Load Balancing Systemtechnik

Alexander Kölbl & Thomas Taschner 5BHIT 27.01.2016

Inhaltsverzeichnis

1	Ein	leitung	1
	1.1	Wann und wozu verwendet man Load Balancing?	1
	1.2	Beispiel Website	2
	1.3	Notwendigkeit von Load Balancing	3
	1.4	Load Balancing Applikationen	4
	1.5	Konfiguration eines Load Balancers	5
2	Alg	orithmen zur Lastenverteilung	6
	2.1	Round-Robin	6
	2.2	Least Connections	6
	2.3	Weighted Distribution	6
	2.4	Response Time	7
	2.5	Server-Probe	8
	2.6	Kombiniert	8
	2.7	Server Load Thresholds	8
	2.8	Zufällig	8
	2.9	Gegenüberstellung	9
3	Net	working Grundlagen	9
	3.1	OSI Schichtenmodell	9
	3.2	Load Balancing auf verschiedenen Layern	10
	3.3	Paketfluss bei Load Balancing	13
	3.4	Health Checks	15
	3.5	Sicherheit	16
4	$\mathbf{U}\mathbf{R}$	L Switching	17

1 Einleitung

Load Balancing ist kein neues Konzept im Server- und Netzwerkbereich. Viele Produkte, wie z.B. Router die Netzwerkverkehr über verschiedene Netzwerk Ressourcen zum gleichen Ziel verteilen, können unterschiedliche Arten des Load Balancing durchführen. Im Gegensatz zum Router wird bei Server Load Balancing der Netzwerkverkehr über verschiedene Server Ressourcen verteilt. Anfangs wurden Load Balancer als reine Lastenverteiler verwendet, doch heute sind Load Balancer schon so weit entwickelt, dass sie zusätzliche Funktionen wie Healthchecks, Optimierung von Datenflüssen, etc. zur Verfügung stellen.

Im Webhostingbereich wird Load Balancing typischerweise für die Verteilung von http-Verkehr auf mehrere Server (Nodes), die als Web Front-End agieren, eingesetzt. Der Load Balancer beurteilt die Antwortzeiten und Auslastung der einzelnen Server und verteilt basierend auf dieser Beurteilung die Anfragen. Durch die Verteilung des Dienstes auf mehrere Server schützt man sich zusätzlich vor Hardwareausfall, da bei Ausfall eines Server Nodes der Netzwerkverkehr einfach über andere Nodes erfolgen kann. Das primäre Ziel ist es, den Netzwerkverkehr bei hoher Nachfrage auf alle vorhandenen Nodes aufzuteilen, um die bestmögliche Performance zu gewährleisten. Der User weiß normalerweise nichts über vorhandene Backend- bzw. Backupserver, für ihn scheint es so als ob nur ein Server hinter einem Dienst steht. [1]

1.1 Wann und wozu verwendet man Load Balancing?

• Failover und Redundanz

Ein wesentliches Einsatzgebiet des Load Balancing ist die Ausfallsicherheit und die daraus resultierenden erhöhte Uptime (Betriebszeit). Durch Verwendung von mehreren identischen Nodes kann der Netzwerkverkehr im Falle eines Hardware oder Softwarefehlers umverteilt werden und die Website, Dienst, etc. bleibt verfügbar.

• Wachsende Nachfrage und Verfügbarkeit

Falls die Website, Dienst, etc. so beliebt wird, dass ein einziger Server die Masse an Anfragen nicht in absehbarer Zeit abarbeiten kann (was zu z.B. lange Wartezeit bei Seitenaufbau führt), sollte man ebenfalls Load Balancing einsetzten. Dadurch können die Anfragen auf mehrere Server verteilt werden und so ist die Verfügbarkeit wieder gegeben. [1]

1.2 Beispiel Website

Abbildung 1: Load Balancing Beispiel [2]

Anhand dieses kleinen Beispiels einer Website möchte ich die zwei oben genannten Haupteinsatzgründe für Load Balancing veranschaulichen.

Mögliche Probleme bei einer Website: zu hohe Anzahl an Anfragen für Webserver (falls die Seite nur von einem Webserver gehostet wird), Datenbank- bzw. Webserver fällt aus.

Lösung durch Load Balancing: Einsatz von mehreren Servern. Um für eine hohe Anzahl an Anfragen gerüstet zu sein, muss die Website über mehrere Webserver verfügbar sein. Da eine Domain nur einem physikalischen Server zugewiesen werden kann, wird der Load Balancer zwischen dem Internet und den Webservern geschaltet und bekommt die öffentliche Domain zugewiesen. Wenn mehrere User die Website abrufen, beurteilt der Load Balancer die Antwortzeiten und Auslastung der einzelnen Webserver und verteilt die Anfragen so, dass die bestmögliche Performance erreicht wird. Außerdem wird so auch die Ausfallsicherheit der Website gewährleistet, da die Website jetzt über mehrere Webserver gehostet wird. Zusätzlich wird in diesem Beispiel ein Backupserver der Datenbank erstellt. Falls der Datenbankserver ausfällt oder ausgetauscht werden muss, springt einfach der Backupserver ein.

1.3 Notwendigkeit von Load Balancing

Das primäre Ziel von Load Balancing ist es den Netzwerkverkehr bei hoher Nachfrage auf alle vorhandenen Nodes aufzuteilen, um die bestmögliche Performance zu gewährleisten. Netzwerke und Server sind die Hauptgründe, warum Load Balancing notwendig ist. In der heutigen Zeit, ist das Internet ein wichtiger Bestandteil für jedes Unternehmens ist (um Netzwerk zwischen Firma, Lieferanten, Kunden, etc. zu erzeugen), bei dem es auch um viel Geld geht. Firmen, vor allem im e-commerce Bereich (elektronischer Handel), können es sich nicht leisten, wenn ihr Netzwerk entweder sehr langsam ist bzw. ausfällt. Um z.B. eine Website für elektronischen Handel zu erstellen, muss man Faktoren wie Server, Switches, Firewalls, etc. berücksichtigen. Durch das Verwenden von mehreren Servern für so eine Website entstehen aber Herausforderungen in den Bereichen Skalierbarkeit, Verwaltbarkeit und Verfügbarkeit. Load Balancing löst zusätzlich viele dieser Probleme.

Skalierbarkeit

Skalierbarkeit ist kein neues Problem. Früher ist eine Applikation auf einem Server gelaufen. Falls dieser Server für die Applikation nicht mehr ausreichend war, wurde dieser entweder verbessert oder durch einen performanteren Server ersetzt. Durch Load Balancing ist es jedoch möglich, die Applikation auf mehreren Servern zu verteilen. Durch die mehreren Server ist es möglich, sämtliche Anfragen zu verteilen um bestmögliche Performance zu gewährleisten. Load Balancer verwenden Scheduling Algorithmen um die Anfragen zu verteilen

Verwaltbarkeit

Wenn die Serverhardware verbessert oder das Betriebssystem aktualisiertet werden muss, muss der Server abgeschaltet werden. Man kann das natürlich in der Zeit machen, in der am wenigsten Bedarf an der Website/Dienst besteht (vermutlich in der Nacht), jedoch hat man trotzdem eine Ausfallzeit (Downtime). Doch manche Firmen können sich überhaupt keine Ausfallzeit leisten oder haben konstanten Bedarf an ihrem Service. Ein Load Balancer kann Server, die für Wartungszwecke offline gestellt werden müssen, ohne Downtime ausschalten. Das wird gewährleistet, in dem der Load Balancer keine weiteren Anfragen an diesen Server weiterleitet und wartet bis sämtliche bestehende Anfragen abgearbeitet wurden. Dann kann der Server offline gestellt werden. Sämtliche Anfragen werden auf die anderen Server weitergeleitet. Zusätzlich helfen Load Balancer beim Verwalten von Content Managementsystem, da es bei solchen Systemen ebenfalls sein kann, das ein Server nicht ausreicht.

