Einführung in die Analysis Eana: Matlabmanual

Joana Portmann — Fachhochschule Nordwestschweiz

Frühlingssemester 2021

Inhaltsverzeichnis

- Reelle Zahlen
- Folgen
- Reihen
- Grenzwerte
- Ableitungen
- Taylorapproximation
- Unbestimmte Integrale
- Bestimmte Integrale

Reelle Zahlen

```
Command Window

>> vpa pi 10

ans =

3.141592654

>>
```

Reelle Zahlen können mit dem Befehl vpa (variable precision arithmetics) auf eine gewünschte Anzahl Stellen gerundet angezeigt werden:

```
vpa pi 10
```

stellt die Zahl π auf 10 Stellen gerundet dar;

- Mit dem Befehl sym können rationale Zahlen exakt dargestellt werden: sym(1/9)
 - ohne den Befehl sym würde $\frac{1}{9}$ auf 0.1111 (im format short) gerundet werden. Dies kann vor allem problematisch werden, wenn mit diesem Wert weitergerechnet wird;
- Ausgabeformate werden mit dem Befehl format geändert: format short: 4 Ziffern nach dem Komma (default) format long: 15 Ziffern nach dem Komma.

Folgen

- Mit dem Befehl syms n deklarieren Sie eine Variable n
- lacktriangle Mit dem Befehl limit(a_n,r) bestimmen Sie das Folgeglied a_r
- lacksquare $\lim_{n o\infty}a_n$ bestimmen Sie mit dem Befehl limit($f a_n$,inf)

Beispiel:

Command Window >> syms n >> limit((3*n^2+2)/(4*n^2+n),2) ans = 7/9 >> limit((3*n^2+2)/(4*n^2+n),inf) ans = 3/4 >> limit(n^2,inf) ans = Inf

$$a_n = \frac{3n^2+2}{4n^2+n}$$
; $a_2 = \frac{7}{9}$

$$\lim_{n \to \infty} a_n = \frac{3}{4}$$

$$\lim_{n \to \infty} n^2 = \infty$$

Reihen

Mit dem Befehl syms k deklarieren Sie eine Variable k

```
symsum(a_k,k, \overset{\text{Start}}{l}, \overset{\text{Ende}}{n}) berechnet a_l+a_{l+1}+\ldots+a_n=\sum_l^n a_k
```

■ Für den Grenzwert $(n \to \infty)$ ersetzen Sie den Wert für n durch inf.

Beispiel:

Command Window >> syms k >> symsum(1/k^2,k,1,inf) ans = pi^2/6 >> symsum(1/k^2,k,1,4) ans = 205/144

$$\sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6}$$

$$s_4 = \sum_{k=1}^4 \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} = \frac{205}{144}$$

Grenzwerte

- (1) Definieren Sie eine Variable mit dem Befehl: syms x Das Kürzel syms steht dabei für das Matlab-Paket: symbolic toolbox
- (2) Bestimmen Sie den Grenzwert mit dem Befehl limit("von x abhängiger Ausdruck", "Grenze für x")

- Für den Grenzwert $\lim_{x\to 0} \frac{1-x^3-\cos(2x)}{x^2}$ ergibt der Befehl limit((1-x^3-cos(2*x))/(x^2),0) den Output ans=2
- Für den Grenzwert $\lim_{x\to 0} \frac{x}{|x|}$ ergibt der Befehl limit(x/abs(x),0) den Output ans=NaN. NaN steht hier für "not a number", weil der Grenzwert an der Stelle 0 nicht existiert.
- Für den Grenzwert $\lim_{x\to 0} \frac{\sin(x)}{x}$ ergibt der Befehl limit($\sin(x)/x$,0) den Output ans=1.

Ableitung

Mit Hilfe der symbolic toolbox können in Matlab Ableitungen von Funktionen bestimmt werden (Dr. Lucia di Caro eana HS 2015)

- Definieren Sie eine Variable mit dem Befehl syms x
- 2 Bestimmen Sie die Ableitung einer Funktion mit dem Befehl diff("Funktionsterm von x",x,Grad der Ableitung). Wenn die Funktion nur aus einer Variablen besteht und/oder die 1. Ableitung berechnet wird, können das zweite und/oder das dritte Argument weggelassen werden.

- diff(x ^2+1) liefert den Output ans=2*x.
- diff(3*x⁷ 7+5*x² 2-3, 2) berechnet die zweite Ableitung und somit den Output ans=126*x⁵ 5+10.

Taylorpolynome

Mit Hilfe der *symbolic toolbox* können mit Matlab Taylorpolynome von Funktionen bestimmt werden.

Vorgehen

- 1 Definieren Sie eine Variable mit dem Befehl syms x
- 2 Bestimmen Sie das Taylorpolynom n—ter Ordnung einer Funktion an der Stelle x_0 mit dem Befehl: taylor("Funktion von x",'expansionpoint', x_0 ,'order',n+1)

- taylor(1/(1-x),'expansionpoint',0,'order',4)
 liefert den Output
 ans=x^3+x^2+x+1
- taylor(tan(x),'expansionpoint',0,'order',10)
 liefert den Output
 (62*x^9)/2835 + (17*x^7)/315 + (2*x^5)/15 + x^3/3 + x

Unbestimmte Integrale

Mit Hilfe der symbolic toolbox können in Matlab unbestimmte Integrale berechnet werden .

Dabei gehen Sie folgendermaßen vor:

- 1 Definieren Sie eine Variable mit dem Befehl syms x.
- Bestimmen Sie das Integral einer Funktion mit dem Befehl int("Funktion von x")

```
int(x^2)
liefert den Output
ans=x^3/3
```

Bestimmte Integrale

Mit Hilfe der symbolic toolbox können in Matlab bestimmte Integrale berechnet werden .

Dabei gehen Sie folgendermaßen vor:

- 1 Definieren Sie eine Variable mit dem Befehl syms x.
- 2 Bestimmen Sie das bestimmte Integral einer Funktion auf dem Intervall [a,b] mit dem Befehl int("Funktion von x ",a,b)

```
int(1/sqrt(x),0,1)
liefert den Output
ans=2
```