f,0\}$. Vrijedi $f = f_+ - f_-$ i $|f| = f_+ + f_-$. Dovoljno je dokazati integrabilnost funkcije f_+ . Pokažimo da na bilo kojem podskupu K segmenta [a,b] vrijedi $\sup_K f_+ - \inf_K f_+ \le \sup_K f - \inf_K f$. Naime, ako je $f \ge 0$ na K, onda je $\sup_K f_+ = \sup_K f$ i $\inf_K f_+ = \inf_K f$, pa je $\sup_K f_+ - \inf_K f_+ = \sup_K f - \inf_K f$. U slučaju $f \le 0$ je $f_+ = 0$ pa je $\sup_K f_+ - \inf_K f_+ = 0 \le \sup_K f - \inf_K f$. Ako je $\sup_K f \ge 0$ i $\inf_K f \le 0$ imamo $\sup_K f_+ = \sup_K f$ i $\inf_K f \le 0 \le \inf_K f_+$, što daje $\sup_K f_+ - \inf_K f_+ \le \sup_K f - \inf_K f$. Iz ovoga zaključujemo da je na svakoj subdiviziji razlika gornje i donje Darbouxove sume za funkciju f_+ manja ili jednaka razlici Darbouxovih suma za funkciju f. To pomoću teorema 1. daje integrabilnost funkcije f_+ . Sada iz $f_- = f_+ - f$ dobivamo integrabilnost funkcije f_- , a onda i |f|. Posljednja tvrdnja slijedi iz $-|f| \le f \le |f|$ i prethodno dokazane monotonosti integrala.

Prethodni teorem kaže da je $\mathcal{I}([a,b])$, skup funkcija integrabilnih na segmentu [a,b], realan vektorski prostor (rešetka), a integral je linearan i monoton funkcional na $\mathcal{I}([a,b])$.

Teorem 5.4. Neka je $f:[a,b] \to \mathbb{R}$ ograničena funkcija na $[a,b] \subset \mathbb{R}$ i $c \in \langle a,b \rangle$. Ako je funkcija f integrabilna na segmentima [a,c] i [c,b], onda je f integrabilna na [a,b] i $\int_a^b f = \int_a^c f + \int_c^b f$.

Dokaz: Po teoremu 5.2, za bilo koji $\varepsilon > 0$ postoje subdivizije $a = x_0 < x_1 < \cdots < x_{n-1} < x_n = c$ segmenta $[a,c], S'-s' = \sum_{k=1}^n (M_k - m_k)(x_k - x_{k-1}) < \varepsilon/2$, i $c = x_n < x_{n+1} < \cdots < x_{n+m-1} < x_{n+m} = b$ segmenta $[c,b], S''-s'' = \sum_{k=n+1}^{n+m} (M_k - m_k)(x_k - x_{k-1}) < \varepsilon/2$. Uzmimo subdiviziju $a = x_0 < x_1 < \cdots < x_{n+m-1} < x_{n+m} = b$ segmenta [a,b]. Za pripadne Darbouxove sume vrijedi S = S' + S'' i S = S' + S''. Odatle je S - S = S' + S''

 $S'-s'+S''-s''<\varepsilon$, što po teoremu 5.2. daje integrabilnost funkcije f na [a,b]. Sada na prethodnoj subdiviziji imamo

$$\int_a^b f-\int_a^c f-\int_c^b f\leq S-s'-s''=S'+S''-s'-s''<\varepsilon$$
 i
$$\int_a^b f-\int_a^c f-\int_c^b f\geq s-S'-S''=s'+s''-S'-S''>-\varepsilon,$$

tj. $|\int_a^b f - \int_a^c f - \int_c^b f| < \varepsilon$. Odatle je $\int_a^b f = \int_a^c f + \int_c^b f$, tj. integral je aditivan po području integracije. Q.E.D

Svaka funkcija koja je ograničena na segmentu nije i Riemann integrabilna na tom segmentu. Promatrajmo $f:[0,1]\to\mathbb{R}$ za koju je f(x)=1 ako je $x\in\mathbb{Q}\cap[0,1]$ i f(x)=0 ako je $x\notin\mathbb{Q}\cap[0,1]$. Za svaki $[\alpha,\beta]\subseteq[0,1]$ vrijedi inf $_{[\alpha,\beta]}f=0$ i sup $_{[\alpha,\beta]}f=1$, što daje $\mathcal{I}_*=0$ i $\mathcal{I}^*=1$, tj. $\mathcal{I}_*\neq\mathcal{I}^*$

5.4 Integrabilnost monotonih i neprekidnih funkcija

Prirodno je pitanje koje od do sada proučavanih svojstava funkcije je dovoljno za Riemann integrabilnost. Specijalno, jesu li su elementarne funkcije R-integrabilne na segmentima koji su sadržani u području definicije. Dokazujemo da su monotonost na segmentu ili neprekidnost na segmentu svojstva koja povlače integrabilnost

Teorem 5.5. Neka je $f:[a,b] \to \mathbb{R}$ monotona funkcija na $[a,b] \subset \mathbb{R}$. Tada je ona R-integrabilna na [a,b].

Dokaz: Pretpostavimo da je f rastuća na [a,b]. Ako je f(a)=f(b) onda je f konstantna funkcija na [a,b] pa je integrabilna (primjer 5.1.). Stoga pretpostavimo da je f(b)-f(a)>0. Neka je $\varepsilon>0$ bilo koji i $n\in\mathbb{N}$ takav da vrijedi $n\varepsilon>(f(b)-f(a))(b-a)$. Uzmimo ekvidistantnu subdiviziju $x_k=a+kh, \ (k=0,1,\ldots,n), \ h=(b-a)/n$. Za svaki $[\alpha,\beta]\subseteq [a,b]$ vrijedi inf $[\alpha,\beta]$ $f=f(\alpha)$ i sup $[\alpha,\beta]$ $f=f(\beta)$. Stoga su pripadne Darbouxove sume oblika $s=\sum_{k=1}^n f(x_{k-1})h$ i $S=\sum_{k=1}^n f(x_k)h$. Vrijedi $S-s=\sum_{k=1}^n (f(x_k)-f(x_{k-1}))h=h(f(b)-f(a))=(f(b)-f(a))(b-a)/n<\varepsilon$. Po teoremu 5.3 f je R-integrabilna.

Definicija 5.3. Za funkciju $f:[a,b] \to \mathbb{R}$ kažemo da je monotona po dijelovima na segmentu [a,b] ako postoji subdivizija $a=c_0 < c_1 < \ldots < c_{k-1} < c_k < \ldots < c_{n-1} < c_n = b$ takva da je $f|_{[c_{k-1},c_k]}$ monotona funkcija za sve $k=1,\ldots,n$.

Korolar 5.1. Neka je $f : [a,b] \to \mathbb{R}$ po dijelovima monotona funkcija na $[a,b] \subset \mathbb{R}$. Tada je ona R-integrabilna na [a,b].

Dokaz: Tvrdnja slijedi iz teorema 5.5. i svojstva aditivnosti integrala po području integracije, tj.

$$\int_{a}^{b} f(x)dx = \sum_{k=1}^{n} \int_{c_{k-1}}^{c_k} f(x)dx.$$

Bitno je složenije dokazati integrabilnost funkcije neprekidne na segmentu. U tu svrhu potrebno je profiniti neka saznanja o neprekidnim funkcijama.

Definicija 5.4. Za funkciju $f: I \to \mathbb{R}$ kažemo da je jednoliko (uniformno) neprekidna na intervalu $I \subseteq \mathbb{R}$ ako

$$\forall \varepsilon > 0 \; \exists \delta > 0 \; \forall x', x'' \in I \; (|x' - x''| < \delta) \Rightarrow (|f(x') - f(x'')| < \varepsilon).$$

Teorem 5.6. Neka je $f:[a,b] \to \mathbb{R}$ neprekidna funkcija na $[a,b] \subset \mathbb{R}$. Tada je ona jednoliko neprekidna na [a,b].

Dokaz: Kada tvrdnja teorema ne bi bila istinita, onda bi funkcija f bila neprekidna na [a,b] i vrijedilo bi

$$\exists \varepsilon > 0 \; \forall \delta > 0 \; \exists x_\delta', x_\delta'' \in [a,b] \; (|x_\delta' - x_\delta''| < \delta) \wedge (|f(x_\delta') - f(x_\delta'')| \geq \varepsilon).$$

Sada za $n \in \mathbb{N}$ uzmimo $\delta = \frac{1}{n}$ pa imamo $a_n = x'_{\delta}$ i $b_n = x''_{\delta}$ takve da vrijedi $(|a_n - b_n| < \frac{1}{n}) \wedge (|f(a_n) - f(b_n)| \ge \varepsilon)$. Niz $(a_n)_{n \in \mathbb{N}}$ je u segmentu [a, b], pa je ograničen, te ima konvergentan podniz $(a_{p_n})_{n \in \mathbb{N}}$, tj. $\lim_n a_{p_n} = c \in [a, b]$. Zbog $|a_{p_n} - b_{p_n}| < \frac{1}{p_n}$, $\forall n \in \mathbb{N}$, vrijedi $\lim_n b_{p_n} = c$. Zbog neprekidnosti funkcije f u c imamo $\lim_n f(a_{p_n}) = \lim_n f(b_{p_n}) = f(c)$, što zbog $|f(a_{p_n}) - f(b_{p_n})| \ge \varepsilon > 0$ daje kontradikciju. Dakle, tvrdnja teorema je istinita.

Sada dokazujemo Riemannov teorem o integrabilnosti neprekidne funkcije.

Teorem 5.7. Neka je $f:[a,b] \to \mathbb{R}$ neprekidna funkcija na $[a,b] \subset \mathbb{R}$. Tada je ona R-integrabilna na [a,b]. Također, postoji točka $c \in [a,b]$ takva da je $\int_{[a,b]} f(x) dx = f(c)(b-a)$.

Dokaz: Prema teoremu 5.2 dovoljno je pokazati da $\forall \varepsilon > 0$ postoji subdivizija segmenta [a, b] takva da za pripadne Darbouxove sume vrijedi $S - s < \varepsilon$.

Neka je $\varepsilon > 0$ zadan po volji. Zbog jednolike neprekidnosti funkcije f na [a,b] postoji $\delta > 0$ tako da $\forall x', x'' \in I$, $(|x'-x''| < \delta) \Rightarrow (|f(x')-f(x'')| < \frac{\varepsilon}{b-a})$. Uzmimo $n \in \mathbb{N}$ takav da je $h = \frac{b-a}{n} < \delta$ i napravimo ekvidistantnu subdiviziju s točkama $x_k = a + kh$, $k = 0, 1, \ldots, n$. Zbog neprekidnosti funkcije f na segmentu $[x_{k-1}, x_k]$, $k = 1, \ldots, n$, postoje točke $[x'_k, x''_k \in [x_{k-1}, x_k]$ takve da je $m_k = f(x'_k) = \inf_{[x_{k-1}, x_k]} f$ i $M_k = f(x''_k) = \sup_{[x_{k-1}, x_k]} f$, $k = 1, \ldots, n$. Zbog $(|x'_k - x''_k| \le h < \delta)$ imamo $M_k - m_k < \frac{\varepsilon}{b-a}$, $k = 1, \ldots, n$. Odatle je $S - s = \sum_{k=1}^n (M_k - m_k)h < \frac{\varepsilon}{b-a}nh = \varepsilon$. Dakle, f je integrabilna na [a, b].

Neka su sada $m = \min_{[a,b]} f$ i $M = \max_{[a,b]} f$. Tada $\forall x \in [a,b]$ imamo $m \leq f(x) \leq M$. Zbog monotonosti integrala slijedi $m(b-a) \leq \int_{[a,b]} f(x) dx \leq M(b-a)$, tj. $m \leq \frac{1}{b-a} \int_{[a,b]} f(x) dx \leq M$. Po Bolzano-Weierstrasseovom teoremu postoji $c \in [a,b]$ tako da je $f(c) = \frac{1}{b-a} \int_{[a,b]} f(x) dx$.

Korolar 5.2. Neka je $f: I \to \mathbb{R}$ neprekidna funkcija na otvorenom intervalu $I = \langle a, b \rangle$. Ako za **svaki** segment $[u, v] \subset \langle a, b \rangle$ vrijedi $\int_u^v f(x) dx = 0$, onda je f(x) = 0 za svako $x \in I$.

Dokaz: Kada bi postojala točka $c \in I$ takva da je f(c) > 0, po lemi 3.2. iz M.A.I. bi postojao $\delta > 0$ tako da vrijedi $\forall x \in I$, $(|x - c| < \delta) \Rightarrow (f(x) \ge \frac{1}{2}f(c))$. Neka je $h = \min\{\delta, c - a, b - c\}$. Tada je $[c - h, c + h] \subset I$ i zbog neprekidnosti funkcije f postoji $t \in [c - \frac{h}{2}, c + \frac{h}{2}]$ tako da vrijedi $\int_{c - \frac{h}{2}}^{c + \frac{h}{2}} f(x) dx = f(t)h > 0$, što je suprotno pretpostavci.

U slučaju da postoji točka $c \in I$ takva da jef(c) < 0zaključujemo analogno. $\hfill \Box$

Propozicija 5.1. Ako $h:[a,b]\to\mathbb{R}$ iščezava svugdje osim možda u točki $c\in[a,b]$, onda je h integrabilna na [a,b] i $\int_a^b f(x)dx=0$.

Dokaz: Zbog određenosti uzmimo da je M=h(c)>0. Jasno je da vrijedi za svaku donju Darbouxova sumu s=0 jer je na svakoj subdiviziji $m_k=0$ na svakom podsegmentu od [a,b]. Uzmimo $\varepsilon>0$ po volji i pokažimo da postoji subdivizija tako da za njenu gornju Darbouxova sumu vrijedi $S<\varepsilon$. Naime, za $c\in\langle a,b\rangle$ uzmimo subdiviziju $a=x_0< x_1< x_2< x_3=b$, gdje je $x_1=c-h,\ x_2=c+h,\ h<\min\{\frac{\varepsilon}{2M},c-a,b-c\}$. Za pripadnu gornju Darbouxovu sumu vrijedi $S=2hM<\varepsilon$. U slučaju c=a uzmemo subdiviziju $a=c=x_0< x_1< x_2=b$, gdje je $x_1=c+h,\ h<\min\{\frac{\varepsilon}{M},b-c\}$,

u slučaju c = b subdiviziju $a = x_0 < x_1 < x_2 = c = b$, gdje je $x_1 = c - h$, $h < \min\{\frac{\varepsilon}{M}, c - a\}$. Tako je opet $S = hM < \varepsilon$. To daje sup $A' = \inf B' = 0$.

Korolar 5.3. Neka ograničena funkcija $f:[a,b] \to \mathbb{R}$ ima na segmentu $[a,b] \subset \mathbb{R}$ najviše konačno točaka prekida i neka su to prekidi prve vrste. Tada je ona R-integrabilna na [a,b].

Dokaz: Tvrdnja slijedi iz teorema 5.7., prethodne propozicije i svojstva aditivnosti integrala po području integracije. Naime, neka su $a \leq c_1 < \ldots c_{k-1} < c_k < \ldots < c_n \leq b$ točke u kojima f ima prekide prve vrste, tj. postoje $f(c_k-), f(c_k+), k=1,\ldots,n$. Neka su $f_k: [a,b] \to \mathbb{R} \ (k=1,\ldots,n)$) definirane s

$$f_k(x) = \begin{cases} 0 & \text{, } \text{za } a \leq x < c_{k-1} \\ f(c_{k-1}+) & \text{, } \text{za } x = c_{k-1} \\ f(x) & \text{, } \text{za } c_{k-1} < x < c_k \\ f(c_k-) & \text{, } \text{za } x = c_k \\ 0 & \text{, } \text{za } c_k < x \leq b \end{cases}$$

Iz teorema 5.7. i prethodne propozicije imamo $\int_a^b f_k(x)dx = \int_{c_{k-1}}^{c_k} f_k(x)dx$ za sve $k = 1, \ldots, n$. Nadalje, funkcija $f - \sum_{k=1}^n f_k$ ima na [a, b] samo konačno mnogo vrijednosti različitih od 0, pa je njen integral na [a, b] jednak 0. Tvrdnja korolara sada slijedi iz aditivnosti integrala.

Primjer 5.4 (Riemannova funkcija). Ovdje definiramo funkciju $f:[0,1] \to \mathbb{R}$ koja ima prebrojivo točaka prekida koje čine gust skup u [0,1], a koja je ipak integrabilna na [0,1]. Neka je

$$f(x) = \begin{cases} 0 & ; x \in [0,1] \setminus \mathbb{Q} \\ \frac{1}{n} & ; x = \frac{m}{n}, \ 0 < m < n, m \text{ i } n \text{ su relativno prosti .} \end{cases}$$
 (5.8)

Uzmimo bilo koji $c \in [0,1]$ i bilo koji injektivan niz $(x_n)_n$ u [0,1] takav da je $\lim_{n\to\infty} x_n = c$. Pokažimo da je $\lim_{n\to\infty} f(x_n) = 0$. U suprotnom slučaju bi postojao $\varepsilon > 0$ sa svojstvom da za beskonačno mnogo članova $x_n \in [0,1] \cap \mathbb{Q}$ vrijedi $f(x_n) > \varepsilon$. No, $f(x_n) = \frac{1}{k}$ za neko $k \in \mathbb{N}$, pa $\frac{1}{k} > \varepsilon \Rightarrow k < \frac{1}{\varepsilon}$, tj. ima samo konačno mnogo takvih k. S druge strane $x_n = \frac{m}{k}$, gdje je m < k, pokazuje da takvih x_n ima konačno mnogo, što je kontradikcija.

Odatle slijedi da je f neprekidna samo u točkama $c \in [0,1]$ u kojima je f(c) = 0, a to su $c \in [0,1] \setminus \mathbb{Q}$.

Pokažimo da je f R-integrabilna na [0,1] i $\int_0^1 f(x)dx = 0$. Jasno je da je svaka donja Darbouxova suma s = 0. Sada pokažimo da za bilo koji $\varepsilon > 0$ možemo konstruirati gornju Darbouxovu sumu $S < \varepsilon$. Neka su α_k $(k = 1, \ldots, n_{\varepsilon})$ sve točke za koje vrijedi $f(\alpha_k) > \frac{\varepsilon}{2}$ (vidjeli smo da ih ima konačno mnogo) i neka je $M = \max\{f(\alpha_k); k = 1, \ldots, n_{\varepsilon}\}$.

Uzmimo ekvidistantnu subdiviziju segmenta $[0,1], x_k = \frac{k}{n}, k = 0, 1, \ldots, n$, gdje je $n > \frac{2Mn_{\varepsilon}}{\varepsilon}$. Pošto ima najviše n_{ε} segmenata u kojima je neki od α_k , to je suma članova u gornjoj Darbouxovoj sumi S koja njima odgovara manja od $\frac{n_{\varepsilon}M}{n} < \frac{\varepsilon}{2}$. Kako je ostatak sume manji od $\frac{\varepsilon}{2}$, to je $S < \varepsilon$. To dokazuje tvrdnju.

Sada ćemo bez dokaza pokazati kako veličina skupa točaka prekida funkcije određuje R-integrabilnost funkcije.

Definicija 5.5. Kažemo da skup $A \subset \mathbb{R}$ (ne nužno omeđen) ima **mjeru nula** ili da je **zanemariv** ako za svaki $\varepsilon > 0$ postoji konačna ili prebrojiva familija otvorenih intervala $\{I_k; k \in \mathcal{J}\}$ takva da je $A \subseteq \bigcup_{k \in \mathcal{J}} I_k$ i $\sum_{k \in \mathcal{J}} d(I_k) < \varepsilon$, gdje je $d(\langle a, b \rangle) = b - a$.

Teorem 5.8 (Lebesgue¹). Neka je $[a,b] \subset \mathbb{R}$ segment, neka je $f:[a,b] \to \mathbb{R}$ ograničena na [a,b]. Funkcija f je integrabilna na [a,b] ako i samo ako skup svih točaka prekida funkcije f ima mjeru 0.

Integrabilnost Riemannove funkcije iz primjera 5.4 slijedi iz prethodnog teorema.

5.5 Primitivna funkcija

Definicija 5.6. Neka je $I \subseteq \mathbb{R}$ otvoren interval i $f: I \to \mathbb{R}$. **Primitivna funkcija** ili antiderivacija funkcije f na skupu I je svaka funkcija $F: I \to \mathbb{R}$ sa svojstvom $F'(x) = f(x), \forall x \in I$.

Teorem 5.9. Neka je $I \subseteq \mathbb{R}$ otvoren interval i $f: I \to \mathbb{R}$ zadana funkcija. Ako su F i G bilo koje dvije primitivne funkcije od f na intervalu I, onda postoji konstanta $C \in \mathbb{R}$ takva da vrijedi G(x) = F(x) + C, $\forall x \in I$.

Dokaz: Ako je F' = f i G' = f, onda je (G - F)' = G' - F' = f - f = 0, tj. H'(x) = 0, $\forall x \in I$, gdje je H = G - F. Ako su $x_1, x_1 \in I$, $x_1 \neq x_2$, bilo koje dvije točke, onda iz Lagrangeovog teorema srednje vrijednosti imamo

¹Henri Lebesgue (Beauvais, 28. lipanj 1875. - Paris, 26. srpanj 1941.) francuski matematičar

П

 $H(x_2) - H(x_1) = H'(c)(x_2 - x_1)$, gdje je točka c između x_1 i x_2 . Zbog H'(c) = 0 dobivamo $H(x_2) = H(x_1)$. Prema tome je H konstantna funkcija na I, tj. H(x) = C, $\forall x \in I$. Dakle, vrijedi G(x) = F(x) + C, $\forall x \in I$.

Slijedeći teorem daje dovoljne uvjete za postojanje primitivne funkcije

Teorem 5.10. Neka je $I \subseteq \mathbb{R}$ otvoren interval i $f: I \to \mathbb{R}$ funkcija neprekidna na I. Tada postoji primitivna funkcija od f na I.

Dokaz: Uzmimo točku $a \in I$ po volji. Za bilo koju točku $x \in I$ je restrikcija funkcije f na segment [a, x] ili [x, a] neprekidna funkcija, pa je integrabilna u Riemannovom smislu. Tada je funkcija $F: I \to \mathbb{R}$ dobro definirana formulom

$$F(x) = \int_{a}^{x} f(t)dt, \, \forall \, x \in I.$$
 (5.9)

Pokažimo da je F primitivna funkcija od f na I, tj. F'(x) = f(x), $\forall x \in I$. Za bilo koju točku $c \in I$ i svaki $x \in I$, pomoću (5.9), svojstava integrala i Riemannovog teorema 5.7. imamo $\theta_x \in [0, 1]$ tako da je

$$F(x) - F(c) = \int_{a}^{x} f(t)dt - \int_{a}^{c} f(t)dt = \int_{c}^{x} f(t)dt = f(c + \theta_{x}(x - c))(x - c).$$

Odatle imamo

$$\frac{F(x) - F(c)}{x - c} = f(c + \theta_x(x - c)), \text{ gdje je } \theta_x \in [0, 1].$$

Iz neprekidnosti funkcije f u točki c dobivamo

$$F'(c) = \lim_{x \to c} \frac{F(x) - F(c)}{x - c} = \lim_{x \to c} f(c + \theta_x(x - c)) = \lim_{x \to c} f(x) = f(c).$$

Sada dokazujemo **Leibniz-Newtonovu formulu** koja daje vezu između primitivne funkcije (odnosno pojma derivacije) i Riemannovog integrala funkcije.

Teorem 5.11. Ako je f neprekidna funkciju na otvorenom intervalu I i F bilo koja primitivna funkcija funkcije f na I, onda za svaki segment $[a,b] \subset I$ vrijedi

$$\int_{a}^{b} f(x)dx = F(b) - F(a). \tag{5.10}$$

Dokaz: Ako je F primitivna funkcija definirana s (5.9), onda zbog F(a) = 0, vrijedi formula (5.10). Ako je G bilo koja druga primitivna funkcija od f na I, onda imamo $C \in \mathbb{R}$ tako da vrijedi G(x) = F(x) + C, $\forall x \in I$. Sada je

$$G(b) - G(a) = (F(b) + C) - (F(a) + C) = F(b) - F(a) = F(b) = \int_{a}^{b} f(x)dx.$$

Napomena 5.1. Prethodni teorem je istinit i bez pretpostavke da je f neprekidna na I. Dovoljno je pretpostaviti da je f integrabilna funkcija i da postoji F primitivna funkcija od f na I. Naime, tada za bilo koju subdiviziju $a=x_0< x_1< \cdots < x_{n-1}< x_n=b$ segmenta [a,b] iz Lagrangeovog teorema srednje vrijednosti imamo

$$F(b) - F(a) = \sum_{k=1}^{n} (F(x_k) - F(x_{k-1})) =$$

$$\sum_{k=1}^{n} F'(t_k)(x_k, x_{k-1}) = \sum_{k=1}^{n} f(t_k)(x_k, x_{k-1}) =$$

$$= \sum_{k=1}^{n} F'(t_k)(x_k - x_{k-1}) = \sum_{k=1}^{n} f(t_k)(x_k - x_{k-1}) = \sigma,$$

$$\in [x_k, x_k], k = 1, \dots, x_k \text{ adia in } \sigma \text{ integral possible } \sigma,$$

za neke $t_k \in [x_{k-1}, x_k]$, k = 1, ..., n, gdje je σ integralna suma. Dakle, za pripadne Darbouxove sume imamo $s \leq F(b) - F(a) \leq S$, no pošto broj u sredini ne ovisi o subdiviziji, onda je $s \leq F(b) - F(a) \leq S$, za bilo koju donju D-sumu s i bilo koju gornju D-sumu S. Odatle je $\mathcal{I}_* \leq F(b) - F(a) \leq \mathcal{I}^*$, što zbog pretpostavke $\mathcal{I}_* = \mathcal{I}^*$ daje tvrdnju.

Napomena 5.2. Ako je F primitivna funkcija od f na otvorenom intervalu $I \subset \mathbb{R}$, onda je ona diferencijabilna na I, pa iz Lagrangeovog teorema srednje vrijednosti za bilo koje $a, b \in I$, a < b, slijedi egzistencija točke $c \in \langle a, b \rangle$, tako da je F(b) - F(a) = F'(c)(b-a). Ako iskoristimo Leibniz-Newtonovu formulu dobivamo

$$\int_{a}^{b} f(x)dx = f(c)(b-a),$$

što odgovara integralnom teoremu srednje vrijednosti iz Riemannovog teorema 5.7., s tim da je ovdje rezultat precizniji, tj. a < c < b.

