

CAS Datenanalyse

Kapitel 3: Modellauswahl und F-Test

Prof. Dr. Raúl Gimeno FRM,CAIA, PRM

1

Inhalt

Informationskriterien:

- Akaike
- ✓ Schwarz
- ✓ Hannan-Quinn

T-Test: Beschränkung

t-Test für Linearkombination von Parametern

F-Verteilung

F-Test

F-Test für Restriktionen

Gutes Regressionsmodell

- Relevanz: Das Modell sollte der Fragestellung entsprechen
- Theoretische Konsistenz: Logisch widerspruchsfrei, geschätzte Parameter → erwartete Vorzeichen
- Einfachheit (Parsimony): So einfach wie möglich
- Anpassung (goodness of fit): Verfügbaren Daten möglichst gut abbilden
- Prognosefähigkeit: Gute Prognosen liefern

Trade-off: Anpassungsgüte und Komplexität, gemessen an der Anzahl der Parameter, ausbalancieren.

Top-down Vorgehen: Möglichst umfassendes Modell \rightarrow durch Tests ein adäquates Modell wählen

Problem: Keine Zauberformel liefert automatisch das «bestes Modell».

Ziel: Kriterium zur Auswahl eines geeigneten Regressionsmodells unter konkurrierenden Modellen.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

3

Informationskriterium: Fitmass

Kriterium: Die Anzahl der Parameter wird dabei "strafend" berücksichtigt, da sonst komplexe Modelle mit vielen Parametern bevorzugt würden.

Alternative zu \overline{R}^2 : Abwägung des Verzerrungsrisikos und des Risikos einer zu grossen Schätzvarianz.

Selektionskriterium = Fitmass + Anzahl Parameter x Straffunktion

Fitmass

Misst, wie gut sich das geschätzte Modell an die Daten anpasst.

Problem: Zusätzliche Parameter führen im Allgemeinen zu einer Fitverbesserung, niemals jedoch zu einer Fitverschlechterung.

Auswahl: Minus zweimal die Log-Likelihood Funktion

Unterscheidet sich für eine gegebene Stichprobengrösse N nur um eine Konstante von s².

OLS-Likelihoodfunktion: $\ell(\mathbf{b}) = -(N/2)[1 + \ln 2\pi + \ln(RSS/N)]$

$$RSS = \sum_{i} (y_i - \hat{y}_i)^2 = S_{ee}$$

Informationskriterium: Strafterm

Strafterm:

Produkt aus Zahl der geschätzten Parameter k und Straffunktion:

- Der Strafterm bestraft die Anzahl der Parameter, um zu vermeiden, dass überflüssige Variablen mit ins Modell aufgenommen werden und somit das Schätzverfahren ineffizient wird.
- Der Strafterm steigt mit steigendem K (# Regressoren)
- Trade-off: Regressoren werden dann in das Modell aufgenommen, wenn die Strafe geringer ausfällt als die Verbesserung des Fit.
- Durch die Wahl der Straffunktion (und damit des Kriteriums) legt man fest, wie dieser Trade-off quantitativ vorgenommen wird. Gängig sind drei verschiedene Kriterien: AIC, SIC und HQ.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

5

Informationskriterium: Akaike

 $AIC^* = AIC/N - (1+ln(2\pi))$

Hinweis: Je nach Software-Paket unterschiedliche Implementierung der verschiedenen Informationskriterien.

	Modell 1	Modell 2	Modell 3
N	20	20	20
K	2	3	4
Variablen	1	1, 2	1,2 und 3
$S_{ee} = e'e$	1'260'028	957'698.10	955'691.70
gretl AIC	281.7758	278.2887	280.2467
AIC*	11.251	11.077	11.174

Y: Lohnhöhe

1: Ausbildung

2: Alter

3: Firmenzugehörigkeit

residuale Variation

Regel: Unter allen konkurrierenden Regressionsmodellen wird die Spezifikation gewählt, für die das Informationskriterium den kleinsten Wert annimmt.

Informationskriterium: SIC und HQC

Schwarz Informationskriterium / Bayessches Informationskriterium (BIC)

 $SIC = -2I(\mathbf{b}) + KIn(\mathbf{N})$

Strafterm: KIn(N)

Faktor des Strafterms wächst logarithmisch mit der Anzahl der Beobachtungen N.

Bereits ab acht Beobachtungen (In 8 = 2.07944 > 2) bestraft das SIC zusätzliche Parameter schärfer als das AIC.

Hannan-Quinn Kriterium (HQC)

 $HQC = -2I(\mathbf{b}) + 2KIn[In(N)]$

Strafterm: 2Kln[ln(N)]

In günstigen Fällen führen alle Kriterien zur gleichen Modellauswahl. SIC bestraft für Stichprobengrössen (n > 8) zusätzliche Parameter stärker als HQ, und HQ wiederum stärker als AIC.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

7

Informationskriterien: Beispiel

Regel: Unter allen konkurrierenden Regressionsmodellen wird die Spezifikation gewählt, für die das Informationskriterium den kleinsten Wert annimmt.

