课程编号: MTH17005

北京理工大学2011-2012学年第一学期

2011级《微积分A》期中试卷

班级 字号 姓名 姓名 放领	班级	学号	姓名	成绩
----------------	----	----	----	----

(本试卷共六页,十一个大题。)

题号	_	 =	四	五.	六	七	八	九	+	+-	总分
得分											

- 一、填空(每小题4分,共20分)
- 1. 极限 $\lim_{x\to 0} \frac{\sqrt{1+2\sin x} x 1}{x\ln(1+x)} = \underline{\hspace{1cm}}$.
- 2. 设 $y = \sqrt{x}e^{\sin{\frac{1}{x}}} + f(\tan^2(x))$, 其中 f 为可微函数,

则 dy =______.

- 3. 设函数 $f(x) = \lim_{n \to \infty} \frac{1 xe^{nx}}{x + e^{nx}}$,则用分段函数表示的 $f(x) = ______,$ f(x) 的间断点及间断点的类型为______.
- 4. 设曲线的极坐标方程为 $\rho=2(1-\cos\theta)$, 则曲线在 $\theta=\frac{\pi}{2}$ 处的切线方程
- 5. $\[\exists y = (x^2 + x + 2)\sin x, \] \] y^{(10)}(0) = \underline{\qquad}.$
- 二、(8分) 设 f(x) 为连续函数,且 f(0) = f'(0) = 1, 求极限 $\lim_{x\to 0} \frac{f(\sin x) 1}{\ln f(x)}$.

三 (8分)证明: $\cosh x \ge 1 + \frac{x^2}{2}$.(注: $\cosh x$ 是双曲余弦函数)

四、(8分) 设函数 y = y(x) 由方程 $y - 2x = (x - y)\ln(x - y)$ 确定,求 $\frac{dy}{dx}, \frac{d^2y}{dx^2}$ 及 y''(0).

五 (8分 (1) 求曲线 $y = x^3 + 3x^2 - x - 1$ 的凹凸区间和拐点;

(2) 求曲线 $y = x \ln(2 + \frac{1}{x})$ 的渐近线.

六、(8分) 求极限 $\lim_{x\to+\infty} \left(\frac{\pi}{2} - \arctan x\right)^{\frac{1}{\ln x}}$.

七 (8分) 设 $f(x) = \begin{cases} b(1+2x) & x < 0 \\ e^{ax} & x \ge 0 \end{cases}$, 试确定常数 a,b 的值,使 f(x) 在 x = 0 处可导,并求 f'(x).

八、(8分)确定常数 a,b,c 的值,使当 $x \to 0$ 时, $x - (a + b\cos x)\sin x$ 与 $c(\sqrt[3]{1+x^5}-1)$ 是等价无穷小.

九 (8分)防空洞的截面拟建成矩形加半圆(如图所示),截面的面积为5平方米,问底宽x为多少米时才能使建造时所用的材料最省?(运用所学微分学知识)

十、(8分) 设 $0 < x_1 < \sqrt{3}, x_{n+1} = \frac{3(1+x_n)}{3+x_n}, (n=1,2,\cdots)$. 证明:数列 $\{x_n\}$ 极限存在,并求此极限.

十一、(8分) 设 f(x) 在 [a,b] 上连续,在 (a,b) 内可导,若 f(a) = f(b) = 1,证明: 存在 ξ , $\eta \in (a,b)$ 使得 $e^{\xi}[f(\xi) + f'(\xi)] = e^{\eta}$.