DATENBLATT

- Komplettes Sortiment von Kommunikationsmodulen
- High Power FunkRouter-Modul
- Datenlogger
- Info-Logger
- Datenbackup bei Stromausfall

EN 1434

MID-2004/22/EG

Wärme- und Kältezähler mit unbegrenzter Kommunikation

Anwendung

MULTICAL® 602 ist ein universelles Rechenwerk zur Wärme- und Kältemessung zusammen mit den meisten impulsgebenden Durchflusssensoren sowie einem 2- oder 4-Leiter Temperaturfühlerpaar. In Kombination mit dem Kamstrup Ultraschalldurchflusssensor ULTRAFLOW® bietet der Zähler noch erweiterte Funktionen. Dank seiner hohen Messgenauigkeit registriert der Zähler den genauen Verbrauch über die ganze Lebensdauer des Zählers. Der Zähler ist wartungsfrei, hat eine lange Lebensdauer, und garantiert somit minimale jährliche Betriebskosten.

MULTICAL® 602 wird zur Wärme-, Kälte- und kombinierten Wärme-/Kältemessung in allen wasserbasierten Anlagen mit Temperaturen von 2°C bis 180°C für Wärme und 2°C bis 50°C für Kälte verwendet.

Funktion

In Wärmeapplikationen wird MULTICAL® 602 zusammen mit dem Durchflusssensor ULTRAFLOW® 54 verwendet. Die Durchflussgrößen decken den Bereich von qp 0,6 m³/h bis qp 1.000 m³/h.

In Kälteapplikationen bis zu qp 100 m³/h wird MULTICAL® 602 zusammen

mit ULTRAFLOW[®] 14 und von qp 150 m³/h bis qp 1.000 m³/h zusammen mit ULTRAFLOW[®] 54 verwendet.

Das Rechenwerk kann an Durchflusssensoren bis zu qp 3.000 m³/h angeschlossen werden.

MULTICAL® 602 auszeichnet sich durch die komplette Auswahl von Kommunikationsmodulen und die eingebaute RTC (Echtzeituhr), die es leicht machen, den Zähler in allen Applikationen anzupassen, unabhängig von der Auslesemethode.

Für drahtgebundene Kommunikation kann der Zähler mit LON, SIOX, M-Bus, Datenmodul sowie den neuen Lösungen Metasys N2 und Ethernet/IP ausgestattet werden. Wird der Zähler in ein drahtloses Netzwerk integriert, können Sie Funk, Wireless M-Bus oder eines der neuen Module: GSM/GPRS oder High Power RadioRouter wählen.

Die InfoCodes und Datenlogger des Rechenwerks stellen ein unschätzbares Werkzeug zur Fehlersuche, Fehlerberichtigung und Analyse des Energieverbrauchs dar. Das Infologger überwacht ständig eine Reihe wichtiger Funktionen im Zähler, z.B. Fehler im Messsystem, Stromausfall, Leckage, Bersten, oder Montage des Durchflusssensors mit falscher Durchflussrichtung installiert ist. In solchen Fällen erscheinen eine blinkende "INFO" und eine InfoCode im Display.

MULTICAL® 602 speichert die Verbrauchsdaten jährlich, monatlich, täglich und stündlich, welches eine komplette Betriebsanalyse erleichtert.

Betriebsoptimierung

Bei eventuellem Stromausfall werden die Daten gespeichert, und die Abrechnung der Verbrauchsdaten wird somit sichergestellt. Durch die Batterieversorgung des Zählers wird die Lebensdauer auf bis zu 13 Jahre verlängert, einschl. Wireless M-Bus.

Schließlich garantiert MULTICAL® 602 mit ULTRAFLOW® und den genau gepaarten Temperaturfühlern präzise Messergebnisse eben bei minimalen Temperaturunterschieden. Die Langzeitstabilität und Genauigkeit des Durchflusssensors wird nicht von Durchflussgeschwindigkeit, Durchflusstörungen und Verschleiß beeinflusst, was für einer optimalen Betrieb sorgt.

Verzeichnis

Rechenwerksfunktionen	3
Impulsaus- und Eingänge auf Modulen	10
Kabinetteinrichtung	11
Zugelassene Zählerdaten	12
Elektrische Daten	12
Mechanische Daten	15
Werkstoffbezeichnungen	15
Bestellvorschrift	16
Toleranzband	17
Maßskizzen	18
7uhehör	20

Rechenwerksfunktionen

Energieberechnung

MULTICAL® 602 berechnet die thermische Energie gemäß prEN 1434-1:2009, die die internationale Temperaturskala von 1990 (ITS-90) und die Druckdefinition von 16 bar verwendet.

Die Energieberechnung kann in vereinfachter Form wie folgt ausgedrückt werden:

Energie = $V \times \Delta \Theta \times k$.

V ist das zugeführte Wasservolumen $\Delta\Theta$ ist die gemessene Temperaturdifferenz k ist der Wärmekoeffizient des Wassers

Das Rechenwerk berechnet immer die Energie in [Wh]. Hiernach erfolgt die Umrechnung auf die gewählte Maßeinheit.

E [Wh] =	V x ΔΘ x k x 1000
E [kWh] =	E [Wh] / 1.000
E [MWh] =	E [Wh] / 1.000.000
E [GJ] =	E [Wh] / 277.780
E [Gcal] =	E [Wh] / 1.163.100

Applikationstypen

MULTICAL® 602 arbeitet mit neun verschiedenen Energieformeln E1...E9, die alle bei jeder Integration parallel berechnet werden, unabhängig von der Konfiguration des Zählers.

Die Energietypen E1 zu E9 werden wie folgt berechnet:

E1=V1(T1-T2)k Wärmeenergie (V1 in Vor- oder Rücklauf)
E2=V2(T1-T2)k Wärmeenergie (V2 in Rücklauf)
E3=V1(T2-T1)k Kälteenergie (V1 in Vor- oder Rücklauf)
E4=V1(T1-T3)k Vorlaufenergie
E5=V2(T2-T3)k Rücklaufenergie oder Zapfen von Rücklauf
E6=V2(T3-T4)k Zapfwasserenergie, separat
E7=V2(T1-T3)k Zapfwasserenergie von Vorlauf
E8=m³xT1 Die Grundlage für die Berechnung von volu

E8=m³xT1 Die Grundlage für die Berechnung von volumenbasierten Durchschnittstemperaturen

in der Vorlauf T1

E9=m³xT2 Die Grundlage für die Berechnung von volumenbasierten Durchschnittstemperaturen

in der Rücklauf T2

Somit kann MULTICAL® 602 die Wärme- und Kälteenergie der meisten Applikationen, sowohl geschlossener als offener Anlagen, berechnen.

Alle Energietypen werden protokolliert und können konfigurationsabhängig angezeigt werden.

Rechenwerksfunktionen

Beispiel 1: Geschlossenes thermisches System mit einem Durchflusssensor

Beispiel 2: Offenes Zweistrangsystem mit zwei Durchflusssensoren

Beispiel 3: Zwei Wärmekreise mit gemeinsamem Vorlauf

Beispiel 4: Offenes System mit zwei Durchflusssensoren

Durchflussmessung

MULTICAL® 602 berechnet den aktuellen Wasserdurchfluss nach zwei verschiedenen Prinzipien abhängig vom angeschlossenen Durchflusszählertyp:

- Die Durchflussanzeige bei angeschlossenen elektronischen Durchflusszählern wird alle 10 Sekunden aktualisiert.
- Die Durchflussanzeige bei angeschlossenen mechanischen Durchflusszählern, normalerweise mit Reed-Schalter, wird auf der Basis einer Periodenzeitmessung berechnet und wird bei jedem Volumenimpuls aktualisiert.

Rechenwerksfunktionen

Leistungsmessung

MULTICAL® 602 berechnet die aktuelle Leistung auf der Basis des aktuellen Wasserdurchflusses und der bei der letzten Integration gemessenen Temperaturdifferenz.

Die aktuelle Leistung wird gleichzeitig mit dem Durchfluss im Display aktualisiert.

Minimal- und Maximaldurchfluss sowie Minimal- und Maximalleistung

MULTICAL® 602 registriert den geringsten bzw. höchsten Durchfluss sowie die kleinste bzw. höchste Leistung sowohl des Monats als auch des Jahres. Die Registrierung, die im Display und über Datenkommunikation abgelesen werden kann, enthält diese Maximal- und Minimalwerte von Durchfluss und Leistung, jeweils mit Datumsangabe.

Alle Maximal- und Minimalwerte werden als größter bzw. kleinster Durchschnitt einer Anzahl aktueller Durchfluss- oder Leistungsmessungen berechnet. Die für alle Berechnungen verwendete Mittlungsperiode kann im Intervall von 1...1440 Min. gewählt werden.

Temperaturmessung

MULTICAL® 602 ist in mehreren verschiedenen Ausführungen für Pt100 oder Pt500 Fühler in Zwei- und Vierleiterausführung lieferbar.

Der Messkreislauf besitzt einen Analog-/Digitalumsetzer mit hoher Auflösung mit einem Temperaturbereich von 0,00...185,00°C.

Außer aktuellen Temperaturen für die Energieberechnung können auch Durchschnittstemperaturen im Jahres- und Monatsdurchschnitt angezeigt werden.

Rechenwerksfunktionen

Anzeigefunktionen

MULTICAL® 602 ist mit einem großen, deutlichen LCD-Display mit 8 Ziffern, Maßeinheiten und Informationsfeld ausgestattet. Für die Energie- und Volumenanzeige werden sieben Ziffern und die dazu gehörigen Maßeinheiten verwendet, während für z.B. die Anzeige der Zählernummer acht Ziffern verwendet werden.

Als Ausgangspunkt wird die summierte Energie angezeigt. Durch Betätigung der Drucktasten erscheinen die anderen Anzeigen. Vier Minuten nach der letzten Betätigung der Drucktasten kehrt die Anzeige automatisch auf die Energieanzeige zurück.

Mit der oberen Taste wechselt man zwischen den primären Anzeigen, die untere Taste wird zum Abrufen sekundärer Auskünfte über die gewählte primäre Anzeige verwendet.

Einstell/Reset-Funktion

Mit dem Einstell-/Resetfunktion von MULTICAL® 602 können einige Parameter mittels der beiden Fronttasten geändert werden.

Folgende Parameter können geändert werden:

- Datum
- Zeit
- Input A (Voreinstellung von Register)
- Input B (Voreinstellung von Register)
- Zählernr. von Eingang A
- Zählernr. von Eingang B
- Impulswert für Eingang A
- Impulswert für Eingang B
- Primäre M-Bus-Adresse
- Betriebsstundenzähler (Nullstellung)
- Info-Ereignis-Zähler (Nullstellung)

Da die Installationsplombe gebrochen wird, kann nur der Versorgungslieferant die Änderung machen.

Rechenwerksfunktionen

InfoCodes

MULTICAL® 602 überwacht konstant eine Reihe wichtige Funktionen wie zum Beispiel Spannungsversorgung, Temperaurfühler und Leckagenalarme. Bei schwerwiegenden Fehlern im Messsystem oder in der Installation wird blinkend "Info" angezeigt, so lange der Fehler besteht. Das "Info"-Feld erlischt automatisch, wenn der Fehler behoben worden ist.

Ein Infoereigniszähler zeigt, wie oft der Informationscode geändert worden ist.

Ein Fehlerstundenzähler zählt die Anzahl Stunden, während denen der InfoCode größer als Null gewesen ist.

Ein Infologger speichert die letzten 50 Änderungen, von denen die letzten 36 angezeigt werden können.

