Wojciech Dzik

Institute of Mathematics, Silesian University, Katowice, Poland, wdzik@wdzik.pl

Wojciech Dzik

Institute of Mathematics, Silesian University, Katowice, Poland, wdzik@wdzik.pl

coauthor **Piotr Wojtylak**,

Institute of Mathematics, University of Opole, Opole, Poland, piotr.wojtylak@gmail.com

Wojciech Dzik

Institute of Mathematics, Silesian University, Katowice, Poland, wdzik@wdzik.pl

coauthor **Piotr Wojtylak**,

Institute of Mathematics, University of Opole, Opole, Poland, piotr.wojtylak@gmail.com

Workshop on Admissible Rules and Unification II, Les Diablerets 30 January - 2 February 2015

Overview

We admit infinitary rules, i.e. of the form $\{\varphi_i : i < \omega\}/\psi$ and infinitary consequence operations Cn. Why?

Overview

We admit infinitary rules, i.e. of the form $\{\varphi_i: i<\omega\}/\psi$ and infinitary consequence operations *Cn*. Why?

MAIN RESULTS:

- For a consequence operation *Cn* extending m.l. *S*4.3 TFAE:
 - (i) Cn is Almost Structurally Complete (ASCpl),
- (ii) Cn is finitely approximable, i.e. there is a class \mathbb{K} of *finite* algebras such that $Cn=\overrightarrow{\mathbb{K}}$, where $\overrightarrow{\mathbb{K}}$ is a consequence operation determined by \mathbb{K} .

We admit infinitary rules, i.e. of the form $\{\varphi_i: i<\omega\}/\psi$ and infinitary consequence operations *Cn*. Why?

MAIN RESULTS:

- For a consequence operation *Cn* extending m.l. *S*4.3 TFAE:
 - (i) Cn is Almost Structurally Complete (ASCpl),
- (ii) Cn is finitely approximable, i.e. there is a class \mathbb{K} of *finite* algebras such that $Cn=\overrightarrow{\mathbb{K}}$, where $\overrightarrow{\mathbb{K}}$ is a consequence operation determined by \mathbb{K} .
- An infinite basis for infinitary admissible (non-passive) rules for structurally complete extensions Cn^{Σ} is provided

Overview

We admit infinitary rules, i.e. of the form $\{\varphi_i: i<\omega\}/\psi$ and infinitary consequence operations *Cn*. Why?

MAIN RESULTS:

- For a consequence operation *Cn* extending m.l. *S4*.3 TFAE:
 - (i) Cn is Almost Structurally Complete (ASCpl),
- (ii) Cn is finitely approximable, i.e. there is a class \mathbb{K} of *finite* algebras such that $Cn=\overrightarrow{\mathbb{K}}$, where $\overrightarrow{\mathbb{K}}$ is a consequence operation determined by \mathbb{K} .
- An infinite basis for infinitary admissible (non-passive) rules for structurally complete extensions Cn^{Σ} is provided
- a formula provable in Cn^{Σ} has a syntactic proof of the type $\leq \omega + 1$,

We admit infinitary rules, i.e. of the form $\{\varphi_i: i<\omega\}/\psi$ and infinitary consequence operations *Cn*. Why?

MAIN RESULTS:

- For a consequence operation *Cn* extending m.l. *S*4.3 TFAE:
 - (i) Cn is Almost Structurally Complete (ASCpl),
- (ii) Cn is finitely approximable, i.e. there is a class \mathbb{K} of *finite* algebras such that $Cn=\overrightarrow{\mathbb{K}}$, where $\overrightarrow{\mathbb{K}}$ is a consequence operation determined by \mathbb{K} .
- An infinite basis for infinitary admissible (non-passive) rules for structurally complete extensions Cn^{Σ} is provided
- a formula provable in Cn^Σ has a syntactic proof of the type $\leq \omega + 1$,

The key step: all extensions of *S*4.3 enjoy projective unification (D.-W 2009).

Pre-history

R. Bull (1966) Every normal extension of S4.3 has the FMP

Pre-history

R. Bull (1966) Every normal extension of S4.3 has the FMP

Kit Fine (1971) Every normal extension of S4.3:

- has the Finite Frame Prop. (for frames)
- is finitely axiomatizable and
- is characterized by finite chains of clusters.

Normal Axiomatic Extensions - the lattice NExtS4.3

Pre-history

R. Bull (1966) Every normal extension of S4.3 has the FMP

Kit Fine (1971) Every normal extension of S4.3:

- has the Finite Frame Prop. (for frames)
- is *finitely axiomatizable* and
- is characterized by finite chains of clusters.

Normal Axiomatic Extensions - the lattice NExtS4.3

Question: lift the results from theoremhood to derivability

Describe the lattice EXT_{fin}S4.3

W.D.and P.W. WARU I, 2011, ALCOP 2013 Utrecht

- ★ Syntactic and semantic descripttion of **finitary** (structural) consequence operations $Cn \in EXT_{fin}$ **S4.3**:
- form of admissible (passive) rules in consequence oper. Cn,
- Let K is a class of subdir. irr. S4.3-algebras characterizing $L \in NExt$ **S4.3**. Then, for any consequence oper. $Cn \geq Cn_L$:
- \circ *Cn* is characterized by a class of algebras of the form of the direct products $\mathcal{A} \times \mathcal{H}_n$, where $\mathcal{A} \in \mathcal{K}$ and \mathcal{H}_n is so called *Henle algebra* with n-atoms, i.e.
- Cn has Strong Finite Model Property (SFMP).
- Cn is finitely based (can obtained by adding finitely many rules) and decidable
- The lattice $\mathrm{EXT}_{\mathrm{fin}}$ **S4.3** of all consequence relations extending S4.3 is countable and distributive (a Heyting algebra).

