BE3 Clustering

${\bf Tariq}~{\bf CHELLALI}$

$January\ 13,\ 2024$

Contents

1	Trav	vail A	3
	1.1	EXERCICE I	3
	1.2	EXERCICE II	3
	1.3	EXERCICE III	3
	1.4	EXERCICE IV	3
	1.5	EXERCICE V	4
	1.6	EXERCICE VI	5
	1.7	EXERCICE VII	5
	1.8	EXERCICE VIII	6
	1.9	EXERCICE IX	7
	1.10	EXERCICE X	7
	1.11	EXERCICE XI	8
	1.12	EXERCICE XII	8
2	Trav	vail B	9
	2.1	EXERCICE XIII	9
	2.2	EXERCICE XIV	9
	2.3	EXERCICE XV	9
	2.4	EXERCICE XVI	10
	2.5	EXERCICE XVII	10
	2.6	EXERCICE XVIII-XIX	10
	2.7	EXERCICE XX	10
	2.8	EXERCICE XXI	11
3	Trav	vail C	11
•	3.1	EXERCICE XXII	
	3.2	EXERCICE XXIII	
	3.3	EXERCICE XXV	
	3.4	EXERCICE XXVI	
	3.5	EXERCICE XXVII	
	3.6	EXERCICE XXVIII	
	3.7	EXERCICE XXIX	
4	Ther	vail D	15
4	1rav 4.1	EXERCICE XXXIII	
	4.1	EXERCICE XXXIV	
	$\frac{4.2}{4.3}$	EXERCICE XXXV	
	4.5	EARNOICE AAAV	T (

List of Figures

1	fig exo 4: En haut, FarthestFirst. En bas, SimpleKmeans	4
2	fig exo 6: SimpleKmeans (seed 20)	5
3	fig exo 7: En haut, couleur = Play. En bas, couleur = Cluster	6
4	fig exo 8: En haut, couleur = Play. En bas, couleur = Cluster2	7
5	fig exo 11: Cluster assignement pour SimpleKMeans (seed = 1000)	8
6	fig – En haut : DBScan. En bas : EM (exo 20)	
7	fig exo 33: le nombre d'instances en fonction de Petal Length	15
8	fig exo 33; bas, le nombre d'instances en fonction de Petal Width	16
9	fig exo 33: Classes en fonction des clusters	16
10	fig exo 34: Classes en fonction des clusters pour deux méthodes de choix du nombre de	
	clusters	17
11	fig exo 34: Classes en fonction des clusters pour deux méthodes de choix du nombre de	
	clusters	17
12	fig exo 35: Clusters en fonction des classes et statistiques pour 1	18
13	fig exo 35: Clusters en fonction des classes et statistiques pour 2	18

1 Travail A

1.1 EXERCICE I

	Outlook	Temperature	Humidity	windy	play
cluster 0	overcast	mild	high	True	yes
cluster 1	sunny	hot	high	False	no

Table 1: Centroides pour Farthest First

1.2 EXERCICE II

	Outlook	Temperature	Humidity	windy	play
cluster 0	sunny	mild	high	False	yes
cluster 1	overcast	hot	normal	True	yes

Table 2: Centroides pour SimpleKMeans

1.3 EXERCICE III

On observe que les centroides obtenus grâce aux deux algorithmes diffèrent en raison des disparités entre ces deux méthodes. FarthestFirst privilégie initialement les les centroides les plus dispersées et termine en une seule itération en affectant chaque instance au cluster ayant le centre le plus proche. En revanche, SimpleKmeans choisit aléatoirement les centres initiaux et les met à jour progressivement en assignant les instances au centre le plus proche, puis en recalculant les centres de chaque cluster.

Les valeurs de la variable "Play" en fonction de l'appartenance au cluster pour chaque instance sont représentées graphiquement. On note que, pour l'algorithme FarthestFirst, on a :

- Cluster 0 avec 8 (Play = oui) et 2 (Play = non)
- Cluster 1 avec 1 (Play = oui) et 3 (Play = non)

En ce qui concerne l'algorithme SimpleKmeans, on a :

- Cluster 0 avec 6 (Play = oui) et 4 (Play = non)
- Cluster 1 avec 3 (Play = oui) et 1 (Play = non)

Dans notre étude de cas, l'utilisation de l'algorithme FarthestFirst permet une meilleure distinction entre les instances ayant Play = oui et celles ayant Play = non.

