СОДЕРЖАНИЕ

ВВЕДЕНИЕ
1 Задание
2 Структура ОА
3 Синтез ОА
3.1 Синтез OA_1
3.1.1 Синтез ${\rm OA}_1^{(0)}$
3.1.2 Синтез ${\rm OA}_1^{(1)}$
3.1.3 Объединенные ФВ И ЛФП ОА $_1$
3.2 Синтез OA_2
4 Реализация OA
4.1 Реализация OA_1
4.2 Реализация OA_2
4.3 Реализация OA
5 Моделирование ОА
5.1 Выполнение арифметической операции
5.2 Выполнение логической операции
ЗАКЛЮЧЕНИЕ
ЕМЕЛИОГРАФИЧЕСКИЙ СПИСОК

ВВЕДЕНИЕ

Теория автоматов — самостоятельный раздел математики, имеющий разнообразную проблематику и приложения. Основными понятиями теории автоматов являются понятия абстрактного автомата и понятие композиции автоматов. Эти понятия являются разумными абстракциями реально существующих дискретных устройств — автоматов. Понятие абстрактного автомата позволяет характеризовать устройство с точки зрения алгоритма его функционирования, т.е. алгоритма переработки информации, который оно реализует. Понятие композиции автоматов позволяет характеризовать устройство с точки зрения его структуры, иными словами, даёт представление, каким образом данное устройство построено из других, более элементарных.

Академик В.М. Глушков показал, что любое устройство обработки цифровой информации можно представить в виде совокупности двух взаимодействующих автоматов — управляющего УА и операционного ОА (Рисунок 1).

Рисунок 1 — Структура цифрового автомата.

ОА осуществляет непосредственную обработку данных путем выполнения элементарных операций над словами и выдает результат преобразования в виде двух слов: A (результат) и F (признаки результата, т.е. сигналы о знаках и особых значениях промежуточных и конечных результатов операций). Выполнение элементарных операций инициируется соответствующими управляющими сигналами $y_0, y_1, y_2...y_m$, которые формируются УА.

В курсовой работе требуется разработать ОА, реализующий заданный набор арифметикологических операций.

1 Задание

Синтезировать 4-разрядный ОА, реализующий две операции — арифметическую и логическую, в соответствии с заданным вариантом (Таблица 1). Работу ОА промоделировать, используя САПР «Альтера» Max+plus II.

Таблица 1 — Операции, реализуемые ОА.

Вариант	Опорония	Код	Элементы	Элементы	Признаки					
	Операция	Код	памяти ОА1	памяти ОА2	S	Z	Ĉ	P	С	
2в, 1	$A \leftarrow A - 1$	8421+3	JK	DC	+	+	+	+	-	
	$A \leftarrow A\&B$	двоичный	JK	DC	+	+	0	+	0	

2 Структура ОА

На этапе структурного синтеза ОА представляют в виде двух частей — памяти и комбинационной схемы КС (Рисунок 2). КС служит для преобразования входных сигналов X и информации о состоянии устройства (A) в выходные сигналы Y и сигналы возбуждения элементов памяти U.

Рисунок 2 — Обобщенная структура ОА.

Поведение структуры (Рисунок 2) описывается четырьмя группами различных сигналов:

X — входное слово,

Y = (X, A) — выходное слово,

 $U = \psi(X, A)$ — слово (функция), обеспечивающее порядок смены состояний автомата

A — слово, характеризующее состояние автомата.

Внутреннее состояние автомата определяется состоянием триггеров $a_r \in \{0,1\}$ и описывается словом состояния $A=(a_1,a_2,a_3,...,a_i,...a_r), r=\overline{1,R}$. Множество слов A определяет объем памяти OA.

Синтезируемый ОА является 4-х разрядным и формирует слово состояния $A=a_3a_2a_1a_0$.

3 Синтез ОА

Задача синтеза ОА сводится к:

- выбору типа элементов памяти (триггеров), который задан заранее (в данной курсовой работе ЈК-триггеры);
- разработке КС, для чего необходимо сформировать систему переключательных функций, описывающую ее поведение:

$$\begin{cases} U = \psi(X, A), \\ Y = \lambda(X, A) \end{cases}$$
 (1)

 реализации системы ПФ (1) на заданной элементной базе (в данной курсовой работе используется элементная база САПР «Альтера» Max+plus II).

В случае, если автомат оказывается сложным, задачу синтеза ОА упрощают, декомпозируя (разделяя) его на более простые автоматы OA_1 и OA_2 (Рисунок 3) с одинаковой структурой (Рисунок 4).

Рисунок 3 — Декомпозиция ОА.

Рисунок 4 — Структурное представление OA1 и OA2.

Арифметико-логический автомат OA_1 формирует слово результата операции и сигналы f_S , f_Z , f_C' , f_P , f_C — логические функции признаков (ЛФП), относящиеся к выходным сигналам $Y=\lambda(X,A)$, на основе которых OA_2 формирует уже сами признаки — слово F=(S,Z,P,C,C') в соответствии с логикой признаков, которая задается таблично (Таблица 1) для каждой отдельной операции.

Операции, реализуемые ОА (Рисунок 3), инициализируются управляющими сигналами yi. В данной работе используется только один управляющий сигнал y. Если этот сигнал принимает значение 0, то выполняется арифметическая операция, иначе — логическая.

3.1 Синтез ОА₁

 ${
m OA}_1$ можно рассматривать как многооперационный автомат, способный реализовать не одну, а несколько операций. Синтез автомата ${
m OA}_1^{(0)}$ и ${
m OA}_1^{(1)}$ с памятью на JK-триггерах, реализующих соответственно:

- операцию декремента $A \leftarrow A 1$ в коде 8421+3, инициируемую сигналом y_0 .
- операцию логического умножения $A \leftarrow A\&B$, инициируемую сигналом y_1 . Абстрактное представление OA_1 изображено на рисунке 5.

Рисунок 5 — Абстрактное представление OA1.

 $\mathrm{OA}_1^{(0)}$ реализует операцию над одним словом с установкой результата, поэтому OA не декомпозируется, и синтезируется как единый 4-х разрядный OЭ.

 $\mathrm{OA}_1^{(1)}$ реализует операцию над двумя 4-х разрядными словами и с установкой результата. Сигналы возбуждения и выходов являются функциями восьми аргументов. При рассмотрении такого автомата как единого ОЭ синтез значительно усложнится (КТ будет содержать $256=2^8$ наборов), поэтому $\mathrm{OA}_1^{(1)}$ декомпозируется и синтезируется как композиция одноразрядных ОЭ.

3.1.1 Синтез $OA_1^{(0)}$

Автомат $\mathrm{OA}_1^{(0)}$ описывается функциями переходов $A(t+1)=\delta^0(A(t))=\delta^0(a_3,a_2,a_1,a_0)$ и выходов $f_G^0=f_G^0(A(t))=f_G^0(a_3,a_2,a_1,a_0)$, G=S,Z,C',P,C, которые определяют структуру совмещенной кодированной таблицы (Таблица 2). Каждому значению A(t) ставится в соответствие двоичный вектор следующего состояния автомата $A(t+1)=a_3^*,a_2^*,a_1^*,a_0^*$ как результат функции перехода δ^0 операции $y_0:(A\leftarrow A-1)$.

Таблица 2 — Совмещенная КТ для $\mathrm{OA}_1^{(0)}.$

	Тек	ущее	<u>;</u>		Сле	едуюі	цее		Φ В T_{j}^{0}								ЛФП						
N	coc	нкот	ие		coc	нкот	ие										/ΙΨΙΙ						
	OA	1			OA	1																	
		A	(t)			A(t	+1)			Γ_3		2		Γ_1		0							
	a_3	a_2	a_1	a_0	a_3^*	a_2^*	a_1^*	a_0^*	$J_3^{(0)}$	$K_3^{(0)}$	$J_2^{(0)}$	$K_2^{(0)}$	$J_1^{(0)}$	$K_1^{(0)}$	$J_0^{(0)}$	$K_0^{(0)}$	$f_S^{(0)}$	$f_Z^{(0)}$	$f_{C'}^{(0)}$	$f_P^{(0)}$	$f_C^{(0)}$		
0	0	0	1	1	1	1	0	0	1	X	1	X	X	1	X	1	1	0	0	1	0		
1	1	1	0	0	1	0	1	1	X	0	X	1	1	X	1	X	1	0	1	0	0		
2	1	0	1	1	1	0	1	0	X	0	0	X	X	0	X	1	1	0	0	1	0		
3	1	0	1	0	1	0	0	1	X	0	0	X	X	1	1	X	1	0	0	1	0		
4	1	0	0	1	1	0	0	0	X	0	0	X	0	X	X	1	1	0	0	0	0		
5	1	0	0	0	0	1	1	1	X	1	1	X	1	X	1	X	0	0	1	0	0		
6	0	1	1	1	0	1	1	0	0	X	X	0	X	0	X	1	0	0	0	1	0		
7	0	1	1	0	0	1	0	1	0	X	X	0	X	1	1	X	0	0	0	1	0		
8	0	1	0	1	0	1	0	0	0	Х	X	0	0	х	X	1	0	0	0	0	0		
9	0	1	0	0	0	0	1	1	0	X	X	1	1	X	1	X	0	1	1	1	0		

