3. Kohn-Sham equation

Goal: solve
$$\begin{bmatrix}
-\frac{1}{2} \frac{d^2}{dr^2} - \frac{2}{r} + V_H(r) + V_X(r) + V_L(r) \end{bmatrix} u = Eu$$

$$u(o) = u(r_{max}) = 0$$
Test: solve hydrogen:
$$\begin{bmatrix}
-\frac{1}{2} \frac{d^2}{dr^2} - \frac{1}{r} \end{bmatrix} u = Eu$$
Apply finite difference:
$$u(r) \longmapsto u(r_i) = u_i$$

$$\frac{d^2u}{dr^2} \longmapsto \frac{u_{i+1} - 2u_i + u_{i+1}}{h^2}$$
Operators as matrices:
$$0^2 = \frac{1}{h^2} \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 & 0 \\ -1 & -1 & -1 & 2 \end{pmatrix}$$

$$\Gamma = \begin{pmatrix} r_0 & r_1 & r_2 & r_3 \\ r_1 & r_2 & r_3 & r_4 \\ r_2 & r_3 & r_4 & r_5 \\ r_3 & r_4 & r_5 & r_6 \end{pmatrix}$$

Potentials	given	element wise:
V(r) = ((,°)	V(rn)
r(= (1/50.	
Solve e	igenvalue	problem
$\left(-\frac{1}{2}D^{3}\right)$	2-2(-1)	$\vec{u} = \vec{E} \vec{a}$
e.g. usin	g num	oy (np.eig)
Analytical	solution	
4100(-)	= \frac{1}{\pi\pi} e^-	E = - 1