

WaterSQI: SQIing on the Sea Side

A proof of knowledge of the endomorphism ring for oriented curves

Tako Boris Fouotsa, EPFL

Swissogeny days #3, ETH Zurich - June 26 2025

Outline

Motivation

Supersingular isogenies and the Deuring correspondence

 ${\rm SQISign}$

WaterSQI

Identification protocols

$$\mathcal{L} = \{ (x, w) \}$$
 arising from a hard relation

Identification protocols

Completeness: V accepts when P knows a witness and they follow the protocol. Special Soundness: $w \leftarrow \mathsf{extract}(x, (com, ch, rsp), (com, ch', rsp')), ch \neq ch'$. Special HVZK: given ch, $(com, ch, rsp) \leftarrow \mathsf{simulate}(x, ch)$ that is valid.

Identification protocols (2)

A dishonest P can always fool V with probability at least $1/\#\mathcal{C}$: guess ch and simulate the transcript.

In practice, we have two cases:

- $\#\mathcal{C} = O(\exp(\lambda))$, $1/\#\mathcal{C}$ is negligible, great!
 - \star The case for SQIsign
- $\#\mathcal{C} = O(\text{poly}(\lambda))$ (2 for example), $1/\#\mathcal{C}$ is not negligible, not great!
 - Solution: repeat the sigma protocol several times.
 - Consequence: huge efficiency/size overhead.
 - \star The case for CSIDH (and friends) type identification protocols.

Question: Can we adapt SQIsign to the CSIDH (and friends) setting?

 $[\]lambda$ is the security parameter

Supersingular isogenies and the Deuring correspondence

Supersingular Isogenies

An isogeny $\phi: E \to E'$ is a rational map which is also a group morphism. The kernel of an isogeny is always finite.

Given a kernel, the corresponding isogeny can be computed using Vélu formulas.

The (seperable) degree of an isogeny is the size of its kernel.

Dual isogeny: $\widehat{\phi}: E' \to E$ such that $\widehat{\phi} \circ \phi = [\deg \phi]_E$ and $\phi \circ \widehat{\phi} = [\deg \phi]_{E'}$.

Pure (supersingular) isogeny problem: given two supersingular elliptic curves E_1 and E_2 , compute an isogeny $\phi: E_1 \to E_2$.

Endomorphism ring problem: given a supersingular elliptic curves E, compute its endomorphism ring End(E).

Endomorphism rings of supersingular elliptic curves

The endomorphism ring of a supersingular elliptic curve is isomorphic to a maximal order \mathcal{O} in the quaternion algebra $\mathbb{Q}_{p,\infty}$.

If E is defined over \mathbb{F}_p , then

$$\mathcal{O}_p =: \operatorname{End}_{\mathbb{F}_p}(E) = \mathbb{Z}[\pi] \quad \text{or} \quad \mathcal{O}_p =: \operatorname{End}_{\mathbb{F}_p}(E) = \mathbb{Z}\left[\frac{\pi+1}{2}\right].$$

 \mathbb{F}_p -rational isogenies (except the vertical 2-isogenies) arise from the action of the class group $\mathrm{cl}(\mathcal{O}_p)$. In this case, isogenies can be identified as ideals of \mathcal{O}_p in a straightforward way.

Generally, if E is defined over \mathbb{F}_{p^2} , an isogeny $E \to E'$ can be seen as a left ideal of the endomorphism ring \mathcal{O} of E; the translations from ideal to isogeny and isogeny to ideal are are less straightforward.

Deuring correspondence

Deuring correspondence		
j(E), E supersingular	\leftrightarrow	Maximal orders \mathcal{O} in $\mathcal{B}_{p,\infty}$
Isogeny $\phi: E_1 \to E_2$	\leftrightarrow	$\mathcal{O}_1 - \text{left } \mathcal{O}_2 - \text{right ideal } I_{\phi}$
$\phi_1: E_1 \to E_2, \phi_2: E_1 \to E_2$	\leftrightarrow	Equivalent ideals $I_{\phi_1} \sim I_{\phi_2}(I_{\phi_1} = wI_{\phi_2})$
$\theta \in \operatorname{End}(E)$	\leftrightarrow	Principal ideal $\mathcal{O}w_{\theta}$
$Hom(E_1, E_2)$	\leftrightarrow	The rank $4 \mathbb{Z}$ – lattice $I(\mathcal{O}_1, \mathcal{O}_2)$

Computing the correspondence: \rightarrow (hard) \leftarrow (easy).

