CORRIGÉ DU DM n°2 (Mines-Ponts 2001)

PRÉLIMINAIRES

- 1°) $x \in \operatorname{Ker} f^k \Rightarrow f^k(x) = 0 \Rightarrow f^{k+1}(x) = f(f^k(x)) = 0 \Rightarrow x \in \operatorname{Ker} f^{k+1}$ Donc $\operatorname{Ker} f^k \subset \operatorname{Ker} f^{k+1}$ pour tout entier naturel k.
- **2**°) Notons \mathcal{H}_k la propriété: $\operatorname{Ker} f^k = \operatorname{Ker} f^{k+1}$.

 \mathcal{H}_p est vraie par hypothèse.

Si \mathcal{H}_k est vérifiée, alors on a les équivalences:

 $x \in \operatorname{Ker} f^{k+2} \iff f(x) \in \operatorname{Ker} f^{k+1} \iff f(x) \in \operatorname{Ker} f^k \iff x \in \operatorname{Ker} f^{k+1}$ qui entraı̂nent \mathcal{H}_{k+1} .

Ainsi, par récurrence, $\operatorname{Ker} f^k = \operatorname{Ker} f^{k+1}$ pour tout $k \geqslant p$.

Soit $d_k = \dim \operatorname{Ker} f^k$. (d_k) est une suite croissante majorée (par n) d'entiers naturels donc elle est constante à partir d'un certain rang p.

Elle est strictement croissante jusqu'à ce rang par contraposition du résultat précédent, et $d_0 = 0$, puis $d_1 > d_0 \Rightarrow d_1 \geqslant 1$ etc.. donc : $\forall k \leqslant p, \quad k \leqslant d_k \leqslant n$.

En particulier, $p \leq n$, donc $\operatorname{Ker} f^n = \operatorname{Ker} f^{n+1}$.

3°) Si $u^q = 0$ alors $d_q = n$ donc $d_p = n$, avec p défini comme ci-dessus. Il existe donc $p \le n$ tel que $u^p = 0$ (p s'appelle l'indice de nilpotence de u). En particulier, on a $u^n = 0$.

PREMIÈRE PARTIE

1°) a) g commute avec D_n car $D_n = g^2 - \lambda Id$ est un polynôme en g.

Les polynômes tels que leur dérivé (p+1)ème soit nul sont les polynômes de degré inférieur ou égal à p, donc $E_p = \text{Ker}D^{p+1}$.

Puisque g commute avec D_n , il commute avec avec D_n^{p+1} , donc $E_p = \text{Ker}D_n^{p+1}$ est stable par g (résultat du cours).

 E_p étant stable par D et g, les endomorphismes <u>induits</u> g_p et D_p vérifient la même relation. Rem: Noter que l'énoncé parle de restriction au lieu de parler d'endomorphismes induits...

- b) De même que précédemment puisque D est un polynôme en g et $E_n = \text{Ker}D^{n+1}$.
- c) i)
 - F est de dimension finie (n+1), donc engendré par une famille finie \mathcal{F} de polynômes. Étant finie, \mathcal{F} est incluse dans un sous espace E_q donc $F \subset E_q$. Dans ce cas $D^{q+1}F = \{0\}$ donc l'endomorphisme induit D_F est nilpotent.

 D_F est un endomorphisme nilpotent en dimension n+1 donc $D_F^{n+1}=0$ (préliminaires question c).

Donc $D^{n+1}(F) = \{0\}$ donc F est inclus dans E_n et par l'égalité de leur dimension : $F = E_n$.

• Soit maintenant F un sous espace de dimension infinie. Alors F n'est inclus dans aucun E_n , donc pour tout entier n, il existe un polynôme P dans F de degré $m \ge n$. Si de plus

F est stable par D, F contient P,D(P),..., $D^m(P)$, famille engendrant E_m car échelonnée en degrés de 0 à m. Ainsi F contient tous les E_n donc F = E.

• En conclusion, les sous espaces stables par D sont $E,\{0\}$ et les E_n .

ii)

Puisque D est un polynôme en g, tout sous espace G stable par g est stable par D.

