

Politechnika Gdańska Wydział Fizyki Technicznej i Matematyki Stosowanej

Projekt licencjacki

Twierdzenie o dezintegracji miary

Autorzy:

Bartosz Bycul Piotr Fonferek Grzegorz Łucki Jakub Sadowy

Opiekun projektu:

Dr Wojciech Czernous

Gdańsk, 2023

1 Podstawowe zagadnienia z teorii miary

Definicja 1 (π -układ). Rodzinę zbiorów \mathcal{H} nazywamy π -układem, jeśli $A, B \in \mathcal{H} \Rightarrow A \cap B \in \mathcal{H}$

Definicja 2 (generator). Jeśli (s, S) jest przestrzenią mierzalną, zaś $C \subset S$ jest π -układem, takim że $S \in C$ i $\sigma(C) = S$, to C będziemy nazywać generatorem S.

Definicja 3 (λ-układ). Niech X będzie niepustym zbiorem. Rodzinę zbiorów $\mathcal{H} \subseteq 2^X$ nazywamy λ-układem , gdy:

- (i) $X \in \mathcal{H}$,
- (ii) $\forall_{A,B\in\mathcal{H}} [B\subset A\Rightarrow A\setminus B\in\mathcal{H}],$
- (iii) $[\{A_1, A_2, A_3, ...\} \subseteq \mathcal{H}, \forall_{n \in \mathbb{N}} A_n \subseteq A_{n+1}] \Rightarrow \bigcup_{n \in \mathbb{N}} A_n \in \mathcal{H}.$

Powyższe obiekty pozwalają nam sformułować twierdzenie Sierpińskiego, szczególnie użyteczne do rozszerzania własności określonych na π -układach, do generowanych przez nie σ -ciał.

Twierdzenie 1 (o klasach monotonicznych, Sierpiński). Niech \mathcal{C} będzie π -układem, zaś \mathcal{D} będzie λ -układem w pewnej przestrzeni Ω i niech $\mathcal{C} \subset \mathcal{D}$. Wtedy $\sigma(\mathcal{C}) \subset \mathcal{D}$.

Lemat 1 (jednoznaczność). Niech μ i ν będą miarami ograniczonymi na przestrzeni mierzalnej (Ω, \mathcal{A}) oraz niech \mathcal{C} będzie generatorem \mathcal{A} . Wtedy $\mu = \nu$, jeżeli $\mu A = \nu A$ dla każdego $A \in \mathcal{C}$.

Dowód. Zakładając, że $\mu = \nu$ na \mathcal{C} , niech $\mathcal{D} = \{A \in \mathcal{A} : \mu A = \nu A\}$. Udowodnimy, że \mathcal{D} jest λ-układem:

- (i) z założenia, że $\Omega \in \mathcal{C}$ mamy $\Omega \in \mathcal{D}$;
- (ii) niech $A, B \in \mathcal{D}$ i $A \in B$, wtedy z własności miary:

$$\mu(B \setminus A) = \mu(B) - \mu(A) = \nu(B) - \nu(A) = \nu(B \setminus A),$$

czyli $B \setminus A \in \mathcal{D}$;

(iii) dla wstępującego ciągu zbiorów $A_n \in \mathcal{D}$, z twierdzenia 2 mamy

$$\mu(\bigcup_{n=1}^{\infty} A_n) = \mu(\lim_{n \to \infty} A_n) = \lim_{n \to \infty} \mu(A_n) = \lim_{n \to \infty} \nu(A_n) = \nu(\bigcup_{n=1}^{\infty} A_n),$$

czyli $\bigcup_{n=1}^{\infty} A_n \in \mathcal{D}$.

Stąd i z twierdzenia 1 wynika $\mathcal{D} \supset \sigma(\mathcal{C}) = \mathcal{A}$, co znaczy, że $\mu = \nu$.

Lemat 2 (ciagłość). Niech μ będzie miarą na (Ω, A) oraz $A_1, A_2, ... \in A$. Wtedy:

- (i) jeżeli $A_n \uparrow A$, to $\mu A_n \uparrow \mu A$;
- (ii) jeżeli $A_n \downarrow A$ i $\mu A_1 < \infty$, to $\mu A_n \downarrow \mu A$.

Dowód. Dla (1) możemy zastosować własność przeliczalnej addytywności dla $D_n = A_n \setminus A_{n-1}$ z $A_0 = \emptyset$. Aby otrzymać (2) zastosujmy (1) do zbiorów $B_n = A_1 \setminus A_n$.

Poniżej określimy kilka przydatnych faktów dotyczących całek Lebesgue'a.

Definicja 4. Dla przestrzeni mierzalnych (S, \mathcal{S}) i (T, \mathcal{T}) oraz mierzalnego odwzorowania $f: S \to T$, mając określoną miarę μ na (S, \mathcal{S}) , można zdefiniować miarę $\mu \circ f^{-1}$ na (T, \mathcal{T}) jako:

$$(\mu \circ f^{-1})B = \mu(f^{-1}B) = \mu\{s \in S; f(s) \in B\}, B \in \mathcal{T}.$$

Przeliczalna addytywność $\mu \circ f^{-1}$ wynika z faktu, że μ jest miarą oraz f^{-1} zachowuje sumy i przekroje.

Uwaga 1 (Miara na funkcji). Całkę funkcji mierzalnej f względem miary μ oznaczamy przez

$$\mu f = \int f d\mu = \int f(\omega)\mu(d\omega).$$

Lemat 3 (całkowanie przez podstawienie). Rozważmy przestrzeń z miarą $(\Omega, \mathcal{A}, \mu)$, przestrzeń mierzalną (S, \mathcal{S}) oraz dwa mierzalne odwzorowania, $f: \Omega \to S$ i $g: S \to \mathbb{R}$. Wtedy

$$\mu(g \circ f) = (\mu \circ f^{-1})g,$$

qdy któraś ze stron istnieje.

Dowód. Niech $A \in \mathcal{A}$. Jeśli $g = \mathbb{1}_A$, to

$$\mu(g \circ f) = \mu(\mathbb{1}_A \circ f) = \mu\mathbb{1}\{f \in A\} = \mu\{\omega : f(\omega) \in A\} = (\mu \circ f^{-1})(A) = (\mu \circ f^{-1})\mathbb{1}_A = (\mu \circ f^{-1})g(A) = (\mu \circ f^$$

Z liniowości całki, $\mu(g \circ f) = (\mu \circ f^{-1})$ zachodzi więc dla funkcji prostych g. Korzystając z twierdzenia 2, $g_n \uparrow g \Rightarrow \mu(g_n \circ f) = (\mu \circ f^{-1})g_n \uparrow (\mu \circ f^{-1})g = \mu(g \circ f)$, gdy g_n są funkcjami prostymi, a takowe można znaleźć dla dowolnej mierzalnej $g \geqslant 0$. W ogólnym przypadku, teza wynika z rozbicia $g = g^+ - g^-$ i z liniowości całki.

Twierdzenie 2 (Leviego o zbieżności monotonicznej). Niech f_1 , f_2 , f_3 , ... będą funkcjami mierzalnymi na $(\Omega, \mathcal{A}, \mu)$. Wtedy zachodzi

$$0 \leqslant f_n \uparrow f \Longrightarrow \mu f_n \uparrow \mu f$$
.

Definicja 5 (przestrzeń borelowska). Przestrzenią borelowską nazywamy przestrzeń mierzalną, która jest borelowsko izomorficzna do borelowskiego podzbioru [0,1], tj. istnieje bijekcja $f: S \leftrightarrow A \in [0,1]$, taka że zarówno f, jak i f^{-1} , są mierzalne.

Uwaga 2. Ponieważ przekątna S^2 jest domknięta dla przestrzeni Hausdorffa S (np. dla [0,1]), a co za tym idzie, również dla jej podprzestrzeni $A \in \mathcal{B}[0,1]$, to jest mierzalna również dla S borelowskiej. Izomorfizm mierzalny między S^2 a $[0,1]^2$ budujemy jako produkt izomorfizmów. Rodzina zbiorów borelowskich w $[0,1]^2$ jest σ -ciałem produktowym, zbudowanym jako produkt $\mathcal{B}([0,1])$ (patrz twierdzenie 1.2 w [1]).

