Лекция 12. Кодирование. Алфавитные коды. Теорема о разделимости равномерного кода. Теорема о разделимости префиксного кода. Алгоритм проверки разделимости алфавитного кода. Теорема Маркова.

Лектор — Селезнева Светлана Николаевна selezn@cs.msu.ru

факультет ВМК МГУ имени М.В. Ломоносова

Лекции на сайте https://mk.cs.msu.ru

Алфавит

Алфавитом называется произвольное конечное множество.

Если A — алфавит, то любой элемент $a \in A$ называется **буквой** алфавита A.

Например, $A = \{0,1\}$ — алфавит из двух букв: 0 и 1.

Конечные слова в алфавите

Пусть A — алфавит.

(Конечным) словом в алфавите A назовем произвольную конечную последовательность букв из A.

Введем обозначение: Λ — **пустое** слово (т. е. слово без букв).

Множество всех конечных слов в алфавите A обозначим A^* .

Длиной $|\alpha|$ слова $\alpha \in A^*$ назовем число букв в нем, $|\Lambda| = 0$.

Если $\alpha \in A^*$, то i-ю букву слова α обозначим $\alpha(i)$, $i=1,\ldots,|\alpha|$.

T. е. если $|\alpha|=m$, где $m\geqslant 1$, то $\alpha=\alpha(1)\alpha(2)\ldots\alpha(m)$.

Соединение слов

Если A — алфавит и $\alpha, \beta \in A^*$, где $|\alpha| = k$, $|\beta| = m$, то соединением (или конкатенацией) слов α и β назовем слово $\alpha\beta \in A^*$, где

$$\alpha\beta = \alpha(1) \dots \alpha(k)\beta(1) \dots \beta(m).$$

Отметим, что $|\alpha\beta|=k+m$.

Подслово

Пусть A — алфавит. Слово $\beta \in A^*$ называется **подсловом** слова $\alpha \in A^*$, если найдутся такие слова $\alpha_1, \alpha_2 \in A^*$ (возможно, пустые), что

$$\alpha = \alpha_1 \beta \alpha_2.$$

Префиксы слова

Пусть A — алфавит и $\alpha \in A^*$, $\alpha = \alpha(1)\alpha(2)\dots\alpha(m)$.

Префиксом слова α называется любое его начало, в том числе, и пустое. Т. е. если $\alpha=\alpha_1\alpha_2$, где $\alpha_1,\alpha_2\in A^*$, то α_1 — префикс слова α .

Значит, всеми возможными префиксами слова α являются слова:

$$\Lambda, \ \alpha(1), \ \alpha(1)\alpha(2), \ \ldots, \ \alpha(1)\alpha(2)\ldots\alpha(m).$$

Например, если $A = \{0,1\}$ и lpha = 0011, то

все префиксы слова α .

Префикс называется **собственным**, если он не совпадает ни с пустым словом, ни со словом α .

Коды

Суффиксы слова

Пусть A — алфавит и $\alpha \in A^*$, $\alpha = \alpha(1)\alpha(2)\ldots\alpha(m)$.

Суффиксом слова α называется любое его окончание, в том числе, и пустое. Т. е. если $\alpha=\alpha_1\alpha_2$, где $\alpha_1,\alpha_2\in A^*$, то α_2 — суффикс слова α .

Значит, всеми возможными суффиксами слова α являются слова:

$$\Lambda$$
, $\alpha(m)$, $\alpha(m-1)\alpha(m)$, ..., $\alpha(1)\alpha(2)$... $\alpha(m)$.

Например, если $A = \{0,1\}$ и lpha = 0011, то

все префиксы слова α .

Суффикс называется собственным, если он не совпадает ни с пустым словом, ни со словом α .

Кодирование

Пусть заданы два алфавита A и B.

Алфавит A назовем **исходным**, алфавит B — **кодирующим**.

Кодированием (из A в B) называется произвольное отображение

$$\varphi: A^* \to B^*$$
.

