Probability Exam Review Sheet

Revised: April 17, 2019

1 Sets and sigma algebras

•

$$\limsup_{n \to \infty} A_n =$$

• Three defining properties of a σ -algebra:

- (i)
- (ii)
- (iii)

• For $A \subset B$, we have that $\mathbb{P}(B \setminus A) =$ since $\mathbb{P}(B) =$

• Fatou's lemma for probabilities:

2 Independence and characterizations

• Independence characterization: $\mathbb{P}(A \cap B) =$

- Independence proof: $\mathbb{P}\left(A^{C} \cap B\right) = \mathbb{P}\left(B \setminus A\right) = \mathbb{P}\left(B\right) \mathbb{P}\left(A \cap B\right) = \dots$
- Kolmogorov's 0 1 Law:
 - (i)
 - (ii)
- The Borel-Cantelli lemma:
 - (i)
 - (ii)
- If X_1, \ldots, X_n are pairwise orthogonal, then $\operatorname{Var}(a_1X_1 + \cdots + a_nX_n) =$

3 Common distributions and their properties

- If $X \sim \text{Bernoulli}(p)$, then E[X] =and Var[X] =.
- If $X_i \sim \text{Bernoulli}(p)$, then $E[X_1 + \cdots + X_n] =$ and $\text{Var}[X_1 + \cdots + X_n] =$.
- If $X \sim \text{Binomial}(n, p)$, then E[X] = and Var[X] = .

- If $X \sim \text{Poisson}(\lambda)$, then E[X] = and $\text{Var}[X] = E[X^2] E[X]^2 =$
- If $X_i \sim N(\mu_i, \sigma_i^2)$, then $Y := \sum_{i=1}^n X_i \sim$
- If $X_1 \sim N(0,1)$, then $Z_n := X_1 + \cdots + X_n$ has the same distribution as

4 Expectation and uniform integrability

- If $X := \chi_A$, then E[X] =
- Fatou's lemma for expectation:
- DCT for expectation:
- Markov's inequality (and its proof):
- Chebyshev's inequality:
- Jensen's inequality for expectation:
- The generalized Chebyshev inequality:
- $(X_i)_{i\in\mathcal{I}}$ is a uniformly integrable sequence if

5 Characteristic functions of a random variable

- The characteristic function of a random variable X is defined as $\phi_X(t) =$ which is also given by the Fourier transformation integral $\phi_X(t) =$
- The characteristic function $\phi_X(t)$ is a ______ continuous function of t.
- If Y := aX + b for $a, b \in \mathbb{R}$, then $\phi_Y(t) =$
- If two random variables have the same characteristic function, then they have the
- If $X \sim N(0,1)$ and $Y \sim N(\mu, \sigma^2)$, then Y has the same distribution as and $\phi_Y(t) =$
- If the characteristic functions of X_n converge pointwise to that of X, then
- If X, Y are independent, then $\phi_{X+Y}(t) =$
- If $E[|X|^k] < \infty$, then $\phi_X(t)$ has k continuous derivatives, and for all $0 \le j \le k$, $\phi^{(j)}(0) =$

6 Modes of convergence

- Definition of convergence everywhere (pointwise):
- Definition of almost sure convergence:
- $X_n \xrightarrow{a.s} X \iff$ An important corollary of this is that:
- Convergence in probability definition:
- Definition of convergence in the mean (L^p convergence):
- Definition of weak convergence (convergence in distribution):
- Flowchart of implications (convergence hierarchy):

- Proof that almost everywhere convergence implies convergence of a subsequence:
- Hölder's inequality:
- Cauchy-Schwarz inequality:
- Dual (conjugate) exponents:

7 Laws of large numbers and the central limit theorem

- State the WLLN:
- If (X_i) are independent, $E[X_i] = 0$, and $\sup_{i \ge 1} E[X_i^{2k}] < \infty$, then $S_n \xrightarrow{\mathbb{P}, L^{2k}, a.s} 0$. Moreover, we can show that $\mathbb{P}\left(|\bar{S}_n| \ge \varepsilon\right) \le$
- State the SLLN:
- Real analysis fact: If $\sum_{n\geq 1} \frac{x_n}{n} < \infty$, then

- State Kolmogorov's convergence by variance criterions:
- State the CLT:

8 Large deviations and concentration inequalities

- Large deviations: If X_1, \ldots, X_n are iid with mean $\mu = 0$ and $E[e^{\alpha |X_1|}] < \infty$ for some $\alpha > 0$, then $\mathbb{P}(|S_n| > \varepsilon) \le$, where the rate function $I(\varepsilon) :=$
- Concentration inequality: If X_1, \dots, X_n are iid such that $a \leq X_i \leq b$ for all i, then $\mathbb{P}(|\bar{S}_n \mu| > \varepsilon) \leq$.
- Important derivation using Cauchy-Schwarz: $\left(\frac{1}{\sqrt{n}}\sum_{i=1}^{n}a_{i}\right)^{2}\leq$

9 Generalized normal distributions

- $E[Z^n] =$
- We write that $X:=(X_1,\ldots,X_d)\sim N(\mu,C)$ with mean $\mu\in\mathbb{R}^d$ and (symmetric) covariance matrix C if $f_X(x_1,\ldots,x_d)=$
- $X \sim N(\mu, C) \iff X =$ for $Z = (Z_1, \dots, Z_d), Z_i$ iid, and $Z_1 \sim N(0, 1)$.
- If $X \sim N(\mu, C)$, and A is a linear map, then $Y := AX \sim$
- If $X_i \sim N(\mu_i, C_i)$, then $\sum_{i=1}^n a_i X_i \sim$

10 Misc

• $E[X] = \lim_{\lambda \to 0}$