Исследование разложимых КС-языков, имеющих вид «цепочки»

Игорь Мартынов

11 марта 2011 г.

1 Основные определения

Стохастической КС-грамматикой называется система $G = \langle V_T, V_N, R, s \rangle$, где V_T и V_N — алфавиты терминальных и нетерминальных символов соответственно, s — аксиома грамматики, R — множество правил вывода, представимое в виде $R = \bigcup_{i=1}^k R_i$, где $k = |V_N|$, и R_i — множество правил вида

$$r_{ij}: A_i \xrightarrow{p_{ij}} \beta_{ij} \quad (A_i \in V_N, \beta_{ij} \in (V_N \cup V_T)^*),$$
 (1)

и p_{ij} — вероятность применения правила r_{ij} , причём при фиксированном i вероятности r_{ij} задают вероятностное распределение на множестве R_i :

$$0 < p_{ij} \leqslant 1$$
 и $\sum_{j=1}^{n_i} p_{ij} = 1, \qquad i = 1, 2, \dots, k,$ (2)

где $n_i = |R_i|$.

Слово β называется непосредственно выводимым из α (обозначается $\alpha \Rightarrow \beta$), если существуют $\alpha_1, \alpha_2 \in (V_N \cup V_N)^*$, для которых $\alpha = \alpha_1 A_i \alpha_2$, $\beta = \alpha_1 \beta_{ij} \alpha_2$ и в R имеется правило $A_i \xrightarrow{p_{ij}} \beta_{ij}$.

Через \Rightarrow_* обозначим рефлексивное транзитивное замыкание \Rightarrow . Если $\alpha \Rightarrow_* \beta$, говорят, что β выводимо из α . Язык, порождаемый грамматикой G определяется как $L_G = \{\alpha : s \Rightarrow_* \alpha, \alpha \in V_T^*\}$.

Последовательность правил грамматики $\omega(\alpha) = (r_1, r_2, \dots, r_{\gamma})$, последовательное применение которых к s даёт слово α , называется виводом этого слова. Если на каждом шаге правило применяется к самому левому нетерминалу в слове, вывод назвается левым.

Вероятность вывода определяется как $p(\omega(\alpha)) = p(r_1) \cdot p(r_2) \cdot \dots \cdot p(r_{\gamma})$, где $p(r_i)$ — вероятность соответствующего правила. Вероятность слова определяется как сумма вероятностей всех его левых выводов.

Грамматика G называется cornacoeannoй, если

$$\sum_{\alpha \in L_C} p(\alpha) = 1. \tag{3}$$

Согласованная грамматика G задаёт распределение вероятностей P на L_G , и определяет $cmo-xacmuчeckuŭ~KC-язык~\mathfrak{L}=(L,P)$. В дальнейшем всюду предполагается, что грамматика согласованна.

По выводу слова может быть построено *дерево вывода*. В корень дерева помещается аксиома s, далее на каждом ярусе дерева ко всем нетерминалам этого яруса применяется правило, соответствующее выводу. Символы этого слова записываются слева направо в дереве, присоединяясь к исходному нетерминалу как к родителю.

Обозначим D_l^t — множество деревьев вывода высоты t-1, порождаемых грамматикой G при замене её аксиомы на A_l . Аналогично, $D_l^{\leqslant t}$ — множество деревьев вывода, высота которых не превосходит t-1.

Для исследования вероятностных характеристик стохастической грамматики применяются производящие функции

$$F_i(s_1, s_2, \dots, s_k) = \sum_{\substack{j=1\\r_{ij} \in R}}^{n_i} p_{ij} s_1^{l_1} s_2^{l_2} \dots s_k^{l_k}, \tag{4}$$

где $l_m = l_m(i,j)$ — число вхождений нетерминала A_m в β_{ij} .

Величины

$$a_j^i = \frac{\partial F_i(s_1, s_2, \dots, s_k)}{\partial s_j} \bigg|_{s_1 = s_2 = \dots = s_k = 1}$$

$$(5)$$

называются *первыми моментами* грамматики G. Матрица $A=(a_j^i)$, составленная из них, называется *матрицей первых моментов* грамматики G.

Матрица A, по построению, неотрицательна. По теореме Фробениуса, доказанной в [1], существует максимальный по модулю вещественный неотрицательный собственный корень r. Известно, что критерием согласованности стохастической КС-грамматики при отсутствии бесполезных нетерминалов является условие $r \leq 1$.

Говорят, что нетерминал A_j непосредственно следует за нетерминалом A_i (обозначается $A_i \to A_j$), если в R имеется правило $A_i \stackrel{(}{\to} p_{ij})\alpha_1 A_j \alpha_2$, где $\alpha_1, \alpha_2 \in (V_N \cup V_T)^*$. Транзитивное замыкание отношения \to обозначается \to_* . Если $A_i \to_* A_j$, говорят, что A_j выводится из A_i .

Введём также отношение \leftrightarrow_* . Будем считать, что $A_i \leftrightarrow_* A_j$, если одновременно $A_i \to_* A_j$ и $A_j \to_* A_i$, либо если $A_i = A_j$. Очевидно, отношение \leftrightarrow_* есть отношение эквивалентности, и потому разбивает множество нетерминалов на классы $V_N = K_1 \cup K_2 \cup \ldots \cup K_m : K_i \cap K_j = \varnothing (i \neq j)$. Класс, содержащий ровно один нетерминал, будем называть *особым*. Множество классов $\{K_1, K_2, \ldots, K_m\}$ обозначим \mathfrak{K} .

Если все нетерминалы грамматики образуют один класс, она называется *неразложимой*. В противном случае она называется *разложимой*. Очевидно, разложимой грамматике соответствует разложимая матрица первых моментов.

Говорят, что класс K_j непосредственно следует за классом K_i (обозначается $K_i \prec K_j$), если существуют $A_1 \in K_i$ и $A_2 \in K_j$ такие, что $A_1 \to A_2$. Рефлексивное транзитивное замыкание \prec обозначим \prec_* , и назовём отношением следования.

Будем говорить, что грамматика имеет вид «цепочки», если она разложима, и граф, построенный на множестве $\mathfrak K$ по отношению \prec , имеет вид P_m . Пронумеруем классы грамматики таким образом, что $K_i \prec K_{i+1}, i=1,2,\ldots,m-1$. Пронумеруем нетерминалы так, что для любых $A_i \in K_p$ и $A_j \in K_q$ $i < j \Leftrightarrow p < q$. После этого матрица первых моментов грамматики

приобретает вид:

$$A = \begin{pmatrix} A_{11} & A_{12} & 0 & \cdots & 0 & 0\\ 0 & A_{22} & A_{23} & \cdots & 0 & 0\\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots\\ 0 & 0 & 0 & \cdots & A_{m-1,m-1} & A_{m-1,m}\\ 0 & 0 & 0 & \cdots & 0 & A_{m,m} \end{pmatrix}$$

$$(6)$$

Блоки $A_{i,i}(i=1,2,\ldots,m)$ являются неразложимыми неотрицательными матрицами. Не уменьшая общности, будем считать их положительными и непериодичными. Этого можно добиться с помощью метода укрупнения правил грамматики. Пусть r_i — перронов корень матрицы $A_{i,i}$. По построению матрицы $A, r = \max_i \{r_i\}$ и r > 0.

2 Свойства матрицы первых моментов

Обозначим $J = \{i: r_i = r\} = \{i_1 < i_2 < \ldots < i_q\}$ Разобьём множество классов $\mathfrak R$ на группы классов $\mathfrak M_1, \mathfrak M_2, \ldots, \mathfrak M_{\mathfrak w}$. При этом $\mathfrak M_1 = \{K_1, K_2, \ldots, K_{i_1}\}$, и $\mathfrak M_{\mathfrak l} = \{K_{i_{l-1}+1}, \ldots, K_{i_l}\}$, где l > 1. При таком разбиении в каждой группе $\mathfrak M_{\mathfrak f}$ содержится ровно один класс с номером из J.

Тогда матрицу первых моментов можно представить в виде

$$A = \begin{pmatrix} B_{11} & B_{12} & \cdots & 0 & 0 \\ 0 & B_{22} & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & B_{w-1,w-1} & B_{w-1,w} \\ 0 & 0 & \cdots & 0 & B_{w,w} \end{pmatrix}, \tag{7}$$

где B_{ij} — блок, находящийся на пересечении строк, соответствующих нетерминалам классов группы \mathfrak{M}_{i} , и столбцов, соответствующим нетерминалам классов группы \mathfrak{M}_{j} . Очевидно, каждой из матриц $B_{i,i}$ соответствует перронов корень равный r.

Рассмотрим матрицу

$$A^{t} = \begin{pmatrix} B_{11}^{t} & B_{12}^{(t)} & \cdots & B_{1,w-1}^{(t)} & B_{1,w}^{(t)} \\ 0 & B_{22}^{t} & \cdots & B_{2,w-1}^{(t)} & B_{2,w}^{(t)} \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & B_{w-1,w-1}^{t} & B_{w-1,w}^{(t)} \\ 0 & 0 & \cdots & 0 & B_{m,w}^{t} \end{pmatrix} . \tag{8}$$

Для установления её вида требуется определить вид блоков $B_{i,j}^{(t)}$ при j>i.

Рассмотрим блок B_{11} . Разобьём группу \mathfrak{M}_1 на подгруппы ($\mathfrak{M}_{11}, \mathfrak{M}_{12}, \mathfrak{M}_{13}$). К группе \mathfrak{M}_{12} отнесём класс с номером из J, к группе \mathfrak{M}_{11} — предшествующие ему классы, к группе \mathfrak{M}_{13} — последующие классы. В соответствии с таким разбиением B_{11} принимает вид

$$B = \begin{pmatrix} C_{11} & C_{12} & 0\\ 0 & C_{22} & C_{23}\\ 0 & 0 & C_{33} \end{pmatrix},\tag{9}$$

А матрица B^t представляется в виде

$$B^{t} = \begin{pmatrix} C_{11}^{t} & C_{12}^{(t)} & C_{13}^{(t)} \\ 0 & C_{22}^{t} & C_{23}^{(t)} \\ 0 & 0 & C_{33}^{t} \end{pmatrix}.$$

$$(10)$$

Известно, что для неразложимой положительной матрицы A

$$A^{t} = uvr^{t}(1 + o(1)), (11)$$

где r — перронов корень A, u и v — соответственно правый и левый собственные векторы, соответствующие r, причём $u>0,\,v>0,\,vu=1$.

Таким образом, асимптотика матриц $C_{11}^t, C_{22}^t, C_{33}^t$ известна.

Исследуем собственные векторы матрицы B_{11} , соответствующие числу r. Пусть $u=(u^{(1)},u^{(2)},u^{(3)})$ и $v=(v^{(1)},v^{(2)},v^{(3)})$ — соответственно правый и левый такие собственные векторы. Тогда

$$C_{11}u^{(1)} + C_{12}u^{(2)} + C_{13}u^{(3)} = ru^{(1)}$$

$$C_{22}u^{(2)} + C_{23}u^{(3)} = ru^{(2)}$$

$$C_{33}u^{(3)} = ru^{(3)}$$
(12)

Поскольку все собственные числа C_{33} строго меньше $r, u^{(3)} = 0$ и $u^{(2)}$ — правый собственный вектор C_{22} , относящийся к r, а $u^{(1)} = (rE - C_{11})^{-1}C_{12}u^{(2)}$.

Аналогично, рассматривая левый собственный вектор $v = (v^{(1)}, v^{(2)}, v^{(3)})$, имеем систему

$$v^{(1)}C_{11} = rv^{(1)}$$

$$v^{(1)}C_{12} + v^{(2)}C_{22} = rv^{(2)}$$

$$v^{(1)}C_{13} + v^{(2)}C_{23} + v^{(3)}C_{33} = rv^{(3)}$$
(13)

откуда $v^{(1)}=0,\,v^{(2)}$ — левый собственный вектор $C_{12},$ и $v^{(3)}=v^{(2)}C_{23}(rE-C_{33})^{-1}.$

Выберем именно такие u и v, что vu = 1.

Рассмотрим асимптотику матрицы B_{11}^t . Нетрудно видеть, что

$$C_{12}^{(t)} = \sum_{i+j=t-1} C_{11}^i C_{12} C_{22}^j. \tag{14}$$

Разобьём эту сумму так, что $C_{12}^{(t)} = \Sigma_1 + \Sigma_2$, где

$$\Sigma_{1}: \begin{cases} i = \overline{t - \lfloor \log \log t \rfloor, t - 1} \\ j = \overline{0, \lfloor \log \log t \rfloor - 1} \end{cases}$$

$$\Sigma_{2}: \begin{cases} i = \overline{0, t - \lfloor \log \log t \rfloor - 2} \\ j = \overline{\lfloor \log \log t \rfloor + 1, t - 1} \end{cases}$$
(15)

Рассмотрим вначале Σ_1 . $C_{22}^t = u_2 v_2 r^t (1 + o(1)) \leqslant c_2$ при любых t. $C_{11}^t = u_1 v_1 (r')^t (1 + o(1)) \leqslant c_1 (r')^{t-\lfloor \log \log t \rfloor - 1}$. Отсюда,

$$\Sigma_1 \leqslant (r')^{t - \lfloor \log \log t \rfloor} \lfloor \log \log t \rfloor = O(\log \log t (\log t)^{c_3} (r')^t) = o(r^t). \tag{16}$$

Для Σ_2 $C_{22}^j = u_2 v_2 r^j (1 + o(1))$, поэтому $\Sigma_2 = \sum_{i+j=t-1} C_{11}^i C_{12} H r^j (1 + o(1)) = r^{t-1} \sum_{i=0}^{t-\lfloor \log \log t \rfloor - 1} \left(\frac{C_{11}}{r} \right)^i C_{12} H o(1)$). Нетрудно видеть, что $\frac{1}{r} \sum_{i=0}^{\infty} \left(\frac{C_{11}}{r} \right)^i = (rE - C_{11})^{-1}$. Матрица $(rE - C_{11})^{-1}$ существует, так как все собственные числа C_{11} строго меньше r. Отсюда

$$\Sigma_2 = r^t (rE - C_{11})^{-1} C_{12} u^{(2)} v^{(2)} (1 + o(1)) = C_{12}^{(t)}.$$
(17)

Аналогично

$$C_{23}^{(t)} = \sum_{i+j=t-1} C_{22}^i C_{23} C_{33}^j, \tag{18}$$

откуда, проводя аналогичные вычисления, имеем

$$C_{23}^{(t)} = r^t u^{(2)} v^{(2)} C_{23} (rE - C_{33})^{-1} (1 + o(1))$$
(19)

Подстановкой проверяется, что

$$C_{13}^{(t)} = \sum_{i+j=t-1} C_{12}^{(i)} C_{23} C_{33}^{j}$$
(20)

Подставляя в это выражение асимптотику для $C_{12}^{(t)}$, получаем:

$$C_{13}^{(t)} = r^t u^{(1)} v^{(2)} C_{23} (rE - C_{33})^{-1} (1 + o(1)) = r^t u^{(1)} v^{(3)} (1 + o(1))$$
(21)

В результате, имеем:

$$B_{11} = \begin{pmatrix} 0 & u^{(1)}v^{(2)} & u^{(1)}v^{(3)} \\ 0 & u^{(2)}v^{(2)} & u^{(2)}v^{(3)} \\ 0 & 0 & 0 \end{pmatrix} r^t + o(r^t)$$
(22)

Получим теперь асимптотику всей матрицы A^t . Вначале пусть w=2. Тогда

$$A^{t} = \begin{pmatrix} B_{11}^{t} & B_{12}^{(t)} \\ 0 & B_{22}^{t} \end{pmatrix} \tag{23}$$

Матрица B_{22}^t исследуется аналогично B_{11}^t , в результате имеем

$$B_{22}^{t} = \begin{pmatrix} u^{(22)}v^{(22)} & u^{(22)}v^{(32)} \\ 0 & 0 \end{pmatrix} r^{t} + o(r^{t})$$
(24)

Для $B_{12}^{(t)}$ имеем

$$B_{12}^{(t)} = \sum_{i+j=t-1} B_{11}^i B_{12} B_{22}^j \tag{25}$$

Подставляя выражения для B^i_{11} и B^j_{22} , получаем:

$$B_{12}^{(t)} = \begin{pmatrix} 0 & u^{(1)}v^{(2)} & u^{(1)}v^{(3)} \\ 0 & u^{(2)}v^{(2)} & u^{(2)}v^{(3)} \\ 0 & 0 & 0 \end{pmatrix} \cdot B_{12} \cdot \begin{pmatrix} u^{(22)}v^{(22)} & u^{(22)}v^{(32)} \\ 0 & 0 \end{pmatrix} \cdot tr^t + o(tr^t)$$
 (26)

Представляя B_{12} в блочном виде

$$B_{12} = \begin{pmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \\ D_{31} & D_{32} \end{pmatrix}, \tag{27}$$

и производя перемножение, получаем

$$B_{12}^{(t)} = \begin{pmatrix} u'^{(11)}v^{(22)} & u'^{(11)}v^{(32)} \\ u'^{(21)}v^{(22)} & u'^{(21)}v^{(32)} \\ 0 & 0 \end{pmatrix}.$$
 (28)

Сформулируем теорему, определяющую вид блока $B_{lh}^{(t)}$ в общем случае.

Теорема 1

$$B_{lh}^{(t)} = u^{(l)}v^{(h)}t^{s_{lh}-1}r^{t}(1+o(1)), (29)$$

 $npu\ t \to \infty$, где $u^{(l)}\ u\ v^{(h)}$ не зависят от $t,\ u\ s_{lh}$ — число классов c номерами из J среди K_l,K_{l+1},\ldots,K_h .

Доказательство. Доказательство проведём индукцией по w. При w=2 теорема выполняется.

Пусть утверждение теоремы верно для w-1 групп. Тогда

$$A = \begin{pmatrix} D_1 & E_1 \\ 0 & B_{w,w} \end{pmatrix} = \begin{pmatrix} B_{11} & E_2 \\ 0 & D_2 \end{pmatrix},\tag{30}$$

где

$$E_1 = \begin{pmatrix} B_{1,w} \\ \vdots \\ B_{w-1,w} \end{pmatrix}, \quad E_2 = \begin{pmatrix} B_{12} & \cdots & B_{1,w} \end{pmatrix}$$
 (31)

Тогда

$$A^{t} = \begin{pmatrix} D_{1}^{t} & E_{1}^{(t)} \\ 0 & B_{w,w}^{t} \end{pmatrix} = \begin{pmatrix} B_{11}^{t} & E_{2}^{(t)} \\ 0 & D_{2}^{t} \end{pmatrix}$$
(32)

Для матриц D_1 , D_2 утверждение теоремы по индукции справедливо. Для доказательства теоремы достаточно рассмотреть

$$B_{1,w}^{(t)} = \sum_{l=1}^{w-1} \sum_{i+j=t-1} B_{1,l}^{(i)} B_{l,w} B_{w,w}^{j}$$
(33)

По предположению индукции слагаемое, содержащее $B_{1,w-1}^i = O(i^{s_{1,w-1}-1}r^i)$, преобладает над остальными. Поэтому

$$B_{1,w}^{(t)} = \sum_{i+j=t-1} B_{1,w-1}^{(i)} B_{w-1,w} B_{w,w}^{j} (1 + o(1))$$
(34)

Подставляя по индукции выражение для $B_{1,w-1}$, получаем:

$$B_{1,w}^{(t)} = \begin{pmatrix} u'^{(11)}v^{(2w)} & u'^{(11)}v^{(3w)} \\ u'^{(21)}v^{(2w)} & u'^{(21)}v^{(3w)} \\ 0 & 0 \end{pmatrix} t^{s_{1,w}-1}r^t + o(t^{s_{1,w}-1}r^t)$$
(35)

3 Вероятности продолжения

...Здесь про вероятности продолжения...

Результат:

$$Q_n(t) = c_{\mu} u_{n-k_{\mu-1}}^{(\mu)} t^{-\left(\frac{1}{2}\right)^{m-\mu}}$$

$$P_n(t) = d_{\mu} u_{n-k_{\mu-1}}^{(\mu)} t^{-1-\left(\frac{1}{2}\right)^{m-\mu}},$$
(36)

где $n \in I_{\mu}, \, c_{\mu}$ и d_{μ} заданы.

