

PCT

WELTORGANISATION FÜR GEISTIGES EIGENTUM
Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE
INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7 : C07D 235/30, 401/04, 401/14, 403/04, A61K 31/4184, 31/454, 31/496, A61P 25/00, 9/00	A1	(11) Internationale Veröffentlichungsnummer: WO 00/32579 (43) Internationales Veröffentlichungsdatum: 8. Juni 2000 (08.06.00)
(21) Internationales Aktenzeichen: PCT/EP99/09004 (22) Internationales Anmeldedatum: 23. November 1999 (23.11.99)	(74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).	
(30) Prioritätsdaten: 198 54 933.4 27. November 1998 (27.11.98) DE 199 16 460.6 12. April 1999 (12.04.99) DE	(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).	
(71) Anmelder (für alle Bestimmungsstaaten ausser US): BASF AKTIENGESELLSCHAFT (DE/DE); D-67056 Ludwigshafen (DE).	Veröffentlicht <i>Mit internationalem Recherchenbericht. Vor Ablauf der für Änderungen der Ansprüche zugelassenen Frist; Veröffentlichung wird wiederholt falls Änderungen eintreffen.</i>	
(72) Erfinder; und (75) Erfinder/Anmelder (nur für US): LUBISCH, Wilfried (DE/DE); Häuserstrasse 15, D-69115 Heidelberg (DE). KOCK, Michael (DE/DE); Lillengasse 80, D-67105 Schifferstadt (DE). HÖGER, Thomas (DE/DE); Rathenaustrasse 12, D-68535 Edingen-Neckarhausen (DE). SCHULT, Sabine (DE/DE); Dr.-Eduard-Orth-Strasse 13, D-67346 Speyer (DE). GRANDEL, Roland (DE/DE); Birkenweg 49, D-69221 Dossenheim (DE). MÜLLER, Reinhold (DE/DE); Thüringer Strasse 3, D-67105 Schifferstadt (DE).		

(54) Title: SUBSTITUTED BENZIMIDAZOLES AND THEIR USE AS PARP INHIBITORS

(54) Bezeichnung: SUBSTITUIERTE BENZIMIDAZOLE UND IHRE VERWENDUNG ALS PARP INHIBTOREN

(57) Abstract

The invention relates to compounds of general formula (1a) or (1b) wherein R¹ and R⁴ are hydrogen or defined substituents, A is a saturated or monoethenoid heterocyclic ring with 4 to 8 members which contains one or two nitrogen atoms, wherein additionally one oxygen or sulfur atom can be present. Said ring can be further substituted. The invention also relates to their tautomer forms, possible enantiomer and diastereomer forms, their prodrugs, as well as possible physiologically acceptable salts. The invention also relates to the use of said compounds for treating diseases related to a pathologically increased activity of PARP.

(57) Zusammenfassung

Verbindungen der allgemeinen Formel (1a) oder (1b) worin R¹ und R⁴ Wasserstoff, oder bestimmte substituenten, A einen gesättigten oder einfach ungesättigten heterozyklischen, 4- bis 8-gliedrigen Ring, der ein oder zwei Stickstoff-Atome enthält, wobei zusätzlich noch ein Sauerstoff- oder Schwefel-Atom eingebaut sein kann, der weiterhin substituiert sein kann, sowie ihre tautomeren Formen, möglichen enantiomeren und diastereomeren Formen, deren Prodrugs, sowie mögliche physiologisch verträgliche Salze. Verwendung dieser Verbindungen zur Behandlung von Krankheiten, bei denen pathologisch erhöhte Aktivitäten von PARP auftreten.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
AT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische Republik Mazedonien	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland	ML	Mal	TR	Türkei
BG	Bulgarien	HU	Ungarn	MN	Mongolei	TT	Trinidad und Tobago
RJ	Benin	IE	Irland	MR	Mauretanien	UA	Ukraine
BR	Brasilien	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Island	MX	Mexiko	US	Vereinigte Staaten von Amerika
CA	Kanada	IT	Italien	NE	Niger	UZ	Usbekistan
CF	Zentralafrikanische Republik	JP	Japan	NL	Niederlande	VN	Vietnam
CG	Kongo	KE	Kenia	NO	Norwegen	YU	Jugoslawien
CH	Schweiz	KG	Kirgisistan	NZ	Neuseeland	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik Korea	PL	Polen		
CM	Kamerun	KR	Republik Korea	PT	Portugal		
CN	China	KZ	Kasachstan	RO	Rumänien		
CU	Kuba	LC	St. Lucia	RU	Russische Föderation		
CZ	Tschechische Republik	LI	Liechtenstein	SD	Sudan		
DE	Deutschland	LK	Sri Lanka	SE	Schweden		
DK	Dänemark	LR	Liberia	SG	Singapur		
EE	Estland						

SUBSTITUIERTE BENZIMIDAZOLE UND IHRE VERWENDUNG ALS PARP INHIBITOREN

Beschreibung

5

Die vorliegende Erfindung betrifft neuartige Benzimidazole, ihre Herstellung und die Verwendung als Inhibitoren des Enzyms Poly(ADP-ribose)polymerase oder PARP (EC 2.4.2.30) zur Herstellung von Arzneimitteln.

10

Poly(ADP-ribose)polymerase (PARP) bzw. wie es auch genannt wird Poly(ADP-ribose)synthase (PARS) stellt ein regulatorisches Enzym dar, das in Zellkernen gefunden wird (K. Ikai et al., *J. Histochem. Cytochem.* 1983, 31, 1261-1264). Man nimmt an, daß PARP eine Rolle bei der Reparatur von DNA-Brüchen spielt (M.S. Satoh et al., *Nature* 1992, 356, 356-358). Schädigungen oder Brüche der DNA-Stränge aktivieren das Enzym PARP, das, wenn es aktiviert ist, die Übertragung von ADP-Ribose aus NAD katalysiert (S. Shaw, *Adv.Radiat.Biol.*, 1984, 11, 1-69). Dabei wird Nikotinamid aus NAD freigesetzt. Nikotinamid wird unter Verbrauch des Energieträgers ATP von anderen Enzymen wieder in NAD umgewandelt. Eine Überaktivierung von PARP hätte dementsprechend einen unphysiologisch hohen Verbrauch von ATP zur Folge und dies führt im Extremfall zu Zellschädigungen und Zelltod.

25

Es ist bekannt, daß Radikale wie Superoxid-Anion, NO und Wasserstoffperoxid in Zellen zu DNA-Schädigungen führen können und damit PARP aktivieren. Die Bildung von großen Mengen an Radikalen wird bei einer Reihe von pathophysiologischen Zuständen beobachtet und man geht davon aus, daß diese Anhäufung von Radikalen zu den beobachteten Zell- bzw. Organschäden führen oder beitragen. Dazu zählt von zum Beispiel ischämische Zustände von Organen wie im Schlaganfall, Herzinfarkt (C. Thiemermann et al., *Proc. Natl. Acad. Sci. USA*, 1997, 94, 679-683) oder Ischämie der Nieren, aber auch Reperfusionschäden wie sie zum Beispiel nach der Lyse von Herzinfarkt auftreten (s. oben: C. Thiemermann et al.). Die Hemmung von dem Enzym PARP könnte demzufolge ein Mittel sein, um diese Schäden zum mindestens zum Teil zu verhindern oder abzumildern. PARP-Inhibitoren könnten somit ein neues Therapieprinzip zur Behandlung einer Reihe von Krankheiten darstellen.

Das Enzym PARP beeinflußt die Reparatur von DNA-Schäden und könnte somit auch in der Therapie von Krebs-Erkrankungen eine Rolle spielen, da in Kombination mit cytostatisch wirksamen Stoffen ein höheres Wirkpotential gegenüber Tumorgewebe beobachtet wurde (G. Chen et al. *Cancer Chemo. Pharmacol.* 1988, 22, 303).

Nicht limitierende Beispiele für Tumoren sind Leukämie, Glioblastome, Lymphome, Melanome, Mama- und Cervicalkarzinome.

Zudem wurde gefunden, daß PARP-Inhibitoren immuno-suppressive
5 Wirkung zeigen können (D. Weltin et al. *Int. J. Immunopharmacol.* 1995, 17, 265-271).

Es wurde ebenfalls entdeckt, daß PARP bei immunologischen Erkrankungen bzw. Krankheiten, in denen das Immunsystem eine
10 wichtige Rolle spielt, wie zum Beispiel rheumatoide Arthritis und septischer Schock, involviert ist, und daß PARP-Inhibitoren einen günstigen Effekt auf den Krankheitsverlauf zeigen können (H. Kröger et al. *Inflammation* 1996, 20, 203-215; W. Ehrlich et al. *Rheumatol. Int.* 1995, 15, 171-172; C. Szabo et al.,
15 *Proc. Natl. Acad. Sci. USA* 1998, 95, 3867-3872; S. Cuzzocrea et al. *Eur. J. Pharmacol.* 1998, 342, 67-76).

Unter PARP im Sinne dieser Erfindung werden auch Isoenzyme des oben beschriebenen PARP-Enzyms verstanden.

20 Weiterhin zeigte der PARP-Inhibitor 3-Aminobenzamid protektive Effekte in einem Modell für den Kreislaufschock (S. Cuzzocrea et al., *Br. J. Pharmacol.* 1997, 121, 1065-1074).

25 Außerdem ist PARP bei Diabetes mellitus involviert (V. Burkhardt et al., *Nature Medicine*, 1999, 5314-19).

Benzimidazole sind vielfach beschrieben worden.

30 Die Synthese von 2-Phenyl-benzimidazyl-4-amiden, die am Amid-Rest noch eine substituierte Alkyl-Kette tragen, und die cytotoxische Wirkung haben sollen, sind in *J. Med. Chem.* 1990, 33, 814-819 aufgeführt. In WO 97/04771 sind Benzimidazol-4-amide aufgeführt, die das PARS hemmen. Insbesondere sind Derivate dort als wirksam
35 beschrieben, die einen Phenyl-Ring in 2-Stellung tragen, wobei der Phenyl-Ring noch mit einfachen Substituenten wie Nitro, Methoxy und CF₃, substituiert sein kann. Obwohl diese Substanzen zum Teil gute Hemmung des Enzyms PARP zeigen, haben die dort beschriebenen Derivate den Nachteil, daß sie nur gering oder keine
40 Löslichkeit in wässrigen Lösungen zeigen und somit nicht als wässrige Lösung appliziert werden können.

Benzimidazole, die in 2-Stellung ein Piperidin-Ring tragen, sind ebenfalls bereits beschrieben worden. So sind in *J. Het.*

45 *Chem.* 1987, 24, 31 Derivate als Antihistaminika hergestellt worden. In *J. Het. Chem.* 1995, 32, 707 und *J. Het. Chem.* 1989, 26, 541 sind analoge Verbindungen mit der gleichen Verwendung

beschrieben worden. In EP 818454 sind 2-Piperidinylbenzimidazole als Antihistaminika und in WO 9736554 als Mittel gegen Hepatitis erwähnt. Ebenfalls in CA 80, 146143, Fr. 2103639 und in Khim. Geterotsikl. Soedin 1974, 1, 104, sind Derivate aufgeführt.

5

Allerdings ist die Bedeutung von Substituenten am Phenylaromaten im Benzimidazolfragment nicht untersucht worden. Des weiteren sind solche Benzimidazole, die einen 4- bis 8-gliedrigen Heterozyklus, insbesondere einen Piperidin-Ring in 2-Stellung tragen,

10 bisher nicht als PARP-Inhibitoren beschrieben worden.

In der vorliegenden Anmeldung wird nun der überraschende Befund beschrieben, daß, wenn man ein Carbonsäureamid-Rest am Benzimidazol-Aromaten einführt, Benzimidazole erhält, die neuartige und
15 gut wirksame PARP-Inhibitoren darstellen, sofern sie in 2-Stellung mit einem gesättigten Heterozyklus substituiert sind.

In einer Reihe von Therapien wie Schlaganfall werden die Wirkstoffe intravenös als Infusionslösung appliziert. Dazu ist es
20 notwendig Substanzen, hier PARP-Inhibitoren, zur Verfügung zu haben, die ausreichende Wasserlöslichkeit bei physiologischen pH-Werten oder angenäherten pH-Werten (z.B. pH-Werten von 5-8) aufweisen, so daß eine Infusionslösung hergestellt werden kann. Viele der beschriebenen PARP-Inhibitoren, insbesondere die besser
25 wirksamen PARP-Inhibitoren, haben jedoch den Nachteil, daß sie nur geringe oder keine Wasserlöslichkeit bei diesen pH-Werten zeigen und somit nicht für eine intravenöse Applikation in Frage kommen. Derartige Wirkstoffe können nur mit Hilfsstoffen, die die Wasserlöslichkeit vermitteln sollen, appliziert werden (vgl.
30 WO 97/04771). Diese Hilfsstoffe, zum Beispiel Polyethylenglykol und Dimethylsulfoxid, verursachen häufig Nebeneffekte oder sind sogar unverträglich. Gut wirksame PARP-Inhibitoren mit ausreichender Wasserlöslichkeit sind bisher nicht beschrieben worden.

35 Es wurde überraschenderweise gefunden, daß Benzimidazole, die am Imidazol-Ring einen Piperidin-Ring tragen, gut wirksame Inhibitoren darstellen und die durch den Einbau des aliphatischen Amin-Restes eine Salzbildung mit Säuren ermöglichen, das dadurch eine deutlich verbesserte Wasserlöslichkeit zeigen und somit die
40 Herstellung einer Infusionslösung ermöglicht.

In der vorliegenden Erfindung werden neue Benzimidazole-Derivate der allgemeinen Formel I beschrieben, die gegenüber den bereits beschriebenen Verbindungen Vorteile zeigen und potente PARP-Inhibitoren darstellen und zugleich auch ausreichende Wasserlöslichkeit zeigen. Wird von Verbindungen der Formel I gesprochen, werden darunter die Verbindungen der Formel Ia und Ib verstanden.

