

Lösungen zu den Übungen in Kapitel 25

(1) Zeigen Sie dass sich die Variable Y_4 im autoregressiven Modell erste Ordnung in Abbildung 25.4 wie folgt als Funktion der Variable Y_1 ausdrücken lässt:

$$Y_4 = (\beta_{40} + \beta_{43} \cdot \beta_{30} + \beta_{43} \cdot \beta_{32} \cdot \beta_{20}) + \beta_{43} \cdot \beta_{32} \cdot \beta_{21} \cdot Y_1 + (\beta_{43} \cdot \beta_{32} \cdot \varepsilon_2 + \beta_{43} \cdot \varepsilon_3 + \varepsilon_4)$$

Das autoregressive Modell erster Ordnung in Abbildung 25.4 lässt sich wie folgt in Gleichungen darstellen:

$$Y_4 = \beta_{40} + \beta_{43} \cdot Y_3 + \varepsilon_4$$
 (1)

$$Y_3 = \beta_{30} + \beta_{32} \cdot Y_2 + \varepsilon_3$$
 (2)

$$Y_2 = \beta_{20} + \beta_{21} \cdot Y_1 + \varepsilon_2$$
 (3)

Setzt man Gleichung (3) in Gleichung (2) ein, erhält man:

$$Y_{3} = \beta_{30} + \beta_{32} \cdot (\beta_{20} + \beta_{21} \cdot Y_{1} + \varepsilon_{2}) + \varepsilon_{3}$$

$$= \beta_{30} + \beta_{32} \cdot \beta_{20} + \beta_{32} \cdot \beta_{21} \cdot Y_{1} + \beta_{32} \cdot \varepsilon_{2} + \varepsilon_{3}$$
 (4)

Setzt man Gleichung (4) in Gleichung (1) ein, ergibt sich :

$$\begin{split} Y_4 &= \beta_{40} + \beta_{43} \cdot (\beta_{30} + \beta_{32} \cdot \beta_{20} + \beta_{32} \cdot \beta_{21} \cdot Y_1 + \beta_{32} \cdot \varepsilon_2 + \varepsilon_3) + \varepsilon_4 \\ &= \beta_{40} + \beta_{43} \cdot \beta_{30} + \beta_{43} \cdot \beta_{32} \cdot \beta_{20} + \beta_{43} \cdot \beta_{32} \cdot \beta_{21} \cdot Y_1 + \beta_{43} \cdot \beta_{32} \cdot \varepsilon_3 + \beta_{43} \cdot \varepsilon_3 + \varepsilon_4 \\ &= (\beta_{40} + \beta_{43} \cdot \beta_{30} + \beta_{43} \cdot \beta_{32} \cdot \beta_{20}) + \beta_{43} \cdot \beta_{32} \cdot \beta_{21} \cdot Y_1 + (\beta_{43} \cdot \beta_{32} \cdot \varepsilon_2 + \beta_{43} \cdot \varepsilon_3 + \varepsilon_4) \end{split}$$

(2) Leiten Sie die indirekten Effekte von Y_2 auf Y_4 im autoregressiven Modell erster Ordnung in Abbildung 25.4 her.

Setzt man die Gleichung $Y_3 = \beta_{30} + \beta_{32} \cdot Y_2 + \varepsilon_3$ in die Gleichung $Y_4 = \beta_{40} + \beta_{43} \cdot Y_3 + \varepsilon_4$ ein, erhält man :

$$Y_4 = \beta_{40} + \beta_{43} \cdot (\beta_{30} + \beta_{32} \cdot Y_2 + \varepsilon_3) + \varepsilon_4 = \beta_{40} + \beta_{43} \cdot \beta_{30} + \beta_{43} \cdot \beta_{32} \cdot Y_2 + \beta_{43} \cdot \varepsilon_3 + \varepsilon_4$$

Es gibt somit nur einen indirekten Effekt von Y_2 auf Y_4 . Dieser lautet: $\beta_{43} \cdot \beta_{32}$.

(3) Leiten Sie die indirekten Effekte von Y_1 auf Y_4 im autoregressiven Modell zweiter Ordnung in Abbildung 25.4 her.

Das autoregressive Modell zweiter Ordnung in Abbildung 25.4 lässt sich wie folgt in Gleichungen darstellen:

$$Y_4 = \beta_{40} + \beta_{43} \cdot Y_3 + \beta_{42} \cdot Y_2 + \varepsilon_4$$
 (1)

$$Y_3 = \beta_{30} + \beta_{32} \cdot Y_2 + \beta_{31} \cdot Y_1 + \varepsilon_3$$
 (2)

$$Y_2 = \beta_{20} + \beta_{21} \cdot Y_1 + \varepsilon_2$$
 (3)

