VE CAN APPLY 1003 DAME APPROACH 10 DOLVE OUR 2 - UKDER EQUATION Y"+ P(x)y'+ Q(x)y = O. FURTHERMORE, THE SERIES SOLJTION MOTIVATES A USEFUL CLASSIFICATION OF SINGULAR POINTS.

ORDINARLY POINTS

IF P(x) & Q(x) ARE ANALYTIC AT X=XO, THEN WE CALL XO AN 'ORDINARY POINT- THE POINT XO IS CALLED SINGULAR! OTHERWISE. AT ORDINARY POINTS, THE SOLUTION Y(x) WILL LIKEWISE BE ANALYTIC, AND WE ARE SUSTIFIED IN ASSUMING A POWER-SERIES FORM. MORE FORMALLY:

FOR AN ORDINARY POINT XO & CONSTANTS X&B, THERE EXISTS A UNIONE FUNCTION Y(x) THAT IS ANALYTIC AT XO SOLVING THE HOMO GENEOUS DIFFERENTIAL FOR IN THE NEIGHBOUR HOOD OF XO, AND SATISFYING THE INITIAL CONDITIONS Y(xo)=X & Y'(xo)=B.

IF P(x) & Q(x) ARE AMALYTICONIX-XOIXP, THEN THE POWER SERIES FOR Y(x) IS VALID ON THE SAME INTERVAL.

PROOF: SEE SIMMONS, P. 180.

EX, $y'' + w^2y = 0$. FOR THIS FOURTION, ALL POINTS \times ARE DIZDIMARY. WE ASSUME $y = \sum_{n=0}^{\infty} a_n x^n$ AND $y'' = \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2} x^n$

 $= a_0 + a_1 x + a_2 x^2 + \cdots = 2a_2 + 3 \cdot 2 \cdot a_3 x + 4 \cdot 3 x^2 + \cdots$

TO SATISFY THE DIFFERENTIAL EQUATION, WE MUST CHOOSE an SO THAT- $2a_2 + 3 \cdot 2 \cdot a_3 \times + \dots + (n+2)(n+1)a_{n+2} \times^n + \dots = -\omega^2 \left[a_0 + a_1 \times + \dots + a_n \times^n + \dots \right]$ $0^{12} \cdot \left[a_{n+2} - \frac{\omega^2 a_n}{(n+2)(n+1)} \right]$

THERE IS A SURPRISE HIDDEN IN THIS RECURSION-IF WE START FROM AN EVEN INDEX, THE RECURSION MAPS BACK to QO; WHEREAS IF WE START FROM AN ODD INDEX, WE MAP BACK TO QI.

$$Q_{2} = -\omega^{2} a_{0}$$

$$Q_{3} = -\omega^{2} a_{1}$$

$$Q_{4} = \omega^{4} a_{0}$$

$$Q_{5} = \omega^{4} a_{1}$$

$$Q_{2n} = (-1)^{n} \omega^{2n} a_{0}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} a_{1} = (-1)^{n} \omega^{2n+1} \cdot a_{1}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} a_{1} = (-1)^{n} \omega^{2n+1} \cdot a_{1}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} a_{1} = (-1)^{n} \omega^{2n+1} \cdot a_{1}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} a_{1} = (-1)^{n} \omega^{2n+1} \cdot a_{1}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} a_{1} = (-1)^{n} \omega^{2n+1} \cdot a_{1}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} a_{1} = (-1)^{n} \omega^{2n+1} \cdot a_{1}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} a_{1} = (-1)^{n} \omega^{2n+1} \cdot a_{1}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} a_{1} = (-1)^{n} \omega^{2n+1} \cdot a_{1}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} a_{1} = (-1)^{n} \omega^{2n+1} \cdot a_{1}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} a_{1} = (-1)^{n} \omega^{2n+1} \cdot a_{1}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} a_{1} = (-1)^{n} \omega^{2n+1} \cdot a_{1}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} a_{1} = (-1)^{n} \omega^{2n+1} \cdot a_{1}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} a_{1} = (-1)^{n} \omega^{2n+1} \cdot a_{1}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} a_{1} = (-1)^{n} \omega^{2n+1} \cdot a_{1}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} a_{1} = (-1)^{n} \omega^{2n+1} \cdot a_{1}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} a_{1} = (-1)^{n} \omega^{2n+1} \cdot a_{1}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} \cdot a_{1} = (-1)^{n} \omega^{2n+1} \cdot a_{1}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} \cdot a_{1} = (-1)^{n} \omega^{2n+1} \cdot a_{1}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} \cdot a_{1} = (-1)^{n} \omega^{2n+1} \cdot a_{1}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} \cdot a_{1} = (-1)^{n} \omega^{2n+1} \cdot a_{1}$$

