

Variables aléatoires

1. Généralités

Dans ce chapitre, (Ω, P) désigne un espace probabilisé fini.

Définition 1.1

Une variable aléatoire définie sur Ω à valeurs dans un ensemble E est une application $X:\Omega\to E$. On dit que X est réelle si $E=\mathbb{R}$.

Théorème 1.2

Soit $X: \Omega \to E$ une variable aléatoire. L'application

$$P_X: \mathscr{P}(E) \rightarrow [0,1]$$

 $A \mapsto P(X^{-1}(A))$

est une probabilité sur E. On dit alors que P_X est la loi de X.

Notation 1.3

Soit $X: \omega \to E$ une variable aléatoire.

- Pour toute partie A de E, l'événement $X^{-1}(A)$ est plutôt noté $(X \in A)$.
- Pour tout $x \in E$, l'événement $X^{-1}\{x\}$ est noté (X = x).
- Dans le cas où $E = \mathbb{R}$, on note $(X \leq b) = X^{-1}(]-\infty,b]), <math>(X < b) = X^{-1}(]-\infty,b[), (X \geq a) = X^{-1}([a,+\infty[),(X > a) = X^{-1}(]a,+\infty[)$ et $(a \leq X \leq b) = X^{-1}([a,b])$ et ainsi de suite.

Remarque 1.4

Soit $X: \Omega \to E$ une variable aléatoire. L'image de Ω est finie. Donc P_X est entièrement déterminée par les nombres P(X=x) pour $x \in X(\Omega)$.

Exemple 1.5

On lance un dé équilibré deux fois de suite. On note alors S la somme des deux résultats obtenus. Déterminer la loi de S.

On modélise l'expérience aléatoire part l'espace probabilisé $\Omega = \{1,...,6\}^2$ et P l'équiprobabilité sur Ω . Dans ce cas, $S: (\omega_1, \omega_2) \mapsto \omega_1 + \omega_2$. L'image de S est $S(\Omega) = \{2,...,12\}$. La loi de S est donnée dans le tableau ci-dessous

											12
D/W	1	2	3	4	5	6	5	4	3	2	1
P(X=x)	$\overline{36}$										

1

On peut "vérifier" nos résultats à l'aide d'une simulation informatique.

Définition 1.6

La fonction de répartition d'une variable aléatoire réelle X est la fonction $F_X: x \in \mathbb{R} \to P(X \leq x)$.

Exemple 1.7

On reprend l'exemple de la somme des deux dés. Le graphe de la fonction de répartition de S est donné ci-dessous.

Proposition 1.8

La loi d'une variable aléatoire réelle est entièrement déterminée par sa fonction de répartition.

2. Lois usuelles

2.1. Loi uniforme.

Exemple 2.1

On lance un dé à 20 faces équilibré et on note X le résultat. Quelle est la loi de X?

Définition 2.2

Soit $X : \Omega \to \mathbb{R}$ une variable aléatoire. On dit que X suit la loi uniforme si P_X est l'équiprobabilité sur $X(\Omega)$, c'est-à-dire

$$\forall x \in X(\Omega), P(X = x) = \frac{1}{N} \text{ avec } N = \#X(\Omega).$$

En notant $X(\Omega) = \{x_1, ..., x_N\}$, on note cette situation $X \sim \mathcal{U}(x_1, ..., x_N)$.

2.2. Loi de Bernoulli. Situation classique On considère une expérience aléatoire qui a deux résultats possibles : succès ou échec. On note p la probabilité de succès et X la variable aléatoire qui vaut 0 en cas d'échec et 1 en cas de succès. Quelle est la loi de X?

Définition 2.3

Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire. On dit que X suit une loi de Bernoulli de paramètre p si

- (1) $X(\Omega) \subset \{0, 1\}$
- (2) P(X=1) = p.

Dans ce cas, on note $X \sim \mathcal{B}(p)$.

2.3. Loi binomiale. Situation classique On considère une expérience aléatoire qui a deux résultats possibles : succès ou échec. On note p la probabilité de succès. On répète n fois cette expérience aléatoire à l'identique. On note X le nombre de succès obtenus. Quelle est la loi de X?

Définition 2.4

Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire. On dit que X suit la loi binomiale de paramètres $n\in\mathbb{N}$ et $p\in[0,1]$ si

- (1) $X(\omega) \subset \{0, 1, 2, ..., n\}$
- (2) $\forall k \in X(\Omega), \ P(X = k) = \binom{n}{k} p^k (1 p)^{n k}.$

On note alors $X \sim \mathcal{B}(n, p)$.

2.4. Loi hypergéométrique (Hors-programme). Situation classique On dispose d'un stock de N pièces, dont n sont défectueuses. On prélève simultanément k pièces et on note X le nombre de pièces défectueuses dans l'échantillon de k pièces. Quelle est la loi de X?

