Grafische Lösung einer quadratischen Gleichung

Eine quadratische Gleichung grafisch zu lösen bedeutet, dass man die Schnittpunkte zwischen einer Geraden und der Normalparabel konstruieren muss.

$$y = ax^{2} + bx + c \qquad |-ax^{2}| - y$$

$$\Leftrightarrow -ax^{2} = bx + c - y \qquad |: (-a)$$

$$\Leftrightarrow x^{2} = -\frac{b}{a}x + \frac{y - c}{a} \qquad |m := -\frac{b}{a}| n := \frac{y - c}{a}$$

$$\Leftrightarrow x^{2} = mx + n$$

Beispiel Gesucht werden die Nullstellen der Funktion $f(x) = x^2 - x - 2$, also die Lösungen der Gleichung $0 = x^2 - x - 2$.

Dazu formt man die Gleichung zunächst so um, dass der quadratische Teil mit Koeffizient 1 allein auf einer Seite steht:

$$0 = x^2 - x - 2 \qquad \Leftrightarrow \qquad x^2 = x + 2$$

Nun zeichnet man die Normalparabel $y=x^2$ und die Gerade y=x+2 in ein Koordinatensystem. Die x-Koordinaten der beiden Schnittpunkte sind die gesuchten Lösungen: $x_1=-1$ und $x_2=2$.

Aufgabe Bestimme die Nullstellen der Parabeln grafisch:

$$f(x) = -3x^{2} + 6x + 9$$
 $x_{1} = -1$ $x_{2} = 3$
 $f(x) = -x^{2} + 6x - 8$ $x_{1} = 4$ $x_{2} = 2$
 $f(x) = -2x^{2} - 8x - 6$ $x_{1} = -3$ $x_{2} = -1$
 $f(x) = -2x^{2} - 2x$ $x_{1} = -1$ $x_{2} = 0$

