Stationarity

Strict stationarity

A stochastic process $\{Y_t\}_{t=1}^{\infty}$ is **strictly stationary** if, for any set of subscripts t_1, t_2, \ldots, t_r with any given finite integer r, the **joint distribution** of

$$(Y_{t_1},\ldots,Y_{t_r})$$

is the same as the joint distribution of

$$(Y_{t_1+k},\ldots,Y_{t_r+k})$$

for any time shift k.

- For instance, the joint distribution of (Y_1, Y_5, Y_8) is the same as the distribution of (Y_{11}, Y_{15}, Y_{18}) .
- There is no guarantee that $E[Y_t]$ and/or $E[\left|Y_t\right|^2]$ exist.
 - $lacksquare Consider Z \sim N(0,1)$, $X \sim \chi^2(k)$, and X is independent of Z . Then,

$$Y = rac{Z}{\sqrt{X/k}} \sim t(k)$$

- The expected value of Y is well-defined only for k>1, which is 0. If k=1, the mean of Y is undefined.
- lacktriangledown The variance of Y is well-defined only for k>2, which is k/(k-2).

Covariance stationarity

A stochastic process $\{Y_t\}_{t=1}^{\infty}$ is **covariance stationary** if,

- $E[{|Y_t|}^2]<\infty$ for all t (square-integrable)
- ullet $E[Y_t]=\mu$ and $Var(Y_t)=\sigma^2$ for all t (time-invariant mean and variance)
- $Cov(Y_t, Y_{t-j}) = \gamma_j$ depends on j but not on t (time-invariant covariance)

Accordingly, the j-th autocorrelation is

$$corr(Y_t,Y_{t-j}) = rac{Cov(Y_t,Y_{t-j})}{\sqrt{Var(Y_t)Var(Y_{t-j})}} = rac{\gamma_j}{\sigma^2} = rac{\gamma_j}{\gamma_0}.$$

The sample autocorrelation function (ACF) $\hat{\rho}_j$ as a function of j where

$$\hat{
ho}_j = rac{\hat{\gamma}_j}{\hat{\gamma}_0} ext{ for } |j| < T, ext{ where } \hat{\gamma}_j = rac{1}{T-j} \sum_{t=1}^{T-j} (Y_t - ar{Y}) (Y_{t+j} - ar{Y}), ext{ and } ar{Y} = rac{1}{T} \sum_{t=1}^T Y_t.$$

- If $E[\left|Y_{t}\right|^{2}]<\infty$, strict stationarity implies covariance stationarity.
 - If not, then strict stationarity does not imply covariance stationarity.
 - lacktriangledown For instance, $\{Y_t\}_{t=1}^{\infty}\stackrel{IID}{\sim}t(1)$ is strictly stationary by the IID assumption
 - \circ By independence, the joint distribution of (Y_{t_1},\ldots,Y_{t_r}) is the product of marginal distributions of Y_t for $t=t_1,\ldots,t_r$.
 - \circ Similarly, the joint distribution of $(Y_{t_1+k},\ldots,Y_{t_r+k})$ is the product of marginal distributions of Y_t for $t=t_1+k,\ldots,t_r+k$.
 - By the assumption of identical distribution, the two joint distributions are identical.
 - lacktriangle However, the mean and variance of Y_t do not exist.
- If $E[Y_t] = \mu$ is time invariant, we can use $\sum_{t=1}^T Y_t/T$ to estimate $E[Y_t]$. That's a case of why stationarity is important.

MDS processes

A time series $\{d_t\}_{t=1}^\infty$ is a martingale difference sequence if $E[d_t|\mathcal{F}_{t-1}]=0$ for all t.

