

Control Specifications

Stability Related Specifications

Tracking Performance Specifications

Disturbance Rejection Specifications

Planned Control Elements

Among the various control elements presented earlier, we generally employ the following options.

P -: Generic & Most of Benign Control Tasks

I & PI -: Mainly Tracking

PD – : Relative Stability, Transient Response

PID -: All Objectives

Control Task Description

As was mentioned earlier, **control tasks** fall in three **broad categories** of Stability, Tracking & Transient response control (or disturbance rejection).

In the **practical** context, there are specific **requirements** related to each of **these tasks** that are put on the **closed loop** system behaviour.

In general, these **requirements** relate to the system **response** and are captured through specific features called **'figures of merit'**.

Figures of Merit for Stability

Stability is the desirable **property** of any system to **return** to its earlier state, when **disturbed** from it.

In the context of control, the **stability related** objectives can either be (a) to **provide stability** to unstable systems or (b) to **improve the level** of stability of stable systems.

In general, **stability margins** are employed as figures of merit, which are related to the **behaviour** of the closed loop **poles**, in s-plane.

Tracking Control Requirements

Tracking control task involves ensuring that the **desired output** is equal to the reference input as $t \rightarrow \infty$.

Therefore, **requirements** for tracking are arrived at by quantifying the **deficiency** in steady-state performance of the **plant** in a unity feedback closed loop **configuration**.

In this context, we make use of **final value theorem**, to arrive at the tracking **deficiency**.

Tracking Error Characterization

Consider a unity feedback uncompensated closed loop system, as shown below.

We can write the **error** in **tracking** as well as its **final** value in steady-state as,

$$E(s) = R - C = \left(1 - \frac{C}{R}\right) \times R = \frac{R}{1 + G}$$

$$e_{ss}(t) = \lim_{t \to \infty} e(t) = \lim_{s \to 0} sE(s) = \lim_{s \to 0} \frac{sR}{1 + G(s)}$$

Tracking Error Formulation

It is seen that **error** depends on both R & G(0) and that **non-zero** error indicates the **inability of the plant** to follow a given input **exactly** in the closed loop.

This enables us to define quantitative measures for assessing the closed loop tracking error, which are called error constants and are defined as figures of merit.

Error constants are nothing but limiting values of G(s), sG(s) and $s^2G(s)$ for step, ramp, parabolic inputs, as $s \to 0$.

It should be noted that **system type** plays an important **role** in deciding the above **error constants.**

Position Error & Constant

Position (or step) error is defined for a unit step input

as,

$$\lim_{s \to 0} \left[\frac{s \binom{1/s}{s}}{1 + G(s)} \right] = \frac{1}{1 + G(0)} = \frac{1}{1 + K_p}$$

 $G(0) = K_p - Position Error Constant$

$$K_p = K;$$
 $e_{ss} = 1/(1 + K);$ for type '0' Systems $K_p = \infty;$ $e_{ss} = 0;$ for type \geq '1' Systems

$$K_p = \infty$$
; $e_{ss} = 0$; for type \ge '1' Systems

Position Error Example

Determine the **tracking error** for the following plant. to **unit step input** and verify it.

$$G(0) = K_p = 20$$
 $e_{ss} = \frac{1}{21} = 0.0476$
 $c_{ss} = r(t) - e_{ss} = 0.952$

Velocity Error & Constant

Velocity (or ramp) error is defined for a unit ramp input as,

$$\lim_{s \to 0} \left\lceil \frac{s \left(\frac{1}{s^2}\right)}{1 + G(s)} \right\rceil = \lim_{s \to 0} \left[\frac{1}{s \left\{1 + G(s)\right\}} \right] = \lim_{s \to 0} \left[\frac{1}{sG(s)} \right] = \frac{1}{K_v}$$

$$\lim_{s\to 0} [sG(s)] = K_{v}$$

$$\lim_{s \to 0} [sG(s)] = K_{v}$$

$$K_{v} = 0; \quad e_{ss} = \infty; \quad \text{for type '0' Systems}$$

$$K_v = K$$
; $e_{ss} = 1 / K$; for type '1' Systems

$$K_v = K;$$
 $e_{ss} = 1 / K;$ for type '1' Systems $K_v = \infty;$ $e_{ss} = 0;$ for type \geq '2' Systems

Velocity Error Example

Determine the **tracking error** to unit ramp input for the following **plant** and verify it.

$$K_{v} = 1.5$$
 $e_{ss} = 1/1.5 = 0.667$
 $c_{ss} = t - 0.667$

Acceleration Error & Constant

Acceleration (or parabolic) error is defined for a parabolic input as,

$$\lim_{s \to 0} \left[\frac{s \left(\frac{1}{s^3} \right)}{1 + G(s)} \right] = \lim_{s \to 0} \left[\frac{1}{s^2 \left\{ 1 + G(s) \right\}} \right] = \lim_{s \to 0} \left[\frac{1}{s^2 G(s)} \right] = \frac{1}{K_a}$$

$$\left[\lim_{s\to 0} \left[s^2 G(s) \right] = K_a \right]$$

$$K_a = 0$$
; $e_{ss} = \infty$; for type '0/1' Systems

$$K_a = K$$
; $e_{ss} = 1 / K$; for type '2' Systems

$$K_a = \infty$$
; $e_{ss} = 0$; for type \geq '3' Systems

Acceleration Error Example

Determine the **tracking error** to unit parabolic input for the following **plant** and verify it.

$$K_{a} = 0.2$$

$$e_{SS} = 1/0.2 = 5.0$$

$$c_{SS} = \frac{t^{2}}{2} - 5.0$$

Disturbance Rejection Requirements

In all cases of **disturbance input**, it is desired that these are **rejected quickly**, and without **much impact**.

Further, we know that systems have **characteristics** that decide how **quickly** it reaches the steady-state & how **much error** it shows while achieving the **steady-state**.

These attributes are typically called 'transient response' characteristics and can be extracted from the generic features of 1st and 2nd order systems, which are also the basic building blocks of the system response.

1st Order System Features

In the context of 1st
Order systems, time
constant, 'T' is the basic
figure of merit for
characterizing transient
(disturbance rejection)
performance measure.

Further, **settling time**, 'T_s', defined with respect to **an acceptable error**, is also **used** as the desirable **feature**.

2nd Order System Features

In the context of 2nd
Order systems, there are
many features that
capture the nature of the
system behaviour.

These include, rise time, ${}^{\prime}\mathbf{t_r}{}^{\prime}$, peak time, ${}^{\prime}\mathbf{t_p}{}^{\prime}$, peak overshoot, ${}^{\prime}\mathbf{M_p}{}^{\prime}$, and settling time, ${}^{\prime}\mathbf{t_s}{}^{\prime}$, for an acceptable error system response.

Summary

Generally, specifications for the closed loop systems are expressed in terms of error constants and transient response features.