$$Q_{2n+1} = (-1)^{n} \omega^{2n} \cdot a_{1} = (-1)^{n} \omega^{2n} \cdot$$

SEQUENCES CONTRESPOND TO THE TWO LINEARLY-INDEPENDENT SOLUTIONS!

PUTTING THEM TOGETHER, $y(x) = 0.0 \frac{2}{5} (-1)^n (\omega x)^{2n} + \frac{0.0}{5} \frac{2}{5} (-1)^n (\omega x)^{2n+1}$

WE RECOGNIZE TUESE -

= A cos(wx) + B sin(wx).

TUIS FRACTURING OF THE SERIES INTO LINEARLY-INDEPENDENT PARTS 15 A UNIVERSAL FEATURE OF NONSINGULAR ORDINARY DIFFERENTIAL EQS. WE CAN, OF COUNTSE, APPLY THE SAME APPROACH TO DETERMINE SOLUTIONS IN THE MODE GLENEIZAL CASE OF NON-CONSTANT COEFFICIENTS POXIS O(X)

(1-x2)y"-2xy'+p(p+1)y=0 [PA POSITIVE]
INTEGER, EX. LEGENDRE'S EQUATION:

IN TUIS EXAMPLE, FOR A GIVEN 'P', THE LINEARLY-INDEPENDENT SOLUTIONS ARE 1.) A POLYNOMIAL OF ORDER 'P' [LEGENDIZE POLYNOMIALS] AND Z). AN INFINITE SERIES THAT DEFINE'S A SPECIAL FUNCTION' THAT CANNOT BE EXPRESSED IN TERMS OF ELEMENTARY FUNCTIONS.

 $y'' - \frac{2x}{(1-x^2)}y' + \frac{p(p+1)}{(1-x^2)}y = 0$ IN STANDARD FORM,

30TU $P(x) = \frac{7}{2} \times /(1-x^2)$ AND $Q(x) = \frac{p(p+1)}{(1-x^2)}$ ARE AMALYTIC AT x = 0, BUT SINGULAR AT $x = \pm 1$, LET'S TRY A POWER SERIES ABOUT x = 0: $(1-x^2)y'' = \frac{2}{2}(n+2)(n+1)a_{n+2}x^n - \frac{2}{2}n(n-1)a_nx^n$

 $-2xy' = -2\sum_{n=0}^{\infty}na_nx^n$ AND $p(p+1)y = \sum_{n=0}^{\infty}p(p+1)a_nx^n$

$$(n+2)(n+1) a_{n+2} + \left[p(p+1) - n(n+1) \right] a_n = 0$$

$$on,$$

$$a_{n+2} = -\left[p(p+1) - n(n+1) \right] a_n$$

$$= -\left(p - n \right) (p+n+1)$$

$$= -\left(p - n \right) (p+n+1) a_n$$

AS IN THE HARMONIC OSCILLATOR EYAMPLE, EVEN INDICES RECUPSE BACK TO CLO AND ODD INDICES RECURSE BACK TO Q:

$$\begin{array}{lll}
\alpha_{2} &=& -p(p+1) \\
2! & \alpha_{0} \\
\alpha_{4} &=& p(p+1)(p-2)(p+3) \\
\alpha_{5} &=& (p-1)(p+2)(p-3)(p+4) \\
\alpha_{7} &=& (p-1)(p+2)(p-3)(p+2) \\
\alpha_{7} &=& (p-1)(p+2)(p-2)(p+2) \\
\alpha_{7} &=& (p-1)(p+2)(p+2) \\
\alpha$$

