### Hidden Markov Models: lecture 7

Bayesian analysis

Xavier Didelot

#### HMM definition

- ▶ A Hidden Markov Model (HMM) is a Markov chain in which the sequence of states  $C_1, ..., C_T$  is not observed but hidden
- ► Instead of observing the sequence of states, we observe the emissions X<sub>1</sub>,..., X<sub>T</sub>
- A HMM is defined by two quantities:
  - ▶ The transition matrix  $\Gamma$  of elements  $\gamma_{ij}$  where i and j are states:

$$\gamma_{ij} = p(C_t = j | C_{t-1} = i)$$

▶ The emission probabilities  $p_i(x)$  where i is a state and x is an emission:

$$p_i(x) = p(X_t = x | C_t = i)$$

▶ The unconditional distribution at t is denoted u(t) and the initial distribution is u(1)

$$\mathbf{u}(t) = (p(C_t = 1), p(C_t = 2), ..., p(C_t = m))$$

# Dependency graph of a hidden Markov model



$$p(\mathbf{X}^{(T)}, \mathbf{C}^{(T)}) = p(C_1) \prod_{k=2}^{T} p(C_k | C_{k-1}) \prod_{k=1}^{T} p(X_k | C_k)$$
$$p(\mathbf{X}^{(T)}, \mathbf{c}^{(T)}) = u_{c_1}(1) \prod_{k=2}^{T} \gamma_{c_{k-1}c_k} \prod_{k=1}^{T} p_{c_k}(x_k)$$

# Bayesian inference

- Observed data x
- $\triangleright$  Parameter  $\theta$
- ▶ Likelihood function  $p(x|\theta)$
- ▶ Prior distribution  $p(\theta)$
- ▶ Posterior distribution  $p(\theta|x)$
- ► Bayes Rule:

$$p(\theta|x) = \frac{p(x|\theta)p(\theta)}{p(x)} \propto p(x|\theta)p(\theta)$$

### Example

- ▶ Prior:  $\theta \sim \text{Normal}(1,1)$
- ▶ Likelihood:  $x \sim \text{Normal}(\theta, 1)$
- Posterior:

$$\begin{aligned} \rho(\theta|x) & \propto & \rho(\theta)\rho(x|\theta) \\ & \propto & \exp\left(-\frac{(\theta-1)^2}{2}\right) \exp\left(-\frac{(x-\theta)^2}{2}\right) \\ & \propto & \exp\left(-\frac{\theta^2+1-2\theta+x^2+\theta^2-2x\theta}{2}\right) \\ & \propto & \exp\left(-\left(\theta-\frac{x+1}{2}\right)^2\right) \end{aligned}$$

▶ So that:  $\theta|x \sim \text{Normal}(\frac{x+1}{2}, \frac{1}{2})$ 

# Example

- ▶ Prior:  $\theta \sim \text{Normal}(1,1)$
- ▶ Likelihood:  $x \sim \text{Normal}(\theta, 1)$
- ▶ Observed value: x = -2



#### Monte-Carlo methods

- Computational algorithms that rely on random samples from the posterior to compute their results
- For example, to compute the expectation of the posterior distribution:

$$\hat{\theta} = \int \theta p(\theta|x) d\theta$$

$$\approx \frac{1}{n} \sum_{i=1}^{n} \theta_i \text{ with } \theta_i \sim p(\theta|x)$$

- Also called a Monte-Carlo approximation or Monte-Carlo integration
- ▶ Pioneered by John von Neumann in the 1940s
- Became increasingly important as computer power increased

#### Markov Chain Monte Carlo

- ► The idea: we do not need the  $\theta_i$  to be independently and identically distributed from  $p(\theta|x)$
- ▶ Instead they could come from a Markov chain with stationary distribution  $p(\theta|x)$
- During WW2, Metropolis and Ulam worked as part of the Manhattan project
- ▶ MCMC first published in Metropolis and Ulam (1949)
- MCMC was made popular by Gelfand and Smith (1990)

## Metropolis-Hastings algorithm

- ► The Metropolis-Hastings (MH) algorithm was first described by Hastings (1970)
- ▶ It is a generalisation of the algorithm of Metropolis et al (1953)
- ▶ The MH algorithm produces a Markov chain  $\theta_1$ ,  $\theta_2$ , . . .
- ▶ At each step, the new value  $\theta_{i+1}$  is generated from the previous value  $\theta_i$  as follows:
  - lacktriangle Draw heta' from the proposal distribution  $q( heta'| heta_i)$
  - ► Set  $\theta_{i+1} = \theta'$  with probability  $\min \left(1, \frac{p(\theta'|x)q(\theta_i|\theta')}{p(\theta_i|x)q(\theta'|\theta_i)}\right)$
  - ▶ Otherwise set  $\theta_{i+1} = \theta_i$
- ▶ This Markov chain has for stationary distribution  $p(\theta|x)$  (under some mild conditions. . . )

