COMP105 Lecture 27

Tail Recursion

Strict evaluation of factorial

```
fact 1 = 1
fact n = n * fact (n-1)
fact 4
\rightarrow 4 * fact 3
\rightarrow 4 * (3 * fact 2)
\rightarrow 4 * (3 * (2 * fact 1))
\rightarrow 4 * (3 * (2 * 1))
\rightarrow 24
```

Recursion and memory

Recursion seems to use a lot of memory

This is the call stack

- Each recursive call adds a new value to the stack
- We can only evaluate the stack when we hit a base case

We will **run out of memory** if the call stack is too big

Tail recursion

A function is tail recursive if there is **nothing left to do** after the recursive call

```
is_even 0 = True
is_even 1 = False
is_even n = is_even (n-2)

is_even 4

→ is_even 2

→ is_even 0

→ True
```

Tail recursion

With tail recursion

- ► There is nothing left to do after the recursive call
- No call stack is built up
- Less memory is used

This is an important concept in all languages

- Even for imperative languages
- eg. most C compilers will optimize tail recursive calls

Writing tail recursive functions

We can make functions tail recursive

- By adding an accumulator as an argument
- ▶ It is initialized to some value
- ► Each recursive call modifies it
- ▶ Just like for folds and scans

```
fact_tail 1 acc = acc
fact_tail n acc = fact_tail (n-1) (acc * n)
factorial n = fact_tail n 1
```

fact_tail in strict evaluation

```
factorial 4
```

- \rightarrow fact_tail 4 1
- ightarrow fact_tail 3 4
- \rightarrow fact_tail 2 12
- \rightarrow fact_tail 1 24
- $\rightarrow 24$

No call stack is built up, so no memory problems

fact_tail in lazy evaluation

```
factorial 4
\rightarrow fact_tail 4 1
\rightarrow fact_tail 3 (4*1)
\rightarrow fact_tail 2 (3*4*1)
\rightarrow fact_tail 1 (2*3*4*1)
\rightarrow 24
```

Memory problem is just transferred to the accumulator

Fixing fact_tail

We can fix this with the \$! (strict evaluation) operator

```
fact_tail 1 acc = acc
fact_tail n acc = fact_tail (n-1) $! (acc * n)
factorial n = fact_tail n 1
```

Now there are no memory problems

Left folds via tail recursion

foldl is naturally implemented via tail recursion

In strict languages, foldl should be preferred over foldr

```
foldl f acc [] = acc
foldl f acc (x:xs) = foldl f (f acc x) xs

ghci> foldl (+) 0 [1,2,3,4,5]
15
```

Strict left folds

foldl' is the strict version of foldl

▶ It is in the Data.List package

```
foldl' f acc [] = acc
foldl' f acc (x:xs) = (foldl' f $! (f acc x)) xs
```

This will usually use less memory than foldl

Left folds and laziness

A left fold can destroy laziness

▶ We must reach the end of the list to get the accumulator

ghci> let $f = foldr (\ x acc \rightarrow x : acc) [] [1..]$

```
ghci> take 4 f
[1,2,3,4]

ghci> let g = foldl (\ acc x -> acc ++ [x]) [] [1..]
ghci> take 4 g
<never terminates>
```

Folds summary

foldr

- Should be used by default in Haskell
- ► Because it **preserves laziness**

foldl

► There is no real reason to use this in Haskell

foldl'

- ► Should be used when we know that laziness won't help
- eg. If we know that we will fold the entire list
- Can have performance benefits

Exercises

1. Write an efficient tail recursive implementation of sum

2. Write an efficient tail recursive implementation of length

3. Write an efficient implementation of length that uses a fold