■ NEWTON RAPSON

$$ln[\circ] := f[x_] := x^3 - 5 x + 1$$

Plot[f[x], {x, -3, 3}]

$$\begin{aligned} & \inf \{ x_{-} \} := f[x_{-}] := x^3 - 5 x + 1 \\ & a[0] = -2.5; \\ & Do[a[n+1] = a[n] - (f[a[n]] / f'[a[n]]), \{n, 0, 9\}] \\ & TableForm[Table[\{n, a[n], f[a[n]]\}, \{n, 0, 9\}]] \end{aligned}$$

Out[•]//TableForm=

0	-2.5	-2.125
1	-2.34545	-0.175441
2	-2.3302	-0.00163309
3	-2.33006	-1.46276×10^{-7}
4	-2.33006	-1.77636×10^{-15}
5	-2.33006	-1.77636×10^{-15}
6	-2.33006	-1.77636×10^{-15}
7	-2.33006	-1.77636×10^{-15}
8	-2.33006	-1.77636×10^{-15}
9	-2.33006	-1.77636×10^{-15}

$$\begin{split} & \inf \circ j := \ f[x_{_}] := x \wedge 3 - 5 \ x + 1 \\ & a[0] = 2.5; \\ & Do[a[n+1] = a[n] - (f[a[n]] / \ f'[a[n]]), \ \{n, \ 0, \ 9\}] \\ & TableForm[Table[\{n, \ a[n], \ f[a[n]]\}, \ \{n, \ 0, \ 9\}]] \end{split}$$

Out[•]//TableForm=

$$In[\circ] := f[x_] := x^3 - 5 x + 1$$

$$a[0] = 0.5;$$

$$Do[a[n+1] = a[n] - (f[a[n]] / f'[a[n]]), \{n, 0, 9\}]$$

TableForm[Table[{n, a[n], f[a[n]]}, {n, 0, 9}]]

Out[•]//TableForm=

$$ln[*]:= g[x_] := x^2 - 9x + 1$$

 $Plot[g[x], \{x, -3, 3\}]$

$$\begin{split} & \ln[\, \circ \,] := \, g[x_{_}] \, := \, x \, ^2 \, - \, 9 \, x + 1 \\ & \quad a[0] = \, 0.5 \, ; \\ & \quad Do[a[n+1] = \, a[n] \, - \, (g[a[n]] \, / \, g \, '[a[n]]) \, , \, \{n \, , \, \, 0 \, , \, \, 9\}] \\ & \quad TableForm[Table[\{n \, , \, a[n] \, , \, g[a[n]]\} \, , \, \{n \, , \, \, 0 \, , \, \, 9\}]] \end{split}$$

Out[•]//TableForm=

ubici o	1111	
0	0.5	-3.25
1	0.09375	0.165039
2	0.112478	0.000350732
3	0.112518	1.59754×10^{-9}
4	0.112518	0.
5	0.112518	0.
6	0.112518	0.
7	0.112518	0.
8	0.112518	0.

0.

0.112518

$ln[*]:= h[x_] := x^3 - 2x + 5$ Plot[f[x], {x, -3, 1}]

 $\label{eq:local_$

Out[•]//TableForm=

abici oi	111-	
0	-2.5	-5.625
1	-2.16418	-0.807945
2	-2.09714	-0.0288817
3	-2.09456	-0.0000418649
4	-2.09455	-8.84022×10^{-13}
5	-2.09455	8.88178×10^{-16}
6	-2.09455	8.88178×10^{-16}
7	-2.09455	8.88178×10^{-16}
8	-2.09455	8.88178×10^{-16}
9	-2.09455	8.88178×10^{-16}

$$\begin{aligned} & \ln[\, \circ \,] := \, h[\, x_{\,-}] \, := \, x \, ^{\,} \, 3 \, - \, 2 \, \, x \, + \, 5 \\ & \quad a[\, 0] \, = \, 0 \, . \, 5 \, ; \\ & \quad Do[\, a[\, n \, + \, 1] \, = \, a[\, n] \, - \, \left(\, h[\, a[\, n]] \, \right) \, \, h \, ^{\,} [\, a[\, n]] \, , \, \, \left\{ \, n \, , \, \, 0 \, , \, \, 9 \, \right\}] \\ & \quad Table Form[\, Table[\, \{\, n \, , \, \, a[\, n] \, , \, \, h[\, a[\, n]] \, \} \, \, , \, \{\, n \, , \, \, 0 \, , \, \, 9 \, \}]] \end{aligned}$$

Out[•]//TableForm=

0	0.5	4.125
1	3.8	52.272
2	2.53495	16.2196
3	1.5962	5.87448
4	0.55528	4.06065
5	4.33266	77.6671
6	2.90274	23.6528
7	1.88663	7.94197
8	0.971461	3.97388
9	-3.80937	-42.6602

Power: Infinite expression $\frac{1}{0}$ encountered.

... Infinity: Indeterminate expression 0 ComplexInfinity encountered.