Aula 4 - Camada de Enlace: Endereçamento, ARP, Ethernet

Diego Passos

Universidade Federal Fluminense

Redes de Computadores II

Na Última Aula...

- Enlace ponto-a-ponto: conecta dois nós diretamente.
 - Se for full-duplex, não há risco de colisões.
- Enlace compartilhado: múltiplos nós concorrem pelo uso.
 - Transmissões simultâneas levam a colisões.
 - Quadros são perdidos.
- Solução para uso de enlaces compartilhados: protocolos de acesso múltiplo.
 - Coordenam uso do enlace pelos nós.
 - Quando cada nó pode transmitir?

- Três tipos básicos:
 - Particionamento de canal: canal é "quebrado" em "pedaços" isolados.
 - Podem ser usados simultaneamente sem colisão.
 - Acesso alternado: nós recebem a chance de usar o meio exclusivamente.
 - Coordenação necessária.
 - Dar oportunidade a nós que não querem transmitir reduz eficiência.
 - Acesso aleatório: nós decidem localmente quando usar o meio.
 - Colisões podem ocorrer, devem ser tratadas.
 - Quando há colisões, eficiência cai.
 - Quanto mais nós, mais provável é a ocorrência de colisões.

Endereços MAC (I)

- Endereços IP.
 - Endereço da camada de rede.
 - Atribuído a uma interface.
 - Usado para encaminhamento na camada 3.
- Endereço MAC (ou físico).
 - Usado localmente na comunicação de quadros entre interfaces conectadas fisicamente.
 - Na mesma "sub-rede", no contexto do IP.
 - Na maioria das LANs, possui 48 bits.
 - Hardcoded em ROM ou configurável via software.
 - Exemplo:
 - 1A-2F-BB-76-09-AD (outra notação comum: 1A:2F:BB:76:09:AD)
 - Pares de algarismos hexadecimais, cada um é um octeto.

Endereços MAC (II)

• Cada adaptador em uma LAN tem um endereço MAC único.

- Alocação de endereços MAC feita pelo IEEE.
- Fabricantes compram porções do espaço de endereçamento.
 - Garante unicidade.
 - Geralmente, prefixo determina fabricante.
- MAC vs. IP: portabilidade.
 - MAC é plano: interface pode ser movida entre LANs.
 - IP é hierárquico: depende da sub-rede específica.

ARP: Resolução de Endereços

Pergunta: Como determinar o MAC da interface sabendo o IP?

- Tabela ARP: cada nó IP (roteador, host) em uma LAN possui uma.
 - Mapeamento IP

 MAC:✓ IP; MAC; TTL>
 - TTL (Time To Live): validade da entrada (e.g., esquecida após 20 min).

O Protocolo ARP: Dentro de uma LAN

- A deseja enviar datagrama para B.
 - Mas MAC de B não está na tabela ARP de A.
- A gera um ARP Query contendo o IP de B.
 - Endereço MAC de destino:FF:FF:FF:FF:FF (broadcast).
 - Todos os nós da LAN recebem o ARP Query.
 - Em particular, **B**.
- **B** gera um ARP Reply.
 - Quadro unicast.
 - MAC de origem: de **B**.
 - MAC de destino: de A.

- Tabela ARP é uma cache: mapeamentos são guardados até ficarem antigos.
 - Soft State: informação expira se não é renovada.
- O ARP é um protocolo "plug and—play".
 - Tabela é criada automaticamente.
 - Sem intervenção ou configuração do administrador.

- Passo a passo: envio de pacote de A para B usando R.
 - Foco no endereçamento nas camadas de rede (datagrama) e enlace (quadro).
 - Assumindo que:
 - A sabe IP de B.
 - A sabe IP do roteador de primeiro salto R (como?).
 - A sabe o MAC de R (como?).

- A cria datagrama IP com origem A, destino B.
- A encapsula datagrama em quadro com MAC de R como destino, e de A como origem.

- Quadro é enviado de **A** para **R** através do enlace.
- R recebe quadro, extrai datagrama, e o repassa para o IP.

- **R** encaminha datagrama com IP de origem de **A** e IP de destino de **B**.
- **R** encapsula datagrama em quadro com MAC de **B** como destino, e MAC de **R** como origem.

- **B** recebe o quadro e extrai datagrama.
- Em **B**, camada de rede verifica que datagrama é destinado ao próprio nó.

Redes Locais (LANs): Ethernet

Ethernet

- Tecnologia "dominante" para LANs cabeadas.
 - Barata: interface Gigabit Ethernet por R\$ 30,00.
 - Primeira tecnologia para LANs amplamente utilizada.
 - Mais simples e barata que alternativas: e.g., Token LANs, ATM.
 - ◆ Acompanhou evolução das taxas de transmissão: 10 Mb/s 10 Gb/s.

Esboço do Ethernet feito por Metcalfe.

Ethernet: Topologia Física

- Barramento: popular até meados dos anos 90.
 - Todos os nós no mesmo domínio de colisão.
 - Transmissões podem colidir umas com as outras.
- Estrela: prevalecente hoje.
 - Elemento ativo no centro: **switch**.
 - Cada cabo conectando o switch a um nó roda um protocolo Ethernet (separado).
 - Colisões são impossíveis.