 $Var = \{p_1, p_2, \dots\}$ all propositional variables Fm all modal formulas built up with \land, \neg, \Box, \top ; $Fm_n \{p_i : i \leq n\} \rightarrow, \lor, \leftrightarrow, \diamondsuit, \bot$ as usual;

 $Var = \{p_1, p_2, \dots\}$ all propositional variables

Fm all modal formulas built up with \land, \neg, \Box, \top ; Fm_n $\{p_i : i \le n\}$ $\rightarrow, \lor, \leftrightarrow, \diamondsuit, \bot$ as usual;

 $(Fm, \wedge, \neg, \Box, \top)$ the algebra of modal language, $\varepsilon \colon Var \to Fm$ substitution; A *modal logic* - any subset *L* of *Fm* containing all classical tautologies, the axiom

 $(K): \quad \Box(\alpha \to \beta) \to (\Box\alpha \to \Box\beta)$ and closed under substit. and

$$MP: \frac{\alpha \to \beta, \alpha}{\beta}$$
 and $RN: \frac{\alpha}{\Box \alpha}$.

K the least, **S4** = **K** + (T) : $\square \alpha \rightarrow \alpha$ + (4) : $\square \square \alpha \rightarrow \square \alpha$.

S4.3 = **S4** + (.3) : $\Box(\Box \alpha \rightarrow \Box \beta) \lor \Box(\Box \beta \rightarrow \Box \alpha)$

 $Var = \{p_1, p_2, \dots\}$ all propositional variables

Fm all modal formulas built up with \land, \neg, \Box, \top ; Fm_n $\{p_i : i \le n\}$ $\rightarrow, \lor, \leftrightarrow, \diamondsuit, \bot$ as usual;

 $(Fm, \land, \neg, \Box, \top)$ the algebra of modal language, $\varepsilon \colon \textit{Var} \to Fm$ substitution; A *modal logic* - any subset *L* of *Fm* containing all classical tautologies, the axiom

 $(K): \quad \Box(\alpha \to \beta) \to (\Box\alpha \to \Box\beta)$ and closed under substit. and

$$MP : \frac{\alpha \to \beta, \alpha}{\beta}$$
 and $RN : \frac{\alpha}{\Box \alpha}$.

K the least, **S4** = **K** + (T) : $\square \alpha \rightarrow \alpha$ + (4) : $\square \square \alpha \rightarrow \square \alpha$.

S4.3 = **S4** + (.3) :
$$\Box(\Box \alpha \rightarrow \Box \beta) \lor \Box(\Box \beta \rightarrow \Box \alpha)$$

NExt**S4.3** \ni L \mapsto Cn_L \in EXT_{fin}**S4.3**

its *global consequence relation*; $\alpha \in Cn_L(X)$ means: α can be derived from $X \cup L$ using the rules MP and RN.

infinitary rules, i.e. X/α with X infinite,

infinitary rules, i.e. X/α with X infinite, two different notions of (almost) structural completeness

infinitary rules, i.e. X/α with X infinite, two different notions of (almost) structural completeness

A consequence operation, (A.Tarski) - any mapping $Cn: 2^{Fm} \to 2^{Fm}$ for each $X, Y \subseteq Fm$

$$X \subseteq Cn(X), \qquad Cn(X) \subseteq Cn(X \cup Y), \qquad Cn(Cn(X)) \subseteq Cn(X).$$

infinitary rules, i.e. X/α with X infinite, two different notions of (almost) structural completeness

A consequence operation, (A.Tarski) - any mapping $Cn: 2^{Fm} \to 2^{Fm}$ for each $X, Y \subseteq Fm$

$$X \subseteq Cn(X), \qquad Cn(X) \subseteq Cn(X \cup Y), \qquad Cn(Cn(X)) \subseteq Cn(X).$$

A consequence operation Cn is finitary ($Cn \in Fin$), if

$$Cn(X) = \bigcup \{Cn(Y) : Y \text{ is finite and } Y \subseteq X\}, \text{ for each } X \subseteq Fm.$$

For any Cn define its 'finitary fragment' Cnfin putting

$$Cn_{fin}(X) = \bigcup \{Cn(Y) : Y \text{ is finite and } Y \subseteq X\}, \quad \text{for each } X \subseteq Fm.$$

Theorem (Deduction Theorem)

If L is a modal logic and $S4 \subseteq L$, then $\alpha \in Cn_L(X, \beta)$ iff $\Box \beta \rightarrow \alpha \in Cn_L(X)$.

Theorem (Deduction Theorem)

If L is a modal logic and $S4 \subseteq L$, then $\alpha \in Cn_L(X, \beta)$ iff $\Box \beta \rightarrow \alpha \in Cn_L(X)$.

For Cn a modal consequence operation,

 $\mathrm{EXT}(Cn)$ (or $\mathrm{EXT}_{fin}(Cn)$) denotes the lattice of all (or all finitary) consequence operations extending Cn.

Theorem (Deduction Theorem)

If L is a modal logic and $S4 \subseteq L$, then $\alpha \in Cn_L(X, \beta)$ iff $\Box \beta \rightarrow \alpha \in Cn_L(X)$.

For Cn a modal consequence operation,

 $\mathrm{EXT}(Cn)$ (or $\mathrm{EXT}_{fin}(Cn)$) denotes the lattice of all (or all finitary) consequence operations extending Cn.

We write EXT(L) for $EXT(Cn_L)$.

Theorem (Deduction Theorem)

If L is a modal logic and $S4 \subseteq L$, then $\alpha \in Cn_L(X, \beta)$ iff $\Box \beta \rightarrow \alpha \in Cn_L(X)$.

For Cn a modal consequence operation,

 $\mathrm{EXT}(Cn)$ (or $\mathrm{EXT}_{fin}(Cn)$) denotes the lattice of all (or all finitary) consequence operations extending Cn.

We write EXT(L) for $EXT(Cn_L)$. The lattice: NExt(L), EXT(Cn) with \subseteq

A modal algebra $\mathcal{A} = (A, \wedge, \neg, \Box, \top), \Box(a \wedge b) = \Box a \wedge \Box b$,

 $\Box \top = \top; \qquad \text{Log}(\mathcal{A}) = \{\alpha : v(\alpha) = \top, \text{ for all } v : Var \to A\},\$

for a class \mathbb{K} , $Log(\mathbb{K}) = \bigcap \{Log(\mathcal{A}) : \mathcal{A} \in \mathbb{K}\}$,

Each modal alg. \mathcal{A} generates a modal consequence oper. $\overrightarrow{\mathcal{A}}$:

$$\alpha \in \overrightarrow{\mathcal{A}}(X)$$
 iff $(v[X] \subseteq \{\top\} \Rightarrow v(\alpha) = \top$, for each $v \colon Var \to A$).

A modal algebra $\mathcal{A} = (A, \wedge, \neg, \Box, \top), \Box(a \wedge b) = \Box a \wedge \Box b$,

 $\Box \top = \top; \qquad \text{Log}(\mathcal{A}) = \{\alpha : v(\alpha) = \top, \text{ for all } v : Var \to A\},$

for a class \mathbb{K} , $Log(\mathbb{K}) = \bigcap \{Log(A) : A \in \mathbb{K}\}$, Each modal alg. A generates a modal consequence oper. \overrightarrow{A} :

$$\alpha \in \overrightarrow{\mathcal{A}}(X)$$
 iff $(v[X] \subseteq \{\top\} \Rightarrow v(\alpha) = \top$, for each $v : Var \to A$).

 $\alpha \in \overrightarrow{\mathcal{A}}(\emptyset)$ iff $\alpha \in \text{Log}(\mathcal{A})$. For a class \mathbb{K} of modal algebras, put

$$\alpha \in \overrightarrow{\mathbb{K}}(X)$$
 iff $(\alpha \in \overrightarrow{\mathcal{A}}(X), \text{ for each } A \in \mathbb{K});$

A modal algebra $\mathcal{A} = (A, \wedge, \neg, \Box, \top), \Box (a \wedge b) = \Box a \wedge \Box b$,

 $\Box \top = \top; \qquad \text{Log}(\mathcal{A}) = \{\alpha : v(\alpha) = \top, \text{ for all } v : Var \to A\},\$

for a class $\mathbb{K}, \quad Log(\mathbb{K}) = \bigcap \{Log(\mathcal{A}) : \mathcal{A} \in \mathbb{K}\},$

Each modal alg. \mathcal{A} generates a modal consequence oper. $\overrightarrow{\mathcal{A}}$:

$$\alpha \in \overrightarrow{\mathcal{A}}(X)$$
 iff $(v[X] \subseteq \{\top\} \Rightarrow v(\alpha) = \top$, for each $v \colon Var \to A$.

 $\alpha \in \overrightarrow{\mathcal{A}}(\emptyset)$ iff $\alpha \in \text{Log}(\mathcal{A})$. For a class \mathbb{K} of modal algebras, put

$$\alpha \in \overrightarrow{\mathbb{K}}(X)$$
 iff $(\alpha \in \overrightarrow{\mathcal{A}}(X), \text{ for each } \mathcal{A} \in \mathbb{K});$

A class \mathbb{L} is *strongly adequate* for Cn, if $Cn = \overrightarrow{\mathbb{L}}$.

A modal algebra $\mathcal{A} = (A, \wedge, \neg, \Box, \top), \Box (a \wedge b) = \Box a \wedge \Box b$,

 $\Box \top = \top; \qquad \text{Log}(\mathcal{A}) = \{\alpha : v(\alpha) = \top, \text{ for all } v : Var \to A\},\$

for a class $\mathbb{K}, \quad Log(\mathbb{K}) = \bigcap \{Log(\mathcal{A}) : \mathcal{A} \in \mathbb{K}\},$

Each modal alg. \mathcal{A} generates a modal consequence oper. $\overrightarrow{\mathcal{A}}$:

$$\alpha \in \overrightarrow{\mathcal{A}}(X)$$
 iff $(v[X] \subseteq \{\top\} \Rightarrow v(\alpha) = \top$, for each $v \colon Var \to A$.

 $\alpha \in \overrightarrow{\mathcal{A}}(\emptyset)$ iff $\alpha \in \text{Log}(\mathcal{A})$. For a class \mathbb{K} of modal algebras, put

$$\alpha \in \overrightarrow{\mathbb{K}}(X)$$
 iff $(\alpha \in \overrightarrow{\mathcal{A}}(X), \text{ for each } \mathcal{A} \in \mathbb{K});$

A class $\mathbb L$ is *strongly adequate* for Cn, if $Cn = \overrightarrow{\mathbb L}$. If, additionally, $\mathbb L$ is finite, we say that Cn is *strongly finite*, $Cn \in SF$).

A modal algebra $A = (A, \wedge, \neg, \Box, \top), \Box(a \wedge b) = \Box a \wedge \Box b,$

 $\Box \top = \top; \qquad \operatorname{Log}(\mathcal{A}) = \{\alpha : v(\alpha) = \top, \text{ for all } v : Var \to A\},$ for a class \mathbb{K} , $\operatorname{Log}(\mathbb{K}) = \bigcap \{\operatorname{Log}(\mathcal{A}) : \mathcal{A} \in \mathbb{K}\},$

Each modal alg. \mathcal{A} generates a modal consequence oper. $\overrightarrow{\mathcal{A}}$:

$$\alpha \in \overrightarrow{\mathcal{A}}(X)$$
 iff $(v[X] \subseteq \{\top\} \Rightarrow v(\alpha) = \top$, for each $v \colon Var \to A$.

 $\alpha \in \overrightarrow{\mathcal{A}}(\emptyset)$ iff $\alpha \in \text{Log}(\mathcal{A})$. For a class $\mathbb K$ of modal algebras, put

$$\alpha \in \overrightarrow{\mathbb{K}}(X)$$
 iff $(\alpha \in \overrightarrow{\mathcal{A}}(X), \text{ for each } \mathcal{A} \in \mathbb{K});$

A class $\mathbb L$ is *strongly adequate* for Cn, if $Cn = \overrightarrow{\mathbb L}$. If, additionally, $\mathbb L$ is finite, we say that Cn is *strongly finite*, $Cn \in SF$).

a consequence operation Cn is *finitely approximable* ($Cn \in FA$) if there is a strongly adequate family of finite algebras for Cn, i.e. $Cn = \bigwedge_i \overrightarrow{\mathcal{A}}_i$ where \mathcal{A}_i is finite for each i.If

Theorem

If
$$A \in S(B)$$
, then $\overrightarrow{B} \leq \overrightarrow{A}$.

Theorem

If
$$A \in S(B)$$
, then $\overrightarrow{B} \leq \overrightarrow{A}$.

Theorem

(i) If
$$X \in Sat(A_t)$$
 for each $t \in T$, then $\overrightarrow{\mathbf{P}}_{t \in T} \overrightarrow{A_t}(X) = \bigcap_{t \in T} \overrightarrow{A_t}(X)$.
(ii) If $X \notin Sat(A_t)$ for some $t \in T$, then $\overrightarrow{\mathbf{P}}_{t \in T} \overrightarrow{A_t}(X) = Fm$.

(ii) If
$$X \notin Sat(A_t)$$
 for some $t \in T$, then $\mathbf{P}_{t \in T} A_t(X) = Fm$.

Theorem

If $A \in S(B)$, then $\overrightarrow{B} \leq \overrightarrow{A}$.

Theorem

- (i) If $X \in Sat(A_t)$ for each $t \in T$, then $\overrightarrow{\mathbf{P}}_{t \in T} \overrightarrow{A_t}(X) = \bigcap_{t \in T} \overrightarrow{A_t}(X)$. (ii) If $X \notin Sat(A_t)$ for some $t \in T$, then $\overrightarrow{\mathbf{P}}_{t \in T} \overrightarrow{A_t}(X) = Fm$.

it easily follows that $\overrightarrow{\mathbb{K}} \leq \overrightarrow{\mathcal{A}}$ if $\mathcal{A} \in SP(\mathbb{K})$. We also have

Theorem

Let K be a class of modal algebras and Cn be a modal consequence operation such that $\overrightarrow{\mathbb{K}} \leq Cn$. Then there is a class $\mathbb{L} \subseteq SP(\mathbb{K})$ such that $Cn = \overrightarrow{\mathbb{L}}$.

an element a of an algebra is open (closed) if $\Box a = a$ ($\Diamond a = a$). Clopen.

an element a of an algebra is open (closed) if $\Box a = a$ ($\Diamond a = a$). Clopen.

 \mathcal{A} is a finite *TBA*, extend the set *Var* of prop. var. with fresh variables p_a , for each $a \in A$. The *diagram of* \mathcal{A} is

$$\Delta(\mathcal{A}) = \bigwedge \{ (p_a \to p_b) \leftrightarrow p_{a \to b} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \Box p_a \leftrightarrow p_{\Box a} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land (p_\perp \leftrightarrow \perp$$

an element a of an algebra is open (closed) if $\Box a = a$ ($\Diamond a = a$). Clopen .

 \mathcal{A} is a finite *TBA*, extend the set *Var* of prop. var. with fresh variables p_a , for each $a \in A$. The *diagram of* \mathcal{A} is

$$\Delta(\mathcal{A}) = \bigwedge \{ (p_a \to p_b) \leftrightarrow p_{a \to b} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \Box p_a \leftrightarrow p_{\Box a} \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} \} \land (p_\perp \leftrightarrow \perp) \land$$

A finite *TBA* is subdir. irred, iff it contains the greatest non-unit open element. - called *opremum* of A; denoted by \star_A or \star .

an element a of an algebra is open (closed) if $\Box a = a$ ($\Diamond a = a$). clopen.

 \mathcal{A} is a finite *TBA*, extend the set *Var* of prop. var. with fresh variables p_a , for each $a \in A$. The *diagram of* \mathcal{A} is

$$\Delta(\mathcal{A}) = \bigwedge \{ (p_a \to p_b) \leftrightarrow p_{a \to b} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \Box p_a \leftrightarrow p_{\Box a} \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} \} \land (p_\perp \leftrightarrow \perp) \land$$

A finite *TBA* is subdir. irred, iff it contains the greatest non-unit open element. - called *opremum* of \mathcal{A} ; denoted by $\star_{\mathcal{A}}$ or \star . $\chi(\mathcal{A}) = \Box(\Delta(\mathcal{A})) \to p_{\star}$ - the characteristic formula of \mathcal{A} .

Diagram, character. formula

an element a of an algebra is open (closed) if $\Box a = a$ ($\Diamond a = a$). clopen.

 \mathcal{A} is a finite *TBA*, extend the set *Var* of prop. var. with fresh variables p_a , for each $a \in A$. The *diagram of* \mathcal{A} is

$$\Delta(\mathcal{A}) = \bigwedge \{ (p_a \to p_b) \leftrightarrow p_{a \to b} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \Box p_a \leftrightarrow p_{\Box a} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land \bigwedge \{ \neg p_a \leftrightarrow p_{\Box a} : a, b \in A \} \land (p_\perp \leftrightarrow \perp) \land (p_\perp \leftrightarrow \perp$$

A finite *TBA* is subdir. irred, iff it contains the greatest non-unit open element. - called *opremum* of \mathcal{A} ; denoted by $\star_{\mathcal{A}}$ or \star . $\chi(\mathcal{A}) = \Box(\Delta(\mathcal{A})) \to p_{\star}$ - the characteristic formula of \mathcal{A} .

Theorem

(i) Let A be a finite TBA and $v : Var \rightarrow A$. Then, for $\alpha \in Fm$:

$$\alpha \leftrightarrow p_{V(\alpha)} \in Cn_{S4}(\{\Delta(A)\} \cup \{p \leftrightarrow p_{V(p)} : p \in Var\}).$$

(ii) Let A be a finite s.i. TBA and B be any TBA. Then $\chi_A \notin Log(B) \iff A$ is embeddable in some homomorphic image of B.

A frame $\mathfrak{F} = (V, R)$: a set V (worlds), $R \subseteq V \times V$ $Log(\mathfrak{F}) = \{\alpha : (\mathfrak{F}, x) \Vdash \alpha, \text{ for each } x \in V \text{ and each } \Vdash \}$

A frame $\mathfrak{F}=(V,R)$: a set V (worlds), $R\subseteq V\times V$ $\mathrm{Log}(\mathfrak{F})=\{\alpha:(\mathfrak{F},x)\Vdash\alpha,\ \text{ for each }x\in V\text{ and each }\Vdash\}$ Complex alg. $\mathfrak{F}^+=(P(V),\cap,',\square,V),\ \square a=\{x\in V:R(x)\subseteq a\},$

```
A frame \mathfrak{F}=(V,R): a set V (worlds), R\subseteq V\times V Log(\mathfrak{F}) = \{\alpha:(\mathfrak{F},x)\Vdash\alpha, \text{ for each }x\in V\text{ and each }\Vdash\} Complex alg. \mathfrak{F}^+=(P(V),\cap,',\Box,V), \Box a=\{x\in V:R(x)\subseteq a\}, n\text{-element cluster: }\mathfrak{n}=(V_n,R_n),\ V_n=\{1,\ldots,n\},\ R_n=V_n\times V_n. 1, 2, 3,..., \mathfrak{n} denote 1-, 2-, 3-,... n\text{-element clusters}, \text{ respectiv.} 1<sup>+</sup>, 2<sup>+</sup>, 3<sup>+</sup>,..., \mathfrak{n}^+ their complex algebras,
```