InfoCode	Beschreibung	Ansprechzeit
0	Keine Unregelmäßigkeiten	-
1	Die Versorgungsspannung ist unterbrochen gewesen	
8	Temperaturfühler T1 außerhalb Messbereich	110 Min.
4	Temperaturfühler T2 außerhalb Messbereich	110 Min.
32	Temperaturfühler T3 außerhalb Messbereich	110 Min.
64	Leckage im Kaltwassersystem	24 Std.
256	Leckage im Heizungssystem	24 Std.
512	Bersten im Heizungssystem	120 Sek.

Wenn ULTRAFLOW® 54 an MULTICAL® 602 angeschlossen wird, gibt es Zweiwegkommunikation zwischen Durchflusszähler und Rechenwerk und ein extra Satz InfoCodes ist verfügbar:

InfoCode	Beschreibung	Ansprechzeit
16	Durchflusssensor V1, Kommunikationsfehler	Nach Reset und 24 Std. (00:00)
1024	Durchflusssensor V2, Kommunikationsfehler	Nach Reset und 24 Std. (00:00)
2048	Durchflusssensor V1, falscher Durchflussfaktor (CCC)	Nach Reset und 24 Std. (00:00)
128	Durchflusssensor V2, falscher Durchflussfaktor (CCC)	Nach Reset und 24 Std. (00:00)
4096	Durchflusssensor V1, Signal zu schwach (Luft)	Nach Reset und 24 Std. (00:00)
8192	Durchflusssensor V2, Signal zu schwach (Luft)	Nach Reset und 24 Std. (00:00)
16384	Durchflusssensor V1, falsche Duchflussrichtung	Nach Reset und 24 Std. (00:00)
32768	Durchflusssensor V2, falsche Duchflussrichtung	Nach Reset und 24 Std. (00:00)

Rechenwerksfunktionen

Datenlogger

MULTICAL® 602 besitzt einen permanenten Speicher (EEPROM), in den die Ergebnisse einer Reihe verschiedener Datenlogger gespeichert werden. Der Zähler schließt folgende Datenlogger über Anzeige oder als Datenablesung ein:

Datenprotokollierungsintervall	Datenprotokollierungstiefe	Datenprotokollierter Wert
Jahreslogger	15 Jahre	Zählerregister
Monatslogger	36 Monate	Zählerregister
24-StdLogger	460 Tage	Verbrauch (Zuwachs)/Tag
Stundenlogger	1392 Stunden	Verbrauch (Zuwachs)/Stunde
Programmierbarer Datenlogger (Option)	1080 Protokollierungen Logger Intervall 1-1440 min. (z.B. Stundenprotokollierungen von 45 Tagen oder 15-Min Protokollierungen von 11 Tagen)	30 Register und Werte
Infologger	50 Ereignisse	InfoCode, Datum, Zeitpunkt und Energie (E1/E2)

Lecküberwachung

Fernwärmesysteme

Das Lecküberwachungssystem ist primär für direkt angeschlossene Fernwärmeanlagen gedacht. Die Überwachungsausrüstung besteht aus zwei ultraschallbasierten Wasserzählern, die in Vor- und Rücklauf montiert sind sowie Temperaturfühlern in beiden Rohrleitungen.

MULTICAL® 602 überwacht den Massenunterschied, der zwischen Vor- und Rücklauf vorkommen kann.

Kaltwassersysteme

An MULTICAL® 602 kann das Impulssignal eines Kaltwasserzählers der Wohnung angeschlossen werden. Hierdurch kann er den Kaltwasserverbrauch erfassen. Eventuelle laufende Toilettenspülungen, undichte Heizspiralen in Brauchwasserbehältern oder andere Undichtigkeiten werden dazu führen, dass Impulse vom Kaltwasserzähler rund um die Uhr empfangen werden. Dieser Zustand kann signalisiert werden.

Rechenwerksfunktionen

Spannungsversorgung

MULTICAL® 602 ist mit Batterieversorgung, mit 230 VAC- oder 24 VAC-Netzmodul lieferbar. Die Versorgungsmodule können ersetzt werden, ohne die Eichplombe zu brechen.

Einsteckmodule

MULTICAL® 602 kann mit Einsteckmodulen sowohl im Rechenwerksoberteil (Kopfmodule) als im Anschlussbodenstück (Bodenmodule) ausgestattet werden. Auf diese Weise kann man den Zähler einer Reihe verschiedener Applikationen und Datenauslesungsformen anpassen. Die Module gehen aus der Bestellvorschrift, Seite 16 hervor.

Programmierung und Eichung

METERTOOL für MULTICAL® 602 ist eine Windows® basierte Software, die alle Einrichtungen für die Programmierung des Rechenwerks einschließt. Wird die Software zusammen mit der EICHAUSRÜSTUNG FÜR MULTICAL® 602 verwendet, kann das Rechenwerk geprüft und geeicht werden.

Tariffunktionen

MULTICAL® 602 besitzt zwei extra Register TA2 und TA3, die auf der Grundlage einer programmierten Tarifbedingung parallel zum Hauptregister Energie speichern können. Unabhängig von der gewählten Tarifform werden die Register als TA2 und TA3 angezeigt.

Die Tarifbedingungen TL2 und TL3 werden bei jeder Integration überwacht. Wenn die Tarifbedingungen erfüllt worden sind, wird die verbrauchte Wärmeenergie parallel zum Hauptregister in entweder TA2 oder TA3 gespeichert.

Im Hauptregister wird die gemessene Energie immer summiert, unabhängig von der gewählten Tariffunktion, da dieses das geprüfte Abrechnungsregister ist.

Impulsaus- und Eingänge auf Modulen

Impulsausgänge CE und CV

MULTICAL® 602 hat Impulsausgänge für Energie- bzw. Volumenimpulse. CE an Klemme 16-17 gibt mit jeder wertniedrigsten Ziffer der Energieaufzählung im Display einen Impuls ab, und CV an Klemme 18-19 gibt mit jeder wertniedrigsten Ziffer der Volumenaufzählung im Display einen Impuls ab.

Impulseingänge VA und VB

MULTICAL® 602 kann mit zwei externen Impulseingängen VA und VB zur Erfassung und Summierung der Impulse von Wasser- und E-Zählern ausgerüstet sein. Die Impulseingänge sind auf den "Bodenmodulen" platziert.

Die Impulseingänge VA und VB funktionieren unabhängig von den übrigen Eingängen/Ausgängen.

Kabinetteinrichtung

Zugelassene Zählerdaten

Zulassung Norm: prEN 1434:2009 und OIML R75:2002

EU-Direktiven

- MID (Measuring Instruments Directive)

- LVD (Low Voltage Directive)

- EMC (Electromagnetic Compatibility Directive)

Wärmezähler

Zulassung
 Temperaturbereich
 DK-0200-MI004-020
 9: 2°C...180°C
 Differenzbereich
 ΔΘ: 3 K...170 K

Die angeführten Mindesttemperaturen sind nur auf die Bauartzulassung bezogen.

Der Zähler hat keine Abschirmung gegen tiefe Temperaturen und misst damit bis zu 0,01°C und 0,01 K.

Kältezähler

- Temperaturbereich θ : 2°C...50°C - Differenzbereich $\Delta\Theta$: 3 K...40 K

Genauigkeit $E_c \pm (0,5 + \Delta\Theta_{min}/\Delta\Theta)\%$

Temperaturfühler

Typ 602-A
 Pt100 EN 60 751, Zweileiteranschluss
 Typ 602-B+602-D
 Pt500 EN 60 751, Vierleiteranschluss
 Typ 602-C
 Pt500 EN 60 751, Zweileiteranschluss

Durchflusssensortypen – ULTRAFLOW®

– Elektronische Zähler mit aktivem 24 V Impulsausgang– Mechanische Zähler mit elektronischer Abtastung

– Mechanische Zähler mit Reed-Schalter

Durchflusssensorgrößen

 $\begin{array}{lll} - \ [kWh] & & q_{_p} \ 0,6 \ m^3/h...q_{_p} \ 15 \ m^3/h \\ - \ [MWh] & & q_{_p} \ 0,6 \ m^3/h...q_{_p} \ 1500 \ m^3/h \\ - \ [GJ] & & q_{_p} \ 0,6 \ m^3/h...q_{_p} \ 3000 \ m^3/h \end{array}$

EN 1434 Bezeichnung Umgebungsklasse A und C

MID Bezeichnung

Mechanische UmgebungElektromagnetische UmgebungKlasse E1 und E2

Elektrische Daten

Rechenwerksdaten

Typische Genauigkeit

- Rechenwerk $E_{\rm c} \pm (0.15 + 2/\Delta\Theta)\% \\ - F \ddot{u}hlers atz \qquad E_{\rm r} \pm (0.4 + 4/\Delta\Theta)\%$

Display LCD – 7 (8) Ziffern mit 7,6 mm Ziffernhöhe

Energieeinheiten MWh – kWh – GJ – Gcal

Elektrische Daten

Datenlogger (EEPROM)

- Standardmässig 1392 Stunden, 460 Tage, 36 Monate, 15 Jahre, 50 Infocodes

Option
 Datenlogger mit programmierbarem Intervall

Uhr/Kalender Uhr, Kalender, Schaltjahr-Kompensation, Stichtag, Realzeituhr mit

Batterie-Backup

Datenkommunikation KMP Protokoll mit CRC16 wird zur optischen Kommunikation sowie

für Kopf- und Bodenmodule verwendet

Leistung von Temperaturfühlern $< 10 \mu W RMS$

Versorgungsspannung 3,6 VDC ± 0,1 VDC

Batterie 3,65 VDC, D-Zelle Lithium

Ruhestrom < 15 µA ausschl. Durchflusszähler

Austauschintervall

 $- \mbox{Wandmontage} \qquad \qquad 12 + 1 \mbox{ Jahre } \mbox{@ } \mbox{t}_{\mbox{\tiny BAT}} < 30 \mbox{°C} \\ - \mbox{Kompaktmontage} \qquad \qquad 10 \mbox{ Jahre } \mbox{@ } \mbox{t}_{\mbox{\tiny BAT}} < 40 \mbox{°C} \\ \mbox{}$

Die Anwendung der Datenmodule, häufige Datenkommunikation und hohe Umgebungstemperatur sind Faktoren, die das Aus-

tauschintervall reduzieren werden

Netzversorgung 230 VAC +15/-30%, 50/60 Hz

24 VAC ±50%, 50/60 Hz

Isolationsspannung 4 kV

Leistungsverbrauch < 1 W

Backup Netzversorgung Eingebauter SuperCap eliminiert Betriebsstillstand bei kurzfristi-

gem Netzausfall (Nur Versorgungsmodule Typ 602-0000-7 und Typ

602-0000-8)

EMC Daten Erfüllt prEN 1434-4:2009 Klasse C (MID Klasse E2)

Temperaturmessung

Fühlereingänge T1, T2, T3

- Messbereich 0,00...185,00°C

Temperatur T3, T4

- Voreingestellter Bereich 0,01...180,00°C

Höchstkabellängen

- Pt500, Zweileiter

- Pt100, Zweileiter 2 x 0,25 mm²: 2,5 m

2 x 0,50 mm²: 5 m 2 x 0,25 mm²: 10 m 2 x 0,50 mm²: 20 m

- Pt500, Vierleiter 4 x 0,25 mm²: 100 m

Elektrische Daten

Durchflussmessung V1 und V2	ULTRAFLOW® V1: 9-10-11 und V2: 9-69-11	Reed-Schalter V1: 10-11 und V2: 69-11	24 V aktive Impulse V1: 10B-11B und V2: 69B-79B
EN 1434 Impulsklasse	IC	IB	(IA)
Impulseingang	680 k Ω Pullup bis zu 3,6 V	680 k Ω Pullup bis zu 3,6 V	12 mA bei 24 V
Impuls EIN	< 0,4 V in > 0,5 mSek.	< 0,4 V in > 100 mSek.	< 4 V in > 3 mSek.
Impuls AUS	> 2,5 V in > 10 mSek.	> 2,5 V in > 100 mSek.	> 12 V in > 10 mSek.
Impulsfrequenz	< 128 Hz	< 1 Hz	< 128 Hz
Integrationsfrequenz	< 1 Hz	< 1 Hz	< 1 Hz
Elektrische Isolation	Nein	Nein	2 kV
Höchstkabellänge	10 m	25 m	100 m

