0.1. Lemmata. In §2.2, we introduced the linear simplex code $\mathcal{S}_{q,n}$. There it was shown that the code had constant weight q^{n-1} ; in particular, it follows that it is equidistant with constant Hamming distance q^{n-1} since the code is linear.

In ?, and later reproduced in ? using the language of BGW matrices, generalized Hadamard matrices $\mathrm{GH}(q,q^{n-1})$ were used recursively in conjunction with the classical parameter $\mathrm{BGW}((q^n-1)/(q-1),q^{n-1},q^{n-1}-q^{n-2};\mathrm{GF}(q)^*)$ s in order to construct certain designs. It turns out out that the $\mathrm{GH}(q,q^{n-1})$ used in the construction can be replaced by $\mathscr{S}_{q,n}$, and so simplify the construction.

In order to apply the linear code $\mathcal{S}_{q,n}$, we will require the following lemma.

0.1. Lemma. Let $\mathrm{GF}(q)=\{a_0=0,a_1,\ldots,a_{q-1}\}$, and let n>1. Then there exist disjoint (0,1)-matrices $A_{a_1},\ldots,A_{a_{q-1}}$ of dimensions $q^n\times (q^n-1)/(q-1)$ such that $\mathscr{S}_{q,n}=\sum_{\alpha\in\mathrm{GF}(q)^*}\alpha A_\alpha$. If we define $A_0=J-\sum_{\alpha\in\mathrm{GF}(q)^*}A_\alpha$, then the following hold.

(0.1.a)
$$\sum_{\alpha\in\mathrm{GF}(q)}A_{\alpha}A_{\alpha}^t=rac{q^{n-1}-1}{q-1}J+q^{n-1}I,$$
 and

$$(0.1.b) \sum_{\substack{\alpha,\beta \in \mathrm{GF}(q) \\ \alpha \neq \beta}} A_{\alpha} A_{\beta}^t = q^{n-1} (J-I).$$

Proof. Labeling the rows of $\mathscr{S}_{q,n}$ by r_0,\ldots,r_{q^n-1} , and taking $A=\mathscr{S}_{q,n}$, we then have that

$$\begin{split} &(\sum_{\alpha \in \mathrm{GF}(q)} A_{\alpha} A_{\alpha}^{t})_{ij} = \sum_{\alpha \in \mathrm{GF}(q)} (A_{\alpha} A_{\alpha}^{t})_{ij} \\ &= \sum_{\alpha \in \mathrm{GF}(q)} \sum_{\ell=0}^{\frac{q(q^{n-1}-1)}{q-1}} (A_{\alpha})_{i\ell} (A_{\alpha})_{j\ell} \\ &= \sum_{\alpha \in \mathrm{GF}(q)} \#\{\ell \in \{0, \dots, \frac{q(q^{n-1}-1)}{q-1}\} : A_{i\ell} = A_{j\ell} = \alpha\} \\ &= \#\{\ell \in \{0, \dots, \frac{q(q^{n-1}-1)}{q-1}\} : A_{i\ell} = A_{j\ell}\} \\ &= \frac{q^{n}-1}{q-1} - \mathrm{dist}(r_{i}, r_{j}), \end{split}$$

which shows (0.1.a).

Since
$$\sum_{\alpha \in \mathrm{GF}(q)} A_{\alpha} = J$$
, it follows that $\sum_{\alpha,\beta} A_{\alpha} A_{\beta}^t = (\sum_{\alpha} A_{\alpha}) (\sum_{\beta} A_{\beta})^t = \frac{q^n-1}{q-1}J$, and (0.1.b) has been proven.

If W is a BGW $(v, k, \lambda; C_n)$ over some cyclic group $C_n = \{1, g, \dots, g^{n-1}\}$ of order n, then there are n disjoint (0, 1)-matrices W_0, \dots, W_{n-1} such that W = 0

 $W_0 + gW_1 + \cdots + g^{n-1}W_{n-1}$. We call W_0 and W_1 the decomposition matrices of the weighing matrix. Because W is a BGW matrix, we have the following lemma.

0.2. Lemma.

(0.2.a)
$$\sum_{i,j} g^{i-j} W_i W_j^t = \sum_{i,j} g^{i-j} W_j^t W_i = kI + \frac{\lambda}{n} (\sum_i g_i) (J - I),$$

(0.2.b)
$$\sum_i W_i W_i^t = \sum_i W_i^t W_i = kI + \frac{\lambda}{n} (J-I)$$
, and

(0.2.c)
$$\sum_{i} W_{i} W_{i+j}^{t} = \sum_{i} W_{i+j}^{t} W_{i} = \frac{\lambda}{n} (J - I)$$
, for $j \in \{1, \dots, n - 1\}$.

