Paper / Subject Code: FE105 / Fundamental Of Electrical Engineering

FE105

Total No. of Printed Pages: 4

F. E. Semester-I (Revised Course 2016-17) EXAMINATION OCTOBER 2016 Fundamental of Electrical Engineering

[Duration: Two Hours]

(ii)

Passive circuits.

[Total Marks: 60]

Instructions:

- 1) Answer THREE FULL QUESTIONS with ONE QUESTION FROM EACH PART.
- 2) Assume suitable date, if required.

PART-A

- a) Explain with the help of a schematic/block diagram the working of a hydro power plant?
 b) Describe in detail the working as wind power plants?
 c) Two coupled coils have self inductances L₁ = 50mH and L₂ = 200mH and coefficient of coupling K = 0.5. If coil has 1000 turns and i₁ = 5 sin 400t (A), find the voltage at coil 2 and the flux φ₁
 a) Define the following terms?
 4
 (i) Non Planar circuits.
 - b) Find the Thevenin equivalent of the network in big 2 (b) as viewed from terminals x and x

c) Find the value of load resistance R_L assuming maximum power transfer from the source to the load. What is the amount of this maximum power?

FE105

7

8

8

- 3. a) State and explain superposition theorem.
 - b) Calculate the mode voltages in the circuit shown in big 3(b)

- c) A magnetic circuit consists of a case with cross-sectional area $A = 1.8 \times 10^{-3} \text{ m}^2$, the mean core length of 0.6m, the air gap length of 2.5 mm and the number of turns of 90. Assume that the core is of infinite permeability Calculate
 - (1) The reluctance of the core and that of the air gap.
 - (2) For a current of 1.5 A, calculate the total flux.
 - (3) Repeat (1) and (2) for v = 2000

PART-B

- 4. a) Define the following terms
 - (i) Time Period
 - (ii) RMS Value
 - (iii) Peak Factor
 - (iv) Reactive Power
 - b) A 4 ohm resistor is connected to a 10mH inductor across a 100v, 50Hz voltage requires.

2

Paper / Subject Code: FE105 / Fundamental Of Electrical Engineering

			FE10:
		Find	
		(i) Input current	4
		(ii) Drop across the resistor and inductance	
	c)	A R-L series circuit is in parallel with a resistance (R_2) and the combination is connected across a $10H_z$ ac source. The power delivered to the resistances is $100w$. Find the Value of inductance.	8
5.	a)	What is the significance of a phase sequence in a three phase system? Explain with the help of waveforms?	6
	b)	Explain in detail the types if transformers based on construction. What type of material is used for the case and windings?	8
	c)	A 75 kVA single phase transformer has a step down ratio of 12:1, with 2400 primary turns and primary voltage of 3.3 kv. Calculate	
		(i) The number of secondary turns	
		(ii) The secondary voltage	
		(iii) The volts per turn	
		(iv) The full load primary and secondary currents	6
6.	a)	Explain how the various losses in a single phase transformer are measured and hence the	
		efficiency is calculated without loading the transformer	10
	b)	A heater takes 10A at 50v. calculate the impedance of a choke of 5Ω resistance to be	
		placed in series with the heater so that it may work at 200v, 50H _z apply. Find also the power factor of the circuit?	10
		PART - C	
7.	a)	Derive an expression for energy stored in a magnetic circuit?	5
	b)	State and prove maximum power transfer theorem?	5
	c)	Show the line and phase quantities relationship in star and delta connections?	4
	d)	A voltage of 230 \perp 45° V, 50H _z is applied across a RLC series circuit where the input current is 10 \perp -30° A. If R=5 Ω , $X_L = j8\Omega$, find the value of X_c ?	6
8.	a)	Define the following terms	
		(i) Flux density	
		(ii) Faradays laws	4
	b)	Find the equivalent resistance between terminals a-b of the network shown in big 8(b)?	5

Paper / Subject Code: FE105 / Fundamental Of Electrical Engineering

FE105

- c) Drive an expression for current in series RL-circuit excited from a sinusoidal source. Draw the phase diagram.
- d) Derive the condition for maximum efficiency in a single phase transformer?