Impulseingänge <u>ohne</u> Prelldämpfung VA und VB VA: 65-66 und VB: 67-68	Wasserzähleranschluss FF(VA) und GG(VB) = 7190	E-Zähleranschluss FF(VA) und GG(VB) = 5060	
Impulseingang	680 kΩ Pullup bis zu 3,6 V	680 kΩ Pullup bis zu 3,6 V	
Impuls EIN	< 0,4 V in > 30 mSek.	< 0,4 V in > 30 mSek.	
Impuls AUS	> 2,5 V in > 100 mSek.	> 2,5 V in > 100 mSek.	
Impulsfrequenz	< 1 Hz	< 3 Hz	
Elektrische Isolation	Nein	Nein	
Höchstkabellänge	25 m	25 m	
Anforderungen an externen Schalter	Verluststrom bei Funktion offen < 1μA		

Impulseingänge <u>mit</u> Prelldämpfung VA und VB VA: 65-66 und VB: 67-68	Wasserzähleranschluss FF(VA) und GG(VB) = 0140
Impulseingang	680 kΩ Pullup bis zu 3,6 V
Impuls EIN	< 0,4 V in > 200 mSek.
Impuls AUS	> 2,5 V in > 500 mSek.
Impulsfrequenz	< 1 Hz
Elektrische Isolation	Nein
Höchstkabellänge	25 m
Anforderungen an externen Schalter	$\mbox{Verluststrom bei Funktion offen} < 1 \mu \mbox{A}$

Impulsausgänge CE und CV	Über Kopfmodul 67-OB Über Kopfmodul 602-OC	
Тур	Opto FET Offener Kollektor (OB)	
Impulslänge	32 mSek. oder 100 mSek.	
Externe Spannung	548 VDC	530 VDC
Strom	150 mA	110 mA
Restspannung	$R_{ON} \le 40 \Omega$	$U_{CE} \approx 1 \text{ V bei } 10 \text{ mA}$
Elektrische Isolation	2 kV	2 kV
Höchstkabellänge	25 m	25 m

Mechanische Daten

Umweltklasse Erfüllt EN 1434 Klasse A und C

Umgebungstemperatur 5...55°C, nicht-kondensierend, geschlossene Position

(Inneninstallation)

Schutzart IP54

Lagertemperatur -20...60°C (leerer Durchflusszähler)

Gewicht 0,4 kg ausschl. Fühler und Durchflusszähler

Anschlussleitungen ø3,5...6 mm

Versorgungsleitung ø5...10 mm

Werkstoffbezeichnungen

Oberdeckel PC

Anschlussbodenstück ABS mit TPE Dichtungen (thermoplastisches Elastomer)

Platinenkasten ABS

Wandbeschlag PC + 30% Glas

Bestellvorschrift

Die ULTRAFLOW® Typnummern bei der Auftragserteilung separat angeben.

Toleranzband

Das obenstehende Diagramm zeigt das Toleranzband von MULTICAL® 602 im Vergleich zu den Toleranzforderungen von EN 1434.

Maßskizzen

MULTICAL® 602 montiert auf ULTRAFLOW®

Frontabmessungen von MULTICAL® 602

Maßskizzen

MULTICAL® 602 Wandmontage von der Seite gesehen

MULTICAL® 602 Paneelmontage von der Seite gesehen

MULTICAL® 602 Paneelmontage von vorne gesehen

Zubehör

Beschreibung Typnumme	er
D-Zelle Batterie 66-00-200-1	00
230 VAC High-Power isolierte SMPS 6020000300	0000
24 VAC High-Power isolierte SMPS 6020000400	0000
230 VAC isolierte lineare Versorgung 6020000700	0000
24 VAC isolierte lineare Versorgung 6020000800	0000
Impulsgeber/Untersetzer für 602-A und 602-C 66-99-624	
Vierleiter-Anschlussplatine mit Impulseingängen für 24 V Wirkimpulse (für 602-D) 66-99-614	
Datenkabel m/USB-Stecker 66-99-098	
Infraroter optischer Auslesekopf m/USB-Stecker 66-99-099	
Infraroter optischer Auslesekopf RS232, m/D-Sub 9F 66-99-102	
Datenleitung RS232, D-Sub 9F 66-99-106	
Infraroter optischer Lesekopf für Kamstrup/EVL m/USB Stecker 66-99-144	
Eicheinheit (wird zusammen mit METERTOOL verwendet) 66-99-397/-	398/-399
Temperaturfühlerpaar mit Anschlußkopf 65-56-4x-xxx	
Externe Kommunikationseinheit 67-9x-xxxxx-	2xx
METERTOOL für MULTICAL® 602 66-99-718	
METERTOOL LogView für MULTICAL® 602 66-99-719	

Nehmen Sie bitte für Information über weiteres Zubehör mit Kamstrup A/S Kontakt auf.

ULTRAFLOW® 34 DN15-125

DATENBLATT

- Ultraschalldurchflusssensor
- Für Durchfluß von 1,5 m³/h bis 100 m³/h
- Kompaktes Design
- Statischer Zähler ohne bewegliche Teile
- Grosser Dynamikbereich
- Kein Verschleiss
- Hohe Genauigkeit
- Langlebigkeit

MID-2004/22/EG

Anwendung

ULTRAFLOW® 34 ist ein statischer Durchflusssensor im Ultraschallmessverfahren. Er wird hauptsächlich als Volumenstromsensor für Energiezähler wie MULTICAL® verwendet. ULTRAFLOW® 34 ist für die Verwendung in Kälte- und Wärmeinstallationen mit Wasser als Medium bestimmt.

ULTRAFLOW® 34 ist nicht geeignet für andere Medien als Wasser und soll deshalb nicht mit z.B. kältebeständigen Additiven wie Glykol verwendet werden.

ULTRAFLOW® 34 ist mit einer Ultraschallmessung in Mikroprozessortechnik aufgebaut. Alle Funktionen zur Auswertung des Durchfluss sind auf einer Platine, was ein kompaktes und zweckmäßiges Design zur Folge hat, und wodurch gleichzeitig eine besonders hohe Messqualität und Zuverlässigkeit erzielt wird. Die Durchflussmessung erfolgt mit bidirektionaler Ultraschalltechnik nach dem Laufzeitdifferenzverfahren, einem langzeitstabilen und genauen Messprinzip. Durch zwei Ultraschallwandler wird das Ultraschallsignal sowohl mit als gegen die Durchflussrichtung gesandt. Der Zeitunterschied zwischen den beiden Signalen kann hiernach auf eine Durchflussgeschwindigkeit und damit auch auf ein Volumen umgerechnet werden.

ULTRAFLOW® 34 ist an MULTICAL® mit einem Dreileiter-Impulskabel anzuschließen, der als Signalgeber an das Rechenwerk sowie als Versorgung für den Durchflusssensor aus dem Rechenwerk dient. Ein Signal, das dem Durchfluss oder genauer gesagt

der Anzahl Impulse entspricht, wird abgegeben, das proportional mit der durchfließenden Wassermenge ist.

Wenn ULTRAFLOW® 34 als Durchflusssensor mit eigener Versorgung verwendet werden soll, z.B. bei Abständen von >10 m zwischen MULTICAL® und ULTRAFLOW®, ist ein Pulse Transmitter als Zubehör lieferbar.

Wenn ULTRAFLOW® 34 als Impulsgeber für sonstige Ausrüstung verwendet wird, muss der Anschluss über einen Pulse Transmitter durchgeführt werden.

Der Pulse Transmitter hat eine eingebaute Versorgung für ULTRAFLOW® 34 und einen galvanisch getrennten Impulsausgang.

Inhaltsverzeichnis

Zulassungen	3
Technische Daten	3
Technische Daten Durchflusssensor	4
Materialien	5
Typenübersicht	6
Massskizzen	6
Pulse Transmitter	8
Druckverlust	9
Diagramm	9
Installation	10
Montagebeispiele	11
Elektrische Verbindungen	12
Beispiel des Anschlusses von ULTRAFLOW® 34 an MULTICAL®	12
Bestellvarianten	13
Zubehör	14

Zulassungen

Typzulassung

ULTRAFLOW® 34 ist gemäss MID-2004/22/EG zugelassen. EG-Type Examination Certificate: DK-0200-MI004-008

CE-Bezeichnung

ULTRAFLOW® 34 ist in Abstimmung mit den folgenden Direktiven zugelassen:

- MID-Direktive 2004/22/EG

– LV-Direktive 2006/95/EG (zusammen mit Pulse Transmitter oder Pulse Divider)

– PE-Direktive 97/23/EG (DN50...DN125 Kategorie I)

MID-2004/22/EG

C € M14 0200

MID Bezeichnungen

Umgebungsklasse

MechanischeElektromagnetischeKlasse M1Klasse E1 und E2

- Umgebungstemperatur 5...55 °C, geschlossene Position (Inneninstallation)

Technische Daten

Mechanische Daten

Metrologische Klasse 2 oder 3

Umweltklasse Erfüllt DS/EN 1434 Klasse C

Umgebungstemperatur 5...55 °C

Schutzart

DurchflusssensorPulse TransmitterIP67

Medientemperatur* 2...130 °C oder 2...50 °C

Lagertemperatur (lehrer Zähler) -25...60 °C

Nenndruck PN16, PN25 Flansch

^{*} Bei einer Temperatur des Mediums über 90 °C empfehlen wir die Verwendung eines Flanschzählers. Bei einer Mediumstemperatur über 90 °C oder bei einer Mediumstemperatur, die mehr als 5 °C unter der Umgebungstemperatur liegt (T_{Med} < T_{Umg} - 5 °C), dürfen das Rechenwerk und der Pulse Transmitter nicht auf dem Durchflusssensor montiert werden. Stattdessen wird die Wandmontage empfohlen.

Technische Daten

Elektrische Daten

Spannungsversorgung 3,6 VDC \pm 0,1 VDC

Batterieversorgung 3,65 VDC, D-Celle lithium

(Pulse Transmitter)

Batterielebensdauer 6 Jahre bei Umgebungstemperatur < 30 °C

Netzversorgung 230 VAC +15/-30 %, 48...52 Hz

(Pulse Transmitter) 24 VAC \pm 30 %

Backup Netzversorgung Die integrierte Super-Cap verhindert Störungen während des laufenden Betriebs, z.b.

bei kurzem Stromausfall

Leitungslänge

– Durchflusssensor Max. 10 m

Pulse Transmitter
 Abhängig vom Rechenwerk

EMV Daten Richten sich nach DS/EN 1434 Klasse C

Technische Daten Durchflusssensor

Nenndurch- fluss q _p	Nennweite	Impuls- wertigkeit 1)	Messbereich	q¸:qp	Durchfluss bei @125 Hz ²⁾	∆p@q _p	Anlaufgrenze
[m³/h]	[mm]	[imp./l]	q _i :q _p		[m³/h]	[bar]	[l/h]
1,5	DN15 & DN20	100	1:100	2:1	4,5	0,22	3
2,5	DN20	60	1:100	2:1	7,5	0,03	5
3,5	DN25	50	1:100	2:1	9	0,07	7
6	DN25	25	1:100	2:1	18	0,2	12
10	DN40	15	1:100	2:1	30	0,06	20
15	DN50	10	1:100	2:1	45	0,14	30
25	DN65	6	1:100	2:1	75	0,06	50
40	DN80	5	1:100	2:1	90	0,05	80
60	DN100	2,5	1:100	2:1	180	0,03	120
100	DN100 & DN125	1,5	1:100	2:1	300	0,07	200

 $^{^{1)} \}textit{Die Impulswertigkeit (Meterfaktor) kann auf dem ULTRAFLOW} ^{\bullet} \text{-} Typenschild abgelesen werden.}$

²⁾ Bei Maximumüberschreitung von 128 Hz bleibt dieser Wert erhalten.

