15

30

CLAIMS

1. An electron-accepting compound having the general formula (I),

$$\begin{array}{c|c}
R^6 & & & \\
R^7 & & & \\
R^8 & & & \\
\end{array}$$

$$\begin{array}{c|c}
R^2 \\
R^3 \\
R^5 & & \\
\end{array}$$

$$\begin{array}{c|c}
R^2 \\
R^4 \\
\end{array}$$

$$\begin{array}{c|c}
R^1 \\
R^5 & & \\
\end{array}$$

$$\begin{array}{c|c}
R^1 \\
R^5 & & \\
\end{array}$$

$$\begin{array}{c|c}
R^1 \\
R^2 & & \\
\end{array}$$

$$\begin{array}{c|c}
R^3 \\
\end{array}$$

$$\begin{array}{c|c}
R^1 \\
\end{array}$$

wherein each of R^1 to R^9 respectively represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an aralkyl group having 7 to 10 carbon atoms or an aryl group having 6 to 14 carbon atoms, arbitrary two groups selected from R^1 to R^5 may bond to each other to form a ring, arbitrary two groups selected from R^6 to R^9 may bond to each other to form a ring, and R^{10} represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an aralkyl group having 7 to 10 carbon atoms or an aryl group having 6 to 14 carbon atoms.

- 2. The electron-accepting compound of claim 1, wherein all of R^6 to R^{10} in the general formula (I) are hydrogen atoms.
- 3. The electron-accepting compound of claim 2, which is N-(2-hydroxyphenyl)-p-toluenesulfonamide or N-(2-hydroxyphenyl)benzenesulfonamide represented by the general formula (I).
 - 4. An electron-accepting compound which is N,N'-bis(2-hydroxyphenyl)-4,4'-biphenyldisulfonamide.
 - 5. A heat-sensitive recording material having a

15

20

30

substrate and a heat-sensitive recording layer formed on the substrate, the heat-sensitive recording layer containing an electron-donating normally colorless or slightly colored dye precursor and an electron-accepting compound which reacts with the electron-donating dye precursor under heat to cause said electron-donating dye precursor to form a color, wherein said heat-sensitive recording layer contains at least one member selected from the electron-accepting compound of the general formula (I),

$$\begin{array}{c|c}
 & OH & R^{10}R^{1} \\
 & R^{6} & R^{9} & O & R^{5}
\end{array}$$
(I)

in which each of R¹ to R⁹ respectively represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an aralkyl group having 7 to 10 carbon atoms or an aryl group having 6 to 14 carbon atoms, arbitrary two groups selected from R¹ to R⁵ may bond to each other to form a ring, arbitrary two groups selected from R⁶ to R⁹ may bond to each other to form a ring, and R¹⁰ represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an aralkyl group having 7 to 10 carbon

25 6. The heat-sensitive recording material of claim 5, wherein the heat-sensitive recording layer further contains at least one electron-accepting compound selected from a diphenylmethane derivative, a benzoic acid derivative, a salicylic acid derivative or a urea derivative.

or N,N'-bis(2-hydroxyphenyl)-4,4'-biphenyldisulfonamide.

atoms or an aryl/group having 6 to 14 carbon atoms,

7. The heat-sensitive recording material of claim 5

W.

STATE OF THE

5

10

15

20

25

30

or 6, wherein the heat-sensitive recording layer contains a phosphoric ester derivative as an additive.

an undercoat layer containing a pigment and an adhesive as main components and a heat-sensitive recording layer on a substrate, the heat-sensitive recording layer containing an electron-donating normally colorless or slightly colored dye precursor and an electron-accepting compound which reacts with the electron-donating dye precursor under heat to cause said electron-donating dye precursor to form a color, or the heat-sensitive recording material optionally further having at least one protective layer on the heat-sensitive recording layer, wherein said heat-sensitive recording layer contains at least one member selected from benzenesulfonamide derivatives of the general formula (I),

in which each of R¹ to R9 respectively represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an aralkyl group having 7 to 10 carbon atoms or an aryl group having 6 to 14 carbon atoms, arbitrary two groups selected from R¹ to R⁵ may bond to each other to form a ring, arbitrary two groups selected from R⁶ to R9 may bond to each other to form a ring, and R¹0 represents a hydrogen atom, an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an aralkyl group having 7 to 10 carbon atoms or an aryl group having 6 to 14 carbon atoms, or N,N'-bis(2-hydroxyphenyl)-4,4'-biphenyldisulfonamide.

- 9. The heat-sensitive recording material of claim 8, wherein the heat-sensitive recording layer contains a phosphoric ester derivative as an additive.
- 5 10. The heat-sensitive recording material of claim 8 or 9, wherein the pigment contained in the undercoat layer is an oil-absorbing pigment which shows an oil absorption of 70 to 800 ml/100 g when measured according to JIS-K-5101 or organic hollow particles.
 - 11. The heat-sensitive recording material of claim 8, 9 or 10, wherein the protective layer contains at least one selected from an acetoacetyl-modified polyvinyl alcohol, a carboxy-modified polyvinyl alcohol, a diacetone-modified polyvinyl alcohol or a silicon-modified polyvinyl alcohol, and a pigment, as main components.
- 12. The heat-sensitive recording material of any one of claims 8 to 11, wherein the heat-sensitive recording layer, the protective layer or both contain a benzotriazole-containing ultraviolet absorbent.
- 13. A heat-sensitive recording material having a substrate and a heat-sensitive recording layer formed on the substrate, the heat-sensitive recording layer containing an electron-donating normally colorless or slightly colored dye precursor and an electron-accepting compound which reacts with the electron-donating dye precursor under heat to cause said electron-donating dye precursor to form a color, wherein said heat-sensitive recording layer contains at least two members selected from benzenesulfonamide derivatives of the general formula (II),

wherein each of R¹¹, R¹² and R¹³ respectively represents an alkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an aralkyl group having 7 to 10 carbon atoms or an aryl group having 6 to 14 carbon atoms, n represents an integer of 0 to 5, m represents an integer of 0 to 4 and k represents 1 or 2

- 14. The heat-sensitive recording material of claim 13, wherein the heat-sensitive recording layer contains a mixture prepared by mixing at least two members selected from benzenesulfonamide derivatives of the general formula (II) on a molecular level.
- 15 15. The heat-sensitive recording material of claim 13 or 14, wherein the mixture contains two members of the benzenesulfonamide derivatives, which are used together in a mixing weight ratio of from 1:0 to 9:1.
- 16. The heat-sensitive recording material of claim 13, 14 or 15, wherein the benzenesulfonamide derivatives are a combination of N-(4-hydroxyphenyl)-p-toluenesulfonamide and N-(2-hydroxyphenyl)-p-toluenesulfonamide.
- 25 17. The heat-sensitive recording material of any one of claims 13 to 16, wherein the heat-sensitive recording layer contains a phosphoric ester derivative as an additive.
- 18. A heat-sensitive recording material having a substrate and a heat-sensitive recording layer formed on the substrate, the heat-sensitive recording layer containing an electron-donating normally colorless or slightly colored dye precursor and an electron-accepting compound which reacts with the electron-donating dye precursor under heat to cause said electron-donating dye precursor to form a color, wherein said heat-sensitive

15

20

recording layer contains a benzenesulfonamide derivative and a diphenylsulfonamide derivative.

5 wherein the diphenylsulfone derivative is a compound of the general formula (III),

$$(R^{14})p \qquad (R^{15})q \qquad (R^{16})r \qquad (R^{17})s \qquad (R^{18})t \qquad (R^{19})u \qquad (R^{$$

wherein X and Y may be the same or different, each represents a linear or branched divalent hydrocarbon group which has 1 to 12 carbon atoms and may have a saturated or unsaturated ether bond, or a group represented by

$$-$$
CH₂ $-$ CH₂ $-$ CH₂ $-$ CH₃ $-$ CH₃ $-$ CH₂ $-$ CH₃ $-$ CH

in which R^{20} is a methylene group or an ethylene group and T is a hydrogen or an alkyl group having 1 to 4 carbon atoms, each of R^{14} to R^{19} independently represents a halogen atom, an alkyl group or an alkenyl group, each of p, q, r, s, t and u is an integer of 0 to 4, respectively, provided that when they are 2 or more, those represented by any one of R^{14} to R^{19} may be the same or different, respectively, and a represents an integer of 1 to 10.

20. The heat sensitive recording material of claim 18, wherein the diphenylsulfone derivative is a compound of the general formula (IV),

$$(R^{21})b \qquad (R^{22})c$$

$$= = -$$

$$SO_2 \qquad = |=$$

$$(IV)$$

wherein each of R^{21} and R^{22} independently represents a halogen atom, a hydroxyl group, an alkyl group,

25

an alkenyl group, an aralkyl group, an aryl group, an alkoxyl group or a phenyl sulfonyl group, b represents an integer of 0 to 4 and c represents an integer of 0 to 5.

5 21. The heat-sensitive/recording material of claim 18, 19 or 20, wherein the benzenesulfonamide derivative is a compound of the general formula (II-a),

wherein each of R¹¹ and R¹² respectively

represents an alkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an aralkyl group having 7 to 10 carbon atoms or an aryl group having 6 to 14 carbon atoms, n represents an integer of 0 to 5, m represents an integer of 0 to 4 and k represents 1 or 2.

- The heat-sensitive recording material of any one of claims 18 to 21, wherein the benzenesulfonamide derivative and the diphenylsulfone derivative are contained in a weight ratio of from 9:1 to 3:7.
- The heat-sensitive recording material of any one of claims 18 to 22, wherein the heat-sensitive recording layer contains, as an additive, a hydroxybenzoic acid derivative of the general formula (V),

wherein Z/is an oxygen atom or -NH group, R²³ is an alkyl group, an alkenyl group, aralkyl group or an aryl group, and d repesents an integer of 1 to 4.

431

24. The heat-sensitive recording material of any one of claims 18 to 23, wherein the heat-sensitive recording layer contains a phosphoric ester derivative as an additive.

25. The heat-sensitive recording material of claim 18, wherein the heat-sensitive recording layer contains at least one member selected from benzenesul fonamide derivatives of the general formula (II),

 $(OH)k = \begin{bmatrix} (R^{11})m & R^{13} & (R^{12})n \\ NSO_2 & = \end{bmatrix}$

wherein each of R¹¹, R¹² and R¹³ respectively represents an alkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an aralkyl group having 7 to 10 carbon atoms or an aryl group having 6 to 14 carbon atoms, n represents an integer of 0 to 5, m represents an integer of 0 to 4 and k represents 1 or 2, and also contains at least one member selected from diphenylsulfone derivatives of the general formula (VI),

in which A represents $-(CH_2)_h-$, $-O(CH_2)_i-$ or $-O(CH_2)_jO(CH_2)_v-$, each of R^{27} and R^{28} respectively represents a hydrogen atom or an alkyl group having 1 to 6 carbon

20

atoms, each of h and i represents an integer of 0 to 5, and each of j and v represents an integer of 1 to 5, each of R²⁵ and R²⁶ respectively represents a halogen atom, an alkyl group having 1 to 6 carbon atoms, an alkoxyl group having 1 to 6 carbon atoms or a benzyloxy group which may have a substituent, e represents an integer of 0 or 1, f represents an integer of 0 to 5 and g represents an integer of 0 to 4.

- 10 26. The heat-sensitive recording material of claim 25, wherein the benzenesulfonamide derivatives are a combination of N-(4-hydroxyphenyl)-p-toluenesulfonamide and N-(2-hydroxyphenyl)-p-toluenesulfonamide.
- 15 27. The heat-sensitive recording material of claim 25 or 26, wherein the diphenyl sulfone derivative is 4-benzyloxy-4'-(2-methylglycidyloxy)diphenyl sulfone.
- substrate and a heat-sensitive recording material having a
 substrate and a heat-sensitive recording layer formed on
 the substrate, the heat-sensitive recording layer
 containing an electron-donating normally colorless or
 slightly colored dye precursor and an electron-accepting
 compound which reacts with the electron-donating dye
 precursor under heat to cause said electron-donating dye
 precursor to form a color, wherein said heat-sensitive
 recording layer contains at least one member selected from
 the benzenesulfonamide derivatives of the general formula
 (II),

R¹³

(R¹¹)m

30

wherein each of R^{11} , R^{12} and R^{13} respectively represents an alkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an alkenyl group

(II)

- 29. The heat-sensitive recording material of claim 28, wherein the ultraviolet absorbent is a benzotriazole derivative.
- 30. The heat-sensitive recording material of claim 28 or 29, wherein the ultraviolet absorbent is a dimer of a benzotriazole derivative of the general formula (VII),

wherein R^{29} represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxyl group, an aryl group or an aryloxy group, R^{30} is an alkyl group having 1 to 18 carbon atoms, and D is an alkylidere group having 1 to 8 carbon atoms.

- 31. The heat-sensitive recording material of claim 28, 29 or 30, wherein the penzenesulfonamide derivative is N-(2-hydroxyphenyl)-p-toluenesulfonamide or N-(4-hydroxyphenyl)-p-toluenesulfonamide.
- 32. The heat sensitive recording material of any one of claims 28 to 31, wherein the heat-sensitive recording layer contains a compound of the general formula (VIII),

10

15

25

W 20

30

• ;

wherein each of R³¹ and R³² respectively represents a hydrogen atom, an alkyl group, an aralkyl group or an aryl group, respectively, R³³ represents an alkyl group, an alkoxyl group, an alkenyl group, an aralkyl group or an aryl group, and w represents an integer of 0 to 5.

- 10 33. The heat-sensitive recording material of any one of claims 28 to 32, wherein the heat-sensitive recording layer contains a phosphoric ester derivative as an additive.
- 34. A heat-sensitive recording material having a substrate and a heat-sensitive recording layer formed on the substrate, the heat-sensitive recording layer containing an electron-donating normally colorless or slightly colored dye precursor and an electron-accepting compound which reacts with the electron-donating dye precursor under heat to cause said electron-donating dye precursor to form a color, wherein said heat-sensitive recording layer contains at least one member selected from the benzenesulfonamide derivatives of the general formula (II),

$$(R^{11})m$$
 R^{13} $R^{12})n$ R^{13} R^{12} R^{12} R^{13} R^{12} R^{12} R^{13} R^{13

wherein each of R^{11} , R^{12} and R^{13} respectively represents an alkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an aralkyl group having 7 to 10 carbon atoms or an aryl group having 6 to 14 carbon atoms,

n represents an integer of 0 to 5 m represents an integer of 0 to 4 and k represents 1 or 2, and contains an aromatic isocyanate compound.

- 5 35. The heat-sensitive recording material of claim 34, wherein the heat-sensitive recording layer contains an imino compound.
- 36. The heat-sensitive recording material of claim 34 or 35, wherein the heat-sensitive recording layer contains at least two benzenesulfonamide derivatives of the general formula (II).
- 37. The heat-sensitive recording material of claim 34, 35 or 36, wherein N-(4-hydroxyphenyl)-p-toluenesulfonamide and N-(2-hydroxyphenyl)-p-toluenesulfonamide are contained in combination as benzenesulfonamide derivatives.
- 38. A heat-sensitive recording material having a substrate and a heat-sensitive recording layer formed on the substrate, the heat-sensitive recording layer containing an electron-donating normally colorless or slightly colored dye precursor and an electron-accepting compound which reacts with the electron-donating dye precursor under heat to cause said electron-donating dye precursor to form a color, wherein said substrate contains a recycled paper pulp, and a benzene sulfonamide derivative of the general formula (II),

 $(R^{11})m$ R^{13} $(R^{12})n$ = = = 1

wherein each of R^{11} , R^{12} and R^{13} respectively represents an alkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an aralkyl group having 7 to 10

carbon atoms or an aryl group having 6 to 14 carbon atoms, n represents an integer of 0 to 5, m represents an integer of 0 to 4 and k represents 1 or 2 is used as the electron-accepting compound.

39. The heat-sensitive recording material of claim 38, wherein at least two benzenesulfonamide derivatives are used in combination.

- 10 40. The heat-sensitive recording material of claim 39, wherein the benzenesulfonamide derivatives are a combination of N-(4-hydroxyphenyl)-p-toluenesulfonamide and N-(2-hydroxyphenyl)-p-toluenesulfonamide.
- 15 41. The heat-sensitive recording material of claim 38, 39 or 40, wherein the heat-sensitive recording layer contains a phosphoric ester derivative as an additive.
- A heat-sensitive recording material having a 42. substrate and a heat-sensitive recording layer formed on 20 the substrate, the heat-sensitive/recording layer containing an electron-donating normally colorless or slightly colored dye precursof and an electron-accepting compound which reacts with the electron-donating dye precursor under heat to dause said \electron-donating dye 25 precursor to form a color, wherein said substrate contains a non-wood pulp and at least one selected from a benzenesulfonamide derivative, a diphenylsulfonamide derivative, an benzoic acid derivative or a diphenylmethane derivative is used as the electron-accepting compound. 30
 - 43. The heat-sensitive recording material of claim 42, wherein the substrate has a non-wood pulp content of at least 10 % by weight.
 - 44. The heat-sensitive/recording material of claim 42

July A

or 43, wherein the benzenesulfonamide derivative is a compound of the general formula (II),

$$(OH)k = \begin{bmatrix} (R^{11})m & R^{13} & (R^{12})n \\ (OH)k & (II) \end{bmatrix}$$

wherein each of R¹¹, R¹² and R¹³ respectively represents an alkyl group having 1 to 4 carbon atoms, an alkoxyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, an aralkyl group having 7 to 10 carbon atoms or an aryl group having 6 to 14 carbon atoms, n represents an integer of 0 to 5, m represents an integer of 0 to 4 and k represents 1 or 2.

The heat-sensitive recording material of claim 42 or 43, wherein the diphenylsulfone derivative is a compound of the general formula (IX),

$$R^{34}$$
 $(OH)x$
 $(OH)y$
 (IX)

wherein each of R^{34} and R^{35} respectively represents a hydrogen atom, a halogen atom, an alkyl group, an alkenyl group, an aralkyl group, an aryl group, an alkenyloxy group, an aralkyloxy group or an aryloxy group, x represents an integer of 1 to 3, and y represents an integer of 0 to 2.

46. The heat-sensitive recording material of claim 42 or 43, wherein the benzoic acid derivative is a compound of the general formula (V),

wherein Z is an oxygen atom or -NH group, R^{23} is an alkyl group, an alkenyl group, aralkyl group or an aryl group, and d repesents an integer of 1 to 4.

47. The heat-sensitive recording material of claim 42 or 43, wherein the diphenylmethane derivative is a compound of the general formula (X),

$$R^{36}$$
 R^{36}
 R^{39}
 R^{39}

wherein each R^{36} to R^{39} respectively represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxyl group, an alkenyl group, an aralkyl group, an aryl group, an alkenyloxy group, an aralkyloxy group, an aryloxy group or an alkoxycrbonylalkyl group, R^{37} and R^{38} may bond to each other to form a ring, x represents an integer of 1 to 3, and y represents an integer of 0 to 2.

48. The heat-sensitive recording material of any one of claims 42 to 47, wherein the dye precursor is a xanthene compound of the general formula (XI),

wherein each of R^{40} and R^{41} respectively 25 represents an alkyl group, an aryl group or aralkyl group

A A

and may bond to each other to form a ring, R^{42} represents a hydrogen atom, a halogen atom or an alkyl group, and R^{43} represents a hydrogen atom, a halogen atom, an alkyl group or a halogenated alkyl group.