Na isti način bi za dvije integrabilne funkcije $f,g:I\to\mathbb{R}$ koje imaju primitivne funkcije F i G na otvorenom intervalu $I\subset\mathbb{R}$ i za bilo koje $a,b\in I$, a< b, iz Cauchyjevog teorema srednje vrijednosti (teorem 4.18.) dobili egzistenciju točke $c\in\langle a,b\rangle$, tako da je (F(b)-F(a))G'(c)=F'(c)(G(b)-G(a)), odnosno u integralnom obliku

$$g(c) \int_a^b f(x)dx = f(c) \int_a^b g(x)dx.$$

5.6 Metode integriranja

5.6.1 Direktna integracija

Derivacije elementarnih funkcija su opet elementarne funkcije. Na žalost to nije istina kada se radi o primitivnim funkcijama ili antiderivacijama. Primjeri elementarnih funkcija čije primitivne funkcije nisu elementarne su e^{-x^2} , $\frac{1}{\ln x}$, $\frac{\sin x}{x}$, $\sqrt{x} \sin x$ itd. Ne postoji opći način kako utvrditi je li primitivna funkcija elementarne funkcije opet elementarna funkcija. Navodimo tablicu osnovnih elementarnih funkcija i njihovih primitivnih funkcija. U pravilu pokušavamo nalaženje primitivnih funkcija za složenije funkcije raznim postupcima svesti na te jednostavne funkcije.

f	F
$x^{\alpha} \ (\alpha \neq -1)$	$\frac{x^{\alpha+1}}{\alpha+1}$
$\frac{1}{x}$ e^x	$\frac{\alpha+1}{\ln x }$
e^x	e^x
$\sin x$	$-\cos x$
$\cos x$	$\sin x$
$ \begin{array}{c c} \frac{1}{\cos^2 x} \\ \frac{1}{\sin^2 x} \\ \text{sh } x \end{array} $	$\operatorname{tg} x$
$\frac{1}{\sin^2 x}$	$-\operatorname{ctg} x$
$\sinh x$	$\operatorname{ch} x$
$\operatorname{ch} r$	$\operatorname{sh} x$
$\frac{1}{\cosh^2 x}$	$\operatorname{th} x$
$\frac{1}{\sinh^2 x}$	$-\coth x$
$ \begin{array}{c c} & \frac{1}{\cosh^2 x} \\ & \frac{1}{\sinh^2 x} \\ & \frac{1}{\sqrt{1-x^2}} \\ & \frac{1}{1+x^2} \\ & \frac{1}{\sqrt{1+x^2}} \end{array} $	$\operatorname{Sin}^{-1} x$
$\frac{1}{1+x^2}$	$Tg^{-1}x$
$\frac{\frac{1}{\sqrt{1+x^2}}}{\frac{1}{1}}$	$\operatorname{sh}^{-1} x$
$\frac{1}{1-x^2}$	$ h^{-1} x$
$\frac{1}{\sqrt{x^2-1}}$	$\operatorname{ch}^{-1} x$

Kod upotrebe Leibniz-Newtonove formule često se upotrebljava oznaka

$$F(x) \Big|_a^b = F(b) - F(a).$$

Zbog upotrebe primitivnih funkcija u računanju integrala pomoću Leibniz-Newtonove formule, često se koristi oznaka za **neodređeni integral** funkcije f u obliku integrala bez granica $\int f(x)dx$. Ta oznaka zapravo predstavlja skup svih primitivnih funkcija od f, koje se, kao što znamo, međusobno razlikuju samo za konstantnu funkciju.

Osnovna pravila za nalaženje primitivnih funkcija su zapravo obratno interpretirana pravila za deriviranje funkcija. Tako prvo navodimo pravilo koje je posljedica linearnosti derivacije i integrala.

Teorem 5.12. Ako je F primitivna funkcija od f na I i G primitivna od g na I, onda je $\alpha F + \beta G$ primitivna funkcija od $\alpha f + \beta g$ na I. U oznaci neodređenog integrala to pišemo kao

$$\int (\alpha f(x) + \beta g(x))dx = \alpha \int f(x)dx + \beta \int g(x)dx.$$

Dokaz: Funkcija $H = \alpha F + \beta G$ ima derivaciju $H' = \alpha F' + \beta G' = \alpha f + \beta g$.

Druga metoda je supstitucija ili uvođenje nove varijable. Ta je metoda posljedica pravila za deriviranje kompozicije funkcija.

Teorem 5.13. Neka su I i J otvoreni intervali, φ diferencijabilna funkcija na J i F primitivna funkcija od f na I. Neka je $\varphi(J) \subseteq I$, tj. $f \circ \varphi$ je definirana na J. Tada je $G = F \circ \varphi$ primitivna funkcija od $(f \circ \varphi)\varphi'$ na J. Također, $\forall \alpha, \beta \in J$ vrijedi

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x)dx.$$
 (5.11)

Dokaz: Zbog $\varphi(J) \subseteq I$ je funkcija $G = F \circ \varphi$ definirana i diferencijabilna na J. Vrijedi $G'(x) = F'(\varphi(x))\varphi'(x) = f(\varphi(x))\varphi'(x)$ što daje

$$\int_{\alpha}^{\beta} f(\varphi(t))\varphi'(t)dt = G(\beta) - G(\alpha) = F(\varphi(\beta)) - F(\varphi(\alpha)) = \int_{\varphi(\alpha)}^{\varphi(\beta)} f(x)dx.$$

Ako je φ strogo monotona funkcija J na I i $\psi = \varphi^{-1}$ inverzna funkcija od φ , onda uz oznake $a = \varphi(\alpha)$, $b = \varphi(\beta)$ iz (5.11) dobivamo

$$\int_{a}^{b} f(x)dx = \int_{\psi(a)}^{\psi(b)} f(\varphi(t))\varphi'(t)dt.$$
 (5.12)

Sada primitivnu funkciju F nalazimo uz supstituciju $x = \varphi(t)$, odnosno $t = \psi(x)$, na sljedeći način:

$$F(x) = \int f(x)dx = \int f(\varphi(t))\varphi'(t)dt = G(t) + C = G(\psi(x)) + C,$$

gdje je C konstanta po volji.

Primjer 5.5. Naći primitivnu funkciju od $f(x) = \frac{x^5 - 2x^4 + 3\sqrt{x} - \sqrt[3]{x^2} + 5}{\sqrt{x}}$.

 $Rje\check{s}enje.$ Vrijedi $f(x)=x^{\frac{9}{2}}-2x^{\frac{7}{2}}+3-x^{\frac{1}{6}}+5x^{-\frac{1}{2}}$ pa je

$$\int f(x)dx = \frac{2}{11}x^{\frac{11}{2}} - \frac{4}{9}x^{\frac{9}{2}} + 3x - \frac{6}{7}x^{\frac{7}{6}} + 10x^{\frac{1}{2}} + C.$$

Primjer 5.6. $\int \frac{2ax+b}{ax^2+bx+c} dx.$

 $Rje\check{s}enje.$ Uz supstituciju $y=ax^2+bx+c$ imamo dy=(2ax+b)dx pa imamo

$$\int \frac{2ax+b}{ax^2+bx+c} dx = \int \frac{1}{y} dy = \ln|y| + C = \ln|ax^2+bx+c| + C.$$

Primjer 5.7. $\int \sin^n x \cos x dx$

Rješenje. Supstitucijom $y = \sin x$ imamo $dy = \cos x dx$ što daje

$$\int \sin^n x \cos x dx = \int y^n dy = \frac{1}{n+1} y^{n+1} + C = \frac{1}{n+1} \sin^{n+1} x + C.$$

Primjer 5.8. Naći $\int \sin mx \sin nx dx$, za sve $m, n \in \mathbb{N}$.

 $Rje\check{s}enje$. U tu svrhu koristimo trigonometrijsku formulu: $\sin \alpha \cdot \sin \beta = \frac{1}{2}[\cos(\alpha - \beta) - \cos(\alpha + \beta)]$. Za $m \neq n$ i $m \neq -n$ imamo

$$\int \sin mx \sin nx dx = \frac{1}{2} \int [\cos(m-n)x - \cos(m+n)x] dx =$$
$$= \frac{\sin(m-n)x}{2(m-n)} - \frac{\sin(m+n)x}{2(m+n)}.$$

Za m = n imamo

$$\int (\sin mx)^2 dx = \int \frac{1 - \cos 2mx}{2} dx = \frac{x}{2} - \frac{\sin 2mx}{4m} + C.$$

Primjer 5.9. $\int \frac{\ln x}{x} dx$.

 $Rje\check{s}enje$. Supstitucijom $t = \ln x$ dobivamo

$$\int \frac{\ln x}{x} dx = \int t dt = \frac{t^2}{2} + C = \frac{\ln^2 x}{2} + C$$

Primjer 5.10.
$$F(x) = \int \frac{dx}{x\sqrt{x^2 - a^2}} \text{ za } |x| > a > 0.$$

Rješenje. Supstitucijom $x = \frac{a}{t}$, $dx = -\frac{adt}{t^2}$ dobivamo

$$F(x) = \int \frac{1}{\frac{a}{t}\sqrt{(\frac{a}{t})^2 - a^2}} \cdot \left(-\frac{adt}{t^2}\right) = -\frac{1}{a}\int \frac{dt}{\sqrt{1 - t^2}} =$$
$$= -\frac{1}{a}\sin^{-1}t + C = -\frac{1}{a}\sin^{-1}\left(\frac{a}{t}\right) + C.$$

Ako su u podintegralnoj funkcij korijeni oblika $\sqrt{c^2-x^2}$ ili $\sqrt{c^2+x^2}$ ili $\sqrt{x^2-c^2}$, onda se pomoću supstitucije $x=c\sin t$, odnosno $x=c\cot t$, odnosno $x=\frac{c}{\cos^2 t}$ rješavamo korijena. Također je u slučaju $\sqrt{c^2+x^2}$ moguće je koristiti supstituciju $x=c \sinh t$, a u slučaju $\sqrt{x^2-c^2}$ moguće koristiti supstituciju $x=c \coth t$.

Tako u prethodnom primjeru supstitucijom $x = a \operatorname{ch} t$ imamo:

$$G(x) = \int \frac{a \operatorname{sh} t dt}{a \operatorname{ch} t \sqrt{a^2 \operatorname{ch}^2 t - a^2}} = \frac{1}{a} \int \frac{dt}{\operatorname{ch} t} = \frac{2}{a} \int \frac{e^t dt}{e^{2t} + 1}$$

pa uz supstitucij $y=e^t=e^{\operatorname{Ch}^{-1}(\frac{x}{a})}=\frac{x}{a}+\sqrt{(\frac{x}{a})^2-1}$ imamo

$$G(x) = \frac{2}{a} \int \frac{dy}{y^2 + 1} = \frac{2}{a} \operatorname{Tg}^{-1}(y) = \frac{2}{a} \operatorname{Tg}^{-1}\left(\frac{x}{a} + \sqrt{\frac{x^2}{a^2} - 1}\right).$$

Zbog neprekidnosti s desna u a funkcija F i G, te $F(a) = -\frac{\pi}{2a}$ i $G(a) = \frac{\pi}{2a}$ vrijedi $G(x) = F(x) + \frac{\pi}{a}$.

Primjer 5.11.
$$\int \frac{dx}{(1+x^2)\sqrt{1+x^2}}$$

 $Rje\check{s}enje.$ Stavimo $x=\operatorname{tg} t,\, dx=\frac{dt}{\cos^2 t}$ pa zbog $\frac{1}{\cos^2 t}=1+\operatorname{tg}^2 t$ imamo

$$\int \frac{1}{(1+tg^2t)\sqrt{1+tg^2t}} \frac{dt}{\cos^2 t} = \int \cos t dt = \sin t + C = \frac{x}{\sqrt{1+x^2}} + C.$$

Primjer 5.12. Izračunajmo površinu kruga radijusa r, tj. $P=4\int_0^r \sqrt{r^2-x^2}$.

Rješenje.

$$F(x) = \int \sqrt{r^2 - x^2} = \begin{vmatrix} x = \varphi(t) = r\sin t \\ dx = r\cos t dt \end{vmatrix} = \int \sqrt{r^2 - r^2\sin^2 t} \ r\cos t dt = \int \sqrt{r^2 - r^2\cos^2 t} \ r\cos t dt = \int \sqrt{r^2 - r^2\cos^2 t} \ r\cos t dt =$$

$$= r^{2} \int \cos^{2} t dt = \frac{r^{2}}{2} \int (1 + \cos 2t) dt = \frac{r^{2}}{2} (t + \frac{\sin 2t}{2}) + C = G(t).$$

Sada je $\varphi(\alpha) = r \sin \alpha = 0$ i $\varphi(\beta) = r \sin \beta = r$, zbog strogog rasta funkcije $\varphi: [0, \frac{\pi}{2}] \to [0, r]$ postoji njen inverz, te vrijedi

$$P = 4 \int_0^r \sqrt{r^2 - x^2} = 4 \int_0^{\frac{\pi}{2}} r^2 \cos^2 t dt = 2r^2 \left(t + \frac{\sin 2t}{2}\right) \Big|_0^{\frac{\pi}{2}} = r^2 \pi.$$

Treća je metoda parcijalne integracija koja je posljedica pravila za deriviranje produkta funkcija

$$(uv)'(x) = u'(x)v(x) + u(x)v'(x).$$

Teorem 5.14. Za funkcije $u, v: I \to \mathbb{R}$ i za svaki par $a, b \in I$ vrijedi

$$\int_{a}^{b} u'(x)v(x)dx = u(x)v(x) \Big|_{a}^{b} - \int_{a}^{b} u(x)v'(x)dx,$$
 (5.13)

uz uvjet da integrali u (5.13) postoje.

Dokaz: Funkcija F(x) = u(x)v(x) je primitivna funkcija od f(x) = u'(x)v(x) + u(x)v'(x) pa vrijedi

$$u(x)v(x) \Big|_a^b = \int_a^b (u'(x)v(x) + u(x)v'(x))dx = \int_a^b u'(x)v(x)dx + \int_a^b u(x)v'(x)dx.$$

Primjer 5.13. $\int xe^x dx$.

 $Rje\check{s}enje.$ Stavimo $u'(x)=e^x$ i v(x)=x, pa je $u(x)=\int e^xdx=e^x$ i v'(x)=1. Odatle je

$$\int xe^x dx = xe^x - \int e^x dx = xe^x - e^x + C = (x-1)e^x + C.$$

Primjer 5.14. $F(x) = \int e^{\alpha x} \cos \beta x dx$.

Rješenje. Stavimo $u'(x) = \cos \beta x$ i $v(x) = e^{\alpha x}$, pa je $u(x) = \int \cos \beta x dx = \frac{1}{\beta} \sin \beta x$ i $v'(x) = \alpha e^{\alpha x}$. Odatle je

$$F(x) = \int e^{\alpha x} \cos \beta x dx = \frac{1}{\beta} e^{\alpha x} \sin \beta x - \frac{\alpha}{\beta} \int e^{\alpha x} \sin \beta x dx$$

Sada ponovimo prethodni postupak za $\int e^{\alpha x} \sin \beta x dx$ s tim da uzmemo $u'(x) = \sin \beta x$ i $v(x) = e^{\alpha x}$, pa je $u(x) = \int \sin \beta x dx = -\frac{1}{\beta} \cos \beta x$ i $v'(x) = \alpha e^{\alpha x}$. Tako dobivamo

$$\int e^{\alpha x} \sin \beta x dx = -\frac{1}{\beta} e^{\alpha x} \cos \beta x + \frac{\alpha}{\beta} \int e^{\alpha x} \cos \beta x dx = -\frac{1}{\beta} e^{\alpha x} \cos \beta x + \frac{\alpha}{\beta} F(x).$$

Uvrštavanjem u prvi integral dobivamo

$$F(x) = \frac{1}{\beta} e^{\alpha x} \sin \beta x - \frac{\alpha}{\beta} \left[-\frac{1}{\beta} e^{\alpha x} \cos \beta x + \frac{\alpha}{\beta} F(x) \right] \implies$$

$$\left[1 + \frac{\alpha^2}{\beta^2} \right] F(x) = \left(\frac{1}{\beta} e^{\alpha x} \sin \beta x + \frac{\alpha}{\beta^2} \cos \beta x \right) e^{\alpha x} \implies$$

$$F(x) = \frac{\beta}{\alpha^2 + \beta^2} \left(\sin \beta x + \frac{\alpha}{\beta} \cos \beta x \right) e^{\alpha x}$$

Primjer 5.15.
$$F_n(x) = \int \frac{dx}{(x^2+1)^n}, n \in \mathbb{N}.$$

Rješenje. Uzmimo u'(x) = 1 i $v(x) = (x^2 + 1)^{-n}$, pa imamo u(x) = x i $v'(x) = -2nx(x^2 + 1)^{-(n+1)}$. Odatle je

$$F_n(x) = \frac{x}{(x^2+1)^n} + 2n \int \frac{x^2}{(x^2+1)^{n+1}} dx = \frac{x}{(x^2+1)^n} + 2n[F_n(x) - F_{n+1}(x)] \implies$$

$$F_{n+1}(x) = \frac{1}{2n} \frac{x}{(x^2+1)^n} + \frac{2n-1}{2n} F_n(x), \quad (n \in \mathbb{N}).$$
 (5.14)

Za n = 1 imamo

$$F_1(x) = \int \frac{dx}{x^2 + 1} = \text{Tg}^{-1} x + C,$$

pa sada možemo rekurzivno pomoću (5.14) računati ostale F_n , $n \ge 2$.

5.6.2 Integracija racionalnih funkcija

Neka je $P(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_{n-1} x^{n-1} + a_n x^n$, $a_n \neq 0$, polinom stupnja n s koeficijentima $a_0, a_1, \ldots, a_n \in \mathbb{R}$. Polinom P je moguće faktorizirati na polinome s realnim koeficijentima prvog i drugog stupnja na slijedeći način:

$$P(x) = a_n(x - x_1)^{k_1} \cdots (x - x_p)^{k_p} (x^2 + a_1 x + b_1)^{l_1} \cdots (x^2 + a_s x + b_s)^{l_s}, (5.15)$$

gdje je $\sum_{i=1}^{p} k_i + 2 \sum_{j=1}^{s} l_j = n, x_1, \dots, x_p$ su realne nultočke polinoma P, te vrijedi $a_i, b_i \in \mathbb{R}, a_i^2 < 4b_i, (j = 1, \dots, s)$.

Prisjetimo se da svaku racionalnu funkciju moguće napisati kao sumu polinoma i prave racionalne funkcije. Sada bez dokaza navodimo teorem koji nam omogućava rastav prave racionalne funkcije na jednostavne prave racionalne funkcije

Teorem 5.15. Neka su P i Q polinomi, neka je stP < stQ i neka je $Q = Q_1 \cdots Q_n$, gdje su Q_i ($i = 1, \ldots, n$) u parovima relativno prosti polinomi, tj. nemaju zajedničkih nultočaka.

Tada postoje i jedinstveni su polinomi P_i , $stP_i < stQ_i$, (i = 1, ..., n), takvi da je

$$\frac{P(x)}{Q(x)} = \sum_{i=1}^{n} \frac{P_i(x)}{Q_i(x)}.$$
 (5.16)

Posebno, ako je $Q(x) = (x - x_0)^k$ i stP < k tada postoje i jedinstveni su $A_i \in \mathbb{R}$, (i = 1, ..., k) takvi da je

$$\frac{P(x)}{Q(x)} = \sum_{i=1}^{k} \frac{A_i}{(x - x_0)^i}.$$
 (5.17)

Ako je $Q(x) = (x^2 + px + q)^k$, $p^2 < 4q$ i stP < 2k tada postoje i jedinstveni su $A_i, B_i \in \mathbb{R}$, (i = 1, ..., k) takvi da je

$$\frac{P(x)}{Q(x)} = \sum_{i=1}^{k} \frac{A_i x + B_i}{(x^2 + px + q)^i}.$$
 (5.18)

Prethodni teorem svodi integraciju prave racionalne funkcije na integrale oblika:

$$\int \frac{dx}{(x-a)^n}, \quad (n \in \mathbb{N}), \tag{5.19}$$

$$\int \frac{Ax+B}{(x^2+px+q)^n} dx, \ (n \in \mathbb{N}), \ (p^2 < 4q).$$
 (5.20)

Sada za n > 1 imamo

$$\int \frac{dx}{(x-a)^n} = \frac{1}{1-n} \frac{1}{(x-a)^{n-1}} + C,$$

a za n=1 je

$$\int \frac{dx}{x-a} = \ln|x-a| + C.$$

Drugi integral možemo za $n \geq 2$ rastaviti na

$$\int \frac{Ax+B}{(x^2+px+q)^n} dx = \frac{A}{2} \int \frac{2x+p}{(x^2+px+q)^n} dx + (B-\frac{Ap}{2}) \int \frac{dx}{(x^2+px+q)^n} =$$

$$= -\frac{A}{2(n-1)} \frac{1}{(x^2+px+q)^{n-1}} + (B-\frac{Ap}{2}) \int \frac{dx}{(x^2+px+q)^n}$$

i dalje

$$\int \frac{dx}{(x^2 + px + q)^n} = \frac{1}{(q - \frac{p^2}{4})^n} \int \frac{dx}{\left(\left(\frac{2x + p}{\sqrt{4q - p^2}}\right)^2 + 1\right)^n} = \frac{1}{(q - \frac{p^2}{4})^{n - \frac{1}{2}}} F_n\left(\frac{2x + p}{\sqrt{4q - p^2}}\right),$$

gdje je F_n zadana rekurzijom (5.14).

Za n = 1 imamo

$$\int \frac{Ax+B}{x^2+px+q} dx = \frac{A}{2} \int \frac{2x+p}{x^2+px+q} dx + (B-\frac{Ap}{2}) \int \frac{dx}{x^2+px+q} =$$

$$= \frac{A}{2} \ln(x^2+px+q) + \left(\frac{2B-Ap}{\sqrt{4q-p^2}}\right) F_1 \left(\frac{2x+p}{\sqrt{4q-p^2}}\right).$$

5.6.3 Integralni oblik ostatka u Taylorovom teoremu srednje vrijednosti

U ovoj točki pokazujemo kako je moguće ostatak u Taylorovom teoremu srednje vrijednosti (teorem 4.12) dobiti u integralnom obliku za razliku od ostatka u Lagrangeovom obliku (4.24).

Teorem 5.16. Neka je $I \subseteq \mathbb{R}$ otvoren interval, $c \in I$, $n \in \mathbb{N}_0$ i neka $f: I \to \mathbb{R}$ ima neprekidnu derivaciju n+1-vog reda na I. Tada $\forall x \in I$ vrijedi

$$f(x) = f(c) + \sum_{k=1}^{n} \frac{f^{(k)}(c)}{k!} (x - c)^{k} + \int_{c}^{x} \frac{f^{(n+1)}(t)}{n!} (x - t)^{n} dt.$$
 (5.21)

Dokaz: Dokaz provodimo matematičkom indukcijom. Pomoću Leibniz-Newtonove formule imamo $f(x) - f(c) = \int_c^x f'(t)dt$ što je točno formula (5.21) za n = 0. Pretpostavimo da tvrdnja teorema vrijedi za $n \in \mathbb{N}_0$ i neka je $f^{(n+2)}$ neprekidna na I. Parcijalnom integracijom slijedi

$$\int_{c}^{x} \frac{f^{(n+1)}(t)}{n!} (x-t)^{n} dt = -\frac{f^{(n+1)}(t)}{(n+1)!} (x-t)^{n+1} \Big|_{c}^{x} + \int_{c}^{x} \frac{f^{(n+2)}(t)}{(n+1)!} (x-t)^{n+1} dt =$$

$$= \frac{f^{(n+1)}(c)}{(n+1)!} (x-c)^{n+1} + \int_{c}^{x} \frac{f^{(n+2)}(t)}{(n+1)!} (x-t)^{n+1} dt.$$

Uvrštavanjem prethodne jednakosti u (5.21) dobijemo (5.21) za n+1 umjesto n. Dakle tvrdnja teorema vrijedi za sve $n \in \mathbb{N}_0$.

5.7 Primjene u geometriji

5.7.1 Volumen rotacionog tijela

Neka je P(x) površina presjeka tijela i ravnine okomite na os x. Uzmimo subdiviziju segmenta $[a,b],\ a=x_0< x_1<\ldots< x_{n-1}< x_n=b$. Integralne sume su oblika $\sum_{k=1}^n P(t_k)(x_k-x_{k-1})$, što predstavlja aproksimaciju volumena tijela. Tada je volumen tijela jednak $V=\int_a^b P(x)dx$. Specijalno, ako je tijelo nastalo rotacijom površine ispod grafa funkcije f oko osi x, onda je $P(x)=\pi f(x)^2$, što daje

$$V = \pi \int_a^b f(x)^2 dx. \tag{5.22}$$

Primjer 5.16. Izračunati volumen kugle radijusa r. Funkcija koja opisuje kružnicu na segmentu [-r, r] je $f(x) = \sqrt{r^2 - x^2}$ pa je $V = \pi \int_{-r}^{r} (r^2 - x^2) dx = \pi [r^2(r - (-r)) - (\frac{r^3}{3} - \frac{-r^3}{3})] = \pi [2r^3 - \frac{2r^3}{3}] = \frac{4r^3\pi}{3}$.

5.7.2 Duljina ravninske krivulje

Problem određivanja duljine luka (rektifikacija) kružnice i nekih drugih krivulja već je zaokupljao pažnju starih Grka, a bio je i jedan od problema na kojima se razvijao diferencijalni i integralni račun u 17. stoljeću. Tom problemu možemo pristupiti na slijedeći način:

Neka je krivulja dio grafa funkcije f na segmentu [a,b] kao na slici desno. Načinimo subdiviziju

$$a = x_0 < x_1 < \dots < x_{n-1} < x_n = b$$
 (5.23)

segmenta [a, b] i označimo s $T_k = (x_k, f(x_k))$, $k = 0, 1, \ldots, n$, pripadne točke na grafu. Duljinu krivulje između točaka $T_{k-1} = (x_{k-1}, f(x_{k-1}))$ i $T_k = (x_k, f(x_k))$ aproksimiramo duljinom

$$L_k = d(T_{k-1}, T_k) = \sqrt{(x_k - x_{k-1})^2 + (f(x_k) - f(x_{k-1}))^2} =$$

$$= \sqrt{1 + \left(\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}\right)^2} (x_k - x_{k-1}). \tag{5.24}$$

Pomoću Lagrangeovog teorema dobivamo

$$\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}} = f'(t_k), \quad (k = 1, \dots, n).$$
 (5.25)

Pošto je udaljenost $L_k=d(T_{k-1},T_k)$ između točaka manja ili jednaka duljini luka između tih točaka, to je donja aproksimacija \underline{L} za duljinu krivulje L dana s

$$\underline{L} = \sum_{k=1}^{n} L_k = \sum_{k=1}^{n} \sqrt{1 + \left(\frac{f(x_k) - f(x_{k-1})}{x_k - x_{k-1}}\right)^2} (x_k - x_{k-1}) \le L.$$
 (5.26)

Pomoću (5.25) iz (5.24) i (5.26) dobivamo

$$\underline{L} = \sum_{k=1}^{n} \sqrt{1 + [f'(t_k)]^2} (x_k - x_{k-1}), \tag{5.27}$$

a to je integralna suma za subdiviziju (5.23) funkcije

$$g(x) = \sqrt{1 + [f'(x)]^2}, \quad x \in [a, b],$$
 (5.28)

Ako je funkcija g integrabilna na [a, b], onda je duljina krivulje dana s

$$L = \int_{a}^{b} \sqrt{1 + [f'(x)]^2} dx. \tag{5.29}$$

Primjer 5.17. Izračunati opseg kruga radijusa r. Funkcija koja opisuje polukružnicu na segmentu [-r,r] je $f(x) = \sqrt{r^2 - x^2}$, a $\sqrt{1 + f'(x)^2} = \frac{r}{\sqrt{r^2 - x^2}}$. Dakle, uz x = rt i dx = rdt imamo $L = 4 \int_0^r \frac{rdx}{\sqrt{r^2 - x^2}} = 4r \int_0^1 \frac{dt}{\sqrt{1 - t^2}} = 4r \sin^{-1} t \Big|_0^1 = 2r\pi$.

5.7.3 Površina rotacione plohe

Neka je ploha nastala rotacijom oko osi x grafa funkcije f na segmentu [a,b]. Za zadanu subdiviziju segmenta [a,b], $a=x_0 < x_1 < \ldots < x_{n-1} < x_n = b$, aproksimacija dijela rotacione površine na segmentu $[x_{k-1},x_k]$ je oblika $2\pi f(t_k)\sqrt{1+[f'(t_k)]^2}(x_k-x_{k-1})$. Dakle, integralna suma je

$$2\pi \sum_{k=1}^{n} f(t_k) \sqrt{1 + [f'(t_k)]^2} (x_k - x_{k-1}),$$

što daje formulu za računanje oplošja

$$O = 2\pi \int_{a}^{b} f(x)\sqrt{1 + [f'(x)]^{2}}dx.$$
 (5.30)

Primjer 5.18. Izračunati oplošje kugle radijusa r. Funkcija koja opisuje polukružnicu na segmentu [-r,r] je $f(x)=\sqrt{r^2-x^2}$, a $\sqrt{1+f'(x)^2}=\frac{r}{\sqrt{r^2-x^2}}$. Dakle, $O=2\pi\int_{-r}^{r}rdx=2\pi r(r-(-r))=4\pi r^2$.

5.7.4 Zakrivljenost ravninske krivulje

Označimo s $\alpha(M_0, M)$ kut što ga zatvaraju tangente na krivulju Γ u točkama M_0 i M. Neka je $\mu(M_0, M)$ duljina luka krivulje Γ između točaka M_0 i M. Tada je

$$\left| \frac{\alpha(M_0, M)}{\mu(\widehat{M_0 M})} \right| \tag{5.31}$$

prosječna zakrivljenost luka $\widehat{M_0M}$ krivulje Γ . Ako prosječna zakrivljenost teži nekom broju kada točka M po krivulji Γ teži k M_0 , onda taj broj zovemo **zakrivljenost krivulje** Γ **u točki** M_0 .

Neka je $I \subseteq \mathbb{R}$ otvoren interval, $f: I \to \mathbb{R}$ funkcija koja ima neprekidnu drugu derivaciju na I i neka je Γ_f graf funkcije f. Tangenta na graf Γ_f u točki M=(x,f(x)) ima koeficijent smjera f'(x) i sa osi apscisa zatvara kut $\tau(x)=\mathrm{Tg}^{-1}f'(x)$. Pomoću Lagrangeovog teorema srednje vrijednosti za funkciju $\tau=\mathrm{Tg}^{-1}f'$ imamo $\alpha(M_0,M)=\tau(x)-\tau(x_0)=\tau'(t)(x-x_0)$ za neko t između x_0 i x. Zbog $\tau'(t)=[\mathrm{Tg}^{-1}f']'(t)=[\mathrm{Tg}^{-1}]'(f'(t))f''(t)=\frac{f''(t)}{1+[f'(t)]^2}$ je

$$\alpha(M_0, M) = \frac{f''(t)}{1 + [f'(t)]^2} (x - x_0) \text{ za neko } t \text{ između } x_0 \text{ i } x.$$
 (5.32)

Za duljinu luka imamo formulu (5.29):

$$\mu(\widehat{M_0M}) = \int_{x_0}^x \sqrt{1 + [f'(u)]^2} du.$$

Pomoću teorema srednje vrijednosti za taj integral dobivamo

$$\mu(\widehat{M_0}M) = \sqrt{1 + [f'(s)]^2}(x - x_0), \tag{5.33}$$

gdje je $s \in [x_0, x]$. Iz formula (5.33), (5.32) i (5.31) dobivamo formulu za prosječnu zakrivljenost

$$\left| \frac{f''(t)}{1 + [f'(t)]^2} \cdot \frac{1}{\sqrt{1 + [f'(s)]^2}} \right|, \tag{5.34}$$

gdje su t i s između x_0 i x. Kada $x \to x_0$, onda $t \to x_0$ i $s \to x_0$, pa (5.34) poprima oblik

$$\kappa(M_0) = \left| \frac{f''(x_0)}{[1 + [f'(x_0)]^2]^{\frac{3}{2}}} \right|.$$

Dakle, zakrivljenost krivulje Γ_f (grafa funkcije $f: I \to \mathbb{R}$) u točki (x, f(x)), $x \in I$, je

$$\kappa(x) = \left| \frac{f''(x)}{[1 + [f'(x)]^2]^{\frac{3}{2}}} \right|. \tag{5.35}$$

5.8 Nepravi integral

Do sada smo koristili pojam Riemann integrabilne funkcije na segmentu. Ta je funkcija morala biti ograničena na segmentu, da bi se uopće mogla razmatrati njena integrabilnost. Sada ćemo proširiti pojam integrabilnosti

na intervale koji nisu zatvoreni, a ne moraju biti ni ograničeni. Takvi su intervali $[a,b\rangle,\langle a,b],\langle a,b\rangle$ s tim da može biti $a=-\infty$ ili $b=\infty$. Tako dobiveni integral ćemo zvati **nepravi integral**.

Neka je zadana funkcija $f(x) = e^{-x}$, $x \in \mathbb{R}$. Za tu funkciju vrijedi $\lim_{x\to\infty} e^{-x} = 0$. Da li je moguće osjenčanom dijelu ravnine S omeđenom koordinatnim osima i grafom funkcije pridružiti broj koji bi imao smisao površine. Pošto je interval $[0,\infty)$ neograničen, to nije moguće upotrijebiti pravokutnike kao aproksimaciju tog dijela ravnine. No iz slike desno je vidljivo da bi za dovoljno veliki B površina dijela ravnine S_B ispod grafa na segmentu [0,B] mogla aproksimirati traženu površinu (ako tako nešto ima smisla).

Površina skupa S_B je dana sa $\int_0^B e^{-x} dx = -e^{-x} \Big|_0^B = 1 - e^{-B}$, pa je razumno broj $\lim_{B\to\infty} \int_0^B e^{-x} dx = \lim_{B\to\infty} (1-e^{-B}) = 1$ proglasiti površinom dijela ravnine S. Tada pišemo

$$\int_{0}^{\infty} e^{-x} dx = \lim_{B \to \infty} \int_{0}^{B} e^{-x} dx,$$
 (5.36)

i taj limes zovemo nepravi integral.

Neka je zadana funkcija $f(x) = \frac{1}{\sqrt{x}}$, x > 0. Za tu funkciju vrijedi

 $\lim_{x\to 0+}\frac{1}{\sqrt{x}}=0$. Je li moguće osjenčanom dijelu ravnine S omeđenom koordinatnim osima, pravcem x=1 i grafom funkcije pridružiti broj koji bi

imao smisao površine. Pošto je na intervalu $\langle 0,1 \rangle$ funkcija neograničena, to nije moguće upotrijebiti pravokutnike kao gornju aproksimaciju tog dijela ravnine. No iz slike desno je vidljivo da bi za dovoljno mali $\varepsilon > 0$ površina dijela ravnine S_{ε} ispod grafa na segmentu $[\varepsilon,1]$ mogla aproksimirati traženu površinu (ako površina ima smisla).

Površina dijela ravnine S_{ε} dobije se kao $\int_{\varepsilon}^{1} \frac{1}{\sqrt{x}} dx = 2\sqrt{x} \Big|_{\varepsilon}^{1} = 2(1 - \sqrt{\varepsilon}).$

Sada pišemo

$$\int_{0\leftarrow}^{1} \frac{dx}{\sqrt{x}} = \lim_{\varepsilon \to 0+} \int_{\varepsilon}^{1} \frac{dx}{\sqrt{x}} = 2.$$
 (5.37)

Definicija 5.7. Neka je funkcija $f:[a,b] \to \mathbb{R}$ integrabilna na svakom segmentu [a,B] gdje je $B < b \le +\infty$. Ako postoji konačan limes

$$\lim_{B \to b^{-}} \int_{a}^{B} f(x)dx,\tag{5.38}$$

onda se taj limes zove **nepravi integral** funkcije f na [a,b) i označava s

$$\int_{a}^{b} f(x)dx. \tag{5.39}$$

Također se kaže da integral (5.39) konvergira. Ako limes u (5.38) ne postoji kažemo da integral (5.39) divergira.

Analogno definiramo integral na $\langle a, b \rangle$:

$$\int_{a\leftarrow}^{b} f(x)dx = \lim_{A\to a+} \int_{A}^{b} f(x)dx.$$

Ako je f integrabilna na svakom segmentu $[A, B] \subset \langle a, b \rangle$, onda, uz uvjet da svi limesi postoje, definiramo

$$\int_{a\leftarrow}^{b} f(x)dx = \lim_{A\to a+} \int_{A}^{c} f(x)dx + \lim_{B\to b-} \int_{c}^{B} f(x)dx,$$

gdje je $c \in \langle a, b \rangle$ bilo koja točka. Može se pokazati da prethodna definicija ne ovisi o c.

Napomena Zato što su i limes funkcije i R-integral monotoni i linearni, ta svojstva ima i nepravi integral.

Primjer 5.19.

$$\int_0^{+\infty} \frac{dx}{1+x^2} = \lim_{B \to +\infty} \int_0^B \frac{dx}{1+x^2} = \lim_{B \to +\infty} (\mathrm{Tg}^{-1} \, x \, \bigg|_0^B) = \lim_{B \to +\infty} \mathrm{Tg}^{-1} \, B = \frac{\pi}{2}.$$

Primjer 5.20.

$$\int_{-1\leftarrow}^{0} \frac{dx}{\sqrt{1-x^2}} = \lim_{\varepsilon \to -1+} \int_{\varepsilon}^{0} \frac{dx}{\sqrt{1-x^2}} = \lim_{\varepsilon \to -1+} (-\sin^{-1}\varepsilon) = \frac{\pi}{2}.$$

155

Primjer 5.21. $\int_0^{+\infty} \cos x dx$ divergira jer je $\int_0^F \cos x dx = \sin B$, a $\lim_{B\to +\infty} \sin B$ ne postoji.

Teorem 5.17. *Neka je a* > 0.

- 1. Integral $\int_a^{+\infty} \frac{dx}{x^p}$ konvergira za p > 1 i divergira za $p \le 1$.
- 2. Integral $\int_{0\leftarrow}^{a} \frac{dx}{x^{p}}$ konvergira za $0 i divergira za <math>p \ge 1$.
- 3. Integral $\int_{0\leftarrow}^{+\infty} \frac{dx}{x^p}$ divergira za svako $p \ge 0$.

Dokaz: 1. Za p = 1 imamo

$$\int_{a}^{+\infty} \frac{dx}{x} = \lim_{B \to +\infty} (\ln x \Big|_{a}^{B}) = \lim_{B \to +\infty} \ln B - \ln a = +\infty,$$

pa integral divergira k $+\infty$. Za $p \neq 1$ je

$$\int_{a}^{B} \frac{dx}{x^{p}} = \left(\frac{1}{1-p} \frac{1}{x^{p-1}}\right) \Big|_{a}^{B} = \frac{1}{1-p} (B^{1-p} - a^{1-p}).$$

Zbog $\lim_{x\to +\infty} x^{\alpha} = \left\{ \begin{array}{ll} +\infty & (\alpha>0) \\ 0 & (\alpha<0) \end{array} \right.$, imamo

$$\int_{a}^{+\infty} \frac{dx}{x^{p}} = \begin{cases} +\infty & (1-p>0) \\ \frac{a^{1-p}}{p-1} & (1-p<0) \end{cases}.$$

2. Za p=1 je

$$\lim_{\varepsilon \to 0+} \int_{\varepsilon}^{a} \frac{dx}{x} = \ln a - \lim_{\varepsilon \to 0+} \ln \varepsilon = +\infty.$$

Za $p \neq 1$ imamo

$$\lim_{\varepsilon \to 0+} \int_{\varepsilon}^{a} \frac{dx}{x^{p}} = \frac{1}{1-p} (a^{1-p} - \lim_{\varepsilon \to 0+} \varepsilon^{1-p}) = \begin{cases} \infty & (1-p < 0) \\ \frac{1}{1-p} a^{1-p} & (1-p > 0) \end{cases}.$$

3. Slijedi iz 1. i 2.

5.8.1 Kriterij konvergencije nepravog integrala

Teorem 5.18. Neka je a > 0 i neka su funkcije $f, \varphi : [a, +\infty) \to \mathbb{R}$ takve da vrijedi

(i)
$$0 \le f(x) \le \varphi(x)$$
 za svaki $x \ge x_0 > a$,

(ii) za svako
$$B>a$$
 postoje integrali $\int_a^B f(x)dx$ i $\int_a^B \varphi(x)dx$.

Ako je integral

$$\int_{a}^{+\infty} \varphi(x)dx \tag{5.40}$$

konvergentan, onda je konvergentan i integral

$$\int_{a}^{+\infty} f(x)dx \tag{5.41}$$

i vrijedi

$$\int_{a}^{+\infty} f(x)dx \le \int_{a}^{+\infty} \varphi(x)dx. \tag{5.42}$$

Ako je integral (5.41) divergentan, onda je i integral (5.40) divergentan.

Dokaz: Funkcije $F(x)=\int_a^x f(t)dt$ i $\Phi(x)=\int_a^x \varphi(t)dt$ rastu i vrijedi $F(x)\leq \Phi(x)$, za svaki x>a. Za rastuću funkciju limes u beskonačnosti $F(+\infty)=\lim_{x\to+\infty}F(x)$ postoji ako i samo ako je ta funkcija ograničena odozgo. Odatle slijedi tvrdnja teorema.

Korolar 5.4. Neka su funkcije $f, \varphi : [a, +\infty) \to \mathbb{R}$ pozitivne i neka postoji

$$\lim_{x \to +\infty} \frac{f(x)}{\varphi(x)} = c \quad (0 \le c \le +\infty). \tag{5.43}$$

Ako je $c < +\infty$ i ako konvergira integral (5.40) onda konvergira i integral (5.41), odnosno, ako divergira integral (5.41) onda divergira i integral (5.40). Ako je c > 0 i ako konvergira integral (5.41) onda konvergira i integral (5.40), odnosno, ako divergira integral (5.40) onda divergira i integral (5.41). Ako je $0 < c < +\infty$ onda oba integrala istovremeno konvergiraju ili divergiraju.

Dokaz: Ako je $c < +\infty$ onda $\forall \varepsilon > 0 \exists \Delta > 0$ takav da $(x > \Delta) \Rightarrow (|\frac{f(x)}{\varphi(x)} - c| < \varepsilon) \Rightarrow (\frac{f(x)}{\varphi(x)} < c + \varepsilon) \Rightarrow (f(x) < (c + \varepsilon)\varphi(x))$, pa konvergencija

(5.40) povlači konvergenciju (5.41), odnosno divergencija (5.41) povlači divergenciju (5.40). Analogno, c>0 i $0<\varepsilon< c$ daju postojanje $\Delta>0$ tako da $(x>\Delta)\Rightarrow (|\frac{f(x)}{\varphi(x)}-c|<\varepsilon)\Rightarrow (\frac{f(x)}{\varphi(x)}>c-\varepsilon)\Rightarrow ((c-\varepsilon)\varphi(x)< f(x))$, pa konvergencija (5.41) povlači konvergenciju (5.40), odnosno divergencija (5.40) povlači divergenciju (5.41). U slučaju $0< c<+\infty$, zbog $\lim_{x\to+\infty}\frac{f(x)}{\varphi(x)}=c\Leftrightarrow \lim_{x\to+\infty}\frac{\varphi(x)}{f(x)}=\frac{1}{c}$, (5.41) i (5.40) istovremeno konvergiraju ili divergiraju.

Ako konvergira integral $\int_a^{\to b} |f(x)| dx$, onda kažemo da integral (5.39) apsolutno konvergira. Ako integral (5.39) konvergira ali ne konvergira apsolutno, onda kažemo da uvjetno konvergira

Propozicija 5.2. Neka je $f:[a,+\infty)\to\mathbb{R}$ funkcija koja je za svaki b>a integrabilna na segmentu [a,b]. Ako je konvergentan nepravi integral $\int_a^{+\infty}|f(x)|dx$, tada je konvergentan i nepravi integral $\int_a^{+\infty}f(x)dx$, tj. ako je integral apsolutno konvergentan, onda je i konvergentan.

Dokaz: Prisjetimo se da je po teoremu 5.3 i funkcija |f|, za svaki b > a, integrabilna na segmentu [a,b]. Neka su $f_+, f_- : [a, +\infty) \to \mathbb{R}$ definirane s $f_+(x) = \max\{0, f(x)\}$ za $x \ge a$, i $f_-(x) = \max\{0, -f(x)\}$ za $x \ge a$. Tad je $f(x) = f_+(x) - f_-(x)$ i $|f(x)| = f_+(x) + f_-(x)$ za $x \ge a$. Funkcije f_+ i f_- su također, za svaki b > a, integrabilna na segmentu [a,b].

Zbog $0 \le f_+(x) \le |f(x)|$ i $0 \le f_-(x) \le |f(x)|$ za $x \ge a$, konvergencija $\int_a^{+\infty} |f(x)| dx$ i teorem 5.18. daju konvergenciju nepravih integrala $\int_a^{+\infty} f_+(x) dx$ i $\int_a^{+\infty} f_-(x) dx$. Sada je $\int_a^{+\infty} f(x) dx = \int_a^{+\infty} f_+(x) dx - \int_a^{+\infty} f_-(x) dx$.

Obratna tvrdnja od tvrdnje u prethodnoj propoziciji nije općenito istinita.

Primjer 5.22. Nepravi integrali

$$\int_{0}^{+\infty} e^{-x^{2}} dx, \quad \int_{0}^{+\infty} \frac{\cos x}{1+x^{2}} dx, \quad \int_{a}^{+\infty} \frac{\cos x}{x^{p}} dx, \quad (a>0, p>1),$$

su konvergentni. To slijedi iz korolara 5.4. i prethodne propozicije:

zbog $e^{-x^2} \le e^{-x}$ za $x \ge 1$ konvergira prvi, zbog $\frac{|\cos x|}{1+x^2} \le \frac{1}{1+x^2}$ konvergira drugi, a zbog $\frac{|\cos x|}{x^p} \le \frac{1}{x^p}$ konvergira treći nepravi interval za p > 1.

Primjer 5.23. (Gama funkcija) Za $\alpha \geq 1$ definiramo nepravi integral

$$\Gamma(\alpha) = \int_0^{+\infty} e^{-x} x^{\alpha - 1} dx. \tag{5.44}$$

Konvergencija integrala (5.44) vidi se na slijedeći način:

Za $\alpha \geq 1$ vrijedi $\lim_{x\to +\infty} e^{-x}x^{\alpha+1} = 0$ pa za $\varepsilon = 1$ postoji $\Delta > 0$ takav da $(x > \Delta) \Rightarrow (e^{-x}x^{\alpha-1}x^2 = e^{-x}x^{\alpha+1} < 1) \Rightarrow (e^{-x}x^{\alpha-1} < \frac{1}{x^2})$. Sada konvergencija integrala (5.44) slijedi pomoću teorema 5.17.1. i teorema 5.18.

Funkciju $\Gamma:[1,+\infty)\to\mathbb{R}$ zovemo **gama funkcija**. Za gama funkciju vrijedi rekurzija:

$$\Gamma(\alpha+1) = \alpha\Gamma(\alpha), \quad (\alpha \ge 1).$$
 (5.45)

Naime, parcijalnom integracijom dobivamo:

$$\int_{0}^{t} e^{-x} x^{\alpha} dx = -e^{-x} x^{\alpha} \Big|_{0}^{t} + \alpha \int_{0}^{t} e^{-x} x^{\alpha - 1} dx.$$

Odatle zbog $\lim_{t\to+\infty} e^{-t}t^{\alpha} = 0$ dobivamo (5.45).

Vrijedi

$$\Gamma(1) = \int_0^{+\infty} e^{-x} dx = 1,$$

pa za $n \in \mathbb{N}$ imamo $\Gamma(n+1) = n\Gamma(n) = \cdots = n(n-1)\cdots 1 \cdot \Gamma(1) = n!$, tj. Gama funkcija je poopćenje faktorijela. Ta funkcija se javlja u mnogim matematičkim problemima u raznim granama matematike.

6 Redovi

6.1 Definicija reda

Definicija 6.1. Neka je $(a_n)_n$ niz realnih brojeva. Nizu $(a_n)_n$ pridružujemo niz $(s_n)_n$ definiran s:

$$s_1 = a_1$$

 $s_2 = a_1 + a_2$
 $s_3 = a_1 + a_2 + a_3$
 \vdots
 $s_n = a_1 + a_2 + \dots + a_n$
 \vdots (6.1)

Red je uređeni par $((a_n)_n, (s_n)_n)$ nizova $(a_n)_n$ i $(s_n)_n$. Element a_n zovemo **opći član** reda, a s_n je n-ta **parcijalna suma** reda. Oznake za red su

$$\sum a_n \text{ ili } \sum_{n \in \mathbb{N}} a_n \text{ ili } \sum_{n=1}^{\infty} a_n \text{ ili } \sum_{n=1}^{\infty} a_n \text{ ili } a_1 + a_2 + \dots + a_n + \dots.$$

Primjer 6.1. Pretvaranje racionalnih brojeva u decimalne.

$$\frac{1}{9} = \frac{1}{10} \frac{10}{9}$$

$$= \left(\frac{1}{10} + \frac{1}{10^2}\right) + \frac{1}{9} \frac{1}{10^2}$$

$$= \left(\frac{1}{10} + \frac{1}{10^2} + \dots + \frac{1}{10^n}\right) + \frac{1}{9} \frac{1}{10^n}$$

Iz prethodnog, zbog $\lim_{n\to\infty} \frac{1}{9} \frac{1}{10^n} = 0$, dobivamo $\frac{1}{9} = \lim_{n\to\infty} \left(\frac{1}{10} + \frac{1}{10^2} + \dots + \frac{1}{10^n} \right)$, a to pišemo $\frac{1}{9} = \sum_{n=1}^{\infty} \frac{1}{10^n}$ i govorimo da je $\frac{1}{9}$ suma reda $\sum_{n=1}^{\infty} \frac{1}{10^n}$.

6. REDOVI

Primjer 6.2. Geometrijski red. Za $x \neq 1$ imamo

$$\frac{1}{1-x} = \frac{1-x+x}{1-x} = 1 + \frac{x}{1-x}$$

$$= 1 + \frac{x-x^2+x^2}{1-x} = 1 + x + \frac{x^2}{1-x} = \cdots$$

$$= (1+x+x^2+\cdots+x^n) + \frac{x^n}{1-x}.$$

Za |x|<1 je $\lim_{n\to\infty}x^n=0,$ a odatle slijedi

$$\frac{1}{1-x} = \lim_{n \to \infty} (1 + x + x^2 + \dots + x^n) = \sum_{n=0}^{\infty} x^n.$$

Primjer 6.3. Pokušajmo naći funkciju $f: \mathbb{R} \to \mathbb{R}$ koja je rješenje diferencijalne jednadžbe

$$f'(x) = f(x), \quad x \in \mathbb{R},\tag{6.2}$$

s početnim uvjetom f(0) = 1. Tražimo funkciju u obliku polinoma neodređenog stupnja

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n x^n + \dots$$
 (6.3)

Derivacija je oblika

$$f'(x) = a_1 + 2a_2x + 3a_3x^2 + \dots + na_nx^{n-1} + \dots,$$

pa kad zbog (6.2) izjednačimo koeficijente uz iste potencije dobivamo

$$\begin{array}{rclcrcl} a_1 & = & a_0 & & a_1 & = & a_0 \\ 2a_2 & = & a_1 & & a_2 & = & \frac{1}{2!}a_0 \\ 3a_3 & = & a_2 & & a_3 & = & \frac{1}{3!}a_0 \\ 4a_4 & = & a_3 & & a_3 & = & \frac{1}{4!}a_0 \\ & \vdots & & & \vdots & & \vdots \\ (n+1)a_{n+1} & = & a_n & & a_{n+1} & = & \frac{1}{(n+1)!}a_0 \\ & \vdots & & & \vdots & & \vdots \end{array}$$

Uvjet f(0) = 1 daje

$$a_0 = 1, a_1 = \frac{1}{1!}, a_2 = \frac{1}{2!}, a_3 = \frac{1}{3!}, \dots, a_n = \frac{1}{n!}, \dots,$$

što pokazuje da ne postoji polinom koji bi zadovoljavao traženu diferencijalnu jednadžbu sa zadanim početnim uvjetom. Stoga je razumno očekivati da za $\forall \ x \in \mathbb{R}$ vrijedi

$$f(x) = \lim_{n \to \infty} (1 + \frac{x}{1!} + \frac{x^2}{2!} + \dots + \frac{x^n}{n!}) = \sum_{n=0}^{\infty} \frac{x^n}{n!}.$$

S druge strane znamo da je funkcija e^x rješenje diferencijalne jednadžbe (6.2), pa možemo očekivati da $\forall x \in \mathbb{R}$ vrijedi

$$e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} \quad . \tag{6.4}$$

6.2 Definicija konvergencije reda

Definicija 6.2. Za red

$$\sum_{n=1}^{\infty} a_n \tag{6.5}$$

realnih ili kompleksnih brojeva kažemo da je **konvergentan** (sumabilan, zbrojiv), ako je niz $(s_n)_n$ parcijalnih suma reda (6.5) konvergentan. Ako je red (6.5) konvergentan onda broj

$$s = \lim_{n \to \infty} s_n \tag{6.6}$$

zovemo sumom reda (6.5) i označavamo sa

$$s = \sum_{n=1}^{\infty} a_n = a_1 + a_2 + \dots + a_n + \dots$$
 (6.7)

Red (6.5) je **divergentan** ako je niz $(s_n)_n$ divergentan.

Za niz kompleksnih brojeva $(a_n)_n = (\alpha_n + i\beta_n)_n$ možemo promatrati tri reda

$$\sum_{n=1}^{\infty} a_n, \quad \sum_{n=1}^{\infty} \alpha_n, \quad \sum_{n=1}^{\infty} \beta_n,$$

s parcijalnim sumama

$$s_n = a_1 + \dots + a_n, \quad \sigma_n = \alpha_1 + \dots + \alpha_n, \quad \tau_n = \beta_1 + \dots + \beta_n.$$

Budući da je $s_n = \sigma_n + i\tau_n$ to niz $(s_n)_n$ konvergira ako i samo ako konvergiraju nizovi $(\sigma_n)_n$ i $(\tau_n)_n$. Tada vrijedi

$$\lim_{n \to \infty} s_n = \lim_{n \to \infty} \sigma_n + i \lim_{n \to \infty} \tau_n,$$

odnosno

$$\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} (\alpha_n + i\beta_n) = \sum_{n=1}^{\infty} \alpha_n + i \sum_{n=1}^{\infty} \beta_n.$$

Pitanje konvergencije reda, a pogotovo sume reda, može biti vrlo komplicirano. Za početak dajemo primjer u kojem je na oba pitanja moguće lako odgovoriti

162 6. REDOVI

Primjer 6.4. Pokažimo da red $\sum_{n=1}^{\infty}\frac{1}{n(n+1)}$ konvergira i nadimo njegovu

sumu. Prvo uočimo da za svaki $n \in \mathbb{N}$ vrijedi $\frac{1}{n(n+1)} = \frac{1}{n} - \frac{1}{n+1}$, pa imamo

$$s_n = \sum_{k=1}^n \frac{1}{k(k+1)} = \sum_{k=1}^n \left(\frac{1}{k} - \frac{1}{k+1}\right) = 1 - \frac{1}{n+1}.$$

Sada je jasno da vrijedi $\lim_{n\to\infty} s_n = 1$, tj. $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$.

