

(11) EP 0 874 045 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 28.10.1998 Bulletin 1998/44

(21) Application number: 97935810.8

(22) Date of filing: 19.08.1997

(51) Int. Cl.6: C12N 15/00, C12P 21/00

(86) International application number: PCT/JP97/02859

(87) International publication number: WO 98/07840 (26.02.1998 Gazette 1998/08)

(84) Designated Contracting States:
AT BE CH DE DK ES FR GB IE IT LI LU NL SE

(30) Priority: 19.08.1996 JP 235928/96

(83) Declaration under Rule 28(4) EPC (expert solution)

(71) Applicant: SNOW BRAND MILK PRODUCTS CO., LTD. Sapporo-shl, Hokkaldo 065 (JP) (72) Inventors:

 NAKAGAWA, Nobuaki, Nishiura Heights 2-4 Shimotsuga-gun, Tochigi 329-05 (JP)

YASUDA, Hisataka
 Kawachi-gun, Tochigi 329-04 (JP)

 MORINAGA, Tomonori Shimotsuga-gun, Tochigi 321-02 (JP)

(74) Representative:
Wakerley, Helen Rachael
Reddle & Grose,
16 Theobalds Road
London WC1X 8PL (GB)

(54) NOVEL DNAS AND PROCESS FOR PRODUCING PROTEINS BY USING THE SAME

(57) DNAs having the nucleotide sequences of the Sequences No. 1 and No. 2 in the Sequence Table and a process for producing a protein which comprises inserting these DNAs into expression vectors to thereby produce a protein having molecular weights of about 60 kD (under reductive conditions) and about 60 kD and 120 kD (under non-reductive conditions) and being capable of inhibiting formation of osteoclast. These proteins are useful in the treatment of osteoporosis and rheumatism.

Description

5

10

FIELD OF TECHNOLOGY

The present invention relates to a novel DNA and a process for preparing a protein which possesses an activity to inhibit osteoclast differentiation and/or maturation (hereinafter called osteoclastogenesis-inhibitory activity) by a genetic engineering technique using the DNA. More particularly, the present invention relates to a genomic DNA encoding a protein OCIF which possesses an osteoclastogenesis-inhibitory activity and a process for preparing said protein by a genetic engineering technique using the genomic DNA.

BACKGROUND OF THE INVENTION

Human bones are constantly repeating a process of resorption and formation. Osteoblasts controlling formation of bones and osteoclasts controlling resorption of bones take major roles in this process. Osteoporosis is a typical disease caused by abnormal metabolism of bones. This disease is caused when bone resorption by osteoclasts exceeds bone formation by osteoblasts. Although the mechanism of this disease is still to be elucidated completely, the disease causes the bones to ache, makes the bones fragile, and may results in fracturing of the bones. As the population of the aged increases, this disease results in an increase in bedridden aged people which becomes a social problem. Urgent development of a therapeutic agent for this disease is strongly desired. Disease due to a decrease in bone mass is expected to be treated by controlling bone resorption, accelerating bone formation, or improving balance between bone resorption and formation.

Osteogenesis is expected to increase by accelerating proliferation, differentiation, or activation of the cells controlling bone formation, or by controlling proliferation, differentiation, or activation of the cells involved in bone resorption. In recent years, strong interest has been directed to physiologically active proteins (cytokines) exhibiting such activities as described above, and energetic research is ongoing on this subject. The cytokines which have been reported to accelerate proliferation or differentiation of osteoblasts include the proteins of fibroblast growth factor family (FGF: Rodan S. B. et al., Endocrinology vol. 121, p l917, 1987), insulin-like growth factor I (IGF-I: Hock J. M. et al., Endocrinology vol. 122, p 254, 1988), insulin growth factor II (IGF-II: McCarthy T. et al., Endocrinology vol. 124, p 301, 1989), Activin A (Centrella M. et al., Mol. Cell. Biol., vol. 11, p 250, 1991), transforming growth factor- β , (Noda M., The Bone, vol. 2, p 29, 1988), Vasculotropin (Varonique M. et al., Biochem. Biophys. Res. Commun., vol. 199, p 380, 1994), and the protein of heterotopic bone formation factor family (bone morphogenic protein; BMP: BMP-2; Yanaguchi A. et al., J. Cell Biol. vol. 113, p 682, 1991, OP-1; Sampath T. K. et al., J. Biol. Chem. vol. 267, p 20532. 1992, and Knutsen R. et al., Biochem. Biophys. Res. Commun. vol. 194, P 1352, 1993).

On the other hand, as the cytokines which suppress differentiation and/or maturation of osteoclasts, transforming growth factor-β (Chenu C, et. al., Proc. Natl. Acad. Sci. USA, vol. 85, p 5683, 1988), interleukin-4 (Kasano K. et al., Bone-Miner., vol. 21, p 179, 1993), and the like have been reported. Further, as the cytokines which suppress bone resorption by osteoclast, calcitonin (Bone-Miner., vol. 17, p 347, 1992), macrophage colony stimulating factor (Hattersley G. et al., J. Cell. Physiol. vol. 137, p 199. 1988), interleukin-4 (Watanabe, K. et al., Biochem. Biophys. Res. Commun. vol. 172. P 1035, 1990), and interferon-γ (Gowen M. et al., J. Bone Miner. Res., vol. I, p 46.9, 1986) have been reported.

These cytokines are expected to be used as agents for treating diseases accompanying bone loss by accelerating bone formation or suppressing of bone resorption. Clinical tests are being undertaken to verify the effect of improving bone metabolism of some cytokines such as insulin-like growth factor-I and the heterotopic bone formation factor family. In addition, calcitonin is already commercially available as a therapeutic agent for osteoporosis and a pain relief agent. At present, drugs for clinically treating bone diseases or shortening the period of treatment of bone diseases include activated vitamin D₃, calcitonin and its derivatives, and hormone preparations such as estradiol agent, ipriflavon or calcium preparations. These agents are not necessarily satisfactory in terms of the efficacy and therapeutic results. Development of a novel therapeutic agent which can be used in place of these agents is strongly desired.

In view of this situation, the present inventors have undertaken extensive studies. As a result, the present inventors had found protein OCIF exhibiting an osteoclastogenesis-inhibitory activity in a culture broth of human embryonic lung fibroblast IMR-90 (ATCC Deposition No. CCL186), and filed a patent application (PCT/JP96/00374). The present inventors have conducted further studies relating to the origin of this protein OCIF exhibiting the osteoclastogenesis-inhibitory activity. The studies have matured into determination of the sequence of a genomic DNA encoding the human origin OCIF. Accordingly, an object of the present invention is to provide a genomic DNA encoding protein OCIF exhibiting osteoclastogenesis-inhibitory activity and a process for preparing this protein by a genetic engineering technique using the genomic DNA.

DISCLOSURE OF THE INVENTION

Specifically, the present invention relates to a genomic DNA encoding protein OCIF exhibiting osteoclastogenesisinhibitory activity and a process for preparing this protein by a genetic engineering technique using the genomic DNA. The DNA of the present invention includes the nucleotide sequences No. 1 and No. 2 in the Sequence Table attached hereto.

Moreover, the present invention relates to a process for preparing a protein, comprising inserting a DNA including the nucleotide sequences of the sequences No. 1 and No. 2 in the Sequence Table into an expression vector, producing a vector capable of expressing a protein having the following physicochemical characteristics and exhibiting the activity of inhibiting differentiation and/or maturation of osteoclasts, and producing this protein by a genetic engineering technique.

- (a) molecular weight (SDS-PAGE):
 - (i) Under reducing conditions: about 60 kD,
 - (ii) Under non-reducing conditions: about 60 kD and about 120 kD;
- (b) amino acid sequence:

includes an amino acid sequence of the Sequence ID No. 3 of the Sequence Table,

(c) affinity:

15

20

25

- exhibits affinity to a cation exchanger and heparin, and
- (d) thermal stability:
 - (i) the osteoclast differentiation and/or maturation inhibitory activity is reduced when treated with heat at 70°C for 10 minutes or at 56°C for 30 minutes,
 - (ii) the osteoclast differentiation and/or maturation inhibitory activity is lost when treated with heat at 90°C for 10 minutes.

The protein obtained by expressing the gene of the present invention exhibits an osteoclastogenesis-inhibitory activity. This protein is effective as an agent for the treatment and improvement of diseases involving decrease in the amount of bone such as osteoporosis, diseases relating to bone metabolism abnormality such as rheumatism, degenerative joint disease, or multiple myeloma, and is useful as an antigen to establish an immunological diagnosis of such diseases.

35 BRIEF DESCRIPTION OF THE DRAWINGS

Figure 1 shows a result of Western Blotting analysis of the protein obtained by causing genomic DNA of the present invention to express a protein in Example 4 (iii), wherein lane 1 indicates a marker, lane 2 indicates the culture broth of COS7 cells in which a vector pWESRα(COIF (Example 4 (iii))has been transfected, and lane 3 is the culture broth of COS7 cell in which a vector pWESRα(control) has been transfected.

BEST MODE FOR CARRYING OUT THE INVENTION

The genomic DNA encoding the protein OCIF which exhibits osteoclastogenesis-inhibitory activity in the present invention can be obtained by preparing a cosmid library using a human placenta genomic DNA and a cosmid vector and by screening this library using DNA fragments which are prepared based on the OCIF cDNA as a probe. The thus-obtained genomic DNA is inserted into a suitable expression vector to prepare an OCIF expression cosmid. A recombinant type OCIF can be obtained by transfecting the genomic DNA into a host organism such as various types of cells or microorganism strains and causing the DNA to express a protein by a conventional method. The resultant protein exhibiting osteoclastogenesis-inhibitory activity (an osteoclastogenesis-inhibitory factor) is useful as an agent for the treatment and improvement of diseases involving a decrease in bone mass such as osteoporosis and other diseases relating to bone metabolism abnormality and also as an antigen to prepare antibodies for establishing immunological diagnosis of such diseases. The protein of the present invention can be prepared as a drug composition for oral or nonoral administration. Specifically, the drug composition of the present invention containing the protein which is an osteoclastogenesis-inhibitory factor as an active ingredient can be safely administered to humans and animals. As the form of drug composition, a composition for injection, composition for intravenous drip, suppository, nasal agent, sublingual agent, percutaneous absorption agent, and the like are given. In the case of the composition for injection, of the present invention of secoclastogenesis-inhibitory factor of the present

invention and a pharmaceutically acceptable carrier. The composition may further comprise amino acids, saccharides, cellulose derivatives, and other excipients and/or activation agents, including other organic compounds and inorganic compounds which are commonly added to a composition for injection. When an injection preparation is prepared using the osteoclastogenesis-inhibitory factor of the present invention and these excipients and activation agents, a pH adjuster, buffering agent, stabilizer, solubilizing agent, and the like may be added if necessary to prepare various types of injection agents.

The present invention will now be described in more detail by way of examples which are given for the purpose of illustration and not intended to be limiting of the present invention.

Example 1

20

(Preparation of a cosmid library)

A cosmid library was prepared using human placenta genomic DNA (Clonetech; Cat. No. 6550-2) and pWE15 cosmid vector (Stratagene). The experiment was carried out following principally the protocol attached to the pWE15 cosmid vector kit of Stratagene Company, provided Molecular Cloning: A Laboratory Mannual (Cold Spring Harbor Laboratory (1989)) was referred to for common procedures for handling DNA, E. coli, and pharge.

(i) Preparation of restrictive enzymolysate of human-genomic DNA

Human placenta genomic DNA dissolved in 750 μl of a solution containing 10 mM Tris-HCl, 10 mM MgCl₂, and 100 mM NaCl was added to four 1.5 ml Eppendorf tubes (tube A, B, C, and D) in the amount of 100 μg each. Restriction enzyme Mbol was added to these tubes in the amounts of 0.2 unit for tube A, 0.4 unit for tube B, 0.6 unit for tube C, and 0.8 unit for tube D, and DNA was digested for 1 hour. Then, EDTA in the amount to make a 20 mM concentration was added to each tube to terminate the reaction, followed by extraction with phenol/chloroform (1:1). A two-fold amount of ethanol was added to the aqueous layer to precipitate DNA. DNA was collected by centrifugation, washed with 70% ethanol, and DNA in each tube was dissolved in 100 μl of TE (10 mM HCl (pH 8.0) + 1 mM EDTA buffer solution, hereinafter called TE). DNA in four tubes was combined in one tube and incubated for 10 minutes at 68°C. After cooling to room temperature, the mixture was overlayed onto a 10%-40 % linear sucrose gradient which was prepared in a buffer containing 20 mM Tris-HC1 (pH 8.0), 5 mM EDTA, and 1 mM NaC1 in an centrifugal tube (38 ml). The tube was centrifuged at 26,000 rpm for 24 hours at 20°C using a rotor SRP28SA manufactured by Hitachi, Ltd. and 0.4 ml fractions of the sucrose gradient was collected using a fraction collector. A portion of each fraction was subjected to 0.4% agarose electrophoresis to confirm the size of DNA. Fractions containing DNA with a length of 30 kb (kilo base pair) to 40 kb were thus combined. The DNA solution was diluted with TE to make a sucrose concentration to 10% or less and 2.5-fold volumes of ethanol was added to precipitate DNA. DNA was dissolved in TE and stored at 4°C.

