

Основні моменти

Onuc memogy

• Комп'ютерні програми

• Приклад

Запишемо лінійне рівняння Вольтерра II роду в зручному для застосування методу простої ітерації вигляді:

$$y(x) = f(x) + \int_{a}^{x} K(x,s)y(s)ds, \ x \in [a,b].$$
(1)

Побудуємо послідовність функцій за допомогою рекурентного співвідношення

$$y_k(x) = f(x) + \int_a^x K(x,s)y_{k-1}(s)ds, \ k = 0, 1, 2, ...$$
(2)

Якщо права частина f(x) неперервна на відрізку [a,b], а ядро K(x,s) неперервне в замкнутому трикутнику $a \le s \le x \le b$, ця послідовність збігається при будьякому початковому наближенні $y_0(x)$. Швидкість збіжності залежить від властивостей ядра і правої частини рівняння.

Ясно, що число ітераційних кроків для отримання апроксимації необхідної точності залежить від ступеня близькості початкового наближення до шуканого розв'язку.

В якості початкового наближення часто вибирають f(x), якщо немає gogamkoвoї інформації про розв'язок.

При числовій реалізації ітераційних методів інтеграл обчислюється за допомогою квадратурних формул. Скористаємося квадратурною формулою трапецій з рівномірною сіткою і кроком . Вузли сітки позначимо x_i , i=0,1,...,n, нехай

 $K_{ij} = K(x_i, x_j), \ y_{ki} = y_k(x_i).$

Отримаємо розрахунковий вираз

$$y_{k+1}(x_i) = f(x_i) + \int_0^{x_i} K(x_i, s) y_k(s) ds \approx$$
 (3)

$$\approx f(x_i) + \frac{h}{2} \left[K_{i0} y_{k0} + 2 \left(K_{i1} y_{k1} + K_{i2} y_{k2} + \dots + K_{i,i-1} y_{k,i-1} \right) + K_{ii} y_{ki} \right],$$

ge i = 0, 1, ..., n.

Для закінчення ітераційного процесу, як зазвичай, будемо використовувати умову

$$\frac{\|y_k - y_{k-1}\|}{\|y_k\|} \le \varepsilon,\tag{4}$$

ge $||y|| = \max_{a \le x \le b} |y(x)|$, ε - задана відносна помилка. Дана умова означає, що в процесі розв'язання необхідно порівнювати результати, отримані для двох суміжних ітераційних кроків; близькість отриманих при цьому наближень свідчить про досягнуту точність.

Таким чином, кількість ітераційних кроків залежить також від вимог до точності результату.

Комп'ютерні програми

Напишемо на мові Matlab функцію inK.m, що реалізує обчислення за формулою (3).

end

```
% Функція для обчислення чергового наближення
% до розв'язку рівняння Вольтерра другого роду
% в ході методу простої ітерації. Використовується формула
% трапецій з рівновіддаленими вузлами.
% Вхідні дані: К - аналітично задане ядро рівняння
% х - сітка, на якій обчислюється інтеграл,
% h - kpok cimku, n - число вузлів cimku.
% у - вектор значень у вузлах сітки наближення до розв'язку,
% обчислений на попередньому кроці ітераційного процесу.
% Результат - вектор нових значень наближення у вузлах сітки.
function [yk] = CalcInt(y, h, x, n, K, f)
```

```
function [yk] = CalcInt(y, h, x, n, K, f)

yk = y;

for i = 1 : n

yk(i) = 0;

for j = 1 : i

yk(i) = yk(i) + 2*K(x(i), x(j)) * y(j);

end

yk(i) = yk(i) - K(x(i), x(1)) * y(1) - K(x(i), x(i)) * y(i);

yk(i) = f(x(i)) + yk(i) * h/2;

end
```

Комп'ютерні програми

Напишемо на мові Matlab функцію IterVolt.m, призначену для наближеного розв'язку рівняння (1) методом простої ітерації.

```
% Функція для розв'язку рівняння Вольтерра другого роду
% методом простої ітерації. Використовується формула
% трапецій з рівновіддаленими вузлами.
% Вхідні дані: K - ядро рівняння, f - права
% частина (задаються аналітично), x - cimka, на якій
% будується розв'язок, h - kpok cimku, eps - задана точність.
% Результат - вектор ук наближень до
% розв'язку у вузлах сітки. Iter - кількість ітерацій, за
% якою була досягнута необхідна точність
function [yk, iter] = IterVolt(x, h, eps, f, K)
 n = numel(x);
 y = f(x);
 yk = CalcInt(y, h, x, n, K, f);
 iter = 0;
 while norm(yk - y, inf) / norm(yk, inf) > eps
    y = yk;
    yk = CalcInt(y, h, x, n, K, f);
    iter = iter + 1;
 end
end
```

Приклад

Розв'яжемо за gonoмогою функції Iter_Volt.m вправу 1.19, с. 73, з книги [3].

Дано рівняння

$$y(x) = 1 + \int_0^x y(s)ds, \ x \in [0,7].$$
 (5)

Точний розв'язок цього рівняння $y(x) = e^x$.

Треба знайти наближений розв'язок цього рівняння методом послідовних наближень, побудованим на використанні формули трапецій з рівномірною сіткою.

Крок cimku h = 0.07, відносна похибка розв'язку $\varepsilon = 10^{-3}$.

Приклад

На мові Matlab сценарій розв'язання цієї вправи виглядає наступним чином.

```
clear all
close all
clc
f = @(x) x*0 + 1;
K = @(x, s) x*0 + s*0 + 1;
a = 0;
b = 7;
h = 0.07;
eps = 1e - 03;
y_{exact} = @(x) exp(x);
x = a : h : b;
[y_approx,iter] = IterVolt(x, h, eps, f, K);
y=y_exact(x);
plot(x, y, 'o', x, y_approx, 'r');
er = norm(y - y_approx, inf) / norm(y, inf);
xlabel('x');
ylabel('y');
```


Результати розрахунку представлені на рис. 3.

Рис. 3. Результати наближеного розв'язку рівняння (5) методом простої ітерації, побудованим на застосуванні квадратурної формули трапецій з рівномірною сіткою. Безперервною лінією позначено точний розв'язок, кружечками — наближений розв'язок при кроці сітки h = 0.07.

Дякую за увагу!

Презентація gonoвіді

Пороскун Олени, Янченко Ольги

ПМ-81 2021

