A Query Rewriting Algorithm: Exact Minimization of # of Joins

• Example (movie database)

select m1.director
from movie m1, movie m2, movie m3, schedule s1, schedule s2
where m1.director = m2.director and m2.actor = m3.actor
and m1.title = s1.title and m3.title = s2.title

Note: number of joins in corresponding algebra expression is (number of tuples in FROM clause) -1

Goal: minimize the number of tuples in the FROM clause aka join minimization

Exact Minimization of # of Joins

• Example (movie database)

select m1.director
from movie m1, movie m2, movie m3, schedule s1, schedule s2
where m1.director = m2.director and m2.actor = m3.actor
and m1.title = s1.title and m3.title = s2.title

Can this be simplified?

• Example (movie database)

select m1.director

from movie m1, movie m2, movie m3, schedule s1, schedule s2
where m1.director = m2.director and m2.actor = m3.actor
and m1.title = s1.title and m3.title = s2.title

More intuitive representation:

novie	title	director	actor
m1 m2 m3	-t- 	d d	——————————————————————————————————————

theater title
t_
<u>y</u> _

71

Exact Minimization of # of Joins

• Example (movie database)

Can this be simplified?

Claim: it is enough to keep m1 and s1 in the pattern

Reason: m1.actor can play the role of a t can play the role of y

movie	title	director	actor
m1 m2 m3	-t	d d	—a— —a—

theater title
t

• Example (movie database)

Can this be simplified?

Claim: it is enough to keep m1 and s1 in the pattern

Reason: m1.actor can play the role of a

t can play the role of y

movie	title	director actor
ml	-t	d

73

Exact Minimization of # of Joins

• Example (movie database) Simplified SQL query:

> **select** m1.director **from** movie m1, schedule s1 **where** m1.title = s1.title

Another example: using constraints (aka semantic optimization) "Find theaters showing a title by Berto and a title in which Winger acts"

select s1.theater
from schedule s1, schedule s2, movie m1, movie m2
where s1.theater = s2.theater and s1.title = m1.title and
 m1.director = 'Berto' and s2.title = m2.title and
 m2.actor = 'Winger'

Another example: using constraints

"Find theaters showing a title by Berto and a title in which Winger acts"

Suppose each title has only one director and each theater shows only one title

Then x = y and m2.director = 'Berto'

schedule	theater title
s1 s2	ty_

77

Exact Minimization of # of Joins

Another example: using constraints

"Find theaters showing a title by Berto and a title in which Winger acts"

Suppose each title has only one director and each theater shows only one title

Then x = y and m2.director = 'Berto'

movie	title	director	actor
m1	- x	Berto	Win ger
m2	- x	Berto	

schedule	theater title
s1 s2	tx_

Another example: using constraints

"Find theaters showing a title by Berto and a title in which Winger acts"

Suppose each title has only one director and each theater shows only one title

Then x = y and m2.director = 'Berto'

79

Exact Minimization of # of Joins

Another example: using constraints

"Find theaters showing a title by Berto and a title in which Winger acts"

movie	title director actor	schedule	theater title
m2	-x Berto Winger	s1	_tx_

select s1.theater
from schedule s1, schedule s2, movie m1, movie m2
where s1.theater = s2.theater and s1.title = m1.title and
m1.director = 'Berto' and s2.title = m2.title and
m2.actor = 'Winger'

1 join from

81

Exact Minimization of # of Joins

How do redundant joins arise?

- Complex queries written by humans especially on large schemas with constraints
- Queries resulting from view unfolding see next example
- Very complex SQL queries generated by tools


```
Query on database obtained by view unfolding
                 select p.pid, d.docname
      query
                 from ScrippsPatient p, ScrippsDoc d
      using
                 where p.docid = d.docid
      view
                 create view ScrippsDoc as
      view1
                 select d1.* from Doctor d1, Patient p1
                 where p1.hospital = 'Scripps' and p1.docid = d1.docid
                 create view ScrippsPatient as
      view2
                 select p2.* from Patient p2
                 where p2.hospital = 'Scripps'
                  select p.pid, d.docname
result of view
                  from Patient p, Doctor d, Patient p1
unfolding
                  where p.docid = d.docid and p.hospital = 'Scripps'
                  and p1.hospital = 'Scripps' and p1.docid = d.docid
```


