PRACOVNÍ POSTUP - WORKFLOW

Analýza problému

Bilance

Výpočet

Kontrola

Problém vždy nejprve analyzujte, nakreslete si obrázek, napište co znáte, co je úkolem, zjistěte jestli máte všechny vstupy, pomocí bilance se ujistěte, že je to řešitelné, pak přejděte k výpočtu. Jako poslední krok nezapomeňte provést kontrolu výsledků (i všech mezivýsledků).

BILANCE

Platí pro libovolnou extensivní veličinu (hmotnost, vnitřní energii, látku,...)

Vstupy: přichází dovnitř přes hranice systému

Zdroj: tvorba (spotřeba) uvnitř systému Výstup: odchází ven přes hranice systému

Akumulace: růst (pokles) bilancované veličiny uvnitř

systému

Aplikace vyžaduje definovat:

Co bilancujeme (jakou veličinu + jaké složky) Jaký systém bilancujeme (hranice bilancovaného systému)

Časový úsek, pro který bilanci stanovujeme

Obecný postup při bilancování

- 1. Nakreslit bilanční schéma, označit uzly, proudy a složky
- Zapsat souhrn předpokladů 2.
- 3. (Pro systémy s reakcemi: Určení stechiometrických koeficientů chemických reakcí)
- 4. Zapsat složení všech proudů (složky, skupiny složek)
- 5. Zvolit bilancované veličiny (hmotnost, mol. množství, energie, ...)
- Matematický zápis všech známých vztahů mezi 6. veličinami (především bilanční a stavové rovnice)
- 7. Přepočet vstupních dat a vztahů na jednotný základ bilancování
- Řešení (eliminační postup, sekvenční postup, 8. soustava rovnic)
- Kompletní výpis tabulku proudů 9.
- Kontrola správnosti výpočtu (autokorekce) 10.

Klasifikace bilance

- Podle počtu složek
 - Jednosložková
 - Vícesložková
- Bez chemické reakce s chemickou reakcí
- Bez recyklu s recyklem
- Bez a s výměnnou tepla (izolovaný systém)
- V ustáleném stavu nebo s akumulací hmoty

Různé typy úloh a jejich kombinací vedou na různou složitost řešeného problému (postup řešení, matematický aparát, vstupní data)

Veličiny popisující látkové složení

 $(w_i = m_i/m_{tot})$ Hmotnostní zlomky

 $(x_i^t = n_i / n_{tot})$ Molární zlomky

 $(\Phi_i = V_i / \sum V_j)$ $(p = \sum p_i)$ Objemové zlomky Parciální tlaky

Koncentrace

Hmotnostní

 $\begin{array}{l}
(\rho_i = m_i/V) \\
(c_i = n_i/V)
\end{array}$ Molární

Objemová $(\Phi_i = V_i/V_{tot}),$ totožná s objemovými zlomky pouze v ideálních směsích, kde objem složek je aditivní

Hranice systému

Zákon zachování energie

$$\Delta \dot{H} + \Delta \dot{E}_k + \Delta \dot{E}_p = \dot{Q} - \dot{W}_S$$

Kinetickou energie a potenciální energii nebudeme uvažovat, nebudeme uvažovat ani práci systému. Budeme řešit pouze entalpickou bilanci (jednotky, které budeme řešit do umožňují) – tj. systém budeme jen ohřívat a ochlazovat – dodávat nebo odebírat teplot.

Přístupy k řešení bilancí

Sequential Modular Approach

This method arises from the engineering approach: "If the problem is too complicated, then decompose it even though it results in an iterative loop". The models of unit operations are solved in the fixed sequence step by step. The determination of the sequence is based on the graph theory. Each unit operation module accepts its input streams and calculates output streams according to the equipment parameters specified by the user.

If the recycle problems exist in the flowsheet, the program iterates on the recycle loops until all stream properties in two consecutive iterations remain unchanged (i.e. the loop is converged).

Equation-Oriented Approach

This approach has been developed to overcome the disadvantages of sequential modular methods (explicit models, knowledge about the parameters of input streams and unit operations). In practice the tasks are usually of a general character when the specification of parameters for individual streams and unit operations are spread over the whole process and as the unknown parameters can also be the parameters of feeds and/or unit operations.

Energetická bilance

Zahuštění vstupního proudu na cílový obsah sušiny v odparce

Lze nejprve vypočítat hmotnostní bilanci a následně dopočítat spotřebu tepla Sušení biomasy na cílový obsah sušiny v sušárně

Výpočet nelze rozdělit, hmotnostní a energetická bilance musí být vyčíslena současně

Teplota [°C, K, °F] je stavová veličina, která měří průměrnou kinetickou energii pohybujících se molekul v látce, zatímco $\operatorname{teplo} Q$ [J] je dějová veličina a forma energie, která se přenáší mezi tělesy o různých teplotách, a to z teplejšího do chladnějšího. **Výkon** \dot{Q} [W = J/s] (nebo též tepelný tok) je množství tepla přenesené za jednotku času (měřené ve W). Tepelný tok je tedy míra rychlosti přenosu tepla, přičemž tepelný tok je přímo úměrný teplotnímu rozdílu, který je hnací silou toku. **hustota tepelného toku** \dot{q} [W/m²] výkon vztažený na plochu. Pozor, někdy se vztahuje na délku [W/m]. Watthodina [Wh] je jednotka energie. V praxi se nejčastěji používá její násobek kilowatthodina, kWh (1000 watthodin) pro měření spotřeby elektřiny. 1 Wh = 3600 J.

Entalpie H [J] - je fyzikální veličina rozměru energie

Měrná entalpie h [J/kg] – entalpie vztažená na 1 kg (počítáme jako c_p*dT – pokud není změna fáze) Měrná tepelná kapacita c_p [J/(kg.K)] - množství tepla potřebného k ohřátí 1 kilogramu látky o 1 teplotní stupeň (1 kelvin nebo 1 stupeň Celsia) – je závislá na teplotě

Měrné skupenské teplo varu l_v [J/kg] - teplo, které přijme 1 kilogram kapaliny, jestliže se za teploty varu celý přemění na plyn téže teploty. Naopak teplo, které odevzdá 1 kilogram plynu, pokud se celý přemění na kapalinu o téže teplotě, se nazývá měrné skupenské teplo kondenzace (též měrné skupenské teplo zkapalnění). Hodnota měrného skupenského tepla kondenzace je pro danou látku stejná jako hodnota měrného skupenského tepla varu.

Parní podíl (suchost, vapor fraction) v_f – poměr hmotnosti páry k celkové hmotnosti dvoufázové (kapalina-pára) směsi, často vyjádřený jako desetinné číslo nebo procento. Udává, jaká část látky je v nasycené směsi v plynném stavu, a pohybuje se v rozmezí od 0 pro čistou kapalinu do 1 pro čistou páru.

 c_p (stejně jako jiné vlastnosti závisí na teplotě a tlaku) může ale pro naše výpočty uvažovat pro vodu je cca 4180 J/(kg.K), pro vzduch 1000 J/(kg.K), pro spaliny 1300 J/(kg.K). Výparné teplo vody 2257 kJ/kg.

