

FUNDAMENTOS DE BASES DE DATOS

oswaldo.solarte@correounivalle.edu.co

Clases

Sesiones: Viernes 3:00 - 6:00 p.m.

oswaldo.solarte@correounivalle.edu.co

Teléfono:3212100 Ext 2784

Objetivos

Objetivo General

Estudiar los fundamentos de los modelos de datos

Objetivos Específicos

Presentar y analizar los modelos de datos vigentes y las bases conceptuales y teóricas subyacentes

Objetivos

Objetivos Específicos

Propiciar una revisión de la literatura especializada con el propósito de analizar los diferentes modelos de datos

Identificar algunas de las nuevas tendencias en bases de datos

Contenido

- Introducción: Bases de Datos y Sistemas de Gestión de Bases de Datos
 - 1. Principios Generales
 - 2. Conceptos Básicos de Lógica
- 2. Modelo de Datos Relacional
 - 1. Estructura del Modelo Relacional
 - 2. Consultas Conjuntivas
 - 3. Algebra Relacional
 - 4. Optimización de Consultas
 - 5. Teoría de Dependencias
- 3. Modelo de Datos Orientado a Objetos
 - 1. Algebra de Objetos Complejo
 - 2. Lenguaje de Descripción de datos ODL
 - 3. Lenguaje de Consulta OQL
 - 4. Optimización Consulta Objeto
- 4. Modelo de Datos Relacional Extendido
 - 1. Algebra Relacional Extendida
 - 2. Lenguaje de Consulta SQL3
- 5. Tendencias en Bases de Datos
 - 1. Introducción a Data Mining y Data Warehouse
 - 2. Sistemas NoSql
 - 3. Bases de datos columnares
 - 4. Big Data

Recursos

Materiales: campusvirtual.univalle.edu.co

Texto Guía

- Abiteboul S., Hull R., Vianu V. Foundations of Databases.
 Addison-Wesley Publishing Company, 1995
- •Millán Martha. *Notas de Referencia para la Asignatura Fundamentos de Bases de Datos.* EISC 2008

Otros libros

- Hellestein J y StoneBraker (2005) Readings in Data Bases systems Four Edition, MIT Press
- Ramakrishnan R., Gehrke J., (2003) DATABASE MANAGEMENT SYSTEMS THIRD EDITION, McGraw Hill
- Date C.J (2006) Date on Data Base, Apress.
- Garcia-Molina H, Ullman J., Widom J (2002). *Database Systems The Complete Book* Prentice Hall
- Mordechai Ben-A. (2012) Mathematical Logical for Computer Science, Springer Third Edition

Programación Asignatura

Evaluación:

- Reseñas de lecturas (2 artículos) (60%)
- Examen final: 30%
- Exposiciones (10%)

Criterios evaluación artículos

- Revisión de la literatura especializada
- Originalidad
- Coherencia en la argumentación
- Claridad y legibilidad

PRELIMINARES

Nociones Básicas

¿Qué es una Base de Datos?

- Gran cantidad de datos a gestionar
- Colección integrada de datos

¿Qué es in SGBD?

- Software básico que soporta la gestión de los datos
- Sistema de software que ofrece un entorno eficiente para acceder y modificar información almacenada

Principios Básicos

- SGBD es el mediador usuario-dispositivo
- Usuario concentrado en la representación lógica de datos. (Separación lógico-física. Principio de Independencia)

Modelo de datos (DDL, DML)

Independencia de Datos

Capacidad de cambiar esquema de bd sin tener que hacerlo en el siguiente nivel más alto

Nivel Externo

Arquitectura de tres niveles de sistema de base de datos

Escuela de Ingeniería de sistemas y computación et al. Foundations of Databases Universidad del Valle

Funcionalidades

- Gestión de almacenamiento secundario
- Persistencia
- Control de concurrencia
- Protección de datos
- Interfaces humano-máquina
- Distribución
- Compilación y optimización

Componentes de un SMBD

Figure 1: Main Components of a DBMS

Modelo de Datos

Herramienta conceptual para describir:

- Datos
- Relaciones entre datos
- Restricciones de datos

Modelos

- ER
- RED (Conjunto de enlaces)
- Jerárquico (Conjunto de árboles)
- Relacional (Conjunto de tablas)

CONCEPTOS PRELIMINARES

Teoría de conjuntos

Sean T y S dos conjuntos, y algunas operaciones entre estos:

El producto cartesiano $S \times T$ es el conjunto de todos los pares (s,t) tal que $s \in S$ y $t \in T$

Teoría de conjuntos

Relaciones entre conjuntos

Una relación n-aria R es un subconjunto de $S_1 \times ... \times S_n$. Una relación unaria es simplemente un subconjunto.

- El conjunto de números primos
- La relaciones <, >

$$\mathcal{Q} = \{(n_1, n_2) \mid n_2 = n_1^2\}$$
 Ej. (4, 16), (7, 49)

Teoría de conjuntos

Relación Binaria

Sobre un conjunto S es un subconjunto R de SxS R(x,y) $\delta x R y denota <math>(x,y) \in R$

 \mathbf{Z} , \subseteq relación binaria sobre P(\mathbf{Z}), conjunto de partes de \mathbf{Z}

Relación n-aria sobre S; subconjunto de Sn

Relación de Equivalencia

Relación binaria **R** sobre **S** es:

- •Reflexiva: Si $(x,x) \in \mathbf{R}$ para cada $x \in \mathbf{S}$
- •Simétrica: Si $(x,y) \in \mathbf{R}$ implica que $(y,x) \in \mathbf{R}$ para cada

$$x, y \in S$$

•Transitiva: Si $(x,y) \in \mathbf{R}$ y $(y,z) \in \mathbf{R}$ implica que $(x,z) \in \mathbf{R}$

para cada x, y, $z \in S$

R es una <u>Relación de equivalencia</u> si cumple las propiedades anteriores.

Partición

- Partición de un conjunto S
- Familia de conjunto $\{Si \mid i \in I \}$ tal que:
 - $\bigcup_{i \in I} S_i = S$
 - Si \cap Sj = \emptyset para i \neq j
 - Si $\neq \emptyset$ para $i \in I$

Si R es una relación de equivalencia sobre S entonces la familia de clases de equivalencia sobre R es una partición de S

Escuela de Ingeniería de sistemas y computación Universidad del Valle

Preliminares

Relación binaria R sobre S es:

Irreflexiva: Si $(x,x) \notin \mathbf{R}$ para cada $x \in \mathbf{S}$

Antisimétrica: Si $(y,x) \notin \mathbf{R}$ siempre que $x \neq y$, $(x,y) \in \mathbf{R}$

Lógica Proposicional

- •Conjunto de variables proposicionales: p,q,r,...
- Constantes proposicionales: true, false
- Estudio de las combinaciones entre proposiciones mediante operadores booleanos.

Lógica Proposicional

Fórmula proposicional bien formada construidas con variables y constantes usando conectivos y unarios (¬) y binarios.

Operadores con orden de precedencia

Asignaciones de verdad

V: Conjunto de variables proposicionales

 $\xi: V \rightarrow \{true, false\}$

El valor de verdad $\varphi[\xi]$ de una fórmula proposicional φ bajo la asignación ξ para las variables apareciendo en φ se define inductivamente sobre la estructura de φ

Ejemplo

- •true $[\xi] = true$
- •Si φ = p para alguna variable, entonces $\varphi[\xi] = \xi(p)$;
- •Si $\varphi = (\neg \psi)$ entonces $\psi [\xi] = true$ sii $\varphi [\xi] = false;$
- $(\psi 1 \ v \ \psi \ 2)[\xi] = true \text{ si al menos}$ $\psi 1 \ [\xi] = true \text{ o } \psi \ 2[\xi] = true;$

Tablas de Verdad

X	y	٨	V	\oplus	→	\leftrightarrow
Т	Т	Т	Т	F	Т	Т
Т	F	F	Т	Т	F	F
F	Т	F	Т	Т	Т	F
F	F	F	F	F	Т	Т

Fórmulas bien formadas

$$fml ::= p$$
 $fml ::= \neg fml$
 $fml ::= fml \ op \ fml$
 $op ::= \lor | \land | \rightarrow | \leftrightarrow | \oplus | \uparrow | \downarrow$

Satisfactibilidad

La fórmula φ es satisfactible si existe al menos una asignación de verdad que la hace verdadera.

Es insatisfactible en otro caso.