Korrektes Modell 2: $y = b_1 + b_2$ Ausbildung + b_3 Alter + b_4 Dauer

	Modell 1	Modell 2	Modell 3
N	20	20	20
K	2	3	4
Variablen	1	1, 2	1,2 und 3
AIC	281.775	278.288	280.246
SIC	283.767	281.275	284.229
HQC	282.164	278.871	281.024

Strafterm 2K Kln(N)

2Kln(ln(N))

Ungünstiger Fall: Die verschiedenen Kriterien führen zu widersprüchlichen Ergebnissen.

Variablenauswahl: t- und F-Tests

gretl Output-Fenster

Modell 3: KQ, benutze die Beobachtungen 1-20 Abhängige Variable: Lohn Koeffizient Std.-fehler t-Quotient p-Wert const 1000,45 225,727 4,432 0,0004 *** 21,8345 62,4284 2,859 1,159 Ausbildung 0,0114 ** 12,3539 10,6575 Alter 0,2634 -2,62034 14,2970 -0,1833 0,8569 1685,000 Stdabw. d. abh. Var. 375,6048 955691,7 Stdfehler d. Regress. 244,3987 Mittel d. abh. Var. Summe d. quad. Res. 0,643465 Korrigiertes R-Quadrat 0,576615 R-Quadrat 3 Schwarz-Kriterium 284,2296 4 Hanna 2 0,000720 280,2467 284,2296 4 Hannan-Quinn-Kriterium 281,0242

1.
$$l(b) = -\frac{N}{2} (1 + \ln 2\pi - \ln N) - \frac{N}{2} \ln RSS = -136.1234$$

2. AIC =
$$-2I(b) + 2k = -2(-136.1234) + 2x^3 = 280.2467$$

3.
$$SIC = -2l(b) + klnN = -2(-136.1234) + 3ln(20) = 284.2296$$

4.
$$HQC = -2l(b) + 2kln[lnN] = -2(-136.1234) + 6ln[ln(20)] = 281.0242$$

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

9

Modellauswahl mittels AIC

Megamodell mit 4 Variablen: X_1 , X_2 , X_3 , X_4 \rightarrow AIC = 159.55 # Modelle: $2^4 = 16$

	AIC		AIC	
Interzept	208.75	X_{2}, X_{3}	166.97	
X_1	169.3	X_{2}, X_{4}	166.97	
X_2	190.79	X_{3}, X_{4}	164.16	
X_3	170.20	X_1, X_2, X_3	168.40	
X_4	166.02	X_1, X_2, X_4	158.01	
X_1, X_2	169.61	X_1, X_3, X_4	157.55	
$X_{1,}X_{3}$	167.14	X_2, X_3, X_4	165.78	
X ₁ , X ₄	156.01			

Hypothesentests mittels t-Test

Mit dem t-Test kann überprüft werden, ob ein geschätzter Koeffizient einem theoretisch angenommenen Wert (b_i) entspricht.

Prüfgrösse: t-Wert

$$t_i = \frac{b_i - \beta_i}{se(b_i)} \sim t_{N-k}$$

$$t(\mathbf{S}) = \frac{b_i - c}{se(b_i)} \sim t_{N-k}$$
 wenn H_0 : $\beta_i = c$ wahr

S: Menge aller möglichen Stichproben

Teststatistik t(S): Funktion der Stichproben S.

Gilt nur wenn H_0 : $\beta_i = c$ wahr

Formulierung einer Alternativhypothese.

 $H_{1a}: b_i \neq c$ $H_{1h}: b_i > c$

 H_{1c} : $b_i < c$

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

11

t-Test: Stichprobenkennwertverteilung

$$t_i = \frac{b_i - \beta_i}{se(b_i)} \sim t_{N-k}$$
 wenn H_0 : $\beta_i = c$ wahr

Der Wert der Teststatistik t wird desto näher bei null liegen, je geringer die Distanz zwischen dem Schätzer b_i und dem unter H₀ vermuteten Wert c ist!

Für jede Stichprobe den Wert der Teststatistik t berechnen

Bei unendlich vielen Stichproben mit Umfang N (hypothetisch) →

Histogramm all dieser t-Werte \rightarrow t-Werte sind t-verteilt.

Stichprobenkennwertverteilung von t(**S**) unter H₀

Bewertung der Parameter

Regressionsfunktion (K = 3): $y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + u_t$

Frage: Trägt der Regressor x, zur Erklärung von y bei?

Test von H_0 : $\beta_i = 0$ gegen H_1 : $\beta_i > 0$ oder H_1 : $\beta_i \neq 0$ (zweiseitig)

Interpretation: Erklärende Variable xi hat keinen partiellen Effekt auf y

t-Verteilung für standardisierten Schätzer: $\frac{b_i - \beta_i}{se(b_i)} \sim t_{N-k}$

N: Stichprobengrösse

K: Anzahl Parameter

t-verteilte Statistik: $t_i = \frac{b_i}{se(b_i)} \sim t_{N-3}$ when H_0 : $\beta_i = 0$ wahr

Interpretation t_i: Wie viele Standardabweichungen liegt b_i von null entfernt?

