

- 의료AI 개발의 기회와 이슈
- 딥러닝 기반 의료 AI 개발 사례
 - 삼킴 장애 진단을 위한 VFSS영상에서의 Bolus 분석
 - 척추 질환 진단을 위한 Spinopelvic 파라미터 측정
 - 지식 증류를 통한 병리영상 분석모델 자기지도 학습
- 의료 AI도시를 위한 제안

의료 Al개발의 기회와 이슈

- 의료 AI 에 대한 요구 및 기회
 - 고령화, 지역 의료 전문가 부족
 - 딥러닝 등 AI 기술의 발전 (영상, 텍스트, 시계열 데이터 분석 기술)
 - 오픈소스 AI 모델의 발전
- 의료 AI 개발의 주요 이슈
 - 데이터 수집의 어려움 및 공개 데이터 부족
 - 데이터 레이블링의 높은 비용 (전문성 요구)
 - 질병 및 신체 부위의 다양성
 - 데이터 형태 및 특성의 다양성 (영상, 시계열 데이터, 텍스트 등)
 - 의료 영상의 낮은 화질, 스캔 장비 및 환경에 따른 화질 변화
 - X-ray, CT, MR, IHC vs. H&E
 - 모호성 (X-ray, CT에 잘 나오지 않는 장기)
 - 컴퓨팅 인프라에 대한 요구 증가
 - 신뢰성/안전성 이슈 및 제도적 규제
- → 의료 전문가와 AI전문가 간 긴밀한 협력 필요

의료 AI 개발 성공 사례

- 한동대 에스포항병원
 - 삼킴 장애 진단을 위한 VFSS 영상 분석 AI (PECI-Net)
 - 생성적 AI를 이용한 척추 질환 파라미터 측정 (HSpine)
 - 뇌 MR 영상으로부터 PWI 데이터 복원 SW
- 한동대 아주대학교 병원
 - 트랜스포머 기반 약물에 의한 간 질환 발생 예측
 - AI기반 치료 및 부작용 반응 예측 연구
- 한동대 의료AI 스타트업
 - 다중작업모델의 지속학습을 위한 뉴런 단위 가소성 제어 (w/ DeepBio)
 - 병리영상 분석 AI 모델의 자기지도 학습을 위한 지식 증류기법 (w/ DeepBio)
 - 인체 유래물에 의한 건강 모니터링 기법 개발을 (w/ HEM Pharma)
- Etc.

PECI-Net: 삼킴장애 진단을 위한 AI 모델

- 연하장애 (삼킴장애): 음식물을 인두와 식도를 거쳐 위로 보내는 과정에 이상이 생기는 증상
 - 뇌졸증 환자의 27~50%에서 발생
 - 음식물이 기도로 넘어갈 경우 폐렴의 원인이 됨 (뇌졸증 환자 주요 사망원인 중 하나)
- 비디오 투시 연하검사(Video Fluoroscopic Swallowing Study, VFSS)
 - 형광 물질이 포함된 음식물 덩어리(볼루스)를 삼키게 하고 이동 경로를 X-ray로 추적
- AI 기반 분석 시 기술적 이슈
 - X-ray 영상의 흐린 화질 (여러 기관의 중첩)
 - Bolus의 형태가 일정하지 않음
 - 식도, 기도 등이 X-ray영상에 잘 나타나지 않음

(a) A VFSS image

(b) The G.T. bolus region

PECI-Net: Bolus segmentation from video fluoroscopic swallowing study images using preprocessing ensemble and cascaded inference, Computers in Biology and Medicine, vol. 172, Apr., 2024. (IF 7.7)

PECI-Net: 삼킴장애 진단을 위한 AI 모델

• 전처리 앙상블 신경망 (PEN)

- 다수의 영상처리 알고리즘을 이용해 입력 영상 개선 (Sharpening, CLAHE 등)
- 신경망(PEN)을 이용해 개선 영상 결합
- PEN은 Bolus 검출기와 결합 학습

• 다단계 추론 신경망 (CIN)

- 먼저 X-ray에서 선명히 나타나는 영역 (경추 및 하악골)을 검출
- 그 결과를 참조해 Bolus 영역 검출

PECI-Net: 삼킴장애 진단을 위한 AI 모델

Comparison with previous studies.

Model	Bolus
UNet [17]	0.6262
TernausNet [18]	0.6891
TransUNet [25]	0.6829
HiFormer [52]	0.6651
SwinUNet [24]	0.6741
PECI-Net (Ours)	0.7345

The Results of Ablation Studies.