(ii) Preparation of cosmid vector

The pWE15 cosmid vector obtained from Stratagene Company was completely digested with restriction enzyme BamHI according to the protocol attached to the cosmid vector kit. DNA collected by ethanol precipitation was dissolved in TE to a concentration of 1 mg/m1. Phosphoric acid at the 5'-end of this DNA was removed using calf small intestine alkaline phosphatase, and DNA was collected by phenol extraction and ethanol precipitation. The DNA was dissolved in TE to a concentration of 1 mg/ml.

5 (iii) Ligation of genomic DNA to vector and in vitro packaging

1.5 micrograms of genomic DNA fractionated according to size and 3 μg of pWE15 cosmid vector which was digested with restriction enzyme BamHI were ligated in 20 μI of a reaction solution using Ready-To-Go T4DNA ligase of Pharmacia Company. The ligated DNA was packaged in vitro using Gigapack™ II packaging extract (Stratagene) according to the protocol. After the packaging reaction, a portion of the reaction mixture was diluted stepwise with an SM buffer solution and mixed with E. coli XL1-Blue MR (Stratagene) which was suspended in 10 mM MgC1₂ to cause pharge to infect, and plated onto LB agar plates containing 50 μg/ml of ampicillin. The number of colonies produced was counted. The number of colonies per 1 μI of packaging reaction was calculated based on this result.

(iv) Preparation of a cosmid library

The packaging reaction solution thus prepared was mixed with E. coli XL1-Blue MR and the mixture was plated onto agarose plates containing ampicillin so as to produce 50,000 colonies per agarose plate having a 15 cm of diam-

eter. After incubating the plate overnight at 37°C, an LB culture medium was added in the amount of 3 ml per plate to suspend and collect colonies of E. coli. Each agarose plate was again washed with 3 ml of the LB culture medium and the washing was combined with the original suspension of E. coli. The E. coli collected from all agarose plates was placed in a centrifugal tube, glycerol was added to a concentration of 20%, and ampicillin was further added to make a final concentration of 50 μ g/m1. A portion of the E. coli suspension was removed and the remainder was stored at 80°C. The removed E. coli was diluted stepwise and plated onto an agar plates to count the number of colonies per 1 ml of suspension.

Example 2

10

(Screening of cosmid library and purification of colony)

A nitrocellulose filter (Millipore) with a diameter of 14.2 cm was placed on each LB agarose plate with a diameter of 15 cm which contained 50 µg/m1 of ampicillin. The cosmid library was plated onto the plates so as to produce 50,000 colonies of E. coli per plate, followed by incubation overnight at 37°C. E. coli on the nitrocellulose filter was transferred to another nitrocellulose filter according to a conventional method to obtain two replica filters. According to the protocol attached to the cosmid vector kit, cosmid DNA in the E. coli on the replica filters was denatured with an alkali, neutralized, and immobilized on the nitrocellulose filter using a Stratalinker (Stratagene). The filters were heated for two hours at 80°C in a vacuum oven. The nitrocellulose filters thus obtained were hybridized using two kinds of DNA produced, respectively, from 5'-end and 3'-end of human OCIF cDNA as probes. Namely, a plasmid was purified from E. coli pKB/OIF10 (deposited at The Ministry of International Trade and Industry, the Agency of Industrial Science and Technology, Biotechnology Laboratory, Deposition No. FERM BP-5267) containing OCIF cDNA. The plasmid containing OCIF cDNA was digested with restriction enzymes KpnI and EcoRI. Fragments thus obtained was separated using agarose gel electrophoresis. Kpnl/EcoRI fragment with a length of 0.2 kb was purified using a QIAEX II gel extraction kit (Qiagen). This DNA was labeled with ³²p using the Megaprime DNA Labeling System (Amasham) (5'-DNA probe). Apart from this, a BamHI/EcoRV fragment with a length of 0.2 kb which was produced from the above plasmid by digestion with restriction enzymes BamHI and EcoRV was purified and labeled with ³²p (3'-DNA probe). One of the replica filters described above was hybridized with the 5'-DNA probe and the other with the 3'-DNA probe. Hybridization and washing of the filters were carried out according to the protocol attached to the cosmid vector kit. Autoradiography detected several positive signals with each probe. One colony which gave positive signals with both probe was identified. The colony on the agar plate, which corresponding to the signal on the autoradiogram was isolated and purified. A cosmid was prepared from the purified colony by a conventional method. This cosmid was named pWEOCIF. The size of human genomic DNA contained in this cosmid was about 38 kb.

35 Example 3

(Determination of the nucleotide sequence of human OCIF genomic DNA)

(i) Subcloning of OCIF genomic DNA

40

55

Cosmid pWEOCIF was digested with restriction enzyme EcoRI. After the separation of the DNA fragments thus produced by electrophoresis using a 0.7% agarose gel, the DNA fragments were transferred to a nylon membrane (Hybond -N, Amasham) by the Southern blot technique and immobilized on the nylon membrane using Stratalinker (Stratagene). On the other hand, plasmid pBKOCIF was digested with restriction enzyme EcoRI and a 1.6 kb fragment containing human OCIF cDNA was isolated by agarose gel electrophoresis. The fragment was labeled with ³²P using the Megaprime DNA labeling system (Amasham).

Hybridization of the nylon membranes described above with the ³²P-labeled 1.6-kb OCIF cDNA was performed according to a conventional method detected that DNA fragments with a size of 6 kb, 4 kb, 3.6 kb, and 2.6 kb. These fragments hybridized with the human OCIF cDNA were isolated using agarose gel electrophoresis and individually subcloned into an EcoRI site of pBluescript II SK + vector (Strategene) by a conventional method. The resulting plasmids were respectively named pBSE 6, pBSE 4, pBSE 3.6, and PBSE 2.6.

(ii) Determination of the nucleotide sequence

The nucleotide sequence of human OCIF genomic DNA which was subcloned into the plasmid was determined using the ABI Dideoxy Terminator Cycle Sequencing Ready Reaction kit (Perkin Elmer) and the 373 Sequencing System (Applied Biosystems). The primer used for the determination of the nucleotide sequence was synthesized based on the nucleotide sequence of human OCIF cDNA (Sequence ID No. 4 in the Sequence Table). The nucleotide

sequences thus determined are given as the Sequences No. 1 and No. 2 in the Sequence Table. The Sequence ID No. 1 includes the first exon of the OCIF gene and the Sequence ID No. 2 includes the second, third, fourth, and fifth exons. A stretch of about 17 kb is present between the first and second exons.

5 Example 4

10

(Production of recombinant OCIF using COS-7 cells)

(i) Preparation of OCIF genomic DNA expression cosmid

To express OCIF genomic DNA in animal cells, an expression unit of expression plasmid pcDL-SRα296 (Molecular and Cellar Biology, vol. 8, P466-472, 1988) was inserted into cosmid vector pWE15 (Stratagene). First of all, the expression plasmid pcDL-SRα296 was digested with a restriction enzyme Sal I to cut out expression unit with a length of about 1.7 kb which includes an SRαpromotor, SV40 later splice signal, poly (A) addition signal, and so on. The digestion products were separated by agarose electrophoresis and the 1.7-kb fragment was purified using the QIAEX II gel extraction kit (Qiagen). On the other hand, cosmid vector pWE15 was digested with a restriction enzyme EcoRI and fragments were separated using agarose gel electrophoresis. pWE15 DNA of 8.2 kb long was purified using the QIAEX II gel extraction kit (Qiagen). The ends of these two DNA fragments were bluntled using a DNA blunting kit (Takara Shuzo), ligated using a DNA ligation kit (Takara Shuzo), and transferred into E. coli DH5α (Gibco BRL). The resultant transformant was grown and the expression cosmid pWESRα containing an expression unit was purified using a Qiagen column (Qiagen).

The cosmid pWE OCIF containing the OCIF genomic DNA with a length of about 38 kb obtained in (i) above was digested with a restriction enzyme NotI to cut out the OCIF genomic DNA of about 38 kb. After separation by agarose gel electrophoresis, the DNA was purified using the QIAEX II gel extraction kit (Qiagen). On the other hand, the expression cosmid pWESR α was digested with a restriction enzyme EcoRI and the digestion product was extracted with phenol and chloroform, ethanol-precipitated, and dissolved in TE.

pWESR α digested with a restriction enzyme EcoRl and an EcoRl-Xmnl-Notl adapter (#1105, #1156 New England Biolaboratory Co.) were ligated using T4 DNA ligase (Takara Shuzo Co., Ltd.). After removal of the free adapter by agarose gel electrophoresis, the product was purified using QIAEX gel extraction kit (Qiagen). The OCIF genomic DNA with a length of about 37 kb which was derived from the digestion with restriction enzyme Notl and the pWESR α to which the adapter was attached were ligated using T4 DNA ligase (Takara Shuzo). The DNA was packaged in vitro using the Gigapack packaging extract (Stratagene) and infected with E. coli XL1-Blue MR (Stratagene). The resultant transformant was grown and the expression cosmid pWESR α OCIF which contained OCIF genomic DNA was inserted was purified using a Qiagen column (Qiagen). The OCIF expression cosmid pWESR α OCIF was ethanol-precipitated and dissolved in sterile distilled water and used in the following analysis.

(ii) Transient expression of OCIF genomic DNA and measurement of OCIF activity

A recombinant OCIF was expressed as described below using the OCIF expression cosmid pWESRαOCIF obtained in (i) above and its activity was measured. COS-7 (8x10⁵cells/well) cells (Riken Cell Bank, RCB0539) were planted in a 6-well plate using DMEM culture medium (Gibco BRL) containing 10% fetal bovine serum (Gibco BRL). On the following day, the culture medium was removed and cells were washed with serum-free DMEM culture medium. The OCIF expression cosmid pWESRaOCIF which had been diluted with OPTI-MEM culture medium (Gibco BRL) was mixed with lipophectamine and the mixture was added to the cells in each well according to the attached protocol. The expression cosmid pWESRα was added to the cells in the same manner as a control. The amount of the cosmid DNA and Lipophectamine was respectively 3 µg and 12 µl. After 24 hours, the culture medium was removed and 1.5 m1 of fresh EX-CELL 301 culture medium (JRH Bioscience) was added to each well. The culture medium was recovered after 48 hours and used as a sample for the measurement of OCIF activity. The measurement of OCIF activity was carried out according to the method described by Kumegawa, M. et al. (Protein, Nucleic Acid, and Enzyme, Vo1. 34, p 999 (1989)) and the method of TAKAHASHI, N. et al. (Endocrihology vol. 122, p 1373 (1988)). The osteoclast formation in the presence of activated vitamin D₃ from bone marrow cells isolated from mice aged about 17 days was evaluated by the induction of tartaric acid resistant acidic phosphatase activity. The inihibition of the acid phosphatase was measured and used as the activity of the protein which possesses osteoclastogenesis-inhibitory activity (OCIF). Namely, 100 μ I/well of a OCIF sample which was diluted with α -MEM culture medium (Gibco BRL) containing 2x10⁻⁸ M activated vitamin D_3 and 10% fetal bovine serum was added to each well of a 96 well micro plate. Then, $3x10^5$ bone marrow cells isolated from mice (about 17-days old) suspended in 100 μl of α-MEM culture medium containing 10% fetal bovine serum were added to each well of the 96 well micro plate and cultured for a week at 37°C and 100% humidity under 5% CO₂ atmosphere. On days 3 and 5, 160 μl of the conditioned medium was removed from each well, and 160 μl of a sam-

ple which was diluted with α-MEM culture medium containing 1x10⁻⁸ M activated vitamin D₃ and 10% fetal bovine serum was added. After 7 days from the start of culturing, the cells were washed with a phosphate buffered saline and fixed with a ethanol/acetone (1:1) solution for one minute at room temperature. The osteoclast formation was detected by staining the cells using an acidic phosphatase activity measurement kit (Acid Phosphatase, Leucocyte, Cat.No. 387-A, Sigma Company). A decrease in the number of cells positive to acidic phosphatase activity in the presence of tartaric acid was taken as the OCIF activity. The results are shown in Table 1, which indicates that the conditioned medium exhibits the similar activity to natural type OCIF obtained from the IMR-90 culture medium and recombinant OCIF produced by CHO cells.

TABLE 1

Activity of OC	CIF expresse	d by COS-7 o	ells in the cor	nditioned med	ium	
Dilution	1/10	1/20	1/40	1/80	1/160	1/320
OCIF genomic DNA introduced	++	++	++	++	+	-
Vector introduced	-	•		-	-	-
Untreated		-	-	-	-	-

[&]quot;++" indicates an activity inhibiting 80% or more of osteoclast formation, "+" indicates an activity inhibiting 30-80% of osteoclast formation, and "-" indicates that no inhibition of osteoclast formation is observed.

