Problème de soutien Enoncé

Polynôme minimal en un vecteur

NOTATION:

- E désigne un \mathbb{K} -espace vectoriel de dimension finie $n \geqslant 2$, ($\mathbb{K} = \mathbb{R}$ ou \mathbb{C}) et $f \in \mathcal{L}_{\mathbb{K}}(E)$
- π_f le polynôme minimal de f
- $\mathbb{K}[f] = \{P(f) / P \in \mathbb{K}[X]\}$
- Pour $x \in E$, on pose $I_x = \{P \in \mathbb{K}[X] / P(f)(x) = 0\}$ et $E_x = E_f(x) = \{P(f)(x) / \in \mathbb{K}[X]\}$
- 1. Soit $x \in E$. Montrer qu'il existe un unique polynôme unitaire $\pi_x \in \mathbb{K}[X]$ tel que :

$$I_x = (\pi_x) = \pi_x \mathbb{K}[X]$$

- 2. On pose $k = \deg(\pi_f)$ et $r = \deg(\pi_x)$
 - (a) Vérifier que $r \leq k$
 - (b) Montrer que E_x est un sous-espace vectoriel de E de dimension r et en donner une base
 - (c) Montrer que $\mathbb{K}\left[f\right]$ est une sous-algèbre de $\mathcal{L}\left(E\right)$ et en donner une base
- 3. Soient x_1 et x_2 de deux éléments de E
 - (a) On suppose que $E_{x_1} \cap E_{x_2} = \{0\}$, montrer que $\pi_{x_1+x_2} = ppcm(\pi_{x_1}, \pi_{x_2})$
 - (b) On suppose que π_{x_1} et π_{x_2} sont premiers entre eux . Montrer que $E_{x_1+x_2}=E_{x_1}\oplus E_{x_2}$
- 4. Soient $x_1, x_2, ..., x_p$ des vecteurs de E
 - (a) On suppose que E_{x_1}, E_{x_2} ,, E_{x_p} sont en somme directe . Montrer que :

$$\pi_{x_1+x_2+...+x_p} = ppcm(\pi_{x_1}, \pi_{x_2}, ..., \pi_{x_p})$$

(b) On suppose que $\pi_{x_1}, \pi_{x_2},, \pi_{x_p}$ sont deux à deux premiers entre eux . Montrer que :

$$E_{x_1+x_2+\ldots+x_p} = E_{x_1} \oplus E_{x_2} \oplus \ldots \oplus E_{x_p}$$

- 5. Soit P un facteur irréductible de π_f de multiplicité α
 - (a) Soit $x \in \text{Ker}(P^{\alpha}(f))$. Montrer qu'il existe un entier $\alpha_x \leqslant \alpha$ tel que : $\pi_x = P^{\alpha_x}$
 - (b) En déduire qu'il existe $x \in \text{Ker}(P^{\alpha}(f))$ tel que $\pi_x = P^{\alpha}$

On pourra raisonner par l'absurde en supposant que $\forall x \in Ker\left(P^{\alpha}\left(f\right)\right) \ , \alpha_{x} < \alpha$

- 6. En déduire qu'il existe $x \in E$ tel que : $\pi_x = \pi_f$
- 7. On dit qu'un endomorphisme f est cyclique s'il existe $x \in E$ tel que : $E_x = E$. Etablir que les assertions suivantes sont équivalents :
 - (i) f est cyclique
 - (ii) $deg(\pi_f) = n$
 - (iii) $\pi_f = \chi_f$
- 8. On suppose que f est cyclique.
 - (a) Montrer qu'il existe une base $\mathcal B$ de E telle que :

$$Mat (f) = \begin{pmatrix}
0 & 0 & \cdots & 0 & a_0 \\
1 & 0 & \ddots & \vdots & a_1 \\
0 & 1 & \ddots & 0 & \vdots \\
\vdots & \ddots & \ddots & 0 & a_{n-2} \\
0 & \cdots & 0 & 1 & a_{n-1}
\end{pmatrix}$$

