1. On souhaite établir que l'ensemble $\mathcal{P}(\mathbb{N})$ des parties de \mathbb{N} n'est pas dénombrable. Pour cela on raisonne par l'absurde et l'on suppose qu'il existe une bijection φ de \mathbb{N} vers $\mathcal{P}(\mathbb{N})$. Etablir une absurdité en introduisant l'ensemble

$$A = \{ n \in \mathbb{N} / n \notin \varphi(n) \}$$

2. Etude de $\{0,1\}^{\mathbb{N}}$:

On veut prouver que l'ensemble des suites à valeurs dans $\{0,1\}$ n'est pas dénombrable. On raisonne par l'absurde en supposant que l'on peut numéroter :

$$\{0,1\}^{\mathbb{N}} = \{a_1, a_2, \dots, a_n, \dots\}.$$

Chaque a_i est donc une suite à valeurs dans $\{0,1\}$.

Pour tout $k \in \mathbb{N}$, on écrit $a_k = (x_{1,k}, x_{2,k}, \dots, x_{n,k}, \dots)$ avec $x_{i,j} \in \{0,1\}$.

En étudiant $a=(1-x_{1,1},1-x_{2,2},\ldots,1-x_{n,n},\ldots)$ trouver une absurdité.

3. Justifier l'existence et calculer :

$$\sum_{m \geq 2, n \geq 2} \frac{1}{m^n}$$

indication: sommer dans le bon ordre.

4. Démontrer l'existence et calculer :

$$\sum_{n=0}^{+\infty} \sum_{k=n}^{+\infty} \frac{1}{k!}$$

indication: utiliser une somme double $(u_{k,n})$ à définir sur \mathbb{N}^2 en entier.

5. Justifier l'existence et montrer que :

$$\sum_{(p,q)\in\mathbb{N}^{*2}} \frac{1}{pq(p+q)} = 2\sum_{n=2}^{+\infty} \frac{H_{n-1}}{n^2}$$

où
$$H_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$$

6. Pour $n \in \mathbb{N}^*$, on note $H_n = 1 + \frac{1}{2} + \ldots + \frac{1}{n}$ Montrer l'égalité :

$$e\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n \cdot n!} = \sum_{n=1}^{+\infty} \frac{H_n}{n!}$$

NB : On pourra utiliser $e = \sum_{n=0}^{+\infty} \frac{1}{n!}$.

7. Soit z un complexe tel que |z| < 1, d montrer l'existence puis prouver l'égalité :

$$\sum_{n=0}^{+\infty} \frac{z^{2^n}}{1 - z^{2^{n+1}}} = \frac{z}{1 - z}$$

indication: on pourra introduire les ensembles $A_n = \{2^n(2k+1)/k \in \mathbb{N}\}.$

8. Soit a un complexe de module strictement inférieur à 1. En introduisant la suite double $u_{p,q} = a^{p(2q-1)}$ pour $p, q \ge 1$, établir l'égalité :

$$\sum_{p=1}^{+\infty} \frac{a^p}{1 - a^{2p}} = \sum_{p=1}^{+\infty} \frac{a^{2p-1}}{1 - a^{2p-1}}$$

9. Justifier l'existence et calculer :

$$\sum_{(p,q)\in\mathbb{N}^2}\frac{1}{p!q!(p+q+1)}$$

indication: on pourra utiliser une sommation par paquets.

10. Justifier l'existence et calculer :

$$\sum_{(p,q)\in\mathbb{N}^2} \frac{1}{(p+q^2)(p+q^2+1))}$$

indication : Découper la fraction puis "sommer sur p".

11. On pose $\Delta = \{(n, n) \in \mathbb{N}^2\}$

Etudier la sommabilité de la famille :

$$\left(\frac{1}{n^2 - p^2}\right)_{(n,p) \in \mathbb{N}^2 \setminus \Delta}$$

12. Pour quels $\alpha > 0$, la famille suivante est-elle sommable?

$$\left(\frac{1}{(p^2+q^2)^{\alpha}}\right)_{(p,q)\in\mathbb{N}^{\star 2}}$$

indication: utiliser des encadrements.

13. En utilisant la famille $(x^{n+p})_{(n,p)\in\mathbb{N}^2}$, montrer que, si |x|<1:

$$\frac{1}{1-x^2} = \sum_{n=0}^{+\infty} (n+1)x^n$$

14.(a) Soit $\alpha > 1$. Déterminer un équivalent à

$$R_n = \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}$$

- (b) Pour quels $\alpha \in \mathbb{R}$, la somme $\sum_{n=0}^{+\infty} \sum_{k=n+1}^{+\infty} \frac{1}{k^{\alpha}}$ a-t-elle un sens?
- (c) Montrer qu'alors

$$\sum_{n=0}^{+\infty}\sum_{k=n+1}^{+\infty}\frac{1}{k^{\alpha}}=\sum_{p=1}^{+\infty}\frac{1}{p^{\alpha-1}}$$

15. Montrer l'existence et donner la valeur de

$$S = \sum_{\substack{(p,q) \in \mathbb{N}^2 \\ 2^p 3^q (p+q+1)}} \frac{(-1)^{p+q}}{2^p 3^q (p+q+1)}$$

indication: utiliser une sommation par paquets.

16. On pose pour $n \in \mathbb{N}$:

$$a_{n,n} = 1$$
; $a_{n,p} = 0$ si $n > p$, $a_{n,p} = -\frac{1}{2p-n}$ si $n < p$

Justifier l'existence et calculer :

$$\sum_{q=0}^{+\infty} \sum_{p=0}^{+\infty} a_{p,q} \text{ et } \sum_{p=0}^{+\infty} \sum_{q=0}^{+\infty} a_{p,q}$$

Qu'en déduire?

17. Justifier

$$\sum_{n=1, n \neq p}^{+\infty} \frac{1}{n^2 - p^2} = \frac{3}{4p^2}$$

En déduire

$$\sum_{p=1}^{+\infty} \sum_{n=1, n \neq p}^{+\infty} \frac{1}{n^2 - p^2} \neq \sum_{n=1}^{+\infty} \sum_{p=1, p \neq n}^{+\infty} \frac{1}{n^2 - p^2}$$

Qu'en déduire?

18. Soit une suite $(u_n)_{n\in\mathbb{N}}$ une suite réelle.

On suppose que
$$\sum |u_n|$$
 et $\sum n|u_n|$ convergent. On pose $v_n = \sum_{k=n}^{+\infty}$,

- (a) Montrer que nv_n converge vers 0.
- (b) Montrer que

$$\sum_{n=1}^{\infty} v_n = \sum_{n=1}^{\infty} n u_n$$

- (c) Application : Calculer lorsque c'est possible : $\sum_{n=1}^{\infty} kr^k$.
- **19.** Soit (u_n) une suite numérique. Pour tout $n \in \mathbb{N}$, on pose

$$v_n = \frac{1}{2^n} \sum_{k=0}^n 2^k u_k$$

- (a) On suppose dans cette question la série $\sum u_n$ absolument convergente. En observant un produit de Cauchy, montrer que la série $\sum v_n$ converge et exprimer sa somme en fonction de celle de $\sum u_n$.
- (b) On suppose dans cette question que la suite (u_n) tend vers 0. Déterminer la limite de (v_n)
- (c) On suppose dans cette dernière question la série $\sum u_n$ convergente. Montrer la convergence de $\sum v_n$ et déterminer sa somme en fonction de celle de $\sum u_n$.
- **20.** Soit $\sigma: \mathbb{N}^* \to \mathbb{N}^*$ une application bijective.
 - (a) Déterminer la nature de

$$\sum_{n \ge 1} \frac{1}{\sigma(n)^2}$$

(b) Même question pour

$$\sum_{n \ge 1} \frac{1}{\sigma(n)}$$

21. Soient $\sum_{n\geq 0} u_n$ une série absolument convergente et $v_n=u_{\sigma(n)}$ avec $\sigma\in\mathfrak{S}(\mathbb{N})$ ie bijection de \mathbb{N} .

Montrer que la série $\sum_{n\geq 0} v_n$ est absolument convergente de même somme de $\sum u_n$.