Verfügbarkeit

Der Load Balancer kontrolliert kontinuierlich die Verfügbarkeit aller Server und laufenden Applikationen. Wenn der Healthcheck einer dieser Server oder Applikationen scheitert, sendet der Load Balancer keine Anfragen mehr zu diesem Server. [3]

1.4 Load Balancing Applikationen

"With the advent of the Internet, the network now occupies center stage. As the Internet connects the world and the intranet becomes the operational backbone for businesses, the IT infrastructure can be thought of as two types of equipment: computers that function as a client and/or a server, and switches/routers that connect the The Network Environment computers. Conceptually, load balancers are the bridge between the servers and the network, as shown in the graphic below. On one hand, load balancers understand many higher layer protocols, so they can communicate with servers intelligently. On the other, load balancers understand networking protocols, so they can integrate with networks effectively" [3]

Abbildung 2: Load Balancing einer Serverfarm [3]

Load Balancer haben zumindest vier Applikationen:

- Server Load Balancing
- Global Server Load Balancing
- Firewall Load Balancing
- Transparent Cache Switching

Server Load Balancing: Verteilung der Anfragen auf mehrere Server um die Auslastung gleichmäßig zu verteilen und um sich vor Serverausfall zu schützen

Global Server Load Balancing: Verteilung der User zu verschiedenen Data Center, die aus Serverfarmen bestehen für schnelleren Rückmeldung und als Schutz vor Data Center Ausfällen.

Firewall Load Balancing: Verteilung des Netzwerkverkehrs auf mehrere Firewalls um vor Firewallausfall geschützt zu sein.

Transparent Cache Switching: lenkt den Netzwerkverkehr zu Caches um den Antwortzeit zu verringern. [2]

Load Balancing Produkte

Load Balancing Produkte können in 3 Kategorien unterteilt werden: Softwareprodukte, Switches und Geräte

Software Load Balancing Produkte laufen direkt auf den Load-Balancer Servern. Die Software führen die Algorithmen aus, welche für die Lastverteilung zuständig sind. Beispiele für Software Load Balancing Produkte sind z.B. Incapsula, NGINIX und BalanceNG

Switches haben ihre normalen Funktionalitäten auf OSI Layer 2/3, doch können zusätzlich Load Balancen auf Layer 4-7. Das wird durch zusätzliche Hardware oder Software erreicht.

Geräte sind Blackbox Produkte, welche die notwendige Hardware und Software für Web Switching besitzen. Das könnte z.B. ein einfacher Computer oder Server mit speziellem Betriebssystem und spezieller Software sein. [3]

1.5 Konfiguration eines Load Balancers

Abbildung 3: Load Balancing Konfiguration [3]

- 1. virtuelle IP (VIP) des Load Balancers definieren: VIP = 123.122.121.1
- 2. Applikationen definieren, die Load Balancing benötigen: Web, FTP und SMTP
- 3. Bei jeder Applikation muss die virtuelle IP mit jedem realen Server verbunden werden, auf dem diese Applikation läuft
- 4. Arten der Healthchecks am Load Balancer konfigurieren, nach denen der Zustand der Server bestimmt werden soll
- 5. Sheduling Algorithmus konfigurieren, nach dem die Last verteilt wird [3]

2 Algorithmen zur Lastenverteilung

Load Balancer können verschiedene Algorithmen verwenden, um Lasten jedem Server in einer Serverfarm zuzuweisen. Die folgenden Algorithmen können hierzu verwendet werden.

2.1 Round-Robin

Round-Robin ist das einfachste Verfahren zur Lastenverteilung. Ein Load Balancer weist jedem Server der Reihe nach eine Verbindung zu. Dieses Verfahren kann eine gleichmäßige Verteilung der Last nicht sicherstellen, da jede Verbindung über unterschiedliche lange Zeiträume bestehen kann. Infolgedessen können manche Server mehr gleichzeitig aktive Verbindungen haben, als andere. [3] Da bei diesem Algorithmus dieser Aspekt nicht bedacht wird, kann eine schlechte Lastverteilung auftreten. Hardwaretechnisch schwächer ausgestattete Handware könnte so mit Anfragen überladen werden.

Da Round-Robin eine sehr einfache Methode zur Lastverteilung ist, werden sehr wenige Ressourcen seitens des Load Balancers benötigt. Infolgedessen ist der Algorithmus nur dann sehr effektiv, wenn der Lastverteilungsalgorithmus viel Rechenzeit benötigt. Soll beispielsweise aus 1000 Servern der nächstbeste Server ausgewählt werden, so würde dies bei anderen Algorithmen einen erhöhten Rechenaufwand seitens der Load Balancers bedeuten. Dieser Algorithmus würde sich besonders in Situation anbieten, in denen die Art, und daraus resultierende Last am Server, und Dauer der Anfrage in etwa gleich bleiben, da so eine gleichmäßige Verteilung gewährleistet werden kann. [3]