Materialien

Mediumberührte Teile

ULTRAFLOW® 34, q_p 1,5 m³/h

Verschraubungsgehäuse DZR-Messing (Entzinkungsbeständiges Messing)

Fühler Rostfreier Stahl, W. Nr. 1.4401

Dichtungen EPDM

Reflektor Thermoplast, PES 30 % GF und rostfreier Stahl, W. Nr. 1.4301

Messrohr Thermoplast, PES 30 % GF

ULTRAFLOW® 34, q_p 2,5 bis 100 m³/h

Verschraubungsgehäuse DZR-Messing (Entzinkungsbeständiges Messing)

Flanschgehäuse Rostfreier Stahl, W.Nr. 1.4308 Fühler Rostfreier Stahl, W. Nr. 1.4401

Dichtungen EPDM

Reflektor Rostfreier Stahl, W. Nr. 1.4301 Messrohr Thermoplast, PES 30 % GF

Elektronikgehäuse

Basis Thermoplast, PBT 30 % GF
Deckel Thermoplast, PC 20 % GF

Verbindungsleitung

Silikon-Leitung (3 x 0,5 mm²)

Typenübersicht

Nenndurchfluss q _p [m³/h]	Grösse und Baulänge			
1,5	G¾B x 110 mm	G1B x 130 mm		
2,5	G1B x 190 mm			
3,5	G5/4B x 260 mm			
6	G5/4B x 260 mm			
10	G2B x 300 mm	DN40 x 300 mm		
15	DN50 x 270 mm			
25	DN65 x 300 mm			
40	DN80 x 300 mm			
60	DN100 x 360 mm			
100	DN100 x 360 mm	DN125 x 350 mm		

Gewinde ISO 228-1

Flansch EN 1092, PN25. Flanschdichtfläche Form B (Dichtleiste)

Massskizzen

ULTRAFLOW® 34, G¾B und G1B

Wo nichts anders angegeben ist, sind alle Abmessungen in mm.

Gewinde EN ISO 228-1

Gewinde	L	M	H2	A	B1	B2	H1	Ca. Gewicht [kg]
G¾B	110	L/2	89	10,5	58	35	55	0,8
G1B	130	L/2	89	20,5	58	35	55	1,1
G1B	190	L/2	89	20,5	58	36	55	1,3

Massskizzen

ULTRAFLOW® 34, G5/4B und G2B

Gewinde EN ISO 228-1

Gewinde	L	M	H2	Α	B1	B2	H1	Ca. Gewicht [kg]
G5/4B	260	L/2	89	17	58	22	55	2,3
G2B	300	L/2	89	21	65	31	55	4,5

ULTRAFLOW® 34, DN40 und DN50

Flansch EN 1092, PN25 Flanschdichtfläche Form B (Dichtleiste)

Nennweite									Bolzen		Ca. Gewicht
	L	M	H2	B1	D	Н	k	Anzahl	Gew.	d ₂	[kg]
DN40	300	L/2	89	<d 2<="" td=""><td>150</td><td>136</td><td>110</td><td>4</td><td>M16</td><td>18</td><td>8,3</td></d>	150	136	110	4	M16	18	8,3
DN50	270	155	89	<d 2<="" td=""><td>165</td><td>145</td><td>125</td><td>4</td><td>M16</td><td>18</td><td>10,1</td></d>	165	145	125	4	M16	18	10,1

Massskizzen

ULTRAFLOW® 34, DN65 bis DN125

Flansch EN 1092, PN25 Flanschdichtfläche Form B (Dichtleiste)

Nennweite									Bolzen		Ca. Gewicht
	L	M	H2	B1	D	Н	k	Anzahl	Gew.	d ₂	[kg]
DN65	300	170	89	<h 2<="" td=""><td>185</td><td>168</td><td>145</td><td>8</td><td>M16</td><td>18</td><td>13,2</td></h>	185	168	145	8	M16	18	13,2
DN80	300	170	89	<h 2<="" td=""><td>200</td><td>184</td><td>160</td><td>8</td><td>M16</td><td>18</td><td>16,8</td></h>	200	184	160	8	M16	18	16,8
DN100	360	210	89	<h 2<="" td=""><td>235</td><td>220</td><td>190</td><td>8</td><td>M20</td><td>22</td><td>21,7</td></h>	235	220	190	8	M20	22	21,7
DN125	350	212	89	<h 2<="" td=""><td>270</td><td>260</td><td>220</td><td>8</td><td>M24</td><td>28</td><td>28,2</td></h>	270	260	220	8	M24	28	28,2

Pulse Transmitter

Druckverlust

Diagramm	q _p [m³/h]	Nennweite	k _v ³⁾	Q@0,25 bar [m³/h]
Α	1,5	DN15 & DN20	3,2	1,6
В	2,5 & 3,5 & 6	DN20 & DN25	13,4	6,7
С	10 & 15	DN40 & DN50	40	20
D	25	DN65	102	51
E	40	DN80	179	90
F	60 & 100	DN100 & DN125	373	187

 $^{^{3)}}$ q= $k_{_{V}}x$ $\sqrt{\Delta p}$

Diagramm

Installation

Einbauwinkel ULTRAFLOW® 34

ULTRAFLOW® 34 kann waagerecht oder senkrecht eingebaut werden.

Bitte beachten!

Bei ULTRAFLOW® 34 muss das schwarze Elektronikgehäuse an der Seite sitzend eingebaut werden (bei waagerechter Installation).

ULTRAFLOW® 34 kann bis +45° im Verhältnis zur Rohrachse gedreht werden.

Bei Kondesationsgefahr, z.B. in Kälteinstallationen, oder wenn ULTRAFLOW® 34 in feuchten Umgebungen installiert wird, muss ULTRAFLOW® 34 +45° zur Rohrachse gedreht werden.

Einlaufstrecke

ULTRAFLOW® 34 erfordert weder eine gerade Einlauf- noch Auslaufstrecke um die Messinstrumentrichtlinie (MID) 2004/22/EG, OIML R75:2002 und EN 1434:2007 einzuhalten. Nur bei kräftigen Durchflussstörungen vor dem Zähler ist eine gerade Einlaufstrecke notwendig. Wir empfehlen die Einhaltung der Richtlinien von CEN CR 13582.

Betriebsdruck

Um Kavitation vorzubeugen, muss der Betriebsdruck beim ULTRAFLOW® 34 min. 1,5 bar bei $\rm q_p$ und min. 2,5 bar bei $\rm q_s$ sein. Dies gilt Temperaturen bis zu ca. 80 °C.

ULTRAFLOW® 34 darf keinem niedrigeren Druck als dem Umgebungsdruck (Vakuum) ausgesetzt werden.

Montagebeispiele

Durchflusssensor (Gewinde) mit angebautem MULTICAL®.

Montierte Verschraubungen sowie montierter kurzer Direktfühler in ULTRAFLOW® 34 (nur G¾B (R½) und G1B (R¾)).

MULTICAL® direkt auf ULTRAFLOW® 34 (Flansch) montiert.

Zur Beachtung: Bei einer Mediumstemperatur über 90 °C oder bei einer Mediumstemperatur, die mehr als 5 °C unter der Umgebungstemperatur liegt ($T_{\text{Med}} < T_{\text{Umg}} - 5$ °C), dürfen das Rechenwerk und der Pulse Transmitter nicht auf dem Durchflusssensor montiert werden. Stattdessen wird die Wandmontage empfohlen.

Elektrische Verbindungen

Verbindung MULTICAL® und ULTRAFLOW® 34

ULTRAFLOW® 34	->	MULTICAL®
Blau (Masse)	->	11
Rot (Versorgung)	->	9
Gelb (Signal)	->	10

Verbindung über Pulse Transmitter

ULTRAFLOW® 34	->	Pulse Tra	nsmitter	->	MULTICAL®
		Eingang	Ausgang		
Blau (Masse)	->	11	11A	->	11
Rot (Versorgung)	->	9	9A	->	9
Gelb (Signal)	->	10	10A	->	10

Bei der Verwendung von langen Signalkabeln muss bei der Installation mit Umsicht gehandelt werden. Signalleitungen müssen mit einem Abstand von **mindestens 25 cm** zum Schutz vor EMV zu anderen Elektroinstallationen installiert werden.

Für weitere Informationen zu Pulse Transmitter, siehe die technische Beschreibung 5512-575.

Beispiel des Anschlusses von ULTRAFLOW® 34 an MULTICAL®

Bestellvarianten

	Art-Nr. 5)		q _p [m ³ /h]	q _i [m³/h]	q _s [m³/h]	Baugrösse	Länge [mm]	Impuls- wertigkeit [imp./l]	CCC (hochauf- lösend)	Materialien
65-3-	CDAA	-XXX	1,5	0,015	3	G3/4B (R1/2)	110	100	419 (407)	Messing
65-3-	CDAD	-XXX	1,5	0,015	3	G1B (R¾)	130	100	419 (407)	Messing
65-3-	CEAF	-XXX	2,5	0,025	5	G1B (R¾)	190	60	498 (-)	Messing
65-3-	CGAG	-XXX	3,5	0,035	7	G5/4B (R1)	260	50	451 (436)	Messing
65-3-	CHAG	-XXX	6	0,06	12	G5/4B (R1)	260	25	437 (438)	Messing
65-3-	CJAJ	-XXX	10	0,1	20	G2B (R1½)	300	15	478 (483)	Messing
65-3-	CJCD	-XXX	10	0,1	20	DN40	300	15	478 (483)	Rostfreier Stahl
65-3-	CKCE	-XXX	15	0,15	30	DN50	270	10	420 (485)	Rostfreier Stahl
65-3-	CLCG	-XXX	25	0,25	50	DN65	300	6	479 (-)	Rostfreier Stahl
65-3-	СМСН	-XXX	40	0,4	80	DN80	300	5	458 (486)	Rostfreier Stahl
65-3-	FACL	-XXX	60	0,6	120	DN100	360	2,5	470 (487)	Rostfreier Stahl
65-3-	FBCL	-XXX	100	1	200	DN100	360	1,5	480 (488)	Rostfreier Stahl
65-3-	FBCM	-XXX	100	1	200	DN125	350	1,5	480 (488)	Rostfreier Stahl

⁵⁾ XXX-Kode für Endmontage, Zulassung etc. wird automatisch eingetragen, da einige Grössen nicht national zugelassen sind.

ULTRAFLOW® 34 wird standardmässig mit 2,5 m Anschlussleitung geliefert, ist aber auch mit 5 oder 10 m Leitung lieferbar.

Pulse Transmitter – Typ 6699-903

Der Pulse Transmitter wird mit Batterie - oder Netzversorgung 24 VAC oder 230 VAC geliefert. Bei Bestellung bitte angeben!