(b) Montrer que $\chi_f = X^n - \sum_{i=0}^{n-1} a_i X^i$

Polynôme minimal en un vecteur

- 1. On va montrer que $I_x = \{P \in \mathbb{K}[X] / P(f)(x) = 0\}$ est un idéal de $\mathbb{K}[X]$.
 - \bullet On a $I_x \neq \emptyset$ (Car contient le polynôme nul)
 - Pour tout $(P,Q) \in I_x^2$, alors (P-Q)(f)(x) = P(f)(x) Q(f)(x) = 0 donc $P-Q \in I_x$.
 - Pour tout $P \in \mathbb{K}[X]$ et $Q \in I_x$, on a $(PQ)(f)(x) = P(f) \circ Q(f)(x) = P(f)(Q(f)(x)) = P(f)(0) = 0 \text{ donc } PQ \in I_x$

 I_x est un idéal non nul de $\mathbb{K}[X]$ car il contient π_f , donc il existe un unique polynôme unitaire $\pi_x \in \mathbb{K}[X]$ tel que :

$$I_x = (\pi_x) = \pi_x \mathbb{K}[X]$$

- 2. (a) On a $\pi_f(f) = 0$ donc $\pi_f(f)(x) = 0$ et, par suite, $\pi_f \in I_x = (\pi_x)$. Par définition de l'idéal π_x divise π_f , donc $r = \deg(\pi_x) \leqslant \deg(\pi_f) = k$
 - (b) Pour P = 0, on a P(f)(x) = 0 donc $0 \in E_x$
 - Si $y_1 = P_1(f)(x)$ et $y_2 = P_2(f)(x)$ sont deux éléments de E_x et $\lambda \in \mathbb{K}$ alors $\lambda y_1 + y_2 = (\lambda P_1 + P_2)(f)(x) \in E_x$.

Donc E_x est un sous-espace vectoriel de E

c) Soit $y \in E_x$ alors il existe $P \in \mathbb{K}[X]$ tel que y = P(f)(x)

A l'aide de la division euclidienne il existe $(Q,R)\in \left(\mathbb{K}\left[X\right]\right)^2$ tel que

$$P = Q\pi_x + R$$
 avec $\deg(R) < \deg(\pi_x) = r$

Par suite $y = P(f)(x) = Q(f) \circ \pi_x(f)(x) + R(f)(x) = R(f)(x)$ (car $\pi_x(f)(x) = 0$)

Posons
$$R = \sum_{k=0}^{r-1} a_k X^k$$
, on a alors $y = R(f)(x) = \sum_{k=0}^{r-1} a_k f^k(x) \in Vect\{x, f(x), ..., f^{r-1}(x)\}$

Ainsi $\{x, f(x), ..., f^{r-1}(x)\}$ est génératrice de E_x . On va montrer qu'elle est libre

Soit
$$(\lambda_0, \lambda_1, ..., \lambda_{r-1}) \in \mathbb{K}^r$$
 tel que $\sum_{k=0}^{r-1} \lambda_k f^k(x) = 0$

Posons
$$P = \sum_{k=0}^{r-1} \lambda_k X^k$$
. On a $P(f)(x) = \sum_{k=0}^{r-1} \lambda_k f^k(x) = 0$ donc $P \in I_x$ par suite π_x divise P

Or $\deg{(P)} < \deg{(\pi_x)}$ donc P=0 . On en déduit que $\lambda_0=\lambda_1=\ldots=\lambda_{r-1}=0$.

Ainsi $\mathcal{B} = \{x, f(x), ..., f^{r-1}(x)\}$ est une base de E_x . Par suite dim $E_x = r$.

(c) $id_E \in \mathbb{K}[f]$ de plus si $h, g \in \mathbb{K}[f]$ et $\lambda \in \mathbb{K}$, h = P(f) et g = Q(f) alors

$$\lambda h + g = (\lambda P + Q)(f) \in \mathbb{K}[f] \text{ et } h \circ g = (PQ)(f) \in \mathbb{K}[f]$$

donc $\mathbb{K}[f]$ est une sous-algèbre de $\mathcal{L}(E)$.

A l'aide d'un raisonnement analogue à la question précédente , on a $\{Id, f, ..., f^{k-1}\}$ est une base de $\mathbb{K}[f]$ donc dim $\mathbb{K}[f] = k = \deg(\pi_f)$

- 3. Soient x_1 et x_2 de deux éléments de E
 - (a) Posons $P = ppcm(\pi_{x_1}, \pi_{x_2})$, on a π_{x_1} et π_{x_2} divisent P donc $P(f)(x_i) = 0$, i = 1, 2

On a alors
$$P(f)(x_1 + x_2) = P(f)(x_1) + P(f)(x_2) = 0$$
 donc $\pi_{x_1 + x_2}$ divise $P(f)(x_1 + x_2) = 0$