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

13

Nullhypothese

Ein statistisches Testproblem (statistischer Test) besteht aus einer Nullhypothese H_0 und einer Alternativhypothese H_1 , die sich gegenseitig ausschliessen.

Regeln für das Aufstellen der Nullhypothese:

- ✓ Was ich zeigen oder beweisen will, gehört in die Alternativhypothese
- ✓ Das Gleichheitszeichen gehört immer in die Nullhypothese

Die Annahme der Nullhypothese führt immer zur Ablehnung der Alternativhypothese ist aber kein Beweis dafür, dass die Nullhypothese stimmt.

Die Ablehnung der Nullhypothese führt zur Annahme der Alternativhypothese.

Gretl-Output: Signifikanzniveau

Mittels hochgestellten Sternen * neben dem p-Wert wird kenntlich gemacht, auf welchem Signifikanzniveau α die Nullhypothese $b_i = 0$ verworfen werden kann.

- * Signifikant auf dem 10% Niveau
- ** Signifikant auf dem 5% Niveau
- *** Signifikant auf dem 1% Niveau → Koeffizient hoch signifikant

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

15

Beschränkung des t-Tests

Statistische Signifikanz vs. theoretische Validität

Einfaches Regressionsmodell mit y = UK Konsumentenpreisindex Schätzfunktion: $\hat{y} = 10.9 - 3.2x + 0.39 x^2$ N = 21, $\overline{R}^2 = 0.982$

$$t = -13.9 \quad 19.5$$

 H_0 : $b_2 = 0$ und H_0 : $b_3 = 0$ zweiseitiger Test $\rightarrow H_0$ ablehnen Konklusion: x und x^2 statistisch signifikante Variablen für die Erklärung von y.

x: kumulierte Niederschlagsmenge in UK!

Grund der Signifikanz: Beide Variablen weisen einen Trend auf

Ungültiges Modell! \rightarrow Regression ohne theoretische Fundierung \rightarrow

Gefahr: Es wird nur noch geprüft, ob die Daten etwas aussagen können!

Beschränkung des t-Tests

t-Test und Wichtigkeit einer Variable

- Statistische Signifikanz gibt Aufschluss darüber, dass ein bestimmtes Stichprobenschätzergebnis nicht reiner Zufall ist.
- Keine Aussage darüber, welche Variable den grössten Teil der Variation von y erklärt
- Schlussfolgerung: Variable mit dem signifikantesten Koeffizienten (höchster t-Wert) ist nicht unbedingt die wichtigste Variable (grösster Effekt auf Y)

t-Test bei hohen Stichprobenumfängen

- Stichprobenumfang N↑: Unverzerrter Schätzwert eines Parameters liegt immer näher am wahren Parameter der Grundgesamtheit.
- $se(b_i) \downarrow \rightarrow t_i \uparrow \rightarrow H_0$ verwerfen $t_i = \frac{b_i \beta_i}{se(b_i)} \sim t_{N-k}$
- Bedeutung einer Variablen für y nicht alleine mit der Signifikanz beurteilen

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

17

t-Test für eine Linearkombination von Parametern

Regressionsfunktion:
$$y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + u_t$$

 H_0 : $c_1\beta_2 + c_2\beta_3 = c$ H_1 : $c_1\beta_2 + c_2\beta_3 \neq c$

Beispiel 1: Parameter β_2 und β_3 weisen den gleichen Wert auf Formulierung H_0 : $\beta_2 - \beta_3 = 0$ ($c_1 = c_2 = 1$)

Beispiele

Beispiel 2: Parameter β_3 ist halb so gross wie β_2 aber mit unterschiedlichem Vorzeichen.

Formulierung
$$H_0$$
: $\beta_2 + 2\beta_3 = 0$ ($c_1 = 1$ und $c_2 = 2$)

Allgemeines Test-Prinzip: Wenn
$$H_0$$
: $c_1\beta_2 + c_2\beta_3 = c$ wahr ist, gilt in der Grundgesamtheit $c_1\beta_2 + c_2\beta_3 - c = 0$

Aufgrund von Zufallsschwankungen ist dieser Zusammenhang in der Stichprobe nicht exakt erfüllt: $c_1b_2 + c_2b_3 - c = v$ wobei v relativ nahe bei null liegen sollte, wenn H_0 wahr ist. Wenn b_2 und b_3 normalverteilt sind, ist auch v normalverteilt.

t-Test für eine Linearkombination von Parametern

Wenn H_0 wahr gilt $E(\mathbf{v}) = 0$.

