Análisis Matemático II

Licenciatura en Ciencias de la Computación - 2021

Práctico 6 - Integrales sobre rectángulos en \mathbb{R}^2

(1) Calcular las siguientes integrales sobre regiones rectangulares.

(a)
$$\iint_R (x^2 + y^2) dA$$
, donde R es el rectángulo $0 \le x \le 2$, $0 \le y \le 5$.

(b)
$$\iint_R (\operatorname{sen} x + \operatorname{cos} y) \, dA$$
, donde R es el rectángulo $0 \le x \le \pi/2$, $0 \le y \le \pi/2$.

(c)
$$\iint_R x^2 y^2 dA$$
, donde R es el rectángulo $0 \le x \le a$, $0 \le y \le b$.

(2) Calcule las siguientes integrales iteradas.

(a)
$$\int_0^2 \int_0^4 y^3 e^{2x} dy dx$$
.

(b)
$$\int_{1}^{3} \int_{1}^{5} \frac{\ln(y)}{xy} \, dy \, dx$$
.

(c)
$$\int_0^1 \int_0^1 \sqrt{s+t} \, ds \, dt$$
.

(3) Encuentre el volumen del sólido que está debajo del plano 4x+6y-2z+15=0 y arriba del rectángulo $R=\{(x,y)\,|\,-1\leq x\leq 2,\quad -1\leq y\leq 1\}.$

(4) Determine el volumen del sólido que está debajo del paraboloide hiperbólico $z=3y^2-x^2+2$ y arriba del rectángulo $R=\{(x,y)\,|\,-1\leq x\leq 1,\quad 1\leq y\leq 2\}.$

(5) Dibujar el dominio de integración y calcular las siguientes integrales.

(a)
$$\int_0^1 \int_0^y (xy + y^2) \, dx \, dy$$

(b)
$$\int_0^{\pi} \int_{-x}^x \cos y \, dy \, dx$$

(c)
$$\int_0^2 dy \int_0^y y^2 e^{xy} dx$$

(d) $\iint_T (x-3y) dA$, donde T es el triángulo de vértices (0,0), (a,0) y (0,b).

(e) $\iint_R xy^2 dA$, donde R es la región en el primer cuadrante acotada por $y=x^2$ y $x=y^2$.

(f) $\iint_D x \cos y \, dx dy$, donde D es la región en el primer cuadrante acotada por $y = 1 - x^2$ y los ejes.

1

- (g) $\iint_D \ln x \, dx dy$, donde D es la región en el primer cuadrante acotada por 2x + 2y = 5 y xy = 1.
- (h) $\iint_Q y \, dA$, donde Q es la región acotada por $x^2 + y^2 = 4$.
- (6) Calcular el volumen debajo de $z=1-x^2$ y arriba de la región: $0 \le x \le 1$ y $0 \le y \le x$.
- (7) Calcular el volumen debajo de $z=1-x^2$ y arriba de la región: $0 \le y \le 1$ y $0 \le x \le y$.
- (8) Calcular el volumen debajo de $z=1-x^2-y^2$ y arriba de: $x\geq 0,\,y\geq 0$ y $x+y\leq 1.$
- (9) Calcular el volumen comprendido entre el plano xy, el cilindro $x^2 + y^2 = 4$ y el plano z = x + y + 4.
- (10) Calcular el área de la región del plano dada por
, $0 \le x \le y^3$ y $2 \le y \le 4.$
- (11) Calcular el área de la región del primer cuadrante acotada por las parábolas $x^2 = 4y$ y $x^2 = 8 4y$.

Ayuda: Integre primero con respecto a la variable x.