La fórmula φ es <mark>válida</mark> si cada asignación de verdad a las variables de φ la hacen verdadera

Equivalencia lógica

Proposiciones compuestas que tienen los mismos valores de verdad en todos los casos posibles se denominan lógicamente equivalentes

$\overline{\mathscr{I}(p)}$	$\mathscr{I}(q)$	$v_{\mathscr{J}}(p\vee q)$	$v_{\mathscr{J}}(q\vee p)$
T	T	T	T
T	F	T	T
F	T	T	T
F	F	F	F

Equivalencia lógica

$\overline{\mathscr{I}(p)}$	$\mathscr{I}(q)$	$v_{\mathscr{I}}(p\vee q)$	$v_{\mathscr{J}}(q\vee p)$
\overline{T}	T	T	T
T	F	T	T
$\boldsymbol{\mathit{F}}$	T	T	T
F	F	F	F

 $A_1 \equiv A_2$ si y solo si $A_1 \leftrightarrow A_2$ es verdadero en cada interpretación

Ejercicios:
$$p \rightarrow q \equiv \neg q \rightarrow \neg p$$

$$p \rightarrow q \equiv \neg p \lor q$$

$$\neg (p \lor q) \equiv \neg p \land \neg q$$

Verificar si estas fórmulas son lógicamente equivalentes

Consecuencia lógica

Una fórmula φ implica lógicamente a la fórmula ψ (ψ es una consecuencia lógica de φ) $\varphi \models \psi$ si para cada asignación de valores de verdad ξ , si φ [ξ] = true, entonces ψ [ξ] = true.

φ y ψ son lógicamente equivalentes (φ ≡ ψ) si φ ⊨ ψ y ψ ⊨ φ

Consecuencia lógica

Sean A_1 , A_2 , A_3 , ... A_n y B Fórmulas.

B es una consecuencia lógica de A_1 , A_2 , A_3 , ... A_n Si y solo si, todo modelo de $A_1 \wedge A_2$, $\wedge A_3 \wedge_{...} A_n$ es modelo de B.

$$A_1 \wedge A_2 \wedge A_3 \wedge A_n \models B$$
, si y solo si la fórmula

$$A_1 \wedge A_2 \wedge A_3 \wedge A_n \rightarrow B \text{ es Válida}$$

Consecuencia lógica

Sea:

$$egin{array}{ll} F_1: & ig(p o (qee r)ig)\wedge
eg r \ F_2: & p o q \end{array}$$

$$F_1 \models F_2$$
?

Consecuencia lógica

Sea:

$$F_1: \quad ig(p
ightarrow (q ee r)ig) \wedge
eg r$$

$$F_2: \quad p o q$$

$$F_1 \models F_2$$
?

p	\boldsymbol{q}	r	qee r	p o (q ee r)	$\neg r$	$p o (q ee r) ig) \wedge eg r$	p ightarrow q
T	T	T	T	T	\boldsymbol{F}	F	T
\boldsymbol{T}	\boldsymbol{T}	\boldsymbol{F}	T	T	\boldsymbol{T}	T	T
\boldsymbol{T}	$\boldsymbol{\mathit{F}}$	T	T	T	\boldsymbol{F}	\boldsymbol{F}	$\boldsymbol{\mathit{F}}$
\boldsymbol{T}	$\boldsymbol{\mathit{F}}$	$\boldsymbol{\mathit{F}}$	\boldsymbol{F}	F	\boldsymbol{T}	F	\boldsymbol{F}
${m F}$	T	T	T	T	${m F}$	F	T
${m F}$	\boldsymbol{T}	$\boldsymbol{\mathit{F}}$	T	T	\boldsymbol{T}	T	T
${\it F}$	$\boldsymbol{\mathit{F}}$	T	T	T	$\boldsymbol{\mathit{F}}$	F	T
${\pmb F}$	\boldsymbol{F}	\boldsymbol{F}	\boldsymbol{F}	T	\boldsymbol{T}	T	T

Lógica Básica

Una literal es una fórmula de la forma p o ¬p (o *true* o *false*) para alguna variable proporcional p.

Una fórmula proposicional está en (FNC) Forma Normal <u>Conjuntiva</u> si tiene la forma

 $\psi 1 \wedge \psi 2 \wedge ... \wedge \psi n$

donde cada fórmula ψi es una disjunción de literales

(First order logic)

Generalización lógica proposicional

- Variables -símbolos de predicado rangorelaciones n-arias sobre un subconjunto subyacente
- Variables en LPO varían sobre un conjunto (universo del discurso) y cuantificadores (∀,∃)
- Símbolos de función se incorporan

Generalmente, los *predicados* se utilizan para describir ciertas propiedades o relaciones entre las personas u objetos.