Standardfehler, um eine Teststatistik zu bestimmen

$$\operatorname{var}(v) = \operatorname{var}(c_1b_2 \pm c_2b_3 - c) = c_1^2 \operatorname{var}(b_2) + c_2^2 \operatorname{var}(b_3) \pm 2c_1c_2 \operatorname{cov}(b_2, b_3)$$

Unter H₀ gilt
$$\frac{v}{se(v)} = \frac{c_1b_2 \pm c_2b_3 - c}{\sqrt{c_1^2 \operatorname{var}(b_2) + c_2^2 \operatorname{var}(b_3) \pm 2c_1c_2 \operatorname{cov}(b_2, b_3)}} \sim t_{N-k}$$

Einschränkung des t-Tests: Kann nicht für den Test mehrerer Hypothesen verwendet werden!

Nicht möglich für die simultane Hypothese H_0 : $\beta_2 = \beta_3 = 0$

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

19

t-Test für Linearkombinationen

Kann H_0 als eine einzelne Linearkombination dargestellt werden, so wird sie normalerweise auf Basis eines t-Tests überprüft.

Allgemeine Form H_0 : $\mathbf{r}'\mathbf{\beta} = \mathbf{c}$

Zweifachregression:
$$\mathbf{y} = \beta_1 + \beta_2 \mathbf{x}_2 + \beta_3 \mathbf{x}_3 + \mathbf{u}$$
Beispiel \mathbf{H}_0 : $\beta_2 + \beta_3 = \mathbf{c} \Leftrightarrow \mathbf{H}_0$: $\mathbf{r}' \boldsymbol{\beta} = \mathbf{c} \Leftrightarrow (0 \ 1 \ 1) \begin{pmatrix} \beta_1 \\ \beta_2 \\ \beta_3 \end{pmatrix} = \mathbf{c}$

$$t = \frac{\mathbf{r}' \mathbf{b} - c}{\sqrt{\mathbf{r}' \text{var}(\mathbf{b}) \mathbf{r}}} \qquad t = \frac{\mathbf{r}' \mathbf{b} - c}{s_e \sqrt{\mathbf{r}' (\mathbf{X}' \mathbf{X})^{-1} \mathbf{r}}} \qquad \mathbf{r}' \qquad \mathbf{\beta}$$

$$(0 \quad 1 \quad 1) \begin{pmatrix} var(b_1) & s_{12} & s_{13} \\ s_{21} & var(b_2) & s_{23} \\ s_{31} & s_{32} & var(b_3) \end{pmatrix} \begin{pmatrix} 0 \\ 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \quad 1 \quad 1 \end{pmatrix} \begin{pmatrix} s_{12} + s_{13} \\ var(b_2) + s_{23} \\ var(b_3) + s_{23} \end{pmatrix} = \underbrace{var(b_2) + var(b_3) + 2s_{23}}_{var(b_3) + 2s_{23}}$$

$$t = \underbrace{b_2 + b_3 - c}_{\sqrt{var(b_2) + var(b_3) + 2cov(b_2, b_3)}} \sim t_{N-k}$$

F- Verteilung

Verhältnis zweier unabhängig χ^2 verteilter Zufallsvariablen, die beide durch die entsprechenden Freiheitsgrade dividiert werden.

Es seien $X_1 \sim \chi_{n1}^2$ und $X_2 \sim \chi_{n2}^2$ Chi-Quadrat-verteilt und unabhängig.

Zufallsvariable $F = \frac{X_1/n_1}{X_2/n_2} \sim F(n_1, n_2)$ ist F-verteilt mit n_1 und n_2 Freiheitsgraden (df).

Die genaue Form der F-Verteilung hängt von beiden Freiheitsgraden ab.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

21

22

F-Test: Interpretation

t-Test überprüft den Einfluss jeder einzelnen erklärenden Variable F-Test testet den gemeinsamen Einfluss aller erklärender Variablen mit Ausnahme des Interzepts getestet werden.

Modell: $y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + ... + \beta_k x_{kt} + u_t \iff Y = Xb + u$

Frage: Tragen alle Regressoren gesamthaft zur Erklärung von y bei?

Nullhypothese H_0 : $\beta_2 = ... = \beta_k = 0$ (F-Test: Überwindung der Einschränkung des t-Tests \rightarrow nur 1 Restriktion)

Alle Koeffizienten mit Ausnahme des Interzepts (β_1) sind simultan gleich null \Leftrightarrow alle K-1 Steigungskoeffizienten sind simultan gleich null.

 H_0 wahr \Rightarrow Regressoren x_i leisten gemeinsam keinen Erklärungsbeitrag für y

Alternativhypothese H_1 : H_0 trifft nicht zu \Leftrightarrow mindestens einer der Koeffizienten ist ungleich null!

