Sistemas de Control (EYAG-1005): Evaluación 02

Semestre: 2017-2018 Término I Instructor: Luis Reyes, Jonathan León

COMPROMISO DE HONOR
Yo, al firmar este compromiso, reconozco que la presente evaluación está diseñada para ser resuelta de manera individual, que puedo usar un lápiz o pluma y una calculadora científica, que solo puedo comunicarme con la persona responsable de la recepción de la evaluación, y que cualquier instrumento de comunicación que hubiere traído debo apagarlo. También estoy conciente que no debo consultar libros, notas, ni materiales didácticos adicionales a los que el instructor entregue durante la evaluación o autorice a utilizar. Finalmente, me comprometo a desarrollar y presentar mis respuestas de manera clara y ordenada.
Firmo al pie del presente compromiso como constancia de haberlo leído y aceptado.
Firma: Número de matrícula:

Problema 2.1. El siguiente Diagrama de Bode muestra la respuesta de la frecuencia de un sistema de segundo orden sub-amortiguado.

Complete las siguientes actividades:

- [2 Puntos] Determine la veracidad o falsedad del siguiente enunciado: El margen de ganancia es no mayor a 15 decibeles, *i.e.*, $G_M \leq 15$ dB.
- [2 Puntos] Determine la veracidad o falsedad del siguiente enunciado: El margen de fase es no menor de 40° , *i.e.*, $\phi_M \ge 40^{\circ}$ dB.
- [2 Puntos] Determine la veracidad o falsedad del siguiente enunciado: El ancho de banda del sistema es no mayor a 4 rad/s, *i.e.*, $\omega_{BW} \leq 4$ rad/s.
- [4 Puntos] Encuentre la función de transferencia del sistema.

Problema 2.2. [10 Puntos] Considere el siguiente compensador de atraso de fase:

$$G_C(s) = K \frac{(s+z)}{(s+p)},$$

Encuentre valores para los parámetros K, z y p de tal manera que su asíntota de baja frequencia sea de +30 dB, su asíntota de alta frecuencia sea de -10 dB, y su fase sea de -45° cuando su frecuencia es de 10 rad/s.

Sugerencia: Para escribir la ecuación asociada con el último requerimiento recuerde que cuando la fase es de -45° la parte real de $G(j\omega)$ es igual al negativo de su parte imaginaria.

Problema 2.3. [10 Puntos] Construya un modelo de espacio de estados que represente al mecanismo mostrado en la figura de abajo suponiendo que las salidas son las posiciones de los bloques de masa.

Problema 2.4. [10 Puntos] Para el siguiente modelo de espacio de estados encuentre la función de transferencia equivalente.

$$\dot{\boldsymbol{x}}(t) \; = \; \left[\begin{array}{cc} -1 & +4 \\ -4 & -1 \end{array} \right] \boldsymbol{x}(t) + \left[\begin{array}{c} +2 \\ -1 \end{array} \right] \boldsymbol{u}(t)$$

$$\boldsymbol{y}(t) = \begin{bmatrix} 1 & 1 \end{bmatrix} \boldsymbol{x}(t)$$