GC - naming - Serial position analysis (v5)

```
# do this in calling R script
# library(qqplot2)
# library(fmsb) # for TestModels
# library(lme4)
# library(kableExtra)
# library(MASS) # for dropterm
# library(tidyverse)
# library(dominanceanalysis)
# library(cowplot) # for multiple plots in one figure
# library(formatters) # to wrap strings for plot titles
# library(pals) # for continous color palettes
# load needed functions
# source(pasteO(RootDir, "/src/function_library/sp_functions.R"))
# do this in the calling R script
# for testing - set by calling script normally
# ppt_parms <- read.csv(config$patient_param_file)</pre>
# CurPat <- ppt_parms$patient</pre>
# CurTask <- ppt_parms$task</pre>
# MinLength <- ppt_parms$min_length
# MaxLength <- ppt_parms$max_length</pre>
# RemoveFinalPosition <- ppt_parms $ remove_final_position
# create patient directory if it doesn't already exist
if(!dir.exists(pasteO(RootDir,"/output/",CurPat))){
  dir.create(paste0(RootDir,"/output/",CurPat),showWarnings = TRUE)
TablesDir <- paste0(RootDir,"/output/",CurPat,"/tables/")</pre>
if(!dir.exists(TablesDir)){
  dir.create(TablesDir,showWarnings = TRUE)
FigDir <- pasteO(RootDir,"/output/",CurPat,"/fig/")</pre>
if(!dir.exists(FigDir)){
  dir.create(FigDir,showWarnings = TRUE)
ReportsDir <- pasteO(RootDir, "/output/", CurPat, "/reports/")</pre>
if(!dir.exists(ReportsDir)){
  dir.create(ReportsDir,showWarnings = TRUE)
}
results_report_DF <- data.frame(Description=character(), ParameterValue=double())
ModelDatFilename<-paste0(RootDir,"/data/",CurPat,"/",CurPat,"_",CurTask,"_posdat.csv")
if(!file.exists(ModelDatFilename)){
  print("**ERROR** Input data file not found")
  print(sprintf("\tfile: ",ModelDatFilename))
 print(sprintf("\troot dir: ",RootDir))
```

```
PosDat<-read.csv(ModelDatFilename)
# may already be done in datafile
# if(RemoveFinalPosition){
  PosDat <- PosDat[PosDat$pos < PosDat$stimlen,] # remove final position
# }
PosDat <- PosDat[PosDat$stimlen >= MinLength,] # include only lengths with sufficient N
PosDat <- PosDat[PosDat$stimlen <= MaxLength,]</pre>
# include only correct and nonword errors (not no response, word or w+nw errors)
PosDat <- PosDat[(PosDat\err_type == "correct") | (PosDat\err_type == "nonword"), ]
PosDat <- PosDat[(PosDat$pos) != (PosDat$stimlen), ]</pre>
# make sure final positions have been removed
PosDat$stim_number <- NumberStimuli(PosDat)</pre>
PosDat$raw_log_freq <- PosDat$log_freq</pre>
PosDat$log_freq <- PosDat$log_freq - mean(PosDat$log_freq) # centre frequency
PosDat$CumErr <- CalcCumErrFromPreserved(PosDat)</pre>
# plot distribution of complex onsets and codas
# across serial position in the stimuli -- do complexities concentrate
# on one part of the serial position curve?
# syll_component = 1 is coda
# syll_component = S is satellite
# get counts of syllable components in different serial positions
syll_comp_dist_N <- PosDat %>% mutate(pos_factor = as.factor(pos), syll_component_factor = as.factor(sy
syll_comp_dist_perc <- syll_comp_dist_N %>% ungroup() %>%
 mutate(across(0:S, ~ . / total))
kable(syll_comp_dist_N)
```

pos_factor	О	Р	V	1	S	total
1	155	4	18	NA	NA	177
2	12	NA	133	9	23	177
3	70	NA	35	71	1	177
4	92	NA	42	13	10	157
5	44	NA	47	10	10	111
6	37	1	20	17	4	79
7	34	NA	9	3	1	47
8	10	NA	8	2	NA	20
9	10	NA	NA	NA	NA	10

kable(syll comp dist perc)

pos_factor	O	P	V	1	S	total
1	0.8757062	0.0225989	0.1016949	NA	NA	177
2	0.0677966	NA	0.7514124	0.0508475	0.1299435	177
3	0.3954802	NA	0.1977401	0.4011299	0.0056497	177
4	0.5859873	NA	0.2675159	0.0828025	0.0636943	157
5	0.3963964	NA	0.4234234	0.0900901	0.0900901	111
6	0.4683544	0.0126582	0.2531646	0.2151899	0.0506329	79

pos_factor	О	P	V	1	S	total
7	0.7234043	NA	0.1914894	0.0638298	0.0212766	47
8	0.5000000	NA	0.4000000	0.1000000	NA	20
9	1.0000000	NA	NA	NA	NA	10

```
# get percentages only from summary table
syll_comp_perc <- syll_comp_dist_perc[,2:(ncol(syll_comp_dist_perc)-1)]</pre>
syll_comp_perc$pos <- as.integer(as.character(syll_comp_dist_perc$pos_factor))</pre>
syll_comp_perc <- syll_comp_perc %>% rename("Coda" ="1","Satellite"="S")
# pivot to long format for plotting
syll_comp_plot_data <- syll_comp_perc %>% pivot_longer(cols=seq(1:(ncol(syll_comp_perc)-1)),
            names_to="syll_component", values_to="percent") %>% filter(syll_component %in% c("Coda", "Sa
# plot satellite and coda occurances across position
syll_comp_plot <- ggplot(syll_comp_plot_data,</pre>
                         aes(x=pos,y=percent,group=syll_component,
                             color=syll_component,
                             linetype = syll_component,
                             shape = syll_component)) +
  geom_line() + geom_point() + scale_color_manual(name="Syllable component", values = palette_values) +
syll_comp_plot <- syll_comp_plot + scale_y_continuous(name="Percent of segment types") + scale_linetype
  scale_shape_discrete(name="Syllable component")
ggsave(paste0(FigDir,CurPat,"_",CurTask,"_pos_of_syll_complexities_in_stimuli.png"),plot=syll_comp_plot
## Warning: Removed 5 rows containing missing values or values outside the scale range
## (`geom_line()`).
## Warning: Removed 5 rows containing missing values or values outside the scale range
## (`geom_point()`).
syll_comp_plot
## Warning: Removed 5 rows containing missing values or values outside the scale range ('geom_line()').
```

Removed 5 rows containing missing values or values outside the scale range (`geom_point()`).

```
0.4 -
Percent of segment types
                                                                              Syllable component
                                                                                  Coda
                                                                                  Satellite
      0.1 -
      0.0 -
                   2
                                          5
                                                               8
                                                                       9
                                   Word position
    # len/pos table
   pos_len_summary <- PosDat %>% group_by(stimlen,pos) %>% summarise(preserved = mean(preserved))
   ## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
   min_preserved_raw <- min(as.numeric(unlist(pos_len_summary$preserved)))</pre>
   max_preserved_raw <- max(as.numeric(unlist(pos_len_summary$preserved)))</pre>
   preserved_range <- (max_preserved_raw - min_preserved_raw)</pre>
   min_preserved <- min_preserved_raw - (0.1 * preserved_range)</pre>
   max_preserved <- max_preserved_raw + (0.1 * preserved_range)</pre>
   pos_len_table <- pos_len_summary %>% pivot_wider(names_from = pos, values_from = preserved)
   write.csv(pos_len_table,paste0(TablesDir,CurPat,"_",CurTask,"_preserved_percentages_by_len_position.csv
   pos_len_table
   ## # A tibble: 7 x 10
   ## # Groups:
                    stimlen [7]
                                                                              `9`
   ##
                    `1`
                          `2`
                                 `3`
                                                `5`
                                                        `6`
                                                                `7`
                                                                       .8,
   ##
           <int> <dbl> <dbl> <dbl>
                                      <dbl>
                                              <dbl>
                                                     <dbl>
                                                             <dbl>
                                                                     <dbl> <dbl>
                        0.95
                             0.95 NA
                                             NA
                                                    NA
                                                            NA
                                                                    NA
                                                                            NA
               5 0.783 0.826 0.913
                                      0.891 NA
                                                                    NA
                                                                            NA
   ## 2
                                                    NA
                                                            NA
               6 0.812 0.953 0.938
                                      0.938
                                              0.938 NA
                                                                            NA
   ## 3
   ## 4
               7 0.875 0.969 0.906
                                      0.938
                                              1
                                                     0.969 NA
                                                                            NA
               8 0.741 0.870 0.802
                                     0.827
                                                     0.790
                                                                            NA
                                              0.833
                                                             0.840 NA
   ## 6
               9 0.9
                        0.9
                               0.6
                                      0.8
                                              0.8
                                                     0.6
                                                             0.6
                                                                     0.7
                                                                            NA
```

0.583

pos_len_N <- PosDat %>% group_by(stimlen,pos) %>% summarise(preserved = mean(preserved), N=n()) %>% dply

0.7

0.733

0.633

0.6

7

len/pos table

10 0.75

0.7

0.7

```
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
pos_len_N_table <- pos_len_N %>% pivot_wider(names_from = pos, values_from = N)
write.csv(pos_len_N_table,paste0(TablesDir,CurPat,"_",CurTask,"_N_by_len_position.csv"))
pos_len_N_table
## # A tibble: 7 x 10
## # Groups:
              stimlen [7]
              `1`
                    `2`
                          `3`
                                 `4`
                                      `5`
                                            `6`
                                                  `7`
                                                         .8.
                                                               -9-
    stimlen
##
       ## 1
          4
               20
                     20
                            20
                                 NA
                                       NA
                                             NA
                                                   NA
                                                         NA
                                                               NA
## 2
          5
               46
                     46
                           46
                                 46
                                       NA
                                             NΔ
                                                   NΑ
                                                         NΑ
                                                               NΑ
## 3
          6
               32
                     32
                           32
                                 32
                                       32
                                             NA
                                                   NA
                                                         NA
                                                               NA
## 4
          7
               32
                                                               NA
                     32
                           32
                                 32
                                       32
                                             32
                                                   NA
                                                         NA
               27
                     27
                                 27
                                       27
                                             27
## 5
          8
                           27
                                                   27
                                                         NA
                                                               NA
## 6
          9
               10
                     10
                           10
                                 10
                                        10
                                             10
                                                   10
                                                          10
                                                               NA
## 7
         10
               10
                     10
                           10
                                 10
                                             10
                                                   10
                                                          10
                                                               10
obs linetypes <- c("solid", "solid", "solid", "solid",
                      "solid", "solid", "solid", "solid")
pred_linetypes <- "dashed"</pre>
pos_len_summary$stimlen<-factor(pos_len_summary$stimlen)</pre>
pos_len_summary$pos<-factor(pos_len_summary$pos)</pre>
# len_pos_plot <- qqplot(pos_len_summary,aes(x=pos,y=preserved,qroup=stimlen,shape=stimlen,color=stimle
len_pos_plot <- plot_len_pos_obs_predicted(PosDat,</pre>
                                          pasteO(CurPat),
                                          NULL,
                                           c(min_preserved,max_preserved),
                                          palette_values,
                                          shape values,
                                          obs_linetypes,
                                          pred_linetypes)
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## Scale for y is already present. Adding another scale for y, which will replace the existing
## scale.
ggsave(paste0(FigDir,CurPat,"_",CurTask,"_percent_preserved_by_length_pos.png"),
      plot=len_pos_plot,device="png",unit="cm",width=15,height=11)
```

