$parse-numbers = false \ per-mode = symbol$

Analyse II

Arthur Herbette Prof. Lachowska Anna

27 février 2025

Chapitre 1

Introduction

Le but de se document est d'y faire un résumé qui se trouve entre les notes de Joachim Favre (Dont j'ai utilisé le template) et Les résumé des théorèmes disponible sur moodle. Je vais essayer de me tenir a environ une à 2 pages par cours

Chapitre 2

Equations différentielles ordinaires

2025-02-17 — Lecture 1 : Equa Diff

2.1 definition

Définition 1 Une équation différentielle ordinaire est une expression

$$E(x, y, y', \dots, y^{(n)}) = 0$$

où E est une expression fonctionnelle, $n \in \mathbb{N}_0$, et y = y(x) est une fonction inconnue de xOn cherche un intervalle ouvert $I \subset \mathbb{R}$ et une fonction $y : I \to \mathbb{R}$ de classe C^n telle que l'équation donnée est satisfaite $\forall x \in I$.

Equation à variable séparées

Une équation à variables séparées est une équation du type $f(y) \cdot y' = g(x)$ est une **EDVS** où :

- $f: I \to \mathbb{R}$ est une fonction continue sur $I \subset \mathbb{R}$
- $g: J \to \mathbb{R}$ est une fonction continue sur $J \subset \mathbb{R}$

Une fonction $y:J'\subset J\to\mathbb{R}$ de classe C' satisfaisant l'équation $f(y)\cdot y'=g(x)$ est une solution

 $Remarque\\personnelle$

Ce type d'équation se résoudre très rapidement car on peut transformer le y' en $\frac{dy}{dx}$ et "mettre le dx de l'autre côté" :

$$f(y) \cdot \frac{dy}{dx} = g(x) \implies \int f(y)dy = \int g(x)dx$$

Et il suffit donc t'intégrer les deux côtés et le tour est joué.

Terminologie

Soit $E(x, y, ..., y^{(n)}) = 0$ (*) une équation différentielle (ED) :

• **Def**: un nombre naturel $n \in \mathbb{N}_+$ est **l'ordre** de l'équation (*) si n est l'ordre maximal de dérivée de y(x) dans l'équation.

- **Def**: Si (*) est de la forme $\alpha_0(x)y + \alpha_1(x)y' + \alpha_2(x)y'' + \cdots + \alpha_n(x)y^{(n)} = b(x)$ alors l'équation est dire **linéaire** où $\alpha_i(x)$, b(x) dont des fonctions continues
- **Def** Si l'expression (*) ne contient pas de x l'équation (*) est dire autonome

Problème de Cauchy

Définition 2 Résoude Le problème de Vauchy (ED avec des conditions initiales) pour l'équation $E(x, y, y', ..., y^{(n)}) = 0$ c'est de trouver l'intervalle ouvert $I \subset \mathbb{R}$ et une fonction $y: I \to \mathbb{R}$ de classe $C^n(I)$, telle que $E(x, y, ..., y^{(n)}) = 0$ sur I et $y(x_0) = b_0, y(x) = B, ..., y'(x_2) = ...$

Le nombre des conditions initiales depend du type de l'ED

C'est ce qui se passe en physique lorsqu'on a une forme et que l'on chercher la position au court du temps :

$$ma = F$$

$$a = \frac{F}{m}$$

$$\frac{d^2x}{dt^2} = \frac{F}{m}$$

$$x = \frac{1}{2}\frac{F}{m}t^2 + c_1t + c_0$$

Et le but est de trouver ses constantes qui sont les conditions initiales.

Définition 3 Une solution d'un problème de Cauchy est **maximale** si elle est définie sur le plus grand intervalle possible.