Wenn u normalverteilt ist und bei Zutreffen von Hogilt:

$$\sum \left(\hat{y}_{i} - \overline{y}\right)^{2} \bigg/ \sigma^{2} \sim \chi_{K-1}^{2} \qquad \qquad \text{und} \qquad \sum_{i} e_{i}^{2} \bigg/ \sigma^{2} \sim \chi_{N-K}^{2}$$

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

F-Test: Formel

F-Statistik:

$$F = \frac{ESS/(K-1)}{RSS/(N-K)} \sim F_{(K-1,N-K)} \qquad \sum_{i} (\hat{y}_{i} - \overline{y})^{2} / \sigma^{2} \sim \chi_{k-1}^{2} \qquad F = \frac{\chi_{K-1}^{2}/(K-1)}{\chi_{N-K}^{2}/(N-K)} \sim F(K-1,N-K)$$

F ist verteilt nach F(k-1,N-k) mit k-1 Zähler- und N-k Nenner-Freiheitsgraden.

$$F = \frac{ESS/(K-1)}{RSS/(N-K)} = \frac{S_{\hat{y}\hat{y}}}{S_{ee}} \frac{N-K}{K-1} \sim F_{(K-1,N-K)}$$

N: Anzahl Beobachtungen

k: Anzahl Regressoren

F-Test: Verhältnis erklärter (ESS) und unerklärter Streuung (RSS).

Achtung: Es ist möglich, dass kein einziger Koeffizient signifikant von null verschieden ist, aber alle Koeffizienten gemeinsam trotzdem signifikant von null verschieden sind!

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

23

F-Test: Kritischer Wert

Für jede Verteilung F(K-1,N-K) lässt sich ein kritischer Wert F_c ermitteln (Tabelle, gretl), $F_{c,0.95}$: 5% der Wahrscheinlichkeitsmasse der Verteilung liegt rechter Hand dieses Wertes.

F_e = empirischer Wert der F-Statistik (berechneter Wert)

F_c: kritischer Wert (aus Tabelle, gretl)

F_e > F_c → Nullhypothese auf 5%-Niveau verwerfen

F-Test: Verwerfungsregel

Wenn die durch alle erklärenden X Variablen gemeinsam erklärte Streuung ESS sehr klein ist im Verhältnis zur unerklärten Streuung RSS, würde man einen sehr kleinen Wert der empirischen Statistik F_e erwarten.

Nullhypothese H_0 : $\beta_2 = ... = \beta_k = 0$ wird verworfen, wenn der empirische Wert (F_e) > kritischer Wert F_c .

Der zur F-Statistik gehörende p-Wert ist wieder die Fläche unter der Verteilung rechts vom berechneten F_e-Wert.

Verwerfungsregel für H₀

- $\checkmark F_e > F_c$
- ✓ p-Wert ≤ Signifikanzniveau

$$F = \frac{ESS/(K-1)}{RSS/(N-K)} \approx F_{(K-1,N-K)}$$

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

25

Konfidenzellipse

Bivariate Normalverteilungen ohne und mit Korrelation zwischen den Zufallsvariablen:

Wenn die Variablen unkorreliert sind (A) wird die gemeinsame Signifikanz durch einen Signifikanzkreis dargestellt, bei Korrelation zwischen den Variablen (B) durch eine Konfidenzellipse, die desto schmaler wird, je höher die Korrelation ist.

Die Form der Konfidenzellipse (C) wird vom Korrelationskoeffizienten r bestimmt. Eine starke Korrelation bedeutet ein langes a (grosse Halbachse) und ein kurzes b (kleine Halbachse). Die Ausrichtung der Ellipse hängt ebenfalls von r ab.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

26

F-Test: Konfidenzellipse

Regressionsfunktion: $y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + u_t$

Variable	Coefficient	Std. Error	t-Stat.	Prob.	N = 50
const. $\widehat{\beta}_1$	7.8878	5.0277	1.5689	0.1234	
x_2 \widehat{eta}_2	0.1996	0.2799	0.7131	0.4793	
x_3 $\widehat{\beta}_3$	0.6339	0.3442	1.8417	0.0718	
R-squared	0.5979	Log_likeliho	ood	-210.2721	
Adjusted R-squared	0.5808	S.E. of regr	ession	16.7340	
Sum squared resid	13161.2380	F-statistic		34.9485	
Durbin-Watson Stat.	2.1632	Prob(F-stat	tistic)	0.0000	

Einzelne t-Tests

t-Statistik $< 2 \rightarrow H_0$: $\beta_2 = 0$ und H_0 : $\beta_3 = 0$ werden für $\alpha = 5\%$ nicht abgelehnt! Die Koeffizienten sind individuell statistisch nicht signifikant.

F-Test

Nullhypothese H_0 : $\beta_2 = \beta_3 = 0$

F = 34.94 und p-Wert = $0 \rightarrow H_0$ verwerfen

Die Koeffizienten β_2 , β_3 sind gemeinsam hochsignifikant!

