评价函数

评价函数 Eval(V) 是根据每个染色体 V 的适应函数 fitness(V) 而得到与其他染色体的比例关系, 可用它来 决定该染色体被选为种群的概率. 如

$$Eval(V) = \frac{fitness(V)}{\sum_{V} fitness(V)}$$

• 基于简单适应函数. 设 f(x) 为目标函数, 则

fitness(x) =
$$f(x)$$
, max 优化问题
fitness(x) = $M - f(x)$, min 优化问题, $M > \max_{x} f(x)$

例

考虑

$$z = \max_{x \in [0.5,1]} f(x) = \max_{x \in [0.5,1]} \{1 + \log_{10} x\}$$

采用四位编码, 算法的某一代为

X	群体	fitness(x)	Eval(x)
1/2	0000	0.699	0.214
5/8	0100	0.796	0.248
21/32	0101	0.817	0.254
23/32	0111	0.857	0.272

• 基于非线性加速适应函数. 取

fitness(x) =
$$\begin{cases} \frac{1}{1 - f(x)}, & 0.5 \le x < 1 \\ M, & 1 \le x \end{cases}$$

其中 M > 0 是一个充分大的数. 则有

X	群体	fitness(x)	Eval(x)
1/2	0000	3.322	0.161
5/8	0100	4.902	0.237
21/32	0101	5.464	0.264
23/32	0111	6.993	0.338

若取

fitness(x) =
$$\begin{cases} \frac{1}{f_{max} - f(x)}, & f(x) < f_{max} \\ M, & f(x) = f_{max} \end{cases}$$

其中 M > 0 是一个充分大的数, f_{max} 是当前的最优目标值. 则有

x	群体	fitness(x)	Eval(x)
1/2	0000	5.376	5.376/(46.769+M)
5/8	0100	16.393	16.393/(46.769+M)
21/32	0101	25.000	25/(46.769+M)
23/32	0111	М	M/(46.769+M)

• 基于线性加速适应函数.

$$fitness(x) = \alpha f(x) + \beta$$

其中 α, β 满足

$$\begin{cases} \alpha \frac{\sum\limits_{i=1}^{pop_size} f(x_i)}{\sum\limits_{i=1}^{pop_size} f(x_i)} + \beta = \frac{\sum\limits_{i=1}^{pop_size} f(x_i)}{pop_size} \\ \alpha \max_{1 \le i \le pop_size} \{f(x_i)\} + \beta = M \frac{\sum\limits_{i=1}^{pop_size} f(x_i)}{pop_size} \end{cases}$$

基于排序适应函数

设
$$a \in (0,1), b > 0$$
, 取

fitness(
$$V_i$$
) = $b(1-a)^{i-1}$, $i = 1, 2, \dots, pop_size$.

注意: i = 1 代表最好的个体, $i = pop_size$ 代表最坏的个体.