Maestría en Computo Estadístico Álgebra Matricial

Tarea 1

26 de agosto de 2020 Enrique Santibáñez Cortés Repositorio de Git: Tarea 1, IE.

1. Si A es una matriz $m \times n$ dada por bloques de vectores columna como

$$(a_1 \ a_2 \ \cdots a_n)$$

y B es una matriz $n \times p$ dada por bloques de vectores renglón como

$$\begin{pmatrix} v1 \\ v2 \\ \vdots \\ v_n \end{pmatrix}$$

Demuestre que

$$AB = \sum_{i=1}^{n} a_i v_i.$$

2. Sean A y B matrices cuadradas del mismo orden. Demuestre que $(A - B)(A + B) = A^2 - B^2$ si y solo si AB = BA.

RESPUESTA

Primera implicación:

$$(A-B)(A+B) = AA - BA + AB - BB =$$

3. Sean A y B matrices $n \times n$, $A \neq 0$, $B \neq 0$, tales que AB = BA. Demuestre que $A^pB^p = B^pA^p$ para cualesquiera $p, q \in \mathbb{N}$.

RESPUESTA

Multiplicado por A^{p-1} por la izquierda y B^{q-1} por la derecha tenemos que:

$$A^{p-1}(AB)B^{q-1} = A^{p-1}(BA)B^{q-1} \quad \blacksquare.$$

4. Se dice que una matriz cuadrada A es antisimétrica si $A = -A^t$. Demuestre que $A - A^t$ es antisimétrica.

RESPUESTA

Considerando las propiedades de la transpuesta:

$$-(A - A^t)^t = -(A - A^t) = A - A^t$$
 .

- 5. Demuestre que dada cualquier matriz cuadrada A, esta se puede escribir como la suma de una matriz simétrica y una matriz antisimétrica.
- 6. Se dice que una matriz cuadrada P es idempotente si $P^2 = P$. Si

$$A = \left(\begin{array}{cc} I & P \\ 0 & P \end{array}\right)$$

1

y si P es idempotente, encuentre A^{500} .

RESPUESTA

$$A^2 = \left(\begin{array}{cc} I & P \\ 0 & P \end{array}\right) \left(\begin{array}{cc} I & P \\ 0 & P \end{array}\right) = \left(\begin{array}{cc} I^2 + 0 & IP + P^2 \\ 0 + 0 & 0 + P^2 \end{array}\right) = \left(\begin{array}{cc} I & 2P \\ 0 & P \end{array}\right).$$

$$A^3 = \left(\begin{array}{cc} I & 2P \\ 0 & P \end{array}\right) \left(\begin{array}{cc} I & P \\ 0 & P \end{array}\right) = \left(\begin{array}{cc} I^2 + 0 & IP + 2P^2 \\ 0 + 0 & 0 + P^2 \end{array}\right) = \left(\begin{array}{cc} I & 3P \\ 0 & P \end{array}\right).$$

Por lo tanto

$$A^{500} = \left(\begin{array}{cc} I & 500P \\ 0 & P \end{array}\right) \blacksquare.$$

7. Sean A y B matrices de tamaño $m \times n$. Demuestre que $\operatorname{tr}(AB^t) = \operatorname{tr}(A^tB)$.

RESPUESTA

Utilizando la propiedad de la traza de una matriz:

$$\operatorname{tr}(A) = \operatorname{tr}(A^t).$$

Y si Entonces,

$$\operatorname{tr}(AB^t) = \operatorname{tr}($$

- 8. Encuentre matrices A, B y C tales que $tr(ABC) \neq tr(BAC)$.
- 9. Sea L una matriz triangular inferior $n \times n$. Demuestre que $L = L_1 L_2 \cdots L_n$ donde L_i es la matriz $n \times n$ que se obtiene reemplazando la i-ésima columna de I_n por la i-ésima columna de L. Demuestre un resultado análogo para matrices triangulares superiores.
- 10. Sea $A=(a_{ij})$ una matriz cuadrada de tamaño n tal que $a_{ij}=0$ para $i=1,\dots,n$. Demuestre que para $i=1,\dots,n$ y $j=1,\dots,\min(n,i+p-1)$ se cumple que $b_{ij}=0$ donde $A^p=(b_{ij})$ y p es un entero positivo.