(iii) Identification of the product by Western Blotting

A buffer solution (10 μl) for SDS-PAGE (0.5 M Tris-HC1, 20% glycerol, 4% SDS, 20 μg/m1 bromophenol blue, pH 6.8) was added to 10 μ1 of the sample for the measurement of OCIF activity prepared in (ii) above. After boiling for 3 minutes at 100°C, the mixture was subjected to 10% SDS polyacrylamide electrophoresis under non-reducing conditions. The proteins were transferred from the gel to a PVDF membrane (ProBlott, Perkin Elmer) using semi-dry blotting apparatus (Biorad). The membrane was blocked and incubated for 2 hours at 37°C together with a horseradish peroxidase-labeled anti-OCIF antibody obtained by labeling the previously obtained OCIF protein with horseradish peroxidase according to a conventional method. After washing, the protein which has bound the anti-OCIF antibody was detected using the ECL system (Amasham). As shown in Figure 1, two bands, one with a molecular weight of about 120 kilo dalton and the other 60 kilo dalton, were detected in the supernatant obtained from the culture broth of COS-7 cells in which pWESRαOCIF was transfected. On the other hand, these two bands with a molecular weight of about 120 kilo dalton and 60 kilo dalton were not detected in the supernatant obtained from the culture broth of COS-7 cells in which pWESRavector was transfected, confirming that the protein obtained was OCIF.

INDUSTRIAL APPLICABILITY

The present invention provides a genomic DNA encoding a protein OCIF which possesses an osteoclastogenesisinhibitory activity and a process for preparing this protein by a genetic engineering technique using the genomic DNA. The protein obtained by expressing the gene of the present invention exhibits an osteoclastogenesis-inhibitory activity and is useful as an agent for the treatment and improvement of diseases involving a decrease in the amount of bone such as osteoporosis, other diseases resulting from bone metabolism abnormality such as rheumatism or degenerative joint disease, and multiple myeloma. The protein is further useful as an antigen to establish antibodies useful for an immunological diagnosis of such diseases.

NOTE ON MICROORGANISM

Depositing Organization:

The Ministry of International Trade and Industry, National Institute of Bioscience and

Human Technology, Agency of Industrial Science and Technology

Address: 1-3, Higashi-1-Chome, Tsukuba-shi, Ibaraki-ken, Japan

June 21, 1995 (originally deposited on June 21, 1995 and transferred to the international

deposition according to the Budapest Treaty on October 25, 1995)

Accession No. FERM BP-5267

7

10

15

20

40

Date of Deposition: 55

TABLE OF SEQUENCES

5	
5	Sequence number: 1
	Length of sequence: 1316
10	Sequence Type: nucleic acid
	Strandedness: double
	Topology: linear
15	Molecular type: genomic DNA (human OCIF genomic DNA-1)
20	Sequence:
	CTGGAGACAT ATAACTTGAA CACTTGGCCC TGATGGGGAA GCAGCTCTGC AGGGACTTTT 60
	TCAGCCATCT GTAAACAATT TCAGTGGCAA CCCGCGAACT GTAATCCATG AATGGGACCA 120
25	CACTITACAA GTCATCAAGT CTAACTICTA GACCAGGGAA TTAATCGGGG AGACAGCGAA 180
	CCCTAGAGCA AAGTGCCAAA CTTCTGTCGA TAGCTTGAGG CTAGTGGAAA GACCTCGAGG 240
	AGGCTACTCC AGAAGTTCAG CGCGTAGGAA GCTCCGATAC CAATAGCCCT TTCATGATGG 300
30	TEGGGTTGGT GAAGGGAACA GTGCTCCGCA AGGTTATCCC TGCCCCAGGC AGTCCAATTT 360
	TCACTCTGCA GATTCTCTCT GGCTCTAACT ACCCCAGATA ACAAGGAGTG AATGCAGAAT 420
	AGCACGGGCT TTAGGGCCAA TCAGACATTA GTTAGAAAAA TTCCTACTAC ATGGTTTATG 480
35	TAAACTTGAA GATGAATGAT TGCGAACTCC CCGAAAAGGG CTCAGACAAT GCCATGCATA 540
	AAGAGGGCC CTGTAATTTG AGGTTTCAGA ACCCGAAGTG AAGGGGTCAG GCAGCCGGGT 600
	ACGGCGGAAA CTCACAGCTT TCGCCCAGCG AGAGGACAAA GGTCTGGGAC ACACTCCAAC 660
40	TGCGTCCGGA TCTTGGCTGG ATCGGACTCT CAGGGTGGAG GAGACACAAG CACAGCAGCT 720
	GCCCAGCGTG TGCCCAGCCC TCCCACCGCT GGTCCCGGCT GCCAGGAGGC TGGCCGCTGG 780
45	CGGGAAGGGG CCGGGAAACC TCAGAGCCCC GCGGAGACAG CAGCCGCCTT GTTCCTCAGC 840
40	CCGGTGGCTT TTTTTTCCCC TGCTCTCCCA GGGGACAGAC ACCACCGCCC CACCCCTCAC 900
	GCCCACCTC CCTGGGGGAT CCTTTCCGCC CCAGCCCTGA AAGCGTTAAT CCTGGAGCTT 960

55

50

TCTGCACACC CCCCGACCGC TCCCGCCCAA GCTTCCTAAA AAAGAAAGGT GCAAAGTTTG 1020

GTCCAGGATA GAAAAATGAC TGATCAAAGG CAGGCGATAC TTCCTGTTGC CGGGACGCTA 1080 TATATAACGT GATGAGCGCA CGGGCTGCGG AGACGCACCG GAGCGCTCGC CCAGCCGCCG 1140

	CCTCCAAGCC CCTGAGGTTT CCGGG	GACCA CA ATG	AAC AAG TTG	CTG TGC TGC	1193
5		Met	Asn Lys Leu	Leu Cys Cys	
			-20	-15	
10	GCG CTC GTG GTAAGTCCCT GGGCC	CAGCCG ACGGGT	roccc gacacci	rggg	1242
	Ala Leu Val				
15					
	GAGGCTGCTG CCACCTGGTC TCCCAA	ACCTC CCAGCGG	ACC GGCGGGGA	IGA AGGCTCCACT	
20	CGCTCCCTCC CAGG				1316
20	Sequence number: 2				
	Length of sequence: 989	8			
25	Sequence Type: nucleic	acid			
	Strandedness: double				
30	Topology: linear				
	Molecular type: genomic	: DNA (huma	an OCIF ge	enomic DNA-	-2)
35	Sequence:	0000		01 0 5 0111 5 01	20
	GCTTACTTTG TGCCAAATCT CATTAG				60
40	ACTOTTGCAC ATAAGAACAA ACCTAT TCCTTCTAG TTT CTG GAC ATC TC				
	Phe Leu Asp Ile Se				1/1
	-10	-5	p ime ime di	i did im rhe	
45	-10	7		1	
	CCT CCA AAG TAC CTT CAT TAT	GAC GAA GAA A	ACC TCT CAT	CAG CTG TTG	219
50	Pro Pro Lys Tyr Leu His Tyr				
	5 10		15		

	TGT	GAC	AAA	TGT	CCT	CCT	GGT	ACC	TAC	CTA	AAA	CAA	CAC	TGT	ACA	GCA	267
5	Cys	Asp	Lys	Cys	Pro	Pro	Gly	Thr	Tyr	Leu	Lys	Gln	His	Cys	Thr	Ala	
	20					25					30					35	
10																	
10	AAG	TGG	AAG	ACC	GTG	TGC	GCC	CCT	TGC	CCT	GAC	CAC	TAC	TAC	ACA	GAC	315
	Lys	Trp	Lys	Thr	Val	Cys	Ala	Pro	Cys	Pro	Asp	His	Tyr	Tyr	Thr	Asp	
15					40					45					50		
20	AGC	TGG	CAC	ACC	AGT	GAC	GAG	TGT	CTA	TAC	TGC	AGC	CCC	GTG	TGC	AAG	363
	Ser	Trp	His	Thr	Ser	Ásp	Glu	Cys	Leu	Tyr	Cys	Ser	Pro	Val	Cys	Lys	
				55					60					65			
25																	
	GAG	CTG	CAG	TAC	GTC	AAG	CAG	GAG	TGC	AAT	CGC	ACC	CAC	AAC	CGC	GTG	411
30	Glu	Leu	Glo	Tyr	Val	Lys	Gln	Glu	Cys	Asn	Arg	Thr	His	Asn	Arg	Val	
			70					75					80				
35	TGC	GAA	TGC	AAG	GAA	GGG	CGC	TAC	CTT	GAG	ATA	GAG	TTC	TGC	TTG	AAA	459
	Cys	Glu	Cys	Lys	Glu	Gly	Arg	Туг	Leu	Glu	lle	Glu	Phe	Cys	Leu	Lys	
40		85					90					95					
	CAT	AGG	AGC	TGC	CCT	CCT	GGA	TTT	GGA	CTG	GTG	CAA	GCT	G GT	ACGT	GTCA	509
45	His	Arg	Ser	Cys	Pro	Pro	Gly	Phe	Gly	Val	Val	Gln	Ala				
	100					105					110						
50																	
	ATGT	GCAG	CA A	AATT	AATT	A GG	ATCA	TGCA	AAG	TCAG	ATA	GTTG	TGAÇ	AG T	TTAG	GAGAA	569

	CACTITIGIT	CTGATGACAT	TATAGGATAG	CAAATTGCAA	AGGTAATGAA	ACCTGCCAGG	629
5	TAGGTACTAT	GTGTCTGGAG	TGCTTCCAAA	GGACCATTGC	TCAGAGGAAT	ACTTTGCCAC	689
	TACAGGGCAA	TTTAATGACA	AATCTCAAAT	GCAGCAAATT	ATTCTCTCAT	GAGATGCATG	749
	ATGGTTTTTT	TTTTTTTTT	TAAAGAAACA	AACTCAAGTT	GCACTATTGA	TAGTTGATCT	809
10	ATACCTCTAT	ATTTCACTTC	AGCATGGACA	CCTTCAAACT	GCAGCACTTT	TTGACAAACA	869
	TCAGAAATGT	TAATTTATAC	CAAGAGAGTA	ATTATGCTCA	TATTAATGAG	ACTCTGGAGT	929
15	GCTAACAATA	AGCAGTTATA	ATTAATTATG	TAAAAAATGA	GAATGGTGAG	GGGAATTGCA	989
	TTTCATTATT	AAAAACAAGG	CTAGTTCTTC	CTTTAGCATG	GGAGCTGAGT	GTTTGGGAGG	1049
	GTAAGGACTA	TAGCAGAATC	TCTTCAATGA	GCTTATTCTT	TATCTTAGAC	AAAACAGATT	1109
20	GTCAAGCCAA	GAGCAAGCAC	TTGCCTATAA	ACCAAGTGCT	TTCTCTTTTG	CATTTTGAAC	1169
	AGCATTGGTC	AGGGCTCATG	TGTATTGAAT	CTTTTAAACC	AGTAACCCAC	GTTTTTTTC	1229
25	TGCCACATTT	GCGAAGCTTC	AGTGCAGCCT	ATAACTITTC	ATAGETTGAG	AAAATTAAGA	1289
	GTATCCACTT	ACTTAGATGG	AAGAAGTAAT	CAGTATAGAT	TCTGATGACT	CAGTTTGAAG	1349
	CAGTGTTTCT	CAACTGAAGC	CCTGCTGATA	TTTTAAGAAA	TATCTGGATT	CCTAGGCTGG	1409
30	ACTCCTTTTT	GTGGGCAGCT	GTCCTGCGCA	TTGTAGAATT	TTGGCAGCAC	CCCTGGACTC	1469
	TAGCCACTAG	ATACCAATAG	CAGTCCTTCC	CCCATGTGAC	AGCCAAAAAT	CTCTTCAGAC	1529
35	ACTGTCAAAT	GTCGCCAGGT	GGCAAAATCA	CTCCTGGTTG	AGAACAGGGT	CATCAATGCT	1589
	AAGTATCTGT	AACTATTTTA	ACTCTCAAAA	CTTGTGATAT	ACAAAGTCTA	AATTATTAGA	1649
	CGACCAATAC	TTTAGGTTTA	AAGGCATACA	AATGAAACAT	TCAAAAATCA	AAATCTATTC	1709
40	TGTTTCTCAA	ATAGTGAATC	TTATAAAATT	AATCACAGAA	GATGCAAATT	GCATCAGAGT	1769
	CCCTTAAAAT	TCCTCTTCGT	ATGAGTATTT	GAGGGAGGAA	TTGGTGATAG	TTCCTACTTT	1829
45	CTATTGGATG	GTACTTTGAG	ACTCAAAAGC	TAAGCTAAGT	TGTGTGTGTG	TCAGGGTGCG	1889
	GGGTGTGGAA	TCCCATCAGA	TAAAAGCAAA	TCCATGTAAT	TCATTCAGTA	AGTTGTATAT	1949
	GTAGAAAAAT	GAAAAGTGGG	CTATGCAGCT	TGGAAACTAG	AGAATTTTGA	AAAATAATGC	2009
50	AAATCACAAG	GATCTTTCTT	AAATAAGTAA	GAAAATCTGT	TTGTAGAATG	AAGCAAGCAG	2069
	GCAGCCAGAA	GACTCAGAAC	AAAAGTACAC	ATTTTACTCT	CTCTACACTC	GCAGCACAGT	2129