#### Detailed balance

► The MH algorithm creates a chain that satisfies detailed balance, ie:

$$p(\theta_1|x)p(\theta_1 \to \theta_2) = p(\theta_2|x)p(\theta_2 \to \theta_1)$$

Consider the case where:

$$\alpha = \frac{\rho(\theta_2|x)q(\theta_1|\theta_2)}{\rho(\theta_1|x)q(\theta_2|\theta_1)} > 1$$

We have:

$$p(\theta_1 \to \theta_2) = q(\theta_2|\theta_1)\min(1,\alpha) = q(\theta_2|\theta_1) \text{ and}$$

$$p(\theta_2 \to \theta_1) = q(\theta_1|\theta_2)\min(1,\alpha^{-1}) = \frac{q(\theta_1|\theta_2)}{\alpha} = \frac{p(\theta_1|x)q(\theta_2|\theta_1)}{p(\theta_2|x)}$$

lacktriangle Detailed balance is guaranteed, and likewise if lpha < 1

### Metropolis-Hastings algorithm applied to HMM

► To apply the MH algorithm, we need to calculate the ratio of posterior distributions which is equal to the ratio of likelihoods times prior:

$$\frac{p(\theta'|x)}{p(\theta|x)} = \frac{p(x|\theta')}{p(x|\theta)} \frac{p(\theta')}{p(\theta)}$$

- So we need to calculate the likelihood, which we can do for a HMM using the forward algorithm
- In particular, if the proposal distribution q is symmetric, then  $q(\theta'|\theta) = q(\theta|\theta')$  and the acceptance ratio reduces to the posterior ratio
- ► However, such a strategy can lead to a high rejection rate since proposals are essentially random
- Such a MCMC is called sticky and will need to be run for many iterations before converging and fully exploring the posterior distribution
- There is a better strategy for HMM to avoid rejections. . .

### Gibbs sampler

- ► The Gibbs sampler is a special case of MH, first described by Geman and Geman (1984)
- ▶ Consider that the parameter is made of two components:  $\theta = \{\alpha, \beta\}$
- ▶ To update  $\theta$  we can propose to update  $\alpha$  while keeping  $\beta$  fixed, and then update  $\beta$  while keeping  $\alpha$  fixed
- In a Gibbs sampler, we use as proposals the conditional distributions given data and other parameters, ie:  $q(\alpha) = p(\alpha|\beta, x)$  and  $q(\beta) = p(\beta|\alpha, x)$
- ▶ In this case, both moves are accepted with probability one, for example for the  $\alpha$  move:

$$\frac{p(\theta'|x)q(\theta|\theta')}{p(\theta|x)q(\theta'|\theta)} = \frac{p(\alpha',\beta|x)p(\alpha|\beta,x)}{p(\alpha,\beta|x)p(\alpha'|\beta,x)} \\
= \frac{p(\beta|x)p(\alpha'|\beta,x)p(\alpha|\beta,x)}{p(\beta|x)p(\alpha|\beta,x)p(\alpha'|\beta,x)} = 1$$

### Gibbs sampler applied to HMM

- ➤ To apply the Gibbs sampler to HMM, we alternate between two steps
- ▶ Step 1. Updating the parameters  $\theta$  of the HMM given the observed emissions  $\mathbf{x}^{(T)}$  and a sample of the hidden path  $\mathbf{c}^{(T)}$
- Step 2. Updating the sample of the hidden path  $\mathbf{x}^{(T)}$  given the parameters  $\theta$  of the HMM and the observed emissions  $\mathbf{x}^{(T)}$
- ▶ Here  $\theta$  represents the transition probabilities contained in  $\Gamma$  as well as emission parameters contained in P
- ► This is the Bayesian equivalent to the Baum-Welch algorithm (cf lecture 5)
- Step 1 is relatively easy and not specific to HMM since the path is known
- Step 2 can be done using a modified version of the forward-backward algorithm