2.2 Least Connections

Jede neue Anfrage wird dem Server mit den geringsten gleichzeitig aktiv vorhandenen Verbindungen zugesandt. Der Load Balancer muss hierbei die Anzahl dieser Verbindungen jedes Servers jederzeit festhalten. Diese Methode ist eine der effektivsten und beliebtesten in verschiedenen Anwendungsbereichen, wie beispielsweise DNS oder dem Web. Der Hauptgrund hierfür sind das einfache Verstehen und Anwenden der Methode. [3]

Least Connections kann dann von Nutzen sein, wenn zwei oder mehr Server mit gleicher Ausstattung unterschiedlich stark belastet werden. Dies ließe sich beispielsweise auf eine unterschiedliche Dauer von Sessions der Benutzer zurückzuführen. [4]

2.3 Weighted Distribution

Da verschiedene Server hardwaretechnisch verschieden ausgestattet sein können, kann mithilfe dieser Methode eine Angabe der Leistung der einzelnen Server in Relation zueinander erfolgen, indem jedem Server eine gewisse Gewichtung zugewiesen wird. Der Load Balancer kann so beispielsweise bei einer durch einen Serveradministratoren festgelegten Gewichtung von 5-1 dem 1. Server 5 mal so viele Anfragen zukommen lassen, wie dem 2. Die Verteilung ist der Abbildung 4 zu entnehmen.

In der Praxis wird diese Methode in Kombination mit anderen Methoden, wie Least Connections oder Round-Robin angewandt. Sollen nun weitere Server hinzugefügt werden im Fall von Weighted Round-Robin die Anfragen wie gewohnt der Reihe nach gewichtet verteilt. Im Fall von Weighted Least Connections ist lediglich auf die Anzahl der aktuell verbundenen Clients und die Gewichtung

Abbildung 4: Weighted Distribution anhand von Weighted Round-Robin [4]

zu achten. Um eine gerechte Verteilung der Last zu gewährleisten, wird die Anzahl der aktiven Verbindungen durch die Gewichtung dividiert.

Diese Methode ist besonders dann geeignet, wenn bereits bestehende, womöglich leistungsschwächere Hardware mit leistungsstärkerer kombiniert werden soll. [3]

2.4 Response Time

In der Annahme, dass eine schnelle Reaktion eines Servers eine gute Performance zur Folge hat, wird die Reaktionszeit eines Servers vom Load Balancer gemessen und anhand dieser ein Server ausgewählt. Hierzu werden entweder HTTP GET oder TCP SYN (Synchronize) Anfragen versandt und die Zeit gemessen, die vergeht, bis eine HTTP GET Antwort oder TCP SYN ACK (Synchronize Acknowledge) von diesem Server zurückgekommen ist. [3]

Abbildung 5: Messen der Zeit, die der Server für eine Antwort benötigt [3]

Für eine effiziente Lastenverteilung muss diese Antwortzeit über einen längeren Zeitraum gemessen

werden, da die aktuellen Zeiten nicht mehr den Zeiten von vor beispielsweise einer Stunde entsprechen müssen. Der Load Balancer kann, basierend auf vergangenen, aber auch aktuellen Messungen, berechnen, welcher Server als Nächstes am Schnellsten antworten könnte.

Aufgrund der Komplexität dieser Methode, könnte diese Methode alleine nicht die beste Möglichkeit zur Lastenverteilung bieten. Der Algorithmus kann hingegen in Kombination mit anderen Load Balancing Methoden funktionieren. [3]

2.5 Server-Probe

Auf jedem Server rennt im Hintergrund ein Programm, welches die aktuelle Auslastung des Servers an den Load Balancer in regelmäßigen Zeitabständen weiterleitet. Auf diese Weise hat der Load Balancer stets Zugriff auf Daten, wie die aktuelle Auslastung der CPU, aber auch den verfügbaren Arbeits- und Festplattenspeicher. Ein wesentlicher Nachteil dieser Methode ist die Entwicklung und Installation von zusätzlicher Software, die mit der auf dem Server laufenden Applikation lauffähig sein muss, ohne die Anwendung selber zu beeinflussen. Es ist auch ungewiss, ob solche Messungen die genaue Serverauslastung dokumentieren, da es einen leistungstechnischen Flaschenhals auch an anderer Stelle geben kann, wie beispielsweise die Zugriffsgeschwindigkeit der Festplatte des Servers auf die Daten oder den Datendurchsatz der Netzwerkkarte. [3]