Для каждого из триггеров $T_3 \div T_0$ на основе смены их состояний $a_i \to a_i^*, i = \overline{0,3}$ в соответствии с матрицей переходов (таблица 3) формируются двоичные сигналы функций возбуждения (ФВ) $T_j^0, j = \overline{0,3}$, под действием которых они меняют свои состояния. В соответствии с таблицей 2 при выполнении операции со словом A устанавливаются логические функции признаков (ЛФП) f_S, f_Z, f_P, f_C' . Признак f_C остаётся неизменным.

Признаки:

- fS фиксирует знаковый бит результата,
- fZ фиксирует нулевой результат,
- fP фиксирует четное число единиц результата,
- fC фиксирует перенос (заем) из старшего бита результата,
- fC'— фиксирует вспомогательный перенос (заем) из бита $_2$ результата.

Таблица 3 — Матрица переходов ЈК-триггера.

Парахол	Вход триггера						
Переход	J	K					
$0 \rightarrow 0$	0	x					
$0 \rightarrow 1$	1	x					
$1 \rightarrow 0$	x	1					
$1 \rightarrow 1$	x	0					

Полученные функции $J_3^{(0)}$, $K_3^{(0)}$, $J_2^{(0)}$, $K_2^{(0)}$, $J_1^{(0)}$, $K_1^{(0)}$, $J_0^{(0)}$, $K_0^{(0)}$, $f_S^{(0)}$, $f_Z^{(0)}$, $f_{C'}^{(0)}$, $f_P^{(0)}$, $f_C^{(0)}$ заносятся на карты Карно для минимизации (Рисунок 6, 7).

Рисунок 6 — Карты Карно для $\Phi B \ {\rm OA}_1^{(0)}.$

Рисунок 7 — Карты Карно для ЛФП $\mathrm{OA}_1^{(0)}.$

В результате минимизации получается система $\Pi\Phi$, представленных в МДН Φ :

$$\begin{split} J_3^{(0)} &= \overline{a_2} \\ K_3^{(0)} &= \overline{a_2} \cdot \overline{a_1} \cdot \overline{a_0} \\ J_2^{(0)} &= \overline{a_3} \vee \overline{a_1} \cdot \overline{a_0} \\ K_2^{(0)} &= \overline{a_1} \cdot \overline{a_0} \\ J_1^{(0)} &= \overline{a_0} \\ K_1^{(0)} &= \overline{a_0} \vee \overline{a_3} \cdot \overline{a_2} \\ J_0^{(0)} &= 1 \\ K_0^{(0)} &= 1 \\ f_S^{(0)} &= a_3 \cdot a_2 \vee \overline{a_2} \cdot a_1 \vee a_3 \cdot a_0 \\ f_Z^{(0)} &= \overline{a_3} \cdot \overline{a_1} \cdot \overline{a_0} \end{split}$$

$$\begin{split} f_{C'}^{(0)} &= \overline{a_1} \cdot \overline{a_0} \\ f_P^{(0)} &= a_1 \vee \overline{a_3} \cdot \overline{a_0} \\ f_C^{(0)} &= 0 \end{split}$$

3.1.2 Синтез $OA_1^{(1)}$

Автомат $\mathrm{OA}_1^{(1)}$ реализует операцию $A \leftarrow A\&B$.

Для упрощения задачи синтеза, декомпозируем автомат $\mathrm{OA}_1^{(1)}$ на более простые $\mathrm{OO}_i^{(1)}$ (Рисунок 8).

Рисунок 8 — Структура $\mathrm{OA}_1^{(1)}$.

Работа одноразрядного $\mathrm{O}_i^{(1)}$ автомата $\mathrm{OA}_1^{(1)}$ описывается таблицей 4. Заданные таблично ПФ являются функциями двух аргументов:

$$J_i^{(1)}=f(a_i,b_i),$$
 $K_i^{(1)}=f(a_i,b_i),$ $r_i^{(1)}=f(a_i,b_i).$ Причем $a_i(t+1)=r_i^{(1)}=a_i\&b_i,i=\overline{0,3}.$

Таблица 4 — Описание работы одноразрядного $\mathrm{O}\ni_i^{(1)}$ автомата $\mathrm{OA}_1^{(1)}.$

$a_i(t)$	$b_i(t)$	$a_i(t+1)$	$r_i^{(1)}$	$J_i^{(1)}$	$K_i^{(1)}$
0	0	0	0	0	X
0	1	0	0	0	X
1	0	0	0	X	1
1	1	1	1	X	0

Особенностью поразрядного синтеза $\mathrm{OA}_1^{(1)}$ является отсутствие информации о состоянии регистра A в целом в момент времени t, поэтому ЛФП формируется на основе вспомогательной функции R, подаваемой с выходов $\mathrm{OO}_i^{(1)}$ (рисунок 4) на входы вспомогательной комбинационной схемы $\mathrm{KC}_{(1)}$.

