So far we talked about 1) Px - single distribution information source classe compression encoder Alice Bob decoder $\begin{array}{ccc}
P_{X}^{n} & \xrightarrow{f} \partial_{0} I_{y}^{nR} & \xrightarrow{Id} \partial_{0} I_{y}^{nR} & \xrightarrow{P_{X}^{n}}
\end{array}$ Rate: min R s.t. $\lim_{n\to\infty} P(X \neq \tilde{X}^n) \to 0$ p - error probility 02 pc1 noisy channel proor1 perfect channel $\begin{array}{c} \text{Channel in put} & p=0 \text{ or } 1 \text{ Path } \\ \text{Channel on put} & \text{Channel on put} \\ \text{Original message W} \xrightarrow{f} X \xrightarrow{W} Y \xrightarrow{g} \hat{W} & \text{decoded message} \end{array}$ f encoder g decoder English text = morse code telegraph morse code = English text telegraph telegraph Picture & binary bits _____ binary bits _____ picture

Smart phone wire less Computer Of course, we want to minimize error. $\mathcal{E} = P(W \neq \hat{W})$ but as the size of message 1 & 1 So what is the largese size of file that can be sent through N faithfully?

Channel capacity

Mathematical Model

(Reterminence encoder decoder):
$$W \xrightarrow{f} X \xrightarrow{N=R_{TK}} Y \xrightarrow{g} \hat{W}$$
 $m \to f(m) \longrightarrow P_{TK+f(m)} \to P_{GK}(Y|f(m))$
 $P_{W}(m) = \frac{1}{M} \qquad P_{WW} = P_{WW}(m,m) = \frac{1}{M} \xrightarrow{g \in P_{YK}} P_{YK}(Y|f(m))$
 $P_{W}(m) = \frac{1}{M} \qquad P_{WW} = P_{WW}(m,m) = \frac{1}{M} \xrightarrow{g \in P_{YK}} P_{YK}(Y|f(m))$
 $P_{W}(m) = \frac{1}{M} \qquad P_{WW} = P_{WW}(m,m) = \frac{1}{M} \xrightarrow{g \in P_{YK}} P_{YK}(y|f(m))$
 $P_{W}(m,m) = \frac{1}{M} \xrightarrow{X} P_{W}(y|f(m)) P_{YK}(y|x) P_{XW}(a|m)$

It turns out probabilistic coding is not doing better than claterinitric

 $P_{WW}(m,m) = \frac{1}{M} \xrightarrow{X} P_{W}(y|f(m)) P_{YK}(y|x) P_{XW}(a|m)$
 $P_{W}(m,m) = \frac{1}{M} \xrightarrow{X} P_{W}(y|f(m)) P_{YK}(y|x) P_{XW}(a|m)$

Why choose $m \sim uniform$ on W .

By source coding. $P_{X}^{X} \sim uniform \ P_{X}(y) = P_{XW}(y) P_{XW}(y|x) P_{XW}(y|x) P_{XW}(a|m)$
 $P_{X}(m,m) = \frac{1}{M} \xrightarrow{X} P_{W}(y|x) P_{XW}(y|x) P_{XW}(y|x) P_{XW}(a|m)$
 $P_{X}(m,m) = \frac{1}{M} \xrightarrow{X} P_{W}(y|x) P_{XW}(y|x) P_{XW}(a|m)$
 $P_{X}(m,m) = \frac{1}{M} \xrightarrow{X} P_{W}(y|x) P_{XW}(y|x) P_$

Definition: (1) An M-code for N=Pilx is an encoder/decoder pair (f-g)

Such that (1)
$$f: [M] \longrightarrow X$$
 $\{1, --M\}$
 $g: Y \to [M]$ (or $[M]$ $Vies$)

2 We say (f,g) is an (M, Σ) code if (f,g) is an M-code with $P_e = P(W \neq \widehat{W}) \leq \Sigma$.

We interested in $M(R_0, E) = \max \{ M : \exists (M, E) - code \}$ $\log_2 M^*(E)$ largese # of bits can be send through N with error $\leq E$.

I.I.d Setting. $\frac{\log_2 M^*(P_{X|X}^n, E)}{n}$ (orgase # of bits per use of channel - - - - error $\leq E$

Definition (Channel Capacity)

The Shannon capacity C(N) of $N = P_{X|X}$ is $C_{\Sigma}(N) := \lim_{n \to \infty} \inf_{n} \log M^{*}(n, \Sigma)$ $C(N) = \lim_{n \to \infty} C(N) = \lim_{n \to \infty}$

Theorem (Shannon's Noisy Channel Coding, 1948) $C = \sup_{R\times} I(X=Y) \qquad (PXY = PYIX PX)$

Alternative angle: $\mathcal{E}^*(M,N) = \inf_{\substack{\text{int} \\ \text{of }N}} P(W \neq \widehat{w})$

Optimal error, when sending log_M bits

I.I.d Setting. $\mathcal{E}^*(2^{nR}, N^n)$ optimal error sonding NR bits over nuse of N.