2.6 Kombiniert

Die Kombination von zwei oder mehreren Methoden kann eine besseres Erfassen der Serverlast ermöglichen. Hierzu können beispielsweise die Methoden Response Time und Least Connections zusammen verwendet werden. Die Verfahren können vom Load Balancer wieder mit entsprechender Gewichtung verwendet werden. [3]

2.7 Server Load Thresholds

Server haben die Tendenz dazu bis zu einem gewissen Punkt bzw. Schwellenwert leistungstechnisch gut zu funktionieren. Sollte dieser Schwellenwert überschritten werden, so wird dieser Server seine Daten aus dem Arbeitsspeicher auf der Festplatte auslagern, was einen signifikanten Einbruch in der Leistung des Servers zur Folge hat.

Um den Server vor weiteren neuen Zugriffen zu schützen (und ihn nicht noch weiter mit neuen Anfragen zu belasten) wird ein Schwellenwert seitens des Load Balancers festgelegt, der knapp unter

2.8 Zufällig

Der zu verwendende Server wird von einem Zufallszahlengenerator am Load Balancer festgelegt. Sollten nun viele Anfragen zustandekommen, so werden die Anfragen zufällig, aber gleichmäßig verteilt. Diese Methode kann besonders dann verwendet werden, wenn die Server eine gleiche oder sehr ähnliche Hardwarekonfiguration haben. [4]

Abbildung 6: Optimieren der Serverleistung [3]

2.9 Gegenüberstellung

3 Networking Grundlagen

3.1 OSI Schichtenmodell

Das OSI Schichtenmodell ist der Standard, der definiert wie unterschiedliche Geräte oder Computer miteinander kommunizieren können und bildet die Grundlage von Load Balancing. Jeder Layer kann mit demselben Layer (Peer) eines anderen Rechners kommunizieren. Zusätzlich kann der Layer mit den Layern direkt über und unter ihm Informationen austauschen. [3]

Abbildung 7: OSI Modell [?]

3.2 Load Balancing auf verschiedenen Layern

Layer-2 Load Balancing (auch als Link- oder Portaggregation bezeichnet) verbindet zwei oder mehrere Links zu einer leistungsfähigeren logischen Verknüpfung. Aggregierte Verknüpfungen stellen zusätzlich Redundanz und Fehlertoleranz, wenn jeder der einzelnen aggregierten Links einen unterschiedlichen physikalischen Pfad folgt.

Layer 4 Load Balancing ist für die Verteilung der Anfragen zu den Servern auf Transport Layer Ebene zuständig, dazu gehören die Transportprotokolle TCP, UDP und SCTP. Z.B. ein normaler Router sendet eintreffende Pakete einfach an die geeignete IP Adresse, doch ein Layer 4 Router verteilt die Anfragen der Clients, die nur die IP-Adresse eines Services wissen, an alle Server, auf denen der Service läuft, bestmöglich.

Das Konzept von Layer 7 (auch als Application-Level Load Balancing bezeichnet) ist die Lastenverteilung bezogen auf den Content-Typ (z.B. Scripts wie HTML, CSS, etc.) der Client-Anfrage. Geräte, die Layer 7 Load Balancing betreiben können, heißen Application Delivery Controllers (ADC). Da der Load Balancing Server weiß, was der Client für einen Content-Typ haben will, kann er abwägen, welcher der vorhanden Server am besten mit dieser Anfrage umgehen kann, da jeder Content-Typ spezielle Anforderungen an Hardware und Software hat. [5]

Abbildung 8: Konzept Layer 7 Load Balancing [3]

Layer 7 Switching

Layer 7 Switching (auch bezeichnet als Request oder Application Switching) verteilt Anfragen basierend auf Layer 7 Daten. Ein Layer 7 Switch ist für die Außenwelt ein Virtueller Server der Anfragen annimmt und diese Aufgrund von Richtlinien der Applikationen an die Server verteilt. Das heißt man kann die Server für spezielle Arten von Content optimieren, z.B. ein Server ist für Bilder optimiert und ein weiterer ist für Skriptsprachen optimiert. Im Unterschied zu Load Balancing muss nicht jeder Server alle Arten von Content zur Verfügung stellen, sondern kann sich auf eine Art von Content spezialisieren um die bestmögliche Performance zu erreichen. [5]

