Robot motion

Javier González Jiménez

Reference Books:

- Probabilistic Robotics. S. Thrun, W. Burgard, D. Fox. MIT Press. 2001
- Simultaneous Localization and Mapping for Mobile Robots: Introduction and Methods. Juan-Antonio Fernández-Madrigal and José Luis Blanco Claraco. IGI-Global. 2013.

Content

- Locomotion of wheeled robots
 - Differential drive
- Pose of the robot through composition of poses
 - Composition
 - Pose as a rigid transformation
 - Inverse of a pose
 - Concatenation of poses
- Probabilistic motion model
 - Velocity-based
 - Odometry-based

Locomotion of Wheeled Robots

Locomotion: The act of moving from one place to another

Robot pose: position and orientation

$$pose = \begin{bmatrix} x \\ y \\ \theta \end{bmatrix}$$
 P: position

- A vehicle is holonomic if the number of its local degrees-of-freedom (dof) of movement equals the number of global dof (3 for planar motion, 6 in 3D space)
- If the vehicle can not move in some direction (has some motion constraint) it becomes non-holonomic

Typically, a non-holonomic vehicle is that whose velocity vector \mathbf{v}_P is restricted to be tangent to the path \rightarrow moves on a circular trajectory and cannot move sideways

Locomotion of Wheeled Robots

Two main motion systems in mobile robotics:

- Differential drive (A)

We'll focus on this

Ackermann steering: Car drive (B) Bicycle (C)

All these are Non-holonomic vehicles:

- 2 local dof: 2 actuators/motors
- 3 global dof: $[x,y,\theta]$

local dof (2) < global dof (3)

ICR: Instantaneous Center of Rotation

If not wheel slippage the motion is always a pure rotation about ICR:

- the robot is always describing a circular motion
- the center of rotation (ICR) moves at each instant of time

Locomotion of Wheeled Robots

Rolling vs. slippage (vehicle with 3 wheels)

Wheels will slip: not single ICR

Wheels will be rolling (no slippage): Just one ICT

- For rolling motion to occur (no slippage), all wheels must share the same ICR and the same w: angular velocity wrt (with-respect-to) the ICR
- $v_i = w R_i \rightarrow$ same angular velocity w for each wheel, different turning radius R_i

How is it possible that a robot moves along this path if the instantaneous motion is always circular?

The path is the composition of a sequence of circular motions with an IRC that moves

Reference system of the vehicle at the midpoint of the **wheels' axis**

ICR

Lineal velocity of the **wheels**:

$$v_r = w(R + l/2)$$

$$v_l = w(R - l/2)$$

$$W = \frac{l}{2} \frac{(v_l + v_r)}{(v_r - v_l)}$$

$$w = \frac{v_r - v_l}{l}$$

Velocity of the **robot-axis midpoint**:

$$v_P = w \cdot R$$

Vehicle velocity is always perpendicular to the robot wheel axis

Typically, the robot motion is given by any of these pairs of variables: $\langle v_l, v_r \rangle, \langle v_P, w \rangle$

$$v_r = w(R + l/2)$$
 = $v_P + w(l/2)$
 $v_l = w(R - l/2)$ = $v_P - w(l/2)$

Assuming w y R constant ($v_P = wR$ constant) during the period Δt

Incremental robot pose: How much has the robot moved in Δt

$$\Delta x = x(\Delta t) = \int_{0}^{\Delta t} v_P(t) \cos[\Delta \theta(t)] dt = \frac{v_P}{w} \sin(w\Delta t)$$

$$\Delta y = y(\Delta t) = \int_{0}^{\Delta t} v_P(t) \sin[\Delta \theta(t)] dt = \frac{v_P}{w} [1 - \cos(w\Delta t)]$$

$$\Delta\theta = \theta(\Delta t) = \int_{0}^{\Delta t} w(t) dt = w\Delta t$$

Special case: If the robot moves *straight forward* (*no rotation*) $w=0 \rightarrow v_r = v_l = v_P$

$$x(\Delta t) = v_P \Delta t$$
$$y(\Delta t) = 0$$
$$\theta(\Delta t) = 0$$

Summary:

This pose increment is expressed in the first robot coordinate system!

What if we want the robot pose in an arbitrary coordinate system?

