Visão Computacional: Definição e Aplicações

O que é Visão Computacional?

Definição:

- Área da inteligência artificial que permite que computadores interpretem e processem imagens e vídeos.
- Simulação da visão humana usando algoritmos e modelos matemáticos.

📌 Objetivo:

Extrair informações relevantes de imagens para tomada de decisão automática.

Como Funciona a Visão Computacional?

📌 Principais Etapas:

- 1. Aquisição da imagem 📷
- 2. Pré-processamento (filtros, normalização) 🔍
- 3. Extração de características (bordas, formas, texturas)
- 4. Reconhecimento e classificação 🎯

Aplicações da Visão Computacional

📌 1. Segurança e Vigilância

- Reconhecimento facial em sistemas de segurança
- Detecção de comportamentos suspeitos

📌 2. Saúde e Medicina

- Diagnóstico por imagens médicas ::
- Segmentação de tumores e patologias

📌 3. Indústria e Automação

- Inspeção de qualidade em produção
- Robôs industriais com visão computacional image

📌 4. Veículos Autônomos

- Detecção de pedestres e obstáculos
- Controle de navegação automática

Aplicações da Visão Computacional

* 5. Realidade Aumentada e Entretenimento

- Filtros de realidade aumentada
- Reconhecimento de gestos e movimento

📌 6. Agricultura de Precisão

- Monitoramento de lavouras via drones \(\varphi\)
- Identificação de pragas e doenças

Impacto e Futuro da Visão Computacional

★ Desafios Atuais:

- Necessidade de grandes volumes de dados
- Viés e ética na inteligência artificial

rendências Futuras:

- Melhor integração com IA e IoT
- Avanços em visão computacional 3D

167	153	174	168	150	162	129	161	172	163	155	164
155	182	163	74	75			17	110	210	180	154
180	180	80	14	34	٠	10	23		106	160	161
204	104	٠	124	131	X11	120	204	166	16	545	180
194		197	251	237	239	239	228	217	87	71	201
172	12%	207	233	233	214	230	299	228		24	204
188		179	20%	166	215	211	158	139	78	20	168
189	87	165		10	168	134	11	311	42	22	148
196	168	191	193	164	227	176	143	182	194	*	190
205	174	155	262	234	231	145	178	234			234
190	216	116	549	236	187	*	150	79		218	241
190	224	147	704	337	210	127	162	×	Nan	268	224
194	214	179	*	189	143	96		,	100	249	215
187	196	236	18	٠				•	217	255	211
183	302	237	148	٠	٠	12	104	200	138	243	234
195	204	128	207	177	125	129	200	175	13	96	218

167	163	174	168	190	162	129	161	172	247	196	186
166	182	163	74	75	62	33	17	170	210	180	154
180	100	-	14	34	•	10	33		106	169	181
204	109	1	124	131	111	120	204	166	16	54	180
194	68	137	261	237	239	239	220	227	67	n	201
172	106	207	239	239	214	220	229	220	14	74	206
186	**	179	209	185	215	211	168	139	75	20	169
189	97	165	84	10	168	134	11	н	62	22	148
199	168	191	199	168	227	178	142	182	104	26	190
206	174	165	252	236	291	149	178	228	43	96	234
190	276	116	149	236	187	86	150	79	36	210	241
190	224	147	108	227	210	127	102	н	101	266	224
190	214	179	66	109	143	94	50	2	108	249	215
187	196	236	76	1	41	0	0	4	217	295	211
183	202	297	146	0	0	12	108	200	128	243	236
196	206	123	207	177	121	129	200	175	18	96	218

Instance Object Segmentation Detection DOG, DOG, CAT DOG, DOG, CAT

Instance Object Segmentation Detection DOG, DOG, CAT DOG, DOG, CAT