- An MDS can be non-stationary. For instance, $d_t \sim mds(0,\sigma^2(t))$, where $\sigma^2(t)$ varies across t.
- · An MDS with constant variance is covariance stationary.
 - lacksquare By definition, $E[d_t|\mathcal{F}_{t-1}]=0$ and $Var(d_t)=\sigma^2$ for all t.
 - lacksquare By law of iterated expectations, $E[d_t] = E[E[d_t|\mathcal{F}_{t-1}]] = E[0] = 0$ for all t
 - ullet $E[d_td_{t-j}]=0$ and hence $Cov(d_t,d_{t-j})=0$
 - $\circ~$ Let $d_t=Y_t-Y_{t-1}$, where $E[Y_t|\mathcal{F}_{t-1}]=Y_{t-1}$, i.e, $\{Y_t\}$ is a martingale.
 - $\circ \ E[d_t d_{t-j} | \mathcal{F}_{t-1}] = E[E[d_t | \mathcal{F}_{t-1}] d_{t-j}] = E[0 \cdot d_{t-j}] = 0.$

White noise processes

 $\{Y_t\}_{t=1}^{\infty}$ is a white noise process if it has mean zero and no autocorrelations.

ullet The variance $Var(Y_t)$ may be time-varying

 $Y_t \sim WN(0,\sigma^2)$ is an uncorrelated process with mean zero and **constant variance** σ^2 .

Moreover,

- $Y_t \sim IID(0, \sigma^2) \Rightarrow Y_t \sim MDS(0, \sigma^2)$.
 - ullet $E[Y_t|\mathcal{F}_{t-1}]=E[Y_t]=0$ by independence
- $Y_t \sim MDS(0, \sigma^2) \Rightarrow Y_t \sim WN(0, \sigma^2)$

ullet $E[Y_tY_{t-j}] = E[E[Y_tY_{t-j}|\mathcal{F}_{t-1}]] = E[E[Y_t|\mathcal{F}_{t-1}]Y_{t-j}] = E[0 \cdot Y_{t-j}] = 0$ and hence $Cov(Y_t, Y_{t-i}) = 0.$

The reverse are not true.

- $Y_t \sim WN(0, \sigma^2) \Rightarrow Y_t \sim MDS(0, \sigma^2)$
 - ullet Example: Suppose that $\epsilon_t \sim IID(0,\sigma^2)$. $Y_t = \epsilon_t + \epsilon_{t-1}\epsilon_{t-2}$ is a $WN(0,\sigma^2+\sigma^4)$ process but not an $MDS(0, \sigma^2 + \sigma^4)$ process.
- $Y_t \sim MDS(0, \sigma^2) \Rightarrow Y_t \sim IID(0, \sigma^2)$.
 - Example: Consider an ARCH(1) process

$$egin{aligned} e_t &= \sigma_t \epsilon_t \ \sigma_t^2 &= \omega + lpha e_{t-1}^2, ext{ where } \omega \geq 0, 0 < lpha < 1 \ \epsilon_t \sim WN(0,1) \ \epsilon_t ext{ independent of } \sigma_t \end{aligned}$$

Note that $E[e_t|e_{t-1},e_{t-2},\ldots]=\sigma_t E[\epsilon_t]=\sqrt{\omega+\alpha e_{t-1}^2}E[\epsilon_t]=0$, and hence $\{e_t\}_{t=1}^\infty$ is an MDS. Besides, $Var(e_t)=\omega/(1-\alpha)$. But $Var(e_t|e_{t-1})=\omega+\alpha e_{t-1}^2$. So $\{e_t\}_{t=1}^{\infty}$ is not IID.

Autoregressive moving-average processes

The ARMA(1,1) process:

$$Y_t - \mu = \phi(Y_{t-1} - \mu) + \epsilon_t + \theta \epsilon_{t-1},$$

where $|\phi| < 1$ and $\epsilon_t \sim WN(0, \sigma_\epsilon^2)$.

ullet $|\phi| < 1$ ensures ARMA(1,1) is covariance stationary

We have

•
$$E[Y_t] = \mu$$

$$ullet \ Var(Y_t) = rac{1+ heta^2+2\phi heta}{1-\phi^2}\sigma_\epsilon^2$$

$$egin{align*} \bullet \ E[Y_t] = \mu \\ \bullet \ Var(Y_t) = \frac{1 + \theta^2 + 2\phi\theta}{1 - \phi^2} \sigma_{\epsilon}^2 \\ \bullet \ \gamma_j = Cov(Y_t, Y_{t-j}) = \begin{cases} \frac{(1 + \phi\theta)(\phi + \theta)\sigma_{\epsilon}^2}{1 - \phi^2}, & |j| = 1 \\ \phi\gamma_{j-1}, & j \geq 2 \\ \gamma_{-j}, & j \leq -2 \end{cases} \\ \bullet \ \rho_j = corr(Y_t, Y_{t-j}) = \begin{cases} \frac{(1 + \phi\theta)(\phi + \theta)\sigma_{\epsilon}^2}{1 + \theta^2}, & |j| = 1 \\ \phi\rho_{j-1}, & j \geq 2 \\ \rho_{-j}, & j \leq -2 \end{cases}$$