Minimization algorithm for conjunctive SQL queries:

SQL query whose **where** clause is a conjunction of equalities

Basic idea:

87

QBE patterns

Same as QBE, except (for better readability):

- no underscore to mark variables
- wildcards are explicitly denoted by "-" instead of blank
- no insert I. in the answer relation

movie	title	director	actor
	t	d	_
	_	d	a
	У	_	a

answer	director	
	d	

schedule	theater title		
	- t		
	- y		
	-		

- 1. Rewrite the SQL query using tuple variables
- 2. For each tuple variable in the **from** clause aliasing relation R insert a corresponding QBE row in R
- 3. Use repeated variables and constants to express the equalities in the **where** clause

if a contradiction arises (two different constants are made equal) then output \varnothing

- 4. The QBE answer relation contains a row whose variables occur in the coordinates specified in the **select** clause
- Coordinates not involved in any equality and not in the answer are wildcards

89

From SQL conjunctive queries to QBE patterns

• Example

select m1.director

movie	title director actor	schedule	theater title
		_	
answer	director		
I			

• Example

select m1.director

from movie m1, movie m2, movie m3, schedule s1, schedule s2 **where** m1.director = m2.director and m2.actor = m3.actor and m1.title = s1.title and m3.title = s2.title

movie	title	director	acto
m1	t	d	_
m2	_	d	a
m3	у	_	a

schedule	theater	title	
s1	_	t	
s2	_	у	

answer director

91

From SQL conjunctive queries to QBE patterns

• Example

select m1.director

movie	title	director	actor
	t	d	_
	_	d	a
	у	_	a

schedule	theater title	;
	- t	
	— у	

answer director

• Another example

select s1.theater
from schedule s1, schedule s2, movie m1, movie m2
where s1.theater = s2.theater and s1.title = m1.title and
 m1.director = 'Berto' and s2.title = m2.title and
 m2.actor = 'Winger'

movie	title director actor	•	schedule	theater title
answer	theater			
		•		
I		93		

From SQL conjunctive queries to QBE patterns

• Another example

select s1.theater
from schedule s1, schedule s2, movie m1, movie m2
where s1.theater = s2.theater and s1.title = m1.title and
 m1.director = 'Berto' and s2.title = m2.title and
 m2.actor = 'Winger'

movie	title	director	actor		schedule	theater	title
m1	X	Berto	_ Winger		s1	t t	X
m2	у	_	Winger		s2	t	у
answer	theater	•					
	t						
ļ				94			

• Another example

movie	title	director	actor		schedule	theater	title
	X	Berto	_			t	X
	У	_	- Winger			t t	y
answer	theate	r					
	t						
į				0.5			

• Query defined by a pattern: all answers obtained by matching the pattern into the database (just like QBE)

• Query defined by a pattern: all answers obtained by matching the pattern into the database (just like QBE)

Pattern Minimization

• Back to example:

$$\begin{array}{c|cccc} \underline{movie} & title & director & actor \\ \hline m1 & t & d & - \\ m2 & - & d & a \\ m3 & y & - & a \\ \hline \end{array}$$

schedule	theater	title
s1 s2	-	t y

Intuition: rows m2, m3, s2 are redundant

Why: if m1 and s1 are present, then the entire pattern is satisfied

Pattern Minimization

• Back to example:

movie	title	director	actor
m1 m2 m3	t - y	d d —	

schedule	theater	title	
s1 s2	_	t)
		У	

answer	director	
	d	

Intuition: rows m2, m3, s2 are redundant

More precisely: m2, m3 can be "mapped" to m1, and s2 to s1 $a \rightarrow m1.actor y \rightarrow t$

99

Pattern Minimization

Formally: pattern folding (aka homomorphism) mapping f on variables, constants and wildcards of pattern P such that

