

Graduate Institute of Electronics Engineering, NTU

DSP Group

Human-Computer Interaction (HCI) EMG-based Hand Gesture Recognition

Presenter: Howard

Teammates: Shawn, Miguel

Advisor: Prof. An-Yeu (Andy) Wu

Date: 2023/12/4

Human Computer Interaction (HCI)

- Mega trend: Metaverse (AR/VR)
 - Immersive experience
 - Natural and intuitive interaction.

Hand gesture is one of the most intuitive interface

Meta Quest Pro

Apple Vision Pro

EMG-based HGR Processing Flow

Feature-based: Pre-processing + feature extractor + classifier

Open Dataset: NinaPro DB2

Device: Delsys, 12 channels, 2048 sps

Setup: 40 users / 49 gestures (B,C,D) / 6 trials

❖ Train: trial 1,3,4,6

❖ Valid: 1/2/3/4-th quarter of trial 1/3/4/6

❖ Test: trial 2,5

DNN with Feature Extraction

- Filter: 1-st order Butterworth filter LPF or BPF
- Norm: min-max, z-score, μ-law
- Hudgins's time domain feature set [ref]
 - ◆ MAV (12), MAVS (11), WL (12), SSC (12), ZC (12) → 59 in totals

Simulation Results – Dropout

- Complex Neural Networks + inadequate data → overfitting
- **Dropout Layer!**
- Experiment method
 - Control variable : Filter/Norm
 - experimental variable : dropout rate

(a) Standard Neural Net

(b) After applying dropout.

Parameter	Setups	
# gesture	49 (B,C,D)	
# subject	1~5	
scenario	intra-subject	
window size	200 ms	
window step	100 ms	
Filter	none	
Norm	Z-score	

Dropout	AVG
0.0	82.1
0.2	84.0
0.4	84.2
0.5	83.9
0.6	82.4
0.8	72.5

CNN

- CNN is efficient to capture the temporal and spatial correlations
 - ❖ Convolution → Learned filters
 - ❖ Deeper CNN has higher cost (9431MiB CUDA out of memory ☺)


```
:lass CNN(nn.Module):
   def __init__(self, number_gesture=49, class_rest=False, dropout=0.4):
       super(CNN, self). init ()
      output_class = number_gesture + int(class_rest==True)
      self.layers = nn.Sequential(
          nn.BatchNorm2d(1),
          nn.Conv2d(1,64, kernel_size=(3,3), stride=(1,1), padding='same'),
          nn.MaxPool2d((4,1)),
          nn.Conv2d(64,64, kernel_size=(3,3), stride=(1,1), padding='same'),
          nn.Conv2d(64,8 , kernel_size=(3,3), stride=(1,1), padding='same'),
          nn.ReLU(),
          nn.MaxPool2d((2,2)),
          nn.Flatten(),
          nn.Dropout(dropout),
          nn.Linear(576,128),
          nn.ReLU(),
          nn.Dropout(dropout),
          nn.Linear(128, output_class)
       self.conv = nn.Conv2d(1, 16, kernel_size=(3,3), stride=(1,1), padding='same')
       self.maxpool = nn.MaxPool2d((4,1))
```


Simulation Results – Norm

Parameter	Setups
# gesture	49 (B,C,D)
# subject	1~5
scenario	intra-subject
window size	200 ms
window step	100 ms
Dropout	0.4

- Experiment method
 - Control variable : Dropout
 - Experimental variable : Filter / Norm
- Epoch : significant factor

Filter \ Norm	none	Min-max	z-score	μ-law (256)	и -law (2048)	AVG
none	76.9	38.1	76.9	69.8	70.3	66.4
BPF [20,200]	67.6	27.1	74.8	68.3	75.9	66.1
none	-	-	80.9	76.5	77.5	77.8
none	-	-	83.2	77.1	77.6	78.7
LPF [1,]	-	-	10.7	41.0	45.8	33.9
LPF [10,]	-	-	50.1	60.3	70.1	62.7
LPF [20,]	-	-	60.9	72.1	72.3	69.2
AVG	72.3	32.6	63.6	68.6	71.0	-

Filter = none , Norm = Z-score → Best performance

Simulation Results – window step

- Experiment method
 - Control variable : epoch, dropout, Filter/Norm
 - Experimental variable : window step

Transform\window step	5ms	10ms
Tnet	Elapsed time = 9044.59 Acc = 64.7	Elapsed time = 18520.75 Acc = 66.5
Fnet	Elapsed time = Acc =	Elapsed time = Acc =

Parameter	Setups	
# gesture	49 (B,C,D)	
# subject	1~5	
scenario	intra-subject	
window size	200 ms	
Dropout	0.4	

10ms→ Best performance

Optimizer

- Adagrad Adaptive gradient algorithm
 - adjust the learning rate by past changes in each weight
 - ❖ more changes → learning rate smaller
- RMSprop Adaptive gradient algorithm
 - adjust the learning rate by α (Gradient)
- Adam
 - RMSprop + Momentum