При кодировании φ любое слово $\alpha \in A^*$ называется сообщением, а слово $\beta = \varphi(\alpha) \in B^*$ — его кодом.

Можно рассматривать кодирования вида $\varphi: S \to B^*$, где $S \subseteq A^*$ — множество (исходных) сообщений.

Код

Если $\varphi:A^*\to B^*$ — кодирование, то множество кодов всех слов из A^* назовем кодом C_φ , т. е.

$$C_{\varphi} = \{ \varphi(\alpha) \mid \alpha \in A^* \} \subseteq B^*.$$

T. е. код C_{φ} — множество кодов всех сообщений.

Кодирования

Как правило (в приложениях), кодирование $\varphi:A^*\to B^*$ описывается схемой (или алгоритмом) кодирования, т. е. правилом, позволяющим для любого сообщения $\alpha\in A^*$ получить его код $\varphi(\alpha)\in B^*$.

Кроме того, требуется схема (или алгоритм) декодирования, т. е. правило, позволяющее для любого слова $\beta \in B^*$ понять, является ли β кодом какого-то сообщения, и при положительном ответе найти такое сообщение $\alpha \in A^*$, что $\varphi(\alpha) = \beta$.

Очень желательным свойством для кодирования φ является однозначность декодирования.

Разделимость кодирования

Кодирование $\varphi: A^* \to B^*$ называется однозначным (или разделимым), если для любых слов $\alpha_1, \alpha_2 \in A^*$ из $\alpha_1 \neq \alpha_2$ следует $\varphi(\alpha_1) \neq \varphi(\alpha_2)$.

Т. е. кодирование φ — разделимо, если оно разным сообщениям сопоставляет различные коды.

Другими словами, кодирование φ — однозначно, если любое слово $\beta \in \mathcal{B}^*$ является кодом не более одного сообщения.

Алфавитное кодирование

Пусть $A = \{a_1, \dots, a_r\}$ — исходный алфавит, $B = \{b_1, \dots, b_q\}$ — кодирующий алфавит.

Кодирование $\varphi: A^* \to B^*$ называется алфавитным (или **побуквенным**), если оно описывается следующей схемой:

1) заданы различные непустые коды букв алфавита A:

$$\varphi(a_1) = B_1, B_1 \in B^*,
\varphi(a_2) = B_2, B_2 \in B^*,
\dots,
\varphi(a_r) = B_r, B_r \in B^*,$$

2) слова в алфавите A кодируются побуквенно, т. е. если $\alpha \in A^*$, $\alpha = a_{i_1} a_{i_2} \dots a_{i_m}$, где $m \geqslant 2$, то

$$\varphi(\alpha) = \varphi(a_{i_1})\varphi(a_{i_2})\dots\varphi(a_{i_m}) = B_{i_1}B_{i_2}\dots B_{i_m}.$$

Алфавитный код

Пусть φ — алфавитное кодирование из A в B, т. е.

$$\varphi(a_1)=B_1, \ \varphi(a_2)=B_2, \ \ldots, \ \varphi(a_r)=B_r.$$

Коды букв алфавита A, т. е. слова B_1, \ldots, B_r , называются кодовыми словами.

Множество всех кодовых слов при кодировании φ назовем алфавитным кодом \mathcal{C}_{φ} , т. е.

$$C_{\varphi}=\{B_1,\ldots,B_r\}.$$

Отметим, что код C_{φ} однозначно определяет алфавитное кодирование φ (при заданном порядке букв из A).

Алфавитный код C_{φ} назовем **однозначным** (или **разделимым**), если кодирование φ — разделимо.

Декодирование

Пусть $\mathcal{C}_{\varphi} = \{B_1, \dots, B_r\} \subseteq \mathcal{B}^*$ — алфавитный код и $\beta \in \mathcal{B}^*$.