Teorem 6.1. (Nužan uvjet konvergencije reda)

Ako red $\sum_{n=1}^{\infty} a_n$ konvergira, onda niz $(a_n)_n$ konvergira k nuli, tj. vrijedi

$$\left(\sum_{n=1}^{\infty} a_n \ konvergira\right) \Rightarrow \left(\lim_{n \to \infty} a_n = 0\right). \tag{6.8}$$

Dokaz: Ako red (6.5) konvergira k broju s, onda vrijedi

$$\lim_{n \to \infty} a_n = \lim_{n \to \infty} (s_n - s_{n-1}) = \lim_{n \to \infty} s_n - \lim_{n \to \infty} s_{n-1} = s - s = 0.$$

Obratna implikacija u (6.8) nije općenito istinita, što je vidljivo iz sljedećeg primjera

Primjer 6.5. Harmonijski red

$$\sum_{n=1}^{\infty} \frac{1}{n} \tag{6.9}$$

divergira $k + \infty$.

Uočimo da vrijedi $s_{n+1}=s_n+\frac{1}{n+1}>s_n$ pa je niz $(s_n)_n$ strogo rastući. Pokažimo da je podniz $(s_{2^n})_n$ odozgo neograničen. U tu svrhu indukcijom dokazujemo da $\forall n \in \mathbb{N}$ vrijedi nejednakost $s_{2^n} \geq 1 + \frac{1}{2}n$. Za n=1 imamo $s_2=1+\frac{1}{2}$ što daje bazu indukcije. Sada

$$s_{2^{n+1}} = s_{2^n} + \frac{1}{2^n + 1} + \frac{1}{2^n + 2} + \dots + \frac{1}{2^n + 2^n} > s_{2^n} + \frac{1}{2^n + 2^n} + \dots + \frac{1}{2^n + 2^n} =$$

$$= s_{2^n} + 2^n \frac{1}{2^{n+1}} = s_{2^n} + \frac{1}{2} \ge 1 + \frac{1}{2}n + \frac{1}{2} = 1 + \frac{1}{2}(n+1).$$

Odatle zaključujemo $\lim_{n\to\infty} s_{2^n} = +\infty$, a to povlači $\lim_{n\to\infty} s_n = +\infty$. Primijetimo, red divergira, a vrijedi $\lim_{n\to\infty} \frac{1}{n} = 0$. Dakle, konvergencija niza općih članova k nuli nije dovoljan uvjet za konvergenciju reda.

Primjer 6.6. Alternirajući harmonijski red

$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{1}{n} \tag{6.10}$$

konvergira. Nužan uvjet konvergencije je ispunjen, tj. $\lim_{n\to\infty} (-1)^{n-1} \frac{1}{n} = 0$. Nadalje, vrijedi

$$s_{2m} = \left(1 - \frac{1}{2}\right) + \left(\frac{1}{3} - \frac{1}{4}\right) + \dots + \left(\frac{1}{2m-1} - \frac{1}{2m}\right)$$

što pokazuje da je podniz $(s_{2m})_m$ strogo rastući. Nadalje,

$$s_{2m} = 1 - \left(\frac{1}{2} - \frac{1}{3}\right) - \left(\frac{1}{4} - \frac{1}{5}\right) - \dots - \left(\frac{1}{2m-2} - \frac{1}{2m-1}\right) - \frac{1}{2m} < 1,$$

pokazuje da je niz $(s_{2m})_m$ odozgo ograničen. Prema teoremu o rastućim nizovima taj niz je konvergentan. Neka je $\lim_{m\to\infty} s_{2m} = s \le 1$. Zbog $s_{2m+1} = s_{2m} + \frac{1}{2m+1}$ imamo $\lim_{m\to\infty} s_{2m+1} = s$, dakle i $\lim_{n\to\infty} s_n = s$, što pokazuje da je red (6.10) konvergentan.

Konvergencija redova je u skladu s operacijama zbrajanja redova i množenja redova sa skalarima.

Teorem 6.2. Neka su $\sum_{n=1}^{\infty} a_n \ i \sum_{n=1}^{\infty} b_n$ konvergentni redovi sa sumama $A \ i \ B$.

Za svaki par $\lambda, \mu \in \mathbb{C}$ je red $\sum_{n=1}^{\infty} (\lambda a_n + \mu b_n)$ konvergentan i vrijedi

$$\sum_{n=1}^{\infty} (\lambda a_n + \mu b_n) = \lambda \sum_{n=1}^{\infty} a_n + \mu \sum_{n=1}^{\infty} b_n.$$
 (6.11)

Dokaz: Označimo $A_n = a_1 + \cdots + a_n$, $B_n = b_1 + \cdots + b_n$, $C_n = (\lambda a_1 + \mu b_1) + \cdots + (\lambda a_n + \mu b_n)$. Zbog $C_n = (\lambda A_n + \mu B_n)$ za sve $n \in \mathbb{N}$, $\lim_{n \to \infty} A_n = A$ i $\lim_{n \to \infty} B_n = B$ imamo $\lim_{n \to \infty} C_n = \lambda \lim_{n \to \infty} A_n + \mu \lim_{n \to \infty} B_n$, tj. vrijedi (6.11). \square

Sada ćemo proučiti konvergenciju geometrijskog reda koji igra važnu ulogu u narednim rezultatima o konvergenciji redova.

6. REDOVI

Teorem 6.3. Za $q \in \mathbb{C}$, |q| < 1, geometrijski red

$$\sum_{n=0}^{\infty} q^n = 1 + q + q^2 + \dots {(6.12)}$$

konvergira i ima sumu $\frac{1}{1-q}$. Za $|q| \ge 1$ red (6.12) divergira.

Dokaz: Za |q| < 1 imamo

$$1 - q^{n} = (1 - q)(1 + q + \dots + q^{n-1})$$

odakle slijedi

$$s_n = 1 + q + \dots + q^{n-1} = \frac{1 - q^n}{1 - q} = \frac{1}{1 - q} - \frac{1}{1 - q} q^n.$$

odatle zbog $\lim_{n\to\infty} q^n = 0$ dobivamo $\lim_{n\to\infty} s_n = \frac{1}{1-q}$.

Ako je $|q| \ge 1$, onda je $\forall n \in \mathbb{N}, |q^n| \ge 1$, pa niz općih članova reda (6.12) ne teži k nuli, dakle taj red divergira.

6.3 Uspoređivanje redova, apsolutna konvergencija redova

Definicija 6.3. Za red $\sum a_n$ kažemo da je red s pozitivnim članovima ako je $\forall n \in \mathbb{N}, a_n \geq 0$.

- **Teorem 6.4.** 1. Red $\sum a_n$ s pozitivnim članovima konvergira ako i samo ako je njegov niz parcijalnih suma $(s_n)_n$ ograničen. Tada je $\sum_{n=1}^{\infty} a_n = \sup\{s_n; n \in \mathbb{N}\}.$
 - 2. Ako red $\sum_{n=1}^{\infty} a_n$ s pozitivnim članovima konvergira, onda njegova suma ne ovisi o poretku članova, tj. vrijedi $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_{\sigma(n)}$, gdje je $\sigma : \mathbb{N} \to \mathbb{N}$ bijekcija (permutacija).

Dokaz: 1. Neka je $(s_n)_n$ niz parcijalnih suma reda $\sum_{n=1}^{\infty} a_n$. Jasno, $s_{n+1} = s_n + a_{n+1}$ pa je niz $(s_n)_n$ rastući. Takav niz je konvergentan ako i samo ako je ograničen.

2. Označimo s $(s'_n)_n$ niz parcijalnih suma reda $\sum_{n=1}^{\infty} a'_n$, $a'_n = a_{\sigma(n)}$. Za bilo koji $n \in \mathbb{N}$ postoje $p, q \in \mathbb{N}$ takvi da je $\sigma(1) < p, \sigma(2) < p, \ldots, \sigma(n) <$

6.3. USPOREĐIVANJE REDOVA, APSOLUTNA KONVERGENCIJA165

 $p, \tau(1) < q, \tau(2) < q, \dots, \tau(n) < q$, gdje je $\tau = \sigma^{-1}$. Odatle je $s'_n = \sigma^{-1}$ $a_{\sigma(1)} + a_{\sigma(2)} + \ldots + a_{\sigma(n)} \le a_1 + a_2 + \ldots + a_p = s_p \text{ i } s_n = a_1 + a_2 + \ldots + a_n = s_p$ $a_{\sigma(\tau(1))} + a_{\sigma(\tau(2))} + \ldots + a_{\sigma(\tau(n))} \le a_{\sigma(1)} + a_{\sigma(2)} + \ldots + a_{\sigma(q)} = s'_q$. To daje $\sup\{s_n'; n \in \mathbb{N}\} = \sup\{s_m; m \in \mathbb{N}\}, \text{ odnosno } \sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n = \lim_{m \to \infty} s_m' = \sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n' = \sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n' = \sum_{n=1}^{\infty} a_n = \lim_{n \to \infty} s_n' = \sum_{n=1}^{\infty} a_n' = \sum_{n=1}^{\infty} a$

$$\sum_{m=1}^{\infty} a'_m.$$

Lema 6.1. (uspoređivanje redova) Neka su $\sum a_n$, $\sum b_n$ redovi s pozitivnim $\check{c}lanovima\ i\ neka\ postoji\ K>0\ tako\ da\ je$

$$a_n \le K b_n, \ \forall n \in \mathbb{N}.$$
 (6.13)

Ako konvergira red $\sum b_n$, onda konvergira i red $\sum a_n$ i vrijedi $\sum a_n \leq K \sum b_n$. Ako red $\sum a_n$ divergira, onda divergira i red $\sum b_n$.

Dokaz: Neka je $s_n = \sum_{k=1}^n a_k$ i $t_n = \sum_{k=1}^n b_k$. Nizovi $(s_n)_n$ i $(t_n)_n$ su rastući i zbog (6.13) vrijedi $s_n \leq Kt_n$, $\forall n \in \mathbb{N}$. Niz $(t_n)_n$ konvergira ako i samo ako je ograničen. Tada je i niz $(s_n)_n$ ograničen, pa konvergira i vrijedi $\lim s_n \leq K \lim t_n$. Ako je niz $(s_n)_n$ neograničen, tada je i niz $(t_n)_n$ neograničen.

Primjer 6.7. Red $\sum_{n=0}^{\infty} \frac{1}{n^2}$ je konvergentan jer $(n+1)^2 > n(n+1)$ povlači

$$\frac{1}{(n+1)^2} < \frac{1}{n(n+1)} \Rightarrow \sum_{n=1}^{\infty} \frac{1}{(n+1)^2} \le \sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1.$$

Primjer 6.8. Red $\sum_{n=1}^{\infty} \frac{1}{n^p}$ konvergira za $p \geq 2$, jer je $n^p \geq n^2$ što povlači

$$\sum_{n=1}^{\infty} \frac{1}{n^p} \le \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Primjer 6.9. Red $\sum_{n=1}^{\infty} \frac{1}{n^p}$ divergira za $p \le 1$, jer je $n^p \le n$, odnosno $\frac{1}{n} \le \frac{1}{n^p}$, što povlači

$$\sum_{n=1}^{\infty} \frac{1}{n} \le \sum_{n=1}^{\infty} \frac{1}{n^p},$$

a red $\sum_{n=1}^{\infty} \frac{1}{n}$ divergira.

166 REDOVI

Teorem 6.5. Neka je $(a_n)_n$ niz $u \mathbb{C}$.

1. Ako konvergira red

$$\sum_{n=1}^{\infty} |a_n| \tag{6.14}$$

onda konvergira i red $\sum_{n=1}^{\infty} a_n$ i vrijedi $|\sum_{n=1}^{\infty} a_n| \leq \sum_{n=1}^{\infty} |a_n|$.

2. Ako konvergira red (6.14) i ako je $\sigma: \mathbb{N} \to \mathbb{N}$ bijekcija, onda konvergira $i \ red \sum_{n=1}^{\infty} a_{\sigma(n)} \ i \ vrijedi \sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_{\sigma(n)}.$

Dokaz: I. Pretpostavimo da je $(a_n)_n$ niz u \mathbb{R} i definirajmo

$$a_n^+ = \begin{cases} a_n & \text{ako je } a_n \ge 0 \\ 0 & \text{ako je } a_n < 0 \end{cases}, \quad a_n^- = \begin{cases} 0 & \text{ako je } a_n \ge 0 \\ -a_n & \text{ako je } a_n < 0 \end{cases}$$

Za nizove $(a_n^+)_n$ i $(a_n^-)_n$ s pozitivnim članovima vrijedi

$$a_n = a_n^+ - a_n^-, |a_n| = a_n^+ + a_n^- \ (\forall n \in \mathbb{N}).$$
 (6.15)

Budući da po pretpostavci red $\sum_{n=1}^{\infty} |a_n|$ konvergira i da $\forall n \in \mathbb{N}$ vrijedi $a_n^+ \leq |a_n|$, $a_n^- \leq |a_n|$, po lemi 6.1. redovi $\sum_{n=1}^{\infty} a_n^+$ i $\sum_{n=1}^{\infty} a_n^-$ konvergiraju. Neka su A^+ i A^- nizove sume. Tada po teoremu 6.2. vrijedi $A^+ - A^- = \sum_{n=1}^{\infty} a_n^+ - \sum_{n=1}^{\infty} a_n^- = \sum_{n=1}^{\infty} (a_n^+ - a_n^-) = \sum_{n=1}^{\infty} a_n$, tj. red $\sum_{n=1}^{\infty} a_n$ je konvergentan. Prema teoremu 6.4. imamo $A^+ = \sum_{n=1}^{\infty} a_{\sigma(n)}^+$ i $A^- = \sum_{n=1}^{\infty} a_{\sigma(n)}^-$, iz čega slijedi $\sum_{n=1}^{\infty} a_n = A^+ - A^- = \sum_{n=1}^{\infty} (a_{\sigma(n)}^+ - a_{\sigma(n)}^-) = \sum_{n=1}^{\infty} a_{\sigma(n)}$.

II. Neka je $(a_n)_n$ niz u \mathbb{C} , $a_n = \alpha_n + i\beta_n$, $\alpha_n, \beta_n \in \mathbb{R}$. Zbog $|\alpha_n| \leq |a_n|$, $|\beta_n| \leq |a_n|$, $\forall n \in \mathbb{N}$, slijedi konvergencija redova $\sum_{n=1}^{\infty} |\alpha_n|$ i $\sum_{n=1}^{\infty} |\beta_n|$, a odatle i redova $\sum_{n=1}^{\infty} \alpha_n$ i $\sum_{n=1}^{\infty} \beta_n$. Odatle opet slijedi konvergencija reda Solution is reduced as $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} a_n$. Solution open substituting a reduced $\sum_{n=1}^{\infty} (\alpha_n + i\beta_n) = \sum_{n=1}^{\infty} a_n$. Nadalje, za svaki $k \in \mathbb{N}$ imamo $|\sum_{n=1}^{k} a_n| \le \sum_{n=1}^{k} |a_n| \le \sum_{n=1}^{\infty} |a_n|$, pa za $k \to \infty$ dobivamo $|\sum_{n=1}^{\infty} a_n| \le \sum_{n=1}^{\infty} |a_n|$. Konačno, $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} \alpha_n + i \sum_{n=1}^{\infty} \beta_n = \sum_{n=1}^{\infty} \alpha_{\sigma(n)} + i \sum_{n=1}^{\infty} \beta_{\sigma(n)} = \sum_{n=1}^{\infty} (\alpha_{\sigma(n)} + i\beta_{\sigma(n)}) = \sum_{n=1}^{\infty} a_{\sigma(n)}$.

Definicija 6.4. Za red $\sum_{n=1}^{\infty} a_n$ kažemo da je apsolutno konvergentan ako je red $\sum_{n=1}^{\infty} |a_n|$ konvergentan. Red $\sum_{n=1}^{\infty} a_n$ je uvjetno konvergentan ako konvergira, ali red $\sum_{n=1}^{\infty} |a_n|$ divergira.

Teorem 6.6. Neka su $\sum a_n$, $\sum b_n$ redovi u \mathbb{C} i neka postoji K > 0 tako da je

$$|a_n| \le K |b_n|, \ \forall n \in \mathbb{N}. \tag{6.16}$$

Ako red $\sum b_n$ apsolutno konvergira, onda apsolutno konvergira i red $\sum a_n$. Ako red $\sum a_n$ ne konvergira apsolutno, onda niti red $\sum b_n$ ne konvergira apsolutno.

6.4 Neki dovoljni uvjeti za konvergenciju reda

Promotrimo

$$\sum_{n=1}^{\infty} (-1)^{n-1} a_n \tag{6.17}$$

red u \mathbb{R} gdje je $a_n > 0$, $\forall n \in \mathbb{N}$ (alternirajući red)

Teorem 6.7. (Leibnizov kriterij) Ako niz $(a_n)_n$ realnih pozitivnih brojeva strogo pada i $\lim_n a_n = 0$, tada red (6.17) konvergira k broju A za koji vrijedi $0 < A < a_1$.

Dokaz: Neka je $(s_n)_n$ niz parcijalnih suma reda (6.17). Vrijedi $s_{2m} = (a_1 - a_2) + (a_3 - a_4) + \cdots + (a_{2m-1} - a_{2m})$, tj. podniz $(s_{2m})_m$ je strogo rastući. Nadalje je $s_{2m} = a_1 - (a_2 - a_3) - \cdots - (a_{2m-2} - a_{2m-1}) - a_{2m} < a_1$, pa je podniz $(s_{2m})_m$ ograničen odozgo. Dakle, podniz $(s_{2m})_m$ je konvergentan; neka je $A = \lim_m s_{2m}$. Zbog $s_{2m+1} = s_{2m} + a_{2m+1}$ je $\lim_m s_{2m+1} = A$, pa je također i $\lim_n s_n = A$. Iz prethodnog slijedi ocjena $s_{2m} < A < s_{2m-1}$, $\forall m \in \mathbb{N}$.

Teorem 6.8. (D'Alembertov¹ kriterij) Neka je $(a_n)_n$ niz $u \mathbb{C}$ i $a_n \neq 0$, $\forall n \in \mathbb{N}$.

- 1. Ako postoje $m \in \mathbb{N}$ i $q \in \langle 0, 1 \rangle \subset \mathbb{R}$ takvi da vrijedi $\left| \frac{a_{n+1}}{a_n} \right| \leq q$, $\forall n \geq m$, onda red $\sum_{n=1}^{\infty} a_n$ apsolutno konvergira.
- 2. Ako postoji $m \in \mathbb{N}$ takav da vrijedi $\left| \frac{a_{n+1}}{a_n} \right| \geq 1$, $\forall n \geq m$, onda red $\sum_{n=1}^{\infty} a_n \text{ divergira.}$

¹Jean le Rond d'Alembert (Paris, 16. studeni 1717. - Paris, 29. listopad 1783.) francuski filozof, matematičar i fizičar

168 6. REDOVI

Dokaz: 1. Za n = m + k, $k \in \mathbb{N}$, imamo $|a_{m+k}| \leq q|a_{m+k-1}| \leq \cdots \leq q^k|a_m|$, odakle slijedi $\sum_{k=1}^{\infty} |a_{m+k}| \leq |a_m| \sum_{k=1}^{\infty} q^k = \frac{q}{1-q}$, pa red $\sum_{k=1}^{\infty} |a_{m+k}|$ konvergira (jer je majoriziran s konvergentnim geometrijskim redom). Tada konvergira i red $\sum_{n=1}^{\infty} |a_n|$, tj. $\sum_{n=1}^{\infty} a_n$ apsolutno konvergira. 2. Iz drugog uvjeta imamo $|a_n| \ge |a_m| > 0$, $\forall n \ge m$, pa niz $(a_n)_n$ ne teži

k nuli, tj. nije ispunjen nužan uvjet konvergencije reda.

Teorem 6.9. (Cauchyjev kriterij) Neka je $(a_n)_n$ niz $u \mathbb{C}$.

- 1. Ako postoje $m \in \mathbb{N}$ i $q \in (0,1) \subset \mathbb{R}$ takvi da vrijedi $\sqrt[n]{|a_n|} \leq q, \forall n \geq m$ onda red $\sum_{n=0}^{\infty} a_n$ apsolutno konvergira.
- 2. Ako vrijedi $\sqrt[n]{|a_n|} \geq 1$ za beskonačno mnogo indeksa $n \in \mathbb{N}$, onda red $\sum_{i} a_n \ divergira.$

Dokaz: 1. Za $n \ge m$ imamo $|a_n| \le q^n$, pa je $\sum_{n=m}^{\infty} |a_n| \le \sum_{n=m}^{\infty} q^n = \frac{q^m}{1-q}$. Tada konvergira red $\sum_{n=1}^{\infty} |a_n|$, odnosno, $\sum_{n=1}^{\infty} a_n$ apsolutno konvergira.

2. Uvjet 2. kaže da za podniz $(a_{p_n})_n$ niza $(a_n)_n$ vrijedi $\sqrt[n]{|a_{p_n}|} \ge 1$, odnosno, $|a_{p_n}| \geq 1$, $\forall n \in \mathbb{N}$. Tada podniz $(a_{p_n})_n$ ne konvergira k nuli, a onda niti niz $(a_n)_n$ ne konvergira k nuli. Tako nije ispunjen nužan uvjet konvergencije reda.

Korolar 6.1. Neka je $(a_n)_n$ niz u \mathbb{C} i $a_n \neq 0$, $\forall n \in \mathbb{N}$. Ako neki od nizova $\left(\left|\frac{a_{n+1}}{a_n}\right|\right)_n$, $\left(\sqrt[n]{|a_n|}\right)_n$ konvergira $k \ r \in \mathbb{R}_+$, onda za $0 \le r < 1 \ red \sum_{n=1}^{\infty} a_n$ apsolutno konvergira, a za 1 < r red divergira.

Dokaz: Ako je $0 \le r < 1$, onda postoji $\varepsilon > 0$ takav da je $r + \varepsilon < 1$ 1. Sada za taj ε postoji $m \in \mathbb{N}$ sa svojstvom $\forall n \in \mathbb{N}$ $(n \geq m) \Rightarrow \left(r - \varepsilon < \left|\frac{a_{n+1}}{a_n}\right| < r + \varepsilon = q\right)$ ili $(n \geq m) \Rightarrow \left(r - \varepsilon < \left|\sqrt[n]{|a_n|}\right| < r + \varepsilon = q\right)$. Sada iz desnih nejednakosti i teorema 6.8 ili teorema 6.9. slijedi apsolutna konvergencija reda $\sum_{n=1}^{\infty} a_n$. U slučaju 1 < r uzimamo $\varepsilon > 0$ takav da je $r-\varepsilon > 1$. Tada pomoću lijevih nejednakosti i teorema 6.8 ili teorema 6.9. zaključujemo divergenciju reda $\sum_{n=1}^{\infty} a_n$. U sljedećem primjeru se vidi da korolar 6.1. u slučaju r=1 ne daje odluku.

Primjer 6.10. Redovi za koje niti D'Alembertov niti Cauchyjev kriterij ne daju odluke o konvergenciji ili divergenciji:

$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} \text{ konvergira i } \left| \frac{a_{n+1}}{a_n} \right| = \frac{n(n+1)}{(n+1)(n+2)} = \frac{n}{n+2} \to 1.$$

$$\sum_{n=1}^{\infty} \frac{1}{n} \text{ divergira i } \left| \frac{a_{n+1}}{a_n} \right| = \frac{n}{n+1} \to 1.$$

$$\sum_{n=1}^{\infty} \frac{1}{n^2} \text{ konvergira i } \sqrt[n]{\frac{1}{n^2}} = \left(\frac{1}{\sqrt[n]{n}}\right)^2 \to 1.$$

$$\sum_{n=1}^{\infty} \frac{1}{n} \text{ divergira i } \sqrt[n]{\frac{1}{n}} = \left(\frac{1}{\sqrt[n]{n}}\right) \to 1.$$

Napomena 6.1. Ako D'Alembertov kriterij daje odluku, onda ju daje i Cauchyjev kriterij. Naime, ako je $|a_{m+k}| \leq q^k |a_m|$, $\forall k \in \mathbb{N}$, onda imamo $\stackrel{m+k}{\sqrt{|a_{m+k}|}} \leq \stackrel{m+k}{\sqrt{|a_m|}} q^{\frac{k}{m+k}} \stackrel{k\to\infty}{\longrightarrow} q$. Tada za $\varepsilon > 0$, $q' = q + \varepsilon < 1$, postoji $m \in \mathbb{N}$ takav da $(k \geq m) \Rightarrow \stackrel{m+k}{\sqrt{|a_{m+k}|}} \leq q'$. Obratna tvrdnja nije istinita, što pokazuje slijedeći primjer.

Primjer 6.11. Dajemo primjer reda čija konvergencija se može ustanoviti pomoću Cauchyjevog kriterija, ali D'Alembertov kriterij ne daje odluku o konvergenciji ili divergenciji. Neka je niz $(a_n)_n$ definiran s $a_{2n} = \frac{1}{4^n}$, $a_{2n+1} = \frac{2}{4^n}$, $\forall n \in \mathbb{N}$. Tada je $\frac{a_{2n+1}}{a_{2n}} = 2$ i $\frac{a_{2n}}{a_{2n-1}} = \frac{4^{n-1}}{4^n2} = \frac{1}{8}$, tj. niz $\left(\left|\frac{a_{n+1}}{a_n}\right|\right)_n$ ne konvergira, ali ni po teoremu 6.8. nije moguća odluka. Naprotiv, $\sqrt[2n]{|a_{2n}|} = \frac{1}{2}$ i $\sqrt[2n+1]{|a_{2n+1}|} = \frac{1}{2} \cdot 2^{\frac{2}{2n+1}} \xrightarrow{n \to \infty} \frac{1}{2}$, tj. $\lim_n a_n = \frac{1}{2}$.

Primjer 6.12. Za svako $z \in \mathbb{C}$ red $\sum_{n=0}^{\infty} \frac{z^n}{n!}$ apsolutno konvergira. Naime,

$$\left| \frac{a_{n+1}}{a_n} \right| = \left| \frac{\frac{z^{n+1}}{(n+1)!}}{\frac{z^n}{n!}} \right| = \frac{|z|}{n+1} \xrightarrow{n \to \infty} 0 = r < 1.$$

Po korolaru 6.1. red apsolutno konvergira i definira funkciju $E: \mathbb{C} \to \mathbb{C}$,

$$E(z) = \sum_{n=0}^{\infty} \frac{z^n}{n!}, \ E(0) = 1, \ E(1) = e.$$

170 REDOVI

Primjer 6.13. Za svaki $z \in \mathbb{C}$ apsolutno konvergiraju redovi

$$S(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, \quad C(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}.$$

Ti su redovi apsolutno majorizirani s redom $\sum_{n=0}^{\infty} \frac{z^n}{n!}$.

Teorem 6.10. (Integralni Cauchyjev kriterij) Neka je $f: [1, +\infty) \to [0, +\infty)$ neprekidna i padajuća funkcija na $[1, +\infty)$.

- 1. Red $\sum_{n=1}^{\infty} f(n)$ konvergira ako i samo ako integral $\int_{1}^{+\infty} f(x)dx$ konver-
- 2. Ako red konvergira onda vrijedi $\int_{1}^{+\infty} f(x)dx \leq \sum_{n=1}^{\infty} f(n) \leq f(1) + f(n)$ $\int_{-\infty}^{+\infty} f(x)dx$.

