Dizia eu que a aritmética...

Arquitetura de Computadores

Emilio Francesquini e.francesquini@ufabc.edu.br 2021.01

Centro de Matemática, Computação e Cognição Universidade Federal do ABC

- Estes slides foram preparados para o curso de Arquitetura de Computadores na UFABC.
- Este material pode ser usado livremente desde que sejam mantidos, além deste aviso, os créditos aos autores e instituições.
- O conteúdo destes slides foi baseado no conteúdo do livro Computer Organization And Design: The Hardware/Software Interface, 5th Edition.

Aritmética para computadores

Aritmética para computadores

- Operações em inteiros
 - ► Soma e subtração
 - ► Multiplicação e divisão
 - ► Lidando com overflow
- Números de ponto flutuante
 - ► Representação e operações

Adição de inteiros

■ Exemplo: 7 + 6

- Causa um *overflow* se o resultado estiver fora da faixa suportada
- A soma de operando +s e -s nunca causa overflow. Pq?
- Na adição de dois operandos positivos
 - há overflow se o sinal do resultado for negativo
- Na adição de dois operandos negativos
 - há overflow se o sinal do resultado for positivo

Subtração de inteiros

- Como usamos complemento de 2, o mais fácil é somar a negação do segundo operando!
- Exemplo: 7 6 = 7 + (-6)

```
+7: 0000 0000 ... 0000 0111

-6: 1111 1111 ... 1111 1010

+1: 0000 0000 ... 0000 0001
```


- Algumas linguagens simplesmente ignoram o overflow (ex. C).
 - ▶ Utilizam as instruções addu e subu do MIPS.
- Já outras linguagens como Ada e Fortran lançam exceções quando overflows ocorrem.
 - Utilizam as instruções add, addi, sub do MIPS.
 - Quando um overflow ocorre elas invocam um tratador de exceções.
 - Salva o PC no registrador EPC (exception program counter).
 - Salta para o tratador de exceção pré-definido.
 - mfc0 (move from coprocessor reg) pode ser usado para recuperar o valor de EPC e voltar ao ponto de erro logo ter corrigido o problema.

Aritmética para aplicações multimídia

- Operações gráficas e de mídia normalmente trabalham com vetores de dados com 8 ou 16 bits
 - ▶ Pode-se utilizar um somador de 64 bits com a cadeia de "carry" particionada
 - Assim, pode-se operar em vetores de 8x8, 4x16 ou 2*32 bits
 - ► SIMD Single Instruction Multiple Data
- Operações com saturação
 - ▶ No caso de overflows, o resultado é sempre o maior valor representável
 - Exemplos: cortes de áudio, saturação em vídeo

Multiplicação e Divisão de Inteiros

Multiplicação

Começamos com o algoritmo de papel e lápis...

Multiplicação - Exemplo

- 2 x 3 = 6
- 4 bits

Iteration	Step	Multiplier	Multiplicand	Product
0	Initial values	0011	0000 0010	0000 0000
1	1a: $1 \Rightarrow \text{Prod} = \text{Prod} + \text{Mcand}$	0011	0000 0010	0000 0010
	2: Shift left Multiplicand	0011	0000 0100	0000 0010
	3: Shift right Multiplier	0001	0000 0100	0000 0010
2	1a: 1 ⇒ Prod = Prod + Mcand	0001	0000 0100	0000 0110
	2: Shift left Multiplicand	0001	0000 1000	0000 0110
	3: Shift right Multiplier	0000	0000 1000	0000 0110
3	1: 0 ⇒ No operation	0000	0000 1000	0000 0110
	2: Shift left Multiplicand	0000	0001 0000	0000 0110
	3: Shift right Multiplier	0000	0001 0000	0000 0110
4	1: 0 ⇒ No operation	0000	0001 0000	0000 0110
	2: Shift left Multiplicand	0000	0010 0000	0000 0110
	3: Shift right Multiplier	0000	0010 0000	0000 0110

