Föreläsning 6: Fortsättning på genererande funktioner · 1MA020

Vilhelm Agdur¹

6 februari 2023

¹ vilhelm.agdur@math.uu.se

Vi fortsätter förra föreläsningens diskussion om genererande funktioner, och ger fler exempel och sätt att använda sådana för att lösa kombinatoriska problem.

Antal lösningar till en ekvation, med begränsningar

I slutet på förra föreläsningen studerade vi antalet lösningar till ekvationen

$$x_1 + x_2 + x_3 + x_4 + x_5 = k$$

om vi kräver att alla x_i är ickenegativa heltal. Det var ett första exempel på en mer generell kategori av problem med att räkna lösningar på ekvationer. Låt oss börja med ett lite mer invecklat problem:

Exempel 1. Hur många lösningar finns det till

$$x_1 + x_2 + x_3 + x_4 = k$$

om vi kräver att alla x_i är ickenegativa heltal, men också kräver att x_2 är jämnt, att $x_3 \le 10$, och x_4 är udda?

Låt, för varje k, a_k vara antalet sådana lösningar. Låt sedan a_k^1 vara antalet lösningar till $x_1 = k$ i ickenegativa heltal x_1 , a_k^2 vara antalet lösningar till $x_2 = k$ i ickenegativa jämna heltal, a_k^3 vara antalet lösningar till $x_3 = k$ i heltal mellan 0 och 10, och a_k^4 vara antalet lösningar till $x_4 = k$ i udda heltal.

Precis som i förra exemplet studerar vi nu faltningen av dessa fyra följder, och ser att

$$(a^{1} * a^{2} * a^{3} * a^{4})_{k} = \sum_{\substack{k_{1}, k_{2}, k_{3}, k_{4} \ge 0 \\ k_{1} + k_{2} + k_{3} + k_{4} = k}} a_{k_{1}}^{1} a_{k_{2}}^{2} a_{k_{3}}^{3} a_{k_{4}}^{4} = a_{k}$$

eftersom $a_{k_1}^1 a_{k_2}^2 a_{k_3}^3 a_{k_4}^4$ är en produkt av ettor och nollor – att $k_1 + k_2 + k_3 + k_4 = k$ garanteras av definitionen av faltning, och sedan är varje term i produkten ett om värdet på k_i är tillåtet av våra begränsningar, och noll annars. Så produkten är ett om summan är korrekt och varje enskild begränsning är uppfylld.

Så precis som i förra exemplet kan vi få fram genererande funktionen för a_k , följden vi faktiskt är intresserade av, genom att plocka fram den genererande funktionen för de enklare följderna.

Vad genererande funktionen för a^1 är vet vi sedan innan – den är bara en följd av ettor, så dess genererande funktion blir $\frac{1}{1-x}$. Likaledes vet vi sedan innan att följden av n stycken ettor och sedan nollor har genererande funktion $\frac{1-x^{n+1}}{1-x}$, så genererande funktionen för a^3 blir $\frac{1-x^{11}}{1-x}$.

Däremot för a² behöver vi räkna ut något nytt, nämligen den genererande funktionen för följden 1,0,1,0,1,..., indikatorfunktionen av de jämna talen. Så vi får skriva att

$$F_{a^2}(x) = \sum_{k=0}^{\infty} a_k^2 x^k$$
$$= \sum_{\substack{k \ge 0 \\ k \in 2\mathbb{Z}}} x^k$$
$$= \sum_{i=0}^{\infty} x^{2i}$$
$$= \sum_{i=0}^{\infty} (x^2)^i$$

och sista raden här kan vi känna igen som genererande funktionen av följden $(1,1,1,1,\ldots)$, utvärderad i x^2 . Så detta är lika med $\frac{1}{1-y^2}$.

Så vad som återstår är alltså a^4 , indikatorfunktionen för de udda talen. För att få fram dess genererande funktion kan vi använda vad vi just gjorde för de jämna talen:

$$F_{a^4}(x) = \sum_{k=0}^{\infty} a_k x^k$$

$$= \sum_{\substack{k \ge 1 \\ k \text{ udda}}} x^k$$

$$= x \sum_{\substack{k \ge 1 \\ k \text{ udda}}} x^{k-1}$$

$$= x \sum_{\substack{k \ge 0 \\ k \in 2\mathbb{Z}}} x^k$$

$$= \frac{x}{1 - x^2}.$$

Så, om vi använder att genererande produkten av en faltning är produkten av de genererande funktionerna, ser vi att

