and that the rest are much closer to zero.

```
> apply(trace[, 11:15], 2, mean)
```

```
beta6 beta7 beta8 beta9 beta10 -0.23968561 0.37046946 0.13081722 -0.07842566 0.11911203
```

3.6 Adaptive Sampling

In this section, sequential design of experiments, a.k.a. *adaptive sampling*, is demonstrated on the exponential data of Section 3.3. Gathering, again, the data:

```
> exp2d.data <- exp2d.rand(lh = 0, dopt = 10)
> X <- exp2d.data$X
> Z <- exp2d.data$Z
> Xcand <- lhs(1000, rbind(c(-2, 6), c(-2, 6)))</pre>
```

In contrast with the data from Section 3.3, which was based on a grid, the above code generates a randomly subsampled D-optimal design \mathbf{X} from LH candidates, and random responses \mathbf{Z} . As before, design configurations are more densely packed in the interesting region. Candidates $\tilde{\mathbf{X}}$ are from a large LH-sample.

Given some data $\{X, Z\}$, the first step in sequential design using tgp is to fit a treed GP LLM model to the data, without prediction, in order to infer the MAP tree \hat{T} .

```
> exp1 <- btgpllm(X = X, Z = Z, pred.n = FALSE, corr = "exp",
+ verb = 0)</pre>
```

The trees are shown in Figure 16. Then, use the tgp.design function to create D-optimal candidate designs in each region of \hat{T} . For the purposes of illustrating the improv statistic, I have manually added the known (from calculus) global minimum to XX.

```
> XX <- tgp.design(200, Xcand, exp1)
```

```
sequential treed D-Optimal design in 3 partitions dopt.gp (1) choosing 55 new inputs from 272 candidates dopt.gp (2) choosing 53 new inputs from 263 candidates dopt.gp (3) choosing 93 new inputs from 465 candidates > XX <- rbind(XX, c(-sqrt(1/2), 0))
```

Figure 17 shows the sampled XX locations (circles) amongst the input locations X (dots) and MAP partition ($\hat{\mathcal{T}}$). Notice how the candidates XX are spaced out relative to themselves, and relative to the inputs X, unless they are near partition boundaries. The placing of configurations near region boundaries is

> tgp.trees(exp1)

NOTICE: skipped plotting tree of height 1, with lpost = 120.941

height=2, log(p)=179.174

height=3, log(p)=259.515

Figure 16: MAP trees of each height encountered in the Markov chain for the exponential data, showing $\hat{\sigma}^2$ and the number of observations n at the leaves. $\hat{\mathcal{T}}$ is the one with the maximum $\log(p)$ above.

a symptom particular to D-optimal designs. This is desirable for experiments with tgp models, as model uncertainty is usually high there [3].

Now, the idea is to fit the treed GP LLM model, again, in order to assess uncertainty in the predictive surface at those new candidate design points. The following code gathers all three adaptive sampling statistics: ALM, ALC, & EI.

```
> exp.as <- btgpllm(X = X, Z = Z, XX = XX, corr = "exp",
+ improv = TRUE, Ds2x = TRUE, verb = 0)
```

Figure 18 shows the posterior predictive estimates of the adaptive sampling statistics. The error surface, on the *left*, summarizes posterior predictive uncertainty by a norm of quantiles.

In accordance with the ALM algorithm, candidate locations XX with largest predictive error would be sampled (added into the design) next. These are most likely to be in the interesting region, i.e., the first quadrant. However, these results depend heavily on the clumping of the original design in the uninteresting areas, and on the estimate of \hat{T} . Adaptive sampling via the ALC, or EI (or both) algorithms proceeds similarly, following the surfaces shown in center and right panels of Figure 18.

```
> plot(exp1$X, pch = 19, cex = 0.5)
> points(XX)
> mapT(exp1, add = TRUE)
```


Figure 17: Treed D-optimal candidate locations XX (circles), input locations X (dots), and MAP tree \hat{T}

Figure 18: Left: Image plots of adaptive sampling statistics and MAP trees \hat{T} ; Left; ALM adaptive sampling image for (only) candidate locations XX (circles); center: ALC; and right: