अध्याय 6

ऊतक

(Tissues)

हमने पिछले अध्याय में हमनें पढा कि सभी जीवित प्राणी या पौधे कोशिकाओं के बने होते हैं। एक कोशिक जीवों में. सभी मौलिक कार्य एक ही कोशिका द्रारा किए जाते हैं। उदाहरण के लिए, अमीबा में एक ही कोशिका द्वारा गति, भोजन लेने की क्रिया, श्वसन क्रिया और उत्सर्जन क्रिया संपन्न की जाती है। लेकिन बहुकोशिक जीवों में लाखों कोशिकाएँ होती हैं। इनमें से अधिकतर कोशिकाएँ कुछ ही कार्यों को संपन्न करने में सक्षम होती हैं। प्रत्येक विशेष कार्य कोशिकाओं के विभिन्न समहों द्वारा किया जाता है। कोशिकाओं के ये समूह एक विशिष्ट कार्य को ही अति दक्षता पूर्वक संपन्न करने के लिए सक्षम होते हैं। मनुष्यों में, पेशीय कोशिका फैलती और सिकुड़ती है, जिससे गति होती है. तंत्रिका कोशिकाएँ संदेशों की वाहक होती हैं: रक्त. ऑक्सीजन. भोजन. हॉर्मोन और अपशिष्ट पदार्थों का वहन करता है। पौधों में, वाहक नलियों से संबंधित कोशिकाएँ भोजन और पानी को एक जगह से दूसरी जगह ले जाती हैं। अत: बहुकोशिक जीवों में श्रम विभाजन होता है। शरीर के अंदर ऐसी कोशिकाएँ जो एक तरह के कार्य को संपन्न करने में दक्ष होती हैं. सदैव एक समृह में होती हैं। इससे ज्ञात होता है कि शरीर के अंदर एक निश्चित कार्य एक निश्चित स्थान पर कोशिकाओं के एक विशिष्ट समृह द्वारा संपन्न किया जाता है। कोशिकाओं का यह समृह ऊतक कहलाता है। ये ऊतक अधिकतम दक्षता के साथ कार्य कर सकने के लिए एक विशिष्ट क्रम में व्यवस्थित होते हैं। रक्त, फ़्लोएम तथा पेशी ऊतक के उदाहरण हैं।

वे कोशिकाएँ जो आकृति में एक समान होती हैं तथा किसी कार्य को एक साथ संपन्न करती हैं, समूह में एक ऊतक का निर्माण करती हैं।

6.1 क्या पौधे और जंतु एक ही तरह के ऊतकों से बने होते हैं?

आइए हम विभिन्न ऊतकों की संरचनाओं तथा उनके कार्यों की तुलना करें। क्या पौधों और जंतुओं की संरचनाएँ समान होती हैं? क्या दोनों समरूप कार्य करते हैं?

दोनों में स्पष्ट अंतर होता है। पौधे स्थिर होते हैं-वे गित नहीं करते हैं। उनके अधिकांश ऊतक सहारा देने वाले होते हैं तथा पौधों को संरचनात्मक शिक्त प्रदान करते हैं। एसे अधिकांश ऊतक मृत होते हैं। ये मृत ऊतक जीवित ऊतकों के समान ही यांत्रिक शिक्त प्रदान करते हैं तथा उन्हें कम अनुरक्षण की आवश्यकता होती है।

दूसरी ओर, जंतु भोजन, साथी और आश्रय की खोज में इधर-उधर विचरण करते हैं। ये पौधों की अपेक्षा ऊर्जा का अधिक उपभोग करते हैं। जंतुओं के अधिकांश ऊतक जीवित होते हैं।

जंतु और पौधों के बीच उनकी वृद्धि के प्रतिरूप में एक और भिन्नता है। पौधों की वृद्धि कुछ क्षेत्रों में ही सीमित रहती है जबिक जंतुओं में ऐसा नहीं होता। पौधों के कुछ ऊतक जीवन भर विभाजित होते रहते हैं। ऐसे ऊतक कुछ क्षेत्रों में ही सीमित रहते हैं। ऊतकों की विभाजन-क्षमता के आधार पर ही पौधों के ऊतकों (पादप ऊतकों) का वर्गीकरण किया जाता है: वृद्धि अथवा विभज्योतक तथा स्थायी ऊतक। जंतुओं में कोशिका वृद्धि अधिक एकरूप होती है। अत: जंतुओं में विभाज्य तथा अविभाज्य क्षेत्रों की कोई निश्चित सीमा नहीं होती।

अंगों और अंग-तंत्रों का संरचनात्मक संगठन जटिल पौधों की अपेक्षा जटिल जंतुओं में अति विशिष्ट तथा सीमित होता है। यह मूल अंतर जीवधारियों के दो महत्वपूर्ण समूहों के जीवनयापन के विभिन्न तरीकों को दर्शाता है, विशेषकर इनके भोजन करने की प्रक्रिया में। संरचनात्मक संगठन, एक ओर पौधों के गतिहीन अस्तित्व तथा दूसरी ओर जंतुओं के प्रचलन के लिए अंगतंत्रों के विकास हेतु विभिन्न प्रकार से अनुकूलित होते हैं।

जटिल जंतुओं तथा पौधों के संदर्भ में अब हम ऊतकों की अवधारणा के बारे में विस्तृत चर्चा करेंगे।

श्न

- 1. ऊतक क्या है?
- 2. बहुकोशिक जीवों में ऊतकों का क्या उपयोग है?

