PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2003-209454

(43) Date of publication of application: 25.07.2003

(51)Int.Cl.

H03H 7/46

H03H 7/075 **H04B** 1/44

(21)Application number: 2002-319604

(71)Applicant: MATSUSHITA ELECTRIC IND CO LTD

(22)Date of filing:

01.11.2002

(72)Inventor: URYU KAZUHIDE

YAMADA TORU

ISHIZAKI TOSHIO

(30)Priority

Priority number : 2001346162

Priority date: 12.11.2001

Priority country: JP

(54) DIPLEXER, AND HIGH-FREQUENCY SWITCH AND ANTENNA DUPLEXER USING THE SAME

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a diplexer and a high-frequency switch using the same in which signals of a high frequency band can be passed without being attenuated over a wide frequency band. SOLUTION: A low-pass filter LPF 82 comprising the diplexer is provided with the parallel resonance circuit of a first capacitor C1 and a first inductor L1 and the serial resonance circuit of a second capacitor C2 and a second inductor L2 to form two attenuation poles of the LPF 82. Thus, the passband of a high-pass filter HPF 83 can be widened.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2003-209454 (P2003-209454A)

(43)公開日 平成15年7月25日(2003.7.25)

(51) Int.Cl.7	識別記号	F I		テーマコード(参考)
H03H	7/46	нозн	7/46 A	5 J O 2 4
	7/075		7/075 Z	5 K O 1 1
H 0 4 B	1/44	H 0 4 B	1/44	

		審査請求	未請求	請求項の数28	OL	(全 24 頁)
(21)出願番号	特願2002-319604(P2002-319604)	(71)出顧人	00000582	21 3 産業株式会社		
(22)出顧日	平成14年11月1日(2002.11.1)	(72)発明者	大阪府門]真市大字門真1 -英	006番均	<u>ta</u>
(31)優先権主張番号 (32)優先日	特願2001-346162(P2001-346162) 平成13年11月12日(2001.11.12)		大阪府門 産業株式]真市大字門真1 公社内	006番埠	也 松下電器
(33)優先権主張国	日本(JP)	(72)発明者	山田 徹 大阪府門 産業株式	真市大字門真1	006番月	也 松下電器
		(74)代理人	10009829 弁理士	31 小笠原 史朗		

最終頁に続く

(54) 【発明の名称】 ダイプレクサ並びにそれを用いた高周波スイッチ及びアンテナ共用器

(57)【要約】

【課題】 高域の周波数帯の信号が広域に渡って減衰す ることなく通過することができるダイプレクサおよびそ れを用いた高周波スイッチを提供すること。

【解決手段】 ダイプレクサを構成する低域通過フィル タLPF82に第1のコンデンサC1と第1のインダク タL1との並列共振回路と、第2のコンデンサC2と第 2のインダクタL2との直列共振回路とを設け、LPF 82の減衰極を二つ形成する。これにより、高域通過フ ィルタHPF83の通過帯域を広域にすることが可能と なる。

【特許請求の範囲】

【請求項1】 異なる複数の周波数帯の電波を送受信し て分離合成するためのダイプレクサであって、

1

アンテナ側に接続する第1の端子と低域の周波数帯の信 号を送受信するための第2の端子との間に配置される低 域の周波数帯の信号のみを通過する低域通過フィルタ と、

前記第1の端子と高域の周波数帯の信号を送受信するた めの第3の端子との間に配置される高域の周波数帯の信 号のみを通過する高域通過フィルタとを備え、

前記低域通過フィルタは、少なくとも二つの共振回路を 含み、それによって通過帯域の高域側に減衰極を少なく とも二つ形成することを特徴とする、ダイプレクサ。

【請求項2】 前記高域通過フィルタは、一つの共振回 路を含み、

前記高域通過フィルタは、通過帯域の低域側に減衰極を 一つ形成し、

前記低域通過フィルタは、最も低域の周波数帯の信号の みを通過することを特徴とする、請求項1に記載のダイ プレクサ。

【請求項3】 前記低域通過フィルタは、二つの前記共 振回路として、

前記第1の端子と前記第2の端子との間に配置される第 1のインダクタと第1のコンデンサとからなる並列共振 回路と、

前記第2の端子とグランドとの間に配置される第2のイ ンダクタと第2のコンデンサとからなる直列共振回路と を含む、請求項1または2に記載のダイプレクサ。

【請求項4】 前記高域通過フィルタは、前記第1の端 子と前記第3の端子との間に配置される第3のコンデン サ及び第4のコンデンサからなる直列回路と、

前記共振回路として、前記第3のコンデンサと前記第4 のコンデンサとの接続点とグランドとの間に配置される 第3のインダクタと第5のコンデンサとからなる直列共 振回路とを含む、請求項3に記載のダイプレクサ。

【請求項5】 前記低域通過フィルタ及び前記高域通過 フィルタは、前記第1~3のインダクタを実現するため の複数のストリップライン電極と、前記第1~5のコン デンサを実現するための複数のコンデンサ電極と、前記 複数のストリップライン電極と前記複数のコンデンサ電 40 極とを接続するための複数のビアホール導体とを形成し ている複数の誘電体層を積層した積層体からなることを 特徴とする、請求項4に記載のダイプレクサ。

【請求項6】 前記複数の誘電体層のうち少なくとも一 つの誘電体層は、接地電極を含み、

前記第1のインダクタを実現する少なくとも1本以上の ストリップライン電極は、当該接地電極よりも積層方向 に対して上層に配置され、かつ前記第2のインダクタを 実現する少なくとも1本以上のストリップライン電極及 び前記第3のインダクタを実現する少なくとも1本以上 50 のストリップライン電極よりも積層方向に対して上層ま たは同一層に配置されることを特徴とする、請求項5に 記載のダイプレクサ。

前記複数の誘電体層のうち少なくとも一 【請求項7】 つの誘電体層は、接地電極を含み、

前記低域通過フィルタの前記並列共振回路における第1 のコンデンサを実現する少なくとも一つ以上のコンデン サ電極は、当該接地電極よりも積層方向に対して上層に 配置され、

10 前記低域通過フィルタの前記並列共振回路における前記 第1のインダクタを実現する少なくとも一本以上のスト リップライン電極は、当該コンデンサ電極よりも積層方 向に対して上層に配置されることを特徴とする、請求項 5または6に記載のダイプレクサ。

前記複数の誘電体層のうち少なくとも一 【請求項8】 つの誘電体層は、接地電極を含み、

前記低域通過フィルタの前記直列共振回路における第2 のコンデンサを実現する少なくとも一つ以上のコンデン サ電極は、当該接地電極よりも積層方向に対して上層に 配置され、

前記低域通過フィルタの前記直列共振回路における前記 第2のインダクタを実現する少なくとも一本以上のスト リップライン電極は、当該コンデンサ電極よりも積層方 向に対して上層に配置されることを特徴とする、請求項 5~7のいずれかに記載のダイプレクサ。

【請求項9】 前記複数の誘電体層のうち少なくとも一 つの誘電体層は、接地電極を含み、

前記高域通過フィルタの前記直列共振回路における第5 のコンデンサを実現する少なくとも一つ以上のコンデン サ電極は、当該接地電極よりも積層方向に対して上層に 配置され、

前記高域通過フィルタの前記直列共振回路における前記 第3のインダクタを実現する少なくとも一本以上のスト リップライン電極は、当該コンデンサ電極よりも積層方 向に対して上層に配置されることを特徴とする、請求項 5~8のいずれかに記載のダイプレクサ。

【請求項10】 異なる複数の周波数帯の電波の送受信 を切り替えるための高周波スイッチであって、

アンテナ側に接続された第1の端子を介して、異なる複 数の周波数帯の電波を送受信して分離合成するためのダ イプレクサと、

前記ダイプレクサにおける低域の周波数の信号を送受信 するための第2の端子に接続された低域送受信切り替え

前記ダイプレクサにおける高域の周波数の信号を送受信 するための第3の端子に接続された高域送受信切り替え 回路とを備え、

前記ダイプレクサは、

前記第1の端子と前記第2の端子との間に配置される低 域の周波数帯の信号のみを通過する低域通過フィルタ

(3)

と、

前記第1の端子と前記第3の端子との間に配置される高域の周波数帯の信号のみを通過する高域通過フィルタとを含み、

前記低域通過フィルタは、少なくとも二つの共振回路を有し、

前記低域通過フィルタは、二つの前記共振回路の働きによって通過帯域の高域側に減衰極を少なくとも二つ形成することを特徴とする、高周波スイッチ。

【請求項11】 前記高域通過フィルタは、一つの共振 10 回路を含み、

前記高域通過フィルタは、通過帯域の低域側に減衰極を 一つ形成し、

前記低域通過フィルタは、最も低域の周波数帯の信号の みを通過することを特徴とする、請求項10に記載の高 周波スイッチ。

【請求項12】 前記低域通過フィルタは、二つの前記 共振回路として、

前記第1の端子と前記第2の端子との間に配置される第 1のインダクタと第1のコンデンサとからなる並列共振 20 回路と、

前記第2の端子とグランドとの間に配置される第2のインダクタと第2のコンデンサとからなる直列共振回路とを含む、請求項10または11に記載の高周波スイッチ。

【請求項13】 前記高域通過フィルタは、前記第1の端子と前記第3の端子との間に配置される第3のコンデンサ及び第4のコンデンサからなる直列回路と、

前記共振回路として、前記第3のコンデンサと前記第4のコンデンサとの接続点とグランドとの間に配置される 30第3のインダクタと第5のコンデンサとからなる直列共振回路とを含む、請求項12に記載の高周波スイッチ。

【請求項14】 インダクタを実現する複数のストリップライン電極と、コンデンサを実現する複数のコンデンサ電極と、前記複数のストリップライン電極と前記複数のコンデンサ電極とを接続するための複数のビアホール導体とを形成した複数の誘電体層の積層体によって実現される、請求項13に記載の高周波スイッチ。

【請求項15】 前記積層体には、前記低域通過フィルタ及び前記高域通過フィルタを実現するための、前記第 40 1~3のインダクタを実現する複数のストリップライン電極と、前記第1~5のコンデンサを実現する複数のコンデンサ電極と、前記複数のストリップライン電極と前記複数のコンデンサ電極とを接続する複数のビアホール導体とが形成されていることを特徴とする、請求項14に記載の高周波スイッチ。

【請求項16】 前記複数の誘電体層のうち少なくとも 一つの誘電体層は、接地電極を含み、

前記第1のインダクタを実現する少なくとも1本以上の ストリップライン電極は、当該接地電極よりも積層方向 50 に対して上層に配置され、かつ前記第2のインダクタを 実現する少なくとも1本以上のストリップライン電極及 び前記第3のインダクタを実現する少なくとも1本以上 のストリップライン電極よりも積層方向に対して上層ま たは同一層に配置されることを特徴とする、請求項15 に記載の高周波スイッチ。

【請求項17】 前記複数の誘電体層のうち少なくとも 一つの誘電体層は、接地電極を含み、

前記低域通過フィルタの前記並列共振回路における第1 のコンデンサを実現する少なくとも一つ以上のコンデン サ電極は、当該接地電極よりも積層方向に対して上層に 配置され、

前記低域通過フィルタの前記並列共振回路における前記 第1のインダクタを実現する少なくとも一本以上のスト リップライン電極は、当該コンデンサ電極よりも積層方 向に対して上層に配置されることを特徴とする、請求項 15または16に記載の高周波スイッチ。

【請求項18】 前記複数の誘電体層のうち少なくとも 一つの誘電体層は、接地電極を含み、

前記低域通過フィルタの前記直列共振回路における第2 のコンデンサを実現する少なくとも一つ以上のコンデン サ電極は、当該接地電極よりも積層方向に対して上層に 配置され、

前記低域通過フィルタの前記直列共振回路における前記第2のインダクタを実現する少なくとも一本以上のストリップライン電極は、当該コンデンサ電極よりも積層方向に対して上層に配置されることを特徴とする、請求項15~17のいずれかに記載の高周波スイッチ。

【請求項19】 前記複数の誘電体層のうち少なくとも 一つの誘電体層は、接地電極を含み、

前記高域通過フィルタの前記直列共振回路における第5 のコンデンサを実現する少なくとも一つ以上のコンデン サ電極は、当該接地電極よりも積層方向に対して上層に 配置され、

