Análise Matemática II

2017/18

EXAME

7/06/2018

Justifique cuidadosamente todos os passos que efectuar na resolução das questões. Em cada folha de teste indique os grupos e alíneas que resolveu. Resolva cada um dos grupos em folhas de teste separadas.

Grupo I

1. Considere a função $f: \mathbb{R}^2 \to \mathbb{R}$ dada por

$$f(x,y) = \begin{cases} \frac{4x^2 + 5y^2}{x^2 + y^2} & \text{se } x > 0\\ 3x^2 + 4y^2 & \text{se } x \le 0. \end{cases}$$

Calcule, utilizando a definição, a derivada de f no ponto (-3,1), segundo o vector v=(1,2), ou seja,

$$f'_{(1,2)}(-3,1)$$
.

2. Seja $G:\mathbb{R}^2\to\mathbb{R}$ uma função de classe $C^2\left(\mathbb{R}^2\right)$ e as funções $u,v:\mathbb{R}^2\to\mathbb{R}$ dadas por

$$u(x,y) = y^2 - x^2 e v(x,y) = x^2 - y^3.$$

Para a função composta $G\left(u\left(x,y\right),v\left(x,y\right)\right)$ calcule

$$\frac{\partial^2 G}{\partial x \partial y}.$$

3. Considere a função vectorial $h: \mathbb{R}^3 \to \mathbb{R}^3$ definida por

$$h\left(x,y,z\right)=\left(5x+y+2z,y+2z,az-y\right),\text{ com }a\in\mathbb{R}.$$

- a) Determine para que valores de a a função h é invertível.
- b) Para um valor conveniente de a, calcular a função inversa de h, h^{-1} . (Se não repondeu à alínea anterior use a=-1).
- 4. Estude quanto aos extremos relativos a função

$$h(z, w) = -z^3 + z^2w - 4w + 2z + 7.$$

5. Um depósito prismático de base quadrangular tem de volume $125 \ m^3$. Determine as suas dimensões de modo que a área total das suas faces seja mínima.

Grupo II

- **6.** Considere o campo vectorial $F(x, y, z) = \left(-\frac{2x}{(x^2 y^2)^2}, \frac{2y}{(x^2 y^2)^2}, z^2\right)$.
- a) Verifique que a função $V(x,y,z)=\frac{1}{\left(x^2-y^2\right)^2}+\frac{z^3}{3}$ é uma função potencial para F.
- b) F é um campo gradiente? Justifique a resposta.
- c) Calcule o integral de linha $\int_C F d\gamma$ onde C é a curva descrita pela função $g(t) = (e^t, \operatorname{sen} t, t) \operatorname{com} 0 \le t \le \frac{\pi}{2}.$
- 7. Calcule o integral de linha, $\int_C (2x+y)dx (x-4xy)dy$, usando o teorema de Green, sendo C a circunferência $x^2+y^2=1$, percorrida (uma vez) no sentido directo.
- 8. Considere o conjunto

$$A = \left\{ (x, y, z) \in \mathbb{R}^3 : 4 \le x^2 + y^2 + z^2 \le 9, \ x \ge 0, \ y \ge 0 \ \text{e } z \ge 0 \right\}$$

Calcule o integral triplo $\iiint\limits_A z\ e^{x^2+y^2} dx\ dy\ dz.$

- 9. Considere a função vectorial $F(x,y,z) = (x,y,z^2)$ e seja Γ a fronteira do cilindro $M = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 \le 1 \text{ e } 0 \le z \le 1\}$. Sendo n o vector normal unitário orientado para o exterior de M, calcule $\iint_{\Gamma} \langle F, n \rangle dS$, usando o teorema da divergência de Gauss.
- 10. Seja $F: \mathbb{R}^3 \to \mathbb{R}^3$ um campo vectorial, definido por

$$F(x, y, z) = (P(x, y, z), Q(x, y, z), R(x, y, z)),$$

de classe C^1 . Se F é um campo conservativo, mostre que rot F=0.

Nome: N: