Tabulation:

across receptor in volt	ohm(R)	voltage acondinate of the voltage (vp)	1700
3.45	1.89		R/R
3.44	1.83		2.804
3 • 4 3	1.71		2094
3.43	1.58		3027
3.42	1.45		3.72
3.37	0.98		4.33
	3.45 3.45 3.43 3.43	3.45 1.89 3.45 1.83 3.44 1.83 3.43 1.71 3.43 1.58 3.42 1.45	3.45 1.89 1.66 3.45 1.83 1.67 3.43 1.71 1.67 3.43 1.58 1.68 3.42 1.45 1.69

Diode senes Resistance (R) =

Total resistance - 666 sh

 $R = 1.89 - 0.66 = 1.23 \text{ k}\Omega$ $R = 1.83 - 0.66 = 1.17 \text{ k}\Omega$ $R = 1.71 - 0.66 = 1.05 \text{ k}\Omega$ $R = 1.58 - 0.66 = 0.92 \text{ k}\Omega$ $R = 1.45 - 0.66 = 0.79 \text{ k}\Omega$ $R = 0.45 - 0.66 = 0.32 \text{ k}\Omega$

Higher to the content

510 € zakies ich a IV Yaxioliem o imp 1061 1-62 1-63 -64 1-65 1-66 1-66 1-66 1-69 1-10111 1072 1-73 VIED

connection 1000

		Vin = IV
SOMO	Length of fibre (m)	Amp litude
1	Im	IV
2	3 m	6.6 V

Measwement ;

Bending 1000

	dength= Im , Vin= IV		
SOMO	Diameter	Amplitude	
	of fibre	Amphiace	
	(cm)		
1	6	3	
2	5	2 . 8	
3	4	205	
4	2	2	
5		2.7	

Connection
$$loss$$
:
$$e^{-d}(u_{2}-u_{1}) = \frac{1}{2} \frac{1}{2}$$

$$e^{-d}(3-1) = \frac{1}{2} \frac{1}{2}$$

$$e^{-d}(3-1) = \frac{1}{2} \frac{1}{2}$$

$$e^{-2d} = \frac{1}{2} \frac{1}{2}$$

Bending 1055: Model 9raph

model graph:

1	Trequenc	y man	garmens	Wagain =
5-no	(HZ)	No(v)	OND THE	20 log (Vo/VI)
1	300 HZ	3	3	-9.5
2	500HZ	305	3.5	-10.89
3	1000HZ	4	4	-12.04
4	1500HZ	4	4	-12.04
5	1800HZ	4	4	-12.04
6	2000 HZ	4	9	-12004
7	2500HZ	305	3.5	-10.89
8	3000 H Z	2	2	- 6.02

Band width =
$$F_2 - F_1$$

= 2500-500
= 2000

TOOL THE PERSON PROPERTY OF THE WAR STREET

process to store or seems to describe the seems to the se

Tabulation

T= TONT TOFF

gno	Frequency (HZ)	TON	TOFF	Bit date = Duty cycle = VTONI TONY TONE
1	ONE		0.0	1 = 1000 50/1
2	We 2m	0.25	0.25	1 = 2000 SDY

Model graph

Duty cycle =
$$\frac{T_{0N}}{T_{0N}+T_{0FF}}$$

$$= \frac{0.5}{1} \times 100$$

$$= 50 \times 100$$

rb Height (n)	Diameter (p) (m	R= D/2	NA = 8/
	2 . 8	1 • 4	0.87373
2. 105	2.8	1.4	0.6823
3. 2	2.8	1.4	0.60
			33 SHOLE

calculation

$$(i) Nh = \frac{\tau}{\sqrt{\tau^2 + d^2}}$$

$$= \frac{1 \cdot 4}{\sqrt{\tau^2 + \tau^4}}$$

$$= 0 \cdot 8 + 3 + 3$$

(iii)
$$N_{A} = \frac{r}{\sqrt{3^{2}+d^{2}}}$$

$$= \frac{1\cdot 4}{\sqrt{1\cdot 4^{2}+1\cdot 6^{2}}}$$

$$= 0\cdot 6823$$

$$(111) N_{A} = \frac{7}{\sqrt{724} d^{2}}$$

$$= \frac{1 \cdot 4}{\sqrt{104^{2} + 2^{2}}}$$

$$= 0.60$$

the management of the section the section