Import the necessary packages

In [1]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from matplotlib import rcParams
%matplotlib inline
import warnings
warnings.filterwarnings('ignore')
import seaborn as sns
```

Load the Dataset

In [2]:

performance=pd.read_excel("C:\\Users\DELL\Desktop\Datamites projects\IABAC Mar2020\INX_Futu
performance.head()

Out[2]:

shipSatisfaction	TotalWorkExperienceInYears	TrainingTimesLastYear	EmpWorkLifeBalance	Experie
4	10	2	2	
4	20	2	3	
3	20	2	3	
2	23	2	2	
4	10	1	3	
◀				•

head() function is used to return top n rows of a data frame or series.

In [3]:

performance.tail()

Out[3]:

	EmpNumber	Age	Gender	EducationBackground	MaritalStatus	EmpDepartment	EmpJok
1195	E100992	27	Female	Medical	Divorced	Sales	Exe
1196	E100993	37	Male	Life Sciences	Single	Development	S Dev€
1197	E100994	50	Male	Medical	Married	Development	S Deve
1198	E100995	34	Female	Medical	Single	Data Science	Sci
1199	E100998	24	Female	Life Sciences	Single	Sales	Exe
5 rows × 28 columns							
4							•

The tail() function is used to return the last n rows.

Perform Exploratory Data Analysis steps

Checking the datatypes of data

In [4]:

performance.dtypes

Out[4]:

EmpNumber	object
Age	int64
Gender	object
EducationBackground	object
MaritalStatus	object
EmpDepartment	object
EmpJobRole	object
BusinessTravelFrequency	object
DistanceFromHome	int64
EmpEducationLevel	int64
EmpEnvironmentSatisfaction	int64
EmpHourlyRate	int64
EmpJobInvolvement	int64
EmpJobLevel	int64
EmpJobSatisfaction	int64
NumCompaniesWorked	int64
OverTime	object
EmpLastSalaryHikePercent	int64
EmpRelationshipSatisfaction	int64
TotalWorkExperienceInYears	int64
TrainingTimesLastYear	int64
EmpWorkLifeBalance	int64
ExperienceYearsAtThisCompany	int64
ExperienceYearsInCurrentRole	int64
YearsSinceLastPromotion	int64
YearsWithCurrManager	int64
Attrition	object
PerformanceRating	int64
dtype: object	

Data Cleaning

Find out the names of the columns in the data.

In [5]:

```
performance.columns
```

```
Out[5]:
```

Display the information of all the fields present in the data

In [6]:

```
performance.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1200 entries, 0 to 1199
Data columns (total 28 columns):

#	Column	Non-Null Count	Dtype
0	EmpNumber	1200 non-null	object
1	Age	1200 non-null	int64
2	Gender	1200 non-null	object
3	EducationBackground	1200 non-null	object
4	MaritalStatus	1200 non-null	object
5	EmpDepartment	1200 non-null	object
6	EmpJobRole	1200 non-null	object
7	BusinessTravelFrequency	1200 non-null	object
8	DistanceFromHome	1200 non-null	int64
9	EmpEducationLevel	1200 non-null	int64
10	EmpEnvironmentSatisfaction	1200 non-null	int64
11	EmpHourlyRate	1200 non-null	int64
12	EmpJobInvolvement	1200 non-null	int64
13	EmpJobLevel	1200 non-null	int64
14	EmpJobSatisfaction	1200 non-null	int64
15	NumCompaniesWorked	1200 non-null	int64
16	OverTime	1200 non-null	object
17	EmpLastSalaryHikePercent	1200 non-null	int64
18	EmpRelationshipSatisfaction	1200 non-null	int64
19	TotalWorkExperienceInYears	1200 non-null	int64
20	TrainingTimesLastYear	1200 non-null	int64
21	EmpWorkLifeBalance	1200 non-null	int64
22	ExperienceYearsAtThisCompany	1200 non-null	int64
23	ExperienceYearsInCurrentRole	1200 non-null	int64
24	YearsSinceLastPromotion	1200 non-null	int64
25	YearsWithCurrManager	1200 non-null	int64
26	Attrition	1200 non-null	object
27	PerformanceRating	1200 non-null	int64

dtypes: int64(19), object(9)
memory usage: 262.6+ KB

The describe() function computes a summary of statistics pertaining to the DataFrame columns

```
In [7]:
```

```
performance.describe()
```

Out[7]:

	Age	DistanceFromHome	EmpEducationLevel	EmpEnvironmentSatisfaction	Empl
count	1200.000000	1200.000000	1200.00000	1200.000000	12
mean	36.918333	9.165833	2.89250	2.715833	
std	9.087289	8.176636	1.04412	1.090599	
min	18.000000	1.000000	1.00000	1.000000	
25%	30.000000	2.000000	2.00000	2.000000	
50%	36.000000	7.000000	3.00000	3.000000	
75%	43.000000	14.000000	4.00000	4.000000	
max	60.000000	29.000000	5.00000	4.000000	1

Shape is a tuple that gives dimensions of the array

In [8]:

performance.shape

Out[8]:

(1200, 28)

Checking for the null values in the data

In [9]:

```
performance.isnull().sum().to_frame().T
```

Out[9]:

	EmpNumber	Age	Gender	EducationBackground	MaritalStatus	EmpDepartment	EmpJobRo	
0	0	0	0	0	0	0		
1 rows × 28 columns								
In	[10]:							
pe	rformance.i	snull	().sum().to_frame().any()				

Out[10]:

0 False
dtype: bool

Count() function returns count of how many times a given object occurs in

In [11]:

performance.count()	
Out[11]:	
EmpNumber	1200
Age	1200
Gender	1200
EducationBackground	1200
MaritalStatus	1200
EmpDepartment	1200
EmpJobRole	1200
BusinessTravelFrequency	1200
DistanceFromHome	1200
EmpEducationLevel	1200
EmpEnvironmentSatisfaction	1200
EmpHourlyRate	1200
EmpJobInvolvement	1200
EmpJobLevel	1200
EmpJobSatisfaction	1200
NumCompaniesWorked	1200
OverTime	1200
EmpLastSalaryHikePercent	1200
EmpRelationshipSatisfaction	1200
TotalWorkExperienceInYears	1200
TrainingTimesLastYear	1200
EmpWorkLifeBalance	1200
ExperienceYearsAtThisCompany	1200
ExperienceYearsInCurrentRole	1200
YearsSinceLastPromotion	1200
YearsWithCurrManager	1200
Attrition	1200
PerformanceRating	1200
dtype: int64	

1) Department wise Performance Analysis

```
In [12]:
```

```
performance.groupby('EmpDepartment')['PerformanceRating'].count()
```

Out[12]:

EmpDepartment
Data Science 20
Development 361
Finance 49
Human Resources 54
Research & Development 343
Sales 373

Name: PerformanceRating, dtype: int64

In [13]:

```
performance.groupby(by='EmpDepartment')['PerformanceRating'].mean()
```

Out[13]:

EmpDepartment

 Data Science
 3.050000

 Development
 3.085873

 Finance
 2.775510

 Human Resources
 2.925926

 Research & Development
 2.921283

 Sales
 2.860590

Name: PerformanceRating, dtype: float64

1.1) Visualization carried out for Department wise Performance Analysis

Performance Rating Analysis of each department

In [14]:

```
performance.groupby(by=['EmpDepartment'])['PerformanceRating'].mean()
```

Out[14]:

EmpDepartment

Data Science 3.050000
Development 3.085873
Finance 2.775510
Human Resources 2.925926
Research & Development 2.921283
Sales 2.860590

In [15]:

```
plt.figure(figsize=(15,5))
splot=sns.barplot(performance['EmpDepartment'],performance['PerformanceRating'],ci=None)
plt.xticks(rotation=30)
plt.xlabel("Name of Department ",fontsize=15,color='black')
plt.ylabel(" Performance Rating ",fontsize=15,color='black')
plt.title("Performance Rating v/s Department ",fontdict={'fontsize':20,'color':'Red'})
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


Performance Rating of 'Development' Department is the highest and 'Finance' Department is the lowest.

In [16]:

```
plt.figure(figsize=(15,5))
splot=sns.pointplot(performance['EmpDepartment'],performance['PerformanceRating'],ci=None)
plt.xticks(rotation=30)
plt.xlabel("Name of Department",fontsize=15,color='black')
plt.ylabel(" Performance Rating of the Department ",fontsize=15,color='black')
plt.title(" Graph of Department v/s Performance Rating ",fontdict={'fontsize':20,'color':'B
```

Out[16]:

Text(0.5, 1.0, ' Graph of Department v/s Performance Rating ')

Here 'Development' department has the highest mean Performance Rating and 'Finance' department has the lowest mean Performance Rating.

Performance Rating Analysis of each department with respect to Male and **Female**

In [17]:

performance.groupby(by=['EmpDepartment','Gender'])['PerformanceRating'].mean()

Out[17]:

EmpDepartment	Gender	
Data Science	Female	3.000000
	Male	3.083333
Development	Female	3.098592
	Male	3.077626
Finance	Female	2.681818
	Male	2.851852
Human Resources	Female	3.058824
	Male	2.864865
Research & Development	Female	2.945736
	Male	2.906542
Sales	Female	2.840764
	Male	2.875000
Name - Day Campage - Dating	44	7

In [18]:

```
plt.figure(figsize=(15,5))
splot=sns.barplot(performance['EmpDepartment'],performance['PerformanceRating'],performance
plt.xticks(rotation=30)
plt.xlabel("Name of Department ",fontsize=15,color='black')
plt.ylabel(" Performance Rating ",fontsize=15,color='black')
plt.title("Performance Rating of each Department (Male vs Female) ",fontdict={'fontsize':20
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


Here Females performed better than males in HumanResources, Development, Research and Development departments. Males performed better than Females in Sales, Data Science and Finance departments.

In [19]:

```
plt.figure(figsize=(15,5))
sns.pointplot(performance['EmpDepartment'],performance['PerformanceRating'],performance['Ge
plt.xticks(rotation=30)
plt.xlabel("Name of Department",fontsize=15,color='black')
plt.ylabel(" Performance Rating of the Department ",fontsize=15,color='black')
plt.title(" Graph of Department v/s Performance Rating ",fontdict={'fontsize':20,'color':'B
```

Out[19]:

Text(0.5, 1.0, ' Graph of Department v/s Performance Rating ')

Analysis of each Department with respect to Performance Rating Index 2,3,4

In [20]:

```
dept=pd.get_dummies(performance['EmpDepartment'])
ratings=pd.DataFrame(performance['PerformanceRating'])
```

In [21]:

```
rating_index=pd.concat([dept,ratings],axis=1)
rating index.head()
```

Out[21]:

	Data Science	Development	Finance	Human Resources	Research & Development	Sales	PerformanceRating
0	0	0	0	0	0	1	3
1	0	0	0	0	0	1	3
2	0	0	0	0	0	1	4
3	0	0	0	1	0	0	3
4	0	0	0	0	0	1	3

```
In [22]:
```

```
rating_index.groupby(by=['PerformanceRating'])['Sales'].mean()
Out[22]:
PerformanceRating
     0.448454
    0.287185
3
4
     0.265152
Name: Sales, dtype: float64
In [23]:
rating_index.groupby(by=['PerformanceRating'])['Development'].mean()
Out[23]:
PerformanceRating
     0.067010
     0.347826
3
     0.333333
```

In [24]:

```
rating_index.groupby(by=['PerformanceRating'])['Research & Development'].mean()
```

Out[24]:

PerformanceRating

0.350515 3 0.267735

4 0.310606

Name: Research & Development, dtype: float64

Name: Development, dtype: float64

In [25]:

```
plt.figure(figsize=(15,10))
plt.subplot(1,3,1)
splot=sns.barplot(rating_index['PerformanceRating'],rating_index['Sales'],ci=None)
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
plt.subplot(1,3,2)
splot=sns.barplot(rating_index['PerformanceRating'],rating_index['Development'],ci=None)
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
plt.subplot(1,3,3)
splot=sns.barplot(rating_index['PerformanceRating'],rating_index['Research & Development'],
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
plt.show()
                              0.35
                                                           0.35
                                                    0.33
                                                                                 0.31
  0.4
                              0.30
                                                           0.30
                                                                         0.27
                              0.25
                                                           0.25
  0.3
               0.29
                                                          Research & Developmen
                       0.27
                             등 0.20
                                                           0.20
Sales
  0.2
                              0.15
                                                           0.15
                              0.10
                                                           0.10
  0.1
                                    0.07
                              0.05
                                                           0.05
```

Here PerformanceRating of 2 is highest in Sales, Research and Development departments. 3 is highest in **Development** department.