Pose of the robot through composition of poses

Robot poses in the World System

We'll see next where this expression comes from

Wheel Odometry

Vehicle pose given by composing small incremental movements with w and R constant

Composition of poses:
$$p_t = p_{t-1} \oplus \Delta p_t = \begin{bmatrix} x_{t-1} + \Delta x_t \cos \theta_{t-1} - \Delta y_t \sin \theta_{t-1} \\ y_{t-1} + \Delta x_t \sin \theta_{t-1} + \Delta y_t \cos \theta_{t-1} \\ \theta_{t-1} + \Delta \theta_t \end{bmatrix}$$

Assuming $w \neq 0$ and $R(v_p)$ constant

If linear motion (w =0)

$$\Delta x_t = \frac{v_P}{w} \sin(w\Delta t)$$

$$\Delta y_t = \frac{v_P}{w} [1 - \cos(w\Delta t)]$$

$$\Delta \theta_t = w\Delta t$$
For a differential drive vehicle commanded with $u = [v_P, w]^T$
For cl

$$p_{t} = \begin{bmatrix} x_{t} \\ y_{t} \\ \theta_{t} \end{bmatrix} = \begin{bmatrix} x_{t-1} \\ y_{t-1} \\ \theta_{t-1} \end{bmatrix} + \begin{bmatrix} -\frac{v_{P}}{w} \sin \theta_{t-1} + \frac{v_{P}}{w} \sin(\theta_{t-1} + w\Delta t) \\ \frac{v_{P}}{w} \cos \theta_{t-1} - \frac{v_{P}}{w} \cos(\theta_{t-1} + w\Delta t) \end{bmatrix}$$

$$\Delta x_t = v_P \Delta t$$

$$\Delta y_t = 0$$

$$\Delta \theta_t = 0$$

For clarity, we omit the subscript t in $\boldsymbol{v_p}$ and \boldsymbol{w}

$$p_{t} = \begin{bmatrix} x_{t} \\ y_{t} \\ \theta_{t} \end{bmatrix} = \begin{bmatrix} x_{t-1} \\ y_{t-1} \\ \theta_{t-1} \end{bmatrix} + v_{p} \Delta t \begin{bmatrix} \cos \theta_{t-1} \\ \sin \theta_{t-1} \\ 0 \end{bmatrix}$$

Odometry is computed by the wheel controller at a very high rate in order to guarantee that w and R remain constant

Pose of the robot through composition of poses

Just translation (i.e. the robot is a point, has not orientation)

$$p_2 = p_1 + p_{12} = \begin{bmatrix} x_1 + x_{12} \\ y_1 + y_{12} \end{bmatrix}$$

Behave like vectors!

Translation + rotation: $p_2 \neq p_1 + p_{12} \rightarrow p_2 = p_1 \oplus p_{12}$ Pose composition

$$p_2 = \begin{bmatrix} x_2 \\ y_2 \\ \theta_2 \end{bmatrix} = p_1 \oplus p_{12} = \begin{bmatrix} x_1 + x_{12}\cos\theta_1 - y_{12}\sin\theta_1 \\ y_1 + x_{12}\sin\theta_1 + y_{12}\cos\theta_1 \\ \theta_1 + \theta_{12} \end{bmatrix}$$

Where does this expression come from? NEXT

Rigid (Euclidean) transformation between coordinate systems

$$\mathbf{x}_{2} = \begin{bmatrix} x_{2} \\ y_{2} \end{bmatrix} = \begin{bmatrix} x_{12} \cos \theta_{1} & -y_{12} \sin \theta_{1} \\ x_{12} \sin \theta_{1} & y_{12} \cos \theta_{1} \end{bmatrix} + \begin{bmatrix} x_{1} \\ y_{1} \end{bmatrix} = \begin{bmatrix} \cos \theta_{1} & -\sin \theta_{1} \\ \sin \theta_{1} & \cos \theta_{1} \end{bmatrix} \begin{bmatrix} x_{12} \\ y_{12} \end{bmatrix} + \begin{bmatrix} x_{1} \\ y_{1} \end{bmatrix} = \mathbf{R}_{\theta_{1}} \mathbf{x}_{12} + \mathbf{x}_{1}$$

If no rotation
$$R_{\theta_1} = I \implies x_2 = x_{12} + x_1$$

Pose as a rigid (Euclidean) transformation between coordinate

systems

$$\mathbf{x}_2 = \begin{bmatrix} x_2 \\ y_2 \end{bmatrix} = \mathbf{R}_{\theta_1} \mathbf{x}_{12} + \mathbf{x}_1$$

$$\tilde{\mathbf{x}}_2 = \begin{bmatrix} \mathbf{x}_2 \\ 1 \end{bmatrix} = \begin{bmatrix} \mathbf{R}_{\theta_1} & \mathbf{x}_1 \\ 0^T & 1 \end{bmatrix} \begin{bmatrix} \mathbf{x}_{12} \\ 1 \end{bmatrix} = {}^{0}\mathbf{T}_1 \tilde{\mathbf{x}}_{12}$$

 ${}^{0}T_{1}$ expresses point coordinates given in the system 1 (e.g. x_{12}) as coordinates of system 0

Equivalence between transformation and pose (${}^{0}\boldsymbol{T}_{1} \equiv p_{01}$):

$$p_{01} = p_1 = \begin{bmatrix} x_1 \\ y_1 \\ \theta_1 \end{bmatrix} = \begin{bmatrix} \mathbf{x}_1 \\ \theta_1 \end{bmatrix} \rightarrow {}^{0}\boldsymbol{T}_1 = \begin{bmatrix} \boldsymbol{R}_{\theta_1} & \mathbf{x}_1 \\ 0^T & 1 \end{bmatrix}$$

Typically, 0 is dropped for short

Pose of the robot through composition of poses

The robot, at pose p_1 , moves p_{12} reaching a new pose p_2

$$p_2 = p_1 \oplus p_{12}$$

$$p_2 = \begin{bmatrix} x_2 \\ y_2 \\ \theta_2 \end{bmatrix} = p_1 \oplus p_{12} = \begin{bmatrix} x_1 + x_{12} \cos \theta_1 - y_{12} \sin \theta_1 \\ y_1 + x_{12} \sin \theta_1 + y_{12} \cos \theta_1 \\ \theta_1 + \theta_{12} \end{bmatrix} = \begin{bmatrix} {}^0\boldsymbol{T}_1 \tilde{\mathbf{x}}_{12}(1) \\ {}^0\boldsymbol{T}_1 \tilde{\mathbf{x}}_{12}(2) \\ \theta_1 + \theta_{12} \end{bmatrix}$$
 First two elements of the 3x1 vector ${}^0\boldsymbol{T}_1 \tilde{\mathbf{x}}_{12}(2)$

Why is interesting to see poses as transformations?

1. Inverse of a pose (inverse of transformation)

This transformation takes any point from 0 to 1, e.g. $O_0 = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$:

$$\widetilde{O_{1}} = T_{10}\widetilde{O_{0}} = \begin{bmatrix} R_{\theta_{1}}^{-1} & -R_{\theta_{1}}^{-1}\mathbf{x}_{1} \\ 0^{T} & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\begin{bmatrix} c\theta_{1} & s\theta_{1} \\ -s\theta_{1} & c\theta_{1} \end{bmatrix} & -\begin{bmatrix} x_{1}c\theta_{1} + y_{1}s\theta_{1} \\ -x_{1}s\theta_{1} + y_{1}c\theta_{1} \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} x_{1}^{-} \\ y_{1}^{-} \\ 1 \end{bmatrix}$$

Question:

What is the pose of the robot A wrt to robot B if we know that pose of B wrt to A

is
$$p_{01} = [2\ 3\ 45^{\circ}]^{\mathrm{T}}$$
 Answer: $p_{10} = \ominus p_1 = \begin{bmatrix} -5/2 & -\sqrt{2} & -45^{\circ} \end{bmatrix}^T$

Why is interesting to see poses as transformations?

2. Easy concatenation

Sequence of transformation: $p_{02}=p_{01}\oplus p_{12}$ \longrightarrow ${}^0\boldsymbol{T}_2={}^0\boldsymbol{T}_1{}^1\boldsymbol{T}_2$

Solve for any pose: $\Theta p_{12} = p_{23} \Theta p_{13} \longrightarrow {}^{1}\boldsymbol{T}_{2}^{-1} = {}^{2}\boldsymbol{T}_{1} = {}^{2}\boldsymbol{T}_{3} {}^{3}\boldsymbol{T}_{1} = {}^{2}\boldsymbol{T}_{3} {}^{1}\boldsymbol{T}_{3}^{-1}$ $p_{2} = p_{1} \oplus p_{13} \Theta p_{23} \longrightarrow {}^{0}\boldsymbol{T}_{2} = {}^{0}\boldsymbol{T}_{1} {}^{1}\boldsymbol{T}_{3} {}^{3}\boldsymbol{T}_{2}$

Properties of poses

The set of 2D poses equipped with the composition operator \bigoplus form an additive group called SE(2) group (Special Euclidean). SE(3) for 3D poses (6 dof)

Closure: $p_A \oplus p_B = p_C$ The composition of poses gives us a pose

Associativity: $(p_A \oplus p_B) \oplus p_C = p_A \oplus (p_B \oplus p_C)$

Identity element: $p_A \oplus 0 = 0 \oplus p_A = p_A$

Inverse: $\bigcirc p_{AB} = p_{BA}$ $(\bigcirc p_A) \oplus p_A = p_A \oplus (\bigcirc p_A) = 0$ $p_A \ominus p_A = 0, p_A \ominus 0 = p_A$

