

机器学习-第九章 深度卷积神经网络Normalization

教师: 胡俊杰 助理研究员

邮箱: <u>hujunjie@scu.edu.cn</u>

大纲

CNNs发展历程

Global Average Pooling (GAP)

$$a_{GAP} = \frac{1}{WH} \sum_{w=1}^{W} \sum_{h=1}^{H} a_{h}$$

■ GAP可显著降低最后全连接层的参数量

VGG

Very deep convolutional networks for large-scale image recognition

K Simonyan, A Zisserman - arXiv preprint arXiv:1409.1556, 2014 - arxiv.org

In this work we investigate the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting. Our main contribution is a thorough evaluation of networks of increasing depth using an architecture with very small (3x3) convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers. These findings were the basis of our ImageNet Challenge 2014 submission, where our team secured the first and the second places in the ...

☆ 保存 奶 引用 被引用次数: 78397 相关文章 所有 39 个版本 >>

- VGG交替使用卷积和池化
- 小卷积核 (3x3) 可高效地实现图像中的抽象特征提取

^[*] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[C]. arXiv, 2014.

Inception-V1 普通版本

Inception-V1普通版本

- 使用1x1,3x3,5x5大小的卷积核,步长均为1
- 使用3x3 大小的最大值池化

Inception-V1

■ 对3x3、5x5和最大值池化使用1x1卷积减少通道数目

Inception-V1

■ C代表通道数

1x1卷积

- 单次1x1卷积运算等价于全连接网络
- 1x1卷积可高效降低特征的通道数目

Inception-V1

GoogLeNet

	type	patch size/ stride	output size	depth	#1×1	#3×3 reduce	#3×3	#5×5 reduce	#5×5	pool proj	params	ops
Auxiliary classifier Auxiliary classifier	convolution	7×7/2	112×112×64	1							2.7K	34M
	max pool	3×3/2	56×56×64	0								
	convolution	3×3/1	$56 \times 56 \times 192$	2		64	192				112K	360M
	max pool	$3\times3/2$	$28 \times 28 \times 192$	0								
	inception (3a)		$28 \times 28 \times 256$	2	64	96	128	16	32	32	159K	128M
	inception (3b)		$28 \times 28 \times 480$	2	128	128	192	32	96	64	380K	304M
	max pool	$3\times3/2$	14×14×480	0								
	inception (4a)		$14 \times 14 \times 512$	2	192	96	208	16	48	64	364K	73M
	inception (4b)		$14 \times 14 \times 512$	2	160	112	224	24	64	64	437K	88M
	inception (4c)		$14 \times 14 \times 512$	2	128	128	256	24	64	64	463K	100M
	inception (4d)		$14 \times 14 \times 528$	2	112	144	288	32	64	64	580K	119M
	inception (4e)		$14 \times 14 \times 832$	2	256	160	320	32	128	128	840K	170M
	max pool	$3\times3/2$	$7 \times 7 \times 832$	0								
	inception (5a)		$7 \times 7 \times 832$	2	256	160	320	32	128	128	1072K	54M
	inception (5b)		$7 \times 7 \times 1024$	2	384	192	384	48	128	128	1388K	71M
	avg pool	7×7/1	$1\times1\times1024$	0								
	dropout (40%)		1×1×1024	0								
	linear		1×1×1000	1							1000K	1M
	softmax		1×1×1000	0								

^[*] C. Szegedy, W. Liu, Y. Jia, et al. Going Deeper with Convolutions[C]. CVPR, 2015.

大纲

$$\frac{\partial J}{\partial w_{i,*}^l} = \delta_i^{l+1} a_*^l$$

Zero-centered

当 a_*^l 均为正或均为负时, $sign(\frac{\partial J}{\partial w_{i,*}^l})$ 将相同,且只取决于 $sign(\delta_i^{l+1})$

Scaled

标准正态分布的概率密度函数

Sigmoid的导数

$$\delta_i^l = \dot{f}(z_i^l) \sum_{j=1}^{n_{l+1}} \delta_j^{l+1} w_{ji}^l$$

■ 归一化可缓解sigmoid函数的导数落入饱和区

- 任意中间隐藏层及之后的部分均可视为子网络 (sub-network)
- 除开对网络输入进行归一化,是否可对隐藏层特征也归一化?

