

ASE 2020-21 Notes

Lecture Notes by Dylan Yu

✓ dylanyu66@gmail.com ♦ http://yu-dylan.github.io/

July 19, 2020

Contents §0

1	Sun	day, 07/19/20	
	1.1	Number Sense: Multiplying by Any Fraction of 100, 1000, etc.	
		1.1.1 Multiplying by Any Fraction of 100, 1000, etc. Problems	2
	1.2	Calculator: Number Crunchers	2
		1.2.1 Number Crunchers Problems	2
	1.3	General Math: Solving Quadratics	2
		1.3.1 Solving Quadratics Problems	(

Sunday, 07/19/20 **§1**

Number Sense: Multiplying by Any Fraction of 100, 1000, etc. §1.1

You can take what we learned from the 25's and 75's trick (converting them to fractions of 100) with a variety of potential fractions. $\frac{1}{8}$'s are chosen often because:

$$125 = \frac{1}{8} \cdot 1000$$

$$125 = \frac{1}{8} \cdot 1000 \qquad \qquad 37.5 = \frac{3}{8} \cdot 100 \qquad \qquad 6.25 = \frac{5}{8} \cdot 10$$

$$6.25 = \frac{5}{8} \cdot 10$$

In addition, you see $\frac{1}{6}$'s, $\frac{1}{3}$'s, $\frac{1}{9}$'s, and sometimes even $\frac{1}{12}$'s for approximation problems (because they do not go evenly into 100, 1000, etc..., they have to be approximated usually).

$$223 \approx \frac{2}{9} \cdot 1000$$

$$223 \approx \frac{2}{9} \cdot 1000$$
 $8333.3 \approx \frac{5}{6} \cdot 10000 \approx \frac{1}{12} \cdot 100000$ $327 \approx \frac{1}{3} \cdot 1000$

$$327 \approx \frac{1}{3} \cdot 1000$$

For approximations you will rarely ever see them equate to almost exactly to the correct fraction. For example you might use $\frac{2}{3} \cdot 1000$ for any value from 654 – 678. Usually you can tell for the approximation problems what fraction the test writer is really going for.

Multiplying by Any Fraction of 100, 1000, etc. Problems §1.1.1

10.
$$.0625 \times .32 =$$

3.
$$138 \div 125 =$$

12. (*)
$$375.1 \times 83.33 \times 1.595 =$$

6. (*)
$$16667 \div 8333 \times 555 =$$

7. (*)
$$12.75 \times 28300 \div 102 =$$

15. (*)
$$639 \times 375 \div 28 =$$

8.
$$375 \times 24.8 =$$

16. (*)
$$6250 \div 8333 \times 8888 =$$

§1.2 **Calculator: Number Crunchers**

Number Crunchers are problems involving just pushing buttons to get a specific answer. There are a few things hard about these problems:

- 1. They require little to no math skill, so you must be **fast**.
- 2. When you are fast, you make more mistakes. So you must be careful.
- 3. Even little mistakes like not converting to rad and using deg instead are important.

Let's try a few (these are real problems!):

Example 1. $193 \times \pi \times 155 =$ _____

Solution. Here are the steps:

- 1. Type 193
- 2. Press enter
- 3. Press ← then cos

- 4. Press ×
- 5. Press 155
- 6. Press ×

This should display 93980.74423..., which gives us our answer of 9.40×10^4

Example 2.

Solution 1. Here are the steps:

- 1. Type 131
- 2. Press enter
- 3. Type 137
- 4. Press +
- 5. Type 134
- 6. Press enter
- 7. Type 130

- 8. Press ÷
- 9. Press ÷
- 10. Type .00247
- 11. Press enter
- 12. Type 157
- 13. Press ÷
- 14. Press ×

This should display 0.00409044586..., which gives us our answer of 4.09×10^{-3}

Remark 1. This is actually not the fastest solution.

Let's try again:

Solution 2. Here are the steps:

- 1. Type 131
- 2. Press enter
- 3. Type 137
- 4. Press +
- 5. Type 134
- 6. Press ÷

- 7. Type 130
- 8. Press ×
- 9. Type .00247
- 10. Press \times
- 11. Type 157
- 12. Press ÷

This should display 0.00409044586..., which gives us our answer of $|4.09 \times 10^{-3}|$

Notice how we ignored some of the enters and still got the same answer. This may only save a few seconds, but in the end, a few seconds are a lot!

Fact 1. Remember that when the problem has (rad) in it, it means convert to radians! If it is (deg), convert to degrees!

§1.2.1 Number Crunchers Problems

1.
$$\sqrt{\frac{1/(18.2-11.8)}{(43.8)(17.6+75)^2}} =$$

2.
$$\sqrt[3]{4.65 - 1190/998} + 1/\sqrt{0.0205 + 0.0045} =$$
 6. $12.2^{1.2} =$

6.
$$12.2^{1.2} =$$

3.
$$\frac{26!+25!}{25!} =$$
 7. $(\text{deg}) \frac{\sin(30)-\cos(30)}{\cos 45} =$

7. (deg)
$$\frac{\sin(30)-\cos(30)}{\cos 45} =$$

4. (rad)
$$\frac{\sin(0.507) - \tan(0.507)}{\sin(0.507)}$$
 8. $\sqrt[4]{\frac{1/3 + 2/3 - 4/5}{14.3 - 13.3 + 1}} =$

8.
$$\sqrt[4]{\frac{1/3+2/3-4/5}{14.3-13.3+1}} =$$

General Math: Solving Quadratics §1.3

Two weeks ago, we covered quadratics and a few hard facts regarding them. Now we will focus a lot more on how to solve them.

Definition 1 (Quadratic Equation). A **quadratic equation** is a polynomial with n = 2:

$$ax^2 + bx + c$$
.

A common way to solve the equation $ax^2 + bx + c = 0$ is using the **Quadratic Formula**:

Theorem 1 (Quadratic Formula). For the equation $ax^2 + bx + c = 0$, the roots x_1, x_2 must be equal to

$$x_1 = \frac{-b + \sqrt{b^2 - 4ac}}{2a},$$

$$x_2 = \frac{-b - \sqrt{b^2 - 4ac}}{2a}.$$

Some people may ask, what if $b^2 - 4ac$ is less than 0? What do we do then? This leads us to the **Discriminant** Test:

Theorem 2 (Discriminant Test). For the equation $ax^2 + bx + c = 0$, we have the following cases:

- If $b^2 4ac > 0$, we have **two real solutions**.
- If $b^2 4ac = 0$, we have **one real solutions**.
- If $b^2 4ac < 0$, we have **zero real solutions**.

Now let's discuss **completing the square**:

Example 3. Find the roots of $(x + 4)^2 - 4 = 0$.

Solution. This is equal to
$$(x+4)^2=4 \implies x+4=\pm 2$$
, so $x+4=2$ or -2 , so $x=\boxed{-2,-6}$.

Example 4. Find the roots of $x^2 + 8x + 12 = 0$.

Solution. Let's try to make the left hand side a square. The idea to do this is to take $x^2 + 8x$, which looks like $x^2+8x+16=(x+4)^2$, but it is missing the 16, so $x^2+8x=(x+4)^2-16$. Thus, $x^2+8x+12=(x+4)^2-16+12=0$, so $(x+4)^2-4=0$, but this is the same as the last problem! Thus, the roots are $x=\begin{bmatrix} -2,-6 \end{bmatrix}$

This is the motivation behind completing the square. This next theorem is the general form, but it is **not** useful. The idea behind it, the **method**, makes a lot more sense than using the formula.

Theorem 3 (Completing the Square). The quadratic $ax^2 + bx + c$ can be rewritten as

$$a\left(x+\frac{b}{2a}\right)^2+\left(c-\frac{b^2}{4a}\right).$$

Now let's talk about **Rational Root Theorem**:

Theorem 4 (Rational Root Theorem). Let P(x) be a polynomial such that $P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$ with integral coefficients, and $a_n \neq 0$. If P(x) has a rational root $r = \pm \frac{p}{q}$ with p, q relatively prime positive integers, p is a divisor of a_0 and q is a divisor of a_n .

This is a little complicated, since it can be applied to all polynomials, but it is important when thinking of factoring. I am sure for a lot of you distributing is easy:

Example 5. Distribute (x + 3)(2x + 1).

Solution. Using **FOIL**, we get
$$(x+3)(2x+1) = 2x^2 + x + 6x + 3 = 2x^2 + 7x + 3$$
.

But **factoring** is a lot harder:

Example 6. Factor $2020^2 + 4040x + 2020$.

Solution. If we factor out 2020, we get $2020(x^2 + 2x + 1)$, and so we have $2020(x + 1)^2$

Here are some more examples:

1.
$$(x-8)(x+2) = x^2 - 6x - 16$$

2.
$$(x-4)(x+7) = x^2 + x - 28$$

3.
$$(x-5)(x+10) = x^2 + x - 50$$

4.
$$(x-2)(x+5) = x^2 + x - 10$$

5.
$$(x-6)(x+2) = x^2 - 4x - 12$$

6.
$$(x-2)(x+7) = x^2 + x - 14$$

7.
$$(x-4)(x+10) = x^2 + x - 40$$

8.
$$(x-3)(x+6) = x^2 + x - 18$$

9.
$$(x-9)(x+4) = x^2 - 5x - 36$$

10.
$$(x-8)(x+5) = x^2 - 3x - 40$$

§1.3.1 Solving Quadratics Problems

Problem 1. Find the roots of $3x^2 - 2x + 1$ using the Quadratic Formula.

Problem 2. Find the roots of $2x^2 - 4x - 6$ using completing the square.

Problem 3. Distribute these polynomials:

1.
$$(x-7)(x+8) =$$

6.
$$(x-3)(x+7) =$$

2.
$$(x-3)(x+8) =$$

7.
$$(x-8)(x+3) =$$

3.
$$(x-8)(x+5) =$$
 8. $(x-1)(x+4) =$

8.
$$(x-1)(x+4) =$$

4.
$$(x-1)(x+7) =$$
 9. $(x-3)(x+1) =$

9.
$$(x-3)(x+1) =$$

5.
$$(x-1)(x+4) =$$
 10. $(x-4)(x+5) =$

10.
$$(x-4)(x+5) =$$

Problem 4. Factor these polynomials:

1.
$$x^2 + x - 18 =$$
 6. $x^2 + x - 90 =$

6.
$$x^2 + x - 90 =$$

2.
$$x^2 - x - 20 =$$
 7. $x^2 - 7x - 18 =$

7.
$$x^2 - 7x - 18 =$$

3.
$$x^2 + x - 48 =$$

8.
$$x^2 - 4x - 21 =$$

4.
$$x^2 + x - 10 =$$
 9. $x^2 - 5x - 14 =$

$$9 x^2 - 5x - 14 =$$

$$5 x^2 + x - 8 =$$

5.
$$x^2 + x - 8 =$$
 10. $x^2 + x - 18 =$