Hardware para multiplicação

Multiplicador otimizado

- Desempenha vários passos em paralelo: soma/deslocamento
- Gasta um ciclo por adição do produto parcial
 - ▶ Não é tão grave se a frequência da ocorrência de multiplicações é baixa

Um multiplicador ainda mais rápido

- Utiliza diversos circuitos somadores
 - ► Compromisso (*tradeoff*) entre custo e desempenho

 Pode ser usado como pipeline para melhorar o desempenho através do paralelismo

A multiplicação no MIPS

- Utiliza dois registradores especiais de 32 bits para o produto
 - ► HI: 32 bits mais significativos
 - ▶ L0: 32 bits menos significativos
- Instruções disponíveis

```
# coloca o resultado do produto (64 bits) no HI/LO
mult rs, rt
multu rs, rt
# move resultados de HI/LO para rd
mfhi rd
mflo rd
# Multiplica rs por rt e guarda os 32 bits
# menos significativos em rd
mul rd, rs, rt
```


Operandos de *n* bits resultam em um quociente e resto de *n* bits.

- Verifica divisão por 0
- Abordagem de divisão papel e lápis
 - ► Se o número de bits do divisor < dividendo
 - 1 no quociente, subtrai
 - Caso contrário
 - 0 no quociente, "desce"o próximo bit
- Divisão com restauração
 - ► Faz a subtração e se o resto for menor que 0, adiciona o divisor de volta.
- Divisão com sinal
 - ► Divide-se utilizando os valores absolutos
 - Ajusta o sinal do quociente e do resto conforme necessário

Operandos de n bits resultam em um quociente e resto de n bits.

1001010	1	000		
-1000				
	1	001		
0001				
10	#	baixa	0	0
101	#	baixa	0	1
1010	#	baixa	0	0
-1000				
0010	<-	resto		

Divisão - Exemplo

- 7 / 2 = 3 resto 1
- 4 bits

Iteration	Step	Quotient	Divisor	Remainder
0	Initial values	0000	0010 0000	0000 0111
	1: Rem = Rem - Div	0000	0010 0000	①110 0111
1	1 2b: Rem $< 0 \Rightarrow +$ Div, sll Q, Q0 = 0		0010 0000	0000 0111
3: Shift Div right		0000	0001 0000	0000 0111
	1: Rem = Rem - Div	0000	0001 0000	1111 0111
2	2b: Rem $< 0 \implies$ +Div, sll Q, Q0 = 0	0000	0001 0000	0000 0111
	3: Shift Div right	0000	0000 1000	0000 0111
	1: Rem = Rem - Div	0000	0000 1000	①111 1111
3	2b: Rem $< 0 \implies$ +Div, sll Q, Q0 = 0	0000	0000 1000	0000 0111
	3: Shift Div right	0000	0000 0100	0000 0111
	1: Rem = Rem - Div	0000	0000 0100	0000 0011
4	2a: Rem $\geq 0 \implies$ sII Q, Q0 = 1	0001	0000 0100	0000 0011
	3: Shift Div right	0001	0000 0010	0000 0011
	1: Rem = Rem - Div	0001	0000 0010	0000 0001
5	2a: Rem $\geq 0 \Longrightarrow$ sll Q, Q0 = 1	0011	0000 0010	0000 0001
	3: Shift Div right	0011	0000 0001	0000 0001

Hardware para divisão

Hardware otimizado para divisão

- Um ciclo a cada subtração para resto-parcial
- Parece muito com um multiplicador
 - ▶ De fato, o mesmo hardware pode ser utilizado por ambos!

Uma divisão mais rápida

- Infelizmente não é possível fazer um hardware paralelo como o da multiplicação
 - ► A subtração é condicionada ao sinal do resto
- Circuitos para divisão mais rápidos (por ex. SRT) geram múltiplos bits do quociente a cada passo.
 - ► Mas ainda assim necessitam de múltiplos passos.

