PP LĂP ĐƠN – LĂP JACOBI

Hà Thị Ngọc Yến Hà nội, 2/2017

Ý tưởng phương pháp

- Đưa về phương trình tương đương

$$Ax = b \iff x = Bx + d$$

- Lập dãy số

$$x_n = Bx_{n-1} + d, x_0 \in \mathbb{R}^m$$

 Nếu dãy hội tụ thì giới hạn là nghiệm của phương trình

Chuẩn của véctơ

 Định nghĩa: chuẩn là một ánh xạ thỏa mãn các tính chất sau:

$$\|.\|: \mathbb{R}^m \to \mathbb{R}^+$$

$$\|u\| \ge 0, "=" \Leftrightarrow u = 0$$

$$\|ku\| = |k| \|u\| \quad \forall k \in \mathbb{R} \quad \forall u \in \mathbb{R}^m$$

$$\|u + v\| \le \|u\| + \|v\|$$

Chuẩn véctơ

Các chuẩn thường gặp

$$||x||_{\infty} = \max_{i=1,m} \{|x_i|\}$$

$$||x||_1 = \sum_{i=1}^m |x_i|$$

$$\|x\|_2 = \sqrt{\sum_{i=1}^m x_i^2}$$

Sự hội tụ của dãy véctơ

Định nghĩa:

$$x_{n} \xrightarrow{n \to \infty} x^{*} \Leftrightarrow ||x_{n} - x^{*}|| \xrightarrow{n \to \infty} 0$$

$$\Leftrightarrow x_{ni} \xrightarrow{n \to \infty} x_{i}^{*} \forall i = \overline{1, m}$$

 Chuẩn tương đương: Hai chuẩn p và q được gọi là tương đương nếu

$$\exists C_1, C_2 > 0, \ C_1 \|x\|_p \le \|x\|_q \le C_2 \|x\|_p$$

Sự hội tụ của dãy véctơ

 Nếu hai chuẩn p và q tương đương thì dãy véctơ hội tụ theo chuẩn p khi và chỉ khi nó hội tụ theo chuẩn q

 Mọi chuẩn trong không gian véctơ hữu hạn chiều đều tương đương

Chuẩn của ma trận

$$||A||_p = \sup_{x \neq 0} \frac{||Ax||_p}{||x||_p} = \sup_{||x||_p = 1} ||Ax||_p$$

$$||A||_{\infty} = \max_{i=1,m} \sum_{j=1}^{m} |a_{ij}|$$

$$||A||_1 = \max_{j=1,m} \sum_{i=1}^m |a_{ij}|$$

$$||A||_2 = \max_i \sqrt{\lambda(A^T A)}$$

Sự hội tụ của PP lặp đơn

• Nếu $\|B\| < 1$ thì dãy $x_n = Bx_{n-1} + d$, $x_0 \in \mathbb{R}$ hội tụ tới nghiệm đúng duy nhất của phương trình x = Bx + d theo đánh giá

$$||x_n - x^*|| \le \frac{||B||^n}{1 - ||B||} ||x_1 - x_0||$$

$$||x_n - x^*|| \le \frac{||B||}{1 - ||B||} ||x_n - x_{n-1}||$$

Các bước cm sự hội tụ của PP

• Dãy $\{x_n\}$ là dãy Cauchy nên hội tụ

 Giới hạn của dãy là nghiệm duy nhất của phương trình

Cm hai công thức sai số

Phương pháp lặp Jacobi

Ma trận chéo trội hàng

$$|a_{ii}| > \sum_{\substack{j=1\\j\neq i}}^{m} |a_{ij}|$$

Ma trận chéo trội cột

$$\left|a_{ii}\right| > \sum_{\substack{j=1\\j\neq i}}^{m} \left|a_{ji}\right|$$

PP lặp Jacobi

A là ma trận chéo trội hàng

$$T = diag\left(\frac{1}{a_{11}}, \frac{1}{a_{22}}, \dots, \frac{1}{a_{mm}}\right);$$