Gegenstand der vorliegenden Erfindung sind substituierte Benzimidazole der allgemeinen Formel I:

workin

15 R¹ Wasserstoff, verzweigtes und unverzweigtes C₁-C₆-Alkyl, wobei ein C-Atom des Alkyl-Restes noch OR⁵ (wobei R⁵ Wasserstoff oder C₁-C₄-Alkyl bedeutet), oder ein C-Atom in der Kette auch eine =O-Gruppe oder eine Gruppe NR⁸R⁹ tragen kann, wobei R⁸ und R⁹ unabhängig voneinander Wasserstoff oder C₁-C₄-Alkyl bedeuten und NR⁸R⁹ zusammen ein zyklisches Amin mit 4 bis 8 Ringatomen sein kann, wobei die C-Ketten in R⁸ bzw. R⁹ oder der durch NR⁸R⁹ gebildete Ring noch einen Rest R⁶ tragen kann, der unabhängig von R² dieselben Bedeutung wie R² annehmen kann und

20 25 R⁴ Wasserstoff, verzweigtes und unverzweigtes C₁-C₆-Alkyl, Chlor, Brom, Fluor, Nitro, Cyano, NR⁸R⁹, NH-CO-R¹⁰, OR⁸, wobei R⁸ und R⁹ unabhängig voneinander Wasserstoff oder C₁-C₄-Alkyl bedeuten und NR⁸R⁹ zusammen ein zyklisches Amin mit 4 bis 8 Ringatomen sein kann, wobei der Ring noch einen Rest (verzweigtes und unverzweigtes C₁-C₆-Alkyl, C₃-C₇-Cycloalk-C₁-C₄-Alkyl, CO-R⁴¹, COOR⁴¹ und Phenyl) tragen kann, und R¹⁰ Wasserstoff, C₁-C₄-Alkyl oder Phenyl bedeuten kann und R⁴¹ dieselben Bedeutungen wie R²¹ annehmen kann,

30 35 A einen gesättigten oder einfach ungesättigten heterozyklischen, 4- bis 8-gliedrigen Ring, der ein oder zwei Stickstoff-Atome enthält, wobei zusätzlich noch ein Sauerstoff- oder Schwefel-Atom eingebaut sein kann, der durch die Substituenten R² und R³ substituiert ist, wobei

40 R² Wasserstoff, verzweigtes und unverzweigtes C₁-C₈-Alkyl, das noch mit R²³ substituiert sein kann und ein C-Atom der Kette eine =O-Gruppe tragen kann, C₃-C₇-Cycloalk-C₁-C₄-Alkyl, -CO-(NH)_{0,1}-R²¹, COOR²¹ und Phenyl bedeuten kann, wobei R²¹ Wasserstoff, verzweigtes und unverzweigtes C₁-C₆-Alkyl, C₃-C₇-Cycloalk-C₁-C₄-Alkyl, Phen-C₁-C₄-Alkyl, C₃-C₇-Cycloalkyl

45

und Phenyl bedeuten kann und jeder Rest noch $(\text{CH}_2)_{0-2}\text{-R}^{23}$ tragen kann, und der jeweilige Phenylring seinerseits noch mit 1, 2 oder 3 der folgenden Resten substituiert sein kann: Chlor, Fluor, Brom, Jod, verzweigtes und unverzweigtes

5 $\text{C}_1\text{-C}_4\text{-Alkyl}$, Nitro, CF_3 , Cyano, $-(\text{CH}_2)_{0-2}\text{-NR}^{24}\text{R}^{25}$, NH-CO-R^{10} , OR^{10} , COOR^{10} , $\text{SO}_2\text{-C}_1\text{-C}_4\text{-Alkyl}$, SO_2Ph , SO_2NH , $\text{NHSO}_2\text{-C}_1\text{-C}_4\text{-Alkyl}$, NHSO_2Ph und CF_3 , wobei R^{24} und R^{25} unabhängig voneinander Wasserstoff oder $\text{C}_1\text{-C}_4\text{-Alkyl}$ bedeuten und $\text{NR}^{24}\text{R}^{25}$ zusammen ein zyklisches Amin mit 4 bis 8 Ringatomen sein kann, wobei der

10 Ring noch ein Rest verzweigtes und unverzweigtes $\text{C}_1\text{-C}_6\text{-Alkyl}$, $\text{C}_3\text{-C}_7\text{-Cycloalk-C}_1\text{-C}_4\text{-Alkyl}$, CO-R^{22} , COOR^{22} (mit R^{22} gleich Wasserstoff, verzweigtes oder unverzweigtes $\text{C}_1\text{-C}_6\text{-Alkyl}$, $\text{C}_3\text{-C}_7\text{-Cycloalk-C}_1\text{-C}_4\text{-Alkyl}$, Phen- $\text{C}_1\text{-C}_4\text{-Alkyl}$, $\text{C}_3\text{-C}_7\text{-Cycloalkyl}$ und Phenyl) und Phenyl tragen kann, und R^{10} Wasserstoff,

15 $\text{C}_1\text{-C}_4\text{-Alkyl}$ oder Phenyl bedeuten, und

R^{23} $\text{NR}^{26}\text{R}^{27}$ bedeutet, wobei R^{26} und R^{27} Wasserstoff, $\text{C}_1\text{-C}_6\text{-Alkyl}$, $\text{C}_0\text{-C}_4\text{-Alkyl-Phenyl}$, wobei der Phenylring noch mit bis zu 3 Resten Cl, F, Br, J, $\text{C}_1\text{-C}_4\text{-Alkyl}$, CF_3 , CN, $\text{SO}_2\text{-C}_1\text{-C}_4\text{-Alkyl}$, $\text{SO}_2\text{-Phenyl}$, NO_2 , NH_2 , $\text{NHCO-C}_1\text{-C}_4\text{-Alkyl}$, NHCO-Phenyl , OH, $\text{O-C}_1\text{-C}_4\text{-Alkyl}$, $\text{O-C}_1\text{-C}_4\text{-Alkyl-Phenyl}$ substituiert sein kann, und $\text{NR}^{26}\text{R}^{27}$ auch ein cyclisches Amin mit 3 bis 8 Gliedern darstellen kann, wobei zusätzlich noch ein weiteres Heteroatom wie O, N und S enthalten sein kann und der Ring noch mit einem Rest R^{28} substituiert sein kann, wobei R^{28} $\text{C}_1\text{-C}_4\text{-Alkyl}$ und $\text{C}_1\text{-C}_4\text{-Alkyl-Phenyl}$ sein kann,

R^3 Wasserstoff, verzweigtes und unverzweigtes $\text{C}_1\text{-C}_8\text{-Alkyl}$, gegebenenfalls durch $\text{C}_1\text{-C}_6\text{-Alkyl}$ substituiertes $\text{C}_3\text{-C}_7\text{-Cycloalk-C}_1\text{-C}_4\text{-Alkyl}$, gegebenenfalls durch $\text{C}_1\text{-C}_6\text{-Alkyl}$ substituiertes $\text{C}_3\text{-C}_7\text{-Cycloalkyl}$, wobei ein C-Atom des Restes noch einen Phenyl-Ring tragen kann, der seinerseits noch mit 1, 2 oder 3 der folgenden Resten substituiert sein kann: Chlor, Fluor, Brom, Jod, verzweigtes und unverzweigtes $\text{C}_1\text{-C}_4\text{-Alkyl}$, Nitro, CF_3 , Cyano, $(\text{CH}_2)_{0-2}\text{-NR}^{32}\text{R}^{33}$, NH-CO-R^{10} , OR^{10} , COOR^{10} , $\text{SO}_2\text{-C}_1\text{-C}_4\text{-Alkyl}$, SO_2Ph , CH_3 , SO_2NH , $\text{NHSO}_2\text{-C}_1\text{-C}_4\text{-Alkyl}$, NHSO_2Ph und CF_3 , wobei R^{32} und R^{33} unabhängig voneinander Wasserstoff oder $\text{C}_1\text{-C}_4\text{-Alkyl}$ bedeuten und $\text{NR}^{32}\text{R}^{33}$ zusammen ein zyklisches Amin mit 4 bis 8 Ringatomen sein kann, wobei der Ring noch ein Rest verzweigtes und unverzweigtes $\text{C}_1\text{-C}_6\text{-Alkyl}$, $\text{C}_3\text{-C}_7\text{-Cycloalk-C}_1\text{-C}_4\text{-Alkyl}$, CO-R^{31} , COOR^{31} und Phenyl tragen kann, und R^{10} Wasserstoff, $\text{C}_1\text{-C}_4\text{-Alkyl}$ oder Phenyl bedeuten, und R^{31} die selbe Bedeutung wie R^{21} annehmen kann,

sowie ihre tautomeren Formen, möglichen enantiomeren und diastereomeren Formen, deren Prodrugs, sowie mögliche physiologisch verträgliche Salze.

5 Bevorzugt werden die Verbindungen der allgemeinen Formel I, worin R¹ Wasserstoff bedeutet.

Bevorzugt werden die Verbindungen der allgemeinen Formel I, worin R² Wasserstoff bedeutet.

10 Bevorzugt werden die Verbindungen der allgemeinen Formel I, worin R⁴ Wasserstoff bedeutet.

Bevorzugt werden die Verbindungen der allgemeinen Formel I, worin 15 R³ an den Stickstoff von A gebunden ist.

Bevorzugt werden die Verbindungen der allgemeinen Formel I, worin R³ Wasserstoff, C₁-C₆-Alkyl, Benzyl und Phenethyl bedeutet.

20 Besonders bevorzugt sind die Verbindungen der allgemeinen Formel I, worin R¹, R² und R⁴ Wasserstoff und A Piperidin, das mit der 4-Stellung am Benzimidazol gebunden ist, sind und R³ Wasserstoff, C₁-C₆-Alkyl, Benzyl und Phenethyl bedeutet und in 1-Stellung am Piperidin-Ring gebunden ist.

25 Die jeweiligen Bedeutungen von R⁵ bis R¹⁰ sind in den Resten R¹ bis R⁴ unabhängig voneinander.

Die bevorzugte Bedeutung von NR⁸R⁹, NR²⁴R²⁵ und NR³²R³³ als 30 zyklisches Amin sind Piperidin, Pyrrolidin, Piperazin und Homopiperazin. Bevorzugterweise kann bei Piperazin und Homopiperazin der Ring noch ein Rest verzweigtes und unverzweigtes C₁-C₆-Alkyl, C₃-C₇-Cycloalk-C₁-C₄-Alkyl, CO-R⁷ und Phenyl tragen.

35 Die bevorzugte Bedeutung von A ist Piperidin, Pyrrolidin, Piperazin, Morphin oder Homopiperazin.

Besonders bevorzugt werden die Verbindungen der allgemeinen Formel I, worin A Piperazin oder Piperidin bedeutet.

40 Die Verbindungen der Formel I können als Racemate, als enantiomerenreine Verbindungen oder als Diastereomere eingesetzt werden. Werden enantiomerenreine Verbindungen gewünscht, kann man diese beispielsweise dadurch erhalten, daß man mit einer geeigneten 45 optisch aktiven Base oder Säure eine klassische Racematspaltung

mit den Verbindungen der Formel I oder ihren Zwischenprodukten durchführt.

Die gesättigten oder einfach ungesättigten Zyklen A können als 5 cis-Isomere, trans-Isomere oder deren Gemische vorliegen.

Gegenstand der Erfindung sind auch zu Verbindungen der Formel I mesomere oder tautomere Verbindungen.

10 Ein weiterer Gegenstand der Erfindung sind die physiologisch verträglichen Salze der Verbindungen I, die sich durch Umsatz von Verbindungen I mit einer geeigneten Säure oder Base erhalten lassen. Geeignete Säuren und Basen sind zum Beispiel in Fortschritte der Arzneimittelforschung, 1966, Birkhäuser Verlag,

15 Bd.10, S. 224-285, aufgelistet. Dazu zählen zum Beispiel Salzsäure, Citronensäure, Weinsäure, Milchsäure, Phosphorsäure, Methansulfonsäure, Essigsäure, Ameisensäure, Maleinsäure, Fumarsäure usw. bzw. Natriumhydroxid, Lithiumhydroxid, Kaliumhydroxid und Tris.

20

Unter Prodrugs werden solche Verbindungen verstanden, die *in vivo* in Verbindungen der allgemeinen Formel I metabolisiert werden. Typische Prodrugs sind Phosphate, Carbamate von Aminosäuren, Ester und andere.

25

Die Herstellung der erfindungsgemäßen Benzimidazole I kann auf verschiedenen Wegen erfolgen, die im Syntheseschema 1 skizziert wurde.

30

35

40

45

Syntheseschema 1

Durch Kondensation des Aldehyds **V** mit Phenylenediaminen **VI** erhält
35 man das Benzimidazol **I** bzw. **VII**, wobei man bevorzugt in polaren
Lösungsmitteln wie Ethanol oder Dimethylformamid und Zusatz von
Säuren wie Essigsäure bei erhöhter Temperatur arbeitet, in der
Regel 80 bis 120°C. Günstig für die Reaktion ist der Zusatz von
schwachen Oxidationsmittel wie Kupfer-II-Salzen, die als wäßrige
40 Lösung zugesetzt werden.

Syntheseschema 2

Wenn in dem Benzimidazol VII R = NH₂ ist, entstehen bei der Kondensation direkt erfindungsgemäße Verbindungen I. Ansonsten kann man, falls R = O-Alkyl ist, diesen Ester mit Ammoniak, bei gegebenenfalls erhöhter Temperatur und erhöhtem Druck, zum Amid I umsetzen. Alternativ kann man den Ester VII mit Hydrazin in polaren Lösungsmitteln wie die Alkohole Butanol und Ethanol oder auch Dimethylformamid, bei erhöhten Temperaturen, vorzugsweise 30 bis 130°C, umsetzen, wobei ein Hydrazid VII (R = NHNNH₂) anfällt, das danach noch unter reduktiven Bedingungen, wie mit Raney-Nickel in Alkoholen unter Rückfluß, zum Amid I reduziert werden kann.