6.2 पादप ऊतक

6.2.1 विभज्योतक

चित्र 6.1: प्याज के मूल में वृद्धि

दो शीशे के जार लेते हैं और उनमें पानी भर देते हैं।
 अब दो प्याज़ लेते हैं और दोनों जारों पर एक-एक प्याज़ रख देते हैं, जैसा कि चित्र 6.1 में दिखाया गया है।

 कुछ दिनों तक दोनो प्याज़ों की मूलों की लंबाई मापते हैं।

पहले, दूसरे और तीसरे दिनों में मूल की लंबाई को माप लेते हैं।

दूसरे जार में रखी प्याज की मूल को चौथे दिन 1 cm काट लेते हैं। इसके बाद दोनों जार में रखी प्याज की मूलों की लंबाइयों का पाँच दिनों तक निरीक्षण करें और उनमें हुई प्रत्येक दिन की वृद्धि की माप को नीचे दी गई तालिका में लिखें।

लंबाई दिन-1 दिन-2 दिन-3 दिन-4 दिन-5

जार-1

जार-2

- ऊपर के निरीक्षणों को देखते हुए नीचे दिए गए प्रश्नों के उत्तर दें:
 - किस जार में रखी हुई प्याज़ की मूल लंबी है?
 - हमारे द्वारा मूल के ऊपरी हिस्से को काट लेने के बाद भी क्या वह वृद्धि करती रहती है?
 - 3. जब हम जार-2 में रखी प्याज की मूल के ऊपरी हिस्से को काटते हैं तो वे वृद्धि करना बंद कर देंगी. क्यों?

पौधों में वृद्धि कुछ निश्चित क्षेत्रों में ही होती है। ऐसा विभाजित ऊतकों के उन भागों में पाए जाने के कारण होता है। ऐसे ऊतकों को विभज्योतक (Meristematic tissue) भी कहा जाता है। ये विभज्योतक किस भाग में स्थित हैं, विभज्योतक की उपस्थिति वाले क्षेत्रों के आधार पर इन्हें शीर्षस्थ, केंबियम (पार्श्वीय) तथा अंतर्विष्ट भागों में वर्गीकृत किया जाता है (चित्र 6.2)। विभज्योतक के द्वारा तैयार नई कोशिकाएँ प्रारंभ में विभज्योतक की तरह

होती हैं लेकिन जैसे ही ये बढ़ती और परिपक्व होती हैं, इनके गुणों में धीर-धीरे परिवर्तन होता है और ये दूसरे ऊतकों के घटकों के रूप में विभाजित हो जाती हैं।

चित्र 6.2: किसी पौधे में विभज्योतक की स्थिति

प्ररोह के शीर्षस्थ विभज्योतक जड़ों एवं तनों की वृद्धि वाले भाग में विद्यमान रहता है तथा वह इनकी लंबाई में वृद्धि करता है। तने की परिधि या मूल में वृद्धि पार्श्व विभज्योतक (कैंबियम) के कारण होती है। अंतर्विष्ट विभज्योतक पत्तियों के आधार में या टहनी के पर्व (internode) के दोनों ओर उपस्थित होते हैं।

इस ऊतक की कोशिकाएँ अत्यधिक क्रियाशील होती हैं, उनके पास बहुत अधिक कोशिकाद्रव्य, पतली कोशिका भित्ति, और स्पष्ट केंद्रक होते हैं। उनके पास रसधानी नहीं होती है। क्या हम सोच सकते हैं कि उनके पास रसधानी क्यों नहीं होती है? (आप कोशिकाओं पर आधारित अध्याय में उल्लेखित रसधानियों के कार्यों का संज्ञान ले सकते हैं।)

6.2.2 स्थायी ऊतक

विभज्योतक द्वारा बनी कोशिकाओं का क्या होता है? ये एक विशिष्ट कार्य करती हैं और विभाजित होने की शिक्त को खो देती हैं जिसके फलस्वरूप वे स्थायी ऊतक का निर्माण करती हैं। इस प्रकार एक विशिष्ट कार्य करने के लिए स्थायी रूप और आकार लेने की क्रिया को विभेदीकरण कहते हैं। विभज्योतक की कोशिकाएँ विभाजित होकर विभिन्न प्रकार के स्थायी ऊतकों का निर्माण करती हैं।

क्रियाकलाप 6.2

• एक पौधे के तने को लीजिए तथा अपने शिक्षक की सहायता से उसके पतले सैक्शन काटिए।

- अब सभी सैक्शन को सेफ्रेनिन से रंजित करें। एक अच्छे से कटे हुए सैक्शन को स्लाइड पर रखें और उस पर ग्लिसरीन की एक बूँद डालें। उसको कवर-स्लिप से ढक दें और स्लाइड का निरीक्षण सूक्ष्मदर्शी से करें। विभिन्न प्रकार की कोशिकाओं का अध्ययन करें और उनके विन्यास को देखें। चित्र 6.3 से इसकी तुलना करें। अब नीचे दिए गए प्रश्नों पर विचार करें और निरीक्षण के आधार पर उनके उत्तर दें:
- 1. क्या सभी कोशिकाओं की संरचनाएँ समान हैं?
- 2. कितने प्रकार की कोशिकाओं को देखा जा सकता है?
- क्या हम उन कारणों पर विचार कर सकते हैं कि कोशिकाओं के इतने प्रकार क्यों हैं?