Výpočet entalpické bilance

Médium teče (m je v kg/s) dostaneme tepelný tok (např. výměník tepla)

 $\dot{Q} = \dot{m} \cdot h \ [W = I/s]$

Médium neteče (m je v kg) dostaneme potřebné teplo (např. rychlovarná konvice) $Q = m \cdot h[J]$

Ohřev kapaliny (plynu):

 $\dot{Q} = \dot{m} \cdot c_n \cdot \Delta T \ [W = J/s]$

 $Q = m \cdot c_p \cdot \Delta T [J]$

Odpaření syté kapaliny:

 $\dot{Q} = \dot{m} \cdot l_v \ [W = J/s]$

 $Q = m \cdot l_v [J]$

Částečné odpaření syté kapaliny: $\dot{Q} = \dot{m} \cdot v_f l_v \; [W = J/s]$

 $Q = m \cdot v_f l_v \cdot \Delta T [J]$

Ohřev kapaliny na bod varu,

$$\dot{Q} = \dot{m} \cdot c_p \cdot (T_{bp} - T_{in}) + \dot{m} \cdot l_v + \dot{m} \cdot c_p \cdot (T_{out} - T_{dp})$$

odpaření a přehřátí:

T_{bp} je bod varu (sytá kapalina), T_{dp} je rosný bod (sytý pára) – u čistých složek jsou si rovny, u směsí je $T_{bp} < T_{dp}$

Příkon, výkon, účinnost

$$\eta = \frac{Q}{P_0}$$

P₀ – příkon [W] – na štítku přístroje P – výkon [W] – dodáno do zařízení η – účinnost [-]

Směšovač (mísič) – (průtočný nebo dávkový)

- · Několik proudů vstupuje
- · Jeden proud vystupuje
- Hmotnostní bilance: $\sum_{vstupy} \dot{m}_i = \dot{m}_{v\acute{y}stup}$ Bilance složek: $\sum_{vstupy} \dot{m}_{A,i} = \dot{m}_{A,v\acute{y}stup}$
 - pro ∀A∈{komponenty}
- Energetická bilance: $\sum_{vstupy} \dot{m_i} h_i = \dot{m}_{v\acute{y}stup} h_{v\acute{y}stup}$
- Pomocné vztahy součty hmotnostních zlomků:

$$\sum_{chem.látky} w_j = 1$$
 pro všechny proudy

- Praktické příklady:
 - Spojení potrubí
 - Proudové čerpadlo

DĚLIČ

Dělič – (průtočný nebo dávkový)

- Jeden proud vstupuje
- Několik proudů vystupuje
- Hmotnostní bilance: $\dot{m}_{vstup} = \sum_{v\acute{v}stup} \dot{m}_i$

Koncentrace všech složek ve všech proudech jsou stejné. O rozdělení toku rozhoduje "dělící poměr" nebo vyplyne z požadavků zadaných v jiných místech schématu.

- Pomocné vztahy
 - · Součty hmotnostních zlomků:

$$\sum_{chem.lst ky} w_j = 1$$
 pro všechny proudy

- Praktické příklady:
 - Rozvětvení potrubí

Pokud médium neproudí, je to bez teček a v Joulech

Separátor – (průtočný nebo dávkový)

- Jeden proud vstupuje
- Několik proudů vystupuje
- Hmotnostní bilance: $\dot{m}_{vstup} = \sum_{v \not vstup y} \dot{m}_i$ • Bilance složek: $\dot{m}_{A,vstup} = \sum_{v \not vstup y} \dot{m}_{A,i}$

$$pro \forall A \in \{komponenty\}$$

Koncentrace všech složek ve všech proudech liší. O rozdělení toku rozhoduje "dělící poměr jednotlivých složek".

- Energetická bilance: $\dot{m}_{vstup}h_{vstup} = \sum_{v
 eq stup y} \dot{m}_i h_i$
- Pomocné vztahy
 - Součty hmotnostních zlomků:

$$\sum_{chem.látkv} w_i = 1$$
 pro všechny proudy

- Praktické příklady:
 - Rozvětvení potrubí

Ohřívač

- · Jeden proud vstupuje i vystupuje
- Hmotnostní bilance: $\dot{m}_{vstup} = \dot{m}_{v\acute{v}stup}$
- Energetická bilance: $\dot{m}_{vstup}h_{vstup}+\dot{\dot{Q}}=\dot{m}_{v\acute{v}stup}h_{v\acute{v}stup}$

Pokud médium neproudí (konvice), je to bez teček a v Joulech

Chladič

- · Jeden proud vstupuje i vystupuje
- Hmotnostní bilance: $\dot{m}_{vstup} = \dot{m}_{v\acute{y}stup}$
- Energetická bilance: $\dot{m}_{vstup}h_{vstup}=\dot{m}_{v\acute{\gamma}stup}h_{v\acute{\gamma}stup}+\dot{Q}$

Pokud médium neproudí (lednice), je to bez teček a v Joulech

Výměník tepla (rekuperátor)

- Dva proudy dovnitř i ven, bez směšování
- Praktické příklady
 - Různé typy výměníků podle konstrukce a aplikace (protiproudé, souproudé, deskové, trubkové, koaxiální, kondenzátory, atd.)
- Hmotnostní bilance:

$$\dot{m}_1 = \dot{m}_2 \qquad \qquad \dot{m}_3 = \dot{m}_4$$

Energetická bilance:
$$\dot{m}_1 h_1 + \dot{m}_3 h_3 = \dot{m}_2 h_2 + \dot{m}_4 h_4$$

$$\dot{m}_1 \Delta h_{21} = \dot{m}_2 \Delta h_{43}$$

$$\dot{Q}_1 = \dot{Q}_2$$

Chemický reaktor - bilance systému s chemickou reakcí

Chemická reakce (globální) Reaktanty – vstupují do reakce Produkty – vystupují z reakce Zobrazování reakcí ve schématech – fiktivní výstup a vstup Spalování metanu (CH4)

Průtoky složek

Základ bilance = např. 1 kmol CH4 Předpoklad – 100% konverze – X_A = 1

Bilance reakce:

$$n_{4,CH4} = 1 * X_{A *} n_{4,CH4}$$

$$n_{4,O2} = 1 * X_{A} * n_{4,CH4}$$

$$n_{5,CO2} = 1* X_{A*} n_{4,CH4}$$

$$n_{5,H2O} = 2* X_{A*} n_{4,CH4}$$

$$\sum n_{i,s} = \sum n_{j,s}$$

i číslo vstupního proudu *j* číslo výstupního proudu s složka

Bilance složek:

CH4:
$$n_{1,CH4}+0+0=0+n_{4,CH4}$$

O2: $0+n_{1,O2}+0=n_{3,O2}+n_{4,O2}$
N2: $0+n_{1,N2}+0=n_{3,N2}+0$
CO2: $0+0+n_{5,CO2}=n_{3,CO2}+0$
H2O: $0+0+n_{5,CO2}=n_{3,CO2}+0$