A frame
$$\mathfrak{F} = (V, R)$$
: a set V (worlds), $R \subseteq V \times V$
 $Log(\mathfrak{F}) = \{\alpha : (\mathfrak{F}, x) \Vdash \alpha, \text{ for each } x \in V \text{ and each } \Vdash \}$

Complex alg.
$$\mathfrak{F}^+ = (P(V), \cap, ', \square, V), \square a = \{x \in V : R(x) \subseteq a\},\$$

n-element cluster: $\mathfrak{n}=(V_n,R_n),\ V_n=\{1,\ldots,n\},\ R_n=V_n\times V_n.$ 1, 2, 3,..., \mathfrak{n} denote 1- , 2- , 3- ,... n-element clusters, respectiv. $\mathfrak{1}^+$, $\mathfrak{2}^+$, $\mathfrak{3}^+$,..., \mathfrak{n}^+ their complex algebras,

A modal algebra \mathcal{A} is a *Henle algebra* if $\Box a = \bot$ for each $a \neq \top$. Henle algebras are s.i. (simples) for **S5**.

 \mathfrak{n}^+ is the Henle algebra with n generators.

Note:
$$\mathbf{1}^+ = \mathbf{2} = ^{def} (\{\bot, \top\}, min, \neg, \Box)$$
, with $\Box a = a$.

Frames for $L \in NExt(\mathbf{S4.3})$ - chains of clusters, lists, covering r. (K.Fine)

A unifier for a formula α in a logic L - $\varepsilon(\alpha) \in L$.

A projective unifier for α in L is a unifier such that $\varepsilon(\beta) \leftrightarrow \beta \in Cn_L(\alpha)$ for each formula β ;

A unifier for a formula α in a logic L - $\varepsilon(\alpha) \in L$.

A projective unifier for α in L is a unifier such that $\varepsilon(\beta) \leftrightarrow \beta \in Cn_L(\alpha)$ for each formula β ;

A logic *L enjoys projective unification* if each *L*-unifiable formula has a projective unifier in *L*.

A unifier for a formula α in a logic L - $\varepsilon(\alpha) \in L$.

A projective unifier for α in L is a unifier such that $\varepsilon(\beta) \leftrightarrow \beta \in Cn_L(\alpha)$ for each formula β ;

A logic *L enjoys projective unification* if each *L*-unifiable formula has a projective unifier in *L*.

Theorem (see [?])

A modal logic $L \supseteq S4$ enjoys projective unification iff

$$.\Box(\Box y \to \Box z) \lor \Box(\Box z \to \Box y) \in L$$
, iff **S4.3** $\subseteq L$.

A unifier for a formula α in a logic L - $\varepsilon(\alpha) \in L$.

A projective unifier for α in L is a unifier such that $\varepsilon(\beta) \leftrightarrow \beta \in Cn_L(\alpha)$ for each formula β ;

A logic *L enjoys projective unification* if each *L*-unifiable formula has a projective unifier in *L*.

Theorem (see [?])

A modal logic $L \supseteq S4$ enjoys projective unification iff

$$.\Box(\Box y \to \Box z) \lor \Box(\Box z \to \Box y) \in \mathit{L}, \quad \textit{iff} \quad \textbf{S4.3} \subseteq \mathit{L}.$$

The rule X/β is *admissible* for a modal consequence oper. Cn, if $\varepsilon[X] \subseteq Cn(\emptyset) \Rightarrow \varepsilon(\beta) \in Cn(\emptyset)$,

for every substitution ε .

The rule is *derivable* for *Cn* (is *Cn*–derivable), if $\beta \in Cn(X)$.

Cn is structurally complete ($Cn \in SCpl$, see Pogorzelski [?]) each admissible rule for Cn is Cn-derivable $Cn \in SCpl_{fin}$ means that each finitary rule which is admissible for Cn is Cn-derivable.

Cn is structurally complete ($Cn \in SCpl$, see Pogorzelski [?]) each admissible rule for Cn is Cn-derivable $Cn \in SCpl_{fin}$ means that each finitary rule which is admissible for Cn is Cn-derivable.

The structurally complete extension of the logic L, Cn_L^{Scpl} , is the extension of Cn_L with all L-admissible rules; it is the greatest modal consequence operation Cn such that $Cn(\emptyset) = L$.

Cn is structurally complete ($Cn \in SCpl$, see Pogorzelski [?]) each admissible rule for Cn is Cn-derivable $Cn \in SCpl_{fin}$ means that each finitary rule which is admissible for Cn is Cn-derivable.

The structurally complete extension of the logic L, Cn_L^{Scpl} , is the extension of Cn_L with all L-admissible rules; it is the greatest modal consequence operation Cn such that $Cn(\emptyset) = L$.

 X/β is *passive* in L (see Rybakov [?]), if X is not unifiable in L.

Cn is structurally complete ($Cn \in SCpl$, see Pogorzelski [?]) each admissible rule for Cn is Cn-derivable $Cn \in SCpl_{fin}$ means that each finitary rule which is admissible for Cn is Cn-derivable.

The structurally complete extension of the logic L, Cn_L^{Scpl} , is the extension of Cn_L with all L-admissible rules; it is the greatest modal consequence operation Cn such that $Cn(\emptyset) = L$.

 X/β is *passive* in L (see Rybakov [?]), if X is not unifiable in L.

S5, and many others **S4.3**,... contrary to **S4**, is not structurally complete only because the following rule is passive, hence, admissible, but not derivable:

$$P_2: \frac{\Diamond \alpha \wedge \Diamond \sim \alpha}{\beta}$$

Cn is almost structurally complete, $Cn \in ASCpl$; every admissible rule for Cn, which is not passive, is derivable for Cn. $Cn \in ASCpl_{fin}$ if we restrict to finitary rules only.