Réciproquement, si G est stable par D alors, d'après la question précédente, G est égal à $E,\{0\}$ ou à E_n , donc G est stable par g d'après la question I.1.a)

- **2°)** a) dim $E_0 = 1$ et $D_0 = 0$. De plus, si g est un endomorphisme de E_0 , c'est nécessairement une homothétie. Si γ est son rapport, la relation $g^2 = \lambda Id + D_0$ se traduit par $\gamma^2 = \lambda$, ce qui impose $\lambda \ge 0$.
 - b) L'une ou l'autre des existences de g entraı̂ne (d'après I.1.a) l'existence de g_0 dans les conditions précédentes, donc $\lambda \geqslant 0$. D'où le résultat par contraposition.
- 3°) a) $f^n \neq 0$ donc il existe y tel que $f^n(y) \neq 0$. Montrons que $B = (f^n(y), f^{n-1}(y), \dots, y)$ est libre: si $a_n f^n(y) + \dots + a_0 y = 0$, alors en appliquant f^{n-k} et compte tenu de $f^p = 0$ pour p > n, il vient $a_k f^n(y) + \dots + a_0 f^{n-k}(y) = 0$. Comme $f^n(y) \neq 0$, on en déduit successivement (pour k variant de 0 à n) $a_0 = 0$, $a_1 = 0, \dots, a_n = 0$. \underline{B} est libre. Ayant n + 1 éléments, \underline{B} est une base de \underline{V} et

$$Mat_B(f) = egin{pmatrix} 0 & 1 & 0 & \dots & 0 \\ \vdots & \ddots & \ddots & \ddots & \vdots \\ 0 & \dots & 0 & 1 & 0 \\ 0 & \dots & \dots & 0 & 1 \\ 0 & \dots & \dots & \dots & 0 \end{pmatrix} = A_0.$$

b) Puisque $D_n^{n+1}=0$ et $D_n^n(X^n)=n!\neq 0$, l'existence de B_n découle de la question précédente.

Dans cette base, la matrice de $\lambda Id + D_n$ est $A_0 + \lambda I_n$ soit A_{λ} .

4°) a) Soit h un endomorphisme de E_2 qui commute avec D_2 . Avec les notations précédentes, h(y) se décompose sur la base B_2 en :

$$h(y) = ay + bD_2(y) + cD_2^2(y).$$

Puisque h et D_2 commutent, alors h et D_2^2 commutent également et pour k=0,1,2: $h(D_2^k(y))=D_2^k(h(y))=aD_2^k(y)+bD_2^{k+1}(y)+cD_2^{k+2}(y)=(aId+bD_2+cD_2^2)(D_2^k(y)).$ Donc $h=aId+bD_2+cD_2^2$, puisque ces deux endomorphismes coincident sur la base B_2 . La réciproque est immédiate, puisque tout polynôme en D_2 commute avec D_2 .

b) D'après I.1.a) et le résultat précédent, nécessairement $g = aId + bD_2 + cD_2^2$. On a alors $g^2 = P^2(D) = a^2Id + 2abD_2 + (2ac + b^2)D_2^2$, puisque $D_2^3 = D_2^4 = 0$.

Enfin (Id, D_2, D_2^2) est libre puisque B_2 est libre donc $g^2 = \lambda Id + D$ équivaut à $a^2 = \lambda$, 2ab = 1, $2ac + b^2 = 0$.

Ce dernier système n'a de solutions que si $\lambda>0$ (Rem: l'énoncé n'était pas clair sur ce point) et dans ce cas :

$$a = \pm \sqrt{\lambda}, \quad b = \frac{1}{2a}, \quad c = -\frac{1}{8a^3}.$$

Ainsi les solutions de $G^2 = A_1$ sont $G = \pm (I_2 + \frac{1}{2}A_0 - \frac{1}{8}A_0^2)$.

