Università degli studi di Modena e Reggio Emilia Dipartimento di ingegneria "Enzo Ferrari"

2024

Implementazione di un sistema di controllo remoto per veicoli semi-autonomi connessi

Relatore: Paolo Burgio Candidato: Alessandro Appio

Anno accademico: 2023/2024

Contents

1	Inti	roduzione	3	
	1.1	Guida remota e guida autonoma	3	
	1.2	Scopo della tesi	3	
2	Piattaforma di sviluppo			
	2.1	Rover AgileX	5	
	2.2	GPGPU	5	
	2.3	Lidar	6	
	2.4	Router	6	
3	ROS			
	3.1	Nodi	7	
	3.2	Comunicazione tra nodi	8	
4	MQTT 10			
	4.1	Descrizione	10	
	4.2	Infrastruttura	10	
	4.3	Formattazione messaggi	11	
	4.4	Topic	12	
5	Funzionamento 15			
	5.1	Stack di guida autonoma	15	
	5.2		16	
	5.3		17	
		5.3.1 MQTT telemery node	17	
		5.3.2 MQTT remote control	17	
		5.3.3 MQTT server node	17	
6	Test Svolti			
	6.1	Controllo	18	
	6.2	Mappatura	18	
	6.3	Localizzazione	19	
	6.4	Guida autonoma	19	
7	Sviluppi futuri e conclusioni 20			
	7.1		20	
	7.2		20	
	7.3		21	

1 Introduzione

1.1 Guida remota e guida autonoma

La guida autonoma rappresenta un complesso sistema tecnologico che integra una serie di avanzate tecnologie, metodologie e tecniche finalizzate a consentire il movimento di un veicolo senza necessità di intervento umano diretto. Un veicolo autonomo è infatti dotato della capacità di analizzare l'ambiente circostante, elaborare un percorso ottimale in base ai dati raccolti, e seguire tale percorso in modo autonomo. Questi processi fondamentali vengono generalmente suddivisi in tre fasi distinte: percezione (perception), pianificazione (planning) e controllo (control). La percezione riguarda la capacità del veicolo di raccogliere informazioni dall'ambiente circostante attraverso sensori avanzati, che possono includere telecamere, radar, Lidar, e altre tecnologie di rilevamento. Questi dati vengono poi elaborati nella fase di pianificazione, durante la quale il sistema valuta le possibili traiettorie e sceglie il percorso più sicuro ed efficiente da seguire. Infine, la fase di controllo si occupa dell'esecuzione del movimento del veicolo lungo il percorso stabilito, garantendo che vengano seguite le decisioni prese nella fase di pianificazione. D'altro canto, il concetto di guida remota si riferisce a un tipo di guida in cui le decisioni relative alla direzione e al movimento del veicolo vengono prese da un essere umano, che opera a distanza utilizzando tecnologie quali sensori, attuatori, e le reti di comunicazione. In questo scenario, l'essere umano non si trova fisicamente all'interno del veicolo, ma interagisce con esso attraverso un'interfaccia remota, sfruttando la trasmissione dei dati in tempo reale per monitorare e controllare il veicolo. Tale approccio combina l'intelligenza umana con l'automazione tecnologica, rendendo possibile la guida di veicoli in situazioni in cui la presenza fisica del conducente potrebbe non essere necessaria o praticabile.

1.2 Scopo della tesi

L'obiettivo principale di questa tesi è sviluppare un veicolo capace di operare in modo autonomo in condizioni di guida normali, sfruttando un avanzato sistema di guida autonoma, ma che possa anche, su richiesta, passare alla modalità di guida remota.

Con condizioni normali si intende condizioni in cui il veicolo e l'hardware a bordo siano intatti e in cui il guidatore (se presente a bordo) sia in grado di condurre il veicolo senza problemi. Per fare un esempio possiamo immaginarci un semplice scenario che comprende un veicolo a guida autonoma con un conducente a bordo, in questi casi ci si aspetta che il conducente sia sempre vigile e che controlli il comportamento del mezzo, così che il mezzo in caso di errore o malfunzionamento, possa essere condotto dal guidatore al bisogno. Supposiamo ora invece che il guidatore non sia nelle sue condizione ottimali condizione causata da un malore o altro, in questo particolare caso il guidatore non può rimanere vigile e controllare il veicolo autonomo. In questo esempio, dunque, un operatore potrà collegarsi da remoto al veicolo per poterlo condurre all'ospedale

più vicino o comunque in una zona sicura.

Questo approccio duale consente al veicolo di navigare in modo completamente indipendente quando le circostanze lo permettono, utilizzando tecnologie di percezione, pianificazione e controllo integrate, ma offre al contempo la flessibilità di essere controllato a distanza da un operatore umano qualora la situazione lo richieda. La possibilità di commutare tra guida autonoma e remota mira a garantire la massima sicurezza, adattabilità e versatilità del veicolo in una varietà di scenari operativi.

2 Piattaforma di sviluppo

In questa sezione si descrive come è composta e come è stata assemblata la piattaforma per lo sviluppo e il testing.

2.1 Rover AgileX

Il veicolo selezionato per lo sviluppo della presente tesi è un rover terrestre prodotto da AgileX, modello Hunter. Questo rover è dotato di un'interfaccia di controllo basata sul protocollo CAN (Controller Area Network), un protocollo seriale molto versatile sviluppato dall'azienda Bosh e molto utilizzato in ambito automotive.

l'interfaccia CAN del rover è collegata alla porta usb del computer embedded e consente una comunicazione efficiente e affidabile con esso. Il modello Hunter è stato scelto per le sue avanzate caratteristiche tecniche e per la sua versatilità, che lo rendono particolarmente adatto alle esigenze del progetto.

Oltre a fornire un'interfaccia per il controllo diretto, il veicolo è in grado di raccogliere e trasmettere una serie di dati diagnostici e operativi fondamentali per il monitoraggio e l'analisi delle sue prestazioni. Tra questi dati, un ruolo cruciale è ricoperto dall'odometria.

L'odometria è una misura che permettte la stima dello spostamento di un veicolo su ruote a partire dallo spostamento di esse, questa è essenziale per la navigazione e la stima della posizione del rover, poiché permette di determinare il percorso seguito dal veicolo e la distanza percorsa. Questi dati, insieme ad altre informazioni sullo stato del veicolo, contribuiscono a garantire un controllo preciso e ad alimentare i sistemi di guida autonoma e remota previsti dal progetto.

2.2 GPGPU

Un elemento cruciale per la realizzazione di questa tesi è stato l'identificazione e la selezione di un calcolatore embedded che possa prima di tutto comunicare con i sensori e il rover ed inoltre che possa anche gestire il carico di tutti gli algoritmi e i processi necessari per la guida autonoma.

La scelta è dunque ricaduta su una scheda di casa Nvidia, nello specifico sul modello AGX Jetson Xavier, ovvero una GPGPU (General Purpose Graphic Processing Unit). Questa scelta è motivata dall'elevata capacità di elaborazione parallela che solo una GPGPU può fornire, questa capacità risulta particolarmente vantaggiosa per l'esecuzione di complessi algoritmi di percezione e pianificazione, oltre che di controllo, da svolgere in tempo reale. La GPGPU selezionata opera con il sistema operativo Ubuntu 20.04, noto per la sua stabilità, ampia compatibilità con l'hardware scelto.

2.3 Lidar

Per quanto concerne il sensore, la scelta è ricaduta su un sensore Lidar (Light Detection and Ranging) a 2 dimensioni. Questo dispositivo sfrutta la tecnologia laser per determinare la distanza di vari punti nell'ambiente circostante, calcolando il tempo di ritorno dei raggi laser emessi. Il Lidar fornisce una mappa dettagliata della topografia dell'ambiente, consentendo al sistema di percezione di creare rappresentazioni, tridimensionali o bidimensionali a seconda della tipologia, accurate e fondamentali per il riconoscimento degli ostacoli, la navigazione, la pianificazione del percorso del veicolo e la mappatura dell'ambiente circostante. La combinazione di una GPGPU performante e un sensore Lidar avanzato rappresenta una solida base tecnologica per lo sviluppo di un sistema di guida autonoma e remota altamente efficiente.

Il sensore Lidar genera una nuvola di punti tridimensionale dell'ambiente circostante attraverso l'emissione di impulsi laser in un cono di 270 gradi. Ciascun punto della nuvola corrisponde alla distanza misurata tra il sensore e un elemento dell'ambiente. La distanza è determinata con accuratezza cronometrando il tempo impiegato dall'impulso laser a percorrere il tragitto andata e ritorno.

2.4 Router

In considerazione delle elevate esigenze di comunicazione proprie di un veicolo connesso, si è optato per l'integrazione a bordo di un router di rete. Tale dispositivo ha la duplice funzione di stabilire una connessione stabile e ad alta banda passante con l'infrastruttura di rete esterna, garantendo così la trasmissione fluida dei dati, e di fungere da nodo centrale per la comunicazione interna al veicolo. In particolare, il router è preposto a interconnettere il calcolatore di bordo, deputato all'elaborazione dei dati provenienti dai vari sensori, con il sensore Lidar, il quale, mediante interfaccia Ethernet, trasmette ingenti volumi di dati destinati al calcolatore.