1.4 EXERCICE IV

Outlook:	Overcast	Outlook:	Rainy
Windy:	False	Windy:	False
Outlook:	Overcast	Outlook:	Rainy
Windy:	True	Windy:	True

Table 3: Première table

Figure 1: fig exo 4: En haut, FarthestFirst. En bas, SimpleKmeans

Outlook:	Sunny	Outlook;	Rainy
Windy:	False	False	False

Table 4: Deuxième table

1.5 EXERCICE V

On exécute l'algorithme Simple K
Means avec seed =20. Le centroïde du cluster 0 n'a pas subi
 de modification par rapport à notre première analyse avec seed =10. Par contre, le centroïde du cluster 1 a évolué. Voici les centroïdes correspondant:

	Outlook	Temperature	Humidity	windy	play
cluster 0	sunny	mild	high	False	yes
cluster 1	sunny	cool	normal	True	no

Table 5: Centroides pour SimpleKMeans avec seed = 20 (exo5)

1.6 EXERCICE VI

Pour l'algorithme Simple K
Means, le cluster 0 est constitué des instances avec les valueurs d'Outlook et Windy suivantes :

Outlook	sunny	Outlook	Overcast
Windy	False	Windy	False
Outlook	Rainy	Outlook	
Windy	False	windy	

Table 6: Table exo-6

Figure 2: fig exo 6: SimpleKmeans (seed 20)

1.7 EXERCICE VII

On appliquant farthest first :

Outlook	sunny	Outlook	rainy
Windy	False	Windy	True

Table 7: fig exo7

Figure 3: fig exo 7: En haut, couleur = Play. En bas, couleur = Cluster

1.8 EXERCICE VIII

De même pour l'algorithme SimpleKMeans. On obtient :

Outlook:	sunny	Outlook:	rainy
windy:	false	windy:	True
Outlook:	overcast	Outlook:	
Windy:	False	windy	

Table 8: table exo 8

Figure 4: fig exo 8: En haut, couleur = Play. En bas, couleur = Cluster2

1.9 EXERCICE IX

On lance l'algorithme Simple K
Means avec seed =20 et num Clusters =2 et Fathest First avec num
Clusters =2 en sélectionnant l'option "Classes to clusters evaluation"

	FarthestFirst	SimpleKmeans
Faux Positifs	4	4
Faux négatifs Taux d'erreur	4 42,86%	4 42,86%

Table 9: table ex 9

1.10 EXERCICE X

L'algorithme Simple K
Means avec seed = 1000 est l'algorithme qui génère le meilleur résultat avec 21% d'erreur

Algorithme	Seed	Taux d'err	play= yes Mal placées	Play=no Mal Placées
SimpleKmeans	1	36	3	2
SimpleKmeans	10	50	3	4
SimpleKmeans	20	42	4	4
SimpleKmeans	50	50	4	3
SimpleKmeans	100	36	3	2
SimpleKmeans	1000	21	2	1
FarthestFirst	1	42	4	4
FarthestFirst	10	35	2	3
FarthestFirst	20	42	4	4
FarthestFirst	50	36	3	2
FarthestFirst	100	35	2	3
FarthestFirst	1000	36	3	2

Table 10: table exo 10

1.11 EXERCICE XI

En visualisant les clusters:

Figure 5: fig exo 11: Cluster assignement pour SimpleKMeans (seed = 1000)

Outlook	sunny	Outlook	Overcast
Windy	False	windy	False
Outlook	Rainy	Outlook	
Windy	False	Windy	

Table 11: table exo11

1.12 EXERCICE XII

La meilleure méthode semble être la 2, qui présente le taux d'erreur le plus faible (970) pour un nombre d'instances testées trois fois plus élevé (148) et donc un nombre de calculs de distance plus élevé. La méthode 1 présente un nombre élevé d'erreurs (1510) pour un grand nombre d'instances classées (400+), mais cela est normal, car l'essai a été effectué sur des données d'entraînement. Les méthodes 3 et 4 ont un taux d'erreur similaire (1300-1400) pour un nombre d'instances classées similaire (43-44).