- f(x) = x for answer variables and constants x
- every row of P is mapped to an existing row of P in the same relation

movie	title	director	actor
m1	t	d	- 59
m2	_	d	a 🚄)
m3	У	_	a 🥖

hedule	theater	title	
s1 s2	_	t y)
s2	_	y)

answer	director	
	d	

$$f(a) = m1.actor = "-"$$

 $f(m2.title) = t;$ $f(y) = t$
 $f(m3.director) = d$
 $f(s2.theater) = s1.theater = "-"$
 $f(d) = d$

Pattern Minimization

Formally: pattern folding (aka homomorphism) mapping f on variables, constants and wildcards of pattern P such that

- f(x) = x for answer variables and constants x
- every row of P is mapped to an existing row of P in the same relation

Theorem: if P is a pattern and f is a folding of P then f(P) defines the same query as P

Theorem: P and f(P) define the same query. Proof idea

answer of f(P) on $R \subseteq answer of P$ on R

If h is a matching of f(P) in R then h $^{\circ}$ f is a matching of P in R and (h $^{\circ}$ f) (z) = h (f(z)) = h(z).

105

Pattern minimization algorithm

Repeatedly eliminate redundant rows

Row r is redundant if there is a folding f of P such that $r \notin f(P)$

movie	title	director	actor
	t	d	- 🦴
dundant	_	d	a 🗾)
dundant	у	_	a 🥖

_	schedule	theater	title	
		_	t	\$
	redundant	_	y	

answer	director	
	d	

Pattern minimization algorithm Repeatedly eliminate redundant rows Row r is redundant if there is a folding f of P such that r ∉ f(P) movie | title | director | schedule | theater title | | t | d | - | t | answer | director | | d | Minimal pattern

Another example

• By trial and error, we can eliminate rows 3 and 4 using the folding mapping b₂ to b₁ and leaving all other variables unchanged.

R	Α	В	C
	a	b_1	\mathbf{c}_1
		b	\mathbf{c}_1
	\mathbf{a}_2	b_1	c

minimized pattern

From minimized pattern back to SQL query

Example:

select t1.A, t2.B, t3.C **from** R t1, R t2, R t3 **where** t1.B = t3.B **and** t1.C = t2.C

A complete example

R: ABC

SQL conjunctive query: select t1.A, t2.B, t3.C

from R t1, R t2, R t3

where t2.A = t3.A and t1.B = 5 and

t2.B = t3.B and t2.B = t1.B

Pattern:

Minimized pattern:

Minimized SQL query:

select t1.A, 5 as B, t3.C from R t1, R t3 where t1.B = 5 and t3.B = 5

Theorem: the minimization algorithm produces an SQL query with minimum number of joins among all conjunctive SQL queries equivalent to the original one on all databases.

But we can do even better: take into account constraints (semantic query optimization). To see how this works, we extend the algorithm with functional dependencies.

Data Dependencies (aka constraints)

- · Statements about valid data
 - Keys
 - "SSN uniquely determines all attributes of employee"
 - Referential integrity
 - "Every student is a person"
 - Functional dependencies: extension of keys
 - "Each employee works in no more than one department"

 $NAME \rightarrow DEPARTMENT$

- Use of dependencies:
 - check data integrity
 - query optimization
 - schema design → "normal forms"

113

Functional Dependencies

• Generalization of key constraints employee ssn name city zip-code state

primary key: ssn '`ssn determines all other attributes`` ssn → name city zip-code state

more generally: some attributes may determine other attributes without being keys: zip-code → state

Functional Dependencies

- Functional dependency on R: expression $X \to Y$ where X, Y \subseteq att(R)
- An instance of R satisfies X → Y iff
 whenever two tuples agree on X, they also agree on Y

e.g.	SCHEDULE	THEATER	TITLE
		la jolla	killer tomatoes
		hillcrest	tango
		Satisfies THEATER	$R \rightarrow TITLE$
	SCHEDULE	THEATER	TITLE
		la jolla	killer tomatoes
		hillcrest	tango
		hillcrest	splendor
		Violates THEATE satisfies TITLE →	

