

Certificate chains explanation and hands-on

Setembro 2019

Agenda

- Contexto Geral
- SSL
- TLS
- Chave publica e privada
- Certificado Digital
- Quem pode gerar um certificado?
- Cadeia de certificados
- Métodos de criptografia
- Hands-on
 - Gerando certificado com CA e Server
 - Gerando certificado com CA, Inter e Server

ssl, tls e certificados_

Contexto geral

- Necessidade de trocar informações sensíveis usando canais inseguros
- Modelo OSI n\u00e3o garante seguran\u00e7a

7	Aplicação
6	Apresentação
5	Sessão
4	Transporte
3	Rede
2	Ligação de dados
1	Física

SSL Context

- Protocolo de criptografia feito para prover comunicação segura através de um canal inseguro.
- Usado por web-browsers, e-mail, voip, etc.
- Versões:
 - 1.0 (nunca foi lançada)
 - 2.0 (deprecada 2011)
 - 3.0 (deprecada 2015)

TLS Context

- Protocolo de criptografia feito para prover comunicação segura através de um canal inseguro.
- Sucessor do SSL
- Versões:
 - 1.0 (1999)
 - 1.1 (2006)
 - 1.2 (2008) Mais usada atualmente
 - 1.3 (2018)

Cifras (cipher suite)

- Cada cifra tem um nome único de identificação e os algoritmos que ela usa.
- Exemplo: TLS_RSA_WITH_3DES_EDE_CBC_SHA
 - TLS define o protocolo pra que essa cifra é usada, geralmente é TLS
 - RSA indica o algoritmo de troca de chave sendo usado. Esse algoritmo é usado para determinar como o cliente e o server vão se autenticar durante o 'handshake'
 - 3DES_EDE_CBC indica o bloco de cifra usado para encriptar as mensagens junto com o modo de operção do bloco
 - SHA indica o algoritmo de autenticação que é usado para autenticar a mensagem

Criptografia

- Origem da criptografia
- Porque é necessária?
-) Usos
 - Confidencialidade
 - > Mantém as mensagems criptografadas somente entre os pares
 - Integridade
 - Detecção de mudança do conteúdo da mensagem
 - Autenticidade
 - > Quem criou essa mensagem?

Chave simétrica

- Conceito
- Qual o problema se a chave vazar?

Private/Public Keys

- Private Key
- Public Key

Certificado Digital

- Para que é usado?
- O que há dentro de um certificado?
- Tipos de ataque man in de middle (roteador mudar o dns)

Certificado digital

Número de série

Identif. sistema criptográfico de assinatura digital

- -Algoritmos
- -Parâmetros

Nome do emissor (AC)

Período de validade

- -Data e hora de início
- -Data e hora de expiração

Nome do usuário/sujeito

Extensões

Chave pública do sujeito

- Algoritmos
- Parâmetros
- Chave pública

Assinatura digital da AC

Certificado Digital

Validação

Quem pode gerar um certificado?

- CAs
- Self Signed
- Casos de revogação de CA
 - https://wiki.mozilla.org/CA:Symantec_Issues

Tipos de validação de certificado

- DV Certificado com validação de Domínio
 - Para blogs e sites pessoais
 - Valida a posse do domínio
 - Exibe o cadeado de segurança
- OV Validação da empresa
 - Voltado para empresas e organizações sem fins lucrativos
 - Valida a posse do domínio e a organização
 - Exibe o cadeado de segurança
- EV Validação estendida
 - Para sites de comércio eletrônico
 - Valida a posse do domínio e o mais elevado nível de autenticação empresarial
 - Exibe o cadeado de segurança, o nome da empresa e a barra verde

Cadeia de certificados

Key Usage

- Key usage
 - DigitalSignature
 - NonRepudiation
 - KeyEncipherment
 - DataEncipherment
 - KeyAgreement
 - KeyCertSign
 - CRLSign
 - EncipherOnly, DecipherOnly
- Extended Key Usage extension

Criptografia simétrica

Criptografia assimétrica para segredos

Criptografia assimétrica para autenticidade

Criptografia hibrida (simétrica + assimétrica)

hands on _

OpenSSL

- OpenSSL é uma implementação de código aberto dos protocolos de SSL e TLS.
- Implementa funções básicas de criptografia para trabalhar com certificados digitais

Repositório

https://github.com/felipetortella/ap-pucc-certificate

Criando seu self-signed certificate

- Criar chave privada
 - openssl genrsa –aes256 –out rootCA.key
 - aes (advanced encryption standard) 256bits
- Criar certificado root (CA)
 - openssl req –x509 –new –nodes –key rootCA.key –days 3650 –out rootCA.pem
 - req
 - x509
 - Padrão para infraestruturas de chaves públicas
 - Formato dos certificados digitais
 - days
 - Data de duração do certificado
 - Nodes
 - no DES, openssl n\u00e3o vai encriptar a chave privada no certificado

