Artificial Intelligence II

CSC 720—Spring 2010

Jon Doyle

Department of Computer Science North Carolina State University

January 17, 2011

NC State University

1 / 400

Artificial Intelligence I

Logical rationality

NC State University

37 / 400

Logic and rationality

Logic as instrumental

- An analytical tool
- A representational tool
- A computational tool
- Logic proper

Logic as a norm for thinking

- Prescriptions for representation
- Prescriptions for reasoning
- Logicism

NC State University

38 / 400

Artificial Intelligence I

Logic

Logic provides an analytical tool

- Logical analysis can apply to all types of representations
- Precise concepts for expressing meanings
 - How to describe things with words
 - Language and syntax
 - · Meaning and semantics
- Precise concepts for critiquing meanings
 - How to tell if your words meant what you intended
 - Inference and proof
 - Analytical concepts
- Formal inference systems which "preserve truth"
 - Not a guarantee of correct answers!
 - Not a guarantee of useful answers!
 - Not a guarantee of intelligible answers!

NC State University

39 / 400

Logic

Formal representations and computational mechanisms

- Expressing logical descriptions and inferential connections
 - Predicate, modal, and model-theoretic logics
 - Description logics
 - · Microtheories and metatheories
- Computing logical inference and learning
 - Resolution-based logic programming systems
 - Answer-set programming systems
- Computing theory revision and identification
 - Reason maintenance systems
 - Inductive logic programming and PAC learning

NC State University

40 / 400

Artificial Intelligence

Logio

There are many different logics

Propositional and first-order logics

Subject-independent building blocks

Other logical languages "build in" different concepts

- Higher-order logics (set-theoretic, categorical, ...)
- Modal logics (necessitative, dynamic, ...)
- Model-theoretic logics (probability, topology, ...)
- Philosophical logics (deontic, epistemic, ...)
- Commonsense logics (nonmontonic, fuzzy, ...)
- Computational logics (temporal, functional, ...)

NC State University

41 / 400

Artificial Intelligence
© 2010 by Jon Doyle

Logicism

Logicism

Normative logical rationality

- Beliefs must be consistent
- Inferences must be sound
- Inferences must be complete
 - If it's sound, do it!
- Knowledge of logic must be complete
 - No insistence that general knowledge is complete
- Learning and action must preserve consistency

NC State University

42 / 400

Artificial Intelligence
© 2010 by Jon Doy

Logicism

Consistency

Emerson's thesis

• "A foolish consistency is the hobgoblin of little minds"

Minsky's corollary

Only small minds can be consistent for very long

Niven's corollary

"Some mistakes we must carry with us"

NC State University

43 / 400

Logicism

Soundness

Soundness is not sufficient

• $A \vdash A \land (A \lor A)$

Minsky: adding control axioms does not help

 $egin{aligned} A \ A
ightarrow B \ ext{``Avoid concluding B''} \ \hline B \wedge ext{``Avoid concluding B''} \end{aligned}$

Soundness is not necessary

• At(door) ⊢ [Walk-to(desk)]At(desk)

NC State University

44 / 400

Artificial Intelligence II

Logical knowledge

Logical omniscience

Full knowledge of logical consequences

- If P is known and $P \models Q$, then Q is known too
- If P and Q are inconsistent, the inconsistency is known
- To ensure consistency, one must have full knowledge of consequences

Necessary for logical rationality

 To ensure consistency, one must have full knowledge of consequences

NC State University

45 / 400

Logical knowledge

Modal logics of knowledge and belief

Suppose that $\Box \phi$ means "I know that ϕ "

• Then $\Box \phi \rightarrow \phi$ seems right

Suppose that $\Box \phi$ means "I believe that ϕ "

• Then $\Box \phi \rightarrow \phi$ seems wrong

NC State University

46 / 400

Artificial Intelligence I

Logical knowledge

Kripke semantics

A form of possible world semantics for necessity

- $\Box \phi$ is true if ϕ is true in all possible worlds
- $\Box \phi$ is true if $w \models \phi$ for all $w \in W$

Insight: what is possible varies across logics

- Capture this variation in an accessibility relation S between possible worlds in W
- Accessibility = what is possible with respect to a possible world
- $\Box \phi$ is true in world w if $w' \models \phi$ for all $w' \in S(w)$
- Disputed axioms correspond to different accessibility relations

NC State University

47 / 400

Logical knowledge

Modal logic axiom schemata

- $K: \Box(\alpha \to \beta) \to (\Box\alpha \to \Box\beta)$
 - Deductive closure of knowledge
 - All models
- $T: \Box \phi \rightarrow \phi$
 - Knowledge implies truth
 - · Reflexive models
- *PI* (or 4): $\Box \phi \rightarrow \Box \Box \phi$
 - Positive introspection: "I know I know what I know"
 - Transitive models
- *NI* (or *E* or 5): $\neg \Box \phi \rightarrow \Box \neg \Box \phi$
 - Negative introspection: "I know I don't know what I don't know"
 - Euclidean models

Logical knowledge

Axiomatic modal logic

- Base logic *K* = axiomatic predicate logic
 - + Axiom scheme $K : \Box(\alpha \to \beta) \to (\Box\alpha \to \Box\beta)$
 - + Necessitation rule: From α , infer $\Box \alpha$

Epistemic logics

- Logic T = K + scheme T
- Logic S4 = T + scheme PI
- Logic S5 = S4 + scheme NI

Doxastic logics

- Logic K4 = S4 T
- Logic K5 = S5 T

NC State University

50 / 400

Artificial Intelligence

Logical learning

Logical views of thinking

Mental states modeled as logical theories

- Consistent set of logical sentences
- Theory = consequentially closed set of logical sentences
 - · Usually modeled as deductively closed

