LU-10 Wumpus world, Logic and Propositional Period: 2

LU CO Number: 2

- 1 Formulate PEAS for Wumpus world
- 2 Express any sentences using Propositional logic

Wumpus World Problem Statement

Figure 7.2 A typical wumpus world. The agent is in the bottom left corner, facing right.

PEAS of Wumbus world

Performance measure

Environment: A 4×4 grid of rooms. Each grid can have

- Wumbus
- PIT
- Breeze Air
- Gold

Actuator

Agent movements: Forward, Turn left, Turn Right, Grab, Shoot Sensor: The agent has five sensors, each of which gives a single bit of

information:

- In the square containing the wumpus and in the directly (not diagonally) adjacent squares, the agent will perceive a *Stench*.
- In the squares directly adjacent to a pit, the agent will perceive a *Breeze*.
- In the square where the gold is, the agent will perceive a Glitter.
- When an agent walks into a wall, it will perceive a Bump.
- When the wumpus is killed, it emits a woeful *Scream that can be perceived anywhere* in the cave.

Wumbus world Properties

- Partially observable
- Deterministic
- Sequential
- Static
- Discrete
- One agent

1,4	2,4	3,4	4,4	A = Agent B = Breeze G = Glitter, Gold OK = Safe square	1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3	P = Pit S = Stench V = Visited W = Wumpus	1,3	2,3	3,3	4,3
1,2 OK	2,2	3,2	4,2		1,2 OK	2,2 P?	3,2	4,2
1,1 A OK	2,1 OK	3,1	4,1		1,1 V OK	2,1 A B OK	3,1 P?	4,1
- OIL	Jun	(a)	*		- OK	-	(b)	*

Figure 7.3 The first step taken by the agent in the wumpus world. (a) The initial situation, after percept [None, None, None, None, None]. (b) After one move, with percept [None, Breeze, None, None, None].

1,4	2,4	3,4	4,4	A = Agent B = Breeze G = Glitter, Gold OK = Safe square	1,4	2,4 P?	3,4	4,4
1,3 w!	2,3	3,3	4,3	P = Pit S = Stench V = Visited	1,3 W!	2,3 A S G B	3,3 _{P?}	4,3
1,2A S OK	2,2 OK	3,2	4,2	W = Wumpus	1,2 s V OK	2,2 V OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1		1,1 V OK	2,1 B V OK	3,1 P!	4,1
JA	V. (845)	(a)		—	- OK	2.00	(b)	

Figure 7.4 Two later stages in the progress of the agent. (a) After the third move, with percept [Stench, None, None, None, None]. (b) After the fifth move, with percept [Stench, Breeze, Glitter, None, None].

Logic

Knowledge bases consist of sentences.

- These sentences are expressed according to the syntax of the representation language (If so it is well formed)
- Eg: "x + y = 4" is a well-formed sentence, whereas "x4y+ =" is not.

Logic

..contd

- A logic must also define the semantics or meaning of sentences.
- The semantics defines the truth of each sentence with respect to each possible world
- In standard logics, every sentence must be either true or false there is no "in between"
- Eg: "x + y = 4"
 - is true in a world where x is 2 and y is 2
 - but false in a world where x is 1 and y is 1.

Logic ...contd

- model is used in place of "possible world."
- possible worlds might be real environments
 that the agent might or might not be in
 whereas models are mathematical
 abstractions.
- If a sentence α is true in model m, we say that m satisfies α or sometimes m is a model of α .
- $M(\alpha)$ is the set of all models of α

- Entailment is the relation between sentences
- It is the idea that a sentence follows logically from another sentence
- $\alpha \models \beta$ is notation for α entails β

П

Formal definition of **Entailment**

- α | β if and only if, in every model in which α is true, β is also true
- i.e., $\alpha \models \beta$ if and only if $M(\alpha) \subseteq M(\beta)$

- The percepts, combined with the agent's knowledge of the rules of the wumpus world, constitute the KB
- Consider the situation¬where the agent has detected nothing in [1,1] and a breeze in [2,1].
- Each of the three squares [1,2], [2,2], and [3,1] might or might not contain a pit, so there are
 2³ =8 possible models

- KB is a set of sentences or as a single sentence that asserts all the individual sentences
- The KB is false in models that contradict what the agent knows $\ \ ^{\Pi}$
- Eg: The KB is false in any model in which [1,2] contains a pit, because there is no breeze in [1,1].
- In fact in just three models the KB is true

Let us consider two possible conclusions:

```
\alpha 1 = "There is no pit in [1,2]." \alpha 2 = "There is no pit in [2,2]."
```


In every model in which KB is true, $\alpha 1$ is also true.

Hence, KB $\mid = \alpha 1$ (So there is no pit in [1,2])

In some models in which KB is true, α 2 is false.

Hence, KB $\not\models \alpha 2$ So the agent cannot conclude that there is no pit in [2,2].

Model Checking

- Entailment can be applied to derive LOGICAL INFERENCE conclusions—that is, to carry out logical inference
- Model checking enumerates all possible models to check that α is true in all models in which KB is true, i.e. $M(KB) \subseteq M(\alpha)$
- If an inference algorithm i can derive α from KB, we write

KB
$$|=_i \alpha$$

Model Checking

- An inference algorithm that derives only entailed sentences is called sound or truth preserving
- An inference algorithm is complete if it can derive any sentence that is entailed.
- If an inference algorithm i can derive α from KB, we write

$$KB \mid =_{i} \alpha$$

SI.No	Test Questions	Level
1	Write the grammar for propositional logic.	K1
2	Define entailment	K1
3	Define logical equivalence in propositional logic.	K1
4	Give the five logical connectives used to construct complex sentences and give the formal grammar of propositional logic.	K2
5	Express the following sentence in propositional logic. If not write the reason. "Every mammal has a parent"	K4
6	State and explain the Wumpus world problem	K2
7	Describe syntax and semantics of propositional logic	K2
8	Explain the enumeration algorithm for deciding propositional entailment	K2
	What is meant by truth preserving?	K1