# Kaggle challenge: ISIC 2024 - Skin Cancer Detection with 3D-TBP

Opencampus: Intermediate Machine Learning

by: Tim Prause



#### Single-lesion crops from 3D total body photos (TBP):



https://www.kaggle.com/competitions/isic-2024-challenge/overview

#### How to detect cancer:



 $https://www.researchgate.net/publication/357904169\_Hybridization\_of\_CNN\_with\_LBP\_for\_Classification\_of\_Melanoma\_Images$ 

#### Tabular Data:

- Structure:
  - o Total Rows: 401,059
  - o Total Columns: 56
  - Number of Patients: 1,042
- Diagnosis Distribution
  - O Benign (non cancerous) Cases: 400,666
  - Malignant (cancerous) Cases: 393
- Patient Demographics
  - Age Range: 13–85 years
  - Sex
- Lesion Characteristics:
  - o Size
  - Symmetry
  - Color
  - Shape
  - Location

- Diagnostic Information:
  - 52 Diagnosis Categories
  - Malignant Diagnosis
    - Melanoma
    - Squamous Cell Carcinoma (SCC)
    - Basal Cell Carcinoma (BCC)
  - Benign Diagnosis
    - mole
    - cyst
    - ..

#### Types of Skincancer:

- Melanoma
  - Appearance: Dark, irregular moles with an asymmetrical shape, variable colors (brown, black, red, white), often > 6 mm.
- Squamous Cell Carcinoma (SCC)
  - Appearance: Red, scaly patches, sores that do not heal, or raised, crusty nodules.
- Basal Cell Carcinoma (BCC)
  - Appearance: Pearly, shiny nodules, often with visible blood vessels; sometimes red patches or open sores.





#### **Evaluation metric: pAUC**



True Positive Rate (TPR)
also called sensitivity/recall/hit rate
$$= \frac{TP}{P} = \frac{TP}{TP + FN}$$

False Positive Rate (FPR) 
$$=$$
  $\frac{FP}{N} = \frac{FP}{FP + TN}$ 

#### **Basic Plan**

- 1. Research: kaggle + other papers
- 2. Process the data:
  - a. Potentially add/delete features according the ABCD
  - b. Data over/under sampling
- Cross Validate Models:
  - a. Image only model
  - b. Metadata only model
  - c. Ensemble models
- 4. Submit Models

#### Workflow: Resnet only prediction



#### Resnet only: Architecture

- Downsample: 1/100s
- Data augmentation:
  - o colorjitter, erasing, flipping, rotating, blur...
- Custom class weights
- Resnet50 with unfrozen last layer
- Loss: binary cross-entropy
- Adam optimizer with learningrate: 0.001 + StepLR scheduler
- Epochs: 8-16
- Training time on 4080 Nvidia GPU
  - CV: ~1 std
  - Final model: ~9 minutes

## Resnetonly: Results







## Resnetonly: Results

Best CV Result: 0.1470 ± 0.0101



#### Resnet + Tree Models Workflow:



#### Resnet + Tree Models result:

#### CatBoost:



#### LGBoost:



| Model Results: | Model    | Number of trained models | CV pAUC   | kaggle score<br>(Private) |
|----------------|----------|--------------------------|-----------|---------------------------|
|                | LGBoost  | 1                        | 0.17160   | -                         |
|                |          | 3                        | 0.17255   | -                         |
|                |          | 6                        | 0.17352   | -                         |
|                |          | 12                       | 0.17401   | -                         |
|                |          | 24                       | 0.17398   | -                         |
|                | CatBoost | 1                        | 0.16877   | -                         |
|                |          | 4                        | 0.1703229 | -                         |
|                | Ensemble | 3LGB, 2Cat<br>(w/o CNN)  | 0.17310   | 0.16208                   |
|                |          | 12LGB + 2Cat             | 0.17462   | 0.16253                   |
|                | CNN      | 1                        | 0.14470   | 0.12460                   |
|                |          | 3                        | -         | 0.09780                   |
|                |          | 6                        | -         | 0.10764                   |

#### Outlook:

- Extract Resnet last layer instead of final probability or predict the specific diagnosis
- Add more data from other datasets or artificially
- Change method for sampling benign class
- Try out different CNNs:
  - Other pretrained models
  - LSTM/Transformer for Ugly Duckling
  - o NN with CNN and tabular data
- Try out different Tree models:
  - XGBoost
  - Randomforrest

#### **Summary:**

- The Results other teams got showed a lot of potential for Skin Cancer detection
- Image data could add to the Tabular data for better prediction
- Image Quality needs to improve for reliably prediction

# Thank you for listening! Any questions?



#### Single-lesion crops from 3D total body photos (TBP):



https://www.kaggle.com/competitions/isic-2024-challenge/overview

#### Research:

#### General

- Easy: MobileNetV2 (DOI: <u>10.20473/jisebi.8.2.218-225</u>, this dataset)
- o Moderat: ResNet50 + new dataset: HAM10000 (DOI: <u>10.1109/ICATMRI51801.2020.9398388</u>)
- Komplex: Google Net Inception v3 CNN (DOI: <u>10.1109/IATMSI60426.2024.10502664</u>)
- comprehensive model review and related papers:
   https://www.kaggle.com/competitions/isic-2024-challenge/discussion/515303

#### Kaggle

- Feature Engineering of metadata
- Combined Gradient boosted trees + CNNs
- Class weighting + data Augmentation
- Different Ensemble Methods
- o four other possible datasets:
  - Isic 2018,2019,2020
  - HAM10000

#### Metadata Feature Engineering: Adapted from <a href="here">here</a>

- Handling Missing Values:
  - Filled missing age with median value
  - Encoded missing sex as a separate category
- Categorical Encoding:
  - One-hot encoding for sex and anatom\_site\_general
- Feature Scaling:
  - $\circ$  Standardized age to have mean = 0, std = 1
- New Feature Creation:
  - Created binary flags and grouped categories for relevancy
- Dropping Irrelevant Features:
  - Removed image\_name and patient\_id to reduce noise