Regular Expression Equivalence via Derivatives

Fabian Hellauer

Goal

equivalence checker for regular expressions which is

- automatic: without user interaction
- complete
- elegant, i.e. easy to prove correct

... for an Isabelle proof method

Correctness Statement

is_bisimulation as ps \Longrightarrow (r, s) \in ps \Longrightarrow L r = L s

Shortcuts

Avoid having to formalize and prove correct the automata

- construction (notation!)
- determinization
- minimization

Languages

- Words are lists.
- Languages are sets of words.
- Derivative-Language:

$$D_{\mathcal{X}}(A) := \{xs. \ x \# xs \in A\}$$

- Interesting languages are the infinite ones.
 - represent them by regular expressions (REs)

Bisimulations

Definition

- for all A and B $A \sim B \Longrightarrow [] \in A \longleftrightarrow [] \in B$
- for all A and B and X $A \sim B \Longrightarrow D_x \ (A) \sim D_x \ (B).$

If " \sim " is a bisimulation, then $A \sim B$ implies A = B. proof by list induction.

Regular Expressions

$$L(\emptyset) = \emptyset$$

$$L(\varepsilon) = \{[]\}$$

$$L(a) = \{[a]\}$$

$$L(r + s) = L(r) \cup L(s)$$

$$L(r \cdot s) = L(r)L(s)$$

$$L(r^*) = (L(r))^*$$

Derivatives of REs

- ullet D is not computable
- use operation on REs instead: d

goal:
$$L(d_a(r)) = D_a(L(r))$$

with $d:: 'a \Rightarrow 'a \ rexp \Rightarrow 'a \ rexp$ computable

• This is possible (Brzozowski 1964):

$$d_a(\emptyset) = \emptyset$$

 $d_a(\varepsilon) = \emptyset$
 $d_a(\langle b \rangle) = (if a = b then \varepsilon else \emptyset)$
 $d_a(r+s) = d_a r + d_a s$

Times and Star

$$d_a(r \cdot s) =$$

$$(let \ drs = d_a \ (r) \cdot s$$

$$in if \ nullable \ r \ then \ drs + d_a \ (s) \ else \ drs)$$

$$d_a(r^*) = d_a(r) \cdot r^*$$

 $L(d_a(r)) = D_a(L(r))$ follows by structural induction.

Algorithm

Assume a definition

fun while where while tst stp state =

(if tst state then while tst stp (stp state) else state)

In our case, state has the type ('a rexp \times 'a rexp) list \times ('a rexp \times 'a rexp) list

Step and Test

```
fun stp where stp as (ws, ps) =
 (let ps' = hd ws # ps;
   new = [p \leftarrow succs as (hd ws) \cdot p \notin set ps' \cup set ws]
 in (new @ tl ws, ps'))
...where succs as (r, s) = map (\lambda a. (nderiv a r, nderiv a s)) as
test (ws._) \leftrightarrow
       (case ws of [] \Rightarrow False | (p, q)#vs \Rightarrow nullable p \leftrightarrow nullable q)
```

Example

<on the board>

result

$$L\left((\epsilon + a \cdot b)^* \cdot (a + b)\right) = L\left((a \cdot b + \epsilon)^* \cdot (a + b)\right)$$

In each step

- A pair from the work set is processed
- All pairs missing for the property

 $\forall a \in set \ as. \ (-r, nderiv \ a \ s) \in R)$

are added to the work set

"as" will be the set of atoms in the expressions (this does not change during execution)

ACI

associativity, commutativity and idempotence of +

- the auxiliary function *norm* establishes a normal form
 - → ACI-equal terms are identified at that step already
- to verify this, one would have to state ACI-equivalence formally.

 the REs in the (emergent) bisimulation are kept in this normal form, as an invariant

Closure computation

- terminates if either
 - the work set is empty (bisimulation constructed)
 - a nonequivalent pair of REs is to be processed (counterexample found)

Extensions

• "⊆" can be solved easily

extended regular expressions: to-do

→ Need a computable deriv for those < Rules>

Beyond equalities

• "⊆" can be solved easily, using

• \neg " \equiv " should really be stated differently, even though decidable e.g. $w \in A \setminus B$

Relation algebras

Reflection due to Boyer and Moore

• one atom for every relation: <0>, <1>, ...

• goal (R* ∘ S* ∘ T)* = (R ∪ S ∪ T)*

$$\sim$$
 goal (<0>*.<1>*.<2>)* = (<0> + <1> + <2>)*

Defining a usable proof method

With Eisbach, one can use the usual method modifiers in a "proof method definition":

```
method rexp = (unfold subset_eq_to_eq)?, (rule soundness, eval)+
```

• Example:

```
lemma "lang (Times (Star (Plus One AB)) A_or_B) ⊆ lang (Times (Star (Plus AB One)) A_or_B)"

by rexp
```

References

- J. A. Brzozowski. Derivatives of regular expressions. *J. ACM*, 11(4):481–494, Oct. 1964.
- A. Krauss and T. Nipkow. Proof pearl: Regular expression equivalence and relation algebra. J. Automated Reasoning, 49:95–106, 2012. published online March 2011. http://www21.in.tum.de/~nipkow/pubs/jar12.html.
- Robert S. Boyer and J Strother Moore. Metafunctions: proving them correct and using them efficiently as new proof procedures. In R. Boyer and J Moore, editors, *The Correctness Problem in Computer* Science, pages 103–184. Academic Press, 1981