«Сравнительный анализ методов проведения оптимальной по быстродействию коррекции орбиты спутника»

Xромов Π .A.

Научный руководитель: к.ф.-м.н., доцент каф. 804 Ибрагимов Д.Н.

московский авиационный институт (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Москва 2021

1. Основные источники

- Ибрагимов Д.Н. Оптимальная по быстродействию коррекция орбиты спутника. // Труды МАИ. 2017. № 94.
- 2 Ибрагимов Д.Н. Оптимальное по быстродействию управление движением аэростата // Труды МАИ. 2015. №83.
- Малышев В.В., Красильщиков М.Н., Бобронников В.Т. и др. Спутниковые системы мониторинга. М.:МАИ, 2000.
- Беллман Р. Динамическое программирование. М.:ИИЛ, 1960.
- **5** *Пропой А.И.* Элементы теории оптимальных дискретных процессов. М.:Наука, 1973. 256с.

2. Модель спутника

Для описания движения спутника на круговой орбите используются следующие уравнения [Малышев, Красильщиков и др., М.:МАИ, 2000.]:

$$\begin{split} \dot{r} &= v_R, \\ \dot{\theta} &= \frac{v_T}{r}, \\ \dot{v}_R &= \frac{v_R^2}{r} - \frac{1}{r^2}, \\ \dot{v}_T &= -\frac{v_R v_T}{r}. \end{split}$$

Здесь r - расстояние от спутника до начала координат, v_T и v_R - трансверсальная и радиальная компоненты скорости спутника соответственно, θ - угол поворота.

Линеаризованная система:

$$\begin{split} \Delta \dot{r} &= \Delta v_R, \\ \Delta \dot{v}_R &= \Delta r - 2 \Delta v_T, \\ \Delta \dot{v}_T &= -\Delta v_R. \end{split}$$

3. Дискретизация для релейного управления

Предполагаем управление релейным, то есть кусочно-постоянным. В этом случае, при дискретизации мы приходим к следующим конечно-разностным рекуррентным соотношениям:

$$x(k+1) = \widetilde{A}x(k) + \widetilde{B}w(k),$$
 $x(0) = x_0, \ w(k) \in [-\alpha_{max}; \alpha_{max}] \times [-\alpha_{max}; \alpha_{max}], k = 0, 1, 2, \ldots,$ где
$$\widetilde{A} = \begin{pmatrix} -\cos \Delta t + 2 & \sin \Delta t & -2\cos \Delta t + 2 \\ \sin \Delta t & \cos \Delta t & 2\sin \Delta t \\ \cos \Delta t - 1 & -\sin \Delta t & 2\cos \Delta t - 1 \end{pmatrix}$$

$$\widetilde{B} = \begin{pmatrix} -\cos \Delta t + 1 & -2\sin \Delta t + 2\Delta t \\ \sin \Delta t & -2\cos \Delta t + 2 \\ \cos \Delta t - 1 & 2\sin \Delta t - \Delta t \end{pmatrix}, \ w(k) = \begin{pmatrix} w_1(k) \\ w_2(k) \end{pmatrix}$$

4. Дискретизация для импульсного управления

Предполагаем управление импульсным. В этом случае, вектор состояния исходной динамической системы в моменты времени $k\Delta$ разрывно меняется на некоторую величину. Полагая, что в момент t=0 также проводится коррекция, приходим к следующим соотношениям:

$$x(k+1) = \widetilde{A}x(k) + \widetilde{B}w(k),$$

$$x(0) = x_0, \ w(k) \in [-\alpha_{max}; \alpha_{max}] \times [-\alpha_{max}; \alpha_{max}], k = 0, 1, 2, \dots,$$
 где
$$\widetilde{A} = \begin{pmatrix} -\cos \Delta t + 2 & \sin \Delta t & -2\cos \Delta t + 2 \\ \sin \Delta t & \cos \Delta t & 2\sin \Delta t \\ \cos \Delta t - 1 & -\sin \Delta t & 2\cos \Delta t - 1 \end{pmatrix}$$

$$\widetilde{B} = \begin{pmatrix} \sin \Delta t & -2\cos \Delta t + 2 \\ \cos \Delta t & 2\sin \Delta t \\ -\sin \Delta t & 2\cos \Delta t - 1 \end{pmatrix}, \ w(k) = \begin{pmatrix} w_1(k) \\ w_2(k) \end{pmatrix}$$