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

27

28

F-Test

Regressionsfunktion: $Y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + u_t$

Nullhypothesen

Individuelle H_{01} : $\beta_2 = 0$ und H_{02} : $\beta_3 = 0$

Gemeinsame H_{03} : $\beta_2 = \beta_3 = 0$

 $\Rightarrow \beta_2$, β_3 gemeinsam hochsignifikant

Die Punkte (0,0) und (β_2',β_3') liegen innerhalb der individuellen Konfidenzintervalle (H_{01} und H_{02} nicht ablehnen) aber ausserhalb der Konfidenzellipse (H_{03} ablehnen)

Punkt (β_2'', β_3'') liegt ausserhalb der individuellen Konfidenzintervalle $(H_{01} \text{ und } H_{02} \text{ ablehnen})$ aber innerhalb der Konfidenzellipse $(H_{03} \text{ nicht ablehnen})$

Gretl Output: F-Test

Modell: Pro-Kopf-Konsum = $b_1 + b_2$ Einkommen + b_3 T = 300.28 + 0.741Einkommen + 8.04T

N = 15 und K = 3 und Freiheitsgrade = N-K = 12

Nullhypothese H_0 : $\beta_2 = \beta_3 = 0$ Einkommen und Zeit liefern gemeinsam keinen Erklärungsbeitrag für Konsum (y)

Kritischer Wert: $F_c = 3.88$ $p\text{-Wert} = P[F > F_e = 2'513] = 0 < \alpha$

Empirischer Wert: $F_e = 2'513.521 > F_c \rightarrow H_0$ verwerfen

Abnangige var	iabie: Koi	nsum				
	Koeffizi	ent Std	fehler	t-Quotient	p-Wert	
const	300,286	78,31	.76	3,834	0,0024	***
Einkommen	0,74198	81 0,04	75337	15,61	2,46e-09	***
T	8,0435	6 2,98	355	2,696	0,0195	**
Mittel d. abh Summe d. quad R-Quadrat F(2, 12) Log-Likelihoo	. Res.	1942,333 1976,855 0,997619 2513,521 -57,89317	Stdfel Korric P-Wert Akaik	e-Kriterium	ss. 12,8 drat 0,99 1,82	5044 3503 7222 e-16 7863
Schwarz-Krite rho	rium	123,9105 -0,496597		n-Quinn-Krite n-Watson-Stat		7637 8178

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

29

Gretl-Output: F-Test

	Koeffizie	ent Std	fehler	t-Quotient	p-Wert	
const	1000,45	225,	727	4,432	0,0004	***
Ausbildung	62,428	4 21,	8345	2,859	0,0114	**
Alter	12,3539	9 10,	6575	1,159	0,2634	
Dauer	-2,6203	34 14,	2970	-0,1833	0,8569	
Mittel d. abh.	Var.	1685,000	Stdabw	. d. abh. Var	. 375,	6048
Summe d. quad.	Res.	955691,7	Stdfehl	ler d. Regres	s. 244,	3987
R-Quadrat		0,643465	Korrig	iertes R-Quad	rat 0,57	76615
F(3, 16)		9,625466	P-Wert	(F)	0,00	0720

Modell 3: Lohn = $b_1 + b_2$ Ausb. + b_3 Alter + b_4 Dauer

N = 20 und K = 4 und Freiheitsgrade (df) = N-K = 16 Nullhypothese H_0 : $\beta_2 = \beta_3 = \beta_4 = 0$

F(K-1, N-K) = F(3,16) = 9.625

Regel: $F_e = 9.625 > F_c \rightarrow H_0$ verwerfen

Konklusion: Mindestens eine erklärende Variable ist

Normal t chi-Quadrat F binomial

Zähler-FG 3

Nenner-FG 16

rechtsseitige Wahrscheinlichkeit 0.05

F-Test und t-Test

- Achtung: Es reicht nicht zu überprüfen, ob alle Koeffizienten individuell signifikant von Null verschieden sind!
- Multikollinearität: Die erklärenden Variablen sind untereinander hoch korreliert
- Folge: Kein einziger Koeffizient ist signifikant von null verschieden, aber alle Koeffizienten sind gemeinsam signifikant von null verschieden!
- Konklusion: Die mit der F-Statistik getestete gemeinsame Nullhypothese $H_0: \beta_2 = \beta_3 = \cdots = \beta_k = 0$ darf nicht durch eine Reihe individueller t-Tests ersetzt werden!
- Grund: Die F-Statistik berücksichtigt die mögliche Korrelation zwischen den OLS-Schätzern β_2 , β_3 , . . . , β_k , während diese bei individuellen t-Tests in dieser Form unberücksichtigt bleibt.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

31

32

F-Test und R²

Die Teststatistik des F-Tests als Funktion des Bestimmheitsmasses:

$$F = \frac{ESS/(K-1)}{RSS/(N-K)} = \frac{R^2}{1-R^2} \cdot \frac{N-K}{K-1}$$

Grosser Wert von $R^2 \rightarrow grosser$ Wert von F

ANOVA Analyse = Varianzanalyse → schematische Schreibweise zur Berechnung des F-Tests.