2.2 Existence et unicit d'une solution de EDVS

Théorème

Théorème 1 Soit

- $f: I \to \mathbb{R}$ une fonction continue telle que $f(y) \neq 0 \ \forall y \in I$
- $g: J \to \mathbb{R}$ une fonction continue. Alors pour tout couple $(x_0 \in J, b_0 \in I)$, l'équation $f(y) \cdot y' = g(x)(**)$ admet une solution $y: J' \subset J \to I$ vérifiant la condition initiale $y(x_0) = b_0$

Si $y_1: J_1 \to I$ et $y_2: J_2 \to I$ sont deux solutions telles que $y_1(x_0) = y_2(x_0) = b_0$, alors $y_1(x) = y_2(x)$ pour tout $x \in J_1 \cap J_2$ (Demonstration la prochaine fois

Chapitre 3

Méthode de démonstration, Raisonnement mathématique

Introduction

Définition 4 Une proposition est un énoncé qui peut être vrai ou faux.

Définition 5 Une **démonstration** est une suite d'implication logique qui sert à dériver la proposition en question à partir des axiomes (propositions admises comme vraies) et des propositions préalablement obtenue

3.1 Méthode de démonstration

Méthode 1

Démonstration direct :

 $\underbrace{P}_{\text{condition donn\'ee}} \implies \text{implications logiques/axiomes/propositions connues} \implies \underbrace{Q}_{\text{condition donn\'ee}}$

 $Remarque \\ personnelle$

C'est pas vraiment très claire comme ça mais en gros ça veut juste dire que pour prouver quelque chose on y va en mode brute force (tout les nombres entiers sont des nombres réels (propositions connues) et par exemple est ce que 23 est un réel?)

Raisonnement par contraposée

Comme vu en AICC on sait que $P \implies Q \equiv \neg P \implies \neg Q$

3.1.1 Théorème Existence et unicité d'une solution de EDVS

Théorème

Théorème 2 Soit $f:I\to\mathbb{R}$ une fonction continue telle que $f(y)\neq 0$ $\forall y\in I$

 $g: J \to \mathbb{R}$ une fonction continue. Alors pour tout coupe $(x_0 \in J, b_0 \in I)$, l'équation

$$f(y) \cdot y'(x) = g(x)$$

admet une solution $y: J' \subset J \to I$ vérifiant la condition initiale $y(x_0) = b_0$.

 $Si\ y_1: J_1 \to I\ et\ y_2: J_2 \to I\ sont\ deux\ solutions\ telles\ que\ y_1(x_0) = y_2(x_0) = b_0,\ alors\ y_1(x) = y_2(x)\ pour\ tout\ x \in J_1 \cap J_2$

Démonstration

Idée :
$$\int f(y)dy = \int g(x)dx \implies F(y) = G(x) \implies y(x) = F^{-1}(G(x))$$

Le reste de la preuve se trouve sur les pdf de Joachim Favre.

Résumé

Résumé 1 EDVS : $f(y) \cdot y' = g(x)$ où $f: I \to \mathbb{R}$ continue (respectivement J pour g),

Pour résoudre $\int f(y)dy = \int g(x)dx$ où $\int f(y)dy$ est une primitive (sans constante) et $\int g(x)dx$ est une primitive générale (avec une constante)

Exemple

Exemple 1

 $\frac{y'(x)}{y^2(x)}=1$ EDVS : $\frac{1}{x^2}$ est contiue sur \mathbb{R}_+^* et \mathbb{R}_-^* On a aussi que g(x) est continue sur $\mathbb{R}.$ on fait donc :

$$\int \frac{1}{y^2} dy = \int dx \implies -\frac{1}{y} = x + C$$
$$y = -\frac{1}{x+C} \ \forall C \in \mathbb{R}$$

la solution générale sur] $-\infty$, -C[et] -C, $\infty[$. Condition initiale $y(0)=b_0\in\mathbb{R}^*$ \Longrightarrow $y(0)=-\frac{1}{C}=b_0$ \Longrightarrow $C=-\frac{1}{b_0}$

- Si $b_0 > 0 \implies \frac{1}{b_0} > 0 \implies y(x) = -\frac{1}{x \frac{1}{b_0}}$ sur $]-\infty, \frac{1}{b_0}[$ la solution particulière
- Et vis versa pour $b_0 < 0$

3.1.2 Solution maximale

Solution maximale

Définition 6 Une solution solution maximale de l'EDVS avec la condition initiale $y(x_0) = b_0$, $x \in J$, $b_0 \in I$ est une fonction y(x) de classe C^1 satisfaisant l'équation, la condition initiale et qui est définie sur le plus grand intervalle possible.

Le théorème sur EDVS dit que si $f(y) \neq 0$ sur I, alors il existe une unique solution maximale. Toute solution avec la même condition initiale est une restriction de la solution maximale

Exemple 2

L'équation différentielle $2yy' = 4x^3$ avec la condition initiale y(0) = 0 possède :

- 1. Une seul solution sur \mathbb{R}
- 2. 2 solutions sur \mathbb{R}
- 3. 3 solutions sur \mathbb{R}
- 4. 4 solutions sur \mathbb{R}

En premier lieu il faudra résoudre :

$$\int 2y dy = \int 4x^3 dx$$
$$y^2 = x^4 + C \ \forall C \in \mathbb{R}$$
$$y = \pm \sqrt{x^4 + C}$$
$$y(0) = \pm \sqrt{C'} = 0 \implies C' = 0$$
$$y(x) = \pm \sqrt{x^4} = \pm x^2$$

On voit ici qu'il y a 4 solutions à cause des \pm qui se rajoute entre eux :

- $y(x) = x^2, x \in \mathbb{R}$
- $y(x) = -x^2, x \in \mathbb{R}$
- $y(x) = \begin{cases} x^2, x \le 0 \\ -x^2, x > 0 \end{cases}$

3.2 Equation différentielle linéaire du premier ordre (EDL1)

Definition

Définition 7 Soit $I \subset \mathbb{R}$ un intervalle ouvert. Une équation de la forme :

$$y'(x) + p(x)y(x) = f(x), \text{ où } p, f: I \to \mathbb{R} \text{ sont continues}$$

est une équation différentielle linéaire du premier ordre (EDL1)

Une solution est une fonction $y: I \to \mathbb{R}$ de classe C^1 satisfaisant l'équation.

Comment résoudre une EDL1

Considérant l'équation y'(x) + p(x)y(x) = 0

Elle s'appelle l'équation homogène associée à l'EDL1 y' + py = f qui nous amène :

$$\begin{cases} y(x) = 0 \ \forall x \in I \\ \frac{y'(x)}{y(x)} = -p(x) \ EDVS \implies \int \frac{dy}{y} = -\int p(x) dx \end{cases}$$

Ce qui implique que $\ln |y| = -P(x) + C_1$ où P(x) est une primitive de p(x), $C_1 \in \mathbb{R}$, ensuite, $|y| = e^{-P(x) + C_1} = e^{C_1} e^{-P(x)} \implies y(x) = \pm C_2 e^{-P(x)}, C_2 \in \mathbb{R}^*$.

Mais on a aussi y(x) = 0 sur I ce qui implique que

$$y(x) = Ce^{-P(x)}$$

où $C \in \mathbb{R}, \ x \in I$ est la solution générale de l'équation homogène associée y' + py = 0 sur I

3.2.1 Principe de superposition de solutions

Principe

Soit $I \subset \mathbb{R}$ ouvert, $p, f_1, f_2 : I \to \mathbb{R}$ fonctions continues Supposons que $v_1 : I \to \mathbb{R}$ de classe C' est une solution

$$y' + p(x)y(x) = 0$$

Méthode de la variation de constante On cherche une solution particulière de $y'(x)+p(x)y(x)=f(x):p,f:I\underset{\text{continue}}{\longrightarrow}\mathbb{R}$

sout la forme:

Ansatz:

$$v(x) = C(x)e^{-P(x)}$$

où P(x) est une primitive de p(x) sur I

Si v(x) est une solution $\implies v'(x) + p(x)v(x) = f(x)$ ce qui implique que

$$C'e^{-P(x)} + C(x)(-e^{-P(x)}) \cdot p(x) + p(x)Ce^{-P(x)} = f(x)$$

Ce qui revient a dire

$$C'(x) = f(x)e^{P(x)} \implies c(x) = \int f(x)e^{P(x)}dx$$

une solution particulière de l'équation y'(x) + p(x)y(x) = f(x) est $v(x) = \left(\int f(x)e^{P(x)}dx\right)\cdot e^{-P(x)}$ où P(x) est une primitive de p(x) sur I

3.2.2 Théorème à savoir pour l'examen

Proposition

Soit $p_1, f: I \to \mathbb{R}$ fonctions continues. Supposons que $v_0: I \to \mathbb{R}$ est une solution partiulière de l'équation y'(x) + p(x)y(x) = f(x)Alors la solution générale de cette équation est :

 $v(x) = v_0(x) + Ce^{-P(x)}$, pour tout $C \in \mathbb{R}$, où P(x) est une primitive de p(x) sur I

Démonstration

(1)

Soit $v_1(x)$ une solution de y'(x) + p(x)y(x) = f(x). On va démontrer qu'il existe $C \in \mathbb{R}$ tel que $v_1(x) = v_0(x) + Ce^{-P(x)}$, où $v_0(x)$ est une solution de y'(x) + p(x)y(x) = f(x).

Ce qui est équivalent à $\exists C \in \mathbb{R} : v_1(x) - v_0(x) = Ce^{-P(x)}$

(2)

Par le principe de superposition des solutions, la fonction $v_1(x) - v_0(x)$ est une solution de l'équation y'(x) + p(x)y(x) = f(x) est $v(x) = v_0(x) + Ce^{-P(x)}$ où $C \in \mathbb{R}, x \in I$

(3)

y'(x) + p(x)y(x) = 0 est EDVS \implies la solution générale de cette équation est $v(x) = Ce^{-P(x)}$, $C \in \mathbb{R}$ et P(x) est une primitive de p(x) sur I.

(4)

Donc, par la définition v(x) est la solution générale.

2025-02-24 — Lecture 3 : EDL1 Et Méthode de démonstration

3.2.3 Rappel: Equation différentielles linéaires du premier ordre (EDL1)

Rappel

$$y' + p(x)y = f(x)$$

Où $p,f:I\to\mathbb{R}$ fonctions continues. Alors la solution générale est donnée par la formule :

$$y(x) = y_{hom}(x) + y_{part}(x)$$

Où $y_{hom}(x)$ est la solution générale de l'équation générale de l'équation homogène associée : y' + p(x)y = 0 et $y_{part}(x)$ est une solution particulière de l'équation donnée : y' + p(x)y = f(x).

- $y_{hom}(x) = Ce^{-P(x)}$, où $P(x) = \int p(x)dx$ est une primitive (sans constante), $C \in \mathbb{R}$.
- $y_{part}(x) = \left(\int f(x)e^{P(x)}dx\right)e^{-P(x)}$

Théorème 3 La solution générale de l'EDL1 :

$$y(x) = Ce^{-P(x)} + \left(\int f(x)e^{P(x)}dx\right)e^{-P(x)}$$

Attention avec le signe moins qui se trouve dans la solution homogène mais pas dans la solution particulière.

Ex1

$$y' - \underbrace{\frac{2}{x}}_{p(x)} y = \underbrace{x^3 + 1}_{f(x)} \text{ avec } p:] - \infty, o[\text{ et }]0, \infty[\to \mathbb{R} \text{ continue},$$

 $f: \mathbb{R} \to R$ est continue.

$$P(x) = \int -\frac{2}{x} = -2 \ln|x| \implies P(x) = -2 \ln|x| \text{ avec } x \neq 0$$

On a donc comme solution homogène :

$$y_{hom}(x) = Ce^{-P(x)} = Ce^{--2\ln|x|} = Ce^{--\ln|x|^2} = Ce^{--\ln x^2} = Cx^2$$

Sur
$$]-\infty,0[\cap]0,\infty[$$

On cherche maintenant une solution particulière de l'équation complète :

$$y' + \frac{-2}{x}y = x^3 + 1$$

On utilise la méthode de la variation des constantes :

$$\int f(x)e^{P(x)}dx = \int (x^3 + 1)e^{-\ln x^2}dx$$

$$= \int \frac{x^3 + 1}{x^2}dx$$

$$= \int (x + \frac{1}{x^2})dx$$

$$= \frac{1}{2}x^2 - \frac{1}{x} \text{ pas de constante}$$

Ce qui implique donc que :

$$y_{part}(x) = (\frac{1}{2}x^2 - \frac{1}{x})e^{-(-\ln x^2)} = (\frac{1}{2}x^2 - \frac{1}{x})x^2 = \frac{1}{2}x^4 - x$$