GGGATTTATT TACCTCTCCC TCCCTAAAAA CCCACACAGC GGTTCCTCTT GGGAAATAAG 2189 AGGITTCCAG CCCAAAGAGA AGGAAAGACT AIGTGGTGTT ACICTAAAAA GTATTTAATA 2249 TACTTCATTC TGTTAATTCC TGTGGAATTA CTTAGAGCAA GCATGGTGAA TTCTCAACTG 2369 TAAAGCCAAA TTTCTCCATC ATTATAATTT CACATTTTGC CTGGCAGGTT ATAATTTTTA 2429 TATTTCCACT GATAGTAATA AGGTAAAATC ATTACTTAGA TGGATAGATC TTTTTCATAA 2489 AAAGTACCAT CAGTTATAGA GGGAAGTCAT GTTCATGTTC AGGAAGGTCA TTAGATAAAG 2549 CTTCTGAATA TATTATGAAA CATTAGTTCT GTCATTCTTA GATTCTTTT GTTAAATAAC 2609 TTTAAAAGCT AACTTACCTA AAAGAAATAT CTGACACATA TGAACTTCTC ATTAGGATGC 2669 AGGAGAAGAC CCAAGCCACA GATATGTATC TGAAGAATGA ACAAGATTCT TAGGCCCGGC 2729 ACGGTGGCTC ACATCTGTAA TCTCAAGAGT TTGAGAGGTC AAGGCGGGCA GATCACCTGA 2789 GGTCAGGAGT TCAAGACCAG CCTGGCCAAC ATGATGAAAC CCTGCCTCTA CTAAAAATAC 2849 AAAAATTAGC AGGGCATGGT GGTGCATGCC TGCAACCCTA GCTACTCAGG AGGCTGAGAC 2909 ACGAGAATCT CTTGAACCCT CGAGGCGGAG GTTGTGGTGA GCTGAGATCC CTCTACTGCA 2969 CTCCAGCCTG GGTGACAGAG ATGAGACTCC GTCCCTGCCG CCGCCCCGC CTTCCCCCCC 3029 AAAAAGATTC TTCTTCATGC AGAACATACG GCAGTCAACA AAGGGAGACC TGGGTCCAGG 3089 TGTCCAAGTC ACTTATTTCG AGTAAATTAG CAATGAAAGA ATGCCATGGA ATCCCTGCCC 3149 AAATACCTCT GCTTATGATA TTGTAGAATT TGATATAGAG TTGTATCCCA TTTAAGGAGT 3209 AGGATGTAGT AGGAAAGTAC TAAAAACAAA CACACAAACA GAAAACCCTC TTTGCTTTGT 3269 AAGGTGGTTC CTAAGATAAT GTCAGTGCAA TGCTGGAAAT AATATTTAAT ATGTGAAGGT 3329 TTTAGGCTGT GTTTTCCCCT CCTGTTCTTT TTTTCTGCCA GCCCTTTGTC ATTTTTGCAG 3389 GTCAATGAAT CATGTAGAAA GAGACAGGAG ATGAAACTAG AACCAGTCCA TTTTGCCCCT 3449 TITITIATIT TOTGGTTTTG GTAAAAGATA CAATGAGGTA GGAGGTTGAG ATTTATAAAT 3509 GAAGTTTAAT AACTTTCTGT AGCTTTGATT TTTCTCTTTC ATATTTGTTA TCTTGCATAA 3569 GCCAGAATTG GCCTGTAAAA TCTACATATG GATATTGAAG TCTAAATCTG TTCAACTAGC 3629 TTACACTAGA TGGAGATATT TTCATATTCA GATACACTGG AATGTATGAT CTAGCCATGC 3689

55

50

5

10

15

20

25

30

35

	GTAATATAGT CAAGTGTTTG AAGGTATTTA TTTTTAATAG CGTCTTTAGT TGTGGACTGG 3749
5	TTCAAGTTTT TCTGCCAATG ATTTCTTCAA ATTTATCAAA TATTTTTCCA TCATGAAGTA 3809
	AAATGCCCTT GCAGTCACCC TTCCTGAAGT TTGAACGACT CTGCTGTTTT AAACAGTTTA 3869
	AGCAAATGGT ATATCATCTT CCGTTTACTA TGTAGCTTAA CTGCAGGCTT ACGCTTTTGA 3929
10	GTCAGCGGCC AACTTTATTG CCACCTTCAA AAGTTTATTA TAATGTTGTA AATTTTTACT 3989
	TCTCAAGGTT AGCATACTTA GGAGTTGCTT CACAATTAGG ATTCAGGAAA GAAAGAACTT 4049
15	CAGTAGGAAC TGATTGGAAT TTAATGATGC AGCATTCAAT GGGTACTAAT TTCAAAGAAT 4109
,5	GATATTACAG CAGACACACA GCAGTTATCT TGATTTTCTA GGAATAATTG TATGAAGAAT 4169
	ATGGCTGACA ACACGGCCTT ACTGCCACTC AGCGGAGGCT GGACTAATGA ACACCCTACC 4229
20	CITCTTTCCT TTCCTCTCAC ATTTCATGAG CGTTTTGTAG GTAACGAGAA AATTGACTTC 4289
	CATTTGCATT ACAAGGAGGA GAAACTGGCA AAGGGGATGA TGGTGGAAGT TTTGTTCTGT 4349
25	CTAATGAAGT GAAAAATGAA AATGCTAGAG TTTTGTGCAA CATAATAGTA GCAGTAAAAA 4409
25	CCAAGTGAAA AGTCTTTCCA AAACTGTGTT AAGAGGGCAT CTGCTGGGAA ACGATTTGAG 4469
	GAGAAGGTAC TAAATTGCTT GGTATTTTCC GTAG GA ACC CCA GAG CGA AAT ACA 4523
30	Gly Thr Pro Glu Arg Asn Thr
	115
35	
35	GTT TGC AAA AGA TGT CCA GAT GGG TTC TTC TCA AAT GAG ACG TCA TCT 4571
	Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser
40	120 125 130 135
45	AAA GCA CCC TGT AGA AAA CAC ACA AAT TGC AGT GTC TTT GGT CTC CTG 4619
40	Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu
	140 · 145 150
50	
	CTA ACT CAG AAA GGA AAT GCA ACA CAC GAC AAC ATA TGT TCC GGA AAC 4667

Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn 155 160 165

AGT GAA TCA ACT CAA AAA TGT GGA ATA G GTAATTACAT TCCAAAATAC 4715 Ser Glu Ser Thr Glo Lys Cys Gly Ile

170 175

GTCTTTCTAC GATTTTCTAG TATCATCTCT CTCTCTGAGT TGAACACAAG GCCTCCAGCC 4775 ACATTCTTGG TCAAACTTAC ATTTTCCCTT TCTTGAATCT TAACCAGCTA AGGCTACTCT 4835 CGATGCATTA CTGCTAAAGC TACCACTCAG AATCTCTCAA AAACTCATCT TCTCACAGAT 4895 AACACCTCAA AGCTTGATTT TCTCTCCTTT CACACTGAAA TCAAATCTTG CCCATAGGCA 4955 AAGGGCAGTG TCAAGTTTGC CACTGAGATG AAATTAGGAG AGTCCAAACT GTAGAATTCA 5015 CGTTGTGTGT TATTACTTTC ACGAATGTCT GTATTATTAA ETAAAGTATA TATTGGCAAC 5075 TAAGAAGCAA AGTGATATAA ACATGATGAC AAATTAGGCC AGGCATGGTG GCTTACTCCT 5135 ATAATCCCAA CATTTTGGGG GGCCAAGGTA GGCAGATCAC TTGAGGTCAG GATTTCAAGA 5195 CCAGCCTGAC CAACATGGTG AAACCTTGTC TCTACTAAAA ATACAAAAAT TAGCTGGGCA 5255 TGGTAGCAGG CACTTCTAGT ACCAGCTACT CAGGGCTGAG GCAGGAGAAT CGCTTGAACC 5315 CAGGAGATGG AGGTTGCAGT GAGCTGAGAT TGTACCACTG CACTCCAGTC TGGGCAACAG 5375 AGCAAGATTT CATCACACAC ACACACACA ACACACACA ACACATTAGA AATGTGTACT 5435 TGGCTTTGTT ACCTATCGTA TTAGTGCATC TATTGCATGG AACTTCCAAG CTACTCTGGT 5495 TGTGTTAAGC TCTTCATTGG GTACAGGTCA CTAGTATTAA GTTCAGGTTA TTCGGATGCA 5555 TTCCACGGTA GTGATGACAA TTCATCAGGC TAGTGTGTGT GTTCACCTTG TCACTCCCAC 5615 CACTAGACTA ATCTCAGACC TTCACTCAAA GACACATTAC ACTAAAGATG ATTTGCTTTT 5675 TTGTGTTTAA TCAAGCAATG GTATAAACCA GCTTGACTCT CCCCAAACAG TTTTTCGTAC 5735 TACAAAGAAG TTTATGAAGC AGAGAAATGT GAATTGATAT ATATATGAGA TTCTAACCCA 5795 GTTCCAGCAT TGTTTCATTG TGTAATTGAA ATCATAGACA AGCCATTTTA GCCTTTGCTT 5855

55

5

10

15

20

25

30

35

40

45

5

10

15

20

25

30

35

40

45

50

55

TCTTATCTAA AAAAAAAAA AAAAAAATGA AGGAAGGGGT ATTAAAAGGA GTGATCAAAT 5915 TTTAACATTC TCTTTAATTA ATTCATTTTT AATTTTACTT TTTTTCATTT ATTCTGCACT 5975 TACTATGTGG TACTGTGCTA TAGAGGCTTT AACATTTATA AAAACACTGT GAAAGTTGCT 6035 TCAGATGAAT ATAGGTAGTA GAACGGCAGA ACTAGTATTC AAAGCCAGGT CTGATGAATC 6095 CAAAAACAAA CACCCATTAC TCCCATTTTC TGGGACATAC TTACTCTACC CAGATGCTCT 6155 GGGCTTTGTA ATGCCTATGT AAATAACATA GTTTTATGTT TGGTTATTTT CCTATGTAAT 6215 GTCTACTTAT ATATCTGTAT CTATCTCTTG CTTTGTTTCC AAAGGTAAAC TATGTGTCTA 6275 AATGTGGGCA AAAAATAACA CACTATTCCA AATTACTGTT CAAATTCCTT TAAGTCAGTG 6335 ATAATTATIT GTTTTGACAT TAATCATGAA GTTCCCTGTG GGTACTAGGT AAACCTTTAA 8395 TAGAATGTTA ATGTTTGTAT TCATTATAAG AATTTTTGGC TGTTACTTAT TTACAACAAT 6455 ATTTCACTCT AATTAGACAT TTACTAAACT TTCTCTTGAA AACAATGCCC AAAAAAGAAC 6515 ATTAGAAGAC ACGTAAGCTC AGTTCGTCTC TGCCACTAAG ACCAGCCAAC AGAAGCTTGA 6575 TTTTATTCAA ACTTTGCATT TTAGCATATT TTATCTTGGA AAATTCAATT GTGTTGGTTT 6635 TTTGTTTTTG TTTGTATTGA ATAGACTCTC AGAAATCCAA TTGTTGAGTA AATCTTCTGG 6695 GTTTTCTAAC CTTTCTTTAG AT GTT ACC CTG TGT GAG GAG GCA TTC TTC AGG 6747 Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg

180 185

Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val

190 195 200

GAC AAT TTG CCT GGC ACC AAA GTA AAC GCA GAG AGT GTA GAG AGG ATA 6843

Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile

205 210 215

AAA CGG CAA CAC AGC TCA CAA GAA CAG ACT TTC CAG CTG CTG AAG TTA 6891

Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu

220 225 230 235

TGG AAA CAT CAA AAC AAA GAC CAA GAT ATA GTC AAG AAG ATC ATC CAA G 6940
Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln
240 245 250

GTATGATAAT CTAAAATAAA AAGATCAATC AGAAATCAAA GACACCTATT TATCATAAAC 7000 CAGGAACAAG ACTGCATGTA TGTTTAGTTG TGTGGATCTT GTTTCCCTGT TGGAATCATT 7060 GTTGGACTGA AAAAGTTTCC ACCTGATAAT GTAGATGTGA TTCCACAAAC AGTTATACAA 7120 GGTTTTGTTC TCACCCCTGC TCCCCAGTTT CCTTGTAAAG TATGTTGAAC ACTCTAAGAG 7180 AAGAGAAATG CATTTGAAGG CAGGGCTGTA TCTCAGGGAG TCGCTTCCAG ATCCCTTAAC 7240 GCTTCTGTAA GCAGCCCCTC TAGACCACCA AGGAGAAGCT CTATAACCAC TTTGTATCTT 7300 ACATTGCACC TCTACCAAGA AGCTCTGTTG TATTTACTTG GTAATTCTCT CCAGGTAGGC 7360 TTTTCGTAGC TTACAAATAT GTTCTTATTA ATCCTCATGA TATGGCCTGC ATTAAAATTA 7420 TTTTAATGGC ATATGTTATG AGAATTAATG AGATAAAATC TGAAAAGTGT TTGAGCCTCT 7480 TGTAGGAAAA AGCTAGTTAC AGCAAAATGT TCTCACATCT TATAAGTTTA TATAAAGATT 7540 CTCCTTTAGA AATGGTGTGA GAGAGAACA GAGAGAGATA GGGAGAGAG TGTGAAAGAA 7600 TCTGAAGAAA AGGAGTTTCA TCCAGTGTGG ACTGTAAGCT TTACGACACA TGATGGAAAG 7660 ACTTCTGACT TCAGTAAGCA TTGGGAGGAC ATGCTAGAAG AAAAAGGAAG AAGAGTTTCC 7720 ATAATGCAGA CAGGGTCAGT GAGAAATTCA TTCAGGTCCT CACCAGTAGT TAAATGACTG 7780 TATAGTCTTG CACTACCCTA AAAAACTTCA AGTATCTGAA ACCGGGGCAA CAGATTTTAG 7840 GAGACCAACG TCTTTGAGAG CTGATTGCTT TTGCTTATGC AAAGAGTAAA CTTTTATGTT 7900 TTGAGCAAAC CAAAAGTATT CTTTGAACGT ATAATTAGCC CTGAAGCCGA AAGAAAAGAG 7960 AAAATCAGAG ACCGTTAGAA TTGGAAGCAA CCAAATTCCC TATTTTATAA ATGAGGACAT 8020