- Pedro y Juan son hermanos.
- Todos los perros <u>ladran</u>

Las entidades conectadas de esta manera, "Pedro y Juan", se llaman términos.

- Marta es la madre de Luis
- 0 x + y > 100

Qué valor de verdad se puede dar a estas sentencias?

- Marta es la madre de Luis
- x + y > 100
- Qué valor de verdad se puede dar a estas sentencias?

Depende del dominio o Universo de discurso....

El **dominio** es el conjunto de todas personas, ideas, símbolos, estructuras de datos, etc., que afectan el argumento lógico que se está considerando. A los elementos del dominio se les puede llamar individuos.

Ejemplos:

James es un futbolista futbolista(James)

Marta es la madre de Luis esMadre (Marta, Luis) M(x, y)

3 > 2 mayorQue(3,2)

Ejercicios:

Todas las personas tienen una madre

Algunas personas son vegetarianas

Nadie es perfecto

Ejercicios:

Todas las personas tienen una madre

 $\forall x \ TieneMadre(x)$

Algunas personas son vegetarianas

 $\exists y \ esVegetariano(y)$

Nadie es perfecto

$$\neg \exists x P(x)$$

$$\forall x \neg P(x)$$

Lenguaje de Primer Orden L incluye:

- Un conjunto de símbolos de constantes
- Para cada n ≥ 0, un conjunto de símbolos de predicados n-arios
- Para cada n ≥ 1 un conjunto posible de símbolos de función naria
- Símbolo de igualdad ≈ (predicado binario)
- Constantes true, false

Términos de L

Construídos a partir de símbolos constantes, variables y funciones.

Átomo: true,false

Expresion de la forma R(t1, ...,tn)

R: Símbolo de predicado n-ario t1: términos

Gramática para las formulas LPO

```
argument
            ::= x
         ::= a
argument
argument_list ::= argument
argument_list ::= argument, argument_list
atomic\_formula ::= p(argument\_list)
formula
               ::= atomic_formula
formula
               := \neg formula
formula
         ::= formula \times formula
formula
         := \forall x formula
formula
               ::= \exists x formula
```


Fórmulas bien formadas sobre L:

- Átomos y conectivos
- Si φ es una fórmula y x una variable
- $\phi \times E^{\bullet}$
- $\forall x \varphi son fórmulas$
- • $\forall x (0 \le x), \neg(x \approx S(x))$
- •¬ \exists X(\forall y($y \le X$))

Un término o fórmula es básico (ground) si no contiene variables

Alcance cuantificador (Variables libre y acotadas)

- Cada ocurrencia de una variable es un átomo libre
- Si φ es (ψ1 \vee ψ2) entonces una ocurrencia de la variable x en φ es libre si ésta es libre como ocurrencia de ψ1 o ψ2 (Se extiende a otros conectivos)

Alcance cuantificador (Variables libre y acotadas)

Las variables que aparecen en un cuantificador (∃,∀), se consideran <mark>ligadas</mark>.

Cualquier variable que no está ligada es libre.

Ejemplo: $\forall x (P(x) \rightarrow Q(x))$. La variable X está ligada

Ejercicio: Identificar variables libres y ligadas en :

$$\forall z (P(z) \land Q(x)) \lor \exists y Q(y).$$

Interpretación en LPO

Forma de dar significado

I=(U,C,P,F)

U: Conjunto no vacío de elementos abstractos, del universo del discurso

C, P y F dan significado a los conjuntos de símbolos de constantes, símbolos de predicado y símbolos de función:

C: Función de símbolos de constantes en U

P: Transforma cada símbolo de predicado n-ario en P en una relación n-aria sobre U (Subconjunto de U)

Interpretación

Sea I una interpretación para el lenguaje L. Si C es un símbolo de constante en L.

CI denota el elemento en universo asociado con C por medio de I.

Ejemplo: Una interpretación **IN** de **LN** (enteros no negativos) donde:

Universo N

El símbolo de constante **O** es 0, El símbolo de predicado binario ≤

Los símbolos de funciones binaria +, \times El símbolo de función unaria S (sucesor) [S (S (O) + O)] $I_N \approx 2$

Modelo

Una interpretación ${f I}$ es un modelo de un conjunto ϕ de sentencias si ${f I}$ satisface cada fórmula en ϕ .