Verification:

$$y'_{part}(x) - \frac{2}{x}y_{part} = 2x^3 - 1 - \frac{2}{x}(\frac{1}{2}x^4 - x)$$
$$= 2x^3 - 1 - x^3 + 2 = x^3 + 1$$

Solution générale de l'équation originale :

$$y(x) = Cx^2 + \frac{1}{2}x^4 - x$$

Sur $]-\infty,0[$ et sur $]0,\infty[$

Si on mulitplie par x l'équation de base :

$$xy' - 2y = x^4 + x$$

Alors, la solution va sur \mathbb{R}

$$\implies y(x) = Cx^2 + \frac{1}{2}x^4 - x \text{ sur } \mathbb{R}$$

Ex2

 $y' - (\tan x)y = \cos x \tan(x)$ n'est pas continue en $x = (2k+1)\frac{\pi}{2}, k \in \mathbb{Z}$. Puisque $0 \in]-\frac{\pi}{2}, \frac{\pi}{2}[\implies]$ on considère l'équation sur $]-\frac{\pi}{2}, \frac{\pi}{2}[, p, f:]-\frac{\pi}{2}, \frac{\pi}{2}[\rightarrow]\mathbb{R}$ continues.

1. Solution générale de l'équation homogène associée.

$$y' + (-\tan x)y = 0$$

$$P(x) = \int (-\tan x)dx = -\int \frac{\sin x}{\cos x}$$

$$= \int \frac{d(\cos x)}{\cos x} = \ln|\cos x|$$

$$\implies P(x) = \ln(\cos x) \text{ sur }] - \frac{\pi}{2}, \frac{\pi}{2}[$$

On a donc:

$$y_{hom}(x) = Ce^{-P(x)} = Ce^{-\ln\cos x} = \frac{C}{\cos x}, x \in]-\frac{\pi}{2}, \frac{\pi}{2}[, C \in \mathbb{R}]$$

Vérification:

$$-\frac{C}{\cos^2 x} \cdot (-\sin x) - \tan x \cdot \frac{C}{\cos x} = C \frac{\sin x}{\cos^2 x} - C \frac{\sin x}{\cos^2 x} = 0$$

2. Solution particulière de l'équation complète :

$$y' - \tan xy = \cos x$$

Selon la même méthode :

$$\int f(x)e^{P(x)}dx = \int \cos x e^{\ln \cos x} dx = \int \cos^2 x \, dx$$
$$= \int \frac{1}{2}(1 + \cos 2x) dx$$
$$= \frac{1}{2}x + \frac{1}{4}\sin 2x$$

On a donc:

$$y_{part}(x) = (\frac{1}{2}x + \frac{1}{4}\sin 2x) \cdot e^{-P(x)}$$

$$= (\frac{1}{2}x + \frac{1}{4}\sin 2x) \frac{1}{\cos x}$$

$$= \frac{1}{2}\frac{x}{\cos x} + \frac{1}{4}\frac{2\sin x \cos x}{\cos x}$$

$$y_{part}(x) = \frac{1}{2}\frac{x}{\cos x} + \frac{1}{2}\sin x, \ x \in] - \frac{\pi}{2}, \frac{\pi}{2}[$$

3.2.4 Application de EDVS (EDL1): Croissance et decroissance exponentielle

Exemple

Soit
$$y = y(t)$$
 tel que $y' = ky, k \in \mathbb{R}$; $y = 0$ est une solution EDVS: $\int \frac{dy}{y} = \int kdt \implies \ln|y| = kt + C_1 \implies |y| = e^{C_1}e'kt \implies y(t) = Ce^{kt}$

Condition initiales:

- $y(0) = C = y_0 > 0$
- $y(t) = y_0 e^{kt}$

La solution maximale satisfaisant la condition initiale $y(0) = y_0$ est :

$$y(t) = y_0 e^{kt}$$

3.3 Méthodes de démonstration

Méthode 3 : Raisonnement par disjonction des cas

Définition 8 Soient P,Q deux propositions. Pour montrer que $P \implies Q$ on sépare l'hypothèse de P de départ en différent cas possibles et on montre que l'implication est vraie dans chacun des cas. Il est très important de considérer tous les cas possibles