3 ROS

In questa sezione si passa alla descrizione di ROS, al suo funzionamento e al suo utilizzo.

Il Robotic Operating System, comunemente noto come ROS, è una piattaforma

3.1 Nodi

componenti di un robot.

software composta da un insieme di librerie e strumenti che facilitano lo sviluppo di applicazioni dedicate al controllo e alla gestione di sistemi robotici. ROS offre un'infrastruttura flessibile e modulare che permette agli sviluppatori di creare, testare e implementare applicazioni complesse per robot in modo efficiente. Uno degli aspetti fondamentali di ROS è la sua architettura basata su nodi, che rappresentano unità di esecuzione autonome all'interno del sistema. Un nodo può essere responsabile di una vasta gamma di funzioni, tra cui eseguire calcoli, interfacciarsi con dispositivi hardware, raccogliere dati dai sensori, e molto altro. Tuttavia, la caratteristica più distintiva di un nodo ROS è la sua capacità di comunicare in maniera integrata con altri nodi attraverso un sistema di messag-

gistica distribuita. Questo sistema consente ai nodi di scambiare informazioni in tempo reale, permettendo una coordinazione precisa e affidabile tra i diversi

Questa struttura modulare e comunicativa rende possibile la rappresentazione di ciascuna funzione operativa del robot come un nodo distinto, favorendo una chiara separazione delle responsabilità e una maggiore facilità di sviluppo e manutenzione. Ad esempio, lo stack software utilizzato per il controllo autonomo del rover all'interno di questo progetto è costituito da una serie di nodi ROS, ognuno dei quali svolge un ruolo specifico e critico nel funzionamento complessivo del sistema.

I principali nodi che compongono questo stack sono i seguenti:

- hunter_ros2_node: Questo nodo è responsabile della gestione della comunicazione tra i vari nodi ROS e l'interfaccia CAN (Controller Area Network) del veicolo. Attraverso questo nodo, i comandi e le informazioni vengono trasmessi efficacemente tra il sistema di controllo e il rover, assicurando un'interazione fluida e coerente con l'hardware del veicolo.
- urg_node: Il compito di questo nodo è quello di raccogliere e trasmettere le informazioni provenienti dal sensore Lidar agli altri nodi del sistema. La scansione dell'ambiente effettuata dal Lidar viene elaborata e distribuita, fornendo dati essenziali per la navigazione autonoma e l'evitamento degli ostacoli.
- particle_filter: Questo nodo implementa un algoritmo di localizzazione basato su filtri particellari, che consente di determinare con precisione la posizione del rover rispetto alla mappa dell'ambiente circostante. Il nodo utilizza le informazioni della mappa e le scansioni del sensore Lidar per aggiornare continuamente la stima della posizione del veicolo.

• telemetry_node e control_node: Questi nodi gestiscono la comunicazione tra ROS e il protocollo MQTT (Message Queuing Telemetry Transport), garantendo la trasmissione di dati di telemetria e comandi di controllo in modo efficiente e affidabile.

Tutti questi nodi operano in sinergia, scambiandosi informazioni critiche attraverso il sistema di messaggistica ROS, contribuendo all'esecuzione coordinata delle funzioni del robot. Questo approccio modulare e interconnesso consente di affrontare in modo efficiente le complesse esigenze operative del rover, garantendo una gestione robusta e scalabile delle diverse attività richieste durante la sua operazione autonoma e remota.

3.2 Comunicazione tra nodi

Sorge però spontaneo domandarsi come questi nodi comunichino tra loro e come facciamo soprattutto a riconoscere di che tipo di informazione si tratti. Una comunicazione ROS è formata da 3 elementi:

- Topic: Il protocollo utilizzato da ROS è di tipo publish/subscribe, ciò vuol dire che durante l'esecuzione dei nodi si vanno a creare dei topic, ovvero stringhe che utilizzano come separatore il carattere '/' e che ci permettono di suddividere tutti i diversi dati da inviare. Un esempio sono le scan lidar che vengono pubblicate sul topic "/scan". Ogni nodo può decidere se fare la subscribe a quel nodo (ovvero ricevere tutti i dati inviati attraverso esso), fare delle publish (ovvero pubblicare dati su di esso) o se semplicemente ignorarlo.
- Message type: Una volta scelto un topic però si dovrà anche decidere quali informazioni saranno ammesse su questo, ROS fornisce diversi tipi di dato pubblicabile su un singolo topic. Un esempio è il tipo di dato utilizzato dal particle filter e dall'odometria del mezzo, ovvero "Odometry messages", che descrivono la posizione e il movimento (o meglio l'odometria) di un oggetto nello spazio. Il messaggio specifico per l'odometria fornito da ROS è strutturanto nel seguente modo:

In questo particolare messaggio come si può notare sono contenuti: la posa, ovvero la posizione e l'orientamento del veicolo rispetto al punto di

partenza, ed il Twist ovvero la velocità lineare e quella angolare dell'oggetto al momento della misura. Esistono molti tipi di dato forniti da ROS alcuni altri esempi sono l'ackermann message: che fornisce come dati principali una velocità ed un angolo di sterzo e viene utilizzato per comunicare al robot il movimento da compiere. Tutti i tipi di messaggio sono consultabili online sulla documentazione di ROS.

• Content: è il dato che dobbiamo inviare e che deve essere incapsulato nel tipo di dato fornitoci da ROS

4 MQTT

In questa sezione si passa alla descrizione del protocollo di rete MQTT ed al perchè si è scelto di utilizzare questa tecnologia.

4.1 Descrizione

Il protocollo MQTT (Message Queuing Telemetry Transport) è un protocollo di rete di tipo publish-subscribe, progettato per la trasmissione di messaggi tra dispositivi in ambienti caratterizzati da connessioni di rete con larghezza di banda limitata, latenza elevata, o affidabilità intermittente.

Le principali caratteristiche del protocollo MQTT includono:

- Efficienza nella larghezza di banda: MQTT è progettato per minimizzare l'overhead di rete, il che lo rende particolarmente adatto per applicazioni in cui la larghezza di banda è limitata o costosa.
- Affidabilità e livelli di qualità del servizio (QoS): MQTT offre tre livelli di QoS, che consentono di bilanciare la necessità di affidabilità con le risorse disponibili. I livelli QoS vanno da "almeno una volta" a "esattamente una volta", garantendo diversi gradi di consegna del messaggio in base ai requisiti dell'applicazione.
- Supporto: per la persistenza delle sessioni: I client MQTT possono disconnettersi e riconnettersi senza perdere i messaggi inviati durante la disconnessione, grazie alla capacità del broker di mantenere lo stato delle sessioni e gestire i messaggi pendenti.
- Sicurezza: MQTT può essere configurato per utilizzare connessioni cifrate (SSL/TLS) e supporta l'autenticazione tramite username e password, garantendo la protezione dei dati scambiati e l'accesso controllato alle risorse.
- Scalabilità: La natura leggera e la flessibilità del modello publish-subscribe rendono MQTT altamente scalabile, consentendo di supportare un gran numero di dispositivi e applicazioni con un impatto minimo sulle risorse di rete.

Grazie a queste caratteristiche, MQTT è ampiamente utilizzato in una vasta gamma di applicazioni, tra cui la telemetria industriale, il monitoraggio ambientale, le smart cities, l'automazione domestica e i sistemi di gestione energetica, rappresentando una soluzione robusta ed efficiente per la comunicazione tra dispositivi eterogenei in contesti IoT.

4.2 Infrastruttura

MQTT opera secondo un'architettura client-server, dove i client (dispositivi o applicazioni) si connettono a un server (broker) centrale che gestisce la distribuzione dei messaggi. I client che desiderano inviare dati pubblicano messaggi

su specifici argomenti (topics), mentre i client interessati a ricevere quei dati si iscrivono (subscribe) agli stessi argomenti. Il broker, che agisce come intermediario, si occupa di ricevere i messaggi pubblicati e di inoltrarli a tutti i client iscritti agli argomenti corrispondenti.

4.3 Formattazione messaggi

I messaggi scambiati tramite protocollo MQTT non sono altro che stringhe di testo. È quindi necessario utilizzare una formattazione per il testo che ci renda possibile distinguere i vari campi di un messaggio ROS (la cui struttura è illustrata nella sezione precedente) che vogliamo inoltrare. Per questa motivazione si è deciso di avvalersi del formato JSON che si presta bene a questo impiego. Per fare un esempio di seguito si illustra come un messaggio di odometria (illustrato nella sezione precedente)si presenterà in forma di testo JSON:

```
{
     "header":{
2
        "timestamp":{
3
          "sec": 0,
          "nanosec": 0,
6
     }
     "pose_with_covariance":{
        "pose":{
          "position":{
            "x": 0,
            "y": 0,
12
            "z": 0
          },
14
          "orientation":{
15
            "x": 0,
            "y": 0,
            "z": 0,
18
             "w": 0
19
          }
20
21
        "covariance":{
22
23
        }
25
     "twist_with_covariance":{
26
        "twist":{
27
          "linear_velocity":{
            "x": 0,
29
            "y": 0,
            "z": 0
31
```

```
"angular_velocity":{
33
              "x": 0,
34
              "y": 0,
              "z": 0
36
           }
37
         },
         "covariance":{
39
40
41
      }
42
   }
43
```

Come si può vedere grazie a questa struttura è possibile rappresentare fedelmente i dati riportati dal messaggio ROS.

