FUNDACIÓN PF

Módulo VI - Aprendizaje NO supervisado.

Clase 22: Clustering - Métricas

¿Ponemos a grabar el taller?

¿QUÉ VAMOS A VER HOY?

- Métricas para Clustering
 - Método Elbow
 - Método Silhouette

Métricas

Clustering

Los datos **NO** están **etiquetados**.

No hay un valor esperado.

¿CÓMO SABEMOS QUE NUESTRO MODELO FUNCIONA CORRECTAMENTE?

Clustering

Debemos encontrar una medida para la validación e interpretación de clusters en un dataset.

Podemos medir cuál es la distancia media de cada dato al centroide más cercano.

Clustering

Debemos encontrar una medida para la validación e interpretación de clusters en un dataset.

Distancia para cada punto

Posición del punto i

Posición del centroide más cercano

Clustering (K-Means)

Buscamos una medida para evaluar qué tan buena resulta la **designación de clusters** en **K-Means**.

$$D=rac{1}{N}\sum_{i=1}^{N}d(i)$$

Distancia media total

Método Elbow

Buscamos una medida para evaluar qué tan buena resulta la **designación de clusters** en **K-Means**.

Se gráfica distancia (o inertia en sklearn) vs. k y se encuentra donde esta el codo

Se busca dónde está el **codo** de la curva. El valor de la distancia o inercia siempre desciende cuando aumenta el número de clusters.

Medida para la validación e interpretación de clusters en un dataset (para cualquier método de clustering).

$$s(i) = \left\{ egin{aligned} 1 - a(i)/b(i), & ext{if } a(i) < b(i) \ 0, & ext{if } a(i) = b(i) \ b(i)/a(i) - 1, & ext{if } a(i) > b(i) \end{aligned}
ight.$$

Se mide qué tan parecidos son los datos con respecto a otros de su propio cluster (cohesión) en comparación con qué tan parecidos son a los datos en otros clusters (separación)

s(i): Valor de silhouette para el dato i.

a(i): Distancia media del dato i con el resto de su cluster

b(i): DIstancia media del dato i con el cluster más cercano

Medida para la validación e interpretación de clusters en un dataset (para cualquier método de clustering).

$$s(i) = \left\{ egin{array}{ll} 1 - a(i)/b(i), & ext{if } a(i) < b(i) \ 0, & ext{if } a(i) = b(i) \ b(i)/a(i) - 1, & ext{if } a(i) > b(i) \end{array}
ight.$$

Nos da una medida para cada punto de qué tan bien están ubicados en sus clusters.

Para una medida de todo el conjunto, se toma la media de todos los valores.

s(i): Valor de silhouette para el dato i.

a(i): Distancia media del dato i con el resto de su cluster

b(i): DIstancia media del dato i con el cluster más cercano

Se espera que si están bien asignados y armados los clusters, el perfil de todos los datos sea parejo.

Silhouette analysis using k = 4

Se espera que si están bien asignados y armados los clusters, el perfil de todos los datos sea parejo.

Sección Práctica

Trabajamos con métricas en la Notebook 21

TRABAJAMOS EN SALAS

Sección Práctica

Trabajamos con métricas en la Notebook 21

TRABAJAMOS EN SALAS

Trabajamos en salas de zoom

Métricas

Trabajaremos con la Notebook 21

En los grupos establecidos, ejercitamos como se evalúan los modelos no supervisados

50 minutos de actividad

Descanso

Nos vemos en 10 minutos

Repasamos dudas

Trabajamos con la Notebook 21

Revisamos los conceptos y el código trabajados en la notebook 21

Desafío 15 (continuación)

Para la siguiente repasar la notebook 21

¿Alguna consulta?

Repasemos

Eligiendo algoritmo

Tarea

Definir de forma clara el objetivo

Información

Con qué datos se cuenta para lograr el objetivo

APRENDIZAJE **SUPERVISADO**

(2

APRENDIZAJE NO SUPERVISADO

Aprendizaje No Supervisado

El algoritmo infiere patrones de un conjunto de datos que, a diferencia del aprendizaje supervisado, no están etiquetados. Puede utilizarse para descubrir la estructura subyacente de los datos

Aprendizaje No Supervisado

- Clustering
- Reducción de la Dimensionalidad

Reducción de la dimensionalidad

Reducción de la dimensionalidad

El objetivo consta de reducir la cantidad de features de un dataset, pero reteniendo la mayor cantidad de información posible.

Reducción de la dimensionalidad

Consiste en reducir la cantidad de features de un dataset, pero reteniendo la mayor cantidad de información posible.

Aplicaciones

- Reducir la complejidad del input en un modelo de regresión o clasificación
- Visualización
- Detectar features relevantes en datasets

Algoritmos

- Principal Component Analysis
- Multidimensional Scaling
- t-SNE: t-distributed StochasticNeighbor Embedding
- LDA: Linear Discriminant Analysis

Principal Component Analysis

Técnica utilizada para describir un conjunto de datos en términos de nuevas variables o componentes no correlacionados.

- El algoritmo encuentra nuevos componentes que describen los datos
- Los componentes se ordenan por la cantidad de varianza original que describen, reduciendo la dimensionalidad del conjunto de datos.
- Utiliza Single Vector Decomposition (SVD)

FUNDACIÓN Y PF

¡Muchas gracias!

