kNN, деревья решений, предобработка

Маша Шеянова, masha.shejanova@gmail.com

Формула оценки

Oценка за курс = 0.5 * накоп + <math>0.5 * проект

Накоп = 2 маленьких дз * 0.2 + 2 больших дз * 0.8 + конспект статьи на медиуме (по желанию)

Популярные алгоритмы классификации

- k ближайших соседей (kNN)
- наивный Байес
- деревья решений
- логистическая регрессия
- метод опорных векторов (SVM)

На прошлой лекции мы обсуждали наивный байесовский классификатор. Теперь разбёрмся в kNN и деревьях решений.

Метрические классификаторы. kNN.

Гипотеза компактности

Это предположение о том, что схожие (близкие в пространстве признаков) объекты гораздо чаще лежат в одном классе, чем в разных.

Метрики (математика)

(не путать с метриками качества, они никак на связаны!)

Метрики — это такой способ посчитать расстояние между объектами. Иными словами, 'это функция **d(a, b)**, значение которой — расстояние от **a** до **b**.

Для метрик выполняются такие правила:

- d(a, b) = 0, iff a = b аксиома тождества
- d(a, b) = d(b, a) аксиома симметрии
- d(a, b) <= d(a, c) + d(b, c) неравенство треугольника

Функция расстояния

Для того, чтобы сделать метрический классификатор, надо уметь считать расстояние между объектам; находить, какой ближе, а какой дальше.

Метрики (в математическом смысле) — хорошие функции расстояния.

Но как выглядят наши объекты? Это вектора! Каждая координата — значение того или иного признака.

А значит, в качестве функции расстояния можно воспользоваться:

- евклидовым расстоянием
- косинусным расстоянием

k ближайших соседей (kNN)

Источник картинки.

К какому классу будет отнесён кружок в центре при k=3?

При k=5?

kNN: преимущества и недостатки

Преимущества:

- соседи "голосуют" вывод о классе чувствителен к шуму
- параметр k можно настраивать для каждой задачи

Недостатки:

 непонятно, что делать если среди к соседей одинаковое количество представителей разных классов

kNN B sklearn

sklearn.neighbors.KNeighborsClassifier

Можно настраивать параметры:

- n_neighbors (по дефолту, 5)
- weights (по дефолту, "uniform" ; ещё может быть "distance" и функция)
- algorithm разные реализации

И ещё несколько других параметров.

Деревья решений

Идея

Каждый признак — критерий, чтобы выбрать, к какому классу относится объект. Мы можем построить **дерево**, где каждый **узел —разветвление по признаку.** Корень — самый значимый признак, дальше другие признаки.

Плюсы:

• очень интуитивно

Минусы:

• склонны к переобучению

Дерево решений

Источник картинки.

Дерево решений на примере датасета из титанка.

Энтропия

Один из алгоритмов — ID3 (Iterative Dichotomiser 3), использует энтропию.

Как измерить насколько распределение "неопределённое"?

Взять математическое ожидание количества бит, которое понадобится, чтобы закодировать один из исходов.

Это количество бит — **информация** (-log p).

Мат ожидание информации - энтропия

Entropy =
$$-\sum p(X) \log p(X)$$

here p(x) is a <u>fraction</u> of examples in a given <u>class</u>

Information gain

"Information gain (IG) measures how much "information" a feature gives us about the class."

Сколько информации вносит родительский узел:

```
Information = entropy (parent) - [weightes average] * entropy (children)
```

Gini

... to be explained

Деревья решений в sklearn

sklearn.tree.DecisionTreeClassifier

Параметры:

- criterion (gini или entropy)
- splitter (best или random)
- max_depth максимально возможная высота дерева
- max_leaf_nodes максимально возможная "ширина" дерева

И другие.

Ещё немного про метрики

Точность и полнота для нескольких классов

Мы обсудили, что точность и полнота строится по такой табличке:

Но что если классов много — получается, они не работают?

А вот и работают: надо для каждого класса считать,

Что такое baseline

Это тот результат, с которым вы сравниваете свой метод. Лучший результат, который можно было получить простым способом.

Например, в задаче бинарной классификации со сбалансированными классами можно "подбрасывать монетку": accuracy будет ~0.5.

Если вы изобрели новый метод для решения задачи, baseline — прошлый лучший метод. Если вы сравниваете, насколько важна лемматизация, baseline — результат без лемматизации.

Задача: придумайте простой baseline для определения оскорбительных твитов, для которого не нужно MO.

О предобработке

Что можно сделать с текстом?

Предобработка— в принципе, все изменения, которые вы делаете с данными до того, как извлечь из них признаки.

- почистить текст от мусора (например, от остатков markdown)
- убрать стоп-слова (*a, не, на, и, ...*), пунктуацию
- сделать умную токенизацию
- лемматизировать слова
- добавить информацию о частях речи
- добавить информацию о роли в предложении
- ...

Ресурсы

Почитать

- про деревья решений (англ)
- про энтропию и information gain для деревьев решений (англ)
- про kNN (англ)