Εισαγωγικό εργαστήριο Ηλεκτρονικής και Τηλεπικοινωνιών

Εργαστηριακό τμήμα: Τρίτη 11:00-13:00, Β4

Ομάδα: Ομάδα 5

Μέλη: Αλεξοπούλου Γεωργία (el20164), Μπαλτά Αντωνία (el20873)

Πείραμα 5: Σχεδίαση ενισχυτή με χρήση τελεστικού: ένα απλό σύστημα ήχου-LT Spice προσομοίωση.

Σχεδίαση και έλεγχος ενός ενισχυτή τάσης.

1-2. Παρακάτω φαίνεται η σχεδίαση χαρακτηριστικής μεταφοράς DC σε κάθε περίπτωση.

- i) Κέρδος τάσης ίσο με 100 και R_1 =1k Ω . Από τον τύπο $\frac{\textit{vout}}{\textit{vin}}$ =1 + $\frac{\textit{R2}}{\textit{R1}}$ προκύπτει ότι R_2 =99k Ω .
- a) UniversalOpamp2

β) LT1001

- ii) Κέρδος τάσης ίσο με 5 και R_1 =1k Ω . Σύμφωνα με τον προηγούμενο τύπο, πρέπει R_2 =4k Ω .
- α) UniversalOpamp2

β) LT1001

3-4. Κέρδος τάσης ίσο με 100 και R_1 =1k Ω . Οδηγούμε στην είσοδο του προενισχυτή ημιτονοειδές σήμα 1k Hz. Παρακολουθούμε τις V_{IN} και V_{OUT} .

a) UniversalOpamp2

Πλάτος 0.02V:

Πλάτος 0.04V:

Πλάτος 0.06V:

β) LT1001

Πλάτος 0.02V:

Πλάτος 0.04V:

Πλάτος 0.06V:

Από τα προηγούμενα παρατηρούμε ότι επειδή το κέρδος τάσης είναι ίσο με 100, δηλαδή έχουμε πολλαπλασιαστή ίσο με 100, το σήμα της V_{OUT} είναι ημιτονοειδές για πλάτη <0.05V, ενώ για μεγαλύτερες τιμές προσεγγίζει τον τετραγωνικό παλμό, όπως φαίνεται παραπάνω στην περίπτωση που βάλαμε πλάτος 0.06V.

Ένα απλό σύστημα ήχου.

6-8.

α) UniversalOpamp2 σε 1° και 2° στάδιο

 $1^{\rm o}$ στάδιο: κέρδος τάσης ίσο με 100 και $\,R_1\text{=}2k\,\Omega$ άρα $\,R_2\text{=}198k\,\Omega\,$

Cc=220μF και Speaker: R_3 =8 Ω

Πλάτος 20mV:

V_{IN}-V_{OUT}:

Πλάτος 100mV:

V_{IN}-V_{OUT}:

Πλάτος 0.5V:

V_{IN}-V_{OUT}:

β) LT1001 σε 1° και 2° στάδιο

 $1^{\rm o}$ στάδιο: κέρδος τάσης ίσο με 120 και $\,R_1\text{=}1k\,\Omega$ άρα $\,R_2\text{=}119k\,\Omega\,$

Cc=250μF

Speaker: R_3 =12 Ω

Πλάτος 20mV:

V_{IN}-V_{OUT}:

Πλάτος 100mV:

V_{IN}-V_{OUT}:

Πλάτος 0.5V:

V_{IN}-V_{OUT}:

Έλεγχος έντασης.

9-10. Προσθέτουμε έναν μηχανισμό ελέγχου έντασης στο σύστημα ήχου, χρησιμοποιώντας ένα ποτενσιόμετρο 10k Ω (δύο αντιστάσεις με άθροισμα 10k Ω). Παρατηρούμε τα $V_{\rm IN}$, $V_{\rm OUT}$ και V στην έξοδο του προενισχυτή, αλλάζοντας κάθε φορά τις τιμές των αντιστάσεων (πάντα με άθροισμα 10k Ω).

α) UniversalOpamp2 σε 1° και 2° στάδιο

 1° στάδιο: κέρδος τάσης ίσο με 100 και R_1 =2k Ω άρα R_2 =198k Ω

Cc=220μF και Speaker: R_3 =8 Ω

 R_4 =1 $k \Omega \kappa \alpha \iota R_5$ =9 $k \Omega$:

V_{IN} - V_{OUT} :

R_4 =2k Ω και R_5 =8k Ω:

R_4 =4k Ω και R_5 =6k Ω:

β) LT1001 σε 1° και 2° στάδιο

 $1^{\rm o}$ στάδιο: κέρδος τάσης ίσο με 120 και $\,R_1\text{=}1k\,\Omega$ άρα $\,R_2\text{=}119k\,\Omega\,$

Cc=250μF

Speaker: R₃=12 Ω

 R_4 =1k Ω kai R_5 =9k Ω :

R_4 =2k Ω και R_5 =8k Ω:

R_4 =4k Ω και R_5 =6k Ω:

Επιπλέον άσκηση-Επανάληψη.

R=10k Ω και f 1k Hz, 10k Hz, 100k H, 1MEG:

Transient προσομοίωση:

ΑС προσομοίωση:

f=1k Hz και R 1k Ω, 10k Ω, 100k Ω, 1MEG Ω

Transient προσομοίωση:

ΑС προσομοίωση:

