

Traçado de Circuitos Impressos Tutorial

Express PCB®

Índice

	Pg
Introdução	1
Express PCB	5
Circuito exemplo	7
Colocação de componentes	8
Resistências	9
Condensadores	12
IC	14
Potenciómetro (criar novo encapsulamento)	17
Ligações externas: IN, OUT, VCC	20
Disposição dos componentes	23
Largura das pistas	24
Traçado das pistas	25
PCB final	28
Identificação de ligações ao exterior	30
Limites da placa	31
Identificação da placa	32
Furos de fixação	33
Impressão do projeto	35

Introdução

A Placa de Circuito Impresso designa-se habitualmente por PCB (Printed Circuit Board).

Neste tutorial irá aprender como deve proceder para criar um circuito impresso usando o software **Express PCB**® (freeware). Utilize a versão clássica.

Poderá fazer o download do software no site: www.expresspcb.com

A interface de utilizador deste software é bastante simples.

Vamos implementar o circuito elétrico que vê na figura abaixo. Trata-se de um Preamplificador mono.

Como pode observar o esquema elétrico é constituído por:

- símbolos de componentes eletrónicos (resistências, potenciómetro, condensadores, integrado, sinais de entrada, saída e alimentação) e
- linhas, as quais estabelecem a ligação entre os componentes.

Em resumo temos habitualmente:

IST - Dept. Fisica

Prof. Umesh Vinaica Mardolcar

Disciplina: Laboratório de Oficinas – MEFT – 2019/20

Para construirmos o circuito impresso (PCB) necessitamos de saber reconhecer os componentes físicos e saber identificar os terminais físicos do componente.

Por exemplo, qual o aspeto físico de RV1? Sabemos que é um potenciómetro de placa de $\frac{3}{4}$ de volta e $1k\Omega$.

¾ de volta significa que o cursor só roda ¾.

Tem 3 terminais que designaremos por 1, 2 e 3.

Há uma infinidade de potenciómetros nestas condições.

A figura abaixo mostra alguns tipos

Uma vez escolhido o componente temos de identificar os terminais.

Consulte o Guia de Laboratório para relembrar os terminais deste componente.

Em componentes mais complexos deve haver muito cuidado na identificação dos terminais.

Para o efeito deve aceder ao DATASHEET do componente que contém todas as informações sobre o mesmo. Pode encontrar o Datasheet na Internet.

As linhas de ligação dos componentes serão materializadas via pistas do circuito impresso.

A qualidade do seu circuito dependerá do traçado das listas, localização dos componentes e compactação.

As placas de circuito impressos mais simples são constituídas por 1 camada condutora. Têm portanto:

- 1 camada que contém informação sobre localização dos componente e seus terminais, etc (Silkscreen Layer)
- 1 camada de material isolante.
- 1 camada condutora de eletricidade (Bottom copper layer).

Na implementação física temos:

A. Camada de material isolante elétrico. O material desta camada deve estar rigidamente ligado à camada condutora. A estabilidade dimensional desta camada é importante pois assegura que os componentes são mantidos na sua posição. Esta camada deve ser pouco nada afetada pela humidade.

A camada de isolamento é materializada por um polímero, nos casos mais vulgares. No entanto para aplicações mais exigentes usam-se outros materiais (cerâmicos, compósitos) cujo custo pode ser significativo. Depende de diversos fatores como a frequência em causa, processo de maquinação, performance elétrica, etc:

B. Camada condutora de cobre. Este material é um bom condutor. No entanto é preciso não esquecer a sua resistividade. O calor gerado por efeito Joule limita certas aplicações exigindo processos de dissipação de calor (convecção: ventilação com ar ; condução: transferência térmica para a água).

Nota: Uma forma de reduzir a resistência de condução é usar supercondutores. No entanto os supercondutores exigem temperaturas muito baixas.

Estudos recentes apontam para a possibilidade de usar grafeno dopado com cálcio que é supercondutor a temperatura ambiente. http://www.sciencealert.com/graphene-s-superconductive-power-has-finally-been-unlocked-and-it-s-crazier-than-we-expected

IST – Dept. Fisica

Prof. Umesh Vinaica Mardolcar

O software utiliza layers. São camadas transparentes referidas às camadas físicas da placa.

- 1. Silkscreen layer é utilizada para desenhar o formato do componente e colocar indicações relevantes como polaridade, sinais de entrada, saída, alimentação, ID do componente, etc. É impressa sobre a camada isolante.
 - 2. Bottom copper layer contém as ilhas, vias, pistas, furos e informações relevantes que se pretende que estejam impressas no layer de cobre.
 - a. Ilhas: zonas metalizadas ao redor de furos para soldar os componentes.
 - b. Vias: são furos metalizados de ligação das várias camadas.

Na figura abaixo pode ver os componentes, o sikscreen layer e à transparência o bottom copper layer.

Exemplo de Bottom copper layer

Exemplo de Silkscreen layer

Express PCB

Comandos

Quando inicia o programa aparece-lhe a imagem ao lado:

Não interessa referir comandos como zoom, drag, etc.

Alguns comandos fundamentais são:

Inserção de componentes ou

Rodar o componente. O primeiro ícon mantém as letras na mesma posição mas roda o componente. O segundo ícon roda todo o conjunto.

Inserção de ilhas

Fornece informação sobre ilhas

Layers e espessuras de traços

Alterar o layer onde está a trabalhar

Traçado de pistas

Permite inserir uma quebra na pista.

Inserção de um retângulo.

Options: Utilize para definir as condições de trabalho: grelha e snap.

Use:

Grid: 0,100"

Obs: A distância entre terminais dos componentes são em décimas de polegada.

Snap: 0,025" (deslocamento mínimo do cursor). Altere este valor sempre que necessitar.

Mantenha

Units: inches.

Não altere as cores.

Abra o EXPRESS PCB

Grave o ficheiro com o nome Preamplificador Grupo N Turma XXX

Onde N é o nº de grupo: 1, 2, 3...

XXX pode ser SEG, TER, QUA ou QUI.

Faça gravações periódicas (pelo menos de 30 em 30 minutos)

IST – Dept. Fisica

Prof. Umesh Vinaica Mardolcar

Disciplina: Laboratório de Oficinas - MEFT - 2019/20

CIRCUITO EXEMPLO

O circuito cujo PCB (Printed Circuit Board) irá traçar é o de um preamplificador mono universal. O esquema elétrico é o seguinte:

Lista de componentes:

1. Resistências de ¼ W, 5%

R1: $2.2k\Omega$

R2: 220kΩ

R3, R4: 22kΩ

RV1 – Potenciómetro de placa, $\frac{3}{4}$ volta, $1k\Omega$

2. Condensadores

C1: Cond. Eletrolítico, 10µF/50v

C2, C3: Cond. Eletrolítico, $1\mu F/50v$

3. Integrados

IC1 – AmPop – LM741

4. Terminais

IN - Termi-2 (AFin, Gnd)

OUT - Termi-2 (AFout, Gnd)

VCC - Termi-2 (V+, Gnd)

COLOCAÇÃO DE COMPONENTES

As distâncias entre terminais dos componentes são habitualmente medidas em décimas de polegada.

Dado que erros nas dimensões do componente podem inviabilizar o circuito é muito importante que se veja com cuidado o tamanho do componente e a disposição dos seus terminais.

A utilização de uma placa perfurada ajuda muito nesse processo.

Observe a placa perfurada ao lado.

A distância na horizontal ou vertical entre 2 furos consecutivos é de 0.1".

Sendo uma polegada 25.4 mm o valor será de 2.54 mm.

Nota:

Sempre que possível, colocar o componente na placa perfurada e medir as distâncias entre terminais.

Colocação de resistências

1. Identificação do componente e seus terminais.

Resistências de ¼ W, 5%

R1: $2.2k\Omega$ R2: $220k\Omega$ R3, R4: $22k\Omega$

Identique R1, R2 e R3.

Usando a amostra com os exemplares de potência verifique a potência.

Com a tabela de cores determine:

- 5. Tolerância
- 6. Valor.

Código de Cores de Resistências

2. Distância entre terminais

Dobre os terminais da resistência (sem partir a ligação) utilizando um alicate.

Insira na placa perfurada.

Meça a distância D entre os dois terminais da resistência. Como vê precisa de 0,4".

3. Escolha do encapsulamento e inserção no PCB

Carregue na tecla "Component Manager"

Ative a opção Custom Library.

Escolha o encapsulamento

Resistor – 0,25 W (lead spacing 0,4 inch) LOF

Insira o componente.

Alterar ID

Clicando 2 vezes no componente aparece-lhe o seguinte:

Altere Part ID para R1. Desloque o Part ID e coloque-o no interior do componente.

Proceda da mesma forma e insira R2, R3 e R4.

Coloque-as do lado esquerdo como mostra a figura.

Colocação dos condensadores:

A. Identificação do componente e seus terminais.

Observe a amostra com os condensadores (figura abaixo), que está na sua bancada. Compare com os componentes desta placa.

Trata-se de um condensador polarizado (electrolítico).

- 1. Verifique que tem 2 terminais de comprimentos diferentes.
- 2. O terminal mais comprido é o positivo e o menor é o negativo.
- 3. O terminal negativo está marcado no componente.

A. Medição das distâncias entre terminais.

4. Pegue na placa perfurada.

- 5. Coloque os terminais do componente na placa sem forçar.
- 6. Confirme a distância entre terminais: 0,1 ".

Prof. Umesh Vinaica Mardolcar

B. Escolha do encapsulamento e inserção no PCB

- No Express PCB (Custom Components) escolha o encapsulamento
 Cap Radial electrolylic (Lead spacing 0,1 inch) LOF,
 dado que a distância entre terminais é 0,1 ".
- 8. Insira na área de trabalho.
- 9. Altere Part ID para C1.

Faça o mesmo inserindo C2 e C3. Confirme a distância entre terminais e o tipo de encapsulamento. Note-se que apesar de C2 (e C3) serem 1 μ F a distância entre terminais é 0,1 inch.

IST – Dept. Fisica

Prof. Umesh Vinaica Mardolcar

Disciplina: Laboratório de Oficinas - MEFT - 2019/20

Colocação do IC

- A. Identificação do componente e seus terminais.
- Pegue no IC1 e analise-o. Consulte o datasheet (pode aceder à NET escrevendo LM741 datasheet e abrindo o PDF deste componente)

LM741

Operational Amplifier

General Description

The LM741 series are general purpose operational amplifiers which feature improved performance over industry standards like the LM709. They are direct, plug-in replacements for the 709C, LM201, MC1439 and 748 in most applications. The amplifiers offer many features which make their application nearly foolproof: overload protection on the input and

output, no latch-up ceeded, as well as The LM741C is ide the LM741C has th +70°C temperature

Features

Connection Diagrams

Observando o componente vê que:

- Os terminais estão numerados de 1 a 8 sendo contagem em U.
- O terminal 1 está identificado por uma marca, uma truncatura ou é o 1º do lado esquerdo sendo a orientação do componente definida pelo corte semicircular.
- 3. Cada terminal tem uma função específica pelo que a sua numeração é rígida.

4. Compare e identifique os terminais no seu esquema elétrico.

B. Medição das distâncias entre terminais.

- 1. Coloque o componente sobre a placa perfurada.
- 2. Observe que o integrado IC1 tem 2 filas de pinos paralelos. Verifique que a distância entre 2 pinos consecutivos é de 0.1" e a distância entre as 2 filas de terminais é de 0.3".

C. Escolha do encapsulamento e inserção no PCB

- 1. Trata-se de um encapsulamento **DIP 8** pois tem 8 pinos.
- 2. Utilize a Library Custom Components. Escolha DIP 8 pin LOF.
- 3. Insira o componente na área de trabalho.
- 4. Verifique se as distâncias entre pinos e as dimensões estão corretas.
- 5. Altere Part ID para IC1 como consta no esquema eletrónico.

Colocação do potenciómetro.

- A. Identificação do componente e terminais.
- 1. Identifique-o no esquema elétrico. É RV1. Tem 3 terminais: 1, 2 e 3.

2. Entre os terminais 1 e 2 a resistência é fixa e igual ao valor marcado no componente. O terminal 3 é móvel. A resistência entre 3 e 1 ou 3 e 2 deve variar de acordo com a posição do cursor.

O potenciómetro real pode ser o componente vê na figura ao lado.

3. Pela análise do potenciómetro efetuada nas aulas de identificação de componentes sabemos que os terminais são:

B. Medição das distâncias entre terminais e dimensão do componente.

Aceda a Place Components e verifique se existe este encapsulamento.

Como não existe irá criar.

COMO CRIAR UM ENCAPSULAMENTO

As etapas 1, 2 e 3 são:

- 1. Coloque o componente sobre a placa perfurada e meça as distâncias entre terminais.
- 2. Desenhe o corpo do componente.
- 3. Marque os terminais na folha e a respetiva distância.

Descrevem-se em pormenor a seguir.

IST – Dept. Fisica

Pretendemos criar o encapsulamento da figura.

- C. Escolha do encapsulamento e inserção no PCB
- 1. Carregue na tecla . Como pode observar aparece a indicação do tamanho das ilhas.

- 2. Escolha a dimensão 0,130" com furo 0,061".
- 3. Coloque as ilhas nas posições corretas (dos terminais do componente).
- Identifique os terminais com os números 1, 2 e 3 de acordo com o esquema elétrico. O terminal 3 tem de ser o terminal variável.

Para isso clique na seta e depois sobre o pino que pretende identificar.

5. Aumente a área disponível para soldadura do componente.

Utilize o comando Place a Rectangle . Verifique se está no Bottom layer.

6. Para desenhar o formato do componente altere o layer para

Silkscreen. Para isso carregue na tecla e altere o layer e a espessura de traço para 0,01 ".

Traçe o contorno do componente.

Obs.:

A geometria do contorno e suas dimensões devem ser corretas.

IST – Dept. Fisica

Disciplina: Laboratório de Oficinas – MEFT – 2019/20

Por exemplo se o componente for circular como se vê na figura, use traçar a circunferência do contorno.

- 7. Agrupar o componente: usando o mouse marque um retângulo que inclua o componente. A seguir use a opção "Group to make PCB component".
- **8.** Gravar o encapsulamento criado: use a opção:**Save custom** component

Dê o nome indicando o grupo. Pot 1 Grupo x turma y - LOF

9. Inserir no PCB: Altere Part ID para RV1.

Ligações externas: IN, OUT, VCC

Normalmente os circuitos elétricos têm:

- Alimentação.
- Entrada.
- Saída.

Como se vê na figura.

No nosso caso temos que ligar o seguinte:

Alimentação: (V+, GND)

• Entrada: (AF_{in}, GND)

Saída: (AF_{out}, GND)

Notas:

Como observa na figura a alimentação é indicada por +V. Trata-se de corrente contínua, terminal positivo.

O valor +V deve ser referido a um nível de 0 Volt, definido neste caso pelo GND. Tome-se como exemplo uma pilha. Como sabe, tem 2 terminais: Positivo e negativo. Neste caso o negativo é o GND e o positivo +V.

Da mesma forma a entrada AF_{in} tem de ser referida a um valor de O V que será o GND neste caso. Assim a entrada terá dois terminais: AF_{in} , GND.

O mesmo se aplica ao sinal de saída que será AFout, GND

IST - Dept. Fisica

Prof. Umesh Vinaica Mardolcar

Disciplina: Laboratório de Oficinas - MEFT - 2019/20

Há diversas formas de ligar o sinal. Uma das formas consiste em utilizar um terminal com o número de pinos correspondente ao número de fios a ligar. Veja-se a figura abaixo.

Os fios são inseridos nestes terminais e fixos por aperto mecânico.

Portanto precisamos de 3 terminais de 2 pinos.

No PCB o terminal de 2 pinos

Obs.:

Na colocação destes terminais deve ter cuidado com a sua orientação. Neste caso note-se que a barra se refere á parte de trás do componente.

Os fios só podem ser ligados á parte da frente. No caso de o componente ser assimétrico, a colocação incorreta pode inviabilizar o circuito.

Prof. Umesh Vinaica Mardolcar

- Aceda a Custom Library e coloque um componente TERMI 2.
- Identifique como: *IN*.

Proceda da mesma forma para o *OUT* e para *VCC*.

DISPOSIÇÃO DOS COMPONENTES

Coloque os componentes de modo que as ligações sejam o mais curtas possível.

Rode os componentes, se for necessário, usando

Analisemos as ligações do circuito.

Coloque os componentes com a disposição indicada na figura abaixo.

LARGURA DAS PISTAS

A largura da pista condiciona a intensidade da corrente elétrica que pode transportar sem produzir danos. A tabela abaixo mostra a largura da pista versus intensidade que suporta.

Uma intensidade superior pode produzir um aquecimento da placa e queimá-la.

Por facilidade de construção do PCB recomenda-se a utilização de pista com largura de 0.30".

Antes de traçarmos as pistas de ligação dos componentes temos de alterar a largura das pistas.

Altere o layer para o bottom. e a largura das pistas para 0,030" trace

TRAÇADO DE PISTAS:

- A. As pistas só podem ter a seguinte orientação:
 - Horizontal.
 - Vertical.
 - 45°.
 - 135°
- B. Devem ser o mais curtas possível mas obedecendo às restrições anteriores.