0.00

PerformanceRating

```
In [26]:
rating_index.groupby(by=['PerformanceRating'])['Human Resources'].mean()
Out[26]:
PerformanceRating
     0.051546
3
     0.043478
4
     0.045455
Name: Human Resources, dtype: float64
In [27]:
rating_index.groupby(by=['PerformanceRating'])['Finance'].mean()
Out[27]:
PerformanceRating
     0.077320
3
     0.034325
     0.030303
Name: Finance, dtype: float64
In [28]:
rating_index.groupby(by=['PerformanceRating'])['Data Science'].mean()
Out[28]:
PerformanceRating
```

0.005155 0.019451 3 0.015152

Name: Data Science, dtype: float64

In [29]:

```
plt.figure(figsize=(15,9))
plt.subplot(1,3,1)
splot=sns.barplot(rating_index['PerformanceRating'],rating_index['Human Resources'],ci=None
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
plt.subplot(1,3,2)
splot=sns.barplot(rating_index['PerformanceRating'],rating_index['Finance'],ci=None)
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
plt.subplot(1,3,3)
splot=sns.barplot(rating_index['PerformanceRating'],rating_index['Data Science'],ci=None)
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
plt.show()
```


Here PerformanceRating 2 is highest in **Human Resources**, **Finance** departments. PerformanceRating 3 is highest in Data Science department. PerformanceRating 4 is 2nd highest in Development, Research and **Development, Human Resources and Data Science** departments.

2) Top 3 important factors effecting the employee performance

In [30]:

```
performance.groupby(by=['Gender'])['PerformanceRating'].mean()
```

Out[30]:

Gender

Female 2.949474 Male 2.947586

Name: PerformanceRating, dtype: float64

In [31]:

```
plt.figure(figsize=(15,5))
splot=sns.barplot(performance['Gender'],performance['PerformanceRating'],ci=None)
plt.xticks(rotation=30)
plt.xlabel("Gender ",fontsize=15,color='black')
plt.ylabel(" Performance Rating ",fontsize=15,color='black')
plt.title("Performance Rating of Male vs Female ",fontdict={'fontsize':20,'color':'Red'})
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


PerformanceRating of Female is better than Males.

In [32]:

```
'EmpRelationshipSatisfaction','TrainingTimesL
                              'ExperienceYearsAtThisCompany','ExperienceYe
                             'YearsWithCurrManager','Attrition','Performan
performance1.head()
```

Out[32]:

	Age	Gender	BusinessTravelFrequency	DistanceFromHome	EmpEducationLevel	EmpEnviror
0	32	Male	Travel_Rarely	10	3	_
1	47	Male	Travel_Rarely	14	4	
2	40	Male	Travel_Frequently	5	4	
3	41	Male	Travel_Rarely	10	4	
4	60	Male	Travel_Rarely	16	4	

5 rows × 22 columns

In [33]:

performance1.tail()

Out[33]:

	Age	Gender	BusinessTravelFrequency	DistanceFromHome	EmpEducationLevel	EmpEnv			
1195	27	Female	Travel_Frequently	3	1	_			
1196	37	Male	Travel_Rarely	10	2				
1197	50	Male	Travel_Rarely	28	1				
1198	34	Female	Travel_Rarely	9	3				
1199	24	Female	Travel_Rarely	3	2				
5 rows × 22 columns									
4						•			

In [34]:

```
performance1.isna().sum().to_frame()
```

Out[34]:

0 Age 0 Gender 0 BusinessTravelFrequency 0 DistanceFromHome 0 EmpEducationLevel 0 EmpEnvironmentSatisfaction 0 EmpHourlyRate 0 EmpJobInvolvement 0 EmpJobLevel 0 EmpJobSatisfaction 0 OverTime 0 EmpLastSalaryHikePercent 0 NumCompaniesWorked 0 EmpRelationshipSatisfaction 0 TrainingTimesLastYear 0 EmpWorkLifeBalance 0 ExperienceYearsAtThisCompany 0 ExperienceYearsInCurrentRole 0 YearsSinceLastPromotion 0 YearsWithCurrManager 0 Attrition 0

In [35]:

performance1.groupby('PerformanceRating').mean()

PerformanceRating 0

Out[35]:

	Age	DistanceFromHome	EmpEducationLevel	EmpEnvironmentSatisfac
PerformanceRating				
2	37.804124	9.835052	2.829897	1.582
3	36.784897	9.137300	2.905034	2.911
4	36.500000	8.371212	2.901515	3.083
4				•

Visualizations carried out for different factors affecting Employee **Performance**

In [36]:

```
plt.figure(figsize=(15,5))
splot=sns.countplot(performance1.groupby('PerformanceRating').count().index[:20],saturation
plt.xticks(rotation=30)
plt.xlabel("Performance Rating ",fontsize=15,color='black')
plt.ylabel(" Count of ratings ",fontsize=15,color='black')
plt.title("Count of different performance rating",fontdict={'fontsize':20,'color':'Red'})
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


2.1) Performance Rating based on BusinessTravelFrequency

In [37]:

```
performance1.groupby(by=['BusinessTravelFrequency'])['PerformanceRating'].mean()
```

Out[37]:

BusinessTravelFrequency

Non-Travel 2.977273 Travel_Frequently 2.972973 Travel Rarely 2.937352

In [38]:

```
plt.figure(figsize=(10,5))
splot=sns.barplot(performance1['BusinessTravelFrequency'],performance1['PerformanceRating']
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


Here in terms of BusinessTravelFrequency, 'Non-Travel' employees performed better.

2.2) Performance Rating based on DistanceFromHome

In [39]:

```
performance1.groupby(by=['DistanceFromHome'])['PerformanceRating'].mean()
```

Out[39]:

```
DistanceFromHome
      2.958824
2
      2.956522
3
      3.029851
4
      2.980392
5
      2.925926
6
      2.934783
7
      3.000000
8
      2.942029
9
      2.893939
      3.000000
10
11
      3.040000
12
      2.937500
13
      2.857143
14
      2.941176
      2.764706
15
      3.160000
16
      3.000000
17
18
      2.750000
19
      2.944444
20
      2.789474
21
      2.933333
22
      2.823529
23
      2.909091
24
      2.913043
25
      3.000000
26
      2.909091
27
      3.000000
28
      2.900000
29
      2.826087
Name: PerformanceRating, dtype: float64
```

In [40]:

```
plt.figure(figsize=(20,10))
splot=sns.barplot(performance1['DistanceFromHome'], performance1['PerformanceRating'],palet
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


Here employees staying 16km away from home performed better.

2.3) Performance Rating based on EmpEducationLevel

```
In [41]:
```

```
performance1.groupby(by=['EmpEducationLevel'])['PerformanceRating'].mean()
```

Out[41]:

EmpEducationLevel

- 2.871622
- 2 2.949791
- 3 2.986637
- 2.937888
- 5 2.880952

In [42]:

```
plt.figure(figsize=(10,5))
splot=sns.barplot(performance1['EmpEducationLevel'], performance1['PerformanceRating'],pale
for p in splot.patches:
   splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


Here Employees having education level 3 is the highest.

2.4) Performance Rating based on EmpEnvironmentSatisfaction

In [43]:

```
performance1.groupby(by=['EmpEnvironmentSatisfaction'])['PerformanceRating'].mean()
```

Out[43]:

EmpEnvironmentSatisfaction

- 2.665217
- 2 2.652893
- 3 3.138965
- 4 3.132964

Name: PerformanceRating, dtype: float64

In [44]:

```
plt.figure(figsize=(10,5))
splot=sns.barplot(performance1['EmpEnvironmentSatisfaction'], performance1['PerformanceRati
for p in splot.patches:
                                       splot.annotate(format(p.get\_height(), \verb|'.2f'|), (p.get\_x() + p.get\_width() / 2., p.get\_height(), \verb|'.2f'|), (p.get\_x() + p.get\_width() / 2., p.get\_height(), \verb|'.2f'|), (p.get_x() + p.get_width() / 2., p.get_height(), |'.2f'|), (p.get_x() + p.get_width() / 2., p.get_height(), |'.2f'|), (p.get_x() + p.get_width() / 2., p.get_width(), |'.2f'|), (p.get_x() + p.get_x(), (p.get_x(), |'.2f'|), (p.get_x(), |'.2f'|), (p.get_x(), |'.2f'|), (p.get_x(), |'.2f'|), (p.get_x(), |'.2f'|),
```


Here Environment Satisfaction Level 3 performed better.

2.5) Performance Rating based on EmpJobInvolvement

In [45]:

```
performance1.groupby(by=['EmpJobInvolvement'])['PerformanceRating'].mean()
```

Out[45]:

EmpJobInvolvement

- 2.957143 1
- 2.959184 2
- 3 2.943370
- 2.946429

In [46]:

```
plt.figure(figsize=(10,5))
splot=sns.barplot(performance1['EmpJobInvolvement'], performance1['PerformanceRating'],pale
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


Here Employees Job Involvement level 2 performed better.

2.6) Performance Rating based on EmpJobLevel

```
In [47]:
```

```
performance1.groupby(by=['EmpJobLevel'])['PerformanceRating'].mean()
```

Out[47]:

EmpJobLevel

- 2.993182
- 2 2.947846
- 3 2.890173
- 2.888889
- 2.875000

In [48]:

```
plt.figure(figsize=(10,5))
splot=sns.barplot(performance1['EmpJobLevel'], performance1['PerformanceRating'],palette ="
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


Here Employee Job Level 1 performed better.

2.7) Performance Rating based on EmpJobSatisfaction

```
In [49]:
```

```
performance1.groupby(by=['EmpJobSatisfaction'])['PerformanceRating'].mean()
```

Out[49]:

EmpJobSatisfaction

- 2.969697
- 2 2.953586
- 3 2.898305
- 2.978836

In [50]:

```
plt.figure(figsize=(10,5))
splot=sns.barplot(performance1['EmpJobSatisfaction'], performance1['PerformanceRating'],pal
for p in splot.patches:
   splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


Here Employee Job Satisfaction level 4 performed better.

2.8) Performance Rating based on OverTime

In [51]:

```
performance1.groupby(by=['OverTime'])['PerformanceRating'].mean()
```

Out[51]:

OverTime

2.931523 No Yes 2.988669

In [52]:

```
plt.figure(figsize=(10,5))
splot=sns.barplot(performance1['OverTime'], performance1['PerformanceRating'],palette ="civ
for p in splot.patches:
   splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


Here employees working overtime performed better.

2.9) Performance Rating based on EmpLastSalaryHikePercent

In [53]:

```
performance1.groupby(by=['EmpLastSalaryHikePercent'])['PerformanceRating'].mean()
```

Out[53]:

EmpLastSalaryHikePercent 2.840237 2.819355 12 13 2.857143 2.860465 14 2.914634 15 16 2.852941 2.910448 17 18 2.863014 19 2.873016 20 3.360000 21 3.588235 22 3.425532 23 3.523810 24 3.500000

3.307692

Name: PerformanceRating, dtype: float64

In [54]:

25

```
plt.figure(figsize=(10,5))
splot=sns.barplot(performance1['EmpLastSalaryHikePercent'], performance1['PerformanceRating'
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


Here employees who received 21% hike in the salary has better performance.

