

Desenvolvimento e Teste de Sistemas Digitais

Desenvolvimento de um medidor de álcool

Relatório de Implementação — 1ºTrabalho Avaliação

Filipe Miguel Aleixo Perestrelo – 39656 Francisco Alves Fonseca de Oliveira Silveira – 34393

Regente: Prof.ª Anikó Costa

Índice

Introduç		4
1- Esp	pecificações do Alcoolímetro	5
1.1-	Descrição dos componentes	5
1.2-	Funcionamento do alcoolímetro (enunciado)	6
2- 1	Modelação do sistema de controlo	7
2.1-	Casos de uso	7
2.2-	Descrição dos casos de uso	8
3- L	Desenvolvimento do sistema controlador	14
3.1-	Calibração do sensor	14
3.2-	Display LCD 16x02	16
3.3-	Botões de pressão	17
3.4-	Shield LCD	17
3.5-	Comunicações com Excel 2010	18
4- Imp	plementação	19
4.1-	Resultados	19
4.2-	Sistema implementado	19
Conclusi	ão	20
Anavos		21

Introdução

Este laboratório tem como objetivo o desenvolvimento de um controlador para um sensor medidor de álcool, este recebe os sinais de entrada do sensor e dos botões de pressão. O controlador deve ser capaz de cumprir as especificações elaboradas no enunciado proposto por nós.

Para modular o sistema vamos recorrer a casos de uso e fluxogramas para que consigamos obter uma visualização gráfica e que possamos preparar soluções para o sistema a implementar.

Para implementar o sistema controlador vamos recorrer à ferramenta IDE Arduíno, onde podemos programar em linguagem smallC o Arduino e todos os periféricos propostos, sendo estes o sensor de álcool, os botões e o display LCD. Com a utilização desta ferramenta permite que o código seja validado e implementado na plataforma.

De modo a visualizarmos de uma forma gráfica as operações em curso e início de operações escolhidas pelos botões de pressão, programamos um display LCD 16x2.

1- Especificações do Alcoolímetro

1.1- Descrição dos componentes

Tabela 1 - Lista dos componentes e orçamento

Material	Preço	Modelo	Link	Adquirido?
Arduino	43.17€	PTR001	http://www.ptrobotics.com/plataformaarduino-e-	Sim
MEGA		555	modelos-alternativos-equivalentes/1555-arduino-	
			due.html?search_query=arduino+due&results=72	
Sensor	6.77€	PTR001	http://www.ptrobotics.com/gases/1452-alcohol-gas-	Sim
medidor de		452	sensor-mq-3.html	
alcoolemia				
Led	0.43€	PTR001	http://www.ptrobotics.com/led-s-standard/1831-	Sim
		831	<u>diffused-led-green-</u>	
			10mm.html?search_query=led&results=525	
2 botões de	0.98€	PTR003	http://www.ptrobotics.com/tactile-switch/3267-	Sim
pressão		267	tactile-button-12mm-	
			flat.html?search_query=botao&results=13	
LCD	14.70 €	PTR001	http://www.ptrobotics.com/lcd-alfanumerico/1075-	Sim
		075	basic-16x2-character-lcd-white-on-black.html	
Resistências	1.70€	Vellema	http://www.servelec.pt/produto/kit-de-resistencias-	Sim
		n	<u>para-divisor-de-tensao-velleman-pmres</u>	
		PM/RES		
Bocal (50	10.78€	CDP	http://www.alibaba.com/product-detail/Universal-	Não
unidades			sterile-50-Mouthpieces-PACKS-	
descartáveis		bq-unv	<u>Drager_50027856414.html?spm=a2700.7724838.0.0.</u>	
)			<u>UXsbMm</u>	
Circuito	2.46€		http://www.banggood.com/pt/Car-Cigarette-Lighter-	Não
adaptador			Socket-Plug-Connector-Adapter-Universal-12V-2_5A-	
para			p-1018017.html	
baterias do				
carro				
(opcional)				
TOTAL	80,99€			

1.2- Funcionamento do alcoolímetro (enunciado)

O LCD mostrará a mensagem "Pronto a utilizar". O utilizador pressiona um botão no microcontrolador para iniciar o teste. Após o botão ser pressionado, durante 5 segundos o utilizador deverá soprar num bocal, mostrando também no LCD a mensagem "A decorrer o teste" e após esses 5 segundos um led é aceso indicando que o teste terminou com a mensagem no LCD "A calcular o resultado". O microcontrolador processa os dados obtidos e mostrará no LCD o resultado referente ao teste. Se o resultado indicar uma taxa de alcoolemia superior a 0.5 g/L acender-se-à um led indicando que o utilizador está inapto para conduzir.