2 Jądra i warunkowość

Definicja 6 (Element losowy). Rozważmy przestrzeń probabilistyczną (Ω, \mathcal{A}, P) i niech (S, \mathcal{S}) będzie przestrzenią mierzalną. Każde mierzalne przekształcenie $\xi: \Omega \to (S, \mathcal{S})$ czyli takie, że dla $B \in \mathcal{S}$ mamy $\xi^{-1}B \in \mathcal{A}$ nazywamy elementem losowym. Używamy oznaczenia:

$$\{\xi \in B\} := \xi^{-1}B \in \mathcal{A},$$

mamy wiec

$$P\{\xi \in B\} = (P \circ \xi^{-1})B, B \in \mathcal{S}.$$

Miarę $P \circ \xi^{-1}$ będziemy nazywać rozkładem elementu losowego ξ i oznaczać przez $\mathcal{L}(\xi)$.

Uwaga 3. Jeżeli:

- (i) $(S, \mathcal{S}) = (\mathbb{R}, \mathcal{B}(\mathbb{R}))$, to ξ nazywamy zmienną losową;
- (ii) $(S, \mathcal{S}) = (\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n))$, to ξ nazywamy wektorem losowym;
- (iii) (S, \mathcal{S}) jest przestrzenią funkcyjną, to ξ nazywamy procesem losowym;
- (iv) (S, \mathcal{S}) jest klasą miar σ -skończonych na (T, \mathcal{T}) (tj. takich miar μ , że istnieje przeliczalne rozbicie A_n przestrzeni T i $\mu A_n < \infty$), przy czym \mathcal{S} jest najmniejszym σ -ciałem, względem którego każda funkcja postaci $\mu \mapsto \mu B, B \in \mathcal{T}$, jest mierzalna; wówczas ξ nazywamy miarą losową.

Zajmiemy się bliżej tym ostatnim rodzajem elementu losowego. Charakteryzację przestrzeni miar losowych uzasadnimy w oparciu o następujące fakty.

Lemat 4 (funkcje mierzalne). Rozważamy odwzorowanie f pomiędzy dwiema przestrzeniami mierzalnymi (S, S), (T, T), i niech $C \subset 2^T$ będzie takie, że $\sigma(C) = T$. Wówczas f jest mierzalna (względem S, T) wtedy i tylko wtedy, gdy $f^{-1}C \subset S$.

Definicja 7 (σ -ciało generowane przez rodzinę przekształceń). Weźmy rodzinę przestrzeni mierzalnych (T_i, T_i), $i \in I$, oraz funkcji $f_i : T \to T_i$. Najmniejsze σ -ciało podzbiorów T, względem którego wszystkie f_i są mierzalne, nazywamy indukowanym przez rodzinę $\{f_i\}$ i oznaczamy $\sigma(f)$. Z definicji, $\sigma(f) = \sigma\left(\bigcup_i f_i^{-1} T_i\right)$.

Uwaga 4. Weźmy dwie przestrzenie mierzalne (S, S) oraz $(T, \sigma(f))$, dla pewnej rodziny przekształceń $f_i: T \to T_i$. Wówczas funkcja $g: S \to T$ jest mierzalna wtedy i tylko wtedy, gdy dla każdego $i \in I$, złożenie funkcji $f_i \circ g: S \to T_i$ jest mierzalne. Rzeczywiście, z lematu 4, mierzalność g jest równoważna inkluzji $g^{-1}\left(\bigcup_i f_i^{-1}T_i\right) \subset S$, to znaczy relacji $g^{-1}f^{-1}T_i = (f \circ g)^{-1}T_i \subset S$, $i \in I$.

Definicja 8 (Jądro). Ustalmy dwie przestrzenie mierzalne (S, \mathcal{S}) oraz (T, \mathcal{T}) . Przekształcenie $\mu : S \times \mathcal{T} \to \overline{\mathbb{R}}_+$ nazywamy jądrem z S do T, jeżeli funkcja $\mu_s B = \mu(s, B)$ jest \mathcal{S} -mierzalna dla każdego ustalonego $B \in \mathcal{T}$ i miarą probabilistyczną dla każdego ustalonego $s \in S$.

Uwaga 5 (operator całkowy). Każdemu jądru μ odpowiada operator, który przekształca funkcję $f: T \to \mathbb{R}$ w jej całkę $\mu f: S \to \mathbb{R}$, $\mu f(s) = \int \mu(s,dt) f(t)$. Z liniowości i monotoniczności całki, funkcja μf jest S-mierzalna.

Uwaga 6 (Jądro probabilistyczne). Jeżeli jądro $\mu(s,T)=1$ dla każdego $s\in S$, to będziemy nazywać je jądrem probabilistycznym.

Zauważmy, że przestrzeń $\mathcal{M}(T)$, σ -skończonych miar losowych na T, wyposażona jest w σ -ciało indukowane przez rodzinę przekształceń $\pi_S: \mu \mapsto \mu B, \ B \in \mathcal{T}$. Na mocy uwagi 4, funkcja $f: S \to \mathcal{M}(T)$ jest mierzalna wtedy i tylko wtedy, gdy $\pi_B \circ f$ jest funkcją mierzalną, dla każdego $B \in \mathcal{T}$, to jest wtedy, gdy f jest jądrem takim, że f_s , $s \in S$, są miarami σ -skończonymi. Co ciekawe, zbiór miar probabilistycznych $\mathcal{P}(T)$ na T jest mierzalnym podzbiorem $\mathcal{M}(T)$, gdyż $\mathcal{P}(T) = \pi_T^{-1}$ ({1}) jest zbiorem z σ -ciała indukowanego $\sigma(\pi_B: B \in \mathcal{T})$.

Lemat 5 (funkcjonał a miara). Dla przestrzeni mierzalnej (S, S), niech S_+ będzie przestrzenią funkcji mierzalnych nieujemnych na S. Funkcjonał $F: S_+ \to \mathbb{R}_+$, spełniający warunki:

- (i) $F\xi = 0$, $gdy \xi \equiv 0$;
- (ii) $F(\xi + \eta) = F\xi + F\eta$;
- (iii) $F\xi_n \uparrow F\xi$, $gdy \xi_n \uparrow \xi$;

definiuje miarę μ na S, daną wzorem $\mu A = F \mathbb{1}_A$. Ponadto, całka względem μ jest dana wzorem $\mu g = F g$.

Dowód. Wynika to z definicji miary. Ponadto, Czytelnik zechce zauważyć, że z (ii) wynika $F(a\xi) = aF\xi$ dla $a \in \mathbb{Q}$, $a \ge 0$, zaś (iii) pozwala rozszerzyć tę własność na $a \in \mathbb{R}_+$. Wzór na całkę μg wynika więc z konstrukcji całki względem miary, dzięki liniowości i monotoniczności operatora F.

Lemat 6 (miary losowe). *Jeśli* C *jest generatorem* T, *to dla odwzorowań* $\pi_B : \mu \mapsto \mu B, B \in T$, *zachodzi:* $\sigma(\pi_B : B \in T) = \sigma(\pi_C : C \in C)$.

Dowód. Rzeczywiście, załóżmy że $\mathcal{C} \subset \mathcal{D}$, gdzie

$$\mathcal{D} = \{ A \in \mathcal{T} : \pi_A \text{ jest funkcją mierzalną} \}$$

Wówczas $T \in \mathcal{D}$, gdyż z założenia $T \in \mathcal{C} \subset \mathcal{D}$. Po drugie, dla $A, B \in \mathcal{D}, A \subset B$, mamy

$$\pi_{B \setminus A} \mu = \mu(B \setminus A) = \mu B - \mu A = (\pi_B - \pi_A) \mu,$$

zatem $\pi_{B\backslash A}$ jest mierzalna, jako różnica takowych, czyli $B\backslash A\in\mathcal{D}$. Po trzecie, dla $A_1,A_2,\ldots\in\mathcal{D},A_n\uparrow A$, mamy

$$\pi_{A_n}\mu = \mu A_n \uparrow \mu A = \pi_A \mu,$$

zatem π_A jest mierzalna, będąc granicą funkcji mierzalnych. Stąd \mathcal{D} jest λ — układem i z twierdzenia 1, $\mathcal{T} = \sigma(\mathcal{C}) \subset D$, tj. każda π_B jest mierzalna, $B \in \mathcal{T}$.

Wniosek 1. By rodzina miar σ -skończonych μ_s , $s \in S$, była jądrem, wystarcza, gdy funkcje $s \mapsto \mu_s C$ są S-mierzalne dla każdego $C \in C$, o ile C jest generatorem T.

Lemat 7 (funkcjonał losowy). Dla przestrzeni mierzalnej (S, S), niech $\xi : \Omega \times S_+ \to \mathbb{R}_+$ będzie takim odwzorowaniem, że dla każdego $\omega \in \Omega$, funkcjonał $\xi_{\omega} = \xi(\omega, \cdot)$ spełnia warunki lematu 5. Dalej, przypuśćmy, że \mathcal{F} jest pewnym σ -ciałem w Ω , zaś \mathcal{C} jest generatorem S, i że dla każdego $C \in \mathcal{C}$, zmienna losowa $\omega \mapsto \xi_{\omega} \mathbb{1}_C$ jest \mathcal{F} -mierzalna. Wtedy ξ jest jądrem z (Ω, \mathcal{F}) do (S, \mathcal{S}) . W szczególności, dla dowolnej $f \in S_+$, zmienna losowa $\omega \mapsto \xi_{\omega} \mathbb{1}_C$ jest \mathcal{F} -mierzalna.

Dowód. Z lematu 5, każde ξ_{ω} jest miarą (skończoną, gdyż z definicji ξ mamy $\xi_{\omega}1_S \in \mathbb{R}_+$). Zatem ξ jest jądrem, na mocy wniosku powyżej. Mierzalność $\omega \mapsto \xi_{\omega}f$ wynika z uwagi o operatorze całkowym.

Lemat 8 (całka z jądra). Jeśli μ jest jądrem z (S, S) do (T, T), zaś ν jest miarą na (S, S), to funkcja zbioru $\nu\mu: \mathcal{T} \to \mathbb{R}_+$, $(\nu\mu)B = \int \mu(s, B)\nu(ds)$, jest miarą.

Dowód. Odwzorowanie

$$F:T_+\to\mathbb{R}_+,\qquad F\xi=\int\left(\int\xi(t)\mu(s,dt)\right)\nu(ds),$$

spełnia warunki lematu 5, jest bowiem liniowe, a monotoniczność (iii) wynika z twierdzenia 2.

Do dalszego badania zdefiniowanych przez nas obiektów, spróbujemy skonstruować \mathcal{F} -mierzalną zmienną losową, która będzie jednocześnie jądrem probabilistycznym pomiędzy dwoma przestrzeniami mierzalnymi. Zmienną tą będziemy dalej nazywać prawdopodobieństwem warunkowym.

Twierdzenie 3 (warunkowa wartość oczekiwana, Kołmogorow). Dla każdego σ -ciała $\mathcal{F} \subset \mathcal{A}$ istnieje jedyny operator liniowy $E^{\mathcal{F}}: L^1 \to L^1(\mathcal{F})$ (gdzie $L^1(\mathcal{F}) = \{\xi \in L^1 : \xi \text{ jest } \mathcal{F}\text{-mierzalne}\}$), którego wartościami są zmienne wyznaczone z dokładnością do zbiorów miary zero, taki że:

(i)
$$E\left[E^{\mathcal{F}}\xi;A\right] = E\left[\xi;A\right], \ \xi \in L^{1}, A \in \mathcal{F}.$$

Operator $E^{\mathcal{F}}$ ma następujące własności (przy założeniu, że odpowiednie wyrażenia istnieją dla wartości bezwzględnych):

- (ii) $\xi \geqslant 0$ implikuje $E^{\mathcal{F}}\xi \geqslant 0$ p.n.;
- (iii) $E|E^{\mathcal{F}}\xi| \leqslant E|\xi|$;
- (iv) $0 \leq \xi_n \uparrow \xi$ implikuje $E^{\mathcal{F}} \xi_n \uparrow E^{\mathcal{F}} \xi$ p.n.;
- (v) $E^{\mathcal{F}}\xi\eta = \xi E^{\mathcal{F}}\eta \ p.n., \ gdy \ \xi \ jest \ \mathcal{F}\text{-mierzalne};$
- $(vi) \ E(\xi E^{\mathcal{F}} \eta) = E(\eta E^{\mathcal{F}} \xi) = E(E^{\mathcal{F}} \xi)(E^{\mathcal{F}} \eta);$
- (vii) $E^{\mathcal{F}}E^{\mathcal{G}}\xi = E^{\mathcal{F}}\xi$ p.n. dla każdego $\mathcal{F} \subset \mathcal{G}$.

Definicja 9 (prawdopodobieństwo warunkowe). Prawdopodobieństwo warunkowe zdarzenia $A \in \mathcal{S}$, pod warunkiem σ -ciała \mathcal{F} , definiujemy jako

$$P^{\mathcal{F}}A=E^{\mathcal{F}}\mathbb{1}_A \text{ lub } P[A|\mathcal{F}]=E[\mathbb{1}_A|\mathcal{F}], \ A\in\mathcal{A}.$$

Definicja 10 (regularny rozkład warunkowy). Ustalmy σ -ciało $\mathcal{F} \subset \mathcal{A}$, przestrzeń mierzalną (S, \mathcal{S}) i element losowy $\xi: \Omega \to S$. Regularnym rozkładem warunkowym ξ pod warunkiem σ -ciała \mathcal{F} nazywamy jądro probabilistyczne μ z (Ω, \mathcal{F}) do (S, \mathcal{S}) (równoważnie, \mathcal{F} -mierzalną miarę losową na S), takie że dla każdego $B \in \mathcal{S}$

$$\mu(\omega,B) = (P^{\mathcal{F}}\{\xi \in B\})(\omega) \ \text{dla p.w. } \omega \in \Omega.$$

Ogólniej, ustalmy przestrzeń mierzalną (T, \mathcal{T}) i element losowy $\eta : \Omega \to T$. Regularnym rozkładem warunkowym ξ pod warunkiem η nazywamy jądro probabilistyczne μ z T do S, takie że dla każdego $B \in \mathcal{S}$

$$\mu(\eta, B) = P^{\eta}\{\xi \in B\}$$
 p.n.

Mówimy też, że μ jest wersją regularną $P^{\mathcal{F}}[\xi \in \cdot]$ (odpowiednio, $P^{\eta}[\xi \in \cdot]$). W przypadku, gdy ξ jest \mathcal{F} -mierzalna, $P[\xi \in B|\mathcal{F}]$ ma wersję regularną $\mathbbm{1}\{\xi \in B\}$, natomiast kiedy ξ jest niezależna od \mathcal{F} , to ma wersję regularną postaci $P\{\xi \in B\}$.

Definiując warunkowy rozkład regularny za pomocą jądra probabilistycznego, nasuwa się pytanie o warunki jego istnienia. Odpowiedzi na nie udzieli nam twierdzenie o rozkładzie warunkowym. Jednak, aby je udowodnić, potrzebujemy poniższych lematów.

Lemat 9 (reprezentacja funkcyjna, Doob). Ustalmy funkcje mierzalne f i g, określone na przestrzenia Ω , o wartościach odpowiednio w przestrzeniach (S, \mathcal{S}) , (T, \mathcal{T}) , gdzie S jest borelowska. Wówczas f jest $g^{-1}\mathcal{T}$ -mierzalna wtedy i tylko wtedy, gdy istnieje mierzalne odwzorowanie $h: T \to S$, takie że $f = h \circ g$. W szczególności, gdy $\mathcal{F} = \sigma(\eta)$, gdzie η jest zmienną losową, zaś ξ jest zmienną losową calkowalną, mamy istnienie funkcji borelowskiej h, takiej, że $E^{\mathcal{F}}\xi = h(\eta)$.