2.10) Performance Rating based on NumCompaniesWorked

In [55]:

```
performance1.groupby(by=['NumCompaniesWorked'])['PerformanceRating'].mean()
```

Out[55]:

NumCompaniesWorked

- 2.897436
- 2.942263 1
- 2 2.910569
- 2.962406 3
- 3.084112
- 5 2.962264
- 6 2.982143
- 7 2.950000
- 8 2.950000
- 2.846154 9

Name: PerformanceRating, dtype: float64

In [56]:

```
plt.figure(figsize=(10,5))
splot=sns.barplot(performance1['NumCompaniesWorked'], performance1['PerformanceRating'],pal
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


Here employees who worked in 4 different companies performed better on the job.

2.11) Performance Rating based on EmpRelationshipSatisfaction

In [57]:

```
performance1.groupby(by=['EmpRelationshipSatisfaction'])['PerformanceRating'].mean()
```

Out[57]:

EmpRelationshipSatisfaction

- 2.949772
- 2 2.955466
- 3 2.970976
- 4 2.918310

Name: PerformanceRating, dtype: float64

In [58]:

```
plt.figure(figsize=(10,5))
splot=sns.barplot(performance1['EmpRelationshipSatisfaction'], performance1['PerformanceRat
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


Here employee having Relationship Satisfaction level 3 has performed better.

2.12) Performance Rating based on TrainingTimesLastYear

In [59]:

```
performance1.groupby(by=['TrainingTimesLastYear'])['PerformanceRating'].mean()
```

Out[59]:

TrainingTimesLastYear

- 2.863636
- 2.946429 1
- 2 2.948315
- 2.975787 3
- 2.918367
- 2.938776
- 2.869565 6

Name: PerformanceRating, dtype: float64

In [60]:

```
plt.figure(figsize=(10,5))
splot=sns.barplot(performance1['TrainingTimesLastYear'], performance1['PerformanceRating'],
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


Here employees who have been trained 3 times last year have performed better.

2.13) Performance Rating based on EmpWorkLifeBalance

In [61]:

```
performance1.groupby(by=['EmpWorkLifeBalance'])['PerformanceRating'].mean()
```

Out[61]:

EmpWorkLifeBalance

- 2.750000
- 2 2.918367
- 3 2.950481
- 4 3.121739

Name: PerformanceRating, dtype: float64

In [62]:

```
plt.figure(figsize=(10,5))
splot=sns.barplot(performance1['EmpWorkLifeBalance'], performance1['PerformanceRating'],pal
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


Here employees having Worklife Balance level 4 has highest performance rating.

2.14) Performance Rating based on ExperienceYearsAtThisCompany

In [63]:

```
performance1.groupby(by=['ExperienceYearsAtThisCompany'])['PerformanceRating'].mean()
```

Out[63]:

```
ExperienceYearsAtThisCompany
      3.166667
1
      3.173913
2
      2.728972
3
      2.990476
4
      2.863636
5
      3.052632
      3.060606
6
7
      2.958904
8
      3.031746
9
      2.893939
10
      2.810000
11
      2.888889
12
      2.714286
13
      2.888889
14
      2.714286
15
      2.705882
16
      3.000000
17
      3.000000
18
      2.727273
19
      2.818182
20
      2.809524
21
      2.714286
22
      2.916667
23
      4.000000
24
      2.333333
25
      2.500000
26
      3.500000
27
      3.000000
29
      3.500000
30
      2.000000
      3.000000
31
32
      2.333333
33
      2.800000
34
      4.000000
      3.500000
36
37
      3.000000
40
      3.000000
Name: PerformanceRating, dtype: float64
```

In [64]:

```
plt.figure(figsize=(20,10))
splot=sns.barplot(performance1['ExperienceYearsAtThisCompany'], performance1['PerformanceRa
for p in splot.patches:
                                       splot.annotate(format(p.get\_height(), \verb|'.2f'|), (p.get\_x() + p.get\_width() / 2., p.get\_height(), \verb|'.2f'|), (p.get\_x() + p.get\_width() / 2., p.get\_height(), \verb|'.2f'|), (p.get_x() + p.get_width() / 2., p.get_height(), |'.2f'|), (p.get_x() + p.get_width() / 2., p.get_height(), |'.2f'|), (p.get_x() + p.get_width() / 2., p.get_x(), |'.2f'|), (p.get_x() + p.get_x() + p.get_x(), (p.get_x() + p.get_x(), |'.2f'|), (p.get_x() + p.get_x() + p.get_x(), (p.get_x() + p.get_x(), (p.
```


Here employees who have 23 and 34 years of experience in this company performed better.

2.15) Performance Rating based on ExperienceYearsInCurrentRole

In [65]:

```
performance1.groupby(by=['ExperienceYearsInCurrentRole'])['PerformanceRating'].mean()
```

Out[65]:

```
ExperienceYearsInCurrentRole
      3.168421
1
      3.086957
2
      2.887789
      2.934579
3
4
      2.956522
5
      3.137931
6
      3.033333
7
      2.920455
8
      2.769231
      2.746032
9
10
      2.760000
11
      3.055556
12
      3.285714
13
      3.200000
      2.600000
14
15
      3.250000
      2.285714
16
      2.666667
17
      3.000000
18
```

Name: PerformanceRating, dtype: float64

In [66]:

```
plt.figure(figsize=(10,5))
splot=sns.barplot(performance1['ExperienceYearsInCurrentRole'], performance1['PerformanceRa
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


Here employees having 12 years of experience in the current role performed better.

2.16) Performance Rating based on

YearsSinceLastPromotion

```
In [67]:
```

```
performance1.groupby(by=['YearsSinceLastPromotion'])['PerformanceRating'].mean()
```

Out[67]:

```
YearsSinceLastPromotion
```

- 3.123667 0 2.898990 1 2 2.763780 3 2.777778
- 4 2.773585 5 2.828571
- 6 2.833333 7 2.854839 8 2.545455 2.687500
- 9 10 2,600000 2.826087 11 12 2.666667
- 13 3.125000 14 3.000000
- 15 2.909091

Name: PerformanceRating, dtype: float64

In [68]:

```
plt.figure(figsize=(10,5))
splot=sns.barplot(performance1['YearsSinceLastPromotion'], performance1['PerformanceRating'
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


Here employees who haven't been promoted since 13 years after their last promotion have performed better.

2.17) Performance Rating based on YearsWithCurrManager

In [69]:

```
performance1.groupby(by=['YearsWithCurrManager'])['PerformanceRating'].mean()
```

Out[69]:

```
YearsWithCurrManager
      3.134884
0
1
      2.910448
2
      2.882562
3
      2.951456
4
      3.094118
5
      2.961538
6
      2.892857
7
      2.909091
8
      2.850575
9
      2.886792
      2.636364
10
      3.000000
11
      2.642857
12
13
      2.700000
14
      2.500000
15
      3.000000
16
      3.000000
17
      3.166667
```

Name: PerformanceRating, dtype: float64

In [70]:

```
plt.figure(figsize=(10,5))
splot=sns.barplot(performance1['YearsWithCurrManager'], performance1['PerformanceRating'],p
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


Here employees who spent 17 years with the current manager has better performance rating.

2.18) Performance Rating based on EmpHourlyRate

In [71]:

```
performance1.groupby(by=['EmpHourlyRate'])['PerformanceRating'].mean()
```

Out[71]:

```
EmpHourlyRate
30
       3.153846
31
       2.769231
32
       3.000000
33
       2.937500
34
       2.833333
96
       2.909091
97
       2.944444
98
       2.800000
99
       2.684211
       2.928571
100
Name: PerformanceRating, Length: 71, dtype: float64
```

In [72]:

```
plt.figure(figsize=(20,10))
splot=sns.barplot(performance1['EmpHourlyRate'], performance1['PerformanceRating'],palette
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


Here employees working at the rate of 38 hours have performed better.

2.19) Performance Rating based on Attrition

In [73]:

```
performance1.groupby(by=['Attrition'])['PerformanceRating'].mean()
```

Out[73]:

Attrition

No 2.956947 Yes 2.898876

Name: PerformanceRating, dtype: float64

In [74]:

```
plt.figure(figsize=(10,5))
splot=sns.barplot(performance1['Attrition'], performance1['PerformanceRating'],palette ="vi
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


Here employees who haven't resigned from many jobs have performed better.

2.20) Performance Rating based on Gender

In [75]:

```
performance1.groupby(by=['Gender'])['PerformanceRating'].mean()
```

Out[75]:

Gender

Female 2.949474 Male 2.947586

Name: PerformanceRating, dtype: float64

In [76]:

```
plt.figure(figsize=(10,5))
splot=sns.barplot(performance1['Gender'], performance1['PerformanceRating'],palette ="plasm
for p in splot.patches:
    splot.annotate(format(p.get_height(), '.2f'), (p.get_x() + p.get_width() / 2., p.get_he
```


Females performed better than males.

Correlation Matrix

It is a table showing correlation coefficients between variables. Each cell in the table shows the correlation between two variables

In [77]:

corr=performance.corr() corr

Out[77]:

	Age	DistanceFromHome	EmpEducationLevel	EmpEnviron
Age	1.000000	0.020937	0.207313	
DistanceFromHome	0.020937	1.000000	0.045856	
EmpEducationLevel	0.207313	0.045856	1.000000	
EmpEnvironmentSatisfaction	0.013814	-0.017719	-0.037103	
EmpHourlyRate	0.062867	0.013730	0.014095	
EmpJoblnvolvement	0.027216	0.003231	0.027544	
EmpJobLevel	0.509139	0.017270	0.100734	
EmpJobSatisfaction	-0.002436	-0.003036	0.000357	
NumCompaniesWorked	0.284408	-0.021411	0.128674	
EmpLastSalaryHikePercent	-0.006105	0.044974	0.002358	
EmpRelationshipSatisfaction	0.049749	-0.009509	-0.016690	
TotalWorkExperienceInYears	0.680886	0.027306	0.151062	
TrainingTimesLastYear	-0.016053	-0.032082	-0.013674	
EmpWorkLifeBalance	-0.019563	-0.044788	0.010276	
ExperienceYearsAtThisCompany	0.318852	0.021908	0.076332	
ExperienceYearsInCurrentRole	0.217163	0.019898	0.066672	
YearsSinceLastPromotion	0.228199	0.013246	0.054313	
YearsWithCurrManager	0.205098	0.017860	0.088988	
PerformanceRating	-0.040164	-0.046142	0.020529	

In [78]:

Out[78]:

<matplotlib.axes._subplots.AxesSubplot at 0xb481948>

After the visualiation and correlation matrix, it clearly indicates that the top 3 factors which affect the employee performance are

- 1) Employee Environment Satisfation --> 39.5561%
- 2) Employee Last Salary Hike Percent --> 33.3722%
- 3) Years Since Last Promotion --> 16.7629%

In [79]:

```
performance.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1200 entries, 0 to 1199 Data columns (total 28 columns):

	. cu	(COCCI 20 COTCIIII).		
#	ŧ	Column	Non-Null Count	Dtype
6)	EmpNumber	1200 non-null	object
1		Age	1200 non-null	int64
2	2	Gender	1200 non-null	object
3	3	EducationBackground	1200 non-null	object
4		MaritalStatus	1200 non-null	object
5	5	EmpDepartment	1200 non-null	object
6	5	EmpJobRole	1200 non-null	object
7	7	BusinessTravelFrequency	1200 non-null	object
8	3	DistanceFromHome	1200 non-null	int64
9)	EmpEducationLevel	1200 non-null	int64
1	L0	EmpEnvironmentSatisfaction	1200 non-null	int64
1	L1	EmpHourlyRate	1200 non-null	int64
1	L2	EmpJobInvolvement	1200 non-null	int64
1	L3	EmpJobLevel	1200 non-null	int64
1	L4	EmpJobSatisfaction	1200 non-null	int64
1	L5	NumCompaniesWorked	1200 non-null	int64
1	L6	OverTime	1200 non-null	object
1	L7	EmpLastSalaryHikePercent	1200 non-null	int64
1	L8	EmpRelationshipSatisfaction	1200 non-null	int64
1	L9	TotalWorkExperienceInYears	1200 non-null	int64
2	20	TrainingTimesLastYear	1200 non-null	int64
2	21	EmpWorkLifeBalance	1200 non-null	int64
2	22	ExperienceYearsAtThisCompany	1200 non-null	int64
2	23	ExperienceYearsInCurrentRole	1200 non-null	int64
2	24	YearsSinceLastPromotion	1200 non-null	int64
2	25	YearsWithCurrManager	1200 non-null	int64
2	26	Attrition	1200 non-null	object
2	27	PerformanceRating	1200 non-null	int64

dtypes: int64(19), object(9) memory usage: 262.6+ KB

Checking for outliers

In [80]:

```
plt.figure(figsize=(15,15))
performance[['NumCompaniesWorked','TotalWorkExperienceInYears','TrainingTimesLastYear','Exp
            'ExperienceYearsInCurrentRole','YearsSinceLastPromotion','YearsWithCurrManager'
```


Note: Here more outliers are present in the fields TotalWorkExperienceInYears, ExperienceYearsAtThisCompany, YearsSinceLastPromotion. So we only remove them from these fields. The other fields will remain as it is.

Removing outliers for TotalWorkExperienceInYears

In [81]:

```
X=performance.TotalWorkExperienceInYears
removed_outliers_TotalWorkExperienceInYears = X.between(X.quantile(0.01),X.quantile(0.90))
print(str(X[removed_outliers_TotalWorkExperienceInYears].size)+"/"+str(X.size)+" data point
plt.boxplot(X[removed_outliers_TotalWorkExperienceInYears]);
plt.xlabel("TotalWorkExperienceInYears")
figure,axis=plt.subplots(1,2,figsize=(16,5))
axis[0].boxplot(X);
axis[1].boxplot(X[removed_outliers_TotalWorkExperienceInYears]);
axis[0].set_title("With outliers")
axis[0].set_xlabel("TotalWorkExperienceInYears")
axis[1].set_title("Removed_outliers")
axis[1].set_xlabel("TotalWorkExperienceInYears")
performance['clean_TotalWorkExperienceInYears']=X[removed_outliers_TotalWorkExperienceInYea
```

1082/1200 data points remain

Removing outliers for ExperienceYearsAtThisCompany

In [82]:

```
X=performance.ExperienceYearsAtThisCompany
removed_outliers_ExperienceYearsAtThisCompany = X.between(X.quantile(0.05),X.quantile(0.85)
print(str(X[removed_outliers_ExperienceYearsAtThisCompany].size)+"/"+str(X.size)+" data poi
plt.boxplot(X[removed_outliers_ExperienceYearsAtThisCompany]);
plt.xlabel("ExperienceYearsAtThisCompany")
figure,axis=plt.subplots(1,2,figsize=(16,5))
axis[0].boxplot(X);
axis[1].boxplot(X[removed_outliers_ExperienceYearsAtThisCompany]);
axis[0].set_title("With outliers")
axis[0].set_xlabel("ExperienceYearsAtThisCompany")
axis[1].set_xlabel("ExperienceYearsAtThisCompany")
performance['clean_ExperienceYearsAtThisCompany']=X[removed_outliers_ExperienceYearsAtThisCompany']=X[removed_outliers_ExperienceYearsAtThisCompany']=X[removed_outliers_ExperienceYearsAtThisCompany']=X[removed_outliers_ExperienceYearsAtThisCompany']=X[removed_outliers_ExperienceYearsAtThisCompany']=X[removed_outliers_ExperienceYearsAtThisCompany']=X[removed_outliers_ExperienceYearsAtThisCompany']=X[removed_outliers_ExperienceYearsAtThisCompany']=X[removed_outliers_ExperienceYearsAtThisCompany']=X[removed_outliers_ExperienceYearsAtThisCompany']=X[removed_outliers_ExperienceYearsAtThisCompany']=X[removed_outliers_ExperienceYearsAtThisCompany']=X[removed_outliers_ExperienceYearsAtThisCompany']
```

985/1200 data points remain

Removing outliers for YearsSinceLastPromotion

In [83]:

```
X=performance.YearsSinceLastPromotion
removed_outliers_YearsSinceLastPromotion = X.between(X.quantile(0.09),X.quantile(0.85))
print(str(X[removed_outliers_YearsSinceLastPromotion].size)+"/"+str(X.size)+" data points r
plt.boxplot(X[removed_outliers_YearsSinceLastPromotion]);
plt.xlabel("YearsSinceLastPromotion")
figure,axis=plt.subplots(1,2,figsize=(16,5))
axis[0].boxplot(X);
axis[1].boxplot(X[removed_outliers_YearsSinceLastPromotion]);
axis[0].set_title("With outliers")
axis[0].set_xlabel("YearsSinceLastPromotion")
axis[1].set_title("Removed_outliers")
axis[1].set_xlabel("YearsSinceLastPromotion")
performance['clean_YearsSinceLastPromotion']=X[removed_outliers_YearsSinceLastPromotion]
```

1026/1200 data points remain

In [84]:

performance.head()

Out[84]:

	EmpNumber	Age	Gender	EducationBackground	MaritalStatus	EmpDepartment	EmpJobRo
0	E1001000	32	Male	Marketing	Single	Sales	Sale Executiv
1	E1001006	47	Male	Marketing	Single	Sales	Sal∈ Executi\
2	E1001007	40	Male	Life Sciences	Married	Sales	Sal∈ Executi\
3	E1001009	41	Male	Human Resources	Divorced	Human Resources	Manag
4	E1001010	60	Male	Marketing	Single	Sales	Sal∈ Executi\
5 rows × 31 columns							
4							

In [85]:

```
performance.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1200 entries, 0 to 1199
Data columns (total 31 columns):
    Column
                                         Non-Null Count Dtype
0
    EmpNumber
                                         1200 non-null
                                                         object
1
                                         1200 non-null
                                                         int64
    Age
 2
    Gender
                                         1200 non-null
                                                         object
3
    EducationBackground
                                         1200 non-null
                                                         object
4
    MaritalStatus
                                         1200 non-null
                                                         object
5
    EmpDepartment
                                         1200 non-null
                                                         object
6
    EmpJobRole
                                         1200 non-null
                                                         object
7
    BusinessTravelFrequency
                                         1200 non-null
                                                         object
8
    DistanceFromHome
                                         1200 non-null
                                                         int64
                                         1200 non-null
9
    EmpEducationLevel
                                                         int64
10 EmpEnvironmentSatisfaction
                                         1200 non-null
                                                         int64
    EmpHourlyRate
                                         1200 non-null
                                                         int64
12
    EmpJobInvolvement
                                         1200 non-null
                                                         int64
                                         1200 non-null
 13
    EmpJobLevel
                                                         int64
14 EmpJobSatisfaction
                                         1200 non-null
                                                         int64
    NumCompaniesWorked
                                         1200 non-null
                                                         int64
16 OverTime
                                         1200 non-null
                                                         object
    EmpLastSalaryHikePercent
                                         1200 non-null
                                                         int64
    EmpRelationshipSatisfaction
                                         1200 non-null
                                                         int64
    TotalWorkExperienceInYears
                                         1200 non-null
                                                         int64
 20
    TrainingTimesLastYear
                                         1200 non-null
                                                         int64
 21 EmpWorkLifeBalance
                                         1200 non-null
                                                         int64
22 ExperienceYearsAtThisCompany
                                         1200 non-null
                                                         int64
 23 ExperienceYearsInCurrentRole
                                         1200 non-null
                                                         int64
 24 YearsSinceLastPromotion
                                         1200 non-null
                                                         int64
 25 YearsWithCurrManager
                                         1200 non-null
                                                         int64
 26 Attrition
                                         1200 non-null
                                                         object
27 PerformanceRating
                                         1200 non-null
                                                         int64
    clean_TotalWorkExperienceInYears
                                         1082 non-null
                                                         float64
29 clean_ExperienceYearsAtThisCompany 985 non-null
                                                         float64
30 clean_YearsSinceLastPromotion
                                         1026 non-null
                                                         float64
dtypes: float64(3), int64(19), object(9)
memory usage: 290.8+ KB
```

Drop the columns from where the outliers are removed

In [86]:

performance.drop(columns=['TotalWorkExperienceInYears','ExperienceYearsAtThisCompany','Year

In [87]:

performance.head()

Out[87]:

	EmpNumber	Age	Gender	EducationBackground	MaritalStatus	EmpDepartment	EmpJobRo		
0	E1001000	32	Male	Marketing	Single	Sales	Sale Executiv		
1	E1001006	47	Male	Marketing	Single	Sales	Sal∈ Executi\		
2	E1001007	40	Male	Life Sciences	Married	Sales	Sal∈ Executi\		
3	E1001009	41	Male	Human Resources	Divorced	Human Resources	Manag		
4	E1001010	60	Male	Marketing	Single	Sales	Sale Executiv		
5 r	5 rows × 28 columns								
4	→								

In [88]:

```
performance.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1200 entries, 0 to 1199 Data columns (total 28 columns):

#	Column	Non-Null Count	Dtype
0	EmpNumber	1200 non-null	object
1	Age	1200 non-null	int64
2	Gender	1200 non-null	object
3	EducationBackground	1200 non-null	object
4	MaritalStatus	1200 non-null	object
5	EmpDepartment	1200 non-null	object
6	EmpJobRole	1200 non-null	object
7	BusinessTravelFrequency	1200 non-null	object
8	DistanceFromHome	1200 non-null	int64
9	EmpEducationLevel	1200 non-null	int64
10	EmpEnvironmentSatisfaction	1200 non-null	int64
11	EmpHourlyRate	1200 non-null	int64
12	EmpJobInvolvement	1200 non-null	int64
13	EmpJobLevel	1200 non-null	int64
14	EmpJobSatisfaction	1200 non-null	int64
15	NumCompaniesWorked	1200 non-null	int64
16	OverTime	1200 non-null	object
17	EmpLastSalaryHikePercent	1200 non-null	int64
18	EmpRelationshipSatisfaction	1200 non-null	int64
19	TrainingTimesLastYear	1200 non-null	int64
20	EmpWorkLifeBalance	1200 non-null	int64
21	ExperienceYearsInCurrentRole	1200 non-null	int64
22	YearsWithCurrManager	1200 non-null	int64
23	Attrition	1200 non-null	object
24	PerformanceRating	1200 non-null	int64
25	<pre>clean_TotalWorkExperienceInYears</pre>	1082 non-null	float64
26	<pre>clean_ExperienceYearsAtThisCompany</pre>	985 non-null	float64
27	<pre>clean_YearsSinceLastPromotion</pre>	1026 non-null	float64

dtypes: float64(3), int64(16), object(9)

memory usage: 262.6+ KB

Using Label Encoder to convert categorical data to numerical data

Data Processing / Data Munging

It is the process of transforming and mapping data from one raw data form into another format for making it valuable for analytics.

Import the package

In [89]:

from sklearn.preprocessing import LabelEncoder, scale, StandardScaler

In [90]:

```
performance.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 1200 entries, 0 to 1199
Data columns (total 28 columns):
 #
     Column
                                         Non-Null Count Dtype
     -----
                                         -----
 0
     EmpNumber
                                         1200 non-null
                                                         object
 1
     Age
                                         1200 non-null
                                                         int64
 2
     Gender
                                         1200 non-null
                                                         object
 3
    EducationBackground
                                         1200 non-null
                                                         object
 4
     MaritalStatus
                                         1200 non-null
                                                         object
 5
                                         1200 non-null
                                                         object
     EmpDepartment
 6
     EmpJobRole
                                         1200 non-null
                                                         object
 7
     BusinessTravelFrequency
                                         1200 non-null
                                                         object
 8
     DistanceFromHome
                                         1200 non-null
                                                         int64
 9
     EmpEducationLevel
                                         1200 non-null
                                                         int64
 10 EmpEnvironmentSatisfaction
                                         1200 non-null
                                                         int64
                                         1200 non-null
 11
    EmpHourlyRate
                                                         int64
 12
     EmpJobInvolvement
                                         1200 non-null
                                                         int64
     EmpJobLevel
                                         1200 non-null
 13
                                                         int64
    EmpJobSatisfaction
                                         1200 non-null
                                                         int64
 15
     NumCompaniesWorked
                                         1200 non-null
                                                         int64
 16
    OverTime
                                         1200 non-null
                                                         object
 17
    EmpLastSalaryHikePercent
                                         1200 non-null
                                                         int64
                                         1200 non-null
 18 EmpRelationshipSatisfaction
                                                         int64
    TrainingTimesLastYear
                                         1200 non-null
                                                         int64
    EmpWorkLifeBalance
                                         1200 non-null
                                                         int64
    ExperienceYearsInCurrentRole
                                         1200 non-null
                                                         int64
 22 YearsWithCurrManager
                                         1200 non-null
                                                         int64
    Attrition
 23
                                         1200 non-null
                                                         object
 24 PerformanceRating
                                         1200 non-null
                                                         int64
    clean_TotalWorkExperienceInYears
                                         1082 non-null
                                                         float64
     clean ExperienceYearsAtThisCompany
                                         985 non-null
                                                         float64
     clean_YearsSinceLastPromotion
                                         1026 non-null
                                                         float64
dtypes: float64(3), int64(16), object(9)
memory usage: 262.6+ KB
In [91]:
```

```
enc=LabelEncoder()
performance_label=performance.apply(enc.fit_transform)
```

In [92]:

performance_label.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 1200 entries, 0 to 1199 Data columns (total 28 columns):

Jaca	columns (cocal 28 columns).		
#	Column	Non-Null Count	Dtype
0	EmpNumber	1200 non-null	int32
1	Age	1200 non-null	int64
2	Gender	1200 non-null	int32
3	EducationBackground	1200 non-null	int32
4	MaritalStatus	1200 non-null	int32
5	EmpDepartment	1200 non-null	int32
6	EmpJobRole	1200 non-null	int32
7	BusinessTravelFrequency	1200 non-null	int32
8	DistanceFromHome	1200 non-null	int64
9	EmpEducationLevel	1200 non-null	int64
10	EmpEnvironmentSatisfaction	1200 non-null	int64
11	EmpHourlyRate	1200 non-null	int64
12	EmpJobInvolvement	1200 non-null	int64
13	EmpJobLevel	1200 non-null	int64
14	EmpJobSatisfaction	1200 non-null	int64
15	NumCompaniesWorked	1200 non-null	int64
16	OverTime	1200 non-null	int32
17	EmpLastSalaryHikePercent	1200 non-null	int64
18	EmpRelationshipSatisfaction	1200 non-null	int64
19	TrainingTimesLastYear	1200 non-null	int64
20	EmpWorkLifeBalance	1200 non-null	int64
21	ExperienceYearsInCurrentRole	1200 non-null	int64
22	YearsWithCurrManager	1200 non-null	int64
23	Attrition	1200 non-null	int32
24	PerformanceRating	1200 non-null	int64
25	clean_TotalWorkExperienceInYears	1200 non-null	int64
26	<pre>clean_ExperienceYearsAtThisCompany</pre>	1200 non-null	int64
27	clean_YearsSinceLastPromotion	1200 non-null	int64
44	:-+22/0\ :-+64/10\		

dtypes: int32(9), int64(19) memory usage: 220.4 KB

In [93]:

performance_label.head()

Out[93]:

	EmpNumber	Age	Gender	EducationBackground	MaritalStatus	EmpDepartment	EmpJobRo
0	0	14	1	2	2	5	1
1	1	29	1	2	2	5	1
2	2	22	1	1	1	5	1
3	3	23	1	0	0	3	
4	4	42	1	2	2	5	1

5 rows × 28 columns

```
In [94]:
```

```
performance_label.isna().sum().to_frame().T
```

Out[94]:

	EmpNumber	Age	Gender	EducationBackground	MaritalStatus	EmpDepartment	EmpJobRo
0	0	0	0	0	0	0	

1 rows × 28 columns

In [95]:

performance_label.shape

Out[95]:

(1200, 28)

Define X and y variables

In [96]:

X=performance_label.iloc[:,performance.columns!='PerformanceRating'] y=performance_label.PerformanceRating

In [97]:

X.head()

Out[97]:

	EmpNumber	Age	Gender	EducationBackground	MaritalStatus	EmpDepartment	EmpJobRo
0	0	14	1	2	2	5	1
1	1	29	1	2	2	5	1
2	2	22	1	1	1	5	1
3	3	23	1	0	0	3	
4	4	42	1	2	2	5	1

5 rows × 27 columns

Use Train-Test split to divide test and train data

It splits arrays or matrices into random train and test subsets

```
In [98]:
```

```
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=10)
```

```
In [99]:
```

```
print("X_train shape = ",X_train.shape)
print("X_test shape = ",X_test.shape)
print("y_train shape = ",y_train.shape)
print("y_test shape = ",y_test.shape)
X_{train} shape = (960, 27)
X_{\text{test}} shape = (240, 27)
y_{train} = (960,)
```

 y_{test} shape = (240,)

Scaling technique to be used for standardizing the dataset along X axis

```
In [100]:
```

```
X=scale(X)
```

```
In [101]:
```

```
print("X_train shape = ",X_train.shape)
print("X_test shape = ",X_test.shape)
```

```
X_{train} shape = (960, 27)
X test shape = (240, 27)
```

Using StandardScaler

It standardizes features by removing the mean and scaling to unit variance.

```
In [102]:
```

```
s = StandardScaler()
X_train = s.fit_transform(X_train)
X_test = s.transform(X_test)
```

```
In [103]:
```

```
print("X_train shape = ",X_train.shape)
print("X_test shape = ",X_test.shape)
print("y_train shape = ",y_train.shape)
print("y_test shape = ",y_test.shape)
X_{train} shape = (960, 27)
X_{\text{test}} shape = (240, 27)
y_{train shape} = (960,)
y_{\text{test}} shape = (240,)
```

3) Different Machine Learning Algorithms to train and predict the model

3.1) Using Random Forest Classifier

Import the necessary packages

```
In [104]:
```

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score,precision_score,confusion_matrix,classification_
```

Define and Train the model

Here model.fit() fits training data. It accepts two arguments :the data X_train and the labels y_train.

```
In [105]:
```

```
model=RandomForestClassifier(n_estimators=250,random_state=10,criterion='gini')
model.fit(X_train,y_train)
print(" Model Feature Importances = " ,model.feature importances )
Model Feature Importances = [0.05695015 0.02787464 0.00507008 0.01069518
0.01036765 0.03260104
0.03402633 0.01018268 0.02580976 0.013669
                                             0.20529141 0.03229078
0.01053392 0.01160763 0.01248842 0.01657791 0.00530697 0.20557607
0.01235847 0.01728891 0.02524584 0.03681119 0.02589432 0.00431312
 0.02815546 0.02476927 0.09824382]
```

Predict the model

It generates output predictions for the input samples.

```
In [106]:
```

```
y_train_predict=model.predict(X_train)
y_predict=model.predict(X_test)
```

Calculating the confusion matrix

A confusion matrix is a matrix used to measure the performance of an machine learning algorithm mainly a supervised learning one. Each row of the confusion matrix represents the instances of an actual class and each column represents the instances of a predicted class.

```
In [107]:
```

```
confusion_matrix(y_test,y_predict)
Out[107]:
array([[ 35, 3,
       [ 2, 174, 3],
[ 1, 5, 17]], dtype=int64)
```

Generating crosstab

A crosstab is a table showing the relationship between two or more variables.

The table only shows the relationship between two categorical variables.

It is also known as a contingency table.

In this case, it is displaying the details of confusion matrix.

```
In [108]:
```

```
pd.crosstab(y_test,y_predict)
```

Out[108]:

```
col_0 0
                   1
PerformanceRating
            0 35
                   3
               2 174 3
                   5 17
```

Calculating the accuracy score

It is the ratio of correctly predicted observation to the total observations.

```
Accuracy = TP+TN/TP+FP+FN+TN where,
```

True Positives (TP) - Correctly predicted positive values which means that the value of actual class is yes and the value of predicted class is also yes.

True Negatives (TN) - Correctly predicted negative values which means that the value of actual class is no and value of predicted class is also no.

False positives and false negatives, these values occur when your actual class contradicts with the predicted class.

False Positives (FP) – It occurs when actual class is no and predicted class is yes. False Negatives (FN) – It occurs when actual class is yes but predicted class in no.

In [109]:

```
print("\n Accuracy of Training = " ,accuracy_score(y_train,y_train_predict)*100)
print("\n Accuracy of Testing = ", accuracy_score(y_test,y_predict)*100)
```

```
Accuracy of Training = 100.0
Accuracy of Testing = 94.16666666666667
```

Calculating Precision score, recall score and F1 score

Precision is the ratio of correctly predicted positive observations to the total predicted positive observations.

Precision = TP/TP+FP

Recall (Sensitivity) is the ratio of correctly predicted positive observations to the all observations in actual class - yes.

Recall = TP/TP+FN

F1 score is the weighted average of Precision and Recall. So, this score takes both false positives and false negatives into account.

F1 Score = 2*(Recall * Precision) / (Recall + Precision)

In [110]:

```
print("Precision score = ",(precision_score(y_test,y_predict,average='weighted')*100))
print("Recall score = ",(recall_score(y_test,y_predict,average='weighted')*100))
print("F1 score = ",(f1_score(y_test,y_predict,average='weighted')*100))
```

```
Precision score = 94.03411172161174
Recall score = 94.1666666666667
F1 score = 94.05835963838605
```

Genarating classification report

It builds a text report showing the main classification metrics

In [111]:

|--|

	precision	recall	f1-score	support
0	0.92	0.92	0.92	38
1	0.96	0.97	0.96	179
2	0.85	0.74	0.79	23
accuracy			0.94	240
macro avg	0.91	0.88	0.89	240
weighted avg	0.94	0.94	0.94	240

3.2) Using Gradient Boosting Classifier

Importing the package

In [112]:

```
from sklearn.ensemble import GradientBoostingClassifier
```

Using train-test split and standard scaler

```
In [113]:
```

```
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=10)
```

In [114]:

```
s = StandardScaler()
X train = s.fit transform(X train)
X_test = s.transform(X_test)
```

Define and Train the model

In [115]:

```
model=GradientBoostingClassifier(learning_rate=0.1,n_estimators=100,subsample=1.0,max_depth
model.fit(X_train,y_train)
print(" Model Feature Importances = " ,model.feature_importances_)
```

```
Model Feature Importances = [0.04866955 0.0050496 0.00043461 0.00057209
0.00045569 0.06290332
0.01481567 0.00246649 0.00738162 0.00141899 0.28589074 0.00785092
0.00047714 0.00120089 0.00205885 0.00137072 0.00159579 0.23808559
0.00092834 0.00730749 0.04842203 0.04007265 0.01041203 0.00032288
0.00622111 0.00707224 0.19654298]
```

Predict the model

```
In [116]:
```

```
y_train_predict=model.predict(X_train)
y_predict=model.predict(X_test)
```

Calculating the confusion matrix

```
In [117]:
```

```
confusion_matrix(y_test,y_predict)
Out[117]:
array([[ 35, 3, 0],
      [ 2, 176, 1],
      [ 0, 3, 20]], dtype=int64)
```

Generating crosstab

```
In [118]:
```

```
pd.crosstab(y_test,y_predict)
```

Out[118]:

```
col_0 0 1 2
PerformanceRating
            0 35
              2 176 1
            2
              0
                   3 20
```

Calculating the accuracy score

```
In [119]:
```

```
print("\n Accuracy of Training = " ,accuracy_score(y_train,y_train_predict)*100)
print("\n Accuracy of Testing = ", accuracy_score(y_test,y_predict)*100)
```

```
Accuracy of Training = 99.6875
Accuracy of Testing = 96.25
```

Calculating Precision score, recall score and F1 score

In [120]:

```
print("Precision score = ",(precision_score(y_test,y_predict,average='weighted')*100))
print("Recall score = ",(recall_score(y_test,y_predict,average='weighted')*100))
print("F1 score = ",(f1_score(y_test,y_predict,average='weighted')*100))
```

Precision score = 96.22900372900372 Recall score = 96.25 F1 score = 96.21381404068383

Generating classification report

In [121]:

p	orint(classification_repo	rt(y_test	,y_predict)))		
	precision	recall	f1-score	support		

0	0.95	0.92	0.93	38
1	0.97	0.98	0.98	179
2	0.95	0.87	0.91	23
accuracy			0.96	240
macro avg	0.96	0.92	0.94	240
weighted avg	0.96	0.96	0.96	240

Different techniques used in the model

1] Feature Engineering

Import the package

In [122]:

from sklearn.ensemble import RandomForestClassifier

Sort the values as per the correlation with respect to Performance Rating

In [123]:

```
performance_label.corr()['PerformanceRating'].sort_values()
```

Out[123]:

EmpDepartment	-0.162615
ExperienceYearsInCurrentRole	-0.147638
YearsWithCurrManager	-0.122313
EmpJobRole	-0.096209
EmpJobLevel	-0.076632
<pre>clean_ExperienceYearsAtThisCompany</pre>	-0.076598
<pre>clean_YearsSinceLastPromotion</pre>	-0.071304
DistanceFromHome	-0.046142
EmpHourlyRate	-0.043116
Age	-0.040164
Attrition	-0.039796
<pre>clean_TotalWorkExperienceInYears</pre>	-0.031405
BusinessTravelFrequency	-0.031025
EmpRelationshipSatisfaction	-0.019502
EmpJobInvolvement	-0.010539
TrainingTimesLastYear	-0.005443
EmpNumber	-0.003163
Gender	-0.001780
EmpJobSatisfaction	0.000606
EducationBackground	0.005607
EmpEducationLevel	0.020529
NumCompaniesWorked	0.020980
MaritalStatus	0.024172
OverTime	0.050206
EmpWorkLifeBalance	0.124429
EmpLastSalaryHikePercent	0.333722
EmpEnvironmentSatisfaction	0.395561
PerformanceRating	1.000000
Name: PerformanceRating, dtype: floa	t64

Define X and y variables

In [124]:

```
X = performance_label.loc[:,performance.columns!='PerformanceRating']
y = performance_label.PerformanceRating
```

Use train-test split to divide test and train data

In [125]:

```
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=10)
```

In [126]:

```
print("X_train shape = ",X_train.shape)
print("X_test shape = ",X_test.shape)
print("y_train shape = ",y_train.shape)
print("y_test shape = ",y_test.shape)
X_{train} = (960, 27)
X_test shape = (240, 27)
y_train shape = (960,)
y_{test shape} = (240,)
```

Define the Model

In [127]:

```
model = RandomForestClassifier(n_estimators=20)
model.fit(X_train,y_train)
pd.DataFrame(model.feature_importances_,index=X.columns).sort_values(0,ascending=False)
```

Out[127]:

	0
EmpEnvironmentSatisfaction	0.198675
EmpLastSalaryHikePercent	0.181176
clean_YearsSinceLastPromotion	0.091609
EmpNumber	0.063455
EmpDepartment	0.040217
EmpHourlyRate	0.040096
ExperienceYearsInCurrentRole	0.035169
Age	0.033780
EmpJobRole	0.031434
clean_TotalWorkExperienceInYears	0.029958
clean_ExperienceYearsAtThisCompany	0.028322
DistanceFromHome	0.027593
EmpWorkLifeBalance	0.024659
YearsWithCurrManager	0.019427
NumCompaniesWorked	0.019002
EmpEducationLevel	0.017008
EducationBackground	0.016079
EmpRelationshipSatisfaction	0.015867
TrainingTimesLastYear	0.015042
EmpJobLevel	0.012963
EmpJobSatisfaction	0.011942
EmpJobInvolvement	0.009508
BusinessTravelFrequency	0.009490
MaritalStatus	0.008161
OverTime	0.007772
Gender	0.006651
Attrition	0.004947

Predict the Model

In [128]:

```
y_train_predict=model.predict(X_train)
y_predict=model.predict(X_test)
```

Calculating the confusion matrix and generating crosstab

```
In [129]:
```

```
print(confusion matrix(y test,y predict))
pd.crosstab(y_test,y_predict)
       4
            01
[[ 34
 [ 2 174
          3]
      8 15]]
   0
Out[129]:
           col 0
PerformanceRating
                34
                 2 174
                      8 15
```

Calculating the accuracy score, precision score, recall score and F1 score

In [130]:

```
print("Accuracy of Training = " ,accuracy_score(y_train,y_train_predict)*100)
print("Accuracy of Testing = ", accuracy_score(y_test,y_predict)*100)
print("Precision score = ",(precision_score(y_test,y_predict,average='weighted')*100))
print("Recall score = ",(recall_score(y_test,y_predict,average='weighted')*100))
print("F1 score = ",(f1_score(y_test,y_predict,average='weighted')*100))
Accuracy of Training = 99.89583333333333
Accuracy of Testing = 92.9166666666667
Precision score = 92.71132019115889
Recall score = 92.91666666666667
F1 score = 92.67133371259668
```

Generating classification report

In [131]:

2 1 2 1					
print(classif	fication_repo	eport(y_test,y_predict))))	
	precision	recall	f1-score	support	
0	0.94	0.89	0.92	38	
1	0.94	0.97	0.95	179	
2	0.83	0.65	0.73	23	
accuracy			0.93	240	
macro avg	0.90	0.84	0.87	240	
weighted avg	0.93	0.93	0.93	240	
0 1 2 accuracy macro avg	precision 0.94 0.94 0.83	recall 0.89 0.97 0.65	f1-score 0.92 0.95 0.73 0.93 0.87	support 38 179 23 240 240	

2] Using GridSearch Cross Validation(CV) in Random Forest Classifier

Import the package

```
In [132]:
```

```
from sklearn.model_selection import GridSearchCV
```

Using train-test split and standard scaler

```
In [133]:
```

```
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=10)
```

```
In [134]:
```

```
s = StandardScaler()
X_train = s.fit_transform(X_train)
X_test = s.transform(X_test)
```

Define and Train the model

In [135]:

```
model=RandomForestClassifier(max depth=3,
                             criterion='gini',
                             n_estimators=10,
                             random_state=5)
parameters={'max_depth': [2,3],
              'n_estimators':[10,20],
              'random_state' : [5]}
grid=GridSearchCV(model, parameters, scoring='accuracy', cv=15)
grid.fit(X_train,y_train)
```

Out[135]:

```
GridSearchCV(cv=15, error_score=nan,
             estimator=RandomForestClassifier(bootstrap=True, ccp_alpha=0.0,
                                               class_weight=None,
                                               criterion='gini', max_depth=3,
                                               max_features='auto',
                                               max_leaf_nodes=None,
                                               max_samples=None,
                                               min_impurity_decrease=0.0,
                                               min_impurity_split=None,
                                               min_samples_leaf=1,
                                               min_samples_split=2,
                                               min_weight_fraction_leaf=0.0,
                                               n_estimators=10, n_jobs=None,
                                               oob score=False, random state=
5,
                                               verbose=0, warm_start=False),
             iid='deprecated', n_jobs=None,
             param_grid={'max_depth': [2, 3], 'n_estimators': [10, 20],
                          'random_state': [5]},
             pre_dispatch='2*n_jobs', refit=True, return_train_score=False,
             scoring='accuracy', verbose=0)
```

best_score_: Mean cross-validated score of the best_estimator.

best_params_: Parameter setting that gave the best results on the hold out data.

In [136]:

```
print("Best Score = ",grid.best_score_)
print("Best Params = ",grid.best_params_)
Best Score =
              0.766666666666667
Best Params = {'max_depth': 3, 'n_estimators': 20, 'random_state': 5}
```

Predict the model

```
In [137]:
```

```
y_train_predict=grid.predict(X_train)
y_predict=grid.predict(X_test)
```

Calculating the confusion matrix and generating crosstab

In [138]:

```
print(confusion_matrix(y_test,y_predict))
pd.crosstab(y_test,y_predict)
[[
   2 36
            01
            2]
    0 177
 Γ
    0 10 13]]
Out[138]:
           col 0 0
                     1 2
PerformanceRating
              0 2
                    36
                         2
              1 0
                  177
```

Calculating Accuracy Score, Precision score, recall score and F1 score

In [139]:

```
print("Accuracy Score of Training = ",(accuracy_score(y_train,y_train_predict)*100))
print("Accuracy Score of Testing = ",(accuracy_score(y_test,y_predict)*100))
print("Precision score = ",(precision_score(y_test,y_predict,average='weighted')*100))
print("Recall score = ",(recall_score(y_test,y_predict,average='weighted')*100))
print("F1 score = ",(f1_score(y_test,y_predict,average='weighted')*100))
Accuracy Score of Training = 79.27083333333333
Accuracy Score of Testing = 80.0
Precision score = 83.33731938216242
Recall score = 80.0
F1 score = 73.81821157371039
```

Generating classification report

2 0

10 13

In [140]:

print(classif	ication_repo	ort(y_test	,y_predict))
	precision	recall	f1-score	support
0	1.00	0.05	0.10	38
1	0.79	0.99	0.88	179
2	0.87	0.57	0.68	23
accuracy			0.80	240
macro avg	0.89	0.54	0.55	240
weighted avg	0.83	0.80	0.74	240

3] Using Randomized Search Cross Validation(CV) in Random Forest Classifier

Import the package

```
In [141]:
```

from sklearn.model_selection import RandomizedSearchCV

Using train-test split and standard scaler

```
In [142]:
```

```
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=10)
```

In [143]:

```
s = StandardScaler()
X_train = s.fit_transform(X_train)
X_test = s.transform(X_test)
```

Define and Train the model

In [144]:

```
model=RandomForestClassifier(max depth=3,
                            criterion='gini',
                            n_estimators=10,
                            random_state=5)
parameters={'max_depth': [2,3],
              'n_estimators':[10,20],
              'random_state' : [5]}
randomized=RandomizedSearchCV(model,parameters,scoring='accuracy',cv=5)
randomized.fit(X_train,y_train)
```

Out[144]:

```
RandomizedSearchCV(cv=5, error_score=nan,
                   estimator=RandomForestClassifier(bootstrap=True,
                                                      ccp alpha=0.0,
                                                      class_weight=None,
                                                      criterion='gini',
                                                     max_depth=3,
                                                     max_features='auto',
                                                      max_leaf_nodes=None,
                                                      max_samples=None,
                                                      min_impurity_decrease=0.
0,
                                                      min_impurity_split=None,
                                                      min_samples_leaf=1,
                                                      min samples split=2,
                                                      min_weight_fraction_leaf
=0.0,
                                                      n_estimators=10,
                                                      n_jobs=None,
                                                      oob_score=False,
                                                      random_state=5, verbose=
0,
                                                     warm_start=False),
                   iid='deprecated', n_iter=10, n_jobs=None,
                   param_distributions={'max_depth': [2, 3],
                                         'n_estimators': [10, 20],
                                         'random state': [5]},
                   pre_dispatch='2*n_jobs', random_state=None, refit=True,
                   return_train_score=False, scoring='accuracy', verbose=0)
```

In [145]:

```
print("Best Score = ",randomized.best_score_)
print("Best Params = ",randomized.best_params_)
Best Score =
               0.7614583333333333
Best Params = {'random_state': 5, 'n_estimators': 20, 'max_depth': 3}
```

Predict the model

In [146]:

```
y_train_predict=randomized.predict(X_train)
y_predict=randomized.predict(X_test)
```

Calculating the confusion matrix and generating crosstab

```
In [147]:
```

```
print(confusion_matrix(y_test,y_predict))
pd.crosstab(y_test,y_predict)
[[
  2 36
           0]
   0 177
           2]
 0 10 13]]
Out[147]:
           col 0 0 1 2
PerformanceRating
                   36
              1 0 177
                       2
              2 0 10 13
```

Calculating Accuracy Score, Precision score, recall score and F1 score

In [148]:

```
print("Accuracy Score of Training = ",(accuracy_score(y_train,y_train_predict)*100))
print("Accuracy Score of Testing= ",(accuracy_score(y_test,y_predict)*100))
print("Precision score = ",(precision_score(y_test,y_predict,average='weighted')*100))
print("Recall score = ",(recall_score(y_test,y_predict,average='weighted')*100))
print("F1 score = ",(f1_score(y_test,y_predict,average='weighted')*100))
Accuracy Score of Training = 79.27083333333333
Accuracy Score of Testing= 80.0
Precision score = 83.33731938216242
```

Generating classification report

F1 score = 73.81821157371039

Recall score = 80.0

In [149]:

|--|

	precision	recall	f1-score	support	
0	1.00	0.05	0.10	38	
1 2	0.79 0.87	0.99 0.57	0.88 0.68	179 23	
accuracy			0 80	240	
macro avg	0.89	0.54	0.55	240	
accuracy	0.87	0.57	0.68	240	

4] Using Synthetic Minority Over-sampling Technique(SMOTE) in Random Forest Classifier

In [150]:

from collections import Counter

In [151]:

Counter(performance_label.PerformanceRating)

Out[151]:

Counter({1: 874, 2: 132, 0: 194})

Import the necessary package

In [152]:

```
from imblearn.over_sampling import SMOTE
smote=SMOTE(random_state=5)
```

Using TensorFlow backend.

Using train-test split

In [153]:

X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=10)

(240,)

```
In [154]:
X_train_smote,y_train_smote=smote.fit_sample(X_train.astype('float'),y_train)
print(Counter(y_train))
print(Counter(y_train_smote))
Counter({1: 695, 0: 156, 2: 109})
Counter({1: 695, 2: 695, 0: 695})
In [155]:
model.fit(X_train_smote,y_train_smote)
Out[155]:
RandomForestClassifier(bootstrap=True, ccp_alpha=0.0, class_weight=None,
                       criterion='gini', max_depth=3, max_features='auto',
                       max_leaf_nodes=None, max_samples=None,
                       min_impurity_decrease=0.0, min_impurity_split=None,
                       min_samples_leaf=1, min_samples_split=2,
                       min_weight_fraction_leaf=0.0, n_estimators=10,
                       n_jobs=None, oob_score=False, random_state=5, verbose
=0,
                       warm_start=False)
In [156]:
X_train_smote.shape
Out[156]:
(2085, 27)
In [157]:
y_train_smote.shape
Out[157]:
(2085,)
Predict the model
In [158]:
y_train_predict=model.predict(X_train)
y_predict=model.predict(X_test)
In [159]:
y_predict.shape
Out[159]:
```

Calculating the confusion matrix and generating crosstab

```
In [160]:
```

```
print(confusion_matrix(y_test,y_predict))
pd.crosstab(y_test,y_predict)
[[ 35
        3
            01
 [ 10 160
            9]
        4 19]]
    0
Out[160]:
            col 0
                       1
                           2
PerformanceRating
                 35
                       3
                           0
                  10 160
                           9
               1
               2
                  0
                       4 19
```

Calculating the accuracy score, precision score, recall score and F1 score

In [161]:

```
print("Accuracy score of Training = ",accuracy_score(y_train,y_train_predict)*100)
print("Accuracy score of Testing = ",accuracy_score(y_test,y_predict)*100)
print("Precision score = ",(precision_score(y_test,y_predict,average='weighted')*100))
print("Recall score = ",(recall_score(y_test,y_predict,average='weighted')*100))
print("F1 score = ",(f1_score(y_test,y_predict,average='weighted')*100))
Accuracy score of Training = 88.85416666666667
Accuracy score of Testing = 89.1666666666667
Precision score = 90.27487683363431
Recall score = 89.16666666666667
F1 score = 89.47274192542584
```

Generating classification report

In [162]:

```
print(classification_report(y_test,y_predict))
              precision
                            recall f1-score
                                                 support
                    0.78
                              0.92
                                         0.84
           0
                                                      38
                                         0.92
                                                     179
                    0.96
                              0.89
           1
                                         0.75
                    0.68
                              0.83
                                                      23
                                         0.89
                                                     240
    accuracy
   macro avg
                    0.80
                              0.88
                                         0.84
                                                     240
                    0.90
                              0.89
                                         0.89
                                                     240
weighted avg
```

Displaying X_train and y_train data after performing Synthetic Minority Oversampling Technique(SMOTE)

In [163]:

```
pd.DataFrame(X_train_smote).head()
```

Out[163]:

	EmpNumber	Age	Gender	EducationBackground	MaritalStatus	EmpDepartment	EmpJobRo
0	1011.0	0.0	1.0	1.0	2.0	1.0	3
1	924.0	25.0	1.0	3.0	0.0	1.0	18
2	654.0	18.0	1.0	0.0	2.0	3.0	6
3	716.0	29.0	1.0	3.0	2.0	4.0	9
4	681.0	31.0	1.0	1.0	1.0	4.0	9

5 rows × 27 columns

In [164]:

pd.DataFrame(X_train_smote).tail()

Out[164]:

	EmpNumber	Age	Gender	EducationBackground	MaritalStatus	EmpDepartment	I
2080	114.227772	17.783522	1.000000	3.216478	2.000000	1.000000	
2081	855.504562	18.392531	0.392531	0.607469	0.000000	1.785063	
2082	52.484588	15.979211	0.783513	1.000000	1.000000	1.000000	
2083	756.196770	24.803230	1.000000	1.000000	0.000000	3.560646	
2084	1187.009764	17.882930	0.151219	2.302439	1.848781	4.395123	

5 rows × 27 columns

In [165]:

pd.DataFrame(y_train_smote).head()

Out[165]:

	PerformanceRating
0	1
1	1
2	2
3	0
4	0

In [166]:

```
pd.DataFrame(y_train_smote).tail()
```

Out[166]:

	PerformanceRating
2080	2
2081	2
2082	2
2083	2
2084	2

Other Machine Learning Algorithms

3.3) Using eXtreme Gradient Boosting(XGBoosting) Classifier

Import the packages

```
In [167]:
```

from xgboost import XGBClassifier

Using train-test split and standard scaler

```
In [168]:
```

```
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=10)
```

In [169]:

```
s = StandardScaler()
X_train = s.fit_transform(X_train)
X_test = s.transform(X_test)
```

```
In [170]:
```

```
model=XGBClassifier(max_depth=3,learning_rate=0.1,test_size=0.2,n_estimators=100,n_jobs=1,r
```

(240,)

In [174]:

```
In [171]:
model.fit(X_train,y_train)
Out[171]:
XGBClassifier(base_score=0.5, booster='gbtree', colsample_bylevel=1,
              colsample_bynode=1, colsample_bytree=1, gamma=0.1,
              learning_rate=0.1, max_delta_step=0, max_depth=3,
              min_child_weight=1, missing=None, n_estimators=100, n_jobs=1,
              nthread=None, objective='multi:softprob', random_state=10,
              reg_alpha=0, reg_lambda=1, scale_pos_weight=1, seed=None,
              silent=None, subsample=1, test_size=0.2, verbosity=1)
Predict the model
In [172]:
y_train_predict=model.predict(X_train)
y predict=model.predict(X test)
In [173]:
y_predict.shape
Out[173]:
```

Calculating confusion matrix and generating crosstab

```
print(confusion_matrix(y_test,y_predict))
pd.crosstab(y_test,y_predict)
[[ 35
        3
            01
[ 2 176
           1]
        5 18]]
Out[174]:
           col_0
                0 1 2
PerformanceRating
              0 35
                      3
                         0
```

2 176 1

2 0 5 18

In [175]:

```
print("Accuracy score of Training = ",accuracy_score(y_train,y_train_predict)*100)
print("Accuracy score of Testing = ",accuracy_score(y_test,y_predict)*100)
print("Precision score = ",(precision_score(y_test,y_predict,average='weighted')*100))
print("Recall score = ",(recall_score(y_test,y_predict,average='weighted')*100))
print("F1 score = ",(f1_score(y_test,y_predict,average='weighted')*100))
```

```
Accuracy score of Training = 98.8541666666667
Accuracy score of Testing = 95.4166666666667
Precision score = 95.39700455604347
Recall score = 95.4166666666667
F1 score = 95.31529581529583
```

Generating classification report

In [176]:

print(classification_report(y_test,y_predict))

	precision	recall	f1-score	support	
0	0.95	0.92	0.93	38	
1	0.96	0.98	0.97	179	
2	0.95	0.78	0.86	23	
accuracy			0.95	240	
macro avg	0.95	0.90	0.92	240	
weighted avg	0.95	0.95	0.95	240	

3.4) Using Artificial Neural Networks

Import the necessary package

```
In [177]:
```

```
from sklearn.neural network import MLPClassifier
```

Using train-test split

```
In [178]:
```

```
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=10)
```

```
In [179]:
```

```
model=MLPClassifier(hidden_layer_sizes=10, batch_size=10, learning_rate_init=0.01, random_stat
model.fit(X_train,y_train)
```

Out[179]:

```
MLPClassifier(activation='relu', alpha=0.0001, batch_size=10, beta_1=0.9,
              beta_2=0.999, early_stopping=False, epsilon=1e-08,
              hidden_layer_sizes=10, learning_rate='constant',
              learning_rate_init=0.01, max_fun=15000, max_iter=200,
              momentum=0.9, n_iter_no_change=10, nesterovs_momentum=True,
              power_t=0.5, random_state=5, shuffle=True, solver='adam',
              tol=0.0001, validation_fraction=0.1, verbose=False,
              warm_start=False)
```

Predict the model

```
In [180]:
```

```
y_train_predict=model.predict(X_train)
y_predict=model.predict(X_test)
```

```
In [181]:
```

```
y_predict.shape
```

