

CONTENT

- 1. Business problem.
- 2. Value proposition.
- 3. Approach.
- 4. Key insights and findings.
- 5. Training ML models.
- 6. Results and conclusion

Github repository: https://github.com/HebaAladdin/Kaggle-home-credit-risk

BUSINESS PROBLEM

Default risk is the chance that companies or individuals will be unable to make the required payments on their debt obligations. In other words, credit default risk is the probability that if you lend money, there is a chance that they won't be able to give the money back on time.

Lenders and investors are exposed to default risk in virtually all forms of credit extensions. To mitigate the impact of default risk, lenders often impose charges that correspond to the debtor's level of default risk. A higher level of risk leads to a higher required return

VALUE PROPOSITION

FASTER PROCESS

Shorter lending process

INCREASE BORROWER BASE

Trust more applicants and unbanked population

DECREASE EXPOSURE

Decrease exposure that leanders are exposed to

INCREASE PROFIT

Lend more gain more

APPROACH

01

DATA ANALYSIS & EDA

Exploaring the dataset to find patterns and business insights

02

FEATURE
ENGINEERING &
FEATURE
SELECTION

03 MODELING

Training machine learning models

UNDERSTANDING THE PROBLEM

92%

REPAY

Applicants with no payment delays on their first few installments.

TARGET = 0

DEFAULT

Applicants with payment difficulties on their first few installments.

TARGET = 1

8%

KEY INSIGHTS & FINDINGS

KEY INSIGHTS & FINDINGS

BORROWER AGE GROUP VS FAILURE TO REPAY

BORROWER JOB VS DEFAULT

For more insights check the **EDA** notebook

OUR PIPELINE

- Remove missing columns - Correlation chart Handling missing feature, FEATURE - Collinear features removal anomalies, encoding **MODELING ENGINEERING DATA FEATURE** Adding two sets of features **CLEANING SELECTION** - Baseline model: logistic - Domain Knowledge regression - Aggregated features - Random forest - LightGBM 10 Kfold

MODELING

LightGBM on raw Data

LightGBM with Domain knowladge features

LightGBM with Aggregated features

RESULTS

- The metric we choose to evaluate our models is <u>Receiver Operating Characteristic Area Under the</u> <u>Curve (ROC AUC, also sometimes called AUROC)</u> due to the high unbalanced labels.
- Home credit will face losses if the model prediction is wrong in two scenarios:

° (

Experiment	Train AUC	Validation AUC
Raw dataset	0.806430	0.758923
Domain dataset	0.815190	0.766038
Aggregated dataset v1	0.825520	0.766415
Aggregated dataset v2	0.815504	0.763560

LightGBM 10 k-fold

Scenario 1 Scenario 2

If the model has predicted the client will repay the loan but actually he has defaulted If the model has predicted the client will default but he can actually pay the loan back deserving candidate not getting a loan, bank loss in return interest