Reasoning modeled as theory evolution

- Distinguish change in view from logical inference
 - Add, remove, or change statements
 - Same or changing language

Monotonicity and nonmonotonicity

Temporal mappings from instants to mental states

- Monotonic: $t \le t' \to \mathsf{Th}(t) \subseteq \mathsf{Th}(t')$
- Nonmonotonic: $t \le t' \not\to \mathsf{Th}(t) \subseteq \mathsf{Th}(t')$
- Ordinary reasoning is temporally nonmonotonic

Logical mappings from axiom sets to theories

- Monotonic: $A \subseteq A' \to \mathsf{Th}(A) \subseteq \mathsf{Th}(A')$
- Nonmonotonic: $A \subseteq A' \not\rightarrow \mathsf{Th}(A) \subseteq \mathsf{Th}(A')$
- Ordinary logic is logically monotonic

NC State University

52 / 400

Artificial Intelligence I

Logical learning

A practical problem

Your predicament:

- You think the English test is on Tuesday
- You think the math test is on Wednesday
- You hear your classmate Alice wish that the tests were not on the same day

What do you do?

Ideal belief or theory revision

Theory A = Cn(A) as the object of change

- Addition $A + x = Cn(A \cup \{x\})$
- Contraction A x removes x from A if possible
- Revision A + x consistently adds x to A
- Levi identity: $A + x \stackrel{\text{def}}{=} (A \neg x) + x$

Quine's minimum mutilation principle

- What is minimized?
- · Rescher's preferred maximal consistent subsets
- What sort of preferences?

NC State University

54 / 400

Artificial Intelligence I

Logical learning

Candidates for revision

Some candidates for consideration

- $A \Downarrow x \stackrel{\text{def}}{=} \{B \subseteq A \mid B \nvdash x\}$
- $A \downarrow ^* x \stackrel{\text{def}}{=} \{ Cn(B) \mid B \in A \downarrow x \}$
- $A \downarrow x \stackrel{\text{def}}{=} \max_{\subset} (A \Downarrow x)$

Some candidates for contractions

- Maxichoice: choose one from A ↓ x
- Partial meet: intersect a subset of $A \downarrow x$
- Full meet: $\bigcap A \downarrow x$

AGM contraction axioms

Alchourrón, Gärdenfors, and Makinson axioms

- $(\dot{-}1)$ $A \dot{-} x$ is a theory whenever A is
- $(\dot{-2})$ $A \dot{-} x \subseteq A$
- $(\dot{-}3)$ If $x \notin Cn(A)$, then $A \dot{-} x = A$
- $(\dot{-}4)$ If $\nvdash x$, then $x \notin Cn(A \dot{-}x)$
- $(\dot{-}5)$ If $\vdash x \leftrightarrow y$, then $A \dot{-} x = A \dot{-} y$
- $(\dot{-}6)$ $A \subseteq Cn((A \dot{-} x) + x)$ whenever A is a theory
- ($\dot{}$ $\dot{}$
- ($\dot{-}8$) If $x \notin A \dot{-} (x \wedge y)$, then $A \dot{-} (x \wedge y) \subseteq A \dot{-} x$ whenever A is a theory

NC State University

56 / 400

Artificial Intelligence

Logical learning

Another perspective

Epistemic entrenchment

- Ordering over propositions in theories
- x < y means give up x before y
 - $x \le y$ if $x \vdash y$
 - $x \le y$ iff $x \notin A (x \land y)$ or $\vdash x \land y$

Conditions on contractions

Gärdenfors and Makinson axioms

- (≤ 1) If $x \leq y$ and $y \leq z$, then $x \leq z$
- (≤ 2) If $x \vdash y$, then $x \leq y$
- (≤ 3) Either $x \leq x \land y$ or $y \leq x \land y$
- (\leq 4) If A is consistent, then $x \leq y$ for all y iff $x \notin A$
- (≤5) If $x \le y$ for all x, then $\vdash y$

Relating the perspectives

• Theorem: the axiom sets are equivalent

NC State University

58 / 400

Artificial Intelligence II

Logical learning

What determines entrenchment?

AGM approach based on coherence among beliefs

- Coherence conditions on theories (deductive closure and consistency) and on contractions
- No explicit separation between types of beliefs, only differing levels of entrenchment
- Entrenchment apparently exogenous to standard attitudes (belief, desire, intention)

Why one order and not another?

- Entrenchment from agent preferences
- Entrenchment from structure of memory

NC State University

59 / 400

Artificial Intelligence
© 2010 by Jon Doyle

Meaning

Identifying logical states of mind

How does one tell what an agent believes?

- Ask questions about what is believed?
- Infer from observed behavior?
- Ask for explanations of behavior?
- Observe in brain?

Later: economists give a different answer

NC State University

60 / 400

Artificial Intelligence
© 2010 by Jon Doy

Meaning

Logical and other semantics

Logical semantics is based on denotation

Other conceptions

- Embodiment and causal connection
- Operational
- Pragmatic
- Red Queen semantics

NC State University

61 / 400

Meaning

Reflection versus requirement

- Necessitation rule: ϕ , therefore $Know(\phi)$
- Knowledge schema: $Know(\phi) \rightarrow \phi$
- Adding axiom $Know(\phi)$ produces ϕ
- Axiom $Know(\phi)$ acts as a specification or requirement of different character than merely adding ϕ
 - "You are getting sleepy, very sleeeeeepy"
- Force of requirement depends on constitution that enforces the knowledge schema

NC State University

62 / 400

Artificial Intelligence II

© 2010 by Jon Doyle