## Generating a sample path of the HMM

► First run the forward algorithm to compute the forward probabilities:

$$\alpha_t(i) = p(\mathbf{x}^{(t)}, C_t = i)$$

▶ Sample  $C_T$ , the state of the HMM at the final position T from

$$p(C_T = i | \mathbf{x}^{(T)}) \propto \alpha_T(i)$$

▶ Then simulate all previous states by going backwards from  $\mathcal{T}-1$  to 1, each time sampling from:

$$p(C_{t} = i | \mathbf{x}^{(T)}, C_{t+1} = j) = p(C_{t} = i | \mathbf{x}^{(t)}, C_{t+1} = j)$$

$$\propto p(C_{t} = i, \mathbf{x}^{(t)}, C_{t+1} = j)$$

$$\propto p(C_{t} = i, \mathbf{x}^{(t)}) p(C_{t+1} = j | C_{t} = i)$$

$$\propto \alpha_{t}(i) \gamma_{ij}$$

# Earthquake example



# Earthquake example (m = 3)

| Parameter     | Min   | Q1    | Mode  | Median | Mean  | Q3    | Max   |
|---------------|-------|-------|-------|--------|-------|-------|-------|
| $\lambda_1$   | 6.21  | 12.62 | 13.12 | 13.15  | 13.12 | 13.68 | 16.85 |
| $\lambda_2$   | 13.53 | 19.05 | 19.79 | 19.74  | 19.71 | 20.42 | 27.12 |
| $\lambda_3$   | 22.08 | 28.33 | 29.87 | 29.59  | 29.64 | 30.88 | 43.88 |
| $\gamma_{11}$ | 0.001 | 0.803 | 0.882 | 0.861  | 0.843 | 0.905 | 0.998 |
| $\gamma_{12}$ | 0.000 | 0.047 | 0.056 | 0.085  | 0.104 | 0.139 | 0.964 |
| $\gamma_{13}$ | 0.000 | 0.020 | 0.011 | 0.042  | 0.053 | 0.075 | 0.848 |
| $\gamma_{21}$ | 0.000 | 0.043 | 0.050 | 0.070  | 0.083 | 0.108 | 0.979 |
| $\gamma_{22}$ | 0.009 | 0.784 | 0.858 | 0.837  | 0.824 | 0.880 | 0.992 |
| $\gamma_{23}$ | 0.000 | 0.052 | 0.060 | 0.082  | 0.093 | 0.122 | 0.943 |
| $\gamma_{31}$ | 0.000 | 0.021 | 0.011 | 0.049  | 0.068 | 0.096 | 0.758 |
| $\gamma_{32}$ | 0.000 | 0.144 | 0.180 | 0.213  | 0.229 | 0.296 | 0.918 |
| $\gamma_{33}$ | 0.010 | 0.627 | 0.757 | 0.718  | 0.703 | 0.795 | 0.986 |

# Earthquake example (m = 3)



# Earthquake example (m = 3)



## Bayesian estimation of the number of states

- ▶ In the Bayesian framework, how can we deal with model selection?
- For example estimating the number of states m
- ▶ When selecting between two competing models  $m_1$  and  $m_2$  we can form the posterior odds:

$$\frac{p(m_2|x)}{p(m_1|x)} = \frac{p(m_2)}{p(m_1)} \frac{p(x|m_2)}{p(x|m_1)}$$

- ► The posterior odds is equal to the prior odds times the Bayes Factor  $\frac{p(x|m_2)}{p(x|m_1)}$
- ▶ If the prior odds is 1 (ie  $p(m_1) = p(m_2)$ ) then the posterior odds is equal to the Bayes Factor

# Estimating the Bayes Factor

- How to calculate the Bayes Factor?
- One approach is to calculate separately the marginal likelihood of each model:

$$p(x|m) = \int p(x|m,\theta)p(\theta|m)d\theta$$

- Not easy but there are several methods to get an estimate (Newton and Raftery 1994)
- ► Alternatively, we can explore both models (or more) jointly using reversible-jump MCMC (Green 1995)
- ► These are general methods, not specific to HMM models, so for more details see a course on Bayesian model selection

## Earthquake example

- ▶ Prior on the number of states *m*: uniform from 1 to 6
- ▶ Posterior probability distribution in two separate runs:



# Earthquake example



#### Conclusions

- HMM can be analysed using Bayesian statistics and Monte-Carlo methods
- ► The forward-backward algorithm can be modified to return samples of the hidden states path
- ► This can be used within a Gibbs sampler to sample both the hidden path and the HMM parameters
- ▶ Model selection can be performed by computing Bayes Factors