## 4. Considere o brinquedo abaixo:



Bolinhas são jogadas em A . As alavancas x1 e x2 causam o desvio da bolinha para a esquerda ou para a direita. Quando uma bolinha atinge a alavanca, causa alteração no estado da alavanca, sendo que a próxima bolinha a atingir a alavanca pegará o caminho oposto.

## **Pede-se:**

- a- Modele este brinquedo por um autômato finito, considerando que pode-se denotar uma bolinha em A como entrada 1 e uma seqüência de entrada será aceita se a última bolinha cair na saída C.
- b-Qual é a linguagem aceita por este autômato finito?
  - a. Usando representação tabular:

Seja o formato de estados formado pelo  $\{x1x2\}\{a,r\}$ , onde o estado inicial é x1,x2=0,0 (alavancas inicialmente fecham as entradas C e D),  $\{a\}$  é aceptado e  $\{r\}$  é rejeitado

| Estados | 1   |
|---------|-----|
| →00r    | 11r |
| 11r     | 01r |
| 01r     | 00a |
| *00a    | 11r |



b. 
$$L = (111)^n \mid n > 0$$

5. Seja o autômato finito não determinístico (af-nd)  $M = \langle \{q_0, q_1, q_2\}, \{0,1\}, \delta, q_0, \{q_2\} \rangle$ , com o mapeamento  $\delta$  dado por:

$$\delta(q_0,0) = \{q_1,q_2\} \delta(q_0,1) = \{q_0\}$$

$$\delta(q_1,0) = \{q_0,q_1\} \delta(q_1,1) = \{\}$$

$$\delta(q_2,0) = \{q_0,q_2\} \delta(q_2,1) = \{q_1\}$$

## **Pede-se:**

- a- encontre um autômato finito determinístico equivalente ao af-nd M dado.
- b- encontre um autômato finito determinístico com um número mínimo de estados que seja equivalente ao af-nd dado.
- c- descreva L(M) por uma expressão regular.

## a. DFA

| Estados   | 0        | 1      |
|-----------|----------|--------|
| ->{q0}    | {q1q2}   | {q0}   |
| *{q1q2}   | {q0q1q2} | {q1}   |
| *{q0q1q2} | {q0q1q2} | {q0q1} |
| {q1}      | {q0q1}   | {}     |
| {q0q1}    | {q0q1q2} | {q0}   |
| {}        | {}       | {}     |

| Estados | 0 | 1 |
|---------|---|---|
| ->A     | В | A |
| *B      | C | D |
| *C      | С | Е |
| D       | Е | F |
| Е       | С | A |
| F       | F | F |



b

|   | F | Е | D | С | В |
|---|---|---|---|---|---|
| A | X | X | X | X | X |
| В | X | X | X | X |   |
| С | X | X | X |   |   |
| D | X | X |   |   |   |
| Е | X |   |   |   |   |

AF = Com 0 vai a BF, pelo tanto é distinguível

AE = Com 0 vai a BC e com 1 a A então não pode falar nada (marca BC com AE)

BC = Com 0 vai a C e com 1 a DE

AD = Com 0 vai a BE então é distinguível

DF = Com 0 vai a EF e com 1 vai a F então não pode falar nada (marca EF com DF)

DE = Com 0 vai a EC então é distinguível e marcamos também BC e AE

EF = Com 0 vai a CF então é distinguível e marcamos também DF

Entao o DFA mínimo é o autómato inicial:



 $^{\rm c}_{(1+0(101+(0+100)(0+10)*11))*0+((1+0101)+(0(0+100))(0+10)*11)*(0(0+100))(0+10)*}$