WE DENOTE THESE SOLUTIONS BY EVEN AND ODD LEGENDRE POLYNOMIALS L'p(x) & L'p(x), RESPECTIVELY:

$$y(x) = \sum_{n=0}^{\infty} a_{2n} x^{2n} + \sum_{n=0}^{\infty} a_{2n+1} x^{2n+1} = a_0 \sum_{n=0}^{\infty} \frac{(-1)^n \pi_{i=0}^n (p-2i+2)(p+2i-1)}{(2n)!} x^{2n} + a_1 \sum_{n=0}^{\infty} \frac{(-1)^n \pi_{i=0}^n (p-2i+1)(p+2i)}{(2n)!} x^{2n} = a_0 \sum_{n=0}^{\infty} \frac{(-1)^n \pi_{i=0}^n (p-2i+2)(p+2i-1)}{(2n)!} x^{2n} + a_1 \sum_{n=0}^{\infty} \frac{(-1)^n \pi_{i=0}^n (p-2i+1)(p+2i)}{(2n+1)!} x^{2n} = a_0 \sum_{n=0}^{\infty} \frac{(-1)^n \pi_{i=0}^n (p-2i+2)(p+2i-1)}{(2n)!} x^{2n} + a_1 \sum_{n=0}^{\infty} \frac{(-1)^n \pi_{i=0}^n (p-2i+1)(p+2i)}{(2n)!} x^{2n} = a_0 \sum_{n=0}^{\infty} \frac{(-1)^n \pi_{i=0}^n (p-2i+2)(p+2i-1)}{(2n)!} x^{2n} + a_1 \sum_{n=0}^{\infty} \frac{(-1)^n \pi_{i=0}^n (p-2i+2)(p+2i-1)}{(2n)!} x^{2n} + a_1 \sum_{n=0}^{\infty} \frac{(-1)^n \pi_{i=0}^n (p-2i+2)(p+2i-1)}{(2n)!} x^{2n} + a_1 \sum_{n=0}^{\infty} \frac{(-1)^n \pi_{i=0}^n (p-2i+1)(p+2i-1)}{(2n)!} x^{2n} + a_1 \sum_{n=0}^{\infty} \frac{(-1)^n \pi_{i=0}^n (p-2i+2)(p+2i-1)}{(2n)!} x^{2n} + a_1 \sum_{n=0}^{\infty} \frac{(-1)^n \pi_{i=0}^n (p-2i+2)(p+2i-$$

FOR EVEN 'p', L'EVEN(X) TERMINATES INTO A 'p'ORDETZ POLYNOMIAL; FOR ODD 'p', L'ODD (X) TERMINATES, eg. $L_o=1$ $L_i=X$ $L_z=1-3x^2$ $L_z=1-3x^2$ $L_z=1-3x^2$ $L_z=1-10x^2+\frac{35}{3}x^4$ $L_z=1-\frac{14}{3}x^3+\frac{21}{5}x^5$

THESE LEGENDRE POLYNOMIALS HAVE A STRANGE, BUT USEFUL,
PROPERTY. THE PRODUCT OF ANY TWO POLYNOMIALS WILL VANISH
WHEN INTEGRATED FROM X=-1 TO X=1 IF, AWD ONLY IF, THE
POLYNOMIALS ARE DISTINCT. (i.e. DIFFERT 'P').

$$\int_{1}^{4} (1) \cdot (x) dx = 0 \qquad \int_{1}^{4} (1-3x^{2})(1) dx = 0 \qquad \int_{1}^{4} (1-3x^{2})(1) dx = 0 \qquad \int_{1}^{4} (1-3x^{2})(1-3x^{2}) dx = \frac{8}{5} = 0.$$

LIKE A FOURIER SERIES IN SIN(NX) & COS(MX), LEGENDRE POYNOMIALS CAN BE USED AS ORTHOGONAL BASIS FUNCTIONS ON THE INTERNAL XEL-1,1].

SINGULAR POINTS

IF X=X0 IS NOT AN ORDINARY POINT, THEN IT IS SINGULAR. SOME SINGULAR-ITLES ARE EASIER TO WORK WITH THAN OTHERS:

ARE AMALYTIC AT X=XO, THEN XO IS A REGULAR SINGULAR POINT. IT

EX. LEGENDRE'S EQUATION IN STANDARD FORM IS,

$$y'' - \frac{2x}{1-x^2}y' + \frac{p(p+1)}{1-x^2}y = 0$$

THE POINTS X= ± 1 ARE REGULAR SINGULAR POINTS. AT X= 1,

$$(x-1) P(x) = \frac{2x}{1+x}$$
 AND $(x-1)^2 O(x) = -(x-1) p \cdot (p+1)$

BOTH OF WHICH ARE ANALYTIC AT X=1. SAME GOES FOR X=-1.