5. Постановка задачи быстродействия

Рассматривается нестационарная линейная система управления с дискретным временем $(\mathcal{A},\mathcal{U})$

$$x(k+1) = A(k)x(k) + u(k), x(0) = x_0, \ u(k) \in \mathcal{U}(k), \ k \in \mathbb{N} \cup \{0\},$$
 (1)

где $x(k) \in \mathbb{R}^n$ - вектор состояния системы, $\mathcal{U} = \{\mathcal{U}(k)\}_{k=0}^\infty$ - последовательность множеств допустимых управлений, $\mathcal{A} = \{A(k)\}_{k=0}^\infty$ - последовательность матриц системы. Предполагаем, что для всех $k \in \mathbb{N} \cup \{0\}$ матрица $A(k) \in \mathbb{R}^{n \times n}$ - невырожденная, $0 \in \mathcal{U}(k)$, $\mathcal{U}(k)$ - выпуклое множество.

Требуется построить последовательность управлений, которая переводит систему из заданного начального состояния x_0 в начало координат за минимальное число шагов N_{\min} .

6. Множества 0-управляемости

$$\mathfrak{X}(N,k) = \begin{cases} \left\{ x(k) \in \mathbb{R}^n : \exists \ u(k) \in \mathfrak{U}(k), \dots, \\ u(N+k-1) \in \mathfrak{U}(N+k-1) \ x(N+k) = 0 \right\}, \ N \in \mathbb{N}, \end{cases} (2) \\
\{0\}, \ N = 0. \\
N_{\min} = \min\{N \in \mathbb{N} : x_0 \in \mathfrak{X}(N,0)\}.$$

Управление $u^*(k)$ оптимально тогда и только тогда, когда $x^*(k+1) \in \mathcal{X}(N_{\min}-k-1,k+1), k=\overline{0,N_{\min}-1}$

Лемма 1. [Ибрагимов Д.Н. Труды МАИ. 2017. № 94.]

Пусть система множеств $\{X(N,k)\}_{N,k=0}^{\infty}$ удовлетворяет условию 2. Тогда для всех $N\in\mathbb{N}$ и $k\in\mathbb{N}\cup\{0\}$ справедливо представление

$$\mathfrak{X}(N,k) = \sum_{i=0}^{N-1} (-A^{-1}(k) \cdot \ldots \cdot A^{-1}(i+k)) \mathfrak{U}(k+i)$$

7. Принцип максимума

Для использования принципа максимума необходимо, чтобы для всех $k \in \mathbb{N} \cup \{0\}$ множества $\mathcal{U}(k)$ были строго выпуклыми. Обозначим:

$$\alpha = \mu(x_0, \mathfrak{X}(N_{\min}, 0)) = \inf\{t > 0 \colon x_0 \in t \cdot \mathfrak{X}(N_{\min}, 0)\} < 1.$$

Теорема 1. [Ибрагимов Д.Н. Труды МАИ. 2017. № 94.]

Пусть траектория $\{x'(k)\}_{k=0}^{N_{\min}}$ системы управления $(\mathcal{A}, \alpha \cdot \mathcal{U})$ определяется согласно соотношениям:

- 1) $x'(0) = x_0$,
- 2) $u'(k) = \alpha \arg \max_{u \in U(k)} ((A^{-1}(k))^T \psi(k), u),$
- 3) $-\psi(k) \in \mathcal{N}(x'(k), \alpha \cdot \mathcal{X}(N_{\min} k, k)),$
- 4) $x'(k+1) = A(k)x'(k) + u'(k), k = \overline{0, N_{\min} 1}$

Тогда управление $\{u'(k)\}_{k=0}^{N_{\min}-1}$ и траектория $\{x'(k)\}_{k=0}^{N_{\min}}$ оптимальны в задаче быстродействия для системы (1).

8. Метод динамического программирования

Для реализации этого метода необходимо, чтобы для всех $k \in \mathbb{N} \cup \{0\}$ множества $\mathcal{U}(k)$ удовлетворяли условию:

$$U(k) = \bigcap_{i=1}^{I(k)} \{ u \in \mathbb{R}^n : (u, n^i(k)) \leqslant a_i(k) \}, \ k \in \mathbb{N} \cup \{0\}.$$
 (3)

Определим отображение $S_{N,k} \colon \mathbb{R}^n \to \mathbb{R}^n$:

$$S_{N,k}(x) = \arg \min_{u \in \mathcal{U}(k)} \mu(A(k)x + u, \mathcal{X}(N-k-1,k+1)).$$

В случае 3 вычисление отображения $S_{N,k}$ сводится к решению задачи линейного программирования.

