NTUA Top Tagger

Tag & Probe methodology

G. Bakas, K. Kousouris, I. Papakrivopoulos, G. Tsipolitis

Analysis Overview

- Differential cross section for boosted ttbar pair fully hadronic final state
- Trying to identify two big jets that contain the products of the top/anti-top decay.

- A NN, for tagging ttbar events was used in TOP-18-013
- A BDT for tagging jets as tops is used in this analysis

Motivation

- The main background for this analysis is QCD
- A data driven method is used for subtracting it
- The method relies on the assumption that by inverting the b-tagging requirement in the signal region (SR) we can have the shape of the QCD contribution
- This can be verified by a set of closure tests
- The tagger is required to not use b-tagging information
- The use of DeepAK8 was investigated but it uses b-tagging so it is not applicable in our use case
- An in-house BDT was developed to overcome this limitation

Overview

- BDT Input and Output in the SR_B Region
 - SR_B: Baseline selection + tight Mass Cut (120,220) GeV, no TopTagger Selection
 - Leading + subleading in different pT regions:
 - [400,600], [600,800], [800, Inf)
 - [400,500], [500,600], [600, Inf)
 - Find Data vs MC Input and Output for UL our Analysis <u>here</u>

Fraction of events used in the cross section measuremnt that are also used in the Top Tagger SF measurement is of the order of 35%

- Top Tagger Scale Factors
 - Data is subtracted QCD and Subdominant bkgs (MC) so that the data sample is pure

$$efficiency = \frac{Tight \& SR}{Tight \& Probe} = \frac{\# (1 \, jet \, pass \, baseline + Tight \, TopTagger \, Cut \, AND \, 1 \, jet \, pass \, SR)}{\# (1 \, jet \, pass \, baseline + Tight \, TopTagger \, Cut \, AND \, 1 \, jet \, pass \, only \, baseline)}$$

- Implemented Randomization (check random jet) to fill histogram to avoid pT bias
- Divide the phase space into pT regions: [400-600]GeV, [600-800]GeV, [800-Inf]GeV
- For the QCD estimation, we perform a fit in both regions (Tight & Probe, Tight & SR):
 - Shape of QCD is estimated from Data while inverting btagging requirement
 - # QCD events in each region is calculated from fit using the Leading JetMassSoftDrop variable
 - To scale the ttbar → fit the Leading JetMassSoftDrop in each region and get the signal strength
 - For the evaluation of Signal distribution from data, we do the following:

$$\forall region: S(x) = D(x) - N_{QCD}d_0(x) - Sub.Bkg(x)$$

Signal Selection

Variables	Selected Cut
pT leading jets	> 450 GeV
pT 2 nd leading jets	> 400 GeV
Njets	> 1
N leptons	= 0
eta (both leading jets)	< 2.4
mJJ	> 1000 GeV
jetMassSoftDrop (only for fit)	(50,300) GeV
Top Tagger	> 0.2
B tagging (2 btagged jets)	> Medium WP
Signal Trigger	

Control Region Selection

Variables	Selected Cut
pT leading jets	> 450 GeV
pT 2 nd leading jets	> 400 GeV
N leptons	= 0
eta (both leading jets)	< 2.4
mJJ	> 1000 GeV
jetMassSoftDrop (only for fit)	(50,300) GeV
Top Tagger	> 0.2
B tagging (0 btagged jets)	< Medium WP
Control Trigger	

BDT Output

- In house developed top tagger, for top candidate jets
 - BDT based
 - Input variables:
 - N-subjetiness: τ 1, τ 2, τ 3
 - Energy correlation functions (ECF) ECFB1N2, ECFB1N3, ECFB2N2, ECFB2N3
 - Soft drop mass of the leading and subleading subjets
 - Fraction of the jet over the of all the jets in the event

- Phase space split in categories based on the pt of the jet:
 - [400, 600) GeV
 - [600, 800) GeV
 - [800, 1200) GeV
 - [1200, Inf) GeV
- Different training and working point for each year (Signal) and QCD (Bkg) samples used in the training

Leading Jet

Data vs MC -**←** Data QCD Subdominant 1000 800 600 400 200 Data MC 0.5 -0.4 -0.2 topTagger

Second Leading Jet

TagAndProbe Efficiency per Pt region

2016 preVFP

[600, 800]

[400, 600]

1.5

0.7

0.6

0.5

[800, Inf)

