IMPERIAL

Domain sensitivity analysis

Víctor Ballester January 30, 2025

Summary

Our goal here is to determine the appropriate domain for which there is no dependence on the final solution in the length scales of the domain, say the x distance before and after the gap and the height of the domain.

Data

- $Re_{\delta^*} = 1000$
- $D/\delta^* = 4$
- $W/\delta^* = 15$

(for not forgetting it in the future) for Blasius profile $\delta=2.85\delta^*$ (if the other text books say slightly different values, it is because they are using approximations. I computed the **exact** value.)

Domains considered

Coding system: ioh, where i, o, h $\in \{1, 2, 3\}$ and i is the inflow, o is the outflow and h is the height of the domain, and the numbers mean from small size (1) to large size (3).

Points of interest

We fix some points in the domain to study their time evolution:

 Imperial College London
 Domain sensitivity analysis
 January 30, 2025

Point 1:

Point 2:

Point 1: x = 19.75, y = -1.33, z = 0.00

Point 3:

Point 4:

Point 3: x = 23.50, y = 2.00, z = 0.00

Point 5:

Point 6:

Imperial College London Domain sensitivity analysis January 30, 2025

Time

Point 7:

Point 8:

Point 9:

Point 8: x = 27.25, y = -2.67, z = 0.00

Point 10:

Point 11:

Point 12:

Conclusions

- The distance after the gap is not that important for u and v.
- The pressure is the most sensitive to the domain size.

The resolution of the vortex was decent