前記高域通過フィルタの前記直列共振回路における前記第3のインダクタを実現する少なくとも一本以上のストリップライン電極は、当該コンデンサ電極よりも積層方向に対して上層に配置されることを特徴とする、請求項15~18のいずれかに記載の高周波スイッチ。

【請求項20】 前記低域送受信切り替え回路及び前記 高域送受信切り替え回路の少なくとも一方は、ダイオー ドに印加する電圧に応じて送受信を切り替える回路であ り

前記ダイオードは、前記積層体の上面に実装されることを特徴とする、請求項14~19のいずれかに記載の高 周波スイッチ。

【請求項21】 前記低域送受信切り替え回路及び前記 高域送受信切り替え回路の少なくとも一方は、GaAs スイッチであり、

前記GaAsスイッチは、前記積層体の上面に実装され

ることを特徴とする、請求項14~20のいずれかに記載の高周波スイッチ。

5

【請求項22】 異なる複数の周波数帯の電波の送受信を同時に行うためのアンテナ共用器であって、

アンテナ側に接続された第1の端子を介して、異なる複数の周波数帯の電波を送受信して分離合成するためのダイプレクサと、

前記ダイプレクサにおける低域の周波数の信号を送受信するための第2の端子に接続された第1のデュプレクサと、

前記ダイプレクサにおける高域の周波数の信号を送受信するための第3の端子に接続された第2のデュプレクサとを備え、

前記ダイプレクサは、

前記第1の端子と前記第2の端子との間に配置される低域の周波数帯の信号のみを通過する低域通過フィルタと、

前記第1の端子と前記第3の端子との間に配置される高域の周波数帯の信号のみを通過する高域通過フィルタとを含み、

前記低域通過フィルタは、少なくとも二つの共振回路を有し、

前記低域通過フィルタは、二つの前記共振回路の働きに よって通過帯域の高域側に減衰極を少なくとも二つ形成 することを特徴とする、アンテナ共用器。

【請求項23】 前記高域通過フィルタは、一つの共振 回路を含み、

前記高域通過フィルタは、通過帯域の低域側に減衰極を 一つ形成し、

前記低域通過フィルタは、最も低域の周波数帯の信号の みを通過することを特徴とする、請求項22に記載のア ンテナ共用器。

【請求項24】 前記低域通過フィルタは、二つの前記 共振回路として、

前記第1の端子と前記第2の端子との間に配置される第 1のインダクタと第1のコンデンサとからなる並列共振 回路と、

前記第2の端子とグランドとの間に配置される第2のインダクタと第2のコンデンサとからなる直列共振回路とを含む、請求項22または23に記載のアンテナ共用

【請求項25】 前記高域通過フィルタは、前記第1の 端子と前記第3の端子との間に配置される第3のコンデンサ及び第4のコンデンサからなる直列回路と、

前記共振回路として、前記第3のコンデンサと前記第4のコンデンサとの接続点とグランドとの間に配置される第3のインダクタと第5のコンデンサとからなる直列共振回路とを含む、請求項24に記載のアンテナ共用器。

【請求項26】 インダクタを実現する複数のストリップライン電極と、コンデンサを実現する複数のコンデン 50

サ電極と、前記複数のストリップライン電極と前記複数 のコンデンサ電極とを接続するための複数のビアホール 導体とを形成した複数の誘電体層の積層体によって実現 される、請求項25に記載のアンテナ共用器。

【請求項27】 複数の周波数帯の電波の送受信を行う無線通信機器であって、

異なる複数の周波数帯の電波の送受信を切り替えるため の高周波スイッチを備え、

前記高周波スイッチは、

10 アンテナ側に接続された第1の端子を介して、異なる複数の周波数帯の電波を送受信して分離合成するためのダイプレクサと、

前記ダイプレクサにおける低域の周波数の信号を送受信 するための第2の端子に接続された低域送受信切り替え 回路と、

前記ダイプレクサにおける高域の周波数の信号を送受信するための第3の端子に接続された高域送受信切り替え 回路とを含み、

前記ダイプレクサは、

20 前記第1の端子と前記第2の端子との間に配置される低域の周波数帯の信号のみを通過する低域通過フィルタ

前記第1の端子と前記第3の端子との間に配置される高域の周波数帯の信号のみを通過する高域通過フィルタとを有し、

前記低域通過フィルタは、少なくとも二つの共振回路を持ち

前記低域通過フィルタは、二つの前記共振回路の働きによって通過帯域の高域側に減衰極を少なくとも二つ形成することを特徴とする、無線通信機器。

【請求項28】 複数の周波数帯の電波の送受信を同時 に行う無線通信機器であって、

異なる複数の周波数帯の電波を同時に送受信するための アンテナ共用器を備え、

前記アンテナ共用器は、

アンテナ側に接続された第1の端子を介して、異なる複数の周波数帯の電波を送受信して分離合成するためのダイプレクサと、

前記ダイプレクサにおける低域の周波数の信号を送受信 40 するための第2の端子に接続された第1のデュプレクサ

前記ダイプレクサにおける高域の周波数の信号を送受信するための第3の端子に接続された第2のデュプレクサとを備え、

前記ダイプレクサは、

前記第1の端子と前記第2の端子との間に配置される低域の周波数帯の信号のみを通過する低域通過フィルタと、

前記第1の端子と前記第3の端子との間に配置される高域の周波数帯の信号のみを通過する高域通過フィルタと

を含み、

前記低域通過フィルタは、少なくとも二つの共振回路を有し、

7

前記低域通過フィルタは、二つの前記共振回路の働きに よって通過帯域の高域側に減衰極を少なくとも二つ形成 することを特徴とする、無線通信機器。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、携帯電話などに用いるダイプレクサ並びにそれを用いた高周波スイッチおよびアンテナ共用器に関し、より特定的には、周波数帯の異なる複数の通信方式を利用することができる携帯電話などの無線通信機器に用いるためのダイプレクサ並びにそれを用いた高周波スイッチ及びアンテナ共用器に関する。

[0002]

【従来の技術】携帯電話システムには、欧州などを中心に用いられてきたEGSM(Enhanced-Global System for Mobile Communication)方式、利用者の拡大と共に利用されるようになってきた1.8GHz帯の周波数を用いるDCS(Digital Cellular System)方式、次世代の高速通信を実現するUMTS(Universal Mobile Telecommunications System)方式、米国を中心に用いられている1.9GHz帯の周波数を用いるPCS(Personal Communications Services)方式など複数の方式が存在する。

【0003】図19は、EGSM方式、DCS方式およびUMTS方式で用いられる周波数帯を示した図である。図19において、方式名の下の()内に記した"Tx"は送信の際に用いられる周波数帯であることを意味し、"8x"は受信の際に用いられる周波数帯であることを意味する。図19に示したようにEGSM方式は $80\sim960$ MHzを、DCS方式は $1710\sim1880$ MHzを、UMTS方式は $1920\sim2170$ MHzを利用する。図19から分かるように、携帯電話システムは、EGSM方式のように低域の周波数を用いるシステムと、DCSやUMTS方式のように高域の周波数を用いるシステムとに大別される。

【0004】近年、携帯電話などの移動体通信の利用者の拡大やそのシステムのグローバル化などから、上記のような複数の方式を利用することができる携帯電話の開発が望まれている。たとえば、従来から利用されている低域の周波数帯を用いるEGSM方式と、近年利用が進みつつある高域の周波数帯を用いるDCSやUMTS方式等とを共に利用することができる携帯電話の開発が望まれている。上記のような携帯電話では、携帯電話の内部回路において低域の周波数帯と高域の周波数帯とを分

離・合成する必要がある。なぜなら、低域の周波数帯の信号と、高域の周波数帯の信号とでは、利用することができるパワーアンプなどが異なるものとなるからである。

【0005】従来、低域の周波数帯の信号と高域の周波数帯の信号とを分離・合成するためにダイプレクサと呼ばれる装置が用いられてきた。図20は、従来のダイプレクサの等価回路を示す図である(例えば、特許文献1参照)。図20において、従来のダイプレクサは、第1の端子P51と第2の端子P52との間に接続された低域通過フィルタ(以下、LPF(Low Pass Filter)という)10と、第1の端子P51と第3の端子P53との間に接続された高域通過フィルタ(以下、HPF(High Pass Filter))20とを含む。

【0006】LPF10において、第1の端子P51と第2の端子P52との間に第1のインダクタL51と第1のコンデンサC51とが並列に接続され、第2の端子P52とグランドとの間に第2のコンデンサC52が直列に接続される。LPF10は、EGSM方式などの低域の周波数帯の信号を通過する。

【0007】HPF20において、第1の端子P51と第3の端子P53との間に第3のコンデンサC53と第4のコンデンサC53と第6のコンデンサC53と第4のコンデンサC53と第4のコンデンサC53と第6のコンデンサC55とが直列に接続される。HPF20は、DCSやUMTS方式などの高域の周波数帯の信号を通過する。

【0008】LPF10における第1のインダクタL51と第1のコンデンサC51との並列共振回路は、HPF20の通過帯域付近に相当する高域の周波数帯の信号に共振するように定数が定められている。並列共振回路は、共振するとインピーダンスが非常に大きくなる。したがって、LPF10は、高域の周波数帯の信号を通過しない。すなわち、LPF10は、高域の周波数帯に減衰極を形成する。ここで、減衰極とは、フィルタの減衰帯域の中で、ある特定の周波数がより大きく減衰する位置のことをいう。

【0009】図21は、LPF10の通過特性を示す図である。図21において、点線で示した曲線は、グラフの縦軸の右側の尺度で示したLPF10の通過特性を示している。図20に示したように、LPF10は、UMTS方式の周波数帯で減衰極AP50を形成し、EGSM方式の周波数帯で最もよく信号を通過する。

【0010】HPF20における第2のインダクタL5 2と第5のコンデンサC55との直列共振回路は、(L PF10の通過帯域付近に相当する)EGSM方式の周 波数帯の信号に共振するよう定数が定められている。直 列共振回路は、共振するとインピーダンスが非常に小さ

40

9

くなり零に近づく。第1の端子P51から第3の端子P53を見たとき、インピーダンスは、LPF10に比べて非常に大きくなる。したがって、EGSM方式の周波数帯の信号が第1の端子P51に入力した場合、HPF20は、EGSM方式の周波数帯の信号を通過しない。すなわち、HPF20は、EGSM方式の周波数帯付近に減衰極を形成する。

【0011】図22は、HPF20の通過特性を示す図である。図22において点線で表した曲線の意味は、図21と同様である。図22に示したように、HPF20は、EGSM方式の周波数帯で減衰極AP51を形成し、UMTS方式の周波数帯で最もよく信号を通過する。

【0012】上記のような従来のダイプレクサにおいて、第1の端子P51に入力したEGSM方式の周波数帯の信号は、HPF20をほとんど通過することができるので、LPF10側へは伝達されずに、LPF10側に伝達され、第2の端子P52から取り出すことができる。また、第1の端子P51に入力した高域の周波数帯の信号は、LPF10をほとんど通過することができるいが、HPF20をほぼ完全に通過することができるので、LPF10側へは伝達されずに、HPF20側に伝達され、第3の端子P53から取り出すことができる。このように従来のダイプレクサを用いて、低域の周波数帯の信号と高域の周波数帯の信号とを分離・合成することが可能となる。

[0013]

【特許文献1】特開2000-349581号公報(段落0003、第6図)

[0014]

【発明が解決しようとする課題】図21に示すように、LPF10において、UMTS方式の周波数帯の信号は十分に減衰されLPF10を通過することはできないが、DCS方式の周波数帯の信号は、減衰が不十分であるため、LPF10に漏洩してしまう結果となる。したがって、図22に示すように、DCS方式の周波数帯の信号は、LPF10に漏洩してしまう分、減衰されてHPF20を通過するという問題が生ずる。したがって、DCS方式とUMTS方式とを共に利用することができる携帯電話に用いるには問題がある。

【0015】このように、上記のような従来のダイプレクサでは、第1の端子P51と第2の端子P52との間のLPF10において、1つの並列共振回路でHPF20の通過帯域付近に減衰極AP50を形成しているため、広帯域にわたって減衰量を確保することが困難となっていた。その結果、従来のダイプレクサでは、高域通過フィルタHPF20の通過特性が狭帯域となり、複数の携帯電話システムで利用されるような高域側の周波数帯の信号が広帯に渡って減衰することなく通過するのは50

困難であった。

【0016】それゆえ、本発明の目的は、高域の周波数帯の信号が広域に渡って減衰することなく通過することができるダイプレクサを提供することである。

【0017】また、本発明の他の目的は、高域の周波数帯の信号が広域に渡って減衰することなく通過することができるダイプレクサを用いた高周波スイッチを提供することである。

【0018】さらに、本発明の他の目的は、高域の周波 数帯の信号が広域に渡って減衰することなく通過するこ とができるダイプレクサを用いたアンテナ共用器を提供 することである。

[0019]

【課題を解決するための手段および発明の効果】第1の発明は、異なる複数の周波数帯の電波を送受信して分離合成するためのダイプレクサであって、アンテナ側に接続する第1の端子と低域の周波数帯の信号を送受信するための第2の端子との間に配置される低域の周波数帯の信号を送受信するための第3の端子との間に配置される高域の周波数帯の信号のみを通過する高域の周波数帯の信号のみを通過する高域通過フィルタとを備え、低域通過フィルタは、少なくとも二つの共振回路を含み、それによって通過帯域の高域側に減衰極を少なくとも二つ形成することを特徴とする。

【0020】上記第1の発明によれば、低域通過フィルタに含まれる二つの共振回路によって通過帯域の高域側に減衰極が二つ形成されるので、低域通過フィルタでは、高域の周波数帯の信号を広域に渡って十分に減衰することが可能となる。したがって、高域通過フィルタでは、高域の周波数帯の信号が広域に渡って減衰することなく通過することができるダイプレクサを提供することが可能となる。

【0021】第2の発明は、第1の発明において、高域通過フィルタは、一つの共振回路を含み、高域通過フィルタは、通過帯域の低域側に減衰極を一つ形成し、低域通過フィルタは、最も低域の周波数帯の信号のみを通過することを特徴とする。

【0022】上記第2の発明によれば、高域通過フィルタに含まれる一つの共振回路によって通過帯域の低域側に減衰極が一つ形成されるので、低域の周波数帯の信号の減衰を抑えることが可能となり、低域通過フィルタが最も低域の周波数帯の信号のみを通過することが可能となる。これにより、たとえば、EGSM方式の周波数帯の信号と、高域のDCS、UMTS、PCS方式等の周波数帯の信号とを分離合成することが可能となる。

【0023】第3の発明は、第1または第2の発明において、低域通過フィルタは、二つの共振回路として、第1の端子と第2の端子との間に配置される第1のインダクタと第1のコンデンサとからなる並列共振回路と、第

2の端子とグランドとの間に配置される第2のインダクタと第2のコンデンサとからなる直列共振回路とを含む。

11

【0024】上記第3の発明によれば、低域通過フィルタの並列共振回路が共振したとき一つの減衰極を形成し、低域通過フィルタの直列共振回路が共振したときに一つの減衰極が形成されることとなり、広域に渡って減衰量を十分に確保することが可能となる。したがって、高域の周波数帯の信号が広域に渡って減衰することなく通過することができるダイプレクサを提供することが可能となる。また、第3の発明の構成により、最小の回路構成による広帯域な通過特性を持つダイプレクサを提供することが可能となる。

【0025】第4の発明は、第3の発明において、高域 通過フィルタは、第1の端子と第3の端子との間に配置 される第3のコンデンサ及び第4のコンデンサからなる 直列回路と、共振回路として、第3のコンデンサと第4のコンデンサとの接続点とグランドとの間に配置される 第3のインダクタと第5のコンデンサとからなる直列共振回路とを含む。

【0026】上記第4の発明によれば、高域通過フィルタの直列共振回路が共振したとき一つの減衰極が形成されることとなるので、低域の周波数帯の信号の減衰を抑えることが可能となる。

【0027】第5の発明は、第4の発明において、低域 通過フィルタ及び高域通過フィルタは、第1~3のイン ダクタを実現するための複数のストリップライン電極 と、第1~5のコンデンサを実現するための複数のコンデンサ電極と、複数のストリップライン電極と複数のコンデンサ電極とを接続するための複数のビアホール導体 30 とを形成している複数の誘電体層を積層した積層体から なることを特徴とする。

【0028】上記第5の発明によれば、低域通過フィルタ及び高域通過フィルタが一つの積層体の内部に形成されることとなるので、ダイプレクサの小型化、低背化を図ることが可能となる。

【0029】第6の発明は、第5の発明において、複数の誘電体層のうち少なくとも一つの誘電体層は、接地電極を含み、第1のインダクタを実現する少なくとも1本以上のストリップライン電極は、当該接地電極よりも積40層方向に対して上層に配置され、かつ第2のインダクタを実現する少なくとも1本以上のストリップライン電極及び第3のインダクタを実現する少なくとも1本以上のストリップライン電極よりも積層方向に対して上層または同一層に配置されることを特徴とする。

【0030】上記第6の発明によれば、信号が直接通過する第1のインダクタを接地電極よりも上層に配置し、さらに他のストリップライン電極より上層または同一層に配置することによって、第1のインダクタと接地電極やコンデンサ電極など他の電極パターンとの間に発生す

る浮遊容量などを低減させることができるので、インダクタの特性変化を低減することが可能となる。その結果、所望する回路通りのダイプレクサを提供することができる。

【0031】第7の発明は、第5または第6の発明において、複数の誘電体層のうち少なくとも一つの誘電体層は、接地電極を含み、低域通過フィルタの並列共振回路における第1のコンデンサを実現する少なくとも一つ以上のコンデンサ電極は、当該接地電極よりも積層方向に対して上層に配置され、低域通過フィルタの並列共振回路における第1のインダクタを実現する少なくとも一本以上のストリップライン電極は、当該コンデンサ電極よりも積層方向に対して上層に配置されることを特徴とする。

【0032】上記第7の発明によれば、接地電極と第1のインダクタを実現するストリップライン電極との間に第1のコンデンサを実現するコンデンサ電極を配置することによって、第1のインダクタと接地電極との間に発生する浮遊容量などを低減させることができるので、所望する回路通りのダイプレクサを提供することが可能となる。

【0033】第8の発明は、第5~第7の発明のいずれかにおいて、複数の誘電体層のうち少なくとも一つの誘電体層は、接地電極を含み、低域通過フィルタの直列共振回路における第2のコンデンサを実現する少なくとも一つ以上のコンデンサ電極は、当該接地電極よりも積層方向に対して上層に配置され、低域通過フィルタの直列共振回路における第2のインダクタを実現する少なくとも一本以上のストリップライン電極は、当該コンデンサ電極よりも積層方向に対して上層に配置されることを特徴とする。

【0034】上記第8の発明によれば、接地電極と第2のインダクタを実現するストリップライン電極との間に第2のコンデンサを実現するコンデンサ電極を配置することによって、第2のインダクタと接地電極との間に発生する浮遊容量などを低減させることができるので、所望する回路通りのダイプレクサを提供することが可能となる。

【0035】第9の発明は、第5~第8の発明のいずれかにおいて、複数の誘電体層のうち少なくとも一つの誘電体層は、接地電極を含み、高域通過フィルタの直列共振回路における第5のコンデンサを実現する少なくとも一つ以上のコンデンサ電極は、当該接地電極よりも積層方向に対して上層に配置され、高域通過フィルタの直列共振回路における第3のインダクタを実現する少なくとも一本以上のストリップライン電極は、当該コンデンサ電極よりも積層方向に対して上層に配置されることを特徴とする。

【0036】上記第9の発明によれば、接地電極と第3のインダクタを実現するストリップライン電極との間に

30

50

14

13

第5のコンデンサを実現するコンデンサ電極を配置することによって、第3のインダクタと接地電極との間に発生する浮遊容量などを低減させることができるので、所望する回路通りのダイプレクサを提供することが可能となる。

【0037】第10の発明は、異なる複数の周波数帯の 電波の送受信を切り替えるための高周波スイッチであっ て、アンテナ側に接続された第1の端子を介して、異な る複数の周波数帯の電波を送受信して分離合成するため のダイプレクサと、ダイプレクサにおける低域の周波数 の信号を送受信するための第2の端子に接続された低域 送受信切り替え回路と、ダイプレクサにおける高域の周 波数の信号を送受信するための第3の端子に接続された 高域送受信切り替え回路とを備え、ダイプレクサは、第 1の端子と第2の端子との間に配置される低域の周波数 帯の信号のみを通過する低域通過フィルタと、第1の端 子と第3の端子との間に配置される高域の周波数帯の信 号のみを通過する高域通過フィルタとを含み、低域通過 フィルタは、少なくとも二つの共振回路を有し、低域通 過フィルタは、二つの共振回路の働きによって通過帯域 の高域側に減衰極を少なくとも二つ形成することを特徴

【0038】上記第10の発明によれば、ダイプレクサの低域通過フィルタに含まれる二つの共振回路によって通過帯域の高域側に減衰極が二つ形成されるので、低域通過フィルタでは高域の周波数帯の信号を広域に渡って十分に減衰することが可能となり、高域通過フィルタでは高域の周波数帯の信号が広域に渡って減衰することなく通過することができる高周波スイッチを提供することが可能となる。

【0039】第11の発明は、第10の発明において、高域通過フィルタは、一つの共振回路を含み、高域通過フィルタは、通過帯域の低域側に減衰極を一つ形成し、低域通過フィルタは、最も低域の周波数帯の信号のみを通過することを特徴とする。

【0040】上記第11の発明によれば、高域通過フィルタに含まれる一つの共振回路によって通過帯域の低域側に減衰極が一つ形成されるので、低域の周波数帯の信号の減衰を抑えることが可能となり、低域通過フィルタが最も低域の周波数帯の信号のみを通過することが可能となる。これにより、たとえば、EGSM方式の周波数帯の信号と、高域のDCS、UMTS、PCS方式等の周波数帯の信号とを分離合成することができる高周波スイッチを提供することが可能となる。

【0041】第12の発明は、第10または第11の発明において、低域通過フィルタは、二つの共振回路として、第1の端子と第2の端子との間に配置される第1のインダクタと第1のコンデンサとからなる並列共振回路と、第2の端子とグランドとの間に配置される第2のインダクタと第2のコンデンサとからなる直列共振回路と

を含む。

【0042】上記第12の発明によれば、低域通過フィルタの並列共振回路が共振したとき一つの減衰極を形成し、低域通過フィルタの直列共振回路が共振したときに一つの減衰極が形成されることとなり、広域に渡って減衰量を十分に確保することが可能となる。したがって、高域の周波数帯の信号が広域に渡って減衰することなく分離合成することができる高周波スイッチを提供することが可能となる。また、第12の発明の構成により、最小の回路構成による広帯域な通過特性を持つ高周波スイッチを提供することが可能となる。

【0043】第13の発明は、第12の発明において、 高域通過フィルタは、第1の端子と第3の端子との間に 配置される第3のコンデンサ及び第4のコンデンサから なる直列回路と、共振回路として、第3のコンデンサと 第4のコンデンサとの接続点とグランドとの間に配置さ れる第3のインダクタと第5のコンデンサとからなる直 列共振回路とを含む。

【0044】上記第13の発明によれば、高域通過フィルタの直列共振回路が共振したとき一つの減衰極が形成されることとなるので、低域の周波数帯の信号の減衰を抑えることができる高周波スイッチを提供することが可能となる。

【0045】第14の発明は、第13の発明において、インダクタを実現する複数のストリップライン電極と、コンデンサを実現する複数のコンデンサ電極と、複数のストリップライン電極と複数のコンデンサ電極とを接続するための複数のビアホール導体とを形成した複数の誘電体層の積層体によって実現される。

【0046】上記第14の発明によれば、高周波スイッチを構成するためのインダクタやコンデンサが、一つの 積層体の内部に形成されることとなるので、高周波スイッチの小型化、低背化を図ることが可能となる。

【0047】第15の発明は、第14の発明において、 積層体には、低域通過フィルタ及び高域通過フィルタを 実現するための、第1~3のインダクタを実現する複数 のストリップライン電極と、第1~5のコンデンサを実 現する複数のコンデンサ電極と、複数のストリップライン電極と複数のコンデンサ電極とを接続する複数のビア ホール導体とが形成されていることを特徴とする。

【0048】上記第15の発明によれば、ダイプレクサの低域通過フィルタ及び高域通過フィルタが高周波スイッチを構成する積層体の内部に形成されることとなるので、さらに、高周波スイッチの小型化、低背化を図ることが可能となる。

【0049】第16の発明は、第15の発明において、 複数の誘電体層のうち少なくとも一つの誘電体層は、接 地電極を含み、第1のインダクタを実現する少なくとも 1本以上のストリップライン電極は、当該接地電極より も積層方向に対して上層に配置され、かつ第2のインダ

15

クタを実現する少なくとも1本以上のストリップライン 電極及び第3のインダクタを実現する少なくとも1本以 上のストリップライン電極よりも積層方向に対して上層 または同一層に配置されることを特徴とする。

【0050】上記第16の発明によれば、信号が直接通過する第1のインダクタを接地電極の上層に配置し、さらに他のストリップライン電極より上層または同一層に配置することによって、第1のインダクタと接地電極やコンデンサ電極など他の電極パターンとの間に発生する浮遊容量などを低減させることができるので、インダクタの特性変化を低減することが可能となる。その結果、所望する回路通りの高周波スイッチを提供することができる。

【0051】第17の発明は、第15または第16の発明において、複数の誘電体層のうち少なくとも一つの誘電体層は、接地電極を含み、低域通過フィルタの並列共振回路における第1のコンデンサを実現する少なくとも一つ以上のコンデンサ電極は、当該接地電極よりも積層方向に対して上層に配置され、低域通過フィルタの並列共振回路における第1のインダクタを実現する少なくとも一本以上のストリップライン電極は、当該コンデンサ電極よりも積層方向に対して上層に配置されることを特徴とする。

【0052】上記第17の発明によれば、接地電極と第1のインダクタを実現するストリップライン電極との間に第1のコンデンサを実現するコンデンサ電極を配置することによって、第1のインダクタ電極と接地電極との間に発生する浮遊容量などを低減させることができるので、所望する回路通りの高周波スイッチを提供することが可能となる。

【0053】第18の発明は、第15~第17の発明のいずれかにおいて、複数の誘電体層のうち少なくとも一つの誘電体層は、接地電極を含み、低域通過フィルタの直列共振回路における第2のコンデンサを実現する少なくとも一つ以上のコンデンサ電極は、当該接地電極よりも積層方向に対して上層に配置され、低域通過フィルタの直列共振回路における第2のインダクタを実現する少なくとも一本以上のストリップライン電極は、当該コンデンサ電極よりも積層方向に対して上層に配置されることを特徴とする。

【0054】上記第18の発明によれば、接地電極と第2のインダクタを実現するストリップライン電極との間に第2のコンデンサを実現するコンデンサ電極を配置することによって、第2のインダクタ電極と接地電極との間に発生する浮遊容量などを低減させることができるので、所望する回路通りの高周波スイッチを提供することが可能となる。

【0055】第19の発明は、第15~第18の発明のいずれかにおいて、複数の誘電体層のうち少なくとも一つの誘電体層は、接地電極を含み、高域通過フィルタの

直列共振回路における第5のコンデンサを実現する少なくとも一つ以上のコンデンサ電極は、当該接地電極よりも積層方向に対して上層に配置され、高域通過フィルタの直列共振回路における第3のインダクタを実現する少なくとも一本以上のストリップライン電極は、当該コンデンサ電極よりも積層方向に対して上層に配置されることを特徴とする。

【0056】上記第19の発明によれば、接地電極と第3のインダクタを実現するストリップライン電極との間に第5のコンデンサを実現するコンデンサ電極を配置することによって、第3のインダクタ電極と接地電極との間に発生する浮遊容量などを低減させることができるので、所望する回路通りの高周波スイッチを提供することが可能となる。

【0057】第20の発明は、第14~第19の発明のいずれかにおいて、低域送受信切り替え回路及び高域送受信切り替え回路の少なくとも一方は、ダイオードに印加する電圧に応じて送受信を切り替える回路であり、ダイオードは、積層体の上面に実装されることを特徴とする。

【0058】上記第20の発明によれば、高周波スイッチの小型化、低背化をより図ることが可能となる。

【0059】第21の発明は、第14~第20の発明のいずれかにおいて、低域送受信切り替え回路及び高域送受信切り替え回路の少なくとも一方は、GaAsスイッチであり、GaAsスイッチは、積層体の上面に実装されることを特徴とする。

【0060】上記第21の発明によれば、高周波スイッチの小型化、低背化をより図ることが可能となる。

【0061】第22の発明は、異なる複数の周波数帯の 30 電波の送受信を同時に行うためのアンテナ共用器であっ て、アンテナ側に接続された第1の端子を介して、異な る複数の周波数帯の電波を送受信して分離合成するため のダイプレクサと、ダイプレクサにおける低域の周波数 の信号を送受信するための第2の端子に接続された第1 のデュプレクサと、ダイプレクサにおける高域の周波数 の信号を送受信するための第3の端子に接続された第2 のデュプレクサとを備え、ダイプレクサは、第1の端子 と第2の端子との間に配置される低域の周波数帯の信号 のみを通過する低域通過フィルタと、第1の端子と第3 40 の端子との間に配置される高域の周波数帯の信号のみを 通過する高域通過フィルタとを含み、低域通過フィルタ は、少なくとも二つの共振回路を有し、低域通過フィル タは、二つの共振回路の働きによって通過帯域の高域側 に減衰極を少なくとも二つ形成することを特徴とする。 【0062】上記第22の発明によれば、ダイプレクサ の低域通過フィルタに含まれる二つの共振回路によって

通過帯域の高域側に減衰極が二つ形成されるので、低域

通過フィルタでは高域の周波数帯の信号を広域に渡って

十分に減衰することが可能となり、高域通過フィルタで

は高域の周波数帯の信号が広域に渡って減衰することな く通過することができるアンテナ共用器を提供すること が可能となる。

17

【0063】第23の発明は、第22の発明において、 高域通過フィルタは、一つの共振回路を含み、高域通過 フィルタは、通過帯域の低域側に減衰極を一つ形成し、 低域通過フィルタは、最も低域の周波数帯の信号のみを 通過することを特徴とする。

【0064】上記第23の発明によれば、高域通過フィ ルタに含まれる一つの共振回路によって通過帯域の低域 10 側に減衰極が一つ形成されるので、低域の周波数帯の信 号の減衰を抑えることが可能となり、低域通過フィルタ が最も低域の周波数帯の信号のみを通過することが可能 となる。これにより、たとえば、IS-95方式の周波 数帯の信号と、高域のPCS方式等の周波数帯の信号と を分離合成することができるアンテナ共用器を提供する ことが可能となる。

【0065】第24の発明は、第22または第23の発 明において、低域通過フィルタは、二つの共振回路とし て、第1の端子と第2の端子との間に配置される第1の インダクタと第1のコンデンサとからなる並列共振回路 と、第2の端子とグランドとの間に配置される第2のイ ンダクタと第2のコンデンサとからなる直列共振回路と を含む。

【0066】第25の発明は、第24の発明において、 高域通過フィルタは、第1の端子と第3の端子との間に 配置される第3のコンデンサ及び第4のコンデンサから なる直列回路と、共振回路として、第3のコンデンサと 第4のコンデンサとの接続点とグランドとの間に配置さ れる第3のインダクタと第5のコンデンサとからなる直 30 列共振回路とを含む。

【0067】第26の発明は、第25の発明において、 インダクタを実現する複数のストリップライン電極と、 コンデンサを実現する複数のコンデンサ電極と、複数の ストリップライン電極と複数のコンデンサ電極とを接続 するための複数のビアホール導体とを形成した複数の誘 電体層の積層体によって実現される。

【0068】第27の発明は、複数の周波数帯の電波の 送受信を行う無線通信機器であって、異なる複数の周波 数帯の電波の送受信を切り替えるための高周波スイッチ を備え、高周波スイッチは、アンテナ側に接続された第 1の端子を介して、異なる複数の周波数帯の電波を送受 信して分離合成するためのダイプレクサと、ダイプレク サにおける低域の周波数の信号を送受信するための第2 の端子に接続された低域送受信切り替え回路と、ダイプ レクサにおける高域の周波数の信号を送受信するための 第3の端子に接続された高域送受信切り替え回路とを含 み、ダイプレクサは、第1の端子と第2の端子との間に 配置される低域の周波数帯の信号のみを通過する低域通 過フィルタと、第1の端子と第3の端子との間に配置さ 50 れる高域の周波数帯の信号のみを通過する高域通過フィ ルタとを有し、低域通過フィルタは、少なくとも二つの 共振回路を持ち、低域通過フィルタは、二つの共振回路 の働きによって通過帯域の高域側に減衰極を少なくとも 二つ形成することを特徴とする。

【0069】上記第27の発明によれば、高域の周波数 帯の信号が広域に渡って減衰することなく通過する特性 を持つダイプレクサを利用した高周波スイッチによっ て、複数の高域の周波数帯の電波を送受信することがで きる無線通信機器を提供することが可能となる。

【0070】第28の発明は、複数の周波数帯の電波の 送受信を同時に行う無線通信機器であって、異なる複数 の周波数帯の電波を同時に送受信するためのアンテナ共 用器を備え、アンテナ共用器は、アンテナ側に接続され た第1の端子を介して、異なる複数の周波数帯の電波を 送受信して分離合成するためのダイプレクサと、ダイプ レクサにおける低域の周波数の信号を送受信するための 第2の端子に接続された第1のデュプレクサと、ダイプ レクサにおける高域の周波数の信号を送受信するための 第3の端子に接続された第2のデュプレクサとを備え、 ダイプレクサは、第1の端子と第2の端子との間に配置 される低域の周波数帯の信号のみを通過する低域通過フ イルタと、第1の端子と第3の端子との間に配置される 高域の周波数帯の信号のみを通過する高域通過フィルタ とを含み、低域通過フィルタは、少なくとも二つの共振 回路を有し、低域通過フィルタは、二つの共振回路の働 きによって通過帯域の高域側に減衰極を少なくとも二つ 形成することを特徴とする。

[0071]

40

【発明の実施の形態】(第1の実施形態)図1は、本発 明の第1の実施形態に係るダイプレクサの等価回路を示 す図である。図1において、第1の実施形態に係るダイ プレクサは、第1の端子P1と第2の端子P2との間に 接続された低域通過フィルタLPF(以下、単にLPF という) 82と、第1の端子P1と第3の端子P3との 間に接続された高域通過フィルタHPF(以下、単にH PFという)83とを含む。

【0072】LPF82において、第1の端子P1と第 2の端子P2との間に第1のインダクタL1と第1のコ ンデンサC1とが並列に接続され、第1のインダクタレ 1と第1のコンデンサC1との並列回路に第3のインダ クタL3が直列に接続され、第1のインダクタL1と第 1のコンデンサC1との並列回路と第3のインダクタL 3との接続点とグランドとの間に第2のインダクタL2 と第2のコンデンサC2とが直列に接続される。LPF 82は、低周波数帯の信号を通過する。

【0073】HPF83において、第1の端子P1と第 3の端子P3との間に第3のコンデンサC3と第4のコ ンデンサC4とが直列に接続され、第3のコンデンサC 3と第4のコンデンサC4との接続点とグランドとの間

30

40

に第4のインダクタL4と第5のコンデンサC5が直列 に接続される。HPF83は、高周波数帯の信号を通過

【0074】図2は、図1のダイプレクサにおけるLP F82の通過特性を示す図である。以下、図2を参照し ながら、LPF82の機能について説明する。LPF8 2における第1のインダクタL1と第1のコンデンサC 1との並列共振回路は、DCS方式の周波数帯の信号に 共振するように定数が定められている。並列共振回路 は、共振するとインピーダンスが非常に大きくなる。し たがって、LPF82は、DCS方式の周波数帯付近に 減衰極AP1を形成する。これにより、LPF82は、 図2に示すような透過特性を有し、EGSM方式の周波 数帯の信号を通過させるが、DCS方式の周波数帯の信 号を通過させないこととなる。

【0075】LPF82における第2のインダクタL2 と第2のコンデンサC2の直列共振回路は、UMTS方 式の周波数帯の信号に共振するように定数が定められて いる。直列回路は、共振するとインピーダンスが非常に 小さくなり零に近づく。このとき、第1の端子P1から 第2の端子P2を見たときのインピーダンスは、非常に 大きくなる。ゆえにLPF82は、UMTS方式の周波 数帯の信号を通過しない。すなわち、LPF82は、U MTS方式の周波数帯付近に減衰極AP2を形成する。 上記の結果、LPF82は、図2に示すような透過特性 を有し、EGSM方式の周波数帯の信号を通過させる が、DCSおよびUMTS方式の周波数帯の信号を通過 させないこととなる。上記で説明した第1の端子P1か ら第2の端子P2を見たときのインピーダンスは、共振 条件を当てはめて、計算すれば立証することができる。 計算方法は、公知であるので説明を省略する。

【0076】なお、図2において、EGSM方式の周波 数帯の通過特性は、従来のダイプレクサ(図21参照) と比べて良くなっており、また広帯域になっている(図 2の点線参照)。これは、高帯域側に減衰極を二つ設け たことによって、低帯域側の通過特性が持ち上げられた ことによる。

【0077】図3は、図1のダイプレクサにおけるHP F83の通過特性を示す図である。以下、図3を参照し ながら、HPF83の機能について説明する。HPF8 3における第4のインダクタL4と第5のコンデンサC 5との直列共振回路は、EGSM方式の周波数帯の信号 に共振するように定数が定められている。直列共振回路 は、共振するとインピーダンスが零に近づく。第1の端 子P1にEGSM方式の周波数帯の信号が入力した場 合、第1の端子P1から第3の端子P3を見たとき、H PF83のインピーダンスは非常に大きくなる。この事 実は、第1の端子P1と第3の端子P3との間のインピ ーダンスを計算して、共振条件を当てはめてれば、立証 することができる。計算方法は、公知であるので説明を 50 省略する。すなわち、HPF83は、EGSM方式の周 波数帯付近に減衰極AP3を形成する。上記の結果、H PF83は、図3に示すように、DCSおよびUMTS 方式の周波数帯の信号は通過させるが、EGSM方式の 周波数帯の信号は通過させないこととなる。

【0078】ここで注目すべきは、図3の点線で示し た、DCSおよびUMTS方式の周波数帯におけるHP F83の透過特性である。HPF83のDCSおよびU MTS方式の周波数帯における透過特性は、従来のHP Fと比べて(図22の点線参照)広帯域に渡っている。 すなわち、図3の点線部分から分かるように、HPF8 3は、DCS方式の周波数帯にも、良い通過特性を得る ことができる。これは、LPF82はHPF83の通過 帯域付近に二つの減衰極AP1、AP2を形成している ので、HPF83の通過帯域付近の信号は、LPF82 にほとんど流れることなく、HPF83側に供給される こととなるからである。したがって、HPF83にDC SおよびUMTS方式の周波数帯の信号が従来のHPF と比べて多く供給されることになるので、HPF83 は、広帯域に良い通過特性を得ることになる。

【0079】次に、第1の実施形態に係るダイプレクサ の動作について説明する。EGSM方式の周波数帯の信 号が第1の端子P1から入る場合、HPF83の直列共 振回路は共振状態となるため、第1の端子P1から第3 の端子P3を見たときのインピーダンスは非常に大きく なる。したがって、第1の端子P1に入ったEGSM方 式の周波数帯の信号は、HPF83と比べてインピーダ ンスが非常に小さいLPF82側へと伝達され、第2の 端子P2から取り出すことができる。

【0080】DCS方式の周波数帯の信号が第1の端子 P1から入る場合、LPF82の第1のコンデンサC1 および第1のインダクタL1で構成される並列共振回路 は共振状態となるため、インピーダンスが非常に大きく なり、その結果、第1の端子P1から第2の端子P2を 見たときのインピーダンスが非常に大きくなる。したが って、第1の端子P1から入ったDCS方式の周波数帯 の信号は、LPF82側へは伝達されずに、LPF82 と比べてインピーダンスが非常に小さいHPF83側へ と伝達され、第3の端子P3から取り出すことができ る。

【0081】UMTS方式の周波数帯の信号が第1の端 子P1から入る場合、LPF82の第2のコンデンサC 2および第2のインダクタL2で構成させる直列共振回 路は、共振状態となるため、インピーダンスが零に近づ き、第1のコンデンサC1および第1のインダクタL1 で構成される並列共振回路のインピーダンスが大きくな る。その結果、第1の端子P1から第2の端子P2を見 たときのインピーダンスは非常に大きくなる。したがっ て、第1の端子P1から入ったUMTS方式の周波数帯 の信号は、LPF82側へは伝達されずに、LPF82

と比べてインピーダンスが非常に小さいHPF83側へと伝達され、第3の端子P3から取り出すことができる。

【0082】一方、第2の端子P2からEGSM方式の送信信号が入る場合、HPF83の直列共振回路が共振状態となり、第2の端子P2から第3の端子P3を見たときインピーダンスが非常に大きくなるため、信号は、第2の端子P2から第1の端子P1へと伝達する。

【0083】第3の端子P3からDCS方式の送信信号が入る場合、LPF82の並列共振回路が共振状態となり、第3の端子P3から第2の端子P2を見たときのインピーダンスが非常に大きくなるため、信号は、第3の端子P3から第1の端子P1へと伝達する。第3の端子P3からUMTS方式の送信信号が入る場合、LPF82の直列共振回路が共振状態となり、第3の端子P3から第2の端子P2を見たときのインピーダンスが非常に大きくなるため、信号は、第3の端子P3から第1の端子P1へと伝達する。

【0084】このように第1の実施形態に係るダイプレクサによれば、第1の端子P1と第2の端子P2との間の低域通過フィルタLPF82は、高域通過フィルタHPF83の通過帯域付近に、2つの減衰極AP1、AP2を形成するので、広帯域にわたって、減衰量を十分に確保することが可能となる。従って、第1の端子P1と第3の端子P3との間の高域通過フィルタHPF83は従来の通過特性と比較して十分に広帯域な特性を形成することが可能となるので、DCSおよびUMTS方式などの高域の周波数帯の信号を広域に渡って減衰させることなく通過することができるダイプレクサを提供することが可能となる。

【0085】また、低域通過フィルタLPF82を並列 共振回路および直列共振回路の二つの共振回路で構成す ることによって、最小の回路構成で、広帯域な通過特性 を有するダイプレクサを提供することが可能となる。

【0086】また、高域通過フィルタHPF83は、一つの直列共振回路によって、低域通過フィルタLPF8 2側の通過帯域の信号を十分に減衰させる。したがって、低域の周波数帯の信号の減衰を抑えることが可能となる。

【0087】なお、第1の実施形態に係る低域通過フィルタLPF82に含まれる第3のインダクタL3は、第1の実施形態に係るダイプレクサを用いた高周波スイッチの構成に必要なものであって、ダイプレクサの構成自体には、理論上必要なものではない。

【0088】なお、第1の実施形態に係る低域通過フィルタLPF82では、第1のインダクタL1と第1のコンデンサC1との並列共振回路により、減衰極AP1を形成し、第2のインダクタL2と第2のコンデンサC2との直列共振回路により、減衰極AP2を形成する構成を例として述べたが、別に、第2のインダクタL2と第50

2のコンデンサC2との直列共振回路により減衰極AP1を形成し、第1のインダクタL1と第1のコンデンサC1との並列共振回路により減衰極AP2を形成するようにしても同様の効果が得られる。

【0089】また、第1の実施形態に係る低域通過フィルタLPF82における二つの共振回路は、二つの直列共振回路であってもよいし、二つの並列共振回路であってもよい。この場合も同様の効果が得られる。

【0090】なお、第1の実施形態に係るダイプレクサ における低域通過フィルタLPF82においては、高域 通過フィルタHPF83で取り出したい信号の周波数帯 付近に減衰極を二つ形成することとしたが、取り出した い信号の減衰量が十分であれば、別に、取り出したい信 号の周波数帯付近に減衰極を形成しなくてもよい。図4 は、低域通過フィルタの減衰極を取り出したい信号の周 波数帯以外の部分に設けた例を示す図である。図4で は、低域通過フィルタの減衰極を3.0GHz付近に設 けている。このとき、直列共振回路の第2のインダクタ L2と第2のコンデンサC2との定数を3.0GHz付 近で共振するように定めればよい。図4に示すように、 DCS方式の周波数帯付近に減衰極AP4を、3.0G Hz付近に減衰極AP5を設けることによって、UMT S方式の周波数帯の信号についても十分な減衰量を確保 することが可能となり、さらに、広域(約1.7GHz ~約3. 3GHz) に渡り、十分な減衰量を確保するこ とが可能となる。したがって、高域の周波数帯の信号を さらに広域に渡って減衰させることなく通過させるダイ プレクサを提供することが可能となる。

【0091】また、第1の実施形態では、共振回路を二つとしたが、別に、低域通過フィルタに三つ以上の共振回路を設け、減衰極を三つ以上形成し、より広域に渡って十分な減衰量を確保するようにしてもよい。

【0092】なお、第1の実施形態においては、EGSM、DCSおよびUMTSの3つのシステムの組み合わせにおいて、使用される場合を例として述べたが、他のシステムの組み合わせ、例えば、EGSM、DCSおよびPCS(PersonalCommunications Services)方式の3つのシステムのの組み合わせにおいても、同様に、LPFにDCS、PCS方式の周波数帯に減衰極を設けるようにして、3つのシステムを組み合わせた携帯電話に当該ダイプレクサを使用するようにしてもよい。

【0093】また、たとえば、EGSM、AMPS(Advanced Mobile Phone Service)、DCSおよびPCSなど4つ以上のシステムを使用する携帯電話に当該ダイプレクサを用いることができる。この場合、髙帯域側の減衰量を広域に渡って確保することができるように、LPFにおける減衰極を形成するようにすればよい。

【0094】(第2の実施形態)第2の実施形態に係る

30

23

ダイプレクサは、第1の実施形態に係るダイプレクサの等価回路を複数の誘電体層を重ね合わせた積層体で実現する。第2の実施形態においても図1を援用することとする。図5は、第2の実施形態に係るダイプレクサの具体的な構成を示す分解斜視図である。第2の実施形態に係るダイプレクサの具体的な構成を示す分解斜視図である。第2の実施形態に係るダイプレクサは、誘電体層N1~N11により構成される。図6、図7、図8および図9は、図5に示したダイプレクサの各誘電体層をより詳しく説明するために拡大した斜視図である。図5の各誘電体層の横に記した(a)~(1)は、図6~9の(a)~(1)と対応している。また、図5に示した矢印は、積層方向を意味する。

【0095】図6は、誘電体層N1、N2および誘電体層N1の裏面Nbを示す図である。図7は、誘電体層N3~N5を示す図である。図8は、誘電体層N6~N8を示す図である。図9は、誘電体層N9~N11を示す図である。誘電体層N1を最下層とし、誘電体層N11を最上層として、図6~9に示した各誘電体層が重なり合う。なお、誘電体層の積層枚数は、ダイプレクサの必要特性に応じて適宜に選択されるものとする。

【0096】まず、第2の実施形態に係るダイプレクサを実現する積層体の製造方法について説明する。誘電体層としては、フォルステライト系あるいはアルミナを主成分とする化合物などのセラミック粉体に低融点ガラスフリットを混合した、いわゆるガラスセラミック基板を用いることとする。まず、当該セラミック粉体に有機バインダおよび有機溶媒を混合して得られたスラリーを成形したグリーンシートに、多層配線間を電気的に接続するための複数のビアホールをメカニカルパンチングまたはレーザ加工により穿孔する。

【0097】次に、グリーンシート上に、銀(あるいは金や銅)の粉体を主成分とする導電性ペーストを印刷し、配線パターンを形成するとともに、各グリーンシートの配線パターンを層間接続するためのビアホール内に同じく導電性ペーストを印刷充填し、ストリップラインおよびコンデンサ電極を形成する。

【0098】次に、上記のようにして得られた十一層のグリーンシートを正確に位置合わせして、誘電体層N1から誘電体層N11を順に積層し、一定の条件下において加温および加圧することによって、一体化された積層体を得る。この積層体を乾燥後、酸化雰囲気中の焼成炉にて400~500度で焼成してグリーンシート内の有機バインダをバーンアウトする。次に、導電体の主成分として金や銀の粉体を用いた場合は通常の空気中で、銅の粉体を用いた場合には不活性ガスあるいは還元性雰囲気中で、この積層体を約850~950度の温度範囲において焼成することにより、最終的な積層体を得る。

【0099】次に、 $図6\sim9$ を参照しながら、各誘電体層の配線パターンについて説明する。図6において、誘電体層N1の裏面Nbには、当該積層体をメイン基板に

表面実装するための複数の電極T1が形成されている。なお、電極T1の形成は、先述したような導電性ペーストを印刷、パターニングすることにより行われる。一方、誘電体層N1の上面には、接地電極G1が印刷により形成されている。また、誘電体層N1には、接地電極G1と接続しているビアホールV1~Vnが穿孔されている。以下、誘電体層N1~N11において、お互いに接続するビアホールについては、同一の符号を付すことにする。誘電体層N2の上面には、コンデンサ電極Cp1が印刷により形成され、ビアホールV2が穿孔されている。

【0100】図7において、誘電体層N3の上面には、ストリップライン電極Lp1が形成されており、ストリップライン電極Lp1の一端には、ビアホールV3が穿孔されている。ビアホールV3は、コンデンサ電極Cp1と接続する位置に穿孔されている。また、誘電体層N3の上面には、ストリップライン電極Lp2が形成されており、ストリップライン電極Lp2の一端は、ビアホールVmとなっている。

【0101】誘電体層N4の上面には、ストリップライン電極Lp3が形成されている。ストリップライン電極Lp3の一端にはビアホールV41が、他端側にはビアホールV42が穿孔されている。ビアホールV41は、ストリップライン電極Lp1におけるビアホールV3と反対側の一端に接続される。ビアホールV42は、ストリップライン電極Lp2におけるビアホールVmと反対側の一端に接続される。誘電体層N5の上面には、接地電極G2が形成されいる。接地電極G2は、ビアホール Va~e、およびVkに接続する。

【0102】図8において、誘電体層N6の上面には、コンデンサ電極Cp2が形成されている。誘電体層N7の上面には、コンデンサ電極Cp3が形成されており、ビアホールV7が穿孔されている。ビアホールV7は、誘電体層N6のコンデンサ電極Cp2と接続する。誘電体層N8の上面には、コンデンサ電極Cp4およびコンデンサ電極Cp5が形成されており、ビアホールV8が穿孔されている。ビアホールV8は、誘電体層N7のコンデンサ電極Cp3と接続する。コンデンサ電極Cp5の一端には、ビアホールV42が穿孔されている。

【0103】図9において、誘電体層N9の上面には、コンデンサ電極Cp6と、コンデンサ電極Cp7と、電極T2とが形成されている。また、誘電体層N9には、ビアホールV9が穿孔されている。ビアホールV9は、誘電体層N8のコンデンサ電極Cp4に接続する。コンデンサ電極Cp6の一端には、ビアホールV1が穿孔されている。コンデンサ電極Cp7の一端には、ビアホールV8が穿孔されている。コンデンサ電極Cp7は、ビアホールV8によって、誘電体層N7のコンデンサ電極Cp3と接続する。電極T2の一端には、ビアホールV

42が穿孔されている。ビアホールV42は、誘電体層N8のコンデンサ電極Cp5と接続する。また、電極T2の一端には、ビアホールVnが穿孔されている。ビアホールVnは、電極T1と接続する。

【0104】誘電体層N10の上面には、渦巻状のストリップライン電極Lp4と、ストリップライン電極Lp5とが形成されている。ストリップライン電極Lp4の一端には、ビアホールV9が穿孔されている。ビアホールV9は、誘電体層N8のコンデンサ電極Cp4と接続する。また、ストリップライン電極Lp4の他端には、ビアホールV7が穿孔されている。ビアホールV7は、誘電体層N6のコンデンサ電極Cp2と接続する。

【0105】ストリップライン電極Lp5の一端には、ビアホールV8が穿孔されている。ビアホールV8は、誘電体層N9のコンデンサ電極Cp7と接続する。また、ストリップライン電極Lp5の他端には、ビアホールV42が穿孔されている。ビアホールV42は、誘電体層N9の電極T2と接続する。

【0106】以上の構成により、LPF82のインダクタL1は、ストリップライン電極Lp5により実現され 20る。コンデンサC1は、コンデンサ電極Cp5とCp7とにより実現される。インダクタL2は、ストリップライン電極Lp1およびLp3により実現される。コンデンサC2は、コンデンサ電極Cp1と接地電極G1とにより実現される。インダクタL3は、ストリップ電極Lp2により実現される。

【0107】高域通過フィルタHPF83のコンデンサ C3は、コンデンサ電極Cp3とCp4とにより実現される。コンデンサC4は、コンデンサ電極Cp4とCp6とにより実現される。インダクタL4は、ストリップ 30 ライン電極Lp4により実現される。コンデンサC5は、コンデンサ電極Cp2と接地電極G2とにより実現される。

【0108】このように、第2の実施形態に係るダイプレクサによれば、誘電体を用いてダイプレクサを積層体として実現することにより、デバイスの小型化、低背化に寄与することが可能となる。

【0109】次に、上記で説明した配線パターンの第1の特徴について説明する。接地電極G1が形成されている誘電体層N1より上層に配置されている誘電体層N2にコンデンサ電極Cp1が形成され、さらに上層に配置されている誘電体層N3、N4にストリップライン電極Lp1、Lp3が形成され、LPF82の直列共振回路を構成する。

【0110】通常、ストリップライン電極などのパターンとグランド電極などが重なり合うことによって望まざる浮遊容量が発生する。浮遊容量の発生によって、積層した回路が所望の回路図と異なる回路となってしまう。これにより、不必要な共振が発生するため、特性が崩れることとなる。しかし、上記のようにグランド電極とス 50

トリップライン電極との間にコンデンサ電極を配置することにより、ストリップライン電極とグランド電極との重なり部分を減らすことが出来るので、第2のインダクタL2を構成するストリップライン電極Lp1、Lp3と接地電極G1との間に発生する浮遊容量を低減することができる。従って、当該積層体の回路は、所望の回路は、所望の回路により、急峻な減衰極を理想的に形成することが可能となり、高域通過フィルタHPF83の通過帯域の広帯域化及び低損失化が可能となる。上記のことは、LPF82の並列共振回路における第1のインダクタL1と第1のコンデンサC1と、グランド電極との関係についても言えることである。

【0111】さらに、接地電極G2が形成されている誘電体層N5より上層に配置されている誘電体層N6にコンデンサ電極Cp2が形成され、さらに上層に配置されている誘電体層N10にストリップライン電極Lp4が形成され、HPF83の直列共振回路を構成する。このように配置することにより、第4のインダクタL4を構成するストリップライン電極Lp4と接地電極G2との間に発生する浮遊容量などを低減することができる。従って、第4のインダクタL4と第5のコンデンサC5との直列共振回路により、急峻な減衰極を形成することが可能となるため、低域通過フィルタLPF82の通過帯域の低損失化が可能となる。

【0112】すなわち、減衰極を形成するインダクタとコンデンサとの共振回路において、インダクタを構成するストリップライン電極を、コンデンサを形成する接地電極およびコンデンサ電極の上層に配置することにより、より急峻な減衰極の形成が可能となり、広帯域且つ低損失な低域通過フィルタ及び高域通過フィルタの提供が可能となる。

【0113】次に、上記で説明した配線パターンの第2の特徴について説明する。LPF82におけるインダクタL1を形成するストリップライン電極Lp5は、接地電極G1よりも上層に配置され、さらに、LPF82におけるインダクタL2を形成するストリップライン電極Lp4よりも積層上p1、Lp3、およびHPF83におけるインダクタL4を形成するストリップライン電極Lp4よりも積層方向に対して、上層または同一層に配置される。このように配置することにより、LPF82におけるインダクタL1を形成するストリップライン電極と接地電極や他の電極パターンとの間に発生する浮遊容量を低減することが可能となる。したがって、信号が直接通過するLPF82におけるインダクタL1の特性変化を低減することが可能となり、所望する回路通りのダイプレクサが提供されることとなる。

【0114】すなわち、LPFにおいて信号が直接通過するインダクタを形成するストリップライン電極を、接地電極よりも上層に配置し、さらに、LPFにおける他

のインダクタを形成するストリップライン電極、および HPFにおけるインダクタを形成するストリップライン 電極に対して上層または同一層に設けることによって、 LPFにおいて信号が直接通過するインダクタを形成す るストリップライン電極と接地電極や他の電極パターン との間に発生する浮遊容量を低減することが可能とな る。したがって、信号が直接通過するインダクタの特性 変化を低減することが可能となり、所望する回路通りの ダイプレクサが提供されることとなる。

27

【0115】また、第2の実施形態に係るダイプレクサの入出力端子及び接地電極はすべてビアホールを介して誘電体層N1の裏面に集結されているため、電子機器のメイン基板に実装される際の実装面積を小さく押さえることが可能となる。

【0116】なお、図5に示すような電極の配線は、一例であるので、このような配線でなくともよい。たとえば、ここでは、LPF82のインダクタL1は、一本のストリップライン電極Lp5によって実現されているが、複数のストリップライン電極によって実現される場合もある。その他のインダクタについても同様、少なくとも一本のストリップライン電極によって実現される。いずれにせよ、上記に示した特徴を有する配線であれば、本発明の効果を有することとなる。

【0117】(第3の実施形態)第3の実施形態に係る 高周波スイッチは、第1の実施形態に係るダイプレクサ を利用した高周波スイッチであり、複数の誘電体層を重 ね合わせた積層体で実現する。第3の実施形態において も図1を援用することとし、同一の機能を有する部分に ついては、同一の符号を付し、説明を簡単にする。

【0118】図10は、第3の実施形態に係る高周波スイッチの機能的な構成を示すブロック図である。図10において、高周波スイッチ80は、第1の周波数帯(EGSM)、第2の周波数帯(DCS)および第3の周波数帯(UMTS)のそれぞれにおける送信周波数帯及び受信周波数帯を通過させるフィルタ機能を有したトリプルバンドの高周波スイッチであって、スイッチ回路(送受信切換回路)84と、スイッチ回路85と、ダイプレクサ81と、帯域通過フィルタ86、89と、低域通過フィルタ87、88と、デュプレクサ90とを備える。

【0119】EGSM方式の信号の受信端子Rx1には、帯域通過フィルタ86が接続されている。EGSM方式の信号の送信端子Tx1には、低域通過フィルタ87が接続されている。DCS方式の信号の送信端子Tx2には、低域通過フィルタ88が接続されている。DCS方式の信号の受信端子Rx2には、帯域通過フィルタ89が接続されている。UMTS方式の信号の送信端子Tx3と受信端子Rx3とには、デュプレクサ90が接続されている。

【0120】帯域通過フィルタ86とスイッチ回路84 受信するように内部端子96にスイッチングする。まとは、内部端子93によって接続されている。また、低 50 た、スイッチ回路85は、コントロール端子Vc2およ

域通過フィルタ87とスイッチ回路84とは、内部端子94によって接続されている。スイッチ回路84は、内部端子91によって、ダイプレクサ81のLPF82と接続されている。

【0121】低域通過フィルタ88とスイッチ回路85とは、内部端子95によって接続されている。また、帯域通過フィルタ89とスイッチ回路85とは、内部端子96によって接続されている。また、デュプレクサ90とスイッチ回路85とは、内部端子97によって接続されている。スイッチ回路85は、内部端子92によって、ダイプレクサ81のHPF83と接続されている。ダイプレクサ81には、アンテナANTが接続されている。

【0122】帯域通過フィルタ86は、EGSM方式の受信信号に対応する周波数帯の信号のみを通過するSAWフィルタ等を用いたバンドパスフィルタである。低域通過フィルタ87は、EGSM方式の送信信号に対応する周波数帯以下の周波数帯の信号を通過するフィルタであり、増幅による高調波歪みの低減するために設けられる。帯域通過フィルタ89は、DCS方式の受信信号に対応する周波数帯の信号のみを通過するSAWフィルタ等を用いたバンドパスフィルタである。低域通過フィルタ88は、DCS方式の送信信号に対応する周波数帯以下の周波数帯の信号を通過するフィルタで、増幅による高調波歪みの低減するために設けられる。

【0123】デュプレクサ90は、送信周波数帯と受信周波数帯とを切り分ける誘電体などで構成されており、たとえば、送信端子Tx3に接続されたバンドパスフィルタと、受信端子Rx3に接続されたバンドパスフィルタとを備えている。UMTS方式においては、送受信が完全に同時に行われるので、送信信号から受信信号を保護するために、デュプレクサ90を用いる。

【0124】スイッチ回路84は、EGSM方式の周波数帯の送信信号を内部端子93に、受信信号を内部端子94に切り換える。スイッチ回路84は、コントロール端子Vc1への印加電圧(3V)に応じて内部端子のスイッチングを行う。電圧が印加されると、スイッチ回路84は、信号を送信できるよう内部端子94にスイッチングする。

【0125】スイッチ回路85は、DCS方式の周波数帯の送信信号を内部端子95に、受信信号を内部端子96に、UMTS方式の周波数帯の信号を内部端子97に切り替える。スイッチ回路85は、コントロール端子Vc2およびVc3への印加電圧(3V)に応じてスイッチングを行う。スイッチ回路85は、コントロール端子Vc2に電圧が印加されると、DCS方式の信号を送信するよう内部端子95にスイッチングし、コントロール端子Vc3に電圧が印加されると、DCS方式の信号を受信するように内部端子96にスイッチングする。またスイッチ回路85はコントロール端子Vc2およ

30

40

びVc3に電圧が印加されない場合、UMTS方式の信 号を送受信するように内部端子97にスイッチングす

【0126】次に、上記のように構成された高周波スイ ッチ80の動作について説明する。なお、ダイプレクサ 81における動作は、第1の実施形態において詳しく説 明したので省略する。EGSM方式の信号を送信する場 合、スイッチ回路84のコントロール端子Vc1に3V を印加し、スイッチ回路85のコントロール端子Vc2 およびVc3に0Vを印加する。これによって、内部端 子91と内部端子94とを接続状態にする。EGSM方 式の送信信号は、送信端子Tx1から入力され、低域通 過フィルタ87で、高調波歪みを低減させられ、スイッ チ回路84を介して、ダイプレクサ81のLPF82に 伝達され、LPF82を通過して、アンテナANTから 出力される。

【0127】EGSM方式の信号を受信する場合、スイ ッチ回路84および85のコントロール端子Vc1~V c 3に0Vを印加し、内部端子91と内部端子93とを 接続状態にする。EGSM方式の受信信号は、アンテナ ANTからダイプレクサ81に供給される。ダイプレク サ81に供給されたEGSM方式の受信信号は、HPF 83に通過することなくLPF82を通過し、スイッチ 回路84を介して、帯域通過フィルタ86に伝達され る。帯域通過フィルタ86は、受信信号のうちで必要な 帯域のみを通過し、受信端子Rx2に送る。このように して、EGSM方式の受信信号は、受信端子Rx2から 取り出される。

【0128】DCS方式の信号を送信する場合、スイッ チ回路85のコントロール端子Vc2に3Vを印加し、 スイッチ回路84のコントロール端子Vc1及びスイッ チ回路85のコントロール端子Vc3に0Vを印加す る。これによって、内部端子92と内部端子95とが接 続状態となる。DCS方式の送信信号は、送信端子Tx 2から入力され、低域通過フィルタ88で、高調波歪み を低減させられ、スイッチ回路85を介して、ダイプレ クサ81のHPF83に伝達され、HPF83を通過し て、アンテナANTから出力される。

【0129】DCS方式の信号を受信する場合、スイッ チ回路85のコントロール端子Vc3に3Vを印加し、 スイッチ回路84のコントロール端子Vc1及びスイッ チ回路85のコントロール端子Vc2に0Vを印加す る。これによって、内部端子92と内部端子96とが接 続状態となる。DCS方式の受信信号は、アンテナから ダイプレクサ81に供給される。ダイプレクサ81に供 給されたDCS方式の受信信号は、LPF82を通過す ることなくHPF83を通過し、スイッチ回路85を介 して、帯域通過フィルタ89に伝達される。帯域通過フ ィルタ89は、受信信号のうちで必要な帯域のみを通過 し、受信端子Rx2に送る。このようにして、DCS方 50 式の受信信号は、受信端子Rx2から取り出される。

【0130】UMTS方式の信号を送信する場合、スイ ッチ回路84およびスイッチ回路85のコントロール端 子Vc1~Vc3に0Vを印加する。これによって、内 部端子92と内部端子97とが接続状態となる。UMT S方式の送信信号は、送信端子Tx3から入力され、デ ュプレクサ90、スイッチ回路85、ダイプレクサ81 を介して、アンテナANTから出力される。UMTS方 式の信号を受信する場合、上記と同様の接続状態にす る。UMTS方式の受信信号は、アンテナANTからダ イプレクサ81、スイッチ回路85、デュプレクサ90 を介して、受信端子Rx3に送られ、取り出される。

【0131】図11は、第3の実施形態に係る高周波ス イッチ80の一部の回路を示す図である。図11におい て、ダイオードを用いた場合の髙周波スイッチ80の回 路が示されている。図11においては、帯域通過フィル タ86、帯域通過フィルタ89およびデュプレクサ90 の回路を省略しているが、それぞれの一般的な回路を送 信端子Rx1、Rx2およびTx3&Rx3の先に設け ればよい。ダイプレクサ81の回路は、第1の実施形態 の場合と同様である。

【0132】送信端子Tx1は、送信を行う際に順方向 となるダイオードD2を介してアンテナ側に接続され る。低域通過フィルタ87は送信端子Tx1とダイオー ドD2のアノードとの間に挿入される。また、受信端子 Rx1は、アンテナ側に接続されるとともに順方向のダ イオードD4を介して接地される。また、コントロール 端子Vc1は、印加電圧の制御部(図示せず)に接続さ れている。

【0133】送信端子Tx2は、送信を行う際に順方向 となるダイオードD3を介してアンテナ側に接続され る。低域通過フィルタ88は送信端子Tx2とダイオー ドD3のアノードとの間に挿入される。また、受信端子 Rx2は、送信端子Tx2を利用して送信を行う際に逆 方向(オフ状態)となるダイオードD1を介してアンテ ナ側に接続されている。

【0134】送信端子Tx3と受信端子Rx3は、アン テナ側に接続されるとともに順方向のダイオードD5を 介して接地される。また、コントロール端子Vc2、V c 3は、印加電圧の制御部(図示せず)に接続されてい

【0135】以下、図11で示す高周波スイッチの一部 の回路の動作について説明する。なお、低域通過フィル タ87、88の回路およびスイッチ回路84、85の回 路は、公知の回路であるので、その動作の説明は簡単に 行うこととする。また、ダイプレクサ81の回路におけ る動作の説明は、第1の実施形態の場合と同様であるの で省略する。

【0136】送信端子Tx1に入力したEGSM方式の 送信信号は、低域通過フィルタ87に供給される。当該

信号の高調波に対して、低域通過フィルタの並列共振回路は共振し、当該信号の基本波のみがスイッチ回路84に伝達する。EGSM方式の信号を送信する場合、コントロール端子Vc1には、3Vの電圧が印加されているので、ダイオードD2がオン状態になる。したがって、当該送信信号は、ダイオードD2を通過する。EGSM方式の送信周波数帯に対して、当該周波数の4分の1波長50 Ω 線路841の働きによって、ダイオードD2のカソード側のインピーダンスは非常に大きくなるので、当該信号は、ダイプレクサ81に送られることとなる。その後、当該信号は、ダイプレクサ81を介して、アンテナANTから出力される。

31

【0137】EGSM方式の受信信号は、アンテナAN Tからダイプレクサ81を介して、スイッチ回路84に伝達する。EGSM方式の信号を受信する場合、コントロール端子Vc1には、0Vの電圧が印加されているので、ダイオードD2は、その端子間容量によってコンデンサとして働き、インダクタL84とで並列共振回路を構成する。当該並列共振回路は、EGSM方式の受信周波数帯で共振するように定数が設定されている。当該並 20列共振回路が共振するとインピーダンスが非常に大きくなるので、当該受信信号は、受信端子Rx1に伝達されることとなる。

【0138】DCS方式の信号を送信端子Tx2から送信する場合、コントロール端子Vc2に3Vの電圧が印加される。ダイオードD3の周辺の回路構成はダイオードD2の周辺の回路構成と同様であるので、EGSM方式の信号を送信端子Tx1から送信する場合と同様の動作によって、ダイプレクサ81に送信信号が送られる。

【0139】DCS方式の信号を受信する場合、コントロール端子Vc3に3Vを印加し、コントロール端子Vc2に0Vを印加する。これにより、ダイオードD1はオン状態となり、ダイオードD3の端子間容量で構成される並列共振回路のインピーダンスが非常に大きくなる。また、DCS方式の送信周波数帯の4分の1波長50 Ω 線路851の働きによって、ダイオードD5のアノード側のインピーダンスも非常に大きくなる。これにより、DCS方式の受信信号は、受信端子Rx2に伝達されることとなる。

【0140】UMTS方式の信号を送信端末Tx3から送信する場合、コントロール端子Vc2、Vc3に0Vの電圧が印加されるので、ダイオードD1およびD3は、その端子間容量によって並列共振回路を構成する。これら二つの並列共振回路のインピーダンスが非常に大きくなり、UMTS方式の送信信号が、ダイプレクサ81に伝達され、アンテナANTから出力されることとなる。UMTS方式の受信信号についても、同様にスイッチ回路85は動作する。

【0141】図12は、図11で示した高周波スイッチの回路を複数の誘電体層を重ね合わせて実現した積層体 50

の分解斜視図である。なお、図12において、図11に示した部品のうちで、送信端子Tx1、Tx2、Tx3 & Rx3 および受信端子Rx1、Rx2の入出力端に示したコンデンサ、コントロール端子Vc1 \sim Vc3 とグランドとの間に挿入されたコンデンサは、誘電体層の配線パターンおよび積層体の上面の部品の中には含まれていない。

【0142】図12に示したように、当該高周波スイッチの積層体は、十五層の誘電体層N $101\sim$ N115により構成される。図13、図14、図15および図16は、図12に示した高周波スイッチの各誘電体層を拡大した斜視図である。図12の各誘電体層の横に記した(a) \sim (p)は、図 $13\sim$ 16の(a) \sim (p)と対応している。また、図12に示した矢印は、積層方向を意味する。

【0143】図13は、誘電体層N101~N103お よび誘電体層N101の裏面N101bを示す図であ る。図14は、誘電体層N104~N107を示す図で ある。図15は、誘電体層N108~N111を示す図 である。図16は、誘電体層N112~N115を示す 図である。誘電体層N101を最下層とし、誘電体層N 115を最上層として、図13~16に示した各誘電体 層が重なり合う。図16において、高周波スイッチの積 層体における最上位の誘電体層N115の上面には、5 個のダイオードD1~D5、および他の誘電体層の表面 にパターンしなかったコンデンサや抵抗などの複数のチ ップ部品SD1が、当該積層体の内部回路と電気的に接 続されている。なお、誘電体層の積層枚数は、高周波ス イッチの必要特性に応じて適宜に選択されるものとす る。なお、誘電体層および積層体の形成手法に関しては 第2の実施形態の場合と同様であるので、説明を割愛す

【0144】図13において、誘電体層N101の裏面N101bには、高周波スイッチを電子機器のメイン基板に表面実装するための複数の電極T102が形成されている。なお、これらの電極T102の形成は、第2の実施形態で示したように導電性ペーストを印刷、パターニングすることにより行われる。

【0145】以下、図13~16で示したような多層構造を有する高周波スイッチの配線パターンの積層構造についてダイプレクサ81の部分を中心に説明する。誘電体層N101、N107には、グランド電極G101、G102が印刷などにより形成されている(図13、図14参照)。誘電体層N102、N108~N111の上面には、コンデンサ電極Cp11~Cp17が印刷などにより形成されている(図13、図15参照)。また、誘電体層N105、N106、N113にはストリップライン電極Lp11~Lp15が印刷などにより形成されている(図14、図16参照)。

【0146】また、誘電体層N102~N113には、

ストリップライン電極Lp11~Lp15及びコンデンサ電極Cp11~Cp17を図11で示す回路図と対応するように電気的に接続するための複数のビアホールが適宜、設けられている。たとえば、ストリップライン電極Lp15は、ビアホールV11によって、コンデンサ電極Cp17と接続する。また、ストリップライン電極Lp14は、ビアホールV12によって、コンデンサ電極Cp12と接続する。

【0147】以上の構成により、ストリップライン電極 Lp11~Lp13およびLp15がLPF82のイン 10 ダクタを、コンデンサ電極Cp11、Cp15、Cp1 7および接地電極G101がLPF82のコンデンサを 形成し、その結果、LPF82が形成される。

【0148】また、ストリップライン電極Lp14がHPF83のインダクタを、コンデンサ電極 $Cp12\sim \dot{C}$ p14、Cp16及び接地電極G102がHPF83のコンデンサを形成し、その結果、HPF83が形成される。

【0149】LPF82およびHPF83を構成するためのストリップライン電極、コンデンサ電極および接地20電極は、第2の実施形態で説明したのと同様の特徴を有するように配置される。これにより、ダイプレクサ81は、第2の実施形態と同様の効果を得ることができる。・

【0150】また、同様に、低域通過フィルタ87および88も、当該積層体を構成する誘電体層にパターニングされたストリップライン電極とコンデンサ電極と接地電極との組み合わせによって形成される。

【0151】さらに、スイッチ回路84および85のインダクタおよびコンデンサも、誘電体層にパターニングされたストリップライン電極とコンデンサ電極と接地電 30極と組み合わせによって形成される。また、上記のように形成されるスイッチ回路84および85のインダクタおよびコンデンサと、当該積層体の上面に実装されたダイオードD1~D5および複数のチップ部品SD1とを複数の電極T101を示している)を介して電気的に接続することによって、スイッチ回路84および85が実現される。さらに、当該積層体の内部において、ダイプレクサ81は内部端子91、92を介して、スイッチ回路84、85に接続される。 40

【0152】また、図10で示した帯域通過フィルタ86、89及びデュプレクサ90は、電子機器のメイン基板上において、当該積層体によって構成されたスイッチ回路の受信端子Rx1、Rx2及び送受信端子Tx3&Rx3と電気的に接続されることとなる。

【0153】このように、第3の実施形態によれば、誘電体を用いて高周波スイッチを積層体として実現することにより、デバイスの小型化、低背化に寄与することが可能となる。また、第1の実施形態のダイプレクサを用いることにより、高域の周波数帯の信号が広域に渡って50

減衰することなく通過することができる高周波スイッチ を提供することが可能となる。

【0154】また、高周波スイッチの入出力端子及び接地電極はすべてビアホールを介して積層体の裏面に集結されているため、電子機器のメイン基板に実装される際の実装面積を小さく押さえることが可能になる。

【0155】なお、上記第3の実施形態では、EGS M、DCS、UMTS方式の3つのシステムの組み合わせにおいて、使用される場合を例として述べたが、他のシステムの組み合わせ、例えば、EGSM、DCS、PCS方式などの組み合わせでも同様に使用することができる。

【0156】なお、上記第3の実施形態では、3つの通信システムを使用するトリプルバンドの高周波スイッチを例として述べたが、スイッチ回路の構成を変えることにより、2つの通信システム(例えば、EGSMとUMTS)を使用するデュアルバンドの高周波スイッチあるいは4つ以上のシステム(例えば、EGSM、AMPS、DCS、PCS)を使用する高周波スイッチの場合でも同様の効果が得られる。

【0157】なお、上記第3の実施形態では、帯域通過フィルタ及びデュプレクサを電子機器のメイン基板上に設け、積層体に構成されたスイッチ回路の受信端子R x1、R x2及び送受信端子T x3&R x3と電気的に接続することとしたが、別に、帯域通過フィルタを積層体の上面に実装してもよい。図17は、帯域通過フィルタを積層体の上面に実装したときを示す図である。図17に示すように、帯域通過フィルタとして用いられるSAWフィルタSF1およびSF2を、ダイオードD11~D15及びコンデンサや抵抗などのチップ部品SD11~SD17と同様に積層体11の上面に実装するようにしても、同様の効果が得られる。

【0158】また、デュプレクサを積層体の上面に実装するようにしても、帯域通過フィルタおよびデュプレクサを共に積層体に実装するようにしても、同様の効果が得られる。

【0159】なお、上記第3の実施形態では、スイッチ回路として、ダイオードを用いることとしたが、別に、片方のスイッチ回路のみ半導体としてガリウム砒素を用いたGaAs(ガリウム砒素)スイッチを用いてもよいし、また、両方のスイッチ回路としてGaAsスイッチを用いても、同様の効果が得られる。

【0160】(第4の実施形態)第4の実施形態では、第1の実施形態に係るダイプレクサを利用したアンテナ 共用器について説明する。第4の実施形態においても図 1を援用することとし、同一の機能を有する部分につい ては、同一の符号を付し、説明を省略する。

【0161】図18は、第4の実施形態に係るアンテナ 共用器100の構成を示すブロック図である。図18に おいて、アンテナ共用器100は、ダイプレクサ81

と、第1のデュプレクサ101と、第2のデュプレクサ102とを備える。アンテナ共用器100は、アンテナANTを介して、IS-95方式およびPCS方式の信号を送受信する。

【0162】IS-95方式では、送信帯域として824~849MHz、受信帯域として869~894MHzを利用する。PCS方式では、送信帯域として1920~1980MHz、受信帯域として2110~2170MHzを利用する。ダイプレクサ81におけるLPF82では、PCS方式が利用する受信帯域2110~2170MHzで一つの減衰極を構成し、送信帯域1920~1980MHzでもう一つの減衰極を構成するように、インダクタL1、L2およびコンデンサC1、C2の値が設定されている。減衰極を直列共振回路および並列共振回路のどちら側で形成するようにするかは、自由である。一方、ダイプレクサ81におけるHPF83では、IS-95方式が利用する帯域824~894MHzで一つの減衰極を構成するように、インダクタL4およびコンデンサC5の値が設定されている。

【0163】第1のデュプレクサ101は、IS-95方式における送信周波数帯域と受信周波数帯域とを切り分ける誘電体などで構成されており、たとえば、送信端子Tx4に接続されたバンドパスフィルタと、受信端子Rx4に接続されたバンドパスフィルタとを備える。IS-95方式においては、送受信が同時に行われるので、送信信号から受信信号を保護するために、第1のデュプレクサ101が用いられる。

【0164】第2のデュプレクサ102は、PCS方式における送信周波数帯域と受信周波数帯域とを切り分ける誘電体などで構成されており、たとえば、送信端子Tx5に接続されたバンドパスフィルタと、受信端子Rx5に接続されたバンドパスフィルタとを備える。PCS方式においても、送受信が同時に行われるので、送信信号から受信信号を保護するために、第2のデュプレクサ102が用いられる。

【0165】次に、図18を参照しながら、アンテナ共用器100の動作について説明する。アンテナ共用器100にIS-95方式の受信信号が入力された場合、HPF83のインピーダンスが高くなるので、当該受信信号は、LPF82側へ伝達され、第1のデュプレクサ101は、受信信号を送信端子Tx4に伝達することなく、受信端子Tx4を介して、受信端子Tx4を介して、第1のデュプレクサ101に入力される。第1のデュプレクサ101に入力される。第1のデュプレクサ101に入力される。第1のデュプレクサ101は、入力された信号を受信端子Tx4を介して、第1のデュプレクサ101は、入力された信号を受信端子Tx4を介して、第1のデュプレクサ101は、入力された信号を受信端子Tx4を介して、カウンサ101は、入力された信号を受信端子Tx4を介して、カウンカンカンカンスととなる。IS-95方式の送信信号は、アンテナANTから出力されることとなる。

【0166】アンテナ共用器100にPCS方式の受信信号が入力された場合、LPF82は高インピーダンスとなるので、当該受信信号は、HPF83側に伝達され、第2のデュプレクサ102に入力される。第2のデュプレクサ102に入力される。第2のデュプレクサ102に入力する。一方、PCS方式の信号を送信する場合、当該信号は、送信端子Tx5を介して、第2のデュプレクサ102に入力される。第2のデュプレクサ102は、入力された信号を受信端子Rx5に伝達することなく、HPF83に入力する。PCS方式の送信信号に対して、LPF82は、高インピーダンスとなるので、PCS方式の送信信号は、アンテナANTから出力されることとなる。

【0167】このように、第4の実施形態に係るアンテナ共用器を用いれば、IS-95方式およびPCS方式を用いる通信方式においても、高域の周波数帯の信号を広域に渡って減衰させることなく通過させることが可能となる。PCS方式では、送信帯域と受信帯域とがかなり離れているので、本発明のようにLPFで二つの減衰極を構成するダイプレクサを用いることは、極めて有効である。

【0168】なお、上記第3および第4の実施形態で説明した高周波スイッチまたはアンテナ共用器を利用して、複数の周波数帯を利用する通信方式の信号を送受信することができる無線通信機器を提供することが可能である。

【図面の簡単な説明】

【図1】本発明の第1の実施形態に係るダイプレクサの 等価回路を示す図である。

【図2】図1のダイプレクサにおけるLPF82の通過 特性を示す図である。

【図3】図1のダイプレクサにおけるHPF83の通過 特性を示す図である。

【図4】低域通過フィルタの減衰極を取り出したい信号の周波数帯以外の部分に設けた例を示す図である。

【図5】第2の実施形態に係るダイプレクサの具体的な構成を示す分解斜視図である。

【図6】誘電体層N1、N2および誘電体層N1の裏面 Nbを示す図である。

【図7】誘電体層N3~N5を示す図である。

【図8】誘電体層N6~N8を示す図である。

【図9】誘電体層N9~N11を示す図である。

【図10】第3の実施形態に係る高周波スイッチの機能的な構成を示すブロック図である。

【図11】第3の実施形態に係る高周波スイッチ80の 一部の回路を示す図である。

【図12】図11で示した高周波スイッチの回路を複数 の誘電体層を重ね合わせて実現した積層体の分解斜視図 である。

50 【図13】誘電体層N101~N103および誘電体層

N101の裏面N101bを示す図である。

【図14】誘電体層N104~N107を示す図であ

37

【図15】誘電体層N108~N111を示す図であ

【図16】誘電体層N112~N115を示す図であ る。

【図17】帯域通過フィルタを積層体の上面に実装した ときを示す図である。

【図18】第4の実施形態に係るアンテナ共用器100 10 Rx1~Rx5 受信端子 の構成を示すブロック図である。

【図19】EGSM方式、DCS方式およびUMTS方 式で用いられる周波数帯を示した図である。

【図20】従来のダイプレクサの等価回路を示す図であ る。

【図21】LPF10の通過特性を示す図である。

【図22】HPF20の通過特性を示す図である。

【符号の説明】

80 高周波スイッチ

81 ダイプレクサ

82,87,88 低域通過フィルタ

83 高域通過フィルタ

84,85 スイッチ回路

86,89 帯域通過フィルタ

90 デュプレクサ

*100 アンテナ共用器

101 第1のデュプレクサ

102 第2のデュプレクサ

91~97 内部端子

C1~C5 コンデンサ

L1~L4, L84 インダクタ

P1~P3 端子

Vc1~Vc3 コントロール端子

Tx1~Tx5 送信端子

D1~D5, D11~D15 ダイオード

841,851 4分の1波長50Ω線路

N1~N11, N101~N115 誘電体層

Nb 誘電体層N1の裏面

N101b 誘電体層N101の裏面

G1, G2, G101, G102 グランド電極

Cp1~Cp7, Cp11~Cp17 コンデンサ電極

Lp1~Lp5, Lp11~Lp15 ストリップライ

20 T1, T2, T101, T102 電極

 $Va \sim Vn$, V2, V3, V41, V42, V7, V

8, V9, V11, V12 ビアホール

SD1, SD11~SD17 チップ部品

SF1, SF2 SAWフィルタ

AP1~AP5 減衰極

【図1】

【図2】

【図17】

【図19】

フロントページの続き

(72) 発明者 石崎 俊雄 大阪府門真市大字門真1006番地 松下電器 産業株式会社内

F ターム(参考) 5J024 AA01 BA11 CA02 CA03 CA09 CA10 DA04 DA29 EA01 EA02 KA03 5K011 BA03 DA02 DA22 FA01 JA01 KA08

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

D	efects in the images include but are not limited to the items checked:
	☐ BLACK BORDERS
	☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	☐ FADED TEXT OR DRAWING
	☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING
	☐ SKEWED/SLANTED IMAGES
,	COLOR OR BLACK AND WHITE PHOTOGRAPHS
	☐ GRAY SCALE DOCUMENTS
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.