Divisão no MIPS

- Utiliza os registradores HI e LO para os resultados
 - ► HI: Guarda o resto (32 bits)
 - ► LO: Guarda o quociente (32 bits)
- Instruções

```
div rs, rt
divu rs, rt
```

- Não há verificação para os casos de divisão por 0 ou por overflow
 - ▶ É trabalho do software cuidar disto caso necessário
- Utiliza as instruções mfhi e mflo para acessar os resultados.

Números com pontos flutuantes

- Representam números não inteiros
 - ► Incluindo aqueles muito grandes ou muito pequenos.
- É muito semelhante à notação científica

$$-2,34\times10^{56}$$
 normalizado
 $+0,002\times10^{-4}$ não normalizado
 $+987,02\times10^{9}$ não normalizado

■ Em binário é a mesma coisa

$$ightharpoonup \pm 1$$
, $xxxx_2 \times 2^{yyyy}$

■ Em C, por exemplo, são representados por float e double.

- Definiu um padrão para a representação de números de ponto flutuante
- Surgiu em resposta às divergentes maneiras de representar números
 - Havia sérios problemas de portabilidade para códigos científicos
- Agora é adotado quase que universalmente
- Estabeleceu duas representações padrões
 - Precisão simples (32 bits)
 - Precisão dupla (64 bits)

Formato IEEE para números em ponto flutuante

	Sinal	Expoente	Mantissa
Precisão simples	1 bit	8 bits	23 bits
Precisão dupla	1 bit	11 bits	52 bits

$$\mathbf{X} = (-1)^{\mathsf{S}} \times (1 + \mathsf{Mantissa}) \times 2^{\mathsf{Expoente} - \mathsf{Bias}}$$

- Bit de sinal: 0 positivo, 1 negativo
- O significando, ou mantissa é mantido normalizado
 - ▶ $1.0 \le mantissa < 2.0$
 - Logo possui, sempre, um bit 1 no início
 - Por isto este bit não é guardado explicitamente e acrescentando 1 bit à representação da mantissa
- **Expoente**: guardado como um expoente + deslocamento (bias)
 - Expoente é sempre guardado como um número sem sinal
 - Bias para precisão simples: 127
 - Bias para precisão dupla: 1023

Precisão Simples

- Os expoentes **00000000** e **11111111** são reservados
- Os <u>"menores"</u> valores representáveis são:
 - Expoente: 00000001
 - Expoente real: 1 127 = -126
 - ▶ Mantissa: **0000...00**, que com o bit implícito 1 se torna 1.0
 - ▶ Valores: $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Os <u>"maiores"</u> valores representáveis são:
 - Expoente: 11111110
 - Expoente real: 254 127 = +127
 - lacktriangle Mantissa: 1111...11, que com o bit implícito 1 é pprox 2.0
 - ► Valores: $\pm 2.0 \times 2^{+127} \approx 3.4 \times 10^{+38}$

Precisão Dupla

- Os expoentes 00000000000 e 11111111111 são reservados
- Os <u>"menores"</u> valores representáveis são:
 - Expoente: 0000000001
 - Expoente real: 1 1023 = -1022
 - ▶ Mantissa: **0000...00**, que com o bit implícito 1 se torna 1.0
 - ► Valores: $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Os "maiores" valores representáveis são:
 - Expoente: 1111111110
 - Expoente real: 2046 1023 = +1023
 - ▶ Mantissa: 1111...11, que com o bit implícito 1 é ≈ 2.0
 - ► Valores: $\pm 2.0 \times 2^{+1023} \approx 1.8 \times 10^{+308}$

Sobre a precisão de pontos flutuantes

- A precisão é relativa
 - ► Todos os bits da mantissa são levados em consideração
 - ▶ Precisão simples: $\approx 2^{-23}$
 - \bullet Equivalente a $23 \times \log_{10} 2 \approx 23 \times 0.3 \approx 6$ casas decimais
 - Precisão dupla: $\approx 2^{-52}$
 - $\bullet~$ Equivalente a $52 \times \log_{10} 2 = 52 \times 0.3 \approx 16$ casas decimais