 हम पौधे की मूलों का सैक्शन काटने की कोशिश कर सकते हैं। हम विभिन्न पौधों के मूल और तने का सैक्शन भी काट सकते हैं।

6.2.2 (i) सरल स्थायी ऊतक

कोशिकाओं की कुछ परतें ऊतक के आधारीय पैकिंग का निर्माण करती हैं। इन्हें पैरेन्काइमा ऊतक कहते हैं, जो स्थायी ऊतक का एक प्रकार है। यह पतली कोशिका भित्ति वाली सरल कोशिकाओं का बना होता है। ये कोशिकाएँ जीवित हैं। ये प्राय: बंधन मुक्त होती हैं तथा इस प्रकार के ऊतक की कोशिकाओं के मध्य काफी रिक्त स्थान पाया जाता है [चित्र 6.4 a(i)]। यह ऊतक पौधे को सहायता प्रदान करता है और भोजन

चित्र 6.4: विभिन्न प्रकार के सरल ऊतक: (a) पैरेन्काइमा (i) अनुप्रस्थ सैक्शन, (ii) अनुदैर्ध्य सैक्शन; (b) कॉलेन्काइमा (i) अनुप्रस्थ सैक्शन, (ii) अनुदैर्ध्य सेक्शन

चित्र 6.4: (c) स्क्लेरेंकाइमा (i) अनुप्रस्थ सैक्शन (ii) अनुदैर्ध्य सैक्शन

का भंडारण करता है। कुछ पैरेन्काइमा ऊतकों में क्लोरोफ़िल पाया जाता है, जिसके कारण प्रकाश संश्लेषण की क्रिया संपन्न होती है। स्थितियों में इन ऊतकों को क्लोरेन्काइमा (हरित ऊतक) कहा जाता है। जलीय पौधों में पैरेन्काइमा की कोशिकाओं के मध्य हवा की बड़ी गुहिकाएँ (cavities) होती हैं, जो पौधों को तैरने के लिए उत्प्लावन बल प्रदान करती हैं। इस प्रकार के पैरेन्काइमा को ऐरेन्काइमा कहते हैं। तने और जडों के पैरेन्काइमा पोषण करने वाले पदार्थ और जल का भी संग्रह करते हैं। पौधों में लचीलेपन का गुण एक अन्य स्थायी ऊतक, कॉलेन्काइमा के कारण होता है। यह पौधों के विभिन्न भागों (पत्ती, तना) में बिना टूटे हुए लचीलापन लाता है। यह पौधों को यांत्रिक सहायता भी प्रदान करता है। हम इस ऊतक को एपिडर्मिस के नीचे पर्णवृत में पा सकते हैं। इस ऊतक की कोशिकाएँ जीवित, लंबी और अनियमित ढंग से कोनों पर मोटी होती हैं तथा कोशिकाओं के बीच बहुत कम स्थान होता है [चित्र 6.4 (b)]।

एक अन्य प्रकार का ऊतक स्क्लेरेन्काइमा होता है। यह ऊतक पौधे को कठोर एवं मज़बूत बनाता है। हमने नारियल के रेशेयुक्त छिलके को देखा है। यह स्क्लेरेन्काइमा ऊतक से बना होता है। इस ऊतक की कोशिकाएँ मृत होती हैं। ये लंबी और पतली होती हैं क्योंकि इस ऊतक की भित्ति लिग्निन के कारण मोटी होती है। (लिग्निन कोशिकाओं को दृढ़ बनाने के लिए सीमेंट का कार्य करने वाला एक रासायनिक पदार्थ है।) ये भित्तियाँ प्राय: इतनी मोटी होती हैं कि कोशिका के भीतर कोई आंतरिक स्थान नहीं होता है [चित्र 6.4(c)]। यह ऊतक तने में, संवहन बंडल के समीप, पत्तों की शिराओं में तथा बीजों और फलों के कठोर छिलके में उपस्थित होता है। यह पौधों के भागों को मज़बूती प्रदान करता है।

क्रियाकलाप

6.3

रियो की ताजा तोड़ी हुई पत्ती लीजिए। इसे दबाव लगाकर इस तरह तोड़िए कि पत्ती का छिलका अलग निकल आए।

चित्र 6.5: द्वार कोशिकाएँ तथा एपीडर्मिस कोशिकाएँ: (a) पार्श्व दृश्य, (b) पृष्ठ दृश्य

- इस छिलके को अलग करके जल से भरी हुई पैट्रिडिश में रखें।
 - इसमें कुछ बूँद सेफ्रेनिन विलयन की डालिए। कुछ समय (लगभग दो मिनट) पश्चात् छिलके को स्लाइड पर रख दीजिए तथा इसे धीरे से कवर स्लिप से ढकें।
 - इसका सूक्ष्मदर्शी द्वारा अवलोकन कीजिए।

