Answers/Solutions of Exercise 4 (Version: October 7, 2016)

Remark: Please note that bases for vector spaces are not unique. In the following, if a question asks for a basis, the answer given is only one of the possible answers.

- 1. In order to answer (iv), we obtain the reduced row-echelon form of each of the matrices. (To answer (i)-(iii), we only need a row-echelon form.)
 - (a) Performing Gauss-Jordan elimination, we obtain the reduced row-echelon form of A:

$$\begin{pmatrix} 1 & 0 & 0 & 1 & -\frac{2}{7} \\ 0 & 1 & 0 & 1 & \frac{4}{7} \\ 0 & 0 & 1 & -1 & \frac{13}{7} \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}.$$

(i) $\{(1,0,0,1,-\frac{2}{7}), (0,1,0,1,\frac{4}{7})), (0,0,1,-1,\frac{13}{7})\}$ is a basis for the row space.

 $\{(1,2,-1,1)^{\mathrm{T}}, (4,1,3,-1)^{\mathrm{T}}, (0,0,0,1)^{\mathrm{T}}\}\$ is a basis for the column space.

- (ii) $\{(1,0,0,1,-\frac{2}{7}), (0,1,0,1,\frac{4}{7})), (0,0,1,-1,\frac{13}{7}), (0,0,0,1,0), (0,0,0,0,1)\}$ is a basis for \mathbb{R}^5 .
- (iii) $\begin{pmatrix} 1 & 2 & -1 & 1 \\ 4 & 1 & 3 & -1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ Gaussian $\begin{pmatrix} 1 & 2 & -1 & 1 \\ 0 & -7 & 7 & -6 \\ 0 & 0 & 0 & 1 \end{pmatrix}$. So $\{(1, 2, -1, 1)^{\mathrm{T}}, (4, 1, 3, -1)^{\mathrm{T}}, (0, 0, 0, 1)^{\mathrm{T}}, (0, 0, 1, 0)^{\mathrm{T}}\}$ is a basis for \mathbb{R}^4 .
- (iv) $\{(-1,-1,1,1,0)^{\mathrm{T}}, (\frac{2}{7},-\frac{4}{7},-\frac{13}{7},0,1)^{\mathrm{T}}\}$ is a basis for the nullspace.
- (v) $\operatorname{rank}(\boldsymbol{A}) = 3$ and $\operatorname{nullity}(\boldsymbol{A}) = 2$. Hence $\operatorname{rank}(\boldsymbol{A}) + \operatorname{nullity}(\boldsymbol{A}) = 3 + 2 = 5 =$ the number of column in \boldsymbol{A} .
- (vi) No.
- (b) Performing Gauss-Jordan elimination, we obtain the reduced row-echelon form of \boldsymbol{B} :

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}.$$

- (i) $\{1,0,0\}$, (0,1,0), (0,0,1)} is a basis for the row space. $\{(1,0,-1,2,3)^{\mathrm{T}}, (2,1,3,1,1)^{\mathrm{T}}, (0,1,6,0,-1)^{\mathrm{T}}\}$ is a basis for the column space.
- (ii) $\{1,0,0), (0,1,0), (0,0,1)\}$ is already a basis for \mathbb{R}^3 .

1

(iii)
$$\begin{pmatrix} 1 & 0 & -1 & 2 & 3 \\ 2 & 1 & 3 & 1 & 1 \\ 0 & 1 & 6 & 0 & -1 \end{pmatrix}$$
 Gaussian $\begin{pmatrix} 1 & 0 & -1 & 2 & 3 \\ 0 & 1 & 5 & -3 & -5 \\ 0 & 0 & 1 & 3 & 4 \end{pmatrix}$.
So $\{(1,0,-1,2,3)^{\mathrm{T}}, (2,1,3,1,1)^{\mathrm{T}}, (0,1,6,0,-1)^{\mathrm{T}}, (0,0,0,1,0)^{\mathrm{T}}, (0,0,0,0,1)^{\mathrm{T}}\}$ is a basis for \mathbb{R}^5 .