Méthode	Train	Test	SSE
1	100%	100%	1510
	$Cluster \ 0$	214 (49%)	
	Cluster 1	221 (51%)	
2	66%	33%	970
	Cluster 0	73 (49%)	
	Cluster 1	75 (51%)	
3	90%	10%	1206
	$Cluster \ 0$	25~(58%)	
	Cluster 1	18 (42%)	
4	10%	90%	1510
	Cluster 0	170 (48%)	
	Cluster 1	181 (52%)	

Table 12: table exo 12

2 Travail B

2.1 EXERCICE XIII

Après avoir effectué les tests sur differentes valeurs de MinPoints 2, 3, 4 et 6 tout en laissant les autres paramètres par défaut , nous avons constaté que la valeur de minPoints qui donnait le meilleur taux d'erreur était 6, avec un taux d'erreur de 21% et 14 clusters.

ſ	Algo	MinPoints	Taux d'err	Class = Democrat mal placées	Class = Republican mal placées
ſ	DBSCAN	5	21%	45	50

Table 13: table exo 13

Nous remarquons qu'un grand nombre d'instances (313) n'ont pas pu être classées dans un cluster avec un MinPoint egale à . Cela peut être dû à la valeur de minPoints choisie qui est trop élevée et qui ne permet pas à ces instances de former un cluster valide

2.2 EXERCICE XIV

On fixant la valeur de minPoints à 2. On fait varier la valeur de entre 1 et 1.2. On constate que le meilleur taux d'erreur était obtenu pour = 1.2.

A	lgo	Epsilon	Taux d'err	Class = Democrat mal placées	Class = Republican mal placées
DBS	SCAN	1.2	9%	15	26

Table 14: table exo 14

2.3 EXERCICE XV

La méthode DBSCAN donne une erreur. A cause, du cluster vide.

On fait varier les paramètres des deux autres algorithmes et on note les meilleures métriques trouvées dans le tableau ci-dessous :

Algo	Paramétre	Meilleur LV	NB clusters	Taux d'erreur
SimpleKmean	numClusters = 2	-7.7	2	12.64%
FarthestFirst	numClusters = 2	-7.74	2	12.90%

Table 15: table exo 15

On note que les meilleurs algorithmes sont obtenus pour numClusters = 2.

2.4 EXERCICE XVI

Algo	Seed	Taux d'err	Play=yes Mal placées	Play=No Mal placées
EM	1000	35%	2	3

Table 16: table exo 16

Changer le seed, ne change rien. Cela s'explique par le petit nombre de clusters

2.5 EXERCICE XVII

Cluster	Outlook	Temperature	humidity	windy	Play
Cluster 0	rainy	70	81	True	No
Cluster 1	Overcast	82	84	False	Yes

Table 17: table exo 17

2.6 EXERCICE XVIII-XIX

	Algo	Cutoff	Taux d'err	Play = Yes mal placées	Play = No Mal placées
Ì	CobWeb	0.3	35%	0	5

Table 18: table exo 18-19

2.7 EXERCICE XX

Les méthodes DBScan et EM ont été appliquées sur la base de données Labor. DBScan avec minpoints = 3 et epsilon = 1.1 a donné le résultat dans la figure ci-dessous. En comparant uniquement ces matrices de confusion, c'est DBScan qui nous a fourni le meilleur résultat.

```
Class attribute: class
Classes to Clusters:
  0 1 <-- assigned to cluster
 3 4 | bad
 29 0 | good
Cluster 0 <-- good
Cluster 1 <-- bad
                                               5.2632 %
Incorrectly clustered instances :
Class attribute: class
Classes to Clusters:
 0 1 2 <-- assigned to cluster
 9 9 2 | bad
29 1 7 | good
Cluster 0 <-- good
Cluster 1 <-- bad
Cluster 2 <-- No class
Incorrectly clustered instances: 19.0 33.3333 %
```

Figure 6: fig – En haut : DBScan. En bas : EM (exo 20)

2.8 EXERCICE XXI

Avec Hierarchical Clustering, en faisant uniquement varier le nombre de clusters, les résultats d'attribution sont un peu meilleurs (une instance mieux classée) avec un cluster plutôt que deux (toutes les instances attribuées à la même classe), même si avoir deux clusters a en réalité plus de sens

```
=== Model and evaluation on training set ===
=== Model and evaluation on training set ===
                                                            Clustered Instances
Clustered Instances
                                                                  13 ( 93%)
      14 (100%)
                                                                   1 ( 7%)
Class attribute: play
                                                            Class attribute: play
Classes to Clusters:
                                                            0 1 <-- assigned to cluster
 0 <-- assigned to cluster
                                                            5 0 | no
5 | no
                                                           Cluster 0 <-- yes
Cluster 1 <-- No class
Cluster 0 <-- yes
                                                35.7143 % Incorrectly clustered instances : 6.0 42.8571 %
Incorrectly clustered instances : 5.0
```

