Análisis numérico

Clase 7: Matrices y solución de ecuaciones lineales

Joaquin Cavieres

Instituto de Estadística, Universidad de Valparaíso

Outline

Matrices y solución de ecuaciones lineales

El crecimiento de una población generalmente se puede modelar asumiendo que esta crece de forma continua y a una tasa prorporcional al número registrado en ese instante de tiempo.

Ejemplo

Si N(t) es el número de la población en el tiempo t y α representa la tasa constante de natalidad, entonces, la población satisface la siguiente ecuación diferencial:

$$\frac{dN(t)}{dt} = \alpha N(t)$$

con solución $N(t)=N_0\,e^{lpha*t}$, con N_0 igual a la población inicial.

Figure: Fuente: Elaboración propia

El modelo anterior sólo es válido cuando la población es cerrada y sin inmigración. Si se produce inmigración a una tasa constante ν , entonces la ecuación diferencial ahora es:

$$\frac{dN(t)}{dt} = \alpha N(t) + \nu$$

y con solución:

$$N(t) = N_0 e^{\alpha * t} + \frac{\nu}{\alpha} (e^{\alpha * t} - 1)$$

Ejemplo: Si la una población inicial de N(0)=1000000 inidividuos y 435000 individuos inmigran a la población durante el primer año con un N(1)=1564000 al final del año. La natadlidad de esa población estpa en función del parámetro α :

$$1564000 = 1000000e^{\alpha} + (435000/\alpha)(e^{\alpha} - 1)$$

Si notamos en la ecuación anterior, encontrar en forma explícita α no es posible, pero mediante los métodos numéricos este parámetro puede ser encontrado para así aproximar la solución con una alta precisión.

Método de bisección

Método de bisección

El método de bisección es uno de los métodos básicos en la aproximación numérica.

Necesitamos encontrar una raíz (o solución) para:

$$f(x) = 0$$
, para una función dada

• El nombre de la solución de esa ecuación (la raíz) se conoce también como cero de la función f

Método de bisección

Como el objetivo es encontrar una solución a f(x) = 0, vale la pena preguntarse, ¿Existe una raíz real de f(x) = 0?. La respuesta se encuentra a través del teorema del valor intermedio.

Definición: Teorema del valor intermedio

Si f(x) es continua en un intervalo [a,b] y además f(a) y f(b) tienen signos opuestos (por ejemplo, f(a)f(b) < 0), entonces existe un punto $p \in (a,b)$ tal que f(p) = 0.

El teorema del valor intermedio garantiza que la raíz exista bajo esas condiciones. Sin embargo, no encontramos el valor exacto de la raíz p.

Método de bisección

El método de bisección funciona asumiendo que conocemos los dos valores de a y b tal que f(a)f(b)<0, para así ir dimunyendo la diferencia entre a y b hasta que se aproxime a la respuesta correcta. En resumen, reduce la diference considerando el promedio $\frac{a+b}{2}$. Si $f\left(\frac{a+b}{2}\right)=0$ entonces encontramos la raíz en $\left(\frac{a+b}{2}\right)$, de otra manera tenemos dos subsecciones: $\left(a,\frac{a+b}{2}\right)$ o en el intervalo $\left(\frac{a+b}{2},b\right)$ cuando $f\left(\frac{a+b}{2}\right)f(b)<0$. El proceso continua hasta que se alcance la precision deseada.

Método de bisección

El método de bisección funciona asumiendo que conocemos los dos valores de a y b tal que f(a)f(b)<0, para así ir dimunyendo la diferencia entre a y b hasta que se aproxime a la respuesta correcta. En resumen, reduce la diference considerando el promedio $\frac{a+b}{2}$. Si $f\left(\frac{a+b}{2}\right)=0$ entonces encontramos la raíz en $\left(\frac{a+b}{2}\right)$, de otra manera tenemos dos subsecciones: $\left(a,\frac{a+b}{2}\right)$ y $\left(\frac{a+b}{2},b\right)$, o en el intervalo $\left(\frac{a+b}{2},b\right)$ cuando $f\left(\frac{a+b}{2}\right)f(b)<0$. El proceso continua hasta que se alcance la precision deseada.

Método de bisección

Ejemplo:

Sea $a_1 = a$ y $b_1 = b$, además p_1 es el punto medio en [a, b], es decir:

$$p_1 = a_1 + \frac{b_1 - a_1}{2} = \frac{a_1 + b_1}{2}$$

- Si $f(p_1) = 0$, entonces $p = p_1$ es raíz única.
- Si $f(p_1) \neq 0$, entonces f(p) tiene el mismo signo que $f(a_1)$ o $f(b_1)$
 - Si $f(p_1)$ y $f(a_1)$ tienen el mismo signo, $p \in (p_1, b_1)$, así $a_2 = p_1$ y $b_2 = b_1$.
 - Si $f(p_1)$ y $f(a_1)$ tienen signos opuestos, $p \in (a_1, p_1)$, así $a_2 = a_1$ y $b_2 = b_1$

Así podemos aplicar nuevamente el proceso al intervalo $[a_2, b_2]$.

El siguiente algoritmo está escrito en pseudocódigo para especificar el siguiente problema: Encontrar la solución f(x) = 0 dada una función continua f en el intervalo [a,b], donde f(a) y f(b) tienen signos opuestos.

```
Entrada a, b; TOL; N_0.
 Salida Sol approx de p o mensaje de error
Paso 1 Considere i = 1;
         FA = f(a).
Paso 2 Mientras i \leq N_0 hacer pasos 3 - 6.
Paso 3 Sea p = a + (b - a)/2; (Calcule p_i)
         FP = f(p).
Paso 4 Si PF = 0 o (b-a)/2 < TOL entonces
        Salida (p); Proceso completado con éxito
         Pare.
Paso 5 Sea i = i + 1.
Paso 6 Si FA * FP > 0 entonces calcular a = p; (Calcular a_i, b_i).
         FA = FP
         calcular adicionalmente b = p. (FA no cambia).
Salida El método falló despues de N_0 iteraciones, N_0 = 1.
       (el procedimiento no fue exitoso).
```

Podemos aplicar otras formas de parada del algoritmo en el paso 4 y en cualquier otro algoritmo iterativo en lo que resta del curso. Por ejemplo:

Generar una tolerancia $\epsilon>0$ y proponer $p_1,...,p_N$ hasta que se cumpla:

$$|p_N-p_{N-1}|<\epsilon$$
 o $|p_N-p_{N-1}|<\epsilon,\;p_N
eq 0$ o $|f(p_N)|<\epsilon$

Sin embargo estos criterios pueden presentar problemas (que veremos más adelante), por tanto, la desigualdad $\frac{|p_N-p_{N-1}|}{|p_N|}<\epsilon,\ p_N\neq 0$ es el mejor criterio de parada en este caso.

Método de bisección

Observaciones:

- Para las aproximaciones en computadoras se recomienda aplicar un límite superior para el número de iteraciones y así evitar el ciclo infinito (generalmente ocurre cuando se especifíca de manera incorrecta). Esto se puede ver en el paso 2 del algoritmo del método de bisección (N_0 y concluye cuando $i > N_0$)
- Para iniciar el algoritmo se debe encontrar intervalo [a,b] con f(a)* f(b) < 0. Como en el intervalo tenemos un cero de f entonces es recomendable elegir un intervalo inicial [a,b] pequeño.

Método de bisección

Ejemplo: Muestre que $f(x) = x^3 + 4x^2 - 10 = 0$ tiene una raízen el intervalo [1,2]. Utilice el método de bisección para aproximar una solución precisa dentro de 10^{-4} .

Solución

Ya que f(1)=-5 y f(2)=14, el teorema del valor medio garantiza que esta función continua tenga una raíz (solución) en el intervalo [1,2]. En la primera iteración el punto medio en [1,2] considera f(1.5)=2.375>0, por lo tanto debemos seleccionar en la segunda iteración el intervalo [1,1.5]. Luego, f(1.25)=-1.796875, así nuestro nuevo intervalo es [1.25,1.5] y con punto medio es [1.375]. Luego de algunas iteraciones adicionales obtenemos los resultados en la siguiente tabla

n	a_n	b_n	p_n	$f(p_n)$
1	1.0	2.0	1.5	2.375
2	1.0	1.5	1.25	-1.79687
3	1.25	1.5	1.375	0.16211
4	1.25	1.375	1.3125	-0.84839
5	1.3125	1.375	1.34375	-0.35098
6	1.34375	1.375	1.359375	-0.09641
7	1.359375	1.375	1.3671875	0.03236
8	1.359375	1.3671875	1.36328125	-0.03215
9	1.36328125	1.3671875	1.365234375	0.000072
10	1.36328125	1.365234375	1.364257813	-0.01605
11	1.364257813	1.365234375	1.364746094	-0.00799
12	1.364746094	1.365234375	1.364990235	-0.00396
13	1.364990235	1.365234375	1.365112305	-0.00194

Figure: Fuente: [1]

Método de bisección

Solución

Luego de 13 iteraciones $p_{13}=1.365112305$ se aproxima a p con un error:

$$|p - p_{13}| < |b_{14} - a_{14}| = |1.365234375 - 1.365112305| = 0.000122070,$$

ya que $|a_{14}| < |p|$, entonces:

$$\frac{|p-p_{13}|}{|p|} < \frac{|b_{14}-a_{14}|}{|a_{14}|} \le 9.0 \times 10^{-5}$$

Así nuestra aproximación esta dentro de la magnitud 10^{-4} .

Método de bisección

El método de bisección presenta desventajas significativas especialmente relacionadas con la velocidad de convergencia, esto es, N se puede volver muy grande antes que la diferencia $|p-p_N|$ sea suficientemente pequeña. Por otra parte, el método siempre converge a una única solución, por lo que generalmente se usa como un iniciador para otros métodos más eficientes.

- Burden, R. L., & Faires, J. D. (2011). Numerical analysis.
- Howard, J. P. (2017). Computational Methods for Numerical Analysis with R. CRC Press.
 - Banerjee, S., & Roy, A. (2014). Linear algebra and matrix analysis for statistics. Crc Pr