CPSC-406 Report

Ethan Tapia Chapman University

February 24, 2025

Abstract

Contents

1 Introduction						
2	Week by Week					
		Week 1				
		Week 2				
	2.3	Week 3				

1 Introduction

2 Week by Week

2.1 Week 1

Lecture Summary

A finite automaton consists of a finite set of states (Q), an alphabet (Σ) , a transition function (δ) , a starting state (q_0) , and a set of accepting states (F).

It can be formally represented as:

$$M = (Q, \Sigma, \delta, q_0, F)$$

where:

- Q is the set of states,
- Σ is the input alphabet,
- $\delta: Q \times \Sigma \to Q$ is the transition function,
- $q_0 \in Q$ is the initial state,
- $F \subseteq Q$ is the set of accepting states.

2.2 Week 2

Homework 1

Problem 1: Characterizing Accepted Sequences

The given problem involves designing a finite automaton that accepts sequences of 5 and 10-cent inputs summing to 25 cents.

Solution: We define the equation:

$$5a + 10b = 25 \tag{1}$$

where a is the number of 5-cent inputs and b is the number of 10-cent inputs. Solving for valid pairs:

• $(a = 5, b = 0) \Rightarrow$ Sequence: 5, 5, 5, 5, 5

• $(a = 3, b = 1) \Rightarrow$ Sequence: 5, 5, 5, 10

• $(a = 1, b = 2) \Rightarrow$ Sequence: 5, 10, 10

These sequences are precisely those accepted by the automaton. The machine accepts a sequence if the total sum equals 25 cents.

Problem 2: Defining Valid Variable Names

A valid variable name must begin with a letter (ℓ) and be followed by any number of letters or digits (d).

Regular Expression:

$$\ell(\ell|d)^* \tag{2}$$

Solution: Finite Automaton: - States: q_0 (initial), q_1 (accepting). - Transitions: - $q_0 \rightarrow q_1$ on input ℓ - $q_1 \rightarrow q_1$ on input ℓ or d

Problem 3: Classification of Words in L_1, L_2, L_3

The given languages are defined as follows:

- $L_1 = \{x0y \mid x, y \in \Sigma^*\}$: The set of words that contain at least one '0'.
- $L_2 = \{w \mid |w| = 2^n \text{ for some } n \in \mathbb{N}\}$: The set of words whose length is a power of 2.
- $L_3 = \{w \mid |w|_0 = |w|_1\}$: The set of words where the number of 0s equals the number of 1s.

Solution: We analyze each word based on these conditions:

	L_1	L_2	L_3
$w_1 = 10011$	√		
$w_2 = 100$	✓		
$w_3 = 10100100$	✓	✓	
$w_4 = 1010011100$	✓		✓
$w_5 = 11110000$	✓	✓	✓

Table 1: Classification of words into L_1, L_2, L_3

Problem 4: DFA Analysis

Given the DFA with states q_0 (start), q_2 , and q_1 (accepting), we determine which words end in the accepting state q_1 .

Transitions:

$$\delta(q_0, 1) = q_0,$$
 $\delta(q_0, 0) = q_2$
 $\delta(q_2, 0) = q_2,$ $\delta(q_2, 1) = q_1$
 $\delta(q_1, 0) = q_1,$ $\delta(q_1, 1) = q_1$

Checking Words:

- $w_1 = 0010$: $q_0 \rightarrow q_2 \rightarrow q_2 \rightarrow q_1 \rightarrow q_1 \quad \checkmark \text{(Accepted)}$
- $w_2 = 1101$: $q_0 \rightarrow q_0 \rightarrow q_0 \rightarrow q_2 \rightarrow q_1 \quad \checkmark \text{(Accepted)}$
- $w_3 = 1100$: $q_0 \rightarrow q_0 \rightarrow q_0 \rightarrow q_2 \rightarrow q_2$ (Not Accepted)

Solution:

$$w_1 = 0010 \rightarrow \checkmark Accepted$$

 $w_2 = 1101 \rightarrow \checkmark Accepted$
 $w_3 = 1100 \rightarrow Rejected$

This confirms that w_1 and w_2 end in the accepting state, while w_3 does not.

Chapter 2.1 Report:

Chapter 2.1 discusses the use of finite automata in modeling real-world protocols, particularly in the context of electronic money transactions. The section introduces a three-party system involving a customer, a store, and a bank. The goal is to ensure that digital money is not duplicated or reused fraudulently.

The protocol consists of five primary actions: pay, cancel, ship, redeem, and transfer. Each party's behavior is modeled using finite automata to track transaction states. The section highlights how such models can reveal vulnerabilities—such as a store shipping goods before verifying payment—showcasing the importance of automata in validating protocol security.

Finite automata prove to be useful for detecting logical flaws in transaction systems, ensuring valid sequences of operations. The chapter serves as an introduction to the application of formal computational models in the security and validation of protocols.

