Cvičenia k SP- Markovove reťazce

Prosím odovzdať 14.10.2025 20:00.

1

Nájdite neredukovateľný MR a dva rozdielne stavy i a j také, že pre nejaké $n \in \mathbb{N}$ platí $f_{ij}^{(n)} < f_{ij}^{(n+1)}$.

2

Uvažujme nasledujúcu maticu prechodu kreditného ratingu dlhopisov.

Table 1: One-year transition probabilities matrix.

Initial	Ratings at year-end							
ratings	AAA	$\mathbf{A}\mathbf{A}$	Α	BBB	ВВ	В	CCC	Default
AAA	0.9366	0.0583	0.0040	0.0009	0.0002	0	0	0
AA	0.0066	0.9172	0.0694	0.0049	0.0006	0.0009	0.0002	0.0002
A	0.0007	0.0225	0.9176	0.0518	0.0049	0.0020	0.0001	0.0004
BBB	0.0003	0.0026	0.0483	0.8924	0.0444	0.0081	0.0016	0.0023
BB	0.0003	0.0006	0.0044	0.0666	0.8323	0.0746	0.0105	0.0107
В	0	0.0010	0.0032	0.0046	0.0572	0.8362	0.0384	0.0594
CCC	0.0015	0	0.0029	0.0088	0.0191	0.1028	0.6123	0.2526
Default	0	0	0	0	0	0	0	1.0000

Source: Standard & Poor's, January 2001

- (1) Klasifikujte stavy (rekurentné, prechodové).
- (2) Aká je pravdepodobnosť, že dlhopis s ratingom AAA skrachuje za dva roky?
- (3) Akým spôsobom by ste odhadli takúto maticu z historických dát?
- (4) Ak by matica prechodu bola každý rok táto istá. Z dlhodobého hľadiska: aká časť bondov by bola AAA a aká skrachovaná? Použitím týchto záverov, okomentujte tento matematický model.

Pomôcka:

```
data = c(0.9366, 0.0583, 0.0040, 0.0009, 0.0002, 0, 0, 0, 0.0066, 0.9172, 0.0694, 0.0049, 0.0006, 0.0009, 0.0002, 0.0002, 0.0007, 0.0225, 0.9176, 0.0518, 0.0049, 0.0020, 0.0001, 0.0004, 0.0003, 0.0026, 0.0483, 0.8924, 0.0444, 0.0081, 0.0016, 0.0023, 0.0003, 0.0006, 0.0044, 0.0666, 0.8323, 0.0746, 0.0105, 0.0107, 0, 0.0010, 0.0032, 0.0046, 0.0572, 0.8362, 0.0384, 0.0594, 0.0015, 0, 0.0029, 0.0088, 0.0191, 0.1028, 0.6123, 0.2526, 0, 0, 0, 0, 0, 0, 0, 1)

Prob = matrix(data,nrow = 8, ncol = 8, byrow = TRUE)
```

3

Uvažujme diskrétny MR so stavmi $\{1,2\}$ a s prechodovými pravdepodobnosťami:

$$p_{11} = a$$
, $p_{12} = 1 - a$, $p_{21} = 1$, $p_{22} = 0$.

kde $0 \le a \le 1$.

- (1) vypočítajte $p_{ij}^{(n)}$, pre všetky $i,j\in S$ a $n\in\mathbb{N}$ (2) klasifikujte každý stav ako rekurentný a tranzitívny
- (3) nájdite všetky stacionárne distribúcie

Môžete si pomôť svojím obľúbeným softvérom.