Dokaz: Neka je $s_n = \sum_{i=1}^n f(k)$ parcijalna suma reda i neka je F(x) =

$$\begin{split} &\int_{1}^{x} f(t)dt,\,\forall x\in[1,+\infty\rangle.\\ &\text{Funkcija }f\text{ je padajuća, pa }\forall k\in\mathbb{N}\text{ i }\forall t\in[k,k+1]\text{ imamo }f(k+1)\leq\\ &f(t)\leq f(k).\text{ Odatle je }f(k+1)\leq\int_{k}^{k+1}f(t)dt\leq f(k),\,\forall k\in\mathbb{N}.\text{ Vrijedi} \end{split}$$

$$F(n+1) = \int_{1}^{n+1} f(t)dt = \sum_{k=1}^{n} \int_{k}^{k+1} f(t)dt \le \sum_{k=1}^{n} f(k) = s_n \le 1$$

$$\leq f(1) + \int_{1}^{2} f(t)dt + \int_{2}^{3} f(t)dt + \dots + \int_{n-1}^{n} f(t)dt = f(1) + F(n).$$

Dakle, $\forall n \in \mathbb{N}$ imamo $F(n+1) \leq s_n \leq f(1) + F(n)$. 1. Neka konvergira $\int_1^{+\infty} f(x)dx$, tj. postoji $\lim_{x \to +\infty} F(x)$. Pošto je Frastuća funkcija, taj limes postoji ako i samo ako je F ograničena, tj. $\exists \sup F$. Tada vrijedi $s_n \leq f(1) + \sup F$, pa je i rastući niz $(s_n)_n$ ograničen, tj. red $\sum_{i=1}^{\infty} f(n)$, konvergentan. Obratno, ako red $\sum_{i=1}^{\infty} f(n)$ konvergira, onda je niz

 $(s_n)_n$ ograničen, a tada je i niz $(F(n))_n$ ograničen. Zbog rasta funkcije F je i ta funkcija ograničena, pa postoji sup $F = \lim_{x \to +\infty} F(x) = \int_1^{+\infty} f(x) dx$.

Primjer 6.14. Funkcija $f(x) = \frac{1}{x^p}$ je neprekidna i padajuća na $[1, +\infty)$. Prema teoremu 5.17 $\int_1^{+\infty} \frac{dx}{x^p}$ konvergira za p > 1 i divergira za $p \le 1$. Tada i red $\sum_{n=1}^{\infty} \frac{1}{n^p}$ konvergira za p > 1 i divergira za $p \le 1$.

Primjer 6.15. Ispitaj konvergenciju reda $\sum_{n=2}^{\infty} \frac{1}{n \ln^p n}$ za p > 1. Funkcija $f(x) = \frac{1}{x \ln^p x}$, $x \in [2, +\infty)$ je neprekidna i padajuća. Vrijedi

$$F(x) = \int_2^x \frac{dt}{t \ln^p t} = \begin{vmatrix} y = \ln t \\ dy = dt/t \end{vmatrix} = \int_{\ln 2}^{\ln x} \frac{dy}{y^p} =$$

$$= -\frac{1}{p-1} y^{1-p} \Big|_{\ln 2}^{\ln x} = -\frac{1}{p-1} \frac{1}{\ln^{p-1} x} + \frac{1}{p-1} \frac{1}{\ln^{p-1} 2},$$

pa je $\lim_{x\to +\infty} F(x) = \frac{1}{p-1} \frac{1}{\ln^{p-1} 2} = \int_2^{+\infty} \frac{dx}{x \ln^p x}$. Dakle, red $\sum_{n=2}^{\infty} \frac{1}{n \ln^p n}$ konvergira za p>1.

6.5 Produkt redova

Definicija 6.5. Neka su $\sum_{n=0}^{\infty} a_n$ i $\sum_{n=0}^{\infty} b_n$ redovi u \mathbb{R} ili $\sum_{k=0}^{\infty} b_n$ redovi u \mathbb{R} ili $\sum_{k=0}^{\infty} a_n$ is $\sum_{k=0}^{\infty} a_k b_{n-k}$, $k=0,1,2,\ldots$ (6.18) Red $\sum_{n=0}^{\infty} c_n$ zovemo produktom redova $\sum_{n=0}^{\infty} a_n$ i $\sum_{n=0}^{\infty} b_n$.

Teorem 6.11. Ako red $\sum_{n=0}^{\infty} a_n$ apsolutno konvergira k A i red $\sum_{n=0}^{\infty} b_n$ konvergira k B, onda red $\sum_{n=0}^{\infty} c_n$ definiran s (6.18) konvergira k AB.

172 REDOVI

Dokaz: Označimo $A_n = \sum_{k=0}^n a_k$, $B_n = \sum_{k=0}^n b_k$, $B'_n = B_n - B$, $\forall n \in \mathbb{N}_0$ i $a = \sum_{n=0}^{\infty} |a_n|$. Ako je a = 0 onda je $a_n = 0$, $\forall n$, a tada je A = 0 i $c_n = 0$, $\forall n$, pa je tvrdnja istinita.

Neka je sada a > 0, pa za parcijalne sume reda $\sum_{n=0}^{\infty} c_n$ imamo:

$$C_n = a_0b_0 + (a_0b_1 + a_1b_0) + \cdots + (a_0b_n + a_1b_{n-1} + \cdots + a_nb_0) =$$

$$= a_0 B_n + a_1 B_{n-1} + \dots + a_n B_0 = a_0 (B + B'_n) + a_1 (B + B'_{n-1}) + \dots + a_n (B + B'_0),$$

tj.
$$C_n = A_n B + C'_n$$
, gdje je $C'_n = a_0 B'_n + a_1 B'_{n-1} + \dots + a_n B'_0$.

tj. $C_n = A_n B + C'_n$, gdje je $C'_n = a_0 B'_n + a_1 B'_{n-1} + \cdots + a_n B'_0$. Pokažimo da vrijedi $\lim_{n \to \infty} C'_n = 0$. Budući da je $\lim_{n \to \infty} B'_n = \lim_{n \to \infty} (B_n - B) = 0$, to postoji M > 0 tako da $\forall n, |B'_n| \le M$. Također, za bilo koji $\varepsilon > 0$ postoji $p \in \mathbb{N}$ takav da $(n > p) \Rightarrow (|B_n'| < \varepsilon_1 = \frac{\varepsilon}{2a})$. Zbog konvergencije reda $\sum_{n=0}^{\infty} a_n$ vrijedi $\lim_{n\to\infty} a_n = 0$, pa za $\varepsilon_2 = \frac{\varepsilon}{2(p+1)M} > 0$ postoji $q \in \mathbb{N}$ $(q \ge p)$ takav da $\forall n \ (n > q) \Rightarrow (|a_n| < \varepsilon_2).$

Uzmimo sada $n_{\varepsilon} = p + q$. Za $n > n_{\varepsilon}$ imamo:

$$|C'_n| \le (|B'_0||a_n| + \dots + |B'_p||a_{n-p}|) + (|B'_{p+1}||a_{n-p-1}| + \dots + |B'_n||a_0|).$$

Zbog
$$n-p > q$$
 vrijedi $|C'_n| \le \varepsilon_2(|B'_0| + \cdots + |B'_p|) + \varepsilon_1(|a_0| + \cdots + |a_{n-p-1}|) < \varepsilon_2(p+1)M + \varepsilon_1 a = \varepsilon$. Dakle, $\lim_{n\to\infty} C'_n = 0$, a odatle $\lim_{n\to\infty} C_n = AB$.

Napomena. U prethodnom teoremu nije moguće izostaviti uvjet apsolutne konvergencije kod oba reda. Naime, red $\sum_{n=0}^{\infty} \frac{(-1)^n}{\sqrt{1+n}}$ konvergira po Leibnizovom kriteriju. Kvadrat toga reda ima opći član

$$c_n = (-1)^n \left(\frac{1}{1\sqrt{1+n}} + \frac{1}{\sqrt{2n}} + \dots + \frac{1}{\sqrt{k(2+n-k)}} + \dots + \frac{1}{\sqrt{1+n}} \right).$$

Zbog

$$\frac{1}{\sqrt{k(2+n-k)}} \ge \frac{1}{1+n}, \ \forall k \in \{1, 2, \dots, n+1\}$$

imamo $|c_n| \ge 1$, $\forall n$, pa kvadrat polaznog reda divergira.

Primjer 6.16. Pokažimo da za funkciju E iz primjera 6.12 vrijedi $E(x)E(y) = E(x+y), \forall x, y \in \mathbb{C}$. Vrijedi

$$E(x)E(y) = \sum_{n=0}^{\infty} \frac{x^n}{n!} \sum_{m=0}^{\infty} \frac{y^m}{m!} = \sum_{n=0}^{\infty} \left(\sum_{k=0}^n \frac{x^k}{k!} \frac{y^{n-k}}{(n-k)!} \right) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{k=0}^n \frac{n!}{k!(n-k)!} x^k y^{n-k} \right) = \sum_{n=0}^{\infty} \frac{1}{n!} \left(\sum_{k=0}^n \binom{n}{k} x^k y^{n-k} \right) = \sum_{n=0}^{\infty} \frac{(x+y)^n}{n!} = E(x+y).$$

Dakle, funkcija E je eksponencijalna funkcija.

Primjer 6.17. Pokažimo da za funkciju C iz primjera 6.13 vrijedi $2C(x)C(y) = C(x+y) + C(x-y), \forall x,y \in \mathbb{C}$. Množenjem redova slijedi

$$2C(x)C(y) =$$

$$2\sum_{n=0}^{\infty}(-1)^n\frac{x^{2n}}{(2n)!}\sum_{m=0}^{\infty}(-1)^m\frac{y^{2m}}{(2m)!}=\sum_{n=0}^{\infty}(-1)^n2\left(\sum_{k=0}^n\frac{x^{2k}}{(2k)!}\frac{y^{2(n-k)}}{(2(n-k))!}\right)=$$

$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!} \sum_{k=0}^{2n} \binom{2n}{k} \left(x^k y^{2n-k} + (-1)^{2n-k} x^k y^{2n-k} \right) = \sum_{n=0}^{\infty} (-1)^n \frac{(x+y)^{2n} + (x-y)^{2n}}{(2n)!} = \sum_{n=0}^{\infty} (-1)^n \frac{(x+y)^{2n}}{(2n)!} =$$

$$C(x+y) + C(x-y).$$

Funkcija C je kosinus funkcija.

Zadatak 6.1. Pokažite da $\forall x \in \mathbb{C}$ vrijedi

$$C(x) = \frac{E(ix) + E(-ix)}{2}, \ S(x) = \frac{E(ix) - E(-ix)}{2i}$$

6.6 Redovi potencija

Neka je $(f_n)_n$ niz funkcija $f_n: I \to \mathbb{R}(\text{ ili }\mathbb{C}), I \subseteq \mathbb{R}(\text{ ili }\mathbb{C}).$ Red $\sum_{n=0}^{\infty} f_n$ zovemo **redom funkcija**.

174 6. REDOVI

Ako je $\forall n \in \mathbb{N}_0, f_n(x) = a_n(x-c)^n, x \in \mathbb{C},$ onda se red

$$\sum_{n=0}^{\infty} a_n (x - c)^n \tag{6.19}$$

naziva **red potencija** oko točke c. Neka je $K = \{z \in \mathbb{C}; \text{ red } (6.19) \text{ konvergira u } z\}$. Sada definiramo $r = \sup\{|z - c|; z \in K\}$ i nazivamo ga **radijus konvergencije** reda (6.19).

Zbog jednostavnijeg pisanja uzmimo c=0,t
j. imamo red potencija oko nule

$$\sum_{n=0}^{\infty} a_n x^n. \tag{6.20}$$

Red

$$\sum_{n=1}^{\infty} n a_n x^{n-1}.$$
 (6.21)

zovemo derivacijom reda (6.20) član po član, a red

$$\sum_{n=0}^{\infty} \frac{a_n}{n+1} x^{n+1}.$$
 (6.22)

zovemo antiderivacijom (neodređenim integralom) reda (6.20) član po član.

Teorem 6.12. (o radijusu konvergencije)

- 1. Redovi (6.20), (6.21) i (6.22) imaju jednak radijus konvergencije.
- 2. Ako je r radijus konvergencije reda (6.20) i r > 0, onda svi redovi apsolutno konvergiraju za $\forall z \in \mathbb{C}$, |z| < r, i divergiraju za $\forall z \in \mathbb{C}$, |z| > r.
- 3. Ako je $\rho = \limsup_{n} \sqrt[n]{|a_n|}$, onda je $r = \frac{1}{\rho}$.

Dokaz: Neka je radijus konvergencije reda (6.20) r > 0 i neka je $u \in \mathbb{C}$, 0 < |u| < r. Tada postoji $z_0 \in K$, $|u| < |z_0| < r$, tj. red $\sum_{n=0}^{\infty} a_n z_0^n$ konvergira. Zbog toga niz $(a_n z_0^n)_n$ konvergira k nuli pa je ograničen, tj. $\exists M > 0$, $|a_n z_0^n| \leq M$, $\forall n$, a odatle je $|a_n| \leq \frac{M}{|z_0|^n}$, $\forall n$. Sada imamo

$$|a_n u^n| \le M q^n$$
, gdje je $q = \frac{|u|}{|z_0|} < 1.$ (6.23)

Odatle slijedi konvergencija reda $\sum_{n=0}^{\infty} |a_n u^n|$, tj. apsolutna konvergencija reda $\sum_{n=0}^{\infty} a_n u^n$. Dakle, red (6.20) apsolutno konvergira $\forall z \in K(0,r)$, tj. |z| < r.

Pokažimo sada konvergenciju redova (6.21) i (6.22) na istom skupu. U tu svrhu pomnožimo (6.23) prvo s $\frac{n}{|u|}$, a zatim s $\frac{|u|}{n+1}$, pa imamo:

$$|na_n u^{n-1}|^{\frac{1}{n-1}} \le b_{n-1}q$$
, odnosno $\left|\frac{a_n}{n+1} u^{n+1}\right|^{\frac{1}{n+1}} \le c_{n+1}q$, gdje je (6.24)

$$b_{n-1} = \left(M \frac{nq}{|u|}\right)^{\frac{1}{n-1}}, \quad c_{n+1} = \left(M \frac{|u|}{(n+1)q}\right)^{\frac{1}{n+1}}.$$

Vrijedi $\lim_n b_{n-1} = \lim_n c_{n+1} = 1$. Za $q < 1 \exists \varepsilon > 0$ tako da je $q' = (1+\varepsilon)q < 1$, a također postoji $n_{\varepsilon} \in \mathbb{N}$ tako da $(n > n_{\varepsilon}) \Rightarrow (b_{n-1} < 1+\varepsilon) \wedge (c_{n+1} < 1+\varepsilon)$. Tada za $n > n_{\varepsilon}$ iz (6.24) imamo

$$\left| na_n u^{n-1} \right|^{\frac{1}{n-1}} \le (1+\varepsilon)q = q' < 1, \ i \left| \frac{a_n}{n+1} u^{n+1} \right|^{\frac{1}{n+1}} \le (1+\varepsilon)q = q' < 1,$$

pa redovi (6.21) i (6.22) apsolutno konvergiraju po Cauchyjevom kriteriju. Iz prethodnog slijedi da za radijuse konvergencije r_2 i r_3 redova (6.21) i (6.22) vrijedi $r = r_1 \le r_2$ i $r_1 \le r_3$. Red (6.20) je antiderivacija reda (6.21) član po član, pa po prethodnom vrijedi $r_1 \ge r_2$. Analogno, red (6.20) je derivacija reda (6.22) član po član, pa je $r_1 \ge r_3$. Dakle $r = r_1 = r_2 = r_3$,a za |z| > r redovi divergiraju, jer bismo u suprotnom imali kontradikciju s definicijom radijusa konvergencije kao supremuma. Tako smo dokazali tvrdnje 1. i 2.

3. Ako je $0 \le \rho < +\infty$ onda su za svaki $\varepsilon > 0$ gotovo svi članovi niza $(\sqrt[n]{|a_n|})_n$ manji od $\rho + \varepsilon$, a beskonačno članova je veće od $\rho - \varepsilon$.

Sada za $|z| > \frac{1}{\rho}$ odaberimo $\varepsilon > 0$ tako da je $(\rho - \varepsilon)|z| \ge 1$. Uzmimo podniz ${}^{p_n}\!\sqrt{|a_{p_n}|} > \rho - \varepsilon$, pa za $|z| > \frac{1}{\rho}$ vrijedi ${}^{p_n}\!\sqrt{|a_{p_n}z^{p_n}|} \ge (\rho - \varepsilon)|z| \ge 1$. Dakle, podniz $(a_{p_n}z^{p_n})_n$ ne konvergira k nuli, a tada niti niz $(a_nz^n)_n$ ne konvergira k nuli, tj. red divergira u svakoj točki $z \in \mathbb{C}$, $|z| > \frac{1}{\rho}$.

Uzmimo $z \in \mathbb{C}$, $|z| < \frac{1}{\rho}$ i $\varepsilon > 0$ tako da je $(\rho + \varepsilon)|z| < 1$. Sada za gotovo sve članove niza $(\sqrt[n]{|a_n z^n|})_n$ vrijedi $\sqrt[n]{|a_n z^n|} \le (\rho + \varepsilon)|z| = q < 1$, tj. red apsolutno konvergira po Cauchyjevom kriteriju.

Pokazali smo da red apsolutno konvergira $\forall z \in \mathbb{C}, |z| < \frac{1}{\rho}$ i divergira $\forall z \in \mathbb{C}, |z| > \frac{1}{\rho}$, dakle, $r = \frac{1}{\rho}$.

Ako je r > 0 radijus konvergencije redova (6.20), (6.21) i (6.22), onda su

6. REDOVI

sa

$$f(z) = \sum_{n=0}^{\infty} a_n z^n, \tag{6.25}$$

$$f_1(z) = \sum_{n=1}^{\infty} n a_n z^{n-1}, (6.26)$$

$$f_2(z) = \sum_{n=2}^{\infty} n(n-1)a_n z^{n-2},$$
 (6.27)

$$M_2(z) = \sum_{n=2}^{\infty} n(n-1)|a_n||z|^{n-2}$$
 (6.28)

definirane funkcije na $K(0,r) \subseteq \mathbb{C}$.

Lema 6.2. Neka je r > 0 radijus konvergencije reda (6.25). Za svaki $0 < r_1 < r$ i svaki par $u, z \in \mathbb{C}$, $u \neq z$ i $|u| \leq r_1$, $|z| \leq r_1$, vrijedi nejednakost

$$\left| \frac{f(z) - f(u)}{z - u} - f_1(u) \right| \le \frac{1}{2} M_2(r_1) |z - u|. \tag{6.29}$$

Dokaz: Vrijedi

$$u^{k} - z^{k} = (u - z)(u^{k-1} + u^{k-2}z + u^{k-2}z + z^{k-1}) \Rightarrow |u^{k} - z^{k}| \le kr_{1}^{k-1}|u - z|, \forall k \in \mathbb{N},$$

a odatle je

$$\left| \frac{z^n - u^n}{z - u} - nu^{n-1} \right| = |z^{n-1} - u^{n-1} + (z^{n-2} - u^{n-2})u + \dots + (z - u)u^{n-2}| \le |z^n - u^n| \le |z^n -$$

$$\leq |z-u|[(n-1)r_1^{n-2}+(n-2)r_1^{n-2}+\cdots+1r_1^{n-2}] \leq |z-u|r_1^{n-2}\frac{n(n-1)}{2}, \quad (n=2,3,\ldots).$$

Odatle slijedi

$$\left| \frac{f(z) - f(u)}{z - u} - f_1(u) \right| = \left| \sum_{n=0}^{\infty} \frac{a_n z^n - a_n u^n}{z - u} - \sum_{n=1}^{\infty} n a_n u^{n-1} \right| =$$

$$= \left| \sum_{n=2}^{\infty} a_n \left(\frac{z^n - u^n}{z - u} - n u^{n-1} \right) \right| \le |z - u| \sum_{n=2}^{\infty} \frac{n(n-1)}{2} |a_n| r_1^{n-2} = |z - u| M_2(r_1).$$

Korolar 6.2. Neka su $f: \langle -r, r \rangle \to \mathbb{R}$ i $f_1: \langle -r, r \rangle \to \mathbb{R}$ definirane s (6.25) i (6.26). Tada je $f_1(x) = f'(x)$, $\forall x \in \langle -r, r \rangle$. Funkcija f ima derivaciju svakog reda na $\langle -r, r \rangle$, tj. $f \in C^{\infty}(\langle -r, r \rangle)$. Također za $a, b \in \langle -r, r \rangle$, a < b, imamo

$$\int_{a}^{b} \sum_{n=0}^{\infty} a_{n} x^{n} dx = \sum_{n=0}^{\infty} a_{n} \int_{a}^{b} x^{n} dx = \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} x^{n+1} \Big|_{a}^{b} = \sum_{n=0}^{\infty} \frac{a_{n}}{n+1} (b^{n+1} - a^{n+1}).$$

Dokaz: Iz leme 6.2 slijedi je $f_1 = f'$ na $\langle -r, r \rangle$, a onda rekurzivnim zaključivanjem slijedi da je $f \in C^{\infty}(\langle -r, r \rangle)$.

6.7 Taylorovi redovi

Neka je $f:\langle c-r,c+r\rangle\to\mathbb{R}$ zadana s $f(x)=\sum_{n=0}^\infty a_n(x-c)^n$, gdje je r>0 radijus konvergencije reda. Tada je $f\in C^\infty(\langle c-r,c+r\rangle)$ i vrijedi

$$f(c) = a_0$$

$$f'(c) = a_1$$

$$f''(c) = 2a_2$$

$$\vdots$$

$$f^{(n)}(c) = n!a_n$$

$$\vdots$$

Formula za koeficijente je

$$a_n = \frac{f^{(n)}(c)}{n!}, \quad (n = 0, 1, \ldots).$$
 (6.30)

Definicija 6.6. Neka je funkcija $f \in C^{\infty}(\langle c-r, c+r \rangle)$. Red

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x-c)^n \tag{6.31}$$

zovemo **Taylorov red** funkcije f oko točke c. Taylorovi polinomi $T_n(x) = \sum_{k=0}^n \frac{f^{(k)}(c)}{k!} (x-c)^k$ su parcijalne sume Taylorovog reda.

Teorem 6.13. Neka je $I \subseteq \mathbb{R}$ otvoreni interval, $c \in I$ if $: I \to \mathbb{R}$ klase $C^{\infty}(I)$.

Ako postoje $n_0 \in \mathbb{N}$, $\delta > 0$, M > 0 i C > 0, takvi da je

$$|f^{(n)}(x)| \le CM^n n!, \quad \forall x \in I' = \langle c - \delta, c + \delta \rangle \cap I, \quad \forall n \ge n_0,$$
 (6.32)

onda red (6.31) konvergira k f(x), $\forall x \in I' \cap \langle c - \frac{1}{M}, c + \frac{1}{M} \rangle$.

178 6. REDOVI

Dokaz: Za svaki $x \in I$, po Taylorovom teoremu srednje vrijednosti, postoji c_x između c i x tako da vrijedi

$$f(x) = T_n(x) + \frac{f^{(n+1)}(c_x)}{(n+1)!}(x-c)^{n+1}.$$

Odatle je

$$|f(x)-T_n(x)| = \frac{|f^{(n+1)}(c_x)|}{(n+1)!}|x-c|^{n+1} \le C\frac{M^{n+1}(n+1)!}{(n+1)!}|x-c|^{n+1} = C(M|x-c|)^{n+1}.$$

Za $x \in I' \cap \langle c - \frac{1}{M}, c + \frac{1}{M} \rangle$ je M|x - c| < 1 pa je $\lim_{n \to \infty} |f(x) - T_n(x)| = 0$, tj.

$$\lim_{n \to \infty} T_n(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(c)}{n!} (x - c)^n = f(x).$$

Teorem 6.14. Neka je $I \subseteq \mathbb{R}$ otvoreni interval, $c \in I$ if $: I \to \mathbb{R}$ klase $C^{\infty}(I)$. Ako postoje $\delta > 0$, C > 0 i M > 0 takvi da je

$$|f^{(n)}(x)| \le CM^n, \ \forall x \in I' = \langle c - \delta, c + \delta \rangle \cap I, \ \forall n \in \mathbb{N},$$
 (6.33)

onda red (6.31) konvergira k f(x), $\forall x \in I'$.

Dokaz: Vrijedi

$$|f(x) - T_n(x)| = \frac{|f^{(n+1)}(c_x)|}{(n+1)!} |x - c|^{n+1} \le C \frac{(M|x - c|)^{n+1}}{(n+1)!} \xrightarrow{n} 0,$$

zbog konvergencije reda $\sum_{n=0}^{\infty} \frac{x^n}{n!}$.

Primjer 6.18. Za funkciju $f(x) = e^x$, $x \in \mathbb{R}$ i c = 0 je $f^{(n)}(0) = 1$, pa je Taylorov red oko nule $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. Za $\delta > 0$ vrijedi $(x < \delta) \Rightarrow (e^x < e^{\delta})$, tj. $\forall x \in \langle -\delta, \delta \rangle$ je $|e^x| < e^{\delta} = C$. Sada, za svaki $x \in \mathbb{R}$, postoji $\delta > 0$, takav da je $x \in \langle -\delta, \delta \rangle$, pa red konvergira k funkciji na čitavom \mathbb{R} .

Primjer 6.19. Za funkcije $f(x) = \sin x$ i $f(x) = \cos x$ je $|f^{(n)}(x)| \le 1$, $\forall x \in \mathbb{R}$, pa vrijedi

$$\sin x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!} \qquad i \qquad \cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!},$$

za sve $x \in \mathbb{R}$.

Primjer 6.20. (Binomni red) Za $\alpha \in \mathbb{R}$ i $k \in \mathbb{N}$ definiramo $\binom{\alpha}{k} = \frac{\alpha(\alpha-1)\cdots(\alpha-k+1)}{k!}$, s tim da je $\binom{\alpha}{0} = 1$. Promatrajmo red potencija $\sum_{n=0}^{\infty} \binom{\alpha}{n} x^n$. Po D'Alembertovom kriteriju imamo

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{\binom{\alpha}{n+1} |x|^{n+1}}{\binom{\alpha}{n} |x|^n} = \frac{|\alpha - n|}{n+1} |x| \xrightarrow{n} |x| = r,$$

dakle, za |x| < 1 red apsolutno konvergira, a za |x| > 1 divergira. Neka je $f: \langle -1, 1 \rangle \to \mathbb{R}$ funkcija definirana s $f(x) = (1+x)^{\alpha}$. Vrijedi $f^{(n)}(x) = \alpha(\alpha-1)\cdots(\alpha-n+1)(1+x)^{\alpha-n}$, pa je $\frac{f^{(n)}(0)}{n!} = {\alpha \choose n}$, $\forall n \in \mathbb{N}$. Pokažimo

da je
$$f(x) = \sum_{n=0}^{\infty} {\alpha \choose n} x^n, \forall x \in \langle -\frac{1}{2}, \frac{1}{2} \rangle.$$

Neka je $n_0 \in \mathbb{N}$, $n_0 > \alpha + 1$. Tada za $n > n_0$ imamo $n - \alpha > 1$, pa $\left| \begin{pmatrix} \alpha \\ n \end{pmatrix} \right| = |\alpha| |1 - \frac{\alpha+1}{2}| \cdots |1 - \frac{\alpha+1}{n_0-1}| (1 - \frac{\alpha+1}{n_0}) \cdots (1 - \frac{\alpha+1}{n}) \le \left| \begin{pmatrix} \alpha \\ n_0 - 1 \end{pmatrix} \right|$.

Odatle je
$$\left| \frac{f^{(n)}(x)}{n!} \right| = \left| \binom{\alpha}{n} \right| (1+x)^{\alpha-n} \le \left| \binom{\alpha}{n_0-1} \right| (1+x)^{\alpha-n}.$$

U slučaju $|x| \leq \frac{1}{2}$ je $1 + x \geq \frac{1}{2}$ pa vrijedi $(1 + x)^{-n} \leq 2^n$, $\forall n \in \mathbb{N}$. Stoga na intervalu $\langle -\frac{1}{2}, \frac{1}{2} \rangle$ vrijedi uvjet (6.32) iz teorema 6.13 za $C = \left| \begin{pmatrix} \alpha \\ n_0 - 1 \end{pmatrix} \right| \max\{(\frac{3}{2})^{\alpha}, (\frac{1}{2})^{\alpha}\}$ i M = 2.