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

F-Test in Matrixform

- Regression: $y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + ... + \beta_k x_{kt} + u_t$
- Nullhypothese H_0 : $\beta_2 = \beta_3 = ... = \beta_k = 0$
- Allgemeine Form H_0 : $R\beta = q$

$$\mathbf{R}\boldsymbol{\beta} = \mathbf{q} \iff \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} \begin{pmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \\ \vdots \\ \boldsymbol{\beta}_k \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

$$\mathbf{L} \times \mathbf{k} \qquad \mathbf{K} \times \mathbf{1}$$

$$\mathbf{L} = \mathbf{K} - \mathbf{1} = \mathbf{\# Linearkombinationen}$$

Nullhypothese H_0 : $\beta_2 + \beta_3 + ... + \beta_k = 1$ und $\beta_2 + 2\beta_3 = 0$

$$\mathbf{R}\boldsymbol{\beta} = \mathbf{q} \Leftrightarrow \begin{pmatrix} 0 & 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 & 2 & 0 & \cdots & 0 \end{pmatrix} \begin{pmatrix} \boldsymbol{\beta}_1 \\ \boldsymbol{\beta}_2 \\ \vdots \\ \boldsymbol{\beta}_k \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$2 \times \mathbf{K}$$

$$L = 2 \text{ Linearkombinationen}$$

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

33

Vergleich t-Test und F-Test

• Nullhypothese
$$H_0$$
: $R\beta = q$ (Lx1-Vektor)

$$F = \frac{(\mathbf{R}\mathbf{b} - \mathbf{q})' [\mathbf{R}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{R}']^{-1} (\mathbf{R}\mathbf{b} - \mathbf{q})/L}{\mathbf{e}'\mathbf{e}/(T - K)}$$

$$H_0$$
: $\mathbf{r'}\beta = \mathbf{c}$ (Skalar)

$$t = \frac{\mathbf{r'b} - c}{s_e \sqrt{\mathbf{r'(X'X)}^{-1}\mathbf{r}}}$$

- Aus dem Zähler dieses Ausdrucks wird deutlich, dass der F-Test analog wie ein t-Test verstanden werden kann, nämlich als ein Vergleich der auf Basis der beobachteten Stichprobendaten berechneten Werte Rb mit den in der Nullhypothese angegebenen Parameterwerten Rβ (=q).
- Ist die Differenz zwischen der Beobachtung Rb und der Nullhypothese Rβ zu gross, dann wird die Nullhypothese abgelehnt.
- Konklusion: Mit Hilfe der Matrix-Notation kann eine Analogie zwischen F-und t-Test gezeigt werden!

Restringiertes vs. unrestringiertes Modell

Zahlreiche Tests beruhen auf einem Vergleich zweier Modelle.

Modell ohne Restriktionen = unrestringiertes Modell: $y_i = \beta_1 + \beta_2 x_{2i} + \beta_3 x_{3i} + u_i$

Restriktion H_0 : $\beta_3 = 0$

- Modell mit Restriktion = restringiertes Modell: $y_i = \beta_1' + \beta_2' x_{2i} + u_i'$
- Wenn $\beta_3 = 0$ wahr $\rightarrow u_i = u'_i$

$$\beta_3 = 1$$

- Restriktion H_0 : $\beta_3 = 1$ $\beta_3 = 1$ Restringiertes Modell: $y_i = \beta_1'' + \beta_2'' x_{2i} + x_{3i} + u_i''$
- Geschätztes Modell: $(y_i x_{3i}) = b_1'' + b_2'' x_{2i} + e_i''$

$$\beta_3 = 1 - \beta_2$$

- Restriktion H₀: $\beta_2 + \beta_3 = 1$ Restringiertes Modell: $y_i = \beta_1^* + \beta_2^* x_{2i} + (1 \beta_2^*) x_3 + u_i^*$
- Geschätztes Modell: $(y_i x_{3i}) = b_1^* + b_2^* (x_{2i} x_{3i}) + e_i^*$

F-Statistik:
$$F = \frac{(RSS_r - RSS)/L}{RSS/(N-K)} \approx F_{(K-1,N-K)}$$

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

35

Restringiertes vs. unrestringiertes Modell

Unrestringiertes Modell:
$$y_t = \beta_1 + \beta_2 x_{2t} + \beta_3 x_{3t} + u_t$$
 (1)

Wenn Nullhypothese H_0 : $\beta_2 = \beta_3 = 0$ wahr ist:

Nullhypothesenmodell = Restringiertes Modell:
$$y_t = \beta_1 + u_t^0$$
 (2)