Cn is almost structurally complete, $Cn \in ASCpl$; every admissible rule for Cn, which is not passive, is derivable for Cn. $Cn \in ASCpl_{fin}$ if we restrict to finitary rules only.

Corollary (W.D. P.W. 2011)

 $Cn \in ASCpl_{fin}$, for every modal consequence operation Cn extending S4.3.

Cn is almost structurally complete, $Cn \in ASCpl$; every admissible rule for Cn, which is not passive, is derivable for Cn. $Cn \in ASCpl_{fin}$ if we restrict to finitary rules only.

Corollary (W.D. P.W. 2011)

 $Cn \in ASCpl_{fin}$, for every modal consequence operation Cn extending S4.3.

There are four variants of structural completeness: SCpl, SCpl_{fin}, ASCpl and ASCpl_{fin}.(different, sometimes collapse).

Cn is almost structurally complete, $Cn \in ASCpl$; every admissible rule for Cn, which is not passive, is derivable for Cn. $Cn \in ASCpl_{fin}$ if we restrict to finitary rules only.

Corollary (W.D. P.W. 2011)

 $Cn \in ASCpl_{fin}$, for every modal consequence operation Cn extending S4.3.

There are four variants of structural completeness: SCpl, SCpl_{fin}, ASCpl and ASCpl_{fin}.(different, sometimes collapse).

Theorem

If Cn is modal consequence operation extending S4.3M, where (M) : $\Box \Diamond \alpha \rightarrow \Diamond \Box \alpha$ (McKinsey's axiom), then

$$Cn \in ASCpl \iff Cn \in SCpl$$

 $\mathsf{SCpl} \neq \mathsf{SCpl}_\mathit{fin} \text{ and } \mathsf{ASCpl} \neq \mathsf{ASCpl}_\mathit{fin}, \text{ more exactly:.}$

 $\textit{S4.3} \in \mathsf{ASCpl}_{\textit{fin}} \backslash \; \mathsf{ASCpl} \; \text{and} \; \textit{S4.3M} \in \mathsf{SCpl}_{\textit{fin}} \backslash \; \mathsf{SCpl}$

 $SCpl \neq SCpl_{fin}$ and $ASCpl \neq ASCpl_{fin}$, more exactly:.

 $S4.3 \in \mathsf{ASCpl}_\mathit{fin} \setminus \mathsf{ASCpl}$ and $S4.3M \in \mathsf{SCpl}_\mathit{fin} \setminus \mathsf{SCpl}$ The rules

$$\varrho: \ \frac{\{ \sim \square(p_i \leftrightarrow p_j) : 0 < i < j \}}{\bot} \quad \varrho': \ \frac{\{ \square(p_i \leftrightarrow p_j) \rightarrow p_0 : 0 < i < j \}}{p_0}$$

 $SCpl \neq SCpl_{fin}$ and $ASCpl \neq ASCpl_{fin}$, more exactly:.

 $S4.3 \in \mathsf{ASCpl}_\mathit{fin} \setminus \mathsf{ASCpl}$ and $S4.3 M \in \mathsf{SCpl}_\mathit{fin} \setminus \mathsf{SCpl}$ The rules

$$\varrho: \ \frac{\{ \sim \square(p_i \leftrightarrow p_j) : 0 < i < j \}}{\bot} \quad \varrho': \ \frac{\{ \square(p_i \leftrightarrow p_j) \rightarrow p_0 : 0 < i < j \}}{p_0}$$

are valid in every finite TBA \mathcal{A} i.e. derivable for the cons.op. $\overrightarrow{\mathcal{A}}$ Hence, by FMP ϱ and ϱ' admissible in S4.3 and all extensions.

 $SCpl \neq SCpl_{fin}$ and $ASCpl \neq ASCpl_{fin}$, more exactly:.

 $S4.3 \in \mathsf{ASCpl}_\mathit{fin} \setminus \mathsf{ASCpl}$ and $S4.3M \in \mathsf{SCpl}_\mathit{fin} \setminus \mathsf{SCpl}$ The rules

$$\varrho: \ \frac{\{ \sim \square(p_i \leftrightarrow p_j) : 0 < i < j \}}{\bot} \quad \varrho': \ \frac{\{ \square(p_i \leftrightarrow p_j) \rightarrow p_0 : 0 < i < j \}}{p_0}$$

are valid in every finite TBA $\mathcal A$ i.e. derivable for the cons.op. $\overrightarrow{\mathcal A}$ Hence, by FMP ϱ and ϱ' admissible in S4.3 and all extensions. But,

 ϱ' and ϱ are not derivable for *S*4.3 (nor *S*4.3*M*) p_0 cannot be deduced, in *S*4.3, from any finite subset of $\{\Box(p_i \leftrightarrow p_i) \rightarrow p_0 : 0 < i < j\}$.

OBSERVATION: attempts to extend the concept of projective unifier to infinite sets of formulas fails

Theorem

- (i) Each finitary consequence operation $Cn \geq Cn_{S4.3}$ has a finite basis (of finitary rules) and $Cn = C_{fin}$ for some $C \in FA$.
- (ii) The lattice (EXT_{fin}(**S4.3**), \leq) is distributive.

Theorem

- (i) Each finitary consequence operation $Cn \ge Cn_{S4.3}$ has a finite basis (of finitary rules) and $Cn = C_{fin}$ for some $C \in FA$.
- (ii) The lattice (EXT_{fin}(**S4.3**), \leq) is distributive.

By Coroll. each finitary $Cn \ge Cn_{S4.3}$ is an extension of Cn_L , for some $L \in \mathbf{S4.3}$, with passive rules only

Theorem

- (i) Each finitary consequence operation $Cn \ge Cn_{S4.3}$ has a finite basis (of finitary rules) and $Cn = C_{fin}$ for some $C \in FA$.
- (ii) The lattice (EXT_{fin}(**S4.3**), \leq) is distributive.

By Coroll. each finitary $Cn \ge Cn_{S4.3}$ is an extension of Cn_L , for some $L \in \mathbf{S4.3}$, with passive rules only

Fix $n \ge 0$, var.. p_1, \ldots, p_n generate a sublanguage of Fm with 2^n (boolean) atoms and they can be written as

Theorem

- (i) Each finitary consequence operation $Cn \ge Cn_{S4.3}$ has a finite basis (of finitary rules) and $Cn = C_{fin}$ for some $C \in FA$.
- (ii) The lattice (EXT_{fin}(**S4.3**), \leq) is distributive.

