Bayes Net

Graphical Models

- Key Idea :
 - Conditional independence assumptions useful
 - But Naïve Bayes is extreme!
 - Graphical models express sets of conditional independence assumptions via graph structure
 - Graph structure plis associated parameters define <u>joint</u> <u>probability distribution over set of variables/nodes</u>
- Two types of graphical models :

today

- Directed graphs (aka Bayesian Networks)
- Undirected graphs (aka Markov Random Fields)

Graphical Models – Why Care?

- Among most important ML developments of the decade
- Graphical models allow combining
 - Prior knowledge in form of dependencies/independencies
 - Observed data to estimate parameters
- Principles and ~general methods for
 - Probabilistic inference
 - Learning
- Useful in practice
 - Diagnosis, help system, text analysis, time series models, ...

Conditional Independence

Definition: X is conditionally independent of Y given Z, if the probability governing X is independent of the value of Y, given the value of Z.

$$(\forall_i, j, k) P(X = x_i \mid Y = y_j, Z = z_k) = P(X = x_i \mid Z = z_k)$$

Which we often write P(X | Y, Z) = P(X | Z)

E.g., P(Thunder|Rain, Lightning) = P(Thunder|Lightning)

Marginal Independence

Definition: X is marginally independent of Y if

$$(\forall_i, j) P(X = x_i, Y = y_j) = P(X = x_i) P(Y = y_j)$$

Equivalently, if

$$(\forall_i, j)P(X = x_i \mid Y = y_j) = P(X = x_i)$$

Equivalently, if

$$(\forall_i, j)P(Y = y_i \mid X = x_i) = P(Y = y_i)$$

Represent Joint Probability Distribution over Variables

Discribe network of dependencies

Bayesian Networks define Joint Distribution in term of this graph, plus parameters

• If X_i 's are conditionally independent (as described by a PGM), the joint can be factored to a product of simples terms, e.g.,

- Why we may favor a PGM ?
 - Representation cost: how many probability statements are need?
 2+2+4+4+4+8+4+8=36, an 8-fold reduction from 28!
 - Algorithms for systemic and efficient inference/learning computation
 Exploring the graph structure and probabilistic (e.g., Bayesian, Markovian) semantics
 - Incorporation of domain knowledge and causal (logical) structures

Bayesian Network

<u>Bayes network</u>: a directed acyclic graph defining a joint probability distribution over a set of variables

Each node denotes a random variable

A conditional probability distribution (CPD) is associated with each node N, defining P(N | Parent(N))

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

The joint distribution over all variables in the network is defined in terms of these CPD's, plus the graph

Bayesian Network

What can we say about conditional independencies in a Bayes Net?

One thing is this:

Each node is conditionally independent of its non-descendents, given only its immediate parents

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

Bayesian Network Definition

A Bayes network represents the joint probability distribution over a collection of random variables

A Bayes network is a derected acyclic graph and a set of CPD's

- Each node denotes a random variable
- Edges denote dependencies
- CPD for each node X_i define $P(X_i | Pa(X_i))$
- The joint distribution over all variables id defined as

$$P(X_1...X_n) = \prod_i P(X_i \mid Pa(X_i))$$

Pa(X)=immediate parent of X in the graph

Some helpful terminology

Parents = Pa(X) = immediate parent

Antecedents = parents, parents of parents, ...

Children = immediate children

Descendents = children, children of children, ...

Parents	P(W Pa)	P(~W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1
W		

Bayesian Networks

• CPD for each node X_i describes $P(X_i | Pa(X_i))$

Parents	P(W Pa)	P(~W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1
W		

Chain rule of probability:

$$P(S,L,R,T,W) = P(S)P(L|S)P(R|S,L)P(T|S,L,R)P(W|S,L,R,T)$$

But in a Bayes net :
$$P(X_1...X_n) = \prod_i P(X_i | Pa(X_i))$$

How Many Parameters?

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

In full joint distribution?

Given this Bayes Net?

Bayesian Network

What can we say about conditional independencies in a Bayes Net?

One thing is this:

Each node is conditionally independent of its non-descendents, given only its immediate parents

Parents	P(W Pa)	P(¬W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1

WindSurf

Bayesian Networks

• CPD for each node X_i describes $P(X_i | Pa(X_i))$

Parents	P(W Pa)	P(~W Pa)
L, R	0	1.0
L, ¬R	0	1.0
¬L, R	0.2	0.8
¬L, ¬R	0.9	0.1
W		

Chain rule of probability:

$$P(S,L,R,T,W) = P(S)P(L|S)P(R|S,L)P(T|S,L,R)P(W|S,L,R,T)$$

But in a Bayes net :
$$P(X_1...X_n) = \prod_i P(X_i | Pa(X_i))$$

Bayes Net

Inference:

P(BattPower=t | Radio=t, Start=f)

Most probable explanation:

What is most likely value of leak, BatteryPower given Start=f?

Active data collection:

What is most useful variable to observe next, to improve our knowledge of node X?

What is the Bayes Network for X1, ... Xn with NO assumed conditional independencies

Algorithm for Contructing Bayes Network

- Choose an ordering over variables, e.g., $X_1, X_2, ... X_n$
- For i = 1 to n
 - Add X_I to the network
 - Select parents $Pa(X_i)$ as minimal subset of $X_1, X_2, ... X_{i-1}$ such that $P(X_i \mid Pa(X_i)) = P(X_i \mid X_1, X_2, ... X_{i-1})$

Notice this choice of parent assures

$$P(X_1...X_n) = \prod_i P(X_i | X_1...X_{i-1})$$
 (by chain rule)

$$= \prod_{i} P(X_i | Pa(X_i))$$
 (by construction)

Example

- Bird flu and Allegies both cause Nasal problems
- Nasal problem cause Sneezes and Headaches

What is the Bayes Network for Naïve Bayes?

What do we if variables are mix of discrete and real valued?

Bayes Network for a Hidden Markov Model

Assume the future is conditionally independent of the past, given the present

$$P(S_{t-2}, Q_{t-2}, S_{t-1}, ..., Q_{t+2}) =$$

How Can We Train a Bayes Net

1. When graph is given, and each training example gives values of every RV?

Easy: use data to obtain MLE or MAP estimates of θ for each CPD

e.g. like training the CPD's of a naïve Bayes classiffier

 $P(Xi \mid Pa(Xi); \theta)$

2. When graph unknown or some RV's unobserved?

This is more difficult ... later