Problem Set 1: 1.1-1.4

Joshua Ramette & Daniel Halmrast

September 9, 2016

PROBLEM 1.1

Problem 1.1: Prove that in Example 1.5(d) one does indeed obtain a differentiable structure on S^d .

Example 1.5(d): The d – sphere is the set

$$S^{d} = \{x \in \mathbb{R}^{d+1} | \sum_{i=1}^{d+1} x_i^2 = 1\}$$
 (0.1)

Let n = (0, ..., 0, 1) and s = (0, ..., 0, -1). Then the standard differentiable structure on S^d is obtained by taking \mathscr{F} to be the maximal collection containing $(S^d - n, p_n)$ and $(S^d - s, p_s)$, where p_n and p_s are stereographic projections from p_s and p_s are stereographic projecti

 \mathscr{F} is a differentiable structure of class C^{∞} , a collection of coordinate systems $\{(U_{\alpha},\phi_{\alpha})|\alpha\in A\}$ satisfying:

(a) NTS:
$$\bigcup_{\alpha \in A} U_{\alpha} = S^d$$

 $(S^d - n) \subset S^d$ and $(S^d - s) \subset S^d \Rightarrow (S^d - n) \cup (S^d - s) \subset S^d$. Since $n \neq s, S^d \subset (S^d - n) \cup (S^d - s) \subset \bigcup_{\alpha \in A} U_\alpha$. Then, $\bigcup_{\alpha \in A} U_\alpha = S^d$ since $\bigcup_{\alpha \in A} U_\alpha \subset S^d$ because by definition, $U_\alpha \subset S^d \ \forall \alpha \in A$.

(b) NTS:
$$\phi_{\alpha} \circ \phi_{\beta}^{-1}$$
 is C^{∞} for all $\alpha, \beta \in A$.

Since the example defines \mathscr{F} to be the maximal collection containing $(S^d - n, p_n)$ and $(S^d - s, p_s)$, it is sufficient to show that $p_s \circ p_n^{-1}$ and $p_n \circ p_s^{-1}$ are C^{∞} . Using the standard stereographic projections we have:

$$\begin{split} p_n \colon S^d &\to \mathbb{R}^d; (x_1, x_2, \dots, x_d, x_{d+1}) \mapsto \frac{1}{1 - x_{d+1}} (x_1, x_2, \dots, x_d) \\ p_s \colon S^d &\to \mathbb{R}^d; (x_1, x_2, \dots, x_d, x_{d+1}) \mapsto \frac{1}{1 + x_{d+1}} (x_1, x_2, \dots, x_d) \\ \text{Then the inverses are:} \\ p_n^{-1} \colon \mathbb{R}^d &\to S^d; (x_1, x_2, \dots, x_d) \mapsto (1 - x_{d+1}) (x_1, x_2, \dots, x_d, \frac{x_{d+1}}{1 - x_{d+1}}) \\ p_s^{-1} \colon \mathbb{R}^d &\to S^d; (x_1, x_2, \dots, x_d) \mapsto (1 + x_{d+1}) (x_1, x_2, \dots, x_d, \frac{x_{d+1}}{1 + x_{d+1}}) \\ \text{where } x_{d+1} &= \frac{(\sum_{i=1}^d x_i^2) - 1}{(\sum_{i=1}^d x_i^2) + 1} \text{ for } p_n^{-1} \text{ since } (1 - x_{d+1}) (x_1, x_2, \dots, x_d, \frac{x_{d+1}}{1 + x_{d+1}}) \in S^d \Rightarrow (1 - x_{d+1})^2 (\sum_{i=1}^d x_i^2 + \frac{x_{d+1}^2}{1 - x_{d+1}^2}) \\ &= 1. \text{ Then, } (1 + (\sum_{i=1}^d x_i^2)) x_{d+1}^2 - (2(\sum_{i=1}^d x_i^2)) x_{d+1} + (\sum_{i=1}^d x_i^2 - 1) = 0, \text{ and applying the } \\ &= \text{quadratic equation we obtain the previous result, } x_{d+1} = \frac{(\sum_{i=1}^d x_i^2) - 1}{(\sum_{i=1}^d x_i^2) + 1}. \text{ The other solution to the } \\ &= \text{quadratic simply gives the position of the pole of the sphere where the stereographic line intersects the sphere. Similarly, for } p_s^{-1}, x_{d+1} = -\frac{(\sum_{i=1}^d x_i^2) - 1}{(\sum_{i=1}^d x_i^2) + 1}. \end{split}$$