D'autre part $\pi_{x_1+x_2}(f)(x_1+x_2) = 0$ donc

$$\underbrace{\pi_{x_1+x_2}(f)(x_1)}_{\in E_{x_1}} = \underbrace{-\pi_{x_1+x_2}(f)(x_2)}_{\in E_{x_2}} \in E_{x_1} \cap E_{x_2} = \{0\}$$

Polynôme minimal en un vecteur

Donc $\pi_{x_1+x_2}(f)(x_1) = \pi_{x_1+x_2}(f)(x_2) = 0$ par suite π_{x_1} et π_{x_2} divisent $\pi_{x_1+x_2}(f)(x_2) = 0$

On en déduit que $P = ppcm(\pi_{x_1}, \pi_{x_2})$ divise $\pi_{x_1+x_2}$

(b) Supposons que π_{x_1} et π_{x_2} sont premiers entre eux .

D'après le théorème de Bezout, il existe $(P,Q) \in (\mathbb{K}[X])^2$ tel que $(*): P\pi_{x_1} + Q\pi_{x_2} = 1$

Donc
$$id_E = P(f) \circ \pi_{x_1}(f) + Q(f) \circ \pi_{x_2}(f)$$
.

Vérifions d'abord que $E_{x_i} \subset E_{x_1+x_2}$. Soit $y \in E_{x_i}$, il existe $U_i \in \mathbb{K}[X]$ tel que

$$y = U_i(f)(x_1) = (U_i + \pi_{x_i})(f)(x_1 + x_2) \in E_{x_1 + x_2}$$

D'après (*) on a $U = UP\pi_{x_1} + UQ\pi_{x_2} = P_1\pi_{x_1} + P_2\pi_{x_2}$ avec $P_1 = UP$ et $P_2 = UQ$ donc :

$$y = P_1(f) \circ \pi_{x_1}(f)(y) + P_2(f) \circ \pi_{x_2}(f)(y)$$

Si $y \in E_{x_1} \cap E_{x_2}$ alors il existe $S_1, S_2 \in \mathbb{K}[X]$ tel que $y = S_1(f)(x_1) = S_2(f)(x_2)$. On a alors

$$P_{i}(f) \circ \pi_{x_{i}}(f)(y) = P_{i}(f) \circ \pi_{x_{i}}(f) \circ S_{i}(f)(x_{i}) = P_{i}(f) \circ S_{i}(f) \circ \pi_{x_{i}}(f)(x_{i}) = 0$$

Par suite

$$y = P_1(f) \circ \pi_{x_1}(f)(x_1) + P_2(f) \circ \pi_{x_2}(f)(x_2) = 0.$$

Donc $E_{x_1} \cap E_{x_2} = \{0\}$.

Soit $y \in E_{x_1+x_2}$, il existe $P \in \mathbb{K}[X]$ tel que $y = P(f)(x_1 + x_2) = P(f)(x_1) + P(f)(x_2) \in E_{x_1} + E_{x_2}$ On en déduit que $E_{x_1+x_2} = E_{x_1} \oplus E_{x_2}$

- 4. Généralisation : Soient $x_1, x_2, ..., x_p$ des vecteurs de E
 - (a) Rappelons que si $F_1+F_2+...F_p$ est une somme directe et si $u_i\in F_i$, i=1,...,p sont tels que $u_1+u_2+...u_p=0$ alors $u_1=u_2=...=u_p=0$

Supposons que $E_{x_1}, E_{x_2}, ..., E_{x_p}$ sont en somme directe .

Posons
$$P = ppcm(\pi_{x_1}, \pi_{x_2}, ..., \pi_{x_n})$$
 on a pour tout $i \in \{1, 2, ..., p\}$, $P(f)(x_i) = 0$

Donc $P\left(f\right)\left(x_{1}+x_{2}+\ldots+x_{p}\right)=P\left(f\right)\left(x_{1}\right)+\ldots+P\left(f\right)\left(x_{p}\right)=0$ par suite $\pi_{x_{1}+x_{2}+\ldots+x_{p}}$ divise P.

D'autre part, on a
$$\pi_{x_1+x_2+...+x_p}(x_1+x_2+...+x_p)=0$$
 donc $\sum_{i=1}^{p} \underbrace{\pi_{x_1+x_2+...+x_p}(f)(x_i)}_{\in E_{x_i}}=0$

La somme $E_{x_1} + E_{x_2} + \dots + E_{x_p}$ étant directe , donc

$$\pi_{x_1+x_2+...+x_p}(f)(x_1) = ... = \pi_{x_1+x_2+...+x_p}(f)(x_p) = 0$$

On en déduit que , pour tout $i \in \{1, 2, ..., p\}$, π_{x_i} divise $\pi_{x_1 + x_2 + ... + x_p}$

Par conséquent $P = ppcm(\pi_{x_1}, \pi_{x_2}, ..., \pi_{x_p})$ divise $\pi_{x_1 + x_2 + ... + x_p}$.

(b) Par récurrence sur p. Pour p=2 c'est déjà établi Supposons la propriété vraie pour p-1.

On a
$$E_{x_1} + E_{x_2} + ... + E_{x_{p-1}} = E_{x_1 + x_2 + ... + x_{p-1}}$$
 de plus $\pi_{x_1 + x_2 + ... + x_{p-1}} = ppcm(\pi_{x_1}, \pi_{x_2}, ..., \pi_{x_{p-1}})$

Comme π_{x_p} est premier avec π_{x_i} pour $1 \le i \le p-1$ donc π_{x_p} est premier avec $\pi_{x_1+x_2+...+x_{p-1}}$ Par suite la somme $(E_{x_1} + E_{x_2} + ... + E_{x_{p-1}} + E_{x_p})$ est directe.

Polynôme minimal en un vecteur

Et comme $E_{x_1}+E_{x_2}+\ldots+E_{x_{p-1}}$ est une somme directe (hypothèse de récurrence) Donc

$$E_{x_1+x_2+\ldots+x_p} = E_{x_1} \oplus E_{x_2} \oplus \ldots \oplus E_{x_p}$$

- 5. Soit P un facteur irréductible de π_f de multiplicité α
 - (a) Soit $x \in Ker(P^{\alpha}(f))$. On a $P^{\alpha}(f)(x) = 0$ donc π_x divise P^{α}

Comme P est irréductible, alors les diviseurs de P^{α} sont de la forme P^k avec $k \leq \alpha$.

En particulier il existe un entier $\alpha_x \leqslant \alpha$ tel que : $\pi_x = P^{\alpha_x}$

(b) Supposons que $\forall x \in \text{Ker}(P^{\alpha}(f))$, $\alpha_x < \alpha$. Soit $\beta = \max\{\alpha_x / x \in \text{Ker}(P^{\alpha}(f))\}$

On a
$$\beta<\alpha$$
 , pour tout $x\in Ker\left(P^{\alpha}\left(f\right)\right)$, on a $P^{\beta}\left(f\right)\left(x\right)=P^{\beta-\alpha_{x}}\left(f\right)\circ P^{\alpha_{x}}\left(f\right)\left(x\right)=0$

Donc $P^{\beta}\left(f\right)\left(x\right)=0$ pour tout $x\in Ker\left(P^{\alpha}\left(f\right)\right)$. On en déduit que $Ker\left(P^{\alpha}\left(f\right)\right)=Ker\left(P^{\beta}\left(f\right)\right)$

 $R(f)(x) = R(f)(x_1) + R(f)(x_2) = Q(f) \circ P^{\beta}(f)(x_1) + P^{\beta}(f) \circ Q(f)(x_2) = 0$

Posons $\pi_f = P^\alpha Q$ avec P et Q premiers entre eux . Soit $R = P^\beta Q$ On a

 $E = Ker(P^{\alpha}(f)) \oplus Ker(Q(f)) = Ker(P^{\beta}(f)) \oplus Ker(Q(f))$

Pour
$$x \in E$$
, $x = x_1 + x_2$ avec $x_1 \in KerP^{\beta}(f)$ et $x_2 \in KerQ(f)$, donc

Par suite
$$R(f)(x) = 0$$
 pour tout $x \in E$.

On en déduit que R(f) = 0 et donc π_f divise R ce qui est absurde .

6. Soit $\pi_f=P_1^{\alpha_1}P_2^{\alpha_2}...P_m^{\alpha_m}$ la décomposition en produit de facteurs irréductibles de π_f .