55

5

10

15

20

25

30

35

40

45

	TTT	AACC	CAG	AAAG	ATGA	AC (GATT	TGGC	T TA	GGGC	TCAC	AGA	TACT	AAG	TGAC	TCATGT	8080
5	CAT	TAAT	'AGA	AATG	TTAG	TT (CTCC	CTCT	T AG	GTTT	GTAC	CCT	AGCT	TAT	TACT	GAAATA	8140
	TTC	TCTA	GGC	TGTG	TGTC	TC C	TTTA	GTTC	c tc	GACC	TCAT	GTC	TITG	AGT	TTTC	AGATAT	8200
	CCT	CCTC	ATG	GAGG	TAGT	cc t	CTGG	TGCT	A TG	TGTA	TTCT	TTA	AAGG	CTA	GTTA	CGGCAA	8260
10	TTA	AÇTT	ATC	AACT.	AGCG	cc t	'ACTA	ATGA	A AC	TTTG	TATT	ACA	AAGT	AGC	TAAC	TTGAAT	8320
	ACT	TTCC	TTT	TTTT	CTGA	AA T	'GTTA	TGGT	G GT	AATT	TCTC	AAA	CTIT	TTC	TTAG	AAAACT	8380
15	GAG	AGTG	ATG	TGTC	TAT	TT T	CTAC	TGTT	A AT	TTTC	AAAA	TTA	GGAG	CTT	CTTC	CAAAGT	8440
	TTT	GTTG	GAT	GCCA	AAAA'	TA T	ATAG	CATA	r ta	TCTT.	ATTA	TAA	CAAA	AAA	TATT	TATCTC	8500
20	AGT	CTT	AGA	AATA	4ATG(ct c	TCAC'	TAAI	TC	CCTC	TCAA	AAG	AAAÁ	GGT	TATC	ATTGAA	8560
20	ATA:	TAAT	TAT (GAAA7	etct(GC A	AGAA	CCTTT	TG	CCTC	ACGC	TTG'	1777/	ATG	ATGG(CATTGG	8620
	ATGA	ATA'	TAA 1	ATGA7	rgtg/	AA C	ACTT/	ATCT(GG(TTT	rgct	TTA:	rgca(ATT		8676
25														Asp	lle	Asp	
																100	0501
30					_	_									CTC		8724
30		Cys	Glu	Asn	Şer		GID	Arg	His	He		His	Ala	Asn	Leu		
	255	,				260					265					270	
35	₽~P.C	CAC	OAC	ር ዮ ተ	COT	400	ተ ሞረ-	440	C11	ACC	ም ባች ለ	ccc	CCI	440	A A A	CTC	8772
															AAA		0112
40	rne	610	VIN	Leu	•	3er	ren	Met	910	280	Leu	rru	GIY	Lys	Lys 285	191	
					275					200					203		
	CCA	CCA	CAA	CAC	ልተጥ	CAA	AAA	ACA	ATA	AAC	CCA	ቸርር	A A A	ርርር	AGT	GAC	8820
45															Ser		0020
	GIÀ	uta	01 m	_	116	GIU	LJS			LJS	nia	UJS	Lya	300	961	пар	
50				290					295					5 00			
	CAC	ለጥሮ	ሮፐር	AAC	ሮተር	_ር ተር	ልሮሞ	וואנ	ፐርር	CCA.	ልተል	A A A	ልልጥ	ննո	GAC	CAA	8868
	UNU	MIL	CIV	MAG	CIU	U1 U	MUI	UIU	זעט	VVA	nin	nnn	uut	400	טחט	VAA	5000

	Gin	He	Leu	Lys	Leu	Leu	Ser	Leu	Trp	Arg	116	r y s	ASŋ	GI	/ Asp	Gln		
5			305					310					315					
	GAC	ACC	TTG	AAG	GGC	CTA	ATG	CAC	GCA	CTA	AAG	CAC	TCA	AAG	ACG	TAC	8916	
10															Thr		0010	
		320		-,-			325				-,-	330		-,-		-,-		
15																		
	CAC	TTT	CCC	AAA	ACT	GTC	ACT	CAG	AGT	CTA	AAG	AAG	ACC	ATC	AGG	TTC	8964	
	His	Phe	Pro	Lys	Thr	Val	Thr	Gln	Ser	Leu	Lys	Lys	Thr	Ile	Arg	Phe		
20	335					340					345					350		
25	CTT	CAC	AGC	TTC	ACA	ATG	TAC	AAA	TTG	TAT	CAG	AAG	TTA	TTT	TTA	GAA	9012	
	Leu	His	Ser	Phe	Thr	Net	Tyr	Lys	Leu	Туг	G1n	Lys	Leu	Phe	Leu	Glu		
					355					360				•	365			
30																		
			. •									AGC					9054	
35	Net	He	_		Glo	Val	Gln			Lys	He	Ser						
				370					375					380				
																AGTAA		
																AATTAA		
45																AATAA		
																TTCCC		
																CTGGG		
																AGAGG CTATT		
	0111	(NI I	AU A	IAAUL	.cair	.1 11	1111	V I U I	AAA	uu i i	NU I	ANIA	INIU	IA I	, AMUM	ATUII	721Z	

ACAGTATTGC TATTTATATT CATTCAGATA TAAGATTTGG ACATATTATC ATCCTATAAA 9594
GAAACGGTAT GACTTAATTT TAGAAAGAAA ATTATATTCT GTTTATTATG ACAAATGAAA 9594
GAGAAAATAT ATATTTTAA TGGAAACTTT GTAGCATTTT TCTAATAGGT ACTGCCATAT 9654
TTTTCTGTGT GGAGTATTTT TATAATTTTA TCTGTATAAG CTGTAATATC ATTTTATAGA 9714
AAATGCATTA TTTAGTCAAT TGTTTAATGT TGGAAAACAT ATGAAATATA AATTATCTGA 9774
ATATTAGATG CTCTGAGAAA TTGAATGTAC CTTATTTAAA AGATTTTATG GTTTTATAAC 9834
TATATAAAATG ACATTATTAA AGTTTTCAAA TTATTTTTA TTGCTTTCTC TGTTGCTTTT 9894
ATTT

Sequence number: 3

Length of sequence: 401

Sequence Type: amino acid

Strandedness: single stranded

Topology: linear

Molecular type: protein

Sequence:

5

10

15

20

25

30

35

40

45

55

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp [le Ser

-20 -15 -10

Ile Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His

-5 1 5

Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro

10 15 20

Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr

25 30 35

Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His

40 45 50

	Ile	Gln	Asp	He	Asp	Leu	Cys	Glu	Asn	Ser	Val	Gln	Arg	His	Ile
5	250					255				•	260				
	Gly	His	Ala	Asn	Leu	Thr	Phe	Glu	Gln	Leu	Arg	Ser	Leu	Ket	Glu
10	265					270					275			,	
	Ser	Leu	Pro	Gly	Lys	Lys	Val	Gly	Ala	G1u	Asp	Ile	Glu	Lys	Thr
	280					285					290				
15	Ile	Lys	Ala	Cys	Lys	Pro	Ser	Asp	Gln	He	Leu	Lys	Leu	Leu	Ser
	295					300					305				
20	Leu	Trp	Arg	[le	Lys	Asn	Gly	Asp	Gln	Asp	Thr	Leu	Lys	Gly	Leu
	310					315					320				
25	Net	His	Ala	Leu	Lys	His	Ser	Lys	Thr	Tyr	His	Phe	Pro	Lys	Thr
	325					330					335				
30	Val	Thr	G1n	Ser	Leu	Lys	Lys	Thr	lle	Arg	Phe	Leu	His	Ser	Phe
	340					345					350				
	Thr	Net	Tyr	Lys	Leu	Tyr	Gln	Lys	Leu	Phe	Leu	Glu	Met	lle	Gly
35	355					360					365				
	Asa	Gln	Yal	Gln	Ser	Val	Lys	lle	Ser	Cys	Leu				
40	370					375					380				
	Sequ	ence	nun	ber	: 4										
45	Leng	th o	f se	eque	nce:	120	6								
	Sequ	ence	Typ	oe:	nucl	eic	aci	d							
50	Stra	nded	ness	s: s:	ingl	e st	ran	ded							
	Topo					778									
	Mole	cula	r ty	/pe:	CDN	A									

Se	 _	 _	_	_

ATGAACAACT	TGCTGTGCTG	CGCGCTCGTG	TTTCTGGACA	TCTCCATTAA	GTGGACCACC	60
CAGGAAACGT	TTCCTCCAAA	GTACCTTCAT	TATGACGAAG	AAACCTCTCA	TCAGCTGTTG	120
TGTGACAAAT	GTCCTCCTGG	TACCTACCTA	AAACAACACT	GTACAGCAAA	GTGGAAGACC	180
GTGTGCGCCC	CTTGCCCTGA	CCACTACTAC	ACAGACAGCT	GGCACACCAG	TGACGAGTGT	240
CTATACTGCA	GCCCCGTGTG	CAAGGAGCTG	CAGTACGTCA	AGCAGGAGTG	CAATCGCACC	300
CACAACCGCG	TGTGCGAATG	CAAGGAAGGG	CGCTACCTTG	AGATAGAGTT	CTGCTTGAAA	360
CATAGGAGCT	GCCCTCCTGG	ATTTGGAGTG	GTGCAAGCTG	GAACCCCAGA	GCGAAATACA	420
GTTTGCAAAA	GATGTCCAGA	TGGGTTCTTC	TCAAATGAGA	CGTCATCTAA	AGCACCCTGT	480
AGAAAACACA	CAAATTGCAG	TGTCTTTGGT	CTCCTGCTAA	CTCAGAAAGG	AAATGCAACA	540
CACGACAACA	TATGTTCCGG	AAACAGTGAA	TCAACTCAAA	AATGTGGAAT	AGATGTTACC	600
CTGTGTGAGG	AGGCATTCTT	CAGGTTTGCT	GTTCCTACAA	AGTTTACGCC	TAACTGGCTT	660
AGTGTCTTGG	TAGACAATTT	GCCTGGCACC	AAAGTAAACG	CAGAGAGTGT	AGAGAGGATA	720
AAACGGCAAC	ACAGCTCACA	AGAACAGACT	TTCCAGCTGC	TGAAGTTATG	GAAACATCAA	780
AACAAAGACC	AAGATATAGT	CAAGAAGATC	ATCCAAGATA	TTGACCTCTG	TGAAAACAGC	840
GTGCAGCGGC	ACATTGGACA	TGCTAACCTC	ACCTTCGAGC	AGCTTCGTAG	CTTGATGGAA	900
AGCTTACCGG	GAAAGAAAGT	GGGAGCAGAA	GACATTGAAA	AAACAATAAA	GGCATGCAAA	960
CCCAGTGACC	AGATCCTGAA	GCTGCTCAGT	TTGTGGCGAA	TAAAAAATGG	CGACCAAGAC	1020
ACCTTGAAGG	GCCTAATGCA	CGCACTAAAG	CACTCAAAGA	CGTACCACTT	TCCCAAAACT	1080
GTCACTCAGA	GTCTAAAGAA	GACCATCAGG	TTCCTTCACA	GCTTCACAAT	GTACAAATTG	1140
TATCAGAAGT	TATTTTTAGA	AATGATAGGT	AACCAGGTCC	AATCAGTAAA	AATAAGCTGC	1200
TTATAA						1206

