

Prediction Model for Neonatal Acute Kidney Injury Adjusted for Regional Characteristics: A Retrospective Cohort Study of the K-MIMI C Database

Team SMILE:D

Eun Chan Jang, Ji Su Yang, Jeong Eul Kwon Chang Hun Ji, Yu Ra Jeong, Hyun Ho Kim

Aim

 To develop an AKI prediction model that extracts data characteristics from K-MIMIC neonatal ICU data collected from multiple institutions in South Korea, considering and adjusting for regional characteristics.

Methods

A study flow diagram

Cohorts

- Inclusion criteria: Neonates
 - B (69) hospital: 'NICU' is not a Neonatal Intensive Care Unit

- Exclusion criteria
 - No vital sign data: C (67) and D (24) Hospital
 - Major congenital anomaly in ICD 10
 - The Circulatory System (Heart and Lung): Q20 Q28
 - The Urinary system: Q60 Q64

One hospital's 118 neonates enrolled in this study.

Aim

 To develop an AKI prediction model that extracts data characteristics from K-MIMIC neonatal ICU data collected from multiple institutions in South Korea, considering and adjusting for regional characteristics.

 → To develop an AKI prediction model that extracts data characteristics from K-MIMIC neonatal ICU data, considering uncontrolled bias.

Preprocessing

Sampling

- Hospital days: from 7 to 27 days (2nd 4th week)
- Sampling frequency: once an hour

Vital sign and outlier

- Systolic Blood Pressure: <0, >200, >±2SD
- Heart Rate: <0, >±2SD
- SpO2: > ±2SD

Preprocessing: Input features

Demographics and clinical characteristics

Neonate	Mother	
	Nationality	
Sex, Weight	Maternal age	
Gestational age, C-section	DM (Overt DM, GDM)	
Small for gestational age	Hypertension (Gestational HTN, Chronic HTN)	
Multiple births	PROM, Chorioamnionitis, IVF	
	Antenatal steroid	
	Maternal antibiotics	

Preprocessing: Input features

Drug administration

Category	Drug	
Antibiotics	Acyclovir, Amikacin Amphotericin B Vancomycin Meropenem Piperacillin/Tazobactam	
Methylxanthines	Aminophylline	
Steroid	Dexamethasone	
NSAID	Ibuprofen	
Inotropic	Dopamine, Dobutamine Epinephrine	
Diuretics	Furosemide	

Nephrotoxicity drug

Medication	Mechanism of action	Site of kidney damage	Nephrotoxicity	Notes
Acyclovir	Inhibits DNA synthesis and viral replication via inhibition of viral DNA polymerase	Tubule	Crystallization and obstruction occur causing tubular damage, particularly when in low urinary flow state	Can be used for prophylaxis (CMV, HSV, varicella, herpes zoster), suppression (HSV), and treatment (varicella zoster, herpes zoster, HSV, varicella). Dosage adjustment for renal impairment available (93).
Amikacin	Inhibits protein synthesis via binding to 30S ribosomal subunits	Proximal tubule, S1 and S2 segments, late changes in S3	Proximal tubular damage after accumulation of aminoglycoside	Dosage adjustment for renal impairment as well as augmented renal clearance available (93).
Amphotericin B	Disrupts fungal cell wall synthesis and cell membrane permeability via binding to ergosterol which causes leakage of cellular components and subsequent cell death	Distal tubule	Vasoconstriction and direct distal tubular toxicity	Hydration and sodium repletion prior to administration of amphotericin B may reduce risk of renal toxicity. Dosage adjustment for renal impairment available (93).
Gentamicin	Disrupts bacterial protein synthesis and cell membrane integrity via biding to 30S ribosomal subunit	Proximal tubule, S1 and S2 segments, late changes in S3	Proximal tubular damage after accumulation of aminoglycoside	Dosage adjustment for renal impairment available (93).
Indomethacin	Non-selective cyclooxygenase inhibitor decreasing prostaglandin synthesis	Afferent arteriole	Hemodynamically mediated: causes afferent arteriole vasoconstriction and reduced GFR	Dosage adjustment for renal impairment available (93).
Piperacillin/Tazobactam	Inhibits bacterial cell wall synthesis leading to bacteria lysis	Tubule, particularly proximal tubule	Inhibits tubular secretion and clearance, direct toxicity	Dosage adjustment for renal impairment available (93).
Vancomycin	Inhibits cell wall synthesis of gram-positive bacteria via blocking glycol-peptide polymerization	Proximal tubule	Direct toxicity, otherwise unclear	Dosage adjustment for renal impairment available (93).

