Recall our running example from previous classes:1

- ullet We're interested in the mean price of AirBNBs in our city (μ)
- ullet We can't observe them all, so we take the mean price of a sample of 200 $(\hat{\mu})$

 $^{^1\}mathrm{Taken}$ from Chapter 10 of "Data Science: A First Introduction" by Timbers, Campbell, and Lee <code>https://ubc-dsci.github.io/introduction-to-datascience/</code>

Recall our running example from previous classes:1

- ullet We're interested in the mean price of AirBNBs in our city (μ)
- ullet We can't observe them all, so we take the mean price of a sample of 200 $(\hat{\mu})$

 $^{^1\}mathrm{Taken}$ from Chapter 10 of "Data Science: A First Introduction" by Timbers, Campbell, and Lee <code>https://ubc-dsci.github.io/introduction-to-datascience/</code>

Recall our running example from previous classes:1

- ullet We're interested in the mean price of AirBNBs in our city (μ)
- ullet We can't observe them all, so we take the mean price of a sample of 200 $(\hat{\mu})$

 $^{^1\}mathrm{Taken}$ from Chapter 10 of "Data Science: A First Introduction" by Timbers, Campbell, and Lee <code>https://ubc-dsci.github.io/introduction-to-datascience/</code>

Instead of a "point estimate" $\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n ...$ estimate an interval $(\hat{\mu}_{lower}, \hat{\mu}_{upper})$

2

Instead of a "point estimate" $\hat{\mu} = \frac{1}{N} \sum_{n=1}^{N} x_n ...$ estimate an interval $(\hat{\mu}_{lower}, \hat{\mu}_{upper})$

2