What is claimed is:

- 1. A one-part photographic developing concentrate comprising:
 - (i) a paraphenylene diamine color developing agent; and
 - (ii) a water-soluble organic solvent,

wherein a molar ratio of sodium ion to potassium ion is at least 3, and a molar ratio of sulfate ion to carbonate ion is at least 0.25.

- 2. The one-part photographic developing concentrate of claim 1, wherein the developing concentrate does not comprise any other cations than sodium ion.
- 3. The one-part photographic developing concentrate of claim 1, wherein a compound represented by Formulas (A-I) to (A-IV) is further contained:

Formula (A-I)

wherein A_{11} , A_{12} , A_{13} and A_{14} , which may be the same or different, each represents $-CH_2OH$, $-PO_3(M_6)$ or $-COOM_7$; M_6 and M_7 each represents a hydrogen atom, an ammonium group, an

alkaline metal atom or an organic ammonium group; X represents an alkylene group having 2 to 6 carbon atoms or - $(B_1O)_n-B_2-$; n represents an integer of 1 to 6; and B_1 and B_2 , which may be the same or different, each represents an alkylene group having 1 to 5 carbon atoms,

Formula (A-II)

$$A_{21}$$
 (CH₂)_{n1} $N-X_1-N$ (CH₂)_{n3} A_{23} A_{21} (CH₂)_{n4} A_{24}

Formula (A-III)

wherein A_1 , A_2 , A_3 and A_4 , which may be the same or different, each represents a hydrogen atom, a hydroxyl group, $-\text{COOM}_3$, $-\text{PO}_3(\text{M}_4)_2$, $-\text{CH}_2\text{COOM}_5$, $-\text{CH}_2\text{OH}$ or a lower alkyl group, however, at least one of A_1 to A_4 represents $-\text{COOM}_3$, $-\text{PO}_3(\text{M}_4)_2$, or $-\text{COOM}_5$; M_1 , M_2 , M_3 , M_4 , and M_5 each represents a hydrogen atom, an ammonium group, an alkaline metal atom or an organic ammonium group; and n7 represents an integer of 0 to 2,

Formula (A-IV)

$$\begin{array}{c} A_5H_2C \\ \hline A_6H_2C \\ \end{array} N(CH_3CH_2N)_nCH_2CH_2N \\ CH_2A_9 \\ \end{array} CH_2A_8$$

wherein, A_5 , A_6 , A_7 , A_8 and A_9 , which may be the same or different, each represents $-COOM_3$ or $-PO_3M_4M_5$; M_3 , M_4 and M_5 , which may be the same or different, each represents a hydrogen atom or an alkaline metal atom; and n represents an integer of 1 or 2.

4. The one-part photographic developing concentrate of claim 1, wherein the developing concentrate does not comprise a fluorescent whitening agent.

5. A method for processing a silver halide color photographic material, comprising the steps of:

imagewise irradiating the photographic material;

developing the irradiated photographic material in a

developing solution which is prepared by diluting a volume of

the developing concentrate of claim 1 with water having a

volume of at least 3 times of the volume of the developing

concentrate; and then

desilvering the developed photographic material.

- 6. The method for processing a silver halide color of photographic material of claim 5, wherein the developing solution is prepared by diluting the developing concentrate which does not comprise any other cations than sodium ion.
- 7. The method for processing a silver halide color of photographic material of claim 5, wherein the developing solution is prepared by diluting the developing concentrate containing a compound represented by Formulas (A-I) to (A-IV):

Formula (A-I)

wherein A_{11} , A_{12} , A_{13} and A_{14} , which may be the same or different, each represents $-CH_2OH$, $-PO_3(M_6)$ or $-COOM_7$; M_6 and M_7 each represents a hydrogen atom, an ammonium group, an alkaline metal atom or an organic ammonium group; X represents an alkylene group having 2 to 6 carbon atoms or $-(B_1O)_n-B_2-$; n represents an integer of 1 to 6; and B_1 and B_2 , which may be the same or different, each represents an alkylene group having 1 to 5 carbon atoms,

Formula (A-II)

$$A_{21}$$
 (CH₂)_{n1} $N-X_1-N$ (CH₂)_{n3} A_{23} (CH₂)_{n4} A_{24}

wherein A_{21} , A_{22} , A_{23} and A_{24} , which may be the same or different, each represents $-CH_2OH$, $-COOM^1$ or $-PO_3(M^2)_2$; M^1 and M^2 each represents a hydrogen atom, an ammonium group, an alkaline metal or an organic ammonium group; X_1 represents a straight or branched alkylene group having 2 to 6 carbon atoms, a saturated or unsaturated organic group which forms a ring, or $-(B_{11}O)_{n5}-B_{12}-$; n5 represents an integer of 1-6; B_{11} and B_{12} , which may be the same or different, each represents an alkylene group having 1-5 carbon atoms; and n1, n2, n3 and n4, which may be the same or different, each represents

an integer of not less than 1 and at least one of n1, n2, n3 and n4 is 2 or more,

Formula (A-III)

$$M_1OOC-CH_2$$
 $N \leftarrow \begin{pmatrix} A_3 & A_1 \\ C & n^7 \end{pmatrix}_{n7} \leftarrow \begin{pmatrix} A_1 & A_2 \\ C & A_4 & A_2 \end{pmatrix}$

wherein A_1 , A_2 , A_3 and A_4 , which may be the same or different, each represents a hydrogen atom, a hydroxyl group, $-\text{COOM}_3$, $-\text{PO}_3(\text{M}_4)_2$, $-\text{CH}_2\text{COOM}_5$, $-\text{CH}_2\text{OH}$ or a lower alkyl group, however, at least one of A_1 to A_4 represents $-\text{COOM}_3$, $-\text{PO}_3(\text{M}_4)_2$, or $-\text{COOM}_5$; M_1 , M_2 , M_3 , M_4 , and M_5 each represents a hydrogen atom, an ammonium group, an alkaline metal atom or an organic ammonium group; and n7 represents an integer of 0 to 2,

Formula (A-IV)

$$\begin{array}{c|c} A_5H_2C & CH_2A_7 \\ A_6H_2C & N(CH_3CH_2N)_nCH_2CH_2N & CH_2A_8 \\ \hline \\ CH_2A_9 & CH_2A_8 \\ \end{array}$$

wherein, A_5 , A_6 , A_7 , A_8 and A_9 , which may be the same or different, each represents $-COOM_3$ or $-PO_3M_4M_5$; M_3 , M_4 and M_5 , which may be the same or different, each represents a hydrogen atom or an alkaline metal atom; and n represents an integer of 1 or 2.

8. The method for processing a silver halide color of photographic material of claim 5, wherein the developing

solution is prepared by diluting the developing concentrate which does not comprise a fluorescent whitening agent.