

Chapter 4: Flows on the circle

 θ =sin(aθ) 4.1.1. The real values of a , which give a well-defined vector field, on a circle for the function, θ =sin(aθ), one fixed for Diff where where Z.

0=1+2cos0 4.1.2. Fixed points 0=cos (-1/2)

= $\frac{2}{3}\pi$, $\frac{5}{3}\pi$... $(n+\frac{2}{3})\pi$ "Stable" = $\frac{4}{3}\pi$, $\frac{7}{3}\pi$... $(n+\frac{4}{3})\pi$ "unstable"

8=sin20 4.1.3, Fixed Paint = sin(0)

 $=\frac{1}{2}\pi, \frac{3}{2}\pi, \frac{5}{2}\pi...(n+\frac{1}{2})\pi$ "stable"

Where $n \in \mathbb{Z}$

θ=sin³θ 4.1.4 [Fixed points] θ=sin'(0) = Oπ, 2π...(2n)π "unstable" = iπ, 3π... (2n+i)π "stable" where n ∈ Z

Phase Portrait:

Phase Portrait

μ	Bifurcations
4-2	- Dnc
-2< H < 0	Two
4 = 0	Three
02/429/3	Four
9/8	Two

Three

1		V	
0=4+5in0+cos20 4.3.6. 0=(4+1)+5in0-25in20	0	H	Bifurtati
$\sin(2\theta) = \frac{1 \pm \sqrt{1 + 4(-2)(\mu + 1)}}{2(-2)}$	NA2s	Z-9/8	Zero
Z(=Z)	1 - 1 - 0.2	-9/3	- Open
	arcsin (1/4)	= - 1/8	TWO
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	arcsin (11-1/4)	10	1 00 0
TMC-961	13 11 T	= 0	Three
ŽÔ ŽÔ	arcsin(14)	-9<4<0_	Four
mport of the	211.	OKHEZ-	Two
	2-7	Z	one
1-413(HCO) [H=O]	π/2	32	-040
	きπ	= 0	Three
	11 TT		*
10 (02 pc2) (U=2)	7 TCO < 1/5 TT	0< H<2	TWO
4	31/2	= 2	one
TZCHI	NA	2<4	Zero

40

B= sin € H+sin B

 $4.3.7 \quad 0 = 5in\theta$ $H + 5in\theta$ $0 = \mu + 5in\theta$ $H = -5in\theta$ $\theta = 5in^{1}(-\mu)$

0	11	Bifurwhons
OT TO	20	Two
MA	= 0	Zero
0	>0	Two

0=sin20 1+Hsin0

4.3.8, 0=5in20 1+ H5inu

0=1+45in8

0=5in (-1)

0 1	1 Bifurcutions
T/2 <-1	Four
T 31/2 2-1	Three
12 - 14 140	Four
3π12 = 0	Three
1/2 N O C M C 1	Four
T/2 = 1	Three
711/2 >1	Four

 $r^{ab}\frac{du}{d\tau}=r+r^{2a}\frac{z}{u^{2}}$ $4.3.9. T_{hi-hirange} \sim O(r^{1/2})$ $o) O(r^{a}); x=r^{a}u, where <math>u\sim O(1)$, $t=r^{b}\tau$, with $\tau\sim O(1)$ $x=r+x^{2}=r+(r^{a}u^{2}=r+r^{2a}u^{2}); r^{ab}\frac{du}{d\tau}=r+r^{2a}u^{2}; r^{ab}\frac{du}{d\tau}=r+r^{2a}u^{2}; d=\frac{1}{2};b=\frac{1}{2};$ $y=r+x^{2}$ $(4.3.10) x=r^{a}u; t=r^{b}\tau; r^{ab}\frac{du}{d\tau}=r+r^{a}u; s=\frac{1}{2};b=\frac{1}{2};$

m²° + b° + mg L sin
$$\theta$$
 = T 4. 4. 1. θ = 0 - or θ << 1 > t = $T\tau$ > $\frac{mL^2}{T^2} \frac{d^2\theta}{d^2\tau} + \frac{b}{T} \frac{d\theta}{d\tau} + \frac{mgL sin \theta}{mgL} = T$

$$\frac{L^2}{gT^2} \frac{d^2\theta}{d^2\tau} + \frac{b}{mg} \frac{d\theta}{d\tau} + \frac{sin \theta}{mgL} = T$$

$$\frac{b}{mgL} = 1 \text{ } ; T = \frac{b}{mgL}$$

$$\frac{m^2 g L^3}{b^2} \frac{d^3\theta}{d\tau^2} + \frac{d\theta}{d\tau} + \frac{sin (\theta)}{mgL} = T$$

$$\frac{m^2 g L^3}{b^2} \frac{d^3\theta}{d\tau^2} + \frac{d\theta}{d\tau} + \frac{sin (\theta)}{mgL} = T$$

$$t \cdot \ln \left(\frac{1 \sin(\theta)}{\log(\theta)} + \frac{2\sqrt{1-\alpha^2} - 2}{2} \right) \frac{1}{|\alpha \cos(\theta)|} + \frac{1}{2\sqrt{1-\alpha^2} - 2}$$

$$e^{\frac{1}{2}\sin(\theta)} = \frac{1}{2\sqrt{1-\alpha^2} - 2} = \frac{1}{|\alpha \sin(\theta)|} - \frac{2\sqrt{1-\alpha^2} - 2}{2}$$

$$e^{\frac{1}{2}\sin(\theta)} = \frac{1}{|\alpha \sin(\theta)|} + \frac{1}{2\sqrt{1-\alpha^2} - 2} = \frac{1}{|\alpha \sin(\theta)|} - \frac{2\sqrt{1-\alpha^2} - 2}{2}$$

$$e^{\frac{1}{2}\sin(\theta)} = \frac{1}{|\alpha \sin(\theta)|} + \frac{1}{|\alpha \cos(\theta)|} + \frac{1}{|\alpha \cos(\theta)|} = \frac{1}{|\alpha \cos(\theta)|} + \frac{1}{|\alpha \cos(\theta)|}$$

$$\frac{1}{2}\sin(\theta) = \frac{1}{|\alpha \cos(\theta)|} + \frac{1}{|\alpha \cos(\theta)|} + \frac{1}{|\alpha \cos(\theta)|} = \frac{1}{|\alpha \cos(\theta)|} + \frac{1}{|\alpha \cos(\theta)|} = \frac{1}{|\alpha \cos($$

PET FEBRU

$$=2\frac{1}{I_{c}}\int\frac{\sqrt{1-(F/I_{c})^{2}}}{(1-I/I_{c})^{2})}\sqrt{\frac{2}{(I/I_{c})^{2}+1}}\,dV = \frac{2\pi I_{Ic}}{\sqrt{1-(F/I_{c})^{2}}}\int\frac{dV}{V^{2}+1} = \frac{1}{\sqrt{1-(I/I_{c})^{2}}}\,arctan(V)$$

$$=2\frac{1}{I_{c}}\int\frac{arctan(\frac{u-I/I_{c}}{\sqrt{1-(I/I_{c})^{2}}})}{\sqrt{1-(I/I_{c})^{2}}}=2\frac{I}{I_{c}}\frac{arctan(\frac{tan(\frac{d}{2}-I/I_{c}}{\sqrt{1-(I/I_{c})^{2}}})}{\sqrt{1-(I/I_{c})^{2}}}+C; whee C=0$$

$$=\frac{1}{I_{c}}\ln\left(1-\frac{tan(\frac{d}{2}+I/I_{c})}{\sqrt{1-(I/I_{c})^{2}}}\right)$$

$$=\frac{1}{$$

 $\phi' = \frac{I}{I_c} - \sin \phi$ 4.6.2. Numeral Integration: Runge-Kutten 4th Order Un+1= yn+ Ah [R1+2R2+2R3+R4] K2 Ф k3 Ry k, Δh. f(φ + 2h) Δh. f(φ+ 2h) Δh. f(φ+ Δh) 0.0 Where Dh=0.1 ... 6.0 0.1331 0. 1331 0.1379 0. 1282 90,6 0.5 0,4 0,3 0.2 0-1 2 $V_{n+1} = V_n + \frac{\Delta h}{6} [k_1 + 2k_2 + 2k_3 + k_4]$ k3 k, Ry φ R2 0.0 ALAH-F(P+Ab) At-Ah f(P+Ab) At-Ah F(P+Ah) at-ahf(4) 000 6.0 0.63 -0.0103 -0.0103 -0.0098 0.30 0.25 0.20 0.15 0.10 0.05 6 P 4.6.3. a) V=-xdx; V=-\$ d\$ =-[\$\frac{1}{L_c}-sin\$\phi] d\$ =-[\$\cos\$\phi+\frac{1}{L_c}\$\phi] On a circle, solutions of 2TT-interval exist: \$= arcsin(1/1c) c) The increase of current (I) b) lowers the potential (V) to 4 per 21 oscillation. Hole. 2 -2

$$T_{b} = T_{c} \sin \phi_{b} + V | r$$

$$T_{b} = T_{c} \sin \phi_{b} + \frac{1}{2e^{b}} \frac{1}{e^{b}} \frac{1}$$

