

75-08 Sistemas Operativos Lic. Ing. Osvaldo Clúa 2010

Facultad de Ingeniería Universidad de Buenos Aires

Archivos

El File System

- Método para guardar y organizar archivos para computadoras y sus datos
 - Provee acceso y almacenamiento a datos y programas.
 - Presenta dos aspectos:
 - Interfaz de usuario.
 - · Implementación.
 - La interfaz exporta la noción de:
 - Directorios
 - Archivos

75-08 Sistemas Operativos Prof. Lic. Ing. Osvaldo Clúa

Files

- Una colección de datos con nombre.
- Una unidad lógica de almacenamiento.
 - Abstrae las propiedades físicas del dispositivo de almacenamiento.
- · Provee persistencia a través de
 - Reinicios.
 - Activaciones de programas.
 - Fallas de energía.

Atributos de un archivo

- Nombre.
 Tipo.
- · Ubicación.
- · Tamaño.
- · Protección.
- Restringe las operaciones que se pueden realizar sobre el archivo.
 - Extensiones + archivos de asociación (Registry)
 - Uniform Type Identifier (UTI)
 - Magic o FourCC

Atributos de un archivo (II)

- Propietario
- Time Stamp:
 - Creación.
 - Modificación.
 - Acceso.

- ¿Donde se guarda
 el atributo?
 - Directorio.
 - Archivo.
 - Estructuraseparada.

Operaciones sobre los archivos (operaciones abstractas)

•Create

Append

·Delete

•Seek

•Open

•Get attributes

·Close

Set Attributes

·Read

•Rename

Write

Operaciones sobre Directorios (Operaciones abstractas)

Create

•Readdir

· Delete

•Rename

Opendir

Link

· Closedir

Unlink

Métodos de Acceso

- Sequential Access
 - read next
 - write next
 - reset
 - rewrite

- Direct Access
 - read n
 - write n
 - position n
 - read next
 - write next
 - rewrite n

Partición de Discos con MBR

Cada partición tiene su tipo.

Partición GUID-EFI

- Hasta 128
 particiones (y +).
- Prticiones de mas de 2 TiB.
- •No precisa particiones "hidden". (Por ejemplo service)

GUID -globally unique identifier

EFI - Extensible Firmware Interface

LBA - logical block addressing

GPT - GUID
Partition
Table

FAT File System (Linked Allocation)

File Allocation Table (FAT)

Unix FIle System

NTFS (I)

MFT Master File Table

- Cada Archivo tiene una entrada en la Master File table.
 - La primer entrada describe a la propia MFT
 - Las siguientes son opciones de log o Update Sequence Number

```
FSInfo>ntfsinfo exe c:
NTFS Information Dump V1.01
Copyright (C) 1997 Mark Russinovich
http://www.sysinternals.com
Volume Size
Volume size
                        : 20465 MB
Total sectors
                        : 41913521
Total clusters
Free clusters
                        : 2462979
Free space
                        : 9621 MB (47% of
drive)
Allocation Size
Bytes per sector
                        : 512
Bytes per cluster
                        : 4096
Bytes per MFT record
                        : 1024
Clusters per MFT record: 0
MFT Information
MFT size
                        : 54 MB (0% of drive)
MFT start cluster
                        : 786432
MFT zone clusters
                        : 800448 - 1120288
MFT zone size
                        : 1249 MB (6% of
drive)
MFT mirror start
                        : 2619595
Meta-Data files
```

NTFS (II)

Transactional NTFS

- Aparece con Windows Vista al igual que el Encrypting File Systems
 - Permite cumplir con una de las propiedades
 ACID de las bases de datos (Atomicidad).
 - Es usado para soportar al Kernel Transaction Manager
 - Que usa un proceso conocido como Common Log File System (no es un FS, es un service)

Log File Systems

- Las escrituras se hacen siempre en la cabeza de un log circular como transacciones.
 - Se crean entonces versiones del mismo archivo.
 - Si éstas son accesibles, es un Versioning File System.
 - Si se reconstruye el archivo, se lo llama Journaling File System
 - Ext3 O Ext4 son Journaling File System.
 - JFFS se usa en las memorias flash para compensar su corta vida útil.

Estructuras usadas en el procesamiento de Archivos

Archivos mapeados a memoria

· Se ven como parte de la memoria.

```
NAME
    mmap, munmap - map or unmap files or devices into memory

SYNOPSIS
    #include <sys/mman.h>

    void * mmap(void *start, size_t length, int prot , int flags, int fd, off_t offset);

int munmap(void *start, size_t length);
```

- Se manejan junto con la memoria virtual.
- Permite compartir archivos.

El Buffer Cache

Buffer Cache de páginas y de archivos

Buffer Cache unificado (linux-NT)

75-08 Sistemas Operativos Prof. Lic. Ing. Osvaldo Clúa

I/O con memoria Virtual

- Una unidad como la MMU para el DMA.
- Usada primero por AGP y PCI-Express para video (GART)
- Luego adoptada por INTEL (VT-d) y AMD (HyperTransport).

Virtual File System (I)

- Maneja el acceso a directorios y archivos.
- Presenta una interfaz unificada independiente del file System.

- Y hay muchos

Virtual File System (II)

- Interactúa con los File
 Systems ...
 - que interactúan con el buffer cache, el pagecache y los dispositivos.
- Interactúa con el usuario por medio de las System Calls.
- Provee las estructuras de datos como dcache, inodes cache y user files tables

Objetos - Persistencia

- Característica de perdurar entre ejecución y ejecución.
- Object Data Base management Systems (ODBMS).
 - De empleo en aplicaciones industriales.
 - Usan un Object Query Language.
 - Hay varias implementaciones.

Object Relational Mapping

- Los atributos de un objeto se cargan desde una RDBMS
 - De empleo en aplicaciones "Administrativas".