Theorem: $\lim_{n \to \infty} \mathcal{E}^*(2^{nR}, N^n) = \begin{cases} 1 & \text{if } R > I(X=Y) \text{ (Serong converse.)} \\ 0 & \text{if } R < I(X=Y) \text{ (Direct cooling)} \end{cases}$

Lemma:
$$(I)HY \xrightarrow{N}Z$$
, $I(X:Y) > I(X:Z)$
(2) $I(X=2|Y) \ge 0$, equality iff $X \longrightarrow Y \longrightarrow Z$

Pf:
$$P_{XYZ} = P_{ZY} P_{XX} P_{X}$$

$$P_{XZY} = \sum_{X} P_{XY} P_{XX} P_{X$$

$$I(XY:2) = I(Y:2) + I(X:2|Y) = 0 \\
 = I(X:2) + I(X:2|Y) = 0$$

Lemma: If
$$X_1 \rightarrow Y_1 \ \& X_2 \rightarrow Y_2$$
,

 $I(X_1X_2 \rightarrow Y_1X_2) \leq I(X_1 \rightarrow Y_4) + I(X_2 \rightarrow Y_2)$

Pf: $I(X_1X_2 \rightarrow Y_1X_2) - I(X_1 \rightarrow Y_1) - I(X_2 \rightarrow Y_2)$

= $H(X_1X_2) + H(Y_1, Y_2) - H(X_1X_2, Y_1, Y_2) - H(X_1) - H(X_1) + H(X_1, Y_1)$

- $H(X_2) - H(Y_2) + H(X_2, Y_2) - I(Y_1, Y_2) = -I(Y_1, Y_2) \leq 0$

$$\text{Pf:} \qquad \text{W} \xrightarrow{\mathcal{E}} \chi \xrightarrow{\mathcal{N}} \gamma \xrightarrow{\mathcal{D}} \hat{\mathcal{N}}$$

sup
$$I(x=Y) \ge I(x=Y) \ge I(w=\hat{w}) \ge d(P(w+\hat{w})||_{L^{\infty}})$$
 $h: W\hat{W} \rightarrow \{0,1\} \ge -h(Pe) + (I-Pe)\log M$
 $h(m,\hat{m}) \rightarrow 1 \quad m=\hat{m}$
 $e \quad \text{otherwise}$

Lemma:
$$\sup_{x_n} I(x^n + f^n) = n \sup_{x_n} I(x + f^n)$$

$$M=2^{nR} \log 2^{nR} \leq \frac{\sup I(x^2t)^n + h(x)}{1-x}$$

$$nR \leq n \sup_{C \neq C} I(X=Y) + h(E)$$

$$R \leq \sup_{x \in \mathbb{R}^n} I(x=x)$$
 (on tradiction.

Shannon's Achievability bound

Theorem: Given N=PXIX, YPX, YT>0 = (M.S)-code s.t. E < P[log Pxy < log M+] +e-T

Where Pxy = Px|x Px, Denote $i(x=r) = log \frac{Pxr}{PxxPr}$ = log PNY $M \longrightarrow X \longrightarrow Y \longrightarrow M$

Pf: Define $C_m = f(m)$, code word for $m \in [M] = 31 - - M$ We need to find good (m and decoder g. Define g(y) = m, $\exists ! Cm$ S.t. $i(Cm; Y) \ge log M+T$

Interpretation: i((m=y) > log M+t (=> Px/y (Cm/Y) > Metpx (Cm) there is a unique m s.t. the probability m being sent giveny received is above certain threshold.

aiven a code book ? Ci - - - Cn). $P(W=\hat{W}|W=m) = P(fiC(m,Y) \ge \log M+T f) / \# \overline{m} + m, s.t. i((\overline{m},Y) > \log M+T f)$ $P_{e}(C_{1}-C_{m}) = P(w \neq \widehat{w}) = \frac{1}{M} \sum_{m=1}^{M} P(\widehat{f}(C_{m},Y) \leq \log M + T \int V f(A_{m}) = M \int V f(A_{m}) dA_{m} d$ iccm, Y) > log Mtz)

W is uniform on [M]

Random coding: We choose $C_m \sim P_X$, i.i.d. By symmetry $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M)]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1]$ = $\underset{C_m \sim P_X}{\mathbb{E}} L \text{ Re } (C_1 - - \cdot C_M) | W = 1 | W = 1 | W = 1 | W = 1 | W = 1 | W = 1 | W = 1 | W = 1 | W = 1 | W = 1 | W = 1 |$

 $P[i(x,Y)>T] = P[log \frac{P_{Y|X=X}}{P_{Y}}>T] \leq e^{-T}$ $Indeed, Q[log \{x\}>t] = \sum_{\substack{(x,y) \in Te^{-t} \\ (x,y) \neq t}} Q(x) \leq Te^{-t} P(x) \leq e^{-t}$

Since for C_1 --- $C_m \sim P_X$ i.i.d $\exists (M. \Xi)$ code as desired, there exists some determistic code make this happen.

Proof of Shannon? Theorem, alchievability. For $M_{n}=2^{nR}$, R < I $\exists S \text{ s.t. } R + 2d < I$, Choose T = Sn $\leq_{n}^{*}(M) \leq P[i(X^{n}, Y^{n}) \leq log M_{n} + T_{n}] + e^{-nd}$ $= P[i(X^{n}; Y^{n}) \leq nR + n\delta] + e^{-nd}$ $= P[log \frac{P_{Y}^{n}(X^{n})}{P_{Y}^{n}} \leq nR + n\delta]$ $= P[\int_{J=1}^{n} log \frac{P_{Y}^{n}(X^{n})}{P_{Y}^{n}} \leq nR + n\delta] + e^{-n\delta}$

= $P\left[\sum_{k=1}^{n}i(X_{k}\circ Y_{k})\leq nI(X\circ Y)-\int n\int +exp(-fn)\rightarrow 0$ by W.L.L.N.

Note that the above argument holds for $\forall Px$. $\forall E>0$ so $(E=\lim_{n\to\infty}\frac{1}{n}\log n^*(n,E)\geq \exp I(X=Y)-2\delta$ $\forall E>0$