DEUXIÈME PARTIE

- 1°) a) Si $g^2 = D_n$ alors $g^{2n+2} = 0$ donc g est nilpotent. De plus $g^2 \neq 0$ donc d'après le préliminaire b) on a $\{0\} \subsetneq \operatorname{Ker} g \subsetneq \operatorname{Ker} g^2$ d'où dim $\operatorname{Ker} g^2 \geqslant 2$.
 - b) Or $\text{Ker}g^2 = \text{Ker}D_n = E_0$ qui est de dimension 1 ce qui contredit le résultat précédent : g n'existe pas.
 - c) Si $g^2 = D$ alors par I.1.a, E_n est stable par g et il existe g_n tel que $g_n^2 = D_n$ ce qui est impossible.
- **2°)** a) Les primitives d'un polynôme sont des polynômes donc D est surjective. Ainsi D(E) = E puis pour tout m, $D^m(E) = E$ et $g(g^{k-1}(E)) = D^m(E) = E$ donc g est surjective.
 - **b)** $\forall q \leq k$, $\operatorname{Ker} g^q \subset \operatorname{Ker} g^k = \operatorname{Ker} D^m = E_{m-1}$. Donc $\operatorname{Ker} g^q$ est de dimension finie pour $0 \leq q \leq k$.
 - c) $\forall P \in \text{Ker}g^p$, $g^{p-1}(\Phi(P)) = g^p(P) = 0$. Ainsi Φ est une application de $\text{Ker}g^p$ dans $\text{Ker}g^{p-1}$, linéaire comme g.

Noyau de Φ : $\operatorname{Ker}\Phi = \operatorname{Ker}g \cap \operatorname{Ker}g^p = \operatorname{Ker}g$

Image de Φ : soit $P \in \text{Ker}g^{p-1}$, il existe $Q \in E$ tel que g(Q) = P (g est surjective) et $g^p(Q) = g^{p-1}(P) = 0$ donc Q est élément de $\text{Ker}g^p$ ce qui permet d'écrire $\Phi(Q) = P$. D'où $\text{Im}(\Phi) = \text{Ker}g^{p-1}$.

D'après le théorème du rang:

 $\dim \operatorname{Ker} \Phi + \dim \operatorname{Im} \Phi = \dim \operatorname{Ker} g^p \text{ soit } \dim \operatorname{Ker} g + \dim \operatorname{Ker} g^{p-1} = \dim \operatorname{Ker} g^p.$

Il en résulte facilement par récurrence (finie) : dim $\operatorname{Ker} g^p = p \operatorname{dim} \operatorname{Ker} g$ pour tout $p \in [0,k]$.

d) dim Ker $D^m = \dim E_{m-1} = m$ et $g^k = D^m$ donc $k \dim \operatorname{Ker} g = m$ et m est un multiple de k.

Réciproquement, si m = pk il suffit de prendre $g = D^p$.

D'où la condition nécessaire et suffisante : m est un multiple de k.

Cette condition n'était pas remplie dans le cas II-1.c car alors m=1 et k=2.

TROISIÈME PARTIE:

1°) a)
$$(I_{n+1} + tD_n) \left(\sum_{k=0}^n (-1)^k t^k D_n^k \right) = \sum_{k=0}^n (-1)^k t^k D_n^k - (-1)^{k+1} t^{k+1} D_n^{k+1}$$

 $= I_{n+1} - (-1)^{n+1} t^{n+1} D_n^{n+1}$ (télescopage)
 $= I_{n+1} \quad (D_n^{n+1} = 0)$

Donc la matrice carrée $I_{n+1} + tD_n$ est inversible et son inverse, que l'on notera simplement Q(t) pour la suite, est définie par :

$$Q(t) = (I + tD_n)^{-1} = \sum_{k=0}^{n} (-1)^k t^k D_n^k.$$

- b) L'expression précédente prouve que $t \mapsto Q(t)$ est dérivable et commute à D_n . En dérivant l'égalité $Q(t)(I_{n+1} + tD_n) = I_{n+1}$ vraie pour tout t, il vient : $Q'(t)(I+tD_n) + Q(t)D_n = 0$ soit $Q'(t) = -Q(t)D_nQ(t) = -Q(t)^2D_n$.
- c) $L_n(t) = D_n P(D_n) = P(D_n) D_n$, où P est un polynôme. Donc $L_n(t)^{n+1} = D_n^{n+1} P^{n+1}(D_n) = 0$ puisque $D_n^{n+1} = 0$.
- d) Quitte à ajouter un terme nul à la somme définissant L_n , on obtient:

$$L'_n(t) = \sum_{k=1}^{n+1} (-1)^{k-1} t^{k-1} D_n^k = D_n \sum_{k=0}^{n} (-1)^k t^k D_n^k = D_n Q(t).$$
 Comme $L_n(t)$ et $L'_n(t)$ commutent (polynômes en D_n), on a:

$$\frac{d}{dt}L_n^k(t) = kL_n'(t)L_n^{k-1}(t) = kL_n^{k-1}(t)D_nQ(t).$$

- $\mathbf{2}^{\circ}) \quad \mathbf{a)} \quad \varphi_u(t)\varphi_v(t) = \sum_{n=0}^{\infty} \frac{u^p}{p!} (L_n(t))^p \sum_{n=0}^{\infty} \frac{v^q}{q!} (L_n(t))^q$ $=\sum_{n=0}^{2n}\left(\sum_{n=1}^{\infty}\frac{u^{p}v^{q}}{p!q!}L_{n}(t)^{p+q}\right)$ $= \sum_{n=0}^{\infty} \left(\sum_{1 \leq n \leq k} \frac{u^p v^q}{p! q!} \right) L_n(t)^k \quad \text{nilpotence de } L_n(t)$ $= \sum_{k=0}^{n} \left(\sum_{n=0}^{k} \frac{u^{p} v^{k-p}}{p!(k-p)!} \right) L_{n}(t)^{k}$ $=\sum_{k=0}^{n} \left(\sum_{n=0}^{k} {k \choose p} u^{p} v^{k-p} \frac{1}{k!}\right) L_{n}(t)^{k}$ $=\sum_{k=1}^{n}\frac{(u+v)^{k}}{k!}L_{n}(t)^{k}$
 - b) $t \mapsto \varphi_u(t)$ est dérivable comme combinaison linéaire de fonctions dérivables.

$$\varphi'_{u}(t) = \sum_{k=1}^{n} \frac{u^{k}}{k!} kQ(t) D_{n} L_{n}^{k-1}(t)$$

$$= uQ(t) D_{n} \sum_{k=1}^{n} \frac{u^{k-1}}{(k-1)!} L_{n}^{k-1}(t)$$

$$= uQ(t) D_{n} \sum_{k=0}^{n-1} \frac{u^{k}}{k!} L_{n}^{k}(t)$$

$$= uQ(t) D_{n} \sum_{k=0}^{n} \frac{u^{k}}{k!} L_{n}^{k}(t) \quad (D_{n} L_{n}^{n}(t) = 0)$$

$$= uQ(t) D_{n} \varphi_{u}(t)$$

Ainsi:

$$\varphi_u'(t) = uQ(t)D_n\varphi_u(t).$$

c) φ'_1 est dérivable comme produit de fonctions dérivables et : $\varphi_1''(t) = Q'(t)D_n\varphi_1(t) + Q(t)D_n\varphi_1'(t) = -Q(t)D_nQ(t)D_n\varphi_1(t) + Q(t)D_nQ(t)D_n\varphi_1(t) = 0$ Ainsi $\varphi_1''(t) = 0$ pour tout réel t; par conséquent $\varphi_1(t) = \varphi_1(0) + t\varphi_1'(0)$. Comme $L_n(0) = 0$ on déduit $\varphi_1(0) = I_{n+1}$ et $\varphi'_1(0) = D_n \varphi_n(0) = D_n$ et l'on conclut:

$$\forall t \in \mathbb{R}, \qquad \varphi_1(t) = I_{n+1} + tD_n.$$

- **3°) a)** $\lambda I_{n+1} + D_n = \lambda (I_{n+1} + \frac{1}{\lambda} D_n) = \lambda \varphi_1(\frac{1}{\lambda}) = \lambda (\varphi_{\frac{1}{2}}(\frac{1}{\lambda}))^2 = (\sqrt{\lambda} \varphi_{\frac{1}{2}}(\frac{1}{\lambda}))^2$ Ce qui prouve l'existence de $M=\pm\sqrt{\lambda}\varphi_{\frac{1}{2}}(\frac{1}{\lambda})$ donc de g pour $\lambda>0$.
 - **b)** Pour $\lambda = 1$ et n = 2 il vient $L_n(1/\lambda) = L_2(1) = D_2 \frac{1}{2}D_2^2$ puis $\varphi_{\frac{1}{2}}(1) = I + \frac{1}{2}L_2(1) + \frac{1}{8}L_2^2(1) = I + \frac{1}{2}(D_2 - \frac{1}{2}D_2^2) + \frac{1}{8}D_2^2 = I + \frac{1}{2}D_2 - \frac{1}{8}D_2^2$ On retrouve bien les matrices G puisque $A_0 = D_2$ avec les notations de l'énoncé.

QUATRIEME PARTIE:

a) h vérifie sur $]-1,+\infty[$ l'équation différentielle linéaire du premier ordre :

$$(1+x)y' = \frac{1}{2}y$$

b) • On commence par chercher une solution y de l'équation différentielle précédente, telle que y(0) = 1, qui soit développable en série entière, de rayon de convergence R > 0. Donc $y(x) = \sum_{p=0}^{\infty} b_p x^p$ pour $x \in]-R,R[$, avec $b_0 = 1$. En remplaçant dans l'équation, on obtient :

$$(1+x)\sum_{k=1}^{+\infty} pb_p x^{p-1} = \frac{1}{2}\sum_{p=0}^{+\infty} b_p x^p \text{ d'où}: \sum_{p=0}^{+\infty} (p+1)b_{p+1} x^p + \sum_{p=0}^{+\infty} \left(p-\frac{1}{2}\right)b_p x^p = 0 \text{ puis la}$$

relation de récurrence:

$$\forall p \geqslant 1 \ , \ b_{p+1} = \frac{\frac{1}{2} - p}{p+1} b_p$$

On en déduit, en posant $a=1/2, b_0=1$ et $b_p=\frac{a(a-1)\cdots(a-p+1)}{p!}$ pour $p\in\mathbb{N}^*$.

• Réciproquement, avec ces notations, la série entière $\sum b_p x^p$ a un rayon de convergence égal à 1, puisque $\frac{b_{p+1}}{b_p} = \frac{a-p}{p+1}$ tend vers -1 quand p tend vers l'infini. Et dans l'intervalle ouvert de convergence]-1,1[sa somme S est solution de l'équation différentielle (en remontant les calculs précédents) et vérifie S(0) = 1 = h(0).

En vertu de l'unicité des solutions du problème de Cauchy, h(x) = S(x) sur]-1,1[.

c) c_n est le coefficient de x^n dans le développement en série entière du produit h(x)h(x) = 1 + x.

Donc $c_0 = c_1 = 1$ et $c_n = 0$ pour $n \ge 2$.

 2°) a) Soit $P \in E$ et n un majorant de son degré.

Alors
$$D^p(P) = 0$$
 pour $p > n$ donc $T(P) = \sum_{p=0}^n \frac{b_p}{\lambda^p} D^p(P)$ qui est bien un polynôme.

Étant clairement linéaire (prendre n pour majorant commun du degré de P et de Q lorsqu'on calcule $T(\alpha P + Q)$), T est un endomorphisme de E qui, d'après le calcul précédent, laisse stable les sous espaces E_n .

b) En notant T_n l'endomorphisme induit par T sur E_n on a pour $P \in E_n : T^2(P) = T_n^2(P)$.

Or
$$T_n = \sum_{p=0}^n \frac{b_p}{\lambda^p} D_n^p$$
 ce qui conduit, compte tenu de $D_n^k = 0$ pour $k > n$ à:

$$T_n^2 = \sum_{p=0}^n \frac{b_p}{\lambda^p} D_n^p \sum_{q=0}^n \frac{b_q}{\lambda^q} D_n^q = \sum_{k=0}^n \sum_{p+q=k}^n \frac{b_p b_q}{\lambda^{p+q}} D_n^{p+q} = \sum_{k=0}^n \frac{c_k}{\lambda^k} D_n^k = I_{n+1} + \frac{1}{\lambda} D_n$$

Ainsi
$$T^2(P) = P + \frac{1}{\lambda}DP$$
 et finalement : $T^2 = Id + \frac{1}{\lambda}D$.

- c) $g = \pm \sqrt{\lambda} T$ convient $(\lambda > 0)$
- **d)** Et $g_n = \pm \sqrt{\lambda} \sum_{p=0}^n \frac{b_p}{\lambda^p} D_n^p$.

Dans le cas I-4, n=2 et $\lambda=1$.

Donc $g_2 = \pm (b_0 I + b_1 D_2 + b_2 D_2^2)$ avec $b_0 = 1, b_1 = \frac{1}{2}, b_2 = -\frac{1}{8}$ ce qui redonne les matrices précédentes.