- (iv) \emptyset is the basis for the nullspace.
- (v) $rank(\mathbf{B}) = 3$ and $rank(\mathbf{B}) = 0$. Hence $rank(\mathbf{B}) + rullity(\mathbf{B}) = 3 + 0 = 3 = the number of column in <math>\mathbf{B}$.
- (vi) Yes.
- (c) Performing Gauss-Jordan elimination, we obtain the reduced row-echelon form of \boldsymbol{C} :

- (i) $\{(1, \frac{1}{2}, 0, \frac{5}{6}, \frac{1}{3}), (0, 0, 1, -\frac{1}{6}, \frac{1}{3})\}$ is a basis for the row space. $\{(2, 4, 2, 6)^{T}, (4, 2, -2, 6)^{T}\}$ is a basis for the column space.
- (ii) $\{(1,\frac{1}{2},0,\frac{5}{6},\frac{1}{3}), (0,0,1,-\frac{1}{6},\frac{1}{3}), (0,1,0,0,0), (0,0,0,1,0), (0,0,0,0,1)\}$ is a basis for \mathbb{R}^5 .

(iii)
$$\begin{pmatrix} 2 & 4 & 2 & 6 \\ 4 & 2 & -2 & 6 \end{pmatrix} \xrightarrow{\text{Gaussian}} \begin{pmatrix} 2 & 4 & 2 & 6 \\ 0 & -6 & -6 & -6 \end{pmatrix}$$
.

So $\{(2,4,2,6)^T, (4,2,-2,6)^T, (0,0,1,0)^T, (0,0,0,1)^T\}$ is a basis for \mathbb{R}^4 .

- (iv) $\{(-\frac{1}{2},1,0,0,0)^{\mathrm{T}}, (-\frac{5}{6},0,\frac{1}{6},1,0)^{\mathrm{T}}, (-\frac{1}{3},0,-\frac{1}{3},0,1)^{\mathrm{T}}\}$ is the basis for the nullspace.
- (v) $\operatorname{rank}(\mathbf{C}) = 2$ and $\operatorname{nullity}(\mathbf{C}) = 3$. Hence $\operatorname{rank}(\mathbf{C}) + \operatorname{nullity}(\mathbf{C}) = 2 + 3 = 5 =$ the number of column in \mathbf{C} .
- (vi) No.
- (d) Performing Gauss-Jordan elimination, we obtain the reduced row-echelon form of \boldsymbol{D} :

$$\begin{pmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}.$$

- (i) $\{(1,0,1,0), (0,1,1,0), (0,0,0,1)\}$ is a basis for the row space. $\{(1,-1,2)^{\mathrm{T}}, (4,4,0)^{\mathrm{T}}, (8,0,1)^{\mathrm{T}}\}$ is a basis for the column space.
- (ii) $\{(1,0,1,0),\,(0,1,1,0),\,(0,0,0,1),\,(0,0,1,0)\}$ is a basis for \mathbb{R}^4 .

(iii)
$$\{(1,-1,2)^{\mathrm{T}}, (4,4,0)^{\mathrm{T}}, (8,0,1)^{\mathrm{T}}\}\$$
 is already a basis for \mathbb{R}^3 .

(iv)
$$\{(-1,-1,1,0)^{\mathrm{T}}\}$$
 is a basis for the nullspace.

(v)
$$\operatorname{rank}(\boldsymbol{D}) = 3$$
 and $\operatorname{nullity}(\boldsymbol{D}) = 1$.
Hence $\operatorname{rank}(\boldsymbol{D}) + \operatorname{nullity}(\boldsymbol{D}) = 3 + 1 = 4 =$ the number of column in \boldsymbol{D} .

2. (a)
$$\begin{pmatrix} 1 & -2 & 0 & 0 & 3 \\ 2 & -5 & -3 & -2 & 6 \\ 0 & 5 & 15 & 10 & 0 \\ 2 & 1 & 15 & 8 & 6 \end{pmatrix}$$
Gaussian
$$\begin{pmatrix} 1 & -2 & 0 & 0 & 3 \\ 0 & -1 & -3 & -2 & 0 \\ 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$
. Elimination
$$\begin{pmatrix} (1, -2, 0, 0, 3), (0, -1, -3, -2, 0), (0, 0, 0, -2, 0) \\ 0, (0, 0, 0, -2, 0) \end{pmatrix}$$
is a basis for W .

- (b) $\dim(W) = 3$
- (c) $\{(1, -2, 0, 0, 3), (0, -1, -3, -2, 0), (0, 0, 0, -2, 0), (0, 0, 1, 0, 0), (0, 0, 0, 0, 1)\}$ is a basis for \mathbb{R}^5 .

So $S' = \{(1,0,1,3), (2,-1,0,1)\}$ is a basis for V.

So
$$S' = \{(1, 0, 1, 3, 4), (2, 1, -2, 1, 0), (0, 5, 2, 1, 1)\}$$
 is a basis for V .

4. Since

$$(a+b+3c+3d, b+2c+d, a+c+2d, -a-b-3c-3d, a+c+2d)$$

$$= a(1,0,1,-1,1) + b(1,1,0,-1,0) + c(3,2,1,-3,1) + d(3,1,2,-3,2),$$

$$V = \text{span}\{(1,0,1,-1,1), (1,1,0,-1,0), (3,2,1,-3,1), (3,1,2,-3,2)\}.$$
 By

So
$$\{(1,0,1,-1,1), (0,1,-1,0,-1)\}$$
 is a basis for V .

(b) (i) Note that $\operatorname{span}(S)$ and $\operatorname{span}(T)$ are the row spaces of \boldsymbol{B} and \boldsymbol{R} respectively. Since \boldsymbol{B} and \boldsymbol{R} are row equivalent, $\operatorname{span}(S) = \operatorname{span}(T)$. Also, $\operatorname{dim}(\operatorname{span}(T)) = \operatorname{rank}(R) = 3$. So by Theorem 3.6.7, S is a basis for $\operatorname{span}(T)$.

(You do not need to really do any computations to claim the result on the RHS. Why?)

So the transition matrix from S to T is $\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 0 \\ -1 & 2 & 2 \end{pmatrix}$.

6.
$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 1 & a & a & a & a \\ 1 & a & a^2 & a & a^2 \\ 1 & a^3 & a & 2a - a^3 & a \end{pmatrix} \xrightarrow{\text{Gaussian}} \begin{pmatrix} 1 & 1 & 1 & 1 & 1 \\ 0 & a - 1 & a - 1 & a - 1 & a - 1 \\ 0 & 0 & a^2 - a & 0 & a^2 - a \\ 0 & 0 & 0 & 2a - 2a^3 & 0 \end{pmatrix}$$

- If a = 1, then $\{(1, 1, 1, 1, 1)\}$ is a basis for V and $\dim(V) = 1$.
- If a = 0, then $\{(1, 1, 1, 1, 1), (0, 1, 1, 1, 1)\}$ is a basis for V and $\dim(V) = 2$.
- If a = -1, then $\{(1, 1, 1, 1, 1), (0, -2, -2, -2, -2), (0, 0, 2, 0, 2)\}$ is a basis for V and $\dim(V) = 3$.
- If $a \notin \{1, 0, -1\}$, then $\{(1, 1, 1, 1, 1), (0, a 1, a 1, a 1, a 1), (0, 0, a^2 a, 0, a^2 a), (0, 0, 0, 2a 2a^3, 0)\}$ is a basis for V and $\dim(V) = 4$.

7. See Question 4 of Tutorial 3.

8. (a) We can choose
$$\mathbf{A} = \begin{pmatrix} 1 & 2 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$
.

(b) We can choose
$$\mathbf{B} = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{pmatrix}$$
.

(c) V is the solution space of the linear equation $2x_1 - x_2 - x_3 + 0x_4 = 0$.

- 9. See Question 1 of Tutorial 8.
- 10. (a) Let R be the reduced row-echelon form of A. Since a_1, a_2, a_3 are linearly independent, the first three columns of R are linearly independent. Thus

the first three columns of \boldsymbol{R} must be $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$. Together with the infor-

mation given for the fourth and fifth columns, $\mathbf{R} = \begin{pmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & -2 & 1 \\ 0 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}$.

- (b) $\{(1,0,0,1,0), (0,1,0,-2,1), (0,0,1,1,1)\}$ is a basis for the row space of A; and $\{a_1, a_2, a_3\}$ is a basis for the column space of A.
- 11. (a) $\mathbf{x} = (2, -1, 3)$ is the solution to the linear system.