Stupeň konverze X_A - poměr spotřebované složky (počet molů) v chemické reakci k přiváděné složce (počet molů) do reakce ($n_{A,4}/(n_{A,1}+n_{A,2})$

Přebytek složky Z_B - poměr skutečně přiváděného množství složky ku stechiometrické spotřebě $(n_{B,1}/n_{B,4})$ – kde $n_{B,4}$ = $n_{A,5}$ * b/a

Příklady aplikace entalpické bilance

[a] $A + [b] B \rightarrow [c] C + [d] D$

Tepelná bilance reakce (zabarvení): Vyjádřeno: reakčním teplem ΔH_r (při určité T) $\Delta H_r > 0$ endotermická reakce (spotřeba tepla) $\Delta H_r < 0$ exotermická reakce (uvolnění tepla)

Látková bilance: n1,A+0 =0+ n4,A n1,B+0 =0+ n4,B 0 + n3,C= n3,C + 0 0 + n3 D= n3 D + 0 Energetická bilance: $\Delta H + \Delta + E_{K} + \Delta + E_{P} = Q - W_{S}$ $\Delta H = \xi^* \Delta H_r + \sum n_{in} h_{in} - \sum n_{out} h_{out}$

0 + n3,D= n3,D + 0 Výpočet tepelného zabarven Doplňkové rovnice: stechiometrie reakce, obecně pak dále: konverze, recirkulované množství,.... Výpočet tepelného zabarven bilance systému s chemicko vysvětlena v předmětu Inžer

ξ...rozsah reakce [kmol]....analogie základu hmotnostní bilance Výpočet tepelného zabarvení reakcí a energetická bilance systému s chemickou reakcí je detailně vysvětlena v předmětu <mark>Inženýrská termodynamika</mark>

$$\begin{array}{ccc} CH_4(g) + 2\,O_2(g) &\longrightarrow & CO_2(g) + 2\,H_2O(l); & \Delta \hat{H}_{r1}(25^{\circ}C) = & -890.3 \text{ kJ/mol} \\ 2\,CH_4(g) + 4\,O_2(g) &\longrightarrow 2\,CO_2(g) + 4H_2O(l); & \Delta \hat{H}_{r2}(25^{\circ}C) = & -1780.6 \text{ kJ/mol} \end{array}$$

Rozložení složitého procesu na základní jednotky

Složité

Toto už jednoduše vyřešíme

MECHANISMY PŘENOSU TEPLA

Mechanismy přenosu tepla

R – tepelný odpor

λ – tepelná vodivost [W/(m.K)]

L – délka potrubí [m]

S – tloušťka stěny [m]

 α – součinitel přestupu tepla, W/(m2.K)

Vedení tepla (kondukce) – Fourierův zákon

Přenos tepelné energie interakcí mezi sousedními částicemi (atomy, molekulami) bez makroskopického pohybu hmoty.

Pro desku
$$\dot{Q}=\frac{\lambda A}{s}(T_{s1}-T_{s2})$$
 $R_{th,kond}=\frac{s}{\lambda A}$ Pro trubku $\dot{Q}=\frac{2\pi\lambda L}{\ln(r_2/r_1)}(T_{s1}-T_{s2})$ $R_{th,kond}=\frac{\ln(r_2/r_1)}{2\pi\lambda L}$

Proudění tepla (konvekce) – Newtonův zákon

Přenos tepla mezi povrchem pevného tělesa a okolním tekutým prostředím v pohybu.

$$\dot{Q} = \alpha A (T_s - T_{sf})$$
 $R_{konv} = \frac{1}{\lambda A}$

a) Volná (přirozená) konvekce

Pohyb tekutiny vyvolán pouze vztlakovými silami způsobenými rozdíly hustoty při ohřevu/ochlazení.

- Nízká rychlost proudění
- • α = 3–15 W/(m²·K) pro vzduch
- Příklad: radiátor, ohřátý vzduch stoupá

b) Nucená konvekce

Pohyb tekutiny vyvolán externím zdrojem (ventilátor, čerpadlo, vítr).

- Vyšší rychlost proudění
- • α = desítky až stovky W/(m²·K) pro vzduch
- • α = tisíce až desetitisíce W/(m²·K) pro vodu
- •Příklad: chladič procesoru, tepelný výměník

Sálání (radiace) – Stefan-Boltzmannův zákon

Přenos tepla elektromagnetickým vlněním (IR spektrum) emitovaným každým tělesem s teplotou nad 0 K.

Konstanta: $\sigma = 5,67 \times 10^{-8} \text{ W/(m}^2 \cdot \text{K}^4)$

 $\dot{Q} = \varepsilon \sigma A \left(T_S^4 - T_{okoli}^4\right)$ Emisivita: ε = 0,1 (lesklý kov) až 1,0 (černé těleso)

Tento vztah platí pro těleso zcela obklopené velkým prostorem o teplotě T_{okoli}

$$\alpha = \varepsilon \sigma \frac{T_{s}^{4} - T_{okoli}^{4}}{T_{s} - T_{okoli}}$$
 Tento součinitel přestupu tepla (HTC) přičteme k HTC konvekcí.

Celkový tepelný tok

$$\dot{Q}_{celk} = \dot{Q}_{kondukce} + \dot{Q}_{konvekce} + \dot{Q}_{radiace}$$

$$\dot{Q}_{celk} = \frac{T_1 - T_2}{R_{celk}} = \frac{T_1 - T_2}{R_{konvekce,1} + \sum R_{konduknce,i} + R_{konvekce}} \qquad \qquad \textbf{\textit{R}-tepeln\'y odpor}$$

Teplo může prudit z jedné tekutiny do druhé přes několik druhů stěn současně – např. stěna trubky, izolace, druhá izolace, kryt izolace.

Se vztahy uvedenými na této stránce můžete vypočítat tepelné ztráty zařízení nebo budovy do okolí a navrhnout izolace, tak aby: a) byla dodržena dovolená tepelná ztráta, b) nebyla překročena maximální dovolená teplota povrchu izolace.

TEPELNÁ ZTRÁTA / IZOLACE

Předchozí vztahy vyjádřené pomocí hustoty tepelného toku $\dot{q} \; [W/m^2]$

Jednoduchá stěna

Vícevrstvá stěna

Vyjádřeno pomocí tepelných odporů

$$\dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \frac{s}{\lambda_w} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{w,i}} + \frac{1}{\alpha_2}} \left[W/m^2 \right] \quad \dot{q} = \frac{T_{f1} - T_{f2}}{\frac{1}{\alpha_1} + \sum_{i=1}^n \frac{s_i}{\lambda_{$$

kde: s_i - tloušťka i-té vrstvy, λ_i - tepelná vodivost

Válcová stěna – vztaženo na jednotku délky

Tepelné odpory na jednotku délky [m·K/W]:

$$\dot{q} = \frac{T_{f1} - T_{f2}}{\sum R_{th,l}} \; [W/m] \qquad \text{Přestup uvnitř: } R_{i,l} = \frac{1}{\pi \cdot d_1 \cdot \alpha_i} \\ \text{Vedení stěnou: } R_{p,l} = \frac{\ln(d_2/d_1)}{2 \cdot \pi \cdot \lambda_p} \\ \text{Vedení izolací: } R_{iz,l} = \frac{\ln(d_3/d_2)}{2 \cdot \pi \cdot \lambda_{iz}}$$

- Přestup ven: $R_{e,l}=rac{1}{\pi\cdot d_3\cdot lpha_s}$

Postup výpočtu tepelné ztráty

Iterativní postup (kvůli neznámé povrchové teplotě)

- 1. Zadání vstupních parametrů (geometrie, teploty, materiálové vlastnosti)
- 2. Odhad povrchové teploty (T_s (odhad))
- 3. Výpočet součinitelů přestupu tepla
- 4. Výpočet tepelné ztráty a nové povrchové teploty (T_s (new))
- 5. Kontrola konvergence opakování předchozích bodů až se $(T_s^{\text{(odhad)}}) = (T_s^{\text{(new)}})$

Pokud známe povrchovou teplot z měření, tak tepelnou ztrátu dopočítáme přímo bez iterace.