Lemat 10 (miary Lebesgue'a - Stieltjesa). Niech F będzie prawostronnie ciąglą, niemalejącą funkcją na \mathbb{R} , taką, że F(0)=0. Wtedy istnieje lokalnie skończona miara μ na \mathbb{R} (tj. taka, że $\mu B<\infty$ dla B ograniczonych), taka, że

$$\mu(a, b] = F(b) - F(a), -\infty < a < b < \infty.$$

Twierdzenie 4 (rozkład warunkowy). Ustalmy przestrzeń borelowską (S, \mathcal{S}) i przestrzeń mierzalną (T, \mathcal{T}) . Niech ξ i η będą elementami losowymi odpowiednio w S i T. Wtedy istnieje jądro probabilistyczne μ z T do S, takie że $P[\xi \in \cdot | \eta] = \mu(\eta, \cdot)$ p.n. i μ jest wyznaczone jednoznacznie $\mathcal{L}(\eta)$ -p.w.

Dowód. Bez straty ogólności, możemy przyjąć $S \in \mathcal{B}(\mathbb{R})$. Z lematu 9 dla każdego $r \in \mathbb{Q}$ możemy wybrać \mathcal{T} -mierzalną funkcję $f_r = f(\cdot, r) : T \to [0, 1]$ taką, że:

$$f(\eta, r) = P[\xi \leqslant r | \eta] \ p.n., \ r \in \mathbb{Q}. \tag{1}$$

Zdefiniujmy zbiór $A = \{t \in T : \forall_{v,u \in \mathbb{Q}, v \leqslant u} \lim_{r \to \infty} f_r = 1, \lim_{r \to -\infty} f_r = 0, f_v \leqslant f_u\}$. Zauważmy, że zbiór A został zdefiniowany dla f niemalejącej względem r. Zatem:

$$A = \{t \in T : \forall_{v,u \in \mathbb{Q}, v \leqslant u} \sup_{r} f_r = 1, \inf_{r} f_r = 0, f_v \leqslant f_u\}$$
$$= \bigcap_{v,u \in \mathbb{Q}, v \leqslant u} \{t : f_v \leqslant f_u\} \cap \{t : \sup_{r} f_r = 1\} \cap \{t : \inf_{r} f_r = 0\}$$

Z własności funkcji mierzalnych, $\{\sup_r f_r = 1\}$, $\{\inf_r f_r = 0\} \in \mathcal{T}$. Podobnie, z mierzalności $f_v - f_u$, $\{f_v \leqslant f_u\} \in \mathcal{T}$. Zatem $A \in \mathcal{T}$ (jako przeliczany przekrój zbiorów mierzalnych). Ponieważ dla $u \leqslant v$ zachodzi $f_u(\eta) \leqslant f_v(\eta)$ p.n. (z twierdzenia 3 (ii)), a takich par $u,v \in Q$ jest przeliczalnie wiele, a także $f_r(\eta) \uparrow 1$ p.n. przy $r \to \infty$ z twierdzenia 3 (iv) i $f_r(\eta) \downarrow 0$ p.n. przy $r \to -\infty$ (co również wynika z twierdzenia 3 (iv), jako że wówczas $\mathbb{1}\{\xi > r\} \uparrow 1$, co implikuje $1 - f(\eta, r) \uparrow 1$ p.n.), mamy więc $\eta \in A$ p.n. Ustalmy:

$$F(t,x) = \mathbb{1}_A(t) \inf_{r>x} f(t,r) + \mathbb{1}_{A^c}(t) \{x \geqslant 0\}, \ x \in \mathbb{R}, \ t \in T.$$

Zauważmy, że $F(t,\cdot)$ jest dystrybuantą na \mathbb{R} , dla każdego $t \in T$. Dalej, z twierdzenia 10, istnieje miara probabilistyczna $m(t,\cdot)$ na \mathbb{R} , spełniająca

$$m(t, (-\infty, x]) = F(t, x), x \in \mathbb{R}, t \in T.$$

Widać, że funkcja F jest T-mierzalna względem t dla każdego x. Rodzina $\mathcal C$ zbiorów $(-\infty, x]$, $x \leq \infty$, jest generatorem $\mathcal B(\mathbb R)$. Zauważmy, że funkcja m spełnia założenia wniosku 1 dla π -układu $\mathcal C$, jest zatem jądrem probabilistycznym z T do $\mathbb R$, gdyż $m(t,\mathbb R)=1$. Korzystając z własności (iv) z twierdzenia 3 otrzymujemy:

$$m(\eta, (-\infty, x]) = F(\eta, x) = \inf_{r > x} f(\eta, r) = P[\xi \leqslant x | \eta] \ p.n., \ x \in \mathbb{R}.$$

Dalej, ustalmy rodzinę zbiorów $\Lambda = \{B \in \mathcal{B}(\mathbb{R}) : m(\eta, B) = P[\xi \in B|\eta] \ p.n.\}$. Wykażmy, że Λ jest λ -układem:

(i) z własności miary probabilistycznej:

$$m(\eta, \mathbb{R}) = 1 = P[\xi \in \mathbb{R}|\eta] \ p.n.$$

wiec $\mathbb{R} \in \Lambda$;

(ii) niech $A, B \in \Lambda$ oraz $A \subset B$, wówczas p.n.

$$\begin{array}{lcl} m(\eta, B \setminus A) & = & m(\eta, B) - m(\eta, A) = P[\xi \in B | \eta] - P[\xi \in A | \eta] = E^{\eta}[\mathbbm{1}\{\xi \in B\} - \mathbbm{1}\{\xi \in A\}] \\ & = & P[\xi \in B \setminus A | \eta] \end{array}$$

(iii) ustalmy wstępujący ciąg $B_n \in \Lambda$ taki, że $B_n \uparrow B$. Korzystając ponownie z (iv) z twierdzenia 3, otrzymujemy:

$$m(\eta, \bigcup_{m=1}^{\infty} B_n) = \lim_{n \to \infty} m(\eta, B_n) = \lim_{n \to \infty} E^{\eta} \mathbb{1} \{ \xi \in B_n \} = P[\xi \in B | \eta] \ p.n.$$

Wiedząc, że $\mathcal{C} \subset \Lambda$, z twierdzenia 1 mamy $\sigma(\mathcal{C}) \subset \Lambda$. Zatem $\Lambda = \mathcal{B}(\mathbb{R})$. Stąd dostajemy:

$$m(\eta, B) = P[\xi \in B|\eta] \ p.n., \ B \in \mathcal{B}(\mathbb{R}).$$

W szczególności $m(\eta, S^c) = 0$ p.n., więc przyjmując jądro probabilistyczne

$$\mu(t,\cdot) = m(t,\cdot)\mathbb{1}\{m(t,S) = 1\} + \delta_s\mathbb{1}\{m(t,S) < 1\}, \ t \in T,$$

gdzie $s \in S$ jest dowolnie ustalone, otrzymujemy:

$$\mu(\eta, B) = P[\xi \in B|\eta] \ p.n., \ B \in \mathcal{B}(\mathbb{R}) \cap S.$$

Udowodnijmy, że μ jest jedyne. Niech μ' będzie jądrem probabilistycznym o powyższej własności. Wtedy:

$$\mu(\eta, (-\infty, r]) = P[\xi \leqslant r|\eta] = \mu'(\eta, (-\infty, r]) \ p.n., \ r \in \mathbb{Q}.$$

Z twierdzenia 1 dla π -układu będącego zbiorem półprostych postaci $(-\infty, r]$ oraz λ -układu analogicznego do Λ wynika, że $\mu(\eta, \cdot) = \mu'(\eta, \cdot)$ p.n.

3 Twierdzenie o dezintegracji miary

Celem tej sekcji jest rozszerzenie twierdzenia Fubiniego. Pokażemy, że wartości oczekiwane i warunkowe wartości oczekiwane można obliczyć, poprzez całkowanie po odpowiednich rozkładach regularnych, innymi słowy *dezintegrując* miarę produktową na jej jednowymiarowe składniki. Zaczniemy od wprowadzenia szczególnego przypadku twierdzenia o dezintegracji.

