Application of Information Theory, Lecture 10 Hardcore Predicates

Handout Mode

Iftach Haitner

Tel Aviv University.

December 22, 2015

Part I

Motivation and Definition

Hardcore predicates

- Let $f: \{0,1\}^n \mapsto \{0,1\}^n$ be a "hard to invert" function, how unpredictable is x given f(x)
- ▶ Parts of *x* might be (totally) predictable
- It turns out that there is an hardcore part in x.

Hardcore predicates, cont.

Definition 1 (hardcore predicates)

A predicate $b: \{0,1\}^n \mapsto \{0,1\}$ is (s,ε) -hardcore predicate of $f: \{0,1\}^n \mapsto \{0,1\}^n$, if $\Pr_{x \leftarrow \{0,1\}^n} [P(f(x)) = b(x)] \le \frac{1}{2} + \varepsilon$, for any s-size P.

- Why size?
- We will typically consider poly-time computable f and b.
- Does every function has such a predicate?
- Does every hard to invert function has such a predicate?
- ▶ Is there a generic hardcore predicate for all hard to invert functions? Let f be a function and let b be a predicate, then b is typically not a hard-core predicate of g(x) = (f(x), b(x)).

Part II

The Information Theoretic Settings

Some definitions

Let $f : \mathcal{D} \mapsto \mathcal{R}$.

- $\blacktriangleright \operatorname{Im}(f) = \{f(x) \colon x \in \mathcal{D}\}.$
- ► $f^{-1}(y) = \{x \in \mathcal{D} : f(x) = y\}$
- ▶ f is d regular, if $|f^{-1}(y)| = d$ for every $y \in \text{Im}(f)$.
- ► min entropy of $X \sim p$ is $H_{\infty}(X) = \min_{x \in \mathcal{X}} \{-\log p(x)\} = -\log \max_{x \in \mathcal{X}} \{p(x)\}.$
- Examples:
 - Z is uniform over 2^k-size set.
 - ▶ $Z = X |_{f(X)=y}$, for 2^k -regular $f, y \in Im(f)$ and $X \leftarrow \mathcal{D}$.
- ▶ In both examples $H_{\infty}(Z) = k$

2-universal families

Definition 2 (2-universal families)

A function family $\mathcal{G}=\{g\colon \mathcal{D}\mapsto \mathcal{R}\}$ is 2-universal, if $\forall~x\neq x'\in \mathcal{D}$ it holds that $\Pr_{g\leftarrow \mathcal{G}}\left[g(x)=g(x')\right]=\frac{1}{|\mathcal{R}|}.$

Example: $\mathcal{D} = \{0, 1\}^n$, $\mathcal{R} = \{0, 1\}^m$ and $\mathcal{G} = \{A \in \{0, 1\}^{m \times n}\}$ with $A(x) = A \times x \mod 2$.

Lemma 3 (leftover hash lemma)

Let X be a rv over $\{0,1\}^n$ with $H_2(X) \ge k$ let $\mathcal{G} = \{g : \{0,1\}^n \mapsto \{0,1\}^m\}$ be 2-universal and let $G \leftarrow \mathcal{G}$. Then $SD((G,G(X)),(G,\sim\{0,1\}^m)) \le \frac{1}{2} \cdot 2^{(m-k)/2}$.

Hardcore predicate for regular functions

Lemma 4

```
Let f: \{0,1\}^n \mapsto \{0,1\}^n be 2^k-regular function, let \mathcal{G} = \{g: \{0,1\}^n \mapsto \{0,1\}\} be 2-universal and let v: \{0,1\}^n \times \mathcal{G} \mapsto \{0,1\}^n \times \mathcal{G} be defined by v(x,g) = (f(x),g).
Then b(x,g) = g(x) is (\infty,2^{-(k-1)/2}) hardcore-predicated of v.
```

b is an hardcore predicate of v (not of f)

Proving Lemma 4

Claim 5

SD
$$((f(X), G, G(X)), (f(X), G, U)) \le 2^{-(k-1)/2}$$
, for $G \leftarrow \mathcal{G}, X \leftarrow \{0, 1\}^n$ and $U \leftarrow \{0, 1\}$.

We conclude the proof showing that indistinguishability implies unpredictability.

Lemma 6 (predicting to distinguishing)

Let (Y,Z) be rv over $\{0,1\}^* \times \{0,1\}$ and let P be an algorithm with $\Pr[P(Y) = Z] \ge \frac{1}{2} + \varepsilon$. Then \exists algorithm D, with essentially the same complexity as P, with $\Pr[D(Y,Z) = 1] - \Pr[D(Y,U) = 1] \ge \varepsilon$.

