BUNDESREPUBLIK DEUTSCHLAND

Offenlegungsschrift

(51) Int. Cl.⁷: G 10 L 15/00

DE 198 42 405 A

PATENT- UND **MARKENAMT** DE 19842405 A 1

(21) Aktenzeichen:

198 42 405.1

② Anmeldetag:

16. 9. 1998

(3) Offenlegungstag:

23. 3.2000

PHO 98-107

(7) Anmelder:

Philips Corporate Intellectual Property GmbH, 22335 Hamburg, DE

(12) Erfinder:

Dolfing, Jannes G. A., 52072 Aachen, DE; Wendemuth, Andreas, Dr.-Ing., 52066 Aachen, DE

56 Entgegenhaltungen:

US

55 66 272

US 5 70 866

KEMP, T., SCHAAF, T., "Confidence measures for spontaneous speech recognition", in: Proc. ICASSP, Vol. II, S. 875-878, 1997;

Die folgenden Angaben sind den vom Anmelder eingereichten Unterlagen entnommen

Prüfungsantrag gem. § 44 PatG ist gestellt

Spracherkennungsverfahren mit Konfidenzmaßbewertung

Die Erfindung betrifft ein Verfahren zur automatischen (F) Erkennung sprachlicher Äußerungen, wobei eine Bewertung eines Erkennungsergebnisses mittels eines ersten Konfidenzmaßes und eine automatische Kombination mehrerer für ein Erkennungsergebnis ermittelter zweiter Konfidenzmaße zur Bestimmung des ersten Konfidenzmaßes vorgesehen ist.

Um die resultierende Fehlerrate bei der Beurteilung der Richtigkeit eines Erkennungsergebnisses zu verringern, wird vorgeschlagen, daß die Ermittlung der die Kombination der zweiten Konfidenzmaße gewichtenden Parameter auf einer Minimierung eines Cross-Entropie-Fehlermaßes beruht. Eine weitere Verbesserung wird mittels einer auf der Maximierung der Gardner-Derrida-Fehlerfunktion beruhenden Nachverarbeitung erzielt.

X P(WIX) P(W,IX) z f(z)c

DE 198 42 405 A 1

Beschreibung

Α,

Die Erfindung betrifft ein Verfahren zur automatischen Erkennung sprachlicher Äußerungen, wobei eine Bewertung eines Erkennungsergebnisses mittels eines ersten Konfidenzmaßes und eine automatische Kombination mehrerer für ein Erkennungsergebnis ermittelter zweiter Konfidenzmaße zur Bestimmung des ersten Konfidenzmaßes vorgesehen ist.

Das erfindungsgemäße Verfahren läßt sich insbesondere auf dem Gebiet der "command and control"-Anwendungen einsetzen, wo mittels einzelner sprachlicher Äußerungen (in der Regel einzelne Wörter) eine Steuerung von elektrischen Geräten erfolgt. Auch in Diktieranwendungen ist das hier dargestellte Verfahren einsetzbar.

Durch Bewertung von Spracherkennungsergebnissen mittels eines Konfidenzmaßes (= Zuverlässigkeitsmaß) wird entschieden, ob ein Erkennungsergebnis für die jeweilige Anwendung ausreichend zuverlässig die tatsächlich eingegebene sprachliche Äußerung repräsentiert. Hierzu wird ein Vergleich des ermittelten Konfidenzmaßes mit einem Schwellwert durchgeführt. Gegebenenfalls wird der Benutzer aufgefordert, seine sprachliche Eingabe zu wiederholen.

Aus T. Kemp, T. Schaaf, "Confidence measures for spontaneous speech recognition", Proc. ICASSP, vol. II, Seiten 875–878, 1997, ist der Grundgedanke bekannt, zur Ermittlung eines resultierenden Konfidenzmaßes mehrere Konfidenzmaße zu kombinieren. Es werden verschiedene Kombinationsmöglichkeiten angedeutet, die aber im einzelnen nicht näher erläutert werden.

Der Erfindung liegt nun die Aufgabe zugrunde, bei dem eingangs genannten Verfahren die resultierende Fehlerrate bei der Beurteilung der Richtigkeit eines Erkennungsergebnisses zu verringern.