जो आप देख रहे हैं वह कोशिकाओं की सबसे बाहरी परत एपीडर्मिस है। शुष्क स्थानों पर मिलने वाले पदों में एपीडर्मिस मोटी हो सकती है। यह जल की हानि कम करके पादपों की रक्षा करती है। पौधे की पूरी सतह एपीडर्मिस से ढकी रहती है। यह पौधे के सभी भागों की रक्षा करती है। एपीडर्मल कोशिका पौधों की बाह्य सतह पर प्राय: एक मोम जैसी जल प्रतिरोधी परत बनाती है। यह जल हानि के विरुद्ध यांत्रिक आघात तथा परजीवी कवक के प्रवेश से पौधों की रक्षा करती है। क्योंकि एपीडर्मल कोशिकाओं का उत्तरदायित्व रक्षा करने का है. अत: इसकी कोशिकाएँ बिना किसी अंतर्कोशिकीय स्थान के अछिन्न परत बनाती हैं। अधिकांश एपीडर्मल कोशिकाएँ अपेक्षाकृत चपटी होती हैं। सामान्यत: उनकी बाह्य तथा पार्श्व भित्तियाँ उनकी आंतरिक भित्तियों से मोटी होती हैं।

पत्ती की एपीडिर्मिस में हम छोटे-छोटे छिद्रों को देख सकते हैं। इन छिद्रों को स्टोमेटा कहते हैं (चित्र 6.5)। स्टोमेटा को दो वृक्क के आकार की कोशिकाएँ घेरे रहती हैं, जिन्हें रक्षी कोशिकाएँ कहते हैं। ये कोशिकाएँ वायुमंडल से गैसों का आदान-प्रदान करने के लिए आवश्यक हैं। वाष्पोत्सर्जन (वाष्प के रूप में पानी का निकलना) की क्रिया भी स्टोमेटा के द्वारा होती है।

•श्न

 प्रकाश संश्लेषण के लिए किस गैस की आवश्यकता होती है?

 पौधों में वाष्पोत्सर्जन के कार्यों का उल्लेख करें। जड़ों की एपीडर्मल कोशिकाएँ पानी को सोंखने का कार्य करती हैं। साधारणत: उनमें बाल जैसे प्रवर्ध होते हैं, जिससे जड़ों की कुल अवशोषक सतह बढ़ जाती है तथा उनकी पानी सोंखने की क्षमता में वृद्धि होती है।

मरुस्थलीय पौधों की बाहरी सतह वाले एपीडर्मिस में क्यूटिन (एक जल अवरोधक रासायनिक पदार्थ) का लेप होता है। क्या हम इसका कारण सोच सकते हैं?

क्या एक पेड़ की बाहरी शाखा की परत नए तने की बाह्य परत से भिन्न होती है?

जैसे-जैसे वृक्ष की आयु बढ़ती है, उसके बाह्य सुरक्षात्मक ऊतकों में कुछ परिवर्तन होता है। एक दूसरे विभज्योतक की पट्टी तने के एपीडर्मिस का स्थान ले लेती है। बाहरी सतह की कोशिकाएँ इस सतह से अलग हो जाती हैं। यह पौधों पर बहुत परतों वाली मोटी छाल का निर्माण करती हैं। इन छालों की कोशिकाएँ मृत होती हैं, ये बिना अंत:कोशिकीय स्थानों (चित्र 6.6) के व्यवस्थित होती हैं। इनकी भित्ति पर सुबरिन (suberin) नामक रसायन होता है जो इन छालों को हवा एवं पानी के लिए अभेद्य बनाता है।

चित्र 6.6: रक्षी ऊतक

6.2.2 (ii) जटिल स्थायी ऊतक

अब तक हम एक ही प्रकार की कोशिकाओं से बने हुए भिन्न-भिन्न प्रकार के ऊतकों पर विचार कर चुके हैं, जो कि एक ही तरह के दिखाई देते हैं। ऐसे ऊतकों को साधारण स्थायी ऊतक कहते हैं। अन्य प्रकार के स्थायी ऊतक को जटिल ऊतक कहते हैं। जटिल ऊतक एक से अधिक प्रकार की कोशिकाओं से मिलकर बने होते हैं और ये सभी एक साथ मिलकर एक इकाई की तरह कार्य करते हैं। जाइलम और फ्लोएम इसी प्रकार के जटिल ऊतकों के उदाहरण हैं।

इन दोनों को संवहन ऊतक भी कहते हैं और ये मिलकर संवहन बंडल का निर्माण करते हैं। यह ऊतक बड़े पौधों की एक विशेषता है, जो कि उनको स्थलीय वातावरण में रहने के अनुकूल बनाती है। चित्र 6.3 में तने का एक भाग दिखाया गया है। क्या हम संवहन बंडल में मौजूद विभिन्न प्रकार की कोशिकाओं को देख सकते हैं?

जाइलम ट्रैकीड् (वाहिनिका), वाहिका, जाइलम पैरेन्काइमा [चित्र 6.7(a), (b) तथा (c)] और जाइलम फ़ाइबर (रेशे) से मिलकर बना होता है। इन कोशिकाओं की कोशिका भित्ति मोटी होती है और इनमें से अधिकतर कोशिकाएँ मृत होती हैं। ट्रैकीड् और वाहिकाओं की संरचना निलकाकार होती है। इनके द्वारा पानी और खिनज लवण का ऊर्ध्वाधर संवहन होता है। पैरेन्काइमा भोजन का संग्रह करता है और यह किनारे की ओर पानी के पार्श्वीय संवहन में मदद करता है। फ़ाइबर (रेशे) मुख्यत: सहारा देने का कार्य करते हैं।

प्रलोएम चार प्रकार के अवयवों: चालनी निलका, (sieve tubes), साथी कोशिकाएँ, फ़्लोएम पैरेन्काइमा तथा फ्लोएम रेशों से मिलकर बना होता है [चित्र 6.7(d)]। चालनी निलका छिद्रित भित्ति वाली तथा निलकाकार कोशिका होती है। फ़्लोएम, ज़ाइलम के असमान पदार्थों को कोशिकाओं में दोनों दिशाओं में गित करा सकते हैं। फ़्लोएम पित्तयों से भोजन को पौधे के विभिन्न भागों तक पहुँचाता है। फ्लोएम रेशों को छोड़कर, फ़्लोएम कोशिकाएँ जीवित कोशिकाएँ हैं।

(d) फ़्लोएम-सैक्शन

चित्र 6.7: जटिल ऊतकों के प्रकार

7 श्न

1. सरल ऊतकों के कितने प्रकार हैं?