U reálného potrubí se teplota uvnitř mění po délce (ochlazuje se vlivem tepelných ztrát) - komplikace - nebudeme uvažovat.

Stanovení tloušťky izolace

Kritéria:

- Bezpečnostní: maximální povrchová teplot
- Ekonomické: maximální tepelná ztráta
- Zabránění kondenzace na povrchu potrubí Ts > T rosného bodu

Iterativní postup

- 1. Odhad vnějšího průměru izolace (izolací)
- 2. Výpočet součinitelů přestupu tepla pro (T_{s. max})
- 3. Výpočet tepelné ztráty (viz výše)
- 4. Porovnání a korekce vnějšího průměru izolace
- 5. Opakování až do konvergence.

Bilanční rovnice pro jednotlivé proudy

$$\dot{Q}_1 = \dot{m}_1 c_{p1}^- (T_{11} - T_{12})$$
 $\dot{Q}_2 = \dot{m}_2 c_{p2}^- (T_{22} - T_{21})$

Zároveň musí platit

$$\dot{Q}_1 = \dot{Q}_2 = \dot{Q}$$

kde hodnota Q je výkon [W] výměníku a určí se z výkonové (přenosové) rovnice

Přenosová rovnice

$$\dot{Q} = U \cdot A \cdot \Delta T_M$$

kde: U součinitel prostupu tepla (někdy označovaný i písmenem k), $W/(m^2.K)$

A plocha výměny tepla, m^2 ΔT_M střední teplotní rozdíl, K

Střední teplotní rozdíl ΔT_M má tvar

Výpočet středního teplotního rozdílu závisí na tom, jestli máme souproudý nebo protiproudý výměník tepla.

$$\Delta T_M = \Delta T_{ln} F$$

kde: F korekční faktor (pro křížový tok, vícechodý výměník), -

 ΔT_{In} logaritmický teplotní rozdíl, K

Vztah pro výpočet logaritmického teplotního rozdílu je:

$$\Delta T_{ln} = \frac{\Delta T_{\max} - \Delta T_{\min}}{\ln \frac{\Delta T_{\max}}{\Delta T_{\min}}}$$

V případě, že se hodnoty $\Delta T_{max} = \Delta T_{min}$, tak hodnota středního logaritmického rozdíle je rovna této hodnotě.

Součinitel prostupu tepla

Vztah pro výpočet součinitele prostupu tepla má různý tvar pro deskové výměníky, pro trubkové výměníky s hladkými trubkami a pro trubkové výměníky s žebrovanými trubkami:

- pro deskové výměníky

$$U = \frac{1}{\left(\frac{1}{\alpha_i} + R_{f1}\right) + \frac{\delta}{\lambda_w} + \left(\frac{1}{\alpha_o} + R_{f2}\right)}$$

- pro trubkové výměníky

$$U_o = \frac{1}{\frac{d_o}{d_i} \left(\frac{1}{\alpha_i} + R_{fi}\right) + \frac{d_o}{2\lambda_w} ln\left(\frac{d_o}{d_i}\right) + \left(\frac{1}{\alpha_o} + R_{fo}\right)}$$

- pro trubkové žebrované výměníky

$$U_{o} = \frac{1}{\frac{A_{t}}{A_{i}} \left(\frac{1}{\alpha_{i}} + R_{fi}\right) + \frac{A_{t}}{A_{i}} \frac{d_{i}}{2\lambda_{w}} ln\left(\frac{d_{o}}{d_{i}}\right)\right) + \frac{1}{\eta_{s}} \left(\frac{1}{\alpha_{o}} + R_{fo}\right)}$$

kde η_s je celková účinnost žebrování.

Součinitel prostupu tepla je složité počítat. My jej budeme odhadovat – vybírat z tabulky. I součinitel přestupu tepla.

U

... overall heat transfer coefficient, $W \cdot m^{\text{--}2} \cdot K^{\text{--}1}$

Α

... heat exchange area, m²

 ΔT_{M}

... mean temperature difference, K

 a_1, a_2

... film heat transfer coefficients, $W \cdot m^{\text{--}2} \cdot K^{\text{--}1}$

 R_1, R_2

... thermal resistances (e.g. due to fouling), m²·K·W⁻¹

, ...

... wall thickness, m

 k_{w}

... thermal conductivity of wall material, $W \cdot m^{\text{--}1} \cdot K^{\text{--}1}$

Tabulky

Approximate Overall Heat Transfer Coefficients for Preliminary Analysis

Fluids	U (W/m ² · K)
Water to water	1300-2500
Ammonia to water	1000-2500
Gases to water	10-250
Water to compressed air	50-170
Water to lubricating oil	110-340
Light organics ($\mu < 5 \times 10^{-4} \text{ Ns/m}^2$) to water	370-750
Medium organics ($5 \times 10^{-4} < \mu < 10 \times 10^{-4} \text{ Ns/m}^2$) to water	240650
Heavy organics ($\mu > 10 \times 10^{-4} \text{Ns/m}^2$) to lubricating oil	25-400
Steam to water	2200-3500
Steam to ammonia	1000-3400
Water to condensing ammonia	850-1500
Water to boiling Freon-12	280-1000
Steam to gases	25-240
Steam to light organics	490-1000
Steam to medium organics	250-500
Steam to heavy organics	" 30–300
Light organics to light organics	200-350
Medium organics to medium organics	100-300
Heavy organics to heavy organics	50200
Light organics to heavy organics	50-200
Heavy organics to light organics	150-300
Crude oil to gas oil	130-320
Plate heat exchangers: water to water	3000-4000
Evaporators: steam/water	1500-6000
Evaporators: steam/other fluids	300-2000
Evaporators of refrigeration	300-1000
Condensers: steam/water	1000-4000
Condensers: steam/other fluids	300-1000
Gas boiler	10-50
Oil bath for heating	30-550

Tabulka 4-1 Součinitele přestupu tepla (α) a zanášení (R_z) pro pracovní látky při jednofázové výměně tepla

pracovní látka	upřesňující údaj	α[W m ⁻² K ⁻¹]	R _z [m ² K W ⁻¹]
voda a vodní roztoky	kapalina	5000 až 7500	1.10 ⁻⁴ až 2,5.10 ⁻⁴
čpavek	kapalina	6000 až 8000	0 až 1.10 ⁻⁴
lehké organické látky ^{a)}	kapalina	1500 až 2000	1.10 ⁻⁴ až 2.10 ⁻⁴
středně těžké organické látky ^{b)}	dně těžké organické látky ^{b)} kapalina 750 až 1500		1,5.10 ⁻⁴ až 4.10 ⁻⁴
těžké organické látky ^{c)}	kapalina - ohřev	250 až 750	2.10 ⁻⁴ až 1.10 ⁻⁴
tezae organiene miky	- chlazení	150 až 400	2.10 ⁻⁴ až 1.10 ⁻³
velmi těžké organické	kapalina - ohřev	100 až 300	4.10 ⁻⁴ až 3.10 ⁻³
látky ^{d)}	- chlazení	60 až 150	4.10 ⁻⁴ až 3.10 ⁻³
	tlak 0.1 až 0.2 MPa	80 až 125	0 až 1.10 ⁻⁴
plyn ⁶⁾	tlak 1 MPa	250 až 400	0 až 1.10 ⁻⁴
100	tlak 10 MPa	500 až 800	0 až 1.10 ⁻⁴

Tabulka 4-2 Součinitele přestupu tepla (α) a zanášení (R₂)pro pracovní látky při kondenzaci

pracovní látka	upřesňující údaj	α [W m ⁻² K ⁻¹]	Rz [m2K W-1]
vodní pára, čpavek 1)	tlak 0.01 MPa	2000 až 12000	0 až 1.10 ⁻⁴
vodní pára, čpavek	tlak 0.1 MPa	10000 až 15000	0 až 1.10 ⁻⁴
vodní pára, čpavek	tlak 1 MPa	15000 až 25000	0 až 1.10 ⁻⁴
lehké organické látky *.0	čistá složka tlak 0.01 MPa	750 až 2000	0 až 1.10 ⁻⁴
lehké organické látky ^{a,t)}	čistá složka tlak 0.1 MPa	2000 až 4000	0 až 1.10 ⁻⁴
lehké organické látky ^{a,f)}	čistá složka tlak 1 MPa	3000 až 7000	0 až 1.10 ⁻⁴
středně těžké organické látky ^{b,g)}	čistá složka tlak 0.1 MPa	1500 až 4000	1.10 ⁻⁴ až 3.10 ⁻⁴
těžké organické látky ^{c.g)}	čistá složka tlak 0.1 MPa	600 až 2000	2.10 ⁻⁴ až 5.10 ⁻⁴
lehké vícesložkové směsi	tlak 0.1 MPa	1000 až 2500	0 až 2.10 ⁻⁴
středně těžké vícesložkové směsi	tlak 0.1 MPa	600 až 1500	1.10 ⁻⁴ až 4.10 ⁻⁴
těžké vícesložkové směsi	tlak 0.1 MPa	300 až 600	2.10 ⁻⁴ až 8.10 ⁻⁴

Typical Film Heat Transfer Coefficients for Shell-and-Tube Heat Exchanger

	Fluid Condition	W/(m² ⋅ K)	
Sensible Heat Transfer			
Water	Liquid	5,000-7,500	
Ammonia	Liquid	6,000-8,000	
Light organics	Liquid	1,500-2,000	
Medium organics	Liquid	750-1,500	
Heavy organics	Liquid		
ricavy organics	Heating	250-750	
	Cooling	150-400	
Very heavy organics	Liquid		
very nearly organics	Heating	100-300	
	Cooling	60-150	
Gas	1-2 bar abs	80125	
Gas	10 bar abs	250-400	
Gas	100 bar abs	500-800	
Condensing Heat Transfer			
Steam, ammonia	No noncondensable	8,000-12,000	
Light organics	Pure component, 0.1 bar abs, no noncondensable	2,000–5,000	
Light organics	0.1 bar, 4% noncondensable	750-1,000	
Medium organics	Pure or narrow condensing range, 1 bar abs	1,500-4,000	
Heavy organics	Narrow condensing range, 1 bar abs	600-2,000	
Light multicomponent mixture, all condensable	Medium condensing range, 1 bar abs	1,000–2,500	
Medium multicomponent mixture, all condensable	Medium condensing range, 1 bar abs	600–1,500	
Heavy multicomponent mixture, all condensable	Medium condensing range, 1 bar abs	300–600	
Vaporizing Heat Transfer			
Water	Pressure < 5 bar abs, $\Delta T = 25$ K	5,000-10,000	
Water	Pressure 5–100 bar abs, $\Delta T = 20 \text{ K}$	4,000-15,000	
Ammonia	Pressure < 30 bar abs, $\Delta T = 20 \text{ K}$	3,000-5,000	
Light organics	Pure component, pressure < 30 bar abs, $\Delta T = 20$ K	2,000-4,000	
Light organics	Narrow boiling range, pressure 20–150 bar abs, $\Delta T = 15$ –20 K	750–3,000	
Medium organics	Narrow boiling range, pressure < 20 bar abs, $\Delta T_{max} = 15 \text{ K}$	600–2,500	
Heavy organics	Narrrow boiling range, pressure < 20 bar abs, $\Delta T_{max} = 15 \text{ K}$	400–1,500	

Teplotní křivky

Základní vztahy

Při výpočtu izolace potrubí se používají vztahy pro prostup tepla složenou (válcovou) stěnou, vztah pro výpočet celkových tepelných ztrát a Newtonův zákon (konvekce).

V případě, že je známa teplota média proudícího uvnitř trubky, platí pro celkové tepelné ztráty [W]:

$$Q_{ztr} = U \cdot L \cdot (t_{in} - t_{out})$$

$$U = \frac{\pi}{\alpha_i \cdot (d - 2 \cdot s_t) + \frac{1}{2 \cdot \lambda_W} \cdot ln\left(\frac{d}{d - 2 \cdot s_t}\right) + \frac{1}{2 \cdot \lambda_{iz}} \cdot ln\left(\frac{d + 2 \cdot s_{iz}}{d}\right) + \frac{1}{\alpha_{out}\left(d + 2 \cdot s_{iz}\right)}}$$

nebo v případě, že známe teplotu povrchu potrubí

$$Q_{ztr} = k \cdot L \cdot (t_{iz} - t_{out}) \qquad \qquad U = \frac{\pi}{\frac{1}{2 \cdot \lambda_{iz}} \cdot ln(\frac{d + 2 \cdot s_{iz}}{d}) + \frac{1}{\alpha_{out}(d + 2 \cdot s_{iz})}}$$

Vyhláška č. 193/2007

Vyhláška č. 193/2007 stanovuje (s určitými výjimkami) povinnost opatřit rozvody pro vytápění a TUV tepelnou izolací a definuje tzv. "určující součinitele prostupu tepla" v závislosti na DN izolovaných rozvodů. Vypočtený součinitel prostupu tepla podle rovnic (2) nebo (4) musí být menší než součinitel prostupu tepla daný tabulkou 1.