Com recurso ao segundo botão, uma vez pressionado, este iniciará um teste de calibração durante 5 segundos de modo a adaptar o teste às condições ambiente devido às características do sensor.

2- Modelação do sistema de controlo

2.1- Casos de uso

Para a descrição do sistema escolhemos a utilização de casos de uso, este formalismo é essencial para registar as funcionalidades do sistema. Inicialmente construímos o diagrama de casos de uso, sendo constituído por actores e os casos de uso envolvidos em elipses. Consideramos dois actores, o utilizador e o próprio sistema. Definimos cinco casos de uso obrigatórios para cumprir os requisitos funcionais como pode visualizar-se na figura seguinte.

Figura 1 - Casos de uso do sistema

2.2- Descrição dos casos de uso

Tabela 2 - Solicita Teste

Tabela 3 - Solicita Calibração

Nome	Solicita Calibração
Identificador	SC0
Breve descrição	Utilizador faz um clique, no botão B2, de forma a solicitar ao sistema a preparação de realização da calibração do sensor MQ-3 para a adaptação do sistema às condições ambiente.
Actores envolvidos	Utilizador
Pré-condições	Pressionar o botão B2
Descrição do fluxo	Pressiona B2 Início de realização da calibração Mostra no LCD estado do sistema
Pós-condições	Indicar que a calibração começou

Tabela 4 - Realiza Teste

Nome	Realiza Teste
Identificador	RTO
Breve descrição	Após a preparação do sistema para a realização do teste de
	alcoolemia, é necessário que o utilizador sopre para o
	sensor para que o sistema recolha os dados necessários.
Actores envolvidos	Utilizador; Sistema Alcoolímetro
Pré-condições	Ter solicitado o teste
Descrição do fluxo	Início de realização do teste Início da contagem de tempo Decorreram os 5 segundos Análise dos dados recolhidos Leitura e registo dos valores medidos pelo sensor Mostra no LCD o estado do sistema
Pós-condições	Indicar que o teste terminou
rus-condições	muicai que o teste terminou

Tabela 5 - Realiza Calibração

Nome	Realiza Calibração
Identificador	RC0
Breve descrição	Após a solicitação de calibração do sensor, é necessário
	que o sistema esteja em "stand-by" para a recolha dos
	dados necessários.
Actores envolvidos	Sistema Alcoolímetro
Pré-condições	Ter solicitado a calibração
Descrição do fluxo	Início de calibração do sistema Início da contagem de tempo Média dos valores registados correspondendo ao valor base Mostra no LCD o estado do sistema Mostra no LCD o estado do sistema
Pós-condições	Indicar que a calibração terminou
i os condições	maicai que a cambração terminou

Tabela 6 - Aconselhamento

Nome	Aconselhamento
Identificador	A0
Breve descrição	Após a realização do teste de alcoolemia o sistema analisa os dados recolhidos e apresenta o resultado no LCD.
Actores envolvidos	Sistema Alcoolímetro
Pré-condições	Ter realizado o teste
Descrição do fluxo	Após RT0 Análise dos dados registados pelo Média dos 10 valores mais elevados *Apto para conduzir com C. Condução inferior a 2 anos" Acender led com frequência reduzida Acender led com frequência elevada
-,	Sistema em stand-by
Pós-condições	

.

Figura 2 - Descrição dos casos de uso interligados

3- Desenvolvimento do sistema controlador

3.1- Calibração do sensor

Para definir a relação entre o valor analógico lido pelo arduino e o valor de álcool correspondente, analisou-se o *datasheet* do sensor de álcool MQ-3. A variação da resistência do sensor face a quantidade de álcool detectada encontra-se no gráfico seguinte.

Figura 3 - Gráfico da relação de alteração da resistência do sensor em função da quantidade detectada de um químico em mg/L.

