# Best place for opening a lunch restaurant in London

## November 11, 2020

## Dor Lavy

## 1. Introduction – Business Problem

Where should I open my restaurant in London

This project is addressed to people who wants to open a restaurant.

If you want to open a restaurant in London it's not enough just to know how to cook. One of the first questions that pops into your mind is "Where would I open it?"

This question is depending on various variables, such as:

- 1. what food are you cooking?
- 2. is it an evening restaurant or maybe you aim it for lunch time?
- 3. will it be an expensive restaurant/fast food/ ethnic food?

In order to succeed you have to successfully address these questions before looking for a place. We are aiming our project for fast food restaurant that aims for lunch time/early afternoon hours.

# 2. Data Understanding

- 2.1. We will use web scraping from Wikipedia in order to get all the neighborhoods in London. we will use the following columns from the table: Location, London borough, Post town, Postcode district. Dial code and OS grid ref will be remove during data cleaning since this information has no added value for our goal. The Wikipedia page can be found
  - in https://en.wikipedia.org/wiki/List\_of\_areas\_of\_London
- 2.2. Will add the Latitude and Longitude for each neighborhood using free CSV dataset from <a href="https://www.doogal.co.uk/london\_postcodes.php">www.doogal.co.uk/london\_postcodes.php</a>
- 2.3. Visualize London map including the neighborhood data frame we described using folium library (same as we did during the course for New York & Toronto)

| 2.4. | Since we want to open our restaurant during lunch time we need to aim for neighborhoods with many schools/workplaces. People are staying there during the day and look for quick lunch place. In order to do so we will use Foursquare API to get the number of workplaces and schools in every neighborhood and summarize it in order to compare between neighborhoods. |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.5. | Will recommend the best neighborhood based on the data above                                                                                                                                                                                                                                                                                                             |
| Da   | ta Cleansing                                                                                                                                                                                                                                                                                                                                                             |
| 3.1. | We have issues in the 2nd, 4th & 5th columns since they are including '\xa0' instead of space. Therefore we will fix the column name                                                                                                                                                                                                                                     |
| 3.2. | Remove "Dial code" & "OS grid ref" columns since we don't need them for our project. Borough & Postcode district information will be sufficient.                                                                                                                                                                                                                         |
| 3.3. | As you can see in the top 4 rows, there is "[x]" sign. This is due to Wikipedia reference note. We don't need it, therefore will remove it.                                                                                                                                                                                                                              |
| 3.4. | check for "Not assigned" / empty cells.                                                                                                                                                                                                                                                                                                                                  |
| 3.5. | Will use only 'Post_town' = London for our search                                                                                                                                                                                                                                                                                                                        |
|      |                                                                                                                                                                                                                                                                                                                                                                          |

3.

## 4. Methodology

# 4.1. London Neighborhoods Data

4.1.1.Will use pandas web scraping to import London neighborhoods information from Wikipedia to pandas dataframe. We received the following dataframe:

|   | Location      | London borough                    | Post town      | Postcode district | Dial code | OS grid ref |
|---|---------------|-----------------------------------|----------------|-------------------|-----------|-------------|
| 0 | Abbey<br>Wood | Bexley, Greenwich [7]             | LONDON         | SE2               | 020       | TQ465785    |
| 1 | Acton         | Ealing, Hammersmith and Fulham[8] | LONDON         | W3, W4            | 020       | TQ205805    |
| 2 | Addington     | Croydon[8]                        | CROYDON        | CR0               | 020       | TQ375645    |
| 3 | Addiscombe    | Croydon[8]                        | CROYDON        | CR0               | 020       | TQ345665    |
| 4 | Albany Park   | Bexley                            | BEXLEY, SIDCUP | DA5, DA14         | 020       | TQ478728    |

4.1.2. You can see above that in some Postcode\_district we have multiple values. Therefore we must split it, since each Postcode\_district refer to a different map coordinates.

Will use chain library from itertools for splitting and duplicate the rows. Will also use underscore ('\_') instead of space ( ) for removing duplicate values. Result will be as following:

|   | Location   | Post_town | London_borough                 | Postcode |
|---|------------|-----------|--------------------------------|----------|
| 0 | Abbey Wood | LONDON    | Bexley, Greenwich              | SE2      |
| 1 | Acton      | LONDON    | Ealing, Hammersmith and Fulham | W3       |
| 1 | Acton      | LONDON    | Ealing, Hammersmith and Fulham | W4       |
| 6 | Aldgate    | LONDON    | City                           | EC3      |
| 7 | Aldwych    | LONDON    | Westminster                    | WC2      |

# 4.2. London Neighborhoods Coordinates

4.2.1. Adding Latitude and Longitude for each neighborhood using doogal dataset. The CSV file contains much more specific information than we need. therefore we will remove the sub neighborhoods codes and will keep only the neighborhoods Long/Lat (i.e. AB1 XXX -> AB1)

Will use only the following columns: Latitude, Longitude & Postal code

|   | Postcode | Latitude  | Longitude |
|---|----------|-----------|-----------|
| 0 | BR1 1AA  | 51.401546 | 0.015415  |
| 1 | BR1 1AB  | 51.406333 | 0.015208  |
| 2 | BR1 1AD  | 51.400057 | 0.016715  |
| 3 | BR1 1AE  | 51.404543 | 0.014195  |
| 4 | BR1 1AF  | 51.401392 | 0.014948  |

4.2.2. Will remove the sub neighborhoods codes and will keep only the neighborhoods Long/Lat (i.e. AB1 XXX -> AB1)

|   | Postcode | Latitude  | Longitude |
|---|----------|-----------|-----------|
| 0 | BR1      | 51.401546 | 0.015415  |
| 1 | BR2      | 51.407775 | -0.003321 |
| 2 | BR3      | 51.407682 | -0.032385 |
| 3 | BR4      | 51.380973 | -0.011615 |
| 4 | BR5      | 51.386370 | 0.064750  |

4.2.3. Merging neighborhoods data with the coordinates will give the final data frame:

|   | Location   | Post_town | London_borough                 | Postcode | Latitude  | Longitude |
|---|------------|-----------|--------------------------------|----------|-----------|-----------|
| 0 | Abbey Wood | LONDON    | Bexley, Greenwich              | SE2      | 51.481603 | 0.122712  |
| 1 | Acton      | LONDON    | Ealing, Hammersmith and Fulham | W3       | 51.519838 | -0.268414 |
| 2 | Acton      | LONDON    | Ealing, Hammersmith and Fulham | W4       | 51.501346 | -0.254217 |
| 3 | Anerley    | LONDON    | Bromley                        | SE20     | 51.409107 | -0.059069 |
| 4 | Angel      | LONDON    | Islington                      | N1       | 51.539442 | -0.117873 |

The data frame above contains the Postcodes (without duplication), Neighborhood names and their Latitude/Longitude

# 4.4 London Neighborhoods Visualization - Folium

Using Folium library we will visualize all the London neighborhoods including their Postcodes on map



# 4.5 London Restaurants Query – Foursquare API

Will get the restaurant in each neighborhood using foursquare API with the following information:

Category ID: 4bf58dd8d48988d121941735 (restaurants)

Limit: 70 (runtime and API limitations)

Radius: 1000 (in meters)

We will put the information we get in a data frame as follow:

|   | Postcode | London_borough_Latitude | London_borough_Longitude | Venue           | Venue Latitude | Venue Longitude | Venue Category |
|---|----------|-------------------------|--------------------------|-----------------|----------------|-----------------|----------------|
| 0 | W3       | 51.519838               | -0.268414                | Bamboo Lounge   | 51.528255      | -0.271092       | Hookah Bar     |
| 1 | W4       | 51.501346               | -0.254217                | High Road House | 51.492901      | -0.254711       | Lounge         |
| 2 | N1       | 51.539442               | -0.117873                | The Lexington   | 51.531669      | -0.111359       | Rock Club      |
| 3 | N1       | 51.539442               | -0.117873                | Simmons Bar     | 51.531897      | -0.120764       | Cocktail Bar   |
| 4 | N1       | 51.539442               | -0.117873                | The Parcel Yard | 51.532374      | -0.123933       | Pub            |



## 4.6 London Potential Clients Query – Foursquare API

We need to check how many workplaces we have for each postcode.