Thus
$$\begin{pmatrix} 16\\13\\-4\\7 \end{pmatrix} = 2 \begin{pmatrix} 1\\2\\0\\1 \end{pmatrix} - \begin{pmatrix} 1\\3\\1\\1 \end{pmatrix} + 3 \begin{pmatrix} 5\\4\\-1\\2 \end{pmatrix}.$$

(b) $\boldsymbol{x} = (-3+s+t, 13-3s-2t, 1-t, s, t)$, where $s, t \in \mathbb{R}$, is a general solution for the linear system.

In particular,
$$\begin{pmatrix} -1\\9\\4 \end{pmatrix} = -3\begin{pmatrix} 1\\1\\3 \end{pmatrix} + 13\begin{pmatrix} 0\\1\\1 \end{pmatrix} + \begin{pmatrix} 2\\-1\\0 \end{pmatrix} + 0\begin{pmatrix} -1\\2\\0 \end{pmatrix} + 0\begin{pmatrix} 1\\0\\-1 \end{pmatrix}$$
.

- 12. (a) For example, $\begin{pmatrix} 1 & 0 \\ 0 & 0 \\ 0 & 1 \end{pmatrix}$.
 - (b) No. By Theorem 4.2.1, the dimensions of the row space and column space of a matrix must be the same.

5

(c) For example,
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{pmatrix}$$
.

(d) For example,
$$\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
.

13. largest possible rank smallest possible nullity

(a)	5	0
(a)(b)(c)	4	2
(c)	3	0

- 14. (a) a = b = c = d = 0.
 - (b) $ad bc \neq 0$.
 - (c) ad bc = 0 but not all a, b, c, d are zero.
- 15. (a) If a = 1, $rank(\mathbf{A}) = 1$. If a = -2, $rank(\mathbf{A}) = 2$. If $a \neq 1$ and $a \neq -2$, $rank(\mathbf{A}) = 3$.
 - (b) If b = c = d = e = f = 0, rank $(\mathbf{B}) = 0$. If either (i) b = c = 0 and not all d, e, f are zero or (ii) d = e = 0 and not all b, c, f are zero, rank $(\mathbf{B}) = 1$.

If not all b, c are zero and not all d, e are zero, rank(\mathbf{B}) = 2.

16. (a) $\mathbf{X_1} = \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \xrightarrow{R_3 - R_1} \begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

So rank $(X_1) = 2$ and nullity $(X_1) = 3 - 2 = 1$.

So rank $(X_2) = 3$ and nullity $(X_2) = 5 - 3 = 2$.

(b)
$$X_n \xrightarrow{R_{2n+1} - R_1} R_{2n} - R_2 \xrightarrow{R_{n+2} - R_n} \begin{pmatrix} 1 & 0 & \cdot & \cdot & \cdot & \cdot & 0 & 1 \\ 0 & 1 & 0 & \cdot & \cdot & \cdot & 0 & 1 & 0 \\ & \cdot & \cdot & & \cdot & & \cdot & & \\ & & \cdot & & \cdot & & \cdot & & \\ 0 & \cdot & \cdot & 0 & 1 & 0 & \cdot & \cdot & 0 \\ 0 & \cdot & \cdot & 0 & 1 & 0 & \cdot & \cdot & 0 \\ 0 & \cdot & \cdot & 0 & 0 & 0 & \cdot & \cdot & 0 \\ & & \cdot & & & & \cdot & & \\ & \cdot & & & & & \cdot & & \\ 0 & \cdot & \cdot & 0 & 0 & 0 & \cdot & \cdot & 0 \end{pmatrix}$$

So rank $(\boldsymbol{X_n}) = n + 1$ and nullity $(\boldsymbol{X_n}) = (2n + 1) - (n + 1) = n$.

17. When the rank is 0, the solution set is the entire \mathbb{R}^3 .

When the rank is 1, the solution set is a plane in \mathbb{R}^3 that passes through the origin.

When the rank is 2, the solution set is a line in \mathbb{R}^3 that passes through the origin.

When the rank is 3, the solution set is $\{0\}$.

18. Let $\mathbf{A} = (\mathbf{a_1} \ \mathbf{a_2} \ \cdots \ \mathbf{a_n})$ and \mathbf{B} be $m \times n$ matrices where $\mathbf{a_i}$ is the *i*th column of \mathbf{A} . Suppose \mathbf{A} and \mathbf{B} are row equivalent, i.e. there exists elementary matrices $\mathbf{E_1}, \mathbf{E_2}, \ldots, \mathbf{E_k}$ such that

$$B = E_k \cdots E_2 E_1 A$$
.