Setzt man die Formel (3) in die Formel (2) ein, erhält man:

$$Y_{3} = \beta_{30} + \beta_{32} \cdot (\beta_{20} + \beta_{21} \cdot Y_{1} + \varepsilon_{2}) + \beta_{31} \cdot Y_{1} + \varepsilon_{3}$$
$$= \beta_{30} + \beta_{32} \cdot \beta_{20} + \beta_{32} \cdot \beta_{21} \cdot Y_{1} + \beta_{32} \cdot \varepsilon_{2} + \beta_{31} \cdot Y_{1} + \varepsilon_{3}$$

Setzt man diese Gleichung in Gleichung (1) ein, ergibt sich:

$$Y_{4} = \beta_{40} + \beta_{43} \cdot (\beta_{30} + \beta_{32} \cdot \beta_{20} + \beta_{32} \cdot \beta_{21} \cdot Y_{1} + \beta_{32} \cdot \varepsilon_{2} + \beta_{31} \cdot Y_{1} + \varepsilon_{3}) + \beta_{42} \cdot Y_{2} + \varepsilon_{4}$$

$$= \beta_{40} + \beta_{43} \cdot \beta_{30} + \beta_{43} \cdot \beta_{32} \cdot \beta_{20} + \beta_{43} \cdot \beta_{32} \cdot \beta_{21} \cdot Y_{1} + \beta_{43} \cdot \beta_{32} \cdot \varepsilon_{2} + \beta_{43} \cdot \beta_{31} \cdot Y_{1} + \beta_{43} \cdot \varepsilon_{3} + \beta_{42} \cdot Y_{2} + \varepsilon_{4}$$

Ersetzt man in dieser Gleichung Y_2 durch Gleichung (3), erhält man :

$$Y_{4} = \beta_{40} + \beta_{43} \cdot \beta_{30} + \beta_{43} \cdot \beta_{32} \cdot \beta_{20} + \beta_{43} \cdot \beta_{32} \cdot \beta_{21} \cdot Y_{1} + \beta_{43} \cdot \beta_{32} \cdot \varepsilon_{2} + \beta_{43} \cdot \beta_{31} \cdot Y_{1} + \beta_{43} \cdot \varepsilon_{3} + \beta_{42} \cdot (\beta_{20} + \beta_{21} \cdot Y_{1} + \varepsilon_{2}) + \varepsilon_{4}$$

$$= \beta_{40} + \beta_{43} \cdot \beta_{30} + \beta_{43} \cdot \beta_{32} \cdot \beta_{20} + \beta_{43} \cdot \beta_{32} \cdot \beta_{21} \cdot Y_{1} + \beta_{43} \cdot \beta_{32} \cdot \varepsilon_{2} + \beta_{43} \cdot \beta_{31} \cdot Y_{1} + \beta_{43} \cdot \varepsilon_{3} + \beta_{42} \cdot \beta_{20} + \beta_{42} \cdot \beta_{21} \cdot Y_{1} + \beta_{42} \cdot \varepsilon_{2} + \varepsilon_{4}$$

An dieser Gleichung lässt sich erkennen, dass es drei spezifische indirekte Effekte von Y_1 auf Y_4 gibt: $\beta_{43} \cdot \beta_{32} \cdot \beta_{21}$, $\beta_{43} \cdot \beta_{31}$ und $\beta_{42} \cdot \beta_{21}$ Der total indirekte Effekt ist daher $\beta_{43} \cdot \beta_{32} \cdot \beta_{21} + \beta_{43} \cdot \beta_{31} + \beta_{42} \cdot \beta_{21}$.

(4) Zeigen Sie, dass im autoregressiven Modell erster Ordnung gilt:

$$Cov(Y_1, Y_4) = (\beta_{43} \cdot \beta_{32} \cdot \beta_{21}) \cdot Var(Y_1)$$

$$E(Y_4) = (\beta_{40} + \beta_{43} \cdot \beta_{30} + \beta_{43} \cdot \beta_{32} \cdot \beta_{20}) + \beta_{43} \cdot \beta_{32} \cdot \beta_{21} \cdot E(Y_1)$$

In Übung (2) haben wir hergeleitet, dass sich Y_4 wie folgt zerlegen lässt:

$$Y_4 = (\beta_{40} + \beta_{43} \cdot \beta_{30} + \beta_{43} \cdot \beta_{32} \cdot \beta_{20}) + \beta_{43} \cdot \beta_{32} \cdot \beta_{21} \cdot Y_1 + (\beta_{43} \cdot \beta_{32} \cdot \varepsilon_2 + \beta_{43} \cdot \varepsilon_3 + \varepsilon_4)$$
(1)

Hieraus folgt

$$Cov(Y_4, Y_1) = Cov[(\beta_{40} + \beta_{43} \cdot \beta_{30} + \beta_{43} \cdot \beta_{32} \cdot \beta_{20}) + \beta_{43} \cdot \beta_{32} \cdot \beta_{2} \cdot Y_1 + (\beta_{43} \cdot \beta_{32} \cdot \varepsilon_2 + \beta_{43} \cdot \varepsilon_3 + \varepsilon_4), Y_1]$$

