Introduction to RNASeq Analysis with BICF's Astrocyte Workflow

Gervaise H. Henry
Department of Urology
(BICF Fellow)

BioHPC, BICF and Astrocyte

astrocyte.biohpc.swmed.edu

- Allows groups to give easy-access to their analysis pipelines via the web
- Standardized Workflows
- Simple Web Forms
- Online documentation & results visualization

Available Workflows

BICF RNA-Seq Analysis Workflow

SampleID	
This	ID should match the name in the fastq file ie S0001.R1.fastq.gz the sample ID is S00
Note	e: SampleID shouldn't start with numbers ie 10C should be changed to S10C
SampleNa	ame
This	ID can be the identifier of the researcher or clinician
Subject1	ID
Used	d in order to link samples from the same patient
SampleGr	roup
This is	the group that will be used for pairwise differential expression analysis
FqR1	
Name of	the fastq file R1
FqR2	
Name of	the fastq file R2

SampleID	SampleName	SubjectID	SampleGroup	FqR1	FqR2
S110BE	HS420	110BE	ВСН	S110B.fastq.gz	
S117BE	HS420	117BE	ВСН	S117B.fastq.gz	
S132INBE	HS420	132INBE	ВСН	S132INB.fastq.gz	
S085BE	HS420	085BE	NoBCH	S085B.fastq.gz	
S089BE	HS420	089BE	NoBCH	S089B.fastq.gz	
S114BE	HS420	114BE	NoBCH	S114B.fastq.gz	
S118BE	HS420	118BE	NoBCH	S118B.fastq.gz	

- Use tab as delimiter
 - Excel save as "Text (tab delimited)"
- If no SubjectID, use same number/character for all rows
- SampleID and SampleName
- If no FqR2, leave them empty
- For all contents, no "-"
- For all contents, no spaces
- Columns names MUST be exactly the same as documented

Available Workflows

BICF RNA Seq Analysis Workflow

This is a workflow package for the BioHPC/BICF RNASeq workflow system. It implements differential expression analysis, gene set enrichment analysis, gene fusion analysis and variant identification using RNASeq data.


```
2 library(edgeR)
3 library(DESeq2)
4 library("RColorBrewer")
5 library("gplots")
6 library(qusage)
```

```
png(file="samples_heatmap.png",bg ="transparent",height=768,width=1024)
heatmap.2(as.matrix(sampleDists), col = bluered(100),RowSideColors = col.blocks,srtRow=45,srtCol=45,trace="none", margins=c(5, 5))
dev.off()

#Compare Samples using PCA
png(file="pca.png",bg ="transparent",height=768,width=1024)
print(plotPCA(rld, intgroup="SampleGroup"),col.hab=col.blocks)
dev.off()
```


ABOUT RNA-SEQ

Experimental Design Affecting Your Analysis

- Whole transcriptome vs mRNA
- Single-end vs paired-end
 - Paired-end produces more accurate alignments
 - Paired-end allows for transcript level analysis
 - Single-end is cheaper
- Number of Reads
 - 10-50M is a good range
 - Aim for at least 20M
- Read Length
 - Longer reads produce better alignments, min 50bp paired-end or 100bp single-end for gene quantification

Experimental Design Affecting Your Analysis

Experimental Design Affecting Your Analysis

- Number of Samples
 - Your power to detect an effect depends on
 - Effect size (difference between groups)
 - Within group variance
 - Sample size
 - More samples the better, min 3 per group
 - 5 samples sequenced to 20M read each offer more power than 2 samples sequenced to 50M reads each
- Stranded
 - Can distinguish expression of overlapping genes

Useful Tools

- Gene Set Enrichment Analysis (GSEA)
 https://software.broadinstitute.org/gsea/index.jsp
- Molecular Signatures Database (MSigDB)
 http://software.broadinstitute.org/gsea/msigdb/index.jsp
- Gene Pattern
 https://genepattern.broadinstitute.org/gp/pages/login.jsf
 Use countable.logCPM.txt to generate .gct file or edgeR.results.txt to generate .rnk file in excel as inputs
- Morpheus (user-defined specific heatmaps) https://software.broadinstitute.org/morpheus/
- Alternative/complex designs
 https://www.bioconductor.org/packages/release/bioc/html/edgeR.html
 https://www.bioconductor.org/packages/release/bioc/html/DESeq2.html
 Use counTable.txt as input
- Homer Motif Analysis
 http://homer.ucsd.edu/homer/motif/
 Use edgeR.results.txt as input