(19) 世界知的所有権機関 国際事務局

(43) 国際公開日 2001 年7 月26 日 (26.07.2001)

PCT

(10) 国際公開番号 WO 01/53305 A1

(51) 国際特許分類⁷: C07F 9/568, C07D 513/04, 519/00, A61K 31/429, A61P 31/04

(21) 国際出願番号:

PCT/JP01/00439

(22) 国際出願日:

2001年1月24日(24.01.2001)

(25) 国際出願の言語:

日本語

(26) 国際公開の言語:

日本語

(30) 優先権データ:

特願2000-15105 2000年1月24日(24.01.2000) JP

- (71) 出願人 (米国を除く全ての指定国について): 明治製 菓株式会社 (MEIJI SEIKA KAISHA, LTD.) [JP/JP]; 〒 104-8002 東京都中央区京橋二丁目4番16号 Tokyo (JP).
- (72) 発明者; および
- (75) 発明者/出願人 (米国についてのみ): 佐々木鋭郎

(SASAKI, Toshiro) [JP/JP]. 安藤 孝 (ANDO, Takashi) [JP/JP]. 渥美國夫 (ATSUMI, Kunio) [JP/JP]; 〒222-8567 神奈川県横浜市港北区師岡町760番地 明治製菓株式会社 薬品総合研究所内 Kanagawa (JP).

- (74) 代理人: 吉武賢次, 外(YOSHITAKE, Kenji et al.); 〒 100-0005 東京都千代田区丸の内三丁目2番3号 富士 ビル323号 協和特許法律事務所 Tokyo (JP).
- (81) 指定国(国内): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) 指定国 (広域): ARIPO 特許 (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), ユーラシア特許 (AM,

[続葉有]

- (54) Title: PROCESSES FOR THE PREPARATION OF CARBAPENEM DERIVATIVES
- (54) 発明の名称: カルバペネム誘導体の製造法

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

(57) Abstract: The invention provides processes for preparing carbapenem derivatives having substituted imidazo[5,1-b]thiazolyl groups at the 2-position of carbapenem ring efficiently in safety at a low cost, and intermediates to be used in the processes. Specifically, a process for the preparation of compounds of the general formula (III), which comprises reacting a reaction mixture obtained by treating a compound of the general formula (I) with a Grignard reagent with a compound of the general formula (II) wherein X is halogeno; R¹ is H or a hydroxyl-protecting group; R² is optionally substituted alkyl or optionally substituted aryl; R³ is a carboxyl-protecting group or a group hydrolyzable in vivo; and R⁴ is optionally substituted alkyl or optionally substituted alkyl or optionally substituted phenyl.

WO 01/53305 A1

LU, MC, NL, PT, SE, TR), OAPI 特許 (BF, BJ, CF, CG, のガイダンスノート」を参照。 CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

AZ, BY, KG, KZ, MD, RU, TJ, TM), ヨーロッパ特許 2文字コード及び他の略語については、定期発行される (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, 各PCTガゼットの巻頭に掲載されている「コードと略語

添付公開書類:

(i)

国際調査報告書

(57) 要約:

本発明は、カルバペネム環上の2位に置換イミダゾ [5,1-b] チアゾール 基を有するカルバペネム誘導体を、効率的に、安全に、かつ安価に製造する方法 およびその製造法に用いる中間体の提供をその目的としている。本発明による製 造法は、式(III)の化合物の製造法であって、式(I)の化合物をグリニア 試薬で処理した反応混合物と、式(II)の化合物とを反応させる工程を含んで なる、製造法である。

X
$$SCH_3$$

$$OR^1 \qquad H \qquad H$$

$$CO_2R^3$$

$$OR^1 \qquad H \qquad H$$

$$OR^2 \qquad N$$

$$SCH_3 \qquad (III)$$

$$OR^1 \qquad H \qquad H$$

$$OR^2 \qquad N$$

$$SCH_3 \qquad (III)$$

[Xはハロゲン原子を表し、R'はHまたは水酸基の保護基を表し、R'は置換可能 なアルキルまたは置換可能なアリール基を表し、R'はカルポキシル基の保護基ま たは生体内で加水分解され得る基を表し、R'は置換可能なアルキルまたは置換可 能なフェニル基を表す。]

d

1

明 細 書

カルバペネム誘導体の製造法

発明の背景

発明の分野

本発明は、優れた抗菌力と広範囲スペクトルを有する、2-(7-メチルチオイミダゾ[5,1-b]チアゾール-2-イル)カルバペネム誘導体の新規製造法およびその中間体に関する。

関連技術

WOO0/06581号において、カルバペネム環上の2位に置換イミダゾ [5,1-b] チアゾール基を有するカルバペネム誘導体が、β-ラクタマーゼ 産生菌、MRSA(メチシリン耐性ブドウ球菌)、耐性緑膿菌、 PRSP(ペニシリン耐性肺炎球菌)、腸球菌およびインフルエンザ菌に対しても強い抗菌力を 有し、かつDHP-1(腎デヒドロペプチダーゼー1)に対して高い安定性を有するとの知見が報告されている。これら誘導体の製法として、下記に示す方法が 開示されている。

[上記式中、R'は、水素原子または水酸基の保護基を表し、R'は、カルボキシル基の保護基、または生体内で加水分解され得る基を表し、R'は、低級アルキル基を表し、Rは、生体内で加水分解され得る基を表すかまた、-CO₁Rとしてカルボキシル基またはカルボン酸アニオンの塩を表す。]

すなわち、式(IX)の化合物に、パラジウム触媒、ホスフィン配位子、添加剤の存在下、式(X)の化合物と反応させた後、脱保護を行い、必要に応じて生

11.

体内で加水分解され得るエステル残基の導入等を経て式(IV)の化合物を得ることができる。

上記製法において、式(X)の化合物、および該化合物を調製する際に用いる 塩化トリアルキルすず等の試薬は有機すず化合物に属するものであって、高い毒 性を有している。また、式(IX)の化合物と式(X)の化合物との反応の際用 いるパラジウム触媒、ホスフィン配位子は高価であった。

発明の概要

本発明は、カルバペネム環上の2位に置換イミダゾ [5,1-b] チアゾール 基を有するカルバペネム誘導体を、安全性および経済性の点において有利に製造する方法およびその製造法に用いる中間体の提供をその目的としている。

本発明者らは、カルバペネム誘導体の製造中間体であるある種の置換イミダゾ [5,1-b] チアゾールをグリニア試薬で処理し、得られた混合物を他の製造中間体と反応させることにより、カルバペネム誘導体を効率よく、安全に、かつ安価に製造できることを見いだした。本発明はこの知見に基づくものである。

本発明による製造法は、式(III)の化合物:

$$OR^1$$
 H
 H
 OR^2
 OR^3
 OR^3

[上記式中、

R'は、水素原子または水酸基の保護基を表し、

R'は、1以上のハロゲン原子により置換されていてもよい低級アルキル基、またはハロゲン原子または低級アルキル基 (このアルキル基は1以上のハロゲン原子により置換されていてもよいアリール基を表し、

3

R'は、カルボキシル基の保護基、または生体内で加水分解され得る基を表す。]

の製造法であって、

41

式(I)の化合物:

$$X \longrightarrow N$$
 (I) SCH_3

[上記式中、Xは、ハロゲン原子を表す。]

をグリニア試薬で処理した反応混合物と、式(II)の化合物:

とを反応させる工程を含んでなる、製造法である。

本発明による製造法はまた、式(IV)の化合物:

11

(0)

$$OR^1$$
 H
 H
 SCH_3
 CO_2R
 $IV)$

[上記式中、R'は、水素原子または水酸基の保護基を表し、Rは、水素原子または生体内で加水分解され得る基を表すか、あるいは製薬学的に許容される塩を形成するカチオンを表す。]の製造法であって、

式(III)の化合物

[上記式中、

R'は、水素原子または水酸基の保護基を表し、

R'は、1以上のハロゲン原子により置換されていてもよい低級アルキル基、またはハロゲン原子または低級アルキル基 (このアルキル基は1以上のハロゲン原子により置換されていてもよいアリール基を表し、

R'は、カルボキシル基の保護基、または生体内で加水分解され得る基を表す。]

を環化反応に付してカルバペネム環を形成させる工程と

必要であれば、保護基を除去する工程および/または生体内で加水分解され得るエステル残基を導入する工程および/または基-CO2Rにおいて製薬学的に許容される塩を形成させる工程と

(A)

を含んでなる製造法である。

本発明による中間体は、式(I)の化合物である。

$$X \longrightarrow N$$
 (I) SCH_3

[上記式中、Xは、ハロゲン原子を表す。]

本発明による中間体は、式(II)の化合物である。

[上記式中、

いフェニル基を表す。]

R'は、水素原子または水酸基の保護基を表し、

R'は、1以上のハロゲン原子により置換されていてもよい低級アルキル基、またはハロゲン原子または低級アルキル基(このアルキルは1以上のハロゲン原子により置換されていてもよいアリール基を表し、

R'は、カルボキシル基の保護基、または生体内で加水分解され得る基を表し、

R'は、1以上のハロゲン原子により置換されていてもよい低級アルキル基、またはハロゲン原子、1以上のハロゲン原子により置換されていてもよい低級アルキル基、1以上のハロゲン原子により置換されていてもよい低級アルコキシ基、および-NR'R'(R'およびR'は、同一または異なっていてもよく、1以上のハロゲン原子により置換されていてもよい低級アルキル基を表すか、あるいはR'およびR'が一緒になって-(CH_i)、-基(nは2~6の整数)を表す。)からなる群から選択される同一または異なっていてもよい1以上の基で置換されていてもよ

1)

本発明による中間体は、式(IIa)の化合物である。

[上記式中、

R'は、水素原子または水酸基の保護基を表し、

R'は、1以上のハロゲン原子により置換されていてもよい低級アルキル基、またはハロゲン原子または低級アルキル基(このアルキルは1以上のハロゲン原子により置換されていてもよいフェニル基を表し、

本発明による中間体は、式(III)の化合物である。

$$OR^1$$
 H
 H
 O
 SCH_3
 CO_2R^3
(III)

[上記式中、

R'は、水素原子または水酸基の保護基を表し、

11

R'は、1以上のハロゲン原子により置換されていてもよい低級アルキル基、またはハロゲン原子または低級アルキル基 (このアルキルは1以上のハロゲン原子により置換されていてもよい)により置換されていてもよいアリール基を表し、

R'は、カルボキシル基の保護基、または生体内で加水分解され得る基を表す。]

式(I)、式(II)、式(IIa)、および式(III)の化合物はカルバベネム系抗生物質の製造中間体として有用である。

発明の具体的説明

本明細書において、基または基の一部(例えば低級アルコキシ基のアルキル部分)を構成するアルキル基は、特に言及しない場合には、直鎖、分岐、環状、あるいはこれらの組合せの C_{1-6} アルキル基を意味する。低級アルキル基は、好ましくは、 C_{1-4} アルキル基であり、例えば、メチル基、エチル基、n-プロビル基、イソプロビル基、n-プチル基、t-ブチル基が挙げられる。

基または基の一部としての低級アルキル基の一または二以上の水素原子は塩素原子等のハロゲン原子により置換されていてもよい。置換された低級アルキル基は、好ましくは、2-クロロ-1,1-ジメチルエチル基である。

アルケニル基に含まれる二重結合の数は特に限定されない。アルケニル基は、特に言及しない場合には、直鎖状、分枝鎖状、環状、またはそれらの組み合せのいずれであってもよく、好ましくは直鎖状、分枝鎖状である。アルケニル部分に含まれる二重結合はZ配置またはE配置のいずれでもよい。

ハロゲン原子は、フッ素原子、塩素原子、臭素原子、ヨウ素原子 (好ましくは、 塩素原子、臭素原子、ヨウ素原子) を意味する。

本明細書において、基または基の一部を構成するアリール基は、フェニル、 1ーナフチル、2ーナフチル、ビフェニル、2ーアンスリルナフチルなどの6~ 14員芳香環(例えば、単環式、二環式、または三環式芳香環、好ましくはフェ ニル)を意味する。

R'が表す水酸基の保護基としては、tーブチルジメチルシリル基、トリメチル

*

シリル基、トリエチルシリル基等のシリル基、4-二トロベンジルオキシカルボニル基、4-メトキシベンジルオキシカルボニル基等の置換ベンジルオキシカルボニル基などが挙げられる。

R²が表す低級アルキル基は、好ましくは、n-ブチル基である。

R²が表すアリール基は、好ましくは、フェニル基である。

 R^2 が表すアリール基の一または二以上の水素原子は置換されていてもよく、置換されたアリール基の具体例としては、o-メチルフェニル、m-メチルフェニル、p-メチルフェニル、4-フルオロフェニルが挙げられる。

R'が表すカルボキシル基の保護基としては、4-ニトロベンジル基、4-メトキシベンジル基、ジフェニルメチル基等のアラルキル基、アリル基等のアルケニル基、t-ブチルジメチルシリル基等のシリル基が挙げられる。

R'またはRが表す生体内で加水分解され得る基としては、生体内のエステラー せ等の酵素により分解される基をいい、好ましくは、エステル残基である。この ようなエステル残基の例としては、C」コアルキル基、アリールカルボニルオキシ 低級アルキル基、アリール低級アルキルオキシ低級アルキルカルボニルオキシ低 級アルキル基、低級アルキルカルボニルオキシ低級アルキル基、低級シクロアル キルカルボニルオキシ低級アルキル基、低級シクロアルキル低級アルキルカルボ ニルオキシ低級アルキル基、ジシクロヘキシルメチルカルボニルオキシ低級アル キル基、アダマンタンカルボニルオキシ低級アルキル基、低級アルキルオキシカ ルポニルオキシ低級アルキル基、低級シクロアルキルオキシカルボニルオキシ低 級アルキル基、低級シクロアルキルオキシカルボニルオキシ(低級シクロアルキ ル)メチル基、低級シクロアルキル低級アルキルオキシカルボニルオキシ低級ア ルキル基、アダマンチルオキシカルボニルオキシ低級アルキル基、芳香環上に置 換基を有してもよい2-インダニルオキシカルボニルオキシ低級アルキル基、ア リール低級アルキルオキシカルボニルオキシ低級アルキル基、アリールオキシカ ルポニルオキシ低級アルキル基、芳香環上に置換基を有してもよい5ーインダニ ルオキシカルボニルオキシ低級アルキル基、2-オキソー5-低級アルキルー1、 3-ジオキソレン-4-イルメチル基、芳香環上に置換基を有してもよい3-フ タリジル基、芳香環上に置換基を有してもよい2-(3-フタリジリデン)ェチ

1,

ル基等の常用のものが挙げられ、好ましくは、ベンゾイルオキシメチル、1-(ベンゾイルオキシ)エチル、1-(2-メチルベンゾイルオキシ)エチル、4 ーtープチルベンゾイルオキシメチル、2,4,6ートリメチルベンゾイルオキ シメチル、4**-(**N,N-ジ-n-プロピルアミノスルホニル)ペンゾイルオキ シメチル、1-[4-(N, N-ジ-n-プロピルアミノスルホニル)ベンゾイ ルオキシ] エチル、2-ナフチルカルボニルオキシメチル、1-アダマンチルカ ルボニルオキシメチル、1-(1-アダマンチルカルボニルオキシ)エチル、 シクロヘキシル(シクロヘキシルオキシカルボニルオキシ)メチル、(1R、 5S) - (d) -メンチルオキシカルボニルオキシメチル、1-「(シクロヘキ シルエトキシ)カルボニルオキシ]エチル、2-アダマンチルオキシカルボニル オキシメチル、1-(2-フェニル-1-エチルオキシカルボニルオキシ)エチ ル、1-(4-メチルフェノキシカルボニルオキシ)エチル、1-(2-メチル フェノキシカルボニルオキシ) エチル、1-(2-エチルフェノキシカルボニル オキシ) エチル、1-[2-(2-プロピル) フェノキシカルボニルオキシ] エ チル、1-(2,4-ジメチルフェノキシカルポニルオキシ)エチル、1-(2, 5-ジメチルフェノキシカルボニルオキシ) エチル、1-(3,5-ジメチルフ ェノキシカルボニルオキシ)エチル、1-(2,3,5-トリメチルフェノキシ カルボニルオキシ)エチル、1-(2,6-ジメチルフェノキシカルボニルオキ シ) メチル、2-メチル-1-(フェノキシカルボニルオキシ)-1-プロピル、 1-(2-メトキシフェノキシカルボニルオキシ)エチル、1-(1-ナフトキ シカルボニルオキシ)エチル、(インダン-5-イル)オキシカルボニルオキシ メチル、1-「(インダン-5-イル)オキシカルボニルオキシ]エチル、1-「(インダン-5-イル)オキシカルボニルオキシ]-1-プロピルである。

また、上記のエステル残基が芳香環上に置換基を有してもよい2-インダニルオキシカルボニルオキシ低級アルキル基、芳香環上に置換基を有してもよい5-インダニルオキシカルボニルオキシ低級アルキル基、芳香環上に置換基を有してもよい2-(3-フタリジリデン)エチル基であるときの置換基の例としては、低級アルキル基、ハロゲン

1

WO 01/53305

原子、ニトロ基、シアノ基、低級アルキルチオ基、低級アルコキシ基、水酸基、アミノ基、Nー低級アルキルアミノ基、ホルミル基、低級アルキルカルボニル基、アリールカルボニル基、カルボキシル基、低級アルコキシカルボニル基、ホルミルアミノ基、低級アルキルカルボニルアミノ基、カルバモイル基、Nー低級アルキルカルバモイル基、N,Nージ低級アルキルアミノカルボニル基、アミノスルホニル基、(Nー低級アルキルアミノ)スルホニル基、(Nー低級アルキルアミノ)スルホニルアミノ基、アミノスルホニルアミノ基、(N,Nージ低級アルキルアミノ)スルホニルアミノ基、アミノスルホニルアミノ基、(N,Nージ低級アルキルアミノ)スルホニルアミノ基、アリール基からなる群から選択される基が挙げられ、好ましくは低級アルコキシ基、水酸基、ホルミルアミノ基、カルバモイル基である。

基一CO.Rはカルボン酸アニオンの塩を表す。このような塩としては、製薬学的に許容される塩が挙げられ、例えば、無機塩や有機塩が挙げられる。すなわち、Rは製薬学的に許容される塩を形成するカチオン、例えば、無機塩および有機塩を形成するカチオン、であることができる。このような無機塩および有機塩としては、リチウム、ナトリウム、カリウム、カルシウム、マグネシウムのような金属との無機塩、およびアンモニウム塩、トリエチルアミン、ジイソプロビルエチルアミンのような有機塩基との塩が挙げられ、好ましくはナトリウム塩またはカリウム塩である。

R'が表すフェニル基の一または二以上の水素原子は置換されていてもよく、その置換基の具体例としては、塩素原子、臭素原子、フッ素原子等のハロゲン原子、メチル基、エチル基、nープロピル基等の直鎖アルキル基、イソプロピル基、tープチル基等の分岐鎖アルキル基、メトキシ基、エトキシ基、イソプロピルオキシ基等の低級アルコキシ基、N,Nージメチルアミノ基、N,Nージエチルアミノ基等のN,Nージ低級アルキルアミノ基、1ーピロリジニル基、1ーピベリジニル基等の3ー7員の環状アルキルアミノ基等が挙げられ、特に好ましい置換基は、低級アルコキシ基、N,Nージ低級アルキルアミノ基、または3ー7員の環状アルキルアミノ基である。

R'は、好ましくは、低級アルキル基(好ましくは二個の同一または異なっていてもよい低級アルキル基)、低級アルコキシ基、または基-NR'R'(R'およびR

Ď,

'は、前記で定義した内容と同義である。) で置換されていてもよいフェニル基を表す。

R'が表す置換フェニル基の好ましい例としては、2-クロロフェニル基、2-メチルフェニル基、3,4-ジメチルフェニル基、2-メトキシフェニル基、4-イソプロピルオキシフェニル基、4-イソプロピルオキシフェニル基、4-(N, N-ジメチルアミノ) フェニル基、4-(N, N-ジエチルアミノ) フェニル基等が挙げられ、さらに好ましくは4-メトキシフェニル基、4-イソプロピルオキシフェニル基、4-イソプロピルオキシフェニル基、4-(N, N-ジメチルアミノ) フェニル基、 基よび4-(N, N-ジエチルアミノ) フェニル基である。

R7の好ましい例としては、2-メトキシフェニル基、4-メトキシフェニル基、2-エトキシフェニル基、4-(N, N-ジメチルアミノ) フェニル基、4-(N, N-ジエチルアミノ) フェニル基等が挙げられ、さらに好ましくは4-メトキシフェニル基、4-イソプロピルオキシフェニル基、4-(N, N-ジメチルアミノ) フェニル基、3-1、および3-1、3-3、3-3、3-3、および3-4、3-3、3-

本発明による製造法の好ましい態様においては、

(1) Rが、水素原子、生体内で加水分解され得る基、または製薬学的に許容される塩を形成するカチオンを表し、

Xが、臭素原子またはヨウ素原子を表し、

R'が、水素原子または水酸基の保護基を表し、

R'が、n-ブチル基またはフェニル基を表し、

R'が、カルボキシル基の保護基または生体内で加水分解され得る基を表し、

R'が、所望により置換されていてもよい低級アルキル基、または環上の一以上の水素原子が同一または異なって、ハロゲン原子、所望により置換されていてもよい低級アルキル基、低級アルコキシ基、-NR'R'(R'およびR'は同一または異なって低級アルキル基を表すか、あるいはR'およびR'が一緒になって $-(CH_1)$ 、-基(nは2~6の整数)を示す。)で表される基からなる群から選択される基で置換されていてもよいフェニル基を表すことを特徴とする製造法、

(2) Rが、水素原子、生体内で加水分解され得る基、または製薬学的に許容さ

れる塩を形成するカチオンを表し、

Xが、臭素原子またはヨウ素原子を表し、

R¹が、水素原子または水酸基の保護基を表し、

R'が、所望により置換されていてもよい低級アルキル基、または所望により置換されていてもよいアリール基を表し、

R'が、カルボキシル基の保護基または生体内で加水分解され得る基を表し、

R'が、低級アルコキシ基または-NR'R'(R'およびR'は前記で定義した内容と同義である。)で表される基からなる群から選択される基で置換されていてもよいフェニル基を表すことを特徴とする製造法、

(3) Rが、水素原子、生体内で加水分解され得る基、または製薬学的に許容される塩を形成するカチオンを表し、

Xが、臭素原子またはヨウ素原子を表し、

R'が、水素原子または水酸基の保護基を表し、

R'が、所望により置換されていてもよい低級アルキル基、または所望により置換されていてもよいアリール基を表し、

R'が、カルボキシル基の保護基または生体内で加水分解され得る基を表し、

式(I)の化合物の好ましい具体例としては、

2-ヨードー7ーメチルチオイミダゾ[5,1-b]チアゾール、および

2 - ブロモー 7 - メチルチオイミダゾ [5, 1 - b] チアゾール が挙げられる。

式(II)の化合物の好ましい具体例としては、

(3S, 4R) - 1 - [Pリルオキシカルボニル (トリフェニルホスホラニリデン) メチル] <math>-4 - [(1R) - 1 - (ベンゾイルオキシカルボニル) エチ

WO 01/53305 PCT/JP01/00439

ル] -3-[(1R)-1-(t-ブチルジメチルシリルオキシ) エチル] アゼチジン<math>-2-オン、

が挙げられる。

.....4

 ϵi

式(IIa)の化合物の好ましい具体例としては、

(3S, 4R) - 1 - [PJNオキシカルボニル (トリフェニルホスホラニリデン) メチル] - 3 - [(1R) - 1 - (t - プチルジメチルシリルオキシ) エチル] - 4 - [(1R) - 1 - (4 - メトキシベンゾイルオキシカルボニル) エチル] アゼチジン-2-オン、および

(3S, 4R) - 1 - [アリルオキシカルボニル(トリフェニルホスホラニリデン)メチル] <math>-3 - [(1R) - 1 - (t - ブチルジメチルシリルオキシ)エチル] - 4 - [(1R) - 1 - (4 - ジメチルアミノベンゾイルオキシカルボニル) エチル] アゼチジン <math>-2 - オンが挙げられる。

式(III)の化合物の好ましい具体例としては、

(3S, 4R) - 1 - [Pリルオキシカルボニル(トリフェニルホスホラニリデン)メチル] - 3 - [(1R) - 1 - (t - ブチルジメチルシリルオキシ)エチル] - 4 - [(1R) - 1 - メチルー2 - (7 - メチルチオイミダゾ [5, 1 - b] チアゾールー2 - イル) - 2 - オキソエチル] アゼチジンー2 - オンゲ挙げられる。

式(Ⅰ)の化合物は、以下の方法で合成することができる。

4

$$(XIII)$$
 $(R^8)_3Sn$
 (X)
 (X)
 $(R^8)_3Sn$
 (X)
 (X)

[上記式中、R'およびXは前記で定義した内容と同義である。]

WO 01/53305 PCT/JP01/00439

このようにして得られた式(I)の化合物は、沈殿化、結晶化あるいは、セファデックス等を用いるゲル濾過、シリカゲルカラムクロマトグラフィー等を用いることにより、単離、精製することができる。

式(II)の化合物は、以下の方法で合成することができる。

[上記式中、 R¹、R²、R³およびR⁴は前記で定義した内容と同義である。] 式 (XIV) の化合物 (WO98/32760号に記載) に対して、市販または対応するカルボン酸よりチオニルクロリド、シュウ酸クロリド等で容易に調製可能な式 (XV) の化合物を、1当量または過剰量用いて、1当量または過剰量の塩基存在下、不活性溶媒中、−20℃から還流温度において、10分から24時間反応させた後、通常の分液精製により式 (II) の化合物を得ることができる。

式(XV)の化合物の例として、ピバロイルクロリド、クロロピバロイルクロリド、ペンゾイルクロリド、2ーメチルベンゾイルクロリド、3,4ージクロロベンゾイルクロリド、2ーメトキシベンゾイルクロリド、2ーメトキシベンゾイルクロリド、4ーメトキシベンゾイルクロリド、4ーイソプロピルオキシベンゾイルクロリド、4ージメチルアミノベンゾイルクロリド、4ージエチルアミノベンゾイルクロリド、6ージエチルアミノベンゾイルクロリド等が挙げられる。

また、対応するカルボン酸の例として、ビバリン酸、クロロビバリン酸、安息香酸、2ーメチル安息香酸、3,4ージクロロ安息香酸、2ークロロ安息香酸、2ーメトキシ安息香酸、4ーメトキシ安息香酸、4ーイソプロビルオキシ安息香酸、4ージメチルアミノ安息香酸、4ージエチルアミノ安息香酸等が挙げられる。

この反応に於ける塩基の例としては、トリエチルアミン、ジイソプロピルエチルアミン、ジアザビシクロ[2,2,2]ウンデセン、ピリジン、4-ジメチル

ø)

アミノピリジン、2,6-ルチジン等が挙げられる。

反応に利用可能な不活性溶媒としては、例えば、ジクロロメタン、1,2-ジクロロエタン、クロロホルム、アセトニトリル、テトラヒドロフラン、N,N-ジメチルホルムアミド、トルエン、ペンゼン等の単独または混合溶媒が挙げられる。

このようにして得られた式(II)の化合物は、必要ならば沈殿化、結晶化あるいは、セファデックス等を用いるゲル濾過、シリカゲルカラムクロマトグラフィー等を用いて、単離、精製することができる。

式(III)の化合物はグリニア試薬で処理した式(I)の化合物を式(II)の化合物とを反応させることにより得ることができる。式(III)の化合物を得る工程において、式(I)の化合物は、式(II)の化合物に対して1.0当量または過剰量用いられる。

式(I)の化合物と式(II)の化合物との反応は下記のようにして実施できる。

式(I)の化合物を、テトラヒドロフラン、ジエチルエーテル、ジオキサン、ジメトキシエタン、トルエン、ベンゼン、ジクロロメタン、ヘキサメチルリン酸トリアミド等の不活性な溶媒に溶解または懸濁させて、-100℃から+70℃、好ましくは、-80℃から-20℃でアルキルマグネシウムクロリド、アルキルマグネシウムブロミド、アルキルマグネシウムヨーダイド、アリールマグネシウムブロミド等、好ましくは、メチルマグネシウムヨーダイド、エチルマグネシウムブロミド等のグリニア試薬を加えて10分から24時間攪拌した後、テトラヒドロフラン、ジエチルエーテル、ジオキサン、ジメトキシエタン、トルエン、ベンゼン、ジクロロメタン、ヘキサメチルリン酸トリアミド等の不活性溶媒に溶解した式(II)の化合物を加えるか、あるいは、テトラヒドロフラン、ジエチルエーテル、ジオキサン、ジメトキシエタン、トルエン、ベンゼン、ジクロロメタン、ヘキサメチルリン酸トリアミド等の不活性溶媒に溶解した式(II)の化合物に、式(I)の化合物をアルキルマグネシウムクロリド、アルキルマグネシウムブロミド等、好ましくは、メチルマグネシウムヨーダイド、エチルマグネシウムプロミド

等のグリニア試薬で処理した溶液または懸濁液を加えて、さらに-100℃から+70℃、好ましくは、-80℃から0℃において10分から24時間反応させ、通常の後処理にかけることにより、式(III)の化合物を得ることができる。

得られた式(III)の化合物は、必要ならば沈殿化、結晶化あるいは、セファデックス等を用いるゲル濾過、シリカゲルカラムクロマトグラフィー等を用いて精製して次工程に用いてもよい。

次いで式(III)の化合物は、通常のカルバペネム環を形成する工程、また必要であれば保護基を除去する工程、生体内で加水分解され得るエステル残基を導入する工程、および/または基 $-CO_2R$ において製薬学的に許容される塩を形成させる工程を実施することにより式(IV)の化合物へ変換することができる。

カルバペネム環を形成する工程は、当該分野で周知のウィッティヒ環化条件、 すなわち、ベンゼン、トルエン、キシレン、テトラヒドロフラン、ジオキサン等 の不活性溶媒に溶解した式(III)で示される化合物を、必要ならば触媒量の 添加剤(好ましくはヒドロキノン)を加え、室温から還流温度で10分から24 時間反応させることにより実施することができる。

保護基を除去する工程は、保護基R¹およびR³をその保護基の種類により、上記 閉環反応を行う前あるいは閉環反応を行った後に、一段階あるいは複数段階で脱 保護反応を行うことからなる。

この際、保護基R'およびR'の除去のための脱保護反応は、用いた保護基の種類によって異なるが、一般にこの分野の技術で知られている通常の方法に従って行うことができる。

酸性条件下でいずれかまたは、全部が脱保護できる場合は、塩酸等の鉱酸、ギ酸、酢酸、クエン酸等の有機酸、または、塩化アルミニウム等のルイス酸等を用いる。

また、還元条件下で除去される場合には、各種の触媒による接触還元、または 亜鉛、鉄等の金属還元剤を用いることができる。

また、R'がシリル系保護基(例えば、tーブチルジメチルシリル基、トリメチルシリル基または、トリエチルシリル基等)の場合は、フッ素イオン試薬(例えば、テトラブチルアンモニウムフルオライド等)を用いることにより、さらには、

R'がアリルオキシカルボニル基、R'がアリル基の場合は、種々のパラジウム錯体 (例えば、テトラキス(トリフェニルホスフィン)パラジウム(0)等)を用い ることにより、容易に除去することができる。

R'が生体内で加水分解され得るエステル残基である式(IV)の化合物を製造する場合には、以下の工程に従って製造してもよい。

$$\begin{array}{c|c}
OH & H \\
\hline
ON & S \\
CO_2H & SCH_3
\end{array}$$

$$\begin{array}{c|c}
R^{11}-Y & OH & H \\
\hline
ON & S \\
CO_2R^{11} & SCH_3
\end{array}$$

$$\begin{array}{c|c}
(XII) & (XII)
\end{array}$$

「上記式中、R¹¹はC₁₋₁₀アルキル基、アリールカルボニルオキシ低級アルキル基、 アリール低級アルキルオキシ低級アルキルカルボニルオキシ低級アルキル基、低 級アルキルカルボニルオキシ低級アルキル基、低級シクロアルキルカルボニルオ キシ低級アルキル基、低級シクロアルキル低級アルキルカルボニルオキシ低級ア ルキル基、ジシクロヘキシルメチルカルボニルオキシ低級アルキル基、アダマン タンカルボニルオキシ低級アルキル基、低級アルキルオキシカルボニルオキシ低 級アルキル基、低級シクロアルキルオキシカルボニルオキシ低級アルキル基、低 級シクロアルキルオキシカルボニルオキシ(低級シクロアルキル)メチル基、低 級シクロアルキル低級アルキルオキシカルボニルオキシ低級アルキル基、アダマ ンチルオキシカルボニルオキシ低級アルキル基、芳香環上に置換基を有してもよ い2-インダニルオキシカルボニルオキシ低級アルキル基、アリール低級アルキ ルオキシカルボニルオキシ低級アルキル基、アリールオキシカルボニルオキシ低 級アルキル基、芳香環上に置換基を有してもよい5-インダニルオキシカルボニ ルオキシ低級アルキル基、2-オキソー5-低級アルキルー1、3-ジオキソレ ンー4ーイルメチル基、芳香環上に置換基を有してもよい3ーフタリジル基、芳 香環上に置換基を有してもよい2-(3-フタリジリデン)エチル基を表し、Y はC1、Br、I、-OSO,CF,、-OSO,CH,、-OSO,PhCH,を表 す。]

 19

しくは-30~+20°C) において、10分から24時間反応させることにより式 (XII) で示される化合物を得ることができる。

この反応に於ける塩基の例としては、有機塩基としてジイソプロピルエチルアミン、ジアザビシクロ[2,2,2]ウンデセン、2,6-ルチジン等、無機塩基としては、水酸化ナトリウム、水酸化カリウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸ナトリウム、炭酸カリウム、炭酸セシウム等が挙げられる。

またR"-Yとしては、例えば、ベンゾイルオキシメチルヨーダイド、1-(ベ ンゾイルオキシ) エチルヨーダイド、1-(2-メチルベンゾイルオキシ) エチ ルヨーダイド、4-t-ブチルベンゾイルオキシメチルヨーダイド、2、4、6 ートリメチルベンゾイルオキシメチルヨーダイド、4-(N,N-ジーn-プロ **ピルアミノスルホニル)ベンゾイルオキシメチルヨーダイド、1-「4-(N**, **Nージーnープロピルアミノスルホニル)ベンゾイルオキシ]エチルヨーダイド、** 2-ナフチルカルボニルオキシメチルヨーダイド、1-アダマンチルカルボニル オキシメチルヨーダイド、1-(1-アダマンチルカルボニルオキシ) エチルヨ ーダイド、シクロヘキシル(シクロヘキシルオキシカルボニルオキシ)メチルヨ ーダイド、(1R, 2S, 5R) - (1) ーメンチルオキシカルボニルオキシメ チルヨーダイド、(1S, 2R, 5S) - (d) -メンチルオキシカルボニルオ キシメチルヨーダイド、1-[(シクロヘキシルエトキシ)カルボニルオキシ] エチルヨーダイド、2-アダマンチルオキシカルボニルオキシメチルヨーダイド、 1-(2-フェニルー1-エチルオキシカルボニルオキシ)エチルヨーダイド、 1-(4-メチルフェノキシカルボニルオキシ)エチルヨーダイド、1-(2-メチルフェノキシカルボニルオキシ) エチルヨーダイド、1-(2-エチルフェ ノキシカルボニルオキシ)エチルヨーダイド、1-[2-(2-プロピル)フェ ノキシカルボニルオキシ] エチルヨーダイド、1-(2,4-ジメチルフェノキ シカルボニルオキシ) エチルヨーダイド、1-(2,5-ジメチルフェノキシカ ルボニルオキシ) エチルヨーダイド、1-(3,5-ジメチルフェノキシカルボ ニルオキシ) エチルヨーダイド、1-(2,3,5-トリメチルフェノキシカル ボニルオキシ) エチルヨーダイド、1-(2,6-ジメチルフェノキシカルボニ ルオキシ)メチルヨーダイド、2-メチル-1-(フェノキシカルボニルオキ

WO 01/53305 PCT/JP01/00439

•}

シ) -1-プロピルヨーダイド、1-(2-メトキシフェノキシカルボニルオキシ) エチルヨーダイド、1-(1-ナフトキシカルボニルオキシ) エチルヨーダイド、(インダン-5-イル) オキシカルボニルオキシメチルヨーダイド、1-[(インダン-5-イル) オキシカルボニルオキシ] エチルヨーダイド、1-[(インダン-5-イル) オキシカルボニルオキシ] -1-プロピルヨーダイド等が挙げられる。

反応に利用可能な不活性溶媒としては、例えば、N, N-ジメチルホルムアミド、N, N-ジメチルアセトアミド、<math>N, N-ジエチルホルムアミド、<math>N, N-ジエチルアセトアミド、<math>N-メチルピロリジノン、N, N-ジメチルイミダゾリジノン、ジメチルスルホキシド、スルホラン、アセトニトリル、アセトン、酢酸エチル、テトラヒドロフラン、<math>1, 4-ジオキサン、ジエチルエーテル、アニソール、ジクロロメタン、1, 2-ジクロロエタン、クロロホルム、トルエン、ベンゼン、ヘキサメチルホスホリックトリアミド、メタノール、エタノール等の単独または混合溶媒が挙げられる。

このようにして得られた式(XII)で示される化合物は、沈殿化、結晶化あるいは、セファデックス等を用いるゲル濾過、シリカゲルカラムクロマトグラフィー等を用いることにより、単離、精製することができる。

基一CO2Rにおいて製薬学的に許容される塩を形成させる工程は、慣用方法に従って実施できる。例えば、ナトリウム塩あるいはカリウム塩を調製する場合には、式(XII)で示される化合物を水に懸濁させ、氷冷下、1.0当量の炭酸水素ナトリウム、あるいは炭酸水素カリウムの水溶液を加えて攪拌した後、そのまま凍結乾燥するかアセトニトリル、アセトン等の有機溶媒を用いて沈殿化または結晶化することにより実施できる。

実 施 例

• 1

N-3-ドこはく酸イミド0.11 gを加えた。同温度で4時間撹拌した後、反応混合物に酢酸エチル50 m1 を加え、希重曹水、希チオ硫酸ナトリウム水溶液、飽和塩化ナトリウム水溶液で順次洗浄した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を留去して得られる残さにヘキサン:酢酸エチル=2:1 の混合溶媒3 m1 を加え、得られる沈殿を濾過することにより、表題の化合物0.13 g を得た。

NMR (CDC1₃) δ : 2.42 (3H, s), 7.50 (1H, s), 7.93 (1H, s)

[実施例2] $2-\overline{J}$ ロモー $7-\overline{J}$ チルチオイミダゾ [5, 1-b] チアゾール 2-(トリー $n-\overline{J}$ チルスタニル $)-7-\overline{J}$ チルチオイミダゾ [5, 1-b] チアゾール 6.89 gのテトラヒドロフラン 50 m 1 溶液を-78 $^{\circ}$ に冷却し、 $n-\overline{J}$ テルリチウムの 1.6 Mーへキサン溶液を 10.8 m 1 加えた。ただちに、1, 1, 2, $2-\overline{J}$ テトラブロモエタン 1.92 m 1 を加え、同温度で 30 分間撹拌した。反応混合物に酢酸エチルを加え、水、飽和塩化ナトリウム水溶液で順次洗浄した。 有機層を無水硫酸マグネシウムで乾燥し、溶媒を留去して得られる残さをシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル= 1:2)で精製して、表題の化合物 1.49 g を得た。

NMR (CDCl₃) δ : 2.41 (3H, s), 7.46 (1H, s), 7.95 (1H, s)

[実施例3] (1S, 5R, 6S) - 6 - ((1R) - 1 - ヒドロキシェチル)-1-メチルー2-(7-メチルチオイミダゾ[5, 1-b] チアゾールー2-イル) -1-カルバペン-2-エム-3-カルボン酸カリウム

a) (3S, 4R) - 1 - [PJNオキシカルボニル (トリフェニルホスホラニリデン) メチル] - 3 - [(1R) - 1 - (t - ブチルジメチルシリルオキシ) エチル] - 4 - [(1R) - 1 - (ピバロイルオキシカルボニル) エチル] アゼチジン-2-オン

(3S, 4R) - 1 - [PUNT + DDNT - NUT - NUT

\$}

3. 30g0トルエン20m1溶液を氷水浴で冷却し、トリエチルアミン0.70m1を加えた。塩化ビバロイル0.62m1を滴下し、同温度で30分間撹拌した。反応混合物を周囲温度にした後、不溶物を濾過し、トルエン5m1で洗浄した。滤液を合わせ、溶媒を留去することにより、(3S,4R)-1-[アリルオキシカルボニル(トリフェニルホスホラニリデン)メチル]-3-[(1R)-1-(t-ブチルジメチルシリルオキシ)エチル]-4-[(1R)-1-(ヒバロイルオキシカルボニル)エチル]アゼチジン-2-オンの粗生成物3. <math>72gを得た。

NMR (CDC1₃) $\delta:-0.20-0.10$ (6H, m), 0.60-0.65, 0.95-1.05(3H, m), 0.75-0.90(9H, m)1. 24, 1. 25 (9H, m), 1. 30-1. 35, 1. 45-1. 55(3H, m), 2. 45-3. 10 (2H, m), 4. 05-4. 25 (2H, m)m) $\sqrt{4.40-4.70}$ (2H, m) $\sqrt{5.10-5.20}$ (1H, m) $\sqrt{5.10-5.20}$ 5. 25-5. 40(1H, m), 5. 84-6. 05(1H, m), 7. 45-7.60(9H, m), 7.70-7.85(6H, m)b) (3S, 4R) -1- [アリルオキシカルボニル (トリフェニルホスホラニ リデン)メチル] -3-[(1R) -1-(t-ブチルジメチルシリルオキシ) エチル] -4-[(1R)-1-メチル-2-(7-メチルチオイミダゾ[5, 1-b] チアゾールー2ーイル) -2-オキソエチル] アゼチジン-2-オン 2-ヨードー7ーメチルチオイミダゾ[5,1-b]チアゾール0.16gの テトラヒドロフラン2m1溶液を-30℃に冷却し、これに臭化エチルマグネシ ウムの1Mーテトラヒドロフラン溶液を0.6m1加え、同温度で30分間撹拌 した。この反応混合物に、(3S,4R)-1-[アリルオキシカルボニル(ト リフェニルホスホラニリデン)メチル]-3-[(1R)-1-(t-ブチルジ メチルシリルオキシ) エチル] -4-[(1R)-1-(ピバロイルオキシカル ボニル) エチル] アゼチジンー2ーオン0.37gのテトラヒドロフラン1.5 m1溶液を加え、周囲温度で30分間撹拌した。この反応混合物を飽和塩化アン モニウム水溶液50mlに加え、酢酸エチル50mlで抽出した。有機層を希塩 酸、希重曹水、飽和塩化ナトリウム水溶液で順次洗浄し、無水硫酸マグネシウム

で乾燥した。溶媒を留去して得られる残さをシリカゲルカラムクロマトグラフィー (酢酸エチル)で精製することにより、(3S, 4R) -1-[[アリルオキシカルボニル (トリフェニルホスホラニリデン)メチル]-3-[(1R)-1-((1

NMR (CDC1₁) $\delta:-0.08$ (3H, s), -0.06 (3H, s), 0. 80 (9H, s), 0. 90 (3H, d, J = 5.8Hz), 1. 46 (3 H, d, J=6.7Hz), 2. 43 (3H, s), 2. 55-2. 60 (1H, m) $\langle 2.65-2.90(2H, m) \langle 3.75-3.80, 3.90-4.$ 00 (1H, m), 4.15-4.25 (1H, m), 4.55-4.70 (2H, m), 5. 10-5. 25 (1H, m), 5. 35-5. 50, 6. 00-6. 10 (1H, m), 7. 45-7. 65 (9H, m), 7. 70-7. 85 (6H, m), 8. 00-8. 10(2H, m), 8. 56(1H, s)オキシ)エチル]ー1ーメチルー2ー(7ーメチルチオイミダゾ「5、1ーb] チアゾールー2ーイル)ー1ーカルパペンー2ーエムー3ーカルボン酸アリル (3S, 4R) -1- [アリルオキシカルボニル(トリフェニルホスホラニリ デン)メチル] -3-[(1R)-1-(t-ブチルジメチルシリルオキシ)ェ チル] -4-[(1R)-1-メチル-2-(7-メチルチオイミダゾ「5、1)-b] チアゾールー2-イル) -2-オキソエチル] アゼチジンー2-オン 0.81gのトルエン4m1溶液を90℃で7時間加熱攪拌した。反応混合物を 濃縮して得られる残さをシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸 エチル=2:3) で精製することにより(1S,5R,6S)-6-[(1R) -1- (t-ブチルジメチルシリルオキシ) エチル] -1-メチル-2- (7-メチルチオイミダゾ [5,1-b] チアゾールー2ーイル) ー1ーカルバペンー 2-エム-3-カルボン酸アリル0.46gを得た。

NMR (CDC1₁) δ : 0. 10 (6H, s), 0. 90 (9H, s), 1. 25-1. 30 (6H, m), 2. 42 (3H, s), 3. 29 (1H, d

WO 01/53305 PCT/JP01/00439

d, J=5. 5, 2. 8 Hz) \ 3. 35-3. 43 (1 H, m) \ 4. 25-4. 35 (2 H, m) \ 4. 68-4. 86 (2 H, m) \ 5. 25-5. 30 (1 H, m), 5. 40-5. 50 (1 H, m), 5. 90-6. 15 (1 H, m) \ 8. 00 (1 H, s), 8. 30 (1 H, s)