Da Konstanten mit Variablen unkorreliert sind (s. Kap. 15.4.1), gilt:

$$Cov(Y_4, Y_1) = Cov[\beta_{43} \cdot \beta_{32} \cdot \beta_{21} \cdot Y_1 + (\beta_{43} \cdot \beta_{32} \cdot \varepsilon_2 + \beta_{43} \cdot \varepsilon_3 + \varepsilon_4), Y_1]$$

Da Residuen mit Prädiktoren unkorreliert sind (Kap. 16.3), folgt:

$$Cov(Y_4, Y_1) = Cov[\beta_{43} \cdot \beta_{32} \cdot \beta_{21} \cdot Y_1, Y_1]$$

Hieraus folgt nach den Rechenregeln für Kovarianzen (s. Kap. 15.4.1):

$$Cov(Y_4, Y_1) = \beta_{43} \cdot \beta_{32} \cdot \beta_{21} \cdot Cov(Y_1, Y_1) = \beta_{43} \cdot \beta_{32} \cdot \beta_{21} \cdot Var(Y_1)$$

Da der Erwartungswert der Residualvariablen gleich 0 ist (Kap. 16.3) folgt aus Gleichung (1):

$$E(Y_4) = E[(\beta_{40} + \beta_{43} \cdot \beta_{30} + \beta_{43} \cdot \beta_{32} \cdot \beta_{20}) + \beta_{43} \cdot \beta_{32} \cdot \beta_{21} \cdot Y_1 + (\beta_{43} \cdot \beta_{32} \cdot \varepsilon_2 + \beta_{43} \cdot \varepsilon_3 + \varepsilon_4)]$$

$$= E[(\beta_{40} + \beta_{43} \cdot \beta_{30} + \beta_{43} \cdot \beta_{32} \cdot \beta_{20}) + \beta_{43} \cdot \beta_{32} \cdot \beta_{21} \cdot Y_1]$$

Nach den Rechenregeln für Erwartungswerte (Kap. 7.2) folgt hieraus:

$$E[(\beta_{40} + \beta_{43} \cdot \beta_{30} + \beta_{43} \cdot \beta_{32} \cdot \beta_{20}) + \beta_{43} \cdot \beta_{32} \cdot \beta_{21} \cdot Y_1]$$

$$= E(\beta_{40} + \beta_{43} \cdot \beta_{30} + \beta_{43} \cdot \beta_{32} \cdot \beta_{20}) + (\beta_{43} \cdot \beta_{32} \cdot \beta_{21} \cdot Y_1)$$

$$= (\beta_{40} + \beta_{43} \cdot \beta_{30} + \beta_{43} \cdot \beta_{32} \cdot \beta_{20}) + \beta_{43} \cdot \beta_{32} \cdot \beta_{21} \cdot E(Y_1)$$

(5) Erstellen Sie die Gleichungen des Messmodells und des Strukturmodells für das Latent-State-Trait-Modell in Abbildung 25.12.

(A) Messmodell

$$Y_1 = \alpha_1 + \lambda_{11} \cdot \eta_1 + \lambda_{15} \cdot \eta_5 + \varepsilon_1$$

$$Y_2 = \alpha_2 + \lambda_{21} \cdot \eta_1 + \lambda_{25} \cdot \eta_5 + \varepsilon_2$$

$$Y_3 = \alpha_3 + \lambda_{32} \cdot \eta_2 + \lambda_{35} \cdot \eta_5 + \varepsilon_3$$

$$Y_4 = \alpha_4 + \lambda_{42} \cdot \eta_2 + \lambda_{45} \cdot \eta_5 + \varepsilon_4$$

$$Y_5 = \alpha_5 + \lambda_{53} \cdot \eta_3 + \lambda_{55} \cdot \eta_5 + \varepsilon_5$$

$$Y_6 = \alpha_6 + \lambda_{63} \cdot \eta_3 + \lambda_{65} \cdot \eta_5 + \varepsilon_6$$

$$Y_7 = \alpha_7 + \lambda_{74} \cdot \eta_4 + \lambda_{75} \cdot \eta_5 + \varepsilon_7$$

$$Y_8 = \alpha_8 + \lambda_{84} \cdot \eta_4 + \lambda_{85} \cdot \eta_5 + \varepsilon_8$$

(B) Strukturmodell

$$\eta_4 = \kappa_4 + \beta_{43} \cdot \eta_3 + \zeta_4$$

$$\eta_3 = \kappa_3 + \beta_{32} \cdot \eta_2 + \zeta_3$$

$$\eta_2 = \kappa_2 + \beta_{21} \cdot \eta_1 + \zeta_2$$

Da die Variablen η_1 bis η_4 Residualvariablen darstellen, ist ihr Erwartungswert gleich 0 (Steyer, Schmitt & Eid, 1999). Dies gilt in gleicher Weise für die Residualvariablen ζ_2 bis ζ_4 . Hieraus folgt: $\kappa_2 = \kappa_3 = \kappa_4 = 0$.