4.4 Topic

In MQTT, come in ROS, per dividere le varie tipologie di messaggi inoltrati si utilizzano i topic, questo in realtà è esattamente il motivo per cui si è deciso di utilizzare MQTT per il controllo remoto. Grazie infatti ad una semplice stuttura dati è possibile intercambiare tra le due tipologie di topic.

Ai fini del progetto è stata quindi sviluppata una classe chiamata topic_manager che semplifica la gestione di questi due tipi di dati. La classe comprende 4 semplici metodi, 2 che riguardano il get ed il set di topic ROS e 2 che riguardano il get e il set dei topic MQTT, ad ogni topic MQTT è associato uno ROS e viceversa, di seguito i 4 meotodi:

```
void TopicManager::add_ros_topic(std::string ros_topic
      , bool telemetry_topic){
       // add ros topic and generate the corresponding
          mqtt topic
       std::stringstream ss;
       std::stringstream ros_topic_ss(ros_topic);
       std::string last_word;
6
       while(std::getline(ros_topic_ss, last_word, '/'))
          {}
       ss << this->loader->get_mqtt_parameters("
          BASIC_TOPIC");
         << "/" << this->loader->get_mqtt_parameters("
          VEHICLE_TOPIC");
       ss << "/" << this->loader->get_mqtt_parameters("
          VEHICLE_ID");
      if(telemetry_topic){
12
```

```
ss << "/" << this->loader->get_mqtt_parameters
13
               ("VEHICLE_TELEMETRY_TOPIC");
       }
14
       ss << "/" << last_word;
16
       this->topic_list[ss.str()] = ros_topic;
17
  }
18
19
   void TopicManager::add_mqtt_topic(std::string
20
      mqtt_topic){
     add mqtt topic and generate the corresponding ros
      topic
22
       std::stringstream ss;
23
       std::stringstream ros_topic_ss(mqtt_topic);
25
       std::string last_word;
       while(std::getline(ros_topic_ss, last_word, '/'))
27
          {}
28
       this->topic_list[mqtt_topic] = ss.str();
  }
30
   std::string TopicManager::get_ros_topic_from_mqtt(std
32
      ::string mqtt_topic){
   //get ros topic corresponding to the passed mqtt topic
       return this->topic_list[mqtt_topic];
34
35
36
   std::string TopicManager::get_mqtt_topic_from_ros(std
37
      ::string ros_topic){
   //get mqtt topic corresponding to the passed ros topic
38
       std::string mqtt_topic;
39
40
       for (auto& it : this->topic_list) {
41
           if (it.second == ros_topic) {
42
                mqtt_topic = it.first;
           }
45
       return mqtt_topic;
47
  }
```

È inoltre utile rendere nota la diversa struttura delle due tipologie. Infatti se per i topic ROS è utile utilizzare solo pochi identificatori, alle volte di una sola parola (eg. /drive_parameters, /scan, /odometry), dato che tutto il traffico ROS

è presente solo all'interno del computer di bordo, per i topic MQTT è invece necessario utilizzare topic più lunghi, comprendenti diversi campi. Per fare un esempio si può illustrare il topic utilizzato nell'odometria

/hipert/vehicle/rover_1234/telemetry/odometry

Si elencano ora i diversi campi che compongono il topic

- /hipert: È il campo che identifica il laboratorio che sta svolgendo la comunicazione, è utile in quanto se lo stesso broker MQTT è utilizzato da più laboratori abbiamo un filtro che ci permette di avere solo i dati rilevanti al nostro campo di interesse.
- /vehicle: Identifica il tipo di device osservato
- /rover_1234: È l'effettiva stringa ID del topic, ci è utile per dare un identificatore univoco per il veicolo osservato, potremmo infatti anche avere più di un veicolo osservato e dobbiamo quindi sapere quale esattamente di questi si sta prendendo in considerazione.
- /telemetry: Identifica il tipo di dato preso in considerazione, infatti i dati potrebbero essere di tipo telemetry, control o eventualmente altro
- /odometry: Abbiamo infine l'esatto dato osservato, in questo caso, l'odometria del mezzo.

5 Funzionamento

Nella seguente sezione si descrive il funzionamento del veicolo, degli algoritmi utilizzati e delle scelte progettuali.