SEQUENCE LISTING

	(1) GENERAL INFORMATION:
5	(4) ********
	(1) APPLICANT:
	(A) NAME: SNOW BRAND MILK PRODUCTS CO., LTD. (B) STREET: 1-1, NAEBOCHO 6-CHOME
	(C) CITY: HIGASHI-KU, SAPPORO-SHI
	(D) STATE: HOKKAIDO
10	(E) COUNTRY: JP
	(F) POSTAL CODE (ZIP): NONE
	(ii) TITLE OF INVENTION, NOVEL DAY AND DOCUMENT
	(ii) TITLE OF INVENTION: NOVEL DNA AND PROCESS FOR PREPARING PROTEIN USING THE DNA
15	(iii) NUMBER OF SEQUENCES: 4
15	(iv) COMPUTER READABLE FORM:
	(A) MEDIUM TYPE: Floppy disk
	(B) COMPUTER: IBM PC compatible
	(C) OPERATING SYSTEM: PC-DOS/MS-DOS
	(D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
20	(v) CURRENT APPLICATION DATA:
	APPLICATION NUMBER: EP 97935810.8
	(vi) PRIOR APPLICATION DATA:
	(A) APPLICATION NUMBER: JP 235928/96
	(B) FILING DATE: 19-AUG-1996
25	(2) INFORMATION FOR SEQ ID NO:1:
	Total Control of the Month
	(i) SEQUENCE CHARACTERISTICS:
	(A) LENGTH: 1316 base pairs
	(B) TYPE: nucleic acid (C) STRANDEDNESS: double
30	(D) TOPOLOGY: linear
	(ii) MOLECULE TYPE: genomic DNA (human OCIF genomic DNA-1)
	•
	(x1) SEQUENCE DESCRIPTION: SEQ ID NO:1:
	CTGGAGACAT ATAACTTGAA CACTTGGCCC TGATGGGGAA GCAGCTCTGC AGGGACTTTT 60
35	TCAGCCATCT GTAAACAATT TCAGTGGCAA CCCGCGAACT GTAATCCATC AATCCCA CO. 100
	CACITIACAA GICAICAAGI CIAACITCIA GACCAGGAA TELATROCCOCO AGAGAGAGA
	CCCTAGAGCA AAGTGCCAAA CTTCTGTCGA TAGCTTGAGG CTAGTGGAAA GACCTCGAGG 240 AGGCTACTCC AGAAGTTCAG CGCGTAGGAA GCTCCGATAC CAATAGCCCT TTGATGATGG 300
	TOGGGTTGGT GAAGGGAACA GTGCTCCGCA AGGTTATCCC TCCCCCACCC ACMCCAAMM 3.60
	TOACTOTICA GATTOTOTOT GGCTCTAACT ACCCCAGATA ACAAGGAGTC AATTCGAGATA
40	ACCACGGCT TIAGGGCCAA TCAGACATTA GTTAGAAAAA TTCCTACTAC AMCCOMMANDO 400
	TARACTIGAA GATGAATGAT TGCGAACTCC CCGAAAAGGG CTCAGACAAM CCCAMGCAMA
	AAGAGGGGCC CTGTAATTTG AGGTTTCAGA ACCCGAAGTG AAGGGGTCAG GCAGCCGGGT 600 ACGGCGGAAA CTCACAGCTT TCGCCCAGCG AGAGGACAAA GGTCTGGGAC ACACTCCAAC 660
	TOCOTOCOGN TOTTGGCTGG ATCGGACTCT CAGGGTGGAG GAGACACAAG CACAGGACGA
	GCCAGCGTG TGCCCAGCCC TCCCACCGCT GGTCCCGGCT GCCAGGACGC MGCGGGGGG
4.5	COGGAAGGG CCGGGAAACC TCAGAGCCCC GCGGAGACAG CAGCCGCCTTT CTTTCCTCAGA
45	CCGGTGGCTT TTTTTTCCCC TGCTCTCCCA GGGGACAGAC ACCACCGCCC CACCCCTCAC 900
	GCCCCACCTC CCTGGGGGAT CCTTTCCGCC CCAGCCCTGA AAGCGTTAAT CCTGGAGCTT 960 TCTGCACACC CCCCGACCGC TCCCGCCCAA GCTTCCTAAA AAAGAAAGGT GCAAAGTTTG 1020
	TOURGONIA GARAGATGAC TGATCAAAGG CAGGCGITIC TTCCTCTTTCC CCCCAGGCTT 1000
	TATALACCE GATGAGCGCA CGGGCTGCGG AGACGCACCG GAGCGCCCCCC 1140
	CONCERNACE CONGAGGITT COGGGGACCA CA ATG AAC AAG TTG CTG TGC TGC 1193
50	Met Asn Lys Leu Cys Cys
	-20 -15
	GCG CTC GTG GTAAGTCCCT GGGCCAGCCG ACGGGTGCCC GGCGCCTGGG 1242

22

Ala Leu Val

5	GAGGCTGCTG CCACCTGGTC TCCCAACCTC CCAGCGGACC GGCGGGGAGA AGGCTCCACT 13: CGCTCCCTCC CAGG 13:	02 16
	(2) INFORMATION FOR SEQ ID NO:2:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 9898 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: double (D) TOPOLOGY: linear (ii) MOLECULE TYPE: genomic DNA (human OCIF genomic DNA-2)	
15	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	60
	ACTGTTGCAC ATAAGAACAA ACCTATTTC ATGCTAAGAT GATGCCACTG TGTTCCTTTC 1	.20
20	CCT CCA AAG TAC CTT CAT TAT GAC GAA GAA ACC TCT CAT CAG CTG TTG Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu 5 10 15	319
<i>25</i>	TGT GAC AAA TGT CCT CCT GGT ACC TAC CTA AAA CAA CAC TGT ACA GCA Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala 20 25 30 35	267
	AAG TGG AAG ACC GTG TGC GCC CCT TGC CCT GAC CAC TAC ACA GAC Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp 40 45 50	315
30	AGC TGG CAC ACC AGT GAC GAG TGT CTA TAC TGC AGC CCC GTG TGC AAG Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys 55 60 65	363
os.	GAG CTG CAG TAC GTC AAG CAG GAG TGC AAT CGC ACC CAC AAC CGC GTG Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val 70 75 80	411
35	TGC GAA TGC AAG GAA GGG CGC TAC CTT GAG ATA GAG TTC TGC TTG AAA Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys 85 90 95	459
40	CAT AGG AGC TGC CCT CCT GGA TTT GGA GTG GTG CAA GCT G GTACGTGTCA His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala 100 105 110	509
	TAGGTACTAT GTGTCTGGAG TGCTTCCAAA GGACCATTGC TCAGAGGAAT ACTTTGCCAC	569 629 689 749
4 5	ATGGTTTTT TTTTTTTTT TAAAGAAACA AACTCAAGTT GCACTATTGA TAGTTGATCT ATACCTCTAT ATTTCACTTC AGCATGGACA CCTTCAAACT GCAGCACTTT TTGACAAACA TCAGAAATGT TAATTTATAC CAAGAGAGTA ATTATGCTCA TATTAATGAG ACTCTGGAGT GCTAACAATA AGCAGTTATA ATTAATTATG TAAAAAATGA GAATGGTGAG GGGAATTGCA	809 869 929 989
50	TTTCATTATT AAAAACAAGG CTAGTTCTTC CTTTAGCATG GGAGCTGAGT GTTTGGGAGG 1 GTAAGGACTA TAGCAGAATC TCTTCAATGA GCTTATTCTT TATCTTAGAC AAAACAGATT 1 GTCAAGCCAA GAGCAAGCAC TTGCCTATAA ACCAAGTGCT TTCTCTTTTG CATTTTGAAC 1 AGCATTGGTC AGGGCTCATG TGTATTGAAT CTTTTAAACC AGTAACCCAC GTTTTTTTTC 1 TGCCACATTT GCGAAGCTTC AGTGCAGCCT ATAACTTTTC ATAGCTTGAG AAAATTAAGA 1 GTATCCACTT ACTTAGATGG AAGAAGTAAT CAGTATAGAT TCTGATGACT CAGTTTGAAG 1	169 229

	CAGTGTTTCT CAACTGAAGC CCTGCTGATA TTTTAAGAAA TATCTGGATT CCTAGGCTGG 1409
	CAGTGTTTCT CAACTGAAGC CCTGCTGATA TTTTAAGAAA TATCCCAGGAC CCTGCGACTC 1469
	ACTCCTTTTT GTGGGCAGCT GTCCTGCGCA TTGTAGAATT TTGGCAGCAC CCCTGGACTC 1469
	TAGCCACTAG ATACCAATAG CAGTCCTTCC CCCATGTGAC AGCCAAAAAT GTCTTCAGAC 1529
•	ACTGTCAAAT GTCGCCAGGT GGCAAAATCA CTCCTGGTTG AGAACAGGGT CATCAATGCT 1589
5	ARGIATCTGT AACTATTTTA ACTCTCAAAA CTTGTGATAT ACAAAGTCTA AATTATTAGA 1649
	CGACCAATAC TTTAGGTTTA AAGGCATACA AATGAAACAT TCAAAAATCA AAATCTATTC 1709
	MOTHROCOLA ANACHGARC TTATAAAATT AATCACAGAA GATGCAAATT GCATCAGAGT 1769
	COCHANANA HOCCOCCOTCOT ATGACTATTT GAGGGAGGAA TTGGTGATAG TTCCTACTTT 1829
	CONTROL CONTROL CONTROL ACTUARANCE TANGETANGE TGTGTGTGTG TCAGGGTGCG 1889
	GGGTGTGGAA TCCCATCAGA TAAAAGCAAA TCCATGTAAT TCATTCAGTA AGTTGTATAT 1949
10	GGGTGTGGAA TCCCATCAGA TARAGGCAGCT TGGAAACTAG AGAATTTTGA AAAATAATGG 2009
10	GTAGAAAAT GAAAAGTGGG CTATGCAGCI TGGAAACTAG ACCAAGCAG CAG 2069 AAATCACAAG GATCTTTCTT AAATAAGTAA GAAAATCTGT TTGTAGAATG AAGCAAGCAG 2069
	AAATCACAAG GATCTTTCTT AAATAAGTAA GAAATCTCT TTGTACACTC GCAGCACAGT 2129
	GCAGCCAGAA GACTCAGAAC AAAAGTACAC ATTTTACTCT GTGTACACTG GCAGCACAGT 2129
	GGGATTTATT TACCTCTCC TCCCTAAAAA CCCACACAGC GGTTCCTCTT GGGAAATAAG 2189
	AGGTTTCCAG CCCAAAGAGA AGGAAAGACT ATGTGGTGTT ACTCTAAAAA GTATTTAATA 2249
	ACCOMMUNICAL PROPERTY OF THE PROPERTY OF THE PROPERTY AND ANTICAGATTO TOTACTOR ATACTOR AND ANTICAGATTO TOTACTOR AND ANTICAGATTOR ANTICAGATTO TOTACTOR AND ANTICAGATTO TOTACTOR AND ANTICAGATTOR ANTICAGATTO
15	TACHTICATOR TOTAL ACTION AND THE TOTAL CONTROL OF THE CONTROL OF T
,0	TARACCOARA TOTOCOCOATO ATTATATOTO CACATTTTGC CTGGCAGGTT ATAATITITA 2429
	TARTOCOLOR CATACTARTA ACCTARANCE ATTACTTAGA TGGATAGATC TTTTTCATAA 2469
	AND COME CACHERANICA CCCAACTCAT CTTCATGTTC AGGAAGGTCA TTAGATAAAG 2549
	CTTCTGAATA TATTATGAAA CATTAGTTCT GTCATTCTTA GATTCTTTTT GTTAAATAAC 2609
	TTTANAAGCT AACTTACCTA AAAGAAATAT CTGACACATA TGAACTTCTC ATTAGGATGC 2669
	TTTAAAAGCT AACTTACCTA AAAGAAATAT CIGACACATA IGAACATTCT TAGGCCCGGC 2729
20	AGGAGAAGAC CCAAGCCACA GATATGTATC TGAAGAATGA ACAAGATTCT TAGGCCCGGC 2729
	ACGGTGGCTC ACATCTGTAA TCTCAAGAGT TTGAGAGGTC AAGGCGGGCA GATCACCTGA 2789
	GGTCAGGAGT TCAAGACCAG CCTGGCCAAC ATGATGAAAC CCTGCCTCTA CTAAAAATAC 2849
	ANANAMMACC ACCCCATGGT CGTGCATGCC TGCAACCCTA GCTACTCAGG AGGCTGAGAC 4909
	ACCIDING COMPONICO CONCORDO CARCOCORAS STREETGETGA GCTGAGATCC CTCTACTGCA 2909
	GROOM COMON CARON ARCAGA CTCC GTCCCTGCCG CCGCCCCGC CTTCCCCCCC 3029
	AND COMMON MECONICATION ACAD CAMBOO GCAGTCAACA AAGGGAGACC TGGGTCCAGG 3003
25	momoga acmo acmonamento acera a ema a ema Carta
	AAATACCTCT GCTTATGATA TTGTAGAATT TGATATAGAG TTGTATCCCA TTTAAGGAGT 3209
	AGATACCTCT GCTTATGATA TIGIAGAATI TGATACAACA GAAAACCCTC TTTGCTTTGT 3269 AGGATGTAGT AGGAAAGTAC TAAAAACAAA CACACAAACA GAAAACCCTC TTTGCTTTGT 3269
	AGGATGTAGT AGGAAAGTAC TAAAAACAAA CACACAACA GABAAGTAAAA ATGTGAAGGT 3329 AAGGTGGTTC CTAAGATAAT GTCAGTGCAA TGCTGGAAAT AATATTTAAT ATGTGAAGGT 3329
	AAGGTGGTTC CTAAGATAAT GTCAGTGCAA TGCTGGAAAT ARTITATTCAG 3389
	TTTAGGCTGT GTTTTCCCCT CCTGTTCTTT TTTTCTGCCA GCCCTTTGTC ATTTTTGCAG 3389
	GTCAATGAAT CATGTAGAAA GAGACAGGAG ATGAAACTAG AACCAGTCCA TTTTGCCCCT 3449
30	TTTTTATTT TCTGGTTTTG GTAAAGATA CAATGAGGTA GGAGGTTGAG ATTTATAAAT 3509
	CARCOMONAND AND COMMONDOR ACCOMPAGNOT TOTAL TOTAL ATAPPAGNA TOTAL SOLD
	COCACA DESCRIPTION OF THE CAPTARIES GATATTGAAG TOTAAATCTG TTCAACTAGC 3029
	THE CACHACA TECENCATATT TECATATTECA GATACACTEG AATGTATGAT CTAGCCATGC 3089
	CONTRACTOR CARCOTTO A ACCOUNT A TOTAL AND CONTRACT TOTAL AND CONTRACT
	THE ACTION OF THE PROPERTY OF
	AAATGCCCTT GCAGTCACCC TTCCTGAAGT TTGAACGACT CTGCTGTTTT AAACAGTTTA 3869
35	AGCAAATGCT ATATCATCTT CCGTTTACTA TGTAGCTTAA CTGCAGGCTT ACGCTTTTGA 3929
	AGCAAATGGT ATATCATCTT CCGTTTACTA TOTAGCTTAA CTGCAGCGT AATTTTTACT 3989 GTCAGCGGCC AACTTTATTG CCACCTTCAA AAGTTTATTA TAATGTTGTA AATTTTTACT 3989
	GTCAGCGGCC AACTTTATTG CCACCTTCAA AAGTTTATTA TATTGTCCAAA CAAAGAACTT 4049
	TCTCAAGGTT AGCATACTTA GGAGTTGCTT CACAATTAGG ATTCAGGAAA GAAAGAACTT 4049
	CAGTAGGAAC TGATTGGAAT TTAATGATGC AGCATTCAAT GGGTACTAAT TTCAAAGAAT 4109
	GATATTACAG CAGACACACA GCAGTTATCT TGATTTTCTA GGAATAATTG TATGAAGAAT 4169
	AMOCOMON ON A CACCOCOMM A CMCCCACTC AGCGGAGGCT GGACTAATGA ACACCCTACC 4229
40	COMPANY OF THE CONCERN A PROPERTY OF A CONTROL OF THE CONTROL OF T
	CARROCCARRA ACARCOACGA CAAACTCCCA AACCCGGATGA TGGTGGAAGT TTTGTTCTGT 4349
	THE PROPERTY OF THE PROPERTY O
	CCAAGTGAAA AGTCTTTCCA AAACTGTGTT AAGAGGGCAT CTGCTGGGAA ACGATTTGAG 4469
	GAGAAGGTAC TAAATTGCTT GGTATTTTCC GTAG GA ACC CCA GAG CGA AAT ACA 4523
	GAGAAGGTAC TAAATTGCTT GGTATTTTCC GTAG GA RCC CCA GIO GON ATT
C2	
45	115
	4531
	GTT TGC AAA AGA TGT CCA GAT GGG TTC TTC TCA AAT GAG ACG TCA TCT 4571
	Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser
	120 125 130 135
50	ANA GCA CCC TGT AGA ANA CAC ACA ANT TGC AGT GTC TTT GGT CTC CTG 4619
50	Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu
	140 145 130
	THE TAX AND GOT AND GOT AGE CAN GAR AND ATTA TIGHT TOO GGA AAC 4667
	CTA ACT CAG AAA GGA AAT GCA ACA CAC GAC AAC ATA TGT TCC GGA AAC 4667

	Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn 155 160 165
5	AGT GAA TCA ACT CAA AAA TGT GGA ATA G GTAATTACAT TCCAAAATAC 4715 Ser Glu Ser Thr Gln Lys Cys Gly Ile
	170 175 GTCTTTGTAC GATTTTGTAG TATCATCTCT CTCTCTGAGT TGAACACAAG GCCTCCAGCC 4775
	ACATTCTTGG TCAAACTTAC ATTTTCCCTT TCTTGAATCT TAACCAGCTA AGGCTACTCT 4835
10	AACACCTCAA AGCTTGATTT TCTCTCCTTT CACACTGAAA TCAAATCTTG CCCATAGGCA 4955 AAGGGCAGTG TCAAGTTTGC CACTGAGATG AAATTAGGAG AGTCCAAACT GTAGAATTCA 5015 CGTTGTGTGT TATTACTTTC ACGAATGTCT GTATTATTAA CTAAAGTATA TATTGGCAAC 5075
	TAMBARGCAN AGTGATATAN ACATGATGAC NANTTAGGCC AGGCATGGTG GCTTACTCCT 5135 ATANTCCCAN CATTTTGGGG GGCCANGGTN GGCAGATCAC TTGAGGTCAG GATTTCANGN 5195 CCAGCCTGAC CANCATGGTG NANCCTTGTC TCTACTANAN ATTACANANAT TAGCTGGGCA 5255
15	TGGTAGCAGG CACTTCTAGT ACCAGCTACT CAGGGCTGAG GCAGGAGAAT CGCTTGAACC 5315 CAGGAGATGG AGGTTGCAGT GAGCTGAGAT TGTACCACTG CACTCCAGTC TGGGCAACAG 5375 AGCAAGATTT CATCACACA ACACACACA ACACACACA ACACATTAGA AATGTGTACT 5435
	TGGCTTTGTT ACCTATGGTA TTAGTGCATC TATTGCATGG AACTTCCAAG CTACTCTGGT 5495 TGTGTTAAGC TCTTCATTGG GTACAGGTCA CTAGTATTAA GTTCAGGTTA TTCGGATGCA 5555 TTCCACGGTA GTGATGACAA TTCATCAGGC TAGTGTGTGT GTTCACCTTG TCACTCCAC 5615
20	CACTAGACTA ATCTCAGACC TTCACTCAAA GACACATTAC ACTAAAGATG ATTTGCTTTT 5675 TTGTGTTTAA TCAAGCAATG GTATAAACCA GCTTGACTCT CCCCAAACAG TTTTTCGTAC 5735 TACAAAGAAG TTTATGAAGC AGAGAAATGT GAATTGATAT ATATATGAGA TTCTAACCCA 5795
	GTTCCAGCAT TGTTTCATTG TGTAATTGAA ATCATAGACA AGCCATTTTA GCCTTTGCTT 5855 TCTTATCTAA AAAAAAAAA AAAAAAATGA AGGAAGGGGT ATTAAAAGGA GTGATCAAAT 5915 TTTAACATTC TCTTTAATTA ATTCATTTTT AATTTACTT TTTTTCATTT ATTGTGCACT 5975
25	TACTATGTGG TACTGTGCTA TAGAGGCTTT AACATTATA AAAACACTGT GAAAGTTGCT 6035 TCAGATGAAT ATAGGTAGTA GAACGGCAGA ACTAGTATTC AAAGCCAGGT CTGATGAATC 6095 CAAAAACAAA CACCCATTAC TCCCATTTC TGGGACATAC TTACTCTACC CAGATGCTCT 6155
	GGGCTTTGTA ATGCCTATGT AAATAACATA GTTTTATGTT TGGTTATTTT CCTATGTAAT 6215 GTCTACTTAT ATATCTGTAT CTATCTCTG CTTTGTTTCC AAAGGTAAAC TATGTGTCTA 6275 AATGTGGGCA AAAAATAACA CACTATTCCA AATTACTGTT CAAATTCCTT TAAGTCAGTG 6335 ATAATTATTT GTTTTGACAT TAATCATGAA GTTCCCTGTG GGTACTAGGT AAACCTTTAA 6395
30	TAGAATGTTA ATGTTTGTAT TCATTATAAG AATTTTTGGC TGTTACTTAT TTACAACAAT 6455 ATTTCACTCT AATTAGACAT TTACTAAACT TTCTCTTGAA AACAATGCCC AAAAAAGAAC 6515 ATTAGAAGAC ACGTAAGCTC AGTTGGTCTC TGCCACTAAG ACCAGCCAAC AGAAGCTTGA 6575
	TTTTATTCAA ACTTTGCATT TTAGCATATT TTATCTTGGA AAATTCAATT GTGTTGGTTT 6635 TTTGTTTTTG TTTGTATTGA ATAGACTCTC AGAAATCCAA TTGTTGAGTA AATCTTCTGG 6695 CTTTTCTAAC CTTTCTTTAG AT GTT ACC CTG TGT GAG GAG GCA TTC TTC AGG 6747
35	Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg 180 185
	TTT GCT GTT CCT ACA AAG TTT ACG CCT AAC TGG CTT AGT GTC TTG GTA Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val 190 195 200
40	GAC AAT TTG CCT GGC ACC AAA GTA AAC GCA GAG AGT GTA GAG AGG ATA 6843 ASD ASN Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile 205 210 215
	AAA CGG CAA CAC AGC TCA CAA GAA CAG ACT TTC CAG CTG CTG AAG TTA 6891 Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu 220 225 230 235
45	TGG AAA CAT CAA AAC AAA GAC CAA GAT ATA GTC AAG AAG ATC ATC CAA G 6940 Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln
	240 245 250
50	GTATGATAAT CTAAAATAAA AAGATCAATC AGAAATCAAA GACACCTATT TATCATAAAC 7000 CAGGAACAAG ACTGCATGTA TGTTTAGTTG TGTGGATCTT GTTTCCCTGT TGGAATCATT 7060 GTTGGACTGA AAAAGTTTCC ACCTGATAAT GTAGATGTGA TTCCACAAAC AGTTATACAA 7120 GGTTTTGTTC TCACCCCTGC TCCCCAGTTT CCTTGTAAAG TATGTTGAAC ACTCTAAGAG 7180 AAGAGAAATG CATTTGAAGG CAGGGCTGTA TCTCAGGGAG TCGCTTCCAG ATCCCTTAAC 7240
	AAGAGAAATG CATTTGAAGG CAGGGCIGIA ICICAGGGAG ICGCIICOAG

5	GCTTCTGTAA GCAGCCCCTC TAGACCACCA AGGAGAAGCT CTATAACCAC TTTGTATCTT 7300 ACATTGCACC TCTACCAAGA AGCTCTGTTG TATTTACTTG GTAATTCTC CCAGGTAGGC 7360 TTTTCGTAGC TTACCAAATAT GTTCTTATTA ATCCTCATGA TATGGCCTGC ATTAAAATTA 7420 TTTTAATGGC ATATGTTATG AGAATAATG AGATAAAATC TGAAAAGTGT TTGAGCCTCT 7480 TGTAGGAAAA AGCTAGTTAC AGCAAAATGT TCTCACATCT TATAAGTTTA TATAAAGATT 7540 CTCCTTTAGA AATGGTGTGA GAGAGAAACA GAGAGAGATA GGGAGAGAAG TGTGAAAGAA 7600
10	TCTGARGAAA AGGAGTTTCA TCCAGTGTGG ACTGTAAGCT TTACGACACA TGATGGAAAG 7660 AGTTCTGACT TCAGTAAGCA TTGGGAGGAC ATGCTAGAAG AAAAAGGAAG AAGAGTTTCC 7720 ATAATGCAGA CAGGGTCAGT GAGAAATTCA TTCAGGTCCT CACCAGTAGT TAAATGACTG 7780 TATAGTCTTG CACTACCCTA AAAAACTTCA AGTATCTGAA ACCGGGGCAA CAGATTTTAG 7840 GAGACCAACG TCTTTGGAGG CTGATTGCTT TTGCTTATGC AAAAGAGTAAA CTTTTATGTT 7900 TTGAGCAAAC CAAAAGTATT CTTTGAACGT ATAATTAGCC CTGAAGCCGA AAGAAAAGAG 7960 AAAATCAGAG ACCGTTAGAA TTGGAAGCAA CCAAATTCCC TATTTTATAA ATGAGGACAT 8020 TTTAACCCAG AAAGATGAAC CGATTTGGCT TAGGGCTCAC AGATACTAAG TGACTCATGT 8080
15	CATTAATAGA AATGTTAGTT CCTCCCTCTT AGGTTTGTAC CCTAGCTTAT TACTGAAATA 8140 TTCTCTAGGC TGTGTGTCTC CTTTAGTTCC TCGACCTCAT GTCTTTGAGT TTTCAGATAT 8200 CCTCCTCATG GAGGTAGTCC TCTGGTGCTA TGTGTATTCT TTAAAGGCAA 8260 TTAACTTATC AACTTGACGCC TACTAATGAA ACTTTGTATT ACAAAGTAGC TAACTTGAAT 8320 ACTTTCCTTT TTTTCTGAAA TGTTATGGTG GTAATTTCTC AAACTTTTTC TTAGAAAACT 8380
20	TTTGTTGGAT GCCAAAAATA TATAGCATAT TATCTTATTA TAACAAAAAA TATTTATCTC 8500 AGTTCTTAGA AATAAATGGT GTCACTTAAC TCCCTCTCAA AAGAAAAGGT TATCATTGAA 8560 ATATAATTAT GAAATTCTGC AAGAACCTTT TGCCTCACGC TTGTTTTATG ATGGCATTGG 8620 ATGAATATAA ATGATGTGAA CACTTATCTG GGCTTTTGCT TTATGCAG AT ATT GAC 8676 ASD Ile ASD
25	CTC TGT GAA AAC AGC GTG CAG CGG CAC ATT GGA CAT GCT AAC CTC ACC Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr 255 260 270 TTC GAG CAG CTT CGT AGC TTG ATG GAA AGC TTA CCG GGA AAG AAA GTG Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val 275 280 280 285
30	GGA GCA GAA GAC ATT GAA AAA ACA ATA AAG GCA TGC AAA CCC AGT GAC Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp 290 295 300
	CAG ATC CTG AAG CTG CTC AGT TTG TGG CGA ATA AAA AAT GGC GAC CAA 8868 Gln Ile Leu Lys Leu Leu Ser Leu Trp Arg Ile Lys Asn Gly Asp Gln 305 310 315
35	GAC ACC TTG AAG GGC CTA ATG CAC GCA CTA AAG CAC TCA AAG ACG TAC ASD Thr Leu Lys Gly Leu Met His Ala Leu Lys His Ser Lys Thr Tyr 320 325 330
40	CAC TTT CCC AAA ACT GTC ACT CAG AGT CTA AAG AAG ACC ATC AGG TTC His Phe Pro Lys Thr Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe 335 340 345 350
	CTT CAC AGC TTC ACA ATG TAC AAA TTG TAT CAG AAG TTA TTT TTA GAA 9012 Leu His Ser Phe Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu 355 360 365
45	ATG ATA GGT AAC CAG GTC CAA TCA GTA AAA ATA AGC TGC TTA 9054 Met Ile Gly Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu 370 375 380
50	TAACTGGAAA TGGCCATTGA GCTGTTTCCT CACAATTGGC GAGATCCCAT GGATGAGTAA 9114 ACTGTTTCTC AGGCACTTGA GGCTTTCAGT GATACTTTC TCATTACCAG TGACTAATTT 9174 TGCCACAGGG TACTAAAAGA AACTATGATG TGGAGAAAGG ACTAACATCT CCTCCAATAA 9234 ACCCCAAATG GTTAATCCAA CTGTCAGATC TGGATCGTTA TCTACTGACT ATATTTCCC 9294 TTATTACTGC TTGCAGTAAT TCAACTGGAA ATTAAAAAAA AAAACTAGA CTCCACTGGG 9354 CCTTACTAAA TATGGGAATG TCTAACTTAA ATAGCTTTGG GATTCCAGCT ATGCTAGAGG 9414 CTTTTATTAG AAAGCCATAT TTTTTTCTGT AAAAGTTACT AATATATCTG TAACACTATT 9474

ACAGTATTGC TATTTATATT CATTCAGATA TAAGATTTGG ACATATTATC ATCCTATAAA 9534
GAAACGGTAT GACTTAATTT TAGAAAGAAA ATTATATCT GTTTATATG ACAAATGAAA 9594
GAGAAAATAT ATATTTTTAA TGGAAAGTTT GTAGCATTTT TCTAATAAGGT ACTGCCATAT 9654
TATTCTGTGT GGAGTATTTT TATAATTTTA TCTGTATAAAG CTGTAATATC ATTATATAGA 9714
ATATTAGATG CTCTGAGAAA TTGATATATG TGGAAAACAT ATGAAATATA AATTATCTGA 9774
ATATTAGATG CTCTGAGAAA TTGATATCAA TTATTTTTAA AGATTTTATG GTTTTATAAC 9834
TATATAAATG ACATTATTAA AGTTTTCAAA TTATTTTTTA TTGCTTTCTC TGTTGCTTTT 9894
ATTT

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 401 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: protein

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Met Asn Asn Leu Leu Cys Cys Ala Leu Val Phe Leu Asp Ile Ser -10 - 20 -15 Lys Trp Thr Thr Gln Glu Thr Phe Pro Pro Lys Tyr Leu His Tyr Asp Glu Glu Thr Ser His Gln Leu Leu Cys Asp Lys Cys Pro Pro Gly Thr Tyr Leu Lys Gln His Cys Thr Ala Lys Trp Lys Thr Val Cys Ala Pro Cys Pro Asp His Tyr Tyr Thr Asp Ser Trp His Thr Ser Asp Glu Cys Leu Tyr Cys Ser Pro Val Cys Lys Glu Leu Gln Tyr Val Lys Gln Glu Cys Asn Arg Thr His Asn Arg Val Cys Glu Cys Lys Glu Gly Arg Tyr Leu Glu Ile Glu Phe Cys Leu Lys His Arg Ser Cys Pro Pro Gly Phe Gly Val Val Gln Ala Gly Thr Pro Glu Arg Asn Thr Val Cys Lys Arg Cys Pro Asp Gly Phe Phe Ser Asn Glu Thr Ser Ser Lys Ala Pro Cys Arg Lys His Thr Asn Cys Ser Val Phe Gly Leu Leu Leu Thr Gln Lys Gly Asn Ala Thr His Asp Asn Ile Cys Ser Gly Asn Ser Glu Ser Thr Gln Lys Cys Gly Ile Asp Val Thr Leu Cys Glu Glu Ala Phe Phe Arg Phe Ala Val Pro Thr Lys Phe Thr Pro Asn Trp Leu Ser Val Leu Val Asp Asn Leu Pro Gly Thr Lys Val Asn Ala Glu Ser Val Glu Arg Ile Lys Arg Gln His Ser Ser Gln Glu Gln Thr Phe Gln Leu Leu Lys Leu Trp Lys His Gln Asn Lys Asp Gln Asp Ile Val Lys Lys Ile Ile Gln Asp Ile Asp Leu Cys Glu Asn Ser Val Gln Arg His Ile Gly His Ala Asn Leu Thr Phe Glu Gln Leu Arg Ser Leu Met Glu Ser Leu Pro Gly Lys Lys Val Gly Ala Glu Asp Ile Glu Lys Thr Ile Lys Ala Cys Lys Pro Ser Asp Gln Ile Leu Lys Leu Leu Ser

```
Leu Trp Arg Ile Lys Asn Gly Asp Gln Asp Thr Leu Lys Gly Leu
                            315
       Met His Ala Leu Lys His Ser Lys Thr Tyr His Phe Pro Lys Thr
       325
                            330
                                                 335
       Val Thr Gln Ser Leu Lys Lys Thr Ile Arg Phe Leu His Ser Phe
                            345
       340
                                                 350
       Thr Met Tyr Lys Leu Tyr Gln Lys Leu Phe Leu Glu Met Ile Gly
       355
                            360
                                                 365
       Asn Gln Val Gln Ser Val Lys Ile Ser Cys Leu
10
       370
                            375
                                                 380
```

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - LENGTH: 1206 base pairs (A)
 - (B) TYPE: nucleic acid
 - STRANDEDNESS: single (C)
 - (D) TOPOLOGY: linear
- (ii)MOLECULE TYPE: CDNA
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

```
ATGAACAACT TGCTGTGCTG CGCGCTCGTG TTTCTGGACA TCTCCATTAA GTGGACCACC
25
       CAGGAAACGT TTCCTCCAAA GTACCTTCAT TATGACGAAG AAACCTCTCA TCAGCTGTTG
                                                                           120
       TGTGACAAAT GTCCTCCTGG TACCTACCTA AAACAACACT GTACAGCAAA GTGGAAGACC
                                                                           180
                                                                           240
       GTGTGCGCCC CTTGCCCTGA CCACTACTAC ACAGACAGCT GGCACACCAG TGACGAGTGT
                                                                           300
       CTATACTGCA GCCCCGTGTG CAAGGAGCTG CAGTACGTCA AGCAGGAGTG CAATCGCACC
       CACAACCGCG TGTGCGAATG CAAGGAAGGG CGCTACCTTG AGATAGAGTT CTGCTTGAAA
                                                                           360
       CATAGGAGCT GCCCTCCTGG ATTTGGAGTG GTGCAAGCTG GAACCCCAGA GCGAAATACA
                                                                           420
30
                                                                           480
       GTTTGCAAAA GATGTCCAGA TGGGTTCTTC TCAAATGAGA CGTCATCTAA AGCACCCTGT
                                                                           540
       AGAAAACACA CAAATTGCAG TGTCTTTGGT CTCCTGCTAA CTCAGAAAGG AAATGCAACA
       CACGACAACA TATGTTCCGG AAACAGTGAA TCAACTCAAA AATGTGGAAT AGATGTTACC
                                                                            600
                                                                            660
       CTGTGTGAGG AGGCATTCTT CAGGTTTGCT GTTCCTACAA AGTTTACGCC TAACTGGCTT
                                                                            720
       AGTGTCTTGG TAGACAATTT GCCTGGCACC AAAGTAAACG CAGAGAGTGT AGAGAGGATA
35
       AAACGGCAAC ACAGCTCACA AGAACAGACT TTCCAGCTGC TGAAGTTATG GAAACATCAA
                                                                            780
       AACAAAGACC AAGATATAGT CAAGAAGATC ATCCAAGATA TTGACCTCTG TGAAAACAGC
                                                                            840
                                                                            900
       GTGCAGCGGC ACATTGGACA TGCTAACCTC ACCTTCGAGC AGCTTCGTAG CTTGATGGAA
                                                                            960
       AGCTTACCGG GAAAGAAGT GGGAGCAGAA GACATTGAAA AAACAATAAA GGCATGCAAA
       CCCAGTGACC AGATCCTGAA GCTGCTCAGT TTGTGGCGAA TAAAAAATGG CGACCAAGAC 1020
40
       ACCTTGAAGG GCCTAATGCA CGCACTAAAG CACTCAAAGA CGTACCACTT TCCCAAAACT 1080
       GTCACTCAGA GTCTAAAGAA GACCATCAGG TTCCTTCACA GCTTCACAAT GTACAAATTG 1140
       TATCAGAAGT TATTTTTAGA AATGATAGGT AACCAGGTCC AATCAGTAAA AATAAGCTGC 1200
                                                                           1206
       TTATAA
```

Claims

45

5

15

- 1. A DNA comprising the nucleotide sequences of the Sequences No. 1 and No. 2 in the Sequence Table.
 - 2. The DNA according to claim 1, wherein the Sequence ID No. 1 includes the first exon of the OCIF gene and the Sequence ID No. 2 includes the second, third, fourth, and fifth exons.
- 3. A protein exhibiting the activity of inhibiting differentiation and/or maturation of osteoclasts and having the following physicochemical characteristics,
 - (a) molecular weight (SDS-PAGE):

- (i) Under reducing conditions: about 60 kD,
- (ii) Under non-reducing conditions: about 60 kD and about 120 kD;
- (b) amino acid sequence:
- includes an amino acid sequence of the Sequence ID No. 3 in the Sequence Table,
- (c) affinity:

5

10

20

25

30

35

40

45

50

55

- exhibits affinity to a cation exchanger and heparin, and
- (d) heat stability:
- (i) the osteoclastogenesis-inhibitory activity is reduced when treated with heat at 70°C for 10 minutes or at 56°C for 30 minutes,
 - (ii) the osteoclastogenesis-inhibitory activity is lost when treated with heat at 90°C for 10 minutes.
- **4.** A process for producing a protein exhibiting an activity of inhibiting differentiation and/or maturation of osteoclasts and having the following physicochemical characteristics,
 - (a) molecular weight (SDS-PAGE):
 - (i) Under reducing conditions: about 60 kD,
 - (ii) Under non-reducing conditions: about 60 kD and about 120 kD;
 - (b) amino acid sequence:
 - includes an amino acid sequence of the Sequence ID No. 3 of the Sequence Table,
 - (c) affinity:
 - exhibits affinity to a cation exchanger and heparin, and
 - (d) heat stability:
 - (i) the osteoclastogenesis-inhibitory activity is reduced when treated with heat at 70°C for 10 minutes or at 56°C for 30 minutes,
 - (ii) the osteoclastogenesis-inhibitory activity is lost when treated with heat at 90°C for 10 minutes,

the process comprising inserting a DNA including the nucleotide sequences of the sequences No. 1 and No. 2 in the Sequence Table into an expression vector, producing a vector capable of expressing a protein having the above-mentioned physicochemical characteristics and exhibiting the activity of inhibiting differentiation and/or maturation of osteoclasts, and producing this protein by a genetic engineering technique.

Figure 1

INTERNATIONAL SEARCH REPORT

International application No.

PCT/JP97/02859

		PCI/	JP97702659				
Int.	C16 C12N15/00, C12P21/00						
According to International Patent Classification (IPC) or to both national classification and IPC							
B. FIEL	DS SEARCHED						
	ecumentation searched (classification system followed by	classification symbols)					
Int.	C16 C12N15/00, C12P21/00						
Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched							
Electronic da	ta base consulted during the international search (name of	of data base and, where practicable, search	terms used)				
WPI,	GENETYX-CDROM, BIOSIS						
C. DOCU	MENTS CONSIDERED TO BE RELEVANT						
Category*	Citation of document, with indication, where ap		Relevant to claim No.				
А	Cancer Research, (1995), Vol. 55, Toshiyuki 1 - 4 Yoneda, et al. "Sumarin suppresses hypercalcemia and osteoclastic bone resorption in nude mice bearing a human squamous cancer" P. 1989-1993						
A	Proc. Natl. Acad. Sci. USA, Kukita A. et al. "Osteoindo inhibits formation of human cells" P. 3023-3026	1 - 4					
-							
Further documents are listed in the continuation of Box C. See patent family annex.							
* Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevance T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention							
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other							
special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "O" document referring to an oral disclosure, use, exhibition or other means "O" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art							
"P" document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family							
Date of the actual completion of the international search September 29, 1997 (29. 09. 97) Date of mailing of the international search report October 7, 1997 (07. 10. 97)							
Name and mailing address of the ISA/ Authorized officer							
Japa	Japanese Patent Office						
Facsimile N	0.	Telephone No.					

Form PCT/ISA/210 (second sheet) (July 1992)