2.3 Week 3

Lecture Summary

Homework 2

Exercise 2: Implementing DFA Runs

Words accepted or refused by A_1 and A_2 , respectively

Accepted A_1	Accepted A_2
×	\checkmark
\checkmark	×
×	×
×	×
×	\checkmark
×	×
×	×
×	×
	×

The table above summarizes the words accepted or rejected by DFA A_1 and DFA A_2 . To implement these automata *programmatically*, we define the DFA class in dfa.py, which allows us to process input words according to their respective state transition diagrams.

DFA Implementation in dfa.py

This introduction describes the design of the dfa.py, consisting of:

- \bullet Q a finite set of states.
- Σ an input alphabet.
- $\delta: Q \times \Sigma \to Q$ a transition function.
- $q_0 \in Q$ an initial state.
- $F \subseteq Q$ a set of final accepting states.

The DFA class constructor takes these five elements (Q, Sigma, delta, q0, and F), using the method:

• run(w): Runs the DFA on input string w and determines whether or not w is accepted based on the state it finishes at.

Implementation In the following code snippet, the run method processes the symbols of the input w sequentially, looking up the next state based on the current state and the input symbol. If an invalid transition is encountered, the method immediately returns False. Otherwise, if the DFA ends in a state that is a member of F, True is returned (meaning w is accepted); if it ends in some other state, False is returned.

```
class DFA :
   # init the DFA
   def __init__(self, Q, Sigma, delta, q0, F) :
       self.Q = Q # set of states
       self.Sigma = Sigma # set of symbols
       self.delta = delta # transition function
       self.q0 = q0 # initial state
       self.F = F # final states
  # print the data of the DFA
   def __repr__(self) :
       return f"DFA({self.Q},\n\t{self.Sigma},\n\t{self.delta},\n\t{self.q0},\n\t{self.F})"
   # run the DFA on the word w
   # return if the word is accepted or not
   # modify as needed
   def run(self, w) :
       # todo
       # start at initial state
       current_state = self.q0
       for symbol in w:
           if (current_state, symbol) in self.delta:
              current_state = self.delta[(current_state, symbol)]
           else:
              # invalid transition (dead state)
              return False
           # accept if in final state
       return current_state in self.F
```

Exercise 4: A new automaton from an old one

Below is DFA A_0 which accepts exactly the words that A refuses and vice versa.

In A_0 , nodes 1 and 3 are the accepting final states, while nodes 2 and 4 are normal states.

Exercise 2.2.4: DFAs over $\{0,1\}$

(a) The set of all strings ending in 00

DFA Description:

$$\begin{split} Q &= \{\,q_0,\,q_1,\,q_2\},\\ \Sigma &= \{0,1\},\\ \delta \text{ is given by the table below},\\ q_0 \text{ is the start state},\\ F &= \{\,q_2\}. \end{split}$$

Transition Table:

$$\begin{array}{c|cccc}
\delta & 0 & 1 \\
\hline
q_0 & q_1 & q_0 \\
q_1 & q_2 & q_0 \\
q_2 & q_2 & q_0
\end{array}$$

Explanation:

- \bullet q_0 we have not yet seen a trailing zero
- \bullet q_1 the string currently ends in exactly one zero
- \bullet q_2 (accepting) the string ends in at least two consecutive zeros
- (b) The set of all strings with three consecutive 0s

DFA Description:

$$Q = \{q_0, q_1, q_2, q_3\},$$

$$\Sigma = \{0, 1\},$$

$$\delta \text{ is given by the table below,}$$

$$q_0 \text{ is the start state,}$$

$$F = \{q_3\}.$$

Transition Table:

$$\begin{array}{c|cccc} \delta & 0 & 1 \\ \hline q_0 & q_1 & q_0 \\ q_1 & q_2 & q_0 \\ q_2 & q_3 & q_0 \\ q_3 & q_3 & q_3 \end{array}$$

Explanation:

- ullet q_0 we have seen 0 consecutive zeros so far
- q_1 we have seen exactly 1 consecutive zero
- \bullet q_2 we have seen exactly 2 consecutive zeros
- \bullet q_3 (accepting) we have seen at least 3 consecutive zeros

(c) The set of all strings with $\tt 011$ as a substring

DFA Description:

$$Q = \{ q_0, q_1, q_2, q_3 \},$$

$$\Sigma = \{0, 1\},$$

$$S = \{0, 1\},$$

 δ is given by the table below,

 q_0 is the start state,

$$F = \{q_3\}.$$

Transition Table:

$$\begin{array}{c|cccc} \delta & 0 & 1 \\ \hline q_0 & q_1 & q_0 \\ q_1 & q_1 & q_2 \\ q_2 & q_1 & q_3 \\ q_3 & q_3 & q_3 \end{array}$$

Explanation:

- \bullet q_0 no partial match yet
- q_1 we matched a single 0
- ullet q_2 we matched ${\tt O1}$
- ullet q_3 (accepting) we found ${\tt O11}$ somewhere in the string