Eine Einführung des Restes R¹ am Benzimidazol-Rest in I (R¹ = H) gelingt unter üblichen Alkylierungsbedingungen. Dabei werden Benzimidazole I mit R¹ - L, wobei L eine Abgangsgruppe darstellt, unter Benutzung einer Base bei 25 bis 150°C, vornehmlich aber bei erhöhter Temperatur wie 60 bis 130°C, alkyliert, wobei das neue Produkt I mit R¹ ≠ Wasserstoff entsteht. Dabei wird in Lösungsmitteln wie zum Beispiel Dimethylformamid, Dimethylsulfoxid, Alkohole, z.B. Ethanol, Ketonen, z.B. Methylethyleketon, Aceton, aliphatischen Ethern, z.B. Tetrahydrofuran, und Kohlenwasserstoffen, z.B. Toluol, gearbeitet, wobei man auch Gemische einsetzen kann. Als Base können zum Beispiel Alkoholate, z.B. Natriummethanolat und Kalium-tert.-butanolat, Karbonate, z.B. Kaliumkarbonat, Hydride, z.B. Natriumhydrid, und Hydroxide, z.B.

10

Natriumhydroxid und Kaliumhydroxid, eingesetzt werden. Zudem kann man auch verschiedene Kronenether wie 18-crown-6 in katalytischen Mengen zugeben. Weiterhin kann man unter Phasen-transferbedingungen arbeiten(Methoden siehe R.C. Larock,

5 Comprehensive Organic Transformations, 1989, S. 445f.). Als Abgangsgruppe L kann man Halogenide, z.B. Brom, Chlor und Jod, oder auch zum Beispiel Tosylate oder Mesylate einsetzen.

Syntheseschema 3

10

15

XIII

VI

20

25

VII

Alternativ zu den im Schema 1 gezeigten Aldehyden V kann man auch 30 Benzoësäuren wie IX (siehe Schema 2) oder Benzonitrile wie XIII (siehe Schema 3) anstelle des Benzaldehyds einsetzen. Die Herstellung dieser Derivate erfolgt analog zur Herstellung der substituierten Benzaldehyde V. Ausgehend von IX erfolgt die Kondensation zu VII in zwei Stufen . Zuerst wird die Benzoësäure 35 XI mit dem Anilin VI in einer peptidartigen Kupplung zum Amid XII umgesetzt. Dabei arbeitet man nach üblichen Bedingungen, die zum Beispiel im Houben-Weyl, Methoden der Organischen Chemie, 4.Aufl., E5, Kap. V bzw. C.R. Larock, Comprehensive Organic Transformations, VCH Publisher, 1989, Seite 972f. aufgelistet 40 sind. Der Ringschluß zum Benzimidazol erfolgt danach bei erhöhter Temperatur, zum Beispiel 60 bis 180°C, mit oder ohne Lösungsmitteln wie Dimethylformamid, unter Zusatz von Säuren wie Essigsäure oder direkt in Essigsäure selbst.

45 Die Reaktion des Phenylendiamins VI mit einem Benzonitril XIII erfolgt ebenfalls unter üblichen Bedingungen. Dabei kann man in Lösungsmitteln wie Dimethylformamid unter Zusatz von Säuren bei

erhöhter Temperatur wie 60 bis 200°C arbeiten. Allerdings kann man auch die üblichen Methoden zur Herstellung von Amidinen aus Benzonitrilen anwenden, wie sie in J. Amer. Chem. Soc. 1957, 427 und J. Org. Chem. 1987, 1017, beschrieben sind.

5

Die in der vorliegenden Erfindung enthaltenen substituierten Benzimidazole I stellen Inhibitoren des Enzyms Poly(ADP-ribose)polymerase oder PARP (EC 2.4.2.30) dar.

10 Die inhibitorische Wirkung der substituierten Benzimidazole I wurde mit einem in der Literatur bereits bekannten Enzymtest ermittelt, wobei als Wirkmaßstab ein Ki-Wert ermittelt wurde. Die Benzimidazole I wurden in dieser Weise auf Hemmwirkung des Enzyms Poly(ADP-ribose)polymerase oder PARP (EC 2.4.2.30) gemessen.

15

Die substituierten Benzimidazole der allgemeinen Formeln I stellen Inhibitoren der Poly(ADP-ribose)polymerase (PARP) bzw. wie es auch genannt wird Poly(ADP-ribose)synthase (PARS) dar und können somit zur Behandlung und Prophylaxe von Krankheiten, die 20 mit einer erhöhten Enzymaktivität dieser Enzyme verbunden sind, dienen.

Die Verbindungen der Formeln I können zur Herstellung von Arzneimitteln zur Behandlung von Schädigungen nach Ischämien und zur 25 Prophylaxe bei erwarteten Ischämien verschiedener Organe eingesetzt werden.

Die vorliegenden Benzimidazole der allgemeinen Formel I können danach zur Behandlung und Prophylaxe von neurodegenerativen 30 Krankheiten, die nach Ischämie, Trauma (Schädel-Hirntrauma), Massenblutungen, Subarachnoidal-Blutungen und Stroke auftreten, und von neurodegenerativen Krankheiten wie multipler Infarkt-Dementia, Alzheimer Krankheit, Huntington Krankheit und von Epilepsien, insbesondere von generalisierten epileptischen 35 Anfällen, wie zum Beispiel Petit mal und tonisch-clonische Anfälle und partiell epileptischen Anfällen, wie Temporal Lobe, und komplex-partiellen Anfällen, und weiterhin zur Behandlung und Prophylaxe von Schädigungen des Herzens nach cardialen Ischämien und Schädigungen der Nieren nach renalen Ischämien, zum Beispiel 40 der akuten Niereninsuffizienz, des akuten Nierenversagens, Schädigungen, die durch medikamentöse Therapie verursacht werden, wie z.B. während der Cyclosporin-Therapie oder von Schädigungen, die während und nach einer Nierentransplantation auftreten, dienen. Weiterhin können die Verbindungen der allgemeinen Formel I zur 45 Behandlung des akuten Myocardinfarkts und Schädigungen, die während und nach dessen medikamentöser Lyse auftreten (zum Beispiel mit TPA, Reteplase, Streptokinase oder mechanisch mit einem Laser

oder Rotablator) und von Mikroinfarkten wie z.B. während und nach Herzklappenersatz, Aneurysmenresektionen und Herztransplantationen dienen. Ebenfalls können die vorliegenden Benzimidazole I zur Behandlung einer Revascularisation kritisch verengter Koronararterien, zum Beispiel bei der PCTA und Bypass-Operationen, und kritisch verengter peripherer Arterien, zum Beispiel Beinarterien, dienen. Zudem können die Benzimidazole I bei der Chemotherapie von Tumoren und deren Metastasierung nützlich sein und zur Behandlung von Entzündungen und rheumatischen Erkrankungen, wie z.B. rheumatischer Arthritis dienen. Außerdem können die Verbindungen der Formel I zur Behandlung von Diabetes mellitus dienen oder zur Behandlung von Sepsis und Multiorganversagen, wie z.B. während des spätischen Schocks und "adult respiratory distress-syndrom" (ARDS, Schocklunge).

Die erfindungsgemäßen Arzneimittelzubereitungen enthalten neben den üblichen Arzneimittelhilfsstoffen eine therapeutisch wirksame Menge der Verbindungen I.

Für die lokale äußere Anwendung, zum Beispiel in Puder, Salben oder Sprays, können die Wirkstoffe in den üblichen Konzentrationen enthalten sein. In der Regel sind die Wirkstoffe in einer Menge von 0,001 bis 1 Gew.-%, vorzugsweise 0,001 bis 0,1 Gew.-% enthalten.

Bei der inneren Anwendung werden die Präparationen in Einzeldosen verabreicht. In einer Einzeldosis werden pro kg Körpergewicht 0,1 bis 100 mg gegeben. Die Zubereitung können täglich in einer oder mehreren Dosierungen je nach Art und Schwere der Erkrankungen verabreicht werden.

Entsprechend der gewünschten Applikationsart enthalten die erfindungsgemäßen Arzneimittelzubereitungen neben dem Wirkstoff die üblichen Trägerstoffe und Verdünnungsmittel. Für die lokale äußere Anwendung können pharmazeutisch-technische Hilfsstoffe, wie Ethanol, Isopropanol, oxethyliertes Ricinusöl, oxethyliertes Hydriertes Ricinusöl, Polyacrylsäure, Polyethylenglykol, Polyethylenglykostearat, ethoxylierte Fettalkohole, Paraffinöl, Vaseline und Wollfett, verwendet werden. Für die innere Anwendung eignen sich zum Beispiel Milchzucker, Propylenglykol, Ethanol, Stärke, Talk und Polyvinylpyrrolidon.

Ferner können Antioxidationsmittel wie Tocopherol und butyliertes Hydroxyanisol sowie butyliertes Hydroxytoluol, geschmacksverbessernde Zusatzstoffe, Stabilisierungs-, Emulgier- und Gleitmittel enthalten sein.

Die neben dem Wirkstoff in der Zubereitung enthaltenen Stoffe sowie die bei der Herstellung der pharmazeutischen Zubereitungen verwendeten Stoffe sind toxikologisch unbedenklich und mit dem jeweiligen Wirkstoff verträglich. Die Herstellung der Arznei-
5 mittelzubereitungen erfolgt in üblicher Weise, zum Beispiel durch Vermischung des Wirkstoffes mit anderen üblichen Trägerstoffen und Verdünnungsmitteln.

Die Arzneimittelzubereitungen können in verschiedenen Appli-
10 kationsweisen verabreicht werden, zum Beispiel peroral, parenteral wie intravenös durch Infusion, subkutan, intra- peritoneal und topisch. So sind Zubereitungsformen wie Tabletten, Emulsionen, Infusions- und Injektionslösungen, Pasten, Salben, Gele, Cremes, Lotionen, Puder und Sprays möglich.

15

Außer den in den Beispielen genannten Substanzen sind folgende Verbindungen besonders bevorzugt und können gemäß den genannten Herstellungsvorschriften synthetisiert werden:

- 20 1. 2-(N(0-tert.-Butyloxycarbonyl)-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
2. 2-(N-Methyl-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
3. 2-(N-iso-Propyl-piperidin-4-yl)-benzimidazol-4-carbonsäure- amid
- 25 4. 2-(N-Cyclohexyl-piperidin-4-yl)-benzimidazol-4-carbonsäure- amid
5. 2-(N-(trans-4-Propyl-cyclohex-1-yl)-piperidin-4-yl)-benzimi- dazol-4-carbonsäureamid
6. 2-(N-Benzyl-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
- 30 7. 2-(N-(2-Phenyl)eth-1-yl)-piperidin-4-yl)-benzimidazol-4-carbo nsäureamid
8. 2-(N-(2(4-Fluorphenyl)eth-1-yl)-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
9. 2-(N-(2(4-Chlorphenyl)eth-1-yl)-piperidin-4-yl)-benzimidazol-35 4-carbonsäureamid
10. 2-(N-(2(4-Bromphenyl)eth-1-yl)-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
11. 2-(N-(2(4-Iodphenyl)eth-1-yl)-piperidin-4-yl)-benzimidazol-4- carbonsäureamid
- 40 12. 2-(N-(2(4-Nitrophenyl)eth-1-yl)-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
13. 2-(N-(2(4-Cyanphenyl)eth-1-yl)-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
14. 2-(N-(2(4-(Trifluormethyl)phenyl)eth-1-yl)-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
- 45 15. 2-(N-(2(4-Methylphenyl)eth-1-yl)-piperidin-4-yl)-benzimida zol-4-carbonsäureamid

16. 2-(N-(2(4-Hydroxyphenyl)eth-1-yl)-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
17. 2-(N-(2(4-Methoxyphenyl)eth-1-yl)-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
- 5 18. 2-(N-(2(4-(N',N'-Dimethylamino)phenyl)eth-1-yl)-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
19. 2-(N-(2(4-(N'-Acetylamino)phenyl)eth-1-yl)-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
20. 2-(N-(2(4-(N'-Phenylsulfonylamino)phenyl)eth-1-yl)-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
- 10 21. 2-(N-(2(4-(Phenylsulfonyl)phenyl)eth-1-yl)-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
22. 2-(N-(2(4-(Methoxycarbonyl)phenyl)eth-1-yl)-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
- 15 23. 2-(N-Acetyl-piperidin-3-yl)-benzimidazol-4-carbonsäureamid
24. 2-(N-Propyl-piperidin-3-yl)-benzimidazol-4-carbonsäureamid
25. 2-(N-iso-Propyl-piperidin-3-yl)-benzimidazol-4-carbonsäureamid
26. 2-(N-Cyclohexyl-piperidin-3-yl)-benzimidazol-4-carbonsäureamid
- 20 27. 2-(N-(trans-4-Propyl-cyclohex-1-yl)-piperidin-3-yl)-benzimidazol-4-carbonsäureamid
28. 2-(N-(2-Phenyl)eth-1-yl)-piperidin-3-yl)-benzimidazol-4-carbonsäureamid
- 25 29. 2-(N-(2(4-Chlorophenyl)eth-1-yl)-piperidin-3-yl)-benzimidazol-4-carbonsäureamid
30. 2-Pyrrolidin-3-yl-benzimidazol-4-carbonsäureamid
31. 2-(N-Acetyl-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
32. 2-(N(0-tert.-Butyloxycarbonyl)-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
- 30 33. 2-(N-Propyl-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
34. 2-(N-iso-Propyl-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
35. 2-(N-Cyclohexyl-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
36. 2-(N-(trans-4-Propyl-cyclohex-1-yl)-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
37. 2-(N-Benzyl-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
38. 2-(N-(2-Phenyl)eth-1-yl)-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
- 40 39. 2-(N-(2(4-Chlorophenyl)eth-1-yl)-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
40. 2-(N-(2(4-Nitrophenyl)eth-1-yl)-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
- 45 41. 2-(N-(2(4-Cyanophenyl)eth-1-yl)-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid

42. 2-(N-(2(4-(Trifluormethyl)phenyl)eth-1-yl)-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
43. 2-(N-(2(4-Methylphenyl)eth-1-yl)-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
- 5 44. 2-(N-(2(4-Hydroxyphenyl)eth-1-yl)-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
45. 2-(N-(2(4-Methoxyphenyl)eth-1-yl)-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
46. 2-(N-(2(4-(N',N'-Dimethylamino)phenyl)eth-1-yl)-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
- 10 47. 2-(N-(2(4-(N'-Acetylamino)phenyl)eth-1-yl)-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
48. 2-(N-(2(4-(N'-Phenylsulfonylamino)phenyl)eth-1-yl)-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
- 15 49. 2-(N-(2(4-(Phenylsulfonyl)phenyl)eth-1-yl)-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
50. 2-(N-(2(4-(Methoxycarbonyl)phenyl)eth-1-yl)-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
51. 2-Pyrrolidin-2-yl-benzimidazol-4-carbonsäureamid
- 20 52. 2-(N-Acetyl-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
53. 2-(N(0-tert.-Butyloxycarbonyl)-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
54. 2-(N-Methyl-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
55. 2-(N-Propyl-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
- 25 56. 2-(N-iso-Propyl-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
57. 2-(N-Cyclohexyl-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
58. 2-(N-(trans-4-Propyl-cyclohex-1-yl)-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
- 30 59. 2-(N-Benzyl-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
60. 2-(N-(2-Phenyl)eth-1-yl)-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
61. 2-(N-(2(4-Fluorophenyl)eth-1-yl)-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
- 35 62. 2-(N-(2(4-Chlorphenyl)eth-1-yl)-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
63. 2-(N-(2(4-Bromphenyl)eth-1-yl)-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
- 40 64. 2-(N-(2(4-Iodphenyl)eth-1-yl)-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
65. 2-(N-(2(4-Nitrophenyl)eth-1-yl)-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
66. 2-(N-(2(4-Cyanphenyl)eth-1-yl)-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
- 45 67. 2-(N-(2(4-(Trifluormethyl)phenyl)eth-1-yl)-piperazin-4-yl)-benzimidazol-4-carbonsäureamid

68. 2-(N-(2(4-Methylphenyl)eth-1-yl)-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
69. 2-(N-(2(4-Hydroxyphenyl)eth-1-yl)-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
- 5 70. 2-(N-(2(4-Methoxyphenyl)eth-1-yl)-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
71. 2-(N-(2(4-(N',N'-Dimethylamino)phenyl)eth-1-yl)-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
72. 2-(N-(2(4-(N'-Acetylamino)phenyl)eth-1-yl)-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
- 10 73. 2-(N-(2(4-(N'-Phenylsulfonylamino)phenyl)eth-1-yl)-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
74. 2-(N-(2(4-(Phenylsulfonyl)phenyl)eth-1-yl)-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
- 15 75. 2-(N-(2(4-(Methoxycarbonyl)phenyl)eth-1-yl)-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
76. 2-Homopiperazin-4-yl-benzimidazol-4-carbonsäureamid
77. 2-(N-Acetyl-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
- 20 78. 2-(N(0-tert.-Butyloxycarbonyl)-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
79. 2-(N-Methyl-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
80. 2-(N-Propyl-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
- 25 81. 2-(N-iso-Propyl-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
82. 2-(N-Cyclohexyl-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
- 30 83. 2-(N-(trans-4-Propyl-cyclohex-1-yl)-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
84. 2-(N-Benzyl-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
85. 2-(N-(2-Phenyl)eth-1-yl)-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
- 35 86. 2-(N-(2(4-Fluorophenyl)eth-1-yl)-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
87. 2-(N-(2(4-Chlorophenyl)eth-1-yl)-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
- 40 88. 2-(N-(2(4-Bromophenyl)eth-1-yl)-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
89. 2-(N-(2(4-Iodphenyl)eth-1-yl)-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
90. 2-(N-(2(4-Nitrophenyl)eth-1-yl)-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
- 45 91. 2-(N-(2(4-Cyanphenyl)eth-1-yl)-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid

92. 2-(N-(2(4-(Trifluormethyl)phenyl)eth-1-yl)-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
93. 2-(N-(2(4-Methylphenyl)eth-1-yl)-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
- 5 94. 2-(N-(2(4-Hydroxyphenyl)eth-1-yl)-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
95. 2-(N-(2(4-Methoxyphenyl)eth-1-yl)-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
- 10 96. 2-(N-(2(4-(N',N'-Dimethylamino)phenyl)eth-1-yl)-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
97. 2-(N-(2(4-(N'-Acetylamino)phenyl)eth-1-yl)-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
98. 2-(N-(2(4-(N'-Phenylsulfonylamino)phenyl)eth-1-yl)-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
- 15 99. 2-(N-(2(4-(Phenylsulfonyl)phenyl)eth-1-yl)-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
100. 2-(N-(2(4-(Methoxycarbonyl)phenyl)eth-1-yl)-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
101. 1-Methyl-2-(piperidin-4-yl)-benzimidazol-4-carbonsäureamid
- 20 102. 2-(N(O-tert.-Butyloxycarbonyl)-piperidin-4-yl)-1-methyl-benzimidazol-4-carbonsäureamid
103. 1-Methyl-2-(N-methyl-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
104. 1-Methyl-2-(N-iso-Propyl-piperidin-4-yl)-benzimidazol-4-
- 25 carbonsäureamid
105. 2-(N-Benzyl-piperidin-4-yl)-1-methyl-benzimidazol-4-carbonsäureamid
106. 1-Methyl-2-(N-(2-phenyl)eth-1-yl)-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
- 30 107. 2-(N-(2(4-Chlorophenyl)eth-1-yl)-piperidin-4-yl)-1-methyl-benzimidazol-4-carbonsäureamid
108. 2-(N-Acetyl-piperidin-3-yl)-1-methyl-benzimidazol-4-carbonsäureamid
109. 1-Methyl-2-(pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
- 35 110. 2-(N-Acetyl-pyrrolidin-3-yl)-1-methyl-benzimidazol-4-carbonsäureamid
111. 2-(N(O-tert.-Butyloxycarbonyl)-pyrrolidin-3-yl)-1-methyl-benzimidazol-4-carbonsäureamid
112. 1-Methyl-2-(N-methyl-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
- 40 113. 1-Methyl-2-(N-propyl-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
114. 1-Methyl-2-(N-iso-propyl-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
- 45 115. 2-(N-Benzyl-pyrrolidin-3-yl)-1-methyl-benzimidazol-4-carbonsäureamid

116. 1-Methyl-2-(N-(2-phenyl)eth-1-yl)-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
117. 2-(N-(2(4-Chlorphenyl)eth-1-yl)-pyrrolidin-3-yl)-1-methylbenzimidazol-4-carbonsäureamid
- 5 118. 1-Methyl-2-(pyrrolidin-2-yl)-benzimidazol-4-carbonsäureamid
119. 2-(N-Acetyl-pyrrolidin-2-yl)-1-methyl-benzimidazol-4-carbon-säureamid
120. 1-Methyl-2-piperazin-4-yl-benzimidazol-4-carbonsäureamid
121. 2-(N-Acetyl-piperazin-4-yl)-1-methyl-benzimidazol-4-carbon-säureamid
- 10 122. 2-(N(O-tert.-Butyloxycarbonyl)-piperazin-4-yl)-1-methyl-ben-zimidazol-4-carbonsäureamid
123. 1-Methyl-2-(N-methyl-piperazin-4-yl)-benzimidazol-4-carbon-säureamid
- 15 124. 1-Methyl-2-(N-propyl-piperazin-4-yl)-benzimidazol-4-carbon-säureamid
125. 1-Methyl-2-(N-iso-propyl-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
126. 2-(N-Benzyl-piperazin-4-yl)-1-methyl-benzimidazol-4-carbon-säureamid
- 20 127. 1-Methyl-2-(N-(2-phenyl)eth-1-yl)-piperazin-4-yl)-benzimidazol-4-carbonsäureamid
128. 2-(N-(2(4-Chlorphenyl)eth-1-yl)-piperazin-4-yl)-1-methyl-benzimidazol-4-carbonsäureamid
- 25 129. 2-(Homopiperazin-4-yl)-1-methyl-benzimidazol-4-carbonsäure-amid
130. 2-(N-Acetyl-homopiperazin-4-yl)-1-methyl-benzimidazol-4-carbonsäureamid
131. 2-(N(O-tert.-Butyloxycarbonyl)-homopiperazin-4-yl)-1-methyl-ben-zimidazol-4-carbonsäureamid
- 30 132. 1-Methyl-2-(N-methyl-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
133. 1-Methyl-2-(N-propyl-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
- 35 134. 1-Methyl-2-(N-iso-propyl-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid
135. 2-(N-Benzyl-homopiperazin-4-yl)-1-methyl-benzimidazol-4-carbonsäureamid
136. 1-Methyl-2-(N-(2-phenyl)eth-1-yl)-homopiperazin-4-yl)-benzi-midazol-4-carbonsäureamid
- 40 137. 2-(N-(2(4-Chlorphenyl)eth-1-yl)-homopiperazin-4-yl)-1-methyl-benzimidazol-4-carbonsäureamid
138. 1-Ethyl-2-(piperidin-4-yl)-benzimidazol-4-carbonsäureamid
139. 2-(Piperidin-4-yl)-1-iso-propyl-benzimidazol-4-carbonsäure-amid
- 45 140. 1-(2-(Hydroxy)eth-1-yl)-2-(piperidin-4-yl)-benzimidazol-4-carbonsäureamid

141. 1-(2-(Methoxy)eth-1-yl)-2-(piperidin-4-yl)-benzimidazol-4-carbonsäureamid

142. 1-(2-(Amino)eth-1-yl)-2-(piperidin-4-yl)-benzimidazol-4-carbonsäureamid

5 143. 1-(2-(N,N-Dimethylamino)eth-1-yl)-2-(piperidin-4-yl)-benzimidazol-4-carbonsäureamid

144. 1-(2-(Piperidin-1-yl)eth-1-yl)-2-(piperidin-4-yl)-benzimidazol-4-carbonsäureamid

145. 2-(Piperidin-4-yl)-1-(2-(pyrrolidin-1-yl)eth-1-yl)-benzimidazol-4-carbonsäureamid

10 146. 1-(2-(2-Ethyl-piperidin-1-yl)eth-1-yl)-2-(piperidin-4-yl)-benzimidazol-4-carbonsäureamid

147. 1-Ethyl-2-(piperidin-3-yl)-benzimidazol-4-carbonsäureamid

148. 2-(Piperidin-3-yl)-1-iso-propyl-benzimidazol-4-carbonsäure-15 amid

149. 1-(2-(Hydroxy)eth-1-yl)-2-(piperidin-3-yl)-benzimidazol-4-carbonsäureamid

150. 1-(2-(Methoxy)eth-1-yl)-2-(piperidin-3-yl)-benzimidazol-4-carbonsäureamid

20 151. 1-(2-(Amino)eth-1-yl)-2-(piperidin-3-yl)-benzimidazol-4-carbonsäureamid

152. 1-(2-(N,N-Dimethylamino)eth-1-yl)-2-(piperidin-3-yl)-benzimidazol-4-carbonsäureamid

153. 1-(2-(Piperidin-1-yl)eth-1-yl)-2-(piperidin-3-yl)-benzimidazol-4-carbonsäureamid

25 154. 2-(Piperidin-3-yl)-1-(2-(pyrrolidin-1-yl)eth-1-yl)-benzimidazol-4-carbonsäureamid

155. 1-(2-(2-Ethyl-piperidin-1-yl)eth-1-yl)-2-(piperidin-3-yl)-benzimidazol-4-carbonsäureamid

30 156. 1-Ethyl-2-(pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid

157. 1-iso-Propyl-2-(pyrrolidin-3-yl)-benzimidazol-4-carbonsäure-amid

158. 1-(2-(Hydroxy)eth-1-yl)-2-(pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid

35 159. 1-(2-(Methoxy)eth-1-yl)-2-(pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid

160. 1-(2-(Amino)eth-1-yl)-2-(pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid

161. 1-(2-(N,N-Dimethylamino)eth-1-yl)-2-(pyrrolidin-3-yl)-benzi-40 midazol-4-carbonsäureamid

162. 1-(2-(Piperidin-1-yl)eth-1-yl)-2-(pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid

163. 2-(Pyrrolidin-3-yl)-1-(2-(pyrrolidin-1-yl)eth-1-yl)-benzimidazol-4-carbonsäureamid

45 164. 1-(2-(2-Ethyl-piperidin-1-yl)eth-1-yl)-2-(pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid

165. 1-Ethyl-2-(pyrrolidin-2-yl)-benzimidazol-4-carbonsäureamid

166. 1-iso-Propyl-2-(pyrrolidin-2-yl)-benzimidazol-4-carbonsäureamid

167. 1-(2-(Hydroxy)eth-1-yl)-2-(pyrrolidin-2-yl)-benzimidazol-4-carbonsäureamid

5 168. 1-(2-(Methoxy)eth-1-yl)-2-(pyrrolidin-2-yl)-benzimidazol-4-carbonsäureamid

169. 1-(2-(Amino)eth-1-yl)-2-(pyrrolidin-2-yl)-benzimidazol-4-carbonsäureamid

170. 1-(2-(N,N-Dimethylamino)eth-1-yl)-2-(pyrrolidin-2-yl)-benzimidazol-4-carbonsäureamid

10 171. 1-(2-(Piperidin-1-yl)eth-1-yl)-2-(pyrrolidin-2-yl)-benzimidazol-4-carbonsäureamid

172. 2-(Pyrrolidin-2-yl)-1-(2-(pyrrolidin-1-yl)eth-1-yl)-benzimidazol-4-carbonsäureamid

15 173. 1-(2-(2-Ethyl-piperidin-1-yl)eth-1-yl)-2-(pyrrolidin-2-yl)-benzimidazol-4-carbonsäureamid

174. 1-Ethyl-2-(piperazin-4-yl)-benzimidazol-4-carbonsäureamid

175. 1-iso-Propyl-2-(piperazin-4-yl)-benzimidazol-4-carbonsäureamid

20 176. 1-(2-(Hydroxy)eth-1-yl)-2-(piperazin-4-yl)-benzimidazol-4-carbonsäureamid

177. 1-(2-(Methoxy)eth-1-yl)-2-(piperazin-4-yl)-benzimidazol-4-carbonsäureamid

178. 1-(2-(Amino)eth-1-yl)-2-(piperazin-4-yl)-benzimidazol-4-carbonsäureamid

25 179. 1-(2-(N,N-Dimethylamino)eth-1-yl)-2-(piperazin-4-yl)-benzimidazol-4-carbonsäureamid

180. 2-(Piperazin-4-yl)-1-(2-(piperidin-1-yl)eth-1-yl)-benzimidazol-4-carbonsäureamid

30 181. 2-(Piperazin-4-yl)-1-(2-(pyrrolidin-1-yl)eth-1-yl)-benzimidazol-4-carbonsäureamid

182. 1-(2-(2-Ethyl-piperidin-1-yl)eth-1-yl)-2-(piperazin-4-yl)-benzimidazol-4-carbonsäureamid

183. 1-Ethyl-2-(homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid

35 184. 1-iso-Propyl-2-(homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid

185. 1-(2-(Hydroxy)eth-1-yl)-2-(homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid

186. 1-(2-(Methoxy)eth-1-yl)-2-(homopiperazin-4-yl)-benzimidazol-40 4-carbonsäureamid

187. 1-(2-(Amino)eth-1-yl)-2-(homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid

188. 1-(2-(N,N-Dimethylamino)eth-1-yl)-2-(homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid

45 189. 2-(Homopiperazin-4-yl)-1-(2-(piperidin-1-yl)eth-1-yl)-benzimidazol-4-carbonsäureamid

21

190. 2-(Homopiperazin-4-yl)-1-(2-(pyrrolidin-1-yl)eth-1-yl)-benzimidazol-4-carbonsäureamid

191. 1-(2-(2-Ethyl-piperidin-1-yl)eth-1-yl)-2-(homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid

5 192. 1-Ethyl-2-(N-propyl-piperidin-4-yl)-benzimidazol-4-carbonsäureamid

193. 1-iso-Propyl-2-(N-propyl-piperidin-4-yl)-benzimidazol-4-carbonsäureamid

194. 1-(2-(Hydroxy)eth-1-yl)-2-(N-propyl-piperidin-4-yl)-benzimidazol-4-carbonsäureamid

10 195. 1-(2-(Methoxy)eth-1-yl)-2-(N-propyl-piperidin-4-yl)-benzimidazol-4-carbonsäureamid

196. 1-(2-(Amino)eth-1-yl)-2-(N-propyl-piperidin-4-yl)-benzimidazol-4-carbonsäureamid

15 197. 1-(2-(N,N-Dimethylamino)eth-1-yl)-2-(N-propyl-piperidin-4-yl)-benzimidazol-4-carbonsäureamid

198. 1-(2-(Piperidin-1-yl)eth-1-yl)-2-(N-propyl-piperidin-4-yl)-benzimidazol-4-carbonsäureamid

199. 2-(N-Propyl-piperidin-4-yl)-1-(2-(pyrrolidin-1-yl)eth-1-yl)-benzimidazol-4-carbonsäureamid

20 200. 1-(2-(2-Ethyl-piperidin-1-yl)eth-1-yl)-2-(N-propyl-piperidin-4-yl)-benzimidazol-4-carbonsäureamid

201. 1-Ethyl-2-(N-propyl-piperidin-3-yl)-benzimidazol-4-carbonsäureamid

25 202. 1-iso-Propyl-2-(N-propyl-piperidin-3-yl)-benzimidazol-4-carbonsäureamid

203. 1-(2-(Hydroxy)eth-1-yl)-2-(N-propyl-piperidin-3-yl)-benzimidazol-4-carbonsäureamid

204. 1-(2-(Methoxy)eth-1-yl)-2-(N-propyl-piperidin-3-yl)-benzimidazol-4-carbonsäureamid

30 205. 1-(2-(Amino)eth-1-yl)-2-(N-propyl-piperidin-3-yl)-benzimidazol-4-carbonsäureamid

206. 1-(2-(N,N-Dimethylamino)eth-1-yl)-2-(N-propyl-piperidin-3-yl)-benzimidazol-4-carbonsäureamid

35 207. 1-(2-(Piperidin-1-yl)eth-1-yl)-2-(N-propyl-piperidin-3-yl)-benzimidazol-4-carbonsäureamid

208. 2-(N-Propyl-piperidin-3-yl)-1-(2-(pyrrolidin-1-yl)eth-1-yl)-benzimidazol-4-carbonsäureamid

209. 1-(2-(2-Ethyl-piperidin-1-yl)eth-1-yl)-2-(N-propyl-piperidin-3-yl)-benzimidazol-4-carbonsäureamid

40 210. 1-Ethyl-2-(N-propyl-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid

211. 1-iso-Propyl-2-(N-propyl-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid

45 212. 1-(2-(Hydroxy)eth-1-yl)-2-(N-propyl-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid

213.1-(2-(Methoxy)eth-1-yl)-2-(N-propyl-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
214.1-(2-(Amino)eth-1-yl)-2-(N-propyl-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
5 215.1-(2-(N,N-Dimethylamino)eth-1-yl)-2-(N-propyl-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
216.1-(2-(Piperidin-1-yl)eth-1-yl)-2-(N-propyl-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
217.2-(N-Propyl-pyrrolidin-3-yl)-1-(2-(pyrrolidin-1-yl)eth-1-yl)-
10 benzimidazol-4-carbonsäureamid
218.1-(2-(2-Ethyl-piperidin-1-yl)eth-1-yl)-2-(N-propyl-pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid
219.1-Ethyl-2-(N-propyl-pyrrolidin-2-yl)-benzimidazol-4-carbon-
säureamid
15 220.1-iso-Propyl-2-(N-propyl-pyrrolidin-2-yl)-benzimidazol-4-
carbonsäureamid
221.1-(2-(Hydroxy)eth-1-yl)-2-(N-propyl-pyrrolidin-2-yl)-benzimi-
dazol-4-carbonsäureamid
222.1-(2-(Methoxy)eth-1-yl)-2-(N-propyl-pyrrolidin-2-yl)-benzimi-
20 dazol-4-carbonsäureamid
223.1-(2-(Amino)eth-1-yl)-2-(N-propyl-pyrrolidin-2-yl)-benzimidazol-4-carbonsäureamid
224.1-(2-(N,N-Dimethylamino)eth-1-yl)-2-(N-propyl-pyrrolidin-2-
y1)-benzimidazol-4-carbonsäureamid
225.1-(2-(Piperidin-1-yl)eth-1-yl)-2-(N-propyl-pyrrolidin-2-yl)-
benzimidazol-4-carbonsäureamid
226.2-(Pyrrolidin-2-yl)-1-(2-(N-propyl-pyrrolidin-1-yl)eth-1-yl)-
benzimidazol-4-carbonsäureamid
227.1-(2-(2-Ethyl-piperidin-1-yl)eth-1-yl)-2-(N-propyl-pyrroli-
30 din-2-yl)-benzimidazol-4-carbonsäureamid
228.1-Ethyl-2-(N-propyl-piperazin-4-yl)-benzimidazol-4-carbon-
säureamid
229.1-iso-Propyl-2-(N-propyl-piperazin-4-yl)-benzimidazol-4-
carbonsäureamid
35 230.1-(2-(Hydroxy)eth-1-yl)-2-(N-propyl-piperazin-4-yl)-benzimi-
dazol-4-carbonsäureamid
231.1-(2-(Methoxy)eth-1-yl)-2-(N-propyl-piperazin-4-yl)-benzimi-
dazol-4-carbonsäureamid
232.1-(2-(Amino)eth-1-yl)-2-(N-propyl-piperazin-4-yl)-benzimi-
40 dazol-4-carbonsäureamid
233.1-(2-(N,N-Dimethylamino)eth-1-yl)-2-(N-propyl-piperazin-4-
y1)-benzimidazol-4-carbonsäureamid
234.1-(2-(Piperidin-1-yl)eth-1-yl)-2-(N-propyl-piperazin-4-yl)-
benzimidazol-4-carbonsäureamid
45 235.2-(N-Propyl-piperazin-4-yl)-1-(2-(pyrrolidin-1-yl)eth-1-yl)-
benzimidazol-4-carbonsäureamid

236. 1-(2-(2-Ethyl-piperidin-1-yl)eth-1-yl)-2-(N-propyl-piperazin-4-yl)-benzimidazol-4-carbonsäureamid

237. 1-Ethyl-2-(N-propyl-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid

5 238. 1-iso-Propyl-2-(N-propyl-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid

239. 1-(2-(Hydroxy)eth-1-yl)-2-(N-propyl-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid

240. 1-(2-(Methoxy)eth-1-yl)-2-(N-propyl-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid

10 241. 1-(2-(Amino)eth-1-yl)-2-(N-propyl-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid

242. 1-(2-(N,N-Dimethylamino)eth-1-yl)-2-(N-propyl-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid

15 243. 1-(2-(Piperidin-1-yl)eth-1-yl)-2-(N-propyl-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid

244. 2-(N-propyl-Homopiperazin-4-yl)-1-(2-(pyrrolidin-1-yl)eth-1-yl)-benzimidazol-4-carbonsäureamid

245. 1-(2-(2-Ethyl-piperidin-1-yl)eth-1-yl)-2-(N-propyl-homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid

20 246. 6-Chlor-2-(piperidin-4-yl)-benzimidazol-4-carbonsäureamid

247. 6-Chlor-2-(piperidin-3-yl)-benzimidazol-4-carbonsäureamid

248. 6-Chlor-2-(pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid

249. 6-Chlor-2-(piperazin-4-yl)-benzimidazol-4-carbonsäureamid

25 250. 6-Chlor-2-(homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid

251. 6-Ethyl-2-(piperidin-4-yl)-benzimidazol-4-carbonsäureamid

252. 6-Ethyl-2-(piperidin-3-yl)-benzimidazol-4-carbonsäureamid

253. 6-Ethyl-2-(pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid

254. 6-Ethyl-2-(piperazin-4-yl)-benzimidazol-4-carbonsäureamid

30 255. 6-Ethyl-2-(homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid

256. 6-Amino-2-(piperidin-4-yl)-benzimidazol-4-carbonsäureamid

257. 6-Amino-2-(piperidin-3-yl)-benzimidazol-4-carbonsäureamid

258. 6-Amino-2-(pyrrolidin-3-yl)-benzimidazol-4-carbonsäureamid

259. 6-Amino-2-(piperazin-4-yl)-benzimidazol-4-carbonsäureamid

35 260. 6-Amino-2-(homopiperazin-4-yl)-benzimidazol-4-carbonsäureamid

261. 2-(Piperidin-4-yl)-6-(pyrrolidin-1-yl)-benzimidazol-4-carbonsäureamid

262. 2-(Piperidin-3-yl)-6-(pyrrolidin-1-yl)-benzimidazol-4-carbonsäureamid

40 263. 2-(Pyrrolidin-3-yl)-6-(pyrrolidin-1-yl)-benzimidazol-4-carbonsäureamid

264. 2-(Piperazin-4-yl)-6-(pyrrolidin-1-yl)-benzimidazol-4-carbonsäureamid

265. 2-(Homopiperazin-4-yl)-6-(pyrrolidin-1-yl)-benzimidazol-4-

45 carbonsäureamid

266. 2-(3-Methyl-piperidin-4-yl)-benzimidazol-4-carbonsäureamid

24

267. 2-(3-Cyclohexyl-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
 268. 2-(2-Cyclohexyl-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
 5 269. 2-(3-Phenyl-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
 270. 2-(4-Phenyl-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
 271. 2-(2-(Hydroxycarbonyl)-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
 272. 2-(2-(Ethoxycarbonyl)-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
 10 273. 2-(2-(Cyclohexyloxycarbonyl)-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
 274. 2-(2-(Benzyloxycarbonyl)-piperidin-4-yl)-benzimidazol-4-carbonsäureamid
 15 275. 2-(2-(Phenyloxycarbonyl)-piperidin-4-yl)-benzimidazol-4-carbonsäureamid

Beispiel 1

2-Piperidin-4-yl-benzimidazol-4-carbonsäureamid x 2 HCl

20

25

a) N(2-Amino-3-ethoxycarbonyl)-1-(tert.-butyloxycarbonyl)-piperidin-4-carbonsäureanilid

30 5,5 g (24 mMol) 1-(tert.-Butyloxycarbonyl)piperidin-4-carbonsäure und 4,3 g (24 mMol) 2,3-Diaminobenzoesäureethylester wurden mit 6,0 g (60 mMol) Triethylamin und 3,2 g (24 mMol) 1-Hydroxybenzotriazol in 100 ml wasserfreiem Tetrahydrofuran gelöst. Bei 0°C wurden anschließend 4,6 g (24 mMol) N'-(3-Dimethylaminopropyl)-N-ethylcarbodiimid zugegeben und alles für 1h gerührt. Danach wurde noch für 24 h bei Raumtemperatur gerührt. Das Reaktionsgemisch wurde im Vakuum eingeengt und der erhaltene Rückstand zwischen Essigester und wäßriger Natriumhydrogenkarbonat-Lösung verteilt. Die Essigester-Phase wurde noch mit 5 %iger wäßriger Zitronensäure-Lösung gewaschen, getrocknet und im Vakuum eingeengt. Man erhielt 8,4 g des Produktes.