Lemat 11 (warunkowość). Niech ξ oraz η będą niezależnymi elementami losowymi w przestrzeniach mierzalnych (S, S) i (T, T). Weźmy mierzalne funkcje $f: S \times T \to \mathbb{R}$ oraz zdefiniujmy $g: S \to \mathbb{R}$ jako $g(s) = Ef(s, \eta)$, załóżmy też, że $E|f(\xi, \eta)| < \infty$. Wtedy $Ef(\xi, \eta) = Eg(\xi)$.

Dowód. Niech μ oraz ν oznaczają odpowiednio rozkłady ξ i η . Zakładając, że $f \geqslant 0$ i przyjmując $g(s) = Ef(s, \eta)$, za pomocą lematu 3 oraz twierdzenia Fubiniego dostajemy:

$$Ef(\xi,\eta) = \int f(s,t)(\mu \otimes \nu)(dsdt) = \int \mu(ds) \int f(s,t)\nu(dt) = \int g(s)\mu(ds) = Eg(\xi)$$
 (2)

W ogólności, (2) zachodzi dla funkcji f^+ i f^- , ponieważ obie są nieujemne. Ponadto mamy $|f^{\pm}| \leq |f|$, więc

$$E|f^{\pm}(s,\eta)| \leqslant E|f(s,\eta)| < \infty$$

Ponieważ $f = f^+ - f^-$, to (2) otrzymujemy z liniowości całki.

Twierdzenie 5 (dezintegracja). Ustalmy dwie przestrzenie mierzalne S i T, σ -algebrę $\mathcal{F} \subset \mathcal{A}$, i element losowy $\xi \in S$ taki, że $P[\xi \in |\mathcal{F}]$ ma wersję regularną ν . Następnie ustalmy \mathcal{F} -mierzalny element losowy η w T i mierzalną funkcję $f: S \times T$, $gdzie E|f(\xi, \eta)| < \infty$. Wtedy

$$E[f(\xi,\eta)|\mathcal{F}] = \int \nu(ds)f(s,\eta) \ p.n. \tag{3}$$

Istnienie p.n oraz \mathcal{F} -mierzalność całki należy rozumieć jako część tezy. W szczególnym przypadku, kiedy $\mathcal{F} = \sigma(\eta)$ oraz $P[\xi \in \cdot | \eta] = \mu(\eta, \cdot)$ dla jądra probabilistycznego μ z T do S, (3) przybiera postać:

$$E[f(\xi,\eta)|\eta] = \int \mu(\eta,ds)f(s,\eta) \ p.n. \tag{4}$$

Całkując (3) oraz (4), otrzymujemy często stosowane równości:

$$Ef(\xi,\eta) = E \int \nu(ds)f(s,\eta) = E \int \mu(\eta,ds)f(s,\eta).$$
 (5)

Jeżeli $\xi \perp \!\!\! \perp \eta$, to możemy przyjąć $\mu(\eta,\cdot) \equiv \mathcal{L}(\xi)$, zaś (5) sprowadza się do tezy z lematu 11.

Dowód. Niech $B \in \mathcal{S}$, $C \in \mathcal{T}$ oraz niech ν będzie regularną wersją $P[\xi \in B|\mathcal{F}]$. Możemy skorzystać z punktu (i) twierdzenia 3, aby otrzymać

$$\begin{split} &P\{\xi\in B, \eta\in C\} = E\left[\mathbbm{1}_{\{\xi\in B\}}; \eta\in C\right] \overset{\text{(i)}}{=} E[E[\mathbbm{1}_{\{\xi\in B\}}|\mathcal{F}]; \eta\in C]\\ &= E[P[\xi\in B|\mathcal{F}]; \eta\in C] = E[\nu(B); \eta\in C] = E\int \nu(ds)\mathbbm{1}_{\{s\in B, \eta\in C\}}, \end{split}$$

gdzie ostatnia równość wynika z tożsamości dla funkcji podcałkowej:

$$\omega \mapsto \nu_{\omega}(B)\mathbb{1}\{\eta(\omega) \in C\} = \int \mathbb{1}\{s \in B, \ \eta(\omega) \in C\}\nu_{\omega}(ds),$$

zaś $\nu_{\omega}(B)$ oraz $\mathbb{1}\{\eta(\omega) \in C\}$ są \mathcal{F} -mierzalne względem ω . Zdefiniujmy odwzorowanie $\zeta: \Omega \times (S \times T)_+ \to \mathbb{R}_+$ następująco:

$$\zeta(\omega, f) = \int f(s, \eta(\omega)) \nu_{\omega}(ds).$$

Zauważmy, że ζ spełnia założenia lematu o funkcjonale losowym: liniowość i monotoniczność względem f, a także \mathcal{F} -mierzalność funkcji $\omega \mapsto \zeta_\omega \mathbb{1}_{B \times C}$. Ta ostatnia własność wynika stąd, że

$$\zeta(\omega, 1_{B \times C}) = \int \mathbb{1}_{B \times C}(s, \eta(\omega)) \nu_{\omega}(ds) = \nu_{\omega}(B) \mathbb{1} \{ \eta(\omega) \in C \}$$

jest iloczynem funkcji \mathcal{F} -mierzalnych. A zatem, ζ jest jądrem z Ω do $S \times T$.

Z lematu o funkcjonale losowym wynika również mierzalność ζf . Ponieważ rodzina zbiorów

$$\mathcal{C} = \{B \times C : B \in \mathcal{S}, C \in \mathcal{T}\}$$

jest generatorem $S \otimes T$, lemat o funkcjonale losowym daje \mathcal{F} -mierzalność ζf , czyli prawej strony równości (3), dla dowolnej $S \otimes T$ -mierzalnej funkcji $f: S \times T \to \mathbb{R}_+$.

Zajmiemy się teraz dowodem pierwszej równości w (5). Wykazaliśmy, że:

$$E\mathbb{1}_{B\times C}(\xi,\eta) = E\int \nu(ds)\mathbb{1}_{B\times C}(s,\eta).$$

Innymi słowy, biorąc $A = B \times C$, mamy

$$\mu_1(A) = \mu_2(A),$$

gdzie $\mu_1 = E1\{(\xi, \eta) \in \cdot\} = P \circ (\xi, \eta)^{-1}$ jest rozkładem elementu losowego (ξ, η) w $S \times T$; natomiast $\mu_2 = P\zeta$ jest jądrem ζ , scałkowanym względem P. Oczywiście μ_1 jest miarą na $S \times T$; z lematu o całkowaniu jądra wynika, że taką miarą jest również μ_2 . Łatwo zauważyć, że mamy tu miary probabilistyczne: μ_1 , jest bowiem rozkładem, zaś μ_2 , bowiem $\zeta_{\omega}(S \times T) = 1$. Ponieważ miary te są sobie równe na każdym zbiorze o tej postaci, co A, a więc na każdym elemencie C (generatora $S \otimes T$), z lematu o jednoznaczności miary wynika $\mu_1 = \mu_2$ na $S \otimes T$.