Define $P = E_k \cdots E_2 E_1 A$. Then $B = PA = (Pa_1 \ Pa_2 \cdots \ Pa_n)$ where Pa_i is the *i*th column of B. By Theorem 2.4.7, P is invertible.

Let $S_1 = \{a_{i_1}, a_{i_2}, \dots, a_{i_r}\}$ be a set of columns of A. Note that $S_2 = \{Pa_{i_1}, Pa_{i_2}, \dots, Pa_{i_r}\}$ is the set of corresponding columns of B.

- (a) Since P is invertible, by Question 3.30, S_1 is linearly independent if and only if S_2 is linearly independent.
- (b) Suppose S_1 is a basis for the column space of \boldsymbol{A} . We want to show that S_2 is a basis for the column space of \boldsymbol{B} :
 - (i) By (a), S_2 is linearly independent.
 - (ii) It is obvious that $\operatorname{span}(S_2) \subseteq \operatorname{the column}$ space of \boldsymbol{B} .

Take any $\mathbf{u} \in \text{the column space of } \mathbf{B}, \text{ i.e. for some } c_1, c_2, \dots, c_n \in \mathbb{R},$

$$\boldsymbol{u} = c_1 \boldsymbol{P} \boldsymbol{a_1} + c_2 \boldsymbol{P} \boldsymbol{a_2} + \dots + c_n \boldsymbol{P} \boldsymbol{a_n}.$$

Since $\operatorname{span}(S_1)$ = the column space of \boldsymbol{A} ,

$$a_1, a_2, \ldots, a_n \in \text{span}(S_1) = \text{span}\{a_{i_1}, a_{i_2}, \ldots, a_{i_r}\}$$

and hence

$$Pa_1, Pa_2, \dots, Pa_n \in \text{span}\{Pa_{i_1}, Pa_{i_2}, \dots, Pa_{i_r}\} = \text{span}(S_2).$$

By Theorem 3.2.9.2, $\mathbf{u} \in \text{span}(S_2)$. So the column space of $\mathbf{B} \subseteq \text{span}(S_2)$.

We have shown that $\operatorname{span}(S_2)$ = the column space of \boldsymbol{B} .

By (i) and (ii), S_2 is a basis for the column space of \mathbf{B} .

Similarly, follow the arguments above by replacing a_i by Pa_i and P by P^{-1} . We conclude that if S_2 is a basis for the column space of B, then S_1 is a basis for the column space of A.

19. (a)
$$\begin{pmatrix} 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 1 & 0 & 0 & 1 \end{pmatrix}$$
 Gauss-Jordan $\begin{pmatrix} 1 & 0 & 0 & 0 & 1 & 0 & -1 \\ 0 & 1 & 1 & 0 & 1 & -1 & 0 \\ 0 & 0 & 0 & 1 & -1 & 1 & 1 \end{pmatrix}$ Elimination

(i)
$$\begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ t \\ 1-t \\ -1 \end{pmatrix}$$
 where $t \in \mathbb{R}$.

(ii)
$$\begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 0 \\ t \\ -1 - t \\ 1 \end{pmatrix}$$
 where $t \in \mathbb{R}$.

(iii)
$$\begin{pmatrix} w \\ x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -1 \\ t \\ -t \\ 1 \end{pmatrix}$$
 where $t \in \mathbb{R}$.

If u_1 is a solution of (i), u_2 a solution of (ii) and u_3 a solution of (iii), then $(u_1 \ u_2 \ u_3)$ is a right inverse of B. The answer is certainly not unique.

For example, $\begin{pmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ 1 & -1 & 0 \\ -1 & 1 & 1 \end{pmatrix}$ is a right inverse of \boldsymbol{B} .

- (b) For example, $\boldsymbol{B} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ has no right inverse.
- (c)

 \boldsymbol{B} has a right inverse

- \Leftrightarrow the column space of $\mathbf{B} = \mathbb{R}^m$ (see Question 6 of Tutorial 7)
- \Leftrightarrow dim(the column space of \mathbf{B}) = m
- $\Leftrightarrow \operatorname{rank}(\boldsymbol{B}) = m.$
- 20. Let $\mathbf{B} = (\mathbf{b_1} \cdots \mathbf{b_n})$ where b_j is the jth column of \mathbf{B} .

$$AB = 0 \Rightarrow (Ab_1 \cdots Ab_n) = 0 \Rightarrow Ab_j = 0 \text{ for all } j,$$

i.e. b_1, \ldots, b_n are contained in the nullspace of A.