Zubehör

Gewindeanschlussteile einschl. Dichtung (PN16)

Grösse	Nippel	Überwurfmutter	Typ-Nr.	2 Stück
DN15	R½	G3⁄4	-	6561-323
DN20	R3⁄4	G1	-	6561-324
DN25	R1	G5/4	6561-325	-
DN40	R1½	G2	6561-315	-

Dichtungen für Flanschanschluss (PN25)

Grösse	Typ-Nr.
DN40	2210-132
DN50	2210-099
DN65	2210-141
DN80	2210-140
DN100	1150-142
DN125	1150-153

Dichtungen für Gewindeanschluss

Grösse (Überwurfmutter)	Typ-Nr.
G3⁄4	2210-061
G1	2210-062
G5/4	2210-063
G2	2210-065

ULTRAFLOW® 54 DN15-125

DATENBLATT

- Ultraschalldurchflusssensor
- Für Durchfluß von 0,6 m³/h bis 100 m³/h
- Kompaktes Design
- Statischer Zähler ohne bewegliche Teile
- Grosser Dynamikbereich
- Kein Verschleiss
- **■** Hohe Genauigkeit
- Langlebigkeit

MID-2004/22/EG

C € M13 0200

Anwendung

Der statische Ultraschalldurchflusssensor ULTRAFLOW® 54 wird mit einem Messbereich von q_p 0,6 m^3/h bis q_p 100 m^3/h gefertigt. Das Hauptverwendungsgebiet ist als Durchflusssensor für Wärmezähler MULTICAL® zu sehen.

Der ULTRAFLOW® 54 dient der Messung von Kalt-, Warm- und Heisswasser in Nah- und Fernwärmeanlagen.

Die ULTRAFLOW® 54 Messtechnik erfolgt nach dem Laufzeitmessverfahren. In der Messstrecke befinden sich zwei Sensoren, die wechselseitig Signale senden und empfangen. Die Laufzeitdifferenz wird mit modernster Mikroprozessortechnik ausgewertet und als Volumenmass dem Rechenwerk zur Verfügung gestellt.

Die dafür speziell entwickelten Bauteile und Bauteilanordnungen gewährleisten eine lange und genaue Einsatzdauer. Durch den geringen Druckverlust sowie die Verwendung von Edelstählen und anderen nicht magnetischer "Werkstoffe" (keine Magnetikablagerungen) im Strömungsbereich ergeben sich universelle Einsatzmöglichkeiten. Bei Kabellängen ≥10 m findet ein Pulse Transmitter Verwendung. Der Pulse Transmitter arbeitet als Potentialtrenner und Verstärker.

Wenn ULTRAFLOW® 54 als Impulsgeber für andere Ausrüstung verwendet werden soll, muss der Anschluss über einen Pulse Transmitter erfolgen.

Weiter ist der Pulse Transmitter mit eigener Energieversorgung ausstatt-

ULTRAFLOW® 54 DN15-125 DATENBLATT

Inhaltsverzeichnis

Zulassungen	3
Technische Daten	3
Technische Daten Durchflusssensor	4
Materialien	5
Typenübersicht	6
Massskizzen	6
Pulse Transmitter	8
Druckverlust	9
Diagramm	9
Installation	10
Montagebeispiele	11
Elektrische Verbindungen	12
Beispiel des Anschlusses von ULTRAFLOW® 54 an MULTICAL®	13
Bestellvarianten	14
Zubehör	15
Unsere Vertriebspartner in Österreich und in der Schweiz	15

Zulassungen

Typzulassung

ULTRAFLOW® 54 ist gemäss MID-2004/22/EG zugelassen. EG-Type Examination Certificate: DK-0200-MI004-008

CE-Bezeichnung

ULTRAFLOW® 54 ist in Abstimmung mit den folgenden Direktiven zugelassen:

- MID-Direktive 2004/22/EG

– LV-Direktive 2006/95/EG (zusammen mit Pulse Transmitter oder Pulse Divider)

- PE-Direktive 97/23/EG (DN50...DN125 Kategorie I)

MID-2004/22/EG

MID Bezeichnungen

Umgebungsklasse

– Mechanische– ElektromagnetischeKlasse E1 und E2

- Umgebungstemperatur 5...55°C, nicht-kondensierend Geschlossene Position (Inneninstallation)

Technische Daten

Mechanische Daten

Metrologische Klasse 2 oder 3

Umweltklasse Erfüllt DS/EN 1434 Klasse C

Umgebungstemperatur 5...55°C

Schutzart

– Durchflusssensor IP65– Pulse Transmitter IP54

Medientemperatur* 15...130°C

Lagertemperatur (lehrer Zähler)

– Zähler ohne Batterie– Zähler mit Batterie– 25...60°C

Nenndruck PN16, PN25 Flansch

^{*} Bei einer Temperatur des Mediums über 90°C empfehlen wir die Verwendung eines Flanschzählers. Ausserdem sollte der Pulse Transmitter bzw. MULTICAL® Rechenwerk abgesetzt werden (z.B. Wandmontage).

Technische Daten

Elektrische Daten

Spannungsversorgung 3,6 V ± 0,1 V

Batterieversorgung

(Pulse Transmitter) 3,65 VDC, D-Celle lithium

Batterielebensdauer 6 Jahre bei Umgebungstemperatur < 30°C

Netzversorgung 230 VAC +15/-30%, 48...52 Hz

(Pulse Transmitter) 24 VAC ±30%

Backup Netzversorgung Die integrierte Super-Cap verhindert Störungen während des laufenden Betriebs, z.b.

bei kurzem Stromausfall

Leitungslänge

- Durchflusssensor Max. 10 m

Pulse Transmitter
 Abhängig vom Rechenwerk

EMV Daten Richten sich nach DS/EN 1434 Klasse C

Technische Daten Durchflusssensor

Nenndurch- fluss q	Nennweite	Impuls- wertigkeit 1)	Messbereich		Durchfluss bei @125 Hz ²⁾	Δ p@q $_{p}$	Anlaufgrenze
[m³/h]	[mm]	[imp./l]	q _i :q _p	q _s :q _p	[m³/h]	[bar]	[l/h]
0,6	DN15 & DN20	300	1:50 & 1:100	2:1	1,5	0,04	2
1,5	DN15 & DN20	100	1:50 & 1:100	2:1	4,5	0,22	3
2,5	DN20	60	1:50 & 1:100	2:1	7,5	0,03	5
3,5	DN25	50	1:50 & 1:100	2:1	9	0,07	7
6	DN25	25	1:50 & 1:100	2:1	18	0,2	12
10	DN40	15	1:50 & 1:100	2:1	30	0,06	20
15	DN50	10	1:50 & 1:100	2:1	45	0,14	30
25	DN65	6	1:50 & 1:100	2:1	75	0,06	50
40	DN80	5	1:50 & 1:100	2:1	90	0,05	80
60	DN100	2,5	1:50 & 1:100	2:1	180	0,03	120
100	DN100	1, 5	1:50 & 1:100	2:1	300	0,07	200
100	DN125	1,5	1:50 & 1:100	2:1	300	0,1	200

 $^{^{1)}\,\}mathrm{Die}\;\mathrm{Impulswertigkeit}$ (Meterfaktor) kann auf dem ULTRAFLOW $^{\otimes}$ -Typenschild abgelesen werden.

²⁾ Bei Maximumüberschreitung von 128 Hz bleibt dieser Wert erhalten.

Materialien

Mediumberührte Teile

ULTRAFLOW® 54, q 0,6 und 1,5 m³/h

Verschraubungsgehäuse DZR-Messing (Entzinkungsbeständiges Messing)

Flanschgehäuse Rostfreier Stahl, W.Nr. 1.4308 Fühler Rostfreier Stahl, W. Nr. 1.4401

Dichtungen EPDM

Reflektor Thermoplast, PES 30% GF und rostfreier Stahl, W. Nr. 1.4301

Messrohr Thermoplast, PES 30% GF

ULTRAFLOW® 54, q_a 2,5 bis 100 m³/h

Verschraubungsgehäuse DZR-Messing (Entzinkungsbeständiges Messing)

Flanschgehäuse Rostfreier Stahl, W.Nr. 1.4308 Fühler Rostfreier Stahl, W. Nr. 1.4401

Dichtungen EPDM

Reflektor Rostfreier Stahl, W. Nr. 1.4301 Messrohr Thermoplast, PES 30% GF

Elektronikgehäuse

Basis Thermoplast, PBT 30% GF
Deckel Thermoplast, PC 20% GF

Verbindungsleitung

Silikon-Leitung (3 x 0,5 mm²)

DATENBLATT

Typenübersicht

Nenndurchfluss q_p [m ³ /h]		Grösse und Baulänge										
0,6	G ³ / ₄ B x 110 mm	G1B x 130 mm										
1,5	G ³ / ₄ B x 110 mm	G ³ / ₄ B x 165 mm	G1B x 130 mm	G1B x 190 mm	(G1B x 165 mm)	(DN20 x 190 mm)						
2,5	G1B x 190 mm	DN20 x 190 mm										
3,5	G5/4B x 260 mm	DN25 x 260 mm										
6	G5/4B x 260 mm	DN25 x 260 mm										
10	G2B x 300 mm	DN40 x 300 mm										
15	DN50 x 270 mm											
25	DN65 x 300 mm											
40	DN80 x 300 mm											
60	DN100 x 360 mm											
100	DN100 x 360 mm	DN125 x 350 mm										

(...) Ländervarianten

Gewinde ISO 228-1 Flansch EN 1092, PN25

Massskizzen

ULTRAFLOW® 54, G3/4B und G1B

Wo nichts anders angegeben ist, sind alle Abmessungen in mm.

Gewinde ISO 228-1

Gewinde	L	M	H2	Α	B1	B2	H1	Ca. Gewicht [kg]
G³/4B	110	L/2	89	10,5	58	35	55	0,8
G1B	130	L/2	89	20,5	58	35	55	1,1
G3/4B	165	L/2	89	20,5	58	35	55	1,2
G1B	165	L/2	89	20,5	58	35	55	1,2
G1B (q _p 1,5)	190	L/2	89	20,5	58	35	55	1,5
G1B (q _p 2,5)	190	L/2	89	20,5	58	36	55	1,3

DATENBLATT

Massskizzen

ULTRAFLOW® 54, G5/4B und G2B

Gewinde ISO 228-1

Gewinde	L	M	H2	Α	B1	B2	H1	Ca. Gewicht [kg]
G5/4B	260	L/2	89	17	58	22	55	2,3
G2B	300	L/2	89	21	65	31	55	4,5

ULTRAFLOW® 54, DN20 bis DN50

Flansch EN 1092, PN25

Nennweite								Bolzen			Ca. Gewicht
	L	M	H2	B1	D	Н	k	Anzahl	Gew.	$\mathbf{d_2}$	[kg]
DN20	190	L/2	89	58	105	95	75	4	M12	14	2,9
DN25	260	L/2	89	58	115	106	85	4	M12	14	5,0
DN40	300	L/2	89	<d 2<="" td=""><td>150</td><td>136</td><td>110</td><td>4</td><td>M16</td><td>18</td><td>8,3</td></d>	150	136	110	4	M16	18	8,3
DN50	270	155	89	<d 2<="" td=""><td>165</td><td>145</td><td>125</td><td>4</td><td>M16</td><td>18</td><td>10,1</td></d>	165	145	125	4	M16	18	10,1

DATENBLATT

Massskizzen

ULTRAFLOW® 54, DN65 bis DN125

Flansch EN 1092, PN25

Nennweite								Bolzen		Ca. Gewicht	
	L	M	H2	B1	D	Н	k	Anzahl	Gew.	$\mathbf{d_2}$	[kg]
DN65	300	170	89	<h 2<="" td=""><td>185</td><td>168</td><td>145</td><td>8</td><td>M16</td><td>18</td><td>13,2</td></h>	185	168	145	8	M16	18	13,2
DN80	300	170	89	<h 2<="" td=""><td>200</td><td>184</td><td>160</td><td>8</td><td>M16</td><td>18</td><td>16,8</td></h>	200	184	160	8	M16	18	16,8
DN100	360	210	89	<h 2<="" td=""><td>235</td><td>220</td><td>190</td><td>8</td><td>M20</td><td>22</td><td>21,7</td></h>	235	220	190	8	M20	22	21,7
DN125	350	212	89	<h 2<="" td=""><td>270</td><td>260</td><td>220</td><td>8</td><td>M24</td><td>28</td><td>28,2</td></h>	270	260	220	8	M24	28	28,2

Pulse Transmitter

DATENBLATT

Druckverlust

Diagramm	q _p [m³/h]	Nennweite	k _v ³)	Q@0,25 bar [m³/h]
Α	0,6 & 1,5	DN15 & DN20	3,2	1,6
В	2,5 & 3,5 & 6	DN20 & DN25	13,4	6,7
С	10 & 15	DN40 & DN50	40	20
D	25	DN65	102	51
Е	40	DN80	179	90
F	60 & 100	DN100	373	187
G	100	DN125	316	158

 $^{^{3)}}$ q= $k_{y}x \sqrt{\Delta p}$

Diagramm

∆p ULTRAFLOW® 54

DATENBLATT

Installation

Einbauwinkel ULTRAFLOW® 54

 $\ensuremath{\mathsf{ULTRAFLOW}}\xspace\xs$

Bitte beachten!