len_pos_plot

Length and position

```
# length and position
LPModelEquations<-c("preserved ~ 1",</pre>
            "preserved ~ stimlen",
            "preserved ~ pos",
            "preserved ~ stimlen + pos",
            "preserved ~ stimlen*pos",
            "preserved ~ I(pos^2)+pos",
            "preserved ~ stimlen + I(pos^2) + pos",
            "preserved ~ stimlen * (I(pos^2) + pos)"
)
LPRes<-TestModels(LPModelEquations,PosDat)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 5
```

```
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                    pos stimlen:pos
      1.20254
                   0.02583
                                0.94501
                                           -0.10965
##
##
## Degrees of Freedom: 954 Total (i.e. Null); 951 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 737.1
                               AIC: 776.2
## log likelihood: -368.5394
## Nagelkerke R2: 0.08152908
## % pres/err predicted correctly: -225.0261
## % of predictable range [ (model-null)/(1-null) ]: 0.0548473
## ***********
## model index: 8
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
##
        (Intercept)
                                             I(pos^2)
                                                                    pos stimlen:I(pos^2)
                             stimlen
          -0.20930
                             0.21049
                                             -0.14587
                                                                2.00303
                                                                                  0.01743
##
##
       stimlen:pos
##
          -0.24129
##
## Degrees of Freedom: 954 Total (i.e. Null); 949 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 735.3
                               AIC: 778.6
## log likelihood: -367.6406
## Nagelkerke R2: 0.08474055
## % pres/err predicted correctly: -224.5309
## % of predictable range [ (model-null)/(1-null) ]: 0.05691783
## ***********
## model index: 7
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                               I(pos^2)
                                                pos
                   stimlen
      3.11265
                  -0.28146
                               -0.04494
##
                                             0.40047
##
## Degrees of Freedom: 954 Total (i.e. Null); 951 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 746.7
                               AIC: 786.8
## log likelihood: -373.343
## Nagelkerke R2: 0.06426254
## % pres/err predicted correctly: -227.8486
## % of predictable range [ (model-null)/(1-null) ]: 0.04304453
## **********
## model index: 2
##
```

```
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
       3.8643
                   -0.2938
##
## Degrees of Freedom: 954 Total (i.e. Null); 953 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 752.3
                               AIC: 787.9
## log likelihood: -376.1746
## Nagelkerke R2: 0.0540028
## % pres/err predicted correctly: -229.0446
## % of predictable range [ (model-null)/(1-null) ]: 0.03804359
## *********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                   stimlen
                                    pos
##
      3.86399
                  -0.30769
                                0.02816
##
## Degrees of Freedom: 954 Total (i.e. Null); 952 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 752
                           AIC: 789.4
## log likelihood: -376.0057
## Nagelkerke R2: 0.05461655
## % pres/err predicted correctly: -229.052
## % of predictable range [ (model-null)/(1-null) ]: 0.03801243
## *********
## model index: 6
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                    pos
##
      1.21654
                  -0.06288
                                0.44929
##
## Degrees of Freedom: 954 Total (i.e. Null); 952 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 767.6
                               AIC: 809.3
## log likelihood: -383.78
## Nagelkerke R2: 0.02614282
## % pres/err predicted correctly: -233.8641
## % of predictable range [ (model-null)/(1-null) ]: 0.01789041
## *********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
```

```
## Coefficients:
## (Intercept)
                          pos
       2.03997
##
                    -0.08165
##
## Degrees of Freedom: 954 Total (i.e. Null); 953 Residual
## Null Deviance:
                          781.6
## Residual Deviance: 778.5
                                   AIC: 817.7
## log likelihood: -389.2286
## Nagelkerke R2: 0.005908924
## % pres/err predicted correctly: -237.1464
## % of predictable range [ (model-null)/(1-null) ]: 0.004164951
## *********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
        data = PosDat)
##
## Coefficients:
## (Intercept)
##
          1.749
##
## Degrees of Freedom: 954 Total (i.e. Null); 954 Residual
## Null Deviance:
                          781.6
## Residual Deviance: 781.6
                                   AIC: 819
## log likelihood: -390.8081
## Nagelkerke R2: 1.986502e-16
## % pres/err predicted correctly: -238.1424
## % of predictable range [ (model-null)/(1-null) ]: 0
## **********
BestLPModel<-LPRes$ModelResult[[1]]</pre>
BestLPModelFormula<-LPRes$Model[[1]]</pre>
LPAICSummary<-data.frame(Model=LPRes$Model,</pre>
                         AIC=LPRes$AIC,
                         row.names = LPRes$Model)
LPAICSummary $DeltaAIC <- LPAICSummary $AIC - LPAICSummary $AIC [1]
LPAICSummary $AICexp <-exp(-0.5*LPAICSummary $DeltaAIC)
LPAICSummary $AICwt <-LPAICSummary $AICexp/sum(LPAICSummary $AICexp)
LPAICSummary$NagR2<-LPRes$NagR2
LPAICSummary <- merge(LPAICSummary, LPRes Coefficient Values, by='row.names', sort=FALSE)
LPAICSummary <- subset(LPAICSummary, select = -c(Row.names))</pre>
write.csv(LPAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_len_pos_model_summary.csv"),row.names = FA
kable(LPAICSummary)
Model
                          DeltaAlaICexpAlCwt NagR2 (Interceps)imlen
                                                                           stimlen:plopos^2)stimlen:I(pos^2)
                    AIC
                                                                     pos
preserved \sim
                    776.154 \\ \boxed{7.000000} \\ 0.00000 \\ \boxed{0.00000} \\ 0.0076353 \\ \boxed{5} \\ 0.08152 \\ \boxed{9} \\ 1202537 \\ \boxed{9} \\ .025832 \\ \boxed{8} \\ 9450124
                                                                                     NA
                                                                                               NA
stimlen * pos
                                                                            0.109654
preserved ~
                   778.5583.404110.300575322949990847406
                                                         - 0.21049127.0030335
                                                                                        - 0.0174332
                                                     0.2093028
stimlen * (I(pos^2)
                                                                           0.2412950.1458657
+ pos
```

```
Model
                  AIC
                       DeltaAlaICexpAlCwt NagR2 (Intercept)imlen pos stimlen:ptopos^2)stimlen:I(pos^2)
preserved ~
                  786.77300.6182810049462003776606426251126547 - 0.4004720 NA
                                                                              0.0449446
stimlen + I(pos^2)
                                                         0.2814578
+ pos
                  787.87581.7210520028497002175905400288642858
                                                                         NA
                                                                                NA
                                                                                         NA
preserved ~
                                                                 NA
stimlen
                                                         0.2937663
                  789.40663.2518340013256001012105461658639892
                                                                                NA
                                                                                         NA
preserved ~
                                                            - 0.0281609 NA
stimlen + pos
                                                         0.3076918
                  809.30233.1475840000001000000002614282165408 NA 0.4492852 NA
                                                                                         NA
preserved \sim
                                                                              0.0628761
I(pos^2) + pos
preserved ~ pos
                  817.70261.547808000000000000000590290399712 NA
                                                                         NA
                                                                                NA
                                                                                         NA
                                                                0.0816527
                  preserved \sim 1
                                                                  NA
                                                                         NA
                                                                                NA
                                                                                         NA
print(BestLPModelFormula)
```

```
## [1] "preserved ~ stimlen * pos"
print(BestLPModel)
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
## Coefficients:
## (Intercept)
                    stimlen
                                     pos stimlen:pos
##
       1.20254
                    0.02583
                                 0.94501
                                             -0.10965
##
## Degrees of Freedom: 954 Total (i.e. Null); 951 Residual
                        781.6
## Null Deviance:
## Residual Deviance: 737.1
                                AIC: 776.2
PosDat$LPFitted<-fitted(BestLPModel)
fitted_len_pos_plot <- plot_len_pos_obs_predicted(PosDat, PosDat$patient[1],
                          NULL,palette_values=palette_values)
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
# len/pos table
fitted_pos_len_summary <- PosDat ">" group_by(stimlen,pos) ">" summarise(fitted = mean(LPFitted))
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
fitted_pos_len_table <- fitted_pos_len_summary %>% pivot_wider(names_from = pos, values_from = fitted)
fitted_pos_len_table
## # A tibble: 7 x 10
## # Groups:
               stimlen [7]
               `1`
                     `2`
                           `3`
                                  `4`
                                         `5`
                                                `6`
                                                               .8.
                                                                      `9`
##
     stimlen
       <int> <dbl> <dbl> <dbl> <dbl> <dbl>
                                             <dbl>
                                                     <dbl>
## 1
           4 0.860 0.910 0.944 NA
                                      NA
                                             NA
                                                    MΔ
                                                            NΑ
                                                                   NΔ
## 2
           5 0.849 0.893 0.926 0.949 NA
                                             NA
                                                    NA
                                                            NA
                                                                   NA
                                                                   NΑ
## 3
           6 0.838 0.873 0.902 0.925 0.942 NA
                                                            NΔ
           7 0.826 0.850 0.872 0.890 0.906 0.920 NA
                                                                   NA
```

NA

8 0.814 0.824 0.834 0.843 0.852 0.860 0.868 NA

5

```
## 6
             9 0.801 0.794 0.787 0.780 0.773 0.766 0.758 0.750 NA
## 7
            10 0.787 0.761 0.732 0.702 0.669 0.635 0.599 0.562 0.524
fitted_pos_len_summary$stimlen<-factor(fitted_pos_len_summary$stimlen)</pre>
fitted_pos_len_summary$pos<-factor(fitted_pos_len_summary$pos)</pre>
 \begin{tabular}{ll} \# fitted\_len\_pos\_plot <- ggplot(pos\_len\_summary, aes(x=pos,y=preserved, group=stimlen, shape=stimlen, color \\ \# fitted\_len\_pos\_plot <- fitted\_len\_pos\_plot + geom\_line(data=fitted\_pos\_len\_summary, aes(x=pos,y=fitted\_len\_pos\_plot) \\ \end{tabular} 
\# geom\_point(data=fitted\_pos\_len\_summary, aes(x=pos, y=fitted, group=stimlen, shape=stimlen)) + <math>ggtitle(pas)
fitted_len_pos_plot <- plot_len_pos_obs_predicted(PosDat,</pre>
                                                   pasteO(PosDat$patient[1]),
                                                   "LPFitted",
                                                   NULL,
                                                   palette_values,
                                                   shape_values,
                                                   obs_linetypes,
                                                   pred_linetypes = c("longdash")
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
ggsave(paste0(FigDir,CurPat,"_",CurTask,"_percent_preserved_by_length_pos_wfit.png"),plot=fitted_len_po
```


length and position without fragments to see if this changes position 2 influence

```
# first number responses, then count resp with fragments - below we will eliminate fragments
# and re-run models
# number responses
resp num<-0
prev_pos<-9999 # big number to initialize (so first position is smaller)
resp_num_array <- integer(length = nrow(PosDat))</pre>
for(i in seq(1,nrow(PosDat))){
  if(PosDat$pos[i] <= prev_pos){ # equal for resp length 1</pre>
    resp_num <- resp_num + 1</pre>
 resp_num_array[i] <-resp_num</pre>
 prev_pos <- PosDat$pos[i]</pre>
PosDat$resp_num <- resp_num_array
# count responses with fragments
resp_with_frag <- PosDat %>% group_by(resp_num) %>% summarise(frag = as.logical(sum(fragment)))
num_frag <- resp_with_frag %>% summarise(frag_sum = sum(frag), N=n())
num_frag
## # A tibble: 1 x 2
    frag sum
##
        <int> <int>
## 1
           6 177
num_frag$percent_with_frag[1] <- (num_frag$frag_sum[1] / num_frag$N[1])*100
## Warning: Unknown or uninitialised column: `percent with frag`.
print(sprintf("The number of responses with fragments was %d / %d = %.2f percent",
              num_frag$frag_sum[1],num_frag$N[1],num_frag$percent_with_frag[1]))
## [1] "The number of responses with fragments was 6 / 177 = 3.39 percent"
write.csv(num_frag,paste0(TablesDir,CurPat,"_",CurTask,"_percent_fragments.csv"),row.names = FALSE)
# length and position models for data without fragments
NoFragData <- PosDat %>% filter(fragment != 1)
NoFrag_LPRes<-TestModels(LPModelEquations,NoFragData)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 5
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
       data = PosDat)
```

```
##
## Coefficients:
                                   pos stimlen:pos
## (Intercept)
                   stimlen
      1.38186
                  -0.01351
                                0.82500
                                           -0.08478
##
## Degrees of Freedom: 931 Total (i.e. Null); 928 Residual
## Null Deviance:
                       701.9
## Residual Deviance: 676.8
                               AIC: 711.5
## log likelihood: -338.3933
## Nagelkerke R2: 0.05018813
## % pres/err predicted correctly: -200.7342
## % of predictable range [ (model-null)/(1-null) ]: 0.0305889
## *********
## model index: 8
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
##
       (Intercept)
                             stimlen
                                             I(pos^2)
                                                                    pos stimlen:I(pos^2)
##
           0.22054
                             0.15049
                                             -0.11412
                                                                1.67635
                                                                                  0.01474
##
       stimlen:pos
          -0.19957
##
## Degrees of Freedom: 931 Total (i.e. Null); 926 Residual
## Null Deviance:
                       701.9
## Residual Deviance: 675.6
                               AIC: 714.2
## log likelihood: -337.7772
## Nagelkerke R2: 0.05261882
## % pres/err predicted correctly: -200.3381
## % of predictable range [ (model-null)/(1-null) ]: 0.03249243
## *********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                   stimlen
                                    pos
                   -0.2548
##
       3.2719
                                 0.1315
##
## Degrees of Freedom: 931 Total (i.e. Null); 929 Residual
## Null Deviance:
                       701.9
## Residual Deviance: 684.1
                               AIC: 716.6
## log likelihood: -342.0446
## Nagelkerke R2: 0.03571532
## % pres/err predicted correctly: -202.2664
## % of predictable range [ (model-null)/(1-null) ]: 0.02322624
## *********
## model index: 7
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
```

```
## Coefficients:
## (Intercept)
                               I(pos^2)
                   stimlen
                                                pos
      2.83077
##
                  -0.24018
                               -0.03049
                                            0.36978
##
## Degrees of Freedom: 931 Total (i.e. Null); 928 Residual
## Null Deviance:
                       701.9
## Residual Deviance: 682.3
                               AIC: 717.2
## log likelihood: -341.1454
## Nagelkerke R2: 0.03928984
## % pres/err predicted correctly: -202.051
## % of predictable range [ (model-null)/(1-null) ]: 0.02426125
## ************
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
##
       3.3238
                   -0.2002
##
## Degrees of Freedom: 931 Total (i.e. Null); 930 Residual
## Null Deviance:
                       701.9
## Residual Deviance: 690
                          AIC: 721.1
## log likelihood: -345.0049
## Nagelkerke R2: 0.0238981
## % pres/err predicted correctly: -203.762
## % of predictable range [ (model-null)/(1-null) ]: 0.01603949
## **********
## model index: 6
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                    pos
##
      1.20884
                  -0.04701
                                0.42163
##
## Degrees of Freedom: 931 Total (i.e. Null); 929 Residual
## Null Deviance:
                       701.9
## Residual Deviance: 696.5
                               AIC: 732.2
## log likelihood: -348.2728
## Nagelkerke R2: 0.01076532
## % pres/err predicted correctly: -205.8612
## % of predictable range [ (model-null)/(1-null) ]: 0.005951651
## ***********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
##
         1.91
```

```
##
## Degrees of Freedom: 931 Total (i.e. Null); 931 Residual
## Null Deviance:
                         701.9
                                  AIC: 733.1
## Residual Deviance: 701.9
## log likelihood: -350.9346
## Nagelkerke R2: -4.196763e-16
## % pres/err predicted correctly: -207.0998
## % of predictable range [ (model-null)/(1-null) ]: 0
## **********
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                         pos
       1.74388
                     0.05031
##
##
## Degrees of Freedom: 931 Total (i.e. Null); 930 Residual
## Null Deviance:
                         701.9
## Residual Deviance: 700.9
                                  AIC: 734.2
## log likelihood: -350.4749
## Nagelkerke R2: 0.001863568
## % pres/err predicted correctly: -206.8599
## % of predictable range [ (model-null)/(1-null) ]: 0.001152943
## **********
NoFragBestLPModel<-NoFrag_LPRes$ModelResult[[1]]
NoFragBestLPModelFormula <- NoFrag_LPRes $Model[[1]]
NoFragLPAICSummary <- data.frame (Model=NoFrag_LPRes$Model,
                         AIC=NoFrag_LPRes$AIC,
                        row.names = NoFrag_LPRes$Model)
NoFragLPAICSummary $DeltaAIC <- NoFragLPAICSummary $AIC-NoFragLPAICSummary $AIC [1]
NoFragLPAICSummary$AICexp<-exp(-0.5*NoFragLPAICSummary$DeltaAIC)
NoFragLPAICSummary $AICwt <- NoFragLPAICSummary $AICexp/sum(NoFragLPAICSummary $AICexp)
NoFragLPAICSummary$NagR2<-NoFrag_LPRes$NagR2
NoFragLPAICSummary <- merge(NoFragLPAICSummary, NoFrag_LPRes CoefficientValues, by='row.names', sort=FALS
NoFragLPAICSummary <- subset(NoFragLPAICSummary, select = -c(Row.names))
write.csv(NoFragLPAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_no_fragments_len_pos_model_summary.c
kable(NoFragLPAICSummary)
Model
                        DeltaAl@ICexpAlCwt NagR2 (Interceps)imlen
                                                                    pos
                                                                          stimlen:plopos^2)stimlen:I(pos^2)
                   711.495 \\ 2.00000 \\ 0.00000 \\ 0.00000 \\ 0.0071287 \\ 0.8050188 \\ 1381865
                                                                                   NA
preserved ~
                                                                   0.8249965
                                                                                             NA
stimlen * pos
                                                            0.0135107
                                                                          0.0847774
preserved \sim
                   714.187 \\ \pmb{7}.69245 \\ \pmb{6}.26022 \\ \pmb{0}018550 \\ \pmb{8}505261 \\ \pmb{8}2205370.150491 \\ \pmb{0}6763522
                                                                                      - 0.0147406
stimlen * (I(pos^2)
                                                                          0.1995729.1141218
+ pos
preserved ~
                   716.5965.101306.078030705562590357153271923
                                                                - 0.1315293 NA
                                                                                   NA
                                                                                             NA
                                                            0.2548318
stimlen + pos
```

```
Model
                    AIC
                          DeltaAlaICexpAlCwt NagR2 (Intercept)imlen pos stimlen:plopos^2)stimlen:I(pos^2)
preserved ~
                    717.2485.753363.056320404014990392828830770
                                                                    - 0.3697835 NA
                                                                                       0.0304932
stimlen + I(pos^2)
                                                                0.2401762
+ pos
                    721.1179.621798.008140500580820238981323808
                                                                                         NA
                                                                                                   NA
preserved ~
                                                                         NA
                                                                                 NA
stimlen
                    732.20620.711643000030800002270107653208841 NA
                                                                                                   NA
preserved ~
                                                                       0.4216334\,\mathrm{NA}
I(pos^2) + pos
                                                                                       0.0470081
                    733.08521.5901460000205000014600000000910415 NA
                                                                         NA
                                                                                         NA
preserved \sim 1
                                                                                 NA
                                                                                                   NA
                    734.16322.6684040000120000000850018636743883 NA
                                                                       0.0503056\,\mathrm{NA}
preserved \sim pos
                                                                                         NA
                                                                                                   NA
# plot no fragment data
NoFragData$LPFitted<-fitted(NoFragBestLPModel)
```

```
nofrag_obs_len_pos_plot <- plot_len_pos_obs_predicted(NoFragData, NoFragData$patient[1],</pre>
                                                                                   NULL,palette_values=palette_values)
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
# len/pos table
nofrag_fitted_pos_len_summary <- NoFragData %% group_by(stimlen,pos) %% summarise(fitted = mean(LPFit
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
nofrag_fitted_pos_len_table <- nofrag_fitted_pos_len_summary %>% pivot_wider(names_from = pos, values_f
nofrag_fitted_pos_len_table
## # A tibble: 7 x 10
## # Groups:
                                               stimlen [7]
                                                `1`
                                                                   `2`
                                                                                       `3`
                                                                                                             `4`
                                                                                                                                   `5`
                                                                                                                                                          `6`
                                                                                                                                                                                                       `8`
##
                stimlen
                       <int> <dbl> <dbl> <dbl> <dbl>
                                                                                                                         <dbl>
                                                                                                                                                   <dbl>
                                                                                                                                                                          <dbl>
                                                                                                                                                                                                <dbl>
##
## 1
                                   4 0.860 0.909 0.942 NA
                                                                                                                         NA
                                                                                                                                                NA
                                                                                                                                                                      NΑ
                                                                                                                                                                                             NA
                                                                                                                                                                                                                   NΑ
                                   5 0.848 0.892 0.925 0.949 NA
## 2
                                                                                                                                                NA
                                                                                                                                                                      NΑ
                                                                                                                                                                                             NA
                                                                                                                                                                                                                   NΑ
## 3
                                                                                                                                                                                                                   NΑ
                                   6 0.834 0.874 0.905 0.929 0.947 NA
                                                                                                                                                                                             NΔ
                                   7 0.820 0.852 0.879 0.901
                                                                                                                           0.920
                                                                                                                                                  0.936 NA
                                                                                                                                                                                                                   NΑ
## 5
                                   8 0.805 0.827 0.847 0.865 0.882 0.896 0.909 NA
                                                                                                                                                                                                                   NA
                                   9 0.790 0.800 0.809 0.819 0.828
## 6
                                                                                                                                                  0.836 0.845 0.853 NA
                                10 0.773 0.769 0.765 0.761 0.756 0.752 0.748 0.744 0.739
## 7
fitted_pos_len_summary$stimlen<-factor(nofrag_fitted_pos_len_summary$stimlen)
fitted_pos_len_summary$pos<-factor(nofrag_fitted_pos_len_summary$pos)</pre>
\#\ fitted\_len\_pos\_plot <-\ ggplot(pos\_len\_summary, aes(x=pos,y=preserved, group=stimlen, shape=stimlen, color + fitted\_len\_group=stimlen, shape=stimlen, color + fitted\_len\_group=stimlen, shape=stimlen, color + fitted\_len\_group=stimlen, shape=stimlen, color + fitted\_len\_group=stimlen, shape=stimlen, shape=stimlen,
\# fitted_len_pos_plot <- fitted_len_pos_plot + geom_line(data=fitted_pos_len_summary, aes(x=pos,y=fitted_pos_len_summary)
 \# \ geom\_point(data=fitted\_pos\_len\_summary, aes(x=pos,y=fitted,group=stimlen,shape=stimlen)) \ + \ ggtitle(pas,y=fitted,group=stimlen,group=stimlen,group=stimlen)) \ + \ ggtitle(pas,y=fitted,group=stimlen,group=stimlen,group=stimlen)) \ + \ ggtitle(pas,y=fitted,group=stimlen,group=stimlen,group=stimlen,group=stimlen)) \ + \ ggtitle(pas,y=fitted,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,group=stimlen,gr
nofrag_fitted_len_pos_plot <- plot_len_pos_obs_predicted(NoFragData,</pre>
                                                                                                                                      paste0(NoFragData$patient[1]),
                                                                                                                                       "LPFitted",
                                                                                                                                      NULL,
                                                                                                                                      palette_values,
                                                                                                                                       shape_values,
                                                                                                                                       obs_linetypes,
                                                                                                                                       pred_linetypes = c("longdash")
```

```
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
ggsave(paste0(FigDir,CurPat,"_",CurTask,"no_fragments_percent_preserved_by_length_pos_wfit.png"),plot=n
nofrag_fitted_len_pos_plot
```

`summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.

back to full data

results_report_DF <- AddReportLine(results_report_DF, "min preserved", min_preserved)
results_report_DF <- AddReportLine(results_report_DF, "max preserved", max_preserved)
print(sprintf("Min/max preserved range: %.2f - %.2f", min_preserved, max_preserved))

```
## [1] "Min/max preserved range: 0.54 - 1.04"

# find the average difference between lengths and the average difference
# between positions taking the other factor into account

# choose fitted or raw -- we use fitted values because they are smoothed averages
# that take into account the influence of the other variable
table_to_use <- fitted_pos_len_table
# take away column with length information
table_to_use <- table_to_use[,2:ncol(table_to_use)]

# take averages for positions
# don't want downward estimates influenced by return upward of U
# therefore, for downward influence, use only the values before the min
# take the difference between each value (differences between position proportion correct) **NOTE** prof
# average the difference in probabilities</pre>
```

```
# in case min is close to the end or we are not using a min (for non-U-shaped)
# functions, we need to get differences _first_ and then average those (e.g.
# if there is an effect of length and we just average position data,
# later positions) will have a lower average (because of the length effect)
# even if all position functions go upward
table_pos_diffs <- t(diff(t(as.matrix(table_to_use))))</pre>
ncol pos diff matrix <- ncol(table pos diffs)</pre>
first col mean <- mean(as.numeric(unlist(table pos diffs[,1])))</pre>
potential_u_shape <- 0</pre>
if(first_col_mean < 0){ # downward, so potential U-shape</pre>
  # take only negative values from the table
 filtered_table_pos_diffs<-table_pos_diffs</pre>
 filtered_table_pos_diffs[table_pos_diffs >= 0] <- NA
 potential_u_shape <- 1</pre>
}else{
  # upward - use the positive values
  # take only negative values from the table
 filtered_table_pos_diffs<-table_pos_diffs
  filtered_table_pos_diffs[table_pos_diffs <= 0] <- NA
}
average_pos_diffs <- apply(filtered_table_pos_diffs,2,mean,na.rm=TRUE)
OA_mean_pos_diff <- mean(average_pos_diffs,na.rm=TRUE)</pre>
table len diffs <- diff(as.matrix(table to use))
average_len_diffs <- apply(table_len_diffs,1,mean,na.rm=TRUE)</pre>
OA_mean_len_diff <- mean(average_len_diffs,na.rm=TRUE)</pre>
CurrentLabel <- "mean change in probability for each additional length: "
print(CurrentLabel)
## [1] "mean change in probability for each additional length: "
print(OA_mean_len_diff)
## [1] -0.04324557
results_report_DF <- AddReportLine(results_report_DF, CurrentLabel,OA_mean_len_diff)
CurrentLabel <- "mean change in probability for each additional position (excluding U-shape): "
print(CurrentLabel)
## [1] "mean change in probability for each additional position (excluding U-shape): "
print(OA mean pos diff)
## [1] 0.01827111
results_report_DF <- AddReportLine(results_report_DF, CurrentLabel,OA_mean_pos_diff)
if(potential_u_shape){ # downward, so potential U-shape
  # take only positive values from the table
  filtered_pos_upward_u<-table_pos_diffs
  filtered_pos_upward_u[table_pos_diffs <= 0] <- NA
  average pos u diffs <- apply(filtered pos upward u,
                                2, mean, na.rm=TRUE)
  OA_mean_pos_u_diff <- mean(average_pos_u_diffs,na.rm=TRUE)</pre>
```

```
if(is.nan(OA_mean_pos_u_diff) | (OA_mean_pos_u_diff <= 0)){</pre>
    print("No U-shape in this participant")
    results_report_DF <- AddReportLine(results_report_DF, "U-shape", 0)
    potential_u_shape <- FALSE</pre>
  }else{
    results report DF <- AddReportLine(results report DF, "U-shape", 1)
    CurrentLabel <- "Average upward change after U minimum"
    print(CurrentLabel)
    print(OA mean pos u diff)
    results_report_DF <- AddReportLine(results_report_DF, CurrentLabel, OA_mean_pos_u_diff)
    CurrentLabel <- "Proportion of average downward change"
    prop_ave_down <- abs(OA_mean_pos_u_diff/OA_mean_pos_diff)</pre>
    results_report_DF <- AddReportLine(results_report_DF, CurrentLabel, prop_ave_down)
}else{
  print("No U-shape in this participant")
  results_report_DF <- AddReportLine(results_report_DF, "U-shape", 0)</pre>
}
## [1] "No U-shape in this participant"
if(potential_u_shape){
  n_rows<-nrow(table_to_use)</pre>
  downward_dist <- numeric(n_rows)</pre>
  upward_dist <- numeric(n_rows)</pre>
  for(i in seq(1,n_rows)){
    current_row <- as.numeric(unlist(table_to_use[i,1:9]))</pre>
    current row <- current row[!is.na(current row)]</pre>
    current_row_len <- length(current_row)</pre>
    row min <- min(current row,na.rm=TRUE)
    min_pos <- which(current_row == row_min)</pre>
    left max <- max(current row[1:min pos],na.rm=TRUE)</pre>
    right_max <- max(current_row[min_pos:current_row_len])</pre>
    left_diff <- left_max - row_min</pre>
    right_diff <- right_max - row_min</pre>
    downward_dist[i]<-left_diff</pre>
    upward_dist[i]<-right_diff
  print("differences from left max to min for each row: ")
  print(downward_dist)
  print("differences from min to right max for each row: ")
  print(upward_dist)
  # Use the max return upward (min of upward_dist) and then the
  # downward distance from the left for the same row
  print(" ")
  biggest_return_upward_row <- which(upward_dist == max(upward_dist))</pre>
  CurrentLabel <- "row with biggest return upward"</pre>
  print(CurrentLabel)
  print(biggest return upward row)
  results_report_DF <- AddReportLine(results_report_DF, CurrentLabel, biggest_return_upward_row)
```

```
print(" ")
  CurrentLabel <- "downward distance for row with the largest upward value"
  print(CurrentLabel)
  print(downward dist[biggest return upward row])
  results_report_DF <- AddReportLine(results_report_DF, CurrentLabel, downward_dist[biggest_return_upwa
  CurrentLabel<-"return upward value"
  print(upward dist[biggest return upward row])
  results_report_DF <- AddReportLine(results_report_DF,</pre>
                                       CurrentLabel,
                                       upward_dist[biggest_return_upward_row])
  print(" ")
  # percentage return upward
  percentage_return_upward <- upward_dist[biggest_return_upward_row]/downward_dist[biggest_return_upwar
  CurrentLabel <- "Return upward as a proportion of the downward distance:"
  print(CurrentLabel)
 print(percentage_return_upward)
  results_report_DF <- AddReportLine(results_report_DF, CurrentLabel,</pre>
                        percentage_return_upward)
}else{
  print("no U-shape in this participant")
## [1] "no U-shape in this participant"
FLPModelEquations<-c(
  # models with log frequency, but no three-way interactions (due to difficulty interpreting and small
            "preserved ~ stimlen*log_freq",
            "preserved ~ stimlen+log_freq",
            "preserved ~ pos*log_freq",
            "preserved ~ pos+log_freq",
            "preserved ~ stimlen*log_freq + pos*log_freq",
            "preserved ~ stimlen*log_freq + pos",
            "preserved ~ stimlen + pos*log_freq",
            "preserved ~ stimlen + pos + log_freq",
            "preserved ~ (I(pos^2)+pos)*log_freq",
            "preserved ~ stimlen*log_freq + (I(pos^2) + pos)*log_freq",
            "preserved ~ stimlen*log_freq + I(pos^2) + pos",
            "preserved ~ stimlen + (I(pos^2) + pos)*log_freq",
            "preserved ~ stimlen + I(pos^2) + pos + log_freq",
            # models without frequency
            "preserved ~ 1",
            "preserved ~ stimlen",
            "preserved ~ pos",
            "preserved ~ stimlen + pos",
            "preserved ~ stimlen*pos",
            "preserved ~ I(pos^2)+pos",
            "preserved ~ stimlen + I(pos^2) + pos",
            "preserved ~ stimlen * (I(pos^2) + pos)"
FLPRes<-TestModels(FLPModelEquations,PosDat)</pre>
```

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 12
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
##
         (Intercept)
                                                  I(pos^2)
                                                                                        log_freq
                                stimlen
                                                                          pos
            2.11348
                               -0.16169
                                                  -0.05879
                                                                      0.56390
                                                                                        -0.18971
## I(pos^2):log_freq
                           pos:log_freq
            -0.02678
                                0.29699
##
##
## Degrees of Freedom: 954 Total (i.e. Null); 948 Residual
## Null Deviance:
                        781.6
## Residual Deviance: 702.4
                                AIC: 746.6
## log likelihood: -351.2073
## Nagelkerke R2: 0.1424049
## % pres/err predicted correctly: -214.9702
## % of predictable range [ (model-null)/(1-null) ]: 0.09689705
## *************
## model index: 10
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
##
         (Intercept)
                               stimlen
                                                  log_freq
                                                                     I(pos^2)
                                                                                             pos
##
            2.01423
                               -0.14220
                                                 -0.35412
                                                                     -0.05983
                                                                                         0.56236
##
   stimlen:log_freq log_freq:I(pos^2)
                                              log_freq:pos
##
            0.02618
                              -0.02777
                                                   0.29495
##
```

```
## Degrees of Freedom: 954 Total (i.e. Null); 947 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 702
                          AIC: 748.2
## log likelihood: -351.0217
## Nagelkerke R2: 0.143045
## % pres/err predicted correctly: -214.5551
## % of predictable range [ (model-null)/(1-null) ]: 0.09863273
## *********
## model index: 7
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
##
   (Intercept)
                     stimlen
                                                log_freq pos:log_freq
                                       pos
##
       2.83554
                    -0.18350
                                   0.12715
                                                 0.04861
                                                              0.10095
##
## Degrees of Freedom: 954 Total (i.e. Null); 950 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 708.2
                               AIC: 748.3
## log likelihood: -354.0991
## Nagelkerke R2: 0.1324011
## % pres/err predicted correctly: -215.9062
## % of predictable range [ (model-null)/(1-null) ]: 0.09298293
## *********
## model index: 5
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
##
        (Intercept)
                                             log_freq
                                                                         stimlen:log_freq
                             stimlen
##
           2.78400
                            -0.17256
                                              -0.04433
                                                                0.12264
                                                                                  0.01557
##
      log_freq:pos
##
           0.09554
##
## Degrees of Freedom: 954 Total (i.e. Null); 949 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 708.1
                               AIC: 750.2
## log likelihood: -354.0312
## Nagelkerke R2: 0.1326366
## % pres/err predicted correctly: -215.639
## % of predictable range [ (model-null)/(1-null) ]: 0.09410051
## *********
## model index: 9
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
##
         (Intercept)
                              I(pos^2)
                                                                   log_freq I(pos^2):log_freq
                                                     pos
                              -0.06970
##
            1.02612
                                                  0.59738
                                                                   -0.12055
                                                                                      -0.02766
##
       pos:log_freq
##
            0.29633
```

```
##
## Degrees of Freedom: 954 Total (i.e. Null); 949 Residual
                       781.6
## Null Deviance:
## Residual Deviance: 708.4
                               AIC: 752.2
## log likelihood: -354.1925
## Nagelkerke R2: 0.1320769
## % pres/err predicted correctly: -217.3121
## % of predictable range [ (model-null)/(1-null) ]: 0.0871044
## **********
## model index: 13
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                               I(pos^2)
                                                         log_freq
                                                pos
##
      2.29106
                  -0.14908
                               -0.04553
                                             0.40685
                                                         0.39596
##
## Degrees of Freedom: 954 Total (i.e. Null); 950 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 712.5
                               AIC: 753.1
## log likelihood: -356.2506
## Nagelkerke R2: 0.1249188
## % pres/err predicted correctly: -218.1323
## % of predictable range [ (model-null)/(1-null) ]: 0.08367428
## **********
## model index: 11
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
##
        (Intercept)
                             stimlen
                                              log_freq
                                                               I(pos^2)
                                                                                      pos
          2.095676
                           -0.111230
                                              0.004161
                                                              -0.043531
                                                                                 0.390359
##
## stimlen:log_freq
          0.054650
##
##
## Degrees of Freedom: 954 Total (i.e. Null); 949 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 710.5
                               AIC: 753.1
## log likelihood: -355.2546
## Nagelkerke R2: 0.1283866
## % pres/err predicted correctly: -216.7337
## % of predictable range [ (model-null)/(1-null) ]: 0.08952294
## *********
## model index: 1
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
##
       (Intercept)
                             stimlen
                                             log freq stimlen:log freq
##
           2.78752
                            -0.11619
                                              -0.04885
                                                                0.06176
##
```

```
## Degrees of Freedom: 954 Total (i.e. Null); 951 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 715.6
                               AIC: 753.6
## log likelihood: -357.7932
## Nagelkerke R2: 0.1195331
## % pres/err predicted correctly: -217.3027
## % of predictable range [ (model-null)/(1-null) ]: 0.08714332
## *********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                   stimlen
                               log_freq
##
       3.0511
                   -0.1609
                                 0.3947
##
## Degrees of Freedom: 954 Total (i.e. Null); 952 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 718.1
                               AIC: 754.1
## log likelihood: -359.0561
## Nagelkerke R2: 0.115111
## % pres/err predicted correctly: -218.9233
## % of predictable range [ (model-null)/(1-null) ]: 0.08036691
## ***********
## model index: 6
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
##
        (Intercept)
                             stimlen
                                              log_freq
                                                                         stimlen:log_freq
##
           2.78663
                            -0.13094
                                              -0.04941
                                                                 0.03006
                                                                                  0.06187
##
## Degrees of Freedom: 954 Total (i.e. Null); 950 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 715.2
                               AIC: 755.1
## log likelihood: -357.6129
## Nagelkerke R2: 0.1201635
## % pres/err predicted correctly: -217.3892
## % of predictable range [ (model-null)/(1-null) ]: 0.08678171
## *********
## model index: 8
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                   stimlen
                                            log_freq
                                    pos
##
      3.05059
                  -0.17544
                                0.02945
                                             0.39491
##
## Degrees of Freedom: 954 Total (i.e. Null); 951 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 717.8
                               AIC: 755.6
```

```
## log likelihood: -358.8795
## Nagelkerke R2: 0.1157302
## % pres/err predicted correctly: -219.0008
## % of predictable range [ (model-null)/(1-null) ]: 0.08004285
## **********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
##
   (Intercept)
                                  log_freq pos:log_freq
                         pos
       1.73705
##
                     0.06964
                                   0.12023
                                                0.09836
##
## Degrees of Freedom: 954 Total (i.e. Null); 951 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 716.3
                               AIC: 756.2
## log likelihood: -358.1685
## Nagelkerke R2: 0.1182202
## % pres/err predicted correctly: -218.8478
## % of predictable range [ (model-null)/(1-null) ]: 0.08068232
## **********
## model index: 4
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                               log_freq
                       pos
                               0.45406
      2.00005
##
                  -0.02472
##
## Degrees of Freedom: 954 Total (i.e. Null); 952 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 725.3
                               AIC: 762.9
## log likelihood: -362.6489
## Nagelkerke R2: 0.1024668
## % pres/err predicted correctly: -221.7553
## % of predictable range [ (model-null)/(1-null) ]: 0.06852461
## **********
## model index: 18
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                    pos stimlen:pos
      1.20254
                   0.02583
##
                                0.94501
                                           -0.10965
##
## Degrees of Freedom: 954 Total (i.e. Null); 951 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 737.1
                               AIC: 776.2
## log likelihood: -368.5394
## Nagelkerke R2: 0.08152908
## % pres/err predicted correctly: -225.0261
```

```
## % of predictable range [ (model-null)/(1-null) ]: 0.0548473
## *********
## model index: 21
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
##
       (Intercept)
                             stimlen
                                             I(pos^2)
                                                                    pos stimlen:I(pos^2)
          -0.20930
                                                                2.00303
##
                             0.21049
                                             -0.14587
                                                                                 0.01743
##
       stimlen:pos
##
          -0.24129
##
## Degrees of Freedom: 954 Total (i.e. Null); 949 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 735.3
                               AIC: 778.6
## log likelihood: -367.6406
## Nagelkerke R2: 0.08474055
## % pres/err predicted correctly: -224.5309
## % of predictable range [ (model-null)/(1-null) ]: 0.05691783
## *********
## model index: 20
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
                               I(pos^2)
## (Intercept)
                   stimlen
                                                pos
                               -0.04494
##
      3.11265
                  -0.28146
                                             0.40047
##
## Degrees of Freedom: 954 Total (i.e. Null); 951 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 746.7
                               AIC: 786.8
## log likelihood: -373.343
## Nagelkerke R2: 0.06426254
## % pres/err predicted correctly: -227.8486
## % of predictable range [ (model-null)/(1-null) ]: 0.04304453
## *********
## model index: 15
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
## Coefficients:
## (Intercept)
                   stimlen
       3.8643
                   -0.2938
##
##
## Degrees of Freedom: 954 Total (i.e. Null); 953 Residual
## Null Deviance:
                      781.6
## Residual Deviance: 752.3
                               AIC: 787.9
## log likelihood: -376.1746
## Nagelkerke R2: 0.0540028
## % pres/err predicted correctly: -229.0446
## % of predictable range [ (model-null)/(1-null) ]: 0.03804359
```

```
## ************
## model index: 17
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
                                    pos
##
      3.86399
                  -0.30769
                                0.02816
##
## Degrees of Freedom: 954 Total (i.e. Null); 952 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 752
                           AIC: 789.4
## log likelihood: -376.0057
## Nagelkerke R2: 0.05461655
## % pres/err predicted correctly: -229.052
## % of predictable range [ (model-null)/(1-null) ]: 0.03801243
## model index: 19
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                    pos
      1.21654
                  -0.06288
                                0.44929
##
## Degrees of Freedom: 954 Total (i.e. Null); 952 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 767.6
                               AIC: 809.3
## log likelihood: -383.78
## Nagelkerke R2: 0.02614282
## % pres/err predicted correctly: -233.8641
## % of predictable range [ (model-null)/(1-null) ]: 0.01789041
## ***********
## model index: 16
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                       pos
      2.03997
##
                  -0.08165
##
## Degrees of Freedom: 954 Total (i.e. Null); 953 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 778.5
                               AIC: 817.7
## log likelihood: -389.2286
## Nagelkerke R2: 0.005908924
## % pres/err predicted correctly: -237.1464
## % of predictable range [ (model-null)/(1-null) ]: 0.004164951
## model index: 14
##
```

```
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
       data = PosDat)
##
## Coefficients:
## (Intercept)
         1.749
##
## Degrees of Freedom: 954 Total (i.e. Null); 954 Residual
## Null Deviance:
                         781.6
## Residual Deviance: 781.6
                                  AIC: 819
## log likelihood: -390.8081
## Nagelkerke R2: 1.986502e-16
## % pres/err predicted correctly: -238.1424
## % of predictable range [ (model-null)/(1-null) ]: 0
## ************
BestFLPModel<-FLPRes$ModelResult[[1]]</pre>
BestFLPModelFormula<-FLPRes$Model[[1]]</pre>
FLPAICSummary <- data.frame (Model=FLPRes$Model,
                        AIC=FLPRes$AIC,row.names=FLPRes$Model)
FLPAICSummary $DeltaAIC <- FLPAICSummary $AIC - FLPAICSummary $AIC [1]
FLPAICSummary$AICexp<-exp(-0.5*FLPAICSummary$DeltaAIC)
FLPAICSummary $AICwt <-FLPAICSummary $AICexp/sum(FLPAICSummary $AICexp)
FLPAICSummary$NagR2<-FLPRes$NagR2
FLPAICSummary <- merge(FLPAICSummary,FLPRes$CoefficientValues,
                           by='row.names',sort=FALSE)
FLPAICSummary <- subset(FLPAICSummary, select = -c(Row.names))</pre>
write.csv(FLPAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_freq_len_pos_model_summary.csv"),row.name
kable(FLPAICSummary)
Model
              AIC DeltaAllCeAptCwNagR2nterstiph)dug_fstimlenbwg_fosdologgfrfuff(ppwstQ)os^2dugogfrfufffhestsipAlen:I(pos^2)
                                                                                 NA
preserved ~
              - NA
                                                        0.5638929699226
                                                                                       NA NA
stimlen +
                                         0.161685897131
                                                                       0.058 \sqrt{0.058} \sqrt{0.058} \sqrt{0.058}
(I(pos^2) +
pos) *
log freq
preserved ~
              748.20503032486489852143245042298 - 0.0261793623530 0.2949509 NA
                                                                                    - NA NA
stimlen *
                                         0.1422035041215
                                                                       0.0598343 \quad 0.0277741
\log_{freq} +
(I(pos^2) +
pos) *
log freq
preserved \sim
              748.34.27405571.883495922982208355373 0.0486093 0.127047009133 NA NA
                                                                                 NA NA NA
stimlen + pos
                                         0.1835046
* log freq
preserved \sim
              750.13/795050606783(1532030339965
                                              - 0.01557020220383 0.09553387 NA
                                                                                  NA NA NA
                                         0.1725600843319
stimlen *
log frea +
pos *
log_freq
```

Model	AIC DeltaAMCeApCwYagR(2nterstept)dag_fstimler	plog_plosclologfrede(popedQ)os	s^2)ndogfrefateT(ploestift)en:I(pos^2)
preserved ~ (I(pos^2) + pos) *	752.1 3.32106 061 9.8270633207026NA 9 - NA 0.1205452	0.597 0822163327 47 0.069 69372 7	1111 1111 1111
log_freq preserved ~ stimlen + I(pos^2) + pos +	753.0 5.26 3 4.9 B9 6 8 6576 6 0 8 12.1291 .0556 0.395 962 9 0.1490842	0.406 84% 2 NA - NA 0.0455256	NA NA NA
log_freq preserved ~ stimlen * log_freq + I(pos^2) +	753.0 7.4719.7 B9 32 H4 7399282895 6761 0.004 0015 46 0.1112299	508 90 35 86 NA - NA 0.0435307	NA NA NA
pos preserved ~ stimlen * log_freq	753.6 7.201052729591130941023787 75234 - 0.0617 0.116 0854 88530	6NA NA NA NA NA	NA NA NA
preserved ~ stimlen + log_freq	754.1 7.50823£23421110363353.0£1 1028 0.394 7£4 8 0.1609196	NA NA NA NA NA	NA NA NA
preserved ~ stimlen * log_freq +	755.1 8456 8 47H 3 99H50 9H 50 26 35 6283 - 0.0618 0.130 9434 94106	696300634 NA NA NA	NA NA NA
pos $preserved \sim$ $stimlen + pos$ $+ log_freq$	755. 62.88 665 11 10 16948.748573192) 5880 0.394 90A 8 0.1754426	0.029 3443 92 NA NA NA	NA NA NA
preserved ~ pos * log_freq	756.23.626031080812812704812704485 0.12021433	0.069 63J9283644 NA NA	NA NA NA
preserved ~ pos + log_freq	762.8 66.4582660294800300226660005A 4 0.454 06A 9	- NA NA NA NA 0.0247210	NA NA NA
preserved ~ stimlen * pos	776.1 29. 75 2.6000000000000000000000000000000000000	0.945 01.2 4 NA NA NA	NA - NA 0.109654
preserved ~ stimlen * (I(pos^2) + pos)	778.5 58.956781200000000084 7406 0.210 40A 7 NA 0.2093028	2.003 0 8 4 5 NA - NA 0.1458657	NA - 0.0174332
preserved \sim stimlen + $I(pos^2)$ + pos	786.7 473.07089990000000000043622 6547 NA NA 0.2814578	0.400 4N2 0 NA - NA 0.0449446	
preserved ~ stimlen	787.8 75.273.6X000000000000000000000000000000000000	NA NA NA NA NA	NA NA NA
$\begin{array}{c} \text{preserved} \sim \\ \text{stimlen} + \text{pos} \end{array}$		0.028 N 649 NA NA NA	NA NA NA
preserved ~ I(pos^2) + pos	809. 3623700200000000000000000000000000000000	0.449 285 2 NA - NA 0.0628761	NA NA NA
preserved ~ pos	817.7 D26 0 0.4BT/000000000059005995VA 2 NA NA	- NA NA NA NA 0.0816527	NA NA NA

```
print(BestFLPModelFormula)
## [1] "preserved ~ stimlen + (I(pos^2) + pos) * log_freq"
print(BestFLPModel)
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
## Coefficients:
##
         (Intercept)
                                stimlen
                                                   I(pos^2)
                                                                           pos
                                                                                          log_freq
##
             2.11348
                               -0.16169
                                                   -0.05879
                                                                       0.56390
                                                                                          -0.18971
## I(pos^2):log_freq
                           pos:log_freq
##
            -0.02678
                                0.29699
##
## Degrees of Freedom: 954 Total (i.e. Null); 948 Residual
## Null Deviance:
                        781.6
## Residual Deviance: 702.4
                                AIC: 746.6
# do a median split on frequency to plot hf/ls effects (analysis is continuous)
median_freq <- median(PosDat$log_freq)</pre>
PosDat$freq_bin[PosDat$log_freq >= median_freq]<-"hf"
PosDat$freq_bin[PosDat$log_freq < median_freq] <- "lf"
PosDat$FLPFitted<-fitted(BestFLPModel)</pre>
HFDat <- PosDat[PosDat$freq_bin == "hf",]</pre>
LFDat <- PosDat[PosDat$freq_bin == "lf",]
HF_Plot <- plot_len_pos_obs_predicted(HFDat,paste0(CurPat," - High frequency"), "FLPFitted",c(min_preser</pre>
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## Scale for y is already present. Adding another scale for y, which will replace the existing
LF_Plot <- plot_len_pos_obs_predicted(LFDat,paste0(CurPat, " - Low frequency"), "FLPFitted",c(min_preser
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## Scale for y is already present. Adding another scale for y, which will replace the existing
## scale.
library(ggpubr)
Both_Plots <- ggarrange(LF_Plot, HF_Plot) # labels=c("LF", "HF", ncol=2)
## Warning: Removed 3 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: Removed 1 row containing missing values or values outside the scale range
```

```
## (`geom_line()`).
## Warning: Removed 5 rows containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: Removed 2 rows containing missing values or values outside the scale range
## (`geom line()`).
ggsave(paste0(FigDir,CurPat,"_",CurTask,"_frequency_effect_length_pos_wfit.png"),device="png",unit="cm"
print(Both Plots)
      GC – Low frequency
                                                    GC - High frequency
                                                 1.0
  1.0
                               Word length
                                                                              Word length
                                                                                  5
preserved
                                                                                  6
  0.8
                                                 8.0
                                                                                  9
                                                 0.7
  0.6
                                                 0.6 -
        2 3 4 5 6 7
                                                       2 3 4 5 6 7
          Word position
                                                         Word position
# only main effects
MEModelEquations<-c(</pre>
  "preserved ~ CumPres",
  "preserved ~ CumErr",
  "preserved ~ (I(pos^2)+pos)",
  "preserved ~ pos",
  "preserved ~ stimlen",
  "preserved ~ 1"
MERes<-TestModels(MEModelEquations,PosDat)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
```

Warning in eval(family\$initialize): non-integer #successes in a binomial glm!
Warning in eval(family\$initialize): non-integer #successes in a binomial glm!
Warning in eval(family\$initialize): non-integer #successes in a binomial glm!

```
## ************
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
##
       2.3846
                   -0.9931
##
## Degrees of Freedom: 954 Total (i.e. Null); 953 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 637.8
                               AIC: 666.6
## log likelihood: -318.8842
## Nagelkerke R2: 0.2501965
## % pres/err predicted correctly: -185.3615
## % of predictable range [ (model-null)/(1-null) ]: 0.2207091
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   CumPres
       1.1208
                    0.3827
##
## Degrees of Freedom: 954 Total (i.e. Null); 953 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 741.2
                               AIC: 778.2
## log likelihood: -370.6031
## Nagelkerke R2: 0.0741326
## % pres/err predicted correctly: -228.3142
## % of predictable range [ (model-null)/(1-null) ]: 0.04109785
## ***********
## model index: 5
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   stimlen
       3.8643
                   -0.2938
##
##
## Degrees of Freedom: 954 Total (i.e. Null); 953 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 752.3
                               AIC: 787.9
## log likelihood: -376.1746
## Nagelkerke R2: 0.0540028
## % pres/err predicted correctly: -229.0446
## % of predictable range [ (model-null)/(1-null) ]: 0.03804359
## ************
## model index: 3
##
```

```
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                    pos
      1.21654
                  -0.06288
##
                                0.44929
## Degrees of Freedom: 954 Total (i.e. Null); 952 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 767.6
                               AIC: 809.3
## log likelihood: -383.78
## Nagelkerke R2: 0.02614282
## % pres/err predicted correctly: -233.8641
## % of predictable range [ (model-null)/(1-null) ]: 0.01789041
## *********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                       pos
                  -0.08165
##
      2.03997
##
## Degrees of Freedom: 954 Total (i.e. Null); 953 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 778.5
                               AIC: 817.7
## log likelihood: -389.2286
## Nagelkerke R2: 0.005908924
## % pres/err predicted correctly: -237.1464
## % of predictable range [ (model-null)/(1-null) ]: 0.004164951
## ************
## model index: 6
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
##
        1.749
##
## Degrees of Freedom: 954 Total (i.e. Null); 954 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 781.6
                               AIC: 819
## log likelihood: -390.8081
## Nagelkerke R2: 1.986502e-16
## % pres/err predicted correctly: -238.1424
## % of predictable range [ (model-null)/(1-null) ]: 0
## *********
BestMEModel<-MERes$ModelResult[[ BestModelIndexL1 ]]</pre>
BestMEModelFormula <-MERes $Model [[BestModelIndexL1]]
MEAICSummary<-data.frame(Model=MERes$Model,</pre>
```

Model	AIC DeltaAI	ICex	cpAIC w	vtNagR2 (Intercept	tCumPresC	umErr	$I(pos^2)$	pos	stimlen
preserved ~	666.56110.0000	1	1	0.250196 3 .384593	NA	-	NA	NA	NA
CumErr					0	.993064	2		
preserved \sim	778.2287111.6676	0	0	0.074132 6 .120767	0.3826592	NA	NA	NA	NA
CumPres									
preserved \sim	787.875821.3147	0	0	0.054002 3. 864286	NA	NA	NA	NA	-
stimlen									0.293766
preserved \sim	809.3023142.7412	0	0	0.026142 \$.216541	NA	NA	-	0.4492852	NA
$(I(pos^2) + pos)$							0.062876	31	
preserved ~ pos	817.7026151.1415	0	0	0.005908 2 $.039971$	NA	NA	NA	-	NA
								0.0816527	,
preserved ~ 1	819.019452.4584	0	0	0.00000000.749046	NA	NA	NA	NA	NA

```
if(DoSimulations){
      BestMEModelFormulaRnd <- BestMEModelFormula</pre>
    if(grepl("CumPres", BestMEModelFormulaRnd)){
      BestMEModelFormulaRnd <- gsub("CumPres", "RndCumPres", BestMEModelFormulaRnd)
    }else if(grepl("CumErr", BestMEModelFormulaRnd)){
      BestMEModelFormulaRnd <- gsub("CumErr","RndCumErr",BestMEModelFormulaRnd)</pre>
    }
    RndModelAIC<-numeric(length=RandomSamples)</pre>
    for(rindex in seq(1,RandomSamples)){
    # Shuffle cumulative values
      PosDat$RndCumPres <- ShuffleWithinWord(PosDat, "CumPres")</pre>
      PosDat$RndCumErr <- ShuffleWithinWord(PosDat, "CumErr")</pre>
      BestModelRnd <- glm(as.formula(BestMEModelFormulaRnd),</pre>
                            family="binomial",data=PosDat)
      RndModelAIC[rindex] <- BestModelRnd$aic</pre>
    ModelNames<-c(paste0("***", BestMEModelFormula),</pre>
                   rep(BestMEModelFormulaRnd,RandomSamples))
    AICValues <- c(BestMEModel$aic,RndModelAIC)
    BestMEModelRndDF <- data.frame(Name=ModelNames,AIC=AICValues)</pre>
    BestMEModelRndDF <- BestMEModelRndDF %>% arrange(AIC)
    BestMEModelRndDF <- rbind(BestMEModelRndDF,</pre>
                                data.frame(Name=c("Random average"),
                                            AIC=c(mean(RndModelAIC))))
    BestMEModelRndDF <- rbind(BestMEModelRndDF,</pre>
```

syll_component	MeanPres	N
1	0.8293333	125
O	0.8232759	464
P	0.8000000	5
S	0.8775510	49
V	0.9001068	312

```
# main effects models for data without satellite positions
keep_components = c("0","V","1")
OV1Data <- PosDat[PosDat$syll_component %in% keep_components,]
OV1Data <- OV1Data %>% select(stim_number,
                            stimlen, stim, pos,
                            preserved,syll_component)
OV1Data$CumPres <- CalcCumPres(OV1Data)</pre>
OV1Data$CumErr <- CalcCumErrFromPreserved(OV1Data)</pre>
SimpSyllMEAICSummary <- EvaluateSubsetData(OV1Data, MEModelEquations)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                     CumErr
##
        2.347
                     -1.006
##
## Degrees of Freedom: 900 Total (i.e. Null); 899 Residual
```

```
## Null Deviance:
## Residual Deviance: 610
                           AIC: 638.2
## log likelihood: -304.983
## Nagelkerke R2: 0.2396224
## % pres/err predicted correctly: -177.9819
## % of predictable range [ (model-null)/(1-null) ]: 0.2111978
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   CumPres
##
         1.141
                     0.385
##
## Degrees of Freedom: 900 Total (i.e. Null); 899 Residual
## Null Deviance:
                       739.8
## Residual Deviance: 703.8
                               AIC: 741
## log likelihood: -351.8891
## Nagelkerke R2: 0.06998098
## % pres/err predicted correctly: -217.2781
## % of predictable range [ (model-null)/(1-null) ]: 0.03801326
## **********
## model index: 5
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                   stimlen
##
        3.7815
                   -0.2837
##
## Degrees of Freedom: 900 Total (i.e. Null); 899 Residual
## Null Deviance:
                       739.8
## Residual Deviance: 713.8
                               AIC: 749.4
## log likelihood: -356.9015
## Nagelkerke R2: 0.05078628
## % pres/err predicted correctly: -217.7738
## % of predictable range [ (model-null)/(1-null) ]: 0.03582853
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
                  I(pos^2)
## (Intercept)
                                    pos
##
       1.20790
                  -0.06246
                                0.44861
##
## Degrees of Freedom: 900 Total (i.e. Null); 898 Residual
## Null Deviance:
                       739.8
## Residual Deviance: 726.3
                               AIC: 768
## log likelihood: -363.1663
```

```
## Nagelkerke R2: 0.02649341
## % pres/err predicted correctly: -221.7836
## % of predictable range [ (model-null)/(1-null) ]: 0.01815681
## *********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                       pos
      2.02799
##
                  -0.08059
##
## Degrees of Freedom: 900 Total (i.e. Null); 899 Residual
## Null Deviance:
                       739.8
## Residual Deviance: 736.8
                              AIC: 776
## log likelihood: -368.4147
## Nagelkerke R2: 0.005879843
## % pres/err predicted correctly: -224.9583
## % of predictable range [ (model-null)/(1-null) ]: 0.004165172
## **********
## model index: 6
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
##
         1.74
## Degrees of Freedom: 900 Total (i.e. Null); 900 Residual
## Null Deviance:
                       739.8
## Residual Deviance: 739.8
                              AIC: 777.1
## log likelihood: -369.9007
## Nagelkerke R2: -3.964744e-16
## % pres/err predicted correctly: -225.9034
## % of predictable range [ (model-null)/(1-null) ]: 0
## ***********
write.csv(SimpSyllMEAICSummary,
         pasteO(TablesDir,CurPat,"_",CurTask,
                "_OV1_main_effects_model_summary.csv"),row.names = FALSE)
kable(SimpSyllMEAICSummary)
```

Model	AIC DeltaAI	ICe	xpAICw	rtNagR2 (Intercept	t)CumPresC	CumErr	I(pos^2)	pos	stimlen
preserved ~	638.204@.0000	1	1	0.239622 2 .346855	NA	-	NA	NA	NA
CumErr					1	.006142	2		
preserved \sim	741.002 ± 02.7987	0	0	$0.069981 \\ 0.140957$	0.3850491	NA	NA	NA	NA
CumPres									
preserved \sim	$749.3662\!111.1622$	0	0	$0.050786 \\ 3.781454$	NA	NA	NA	NA	-
stimlen									0.2837381
preserved \sim	768.0419 129.8378	0	0	$0.026493 \boldsymbol{4}.207901$	NA	NA	-	0.448612	1 NA
$(I(pos^2) + pos)$							0.062456	6	

```
Model
                  AIC
                       DeltaAI&ICexpAICwtNagR2 (InterceptCumPresCumErr I(pos^2))
                                                                                             stimlen
preserved \sim pos
                 776.0031137.7991 0
                                         0
                                            0.0058798.027985
                                                                                                 NA
                                                                                      0.0805869
preserved \sim 1
                                            0.0000000, 740271
                                                                                        NA
                 777.1255138.9215 0
                                                               NA
                                                                       NA
                                                                                NA
                                                                                                 NA
```

```
# main effects models for data without satellite or coda positions
# (tradeoff -- takes away more complex segments, in addition to satellites, but
# also reduces data)
keep_components = c("0","V")
OVData <- PosDat[PosDat$syll_component %in% keep_components,]</pre>
OVData <- OVData %>% select(stim_number,
                            stimlen, stim, pos,
                            preserved, syll component)
OVData$CumPres <- CalcCumPres(OVData)</pre>
OVData$CumErr <- CalcCumErrFromPreserved(OVData)</pre>
SimpSyllMEAICSummary2<-EvaluateSubsetData(OVData, MEModelEquations)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
       data = PosDat)
##
## Coefficients:
## (Intercept)
                     CumErr
##
         2.281
                     -1.055
##
## Degrees of Freedom: 775 Total (i.e. Null); 774 Residual
## Null Deviance:
                        627.6
## Residual Deviance: 538.9
                                AIC: 564.1
## log likelihood: -269.446
## Nagelkerke R2: 0.1947886
## % pres/err predicted correctly: -157.8363
## % of predictable range [ (model-null)/(1-null) ]: 0.1711084
## **********
## model index: 5
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    stimlen
       3.6655
##
                    -0.2654
```

```
##
## Degrees of Freedom: 775 Total (i.e. Null); 774 Residual
## Null Deviance:
                       627.6
## Residual Deviance: 607.8
                               AIC: 639.2
## log likelihood: -303.9024
## Nagelkerke R2: 0.04542636
## % pres/err predicted correctly: -184.3961
## % of predictable range [ (model-null)/(1-null) ]: 0.03250568
## **********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                   CumPres
##
       1.2923
                    0.3526
##
## Degrees of Freedom: 775 Total (i.e. Null); 774 Residual
## Null Deviance:
                       627.6
                               AIC: 640.7
## Residual Deviance: 607.2
## log likelihood: -303.5924
## Nagelkerke R2: 0.04683032
## % pres/err predicted correctly: -185.5997
## % of predictable range [ (model-null)/(1-null) ]: 0.0262247
## **********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                    pos
##
      1.20532
                  -0.06521
                                0.47694
## Degrees of Freedom: 775 Total (i.e. Null); 773 Residual
## Null Deviance:
                       627.6
## Residual Deviance: 615.1
                               AIC: 652
## log likelihood: -307.5414
## Nagelkerke R2: 0.02886388
## % pres/err predicted correctly: -186.7896
## % of predictable range [ (model-null)/(1-null) ]: 0.02001491
## **********
## model index: 4
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                       pos
##
      2.02479
                  -0.07309
## Degrees of Freedom: 775 Total (i.e. Null); 774 Residual
## Null Deviance:
                       627.6
```

```
AIC: 659.8
## Residual Deviance: 625.4
## log likelihood: -312.692
## Nagelkerke R2: 0.005153813
## % pres/err predicted correctly: -189.9064
## % of predictable range [ (model-null)/(1-null) ]: 0.003749931
## **********
## model index: 6
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
##
        1.768
##
## Degrees of Freedom: 775 Total (i.e. Null); 775 Residual
## Null Deviance:
                      627.6
## Residual Deviance: 627.6
                              AIC: 660.3
## log likelihood: -313.8026
## Nagelkerke R2: 2.001865e-16
## % pres/err predicted correctly: -190.625
## % of predictable range [ (model-null)/(1-null) ]: 0
## **********
write.csv(SimpSyllMEAICSummary2,
         pasteO(TablesDir,CurPat,"_",CurTask,
                "_OV_main_effects_model_summary.csv"),row.names = FALSE)
kable(SimpSyllMEAICSummary2)
```

Model	AIC	DeltaAI	ICex	pAICw	rtNagR2 (1	Intercept	t)CumPres	CumErr	I(pos^2)	pos	stimlen
preserved ~	564.138	800.00000	1	1	0.1947880	.281016	NA	-	NA	NA	NA
CumErr							1	1.054532	2		
preserved \sim	639.152	275.01420	0	0	0.0454263	.665503	NA	NA	NA	NA	-
stimlen											0.2654032
preserved \sim	640.676	6076.53794	0	0	0.0468303	.292252	0.3526083	3 NA	NA	NA	NA
CumPres											
preserved \sim	652.009	5 87.87150	0	0	0.0288639	.205323	NA	NA	-	0.476938	33 NA
$(I(pos^2) + pos)$									0.065208	88	
preserved ~ pos	659.830	0495.69239	0	0	0.0051538	.024793	NA	NA	NA	-	NA
										0.073090)9
preserved ~ 1	660.273	3096.13498	0	0	0.0000000	.767662	NA	NA	NA	NA	NA

```
# plot prev err and prev cor plots
PrevCorPlot<-PlotObsPreviousCorrect(PosDat,palette_values,shape_values)</pre>
```

`summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
print(PrevCorPlot)

PrevErrPlot<-PlotObsPreviousError(PosDat,palette_values,shape_values)</pre>

`summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
print(PrevErrPlot)

PrevCorPlot<-PlotObsPredPreviousCorrect(PosDat, "preserved", "MEPred", palette_values, shape_values)

`summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
`summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.

print(PrevCorPlot)

PrevErrPlot<-PlotObsPredPreviousError(PosDat, "preserved", "MEPred", palette_values, shape_values)

```
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
print(PrevErrPlot)
```



```
ggsave(filename=paste0(PlotName,".tif"),plot=PrevCorPlot_device="tiff",compression = "lzw")
## Saving 6.5 x 4.5 in image
PlotName<-paste0(FigDir,CurPat,"_",CurTask,"PrevErrPlot_ObsPredME")
ggsave(filename=paste0(PlotName,".tif"),plot=PrevErrPlot,device="tiff",compression = "lzw")</pre>
```

Saving 6.5 x 4.5 in image

```
45
```

```
CumAICSummary <- NULL
#######
# level 2 -- Add position squared (quadratic with position)
#######
# After establishing the primary variable, see about additions
BestMEFactor <- BestMEModelFormula
OtherFactor<-"I(pos^2) + pos"
OtherFactorName<-"quadratic_by_pos"
if(!grepl("pos", BestMEFactor, fixed = TRUE)){ # if best model does not include pos
  AICSummary <- TestLevel 2 Models (PosDat, BestMEFactor, Other Factor, Other Factor Name)
 CumAICSummary <- AICSummary</pre>
 kable(AICSummary)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
## Coefficients:
## (Intercept)
                     CumErr
                               I(pos^2)
                                                  pos
      1.01645
                  -1.34774
                               -0.03642
                                              0.64512
## Degrees of Freedom: 954 Total (i.e. Null); 951 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 606 AIC: 636.7
## log likelihood: -303.0075
## Nagelkerke R2: 0.300529
## % pres/err predicted correctly: -178.2075
## % of predictable range [ (model-null)/(1-null) ]: 0.2506242
```

```
5
```

```
## *********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
##
       2.3846
                   -0.9931
##
## Degrees of Freedom: 954 Total (i.e. Null); 953 Residual
                      781.6
## Null Deviance:
## Residual Deviance: 637.8
                              AIC: 666.6
## log likelihood: -318.8842
## Nagelkerke R2: 0.2501965
## % pres/err predicted correctly: -185.3615
## % of predictable range [ (model-null)/(1-null) ]: 0.2207091
## **********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                  I(pos^2)
                                   pos
##
      1.21654
                  -0.06288
                               0.44929
## Degrees of Freedom: 954 Total (i.e. Null); 952 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 767.6
                              AIC: 809.3
## log likelihood: -383.78
## Nagelkerke R2: 0.02614282
## % pres/err predicted correctly: -233.8641
## % of predictable range [ (model-null)/(1-null) ]: 0.01789041
## *********
```

Model	AIC	DeltaAIC	AICexp	AICwt	NagR2	(Intercept)	CumErr	I(pos^2)	pos
$\overline{\text{preserved} \sim \text{CumErr} + \text{I}(\text{pos}^2) +}$	636.7211	0.00000	1e+00	0.9999997	0.3005290	1.016449	-1.3477359	-0.0364164	0.6451218
pos									

Model	AIC	DeltaAIC	AICexp	AICwt	NagR2	(Intercept)	CumErr	I(pos^2)	pos
preserved ~ CumErr	666.5611	29.84002	3e-07	0.0000003	0.2501965	2.384593	-0.9930642	NA	NA
preserved $\sim I(pos^2) + pos$	809.3023	172.58127	0e + 00	0.0000000	0.0261428	1.216541	NA	-0.0628761	0.4492852

```
#######
# level 2 -- Add length
#######
BestMEFactor <- BestMEModelFormula
OtherFactor <- "stimlen"
if(!grepl(OtherFactor,BestMEFactor,fixed = TRUE)){
 AICSummary <- TestLevel 2 Models (PosDat, Best MEFactor, Other Factor)
 CumAICSummary <- ConcatAndAddMissingColumns(CumAICSummary, AICSummary)</pre>
 kable(AICSummary)
}
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## ************
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
## Coefficients:
## (Intercept)
                    CumErr
                                stimlen
      3.05958
                  -0.94797
                               -0.09932
##
##
## Degrees of Freedom: 954 Total (i.e. Null); 952 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 635.2
                               AIC: 665.1
## log likelihood: -317.6218
## Nagelkerke R2: 0.2542601
## % pres/err predicted correctly: -184.3516
## % of predictable range [ (model-null)/(1-null) ]: 0.2249323
## *********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    CumErr
##
       2.3846
                   -0.9931
## Degrees of Freedom: 954 Total (i.e. Null); 953 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 637.8
                               AIC: 666.6
## log likelihood: -318.8842
## Nagelkerke R2: 0.2501965
## % pres/err predicted correctly: -185.3615
## % of predictable range [ (model-null)/(1-null) ]: 0.2207091
## *********
## model index: 3
```

```
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
       data = PosDat)
##
## Coefficients:
## (Intercept)
                    stimlen
        3.8643
                    -0.2938
##
##
## Degrees of Freedom: 954 Total (i.e. Null); 953 Residual
## Null Deviance:
                        781.6
## Residual Deviance: 752.3
                                 AIC: 787.9
## log likelihood: -376.1746
## Nagelkerke R2: 0.0540028
## % pres/err predicted correctly: -229.0446
## % of predictable range [ (model-null)/(1-null) ]: 0.03804359
## **********
Model
                        AIC
                             DeltaAIC AICexp
                                                 AICwt
                                                          NagR2
                                                                 (Intercept)
                                                                             CumErr
                                                                                       stimlen
preserved \sim \text{CumErr} +
                     665.1057 \ 0.000000 \ 1.000000 \ 0.6742961 \ 0.2542601 \ 3.059585
stimlen
                                                                            0.9479663 \quad 0.0993218
preserved \sim CumErr
                     666.5611 \ 1.455361 \quad 0.483028 \ 0.3257039 \ 0.2501965 \ 2.384593
                                                                                          NΑ
                                                                            0.9930642
preserved \sim stimlen
                     787.8758\ 122.770072\ 0.0000000\ 0.00000000\ 0.0540028\ 3.864286
                                                                                 NA
                                                                                      0.2937663
#######
# level 2 -- add cumulative preserved
#######
BestMEFactor <- BestMEModelFormula
OtherFactor<-"CumPres"
if(!grepl(OtherFactor,BestMEFactor,fixed = TRUE)){
  AICSummary <- TestLevel2Models (PosDat, BestMEFactor, OtherFactor)
  CumAICSummary <- ConcatAndAddMissingColumns(CumAICSummary, AICSummary)</pre>
  kable(AICSummary)
}
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                     CumErr
                                  CumPres
##
        1.7629
                    -0.9839
                                   0.3737
##
## Degrees of Freedom: 954 Total (i.e. Null); 952 Residual
```

```
## Null Deviance:
                         781.6
## Residual Deviance: 607.9
                                 ATC: 636.4
## log likelihood: -303.9395
## Nagelkerke R2: 0.2976206
## % pres/err predicted correctly: -178.6663
## % of predictable range [ (model-null)/(1-null) ]: 0.2487057
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
## Coefficients:
## (Intercept)
                     CumErr
##
        2.3846
                    -0.9931
##
## Degrees of Freedom: 954 Total (i.e. Null); 953 Residual
## Null Deviance:
                         781.6
## Residual Deviance: 637.8
                                 AIC: 666.6
## log likelihood: -318.8842
## Nagelkerke R2: 0.2501965
## % pres/err predicted correctly: -185.3615
## % of predictable range [ (model-null)/(1-null) ]: 0.2207091
## **********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    CumPres
##
        1.1208
                     0.3827
##
## Degrees of Freedom: 954 Total (i.e. Null); 953 Residual
## Null Deviance:
                         781.6
## Residual Deviance: 741.2
                                 AIC: 778.2
## log likelihood: -370.6031
## Nagelkerke R2: 0.0741326
## % pres/err predicted correctly: -228.3142
## % of predictable range [ (model-null)/(1-null) ]: 0.04109785
## **********
Model
                         AIC
                              DeltaAIC AICexp AICwt
                                                         NagR2
                                                                                      CumPres
                                                                  (Intercept)
                                                                             CumErr
                      636.4244 \quad 0.00000 \quad 1e+00 \quad 0.9999997 \quad 0.2976206 \quad 1.762911
                                                                                      0.3736570
preserved \sim \text{CumErr} +
CumPres
                                                                            0.9838772
preserved \sim CumErr
                      666.5611 30.13669 3e-07
                                               0.0000003 \ 0.2501965 \ 2.384593
                                                                                           NA
                                                                             0.9930642
preserved \sim CumPres
                      778.2287 \quad 141.80430 \quad 0e+00 \quad 0.0000000 \quad 0.0741326 \quad 1.120767
                                                                                      0.3826592
                                                                                 NA
```

```
BestMEFactor <- BestMEModelFormula
OtherFactor<-"pos"
if(!grepl(OtherFactor,BestMEFactor,fixed = TRUE)){
 AICSummary <- TestLevel 2 Models (PosDat, Best MEFactor, Other Factor)
 CumAICSummary <- ConcatAndAddMissingColumns(CumAICSummary, AICSummary)</pre>
 kable(AICSummary)
}
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## *********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
                                    pos
##
       1.3893
                   -1.3575
                                 0.3737
## Degrees of Freedom: 954 Total (i.e. Null); 952 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 607.9
                               AIC: 636.4
## log likelihood: -303.9395
## Nagelkerke R2: 0.2976206
## % pres/err predicted correctly: -178.6663
## % of predictable range [ (model-null)/(1-null) ]: 0.2487057
## *********
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    CumErr
       2.3846
                   -0.9931
##
## Degrees of Freedom: 954 Total (i.e. Null); 953 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 637.8
                               AIC: 666.6
## log likelihood: -318.8842
## Nagelkerke R2: 0.2501965
## % pres/err predicted correctly: -185.3615
## % of predictable range [ (model-null)/(1-null) ]: 0.2207091
## **********
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
```

```
## Coefficients:
## (Intercept)
                      pos
      2.03997
##
                 -0.08165
##
## Degrees of Freedom: 954 Total (i.e. Null); 953 Residual
## Null Deviance:
                      781.6
## Residual Deviance: 778.5
                              AIC: 817.7
## log likelihood: -389.2286
## Nagelkerke R2: 0.005908924
## % pres/err predicted correctly: -237.1464
## % of predictable range [ (model-null)/(1-null) ]: 0.004164951
## *********
```

Model	AIC	DeltaAIC	AICexp	AICwt	NagR2	(Intercept)	CumErr	pos
preserved ~ CumErr	636.4244	0.00000	1e+00	0.9999997	0.2976206	1.389254	-	0.3736570
+ pos							1.3575342	
preserved \sim CumErr	666.5611	30.13669	3e-07	0.0000003	0.2501965	2.384593	- 0.0000.40	NA
1	015 5000	101 05015	0 + 00	0.0000000	0.0050000	0.000071	0.9930642	
preserved $\sim pos$	817.7026	181.27817	0e+00	0.0000000	0.0059089	2.039971	NA	-
								0.0816527

CumAICSummary <- CumAICSummary %>% arrange(AIC)
BestModelFormulaL2 <- CumAICSummary\$Model[BestModelIndexL2]
write.csv(CumAICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_main_effects_plus_one_model_summary.csv")
kable(CumAICSummary)</pre>

Model	AIC I	DeltaAI@ICe	xpAICwt	NagR2	(Intercep	G umErr	I(pos^2)) pos	stimlen	CumPres
preserved ~	636.4240	.0000001.000	0000099999	997.29762	06762911	-	NA	NA	NA	0.3736570
CumErr +						0.983877	72			
CumPres										
preserved \sim	636.4240	.0000001.000	0000099999	997.29762	016389254	-	NA	0.37365	70 NA	NA
CumErr + pos						1.357534	12			
preserved ~	636.7210	.0000001.000	0000099999	997.30052	90016449	-	-	0.64512	218 NA	NA
CumErr +						1.347735	9.03641	64		
$I(pos^2) + pos$										
preserved ~	665.105	.0000001.000	0000067429	00125426	CM 059585	-	NA	NA	-	NA
CumErr + stimlen						0.947966	33		0.09932	18
preserved \sim	666.561 2	9.84002 6 .000	000000000000000000000000000000000000000	00325019	6 25384593	-	NA	NA	NA	NA
CumErr						0.993064	12			
preserved \sim	666.5611	.4553610.483	30280032570	39 25019	62 5384593	_	NA	NA	NA	NA
CumErr						0.993064	12			
preserved ~	666.561 3	0.13669 6 .000	000000000000000000000000000000000000000	00325019	62 5384593	_	NA	NA	NA	NA
CumErr						0.993064	12			
preserved \sim	666.561 3	0.13669 3 .000	000000000000000000000000000000000000000	00325019	62 5384593	_	NA	NA	NA	NA
CumErr						0.993064	12			
preserved \sim	778.2287	41.8042 99 00	000000000000000000000000000000000000000	00007413	2 6120767	NA	NA	NA	NA	0.3826592
CumPres										
preserved ~	787.8758	22.7700 72 000	000000000000000000000000000000000000000	00005400	28 864286	NA	NA	NA	_	NA
stimlen									0.29376	63
preserved ~	809.3023	72.5812 65 000	000000000000000000000000000000000000000	00002614	28216541	NA	_	0.44928	352 NA	NA
$I(pos^2) + pos$							0.06287			
preserved ~ pos	817.7026	81.278170000	000000000000000000000000000000000000000	0 0 000590	8 9039971	NA	NA	_	NA	NA
1 P							·	0.08165	527	

```
# explore influence of frequency and length
if(grep1("stimlen", BestModelFormulaL2)){ # if length is already in the formula
  Level3ModelEquations<-c(
     BestModelFormulaL2, # best model from level 2
    "preserved ~ 1", # null model
      paste0(BestModelFormulaL2," + log_freq")
}else if(grepl("log_freq",BestModelFormulaL2)){ # if log_freq is already in the formula
   Level3ModelEquations<-c(
      BestModelFormulaL2, # best model from level 2
    "preserved ~ 1", # null model
      paste0(BestModelFormulaL2," + stimlen")
  )
}else{
  Level3ModelEquations<-c(
      BestModelFormulaL2, # best model from level 2
    "preserved ~ 1", # null model
     paste0(BestModelFormulaL2," + log_freq"),
     paste0(BestModelFormulaL2," + stimlen"),
     paste0(BestModelFormulaL2," + stimlen + log_freq")
}
Level3Res<-TestModels(Level3ModelEquations,PosDat)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## **********
## model index: 5
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    CumErr
                                 CumPres
                                              stimlen
                                                          log_freq
##
        2.6122
                   -0.8408
                                  0.4235
                                              -0.1329
                                                            0.3022
##
## Degrees of Freedom: 954 Total (i.e. Null); 950 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 580.6
                                AIC: 609.7
## log likelihood: -290.3222
## Nagelkerke R2: 0.3395587
## % pres/err predicted correctly: -170.165
## % of predictable range [ (model-null)/(1-null) ]: 0.2842548
## model index: 3
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
```

```
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
                                CumPres
                                            log_freq
##
       1.7703
                   -0.8843
                                 0.3901
                                             0.3501
##
## Degrees of Freedom: 954 Total (i.e. Null); 951 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 584.4
                               AIC: 612.7
## log likelihood: -292.1817
## Nagelkerke R2: 0.3339021
## % pres/err predicted correctly: -171.5992
## % of predictable range [ (model-null)/(1-null) ]: 0.2782575
## **********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
                                CumPres
                                             stimlen
       3.1859
                   -0.8862
                                 0.4354
                                             -0.2251
##
## Degrees of Freedom: 954 Total (i.e. Null); 951 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 595.9
                               AIC: 623.8
## log likelihood: -297.9251
## Nagelkerke R2: 0.3162911
## % pres/err predicted correctly: -174.5776
## % of predictable range [ (model-null)/(1-null) ]: 0.2658033
## **********
## model index: 1
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                                CumPres
                    CumErr
##
       1.7629
                   -0.9839
                                 0.3737
##
## Degrees of Freedom: 954 Total (i.e. Null); 952 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 607.9
                               AIC: 636.4
## log likelihood: -303.9395
## Nagelkerke R2: 0.2976206
## % pres/err predicted correctly: -178.6663
## % of predictable range [ (model-null)/(1-null) ]: 0.2487057
## **********
## model index: 2
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
```

```
## (Intercept)
##
         1.749
##
## Degrees of Freedom: 954 Total (i.e. Null); 954 Residual
## Null Deviance:
                        781.6
## Residual Deviance: 781.6
                                AIC: 819
## log likelihood: -390.8081
## Nagelkerke R2: 1.986502e-16
## % pres/err predicted correctly: -238.1424
## % of predictable range [ (model-null)/(1-null) ]: 0
BestModelL3<-Level3Res$ModelResult[[ BestModelIndexL3 ]]</pre>
BestModelFormulaL3<-Level3Res$Model[[BestModelIndexL3]]</pre>
AICSummary <- data.frame (Model=Level3Res$Model,
                       AIC=Level3Res$AIC,
                       row.names = Level3Res$Model)
AICSummary$DeltaAIC<-AICSummary$AIC-AICSummary$AIC[1]
AICSummary$AICexp<-exp(-0.5*AICSummary$DeltaAIC)
AICSummary$AICwt<-AICSummary$AICexp/sum(AICSummary$AICexp)
AICSummary$NagR2<-Level3Res$NagR2
AICSummary <- merge(AICSummary, Level3Res Coefficient Values,
                          by='row.names',sort=FALSE)
AICSummary <- subset(AICSummary, select = -c(Row.names))
write.csv(AICSummary,paste0(TablesDir,CurPat,"_",CurTask,"_main_effects_plus_one_len_freq_summary.csv")
kable(AICSummary)
```

Model	AIC DeltaAICAICexp AICwt NagR2 (InterceptCumErr CumPrelog_frecstimlen
preserved ~ CumErr +	609.747 0 .0000001.00000 0 081330 2 433955 87 .612172 - 0.42350 17 .3021543 -
CumPres + stimlen +	0.8407878 0.1328929
\log_{freq}	
preserved $\sim \text{CumErr} +$	612.698 2 .9510590.22865 7 \$\text{7}\$18596 7 \$\text{8}33390 2 \text{1}770330 - 0.390149\text{8}3501070 NA
$CumPres + log_freq$	0.8843474
preserved $\sim \text{CumErr} +$	623.783 0 4.03568 0 .00089 5 8000728 5 31629 B .185944 - 0.4354480NA -
CumPres + stimlen	0.8861564 0.2250711
preserved $\sim \text{CumErr} +$	636.424 2 6.677090.00000 1 6000000 1 829762 0 6762911 - 0.3736570NA NA
CumPres	0.9838772
preserved ~ 1	819.019 2 09.2721 0 900000000000000000000000000000000000

```
# BestModelIndex is set by the parameter file and is used to choose
# a model that is essentially equivalent to the lowest AIC model, but
# simpler (and with a slightly higher AIC value, so not in first position)
BestModelL3<-Level3Res$ModelResult[[ BestModelIndexL3 ]]
BestModelFormulaL3<-Level3Res$Model[BestModelIndexL3]

BestModel<-BestModelL3
BestModelL3
BestModelDeletions<-arrange(dropterm(BestModel),desc(AIC))</pre>
```

Warning in eval(family\$initialize): non-integer #successes in a binomial glm!

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
# order by terms that increase AIC the most when they are the one dropped
BestModelDeletions
## Single term deletions
##
## Model:
## preserved ~ CumErr + CumPres + stimlen + log_freq
           Df Deviance
                           AIC
           1 661.21 688.31
## CumErr
## CumPres 1 617.07 644.17
## log_freq 1
                595.85 622.95
## stimlen 1
                584.36 611.47
## <none>
                 580.64 609.75
###################################
# Single deletions from best model
####################################
write.csv(BestModelDeletions, paste0(TablesDir, CurPat, "_", CurTask, "_best_model_single_term_deletions.csv
# plot prev err and prev cor with predicted values
PosDat$OAPred<-fitted(BestModel)</pre>
PrevCorPlot<-PlotObsPredPreviousCorrect(PosDat, "preserved", "OAPred", palette_values, shape_values)
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
print(PrevCorPlot)
```


PrevErrPlot<-PlotObsPredPreviousError(PosDat, "preserved", "OAPred", palette_values, shape_values)

`summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
`summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
print(PrevErrPlot)


```
PlotName<-paste0(FigDir,CurPat,"_",CurTask,"_ObsPred_BestFullModel")
ggsave(filename=paste(PlotName,"_prev_correct.tif",sep=""),plot=PrevCorPlot,device="tiff",compression =
## Saving 6.5 \times 4.5 in image
ggsave(filename=paste(PlotName,"_prev_error.tif",sep=""),plot=PrevErrPlot,device="tiff",compression = "
## Saving 6.5 \times 4.5 in image
if(DoSimulations){
  BestModelFormulaL3Rnd <- BestModelFormulaL3</pre>
  if(grepl("CumPres", BestModelFormulaL3Rnd)){
    BestModelFormulaL3Rnd <- gsub("CumPres", "RndCumPres", BestModelFormulaL3Rnd)</pre>
  if(grepl("CumErr",BestModelFormulaL3Rnd)){
    BestModelFormulaL3Rnd <- gsub("CumErr","RndCumErr",BestModelFormulaL3Rnd)</pre>
  }
  RndModelAIC<-numeric(length=RandomSamples)</pre>
  for(rindex in seq(1,RandomSamples)){
  # Shuffle cumulative values
    PosDat$RndCumPres <- ShuffleWithinWord(PosDat, "CumPres")</pre>
    PosDat$RndCumErr <- ShuffleWithinWord(PosDat, "CumErr")</pre>
    BestModelRnd <- glm(as.formula(BestModelFormulaL3Rnd),</pre>
                         family="binomial",data=PosDat)
    RndModelAIC[rindex] <- BestModelRnd$aic</pre>
  ModelNames<-c(paste0("***",BestModelFormulaL3),</pre>
```

```
rep(BestModelFormulaL3Rnd,RandomSamples))
  AICValues <- c(BestModelL3$aic,RndModelAIC)
  BestModelRndDF <- data.frame(Name=ModelNames,AIC=AICValues)</pre>
  BestModelRndDF <- BestModelRndDF %>% arrange(AIC)
  BestModelRndDF <- rbind(BestModelRndDF,</pre>
                           data.frame(Name=c("Random average"),
                                      AIC=c(mean(RndModelAIC))))
  BestModelRndDF <- rbind(BestModelRndDF,</pre>
                           data.frame(Name=c("Random SD"),
                                      AIC=c(sd(RndModelAIC))))
  write.csv(BestModelRndDF,paste0(TablesDir,CurPat,"_",CurTask,
                                   "_best_model_with_random_cum_term.csv"),
            row.names = FALSE)
}
# plot influence factors
num_models <- nrow(BestModelDeletions) - 1</pre>
# minus 1 because last
# model is always <none> and we don't want to include that
if(num_models > 4){
 last_model_num <- 4</pre>
}else{
  last_model_num <- num_models</pre>
FinalModelSet<-ModelSetFromDeletions(BestModelFormulaL3,
                                      BestModelDeletions,
                                      last_model_num)
PlotName <- paste O (FigDir, CurPat, "_", CurTask, "_FactorPlots")
FactorPlot<-PlotModelSetWithFreq(PosDat,FinalModelSet,</pre>
                                  palette_values,FinalModelSet,PptID=CurPat)
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## ************
## model index: 1
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
       data = PosDat)
##
##
## Coefficients:
## (Intercept)
                     CumErr
        2.3846
                    -0.9931
##
## Degrees of Freedom: 954 Total (i.e. Null); 953 Residual
## Null Deviance:
                        781.6
## Residual Deviance: 637.8
                                AIC: 666.6
## log likelihood: -318.8842
```

```
## Nagelkerke R2: 0.2501965
## % pres/err predicted correctly: -185.3615
## % of predictable range [ (model-null)/(1-null) ]: 0.2207091
## *********
## model index: 2
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
##
## Coefficients:
## (Intercept)
                    CumErr
                                CumPres
                   -0.9839
##
       1.7629
                                 0.3737
##
## Degrees of Freedom: 954 Total (i.e. Null); 952 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 607.9
                               AIC: 636.4
## log likelihood: -303.9395
## Nagelkerke R2: 0.2976206
## % pres/err predicted correctly: -178.6663
## % of predictable range [ (model-null)/(1-null) ]: 0.2487057
## *********
## model index: 3
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
                                CumPres
                                            log_freq
       1.7703
                   -0.8843
                                 0.3901
                                              0.3501
##
##
## Degrees of Freedom: 954 Total (i.e. Null); 951 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 584.4
                               AIC: 612.7
## log likelihood: -292.1817
## Nagelkerke R2: 0.3339021
## % pres/err predicted correctly: -171.5992
## % of predictable range [ (model-null)/(1-null) ]: 0.2782575
## *********
## model index: 4
##
## Call: glm(formula = as.formula(ModelEquations[Index]), family = "binomial",
##
      data = PosDat)
##
## Coefficients:
## (Intercept)
                    CumErr
                                CumPres
                                            log_freq
                                                         stimlen
##
       2.6122
                   -0.8408
                                 0.4235
                                              0.3022
                                                         -0.1329
##
## Degrees of Freedom: 954 Total (i.e. Null); 950 Residual
## Null Deviance:
                       781.6
## Residual Deviance: 580.6
                               AIC: 609.7
## log likelihood: -290.3222
## Nagelkerke R2: 0.3395587
## % pres/err predicted correctly: -170.165
## % of predictable range [ (model-null)/(1-null) ]: 0.2842548
```

```
## ***********
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'freq_bin'. You can override using the `.groups` argument.
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 7 values. Consider specifying shapes manually if you need that many have
## Warning: Removed 1 row containing missing values or values outside the scale range
## (`geom_point()`).
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 7 values. Consider specifying shapes manually if you need that many have
     them.
## Warning: Removed 1 row containing missing values or values outside the scale range (`geom_point()`).
## Removed 1 row containing missing values or values outside the scale range (`geom_point()`).
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 7 values. Consider specifying shapes manually if you need that many have
     them.
## Warning: Removed 1 row containing missing values or values outside the scale range (`geom_point()`).
## Removed 1 row containing missing values or values outside the scale range (`geom_point()`).
## Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes
## difficult to discriminate
## i you have requested 7 values. Consider specifying shapes manually if you need that many have
    them.
## Warning: Removed 1 row containing missing values or values outside the scale range (`geom_point()`).
```

difficult to discriminate

##

them.

Removed 1 row containing missing values or values outside the scale range (`geom_point()`).

i you have requested 7 values. Consider specifying shapes manually if you need that many have

Warning: The shape palette can deal with a maximum of 6 discrete values because more than 6 becomes

Warning: Removed 1 row containing missing values or values outside the scale range (`geom_point()`).
Removed 1 row containing missing values or values outside the scale range (`geom_point()`).

ggsave(paste0(PlotName,".tif"),plot=FactorPlot,width = 360,height=400,units="mm",device="tiff",compress
use \blandscape and \elandscape to make markdown plots landscape if needed
FactorPlot

DA.Result<-dominanceAnalysis(BestModel)</pre>

Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm! ## Warning in eval(family\$initialize): non-integer #successes in a binomial glm!

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
```

DAContributionAverage <- ConvertDominanceResultToTable (DA.Result)
write.csv (DAContributionAverage, paste0 (TablesDir, CurPat, "_", CurTask, "_dominance_analysis_table.csv"), rokable (DAContributionAverage)

CumErr	CumPres	stimlen	log_freq
0.1452410	0.0546624	0.0227271	0.0433021
0.1099220	0.0416096	0.0180976	0.0338564
0.1911897	0.0723725	0.0314775	0.0588872
0.1271590	0.0478349	0.0197123	0.0376943
	0.1452410 0.1099220 0.1911897	0.1452410 0.0546624 0.1099220 0.0416096 0.1911897 0.0723725	0.1452410 0.0546624 0.0227271 0.1099220 0.0416096 0.0180976 0.1911897 0.0723725 0.0314775

```
64
```

```
deviance_differences_df<-GetDevianceSet(FinalModelSet,PosDat)</pre>
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
write.csv(deviance_differences_df,paste0(TablesDir,CurPat,"_",CurTask,"_deviance_differences_table.csv"),row.names = FALSE)
deviance differences df
##
                                                                           model deviance
## CumErr + CumPres + log_freq + stimlen CumErr + CumPres + log_freq + stimlen 580.6443
## CumErr + CumPres + log_freq
                                                    CumErr + CumPres + log_freq 584.3634
## CumErr + CumPres
                                                               CumErr + CumPres 607.8789
## CumErr
                                                                          CumErr 637.7684
## null
                                                                            null 781.6163
                                          deviance_explained percent_explained
## CumErr + CumPres + log_freq + stimlen
                                                    200.9719
                                                                      25.71235
## CumErr + CumPres + log freq
                                                    197.2529
                                                                      25.23653
## CumErr + CumPres
                                                    173.7374
                                                                      22.22796
## CumErr
                                                    143.8479
                                                                      18.40390
## null
                                                      0.0000
                                                                       0.00000
                                          percent of explained deviance increment in explained
## CumErr + CumPres + log freq + stimlen
                                                              100.00000
                                                                                       1.850541
## CumErr + CumPres + log freq
                                                               98.14946
                                                                                      11.700886
## CumErr + CumPres
                                                               86.44857
                                                                                      14.872459
## CumErr
                                                               71.57611
                                                                                      71.576114
## null
                                                                      NA
                                                                                       0.000000
kable(deviance differences df[,2:3], format="latex", booktabs=TRUE) %%
 kable_styling(latex_options="scale_down")
kable(deviance differences df[,c(4:6)], format="latex", booktabs=TRUE) %%
 kable_styling(latex_options="scale_down")
NagContributions <- t(DAContributionAverage[3,])</pre>
NagTotal<-sum(NagContributions)</pre>
NagPercents <- NagContributions / NagTotal</pre>
NagResultTable <- data.frame(NagContributions = NagContributions, NagPercents = NagPercents)</pre>
```

names(NagResultTable)<-c("NagContributions","NagPercents")</pre>

	deviance	deviance_explained
$CumErr + CumPres + log_freq + stimlen$	580.6443	200.9719
$CumErr + CumPres + log_freq$	584.3634	197.2529
CumErr + CumPres	607.8789	173.7374
CumErr	637.7684	143.8479
null	781.6163	0.0000

	percent_explained	percent_of_explained_deviance	increment_in_explained
$-$ CumErr + CumPres + log_freq + stimlen	25.71235	100.00000	1.850541
$CumErr + CumPres + log_freq$	25.23653	98.14946	11.700886
CumErr + CumPres	22.22796	86.44857	14.872459
CumErr	18.40390	71.57611	71.576114
null	0.00000	NA	0.000000

```
write.csv(NagResultTable,paste0(TablesDir,CurPat," ",CurTask," nagelkerke contributions table.csv"),row.names = TRUE)
NagPercents
##
            Nagelkerke
## CumErr 0.54019553
## CumPres 0.20448423
## stimlen 0.08893781
## log_freq 0.16638243
sse_results_list<-compare_SS_accounted_for(FinalModelSet, "preserved ~ 1", PosDat, N_cutoff=10)
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
```

`summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in (null_cumerr_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
## Warning in (null cumcor resid^2) * (N values$len pos N): longer object length is not a
## multiple of shorter object length
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in (null cumerr resid^2) * (N values$len pos N): longer object length is not a
## multiple of shorter object length
## Warning in (null_cumerr_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in (null_cumerr_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
## Warning in (null_cumerr_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
```

model	p_accounted_for	model_deviance
preserved ~ CumErr	0.3001074	637.7684
$preserved \sim CumErr + CumPres$	0.7183148	607.8789
$preserved \sim CumErr + CumPres + log_freq$	0.7371128	584.3634
$preserved \sim CumErr + CumPres + log_freq + stimlen$	0.7558880	580.6443

```
## Warning in eval(family$initialize): non-integer #successes in a binomial glm!
## `summarise()` has grouped output by 'stimlen'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumErr'. You can override using the `.groups` argument.
## `summarise()` has grouped output by 'CumPres'. You can override using the `.groups` argument.
## Warning in (null cumerr resid^2) * (N values$len pos N): longer object length is not a
## multiple of shorter object length
## Warning in (null_cumerr_resid^2) * (N_values$len_pos_N): longer object length is not a
## multiple of shorter object length
sse table<-sse results table(sse results list)</pre>
write.csv(sse_table,paste0(TablesDir,CurPat,"_",CurTask,"_sse_results_table.csv"),row.names = TRUE)
sse table
##
                                           model p accounted for model deviance diff CumErr
                                                       0.3001074
                                                                       637.7684
                                                                                  0.0000000
## 1
                              preserved ~ CumErr
## 2
                      preserved ~ CumErr+CumPres
                                                       0.7183148
                                                                       607.8789
                                                                                  0.4182075
             preserved ~ CumErr+CumPres+log freq
                                                                       584.3634 0.4370054
## 3
                                                       0.7371128
     preserved ~ CumErr+CumPres+log freq+stimlen
                                                       0.7558880
                                                                       580.6443 0.4557806
    diff_CumErr+CumPres diff_CumErr+CumPres+log_freq diff_CumErr+CumPres+log_freq+stimlen
## 1
             -0.41820745
                                          -0.43700540
                                                                               -0.45578058
## 2
                                          -0.01879795
              0.00000000
                                                                               -0.03757313
## 3
              0.01879795
                                           0.00000000
                                                                               -0.01877518
## 4
              0.03757313
                                           0.01877518
                                                                                0.00000000
kable(sse_table[,1:3], format="latex", booktabs=TRUE) %>%
  kable_styling(latex_options="scale_down")
write.csv(results_report_DF,paste0(TablesDir,CurPat,"_",CurTask,"_results_report_df.csv"),row.names = FALSE)
kable(sse_table[,c(1,4:6)], format="latex", booktabs=TRUE) %>%
  kable styling(latex options="scale down")
```

	٠

model	diff_CumErr	diff_CumErr+CumPres	diff_CumErr+CumPres+log_freq
preserved ~ CumErr	0.0000000	-0.4182075	-0.4370054
preserved ~ CumErr+CumPres	0.4182075	0.0000000	-0.0187979
preserved ~ CumErr+CumPres+log_freq	0.4370054	0.0187979	0.0000000
$preserved \sim CumErr + CumPres + log_freq + stimlen$	0.4557806	0.0375731	0.0187752