Assim definiu-se duas relações, a relação entre o valor analógico lido e a variação da resistência do sensor e a relação de variação da resistência do sensor face a quantidade de álcool medida. No gráfico seguinte pode-se observar duas linhas, nas quais se admitem valores de leitura analógico mínimos 128 (azul) e 150 (vermelho). Uma vez que a resistência interna do sensor é ligeiramente alterada com a presença de outros gases no ar, verificamos que as leituras medidas estariam entre estes valores mínimos. Na implementação, a linha de funcionamento é ajustada consoante o valor base detectado.

Figura 4 - Gráfico da relação da alteração do valor analógico lido pelo controlador em relação à variação da resistência do sensor.

Figura 5 - Gráfico da relação da alteração da quantidade de álcool em mg/L em relação à variação da resistência do sensor.

Na figura 6 mostra-se a definição dos pins do sensor MQ-3, a utilização do pin digital não foi utilizada.

Figura 6 - Esquema de ligações para implementação do sensor MQ-3.

3.2- Display LCD 16x02

Para a implementação do display LCD 16x02, foi necessária a adição de um potenciómetro para regular o contraste dos caracteres a mostrar. O esquema de fios apresentado de seguida, foi o implementado.

Figura 7 - Esquema de ligações para implementação do display LCD 16x02 com recurso a um potenciómetro.

3.3- Botões de pressão

Os botões de pressão foram o componente de mais fácil implementação, o esquema de fios seguinte corresponde à implementação destes.

Figura 8 - Esquema de ligações para implementação de cada botão de pressão.

3.4- Shield LCD

Numa fase posterior implementou-se o shield LCD, que por sua vez já tem botões na sua interface. Assim, configurámos o botão esquerdo como sendo o botão de calibração e o botão direito para registo de dados. A plataforma do shield dispõe de um potenciómetro para ajuste do contraste dos caracteres no display. Este shield permite o encaixe directo na plataforma Arduino Mega 2560 facilitando assim a implementação, como pode se observar na figura seguinte.

Figura 9 - Shield LCD ligado directamente ao Arudino Mega.

3.5- Comunicações com Excel 2010

Para registo no computador dos dados obtidos pelo arduino, utilizou-se uma aplicação disponível no *site* do Arduíno. Esta aplicação dispõe de exemplos relativamente fáceis de interpretar e que foram seguidos para o desenvolvimento do registo de dados e actualização automática dos gráficos referentes aos valores registados e referentes aos dados processados. Esta aplicação foi utilizada com o baud rate de 11520. O desenvolvimento da aplicação deve-se a Roberto Valgolio. Para o funcionamento da aplicação, no sentido de habilitar a execução de macros, é necessário seguir alguns passos descritos num ficheiro anexo ao documento.

4- Implementação

4.1- Resultados

Como se pôde verificar no capítulo 3, a curva de funcionamento do sensor alcoolímetro, por ser uma escala logarítmica, não começa com o valor zero e, portanto, o valor mínimo de medição do sensor é de 0.1mg/L, sendo que incerteza dessa curva foi estimada para mais ou menos 0.05mg/L. Essa observação foi, no entanto, referida no ecrã LCD, após as realizações dos testes.

Verificou-se então, que ao pressionar o botão B1, o sistema respondeu de forma afirmativa, isto é, realizou o teste de alcoolemia e ao pressionar o botão B2, o sistema respondeu, também, afirmativamente, mostrando no ecrã série do arduino os valores que media, ou seja, conseguiu-se verificar se o sensor estava no valor base, ou não.

4.2- Sistema implementado

Figura 10 - Sistema de controlo implementado.

Conclusão

Com este trabalho conseguimos desenvolver os nossos conhecimentos sobre formalismos de modelação e plataformas de microcontroladores para o desenvolvimento de controladores. Uma possível aplicação neste caso o alcoolímetro serviu nos de exemplo para perceber os passos necessários para desenvolver controladores digitais.

Além disso, aprofundamos os conhecimentos sobre smallC para validação e implementação das rotinas desenvolvidas. Neste caso, para implementação de um controlador para um dispositivo medidor de álcool, assim como a sua interacção com o utilizador por meio do ambiente de programação IDE Arduíno.

Conseguimos assim com sucesso implementar o controlador com as situações de calibração, leitura da quantidade de álcool detectada entre os intervalos predefinidos, ajuste da calibração segundo as condições atmosféricas que perturbam o sensor, bem como uma interface gráfica que permite visualizar os resultados calculados e o aconselhamento consoante os mesmos.

Anexos

Anexo 1 - Sistema em funcionamento