45

b) 2(1-(tert.-Butyloxycarbonyl)piperidin-4-yl)-benzimidazol-4-carbonsäureethylester

8,1 g der Zwischenverbindung 1a wurden in 100 ml konzentrierter 5 Essigsäure für 30 Minuten unter Rückfluß gekocht. Anschließend wurde alles im Vakuum eingeengt und der Rückstand zwischen Essigester und Wasser verteilt. Die Essigester-Phase wurde noch mit wäßriger Natriumhydrogenkarbonat-Lösung und Wasser gewaschen und anschließend im Vakuum eingeengt. Man 10 erhielt 4,6 g des Produktes.

c) 2-Piperidin-4-yl-benzimidazol-4-carbonsäureethylester x 2 HCl

3,7 g (9,9 mMol) der Zwischenverbindung 1b wurden in 50 ml 15 4M Lösung von Chlorwasserstoff in Dioxan gegeben und für 1 h bei Raumtemperatur gerührt. Anschließend wurde der Ansatz mit viel Ether verdünnt und der entstandene Niederschlag abgesaugt. Man erhielt 3,2 g des Produktes.

20 d) 2-Piperidin-4-yl-benzimidazol-4-carbonsäurehydrazid

2,7 g (7,8 mMol) der Zwischenverbindung 1c und 2,7 g 25 (54 mMol) Hydrazin wurden in 30 ml n-Butanol für 15 h unter Rückfluß gekocht. Anschließend wurde alles im Vakuum eingeengt und der erhaltene Rückstand zwischen Essigester und wäßriger Natriumhydrogenkarbonat-Lösung verteilt. Die organische Phase wurde abgetrennt, getrocknet und im Vakuum eingeengt. Man erhielt 0,9 g des Produktes.

30 e) 2-Piperidin-4-yl-benzimidazol-4-carbonsäureamid x 2 HCl

Zu 0,8 g (3,1 mMol) der Zwischenverbindung 1d in 20 ml Dimethylformamid wurden ca. 2,4 g Raney-Nickel in 20 ml Wasser gegeben und alles für 8 Stunden auf 100°C erwärmt. 35 Anschließend wurde das Reaktionsgemisch filtriert. Der Rückstand wurde in Ethanol aufgenommen und ein Rohprodukt durch Zugabe von Ether gefällt. Der Niederschlag wurde in Isopropanol gelöst und mit einer Lösung von Chlorwasserstoff in Isopropanol versetzt. Der entstandene Niederschlag wurde 40 abgesaugt. Man erhielt 0,52 g des Produktes.

¹H-NMR (D₆-DMSO). δ = 1,8-2,3 (4H), 2,8-3,5 (5H), 7,2 (1H), 7,7 (1H), 7,8 (1H), 8,5 (breit) und 9,2 (breit) ppm.

Beispiel 2

2-Piperidin-4-yl-benzimidazol-4-carbonsäureamid

Das Beispiel wurde analog dem Beispiel 1 hergestellt.

5

$^1\text{H-NMR}$ ($\text{D}_6\text{-DMSO}$). $\delta = 1.7(1\text{H})$, $1.9\text{--}2.2(4\text{H})$, $2.75(1\text{H})$, $3.8(1\text{H})$,
 $7.2(1\text{H})$, $7.6(1\text{H})$, $7.8(1\text{H})$ und $9.3(\text{breit})\text{ppm}$.

Beispiel 3

10 2-(N-Acetyl-piperidin-4-yl)-benzimidazol-4-carbonsäureamid

a) 2-(N-Acetyl-piperidin-4-yl)-benzimidazol-4-carbonsäuremethylester

15 3.3 g (19,9 mMol) 2,3-Diaminobenzoësäuremethylester wurden in 100 ml Methanol gelöst und bei Raumtemperatur wurde eine Lösung aus 4,0 g (25,8 mMol) N-Acetyl-piperidin-4-aldehyd in 100 ml Methanol zugetropft. Alles wurde für ca. 10 Minuten bei Raumtemperatur gerührt. Danach wurden 5,2 g (25,8 mMol) 20 Kupfer-II-Azetat, das in 100 ml Wasser gelöst wurde, zuge-tropft und alles für 30 Minuten unter Rückfluß gekocht. Nach dem Abkühlen gab man vorsichtig 25 ml konzentrierte Salzsäure zu und erwärmt erneut alles auf Rückfluß. Jetzt wurden 7,15 g (29,8 mMol) Natriumsulfid Nonahydrat, gelöst in 100 ml 25 Wasser, hinzuge-tropft und alles für weitere 10 Minuten gekocht. Nach dem Abkühlen wurde die Reaktionslösung im Vakuum eingeengt. Der erhaltene Rückstand wurde in Wasser disper-giert und filtriert. Das Filtrat wurde mit wäßriger Natrium-hydrogenkarbonat-Lösung alkalisch gestellt und mehrmals mit 30 Essigester extrahiert. Die vereinigten organischen Phasen wurden noch mit Wasser gewaschen, getrocknet und im Vakuum eingeengt. Man erhielt 4,5 g des Produktes.

b) 2-(N-Acetyl-piperidin-4-yl)-benzimidazol-4-carbonsäure-hydrazid

35 4,3 g (14,9 mMol) des Zwischenproduktes 3a wurden mit 3,7 g (74,3 mMol) Hydrazin Hydrat in 100 ml Ethanol für 2,5 Stunden unter Rückfluß gekocht. Anschließend wurde alles im Vakuum eingeengt, wobei man ein Rohrprodukt erhielt, das direkt im folgenden Reaktionsschritt eingesetzt wurde.

c) 2-(N-Acetyl-piperidin-4-yl)-benzimidazol-4-carbonsäureamid

Zu einem Gemisch aus 100 ml Dimethylformamid und 50 ml Wasser wurden 5 g Raney-Nickel gegeben. Bei Raumtemperatur wurden 5 anschließend der Rückstand aus dem Reaktionsschritt 3b, gelöst mit Wasser, vorsichtig zugetropft, so daß die beobachtete Gasentwicklung kontrolliert werden kann. Danach wurde alles für 2 Stunden auf 100°C erwärmt. Nach dem Abkühlen wurde filtriert und das Filtrat im Vakuum eingeengt. Der 10 erhaltene Rückstand wurde in wenig Methylenchlorid aufgenommen und durch vorsichtige Zugabe von Ether wurde das Produkt ausgefällt. Man erhielt 3,2 g des Produktes.

¹H-NMR (D₆-DMSO). δ = 1.8-2.3(4H), 2.8-3.5(5H), 7.2(1H), 15 7.7(1H), 7.8(1H), 8.5(breit) und 9.2(Breit)ppm.

Beispiel 4

2-(N-Propyl-piperidin-4-yl)-benzimidazol-4-carbonsäureamid

20 0,25 g (1 mMol) des Produktes aus Beispiel 2, 59 mg (1 mMol) n-Propanal und 125 µL (2 mMol) Essigsäure wurden in 25 ml Ethanol gelöst. Danach wurden bei Raumtemperatur 64 mg (1 mMol) Natrium-cyanoborhydrid zugefügt und alles für 16 Stunden gerührt. Die Reaktionslösung wurde im Vakuum eingeengt und der Rückstand 25 zwischen Methylenchlorid und wässriger Natriumhydrogenkarbonatlösung verteilt. Die organische Phase wurde mit Wasser gewaschen, abgetrennt, getrocknet und i Vakuum eingeengt. Der erhaltene Rückstand wurde chromatographisch mit dem Fließmittel Essigester/Methanol = 4/1 gereinigt, wobei man 0,07 g des Produktes erhielt.

30 ¹H-NMR (D₆-DMSO). δ = 0.9(3H), 1.5(2H), 1.9(2H), 2.3(2H), 2.9(2H), 3.3(1H), 7.25(1H), 7.6(1H), 7.8(1H), 9.3(1H) und 12.8(1H)ppm.

Beispiel 5

35 2-Piperidin-3-yl-benzimidazol-4-carbonsäureamid x 2 HCl

1,3 g (3,8 mMol) des Produktes aus Beispiel 6 wurden in 20 ml Isopropanol gelöst und mit 50 ml isopropanolische Hydrochloridlösung versetzt. Alles wurde für 1 Stunde bei Raumtemperatur 40 gerührt. Der entstandene Niederschlag wurde abgesaugt, wobei man 1,1 g des Produktes erhielt.

¹H-NMR (D₆-DMSO). δ = 1.95-2.3(3H), 2.45(1H), 3.2(1H), 3.5(1H), 3.9(1H), 7.6(1H) und 7.95(2H)ppm.

Beispiel 6

2-(N(O-tert.-Butyloxycarbonyl)-piperidin-3-yl)-benzimidazol-4-carbonsäureamid

5 a) 2-Amino-3(N(O-tert.-butyloxycarbonyl)-piperidin-3-yl)amido-benzoësäureethylester

4 g (17,4 mMol) N(O-tert.-Butyloxycarbonyl)-piperidin-3-carbonsäure und 4,8 ml (34,9 mMol) Triethylamin wurden in 100 ml wasserfreiem Tetrahydrofuran gelöst. Bei -10°C wurden anschließend 1,7 ml (17,4 mMol) Chlorameisensäureethylester, gelöst in 10 ml wasserfreiem Tetrahydrofuran, zugetropft. Alles wurde noch für 1 h bei 0°C gerührt. Danach wurden wieder bei -10°C 2,9 g (17,4 mMol) 15 2,3-Diaminobenzoësäuremethylester zugefügt und alles für 12 h bei Raumtemperatur gerührt. Die Reaktionslösung wurde im Vakuum eingeengt und der erhaltene Rückstand zwischen Essigester und Wasser verteilt. Die organische Phase wurde noch mit wäßriger Natriumhydrogenkarbonat-Lösung und Wasser gewaschen, getrocknet und im Vakuum eingeengt. Man erhielt 20 5,5 g des Produktes.

b) 2-(N(O-tert.-Butyloxycarbonyl)-piperidin-3-yl)-benzimidazol-4-carbonsäureethylester

25 5,4 g (14,3 mMol) des Produktes aus 6a wurden in 100 ml Essigsäure für 75 Minuten unter Rückfluß gekocht. Nach dem Abkühlen wurde alles im Vakuum eingeengt und der anfallende Rückstand chromatographisch mit dem Fließmittel Essigester/ Heptan = 1/1 gereinigt. Man erhielt 2,7 g des Produktes.

c) 2-(N(O-tert.-Butyloxycarbonyl)-piperidin-3-yl)-benzimidazol-4-carbonsäurehydrazid

35 2,3 g (6,4 mMol) des Produktes aus 6b wurden mit 1,6 g (32 mMol) Hydrazin Hydrat in 20 ml Ethanol für 2,5 Stunden unter Rückfluß gekocht. Nach dem Abkühlen wurde alles im Vakuum eingeengt. Der Rückstand wurde mit Wasser behandelt, wobei ein Niederschlag anfällt, der abgesaugt und getrocknet wurde. Man erhielt 1,6 g des Produktes.

29

d) 2-(N(0-tert.-Butyloxycarbonyl)-piperidin-3-yl)-benzimidazol-4-carbonsäureamid

1,6 g des Produktes aus 6c wurden analog der Vorschrift aus 5c umgesetzt. Man erhielt 1,3 g des Produktes.
¹H-NMR (D₆-DMSO): δ = 1.4(1H), 1.5(1H), 2.9(1H), 3.1(1H), 3.9(1H), 4.2(1H), 7.3(1H), 7.7(1H), 7.8(1H), 9.1(breit) und ca. 13(breit)ppm.

10 Analog den Beispielen 1 bis 6 wurden die in den folgenden Beispielen genannten Substanzen hergestellt:

Beispiel 7

2(N-Benzylpiperidin-3-yl)-benzimidazol-4-carbonsäureamid

15 ¹H-NMR (D₆-DMSO): δ = 1,6-1,8(3H), 2,1(2H), 2,3(1H), 2,8(1H), 3,1(1H), 3,2(1H), 3,5(2H), 7,2-7,4(6H), 7,6(2H), 7,8(2H) und 9,2(breit) ppm.

Beispiel 8

20 2(N-Methylpiperidin-3-yl)-benzimidazol-4-carbonsäureamid x 2 HCl

¹H-NMR (D₂O): δ = 2,1(2H), 2,3(1H), 2,5(1H), 3,1(3H), 3,2(1H), 3,5(1H), 3,7(1H), 4,0(2H), 7,7(1H) und 8,0(2H) ppm.

Beispiel 9

25 2-Piperazin-4-yl-benzimidazol-4-carbonsäureamid

¹H-NMR (D₆-DMSO): δ = 2,5(4H), 3,3(4H), 7,2(1H), 7,6-7,7(2H), 7,8(1H) und 9,3(1H) ppm.

Beispiel 10

30 2(N-Propylpiperidin-3-yl)-benzimidazol-4-carbonsäureamid x 2 HCl

¹H-NMR (D₆-DMSO): δ = 0,9(3H), 1,5(2H), 1,9(2H), 2,0(4H), 2,3(2H), 2,9(3H), 7,2(1H), 7,6(2H), 7,8(1H) und 9,3(breit) ppm.

Beispiel 11

35 2(N(3-Phenylprop-1-yl)-piperidin-3-yl)-benzimidazol-4-carbonsäureamid x 2HCl

¹H-NMR (D₆-DMSO): δ = 2,0-2,5(6H), 2,8(2H), 3,1(1H), 3,2-3,4(3H), 3,7(1H), 3,8-4,0(2H), 7,3-7,5(5H), 7,7(1H) und 8,0(2H) ppm.

