BLM220 Bilgisayar Mimarisi Ödev 1

S1) Her ikisi de 200 MHz saat hızında iki farklı komut setine sahip iki farklı makine düşünün. Aşağıdaki ölçümler, belirli bir dizi benchmark programı çalıştıran iki makinede kaydedilir:

Instruction Type	Instruction Count (millions)	Cycles per Instruction
Machine A		
Arithmetic and logic	8	1
Load and store	4	3
Branch	2	4
Others	4	3
Machine A		
Arithmetic and logic	2	1
Load and store	8	2
Branch	10	4
Others	4	3

- a. Her makine için etkin CPI, MIPS oranı/hızı ve yürütme süresini (*execution time*) belirleyin.
- b. Sonuçları yorumlayın.

S2) CISC ve RISC tasarımının ilk örnekleri sırasıyla VAX 11/780 ve IBM RS/6000'dir. Tipik bir benchmark programı kullanıldığında, aşağıdaki makine karakteristikleri sonucu:

Processor	Clock Frequency	Performance	CPU Time
VAX 11/780	5 MHz	1 MIPS	12 x seconds
IBM RS/6000	25 MHz	18 MIPS	x seconds

Son sütun, VAX'in ölçülen CPU zamanında IBM'den 12 kat daha uzun süre gerektirdiğini gösterir.

- a. İki makinede çalışan bu benchmark programı için makine kodunun komut sayısının göreceli boyutu (*relative size*) nedir?
- b. İki makine için CPI değerleri nedir?

S3) Üç bilgisayarda dört benchmark programı yürütülmüştür ve aşağıdaki sonuçlar elde edilmiştir:

	Computer	Computer	Computer
	A	В	C
Program 1	1	20	40
Program 2	1000	80	20
Program 3	400	1000	100
Program 4	200	1600	200

Tablo, dört programın her birinde yürütülen 100.000.000 komutla yürütme süresini (*execution time*) saniye cinsinden gösterir. Her program için her bilgisayar için MIPS değerlerini hesaplayın. Ardından, dört program için eşit ağırlıkları varsayarak aritmetik, harmonic ve geometrik ortalamaları hesaplayın ve bilgisayarları bu ortalamaların sonuçlarına göre ayrı ayrı sıralayın.

S4 Kendi kişisel bilgisayarınızdaki işlemciye ilişkin saat hızı, çekirdek sayısı, önbellek seviyeleri, hangi önbellek seviyelerinin çip üzerinde olduğu, ön-bellek miktarları, işlemcinin kelime uzunluğu (Word length), transistör sayısı, feature size, adreslenebilir bellek miktarı, desteklediği sanal bellek miktarı, piyasaya çıkış tarihi gibi belli başlı önemli özelliklerini içeren aşağıdaki gibi bir tablo oluşturunuz. Tablonun başında işlemcinizin adını ve kodunu mutlaka belirtiniz.

Introduced	
Clock speeds	
Bus	
wid	
th	
Number of	
transistors	
Feature size (nm)	
Addressable	
memory	
Virtual memory	
Cache	
Number of cores	

Ödev teslim şekli:

Yukarıdaki 4 soruyu çözüp, BTU Moodle sistemi üzerinden bu platformda belirtilen <u>son tarihten önce</u> teslim edin. Cevaplarınızı içeren pdf dokumanı sıkıştırılmış dosya içerisinde teslim ediniz. Ödev dosya adı için sistematik bir dosya adı kullanın. Örneğin, BLM220_Odev1_AdSoyad_OgrenciNo.pdf, BLM220 dersinin 1. Ödevi için örnek dosya adıdır.