$$Ax = b \Leftrightarrow x = (I - TA)x + Tb,$$

$$B = I - TA, \ d = Tb$$

$$x^{(0)} \in \mathbb{R}^m, \ x^{(n+1)} = Bx^{(n)} + d.$$

PP lặp Jacobi

A là ma trận chéo trội hàng

$$B = \begin{bmatrix} 0 & \frac{-a_{12}}{a_{11}} & \cdots & \frac{-a_{1m}}{a_{11}} \\ \frac{-a_{21}}{a_{22}} & 0 & \cdots & \frac{-a_{2m}}{a_{22}} \\ \cdots & \cdots & \cdots & \cdots \\ \frac{-a_{m1}}{a_{mm}} & \frac{-a_{m2}}{a_{mm}} & \cdots & 0 \end{bmatrix}; \qquad d = \begin{bmatrix} \frac{b_1}{a_{11}} \\ \frac{b_2}{a_{22}} \\ \vdots \\ \frac{b_m}{a_{mm}} \end{bmatrix}$$

$$||B||_{\infty} = \max_{i=1,m} \left\{ \frac{1}{|a_{ii}|} \sum_{\substack{j=1\\j\neq i}}^{m} |a_{ij}| \right\} < 1$$

$$T = diag\left(\frac{1}{a_{11}}, \frac{1}{a_{22}}, \dots, \frac{1}{a_{mm}}\right); D = T^{-1}; x = Ty$$

$$Ax = b \Leftrightarrow ATy = b \Leftrightarrow y = (I - AT)y + b,$$

$$B_1 = I - TA$$

$$y^{(0)} \in \mathbb{R}^m, y^{(n+1)} = B_1 y^{(n)} + b.$$

$$B_{1} = \begin{bmatrix} 0 & \frac{-a_{12}}{a_{22}} & \dots & \frac{-a_{1m}}{a_{mm}} \\ \frac{-a_{21}}{a_{11}} & 0 & \dots & \frac{-a_{2m}}{a_{mm}} \\ \dots & \dots & \dots \\ \frac{-a_{m1}}{a_{11}} & \frac{-a_{m2}}{a_{22}} & \dots & 0 \end{bmatrix}; \qquad b = \begin{bmatrix} b_{1} \\ b_{2} \\ \vdots \\ b_{m} \end{bmatrix}$$

$$\|B\|_{1} = \max_{j=1,m} \left\{ \frac{1}{|a_{jj}|} \sum_{\substack{i=1 \ i \neq j}}^{m} |a_{ij}| \right\} < 1$$

$$y^{(n+1)} = B_1 y^{(n)} + b$$

$$\Leftrightarrow Ty^{(n+1)} = T(I - AT)DTy^{(n)} + Tb$$

$$\Leftrightarrow x^{(n+1)} = (I - TA)x^{(n)} + Tb$$

$$\Leftrightarrow x^{(n+1)} = Bx^{(n)} + Tb$$

• Liên hệ về chuẩn qua phép đổi biến:

$$||x|| = ||Ty|| \le ||T|| ||x|| = \frac{||x||}{\min |a_{ii}|} \quad \forall x \in \mathbb{R}^m$$
$$||y|| = ||Dx|| \le ||D|| ||x|| = \max |a_{ii}| ||x|| \quad \forall y \in \mathbb{R}^m$$

• Hệ quả là:

$$\left\| x^{(n)} - x * \right\|_{1} \le \lambda \frac{\left\| B_{1} \right\|_{1}}{1 - \left\| B_{1} \right\|_{1}} \left\| x^{(n)} - x^{(n-1)} \right\|_{1}$$

$$\left\| x^{(n)} - x * \right\|_{1} \le \lambda \frac{\left\| B_{1} \right\|_{1}^{n}}{1 - \left\| B_{1} \right\|_{1}} \left\| x^{(1)} - x^{(0)} \right\|_{1}$$

$$\lambda = \frac{\max |a_{ii}|}{\min |a_{ii}|}.$$