We can compose these formulas to obtain:

$$p_{n} \circ p_{s}^{-1} : \mathbb{R}^{d} \to \mathbb{R}^{d}; (x_{1}, x_{2}, ..., x_{d}) \mapsto \frac{(1 + x_{d+1})}{(1 - x_{d+1})} (x_{1}, x_{2}, ..., x_{d})$$

$$p_{s} \circ p_{n}^{-1} : \mathbb{R}^{d} \to \mathbb{R}^{d}; (x_{1}, x_{2}, ..., x_{d}) \mapsto \frac{(1 - x_{d+1})}{(1 + x_{d+1})} (x_{1}, x_{2}, ..., x_{d})$$
From the formulas above, $p_{n} \circ p_{s}^{-1}$ and $p_{s} \circ p_{n}^{-1}$ simply multiplies $(x_{1}, x_{2}, ..., x_{d})$ by a factor that

From the formulas above, $p_n \circ p_s^{-1}$ and $p_s \circ p_n^{-1}$ simply multiplies $(x_1, x_2, ..., x_d)$ by a factor that is a composition of rational functions with domain \mathbb{R} since the restrictions on x_{d+1} gaurantee that the denominators do not go to zero $\Rightarrow p_n \circ p_s^{-1}$ and $p_s \circ p_n^{-1}$ are C^{∞} since each component function is C^{∞} .

(c) NTS \mathscr{F} is maximal w.r.t. (b). This is satisfied by definition of the example.

PROBLEM 1.2

Problem 1.2: The usual differentiable structure on the real line \mathbb{R} was obtained by taking \mathscr{F} to be the maximal collection containing the identity map. Let \mathscr{F}_1 be the maximal collection (w.r.t 1.4(b)) containing the map $t \mapsto t^3$. Prove that $\mathscr{F} \neq \mathscr{F}_1$, but that $(\mathbb{R}, \mathscr{F})$ and $(\mathbb{R}, \mathscr{F}_1)$ are diffeomorphic.

First we show $\mathscr{F} \neq \mathscr{F}_1$ by showing that $(\mathbb{R},t) \in \mathscr{F}$ but $(\mathbb{R},t) \not\in \mathscr{F}_1$. $t \circ (t^3)^{-1} = t^{1/3} \not\in C^{\infty}$ on the intersection of their domains (\mathbb{R}) , so it fails condition b) for \mathscr{F} . Therefore this coordinate map is not in \mathscr{F}_1 so $\mathscr{F} \neq \mathscr{F}_1$.

However, they are diffeomorphic. The diffeomorphism is given by $\psi:(\mathbb{R},\mathscr{F})\to(\mathbb{R},\mathscr{F}_1);t\mapsto t^{1/3}$. ψ is bijective by definition, so we need to show that ψ and ψ^{-1} are both C^{∞} .

To show ψ is C^{∞} we let $\phi \in \mathscr{F}$, $\tau \in \mathscr{F}_1$. Then, $\tau \circ \psi \circ \phi^{-1}$ is $\tau \circ t^{1/3} \circ t \circ \phi^{-1} = (\tau \circ t^{1/3}) \circ (t \circ \phi^{-1})$, which is C^{∞} since it is the composition of $(\tau \circ t^{1/3})$ and $(t \circ \phi^{-1})$ which are C^{∞} by definition of \mathscr{F} and \mathscr{F}_1 .

Similarly, to show ψ^{-1} is C^{∞} , we check $\phi \circ \psi^{-1} \circ \tau^{-1} = \phi \circ t^3 \circ \tau^{-1} = \phi \circ t \circ \psi^{-1} \circ \tau^{-1} = (\phi \circ t) \circ (t^3 \circ \tau^{-1})$, which is C^{∞} for the same reasons.

PROBLEM 1.3

Problem 1.3: Let U_{α} be an open cover of a manifold M. Prove that there exists a refinement V_{α} such that $\overline{V_{\alpha}} \subset U_{\alpha}$ for each α .