5.1 Stack di guida autonoma

La prima cosa da analizzare è il funzionamento dello stack di guida autonoma. Lo stack funziona grazie a diversi processi, divisi (come descritto nell'introduzione) in perception, planning e control, di seguito una breve censita dei nodi ROS che permettono tale funzionamento: Per quanto riguarda la parte di perception, vediamo due aspetti, i sensori e l'algoritmo di localizzazione:

- urg_node: È il nodo che permette di pubblicare sul topic ROS /scan le pointcloud rilevate dal sensore Lidar, il tipo di dato utilizzato è chiamato LaserScan e fornisce una serie di distanze che vanno insieme a formare ciò che il sensore Lidar rileva.
- hunter_ros2_node: Fornisce un interfaccia con il robot stesso, da questo nodo possiamo ricevere l'odometria calcolata a partire dal movimento delle ruote e, come vedremo successivamente, potremo pubblicare i comandi che il robot dovrà svolgere. Quello che interessa a noi al momento della perception è l'odometria del mezzo, che viene pubblicata sul tpoic /odometry sottoforma di dato Odomentry.
- particle_filter: Implementa l'algoritmo di localizzazione chiamato particle filter, questo algoritmo sfrutta per il suo funzionamento la mappa dell'ambiente in cui il robot si sta muovendo, l'odometria del veicolo e la pointcloud del sensore Lidar. Questo nodo pubblica la posizione calcolata sul topic ROS /pf/position sottoforma di dato Odometry.

Passando invece al momento del planning ci si avvale di due nodi:

- path_logger: Permette la registrazione di un percorso quando il veicolo viene guidato manualmentequesto percorso viene poi salvato in un file apposito.
- path_logger: Questo nodo si occupa di pubblicare un percorso preregistrato o precalcolato da seguire, il dato è pubblicato sul topic /path.

Andiamo infine a descrivere il funzionamento della parte di controllo, questa è infatti composta da due nodi:

• purepursuit: Si occupa di ricevere il percorso pubblicato sul topic /path e a partire dalla posizione pubblicata dal nodo particle_filter calcola i comandi da impartire al robot. I comandi vengono pubblicati sul topic/drive_parameters e sono di tipo Ackermann Stamped, questo non è altro che un semplice tipo di messaggio ROS che incapsula il timestamp, un angolo di sterzo ed una velocità.

• hunter_ros2_node: Come descritto prima, questo nodo oltre a fornire l'odometria del mezzo, è anche capace di ricevere i comandi da impartire al robot. Il nodo è infatti in perenne ascolto sul topic /drive_parameters e ad ogni messaggio non farà altro che comunicare con l'interfaccia CAN del veicolo comunicandogli la velocità e l'angolo di sterzo da impostare.

di seguito uno schema riassuntivo di tutto il meccanismo:

Figure 1: Schema rissuntivo dello stack di guida autonoma

5.2 guida remota

Una volta illustrato e compreso il funzionamento dello stack di guida autonoma, è ora di passare alla pianificazione di quella remota. La primissima domanda da porci è quale parte dello stack diventerà remoto, ad esempio si potrebbe decidere di svolgere solo la parte di planning da remoto e lasciare in resto in locale, o ad esempio di portare solo la perception. Si potrebbe anche decidere di far eseguire solo specifici nodi da remoto e lasciare in resto in locale. Nella presente tesi si è scelto di portare in remoto quasi tutto lo stack, lasciando in locale solo i nodi che hanno strettamente bisogno dell'interfacciamento con l'hardare. Nello specifico gli unici nodi che rimarranno in locale saranno:

- urg_node: Che sarà necessario per ricavare i dati dal sensore Lidar
- hunter_ros2_node: Necessario per ricavare l'odometria del mezzo e per inviare i comandi all'interfaccia CAN

Tutto il resto sarà gestito da remoto. Questo ci permette di poter scegliere con più flessibilità in quale modo pilotare il rover, si potrà infatti decidere sia di eseguire l'intero stack, senza modifiche, sulla macchina in remoto e di conseguenza inviare i comandi calcolati al mezzo, sia di poter guidare il veicolo completamente in manuale da un apposito operatore e di inviare solo i comandi scelti da quest'ultimo al veicolo.

5.3 Nodi sviluppati

Oltre ai nodi che già erano compresi nello stack di guida autonoma, è stato necessario sviluppare altri nodi che permettessero lo scambio di informazioni tra il veicolo e il server. Nello specifico i 3 nodi si iscriveranno a specifici topic ROS e pubblicheranno le stesse informazioni su topic MQTT.

