HOMEWORK VII

1. Prove that an isometry on a straight line \mathbb{R} is either a translation along the line or a reflection about some point on the line.

Solution:

 $O_1(\mathbb{R}) = \{[b] \in GL_1(\mathbb{R}) | [b]^t = [b]^{-1}\} = \{b \in \mathbb{R}^* | b = b^{-1}\} = \{\pm 1\}.$ So the orthogonal linear operators on \mathbb{R}^1 are $\phi_+(x) = x$ and $\phi_-(x) = -x$.

We know each $f \in M_1$ can be written as $f = t_a \phi$ with $a \in \mathbb{R}$ and ϕ an orthogonal linear operator. So $f(x) = t_a \phi_+(x) = x + \vec{a}$ or $f(x) = t_a \phi_-(x) = -x + a = a - x$. The former is translation by a units, the latter is reflection with respect to $\frac{a}{2}$.

2. Prove that every matrix in $SO_3(\mathbb{R})$ has an eigenvalue $\lambda = 1$. Is it true for $SO_2(\mathbb{R})$?

Solution: If $A \in SO_3$, then $AA^T = I$ and det(A) = 1. $det(I - A) = det(AA^T - A) = (detA)(det(A - I)^T) = det(A - I) = -det(I - A)$ So det(I - A) = 0, i.e. 1 is an eigenvalue.

It is not true for $SO_2(\mathbb{R})$. For example, the matrix $\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \in SO_2(\mathbb{R})$ has no eigenvalue.

3. Let s be the rotation of the plane with angle $\frac{\pi}{2}$ about the point (1,1). Write the formula for s as a product $t_{\vec{a}}\rho_{\theta}$.

Solution: Let $\vec{p} = (1, 1)$.

$$s = t_{\vec{p}} \rho_{\frac{\pi}{2}} t_{-\vec{p}} = t_{\vec{p}} t_{\rho_{\frac{\pi}{2}}(-\vec{p})} \rho_{\frac{\pi}{2}} = t_{(1,1)+(1,-1)} \rho_{\frac{\pi}{2}} = t_{(2,0)} \rho_{\frac{\pi}{2}}$$

4. Let s be the reflection along the line y = x + 1 followed by a translation along the vector $\vec{v} = (1, 1)$. Write s in the form $t_{\vec{a}} \rho_{\theta} r$

Solution: y = x + 1 is parallel to y = x. y = x forms angle $\frac{\pi}{4}$ with x-axis, so reflection along y = x is $\rho_{\frac{\pi}{2}}r$. y = x + 1 is obtained from y = x by translation along $(-\frac{1}{2}, \frac{1}{2})$ that is perpendicular to y = x + 1, we get $\vec{a}_2 = 2(-\frac{1}{2}, \frac{1}{2}) = (-1, 1)$. $\vec{a}_1 = (1, 1)$ is given, so $\vec{a} = \vec{a}_1 + \vec{a}_2 = (1 - 1, 1 + 1) = (0, 2)$. We conclude $s = t_{(0,2)}\rho_{\frac{\pi}{2}}r$.

5. Let $H = \{t_{\vec{a}}\rho_{\theta} \in M_2 | \vec{a} \in \mathbb{Z} \times \mathbb{Z}, \theta = \frac{\pi k}{2}, k \in \mathbb{Z}\}$. Prove H is a subgroup of M_2 .

Solution: For any $t_{\vec{a}}\rho_{\theta}, t_{\vec{b}}\rho_{\eta} \in H$, $(t_{\vec{a}}a_{\theta})^{-1}t_{\vec{a}}a_{\theta} = a_{\theta}a_{\theta}t_{\vec{a}}t_{\vec{a}}a_{\theta} = a_{\theta}a_{\theta}t_{\vec{a}}a_{\theta}$

 $(t_{\vec{a}}\rho_{\theta})^{-1}t_{\vec{b}}\rho_{\eta} = \rho_{-\theta}t_{-\vec{a}}t_{\vec{b}}\rho_{\eta} = \rho_{-\theta}t_{\vec{b}-\vec{a}}\rho_{\eta} = t_{\rho_{-\theta}(\vec{b}-\vec{a})}\rho_{\eta-\theta}.$