115

Using FDs in query optimization

Example revisited: suppose title → director, theater → title "Find theaters showing a title by Berto and a title in which Winger acts"

movie	title	director	actor	schedule	theate	r title	
m1	х	Berto	_	s1	t	X	
m2	У	_	Winger	s2	t	y	
answer	theater						
	t	_					

movie	e tit	le direct	tor actor	schedule	thea	iter title
m1	2	x Bert	co –	s1	t	X
m2	:	у —	Winger	s2	t	у
1	t This pat title → c satisfies	tern is m director, the theater	theater 🗲 titl	ever, we know to the structure the data in every matching to a structure to the structure of the structure to the structure t	abase	
				Iu x – y, Berto'. We obta	iin	
		owing pat	ttern:			
	the follo	owing pat		schedule	theater	r title
1	the follo	0.1		schedule s1	theater	r title
movie	the follo	director		s1		

movie	title director actor	schedule theater titl	e
(m1	x Berto —	s1 t x	
m2	x Berto Winger	answer theater	
Minimi	zed pattern:		
movie	title director actor	schedule theater title	
m2	x Berto Winger	s1 t x	
Ţ		answer theater t	
	118		

- In general: can simplify pattern P if the database satisfies a set F of FDs.
- Algorithm: The Chase
 - Input: pattern P, a set F of FDs
 - Output: pattern CHASE_F(P)
 equivalent to P on all relations satisfying F

Intuition: the chase modifies P so that it satisfies all FDs in F

Note: assume without loss of generality that FDs in F are of the form $X \to A$ where A is one attribute

119

Basic chase step with $X \rightarrow A$

If pattern contains two rows that agree on X and disagree on A, change them so that they also agree on A

The Chase in detail

- Repeat until no change
 - For each $X \rightarrow A$ in F do
 - For all rows t_1 , t_2 in P such that $t_1(X) = t_2(X)$, $t_1(A) \neq t_2(A)$ do
 - if t₁(A), t₂(A) are non-answer variables then replace one by the other everywhere in P
 - if $t_1(A)$ is a non-answer variable and $t_2(A)$ is a wildcard, then replace $t_2(A)$ by $t_1(A)$ everywhere in P
 - If t₁(A), t₂(A) are wildcards, replace both with a new variable
 - if t₁(A) is an answer variable and t₂(A) is a variable or wildcard, then replace t₂(A) by t₁(A) everywhere in P
 - if $t_1(A)$ is constant, $t_2(A)$ is variable or wildcard, then replace $t_2(A)$ by $t_1(A)$ everywhere in P
 - if $t_1(A)$ is constant, $t_2(A)$ is constant then STOP and output \emptyset

121

Optimization of SQL conjunctive queries with FDs

- Input: SQL conjunctive query Q, set of FDs F
 - build the pattern P of Q
 - compute CHASE_F(P)
 - minimize CHASE_F(P)
 - construct the SQL query corresponding to the minimal pattern

Claim: the above produces an SQL query equivalent to Q on all databases satisfying F, that has the minimum possible number of joins

Example

select t1.A, t1.B, t2.C **from** R t1, R t2 **where** t1.A = 5 and t1.B = t2.B

R:ABC satisfies $B \rightarrow A$

1. Pattern: R A B C answer A B C 5 b c t2 -- b c

2. Chase with B \rightarrow A: R | A | B | C | answer | A | B | C | | 5 | b | c | | 5 | b | c |

3. Minimize: $\frac{R \mid A \mid B \mid C}{\mid 5 \mid b \mid c}$ answer $\mid A \mid B \mid C$ select * from R where A = 5

123

Example

R: ABC satisfies $B \rightarrow A$

2. Chase with B \rightarrow A: $5 \neq 6$ so the result is empty

3. Minimized query: \emptyset

Example

 $\label{eq:select} \begin{array}{l} \textbf{select}\ t1.A,\ t3.B\\ \textbf{from}\ R\ t1,\ R\ t2,\ R\ t3,\ R\ t4\\ \textbf{where}\ t1.A=t2.A\ \text{and}\ t2.A=t4.A\ \text{and}\ t1.B=t3.B\ \text{and}\ t4.B=5\ \text{and}\ t2.C=t3.C \end{array}$

R: ABC satisfies A \rightarrow B

- 2. Chase with A \rightarrow B: R | A B C | answer | A B | a 5 | c | -- 5 | c |
- 3. Minimize: $R \mid A \mid B \mid C$ a 5 c select A, 5 as B from R where B = 5