REGULAR SINGULAR POINTS ARE TRACTABLE INSOFAR AS A SERIES SOLUTION IS STILL POSSIBLE IN THEIR NEIGHBOURHOOD.

HEIRE 1) A CLASSIL EXAMPLE FILOM ASTROPHIZOUD,

STAPS, EMDEN ARRIVED AT THE POLLOWING PROBLEM -

DETERMINE THE FIRST POINT ON THE POSITIVE X-AXIS WHERE THE SOLUTION Y(x) TO THE DIFFERENTIAL EQUATION

15 ZERO.

IN STANDARD FORM- y" + 2/x y' + y = 0; SO X = 0 IS A REGULAR SINGULAR
POINT. ASSUMING A POWER SERIES y = 2 anx",

AFTER SUBSTITUTION INTO THE DIFFERENTIAL EQ,

$$[2a_{1}] + [6a_{2} + a_{0}] \times + [12a_{3} + a_{1}] \times^{2} + \dots + [((n+1)n + 2(n+1))a_{n+1} + a_{n-1}] \times^{n}_{+} = 0$$

$$2a_{1} = 0 \Rightarrow a_{1} = 0$$

$$E \in CAUSE^{*}(a_{1} = 0)$$

$$6a_2 + a_0 = 0 \Rightarrow a_2 = -\frac{1}{6}a_0$$

$$12q_3+q_1=0 = 7$$
 $q_3=\frac{1}{12}q_1=0$

BECAUSE Q = 0, ALL ODD COEFFICIENTS VANISH.

FOR EVEN INDICES

$$Q_{n+1} = -Q_{n-1} = > Q_{2k} = -Q_{2k-2} = ... = (-1)^k Q_0$$

$$(n+2)(n+1) = > Q_{2k} = -Q_{2k-2} = ... = (-1)^k Q_0$$

$$(2k+1)^l_0$$

ALTOGETHER,

INDEPENDENT SOLTION?

2: WHAT HAPPENED
$$[y(x) = Q_0 \left[1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + ...\right]$$
TO THE OTHER LINEARLY-

FROM THE BOUNDARY
CONDITIONS y(0)=1, y'(0)=0
WE HAVE a0=1.

$$= \left[\left[1 - \frac{x^2}{3!} + \frac{x^4}{5!} - \frac{x^6}{7!} + \dots \right] = \frac{\sin x}{x}$$

THE SMALLEST POSITIVE POOT OF Y(X) 15 X= TT. 1.

WE WELLE LUCKY WITH THIS PLANDED IN BELYNDE SINX/X HAS A TAYLOK SERIES THAT BEGINS WITH A NON-NEGATIVE POWER OF X. FOR REGULAR INGULXR PROBLEMS, THIS WILL NOT ALWAYS BE THE CASE NEVERTHERS, WE CAN STILL GENERATE POWER SERIES SOLUTIONS! THE XPPROACH IS DUE TO FROBENIUS.

FROBENIUS SERIES & REGULAR SINGULAR PROBLEMS

TO MOTIVATE THE IDEA, CONSIDER THE PROTOTYPICAL ECONATION WITH REGULAR SINGULARITIES AT X=0:

THE GENERAL SOLUTION IS $X' \times Y'$ IS A CONSTANT. WITH SUBSTITUTION INTO THE DIFFERENTIAL ECONATION, WE OBTAIN AN 'INDICIAL ECONATION' FOR 'r': $r(r-1)+p_0r+q_0=0$

ASIDE: IF TUIS QUADRATIC HAS: i) DISTINCT POOTS V, \$VZ, THEN YH(X)= C, XV+CZXVZ

ii) REPEATED POOTS V=V, THEN YH(X)=C, XV+CZXV ln(X).

iii) COMPLEX POOTS V, G= X±jB, THEN YH(X)= Xx [C, cos(Blnx)+CZSin(Blnx)]

FOR A GENERAL DIFFERENTIAL ECONATION WITHAREGULAR SINGULAR POINT AT X=0, WE CAN WRITE P(x)= P(x)= P(x) AND Q(x) = \frac{2(x)}{x^2} AND EXPAND THE ANALYTIC FUNCTIONS P(x) AND Q(x) AS POWER SERIES.