Tab.1 Určující součinitele prostupu tepla pro vnitřní rozvody

Pro vnitřní rozvody plastových a měděných potrubí se tloušťka tepelné izolace volí podle vnějšího průměru potrubí nejbližšího vnějšímu průměru potrubí řady DN.

Pro tepelné izolace rozvodů se použije materiál se součinitelem tepelné vodivosti λ_{iz} u rozvodů menší nebo roven 0,045 W/(m.K) a u vnitřních rozvodů menší nebo roven 0,040 W/(m.K) (hodnoty λ jsou udávány při teplotě 0 °C), pokud to nevylučují bezpečnostně technické požadavky.

DN [mm]	k [W/(m.K)]
[111111]	[**/(111.113/]
DN 10 - DN 15	0.15
DN 20 - DN 32	0.18
DN 40 - DN 65	0.27
DN 80 - DN 125	0.34
DN 150 - DN 200	0.40

Výpočty teploty izolace

$$t_{iz} = t_o + \frac{\textit{Q}_{\textit{ztr}}}{\alpha_o \cdot \pi \cdot (\textit{d} + 2 \cdot \textit{s}_{iz}) \cdot \textit{L}}$$

Výpočet ekonomické tloušťky izolace

U neizolovaného potrubí, ve kterém je procesní látka o vysoké teplotě, je nutné uvažovat i tepelné ztráty způsobené radiací. Ve výpočtu izolovaného potrubí se pro velkou náročnost většinou neuvažují. U izolovaného potrubí jsou ztráty radiací většinou zanedbatelné. I neizolovaného potrubí je můžeme snížit vhodným nátěrem.

Teplotní křivky

Vstupní data		
tp	450	°C
tout	12	°C
d2	3.00E-01	m
lambda_iz	0.35	W/(m.K)
alfa_e	10	W/(m2.K)
L	120	m
emisivita neizolovaného		
potrubí	0.8	-
emisivita izolovaného potrubí	0.8	-
Izolace		
Tloušťka izolace	0.11	m
Tepelná vodivost izolace	0.35	W/(m.K)
Provozní data		
Cena tepla	2.00E-02	Kč/MJ
Počet hodin provozu za rok	8600	hod/rok
Počet let provozu	10	rok
Cena izolace	7	Kč/m2.mm
Náklady na údržbu	15	% z investičních
Odpisy	lineární	

Neizolované potrubí		
Ztráty neizolovaného potro	ubí	
Qkonvekcí	495366.33	W
Qradiací	210365.86	W
Qcelkové	705732.19	W
Ztráty za rok provozu	J	Kč
konvekcí	15336541564974.50	306 730.83
radiací	6512926946367.64	130 258.54
celkové	21849468511342.10	436 989.37
Ztráty za celou dobu provo	ozu J	Kč
konvekcí	153365415649745.00	3 067 308.31 Kč
radiací	65129269463676.40	1 302 585.39 Kč
celkové	218494685113421.00	4 369 893.70 Kč

Ztráty za celou dobu provozu J Kč konvekcí 153365415649745.00 3 067 308.3 radiací 65129269463676.40 1 302 585.3 celkové 218494685113421.00 4 369 893.7 Izolované potrubí Teplota povrchu 98.12 °C Ztráty izolovaného potrubí	9 Kč
celkové 218494685113421.00 4 369 893.70 Izolované potrubí Teplota povrchu 98.12 °C	
Izolované potrubí Teplota povrchu 98.12 °C	0 Kč
Teplota povrchu 98.12 °C	
Teplota povrchu 98.12 °C	
Ztráty izolovaného potruhí	
Etiaty izolovationo potitubi	
Qkonvekcí 168821.29 W	
Qradiací 823.95 W	
Qcelkové 169645.24 W	
Ztráty za rok provozu J Kč	
konvekcí 5226707222859.65 104 534.1	4
radiací 25509497391.23 510.19	
celkové 5252216720250.88 105 044.3	13
Ztráty za celou dobu provozu J Kč	
konvekcí 52267072228596.50 1045341.4	
radiací 255094973912.31 5101.90	
celkové 52522167202508.80 1 050 443.34	4 Kc
Úspory Úspora za rok 331945.04 Kč	
Úspory celkem 3319450.36 Kč	
Náklady	
Náklady roční 37736.81 Kč	
Náklady celkové 377368.11 Kč	
Zisk	
Čistý roční zisk 294208.22 Kč	
Čistý celkový zisk 2942082.25 Kč	
Návratnost	
Procentuální v jednom roce 77.96319228 %	
Návratnost 1.28265656 let	

Minimální tloušťka izolace zabraňující kondenzaci

Pokud je teplota povrchu potrubí menší jak teplota rosného bodu okolního prostředí, docházelo by na povrchu potrubí ke kondenzaci vodní páry obsažené v okolním prostředí. Proto je nutné potrubí izolovat.

Při výpočtu minimální tloušťky izolace pro zamezení kondenzace vodních par na povrchu potrubí hledáme takovou tloušťku izolace, při které je teplota povrchu izolace rovna teplotě rosného bodu okolního vzduchu o dané teplotě a relativní vlhkosti.

Pro výpočet teploty rosného bodu podle ČSN 730540-3 platí:

p _d < 610.75 Pa	p _d ≥ 610.75 Pa	
$t_{rb} = \frac{273 \cdot \ln(p_d) - 1751.21055}{28.9205 - \ln(p_d^*)}$	$t_{rb} = \frac{236 \cdot \ln(p_d) - 1513.867}{23.59 - \ln(p_d^*)}$	(11)

kde

$$-20 \text{ °C} \le t_{\text{out}} < 0 \text{ °C} \qquad 0 \text{ °C} \le t_{\text{out}} \le 30 \text{ °C} \qquad 30 \text{ °C} < t_{\text{out}} \le 60 \text{ °C}$$

$$p_{d}^{"} = 4.689 \cdot \left(1.486 + \frac{t_{\text{out}}}{100}\right)^{12.30} \qquad p_{d}^{"} = 288.68 \cdot \left(1.098 + \frac{t_{\text{out}}}{100}\right)^{8.02} \qquad p_{d}^{"} = 931.46 \cdot \left(0.937 + \frac{t_{\text{out}}}{100}\right)^{7.125}$$

$$rh = \frac{p_d}{p_d''}$$

V tabulce 2 jsou uvedeny doporučené hodnoty relativní vlhkosti pro různá místa.

suché šachty / kanály	65 %
prostor pod stropy	65 %
kanceláře, školy, nemocnice	70 %
technické pracoviště	75 %
Špatně větrané podzemní parkoviště	85 %
vlhké prostory, šachty, kanály	85 %
Sklepní prostory	85 %
větrané podzemní parkoviště	89%
potravinářský průmysl	90 %

Pro určení minimální tloušťky izolace tedy musí platit, že teplota povrchu izolace musí být rovna teplotě rosného bodu vodní páry okolního vzduchu při daných podmínkách. K tomuto výpočtu využijeme vztahu (5), ve kterém položíme $t_{iz} = t_{rb}$. Rovnice potom přejde do tvaru

$$t_{rb} = t_o + \frac{Q_{ztr}}{\alpha_{out} \cdot \pi \cdot (d + 2 \cdot s_{iz}) \cdot L}$$

Minimální tloušťka izolace zabraňující popálení

Často se potrubí či jiná zařízení izolují kvůli zabránění popálení obsluhy. Při tomto výpočtu je stanovena požadovaná teplota povrchu izolace a za použití uvedených vztahů je dopočítána požadovaná tloušťka izolace. Postup výpočtu je stejný jako u výpočtu minimální tloušťky izolace zabraňující kondenzaci vodních par. Rozdíl je akorát v tom, že místo teploty rosného bodu je použita zadaná teplota povrchu izolace.