Proof. (0.2.a) is simply a restatment of the fact that both W and W^* are $BGW(v,k,\lambda;C_n)$ s (see ?). (0.2.b) follows by noting that there are k nonzero entries in every row of W, and that 1 appears λ/n times in the conjugate inner product between distinct rows. Similarly, (0.2.c) follows by noting that each nonidentity element of the group appears λ/n times in the conjugate inner product between distinct rows of W, and that $i \neq i+j$, for each i whenever $j \not\equiv 0 \pmod{n}$.

Now, consider the balanced W(19,9) shown to exist by computational means in ?.

Take R_1 and D to be the residual and derived parts, respectively, of W_{19} . Define the matrix $|R_1|$ by $|R_1|_{ij} = |R_{1_{ij}}|$. Then $|R_1|$ is the incidence matrix of a residual BIBD(10, 18, 9, 5, 4), hence $|R_2| = J - |R_1|$ is a BIBD with the same parameters. Moreover, $|R_2|$ is residual since $|R_2|$ together with |D| also forms a symmetric design. We therefore seek a signing of $|R_2|$ over $\{-1,1\}$. Such a

signing is given by

Remarkably, R_2 together with D also forms a balanced W(19,9). The matrices R_1, R_2 , and D then satisfy several properties.

0.3. Lemma.

(0.3.a)
$$R_1R_1^t = R_2R_2^t = I$$
, $R_1R_2^t = R_2R_1^t$;

(0.3.b)
$$DD^t = 9I - J$$
;

(0.3.c)
$$R_1D^t = R_2D^t = O$$
;

(0.3.d)
$$|R_1||R_1|^t = |R_2||R_2|^t = 5I + 4J$$
, $|R_1||R_2|^t = |R_2||R_1|^t = 5(J - I)$;

(0.3.e)
$$|D||D|^t = 5I + 3J, |R_1||D|^t = |R_2||D^t| = 4J.$$

Proof. Restatement of the facts that R_1, R_2 , and D form balanced W(19, 4) weighing matrices.

* * *

0.2. Construction. Having the lemmata of the previous subsection at our disposal, we are ready to present the construction of a new family of balanced weighing matrices. We desire to apply BGWs in the construction of these matrices, so we need an admissible group of symmetries. Take $\mathcal{M} = \{R_1, R_2\}$; then it isn't difficult to see that $-R_2 \mapsto -R_1 \mapsto R_2 \mapsto R_1 \mapsto -R_2$ is an admissible cyclic group of symmetries of order 4 for \mathcal{M} —though, this will be derived explicitly below.

Let n>1, and take Ξ to be a BGW $((9^n-1)/8,9^{n-1},9^{n-1}-9^{n-2};C_4)$. We claim that $\Xi\otimes R_1$ is the residual part of a balanced W $([9(9^n-1)/4]+1,9^n)$. Note there are disjoint (0,1)-matrices Ξ_0,Ξ_1,Ξ_2,Ξ_3 such that $\Xi=\Xi_0+g\Xi_1+g^2\Xi_2+g^3\Xi_3$ if $C_4=\{e,g,g^2,g^3\}$. Then $\Xi\otimes R_1=\Xi_0\otimes R_1-\Xi_1\otimes R_2-\Xi_2\otimes R_1+\Xi_3\otimes R_2$. Next, let $\mathscr{S}_{9,n}=\sum_{\alpha\in \mathrm{GF}(9)^*}\alpha A_\alpha$, and define $A_0=J-\sum_{\alpha\in \mathrm{GF}(9)^*}A_\alpha$. Finally, take

 $\Theta = \sum_{\alpha \in \mathrm{GF}(9)} A_{\alpha} \otimes D$. It will be shown that Θ is the derived part of a balanced $W(\Theta(0^n-1)/4) + 1 \cdot 0^n$

$$W([9(9^n-1)/4]+1,9^n).$$

We require the following lemma.

0.4. Lemma.

$$(0.4.a) \ (\Xi \otimes R_1)(\Xi \otimes R_1)^t = 9^n I;$$

$$(0.4.b) \Theta\Theta^* = 9^n I - J;$$

$$(0.4.c) \ (\Xi \otimes R_1)\Theta^t = \Theta(\Xi \otimes R_1)^t = O;$$

(0.4.d)
$$|\Xi \otimes R_1| |\Xi \otimes R_1|^t = 5 \cdot 9^n I + 4 \cdot 9^n J$$
;

$$(0.4.e) |\Theta| |\Theta|^t = 5 \cdot 9^n I + (4 \cdot 9^n - 1) J$$
; and

(0.4.f)
$$|\Xi \otimes R_1||\Theta|^t = |\Theta||\Xi \otimes R_1|^t = 4 \cdot 9^n J$$
.