Ex1 Pour tout
$$x,y\in\mathbb{R}$$
 on a :
$$||x|-|y||\leq ||x-|$$
 1.
$$|x|\geq |y|\Longrightarrow$$

$$||x|-|y||=|x|-|y|$$

$$=|x-y+y|-|y|$$

$$\stackrel{\Delta}{\leq}|x-y|+|y|-|y|=|x-y|$$

2.
$$|x| < |y| \Longrightarrow$$

$$||x| - |y|| = -|x| + |y|$$

$$= -|x| + |y - x + x|$$

$$\stackrel{\triangle}{\leq} -|x| + |y - x| + |x| = |y - x|$$

$$= |x - y|$$

Ex2 Pour tout $n \in \mathbb{Z}$, $2n^2 + n + 1$ n'est pas divisible par 3. 3 Cas :

1.
$$n \equiv 0 \mod 3 \iff n = 3k, k \in \mathbb{Z}$$

$$2n^2 + n + 1 = 2(3k)^2 + (3k) + 1 \equiv 1 \mod 3$$

2.
$$n \equiv 1 \mod 3 \iff n = 3k + 1, \ k \in \mathbb{Z}$$

 $\implies 2n^2 + n + 1 = 2(3k + 1)^2 + (3k + 1) + 1 \equiv 2 + 1 + 1 \equiv 1 \mod 3$

3.
$$n \equiv 2 \mod 3, n = 3k + 2, k \in \mathbb{Z}$$

$$2n^2 + n + 1 = 2(3k + 2)^2 + (3k + 2) + 1 \equiv 8 + 2 + 1 \equiv 2 \mod 3$$

Finalement, $2n^2 + n + 1$ n'est pas divisible par $3 \forall n \in \mathbb{Z}$.

Méthode 4 : Comment démontrer les propositions de la forme $P \iff Q$ Deux méthode existent :

- 1. $P \implies Q \to P$
- 2. Suite d'équivalences : $P \iff R_1 \iff R_2 \iff \cdots \iff Q$

Pour la deuxième méthodes, il faut vérifier que chaque implication est une **équivalence**.

Ex3 Soit $a, b \in \mathbb{N}$:

- $P: \{ab+1=c^2 \text{ pour un nombre naturel } c\}$
- $Q: \{a = b \pm 2\}$

Proposition $P \iff Q$

Démonstration

$$\underbrace{ab+1=c^2}_{P} \iff ab=c^2-1 \iff ab$$

$$= (c+1)(c-1) \iff \begin{cases} a = c-1 \\ b = c+1 \\ a = c+1 \\ b = c-1 \end{cases}$$

Néanmoins, Contre exemple : a=3, b=8 on a que $24+1=25=5^2=c^2,\, P$ est vrai, Q est faux

Proposition qui est vraie : $Q \implies P$ Soient $a, b \in \mathbb{N}$: $a = b \pm 2$,

Alors
$$ab+1=c^2, c\in\mathbb{N}$$

Démonstration

$$a=b\pm 2 \implies ab+1=b(b\pm 2)+1$$

$$=b^2\pm 2b+1$$

$$=(b\pm 1)^2=c^2$$

$$Ex4$$
Soient $z=\rho\underbrace{e^{i\varphi}}_{\rho>0}\in\mathbb{C}^*, P:\{z^2\in\mathbb{R}^*\}, Q:\{\varphi=\frac{\pi k}{2}, k\in\mathbb{Z}\}$
On cherche ici à savoir la relation entre $P: Q$

$$\mathbf{Démonstration}\ Q\implies P:$$
Soit $z=\rho e^{i\varphi}, \varphi=\frac{\pi}{2}k\implies z^2=\rho^2 e^{2i\varphi}=\rho^2(-1)^k\in\mathbb{R}^*.$

$$\mathbf{Démonstration}\ P\implies Q$$
Soit $z=\rho e^{i\varphi}, \rho>0\implies z^2=\rho^2 e^{2i\varphi}$

2025-02-26 — Lecture 4 : EDL2

3.4 Equation différentielle du second ordre

Définition

Définition 9 Soit I un intervalle ouvert. On appelle équation différentielle linéaire de second ordre une équation de la forme :

$$y''(x) + p(x)y'(x) + q(x)y(x) = f(x)$$

où $p,q,f:I\to\mathbb{R}$ sont des fonctions continues

Définition 10 Une équation de la forme

$$y''(x) + p(x)y'(x) + q(x)y(x) = 0$$

est dire EDL2 homogène.

