Magnetic Induction 4.4.02-01/15

What you can learn about ...

- → Maxwell's equations
- → Electrical eddy field
- → Magnetic field of coils
- → Coil
- → Magnetic flux
- → Induced voltage

Principle:

A magnetic field of variable frequency and varying strength is produced in a long coil. The voltages induced across thin coils which are pushed into the long coil are determined as a function of frequency, number of turns, diameter and field strength.

What you need:

Experiment P2440215 with FG-Module Experiment P2440201 with counter Function generator 13652.93 Digital counter, 4 decades 13600.93 Digital multimeter 07134.00 Field coil, 750 mm, 485 turns/m 11001.00 Induction coil, 300 turns, d = 40 mm11006.01 Induction coil, 300 turns, d = 32 mm11006.02 Induction coil, 300 turns, d = 25 mm11006.03 Induction coil, 200 turns, d = 40 mm11006.04 Induction coil, 100 turns, d = 40 mm11006.05 Induction coil, 150 turns, d = 25 mm11006.06 Induction coil, 75 turns, d = 25 mm 11006.07 Connecting cord, l = 750 mm, red 07362.01 Connecting cord, l = 750 mm, blue 07362.04 2 Connecting cord, l = 2000 mm, blue 07365.04 Cobra3 Basic Unit 12150.00 Power supply, 12 V-12151.99 2 RS232 data cable 14602.00 PowerGraph Software 14525.61 Measuring module function generator 12111.00 PC, Windows® 95 or higher

Induced voltage as a function of current for different coils.

Tasks:

Determination of the induction voltage as a function

- 1. of the strength of the magnetic
- 2. of the frequency of the magnetic field,
- 3. of the number of turns of the induction coil,
- 4. of the cross-section of the induction coil.

Magnetic induction

LEP 4.4.02 -01

Related topics

Maxwell's equations, electrical eddy field, magnetic field of coils, coil, magnetic flux, induced voltage.

Principle

A magnetic field of variable frequency and varying strength is produced in a long coil. The voltages induced across thin coils which are pushed into the long coil are determined as a function of frequency, number of turns, diameter and field strength.

Equipment

• • •		
Field coil, 750 mm, 485 turns/m	11001.00	1
Induction coil, 300 turns, $d = 40 \text{ mm}$	11006.01	1
Induction coil, 300 turns, $d = 32 \text{ mm}$	11006.02	1
Induction coil, 300 turns, $d = 25 \text{ mm}$	11006.03	1
Induction coil, 200 turns, $d = 40 \text{ mm}$	11006.04	1
Induction coil, 100 turns, $d = 40 \text{ mm}$	11006.05	1
Induction coil, 150 turns, $d = 25 \text{ mm}$	11006.06	1
Induction coil, 75 turns, $d = 25 \text{ mm}$	11006.07	1
Function generator	13652.93	1
Digital counter, 4 decades	13600.93	1
Digital multimeter	07134.00	2
Connecting cord, $l = 750$ mm, red	07362.01	4
Connecting cord, $l = 750$ mm, blue	07362.04	2
Connecting cord, $l = 2000$ mm, blue	07365.04	1

Tasks

Determination of the induction voltage as a function

- 1. of the strength of the magnetic field,
- 2. of the frequency of the magnetic field,
- 3. of the number of turns of the induction coil,
- 4. of the cross-section of the induction coil.

Set-up and procedure

The experimental set-up is as shown in Fig. 1. The coil current and the induction voltage are measured with the digital multimeters. The effect of frequency should be studied between 1 kHz and 12 kHz, since below 0.5 kHz the coil practically represents a short circuit and above 12 kHz the accuracy of the measuring instruments is not guaranteed.

Theory and evaluation

The variation with time of the magnetic flux ϕ , where:

$$\phi = \int_{\Delta} \overrightarrow{B} \cdot d\overrightarrow{A}$$

produces an electical voltage U

$$U = \oint_{\mathbf{C}} \overrightarrow{E} \cdot d\overrightarrow{s}$$

Fig. 1: Experimental set-up for magnetic induction.

LEP 4.4.02 -01

Magnetic induction

Where \vec{E} is the electrical field strength, \vec{B} is the magnetic flux density, A is the area enclosed by the conductor loop and C is its boundary.

The relationship between ϕ and ${\cal U}$ is given by Maxwell's 2nd equation and is

$$U = -\frac{d\phi}{dt}$$

for one conductor loop.

For n parallel conductor loops through which the same flux ϕ passes,

$$U = n \oint \overrightarrow{E} \cdot d\overrightarrow{s}$$

In the present case, the magnetic field is produced by a long coil ("primary coil"). Since \overline{B} is constant inside long coils,

$$\phi = \vec{B} \cdot \vec{A}$$
.

Maxwell's 1st equation

$$\mu_0 \cdot \oint_{\mathbf{C}^{\scriptscriptstyle{\mathsf{I}}}} \overrightarrow{B} \cdot \mathrm{d} \overrightarrow{s} \ = \ \int_{\mathbf{A}^{\scriptscriptstyle{\mathsf{I}}}} \overrightarrow{j} \cdot \ \mathrm{d} \overrightarrow{A} \ ,$$

together with Maxwell's 4th equation

$$\oint_{\Delta'} \overrightarrow{B} \cdot d\overrightarrow{A} = 0$$

gives the relationship between the steady current ${\cal I}$ flowing the area ${\cal A}$ '

$$I = \int_{\Delta'} \overrightarrow{j} \cdot d\overrightarrow{A}$$

Fig. 2: Induced voltage as a function of the current in the primary coil at f=10.7 kHz, diameter of the induction coil d=41 mm.

Fig. 3: Induced voltage as a function of the frequency in the primary coil with a primary current of 30 mA and an induction coil diameter of 41 mm.

and the magnetic field \overrightarrow{B} produced thereby. C is the boundary of A, A" is any desired enclosed area, \overrightarrow{j} the electrical current density and μ_0 the magnetic field constant:

$$\mu_{\rm O} = 1.26 \cdot 10^{-6} \; \frac{\rm Vs}{\rm Am} \; .$$

For a long coil with n' turns, one obtains

$$|\overrightarrow{B}| = \mu_0 \, n' \cdot I/l$$

inside the coil.

If an alternating current I of frequency f or angular frequency f or angular frequency ω flows through the primary coil,

$$I = I_{o} \cdot \sin \omega t$$

then, from (1), the voltage induced in a secondary coil (n turns, crosssectional area A) is obtained:

$$U = -\mu_0 nA \cdot n'\omega I_0/l \cdot \cos \omega t$$

The results of the different experiments are shown in Fig. 2–5 and listed in Table 1.

Table 1

Fig.	Exponent	Standard Error
2	0.995	±0.023
3	0.996	±0.005
4	1.033	±0.011
5	1.98	±0.023

Magnetic induction

LEP 4.4.02 -01

Fig. 4: Induced voltage as a function of the diameter of the secondary coil with a primary current of 30 mA and a frequency of 10.7 kHz.

Fig. 5: Induced voltage as a function of the number of turns of the secondary coil with a primary current of 30 mA and a frequency of 10.7 kHz.

LEP 4.4.02 -01

Magnetic induction