3 Travail C

3.1 EXERCICE XXII

- Groupe 1: Cluster 0 et Cluster 1 ont des caractéristiques similaires, étant principalement composés de femmes vivant en zone rurale.
- Groupe 2: Cluster 4 et Cluster 5 ont des caractéristiques similaires avec des hommes principalement vivant en zone urbaine
- Groupe3: Les deux clusters 2 et 3 partagent des tendances similaires telles que la possession d'un compte courant et l'absence de prêt hypothécaire, mais diffèrent dans le revenu et la zone de résidence.

3.2 EXERCICE XXIII

Les détails fournis confirment en grande partie les observations précédentes, mais apportent des nuances supplémentaires. Voici quelques points clés :

Groupe 1:

- Les Clusters 0 et 1 sont principalement composés de femmes vivant en zone rurale.
- Les deux clusters ont des caractéristiques similaires en termes de sexe, région (RURAL), et certaines caractéristiques financières.

Groupe 2:

- Les Clusters 4 et 5 sont similaires, comprenant principalement des hommes vivant en zone urbaine.
- Les caractéristiques communes incluent le sexe (MALE), la région (INNER_CITY), et d'autres similitudes dans les attributs financiers.

Groupe 3:

- Les Clusters 2 et 3 partagent des similitudes, telles que la possession d'un compte courant, l'absence de prêt hypothécaire, et d'autres caractéristiques.
- La différence notable réside dans le revenu moyen, avec le Cluster 3 ayant un revenu moyen plus élevé que le Cluster 2.
- La région de résidence varie également, avec le Cluster 2 en INNER_CITY et le Cluster 3 en TOWN.

3.3 EXERCICE XXV

Parmi les 60 instances du jeu de test, 35 instances (58%) appartiennent au Cluster 0, et 25 instances (42%) appartiennent au Cluster 1.

On variant le parametre seed de 10-100, on remarque que la meilleur valeur du SSE est celle donnée par un seed égale à 50 avec un SSE

```
Number of iterations: 3
Sum of within cluster distances: 1745.336892101037
```

3.4 EXERCICE XXVI

En appliquant la méthode J48, nous retrouvons le résultat suivant:

```
=== Stratified cross-validation ===
=== Summary ===
Correctly Classified Instances
                                        58
                                                         96.6667 %
Incorrectly Classified Instances
                                         2
                                                          3.3333 %
Kappa statistic
                                         0.9327
Mean absolute error
                                         0.0361
Root mean squared error
                                         0.1755
                                         7.2395 %
Relative absolute error
Root relative squared error
                                        35.0999 %
Total Number of Instances
                                        60
=== Detailed Accuracy By Class ===
TP Rate FP Rate Precision Recall
                                                          ROC Area PRC Area Class
                                      F-Measure MCC
         0,000
0,929
                  1,000
                             0,929
                                      0,963
                                                 0,935
                                                          0,993
                                                                     0,987
                                                                               0
                                                                     0,989
1,000
         0,071
                  0,941
                             1,000
                                      0,970
                                                 0,935
                                                          0,993
                                                                               1
         0,038
                  0,969
                             0,967
                                      0,967
                                                 0,935
                                                          0,993
                                                                     0,988
0,967
=== Confusion Matrix ===
         <-- classified as
 26 2 | a = cluster0
  0 32 | b = cluster1
```

3.5 EXERCICE XXVII

On appliquant la méthode EM, avec un seed = 500 et nplis = 20: on trouve le résultat suivant avec une valeur de log-vraisamplance maximale:

EM					
=					
		_			
	ters selected	•	alidation: 5	i	
Number of itera	ations perform	ned: 15			
	Cluster				
Attribute	0	1	2	3	4
	(0.18)	(0.29)	(0.19)	(0.05)	(0.29)
ige					
mean	61.1454	37.5106	25.4182	45.5993	46.5198
std. dev.	4.7222	11.9476	5.3634	6.637	9.1348
sex					
FEMALE	56.9535	85.3787	58.2112	16.1923	88.2643
MALE	51.9362	88.4345	60.4091	17.7938	86.4263
[total]	108.8897	173.8133	118.6203	33.9861	174.6906
region					
INNER_CITY	51.3678	76.7333	59.6023	6.7372	79.5593
TOWN	22.2461	54.6562	32.3035	16.9021	51.8921
RURAL	24.2126	22.8039	17.8627	7.0485	29.0724
SUBURBAN	13.0632	21.6199	10.8518	5.2983	16.1668

[total]	110.8897	175.8133	120.6203	35.9861	176.6906	
income	47926.8926	01/7/ 0/15	14067 6607	20100 1006	20545 0070	
	7766.5667					
sta. dev.	1100.5001	1104.5019	4591.0105	7091.0900	7010.0299	
married						
NO	33.3427	53.3108	40.5581	15.7436	66.0447	
YES	75.547	120.5024	78.0622	18.2425	108.6459	
[total]	108.8897	173.8133	118.6203	33.9861	174.6906	
children						
mean	1.0881	0	1.6435	0.541	1.6314	
std. dev.	1.0473	0	0.8871	0.6102	0.9368	
car						
NO	51.571	93.258	67.637	20.919	75.6149	
YES			50.9833		99.0756	
[total]						
save_act	20010001	1,0,0100	110.0200	0010001	1, 1, 0, 0, 0	
NO	2 7273	78 7542	45 5862	3 6413	60.2909	
YES			73.0342			
[total]		173.8133				
current_act	100.0007	170.0100	110.0200	00.0001	171.0000	
NO	23 3769	45 5695	25.0673	11 8629	44.1234	
YES			93.5531		130.5672	
[total]	108.8897					
mortgage	100.0037	173.0133	110.0203	33.9001	174.0300	
MOI tgage	7/ 0151	110 2021	78.1268	7 071	125.504	
YES			40.4935		49.1866	
[total]	108.8897					
	100.0091	173.0133	110.0203	33.9001	174.0900	
pep	66 0106	72 2606	30.3323	16 0140	01 6647	
YES					91.6647	
NO			88.2881		83.0259	
[total]	108.8897	173.8133	118.6203	33.9861	174.6906	
Time taken to	build model	(full train:	ing data) :	3.8 seconds	5	
=== Model and	evaluation or	n training s	set ===			
Clustered Ins	tances					
0 72 (
1 253 (
2 102 (
3 8 (
4 165 (28%)					

3.6 EXERCICE XXVIII

Log likelihood: -17.68175

L'algorithme EM a automatiquement sélectionné 5 clusters en utilisant la validation croisée chacun caractérisé par des distributions spécifiques d'attributs. Avec une log likelihood de -17.68175

3.7 EXERCICE XXIX

Voici un tableau qui résume les résultats trouvées:

Algorithme de Clustering	Log Vraisemblance
SimpleKMeans	-21.99761
Canopy	-21.63505
Cobweb	-22.41547
FilteredClusterer (avec EM)	-21.99761
Hierarchical	-22.10968
EM	-21.28495

Table 19: Résumé de la log-vraisemblance pour chaque algorithme de clustering.

Dans ce cas, l'algorithme EM a la log-vraisemblance la plus élevée, suivi de SimpleKMeans, Hierarchical, Canopy, FilteredClusterer, et enfin Cobweb.

4 Travail D

4.1 EXERCICE XXXIII

On fait un clustering avec K-means en fixant le nombre de clusters à 3 clusters, sur le dataset iris-2D.arf.

Figure 7: fig exo 33: le nombre d'instances en fonction de Petal Length.

Il est notable que lorsque l'on utilise la longueur des pétales, les trois groupes sont clairement distingués, et il existe des variations minimales. De manière similaire, lorsqu'on considère la largeur des pétales, les différents groupes sont également bien séparés. Cela suggère que ces deux caractéristiques sont cruciales pour l'identification des spécimens d'iris. Si l'on représente graphiquement les trois classes en fonction des clusters, le résultat est le suivant :

Pour récapituler, presque chaque cluster correspond à une classe. Les résultats obtenus sont presque parfaits, bien qu'il existe quelques exceptions où la classe 3 est présente dans le cluster 2 (et vice versa). Dans cette analyse, l'attribut qui semble le plus distinctif entre les clusters est la largeur du pétale (petalwidth). Si nous effectuons une analyse similaire sur la base de données iris.arff, l'attribut qui semble le mieux séparer les clusters est la longueur du sépale (sepallength), même si les résultats obtenus ne sont pas totalement satisfaisants.

