Algoritmul simplex dual

Considerăm problema de programare liniară în forma standard:

$$\inf \left\{ c^{\top} \cdot x \mid A \cdot x = b, \ x \ge \mathbf{0} \right\} \tag{P}$$

și duala ei,

$$\sup \left\{ b^{\top} \cdot u \mid A^{\top} \cdot u \le c \right\} \tag{D}$$

unde $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, $c \in \mathbb{R}^n$, rang(A) = m < n.

Fie B o <u>bază optimă</u> a problemei (P). Avem:

$$\overline{x} = B^{-1} \cdot b \ge \mathbf{0} \qquad \text{(primal-admisibilitatea lui } B)$$

$$\overline{c_{\mathbb{B}}^{\mathsf{T}} B^{-1}} \cdot A \le c^{\mathsf{T}} \qquad \text{(condiția de optimalitate a lui } B)$$

$$\overline{u}^{\mathsf{T}} = c_{\mathbb{B}}^{\mathsf{T}} B^{-1} \qquad \qquad \overline{u} \text{ admisibil pentru (D)}$$

$$\widehat{\mathbf{n}} \text{ plus, } \overline{z} = \underline{c_{\mathbb{B}}^{\mathsf{T}}} \cdot \overline{x} = c_{\mathbb{B}}^{\mathsf{T}} \cdot B^{-1} \cdot b = \overline{u}^{\mathsf{T}} \cdot b. \qquad \overline{u} \text{ optim pentru (D).}$$

$$\overline{u} \text{ optim pentru (D).}$$

$$\overline{u} \text{ (teorema de dualitate tare)}$$

Matricea de bază B se numește <u>dual admisibilă</u>, dacă

$$c_{\mathcal{B}}^{\mathsf{T}} \cdot B^{-1} \cdot A \leq c^{\mathsf{T}}$$

Teoremă (optim): Dacă baza B este **primal** şi **dual admisibilă**, atunci ea este **optimă** pentru problemele (P) şi (D).

Algoritmul simplex primal:

Algoritmul simplex dual:

<u>Teoremă (domeniu vid).</u> Fie B o bază dual admisibilă. Dacă există o componentă $\overline{x}_i < 0$, pentru care $y_{ij} \geq 0$, $\forall j = \overline{1,n}$, atunci problema (P) nu are soluție.

Demonstrație. Notăm $\overline{u}^{\mathsf{T}} = c_{\mathcal{B}}^{\mathsf{T}} \cdot B^{-1}$ și B_i^{-1} linia i a lui B^{-1} .

Definim vectorul: $u^{\top}(\lambda) = \overline{u}^{\top} - \lambda B_i^{-1}, \quad \lambda \in \mathbb{R}, \lambda \geq 0.$

Pentru orice $j = \overline{1, n}$, avem:

$$u^{\top}(\lambda) \cdot A^{j} = \overline{u}^{\top} \cdot A^{j} - \lambda B_{i}^{-1} \cdot A^{j} = z_{j} - \lambda y_{ij} \leq z_{j} \leq c_{j}$$

$$\downarrow 0$$

$$\downarrow B \text{ dual admis.}$$

deci, $\forall \lambda \ge 0$, $u(\lambda)$ este o soluţie admisibilă pentru problema (D).

Valoarea funcţiei obiectiv este: $u^{\top}(\lambda) \cdot b = \overline{u}^{\top} \cdot b - \lambda B_i^{-1} \cdot b = \overline{z} - \lambda \overline{x}_i$

$$\lim_{\lambda \to \infty} u^{\top} (\lambda) \cdot b = \overline{z} + \lim_{\lambda \to \infty} (-\lambda \overline{x}_i) = +\infty.$$

Problema (D) are optimul $+\infty$ şi din T.F.D. rezultă că (P) nu are soluţie.

(q.e.d.)

Teoremă (schimbarea bazei): Fie $B = \left(A^{s_1}A^{s_2}\cdots A^{s_m}\right)$ o bază dual admisibilă şi componenta $\overline{x}_r < 0$, pentru care există $j \in \mathcal{R}$ cu $y_{rj} < 0$. Dacă alegem indicele $k \in \mathcal{R}$ astfel încât

$$\frac{z_k - c_k}{y_{rk}} = \min_{j \in \mathbb{R}} \left\{ \left. \frac{z_j - c_j}{y_{rj}} \right| y_{rj} < 0 \right. \right\}$$

atunci, matricea $\tilde{B} = \left(A^{s_1} \cdots A^{s_{r-1}} A^k A^{s_{r+1}} \cdots A^{s_m}\right)$ este o bază dual admisibilă, pentru care $\tilde{z} = c_{\tilde{\mathbb{B}}}^{\top} \cdot \tilde{B}^{-1} \cdot b \geq c_{\mathbb{B}}^{\top} \cdot B^{-1} \cdot b = \overline{z}$.

<u>Demonstrație.</u> Evident, $y_{rk} < 0$. Din Lema substituției rezultă că \tilde{B} este o matrice nesingulară.

Trebuie arătat că
$$\forall j = \overline{1,n}, \Rightarrow \tilde{z}_j - c_j = c_{\tilde{\mathbb{B}}}^{\scriptscriptstyle \top} \cdot \tilde{B}^{\scriptscriptstyle -1} \cdot A^j - c_j \leq 0.$$

Din formulele de schimbare a bazei avem:

$$\tilde{z}_j - c_j = \left(z_j - c_j\right) - \frac{\left(z_k - c_k\right)y_{rj}}{y_{rk}}.$$

B fiind dual admisibilă, rezultă: $(z_j - c_j) \le 0$, $\forall j = \overline{1, n}$.

