Onde

Velocità v, pulsazione ω , lunghezza d'onda λ , periodo T, frequenza f, numero d'onda k.

$$v = \omega/k = \lambda/T = \lambda f$$

 $\omega = 2\pi/T, \quad k = 2\pi/\lambda$

Onde su una corda

Velocità: $v = \sqrt{T/\mu}$

Spostamento: $y = y_{\text{max}} \sin(kx - \omega t)$

Potenza: $P = \frac{1}{2}\mu v(\omega y_{\text{max}})^2$

Onde sonore

Velocità:
$$v = \sqrt{B/\rho} = \sqrt{\gamma p/\rho}$$

$$v(T) = v(T_0)\sqrt{T/T_0}$$

Spostamento: $s = s_{\text{max}} \cos(kx - \omega t)$

Pressione:
$$\Delta P = \Delta P_{\text{max}} \sin(kx - \omega t)$$

 $\Delta P_{\rm max} = \rho v \omega s_{\rm max}$

Intensità:
$$I = \frac{1}{2}\rho v(\omega s_{\text{max}})^2 = \frac{\Delta P_{\text{max}}^2}{2\rho v}$$

Intensità(dB):
$$\beta = 10 \log_{10} \frac{I}{I_0}$$

Soglia udibile $I_0 = 1.0 \times 10^{-12} \,\text{W/m}^2$

Effetto Doppler

$$f' = \left(\frac{v + v_O \cos \theta_O}{v - v_S \cos \theta_S}\right) f$$