A.8 Réactivation Vecteurs et opérations

Un vecteur \vec{u} désigne une translation de vecteur \vec{u} .

Définition A.7 — caractéristiques d'un vecteur $\vec{u} \neq \vec{0}$. Le vecteur \vec{u} et tous ses représentants $(\overrightarrow{AB}, \overrightarrow{XY}...)$ sont caractérisés par : une même direction parallèle à la droite (AA')//(XY). un même sens selon la flèche, de A vers B, de X vers Y. une même norme notée $\|\vec{u}\| = AB = XY$.

Définition A.8 — **Dans un repère**
$$(O; I, J)$$
. Soit les points $A(x_A; y_A)$ et $B(x_B; y_B)$. Le vecteur \overrightarrow{AB} a pour coordonnées $\overrightarrow{AB} \begin{pmatrix} x_B - x_A \\ y_B - y_A \end{pmatrix}$

■ Exemple A.15 Soient les points A(2; -4), B(-1; 3), C(-3; -2). Déterminer les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{CA} , \overrightarrow{CB} et \overrightarrow{AA} . solution.

Postulat A.12 — Égalité de vecteurs. Le plan est muni d'un repère. Les énoncés suivants sont équivalents :

- (i) $\overrightarrow{u} = \overrightarrow{AB} = \overrightarrow{CD}$
- (ii) La translation \overrightarrow{u} est transforme A en B, et C en D.
- (iii) Les vecteurs \overrightarrow{AB} et \overrightarrow{CD} ont même sens, même direction et même norme.
- (iv) $AB\mathbf{D}C$ est un parallélogramme.
- (v) Les coordonnées des vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égales
- Exemple A.16 Soit les points A(-3; -1), B(5; -2), C(7; 3) et D(-1; 4) dans le repère (O; I, J). Montrer que ABCD est un parallélogramme.

solution.

A.8.1 Les opérations

Définition A.9 — Multiplication d'un vecteur par un réel. $\vec{u} \neq \vec{0}$. Le produit d'un réel k par un vecteur \vec{u} est un vecteur noté $k\vec{u}$: P1 $0\vec{u} = \vec{0}$.

P2 Si $k \neq 0$, « $k\vec{u}$ » désigne le vecteur :

- ayant même direction que \vec{u}
- $||k\overrightarrow{u}|| = |k| \times ||\overrightarrow{u}||$
- Si k > 0 alors $k\vec{u}$ et \vec{u} ont même sens. Si k < 0 alors $k\vec{u}$ et \vec{u} sont de sens contraires

Soit un repère (O; I, J), si $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ alors $k \overrightarrow{u} \begin{pmatrix} kx \\ ky \end{pmatrix}$.

Définition A.10 — **Somme de vecteurs.** L'enchainement d'une translation de vecteur \vec{u} puis d'une translation de vecteur \vec{v} est aussi une translation.

Le vecteur $\overrightarrow{u} + \overrightarrow{v}$ est le vecteur associé à la translation obtenue.

Soit un repère (O; I, J), si les vecteurs $\overrightarrow{v} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{u} \begin{pmatrix} x' \\ y' \end{pmatrix}$ alors

$$(\overrightarrow{u} + \overrightarrow{v}) \begin{pmatrix} x + x' \\ y + y' \end{pmatrix}$$

Figure A.11 – C est l'image de A par l'enchaînement des translation de vecteur \overrightarrow{u} puis \overrightarrow{v} .

$$\vec{u} + \vec{v} = \vec{AB} + \vec{BC} = \vec{AC}.$$

En prenant un autre point de départ A' on obtient un autre représentant de $\overrightarrow{u}+\overrightarrow{v}$: $\overrightarrow{XZ}=\overrightarrow{AC}=\overrightarrow{u}+\overrightarrow{v}$

Relation de Chasles

Pour tout points A, B et $C: \overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$

A.8.2 Colinéarité et applications

Définition A.11 Deux vecteurs \vec{u} et \vec{v} sont **colinéaires** » (en abrégé $\vec{u} \propto \vec{v}$) si l'un est un multiple de l'autre.

Définition A.12 — Colinéarité à l'aide des coordonnées. Dans un repère quelconque $(O; \vec{\imath}, \vec{\jmath})$. Soit deux vecteurs $\overrightarrow{u} \begin{pmatrix} x \\ y \end{pmatrix}$ et $\overrightarrow{v} \begin{pmatrix} x' \\ y' \end{pmatrix}$. On appelle « déterminant de \overrightarrow{u} et \overrightarrow{v} » le nombre noté :

$$\det(\overrightarrow{u}; \overrightarrow{v}) = \begin{vmatrix} x & x' \\ y & y' \end{vmatrix} = xy' - x'y$$

Théorème A.13 Deux vecteurs \vec{u} et \vec{v} sont colinéaires si et seulement si $\det(\vec{u}; \vec{v}) = 0$.

Postulat A.14 trois points A, B et C sont alignés si et seulement si deux parmi les vecteurs \overrightarrow{AB} , \overrightarrow{AC} ou \overrightarrow{BC} sont colinéaires.

Postulat A.15 les droites (AB) et (CD) sont parallèles si et seulement si les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont colinéaires.

■ Exemple A.17 Montrer que les points A(2; 5), B(3; 8) et C(-5; -16) sont alignés.

solution.

■ Exemple A.18 Soient A(1; 3), B(5; -2), C(-1; 6) et D(7; -4). Montrer que les droites (AB) et (CD) sont parallèles.

solution.

LG Jeanne d'Arc, 1èreSPE

A.8.3 Propriétés des opérations

 $\vec{0} + \vec{u} = \vec{u} + \vec{0} = \vec{u}.$ **Élément nul** Pour tout vecteur \vec{u} ,

La somme de 2 vecteurs est indépendante de l'ordre

Pour tout vecteur \vec{u} et \vec{v} $\vec{u} + \vec{v} = \vec{v} + \vec{u}$.

$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

 $\overrightarrow{v} + \overrightarrow{u} = \overrightarrow{AD} + \overrightarrow{DC} = \overrightarrow{AC}$

La somme de plusieurs vecteurs quelconques \vec{u} , \vec{v} et \vec{w} est aussi indépendante de l'ordre :

$$\overrightarrow{u} + \overrightarrow{v} + \overrightarrow{w} = (\overrightarrow{u} + \overrightarrow{v}) + \overrightarrow{w} = \overrightarrow{u} + (\overrightarrow{v} + \overrightarrow{w})$$

Pour tout vecteurs \vec{u} , et réel a et b,

$$a(b\overrightarrow{u}) = (ab)\overrightarrow{u}.$$

Pour tout a et $b \in \mathbb{R}$ et vecteur \overrightarrow{u} on $a: a\overrightarrow{u} + b\overrightarrow{u} = (a+b)\overrightarrow{u}$

Pour tout vecteurs \overrightarrow{u} , \overrightarrow{v} et réel k, $k(\overrightarrow{u} + \overrightarrow{v}) = k\overrightarrow{u} + k\overrightarrow{v}$.

$$k(\overrightarrow{u} + \overrightarrow{v}) = k\overrightarrow{u} + k\overrightarrow{v}$$

Démonstration. La figure correspond au cas k > 0. Le cas k < 0 est similaire.