W szczególności, $\mu_1 f = \mu_2 f$, czyli otrzymujemy (5) dla wszystkich $S \otimes T$ -mierzalnych, nieujemnych funkcji f:

$$Ef(\xi, \eta) = E \int \nu(ds) f(s, \eta).$$

Teraz ustalmy mierzalną funkcję $f: S \times T \to \mathbb{R}_+$, $Ef(\xi, \eta) < \infty$, oraz niech $A \in \mathcal{F}$ będzie dowolne. Zdefiniujmy, dla $(t, z) \in T \times \{0, 1\}$, $s \in S$:

$$f_1(s,(t,z)) = f(s,t), f_2(s,(t,z)) = z$$

Wówczas, gdy f jest $S \otimes T$ -mierzalna, to f_1 i f_2 są mierzalne względem $S \otimes (T \otimes \sigma(\{0,1\})) = (S \otimes T) \otimes \sigma(\{0,1\})$; mianowicie, dla $B \in \mathcal{B}(\mathbb{R})$, zachodzi:

$$f_1^{-1}(B) = f^{-1}(B) \times \{0,1\}, \ f_2^{-1}(B) = S \times T \times (\{0,1\} \cap B);$$

co za tym idzie, $\tilde{f}=f_1f_2$ jest $\mathcal{S}\otimes\mathcal{T}\otimes\sigma(\{0,1\})$ -mierzalna. Mamy ponadto

$$\tilde{f}(s, (\eta, \mathbb{1}_A)) = f(s, \eta) \mathbb{1}_A.$$

Traktując $(\eta,\mathbbm{1}_A)$ jako $\mathcal{F}\text{-mierzalny}$ element losowy w $T\times\{0,1\},$ z (5) otrzymujemy

$$E\tilde{f}(\xi,(\eta,\mathbb{1}_A)) = E \int \nu(ds)\tilde{f}(s,(\eta,\mathbb{1}_A)),$$

czyli

$$Ef(\xi,\eta)\mathbb{1}_A = E\int \nu(ds)f(s,\eta)\mathbb{1}_A, \ A\in\mathcal{F}.$$

Biorąc $f = f^+ - f^-$, dostajemy tą samą równość dla dowolnych f mierzalnych. Z definicji warunkowej wartości oczekiwanej wynika teza (3). Na koniec wystarczy zauważyć, że, z twierdzenia 4 istnieje $\mu(\eta,\cdot) = P(\xi \in \cdot | \eta)$ spełniające (4).

4 Zastosowania twierdzenia o dezintegracji miary

Definicja 11 (Równość według rozkładu). Elementy losowe ξ , η są równe według rozkładu, co oznaczamy $\xi \stackrel{\text{d}}{=} \eta$, gdy $\mathcal{L}(\xi) = \mathcal{L}(\eta)$.

Uwaga 7. Niech ξ , η będą elementami losowymi w przestrzeni mierzalnej S. Wówczas

$$\xi \stackrel{\mathrm{d}}{=} \eta \Leftrightarrow \forall_{f \in \hat{C}} Ef(\xi) = Ef(\eta),$$

gdzie \hat{C} jest przestrzenią funkcji mierzalnych i ograniczonych o wartościach rzeczywistych. Wynika to z lematu 3.

Pokażemy teraz, jak regularne rozkłady warunkowe mogą posłużyć do konstrukcji elementów losowych o zadanych własnościach. W większości przypadków potrzebujemy tylko zmiennej losowej ϑ o rozkładzie U(0,1), która jest niezależna od wszystkich wcześniej wprowadzonych elementów losowych i σ -ciał. Zatem zakładamy, że na podstawowej przestrzeni probabilistycznej jesteśmy w stanie określić taką zmienną. Możemy to zrobić bez straty ogólności, ponieważ powyższy warunek będzie spełniony dla rozszerzenia naszej przestrzeni. Wystarczy przyjąć

$$\hat{\Omega} = \Omega \times [0, 1], \ \hat{\mathcal{A}} = \mathcal{A} \otimes \mathcal{B}[0, 1], \ \hat{P} = P \otimes \lambda,$$

gdzie λ jest miarą Lebesgue'a na [0,1]. Wtedy $\vartheta(\omega,t)\equiv t$ ma rozkład U[0,1] na $\hat{\Omega}$ i $\vartheta \perp \!\!\! \perp \mathcal{A}$. Ponadto, dowolny element losowy ξ na Ω , może być traktowany jako funkcja na $\hat{\Omega}$. Formalnie rzecz biorąc, zastępujemy ξ elementem losowym $\hat{\xi}(\omega,t)=\xi(\omega)$, mającym oczywiście ten sam rozkład. Zachodzi też następujacy fakt.

Lemat 12 (Reprodukcja). Istnieją pewne mierzalne funkcje f_1, f_2, \ldots na [0,1], takie, że gdy ϑ ma rozkład U(0,1), zmienne losowe $\vartheta_n = f_n(\vartheta)$ są niezależne o jednakowym rozkładzie U(0,1).

Z lematu 12 możemy stworzyć ciąg niezależnych zmiennych losowych $\vartheta_1, \vartheta_2, ...$ Ich użyteczność ilustruje poniższy lemat.

Lemat 13 (Jądra i randomizacja). Niech μ będzie jądrem probabilistycznym z przestrzeni mierzalnej S na przestrzeń Borelowską T. Wtedy istnieje mierzalna funkcja $f: S \times [0,1] \to T$ taka, że jeżeli ϑ ma rozkład U(0,1), to $f(s,\vartheta)$ ma rozkład $\mu(s,\cdot)$ dla każdego $s \in S$.

Łatwo jest zauważyć, że mając elementy losowe $\xi, \tilde{\xi}, \eta, \tilde{\eta}$, takie, że zachodzi równość $(\xi, \eta) \stackrel{\mathrm{d}}{=} (\tilde{\xi}, \tilde{\eta})$, to zachodzi $\xi \stackrel{\mathrm{d}}{=} \tilde{\xi}$ oraz $\eta = \tilde{\eta}$. Jednak implikacja odwrotna nie musi być prawdziwa. Twierdzenie o transferze pozwoli nam na wprowadzenie warunków, tak, aby można było przeprowadzić to rozumowanie w drugą stronę.

Twierdzenie 6 (transfer). Dla pewnej przestrzeni Borelowskiej (T,T) i przestrzeni mierzalnej (S,\mathcal{S}) ustalmy elementy losowe $\xi \stackrel{d}{=} \tilde{\xi}$ oraz η odpowiednio w S i T. Wtedy istnieje element losowy $\tilde{\eta}$ w T, taki że $(\tilde{\xi},\tilde{\eta}) \stackrel{d}{=} (\xi,\eta)$. W szczególności, istnieje mierzalna funkcja $f: S \times [0,1] \to T$, taka, że możemy wziąć $\tilde{\eta} = f(\xi,\vartheta)$, gdy ma rozkład U(0,1) oraz $\vartheta \perp \!\!\! \perp \tilde{\xi}$.

 $^{^{1}\}mathrm{Dow\acute{o}d}$ można znaleźć w [1]
(Lemma 3.21)

 $^{^2 \}mathrm{Dowód}$ można znaleźć w [1](Lemma 3.22)

Dow'od.Z twierdzenia 4, istnieje jądro probabilistyczne μ z S do T,które spełnia

$$\mu(\xi, B) = P[\eta \in B|\xi] \text{ p.n.}, \ B \in \mathcal{T}.$$

Z lematu 13, możemy wybrać mierzalną funkcję $f: S \times [0,1] \to T$ taką, że $f(s,\vartheta)$ ma rozkład $\mu(s,\cdot)$ dla każdego $s \in S$. Zdefiniujmy $\tilde{\eta} = f(\tilde{\xi},\vartheta)$. Dla dowolnej mierzalnej funkcji $g: S \times T \to \mathbb{R}_+$ dostajemy:

$$Eg(\tilde{\xi}, \tilde{\eta}) = Eg(\tilde{\xi}, f(\tilde{\xi}, \vartheta)) \stackrel{\text{(1)}}{=} E \int g(\xi, f(\xi, u)) du$$

$$\stackrel{\text{(2)}}{=} E \int g(\xi, t) \mu(\xi, dt) \stackrel{\text{(3)}}{=} Eg(\xi, \eta),$$

gdzie kolejne równości wynikają:

- (1) z lematu 11 zastosowanego dla niezależnych elementów losowych $\tilde{\xi}$ oraz ϑ ; funkcja $h:(x,y)\to g(x,f(x,y))$ jest mierzalna jako złożenie mierzalnej funkcji g z funkcją $F(x,y)=(F_1,F_2)$, gdzie $F_1=id_x:(x,y)\to x$, $F_2=f$. Jej mierzalność wynika z tego, że funkcja o wartościach w przestrzeni produktowej jest mierzalna wtedy i tylko wtedy, gdy mierzalna jest każda funkcja składowa.
- (2) z lematu 3. Ustalmy ω , a tym samym $\xi(\omega)$. Połóżmy $f:=f(\xi,\cdot)$ oraz $g:=g(\xi,\cdot)$. Wiemy, że

$$\int g(\xi, f(\xi, u)) du = \lambda(g \circ f) = (\lambda \circ f^{-1})g = \int g(\xi, t) \mu(\xi, dt),$$

gdzie ostatnia równość wynika z faktu, że $f \circ \vartheta$ ma rozkład $\mu(\xi, \cdot)$, czyli

$$\mu(\xi,\cdot) = P \circ (f \circ \vartheta)^{-1} = P \circ \vartheta^{-1} \circ f^{-1}.$$

Z faktu, że ϑ ma rozkład U(0,1) otrzymujemy

$$P \circ \vartheta^{-1} = \lambda$$
.

gdzie λ jest miarą Lebesgue'a. Zatem:

$$\lambda \circ f^{-1}(dt) = \mu(\xi, dt).$$

(3) wprost z twierdzenia 5.