- Criar chave privada do certificado
 - openssl genrsa –aes256 –out private.key
- Criar CSR (Certificate Signing Request)
 - openssl req –new –key private.key –out private.csr
- Sign CSR with rootCA
 - openssl x509 -req –in private.csr –CA rootCA.pem –CAkey rootCA.key –CAcreateserial –out private.crt –days 3650
- Change certificate to tomcat server be able to read it
 - openssl pkcs12 –export –in private.crt –inkey private.key –out private.p12
- Use java keytool to generate JKS
 - keytool –importkeystore –srckeystore private.p12 –srcstoretype PKCS12 -destkeystore private.jks –deststoretype JKS

Hands on com certificado intermediário

Gerando o certificado intermediário

- Já temos nosso rootCA.pem
- Converter nosso .pem para .crt que vai ser usado no intermediário
 - openssl x509 –outform der –in rootCA.pem –out rootCA.crt
- Gerar o inter.csr
 - openssl req –new –newkey rsa:2048 –sha256 –nodes –out inter.csr –keyout inter.key config inter.cfg
- Assinar nosso intermediário com o rootCA
 - openssl x509 –req -CA rootCA.pem –CAkey rootCA.key –CAcreateserial -in inter.csr –out inter.crt –extfile inter.cfg –extensions v3_ca
- Gerar o .pem do inter
 - openssl x509 –outform PEM –in inter.crt –out inter.pem

Hands on com certificado intermediário

Gerando o certificado do servidor com o Intermediário

- Gerar a private key e o csr usando o server.cfg
 - openssl req -new -newkey rsa:2048 -sha256 -nodes -out private.csr -keyout private.key -config server.cfg
- Assinar o .crt com o CA intermediário
 - openssl x509 -req -CA inter.pem -CAkey inter.key -CAcreateserial -days 2880 -in private.csr -out private.crt -extfile server.cfg -extensions v3_req
- Juntar o CA root e o CA intermediário em um arquivo só
 - cat rootCA.pem inter.pem > bundle.pem
- Exportar .p12 com a cadeia inteira de certificados
 - openssl pkcs12 -export -in private.crt -inkey private.key -out private.p12 -chain CAfile bundle.pem

Tipos de extensão dos certificados

- At its core an X.509 certificate is a digital document that has been encoded and/or digitally signed according to RFC 5280.
- Encodings (also used as extensions)
 - .DER = The DER extension is used for binary DER encoded certificates. These files may also bear the CER or the CRT extension. Proper English usage would be "I have a DER encoded certificate" not "I have a DER certificate".
 - .PEM = The PEM extension is used for different types of X.509v3 files which contain ASCII (Base64) armored data prefixed with a "—— BEGIN …" line.

Common Extensions

- .CRT = The CRT extension is used for certificates. The certificates may be encoded as binary DER or as ASCII PEM. The CER and CRT extensions are nearly synonymous. Most common among *nix systems
- CER = alternate form of .crt (Microsoft Convention) You can use MS to convert .crt to .cer (.both DER encoded .cer, or base64[PEM] encoded .cer) The .cer file extension is also recognized by IE as a command to run a MS cryptoAPI command (specifically rundll32.exe cryptext.dll,CryptExtOpenCER) which displays a dialogue for importing and/or viewing certificate contents.
- .KEY = The KEY extension is used both for public and private PKCS#8 keys. The keys may be encoded as binary DER or as ASCII PEM.

Self signed para testes rápidos

https://letsencrypt.org/docs/certificates-for-localhost/

openssl req -x509 -out localhost.crt -keyout localhost.key -newkey rsa:2048 -nodes -sha256 -subj '/CN=localhost' -extensions EXT -config <(\ printf "[dn]\nCN=localhost\n[req]\ndistinguished_name = dn\n[EXT]\nsubjectAltName=DNS:localhost\nkeyUsage=digitalSignature\nextendedKeyUsage=serverAuth")

show certificate on spring boot_

LINKS _

Referências

- https://searchsecurity.techtarget.com/definition/digital-certificate
- https://www.comodo.com/resources/small-business/digital-certificates.php
- https://letsencrypt.org/docs/certificates-for-localhost
- TLS v1.2 Protocol Detailed Flow
 - https://tls.ulfheim.net/
- > Introdução à criptografia para administradores de sistemas com TLS, OpenSSL e Apache mod_ssl.
 - Alexandre Braga (UNICAMP)
 - > Ricardo Dahab (UNICAMP)
- https://www.ibm.com/support/knowledgecenter/en/SSKTMJ_9.0.1/admin/conf_keyusageextensionsandext endedkeyusage_r.html
- https://developer.mozilla.org/en-US/docs/Mozilla/Projects/NSS/nss_tech_notes/nss_tech_note3

Obrigado, (h) (i) (i) (segueosidi

- fl.tortella@sidi.org.br
- r.cadaval@sidi.org.br