Bei ULTRAFLOW® 54 muss das schwarze Elektronikgehäuse an der Seite sitzend eingebaut werden (bei waagerechter Installation)

ULTRAFLOW® 54 kann bis $\pm 45^{\circ}$ im Verhältnis zur Rohrachse gedreht werden.

Einlaufstrecke

ULTRAFLOW® 54 erfordert weder eine gerade Einlauf- noch Auslaufstrecke um die Messinstrumentrichtlinie (MID) 2004/22/EG, OIML R75:2002 und EN 1434:2007 einzuhalten. Nur bei kräftigen Durchflussstörungen vor dem Zähler ist eine gerade Einlaufstrecke notwendig. Wir empfehlen die Einhaltung der Richtlinien von CEN CR 13582.

Betriebsdruck

Um Kavitation vorzubeugen, muss der Betriebsdruck beim ULTRAFLOW® 54 min. 1,5 bar bei $\rm q_p$ und min. 2,5 bar bei $\rm q_s$ sein. Dies gilt Temperaturen bis zu ca. 80°C.

ULTRAFLOW® 54 darf keinem niedrigeren Druck als dem Umgebungsdruck (Vakuum) ausgesetzt werden.

DATENBLATT

Montagebeispiele

Durchflusssensor (Gewinde) mit angebautem MULTICAL®/Pulse Transmitter.

Montierte Verschraubungen sowie montierter kurzer Direktfühler in ULTRAFLOW® 54 (nur G³/₄B (R¹/₂) und G1B (R³/₄)).

MULTICAL®/Pulse Transmitter direkt auf ULTRAFLOW® 54 (Flansch) montiert.

DATENBLATT

Elektrische Verbindungen

Verbindung MULTICAL® und ULTRAFLOW® 54

ULTRAFLOW® 54	->	MULTICAL®
Blau (Masse)/11A	->	11
Rot (Versorgung)/9A	->	9
Gelb (Signal)/10A	->	10

Verbindung über Pulse Transmitter

3,65 VDC Versorgung 4)	->	Pulse Transmitter
Rot (+)	->	60
Schwarz (-)	->	61

⁴⁾ Batterie oder Versorgungsmodul.

ULTRAFLOW® 54	->	Pulse Tra	nsmitter	->	MULTICAL®
		Ein Aus			
Blau (Masse)/11A	->	11	11A	->	11
Rot (Versorgung)/9A	->	9	9A	->	9
Gelb (Signal)/10A	->	10	10A	->	10

Bei der Verwendung von langen Signalkabeln muss bei der Installation mit Umsicht gehandelt werden.

Signalleitungen müssen mit einem Abstand von mindestens 25 cm zum Schutz vor EMV zu anderen Elektroinstallationen installiert werden.

Beispiel des Anschlusses von ULTRAFLOW® 54 an MULTICAL®

ULTRAFLOW® 54 mit Pulse Transmitter und MULTICAL® 801

DATENBLATT

Bestellvarianten

Nachfolgend Art.-Nr. für ULTRAFLOW® 54.

Art-Nr.	5)		$\mathbf{q}_{_{\mathrm{p}}}$	\mathbf{q}_{i}	\mathbf{q}_{s}	Baugrösse	Länge	Impuls- wertigkeit	CCC (hochauf-	Materialien
			[m³/h]	[m³/h]	[m³/h]		[mm]	[imp./l]	lösend)	
65-5-	CAAA	-XXX	0,6	0,006	1,2	G ³ / ₄ B (R ¹ / ₂)	110	300	416 (484)	Messing
65-5-	CAAD	-XXX	0,6	0,006	1,2	G1B (R ³ / ₄)	130	300	416 (484)	Messing
65-5-	CDAA	-XXX	1,5	0,015	3	G ³ / ₄ B (R ¹ / ₂)	110	100	419 (407)	Messing
65-5-	CDAC	-XXX	1,5	0,015	3	G ³ / ₄ B (R ¹ / ₂)	165	100	419 (407)	Messing
65-5-	CDAD	-XXX	1,5	0,015	3	G1B (R ³ / ₄)	130	100	419 (407)	Messing
(65-5-	CDAE	-XXX)	1,5	0,015	3	G1B (R ³ / ₄)	165	100	419 (407)	Messing
65-5-	CDAF	-XXX	1,5	0,015	3	G1B (R ³ / ₄)	190	100	419 (407)	Messing
(65-5-	CDCA	-XXX)	1,5	0,015	3	DN20	190	100	419 (407)	Rostfreier Stahl
65-5-	CEAF	-XXX	2,5	0,025	5	G1B (R ³ / ₄)	190	60	498 (-)	Messing
65-5-	CECA	-XXX	2,5	0,025	5	DN20	190	60	498 (-)	Rostfreier Stahl
65-5-	CGAG	-XXX	3,5	0,035	7	G5/4B (R1)	260	50	451 (436)	Messing
65-5-	CGCB	-XXX	3,5	0,035	7	DN25	260	50	451 (436)	Rostfreier Stahl
65-5-	CHAG	-XXX	6	0,06	12	G5/4B (R1)	260	25	437 (438)	Messing
65-5-	CHCB	-XXX	6	0,06	12	DN25	260	25	437 (438)	Rostfreier Stahl
65-5-	CJAJ	-XXX	10	0,1	20	G2B (R1½)	300	15	478 (483)	Messing
65-5-	CJCD	-XXX	10	0,1	20	DN40	300	15	478 (483)	Rostfreier Stahl
65-5-	CKCE	-XXX	15	0,15	30	DN50	270	10	420 (485)	Rostfreier Stahl
65-5-	CLCG	-XXX	25	0,25	50	DN65	300	6	479 (-)	Rostfreier Stahl
65-5-	СМСН	-XXX	40	0,4	80	DN80	300	5	458 (486)	Rostfreier Stahl
65-5-	FACL	-XXX	60	0,6	120	DN100	360	2,5	470 (487)	Rostfreier Stahl
65-5-	FBCL	-XXX	100	1	200	DN100	360	1,5	480 (488)	Rostfreier Stahl
65-5-	FBCM	-XXX	100	1	200	DN125	350	1,5	480 (488)	Rostfreier Stahl

 $^{^{5)}}$ XXX-Kode für Endmontage, Zulassung etc. wird

 $eingetragen, \ da\ einige\ Gr\"{o}ssen\ nicht\ national\ zugelassen\ sind.$

(...) Ländervarianten

ULTRAFLOW® 54 wird standardmässig mit 2,5 m Anschlussleitung geliefert, ist aber auch mit 5 oder 10 m Leitung lieferbar.

Pulse Transmitter - Typ 66-99-603

 $\label{thm:condition} \mbox{Der Pulse Transmitter wird mit Batterie - oder Netzversorgung } \mbox{ 24 VAC oder 230 VAC geliefert.}$

Bei Bestellung bitte angeben!

Zubehör

Gewindeanschlussteile einschl. Dichtung (PN16)

Grösse	Nippel	Überwurfmutter	Typ-Nr.	2 Stück
DN15	R ¹ / ₂	G ³ / ₄	-	6561-323
DN20	$R^{3}/_{4}$	G1	-	6561-324
DN25	R1	G5/4	6561-325	-
DN40	R1½	G2	6561-315	-

Dichtungen für Flanschanschluss (PN25)

Grösse	Typ-Nr.
DN20	2210-147
DN25	2210-133
DN40	2210-132
DN50	2210-099
DN65	2210-141
DN80	2210-140
DN100	1150-142
DN125	1150-153

Dichtungen für Gewindeanschluss

Grösse (Überwurfmutter)	Typ-Nr.
G ³ / ₄	2210-061
G1	2210-062
G5/4	2210-063
G2	2210-065

DATENBLATT

- Für Durchflüsse von 150 m³/h bis zu 1000 m³/h
- Ultraschalldurchflusssensor
- Kompaktes Design
- Statischer Zähler, keine beweglichen Teile
- Großer Dynamikbereich
- Kein Verschleiß
- Große Genauigkeit
- Lange Lebensdauer

Anwendung

ULTRAFLOW® 54 ist ein statischer Durchflusssensor, der sich auf dem Ultraschallprinzip basiert. Er wird hauptsächlich als Volumenstromgeber für Energiezähler wie MULTICAL® verwendet. ULTRAFLOW® 54 ist für die Verwendung in Wärme- und Kälteinstallationen mit Wasser als das Wärmeleitmedium bestimmt.

ULTRAFLOW® 54 ist mit Ultraschallmessung und Mikroprozessortechnik aufgebaut. Alle Kreisläufe zur Berechnung der Durchflussmessung sind in einem Einplatinenaufbau gesammelt, was ein kompaktes und zweckmäßiges Design zur Folge hat, und wodurch gleichzeitig eine besonders hohe Messqualität und Zuverlässigkeit erzielt werden. Die Volumenmessung erfolgt mit bidirektionaler Ultraschalltechnik nach dem Laufzeitdifferenzverfahren, einem langzeitstabilen und genauen Messprinzip. Durch vier Ultraschallwandler wird das Ultraschallsignal sowohl mit als gegen die Durchflussrichtung gesendet. Das Ultraschallsignal, das mit der Durchflussrichtung läuft, wird erst den jenseitigen Wandler erreichen, und der Zeitunterschied zwischen den beiden Signalen kann hiernach auf eine Durchflussgeschwindigkeit und damit auch auf ein Volumen umgerechnet werden.

ULTRAFLOW® 54 ist an ein MULTICAL® Rechenwerk mit einem Dreileitersignalkabel anzuschließen, der als Signalgeber an das Rechenwerk sowie als Versorgung für den Durchflusssensor aus dem Rechenwerk dient. Ein Signal, das dem Durchfluss oder genauer gesagt der Anzahl Impulse entspricht, wird abgegeben, das proportional mit der durchfließenden Wassermenge ist.

ULTRAFLOW® 54 ist mit interner Versorgung erhältlich, z.B. wenn der Abstand zwischen MULTICAL® und ULTRAFLOW® 54 10 m oder mehr beträgt.