Watch out: Not commutative $p_A \oplus p_B \neq p_B \oplus p_A$

Motion error sources:

- Wheel slippage
- Inaccurate calibration
- Limited resolution during integration (time increments, measurement resolution)
- Unequal floor

Example of robot path from composition of incremental motion (odometry)

start

Real path

Path reconstructed from odometry

Error produces a drift in the path that accumulates overtime

We need to characterize the robot motion in probabilistic terms

$$p(x_t \mid u_t, x_{t-1})$$
pose at time t pose at time t -1
motion command at t -1

Distribution over poses when executing the motion command u_t and its pose is x_{t-1}

We may need this model in two forms:

• Analytic form, i.e. pdf of the x_t distribution: used in **Extended Kalman Filter**

• Sample form: used in Particle Filter (Sequential Montecarlo)

In practice, two types of motion models $x_t = g(x_{t-1}, u_t)$:

Velocity-based

- robot is controlled through linear and angular velocities <v, w>
- applied when no wheel encoders are given

Odometry-based

- robot is controlled through odometry pose increments $\Delta x_t = [\Delta x_t, \Delta y_t, \Delta \theta_t]^T$
- used when robot is equipped with wheel encoders

Velocity Motion Model

Assume
$$u_t \sim N(\bar{u}, \Sigma_{u_t})$$
 and $x_{t-1} \sim N(\bar{x}_{t-1}, \Sigma_{x_{t-1}})$
$$\Sigma_{u_t} = \begin{bmatrix} \sigma_v^2 & 0 \\ 0 & \sigma_w^2 \end{bmatrix}$$

Equivalent to
$$u_t = [v_t, w_t]^T$$

$$u_t = [v_t, w_t]^T$$

$$x_t = x_{t-1} \oplus \Delta x_t(u_t)$$

$$x_t \sim p(x_t \mid u_t, x_{t-1}) \approx N(\overline{x}_t, \Sigma_{x_t}) \qquad \text{w and } v_p \text{ are assume to be constant}$$

$$\Delta x = \frac{v_P}{w} \sin(w\Delta t)$$

$$\Delta y = \frac{v_P}{w} [1 - \cos(w\Delta t)]$$

Since $x_t = x_{t-1} \oplus \Delta x_t$ is not linear $\rightarrow x_t$ is not Gaussian, but can be approximated

$$\begin{bmatrix} x_{t} \\ y_{t} \\ \theta_{t} \end{bmatrix} = \begin{bmatrix} x_{t-1} \\ y_{t-1} \\ \theta_{t-1} \end{bmatrix} + \begin{bmatrix} -\frac{v_{t}}{w_{t}} \sin \theta_{t-1} + \frac{v_{t}}{w_{t}} \sin(\theta_{t-1} + w_{t} \Delta t) \\ \frac{v_{t}}{w_{t}} \cos \theta_{t-1} - \frac{v_{t}}{w_{t}} \cos(\theta_{t-1} + w_{t} \Delta t) \\ \frac{v_{t}}{w_{t}} \Delta t \end{bmatrix}$$

$$\begin{bmatrix} x_{t} \\ y_{t} \\ \theta_{t} \end{bmatrix} = \begin{bmatrix} x_{t-1} \\ y_{t-1} \\ \theta_{t-1} \end{bmatrix} + v_{p} \Delta t \begin{bmatrix} \cos \theta_{t-1} \\ \sin \theta_{t-1} \\ \theta_{t-1} \end{bmatrix}$$

$$\text{If } w = 0 \text{ (linear motion)}$$

$$\begin{bmatrix} x_t \\ y_t \\ \theta_t \end{bmatrix} = \begin{bmatrix} x_{t-1} \\ y_{t-1} \\ \theta_{t-1} \end{bmatrix} + v_P \Delta t \begin{bmatrix} \cos \theta_{t-1} \\ \sin \theta_{t-1} \\ 0 \end{bmatrix}$$

If w=0 (linear motion)

Needs to be computed at a high rate in order to guarantee w and v constant

w and v_p are assumed

to be constant

 $\Delta \theta = w \Delta t$

Velocity Motion Model

[See equations of Jacobians in appendix]

Mean: $\bar{x}_t = g(\bar{x}_{t-1}, \bar{u}_t) = \bar{x}_{t-1} \oplus \overline{\Delta x}_t$

if Z=f(X,Y) $\Sigma_Z = \frac{\partial f}{\partial X} \Sigma_X \left(\frac{\partial f}{\partial X} \right)^T + \frac{\partial f}{\partial Y} \Sigma_Y \left(\frac{\partial f}{\partial Y} \right)^T$