Exemplo 1

■ Como representar 0.75

$$-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$$

- ► Sinal: 1
- ► Expoente = -1 + bias
 - Simples: $-1 + 127 = 126 = 01111110_2$
 - \bullet Dupla: $-1 + 1023 = 1022 = 01111111111110_2$
- Mantissa: (sem o 1 antes da vírgula): 1000...00 2
- Precisão simples: 1 01111110 1000...00
- Precisão dupla: 1 01111111110 1000...00

- Que número é representado pelo float de precisão simples: 1 10000001 01000...00
 - ► Sinal: 1
 - **Expoente**: 10000001₂ 127 = 129 127 = 2
 - ► Mantissa: $1 + .01_2 = 1 + (0 \times 2^{-1} + 1 \times 2^{-2}) = 1 + 1 \times \frac{1}{4} = 1 + 0.25 = 1.25$
 - ightharpoonup $\mathbf{x} = (-1)^1 \times 1.25 \times 2^2 = -1 \times 1.25 \times 2^2 = -5.0$

Infinitos e NaNs

■ ± Infinito

Expoente: 1111...11

► Mantissa: 0000...00

 Pode ser utilizado pelos cálculos seguintes sem a necessidade de verificações de overflow

• Qualquer operação com Inf resulta em Inf, exceto com NaN que resulta em NaN.

■ NaN - Not a Number

► Expoente: 1111...11

► Mantissa: ≠ 0000...00

Indica uma operação ilegal ou resultado não definido ($\sqrt{-1}$ ou divisão por 0, por exemplo).

 Pode ser utilizado pelos cálculos seguintes sem a necessidade de verificações de overflow.

• Qualquer operação com NaN resulta em NaN.

Single precision		Double precision		Object represented
Exponent	Fraction	Exponent	Fraction	
0	0	0	0	0
0	Nonzero	0	Nonzero	± denormalized number
1–254	Anything	1–2046	Anything	± floating-point number
255	0	2047	0	± infinity
255	Nonzero	2047	Nonzero	NaN (Not a Number)

Adição e multiplicação de pontos

flutuantes

Adição de pontos flutuantes

- Considere um exemplo, em decimal, de 4 dígitos
 - $ightharpoonup 9.999 \times 10^1 + 1.610 \times 10^{-1}$
- Alinhar os pontos decimais
 - Desloca-se números com menor expoente
 - $ightharpoonup 9.999 \times 10^1 + 0.016 \times 10^1$
- 2 Adicionar mantissa
 - $9.999 \times 10^1 + 0.016 \times 10^1 = 10.015 \times 10^1$
- 3 Normalizar resultado e verificar por overflow/underflow
 - $ightharpoonup 1.0015 \times 10^2$
- 4 Arredondar e renormalizar se necessário
 - $ightharpoonup 1.002 \times 10^2$

Adição de pontos flutuantes

- Agora considere um exemplo com um binário de 4 dígitos
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- Alinhar os pontos binários
 - Desloca-se números com menor expoente
 - $\qquad \qquad 1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2 Adicionar mantissa
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3 Normalizar resultado e verificar por overflow/underflow
 - ▶ $1.000_2 \times 2^{-4}$, sem over/underflow
- 4 Arredondar e renormalizar se necessário
 - ► $1.000_2 \times 2^{-4}$ (sem mudanças) = 0.0625

- Muito mais complexo que um somador de inteiros.
- Para fazer a soma em um ciclo de clock faria com que o ciclo fosse muito longo
 - Muito mais longo do que operações sobre inteiros
 - Mas um clock mais lento penalizaria todas as instruções
- Consequência: o somador de FPs leva mais de um ciclo
 - Contudo pode ser colocado em pipeline!