Bei der Verwendung von ULTRAFLOW® 54 zusammen mit anderer Ausrüstung (z.B. Rechenwerken anderer Fabrikate), muss der Zähler mit einem galvanisch getrennten Ausgangsmodul und einer eigenen Versorgung ausgestattet sein

Verzeichnis

Zulassungen	3
Technische Daten	3
Werkstoffbezeichnungen	5
Zählertypen	5
Maßskizzen	6
Druckverlust	7
Druckverlustkurve	7
Installation	8
Gerade Einlaufstrecke ULTRAFLOW® 54	9
Betriebsdruck	9
Anschluss an Rechenwerk	10
Typennummern für ULTRAFLOW® 54 für MULTICAL®	11
Typennummern für separaten ULTRAFLOW® 54	11
Zusammenstellung der Typennummern für separaten ULTRAFLOW® 54	12
Typennummern für Ausgangsmodul und Versorgungsmodul	12
Programmierungsvarianten und Impulsdauer	13
Zubehör	14

Zulassungen

Messgeräterichtlinie (MID)

ULTRAFLOW® 54 wird mit der CE-Kennzeichnung gemäß MID (2004/22/EG) geliefert.

Die Zertifikate haben die folgenden Nummern:

B-Modul DK-0200-MI004-008
D-Modul DK-0200-MIQA-001

CE-Kennzeichnung

ULTRAFLOW® 54 ist den folgenden Richtlinien gemäß gekennzeichnet:

EMC-Richtlinie 2004/108/EG

LV-Richtlinie 2006/95/EG (versehen mit 230 VAC Stromversorgung)

PE-Richtlinie 97/23/EG (DN150...DN250) Kategorie II

Technische Daten

Elektrische Daten

Versorgungsspannung 3,6 VDC ± 0,1 VDC

Versorgung, galvanisch gekoppeltes

Ausgangsmodul (Y=1) Versorgung über MULTICAL®

Versorgung, galvanisch getrenntes

Ausgangsmodul (Y=2) 1)

Netzversorgung 230 VAC +15/-30%, 50/50 Hz 24 VAC ±50%, 50/50 Hz

- Leistungsverbrauch < 1 W

- Backup Eingebauter Supercap sichert den Betrieb bei kurzfristigen Netzausfällen

Versorgung, galvanisch

getrenntes Ausgangsmodul (Y=3)

Batterie 3,65 VDC, D-Zelle Lithium
 Austauschintervall 6 Jahre @ t_{BAT}<30 °C

- Netzversorgung 230 VAC +15/-30%, 50/50 Hz 24 VAC ±50%, 50/50 Hz

- Leistungsverbrauch < 1 W

- Backup Eingebauter Supercap sichert den Betrieb bei kurzfristigen Netzausfällen

Länge von Signalkabel, Durchflusssensor-Elektronikbox – galvanisch gekoppeltes

Ausgangsmodul (Y=1) Max. 10 m (über Rechenwerk versorgt)

- galvanisch getrenntes

Ausgangsmodul (Y=2 und Y=3) Abhängig vom Rechenwerk (Verwendung von eigener Versorgung)

EMC-Daten Erfüllt DS/EN 1434:2007 Klasse C, MID E1 und E2

1) Es gibt die Möglichkeit, eine Batterie-Versorgung mit Ausgangsmodul (Y=2) zu verwenden, zum Beispiel als temporäre

Technische Daten

Mechanische Daten

Messtechnische Klasse 2 oder 3

Umweltklasse Erfüllt DS/EN 1434 Klasse C
Umgebungstemperatur 5...55 °C (Innentemperatur)

Schutzart IP67

Feuchte 93% RF nicht kondensierend

Mechanische Umgebung MID M1 und M2

Mediumtemperatur 2...150 °C (Wärme-, Wärme-/Kältezähler)

2...50 °C (Kältezähler)

Bei Mediumtemperaturen über 90 °C ($T_{med} > 90$ °C) oder einer Mediumtemperatur, die mehr als 5 °C niedriger als die Umgebungstemperatur ist ($T_{med} < T_{umg}$ - 5 °C), muss die Elektronikbox wandmontiert oder mit dem mitgelieferten Abstandhalter montiert werden

Lagertemp. leerer Zähler -25...60 °C

Druckstufe PN25

Nenndurchfluss q _p	Nom. diameter	Impulswertigkeit 1)	Dynamikbereich		Durchfluss @125 Hz ²⁾	Δ p@q $_{p}$	Min. Cutoff
			q _i :q _p	$q_s:q_p$			
[m³/h]	[mm]	[imp./l]			[m³/h]	[bar]	[l/h]
150	DN150	1	1:100	2:1	450	0,02	300
250	DN150	0,6	1:100	2:1	750	0,055	500
400	DN150	0,4	1:100	2:1	1125	0,04	800
400	DN200	0,4	1:100	2:1	1125	0,01	800
400	DN250	0,4	1:100	2:1	1125	0,01	800
600	DN200	0,25	1:100	2:1	1800	0,022	1200
600	DN250	0,25	1:100	2:1	1800	0,022	1200
1000	DN250	0,15	1:100	2:1	3000	0,015	2000

 $^{^{\}mbox{\tiny 1)}}$ Impulswertigkeit. Geht aus dem ULTRAFLOW $^{\mbox{\tiny 8}}$ Aufkleber hervor.

²⁾ Sättigungsdurchfluss. Max. Impulsfrequenz 128 Hz wird bei höherem Durchfluss beibehalten.

Werkstoffbezeichnungen

Mediumberührte Teile

Gehäuse Edelstahl, W.Nr. 1.4307 Wandlerhalter Edelstahl, W.Nr. 1.4308

Wandler Titan
Packungen Faser

Elektronikbox

Boden Thermoplast, PC 10% GF
Deckel Thermoplast, PC 10% GF

Montagebeschlag, Abstandhalter

für Elektronikbox Thermoplast, PPS 40% GF

Signalkabel (optional für separate ULTRAFLOW® 54)

Silikonkabel (3 x 0,5 mm²)

Stromversorgungskabel 24/230 VAC (optional)

Kabel mit PVC-Mantel (2 x 0,75 mm²)

Zählertypen

Nenndurchluss q _p [m³/h]	Baugrößen						
150	DN150 x 500 mm						
250	DN150 x 500 mm						
400	DN150 x 500 mm	DN200 x 500 mm	DN250 x 600 mm				
600	DN200 x 500 mm	DN250 x 600 mm					
1000	DN250 x 600 mm						

Flansch EN 1092, PN25

DATENBLATT

Maßskizzen

Flansch EN 1092, PN25

Nenn- durchmesser	Nenndurch- fluss	L	D	k	B1		Bolzen			Gewicht ca.
[mm]	q _p [m³/h]	[mm]	[mm]	[mm]	[mm]	Anzahl	Gewinde [mm]	d ₂ [mm]	Länge C [mm]	[kg]
DN150	150 & 250	500	300	250	119	8	M24	26	650	37
DN150	400	500	300	250	140	8	M24	26	625	36
DN200	400 & 600	500	360	310	166	12	M24	26	570	49
DN250	400 & 600	600	425	370	166	12	M27	30	570	79
DN250	1000	600	425	370	194	12	M27	30	500	75

Flansch EN 1092, PN25

Nenn- durchmesser	Nenndurchfluss q _p	E
[mm]	[m³/h]	[mm]
DN150	150 & 250	282
DN150	400	303
DN200	400 & 600	329
DN250	400 & 600	329
DN250	1000	357

Druckverlust

Kurve	Nenndurchluss	Nenndurchmesser	k _v	Q@0,25 bar
	q _p [m³/h]	[mm]		[m³/h]
А	150 & 250	DN150	1060	530
В	400	DN150	2000	1000
С	400 & 600	DN200 & DN250	4040	2020
D	1000	DN250	8160	4080

Druckverlustkurve

DATENBLATT

Installation

Vor dem Einbau des Durchflusssensors sollte die Anlage durchgespült werden.

Die korrekte Platzierung des Durchflusssensors (Vor- oder Rücklauf) geht aus dem Aufkleber auf der Vorderseite von MUL-TICAL® hervor. Die Durchflussrichtung ist durch den Pfeil auf der Seite angegeben.

Beachten Sie bitte: ULTRAFLOW[®] 54 darf nur mittels der Hebeösen gehoben werden.

Druckstufe für ULTRAFLOW® 54: PN25.

Mediumtemp. ULTRAFLOW® 54: 2...150 °C/2...50 °C. Siehe Kennzeichnung auf dem Aufkleber.

Mechanische Umgebung: M1 und M2 (feste Installation mit minimaler Vibration bzw. feste Installation mit wesentlichem oder hohem Vibrationsniveau). Siehe Kennzeichnung auf dem Aufkleber.

Elektromagnetische Umgebung: E1 und E2 (Wohnungen/leichte Industrie bzw. Industrie). Siehe Kenn-zeichnung auf dem Aufkleber.

Die Signalkabel des Zählers sollen im Abstand von mindestens 25 cm zu anderen Installationen verlegt werden.

Klimatische Umwelt: Innenmontage in nicht kondensierender Umwelt.

Die Umgebungstemperatur muss im Bereich von 5...55 °C sein.

Wartung und Reparatur: Der Durchflusssensor ist separat verifiziert und darf deshalb vom Rechenwerk getrennt werden. Es ist erlaubt, die Versorgung zu ersetzen und die Versorgungsart zu ändern. Bei Batterieversorgung ist eine Lithiumbatterie mit

Stecker zu verwenden. Lithiumbatterien müs-sen richtig gehandhabt und entsorgt werden (siehe Dokument 5510-408 "Lithiumbatterien - Handhabung und Ent-sorgung"). Übrige Reparaturen erfordern nachfolgende Eichung in einem akkreditierten Labor.

Wenn ULTRAFLOW® 54 über ein galvanisch gekoppeltes Ausgangsmodul angeschlossen wird, darf der Durchflusssensor nur an ein MULTICAL® Rechenwerk angeschlossen werden.

Sind andere Rechenwerkstypen angeschlossen, muss ULTRAF-LOW® 54 mit einem galvanisch getrennten Ausgangsmodul und einer eigenen Versorgung ausgestattet sein

Beachten Sie bitte: Überprüfen Sie, ob die Impulszahl für den Durchflusssensor und das Rechenwerk gleich ist.

Der Stahlschlauch zwischen Durchflusssensorgehäuse und Elektronikbox darf nicht demontiert werden.

Bei Mediumtemperaturen über 90 °C ($T_{\rm med} > 90$ °C) oder einer Mediumtemperatur von mehr als 5 °C unter der Umgebungstemperatur ($T_{\rm med} < T_{\rm umg}$ - 5 °C), muss die Elektronikbox des Durchflusssensors mit dem mitgelieferten Abstandhalter montiert werden. Als Alternative kann die Elektronikbox mit einem Mindestabstand von 170 mm zum Zähler wandmontiert werden.

Um Kavitation vorzubeugen, muss der Betriebsdruck beim ULTRAFLOW® 54 mindestens 1,5 bar bei $\rm q_s$ und min. 2,5 bar bei $\rm q_s$ sein. Dies gilt bei Temperaturen bis zu ca. 80 °C.

Nach der Montage können die Durchflussventile geöffnet werden. Das Vorlaufventil wird zuerst geöffnet.

Einbauwinkel für ULTRAFLOW® 54

ULTRAFLOW® 54 darf waagerecht, senkrecht oder schräg in allen Winkeln dazwischen eingebaut werden.

ULTRAFLOW® 54 wird typisch waagerecht mittels der senkrecht orientierten Hebeösen installiert. Die Ultraschallabdrücke im Durchflusssensorrohr werden dann vertikal liegen, was im Verhältnis zu einer eventuellen Schichtung im Medium optimal ist.

