álgebra

lcc :: $2.^{\underline{0}}$ ano

paula mendes martins

departamento de matemática :: uminho

preliminares

semigrupos - conceitos básicos

Definição. Um par (S,*) diz-se um *grupóide* se S é um conjunto e * é uma operação binária em S, i.e., se * é definida por

$$\begin{array}{cccc} *: S \times S & \longrightarrow & S \\ (x,y) & \longmapsto & x * y. \end{array}$$

Definição. Seja (S,*) um grupóide. A operação * diz-se comutativa se

$$a*b=b*a, \quad \forall a,b \in S.$$

Nestas condições, dizemos que (S,*) é comutativo ou abeliano.

2

Exemplo 1.

- Se * é definida por $x*y=\frac{x+y}{2}$ em $S=\mathbb{R}$, então, (S,*) é um grupóide abeliano.
- Se * é definida por x*y=x-y em $S=\mathbb{N}$, então, $(\mathbb{N},*)$ não é um grupóide.
- Se * é definida por x * y = 3 em $S = \mathbb{N}$, então, $(\mathbb{N}, *)$ é um grupóide comutativo.
- Se * é a adição ou a multiplicação usuais de classes em \mathbb{Z}_n , com $n \in \mathbb{N}$, então $(\mathbb{Z}_n, *)$ é um grupóide comutativo.

Exemplo 2. Sejam $S = \{a, b, c\}$ e * a operação binária definida pela seguinte tabela (à qual se chama *tabela de Cayley*):

Então, (S,*) é um grupóide comutativo.

Definição. Seja (S,*) um grupóide. A operação * diz-se associativa se

$$a*(b*c) = (a*b)*c, \quad \forall a, b, c \in S.$$

Nestas condições, escrevemos apenas a*b*c e dizemos que o grupóide (S,*) é um *semigrupo*.

Exemplo 3. O conjunto dos números inteiros constitui um semigrupo quando algebrizado com a multiplicação usual.

Exemplo 4. O grupóide do Exemplo 2 não é um semigrupo. De facto, temos que a*(c*c) = a*a = a e (a*c)*c = c.

Definição. Seja (S,*) um grupóide. Um elemento $a \in S$ diz-se um *elemento idempotente* se a*a=a.

Exemplo 5. No primeiro grupóide do Exemplo 1, todos os elementos são idempotentes. De facto, para todo $x \in S$, $x * x = \frac{x+x}{2} = x$.

Definição. Seja (S,*) um grupóide. Um elemento $0 \in S$ diz-se *elemento zero* ou *nulo* se

$$0*a=a*0=0, \forall a \in S.$$

Um elemento $e \in S$ diz-se elemento neutro ou elemento identidade se

$$a*e = e*a = a, \forall a \in S.$$

Observação. Um elemento neutro ou um elemento zero de um grupóide é um elemento idempotente.

Proposição. Num grupóide (S,*) existe, no máximo, um elemento neutro.

Definição. Um semigrupo (S,*) que admita elemento neutro diz-se um monóide ou um semigrupo com identidade. O único elemento neutro existente num monóide (S,*) representa-se por 1_S .

Exemplo 6. O semigrupo $(\mathbb{N},*)$ onde * está definida por

$$a*b=2ab, \forall a,b\in\mathbb{N},$$

não admite elemento neutro.

Exemplo 7. O semigrupo (S,*), onde $S = \{a,b,c,d\}$ e * é definida pela tabela

é um monóide, e a é o seu elemento neutro.

Definição. Sejam (S,*) um semigrupo com identidade e $a \in S$. Um elemento $a' \in S$ diz-se *elemento oposto* de a se $a*a' = a'*a = 1_S$.

Proposição. Num semigrupo (S,*) com identidade, um elemento $a \in S$ tem, no máximo, um elemento oposto.

Observação. Caso não haja ambiguidade quanto à operação *, referimo-nos muitas vezes ao grupóide (respetivamente, semigrupo, monóide) (S,*) como o grupóide (respetivamente, semigrupo, monóide) S.

potência natural de um elemento num semigrupo

Para representarmos a operação binária definida num conjunto podemos usar dois tipos de linguagem: a multiplicativa e a aditiva. Nestes casos temos:

Linguagem multiplicativa	Linguagem aditiva	
a*b=ab (produto de a por b)	a*b=a+b (a soma de a por b)	
a^{-1} é o oposto ou <i>inverso</i> de a	−a é o oposto ou <i>simétrico</i> de a	

Dado um elemento a de um semigrupo S, utilizamos a seguinte notação para representar os seguintes produtos (ou somas):

Linguagem multiplicativa	Linguagem aditiva	
2		
$a^2 = aa$	2a = a + a	
$a^3 = aaa$	3a = a + a + a	
:	:	
$a^n = \underbrace{aa \cdots aa}$	$na = \underbrace{a + a + \cdots + a + a}_{}$	$(com\ n\in\mathbb{N})$
n vezes	n vezes	

A aⁿ chamamos potência de a e a na chamamos múltiplo de a.

A não ser que seja referido, trabalhamos com a linguagem multiplicativa.

Proposição. Sejam S um semigrupo, $m,n\in\mathbb{N}$ e $a\in S$. Então,

- 1. $a^m a^n = a^{m+n}$ [ma + na = (m+n)a];
- 2. $(a^m)^n = a^{mn}$ [n(ma) = (nm) a].