4 Математические ожидания числа применений правила в деревьях вывода

Обозначим через $q_{ij}^l(t,\tau)$ и $\bar{q}_{ij}^l(t,\tau)$ случайные величины, равные числу применений правила r_{ij} в дереве вывода, соответственно, из D_l^t и $D_l^{\leqslant t}$. Пусть также

$$S_{ij}^{l}(t) = \sum_{\tau=1}^{t-1} q_{ij}^{l}(t,\tau)$$

$$\bar{S}_{ij}^{l}(t) = \sum_{\tau=1}^{t-1} \bar{q}_{ij}^{l}(t,\tau)$$
(37)

и $S_{ij}^l(t), \bar{S}_{ij}^l$ — соответственно число применений правила r_{ij} в дереве из $D_l^t, D_l^{\leqslant t}$. Для удобства записи положим

$$S_{ij}(t) = S_{ij}^{1}(t), \quad \bar{S}_{ij}(t) = \bar{S}_{ij}^{1}(t)$$

$$q_{ij}(t,\tau) = q_{ij}^{1}(t,\tau), \quad \bar{q}_{ij}(t,\tau) = \bar{q}_{ij}^{1}(t,\tau).$$
(38)

Рассмотрим математические ожидания некоторых из введённых величин. Обозначим

$$M_{ij}^l(t) = M[S_{ij}^l(t)], \quad \bar{M}_{ij}^l(t) = M[\bar{S}_{ij}^l(t)].$$
 (39)

Задача данного раздела заключается в вычислении $\bar{M}_{ij}^l(t),\,M_{ij}^l(t)$ для грамматик в виде «цепочки». Для их нахождения будет удобно использовать три леммы, доказанные в [2].

Лемма 1 Пусть s,d — натуральные, $m=(m_1,\ldots,m_s)$ — вектор целых неотрицательных чисел, $y=(y_1,\ldots,y_s)$ — вектор, и $\bar{m}=\sum_{j=1}^s m_j$. Тогда

$$(1 - y_1)^{n_1} \dots (1 - y_s)^{n_s} = \sum_{\substack{\bar{m} < d \\ m > 0}} \binom{n_1}{m_1} \binom{n_2}{m_2} \dots \binom{n_s}{m_s} (-1)^{\bar{m}} y^m + R_d(n_1, \dots, n_s, y), \tag{40}$$

где $y^m = y_1^{m_1} \dots y_s^{m_s}$, и остаточный член представим в виде

$$R_d(n_1, \dots, n_s, y) = \sum_{\substack{\bar{m} = d \\ m > 0}} (-1)^d \varepsilon_m(n_1, \dots, n_s, y) y^m,$$
(41)

причём

$$0 \leqslant \varepsilon_m(n_1, \dots, n_s, y') \leqslant \varepsilon_m(n_1, \dots, n_s, y) \leqslant \binom{n_1}{m_1} \dots \binom{n_s}{m_s}$$
(42)

 $npu \ 0 \leqslant y_i \leqslant y_i' \leqslant 1 \quad (i = 1, \dots, s).$

Пемма 2 Пусть A(t) — последовательность матриц размером $k \times k$, $u \ A(t) \to A$ при $t \to \infty$, причём A>0, u её перронов корень r=1. Пусть $b(t)=bt^{\alpha}(1+o(1))$ — последовательность векторов длины k, где $b\geqslant 0$, $b\neq 0$, $u \ \alpha$ — действительное число. Тогда для последовательности векторов x(t) при $t=1,2,\ldots$, определяемой рекуррентным соотношением x(t)=b(t)+A(t)x(t-1) при $t\to\infty$ справедливо соотношение

$$\frac{x_i(t)}{vx(t)} \to u_i, \tag{43}$$

при условии что $x(t_0) > 0$ для некоторого номера t_0 , где u, v > 0 — соответственно правый и левый собственные векторы матрицы A при нормировке vu = 1.

Лемма 3 Пусть последовательность x_t , $x_t > 0$ при любом $t \geqslant 0$, удовлетворяет рекуррентному соотношению

$$x_{t+1} = at^{\alpha}(1 + \varepsilon_1(t)) + (1 - bt^{\beta}(1 + \varepsilon_2(t)))x_t, \tag{44}$$

где $\beta < 0, \ b > 0, \ u \ \varepsilon_1(t), \varepsilon_2(t) = o(1)$ при $t \to \infty$. Тогда верны следующие асимптотические равенства:

(1)
$$x_t = \frac{at^{\alpha+1}}{\alpha+1}(1+o(1))$$
 npu $\beta < -1, \ \alpha \geqslant 0$
(2) $x_t = \frac{at^{\alpha+1}}{\alpha+b+1}(1+o(1))$ npu $\beta = -1, \ \alpha > -1$
(3) $x_t = \frac{at^{\alpha-\beta}}{b}(1+o(1))$ npu $-1 < \beta < 0$

Вначале рассмотрим $\bar{M}_{ij}^q(t)$. Пусть $p(\cdot)$ — условная вероятность дерева d в грамматике G, при условии что $d \in D_q^{\leqslant t}$. Рассмотрим множество $D_{ql}^{\leqslant t}$ деревьев из $D_q^{\leqslant t}$, первый ярус которых получен применением правила r_{ql} к корню дерева. Пусть

$$\bar{P}_{ql}^{ij}(t) = \sum_{d \in D_{ql}^{\leq t}} p(d)q_{ij}(d), \tag{46}$$

где $q_{ij}(d)$ — число применений правила r_{ij} в дереве d, и $\bar{P}_{ql}^{ij}(t)$ — вклад деревьев из $D_{ql}^{\leqslant t}$ в матожидание $\bar{M}_{ij}^q(t)$. Для краткости, обозначим $\bar{P}_{ql}=\bar{P}_{ql}^{ij}$. Тогда, очевидно,

$$\bar{M}_{ij}^{q}(t) = \sum_{l=1}^{n_q} \bar{P}_{ql}(t).$$
 (47)

Рассмотрим величину $\bar{P}_{ql}(t)$. Пусть

$$q_{ij}(d) = q_{ij}^{(1)}(d) + q_{ij}^{(2)}(d), \tag{48}$$

где $q_{ij}^{(1)}(d)$ — число применений правила r_{ql} в дереве d на первом его ярусе, а $q_{ij}^{(2)}(d)$ — на остальных ярусах. Тогда

$$\bar{P}_{ql}(t) = \sum_{d \in D_{ql}^{\leqslant t}} p(d)q_{ij}(d) = \sum_{d \in D_{ql}^{\leqslant t}} p(d)q_{ij}^{(1)}(d) + \sum_{d \in D_{ql}^{\leqslant t}} p(d)q_{ij}^{(2)}(d) = \bar{P}_{ql}^{(1)}(t) + \bar{P}_{ql}^{(2)}(t)$$
(49)

Очевидно, $q_{ij}^{(1)}(d)=\delta_i^q\delta_j^l$ (где delta — символ Кронекера), и следовательно, учитывая что $p(\cdot)$ — условные вероятности, получаем

$$\bar{P}_{ql}^{(1)}(t) = \delta_i^q \delta_j^l \frac{p_{ij} Q_{s_{ij}}(t-1)}{1 - Q_q(t)},\tag{50}$$

где $Q_X(t)$ — вероятность наборов деревьев вывода высоты не превосходящей t-1, набор корней которых задан характеристическим вектором $X \in \mathbb{N}^k$.