Декодировать слово β означает разбить его на последовательность кодовых слов (если это возможно), т. е. представить в виде:

$$\beta = B_{i_1}B_{i_2}\dots B_{i_m},$$

где
$$B_{i_1},\ldots,B_{i_m}\in \mathcal{C}_{\varphi}.$$

Если код C_{φ} является разделимым, то для любого слова $\beta \in \mathcal{B}^*$ найдется не более одного декодирования.

Алфавитные коды

Пример. Пусть $A=\{a_1,a_2,a_3\}$, $B=\{0,1\}$ и φ_1 — алфавитное кодирование из A в B, где

$$\varphi_1(a_1) = 00,
\varphi_2(a_2) = 01,
\varphi_3(a_3) = 11.$$

Тогда, например, для сообщения $\alpha = a_1 a_1 a_3 \in A^*$ его код:

$$\varphi_1(\alpha) = 000011 \in B^*.$$

Код C_{φ_1} является разделимым (почему?).

Равномерный алфавитный код

Алфавитный код $C = \{B_1, \dots, B_r\} \subseteq B^*$ называется **равномерным**, если длины всех его кодовых слов одинаковы, т. е.

$$|B_1| = |B_2| = \ldots = |B_r|.$$

Разделимость равномерного алфавитного кода

Предложение 12.1. Любой равномерный алфавитный код является разделимым.

Доказательство. Пусть $C = \{B_1, \dots, B_r\} \subseteq B^* -$ равномерный алфавитный код, $|B_i| = I, i = 1, \dots, r$.

Рассмотрим произвольное слово $\beta \in B^*$. Как можно его декодировать?

Разобьем слово β на последовательность слов длины I.

Если такое разбиение возможно, и каждое слово в этой последовательности является кодовым, то получили однозначное декодирование слова β .

Иначе, слово β не допускает декодирования.

Алфавитные коды

Пример. Пусть $A=\{a_1,a_2,a_3\},\ B=\{0,1\}$ и φ_2 — алфавитное кодирование, где $\varphi_2(a_1) \ = \ 0,$

$$\varphi_2(a_2) = 10,
\varphi_2(a_3) = 112.$$

Тогда, например, для сообщения $\alpha = a_1 a_1 a_3 \in A^*$ его код:

$$\varphi_2(\alpha) = 00110 \in B^*.$$

Код C_{φ_2} является разделимым (почему?).

Префиксный алфавитный код

Алфавитный код $C = \{B_1, \dots, B_r\} \subseteq B^*$ называется **префиксным**, если никакое его кодовое слово не является префиксом никакого другого его кодового слова, т. е.

 $\not\exists B_i, B_i \in C : B_i = B_i \beta_2$ для некоторого слова $\beta_2 \in B^*$.

Разделимость префиксного алфавитного кода

Предложение 12.2. Любой префиксный алфавитный код является разделимым.

Доказательство. Пусть $C = \{B_1, \dots, B_r\} \subseteq B^*$ — префиксный алфавитный код.

Рассмотрим произвольное слово $\beta \in B^*$. Как можно его декодировать?

Разделимость префиксного алфавитного кода

Доказательство. Пусть $\beta = B_{i_1}\beta_1$ для некоторого кодового слова $B_{i_1} \in \mathcal{C}$ и некоторого слова $\beta_1 \in \mathcal{B}^*$.

Отметим, что кодовое слово B_{i_1} (если оно существует) находится однозначно.

Действительно, если

$$\beta = B_{i_1}\beta_1 = B_{j_1}\beta_1',$$

где $B_{i_1}, B_{j_1} \in C$, $B_{i_1} \neq B_{j_1}$, $\beta_1, \beta_1' \in B^*$, то какое-то из кодовых слов B_{i_1} , B_{j_1} является префиксом другого, что невозможно.

Далее повторим рассуждения для слова $\beta_1 \in B^*$.

В итоге, либо однозначно декодируем слово β , либо на каком-то шаге не найдем подходящее кодовое слово, а значит, слово β не допускает декодирования.