Таблица 5 описывает логику работы $\mathrm{KC}_{(1)}$, формирующей сигналы $f_S^{(1)}$, $f_Z^{(1)}$, $f_{C'}^{(1)}$, $f_P^{(1)}$, $f_C^{(1)}$. Переключательные функции являются функциями четырех аргументов.

Таблица 5 — Описание принципа установки флагов автомата $\mathrm{OA}_1^{(1)}.$

NT	R				ЛФП							
N	r_3	r_2	r_1	r_0	$f_S^{(1)}$	$f_Z^{(1)}$	$f_P^{(1)}$	$f_{C'}^{(1)}$	$f_C^{(1)}$			
0	0	0	0	0	0	1	1	0	0			
1	0	0	0	1	0	0	0	0	0			
2	0	0	1	0	0	0	0	0	0			
3	0	0	1	1	0	0	1	0	0			
4	0	1	0	0	0	0	0	0	0			
5	0	1	0	1	0	0	1	0	0			
6	0	1	1	0	0	0	1	0	0			
7	0	1	1	1	0	0	0	0	0			
8	1	0	0	0	1	0	0	0	0			
9	1	0	0	1	1	0	1	0	0			
10	1	0	1	0	1	0	1	0	0			
11	1	0	1	1	1	0	0	0	0			
12	1	1	0	0	1	0	1	0	0			
13	1	1	0	1	1	0	0	0	0			
14	1	1	1	0	1	0	0	0	0			
15	1	1	1	1	1	0	1	0	0			

Функции возбуждения ЈК-триггеров и функции выходов формируются на основании таблиц 4 и 5.

$$\begin{split} & J_3^1 = f(a_3,b_3) = 0 \\ & K_3^1 = f(a_3,b_3) = a_3 \cdot \overline{b_3} \\ & J_2^1 = f(a_3,b_3) = 0 \\ & K_2^1 = f(a_3,b_3) = a_3 \cdot \overline{b_2} \\ & J_1^1 = f(a_3,b_3) = 0 \\ & K_1^1 = f(a_3,b_3) = a_3 \cdot \overline{b_1} \\ & J_0^1 = f(a_3,b_3) = 0 \\ & K_0^1 = f(a_3,b_3) = 0 \\ & K_0^1 = f(a_3,b_3) = a_3 \cdot \overline{b_0} \\ & f_S^{(1)} = f(r_3,r_2,r_1,r_0) = K_8^4 \vee K_9^4 \vee K_1^4 0 \vee K_1^4 1 \vee K_1^4 2 \vee K_1^4 3 \vee K_1^4 4 \vee K_1^4 5 \\ & f_Z^{(1)} = f(r_3,r_2,r_1,r_0) = K_0^4 \\ & f_P^{(1)} = f(r_3,r_2,r_1,r_0) = K_0^4 \vee K_3^4 \vee K_5^4 \vee K_6^4 \vee K_9^4 \vee K_1^4 0 \vee K_1^4 2 \vee K_1^4 5 \\ & f_{C'}^{(1)} = 0 \\ & f_C^{(1)} = 0 \end{split}$$

Полученные ПФ заносим на карты Карно (Рисунок 9, 10.

Рисунок 9 — Карты Карно для ФВ $\mathrm{OA}_1^{(0)}.$

Рисунок 10 — Карты Карно для ЛФП $\mathrm{OA}_1^{(1)}.$

После минимизации переключательные функции будут иметь вид:

$$\begin{split} K_3^1 &= f(a_3,b_3) = \overline{b_3} \\ J_2^1 &= f(a_3,b_3) = 0 \\ K_2^1 &= f(a_3,b_3) = \overline{b_2} \\ J_1^1 &= f(a_3,b_3) = \overline{b_1} \\ J_0^1 &= f(a_3,b_3) = \overline{b_1} \\ J_0^1 &= f(a_3,b_3) = \overline{b_0} \\ K_0^1 &= f(a_3,b_3) = \overline{b_0} \\ f_S^{(1)} &= r_3 \\ f_Z^{(1)} &= \overline{r_3} \cdot \overline{r_2} \cdot \overline{r_1} \cdot \overline{r_0} \\ f_P^{(1)} &= \overline{r_3} \oplus r_2 \oplus r_1 \oplus r_0 \\ f_C^{(1)} &= 0 \\ f_C^{(1)} &= 0 \end{split}$$

3.1.3 Объединенные ФВ И ЛФП OA_1

В текущий момент такой автомат может выполнять только одну из заданных операций и состояния его меняются в соответствии с логикой реализуемой операции.

На основании составленных ФВ и ЛФП автоматов $\mathrm{OA}_1^{(0)}$ и $\mathrm{OA}_1^{(1)}$ составим объединенные ФВ и ЛФП:

$$\begin{split} J_3 &= y_0 J_3^0 \cup y_1 J_3^1 = y_0(\overline{a_2}) \vee y_1(0) \\ K_3 &= y_0 K_3^0 \cup y_1 K_3^1 = y_0(\overline{a_2} \cdot \overline{a_1} \cdot \overline{a_0}) \vee y_1(\overline{b_3}) \\ J_2 &= y_0 J_2^0 \cup y_1 J_2^1 = y_0(\overline{a_3} \vee \overline{a_1} \cdot \overline{a_0}) \vee y_1(0) \\ K_2 &= y_0 K_2^0 \cup y_1 K_2^1 = y_0(\overline{a_1} \cdot \overline{a_0}) \vee y_1(\overline{b_2}) \\ J_1 &= y_0 J_1^0 \cup y_1 J_1^1 = y_0(\overline{a_0}) \vee y_1(0) \\ K_1 &= y_0 K_1^0 \cup y_1 K_1^1 = y_0(\overline{a_0} \vee \overline{a_3} \cdot \overline{a_2}) \vee y_1(\overline{b_1}) \\ J_0 &= y_0 J_0^0 \cup y_1 J_0^1 = y_0(1) \vee y_1(0) \\ K_0 &= y_0 K_0^0 \cup y_1 K_0^1 = y_0(1) \vee y_1(\overline{b_0}) \\ f_S &= y_0 f_S^0 \cup y_1 f_S^1 = y_0(a_3 \cdot a_2 \vee \overline{a_2} \cdot a_1 \vee a_3 \cdot a_0) \vee y_1(r_3) \\ f_Z &= y_0 f_S^0 \cup y_1 f_S^1 = y_0(\overline{a_3} \cdot \overline{a_1} \cdot \overline{a_0}) \vee y_1(\overline{r_3} \cdot \overline{r_2} \cdot \overline{r_1} \cdot \overline{r_0}) \\ f_{C'} &= y_0 f_S^0 \cup y_1 f_S^1 = y_0(\overline{a_1} \cdot \overline{a_0}) \vee y_1(0) \\ f_P &= y_0 f_S^0 \cup y_1 f_S^1 = y_0(a_1 \vee \overline{a_3} \cdot \overline{a_0}) \vee y_1(\overline{r_3} \oplus r_2 \oplus r_1 \oplus r_0) \\ f_C &= y_0 f_S^0 \cup y_1 f_S^1 = y_0(0) \vee y_1(0) \end{split}$$

3.2 Синтез ОА₂

- 4 Реализация ОА
- **4.1** Реализация OA_1
- **4.2** Реализация OA_2
- 4.3 Реализация ОА

- 5 Моделирование ОА
- 5.1 Выполнение арифметической операции
- 5.2 Выполнение логической операции

ЗАКЛЮЧЕНИЕ

В результате выполнения курсовой работы был синтезирован автомат, реализующий две операции: $A \leftarrow A-1|_{8421+3}$ (арифметическую) и $A \leftarrow A\&B$ (логическую), устанавливающий флаги S,Z,P,C,C' в зависимости от результата операции.

При синтезе автомат ОА был представлен в виде двух автоматов: OA_1 и OA_2 . Первый автомат осуществляет выполнение операции, второй — устанавливает флаги признаков.

Автомат OA_1 был декомпозирован на два автомата: $OA_1^{(0)}$ и $OA_1^{(1)}$.

 $\mathrm{OA}_1^{(0)}$ выполняет операцию $A \leftarrow A - 1|_{8421+3}$ и вырабатывает признаки результата на основе последующего состояния A(t+1). Этот автомат был представлен как единый 4-разрядный ОЭ.

 $\mathrm{OA}_1^{(1)}$ выполняет операцию $A \leftarrow A\&B$ и вырабатывает признаки результата на основе текущего состояния A(t). Этот автомат был представлен как композиция одноразрядных ОЭ.

Также было проведено моделирование полученного автомата с помощью САПР «Альтера» Max+plus II.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК