ELEC-313 Lab 3: Diode Circuits

September 29, 2013

Date Performed: September 25, 2013 Partners: Charles Pittman

Stephen Wilson

Contents

1	Objective	3			
2	Equipment	3			
3	Schematics				
4	Procedure 4.1 Rectifier	3 3			
5	6 Results				
6	3 Conclusion				
7	Equations				
\mathbf{L}	ist of Figures				
	Circuits used in this lab	3			
L	ist of Tables				
	1 AC input vs. DC output of rectifier circuit, where $R_L = 10 \mathrm{k}\Omega$. 2 Effect of R_L on DC output in rectifier circuit	3 4 4 4			
	5 Comparison of values for voltage regulator circuit	5			

1 Objective

2 Equipment

Diode: 1N4007 Power supply: HP E3631A Function generator: HP 33120A Resistors: $47\,\Omega$ Multimeter: Fluke 8010A Capacitor: $1\,\mu\text{F}$ Oscilloscope: Agilent 54622D

Resistive decade box: HeathKit IN-3117

3 Schematics

Figure 1: Circuits used in this lab.

4 Procedure

4.1 Rectifier

4.2 Voltage Regulator

5 Results

V_S	V_{max}	V_{min}	V_r	V_{DC}	Ripple
(V)	(V)	(V)	(V)	(V)	
1	0.488	0.369	0.119	0.429	24.4%
2	1.41	1.10	0.310	1.26	22.0%
3	2.39	1.88	0.510	2.14	21.3%
4	3.31	2.38	0.930	2.85	28.1%
5	4.25	3.19	1.06	3.72	24.9%

Table 1: AC input vs. DC output of rectifier circuit, where $R_L=10\,\mathrm{k}\Omega$.

R_L	V_{max}	V_{min}	V_r	V_{DC}	Ripple
(Ω)	(V)	(V)	(V)	(V)	
1k	4.13	0.440	3.69	2.29	89.3%
10k	4.25	3.19	1.06	3.72	24.9%
100k	4.321	4.193	0.128	4.257	2.962%

Table 2: Effect of ${\cal R}_L$ on DC output in rectifier circuit.

Figure 2: AC input vs. DC output of rectifier circuit, where $R_L=10\,\mathrm{k}\Omega$

R_L	V_{OC}	V_S Drop
(Ω)	(V)	(V)
100	6.12	7.5
330	7.88	5.8
1k	8.90	5.3

Table 3: Calculated values for voltage regulator circuit

R_L	V_L	I_L	V_{OC}	V_S Drop	V_L Regulation
(Ω)	(V)	(mA	(V)	(V)	
100	5.163	50.9	6.10	7.5	4.20%
330	5.318	15.62	7.87	5.9	1.17%
1k	5.11	5.27	8.60	5.3	5.28%
∞	5.38				_

Table 4: Measured values for voltage regulator circuit

R_L	V_{OC}	V_S Drop
(Ω)	(% diff)	(% diff)
100	0.359%	0.0%
330	0.102%	1.7%
1k	3.327%	0.0%

Table 5: Comparison of values for voltage regulator circuit

6 Conclusion

7 Equations

$$\%_{diff} = \frac{|nominal - measured|}{nominal} 100\%$$
 (1)

$$I_D = I_S \left(e^{\frac{V_D}{V_T}} - 1 \right) \tag{2}$$

$$m = \frac{ln(I_2) - ln(I_1)}{V_2 - V_1} = \frac{1}{V_T}$$
(3)