1. 14.3 Derivadas parciales

■ Derivada en una dimensión:

$$\lim_{h \to 0} \frac{f(x+h) - f(x)}{h} = f'(x)$$

• En una función con dos variables independientes:

$$f(x,y) = \begin{cases} f_x(x,y) \\ f_y(x,y) \end{cases}$$
 Derivadas parciales

• Al derivarse parcialmente respecto a una variable, la otra se mantiene constante:

$$f_x(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}$$
 # y se mantiene constante
 $f_y(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}$ # x se mantiene constante

• Se pueden utilizar todas las reglas de derivación para funciones de 1 variable:

- Suma
- Producto
- Cociente
- Cadena

ullet 1 eras derivadas parciales de f(x,y): encuentre todas las derivadas parciales posibles de f_x & f_y

• Notación:

$$f_x = \frac{\delta f}{\delta x} = \frac{\delta z}{\delta x}$$
$$f_x = \frac{\delta f}{\delta y} = \frac{\delta z}{\delta y}$$

• Evite f'(x,y) para evitar ambigüedad.

1.1. Ejercicios

Encuentre las derivadas parciales de las siguientes funciones.

1. $f(x,y) = 2x^2 + 3xy$: Recordar lo siguiente: $f_x(x,y)$ & $f_y(x,y)$

$$f_x = 4x + 3y \qquad f_y = 0 + 3x$$

2.
$$g(x,y) = y(x^2+1)^3 + x^2(y^4-4)^4 + 5x^2y^3$$
:

$$g_x = 3y(x^2 + 1)^2 2x + 2x(y^4 - 4)^4 + 10xy^3$$

$$g_y = 1 \cdot (x^2 + 1)^3 + 16y^3 x^2 (y^4 - 4)^3 + 15x^2 y^2$$

1

3. $h(s,t) = (s^2 + 10t)^2 \cdot (t^4 + s^3)^3$: # Regla del producto y de la cadena.

$$h_s = 4s(s^2 + 10t)^1 \cdot (t^4 + s^3)^3 + 3 \cdot 3s^2(s^2 + 10t)^2 \cdot (t^4 + s^3)^2$$

$$h_t = 20(s^2 + 10t)^1 \cdot (t^4 + s^3)^3 + 12t^3(s^2 + 10t)^2, (t^4 + s^3)^2$$

Evalúe la derivada en punto (a, b):

$$f_x(a,b) = \frac{\delta f}{\delta x}\Big|_{(a,b)}$$

1. $w(r,\theta) = r^2 \sin(2\theta) + e^{\pi r - \theta}$, encuentre $\frac{\delta w}{\delta \theta}\Big|_{(2,\pi)}$

$$\frac{\delta w}{\delta \theta} = 2r^2 \cos(2\theta) - e^{\pi r - \theta}$$

$$\frac{\delta w}{\delta \theta}\Big|_{(2,\pi)} = w_{\theta}(2,\pi) = 2 \cdot 4 \cos(2\pi) - e^{2\pi - \pi}$$

$$= 8 - e^{\pi}$$

2. Derivadas parciales par funciones de 2 o más variables

• Se deriva respecto a una variable y el resto se mantienen constantes.

$$w = f(x, y, z)$$

3 1 eras derivadas parciales: f_x, f_y, f_z .

$$u = f(x_1, x_2, \dots, x_n)$$

n derivadas parciales:

$$\frac{\delta u}{\delta x}, \dots \frac{\delta u}{\delta x_n}$$

2.1. Ejercicio

Encuentre todas las primeras derivadas pariales de las sigentes funciones:

•
$$f(x,y,z) = \sqrt[4]{x^4 + 8xz + 2y^2}$$

$$f_x = \frac{1}{4}(x^4 + 8xz + 2y^2)^{-\frac{3}{4}} \cdot (4x^3 + 8z + 0)$$

$$f_y = \frac{1}{4}(x^4 + 8xz + 2y^2)^{-\frac{3}{4}} \cdot (4y)$$

$$f_z = \frac{1}{4}(x^4 + 8xz + 2y^2)^{-\frac{3}{4}} \cdot (8x)$$

$$p(r, \theta, \phi) = r \cdot \tan(\phi^2 - 4\theta)$$
:

$$p_r = \tan(\phi^2 - 4^{\theta})$$

$$p_{\theta} = -4r \sec^2(\phi^2 - 4\theta)$$

$$p_{\phi} = 2\phi r \sec^2(\phi^2 - 4\theta)$$

Funciones vectoriales 1 variable: $\vec{r}'(t), \dots$

3. Derivadas parciales de orden superior (pág. 100)

- Orden superior: Segundas, terceras, cuartas, etc. derivadas.
- ullet Como $f_x(x,y)$ & $f_y(x,y)$ son también funciones en dos variables, pueden tener derivadas parciales.

Las segundas derivadas parciales, éstas también tienen sus derivadas parciales, terceras derivadas parciales.

$$\begin{array}{cccc} f_{xxx} & f_{xxy} & f_{yyy} & f_{yxy} \\ f_{xxy} & f_{xyx} & f_{yyx} & f_{yxx} \end{array}$$

 \blacksquare Las derivadas parciales cruzadas f_{xy} & f_{yx} son iguales si la función es diferenciable.

$$f_{xy} = f_{yx} \qquad f_{xyy} = f_{yyx} = f_{yxy}$$

■ Notación delta:

$$f_{xx} = \frac{\delta}{\delta x} \left(\frac{\delta f}{\delta x} \right) = \frac{\delta^2 f}{\delta x^2} \qquad f_{yy} = \frac{\delta^2 f}{\delta y^2}$$
$$f_{xy} = \frac{\delta}{\delta y} \left(\frac{\delta f}{\delta x} \right) = \frac{\delta^2 f}{\delta y \delta x} \qquad f_{yx} = \frac{\delta^2 f}{\delta y \delta y}$$

3.1. Ejercicios

Encuentre todas las 2das derivadas parciales:

1.
$$f(x,y) = \sin(mx + ny)$$
 $m, n \in \mathbb{R}$:

Primeras derivadas parciales :

$$f_x = m\cos(mx + ny)$$
$$f_y = n\cos(mx + ny)$$

Segundas derivadas parciales:

$$f_{xx} = -m^2 \sin(mx + ny)$$
$$f_{yy} = -n^2 \sin(mx + ny)$$

$$f_{xy} = -mn\sin(mx + ny)$$

 $f_{yx} = -mn\sin(mx + ny)$ Iguales

$$2. \ z = \cos(2xy) :$$

$$1^{\text{ eras }}: \quad \frac{\delta z}{\delta x} = -2\sin(2xy), \quad \frac{\delta z}{\delta y} = -2x\sin(2xy)$$

$$2^{\text{das}} : \frac{\delta^2 z}{\delta x^2} = -4y^2 \cos(2xy), \quad \frac{\delta^2 z}{\delta y^2} = -4x^2 \cos(2xy)$$