- messages are sent in frames that include the message identitier (msg.ID) - there are no addresses - the msg.ID, defines the privrity (lower ID) => higher privrity)
message identitier (msg.ID)
- there are no addresses
- the msg.ID, defines the privity (lower ID
=> higher priority)
- 4 frame types: data, remote (request for data), error,
- 4 frame types: data, remote (request for data), error,
- standard frame format
- standard frame format SOF ATR IDE reserved deliniter ACK Tolk.
- Standard frame format SOF ATR JUE reserved O THINH ID TO DLC 0-8 bytes data CRC BOF
hus remote data end redundany of
alle transmission length, check frame
start request circle (0-8) (15-614) (71'5)
of the day of days
frame liremote frame) receiving nides
/M Matter
IDE = Identifier Extension bit indicate (0:11-bit ID, 1:29-bit) success
(0:11-bit In, 1:29-bit) success
- arbitration (negotiating for control of the bus)
- CAN controllers wait until the bus is i'dle to
transmit a frame
- in the case that multiple controllers start at the
- CAN controllers wait until the bus is rolle to transmit a frame - in the case that multiple controllers start at the same time, the value read from the bus is the logical AND of the values transmitted
logical AND of the values transmitted

(4)
eg. nude A sends message with ID = 11001000111 nude B sends message with ID = 11011000111 nude A and nude B start transmitting at the same time sof ID
nude A and node & start transmitting at the same time
SOF ID of the
rude A transmits 110,0110,0,011111
nerde B transmite [1] [DIE nerde Breads different value than it transmitted so styps
nurle B transmits [1] OI's nurle B reads different value than it transmitted so styps transmitting nodes A +B receive [1] 100110,0011111
- node A has the lover message ID and hence the higher priority, so it wen the arbitration
- CAN is suitable for real-time because:
- CAN is suitable for real-time because: (1) in the case of arbitration, the high-providy message experiences zero delay
message experiences zero delas
2) if a message becomes ready during transmission of another frame, it will have bounded delay
- schedule analysis similar to RM has been developed for EAN messages
and morninges

	- bit stuffing
	- nodes (synchronize their CAN clicks on the
	- nodes can get out of sync it there is a long
	sequence with no transitions in bit value (polarity)
	- therefore a bit of apposing polarity is inserted
	- ruded can get out of sync if there is a long sequence with no transitions in bit value (polarity) - therefore a bit of apposity polarity is inserted after every sequence of 5 bits of like polarity
	eg. 1000000011111101
	becomes 100000101111001
	- when a nucle detects an error it outputs the error flag = 000000
	error flag = 000000
	- in this case the transmitter will attempt to
	resend the frame
	(11) 0 man (mi man)
	- CAN error sources: polarity - transmitter reads different bit than it transmitted - bit stuffing (6 bits of same polarity) - frame check (missing deliminator bits, but EOF) - ACK check (no. ACK received) - CRC check (checksum error)
	- hit stuffing (6 hite of same molarity)
	- frame check (mosing deliminator bits, but EOF)
	- ACK check (no. ACK received)
	- CRC check (checksum error)
L	- the EOF is 7 recessive (1) bits so an out-of-sync
	- the EOF is 7 recessive ("1") bits so an out-of-sind nucle can detect 6 recessive bits as a bit-stuffing error, and start the error flag on the 75.7th bit of the EOF
	error and start the error thang on the 121 bit
	of the Eur

- the receiver computes the CRC to verify that it gets "voo" back

message check value

10011001 100

\text{\texi{\text{\texi{\text{\text{\text{\text{\texit{\tex{

		2) OSI Model [Tanenbaum] - published in 1984 - Open Systems Interconnection (Reference) Model - describes 7 abstraction layers of networks
to-end	_,	Application &
enth	15	Session \(\) Session \(\) - dialogue central (sylle: checkpoints) Transport \(\) \(\) Transport \(\) - orders messages
e-to-machine	(3	Network &-> Network - routing Datalink e-> Datalink e-> Datalink - framing error detection
Machin	(1	Physical & Physical - how bits are sent (elec., mech. specs)
		eg, physical datalink layer R\$232 (serial, comm.) PPP Groint to point protocol, CAN transceiver CAN condroller 100 BASE-T (tursted pair) ethernet

	- some lay	yers sub	_ strips divide	It of	f of d	ata received
Message Segmen	v it	T	CP Hdr.	Appa	User Pat User Pat	Application TCP IP
Datagn	(WC	IB Hdr.				Ethernet
trame	1		Datagro	im		17
	ethernetheade	<u></u>				othernet trailer
	122B		20 B			14B
		€	46-1500	OB —		>17
					32-	5A CRC

- IP header includes a 32-bit (IPv4) or
128-bit (IPv6) address
- Domain Name Server (DNS) hosts translate
domain names to IP addresses
- Internet Corporation for Assigned Names and
Numbers (ICANN) oversees global IP
address allocation and manages the ty-level
DNS hosts
- Internel layer vortes datagrams hop by hop
. - unreliable: there can be loss, duplication,
delay, out-of-order

- is an end-to-end protocol - creates a virtual "circuit" between hosts

(eg. like establishing a telephone connection) uses handshaking (via ACK messages) and sequence numbers) to ensure all data get to the receiving host in order

data is treated as a continuous of bytes delivered in segments of at moso 64 kiB (often 1460 B) to fit in an Ethernet frame with IP header (20 B) and TCP header (20 B)