→ Data
→ TT Statistical
→ TT (Sys) + (Stat)
Total Eff. Data

Total Eff. MC

3.5

2.5

2016 postVFP

2017

TagAndProbe Efficiency per Pt region (JMAR regions)

2016 postVFP

2017

Scale Factors

2016 preVFP

2016 postVFP

2017

Scale Factors

2016 preVFP

2016 postVFP

2017

Data vs MC

Data vs MC plots

Data vs MC plots

Data vs MC plots

Summary

- Presented an in-house top tagger developed by NTUA
- The tagger is dedicated for use in the boosted **fully hadronic** ttbar analysis and is not intended for wide use outside the scope of the analysis
- Presented Input and output of the Top Tagger
- Performed all required Tag and Probe testing & validation
 - Tag & Probe efficiency & Top Tagger SF
 - Inclusive
 - Per pT region
- Top Tagger SF application on Data vs MC distributions show no great impact
 - Nominal Values
 - Not affected by systematic uncertainties

<u>Backup</u>

Top Tagger Efficiencies

Table 27: Top Tagger efficiency Values for 2016 preVFP.

Eff. Type	Eff. Data (stat)	Eff. tt (stat)	Eff. $t\bar{t}$ (stat + systematic)
Inclusive	0.757 ± 0.058	0.791 ± 0.009	0.791 ± 0.01
p _T [400, 600]GeV	0.742 ± 0.067	0.793 ± 0.011	0.793 ± 0.021
p _T [600, 800]GeV	0.774 ± 0.134	0.79 ± 0.016	0.79 ± 0.025
p _T [800, Inf)GeV	0.824 ± 0.198	0.777 ± 0.037	0.777 ± 0.047

Table 29: Top Tagger efficiency Values for 2016 postVFP.

Eff. Type	Eff. Data (stat)	Eff. tt (stat)	Eff. tt (stat + systematic)
Inclusive	0.79 ± 0.052	0.786 ± 0.008	0.786 ± 0.011
p _T [400, 600]GeV	0.776 ± 0.061	0.79 ± 0.01	0.79 ± 0.021
p _T [600, 800]GeV	0.81 ± 0.104	0.781 ± 0.015	0.781 ± 0.024
p_{T} [800, Inf)GeV	0.861 ± 0.259	0.77 ± 0.035	0.77 ± 0.046

Table 31: Top Tagger efficiency Values for 2017.

Eff. Type	Eff. Data (stat)	Eff. tt (stat)	Eff. $t\bar{t}$ (stat + systematic)
Inclusive	0.814 ± 0.032	0.868 ± 0.006	0.868 ± 0.009
p _T [400, 600]GeV	0.81 ± 0.04	0.867 ± 0.008	0.867 ± 0.017
p _T [600, 800]GeV	0.827 ± 0.063	0.871 ± 0.012	0.871 ± 0.021
p _T [800, Inf)GeV	0.793 ± 0.132	0.869 ± 0.029	0.869 ± 0.037

Table 33: Top Tagger efficiency Values for 2018.

Eff. Type	Eff. Data (stat)	Eff. tt (stat)	Eff. tt (stat + systematic)
Inclusive	0.792 ± 0.03	0.827 ± 0.005	0.827 ± 0.008
p _T [400, 600]GeV	0.789 ± 0.039	0.825 ± 0.006	0.825 ± 0.014
p _T [600, 800]GeV	0.805 ± 0.051	0.833 ± 0.01	0.833 ± 0.02
p _T [800, Inf)GeV	0.752 ± 0.104	0.822 ± 0.024	0.822 ± 0.037

Table 28: Top Tagger efficiency Values for 2016 preVFP using JMAR proposed p_T regions.

Eff. Type	Eff. Data (stat)	Eff. tt (stat)	Eff. tt (stat + systematic)
Inclusive	0.757 ± 0.058	0.791 ± 0.009	0.791 ± 0.01
p _T [400, 500]GeV	0.806 ± 0.136	0.792 ± 0.021	0.792 ± 0.031
$p_{\rm T}$ [500, 600]GeV	0.721 ± 0.076	0.793 ± 0.013	0.793 ± 0.022
p_{T} [600, Inf)GeV	0.785 ± 0.114	0.787 ± 0.014	0.787 ± 0.024

Table 30: Top Tagger efficiency Values for 2016 postVFP using JMAR proposed p_T regions.