On cherche une solution de cette équation de classe \mathbb{C}^2

Ex1
$$y'' = 5 \implies y' = 5x + C, x \in \mathbb{R}, \forall C, \in \mathbb{R}$$
 Ce qui implique
$$y(x) = \frac{5}{2}x^2 + C_1x + C_2 \ \forall x \in \mathbb{R}, \ \forall C_1, C_2, \in \mathbb{R}$$

EDL2 homogène à coefficients constants

$$y''(x) + py'(x) + qy(x) = 0, \quad p, q \in \mathbb{R}$$

y''(x) - (a+b)y'(x) + aby(x) = 0, où a, b sont des racines de l'équation $\lambda^2 + p\lambda + q = 0$

Par un changement de variables :

$$\underbrace{(y'(x) - ay(x))}_{z(x)}' - b\underbrace{(y'(x) - ay(x))}_{z(x)} = 0$$

$$z'(x) - bz(x) = 0 \implies \text{EDVS pour } z$$

$$\implies z(x) = C_1 e^{bx}$$

$$\implies z(x) = y'(x) - ay(x) = C_1 e^{bx}$$

Ce qui est une EDL1.

$$=y'(x)-ay(x)=C_1e^{bx}, \ p(x)=-a, \ f(x)=C_1e^{bx}$$
 $\implies P(x)=\int -adx=-ax,$
 $=y_{hom}(x)=C_2e^{ax}$ solution générale de l'équation homogène

On a alors pour C(x):

$$C(x) = \int C_1 e^{bx} e^{-ax} dx = C_1 \int e^{(b-a)x} dx = \begin{cases} \frac{1}{b-a} C_1 e^{(b-a)x}, & \text{si } b \neq a \\ C_2 e^{ax} + C_1 x e^{ax} & \text{si } a = b \end{cases}$$

Si $a \neq b$ sont des racines complexes, $a, b \notin \mathbb{R} \implies a = \hat{b}$ Ce qui implique que : $y(x) = Ce^{ax} + \hat{C}e^{\hat{a}x}$ pour avoir une solution réelle, $a = \alpha + i\beta, \alpha, \beta \in \mathbb{R}, \beta \neq 0$ Soit $C = \frac{1}{2}(C_2 - iC_4) \implies \hat{C} = \frac{1}{2}(C_3 + iC_4), C_3, C_4 \in \mathbb{R}$ Alors on a que :

$$y(x) = Ce^{ax} + \hat{C}e^{\hat{a}x} = \frac{1}{2}(C_3 - iC_4)e^{\alpha x}e^{i\beta x} + \frac{1}{2}(C_3 + iC_4)e^{\alpha x}e^{-i\beta x}$$
$$= C_3e^{\alpha x}\frac{e^{i\beta x} + e^{-i\beta x}}{2} + C_4e^{\alpha x}\frac{e^{i\beta x} - e^{-i\beta x}}{2i}$$

Exemple 2

$$y'' + 9y = 0$$

Equation caractéristique : $\lambda^2+9=0 \implies a=3i, b=-3i$ Ce qui donne : $a=3i=\alpha+\beta i$

Ce qui donne comme solution générale :

$$y(x) = C_1 \cos 3x + C_2 \sin 3x$$

Vérification: $y'(x) = -3C_1 \sin 3x + 3C_2 \cos 3x \implies y'' = -9C_1 \cos 3x - 0C_2 \sin 3x \implies y'' + 9y = 0$

Exemple 3

$$y'' - 6y' + 9y = 0$$

Même procédé avec l'équation caractéristique :

$$\lambda^2 - 6\lambda + 9 = 0 \implies \lambda = 3$$

Ce qui donne comme solution :

$$y(x) = C_1 e^{ax} + C_2 e^{ax}$$

3.4.1 Unicité d'un EDL2

Considérons l'équation y''(x) + p(x)y'(x) + q(x)y(x) = 0

Théorème

Théorème 4 Une EDL2 homogène admet une seule solution $y(x): I \to \mathbb{R}$ de classe C^2 satisfaisant $y(x_0) = t$ et $y'(x_0) = s$ pour un $x_0 \in I$ et les nombres arbitraires $s, t \in \mathbb{R}$.