Most problems become easy when you know the endomorphism rings of the supersingular curves at play.

Our favourite curve E_0

 $E_0: y^2 = x^3 + x$ is supersingular if and only if $p \equiv 3 \mod 4$.

End(E_0) is generated by $1, \iota, \frac{\iota+\pi}{2}, \frac{1+\iota\circ\pi}{2}$ where $\iota: (x,y) \mapsto (-x,iy)$ $(i^2=-1)$.

 $\operatorname{End}(E_0)$ corresponds to the maximal order \mathcal{O}_0 generated by $1, i, \frac{i+j}{2}, \frac{1+k}{2}$ in $\mathbb{Q}_{p,\infty}$.

Most algorithms are best efficient when they involve E_0 :

- IsogenyToIdeal (KernelToIdeal): takes a kernel point $R \in E_0$ returns the left \mathcal{O}_0 ideal I_R corresponding to the isogeny $\phi_R : E_0 \to E_R := E_0/\langle R \rangle$.
- IdealToIsogeny: takes a left \mathcal{O}_0 ideal I and returns a representation of the isogeny $\phi_I : E_o \to E_I := E_0/E_0[I]$ corresponding to the ideal I.

They can be generalised to any starting curve E with known endomorphism ring.

- Key generation: $\tau: E_0 \longrightarrow E_A$
- Commitment: $\psi : E_0 \longrightarrow E_1$
- Challenge: $\varphi: E_A \longrightarrow E_2$
- Response:
 - Translate φ into an ideal I_{φ}
 - Sample a random ideal I_{σ} equivalent to $\overline{I_{\tau}} \cdot I_{\psi} \cdot I_{\varphi}$
 - Return a representation of the isogeny $\sigma: E_1 \to E_2$
- Verification: check that $\sigma: E_1 \to E_2$ is an isogeny

- Key generation: $\tau: E_0 \longrightarrow E_A$
- Commitment: $\psi : E_0 \longrightarrow E_1$
- Challenge: $\varphi: E_A \longrightarrow E_2$
- Response:
 - Translate φ into an ideal I_{φ}
 - Sample a random ideal I_{σ} equivalent to $\overline{I_{\tau}} \cdot I_{\psi} \cdot I_{\varphi}$
 - Return a representation of the isogeny $\sigma: E_1 \to E_2$
- Verification: check that $\sigma: E_1 \to E_2$ is an isogeny

Sample a random ideal and use IdealToIsogeny

- Key generation: $\tau: E_0 \longrightarrow E_A$
- Commitment: $\psi : E_0 \longrightarrow E_1$
- Challenge: $\varphi: E_A \longrightarrow E_2$
 - Response:
 - Translate φ into an ideal I_{φ}
 - Sample a random ideal I_σ equivalent to $\overline{I_\tau} \cdot I_\psi \cdot I_\varphi$
 - Return a representation of the isogeny $\sigma: E_1 \to E_2$
- Verification: check that $\sigma: E_1 \to E_2$ is an isogeny

Sample a random ideal and use IdealToIsogeny

- Key generation: $\tau: E_0 \longrightarrow E_A$
- Commitment: $\psi : E_0 \longrightarrow E_1$
- Challenge: $\varphi: E_A \longrightarrow E_2$
- Response:
 - Translate φ into an ideal I_{φ}
 - Sample a random ideal I_σ equivalent to $\overline{I_\tau} \cdot I_\psi \cdot I_\varphi$
 - Return a representation of the isogeny $\sigma: E_1 \to E_2$
- Verification: check that $\sigma: E_1 \to E_2$ is an isogeny

$$\deg \varphi > 2^{\lambda}$$

- Key generation: $\tau: E_0 \longrightarrow E_A$
- Commitment: $\psi : E_0 \longrightarrow E_1$
- Challenge: $\varphi: E_A \longrightarrow E_2$
- Response:
 - Translate φ into an ideal I_{φ}
 - Sample a random ideal I_{σ} equivalent to $\overline{I_{\tau}} \cdot I_{\psi} \cdot I_{\varphi}$
 - Return a representation of the isogeny $\sigma: E_1 \to E_2$
- Verification: check that $\sigma: E_1 \to E_2$ is an isogeny