2. प्ररोह का शीर्षस्थ विभज्योतक कहाँ पाया जाता है?

- 3. नारियल का रेशा किस ऊतक का बना होता है?
- 4. फ़्लोएम के संघटक कौन-कौन से हैं?

6.3 जंतु ऊतक

जब हम साँस लेते हैं तब हम अपनी छाती की गित को महसूस कर सकते हैं। शरीर के ये अंग कैसे गित करते हैं? इसके लिए हमारे पास कुछ विशेष कोशिकाएँ होती हैं जिन्हें हम पेशीय कोशिकाएँ कहते

चिकने पेशीय रेशे

चित्र 6.8: पेशीय रेशे

हैं (चित्र 6.8)। इन कोशिकाओं का फैलना और सिकुड़ना अंगों को गति प्रदान करता है।

साँस लेते समय हम ऑक्सीजन लेते हैं। यह ऑक्सीजन कहाँ जाती है? यह फेफड़ों के द्वारा अवशोषित की जाती है तथा रक्त के साथ शरीर की सभी कोशिकाओं तक पहुँच जाती है। कोशिकाओं को ऑक्सीजन की आवश्यकता क्यों होती है? माइटोकॉन्ड्रिया का कार्य इस प्रश्न के हल के लिए एक संकेत देता है, जिसके बारे में हम पहले पढ़ चुके हैं। रक्त अपने साथ विभिन्न पदार्थों को शरीर में एक स्थान से दूसरे स्थान तक ले जाता है। उदाहरण के लिए यह भोजन और ऑक्सीजन को सभी कोशिकाओं तक पहुँचाता है। यह शरीर के सभी भागों से अपशिष्ट पदार्थों को एकत्र कर यकृत तथा वृक्क तक उत्सर्जन के लिए पहुँचाता है।

रक्त और पेशियाँ दोनों ही हमारे शरीर में पाए जाने वाले ऊतकों के उदाहरण हैं। उनके कार्य के आधार पर हम विभिन्न प्रकार के जंतु ऊतकों के बारे में विचार कर सकते हैं जैसे कि एपिथीलियमी ऊतक, संयोजी ऊतक, पेशीय ऊतक तथा तंत्रिका ऊतक। रक्त, संयोजी ऊतक का एक प्रकार है तथा पेशी, पेशीय ऊतक का।

6.3.1 एपिथीलियमी ऊतक

जंतु के शरीर को ढकने या बाह्य रक्षा प्रदान करने वाले ऊतक एपिथीलियमी ऊतक हैं। एपिथीलियम शरीर के अंदर स्थित बहुत से अंगों और गुहिकाओं को ढकते हैं। ये भिन्न-भिन्न प्रकार के शारीरिक तंत्रों को एक-दूसरे से अलग करने के लिए अवरोध का निर्माण करते हैं। त्वचा, मुँह, आहारनली, रक्त वाहिनी नली का अस्तर, फेफड़ों की कूपिका, वृक्कीय नली आदि सभी एपिथीलियमी ऊतक से बने होते हैं। एपिथीलियमी ऊतक की कोशिकाएँ एक-दूसरे से सटी होती हैं और ये एक अनवरत परत का निर्माण

(b) घनाकार

(c) स्तंभाकार (पक्ष्माभी)

चित्र 6.9: विभिन्न प्रकार के एपिथीलियम ऊतक

करती हैं। इन परतों के बीच चिपकाने वाले पदार्थ कम होते हैं तथा कोशिकाओं के बीच बहुत कम स्थान होता है। स्पष्टतः जो भी पदार्थ शरीर में प्रवेश करता है या बाहर निकलता है, वह एपिथीलियम की किसी परत से होकर अवश्य गुज़रता है। इसके फलस्वरूप विभिन्न प्रकार की एपिथीलियमी कोशिकाओं के बीच की पारगम्यता शरीर तथा बाहरी वातावरण और शरीर के विभिन्न अंगों के बीच पदार्थों के आदान-प्रदान में महत्वपूर्ण भूमिका निभाती है। सामान्यतः सभी एपिथीलियमों को एक बाह्य रेशेदार आधार झिल्ली उसे नीचे रहने वाले ऊतकों से अलग करती है।

चित्र 6.9 में दर्शाए अनुसार, विभिन्न एपिथीलियम की संरचनाएँ विभिन्न प्रकार की होती हैं. जो उनके कार्यों पर निर्भर करती हैं। उदाहरण के लिए, कोशिकाओं में रक्त नलिका अस्तर या कृपिका, जहाँ पदार्थों का संवहन वरणात्मक पारगम्य झिल्ली द्वारा होता है, वहाँ पर चपटी एपिथीलियमी ऊतक कोशिकाएँ होती हैं। इनको सरल शल्की एपिथीलियम कहते हैं। ये अत्यधिक पतली और चपटी होती हैं तथा कोमल अस्तर का निर्माण करती हैं। आहारनली तथा मुँह का अस्तर शल्की एपिथीलियम से ढका होता है। शरीर का रक्षात्मक कवच अर्थात त्वचा इन्हीं शल्की एपिथीलियम से बनी होती है। त्वचा की एपिथीलियमी कोशिकाएँ इनको कटने तथा फटने से बचाने के लिए कई परतों में व्यवस्थित होती हैं। चूँकि ये कई परतों के पैटर्न में व्यवस्थित होती हैं इसलिए इन एपिथीलियम को स्तरित शल्की एपिथीलियम कहते हैं।

जहाँ अवशोषण और स्नाव होता है, जैसे आँत के भीतरी अस्तर (lining) में, वहाँ लंबी एपिथीलियमी कोशिकाएँ मौजूद होती हैं। यह स्तंभाकार एपिथीलियम, एपिथीलियमी अवरोध को पार करने में सहायता प्रदान करता है। श्वास नली में, स्तंभाकार एपिथीलियमी अतक में पक्ष्माभ (Cilia) होते हैं, जो कि एपिथीलियमी अतक की कोशिकाओं की सतह पर बाल जैसी रचनाएँ होती हैं। ये पक्ष्माभ गित कर सकते हैं तथा

इनकी गित श्लेष्मा को आगे स्थानांतरित करके साफ़ करने में सहायता करती हैं। इस प्रकार के एपिथीलियम को पक्ष्माभी स्तंभाकार एपिथीलियम कहते हैं।

घनाकार एपिथीलियम वृक्कीय नली तथा लार ग्रंथी की नली के अस्तर का निर्माण करता है, जहाँ यह उसे यांत्रिक सहारा प्रदान करता है। ये एपिथीलियम कोशिकाएँ प्राय: ग्रंथि कोशिका के रूप में अतिरिक्त विशेषता अर्जित करती हैं, जो एपिथीलियमी ऊतक की सतह पर पदार्थों का म्राव कर सकती हैं। कभी-कभी एपिथीलियमी ऊतक का कुछ भाग अंदर की ओर मुड़ा होता है तथा एक बहुकोशिक ग्रंथि का निर्माण करता है। यह ग्रंथिल एपिथीलियम कहलाता है।

6.3.2 संयोजी ऊतक

रक्त एक प्रकार का संयोजी ऊतक है। इसे संयोजी ऊतक क्यों कहते हैं? इस अध्याय की भूमिका में इस संबंध में एक संकेत दिया गया है। आइए अब हम इस तरह के ऊतक के बारे में विस्तृत जानकारी लें। संयोजी ऊतक की कोशिकाएँ आपस में कम जुड़ी होती हैं और अंतरकोशिकीय आधात्री (matrix) में धँसी होती हैं (चित्र 6.10)। यह आधात्री जैली की तरह, तरल, सघन या कठोर हो सकती है। आधात्री की प्रकृति, विशिष्ट संयोजी ऊतक के कार्य के अनुसार बदलती रहती है।

रक्त की एक बूँद स्लाइड पर लें और उसमें मौजूद विभिन्न कोशिकाओं को सूक्ष्मदर्शी में देखें।

रक्त के तरल आधात्री भाग को प्लाज्मा कहते हैं, प्लाज्मा में लाल रक्त कोशिकाएँ (RBC), श्वेत रक्त कोशिकाएँ (WBC) तथा प्लेटलेट्स निलंबित होते हैं। प्लाज्मा में प्रोटीन, नमक तथा हॉर्मोन भी होते हैं। रक्त गैसों, शरीर के पचे हुए भोजन, हॉर्मोन और उत्सर्जी पदार्थों को शरीर के एक भाग से दूसरे भाग में संवहन करता है।

अस्थि संयोजी ऊतक का एक अन्य उदाहरण है। यह पंजर का निर्माण कर शरीर को आकार प्रदान

चित्र 6.10: संयोजी ऊतकों के प्रकार:(a) एरिओलर ऊतक, (b) वसामय (एडीपोज़) ऊतक, (c) संहत अस्थि ऊतक, (d) काचाभ स्नायु ऊतक, (e) विभिन्न रक्त कोशिकाएँ

करती है। यह मांसपेशियों को सहारा देती है और शरीर के मुख्य अंगों को सहारा देती है। यह ऊतक मज़बूत और कठोर होता है। (अस्थि कार्यों के लिए इन गुणों के क्या उपयोग हैं।) अस्थि कोशिकाएँ कठोर आधात्री में धँसी होती हैं, जो कैल्सियम तथा फॉस्फोरस से बनी होती हैं।

दो अस्थियाँ आपस में एक-दूसरे से, एक अन्य संयोजी ऊतक जिसे स्नायु (अस्थि बंधान तंतु) कहते हैं, से जुड़ी होती हैं। यह ऊतक बहुत लचीला एवं मज़बूत होता है। स्नायु में बहुत कम आधात्री होती है। एक अन्य प्रकार का संयोजी ऊतक कंडरा (tendon) है, जो अस्थियों से मांसपेशियों को जोड़ता है। कंडरा मज़बूत तथा सीमित लचीलेपन वाले रेशेदार ऊतक होते हैं।

उपास्थि (cartilage) एक अन्य प्रकार का संयोजी ऊतक होता है, जिसमें कोशिकाओं के बीच पर्याप्त स्थान होता है। इसकी ठोस आधात्री प्रोटीन और शर्करा की बनी होती है। यह अस्थियों के जोड़ों को चिकना बनाती है। उपास्थि नाक, कान, कंठ और श्वास नली में भी उपस्थित होती है। हम कान की उपास्थि को मोड़ सकते हैं, परंतु हाथ की अस्थि को नहीं। सोचिए, ये दो ऊतक किस प्रकार भिन्न हैं!