Moguće je dokazati i više. Lako se provjeri da funkcije f i funkcija definirana sumom binomnog reda na $\langle -1, 1 \rangle$ zadovoljavaju diferencijalnu jednadžbu $(1+x)y' = \alpha y$ s početnim uvjetom y(0) = 1. Zbog jedinstvenosti rješenja takve zadaće, te su funkcije jednake na intervalu $\langle -1, 1 \rangle$. Dakle,

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^n, \ \forall x \in \langle -1, 1 \rangle.$$

Primjer 6.21. Naći Taylorov red oko c=0 funkcije $f(x)=\ln(1+x)$ i ispitati njegovu konvergenciju.

Vrijedi $f'(x) = \frac{1}{1+x} = \sum_{n=0}^{\infty} (-1)^n x^n$, za $x \in \langle -1, 1 \rangle$ (geometrijski red).

Tada po teoremu 6.12. i korolaru leme 6.2. imamo $f(x) = \ln(1+x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{n+1}}{n+1} = \sum_{n=0}^{\infty} (-1)^{n-1} \frac{x^n}{n}$, za $x \in \langle -1, 1 \rangle$.

180 6. REDOVI

Primjer 6.22. Naći Taylorov red oko c = 0 funkcije $f(x) = \text{Tg}^{-1} x$ i ispitati njegovu konvergenciju.

Vrijedi $f'(x) = \frac{1}{1+x^2} = \sum_{n=0}^{\infty} (-1)^n x^{2n}$, za $x \in \langle -1, 1 \rangle$ (geometrijski red). Tada po teoremu 6.12. i korolaru leme 6.2. imamo $f(x) = \mathrm{Tg}^{-1} x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^{2n-1}}{2n-1}$, za $x \in \langle -1, 1 \rangle$.

Primjer 6.23. Naći Taylorov red oko c = 0 funkcije $f(x) = \operatorname{Sin}^{-1} x$ i ispitati njegovu konvergenciju.

Vrijedi $f'(x)=(1-x^2)^{-\frac{1}{2}}=\sum_{n=0}^{\infty}(-1)^n\binom{-\frac{1}{2}}{n}x^{2n}$, za $x\in\langle -1,1\rangle$ (binomni red). No,

$$(-1)^n \binom{-\frac{1}{2}}{n} = \frac{1 \cdot 3 \cdots (2n-1)}{2^n n!} = \frac{1 \cdot 3 \cdots (2n-1)}{2 \cdot 4 \cdots 2n} = \frac{(2n-1)!!}{(2n)!!},$$

pa imamo $f'(x) = \sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!} x^{2n}$. Odatle je

$$f(x) = \operatorname{Sin}^{-1} x = \sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!} \frac{x^{2n+1}}{2n+1}, \text{ za } x \in \langle -1, 1 \rangle.$$

Teorem 6.15. (Abelov teorem) Ako red $\sum_{n=0}^{\infty} a_n$ konvergira i ima sumu s, onda je s

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, \quad |x| < 1,$$
(6.34)

definirana funkcija $f: \langle -1, 1 \rangle \to \mathbb{R}$ i vrijedi $s = \lim_{x \to 1^-} f(x)$.

Dokaz: Trebamo dokazati

$$(\forall \varepsilon > 0)(\exists \delta > 0)(\forall x)((0 < 1 - x < \delta) \Rightarrow (|f(x) - s| < \varepsilon)).$$

Množenjem (6.34) s

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n \tag{6.35}$$

dobivamo

$$\frac{f(x)}{1-x} = \sum_{n=0}^{\infty} s_n x^n, \quad |x| < 1, \tag{6.36}$$

gdje je $s_n = \sum_{k=0}^n a_k$ parcijalna suma polaznog reda. Pomnožimo (6.35) sa s(1-x) te (6.36) s1-x. Oduzimanjem dobivenih rezultata slijedi

$$f(x) - s = (1 - x) \sum_{n=0}^{\infty} (s_n - s) x^n, \quad |x| < 1.$$
 (6.37)

Uzmimo sada $\varepsilon > 0$ bilo koji. Zbog $\lim_{n \to \infty} s_n = s \ \exists n_{\varepsilon} \in \mathbb{N}$ takav da $(n \ge n_{\varepsilon}) \Rightarrow (|s_n - s| < \frac{\varepsilon}{2})$. Neka je $\delta = \frac{\varepsilon}{2} \left(\sum_{n=0}^{n_{\varepsilon}} |s_n - s| \right)^{-1}$. Desnu stranu od (6.37) rastavimo na sumu od 0 do n_{ε} i od $n_{\varepsilon} + 1$ do ∞ . Tada za $0 < 1 - x < \delta$ imamo

$$|f(x) - s| \le (1 - x) \sum_{n=0}^{n_{\varepsilon}} |s_n - s| x^n + (1 - x) \sum_{n=n_{\varepsilon}+1}^{\infty} |s_n - s| x^n \le 1$$

$$(1-x)\sum_{n=0}^{n_{\varepsilon}}|s_n-s|+(1-x)\frac{\varepsilon}{2}\sum_{n=n_{\varepsilon}+1}^{\infty}x^n<\frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon.$$

Primjer 6.24. Vrijedi $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = \ln 2$. Naime, funkcija f iz primjera 6.21. i prethodni red zadovoljavaju uvjete Abelovog teorema.

Korolar 6.3. Ako redovi $\sum a_n$, $\sum b_n$, $\sum c_n$ konvergiraju k A, B, C i ako je $c_n = \sum_{k=0}^n a_k b_{n-k}$, $\forall n$, onda je C = AB.

Dokaz: Označimo $f(x) = \sum_{n=0}^{\infty} a_n x^n, g(x) = \sum_{n=0}^{\infty} b_n x^n, h(x) = \sum_{n=0}^{\infty} c_n x^n, |x| < 1$. Vrijedi $h(x) = f(x)g(x), \forall x \in \langle -1, 1 \rangle$. Prema teoremu 6.15 je $C = \lim_{x \to 1^-} h(x), A = \lim_{x \to 1^-} f(x), B = \lim_{x \to 1^-} g(x),$ pa po teoremu o jednostranom limesu produkta vrijedi

$$C = \lim_{x \to 1^{-}} h(x) = \lim_{x \to 1^{-}} (f(x)g(x)) = \lim_{x \to 1^{-}} f(x) \lim_{x \to 1^{-}} g(x) = AB.$$

182 6. REDOVI

Korolar 6.4. Neka je $f: \langle \varepsilon, r \rangle \to \mathbb{R}$, gdje je $0 < \varepsilon < r$, definirana s $f(x) = \sum_{n=0}^{\infty} a_n x^n$, neka postoji f(r-) i neka red $\sum_{n=0}^{\infty} a_n r^n$ konvergira. Tada je $f(r-) = \sum_{n=0}^{\infty} a_n r^n$.

Dokaz: Red potencija $\sum_{n=0}^{\infty} a_n r^n x^n$ zadovoljava uvjete teorema 6.15. na intervalu $\langle -1, 1 \rangle$.

6.8 Fourierovi redovi

Neka je $f: \mathbb{R} \to \mathbb{R}$ periodička funkcija s periodom 2π . Želimo tu funkcija prikazati pomoću jednostavnijih funkcija istog perioda. Takve funkcije su oblika $A\sin(\omega x + \varphi)$, gdje A nazivamo amplitudom, ω je kutna frekvencija, a φ je fazni pomak. Funkciju $\sum_{k=0}^{n} A_k \sin(kx + \varphi_k)$ zovemo trigonometrijski polinom. Trigonometrijski polinom moguće je napisati u obliku $\sum_{k=0}^{n} (a_k \cos kx + b_k \sin kx)$. Red oblika

$$\frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$
 (6.38)

zovemo trigonometrijski red.

Promotrimo vektorski prostor V svih neprekidnih funkcija $f:[-\pi,\pi]\to\mathbb{R}$ snabdjeven sa skalarnim produktom $(f|g)=\int_{-\pi}^{\pi}f(x)g(x)dx$. Za funkcije $\sin nx,\cos nx,\ (n\in\mathbb{N}),$ vrijedi

$$\begin{split} & \int_{-\pi}^{\pi} \cos nx dx = 0 &, & \forall n \in \mathbb{N}, \\ & \int_{-\pi}^{\pi} \sin nx dx = 0 &, & \forall n \in \mathbb{N}, \\ & \int_{-\pi}^{\pi} \sin nx \cos mx dx = 0 &, & \forall n, m \in \mathbb{N}, \\ & \int_{-\pi}^{\pi} \sin nx \sin mx dx = \pi \delta_{n,m} &, & \forall n, m \in \mathbb{N}, \\ & \int_{-\pi}^{\pi} \cos nx \cos mx dx = \pi \delta_{n,m} &, & \forall n, m \in \mathbb{N}. \end{split}$$

To pokazuje da je skup funkcija $\{\frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}}\sin nx, \frac{1}{\sqrt{\pi}}\sin nx; n \in \mathbb{N}\}$, ortonormiran skup vektora u V. Ako u konačno dimenzionalnom unitarnom prostoru

V želimo vektor x prikazati kao linearnu kombinaciju vektora neke ortonormirane baze $\{e_1, e_2, \ldots, e_n\}$ onda su koeficijenti u tom prikazu oblika $(f|e_k)$,

$$k = 1, \dots, n$$
. Neka je $f: [-\pi, \pi] \to \mathbb{R}$ zadana s $f(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + a_n)$

 $b_n \sin nx$). Po analogiji s konačno dimenzionalnim slučajem, koeficijenti u tom prikazu su oblika

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx, \quad \forall n \in \mathbb{N} \cup \{0\},$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx, \quad \forall n \in \mathbb{N},$$

$$(6.39)$$

i nazivaju se Euler¹-Fourierovi² koeficijenti.

Označimo sumu Fourierovog reda s
$$S(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx)$$

Teorem 6.16. (Dirichlet)³ Neka je $f: [-\pi, \pi] \to \mathbb{R}$ takva da vrijedi

- (i) Funkcija f ima najviše konačno prekida i to prve vrste na $[-\pi, \pi]$.
- (ii) Funkcija f je po dijelovima monotona na $[-\pi, \pi]$.

Tada Fourierov red funkcije f konvergira $\forall x \in \mathbb{R}$. Neka je $S : \mathbb{R} \to \mathbb{R}$ suma Fourierovog reda.

Ako je f neprekidna u $x \in \langle -\pi, \pi \rangle$, onda je S(x) = f(x). Ako f ima prekid u $x \in \langle -\pi, \pi \rangle$, onda je $S(x) = \frac{f(x-) + f(x+)}{2}$. Također je $S(-\pi) = S(\pi) = \frac{f(\pi-) + f(-\pi+)}{2}$.

Dokaz: Dokazujemo samo konvergenciju reda i to uz jači uvjet da je $f \in C^{(2)}([-\pi,\pi])$ i $f(\pi)=f(-\pi)$. Parcijalnom integracijom dobivamo

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = \frac{f(x) \sin nx}{n\pi} \Big|_{-\pi}^{\pi} - \frac{1}{n\pi} \int_{-\pi}^{\pi} f'(x) \sin nx dx =$$
$$= \frac{f'(x) \cos nx}{n^2 \pi} \Big|_{-\pi}^{\pi} - \frac{1}{n^2 \pi} \int_{-\pi}^{\pi} f''(x) \cos nx dx,$$

¹Leonhard Paul Euler (Basel, 15. travanj 1707. – St Petersburg [Rusija], 18. rujan 1783.) švicarski matematičar

² Jean Baptiste Joseph Fourier (Auxerre, 21. ožujak 1768. – Paris, 16. svibanj 1830.) francuski matematičar

³Johann Peter Gustav Lejeune Dirichlet (Dren, 13. veljača 1805. – Göttingen, 5. svibanj 1859.) njemački matematičar

184 REDOVI

Zbog neprekidnosti f'' postoji M > 0 tako da je $|f''(x)| \leq M, \forall x \in [-\pi, \pi].$ Odatle je $|a_n| \leq \frac{M'}{n^2}$, $\forall n \in \mathbb{N}$, gdje je $M' = \pi^{-1}(|f'(\pi)| + |f'(-\pi)|) + 2M$. Analogno se dobije $|b_n| \leq \frac{M'}{n^2}$, $\forall n \in \mathbb{N}$. Odatle slijedi da je Fourierov red apsolutno majoriziran s redom $2M' \sum_{n=1}^{\infty} \frac{1}{n^2}$, a potonji je konvergentan. \square

Primjer 6.25. Neka je $f(x) = \begin{cases} -1 & x \in [-\pi, 0) \\ 1 & x \in [0, \pi) \end{cases}$, i neka je po periodičnosti proširena na \mathbb{R} , tj. $f(x+2\pi) = f(x), \forall x \in \mathbb{R}$. Imamo

$$a_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos nx dx = 0,$$

$$b_n = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin nx dx = \frac{2}{\pi} \int_{0}^{\pi} \sin nx dx = \frac{-2}{\pi n} \cos nx \Big|_{0}^{\pi} = \frac{2}{\pi n} [1 - (-1)^n],$$

tj.
$$b_{2n} = 0$$
, $b_{2n-1} = \frac{4}{(2n-1)\pi}$, $n \in \mathbb{N}$.

Dakle,
$$S(x) = \sum_{n=0}^{\infty} \frac{\sin(2n+1)x}{2n+1}$$
, s tim da je $S(x) = f(x)$ za $x \neq n\pi$ i $s(n\pi) = \frac{f(-k\pi +) - f(k\pi -)}{2} = 0$.

Uniformna konvergencija nizova i redova 6.9funkcija

Neka je $(f_n)_n$ niz funkcija $f_n:I\to\mathbb{R},\ I\subseteq\mathbb{R},\ \forall n\in\mathbb{N}_0.$ Niz funkcija konvergira (obično ili po točkama) k funkciji $f:I:\to\mathbb{R},$ ako $\forall x\in I,$ $f(x) = \lim_{n \to \infty} f_n(x)$ **Primjer 6.26.** Neka je za $n \in \mathbb{N}$ funkcija

 $f_n:[0,1]\to\mathbb{R}$ definirana s

$$f_n(x) = \begin{cases} -nx + 1 & ; 0 \le x \le \frac{1}{n} \\ 0 & ; \frac{1}{n} \le x \le 1 \end{cases}$$

Vrijedi $f(x) = \lim_{n \to \infty} f_n(x) = 0, \ \forall x \in \langle 0, 1]$ i $f(0) = \lim_{n \to \infty} f_n(0) = 1$, tj. funkcija f ima prekid u točki 0. Dakle, obični limes niza funkcija ne čuva neprekidnost.

Cauchyjev oblik definicije limesa niza funkcija po točkama glasi:

$$(\forall x \in I)(\forall \varepsilon > 0)(\exists n_{\varepsilon} \in \mathbb{N})(\forall n \in \mathbb{N})((n > n_{\varepsilon}) \Rightarrow (|f_n(x) - f(x)| < \varepsilon)). \tag{6.40}$$

Definicija 6.7. Za niz funkcija $(f_n)_n$, $\forall n \in \mathbb{N}_0$, $f_n : I \to \mathbb{R}$, $I \subseteq \mathbb{R}$, kažemo da **uniformno** ili **jednoliko** konvergira k funkciji $f : I \to \mathbb{R}$ na I, ako

$$(\forall \varepsilon > 0) \ (\exists n_{\varepsilon} \in \mathbb{N}) \ (\forall x \in I) \ (\forall n \in \mathbb{N}) \ ((n > n_{\varepsilon}) \Rightarrow (|f_n(x) - f(x)| < \varepsilon)).$$

$$(6.41)$$

Teorem 6.17. Neka su $\forall n \in \mathbb{N}$, $f_n : I \to \mathbb{R}$, $I \subseteq \mathbb{R}$, neprekidne funkcije na I. Ako niz $(f_n)_n$ uniformno konvergira na I k funkciji $f : I \to \mathbb{R}$, onda je f neprekidna na I.

Dokaz: Uzmimo bilo koju točku $c \in I$ i dokažimo da je f neprekidna u c, tj.

$$(\forall \varepsilon > 0) \ (\exists \delta > 0)(\forall x \in I) \ ((|x - c| < \delta) \Rightarrow (|f(x) - f(c)| < \varepsilon)).$$

Neka je $\varepsilon > 0$ bilo koji. Iz uniformne konvergencije niza $(f_n)_n$ k f, postoji $n_{\varepsilon} \in \mathbb{N}$ tako da

$$(\forall x \in I) \ (\forall n \in \mathbb{N}) \ ((n > n_{\varepsilon}) \Rightarrow (|f_n(x) - f(x)| < \frac{\varepsilon}{3})). \tag{6.42}$$

Zbog neprekidnosti funkcije f_n u c vrijedi

$$(\exists \delta_n) \ (\forall x \in I) \ ((|x - c| < \delta_n) \Rightarrow (|f_n(x) - f_n(c)| < \frac{\varepsilon}{3})). \tag{6.43}$$

Uzmimo sada bilo koji $n>n_{\varepsilon}$ i stavimo $\delta=\delta_n,$ pa imamo

$$(|x-c| < \delta) \Rightarrow (|f(x)-f(c)| \le |f(x)-f_n(x)| + |f_n(x)-f_n(c)| + |f_n(c)-f(c)| < \varepsilon).$$
 Dakle, f je neprekidna u c , a onda i na I .

Neka je $\forall n \in \mathbb{N}, \ u_n: I \to \mathbb{R}, \ I \subseteq \mathbb{R},$ i neka je $\sum_{n=1}^{\infty} u_n$ red funkcija, a $s_n =$

 $\sum_{k=1}^{n} u_k$, $n \in \mathbb{N}$, njegove parcijalne sume. Red $\sum_{n=1}^{\infty} u_n$ uniformno konvergira na I, ako niz $(s_n)_n$ uniformno konvergira na I.

Teorem 6.18. Ako je svaki član reda funkcija $\sum_{n=1}^{\infty} u_n$ po apsolutnoj vrijednosti manji ili jednak od odgovarajućeg člana konvergentnog reda s pozitivnim članovima $\sum_{n=1}^{\infty} a_n$, tj.

$$|u_n(x)| \le a_n, \ \forall x \in I, \ \forall n \in \mathbb{N},$$
 (6.44)

onda red $\sum_{n=1}^{\infty} u_n$ uniformno konvergira na I.

186 6. REDOVI

Dokaz: Zbog (6.44) je red $\sum_{n=1}^{\infty} u_n(x)$ apsolutno majoriziran s konvergentnim redom $\sum_{n=1}^{\infty} a_n$, $\forall x \in I$. Tada red $\sum_{n=1}^{\infty} u_n(x)$ apsolutno konvergira $\forall x \in I$ i definira funkciju $f: I \to \mathbb{R}$, $f(x) = \sum_{n=1}^{\infty} u_n(x)$. Dokažimo da niz $(s_n)_n$ uniformno konvergira k f.

Uzmimo bilo koji ε > 0. Tada postoji $n_{\varepsilon} \in \mathbb{N}$ takav da $\forall n \in \mathbb{N}$, $(n > n_{\varepsilon}) \Rightarrow (\sum_{k=n}^{\infty} a_k < \varepsilon)$. Dakle, za $n > n_{\varepsilon}$, zbog $\forall x \in I$, $\left|\sum_{k=n}^{\infty} u_k(x)\right| \leq \sum_{k=n}^{\infty} |u_k(x)| \leq \sum_{k=n}^{\infty} a_k < \varepsilon$, vrijedi $\forall x \in I$, $|s_n(x) - f(x)| < \varepsilon$, tj. imamo uniformnu konvergenciju.

Korolar 6.5. Ako red potencija $\sum_{n=0}^{\infty} a_n x^n$ konvergira za neko $x_0 \in \mathbb{R}$, onda on uniformno konvergira na svakom segmentu $I \subseteq \langle -|x_0|, |x_0| \rangle$.

Dokaz: Uzmimo bilo koji segment $I \subseteq \langle -|x_0|, |x_0| \rangle$. Tada postoji $q \in [0, 1)$ takav da vrijedi $|x| \leq q|x_0|, \ \forall x \in I$. Pošto red $\sum_{n=0}^{\infty} a_n x_0^n$ konvergira, njegov opći član teži k nuli, pa postoji M > 0 takav da je $|a_n x_0^n| \leq M, \ \forall n \in \mathbb{N}$. Sada imamo $|a_n x^n| \leq |a_n x_0^n| \frac{|x|^n}{|x_0|^n} \leq Mq^n, \ \forall n \in \mathbb{N}$, pa po teoremu 6.18. red

$$\sum_{n=0}^{\infty} a_n x^n \text{ uniformno konvergira na } I.$$

Korolar 6.6. Ako je za svako $n \in \mathbb{N}$, $u_n : I \to \mathbb{R}$ neprekidna funkcija na I, te ako red $\sum_{n=1}^{\infty} u_n$ uniformno konvergira na I k $f : I \to \mathbb{R}$, onda je f neprekidna na I.

Teorem 6.19. Neka je za svaki $n \in \mathbb{N}$, $u_n : I \to \mathbb{R}$ neprekidna funkcija na I = [a,b], te neka red $\sum_{n=1}^{\infty} u_n$ uniformno konvergira na $I \ k \ f : I \to \mathbb{R}$. Tada za svaki $x \in I$ red $\sum_{n=1}^{\infty} \int_{a}^{x} u_n(t) dt$ uniformno konvergira na $I \ k \int_{a}^{x} f(t) dt$, tj.

vrijedi

$$\int_{a}^{x} \left(\sum_{n=1}^{\infty} u_n(t) \right) dt = \sum_{n=1}^{\infty} \int_{a}^{x} u_n(t) dt.$$
 (6.45)

Dokaz: Po prethodnom korolaru je $f: I \to \mathbb{R}$ neprekidna na I, pa za svaki $x \in I$ postoji $\int_a^x f(t)dt$. Označimo sa $s_n = \sum_{k=1}^n u_k$ i s $V_n = \sum_{k=1}^n U_k$, $U_k(x) = \sum_{k=1}^n u_k$

 $\int_{a}^{x} u_{k}(t)dt.$ Zbog uniformne konvergencije reda $\sum_{n=1}^{\infty} u_{n}$ za bilo koji $\varepsilon > 0$, postoji $n_{\varepsilon} \in \mathbb{N}$ takav da $\forall n \in \mathbb{N}, \forall t \in I, (n > n_{\varepsilon}) \Rightarrow (|f(t) - s_{n}(t)| < \frac{\varepsilon}{b-a})$. Tada za $F(x) = \int_{a}^{x} f(t)dt$ i $\forall x \in I$ imamo

$$\forall n \in \mathbb{N}, \forall x \in I, (n > n_{\varepsilon}) \Rightarrow |F(x) - V_n(x)| =$$

$$\left| \int_{a}^{x} f(t)dt - \int_{a}^{x} s_{n}(t)dt \right| \leq \int_{a}^{x} |f(t) - s_{n}(t)|dt < \varepsilon \frac{x - a}{b - a} \leq \varepsilon.$$

Dakle, red $\sum_{n=1}^{\infty} U_n$ uniformno konvergira k F.

Primjer 6.27. Integral i limes niza funkcija općenito ne komutiraju, ako konvergencija niza nije uniformna. Definirajmo f_n : $[0,\pi] \to \mathbb{R}, n \in \mathbb{N}$, na slijedeći način:

$$f_n(x) = \begin{cases} n \sin nx & ; 0 \le x \le \frac{\pi}{n} \\ 0 & ; \frac{\pi}{n} \le x \le \pi \end{cases}.$$

Funkcije f_n su neprekidne na I, $f(x) = \lim_{n} f_n(x) = 0$, $\forall x \in I$, $\int_{0}^{\pi} f(x)dx = 0$ i $\int_{0}^{\pi} f_n(x)dx = \int_{0}^{\frac{\pi}{n}} n \sin nx dx = 2$, $\forall n \in \mathbb{N}$.

Teorem 6.20. Neka za svaki $n \in \mathbb{N}$, funkcija $u_n : I \to \mathbb{R}$ ima neprekidnu derivaciju na I = [a, b], neka red $\sum_{n=1}^{\infty} u_n$ konvergira $k f : I \to \mathbb{R}$ na I i neka

 $red \sum_{n=1}^{\infty} u'_n \ uniform no \ konvergira \ k \ g: I \to \mathbb{R} \ na \ I. \ Tada \ je \ g = f' \ na \ I, \ tj.$

$$\left(\sum_{n=1}^{\infty} u_n\right)' = \sum_{n=1}^{\infty} u_n'.$$

188 6. REDOVI

Dokaz: Funkcija $g = \sum_{n=1}^{\infty} u'_n$ je suma uniformno konvergentnog reda neprekidnih funkcija na I, pa je i sama neprekidna na I. Po teoremu 6.19. funkciju g smijemo integrirati član po član, tj.

$$\int_a^x g(t)dt = \sum_{n=1}^\infty \int_a^x u_n'(t)dt =$$

$$\sum_{n=1}^\infty [u_n(x)-u_n(a)] = \sum_{n=1}^\infty u_n(x) - \sum_{n=1}^\infty u_n(a) = f(x) - f(a).$$
 Dakle, $g=f'$ na I .

Primjer 6.28. Derivacija i limes funkcija općenito ne komutiraju, ako konvergencija niza derivacija nije uniformna. Definirajmo $f_n: [-\pi, \pi] \to \mathbb{R}$, $n \in \mathbb{N}$, sa $f_n(x) = \frac{1}{n} \sin nx$, $\forall x \in I = [-\pi, \pi]$. Vrijedi $\lim_n f_n = 0$ uniformno na I, ali niz $(f'_n)_n$ ne konvergira na I.

A Algebra izjava

A.1 Izjave i veznici

Mnoga razmatranja u teoriji skupova postaju preglednija ako koristimo logičke simbole i logičke zakone konstruirane u toj logici. Iz tog razloga navodimo osnovne pojmove iz matematičke logike na koje ćemo se pozivati.

Osnovni objekti matematičke logike su izjave koje označavamo p, q, r, \ldots od kojih svaka može biti ili istinita ili lažna, ali ne i oboje. Od izjava se pomoću logičkih veznika i operatora negacije, uz upotrebu lijevih i desnih zagrada, slažu druge izjave.

Osnovni veznici su i, ili, ako...onda, onda i samo onda:

 $p \wedge q$ (i) konjunkcija , logički produkt, $p \vee q$ (ili) disjunkcija , logička suma, $p \Rightarrow q$ (ako...onda) implikacija, $p \Leftrightarrow q$ (onda i samo onda) ekvivalencija.

Operator negacije je $\neg p \ (ne \ p)$.

Ako s 1 označimo vrijednost istinite izjave, a s 0 vrijednost neistinite izjave, logički veznici i operator negacije definirani su slijedećom tabelom:

p	q	$p \wedge q$	$p \lor q$	$p \Rightarrow q$	$p \Leftrightarrow q$
0	0	0	0	1	1
0	1	0	1	1	0
1	0	0	1	0	0
1	1	1	1	1	1

p	$\neg p$	Ī
0	1].
1	0	

Logički zakoni ili tautologije su izjave sastavljene od slova p, q, r, \ldots i logičkih simbola $\land, \lor, \Rightarrow, \Leftrightarrow, \neg$, takve da kad slova zamijenimo bilo kakvim izjavama, istinitim ili lažnim, uvijek dobijemo istinitu izjavu.