Ethernet: Hubs

- Comum no final da década de 90.
- Topologia estrela, mas hub era o intermediário.
 - Ao invés de um switch.
- Sinal recebido em uma porta era regenerado e replicado para as demais.
- Domínio de colisão único.
- Assim como nos barramentos, colisões eram possíveis!
 - Hub + cabos = meio de difusão.

Estrutura de um Quadro Ethernet (I)

- Interface encapsula datagrama IP (ou qualquer outro protocolo de rede) em quadro Ethernet.
 - De 46 a 1500 bytes.
 - Por que tamanhos máximo e mínimo?
 - O que ocorre se o datagrama é maior ou menor?

• Preâmbulo:

- 7 bytes com o padrão 10101010 seguidos de 1 byte com o padrão 10101011.
- Usado para sincronizar transmissor e receptor.

Estrutura de um Quadro Ethernet (II)

- Endereços: origem e destino, 6 bytes cada.
 - Interface filtra quadros recebidos pelo endereço de destino.
 - Se endereço é o MAC da interface, ou de broadcast, pacote é desencapsulado e passado para cima.
 - Caso contrário, quadro é descartado.
- Tipo: indica protocolo da camada superior (tipicamente IP, mas também pode ser IPX, AppleTalk, ...).
- CRC: verificação de integridade.
 - Erros detectados: quadro é descartado.

Ethernet: Não Confiável, Sem Conexão

- Sem Conexão: não há handshake entre estações transmissora e receptora.
 - Transmissor simplesmente transmite quadro.
- Não confiável: receptor não envia acks ou nacks ao transmissor.
 - Dados encapsulados em quadros perdidos só recuperados por camada superior.
 - e.g., via retransmissões do TCP.
- Protoloco de acesso ao meio: CSMA/CD com backoff binário exponencial (unslotted).

Padrões Ethernet 802.3: Camadas Física e de Enlace (I)

- Vários padrões Ethernet diferentes:
 - Em comum, protocolo de acesso ao meio e formato de quadro.
 - Mas taxas de transmissão diferentes: 2 Mb/s, 10 Mb/s, 100 Mb/s, 1 Gb/s, 10 Gb/s.
 - Meios de transmissão também diferentes: fibra óptica, cabos de cobre.

Padrões Ethernet 802.3: Camadas Física e de Enlace (II)

Cabo de par trançado, conector RJ45.

Cabo coaxial, conector BNC.

Conector tipo T, BNC.

Padrões Ethernet 802.3: Camadas Física e de Enlace (III)

Fibra óptica, conector LC.

Padrões Ethernet 802.3: Comprimento Máximo

- Comprimento dos **segmentos** do Ethernet é limitado pelos padrões.
 - Por que?
 - Segmentos vs. cabo?
- Exemplos:
 - 10Base2 (Ethernet 10 Mb/s, cabo coaxial fino), máximo de 185 metros.
 - 10Base5 (Ethernet 10 Mb/s, cabo coaxial mais grosso), máximo de 500 metros.
 - 100BaseT (Fast Ethernet [100 Mb/s], par trançado), máximo de 100 metros.
 - 1000BaseLX10 (Gigabit Ethernet [1000 Mb/s], fibra óptica), máximo de 10 quilômetros.
- Repetidores podem ser usados para interconectar segmentos.
 - Pouco comum hoje, geralmente substituídos por switches.

Resumo da Aula...

- Endereçamento e ARP:
 - Endereço MAC, **diferente** do IP:
 - **Único** para cada interface produzida.
 - Plano: i.e., não hierárquico.
 - **Garante portabilidade**: *i.e.*, pode-se conectar interface a qualquer rede.
 - Usado na comunicação entre dois dispositivos diretamente conectados.
 - Há mapeamento entre endereços MAC e IP.
 - Uma interface possui um IP e um certo MAC.
 - Camada de enlace precisa traduzir um IP para um MAC.
 - Função do protocolo ARP.

- Ethernet: tecnologia padrão para LANs cabeadas.
 - Simples, barato.
 - Amplamente difundido.
 - Acompanhou evolução das taxas de transmissão.
- Ethernet original utilizava topologia em barramento.
- Atualmente, o mais comum é a topologia estrela.
 - Elemento ativo no centro: **switch**.
 - Colisões são impossíveis.
- Quadro Ethernet possui:
 - Preâmbulo.
 - Endereços de 6 bytes.
 - CRC.
- Serviço sem conexão, não confiável.
- Emprega o **CSMA/CD**.

Leitura e Exercícios Sugeridos

- Endereçamento e ARP:
 - Páginas 338 a 343 do Kurose (Seção 5.4).
 - Exercícios de fixação 8, 9 e 10 do capítulo 5 do Kurose.
 - Problemas 14, 15 e 16 do capítulo 5 do Kurose.
- Ethernet:
 - Páginas 343 a 350 do Kurose (Seção 5.5, exceto Subseção 5.5.2, já coberta na aula anterior).
 - Problema 23 do capítulo 5 do Kurose.

Próxima Aula...

- Tópico muito importante nas redes Ethernet:
 - Switches.
 - O que são?
 - Como funcionam?
 - Interconexão entre múltiplos switches.