So the column space of $B = \text{span}\{b_1, \dots, b_n\} \subseteq \text{the nullspace of } A$.

21. Let $\mathbf{A} = \begin{pmatrix} \mathbf{a_1} \\ \vdots \\ \mathbf{a_n} \end{pmatrix}$ be a matrix where $\mathbf{a_i}$ is the *i*th row of \mathbf{A} .

Let $\boldsymbol{u} = (u_1, \dots, u_n) \in \mathbb{R}^n$ such that $\boldsymbol{u}^{\mathrm{T}}$ is a vector in the nullspace of \boldsymbol{A} . Then

$$\mathbf{A}\mathbf{u}^{\mathrm{T}} = \mathbf{0} \quad \Rightarrow \quad \begin{pmatrix} \mathbf{a}_{1}\mathbf{u}^{\mathrm{T}} \\ \vdots \\ \mathbf{a}_{n}\mathbf{u}^{\mathrm{T}} \end{pmatrix} = \begin{pmatrix} 0 \\ \vdots \\ 0 \end{pmatrix} \quad \Rightarrow \quad \mathbf{a}_{i}\mathbf{u}^{\mathrm{T}} = 0 \text{ for all } i.$$

Assume that u is also contained in the row space of A, i.e. $u = c_1 a_1 + \cdots + c_n a_n$ for some $c_1, \ldots, c_n \in \mathbb{R}$. We have

$$\boldsymbol{u}\boldsymbol{u}^{\mathrm{T}} = c_{1}\boldsymbol{a}_{1}\boldsymbol{u}^{\mathrm{T}} + \dots + c_{n}\boldsymbol{a}_{n}\boldsymbol{u}^{\mathrm{T}} = 0.$$

On the other hand, $\boldsymbol{u}\boldsymbol{u}^{\mathrm{T}}=u_1^2+\cdots+u_n^2$. So $u_1^2+\cdots+u_n^2=0$ which implies $u_1=0,\ldots,u_n=0$, i.e. \boldsymbol{u} is the zero vector.

22. (a) Since P is invertible, we can write $P = E_n \cdots E_1$ where E_i are elementary matrices. So $PA = E_n \cdots E_1 A$ and A are row-equivalent matrices. They have the same row space. Thus

9

$$rank(\mathbf{P}\mathbf{A}) = dim(the row space of \mathbf{P}\mathbf{A})$$

= $dim(the row space of \mathbf{A}) = rank(\mathbf{A}).$

- (b) For example, $\mathbf{P} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- (c) No. For example, let $\mathbf{P} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

23. Let $A = (a_1 \cdots a_n)$ and $B = (b_1 \cdots b_n)$ where a_j is the *j*th column of A and b_j is the *j*th column of B. Let $\{a'_1, \ldots, a'_r\}$ be a basis for the column space of A and let $\{b'_1, \ldots, b'_s\}$ be a basis for the column space of B. Then

the column space of
$$A + B = \operatorname{span}\{a_1 + b_1, \ldots, a_n + b_n\}$$

 $\subseteq \operatorname{span}\{a'_1, \ldots, a'_r, b'_1, \ldots, b'_s\}.$

So

$$\operatorname{rank}(\boldsymbol{A} + \boldsymbol{B}) = \dim(\operatorname{the column space of } \boldsymbol{A} + \boldsymbol{B}) \le r + s = \operatorname{rank}(\boldsymbol{A}) + \operatorname{rank}(\boldsymbol{B}).$$

24. Since $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent for all $\mathbf{b} \in \mathbb{R}^m$, by Theorem 4.1.16, the column space of \mathbf{A} is \mathbb{R}^m , i.e. $\operatorname{rank}(\mathbf{A}) = m$. Hence

$$\operatorname{nullity}(\boldsymbol{A}^{\mathrm{T}}) = m - \operatorname{rank}(\boldsymbol{A}^{\mathrm{T}}) = m - \operatorname{rank}(\boldsymbol{A}) = 0.$$

It means that the linear system $A^{\mathrm{T}}y = 0$ has only the trivial solution.