Somador de FPs

Multiplicação de FPs

- Considere um exemplo decimal com 4 dígitos
 - $\blacksquare \ \, 1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- Some expoentes
 - Para expoentes com bias subtraia o bias da soma
 - ▶ Novo expoente = 10 + (-5) = 5
- Multiplique as mantissas
 - $ightharpoonup 1.110 \times 9.200 = 10.212 \rightarrow 10.212 \times 10^5$
- 3 Normaliza o resultado e verifica por over/underflow
 - $ightharpoonup 1.0212 imes 10^6$
- 4 Arredonda e renormaliza se necessário
 - ightharpoonup 1.021 × 10⁶\$
- 5 Determina o sinal do resultado pelo sinal dos operandos
 - \rightarrow +1.021 × 10⁶

Multiplicação de FPs

- Agora considere um exemplo binário de 4 dígitos
 - $\qquad 1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- Soma expoentes
 - ► Sem bias: -1 + (-2) = -3
 - ► Com bias: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2 Multiplica mantissa
 - $ightharpoonup 1.000_2 \times 1.110_2 = 1.110_2 \rightarrow 1.110_2 \times 2^{-3}$
- 3 Normaliza resultado e verifica over/underflow
 - $ightharpoonup 1.110_2 imes 2^{-3}$ (sem mudanças) sem over/underflow
- 4 Arredonda e renormaliza (se necessário)
 - ► $1.110_2 \times 2^{-3}$ (sem mudanças)
- **5** Determina sinal: $+ \times \rightarrow$
 - ightharpoonup $-1.110_2 imes 2^{-3} = -0.21875$

Multiplicador de FPs

- O hardware para multiplicação de FPs é semelhante ao de somas
 - ▶ No lugar de um somador para as mantissas usa um multiplicador
- Aritmética de FPs geralmente lida com
 - Soma, subtração, multiplicação, divisão, inverso e raiz quadrada
 - ► Conversão inteiro ⇔ FP
- Cada operação em geral leva vários ciclos
 - Contudo pode ser colocada em um pipeline

Instruções de FP no MIPS

Instruções FP no MIPS

- O hardware para FP é o coprocessador 1
 - ▶ É um processador adjunto que complementa a ISA
- Por isto contém um conjunto extra de registradores
 - ▶ 32 registradores de precisão simples: \$f0, \$f1, ..., \$f31
 - ➤ São usados pareados para precisão dupla: \$f0 / \$f1, \$f2 / \$f3,..., \$f30 / \$f31
- Operações de FPs só funcionam em registradores de FPs
 - Programas em geral não fazem operações inteiras em dados de FPs ou vice-versa
 - Podemos, então, ter mais registradores com pouco impacto no tamanho do código
- Para carregar e armazenar FPs temos as instruções
 - ► lwc1, ldc1, swc1, sdc1
 - ldc1 \$f8, 32(\$sp)

Instruções FP no MIPS


```
# precisão simples: add.s sub.s mul.s div.s
   add.s $f0, $f1, $f6
   # precisão dupla: add.d sub.d mul.d div.d
   mul.d $f4, $f4, $f6
5
   # Comparação
   # P. Simples: c.ea.s c.lt.s c.le.s ...
   # P. Dupla: c.eq.d c.lt.d c.le.d ...
   # Ambos os casos setam o bit de condição para 0 ou 1
   c.lt.s $f3. $f4
11
   # E para usar o bit temos o branch condicional de FPs
   # bc1t. bc1f - true ou false
   bc1t TargetLabel
14
```



```
float f2c (float fahr) {
return ((5.0 / 9.0) * (fahr - 32.0));
}
```

• fahr em \$f12, resultado em \$f0, literais na memória global

```
1 f2c:
2 lwc1 $f16, const5($gp) # Carrega 5.0 para $f16
3 lwc1 $f18, const9($gp) # Carrega 9.0 para $f18
4 div.s $f16, $f16, $f18 # Div. $f16 por $f18
5 lwc1 $f18, const32($gp) # Carrega 32.0 para $f18
6 sub.s $f18, $f12, $f18 # Subtrai $f18 de $f12
7 mul.s $f0, $f16, $f18 # Multiplica $f16 $f18
8 jr $ra # Retorna
```