D'après la question précédente , on a pour tout $i \in \{1, 2, ..., m\}$, il existe $x_i \in Ker\left(P_i^{\alpha_i}\left(f\right)\right)$ tel que : $P_i^{\alpha_i}\left(f\right) = \pi_{x_i}$

D'autre part $\pi_{x_1}, \pi_{x_2}, ..., \pi_{x_m}$ sont deux à deux premiers entre eux, donc

$$\pi_{x_1 + x_2 + \ldots + x_p} = ppcm\left(\pi_{x_1}, \pi_{x_2}, ..., \pi_{x_p}\right) = \pi_{x_1} \times \pi_{x_2} \times \ldots \times \pi_{x_p} = P_1^{\alpha_1} P_2^{\alpha_2} \ldots P_m^{\alpha_m} = \pi_f$$

(ii) $\langle \pi \rangle$ (iii) est immédiate, en effet on a π_f divise χ_f et $\deg(\chi_f) = n$ Donc $\deg(\pi_f) = n$ si et seulement si χ_f et π_f sont proportionnels

Et comme π_f est unitaire et $\chi_f = (-1)^n X^n + ...$

Donc deg $(\pi_f) = n$ si et seulement si $\chi_f = (-1)^n \pi_f$.

Reste à établir l'équivalence entre (i) et (ii) .

 $(i) \Rightarrow (ii)$ Supposons que f est cyclique, alors il existe $x_0 \in E$ tel que : $E = E_{x_0}$

D'après les questions $\mathbf{2}^{\circ}$) (a) et $\mathbf{2}^{\circ}$) (b), on a $n = \dim E = \dim E_x = \deg(\pi_x) \leqslant \deg(\pi_f) \leqslant n$ Donc $\deg(\pi_f) = n$.

 $(ii) \Rightarrow (i)$ Supposons que $\deg(\pi_f) = n$. Soit $x_0 \in E$ tel que $\pi_{x_0} = \pi_f$

Alors dim $E_{x_0} = \deg(\pi_f) = n = \dim E$ donc $E = E_{x_0}$ par suite f est cyclique.

POLYNÔME MINIMAL EN UN VECTEUR

- 8. Supposons que f est cyclique , soit $x_0 \in E$ tel que $E = E_{x_0}$.
 - (a) On va établir que $\mathcal{B} = (x_0, f(x_0), ..., f^{n-1}(x_0))$ est une base de E.

Soit
$$(\lambda_0, \lambda_1, ..., \lambda_{n-1}) \in \mathbb{K}^n$$
 tel que : $\lambda_0 x_0 + \lambda_1 f(x_0) + ... + \lambda_{n-1} f^{n-1}(x_0) = 0$

Posons
$$P = \lambda_0 + \lambda_1 X + ... + \lambda_{n-1} X^{n-1}$$
, on a $P(f)(x_0) = 0$

Donc $\pi_{x_0}=\pi_f$ divise P et comme $\deg{(P)}\leqslant n-1$ alors P=0 par suite $\lambda_0=\lambda_1=\ldots=\lambda_{n-1}=0$

 \mathcal{B} est libre et $Card(\mathcal{B}) = n$ donc base.

(b) \mathcal{B} étant base de E donc il existe $(a_0, a_1, ..., a_{n-1}) \in \mathbb{K}^n$ tel que :

$$f^{n}(x_{0}) = a_{0}x_{0} + a_{1}f(x_{0}) + \dots + a_{n-1}f^{n-1}(x_{0})$$

La matrice de f dans la base $\mathcal B$ est alors :

$$mat_{\mathcal{B}}(f) = \begin{pmatrix} 0 & 0 & \cdots & 0 & a_0 \\ 1 & 0 & \ddots & \vdots & a_1 \\ 0 & 1 & \ddots & 0 & \vdots \\ \vdots & \ddots & \ddots & 0 & a_{n-2} \\ 0 & \cdots & 0 & 1 & a_{n-1} \end{pmatrix}$$

Soit
$$P=X^n-a_{n-1}X^{n-1}-\ldots-a_1X-a_0$$
 , On a

$$P(f)(x_0) = f^n(x_0) - (a_0x_0 + a_1f(x_0) + \dots + a_{n-1}f^{n-1}(x_0)) = 0$$

Donc $\pi_{x_0} = \pi_f$ divise P et comme $\deg(P) = n = \deg(\pi_f)$ et sont unitaires donc $P = \pi_f$

$$f$$
 étant cyclique donc $\chi_f = (-1)^n \pi_f = (-1)^n \left(X^n - \sum_{i=0}^{n-1} a_i X^i \right)$