Schätzung: $e_t^0 = y_t - b_1$

OLS-Schätzung von (2) ⇔ Minimierung

$$S_{ee}^{0} = \sum_{t} (y_{t} - b_{1})^{2} = \sum_{t} (y_{t}^{2} + b_{1}^{2} - 2y_{t}b_{1}) = \sum_{t} y_{t}^{2} + Nb_{1}^{2} - 2b_{1} \sum_{t} y_{t}$$

$$dS_{ee}^{0}/db_{1} = 2Nb_{1} - 2\sum_{t} y_{t} = 0 \qquad \Rightarrow \qquad b_{1} = \overline{y}$$

$$e_t^0 = y_t - \overline{y}$$

$$S_{ee}^{0} = \sum e_{t}^{02} = \sum (y_{t} - \overline{y})^{2} = S_{yy} = TSS$$

$$F = \frac{\left(S_{ee}^{0} - S_{ee}\right)/L}{S_{ee}/(N-K)} = \frac{\left(TSS - RSS\right)}{RSS/(N-K)} \frac{\left(N - K\right)}{L} \approx F_{(L,N-K)}$$

L: Anzahl der formulierten Restriktionen

N-K: Anzahl der Freiheitsgrade

F-Test: US Pro-Kopf-Konsumausgaben

	Abhängige Var	iable: Konsum					
				t-Quotient	-		N = 15
	const	300,286	78,3176	3,834	0,0024	***	K = 3
	Einkommen	0,741981	0,0475337	15,61 2,696	2,46e-09	9 ***	
	T	8,04356	2,98355	2,696	0,0195	**	N - K = 12 = FG (df)
	Mittel d. abh			bw. d. abh. Va			
RSS	Summe d. quad	. Res. 197	6,855 Stdf	ehler d. Regre	ss. 12,8	83503	
	R-Quadrat	0,9	97619 Korr	igiertes R-Qua	drat 0,99	97222	_
	F(2, 12)			rt(F)		2e-16	
	Log-Likelihoo	d -57,	89317 Akai	ke-Kriterium	121,	,7863	H_0 : $\beta_2 = \beta_3 = 0 \rightarrow L = 2$
	ANOVA	Quadrat	summe	FG quad. N	littel		$F = \frac{\left(RSS_r - RSS\right)}{RSS} \frac{\left(N - K\right)}{L} =$
	Regression	8	328144	2	14072		RSS L
	Residuum	19	76,86	12 16	4,738		
	Total	8	330121	14 59	294,4		830121.3-19/6.86 12 _ 2512.52
	R^2 = 828144 /	830121 = 0,99	97619				$\frac{830'121.3 - 1'976.86}{1'976.86} \cdot \frac{12}{2} = 2513.52$
TSS	F(2, 12) = 414	072 / 164,738	= 2513,52 [p	-Wert 1,82e-01	.6]		
	Restringiertes			-			$F = \frac{(TSS_r - RSS)}{RSS} \frac{(N - K)}{L}$
	•						RSS L
	Kc	oeffizient S	tdfehler 	t-Quotient	p-Wert 		
	const	1942,33	62,8726	30,89	2,78e-014	***	$F = \frac{830'121.3 - 1'976.86}{1'976.86} \cdot \frac{12}{2} = 2513.52$
_	Mittel d. abh.	Var. 1942	.333 Stdab	w. d. abh. Var	. 243,5	044	1'976.86 2
RSS_r	Summe d. quad.						
	R-Quadrat	0,00	0000 Korri	giertes R-Quad	rat 0,000	0000	

Berner Fachhochschule | Haute école spécialisée bernoise | Bern University of Applied Sciences

F-Test für Gruppe von Parametern

- Nullhypothese H_0 : $\beta_3 = \beta_4 = 0$
- Anzahl Restriktionen: L = 2
- Modell 3: Lohn = $b_1 + b_2$ Ausb. + b_3 Alter + b_4 Dauer
- Restringiertes Modell mit $\beta_3 = \beta_4 = 0$:

	Koeffizient	Stdfehler	t-Quotient	p-Wert	
const	1354,66	94,2224	14,38	2,62e-011	***
Ausbildung	89,2817	19,8198	4,505	0,0003	***
Mittel d. abh.	Var. 168	5,000 Stdabw	. d. abh. Var	375,60	48
Summe d. quad.	Res. 12	60028 Stdfeh	ler d. Regress	3. 264,57	81
R-Quadrat	0,5	29928 Korrig	iertes R-Quadi	rat 0,5038	13
F(1, 18)	20,	29200 P-Wert	(F)	0,0002	74
	VC IDONESIA SSONOW	= 2,54757, p-W			
as Weglassen	von Variabl	len verbessert	e 1 von 3 In	formations	kriterie
$(RSS_r - R$	RSS) (N-K)	$=\frac{1'260'028-955}{955'691.}$	5'691.7 16	5.47	
r=——RSS	=	955'691	$\frac{1}{7} \cdot \frac{1}{2} = 2$.547	

- Intuition: Grosser Wert von F → Alter und Dauer leisten Erklärungsbeitrag
- $F_e < F_c(2, 16) = 3.63 \rightarrow H_0$ nicht verwerfen
- p-Wert \cong 10.9% > α = 5% \rightarrow H₀ nicht verwerfen
- Beide Variablen Alter und Firmenzugehörigkeit sind gemeinsam nicht signifikant

37