Exemplo 2 - Multiplicação de arrays

- $X = X + Y \times Z$
 - ► Todos são matrizes de 32 × 32 de FPs de precisão dupla
- Código em C

```
void mm (double x[][], double y[][], double z[][]) {
   int i, j, k;
   for (i = 0; i! = 32; i = i + 1)
      for (j = 0; j! = 32; j = j + 1)
      for (k = 0; k! = 32; k = k + 1)
            x[i][j] = x[i][j] + y[i][k] * z[k][j];
}
```

Endereços de x, y, z in \$a0, \$a1, \$a2 e i, j, k em \$s0, \$s1, \$s2

Exemplo 2 - Multiplicação de arrays


```
# $t1 = 32 (tamanho linha/fim do laco)
         1i
              $t1, 32
 2
         li
              $s0. 0
                            # i = 0: inicializa primeiro laco
     L1: 1i
              $s1, 0
                           # j = 0; reinicia segundo laço
     L2: 1i
              $s2. 0
                           # k = 0: reinicia terceiro laco
 5
         sll $t2, $s0, 5
                           # $t2 = i * 32 (tam. da linha de x)
         addu $t2. $t2. $s1 # $t2 = i * tamanho(linha) + i
         sll $t2, $t2, 3 # $t2 = byte offset de [i][i]
         addu $t2. $a0. $t2 # $t2 = endereco de x[i][i]
 9
         l.d f_4, g(f_4) # f_4 = 8 bytes de g(f_4)
     L3: sll $t0, $s2, 5 # $t0 = k * 32 (tam da linha de z)
10
11
         addu $t0. $t0. $s1 # $t0 = k * tamanho(linha) + j
12
         sll $t0. $t0. 3 # $t0 = bvte offset de [k][i]
         addu $t0. $a2. $t0 # $t0 = endereco de z[k][i]
13
14
         l.d f16. 0(f0) # f16 = 8 bytes de z[k][i]
15
         sll $t0. $s0. 5 # $t0 = i*32 (tam. da linha de v)
16
         addu $t0. $t0. $s2 # $t0 = i * tamanho(linha) + k
                              # $t0 = bvte offset de [i][k]
17
         s11
               $t0. $t0. 3
18
         addu $t0, $a1, $t0
                              # t0 = endereco de v[i][k]
         1.d
               $f18, 0($t0)
                               # $f18 = 8 bytes de v[i][k]
19
         mul.d $f16. $f18. $f16 # $f16 = v[i][k] * z[k][i]
20
21
         add.d $f4. $f4. $f16
                              # f4=x[i][i] + v[i][k]*z[k][i]
         addiu $s2, $s2, 1
                               # \$k = k + 1
23
         bne
             $s2, $t1, L3
                               # if (k != 32) vai para L3
24
         s.d
               $f4. 0($t2)
                               \# x[i][i] = $f4
25
         addiu $s1, $s1, 1
                               # \$i = i + 1
               $s1, $t1, L2
                              # if (j != 32) vai para L2
26
         bne
                              # $i = i + 1
27
         addiu $s0. $s0. 1
                               # if (i != 32) vai para L1
28
               $s0. $t1. L1
         hne
```

Aritmética mais precisa

- O padrão IEEE 754 também especifica alguns controles de arredondamento adicionais
 - ► Bits extras de precisão (guard, round e sticky)
 - ► Escolha do modo de arredondamento
 - Permite que o programador ajuste o comportamento desejado para sua aplicação
- Nem todas as unidades de ponto flutuante fornecem todos os modos
 - ▶ Boa parte das linguagens de programação e bibliotecas de FP usam os ajustes padrão
- Há novamente um trade-off entre a complexidade do hardware, o desempenho e requerimentos de marketing

Outras Arquiteturas e Conclusão

- Originalmente baseada no coprocessador 8087
 - ► Registradores de precisão estendida de 80 bits
 - Utilizado como uma pilha
 - ► Registradores indexados a partir do TOS: ST(0), ST(1), ...
- Os valores em FP são armazenados em 64 bits na memória
 - Convertidos durante o load/store do operando
 - Operando inteiros também são convertidos neste momento
- É muito complicado gerar e otimizar o código para esta arquitetura
 - Resultado: baixo desempenho.

