		Absence	Přík
Jméno a příjmení:			Poče

Příklad číslo:	1	2	3	Σ
Počet bodů:				

Příklad 1. Rozhodněte, zda existují extrémy funkce $f: \mathbb{R}^3 \to \mathbb{R}$, $f(x,y,z) = x^2 + y^2 + z^2$, na úsečce x+y-z=1, x-y+z=0, $x\in \langle -1,1\rangle$. Pokud extrémy existují, určete je. Nejprve si všimněme, že rovnice x+y-z=1, x-y+z=0, $x\in \langle -1,1\rangle$ ve skutečnosti zadávají přímku $x=\frac{1}{2},\,y=t,\,z=\frac{1}{2}-t$.

Řešení. Pro stacionární body sestavíme soustavu:

$$2x = l + k$$

$$2y = l - k$$

$$2z = k - l$$

Jejím jediným řešením je bod $(\frac{1}{2}, \frac{1}{4}, -\frac{1}{4})$. Vzhledem k tomu, že funkce f roste nade všechny meze na dané přímce jak pro $t \to \infty$, tak pro $t \to -\infty$, musí se jednat o globální minimum funkce (lze spočítat i Hessián Lagrangeovy funkce). Maximum daná funkce na zadaném objektu nemá.

Příklad 2. Určete objem tělesa v \mathbb{R}^3 , které je ohraničeno částí kužele $2x^2 + y^2 = (z-2)^2$, $z \ge 2$ a paraboloidem $2x^2 + y^2 = 8 - z$ (malý návrh: určete nejprve průnik zadaných ploch)

Řešení. Zjistíme nejprve průnik zadaných ploch:

$$(z-2)^2 = -z + 8, \ z \ge 2,$$

tedy z=4 a dostáváme rovnici průniku daných ploch $2x^2+y=4$. Substitucí $x=\frac{1}{\sqrt{2}}r\cos(\varphi),\ y=r\sin(\varphi),\ z=z$ převedeme dané plochy na tvar $r^2=(z-2)^2,\ z\geq 2$ a $r^2=8-z,$ tedy z=r+2 pro první plochu a $z=8-r^2$ pro druhou plochu. Celkem je průmět daného tělesa do souřadnice φ roven intervalu $\langle 0,2\pi\rangle$, pro dané $\varphi_0\in\langle 0,2\pi\rangle$ je potom průmět průniku tělesa s rovinou $\varphi=\varphi_0$ do souřadnice r roven (pro lib φ_0) intervalu $\langle 0,2\rangle$. Pro dané r_0 a φ_0 je pak průmět průniku tělesa s přímkou $r=r_0,\ \varphi=\varphi_0$ na souřadnici z roven intervalu $\langle r_0+2,8-r_0^2\rangle$. Jakobián uvažované transformace je $J=\frac{1}{\sqrt{2}}r$, celkem tedy můžeme psát

$$V = \int_0^{2\pi} \int_0^2 \int_{r+2}^{8-r^2} \frac{r}{\sqrt{2}} \, \mathrm{d}z \, \mathrm{d}r \, \mathrm{d}\varphi = \frac{16\sqrt{2}}{3}\pi.$$

Příklad 3. Určete, kolik podgrafů má graf K_5 (rozmyslete si, čím je podgraf zadán)?

Řešení.

$$\sum_{i=0}^{5} {5 \choose i} \cdot 2^{\binom{i}{2}} = 1450,$$

kde v sumě uvažujeme $\binom{i}{2} = 0$ pro i < 2.

Příklad 4.

- a) Dokažte, že průnik kompaktní a uzavřené podmnožiny v \mathbb{R}^n je kompaktní podmnožina v \mathbb{R}^n .
- b) Kolik maximálně stěn může mít mnohostěn se šestnácti hranami?
- c) Ukažte, že les, který není stromem, není ani eulerovským ani hamiltonovským grafem.