Суффиксный алфавитный код

Алфавитный код $C = \{B_1, \dots, B_r\} \subseteq B^*$ называется **суффиксным**, если никакое его кодовое слово не является суффиксом никакого другого его кодового слова, т. е.

$$\exists \ B_i, B_j \in C : B_i = \beta_1 B_j$$
 для некоторого слова $\beta_1 \in B^*$.

Предложение 12.3. Любой суффиксный алфавитный код является разделимым.

Доказательство проводится подобно доказательству предыдущего утверждения, только начинать декодировать слово β нужно справа.

Алфавитные коды

Пример. Пусть $A=\{a_1,a_2,a_3\},\ B=\{0,1\}$ и φ_3 — алфавитное кодирование, где

$$\varphi_3(a_1) = 0,
\varphi_3(a_2) = 1,
\varphi_3(a_3) = 01.$$

Тогда, например, для сообщения $\alpha = a_1 a_1 a_3 \in A^*$ его код:

$$\varphi_3(\alpha)=0001\in B^*.$$

Код C_{φ_3} не является разделимым, т. к. слово $\beta=01\in B^*$ можно декодировать двумя способами:

$$\beta = 01, \\ \beta = 01,$$

т. е.
$$\beta = \varphi_3(a_1a_2) = \varphi_3(a_3)$$
.

Пусть $C_{\varphi} = \{B_1, \dots, B_r\} \subseteq B^*$ — алфавитный код.

Построим $oprpa\phi$ $G_{arphi}=(V_{arphi},E_{arphi})$ для кода $C_{arphi}.$

1. Множество вершин V_{φ} , $V_{\varphi} \subseteq B^*$, состоит из пустого слова Λ и всех тех слов в алфавите B, которые являются собственным префиксом некоторого кодового слова и одновременно собственным суффиксом некоторого кодового слова (другого или, возможно, того же) и не являются никаким кодовым словом, т. е.

$$V_{\varphi} = \{\Lambda\} \cup \{\beta \in B^* \mid 1\} \exists B_i \in C_{\varphi} : B_i = \beta \beta', \ \beta' \neq \Lambda;$$

2)
$$\exists B_j \in C_{\varphi} : B_j = \beta'' \beta, \ \beta'' \neq \Lambda;$$

3)
$$\beta \neq B_k, \ k = 1, \dots, r\}.$$

Итак, $\mathcal{C}_{\varphi} = \{B_1, \dots, B_r\} \subseteq B^*$ — алфавитный код.

2. Опишем множество дуг E_{φ} : если $\beta', \beta'' \in V_{\varphi}$, то $(\beta', \beta'') \in E_{\varphi}$, если найдется такое кодовое слово B_i и такая последовательность D кодовых слов B_{i_1}, \ldots, B_{i_k} , что

$$B_i = \beta' B_{i_1} \dots B_{i_k} \beta'',$$

причем если $\beta'=\beta''=\Lambda$, то $k\geqslant 2$; если $\beta'\neq \Lambda$ или $\beta''\neq \Lambda$, то $k\geqslant 1$; если $\beta',\beta''\neq \Lambda$, то $k\geqslant 0$.

При этом дуге $(\beta',\beta'')\in E_{\varphi}$ приписываем пометку D, где $D=B_{i_1},\ldots,B_{i_k}.$

Пример. Пусть $C_{\varphi}=\{01,201,112,122,0112\}$. Построим граф $G_{\varphi}=(V_{\varphi},E_{\varphi})$.

Пример. Пусть
$$C_{\varphi}=\{01,201,112,122,0112\}$$
. Построим граф $G_{\varphi}=(V_{\varphi},E_{\varphi})$. Получаем: $V_{\varphi}=\{\Lambda,1,2,12\}$.

۸.

• 1

12.

_ 2

Критерий разделимости алфавитного кода

Теорема 12.1. Алфавитный код C_{φ} является разделимым тогда и только тогда, когда в графе G_{φ} отсутствуют ориентированные циклы (в том числе, и петли), проходящие через вершину Λ .