एरिओलर संयोजी ऊतक त्वचा और मांसपेशियों के बीच, रक्त निलका के चारों ओर तथा नसों और अस्थि मज्जा में पाया जाता है। यह अंगों के भीतर की खाली जगह को भरता है, आंतरिक अंगों को सहारा प्रदान करता है और ऊतकों की मरम्मत में सहायता करता है।

हमारे शरीर में वसा कहाँ संचित होता है? वसा का संग्रह करने वाला वसामय ऊतक त्वचा के नीचे आंतरिक अंगों के बीच पाया जाता है। इस ऊतक की कोशिकाएँ वसा की गोलिकाओं से भरी होती हैं। वसा संग्रहित होने के कारण यह ऊष्मीय कुचालक का कार्य भी करता है।

6.3.3 पेशीय ऊतक

पेशीय ऊतक लंबी कोशिकाओं का बना होता है जिसे पेशीय रेशा (muscle fibre) भी कहा जाता है। यह हमारे शरीर में गित के लिए उत्तरदायी है। पेशियों में एक विशेष प्रकार की प्रोटीन होती है, जिसे सिकुड़ने वाला प्रोटीन कहते हैं, जिसके संकुचन एवं प्रसार के कारण गित होती है।

कुछ पेशियों की हम इच्छानुसार गित करा सकते हैं। हाथ और पैर में विद्यमान पेशियों को हम अपनी इच्छानुसार आवश्यकता पड़ने पर गित करा सकते हैं या उनकी गित को रोक सकते हैं। इस तरह की पेशियों को ऐच्छिक पेशी (voluntary muscle) कहा जाता है [चित्र 6.11(a)]। इन पेशियों को कंकाल पेशी भी कहा जाता है क्योंकि ये अधिकतर हिंडु यों से जुड़ी होती हैं तथा शारीरिक गित में सहायक होती हैं। सूक्ष्मदर्शी से देखने पर ये पेशियाँ हलके तथा गहरे रंगों में एक के बाद एक रेखाओं या धारियों की तरह प्रतीत होती हैं। इसी कारण इसे रेखित पेशी भी कहते हैं। इस ऊतक की कोशिकाएँ लंबी, बेलनाकार, शाखारहित और बहुनाभीय होती हैं।

आहारनली में भोजन का प्रवाह या रक्त निलका का प्रसार एवं संकुचन जैसी गितयाँ ऐच्छिक नहीं हैं। इन गितिविधियों को हम स्वयं संचालित नहीं कर सकते हैं, अर्थात् हम इन गितयों को इच्छानुसार प्रारंभ या बंद नहीं कर सकते हैं। चिकनी पेशियाँ [चित्र 6.11(b)] अथवा अनैच्छिक पेशियाँ इनकी गित को नियंत्रित करती हैं। ये आँख की पलक, मूत्रवाहिनी और फेफड़ों की श्वसनी में भी पाया जाता है। कोशिकाएँ लंबी और इनका आखिरी सिरा नुकीला (तर्कुरूपी – spindle shaped) होता है। ये एक-केंद्रकीय होती हैं। इनको आरेखित क्यों है?

हृदय की पेशियाँ जीवन भर लयबद्ध होकर प्रसार एवं संकुचन करती रहती हैं। इन अनैच्छिक पेशियों को कार्डिक (हृदयक) पेशी कहा जाता है [चित्र 6.11(c)]। हृदय की पेशी कोशिकाएँ बेलनाकार, शाखाओं वाली और एक-केंद्रकीय होती हैं।

विभिन्न प्रकार की पेशीय ऊतकों की संरचना की तुलना करें। उनके आकार, केंद्रक की संख्या तथा कोशिका में केंद्रक की स्थिति को नोट करें।

तर्कुरूपी पेशीय कोशिका

चित्र 6.11: पेशीय ऊतक: (a) रेखित पेशी, (b) चिकनी पेशी, (c) कार्डिक (हृदयक) पेशी

6.3.4 तंत्रिका ऊतक

सभी कोशिकाओं में उत्तेजना के अनुकूल प्रतिक्रिया करने की क्षमता होती है। यद्यपि, तंत्रिका ऊतक की कोशिकाएँ बहुत शीघ्र उत्तेजित होती हैं और इस उत्तेजना को बहुत ही शीघ्र पूरे शरीर में एक स्थान से दसरे स्थान तक पहुँचाती हैं। मस्तिष्क, मेरुरज्ज तथा तांत्रिकाएँ सभी तांत्रिका ऊतकों की बनी होती हैं। तंत्रिका ऊतक की कोशिकाओं को तंत्रिका कोशिका या न्यूरॉन कहा जाता है। न्यूरॉन में कोशिकाएँ केंद्रक तथा कोशिकाद्रव्य (साइटोप्लाज्म) होते हैं। इससे लंबे. पतले बालों जैसी शाखाएँ निकली होती हैं (चित्र 6.12)। प्राय: प्रत्येक न्यूरॉन में इस तरह का एक लंबा प्रवर्ध होता है, जिसको एक्सॉन कहते हैं तथा बहुत सारे छोटी शाखा वाले प्रवर्ध (डेंडराइट्स) होते हैं। एक तंत्रिका कोशिका 1 मीटर तक लंबी हो सकती है। बहुत सारे तंत्रिका रेशे संयोजी ऊतक के द्वारा एक साथ मिलकर एक तांत्रिका का निर्माण करते हैं।

चित्र 6.12: न्यूरॉन-तंत्रिका ऊतक की इकाई

तंत्रिका का स्पंदन हमें इच्छानुसार अपनी पेशियों की गित करने में सहायता करता है। तंत्रिका तथा पेशीय ऊतकों का कार्यात्मक संयोजन प्राय: सभी जीवों में मौलिक है। साथ ही, यह संयोजन उत्तेजना के अनुसार जंतुओं को तेज़ गित प्रदान करता है।

श्न

- उस ऊतक का नाम बताएँ जो हमारे शरीर में गित के लिए उत्तरदायी है।
- 2. न्यूरॉन देखने में कैसा लगता है?
- 3. हृदय पेशी के तीन लक्षणों को बताएँ।
- 4. एरिओलर ऊतक के क्या कार्य हैं?

आपने क्या

सीखा

- ऊतक कोशिकाओं का समूह होता है जिसमें कोशिकाओं की संरचना तथा कार्य एकसमान होते हैं।
- पौधों के ऊतक (पादप ऊतक) दो प्रकार के होते हैं विभज्योतक तथा स्थायी ऊतक।
- विभज्योतक (मेरिस्टेमेटिक) ऊतक एक विभाज्य ऊतक है तथा यह पौधों के वृद्धि वाले क्षेत्रों में पाए जाते हैं।
- स्थायी ऊतक विभज्योतक से बनते हैं, जो एक बार विभाजित होने की क्षमता
 को खो देते हैं। इनको सरल तथा जटिल ऊतकों में वर्गीकृत किया जाता है।
- पैरेन्काइमा, कॉलेन्काइमा तथा स्क्लेरेन्काइमा सरल ऊतकों के तीन प्रकार हैं।
 जाइलम और फ़्लोएम जटिल ऊतकों के प्रकार हैं।
- एपिथीलियमी, पेशीय, संयोजी तथा तांत्रिका ऊतक जांतु ऊतक होते हैं।
- आकृति और कार्य के आधार पर एपिथीलियमी ऊतक को शल्की, घनाकार, स्तंभाकार, रोमीय तथा ग्रंथिल श्रेणियों में वर्गीकृत किया जाता है।
- हमारे शरीर में विद्यमान संयोजी ऊतक के विभिन्न प्रकार हैं: एरिओलर ऊतक, एडीपोज़ (वसामय) ऊतक, अस्थि, कंडरा, स्नायु, उपास्थि तथा रक्त (रुधिर)।
- पेशीय ऊतक के तीन प्रकार होते हैं रेखित, आरेखित और कार्डिक (हृदयक पेशी)।
- तंत्रिका ऊतक न्यूरॉन का बना होता है, जो संवेदना को प्राप्त और संचालित करता है।

अभ्यास

- 1. ऊतक को परिभाषित करें।
- 2. कितने प्रकार के तत्व मिलकर जाइलम ऊतक का निर्माण करते हैं? उनके नाम बताएँ।
- 3. पौधों में सरल ऊतक जटिल ऊतक से किस प्रकार भिन्न होते हैं?
- 4. कोशिका भित्ति के आधार पर पैरेन्काइमा, कॉलेन्काइमा और स्क्लेरेन्काइमा के बीच भेद स्पष्ट करें।

- 5. रंध्र के क्या कार्य हैं?
- 6. तीनों प्रकार के पेशीय रेशों में चित्र बनाकर अंतर स्पष्ट करें।
- 7. कार्डिक (हृदयक) पेशी का विशेष कार्य क्या है?
- 8. रेखित, अरेखित तथा कार्डिक (हृदयक) पेशियों में शरीर में स्थित कार्य और स्थान के आधार पर अंतर स्पष्ट करें।
- 9. न्यूरॉन का एक चिह्नित चित्र बनाएँ।
- 10. निम्नलिखित के नाम लिखें:
 - (a) ऊतक जो मुँह के भीतरी अस्तर का निर्माण करता है।
 - (b) ऊतक जो मनुष्य में पेशियों को अस्थि से जोड़ता है।
 - (c) ऊतक जो पौधों में भोजन का संवहन करता है।
 - (d) ऊतक जो हमारे शरीर में वसा का संचय करता है।
 - (e) तरल आधात्री सहित संयोजी ऊतक।
 - (f) मस्तिष्क में स्थित ऊतक।
- 11. निम्नलिखित में ऊतक के प्रकार की पहचान करें: त्वचा, पौधे का वल्क, अस्थि, वृक्कीय निलका अस्तर, संवहन बंडल।
- 12. पैरेन्काइमा ऊतक किस क्षेत्र में स्थित होते हैं?
- 13. पौधों में एपिडर्मिस की क्या भूमिका है?
- 14. छाल (कॉर्क) किस प्रकार सुरक्षा ऊतक के रूप में कार्य करता है?
- 15. निम्न दी गई तालिका को पूर्ण करें