Instruções de FP no x86

Transf. Dados	Aritmética	Comparação	Transcendental
F I LD mem/ST(i)	FIADD P mem/ST(i)	F I COM P	FPATAN
FIST P mem/ST(i)	FISUB RP mem/ST(i)	F I UCOM P	F2XMI
FLD1, FLDZ	FIMUL P mem/ST(i)	FSTSW AX/mem	FCOS
FLDL2T, FLDL2E, FLDPI, FLDLN2, FLDZ	F I DIV RP mem/ST(i)		FPTAN
	FSQRT		FPREM
	FABS		FPSIN
	FRNDINT		FYL2X

Variações

- Operando inteiro: I
- ► Pop do operando da pilha: P
- ► Ordem inversa dos operandos: R
- ► Mas nem todas as combinações são possíveis.

Streaming SIMD Extension 2 (SSE2)

- Adicionou 4 registradores de 128 bits
 - ► Mais 4, totalizando 8, foram adicionados no AMD64/EM64T
- Podem ser usados para armazenar múltiplos operandos FP
 - 2 operandos de 64 bits (precisão dupla)
 - ► 4 operandos de 32 bits (precisão simples)
- As instruções operam nos valores simultâneamente
 - ► SIMD Single Instruction Multiple Data

Deslocamento para esquerda e divisão

- Fazer o deslocamento para esquerda (left shift) em i posições multiplica um inteiro por 2ⁱ
- Deslocar para a direita (right shift) em i posições divide por 2^{i} ?
- Para números sem sinal, sem problema
- Para números com sinal
 - ► É preciso estender o bit de sinal
 - ightharpoonup Exemplo: -5/4
 - 11111011 >> 2 = 111111110 = -2
 - Arredonda para $-\infty$
 - Confronte com: 11111011 >> 2 = 00111110 = +62

- Programas paralelos podem intercalar operações em ordem inesperadas
- Suposições sobre associatividade podem falhar

		(x+y)+z	X + (y + z)
Χ	-1.50E + 38		-1.50E + 38
У	+1.50E + 38	0.00E + 00	
Z	1.0	1.0	+1.50E + 38
		1.00E + 00	0.00E + 00

• É preciso fazer uma rodada a mais de testes em programas paralelos para garantir os resultados com mais níveis de paralelismo

Quem se importa com a precisão de FPs?

- É importantíssimo para código científico
- E para consumidores do dia a dia?
 - ▶ Imagine o seu saldo bancário com uma diferença de 0.0002 centavos... ఆ
- O Bug do Pentium FDIV
 - ► O mercado espera precisão
 - ▶ Veja "The Pentium Chronicles", por Colwell

- Bits não tem nenhum significado inerente
 - ► A interpretação dos bits depende das instruções que forem aplicadas a eles
- Representação pelo computador de números
 - ► Tem limites finitos e de precisão
 - ▶ Programas precisam levar isto em conta

- As ISAs d\u00e3o suporte a opera\u00f3\u00f3es aritm\u00e9ticas
 - ► Inteiros com e sem sinal
 - Aproximação de números reais por FPs
- Limites de valores e precisão
 - Operações podem dar overflow ou underflow
- A ISA do MIPS
 - ► Instruções principais: 54
 - Representam 100% das instruções usadas pelo SPECINT
 - Representam 97% das instruções usadas pelo SPECFP
 - Outras instruções são bem menos frequentes.