Обозначим также $\delta^i(n) = (\delta^i_k)\big|_{i=\overline{1,n}} \in \{0,1\}^n$.

Условную вероятность дерева p(d) при $d \in D_{ql}^{\leqslant t}$ можно выразить как

$$p(d) = \frac{p_{ql}}{1 - Q_q(t)} p_1(d) p_2(d) \dots p_{\bar{s}_{ql}}(d),$$
(51)

где $p_j(d)$ — вероятность поддерева d с корнем в j-м узле первого яруса. Тогда

$$\bar{P}_{ql}^{(2)}(t) = \frac{p_{ql}}{1 - Q_q(t)} \sum_{d \in D_{ql}^{\leqslant t}} \prod_{n=1}^{\bar{s}_{ql}} p_n(d) \sum_{m=1}^{\bar{s}_{ql}} q_{ij}^{\prime m}(d), \tag{52}$$

где $q_{ij}^{\prime m}(d)$ — число применений правила r_{ij} в поддереве дерева d с корнем в m-том нетерминале первого яруса.

Выделим в d поддеревья $d_1, d_2, \ldots, d_{\bar{s}_{ql}}$, где d_j — поддерево с корнем в j-м узле первого яруса d. Преобразуя (52), получаем

$$\bar{P}_{ql}^{(2)}(t) = \frac{p_{ql}}{1 - Q_{q}(t)} \sum_{m=1}^{\bar{s}_{ql}} \sum_{d \in D_{ql}^{\leqslant t}} \left(\prod_{n=1}^{\bar{s}_{ql}} p_{n}(d) \right) q_{ij}^{\prime m}(d) =$$

$$= \frac{p_{ql}}{1 - Q_{q}(t)} \sum_{m=1}^{\bar{s}_{ql}} \sum_{d_{1}, \dots, d_{m-1}, d_{m+1}, \dots, d_{\bar{s}_{ql}}} p_{1}(d_{1}) \dots p_{m-1}(d_{m-1}) p_{m+1}(d_{m+1}) \dots p_{\bar{s}_{ql}}(d_{\bar{s}_{ql}}) q_{ij}^{\prime m}(d) =$$

$$\frac{p_{ql}}{1 - Q_{q}(t)} \sum_{m=1}^{\bar{s}_{ql}} Q_{s_{ql} - \delta^{m}} q_{ij}(d_{m}) = \frac{p_{ql}}{1 - Q_{q}(t)} \sum_{m=1}^{k} s_{ql}^{m} \bar{M}_{ij}^{m}(t-1) Q_{s_{ql} - \delta^{m}}(t-1) \quad (53)$$

Зная $\bar{P}_{ql}(t) = \bar{P}_{ql}^{(1)}(t) + \bar{P}_{ql}^{(2)}(t)$, получаем

$$\bar{M}_{ij}^{q}(t) = \frac{1}{1 - Q_{q}(t)} \left[\delta_{i}^{q} p_{ij} Q_{s_{ij}}(t - 1) + \sum_{l=1}^{n_{q}} p_{ql} \sum_{m=1}^{k} s_{ql}^{m} \bar{M}_{ij}^{m}(t - 1) Q_{s_{ql} - \delta^{m}}(t - 1) \right]$$
(54)

Обозначая

$$\bar{M}_{ij}^{\prime q}(t) = \bar{M}_{ij}^{q}(t)(1 - Q_q(t)),$$
 (55)

имеем

$$\bar{M}_{ij}^{\prime q}(t) = \delta_i^q p_{ij} Q_{s_{ij}}(t-1) + \sum_{l=1}^{n_q} p_{ql} \sum_{m=1}^k s_{ql}^m \bar{M}_{ij}^{\prime m}(t-1) Q_{s_{ql}-\delta^m}(t-1)$$
(56)

Рекуррентное соотношение (56) является опорной точкой для вычисления $\bar{M}_{ij}^q(t)$. Получим аналогичное уравнение для $M_{ij}^q(t)$.

 $M_{ij}^q(t) = \sum_{l=1}^{n_q} P_{ql}(t)$, где $P_{ql}(t)$ — вклад деревьев из D_{ql}^t в $M_{ij}^q(t)$. Аналогично тому, как это сделано в (49), полагаем $P_{ql}(t) = P_{ql}^{(1)}(t) + P_{ql}^{(2)}(t)$. При этом

$$P_{ql}^{(1)}(t) = \delta_i^q \delta_j^l \frac{p_{ij} R_{s_{ij}}(t-1)}{P_q(t)},$$
(57)

где $R_X(t)$ — вероятность наборов деревьев из $D^{\leqslant t}$, набор корней которых задан характеристическим вектором X, и высота хотя бы одного из которых достигает t-1. $P_{ql}^{(2)}(t)$ можно представить в виде

$$P_{ql}^{(2)}(t) = \sum_{m=1}^{\bar{s}_{ql}} P_{ql}^{(2)m}(t), \tag{58}$$

где $P_{ql}^{(2)m}(t)$ — вклад деревьев с m-м корнем на первом ярусе в $M_{ij}^q(t)$.

Обозначим через S_1 вклад в $P_{ql}^{(2)m}(t)$ наборов деревьев, в которых ярус t достигается деревом с корнем в m-м нетерминале первого яруса. Очевидно,

$$S_1 = \frac{(1 - Q_{z_m}(t-1))Q_{s_{ql} - \delta^{z_m}}(t-1)M_{ij}^{z_m}(t-1)}{P_o(t)},$$
(59)

где z_m — m-й нетерминал первого яруса.

Пусть S_2 — вклад наборов, где ярус t достигается через другие деревья. Тогда

$$S_2 = \frac{(1 - Q_{z_m}(t-1))R_{s_{ql}-\delta^m}(t-1)\bar{M}_{ij}^{z_m}(t-1)}{P_q(t)}.$$
 (60)

В результате, для M_{ij}^q получаем

$$M_{ij}^{q} = \sum_{l=1}^{n_q} \left(P_{ql}^{(1)}(t) + \sum_{m=1}^{\bar{s}_{ql}} P_{ql}^{(2)m}(t) \right) =$$

$$= \frac{1}{P_q(t)} \left[\delta_i^q p_{ij} R_{s_{ij}}(t-1) + \sum_{l=1}^{n_q} p_{ql} \sum_{m=1}^k (P_m(t-1)Q_{s_{ql}-\delta^m}(t-1)M_{ij}^m(t-1) + (1 - Q_m(t-1))R_{s_{ql}-\delta^m}(t-1)\bar{M}_{ij}^m(t-1) \right]$$

$$+ (1 - Q_m(t-1))R_{s_{ql}-\delta^m}(t-1)\bar{M}_{ij}^m(t-1) \right]$$
 (61)

Таким образом, получено рекуррентное соотношение для $M^q_{ij}(t)$, аналогичное (56).

