Kevin Jhomar Sanchez Sanchez

I. LOGARITMOS

$$\log_b a = c \longrightarrow b^c = a$$

$$\log_b 1 = 0$$

$$\log_b b = 1$$

$$\log_b b^n = n, \ con \ b \neq 1$$

$$\log_b (a * c) = \log_b a + \log_b c$$

$$\log_b \left(\frac{p}{q}\right) = \log_b p + \log_b q$$

$$\log_a c^n = n \log_a c$$

$$\log_b \sqrt[n]{a^m} = \frac{m}{n} \cdot \log_b a$$

$$\log_p a = \frac{\log_b a}{\log_b p}$$

II. LOGARITMOS NEPERIANOS

$$\ln 1 = 0$$

$$\ln e = 1$$

$$\ln e^n = n$$

$$\ln(x \cdot y) = \ln(x) + \ln(y)$$

$$\ln\left(\frac{x}{y}\right) = \ln(x) - \ln(y)$$

$$\ln x^n = n \ln(x)$$

$$\ln \sqrt[n]{x} = \frac{1}{n} \ln x$$

III. FUNCION EXPONENCIAL

$$\ln e^{x} = x$$

$$e^{\ln x} = x$$

$$e^{0} = 1$$

$$e^{u+v} = e^{u} \cdot e^{v}$$

$$e^{u-v} = \frac{u}{v}$$

$$e^{-v} = \frac{1}{e^{v}}$$

IV. IDENTIDADES TRIGONOMETRICAS

$$sen^{2}x + cos^{2}x = 1$$

$$tan^{2}x + 1 = sec^{2}x$$

$$cot^{2}x + 1 = csc^{2}x$$

$$senx + cscx = 1$$

$$cosx + secx = 1$$

$$tanx + cotx = 1$$

$$tanx = \frac{senx}{cosx}$$

$$cotx = \frac{cosx}{senx}$$

$$secx = \frac{1}{cosx}$$

$$cscx = \frac{1}{senx}$$

$$sen(x \pm y) = senx \cdot cosy \pm cosx \cdot seny$$

$$cos(x \pm y) = cosx \cdot cosy \mp senx \cdot seny$$

$$tan(x \pm y) = \frac{tanx \pm tany}{1 \mp tanx \cdot tany}$$

$$sen2x = 2senx \cdot cosx$$

$$cos2x = cos^{2}x - sen^{2}x$$

$$cos2x = 2cos^{2}x - 1$$

$$cos2x = 1 - 2sen^{2}x$$

V. TRIANGULOS NOTABLES

VI. TABLA DE ANGULOS

	0°	30°	45°	60°	90°	120°	135°	150°	180°
θ	0	π	$\frac{\pi}{}$	π	π	2π	3π	5π	π
		6	4	3	2	3	4	6	
$\sin \theta$	0	1	$\sqrt{2}$	√3	1	$\sqrt{3}$	$\sqrt{2}$	1	0
		2		2		2	2	2	
$\cos \theta$	1	$\sqrt{3}$	$\frac{\overline{2}}{\sqrt{2}}$	1	0	1	$\sqrt{2}$	√3	-1
		2	2	2					
$\tan \theta$	0	√3	1	√3	ind	-√3	-1	√3	0
		3						3	
csc θ	ind	2	$\sqrt{2}$	2√3	1	2√3	$\sqrt{2}$	2	ind
				3		3			
sec θ	1	2√3	$\sqrt{2}$	2	ind	-2	-√2	2√3	-1
		3						3	
$\cot \theta$	ind	$\sqrt{3}$	1	$\sqrt{3}$	0	√3	-1	-√3	ind
				3		3			