Die Aufgabe wird dadurch gelöst, daß die Ermittlung der die Kombination der zweiten Konfidenzmaße bestimmenden Parameter auf einer Minimierung eines Cross-Entropie-Fehlermaßes beruht.

Auf diese Weise erhält man insbesondere Parameterwerte, die als Gewichte bei einer Linearkombination der zweiten Konfidenzmaße dienen, um so das erste Konfidenzmaß zu erhalten.

Zur weiteren Reduzierung der Fehlerrate wird vorgeschlagen, daß das Konfidenzmaß vor einem Vergleich mit einem als Entscheidungsgrenze dienenden Schwellwert mittels eines benutzer- und/oder sprachäußerungsspezifischen Qffset angepaßt wird.

Beim Vergleich des Konfidenzmaßes, das auch aus einer Kombination von Konfidenzmaßen bestehen kann, mit einem Schwellwert ist nun auf einfache Weise eine automatische Anpassung an bestimmte Anwendungsfälle möglich, ohne das eine Schwellwertanpassung erforderlich ist.

Die Erfindung betrifft auch ein Spracherkennungssystem mit Verarbeitungseinheiten zur Bewertung eines Erkennungsergebnisses mit einem der beschriebenen Verfahren.

Ausführungsbeispiele der Erfindung werden im folgenden anhand einer Figur näher erläutert, die die wesentlichen Komponenten eines erfindungsgemäßen Spracherkennungssystems zeigt.

Einem Funktionsblock 1 des dargestellten Spracherkennungssystems wird eine Folge

35
$$X = x_1, x_2, ..., x_T$$

55

60

65

von Merkmalsvektoren x_t mit der Zeitvariablen $t=1,\ldots,T$ zugeführt, die eine sprachliche Äußerung – insbesondere ein Einzelwort – repräsentieren. Zur Bildung der Merkmalsvektoren x_t wird ein in elektrischer Form vorliegendes Sprachsignal abgetastet, quantisiert und einer Cepstralanalyse unterzogen. Dabei wird das Sprachsignal in aufeinanderfolgende Rahmen eingeteilt, die sich teilweise überlappen. Für jeden Rahmen werden Cepstralwerte gebildet, die in einem Merkmalsvektor x_1 zusammengefaßt werden. Funktionsblock 1 beschreibt auch die übliche stochastische Sprachsignalverarbeitung mit einer Generierung von Produktionswahrscheinlichkeiten $P(W \mid X)$ für eine Wahrscheinlichkeit einer sprachlichen Äußerung W gegeben die Folge X, wobei Markovmodelle HMM ("Hidden Markov Models") und bekannte Bayes-Regel zum Einsatz kommen. Der Funktionsblock 2 bildet nun das Maximum $P(W_1 \mid X)$ der Produktionswahrscheinlichkeiten $P(W \mid X)$. Die sprachliche Äußerung W_1 , wird als Erkennungsergebnis bewertet und gegebenenfalls für eine Weiterverarbeitung in einem elektrischen Gerät genutzt, z. B. als Steuersignal. Die ermittelten Wahrscheinlichkeiten $P(W_1 \mid X)$ werden weiterhin einer durch einen Funktionsblock 3 dargestellten Verarbeitung unterzogen, bei der jedem Wert $P(W_1 \mid X)$ ein Konfidenzmaßvektor $z = (z_1, \ldots, z_N)$ mit N > 1 zugeordnet wird, dessen N Komponenten die Konfidenzmaße z_1, \ldots, z_N (zweite Konfidenzmaße) enthalten. Jedes Konfidenzmaß enthält einen Wert, dessen Größe ein Maß für die Zuverlässigkeit des Erkennungsergebnisses W_1 ist.

Folgende Beispiele für mögliche Konfidenzmaße sollen hier für N = 5 genannt werden:

- 1) z₁: Differenz zwischen der logarithmierten Wahrscheinlichkeit der besten und zweitbesten Sprachäußerungshypothese zu einem Zeitpunkt t zwischen dem Zeitpunkt t_{start}, der dem Zeitpunkt des Empfangs dem ersten Beobachtungszeitpunkt bezüglich der betreffenden sprachlichen Äußerung entspricht, und dem Zeitpunkt t_{end}, der dem letzten Beobachtungszeitpunkt bezüglich der betreffenden sprachlichen Äußerung entspricht ("two-best");
- 2) z_2 : Differenz zwischen der logarithmierten Wahrscheinlichkeit der besten und dem Mittelwert der logarithmierten Wahrscheinlichkeit der n (z. B. n = 20) besten Endhypothesen der betreffenden sprachlichen Äußerung zum Zeitpunkt t, der auch zwischen den Zeitpunkten t_{start} und t_{end} liegt ("n-average-best");
- 3) z₃: Unter der Annahme, daß jede Sprachäußerungshypothese mit einer logarithmierten Wahrscheinlichkeit l_w zum Zeitpunkt t_{sart} startet und zum Zeitpunkt t_{end} als Endhypothese endet, wird die Differenz zwischen der logarithmierten Wahrscheinlichkeit l_w mit der Summe der "scores" (= logarithmierte Wahrscheinlichkeiten) der besten Zustände des entsprechenden HMM im Bereich (t_{start}, t_{end}) berechnet ("n-best-state");
- 4) z₄: Längennormierte logarithmierte Wahrscheinlichkeit ("avg-acoustic")

$$l_{w}' = l_{w}/(t_{end} - t_{start} + 1);$$

5) z₅: Verhältnis zwischen der Anzahl HMM-Zustände des Wortes und der Anzahl Beobachtungen, die durch t_{end}-

DE 198 42 405 A 1

t_{start} bestimmt wird ("speaking rate").

Ein verbesserte Klassifikationsergebnisse lieferndes Konfidenzmaß erhält man, wenn statt solcher einfacher ursprünglicher (Roh-)Konfidenzmaße (zweite Konfidenzmaße) ein erweiterter Vektor $z=z_{20}=({z_1}^2,\,z_1z_2,\,z_1z_3,\,\ldots,\,Z_5^2)$ gebildet wird, dessen Komponenten modifizierte Konfidenzmaße (modifizierte zweite Konfidenzmaße) enthalten, die durch Multiplikation jeweils zweier der ursprünglichen Konfidenzmaße gebildet werden, und zwar wird jedes ursprüngliche Konfidenzmaß mit jedem anderen ursprünglichen Konfidenzmaß multipliziert. Dieser Ansatz kann auch modifiziert werden, indem ursprüngliche Konfidenzmaße zur Bildung modifierter Konfidenzmaße miteinander multipliziert werden.

Aus den verschiedenen Konfidenzmaßen z_1, \ldots, z_N (bzw. gegebenenfalls den modifizierten Konfidenzmaßen) für ein Erkennungsergebnis W_1 wird nun durch Kombination gemäß einer später näher erläuterten Kombinationsfunktion f(z) ein resultierendes Konfidenzmaß f(z) (erstes Konfidenzmaß) gebildet (Funktionsblock 4), welches dem Schwellwert τ verglichen wird (Funktionsblock 5). In Abhängigkeit vom Ergebnis dieses Vergleichs wird als ein Klassifikationsergebnis c0 erzeugt, das entweder beinhaltet, daß das jeweilige Erkennungsergebnis c1 nicht ausreichend zuverlässig (hier dann c2 oder als ausreichend zuverlässig (hier dann c3 bewertet wird. Im ersten Fall wird der Benutzer beispielsweise aufgefordet werden, seine Spracheingabe zu wiederholen.

Zur Ableitung der Art und Weise der Kombination der Konfidenzmaße z wird nun ein Vektor $z_e = (z, 1)$ definiert. Eine Entscheidungsgrenze $f(z) = \tau$ ist zu bestimmen, was im folgenden noch erläutert wird. Setzt man nun eine Linearkombination der Konfidenzmaße mit

$$f(z) = J_1 z_1 + J_2 z_2 + \ldots + J_N Z_N$$

15

55

voraus und faßt die Gewichte (Multiplikatoren) $J_1 \dots J_N$ zusammen mit dem Schwellwert τ zu einem Vektor $J = (J_1, J_2, \dots, J_N, \tau)$ zusammen, gelangt man zu einem Skalarprodukt

$$a = Z_e J. 25$$

Unter Anwendung der sogenannten Bayes-Formel kann nun die a posteriori Wahrscheinlichkeit $P(c \mid z_e) =: y$ in Sigmoid-Form geschrieben werden als

$$y = \frac{1}{1 + e^{-a'}} \quad \text{mit} \qquad a' = \ln \frac{P(z_e | c = 1) P(c = 1)}{P(z_e | c = 0) P(c = 0)}$$

Nunmehr wird vorausgesetzt, daß klassenbedingten Wahrscheinlichkeiten P(zelc) Mitglieder einer Familie exponentieller Verteilungsfunktionen (insbesonder Gauß- und Bernoulliverteilungsfunktionen) sind. Unter dieser Voraussetzung gilt a = a'. Ein solcher Ansatz ist für sehr viele Anwendungen vertretbar.