(1S, 5R, 6S) -6-[(1R)-1-(t-7+n) + 2) エチル] -1-x+n-2-(7-x+n) + 3 エチル] -1-x+n-2-(7-x+n) + 3 アゾール-2-4ル) -1-3ルバベン-2-4 エム-3-3 カルボン酸アリル 0 の -2 の -2 の -3 の -3

NMR (CDC1₁) δ : 1. 29 (3H, d, J=7. 2Hz) 、1. 38 (3H, d, J=6. 3Hz) 、2. 44 (3H, s) 、3. 33 (1H, dd, J=6. 8、2. 8Hz) 、3. 40-3. 50 (1H, m) 、4. 24-4. 40 (2H, m) 、4. 70-4. 90 (2H, m) 、5. 28-5. 32 (1H, m) 、5. 43-5. 50 (1H, m) 、5. 90-6. 05 (1H, m) 、8. 02 (1H, s) ,8. 30 (1H, s)

ルー2ー(7ーメチルチオイミダゾ [5, 1ーb] チアゾールー2ーイル)ー1ーカルバペンー2ーエムー3ーカルボン酸アリル0. 10 gの塩化メチレン1. 2 m1、酢酸エチル1. 2 m1溶液にアルゴン雰囲気下でトリフェニルホスフィン6. 2 mg、2ーエチルヘキサン酸カリウム65. 1 mgを加え溶解させた。この反応混合物にテトラキストリフェニルホスフィンパラジウム(0) 1 3. 8 mgを加え、周囲温度で 1 時間撹拌した。この反応混合物に塩化メチレン1 0 m1 を加え、水3 m1 で3 回抽出する。水槽を合わせ、濃縮して得られる残さをコスモシール4 0 C_{18} - PREP(1 0 %メタノール水)で精製することにより表題の化合物 5 3. 3 mgを得た。

NMR (D₂O) δ (HOD=4.8ppm): 1.24 (3H, d, J=7.1Hz), 1.32 (3H, d, J=6.3Hz), 2.35 (3H, s), 3. 50-3.60 (2H, m), 4.20-4.35 (2H, m), 7.85 (1H, s), 8.10 (1H, s)

- (3S, 4R) -3-[(1R)-1-(t-ブチルジメチルシリルオキシ) エチル] -4-[(1R)-1-(カルボキシ) エチル] -1-[4-ニトロベンジルオキシカルボニル(トリフェニルホスホラニリデン) メチル] アゼチジン-2-オン3.77gのトルエン25ml溶液を氷水浴で冷却し、トリエチルアミン0.73mlを加えた。塩化ビバロイル0.62mlを滴下し、同温度で30分間撹拌した。反応混合物を周囲温度にした後、不溶物を濾過し、トルエン5mlで洗浄した。滤液を合わせ、溶媒を留去することにより、(3S, 4R)

-3-[(1R)-1-(t-ブチルジメチルシリルオキシ) エチル]-1-[4-ニトロベンジルオキシカルボニル(トリフェニルホスホラニリデン) メチル]-4-[(1R)-1-(ピバロイルオキシカルボニル) エチル] アゼチジン-2-オンの粗生成物 <math>4.20g を得た。

NMR (CDC1₃) $\delta:-0.10, -0.05$ (6H, s), 0.80 (9H, s), 0.60-0.70, 1.00-1.05 (3H, m), 1.2 0 (9H, s), 1.30-1.35, 1.40-1.45 (3H, m), 2.45-3.10 (2H, m), 3.90-4.25 (1H, m), 4.80 (1H, br S), 4.95-5.00, 5.30-5.40 (2H, m), 7.40-7.60 (9H, m), 7.70-7.85 (8H, m), 8.15 -8.25 (2H, m)

2-プロモー7-メチルチオイミダゾ [5, 1-b] チアゾール 0.13gの テトラヒドロフラン 2m1 溶液を-30 $\mathbb C$ に冷却し、これに臭化エチルマグネシウムの 1 M-テトラヒドロフラン溶液を0.5m1 加え、同温度で 30 分間撹拌した。この反応混合物を-50 $\mathbb C$ に冷却した(3S, 4R)-3-[(1R)-1-(t-プチルジメチルシリルオキシ) エチル]-1-[4-ニトロベンジルオキシカルボニル (トリフェニルホスホラニリデン) メチル]-4-[(1R)-1-(U バロイルオキシカルボニル) エチル] アゼチジン-2-オンのテトラヒドロフラン 2m1 溶液に滴下し、同温度で 12 時間、周囲温度で 5 時間撹拌した。この反応混合物を飽和塩化アンモニウム水溶液 50m1 に加え、酢酸エチル50m1 で抽出した。有機層を希塩酸、希重曹水、飽和塩化ナトリウム水溶液で順次洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去して得られる残さをシリカゲルカラムクロマトグラフィー(酢酸エチル)で精製することにより表題の化合物 68mg を得た。

NMR (CDC1,) δ : -0. 9H (6H, s), 0. 78 (9H, s), 0. 98 (3H, d, J=5. 9Hz), 1. 15 (3H, d, J=7. 1Hz), 2. 40 (3H, s), 2. 60-2. 70 (2H, m), 2. 80-2. 90 (1H, m), 3. 10-3. 20 (1H, m), 4. 80-5. 00 (2H, m), 6. 65-6. 75 (2H, m), 7. 45-8. 25 (19H, m)

[実施例5] (3S, 4R) -1-[Pリルオキシカルボニル (トリフェニルホスホラニリデン) メチル] <math>-3-[(1R)-1-(t-プチルジメチルシリルオキシ) エチル] -4-[(1R)-1-メチル-2-(7-メチルチオイミダゾ[5,1-b] チアゾール-2-イル) -2-オキソエチル] アゼチジン-2-オン

- a) (3S, 4R) 1 [PJJJ + vJJJJ + vJJJ + vJJ + vJJJ + v
- (3S, 4R) 1 [アリルオキシカルボニル(トリフェニルホスホラニリデン)メチル] 3 [(1R) 1 (t ブチルジメチルシリルオキシ)エチル] 4 [(1R) 1 (カルボキシ)エチル] アゼチジン 2 オン3.30gのトルエン10ml溶液を氷水浴で冷却し、トリエチルアミン0.70mlを加えた。塩化ベンゾイル0.58mlを滴下し、同温度で30分間撹拌した。反応混合物を周囲温度にした後、不溶物を濾過し、トルエン5mlで洗浄した。濾液を合わせ、溶媒を留去することにより、<math>(3S, 4R) 1 [アリルオキシカルボニル(トリフェニルホスホラニリデン)メチル] 4 [(1R) 1 (ベンゾイルオキシカルボニル) エチル] 3 [(1R) 1 (セーブチルジメチルシリルオキシ)エチル] アゼチジン 2 オンの粗生成物3.67gを得た。

NMR (CDC1;) $\delta:-0.13,-0.08,0.05$ (6H, s), 0.73, 0.77, 0.81 (9H, s), 0.63-0.64, 1.05-1.07 (3H, m), 1.32-1.33, 1.56-1.57 (3H, m), 2.

69-3.16 (3H, m), 4.11-4.18 (1H, m), 4.40-4. 61 (2H, m), 5.08-5.10 (1H, m), 5.27-5.31 (1H, m), 5.90-5.97 (1H, m), 7.44-7.76 (17H, m), 8.00-8.15 (3H, m)

b) (3S, 4R) - 1 - [PJJJJTTL] + DJJTL + DJJTL

NMR (CDC1;) δ : -0.08 (3H, s), -0.06 (3H, s), 0.80 (9H, s), 0.90 (3H, d, J=5.8Hz), 1.46 (3H, d, J=6.7Hz), 2.43 (3H, s), 2.55-2.60 (1H, m), 2.65-2.90 (2H, m), 3.75-3.80, 3.90-4.00 (1H, m), 4.15-4.25 (1H, m), 4.55-4.70 (2H, m), 5.10-5.25 (1H, m), 5.35-5.50, 6.00 -6.10 (1H, m), 7.45-7.65 (9H, m), 7.70-7.85 (6H, m), 8.00-8.10 (2H, m), 8.56 (1H, s)

[実施例6] (3S, 4R) - 1 - [アリルオキシカルボニル (トリフェニルホ

スホラニリデン) メチル] -3-[(1R)-1-(t-ブチルジメチルシリル オキシ) エチル] -4-[(1R)-1-メチル-2-(7-メチルチオイミダ ゾ [5,1-b] チアゾールー2ーイル) -2-オキソエチル] アゼチジン-2-オン