Ako za neku izjavu želimo provjeriti da li je tautologija onda, koristeći definicione vrijednosti za logičke operatore iz tabele, uvrštavamo sve moguće istinosne vrijednosti za ulazna slova. Taj postupak za izjavu

$$(p \land q) \Rightarrow (p \lor r)$$

ispisujemo pomoću tabele:

p	q	r	$p \wedge q$	$p \vee r$	$(p \land q) \Rightarrow (p \lor r)$
0	0	0	0	0	1
0	0	1	0	1	1
0	1	0	0	0	1
0	1	1	0	1	1
1	0	0	0	1	1
1	0	1	0	1	1
1	1	0	1	1	1
1	1	1	1	1	1

U zadnjem stupcu tabele su samo jedinice, što znači da je gornja izjava tautologija.

Slijedeće tautologije su osnovni zakoni algebre logičkih izjava:

U upotrebi je i veznik $\underline{\vee}$ ekskluzivna disjunkcija (ekskluzivni ili) koji se definira sa $p \underline{\vee} q \stackrel{def}{\Leftrightarrow} (p \wedge \neg q) \vee (q \wedge \neg p)$. Izjava $p \underline{\vee} q$ je istinita ako i samo ako je istinita točno jedna od izjava p, q, tj. $(p \underline{\vee} q) \Leftrightarrow (p \vee q) \wedge \neg (p \wedge q)$.

A.2 Izjavne funkcije i kvantifikatori

Promatramo izjave s promjenljivom varijablom $\Phi(x)$. Ako za objekt x stavimo ime nekog objekta i ako tako dobivena izjava bude istinita onda kažemo da taj objekt zadovoljava izjavnu funkciju Φ . U nekim slučajevima je varijabla te funkcije ograničena nekim skupom A, a moguće je da nema ograničenja. Ta se činjenica opisuje pomoću kvantifikatora. Imamo dva kvantifikatora:

- ∀ univerzalni kvantifikator,
- \exists kvantifikator egzistencije.

Ako je neka funkcija ograničena konačnim skupom $A = \{a_1, \ldots, a_n\}$ onda vrijedi:

$$\forall (x \in A)\Phi(x) \Leftrightarrow \Phi(a_1) \land \Phi(a_2) \land \dots \land \Phi(a_n),$$

$$\exists (x \in A)\Phi(x) \Leftrightarrow \Phi(a_1) \lor \Phi(a_2) \lor \dots \lor \Phi(a_n).$$

Nadalje vrijedi:

$$\forall (x \in \emptyset) \Phi(x) \Leftrightarrow 1, \exists (x \in \emptyset) \Phi(x) \Leftrightarrow 0.$$

Za $a \in A$ imamo:

$$\forall (x \in A)\Phi(x) \Rightarrow \Phi(a) , \Phi(a) \Rightarrow \exists (x \in A)\Phi(x). \tag{A.1}$$

Pravila koja daju vezu između kvantifikatora i logičkih operacija su:

$$\forall x(\Phi(x) \land \Psi(x)) \Leftrightarrow (\forall x \Phi(x) \land \forall x \Psi(x)), \tag{A.2}$$

$$\exists x (\Phi(x) \lor \Psi(x)) \Leftrightarrow (\exists x \Phi(x) \lor \exists x \Psi(x)).$$
 (A.3)

Prethodne relacije govore o distributivnosti univerzalnog kvantifikatora na produkt i kvantifikatora egzistencije na sumu.

$$(\forall x \Phi(x) \lor \forall x \Psi(x)) \quad \Rightarrow \quad \forall x (\Phi(x) \lor \Psi(x)), \tag{A.4}$$

$$\exists x (\Phi(x) \land \Psi(x)) \Rightarrow (\exists x \Phi(x) \land \exists x \Psi(x)).$$
 (A.5)

Za prethodne dvije implikacije ne vrijedi obrat. Vezu kvantifikatora i operatora negacije daju izjave:

$$\neg(\forall x \Phi(x)) \Leftrightarrow \exists x (\neg \Phi(x)), \tag{A.6}$$

$$\neg(\exists x \Phi(x)) \Leftrightarrow \forall x (\neg \Phi(x)). \tag{A.7}$$

U slučaju kada je izjavna funkcija konstantna u implikacijama (A.1),(A.4), i (A.5) vrijedi ekvivalencija.

$$(\forall x)p \Leftrightarrow p, \tag{A.8}$$

$$(\exists x)p \Leftrightarrow p, \tag{A.9}$$

$$\forall x (p \lor \Phi(x)) \Leftrightarrow p \lor (\forall x \Phi(x)), \tag{A.10}$$

$$\exists x (p \land \Phi(x)) \Leftrightarrow p \land (\exists x \Phi(x)).$$
 (A.11)

$$(p \Rightarrow \forall x \Phi(x)) \Leftrightarrow \forall x (p \Rightarrow \Phi(x)),$$
 (A.12)

$$(\forall x \Phi(x) \Rightarrow p) \Leftrightarrow \exists x (\Phi(x) \Rightarrow p). \tag{A.13}$$

Izjavne funkcije mogu imati više argumenata, npr. $\Psi(x,y)$, $\Phi(x,y)$. Za njih vrijede isti zakoni (A.1) - (A.13), a u (A.7) - (A.13) može se uzeti izjavna funkcija koja ne zavisi o x.

Imamo slijedeća pravila:

$$\forall x \forall y \Phi(x, y) \Leftrightarrow \forall y \forall x \Phi(x, y), \tag{A.14}$$

$$\exists x \exists y \Phi(x, y) \Leftrightarrow \exists y \exists x \Phi(x, y).$$
 (A.15)

Iz tog razloga umjesto $\forall x \forall y$ pišemo skraćeno $\forall x,y,$ a umjesto $\exists x \exists y$ pišemo $\exists x,y.$ Vrijedi :

$$(\forall x \Phi(x) \lor \forall x \Psi(x)) \Leftrightarrow \forall x \forall y (\Phi(x) \lor \Psi(y)), \tag{A.16}$$

$$(\exists x \Phi(x) \land \exists x \Psi(x)) \Leftrightarrow \exists x \exists y (\Phi(x) \land \Psi(y)). \tag{A.17}$$

Za slučaj kombinacije kvantifikatora egzistencije i univerzalnog kvantifikatora imamo dijagram kao na slici (A.1), gdje je $\Phi(x, y)$ izjavna funkcija.

Slika A.1: Dijagram implikacija za kvantifikatore

B Elementarna teorija skupova

U ovom dodatku cilj je definirati osnovne operacije sa skupovima i ispitati njihova svojstva. Uvodimo i jednostavnu aksiomatiku dostatnu za izgradnju tzv. Boole-ove algebre skupova.

B.1 Skupovi i operacije sa skupovima

U ovoj točki uvodimo najjednostavniju aksiomatiku koja nam omogućava zasnivanje Boole-ove algebre skupova, tj. strukture u kojoj su definirane samo binarne i unarne operacije sa skupovima. Osnovni ili primitivni pojmovi su *skup* i *element skupa*.

AKSIOMI ELEMENTARNE TEORIJE SKUPOVA

(O) Aksiom obuhvatnosti:

Ako su A i B skupovi sastavljeni od jednih te istih elemenata onda se oni podudaraju, tj. A = B onda i samo onda ako vrijedi

$$\forall x ((x \in A) \Leftrightarrow (x \in B)).$$

(A) Aksiom unije:

Za bilo koje skupove A i B postoji skup kojem su elementi svi elementi skupa A i svi elementi skupa B i koji ne sadrži druge elemente, tj.

$$\forall A \forall B \exists C (\forall x ((x \in C) \Leftrightarrow ((x \in A) \lor (x \in B)))).$$

(B) Aksiom razlike:

Za bilo koje skupove A i B postoji skup kojem su elementi oni i samo oni elementi skupa A koji nisu elementi skupa B, tj.

$$\forall A \forall B \exists C (\forall x ((x \in C) \Leftrightarrow ((x \in A) \land (x \notin B)))).$$

(C) Aksiom egzistencije (postojanja):

Postoji barem jedan skup.

Teorem B.1. Skupovi čije postojanje slijedi iz (A) i (B) su jedinstveni.

Dokaz: Pretpostavimo da postoje dva skupa C_1 i C_2 koji zadovoljavaju uvjete aksioma (A). Tada vrijedi

$$\forall x \ \left((x \in C_1) \Leftrightarrow ((x \in A) \lor (x \in B)) \\ ((x \in C_2) \Leftrightarrow ((x \in A) \lor (x \in B)) \right) \Rightarrow ((x \in C_1) \Leftrightarrow (x \in C_2)).$$

Odatle po aksiomu (O) slijedi $C_1 = C_2$.

Analogno pretpostavimo da postoje dva skupa D_1 i D_2 koji zadovoljavaju uvjete aksioma (B). Tada vrijedi

$$\forall x \ \left((x \in D_1) \Leftrightarrow ((x \in A) \land (x \notin B)) \atop ((x \in D_2) \Leftrightarrow ((x \in A) \land (x \notin B)) \right) \Rightarrow ((x \in D_1) \Leftrightarrow (x \in D_2)).$$

Odatle po aksiomu (O) slijedi $D_1 = D_2$.

 $\pmb{Napomena}$ B.1. Kao posljedicu Teorema B.1. imamo mogućnost uvođenja jedinstvenih oznaka za uniju $A \cup B$ i za razliku $A \setminus B$.

Pomoću unije i razlike možemo definirati dvije nove operacije sa skupovima.

Definicija B.1. Presjek skupova A i B je skup

$$A \cap B = A \setminus (A \setminus B)$$
.

Napomena B.2. Iz definicije razlike slijedi

$$x \in A \cap B \Leftrightarrow (x \in A) \land \neg (x \in A \setminus B) \Leftrightarrow (x \in A) \land (\neg (x \in A) \lor (x \in B)) \Leftrightarrow$$

$$\Leftrightarrow ((x \in A) \land \neg (x \in A)) \lor ((x \in A) \land (x \in B)) \Leftrightarrow (x \in A) \land (x \in B).$$

Dakle

$$x \in A \cap B \Leftrightarrow (x \in A) \land (x \in B).$$
 (B.1)

B.2 Inkluzija i prazan skup

Definicija B.2. Za skupA kažemo da je podskup skupa B ako

$$\forall x ((x \in A) \Rightarrow (x \in B)). \tag{B.2}$$

Tada pišemo $A \subseteq B$ ili $B \supseteq A$.

Ako je $A \subseteq B$ i $A \neq B$, skup A zovemo pravim podskupom skupa B.

Očigledno vrijedi $(A \subseteq B) \land (B \subseteq A) \Rightarrow A = B$.

Navedimo i dokažimo najvažnija svojstva inkluzije.

Tranzitivnost inkluzije

$$(A \subseteq B) \land (B \subseteq C) \Rightarrow (A \subseteq C), \tag{B.3}$$

slijedi iz (B.2) i tranzitivnosti implikacije.

Unija skupova sadrži svaki pojedini skup, a presjek je sadržan u svakom pojedinom skupu, tj.

$$A \subseteq A \cup B$$
, $B \subseteq A \cup B$, (B.4)

$$A \cap B \subseteq A$$
, $A \cap B \subseteq B$. (B.5)

Inkluzije (B.4) slijede iz tautologije $p \Rightarrow p \lor q$, a inkluzije (B.5) slijede iz $p \land q \Rightarrow p$.

Razlika dva skupa je sadržana u skupu kojeg umanjujemo : $A \setminus B \subseteq A$.

Propozicija B.1. Relaciju inkluzije možemo definirati pomoću jednakosti i jedne od operacija \cup ili \cap .

$$A \subseteq B \Leftrightarrow (A \cup B = B) \Leftrightarrow (A \cap B = A).$$
 (B.6)

Dokaz: Ako je $A \subseteq B$ onda vrijedi $\forall x ((x \in A) \Rightarrow (x \in B))$. Pomoću tautologije $(p \Rightarrow q) \Rightarrow ((p \lor q) \Rightarrow q)$ slijedi

$$((x \in A) \lor (x \in B)) \Rightarrow (x \in B).$$

što dokazuje $A \cup B \subseteq B$. Zbog (B.4) slijedi prva ekvivalencija u (B.6). Analogno, koristeći tautologiju $(p \Rightarrow q) \Rightarrow (p \Rightarrow (p \land q))$ imamo $A \subseteq A \cap B$, odatle zbog (B.5) imamo drugu ekvivalenciju u (B.6).

Po aksiomu (B) postoji barem jedan skup A. Tada postoji i skup $A \setminus A$. Zbog $(x \in A \setminus A) \Leftrightarrow (x \in A) \land \neg (x \in A) \Leftrightarrow 0$ slijedi da taj skup ne sadrži niti jedan element. Kada bi postojala dva skupa Z_1 i Z_2 s prethodnim svojstvom, izjava $\forall x (x \in Z_1 \Leftrightarrow x \in Z_2)$ bi bila istinita jer su obje strane

lažne. Odatle po aksiomu (O) slijedi $Z_1 = Z_2$. Zbog jedinstvenosti skupa s prethodnim svojstvom koristimo oznaku \emptyset za taj skup. Dakle, $\forall x (x \notin \emptyset)$, tj. $(x \in \emptyset) \Leftrightarrow 0$.

Budući je implikacija s lažnom premisom uvijek istinita to vrijedi $\forall x (x \in \emptyset \Rightarrow x \in A)$ iz čega zaključujemo

$$\forall A(\emptyset \subset A).$$

Iz $x \in (A \cup \emptyset) \Leftrightarrow (x \in A) \lor (x \in \emptyset) \Rightarrow (x \in A) \lor 0 \Rightarrow (x \in A)$ zaključujemo $A \cup \emptyset \subseteq A$, što zajedno s(B.4) daje $A \cup \emptyset = A$. Analogno dobijemo $A \cap \emptyset = \emptyset$. Skupovi A i B su **disjunktni** ako nemaju zajedničkih elemenata, tj. $A \cap B = \emptyset$.

B.3 Zakoni unije, presjeka i oduzimanja

Slijedeće zakonitosti za operacije sa skupovima prvi je istražio John Boole (1813-1864).

Zakon komutativnosti:

$$A \cup B = B \cup A , A \cap B = B \cap A. \tag{B.7}$$

Ovi zakoni slijede iz zakona komutativnosti za disjunkciju i konjunkciju u algebri sudova.

Zakon asocijativnosti:

$$(A \cup (B \cup C)) = ((A \cup B) \cup C)$$
, $(A \cap (B \cap C)) = ((A \cap B) \cap C)$. (B.8)

Dokaz slijedi iz zakona asocijativnosti za disjunkciju i konjunkciju u algebri sudova.

Zakoni distributivnosti:

$$(A \cup (B \cap C)) = (A \cup B) \cap (A \cup C)$$
, $(A \cap (B \cup C)) = (A \cap B) \cup (A \cap C)$. (B.9)

Dokaz slijedi iz zakona distribucije disjunkcije prema konjunkciji i obratno.

Napomena B.3. Za konačan broj skupova $A_i(i=1,\ldots,n)$ i $B_j(j=1,\ldots,m)$ imamo

$$(\bigcup_{i=1}^{n} A_i) \cap (\bigcup_{j=1}^{m} B_j) = \bigcup_{i=1}^{n} \bigcup_{j=1}^{m} (A_i \cap B_j).$$

$$(\bigcap_{i=1}^{n} A_i) \cup (\bigcap_{j=1}^{m} B_j) = \bigcap_{i=1}^{n} \bigcap_{j=1}^{m} (A_i \cup B_j).$$

Zakoni idempotencije:

$$A \cup A = A$$
, $A \cap A = A$. (B.10)

Jednakosti u (B.10) slijede iz zakona idempotencije za sudove. Oduzimanje skupova nije obratna operacija uniji što se vidi iz

$$A \cup (B \setminus A) = A \cup B. \tag{B.11}$$

Nadalje vrijedi

$$A \setminus B = A \setminus (A \cap B), \tag{B.12}$$

što slijedi iz:

$$x \in (A \setminus (A \cap B)) \Leftrightarrow (x \in A) \land (x \notin A \cap B)) \Leftrightarrow (x \in A) \land ((x \notin A) \lor (x \notin B)) \Leftrightarrow$$
$$((x \in A) \land (x \notin A)) \lor ((x \in A) \land (x \notin B)) \Leftrightarrow$$
$$\Leftrightarrow (x \in A) \land (x \notin B) \Leftrightarrow x \in (A \setminus B).$$

Zakon distributivnosti množenja prema oduzimanju oblika

$$A \cap (B \setminus C) = (A \cap B) \setminus C, \tag{B.13}$$

što slijedi iz

$$x \in A \cap (B \setminus C) \Leftrightarrow (x \in A) \land x \in (B \setminus C) \Leftrightarrow (x \in A) \land (x \in B) \land (x \notin C) \Leftrightarrow x \in (A \cap B) \land (x \notin C) \Leftrightarrow x \in ((A \cap B) \setminus C).$$

Zakoni de Morgana za oduzimanje glase:

$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C),$$
 (B.14)

$$A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C).$$

Također vrijede jednakosti:

$$(A \cup B) \setminus C = (A \setminus C) \cup (B \setminus C), \tag{B.15}$$

$$A \setminus (B \cup C) = (A \setminus B) \setminus C.$$
 (B.16)

Vezu između relacije inkluzije i operacija unije, presjeka i razlike daju jednakosti:

$$(A \subseteq B) \land (C \subseteq D) \Rightarrow ((A \cup C) \subseteq (B \cup D)),$$
 (B.17)

$$(A \subseteq B) \land (C \subseteq D) \Rightarrow ((A \cap C) \subseteq (B \cap D)),$$
 (B.18)

$$(A \subseteq B) \land (C \subseteq D) \Rightarrow ((A \setminus D) \subseteq (B \setminus C)), \tag{B.19}$$

$$(C \subseteq D) \Rightarrow ((A \setminus D) \subseteq (A \setminus C)).$$
 (B.20)

B.4 Univerzalni skup i komplement

Za neki skup A možemo promatrati sve objekte koji nisu članovi tog skupa, tj. $\{x|x\not\in A\}$. Takav objekt općenito nije skup, suviše je opsežan. U konkretnim situacijama proučavamo samo one skupove koji su podskupovi nekog konkretnog skupa čiji članovi su objekti koji nas interesiraju (atomi). Takav skup zovemo univerzalni skup i označavamo sU. U tom slučaju očigledno vrijedi: $\forall A$

$$A \subseteq U$$
, $A \cap U = A$, $A \cup U = U$. (B.21)

Skup $U \setminus A = A^C = -A$ zovemo **komplement** skupa A (u odnosu na skup U).

Za skupove u idućim rezultatima ove točke pretpostavljamo da su podskupovi univerzalnog skupa U. Vrijede slijedeće osnovne jednakosti.

Propozicija B.2. Neka su A i B skupovi. Tada je

$$A \cap -A = \emptyset$$
, $A \cup -A = U$, (B.22)

$$-(-A) = A, (B.23)$$

$$-(A \cap B) = -A \cup -B$$
, $-(A \cup B) = -A \cap -B$. (B.24)

Jednakost (B.23) je pravilo dvostrukog komplementa, a (B.24) su de Morganovi zakoni za komplement.

Iz aksioma (B) je očigledno

$$A \setminus B = A \cap (U \setminus B) = A \cap -B = -(-A \cup B)$$

Propozicija B.3. Neka su A i B skupovi. Vrijede slijedeće ekvivalencije:

$$A \subseteq B \Leftrightarrow (A \cap -B = \emptyset),$$
 (B.25)

$$A \subseteq B \Leftrightarrow -B \subseteq -A \tag{B.26}$$

Dokaz: Za dokaz relacije (B.25) koristimo monotonost inkluzije na presjek

$$A \subseteq B \Rightarrow A \cap -B \subseteq B \cap -B = \emptyset \Rightarrow A \cap -B = \emptyset.$$

Obratno, ako je $A \cap -B = \emptyset$ onda

$$A = A \cap U = A \cap (B \cup -B) = (A \cap B) \cup (A \cap -B) = A \cap B \subseteq B.$$

Relacija (B.26) slijedi iz logičkog zakona o kontrapoziciji.

Napominjemo da su formule koje se dobivaju u Booleovoj algebri podskupova ekvivalentne odgovarajućim izjavama algebre sudova. Naime, samo je potrebno shvatiti skupove kao izjave, a simbole $\cap, \cup, =, \subseteq, -, \emptyset, U$ zamijeniti simbolima $\wedge, \vee, \Leftrightarrow, \Rightarrow, \neg, 0, 1$.

B.5 Kartezijev produkt

Definicija B.3. (Kolmogorov¹) Za bilo koja dva a i b definiramo skup

$$(a,b) = \{\{a\}, \{a,b\}\}$$
 (B.27)

koji nazivamo **uređeni par** elemenata a i b.

Teorem B.2. Da bi vrijedilo (a,b) = (c,d) nužno je i dovoljno da bude istinita izjava $(a = c) \land (b = d)$.

Dokaz: Neka je (a, b) = (c, d). Tada po (B.27) i aksiomu (O) imamo dva moguća slučaja:

(i)
$$\{a\} = \{c\} \text{ i } \{a,b\} = \{c,d\},\$$

(ii)
$$\{a\} = \{c, d\} \text{ i } \{a, b\} = \{c\}.$$

U slučaju (i)vrijedi $(a=c) \wedge (b=d).$ U slučaju (ii)imamo a=b=c=d. \Box

Jednostavna posljedica teorema B.2. je $(a, b) = (b, a) \Leftrightarrow a = b$.

Definicija B.4. Za bilo koje skupove X i Y označimo

$$X \times Y = \{(x, y) | (x \in X) \land (y \in Y)\}.$$
 (B.28)

Taj skup zovemo **Dekartov** ili **Kartezijev** produkt skupova X i Y.

Jasno je da za svaki skup X vrijedi $X \times \emptyset = \emptyset$ i $\emptyset \times X = \emptyset$. Navodimo neka jednostavna svojstva Dekartovog produkta.

Propozicija B.4. Neka su A, B i C skupovi. Vrijedi

$$(A \cup B) \times C = (A \times C) \cup (B \times C), \tag{B.29}$$

$$C \times (A \cup B) = (C \times A) \cup (C \times B),$$
 (B.30)

$$(A \cap B) \times C = (A \times C) \cap (B \times C), \tag{B.31}$$

$$C \times (A \cap B) = (C \times A) \cap (C \times B),$$
 (B.32)

$$(A \setminus B) \times C = (A \times C) \setminus (B \times C), \tag{B.33}$$

$$C \times (A \setminus B) = (C \times A) \setminus (C \times B). \tag{B.34}$$

Nadalje, neka su A, B, C i D skupovi. Tada je

$$C \times D \setminus A \times B = ((C \setminus A) \times D) \cup (C \times (D \setminus B)). \tag{B.35}$$

Dekartov produkt je monoton na \subseteq , tj. za $C \neq \emptyset$ vrijedi

$$A \subseteq B \Leftrightarrow (A \times C) \subseteq (B \times C) \Leftrightarrow (C \times A) \subseteq (C \times B). \tag{B.36}$$

¹Andrej Nikolaevič Kolmogorov (Tambov, 25. travanj 1903. − Moskva, 20. listopad 1987.) ruski matematičar

Dokaz: Za (B.29) imamo

$$(x,y) \in (A \cup B) \times C \Leftrightarrow (x \in A \cup B) \land y \in C \Leftrightarrow ((x \in A) \lor (x \in B)) \land (y \in C) \Leftrightarrow$$
$$((x \in A)) \land (y \in C)) \lor ((x \in B) \land (y \in C)) \Leftrightarrow$$
$$((x,y) \in (A \times C)) \lor ((x,y) \in (B \times C)) \Leftrightarrow (x,y) \in (A \times C) \cup (B \times C).$$

Jednakosti (B.30), (B.31), (B.32), (B.33) i (B.34) dokazuju se analogno. Dokažimo (B.35).

$$(x,y) \in C \times D \setminus A \times B \Leftrightarrow ((x,y) \in C \times D) \wedge ((x,y) \notin A \times B) \Leftrightarrow$$

$$((x \in C) \wedge (y \in D)) \wedge ((x \notin A) \vee (y \notin B)) \Leftrightarrow$$

$$((x \in C) \wedge (y \in D) \wedge (x \notin A)) \vee ((x \in C) \wedge (y \in D) \wedge (y \notin B)) \Leftrightarrow$$

$$(x \in (C \setminus A) \wedge (y \in D)) \vee ((x \in C) \wedge (y \in (D \setminus B))) \Leftrightarrow$$

$$((x,y) \in ((C \setminus A) \times D)) \vee ((x,y) \in (C \times (D \setminus B))) \Leftrightarrow$$

$$(x,y) \in ((C \setminus A) \times D) \cup (C \times (D \setminus B)).$$

Posljednja tvrdnja slijedi iz

$$A \subset B \Leftrightarrow A \setminus B = \emptyset \Leftrightarrow \emptyset = (A \setminus B) \times C = A \times C \setminus B \times C \Leftrightarrow A \times C \subseteq B \times C.$$

B.6 Beskonačne unije i presjeci

Skup čiji elementi su skupovi nazivamo familija skupova ili samo **familija**. Primjer takve familije je **partitivni skup** skupa A čiji članovi su svi podskupovi od A i koji označavamo s $\mathcal{P}(A)$ ili s 2^A .

Definicija B.5. Neka je $\mathcal{F} \subseteq \mathcal{P}(A)$ neprazna familija. Unija članova familije \mathcal{F} je skup $\bigcup \mathcal{F} = \{x \in A \mid \exists S \in \mathcal{F}, \ x \in S\}.$

Skup $\bigcup \mathcal{F}$ je najmanji skup (u smislu inkluzije) koji sadrži sve članove familije \mathcal{F} kao podskupove.

Definicija B.6. Neka je $\mathcal{F} \subseteq \mathcal{P}(A)$ neprazna familija. Presjek članova familije \mathcal{F} je skup $\bigcap \mathcal{F} = \{x \in A \mid \forall S \in \mathcal{F}, x \in S\}.$

Skup $\bigcap \mathcal{F}$ je najveći skup (u smislu inkluzije) koji je podskup svih članova familije $\mathcal{F}.$

201

B.7 Relacije i funkcije

Definicija B.7. Podskup R kartezijevog produkta $X \times Y$ nazivamo **relacija**. Da su dva elementa $a \in X$ i $b \in Y$ u relaciji R pišemo

$$\langle a, b \rangle \in R$$
 ili aRb .

Skup $\mathcal{D}(R) = \{x \in X \mid \exists y \in Y, xRy\}$ zovemo domena relacije. Kodomena relacije je $\mathcal{K}(R) = Y$.

Prazan skup \emptyset je relacija.

Ponekad se činjenica da $\langle x, y \rangle \notin R$ piše $x \not R y$.

Među najvažnijim relacijama je relacija ekvivalencije. Ona se javlja kod nastojanja da elemente skupa identificiramo na osnovi nekog njima zajedničkog svojstva. Na taj način se skup raspada na podskupove elemenata koji su identični u pogledu tog svojstva. Pošto uspoređujemo elemente istog skupa A jasno je da za relaciju ekvivalencije \sim vrijedi $\sim\subseteq A\times A$.

Definicija B.8. Relacija $\sim \subseteq A \times A$ je relacija ekvivalencije ako vrijedi:

 $(i) \sim \text{je refleksivna na } A$:

$$\forall x (x \sim x).$$

(ii) \sim je simetrična:

$$\forall x, y((x \sim y) \Rightarrow (y \sim x)).$$

(iii) \sim je tranzitivna:

$$\forall x, y, z((x \sim y) \land (y \sim z)) \Rightarrow (x \sim z).$$

Skup $[x] = \{y \in A \mid x \sim y\}$ nazivamo **klasom ekvivalencije** za element $x \in A$, a x nazivamo **reprezentantom** klase [x].