Из леммы 1 следуют равенства для $Q_X(t)$ и $R_X(t)$:

$$Q_X(t) = \prod_{i=1}^k (1 - Q_i(t))^{x_i} = 1 - \sum_{i=1}^k x_i Q_i(t) + \Theta\left(\sum_{i,j=1}^k x_i x_j Q_i(t) Q_j(t)\right)$$

$$R_X(t) = Q_X(t) - Q_X(t-1) = \sum_{i=1}^k x_i P_i(t) + \Theta\left(\sum_{i,j=1}^k x_i x_j Q_i(t) Q_j(t)\right)$$
(62)

Теперь можно приступить к вычислению $\bar{M}_{ij}^{\prime q}(t)$ и $M_{ij}^{\prime q}(t)$.

4.1 Случай критического класса

Рассмотрим вначале случай, когда $I(q) \in J$.

Пусть $q,i\in I_{\mu}$. Тогда при $m\in I_{\nu}: \nu>\mu$ $\bar{M}_{ij}^{\prime m}(t)=0,$ и для $\bar{M}_{in}^{\prime q}(t)$ получаем:

$$\bar{M}_{ij}^{\prime q}(t) = \delta_q^i p_{ij} Q_{s_{ij}}(t-1) + \sum_{l=1}^{n_q} p_{ql} \sum_{m \in I_\mu} s_{ql}^m \bar{M}_{ij}^{\prime m}(t-1) Q_{s_{ql}-\delta^m}(t-1)$$
(63)

Подставляя выражения (62) где это необходимо, и учитывая, что $I(q) \in J$, имеем

$$\bar{M}_{ij}^{\prime q}(t) = \delta_q^i + \sum_{m \in I_\mu} \sum_{l=1}^{n_q} p_{ql} s_{ql}^m \bar{M}_{ij}^{\prime m}(t-1) - \sum_{m \in I_\mu} \sum_{l=1}^{n_q} p_{ql} s_{ql}^m \bar{M}_{ij}^{\prime m}(t-1) \cdot \sum_{n \in I_\mu} (s_{ql}^n - \delta_n^m) Q_n(t-1)(1 + o(1)).$$

$$(64)$$

Непосредственным взятием производных от производящих функций проверяются выражения для первых и вторых моментов:

$$a_{m}^{q} = \sum_{l=1}^{n_{q}} p_{ql} s_{ql}^{m}$$

$$b_{mn}^{q} = \sum_{l=1}^{n_{q}} p_{ql} s_{ql}^{m} (s_{ql}^{n} - \delta_{n}^{m})$$
(65)

Подставляя их в (64), получаем

$$\bar{M}_{ij}^{\prime q}(t) = \delta_q^i p_{ij} + \sum_{m \in I_\mu} a_m^q \bar{M}_{ij}^{\prime m}(t-1) - c_\mu t^{\xi(\mu)-1} \sum_{\substack{m \in I_\mu \\ r \in I}} b_{mn}^q u_{n-k_{I(n)-1}}^{I(n)} \bar{M}_{ij}^{\prime m}(t-1)(1+o(1))$$
 (66)

где $\xi(\mu)$ — число классов с перроновым корнем, равным 1 в цепочке $K_{\mu}, K_{\mu+1}, \ldots, K_m$, и $K_{I(n)} \ni A_n$.

Применяя лемму 2, получаем:

$$\bar{M}_{ij}^{\prime q}(t) = u_{q-k_{\mu-1}}^{(\mu)} \cdot \sum_{l \in I_{\mu}} v_{n-k_{\mu-1}}^{(\mu)} \bar{M}_{ij}^{\prime l}(t) = u_{q-k_{\mu-1}}^{(\mu)} M_{*}^{(\mu)}(t), \tag{67}$$

где $M_*^{(\mu)}(t)=\sum_{l\in I_\mu}v_{n-k_{\mu-1}}^{(\mu)}\bar{M}_{ij}^{\prime l}(t)$, и $v^{(\mu)}$ — левый собственный вектор матрицы $A_{\mu,\mu}$.

Домножая (66) на $v_{q-k_{\mu-1}}^{(\mu)}$ и суммируя по q, получаем:

$$\delta \bar{M}_{*}^{(\mu)}(t) = v_{i-k_{\mu-1}}^{(\mu)} p_{ij} - c_{\mu} t^{\alpha} \sum_{q,m,n \in I_{\mu}} v_{q-k_{\mu-1}}^{(\mu)} b_{mn}^{q} u_{m-k_{\mu-1}}^{(\mu)} u_{n-k_{\mu-1}}^{(\mu)} = v_{i-k_{\mu-1}}^{(\mu)} p_{ij} - c_{\mu} t^{\alpha} B_{\mu}, \quad (68)$$

где $\alpha = -\left(\frac{1}{2}\right)^{\xi(\mu)-1}$.

Нетрудно видеть, что величина $\bar{M}_*^{(\mu)}(t)$ удовлетворяет условиям леммы 3. Применяя её, получаем:

$$\bar{M}_{*}^{(\mu)}(t) = \frac{v_{i-k_{\mu-1}}^{(\mu)} p_{ij}}{c_{\mu} B_{\mu} + 1} t(1 + o(1)), \quad \text{если } \alpha = -1$$

$$\bar{M}_{*}^{(\mu)}(t) = \frac{v_{i-k_{\mu-1}}^{(\mu)} p_{ij}}{c_{\mu} B_{\mu}} t^{-\alpha} (1 + o(1)), \quad \text{если } \alpha > -1$$

$$(69)$$

где
$$\alpha = -\left(\frac{1}{2}\right)^{\xi(\mu)-1}$$
.