Consider $Y_t - 1 = 0.8(Y_{t-1} - 1) + \epsilon_t + 0.2\epsilon_{t-1}$, where $\epsilon_t \sim WN(0,4)$.

```
import numpy as np
from statsmodels.tsa.arima_process import arma_generate_sample

np.random.seed(2022)
phi = -0.8 # note the minus sign despite the true phi = 8
theta = 0.2
ar = np.r_[1, phi] # add zero-lag
ma = np.r_[1, theta] # add zero-lag
y = 1 + arma_generate_sample(ar, ma, scale = 2, nsample = 500)
```

```
import matplotlib.pyplot as plt
from statsmodels.graphics.tsaplots import plot_acf

fig, ax = plt.subplots(nrows = 2, ncols = 1,figsize=(8,8))
ax[0].plot(np.arange(1, 501, 1), y) # first subgraph
ax[0].title.set_text('An ARMA(1) Process') # add the title

plot_acf(y, lags = 15, ax = ax[1]) # second subgraph
plt.show()
```


Ljung-Box test

The Ljung-Box test is used for testing H_0 : the correlations in the population from which the sample is taken are 0. The test statistic is given by

$$Q = T(T+2) \sum_{j=1}^h rac{\hat{
ho}_j^2}{T-j} \sim \chi^2(h) ext{ asymptotically},$$

where T is the sample size, $\hat{\rho}_j$ is the sample autocorrelation at lag j, and h is the number of lags being tested. We reject H_0 if the p-value is less than significance level α .

SARIMAX Results

No. Observations:

500

Model:		ARIMA(1, 0,	1) Log	Likelihood		-1055.078
Date:		i, 04 Mar 20				2118.156
Time:		22:23:				2135.014
Sample:			0 HQIC			2124.771
_		- 5	500			
Covariance Ty	-		pg			
	coef	std err	Z	P> z	[0.025	0.975]
const				0.115		
ar.L1	0.8276	0.029	28.376	0.000	0.770	0.885
ma.L1	0.2389	0.049	4.846	0.000	0.142	0.336
sigma2						
====		========				
Ljung-Box (L1	(Q):		0.00	Jarque-Bera	(JB):	
0.82						
Prob(Q):			0.98	Prob(JB):		
0.66						
Heteroskedasticity (H):			1.00	Skew:		-
0.09						
` , `	·sided):		0.97	Kurtosis:		
2.93						
Prob(H) (two- 2.93	sided):		0.97	Kurtosis:		

Warnings:

Dep. Variable:

[1] Covariance matrix calculated using the outer product of gradients (complex-s tep).

If we do not impose the specification of ARMA model, we can use auto_arima() to find the optimal lags.

```
In [4]:
```

CADTMAV	Results
SARIMAX	Results

=========	========	=========	=======	ITS ==========		
Dep. Variable		y No.	Observations:		500	
Model:	SA	RIMAX(1, 0,	1) Log	Likelihood		-1055.078
		i, 04 Mar 2	022 AIC			2118.156
Time:		22:23:27			2135.03	
Sample:			0 HQI	C		2124.771
		- !	500			
Covariance Ty	ype:		opg			
==========				P> z	=	=
				0.137		
=				0.000		
ma.L1	0.2389	0.049	4.846	0.000	0.142	0.336
sigma2	3.9720	0.258	15.399	0.000	3.466	4.478
=======================================	=======	=======	======:	=========	=======	:=======
Ljung-Box (L1) (Q): 0.82			0.00	Jarque-Bera	(JB):	
Prob(Q):			0.98	Prob(JB):		
			1.00	Skew:		
			0.97	Kurtosis:		

Warnings:

[1] Covariance matrix calculated using the outer product of gradients (complex-s tep).