Covariance:

$$\Sigma_{x_{t}} \approx \frac{\partial g}{\partial x_{t-1}} \Sigma_{x_{t-1}} \frac{\partial g}{\partial x_{t-1}}^{T} + \frac{\partial g}{\partial u_{t}} \Sigma_{u_{t}} \frac{\partial g}{\partial u_{t}}^{T} = \frac{\partial g}{\partial x_{t-1}} \Sigma_{x_{t-1}} \frac{\partial g}{\partial x_{t-1}}^{T} + \frac{\partial g}{\partial \Delta x_{t}} \Sigma_{\Delta x_{t}} \frac{\partial g}{\partial \Delta x_{t}}^{T}$$

$$\uparrow \qquad \uparrow \qquad \uparrow \qquad \uparrow$$

$$\text{evaluated at } \overline{x}_{t-1} \qquad \text{evaluated at } \overline{u}_{t}$$

$$\frac{\partial g}{\partial \Delta x_{t}} \frac{\partial \Delta x_{t}}{\partial u_{t}} \Sigma_{u_{t}} \frac{\partial \Delta x_{t}}{\partial u_{t}}^{T} \frac{\partial g}{\partial \Delta x_{t}}^{T}$$

Equivalently:

$$\begin{aligned} \mathbf{y} &: \\ \boldsymbol{\Sigma}_{x_t} &\approx \frac{dg}{d\{x_{t-1}, u_t\}} \begin{bmatrix} \boldsymbol{\Sigma}_{x_{t-1}} & \boldsymbol{0}_{3x2} \\ \boldsymbol{0}_{2x3} & \boldsymbol{\Sigma}_{u_t} \end{bmatrix} \frac{dg}{d\{x_{t-1}, u_t\}}^T = \begin{bmatrix} \frac{\partial g}{\partial x_{t-1}} & \frac{\partial g}{\partial u_t} \end{bmatrix} \begin{bmatrix} \boldsymbol{\Sigma}_{x_{t-1}} & \boldsymbol{0}_{3x2} \\ \boldsymbol{0}_{2x3} & \boldsymbol{\Sigma}_{u_t} \end{bmatrix} \begin{bmatrix} \frac{\partial g}{\partial x_{t-1}} \\ \frac{\partial g}{\partial u_t} \end{bmatrix} \end{aligned}$$

 Technically, it is a measurement rather than a control, but usually treated as control to simplify the modeling

- Odometry: sums wheel encoder pulses to compute robot pose
 - Pulses are seen by light detector diodes
 - Several channels are used to sense rotation direction and to reset counter

Encoders require +5V and GND to power them, and provide a 0 to 5V output:

5V when they "see" white, and

OV output when they "see" black.

The wheel odometry is implemented by the firmware of the robotic platform by sequentially composing increment of poses Δp_i with (v_t, w_t) constant (then, at a very high rate (e.g. 100 Hz))

The odometry pose $odom_t = \hat{p}_t = [\hat{xt}, \hat{y}_t, \hat{\theta}_t]$ is published to the robot at lower rate (e.g. 10 Hz)

Analytic form:

$$x_t = g(x_{t-1}, u_t = \Delta x_t) = x_{t-1} \oplus \Delta x_t \sim N(\bar{x}_t, \Sigma_{x_t})$$

Mean: $\bar{x}_t = g(\bar{x}_{t-1}, \Delta \bar{x}_t) = \bar{x}_{t-1} \oplus \Delta \bar{x}_t$

 \rightarrow Since $g(x_{t-1}, \Delta x_t)$ is not linear $\rightarrow x_t$ is not Gaussian, but can be approximated

Covariance:
$$\Sigma_{x_t} \approx \frac{\partial g}{\partial x_{t-1}} \Sigma_{x_{t-1}} \frac{\partial g}{\partial x_{t-1}}^T + \frac{\partial g}{\partial \Delta x_t} \Sigma_{\Delta x_t} \frac{\partial g}{\partial \Delta x_t}^T$$

No correlation assumed $\Sigma_{\Delta x_t} = \begin{bmatrix} \sigma_{\Delta x}^2 & 0 & 0 \\ 0 & \sigma_{\Delta y}^2 & 0 \\ 0 & 0 & \sigma_{\Delta \theta}^2 \end{bmatrix}$

Sphians:

$$\Sigma_{\Delta x_t} = egin{bmatrix} \sigma_{\Delta x}^2 & 0 & 0 \ 0 & \sigma_{\Delta y}^2 & 0 \ 0 & 0 & \sigma_{\Delta heta}^2 \end{bmatrix}$$

Jacobians:

$$\frac{\partial g}{\partial x_{t-1}} = \begin{bmatrix} 1 & 0 & -\Delta x_k \sin \theta_{k-1} - \Delta y_k \cos \theta_{k-1} \\ 0 & 1 & \Delta x_k \cos \theta_{k-1} - \Delta y_k \sin \theta_{k-1} \\ 0 & 0 & 1 \end{bmatrix} \qquad \frac{\partial g}{\partial \Delta x_t} = \begin{bmatrix} \cos \theta_{k-1} & -\sin \theta_{k-1} & 0 \\ \sin \theta_{k-1} & \cos \theta_{k-1} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Analytic form:

We have the **odometry poses:**

$$\hat{p}_t = [\hat{x}t, \hat{y}_t, \hat{\theta}_t]$$

$$\hat{p}_{t-1} = [\hat{x}_{t-1}, \hat{y}_{t-1}, \hat{\theta}_{t-1}]$$

Do not memorize, this will be used in practical sessions

Mean:
$$\Delta \bar{x}_t = \ominus \hat{p}_{t-1} \oplus \hat{p}_t = \hat{p}_t \ominus \hat{p}_{t-1} = \begin{bmatrix} (\hat{x}_t - \hat{x}_{t-1})\cos\hat{\theta}_{t-1} + (\hat{y}_t - \hat{y}_{t-1})\sin\hat{\theta}_{t-1} \\ -(\hat{x}_t - \hat{x}_{t-1})\sin\hat{\theta}_{t-1} + (\hat{y}_t - \hat{y}_{t-1})\cos\hat{\theta}_{t-1} \\ \hat{\theta}_t - \hat{\theta}_{t-1} \end{bmatrix}$$

Covariance:

$$\Sigma_{u_t} = \begin{bmatrix} \sigma_{\Delta x}^2 & 0 & 0 \\ 0 & \sigma_{\Delta y}^2 & 0 \\ 0 & 0 & \sigma_{\Delta \theta}^2 \end{bmatrix} \xrightarrow{\text{increment in rotation } |\Delta \theta|}$$

Assuming variance grows with the traversed distance $\sqrt{\Delta x^2 + \Delta y^2}$ and the

Sample form:

Again, we have the odometry poses $[\hat{x}_t, \hat{y}_t, \hat{\theta}_t]$ and $[\hat{x}_{t-1}, \hat{y}_{t-1}, \hat{\theta}_{t-1}]$, and compute the motion $u_t = [\theta_1, d, \theta_2]^T$ though:

Do not memorize, this will be used in practical sessions

The robot rotates θ_1 , then moves straight d, and then rotates θ_2

43

 $u_t = [\theta_1, d, \theta_2]^T$ $\{x_{t-1}^i\}_i = 1, ..., n$ $x_t = g(x_{t-1}, u_t)$ $x_t = g(x_{t-1}, u_t)$ $x_t = g(x_t, u_t)$ x_t

Algorithm **sample_motion_model**(u, x_{t-1}):

$$u = (\hat{\theta}_1, \hat{d}, \hat{\theta}_1), x_{t-1} = (x_{t-1}, y_{t-1}, \theta_{t-1})$$

1.
$$\theta_1 = \hat{\theta}_1 + \text{sample}(\alpha_1 \ \hat{\theta}_1^2 + \alpha_2 \ \hat{d}^2)$$

2.
$$d = \hat{d} + \text{sample}(\alpha_3 \hat{d}^2 + \alpha_4 (\hat{\theta}_1^2 + \hat{\theta}_2^2))$$

3.
$$\theta_2 = \hat{\theta}_2 + \text{sample}(\alpha_1 \; \hat{\theta}_2^2 + \alpha_2 \; \hat{d}^2)$$

4.
$$x_t = x_{t-1} + d\cos(\theta_{t-1} + \theta_1)$$

5.
$$y_t = y_{t-1} + d \sin(\theta_{t-1} + \theta_1)$$

6.
$$\theta_t = \theta_{t-1} + \theta_1 + \theta_2$$

7. Return
$$(x_t, y_t, \theta_t)$$

Running the above algorithm with different set of parameters α

Concatenating a sequence on motions

Summary

Vehicle kinematics (deterministic perspective): $x_t = g(x_{t-1}, u_t)$

Summary

Probabilistic perspective (includes the vehicle kinematics):

$$p(x_t \mid u_t, x_{t-1})$$
pose at time t — pose at time t -1 motion command at t -1