Will do the same process we did for the restaurants but this time to locate potential clients.

After examining the Foursquare API - i decided that the most suitable clients for our lunch time restaurant would be college students and people going for lunch break during work.

Will get the following information using:

#### Category ID:

- 1. 4d4b7105d754a06372d81259 (College and University)
- 2. 4d4b7105d754a06375d81259 (Professional and other places (Government places, office etc..)

Limit: 70 (runtime and API limitations)

Radius: 1000 (in meters)

We will put the information we get in a data frame as follow:

|   | Postcode | ${\tt London\_borough\_Latitude}$ | London_borough_Longitude | Client                     | ${\tt Client\_Latitude}$ | ${\tt Client\_Longitude}$ | ${\tt Client\_Category}$ |
|---|----------|-----------------------------------|--------------------------|----------------------------|--------------------------|---------------------------|--------------------------|
| 0 | SE2      | 51.481603                         | 0.122712                 | J & D Pallet Services Ltd  | 51.477697                | 0.123973                  | Office                   |
| 1 | SE2      | 51.481603                         | 0.122712                 | The Belvedere Clinic       | 51.483525                | 0.121878                  | Doctor's Office          |
| 2 | SE2      | 51.481603                         | 0.122712                 | Passing You Driving School | 51.479510                | 0.127379                  | Driving School           |
| 3 | SE2      | 51.481603                         | 0.122712                 | Home Security Surveys UK   | 51.476251                | 0.117953                  | Police Station           |
| 4 | W3       | 51.519838                         | -0.268414                | Dixons Carphone HQ         | 51.521592                | -0.260953                 | Office                   |



# 4.7 Calculating the Clients/Restaurants ratio and Visualizing

4.7.1 Will use the 2 dataframes (Restaurants & Clients) to create one dataframe the calculates the ratio between clients to restaurants for every postcode (neighborhood).

|   | Postcode | Venue | Client | ratio | London_borough         | Latitude  | Longitude |
|---|----------|-------|--------|-------|------------------------|-----------|-----------|
| 0 | E15      | 1     | 56     | 56.0  | Waltham Forest         | 51.544029 | -0.002063 |
| 1 | SW18     | 1     | 41     | 41.0  | Wandsworth             | 51.458681 | -0.185747 |
| 2 | W10      | 1     | 41     | 41.0  | Kensington and Chelsea | 51.529068 | -0.215875 |
| 3 | SW8      | 1     | 39     | 39.0  | Wandsworth             | 51.478732 | -0.118861 |
| 4 | N7       | 1     | 37     | 37.0  | Islington              | 51.555353 | -0.128727 |

4.7.2 Visualize on bar chart the ratio per postcode



4.7.3 In order to understand the area behind the postcode – Let's mark the postcodes with top 5 ratio on London map. These neighborhoods are the most suitable for new restaurant during lunch time.
We choose top 5 in order to give the customer alternative in case the top neighborhood is not possible for some reason.



#### 5. Results

As we described in sections 4.7.2 & 4.7.3 we found the most suitable neighborhoods for opening a restaurant by diving the number of clients by the number of competitive restaurants.

## 6. Discussion

We found that the best neighborhood will be E15, Walhalm. If the customer will look for alternatives he can check the top 5 other neighborhoods we visualize on the London map. This might happen since there are more variables we didn't take into account in this project. As discussed in the introduction, restaurant owner might reject neighborhood for other reasons such as crime rates, real estate price etc. Therefore we are not only recommending but giving the full picture for the client to choose based on our research.

### 7. Conclusion

During this project we were able to use datasets from Wikipedia & doogal.co.uk with the Foursquare API in order to address our business problem – where should we open a restaurant for lunch time in London. During the process we defined which datasets we need, cleaned it and visualize it. At the end, we were able to recommend a specific restaurant for our client.

#### 8. Reference:

- 8.1. Wikipedia (London neighborhoods list): <a href="https://en.wikipedia.org/wiki/List">https://en.wikipedia.org/wiki/List</a> of areas of London
- 8.2. Doogal.co.uk (London neighborhoods coordinates): https://www.doogal.co.uk/london\_postcodes.php
- 8.3. Foursquare API Retrieving the Restaurants and potential clients around the neighborhoods.