Root Mean Square

Scheduler - CosineAnnealingRestarts

- T_0 : the first time learning rate back to initial
- T_mult : control the speed of Ir back to initial
- ❖ If T_mult=1, Ir at T_0, 2*T_0, 3*T_0,...., i*T_0 back to initial
- ❖ If T_mult > 1, Ir at T_0, (1+T_mult)*T_0,
 (1+T_mult+T_mult**2)T_0 ,....,(1+T_mult+T_mult2+...+T_0i)*T0,

Simulation Results – learning rate

- Experiment method
 - Control variable : epoch, dropout, Filter/Norm
 - Experimental variable : Optimizer, Ir

Tnet

Scheduler \ Lr	0.001	0.0001
Y	Elapsed time = 23541.23 Acc = 66.5	Elapsed time = 59062.08 Acc = 68.7
N	Elapsed time = 29738.66 Acc = 67.1	Elapsed time = 61856.19 Acc = 67.2

Parameter	Setups	
# gesture	49 (B,C,D)	
# subject	1~5	
scenario	intra-subject	
window size	200 ms	
window step	5 ms	
Dropout	0.4	

Fnet

Scheduler \ Lr	0.001	0.0001
Y	Elapsed time = 71757.85 Acc = 77.5	Elapsed time = 103871.84 Acc = 62.5
N	Elapsed time = 59921.01 Acc = 80.5	Elapsed time = 100833.51 Acc = 71.0

❖ TraHGR

Scheduler \ Lr	0.001	0.0001
Y	Elapsed time = 112238.31 Acc = 84.1	Elapsed time = 129596.13 Acc = 80.5
N	Elapsed time = 104745.21 Acc = 85.6	Elapsed time = 135579.72 Acc = 80.8

Inter subject test

- Device: Delsys, 12 channels, 2048 sps
- **Setup**: 40 users / 49 gestures (B,C,D) / 6 trials
 - Train: 5 subjects trial 1,3,4,6
 - Valid: 5 subjects 1/2/3/4-th quarter of trial 1/3/4/6
 - ❖ Test : 5 subjects trial 2,5

Simulation Results – Inter subject

Experiment method

Control variable : Dropout , Filter / Norm

Experimental variable : Transformer / DNN

Epoch : significant factor

Parameter	Setups
# gesture	49 (B,C,D)
# subject	1~5
scenario	intra-subject
window size	200 ms
window step	100 ms
Dropout	0.4

	DNN	FNet	TNet	TRAHGR	CNN
Elasped time	986.60	41256.29	32328.57	43044.78	19515.69
acc	71.7	79.0	47.2	87.02	85.65

Inter subject FNet

- Fnet model parameters
 - ♣ F, P, Q
 - Test different P values

Simulation Results – Inter subject FNet

Step size : 0.01

❖ Epoch : 500

Learning Rate : 0.0001 v.s. 0.001

Sceduler : on

P value	Lr = 0.0001	Lr = 0.001
4	66.78	75.00 👲
5	73.25	No time to train The limits and the limits are to train The limits are the limits
6	71.97	78.39 👲
10	79.52	81.55 👲

Lower P => Better Performance, Try P = 15, 20 in the future

Reference – Overview

- [1] T. Ganokratanaa and S. Pumrin, "The vision-based hand gesture recognition using blob analysis," *International Conference on Digital Arts, Media and Technology*, 2017, pp. 336-341.
- [2] J. Lien et al., "Soli: Ubiquitous gesture sensing with millimeter wave radar," *ACM Trans. Graph.*, vol. 35, no. 4, pp. 1–19, 2016.
- [3] W. Jiang, Y. Ren, Y. Liu, Z. Wang and X. Wang, "Recognition of Dynamic Hand Gesture Based on Mm-Wave Fmcw Radar Micro-Doppler Signatures," *IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2021, pp. 4905-4909.
- [4] Inside Facebook Reality Labs: Wrist-based interaction for the next computing platform Tech at Meta
- [5] ProComp Infiniti [™] Hardware Manual: Introduction (bio-medical.com)
- [6] Côté-Allard, U., Gagnon-Turcotte, G., Laviolette, F., & Gosselin, B. "A low-cost, wireless, 3-D-printed custom armband for sEMG hand gesture recognition," *Sensors*, 2019.
- [7] Geng, W., Du, Y., Jin, W., Wei, W., Hu, Y., & Li, J. "Gesture recognition by instantaneous surface EMG images," *Scientific reports*, 2016.
- [8] M. Atzori et al., "Electromyography data for non-invasive naturallycontrolled robotic hand prostheses," *Sci. Data*, vol. 1, 2014, Art. no. 140053.
- [9] S. Pizzolato et al., "Comparison of six electromyography acquisition setups on hand movement classification tasks," *PLoS ONE*, vol. 12, no. 10, pp. 1–17, Oct. 2017.
- [10] F. Palermo et al., "Repeatability of grasp recognition for robotic hand prosthesis control based on sEMG data," *Proc. Int. Conf. Rehabil. Robot.*, 2017, pp. 1154–1159.
- [11] A. Krasoulis et al., "Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements," *J. Neuroeng. Rehabil.*, vol. 14, no. 1, pp. 71–84, 2017.