5.3.1 MQTT telemery node

Il primo passaggio per il controllo remoto del mezzo è quello di trovare un modo di ricevere i dati dei sensori dal mezzo. Per questo scopo è stato sviluppato un nodo ROS capace di iscriversi ai topic necessari e che ad ogni messaggio formatti i dati in JSON e li invii tramite MQTT al server. I topic a cui il nodo effettua una subscribe sono:

- /scan: Per la ricezione della pointcloud rilevata dal sensore Lidar
- /odometry: Per la ricezione dei dati di odometria del mezzo

Una volta ricevuto il dato, questo verrà formattato in una stringa JSON contente tutti i dati del messaggio, per poi inviarla sul topic prescelto per quel particolare dato.

5.3.2 MQTT remote control

In secondo luogo sarà necessario permettere al nostro veicolo di ricevere i dati relativi al controllo del robot, per questa applicazione + stato creato un nodo che si iscriva al topic MQTT relativo a questi dati e che li ripubblichi sul topic ROS /drive_parameters. Dato che, come già descritto i dati, i dati ricevuti sui topic MQTT non sono altro che stringhe, una volta che il messaggio verrà ricevuto dal veicolo, questo dovrà processare la stringa ricevuta, per poi memorizzare i dati in un messaggio ROS, rispettando i campi.

5.3.3 MQTT server node

È infine stato creato un unico nodo eseguito lato server, che permetta di ricevere tutti i dati inviati dal veicolo tramite MQTT e ripubblicarli sull'istanza ROS del server e al tempo stesso ricevere i messaggi di controllo, inserirli in una stringa ed inviarli tramite MQTT al veicolo.

6 Test Svolti

In questa sezione si elencano i vari test che sono stati svolti, i problemi riscontrati e le soluzioni trovate.

6.1 Controllo

Il primo test svolto è stato sulla parte che riguarda il controllo. Si è dovuto infatti verificare che i driver ed il nodo ROS forniti da AgileX per il rover modello Hunter e dedicati al controllo ed all'analisi del mezzo fossero utilizzabili senza necessarie modifiche o se invece fossero necessari aggiustamenti o addirittura una reimplementare.

Per svolgere questo test si è deciso di utilizzare un nodo ROS capace di ricevere dati da un joypad, elaborarli per poter ottenere un angolo di sterzo ed una velocità e pubblicarli sul topic ROS /drive_parameters sottoforma di messaggi ackermann, grazie a questo nodo infatti si poteva direttamente controllare se:

- Il nodo ROS di casa AgileX comprendesse messaggi di tipo ackermann
- Il driver riuscisse a convertire efficacemente i messaggi ROS in messaggi CAN, così che il rover potesse eseguire i comandi impartiti.

I primi test non sono andati a buon fine, in quanto dopo un accurata analisi si è riscontrato che il nodo ROS di casa AgileX utilizza un diverso formato di messaggi per il controllo del mezzo.

La soluzione alla fine è stata quella di fare una piccola modifica al nodo ROS di casa AgileX per permettere a questo di interpretare la tipologia di messaggi corretta.

6.2 Mappatura

Il secondo test è stato quello di eseguire una mappatura bidimensionale di un intero ambiente.

Con mappatura bidimensionale si intende ricreare una vista dall'alto di un ambiente grazie all'utilizzo del sensore Lidar e dell'odometria del mezzo, sapendo infatti lo spostamento e la pointcloud rilevata dal sensore ed un algoritmo apposito è possibile ricreare questa mappa.

Nello specifico l'algoritmo utilizzato è chiamato SLAM (Simultaneous localization and mapping), e come dice il nome è un algoritmo utilizzato per la localizzazione e mappatura simultanea in un ambiente, l'algoritmo è implementato dal nodo slam_toolbox, scaricabile gratuitamente.

Dopo un veloce setup e alcune prove si è dunque riusciti a ricreare una mappa fedele del primo piano dell'edificio di matematica del dipartimento di scienze fisiche, matematiche e informatiche di UniMoRe.

6.3 Localizzazione

Il terzo test è stato uno dei più importanti, questo riguarda la localizzazione. Avendo una mappa dell'ambiente grazie ai test precedenti è stato infatti possibile provare ad avere una localizzazione all'interno dell'ambiente ricostruito, questo grazie al **particle_filter**, algoritmo già discusso precedentemente.

I test in questo caso sono stati inconcludenti, è stato infatti notato che in alcuni punti dell'ambiente il particle filter non raggiungeva una precisione soddisfacente, questo a causa dell'ambiente stesso che risultava "feaureless", ovvero non vi erano differenze particolarmente apprezzabili tra due punti distinti della mappa.