Z powyższego dostajemy $(\tilde{\xi}, \tilde{\eta}) \stackrel{d}{=} (\xi, \eta)$, gdyż $P\{(\tilde{\xi}, \tilde{\eta}) \in B \times C\} = E\mathbb{1}_{B \times C}(\tilde{\xi}, \tilde{\eta}) = E\mathbb{1}_{B \times C}(\xi, \eta) = P\{(\xi, \eta) \in B \times C\}.$

Uwaga 8. Dla elementów losowych ξ oraz $\tilde{\xi}$ o wartościach w przestrzeni mierzalnej (S, \mathcal{S}) i dla funkcji mierzalnej f z S do przestrzeni mierzalnej (T, \mathcal{T}) , równość $\xi \stackrel{\text{d}}{=} \tilde{\xi}$ pociąga za sobą równość $f(\xi) \stackrel{\text{d}}{=} f(\tilde{\xi})$.

Dowód. Istotnie, na mocy uwagi 7, wystarczy zauważyć, że gdy f jest mierzalna, zaś $g \in \hat{C}$, to $g \circ f \in \hat{C}$.

Wniosek 2. (równania stochastyczne) Ustalmy dwie przestrzenie borelowskie S i T, mierzalne odwzorowanie $f: T \to S$ oraz elementy losowe ξ w S i η w T, takie $\dot{z}e$ $\xi \stackrel{d}{=} f(\eta)$. Wtedy istnieje element losowy $\tilde{\eta} \stackrel{d}{=} \eta$ w T, dla którego $\xi = f(\tilde{\eta})$ p.n.

Dowód. Z twierdzenia 6, istnieje zmienna losowa $\tilde{\eta}$ w T taka, że $(\xi, \tilde{\eta}) \stackrel{\mathrm{d}}{=} (f(\eta), \eta)$. W szczególności $\tilde{\eta} \stackrel{\mathrm{d}}{=} \eta$ i $(\xi, f(\tilde{\eta})) \stackrel{\mathrm{d}}{=} (f(\eta), f(\eta))$, gdzie druga równość wynika z uwagi 8, a także z mierzalności $(s,t) \mapsto (s,f(t))$, uzasadnionej analogicznie jak w dowodzie twierdzenia 6. Dzięki mierzalności przekątnej S^2 , dostajemy $P\{\xi=f(\tilde{\eta})\}=P\{f(\eta)=f(\eta)\}=1$, a z tego $\xi=f(\tilde{\eta})$ p.n.

Twierdzenie 7. (coupling, Skorohod, Dudley) Rozważmy $\xi, \xi_1, \xi_2, ...$ będące elementami losowymi w przestrzeni metrycznej ośrodkowej (S, ρ) takie, że $\xi_n \stackrel{d}{\to} \xi$. Wtedy istnieje przestrzeń probabilistyczna z elementami losowymi $\eta \stackrel{d}{=} \xi$ i $\eta_n \stackrel{d}{=} \xi_n$, $n \in \mathbb{N}$ takimi, że $\eta_n \to \eta$ p.n.³

Wniosek 3. (Skorohod, coupling rozszerzony) Ustalmy mierzalne funkcje $f, f_1, f_2, ... z$ przestrzeni borelowskiej S do przestrzeni polskiej T oraz elementy losowe $\xi, \xi_1, \xi_2, ... w$ S takie, że $f_n(\xi_n) \stackrel{d}{\to} f(\xi)$. Wtedy istnieją elementy losowe $\tilde{\xi} \stackrel{d}{=} \xi$ oraz $\tilde{\xi}_n \stackrel{d}{=} \xi_n$ takie, że $f_n(\tilde{\xi}_n) \to f_n(\tilde{\xi})$ p.n.

Dowód. Z twierdzenia 7, istnieją $\eta \stackrel{d}{=} f(\xi)$ i $\eta_n \stackrel{d}{=} f_n(\xi_n)$ takie, że $\eta_n \to \eta$ p.n. Co więcej, z wniosku 2 możemy położyć $\tilde{\xi} \stackrel{d}{=} \xi$ i $\tilde{\xi}_n \stackrel{d}{=} \xi_n$ takie, że p.n. $f(\tilde{\xi}) = \eta$ oraz $f_n(\tilde{\xi}_n) = \eta_n$ dla wszystkich n. Wtedy $f_n(\tilde{\xi}_n) \to f(\tilde{\xi}) = \eta$ p.n.

Prawdopodobieństwo warunkowe pozwala nam na rozszerzenie definicji niezależności zdarzeń do jej warunkowej postaci. Uzasadnimy również kilka własności, które będą potrzebne do sformułowania twierdzenia o warunkowej niezależności i randomizacji.

Uwaga 9. Najmniejsze σ -ciało zawierające \mathcal{F} i \mathcal{G} oznaczamy jako $(\mathcal{F},\mathcal{G})$ lub \mathcal{F},\mathcal{G} .

Definicja 12 (warunkowa niezależność). Mówimy, że σ -ciała \mathcal{F} i \mathcal{H} są niezależne pod warunkiem σ -ciała \mathcal{G} (co zapisujemy jako $\mathcal{F} \perp \!\!\! \perp_{\mathcal{G}} \mathcal{H}$), jeśli

$$P^{\mathcal{G}}(A \cap B) = (P^{\mathcal{G}}A)(P^{\mathcal{G}}B)$$
 p.n.,

dla każdego zbioru $A \in \mathcal{F}$ i $B \in \mathcal{H}$.

Uwaga 10. Jeśli $\mathcal{F} \subset \mathcal{F}'$, to z definicji powyższej wynika

$$\mathcal{F}' \perp\!\!\!\perp_{\mathcal{G}} \mathcal{H} \Rightarrow \mathcal{F} \perp\!\!\!\perp_{\mathcal{G}} \mathcal{H}.$$

Definicja 13. Mówimy, że $P^{\mathcal{F}} = P^{\mathcal{G}}$ na \mathcal{H} , gdy dla każdego $H \in \mathcal{H}$ zachodzi

$$P^{\mathcal{F}}H = P^{\mathcal{G}}H$$
 p.n. .

Twierdzenie 8 (Warunkowa niezależność, Doob). Dla dowolnych σ -ciał \mathcal{F} , \mathcal{G} oraz \mathcal{H} zachodzi równoważność

$$\mathcal{F} \perp \!\!\! \perp_{\mathcal{G}} \mathcal{H} \Leftrightarrow P^{\mathcal{F},\mathcal{G}} = P^{\mathcal{G}} \ p.n. \ na \ \mathcal{H}^4.$$

 $^{^3}$ Dowód można znaleźć w [1](Theorem 4.30)

⁴Dowód można znaleźć w [1](Proposition 6.6)

Lemat 14. Dla dowolnych σ -ciał \mathcal{F} , \mathcal{G} oraz \mathcal{H} zachodzi

$$\mathcal{F} \perp \!\!\! \perp_{\mathcal{G}} \mathcal{H} \iff \mathcal{F} \perp \!\!\! \perp_{\mathcal{G}} (\mathcal{G}, \mathcal{H}).$$

Dowód. Z twierdzenia 8, oba wyrażenia są równoważne

$$P^{\mathcal{G},\mathcal{H}} = P^{\mathcal{G}}$$
 p.n. na \mathcal{F} .

