Lab 4: Design and Implementation of a Multifunctional Register

1 Overview

The goal of this lab is to design and build a multifunctional register like the one depicted in the following Figure:

C ₁	C _o	Q (k+1)	Function
0	0	D(k)	Parallel load
0	1	$Q_0(k), Q_2(k), Q_1(k)$	Rotation to right
1	0	$Q_1(k),Q_0(k),SI(k)$	Shift left
1	1	Q(k)	Same value

The circuit will have the following set of ports:

- A 3-bit parallel output Q, which show the data stored in the register
- A 3-bit parallel input **D**, where we must place the input data (for parallel load)
- A serial input SI, 1-bit input to shift data to the left
- A 2-bit control input **C**, to select the function to perform
- A clock input CLK
- An asynchronous input *CLR*, to clean the register (**Q**=000), active Low.

2 Development

2.1 Design phase

- The circuit design must be completed at home. It must be summarized in the corresponding lab notebook.
- The behavior of the circuit must be designed using D flip-flops and 4-to-1 multiplexers.

2.2 Building and debugging phase

- Use the following ICs to mount the circuit: **7474** (2 D flip-flops, triggered by rising edge and asynchronous initialization signals to 0 and 1 active Low), **74153** (2 4-to-1 multiplexers, with common control signals and separate enable signals, active low).
- Connect **D**, **C**, SI, and CLR inputs to switches.
- Connect *CLK* to a pulse switch
- Connect Q to three leds
- Check all the working modes and validate the final design. It the circuit does not perfectly work, it must be debugged to find the errors and repair them.

2.3 Using the function generator

- Configure the function generator in order to produce a square wave of 1 Hz
- Connect the TTL output of the function generator to the *CLK* input of your circuit
- Connect the pulse switch output to the CLR input
- When the circuit is correctly working, show your implementation to your lab professor