Proof. By Lemma 0.2 and (0.3.a),

$$(\Xi \otimes R_1)(\Xi \otimes R_1) = 9\Xi_0\Xi_0^t \otimes I - \Xi_0\Xi_1^t \otimes R_1R_2^t - 9\Xi_0\Xi_2^t \otimes I + \Xi_0\Xi_3^t \otimes R_1R_2^t$$

$$-\Xi_1\Xi_0^t \otimes R_2R_1^t + 9\Xi_1\Xi_1^t \otimes I + \Xi_1\Xi_2^t \otimes R_2R_1^t - 9\Xi_1\Xi_3^t \otimes I$$

$$-9\Xi_2\Xi_0^t \otimes I + \Xi_2\Xi_1^t \otimes R_1R_2^t + 9\Xi_2\Xi_2^t \otimes I - \Xi_2\Xi_3^t \otimes R_1R_2^t$$

$$+\Xi_3\Xi_0^t \otimes R_2R_1^t - 9\Xi_3\Xi_1^t \otimes I - \Xi_3\Xi_2^t \otimes R_2R_1^t + 9\Xi_3\Xi_3^t \otimes I$$

$$= 9\sum_i (\Xi_i\Xi_i^t - \Xi_i\Xi_{i+2}^t) \otimes I - \sum_i (\Xi_i\Xi_{i+1} - \Xi_i\Xi_{i+3}^t) \otimes R_1R_2^t$$

$$= 9^n I,$$

and (0.4.a) is shown.

Next, by Lemma 0.1 and (0.3.b), and upon indexing the rows of D by elements of GF(9),

$$\begin{split} \Theta\Theta^t &= \sum_{\alpha,\beta \in \mathrm{GF}(9)} A_\alpha A_\beta^t \otimes r_\alpha r_\beta^t \\ &= \sum_{\alpha \in \mathrm{GF}(9)} A_\alpha A_\alpha^t \otimes r_\alpha r_\alpha^t + \sum_{\alpha \neq \beta} A_\alpha A_\beta^t \otimes r_\alpha r_\beta^t \\ &= 8 \sum_{\alpha \in \mathrm{GF}(9)} A_\alpha A_\alpha^t - \sum_{\alpha \neq \beta} A_\alpha A_\beta^t \\ &= (9^{n-1} - 1)J + 8 \cdot 9^{n-1}I - 9^{n-1}(J - I) \\ &= 9^n I - J, \end{split}$$

which shows (0.4.b).

By Lemma (0.3.c),

$$(\Xi \otimes R_1)\Theta^t = \sum_{\alpha \in GF(9)} (\Xi_0 A_\alpha^t \otimes R_1 r_\alpha^t - \Xi_1 A_\alpha^t \otimes R_2 r_\alpha^t - \Xi_2 A_\alpha^t \otimes R_2 r_\alpha^t + \Xi_3 A_\alpha^t \otimes R_2 r_\alpha^t)$$

$$= O,$$

and (0.4.c) has been shown.

Since $|\Xi \otimes R_1| = (\Xi_0 + \Xi_2) \otimes |R_1| + (\Xi_1 + \Xi_3) \otimes |R_2|$, (0.4.d) is shown similarly to (0.4.a).

(0.4.e) is shown just as (0.4.b) after noting that
$$|\Theta| = \sum_{\alpha \in \mathrm{GF}(9)} A_\alpha \otimes |r_\alpha|$$
.

Finally, (0.4.f) is shown precisely as in (0.4.c).

We are now ready to present the main construction.

0.5. Theorem. Given $\Xi \otimes R_1$ and Θ defined above,

$$(0.5.a) \left(\begin{array}{cc} \mathbf{0} & \Xi \otimes R_1 \\ \mathbf{1} & \Theta \end{array}\right)$$

is a balanced $W([9(9^n - 1)/4] + 1, 9^n)$.

Proof. By the lemma, $(\Xi \otimes R_1)(\Xi \otimes R_1)^t = 9^nI$, $\Theta \Theta^t = 9^nI - J$, and $(\Xi \otimes R_1)\Theta^t = O$; thus, (0.5.a) is a weighing matrix with the appropriate parameters. It remains to show it is balanced. But the lemma again gives $|\Xi \otimes R_1||\Xi \otimes R_1|^t = 5 \cdot 9^nI + 4 \cdot 9^nJ$, $|\Theta||\Theta|^t = 5 \cdot 9^nI + (4 \cdot 9^n - 1)J$, and $|\Xi \otimes R_1|\Theta^t = 4 \cdot 9^nJ$. We have then shown that (0.5.a) is balanced, and the proof is complete.