Abbildung 9: Layer 7 Switching [3]

Layer 7 Load Balancing

Verbindet man das Load Balancing Konzept von Layer 7 mit Layer 7 Switching so erhält man Layer 7 Load Balancing. Layer 7 Switching allein reicht nicht aus, da wenn ein Server ausfällt, ein Typ von Content nicht mehr zur Verfügung gestellt werden kann. Deswegen erstellt man Pools von Servern, die auf einen Typ von Content spezialisiert sind. So ist man vor Ausfällen geschützt.

Abbildung 10: Layer 7 Load Balancing [3]

Layer 7 Load Balancing erhöht die Effizienz der Applikationsinfrastruktur. Dadurch dass der ADC den Content-Typ der Anfrage weiß kann er diese an den Server weiterleiten, der am besten mit diesem Content umgehen kann aufgrund der Serverhardware. [5]

Abbildung 11: Layer 7 Load Balancing [3]

3.3 Paketfluss bei Load Balancing

Bevor man sich den Paketfluss bei Load Balancing anschaut, sollte man sich kurz in Erinnerung rufen, wie TCP funktioniert. Eine TCP Verbindung involviert einen sogenannten "Three-Way Handshake". Beispiel: Datenaustausch zwischen Client und Server. Zuerst sendet der Client ein SYN Paket zu dem Server (beinhaltet Source IP-Adresse, Source Portnummer, Ziel IP-Adresse und Ziel Portnummer). Wenn der Server dieses Paket erhält, sendet er eine SYN ACK an den Client. Der Client antwortet mit ACK, was bedeutet, dass der Verbindungsaufbau erfolgreich war. Jetzt können über diese Verbindung Daten zwischen Client und Server ausgetauscht werden. Jede TCP Verbindung ist durch Source IP-Adresse, Source Portnummer, Ziel IP-Adresse und Ziel Portnummer eindeutig identifizierbar. Wenn der Datenaustausch beendet ist sendet der Client ein FIN Paket und der Server antwortet mit einer FIN ACK. Dadurch wird die TCP Verbindung beendet. [3]

Abbildung 12: TCP Three-Way Handshake [3]

Abbildung 13: TCP Three-Way Handshake [3]

Paketfluss bei Load Blanancing anhand eines Beispiels (Load Balancer und zwei Webserver) Der Client erzeugt eine TCP Verbindung, sendet eine http-Anfrage, erhält eine Rückmeldung und schließt die TCP Verbindung. Wenn der Load Balancer die erste TCP SYN Anfrage bekommt, enthält diese folgende Informationen:

- 1. Source IP Addresse = Client IP Addresse
- 2. Source Port = Port Nummer, die vom Client benutzt wird für diese TCP Verbindung
- 3. Destination IP Addresse = virtuelle IP, welche die Server Farm repräsentiert
- 4. Destination Port = Standardport 80 für Webserver

Bevor dieses TCP SYN Paket erhalten wird, entscheidet der Load Balancer z.B. die Anfrage an Server RS2 weiterzuleiten. Damit der Server RS2 das Paket verarbeiten kann, muss die Destination IP Adresse die IP Adresse des Servers RS2 sein. Das heißt der Load Balancer ändert die virtuelle IP auf die IP Adresse des Servers RS2 bevor das Paket weitergeleitet wird. Wenn der User die Domain dieser Seite aufruft, macht der Browser eine DNS Anfrage um die virtuelle IP der Domain zu bekommen. Der Browser vom Client sendet ein TCP SYN Paket um eine neue TCP Verbindung zu erzeugen. Wenn der Load Balancer dieses TCP SYN Paket erhält identifiziert er dieses als Kandidat für Load Balancing (da das Paket eine virtuelle IP enthält). Da diese Verbindung neu ist und noch keine Einträge im Session Table vorhanden sind, identifiziert der Load Balancer die zwei Server RS1 und RS2 als mögliche Kandidaten für eine neue Verbindung. Aufgrund des ausgewählten Scheduling Algortihmus entscheidet sich der Load Balancer welcher Server besser geeignet ist. Nehmen wir in diesen Fall an das Server RS2 ausgewählt wurde. Sobald der Zielserver ausgewählt wurde, erzeugt der Load Balancer einen neuen Session Eintrag im Session Table und ändert die Destination IP- und MAC Adresse auf jene von Server RS2. Wenn RS2 sich mit TCP SYN ACK rückmeldet, erreicht das Paket den Load Balancer (Source IP von RS2, Destination IP von Client). Danach ersetzt der Load Balancer die IP Adresse von RS2 mit der virtuellen IP und leitet das Paket an den Router weiter und schließlich zum Client. Wenn die Verbindung mit FIN oder RESET beendet wird, löscht der Load Balancer den Session Eintrag aus dem Session Table. [3]

3.4 Health Checks

Health Checks sind notwendig, damit der Load Balancer nicht Anfragen an fehlerhafte Server versendet. Das kann auch bedeuten das der Server zwar verfügbar ist, jedoch aber die Applikation fehlerhaft ist oder das die Applikation korrupten Content zur Verfügung stellt. Load Balancer können diese Fehler erkennen und die Anfragen zu anderen funktionierenden Servern weiterleiten ohne manuelles Eingreifen des Administrators. Es gibt zwei Kategorien von Health Checks, nämlich die sogenannten in-band- und out-of-band checks. Bei in-band-checks kontrolliert der Load Balancer einfach den normalen Netzwerkverkehr um zu kontrollieren, ob der Server intakt ist. Out-of-band Health Checks jedoch werden explizit vom Load Balancer durchgeführt.

Grundlegende Health Checks

Load Balancer können zumindest bestimmte Netzwerk-Level Checks auf verschiedenen OSI-Layern durchführen. Bei einem Layer 2 Health Check wird eine Address Resolution Protocol (ARP) Anfrage verwendet, um die MAC Adresse einer gegebenen IP Adresse herauszufinden. Der Server wird auf diese ARP Anfrage reagieren, es sei denn er funktioniert nicht. Bei einem Layer 3 Health Check wird die reale IP-Adresse des Servers gepingt um herauszufinden ob der Server läuft. Bei Layer 4 Health Checks versucht der Load Balancer sich zu einem spezifischen TCP oder UDP Port zu verbinden auf der eine Applikation läuft. Der Load Balancer sendet eine TCP SYN Anfragen zu dem spezifischen Port und wartet auf eine TCP SYN ACK Rückmeldung. Falls der Load Balancer diese Rückmeldung nicht erhält, wird der Port als down markiert. Jeder Port wird vom Load Balancer unabhängig behandelt, so kann es sein das ein Port down ist, alle anderen jedoch erreichbar sind. Sämtliche Applikationen die auf erreichbaren Ports laufen sind weiterhin verfügbar, der Load Balancer markiert nur Applikationen als down, die nicht verfügbar sind.

Applikationsspezifische Health Checks

Load Balancer können auch Layer 7 Health Checks für weit verbreitete Applikationen durchführen. Bei Webserver kann der Load Balancer eine HTTP GET Anfragen für eine URL versenden und durch zusätzliche Konfiguration die HTTP Rückgabecodes kontrollieren, so kann z.B. ein 404 Fehler entdeckt werden. Bei DNS kann der Load Balancer DNS Lookup Abfragen versenden (für das Auflösen von Domainnamen zu IP-Adresse) um die Resultate mit dem erwarteten Ergebnis zu vergleichen.

Applikationsabhängigkeiten

Bei Verwendung von mehreren Applikationen die voneinander abhängig sind kann der Load Balancer das Feature Port Grouping verwenden, wodurch mehrere TCP oder UDP Ports zu Gruppen zusammengefasst werden. Wenn nur einer dieser Ports nicht funktioniert, wird alle Applikationen der Gruppe als down makiert.