Définition 2.5

Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire. On dit que X suit la loi hypergéométrique de paramètres N, n, k si

$$(1) \ X(\Omega) \subset \{0,1,...,k\}$$

(2)
$$\forall i \in \{0, 1, ..., k\}, \ P(X = i) = \frac{\binom{n}{i} \binom{N-n}{k-i}}{\binom{N}{k}}.$$

On note alors $X \sim \mathcal{H}(N, n, k)$.

3. Espérance d'une variable aléatoire réelle

Définition 3.1

Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire. L'espérance de X est le réel

$$E(X) = \sum_{x \in X(\Omega)} x P(X = x)$$

Proposition 3.2

- (1) Si $X \sim \mathcal{U}(x_1,...,x_N)$ alors E(X) est la moyenne des réels $x_1,...,x_N$.
- (2) Si $X \sim \mathcal{B}(p)$, alors E(X) = p.
- (3) Si $X \sim \mathcal{B}(n, p)$ alors E(X) = np.

Lemme 3.3

Soit $X: \Omega \to \mathbb{R}$. Alors $E(X) = \sum_{\omega \in \Omega} X(\omega) P(\{\omega\})$.

Théorème 3.4

L'espérance est linéaire :

$$\forall X, Y \in \mathbb{R}^{\Omega}, \ \forall \lambda, \mu \in \mathbb{R}, \ E(\lambda X + \mu Y) = \lambda E(X) + \mu E(Y).$$

Déterminer l'espérance d'une variable aléatoire suivant une loi hypergéométrique.

Notation 3.5

Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire et $f:\mathbb{R}\to\mathbb{R}$. La variable aléatoire $f\circ X$ est plutôt notée f(X).

Théorème 3.6

(formule de transfert) Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire et $f:\mathbb{R}\to\mathbb{R}$.

$$E(f(X)) = \sum_{x \in X(\Omega)} f(x)P(X = x).$$

Remarque 3.7

Grâce à la formule de transfert il n'est pas nécessaire de déterminer la loi de f(X) pour calculer son espérance.

Proposition 3.8

(Inégalité de Markov) Soit $X:\Omega\to\mathbb{R}^+$ une variable aléatoire positive ou nulle.

$$\forall a > 0, \ P(X \ge a) \le \frac{E(X)}{a}.$$

4. Variance

Définition 4.1

Soit $X:\Omega\to\mathbb{R}$ une variable aléatoire. La variance de X est

$$V(X) = E([X - E(X)]^2) \ge 0.$$

L'écart-type de X est $\sigma_X = \sqrt{V(X)}$.

Proposition 4.2

(Koenig-Huygens) Soit X une variable aléatoire réelle. On a

$$V(X) = E(X^2) - E(X)^2.$$

Proposition 4.3

Soit X une variable aléatoire réelle.

- (1) Si $X \sim \mathcal{B}(p)$ alors V(X) = p(1-p).
- (2) Si $X \sim \mathcal{B}(n, p)$ alors V(X) = np(1-p).

Remarque 4.4

La variance n'est pas linéaire mais quadratique.

Proposition 4.5

Soit X une variable aléatoire.

$$\forall a, b \in \mathbb{R}, \ V(aX + b) = a^2 V(X).$$

Corollaire 4.6

Soit X une variable aléatoire réelle. Alors $\frac{X - E(X)}{\sigma_X}$ est une variable aléatoire d'espérance nulle et d'écart-type 1: on dit que cette variable est centrée réduite.

Théorème 4.7

(inégalité de Bienaymé-Tchebychev) Soit X une variable aléatoire réelle.

$$\forall t > 0, \ P(|X - E(X)| \ge t) \le \frac{V(X)}{t^2}.$$

Reformulation Avec les notations précédentes,

$$\forall a > 0, \ P(|X - E(X)| \ge a\sigma_X) \le \frac{1}{a^2}.$$

5. Couples de variables aléatoires

Exemple 5.1

On lance un dé à 6 faces équilibré deux fois de suites. On note S la somme des deux résultats, et M la valeur maximale obtenue. Ces deux variables aléatoires sont liées : si je connais la valeur prise par M, la loi de S s'en trouve modifiée. On peut représenter la situation par le tableau suivant, dans lequel apparaissent les probabilités $P((S=s) \cap (M=m))$ pour tout $s \in \{2,3,...,12\}$ et $m \in \{1,...,6\}$ multipliées par 36 :

$m \setminus s$	2	3	4	5	6	7	8	9	10	11	12
1	1										
2		2	1								
3			2	2	1						
4				2	2	2	1				
5					2	2	2	2	1		
6						2	2	2	2	2	1

On dit qu'on a déterminé la loi du couple (S, M).

