21-484 Notes JD Nir jnir@andrew.cmu.edu March 26, 2012

 $\to \underline{\text{Thm:}}$ If $G = (U \cup W, E)$ is a bipartite graph, then G has a matching of size |U| iff $\forall X \subset U.|N(X)| \ge |X|.$

<u>Proof:</u> Saw that having a matching pf size |U| implies (*).

Assume that G has (*) and that M is a maximal matching, |M| < |U|.

Then, $\exists u \in U$ that is not matched.

Define an alternating path. Consider the set S of all vertices v such that there is an alternating u-v path.

$$\rightarrow u \in S$$

 \rightarrow If $w \in W \cap S$, then it is not an endpoint of a maximal alternating path. Otherwise, we could swap and non-matching edges in the path and get a larger matching.

- \rightarrow Let $U' = U \cap S, W' = W \cap S$.
- \rightarrow There is a matching edge going from every vertex of W' to a vertex of U'.

$$\Rightarrow |W'| \le |U' \setminus \{u\}| \Rightarrow |W'| < |U'| \not \searrow (*)$$

Tutte's Theorem

A graph G = (V, E) is a perfect matching iff for every set $S \subseteq V$ the number of connected components of odd size in $G[V \setminus S]$ is at most the size of S.

<u>Proof:</u> Assume that G has a perfect matching, and let S be a set of vertices. Then, since the perfect matching M matches an even number of vertices in every connected component of $G[U \setminus S]$, every odd component contains at least one vertex that is not matched with another vertex from this component. Such a vertex must be matched with a vertex set S.

- \rightarrow Let $k_o(G-S)$ be the number of odd connected components in $G[u \setminus S]$.
- \rightarrow Assume that G obeys

$$k_o(G-S) \leq |S|$$
 for every $S \subseteq V$. (*)

- \rightarrow (*), G has an even number of vertices.
- \rightarrow By induction, $|V| = 2 \leftarrow \checkmark$
- \rightarrow Let $n \ge 4$.
- \rightarrow Assume that (*) implies the existence of a perfect matching in every graph with fewer than n vertices.
- \rightarrow Let S be a maximal set of vertices with the property

$$k_o(G-S) = |S|$$

- $\rightarrow S$ is not empty. Every connected graph has a vertex that is not a cut vertex. A leaf of a spanning tree, ...
- \rightarrow let u be a noncut vertex. $k_o(G \{u\}) = 1 = |\{u\}|$
- \rightarrow let G_1, \ldots, G_k be the connected component in $G(V \setminus S)$.
- \rightarrow All the G_i 's are odd, otherwise we can add a non cut vertex from an even G_i to S.
- \rightarrow Let S_i be the set of vertices in S having a neighbor in G_i .
- $\rightarrow S_i$ is not empty. (G_i was even in G, and now all the components are odd).