Content Checks

Um den Inhalt zu kontrollieren gibt es mehrere Möglichkeiten:

- Nach Keywords suchen
- Checksum berechen und mit dem konfigurierten Wert vergleichen
- Load Balancer konfigurieren, sodass er HTTP GET Anfragen für eine bestimmte URL versendet. Ein Script/Programm das am Server läuft führt eine Vielzahl an Health Checks durch. Falls alle Health Checks erfolgreich waren, erzeugt das Script/Programm die vorher konfigurierte URL, sonst wird diese gelöscht. [3]

3.5 Sicherheit

Da Load Balancer das Front End der Server Farm sind, können Load Balancer die Server vor Angriffen schützen. Viele Load Balancing Produkte sind mittlerweile schon mit mehreren Sicherheitsfeatures ausgestattet. Den Servern der Server Farm können private IP Adresse vergeben werden, um direkten Zugriff von außen zu unterbinden. Um mit Hosts, die eine private IP Adresse haben, zu kommunizieren, muss man zuerst über ein Gerät geleitet werden, welches NAT durchführt. [3]

4 URL Switching

URL Switching ist notwendig, wenn ein einzelner Server nicht den gesamten Content eines Services zur Verfügung stellen kann (wegen zu geringer Speicherkapazität). Durch URL Switching kann der Content auf mehrere Server aufgeteilt werden. Zusätzlich können Server, welche die gleiche Art von Content zur Verfügung stellen zu Gruppen zusammengefasst werden. Durch definieren von URL Regeln und URL Switching Richtlinien (Policies) kann man festlegen, wie der Load Balancer den Content auf die Server Gruppen aufteilt.

Aufteilen von statischen und dynamischen Content

Eine andere Möglichkeit von URL Switching ist die Aufteilung von statischen und dynamischen Content auf den Server Gruppen. Der statische Content ändert sich relativ selten und ist auch einfach zu verwalten. Der dynamische Content aber ändert sich sehr oft und hängt auch teilweise von der Useranfrage ab. Ein Beispiel für dynamischen Content ist eine Google Suchanfrage. Wenn man nach z.B. Systemtechnik sucht sieht die URL der Ergebnisseite folgendermaßen aus: www.google.com/?....q=Systemtechnik Das q steht für das Skript bzw. Programm des Google Webservers, welches den Inhalt nach dem ? (in diesem Fall Systemtechnik) als Input entgegennimmt. Dieses Programm generiert auf Basis meines Inputs die Suchergebnisse. Man kann URL Regeln für den Load Balancer definieren, welche statischen und dynamischen Content auf die ausgewählten Server Gruppen aufteilen.

URL Switching Nutzungsrichtlinien

Wenn man URL Switching verwendet um die richtige Server Gruppe für die Verarbeitung auszuwählen, sollte man die Session Persitence innerhalb der Gruppe gewährleisten. Das kann durch die Verwendung von Cookie Switching in Kombination mit URL Switching erreicht werden. Durch die Cookie-Read Methode wird vom Server ein Cookie eingefügt, welches vom Load Balancer gelesen werden kann. Wenn das Cookie existiert sendet der Load Balancer die Anfrage zu dem vom Cookie angegebenen Server. Falls das Cookie nicht existiert verwendet der Load Balancer die definierten URL Switching Regeln um die Anfrage an die passende Server Gruppe zu versenden. [3]

Literatur

- [1] Liquid Web Inc. Understanding load balancing. http://www.liquidweb.com/kb/understanding-load-balancing/. Zuletzt besucht: 03.02.2016.
- [2] Grafik load balancing webserver. http://www.codeproject.com/Articles/32545/Exploring-Session-in-ASP-Net#38. Zuletzt besucht: 03.02.2016.
- [3] Chandra Kopparpu. Load Balancing Servers, Firewalls and Caches. Wiley, 2002.
- [4] Comparing load balancing algorithms. http://www.jscape.com/blog/load-balancing-algorithms. Zuletzt besucht: 08.02.2016.
- [5] Rui Nataario. Load balancing iii. http://networksandservers.blogspot.co.at/2011/03/balancing-iii.html. Zuletzt besucht: 03.02.2016.

Tabellenverzeichnis

Listings

Abbildungsverzeichnis

1	Load Balancing Beispiel [2]	2
2	Load Balancing einer Serverfarm [3]	4
3	Load Balancing Konfiguration [3]	5
4	Weighted Distribution anhand von Weighted Round-Robin [4]	7
5	Messen der Zeit, die der Server für eine Antwort benötigt [3]	7
6	Optimieren der Serverleistung [3]	9
7	OSI Modell [?]	9
8	Konzept Layer 7 Load Balancing [3]	11
9	Layer 7 Switching [3]	11
10	Layer 7 Load Balancing [3]	12
11	Layer 7 Load Balancing [3]	12
12	TCP Three-Way Handshake [3]	13
13	TCP Three-Way Handshake [3]	14