Lecture 18 Matrix Mappings and Transforms

MP574: Applications

Sean B. Fain, PhD (sfain@wisc.edu)

Diego Hernando, PhD (<u>dhernando@wisc.edu</u>)

ITK/VTK Applications: Andrew Hahn, PhD (adhahn@wisc.edu)

Learning Objectives

- Introduce the 2nd module of the course, lecture schedule, in-class activities and course materials.
- Provide a rationale for bridging the optimization content in Module I with Module 2.

Outline

- Transformations (Mappings)
 - Rigid
 - Affine
 - Non-rigid
 - Deformable
- Examples:
 - Control Point Registration
 - Fiducial or "Feature-Based" Registration
- Observations:
 - Interpolation error
 - Local vs. global feature selection

Example: Linear Mapping

In general, $F(u, v) \rightarrow (f(u, v), g(u, v))$ and for f(u, v) = au + bv; g(u, v) = cu + dv, then:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} au + bv \\ cu + dv \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$
; system of linear equations with a solution if $ad - bc \neq 0$.

$$T\overrightarrow{u} = \overrightarrow{x}$$

Linear Mapping and the Jacobian

In general, $F(u, v) \rightarrow (f(u, v), g(u, v))$ and the Jacobian, J of the 2D Mapping is:

$$J = abs \begin{vmatrix} f_u & f_v \\ g_u & g_v \end{vmatrix}, \text{ where } f_u = \frac{\partial f}{\partial u} \text{ etc...}$$

Example: For a specific matrix formulation of a linear mapping, the magnification of the mapping will be the same for all locations throughout the uv-plane:

$$\begin{bmatrix} 2 & 3 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} 2u + 3v \\ u + 2v \end{bmatrix}; J = |4uv - 3uv| = uv.$$

Homogeneous Coordinate Vector: Accommodating Translation

Mapping all points by adding a constant value to their coordinates.

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix}$$

x'(y') is not a linear combination of x and y

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \Delta x \\ 0 & 1 & \Delta y \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

2D Transforms

Rotation:

Note rotation about (0,0) and z-axis is presumed. This form of the rotation matrix will perform a clockwise rotation for positive theta.

$$R = \begin{bmatrix} \cos \theta & \sin \theta & 0 \\ -\sin \theta & \cos \theta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Scale and Shear

$$S = \begin{bmatrix} \alpha & 0 & 0 \\ 0 & \beta & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$H_{x} = \begin{bmatrix} 1 & \tan \phi_{x} & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad H_{y} = \begin{bmatrix} 1 & 0 & 0 \\ \tan \phi_{y} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Composite Transformations

Projective Transformation

The projective transformation does not preserve parallelism. Squares will be transformed into a quadrilateral.

$$\begin{bmatrix} x' \\ y' \\ 1 \end{bmatrix} = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

$$x' = \frac{ax + by + c}{gx + hy + i} \qquad y' = \frac{dx + ey + f}{gx + hy + i}$$

- Homogenous coordinate system places a plane at w = 1.
- Can accommodate "back-projections" from infinity.
- Our operations in 2D are on the plane at w=1.

Projective Transforms

- Projective mappings are a type of transitional non-linear transform
- Most commonly for computer graphics applications
- Portray 3D perspective on a 2D display

Deformable Example: Polynomial Transformation

Mapping based on given mapping functions

$$x' = \sum_{i=0}^{I} \sum_{j=0}^{J} a_{ij} x^i y^j$$

$$y' = \sum_{i=0}^{I} \sum_{j=0}^{J} b_{ij} x^i y^j$$
 Affine Second order polynomial Third order polynomial

• The higher the transformation order, the more complex the distortion.

3D Template Matrix in Homogenous Coordinates

3D Extension: Rotation

3D Rotation allows rotation about x,y, or z axes.

$$R_{y} = \begin{vmatrix} \cos \theta_{y} & 0 & \sin \theta_{y} & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \theta_{y} & 0 & \cos \theta_{y} & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

$$R_{z} = \begin{bmatrix} \cos \theta_{z} & \sin \theta_{z} & 0 & 0 \\ -\sin \theta_{z} & \cos \theta_{z} & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- Depending on dimensionality, the order of affine operations are associative but not, in general, commutative.

Image Registration

Image registration is the process of geometric alignment of one image with another

Estimating the optimal spatial transformation which makes an image similar to another.

Feature-based Registration


```
points1 = detectSURFFeatures(I1);
[f1, vpts1] = extractFeatures(I1, points1);
indexPairs = matchFeatures(f1, f2);
```

Feature-based Registration

Base image

Recovered image

tform = estimateGeometricTransform(matched1, matched2, 'similarity');

Base image

Recovered image

Control Point Registration

Rotated by 30°

Control Point Placement

[movingPoints, fixedPoints] = cpselect(moving, fixed)

Registration Result

scale = 0.986angle = 28.5°

tform = fitgeotrans(movingPoints,fixedPoints,transformationType)

Longitudinal Deformable Registration:

Affine Transform Degrees of Freedom

Degrees of freedom 2D (3D)

$$2(3) + 1(3) + 2(3) + 1(1) + 1(1) (+ H_z(\phi))$$

= 7 (12).

$$I(x', y') = T(\Delta x, \Delta y) \cdot R(\theta) \cdot S(\alpha, \beta) \cdot H_x(\phi) \cdot H_y(\phi) \cdot I(x, y)$$
Generalize,

$$T_k = T(\Delta x, \Delta y) \cdot T_R(\theta) \cdot T_S(\alpha, \beta) \cdot T_{sx}(\phi) \cdot T_{sy}(\phi) = \prod_{i=1}^{Q} T_i$$

Matrix multiplication is not commutative

Summary

- The affine transform is a powerful tool for linear mapping of on coordinate system to another
- Provides a strong framework for basic image registration tasks under specific geometric constraints.
- Limitations in medical image registration are apparent in circumstances of progressive disease and physiological motion.
- To address these challenges, deformable methods are needed.
 - The degree of freedom must be traded off against computational complexity and stability of the solution.
 - This tradeoff, as well as different deformable registration approaches will be discussed more in Lecture 19.