

ΕΘΝΙΚΟ ΜΕΣΤΟΒΙΟ ΠΟΛΥΤΕΧΝΕΙΟ

Προσομοίωση Φυσιολογικών Συστημάτων

Εργαστηριακή Αναφορά 1

Θέμα: Μοντέλα Κινητικής Γλυκόζης

Στοιχεία Φοιτητή: Ονοματεπώνυμο: Αναστάσιος Παπαζαφειρόπουλος

Αριθμός Μητρώου: 03118079

Ακαδημαϊκό έτος: 2022-2023

Εισαγωγή:

Σκοπός της παρούσας αναφοράς είναι να εξηγήσει την προσομοίωση του κινητικού μοντέλου γλυκόζης. Γίνεται μια αναφορά στο κλασικό και στο απλοποιημένο μοντέλο και συγκρίνονται τα αντίστοιχα αποτελέσματα.

1.1 Ερωτήματα στο Κλασικό Μοντέλο Κινητικής της Γλυκόζης

Παρατίθεται σχηματικά το κλασικό μοντέλο κινητικής της γλυκόζης (Εικόνα1). Να σημειωθεί ότι οι μελέτες γίνονται με τη χρήση της Ενδοφλέβιας Δοκιμασίας Ανοχής στη Γλυκόζη (standard IVGTT).

Εικόνα 1: Το κλασικό μοντέλο κινητικής της γλυκόζης

Το μοντέλο που υλοποιήθηκε στο πρόγραμμα SAAM ΙΙ παρουσιάζει την ακόλουθη μορφή:

Εικόνα 2: Υλοποίηση κλασικού μοντέλου κινητικής γλυκόζης στο SAAM II

Διαδικασία Υλοποίησης:

Αρχικά σχεδιάστηκαν τα τρία διαμερίσματα G(t), X(t) και I(t). Στη συνέχεια προστέθηκαν οι ροές μάζας k(i,j), ενώ ρυθμίστηκε η μεταβλητή του χρόνου Τ σύμφωνα με το standard IVGTT. Έπειτα, εγχύθηκε γλυκόζη στο διαμέρισμα G(t) και εφαρμόστηκαν οι εξισώσεις που φαίνονται στην Εικόνα 5.

Παρακάτω παρουσιάζονται screenshots από την εκτέλεση της προσομοίωσης μαζί με τις αντίστοιχες περιγραφές προς διευκόλυνση της κατανόησης.

DATA			
T	G(FSD 0.	.02)	I
0	96(-)		16
2	312(-)	120	
3	291(-)	101	
4	289(-)	107	
5	271(-)	83	
7	241(-)	49	
10	220		54
15	184		49
20	170		38
25	151		43
30	141		38
35	121		25
40	94		27
50	88		11
60	80		11
70	83		10
80	84		10
100	90		12
120	89		11
140	90		17
160	91		18
180	87		11
210	98		14
240	94		9

Εικόνα 3: Δεδομένα που δόθηκαν στο πρόγραμμα (συγκεντρώσεις Γλυκόζης και Ινσουλίνης συναρτήσει του χρόνου

Εικόνα 4: Αρχικές τιμές των παραμέτρων του μοντέλου

```
Equations

Equations Defined Elsewhere (read-only):

q3.FF = lin(I) - Iss
flux(2,3) = k(2,3) * q3
k(2,3) = p2*SI
flux(0,2) = k(0,2) * q2
k(0,2)=p2
flux(0,1) = k(0,1) * q1
k(0,1)=SG+q2
```

Εικόνα 5: Εξισώσεις προγράμματος

Έπειτα, εκτελέστηκε η προσομοίωση και αφού έγινε προσαρμογή των δεδομένων μέσω της εντολής «Fit» παρουσιάζονται τα ακόλουθα αποτελέσματα:

Εικόνα 6: Γραφική Παράσταση Δεδομένων πλάσματος και της μορφής της συνάρτησης επιβολής

Εικόνα 7: Προσαρμογή του μοντέλου στα δεδομένα της γλυκόζης

Εικόνα 8: Έλεγχος ποιότητας της προσαρμογής

II)

Οι τιμές των παραμέτρων του μοντέλου φαίνονται στο παράθυρο "Statistics" του προγράμματος:

Εικόνα 9: Παράθυρο "Statistics" του προγράμματος

III)

Θέλουμε να καταλήξουμε στις παρακάτω εξισώσεις:

$$\dot{G}(t) = -[S_G + X(t)]G(t) + S_G G_{SS}, \qquad G(0) = G_0$$
 $\dot{X}(t) = -p_2 \{X(t) - S_I [I(t) - I_{SS}]\}, \qquad X(0) = 0$
ónou:

$$X(t) = (k_4 + k_6)I'(t)$$

$$S_G = k_1 + k_5$$

$$p_2 = k_3$$

$$S_I = \frac{k_2}{k_2} (k_4 + k_6)$$

Είναι: $\frac{dG(t)}{dt} = B(t) - U_p$ (1), αφού ο ρυθμός μεταβολής της γλυκόζης είναι η διαφορά του ηπατικού ισοζυγίου B(t) από την απορρόφηση της γλυκόζης από τους περιφερειακούς ιστούς U_p . Ενώ:

$$B = B_0 - (k_5 + k_6 i')G$$
 (2) kal $U_p = (k_1 + k_4 i')G$ (3).

Με χρήση των (2) και (3), η (1) γράφεται:

$$\frac{dG(t)}{dt} = B(t) - U_p = B_0 - (k_5 + k_6 I'(t))G - (k_1 + k_4 I'(t))G \leftrightarrow \frac{dG(t)}{dt} = -[k_1 + k_5 + (k_6 + k_4)I'(t)]G(t) + B_0$$

Οπότε, αν θέσουμε $X(t) = (k_6 + k_4)I'(t)$ (*) προκύπτει:

$$\frac{dG(t)}{dt} = -\left[k_1 + k_5 + X(t)\right]G(t) + B_0$$
 (4)

Παραγωγίζοντας την (4) ως προς G(t) κατά τη χρονική στιγμή t=0, έχουμε:

$$S_G=X(0)+\ k_1+k_5$$
 (4'), αφού όπως γνωρίζουμε ισχύει: $S_G=-rac{\partial (rac{\partial G(t)}{\partial t})}{\partial G}$.

Άρα, προκύπτει: $S_G = k_1 + k_5$, αφού: X(0) = 0.

Άρα, η (4) για t = 0, μπορεί να γραφτεί: $\frac{dG(t)}{dt}$, $t=0=S_G G(0)+B_0=0$ $\xrightarrow{G(0)=G_0=G_{SS}} B_0=S_G G_{SS}.$ Οπότε, με αντικατάσταση παίρνουμε την πρώτη διαφορική εξίσωση:

$$\frac{dG(t)}{dt} = -[S_G + X(t)]G(t) + S_G G_{SS}, \ G(0) = G_0$$

Γνωρίζουμε πως ο ρυθμός μεταβολής της ουσίας ενός διαμερίσματος ισούται με την είσοδο μείον την έξοδο του διαμερίσματος, οπότε αν εφαρμόσουμε αυτή την αρχή για το διαμέρισμα της απομακρυσμένης ινσουλίνης, έχουμε:

 $\frac{dI'(t)}{dt} = k_2 \left(I(t) - I_{ss} \right) - k_3 I'(t)$, όπου k_2, k_3 οι αντίστοιχοι συντελεστές ροής και I_{ss} η συγκέντρωση της ινσουλίνης στη μόνιμη κατάσταση.

Παραγωγίζοντας την σχέση (*), προκύπτει:

$$\frac{dX(t)}{dt} = (k_6 + k_4) \frac{dI'^{(t)}}{dt} = (k_6 + k_4) k_2 (I(t) - I_{ss}) - (k_6 + k_4) k_3 I'(t)$$

$$\rightarrow \frac{dX(t)}{dt} = -k_3 \left[-\frac{(k_6 + k_4) k_2 (I(t) - I_{ss})}{k_3} + X(t) \right]$$

Οπότε, τώρα αν θέσουμε $k_3=p_2$ και $\frac{k_2}{k_3}(k_6+k_4)=S_I$ παίρνουμε τη δεύτερη διαφορική εξίσωση:

$$\frac{dX(t)}{dt} = -p_2 \{X(t) - S_I[I(t) - I_{ss}]\}, \quad X(0) = 0$$

IV)

Κάποιοι από τους λόγους που μπορεί κάποιο να προτιμήσει τα απλοποιημένα μοντέλα από τα πλήρη είναι οι ακόλουθοι:

- Καλύτερη εποπτεία των αποτελεσμάτων και εικόνα των μηχανισμών που υπάρχουν, συνολικά καλύτερη κατανόηση του φαινομένου γιατί δεν υπάρχει η πολυπλοκότητα των πλήρων μοντέλων.
- Αυτή η μειωμένη πολυπλοκότητα συνεπάγεται και μικρότερη υπολογιστική ισχύ, άρα και μεγαλύτερη ταχύτητα.

Τα παραπάνω αποτελούν πλεονεκτήματα σε περίπτωση που τα απλοποιημένα μοντέλα δεν υστερούν προσφέρουν ικανοποιητικά αποτελέσματα και προσεγγίζουν σε επαρκή βαθμό τα πλήρη, όπως και συνήθως συμβαίνει στην πράξη.

2.1 Ερωτήματα στο Απλοποιημένο Μοντέλο Κινητικής Γλυκόζης

Αρχικά, όπως και στο κλασικό μοντέλο κινητικής γλυκόζης, παρατίθεται σχηματικά το απλοποιημένο μοντέλο.

Εικόνα 10: Το απλοποιημένο μοντέλο κινητικής της γλυκόζης

Όπως αναγράφεται και στον εργαστηριακό οδηγό, σε αυτό το μοντέλο ο ρυθμός εξαφάνισης της γλυκόζης εξαρτάται με γραμμικό τρόπο από τη συγκέντρωση Ι΄ της ινσουλίνης σε ένα απομακρυσμένο διαμέρισμα. Πιο συγκεκριμένα, όπως φαίνεται και στην εικόνα 9, η παραγωγή της γλυκόζης ισούται με p_L και η κατανάλωσή της συμβαίνει ανεξάρτητα από την ινσουλίνη με ρυθμό k_1 και σε εξάρτηση από αυτή με ρυθμό k_4 . Όσον αφορά το διαμέρισμα της απομακρυσμένης ινσουλίνης Ι΄, αυτή εισέρχεται με ρυθμό k_2 στο διαμέρισμα και εξέρχεται με ρυθμό k_3 .

I)

Για να καταλήξουμε στις διαφορικές εξισώσεις που ζητούνται, θα εφαρμόσουμε ξανά την αρχή πως ο ρυθμός μεταβολής της ουσίας ενός διαμερίσματος ισούται με την είσοδο μείον την έξοδο του διαμερίσματος. Αρχικά, για το διαμέρισμα της γλυκόζης, έχουμε:

$$\frac{dG(t)}{dt} = p_L - (k_1 + k_4 I'(t))G(t)$$
 (5)

Eνώ, για $X(t) = k_4 I'(t)$, η (5) γράφεται:

$$\frac{dG(t)}{dt} = p_L - (k_1 + X(t))G(t)$$

Οπότε, χρησιμοποιώντας τη σχέση της ενεργότητας της γλυκόζης και τις δοθείσες τιμές για t=0, καταλήγουμε στην πρώτη διαφορική εξίσωση:

$$\frac{dG(t)}{dt} = p_L - (S_G + X(t))G(t), \quad G(0) = G_{ss}$$

Τώρα, για το διαμέρισμα της Ινσουλίνης, έχουμε:

$$\frac{dI'(t)}{dt} = k_2 \left(I(t) - I_{ss} \right) - k_3 I'(t)$$

Συνεπώς, όπως και στο ερώτημα (ΙΙΙ) της προηγούμενης υπο-ενότητας, με τον ίδιο τρόπο καταλήγουμε στη δεύτερη διαφορική εξίσωση:

$$\frac{dX(t)}{dt} = -p_2 \{X(t) - S_I[I(t) - I_{ss}]\}, \quad X(0) = 0$$

Οι παράμετροι G_0 , S_G , S_I και p_2 έχουν τις ίδιες τιμές με την προηγούμενη υπο-ενότητα. Ενώ, για την p_L ισχύει: $p_L=G_{SS}\cdot S_G=3.06156$ (από σύγκριση των αντίστοιχων «πρώτων» διαφορικών εξισώσεων)

III)

Αφού αλλάξαμε στην προσομοίωση την εξίσωση για το ex1, ώστε να προσομοιωθούν ορθώς οι εξισώσεις του (Ι), παρουσιάζονται οι ζητούμενες γραφικές παραστάσεις:

Εικόνα 11: Γραφική παράσταση της συνάρτησης επιβολής και των δεδομένων ινσουλίνης συναρτήσει του χρόνου

Εικόνα 12: Γραφική παράσταση της γλυκόζης συναρτήσει του χρόνου πριν την προσαρμογή στα πειραματικά δεδομένα

Εικόνα 12: Γραφική παράσταση της γλυκόζης συναρτήσει του χρόνου μετά την προσαρμογή στα πειραματικά δεδομένα

Εικόνα 13: Έλεγχος ποιότητας της προσομοίωσης

VII)

Parameter/Variabl	e Value	Std.Dev.	Coef. of Var.	95% Confiden	ce Interval
G0	290.16102	1.53008e+001	5.27320e+000	257.34409	322.971 🔺
SG	0.03062	1.38692e-003	4.52892e+000	0.02765	0.033
SI	7.82133e-004	1.56642e-004	2.00275e+001	4.46169e-004	
p2	0.02970	8.53947e-003	2.87495e+001		
pL	3.06156	***	***	***	****
		Derived Va	riables		
ex1.bolus			5.27320e+000		
ex1.infusion	3.06156	0.00000e+000	0.00000e+000	3.06156	3.06: +
s1 : G(FSD0.02)	_	ctive Sca 62e+000	aled Data Varia 2.696111e-001	nce	^
Total objective AIC BIC		62e+000 97e+000 60e+000			
4					+

Εικόνα 13: Στατιστικά αποτελέσματα του μοντέλου, από το παράθυρο "Statistics" όπως φαίνεται στο πρόγραμμα.

Όπως προκύπτει από το προηγούμενο ερώτημα από το παράθυρο "Statistics" είναι: $S_G=0.03062$ και $S_I=0.000782133$

IX)

Επειδή σε κλινικές εφαρμογές το στοιχείο που απαιτείται περισσότερο είναι η ακρίβεια της προσομοίωσης, θα ήταν προτιμότερο το κλασικό μοντέλο, καθώς εμφανίζει μεγαλύτερη ακρίβεια, αφού ενσωματώνει και τη δυναμική ενδογενή παραγωγή γλυκόζης από το ήπαρ. Επιπλέον, τα δύο μοντέλα δε διαφέρουν σημαντικά ως προς την υπολογιστική ισχύ, καθώς πρόκειται για απλή εφαρμογή. Συνεπώς, για κλινικές εφαρμογές προτιμάται το κλασικό μοντέλο από το απλοποιημένο (σύγκριση γίνεται και στο ερώτημα 1.1.ΙV).