Correction des exercices de TD

Table des matières

1	\mathbf{Cal}	culabilité	1		
	1.1	Divers	1		
		Variations sur le codage	6		

1 Calculabilité

1.1 Divers

Exercice 1 - Paradoxe

Montrer que les problèmes suivants engendrent un paradoxe.

- Le conseil municipal d'un village vote un arrêté municipal qui enjoint à son barbier (masculin) de raser tous les habitants masculins du village qui ne se rasent pas eux-même et seulement ceux-ci.
- 2. Un crocodile s'empare d'un bébé et dit à la mère : « si tu devines ce que je vais faire, je te rends le bébé, sinon je le dévore. ». En supposant que le crocodile tienne parole, que doit dire la mère pour que le crocodile rende l'enfant à sa mère? Une réponse usuelle de la mère est : « Tu vas le dévorer! »
- 1. Le barbier, s'il se rase, se rase lui-même, mais il est aussi rasé par le barbier. S'il ne se rase pas, il doit être rasé par le barbier, c'est à dire lui-même, donc il se rase. L'énoncé est faux (impossible).
- 2. Si le crocodile rend le bébé à la mère avec cette réponse, c'est qu'il comptait le dévorer. Seulement, s'il a l'intention de rendre le bébé, c'est qu'il n'a pas l'intention de le dévorer, donc il le dévorera.

Exercice 2 - Une preuve incorrecte

Nous considérons la fonction suivante donnée par l'algorithme 1 :

```
Algorithm 1: La fonction de Collatz

1 begin
2 | while n \neq 1 do
3 | if n \mod 2 = 0 then
4 | n := n/2
5 | else
6 | n := 3 \times n + 1
```

Actuellement nous ne savons pas si cette fonction termine $\forall n$. Êtes-vous d'accord avec la preuve suivante? « Si le problème de l'arrêt était décidable, il suffirait de l'appliquer à ce programme pour savoir si son exécution s'arrête. Or, on ne sait pas si son exécution s'arrête. D'où la contradiction. »

Le raisonnement est faux, la preuve est donc incorrecte. En effet, « on ne sait pas si son exécution s'arrête » signifie que soit elle s'arrête, soit elle ne s'arrête pas, on répète la question. Il n'y a pas de lien logique entre la première et la seconde phrase.

1.2 Variations sur le codage

Exercice 3 - Codage de couples d'entiers

Soit $Rang: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ tel que $Rang(x,y) = \frac{(x+y)(x+y+1)}{2} + y$.

- 1. Donner une version récursive de la fonction Rang.
- 2. Donner la fonction inverse.
- 3. Calculer Rang(4,5). Donner le couple pour lequel la valeur du codage est 8.

$$1. \ RangRec = \begin{cases} 0 & \text{si } x=0 \text{ et } y=0 \\ RangRec(0,x-1)+1 & \text{si } y=0 \\ RangRec(x+1,y-1)+1 & \text{sinon} \end{cases}.$$

- 2. On pose la fonction inverse $RangInv(n): \mathbb{N} \to \mathbb{N} \times \mathbb{N}$. On cherche d'abord x+y, on prend donc $x+y=max\{m\mid \frac{m(m+1)}{2}\leq n\}$. On pose t=x+y. Ainsi, comme $n=\frac{t(t+1)}{2}+y$, on a $y=n-\frac{t(t+1)}{2}$. De plus, comme t=x+y, pour retrouver x, il suffit de prendre x=t-y.
- 3. $Rang(4,5) = \frac{(4+5)(4+5+1)}{2} + 5 = \frac{9\times 10}{2} + 5 = 50$. Pour n=8, on cherche d'abord t. On a $t=max\{1,2,3\}=3$, et $\frac{t(t+1)}{2}=6$. On a donc y=8-6=2 et x=3-2=1. Le couple codé par n=8 est (1,2).

Exercice 4 - Codage de triplets

Soit c la fonction de codage pour les couples d'entiers vue dans l'exercice précédent.

- 1. Soit h la fonction de codage pour les triplets définie par h(x,y,z)=c(c(x,y),z). Quel est le doublet codé par 67? Quel est le triplet codé par 67?
- 2. Le couple (z,t) succède au couple (x,y) si c(z,t)=c(x,y)+1. Écrire la fonction successeur qui prend en paramètre un couple et retourne le couple successeur.
- 1. Pour n = 67, on cherche d'abord t. On a $t = max\{m|m \le 11\} = 11$. En effet, $\frac{t(t+1)}{2} = \frac{11 \times 12}{2} = \frac{132}{2} = 66$. On a donc y = 67 66 = 1 et x = 11 1 = 10. Comme 67 code (10, 1), pour avoir le triplet, on veut le couple codé par n = 10. De nouveau, on cherche $t = max\{1, 2, 3, 4\} = 4$. En effet, $\frac{4 \times 5}{2} = 10$. Donc y = 10 10 = 0 et x = 4 0 = 4. Le couple codé par n = 10 est (4, 0) et ainsi le triplet codé par n = 67 est (4, 0, 1).
- 2. La fonction c fait augmenter les couples comme une diagonale. Prenons les premiers couples :

c(x,y)	0	1	2	3	4	5	6	7	8	9
(x,y)	(0,0)	(1,0)	(0,1)	(2,0)	(1,1)	(0,2)	(3,0)	(2,1)	(1, 2)	(0,3)

On remarque que le successeur de (x, y) est (x - 1, y + 1) (qui est d'ailleurs l'inverse de ce qu'on avait fait à l'exercice précédent pour RangRec), et que si x = 0, le successeur est (y + 1, 0). Cela nous donne

la fonction suivante :
$$sucesseur(x,y) = \begin{cases} (y+1,0) & \text{si } x=0\\ (x-1,y+1) & \text{sinon} \end{cases}$$

Exercice 5 - Étude d'une équation fonctionnelle dans $\mathbb N$

Soit f une application de \mathbb{N} dans \mathbb{N} telle que : $\forall (m,n) \in \mathbb{N}, f(m^2+n^2) = f(m)^2 + f(n)^2$. Nous voulons montrer que f est :

- l'application nulle, donnée par : $\forall n \in \mathbb{N}, f(n) = 0$,
- l'application identité, donnée par : $\forall n \in \mathbb{N}, f(n) = n$.

Nous supposerons que a est l'entier naturel f(1).

- 1. Montrer que f(0) = 0. En déduire que $\forall n \in \mathbb{N}$, on a $f(n^2) = f(n)^2$.
- 2. Montrer alors que $a^2 = a$, donc que a est égal à 0 ou à 1.
- 3. Vérifier successivement les égalités f(2) = 2a, f(4) = 4a et f(5) = 5a.
- 4. Utiliser les valeurs f(4) et f(5) pour montrer que f(3) = 3a.
- 5. Utiliser les valeurs de f(1) et de f(5) pour montrer que f(7) = 7a.
- 6. Montrer que f(8) = 8a, f(9) = 9a, f(10) = 10a et f(6) = 6a.
- 7. Observer que

$$\forall m$$
, on a
$$\begin{cases} (2k)^2 + (k-5)^2 = (2k-4)^2 + (k+3)^2 \\ (2k+1)^2 + (k-2)^2 = (2k-1)^2 + (k+2)^2 \end{cases}$$

Montrer que $\forall n$, on a f(n) = an.

- 8. Conclure.
- 1. On a $m^2 + n^2 = 0 \Rightarrow m = 0$ et n = 0:

$$f(m^{2} + n^{2}) = f(m)^{2} + f(n)^{2}$$

$$\Rightarrow f(0) = f(0)^{2} + f(0)^{2}$$

$$\Rightarrow f(0) = 2f(0)^{2}$$

$$\Rightarrow f(0) - 2f(0)^{2} = 0$$

$$\Rightarrow f(0)(1 - 2f(0)) = 0$$

Il y a deux cas. Soit f(0) = 0, soit $1 - 2f(0) = 0 \Rightarrow f(0) = \frac{1}{2}$. Or, f est une fonction de \mathbb{N} dans \mathbb{N} , donc le seul résultat possible ici est f(0) = 0. On en déduit que $f(n^2) = f(0^2 + n^2) = f(0)^2 + f(n)^2 = f(n)^2$.

- 2. On sait que $f(n^2) = f(n)^2$. De plus, $1^2 = 1$, donc $f(1) = f(1)^2 \Rightarrow a = a^2$. Dans les entiers, seulement 0 et 1 vérifient cette égalité.
- 3. $f(2) = f(1^2 + 1^2) = f(1)^2 + f(1)^2 = a^2 + a^2 = 2a^2 = 2a$.
 - $f(4) = f(0^2 + 2^2) = f(0)^2 + f(2)^2 = (2a)^2 = 4a^2 = 4a.$
 - $f(5) = f(1^2 + 2^2) = f(1)^2 + f(2)^2 = a^2 + 4a^2 = 5a^2 = 5a.$
- 4. $f(5^2) = f(25) = f(3^2 + 4^2) = f(3)^2 + f(4)^2 = f(3)^2 + 16a^2$. De plus, $f(5^2) = f(5)^2 = (5a)^2 = 25a^2$. On a donc $f(3)^2 = 25a^2 16a^2 = 9a^2$. Ainsi, $f(3) = \sqrt{9a^2} = 3a$.
- 5. $f(5^2+5^2) = f(1^2+7^2) = f(50)$. On a $f(50) = f(5)^2 + f(5)^2 = 50a^2$ et $f(50) = f(1)^2 + f(7)^2 = a^2 + f(7)^2$. On a donc $f(7)^2 = 50a^2 a^2 = 49a^2$. Ainsi, $f(7) = \sqrt{49a^2} = 7a$.
- 6. $f(8) = f(2^2 + 2^2) = f(2)^2 + f(2)^2 = 4a^2 + 4a^2 = 8a^2 = 8a$.
 - $f(9) = f(3^2 + 0^2) = f(3)^2 + f(0)^2 = 9a^2 = 9a.$
 - $f(10) = f(3^2 + 1^2) = f(3)^2 + f(1)^2 = 9a^2 + a^2 = 10a^2 = 10a.$
 - $f(10^2) = f(8^2 + 6^2) = f(100)$. On a $f(100) = f(10^2) = f(10)^2 = 100a^2$ et $f(100) = f(8^2 + 6^2) = f(8)^2 + f(6)^2 = 64a^2 + f(6)^2$. On a donc $f(6)^2 = 100a^2 64a^2 = 36a^2$. Ainsi, $f(6) = \sqrt{36a^2} = 6a$.

7. On veut prouver l'hypothèse $H(n): \forall n, f(n) = an$. On prouve ça par induction :

Base On a prouvé précédemment tous les cas pour $n \leq 10$.

Induction On suppose $\forall i < n, H(i)$. Montrons H(n). Il y a deux cas : n pair, c'est à dire qu'il existe k tel que n = 2k ou bien n impair, c'est à dire qu'il existe k tel que n = 2k + 1.

— n est pair. On sait que $f((2k)^2 + (k-5)^2) = f((2k-4)^2 + (k+3)^2)$:

$$f((2k)^{2} + (k-5)^{2}) = f((2k-4)^{2} + (k+3)^{2})$$

$$\Rightarrow f(2k)^{2} + f(k-5)^{2} = f(2k-4)^{2} + f(k+3)^{2}$$

$$\Rightarrow f(2k)^{2} = f(2k-4)^{2} + f(k+3)^{2} - f(k-5)^{2}$$

$$\Rightarrow f(2k)^{2} = a^{2}(2k-4)^{2} + a^{2}(k+3)^{2} - a^{2}(k-5)^{2}$$

$$\Rightarrow f(2k)^{2} = a^{2}(4k^{2} - 16k + 16) + a^{2}(k^{2} + 6k + 9) - a^{2}(k^{2} - 10k + 25)$$