Out[181]:

(240,)

Calculating confusion matrix and generating crosstab

```
In [182]:
```

```
print(confusion_matrix(y_test,y_predict))
pd.crosstab(y_test,y_predict)
```

```
[[ 13 25
           0]
           2]
[ 10 167
   0 10 13]]
```

Out[182]:

col_0 1 2

PerformanceRating

```
13
       25
           0
1
  10 167
           2
2
  0
      10 13
```

In [183]:

```
print("Accuracy score of Training = ",accuracy_score(y_train,y_train_predict)*100)
print("Accuracy score of Testing = ",accuracy_score(y_test,y_predict)*100)
print("Precision score = ",(precision_score(y_test,y_predict,average='weighted')*100))
print("Recall score = ",(recall_score(y_test,y_predict,average='weighted')*100))
print("F1 score = ",(f1_score(y_test,y_predict,average='weighted')*100))
```

```
Accuracy score of Testing = 80.4166666666667
Precision score = 78.9153094657292
Recall score = 80.4166666666667
F1 score = 78.68841607805926
```

Generating classification report

In [184]:

print(classification_report(y_test,y_predict))

	precision	recall	f1-score	support
0	0.57	0.34	0.43	38
1	0.83	0.93	0.88	179
2	0.87	0.57	0.68	23
accuracy			0.80	240
macro avg	0.75	0.61	0.66	240
weighted avg	0.79	0.80	0.79	240

3.5) Using K- Nearest Neighbors

Import the necessary packages

```
In [185]:
```

```
from sklearn.neighbors import KNeighborsClassifier
```

Using train-test split

```
In [186]:
```

```
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=10)
```

```
In [187]:
```

```
model= KNeighborsClassifier(n_neighbors=20, metric='euclidean')
model.fit(X_train,y_train)
```

Out[187]:

```
KNeighborsClassifier(algorithm='auto', leaf_size=30, metric='euclidean',
                     metric_params=None, n_jobs=None, n_neighbors=20, p=2,
                     weights='uniform')
```

Predict the Model

```
In [188]:
```

```
y_train_predict=model.predict(X_train)
y_predict = model.predict(X_test)
```

Calculating confusion matrix and generating crosstab

```
In [189]:
```

```
print(confusion_matrix(y_test,y_predict))
pd.crosstab(y_test,y_predict)
```

```
2 36
           0]
[[
   0 179
           0]
1 22
           0]]
```

Out[189]:

col_0 0

PerformanceRating

0 2 36

1 0 179

2 1 22

In [190]:

```
print("Accuracy score of Training = ",accuracy_score(y_train,y_train_predict)*100)
print("Accuracy score of Testing = ",accuracy_score(y_test,y_predict)*100)
print("Precision score = ",(precision_score(y_test,y_predict,average='weighted')*100))
print("Recall score = ",(recall_score(y_test,y_predict,average='weighted')*100))
print("F1 score = ",(f1_score(y_test,y_predict,average='weighted')*100))
```

Accuracy score of Training = 72.5 Accuracy score of Testing = 75.4166666666667 Precision score = 66.88642756680731 Recall score = 75.4166666666667 F1 score = 65.72941095997498

Generating classification report

In [191]:

print(classification_report(y_test,y_predict))

	precision	recall	f1-score	support
0	0.67	0.05	0.10	38
1	0.76	1.00	0.86	179
2	0.00	0.00	0.00	23
accuracy			0.75	240
macro avg	0.47	0.35	0.32	240
weighted avg	0.67	0.75	0.66	240

3.6) Using Logistic Regression

Import the necessary packages

```
In [192]:
```

```
from sklearn.linear model import LogisticRegression
```

Using train-test split and standard scaler

```
In [193]:
```

```
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=10)
```

```
In [194]:
```

```
s = StandardScaler()
X_train = s.fit_transform(X_train)
X_test = s.transform(X_test)
```

Define and Train the model

```
In [195]:
```

```
model=LogisticRegression()
model.fit(X_train,y_train)
```

Out[195]:

```
LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,
                   intercept_scaling=1, l1_ratio=None, max_iter=100,
                   multi_class='auto', n_jobs=None, penalty='12',
                   random_state=None, solver='lbfgs', tol=0.0001, verbose=0,
                   warm_start=False)
```

Predict the model

```
In [196]:
```

```
y_train_predict=model.predict(X_train)
y_predict= model.predict(X_test)
```

Calculating confusion matrix and generating crosstab

```
In [197]:
```

```
print(confusion_matrix(y_test,y_predict))
pd.crosstab(y_test,y_predict)
```

```
[[ 18 18
          2]
[ 9 167
          3]
     6 15]]
   2
```

Out[197]:

```
col 0
PerformanceRating
              0 18
                     18
                          2
              1
                 9 167
                          3
                 2
                      6 15
```

In [198]:

```
print("Accuracy score of Training = ",accuracy_score(y_train,y_train_predict)*100)
print("Accuracy score of Testing = ",accuracy_score(y_test,y_predict)*100)
print("Precision score = ",(precision_score(y_test,y_predict,average='micro')*100))
print("Recall score = ",(recall_score(y_test,y_predict,average='micro')*100))
print("F1 score = ",(f1_score(y_test,y_predict,average='micro')*100))
```

```
Accuracy score of Training = 82.8125
Accuracy score of Testing = 83.33333333333334
Precision score = 83.33333333333334
Recall score = 83.33333333333334
F1 score = 83.33333333333334
```

Generating classification report

In [199]:

<pre>print(classification_report(y_test,y_predict))</pre>								
	precision	recall	f1-score	support				
0	0.62	0.47	0.54	38				
1	0.87	0.93	0.90	179				
2	0.75	0.65	0.70	23				
accuracy			0.83	240				
macro avg	0.75	0.69	0.71	240				
weighted avg	0.82	0.83	0.83	240				

3.7) Using Support Vector Machine

Import the necessary package

```
In [200]:
```

```
from sklearn.svm import SVC
```

Using train-test split and standard scaler

```
In [201]:
```

```
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=10)
```

```
In [202]:
```

```
s = StandardScaler()
X_train = s.fit_transform(X_train)
X_test = s.transform(X_test)
```

Define and Train the model

```
In [203]:
```

```
model=SVC(C=130,kernel = 'rbf',random_state=10)
model.fit(X_train,y_train)
Out[203]:
SVC(C=130, break_ties=False, cache_size=200, class_weight=None, coef0=0.0,
    decision_function_shape='ovr', degree=3, gamma='scale', kernel='rbf',
    max_iter=-1, probability=False, random_state=10, shrinking=True, tol=0.0
01.
    verbose=False)
```

Predict the model

2

1 8 14

```
In [204]:
```

```
y_train_predict=model.predict(X_train)
y_predict=model.predict(X_test)
```

Calculating confusion matrix and generating crosstab

```
In [205]:
```

```
print(confusion_matrix(y_test,y_predict))
pd.crosstab(y_test,y_predict)
[[ 22 16
           01
 [ 14 158
           7]
   1
      8 14]]
Out[205]:
                   1 2
          col_0 0
PerformanceRating
              0 22
                    16 0
              1 14 158 7
```

In [206]:

```
print("Accuracy score of Training = ",accuracy_score(y_train,y_train_predict)*100)
print("Accuracy score of Testing = ",accuracy_score(y_test,y_predict)*100)
print("Precision score = ",(precision_score(y_test,y_predict,average='micro')*100))
print("Recall score = ",(recall_score(y_test,y_predict,average='micro')*100))
print("F1 score = ",(f1_score(y_test,y_predict,average='micro')*100))
```

```
Accuracy score of Training = 100.0
Accuracy score of Testing = 80.83333333333333
Precision score = 80.83333333333333
F1 score = 80.83333333333333
```

Generating classification report

In [207]:

```
print(classification_report(y_test,y_predict))
                           recall f1-score
              precision
                                               support
           0
                             0.58
                                        0.59
                   0.59
                                                    38
                             0.88
                                        0.88
                                                   179
           1
                   0.87
           2
                   0.67
                             0.61
                                        0.64
                                                    23
                                        0.81
                                                   240
    accuracy
   macro avg
                   0.71
                             0.69
                                        0.70
                                                   240
weighted avg
                   0.81
                             0.81
                                        0.81
                                                   240
```

3.8) Using Decision Tree Classifier

Import the necessary package

```
In [208]:
```

```
from sklearn.tree import DecisionTreeClassifier
```

Using train-test split and standard scaler

```
In [209]:
```

```
X_train,X_test,y_train,y_test=train_test_split(X,y,test_size=0.2,random_state=10)
```

```
In [210]:
s = StandardScaler()
X_train = s.fit_transform(X_train)
X_test = s.transform(X_test)
```

Define and Train the model

```
In [211]:
```

```
model=DecisionTreeClassifier(splitter='best',random_state=10,criterion='gini')
model.fit(X_train,y_train)
print(" Model Feature Importances = " ,model.feature_importances_)
Model Feature Importances = [0.06704579 0.00109898 0.00477187 0.01132664
           0.08641163
 0.00238593 0.00290864 0.01423053 0.00902506 0.22243216 0.00617658
 0.00377773 0.
                       0.00897979 0.01132996 0.00409017 0.20666338
 0.00238593 0.02036627 0.04258213 0.04994978 0.01102692 0.0021587
 0.01818392 0.00835077 0.18234073]
```

Predict the model

```
In [212]:
```

```
y_train_predict=model.predict(X_train)
y_predict=model.predict(X_test)
```

Calculating confusion matrix and generating crosstab

```
In [213]:
```

```
print(confusion_matrix(y_test,y_predict))
pd.crosstab(y_test,y_predict)
[[ 35
            01
       3
   9 168
          21
 [
   1
      4 18]]
Out[213]:
           col_0
                0
                     1 2
PerformanceRating
              0 35
                      3
                         0
              1
                 9 168
                         2
              2
                1
                     4 18
```

In [214]:

```
print("Accuracy score of Training = ",accuracy_score(y_train,y_train_predict)*100)
print("Accuracy score of Testing = ",accuracy_score(y_test,y_predict)*100)
print("Precision score = ",(precision_score(y_test,y_predict,average='weighted')*100))
print("Recall score = ",(recall_score(y_test,y_predict,average='weighted')*100))
print("F1 score = ",(f1_score(y_test,y_predict,average='weighted')*100))
```

Accuracy score of Training = 100.0 Accuracy score of Testing = 92.08333333333333 Precision score = 92.53981481481482 F1 score = 92.16762992054936

Generating classification report

In [215]:

print(classif	<pre>print(classification_report(y_test,y_predict))</pre>								
	precision	recall	f1-score	support					
0	0.78	0.92	0.84	38					
1	0.96	0.94	0.95	179					
2	0.90	0.78	0.84	23					
accuracy			0.92	240					
macro avg	0.88	0.88	0.88	240					
weighted avg	0.93	0.92	0.92	240					

Downloading the final processed data

In [216]:

performance.to_excel("INX_Future_Inc_Employee_Performance_Final_Processed_Data.xls")

In [218]:

performance.head()

Out[218]:

	EmpNumber	Age	Gender	EducationBackground	MaritalStatus	EmpDepartment	EmpJobRo			
0	E1001000	32	Male	Marketing	Single	Sales	Sale Executiv			
1	E1001006	47	Male	Marketing	Single	Sales	Sal€ Executi\			
2	E1001007	40	Male	Life Sciences	Married	Sales	Sale Executiv			
3	E1001009	41	Male	Human Resources	Divorced	Human Resources	Manag			
4	E1001010	60	Male	Marketing	Single	Sales	Sale Executiv			
5 r	5 rows × 28 columns									
4							+			