Lemat 15 (regula łańcuchowa). Dla każdego σ -ciała \mathcal{G} , \mathcal{H} oraz \mathcal{F} i \mathcal{F}' zachodzi

$$\mathcal{F}, \mathcal{F}' \perp \!\!\! \perp_{\mathcal{G}} \mathcal{H} \Rightarrow \mathcal{F}' \perp \!\!\! \perp_{\mathcal{F}, \mathcal{G}} \mathcal{H}$$

Dowód. Teza wynika z twierdzenia 8 i z uwagi 10, iż $\mathcal{F} \perp \!\!\! \perp_{\mathcal{F},\mathcal{G}} \mathcal{H}$.

Uwaga 11. Dla trywialnego σ -ciała $\mathcal{G} = \{\emptyset, \Omega\}$, mamy $\perp \!\!\! \perp_{\mathcal{G}} \equiv \perp \!\!\! \perp$, gdyż wówczas $P^{\mathcal{G}}A = PA$ dla dowolnego mierzalnego $A \subset \Omega$.

Wniosek 4. Wobec uwagi 11, z lematu 15, zastosowanego dla $\mathcal{G} = \{\emptyset, \Omega\}$, wynika

$$\mathcal{F}, \mathcal{F}' \perp \!\!\!\perp \mathcal{H} \Longrightarrow \mathcal{F}' \perp \!\!\!\perp_{\mathcal{F}} \mathcal{H}.$$

Twierdzenie 9 (warunkowa niezależność i randomizacja). Ustalmy odpowiednio elementy losowe ξ, η oraz ζ w przestrzeniach mierzalnych S, T oraz U, gdzie S jest borelowska. Wówczas $\xi \perp \!\!\! \perp_{\eta} \zeta$ zachodzi wtedy i tylko wtedy, gdy $\xi = f(\eta, \vartheta)$ p.n. dla pewnej funkcji mierzalnej $f: T \times [0, 1] \to S$ i pewnej zmiennej losowej $\vartheta \perp \!\!\! \perp (\eta, \zeta)$ o rozkładzie U(0, 1).

Dowód. ("⇒") Załóżmy, że $\xi = f(\eta, \vartheta)$ p.n., gdzie dzięki f jest funkcją mierzalną oraz $\vartheta \perp \!\!\! \perp (\eta, \zeta)$. Wtedy, z lematu 15, mamy $\vartheta \perp \!\!\! \perp_{\eta} \zeta$, więc korzystając z lematu 14 mamy $(\eta, \vartheta) \perp \!\!\! \perp_{\eta} \zeta$, a ponadto

$$(\eta, \vartheta)^{-1}(f^{-1}(\mathcal{S})) \subset (\eta, \vartheta)^{-1}(\mathcal{T} \otimes B[0, 1]), \text{ skad } \sigma(f(\eta, \vartheta)) \subset \sigma(\eta, \vartheta).$$

Zatem $\xi \perp \!\!\!\perp_{\eta} \zeta$.

("\(\psi\)") Przypuśćmy, że $\xi \perp \!\!\!\perp_{\eta} \zeta$ i ustalmy $\vartheta \perp \!\!\!\perp (\eta, \zeta)$ o rozkładzie U(0,1). Z twierdzenia 6 istnieje pewna mierzalna funkcja $f: T \times [0,1] \to S$ taka, że element losowy $\tilde{\xi} = f(\eta, \vartheta)$ spełnia $(\tilde{\xi}, \eta) \stackrel{\text{d}}{=} (\xi, \eta)$, więc:

$$P\{\xi\in B\}=P\{\xi\in B,\eta\in T\}=P\{(\xi,\eta)\in B\times T\}=P\{(\tilde{\xi},\eta)\in B\times T\}=P\{\tilde{\xi}\in B\},$$

czyli $\tilde{\xi} \stackrel{\text{d}}{=} \xi$. Korzystając z pierwszej części dowodu, mamy $\tilde{\xi} \perp \!\!\! \perp_{\eta} \zeta$. Stąd, na mocy twierdzenia 8:

$$P\left[\tilde{\xi} \in \cdot | \eta, \zeta\right] = P\left[\tilde{\xi} \in \cdot | \eta\right] = P\left[\xi \in \cdot | \eta\right] = P\left[\xi \in \cdot | \eta, \zeta\right] \ p.n.,$$

gdzie środkowa równość wynika z definicji P^{η} oraz z faktu, że $P\{\tilde{\xi} \in B, \eta \in A\} = P\{\xi \in B, \eta \in A\}$, gdyż $(\tilde{\xi}, \eta) \stackrel{d}{=} (\xi, \eta)$. Ponieważ $\xi, \tilde{\xi}$ mają wartości w przestrzeni borelowskiej, twierdzenie 4 zapewnia nam istnienie regularnej wersji $\mu(\eta, \cdot)$ rozkładu warunkowego $P[\tilde{\xi} \in |\eta, \xi] = P[\xi \in |\eta, \xi]$. Dalej, dla dowolnej mierzalnej i ograniczonej funkcji $f: S \times T \times U \to \mathbb{R}_+$, z twierdzenia 5:

$$Ef(\xi,(\eta,\zeta)) = E \int \mu((\eta,\zeta),ds) f(s,(\eta,\zeta)) = Ef(\tilde{\xi},(\eta,\zeta)),$$

gdzie ostatnia równość wynika z poniższego:

$$\mu((\eta, \zeta), B) = E(\mathbb{1}\{\xi \in B\} | \eta, \zeta) = E(\mathbb{1}\{\tilde{\xi} \in B\} | \eta, \zeta) \text{ p.n.}$$

No, dobrze, zatem $(\tilde{\xi},\eta,\zeta) \stackrel{\mathrm{d}}{=} (\xi,\eta,\zeta)$ na mocy uwagi 7. Z twierdzenia 6, istnieje pewne $\tilde{\vartheta} \stackrel{\mathrm{d}}{=} \vartheta$, takie, że $(\xi,\eta,\zeta,\tilde{\vartheta}) \stackrel{\mathrm{d}}{=} (\tilde{\xi},\eta,\zeta,\vartheta)$. W szczególności, $\tilde{\vartheta} \perp \!\!\!\perp (\eta,\zeta)$ (bo z założenia $\vartheta \perp \!\!\!\perp (\eta,\zeta)$, czyli $\mathcal{L}(\eta,\zeta,\vartheta) = \mathcal{L}(\eta,\zeta) \otimes \mathcal{L}(\vartheta)$, ale $\mathcal{L}(\tilde{\vartheta}) = \mathcal{L}(\vartheta)$ oraz $\mathcal{L}(\eta,\zeta,\vartheta) = \mathcal{L}(\eta,\zeta,\tilde{\vartheta})$ oraz

$$P\{\tilde{\xi} \in A, f(\eta, \vartheta) \in B\} = P\{(\tilde{\xi}, \eta, \vartheta) \in A \times f^{-1}(B)\} = P\{\xi \in A, f(\eta, \tilde{\vartheta}) \in B\}$$

czyli, z lematu 1 dla π -układu $\mathcal{C} = \{A \times B : A, B \in \mathcal{S}\}$, $(\xi, f(\eta, \tilde{\vartheta})) \stackrel{\mathrm{d}}{=} (\tilde{\xi}, f(\eta, \vartheta))$. Ponieważ $\tilde{\xi} = f(\eta, \vartheta)$, to $(\xi, f(\eta, \tilde{\vartheta})) \stackrel{\mathrm{d}}{=} (\tilde{\xi}, f(\eta, \vartheta)) = (f(\eta, \vartheta), f(\eta, \vartheta))$ oraz z mierzalności przekątnej w S^2 otrzymujemy:

$$P\{\xi = f(\eta, \tilde{\vartheta})\} = P\{f(\eta, \vartheta) = f(\eta, \vartheta)\} = 1,$$

czyli
$$\xi = f(\eta, \tilde{\vartheta})$$
 p.n.

Literatura

[1] Olav Kallenberg: Foundations of Modern Probability. Springer, New York, 2002.