COPRODUCTS IN ∞-LCCCS WITH SUBOBJECT CLASSIFIER

JONAS FREY AND NIMA RASEKH

ABSTRACT. Using a type theoretic argument, we show that every locally cartesian closed ∞ -category with a subobject classifier has disjoint finite coproducts.

Early axiomatizations of elementary toposes postulated finite colimits [Law70, Tie72], but it was soon realized [Mik72, Par74] that their existence follows from the other axioms, namely finite limits, cartesian closure, and the existence of a subobject classifier.

The present work is motivated by the question if an analogous reduction is possible for the recently proposed notion of elementary ∞ -toposes [Shu17, Ras18], and we give a partial positive answer by showing that locally cartesian closed ∞ -categories (∞ -LCCCs) with a subobject classifier have disjoint finite coproducts. The proof is outlined in the following.

For readability, the use of ∞ -categories in this abstract is informal and 'model-independent'. We also employ type theory informally as an 'internal language' of ∞ -LCCCs, but our use of type theory should be viewed only as a heuristic, as the arguments are small enough to be translated into category theoretic arguments 'by hand'.

The tripos of subobjects. A *subobject* of an object A in an ∞ -category \mathcal{C} is an embedding ((-1)-truncated map) $f: U \hookrightarrow A$. The subobjects of A form a preorder (i.e. an ∞ -category in which all homs are propositions) $\mathsf{Sub}(A)$ and if \mathcal{C} has pullbacks then the assignment $A \mapsto \mathsf{Sub}(A)$ is contravariant in A, giving rise to a functor

$$\mathsf{Sub}: \mathfrak{C}^\mathsf{op} \to \mathbf{Ord}.$$

A subobject classifier (SOC) is an object Ω representing the presheaf of underlying types

$$\mathbb{C}^{\mathsf{op}} \xrightarrow{\mathsf{Sub}} \mathbf{Ord} \xrightarrow{\mathsf{Core}} \mathbb{S}.$$

Since the core of any preorder is 0-truncated, we conclude that Ω is 0-truncated. We denote the universal element of the representation by $(\mathsf{tt}:V\hookrightarrow\Omega)\in\mathsf{Sub}(\Omega)$; as in the case of 1-toposes one can show that its domain V is terminal. The subobject functor factors through the homotopy category of $\mathcal C$

$$\overset{\mathfrak{C}^{\mathsf{op}} \longrightarrow \mathsf{Sub}}{\underset{\mathsf{Sub}_0}{\longleftarrow}} \mathbf{Ord}$$

and if C is locally cartesian closed and has a SOC, then it is straightforward to show that:

Lemma 1. Sub₀ is a tripos [HJP80]. In particular the preorders Sub(A) then have finite joins which are constructed from Heyting implication and the SOC using the standard encodings in 2nd order logic¹.

The initial object. The existence of initial objects in ∞ -LCCCs with SOC is a consequence of the following lemma.

Lemma 2. The following are equivalent for an object I of an ∞ -LCCC \mathfrak{C} .

Proof. It is easy to see that both 1 and 2 imply 3. Conversely, 1 and 2 follow from 3 by the derivations

$$\frac{i: I \vdash \text{isContr}(A)}{\vdash \text{isContr}(\Pi \ i: I . A)}$$
$$\frac{i: I \vdash \text{isContr}(\Sigma a . f \ a = i)}{A^I \text{ is contractible}}$$
$$\frac{i: I \vdash \text{isContr}(\Sigma a . f \ a = i)}{f: A \to I \text{ is an equivalence}}$$

because the contractibility statements are propositions in context i:I.

Corollary 3. Any ∞ -LCCC with SOC has an initial object.

¹Note that a subobject classifier in an LCCC is always an 'impredicative universe', since subobjects are closed under arbitary Π 's.

Proof. Let $0 \hookrightarrow 1$ be the least subobject of 1 (which exists by Lemma 1). Then 0 can't have any non-trivial subobjects, and therefore is initial by Lemma 2.

