1. Calculate the laplacian of the following:

(i)
$$F = x^2 + 2xy + 3z + 4$$
 (ii) $F = \sin(\hat{\mathbf{k}} \cdot \vec{\mathbf{r}})$ (iii) $F = \frac{1}{r}$

(i)
$$\nabla^2 F = \frac{\partial^F}{\partial x^2} + \frac{\partial^F}{\partial y^2} + \frac{\partial^F}{\partial z^2} = 2$$

$$\nabla^2 F = \frac{\partial^2}{\partial x^2} \sin(\vec{k} \cdot \vec{r}) + \frac{\partial^2}{\partial y^2} \sin(\vec{k} \cdot \vec{r}) + \frac{\partial^2}{\partial z^2} \sin(\vec{k} \cdot \vec{r})$$

$$= -k_x^2 \sin(\vec{k} \cdot \vec{r}) - k_y^2 \sin(\vec{k} \cdot \vec{r}) - k_z^2 \sin(\vec{k} \cdot \vec{r})$$

$$= -k^2 \sin(\vec{k} \cdot \vec{r})$$

(iii)

$$\nabla^{2} \left(\frac{1}{r} \right) = \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}} \right) \left(\frac{1}{r} \right)$$

$$\frac{\partial^{2}}{\partial x^{2}} \left(\frac{1}{r} \right) = \frac{\partial}{\partial x} \left(-\frac{1}{r^{2}} \frac{\partial r}{\partial x} \right)$$

$$= \frac{\partial}{\partial x} \left(-\frac{1}{r^{2}} \frac{1}{2r} \cdot 2x \right)$$

$$= \frac{\partial}{\partial x} \left(-\frac{x}{r^{3}} \right)$$

$$= -x \left(-\frac{3}{r^{4}} \frac{1}{2r} \cdot 2x \right) - \frac{1}{r^{3}}$$

$$= \frac{3x^{2}}{r^{5}} - \frac{1}{r^{3}}$$

$$\therefore \nabla^{2} \left(\frac{1}{r} \right) = \frac{3}{r^{5}} \left(x^{2} + y^{2} + z^{2} \right) - \frac{3}{r^{3}} = 0$$

$$\therefore \nabla^2 \left(\frac{1}{r} \right) = \frac{3}{r^5} \left(x^2 + y^2 + z^2 \right) - \frac{3}{r^3} = 0$$

This is valid only for $r \neq 0$. At r = 0 the function is not differentiable.

2. Verify divergence theorem for the vector function $\vec{A} = \vec{r}$. The region is a spherical surface of radius a with the center at the origin.

On the surface of the sphere the normal is along \hat{r} . So the surface integral is

$$\oint_{S} \vec{A} \cdot \hat{n} ds = \oint_{S} \vec{r} \cdot \hat{r} ds = \oint_{S} a ds = a \oint_{S} ds = 4\pi a^{3}$$

$$\vec{\nabla} \cdot \vec{r} = 3$$
. So

$$\int_{V} \vec{\nabla} \cdot \vec{A} dV = \int_{V} 3dV = 3\left(\frac{4}{3}\pi a^{3}\right) = 4\pi a^{3}$$

$$\therefore \int_{V} \vec{\nabla} \cdot \vec{A} dV = \oint_{S} \vec{A} \cdot \hat{n} ds$$

3. Verify stokes' theorem for the vector field $\vec{A} = (y\hat{i} - x\hat{j})/(x^2 + y^2)$ over the region shown in the figure. The loop consists of a quarter arc of two concentric circles of radii a and b and two straight paths along the y and the x axes.

soln

At every point on the xy plane the vector field has a magnitude $\sqrt{y^2 + x^2}/(x^2 + y^2) = 1/\sqrt{x^2 + y^2}$.

Along the inner circular arc the magnitude of \vec{A} is 1/a while along the outer circle the magnitude is 1/b.

The direction of \vec{A} is tangential to the circular arcs.

Along the inner circle it is opposite to the direction in which we traverse the circle, i.e, opposite to \vec{dl} .

So along the inner circle

$$\int \vec{A} \cdot \vec{dl} = \int -\frac{1}{a} dl$$

Along the circular arc $dl = ad\theta$

$$\therefore \int_{C_1} \vec{A} \cdot \vec{dl} = \int_0^{\pi/2} -\frac{1}{a} a d\theta = -\frac{\pi}{2}$$

Along the outer arc \vec{A} is along \vec{dl} . $|\vec{A}| = 1/b$ and $dl = bd\theta$.

$$\therefore \int_{C_2} \vec{A} \cdot d\vec{l} = \int_0^{\pi/2} \frac{1}{b} b d\theta = \frac{\pi}{2}$$

So the line integral along these two arcs cancel each other. Along the y axis $\vec{A} = \hat{i}/y$. But $\vec{dl} = \hat{j}dl$. So $\vec{A} \cdot \vec{dl} = 0$.

Similarly along the straight path along the x axis $\vec{A} \cdot \vec{dl} = 0$. So the two straight paths don't contribute anything to the loop integrals. So we have

$$\oint \vec{A} \cdot \vec{dl} = -\frac{\pi}{2} + \frac{\pi}{2} = 0$$

 $\vec{\nabla} \times \vec{A} = 0$ everywhere except the origin.

$$\therefore \int (\vec{\nabla} \times \vec{A}) \cdot \hat{n} ds = 0$$

This satisfies the Stokes' theorem.

