Descriptive Statistics & Graphs

Lecture 13

02/11/2013

(Lecture 13) 02/11/2013 1 / 57

The shape of this distribution is:

- (a) unimodal, left skewed.
- (b) bimodal.
- (c) unimodal, right skewed.

(Lecture 13) 02/11/2013 2 / 57

The shape of this distribution is:

- (a) unimodal, left skewed.
- (b) bimodal.
- (c) unimodal, right skewed.

(Lecture 13) 02/11/2013 3 / 57

A distribution has a mean of 100 and a median of 120. The shape of this distribution is most likely:

- (a) skewed left
- (b) skewed right
- (c) symmetric

(Lecture 13) 02/11/2013 4 / 57

A distribution has a mean of 100 and a median of 120. The shape of this distribution is most likely:

- (a) skewed left
- (b) skewed right
- (c) symmetric

(Lecture 13) 02/11/2013 5 / 57

Which of the following measures is least affected by *outliers*?

- (a) mean
- (b) standard deviation
- (c) IQR (InterQuartile Range)

(Lecture 13) 02/11/2013 6 / 57

Which of the following measures is least affected by *outliers*?

- (a) mean
- (b) standard deviation
- (c) IQR (InterQuartile Range)

(Lecture 13) 02/11/2013 7 / 57

Box Pot

(Lecture 13) 02/11/2013 8 / 57

The Histogram

(Lecture 13) 02/11/2013 9 / 57

The Histogram

Example: Hours of sleep

```
\left\{12, 8.5, 7.2, 7.3, 7.7, 6, 6.5, 4.5, 3, 1.2, \\ 1.3, 2, 2, 3.8, 6.6, 8.5, 5.9, 4.6, 5.6, 6.7\right\}
```

```
Variable: hours of sleep, Values = [0,24].
```

- How many blocks are we going to have?
- How are we going to determine the length of each block?

(Lecture 13) 02/11/2013

10 / 57

Sort the data:

$$\Big\{1.2, 1.3, 2, 2, 3, 3.8, 4.5, 4.6, 5.6, 5.9,$$

$$6, 6.5, 6.6, 6.7, 7.2, 7.3, 7.7, 8.5, 8.5, 12\Big\}$$

Choose the desired class intervals:

1-2 hours, 2-5 hours, 5-8 hours, 8-12 hours

- 4 class intervals
- 4 unevenly spaced blocks

(Lecture 13) 02/11/2013 11 / 57

How to draw the block?

• Count the number of datapoints that falls into each class:

Hours of Sleep (X)	Counts	Proportions
1 < <i>X</i> ≤ 2	4	4/20=0.2
2 < <i>X</i> ≤ 5	4	4/20=0.2
$5 < X \le 8$	9	9/20=0.45
8 < <i>X</i> ≤ 12	3	3/20=0.15

The intervals are not necessary to have the same length.

(Lecture 13) 02/11/2013 12 / 57

(Lecture 13) 02/11/2013 13 / 57

(Lecture 13) 02/11/2013

14/57

(Lecture 13) 02/11/2013

15 / 57

(Lecture 13) 02/11/2013 16 / 57

(Lecture 13) 02/11/2013 17 / 57

The 13th Biannual Youth Survey on Politics and Public Service Field Dates: October 28th – November 9th, 2007 Master Questionnaire; N=2,526 18-24 Year Olds

When it comes to most political issues, do you think of yourself as a liberal, moderate or conservative? (If moderate ask: as a moderate, which way do you lean?)

	Total	College	Non-College
Liberal	32%	34%	31%
Moderate leaning liberal	14%	18%	13%
Moderate	21%	17%	23%
Moderate leaning conservative	12%	12%	12%
Conservative	21%	19%	22%

(Lecture 13) 02/11/2013

18 / 57

Variables

- Variable: the aspect that differs from subject to subject, individual to individual.
 - Political learning, Age, Sex, Income,....
- Data: the value of the variables
 - Conservative, 19, Male, \$15,000,

(Lecture 13) 02/11/2013 19 / 57

Two types of variables

- Quantitative or numerical variables
 - Numbers, measurements
 - Age, height, miles traveled, hours slept, income
- Categorical variables
 - Classify each observation
 - Political Affiliation, sex, race

(Lecture 13) 02/11/2013 20 / 57

A survey of college students collected information on several variables: Distance from home, Age, Major, Gender and Class.

The variable *Major* is:

- (a) Quantitative
- (b) Categorical
- (c) Neither categorical nor numeric

(Lecture 13) 02/11/2013 21 / 57

A survey of college students collected information on several variables: Distance from home, Age, Major, Gender and Class.

