

Robot Vision

Image Formation & Camera Models

Dr. Chen Feng

<u>cfeng@nyu.edu</u>

ROB-UY 3203, Spring 2024

Overview

- Digital camera & image
 - Camera selection
- Color transformations (RGB, Grey, HSV)
- Pinhole camera model
 - 3D rotation representations (Euler angle, axis-angle, quaternion)
- Lens distortion
- Homogeneous coordinates
- Geometric transformations

References

- Forsyth & Ponce 2011:
 - Chapter 1; Section 3.1, 3.4, 3.5
- Szeliski 2022:
 - Section 2.1, 2.3, 2.3.2, 6.3.5
- Corke 2011:
 - Chapter 2; Section 10.2, 11.1
- Hartley & Zisserman 2003:
 - Section 2.2, 2.3, 2.4, 3.1, 3.4, 6.1
- Linear algebra:
 - Szeliski 2011: section A.1.1, A.1.2, A.1.3, A.2, A.2.1
 - Hartley & Zisserman 2003: A5.1, A5.2, A5.3

Historic Milestones of Camera

- Pinhole model: Mozi (470-390 BCE), Aristotle (384-322 BCE)
- Principles of optics (including lenses): Alhacen (965-1039 CE)
- Camera obscura: Leonardo da Vinci (1452-1519), Johann Zahn (1631-1707)
- **First photo:** Joseph Nicephore Niepce (1822)
- Daguerréotypes (1839)
- **Photographic film** (Eastman, 1889)
- Cinema (Lumière Brothers, 1895)
- Color Photography (Lumière Brothers, 1908)
- **Television** (Baird, Farnsworth, Zworykin, 1920s)
- **First consumer camera with CCD**: Sony Mavica (1981)
- First fully digital camera: Kodak DCS100 (1990)

Niepce, "La Table Servie," 1822

CCD chip

Digital Camera

FIGURE 2.17 (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.

- A digital camera replaces film with a sensor array
 - Each cell in the array is light-sensitive diode that converts photons to electrons
 - Two common types
 - Charge Coupled Device (CCD)
 - Complementary metal oxide semiconductor (CMOS)

Choosing Machine Vision Cameras

- Area scan or Line scan?
- Color or Monochrome?
- CMOS or CCD?
- Global or Rolling Shutter?
- Frame Rate?
- Resolution?
- Connection Interface?
- Lens Focal length

Area Scan or Line Scan?

Line scan

Area scan

Color or Monochrome?

AEGER-LECOULTRE

Monochrome sensor

Color sensor (with color filter array)

CMOS or CCD?

- CCD: charge coupled device
- CMOS: complementary metal oxide semiconductor
- Pros/Cons
 - Noise: CMOS > CCD
 - Light sensitivity: CMOS < CCD
 - Pixel quality: CMOS < CCD
 - Power consumption: CMOS < CCD
 - Speed/frame-rate: CMOS > CCD
 - Price: CMOS < CCD
- Current winner: CMOS

http://electronics.howstuffworks.com/digital-camera.htm

CCDs move photogenerated charge from pixel to pixel and convert it to voltage at an output node. CMOS imagers convert charge to voltage inside each pixel.

http://www.dalsa.com/shared/content/pdfs/CCD_vs_CMOS_Litwiller_2005.pdf

Global or Rolling Shutter

Global Shutter

Rolling Shutter

Image from http://www.red.com/learn/red-101/global-rolling-shutter

Effect of Rolling Shutter with Fast Motion

- Is the photographer moving towards left, or right?
 - Assuming rolling shutter moves from the top to bottom of the image

Other Factors

- Resolution
 - QVGA (320x240), VGA (640x480)
 - Choose based on your application!
- Frame rate
 - 15Hz, 30Hz, 60Hz
- Connection interface
 - USB3.0: 350MB/s, up to 8m cable (power + data), plug-and-play
 - GigE: 100MB/s, up to 100m cable, good for multiple cameras
- Focal length
 - Fixed: good for geometric vision (3D reconstruction/pose estimation)
 - Auto-focus

	Interface	Cable Lengths	Bandwidth max. in MB/s.	Multi- Camera	"Real- time"	"Plug & Play"
	GiG=	100 m	100			
•	US3°	8 m	350			
′	CAMERA	10 m	850			

Digital Image

45	60	98	127	132	133	137	133
46	65	98	123	126	128	131	133
47	65	96	115	119	123	135	137
47	63	91	107	113	122	138	134
50	59	80	97	110	123	133	134
49	53	68	83	97	113	128	133
50	50	58	70	84	102	116	126
50	50	52	58	69	86	101	120

Digital Image

Color Space Transformations

RGB2Gray

RGB[A] to Gray:
$$Y \leftarrow 0.299 \cdot R + 0.587 \cdot G + 0.114 \cdot B$$
 $0.2126R + 0.7152G + 0.0722B$

Color Space Transformations

- Higher values are shown as white pixels
- Lower values are shown as darker pixels
- Which image represents the Hue channel, b or c?

Hue

Pinhole Camera

Image from http://thedelightsofseeing.blogspot.com/2010/10/pinhole-photography-and-camera-obscura.html

Evolution of Pinhole Camera Model

Basic Equation of Pinhole Camera Model

Add Digitization/Discretization/Pixelization

 ρ_{w} and ρ_{h} are the width and height of each pixel

$$\mathbf{p} = \underbrace{\begin{pmatrix} 1/\rho_{w} & 0 & u_{0} \\ 0 & 1/\rho_{h} & \nu_{0} \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{K}} \underbrace{\begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{K}} \underbrace{\begin{pmatrix} X \\ Y \\ Z \end{pmatrix}}_{\mathbf{K}}$$

$$\boldsymbol{K} = \left[\begin{array}{ccc} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{array} \right]$$

Various Modeling Complexities of K

The Unit of Focal Length: Depends on Image Coordinate's Unit

Camera Coordinate Frames: Moving Camera Around

We need to deal with 3D translations and rotations!

2D Rotation

$$X' = X \cos \theta + Y \sin \theta$$

$$Y' = Y \cos \theta - X \sin \theta$$

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

2D Rotation Matrix ${}^{B}\mathbf{R}_{A}$

24

3D Rotation Representation: Rotation Matrix

- An orthonormal matrix

 - $R^T = R^{-1}$

Basic rotation around X/Y/Z axis

an orthonormal matrix
• A real square matrix
• Whose columns & rows are orthonormal vectors
•
$$\det(R)=1$$
• $R^T=R^{-1}$

Basic rotation around X/Y/Z axis

$$R_x(\theta) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\theta & -\sin\theta \\ 0 & \sin\theta & \cos\theta \end{bmatrix}$$

$$R_y(\theta) = \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix}$$

$$R_z(\theta) = \begin{bmatrix} \cos\theta & -\sin\theta & 0 \\ \sin\theta & \cos\theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

3D Rotation Representation: Euler Angles

- 3 successive rotations
- Eulerian: with repetition in axis
 - XYX, XZX, YXY, YZY, ZXZ, ZYZ
- Cardanian: without repetition
 - XYZ, XZY, YZX, YXZ, ZXY, ZYX

$$\mathbf{R} = \mathbf{R}_z(\phi)\mathbf{R}_y(\theta)\mathbf{R}_z(\psi)$$

- 12 types
 - And you should always check handedness, intrinsic or extrinsic rotation

3D Rotation Representation: Axis-Angle Vector

- A 3D vector $\theta \hat{n} \in \mathbb{R}^3$
 - aka, rotation vector
- Conversion to rotation matrix by Rodrigues' rotation formula:

$$\mathbf{R}(\hat{\mathbf{n}}, \theta) = \mathbf{I} + \sin \theta [\hat{\mathbf{n}}]_{\times} + (1 - \cos \theta) [\hat{\mathbf{n}}]_{\times}^{2}$$

$$[\hat{\boldsymbol{n}}]_{\times} = \begin{bmatrix} 0 & -\hat{n}_z & \hat{n}_y \\ \hat{n}_z & 0 & -\hat{n}_x \\ -\hat{n}_y & \hat{n}_x & 0 \end{bmatrix}$$

3D Rotation Representation: Unit Quaternion

A 4D unit vector

$$\mathbf{q} = (\mathbf{v}, w) = (\sin \frac{\theta}{2} \hat{\mathbf{n}}, \cos \frac{\theta}{2})$$

 $\mathbf{q} = (x, y, z, w)$

Conversion to rotation matrix:

$$\mathbf{R}(\mathbf{q}) = \begin{bmatrix} 1 - 2(y^2 + z^2) & 2(xy - zw) & 2(xz + yw) \\ 2(xy + zw) & 1 - 2(x^2 + z^2) & 2(yz - xw) \\ 2(xz - yw) & 2(yz + xw) & 1 - 2(x^2 + y^2) \end{bmatrix}$$

Summary of 3D Rotation Representation

- Rotation matrix (9 parameters)
- Euler (3 parameters)
 - Minimal
 - Many ambiguities
 - Gimbal Lock
- Axis-angle (3 parameters)
 - Minimal & continuous
 - 1 rotation ~ 2 axis-angle vectors
- Unit quaternion (4 parameters)
 - Almost minimal & continuous
 - 1 rotation ~ 2 unit quaternions
 - Easy inverse/multiplication
 - Interpolation using slerp

procedure $slerp(\boldsymbol{q}_0, \boldsymbol{q}_1, \alpha)$:

1.
$$q_r = q_1/q_0 = (v_r, w_r)$$

2. if
$$w_r < 0$$
 then $q_r \leftarrow -q_r$

3.
$$\theta_r = 2 \tan^{-1}(\|\boldsymbol{v}_r\|/w_r)$$

4.
$$\hat{\boldsymbol{n}}_r = \mathcal{N}(\boldsymbol{v}_r) = \boldsymbol{v}_r / \|\boldsymbol{v}_r\|$$

5.
$$\theta_{\alpha} = \alpha \, \theta_r$$

6.
$$\boldsymbol{q}_{\alpha} = (\sin \frac{\theta_{\alpha}}{2} \hat{\boldsymbol{n}}_r, \cos \frac{\theta_{\alpha}}{2})$$

7. return
$$q_2 = q_{\alpha}q_0$$

Recall the Basic Equation of Pinhole Camera Model

 ρ_w and ρ_h are the width and height of each pixel

$$\boldsymbol{p} = \underbrace{\begin{pmatrix} 1/\rho_{w} & 0 & u_{0} \\ 0 & 1/\rho_{h} & \nu_{0} \\ 0 & 0 & 1 \end{pmatrix}}_{\boldsymbol{K}} \underbrace{\begin{pmatrix} f & 0 & 0 \\ 0 & f & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\boldsymbol{K}} \begin{pmatrix} X \\ Y \\ Z \end{pmatrix}$$

$$\boldsymbol{K} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix}$$

Updated Equation of Pinhole Camera Model

• Putting intrinsics & extrinsics together:

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

intrinsics *K* extrinsics *R*, *t*

In OpenCV: $oldsymbol{K} \left[egin{array}{c|c} oldsymbol{R} & t \end{array}
ight]$

The Pinhole Camera Model Calculation Process in OpenCV

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = R \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} + t$$

$$x' = x/z$$

$$y' = y/z$$

$$u = f_x * x' + c_x$$

$$v = f_y * y' + c_y$$

Lens Distortion

Radial distortion

Lens Distortion

radial distortion

linear image

$$x_{corrected} = x(1 + k_1r^2 + k_2r^4 + k_3r^6)$$

$$y_{corrected} = y(1 + k_1 r^2 + k_2 r^4 + k_3 r^6)$$

Everything Together in OpenCV (Full Model)

Recall the Updated Equation of Pinhole Camera Model

Why do we put an extra 1 on both sides of the equation?

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = R \begin{bmatrix} X \\ Y \\ Z \end{bmatrix} + t$$

$$x' = x/z$$

$$y' = y/z$$

$$u = f_x * x' + c_x$$

$$v = f_y * y' + c_y$$

Euclidean Geometric Primitives

Point

$$\boldsymbol{x} = (x, y) \in \mathcal{R}^2$$
 $\boldsymbol{x} = \begin{bmatrix} x \\ y \end{bmatrix}$ $\boldsymbol{x} = (x, y, z) \in \mathcal{R}^3$

Points at infinity?

Homogeneous Representation of Euclidean Points

Inhomogeneous point

$$\boldsymbol{x} = (x, y) \in \mathcal{R}^2$$
 $\boldsymbol{x} = \begin{bmatrix} x \\ y \end{bmatrix}$ $\boldsymbol{x} = (x, y, z) \in \mathcal{R}^3$

Homogeneous point

$$\tilde{\boldsymbol{x}} = (\tilde{x}, \tilde{y}, \tilde{w}) \in \mathcal{P}^2$$

$$\tilde{\boldsymbol{x}} = (\tilde{x}, \tilde{y}, \tilde{w}) \in \mathcal{P}^2$$
 $\tilde{\boldsymbol{x}} = (\tilde{x}, \tilde{y}, \tilde{w}) = \tilde{w}(x, y, 1) = \tilde{w}\bar{\boldsymbol{x}}$

• Points at infinity (or ideal points): $\{(\tilde{x}, \tilde{y}, \tilde{w}) | \tilde{w} = 0\}$

Advantages of Homogeneous Representation

Homogeneous 2D line

$$\bar{\boldsymbol{x}} \cdot \tilde{\boldsymbol{l}} = ax + by + c = 0$$

$$\tilde{l} = (a, b, c)$$

• Homogeneous 3D plane

Advantages of Homogeneous Representation

- Joints and intersections
 - Intersection point of two lines

$$ilde{m{x}} = ilde{m{l}}_1 imes ilde{m{l}}_2$$

Line jointing two points

$$ilde{m{l}} = ilde{m{x}}_1 imes ilde{m{x}}_2$$

Duality between 2D lines and 2D points

Advantages of Homogeneous Representation

- Intersection of parallel lines ax+by+c=0 and ax+by+c'=0 ?
 - Point at infinity $(b,-a,0)^{\mathsf{T}}$
- Line at infinity (or ideal line)?

$$\mathbf{l}_{\infty} = (0, 0, 1)^{\mathsf{T}}$$

- The set of all ideal points
- The set of directions of lines

Projective Space

- Projective geometry
 - The study of the geometry of projective space
 - A point in 2D as a ray in 3D
 - No need to distinguish between points/lines at infinity and ordinary points
 - One of the most important theoretic foundation of geometric computer vision

Recall the Updated Equation of Pinhole Camera Model

In essence, this is a 3D-to-2D transformation/mapping

$$s \begin{bmatrix} u \\ v \\ 1 \end{bmatrix} = \begin{bmatrix} f_x & 0 & c_x \\ 0 & f_y & c_y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} r_{11} & r_{12} & r_{13} & t_1 \\ r_{21} & r_{22} & r_{23} & t_2 \\ r_{31} & r_{32} & r_{33} & t_3 \end{bmatrix} \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix}$$

- It is a composition of multiple kinds of transformations
 - 2D-to-2D (affine)
 - 3D-to-3D (euclidean)
 - 3D-to-2D (perspective)

2D-to-2D Transformations

Image from: Szeliski 2011

Hierarchy of 2D Transformations

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} oldsymbol{I} & oldsymbol{t} \end{array} ight]_{2 imes 3}$	2	orientation	
rigid (Euclidean)	$\left[egin{array}{c c} oldsymbol{R} & oldsymbol{t} \end{array} ight]_{2 imes 3}$	3	lengths	
similarity	$\left[\begin{array}{c c} s R \mid t\end{array}\right]_{2 \times 3}$	4	angles	
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{2 imes 3}$	6	parallelism	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{3 imes 3}$	8	straight lines	

Hierarchy of 3D Transformations

Transformation	Matrix	# DoF	Preserves	Icon
translation	$\left[egin{array}{c c} oldsymbol{I} & oldsymbol{t} \end{array} ight]_{3 imes4}$	3	orientation	
rigid (Euclidean)	$\left[egin{array}{c c} oldsymbol{R} & oldsymbol{t} \end{array} ight]_{3 imes4}$	6	lengths	
similarity	$\left[\begin{array}{c c} sR \mid t\end{array}\right]_{3\times4}$	7	angles	
affine	$\left[egin{array}{c} oldsymbol{A} \end{array} ight]_{3 imes4}$	12	parallelism	
projective	$\left[egin{array}{c} ilde{m{H}} \end{array} ight]_{4 imes4}$	15	straight lines	

3D to 2D Projection

Perspective projection

$$ilde{m{x}} = \left[egin{array}{ccccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array}
ight] ilde{m{p}}$$

3D to 2D Projection

- Orthographic projection
- Approximation of telephoto

$$m{ ilde{x}} = \left[egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 1 \end{array}
ight] m{ ilde{p}}$$

References for Next Week

- Forsyth & Ponce 2011:
 - Section 1.2, 1.3, 12.1
- Szeliski 2011:
 - Section 6.3.1
- Corke 2011:
 - Section 11.2, 11.1
- Hartley & Zisserman 2003:
 - Section 2.3, 4.1, 4.4, 7.1, 7.2, 7.4
- Linear algebra:
 - Szeliski 2011: section A.1.1, A.1.2, A.1.3, A.2, A.2.1
 - Hartley & Zisserman 2003: A5.1, A5.2, A5.3