Теорема 2. [Ибрагимов Д.Н. Труды МАИ. 2015. №83.]

Пусть система (1) удовлетворяет условию (3), процесс $\{x^*(k), u^*(k-1), x_0\}_{k=0}^{N_{\min}}$ определяется соотношениями

$$x^*(k+1) = A(k)x^*(k) + S_{N_{\min},k}(x^*(k)), \ k = \overline{0, N_{\min} - 1},$$

 $x^*(0) = x_0.$

Tог ∂a

- $x^*(N_{\min}) = 0;$
- оптимальное по быстродействию позиционное управление на k-м шаге имеет вид

$$u^*(k, x^*(k)) = S_{N_{\min}, k}(x^*(k)).$$

Последовательность множеств $\mathfrak{X}(N,0)$ для случая импульсного управления:

Последовательность множеств $\mathfrak{X}(N,0)$ для случая релейного управления:

Случай импульсного управления, принцип максимума.

 $x_0 = (-0.00377869564857395, -0.00391093582674638, 0.0141511512373208)^T,$

$$\alpha_{\rm max} = 0.0035$$

$\mid k \mid$	$x_1^*(k)$	$x_{2}^{*}(k)$	$x_3^*(k)$
0	$-0.37787 \cdot 10^{-2}$	$-0.39109 \cdot 10^{-2}$	$1.41512 \cdot 10^{-2}$
1	$-0.30870 \cdot 10^{-2}$	$0.58472 \cdot 10^{-2}$	$1.03056 \cdot 10^{-2}$
2	$-0.19824 \cdot 10^{-2}$	$0.59918 \cdot 10^{-2}$	$0.47280 \cdot 10^{-2}$
3	$0.00698 \cdot 10^{-2}$	$0.35937 \cdot 10^{-2}$	$0.07851 \cdot 10^{-2}$
4	0	0	0

k	$u_1^*(k)$	$u_{2}^{*}(k)$	$u_{3}^{*}(k)$
0	$-0.04354 \cdot 10^{-2}$	$-0.24779 \cdot 10^{-2}$	$-0.27185 \cdot 10^{-2}$
1	$-0.08869 \cdot 10^{-2}$	$-0.40092 \cdot 10^{-2}$	$-0.35862 \cdot 10^{-2}$
2	$-0.17352 \cdot 10^{-2}$	$-0.52475 \cdot 10^{-2}$	$-0.01554 \cdot 10^{-2}$
3	$-0.10099 \cdot 10^{-2}$	$-0.38877 \cdot 10^{-2}$	$0.01550 \cdot 10^{-2}$

Случай релейного управления, принцип максимума.

 $x_0 = (-0.00377869564857395, -0.00391093582674638, 0.0141511512373208)^T$

$$\alpha_{\rm max}=0.014$$

$\mid k \mid$	$x_1^*(k)$	$x_2^*(k)$	$x_3^*(k)$
0	$-0.37787 \cdot 10^{-2}$	$-0.39109 \cdot 10^{-2}$	$1.41512 \cdot 10^{-2}$
1	$-0.35812 \cdot 10^{-2}$	$0.40915 \cdot 10^{-2}$	$1.09714 \cdot 10^{-2}$
2	$-0.25522 \cdot 10^{-2}$	$0.49660 \cdot 10^{-2}$	$0.56199 \cdot 10^{-2}$
3	$-0.03450 \cdot 10^{-2}$	$0.33897 \cdot 10^{-2}$	$0.15945 \cdot 10^{-2}$
4	0	0	0

k	$u_1^*(k)$	$u_{2}^{*}(k)$	$u_{3}^{*}(k)$
0	$-0.09297 \cdot 10^{-2}$	$-0.42336 \cdot 10^{-2}$	$-0.20526 \cdot 10^{-2}$
1	$-0.05541 \cdot 10^{-2}$	$-0.35411 \cdot 10^{-2}$	$-0.37684 \cdot 10^{-2}$
2	$-0.12421 \cdot 10^{-2}$	$-0.51334 \cdot 10^{-2}$	$-0.05811 \cdot 10^{-2}$
3	$-0.05769 \cdot 10^{-2}$	$-0.39867 \cdot 10^{-2}$	$-0.06676 \cdot 10^{-2}$

Случай импульсного управления, метод динамического программирования.

