CS553 Cryptography

BitBees

Question 7

Number Theory with SageMath

We have implemented the Euclidean GCD and Extended Euclidean GCD on Sage. Please refer to q7_part1.sage for the implementation of the same.

The first output simply is the modular inverse of 11 in \mathbb{Z}_4

The second output, separated by * is the number of invertible elements in \mathbb{Z}_4 along with checking for each element in \mathbb{Z}_4 .

These inputs can be customized according to your choice.

The implementation using inbuilt functions can be found in q7_part2.sage A more efficient way to calculate the number of invertible elements in is by using Eulers Toitent function.

$$\Phi(n) = |\{1 \le a < n | (a, n) = 1\}|$$

And $\Phi(p)=p-1$ for prime numbers, we can factorize our given m to its prime factors.

$$\Phi(mn) = \Phi(m)\Phi(n)$$

$$\Phi(35) = \Phi(7)\Phi(5) = 6 \cdot 4 = 24$$

Implementation of this can be found in q7_part3.sage