Una soluzione a questo problema può essere sicuramente quella di utilizzare un Lidar più avanzato a tre dimensioni, in modo da apprezzare feature dell'ambiente che non sarebbero altrimenti rilevabili in due dimensioni, soluzione che sta venendo sperimentata al momento della stesura della presente tesi.

6.4 Guida autonoma

Uno degli ultimi test svolti è stato quello dello stack completo di guida autonoma.

Per questo test si sono utilizzati tutti i risultati delle prove precedenti, quindi la mappa, il controllo e la localizzazione, in aggiunta ad un percorso preregistrato manualmente.

I risultati di questo test sono andati a buon fine per la maggiore, l'unico punto di indeterminazione dipende dal problema sovracitato legato alla localizzazione.

7 Sviluppi futuri e conclusioni

Per concludere, si va ad analizzare quali complicazioni sono state riscontrate durante lo sviluppo, quali falle rimangono ed eventuali soluzioni e sviluppi futuri e applicazioni pratiche della tesi.

7.1 Problemi ed eventuali soluzioni

Il primo dubbio riguardo il progetto descritto in questa tesi è sicuramente quello della latenza di rete: Applicazioni come quella della guida autonoma vengono chiamate real time, ciò vuol dire che l'esecuzione di ogni singolo pezzo dello stack deve eseguire in tempi stretti e che anche nel caso peggiore l'esecuzione non può superare una certa quantità di tempo, questa quantità viene chiamata deadline.

È quindi spontaneo porsi un dubbio, ovvero quanto l'utilizzo della rete complichi il dover far rispettare le tempistiche. Includere la rete in applicazioni real time infatti diventa rischioso, si pensa subito al caso in cui la connessione sia molto scarsa o addirittur assente, quali complicazioni questo può portare. Anche nel caso di una situazione ottimale però bisogna sempre considerare quanto l'inclusione di un protocollo di rete (sepur leggero come nel caso di MQTT) porti dell'overhead e di conseguenza delle latenze nell'esecuzione.

possiamo ovviare a questi problemi (seppur limitatamente) grazie al meccanismo dei livelli di Quality Of Service che il protcollo ci fornisce, un livello basso di Quality Of Service infatti farà fare meno controlli al protocollo e di conseguenza rimuoverà un certo overhead. Anche la scelta del protocollo a livello transport influenza le latenze, se usare quindi UDP o TCP dato che notoriamente il protocollo UDP riduce di molto la complessità, a scapito però sempre della qualità del servizio.

7.2 Sviluppi futuri

Il progetto ai fini della tesi può considerarsi concluso, rimangono però eventuali implementazioni e test che potranno essere integrati in futuro.

La prima cosa che viene in mente è l'implementazione di uno stack di sicurezza informatica che permetta l'invio dei dati del mezzo su rete pubblica completamente criptati ed oscurati ad un possibile attaccante, implementazione necessaria se si prevede di utilizzare wurdts tecnologia in casi reali.

Un'ulteriore sviluppo possibile è l'aggiunta di una di una videocamera a bordo del mezzo, con la conseguente modifica del nodo di telemetria perchè possa inviare immagini della suddetta. Questo può essere utile al fine di permettere ad un operatore che si avvale della guida remota per potere vedere l'ambiente circostante in maniera più chiara rispetto che al singolo sensore Lidar.

Altro aspetto da considerare sarà l'implementazione di un sistema di platooning, per permettere al server di poter guidare oltre che un unico mezzo anche una flotta, questo può rivelarsi molto vantaggioso se si prevede l'utilizzo di questa tecnologia, ad esempio, per il trasporto di merci.

Infine sarà necessario svolgere test in condizioni reali, condizioni in cui l'affidabilità alla rete sia limità o con ambienti molto complessi.

7.3 Applicazioni pratiche

Per concludere si procede ad elencare quali possono essere delle eventuali applicazioni pratiche di questa tecnologia.

Come descritto prima, un utilizzo potrebbe essere quello della creazione di una flotta di veicoli semi-autonomi connessi a scopi di trasporto, avere una flotta infatti di rover capaci di trasportare all'interno di ambienti lavorativi grandi quantità di materiale o semi-lavorati, aiuterebbe con lo sviluppo tecnologico di un'impresa.

Altro utilizzo pratico si può avere nel caso di veicoli ad utilizzo personale. Si può infatti ipotizzare uno scenario in cui il guidatore non sia in grado di controllare il veicolo in caso di emergena medica e che quindi si avvalga ad un servizio che preveda un operatore pronto a connettersi che possa pilotare il mezzo a distanza, o addirittura ad un servizio di guida autonoma che possa guidare il veicolo fino all'ospedale più vicino.