 $x_0 = (-0.00377869564857395, -0.00391093582674638, 0.0141511512373208)^T,$

 $\alpha_{\rm max} = 0.0035$

k	$x_1^*(k)$	$x_2^*(k)$	$x_3^*(k)$
0	$-0.37787 \cdot 10^{-2}$	$-0.39109 \cdot 10^{-2}$	$1.41512 \cdot 10^{-2}$
1	$-0.33356 \cdot 10^{-2}$	$0.39372 \cdot 10^{-2}$	$1.02081 \cdot 10^{-2}$
2	$-0.19054 \cdot 10^{-2}$	$0.68677 \cdot 10^{-2}$	$0.52779 \cdot 10^{-2}$
3	$-0.06459 \cdot 10^{-2}$	$0.51401 \cdot 10^{-2}$	$0.051834 \cdot 10^{-2}$
4	$2.38438 \cdot 10^{-13}$	$0.20863 \cdot 10^{-2}$	$-0.20863 \cdot 10^{-2}$
5	0	0	0

k	$u_1^*(k, x^*(k))$	$u_2^*(k, x^*(k))$	$u_3^*(k, x^*(k))$
0	$0.03625 \cdot 10^{-2}$	$0.25932 \cdot 10^{-2}$	$-0.38625 \cdot 10^{-2}$
1	$-9.65681 \cdot 10^{-7}$	$-0.02997 \cdot 10^{-2}$	$-0.34910 \cdot 10^{-2}$
2	$-0.03194 \cdot 10^{-2}$	$-0.28338 \cdot 10^{-2}$	$-0.31806 \cdot 10^{-2}$
3	$-0.03001 \cdot 10^{-2}$	$-0.25518 \cdot 10^{-2}$	$-0.16587 \cdot 10^{-2}$
4	$-0.03864 \cdot 10^{-2}$	$-0.09891 \cdot 10^{-2}$	$0.24728 \cdot 10^{-2}$

Случай релейного управления, метод динамического программирования.

 $x_0 = (-0.00377869564857395, -0.00391093582674638, 0.0141511512373208)^T,$

$$\alpha_{\rm max} = 0.014$$

k	$x_1^*(k)$	$x_2^*(k)$	$x_{3}^{*}(k)$
0	$-0.37787 \cdot 10^{-2}$	$-0.39109 \cdot 10^{-2}$	$1.41512 \cdot 10^{-2}$
1	$-0.37214 \cdot 10^{-2}$	$0.40749 \cdot 10^{-2}$	$1.05939 \cdot 10^{-2}$
2	$-0.25045 \cdot 10^{-2}$	$0.53179 \cdot 10^{-2}$	$0.58769 \cdot 10^{-2}$
3	$-0.12043 \cdot 10^{-2}$	$0.47376 \cdot 10^{-2}$	$0.10767 \cdot 10^{-2}$
4	$-0.02846 \cdot 10^{-2}$	$0.24284 \cdot 10^{-2}$	$-0.16765 \cdot 10^{-2}$
5	0	0	0

k	$u_1^*(k, x^*(k))$	$u_2^*(k, x^*(k))$	$u_3^*(k, x^*(k))$
0	$0.02625 \cdot 10^{-2}$	$0.17970 \cdot 10^{-2}$	$-0.37625 \cdot 10^{-2}$
1	$-0.03342 \cdot 10^{-2}$	$-0.29516 \cdot 10^{-2}$	$-0.31658 \cdot 10^{-2}$
2	$-0.03030 \cdot 10^{-2}$	$-0.27033 \cdot 10^{-2}$	$-0.31970 \cdot 10^{-2}$
3	$-0.02819 \cdot 10^{-2}$	$-0.23967 \cdot 10^{-2}$	$-0.15516 \cdot 10^{-2}$
4	$-0.02031 \cdot 10^{-2}$	$-0.14530 \cdot 10^{-2}$	$0.21642 \cdot 10^{-2}$

16. Траектория системы

Представлены иллюстрации результатов, полученных с помощью метода динамического программирования.

Импульсное управление Релейное управление

17. Итоги

Все расчёты были проведены с помощью программного пакета Maple 2019

Таблица: Время работы программ (в секундах).

Управление	Принцип максимума	Метод дин. программирования
Релейное	6.116	15.074
Импульсное	7.467	16.053

Таблица: Значения N_{\min} .