Die Entscheidungsgrenze muss entsprechend der Bayes'schen Regel bei y = 0.5 liegen. Daraus folgt a = a' = 0 als Entscheidungsgrenze in dem gewählten Modell.

Um zu einer geeigneten Fehlerfunktion für das vorliegende Bayes-Entscheidungsproblem zu gelangen und mittels eines Trainings die Parameter $J_1 \dots J_N$ zu bestimmen, wird nun die bedingte Wahrscheinlichkeit $P(c \mid z_e)$ geschrieben als

$$P(c \mid z_e) = y^c (1-y)^{1-c}$$
,

was einem speziellen Fall einer Bernoulli-Verteilung entspricht. Mit Iterationsschritten entsprechenden Zeitpunkten i, für die unabhängig voneinander ermittelte Trainingsdaten vorliegen, kann nun die Wahrscheinlichkeit L bezüglich der gesamten Trainingsdaten ausgedrückt werden als

$$L = \prod_{i} P(c_{i} | z_{i,e}) = \prod_{i} y_{i}^{c_{i}} (1 - y_{i})^{1 - c_{i}}$$

Ein Minimieren einer Fehlerfunktion E = -log(L) ist damit äquivalent zum Minimieren des sogenannten Cross-Entropy-Fehlers

$$E = -\sum_{i} \{c_{i} \log(y_{i}) + (1 - c_{i}) \log(1 - y_{i})\}\$$

Diese Fehlerfunktion hat den Vorteil, daß kleine Wahrscheinlichkeiten sehr gut abgeschätzt werden, z. B. wesentlich besser als mittels einer LMS-Fehlerfunktion ("Least Mean Square"). Das beim Training durchzuführende Minimieren der Cross-Entropie E führt mit

$$\frac{\partial E}{\partial a_i} = y_i - c_i \tag{60}$$

zu einer als Lernregel während eines Trainings verwendeten stochastische Sequenz

$$\delta J(i) = -\eta \frac{\partial E}{\partial a_i} \nabla_J a_i = \eta \ z_{i,e} \left(c_i - \frac{1}{1 + e^{-a_i}} \right),$$

die einem bereits bestimmten J additiv überlagert wird, so daß schließlich die Komponenten von J mit Hilfe des negati-

DE 198 42 405 A 1

ven Gradienten von der Fehlerfunktion E aktualisiert werden. η ist eine geeignet heuristisch zu ermittelnde Konstante. Diese Lernregel wird nun zum Training eines neuronalen Netzes mit einer Schicht und einer sigmoidförmigen Ausgabefunktion verwendet, das schließlich zur Realisierung der Funktion f(z) verwendet wird. Näheres zu Aufbau und Wirkungsweise eines solchen neuronalen Netzes läßt sich dem Buch von C. Bishop, "Neural Networks for Pattern Recognition", Oxford, 1995, Kapitel 6.7 entnehmen. Der Klammerausdruck in der Formel für δJ(i) liegt im Bereich zwischen –1 und 1. Für den Fall völliger Falschklassifizierung werden die Randwerte –1 oder 1 erreicht. Damit entspricht die Lernregel δJ(i) derjenigen, die beim Training konventioneller Perceptrons angewendet wird.

An ein solches Training schließt sich vorzugsweise noch eines Nachverarbeitung an, die auf der Maximierungs der sogenannten Gardner-Derrida-Fehlerfunktion mittels des gleichnamigen Algorithmus (siehe A. Wendemuth, "Learning the Unlearnable", J. Phys. A, 28: 5423, 1995) beruht. Auf diese Weise wird eine bessere Anpassung des Trainings an Ausreißer (z. B. Daten mit sehr hohen Werten der Komponenten des Konfidenzmaßvektors z) und an "sampling"-Effekte (z. B. werden Falschklassifikationen von Trainingsdaten ignoriert) bewirkt, indem die Entscheidungsschwelle τ und die Gewichte J Besonderheiten der Trainingsdaten – wie den genannten – angepaßt werden.