Proof: D(y, z) outputs 1 if P(y) = z and 0 otherwise.

Corollary 7

If $SD((Y, Z), (Y, U)) < \varepsilon$, then $Pr[P(Y) = Z] < \frac{1}{2} + \varepsilon$ for any predictor P.

Proving Claim 5

For $y \in \text{Im}(f)$, let X_y be uniformly distributed over $f^{-1}(y)$. Compute

$$\begin{split} & \text{SD}((f(X), G, G(X)), (f(X), G, U)) \\ &= \sum_{y \in \text{Im}(f)} \text{Pr}[f(X) = y] \cdot \text{SD}((y, G, G(X)|_{f(X) = y}), (y, G, U)) \quad \text{(board)} \\ &= \sum_{y \in \text{Im}(f)} \text{Pr}[f(X) = y] \cdot \text{SD}((y, G, G(X_y)), (y, G, U)) \\ &\leq \max_{y \in \text{Im}(f)} \text{SD}((y, G, G(X_y)), (y, G, U)) \\ &= \max_{y \in \text{Im}(f)} \text{SD}((G, G(X_y)), (G, U)) \end{split}$$

Since $H_{\infty}(X_y) = k$ for every $y \in Im(f)$, the leftover hash lemma yields that

$$\begin{split} \mathsf{SD}((G,G(X_y)),(G,U)) \leq & \frac{1}{2} \cdot 2^{(1-\mathsf{H}_\infty(X_y)))} \\ &= 2^{(-k-1)/2}. \Box \end{split}$$

Part III

The Computational Settings

Hard functions

An injective function has hardcore bit, only if it is "hard to invert".

Definition 8 (hard function)

```
f \colon \{0,1\}^n \mapsto \{0,1\}^n is (s,\varepsilon)-hard, if \Pr_{x \leftarrow \{0,1\}^n}\left[\operatorname{Inv}(f(x)) \in f^{-1}(f(x))\right]\right] \leq \varepsilon for any s-size Inv.
```

- Size? Length preserving?
- f is hard \implies predicting x from f(x) is hard.
- But does any hard function has an hardcore predicate?
- f is injective and not hard $\implies f$ has no hardcore predicate.

The Goldreich-Levin predicate

For
$$x, r \in \{0, 1\}^n$$
, let $\langle x, r \rangle_2 := (\sum_{i=1}^n x_i \cdot r_i) \mod 2 = \bigoplus_{i=1}^n x_i \cdot r_i$.

Theorem 9 (Goldreich-Levin)

For $f: \{0,1\}^n \mapsto \{0,1\}^n$, define $g: \{0,1\}^n \times \{0,1\}^n \mapsto \{0,1\}^n \times \{0,1\}^n$ by g(x,r) = (f(x),r). Assume f is (s,ε) -hard, then $b(x,r) := \langle x,r \rangle_2$ is an $(\frac{\varepsilon}{n^2} \cdot s, \sqrt[3]{n\varepsilon})$ -hardcore predicate of g.

- Parameters are not tight, and we ignore small terms.
- ▶ If f is $(n^{\omega(1)}, 1/n^{\omega(1)})$ -hard, then b is an $(n^{\omega(1)}, 1/n^{\omega(1)})$ -hardcore predicate of g.
- Proof by reduction: a too small P for predicting b(x, r) "too well" from (f(x), r), implies a too small inverter for f:
- ► Assume \exists s'-size P with $\Pr[P(g(X,R)) = b(X,R)] \ge \frac{1}{2} + \delta$, where hereafter R and X are iid uniformly distributed over $\{0,1\}^n$
- ▶ We prove $\exists \ (\frac{n^2}{\delta^2} \cdot s')$ -size Inv with $\Pr[\text{Inv}(f(X)) = X] \in \Omega(\delta^3/n)$.

Focusing on a good set

Claim 10

There exists set $S \subseteq \{0,1\}^n$ with

- **1.** $\frac{|\mathcal{S}|}{2^n} \geq \frac{\delta}{2}$, and
- **2.** $\Pr[P(f(x), R) = b(x, R)]] \ge \frac{1}{2} + \frac{\delta}{2}, \quad \forall x \in S.$

Proof: Let $S := \{x \in \{0,1\}^n : \Pr[P(f(x),R) = b(x,R)] \ge \frac{1}{2} + \frac{\delta}{2}\}.$

$$\Pr[\mathsf{P}(g(X,R)) = b(X,R)] \le \Pr[X \notin \mathcal{S}] \cdot \left(\frac{1}{2} + \frac{\delta}{2}\right) + \Pr[X \in \mathcal{S}]$$
$$\le \left(\frac{1}{2} + \frac{\delta}{2}\right) + \Pr[X \in \mathcal{S}].$$

We conclude the theorem's proof showing that there exists a $\frac{n^2}{\delta^2}$ -size Inv with

$$\Pr[\operatorname{Inv}(f(x)) = x] \in \Omega(\delta^2/n)$$

for every $x \in S$. In the following we fix $x \in S$.