Gerade Einlaufstrecke ULTRAFLOW® 54

ULTRAFLOW® 54 erfordert weder eine gerade Einlauf- noch Auslaufstrecke, um die Messinstrumentrichtlinie (MID) 2004/22/ EEC und EN 1434:2007 einzuhalten. Nur bei kräftigen Durchflussstörungen vor dem Zähler ist eine gerade Einlaufstrecke notwendig. Wir empfehlen die Einhaltung der Richtlinien von CEN CR 13582.

Eine optimale Platzierung kann durch Berücksichtigung der Installationsmethoden unten erzielt werden.

- A. Empfohlene Platzierung des Durchflusssensors.
- B. Empfohlene Platzierung des Durchflusssensors.
- C. Nicht empfohlene Platzierung wegen Gefahr der Luftansammlungen.
- D. Annehmbar in geschlossenen Systemen.
 Unannehmbar in offenen Systemen wegen mögliches Luftaufbaus im System.
- E. Ein Durchflusssensor sollte nicht unmittelbar nach einem Ventil platziert werden, abgesehen von Absperrhähnen (Kugelventiltyp), die völlig offen sein müssen, wenn sie nicht zum Absperren verwendet werden.
- F. Ein Durchflusssensor darf nie auf der Saugseite von einer Pumpe platziert werden.
- G. Ein Durchflusssensor sollte nicht nach einem U-Bogen in zwei Ebenen platziert werden.

Für allgemeine Informationen über die Installation, siehe evtl. DIN-Fachbericht 85, Installation von Wärmezählern – Richtlinie für Auswahl, Installation und Betrieb von Wärmezählern; Deutsche Fassung CR 13582.

Betriebsdruck

Um Kavitation vorzubeugen, muss der Betriebsdruck beim ULTRAFLOW® 54 mindestens 1,5 bar bei q_p und mindestens 2,5 bar bei q_s sein. Dies gilt bei Temperaturen bis zu ca. 80°C.

DATENBLATT

Anschluss an Rechenwerk

ULTRAFLOW® 54 und MULTICAL®, galvanisch gekoppelt

Wenn ULTRAFLOW® 54 und MULTICAL® über ein Ausgangsmodul (Y=1) angeschlossen werden, ist ULTRAFLOW® 54 mit MULTICAL® galvanisch gekoppelt und wird hierdurch über das Signalkabel (Kabellänge bis zu 10 m) versorgt.

Die Batterielebensdauer für z.B. MULTICAL® 602 beträgt ca. 10 Jahre, abhängig von der eventuellen Datenkommunikation mit dem Rechenwerk.

NB: <u>Kein</u> Versorgungsmodul und keine Batterie dürfen in ULTRAFLOW® 54 montiert werden.

ULTRAFLOW® 54	\rightarrow	MULTICAL®		
11	\rightarrow	11	GND	(Blau)
9	\rightarrow	9	+ 3,6 V	(Rot)
10	\rightarrow	10	TT.	(Gelb)

ULTRAFLOW® 54 und MULTICAL®, galvanisch getrennt

Wenn ULTRAFLOW® 54 und MULTICAL® über ein Ausgangsmodul (Y=2 oder 3) angeschlossen werden, ist

ULTRAFLOW® 54 von MULTICAL® galvanisch getrennt.

NB: Durchflussinformationen können nicht ausgelesen werden.

Dreileiteranschluss,

MULTICAL® 602/801 über Ausgangsmodul (Y=2 oder 3). Kabellänge bis zu 25 Meter.

Zweileiteranschluss, MULTICAL® 801 über Ausgangsmodul (Y=2). Kabellänge bis zu 100 Meter.

Zweileiteranschluss, MULTICAL® 602-D über Ausgangsmodul (Y=2) und externe 24 VDC Versorgung. Kabellänge bis zu 100 Meter.

Bei der Verwendung von langen Signalkabeln muss bei der Installation mit Umsicht gehandelt werden. Signalkabel müssen mit mindestens 25 cm Respektabstand zu übrigen Kabeln aus Rücksicht auf EMC installiert werden.

Typennummern für ULTRAFLOW® 54 für MULTICAL®

Typennummer	Nenn- durchfluss q _p	Mindest- durchfluss q _i	Maximaler Durchfluss q _s	Anschluss	PN	Länge	Impuls- wertig- keit	ccc	Material Durchflusssensor- gehäuse
	[m³/h]	[m³/h]	[m³/h]	[mm]	[bar]	[mm]	[imp./l]		
65-5-FCCN-XXX	150	1,5	300	DN150	25	500	1	447 (489)	Edelstahl
65-5-FDCN-XXX	250	2,5	500	DN150	25	500	0,6	481	Edelstahl
65-5-FECN-XXX	400	4,0	800	DN150	25	500	0,4	491	Edelstahl
65-5-FECP-XXX	400	4,0	800	DN200	25	500	0,4	491	Edelstahl
65-5-FECR-XXX	400	4,0	800	DN250	25	600	0,4	491	Edelstahl
65-5-FFCP-XXX	600	6,0	1200	DN200	25	500	0,25	492	Edelstahl
65-5-FFCR-XXX	600	6,0	1200	DN250	25	600	0,25	492	Edelstahl
65-5-FGCR-XXX	1000	10,0	2000	DN250	25	600	0,15	493	Edelstahl

xxx, Code für Kennzeichnung und Endmontage

Typennummern für separaten ULTRAFLOW® 54

Typennumme	r		Nenndurch- fluss q _p	Mindest- durchfluss q _i	Maximaler Durchfluss q _s	Anschluss	PN	Länge	Material Durchflusssensor- gehäuse
			[m³/h]	[m³/h]	[m³/h]	[mm]	[bar]	[mm]	
65-5-FCCN	-YZ	-XXX	150	1,5	300	DN150	25	500	Edelstahl
65-5-FDCN	-YZ	-XXX	250	2,5	500	DN150	25	500	Edelstahl
65-5-FECN	-YZ	-XXX	400	4,0	800	DN150	25	500	Edelstahl
65-5-FECP	-YZ	-XXX	400	4,0	800	DN200	25	500	Edelstahl
65-5-FECR	-YZ	-XXX	400	4,0	800	DN250	25	600	Edelstahl
65-5-FFCP	-YZ	-XXX	600	6,0	1200	DN200	25	500	Edelstahl
65-5-FFCR	-YZ	-XXX	600	6,0	1200	DN250	25	600	Edelstahl
65-5-FGCR	-YZ	-XXX	1000	10,0	2000	DN250	25	600	Edelstahl

xxx, Code für Kennzeichnung und Endmontage

Zusammenstellung der Typennummern für separaten ULTRAFLOW® 54

Außer den Basisvarianten müssen Ausgangsmodul (Y), Versorgungsmodul (Z) sowie Programmierung in Bezug auf Impulszahl (CC) und Impulsdauer (E) gewählt werden.

Die Variante mit galvanisch gekoppeltem Ausgangsmodul (Y=1) ist nur zusammen mit MULTICAL® anwendbar.

Die Variante mit galvanisch getrenntem Ausgangsmodul (Y=2 oder 3) ist in den folgenden Situationen anwendbar:

- 1. Anforderung an Kabellängen zwischen MULTICAL® und ULTRAFLOW® 54 von über 10 m.
- Als Durchflusssensor Nr. 2 in Verbindung mit MULTICAL[®]. Wenn zwei Durchflusssensoren zusammen mit MULTICAL[®] verwendet werden, muss einer von ihnen mit galvanisch getrenntem Ausgangsmodul (Y=2 oder 3) sein.
- Zusammen mit sonstiger Ausrüstung/Drittanbieter-Rechenwerken.

Beachten Sie bitte: Durchflussinformationen können nicht über ein Ausgangsmodul mit galvanischer Trennung ausgelesen werden.

Typennummern für Ausgangsmodul und Versorgungsmodul

Übersicht über Typennummern für Ausgangsmodul (Y) und Versorgungsmodul (Z) für separaten ULTRAFLOW® 54

Υ	Ausgangsmodul	Zugehöriges Versorgungsmodul
1	Galvanisch gekoppeltes Modul	0 (wird über MULTICAL® versorgt)
2	Galvanisch getrenntes Modul	0, 7, 8
3	Galvanisch getrenntes Modul, "Low power"	0, 2, 7, 8

Z	Versorgungsmodul	Zugehöriges Ausgangsmodul
0	Keine Versorgung	1, 2, 3
2	Batterie, D-Zelle	3
7	230 VAC Versorgungsmodul	2, 3
8	24 VAC Versorgungsmodul	2, 3

Programmierungsvarianten und Impulsdauer

Übersicht über Programmierungsvarianten für Impulszahl (CC) und Impulsdauer (E) für separaten ULTRAFLOW® 54.

q_{p}	Impulswertigkeit			Impulsdauer				
[m³/h]	[imp./l]	[l/puls]	СС	[ms] (E=1)	[ms] (E=4)	[ms] (E=5)	[ms] (E=6)	
150	1		33	3,9	-	-	-	Standard
150		10	34	-	20	-	-	
150		25	64	-	20	-	-	
150		100	35	-	20	50	100	
150		250	65	-	20	50	100	
150		1000	36	-	20	50	100	
150		2500	66	-	20	50	100	
250	0,6		43	3,9	-	-	-	Standard
250		10	34	-	20	-	-	
250		25	64	-	20	-	-	
250		100	35	-	20	50	100	
250		250	65	-	20	50	100	
250		1000	36	-	20	50	100	
250		2500	66	-	20	50	100	
400	0,4		63	3,9	-	-	-	Standard
400		100	35	-	20	50	-	
400		250	65	-	20	50	100	
400		1000	36	-	20	50	100	
400		2500	66	-	20	50	100	
600	0,25		14	3,9	-	-	-	Standard
600		100	35	-	20	50	-	
600		250	65	-	20	50	-	
600		1000	36	-	20	50	100	
600		2500	66	-	20	50	100	
1000	0,15		24	3,9	-	-	-	Standard
1000	(0,25)	4	14	3,9	-	-	-	*)
1000		100	35	-	20	50	-	
1000		250	65	-	20	50	-	
1000		1000	36	-	20	50	100	
1000		2500	66	-	20	50	100	

^{*)} Ersatzteil für ULTRAFLOW® Typ 65-S/R/T q_n 1.000. Konfiguriert auf 65-5-FGCR. Keine Info über den Durchfluss.

Zubehör

Beschreibung	Typennummer						
Flanschpackungen (PN25)							
DN150 (1 Stck.)	1150-140						
DN200 (1 Stck.)	1150-139						
DN250 (1 Stck.)	1150-141						
Kurzer Abstandhalter	6561-332						
Versorgung							
D-Zelle Lithiumbatterie mit zweipoligem Stecker	65000000-2000						
230 VAC Versorgungsmodul	65000000-7000						
24 VAC Versorgungsmodul	65000000-8000						

Kabel

ULTRAFLOW® 54 DN150-250 mit MULTICAL® ist mit 2,5 m, optional 5 bzw. 10 m Signalkabel lieferbar. Das Kabel ist in der Elektronikbox von ULTRAFLOW® 54 und in MULTICAL® 6xx montiert.

Wird ULTRAFLOW® 54 zusammen mit MULTICAL® 8xx bestellt, wird das Rechenwerk separat geliefert – das Signalkabel ist deshalb nur in der ULTRAFLOW® Elektronikbox montiert.

ULTRAFLOW® 54 DN150-250, bestellt als separater Durchflusssensor, ist optional mit 2,5; 5 oder 10 m Signalkabel lieferbar. Das Kabel ist in der Elektronikbox von ULTRAFLOW® 54 montiert.

Wählt man das 24/230 VAC Versorgungsmodul, ist der Zähler optional mit Versorgungskabel lieferbar. Das Kabel ist vom Werk aus in der Elektronikbox des Zählers montiert.