Пусть теперь I(q) < I(i) (q и i в различных классах). Тогда $\bar{M}_{ij}^{\prime q}(t)$ выражается следующим образом:

$$\bar{M}_{ij}^{\prime q}(t) = \delta_q^i p_{ij} Q_{s_{ij}}(t-1) + \sum_{m \in I_u \cup I_{u+1}} \sum_{l=1}^{n_q} p_{ql} s_{ql}^m \bar{M}_{ij}^{\prime m}(t-1) Q_{s_{ql} - \delta^m}(t-1)$$
 (70)

Учитывая малость $Q_n(t)$ при I(n) > I(q), получаем

$$\bar{M}_{ij}^{\prime q}(t) = O(p_{ij}) + \sum_{m \in I_{\mu}} \sum_{l=1}^{n_q} p_{ql} s_{ql}^m \bar{M}_{ij}^{\prime m}(t-1) \cdot \left(1 - \sum_{n \in I_{\mu}} (s_{ql}^n - \delta_n^m) Q_n(t-1)\right) (1 + o(1)) + \sum_{m \in I_{\mu+1}} \sum_{l=1}^{n_q} p_{ql} s_{ql}^m \bar{M}_{ij}^{\prime m}(t-1) (1 + o(1))$$

$$+ \sum_{m \in I_{\mu+1}} \sum_{l=1}^{n_q} p_{ql} s_{ql}^m \bar{M}_{ij}^{\prime m}(t-1) (1 + o(1))$$
 (71)

Положим, $\bar{M}_{ij}^{\prime m}(t-1)=\overline{\mathcal{M}}_{\mu+1}^{\prime}t^{\gamma(\mu+1)}(1+o(1))$. Это выполняется для $\mu+1=m$, что видно из полученных соотношений (69). Исходя из этого, получим выражение для $\bar{M}_{ij}^{\prime q}(t)$. Подставляя дополнительно выражения для первых и вторых моментов, а также для вероятностей продолжения $Q_n(t-1)$, получаем:

$$\bar{M}_{ij}^{\prime q}(t) = \sum_{m \in I_{\mu}} a_m^q \bar{M}_{ij}^{\prime m}(t-1) - c_{\mu} t^{\alpha(\mu)} \sum_{m,n \in I_{\mu}} b_{mn}^q u_{n-k_{\mu-1}}^{(\mu)} \bar{M}_{ij}^{\prime m}(t-1)(1+o(1)) + \\ + \bar{\mathcal{M}}_{\mu+1}^{\prime} t^{\gamma(\mu+1)} \sum_{m \in I_{\mu+1}} a_m^q u_{m-k_{\mu}}^{(\mu+1)}(1+o(1)) \quad (72)$$

Домножая на $v_{q-k_{\mu-1}}^{(\mu)}$ и суммируя по q, получаем

$$\delta \bar{M}_{*}^{(\mu)}(t) = \overline{\mathcal{M}}_{\mu+1}' \left(\sum_{\substack{q \in I_{\mu} \\ m \in I_{\mu+1}}} v_{q-k_{\mu-1}}^{(\mu)} a_{m}^{q} u_{m-k_{\mu}}^{(\mu+1)} \right) \cdot t^{\gamma(\mu+1)} -$$

$$- c_{\mu} t^{\alpha(\mu)} \cdot \left(\sum_{\substack{q, m, n \in I_{\mu}}} v_{q-k_{\mu-1}}^{(\mu)} b_{mn}^{q} u_{m-k_{\mu-1}}^{(\mu)} u_{n-k_{\mu-1}}^{(\mu)} \right) \cdot \bar{M}_{*}^{(\mu)}(t-1)(1+o(1)) =$$

$$= \overline{\mathcal{M}}_{\mu+1}' b_{\mu+1} t^{\gamma(\mu+1)} (1+o(1)) - c_{\mu} B_{\mu} t^{\alpha(\mu)} \bar{M}_{*}^{(\mu)}(t-1)(1+o(1)) \quad (73)$$

Случай $\alpha(\mu) = -1$ рассматривать не имеет смысла, так как это означает, что не существует критических классов с номерами, превышающими μ . Полагая $\alpha(\mu) > -1$ и применяя лемму 2, получаем

$$\bar{M}_{*}^{(\mu)}(t) = \frac{\overline{\mathcal{M}}'_{\mu+1} b_{\mu+1} t^{\gamma(\mu+1) - \alpha(\mu)}}{c_{\mu} B_{\mu}}$$
(74)

Из полученных формул (69) и (74) нетрудно получить общее выражение для величины $\bar{M}_*^{(\mu)}(t)$, при условии что грамматика имеет вид «цепочки» и состоит только из критических классов $(J = \{1, 2, \dots, m\})$.

$$\bar{M}_{*}^{(\mu)}(t) = \prod_{j=\mu}^{\nu-1} \left(\frac{b_{j+1}}{c_{j}B_{j}}\right) \cdot \left(\frac{v_{i-k_{\nu-1}}^{(\nu)}p_{ij}}{c_{\nu}B_{\nu} + \delta_{\nu}^{m}}\right) \cdot t^{\frac{1}{2}^{m-\nu}\left(2 - \frac{1}{2}^{\nu-\mu}\right)},\tag{75}$$

где $\mu = I(q), \nu = I(i)$. Подставляя (67), и затем (55), непосредственно получаем

$$\bar{M}_{ij}^{q}(t) = \frac{u_{q-k_{\mu-1}}^{(\mu)}}{1 - Q_{q}(t)} \prod_{j=\mu}^{\nu-1} \left(\frac{b_{j+1}}{c_{j}B_{j}}\right) \cdot \left(\frac{v_{i-k_{\nu-1}}^{(\nu)} p_{ij}}{c_{\nu}B_{\nu} + \delta_{\nu}^{m}}\right) \cdot t^{\frac{1}{2}^{m-\nu} \left(2 - \frac{1}{2}^{\nu-\mu}\right)}$$
(76)

Перейдём к вычислению $M_{ij}^q(t)$. Пусть I(q)=I(i). Полагая $M_{ij}^{\prime q}(t)=M_{ij}^q(t)P_q(t)$, из (61) получаем

$$M_{ij}^{\prime q}(t) = O(p_{ij})t^{\beta(\mu)} + \sum_{m \in I_{\mu}} \sum_{l=1}^{n_q} p_{ql} s_{ql}^m M_{ij}^{\prime m}(t-1) -$$

$$- \sum_{m,n \in I_{\mu}} \sum_{l=1}^{n_q} p_{ql} s_{ql}^m (s_{ql}^n - \delta_n^m) Q_n(t-1) M_{ij}^{\prime m}(t-1) +$$

$$+ \sum_{m,n \in I_{\mu}} \sum_{l=1}^{n_q} p_{ql} s_{ql}^m (s_{ql}^n - \delta_n^m) P_n(t-1) \bar{M}_{ij}^{\prime m}(t-1)$$
 (77)

Обозначим

$$Q^{(\mu)}(t) = c_{\mu}u^{(\mu)}t^{\alpha(\mu)}$$

$$P^{(\mu)}(t) = d_{\mu}u^{(\mu)}t^{\beta(\mu)}$$
(78)

Подставляя выражения (65) для первых и вторых моментов в (77), имеем

$$M_{ij}^{\prime q}(t) = \sum_{m \in I_{\mu}} a_m^q M_{ij}^{\prime m}(t-1) - c_{\mu} t^{\alpha(\mu)} \sum_{m,n \in I_{\mu}} b_{mn}^q u_{n-k_{\mu-1}}^{(\mu)} M_{ij}^{\prime m}(t-1)(1+o(1)) + d_{\mu} t^{\beta(\mu)} \sum_{m,n \in I_{\mu}} b_{mn}^q u_{n-k_{\mu-1}}^{(\mu)} \bar{M}_{ij}^m(t-1)(1+o(1))$$
(79)