The perfect case

$$Pr[P(f(x), R) = b(x, R)] = 1$$

In particular,
$$P(f(x), e^i) = b(x, e^i)$$
 for every $i \in [n]$, for $e^i = (\underbrace{0, \dots, 0}_{i-1}, 1, \underbrace{0, \dots, 0}_{n-i})$.

Hence,
$$x_i = \langle x, e^i \rangle_2 = b(x, e^i) = P(f(x), e^i)$$

Algorithm 11 (Inverter Inv on input $y \in Im(f)$)

Return $(P(y, e^1), \dots, P(y, e^n))$.

$$Inv(f(x)) = x$$
.

Easy case

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right]\geq 1-\tfrac{1}{4n}$$

- $P(f(x),r) \neq b(x,r)$

Fact 12

- **1.** $b(x, w) \oplus b(x, y) = b(x, w \oplus y)$, for every $w, y \in \{0, 1\}^n$.
- **2.** $\forall r \in \{0,1\}^n$, the rv $(R \oplus r)$ is uniformly distributed over $\{0,1\}^n$.

Hence, $\forall i \in [n]$:

- **1.** $x_i = b(x, e^i) = b(x, r) \oplus b(x, r \oplus e^i)$ for every $r \in \{0, 1\}^n$
- **2.** $Pr[P(f(x), R) = b(x, R) \land P(f(x), R \oplus e^i) = b(x, R \oplus e^i)] \ge 1 2 \cdot \frac{1}{4n}$

Algorithm 13 (Inverter Inv on input ν)

Return $(P(y, R) \oplus P(y, R \oplus e^1)), \dots, P(y, R) \oplus P(y, R \oplus e^n)).$

$$\Pr[Inv(f(x)) = x] \ge 1 - 2n \cdot \frac{1}{4n} = \frac{1}{2}$$

Proving Fact 12

1. For $w, y \in \{0, 1\}^n$:

$$b(x,y) \oplus b(x,w) = \left(\bigoplus_{i=1}^{n} x_{i} \cdot y_{i}\right) \oplus \left(\bigoplus_{i=1}^{n} x_{i} \cdot w_{i}\right)$$
$$= \bigoplus_{i=1}^{n} x_{i} \cdot (y_{i} \oplus w_{i})$$
$$= b(x, y \oplus w)$$

2. For $r, y \in \{0, 1\}^n$:

$$\Pr[R \oplus r = y] = \Pr[R = y \oplus r] = 2^{-n}$$

Intermediate case

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right]\geq \tfrac{3}{4}+\tfrac{\delta}{2}$$

 $P(f(x),r) \neq b(x,r)$

For any $i \in [n]$

$$\Pr[P(f(x), R) \oplus P(f(x), R \oplus e^{i}) = x_{i}]$$

$$\geq \Pr[P(f(x), R) = b(x, R) \land P(f(x), R \oplus e^{i}) = b(x, R \oplus e^{i})]$$

$$\geq 1 - \left(1 - \left(\frac{3}{4} + \frac{\delta}{2}\right)\right) - \left(1 - \left(\frac{3}{4} + \frac{\delta}{2}\right)\right) = \frac{1}{2} + \delta$$

$$\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = \frac{1}{2} + \delta$$

Algorithm 14 (lnv(y))

For every $i \in [n]$:

- 1. Sample $r^1, \ldots, r^v \in \{0,1\}^n$ uniformly at random
- **2.** Let $m_i = \text{maj}_{i \in [v]} \{ (\mathsf{P}(y, r^j) \oplus \mathsf{P}(y, r^j \oplus e^l)) \}$

Output (m_1, \ldots, m_n)

Inv's success probability

The following claim holds for "large enough" v.

Claim 15

For every $i \in [n]$, it holds that $\Pr[m_i = x_i] \ge 1 - \frac{1}{2n}$.