- Key generation: $\tau: E_0 \longrightarrow E_A$
- Commitment: $\psi : E_0 \longrightarrow E_1$
- Challenge: $\varphi: E_A \longrightarrow E_2$
- Response:
 - Translate φ into an ideal I_{φ}
 - Sample a random ideal I_σ equivalent to $\overline{I_\tau} \cdot I_{\pmb{\psi}} \cdot I_\varphi$
 - Return a representation of the isogeny $\sigma: E_1 \to E_2$
- Verification: check that $\sigma: E_1 \to E_2$ is an isogeny

Soundness in SQISign

SQISign is sound with respect to the following hard language:

$$\mathcal{L} = \{ (E_A, \alpha) \mid \alpha \in \operatorname{End}(E_A) \setminus \mathbb{Z} \}$$

In fact, given two valid transcripts (E_1, φ, σ) and (E_1, φ', σ') with the same commitment E_1 but different challenges $\varphi \neq \varphi'$, one can easily show that $\widehat{\varphi} \circ \sigma \circ \widehat{\sigma'} \circ \varphi'$ is a non scalar endomorphism of E_A .

SQISign is not secure if τ is \mathbb{F}_p -rational

Well finding a witness for

$$\mathcal{L} = \{ (E_A, \alpha) \mid \alpha \in \operatorname{End}(E_A) \setminus \mathbb{Z}, E_A / \mathbb{F}_p \}$$

is easy, just return π .

One instead considers the language:

$$\mathcal{L}_p = \{ (E_A, \alpha) \mid \alpha \in \operatorname{End}(E_A) \setminus \operatorname{End}_{\mathbb{F}_p}(E_A), \ E_A/\mathbb{F}_p \}$$

Question: Can one design a variant of SQISign for the language \mathcal{L}_p ?

A first attempt

- Key gen.: $\varphi_{\mathfrak{a}}: E_0 \longrightarrow E_A := \mathfrak{a} \star E_0$
- Com.: $\varphi_{\mathfrak{b}}: E_0 \longrightarrow E_1 := \mathfrak{b} \star E_0$
- Chal.: $\varphi_{\mathfrak{c}}: E_A \longrightarrow E_2; = \mathfrak{c} \star E_A$
- Resp.: $\sigma: E_1 \longrightarrow E_2$

But, is it secure?

What is the field of definition of the response σ ?

Either \mathbb{F}_p

- Then it becomes a proof of knowledge of a relation in the class group.
- The class group can be computed in quantum poly. time.

Or \mathbb{F}_{p^2}

- Then $\sigma: E_1 \to E_2$ is a non \mathbb{F}_p -rational isogeny between two \mathbb{F}_p supersingular curves.
- We have $\theta = \sigma^{(p)} \circ \widehat{\sigma} \in \operatorname{End}(E_2) \setminus \operatorname{End}_{\mathbb{F}_p}(E_2)$. Hence each signature reveals non \mathbb{F}_p -rational endomorphism $\widehat{\varphi} \circ \theta \circ \varphi$ of E_A .

Other insecure instances

Fig. 3. Attack when the challenge curve E_2 is defined over \mathbb{F}_p (diagram on the left) or the \mathbb{F}_{p^2} part of the challenge isogeny φ is relatively short (diagram on the right).

Solution

- The response should be an isogeny of prime degree d where d is inert in $\mathbb{Z}[\pi]$.
- The commitment curve must be defined over \mathbb{F}_{p^2} (so that a single signature does not reveal an endomorphism of E_A).
- The very first step of the challenge isogeny shouldn't be \mathbb{F}_p rational.

When these conditions are satisfied, one can show that given two valid transcripts (E_1, φ, σ) and (E_1, φ', σ') with the same commitment E_1 but different challenges $\varphi \neq \varphi'$, $\widehat{\varphi} \circ \sigma \circ \widehat{\sigma'} \circ \varphi' \in \operatorname{End}(E_A) \setminus \operatorname{End}_{\mathbb{F}_p}(E_A)$.

