# Measuring Error

Adopted from slides by Alexander Ihler

- Given training data, compute p(y = c | x) and choose largest
- What's the (training) error rate of this method?

| Features | # bad | # good |
|----------|-------|--------|
| X=0      | 42    | 15     |
| X=1      | 338   | 287    |
| X=2      | 3     | 5      |

- Given training data, compute p(y = c | x) and choose largest
- What's the (training) error rate of this method?

| Features | # bad | # good |
|----------|-------|--------|
| X=0      | 42    | 15     |
| X=1      | 338   | 287    |
| X=2      | 3     | 5      |

#### **Gets these examples wrong:**

(empirically on training data: better to use test data)

# Measuring errors

- Confusion matrix
- Can extend to more classes

|     | Predict 0 | Predict 1 |
|-----|-----------|-----------|
| Y=0 | 380       | 3         |
| Y=1 | 302       | 5         |

# Classification Metrics: Precision, Recall, and F1

- In binary classification, we evaluate model performance using several metrics:
- - Precision: How many predicted positives are actually positive.
- - Recall: How many actual positives are correctly predicted.
- - F1-score: The balance between precision and recall.

#### Confusion Matrix Components

Below are different components of a confusion matrix for a binary classification task with classes Positive and Negative.

|        | Predicted |                                    |                                       | <del></del> |
|--------|-----------|------------------------------------|---------------------------------------|-------------|
|        |           | Positive                           | Negative                              | Total       |
| Actual | Positive  | True positive (TP)                 | False negative (FN)<br>(Type 2 error) | # positives |
|        | Negative  | False positive (FP) (Type 1 error) | True negative (TN)                    | # negatives |
|        | Total     | TP + FP                            | FN + TN                               | # examples  |

#### Confusion Matrix Example

|        |          | Predicted |          |       |
|--------|----------|-----------|----------|-------|
|        |          | Positive  | Negative | Total |
| Actual | Positive | 80        | 40       | 120   |
|        | Negative | 20        | 60       | 80    |
|        | Total    | 100       | 100      | 200   |

#### Accuracy and Error

$$accuracy = \frac{TP + TN}{TP + FP + TN + FN} = \frac{TP + TN}{\#examples}$$

$$error = \frac{FP + FN}{TP + FP + TN + FN} = \frac{FP + FN}{\#examples}$$

#### **Examples**

$$accuracy = \frac{80+60}{200} = \frac{140}{200} = 0.70$$

$$error = \frac{20+40}{200} = \frac{60}{200} = 0.30$$

#### Precision

$$precision = \frac{TP}{TP+FP}$$

#### **Example**

$$precision = \frac{80}{100} = 0.80$$

#### Recall/TP rate/sensitivity

$$recall = \frac{TP}{TP + FN} = \frac{TP}{\#positives}$$

#### Example

$$recall = \frac{80}{120} = 0.666$$

#### $F_1$ score

$$F_1 = 2 \times \frac{precision \times recall}{precision + recall}$$

#### Example

$$F_1 = 2 \times \frac{0.8 \times 0.666}{0.8 + 0.666} = 0.727$$

#### True Negative Rate (specificity)

$$tnr = \frac{TN}{\#negatives}$$

#### Example

$$specificity = \frac{60}{80} = 0.75$$

#### False Positive Rate

$$fpr = \frac{FP}{FP + TN} = \frac{FP}{\#negatives}$$

#### Example

$$fpr = \frac{20}{80} = 0.25$$

#### False Negative Rate

$$fnr = \frac{FN}{FN + TP} = \frac{FN}{\#positives}$$

#### Example

$$fnr = \frac{40}{120} = 0.333$$

# Example: Confusion Matrix

- Predicted Bad Predicted Good
- Actual Bad380
- Actual Good 302

- From this, we derived:
- TP=380, FP=302, FN=3, TN=5.

### Precision

- Definition:
- Precision = TP / (TP + FP)
- Intuition:
- - Among all instances predicted as positive, how many are correct?
- - High precision = few false positives.
- Example:
- From our data: TP=380, FP=302
- Precision =  $380 / (380 + 302) \approx 0.557$

### Recall

- Definition:
- Recall = TP / (TP + FN)
- Intuition:
- Among all actual positives, how many are correctly predicted?
- High recall = few false negatives.
- Example:
- From our data: TP=380, FN=3
- Recall =  $380 / (380 + 3) \approx 0.992$

### F1-score

- Definition:
- F1 = 2 \* (Precision \* Recall) / (Precision + Recall)
- Why use F1:
- - Balances precision and recall.
- - Useful when dataset is imbalanced.
- Example:
- Precision ≈ 0.557, Recall ≈ 0.992
- $F1 \approx 2 * (0.557 * 0.992) / (0.557 + 0.992) \approx 0.711$

• Bayes classification decision rule compares probabilities:

$$p(y = 0|x) \le p(y = 1|x)$$
=  $p(y = 0, x) \le p(y = 1, x)$ 

Can visualize this nicely if x is a scalar:



#### Add multiplier alpha:

$$\alpha p(y=0,x) \stackrel{<}{>} p(y=1,x)$$

- Not all errors are created equally...
- Risk associated with each outcome?



Type 2 errors: false negatives

Type 1 errors: false positives

False positive rate:  $(\# y=0, \hat{y}=1) / (\# y=0)$ 

False negative rate:  $(\# y=1, \hat{y}=0) / (\# y=1)$ 

#### Add multiplier alpha:

$$\alpha p(y=0,x) \stackrel{<}{>} p(y=1,x)$$

Increase alpha: prefer class 0



False positive rate:  $(\# y=0, \hat{y}=1) / (\# y=0)$ 

False negative rate:  $(\# y=1, \hat{y}=0) / (\# y=1)$ 

#### Add multiplier alpha:

$$\alpha p(y=0,x) \stackrel{<}{>} p(y=1,x)$$

Decrease alpha: prefer class 1

Cancer detection



Type 2 errors: false negatives

Type 1 errors: false positives

False positive rate:  $(\# y=0, \hat{y}=1) / (\# y=0)$ 

False negative rate:  $(\# y=1, \hat{y}=0) / (\# y=1)$ 

### **ROC Curves**

• Characterize performance as we vary the decision threshold?



(c) Alexander Ihler

### **ROC Curves**

• Characterize performance as we vary the decision threshold?



(c) Alexander Ihler