Sections planes de solides

- exercices -

Exercice 1

On découpe un cube ABCDEFGH de façon à obtenir deux solides : une pyramide BEGF à base triangulaire et un deuxième solide S.

- 1. Combien S a-t-il de faces?
- 2. Compléter le tableau suivant :

	est	est	est
	rectangle	équilatéral	isocèle
le triangle			
BFG			
le triangle			
EBG			
le triangle			
EBC			

3. Sans faire de calculs, construire le triangle BFG en vraie grandeur quand l'arête du cube mesure 5 cm.

Exercice 2

ABCD est une pyramide. I est le milieu du segment [AB] et J le milieu du segment [AC].

K et L sont deux points du segment [AD], distincts de son milieu et de ses extrémités.

- 1. Le point K est-il un point du plan ACD? Du plan BCD?
- 2. Lest-il un point du plan ABD? Du plan ABC?
- 3. Les droites (IK) et (BD) sont-elles dans un même plan? Sécantes?
- 4. Les droites (AB) et (DC) sont-elles dans un même plan ? Sécantes ?
- 5. Les droites (JK) et (BC) sont-elles dans un même plan? Sécantes?
- 6. Les droites (AB) et (CD) sont-elles dans un même plan? Parallèles?
- 7. Les droites (LJ) et (BC) sont-elles dans un même plan ? Parallèles ?

On a empilé et collé des cubes de 1,5 cm d'arête de façon à obtenir le solide représenté ci-contre :

- 1. Utiliser un quadrillage de carreaux de 5 mm de côté pour dessiner en vraie grandeur une vue de profil du solide.
- 2. Calculer le volume en cm³ du solide.
- 3. On veut peindre le solide obtenu, dessous compris. Quel est le nombre de faces de petits cubes à peindre ?

Exercice 4

Le parallélépipède rectangle de la figure ci-contre a été coupé par un plan parallèle à l'arête [BC].

On donne EF = 25 cm, HK = 20 cm, KE = 15 cm.

- 1. Quelle est la nature de la section plane EFGH?
- 2. Calculer HE.
- 3. Que peut-on déduire des questions précédentes pour le quadrilatère EFGH ?

Exercice 5

ABCDEFGH est un parallélépipède rectangle avec AB = 16 cm, AD = 12 cm, AE = 8 cm. Dans chaque cas, indiquer la nature et calculer l'aire de la section de ABCDEFGH par le plan P.

1. Pest parallèle à (AB) et passe par Det E.

2. Pest parallèle à (BF) et passe par A et I.

- 3. P est le plan parallèle à (BF) et passant par A et C.
- 4. P est un plan parallèle à la face ABCD.
- 5. P est un plan parallèle à la face ADHE.
- 6. P est le plan parallèle à la face ABFE.

Exercice 6

Un demi-cylindre est collé sur deux faces opposées du parallélépipède rectangle ABCDEFGH.

AB = 7 cm, BC = 4 cm, BF = 3 cm.

- 1. Dessiner la section de cet objet parallèle à la face ABCD.
- 2. Dessiner la section de cet objet par un plan parallèle à la face ABFE et passant par le milieu du segment [AD].
- 3. Dans les deux cas précédents, calculer l'aire de la section.

Exercice 7

Un cylindre a pour bases des disques de centres O et O', de rayon 5 cm. La hauteur du cylindre est de 6 cm. Un plan parallèle à (OO') coupe le cylindre selon le rectangle ABCD.

H est le pied de la hauteur issue de O dans le triangle OAB et OH = 3 cm.

- 1. Quelle est la nature du triangle OAB?
- 2. Calculer BH.
- 3. Calculer l'aire de la section.
- 4. Dessiner la section en vraie grandeur.

Exercice 8

Un cône de révolution a pour hauteur 10 cm. Sa base a pour centre O et pour rayon 8 cm. Le cône est coupé par un plan parallèle à la base et passant à 7 cm du sommet S. A est un point du cercle de base. Le plan coupe la génératrice [AS] en B et la hauteur [SO] en I.

Quel est le rayon de la section du cône par ce point ?

Exercice 9

Cette figure représente une pyramide régulière de sommet S dont la base est un hexagone régulier de centre O et de côté 6 cm. Sa hauteur est de 8 cm. On coupe cette pyramide par un plan parallèle à sa base à 3 cm au-dessus de sa base.

- 1. Pourquoi le triangle OAB est-il équilatéral?
- 2. Calculer la valeur exacte de SA.
- 3. Calculer les valeurs exactes de CI et SC.
- 4. Calculer le périmètre de la section.

Exercice 10

ABCDEFGH est un parallélépipède rectangle a base carrée. On donne : AD = 3 cm, CG = 4 cm.

- 1. Calculer le volume en cm³ de la pyramide de sommet G et de base ABCD.
- 2. Calculer DG.
- 3. On admet le triangle AGD est rectangle en D.
 - a. Calculer la valeur exacte de la longueur AG, puis en donner l'arrondi au millimètre.
 - b. Calculer la mesure, arrondie au degré, de l'angle $\widehat{\mathsf{AGD}}$.
- 4. On admet que le triangle ABG est rectangle en B. Calculer l'aire latérale de la pyramide.

Exercice 11

On considère une pyramide régulière dont la base est un carré ABCD, dont le sommet est le point S, et qui est représentée ci-dessous en perspective cavalière.

On sait que [AB] mesure 20 cm et que la hauteur [SO] mesure 18 cm.

- 1. Calculer le volume V de la pyramide.
- 2. On coupe la pyramide par un plan parallèle au plan de la base ABCD. Ce plan coupe [SA] en A', [SB] en B', [SC] en C', [SD] en

D' et [SO] en O' tel que $\frac{SA'}{SA} = \frac{3}{5}$. Après avoir énoncé la propriété utilisée, calculer :

- a. SO' et A'B'.
- b. Le volume V' de la pyramide SA'B'C'D'.