REAKČNÍ ENTALPIE

Reakční entalpie (ΔH) nám říká, kolik energie (tepla) se spotřebuje, nebo naopak uvolní, když z reaktantů vytvoříme produkt. Pokud se teplo uvolňuje, reakční entalpie je záporná, je reakce exotermická. Pokud se teplo spotřebovává, musíme energii dodat, entalpie má kladné znaménko a reakci říkáme endotermická.

Výpočet reakční entalpie

Tady se opíráme o geniálně jednoduchý **Hessův zákon**. Ten říká: "Je úplně jedno, jak složitou cestou se z reaktantů stanou produkty. Celková energetická změna bude vždycky stejná.,"

Představte si to jako výlet na Sněžku. Je jedno, jestli jdete přímo nahoru, nebo oklikou přes pět dalších kopců. Výškový rozdíl mezi startem a cílem bude pořád stejný. Díky tomu můžeme spočítat i entalpii u reakcí, které v praxi probíhají složitě nebo je nelze změřit.

Výpočet pomocí slučovací entalpie

Standardní slučovací entalpie (ΔHsluc * 0) je energie, která se spotřebuje/uvolní při vzniku **jednoho molu** sloučeniny z jejích **prvků** v nejstabilnější podobě (např. kyslík jako O₂, uhlík jako grafit). Tyto hodnoty najdeme v chemických tabulkách.

Zlaté pravidlo: Slučovací entalpie **prvků** (jako O2, H2, N2, Fe, C) je **vždy nula**. Je to náš výchozí bod, naše "nadmořská výška nula".

$$\Delta H^0_{298} = \sum_{produkty} \nu_p \left(\Delta \mathbf{H}^0_{slu \xi, 298}\right)_p - \sum_{reaktanty} \nu_r \left(\Delta \mathbf{H}^0_{slu \xi, 298}\right)_p \qquad \text{ v je stechiometrický koeficient dané látky v rovnici.}$$

Příklad 1: Spalování propanu v grilu Chceme zjistit, kolik tepla uvolní spálení propanu.

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$

Hodnoty z tabulek (v kJ/mol)

$$C3H8(g) = -103.8$$
 $O2(g) = 0$ $CO2(g) = -393.5$ $H2O(l) = -241.8$

$$\Delta H^0_{298} = (3 \cdot (-393,5) + 4 \cdot (-241,8)) - (1 \cdot (-103,8) + 5 \cdot 0) = -2043,9 \, kJ/mol$$

Závěr: Při spálení jednoho molu propanu (cca 44 gramů) se uvolní obrovské množství tepla, 2043,9 kJ. Znaménko mínus potvrzuje, že reakce je silně **exotermická** – proto na tom můžeme grilovat.

Jakou teplotu mají spaliny? Na jakou teplotu ohřejeme 2 l vody z 15 °C, když spálíme 2 g propanu?

Výpočet pomocí spalných entalpií

Tato metoda se používá hlavně u organických sloučenin. Využívá **standardní spalné entalpie** (ΔHspal,2980), což je teplo, které se uvolní při dokonalém spálení jednoho molu látky na konečné oxidační produkty (např. CO2(g),H2O(l)) za standardních podmínek.

Princip: Na rozdíl od slučovacích entalpií se reakční teplo vypočítá jako rozdíl sumy spalných entalpií reaktantů a sumy spalných entalpií produktů.

Důležité pravidlo: Spalná entalpie konečných produktů spalování (např. CO2, H2O) je nulová.

$$\Delta H^0_{298} = \sum_{reaktanty} \nu_p \left(\Delta \mathbf{H}^0_{spal,298} \right)_p - \sum_{produkty} \nu_r \left(\Delta \mathbf{H}^0_{spal,298} \right)_p$$

REAKČNÍ ENTALPIE (pokračování)

Název sloučeniny	Vzorec	Stav	ΔH _{sluč} º (kJ/mol)	ΔH _{spal} ⁰ (kJ/mol)	Poznámka
Anorganické sloučeniny					
Voda	H2O	(l)	-285,8	0	Produkt spalování
Voda (plyn)	H2O	(g)	-241,8	0	Produkt spalování
Oxid uhličitý	CO2	(g)	-393,5	0	Produkt spalování
Oxid uhelnatý	CO	(g)	-110,5	-283	
Amoniak (čpavek)	NH3	(g)	-46,1	-382,6	
Kyselina sírová	H2SO4	(l)	-814	N/A	
Oxid siřičitý	SO2	(g)	-296,8	N/A	
Chlorovodík	HCl	(g)	-92,3	N/A	
Uhličitan vápenatý	CaCO3	(s)	-1206,9	N/A	
Oxid vápenatý	CaO	(s)	-635,1	N/A	
Základní uhlovodíky (alkany)					
Methan	CH4	(g)	-74,8	-890,4	Hlavní složka zem. plynu
Ethan	C2H6	(g)	-84,7	-1560,7	
Propan	C3H8	(g)	-103,8	-2219,9	Pro pan-butan
Butan	C4H10	(g)	-125,6	-2877,5	Pro pan-butan
Oktan	C8H18	(l)	-249,9	-5470,5	Složka benzínu
Nenasycené uhlovodíky					
Ethen (Ethylen)	C2H4	(g)	+52,3	-1411,2	
Ethyn (Acetylen)	C2H2	(g)	+226,7	-1301,1	Používá se ke sváření
Benzen	C6H6	(l)	+49,0	-3267,6	Aromatický uhlovodík
Alkoholy a karboxylov kyseliny	é 				
Methanol	СНЗОН	(l)	-238,6	-726,1	
Ethanol (Líh)	C2H5OH	(l)	-277,7	-1366,8	
Kyselina mravenčí	НСООН	(l)	-424,7	-254,4	
Kyselina octová	СНЗСООН	(l)	-484,3	-874,5	
Sacharidy					
Glukóza	C6H12O6	(s)	-1274,4	-2805	Základní cukr

HYDRAULIKA

Viskozita

Dynamická viskozita je konstanta úměrnosti mezi smykovým napětím a gradientem rychlosti. Je vyjádřena pomocí Newtonovy rovnice:

$$\eta = \frac{\tau}{dc/dy}$$
 [Pa.s] τ je smykové napětí [Pa], dc/dy vyjadřuje gradient rychlosti ve směru normály y [1/s]

Závislost $\tau=f\left(\frac{dc}{dy}\right)$ označujeme jako reogram. Pro Newtonské kapaliny je to přímka vycházející z počátku, jejíž směrnice je rovna hodnotě viskozity.