40

45

30

Beispiel 12

2(N-Benzoylpiperidin-3-yl)-benzimidazol-4-carbonsäureamid

¹H-NMR (CF₃COOD): δ = 1,9(1H), 2,6(1H), 3,8(1H), 3,9-4,2(4H), 4,3(1H), 4,8(1H) und 7,5-8,2(8H) ppm.

5

Beispiel 13

2(N-Benzylpiperidin-4-yl)-benzimidazol-4-carbonsäureamid x 2 HCl

¹H-NMR (D₂O): δ = 2,3(2H), 2,6(2H), 3,3(2H), 3,8(3H), 4,5(2H) und 7,5-8,0(8H) ppm.

10

Beispiel 14

2(1(1-Methylpiperidin-4-yl)piperidin-4-yl)-benzimidazol-4-carbonsäureamid x 3 HCl

¹H-NMR (D₆-DMSO): δ = 1,4(2H), 1,6-2,0(6H), 2,0-2,4(7H),

15 2,7-3,0(6H), 7,2(1H), 7,7(2H), 7,8(1H) und 9,4(breit) ppm.

Beispiel 15

2(N-n-Pentylpiperidin-4-yl)-benzimidazol-4-carbonsäureamid

¹H-NMR (D₆-DMSO): δ = 0,9(3H), 1,2-1,5(6H), 1,7-2,1(6H), 2,3(2H), 20 2,8-3,0(4H), 7,3(1H), 7,6-7,8(3H), 9,4(1H) und 12,8(breit) ppm.**Beispiel 16**

2(N-Isobut-1-yl-piperidin-4-yl)-benzimidazol-4-carbonsäureamid

¹H-NMR (D₆-DMSO): δ = 0,9(6H), 1,8-2,1(10H), 2,9(2H), 7,2(1H),

25 7,6(2H), 7,8(1H), 9,2(1H) und 12,5(breit) ppm.

Beispiel 17

2(N-n-Butylpiperidin-4-yl)-benzimidazol-4-carbonsäureamid x HCl

¹H-NMR (D₆-DMSO): δ = 0,9(3H), 1,3(2H), 1,7(2H), 2,2-2,4(4H),

30 3,0-3,2(4H), 3,4-3,6(3H), 7,5(1H), 7,8-8,0(2H), 8,0(1H), 8,7(breit) und 10,9(breit) ppm.

Beispiel 18

2(N-(3-Methyl-but-1-yl)piperidin-4-yl)-benzimidazol-4-carbon-35 säureamid x HCl

¹H-NMR (D₆-DMSO): δ = 0,9(6H), 1,7(3H), 2,2-2,4(4H), 3,1(4H), 3,3(1H), 3,7(2H), 7,5(1H), 7,8-8,0(3H), 8,7(breit) und 10,5(breit) ppm.

40

45

Beispiel 19

2(1,4-Dimethylpiperazin-2-yl)-benzimidazol-4-carbonsäureamid

x 2 HCl

¹H-NMR (D₆-DMSO): δ = 2,5 (3H), 2,9 (3H), 3,3-3,8 (5H), 3,9 (1H),

5 5,0 (1H), 7,4 (1H), 7,7 (1H), 7,8 (1H), 7,9 (1H) und 8,6 (breit) ppm.

Beispiel 20

2-Piperazin-2-yl-benzimidazol-4-carbonsäureamid x 2 HCl

10 1,83 g (3,67 mmol) des Produktes aus Beispiel 23 wurden in 250 ml Methanol mit 1 g 10 % Palladium auf Kohle vorgelegt und mit ca. 165 ml Wasserstoff hydriert. Der Katalysator wurde abgesaugt und das Filtrat wurde eingeengt. Der Rückstand wurde in 20 ml Isopropanol gelöst und mit 50 ml isopropanolischer Hydrochlorid-Lösung 15 versetzt. Der entstandene Niederschlag wurde abgesaugt, wobei man 1,1 g des Produktes erhielt.

¹H-NMR (D₆-DMSO): δ = 3,2-3,7 (5H), 4,0 (1H), 5,2 (1H), 7,4 (1H), 7,8 (1H), 7,9 (1H) und 10,2 (breit) ppm.

20 Beispiel 21

2(N-Isopropylpiperidin-4-yl)-benzimidazol-4-carbonsäureamid

x HCl

¹H-NMR (D₆-DMSO): δ = 1,25 (6H), 2,3 (4H), 3,1 (1H), 3,4-3,6 (4H), 3,7 (1H), 7,5 (1H), 7,7-8,0 (3H), 8,7 (1H) und 10,7 (breit) ppm.

25

Beispiel 22

2(4-(2-Ethyl-prop-1-yl)piperidin-4-yl)-benzimidazol-4-carbonsäureamid

30 Beispiel 23

2(1,4-Dibenzylpiperazin-2-yl)-benzimidazol-4-carbonsäureamid

x 2 HCl

¹H-NMR (D₆-DMSO): δ = 2,95-3,7 (7H), 3,8-4,9 (4H), 7,1-7,55 (8H), 7,65 (2H), 7,85 (2H), 7,94 (1H), 8,7 (breit) und 12,2 (breit)

35 ppm.

Beispiel 24

2(N-Benzylpiperidin-4-yl)-1-(1-benzylpiperidin-4-ylcarbonyl)-benzimidazol-4-carbonsäureamid

40 ¹H-NMR (D₆-DMSO): δ = 1,7 (2H), 1,8-2,0 (6H), 2,1 (4H), 2,5-2,7 (2H), 2,8-3,0 (4H), 3,5 (4H), 7,2-7,5 (11H), 7,7 (1H), 8,6 (1H), 9,5 (1H) und 12,3 (breit) ppm.

Beispiel A: Hemmung des Enzyms Poly(ADP-ribose)polymerase oder PARP (EC 2.4.2.30)

Eine 96 well Mikrotiterplatte (Falcon) wird mit Histonen
5 (Type II-AS; SIGMA H7755) beschichtet. Histone werden
dazu in Carbonat-Puffer (0,05 M NaHCO₃; pH 9,4) zu einer
Konzentration von 50 µg/ml gelöst. Die einzelnen Wells der Mikro-
titerplatte werden über Nacht mit je 100 µl dieser Histon Lösung
inkubiert. Anschließend wird die Histon Lösung entfernt und die
10 einzelnen Wells mit 200 µl einer 1 %igen BSA (Bovine Serum Albu-
mine) Lösung in Carbonat-Puffer für 2 Stunden bei Raumtemperatur
inkubiert. Anschließend wird dreimal mit Waschpuffer
(0,05 % Tween10 in PBS) gewaschen. Für die Enzymreaktion werden
je Well 50 µl der Enzymreaktionslösung (5 µl Reaktions-Puffer
15 (1M Tris-HCl pH 8,0, 100 mM MgCl₂, 10 mM DTT,) 0,5 µl PARP
(c = 0,22 µg/µl), 4 µl aktivierte DNA (SIGMA D-4522, 1 mg/ml
in Wasser), 40,5 µl H₂O) mit 10 µl einer Inhibitorlösung für
10 Minuten vorinkubiert. Die Enzymreaktion wird durch Zugabe von
40 µl einer Substratlösung (4 µl Reaktion-Puffer (s.o.), 8 µl
20 NAD-Lösung (100 µM in H₂O), 28 µl H₂O) gestartet. Reaktionszeit
ist 20 Minuten bei Raumtemperatur. Die Reaktion wird durch drei-
maliges Waschen mit Waschpuffer (s.o.) gestoppt. Anschließend
folgt eine einstündige Inkubation bei Raumtemperatur mit einem
spezifischen Anti-Poly-ADP-Ribose Antikörper durchgeführt. Als
25 Antikörper wurden ein monoklonaler anti-Poly-(ADP-ribose) Anti-
körpern "10H" (Biomol SA-276) verwendet.

Die Antikörper wurden in einer 1:5000 Verdünnung in Antikörper-
Puffer (1%BSA in PBS; 0,05 % Tween20) eingesetzt. Nach drei-
30 maligem Waschen mit Waschpuffer folgt eine einstündige Inkubation
bei Raumtemperatur mit dem sekundärem Antikörper. Hier wurden für
den monoklonalen Antikörper ein anti-Maus-IgG gekoppelt mit Per-
oxidase (Boehringer Mannheim) und für den Kaninchen Antikörper
ein anti-Rabbit-IgG gekoppelt mit Peroxidase (SIGMA A-6154) je-
35 weils in einer 1:10000 Verdünnung in Antikörperpuffer verwendet.
Nach dreimaligem Waschen mit Waschpuffer erfolgt die Farbreaktion
unter Verwendung von 100 µl/Well Farbreagenz (SIGMA, TMB-Fertig-
mix, T8540) für ca. 15 min. bei Raumtemperatur. Die Farbreaktion
wird durch Zugabe von 100 µl 2M H₂SO₄ gestoppt. Danach wird sofort
40 gemessen (450 gegen 620 nm; ELISA Platten Lesegerät "Easy Reader"
EAR340AT, SLT-Lab instruments, Österreich. Aus den Inhibition-
kurven bei verschiedenen Substratkonzentrationen kann man auf
übliche Weise den K_i bestimmen.

33

Beispiel B: Bestimmung des Wasserlöslichkeit

Eine zu messende Verbindung wird direkt in einem festgelegten Volumen Wasser gelöst und die entstandene Lösung mit einer 5 Natriumacetat-Lösung auf pH 5 bis 6 eingestellt, so daß die zu prüfende Konzentration des Wirkstoffs erreicht wird. Falls die Meßsubstanz nicht als wasserlösliches Salz vorliegt, wurde diese in möglichst wenig Dimethylsulfoxid gelöst und anschließend mit Wasser verdünnt (Endkonzentration an Dimethylsulfoxid $\leq 1\%$), 10 wonach auch hier der pH-Wert noch eingestellt wurde. Das erfindungsgemäße Beispiel 1 zeigte hier eine Löslichkeit $> 0,5\%$ aufweist.

15

20

25

30

35

40

45

Patentansprüche

1. Verbindungen der allgemeinen Formel Ia oder Ib
5

10

Ia

Ib

15

worin

R¹ Wasserstoff, verzweigtes und unverzweigtes C₁-C₆-Alkyl, wobei ein C-Atom des Alkyl-Restes noch OR⁵ (wobei R⁵ Wasserstoff oder C₁-C₄-Alkyl bedeutet), oder ein C-Atom in der Kette auch eine =O-Gruppe oder eine Gruppe NR⁸R⁹ tragen kann, wobei R⁸ und R⁹ unabhängig voneinander Wasserstoff oder C₁-C₄-Alkyl bedeuten und NR⁸R⁹ zusammen ein zyklisches Amin mit 4 bis 8 Ringatomen sein kann, wobei die C-Ketten in R⁸ bzw. R⁹ oder der durch NR⁸R⁹ gebildete Ring noch einen Rest R⁶ tragen kann, der unabhängig von R² dieselben Bedeutung wie R² annehmen kann und

R⁴ Wasserstoff, verzweigtes und unverzweigtes C₁-C₆-Alkyl, Chlor, Brom, Fluor, Nitro, Cyano, NR⁸R⁹, NH-CO-R¹⁰, OR⁸, wobei R⁸ und R⁹ unabhängig voneinander Wasserstoff oder C₁-C₄-Alkyl bedeuten und NR⁸R⁹ zusammen ein zyklisches Amin mit 4 bis 8 Ringatomen sein kann, wobei der Ring noch einen Rest (verzweigtes und unverzweigtes C₁-C₆-Alkyl, C₃-C₇-Cycloalk-C₁-C₄-Alkyl, CO-R⁴¹, COOR⁴¹ und Phenyl) tragen kann, und R¹⁰ Wasserstoff, C₁-C₄-Alkyl oder Phenyl bedeuten kann und R⁴¹ dieselben Bedeutungen wie R²¹ annehmen kann,

A einen gesättigten oder einfach ungesättigten heterozyklischen, 4- bis 8-gliedrigen Ring, der ein oder zwei Stickstoff-Atome enthält, wobei zusätzlich noch ein Sauerstoff- oder Schwefel-Atom eingebaut sein kann, der durch die Substituenten R² und R³ substituiert ist, wobei

45

R² Wasserstoff, verzweigtes und unverzweigtes C₁-C₈-Alkyl, das noch mit R²³ substituiert sein kann und ein C-Atom der Kette eine =O-Gruppe tragen kann, C₃-C₇-Cycloalk-C₁-C₄-Alkyl, -CO-(NH)_{0,1}-R²¹, COOR²¹ und Phenyl bedeuten kann, wobei R²¹ Wasserstoff, verzweigtes und unverzweigtes C₁-C₆-Alkyl, C₃-C₇-Cycloalk-C₁-C₄-Alkyl, Phen-C₁-C₄-Alkyl, C₃-C₇-Cycloalkyl und Phenyl bedeuten kann und jeder Rest noch (CH₂)₀₋₂-R²³ tragen kann, und der jeweilige Phenylring seinerseits noch mit 1, 2 oder 3 der folgenden Resten substituiert sein kann: Chlor, Fluor, Brom, Jod, verzweigtes und unverzweigtes C₁-C₄-Alkyl, Nitro, CF₃, Cyano, -(CH₂)₀₋₂-NR²⁴R²⁵, NH-CO-R¹⁰, OR¹⁰, COOR¹⁰, SO₂-C₁-C₄-Alkyl, SO₂Ph, SO₂NH, NHSO₂-C₁-C₄-Alkyl, NHSO₂Ph und CF₃, wobei R²⁴ und R²⁵ unabhängig voneinander Wasserstoff oder C₁-C₄-Alkyl bedeuten und NR²⁴R²⁵ zusammen ein zyklisches Amin mit 4 bis 8 Ringatomen sein kann, wobei der Ring noch ein Rest verzweigtes und unverzweigtes C₁-C₆-Alkyl, C₃-C₇-Cycloalk-C₁-C₄-Alkyl, CO-R²², COOR²² (mit R²² gleich Wasserstoff, verzweigtes oder unverzweigtes C₁-C₆-Alkyl, C₃-C₇-Cycloalk-C₁-C₄-Alkyl, Phen-C₁-C₄-Alkyl, C₃-C₇-Cycloalkyl und Phenyl) und Phenyl tragen kann, und R¹⁰ Wasserstoff, C₁-C₄-Alkyl oder Phenyl bedeuten, und

