Timed pushdown automata and branching vector addition systems

Lorenzo Clemente 1 , Sławomir Lasota 1 , Ranko Lazić 2 , and Filip Mazowiecki 3

¹University of Warsaw

 $^2 {\sf University}$ of Warwick

 $^3 \mbox{University of Oxford}$

LICS 2017 Reykjavik

Outline

1. Three models

time registers x,y,z

Systems of equations

$$X_{i} \subseteq \mathbb{Z}$$

$$\begin{cases}
X_{1} \supseteq X_{2} \cup X_{3} \\
X_{2} \supseteq X_{1} + X_{3} \\
X_{3} \supseteq \{-1, 1\} \\
\vdots
\end{cases}$$

1BVASS

- 2. Reductions between models
- 3. Decidability

trPDA

What is time?

$$(\mathbb{Q},\leq,+1)$$
 or $\underline{(\mathbb{Z},\leq,+1)}$

Input $A \times \mathbb{Z}$, $A = \{a, b\}$ (finite in general)

Example

$$L=$$
 "Palindromes such that $\#_a(w)=\#_b(w)$ "

Strictly subsumes other models:

- Non-monotonic time

- [Bouajjani, Echahed, Robbana]
- Only one register (or orbit-finiteness) [Abdulla, Atig, Stenman]

trPDA state of the art

Input: trPDA \mathcal{A}

Problem: non-emptiness of L(A)

(universality, equivalence, etc. undecidable)

Unrestricted – undecidable [Bojańczyk and Lasota, 2012]

(no stack, 3 registers)

Restrict to orbit-finite/one register

Timeless stack – ExpTime-complete

Orbit-finite time stack – in NExpTime [Clemente and Lasota, 2015]

Time stack – this paper

Transitions in trPDA

- Push and pop
- Only ϵ -transitions (no input to test non-emptiness)

3 time variables:

Example constraint:

Transition: 3 intervals

Systems of equations over \mathbb{Z}

$$X_1 \dots X_n \subseteq \mathbb{Z}$$

Systems of equations S using: \cup , \cap , + and $\{1\}$, $\{-1\}$

$$\begin{cases} X_0 \supseteq t_0 \\ \vdots \\ X_n \supseteq t_n \end{cases}$$

solution
$$\mu(X_i) \to \mathcal{P}(\mathbb{Z})$$
, $\mu(X_i) \supseteq \mu(t_i)$

goal: minimal solution of ${\cal S}$

Example: $X_0 \dots X_k$

$$X_0 \supseteq \{1\} + \{-1\}$$

 $X_{2m} \supseteq X_m + X_m$
 $X_{2m+1} \supseteq X_m + X_m + \{1\}$

$$_{n}+X_{m}+\{1\}$$

$$X_0 \supseteq X_0 + X_k$$

minimal solution:
$$\mu(X_i) = \{i\}$$

ution:
$$\mu(X_i) = \{i\}$$

$$\mu(X_0) = k\mathbb{N}$$

Systems of equations state of the art

Input: system \mathcal{S} , variable X

Problem: non-emptiness of $\mu(X)$

Unrestricted: undecidable [Jeż and Okhotin, 2010]

 $\mathsf{Restricting} \ \cap \\$

No intersections – in PTIME

Intersections with $\{0\}$ – $NPT_{IME}\text{-complete}$ [Clemente and Lasota, 2015] (or any bounded intervals)

Intersections with $\mathbb N$ and $(-\mathbb N)$ – this paper (or any intervals)

trPDA to systems of equations

Non-emptiness: trPDA $\mathcal{A} \rightarrow \operatorname{system} (\mathcal{S}, X)$

Previously: [Clemente and Lasota, 2015]

- ${\mathcal A}$ with timeless stack o $({\mathcal S},X)$ with no \cap
- ${\mathcal A}$ with orbit-finite stack $o ({\mathcal S},X)$ with $\cap \{0\}$

This paper:

- \mathcal{A} with stack o (\mathcal{S},X) with \cap $\mathbb{N},$ \cap $(-\mathbb{N})$

trPDA to systems of equations

 ${\sf trPDA}\ {\cal A}$ with states Q, empty stack acceptance

Variables:

 $X_{p,q}$ for every $p,q \in Q$

 $t \in X_{p,q}$: "reach q from p (the same stack) changing time by t"

Inclusions:

- $X_{p,p} \supseteq \{0\}$, for every p
- $X_{p,q} \supseteq X_{p,r} + X_{r,q}$, for all p,q,r
- $-X_{p,q} \supseteq (I + (X_{r,s} \cap (J+N)) + L) \cap -(K+M)$

BVASS

Recall 1-VASS

Computations are words: $(p,0) \xrightarrow{3} (p,3) \xrightarrow{3} (p,6) \xrightarrow{-6} (q,0)$ States Q, transitions $T \subseteq Q \times \mathbb{Z} \times Q$, configurations $Q \times \mathbb{N}$

1-BVASS[±]: states Q, transitions $T \subseteq Q^3$, configurations $Q \times \mathbb{N}$

Computations are binary trees:

1-BVASS

- leaves $(q_0,1)$
- inner nodes
- $(q,q_l,q_r)\in T$

 $n = n_l + n_r \quad \text{if } q \in Q^+$

BVASS state of the art

Input: BVASS \mathcal{B} , configuration (q, n)

Problem: reachability of (q, n)

1-BVASS (no subtraction):

Unary encoding – PTIME-complete [Göller et al., 2016]

Binary encoding - PSPACE-complete [Figueira et al., 2017]

In higher dimensions - open

 1-BVASS^{\pm} unary/binary – this paper

In higher dimensions – undecidable ($d \ge 6$) [Lazić, 2010]

Decidability BVASS

1-BVASS[±] \mathcal{B} , configuration (q, n)

Lemma

If (q,n) is reachable then there is a computation with all values bounded by $N=poly(n)\cdot exp(|B|)$.

Non-emptiness of tree-automaton, states $Q \times \{0 \dots N\}$.

So in ExpTime

Results summary

Three models/problems

Conclusions

- Complexity gaps
- Reachability of BVASS?
- Reachability of n-BVASS $^{\pm}$ for n < 6