Knowledge Tracing Machines: Factorization Machines for Knowledge Tracing

Jill-Jênn Vie

RIKEN Center for Advanced Intelligence Project (AIP)

Tokyo, Japan

vie@jill-jenn.net

Hisashi Kashima

Kyoto University/RIKEN

Kyoto, Japan

kashima@i.kyoto-u.ac.jp

Problem: Knowledge Tracing

We want to predict the performance of students over questions. \simeq collaborative filtering + students can attempt a question multiple times students can learn between attempts

Fit: Ordered triplets $(i, j, o) \in I \times J \times \{0, 1\}$

 \Rightarrow Student *i* attempted question *j* and got it correct/incorrect.

Predict: (i, j, ?) for new triplets.

Existing Models

- Prediction of sequences: Bayesian or Deep Knowledge Tracing [1]
- Factor Analysis: Item Response Theory, Performance Factor Analysis

$$\underbrace{\mathsf{BKT}}_{\mathsf{HMM}} < \mathsf{PFA} \simeq^{[4]} \underbrace{\mathsf{DKT}}_{\mathsf{LSTM}} \leq^{[3]} \mathsf{IRT} \leq^{[\mathsf{this}\;\mathsf{poster}]} \mathsf{KTM}$$

Item Response Theory (IRT)

Students $i \in I$ have unknown level θ_i

Questions $j \in J$ have unknown difficulty d_j

logit $p_{ij} = \text{logit Pr}(\text{Student } i \text{ answers correctly question } j) = \theta_i - d_j$

⇒ really simple, ignores skills & multiple attempts

Multidimensional item response theory (MIRT): logit $p_{ij} = \langle \boldsymbol{\theta_i}, \boldsymbol{d_i} \rangle + \delta_i$

Performance factor analysis (PFA)

Students $i \in I$ have level θ_i , W_{ik} wins and F_{ik} fails over skill k Questions $j \in J$ have known requirements $KC(j) \subseteq K$ Skills $k \in K$ have bias β_k and bonus after win γ_k and fail δ_k

$$\operatorname{logit} p_{ij} = \theta_i + \sum_{k \in KC(j)} \beta_k + \gamma_k W_{ik} + \delta_k F_{ik}$$

⇒ ignores item difficulty

Additive Factor Model (AFM): only consider attempts (i.e., $\gamma_k = \delta_k$)

Our proposal

Knowledge Tracing Machines (KTM)

Students $i \in I$, questions $j \in J$ and side information are encoded into x. All entities have a bias w_k and embedding v_k to model pairwise relationships:

$$\operatorname{probit} p(\mathbf{x}) = \mu + \underbrace{\sum_{k=1}^{N} \mathbf{w_k} \mathbf{x_k}}_{\text{logistic regression}} + \underbrace{\sum_{1 \leq k < l \leq N} \mathbf{x_k} \mathbf{x_l} \langle \mathbf{v_k}, \mathbf{v_l} \rangle}_{\text{pairwise relationships}}$$

E.g. $\psi = \text{probit}$, w_k , $v_{kf} \sim \mathcal{N}(\mu, 1/\lambda)$, $\mu \sim \mathcal{N}(0, 1)$, $\lambda \sim \Gamma(1, 1)$ Factorization machine trained using **Gibbs sampling** [2] or variational inference

Encoding data into sparse features

Triplet	User	S	Items		Skills		Wins		Fails		S	Outcomo		
Triplet	1 2	Q	$_1$ Q_2	Q_3	$\overline{S_1}$	S_2	S ₃	$\overline{S_1}$	S_2	S ₃	$\overline{S_1}$	S ₂	S ₃	Outcome
(2, 2, 1)	0 1	0	1	0	1	1	0	0	0	0	0	0	0	1
(2, 2, 0)	0 1	0	1	0	1	1	0	1	1	0	0	0	0	0
(2, 2, 1)	0 1	0	1	0	1	1	0	1	1	0	1	1	0	1
(2, 3, 0)	0 1	0	0	1	0	1	1	0	2	0	0	1	0	0
(2, 3, 1)	0 1	0	0	1	0	1	1	0	2	0	0	2	1	1
(1, 2, 1)	1 0	0	1	0	1	1	0	0	0	0	0	0	0	1
(1, 1, 0)	1 0	1	0	0	0	0	0	0	0	0	0	0	0	0

KTM take IRT, MIRT, PFA as special cases Encoding users + items == IRT Encoding users + skills + attempts == AFM

Encoding users + skills + wins + fails == PFA

Various, large-scale educational datasets

Name	Users	Items	Skills	Skills per item	Entries	Sparsity	Attempts per user
fraction	536	20	8	2.800	10720	0.000	1.000
timss	757	23	13	1.652	17411	0.000	1.000
ecpe	2922	28	3	1.321	81816	0.000	1.000
assistments	4217	26688	123	0.796	346860	0.997	1.014
berkeley	1730	234	29	1.000	562201	0.269	1.901
castor	58939	17	2	1.471	1001963	0.000	1.000

model	dim	AUC	improvement
KTM: items, skills, wins, fails, extra	5	0.819	
KTM: items, skills, wins, fails, extra	0	0.815	+0.05
KTM: items, skills, wins, fails	10	0.767	
KTM: items, skills, wins, fails	0	0.759	+0.02
<i>DKT</i> (Wilson et al., 2016)	100	0.743	+0.05
IRT: users, items	0	0.691	
PFA: skills, wins, fails	0	0.685	+0.07
AFM: skills, attempts	0	0.616	

	AFM	PFA	IRT	MIRTb10	MIRTb20	KTM(iswf0)	KTM(iswf20)	KTM(iswfe5)
assistments	0.6163	0.6849	0.6908	0.6874	0.6907	0.7589	0.7502	0.8186
berkeley	0.675	0.6839	0.7532	0.7521	0.7519	0.7753	0.7780	_
ecpe	_	_	0.6811	0.6807	0.6810	_	_	_
fraction		_	0.6662	0.6653	0.6672	_	_	_
timss	_	_	0.6946	0.6939	0.6932	_	_	_
castor	_	_	0.7603	0.7602	0.7599	_	_	_

Findings

- It is better to learn a item bias
- Side information helps more than latent dimension
- We can handle multiple skills per item
- We can visualize learning:

References

- [1] Chris Piech et al. "Deep knowledge tracing". In: Advances in Neural Information Processing Systems (NIPS). 2015, pp. 505–513.
- [2] Steffen Rendle. "Factorization Machines with libFM". In: *ACM Transactions on Intelligent Systems and Technology (TIST)* 3.3 (2012), 57:1–57:22. DOI: 10.1145/2168752.2168771.
- [3] Kevin H. Wilson et al. "Back to the basics: Bayesian extensions of IRT outperform neural networks for proficiency estimation". In: *Proceedings of the 9th International Conference on Educational Data Mining (EDM)*. 2016, pp. 539–544.
- [4] Xiaolu Xiong et al. "Going Deeper with Deep Knowledge Tracing". In: *Proceedings of the 9th International Conference on Educational Data Mining (EDM)*. 2016, pp. 545–550.