Eff. Type	Eff. Data (stat)	Eff. tt (stat)	Eff. tt (stat + systematic)
Inclusive	0.79 ± 0.052	0.786 ± 0.008	0.786 ± 0.011
p _T [400, 500]GeV	0.782 ± 0.1	0.773 ± 0.018	0.773 ± 0.029
p _T [500, 600]GeV	0.774 ± 0.076	0.8 ± 0.012	0.8 ± 0.02
p _T [600, Inf)GeV	0.817 ± 0.097	0.779 ± 0.013	0.779 ± 0.025

Table 32: Top Tagger efficiency Values for 2017 using JMAR proposed p_T regions.

Eff. Type	Eff. Data (stat)	Eff. tt (stat)	Eff. tt (stat + systematic)
Inclusive	0.814 ± 0.032	0.868 ± 0.006	0.868 ± 0.009
p _T [400, 500]GeV	0.808 ± 0.069	0.854 ± 0.014	0.854 ± 0.023
p _T [500, 600]GeV	0.812 ± 0.047	0.872 ± 0.009	0.872 ± 0.018
p _T [600, Inf)GeV	0.822 ± 0.058	0.870 ± 0.011	0.870 ± 0.019

Table 34: Top Tagger efficiency Values for 2018 using JMAR proposed p_T regions.

Eff. Type	Eff. Data (stat)	Eff. tt (stat)	Eff. $t\bar{t}$ (stat + systematic)
Inclusive	0.792 ± 0.03	0.827 ± 0.005	0.827 ± 0.008
$p_{\rm T}$ [400, 500]GeV	0.739 ± 0.074	0.811 ± 0.011	0.811 ± 0.019
p _T [500, 600]GeV	0.807 ± 0.045	0.832 ± 0.007	0.832 ± 0.018
p _T [600, Inf)GeV	0.797 ± 0.046	0.832 ± 0.009	0.832 ± 0.021

Scale Factor Values

1 00	
SF Type	Value \pm error
Inclusive	0.957 ± 0.074
p _T [400, 600]GeV	0.937 ± 0.085
p _T [600, 800]GeV	0.981 ± 0.17
p _T [800, Inf)GeV	1.06 ± 0.26

Table 37: Top Tagger SF Values for 2016 postVFP.

SF Type	Value \pm error
Inclusive	1.01 ± 0.067
p _T [400, 600]GeV	0.983 ± 0.078
p _T [600, 800]GeV	1.04 ± 0.135
p _T [800, Inf)GeV	1.12 ± 0.34

Table 39: Top Tagger SF Values for 2017.

SF Type	Value \pm error
Inclusive	0.938 ± 0.038
p _T [400, 600]GeV	0.935 ± 0.046
p _T [600, 800]GeV	0.95 ± 0.059
p_{T} [800, Inf)GeV	0.912 ± 0.155

Table 41: Top Tagger SF Values for 2018.

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
SF Type	Value \pm error
Inclusive	0.958 ± 0.037
p _T [400, 600]GeV	0.956 ± 0.048
p _T [600, 800]GeV	0.967 ± 0.062
p _T [800, Inf)GeV	0.914 ± 0.13

Table 36: Top Tagger SF Values for 2016 preVFP using JMAR proposed p_T regions.

SF Type	Value \pm error
Inclusive	0.957 ± 0.074
p _T [400, 500]GeV	1.02 ± 0.173
p _T [500, 600]GeV	0.91 ± 0.097
p_{T} [600, Inf)GeV	0.997 ± 0.15

Table 38: Top Tagger SF Values for 2016 postVFP using JMAR proposed p_T regions.

SF Type	Value \pm error
Inclusive	1.01 ± 0.067
p _T [400, 500]GeV	1.01 ± 0.132
p _T [500, 600]GeV	0.971 ± 0.097
p_{T} [600, Inf)GeV	1.05 ± 0.13

Table 40: Top Tagger SF Values for 2017 using JMAR proposed p_T regions.

SF Type	Value \pm error
Inclusive	0.938 ± 0.038
p _T [400, 500]GeV	0.946 ± 0.082
p _T [500, 600]GeV	0.931 ± 0.055
p _T [600, Inf)GeV	0.945 ± 0.068

Table 42: Top Tagger SF Values for 2018 using JMAR proposed p_T regions.

SF Type	Value ± error
Inclusive	0.958 ± 0.037
p _T [400, 500]GeV	0.912 ± 0.093
p _T [500, 600]GeV	0.971 ± 0.055
p _T [600, Inf)GeV	0.959 ± 0.056