Note that $\rho_{\frac{\pi}{2}}(x,y)=(-y,x)$, and θ is an integer multiple of $\frac{\pi}{2}$, so $\rho_{-\theta}$ sends $\mathbb{Z}\times\mathbb{Z}$ to $\mathbb{Z}\times\mathbb{Z}$. In particular, $\rho_{-\theta}(\vec{b}-\vec{a})\in\mathbb{Z}\times\mathbb{Z}$, so $t_{\rho_{-\theta}(\vec{b}-\vec{a})}\rho_{\eta-\theta}\in H$.

6. Prove that $\rho_{\theta}r^{k} = \rho_{\omega}r^{l}$ in O_{2} if and only if $\theta - \omega = 2\pi m$ for some $m \in \mathbb{Z}$ and $\bar{k} \equiv \bar{l} \pmod{2}$

Solution: $\rho_{\theta}r^{k} = \rho_{\omega}r^{l} \iff \rho_{\omega}^{-1}\rho_{\theta} = r^{l}r^{k} \iff \rho_{\theta-\omega} = r^{l-k}$. We know $\langle r \rangle = \{1, r\}, \text{ and } \langle r \rangle \cap SO_{2} = \{id\}, \text{ so}$

$$\rho_{\theta-\omega} = r^{l-k} = id$$

which implies $\theta - \omega = 2\pi m$ for some $m \in \mathbb{Z}$ and $\bar{k} \equiv \bar{l} \pmod{2}$

7. Define a map

$$\Psi: M_2 \longrightarrow \{\pm 1\}$$

$$t_{\vec{a}}\rho_{\theta}r^k \mapsto (-1)^k$$

Prove Ψ is a well-defined homomorphism.

(Remark: This provides an algebraic way to define the orientation of an isometry. Those corresponding to +1 are called orientation preserving, and those corresponding to -1 are called orientation reversing.)

Solution: If $t_{\vec{a}}\rho_{\theta}r^k = t_{\vec{b}}\rho_{\omega}r^l$, by the unique decomposition of isometry into translation and orthogonal linear operator, we get

$$t_{\vec{a}} = t_{\vec{b}}$$
 and $\rho_{\theta} r^k = \rho_{\omega} r^l$

Then by the previous question, $\rho_{\theta}r^{k} = \rho_{\omega}r^{l}$ if and only if $\theta - \omega = 2\pi m$ for some $m \in \mathbb{Z}$ and $\bar{k} \equiv \bar{l} \pmod{2}$, so

$$\Psi(t_{\vec{a}}\rho_{\theta}r^k) = (-1)^k = (-1)^l = \Psi(t_{\vec{b}}\rho_{\omega}r^l)$$

We see Ψ is well-defined.

 Ψ is a homomorphism because for any isometries $t_{\vec{a}}\rho_{\theta}r^{k}$ and $t_{\vec{c}}\rho_{\alpha}r^{n}$:

$$\Psi((t_{\vec{a}}\rho_{\theta}r^{k})(t_{\vec{c}}\rho_{\alpha}r^{n}))$$

$$=\Psi(t_{\vec{a}}\rho_{\theta}r^{k}t_{\vec{c}}\rho_{\alpha}r^{n}))$$

$$=\Psi(t_{\vec{a}}t_{\rho_{\theta}r^{k}(\vec{c})}\rho_{\theta}r^{k}\rho_{\alpha}r^{n}))$$

$$=\Psi(t_{\vec{a}+\rho_{\theta}r^{k}(\vec{c})}\rho_{\theta}\rho_{(-1)^{k}\alpha}r^{k}r^{n}))$$

$$=\Psi(t_{\vec{a}+\rho_{\theta}r^{k}(\vec{c})}\rho_{\theta+(-1)^{k}\alpha}r^{k+n}))$$

$$=(-1)^{k+l}$$

$$=(-1)^{k}(-1)^{l}$$

$$=\Psi(t_{\vec{a}}\rho_{\theta}r^{k})\Psi(t_{\vec{c}}\rho_{\alpha}r^{n})$$