We first prove the following lemma:

Lemma 1.1: For continuous function $\phi: M \to \mathbb{R}$ on a manifold M, $\phi(\partial \operatorname{supp}(\phi)) = \{0\}$. To show this, observe that if $x \in \partial \operatorname{supp}(\phi)$, then \exists net $\{x_v\}$ converging to x such that $\{x_v\} \not\in \operatorname{supp}(\phi)$ which implies that $\phi(x_v) = 0$. Since $x_v \to x$, $\phi(x_v) \to \phi(x)$. But $\phi(x_v) \to 0$. Since \mathbb{R} is Hausdorff, convergence is unique and $\phi(x) = 0$.

Let $\{U_{\alpha}\}$ be any open cover of manifold M. Then by Theorem 1.11, there exists a partition of unity ϕ_{α} subordinate to open cover $\{U_{\alpha}\}$. Let

$$V_{\alpha} = \operatorname{Int}(\operatorname{supp}(\phi_{\alpha}))$$

so that

$$\overline{V_{\alpha}} = \operatorname{supp}(\phi_{\alpha}) \subset U_{\alpha}.$$

We now show that $\{V_{\alpha}\}$ is a refinement of $\{U_{\alpha}\}$. First, observe $V_{\alpha} \subset U_{\alpha} \forall \alpha$. This follows directly from the definition of V_{α} . Next we show that $\{V_{\alpha}\}$ covers M. For a contradiction, suppose there exists $x \in M$ such that x is not covered by $\{V_{\alpha}\}$, that is $x \notin V_{\alpha} \forall \alpha$. Then, $x \notin \text{Int}(\sup(\phi_{\alpha})) \forall \alpha$. But, this means $x \in \partial \sup(\phi)$ for some (possibly more than one) β with the property $\sum \phi_{\beta} = 1$. However by lemma 1.1, $\phi_{\beta}(x) = 0 \ \forall \beta$, so $\sum \phi_{\beta} = 0$, a contradiction.

PROBLEM 1.4

Problem 1.4: Use the fact that manifolds are regular and paracompact to prove that manifolds are normal topological spaces.

Let C and D be closed subsets of M. Then, by the regularity of M, $\forall d \in D \exists V_d \ni d$, $U_d \supset C$, where V_d , U_d open and $U_d \cap V_d = \emptyset$. We call V_d and U_d "regular pairs."

Then observe that the set $\{V_d\}$ forms an open cover of D, and then $\{V_d\} \cup (M-D)$ covers M. By paracompactness of M, there is a locally finite refinement $\{Q_\alpha\}$ of this cover. Let $\mathscr{O} = \{Q_\alpha : Q_\alpha \cap D \neq \emptyset\}$. \mathscr{O} is then a locally finite open cover of D and $Q \in \mathscr{O} \implies Q \subset V_d$ for some d.

Then, let

$$U_D = \bigcup_{Q \in \mathcal{O}} Q$$

By the local finiteness of \mathscr{O} , $\forall c \in C$, there exists a neighborhood W_c of c such that W_c intersects only finitely many elements Q in \mathscr{O} . If W_c intersects no elements Q in \mathscr{O} , then let $U_c = W_c$. Else, define $T = \{Q_t\}_{t=1}^n$ for Q_t the elements of \mathscr{O} that intersect W_t . Observe that for each t, $Q_t \subset V_t$ for some V_t . Let U_t be the corresponding regular pair of V_t . Recall that for regular pairs, $U_t \cap V_t = \emptyset$ and $U_t \supset C$. Then, since $Q_t \subset V_t$, $U_t \cap Q_t = \emptyset$. Furthermore, since $C \subset U_t$, $C \in C \implies C \subseteq U_t \forall t$.

We can now construct our normal open set containing \mathcal{C} . Let

$$U_c = W_c \cap \bigcap_T U_t$$

It is easy to verify that for all $c \in C$, U_c is open and contains c. Furthermore, we can show that $U_c \cap U_D = \emptyset$. To see this, observe that $\forall Q \in \mathscr{O}, U_c \cap Q = (W_c \cap \bigcap_T U_t) \cap Q$ and either $W_c \cap Q = \emptyset$ or $U_t \cap Q = \emptyset$.

Then, let

$$U_C = \bigcup_{c \in C} U_c$$

It is easy to verify that U_C and U_D form a normal pair.