1.

•
$$m(n)$$

 $m(n-1)+3$
 $(m(n-2)+3)+3$
 $m(n-(n-1))+3(n-1)$
 $m(1)+3(n-1)$
 $3n-3+4$
 $3n+1$

•
$$m(n)$$

 $(m(n-1)\cdot 2) + 3$
 $(((m(n-2)\cdot 2) + 3)\cdot 2) + 3$
 $((((m(n-3)\cdot 2) + 3)\cdot 2) + 3)\cdot 2) + 3)$ or $m(n-2)2^3 + 3(2^3) - 3$
 $m(n-(n-1))\cdot 2^{(n-1)} + 3(2^{(n-1)}) - 3$
 $m(1)\cdot 2^{(n-1)} + 3(2^{(n-1)}) - 3$
 $q\cdot 2^{(n-1)} + 3(2^{(n-1)}) - 3$

m(n) (m(n-1)·4) (m(n-2)·4)·4 ((m(n-3)·4)·4)·4 m(n-3)·4³ m(n-(n-1))·4⁽ⁿ⁻¹⁾ m(1)·4⁽ⁿ⁻¹⁾ 2·4⁽ⁿ⁻¹⁾

• m(n) = 2 m(n/2) + n a = 2, b = 2, f(n) = n, d = 1m(n) is $O(n \log n)$ since $a = b^d$ and d = 1

• $m(n) = 4 cm (n/4) + n^2$ a = 4, b = 4, f(n) = n, d = 2M(n) is O(n2) since $a \angle b'$ and d = 2

3. · T(n) = 2T(n-1)+1

· Exponential

4.

Count baren fauther my poor

· def count le aves (root):

if root is null: return o

Clif left and right Child of root are null: return 1

C15e:

return (ount-leaves (root, left) + (ount-leaves (root, right)

T(n-1) +5, linear

I don't feel like this question was very fair. I may submit a Comment W a different answer later since I don't think this one may correct us after I get more information about the question from you on