Eine weitere Verbesserung der Fehlerrate bei der Klassifizierung eines Erkennungsergebnis als richtig oder falsch wird dadurch erreicht, daß das Entscheidungsproblem $f(z) < \tau$ um einen benutzerspezifischen Offset o_{bj} einen sprachäußerungsspezifischen Offset o_{wk} oder einen sowohl benutzer- als auch sprachäußerungsspezifischen Offset $o_{bj,wk}$ ergänzt wird. Die sich daraus ergebenden Entscheidungsgrenzen lauten:

$$f(z) - o_{bj} = \tau_{bj},$$

20

25

30

35

40

45

50

55

$$f(z) - o_{wk} = \tau_{wk},$$

$$f(z) - o_{bj,wk} = \tau_{bj,wk}.$$

Der benutzerspezifische Offset o_{bj} ist beispielsweise der Mittelwert, das Maximum oder das Minimum der für Trainungsäußerungen des Benutzers b_j ermittelten Zuverlässigkeitsmaße (z_1, z_2, z_3, z_4) oder z_5 . Der sprachäußerungsspezifische Offset o_{wk} ist beispielsweise der Mittelwert, das Maximum oder das Minimum der für Trainungsäußerungen des Wortes w_k ermittelten Zuverlässigkeitsmaße (z_1, z_2, z_3, z_4) oder z_5 unabhängig vom Benutzer. Der Offset $o_{bj,wk}$ wird grundsätzlich wie der Offset o_{wk} bestimmt, jedoch ist er als benutzerabhängig definiert.

Patentansprüche

- 1. Verfahren zur automatischen Erkennung sprachlicher Äußerungen, wobei eine Bewertung eines Erkennungsergebnisses mittels eines ersten Konfidenzmaßes und eine automatische Kombination mehrerer für ein Erkennungsergebnis ermittelter zweiter Konfidenzmaße zur Bestimmung des ersten Konfidenzmaßes vorgesehen ist, dadurch gekennzeichnet, daß die Ermittlung der die Kombination der zweiten Konfidenzmaße gewichtenden Parameter auf einer Minimierung eines Cross-Entropie-Fehlermaßes beruht.
- 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das erste Konfidenzmaß eine Linearkombination der zweiten Konfidenzmaße ist.
- 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß bei der Ermittlung der die Kombination der zweiten Konfidenzmaße bestimmenden Parameter nach der Minimierung des Cross-Entropie-Fehlermaßes eine auf der Maximierung der Gardner-Derrida-Fehlerfunktion beruhende Nachverarbeitung vorgesehen ist.
- 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß der Kombination der zweiten Konfidenzmaße eine Vorverarbeitung vorausgeht, bei der die zweiten Konfidenzmaße durch Multiplikation jeweils dritter Rohkonfidenzmaße gebildet werden.
- 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß zur Bestimmung modifierter zweiter Konfidenzmaße jedes zweite Konfidenzmaß mit jedem anderen zweiten Konfidenzmaß multipliziert wird und daß die modifizierten zweiten Konfidenzmaße der genannten Kombination zur Bildung des ersten Konfidenzmaßes unterworfen werden.
- 6. Verfahren zur automatischen Erkennung sprachlicher Äußerungen mit einer Bewertung eines Erkennungsergebnisses mittels eines Konfidenzmaßes insbesondere nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß das Konfidenzmaß vor einem Vergleich mit einem als Entscheidungsgrenze dienenden Schwellwert mittels eines benutzer- und/oder sprachäußerungsspezifischen Offset angepaßt wird.
- 7. Spracherkennungssystem mit Verarbeitungseinheiten zur Bewertung eines Erkennungsergebnisses mit einem Verfahren nach einem der Ansprüche 1 bis 6.

Hierzu 1 Seite(n) Zeichnungen

60

65

- Leerseite -

THIS PAGE BLANK (USPTO)

Nummer: Int. Cl.⁷: Offenlegungstag: **DE 198 42 405 A1 G 10 L 15/00**23. März 2000

ero de