Trace as pistas de ligação do circuito, iniciando pelo nó 1.

Nó 1: O cátodo de C2 está ligado a IN

• Nó 2: R1 está ligado ao ânodo do C2

• Nó 3: Ligação R1- R2 e pino 2 do AmpOp IC1.

• Nó 4: R3 - R4 - C1(ânodo) - IC1-3

Nó 5: R3-V+-IC1(7)

• Nó 6: R2-IC1(6)-RV1(2)

• Nó 7: RV1(3)-C3(ânodo)

• Nó 8: C3 (cátodo) AFout

• Nó 9 (GND): C1 (cátodo) – R4- IC1(4)- RV1 (1). O terminal GND deve ser comum a IN, OUT e VCC.

TODAS AS INDICAÇÕES GND DEVEM ESTAR LIGADAS ENTRE SI.

PCB final

Deverá ter o seguinte aspeto:

CORRIJA O CIRCUITO DE MODO A TER ESTE ASPETO.

Tente perceber as razões.

IDENTIFICAÇÃO DE LIGAÇÕES AO EXTERIOR:

- Escrever o texto no bottom layer (copper) em tamanho 0,040".
- Identifique os pinos: AFin, Gnd e AFout.

Proceder da mesma forma para VCC.

Não sobrepor o texto escrito no Bottom Copper Layer às pistas pois pode curto-circuitar.

LIMITES DA PLACA

As marcas dos limites da placa são a referência que deve usar para cortar o excedente da placa aquando da construção. É habitual deixar cerca 1 a 2mm para além destas marcas.

Estas marcas devem ser efetuadas no Bottom Copper Layer para que fiquem impressas no PCB.

Defina os limites da sua placa usando

linha de 0,015"

no bottom copper layer, como mostra a figura.

IDENTIFICAÇÃO DA PLACA

A placa de circuito impresso deve ser identificada.

Pode usar o bottom copper layer para que a informação fique impressa.

Escreva

Universal mono preamplifier no bottom copper layer.

A placa deve também informação sobre quem construiu.

Coloque as seguintes identificações no bottom layer (as letras aparecerão espelhadas):

- Grupo.
- Turma

FUROS DE FIXAÇÃO

As placas de circuito impresso são normalmente colocadas dentro de uma caixa de instrumentação e fixas à mesma.

É uma forma de as proteger e também de evitar perigos de choques elétricos no caso de circuito de alta tensão.

Há várias formas de fixar e também diversos elementos de fixação. No entanto há custo envolvido.

A figura abaixo mostra alguns fixadores de plástico.

Elementos de fixação

Uma forma muito simples de fixar o PCB à caixa de instrumentação é utilizar um espaçador de plástico para separar fisicamente o PCB da caixa e imobilizar o conjunto com um conjunto porca/parafuso.

Habitualmente usam-se parafusos/porcas M3 para fixar a placa.

DIN933 HEX BOLT--full thread

O diâmetro nominal destes parafusos é 3mm e o hexágono do sextavado da cabeça e tem 6mm como vê na tabela.

IST - Dept. Fisica

Prof. Umesh Vinaica Mardolcar

Disciplina: Laboratório de Oficinas - MEFT - 2019/20

Normalmente a fixação é efetuada utilizando os cantos da placa:

Marcação dos furos de fixação da placa à caixa de instrumentação.

A marcação da fixação no PCB é efetuada por meio de 2 circunferências e traços cruzados:

 Circunferência do furo de passagem no Bottom copper layer (verde). O diâmetro nominal destes parafusos é 3mm (aproximadamente 0.12") pelo que o furo poderá ter 0.15".

- Circunferência limite da cabeça do parafuso no Sikscreen layer (amarelo). Poderá usar o valor de 0.25" para esta circunferência (aproximadamente 6mm).
- Traços cruzados que permite centrar os furos.

Deverá obter o seguinte:

GRAVE O FICHEIRO ANTES DE IMPRIMIR.

IMPRESSÃO DO PROJETO

Deve fazer 2 impressões:

- 1) Com os layers Silkscreen e Bottom: será utilizada para montar os componentes.
- 2) Com o Bottom Copper Layer: necessária para construir o PCB.

Escolha a impressora HP Lasejet P1606 dn.

Impressão 1)

IST – Dept. Fisica