Hence, $\Pr[\operatorname{Inv}(f(x)) = x] \ge \frac{1}{2}$. Proof: (of claim):

- ► For $j \in [v]$, let W^j be 1, iff $P(f(x), r^j) \oplus P(f(x), r^j \oplus e^i) = x_i$.
- ▶ We need to lowerbound $\Pr\left[\sum_{j=1}^{\nu} W^{j} > \frac{\nu}{2}\right]$.
- ▶ W^j are iids and $E[W^j] \ge \frac{1}{2} + \delta$, for every $j \in [v]$

Lemma 16 (Hoeffding's inequality)

Let X^1, \ldots, X^{ν} be iids over [0, 1] with expectation μ . Then,

$$\Pr[|\frac{\sum_{j=i}^{v} X^{j}}{v} - \mu| \ge \alpha] \le 2 \cdot \exp(-2\alpha^{2}v)$$
 for every $\alpha > 0$.

► Hence, the proof follows for $v = \lceil \log(n) \cdot \frac{1}{2\delta^2} \rceil + 1$.

The actual (hard) case

$$\Pr\left[\mathsf{P}(f(x),R)=b(x,R)\right]\geq \tfrac{1}{2}+\tfrac{\delta}{2}$$

- What goes wrong?
- ▶ $Pr[P(f(x), R) \oplus P(f(x), R \oplus e^i) = x_i] \ge \delta$
- Hence, using a random guess does better than using P:-<</p>
- ▶ Idea: guess the values of $\{b(x, r^1), ..., b(x, r^v)\}$ (instead of calling $\{P(f(x), r^1), ..., P(f(x), r^v)\}$)
- Problem: tiny success probability
- Solution: choose the samples in a correlated manner

Algorithm Inv

- ▶ For $\ell \in \mathbb{N}$ ($\approx \log \frac{n}{\delta}$, to be determined later), let $v = 2^{\ell} 1$.
- ▶ In the following $\mathcal{L} \subseteq [\ell]$ stands for a non empty subset

Algorithm 17 (Inverter Inv on $y = f(x) \in \{0, 1\}^n$)

- **1.** Sample uniformly (and independently) $t^1, \ldots, t^{\ell} \in \{0, 1\}^n$
- **2.** Guess the value of $\{b(x, t^i)\}_{i \in [\ell]}$
- **3.** For all $\mathcal{L} \subseteq [\ell]$: set $r^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} t^i$ and compute $b(x, r^{\mathcal{L}}) = \bigoplus_{i \in \mathcal{L}} b(x, t^i)$.
- **4.** For all $i \in [n]$, let $m_i = \text{maj}_{\mathcal{L} \subseteq [\ell]} \{ \mathsf{P}(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) \}$
- **5.** Output $(m_1, ..., m_n)$
- ► Fix $i \in [n]$, and let $W^{\mathcal{L}}$ be 1 iff $P(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) = x_i$.
- lacksquare We need to lowerbound $\Pr\left[\sum_{\mathcal{L}\subseteq [\ell]} \mathbf{W}^{\mathcal{L}} > rac{v}{2}
 ight]$
- ▶ Problem: the $W^{\mathcal{L}}$'s are dependent!

Analyzing Inv's success probability

- **1.** Let T^1, \ldots, T^ℓ be iid and uniform over $\{0, 1\}^n$.
- **2.** For $\mathcal{L} \subseteq [\ell]$, let $R^{\mathcal{L}} = \bigoplus_{i \in \mathcal{L}} T^i$.

Claim 18

- **1.** $\forall \mathcal{L} \subseteq [\ell]$, $R^{\mathcal{L}}$ is uniformly distributed over $\{0,1\}^n$.
- 2. $\forall w, w' \in \{0, 1\}^n$ and $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$, it holds that $\Pr[R^{\mathcal{L}} = w \land R^{\mathcal{L}'} = w'] = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w'] = 2^{-2n}$.

Proof: (1) is clear. For (2), assume wlg. that $1 \in (\mathcal{L}' \setminus \mathcal{L})$.

$$\begin{split} & \Pr[R^{\mathcal{L}} = w \wedge R^{\mathcal{L}'} = w'] \\ & = \sum_{(t^2, \dots, t^\ell) \in \{0, 1\}^{(\ell-1)n}} \Pr[T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \cdot \Pr[R^{\mathcal{L}} = w \wedge R^{\mathcal{L}'} = w' \mid (T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \\ & = \sum_{(t^2, \dots, t^\ell) \colon (\bigoplus_{i \in \mathcal{L}} t^i) = w} \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \cdot \Pr[R^{\mathcal{L}'} = w' \mid (T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \\ & = \sum_{(t^2, \dots, t^\ell) \colon (\bigoplus_{i \in \mathcal{L}} t^i) = w} \Pr[(T^2, \dots, T^\ell) = (t^2, \dots, t^\ell)] \cdot 2^{-n} \\ & = 2^{-n} \cdot 2^{-n} = \Pr[R^{\mathcal{L}} = w] \cdot \Pr[R^{\mathcal{L}'} = w']. \Box \end{split}$$

Pairwise independence variables

Definition 19 (pairwise independent random variables)

A sequence of rv's X^1, \ldots, X^v is pairwise independent, if $\forall i \neq j \in [v]$ and $\forall a, b$, it holds that $\Pr[X^i = a \land X^j = b] = \Pr[X^i = a] \cdot \Pr[X^j = b]$.