Batch Normalization

训练阶段

全连接神经网络

$$\mu_i = \frac{1}{B} \sum_{b=1}^{B} z_{b,i}^{l+1}$$

$$\sigma_i^2 = \frac{1}{B} \sum_{b=1}^{B} (z_{b,i}^{l+1} - \mu_i)^2$$

B:训练阶段的batch大小

$$z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l \ a_j^l \quad \blacksquare$$

$$\hat{z}_{i}^{l+1} = \frac{z_{i}^{l+1} - \mu_{i}}{\sqrt{\sigma_{i}^{2} + \epsilon}} \qquad \qquad \tilde{z}_{i}^{l+1} = \gamma_{i} \hat{z}_{i}^{l+1} + \beta_{i}$$

- μ_i 和 σ_i^2 为第i个神经元 batch激活值的均值和方差
- ϵ 是一个很小的常量,避 免分母为0
- riangle 当 $\gamma_i = \sigma_i$ 且 $\beta_i = \mu_i$ 时, $\tilde{z}_i^{l+1} \approx z_i^{l+1}$
- Batch Normalization可让神经元学习调 整激活值的分布

测试阶段

$$z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l \ a_j^l \qquad \qquad \hat{z}_i^{l+1} = \frac{z_i^{l+1} - \mu_i}{\sqrt{\sigma_i^2 + \epsilon}}$$

- 测试阶段 (推理) 不受batch的影响
- 神经网络假设训练集与测试集独立同分布(Independent and identically distributed),因此针对第i个神经元,测试阶段应使用其在全体训练集上计算得到的 μ 和 σ
- 如何使用局部估计全局?

 $\tilde{z}_i^{l+1} = \gamma_i \hat{z}_i^{l+1} + \beta_i$

 在训练时, BN 使用指数滑动平均 (Exponential moving average) 方法估计全 体训练集的μ和σ

$$v_t \coloneqq decay \cdot v_{t-1} + (1 - decay) \cdot y_t$$

- v_t : t时刻的估计值, y_t : t时刻的观测值
- 推荐的decay取值: 0.999, 0.99, 0.9...
- decay越大, v_{t-1} 影响更大。decay越小, y_t 影响更大 17

全连接神经网络

$$\hat{z}_{i}^{l+1} = \sum_{j=1}^{n_{l}} w_{ij}^{l} \, a_{j}^{l} \qquad \qquad \hat{z}_{i}^{l+1} = \frac{z_{i}^{l+1} - \mu_{i}}{\sqrt{\sigma_{i}^{2} + \epsilon}} \qquad \qquad \tilde{z}_{i}^{l+1} = \gamma_{i} \hat{z}_{i}^{l+1} + \beta_{i}$$

■ 卷积中的通道可类比于全连接中的神经元

- 全连接中, μ 和 σ , γ 和 β 针对单个神经元
 - 卷积中, μ和σ, γ和β针对各通道 (channel)

卷积神经网络

Batch Normalization对比实验

- 数据集: Cifar10
- 网络: LeNet-5
- ■模型
 - LeNet-5 无 batch normalization
 - LeNet-5 有 batch normalization,且decay = 0.99
 - LeNet-5 有 batch normalization,且 decay = 0.9

Batch Normalization对比实验

	无BN	有BN, Decay=0.99	有BN, Decay=0.9
测试集准确率	74.33%	78.16%	78.26%

大纲

$$z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l \qquad \hat{z}_i^{l+1} = \frac{z_i^{l+1} - \mu_i}{\sqrt{\sigma_i^2 + \epsilon}}$$

- 训练阶段, BN中μ和σ依赖于batch大小
- batch过小时,难以准确估计全局μ和σ,这将影响网络在测试阶段性能

若μ和σ的计算不依赖batch,则无上述问题,即非batch的Normalization

 $\tilde{z}_i^{l+1} = \gamma_i \hat{z}_i^{l+1} + \beta_i$

Figure 1. **ImageNet classification error vs. batch sizes**. This is a ResNet-50 model trained in the ImageNet training set using 8 workers (GPUs), evaluated in the validation set.

$$z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l \qquad \qquad \hat{z}_i^{l+1} = \frac{z_i^{l+1} - \mu_i}{\sqrt{\sigma_i^2 + \epsilon}} \qquad \qquad \tilde{z}_i^{l+1} = \gamma_i \hat{z}_i^{l+1} + \beta_i$$

- 卷积中的特征维度为: [B,C,H,W]
 - Batch Normalization针对各通道计算μ和σ
 - Layer Normalization针对各样本计算μ和σ
 - Instance Normalization针对各样本和通道计算μ和σ
 - Group Normalization对各样本中的通道分组,并计算各组的 μ 和 σ

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C as the channel axis, and (H, W) as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

课后作业

- 使用pytorch实现Batch Normalization模块,针对CIFAR-10数据集
 - 对比有/无Batch Normalization的训练集和验证集loss曲线
 - 对比有/无Batch Normalization的测试集准确率

```
class BatchNorm2d(nn.Module):
   def __init__(self, num_features, num_dims, momentum=0.9, eps=1e-5):
       super().__init__()
       if num dims == 2:
           shape = (1, num_features)
       else:
           shape = (1, num_features, 1, 1)
       self.gamma = nn.Parameter(torch.ones(shape))
       self.beta = nn.Parameter(torch.zeros(shape))
       self.moving mean = torch.zeros(shape)
       self.moving_var = torch.ones(shape)
       self.momentum = momentum
       self.eps = eps
   def forward(self, X):
       # TODO 实现BN
       return Y
```

谢谢!