(3S, 4R) - 1 - [アリルオキシカルボニル(トリフェニルホスホラニリデン)メチル] - 3 - [(1R) - 1 - (t - 7) + 7

エチル] -4- [(1R) -1-メチル-2-(7-メチルチオイミダゾ[5, 1-b] チアゾール-2-イル) -2-オキソエチル] アゼチジン-2-オン2-ヨード-7-メチルチオイミダゾ[5, 1-b] チアゾール0.33gのテトラヒドロフラン4m1溶液を-30℃に冷却し、これに臭化エチルマグネシウムの1M-テトラヒドロフラン溶液を1.2m1加え、同温度で30分間撹拌した。この反応混合物を-70℃に冷却し、(3S, 4R) -1-[アリルベンジルオキシカルボニル(トリフェニルホスホラニリデン)メチル] -3-[(1R) -1-(t-ブチルジメチルシリルオキシ) エチル] -4-[(1R) -1-(4-メトキシベンゾイルオキシカルボニル) エチル] アゼチジン-2-オン0.79gのテトラヒドロフラン3m1溶液を加え、-40℃から-50℃で3時間、-20度で2時間撹拌した。この反応混合物を飽和塩化アンモニウム水溶液100m1に加え、酢酸エチル100m1で抽出した。有機層を希塩酸、希重曹水、飽和塩化ナトリウム水溶液で順次洗浄し、無水硫酸マグネシウムで乾燥した。溶媒を留去して得られる残さをシリカゲルカラムクロマトグラフィー(酢酸エチル)で精製することにより、表題の化合物0.39gを得た。

a) (3S, 4R) -1- [アリルオキシカルボニル (トリフェニルホスホラニ

リデン) メチル] -3-[(1R)-1-(t-ブチルジメチルシリルオキシ) エチル] -4-[(1R)-1-(4-ジメチルアミノベンゾイルオキシカルボニル) エチル] アゼチジン<math>-2-オン

(3S, 4R) -1-[アリルオキシカルボニル(トリフェニルホスホラニリデン)メチル]-3-[(1R) -1-(t - ブチルジメチルシリルオキシ)エチル]-4-[(1R) -1-(カルボキシ)エチル] アゼチジン-2- オン 7. 26 gのテトラヒドロフラン44ml溶液にトリエチルアミン1. 5 3 ml、4 - ジメチルアミノビリジン0. 1 3 gを加えた。塩化4 - ジメチルアミノベンゾイル2. 0 2 gを加え、周囲温度で30分間撹拌した。反応混合物を酢酸エチル100 mlで希釈し、希塩酸、希水酸化ナトリウム水溶液、水、飽和塩化ナトリウム水で順次洗浄した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を留去することにより(3S, 4R) -1-[アリルオキシカルボニル(トリフェニルホスホラニリデン)メチル]-3-[(1R) -1-(t - ブチルジメチルシリルオキシ)エチル]-4-[(1R) -1-(t - ブチルジメチルシリルオキシ)エチル] アゼチジン-2- オンの粗生成物 8. 9 1 gを得た。

NMR (CDC1:) δ : -0. 15-0. 10 (6H, m), 0. 50-0. 55, 1. 05-1. 10 (3H, m), 0. 70-0. 85 (9H, m), 1. 30-1. 35, 1. 55-1. 60 (3H, m), 2. 45-3. 10 (2H, m), 3. 03, 3. 07 (6H, s), 4. 10-4. 25 (1H, m), 4. 40-4. 75 (3H, m), 5. 10-5. 15 (1H, m), 5. 25-5. 35 (1H, m), 5. 90-6. 00 (1H, m), 7. 35 -7. 60 (9H, m), 7. 65-7. 80 (6H, m), 7. 85-8. 00 (4H, m)

WO 01/53305 PCT/JP01/00439

シウムの1M-テトラヒドロフラン溶液を2.5m1加え、同温度で30分間撹拌した。この反応混合物を-70 \mathbb{C} に冷却し、(3S, 4R) -1-[\mathbb{C} \mathbb{C}

(1S, 5R, 6S) - 6 - ((1R) - 1 - ヒドロキシエチル) - 1 - メチルー2 - (7 - メチルチオイミダゾ <math>[5, 1 - b] チアゾールー2 - イル) - 1 - カルバベンー2 - エムー3 - カルボン酸アリル3.00gと2 - エチルヘキサン酸ナトリウム1.31gより、実施例3 - e) と同様にして得られた水抽出液34m1をアセトニトリル34

0 m l へ滴下し、析出した沈殿物を濾取し表題化合物 2. 2 6 gを得た。NMR (D₂O) δ (HOD=4.8ppm): 1.25 (3H, d, J=7.2Hz)、1.32 (3H, d, J=6.4Hz)、2.37 (3H, s)、3.50-3.60 (2H, m)、4.25-4.35 (2H, m)、7.90 (1H, s)、8.12 (1H, s)

「実施例9] (1S, 5R, 6S) - 6 - ((1R) - 1 - ヒドロキ シエチル) -1 - メチル - 2 - (7 - メチルチオイミダゾ [5, 1 - b] チアゾール - 2 - イル) - 1 - カルバベン - 2 - エム - 3 - カルボン酸ヒバロイルオキシメチル

NMR (CDCl₃) δ : 1. 19 (9H, s), 1. 27 (3H, d, J=7. 4Hz), 1. 35 (3H, d, J=6. 3Hz), 2. 02 (1H, br. s), 2. 42 (3H, s), 3. 32 (1H, dd, J₁=6. 5Hz, J₂=2. 8Hz), 3. 44 (1H, m), 4. 29 (1H, m), 4. 36 (1H, dd, J₁=9. 6Hz, J₂=2. 8Hz), 5. 86, 5. 97 (2H, ABq, J=5. 5Hz), 8. 04 (1H, s), 8. 28 (1H, s) MS (TSP): 494 (M+H)

[実施例10] (1S, 5R, 6S) - 6 - ((1R) - 1 - ヒドロキ シエチル) -1 - メチル - 2 - (7 - メチルチオイミダゾ [5, 1 -

b] チアゾールー2ーイル) -1-カルバペン-2-エム-3-カルボン酸1-(エトキシカルボニルオキシ) エチル (ジアステレオマー混合物)

実施例9と同様にして、(1S,5R,6S)-6-((1R)-1-ヒドロキシエチル)-1-メチル-2-(7-メチルチオイミダゾ[5,1-b]チアゾール-2-イル)-1-カルバベン-2-エム-3-カルボン酸ナトリウム26 mgと1-(エトキシカルボニルオキシ)エチルヨーダイド31 mgより表題化合物24 mgを得た。

NMR (CDCl₃) δ : 1. 29-1. 40 (9 H, m), 1. 5 9, 1. 65 (total 3 H, d each, J=5. 5 Hz), 2. 42 (3 H, s), 3. 32 (1 H, m), 3. 43 (1 H, m), 4. 18-4. 28 (4 H, m), 6. 93 (1 H, m), 8. 03 (1 H, s), 8. 37, 8. 38 (total 1 H, s each)

 $MS (TSP) : 496 (M^+ + H)$

「実施例11] (1S, 5R, 6S) -6- ((1R) -1-ヒドロキシエチル) -1-メチル-2- (7-メチルチオイミダゾ [5, 1-b] チアゾール-2-イル) -1-カルバペン-2-エム-3-カルボン酸 1- (シクロヘキシルオキシカルボニルオキシ) エチル (ジアステレオマー混合物)

実施例 9 と同様にして、(1 S, 5 R, 6 S) -6 - ((1 R) -1 - 1

NMR (CDC1₃) δ : 1. 27 (3H, m), 1. 37 (3H, m), 1. 20-2. 00 (10H, m), 1. 59, 1. 65 (to tal 3H, deach, J = 5.5Hz), 2. 44 (3H,

WO 01/53305 PCT/JP01/00439

35

- s), 3. 31 (1H, m), 3. 42 (1H, m), 4. 32 (1H,
- m), 4.66 (1H, m), 6.94 (1H, m), 8.02 (1H,
- s), 8.38 (1H,s)

 $MS (TSP) : 550 (M^+ + H)$

請求の範囲

1. 式(III)の化合物:

$$OR^1$$
 H
 H
 O
 SCH_3
 CO_2R^3
(III)

[上記式中、

R'は、水素原子または水酸基の保護基を表し、

R'は、1以上のハロゲン原子により置換されていてもよい低級アルキル基、またはハロゲン原子または低級アルキル基 (このアルキル基は1以上のハロゲン原子により置換されていてもよいアリール基を表し、

R'は、カルボキシル基の保護基、または生体内で加水分解され得る基を表す。]

の製造法であって、

式(I)の化合物:

$$X \longrightarrow N$$
 N N SCH_3 (I)

[上記式中、Xは、ハロゲン原子を表す。]

をグリニア試薬で処理した反応混合物と、式(II)の化合物:

[上記式中、R'は、1以上のハロゲン原子により置換されていてもよい低級アルキル基、またはハロゲン原子、1以上のハロゲン原子により置換されていてもよい低級アルコキシ基、1以上のハロゲン原子により置換されていてもよい低級アルコキシ基、および-NR'R'(R'およびR'は、同一または異なっていてもよく、低級アルキル基をあらわすか、あるいはR'およびR'が一緒になって $-(CH_1)$ 。-基(nは2~6の整数)を表す。)からなる群から選択される同一または異なっていてもよい<math>1以

上の基で置換されていてもよいフェニル基を表し、R'、R2、およびR3は式(III)で定義した内容と同義である。]

とを反応させる工程を含んでなる、製造法。

- 2. R^4 が、低級アルキル基、低級アルコキシ基、または基 $-NR^4R^6$ (R^4 および R^4 は、請求項1で定義した内容と同義である。) で置換されていてもよいフェニル基を表す、請求項1に記載の製造法。
 - 3. 式(IV)の化合物:

$$OR^1$$
 H
 H
 S
 OR^1
 OR

[上記式中、R'は、水素原子または水酸基の保護基を表し、Rは、水素原子または生体内で加水分解され得る基を表すか、あるいは製薬学的に許容される塩を形成するカチオンを表す。]の製造法であって、

式(III)の化合物

$$OR^1$$
 H
 SCH_3
 OR^1
 SCH_3
 OR^1
 SCH_3
 OR^2
 SCH_3
 OR^2
 SCH_3
 OR^3
 OR^3

[上記式中、

R'は、水素原子または水酸基の保護基を表し、

R'は、1以上のハロゲン原子により置換されていてもよい低級アルキル基、またはハロゲン原子または低級アルキル基 (このアルキル基は1以上のハロゲン原子により置換されていてもよい)により置換されていてもよいアリール基を表し、

R'は、カルボキシル基の保護基、または生体内で加水分解され得る基を表す。]

を環化反応に付してカルバベネム環を形成させる工程と

必要であれば、保護基を除去する工程および/または生体内で加水分解され得るエステル残基を導入する工程および/または基-CO2Rにおいて製薬学的に許容される塩を形成させる工程と

- を含んでなる製造法。

- 4. 式(III)の化合物の環化反応の前に、請求項1または2に記載の方法に従って式(III)の化合物を製造する工程を含んでなる、請求項3に記載の製造法。
 - 5. 式(I)の化合物。

$$X \longrightarrow N$$
 (I) SCH_3

[上記式中、Xは、ハロゲン原子を表す。]

6. 式(II)の化合物。

$$\begin{array}{c|c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\$$

[上記式中、

R'は、水素原子または水酸基の保護基を表し、

R'は、1以上のハロゲン原子により置換されていてもよい低級アルキル基、またはハロゲン原子または低級アルキル基(このアルキルは1以上のハロゲン原子により置換されていてもよいアリール基を表し、

R'は、カルボキシル基の保護基、または生体内で加水分解され得る基を表し、 R'は、1以上のハロゲン原子により置換されていてもよい低級アルキル基、ま たはハロゲン原子、1以上のハロゲン原子により置換されていてもよい低級アルキル基、1以上のハロゲン原子により置換されていてもよい低級アルコキシ基、および-NR'R' (R'およびR'は、同一または異なっていてもよく、1以上のハロゲン原子により置換されていてもよい低級アルキル基を表すか、あるいはR'およびR'が一緒になって $-(CH_i)$ $_{-}$ —基(nは2~6の整数)を表す。)からなる群から選択される同一または異なっていてもよい1以上の基で置換されていてもよいフェニル基を表す。〕

7. 式(IIa)の化合物。

[上記式中、

R'は、水素原子または水酸基の保護基を表し、

R'は、1以上のハロゲン原子により置換されていてもよい低級アルキル基、またはハロゲン原子または低級アルキル基(このアルキルは1以上のハロゲン原子により置換されていてもよいフェニル基を表し、

R'は、カルボキシル基の保護基、または生体内で加水分解され得る基を表し、R'は、低級アルコキシ基または基-NR'R'(R'およびR'は、同一または異なっていてもよく、低級アルキル基を表すか、あるいはR'およびR'が一緒になって $-(CH_1)$ 」-基(nは2~6の整数)を表す。)で置換されていてもよいフェニル基を表す。]

8. 式(III)の化合物。

$$OR^1$$
 H
 H
 O
 SCH_3
 CO_2R^3
(III)

[上記式中、

Rは、水素原子または水酸基の保護基を表し、

R'は、1以上のハロゲン原子により置換されていてもよい低級アルキル基、またはハロゲン原子または低級アルキル基(このアルキルは1以上のハロゲン原子により置換されていてもよいアリール基を表し、

R'は、カルボキシル基の保護基、または生体内で加水分解され得る基を表す。]

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP01/00439

	SIFICATION OF SUBJECT MATTER C1 ⁷ C07F9/568, C07D513/04, 519 A61P31/04	/00, A61K31/429,				
A coording to	o International Patent Classification (IPC) or to both nat	tional classification and IPC				
		nonal classification and if C				
Minimum de	B. FIELDS SEARCHED Minimum documentation searched (classification system followed by classification symbols) Int.Cl ⁷ C07F9/568, C07D513/04, 519/00, A61K31/429					
	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched					
Electronic data base consulted during the international search (name of data base and, where practicable, search terms used) CAPLUS (STN) REGISTRY (STN)						
C. DOCU	MENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	propriate, of the relevant passages	Relevant to claim No.			
А	WO, 98/32760, A1 (Meiji Seika K 30 July, 1998 (30.07.98) & AU, 9856785, A1 & BR, 98076 & EP, 1022279, A1		1-8			
PA	WO, 00/6581, Al (Meiji Seika Ka 10 February, 2000 (10.02.00) & AU, 9948024, A	isha, Ltd.),	1-8			
A	EP, 760370, A1 (Meiji Seika Kai 05 March, 1997 (05.03.97) & WO, 96/28455, A1 & KR, 97702 & US, 5990101, A & CA, 21899 & CN, 1148390, A	2865, A	1-8			
A	EP, 89139, A2 (Beecham Group PL 21 September, 1983 (21.09.83) & JP, 58-174383, A	ıC),	1-8			
A	EP, 10316, A1 (Merk & Co., Inc. 30 April, 1980 (30.04.80) & US, 4260627, A & DK, 79044		1-8			
Furthe	r documents are listed in the continuation of Box C.	See patent family annex.				
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance "E" earlier document but published on or after the international filing date "L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other		"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is				
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later than the priority date claimed		combined with one or more other such documents, such combination being obvious to a person skilled in the art document member of the same patent family				
Date of the actual completion of the international search 24 April, 2001 (24.04.01) Date of mailing of the international search report 01 May, 2001 (01.05.01)						
Name and mailing address of the ISA/ Japanese Patent Office		Authorized officer				
Facsimile No.		Telephone No.				

INTERNATIONAL SEARCH REPORT

→ 31

→ 6.

International application No.

PCT/JP01/00439

itegory*	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No
	& JP, 55-69586, A & US, 4465632, A	
Ì	Guthikonda, R. N., et al., "Structure-activity relationships in the 2-arylcarbapenem series: Synthesis of 1-methyl-2-aryl-cabapenems." J. Med. Chem., 30(5), 871-80 (1987)	1-8
		,

A. 発明の属する分野の分類(国際特許分類(IPC))

Int. Cl⁷ C07F9/568, C07D513/04, 519/00, A61K31/429, A61P31/04

B. 調査を行った分野

أنج الهن المهم

調査を行った最小限資料(国際特許分類(IPC))

Int. Cl' C07F9/568, C07D513/04, 519/00, A61K31/429

最小限資料以外の資料で調査を行った分野に含まれるもの

国際調査で使用した電子データベース (データベースの名称、調査に使用した用語) CAPLUS (STN) REGISTRY (STN)

C. 関連すると認められる文献

し、 関連すると認められるメ獣				
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号		
A	WO, 98/32760, A1 (明治製菓株式会社), 30. 7月. 1998 (30. 07. 98) &AU, 9856785, A1 &BR, 9807647, A &EP, 1022279, A1	1 - 8		
PA	WO,00/6581,A1 (明治製菓株式会社),10.2月. 2000 (10.02.00), &AU,9948024,A	1 - 8		

X C欄の続きにも文献が列挙されている。

パテントファミリーに関する別紙を参照。

- * 引用文献のカテゴリー
- 「A」特に関連のある文献ではなく、一般的技術水準を示す もの
- 「E」国際出願日前の出願または特許であるが、国際出願日 以後に公表されたもの
- 「L」優先権主張に疑義を提起する文献又は他の文献の発行 日若しくは他の特別な理由を確立するために引用する 文献(理由を付す)
- 「O」口頭による開示、使用、展示等に言及する文献
- 「P」国際出願日前で、かつ優先権の主張の基礎となる出願

- の日の後に公表された文献
- 「T」国際出願日又は優先日後に公表された文献であって 出願と矛盾するものではなく、発明の原理又は理論 の理解のために引用するもの
- 「X」特に関連のある文献であって、当該文献のみで発明 の新規性又は進歩性がないと考えられるもの
- 「Y」特に関連のある文献であって、当該文献と他の1以上の文献との、当業者にとって自明である組合せによって進歩性がないと考えられるもの
- 「&」同一パテントファミリー文献

国際調査報告

C (続き).	関連すると認められる文献	
引用文献の カテゴリー*	引用文献名 及び一部の箇所が関連するときは、その関連する箇所の表示	関連する 請求の範囲の番号
A	EP, 760370, A1 (明治製菓株式会社), 5. 3月. 19 97 (05. 03. 97) &WO, 96/28455, A1 &KR, 97702865, A &US, 5990101, A &CA, 2189995, C &CN, 1148390, A	1 - 8
A	EP, 89139, A2 (Beecham Group PLC,), 21. 9月. 1983 (21. 09. 83) &JP, 58-174383, A	1 — 8
A	EP, 10316, A1 (Merk & Co., Inc.), 30. 4月. 1980 (30. 04. 80) &US, 4260627, A &DK, 7904462, A &JP, 55-69586, A &US, 4465632, A	1 - 8
· A	Guthikonda, R.N., et al., "Structure-activity relationships in the 2-arylcarbapenem series: Synthesis of 1-methyl-2-aryl-cabapenems." J. Med. Chem., 30(5),871-80(1987)	1 - 8
·		
••		