By Coroll. each finitary $Cn \ge Cn_{S4.3}$ is an extension of Cn_L , for some $L \in \mathbf{S4.3}$, with passive rules only

Fix $n \ge 0$, var.. p_1, \ldots, p_n generate a sublanguage of Fm with 2^n (boolean) atoms and they can be written as

$$p_1^{\sigma(1)} \wedge \cdots \wedge p_n^{\sigma(n)}$$

where $\sigma: \{1, ..., n\} \to \{0, 1\}$, and $p^0 = p$, and $p^1 = p$. Suppose that all these atoms are listed as: $\theta_1, ..., \theta_{2^n}$.

Corollary

Each $Cn \in \mathrm{EXT}_{\mathit{fin}}(\mathbf{S4.3})$ is and extension of Cn_L , for some $L \in \mathit{NExt}(\mathbf{S4.3})$, $n \geq 0$, with a finite number of passive rules having the form

Corollary

Each $Cn \in EXT_{fin}(\mathbf{S4.3})$ is and extension of Cn_L , for some $L \in NExt(\mathbf{S4.3})$, $n \geq 0$, with a finite number of passive rules having the form

$$\frac{\Diamond \theta_1 \wedge \cdots \wedge \Diamond \theta_s}{\alpha}$$

where $2 \le s \le 2^n$ and $Var(\alpha) \cap \{p_1, \dots, p_n\} = \emptyset$.

Corollary

Each $Cn \in EXT_{fin}(\mathbf{S4.3})$ is and extension of Cn_L , for some $L \in NExt(\mathbf{S4.3})$, $n \geq 0$, with a finite number of passive rules having the form

$$\frac{\Diamond \theta_1 \wedge \cdots \wedge \Diamond \theta_s}{\alpha}$$

where
$$2 \le s \le 2^n$$
 and $Var(\alpha) \cap \{p_1, \dots, p_n\} = \emptyset$.

The rule $\Diamond \theta_1 \land \cdots \land \Diamond \theta_s / \alpha$ is valid in the complex algebra of a cluster of $\leq s-1$ elements, it is not valid in the cluster \mathfrak{s} of s elements.

Theorem

If $Cn \in \mathrm{EXT}(\mathbf{S4.3})$ and $Log(\mathbb{K}) = Cn(\emptyset)$ for some class $\mathbb{K} \subseteq \mathrm{Alg}(\mathbf{S4.3})_{sifin}$, then one can find $\mathbb{K}_1 \supseteq \cdots \supseteq \mathbb{K}_m$ such that

Theorem

If $Cn \in \mathrm{EXT}(\mathbf{S4.3})$ and $Log(\mathbb{K}) = Cn(\emptyset)$ for some class $\mathbb{K} \subseteq \mathrm{Alg}(\mathbf{S4.3})_{sifin}$, then one can find $\mathbb{K}_1 \supseteq \cdots \supseteq \mathbb{K}_m$ such that $S(\mathbb{K}) = \mathbb{K}_1$, and $\mathbb{K}_{i+1} = S(\mathbb{K}_i)$ for $i = 1, \ldots, m$, and $Cn =_{fin} \overrightarrow{\mathbb{L}}$, where

Theorem

If $Cn \in \mathrm{EXT}(\mathbf{S4.3})$ and $Log(\mathbb{K}) = Cn(\emptyset)$ for some class $\mathbb{K} \subseteq \mathrm{Alg}(\mathbf{S4.3})_{sifin}$, then one can find $\mathbb{K}_1 \supseteq \cdots \supseteq \mathbb{K}_m$ such that $S(\mathbb{K}) = \mathbb{K}_1$, and $\mathbb{K}_{i+1} = S(\mathbb{K}_i)$ for $i = 1, \ldots, m$, and $Cn =_{fin} \overrightarrow{\mathbb{L}}$, where

$$\mathbb{L} = \mathbb{K}_m \cup \left(\left(\mathbb{K}_{m-1} \setminus \mathbb{K}_m \right) \times (\mathfrak{m} - \mathbf{1})^+ \right) \right) \cup \cdots \cup \left(\left(\mathbb{K}_1 \setminus \mathbb{K}_2 \right) \times \mathbf{1}^+ \right).$$

Each quasivariety of S4.3-algebras is generated by a class of finite S4.3-algebras of the form:

- s.i. algebra, or
- the direct product of a s.i. algebra and a Henle algebra.

Theorem

If $Cn \in \mathrm{EXT}(\mathbf{S4.3})$ and $Log(\mathbb{K}) = Cn(\emptyset)$ for some class $\mathbb{K} \subseteq \mathrm{Alg}(\mathbf{S4.3})_{si\,fin}$, then one can find $\mathbb{K}_1 \supseteq \cdots \supseteq \mathbb{K}_m$ such that $S(\mathbb{K}) = \mathbb{K}_1$, and $\mathbb{K}_{i+1} = S(\mathbb{K}_i)$ for $i = 1, \ldots, m$, and $Cn =_{fin} \stackrel{\longrightarrow}{\mathbb{L}}$, where

$$\mathbb{L} = \mathbb{K}_m \cup \left(\left(\mathbb{K}_{m-1} \setminus \mathbb{K}_m \right) \times (\mathfrak{m} - \mathbf{1})^+ \right) \right) \cup \cdots \cup \left(\left(\mathbb{K}_1 \setminus \mathbb{K}_2 \right) \times \mathbf{1}^+ \right).$$

Each quasivariety of *S*4.3-algebras is generated by a class of finite *S*4.3-algebras of the form:

- s.i. algebra, or
- the direct product of a s.i. algebra and a Henle algebra. With all assumptions/ notations of the above Theorem we have

Theorem

If
$$\overrightarrow{\mathbb{K}} \leq Cn \leq \overrightarrow{\mathbb{L}}$$
 and $Cn =_{fin} \overrightarrow{\mathbb{L}}$, then $Cn = \overrightarrow{\mathbb{L}}$.

Finite Approximation

Theorem

If a logic $L \in \text{NExt}(\textbf{S4.3})$ is tabular, then $\text{EXT}(L) \subseteq SF$ and consequently $\text{EXT}(L) = \text{EXT}_{fin}(L)$.

