Text Data in Business and Economics

Benjamin W. Arold, University of Cambridge

1. Overview

Welcome

► This course focuses on applications of **natural language processing** in **applied economics**

Welcome

- ▶ This course focuses on applications of natural language processing in applied economics
- Methods:
 - Develop skills in applied natural language processing
 - ► Convert natural language texts e.g. legal and political documents to data
 - Use same/similar methods to analyze image data and audio data

Welcome

- ▶ This course focuses on applications of natural language processing in applied economics
- Methods:
 - Develop skills in applied natural language processing
 - ► Convert natural language texts e.g. legal and political documents to data
 - Use same/similar methods to analyze image data and audio data
- Economics:
 - ▶ Relate text data to metadata to understand economic/political/social forces
 - e.g., analyze the motivations and decisions of public officials through their writings and speeches
 - Assess the real-world impacts of language on government and the economy

Logistics

Learning Materials

Course Content Overview

Schedule

- ▶ 10 lectures (5 meetings, with 2 lectures each):
- ► Course Syllabus:
 - https://docs.google.com/document/d/1FDIEEs0_v2Lwm_Kkkf_T17lj8jsQr_ FohZBIxtTyt9Q/edit?tab=t.0
- ► Course Repo:
 - https://github.com/BenjaminArold/Course_Text_Data_2024

Course Communication

► Course announcements will be done via email (if you have not been getting emails from me already, let me know)

Logistics

Learning Materials

Course Content Overviev

Course Bibliographies

- ▶ Bibliography of references:
 - ► reference readings on tools/methods
 - ▶ not required, but useful to complement the slides

Course Bibliographies

- Bibliography of references:
 - reference readings on tools/methods
 - not required, but useful to complement the slides
- Bibliography of applications:
 - economics application papers, for class presentations

O'REILLY®

Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow

SPEECH AND Language processing

An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition

Second Editio

DANIEL JURAFSKY & JAMES H. MARTIN

Main Python packages for NLP

- Python 3 is ideal for text data and natural language processing
 - Can use Anaconda or download the packages we need to a pip environment
 - ▶ nltk broad collection of pre-neural-nets NLP tools
 - scikit-learn ML package with nice text vectorizers, clustering, and supervised learning
 - xgboost gradient-boosted machines for supervised learning
 - gensim topic models and embeddings
 - spaCy tokenization, NER, parsing, pre-trained vectors
 - huggingface pre-trained transformer models
 - tensorflow / keras deep learning-based text/image/audio analysis
 - librosa library for audio analysis

Coding Practice and Assignments

```
Main Coding Examples on GitHub (discussed in class):https:
//github.com/BenjaminArold/Course_Text_Data_2024/tree/main/notebooks
```

Additional Assignments on GitHub (not discussed in class): https://github.com/ BenjaminArold/Course_Text_Data_2024/tree/main/assignments

Discussant Presentations

- ► At the end of most lectures, we will have one discussant presentations on one of the economics articles listed in the syllabus
- Please sign up here:

https:

 $/\!/ docs.google.com/spreadsheets/d/1ASb0xEPEwhZeDo6JefnZZGUxBGdYbMjRwdnESTCZUvM/edit\#gid=0$

- ► Critical presentations are up to 15 minutes, should present and critique:
 - research question
 - text-image-audio-analysis methods
 - empirical methods
 - results
 - contribution

Logistics

Learning Materials

Course Content Overview

Topics Covered

Text-as-Data:

- ▶ Dictionaries, Tokenization, and Document Distance
- ▶ Topic Models and ML with text, Word Embeddings and Linguistic Parsing
- ► Transformers, LLMs

Topics Covered

Text-as-Data:

- ▶ Dictionaries, Tokenization, and Document Distance
- ► Topic Models and ML with text, Word Embeddings and Linguistic Parsing
- ► Transformers, LLMs

Image-as-Data:

Classical ML, Convolutional Neural Nets, More Deep Learning

Topics Covered

Text-as-Data:

- Dictionaries, Tokenization, and Document Distance
- ▶ Topic Models and ML with text, Word Embeddings and Linguistic Parsing
- ► Transformers, LLMs

Image-as-Data:

Classical ML, Convolutional Neural Nets, More Deep Learning

Audio-as-Data:

Classical ML, Recurrent Neural Nets, Ethical Considerations

Text is high-dimensional

- \triangleright sample of documents, each n_L words long, drawn from vocabulary of n_V words
- ▶ The unique representation of each document has dimension $n_v^{n_L}$
 - e.g., a sample of 30-word Twitter messages using only the one thousand most common words in the English language
 - ightharpoonup ightharpoonup dimensionality = $1000^{30} = 10^{32}$

"Text as Data", GKT 2017

Summarize analysis in three steps:

- convert raw text *D* to numerical array *C*
 - ▶ The elements of *C* are counts over tokens (words or phrases)
- ightharpoonup map $oldsymbol{C}$ to predicted values $\hat{oldsymbol{V}}$ of unknown outcomes $oldsymbol{V}$
 - Learn $\hat{V}(C)$ using machine learning
 - e.g. supervised learning for some labeled C_i and V_i
 - or unsupervised learning of topics/dimensions just from C
- lacktriangle use $\hat{m{V}}$ for subsequent descriptive or causal analysis

Corpora

- ► Text data is a sequence of characters called documents.
- ► The set of documents is the corpus, which we will call *D*.

Corpora

- ► Text data is a sequence of characters called documents.
- ► The set of documents is the corpus, which we will call *D*.

- ► Text data is **unstructured**:
 - ▶ the information we want is mixed together with (lots of) information we don't

Corpora

- Text data is a sequence of characters called documents.
- ► The set of documents is the corpus, which we will call *D*.

- ► Text data is **unstructured**:
 - ▶ the information we want is mixed together with (lots of) information we don't
- ► All text data approaches will throw away some information:
 - ► The trick is figuring out how to retain valuable information

This course is about relating documents to metadata

- ► This course is on NLP for **economics**:
 - ▶ the documents are not that meaningful by themselves
 - we want to relate **text** data to **metadata**
 - we want to see how these methods can be applied for image and audio analysis

This course is about relating documents to metadata

- ► This course is on NLP for **economics**:
 - ▶ the documents are not that meaningful by themselves
 - we want to relate **text** data to **metadata**
 - we want to see how these methods can be applied for image and audio analysis
- ightharpoonup e.g., measuring positive-negative sentiment Y in political speeches
 - not that meaningful by itself

This course is about relating documents to metadata

- ► This course is on NLP for **economics**:
 - ▶ the documents are not that meaningful by themselves
 - we want to relate text data to metadata
 - we want to see how these methods can be applied for image and audio analysis
- ightharpoonup e.g., measuring positive-negative sentiment Y in political speeches
 - not that meaningful by itself
- **b** but how about sentiment Y_{iikt} in speech i by politician j on topic k at time t:
 - how does sentiment vary over time t?
 - \triangleright does politician from party p_j express more negative sentiment toward topic k?

What counts as a document?

The unit of analysis (the "document") will vary depending on your question

- needs to be fine enough to fit the relevant metadata variation
- ▶ should not be finer would make dataset more high-dimensional without relevant empirical variation

What counts as a document?

The unit of analysis (the "document") will vary depending on your question

- needs to be fine enough to fit the relevant metadata variation
- should not be finer would make dataset more high-dimensional without relevant empirical variation

E.g., what should we use as the document in these contexts?

- 1. predicting whether a judge is right-wing or left-wing in partisan ideology, from their written opinions
- predicting whether parliamentary speeches become more emotive in the run-up to an election