Binary coproducts. Assume that \mathcal{C} is an ∞ -LCCC with SOC $\mathsf{tt}: 1 \hookrightarrow \Omega$. For every embedding $m: U \hookrightarrow V$ in \mathcal{C} , the adjunction $m^* \dashv \Pi_m: \mathcal{C}/U \to \mathcal{C}/V$ is a reflection. In particular, given $A \in \mathcal{C}$,

we get a pullback square $A \to \overline{A}$ by setting $(\overline{A} \to \Omega) = \Pi_{\mathsf{tt}}(A \to 1)^2$. Now let $A \to \Omega$ be the $A \to \Omega$ by setting $A \to \Omega$ by setting A

classifying square of the least subobject $0 \hookrightarrow 1$ of 1. Then the classifying map ff is an embedding since all points of 0-types are. By the Beck-Chevalley condition, chasing $(A \to 1)$ around this square using pullback and pushforward yields a commutative cube

$$\begin{array}{c|c} I \longrightarrow J \\ A \stackrel{\swarrow}{\longrightarrow} \overline{A} \stackrel{\swarrow}{\longrightarrow} \\ \downarrow 0 \longrightarrow 1 \\ 1 \stackrel{\swarrow}{\longleftarrow} \Omega \end{array}$$

where all sides are pullbacks, $I \to 0$ is an equivalence by Lemma 2, and $J \to 1$ is an equivalence since

of the cube: we have embedded A into a larger object with a disjoint point. Given a second object B, we form the transposed product of the respective squares

$$\left(\begin{array}{cc} 0 & \hookrightarrow & 1 \\ \updownarrow & & \updownarrow \\ A & \hookrightarrow & \overline{A} \end{array} \right) \times \left(\begin{array}{cc} 0 & \hookrightarrow & B \\ \updownarrow & & \updownarrow \\ 1 & \hookrightarrow & \overline{B} \end{array} \right) \ = \ \left(\begin{array}{cc} 0 & \hookrightarrow & B \\ \updownarrow & & \updownarrow \\ A & \hookrightarrow & \overline{A} \times \overline{B} \end{array} \right)$$

to obtain an object that embeds A and B disjointly. Forming the join of A and B in $\overline{A} \times \overline{B}$ yields a cospan $A \stackrel{i}{\hookrightarrow} C \stackrel{j}{\hookleftarrow} B$ such that $A \wedge B = \bot$ and $A \vee B = \top$ in $\mathsf{Sub}(C)$. It remains to show the following:

Lemma 4. Let $A \stackrel{i}{\hookrightarrow} C \stackrel{j}{\hookleftarrow} B$ be a cospan of embeddings in an ∞ -LCCC, such that $A \wedge B = \bot$ and $A \vee B = \top$ in $\mathsf{Sub}(C)$. Then i and j exhibit C as a coproduct of A and B.

Proof. Given another cospan $A \stackrel{f}{\hookrightarrow} X \stackrel{g}{\hookleftarrow} B$ it suffices to show that the object described by the formula

$$\Sigma(h:C\to X)$$
. $(h\circ i=f)\times (h\circ j=g)$

is contractible. This is provable type theoretically after rewriting the formula as

$$\prod c \Sigma x \cdot (\prod a \cdot c = i a \rightarrow x = f a) \times (\prod b \cdot c = j b \rightarrow x = g b)$$

using the type theoretic axiom of choice.

References

- [HJP80] J.M.E. Hyland, P.T. Johnstone, and A.M. Pitts, Tripos theory, Math. Proc. Cambridge Philos. Soc. 88 (1980), no. 2, 205–231.
- [Joh02] P.T. Johnstone, Sketches of an elephant: a topos theory compendium. Vol. 1, Oxford Logic Guides, vol. 43, The Clarendon Press Oxford University Press, New York, 2002. MR MR1953060 (2003k:18005)
- [Law70] F.W. Lawvere, Quantifiers and sheaves, Actes du congres international des mathematiciens, Nice, vol. 1, 1970, pp. 329–334.
- [Mik72] C.J. Mikkelsen, Finite colimits in toposes, Talk at the conference on category theory at Oberwolfach, 1972.
- [Par74] R. Paré, Colimits in topoi, Bulletin of the American Mathematical Society 80 (1974), no. 3, 556–561.
- [Ras18] N. Rasekh, A theory of elementary higher toposes, PhD thesis (2018).
- [Shu17] M. Shulman, Elementary (∞, 1)-topoi, The n-Category Café, 2017, https://golem.ph.utexas.edu/category/2017/04/elementary_1topoi.html.
- [Tie72] M. Tierney, Sheaf theory and the continuum hypothesis, Toposes, algebraic geometry and logic, Springer, 1972.

²In classical topos theory, the object \overline{A} is known as partial map representer, since maps $X \to \overline{A}$ correspond to partial maps from X to A [Joh02, A2.4]. However, whereas in 1-toposes \overline{A} is a subobject of Ω^A (namely the object of 'subsingletons'), in the higher setting the latter is always a 0-type whereas \overline{A} embeds A.