$$\Rightarrow f(2k)^{2} = a^{2}(4k^{2})$$

$$\Rightarrow f(2k) = \sqrt{4a^{2}k^{2}}$$

$$\Rightarrow f(2k) = a2k$$

— n est impair. On sait que $f((2k+1)^2 + (k-2)^2) = f((2k-1)^2 + (k-2)^2)$:

$$f((2k+1)^2 + (k-2)^2) = f((2k-1)^2 + (k+2)^2)$$

$$\Rightarrow f(2k+1)^2 + f(k-2)^2 = f(2k-1)^2 + f(k+2)^2$$

$$\Rightarrow f(2k+1)^2 = f(2k-1)^2 + f(k+2)^2 - f(k-2)$$

$$\Rightarrow f(2k+1)^2 = a^2(2k-1)^2 + a^2(k+2)^2 - a^2(k-2)^2$$

$$\Rightarrow f(2k+1)^2 = a^2(4k^2 - 4k + 1) + a^2(k^2 + 4k + 4) - a^2(k^2 - 4k + 4)$$

$$\Rightarrow f(2k+1)^2 = a^2(4k^2 + 4k + 1)$$

$$\Rightarrow f(2k+1) = \sqrt{a^2(4k^2 + 4k + 1)}$$

$$\Rightarrow f(2k+1) = a(2k+1)$$

Conclusion On a prouvé que $\forall i \leq 10, H(i)$ et $\forall i < n, H(i) \Rightarrow H(n)$, on a donc bien $\forall n, f(n) = an$.

- 8. On a prouvé que $\forall n, f(n) = an$. De plus, on sait que a = 0 ou a = 1. Ainsi, il y a deux cas :
 - $--\forall n, f(n) = 0 \times n = 0$ (application nulle),
 - $\forall n, f(n) = a \times n = n$ (application identité).

On a prouvé que les deux seules applications de $\mathbb{N} \to \mathbb{N}$ telles que $\forall (m,n) \in \mathbb{N}, f(m^2 + n^2) = f(m)^2 + f(n)^2$ sont l'application nulle et l'application identité.

Exercice 6 - Codage rationnels

Proposer un codage pour les nombres rationnels.

On peut proposer un codage naïf : toute fraction rationnelle $\frac{a}{b}$ se réduit en fraction $\frac{p}{q}$ avec p,q premiers. Pour coder les rationnels, on pourrait prendre c(p,q). Cependant, ce codage est très inefficace, car il y a énormément de couples non premiers entre eux.

Une méthode moins naïve de faire serait de poser la fonction σ qui prend (p+q) et ordonne par p (numérateur) croissant lors de l'égalité :

$\sigma(p/q)$	1	2	3	4	5	6
$\frac{p}{q}$	$\frac{0}{1}$	$\frac{1}{1}$	$\frac{1}{2}$	$\frac{2}{1}$	$\frac{1}{3}$	$\frac{3}{1}$

On remarque qu'on saute $\frac{2}{2}$, car on peut réduire la fraction a $\frac{1}{1}$.

Exercice 7 - Codage des listes d'entiers

Pour coder les listes d'entiers, peut-on :

- $1. \ \ Faire \ la somme \ des \ entiers \ de \ la \ liste, \ et \ \grave{a} \ somme \ \acute{e}gale \ prendre \ l'ordre \ lexicographique?$
- 2. Faire comme pour les mots : prendre les listes les plus courtes d'abord et à égalité de longueur l'ordre lexicographique ?
- 1. Non, car dans ce cas, on n'aurait que les listes qui contiennent des $0:(0),(0,0),(0,0,0),\ldots$
- 2. Non, car dans ce cas, on n'aurait que les listes de longueur $1:(0),(1),(2),\ldots$