Model	Bolus	
TransUNet [25]	0.6829	
CIN (w/o PEN)	0.7156	(+3.27%)
PECI-Net (Ours)	0.7345	(+1.89%)

(4.54% inc)

HSpine: 척추질환 진단을 위한 Al 모델

- 척추 질환 진단 및 경과 예측을 위해서는 척추 파라미터 (spinal parameters) 측정 필요
- HSpine: 척추 영상 분할 및 척추 파라미터 측정 Al
 - Lumbar (요추), Sacrum (천골), Femoral Heads (대퇴골 두부)
 - Pelvic Tilt (PT), Sacral Slope (SS), Lumbar Lordosis (LL) 등

HSpine: 척추질환 진단을 위한 AI 모델

- 착추 영상 분할 후 특징점이나 외곽선으로부터 주요 파라미터 측정
- 척추 파라미터 측정의 기술적 어려움
 - 낮은 선명도, 장비에 따른 화질 변화, 요추 분절의 형태 유사성
 - Screw 포함 영상 분할 정확도 저하 (Screw 포함 데이터 수집 어려움)

생성적 모델을 이용한 척추 영상 복원

- 생성적 모델은 학습 데이터와 유사한 특성의 데이터 합성
 - Screw가 없는 척추 영상으로 학습된 생성적 모델(VQ-GAN)을 이용해 Screw 제거 가능
 - 그러나, 입력 영상을 변형시킬 수 있음

Screw가 없는 척추 영상 데이터 생성적 AI

생성적 모델을 이용한 척추 영상 복원

- 생성적 모델(AE)을 이용해 척추 X-ray로 부터 Screw 제거
- 원본 영상과 비교해 Screw 영역 추출
- Screw 영역 삭제 후 생성적 모델을 이용해 복원 (Inpainting)

척추 영상 분할 및 척추 파라미터 측정

• 척추영상 분할:TransUNet [Chen21]

HSpine 성능 평가 결과

척추 영상 분할 성능

Class	Implanted Image	Restored Image	성능 개선		
L1	0.83	0.80	-3.61%		
L2	0.79	0.88	11.39%		
L3	0.78	0.86	10.26%		
L4	0.75	0.87	16.00%		
L5	0.65	0.84	29.23%		
Sacrum	0.64	0.81	26.56%		
Femoral Head 1	0.86	0.85	-1.16%		
Femoral Head 2	0.86	0.86	-0.65%		
average	0.77	0.85	10.39%		

척추 파라미터 측정 성능

	PT	SS	ш		
절대오차	1.377	3.272	4.421		
표준편차	± 2.876	± 2.750	± 3.752		

[Restored Image]

→ 임상적으로 사용 가능한 수준

지식증류기반 병리영상 분석 AI 자기지도학급

 AI기반 병리영상 분석: AI를 이용해 현미경으로 촬영한 세포, 조직, 장기 표본 영상을 분석하는 응용 분야 (디지털 병리학)

예: 각종 암의 검출, 분할, 아종 분류, stage 분류 등 다양한 작업

- 작업 종류 및 데이터 특성이 다양함
- 데이터 수집의 어려움 (개인정보), 높은 레이블링 비용 (수작업, 전문성 요구)
- 일반 영상과 매우 다른 특성

병리 영상 예 (TCGA dataset)

RCKD: Response-Based Cross-Task Knowledge Distillation for Pathological Image Analysis, Bioengineering, 10(11), 1279, 2023.

▮한동대학교

응용분야 데이터 부족 극복 방안

- 사전학습 미세조정 전략
 - 1. 유사분야 대량 데이터로부터 일반적 지식 학습 (Pretraining)
 - 2. 응용 분야 데이터(소량) 데이터로 미세조정 (Fine-Tuning)
- 병리영상 사전학습의 어려운 점
 - 병리영상 분석 작업 및 데이터의 다양성, 높은 레이블링 비용
 - 일반적인 공개 영상 데이터(ImageNet 등)와 매우 다른 특성

응용분야 데이터 부족 극복 방안

- 사전학습 미세조정 전략
 - 1. 유사분야 대량 데이터로부터 일반적 지식 학습 (Pretraining)
 - 2. 응용 분야 데이터(소량) 데이터로 미세조정 (Fine-Tuning)
- 병리영상 사전학습의 어려운 점
 - 병리영상 분석 작업 및 데이터의 다양성, 높은 레이블링 비용
 - 일반적인 공개 영상 데이터(ImageNet 등)와 매우 다른 특성