$$F_a(x) = \left(\frac{1}{1-x}\right) \left(\frac{1-x^{11}}{1-x}\right) \left(\frac{1}{1-x^2}\right) \left(\frac{x}{1-x^2}\right)$$
$$= \frac{x(1-x^{11})}{(1-x)^2(1-x^2)^2}$$

och ber vi vårt favorit-CAS2 att Taylorutvidga detta uttryck så får vi

$$F_a(x) = x + 2x^2 + 5x^3 + 8x^4 + 14x^5 + 20x^6 + 30x^7 + 40x^8 + \dots$$

² Computer Algebra System, alltså till exempel WolframAlpha eller något av dess öppna alternativ, såsom Sage.

så att följden av antalet lösningar är

$$0, 1, 2, 5, 8, 14, 20, 30, 40, 55, 70, 91, 111, 138, 163, \dots$$

Exempel 2. Vi vill räkna antalet lösningar a_k till ekvationen

$$2x_1 + x_2 + x_3 = k$$

där alla x_i är heltal, x_2 är en multipel av 6, och talet x_3 kan vara antingen rött eller blått.3

Vi börjar med att göra variabelbytet $y_1 = 2x_1$, och vill alltså nu ha lösningar till $y_1 + x_2 + x_3 = k$, med begränsningen att y_1 är jämnt. Det här förändrar så klart inte antalet lösningar, bara gör det lättare för oss att tillämpa vår metod.

Vi tillämpar samma metod som i förra exemplet, och låter a_k^1 vara antalet lösningar till $y_1 = k \mod y_1$ jämnt, a_k^2 vara antalet lösningar till $x_2 = k \text{ med } x_2 \text{ delbart med 6, och } a_k^3 \text{ vara antalet lösningar till } x_3 = k$ med x₃ färgat antingen rött eller blått. Faltningen blir då

$$(a^1*a^2*a^3)_k = \sum_{\substack{k_1,k_2,k_3 \ge 0 \\ k_1+k_2+k_3 = k}} a^1_{k_1} a^2_{k_2} a^3_{k_3} = a_k.$$

Vi fortsätter precis som innan med att räkna ut den genererande funktionen för varje av våra följder. För a¹ vet vi redan vad genererande funktionen för indikatorfunktionen av de jämna talen är, nämligen

För a² kan vi använda samma metod som vi använde för de jämna talen för att se att

$$F_{a^2}(x) = \sum_{k=0}^{\infty} a_k^2 x^k = \sum_{\substack{k \ge 0 \\ k \in 6\mathbb{Z}}} x^k$$
$$= \sum_{i=0}^{\infty} x^{6i} = \sum_{i=0}^{\infty} (x^6)^i$$

så att $F_{a^2}(x) = \frac{1}{1-x^6}$.

För a^3 så blir denna helt enkelt en följd av bara tvåor, eftersom vi har två val för färg för varje tal, och kan välja vilket tal som helst. Så vi ser att

$$F_{a^3}(x) = \sum_{k=0}^{\infty} 2x^k = 2\frac{1}{1-x}.$$

Sammantaget har vi alltså at

$$F_a(x) = \left(\frac{1}{1-x^2}\right) \left(\frac{1}{1-x^6}\right) \left(\frac{2}{1-x}\right) = \frac{2}{(1-x)(1-x^2)(1-x^6)}$$

vilket vi kan Taylorutvidga i vårt favoritprogram och få att⁴

$$F_a(x) = 2 + 2x + 4x^2 + 4x^3 + 6x^4 + 6x^5 + 10x^6 + 10x^7$$
$$+ 14x^8 + 14x^9 + 18x^{10} + 18x^{11} + 24x^{12} + 24x^{13}$$
$$+ 30x^{14} + 30x^{15} + 36x^{16} + 36x^{17} + 44x^{18} + \dots$$

 3 Vi ser alltså, för k = 6, alla dessa som godtagbara distinkta lösningar:

$$x_1 = 1, x_2 = 0, x_3 = 4,$$
 $x_1 = 1, x_2 = 0, x_3 = 4,$
 $x_1 = 2, x_2 = 0, x_3 = 2,$ $x_1 = 0, x_2 = 6, x_3 = 0.$

⁴ Vi ser ju ett tydligt mönster här av att $a_{2k} = a_{2k+1}$. Kan du förklara varför detta måste vara fallet, baserat på våra begränsningar av variablerna?

Övningar