La démonstration n'est pas vu dans ce cours car trop fastidieuse

Remarque

(1) Superposition des solutions Si $y_1(x)$ et $y_2(x)$ sont 2 solutions de EDL2 homogènes alors

$$y(x) = Ay_1(x) + By_2(x)$$

Est aussi une solution, où $A, B \in \mathbb{R}$

Dépendance linéaire de fonctions

Définition 11 Deux solutions $y_1(x), y_2(x) : I \to \mathbb{R}$ sont linéairement indépendants s'il n'existe pas de constante $c \in \mathbb{R}$ tel que $y_2(x) = cy_1(x)$

Remarque

Cela implique, en particulier, que $y_1(x)$ et $y_2(x)$ ne sont pas triviallement = 0 sur I

Comment résoudre

Comment résoudre y''(x) + p(x)y'(x) + q(x)y(x) = 0?

Supposons que $v_1(x)$ est une solution de cette équation, telle que On sait trouver une autre solution linéairement dépendante.

Ansatz

$$v_2(x) = c(x)v_1(x)$$

Telle que $c(x) \neq const.$ Alors :

$$v_2'(x) = c'(x)v_1(x) + c(x)v_1'(x)$$

Si on cherche la seconde dérivée de v_2 :

$$v_2''(x) = c''(x)v_1(x) + c'(x)v_1'(x) + c'(x)v_1'(x) + c(x)v_1''(x)$$

Si on simplifie l'expression:

$$\implies c''(x)v_1(x) + 2c'(x)v_1'(x) + c(x)v_1''(x) + p(x)c'(x)v_1(x) + p(x)c(x)v_1'(x) + q(x)c(x)v_1(x) = 0$$

On peut trouver vu que $v_1(x)$ est solution que :

$$c(x)(v_1''(x) + p(x)v_1'(x) + q(x)v_1(x)) = 0$$

Ce qui revient pour notre équation :

$$c''(x)v_1(x) + 2c'(x)v_1'(x) + p(x)c'(x)v_1(x) = 0$$

On suppose que $v_1(x) \neq 0$ sur I et $c'(x) \neq 0$ sur I. (Une condition en plus, de toute façon, si c'(x) = 0 on peut juste enlever le 0 de l'intervalle et ensuite peut être le rajouter après). On peut donc diviser ce qui donne :

$$\frac{c''(x)}{c'(x)} = -p(x) - 2\frac{v_1'(x)}{v_1(x)} \implies \text{EDVS pour } c'(x)$$

Ce qui revient:

$$\ln c'(x) = \underbrace{-P(x)}_{\ln e^{-P(x)}} - 2\ln v_1(x) + \ln C, \quad C \in \mathbb{R}_+^*$$
$$= \ln \frac{Ce^{-P(x)}}{v_1^2(x)}$$

On cherche la dérivée de c(x):

$$c'(x) = \pm \frac{e^{-P(x)}}{v_1^2(x)}$$

$$= C_1 \frac{e^{-P(x)}}{v_1^2(x)} \quad C_1 \in \mathbb{R}^*, C_1 = \pm C$$

$$c(x) = \int C_1 \frac{e' - P(x)}{v_1^2(x)} dx + C_2$$

 $\implies v(x) = c(x)v_1(x)$ est une solution.

Si on prend $C_1=1$ et $C_2=0$ on obtient $v_2(x)$ linéairement dépendante de $v_1(x)$:

Théorème 5

$$v_2(x) = c(x)v_1(x) = v_1(x)\int \frac{e^{-P(x)}}{v_1^2(x)}dx$$

20CHAPITRE 3.	. MÉTHODE DE DÉMONSTRATION, RAISONNEMENT MATHÉM	IATIQUE