RCKD: 지식 증류에 의한 사전 학습

- 기존 자기지도 학습기법은 병리영상 분석모델에 효과적이지 않음
 예) 다음 패턴 예측(LLM 방식), 대조학습(contrastive learning), MAE, etc.
- 지식 증류(Knowledge Distillation): 고성능 AI모델(Teacher)을 이용해 소형 AI 모델(Student)의 성능을 개선하는 학습 기법
 - 병리영상 분석 분야에서는 고성능 Teacher model 확보의 어려움

- 제안하는 방법: 지식 증류 기법을 이용한 병리영상 분석 AI 사전학습
 - 이종 작업 모델 간 지식 증류 (Cross-Task Knowledge Distillation)

RCKD: 지식 증류에 의한 사전 학습

- 이종 작업 모델 지식 증류(Cross-Task KD): 목적 작업이 서로 다른 AI 모델 간 지식 증류
- 세포핵 분할(Nuclei Segmentation) 모델을 이용한 병리영상 분석 AI모델 사전학습
 - 세포핵 분할을 학습한 모델은 병리영상의 패턴과 세포의 구조에 대한 지식을 학습함
 - 다양한 병리영상 분석 작업에 적용 가능
 - 직장암, 유방암, 림프암 검출 및 분류, 유방암 아형 분류/분할, 분비기관(gland) 분할 등

Nuclei Segmentation

RCKD 성능 평가

Model	Params	GMAC	Pretraining Methods	Classification Accuracy (%)				Segmentation Performance (mIoU)			
				BACH (Microscopy)	CRC	BreakHis	Lymph	Average Accuracy	BACH (WSI)	GlaS	Average mIoU
	10.6 M	5.35	Random Weight	53.7	80.2	85.0	63.7	70.6	0.355	0.83	0.592
	10.6 M	5.35	Barlow Twins	71.4	93.7	93.8	77.8	84.1	0.40	0.861	0.630
ResNet18	10.6 M	5.35	MoCo	59.7	93.8	96.9	76.0	81.6	0.391	0.864	0.627
_	10.6 M	5.35	SPT on ImageNet	74.4	95.5	95.5	74.6	85	0.373	0.866	0.619
	10.6 M	5.35	RČKD	83.9	95.0	98.0	93.8	92.6	0.415	0.915	0.665
CSAT	2.8 M	1.08	Random Weight	41.3	89.6	83.7	51.4	66.5	0.355	0.872	0.613
	2.8 M	1.08	Barlow Twins	47.0	90.2	83.7	53.9	68.7	0.342	0.81	0.576
	2.8 M	1.08	MoCo	47.1	90.6	85.5	52.6	68.9	0.35	0.783	0.566
	2.8 M	1.08	SPT on ImageNet	77.0	95.8	96.1	76.5	86.3	0.441	0.902	0.671
	2.8 M	1.08	RČKD	90.6	95.3	98.6	92.5	94.2	0.435	0.912	0.673

- 서론
- 딥러닝 기반 의료 AI 개발 사례
 - 삼킴 장애 진단을 위한 VFSS영상에서의 Bolus 분석
 - 척추 질환 진단을 위한 Spinopelvic 파라미터 측정
 - 지식 증류를 통한 병리영상 분석모델 자기지도 학습
- 의료 AI도시를 위한 제안

으로 AI의 기대 효과

- 의료 전문가 지원 및 의료 선진화
 - AI로 인간 의사를 대체하기는 어려움
 - 의사를 보조/보완하는데 효과적
 - 원격 의료와 시너지
 - 의료 인프라 부족 지역, 또는 의료 후진국에는 도움이 될 수 있음
- AI는 대규모 응용에 효과적 (스케일이 중요)
 - 높은 개발 비용, 지속적 관리 필요
 - 사용자가 많을 수록 도입효과 증가
 - 데이터 수집 및 시스템 개선에 유리

의료 AI 도시를 위한 제안

- 의료AI 네트워크 구축
 - **지역의료기관(의료전문가)**: 문제 발굴, 데이터, 도메인 전문지식
 - 지역 대학(AI전문가): AI기술을 적용해 문제 해결 (의료AI 개발)
 - **의료AI 스타트업**: 의료AI 상품화 및 확산, 부가가치 창출
 - 유치 또는 창업유도
 - **지자체**: 기획, 행정 및 제도적 지원, 예산지원, AI 인프라 구축
- 의료AI 플랫폼 개발
 - 데이터 수집, 비식별화, 레이블링
 - 의료 AI 관련 R&D, 임상적용, 검증
 - 의료 AI/SW 인프라 (오픈소스 적극 활용)
 - 의료 AI를 위한 HW 인프라