Figure 8: fig exo 33; bas, le nombre d'instances en fonction de Petal Width

Figure 9: fig exo 33: Classes en fonction des clusters

4.2 EXERCICE XXXIV

Lorsque nous utilisons l'algorithme de clustering EM avec un nombre maximum de clusters réglé à -1 (permettant à la méthode de les trouver automatiquement), nous obtenons une valeur de Log Likelihood de -1.61. Cette valeur mesure la qualité de la répartition des données dans les clusters. Cependant, si nous réglons le nombre maximum de clusters à 3, la valeur de Log Likelihood augmente à -2.055. Cela indique qu'en utilisant un nombre maximum de clusters plus élevé, la répartition des données dans les clusters devient moins efficace.

Pour comparer les résultats obtenus avec ces deux approches, vous pouvez utiliser un tableau qui présente la correspondance entre les classes et les clusters pour chaque méthode. À gauche, vous avez la méthode avec le nombre maximum de clusters réglé automatiquement à -1, et à droite, vous avez la méthode avec un nombre maximum de clusters fixé à 3.

Figure 10: fig exo 34: Classes en fonction des clusters pour deux méthodes de choix du nombre de clusters

Dans les deux scénarios, on peut observer qu'un des clusters regroupe des données appartenant à deux classes différentes, ce qui signifie qu'il est composé de données provenant de deux classes distinctes. Plus précisément, le cluster 2 regroupe deux classes lorsque le nombre maximum de clusters est réglé à -1 pour la détermination automatique, tandis que le cluster 0 regroupe deux classes lorsque le nombre maximum de clusters est fixé à 3. Cette situation peut s'expliquer par la similarité entre ces deux classes, ce qui peut rendre difficile leur séparation lors de l'utilisation d'un nombre limité de clusters.

Les comparaisons des nombres d'instances par attributs en affichant les clusters produisent des résultats similaires, à l'exception du fait que les résultats sont répartis en deux clusters de plus lorsque le nombre maximum de clusters est réglé à -1 :

Figure 11: fig exo 34: Classes en fonction des clusters pour deux méthodes de choix du nombre de clusters

En résumé, les résultats obtenus en utilisant un nombre maximum de clusters réglé à -1 semblent préférables, car ils conduisent à une légèrement meilleure valeur de log vraisemblance. De plus, l'ajout des clusters lorsque le nombre maximum est fixé à 3 ne semble pas apporter une valeur significative supplémentaire.

4.3 EXERCICE XXXV

En appliquant la technique de clustering EM sur l'ensemble d'entraı̂nement, qui représente 90 % des données, en utilisant l'ensemble de test fourni créé à partir de 10 % des données :

En examinant les visualisations, il est évident que toutes les instances ont été correctement classées. En d'autres termes, les instances sont réparties de manière uniforme dans les différents clusters, et il n'y a pas de valeurs aberrantes. Cela démontre que l'algorithme utilisé, à savoir le clustering EM, a bien fonctionné et a réussi à regrouper les données en clusters de similarité de manière satisfaisante.

2 - En ne prenant plus le test set de 10% mais avec la "Class to Cluster Evaluation" :

Lors de cette analyse, nous avons observé que 13 instances ont été mal classées, ce qui représente un nombre supérieur à celui de la première analyse. Toutefois, il est important de noter que la majorité de ces erreurs se sont produites au sein de la classe Iris-versicolor. Bien que ce clustering soit très performant pour les deux autres classes, il aurait été intéressant de le tester sur un nouvel ensemble

Figure 12: fig exo 35: Clusters en fonction des classes et statistiques pour 1

Figure 13: fig ex
o35: Clusters en fonction des classes et statistiques pour 2

de données. Comparativement aux résultats précédents, il semble que les résultats obtenus ici soient meilleurs pour la classe Iris-versicolor, mais moins satisfaisants pour les deux autres classes, où quelques erreurs ont été observées dans les données d'entraînement.