Universität Ulm

Dr. Jan-Willem Liebezeit Marcus Müller Sommersemester 2019

Übungen Analysis 1 für Ingenieure und Informatiker: Blatt 3

9. Man untersuche die Konvergenz der Folgen (x_n) in \mathbb{R} und bestimme gegebenenfalls die Grenzwerte für

$$(a) \quad x_n := \sqrt{n+1} - \sqrt{n}$$

(b)
$$x_n := \frac{1+2+3+\dots+n}{n+2} - \frac{n}{2}$$
 (3)

(c)
$$x_n := \frac{(2-1/\sqrt{n})^{10} - (1+1/n^2)^{10}}{1-1/n^2 - 1/\sqrt{n}}$$
 (2)

(d)
$$x_n := (100 + 1/n)^2$$

(e)
$$x_n := \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \dots + \frac{1}{n(n+1)}$$
 (3)

Hinweise: (a) 3. binomische Formel (b) Beispiel 1.5.5(i) (e) Zeige zuerst, dass $\frac{1}{k(k+1)} = \frac{1}{k} - \frac{1}{k+1}$.

10. Man bestimme alle Häufungswerte der Folgen

(a)
$$x_n := (-1)^n n/(n+1)$$

(b)
$$y_n := (1 + (-1)^n)(n+1)n^{-1} + (-1)^n.$$
 (3)

(c)
$$z_n := ((1+i)/\sqrt{2})^n$$
 (5)

Hinweis zu (c): Eine Folge komplexer Zahlen $z_n := \text{Re}(z_n) + i \text{Im}(z_n)$ ist genau dann konvergent, wenn $\text{Re}(z_n)$ und $\text{Im}(z_n)$ konvergent sind. Eine Zahl w = c + id ist ein Häufungswert der Folge (z_n) , falls es eine Teilfolge (z_{n_k}) gibt, sodass $\text{Re}(z_{n_k}) \to c$ und $\text{Im}(z_{n_k}) \to d$ gilt. Man berechne die ersten Folgenglieder von (z_n) , um die Häufungswerte zu finden.

11. Für $a \in (0, \infty)$ definiere man die reelle Folge (x_n) rekursiv durch $x_0 \ge a$ und (10)

$$x_{n+1} := \frac{1}{2} \left(x_n + \frac{a}{x_n} \right), \quad n \in \mathbb{N}.$$

Man zeige, dass die Folge (x_n) monoton fallend ist und bestimme ihren Grenzwert.

Hinweis: Zeige zuerst mit binomischen Formeln, dass $x_n^2 - a \ge 0$. Betrachte dann den Ausdruck $x_{n+1} - x_n$, um die Monotonie zu zeigen. Benutze dann das Monotonie
prinzip. Zum Auffinden des Grenzwertes $x := \lim_{n \to \infty} x_n$ beachte, dass für diesen gilt: $x = \frac{1}{2} \left(x + \frac{a}{x} \right)$.

12. Man verifiziere, dass

$$\left(1 - \frac{1}{n}\right)^n \to \frac{1}{e} \text{ für } n \to \infty.$$
 (6)

Hinweis: Mit der Bernoullischen Ungleichung kann man zeigen, dass $\lim_{n\to\infty} (1-1/n^2)^n = 1$.