Métodos de diseño de filtros FIR (2da Parte)

Procesamiento de señales

Filtros FLG Óptimos

Filtros FLG Óptimos

Equiripple y Cuadrados mínimos

Cuadrados mínimos (LS, *Least Squares*)

Equirriple

Función costo

$$\min_{h(n)\in\mathcal{F}}\max_{\omega\in\mathcal{S}}|E(\omega)|,$$

Error Ponderado

$$E(\omega) = V(\omega)|A_d(\omega) - A(\omega)|,$$

Grado L del polinomio para distintos tipos FLG

$$A(\omega) = Q(\omega)P(\omega) \quad \text{donde} \quad P(\omega) = \sum_{k=0}^{L} \alpha_k \cos(\omega k) = \sum_{k=0}^{L} \alpha_k'(\cos(\omega))^k, \quad \text{Polinomio de orden L}$$

$$M \text{ impar} \quad M \text{ par}$$

$$\alpha_k = \begin{cases} h\left(\frac{M-1}{2}\right) & k = 0 \\ 2h\left(\frac{M-1}{2}-k\right) & 1 \le k \le \frac{M-1}{2} \end{cases}$$

$$Q(\omega) = 1 \quad , \quad L = \frac{M-1}{2}$$

$$\alpha_k = \begin{cases} h\left(\frac{M}{2}-1\right) & k = 0 \\ 4h\left(\frac{M}{2}-k\right) - \alpha_{k-1} & 1 \le k \le \frac{M}{2} - 2 \\ 4h(0) & k = \frac{M}{2} - 1 \end{cases}$$

$$Q(\omega) = \cos(\frac{\omega}{2}) \quad , \quad L = \frac{M}{2} - 1$$

$$\alpha_k = \begin{cases} 2h(0) & k = \frac{M-3}{2} \\ 4h(1) & k = \frac{M-3}{2} \\ \alpha_{k+2} + 4h\left(\frac{M-3}{2} - k\right) & 1 \le k \le \frac{M-7}{2} \\ \frac{1}{2}\alpha_2 + 2h\left(\frac{M-3}{2}\right) & k = 0 \end{cases}$$

$$Q(\omega) = \sin(\omega) \quad , \quad L = \frac{M-3}{2}$$

$$Q(\omega) = \sin(\omega) \quad , \quad L = \frac{M-3}{2} \quad , \quad L = \frac{M}{2} - 1$$

Número de alternancias en la condición óptima: $r \ge L+2$

Teorema de las alternancias

Las alternancias deben cumplir:

- Máximos y mínimos locales que llegan al mismo error dentro de cada banda
- Puntos de cruce en las frecuencias límites (wp y ws).
- Eventualmente en 0 y pi (si es que allí se llega al máximo error)

EJEMPLO (FLG, N=14)

Si el filtro está en la condición óptima, debe cumplir

$$r >= L + 2$$

Teorema de las alternancias

Ejemplo: cuántas alternancias hay?

Teorema de las alternancias

Ejemplo: en cuáles se llega a la condición óptima?

Herramientas disponibles

Equirriple

h = firpm(N, F, A, V) MATLAB

h = remez(N,F,A,V) OCTAVE

Parámetros

F=[**0** F1 F2 F3 F4 F5 F6 **1**]
A=[A0 A1 A2 A3 A4 A5 A6 A7]

V=[1/d1 1/d2 1/d3 1/d4]

Orden del filtro aproximado

¿Qué largo (orden +1) debe tener el filtro?

Existen algunas fórmulas empíricas para comenzar el diseño. Una es la aproximación de Kaiser.

$$\hat{M} = \frac{-20\log_{10}\left(\sqrt{\delta_1\delta_2}\right) - 13}{14.6 \text{ A } f} + 1 \qquad ; \Delta f = \Delta\omega/2\pi$$

Luego puede ajustarse hasta alcanzar las especificaciones deseadas

Clase anterior (Actividad 4)

Diseño de un filtro FLG Equiripple

- Implementar un filtro pasa bajos utilizando el método de diseño óptimo *Equiripple*. Grafique h(n), $|H(\omega)|$ y el diagrama de polos y ceros.
 - Nota: para obtener el orden, utilice la aproximación de Kaiser y luego vaya modificando el orden hasta cumplir con la especificación.
- 2) Grafique la función amplitud $A(\omega)$ y verifique experimentalmente si se cumple el teorema de las alternancias.

$$0.96 \le |H(\omega)| \le 1.04$$

$$0 \le |\omega| \le 0.45\pi$$

$$|H(\omega)| \leq 0, 1$$

$$0,5\pi \leq |\omega| \leq \pi$$

Especificaciones y parámetros de diseño

Especificaciones

$$0.96 \le |H(\omega)| \le 1.04$$

$$|H(\omega)| \le 0, 1$$

$$0 \le |\omega| \le 0,45\pi$$

$$0,5\pi \leq |\omega| \leq \pi$$

Equirriple

$$h = firpm(N,F,A,V)$$

$$h = remez(N, F, A, V)$$
 OCTAVE

MATLAB

Parámetros

Especificaciones y parámetros de diseño

Determinación del orden con la aproximación empírica de Kaiser

```
wp = 0.45*pi
                                               \hat{M} = \frac{-20\log_{10}\left(\sqrt{\delta_1\delta_2}\right) - 13}{14.6 \text{ A f}} + 1 \qquad ; \Delta f = \Delta\omega/2\pi
ws = 0.5*pi
r1 = 0.04
r2 = 0.1
df = abs(wp - ws) / 2/pi
M = (-20*log10(sqrt(r1*r2)) - 13) / (14.6*df) + 1
M = 31.008
M = ceil(M)
  = 32
N = 31
```

Filtro diseñado (con orden empírico)

Determinación del orden con la aproximación empírica de Kaiser

- M=32, orden N=31
- Filtro FLG tipo II
- Orden de polinomio Cheby L = M/2 -1 = 15
- Alternancias contadas: r = 17
- -L+2=17
- Se cumple la condición óptima
- Relación entre Ripples r2/r1=2.5, cumple.
- Pero no cumplen la especificación de ripples
- Hay que ajustar M

Filtro diseñado (luego de ajustar el orden)

Determinación del orden con la aproximación empírica de Kaiser

- Incrementamos M hasta que el ripple se ajusta a las tolerancias
- Esto se logra para M = 39, orden N=38
- Filtro FLG tipo I
- -L = (M-1)/2 = 19
- Se sigue cumpliendo el teorema de las alternancias

$$r = 21$$

$$L + 2 = 19 + 2 = 21$$

Diseño de un filtro LP FLG Equiripple

Diseño de un filtro LP FLG Equiripple

Procedimiento

- 1. Definir especificaciones (ripples, frecuencias, amplitudes)
- 2. Definir parámetros de firpm() (F, A, V)
- 3. Calcular orden N aproximado desde aproximación empírica (ej orden de Kaiser)
- 4. Implementar filtro h = firpm(N, F, A, V)
- 5. Verificar cumplimiento de alternancias
- 6. Modificar orden N para ajustar mejor a las especificaciones

Herramientas para diseño de filtros óptimos LS

Filtros FLG LS

Herramientas de diseño

Mismos parámetros que equirriple Mismo procedimiento

Aunque distintas características (se optimizan con diferentes criterios)

F=[**0** F1 F2 F3 F4 F5 F6 **1**]

Parámetros

LS

h = firls(N,F,A,V) MATLAB/OCTAVE

Métodos de diseño de filtros IIR (2da Parte)

Procesamiento de señales

Flujo de diseño

Flujo de diseño

Especificaciones en tiempo discreto

Butterworth pasa bajos

 $\omega_{\rm p}$ frecuencia de paso $\omega_{\rm s} \mbox{ frecuencia de supresión} \label{eq:omegas}$

 $\delta_{\rm p}$ tolerancia de paso

 δ_s tolerancia de supresión

Flujo de diseño

Transformación a tiempo continuo

Transformación bilineal (ω,Ω)

$$\Omega_p = \frac{2}{T} \tan \left(\frac{\omega_p}{2} \right)$$

$$\Omega_s = \frac{2}{T} \tan \left(\frac{\omega_s}{2} \right)$$

$$\Omega_s = \frac{2}{T} \tan \left(\frac{\omega_s}{2} \right)$$

T: período de muestreo

Flujo de diseño

Diseño de filtro analógico

Butterworth pasa bajos

Diseño de filtro analógico

Butterworth pasa bajos

Diseño de filtro analógico

Butterworth pasa bajos

$$|H(\Omega)|^2 = \frac{1}{1 + \left(\frac{\overline{\Omega}}{\Omega_c}\right)^{2N}}$$

Orden del filtro

$$N \geq \frac{\log\left[\left(\frac{(1-\delta_p)^{-2}-1}{\delta_s^{-2}-1}\right)^{1/2}\right]}{\log\left[\Omega_p/\Omega_s\right]}$$

Frecuencia de corte aproximada

$$rac{\Omega_p}{\left[(\mathbf{1}-\delta_p)^{-2}-\mathbf{1}
ight]^{rac{1}{2N}}} \leq \overline{\Omega_c} \leq rac{\Omega_s}{\left[\delta_s^{-2}-\mathbf{1}
ight]^{rac{1}{2N}}}$$

$$\Omega_c \simeq rac{1}{2} \left(rac{\Omega_p}{\left[(1 - \delta_p)^{-2} - 1
ight]^{rac{1}{2N}}} \, + \, rac{\Omega_s}{\left[\delta_s^{-2} - 1
ight]^{rac{1}{2N}}}
ight)$$

Diseño de filtro analógico

Etapa	Pasa altos (HP)	Pasa banda (BP)	Suprime banda (BS)
Transformación en frecuencia de especificaciones	$\widetilde{\Omega}=rac{1}{\Omega}$	$\widetilde{\Omega} = \frac{\Omega_h \Omega_l - \Omega^2}{\Omega(\Omega_h - \Omega_l)}$	$\tilde{\Omega} = \frac{\Omega(\Omega_h - \Omega_l)}{\Omega_h \Omega_l - \Omega^2}$
	HP LP	BP LP	SP LP
2) Diseño de pasa bajos auxiliar	Especificaciones	Butterworth Chebyshev-I Chebyshev-II Elíptico Otros	H _{Ip} (ŝ) Transferencia
3) Transformación en frecuencia de la transferencia	$\tilde{s} = \frac{1}{s}$ $H_{lp}(\tilde{s}) \longrightarrow H_{hp}(s)$	$\tilde{s} = \frac{s^2 + \Omega_h \Omega_l}{s(\Omega_h - \Omega_l)}$ $H_{lp}(\tilde{s}) \longrightarrow H_{bp}(s)$	$\widetilde{s} = \frac{s(\Omega_h - \Omega_l)}{s^2 + \Omega_h \Omega_l}$ $H_{lp}(\widetilde{s}) \longrightarrow H_{bs}(s)$

Flujo de diseño

Discretización del filtro diseñado

Transformación bilineal (s, z)

$$s = \frac{2}{T} \frac{z - 1}{z + 1}$$
 , $z = \frac{1 + \frac{1}{2}s}{1 - \frac{T}{2}s}$

Discretización del filtro diseñado

Butterworth pasa bajos

LP

Transferencia H(s)

$$H(s) = \prod_{k=0}^{N-1} \frac{-s_k}{(s - s_k)}$$

$$s = \frac{2}{T} \frac{z - 1}{z + 1}$$

Transferencia H(z)

$$H(z) = \prod_{k=0}^{N-1} \underbrace{\frac{s_k}{(s_k - \frac{T}{2})}} \underbrace{\frac{(1 + z^{-1})}{(1 - z_k z^{-1})}} \qquad z_k = \frac{1 + \frac{T}{2} s_k}{1 - \frac{T}{2} s_k}$$

Butterworth pasa altos

Transferencia H(s)

$$H(s) = \prod_{k=0}^{N-1} \frac{s}{(s - \widetilde{s}_k)}$$

$$s = \frac{2}{T} \frac{z - 1}{z + 1}$$

Transferencia H(z)

$$H(z) = \prod_{k=0}^{N-1} \underbrace{\frac{1}{(1-\frac{T}{2}\widetilde{s}_k)} \frac{(1-z^{-1})}{(1-z_k z^{-1})}}_{(1-z_k z^{-1})} \qquad z_k = \underbrace{\frac{1+\frac{T}{2}\widetilde{s}_k}{1-\frac{T}{2}\widetilde{s}_k}}_{1-\frac{T}{2}\widetilde{s}_k}$$

Tipos de Filtros IIR

Se requiere diseñar un filtro discreto IIR, pasa bajos, tipo **Butterworth**, con δ_p =0.2, δ_s =0.1, ω_p = 0.32 π , ω_s = 0.6 π .

- 1) Encuentre las especificaciones para el dominio continuo (Ω) .
- 2) Encuentre el orden N y la frecuencia de corte $\Omega_{\rm c}$ que cumple con las especificaciones.
- 3) Encuentre los polos del filtro H(s) y grafique el diagrama de polos y ceros en el plano s.
- 4) Encuentre la transferencia H(z) en el dominio discreto con sus polos, ceros y el factor de escalamiento. Grafique los polos y ceros en el plano z.
- 5) Determine los coeficientes a y b de H(z) y grafique la respuesta en frecuencia de tiempo discreto $|H(\omega)|$. Verifique el cumplimiento de las especificaciones. Ayuda: coef = poly(raices)

$$\Omega_p$$
= 0.5498 rad/s
$$\Omega_s$$
= 1.3764 rad/s
$$N = 2.817 \rightarrow 3$$

$$\Omega_c = 0.6225 \text{ rad/s (media)}$$

$$A = 0.074 \quad \text{escalamiento}$$

$$a = \{1 - 0.8420 \ 0.5223 \ - 0.0885\} \qquad \text{denominador}$$

$$b = \{ \ 0.0739 \ \ 0.2219 \ \ 0.2219 \ \ 0.0739 \} \qquad \text{numerador}$$

Tipos de Filtros IIR

Se requiere diseñar un *filtro discreto, pasa altos, IIR* tipo **Butterworth**, con las especificaciones que se indican en la figura.

