Expectation Maximization

Data is generated from a mixture of the garssions, one

 $P(x_j) = \sum_{i=1}^{k} f(x_i \mid C_i). (P(C_i))$ Normal Distribution Mi, Zi Ni, Zi

 $\Theta = \left\{ \mathcal{P}_{i}, \Sigma_{i}, P(C_{i}), \mathcal{P}_{i}, \Sigma_{i}, P(C_{i}), \ldots \right\}$

Maximize the likelih ...

P(x; 19) : figure the "best" O

log lkelihood

In L - Du (P(K) (G))

3 ln L 3 ln L 3 pro

O Snitialize

Spess The Tree and State of the Guess E, Ez... Ek

guess Σ_i Σ_i Σ_i $\Sigma_i = I$

P(C:) =1/k

b) partition the data according to closest

> Compute Ei

> Comple P(ci)

given Ti, Ei, P(G) + i=1... k

for all point \gtrsim ; \in D

 $\frac{||\mathbf{x}||^{2}}{||\mathbf{x}||^{2}} = P((|\mathbf{x}||\mathbf{x})) = \frac{||\mathbf{p}(\mathbf{x})||^{2}}{||\mathbf{x}||^{2}} \cdot P((|\mathbf{x}|))$ $= \frac{||\mathbf{p}(\mathbf{x})||^{2}}{||\mathbf{x}||^{2}} \cdot P((|\mathbf{x}|))$ $= \frac{||\mathbf{p}(\mathbf{x})||^{2}}{||\mathbf{x}||^{2}} \cdot P((|\mathbf{x}|))$

O(n. K. y)) oberations

 $N(x_j)$ $\vec{\kappa}_i, \vec{\epsilon}_i$ $= (\vec{x}_j - \vec{n}_i) \sum_{i=1}^{n-1} (\vec{x}_{ij} - \vec{n}_{ij})$

(nled) + 0(kd3)

-1 (επ) // | Σ_i | /2

Compline the inverse

Total polity;

$$v.s.$$
 $k=3$.
 $w_{2j}=0.3$ $w_{3j}=0.2$

Maximization step.

Given
$$\omega_{ij}$$
 $\forall C_i \times X_j$,

 $Update \lambda_i = \sum_{j=1}^{n} p(C_i)$
 $\lambda_i = \sum_{j=1}^{n} \omega_{ij} \cdot X_j$

weighted mean!

$$\frac{2}{2i} = \frac{2}{2i} \left(\frac{x_i}{x_j} - \frac{x_i}{x_i} \right) \left(\frac{x_j}{x_j} - \frac{x_i}{x_i} \right) \cdot w_{ij}$$

$$\frac{2}{2i} \quad w_{ij}$$

$$\frac{2}{2i} \quad w_{ij}$$

$$\frac{2}{2i} \quad w_{ij}$$

$$\frac{2}{2i} \quad w_{ij}$$

$$P(C_{i}) = \frac{1}{2}$$

$$\frac{1}{2}$$

$$\frac{1$$

K-means: hard clistering

(2) werge the two closer clusters

How to measure distance between cluster,

i) Single link

2) Complete link

$$S(C_i, C_j) = \begin{cases} S(x_a, x_b) \\ x_b \in C_j \end{cases}$$

3) Aug link / Avg Distance

$$S(C_i,C_j) = \text{Mean} \left\{ S(x_a,x_b) \mid x_c \in C_i, x_c \in C_j \right\}$$

any pair-wise distance

$$S(C_i, C_j) = \| \vec{\mu}_i - \vec{f}_j \|^2$$

distance between the meany

$$(c_i, c_j) = \Delta S^s \in \tilde{y}$$

Change in the SSE Values due to the neigh

$$\frac{SS \in (C_i)}{SOM of Squared error} = \sum_{x_j \in C_i} ||x_j - x_i||_{L^2}$$

$$\triangle$$
 SSE \tilde{i}_{j} = SSE(Cij) - SSE(Ci) - SSE(Cj)

Smaller the letter

$$S(C_i, C_j) = \Delta S_{f_i} = \left(\frac{n_i n_j}{n_i}\right) \left\| \overrightarrow{n_i} - \overrightarrow{n_j} \right\|$$
waishted

Updating the distance natix

$$S(C_{ij}, C_{r}) = d_{ij} S(C_{ij}, C_{r}) + d_{j} \cdot S(C_{ij}, C_{r}) + \beta(C_{ij}, C_{s})$$

$$Y \neq i$$

$$Y \neq j$$

$$d_{ij}, d_{ij}, \beta, \gamma$$

$$S(C_{ij}, C_{r}) - S(C_{ij}, C_{r})$$

Darisity-lored chistering

clasign a method that is more sulldle

DBSCAM

 $N(\vec{x}) = \{ \vec{y} \mid ||\vec{x} - \vec{y}|| \leq \epsilon \}$

Yadius

E- Neighborhood

Core point X: $|N_{\mathcal{E}}(\vec{x})| \geq \min_{\vec{x}} |\vec{x}|$

border point: $|N_{\mathcal{E}}(\vec{x})| < minght$ and $\vec{x} \in N_{\mathcal{E}}(\vec{s})$ for some Core point \vec{y}

Noise print: Otherwise

 \bigcirc Compre $N_{\mathcal{E}}(\vec{X}_i)$ $\forall \vec{X}_i \in \mathbb{D}$

nearest neighbor search

2 based on ningthe label the ore points

0 (2)

(3) for each unlabeled are point x:

label (xi) & clustered

also label all points in

NE(xi)

Yearsinely Jump to any are

Input parameter axe radius (runple) — Ruestall for Cre

Connected Congenents
Over the Core
Print greats

Vecusively Jump to any are

Point $\hat{y} \in N_{\epsilon}(x_i)$ A repeat

over the core