4. Verify Stokes' Theorem for the vector field $\vec{A} = (y\hat{i} - x\hat{j})$ over a region bounded by a circle of radius a on the xy plane in the following two cases as shown in the figure:

- (a) The region is S_1 the flat circular disk of radius a on the xy plane.
- (b) The region is S_2 the hemisphere over the xy plane with center at the origin

soln

Let us traverse the circular loop clockwise. Then \vec{A} is along \vec{dl} . $|\vec{A}| = \sqrt{x^2 + y^2} = a$ along the circle.

$$\therefore \oint \vec{A} \cdot \vec{dl} = \int_0^{2\pi} a^2 d\phi = 2\pi a^2$$

We note that $\vec{\nabla} \times \vec{A} = -2\hat{k}$ everywhere. This is common for both the parts

(a) Along the surface S_1 the normal is along $-\hat{k}$ everywhere.

$$\therefore \int_{S_1} (\vec{\nabla} \times \vec{A}) \cdot \hat{n} ds = \int_{S_1} 2ds = 2\pi a^2$$

So Stokes' theorem is valid when we consider surface S_1 bounded by the loop

(b) Over the surface S_2 the normal every where is along $-\hat{r}$. To do the surface integral over this surface consider a narrow strip (see fig) of the sphere parallel to the equator of width $ad\theta$. The points on this strip makes an angle θ with the z axis.

$$\therefore (\vec{\nabla} \times \vec{A}) \cdot \hat{n} = -2\hat{k} \cdot (-\hat{r}) = 2\cos\theta.$$

The contribution to the surface integral from this strip is

 $2\cos\theta \times \text{area of the strip} = 2\pi a^2 \sin 2\theta d\theta$

$$\int_{S_2} (\vec{\nabla} \times \vec{A}) \cdot \hat{n} ds = \int_0^{\pi/2} 2\pi a^2 \sin 2\theta d\theta = 2\pi a^2$$

So Stokes theorem is valid also for the curved surface S_2 .

5. If $\vec{\nabla} \times \vec{A} = 0$ then show that there is a scalar function $F(\vec{r})$ such that $\vec{\nabla} F = \vec{A}$. Consider the origin and some point in space \vec{r} .

Let C_1 and C_2 be two different curves from the origin to the position \vec{r} . Consider a loop forward along C_1 and backward along C_2 . The line integral $\int \vec{A} \cdot d\vec{l}$ is zero over this closed loop by stokes' theorem since $\vec{\nabla} \times \vec{A} = 0$. Hence we have

$$\int_{C_1} \vec{A} \cdot d\vec{l} = \int_{C_2} \vec{A} \cdot d\vec{l}$$

This shows that the value of the line integral from origin to the point \vec{r} is independent of the curve. So we can write

$$\int_0^{\vec{r}} \vec{A} \cdot \vec{dl} = F(\vec{r})$$

Now if \vec{r} changes by a small amount $d\vec{r}$ then the change in F, is given as $\nabla F \cdot d\vec{r}$. The small change in the integral on the l.h.s is $\vec{A}(\vec{r}) \cdot d\vec{r}$. Since this is true for any arbitrary $d\vec{r}$ we have

$$\vec{\nabla} F = \vec{A}(\vec{r})$$

An explicit form of F can be evaluated as follows:

$$F(x,y,z) = \int_0^x A_x(x',y',z')dx' + \int_0^y A_y(x',y',z')dy' + \int_0^z A_z(x',y',z')dz'$$

We have considered the lower limit of the integral to be the origin. But one can choose any point as the lower limit. This will only add a constant to the function we obtained. The scalar function can be determined upto a constant as usual in any integral calculus.

6. Use the divergence theorem and the stokes' theorem to show that $\vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0$ for any vector field \vec{A} .

soln

Consider a closed surface S enclosing a volume V. Let us calculate

$$\oint_S (\vec{\nabla} \times \vec{A}) \cdot \hat{n} ds$$

over this surface. We can break the closed surface into two parts like we break a coconut shell. Let us call the two parts of the broken surfaces S_1 and S_2 . Then we have the integral as

$$\int_{S_1} (\vec{\nabla} \times \vec{A}) \cdot \hat{n} ds + \int_{S_2} (\vec{\nabla} \times \vec{A}) \cdot \hat{n} ds$$

Let C be the closed curve along which lies the boundary of the surfaces S_1 and S_2 . By Stokes' theorem we have

$$\oint_C \vec{A} \cdot d\vec{l} = \int_{S_1} (\vec{\nabla} \times \vec{A}) \cdot \hat{n} ds = \int_{S_2} (\vec{\nabla} \times \vec{A}) \cdot (-\hat{n}) ds$$

Here we have to invert the direction of the normals in one of the integrals over the surfaces S_1 and S_2 . This depends upon the sense of traversing along the curve C. Thus the value of the integral in Eq.(6) is 0.

$$\therefore \oint_{S} (\vec{\nabla} \times \vec{A}) \cdot \hat{n} ds = 0$$

If V is the volume enclosed by the surface S then by divergence theorem

$$\int_{V} \vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) dV = \oint_{S} (\vec{\nabla} \times \vec{A}) \cdot \hat{n} ds = 0$$

Since the volume integral will be 0 for any volume we conclude the function in the integrand in identically $0 \ \vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0$.