Coleman C, et al. Neonatal Acute Kidney Injury. Front Pediatr. 2022;10:842544.

Preprocessing: Outcome

Outcome: Acute Kidney Injury in neonates

Table 2 Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury (AKI) Classification including neonatal modifications

	Pediatric	Neonatal		
Stage	Serum creatinine	Urine output	Serum creatinine	Urine output ^a
1	1.5–1.9 times baseline OR ≥ 0.3 mg/dl increase*	<0.5 ml/kg/h for 6–12 h	≥0.3 rise within 48 h or ≥ 1.5–1.9 × rise from baseline (previous lowest value) within 7 days	≤1 ml/kg/h for 24 h
2	2.0–2.9 times baseline	<0.5 ml/kg/h for ≥12 h	2.0-2.9 times baseline	\leq 0.5 ml/kg/h for 24 h
3	3.0 times baseline OR Increase in serum creatinine to \geq 4.0 mg/dl OR Initiation of renal replacement therapy OR In patients < 18 years, decrease in eGFR to < 35 ml/min per 1.73 m ²	<0.3 ml/kg/h for ≥24 h OR Anuria for≥12 h	≥3 × rise from baseline or serum creatinine ≥2.5 mg/dl or renal replacement therapy initiation	≤0.3 ml/kg/h for 24 h

a Urine output criteria utilized in the AWAKEN study. May also consider utilizing the pediatric urine output data for neonates if the granularity of data allows

^{*} Increase in SCr by X0.3 mg/dl within 48 hours; or K Increase in SCr toX1.5 times baseline, which is known or presumed to have occurred within the prior 7 days mg/dl milligrams per deciliter, eGFR estimated golumerular filtration rate, ml/min milliliters per min, ml/k/h milliliters per kilogram

Results

Cohort characteristics

Value	AKI (N = 6)	No AKI (N=70)	P value
Male	2 (33.33)	37 (52.86)	0.359
Birth weight	2.83 ±0.91	2.87 ±1.21	0.938
Gestational age	29.67 ±2.94	32.90 ±4.54	0.092
Admission duration	53.83 ±40.18	49.08 ±49.47	0.835
urine output (per once, ml)	26.61 ±3.93	33.61 ±11.31	<0.001
Blood Creatinine (per once, mg/dl)	0.43 ±0.07	0.42 ±0.09	0.737

Train vs test set feature

Target variable	Train set (N = 66,918)	Test set (N = 17,393)
AKI	19,406 (29.0%)	5,044 (29.7%)

Performance of test set

GRU model

- Accuracy: 60.0
- Sensitivity (Recall): 0.60 / Specificity: 0.60
- Precision: 0.38 / F1 Score: 0.47
- AUROC: 0.56 / AUPRC: 0.55

MLP model

- Accuracy: 0.59
- Recall (Sensitivity): 0.64 Specificity: 0.71
- Precision: 0.71 / F1 Score: 0.67
- AUPRC: 0.64 / AUPRC: 0.71

Evaluating potential biases within the model

Fairness

Nationality, Gender, Insurance: Correlation with Prediction Results

Accountability

Accuracy of the predictive model and Safeguards against misdiagnosis

Transparency

- Data Selection: Imbalance issue due to a high amount of normal data
- ICD Code Discrepancy
 - Variables substituted based on operational definitions
 - Suspected NEC, Sepsis: Suspected infectious Disease (NEC, Sepsis) By Antibiotics
 - Hypotension By Inotropics and/or Steroid
 - Acute kidney injury by Serum Creatinine and/or Urine output

Evaluating potential biases within the model

Transparency

• Feature Selection: Frequency and type of creatinine tests adjusted as variables

	AKI	No AKI
Blood Cr (times)	7.5	11.8
Blood Cr ↑ (times)	2.3	4.4
Hospital duration (day)	42.2	44.7

Discussion

Conclusion

- Based on the modified neonatal KDIGO criteria, the prevalence of AKI in the NICU is 8.0%.
- A GRU and MPL model was attempted to be developed to predict Neonatal AKI one hour earlier using clinical characteristics and timeseries vital sign data.

Solved Bias

- Spares and Imbalance data: Unbalance cohort → Time shift sampling
- ICD Code Discrepancy → Definition by EMR and laboratory
- The number of test influenced feature selection s → not significant

Unsolved Bias

- Accountability -> performance tunning
- Fairness: Nationality, Gender, Insurance → Covariance
- Important feature → Feature importance, Shapley plot

THANK YOU!!

