Tópicos en Matemáticas Discretas III - Online Algorithms and Scheduling

Professor: Andreas Wiese.

Teaching Assistant: Andrés Cristi.

Homework #3

- **P1.** a) Show that the greedy algorithm for the k-server problem is not c-competitive for any constant c.
 - b) A space (X, d) is called asymmetric if $d: X^2 \to [0, +\infty]$ satisfies the conditions
 - I. $d(x,x) = 0, \forall x \in X$
 - II. $d(x,y) \leq d(x,z) + d(z,y), \forall x,y,z \in X$

but it is not symmetric. Show that the competitive ratio for k-server for such spaces cannot be bounded by a function of k.

- **P2.** Consider a uniform MTS on n states, i.e. a space (X, d) such that d(x, y) = 1 for every pair $x, y \in X$; in which the tasks are functions $\tau : X \to \{0, 1\}$.
 - a) Find a random instance on k tasks such that the expected cost of any deterministic algorithm is k/n.
 - b) Let c(k) be the expected cost of the optimal offline algorithm. Prove that $\lim_k \frac{c(k)}{k} = \frac{1}{nH_n}$, where H_n is the n-th harmonic number. It will be helpful to remember the following result: let $(X_i)_{i\in\mathbb{N}}$ be a sequence of positive and iid random varibles with finite expectation, and define $S_n = \sum_{i=1}^n X_i$. We call $N(t) = \min\{n \in \mathbb{N} : S_n \ge t\}$ a renewal process, and the following limit holds $\lim_{t\to\infty} \frac{\mathbb{E}(N(t))}{t} = \frac{1}{\mathbb{E}(X_1)}$.
 - c) Conclude that no random algorithm can be better than H_n -competitive.
 - d) For a state s and a sequence of tasks $\hat{\tau}$, define $\rho(s,\hat{\tau}) = w(s,\hat{\tau}) \min_x w(x,\hat{\tau})$, where w is the work function of the MTS. Consider $\rho(\cdot,\hat{\tau})$ as a point in \mathbb{R}^X , and describe its possible values.
 - e) Consider now ρ as a description of the system after a secuence of tasks. Find a reasonable random algorithm that moves to a random state given by a distribution that depends only on ρ , that is H_n -competitive. **Hint:** Consider the potential $\Phi = H_m$, where $m = |\arg\min_{x \in X} \rho(x, \hat{\tau})|$.
- **P3.** Use the DC-TREE algorithm to construct an algorithm for paging problem with competitive ratio k. What is the interpretation of this algorithm in paging, ignoring k-sever?
- **P4.** Consider the class of metric spaces (\mathcal{M}, d) , where \mathcal{M} is a convex subset of a vector space and d satisfies that for every three different points $x, y, r \in \mathcal{M}$ such that $y = \lambda x + (1 \lambda)r$, for some $\lambda \in (0, 1)$, the following implication is true:

$$\left[d(p,x) \leq d(p,r) \Rightarrow d(p,y) \leq d(p,r)\right], \forall p \in X.$$

- a) Prove that every euclidean space is in this class of spaces.
- b) Prove that the algorithm $SC_{1/2}$ we studied in the TA class is 3-competitive for every space in this class.
- **P5.** Consider the following 2-server algorithm. After serving each request, label the server at the request as s_1 and the other as s_2 (if both are in the same point, label arbitrarily). Consider the next request r and set $b = d(s_1, r)$. If $d(s_2, r) < 3b$, serve r with s_2 . Otherwise, serve it with s_1 and move s_2 a distance s_2 distance s_3 towards s_4 . Prove that this algorithm is s_4 0(1)-competitive in any Euclidean space.