Alternative Solution: Let e_1, \ldots, e_m be the standard basis for \mathbb{R}^m and let u_1, \ldots, u_m be vectors in \mathbb{R}^n such that $Au_i = e_i$ for each i. (In here, all the vectors are column vectors.) Suppose $v = (v_1, \ldots, v_m)^T$ is a solution to the system $A^Tv = 0$. Then for $i = 1, \ldots, m$,

$$v_i = e_i^{\mathrm{T}} v = (A u_i)^{\mathrm{T}} v = u_i^{\mathrm{T}} A^{\mathrm{T}} v = u_i 0 = 0.$$

So v = 0. That is, the system $A^{T}y = 0$ has only the trivial solution.

25. (a) Let \boldsymbol{u} be any vector in the nullspace of \boldsymbol{A} , i.e. $\boldsymbol{A}\boldsymbol{u}=\boldsymbol{0}$. Then $\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}\boldsymbol{u}=\boldsymbol{A}^{\mathrm{T}}\boldsymbol{0}=\boldsymbol{0}$. So \boldsymbol{u} is also a vector in the nullspace of $\boldsymbol{A}^{\mathrm{T}}\boldsymbol{A}$.

We have shown that the nullspace of A is a subspace of the nullspace of $A^{T}A$.

Let v be any vector in the nullspace of $A^{T}A$, i.e. $A^{T}Av = 0$. Suppose $Av = (b_1, b_2, \dots, b_m)^{T}$. Then

$$(\mathbf{A}\mathbf{v})^{\mathrm{T}}(\mathbf{A}\mathbf{v}) = \mathbf{v}^{\mathrm{T}}\mathbf{A}^{\mathrm{T}}\mathbf{A}\mathbf{v} = \mathbf{v}^{\mathrm{T}}\mathbf{0} = 0$$

$$\Rightarrow b_{1}^{2} + b_{2}^{2} + \dots + b_{m}^{2} = 0$$

$$\Rightarrow b_{1} = b_{2} = \dots = b_{m} = 0.$$

That is, Av = 0. So v is also a vector in the nullspace of A.

We have shown that the nullspace of $A^{T}A$ is a subspace of the nullspace of A.

Hence the nullspace of \boldsymbol{A} is equal to the nullspace of $\boldsymbol{A}^{\scriptscriptstyle \mathrm{T}}\boldsymbol{A}$.

(b) By (a), $\operatorname{nullity}(\boldsymbol{A}) = \operatorname{nullity}(\boldsymbol{A}^{\mathsf{T}}\boldsymbol{A})$.

Since \boldsymbol{A} is an $m \times n$ matrix, $\boldsymbol{A}^{T}\boldsymbol{A}$ is an $n \times n$ matrix. By the Dimension Theorem for Matrices (Theorem 4.3.4),

$$rank(\mathbf{A}) = n - nullity(\mathbf{A}) = n - nullity(\mathbf{A}^{\mathsf{T}}\mathbf{A}) = rank(\mathbf{A}^{\mathsf{T}}\mathbf{A}).$$

- (c) No. For example, let $A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$.
- (d) Yes. By (b) and Remark 4.2.5.3, $\operatorname{rank}(\boldsymbol{A}) = \operatorname{rank}(\boldsymbol{A}^{\mathrm{T}}) = \operatorname{rank}((\boldsymbol{A}^{\mathrm{T}})^{\mathrm{T}}\boldsymbol{A}^{\mathrm{T}}) = \operatorname{rank}((\boldsymbol{A}\boldsymbol{A}^{\mathrm{T}}).$
- 26. (a) False. For example, let $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.
 - (b) True. By Theorem 4.1.7, the row space of \boldsymbol{A} and the the row space of \boldsymbol{B} are the same. Hence the column space of $\boldsymbol{A}^{\mathrm{T}}$ and the column space of $\boldsymbol{B}^{\mathrm{T}}$ are the same.
 - (c) False. For example, let $\mathbf{A} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$.
 - (d) False. For example, let $\mathbf{A} = \mathbf{B} = \mathbf{I}_2$.
 - (e) False. For example, let $\mathbf{A} = \mathbf{B} = \mathbf{0}_{2\times 2}$.
 - (f) False. For example, let $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.
 - (g) False. For example, let $\mathbf{A} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$ and $\mathbf{B} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$.