$$y'' + \left(\frac{P_0 + P_1 \times + P_2 \times^2 + \cdots}{X}\right) y' + \left(\frac{2_0 + q_1 \times + \cdots}{X^2}\right) y' = 0$$

THE SINGULAR PART OF THIS EQUATION CORRESPONDS TO THE FULER EQUATION ABOVE & SUGGESTS WE LOOK FOR SOLUTIONS OF THE

FORM:
$$y(x) = X^n \cdot \sum_{n=0}^{\infty} a_n x^n = \sum_{n=0}^{\infty} a_n x^{n+r} (a_0 \neq 0)$$

Solves

Singular

PAGE

SERIES

XEKOSE, KETURU TO EMBUENS ECONTION Y"+ &y' +y=0. HERE, Po=2 & 90=0. THE INDICIAL EQ. 15:

r(r-1)+2r=0 with r=0,-1.

PREVIOUSLY, WE USED TO DETERMINE ONE SOUTION $y_1 = \alpha_0 \left[1 - \frac{\chi^2}{3!} + \frac{\chi'}{5!} - \dots \right]$ USE r = -1 TO FIND THE OTHER: $y_2 = \frac{1}{\chi} \sum_{n=0}^{\infty} \alpha_n \chi^n$.

5XAMPLE - 2 x2y" + x(2x+1)y'-y=0 or, y"+ (2+x)y'+ (-1)y'-y=0 YP(x) = 2+X } BOTH ARE ANALYTIC ATXED

X^2Q(x) -2 BOTH ARE ANALYTI

THE ASSOCIATED INPICIAL EGNATION 15: r(r-1)+ \(\frac{1}{2}(r-1) = 0\) OR \(\frac{1}{2}\). TRY A FROBENIUS SERIES - Y = Z an Xnt with do to.

> Xy'= X \(\int \) (n+r) an Xntr-1 = \(\int \) (n+r) an Xntr 2x2y=2x2 = (n+r)an xn+r-1 = = = 2(n+r-1)an-1 xn+r 2x2y"= 2x2 = (n+r)(n+r-1)anxn+r-2 = = = 2(n+r)(n+r-1)anxn+r

SUBSTITUTING INTO THE DIFFERENTIAL EQUATION,

 $a_0[(2n+1)(r-1)] + \sum_{n=1}^{\infty} (n+r-1)[(2(n+r)+1)a_n+2a_{n-1}] \times {}^{n=0}.$

WITH THE RESTRICTION THAT a0 =0, THE LEADING TEPPM PROVIDES A CONSTRAINT ON 'T': 1: 1,- 2. TUIS IS EXACTLY WHAT WE FOUND FROM THE INDICIAL EQ., AND IS A GENERAL FEATURE OF THE FROBENIUS METHOD - YOU DON'T NEED TO INVESTIGATE THE INDICIAL ECUATION SEPARATERY; IT IS INCLUDED AUTOMATICILLY.

FOR THE REMAINING COEFFICIENTS,

an= - an-1 (n+r+ 2)

FOR
$$r = 1$$
, $a_1 = -\frac{2}{3}a_0$

FOR
$$r = -\frac{1}{2}$$
,
 $a_1 = -a_0$
 $a_2 = -\frac{1}{2}a_1 = \frac{1}{2}a_0$

$$Q_2 = -\frac{2}{7}Q_1 = \frac{4}{35}Q_0$$

ALTOGETHER, THE TWO LIMEARLY-INDEPENDENT SOLUTIONS ARE:

$$y_1 = X \left(1 - \frac{2}{5} \times + \frac{4}{35} \times^2 + \cdots \right)$$
 AND $y_2 = \sqrt{\frac{1}{2}} \left(1 - \times + \frac{1}{2} \times^2 + \cdots \right)$

CAUTION: FROM THE FORM OF THE FROBENIUS SERIES: ZOX "TO, IF IT IT IN AT NOT BE POSSIBLE TO FIND THE SECOND LINEARLY-INDEPENDENT SOLUTION. SAME GOES FOR REPEATED POOTS (I= 1/2; IN THOSE CASES, YOU MUST APPLY A REDUCTION-OF ORDER!