CSE 541: Database Systems I

Course Introduction

What is a Database?

Database

A collection of inter-related data.

- Entities (e.g. students, courses)
- Relationships (e.g. Dong is teaching CSE 541)

Name	Gender	GPA
Mike	Male	4.0
Bob	Male	3.6
Alice	Female	3.8

• Generally, data can be anything: text, images, tables, etc.

Where/When a Database is used?

Database in Real Life

- Examples
 - Amazon: Online Shopping
 - <u>LionPath</u>: Course Management System
 - Chase: Banking System
 - <u>Delta</u>: Airline Reservation System
- Database is everywhere in our modern life!!

Core component of most computer applications.

Database Management System (DBMS)

- What is a DBMS?
 - A piece of software designed to store and manage databases
 - Arguably one of the most complicated software stack.
- Why not just directly managed by applications?
- Examples (Relational DBMS)
 - <u>Commercial</u>: Oracle, IBM DB2, Microsoft SQL Server
 - Open source: MySQL (Sun/Oracle), PostgreSQL, SQLite
- More generally: Document-based (MongoDB), KV-Store (RocksDB), Computation Framework (Spark)

What you have probably learned: The <u>use</u> of (relational) database systems

CMPSC 431W equivalent SQL ER Model DB Apps ...

Coming up next:

- The <u>making</u> of (relational) database systems
 - CSE 541 (this course)
 - Classic, fundamental problems
 - Recent advances
- Research in database/data-intensive systems
 - Revisit prior ideas, propose new ideas, build new systems
 - Seminar based special topics courses (CSE 597)
 - Or join our research group

CSE 541

A hands-on course about database systems internals

- How are database systems designed?
 - Storing and managing data in different storage devices
 - Ensure data survive failures or even bugs
 - Access data quickly
 - Correctly handle user requests
- What are the principles behind it?
- How to get it right and make it fast and reliable?
 - Write efficient large-scale programs
 - Leverage multicore processors, memory space, networking...
 - Systems programming (read: C/C++)

Why Take this Course?

DBMS developers are in demand and there are many challenging unsolved problems in data management and processing.

If you are good enough to write code for a DBMS, then you can write code on almost anything else.

Intellectual Curiosity

Learn about large-scale DBMS/software system design & engineering

- You will get to know deeply about
 - Classic database systems designs and new trends
 - Practical implementation
 - Fundamental principles
- "Side" benefits
 - Concepts learned here useful in many areas, not just databases
 - Become comfortable with working with a lot of C/C++ code and popular tools in industry
 - Work in a team (if you choose to) and with others' code
 - Will make you comfortable with building almost any software systems in the future
 - Build up confidence in working with new things and picking up existing code quickly

Career and \$\$\$

- Many Turing Awards in database area (four so far)
- High-demand on the job market academia & industry
- \$50B and growing market, many companies investing heavily

+ Many more...

This course is **not** about:

A checklist for dropping this course:

- "Big Data" systems
 - Hadoop, Spark, Hive, MapReduce, etc. go to 410
- The application side of databases
 - Data Science, NLP, Data Mining, Machine Learning, etc. go to 445/448/583/586 etc.
 - Learning SQL, e.g., using MySQL to store data for a website go to 431W
- Theory in Databases
 - Will touch upon the necessary theory related to systems
 - But focus is on practices: system design & implementation

Bottom line: drop this course if you:

- Are not interested in relational database systems, and/or
- Don't want to (learn) write C/C++ code

Course Logistics

- Instructor: Dong Xie (dongx@psu.edu)
- Textbook:
 - Database Management Systems (3rd Edition)
- Required background:
 - CMPSC 431W or equivalent, CMPSC 473/CSE 511 preferred.
 - Ability to program in C/C++ (very important)
- Office hours
 - Instructor: Tuesday 1:00 3:00 PM or by appointment

Communication

- Lecture: Interrupt me any time when
 - I am speaking too fast.
 - You don't understand what I am talking about.
 - You have a database-related question.

Canvas

- Announcements will be here. Make sure you are set up to get notified.
- Forum-like discussion. Keep the discussion open.
- Private Messages when necessary.

• Email:

Include your full name and also course number (CSE 541)

Course Organization

- Projects (60%)
 - Individual project
 - 4 main projects + project 0 as warm up
 - Covering: storage engine, indexing, query processing, query optimization
- Exams (40%)
 - Midterm Exam: 20%
 - Final Exam: 20%
- Grading
 - Standard 90/80/70/60 grading scale
 - No late turn in lose 10% per day down to E

Academic Integrity

- Do not cheat, or we will hunt you down. **DO NOT**:
 - Copy code from another student
 - Even look at code from another student
 - Copy code from the web
 - Ask for answers on StackOverflow or a similar website
- Discussion is ok, but must be your own work
 - Must provide proper citations
- For the project, you must use a <u>private</u> repo and remain private <u>forever</u>
 - Otherwise treated as plagiarism (sharing solutions to others)
 - No public repo allowed even after taking the course
 - Or We will go back to you
- See policy linked from Syllabus

What I am expecting

- No one knows everything since born.
- Independent Critical Thinking
- Not only learn <u>what</u> and <u>how</u>, But also ask <u>why</u>.
- Questions are encouraged.
- Learn to ask right and good questions.
- Get your hands dirty!

Topics

- Storage Management
- Indexing

- Transactions and Concurrency
- Logging and Crash Recovery

- Query Evaluation
- Query Optimization
- External Sorting
- Distributed/Parallel Database Systems
- Practical Issues
- Interactions with OS/HW

^{*}Might be adjusted along the way