1. Сингулярное разложение (SVD)

Определение 1.1. Сингулярное разложение (SVD) — декомпозиция вещественной матрицы с целью ее приведения к каноническому виду.

Теорема 1.1. Пусть $A \in R^{m*n}$. Существуют такие ОНБ $e^{kn}_{k=1} \subset C^m$ и положительные числа $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_r, 0 \leq r \leq \min(m,n)$, что $Ae^k = \begin{cases} \sigma_k q^k, k \leq r, \\ 0, k > r, \end{cases}$

 $\sigma_1, \sigma_2, ..., \sigma_r$ называются сингулярными числами матрицы A. Базисы $\{e^k\}_{k=1}^n, \{q^k\}_{k=1}^m,$ обеспечивающие выполнение соотношение теоремы, называют сингулярными базисами матрицы A. Понятно, что r есть размерность Im(A), т. е. r — ранг матрицы A.

Доказательство. Матрица A^*A самосопряжена и неотрицательна. Действительно,

$$(A^*A)^* = A^*A,$$

$$(A^*Ax, x) = (Ax, Ax) \ge 0, \ \forall x \in \mathbb{C}^n.$$

Поэтому $\exists \ e^{k_{k=1}^n}$ - ОНБ собственных векторов матрицы $A^*A \Rightarrow$

$$A^*Ae^k = \sigma_k^2 e^k, \sigma_k^2 \ge 0, k = 1, 2, ..., n \Rightarrow$$

 $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_r, 0 \leq r \leq 0, \sigma_{r+1} = ... = \sigma_n = 0.$ Положим $z^k = Ae^k$ для l = 1, 2, ..., r и

$$(z^p, z^q) = (Ae^p, Ae^q) = (A^*Ae^p, e^q) = \sigma_p^2(e^p, e^q).$$

Значит, $(z^p,z^q)= egin{cases} \sigma_p^2, p=q, \\ 0, p \neq q, \end{cases}$ значит, векторы $q^k=\sigma_k^{-1}Ae^k, \ k=1,2,...,r,$ образуют

ортонормированную систему в пространстве C^m . Если r < m, дополним ее произвольно векторами $q^k, k = r+1, r+2, ..., m$, до ОНБ пространства C^m . Из этого следует утверждение теоремы.

Определение 1.2. Сингулярным выражением матрицы A - выражение вида

$$A = V \Sigma W^*$$
.

где $\Sigma \in R^{m*n}$, у которой элементы, лежащие на главной диагонали - это сингулярные числа (а все элементы, не лежащие на главной диагонали - нулевые), а матриы

$$V = \{q^k\}_{k=1}^m \in \mathbb{R}^{m*m}, W = \{e^k\}_{k=1}^n \in \mathbb{R}^{n*n}.$$

Геометрический смысл:

Пусть A - линейный оператор, отображающий R^n в себя через линейные операторы вращения, растяжения. Компоненты сингулярного разложения показывают эти геометрические преобразования.

2. Метод главных компонент

Определение 2.1. Метод Главных Компонент (Principal Components Analysis, PCA) — один из основных способов уменьшить размерность данных, потеряв наименьшее количество информации.

Теорема 2.1. Для данной матрицы $A \exists A_k$ - ее апроксимация: $rank(A_k) = k \le rank(A)$ и $\forall B, B \in R^{m*n}, rank(B) = k : ||A - A_k||_F \le ||A - B||_F, \mathit{r} de \ ||.||_F$ - норма Фробениуса.

2.1. Формальная постановка задачи

Пусть имеется п числовых признаков $f_j(x), j=1,...,n$. Объекты обучающей выборки будем отождествлять с их признаковыми описаниями: $xi(f_1(x_i),...,f_n(x_i)), i=1,...,l$. Рассмотрим матрицу F, строки которой соответствуют признаковым описаниям обучающих объектов:

$$F_{l*n} = \begin{pmatrix} f_1(x_1) & \dots & f_n(x_1) \\ \dots & \dots & \dots \\ f_1(x_n) & \dots & f_n(x_n) \end{pmatrix} = \begin{pmatrix} x_1 \\ \dots \\ x_l \end{pmatrix}$$

Обозначим через $z_i = (g_1(x_i), ..., g_m(x_i))$ признаковые описания тех же объектов в новом пространстве $Z = R^m$ меньшей размерности, m < n:

$$G_{l*n} = \begin{pmatrix} g_1(x_1) & \dots & g_n(x_1) \\ \dots & \dots & \dots \\ g_1(x_n) & \dots & g_n(x_n) \end{pmatrix} = \begin{pmatrix} z_1 \\ \dots \\ z_l \end{pmatrix}$$

Потребуем, чтобы исходные признаковые описания можно было восстановить по новым описаниям с помощью некоторого линейного преобразования, определяемого матрицей $U=(u_{is})_{n*m}$:

$$\hat{f}_j(x) = \sum_{s=1}^m g_s(x)u_{js}, \ j = 1, ..., n, \ x \in X,$$

или в векторной записи: $\hat{x} = zU^T$. Восстановленное описание \hat{x} не обязано в точности совпадать с исходным описанием x, но их отличие на объектах обучающей выборки должно быть как можно меньше при выбранной размерности m. Будем искать одновременно и матрицу новых признаковых описаний G, и матрицу линейного преобразования U, при которых суммарная невязка $\Delta^2(G,U)$ восстановленных описаний минимальна:

$$\Delta^{2}(G, U) = \sum_{i=1}^{l} ||\hat{x}_{i}U^{T} - x_{i}||^{2} = ||GU^{T} - F||^{2} \to \min_{G, U}$$

Будем предполагать, что матрицы G и U невырождены: rank(G) = rank(U) = m. Иначе существовало бы представление $\hat{G}\hat{U}^T = GU^T$ с числом столбцов в матрице \hat{G} , меньшим m. Поэтому интересны лишь случаи, когда $m \leq rank(F)$.

Определение 2.2. $u_1, ..., u_m$ будем называть главными компонентами.

Теорема 2.2. Если $m \leq rank(f)$, то минимум $\Delta^2(G,U)$ достигается, когда столбцы матрицы U есть собственные векторы F^TF , соответствующие m максимальным собственным значениям. При этом G = FU, матрицы U и G ортогональны.

Геометрический смысл:

Метод апроксимирует n-размерное обрако наблюдений до n-мерного эллипсоида, полуоси которого будут являться главными компонентами.