Problem M Mega Inversions

The n^2 upper bound for any sorting algorithm is easy to obtain: just take two elements that are misplaced with respect to each other and swap them. Conrad conceived an algorithm that proceeds by taking not two, but *three* misplaced elements. That is, take three elements $a_i > a_j > a_k$ with i < j < k and place them in order a_k, a_j, a_i . Now if for the original algorithm the steps are bounded by the maximum number of inversions $\frac{n(n-1)}{2}$, Conrad is at his wits' end as to the upper bound for such triples in a given sequence. He asks you to write a program that counts the number of such triples.

Problem ID: megainversions **CPU Time limit:** 1 second **Memory limit:** 1024 MB

Author: Serikzhan S. Kazi **Source:** Nordic Collegiate Programming Contest (NCPC)

_

License: (cc) BY-SA

Input

The first line of the input is the length of the sequence, $1 \le n \le 10^5$. The next line contains the integer sequence a_1, a_2, \ldots, a_n . You can assume that all $a_i \in [1, n]$.

Output

Output the number of inverted triples.

Sample Input 1	Sample Output 1
3 1 2 3	0
Sample Input 2	Sample Output 2
4 3 3 2 1	2