Доказательство. Пусть $C_{\varphi} = \{B_1, \dots, B_r\} \subseteq B^* -$ алфавитный код и G_{φ} — граф для кода C_{φ} .

Критерий разделимости алфавитного кода

Доказательство. 1. Пусть код C_{φ} не является разделимым.

Значит, найдется слово $\beta \in B^*$ наименьшей длины, которое допускает не менее двух декодирований.

Пусть $\beta=B_1'B_2'\dots B_{t_1}'$ — разбиение слова β на кодовые слова в 1-м декодировании и $\beta=B_1''B_2''\dots B_{t_2}''$ — разбиение слова β на кодовые слова во 2-м декодировании.

Обозначим: $I_i' = |B_i'|$, $i = 1, \ldots, t_1$, и $I_i'' = |B_i''|$, $i = 1, \ldots, t_2$.

Пусть, для определенности, $I_1'' > I_1'$.

Пояснение выбора числа k_1

 β :

Доказательство. Найдем такое число k_1 , что

$$\sum_{i=1}^{k_1-1} l_i' < l_1'', \quad \sum_{i=1}^{k_1} l_i' > l_1''.$$

Заметим, что равенства здесь быть не может, т. к. в этом случае слово β можно было бы уменьшить, что не так.

Тогда $B_1'' = B_1' \dots B_{k_1-1}' \beta_1$ для некоторого слова $\beta_1 \in B^*$, $\beta_1 \neq \Lambda$.

Отметим, что слово β_1 является собственным префиксом кодового слова B'_{k_1} и собственным суффиксом кодового слова B''_1 , а также не является никаким кодовым словом.

Значит, в графе G_{φ} присутствует дуга $e_1=(\Lambda,\beta_1)\in E_{\varphi}$, которой приписана пометка $D_1=B_1'\dots B_{k_1-1}'$.

eta : ullet

Доказательство. Теперь найдем такое число k_2 , что

$$|\beta_1| + \sum_{i=2}^{k_2-1} l_i'' < l_{k_1}', \quad |\beta_1| + \sum_{i=2}^{k_2} l_i'' > l_{k_1}'.$$

Снова равенства быть не может, т. к. в этом случае слово β можно было бы уменьшить, что не так.

Тогда $B'_{k_1}=\beta_1 B''_2\dots B''_{k_2-1}\beta_2$ для некоторого слова $\beta_2\in B^*$, $\beta_2\neq \Lambda$.

Слово β_2 является собственным префиксом кодового слова B''_{k_2} и собственным суффиксом кодового слова B'_{k_1} , а также не является никаким кодовым словом.

Значит, в графе G_{φ} присутствует дуга $e_2=(\beta_1,\beta_2)\in E_{\varphi}$, которой приписана пометка $D_2=B_2''\ldots B_{k_2-1}''$.

eta : _____

```
eta: egin{pmatrix} B_{k_1}' \\ B_1'' \end{pmatrix}
```


Доказательство. Далее найдем такое число k_3 , что

$$|\beta_2| + \sum_{i=k_1+1}^{k_3-1} l_i' < l_{k_2}'', \quad |\beta_2| + \sum_{i=k_1+1}^{k_3} l_i' > l_{k_2}''.$$

Равенства быть не может, т. к. в этом случае слово β можно было бы уменьшить, что не так.

Тогда $B_{k_3}''=\beta_2 B_{k_1+1}'\ldots B_{k_3-1}'\beta_3$ для некоторого слова $\beta_3\in B^*$, $\beta_3\neq \Lambda$.

Значит, в графе G_{φ} присутствует дуга $e_3=(\beta_2,\beta_3)\in E_{\varphi}$, которой приписана пометка $D_3=B'_{k_1+1}\dots B'_{k_3-1}.$

И т. д.

Доказательство. Через конечное число число таких шагов достигнем окончания слова β .

