Classification Assignment

Problem Statement or Requirement:-

A requirement from the Hospital, Management asked us to create a predictive model which will predict the Chronic Kidney Disease (CKD) based on the several parameters. The Client has provided the dataset of the same.

- 1.) Identify your problem statement
- 2.) Tell basic info about the dataset (Total number of rows, columns)
- 3.) Mention the pre-processing method if you're doing any (like converting string to number nominal data)
- 4.) Develop a good model with good evaluation metric. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model.
- 5.) All the research values of each algorithm should be documented. (You can make tabulation or screenshot of the results.
- 6.) Mention your final model, justify why u have chosen the same.

1.) Identify your problem statement :-

Stage-1- Machine Learning

Why its ML?

In this problem statement having numberical data then I use MI

Stage-2- ML under Supervised Learning

Why its SI?

In this problem statement cleared input and output then I decide to Supervised learning

Stage-3-SL- under Classification

Why its Classification?

In this problem statement having categorical data then I use Classification.

- 2.) Tell basic info about the dataset (Total number of rows, columns) 399 Rows and 25 Columns
- 3.) Mention the pre-processing method if you're doing any (like converting string to number nominal data)

dataset=pd.get_dummies(dataset,drop_first=True)

In above line using pandas library to convert categorical data give dummies using One hot encoding algorithms and then use drop function drop the one column from the table.

- 4.) Develop a good model with good evaluation metric. You can use any machine learning algorithm; you can create many models. Finally, you have to come up with final model. And
- 5.) All the research values of each algorithm should be documented. (You can make tabulation or screenshot of the results.
- 1.DecisonTree with Classification:-Report:

```
the confusion matrix is
 [[50 1]
 [ 1 81]]
the classification_Report is
               precision
                          recall f1-score
                                               support
                   0.98
                             0.98
                                       0.98
                                                   51
           0
                   0.99
                             0.99
                                       0.99
                                                   82
                                       0.98
                                                  133
    accuracy
                                       0.98
   macro avg
                   0.98
                             0.98
                                                  133
weighted avg
                   0.98
                             0.98
                                       0.98
                                                  133
```

Accuracy Score=0.98

1.F1Score:-

The f1_macro value for best parameter {'criterion': 'gini', 'max_features': 'auto', 'splitter': 'random'}: 0.9849624060150376

F1Score=0.98

2.Roc_auc_score:-

The roc auc score= 0.98

2. Support Vector Machine with Classification:-

the confusion metrix is [[51 0] [1 81]]

the classification report is

	precision	recall	f1-score	support
0	0.98	1.00	0.99	51
1	1.00	0.99	0.99	82
accuracy			0.99	133
macro avg	0.99	0.99	0.99	133
weighted avg	0.99	0.99	0.99	133

Accuracy Value=0.99

2.F1_Score:-

The f1_macro value for best parameter {'C': 10.0, 'decision_function_shape': 'ovo', 'gamma': 'auto', 'kernel': 'sigmoid'}: 0.99 24946382275899

3.Roc_auc_score:-

The roc_auc_score= 1.0

${\bf 3. Random fiorest_Classification:-}$

the confusion metrix is [[51 0] [1 81]]

the classification report is

	precision	recall	f1-score	support
0	0.98	1.00	0.99	51
1	1.00	0.99	0.99	82
accuracy			0.99	133
macro avg	0.99	0.99	0.99	133
weighted avg	0.99	0.99	0.99	133

Accuracy_value=0.99

2.F1 Score:-

The f1_macro value for best parameter {'class_weight': 'balanced', 'criterion': 'entropy', 'max_features': 'log2', 'n_estimator s': 100}: 0.9924946382275899

F1 Score=0.99

3.Roc_auc_score:-

The roc auc score= 1.0

4.Logistic_Classification:-

the confusion metrix is [[51 0]

[1 81]]

the classification report is

the crass	SITICA	icion report i	LS		
		precision	recall	f1-score	support
	0	0.98	1.00	0.99	51
	1	1.00	0.99	0.99	82
accui	racy			0.99	133
macro	avg	0.99	0.99	0.99	133
weighted	avg	0.99	0.99	0.99	133

Accuracy=0.99

2.F1_Score:-

The f1_macro value for best parameter {'multi_class': 'multinomial', 'penalty': '12', 'solver': 'newton-cg'}: 0.992494638227589

F1 Score=0.99

3.Roc_auc_score:-

The roc_auc_score= 1.0

5.K-Nearest_Neighbors_Classification:-

the confusion metrix is [[51 0] [8 74]]

the classification report is

	precision	recall	f1-score	support
0	0.86	1.00	0.93	51
1	1.00	0.90	0.95	82
accuracy			0.94	133
macro avg	0.93	0.95	0.94	133
weighted avg	0.95	0.94	0.94	133

Accuracy value=0.94

2.F1_Score:-

The f1_macro value for best parameter {'algorithm': 'auto', 'metric': 'minkowski', 'n_neighbors': 7, 'p': 2, 'weights': 'unifor m'}: 0.9404945931261721

F1_Score=0.94

3.Roc_auc_score:-

The roc auc score= 0.99

6.Navies_Bayes_Classification:-

1.Naive_bayes multinomiaLNB:-

the confusion metrix is [[50 1] [23 59]]

the classification report is

	precision	recall	f1-score	support
0	0.68	0.98	0.81	51
1	0.98	0.72	0.83	82
accuracy			0.82	133
macro avg	0.83	0.85	0.82	133
weighted avg	0.87	0.82	0.82	133

Accuracy=0.82

2.F1_Score:-

The f1_macro value for best parameter {'alpha': 1.0, 'class_prior': None, 'fit_prior': 'True'}: 0.8215780250262184

3.Roc_auc_score:-

The roc_auc_score= 0.91

${\bf 2.\,Bernoulli_Navies_Bayes_Classification:-}$

the confusion metrix is [[51 0]

[8 74]]

the classification report is

	precision	recall	f1-score	support
0	0.86	1.00	0.93	51
1	1.00	0.90	0.95	82
accuracy			0.94	133
macro avg	0.93	0.95	0.94	133
weighted avg	0.95	0.94	0.94	133

Accuracy=0.94

2.F1_Score:-

The f1_macro value for best parameter {'alpha': 1.0, 'class_prior': None, 'fit_prior': 'True'}: 0.9404945931261721

3.Roc_auc_score:-

The roc auc score= 0.99

3. Categorical_navies_bayes_Classification:-

_

4. Complement_Naviesbayes_Classification:-

the confusion metrix is

[[50 1]

[23 59]]

the classification report is

	precision	recall	f1-score	support
0	0.68	0.98	0.81	51
1	0.98	0.72	0.83	82
accuracy			0.82	133
macro avg weighted avg	0.83 0.87	0.85 0.82	0.82 0.82	133 133
werbucea and	3.07	0.02	0.02	100

Accuracy=0.82

1.F1_Score:-

The f1_macro value for best parameter {'alpha': 1.0, 'class_prior': None, 'fit_prior': 'True'}: 0.8215780250262184

F1 score=0.82

2. Roc auc score:-

6.) Mention your final model, justify why u have chosen the same.

In comparing to all of the algorithm are build a model but accuracy and f1_score and roc_auc_score is better in Support Vector Machine Classification,

- Accuracy value=0.99
- o F1 Score=0.99
- o Roc_auc_score=1.0

In above all the values are near to 1. Then this model is best model.