Za klase ekvivalencije vrijedi:

$$(i)$$
 $[x] = [y] \Leftrightarrow x \sim y,$

$$(ii)$$
 $[x] \cap [y] = \emptyset \Leftrightarrow x \nsim y$,

$$(iii) \ A = \bigcup_{x \in A} [x],$$

tj. familija $\{[x] \mid x \in A\}$ je particija skupa A. Tu familiju označavamo s A/\sim i nazivamo **kvocijentni skup** od A po relaciji \sim .

Također, među najvažnije relacije ubrajamo relacije uređaja ili poretka.

Definicija B.9. Relacija $\leq \subseteq A \times A$ se naziva relacijom **poretka** ili **uređaja** na skupu A ako vrijedi

- (1) $\forall x \in A \ (x \le x) \text{ refleksivnost},$
- (2) $\forall x, y, z \in A (((x \le y) \land (y \le z)) \Rightarrow (x \le z))$ tranzitivnost,
- (3) $\forall x, y \in A (((x \le y) \land (y \le x)) \Rightarrow (x = y))$ antisimetričnost.

Relacija s gornjim svojstvima još se naziva **parcijalni uređaj** . Antisimetričnost se može ekvivalentno iskazati s

(3)'
$$\forall x, y \in A (((x \le y) \land (x \ne y)) \Rightarrow \neg (y \le x)).$$

Uređaj < je linearan ili jednostavan ili totalan ako vrijedi

$$(4) \ \forall x, y \in A \ ((x \le y) \lor (y \le x)).$$

Ako relacija zadovoljava uvjete (1), (2) (i (4)) i nije antisimetrična, onda se zove (totalan) poluuređaj.

Kada imamo uređaj na A možemo definirati **strogi ili striktni uređaj** < na A tako da stavimo

$$\forall x, y \in A \ (x < y) \stackrel{def}{\Leftrightarrow} ((x \le y) \land (x \ne y)).$$

Strogi uređaj je **irefleksivan**, tj. $\forall x, y \in A \neg (x < x)$.

Ako je uređaj
 \leq linearan ili totalan onda sriktni uređaj možemo defini
rati sa

$$\forall x, y \in A \ (x < y) \stackrel{def}{\Leftrightarrow} \neg (y \le x)).$$

Linearnost strogog uređaja je svojstvo s nazivom trihotomija:

$$\forall x, y \in A \ (x = y) \lor (x < y) \lor (y < x).$$

Obratno, ako je zadan sriktni uređaj <, onda možemo definirati uređaj sa

$$\forall x, y \in A \ (x \le y) \stackrel{def}{\Leftrightarrow} ((x < y) \ \underline{\lor} \ (x = y)).$$

Iz svojstva trihotomije za striktni uređaj < slijedi antisimetričnost izvedenog uređaja \leq , odnosno relacija (3)':

$$\forall x, y \in A ((x \le y) \land (x \ne y)) \Rightarrow (x < y) \Rightarrow \neg ((y < x) \lor (x = y)) \Leftrightarrow \neg (y \le x).$$

Pojam funkcije svakako je jedan od najvažnijih pojmova u matematici. Intuitivno, pod tim pojmom podrazumjevamo jednoznačno pridruživanje elemenata jednog skupa elementima drugog skupa. Funkcija je specijalni slučaj među relacijama.

Definicija B.10. Relacija $F \subseteq A \times B$ je **funkcija** ako vrijedi:

- (1) $\forall x \in A, \exists y \in B (\langle x, y \rangle \in F)$
- $(2) \ \forall x \in A, \forall y, z \in B(((\langle x, y \rangle \in F) \land (\langle x, z \rangle \in F)) \Rightarrow (y = z)).$

Zbog jedinstvenosti, umjesto oznake $\langle x, y \rangle \in F$ ili xFy pišemo y = F(x), a umjesto $F \subseteq A \times B$ pišemo $F : A \to B$.

Za $C \subseteq A$ skup $f^1(C) = \{y \in B | \exists x \in C(y = f(x))\} = \{f(x) | x \in C\}$ zovemo slika skupa C po funkciji f. Jasno, $f^1(\emptyset) = \emptyset$.

B.8 Cantor-Bernsteinov teorem

Ovdje dajemo prilično jednostavan dokaz Cantor-Bernsteinovog teorema 1.9 (str. 38) koji smo koristili u točki 1.4 o ekvipotentnim skupovima.

Teorem B.3. Neka su A i B dva skupa i neka je $A \sim B' \subseteq B$ i $B \sim A' \subseteq A$. Tada vrijedi $A \sim B$.

Dokaz: Prema pretpostavci teorema postoje bijekcije $f: A \to B'$ i $g: B \to A'$. Želimo pokazati da postoji bijekcija $h: A \to B$.

Prvo pokažimo da postoji $T \subseteq A$ takav da je $A \setminus T = g^1(B \setminus f^1(T))$. Definirajmo funkciju $k : \mathcal{P}(A) \to \mathcal{P}(A)$ tako da za $X \subseteq A$ vrijedi $k(X) = A \setminus g^1(B \setminus f^1(X))$. Za funkciju k i bilo koja dva podskupa $X, Y \subseteq A$ vrijedi $(X \subseteq Y) \Rightarrow (k(X) \subseteq k(Y))$. Naime, $(X \subseteq Y) \Rightarrow (f^1(X) \subseteq f^1(Y)) \Rightarrow (B \setminus f^1(X) \supseteq B \setminus f^1(Y)) \Rightarrow (g^1(B \setminus f^1(X)) \supseteq g^1(B \setminus f^1(Y))) \Rightarrow (k(X) = A \setminus g^1(B \setminus f^1(X)) \subseteq A \setminus g^1(B \setminus f^1(Y)) = k(Y))$.

Neka je $\mathcal{F} = \{S \subseteq A \mid S \subseteq k(S)\}$ familija podskupova od A. Jasno, $\mathcal{F} \neq \emptyset$ jer je $\emptyset \subseteq k(\emptyset)$. Neka je T unija svih elemenata familije \mathcal{F} . Pokažimo da je $T \subseteq A$ fiksna točka preslikavanja k, tj. k(T) = T. Za svaki $S \in \mathcal{F}$ vrijedi $S \subseteq k(S)$ i $S \subseteq T$, a odatle je $k(S) \subseteq k(T)$, što daje $S \subseteq k(T)$. Tada je i $T \subseteq k(T)$, tj. $T \in \mathcal{F}$. Odatle imamo $k(T) \subseteq k(k(T))$, pa je i $k(T) \in \mathcal{F}$. To povlači $k(T) \subseteq T$, iz čega slijedi k(T) = T, odnosno $T = A \setminus g^1(B \setminus f^1(T))$ ili $A \setminus T = g^1(B \setminus f^1(T))$.

Sada konstruiramo funkciju $h:A\to B$ tako da je

$$h(x) = \begin{cases} f(x) & \text{za} & x \in T \\ g^{-1}(x) & \text{za} & x \in A \setminus T \end{cases}.$$

Funkcija h je očigledno tražena bijekcija. Dakle, $A \sim B$.

B.9 Konstrukcija potpunog uređenog polja $\mathbb R$

Označimo s $\mathbb{Q}^{\mathbb{N}}$ skup svih nizova racionalnih brojeva s operacijama zbrajanja i množenja definiranim na standardan način i neka je $\mathcal{C} \subset \mathbb{Q}^{\mathbb{N}}$ skup svih Cauchyjevih nizova u \mathbb{Q} (i $\varepsilon > 0$ u definiciji 2.8 može biti samo iz \mathbb{Q}).

Navodimo svojstva racionalnih Cauchyjevih nizova koja su nam potrebna u narednim konstrukcijama.

Propozicija B.5.

- (i.) Svaki niz iz C je ograničen.
- (ii.) Ako niz iz C ima konvergentan podniz, onda i niz ima isti limes kao i podniz.
- (iii.) Ako niz iz C ne konvergira k nuli, onda su gotovo svi članovi niza istog predznaka i strogo razdvojeni od nule, tj. $\exists \varepsilon > 0, \exists m \in \mathbb{N}$,

$$(\forall n \in \mathbb{N}(a_{m+n} \ge \varepsilon)) \ \underline{\vee} \ (\forall n \in \mathbb{N}(a_{m+n} \le -\varepsilon)).$$

(iv.) C je zatvoren na operacije zbrajanja i množenja.

Dokaz: Za dokaze tvrdnji (i.) i (ii.) vidi dokaz teorama 2.9, a dokaz tvrdnje (iv.) je analogan dokazu iste tvrdnje za konvergentne nizove u teoremu 2.4.

Za dokaz tvrdnje (iii.) pretpostavimo da niz $(a_n)_n \in \mathcal{C}$ ne konvergira k nuli. Onda niti jedan podniz niza $(a_n)_n$ ne konvergira k nuli, jer bi u suprotnom, zbog (ii), vrijedilo $\lim_n a_n = 0$. Dakle, 0 nije gomilite niza $(a_n)_n$, pa postoji interval oko nule radijusa $\varepsilon > 0$ izvan koje su gotovo svi članovi niza. Također nije moguće da s obije strane intervala bude beskonačno članova niza jer bi međusobna udaljenost takvih članova bila $\geq 2\varepsilon$, a to je u suprotnosti s definicijom 2.8 Cauchyjevog svojsva za taj ε .

Na skupu \mathcal{C} definiramo relaciju ekvivalencije \sim po kojoj su ekvivalentni oni nizovi $(a_n)_n$ i $(b_n)_n$ za koje je $\lim_n (a_n - b_n) = 0$. Na kvocijentnom skupu $\mathcal{R} = \mathcal{C}/\sim$ definiramo operacije zbrajanja i množenja klasa $[(a_n)_n]$ i $[(b_n)_n]$ pomoću operacija s reprezentantima $(a_n)_n$ i $(b_n)_n$, tj.

$$[(a_n)_n] + [(b_n)_n] = [(a_n + b_n)_n] i [(a_n)_n] [(b_n)_n] = [(a_n b_n)_n].$$

Lako se vidi da su ove definicije dobre jer operacije ne ovise o izboru reprezentanata, tj. za $(a'_n)_n \in [(a_n)_n]$ i $(b'_n)_n \in [(b_n)_n]$ imamo

$$\lim_{n} ((a_n + b_n) - (a'_n + b'_n)) = \lim_{n} ((a_n - a'_n) + (b_n - b'_n)) = 0,$$

dakle $(a'_n + b'_n)_n \in [(a_n + b_n)_n]$. Analogno je

$$\lim_{n} (a_n b_n - a'_n b'_n) = \lim_{n} ((a_n - a'_n) b_n + a'_n (b_n - b'_n)) = 0,$$

dakle $(a'_n b'_n)_n \in [(a_n b_n)_n].$

Teorem B.4. $(\mathcal{R}, +, \cdot)$ *je polje.*

Dokaz: Dokažimo da \mathcal{R} s prethodnim operacijama zadovoljava aksiome polja A1.-A9. (str. 29). Asocijativnost, komutativnost i distributivnost tih operacija su posljedice istih svojstava operacija u polju \mathbb{Q} , odnosno izvedenih operacija s racionalnim nizovima. Neutralni element za zbrajanje je klasa koja sadrži niz $(0)_n$, tj. $[(0)_n]$ je skup svih racionalnih nizova koji konvergiraju k nuli. Neutralni element za množenje je klasa koja sadrži niz $(1)_n$, tj. $[(1)_n]$ je skup svih racionalnih nizova koji konvergiraju k 1. Također je jasno da je za klasu $[(a_n)_n]$ suprotni element klasa $[(-a_n)_n]$. Ako je klasa $[(a_n)_n] \neq [(0)_n]$, onda niti jedan podniz niza $(a_n)_n$ ne konvergira k nuli, jer bi u suprotnom prema propoziciji B.5(ii.) vrijedilo $\lim_n a_n = 0$, tj. $[(a_n)_n] = [(0)_n]$. Prema propoziciji B.5(iii.) postoji okolina nule izvan koje su gotovo svi članovi niza. Sada uzmimo niz $(a'_n)_n$ za kojeg je $a'_n = a_n$ ako je a_n izvan prethodne okoline, i $a'_n = 1$ ako je a_n u toj okolini. Jasno je da vrijedi $\lim_n (a_n - a'_n) = 0$, tj. $[(a_n)_n] = [(a'_n)_n]$, a odatle vidimo da je $[(a_n)_n]^{-1} = [(a'_n)_n]^{-1} = [(\frac{1}{a'_n})_n]$.

Na \mathcal{R} definiramo strogi uređaj \prec među različitim klasama tako da stavimo

$$[(a_n)_n] \prec [(b_n)_n] \stackrel{def}{\Leftrightarrow} \exists \varepsilon > 0, \exists m \in \mathbb{N}, \forall n \in \mathbb{N}, (n > m) \Rightarrow (b_n - a_n \ge \varepsilon > 0).$$

U gornjoj definiciji je dovoljno staviti $b_n - a_n \ge \varepsilon > 0$ za beskonačno $n \in \mathbb{N}$. Naime, po propoziciji B.5.(iii.) niz $(b_n - a_n)_n$ ne može imati beskonačno članova s obije strane oko nule, nego su gotovo svi s iste strane nule i separirani od nule s nekim $\varepsilon > 0$. Također, ako je $[(a_n)_n] \prec [(b_n)_n]$ i $(a'_n)_n \in [(a_n)_n]$ i $(b'_n)_n \in [(b_n)_n]$, onda za gotovo sve članove vrijede nejednakosti $b_n - a_n \ge \varepsilon$, $|a_n - a'_n| < \frac{\varepsilon}{3}$ i $|b_n - b'_n| < \frac{\varepsilon}{3}$. Odatle je $b'_n - a'_n = (b_n - a_n) + (b'_n - b_n) - (a'_n - a_n) > \varepsilon - \frac{\varepsilon}{3} - \frac{\varepsilon}{3} = \frac{\varepsilon}{3}$, tj. $[(a'_n)_n] \prec [(b'_n)_n]$. Dakle, definicija uređaja \prec ne ovisi o izboru reprezentanata.

Sada na \mathcal{R} definiramo uređaj \leq među klasama tako da stavimo

$$[(a_n)_n] \preceq [(b_n)_n] \stackrel{def}{\Leftrightarrow} ([(a_n)_n] \prec [(b_n)_n]) \underline{\vee} ([(a_n)_n] = [(b_n)_n]).$$

Teorem B.5. $(\mathcal{R}, +, \cdot, \preceq)$ je uređeno polje.

Dokaz: Dokažimo da uređaj \leq zadovoljava aksiome uređenog polja A10. - A14. (str. 31). Refleksivnost uređaja \leq direktno slijedi iz njegove definicije pomoću striktnog uređaja \prec , a trihotomija strogog uređaja iz propozicije B.5.(iii.). To povlači linearnost i antisimetričnost uređaja \leq .

Za dokaz tranzitivnosti strogog uređaja \prec pretpostavimo da je $[(a_n)_n] \prec [(b_n)_n]$ i $[(b_n)_n] \prec [(c_n)_n]$ - To znači da za gotovo sve članove nizova vrijedi $b_n - a_n \geq \varepsilon_1 > 0$ i $c_n - b_n \geq \varepsilon_2 > 0$. Tada za gotovo sve članove vrijedi $c_n - a_n = (c_n - b_n) + (b_n - a_n) \geq \varepsilon_1 + \varepsilon_2 > 0$, odnosno $[(a_n)_n] \prec [(c_n)_n]$. Usklađenost operacije zbrajanja sa strogim uređajem vrijedi jer za $b_n - a_n \geq \varepsilon > 0$ imamo $(b_n + c_n) - (a_n + c_n) = b_n - a_n \geq \varepsilon > 0$. Usklađenost množenja i strogog uređaja za $c_n \geq \delta > 0$ slijedi iz $b_n c_n - a_n c_n \geq (b_n - a_n) c_n \geq \varepsilon \delta > 0$. Odatle odmah slijede tranzitivnost i usklađenost s operacijana uređaja \preceq . \Box

Označimo s $\mathcal{Q} \subset \mathcal{R}$ skup svih klasa koje sadrže konstantne racionalne nizove $(q)_n$ (niz čiji su svi članovi jednaki q). To su klase gdje svi nizovi u klasi konvergiraju k istom racionalnom broju q. \mathcal{Q} je **izomorfan** uređenom polju $(\mathbb{Q},+,\cdot,\leq)$. To znači da postoji bijekcija $f:\mathbb{Q}\to\mathcal{Q}$ tako da $\forall q_1,q_2\in\mathbb{Q}$ vrijedi $f(q_1+q_2)=f(q_1)+f(q_2),\ f(q_1\cdot q_2)=f(q_1)\cdot f(q_2)$ i $(q_1< q_2)\Rightarrow (f(q_1)\prec f(q_2))$. Ta bijekcija je zadana s $\forall q\in\mathbb{Q},\ f(q)=[(q)_n]$. Stoga je $(\mathcal{Q},+,\cdot,\preceq)$ također uređeno polje koje nije potpuno.

Teorem B.6. $(\mathcal{R}, +, \cdot, \preceq)$ potpuno uređeno polje.

Dokaz: Primjetimo da za svako $[(a_n)_n] \in \mathcal{R}$ postoje $[(m)_n], [(M)_n] \in \mathcal{Q}$ takvi da je $[(m)_n] \prec [(a_n)_n] \prec [(M)_n]$. Naime, prema propoziciji B.5 .(i.) niz $(a_n)_n$ je ograničen u \mathbb{Q} , tj. $\exists m, M \in \mathbb{Q}, \forall n \in \mathbb{N}, m+1 \leq a_n \leq M-1$. Tada vrijedi $\forall n \in \mathbb{N}, a_n - m \geq 1$ i $M - a_n \geq 1$, odnosno $[(m)_n] \prec [(a_n)_n]$ i $[(a_n)_n] \prec [(M)_n]$.

Pokažimo da za $(\mathcal{R}, +, \cdot, \preceq)$ vrijedi aksiom potpunosti A15.(str. 33).

Neka je $S \subset \mathcal{R}$ bilo koji neprazan odozgo omeđen skup, neka je $[(M)_n] \in \mathcal{Q}$ njegova majoranta i neka $[(m)_n] \in \mathcal{Q}$ nije njegova majoranta (takva klasa postoji jer je S neprazan). Stavimo $m_0 = m$ i $M_0 = M$ i konstruiramo racionalne nizove $(m_n)_n$ i $(M_n)_n$ na slijedeći način:

za svako $k \in \mathbb{N} \cup \{0\}$ označimo $s_k = \frac{m_k + M_k}{2}$. Pretpostavimo da su za neko $k \in \mathbb{N} \cup \{0\}$ vrijednosti m_k i M_k određene. Ako je $[(s_k)_n] \in \mathcal{Q}$ majoranta od S stavimo $m_{k+1} = m_k$ i $M_{k+1} = s_k$, a u suprotnom stavimo $m_{k+1} = s_k$ i $M_{k+1} = M_k$. Očito su $(m_n)_n$ i $(M_n)_n$ racionalni Cauchyjevi nizovi jer vrijedi $0 \le m_{k+1} - m_k \le \frac{M_k - m_k}{2}$, $0 \le M_k - M_{k+1} \le \frac{M_k - m_k}{2}$ i $0 \le M_{k+1} - m_{k+1} = \frac{M_k - m_k}{2} = \frac{M - m}{2^{k+1}}$. Iz konstrukcije je jasno da $\forall k \in \mathbb{N}$, $[(M_k)_n] \in \mathcal{Q}$ je majoranta od S, a $[(m_k)_n] \in \mathcal{Q}$ nije majoranta od S.

Pokažimo da je $[(M_n)_n] \in \mathcal{R}$ majoranta od S. U suprotnom bi postojala klasa $[(b_n)_n] \in S$ tako da je $[(M_n)_n] \prec [(b_n)_n]$, tj. za neko $\varepsilon > 0$ i za gotovo sve $n \in \mathbb{N}$ vrijedi $b_n - M_n \ge \varepsilon > 0$. Niz $(M_n)_n$ je nerastući Cauchyjev niz pa za gotovo sve $k \in \mathbb{N}$ i sve $n \in \mathbb{N}$ vrijedi $M_k - M_{k+n} < \frac{\varepsilon}{2}$. Odatle, za gotovo sve $k \in \mathbb{N}$ i sve $n \in \mathbb{N}$ imamo $b_{k+n} - M_k = b_{k+n} - M_{k+n} + (M_{k+n} - M_k) \ge \varepsilon - \frac{\varepsilon}{2} = \frac{\varepsilon}{2}$, tj. za gotovo sve $k \in \mathbb{N}$ je $[(M_k)_n] \prec [(b_n)_n]$. To nije moguće jer su za sve $k \in \mathbb{N}$ klase $[(M_k)_n]$ majorante skupa S.

Uočimo da vrijedi $\lim_n (M_n - m_n) = 0$, pa je $[(m_n)_n] = [(M_n)_n]$. Pretpostavimo da je $[(b_n)_n] \prec [(M_n)_n]$ majoranta skupa S. Tada je $[(b_n)_n] \prec [(m_n)_n]$, pa postoji $\varepsilon > 0$ takav da za gotovo sve $n \in \mathbb{N}$ vrijedi $m_n - b_n \geq \varepsilon$. No, $(m_n)_n$ je neopadajući Cauchyjev niza pa za gotovo sve $k \in \mathbb{N}$ i sve $n \in \mathbb{N}$ vrijedi $m_{k+n} - m_k < \frac{\varepsilon}{2}$. Odatle, za gotovo sve $k \in \mathbb{N}$ i sve $n \in \mathbb{N}$ imamo $m_k - b_{k+n} = m_k - m_{k+n} + (m_{k+n} - b_{k+n}) \geq -\frac{\varepsilon}{2} + \varepsilon = \frac{\varepsilon}{2}$, tj. za gotovo sve $k \in \mathbb{N}$ je $[(b_n)_n] \prec [(m_k)_n]$. Pošto $[(m_k)_n]$ nisu majorante skupa S, to niti $[(b_n)_n]$ nije majoranta skupa S. Dakle, $[(M_n)_n] = \sup S \in \mathcal{R}$.

Kazalo

A Abel, 4 aksiom Arhimedov, 8, 33 Peanovi, 2 potpunosti, 33 antisimetričnost, 204 aproksimacija, 8, 89 funkcije, 91, 118 nultočke, 121 površine, 126 apsorpcija logička, 192 Arhimed, 8 asocijativnost disjunkcije, 192 konjunkcije, 192	C Cantor, 36 Cauchy, 56 Cesaro, 50 D d'Alembert, 167 Darboux, 127 de Morganovi zakoni logički, 192 za skupove, 199 derivacija, 90 Descartes, 9 Dirichlet, 182 disjunkcija, 191 distributivnost kvantifikatora, 193 logička, 192
presjeka, 198 unije, 198	presjeka na uniju, 198 unije na presjek, 198
B Bernstein, 38 binarna operacija zbrajanje, 3 Briggs, 23	E ekvipotentni skupovi, 38 ekvivalencija, 191 Euler, 182 Eulerova formula, 59
brojevi cijeli, 4 decimalni, 8 racionalni, 5 brojevni pravac, 8 brzina, 89 prosječna, 89	F Fourier, 182 funkcija, 10, 205 apsolutna vrijednost, 13 arcus, 28 area, 24 bijekcija, 19

KAZALO 209

derivabilna, 90	grupa	
diferencijabilna, 90	komutativna, 4	
domena, 10		
eksponencijalna, 21, 36, 52	I	
na C, 59	idempotentnost	
elementarna, 29	logička, 192	
gama, 157	skupovna, 199	
graf, 10	implikacija, 191	
hiperbolne, 23	infimum, 35	
injekcija, <mark>18</mark>	integral	
inverzna, 18	donji, 127	
izjavna, 193	gornji, 127	
više argumenata, 194	neodređeni, 141	
kodomena, 10	nepravi, 153	
korijen, 21	Riemannov, 128	
kvadratna, 15	interpolacija	
linearna, 12	čvorovi, 119	
logaritamska, 22	polinomom, 119	
monotona, 11		
po dijelovima, 134	K	
neprekidna, 70	Kartezijev produkt, 9, 201	
uniformno, 135	Kartezijeva ravnina, 9	
opća potencija, 23	Kolmogorov, 201	
padajuća, 11	kompozicija funkcija, 17	
polinom, 16	komutativnost	
prekidna, 72	disjunkcije, 192	
primitivna, 138 racionalna, 17	konjunkcije, 192	
rastuća, 11	konjunkcija, 191	
razlomljena linearna, 16	kontrapozicija, 192	
restrikcija, 10	konvergencija	
Riemannova, 137	niza, 44	
surjekcija, 19	uniformna, 184	
trigonometrijske, 25	reda, 161	
	apsolutna, 166	
\mathbf{G}	uniformna, 185	
gomilište niza, 55	koordinatni sustav, 9	
graničnu vrijednost, 45	kvantifikator	
greška	egzistencije, 193	
apsolutna, 14	univerzalni, 193	
relativna, 14	kvocijent diferencija, 90	

210 KAZALO

${f L}$	O
L'Hospital, 117	obuhvatnost, 195
Lagrange, 102	operator negacije, 191
Lebesgue, 138	
Leibniz, 90	P
limes	Peano, 2
inferior, 55	podniz, 44
superior, 55	polinom, 16
limes funkcije, 63	interpolacijski, 119
Cauchyjeva definicija, 64	Lagrangeov, 119
jednostrani, 68	Taylorov, 106
$\overline{\mathbb{R}}, 67$	polje, 6
limes niza, 44	kompleksnih brojeva, 57
funkcija, 52	realnih brojeva, 31
u C, 60	uređeno, 32
$u \overline{\mathbb{R}}, 45$	poluuređaj, 204
u R, 44	D
,	R
M	radijan, 25
majoranta, 33	red, 159
maksimum, 33	binomni, 178
matematička indukcija, 2	Fourierov, 181
metoda tangenti, 122	funkcija, 173
minimum, 35	geometrijski, 160
mjera, 125	harmonijski, 162
3) -	konvergentan, 161
N	kriterij konvergencije
nepravi integral	Cauchyjev, 168 D'Alembertov, 167
kriterij konvergencije, 155	integralni, 170
neprekidnost funkcije, 70	Leibnizov, 167
jednostrana, 84	parcijalna suma, 159
Newton, 89	potencija, 173
niz, 43	radijus konvergencije, 173
Cauchyjev, 56	produkt redova, 171
fundamentalan, 56	Taylorov, 177
funkcija, 52	trigonometrijski, 181
konvergentan, 44	refleksivnost, 204
padajući, 43	relacija, 203
podniz, 44	domena, 203
rastući, 43	ekvivalencije, 203
1 a5 tuci, 45	ervivaiencije, 200

KAZALO 211

kodomena, 203	linearan, 6, 204
poretka, 204	parcijalni, 6, 204
uređaja, 204	uređeni par, 201
Riemann, 126	***
Rolle, 102	W
2	Weierstrass, 55
S	
sekanta, 90	
skup	
gust, 35	
gust u sebi, 7	
komplement, 200	
mjere nula, 138	
neprebrojiv, 40	
otvoren, 86	
podskup, 197	
prebrojiv, 39	
presjek, 196	
univerzalni, 200	
zanemariv, 138	
zatvoren, 86	
sljedbenik, 2	
Stolz, 49	
suma	
Darbouxova, 127	
integralna, 127	
reda, 161	
parcijalna, 159	
u smislu Césara, 188	
supremum, 33	
Т	
tangenta, 90	
koeficijent smjera, 90	
tautologija, 191	
Taylor, 106	
tranzitivnost, 204	
implikacije, 192	
U	
uređaj, 3	
jednostavan, 204	