Управление	Принцип максимума	Метод дин. программирования
Релейное	$N_{\min} = 6$	$N_{\min} = 5$
Импульсное	$N_{\min} = 6$	$N_{\min} = 5$

Результаты, выносимые на защиту:

- Построены математические модели управления движением спутника по круговой орбите в случаях релейного и импульсного управлений.
- Проведены численные расчёты для двух различных методов решения задачи быстродействия: принципа максимума и метода динамического программирования.
- Проведено сопоставление полученных результатов.

Если представление

$$\mathfrak{X}(N-k-1,k+1)=\mathrm{conv}\{x^1(N-k-1,k+1),\ldots,x^M(N-k-1,k+1)\},$$
 известно, то нахождение отображения $S_{N,k}$ в случае 3 в каждой точке $x\in\mathbb{R}^n$ может быть сведено к решению задачи линейного программирования следующего вида:

$$\min_{r,\lambda_1,...,\lambda_M,u} r,
A(k)x + u = \sum_{i=1}^M x^i (N - k - 1, k + 1)\lambda_i,
\sum_{i=1}^M \lambda_i \le r,
0 \le \lambda_i \le r, i = 1,..., M,
(u, n^j(k)) \le a_j(k), j = 1,..., I(k).$$

Введём обозначение $z(t)=(\Delta r, \Delta v_R, \Delta v_T)^T$ и запишем в векторно-матричном виде задачу Коши:

$$z(t) = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 2 \\ 0 & -1 & 0 \end{pmatrix} z(t), \ z(0) = z_0.$$

Эта система дифференциальных уравнений имеет решение следующего вида:

$$z(t) = \begin{pmatrix} -\cos t + 2 & \sin t & -2\cos t + 2\\ \sin t & \cos t & 2\sin t\\ \cos t - 1 & -\sin t & 2\cos t - 1 \end{pmatrix} z_0.$$

Пусть динамическая система управления описывается системой линейных ОДУ:

$$\dot{y}(t) = Ay(t) + f(t)$$
$$y(0) = y_0$$

Слагаемое f(t) описывает возмущение, управление и прочие внешние факторы, воздействующие на траекторию системы. Требуется построить дискретную систему управления:

$$x(k+1) = \widetilde{A}x(k) + \widetilde{B}u(k) \quad x(0) = y_0,$$

которая эквивалентна первой в смысле выполнения для некоторого $\Delta>0$ равенства:

$$x(k) = y(k\Delta), k \in \mathbb{N}$$

22. Приложение 4 - замена, необходимая для использования принципа максимума

$$\widetilde{u}(2k) = \begin{pmatrix} w_1(3k) \\ w_2(3k) \\ w_1(3k+1) \end{pmatrix}, \ \widetilde{u}(2k+1) = \begin{pmatrix} w_2(3k+1) \\ w_1(3k+2) \\ w_2(3k+2) \end{pmatrix}$$

$$x(2k) = y(3k), \ x(2k+1) = \widetilde{A}y(3k+1) + \widetilde{B} \begin{pmatrix} w_1(3k+1) \\ 0 \end{pmatrix},$$

$$A(k) = \begin{cases} \widetilde{A}^2, k = 0, 2, 4, \dots, \\ \widetilde{A}, k = 1, 3, 5, \dots, \end{cases}$$

$$\begin{bmatrix} \left(\widetilde{A} \begin{pmatrix} \sin \Delta t \\ \cos \Delta t \\ -\sin \Delta t \end{pmatrix} \middle| \widetilde{A} \begin{pmatrix} -2\cos \Delta t + 2 \\ 2\sin \Delta t \\ 2\cos \Delta t - 1 \end{pmatrix} \middle| \begin{pmatrix} \sin \Delta t \\ \cos \Delta t \\ -\sin \Delta t \end{pmatrix} \right), k = 0, 2, 4, \dots,$$

$$\begin{bmatrix} \left(\widetilde{A} \begin{pmatrix} \cos \Delta t \\ \cos \Delta t \\ -\sin \Delta t \end{pmatrix} \middle| \widetilde{A} \begin{pmatrix} -2\cos \Delta t + 2 \\ 2\sin \Delta t \\ 2\cos \Delta t - 1 \end{pmatrix} \middle| \begin{pmatrix} \sin \Delta t \\ \cos \Delta t \\ -\sin \Delta t \end{pmatrix} \middle| (-2\cos \Delta t + 2) \\ 2\sin \Delta t \\ 2\cos \Delta t - 1 \end{pmatrix} \middle| (-2\cos \Delta t + 2) \\ 2\sin \Delta t \\ 2\cos \Delta t - 1 \end{pmatrix}, k = 1, 3, 5, \dots$$