Finite Approximation

Theorem

If a logic $L \in \text{NExt}(\textbf{S4.3})$ is tabular, then $\text{EXT}(L) \subseteq SF$ and consequently $\text{EXT}(L) = \text{EXT}_{fin}(L)$.

Theorem

A finitary modal consequence operation $Cn \in EXT(\mathbf{S4.3})$ is finitely approximable, $Cn \in FA$ iff Cn is strongly finite, $Cn \in SF$; i.e. $FA \cap Fin = SF$.

Finite Approximation

Theorem

If a logic $L \in \text{NExt}(\textbf{S4.3})$ is tabular, then $\text{EXT}(L) \subseteq SF$ and consequently $\text{EXT}(L) = \text{EXT}_{fin}(L)$.

Theorem

A finitary modal consequence operation $Cn \in EXT(\mathbf{S4.3})$ is finitely approximable, $Cn \in FA$ iff Cn is strongly finite, $Cn \in SF$; i.e. $FA \cap Fin = SF$.

Theorem

A modal consequence operation $Cn \in EXT(\textbf{S4.3})$ is finitely approximable iff Cn is almost structurally complete; i.e. FA = ASCpl.

Corollary

If Cn is a finitary consequence operation extending **S4.3**, then Cn is almost structurally complete iff Cn is strongly finite.

Corollary

Let $L \in \operatorname{NExt}(\mathbf{S4.3})$ and \mathbb{L} be an adequate class of finite $\mathbf{S4.3}$ -algebras for L. Then $\overrightarrow{\mathbb{L} \times \mathbf{2}}$ is the structurally complete extension of Cn_L , i.e. $Cn_L^{SCpl} = \overrightarrow{\mathbb{L} \times \mathbf{2}}$.

Corollary

If Cn is a finitary consequence operation extending **S4.3**, then Cn is almost structurally complete iff Cn is strongly finite.

Corollary

Let $L \in \operatorname{NExt}(\mathbf{S4.3})$ and \mathbb{L} be an adequate class of finite $\mathbf{S4.3}$ -algebras for L. Then $\overrightarrow{\mathbb{L} \times \mathbf{2}}$ is the structurally complete extension of Cn_L , i.e. $Cn_L^{SCpl} = \overrightarrow{\mathbb{L} \times \mathbf{2}}$.

The lattices $ASCpl(\mathbf{S4.3})$ and $EXT_{fin}(\mathbf{S4.3})$ are isomorphic, Similarly $ASCpl(\mathbf{L})$ and $EXT_{fin}(\mathbf{L})$. $Cn \mapsto Cn_{fin}$ and $Cn \mapsto Cn^{\Sigma}$

Corollary

If Cn is a finitary consequence operation extending **S4.3**, then Cn is almost structurally complete iff Cn is strongly finite.

Corollary

Let $L \in \operatorname{NExt}(\mathbf{S4.3})$ and \mathbb{L} be an adequate class of finite $\mathbf{S4.3}$ -algebras for L. Then $\overrightarrow{\mathbb{L} \times \mathbf{2}}$ is the structurally complete extension of Cn_L , i.e. $Cn_L^{SCpl} = \overrightarrow{\mathbb{L} \times \mathbf{2}}$.

The lattices $ASCpl(\mathbf{S4.3})$ and $EXT_{fin}(\mathbf{S4.3})$ are isomorphic, Similarly $ASCpl(\mathbf{L})$ and $EXT_{fin}(\mathbf{L})$. $Cn\mapsto Cn_{fin}$ and $Cn\mapsto Cn^{\Sigma}$

 $\boldsymbol{\Sigma}$ an infinite basis for infinitary admissible non-passive rules - in Part II.

The lattice $ASCpl(\mathbf{S5})$, Not all $Cn \in EXT_{fin}(\mathbf{S5})$ have a single str. ad. matrix, e.g. $(1^+ \times 3^+) \cap 2^+$.:

Pre-varieties

a Logic - a variety $\mathbb{K}=\mathrm{HSPK}$, a finitary (modal) consequence operation - a quasivariety of (modal) algebras, $\mathbb{K}=\mathrm{ISPP_UK}$, an arbitrary, (modal) consequence operation - a prevariety of (modal) algebras, $\mathbb{K}=\mathrm{ISPK}$.

a set of *quasiequations*, that is, by *equational implications* of the form

$$(ei) \quad \Big(\bigwedge_{i\in I} p_i(\overline{x}) = q_i(\overline{x})\Big) \quad \Rightarrow \quad p(\overline{x}) = q(\overline{x})$$

a prevariety, $\mathbb{K} = \text{ISP}\mathbb{K}$ is defined by a set of *generalized* equational implications, (ei), where the set I of indices can be infinite;

Let $F_{\mathbb{K}}$ be the ω -generated free algebra in \mathbb{K} . Admissibility-validity of the (generalized) equational implication (ei) in the free algebra $F_{\mathbb{K}}$,

a generalized equational implication (ei) is passive if $\left(\bigwedge_{i\in I}p_i(\overline{x})=q_i(\overline{x})\right)$ is not satisfiable in $F_{\mathbb{K}}$.

A prevariety \mathbb{K} is *(almost) structurally complete* iff every generalized equational implication (ei) which is valid in $F_{\mathbb{K}}$ (and is not passive), is valid in the whole prevariety \mathbb{K} .

Theorem

For a prevariety K of S4.3-algebras TFCE:

- (i) K is almost structurally complete
- (ii) \mathbb{K} is generated by its finite members.
- (iii) every generalized equational implication (ei) which is valid in $F_{\mathbb{K}}$ and its premises are satisfiable in $F_{\mathbb{K}}$, is valid in the whole prevariety \mathbb{K} .

Let Σ be a set of all increasing functions $f: \mathbb{N} \to \mathbb{N}$. The following equational implications (ei)_f, for $f \in \Sigma$:

 $\bigwedge_{n>0} \{ [\bigwedge_{n< j \leq f(n)} \bigvee_{0 < i \leq n} \Box(p_i \leftrightarrow p_j)] \rightarrow p_0 \} = 1 \Rightarrow p_0 = 1$ form a basis for admissible generalized equational implications in \mathbb{K} .