The variable *Distance from home* is:

- (a) Quantitative
- (b) Categorical
- (c) Neither categorical nor numeric

(Lecture 13) 02/11/2013 22 / 57

Categorical Data

• How do we describe it?

• How do we graph it?

(Lecture 13) 02/11/2013 23 / 57

Summary of Categories

Sample Proportion

- Counts (Each category has a number of occurrences.)
- Proportions/Percentages

	Total
Liberal	32%
Moderate leaning liberal	14%
Moderate	21%
Moderate leaning conservative	12%
Conservative	21%

(Lecture 13) 02/11/2013 24 / 57

Sample Proportion

For example...

$$\hat{p}_{Liberal} = \frac{\text{# of people being Liberals}}{\text{total # of respondents}} = 0.32$$

$$\hat{p}_{Moderate} = \frac{\text{\# of people being Moderate}}{\text{total \# of respondents}} = 0.21$$

$$\hat{p}_{Conservative} = \frac{\text{\# of people being Conservative}}{\text{total \# of respondents}} = 0.21$$

(Lecture 13) 02/11/2013 25 / 57

Visualizing Categorical Data

- Give a clear picture of what the data contains
- Emphasize differences/similarities
- Bar graphs are usually the best

(Lecture 13) 02/11/2013 26 / 57

Bar Graph

(Lecture 13) 02/11/2013 27 / 57

Summary Statistics

Type of Variable	Statistics	Graphs
Categorical	Proportions	Bar Graph

(Lecture 13) 02/11/2013 28 / 57

Summary Statistics

Type of Variable	Statistics	Graphs
Quantitative Continuous	Mean, St. Deviation Median, IQR 5-Number Summary	Histogram Boxplot

(Lecture 13) 02/11/2013 29 / 57

Pair of Measurements

- Two quantitative measurements
- What is their relationship?
- Can we predict one value from the other?

(Lecture 13) 02/11/2013 30 / 57

Correlation

- Response and Explanatory variables
- Scatter plot

- Positive and Negative Association
- Sample Correlation

$$r = \frac{1}{(n-1) s_x s_y} \left[\sum_{i=1}^n x_i y_i - n \bar{x} \bar{y} \right]$$

(Lecture 13) 02/11/2013 31 / 57

Example: Average Consumption per Capita by Region in UK

Region	Alcohol	Tobacco
North	6.47	4.03
Yorkshire	6.13	3.76
Northeast	6.19	3.77
East Midlands	4.89	3.34
West Midlands	5.63	3.47
East Anglia	4.52	2.92
Southeast	5.89	3.2
Southwest	4.79	2.71
Wales	5.27	3.53
Scotland	6.08	4.51
Northern Ireland	4.02	4.56

(Lecture 13) 02/11/2013 32 / 57

Scatter Plot

(Lecture 13) 02/11/2013

33 / 57

Two variables

- Explanatory Variable
 - Input into the system
 - Explains or predicts the other
- Response Variable
 - Output of the system
 - What we want to predict

(Lecture 13) 02/11/2013 34 / 57

A researcher would like to know if mother's height can explain how tall her child will be. Which is the response variable?

- (a) Child's height
- (b) Mother's height
- (c) Father's height

(Lecture 13) 02/11/2013 35 / 57

A researcher would like to know if mother's height can explain how tall her child will be. Which is the response variable?

- (a) Child's height
- (b) Mother's height
- (c) Father's height

(Lecture 13) 02/11/2013 36 / 57

Scatter Plot

(Lecture 13) 02/11/2013

37 / 57

Scatter Plot

Explanatory Variable

(Lecture 13) 02/11/2013 38 / 57

Explanatory Variable

(Lecture 13) 02/11/2013 39 / 57

Explanatory Variable

(Lecture 13) 02/11/2013 40 / 57

Average Temperature through the years

02/11/2013 (Lecture 13)

What to look for

- Linear relationship
 - Positive Association
 - Negative Association
- Non-linear relationship
- Outliers

(Lecture 13) 02/11/2013 42 / 57

Linear Relationship

Explanatory variable increases or decreases

Response increases or decreases proportionally

(Lecture 13) 02/11/2013 43 / 57

Positive Association

(Lecture 13) 02/11/2013 44 / 57

Positive Association

(Lecture 13) 02/11/2013 45 / 57

How does education affect health?

(Lecture 13) 02/11/2013 46 / 57

How does education affect health?

(Lecture 13) 02/11/2013 47 / 57

How does education affect health?

(Lecture 13) 02/11/2013

48 / 57

Linear Association

	Explanatory Variable	Response Variable
Positive Association	Increases	Increases
	Decreases	Decreases
Negative Association	Increases	Decreases
	Decreases	Increases

(Lecture 13) 02/11/2013

49 / 57