Matematika 4 – Logika pre informatikov Domáca úloha du01

Riešenie domácej úlohy odovzdajte najneskôr v pondelok 13. marca 2017:

- v čitateľnej papierovej podobe na začiatku prednášky o 11:30;
- elektronicky najneskôr o 23:59:59 cez svoj repozitár na github.com ako pull-request do vetvy (base) du01 repozitára (base fork) FMFI-UK-1-AIN-412/lpi17-vášAisLogin.

Odovzdávaný dokument uložte do súboru du01.pdf v adresári du01 vo vetve du01. Dokument musí byť vo formáte PDF. Vytvorte ho podľa svojich preferencií (T_EXom, textovým procesorom, tlačou do PDF z webového prehliadača, ...), nesmie však obsahovať obrázky rukou písaného textu ani screenshoty.

Úloha má hodnotu 2 body [po 1 bode za každú časť a), b)].

a) Spojka a nie, označovaná symbolom />, je binárna logická spojka s nasledovným významom:

 $A \not\to B$ je pravdivé vt
tA je pravdivé a B je nepravdivé.

Vybudujte teóriu výrokovej logiky používajúcej spojky $\not\to$ a \to , teda zadefinujte pojem: (i) formuly, (ii) vytvárajúcej postupnosti pre formulu, (iii) vytvárajúceho stromu pre formulu, (iv) splnenia formuly pri ohodnotení výrokových premenných.

b) Hovoríme, že binárna logická spojka α je definovateľná zo spojok β_1, β_2, \ldots , ak existuje formula, obsahujúca iba spojky β_1, β_2, \ldots a výrokové premenné p a q, ekvivalentná s formulou $(p \alpha q)$.

Hovoríme, že unárna logická spojka α je definovateľná zo spojok β_1, β_2, \ldots , ak existuje formula, obsahujúca iba spojky β_1, β_2, \ldots a výrokovú premennú p, ekvivalentná s formulou α p.

Napríklad \vee je definovateľná z \neg a \wedge pretože $(p \vee q)$ je ekvivalentná s $\neg(\neg p \wedge \neg q)$ (samozrejme, ekvivalenciu tých dvoch formúl by bolo treba ešte dokázať).

Dokážte, že:

- (i) \rightarrow a $\not\rightarrow$ sú definovateľné zo spojok \neg , \land a \lor ;
- (ii) \neg , \wedge , \vee a \leftrightarrow sú definovateľné z $\not\rightarrow$ a \rightarrow .