	Velocity-based	Odometry-based
Analytic form $x_t \sim N(\bar{x}_t, \Sigma_{x_t})$	$u_t = [v_t, w_t]^T$	$u_t = \left[\Delta x_t, \Delta y_t, \Delta \theta_t\right]^T$
Sample form $\{x_t^i\}$ $i=1,,n$	Not used	$u_t = [\theta_1, d, \theta_2]^T$

Composition of two poses:

$$p_{j} = p_{i} \oplus p_{ij} = f(p_{i}, p_{ij}) = \begin{bmatrix} x_{i} + x_{ij} \cos \theta_{i} - y_{ij} \sin \theta_{i} \\ y_{i} + x_{ij} \sin \theta_{i} + y_{ij} \cos \theta_{i} \\ \theta_{i} + \theta_{ij} \end{bmatrix}$$

Jacobians:

Derivatives evaluated at p_i and $p_{ii}!!$

s1 = sin(x1(3)); c1 = cos(x1(3));

s1 c1 0;

0 0 1];

Jacob2 = [c1 -s1 0;

$$\frac{\partial p_{j}}{\partial p_{i}} = \frac{\partial f(p_{i}, p_{ij})}{\partial \{x_{i}, y_{i}, \theta_{i}\}} = \begin{bmatrix} 1 & 0 - x_{ij} \sin \theta_{i} - y_{ij} \cos \theta_{i} \\ 0 & 1 & x_{ij} \cos \theta_{i} - y_{ij} \sin \theta_{i} \\ 0 & 0 & 1 \end{bmatrix}$$

$$\frac{\partial p_{j}}{\partial p_{ij}} = \frac{\partial f(p_{i}, p_{ij})}{\partial \{x_{ij}, y_{ij}, \theta_{ij}\}} = \begin{bmatrix} \cos \theta_{j} & -\sin \theta & 0 \\ \sin \theta_{j} & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Jacob1

Jacob2

Jacobians of the Velocity Motion Model:

 $u_t = [v_t, w_t]^T$

$$\begin{split} \mathcal{W} \neq \mathbf{0} \\ \begin{bmatrix} x_t \\ y_t \\ \theta_t \end{bmatrix} = \begin{bmatrix} x_{t-1} - \frac{v_t}{w_t} \sin \theta_{t-1} + \frac{v_t}{w_t} \cos(\theta_{t-1} + w_t \Delta t) \\ y_{t-1} + \frac{v_t}{w_t} \cos \theta_{t-1} - \frac{v_t}{w_t} \cos(\theta_{t-1} + w_t \Delta t) \\ \theta_{t-1} + w_t \Delta t \end{bmatrix} = \begin{bmatrix} x_{t-1} - R \sin \theta_{t-1} + R \sin(\theta_{t-1} + \Delta \theta_t) \\ y_{t-1} + R \cos \theta_{t-1} - R \cos(\theta_{t-1} + \Delta \theta_t) \\ \theta_{t-1} + \Delta \theta_t \end{bmatrix} \\ R = \frac{v_t}{w_t} ; \Delta \theta_t = w_t \Delta t \end{split}$$

$$\frac{\partial g}{\partial x_{t-1}} = \begin{bmatrix} \frac{\partial x_t}{\partial x_{t-1}} & \frac{\partial y_t}{\partial y_{t-1}} & \frac{\partial \theta_t}{\partial \theta_{t-1}} \\ \frac{\partial y_t}{\partial x_{t-1}} & \frac{\partial y_t}{\partial y_{t-1}} & \frac{\partial \theta_t}{\partial \theta_{t-1}} \\ \frac{\partial \theta_t}{\partial x_{t-1}} & \frac{\partial \theta_t}{\partial y_{t-1}} & \frac{\partial \theta_t}{\partial \theta_{t-1}} \end{bmatrix} = \begin{bmatrix} 1 & 0 & R(-s_{t-1}s_\Delta - c_{t-1}(1 - c_\Delta)) & s_\Delta = \sin \Delta \theta_t \\ 0 & 1 & R(c_{t-1}s_\Delta - s_{t-1}(1 - c_\Delta)) & c_{t-1} = \cos \theta_{t-1} \\ 0 & 0 & 1 & s_{t-1} = \sin \theta_{t-1} \end{bmatrix}$$

$$\frac{\partial g}{\partial u_t} = \frac{\partial g}{\partial \{R, \Delta \theta_t\}} \frac{\partial \{R, \Delta \theta_t\}}{\partial \{v_t, w_t\}} = \begin{bmatrix} c_{t-1}s_\Delta - s_{t-1}(1 - c_\Delta) & R(c_{t-1}c_\Delta - s_{t-1}s_\Delta) \\ s_{t-1}s_\Delta + c_{t-1}(1 - c_\Delta) & R(s_{t-1}c_\Delta - c_{t-1}s_\Delta) \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{w} & -\frac{v}{w^2} \\ 0 & \Delta t \end{bmatrix}$$