- Key gen.: $\varphi_{\mathfrak{a}}: E_0 \longrightarrow E_A := \mathfrak{a} \star E_0$
- Commitment: $\psi: E_0 \longrightarrow E_1$
- Challenge: $\varphi: E_A \longrightarrow E_2$
- Response:
 - Translate φ into an ideal I_{φ}
 - Sample a random ideal I_{σ} equivalent to $\overline{I_{\tau}} \cdot I_{\psi} \cdot I_{\varphi}$ and of prime norm d such that is inert in \mathcal{O}_p
 - Return a representation of the isogeny $\sigma: E_1 \to E_2$
- Verification: check that $\sigma: E_1 \to E_2$ is an isogeny of prime degree d inert in $\operatorname{End}_{\mathbb{F}_p}(E_0)$

- Key gen.: $\varphi_{\mathfrak{a}}: E_0 \longrightarrow E_A := \mathfrak{a} \star E_0$
- Commitment: $\psi: E_0 \longrightarrow E_1$
- Challenge: $\varphi: E_A \longrightarrow E_2$
- Response:
 - Translate φ into an ideal I_{φ}
 - Sample a random ideal I_{σ} equivalent to $\overline{I_{\tau}} \cdot I_{\psi} \cdot I_{\varphi}$ and of prime norm d such that is inert in \mathcal{O}_p
 - Return a representation of the isogeny $\sigma: E_1 \to E_2$
- Verification: check that σ: E₁ → E₂ is an isogeny of prime degree d inert in End_{Fp}(E₀)

Sample a random ideal \mathfrak{a} of \mathcal{O}_p and use IdealToIsogeny

- Key gen.: $\varphi_{\mathfrak{a}}: E_0 \longrightarrow E_A := \mathfrak{a} \star E_0$
- Commitment: $\psi : E_0 \longrightarrow E_1$
- Challenge: $\varphi: E_A \longrightarrow E_2$
- Response:
 - Translate φ into an ideal I_{φ}

 - Return a representation of the isogeny $\sigma: E_1 \to E_2$
- Verification: check that $\sigma: E_1 \to E_2$ is an isogeny of prime degree d inert in $\operatorname{End}_{\mathbb{F}_p}(E_0)$

Sample a random ideal and use IdealToIsogeny, restart if $j(E_1) \in \mathbb{F}_p$.

- Key gen.: $\varphi_{\mathfrak{a}}: E_0 \longrightarrow E_A := \mathfrak{a} \star E_0$
- Commitment: $\psi : E_0 \longrightarrow E_1$
- Challenge: $\varphi: E_A \longrightarrow E_2$
- Response:
 - Translate φ into an ideal I_{φ}
 - Sample a random ideal I_{σ} equivalent to $\overline{I_{\tau}} \cdot I_{\psi} \cdot I_{\varphi}$ and of prime norm d such that is inert in \mathcal{O}_{p}
 - Return a representation of the isogeny $\sigma: E_1 \to E_2$
- Verification: check that $\sigma: E_1 \to E_2$ is an isogeny of prime degree d inert in $\operatorname{End}_{\mathbb{F}_p}(E_0)$

 $\deg \varphi > 2^{\lambda}$, prime power, and the first step is not \mathbb{F}_p -rational

- Key gen.: $\varphi_{\mathfrak{a}}: E_0 \longrightarrow E_A := \mathfrak{a} \star E_0$
- Commitment: $\psi: E_0 \longrightarrow E_1$
- Challenge: $\varphi: E_A \longrightarrow E_2$
- Response:
 - Translate φ into an ideal I_{φ}
 - Sample a random ideal I_{σ} equivalent to $\overline{I_{\tau}} \cdot I_{\psi} \cdot I_{\varphi}$ and of prime norm d such that d is inert in \mathcal{O}_p
 - Return a representation of the isogeny $\sigma: E_1 \to E_2$
- Verification: check that $\sigma: E_1 \to E_2$ is an isogeny of prime degree d inert in $\operatorname{End}_{\mathbb{F}_p}(E_0)$

- Key gen.: $\varphi_{\mathfrak{a}}: E_0 \longrightarrow E_A := \mathfrak{a} \star E_0$
- Commitment: $\psi : E_0 \longrightarrow E_1$
- Challenge: $\varphi: E_A \longrightarrow E_2$
- Response:
 - Translate φ into an ideal I_{φ}
 - Sample a random ideal I_{σ} equivalent to $\overline{I_{\tau}} \cdot I_{\psi} \cdot I_{\varphi}$ and of prime norm d such that d is inert in \mathcal{O}_p
 - Return a representation of the isogeny $\sigma: E_1 \to E_2$
- Verification: check that $\sigma: E_1 \to E_2$ is an isogeny of prime degree d inert in $\operatorname{End}_{\mathbb{F}_p}(E_0)$