Viskozita je závislá na teplotě (kapaliny: $\uparrow T$ $\downarrow \eta$, plyny: $\uparrow T \uparrow \eta$)

Reologické křívky. Tekutina: a) newtonská, 2) pseudoplastická, 3) dilatantní, 4) skutečná plastická, 5) Binghamova-ideálně plastická, 6) Eyringův model

Závislost zdánlivých viskozit tekutin na smykové rychlosti. Tekutina: a) newtonská, 2) pseudoplastická,3) dilatantní, 4) skutečná plastická, 5) Binghamova-ideálně plastická, 6) Eyringův model

Anomální jevy Ne-Newtonských kapalin

Reynoldsovo číslo

$$Re = \frac{\bar{c}d_h\rho}{\eta} = \frac{\bar{c}d_h}{\nu}$$

střední průtočná rychlost tekutiny v potrubí [m·s⁻¹]

hydraulický průměr potrubí (pro kruhová potrubí $d_h = d$) [m]

ρ hustota tekutiny [m³·kg-1]

dynamická viskozita tekutiny [Pa·s]

kinematická viskozita tekutiny [m²·s-1]

 $d_h = 4 \frac{p r$ ůtočný průřez smáčený obvod

Jakožto bezrozměrný údaj popisuje současný vliv setrvačných a třecích sil při proudění.

Kritická hodnot Re pro kruhové potrubí:

 d_h

- Re < Re_{kr} => laminární proudění – třecí síly převažují nad silami setrvačnými
- 2) $Re_{kr} < Re < 4000$ => přechodová oblast
- 3) Re > 4000 => turbulentní proudění – setrvačné síly převažují nad třecími silami

HYDRAULIKA

Laminární proudění

$$\sum F_{(x)} = m \cdot a = 0 \quad (při ustáleném proudění)$$

$$\underbrace{p\pi r^2}_{tlakov\acute{a}\,s\acute{i}la} - \underbrace{(p+dp)\pi r^2}_{tlakov\acute{a}\,s\acute{i}la} - \underbrace{2\pi r dx\tau}_{t\check{r}ec\acute{i}\,s\acute{i}la} = 0$$

$$c = \frac{1}{4\eta} \frac{\Delta p}{l} (R^2 - r^2)$$

$$\frac{\bar{c}}{c_{max}} = \frac{1}{2}$$

Tlaková ztráta [Pa] pro ustálené proudění – Hagen-Poiseuilleho rovnice

$$\Delta P = \frac{32\bar{c}l\eta}{d^2} \longrightarrow$$

$$\Delta P = \lambda \frac{1}{2} \frac{\overline{c^2} l}{d_h} \rho$$

$$\lambda = \frac{64}{Re}$$

 $\Delta P = \lambda \frac{1}{2} \frac{\overline{c^2} l}{d_h} \rho$ $\lambda = \frac{64}{Re}$ $\lambda \text{ je součinitel tření [-]}$ $\lambda = \frac{64}{Re}$ $\lambda \text{ Konstanta 64 platí jen pro kruhové potrubí.}$

Turbulentní proudění

Při průtoku působí tekutina na vnitřní povrch potrubí silou: $F = F_{st} + F_{dyn}$

Z rovnice pak dostaneme Darcy-Weisbachovu rovnici pro výpočet tlakové ztráty třením při turbulentním proudění (stejný vztah jako pro laminární proudění):

$$\Delta p = \lambda \frac{l}{d_h} \frac{c^2}{2} \rho$$

Součinitel tření λ se počítá podle jiných vztahů. Někdy je možné se setkat místo Darcyho součinitelem tření λ s faningovým součinitelem tření f. $\lambda = 4f$

Určení součinitele tření

Pro určení součinitele tření se dříve používal Moodyho diagram. Dnes se používají výpočtové vztahy. Je jich hrozná spousta.

Pro laminární proudění Re < 2300: Pro kruhové potrubí je A = 64

 $\lambda = \frac{0.3164}{R_{\rho}^{0.25}}$ Pro hladké potrubí $2300 < Re < 8.10^4$: Blasius (1913)

 $\lambda = \frac{0.25}{\left[log\left(\frac{\varepsilon}{3.7d_b} + \frac{5.74}{Re^{0.9}}\right)\right]^2}$ Pro drsné potrubí $5000 < Re < 10^7$: Swamee-Jain (1976) ε - drsnost potrubí [m], d - průměr potrubí [m]

Určení tlakové ztráty místními odpory

Každá část potrubí (mimo rovné trubky), která způsobuje ztrátu energie (tlakovou ztrátu) proudící tekutiny (ventily, kolena, měřící prvky, ...).

$$\Delta p_{\xi} = \sum \xi_{i} \frac{\bar{c}^{2}}{2} \rho = \lambda \frac{\sum l_{ekv,i}}{d_{h}} \frac{c^{2}}{2} \rho$$

 ξ ... součinitel místního odporu, - l_{ekv} ... ekvivalentní délka místního odporu, m

Druh mistniho odporu	ξ [-]	Druh místního odporu	ξ [∗]
Klinové šoupátko – otevřené na 100 %	0,5	Kříž – spojení	4,0
Paralelní šoupátko – otevřené na 100 %	0,15	Kříž – rozdělení	2,0
Paralelní šoupátko – otevřené na 75 %	0,9	Sací koš	6
Paralelní šoupátko – otevřené na 50 %	4,5	Zpětná klapka – otevřená na 100 %	6-7,5
Paralelní šoupátko – otevřené na 25 %	24	Zpětný ventil do ležatého potrubí	16 - 30
Koleno 45°	0,3	Hrdio čerpadia	1,5
Koleno 90°	1,5	Vtok do nádrže	1,0
Oblauk - jednoduchý r ≥ 3d	1,0	Výtok z nádrže	1,0
Oblauk – dvojitý astrý	2,0	Ostrý vtok do potrubí	0,5
Oblouk – dvojitý mírný	1,0	Tupý (mírně zaoblený) vtok do potrubí	0,23
Redukce na menši DN	0,5	Výtok z potrubí	1,0
Redukce na větší DN	1,0	Zásobníkový ohřívač	3,0
Tvarovka T – odbočení (rozdělení)	1,5	Kompenzátor – osový	0,5
Tvarovka T – odbočení (spojení)	1,0	Kompenzátor – vlnovcový	2,0
Tvarovka T – průchod (rozdělení)	0,5	Kompenzátor – trubkový	2,0
Tvarovka T – průchod (spojení)	3,0	Uzavírací ventil přímý – otevřený na 100 %	3,0
Tvarovka T – protiproud	3,0	Uzavírací ventil šikmý – otevřený na 100 %	1,6
What are the second and an executive	0.7	Control Control Control Control Control Control Control	

$$\Delta p_{celk.} = \Delta p_{\lambda} + \Delta p_{\xi}$$

 $\lambda = \frac{A}{Ra}$

Tento výpočet tlakových ztrát je primárně pro kapaliny. Pokud však je tlaková ztráta malá, tak je možné tyto vztahy použít i pro plyny.