Значит, в графе G_{φ} присутствует дуга $e_{m+1} = (\beta_m, \Lambda) \in E_{\varphi}$ для некоторого слова $\beta_m \in B^*$, $\beta_m \neq \Lambda$.

Этой дуге e_{m+1} приписана пометка $D_{m+1}=B_{k_{m-1}+1}^{\circ}\dots B_{k_{m+1}-1}^{\circ},$ где $\circ\in\{',''\}$ в зависимости от четности числа m.

Таким образом, в графе G_{φ} найдется ориентированный замкнутый путь:

$$P = \Lambda, e_1, \beta_1, e_2, \beta_2, \ldots, \beta_m, e_{m+1}, \Lambda,$$

в котором вершина Λ не встречается среди вершин $\beta_1,\dots,\beta_m.$

Из этого пути P можно выделить ориентированный цикл (в частности, петлю), проходящий через вершину Λ .

Доказательство. 2. Пусть теперь в графе G_{φ} найдется ориентированный цикл (в частности, петля)

$$P = \Lambda, e_1, \beta_1, e_2, \beta_2, \dots, \beta_m, e_{m+1}, \Lambda,$$

проходящий через вершину Л.

Пусть дуге e_i приписана пометка $D_i = B_{i_1}, \dots, B_{i_{k_i}}$, $i = 1, \dots, m, m+1$.

Покажем, что слово

$$\beta = D_1 \beta_1 D_2 \beta_2 \dots \beta_m D_{m+1} \in B^*$$

допускает не менее двух декодирований.

Доказательство. Итак, рассмотрим слово

$$\beta = D_1 \beta_1 D_2 \beta_2 \dots \beta_m D_{m+1} \in B^*.$$

Пусть, для определенности, m — четно.

Первое декодирование:

$$D_1\beta_1D_2\beta_2D_3\beta_3D_4\dots D_m\beta_mD_{m+1}.$$

Второе декодирование:

$$D_1\beta_1D_2\beta_2D_3\beta_3D_4\beta_4...\beta_{m-1}D_m\beta_mD_{m+1}.$$

Случай нечетного m разбирается аналогично.

Значит, код C_{ω} не является разделимым.

Проверка разделимости алфавитного кода

Алгоритм проверки разделимости алфавитного кода

Bход: алфавитный код $C = \{B_1, \dots, B_r\} \subseteq B^*$ в кодирующем алфавите B.

Bыход: «да», если код C является разделимым, и «нет» и слово $\beta \in B^*$, допускающее не менее двух декодирований, в обратном случае.

Проверка разделимости алфавитного кода

Описание алгоритма.

- 1. Построить орграф G для кода C.
- 2. Если граф G не содержит петель или направленных циклов, проходящих через «пустую» вершину, то выдать «да» и остановиться.
- 3. Иначе, пусть $\beta_0,\beta_1,\ldots,\beta_m,\beta_0$ направленный цикл в G, где $\beta_i\in B^*,\ i=1,\ldots,m,\ \beta_0=\Lambda,$ причем дуга (β_{i-1},β_i) помечена последовательностью $D_i,\ i=1,\ldots,m,$ а дуга (β_m,β_0) помечена последовательностью $D_{m+1}.$ Тогда выдать «нет» и

$$\beta = D_1 \beta_1 D_2 \beta_2 \dots \beta_m D_{m+1} \in B^*$$

и остановиться.

Окончание описания алгоритма.