Jacobians of the Velocity Motion Model:

$$w = 0$$

$$\begin{bmatrix} x_t \\ y_t \\ \theta_t \end{bmatrix} = \begin{bmatrix} x_{t-1} + v_t \Delta t \cos \theta_{t-1} \\ y_{t-1} + v_t \Delta t \sin \theta_{t-1} \\ \theta_{t-1} \end{bmatrix}$$

$$g(x_{t-1}, u_t)$$

$$\frac{\partial g}{\partial x_{t-1}} = \begin{bmatrix} 1 & 0 & -v_t \Delta t \sin \theta_{t-1} \\ 0 & 1 & v_t \Delta t \cos \theta_{t-1} \\ 0 & 0 & 1 \end{bmatrix} \qquad \frac{\partial g}{\partial u_k} = \begin{bmatrix} \frac{\partial x_t}{\partial v_t} & \frac{\partial x_t}{\partial w_t} \\ \frac{\partial y_t}{\partial v_t} & \frac{\partial y_t}{\partial w_t} \\ \frac{\partial \theta_t}{\partial v_t} & \frac{\partial \theta_t}{\partial w_t} \end{bmatrix} = \begin{bmatrix} \Delta t \cos \theta_{t-1} & 0 \\ \Delta t \sin \theta_{t-1} & 0 \\ 0 & 0 \end{bmatrix}$$

Inverse of a pose

$$p_1 = \begin{bmatrix} x_1 & y_1 & \theta_1 \end{bmatrix}^T$$

$$\Theta p_1 = f(p_1) = \begin{bmatrix}
-x_1 \cos \theta_1 - y_1 \sin \theta_1 \\
x_1 \sin \theta_1 - y_1 \cos \theta_1 \\
-\theta_1
\end{bmatrix} = \begin{bmatrix}
x_1^- \\
y_1^- \\
\theta_1^-
\end{bmatrix}$$

$$\frac{\partial \ominus p_1}{\partial p_1} = \frac{\partial f(p_1)}{\partial p_1} = \frac{\partial \{x_1^-, y_1^-, \theta_1^-\}}{\partial \{x_1, y_1, \theta_1\}} = \begin{bmatrix} -\cos \theta_1 & -\sin \theta_1 & x_1 \sin \theta_1 - y_1 \cos \theta_1 \\ \sin \theta_1 & -\cos \theta_1 & x_1 \cos \theta_1 + y_1 \sin \theta_1 \end{bmatrix}$$

The inverse:
$$\frac{\partial p_1}{\partial \ominus p_1} = \left(\frac{\partial \ominus p_1}{\partial p_1}\right)^{-1}$$

Covarianze:
$$\Sigma_{\bigoplus p_1} = \frac{\partial \bigoplus p_1}{\partial p_1} \Sigma_{p_1} \left(\frac{\partial \bigoplus p_1}{\partial p_1} \right)^T$$

Inverse composition:

$$p_{ij} = \bigoplus p_i \bigoplus p_j = p_j \bigoplus p_i = f(p_j, p_i) =$$

$$= \begin{bmatrix} (x_j - x_i)\cos\theta_i + (y_j - y_i)\sin\theta_i \\ -(x_j - x_i)\sin\theta_i + (y_j - y_i)\cos\theta_i \\ \theta_j - \theta_i \end{bmatrix}$$

Jacobians:

$$\frac{\partial p_{ij}}{\partial p_j} = \frac{\partial f(p_j, p_i)}{\partial \{x_j, y_j, \theta_j\}} = \begin{bmatrix} \cos \theta_i & \sin \theta_i & 0 \\ -\sin \theta_i & \cos \theta_i & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$\frac{\partial p_{ij}}{\partial p_i} = \frac{\partial f(p_j, p_i)}{\partial \{x_i, y_i, \theta_i\}} = \begin{bmatrix} -\cos \theta_i & -\sin \theta_i & -(x_j - x_i)\sin \theta_i + (y_j - y_i)\cos \theta_i \\ \sin \theta_i & -\cos \theta_i & -(x_j - x_i)\cos \theta_i - (y_j - y_i)\sin \theta_i \\ 0 & 0 & -1 \end{bmatrix}$$