Dacă $y_{r_i} \ge 0$, evident $\tilde{z}_i - c_i \le 0$.

Dacă
$$y_{rj} < 0$$
, avem: $\tilde{z}_j - c_j = \underbrace{y_{rj}}_{<0} \left(\underbrace{\frac{z_j - c_j}{y_{rj}} - \frac{z_k - c_k}{y_{rk}}}_{>0} \right) \le 0$.

Deci, \tilde{B} este dual admisibilă.

Din formula de schimbare a valorii funcţiei obiectiv obţinem:

$$\widetilde{z} = \overline{z} - \frac{\left(z_k - c_k\right)}{y_{rk}} \overline{x}_r \ge \overline{z}.$$
(q.e.d.)

Paşii algoritmului simplex dual

- Pasul 0. Se determină (dacă există?!) o bază dual admisibilă B şi se calculează B^{-1} .
- Pasul 1. Se calculează $\overline{x} = B^{-1} \cdot b, \ \overline{z} = c_{\mathcal{B}}^{\mathsf{T}} \cdot \overline{x}, \ Y = B^{-1} \cdot A, \ z^{\mathsf{T}} c^{\mathsf{T}} = c_{\mathcal{B}}^{\mathsf{T}} \cdot Y c^{\mathsf{T}} \leq \mathbf{0}^{\mathsf{T}}.$
- Pasul 2. (test de optimalitate) Dacă $\bar{\chi} \ge 0$, atunci s-a obţinut valoarea optimă $\bar{\chi}$, şi soluţia optimă de bază $\chi_{\beta} = \bar{\chi}$, $\chi_{\gamma} = 0$. STOP.
- Pasul 3. (test domeniu vid) Dacă $\exists \overline{x}_i < 0$ pentru care $y_{ij} \ge 0, \forall j = 1, n$, atunci problema (P) nu are soluţie. STOP.
- Pasul 4. (schimbarea bazei) Dacă $\overline{x}_r < 0$ şi $\exists j \in \mathcal{R}$ cu $y_{rj} < 0$, se determină $k \in \mathcal{R}$ astfel încât $\frac{z_k c_k}{y_{rk}} = \min_{j \in \mathcal{R}} \left\{ \left. \frac{z_j c_j}{y_{rj}} \right| y_{rj} < 0 \right\}.$

Se formează $\tilde{B} = B \setminus A^{s_r} \cup A^k$, se calculează inversa $\tilde{B}^{-1} = E_r(\eta) \cdot B^{-1}$ şi se revine la Pasul 1.

Tabloul simplex standard

$$\overline{z} = \sum_{i=1}^{m} c_{s_i} \overline{x}_i$$

$$z_{j} - c_{j} = \sum_{i=1}^{m} c_{s_{i}} y_{ij} - c_{j}$$

Exemple.

Considerăm problema:

$$\inf \left\{ 2x_1 - x_2 + x_3 + 3x_4 + 2x_5 \right\}$$

$$\begin{cases} x_1 - 2x_2 + x_3 - x_4 + 3x_5 &= 5\\ 3x_1 + x_2 - 2x_3 - 3x_4 + x_5 &= -10\\ 2x_1 - x_2 + 2x_3 + x_4 - 3x_5 &= 8 \end{cases}$$

$$x_i \ge 0, \quad \forall i = \overline{1,5}.$$

Tabloul simplex pentru $B = (A^1 A^2 A^3)$ este:

Baza *B* este dual admisibilă! dar **nu** este și primal admisibilă.

Cursul 6

9

$$\min\left\{\frac{-\frac{4}{5}}{-\frac{2}{15}}, \frac{-\frac{21}{5}}{-\frac{8}{15}}\right\} = \min\left\{6, \frac{63}{8}\right\} = 6$$

Bază primal & dual admisibilă!

Soluţia optimă

$$\inf \left\{ 2x_1 + 3x_2 + x_3 + 6x_4 + 3x_5 + 3x_6 \right\}$$

$$\begin{cases} x_1 + x_2 + 3x_3 - 2x_5 - 3x_6 = -2 \\ 3x_2 + 2x_3 + x_4 + 2x_6 = 1 \\ 2x_1 - x_2 - 3x_4 + x_5 - x_6 = -1 \end{cases}$$

$$x_i \ge 0, \ \forall i = \overline{1, 6}.$$

Tabloul simplex pentru $B = (A^1 A^3 A^6)$ este:

$$\min\left\{\frac{-\frac{19}{22}}{-\frac{5}{22}}, \frac{-\frac{17}{2}}{-\frac{3}{2}}\right\} = \min\left\{\frac{19}{5}, \frac{17}{3}\right\} = \frac{19}{5}.$$

Baza *B* este dual admisibilă! dar **nu** este și primal admisibilă.

	\bar{x}	x_1	x_2	x_3	x_4	<i>x</i> ₅	x_6
<i>x</i> ₅	4 7	$-\frac{11}{7}$	$-\frac{29}{7}$	$-\frac{33}{7}$	0	1	0
<i>x</i> ₄	<u>3</u> 7	$-\frac{10}{7}$	<u>-13</u> 7	_ <u>16</u> 7	1	0	0
<i>x</i> ₆	<u>2</u> 7	<u>5</u> 7	<u>17</u> 7	<u>15</u> 7	0	0	1
	<u>36</u> 7	$-\frac{92}{7}$	$-\frac{135}{7}$	$-\frac{157}{7}$	0	0	0

Bază primal & dual admisibilă!

Soluţia optimă

Cursul 6 12