Définition 5.2

Soient X et Y deux variables aléatoires définies sur le même espace probabilisé (Ω, P) . La loi conjointe de X et Y est la loi de $Z : \omega \mapsto (X(\omega), Y(\omega))$.

On note
$$P(X = x, Y = y) = P((X = x) \cap (Y = y)).$$

Proposition 5.3

Soient X et Y deux variables aléatoires définies sur le même espace probabilisé (Ω, P) .

$$\forall x \in X(\Omega), \ P(X=x) = \sum_{y \in Y(\Omega)} P(X=x, Y=y)$$

 et

$$\forall y \in Y(\Omega), \ P(Y=y) = \sum_{x \in X(\Omega)} P(X=x, Y=y).$$

Remarque 5.4

On peut donc connaître les lois de X et de Y à partir de la loi du couple, mais la réciproque est fausse.

Définition 5.5

Les lois de X et de Y sont appelées lois marginales du couple (X, Y).

Proposition 5.6

(Formule de transfert) Soient X et Y deux variables aléatoires définies sur le même espace probabilisé à valeurs respectivement dans E et F. Soit $f: E \times F \longrightarrow \mathbb{R}$.

$$E(f(X,Y)) = \sum_{x \in X(\Omega)} \sum_{y \in Y(\Omega)} f(x,y) P(X=x,Y=y).$$

Définition 5.7

On dit que deux variables aléatoires X et Y définies sur le même espace probabilisé (Ω, P) sont indépendantes si

$$\forall A \subset X(\Omega), \forall B \subset Y(\Omega), \ P(X \in A, Y \in B) = P(X \in A)P(Y \in B).$$

Proposition 5.8

Soient X et Y deux variables aléatoires. Les variables X et Y sont indépendantes si et seulement si

$$\forall x \in X(\Omega), \forall y \in Y(\Omega), P(X = x, Y = y) = P(X = x)P(Y = y).$$

Théorème 5.9

Soient X et Y deux variables aléatoires réelles indépendantes. Alors E(XY) = E(X)E(Y).

Remarque 5.10

La réciproque est fausse.

Définition 5.11

On dit que X et Y sont non corrélées si E(XY) = E(X)E(Y).

Définition 5.12

Soient X et Y deux variables aléatoires réelles. La covariance de X et Y est le nombre cov(X,Y) = E(XY) - E(X)E(Y).

Proposition 5.13

Soient X et deux variables aléatoires réelles. Alors $V(X+Y)=V(X)+V(Y)+2\operatorname{cov}(X,Y)$.

Corollaire 5.14

Si X et Y sont indépendantes alors V(X + Y) = V(X) + V(Y).

6. Famille de variables indépendantes et loi des grands nombres

Définition 6.1

Soient $X_1, X_2, ..., X_n$ des variables aléatoires définies sur le même espace probabilisé (Ω, P) . On dit que $X_1, ..., X_n$ sont indépendantes si

$$\forall (A_1, ..., A_n) \in \mathscr{P}(\Omega)^n, \ P(X_1 \in A_1, ..., X_n \in A_n) = \prod_{i=1}^n P(X_i \in A_i).$$

Proposition 6.2

Soient $X_1,...,X_n$ des variables indépendantes à valeurs respectivement dans $E_1,...,E_n, f: E_1 \times ... \times E_i \longrightarrow F$ et $g: E_{i+1} \times ... \times E_n \longrightarrow G$ deux applications. Alors $f(X_1,...,X_i)$ et $g(X_{i+1},...,X_n)$ sont indépendantes.

Proposition 6.3

Soient $X_1, ..., X_n$ indépendantes età valeurs réelles. Alors $E(X_1...X_n) = \prod_{i=1}^n E(X_i)$ et $V(X_1 + ... + X_n) = \sum_{i=1}^n V(X_i)$.

Proposition 6.4

Soient $X_1, ..., X_n$ des variables aléatoires réelles définies sur le même espace probabilisé (Ω, P) . Alors

$$V(\sum_{i=1}^{n} X_i) = \sum_{i=1}^{n} V(X_i) + 2 \sum_{1 \le i < j \le n} \text{cov}(X_i, X_j).$$

Corollaire 6.5

Soit X une variable aléatoire suivant une loi binomiale de paramètres n et p. Alors V(X) = np(1-p).

Théorème 6.6: loi faible des grands nombres

Soient $X_1, ..., X_n, ...$ des variables aléatoires indépendantes et suivant la même loi (on dit qu'elles sont indépendantes et identiquement distribuées, en abrégé i.i.d.). On note μ leur espérance commune. Pour tout $n \in \mathbb{N}^*$, on pose $\overline{X}_n = \frac{1}{n} \sum_{i=1}^n X_i$. (On dit que \overline{X}_n est la moyenne empirique).

$$\forall \varepsilon > 0, \lim_{n \to +\infty} P(|\overline{X}_n - \mu| \ge \varepsilon) = 0.$$