- ▶ By Claim 18, $r^{\mathcal{L}}$ and $r^{\mathcal{L}'}$ (chosen by Inv) are pairwise independent for every $\mathcal{L} \neq \mathcal{L}' \subseteq [\ell]$.
- ► Hence, also $W^{\mathcal{L}}$ and $W^{\mathcal{L}'}$ are. (Recall, $W^{\mathcal{L}}$ is 1 iff $P(f(x), r^{\mathcal{L}} \oplus e^i) \oplus b(x, r^{\mathcal{L}}) = x_i)$

Lemma 20 (Chebyshev's inequality)

Let X^1,\ldots,X^V be pairwise-independent random variables with expectation μ and variance σ^2 . Then, for every $\alpha>0$: $\Pr\left[\left|\frac{\sum_{j=1}^{\nu}X^j}{\nu}-\mu\right|\geq \alpha\right]\leq \frac{\sigma^2}{\alpha^2 \nu}$.

Inv's success provability, cont.

- ▶ Assuming that Inv always guesses $\{b(x, t^i)\}$ correctly, then $\forall \mathcal{L} \subseteq [\ell]$:
 - ▶ $\mathsf{E}[W^{\mathcal{L}}] \geq \frac{1}{2} + \frac{\delta}{2}$
 - $V(W^{\mathcal{L}}) := E[(W^{\mathcal{L}})^2] E[W^{\mathcal{L}}]^2 \le 1$
- ▶ Taking $v = 2n/\delta^2$ (hence $\ell = \lceil \log \frac{2n}{\delta^2} \rceil$), by Chebyshev's inequality for $i \in [n]$ it holds that

$$\Pr[m_i = x_i] = \Pr\left[\frac{\sum_{\mathcal{L} \subseteq [\ell]} W^{\mathcal{L}}}{v} > \frac{1}{2}\right] \ge 1 - \frac{1}{2n}.$$

- ▶ By a union bound, Inv outputs x with probability $\frac{1}{2}$.
- ► Taking the guessing probability into account, yields that Inv outputs x with probability at least $2^{-\ell}/2 \in \Theta(\delta^2/n)$.
- ► Recalling that we guaranteed to work well on $\frac{\delta}{2}$ of the x's. We conclude that $\Pr[\operatorname{Inv}(f(x)) = x] \in \Theta(\delta^3/n)$.

Reflections

- Hardcore functions: Similar ideas allows to output log n "pseudorandom bits"
- Alternative proof for the leftover hash lemma:

```
Let X be a rv with over \{0,1\}^n with H_{\infty}(X) \ge k, and assume SD((R, \langle R, X \rangle_2), (R, U)) > \alpha = 2^{-c \cdot k} for some universal c > 0.
```

- \Rightarrow \exists (a possibly inefficient) D that distinguishes $(R, \langle R, X \rangle_2)$ from (R, U) with advantage α
- \implies \exists P that predicts $\langle R, X \rangle_2$ given R with prob $\frac{1}{2} + \alpha$ (?)
- \implies (by GL) \exists Inv that guesses X from nothing, with prob $\alpha^{O(1)} > 2^{-k}$

Reflections cont.

- List decoding:
 - ► Encoder $f: \{0,1\}^n \mapsto \{0,1\}^m$ and decoder g, such that for any $x \in \{0,1\}^n$ and c of hamming distance at most $(\frac{1}{2} \delta)$ from f(x): g examines poly $(1/\delta)$ symbols of c and outputs a poly $(1/\delta)$ -size list that whp contains x
 - ▶ The code we used here is known as the Hadamard code
- ▶ LPN learning parity with noise: Given polynomially many samples of the form $(R_i, \langle x, R_i \rangle_2 + \theta)$, for $R_i \leftarrow \{0, 1\}^n$ and boolean $\theta_i \sim (\frac{1}{2} - \delta, \frac{1}{2} - \delta)$, find x.
- ► The difference comparing to Goldreich-Levin no control over the R's.