10

15

20

25 R²³ bedeutet, wobei R²⁶ und R²⁷ Wasserstoff, C₁-C₆-Alkyl, C₀-C₄-Alkyl-Phenyl, wobei der Phenylring noch mit bis zu 3 Resten Cl, F, Br, J, C₁-C₄-Alkyl, CF₃, CN, SO₂-C₁-C₄-Alkyl, SO₂-Phenyl, NO₂, NH₂, NHCO-C₁-C₄-Alkyl, NHCO-Phenyl, OH, O-C₁-C₄-Alkyl, O-C₁-C₄-Alkyl-Phenyl substituiert sein kann, und

30 NR²⁶R²⁷ auch ein cyclisches Amin mit 3 bis 8 Gliedern darstellen kann, wobei zusätzlich noch ein weiteres Heteroatom wie O, N und S enthalten sein kann und der Ring noch mit einem Rest R²⁸ substituiert sein kann, wobei R²⁸ C₁-C₄-Alkyl und C₁-C₄-Alkyl-Phenyl sein kann,

35

R³ Wasserstoff, verzweigtes und unverzweigtes C₁-C₈-Alkyl, gegebenenfalls durch C₁-C₆-Alkyl substituiertes C₃-C₇-Cycloalk-C₁-C₄-Alkyl, gegebenenfalls durch C₁-C₆-Alkyl substituiertes C₃-C₇-Cycloalkyl, wobei ein C-Atom des Restes noch einen Phenyl-Ring tragen kann, der seinerseits noch mit 1, 2 oder 3 der folgenden Resten substituiert sein kann: Chlor, Fluor, Brom, Jod, verzweigtes und unverzweigtes C₁-C₄-Alkyl, Nitro, CF₃, Cyano, (CH₂)₀₋₂-NR³²R³³, NH-CO-R¹⁰, OR¹⁰, COOR¹⁰, SO₂-C₁-C₄-Alkyl, SO₂Ph, CH₃, SO₂NH, NHSO₂-C₁-C₄-Alkyl, NHSO₂Ph und CF₃, wobei R³² und R³³ unabhängig voneinander

40

45

36

Wasserstoff oder C₁-C₄-Alkyl bedeuten und NR³²R³³ zusammen ein zyklisches Amin mit 4 bis 8 Ringatomen sein kann, wobei der Ring noch ein Rest verzweigtes und unverzweigtes C₁-C₆-Alkyl, C₃-C₇-Cycloalk-C₁-C₄-Alkyl, CO-R³¹, COOR³¹ und Phenyl tragen kann, und R¹⁰ Wasserstoff, C₁-C₄-Alkyl oder Phenyl bedeuten, und R³¹ die selbe Bedeutung wie R²¹ annehmen kann.

sowie ihre tautomeren Formen, möglichen enantiomeren und diastereomeren Formen, deren Prodrugs, sowie mögliche physiologisch verträgliche Salze.

2. Verbindungen nach Anspruch 1, wobei R¹, R² und R⁴ Wasserstoff darstellen und A Piperidin, Pyrrolidin, Piperazin, Morpholin oder Homopiperazin ist und R³ an den Stickstoff von A gebunden ist.
3. Verbindungen nach einem der Ansprüche 1 oder 2, wobei A Piperdin, das mit der 4-Stellung am Benzimidazol gebunden ist und R³ Wasserstoff, C₁-C₆-Alkyl, Benzyl und Phenylethyl sein kann und in 1-Stellung am Piperidin-Ring steht, bedeuten.
4. Arzneimittel enthaltend neben den üblichen Träger und Hilfsstoffen eine Verbindung nach einem der Ansprüche 1 bis 3.
5. Verwendung von Verbindungen der Formel I nach einem der Ansprüche 1 bis 3 zur Herstellung von Arzneimitteln zur Behandlung von Krankheiten, bei denen pathologisch erhöhte Aktivitäten von PARP auftreten.
6. Verwendung von Verbindungen der Formel I nach einem der Ansprüche 1 bis 3 zur Herstellung von Arzneimitteln zur Behandlung von neurodegenerativen Krankheiten und neuronalen Schädigungen.
7. Verwendung nach Anspruch 6 zur Behandlung von solchen neurodegenerativen Krankheiten und neuronalen Schädigungen, die durch Ischämie, Trauma oder Massenblutungen ausgelöst werden.
8. Verwendung nach Anspruch 6 zur Behandlung des Schlaganfalls und des Schädel-Hirntraumas.
9. Verwendung nach Anspruch 6 zur Behandlung der Alzheimerschen Krankheit der Parkinsonsche Krankheit und der Huntington-Krankheit.

10. Verwendung von Verbindungen der Formel I nach einem der Ansprüche 1 bis 3 zur Herstellung von Arzneimitteln zur Behandlung oder Prophylaxe von Schädigungen durch Ischämien.
- 5 11. Verwendung von Verbindungen der Formel I nach einem der Ansprüche 1 bis 3 zur Herstellung von Arzneimitteln zur Behandlung von Epilepsien, insbesondere von generalisierten epileptischen Anfällen, wie zum Beispiel Petit mal und tonisch-clonische Anfälle und partiell epileptischen
10 Anfällen, wie Temporal Lobe, und komplex-partiellen Anfällen.
12. Verwendung von Verbindungen der Formel I nach einem der Ansprüche 1 bis 3 zur Herstellung von Arzneimitteln zur Behandlung von Schädigungen der Nieren nach renalen
15 Ischämien, Schädigungen, die durch medikamentöse Therapie verursacht werden, und zur Behandlung während und nach Nierentransplantationen.
13. Verwendung von Verbindungen der Formel I nach einem der Ansprüche 1 bis 3 zur Herstellung von Arzneimitteln zur Behandlung von Schädigungen des Herzens nach cardialen Ischämien und Schädigungen, die durch Reperfusion von
20 verengten bzw. verschlossenen Gefäßen verursacht werden.
- 25 14. Verwendung von Verbindungen der Formel I nach einem der Ansprüche 1 bis 3 zur Herstellung von Arzneimitteln zur Behandlung von Mikroinfarkten.
15. Verwendung von Verbindungen der Formel I nach einem der Ansprüche 1 bis 3 zur Herstellung von Arzneimitteln zur
30 Behandlung bei einer Revascularisation kritischer verengter Koronararterien.
16. Verwendung von Verbindungen der Formel I nach einem der Ansprüche 1 bis 3 zur Herstellung von Arzneimitteln zur Behandlung des akuten Myocardinfarktes und von Schädigungen während und nach dessen medikamentöser oder mechanischer
35 Lyse.
- 40 17. Verwendung von Verbindungen der Formel I nach einem der Ansprüche 1 bis 3 zur Herstellung von Arzneimitteln zur Behandlung von Tumoren und deren Metastasierung.
18. Verwendung von Verbindungen der Formel I nach einem der Ansprüche 1 bis 3 zur Herstellung von Arzneimitteln zur
45 Behandlung von Sepsis und des Multiorganversagens.

38

19. Verwendung von Verbindungen der Formel I nach einem der Ansprüche 1 bis 3 zur Herstellung von Arzneimitteln zur Behandlung von immunologischen Krankheiten wie Entzündungen und rheumatische Erkrankungen.

5

20. Verwendung von Verbindungen der Formel I nach einem der Ansprüche 1 bis 3 zur Herstellung von Arzneimitteln zur Behandlung von Diabetes mellitus.

10**15****20****25****30****35****40****45**

INTERNATIONAL SEARCH REPORT

Inte^rna^tional Application No
PCT/EP 99/09004

A. CLASSIFICATION OF SUBJECT MATTER					
IPC 7	C07D235/30	C07D401/04	C07D401/14	C07D403/04	A61K31/4184

A61K31/454 A61K31/496 A61P25/00 A61P9/00

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)
IPC 7 C07D A61K A61P

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	WO 97 04771 A (NEWCASTLE UNIVERSITY VENTURES LIMITED) 13 February 1997 (1997-02-13) cited in the application the whole document	1
A	WO 98 33802 A (NEWCASTLE UNIVERSITY VENTURES LIMITED) 6 August 1998 (1998-08-06) the whole document	1

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the International filing date
- *L* document which may throw doubt on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the International filing date but later than the priority date claimed

- *T* later document published after the International filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
- *X* document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone
- *Y* document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.
- *&* document member of the same patent family

Date of the actual completion of the International search

26 April 2000

Date of mailing of the International search report

16/05/2000

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patenttaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl
Fax: (+31-70) 340-3016

Authorized officer

Allard, M

INTERNATIONAL SEARCH REPORT

Information on patent family members

International Application No

PCT/EP 99/09004

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9704771	A 13-02-1997	AU 714873 B AU 6624096 A BR 9610051 A CA 2225465 A CN 1195985 A CZ 9800303 A EP 0841924 A HU 9901092 A JP 11510154 T NO 980414 A PL 324869 A SK 13598 A		13-01-2000 26-02-1997 21-12-1999 13-02-1997 14-10-1998 17-06-1998 20-05-1998 28-07-1999 07-09-1999 02-04-1998 22-06-1998 03-06-1998
WO 9833802	A 06-08-1998	AU 5873998 A EP 0966476 A		25-08-1998 29-12-1999

INTERNATIONALER RECHERCHENBERICHT

Int. nationales Altenzeichen
PCT/EP 99/09004

A. KLASIFIZIERUNG DES ANMELDUNGSGEGENSTANDES					
IPK 7	C07D235/30	C07D401/04	C07D401/14	C07D403/04	A61K31/4184

A61K31/454 A61K31/496 A61P25/00 A61P9/00

Nach der Internationalen Patentklassifikation (IPK) oder nach der nationalen Klassifikation und der IPK

B. RECHERCHIERTE GEBIETE

Recherchierte Mindestprüfstoff (Klassifikationssystem und Klassifikationssymbole)
IPK 7 C07D A61K A61P

Recherchierte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, soweit diese unter die recherchierten Gebiete fallen

Während der internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendete Suchbegriffe)

C. ALS WESENTLICH ANGESEHENE UNTERLAGEN

Kategorie*	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angabe der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	WO 97 04771 A (NEWCASTLE UNIVERSITY VENTURES LIMITED) 13. Februar 1997 (1997-02-13) in der Anmeldung erwähnt das ganze Dokument	1
A	WO 98 33802 A (NEWCASTLE UNIVERSITY VENTURES LIMITED) 6. August 1998 (1998-08-06) das ganze Dokument	1

Weitere Veröffentlichungen sind der Fortsetzung von Feld C zu entnehmen

Siehe Anhang Patentfamilie

- * Besondere Kategorien von angegebenen Veröffentlichungen :
- *A* Veröffentlichung, die den allgemeinen Stand der Technik definiert, aber nicht als besondere bedeutsam anzusehen ist
- *E* älteres Dokument, das jedoch erst am oder nach dem Internationalen Anmeldedatum veröffentlicht worden ist
- *L* Veröffentlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft erscheinen zu lassen, oder durch die das Veröffentlichungsdatum einer anderen im Recherchebericht genannten Veröffentlichung belegt werden soll oder die aus einem anderen besonderen Grund angegeben ist (wie ausgeführt)
- *O* Veröffentlichung, die sich auf eine mündliche Offenbarung, eine Benutzung, eine Ausstellung oder andere Maßnahmen bezieht
- *P* Veröffentlichung, die vor dem Internationalen Anmeldedatum, aber nach dem beanspruchten Prioritätsdatum veröffentlicht worden ist
- T* Spätere Veröffentlichung, die nach dem Internationalen Anmeldedatum oder dem Prioritätsdatum veröffentlicht worden ist und mit der Anmeldung nicht kollidiert, sondern nur zum Verständnis des der Erfindung zugrundeliegenden Prinzips oder der ihr zugrundeliegenden Theorie angegeben ist
- X* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann allein aufgrund dieser Veröffentlichung nicht als neu oder auf erforderlicher Tätigkeit beruhend betrachtet werden
- Y* Veröffentlichung von besonderer Bedeutung; die beanspruchte Erfindung kann nicht als auf erforderlicher Tätigkeit beruhend betrachtet werden, wenn die Veröffentlichung mit einer oder mehreren anderen Veröffentlichungen dieser Kategorie in Verbindung gebracht wird und diese Verbindung für einen Fachmann nahelegend ist
- &* Veröffentlichung, die Mitglied derselben Patentfamilie ist

Datum des Abschlusses der internationalen Recherche	Abeendedatum des Internationalen Recherchenberichts
26. April 2000	16/05/2000
Name und Postanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, Fax: (+31-70) 340-3016	Bevollmächtigter Bediensteter Allard, M

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie gehören

Internationale Aktenzeichen

PCT/EP 99/09004

Im Recherchenbericht angeführtes Patentdokument	Datum der Veröffentlichung	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
WO 9704771 A	13-02-1997	AU	714873 B	13-01-2000
		AU	6624096 A	26-02-1997
		BR	9610051 A	21-12-1999
		CA	2225465 A	13-02-1997
		CN	1195985 A	14-10-1998
		CZ	9800303 A	17-06-1998
		EP	0841924 A	20-05-1998
		HU	9901092 A	28-07-1999
		JP	11510154 T	07-09-1999
		NO	980414 A	02-04-1998
		PL	324869 A	22-06-1998
		SK	13598 A	03-06-1998
WO 9833802 A	06-08-1998	AU	5873998 A	25-08-1998
		EP	0966476 A	29-12-1999