Обозначая дополнительно $M_{ij}^q(t)=\mathcal{M}_q t^{\left(\frac{1}{2}\right)^{m-\mu}}$, а также учитывая $\beta(\mu)=-1-\left(\frac{1}{2}\right)^{m-\mu}$ и выражения для первых моментов, получаем

$$M_{ij}^{\prime q}(t) = \sum_{m \in I_{\mu}} a_{m}^{q} M_{ij}^{\prime m}(t-1) - c_{\mu} t^{\alpha(\mu)} \sum_{m,n \in I_{\mu}} b_{mn}^{q} u_{n-k_{\mu-1}}^{(\mu)} M_{ij}^{\prime m}(t-1)(1+o(1)) + d_{\mu} \mathcal{M}_{\mu} t^{-1} \sum_{m,n \in I_{\mu}} b_{mn}^{q} u_{m-k_{\mu-1}}^{(\mu)} u_{n-k_{\mu-1}}^{(\mu)}(1+o(1))$$
(80)

Применяя лемму 2, получаем

$$M_{ij}^{\prime q}(t) = u_{q-k_{\mu-1}}^{(\mu)} M_*^{(\mu)}(t) (1 + o(1))$$

$$M_*^{(\mu)}(t) = \sum_{m \in I_{\mu}} v_{n-k_{\mu-1}}^{(\mu)} M_{ij}^{\prime m}(t)$$
(81)

Домножая (80) на $v_{q-k_{\mu-1}}^{(\mu)}$ и суммируя по q, имеем

$$\delta M_*^{(\mu)}(t) = d_\mu \mathcal{M}_\mu B_\mu t^{-1} - c_\mu t^{\alpha(\mu)} B_\mu M_*^{(\mu)}(t-1)(1+o(1))$$
(82)

Применяя лемму 3, получаем в результате

$$M_*^{(\mu)}(t) = \begin{cases} d_\mu \overline{\mathcal{M}}'_\mu B_\mu (1 + o(1)), & \text{при } \mu = m, \\ \frac{d_\mu \overline{\mathcal{M}}'_\mu}{c_\mu} t^{-1 - \alpha(\mu)} (1 + o(1)), & \text{при } \mu < m \end{cases}$$
(83)

Пусть теперь $I(q) = \mu, \, I(i) = \nu, \, \mu < \nu, \,$ тогда из (61) получаем

$$M_{ij}^{\prime q}(t) = \delta_i^q p_{ij} R_{s_{ij}}(t-1) + \sum_{m \in I_{\mu} \cup I_{\mu+1}} \sum_{l=1}^{n_q} p_{ql} s_{ql}^m \cdot [Q_{s_{ql}-\delta^m}(t-1) M_{ij}^{\prime m}(t-1) + + (1 - Q_m(t-1)) R_{s_{ql}-\delta^m}(t-1) \bar{M}_{ij}^m(t-1)], \quad (84)$$

откуда

$$M_{ij}^{\prime q}(t) = O\left(t^{\beta(\mu)}\right) + \sum_{m} a_{m}^{q} M_{ij}^{\prime m}(t-1) - \sum_{\substack{m \in I_{\mu} \cup I_{\mu+1} \\ n \in I_{\mu}}} b_{mn}^{q} Q_{n}(t-1) M_{ij}^{\prime m}(t-1)(1+o(1)) + \left(\sum_{\substack{m \in I_{\mu} \cup I_{\mu+1} \\ n \in I_{\mu}}} b_{mn}^{q} P_{n}(t-1) \bar{M}_{ij}^{m}(t-1)\right) (1+o(1))$$

$$+ \left(\sum_{\substack{m \in I_{\mu} \cup I_{\mu+1} \\ n \in I_{\mu}}} b_{mn}^{q} P_{n}(t-1) \bar{M}_{ij}^{m}(t-1)\right) (1+o(1))$$
(85)

(...здесь подробнее...)

Можем записать

$$M_{ij}^{\prime q}(t) = \sum_{m \in I_{\mu}} a_m^q M_{ij}^{\prime m}(t-1) - \sum_{m,n \in I_{\mu}} b_{mn}^q Q_n(t-1) M_{ij}^{\prime m}(t-1)(1+o(1)) + \sum_{m,n \in I_{\mu}} b_{mn}^q P_n(t-1) \bar{M}_{ij}^m(t-1)(1+o(1))$$
(86)

Домножая на $v_{q-k_{\mu-1}}^{(\mu)}$ и суммируя по q, имеем

$$\delta M_*^{(\mu)}(t) = d_\mu \overline{\mathcal{M}}_\mu B_\mu t^{\beta(\mu) + \left(\frac{1}{2}\right)^{m-\nu} \left(2 - \left(\frac{1}{2}\right)^{\nu-\mu}\right)} (1 + o(1)) - c_\mu B_\mu t^{\alpha(\mu)} \cdot M_*^{(\mu)}(t - 1)(1 + o(1))$$
(87)

Так как $\mu < m, \, \alpha(\mu) > -1,$ поэтому по лемме 3 получаем

$$M_*^{(\mu)}(t) = \frac{d_\mu \overline{\mathcal{M}}_\mu}{c_\mu} t^{-1 + \left(\frac{1}{2}\right)^{m-\nu} \left(2 - \left(\frac{1}{2}\right)^{\nu-\mu}\right)}$$
(88)

Объединяя результаты (83) и (88), получаем

$$M_*^{(\mu)}(t) = \frac{d_\mu \overline{\mathcal{M}}_\mu B_\mu}{\delta_\mu^m (c_\mu B_\mu - 1) + 1} \cdot t^{-1 + \left(\frac{1}{2}\right)^{m-\nu} \left(2 - \left(\frac{1}{2}\right)^{\nu-\mu}\right)} (1 + o(1)), \tag{89}$$

после чего из (80)

$$M_{ij}^{q}(t) = \frac{u_{q-k_{\mu-1}}^{(\mu)}}{P_{q}(t)} \frac{d_{\mu} \overline{\mathcal{M}}_{\mu} B_{\mu}}{\delta_{\mu}^{m}(c_{\mu} B_{\mu} - 1) + 1} \cdot t^{-1 + \left(\frac{1}{2}\right)^{m-\nu} \left(2 - \left(\frac{1}{2}\right)^{\nu-\mu}\right)} (1 + o(1)) \tag{90}$$

Список литературы

- [1] Гантмахер Ф.Р. **Теория матриц.** 5-е изд., М.: ФИЗМАТЛИТ, 2010 560 с. ISBN 978-5-9221-0524-8
- [2] Борисов А.Е. Закономерности в словах стохастических контекстно-свободных языков, порождённых грамматиками с двумя классами нетерминальных символов. Вопросы экономного кодирования.