Проверка разделимости алфавитного кода

Пример. Рассмотрим код $C_{\varphi} = \{01, 201, 112, 122, 0112\}.$

Получаем:

$$\beta = 0112201 = 0112 + 201 = 01 + 122 + 01.$$

Теорема 12.2 (А. А. Марков). Пусть A — исходный алфавит, $C_{\varphi} = \{B_1, \dots, B_r\} \subseteq B^*$ — алфавитный код, где $|B_i| = I_i$, $i = 1, \dots, r$. Пусть $L = \sum\limits_{i=1}^r I_i$ и w обозначает наибольшее число кодовых слов (возможно, с повторами), соединение которых является подсловом какого-то кодового слова. Тогда если код C_{φ} не является разделимым, то найдутся такие слова $\alpha_1, \alpha_2 \in A^*$, $\alpha_1 \neq \alpha_2$, $\varphi(\alpha_1) = \varphi(\alpha_2)$, что

$$|\alpha_1|, |\alpha_2| \leqslant \lfloor \frac{(L-r+2)(w+1)}{2} \rfloor,$$

где | а | обозначает целую часть числа а.

Доказательство. Код C_{φ} не является разделимым, значит, в графе G_{φ} найдется ориентированный цикл (в частности, петля)

$$P = \Lambda, e_1, \beta_1, e_2, \beta_2, \ldots, \beta_m, e_{m+1}, \Lambda,$$

проходящий через вершину Л.

Пусть дуге e_i приписана пометка $D_i = B_{i_1}, \dots, B_{i_{k_i}}, i = 1, \dots, m, m+1.$

Можно считать, что P — петля или простой цикл, поэтому слова β_1, \ldots, β_m — различны.

Каждое слово β_i является, в частности, собственным префиксом какого-то кодового слова, поэтому

$$m\leqslant \sum_{i=1}^r (l_i-1)=L-r.$$

Доказательство. Рассмотрим слово

$$\beta = D_1 \beta_1 D_2 \beta_2 \dots \beta_m D_{m+1} \in B^*,$$

которое допускает не менее двух декодирований. Пусть $\alpha_1,\alpha_2\in A^*$, $\alpha_1\neq\alpha_2$, — два декодирования слова β , т. е.

$$\beta = \varphi(\alpha_1) = \varphi(\alpha_2).$$

Слова β_1,\ldots,β_m разбивают слово β на m+1 частей: $D_1,\ldots,D_{m+1}.$

Рассмотрим k пар частей:

$$(D_1, D_2), (D_3, D_4), \ldots, (D_{2k-1}, D_{2k}),$$

где
$$k = \lfloor \frac{m+1}{2} \rfloor$$
.

Доказательство. Для каждого i = 1, ..., k слова

$$\beta'_{i} = \underbrace{\beta_{2i-2}D_{2i-1}\beta_{2i-1}}_{\beta_{2i-1}D_{2i}\beta_{2i}},$$

$$\beta''_{i} = \underbrace{D_{2i-1}\beta_{2i-1}D_{2i}\beta_{2i}}_{\leqslant w},$$

разбиваются не более, чем на w + 1, кодовых слов.

Значит, каждая пара (D_{2i-1}, D_{2i}) вносит не более w+1 кодовых слов в каждое из декодирований слова β .

Если m+1 — нечетно, то останется еще последовательность D_{m+1} , которая также вносит не более w+1 кодовых слов в каждое из декодирований слова β .

Доказательство. Значит,

$$|\alpha_1|, |\alpha_2| \leq \frac{m+2}{2} \cdot (w+1) \leq \frac{(L-r+2)(w+1)}{2}.$$

Из того, что $|\alpha_1|, |\alpha_2|$ — целые числа, получаем утверждение теоремы.

Задачи для самостоятельного решения

- 1. Докажите предложение 12.3.
- 2. Разберите случай нечетного числа m в доказательстве теоремы 12.1.
- 3. Объясните, почему можно считать, что P петля или простой цикл, в доказательстве теоремы 12.2.

Литература к лекции

- 1. Алексеев В.Б. Лекции по дискретной математике. М.: Инфра-М, 2012. С. 41–47.
- 2. Яблонский С.В. Введение в дискретную математику. М.: Высшая школа, 2001. С. 256–272.
- 3. Гаврилов Г. П., Сапоженко А. А. Задачи и упражнения по дискретной математике. М.: Физматлит, 2004. Гл. VII 1.1–1.3.