Here is a way to extract values like estimated coefficients and/or standard errors.

```
import pandas as pd
Est_html = ARMA_Est.summary().tables[1].as_html()
df = pd.read_html(Est_html, header=0, index_col=0)[0]
coef = df.iloc[:, 0]
se = df.iloc[:, 1]
print(coef)
print(se)
```

```
intercept 0.1753
ar.L1
           0.8276
ma.L1
            0.2389
            3.9720
sigma2
Name: coef, dtype: float64
intercept 0.118
            0.029
ar.L1
            0.049
ma.L1
sigma2
            0.258
Name: std err, dtype: float64
```

Augmented Dickey-Fuller test

$$Y_t = \mu + \phi_1 Y_{t-1} + \phi_2 Y_{t-2} + \dots + \phi_p Y_{t-p} + \epsilon_t$$

= $\mu + \rho Y_{t-1} + \beta_1 \Delta Y_{t-1} + \beta_{p-1} \Delta Y_{t-p+1} + \epsilon_t$

and the unit root test has null hypothesis $H_0: \rho=1$.

AIC or BIC is usually used for determining the number of lags p.

Under H_0 ,

$$ADF = rac{\hat
ho-1}{s(\hat
ho)}
ightarrow_d rac{\int_0^1 U(r)dW(r)}{\left(\int_0^1 U(r)^2 dr
ight)^{1/2}}$$

We reject H_0 if the test statistic is less than the critical value at the significance level α (three forms: without intercept, with intercept, with trend). Check Table 1 in Prof. Liao's slides for DF testing critical values.

```
In [6]:
    from statsmodels.tsa.stattools import adfuller
    # augmented Dickey-Fuller test
    adfuller(y)
    # The test statistic, approximate p-value, the number of lags used.,
    # The number of observations used for the ADF regression
    # Critical values for the test statistic at the 1 %, 5 %, and 10 % levels
    # The maximized information criterion if autolag is not None
Out[6]: (-6.580412707132463,
    7.539024565676394e-09,
```

```
Out[6]: (-0.380412707132403,
7.539024565676394e-09,
1,
498,
{'1%': -3.4435494520411605,
'5%': -2.8673612117611267,
```

```
'10%': -2.5698704830567247}, 2036.5487950738197)
```

We reject H_0 at a significance level of 1% since the test statistic is greater smaller than -3.4435.

KPSS Stationary Test

$$Y_t = \beta_0 + S_t + e_t$$
, where $S_t = S_{t-1} + \epsilon_t$,

where $\epsilon_t \sim MDS(0, \sigma_\epsilon^2)$.

 $H_0: \sigma_{\epsilon}^2 = 0$ (Y_t is stationary) against $H_1: \sigma_{\epsilon}^2 > 0$ (Y_t is a unit root process).

Intuitively, under H_0 , $Y_t=eta_0+c+e_t$, where $c=S_t=S_{t-1}=\cdots$ It is a stationary process.

Under H_1 , $Y_t - \beta_0 - e_t = Y_{t-1} - \beta_0 - e_{t-1} + \epsilon_t \Rightarrow Y_t = Y_{t-1} + e_t - e_{t-1} + \epsilon_t$. It is a unit root process.

Under H_0 ,

$$KPSS_1 = n^{-2}\hat{\omega}^{-2} \sum_{t=1}^n \left(\sum_{j=1}^t \hat{e}_j\right)^2 o_d \int_0^1 V(r)^2 dr, ext{ where } V(r) = W(r) - rW(1) ext{ is the Bro}$$

We reject H_0 if the test statistic is **greater than** the critical value at the significance level α .

Also, we can allow for a linear time trend, and construct stationarity test statistic similarly.

$$Y_t = \beta_0 + \beta_1 t + S_t + e_t$$
, where $S_t = S_{t-1} + \epsilon_t$.

Check Table 2 in Prof. Liao's slides for KPSS testing critical values.

```
In [7]:
    from statsmodels.tsa.stattools import kpss
    import warnings
    warnings.filterwarnings("ignore") # suppress the warnings
    kpss(y) # The KPSS test statistic, the p-value of the test, the truncation lag p
    # The critical values at 10%, 5%, 2.5% and 1%
```

```
Out[7]: (0.08479755597333012,
0.1,
12,
{'10%': 0.347, '5%': 0.463, '2.5%': 0.574, '1%': 0.739})
```

We cannot reject the stationarity at a significance level of 10% since the test statistic is less than 0.347.