Векторное произведение

Векторное произведение двух векторов - операция, результатом которой является новый вектор, перпендикулярный плоскости, образованной исходными векторами.

$$[\overline{a},\overline{b}]=\overline{a} imes\overline{b}$$

Этот новый вектор имеет величину, равную площади параллелограмма, образованного исходными векторами - в этом по сути и заключается геометрический смысл векторного произведения.

Векторным произведением векторов \overline{a} и \overline{b} будет такой вектор \overline{c} , который определяются следующим образом:

- 1. $|\overline{c}|=|\overline{a}||\overline{b}|\sin heta$, heta угол между векторами \overline{a} и \overline{b} .
- 2. \overline{c} ортогонален каждому из векторов \overline{a} и \overline{b} .
- 3. Осталось два возможных направления, куда может быть направлен \overline{c} . Вобьем последний гвоздь \overline{c} направлен так, что тройка векторов $\{\overline{a},\overline{b},\overline{c}\}$ правая.

Если $\overline{a}||\overline{b}$ или какой-то из векторов нулевой, то исходя из пункта 1 очевидно, что \overline{c} - нулевой вектор.

Смешанное произведение

Смешанное произведение векторов - операция, результатом которой является *скалярное значение*. Для трех векторов $\overline{a}, \overline{b}, \overline{c}$, смешанное произведение определяется как скалярное произведение вектора \overline{a} на векторное произведение $[\overline{b}, \overline{c}]$:

$$(\overline{a},\overline{b},\overline{c})=(\overline{a},[\overline{b},\overline{c}])=\overline{a}\cdot(\overline{b} imes\overline{c})$$

По определению, смешанное произведение нулевое, если хотя бы два вектора коллинеарны, или если хотя бы один вектор нулевой. (подробнее об этом в свойствах)

Геометрический смысл смешанного произведения - его абсолютное значение равно объему параллелепипеда, образованного тремя векторами, и может быть использовано для нахождения объема в трехмерном пространстве.

Говоря конкретнее, если тройка векторов $\{\overline{a},\overline{b},\overline{c}\}$ - правая, то смешанное произведение будет равно объему параллелепипеда, построенного на этих трех векторах.

$$(\overline{a},\overline{b},\overline{c})=V$$

А если тройка - левая, то смешанное произведение будет тоже равно объему параллелепипеда, но со знаком минус.

$$(\overline{a},\overline{b},\overline{c})=-V$$

Отсюда и следует, что абсолютное значение будет равно объему параллелепипеда:

$$|(\overline{a},\overline{b},\overline{c})|=V$$

Это следует из геометрического смысла векторного произведения и свойства скалярного умножения:

$$(\overline{a},\overline{b},\overline{c})=([\overline{a},\overline{b}],\overline{c})=|[\overline{a},\overline{b}]|\cdot \mathrm{np}_{[\overline{a},\overline{b}]}\overline{c}$$

 $|[\overline{a},\overline{b}]|$ будет численно равна площади параллелограмма со сторонами \overline{a} и \overline{b} , а проекция c на перпендикулярной этой плоскости вектор и будет высотой параллелепипеда, построенного на трех векторах как на сторонах.

Кстати, объем пирамиды, построенной на этой тройке векторов, равен

$$V_{nup}=rac{1}{6}\Big|(\overline{a},\overline{b},\overline{c})\Big|$$

Пример задачи

Условие: найдите объем пирамиды, образованной вершинами

$$A_1(14;4;5), A_2(-5;-3;2), A_3(-2;-6;-3), A_4(-2;2;-1).$$

Решение: чтобы найти объем пирамиды, сначала найдем объем параллелепипеда. Для этого посчитаем смешанное произведение векторов:

$$egin{aligned} \overline{a} &= A_2 - A_1 = (-19; -7; -3) \ \overline{b} &= A_3 - A_1 = (-16; -10; -8) \ \overline{c} &= A_4 - A_1 = (-16; -2; -6) \end{aligned}$$

$$(\overline{a},\overline{b},\overline{c}) = egin{vmatrix} -19 & -7 & -3 \ -16 & -10 & -8 \ -16 & -2 & -6 \ \end{bmatrix} =$$

$$=-19(60-16)+7(96-128)-3(32-160)=-676$$

Объем пирамиды находим, деля наш результат на 6:

$$V_{nup} = rac{|-676|}{6} = rac{338}{3}$$