- 1) Determine las especificaciones para el dominio continuo y haga el diseño de pasa altos a partir de un pasa bajos prototipo aplicando la transformación en frecuencia. Grafique el diagrama de polos y ceros tanto del pasa alto como del pasa bajos prototipo.
- 2) Haga la discretización del filtro y grafique el diagrama de polos y ceros en el plano z. Determine también la ganancia que resulte de la discretización.
- 3) Grafique la respuesta en frecuencia del pasa altos discreto $|H(\omega)|$ y verifique las especificaciones iniciales.


```
\Omega_{p} = 0.7756 \text{ rad/s}
\Omega_{\rm s}= 0.3249 rad/s
\Omega_{p}' = 1.2892 rad/s
\Omega_{\rm s}' = 3.0777 \text{ rad/s}
                                            LP prototipo
N = 2.8936 \rightarrow 3
\Omega_{c} = 1.4091 rad/s (media)
A = 0.2642 escalamiento
a = \{1 - 0.6184 \ 0.4349 \ -0.0609\}
b = \{0.2642 - 0.7928 \ 0.7928 \ -0.2642\}
```


Funciones de MATLAB/OCTAVE

Funciones de MATLAB/OCTAVE

Transferencia
$$H(z) = \frac{b_0 + b_1 z^{-1} + b_2 z^{-2} + b_3 z^{-3} + \dots}{1 + a_1 z^{-1} + a_2 z^{-2} + a_3 z^{-3} + \dots}$$
 $\mathbf{b} = \begin{bmatrix} b_0 & b_1 & b_2 & \dots \end{bmatrix}$ $\mathbf{a} = \begin{bmatrix} 1 & a_1 & a_2 & \dots \end{bmatrix}$

Respuesta en frecuencia

Polos y ceros en el plano z

Retardo de grupo

Prototipo de filtros pasa bajos

Especificaciones

Butterworth

Prototipo de filtros pasa bajos

Especificaciones

Chebyshev-I

Magnitud [dB

Prototipo de filtros pasa bajos

Chebyshev-II

Prototipo de filtros pasa bajos

Especificaciones


```
R_{p} \prod_{\omega_{p}} R_{p} \prod_{\omega_{p}} R_{s}
```

Tipos de Filtros IIR

Utilizar las funciones de Matlab para obtener los coeficientes de un *filtro discreto IIR* tipo **Butterworth** con ω_c = 0.35 π y *N*=4, graficar:

- 1) La respuesta en frecuencia $|H(\omega)|$
- 2) Los polos y ceros en el plano 'z'
- 3) La respuesta en fase $\Phi(\omega)$
- 4) Retardo de grupo

Butterworth

Butterworth

Tipos de Filtros IIR

Utilizar las funciones de Matlab para obtener los coeficientes de un filtro IIR tipo **Chebyshev-I**, con δ_p =0.1, ω_p = 0.4 π y *N*=4, graficar:

- 1) La respuesta en frecuencia $|H(\omega)|$
- 2) La respuesta en fase $\Phi(\omega)$
- 3) Los polos y ceros en el plano 'z'
- 4) Retardo de grupo

Chebyshev-I

Algunos ejemplos IIR con MATLAB Tipos de Filtros IIR

Chebyshev-I

Tipos de Filtros IIR

Utilizar las funciones de Matlab para obtener los coeficientes de un filtro IIR tipo **Chebyshev-II**, con δ_s =0.2, ω_s = 0.65 π y *N*=4, graficar:

- 1) La respuesta en frecuencia $|H(\omega)|$
- 2) La respuesta en fase $\Phi(\omega)$
- 3) Los polos y ceros en el plano 'z'
- 4) Retardo de grupo

Tipos de Filtros IIR

Chebyshev-II

Algunos ejemplos IIR con MATLAB Tipos de Filtros IIR

Chebyshev-II

Tipos de Filtros IIR

Utilizar las funciones de Matlab para obtener los coeficientes de un filtro IIR tipo **Elíptico**, con δ_p =0.1, δ_s =0.2, ω_p = 0.4 π y *N*=4, graficar:

- 1) La respuesta en frecuencia $|H(\omega)|$
- 2) La respuesta en fase $\Phi(\omega)$
- 3) Los polos y ceros en el plano 'z'
- 4) Retardo de grupo

Tipos de Filtros IIR

Elíptico

Tipos de Filtros IIR

Elíptico

